

Result

Proposition 1. Suppose P is a finite probability measureon a set of outcomes Ω . For any two events A, B with P(A), P(B) > 0, we have

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A)\mathbf{P}(A)}{\mathbf{P}(B)}.$$

Proof. By definition, we have

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

And also symmetrically,

$$P(B \mid A) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}.$$

From this second equation we have $\mathbf{P}(A \cap B) = \mathbf{P}(B \mid A)\mathbf{P}(A)$, which we can substitute into the numerator of the first expression to obtain the result.

This result is known by many names including *Bayes' rule*, *Bayes rule* (no possessive), *Bayes' formula*, and *Bayes' theorem*.

It is a *basic* consequence of the *definition* of conditional probability, but it is *useful* in the case that we are given problem data in terms of the probabilities on the right hand side of the above equation.

Compound form

More is true.

Proposition 2. Suppose \mathbf{P} is a finite probability measureon a set of outcomes Ω . For any three events A, B, C with $\mathbf{P}(A), \mathbf{P}(B), \mathbf{P}(C) > 0$, we have

$$\mathbf{P}(A \mid B \cap C) = \frac{\mathbf{P}(B \mid A \cap C)\mathbf{P}(A \mid C)}{\mathbf{P}(B \mid C)}.$$

Proof. Future editions will include, the strategy is the same as above. \Box

