MP	Sciences Industrielles de l'Ingénieur	Date : 07/11/2020
Devoir de Maison DM1 Corrigé	CINEMATIQUE	

CORRIGE

Question 1 : A partir du fonctionnement du système et du FAST partiel , Donner les solutions :ST1, ST2 et ST3

ST1 : Vérin hydraulique ST2 : Moteur électrique

ST3 : boite de vitesse automatique

Question 2 : Déterminer λ en fonction de L, e, a et α

Fermeture vectorielle : $\overrightarrow{AO2} + \overrightarrow{O2B} + \overrightarrow{BA} = \overrightarrow{O}$

 $L \vec{y} + e \vec{z} + a \vec{z} \vec{2} - \lambda \vec{y} \vec{4} = \vec{0}$

Proj $/\vec{y}$: $L - a \sin \alpha - \lambda \cos \beta = O$ $\lambda \cos \beta = L - a \sin \alpha$ Proj $/\vec{z}$: $e + a \cos \alpha - \lambda \sin \beta = O$ $\lambda \sin \beta = e + a \cos \alpha$

D'où $\lambda = \sqrt{(L - a \sin \alpha)^2 + (e + a \cos \alpha)^2}$

Question 3 : En déduire λ max puis la course du vérin : $\mathbf{c} = \lambda$ max – λ mini

 $\lambda \max \text{ pour } \alpha = O$ $\lambda \max = \sqrt{L^2 + (e + a)^2}$

La course $C = \lambda \max - \lambda \min$;

λmini pour α = π/2 λmini $= \sqrt{(L-a)^2 + e^2}$ D'où la course $\boxed{\mathbf{C} = \sqrt{L^2 + (e+a)^2} - \sqrt{(L-a)^2 + e^2}}$ Question 4 : Quelle est l'influence de la diminution de la distance « a » sur λmax et sur la course **c**

 $\lambda \max = \sqrt{L^2 + (e + a)^2}$ Si « a » diminue $\Longrightarrow \lambda \max$ diminue

et $\lambda \min = \sqrt{(L-a)^2 + e^2}$ Si « a » diminue $\implies \lambda \min$ augmente

Donc la course diminue

D'où: On peut atteindre les mêmes positions limites avec une course du vérin plus petite

Question 5: Donner la direction de $\overrightarrow{V}(C \subseteq S_2/S_1)$ et la direction de $\overrightarrow{V}(D \in S_2'/S_1)$;

Question 6: Représenter $\overline{V}(G \in S/S_1)$ et $\overline{V}(C \in S_2/S_1)$

Question 7: Déterminer V(B & S2/S1)

Question 8: Donner la relation entre $V(B \in S_5/S_4)$, $V(B \in S_4/S_1)$ et $V(B \in S_2/S_1)$

Question 9: Déterminer la vitesse de translation de la tige du vérin S5 par rapport

au cylindre S4

Sur le document réponse DR1

Echelle: 3 mm ---->2 mm/s

5) Direction de $V(C \in S_2/S_1)$ et la direction de $V(D \in S_2'/S_1)$

 $\Delta \overset{\bullet}{\text{V}}$ (C \in S2/S1) $\overset{\bullet}{\text{L}}$ (O2C) car Mvt deS2/S1 rotation en O2 / ou Portée par $\mathbf{y_2}$ $\Delta \overset{\bullet}{\text{V}}$ (D \in S2'/S1) $\overset{\bullet}{\text{L}}$ (ED) car Mvt de S2'/S1 rotation en E / ou Portée par $\mathbf{y_2}$

6) Représenter V(G & S/S1) et V(C & S2/S1)

même vitesse car le Mvt de S/S1 est une **translation circulaire**, **C et G & à S**

 $\begin{array}{ccc}
7) & \overline{V(B \in S_2/S_1)} \\
\Delta \overline{V(B \in S_2/S_1)} & \underline{L} & (O_2B)
\end{array}$

Par la relation entre les triangles (Thalès) entre le centre de rotation O2 et la vitesse

 $V(C \in S_2/S_1)$ on retrouve : $V(B \in S_2/S_1)$ II $V(B \in S_2/S_1)II = 20,6$ mm/s

INP HB CPGE

Etude de la solution 1 (document annexe 2, figure 1)

```
Ouestion 10:
```

10-1) Donner (sans calcul) la liaison équivalente entre S2 et S1.

10-2) Donner le degré de mobilité « m » du système. **Préciser** ces mobilités

10-3) En déduire le degré d'hyperstatisme « h » du système

10-1) Leq: pivot (
$$O_2$$
, \hat{x})

10-2) $\mathbf{m} = \mathbf{2}$; mi=1 rotation de S5 autour de (AB)

mu = 1 tr S5+ rot S2+ rot S2'+ tr S+ rot S4

10-3) h= m + Ns + Es = 2 + [2*(3+2+3+3)+5+4+3]+6*(6-1)

 $\mathbf{h} = \mathbf{6}$

INP HB CPGE

Etude de la solution 2 (document annexe 2, figure 2)

Question 11:

11-1)Donner le degré de mobilité « m » du système. **Préciser** ces mobilités

11-2)En déduire le degré d'hyperstatisme « h » du système

11-3) Le constructeur a choisi la solution 2, pourquoi?

11-1)
$$m=3$$
; mi=2 rotation de S4 autour de (AB); rotation de S5 autour de (AB) mu = 1 tr S5+ rot S2+ rot S2' + tr S+ rot S4

$$11-2$$
) h = $3+[2*(3+2+3)+1+3+4+3]+6*(6-1)$ h= o

11-3) solution 2: système isostatique, (moins de contraintes, moins cher par rapport au système hyperstatique)

INP HB CPGE