第八章课外练习及答案

— ,	选择题:		
1、若 ⁻ a		\mathbf{P} 单位向量,则它们的数量积 $\overrightarrow{a} \cdot \overrightarrow{b} =$	
(A)	1;		
(C)	0;	(D) $\cos(\vec{a}, \vec{b})$.	
	向量 $\vec{a} \times \vec{b}$ 与二 共面;	向量 $\stackrel{ ightarrow}{a}$ 及 $\stackrel{ ightarrow}{b}$ 的位置关系是(). (B) 共线。	
		(D) 斜交 •	
$3, (\alpha)$	$ \begin{array}{ccc} \pm \overrightarrow{\beta})^2 &= & (&) \\ \overrightarrow{\alpha} & \pm \overrightarrow{\beta} & \vdots & \vdots \end{array} $	(B) $\vec{\alpha} \pm 2\vec{\alpha} \vec{\beta} + \vec{\beta}^2$; (D) $\vec{\alpha} \pm \vec{\alpha} \vec{\beta} + 2\vec{\beta}^2$.	
平面 (A) (B) (C)	平面方程为 Bx 面 (). 平行于 x 轴 平行于 y 轴; 经过 y 轴; 垂直于 y 轴.	;	
A_1 ,	$B_1, C_1, D_1, B_2, D_2 \neq$	A ₁ x+B ₁ y+C ₁ z+D ₁ =0 B ₂ y+D ₂ =0 ≠0 ,则直线 (). (B) 平行于 z 轴;	
		(D) 平行于 <i>x</i> 轴.	
6、曲	$\mathbf{\Pi} z^2 + xy - yz - 5$	$5x = 0$ 与直线 $\frac{x}{-1} = \frac{y-5}{3} = \frac{z-10}{7}$ 的交点是().
(B)	(1,2,3),(2,-1, (1,2,3); (2,3,4);	,-4);	
(D)	(2,-1,-4).		

7、已知球面经过(0,-3,1)且与xoy 面交成圆周

$$\begin{cases} x^2 + y^2 = 16 \\ z = 0 \end{cases}$$
, 则此球面的方程是 ().

(A)
$$x^2 + y^2 + z^2 + 6z + 16 = 0$$
;

(B)
$$x^2 + y^2 + z^2 - 16z = 0$$
;

(C)
$$x^2 + y^2 + z^2 - 6z + 16 = 0$$
;

(D)
$$x^2 + y^2 + z^2 + 6z - 16 = 0$$
.

8、下列方程中所示曲面是双叶旋转双曲面的是

(A)
$$x^2 + y^2 + z^2 = 1$$
; (B) $x^2 + y^2 = 4z$;

(B)
$$x^2 + y^2 = 4z$$
;

(C)
$$x^2 - \frac{y^2}{4} + z^2 = 1$$
;

(C)
$$x^2 - \frac{y^2}{4} + z^2 = 1$$
; (D) $\frac{x^2 + y^2}{9} - \frac{z^2}{16} = -1$.

- 已知向量 \vec{a} , \vec{b} 的夹角等于 $\frac{\pi}{3}$,且 $|\vec{a}|=2$, $|\vec{b}|=5$,求 $(\vec{a}-2\vec{b})\cdot(\vec{a}+3\vec{b})$.
- 求向量 $\vec{a} = \{4,-3,4\}$ 在向量 $\vec{b} = \{2,2,1\}$ 上的投影. =
- 设平行四边形二边为向量 $\vec{a} = \{1, -3, 1\}, \vec{b} = \{2, -1, 3\}, \vec{x}$ 其面积. 四、
- 已知 $\overrightarrow{a}, \overrightarrow{b}$,为两非零不共线向量,求证: $(\overrightarrow{a}-\overrightarrow{b}) \times (\overrightarrow{a}+\overrightarrow{b}) = 2(\overrightarrow{a} \times \overrightarrow{b})$. 五、
- 六、 一动点与点M(1,0,0)的距离是它到平面x=4的距离的一半,试求该动点 轨迹曲面与 voz 面的交线方程.
- 求直线 L: $\begin{cases} y = -1 + 2t$ 在三个坐标面上及平面 π : x y + 3z + 8 = 0 上的投影方程 z = 5 + 8t七、
- 求通过直线 $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{2}$ 且垂直于平面 3x+2y-z-5=0的平面方程. 八、

求点(-1,-4,3)并与下面两直线 九、

$$L_1$$
:
$$\begin{cases} 2x - 4y + z = 1 \\ x + 3y = -5 \end{cases}$$
, L_2 :
$$\begin{cases} x = 2 + 4t \\ y = -1 - t \end{cases}$$
 都垂直的直
$$z = -3 + 2t$$

线方程.

- 十、求通过三平面: 2x+y-z-2=0, x-3y+z+1=0和 x+y+z-3=0的交点,且平 行于平面x+y+2z=0的平面方程.
- 十一、 在平面x+y+z+1=0内,求作一直线,使它通过直线 $\begin{cases} y+z+1=0 \\ x+2z=0 \end{cases}$ 与平 面的交点,且与已知直线垂直.
- 十二、 判断下列两直线 $L_1: \frac{x+1}{1} = \frac{y}{1} = \frac{z-1}{2}$, $L_2: \frac{x}{1} = \frac{y+1}{3} = \frac{z-2}{4}$,是否在同一平面上,在同一 平面上求交点,不在同一平面上求两直线间的距 离 .

参考答案

$$\frac{1}{3} + \frac{z^2}{3} = 1.$$

$$x = 0$$

$$\begin{cases} x = 3t \\ y = -1 + 2t \end{cases}, \begin{cases} x = 3 - t \\ y = 0 \\ z = 5 + 8t \end{cases}, \begin{cases} x = 0 \\ y = -1 + 2t \\ z = 5 + 8t \end{cases}$$
$$\begin{cases} 14x + 11y - z - 26 = 0 \\ x - y + 3z + 8 = 0 \end{cases}$$

$$\uparrow L \cdot \begin{cases}
 x = -1 - 12t \\
 y = -4 + 46t \\
 z = 3 + t
\end{cases}$$

$$+$$
, $x+y+2z-4=0$.

$$+ - \cdot \begin{cases} 2x + y - z + 1 = 0 \\ x + y + z + 1 = 0 \end{cases}.$$

十二、直线
$$L_1$$
与 L_2 为异面直线, $d = \frac{\sqrt{3}}{3}$ •