

Wireless sensor networks: Time Synchronization

Time Sync ??

 All nodes in the network have a common view of time

Why Time Sync ??

- Target Tracking
- Speed estimation
- Event Detection
- Voice & Video Sync
- Security
- MAC-TDMA
- Local Clocks with crystal instability tend to drift

- Link to the physical world!
 - When does an event take place?
- Key basic service of sensor networks
 - Fundamental to data fusion.
- Crucial to the efficient working of other basic services
 - Localization, Calibration, In-network processing etc.
- Several protocols require time synchronization
 - Cryptography, MAC, Topology management

Case study...

Energy-efficient Radio Scheduling

Reasons for drift

- Temperature few ppm in PC
- Frequency noise (10⁻⁴ 10⁻⁶)
- Phase Noise
- Asymmetric Delay

Time Sync Protocol -Requirements

- Robust
- Precision
- Energy Aware
- Server-Less
- Light Weight
- Tunable
- Immediacy

Performance Metrics and Fundamental Structure

Precision:

maximum synchronization error for deterministic algorithms, mean error /stddev /quantiles for stochastic ones

Energy costs,

e.g. # of exchanged packets, computational costs

Memory requirements

Fault tolerance:

what happens when nodes die?

Why not GPS?

- > Cost
 - 300\$ (achieve < 20ns phase error to UTC)
- Practical Limitations
 - Cannot be used under special environment where is no free line of sight to the GPS satellites
 - e.g. dense foliage or inside buildings
- Policy Limitations
 - Military Applications

Wireless Sensor Network – Time Sync Protocols

Time Sync Types

- Sender Receiver synchronization
- Receiver Receiver synchronization

Sender – Receiver Synch

Time Sync Protocol for Sensor Networks (TPSN)

- Level Discovery
- Sync

TPSN – Level discovery

TPSN - Sync

- Root node initiates time sync
- Level 1 nodes each wait for random time
 - Reduce probability of collision at MAC

TPSN – Sync

$$T_2 = T_1 + \Delta + d$$

$$\Delta - \text{clock drift}$$

$$d - \text{propagation delay}$$

$$\Delta = (T_2 - T_1) - (T_4 - T_3)$$

$$2$$

TPSN - Sync

- Nodes at Level 2 will be able to hear sync pulses of nodes at Level 1
- Wait for a random time
- Attempt to sync with nodes at Level1

TPSN - Issues

- Unable to hear level_discovery from higher level nodes – then wait and send level request
- Hear from different nodes different levels pick smallest level
- No response to sync pulse as node at higher level
 dead send level request at higher energy levels

Sources of error

ALL DELAYS ARE VARIABLE!

Sources of error

Send time

- Kernel processing
- Context switches
- Interrupt Processing

Access time

- Specific to MAC protocol
 - E.g. in Ethernet, sender must wait for clear channel
- >Transmission Time
- Propagation time
 - Very small in WSNs, can be omitted
- Reception time
- Receive time

Common denominator:

- (1) non-determinism
- (2) difficult to estimate Send, access, receive

TPSN - Inaccuracies

Flooding Time Synchronization Protocol (FTSP)

- Introduction
 Solves one of the problems of TPSN
- Linear regression is used in FTSP to compensate for clock drift

Network Model

- Every node in the network has a unique ID
- Each synchronization message contains three fields:
 TimeStamp
 RootID
 SeqNum
- -The node with the smallest ID will be only one root in the whole network

Flooding Time Synchronization Protocol (FTSP)

- The root election phase FTSP utilizes a simple election process based on unique node IDs
- Synchronization phase

The root election phase

When a node does not receive new time synchronization messages for a number of message broadcast periods

The node declares itself to be the root

Whenever a node receives a message, the node with higher IDs give up being root

Eventually there will be only one root

Flooding Time Synchronization Protocol (FTSP)

Synchronization phase

Root and synchronized node broadcast synchronization message

Nodes receive synchronization message from root or synchronized node

When a node collects enough synchronization message, it estimates the offset and becomes synchronized node

Wireless Sensor Network – Time Sync Protocols

- Sender Receiver synchronization
- Receiver Receiver synchronization

Receiver – Receiver Synch

Receiver Broadcasting Service (RBS)

- Three stages
- Transmitter broadcasts clock time
- Each rx records the time that the ref was rxedlocal clock
- Receivers exchange observations

RBS

TPSN - Inaccuracies

Inaccuracies Removed ??

$$r_1 = T + p_1$$

 $r_2 = T + p_2$

Propagation delay - negligible

$$T_2 = T_1 + \Delta + \bigcirc$$

Is RBS extremely accurate?

- No as both skew and offset contribute to lack of sync
- Offset as each node may start at different time
- Works well in single hop
- Requires Time Translation in case of multi-hop

Time Translation

P_A sent

E₁ occurs 2 units later

E₂ occurs

P_B sent 4 units later

P_R sent 10 units before P_A

$$E_1 = P_A + 2$$

$$E_2 = P_B - 4$$

$$P_A = P_B + 10$$

$$E_1 - E_2 = P_B + 10 + 2 - P_B + 4$$

$$E_1 - E_2 = 16$$

(Dr. Vinay Chamola, BITS-Pilani)

- Type1 : Time servers
- Type2 : Translate time thro' ntk
- Type3 : Self-organize to sync clock