AOTidf Bagger Game

Denis Erfurt, Tobias Behrens

15. November 2016

1 Formalisierung des Problems

Definition 1

Eine Coalitioal Skill Game Signatur

 $\sigma_{CSG} := \sigma_{Ar} \cup \{Agent_{/1}, Baustelle_{/1}, Supply_{/3}, Demand_{/3}, Budget_{/2}, kosten_{/3 \mapsto 1}, M_{/4}\}.$

Dabei steht σ_{Ar} für die Signatur der Standardarithmetik mit $0, 1, +, * \in \sigma_{Ar}$

 $Agent(x) :\Leftrightarrow x \text{ ist ein } Agent$

 $Baustelle(x) :\Leftrightarrow x \text{ ist eine Baustelle}$

 $Supply(t, x, y) :\Leftrightarrow Agent \ x \ besitzt \ y \ Einheiten \ vom \ typ \ t$

 $Demand(t, x, y) :\Leftrightarrow Baustelle \ x \ ben\"{o}tigt \ y \ Einheiten \ vom \ typ \ t$

 $Budget(x, n) :\Leftrightarrow Baustelle \ x \ ist \ maximal \ bereit \ einen \ Gewin \ von \ n \ bei \ fertigstellung \ auszuzahlen$

 $kosten(t, n, x, y) :\Leftrightarrow Funktion die die Kosten für einen Agent x für den Transport n Ressourcen t an die Baustelle y berrechnet.$

 $M(x,t,n,y,v):\Leftrightarrow Agent\ x\ sendet\ n\ Ressourcen\ des\ Types\ t\ an\ die\ Baustelle\ y\ und\ bekommt\ die\ Vergütung\ v$

Beispiel 1

Sei A eine σ_{CSG} -Struktur:

$$Agent^{A} := \{a_1, a_2, a_3\}$$

 $Baustelle^{\mathcal{A}} := \{b_1, b_2\}$

$$Supply^{\mathcal{A}} := \{(t_1, a_1, 2), (t_2, a_1, 7), (t_1, a_2, 3), (t_2, a_2, 5), (t_1, a_3, 20), (t_2, a_3, 5)\}$$

```
\begin{aligned} & Demand^{\mathcal{A}} := \{(t_1, b_1, 10), (t_2, b_1, 5), (t_1, b_2, 2), (t_2, b_2, 2)\} \\ & Budget^{\mathcal{A}} := \{(b_1, 10), (b_2, 3)\} \\ & M := \{(a_1, t_1, 2, b_1), (a_1, t_2, 5, b_1), (a_2, t_1, 3, b_1), (a_3, t_1, 5, b_1), (a_3, t_1, 2, b_2), (a_3, t_2, 2, b_2)\} \end{aligned}
```

2 Vorgehen

Zunächst werden wir versuchen unterschiedliche optimierungskritärien (utility) zu formulieren wie z.B. Optimierung der Gewinne aller Agenten. Oder optimieren der Gewinne bei gleichzeitiger minimierung der Kosten der Baustellen.

Analysekritärien

Die Analysetechnik besteht nun darin folgende Fragen zu Formalisieren und gegebene Modelle darauf zu untersuchen:

- 1. $\varphi_{\text{Optimal}} \Leftrightarrow \text{Es}$ exestiert kein Matching, das bez. der optimalitätskritärium besser währe.
- 2. $\varphi_{\text{pareto-effizient}} \Leftrightarrow \text{Kein Spieler kann sich durch Manipulation seines Matchings verbessern.}$
- 3. Existenz von dummy und veto spielern
- 4. eindeutigkeit des optimums