ネットワーク構造を利用した スポーツのランキングシステム (文献紹介)

波多野卓磨 指導教員: 鈴木秀幸 准教授

2013年12月6日

Reference

- Park, N and Newman, M.E.J, A network-based ranking system for US college football, J. Stat. Mech. Theor. Exp., 10(2005), P10014.
- Filippo Radicchi, Who is the best player ever? A complex network analysis of the history of professional tennis, PloS one, 6(2011), e17249.
- Shun Motegi and Naoki Masuda, A network-based dynamical ranking system for competitive sports, Sci. Rep., 2(2012), 904.

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

少数の参加者, 対等なスケジュール... 勝率, 勝ち数で OK

	セ・リーグ						
顺	チーム	試	勝	負	分	率	差
1	€ 巨人	144	86	43	15	.667	優勝
2	∅ 中日	144	75	53	16	.586	10.5
3	🥻 ヤクルト	144	68	65	11	.511	9.5
4	🕒 広島	144	61	71	12	.462	6.5
5	兼 阪神	144	55	75	14	.423	5.0
6	▼ DeNA	144	46	85	13	.351	9.5

http://baseball-data.com/12/

多数の参加者, 空間的隔たり... 勝率, 勝ち数では不十分

A network-based ranking system for US college football (J. Park and M. E. H. Newman, 2005)

多数の参加者, 時間的隔たり... 勝率, 勝ち数では不十分

Radicchi, F. Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

部分的な勝敗関係から チーム/選手のランキング

- → 最強のチーム/選手は?
- → 同程度の強さのチーム/選手は?

不完全な勝敗関係から全体のランキング...

- Bradley-Terry model
- True Skill model
- PageRank ← 今回
- Network-based Ranking System ← 今回
- etc...

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

多数の参加者, 空間的隔たり... 勝率, 勝ち数では不十分

A network-based ranking system for US college football (J. Park and M. E. H. Newman, 2005)

- US college football ... BCS ランキングシステム

BCS ランキング ← コーチによる投票 + メディア関係者による投票 + 元監督, 選手による投票 + 闇のコンピュータランキング × 6

- 唯一の全勝校がプレーオフに進出できない例

 W_{ij} : j が i に勝った回数, $L=W^{\mathsf{T}}$

$$W_{\infty} = W + \alpha W^{2} + \alpha^{2} W^{3} + \alpha^{3} W^{4} + \cdots$$

$$= W(I - \alpha W)^{-1}$$

$$L_{\infty} = L + \alpha L^{2} + \alpha^{2} L^{3} + \alpha^{3} L^{4} + \cdots$$

$$= L(I - \alpha L)^{-1}$$

 $W_{\infty}-L_{\infty}$ の列和が各チームの Win score

試合結果を表す行列 $W:W_{ij}=(j\,\,\emph{m}\,\,i\,\,$ に勝った回数)

A は B に勝利, B は C に勝利 \rightarrow A は C に間接勝利

行列の累乗 → 間接勝利

間接勝利には重み α をかける($0 < \alpha < 1$)

$$W + \alpha W^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \alpha & 1 & 0 \end{pmatrix}$$

列和をとる

$$(A,B,C のスコア) = (1 + \alpha, 1, 0)$$

繰り返して win-score を計算

$$W_{\infty} = W + \alpha W^2 + \alpha^2 W^3 + \alpha^3 W^4 + \cdots$$

 λ を W のスペクトル半径として, $\alpha < \lambda^{-1}$ なら

$$W_{\infty} = W + \alpha W^2 + \alpha^2 W^3 + \alpha^3 W^4 + \dots = W(I - \alpha W)^{-1}.$$

敗北関係のグラフ → 行列

負け行列 $L = W^{\mathrm{T}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

敗北関係についても同様に計算する.

$$L_{\infty} = L + \alpha L^2 + \alpha^2 L^3 + \alpha^3 L^4 + \cdots$$

 λ を W のスペクトル半径として, $\alpha < \lambda^{-1}$ なら

$$L_{\infty} = L + \alpha L^2 + \alpha^2 L^3 + \alpha^3 L^4 \dots = L(I - \alpha L)^{-1}$$

勝敗関係のグラフ → Win-Lose score

 $A: 1+\alpha$ 点, B: 0 点 , $C: -1-\alpha$ 点

勝ち関係, 負け関係から総合成績を計算

$$\mathsf{WinLoseScore}_i = \left(W_{\infty}^\mathsf{T} 1 - L_{\infty}^\mathsf{T} 1\right)_i$$

列和が各チームのスコア

性能評価... Win-Lose score ランキングと BCS ランキングの比較

BCS	School	Our method	BCS computers
1	Southern California	2	2
2	Oklahoma	1	1
3	Auburn	3	3
4	Texas	4	4
5	California	8	6
6	Utah	5	5
7	Georgia	16	8
8	Virginia Tech	6	T-9
9	Boise State	7	7
10	Louisville	11	13

A network-based ranking system for US college football (J. Park and M. E. H. Newman, 2005) 2004 年の大学アメフト… パラメータは $\alpha=0.20$ (実験的に)

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

多数の参加者, 時間的隔たり... 勝率, 勝ち数では不十分

Radicchi, F. Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

問題点: 亀仙人が不当に強く評価 ... 時間経過, 試合の順序

順序を考慮,過去の勝利/敗北の影響は指数的に減少

$$W_{t_n} = A_{t_n}$$

$$+ e^{-\beta(t_n - t_{n-1})} \sum_{m_n \in \{0,1\}} \alpha^{m_n} A_{t_{n-1}} A_{t_n}^{m_n}$$

$$+ e^{-\beta(t_n - t_{n-2})} \sum_{m_{n-1}, m_n \in \{0,1\}} \alpha^{m_{n-1} + m_n} A_{t_{n-2}} A_{t_{n-1}}^{m_{n-1}} A_{t_n}^{m_n}$$

$$+ \cdots$$

$$+ e^{-\beta(t_n - t_1)} \sum_{m_2, \dots, m_n \in \{0,1\}} \alpha^{\sum_{i=2}^n m_i} A_{t_1} A_{t_2}^{m_2} \cdots A_{t_n}^{m_n}$$

where

 W_{t_n} : t_n 日目の勝ち行列 A_{t_n} : t_n 日目の試合結果行列

時間の考慮 ... t_n 日目の試合結果行列を A_{t_n} とする

順序を考慮,過去の勝利/敗北の影響は指数的に減少

$$W_{t_n} = A_{t_n}$$

$$+ e^{-\beta(t_n - t_{n-1})} \sum_{m_n \in \{0,1\}} \alpha^{m_n} A_{t_{n-1}} A_{t_n}^{m_n}$$

$$+ e^{-\beta(t_n - t_{n-2})} \sum_{m_{n-1}, m_n \in \{0,1\}} \alpha^{m_{n-1} + m_n} A_{t_{n-2}} A_{t_{n-1}}^{m_{n-1}} A_{t_n}^{m_n}$$

$$+ \cdots$$

$$+ e^{-\beta(t_n - t_1)} \sum_{m_2, \dots, m_n \in \{0,1\}} \alpha^{\sum_{i=2}^n m_i} A_{t_1} A_{t_2}^{m_2} \cdots A_{t_n}^{m_n}$$

where

 W_{t_n} : t_n 日目の勝ち行列 A_{t_n} : t_n 日目の試合結果行列

この例で計算してみる

t1 日目の行列...

$$W_{t_1} = A_{t_1} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

 W_{t_1} : t_1 日目の勝ち行列 A_{t_1} : t_1 日目の試合結果行列

 t_2 日目の行列... $0 < \alpha < 1, \beta > 0$

$$W_{t_2} = A_{t_2} + e^{-\beta(t_2 - t_1)} \left(A_{t_1} + \alpha A_{t_1} A_{t_2} \right)$$

 W_{t_2} : t_2 日目の勝ち行列

 A_{t_2} : t_2 日目の試合結果行列

α: 間接勝利の影響

β: 時間経過の影響

 t_2 日目の行列... $0 < \alpha < 1, \beta > 0$

$$W_{t_2} = A_{t_2} + e^{-\beta(t_2 - t_1)} \left(A_{t_1} + \alpha A_{t_1} A_{t_2} \right)$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + e^{-\beta(t_2 - t_1)} \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ e^{-\beta(t_2 - t_1)} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Win score: $(e^{-\beta(t_2-t_1)}, 1, 0)$

順序を考慮,過去の勝利/敗北の影響は指数的に減少

$$W_{t_n} = A_{t_n}$$

$$+ e^{-\beta(t_n - t_{n-1})} \sum_{m_n \in \{0,1\}} \alpha^{m_n} A_{t_{n-1}} A_{t_n}^{m_n}$$

$$+ e^{-\beta(t_n - t_{n-2})} \sum_{m_{n-1}, m_n \in \{0,1\}} \alpha^{m_{n-1} + m_n} A_{t_{n-2}} A_{t_{n-1}}^{m_{n-1}} A_{t_n}^{m_n}$$

$$+ \cdots$$

$$+ e^{-\beta(t_n - t_1)} \sum_{m_2, \dots, m_n \in \{0,1\}} \alpha^{\sum_{i=2}^n m_i} A_{t_1} A_{t_2}^{m_2} \cdots A_{t_n}^{m_n}$$

where

 W_{t_n} : t_n 日目の勝ち行列 A_{t_n} : t_n 日目の試合結果行列

t3 日目の行列...

$$W_{t_3} = A_{t_3} + e^{-\beta(t_3 - t_2)} \left(A_{t_2} + \alpha A_{t_2} A_{t_3} \right)$$

$$+ e^{-\beta(t_3 - t_1)} \left(A_{t_1} + \alpha A_{t_1} A_{t_2} + \alpha A_{t_1} A_{t_3} + \alpha^2 A_{t_1} A_{t_2} A_{t_3} \right)$$

$$= \begin{pmatrix} 0 & 0 & 1 \\ e^{-\beta(t_3 - t_1)} & 0 & \alpha e^{-\beta(t_3 - t_1)} \\ 0 & e^{-\beta(t_3 - t_2)} & 0 \end{pmatrix}$$

Win score:

$$(e^{-\beta(t_3-t_1)}, e^{-\beta(t_3-t_2)}, 1 + \alpha e^{-\beta(t_3-t_1)})$$

順序を考慮,過去の勝利/敗北の影響は指数的に減少

$$W_{t_n} = A_{t_n}$$

$$+ e^{-\beta(t_n - t_{n-1})} \sum_{m_n \in \{0,1\}} \alpha^{m_n} A_{t_{n-1}} A_{t_n}^{m_n}$$

$$+ e^{-\beta(t_n - t_{n-2})} \sum_{m_{n-1}, m_n \in \{0,1\}} \alpha^{m_{n-1} + m_n} A_{t_{n-2}} A_{t_{n-1}}^{m_{n-1}} A_{t_n}^{m_n}$$

$$+ \cdots$$

$$+ e^{-\beta(t_n - t_1)} \sum_{m_2, \dots, m_n \in \{0,1\}} \alpha^{\sum_{i=2}^n m_i} A_{t_1} A_{t_2}^{m_2} \cdots A_{t_n}^{m_n}$$

where

 W_{t_n} : t_n 日目の勝ち行列 A_{t_n} : t_n 日目の試合結果行列

$(I + \alpha A_{t_n})$ を括り出す

$$W_{t_n} = A_{t_n}$$

$$+ e^{-\beta(t_n - t_{n-1})} (A_{t_{n-1}} + e^{-\beta(t_{n_1} - t_{n-2})} \sum_{m_{n-1} \in \{0,1\}} \alpha^{m_{n-1}} A_{t_{n-2}} A_{t_{n-1}}^{m_{n-1}} + \cdots$$

$$+ e^{-\beta(t_{n-1} - t_1)} \sum_{m_2, \dots, m_{n-1} \in \{0,1\}} \alpha^{\sum_{i=2}^{n-1} m_i} A_{t_1} A_{t_2}^{m_2} \cdots A_{t_{n-1}}^{m_{n-1}}) (I + \alpha A_{t_n})$$

$$= A_{t_n} + e^{-\beta(t_n - t_{n-1})} W_{t_{n-1}} (I + \alpha A_{t_n})$$

勝ち, 負け行列の更新式 $(n \ge 2)$:

$$W_{t_n} = A_{t_n} + e^{-\beta(t_n - t_{n-1})} W_{t_{n-1}} (I + \alpha A_{t_n})$$

$$L_{t_n} = A_{t_n}^{\mathrm{T}} + e^{-\beta(t_n - t_{n-1})} L_{t_{n-1}} (I + \alpha A_{t_n}^{\mathrm{T}})$$

勝ち関係、負け関係から総合成績を計算

$$\mathsf{DynamicWinLoseScore}_i = \left(W_{t_n}^\mathsf{T} 1 - L_{t_n}^\mathsf{T} 1\right)_i$$

具体例:

(A,B,C のスコア)

$$= \left((1 - \alpha^2) e^{-\beta(t_3 - t_1)} - \alpha e^{-\beta(t_3 - t_2)} - 1, e^{-\beta(t_3 - t_1)} - e^{-\beta(t_3 - t_1)}, 1 - e^{-\beta(t_3 - t_2)} \right)$$

(各時点で) 最強のテニスプレイヤーは?

1984 年 7 月 23 日から 2011 年 8 月 15 日の計 137,842 試合 $\alpha=0.13,\ \beta=1/365$ (実験的に定める)

ランキングはパラメータに依存する?

→ ケンドールの順位相関係数 (補足) の変化を確認

例:

ランキング1 ランキング2 ⑤ 巨人 ⑤ 巨人 ⑥ 阪神 ⑤ 阪神 ⑤ 広島 ⑥ 中日 ⑥ 横浜 ⑥ ヤク ⑥ オク ⑥ 横浜

順位相関

横浜とヤクの順位が違う...

(相関係数) = 0.944

ランキング上位 300人... ランキングはパラメータに対してロバスト

左 $\beta=1/365$ として, α を動かした時のランキング変化 右 $\beta=1/365$ から動かした時のランキング変化

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

ネットワーク構造を利用したランキングシステム (PageRank)

Web ページの重要度 ... PageRank アルゴリズム (Google 検索)

ネットワーク構造を利用したランキングシステム PageRank

リンクを等確率で選択...

PageRank: 存在確率

- · 被リンクが多い
- ・重要なサイトからのリンク
- 貴重なリンク

=> Rank up!

ネットワーク構造を利用したランキングシステム (PageRank)

PageRank の導出 (ノード数: N)

$$PR_i = (1 - q) \sum_{j \in V_i} \frac{PR_j}{s_j^{\text{out}}} + \frac{q}{N}$$

where

 PR_i : 要素 i の PageRank ($\sum \mathsf{PR}_i = 1$)

q: パラメータ (= 0.15)

 s_i^{out} :要素jが張るリンクの総数

 V_i :要素iにリンクを張っている要素の集合

ネットワーク構造を利用したランキングシステム (Radicchi, 2011)

Radicchi, F. Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

ネットワーク構造を利用したランキングシステム PageRank

リンクを等確率で選択...

PageRank: 重要度 → 強さ

- · 被リンク → 勝ち数
- ・重要なサイト → 強い相手
- ・貴重なリンク → 負けない相手

=> Rank up!

ネットワーク構造を利用したランキングシステム (Radicchi, 2011)

Prestige score ... PageRank のスポーツ版

$$\mathsf{P}_i = (1-q) \sum_{j \notin V} \frac{w_{ji}}{s_j^{\mathsf{lose}}} \mathsf{P}_j + \frac{q}{N} + (1-q) \sum_{j \in V} \frac{\mathsf{P}_j}{N}$$

where

 P_i : i 番目の要素のスコア ($\sum P_i = 1$)

q: パラメータ (= 0.15)

 $w_{ij}:j$ がi に負けた回数

V: 負けたことがない要素の集合

 s_j^{lose} : 要素 j の総負け数

ネットワーク構造を利用したランキングシステム (Radicchi, 2011)

男子プロテニス試合結果でランキング → 歴代最強は?

Rank	Player	Country	Hand	Start	End
1	Jimmy Connors	United States	L	1970	1996
2	Ivan LendI	United States	R	1978	1994
3	John McEnroe	United States	L	1976	1994
4	Guillermo Vilas	Argentina	L	1969	1992
5	Andre Agassi	United States	R	1986	2006
6	Stefan Edberg	Sweden	R	1982	1996
7	Roger Federer	Switzerland	R	1998	2010
8	Pete Sampras	United States	R	1988	2002
9	llie Năstase	Romania	R	1968	1985
10	Björn Borg	Sweden	R	1971	1993
11	Boris Becker	Germany	R	1983	1999

Radicchi, F. Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

ネットワーク構造を利用したランキングシステム <u>(Radicchi, 2011)</u>

Radicchi, F. Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

ネットワーク構造を利用したランキングシステム (再掲)

亀仙人が強い

Dynamic Prestige score ... 時間経過を考慮

$$\mathsf{P}_i(t) = (1-q) \sum_{j \notin V} \frac{\tilde{w}_{ji}(t)}{\sum_k \tilde{w}_{jk}(t)} \mathsf{P}_j + \frac{q}{N} + (1-q) \sum_{l \in V} \frac{\mathsf{P}_l}{N}$$

where

P_i: *i* 番目の要素のレート

 $ilde{w}_{ji}(t):\sum\limits_{r}\left(A_{t_{n}}
ight)_{ji}\mathrm{e}^{-eta(t-t_{n})}$... 時間経過を反映

q: パラメータ

V: 負けたことがない要素の集合

ランキングまとめ

Win-Lose score

勝敗関係の行列を累乗して間接勝利/敗北を算入

Dynamic Win-Lose score

Win-Lose score で時間経過, 順序を考慮.

Prestige score

PageRank を試合結果のネットワークに応用

Dynamic Prestige score

Prestige score で時間経過を考慮

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

比較, まとめ

ランキングから試合結果の予想... 上位が勝つとする ightarrow 正答率は?

<u>ある日</u>のランキング

具体例:

- 1位 巨人
- 2位 阪神
- 3位工広島
- 3位T中日
 - 5位 横浜
 - 6位 ヤクルト

正解

巨人 17 - 1 横浜

不正解

巨人 10 - 12 横浜

男子プロテニスのデータで予想... 正答率は?

Win-Lose score(左) と Dynamic Win-Lose score(右)

男子プロテニスのデータで予想... 正答率は?

Prestige score(左) と Dynamic Prestige score(右)

男子プロテニスのデータで予想... 正答率は?

Dynamic Win-Lose score(左) と Dynamic Prestige score(右)

目次

● 背景

Win-Lose score, Dynamic Win-Lose score

Prestige score, Dynamic Prestige score

● 比較, まとめ

ランキングまとめ

Win-Lose score

勝敗関係の行列を累乗して間接勝利/敗北を算入

Dynamic Win-Lose score

Win-Lose score で時間経過, 順序を考慮.

Prestige score

PageRank を試合結果のネットワークに応用

Dynamic Prestige score

Prestige score で時間経過を考慮

今後の研究

野球の安打数, 打率 ≈ 勝利数, 勝率

相手の強さを踏まえた打者/投手評価 ...

→ ネットワーク構造の利用?

(応用) 他のスポーツでの攻撃力, 守備力の評価

今後の研究

- 野球の安打数, 打率 ≈ 勝利数, 勝率
- → 相手の強さを踏まえた打者/投手評価 … ネットワーク構造の利用? (応用) 他のスポーツでの攻撃力, 守備力の評価など

Reference

- Park, N and Newman, M.E.J, A network-based ranking system for US college football, J. Stat. Mech. Theor. Exp., 10(2005), P10014.
- Filippo Radicchi, Who is the best player ever? A complex network analysis of the history of professional tennis, PloS one, 6(2011), e17249.
- Shun Motegi and Naoki Masuda, A network-based dynamical ranking system for competitive sports, Sci. Rep., 2(2012), 904.

(補足) ケンドールの順位相関係数

2 つのランキングの上位 k 人分を R_1 , R_2 とする. 任意の要素の組 $r_1, r_2 \in R_1 \cup R_2$, $(r_1 \neq r_2)$ について, $\bar{K}_{r_1,r_2}(R_1,R_2)$ を以下のように定義する.

次の条件のいずれかを満たすとき $\bar{K}_{r_1,r_2}(R_1,R_2)=1$, 満たさなければ値は 0 とする.

- r₁, r₂ が両方のランキングに存在するが, 順位は逆.
- ② 1 つのランキングで r_1 と r_2 が存在して r_1 が上の順位にあり、もう 1 つのランキングに r_2 が存在して r_1 は存在しない.
- **③** r_1 が 1 つのランキングにのみ存在し, r_2 がもう 1 つのランキングに のみ存在する.

このとき、順位相関係数Kは

$$K = 1 - \frac{\sum\limits_{r_1, r_2 \in R_1 \cup R_2} \bar{K}_{r_1, r_2}(R_1, R_2)}{k^2}$$

と表せる.