Regressão_Logística_em_Python

April 29, 2025

1 Regressão Logística em Python

2 Importar as bibliotecas

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

3 Inserir os dados

```
[]: titanic = pd.read_csv('titanic_train.csv')
```

[]: titanic.head()

[]:	PassengerId	Survived	Pclass		Fare	Cabin	Embarked
0	1	0	3		7.2500	NaN	S
1	2	1	1		71.2833	C85	C
2	3	1	3		7.9250	NaN	S
3	4	1	1	•••	53.1000	C123	S
4	5	0	3		8.0500	NaN	S

[5 rows x 12 columns]

[]: titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object

```
Age
                 714 non-null
                                  float64
5
6
    SibSp
                 891 non-null
                                  int64
7
    Parch
                 891 non-null
                                  int64
8
    Ticket
                 891 non-null
                                  object
9
    Fare
                                  float64
                 891 non-null
10 Cabin
                 204 non-null
                                  object
11 Embarked
                 889 non-null
                                  object
```

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

[]: titanic.isnull()

[]:	PassengerId	Survived	Pclass	Name		Ticket	Fare	Cabin	Embarked
0	False	False	False	False		False	False	True	False
1	False	False	False	False		False	False	False	False
2	False	False	False	False	•••	False	False	True	False
3	False	False	False	False	•••	False	False	False	False
4	False	False	False	False	•••	False	False	True	False
	•••	•••		•••			•••		
886	False	False	False	False	•••	False	False	True	False
887	False	False	False	False	•••	False	False	False	False
888	False	False	False	False	•••	False	False	True	False
889	False	False	False	False	•••	False	False	False	False
890	False	False	False	False		False	False	True	False

[891 rows x 12 columns]

```
[]: sns.heatmap(titanic.isnull(), yticklabels=False, cbar=False)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74df41ca50>


```
[]: sns.countplot(x='Survived', hue='Sex', data=titanic)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74d685f350>


```
[]: sns.countplot(x='Survived', hue='Pclass', data=titanic)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74df41c0d0>


```
[]: sns.countplot(x='SibSp', data=titanic)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74d4f84910>


```
[]: sns.displot(titanic['Age'].dropna())
```

[]: <seaborn.axisgrid.FacetGrid at 0x7f74d508f990>

[]: sns.displot(titanic['Fare']<50])

[]: <seaborn.axisgrid.FacetGrid at 0x7f74df0fd750>


```
[]: sns.boxplot(x='Pclass', y='Age', data=titanic)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74d4d29650>


```
[]: def input_idade(cols):
    Age = cols[0]
    Pclass = cols[1]

if pd.isnull(Age):
    if Pclass == 1:
        return 39
    elif Pclass == 2:
        return 30
    else:
        return 25

else:
    return Age

[]: titanic['Age'] = titanic[['Age', 'Pclass']].apply(input_idade, axis=1)

[]: sns.heatmap(titanic.isnull(), yticklabels=False, cbar=False)
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f74df453610>


```
[]: titanic.drop('Cabin', axis=1, inplace=True)
[]: titanic.head()
[]:
        PassengerId
                     Survived
                               Pclass
                                                     Ticket
                                                                 Fare
                                                                       Embarked
     0
                  1
                            0
                                     3
                                                  A/5 21171
                                                               7.2500
                                                                              S
                  2
                                     1
                                                   PC 17599
                                                              71.2833
                                                                              С
     1
                             1
     2
                  3
                                     3
                                           STON/02. 3101282
                                                               7.9250
                                                                              S
                  4
                                                                              S
     3
                                     1
                             1
                                                     113803
                                                              53.1000
                                                     373450
                                                               8.0500
                                                                              S
     [5 rows x 11 columns]
[]: sexo=pd.get_dummies(titanic['Sex'],drop_first=True)
[]:
     embarque=pd.get_dummies(titanic['Embarked'],drop_first=True)
[]:
    titanic.drop(['Sex', 'Name', 'Ticket', 'Embarked'], axis=1, inplace=True)
    titanic.head()
[]:
```

```
[]:
        PassengerId Survived Pclass
                                             SibSp
                                                    Parch
                                                               Fare
                                        Age
     0
                  1
                            0
                                    3
                                       22.0
                                                  1
                                                         0
                                                             7.2500
     1
                  2
                            1
                                    1
                                       38.0
                                                  1
                                                          71.2833
                                                         0
     2
                  3
                            1
                                    3 26.0
                                                  0
                                                         0
                                                             7.9250
                                       35.0
     3
                  4
                            1
                                    1
                                                  1
                                                            53.1000
     4
                  5
                            0
                                    3
                                      35.0
                                                             8.0500
                                                  0
[]: titanic = pd.concat([titanic,sexo,embarque], axis=1)
[]: titanic.head()
                     Survived Pclass
[]:
        PassengerId
                                             SibSp
                                                    Parch
                                                                     male
                                                                           Q
                                                                              S
                                        Age
                                                               Fare
     0
                  1
                            0
                                    3
                                       22.0
                                                  1
                                                         0
                                                             7.2500
                                                                        1
                                                                           0
                                                                              1
                  2
                                       38.0
                                                         0 71.2833
                                                                           0
     1
                            1
                                    1
                                                  1
                                                                        0
                                                                              0
     2
                  3
                            1
                                    3 26.0
                                                  0
                                                             7.9250
                                                                        0
                                                                          0
                                                                              1
                                       35.0
                                                         0 53.1000
     3
                  4
                            1
                                    1
                                                  1
                                                                        0
                                                                           0
                                                                              1
                                    3 35.0
                                                             8.0500
    #Regressão Logistíca
[]: from sklearn.model_selection import train_test_split
[]: X_treino, X_teste, Y_treino, Y_teste = train_test_split(titanic.
      Godrop('Survived',axis=1), titanic['Survived'], train_size=0.7, ⊔
      →random_state=56)
[]: from sklearn.linear_model import LogisticRegression
[]: RL=LogisticRegression()
[]: RL.fit(X_treino,Y_treino)
    /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:940:
    ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-
    regression
      extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
[]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                        intercept_scaling=1, l1_ratio=None, max_iter=100,
                        multi_class='auto', n_jobs=None, penalty='12',
                        random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                        warm_start=False)
```

```
[]: preditor = RL.predict(X_teste)
[]: from sklearn.metrics import classification_report
     from sklearn.metrics import confusion_matrix
[]: print(classification_report(Y_teste,preditor))
                  precision
                               recall f1-score
                                                  support
               0
                       0.86
                                 0.89
                                           0.88
                                                      178
                       0.76
                                 0.72
               1
                                           0.74
                                                       90
        accuracy
                                           0.83
                                                      268
       macro avg
                       0.81
                                 0.80
                                           0.81
                                                      268
    weighted avg
                       0.83
                                 0.83
                                           0.83
                                                      268
[]: print(confusion_matrix(Y_teste, preditor))
    [[158 20]
```

[25 65]]