DELD

Electronics Engineering Department

Registers

- ☐ An Array of Flip-Flops used to store binary information
- ☐ No. of Flip-Flops will be equal to the no of bits required to store the information
- ☐ Data can be entered serially or parallely
- ☐ It can also be used for Data movement
- ☐ Basically know as shift register, it shifts it output every clock pulse

Types

- ☐ Serial In Serial Out
- ☐ Serial In Parallel Out
- ☐ Parallel In Serial Out
- ☐ Parallel In Parallel Out

- ☐ Shift Left
- ☐ Shift Right

Types

Working Concept

Another Perspective

Serial In Serial Out

Bit Movement

. .

CLK	$FF0 (Q_0)$	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q_3)
Initial	0	0	0	0
1	0	0	0	0
2	1	0	0	0
3	0	1	0	0
4	1	0	1	0

Bit Movement Cont..

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q ₃)
Initial	1	0	1	0
5	0	1	0	1
6	0	0	1	0
7	0	0	0	1
8	0	0	0	0

Concept Check

Solution

Serial In Parallel Out

Concept Check

Solution

Parallel In Parallel Out

Parallel In Serial Out

Bidirectional Shift Register

Concept Check

Assume that Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW. Determine the state of the shift register

Solution

Multiplexer

Universal Shift Register

Modes (Universal Shift Register)

Mod	e Cor	atrol
11100		

s ₁ s ₀		Register Operation		
0	0	No change		
0	1	Shift right		
1	O	Shift left		
1	1	Parallel load		

Register For Time Delay

Concept Check

Counters

Ripple/Asynchronous/Serial Counters

☐ Cascaded arrangement of Flip-Flops where the output of one Flip-Flop drives the input of the following Flip-Flop.
☐ The clock input to any subsequent flip-flop comes from the output of its immediately preceding flip-flop. For instance, the output of the first flip-flop acts as the clock input to the second flip-flop, the output of the second flip-flop feeds the clock input of the third flip-flop and so on.
☐ The modulus (MOD number) of a counter is the number of unique states it goes through before it comes back to the initial state to repeat the count sequence.
☐ An n-bit counter that counts through all its natural states and does not skip any of the states has a modulus of 2n.
☐ We can see that such counters have a modulus that is an integral power of 2, that is, 2, 4, 8, 16 and so on.
☐ These can be modified with the help of additional combinational logic to get a modulus of less than 2n.

Modulus

□ To determine the number of flip-flops required to build a counter having a given modulus, identify the smallest integer m that is either equal to or greater than the desired modulus and is also equal to an integral power of 2. For instance, if the desired modulus is 10, which is the case in a decade counter, the smallest integer greater than or equal to 10 and which is also an integral power of 2 is 16. The number of flip-flops in this case would be 4, as 16 = 24.

 $modulus \leq 2^N$

Concept Check

It is desired to design a binary ripple counter that is capable of counting the number of items passing on a conveyor belt. Each time an item passes a given point, a pulse is generated that can be used as a clock input. If the maximum number of items to be counted is 6000, determine the number of flip-flops required.

Concept of Frequency Division

2 Bit NET Up Counter

2 Bit NET Up Counter

Clock Pulse	Q2	Q1
0	0	0
1	0	1
2	1	0
3	1	1
4	0	0

3 – Bit NET Up Counter

Clock Pulse No.	Q3	Q2	Q1
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8	0	0	0

2 - Bit NET Down Counter

2 – Bit NET Down Counter

Clock Pulse	Q2	Q1	Q1′
0	0	0	1
1	1	1	0
2	1	0	1
3	0	1	0
4	0	0	1

2 - Bit NET Down Counter

3 – Bit NET Down Counter

Clock Pulse No.	Q3	Q2	Q2′	Q1	Q1′
0	0	0	1	0	1
1	1	1	0	1	0
2	1	1	0	0	1
3	1	0	1	1	0
4	1	0	1	0	1
5	0	1	0	1	0
6	0	1	0	0	1
7	0	0	1	1	0
8	0	0	1	0	1

2-Bit NET UP/Down Counter

Predict the Output States

Truth Table / Output States

Clock signal transition number	Q_0	Q_1	Q_2	Q_3
After first clock transition	1	0	0	0
After second clock transition	0	1	0	0
After third clock transition	1	1	0	0
After fourth clock transition	0	0	1	0
After fifth clock transition	1	0	1	0
After sixth clock transition	0	1	1	0
After seventh clock transition	1	1	1	0
After eighth clock transition	0	0	0	1
After ninth clock transition	1	0	0	1
After tenth clock transition	0	1	0	1
After eleventh clock transition	1	1	0	1
After twelfth clock transition	0	0	1	1
After thirteenth clock transition	1	0	1	1
After fourteenth clock transition	0	1	1	1
After fifteenth clock transition	1	1	1	1
After sixteenth clock transition	0	0	0	0

2 – Bit PET Up Counter

2 – Bit PET Up Counter

Clock Pulse	Q2	Q1	Q1′
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0
4	0	0	1

2 – Bit PET Up Counter

2 - Bit PET Down Counter

2 - Bit PET Down Counter

2 – Bit PET Down Counter

Clock Pulse	Q2	Q1
0	0	0
1	1	1
2	1	0
3	0	1
4	0	0

2 - Bit PET Up/Down Counter

Mod – 6 Counter Design

After	0	State		R
pulses	Q ₃	Q ₂	Q,	
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
	1	1		
	O	Ö	Ö	0
7	0	0	1	0

Mod – 6 Counter

Mod – 10 Asynchronous Counter

Count					
es Q ₄ Q ₃ Q ₂ Q ₁					
0 0 0 0	\ Q₂Q	1			
0 0 0 1	Q,Q3	00	01	11	10
0 0 1 0	443				
0 0 1 1	00	13			
0 1 0 0					
0 1 0 1	01				
0 1 1 0					
0 1 1 1	11	X	X	X	X
3 1 0 0 0					
9 1 0 0 1	10		X	X	1
0 0 0 0	L				

Mod – 10 Counter

Excitation Tables

Present	Next	S-R	FF	J–K	FF	T-FF	D-FF
State	State	S_n	R_n	J_n	K _n	T_n	D_n
0	0	0	×	0	×	0	0
0	1	1	0	1	×	1	1
1	0	0	1	×	1	1	0
1	1	×	0	×	0	0	1

4 – Bit Up Counter

After	Sta	ite of	cou	inte
clock pusle	Q4	Q ₃	Q ₂	Q
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0
17	0	0	0	1

4 – Bit Up Counter

4 – Bit Down Counter

After clock		of the counter		counter	After clock	State of the counter			
pulse	Q ₄	Q_3	Q ₂	Q1	pulse	Q ₄	Q_3	Q ₂	Q ₁
0	0	0	0	0	9	0,	1	1	1
1	1	1	1	1	10	0	1	1	0
2	1	1	1	0	11	0	1	0	1
3	1	1	0	1	12	0	1	0	0
4	1	1	0	0	13	0	0	1	1
5	1	0	1	1	14	0	0	1	0
6	1	0	1	0	15	0	0	0	1
7	1	0	0	1	16	0	0	0	0
8	1	0	0	0	17	1	1	1	1

4 – Bit Down Counter

4 - Bit UP/DOWN Counter

$Mod < 2^n$

Mod - 6 SC

State Transition Diagram

Propagation Delay

$$T_{\rm clock} \geq N \times t_{\rm pd}$$

$$f_{\max} = \frac{1}{N \times t_{\text{pd}}}$$

Concept Check

A certain J-K flip-flop has tpd = 12 ns. What is the largest MOD counter that can be constructed from these FFs and still operate up to 10 MHz?

Advantage of SC over ASC

total delay = $FF t_{pd} + AND gate t_{pd}$

Concept Check

Determine fmax for the synchronous counter of Figure above if tpd for each FF is 50 ns and tpd for each AND gate is 20 ns. Compare this value with fmax for a MOD-16 ripple counter.

Solution

In a synchronous counter, the total delay that must be allowed between input clock pulses is equal to FF t_{pd} + AND gate t_{pd} . Thus, the period $T_{clock} \ge 50 + 20 = 70$ ns, and so the synchronous counter has a maximum frequency of

$$f_{\text{max}} = \frac{1}{T} = \frac{1}{70 \text{ ns}} = 14.3 \text{ MHz (parallel counter)}$$

A MOD-16 ripple counter uses four FFs with $t_{pd} = 50$ ns. From Eq. $T_{clock} \ge N \times t_{pd}$. Thus, f_{max} for the ripple counter is

$$f_{\text{max}} = \frac{1}{T} = \frac{1}{4 \times 50 \text{ ns}} = 5 \text{ MHz (ripple counter)}$$

Synchronous Counter Design

- 1. Find the number of FLIP-FLOPs required
- 2. Write the count sequence in the tabular form similar
- Determine the FLIP-FLOP inputs which must be present for the desired next state from the present state using the excitation table of the FLIP-FLOPs
- 4. Prepare *K*-map for each FLIP-FLOP input in terms of FLIP-FLOP outputs as the input variables. Simplify the *K*-maps and obtain the minimized expressions.
- 5. Connect the circuit using FLIP-FLOPs and other gates corresponding to the minimized expressions.

State Diagram

Next State Table

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Transition Table

Transition table for a J-K flip-flop.

	Output Tran	sitions	Flip-Flo	p Inputs
Q_N		Q_{N+1}	\boldsymbol{J}	\boldsymbol{K}
0	\longrightarrow	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	X	1
1	\longrightarrow	1	X	0

 Q_N : present state

 Q_{N+1} : next state

X: "don't care"

K-Map Simplifications

Flip-Flop Inputs

$$J_0 = Q_2Q_1 + \overline{Q}_2\overline{Q}_1 = \overline{Q}_2 \oplus \overline{Q}_1$$

$$K_0 = Q_2\overline{Q}_1 + \overline{Q}_2Q_1 = Q_2 \oplus Q_1$$

$$J_1 = \overline{Q}_2Q_0$$

$$K_1 = Q_2Q_0$$

$$J_2 = Q_1\overline{Q}_0$$

$$K_2 = \overline{Q}_1\overline{Q}_0$$

Circuit Implementation

Design Summary

- 1. Specify the counter sequence and draw a state diagram.
- 2. Derive a next-state table from the state diagram.
- Develop a transition table showing the flip-flop inputs required for each transition.
 The transition table is always the same for a given type of flip-flop.
- **4.** Transfer the *J* and *K* states from the transition table to Karnaugh maps. There is a Karnaugh map for each input of each flip-flop.
- Group the Karnaugh map cells to generate and derive the logic expression for each flip-flop input.
- Implement the expressions with combinational logic, and combine with the flip-flops to create the counter.

3 – Bit UP Counter

	on	excitation	quired	Re			NS	State Page	HAT	PS	
K ₁	J ₁	K ₂	J ₂	K ₃	J ₃	Q ₁	Q ₂	Q_3	Q ₁	Q ₂	Q ₃
X	1	X	0	X	0	1	0	0	0	0	0
1	X	X	1	X	0	0	1	0	1	0	0
X	1	0	X	X	0	1	1	0	0	1	0
1	X	1	X	X	1	0	0	1	1	1	0
X	1	X	0	0	X	1	0	1	0	0	1
1	X	X	1	0	X	0	1	1	1	0	1
X	1	0	X	0	X	01	1	X 1	0	1	1
1	X	1	X	1	X	0	0	0	1	1	1

3 – Bit UP Counter

3 - Bit UP Counter

3 - Bit DOWN Counter

	PS		140	NS	west.	94	Re	equired	excitati	on	
Q_3	Q ₂	Q ₁	Q_3	Q ₂	Q ₁	J ₃	K ₃	J ₂	K ₂	J,	K1
0	0	0	1	1	1	1	X	1	X	4	
0	0	1	0	0	0	0	X	0	X	X	X
0	1	0	0	0	1	0	X	X	1	1	-
0	1	1	0	1	0	0	X	X	0	X	X
1	0	0	0	1	1	X	1	1	×	1	X
1	0	1	1	0	0	X	0	0	X	Y	1
1	1	0	1	0	1	X	0	X	1	1	X
1	1	1	1	1	0	X	0	X	0	X	1

3 - Bit DOWN Counter

3 - Bit DOWN Counter

Mod – 6 Counter

Next State Table

n	tatio	exci	ired	equ	R		NS			PS	The same
K.	J,	K ₂	J_2	K3	$\overline{J_3}$	Q,	Q ₂	Q ₃	Q,	Q,	Q3
X	1	X	0	X	0	1	0	0	0	0	0
1	X	X	1	X	0	0	1	0	1	0	0
X	1	0	X	X	0	1	1	0	0	1	0
1	X	1	X	X	1	0	0	1	1	1	0
X	1	X	0	0	X	1	0	1	0	0	1
1	X	X	0	1	X	0	0	0	1	0	1

K-Map Simplifications

Connection Diagram

Check For Lockout

	PS			F	rese	nt inpu	uts			NS	
Q3	Q_2	Q ₁	J_3	K ₃	J_2	K ₂	J ₁	K ₁	Q_3	Q_2	Q ₁
1	1	0	0	0	0	0	1	1	1	1	1
1	1	1	1	1	0	1	1	1	0	0	0

Random Sequence Counter

Design a counter using T Flip-Flops that goes through the states 0-3-5-6-0...

State Table

Valid States – 0,3,5,6

Invalid States – 1,2,4,7

Next State Table

	PS			NS	LAND	Requ	ired excit	ation
Q_3	Q_2	Q ₁	Q_3	Q ₂	Q,	T ₃	T.	T
0	0	0	0	1	1	0	1	4
0	1	1	1	0	1	1	1	1
1	0	1	1	1	0	0	1	0
1	1	0	0	0	0	1		1
'				-	0		1	0

K-Map Simplifications

Connection Diagram

Check For Lockout

	PS		Pres	sent in	puts		NS	
Q_3	Q ₂	Q1	T ₃	T ₂	T,	Q ₃	Q ₂	Q
0	0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0	0
1	0	0	0	1	1	1	1	1
1	1	1	1	1	0	0	0	1

Elimination of Lockout (Method -1)

$$R = \overline{Q_3}\overline{Q_2}Q_1 + \overline{Q_3}Q_2\overline{Q_1} + Q_3\overline{Q_2}\overline{Q_1} + Q_3Q_2\overline{Q_1}$$

$$= \overline{Q_3}(Q_2 \oplus Q_1) + Q_3(\overline{Q_2} \oplus Q_1)$$

$$= Q_3 \oplus Q_2 \oplus Q_1$$

Modified Connection Diagram

Elimination of Lockout (Method -2)

-	PS			NS		Requi	red exci	tation
Q,	Q,	Q,	Q ₃	Q ₂	Q,	T ₃	T ₂	T,
0	0	0	0	1	1	0	1	1
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	0	1	0
0	1	1	1	0	1	1	1	0
1	0	0	0	0	0	1	0	0
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	1	0
1	1	1	0	0	0	1	1	1

K-Map Simplification

RSC - 2

Design a counter using D Flip-Flops which will count the sequence 0-1-2-4-0. If the counter is found in the undesire d state, it must go to the initial (000) state on the very next clock pulse.

State Diagram

Next State Table

	PS	2-6	2	NS		Reg	uired exci	tation
Q_3	Q ₂	Q,	Q_3	Q2	Q,	D ₃	Da	חסוומו
0	0	0	0	0	1	0	0	1
0	0	1	0	(1)	0	0	1	0
0	1	0	1	0	0	1	0	0
0	1	1	0	0	0	0	10 0 OE	0
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	U
1	1	1	0	0	0	0	0	0

Simplifications and Connection Diagram

$$D_3 = \overline{Q}_3 Q_2 \overline{Q}_1;$$
 $D_2 = \overline{Q}_3 \overline{Q}_2 Q_1;$ $D_1 = \overline{Q}_3 \overline{Q}_2 \overline{Q}_1$

Ring Counter

Ring Counter

Ring Counter

2,	Q ₂	Q ₃	Q4	After clock pulse	
1	0	0	0	0	(1000)
0	1	0	0	1	1000
0	0	1	0	2	
0	0	0	1	3	
1	0	0	0	4	(0001) (0
0	1	0	0	5	
0	0	1	0	6	X ()
0	0	0	1	7	0010

Twisted Ring Counter

Twisted Ring Counter

Twisted Ring Counter

2,	Q ₂	Q ₃	Q4	After clock pulse		1
0	0	0	0	0	~	00
1	0	0	0	1	(0011)	
1	1	0	0	2		
1	1	1	0	3	_	
1	1	1	1	4	(0111)	
0	1	1	1	5 00 001		
0	0	1	1	6	1	
0	0	0	1	7	(1111)	
0	0	0	0	8	1	-
1	0	0	0	9	and alone	(1110

To B Continued...