Battle City Clone – sztuczna inteligencja		Przedmiot: Programowanie obiektowe
Autorzy: Krzysztof BUNIEWICZ, 117221	Prowadzący:	Kierunek: Informatyka, semestr III
Maksym CHOCIESZYŃSKI, 117206	mgr inż. Mateusz CICHEŃSKI	illioilliatyka, selliesti III
Paweł CICHOSZ, 117323	Widteusz Ciciiervoki	
Michał CIEŚNIK, 117287		
Szymon CYBULSKI, 117212		
Kamil ŻYCHOWICZ, 109740		

Poniżej zamieściliśmy opisy działania realizacji sztucznej inteligencji do naszego klona gry Battle City wykonanych przez poszczególnych członków naszego zespołu.

1. Krzysztof BUNIEWICZ

Na potrzeby turnieju stworzyłem agresywne AI, skupiające się na podążaniu za przeciwnikiem i próbach wyeliminowania go.

Algorytm najpierw pobiera listę czołgów kierowanych przez graczy i porównuje ich pozycję ze swoją.

Jeśli pozycja jest dokładnie taka sama – pobrane dane dotyczą własnego czołgu, który jest pomijany w algorytmie.

Jeśli nie, algorytm sprawdza, czy czołg wroga znajduje się w odległości 10 lub mniej pikseli od jego własnej osi.

Jeśli tak, AI wydaje rozkaz ruchu i strzału w jego kierunku.

Po sprawdzeniu obu osi, AI zwiększa pole widzenia do 25 pikseli od osi.

Jeśli czołg przeciwnika znajduje się w jednym z tych pól, AI nakazuje ruch bez strzału w jego kierunku.

Jeśli algorytm nadal nie znajdzie wroga, pobiera listę czołgów neutralnych i ponownie sprawdza ich względne położenie - tym razem tylko w węższym zakresie.

Jeśli nadal nie uda się znaleźć celu, czołg zacznie poruszać się po torze przypominającym krzyż.

Z każdą iteracją pętli zmienna tymczasowa wyznaczająca kierunek ruchu jest zwiększana o niewielką, losową wartość.

Gdy osiągnie ustaloną wartość, kierunek ruchu zmienia się w kolejności góra-dół-góra-prawo-lewo-prawo.

2. Maksym CHOCIESZYŃSKI

Robot porusza się po obrysie kwadratu.

Gdy ma działo gotowe do wystrzału, wykrywa znajdujące się na jego lin strzału pociski i czołgi neutralne oraz wrogie, następnie dodaje strzał w kierunku danego obiektu.

Wykrywanie obiektów na linii strzału, polega na przeglądaniu tablicy z owymi obiektami i porównywaniu współrzędnych czołgu sterowanego przez sztuczną inteligencje z współrzędnymi obiektu.

W przypadku pocisków współrzędne czołgu muszą być większe o 14, w pozostałych

przypadkach muszą być równe.

3. Paweł CICHOSZ

Algorytm polega na pobieraniu pozycji czołgu przeciwnika i sukcesywnemu zmierzaniu ku niemu oraz strzelaniu, kiedy to tylko możliwe. Oś poruszania zmieniana jest co kilkaset klatek. W przypadku napotkania nieprzejezdnego terenu wybierany jest jeden z wolnych kierunków prostopadłych do bieżącego. Algorytm banalny, nieszczególnie efektywny i obarczony błędami wynikającymi z nieudolnej implementacji.

4. Michał CIEŚNIK

Czołg porusza się po mapie w sposób losowy, wybierając w losowych odstępach czasu nowy kierunek. Inny kierunek jest również wybierany, jeśli czołg natrafi na przeszkodę lub znajduje się na skraju mapy. Jeżeli w zasięgu rażenia czołgu znajduje się przeciwnik i nie jest on przesłonięty blokiem terenu, to następuje oddanie strzału. Następnie możliwość strzelania jest blokowana na 40 klatek, aby czołg mógł zejść z linii ognia przeciwnika.

5. Szymon CYBULSKI

Sztucna inteligencja wyszukuje wzdłuż współrzędnych X oraz Y czołgów przeciwnika, priorytetowo traktując czołgi graczy, dopiero później szukając czołgów neutralnych. Sprawdza ponadto, czy na drodze nie ma bloku zasłaniającego pole strzału. Jeżeli czołg przeciwnika pojawi się w polu rażenia sterowanego czołgu, następuje ruch i wystrzał w tym kierunku. Jeżeli natomiast Nie jest widoczny żaden czołg, AI wykonuje losowe obroty i strzały.

6. Kamil ŻYCHOWICZ

Sztuczna inteligencja wraz z upływem trwania partii gry zwiększa swój lokalny licznik. Tank poruszany przez AI jest w stanie isMoving = true w momencie gdy, ów licznik jest mniejszy od 4000 jednostek czasu.

Po jego przekroczeniu, licznik jest zerowany a status ruchu zmieniany na false. W momencie, status ruchu ma również wartość false.

Kierunek ruchu wybierany jest losowo. Za każdym razem, gdy status jest w wartości false, generator tworzy nową wartość ruchu.

Co określoną wartość czasową, status znów się zmienia, co powoduje częste zmiany kierunku ruchu. Zaimplementowane są również,

dodatkowe informacje o tym, kiedy czołg powinien zmienić swój ruch. Dzieje się to w sytuacji, gdy jakiś inny Tank znajdzie się na takiej samej pozycji na osi X bądź Y.

Gdy tak się dzieje, wartość ruchu jest zmieniana na taką, aby kierunek ruchu był w stronę docelowego czołgu.

Taki sam mechanizm odnosi się do naboi. Kierunek ruchu jest zmieniany, gdy na tej samej osi znajdzie się nabój.

Informacje o kierunku są zwracane przez metodę moveTank. Wartości te, oprócz ruchu, dają informacje o tym aby czołg cały czas strzelał.