Section 12.4: Cross Products

Warm up:

If \vec{a} , \vec{b} , and \vec{c} are vectors in 3-space \mathbb{R}^3 , which of the following make sense?

(a) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$

(d) $(\vec{a} \cdot \vec{b}) + \vec{c}$ (g) $\vec{a} \cdot (\vec{b} \times \vec{c})$

(b) $(\vec{a} \cdot \vec{b})\vec{c}$

(e) $(\vec{a} \times \vec{b}) + \vec{c}$ (h) $\vec{a} \times (\vec{b} \cdot \vec{c})$

(c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

(f) $\vec{a} \cdot (\vec{b} + \vec{c})$

(i) $(\vec{a} \times \vec{b})\vec{c}$

(a) Since $\vec{a} \cdot \vec{b}$ is a scalar, $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ does **not** make sense. Solution:

- (b) Now since $\vec{a} \cdot \vec{b}$ is a scalar, $(\vec{a} \cdot \vec{b})\vec{c}$ does make sense as regular scalar multiplication.
- (c) Since $\vec{a} \times \vec{b}$ is a vector, $(\vec{a} \times \vec{b}) \cdot \vec{c}$ does make sense.
- (d) This is of the form "scalar + vector", which does **not** make sense.
- (e) Since $\vec{a} \times \vec{b}$ is a vector, $(\vec{a} \times \vec{b}) + \vec{c}$ does make sense.
- (f) This is of the form "vector · vector", which **does** make sense.
- (g) This is also of the form "vector \cdot vector", which **does** make sense.
- (h) This is of the form "vector \times scalar", which does **not** make sense.
- (i) Since $\vec{a} \times \vec{b}$ is a vector, this does **not** make sense.

Group work:

Problem 1 Given three dimensional vectors \vec{u} , \vec{v} , and \vec{w} , use dot product or cross product notation to describe the following vectors:

- (a) The vector projection of \vec{w} onto \vec{u} .
- (b) A vector orthogonal to both \vec{u} and \vec{v} .

Learning outcomes:

- (c) A vector with the length of \vec{v} and the direction of \vec{w} .
- (d) A vector orthogonal to $\vec{u} \times \vec{v}$ and \vec{w} .

Solution: (a) This is the definition of vector projections.

$$proj_u w = \left[\left(\frac{\vec{u} \cdot \vec{w}}{\vec{u} \cdot \vec{u}} \right) \vec{u} \right]$$

(b) There are many such vectors, but one of them is

$$\vec{u} \times \vec{v}$$

(c) Note that $|\vec{v}|^2 = \vec{v} \cdot \vec{v}$ so that $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$.

$$|\vec{v}| \left(\frac{\vec{w}}{|\vec{w}|}\right) = \boxed{\frac{\sqrt{\vec{v} \cdot \vec{v}}}{\sqrt{\vec{w} \cdot \vec{w}}} \vec{w}}$$

(d)

$$(\vec{u}\times\vec{v})\times\vec{w}$$

Problem 2 Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$.

- (a) Find a vector that is perpendicular to both \vec{u} and \vec{v} .
- (b) Verify that your answer is perpendicular to both \vec{u} and \vec{v}
- (c) Find a vector of length 7 perpendicular to both \vec{u} and \vec{c} .

Solution: (a) Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$. Then a vector which is perpendicular to both \vec{u} and \vec{v} is $\vec{w} := \vec{u} \times \vec{v}$. So we calculate

$$\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 & -1 & 8 \\ -2 & 10 & 5 \end{vmatrix} = (-5 - 80)\hat{\imath} - (25 + 16)\hat{\jmath} + (50 - 2)\hat{k}$$
$$= -85\hat{\imath} - 41\hat{\jmath} + 48\hat{k}$$

(b) To verify perpendicularity, we take the dot product.

$$\vec{u} \cdot \vec{w} = \langle 5, -1, 8 \rangle \cdot \langle -85, -41, 48 \rangle = 5(-85) - 1(-41) + 8(48) = -425 + 41 + 384 = 0$$
$$\vec{v} \cdot \vec{w} = \langle -2, 10, 5 \rangle \cdot \langle -85, -41, 48 \rangle = -2(-85) + 10(-41) + 5(48) = 170 - 410 + 240 = 0$$

(c) A unit vector in the same direction as \vec{w} is

$$\frac{\vec{w}}{|\vec{w}|} = \frac{1}{\sqrt{(-85)^2 + (-41)^2 + 48^2}} \vec{w} = \frac{1}{\sqrt{11210}} \vec{w}.$$

Therefore, a vector with a magnitude of 7 in the same direction as \vec{w} is

$$\vec{t} = \frac{7}{|\vec{w}|}\vec{w} = \boxed{\frac{7}{\sqrt{11210}}\langle -85, -41, 48 \rangle}$$

Problem 3 Find the area of the triangle in \mathbb{R}^3 with vertices at P(2,-1,0), Q(1,1,4) and R(2,-1,6).

Solution: The area of the triangle is $\frac{1}{2}|\vec{PQ} \times \vec{PR}|$.

$$\vec{PR} = \langle 2, -1, 6 \rangle - \langle 2, -1, 0 \rangle = \langle 0, 0, 6 \rangle,$$

$$\vec{PQ} = \langle 1, 1, 4, \rangle - \langle 2, -1, 0 \rangle = \langle -1, 2, 4 \rangle.$$

So

$$\begin{split} \vec{PQ} \times \vec{PR} &= (-\vec{i} + 2\vec{j} + 4\vec{k}) \times 6\vec{k} = -(\vec{i} \times \vec{k}) + 2(\vec{j} \times \vec{k}) + 24(\vec{k} \times \vec{k}) \\ &= -(-\vec{j}) + 2\vec{i} + 0 = \langle 2, 1, 0 \rangle. \end{split}$$

The area of the triangle is $\frac{1}{2}\sqrt{2^2+1^2+0^2}=\frac{\sqrt{5}}{2}$.