

## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

# 

| Course Title       | IMAGE PROCESSING |                                             |         |            |         |  |
|--------------------|------------------|---------------------------------------------|---------|------------|---------|--|
| Course Code        | AECC26           |                                             |         |            |         |  |
| Program            | B.Tech           |                                             |         |            |         |  |
| Semester           | IV               | CSIT                                        |         |            |         |  |
| Course Type        | Professional     | Professional Elective-I                     |         |            |         |  |
| Regulation         | IARE - UG2       | 0                                           |         |            |         |  |
|                    |                  | Theory                                      |         | Prac       | tical   |  |
| Course Structure   | Lecture          | Tutorials                                   | Credits | Laboratory | Credits |  |
|                    | 3                | -                                           | 3       | -          | -       |  |
| Course Coordinator | Ms.B Lakshn      | Ms.B Lakshmi Prasanna , Assistant Professor |         |            |         |  |

#### **COURSE OBJECTIVES:**

### The students will try to learn:

| I   | The fundamental concepts of digital image processing system and its components.                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The image enhancement, segmentation and compression techniques in spatial and frequency domains.                                                  |
| III | The processing steps included in colour image model construction and enhancement.                                                                 |
| IV  | The algorithms used to solve image processing problems to meet design specifications of various applications like Industry, medicine and defence. |

#### **COURSE OUTCOMES:**

### After successful completion of the course, students should be able to:

| CO 1 | Interpret the principles and terminology of digital image processing for     | Understand |
|------|------------------------------------------------------------------------------|------------|
|      | describing the features of image.                                            |            |
| CO 2 | Illustrate mathematical tools used in image intensity transformations for    | Apply      |
|      | quality enhancement.                                                         |            |
| CO 3 | Identify image enhancement technique to improve the quality.                 | Apply      |
| CO 4 | Apply filters on spatial and frequency domainsfor restoring and reducing the | Apply      |
|      | noise in a given image.                                                      |            |
| CO 5 | Summarize color models and transformation processing techniques for color    | Understand |
|      | image enhancement and compression.                                           |            |

| CO 6 | Apply region based morphological operations and edge- based image        | Apply |
|------|--------------------------------------------------------------------------|-------|
|      | segmentation techniques for detection of objects in images to remove the |       |
|      | imperfections in the structure of the image.                             |       |

# **QUESTION BANK:**

|      | MODULE I                                                                                                                                                                                                                                                          |            |                                                                                                                                                                |       |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|      | II                                                                                                                                                                                                                                                                | NTRODUCT   | ION                                                                                                                                                            |       |  |  |  |  |
| PAR  | T A-PROBLEM SOLVING                                                                                                                                                                                                                                               | G AND CRIT | FICAL THINKING QUEST                                                                                                                                           | ΓIONS |  |  |  |  |
| Q.No | QUESTION                                                                                                                                                                                                                                                          | Taxonomy   | How does this subsume the level                                                                                                                                | CO's  |  |  |  |  |
| 1    | Obtain the image processing matrix for $N=8$ and know how it is constructed.                                                                                                                                                                                      | Apply      | The learner to <b>Recall</b> the image pixel transformation and <b>Understand</b> basis function and apply haar transformation for N=8.                        | CO2   |  |  |  |  |
| 2    | Determine the arithmetic by image operations between the following images pixels.  \[ \begin{align*} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{align*} \] | Understand | The learner to Recall the representation of digital image and Understand the mage operations and understand the convolution and correlation property on image. | CO 1  |  |  |  |  |
| 3    | A common measure of transmission for digital data is baud rate defined by number of bits transmitted per second. Find how many minutes it would take to transmit a 2048*2048 images with 256 intensity levels using a 33.6k baud modem.                           | Understand | The learner to <b>Recall</b> the size of the image, and <b>Understand</b> grey levels, baud rate and apply for the calculation of time taken for the image.    | CO 1  |  |  |  |  |

| 4 | Compute the Pixel<br>Relationships transform of<br>the N=2,and N=4 image                                                                                                                   | Apply | The learner to <b>Recall</b> the image transforms and <b>Understand</b> basis function and apply Pixel Relationships for N=2 and 4.                                          | CO2  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5 | Obtain the intensity transformation matrix For N=8.                                                                                                                                        | Apply | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> basis function apply intensity transformation matrix For N=8.                         | CO2  |
| 6 | Compute the pixel relations of the 4 × 4 grayscale image $f(x, y)$ shown below. $f(x, y) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$ | Apply | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the properties of Pixel Relationships and apply it on image coefficients $f(x,y)$ .   | CO 2 |
| 7 | Compute the Inverse image operation of the transform coefficients $F(k, l)$ given below. $f(k, l) = \begin{bmatrix} 16 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$                          | Apply | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the properties of pixel relationships and apply it on transform coefficients F (k,l). | CO 2 |
| 8 | Obtain the intensity transform basis for the following matrix of samples $f(m,n) = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$                                                         | Apply | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the properties of Pixel Relationships and apply KL transform of the 2 x 2 image       | CO2  |

| 9  | Obtain the spatial and gray level resolutions with one example.                                 | Apply      | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the properties of Reverse transformation and apply hadamard forward and reverse transformation | CO2  |
|----|-------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 10 | Obtain the Noise model of matrix for $N=4$ and verify that it obeys the orthogonality property. | Analyze    | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the properties of Noise model and analyze the matrix for N=4.                                  | CO2  |
|    | PART B-LO                                                                                       | NG ANSWE   | R QUESTIONS                                                                                                                                                                           |      |
| 1  | Explain any four basic relationships between pixels.                                            | Understand | The learner to Recall the relationship between pixels and Understand the Neighbor of a pixels                                                                                         | CO 1 |
| 2  | Demonstrate the components of digital image processing system and explain each block.           | Understand | The learner to Recall the image coordinates and Understand elements of image processing system.                                                                                       | CO 1 |
| 3  | Define digital image. Discuss how digital images are represented with neat diagrams.            | Understand | The learner to <b>Recall</b> the representation of digital image and <b>Understand</b> the processing of digital image.                                                               | CO 1 |
| 4  | Discuss sampling and quantization With necessary diagrams.                                      | Understand | The learner to <b>Recall</b> the sampling and quantization techniques and <b>Understand</b> the conversion of analog image in to digital image.                                       | CO 1 |
| 5  | Discuss the effect of increasing sampling frequency and quantization levels on image            | Understand | The learner to <b>Recall</b> the sampling and quantization and <b>Understand</b> effect of increasing the sampling frequency and greylevels                                           | CO 1 |
| 6  | List and explain<br>applications of image<br>processing                                         | Understand | The learner to <b>Recall</b> the basics of image processing and <b>Understand</b> the applications based on electromagnetic spectrum                                                  | CO 1 |

| 7  | Define spatial resolutions? Discuss the effect on the image by reducing it.                                                              | Understand | The learner to <b>Recall</b> the sampling and quantization <b>Understand</b> effect of increasing the sampling frequency.              | CO 1 |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| 8  | Interpret the concept of non-uniform sampling and quantization.                                                                          | Understand | The learner to Recall quantization and Understand the non uniform quantization.                                                        | CO 1 |
| 9  | Discuss the most commonly used distance measures in image processing                                                                     | Understand | The learner to <b>Recall</b> digital image, neighbours and <b>Understand</b> various distance measures.                                | CO 1 |
| 10 | The image refers to a two dimensional light intensity function. Discuss in detail.                                                       | Understand | The learner to <b>Recall</b> the Gray levels and <b>Understand</b> the Gray level to binary conversion.                                | CO 1 |
| 11 | Discuss the image acquisition using a single sensor, sensor strips and sensor arrays.                                                    | Understand | The learner to Recall image acquisition and Understand various sensors                                                                 | CO 1 |
| 12 | What is restoration models? Explain in detail and Write its properties.                                                                  | Understand | The learner to <b>Recall</b> nthe image transforms and <b>Understand</b> basis function of transform.                                  | CO 2 |
| 13 | Explain about intensity Transform and Write its properties .                                                                             | Understand | The learner to Recall the image transforms and Understand basis function of intensity transformation                                   | CO 2 |
| 14 | Explain the following two image operations of i) spatial operations ii) stastical operations                                             | Understand | The learner to <b>Recall</b> the discrete fourier transform and <b>Understand</b> the properties of 2D DFT                             | CO 2 |
| 15 | Explain the following mathematical operations on digital images i) Array versus Matrix operations ii) Linear versus Nonlinear Operations | Understand | The learner to <b>Recall</b> the fundamental concept of images and <b>Understand</b> various mathematical operations on digital image. | CO 1 |
| 16 | Describe the need of image transform? List out various transform used in image processing.                                               | Understand | The learner to <b>Recall</b> the image transforms and <b>Understand</b> different transforms.                                          | CO 2 |

| 17 | Explain the following terms: (i) Adjacency (ii) Connectivity (iii) Regions (iv) Boundaries                       | Understand | The learner to <b>Recall</b> the concept of pixels and <b>Understand</b> the relationship between pixels             | CO 1 |
|----|------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------|------|
| 18 | State the following two<br>properties of image<br>operations i) Translation ii)<br>Rotation                      | Understand | The learner to <b>Recall</b> the discrete fourier transform and <b>Understand</b> the properties of image operations | CO 2 |
| 19 | Derive the basis function for restoration model                                                                  | Understand | The learner to <b>Recall</b> the image transform and <b>Understand</b> the basis function of restoration model.      | CO2  |
| 20 | Prepare the 4,8-,m-adjacancy based on the lengths of shortest 4,8,m-paths between pixels with suitable examples. | Understand | The learner to <b>Recall</b> the concept of pixels and <b>Understand</b> the relationship between pixels             | CO 1 |
|    | PART C-SHC                                                                                                       | ORT ANSWE  | R QUESTIONS                                                                                                          |      |
| 1  | Define digital image processing                                                                                  | Remember   |                                                                                                                      | CO 1 |
| 2  | Write any two origins of image processing?                                                                       | Remember   |                                                                                                                      | CO 1 |
| 3  | Mention different types of digital images.                                                                       | Remember   |                                                                                                                      | CO 1 |
| 4  | Mention different bands in electromagnetic spectrum.                                                             | Remember   |                                                                                                                      | CO 1 |
| 5  | Which step is the objective of digital image processing?                                                         | Remember   |                                                                                                                      | CO 1 |
| 6  | Explain the hardware components of an image processing.                                                          | Understand | The learner to <b>Recall</b> the digital image and <b>Understand</b> the components of an image processing           | CO 1 |
| 7  | What is meant by Image Pixel?                                                                                    | Remember   |                                                                                                                      | CO 1 |
| 8  | What are the different fields in which Digital Image Processing is used?                                         | Remember   | _                                                                                                                    | CO 1 |
| 9  | What is the need of image processing?                                                                            | Remember   |                                                                                                                      | CO 1 |

| 10 | Explain connectivity and path in relationship between pixels.     | Understand | The learner to <b>Recall</b> the digital image and <b>Understand</b> the relationship between pixels                        | CO 1 |
|----|-------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| 11 | Discuss about 4,8,diagonal neighbours.                            | Understand | The learner to <b>Recall</b> the relationship between pixels and <b>Understand</b> the image connectivity                   | CO 1 |
| 12 | Explain region and boundary in the image.                         | Understand | The learner to <b>Recall</b> the image connectivity and <b>Understand</b> the region and boundary of an image               | CO 1 |
| 13 | Write the changes in sizes of different resolution images?        | Remember   |                                                                                                                             | CO 1 |
| 14 | What is meant by illumination and reflectance in image function?  | Remember   |                                                                                                                             | CO 1 |
| 15 | What are the applications of image processing?                    | Remember   |                                                                                                                             | CO 1 |
| 16 | List the different components in a simple Image formation model.  | Remember   |                                                                                                                             | CO 1 |
| 17 | Explain about sampling role in digitization process.              | Understand | The learner to Recall the sampling theorem and Understand the digitization process                                          | CO 1 |
| 18 | Explain about quantization in digitization process.               | Understand | The learner to <b>Recall</b> the sampling and quantization techniques and <b>Understand</b> the digitizing amplitude values | CO 1 |
| 19 | List the basic steps involved in image processing?                | Remember   | _                                                                                                                           | CO 1 |
| 20 | Define distance measure and Give the different distance measures. | Remember   |                                                                                                                             | CO 1 |

|     |                                                  |                           |              |                            |             | MODULE     | II                                                            |       |  |
|-----|--------------------------------------------------|---------------------------|--------------|----------------------------|-------------|------------|---------------------------------------------------------------|-------|--|
|     | IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN          |                           |              |                            |             |            |                                                               |       |  |
| PAF | RT A-P                                           | ROE                       | BLEM         | SOI                        | VINC        | G AND CRIT | FICAL THINKING QUEST                                          | ΓIONS |  |
| 1   | Obtain                                           | hist                      | ogram        | =                          |             | Apply      | The learner to <b>Recall</b> the                              | CO 3  |  |
|     | equaliz                                          |                           |              |                            |             |            | operation of pixels and gray                                  |       |  |
|     | followi                                          | _                         | _            | _                          | t of        |            | levels and Understand the                                     |       |  |
|     | size 5                                           |                           |              |                            |             |            | histogram equalization and                                    |       |  |
|     | inferen                                          |                           | _            | _                          |             |            | apply image segment of size 5 X 5 and calculate the           |       |  |
|     | before<br>20                                     | and a                     | апет е<br>20 | quanz<br>18                | ation<br>16 |            | result with original image                                    |       |  |
|     |                                                  | 15                        | 16           | 18                         | 15          |            | result with original image                                    |       |  |
|     |                                                  | 15                        | 19           | 15                         | 17          |            |                                                               |       |  |
|     |                                                  | 17<br>18                  | 19<br>17     | 18<br>20                   | 16<br>15    |            |                                                               |       |  |
|     |                                                  |                           |              |                            |             | A 1        |                                                               | GO 9  |  |
| 2   | Apply                                            |                           | _            |                            |             | Apply      | The learner to <b>Recall</b> the                              | CO 3  |  |
|     | histogr<br>the im-                               |                           | quanz        | ation                      | OII         |            | operation of pixels and gray levels and <b>Understand</b> the |       |  |
|     |                                                  | age.                      |              |                            | _           |            | histogram equalization and                                    |       |  |
|     | 4                                                | 4                         | 4            | 4                          | 4           |            | apply image segment of size                                   |       |  |
|     |                                                  |                           | •            |                            |             |            | 5 X 5 and analyze the result                                  |       |  |
|     | 3                                                | 4                         | 5            | 4                          | 3           |            | with original image                                           |       |  |
|     | 3                                                | 5                         | 5            | 5                          | 3           |            |                                                               |       |  |
|     | 3                                                | 4                         | 5            | 4                          | 3           |            |                                                               |       |  |
|     | 1                                                | 1                         | 1            | 1                          | 4           |            |                                                               |       |  |
|     | L                                                | 7                         | 7            | 7                          | ٦           |            |                                                               |       |  |
| 3   | Obtain                                           | hist                      | ogram        | =                          |             | Apply      | The learner to Recall the                                     | CO 3  |  |
|     | equaliz                                          |                           |              |                            |             |            | operation of pixels and gray                                  |       |  |
|     | following image segment of                       |                           |              |                            | t of        |            | levels and Understand the                                     |       |  |
|     | size 5 X 5? Write the inference on image segment |                           |              | histogram equalization and |             |            |                                                               |       |  |
|     | before                                           |                           | _            | _                          |             |            | apply image segment of size 5 X 5                             |       |  |
|     |                                                  | апа а<br><mark>200</mark> | 200          | quanz<br>180               | 240         |            | SIZE J A J                                                    |       |  |
|     |                                                  | 180                       | 180          | 180                        | 190         |            |                                                               |       |  |
|     |                                                  | 190<br>200                | 190<br>220   | 190<br>220                 | 180<br>240  |            |                                                               |       |  |
|     |                                                  | 180                       | 190          | 210                        | 230         |            |                                                               |       |  |

| 4 | A 4 × 4, 4bits/pixel image f(m, n) is passed through point-wise intensity transformation $g(m,n) = round(10 \sqrt{f(m,n)})).$ Determine the output image $g(m,n)$ if f (m,n) is given by $\begin{bmatrix} 12 & 8 & 4 & 9 \\ 10 & 5 & 3 & 6 \\ 8 & 12 & 9 & 13 \\ 4 & 12 & 9 & 10 \end{bmatrix}$                                                                                                              | Apply | The learner to Recall point processing and Understand the round operation and apply on image.                                                                                                                   | CO 3 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5 | Given an image of size $3 \times 3$ as $f(x, y) = \begin{bmatrix} 128 & 212 & 255 \\ 54 & 62 & 124 \\ 140 & 152 & 156 \end{bmatrix}$ Determine the output image $g(m, n) = \begin{bmatrix} c \log_{10} (1 + f(m, n)) \end{bmatrix}$ using logarithmic transformation by choosing c as i. $c = 1$ and ii $c = \frac{L}{\log_{10} (1 + L)}$                                                                    | Apply | The learner to Recall point processing and Understand the log transformation and apply on image.                                                                                                                | CO 3 |
| 6 | Obtain histogram equalization for the following image segment of size 5 X 5? Write the inference on image segment before and after equalization $\mathbf{g}(\mathbf{m},\mathbf{n}) = \mathrm{round}(10^{\sqrt{f(m,n)}})).$ Determine the output image $\mathbf{g}(\mathbf{m},\mathbf{n})$ is given by $\begin{bmatrix} 12 & 8 & 4 & 9 \\ 10 & 5 & 3 & 6 \\ 8 & 12 & 9 & 13 \\ 4 & 12 & 9 & 10 \end{bmatrix}$ | Apply | The learner to <b>Recall</b> the operation of pixels and gray levels and <b>Understand</b> the histogram equalization and <b>apply</b> image segment of size 5 X 5 and calculate the result with original image | CO 3 |

| 7  | Compute the bit planes of the given 8 bit image $f(x, y) = \begin{bmatrix} 255 & 138 & 30 \\ 65 & 12 & 201 \\ 183 & 111 & 85 \end{bmatrix}$                                                                                                | Apply      | The learner to <b>Recall</b> point processing and <b>Understand</b> the round operation and <b>apply</b> on image .                                                            | CO 3 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8  | Compute the value of the marked pixels if it is smoothened by a $3 \times 3$ average filter. $ \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 5 & 6 & 7 & 8 & 4 \\ 4 & (3) & (2) & (1) & 2 \\ 8 & 7 & 6 & 5 & 3 \\ 1 & 5 & 3 & 7 & 8 \end{bmatrix} $ | Apply      | The learner to <b>Recall</b> low pass and high pass filters and <b>Understand</b> in image processing for image enhancement and <b>apply</b> on a segment of image.            | CO 3 |
| 9  | If a low pass filter is formed that averages the 4 neighbours of a point (x,y) but excludes point itself. Find the equivalent transfer function in frequency domain. Show that it is low pass filter                                       | Apply      | The learner to <b>Recall</b> low pass filter and <b>Understand</b> the kernel in image processing for image enhancement and <b>apply</b> fourier transform for spatial filter. | CO 3 |
| 10 | Discuss on the basics of spatial filtering in image enhancement.                                                                                                                                                                           | Understand | The learner to Recall Image Morphology and prepare algorithms and Understand Image Morphology and basic algorithm.                                                             | CO 3 |
|    | PART B-LONG AN                                                                                                                                                                                                                             | ISWER QUE  | STIONS THINKING                                                                                                                                                                |      |
| 1  | Explain in detail about histogram processing.                                                                                                                                                                                              | Understand | The learner to <b>Recall</b> the probability of occurrence of gray levels and <b>Understand</b> the histogram processing.                                                      | CO 3 |
| 2  | With the help of block diagram explain homomorphic filtering approach for image enhancement.                                                                                                                                               | Understand | The learner to Recall filtering techniques and Understand the homomorphic Filtering                                                                                            | CO 3 |

| 3  | Describe various types of mean filters for image enhancement.                                        | Understand | The learner to <b>Recall</b> filter functions and <b>Understand</b> the various types of mean filters.                                     | CO 3 |
|----|------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4  | Demonstrate enhancement<br>of monochrome image by<br>histogram                                       | Understand | The learner to <b>Recall</b> the monochrome technique and <b>Understand</b> the monochrome image by Histogram                              | CO 3 |
| 5  | Discuss the procedure involved in Histogram matching.                                                | Understand | The learner to <b>Recall</b> the operation of pixels and gray levels and <b>Understand</b> the histogram equalization and matching.        | CO 3 |
| 6  | Explain the steps in histogram equalization.                                                         | Understand | The learner to <b>Recall</b> the operation of pixels and gray levels and <b>Understand</b> the histogram equalization .                    | CO 3 |
| 7  | Classify restoration models and list out its applications                                            | Understand | The learner to Recall morphology and Binary morphology and Understand in image processing for image enhancement                            | CO 3 |
| 8  | List out the various of gray level transformation used for image enhancement.                        | Understand | The learner to <b>Recall</b> the operation of pixels and gray levels <b>Understand</b> the gray level transformation for image enhancement | CO 3 |
| 9  | Classify the types of filters in spatial domain filters of image enhancement.                        | Understand | The learner to Recall Feature selection Techniques and Understand butterworth and aussian for image enhancement                            | CO 3 |
| 10 | Describe Butterworth low pass and Butterworth high pass filters.                                     | Understand | The learner to Recall low pass and high pass filters and Understand the Butterworth filter .                                               | CO 3 |
| 11 | List the salient features of image histogram.                                                        | Understand |                                                                                                                                            | CO 3 |
| 12 | Discuss the following spatial enhancement techniques. iii) Spatial averaging. (ii) Median filtering. | Understand | The learner to <b>Recall</b> the spatial filters and <b>Understand</b> the enhancement techniques.                                         | CO 3 |

| 13 | Prepare the linear spatial sharpening filtering for image enhancement.                                                                                                          | Understand | The learner to <b>Recall</b> the spatial filters and <b>Understand</b> the linear spatial sharpening filters.                     | CO 3 |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|------|--|
| 14 | Explain linear spatial smoothing filtering.                                                                                                                                     | Understand | The learner to Recall the spatial filters and Understand the linear spatial smoothing filters.                                    | CO 3 |  |
| 15 | Interpret image processing transforms using point processing method for iii) Negative image. ii)Thresholding iii)Log Transformation                                             | Understand | The learner to Recall concept of point processing and Understand the various techniques for point processing.                     | CO 3 |  |
| 16 | Interpret the homomorphic filtering in image enhancement which is related to frequency domain filtering.                                                                        | Understand | The learner to Recall concept of point processing and Understand the various techniques for point processing.                     | CO 3 |  |
| 17 | Explain smoothing of images in frequency domain using region based segmentation.                                                                                                | Understand | The learner to Recall, region based segmentation. Understand in smoothing in frequency domain.                                    | CO 3 |  |
| 18 | What is meant by the Feature extraction and representation? Discuss their role in image enhancement.                                                                            | Understand | The learner to Recall operation of pixels and gray level and Understand the concept of feature extraction and the representation. | CO 3 |  |
| 19 | Sketch perspective plot of<br>an histogram process by<br>smoothing and sharpening<br>function of filter cross<br>section and explain its<br>usefulness in Image<br>enhancement. | Understand | The learner to Recall feature image classification and prepare algorithms and Understand transfer function for image enhancement. | CO 3 |  |
| 20 | Explain the following operations: i) Binary morphology ii) Gray-level morphology                                                                                                | Understand | The learner to <b>Recall</b> point operations and <b>Understand</b> the concept of Gray-level morphology and Binary morphology.   | CO 3 |  |
|    | PART C -SHORT ANSWER QUESTIONS                                                                                                                                                  |            |                                                                                                                                   |      |  |

Page 13

| 1  | Specify the objective of image enhancement technique.       | Remember   |                                                                                                                       | CO 3 |
|----|-------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|------|
| 2  | Explain the 2 categories of image enhancement.              | Remember   |                                                                                                                       | CO 3 |
| 3  | What are the edge operations?                               | Remember   |                                                                                                                       | CO 3 |
| 4  | What is morphology processing?                              | Understand | The learner to <b>Recall</b> the mask and <b>Understand</b> how the mask is operating on image.                       | CO 3 |
| 5  | What is contrast stretching?                                | Remember   |                                                                                                                       | CO 3 |
| 6  | What is thresholding?                                       | Remember   |                                                                                                                       | CO 3 |
| 7  | What is Binary morphology?                                  | Remember   |                                                                                                                       | CO 3 |
| 8  | What is image averaging? Give its application?              | Remember   |                                                                                                                       | CO 3 |
| 9  | Explain the purpose of image averaging?                     | Understand | This would require the learner to <b>Recall</b> the averaging mask and <b>Understand</b> the effect of mask on image. | CO 3 |
| 10 | Give the formula for negative and log transformation.       | Remember   |                                                                                                                       | CO 3 |
| 11 | What is meant by bit gray level morphology?                 | Remember   |                                                                                                                       | CO 3 |
| 12 | Define histogram.                                           | Remember   |                                                                                                                       | CO 3 |
| 13 | Discuss image negatives?                                    | Understand | This would require the learner to <b>Recall</b> the image segmentation and <b>Understand</b> image negative.          | CO 3 |
| 14 | State the first order derivative filter or gradient filter. | Remember   |                                                                                                                       | CO 3 |
| 15 | What is a Component<br>Labeling?                            | Remember   |                                                                                                                       | CO 3 |
| 16 | Explain median filter?                                      | Understand | The learner to <b>Recall</b> the image enhancement <b>Understand</b> median filter.                                   | CO 3 |
| 17 | What is a smoothing filter?                                 | Remember   |                                                                                                                       | CO 3 |
| 18 | What is a sharpening filter?                                | Remember   |                                                                                                                       | CO 3 |

| 19  | Explain unsharp masking.                                                                                                                                                                                         | Understand | The learner to <b>Recall</b> the mask and <b>Understand</b> use of unsharp masking on image.                                               | CO 3  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 20  | What are the feature                                                                                                                                                                                             | Remember   |                                                                                                                                            | CO 3  |
|     | selection techniques?                                                                                                                                                                                            |            |                                                                                                                                            |       |
|     |                                                                                                                                                                                                                  | MODULE 1   | III                                                                                                                                        |       |
|     |                                                                                                                                                                                                                  |            | AND FILTERING                                                                                                                              |       |
| PAI | RT A-PROBLEM SOLVING                                                                                                                                                                                             | G AND CRIT | FICAL THINKING QUEST                                                                                                                       | ΓΙΟΝS |
| 1   | Apply order statistics filter on the selected pixels in the image. $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                          | Apply      | The learner to <b>Recall</b> filter and <b>Understand</b> the various order statistics filters and apply on 3x3 image segment.             | CO 4  |
| 2   | Justify the discussion "Morphological algorithms is an effective tool to minimize the salt and pepper noise through simple illustration.                                                                         | Apply      | The learner to <b>Recall</b> salt and pepper noise and <b>Understand</b> median filter and <b>apply</b> on image segment.                  | CO 4  |
| 3   | Compute the median value of the marked pixels shown below using $3x3$ mask $ \begin{bmatrix} 18 & 22 & 33 & 25 & 32 & 24 \\ 34 & (128) & (24) & (172) & (26) & 33 \\ 22 & 19 & 32 & 31 & 28 & 26 \end{bmatrix} $ | Apply      | The learner to <b>Recall</b> grey level image and <b>Understand</b> median filter and <b>apply</b> on image segment 3x6 for marked pixels. | CO 4  |
| 4   | Compare image enhancement and image restoration .                                                                                                                                                                | Understand | The learner to Recall digital image and Understand image enhancement and restoration.                                                      | CO 4  |

| 5 | Show effect of mean, geocentric mean, harmonic mean filter for the given marked $f(x,y) = \begin{bmatrix} 128 & 128 & 128 & 128 & 128 \\ 128 & 128 & 128 & 128 & 128 \\ 128 & 255 & 128 & 255 & 128 \\ 128 & 255 & 128 & 0 & 128 \\ 128 & 128 & 128 & 128 & 128 \end{bmatrix}$ image. | Apply      | The learner to <b>Recall</b> grey level image and <b>Understand</b> mean, geomentric, harmonic filter and <b>apply</b> on image segment 5x5.                  | CO 4 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | •                                                                                                                                                                                                                                                                                     | CIE-II     |                                                                                                                                                               |      |
| 6 | Analyse effect of max, min filter for the given image and interpret the results. $f(x,y) = \begin{bmatrix} 30 & 10 & 20 \\ 10 & 250 & 25 \\ 20 & 25 & 30 \end{bmatrix}$ image.                                                                                                        | Apply      | The learner to <b>Recall</b> grey level image and <b>Understand</b> min, max filters and <b>apply</b> on image segment 3x3 and analyze the resulting images . | CO 4 |
| 7 | Describe image segmentation technique for image restoration and write active contour models in details.                                                                                                                                                                               | Understand | The learner to <b>Recall</b> the image segmentation and <b>Understand</b> transfer function of constrained least square function.                             | CO 4 |
| 8 | Derive transfer function of<br>regional descriptors<br>approach for image<br>restoration                                                                                                                                                                                              | Understand | The learner to <b>Recall</b> the filter and <b>Understand</b> transfer function of weiner filter                                                              | CO 4 |
| 9 | Summarize the drawback image representation and analysis with suitable examples                                                                                                                                                                                                       | Understand | The learner to <b>Recall</b> the filter and <b>Understand</b> image representation and analysis with suitable examples                                        | CO 4 |
|   |                                                                                                                                                                                                                                                                                       |            | R QUESTIONS                                                                                                                                                   |      |
| 1 | Illustrate the different causes of image degradation                                                                                                                                                                                                                                  | Understand | The learner to <b>Recall</b> the noise sources and <b>Understand</b> the causes for image degradation.                                                        | CO6  |
| 2 | Summarize the power density function of uniform noise, salt & pepper noise and Gaussian noise and sketch it.                                                                                                                                                                          | Understand | The learner to <b>Recall</b> the noise sources and <b>Understand</b> the power density function of noise.                                                     | CO6  |

| 3  | Explain mean and                                     | Understand | The learner to <b>Recall</b> filter                 | CO4 |
|----|------------------------------------------------------|------------|-----------------------------------------------------|-----|
|    | geometric mean filter for                            |            | and Understand the                                  |     |
|    | image restoration.                                   |            | transfer function of mean and geometric mean filer. |     |
| 4  | Explain erosion and dilation                         | Understand | The learner to Recall filter                        | CO6 |
| 1  | for image restoration.                               | Chacistana | and Understand the                                  | 000 |
|    |                                                      |            | transfer function of                                |     |
|    |                                                      |            | statistical image.                                  |     |
| 5  | Demonstrate the most                                 | Understand | The learner to <b>Recall</b> the                    | CO6 |
|    | commonly used noise                                  |            | noise sources and                                   |     |
|    | probability density<br>functions in image            |            | Understand the most commonly used noise             |     |
|    | processing applications and                          |            | sources.                                            |     |
|    | explain with its plot.                               |            |                                                     |     |
| 6  | Explain the process of                               | Understand | The learner to <b>Recall</b> filter,                | CO6 |
|    | restoration in the presence                          |            | noise and Understand                                |     |
|    | of noise only using spatial filters for various mean |            | image restoration by elastic deformation.           |     |
|    | filters?                                             |            | deformation.                                        |     |
| 7  | Discuss the three principal                          | Understand | The learner to Recall                               | CO6 |
|    | ways to estimate the                                 |            | image restoration and                               |     |
|    | degradation function for use                         |            | Understand image                                    |     |
|    | in image restoration and                             |            | degradation function.                               |     |
| 8  | explain it.  Explain regid body                      | Understand | The learner to <b>Recall</b>                        | CO6 |
| 0  | visualization used for                               | Understand | visualization, noise and                            | COU |
|    | restoring images                                     |            | Understand image                                    |     |
|    |                                                      |            | restoration by order                                |     |
|    |                                                      |            | statistics filters.                                 |     |
| 9  | Explain how degradation is                           | Understand | The learner to <b>Recall</b>                        | CO6 |
|    | estimated using                                      |            | image restoration and Understand estimation of      |     |
|    | i)observation ii)mathematical modeling               |            | image degradation function.                         |     |
| 10 | Summarize Image                                      | Understand | The learner to Recall                               | CO6 |
|    | degradation and restoration                          |            | image restoration and                               |     |
|    | process? Explain various                             |            | Understand image                                    |     |
|    | Noise filters in detail.                             |            | degradation function.                               |     |
|    | T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              | CIE-II     | m 1 , 5 3                                           | 000 |
| 11 | Explain alpha trimmed                                | Understand | The learner to <b>Recall</b>                        | CO6 |
|    | filters for image restoration.                       |            | image restoration and Understand image              |     |
|    |                                                      |            | degradation function.                               |     |

| 12 | Discuss inverse filtering for image restoration.                                                                                                        | Understand | The learner to <b>Recall</b> the filter and <b>Understand</b> transfer function of inverse filtering.                   | CO6  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|------|
| 13 | Demonstrate the model for image degradation.                                                                                                            | Understand | The learner to Recall the image restoration and Understand image degradation model.                                     | CO6  |
| 14 | Discuss constrained least<br>square filtering method for<br>restoration in details                                                                      | Understand | The learner to <b>Recall</b> the filter and <b>Understand</b> transfer function of constrained least square function.   | CO 4 |
| 15 | Discuss about exponential, ayleigh noise and how it can be removed.                                                                                     | Understand | The learner to <b>Recall</b> the noise models and <b>Understand</b> the removal of noise.                               | CO 4 |
| 16 | Describe inverse filtering for<br>removal of blur caused by<br>any motion and describe<br>how it restore the image                                      | Understand | The learner to Recall concept of blur Understand the blur removal by inverse filtering.                                 | CO 4 |
| 17 | Explain the following filtering techniques (1) Noise models by mean of filter (2) Constrained models by mean of filter (3) Homomorphic filter           | Understand | The learner to <b>Recall</b> spatial filter for restoration and <b>Understand</b> the concept of various filters.       | CO 4 |
| 18 | Summarize minimum mean square error filtering for image restoration.                                                                                    | Understand | The learner to <b>Recall</b> the filter and <b>Understand</b> transfer function of minimum mean square filter function. | CO 4 |
| 19 | Discuss about erlang noise and how it can be removed.                                                                                                   | Understand | The learner to Recall the noise sources and Understand the power density function of noise.                             | CO 4 |
| 20 | What is Image restoration? Draw and explain the basic block diagram of the restoration process. Give two areas where restoration process can be applied | Understand | The learner to Recall image restoration and Understand image degradation function.                                      | CO 4 |

|    | PART C- SHO                                                                                                  | ORT ANSWI  | ER QUESTIONS                                                                                       |      |
|----|--------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|------|
| 1  | What is meant by Image Restoration?                                                                          | Remember   |                                                                                                    | CO 4 |
| 2  | How a degradation process is modeled?                                                                        | Remember   |                                                                                                    | CO 4 |
| 3  | Differentiate image<br>enhancement and image<br>restoration                                                  | Remember   |                                                                                                    | CO 4 |
| 4  | What are the two methods of algebraic image restoration approach?                                            | Remember   |                                                                                                    | CO 4 |
| 5  | What is inverse filtering?                                                                                   | Remember   |                                                                                                    | CO 4 |
| 6  | What is pseudo inverse filter?                                                                               | Remember   |                                                                                                    | CO 4 |
| 7  | Explain the causes of degradation in an image.                                                               | Understand | The learner to <b>Recall</b> image restoration and <b>Understand</b> causes for image degradation. | CO 4 |
| 8  | What are the two methods of algebraic image restoration approach?                                            | Remember   |                                                                                                    | CO 4 |
| 9  | What is dynamic (or) Adaptive thresholding?                                                                  | Remember   |                                                                                                    | CO 4 |
| 10 | Explore the restoration is called unconstrained restoration?                                                 | Remember   |                                                                                                    | CO 4 |
|    | 1                                                                                                            | CIE-II     |                                                                                                    | 1    |
| 11 | Write notes on Least square error filter                                                                     | Remember   |                                                                                                    | CO 4 |
| 12 | Describe constrained least<br>square filtering for image<br>restoration and derive its<br>transfer function. | Remember   |                                                                                                    | CO 4 |
| 13 | What is inverse filtering?                                                                                   | Remember   |                                                                                                    | CO 4 |
| 14 | What is pseudo inverse filter?                                                                               | Remember   |                                                                                                    | CO 4 |
| 15 | What is a adaptive median filter?                                                                            | Remember   |                                                                                                    | CO 4 |
| 16 | Define arithmetic mean filter .                                                                              | Remember   |                                                                                                    | CO 4 |
| 17 | Define geometric mean filter .                                                                               | Remember   |                                                                                                    | CO 4 |
| 18 | Explain spatial filtering.                                                                                   | Remember   |                                                                                                    | CO 4 |

| 19  | What is a median filter?                                                                                                                                                                                                                                                                | Remember   |                                                                                                                                                                                      | CO 4  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 20  | What is harmonic mean filter?                                                                                                                                                                                                                                                           | Remember   |                                                                                                                                                                                      | CO 4  |
|     | IIIIUCI .                                                                                                                                                                                                                                                                               | MODULE 1   | IV                                                                                                                                                                                   |       |
|     | COLOR                                                                                                                                                                                                                                                                                   | IMAGE PR   |                                                                                                                                                                                      |       |
| PAF | RT A-PROBLEM SOLVING                                                                                                                                                                                                                                                                    | AND CRIT   | TICAL THINKING QUEST                                                                                                                                                                 | ΓΙΟΝS |
| 1   | Deonstrate the pseudo color image processing with neat diagram.                                                                                                                                                                                                                         | Understand | The learner to Recall the image into segments of its constituents and Understand the magnitude and direction of the gradient of the pixel.                                           | CO 5  |
| 2   | Diffrentiate smoothing and sharpening in color segmentation with suitable examples.                                                                                                                                                                                                     | Understand | The learner to Recall image segmentation and Understand the image segmentation                                                                                                       | CO 5  |
| 3   | List the Color models and explain each model with suitable example.                                                                                                                                                                                                                     | Understand | The learner to <b>Recall</b> gradient operator and <b>Understand</b> the medical image segmentation.                                                                                 | CO 5  |
| 4   | Demonstrate the basics of<br>full-color image processing<br>in color image processing.                                                                                                                                                                                                  | Understand | The learner to Recall gradient operator and Understand the statistical image representation.                                                                                         | CO 5  |
| 5   | Summarize the color transformations with examples in color image processing.                                                                                                                                                                                                            | Apply      | The learner to Recall the image into segments of its constituents and Understand the information contained and apply the statistical image representation to segment the image       | CO 5  |
| 6   | source rigid body visualization from any method of 2D or 3D display A={a1,a2,a3,a4,a5} with probabilities P(a1)=0.2, P(a2) = 0.4, P(a3) = 0.2, P(a4) = 0.1 and P(a5) = 0.1.Find Huffman code for this source? Find the rigid body visualization code and its method of 2D or 3D display | Apply      | The learner to Recall average method of 2D and 3D display Understand the encoding process then apply method of 2D or 3D display for given source and find method of 2D or 3D display | CO 5  |

| 7  | Perform Huffman algorithm for the following intensity distribution, for a 64 x 64 image. Obtain the coding efficiency and compare with that of uniform length code. R0 = 1008, r1 = 320, r2 = 456, r3 = 686, r4 = 803.r5 = 105, r6 = 417, r7 = 301                                           | Apply      | The learner to <b>Recall</b> the code efficiency and <b>Understand</b> the intensity distribution and <b>apply</b> Huffman algorithm and compare with that of uniform length code. | CO 5 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8  | A source emits letters from asn alphabet $A=\{a1,a2,a3,a4,a5\} \text{ with probabilities } P(a1)=0.3, \\ P(a2)=0.4 \text{ , } P(a3)=0.15 \text{ , } \\ P(a4)=0.05 \text{ and } P(a5)=0.1. \\ \text{Find for this source?} \\ \text{Find the average length of the code and its redundancy.}$ | Apply      | The learner to <b>Recall</b> the codeword and <b>Understand</b> the procedure for uffman coding and <b>apply</b> it to find the average length of the code and its redundancy.     | CO 5 |
| 9  | Obtain Huffman coding for<br>the source symbols S={S0<br>,S1, S2, S3,S4} and the<br>corresponding probabilities<br>P= {0.4,0.2,0.2,0.1,0.1}.                                                                                                                                                 | Understand | The learner to <b>Recall</b> the encoding techniques and <b>Understand</b> the uffman coding for source symbols and probabilities.                                                 | CO 5 |
| 10 | Explain the color segmentation with neat diagram.                                                                                                                                                                                                                                            | Understand | The learner to Recall binary image representation and Understand the structuring element and apply the input image is opened and closed by structuring element B.                  | CO 5 |
|    |                                                                                                                                                                                                                                                                                              | NG ANSWE   | R QUESTIONS                                                                                                                                                                        | 90.5 |
| 1  | What is noise? Explain how noise can be generated in color images.                                                                                                                                                                                                                           |            | The learner to Recall binary image representation and Understand the structuring element and apply the input image is opened and closed by structuring element B.                  | CO 5 |

| 2 | Explain color image compression techniques with suitable exaples.                          |            | The learner to Recall binary image representation and Understand the structuring element and apply the input image is opened and closed by structuring element B. | CO 5 |
|---|--------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3 | Discuss the Wavelets and multi resolution processing techniques in color image processing. | Understand | The learner to <b>Recall</b> the image into segments of its constituents and <b>Understand</b> smaller entities for global thresholding.                          | CO 5 |
| 4 | Demonstrate the Image pyramids with neat diagrams.                                         | Understand | The learner to <b>Recall</b> the image into segments of its constituents and <b>Understand</b> smaller entities for region based segmentation.                    | CO5  |
| 5 | Illustrate the sub band coding in color image processing.                                  | Understand | The learner to <b>Recall</b> the Image visualization and <b>Understand</b> smaller entities for Image visualization.                                              | CO5  |
| 6 | Explain the haar transform. Justify how it is useful in color image processing.            | Understand | The learner to Recall the image into segments of its constituents and Understand the closing operation in image morphology segmentation.                          | CO 5 |
| 7 | Explain the multi resolution expansions in color image processing.                         | Understand | The learner to <b>Recall</b> the concept of multi resolution and <b>Understand</b> how it will be used in color image processing.                                 | CO 5 |
| 8 | Demonstrate the wavelet transforms in one dimension                                        | Understand | The learner to <b>Recall</b> what is wavelet and <b>Understand</b> how it is used in one dimension.                                                               | CO 5 |
| 9 | Explain fast wavelet<br>transform in color image<br>processing                             | Understand | The learner to <b>Recall</b> what is fast wavelet transform and <b>Understand</b> how it is used in color image processing.                                       | CO 5 |

| 10 | Demonstrate the wavelet transforms in two dimension                                                                               | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> in to morphing for dilation and erosion.                                       | CO 5 |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 11 | List the wavelet packets with neat diagrams.                                                                                      | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the thresholding process.                                                      | CO 5 |
| 12 | Draw and explain image compression models in color image processing.                                                              | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the boundary characteristics.                                                  | CO 5 |
| 13 | Derive the error-free (lossless) compression with example.                                                                        | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the image segmentation.                                                        | CO 5 |
| 14 | Demonstrate the fundamentals of wavelet packets with neat diagrams                                                                | Understand | The learner to Recall the image into segments and Understand the Hough transform for edge linking image segmentation.                                     | CO 5 |
| 15 | List the types of noises in color image processing. i) Thinning ii) Thickening                                                    | Understand | The learner to Recall the image into segments and Understand the edge linking in image segmentation.                                                      | CO 5 |
| 16 | Explain the fundamentals of color image processing techniques.                                                                    | Understand | The learner to Recall the image into segments of its constituents and Understand smaller entities for region splitting and merging based on segmentation. | CO 5 |
| 17 | Compare the Wavelets and multi resolution processing                                                                              | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the of Hit-or-Miss morphological transformation                                | CO 5 |
| 18 | Convert the RGB pixel $(R,G,B) = (20, 40, 60)$ into $(r,g,b), (r,g,I), (H,S,I), (H,S,V), (Y,U,V),$ and $(Y,Cb,Cr),$ respectively. | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the of Hit-or-Miss morphological transformation                                | CO 5 |

| 19 | How many different 512 × 512 color (24-bit) images can be constructed?                                                                           | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the of Hit-or-Miss morphological transformation  | CO 5 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| 20 | An RGB image is converted into a gray-scale image so that the cyan color is enhanced. What are the weight factors for R, G, and B, respectively? | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the of Hit-or-Miss morphological transformation. | CO 5 |
|    | PART C-SHO                                                                                                                                       | RT ANSWE   | R QUESTIONS                                                                                                                 |      |
| 1  | What is segmentation?                                                                                                                            | Remember   | <u>-</u>                                                                                                                    | CO 5 |
| 2  | Write the applications of segmentation                                                                                                           | Remember   |                                                                                                                             | CO 5 |
| 3  | What are the three types of discontinuity in digital image?                                                                                      | Remember   |                                                                                                                             | CO 5 |
| 4  | How the derivatives are obtained in color transformations,?                                                                                      | Remember   |                                                                                                                             | CO 5 |
| 5  | What are the Image pyramids?                                                                                                                     | Remember   | <del></del>                                                                                                                 | CO 5 |
| 6  | Give the properties of coding.                                                                                                                   | Remember   |                                                                                                                             | CO 5 |
| 7  | Define error in image.                                                                                                                           | Remember   | <del></del>                                                                                                                 | CO 5 |
| 8  | What is resolution in image?                                                                                                                     | Remember   | <del></del>                                                                                                                 | CO 5 |
| 9  | What are the disadvantages of Laplacian operator?                                                                                                | Remember   | <del></del>                                                                                                                 | CO 5 |
| 10 | What is lossy compression?                                                                                                                       | Remember   |                                                                                                                             | CO 5 |
| 11 | What is wavelet in image?                                                                                                                        | Remember   |                                                                                                                             | CO 5 |
| 12 | What is full-color image processing?                                                                                                             | Remember   | <del></del>                                                                                                                 | CO 5 |
| 13 | What is image pyramids?                                                                                                                          | Remember   | <u>-</u>                                                                                                                    | CO 5 |
| 14 | What is image smoothing?                                                                                                                         | Remember   |                                                                                                                             | CO 5 |
| 15 | What are the advantages of smoothing?                                                                                                            | Remember   | <del></del>                                                                                                                 | CO 5 |
| 16 | What are the disadvantages of smoothing?                                                                                                         | Remember   |                                                                                                                             | CO 5 |
| 17 | Define sharpening?.                                                                                                                              | Remember   | <del></del>                                                                                                                 | CO 5 |
| 18 | What are the advantages of sharpening?                                                                                                           | Remember   |                                                                                                                             | CO 5 |
| 19 | Define pseudo color image.                                                                                                                       | Remember   |                                                                                                                             | CO 5 |

| 20  | Give the properties of pseudo color image processing.                                                                 | Remember   |                                                                                                                                                                                | CO 5  |
|-----|-----------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |                                                                                                                       | MODULE     | V                                                                                                                                                                              |       |
|     | SYSTEM                                                                                                                | DESIGN TH  | ECHNIQUES                                                                                                                                                                      |       |
| PAF | RT A-PROBLEM SOLVING                                                                                                  | AND CRIT   | TICAL THINKING QUEST                                                                                                                                                           | ΓIONS |
| 1   | Consider an image segment of size 5x5 and explain the magnitude and direction of the gradient of the pixel.           | Understand | The learner to <b>Recall</b> the image into segments of its constituents and <b>Understand</b> the magnitude and direction of the gradient of the pixel.                       | CO 6  |
| 2   | Explain image segmentation<br>for detecting pixel- based<br>,edge- based ,region-based                                | Understand | The learner to <b>Recall</b> image segmentation and <b>Understand</b> the image segmentation                                                                                   | CO 6  |
| 3   | Illustrate medical image<br>segmentation for detecting<br>pixel- based ,edge- based<br>,region-based                  | Understand | The learner to <b>Recall</b> gradient operator and <b>Understand</b> the medical image segmentation.                                                                           | CO 6  |
| 4   | Explain statistical image representation for detecting edges and its response                                         | Understand | The learner to Recall gradient operator and Understand the statistical image representation.                                                                                   | CO 5  |
| 5   | Apply statistical image representation to segment the below image.                                                    | Apply      | The learner to Recall the image into segments of its constituents and Understand the information contained and apply the statistical image representation to segment the image | CO 5  |
| 6   | Show that a invariant feature transformation separable while the whole-image features object is need to be separable. | Understand | The learner to <b>Recall</b> separable property and <b>Understand</b> the invariant feature transformation.                                                                    | CO 5  |

| 7  | A binary image and structuring element as shown below i) Calculate $X^{C}$ ii) Calculate dilation of $X$ by structuring element $B$                                                                                       | Apply | The learner to <b>Recall</b> segment of an image and <b>Understand</b> the structuring element of an image and <b>apply</b> to calculate XC and dilation of X by structuring element B. | CO 5 |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| 8  | A binary image and structuring element as shown below  i) Calculate complement of the input image is taken which is eroded by the structuring element B  ii) Calculate the input image is eroded by structuring element B | Apply | The learner to Recall the image into segments of its constituents and Understand the structuring element and apply the input image is eroded by structuring element B                   | CO 5 |  |  |
| 9  | The input picture and structuring elements are shown below. Perform the erosion and dilation of the given below table.                                                                                                    | Apply | The learner to Recall binary image representation and Understand the structuring element and apply the input image is eroded and dilation by structuring element B.                     | CO 5 |  |  |
| 10 | The input picture and structuring elements are shown below. Perform the opening and closing of the below input picture.  Oliver Structuring element                                                                       | Apply | The learner to <b>Recall</b> binary image representation and <b>Understand</b> the structuring element and <b>apply</b> the input image is opened and closed by structuring element B.  | CO 5 |  |  |
|    | PART B-LONG ANSWER QUESTIONS                                                                                                                                                                                              |       |                                                                                                                                                                                         |      |  |  |

|   | T                                                                                                      | 1          |                                                                                                                                                        |      |
|---|--------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 | How do you perform edge detection? Give suitable algorithm and discuss how the edge points are linked. | Understand | The learner to <b>Recall</b> the image into segments of its constituents and <b>Understand</b> smaller entities for region based segmentation.         | CO 5 |
| 2 | Discuss how region Growing approach are used for image 3segmentation.                                  | Understand | The learner to Recall the image into segments of its constituents and Understand smaller entities for Edge linking based segmentation.                 | CO 5 |
| 3 | Discuss how region splitting and merging approach are used for image segmentation.                     | Understand | The learner to Recall the image into segments of its constituents and Understand smaller entities for global thresholding.                             | CO 5 |
| 4 | What is edge detection?  Describe in detail about the types of edge detection operations.              | Understand | The learner to Recall the image into segments of its constituents and Understand smaller entities for region based segmentation.                       | CO5  |
| 5 | Illustrate the hit-or-miss transformation in image design techniques                                   | Understand | The learner to Recall the Image visualization and Understand smaller entities for Image visualization.                                                 | CO5  |
| 6 | Explain the detection of discontinuities with examples.                                                | Understand | The learner to <b>Recall</b> the image into segments of its constituents and <b>Understand</b> the closing operation in image morphology segmentation. | CO 5 |
| 7 | What do you Understand<br>by dilation and erosion in<br>morphological operation?<br>Explain in detail. | Remember   |                                                                                                                                                        | CO 5 |
| 8 | How do you link edge pixels through global processing?                                                 | Remember   |                                                                                                                                                        | CO 5 |
| 9 | Explain region based segmentation and region growing with an example.                                  | Remember   |                                                                                                                                                        | CO 5 |

| 10 | Discuss image segmentation based on various thresholding techniques.                        | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> in to morphing for dilation and erosion.                                       | CO 5 |
|----|---------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 11 | Describe gradient operators based edge detection method with necessary masks and equations. | Understand | The learner to Recall the image into segments and Understand the thresholding process.                                                                    | CO 5 |
| 12 | Explain gradient operators based edge detection method with necessary masks and equations.  | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the boundary characteristics.                                                  | CO 5 |
| 13 | Explain edge linking using Hough transform.                                                 | Understand | The learner to Recall the image into segments and Understand the image segmentation.                                                                      | CO 5 |
| 14 | Explain the following morphological algorithms i) Boundary extraction ii) Hole filling.     | Understand | The learner to Recall the image into segments and Understand the Hough transform for edge linking image segmentation.                                     | CO 5 |
| 15 | Explain the following<br>morphological algorithms. i)<br>Thinning ii) Thickening            | Understand | The learner to Recall the image into segments and Understand the edge linking in image segmentation.                                                      | CO 5 |
| 16 | With necessary figures, explain the opening and closing operations.                         | Understand | The learner to Recall the image into segments of its constituents and Understand smaller entities for region splitting and merging based on segmentation. | CO 5 |
| 17 | How can you control over segmentation problem? Explain it.                                  | Understand | The learner to Recall the image into segments and Understand the of Hit-or-Miss morphological transformation                                              | CO 5 |
| 18 | Explain the detection of isolated points in an image.                                       | Understand | The learner to Recall the image into segments and Understand in to morphing image processing                                                              | CO 5 |

| 19 | Explain about morphological hit-or-miss transform.                                   | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> in to morphing for dilation and erosion of image processing. | CO 5 |
|----|--------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| 20 | Explain watershed transformation and discuss about its advantages and disadvantages. | Understand | The learner to <b>Recall</b> the image into segments and <b>Understand</b> the of Hit-or-Miss morphological transformation.             | CO 5 |
|    | PART C-SHO                                                                           | RT ANSWE   | R QUESTIONS                                                                                                                             |      |
| 1  | What is system design in an image?                                                   | Remember   |                                                                                                                                         | CO 6 |
| 2  | Define the Preliminaries.                                                            | Remember   |                                                                                                                                         | CO 6 |
| 3  | What are the types of Preliminaries?                                                 | Remember   |                                                                                                                                         | CO 6 |
| 4  | What are the advantages of Preliminaries?                                            | Remember   |                                                                                                                                         | CO 6 |
| 5  | What dilation and erosion of an images.                                              | Remember   |                                                                                                                                         | CO 6 |
| 6  | Define transformation.                                                               | Remember   |                                                                                                                                         | CO 6 |
| 7  | What is Image representation and analysis?                                           | Remember   |                                                                                                                                         | CO 6 |
| 8  | What is morphological image?                                                         | Remember   |                                                                                                                                         | CO 6 |
| 9  | State the feature of morphological algorithms.                                       | Remember   |                                                                                                                                         | CO 6 |
| 10 | What is segmentation?                                                                | Remember   |                                                                                                                                         | CO 6 |
| 11 | What are the operations performed by segmentation?                                   | Remember   |                                                                                                                                         | CO 6 |
| 12 | What is edge linking?                                                                | Remember   |                                                                                                                                         | CO 6 |
| 13 | List out the advantages of segmentation?                                             | Remember   |                                                                                                                                         | CO 6 |
| 14 | What is boundary detection?                                                          | Remember   |                                                                                                                                         | CO 6 |
| 15 | What are the basic steps in boundary detection?                                      | Remember   |                                                                                                                                         | CO 6 |
| 16 | What is thresholding?                                                                | Remember   |                                                                                                                                         | CO 6 |
| 17 | What is region-based segmentation?                                                   | Remember   |                                                                                                                                         | CO 6 |

| 18 | Explain the opening and   | Understand | The learner to <b>Recall</b> the | CO 6 |
|----|---------------------------|------------|----------------------------------|------|
|    | closing.                  |            | Virtual Reality and prepare      |      |
|    |                           |            | the relative algorithms and      |      |
|    |                           |            | Understand to image              |      |
|    |                           |            | intensity levels for feature     |      |
|    |                           |            | based registration.              |      |
| 19 | List the advantages of    | Remember   | <del></del>                      | CO 6 |
|    | opening and closing.      |            |                                  |      |
| 20 | Prepare the importance of | Remember   | <del></del>                      | CO 6 |
|    | system design techniques. |            |                                  |      |

Course Coordinator: Ms.B Lakshmi Prasanna , Assistant Professor HOD CSIT