1 Question 1

Statement 1

Modify the code to deal with a put option.

```
Put option
  % Evaluation
  r = 0.03;
  T = 3;
   tau = T;
   sigma_true = 0.3;
  [C_{true}, \sim, P_{true}, \sim] = bs_{price}(S, E, r,
       sigma_true, tau);
10 %% Newton's method
_{\rm n} to 1 \square = \square \, \mathrm{ie} - 8;
  sigma \square = \square sqrt(2*abs((log(S/E)+r*T)/T));
  sigmadiff □=□ 1;
  k□=□ 1;
  kmax□=□100;
  while \square sigmadiff >= tol \square &\square k<kmax
 \Box\Box\Box\Box[\neg, \neg, \neg, \neg, \neg P, \neg, \neg Pvega]\Box=\Box geeks(S, E, r, sigma, tau);
<sup>18</sup> □□□□increment□=□(P-P_true)□/□Pvega;
19 □□□□sigma□=□sigma□-□increment;
20 0000k0=0k0+01;
  □□□□sigmadiff□=□abs(increment);
  end
24 %%□Black - Scholes□implied□volatility
  disp ("Implied "volatility: ""-blsimpv (S, E, r, tau, "
       P_true));
  %□ Evaluation
M\Box = \Box I \circ \circ;
  S \square = \square 3;
  E \square = \square i;
```

```
r \square = \square \circ . \circ \varsigma;
tau □=□ 3;
sigma \square = \square linspace (o, \square 1.5, \square M);
[\neg, \Box P \text{ valve }] \Box = \Box \text{ blsprice } (S, \Box E, \Box r, \Box t \text{ au }, \Box s \text{ igma});
Pvega \square = \square zeros (M, \square 1);
for \square i \square = \square i \square : \square M
%□ Figure
figure;
subplot (2, □1, □1)
plot (sigma, □ Pvalve)
xlabel('\sigma');
ylabel('P(\sigma)')
subplot (2, □1, □2)
plot (sigma, □Pvega)
xlabel('\sigma')
ylabel ('\partial P/\partial \sigma')
```

```
Geeks
function [C, Cdelta, Cvega, P, Pdelta, Pvega] =
   geeks (S, E, r, sigma, tau)
    %{
    : Argument :
        - S: [str, float], asset price @ time t
        - E: [str, float], exercise price
        - r: [str, float], interest rate
          \sigma: [str, float], volatility
        - τ: [str, float], time to expiry (T-t)
        - to_simple: bool, wheather to simplify
            result
        - to str: bool, wheather to convert result
           to str
        - to_latex: bool, wheather to convert result
            to latex
```

```
: Output :
            - C, call value
            - C\delta, \delta value of call
            - Cv, ν value of call
            - C\theta, \theta value of call
            - Cρ, ρ value of call
            - C\gamma, \gamma value of call
            - P, put value
            - C\delta, \delta value of put
            - Cν, ν value of put
            - C\theta, \theta value of put
            - Cρ, ρ value of put
            - Cγ, γ value of put
26
       : Example:
27
            >>> S = 1.0; E = 1.5; r = 0.05; \sigma = 0.2; \tau = 1.0;
            >>> greeks(S, E, r, \sigma, \tau)
       %}
       if tau > o
            di = (\log(S/E) + (r + \operatorname{sigma}^2/2) * \operatorname{tau}) / (
                sigma * sqrt(tau));
            d_2 = d_1 - sigma*sqrt(tau);
            Ndi = (i + erf(di/sqrt(2))) / 2;
            Nd2 = (1 + erf(d2/sqrt(2))) / 2;
            C = S*Nd_1-E*exp(-r*(tau))*Nd_2;
            Cdelta = Ndi;
            Cvega = S*sqrt(tau)*exp(-di^2/2) / sqrt(2*pi
            P = C + E * exp(-r * tau) - S;
            Pdelta = Cdelta - 1;
            Pvega = Cvega;
       else
            C = max(S-E, o);
            Cdelta = (sign(S-E) + 1) / 2;
            Cvega = o;
            P = \max(E-S, o);
            Pdelta = Cdelta - 1;
            Pvega = o;
       end
```

so end

Figure 1: Put option

2 Question 2

Statement 2

Acquire some Geeks data, and create a figure as before. If possible, investigate the behavior of the implied volatility as the expiry time varies.

Option Price	Exercise Price	Implied Volatility
0.2536	2.2	0.281
0.2075	2.25	0.2643
0.1664	2.3	0.2646
0.1267	2.35	0.2524
0.0954	2.4	0.2563
0.0679	2.45	0.2533
0.0468	2.5	0.2531
0.0315	2.55	0.2533
0.02	2.6	0.2548
0.0122	2.65	0.2545
0.007	2.7	0.2545
0.0042	2.75	0.2566
0.0028	2.8	0.266
0.0019	2.85	0.2753
0.0014	2.9	0.2875
0.0015	2.95	0.315