My First Document

Mark Ng

January 25, 2017

1 Introduction

1.1 Lines of Text

this is text. but entering a new line does not create a new line this creates a new line

this creates a new line 5.75 millimetres from the previous

this creates a new paragraph, this creates a new paragraph.

1.2 Some Text Formatting

Let's list out a few methods of formatting This is normal text. This is bold-faced text. This is italicised text. This is also italicised. This is underlined text.

This is centralised text. This is bold, underlined and centralised text.

1.3 Some Special Characters

Take note of the following special characters:

Take note of accents:

L'Hôpital's Rule, Hölder's Inequality, \dots , for more accents just Google

Quotation Marks: "this is a bad quote", "this is a good quote"... in general never use ", always use ' and '.

2 Mathematics

In this section, we will cover the essential features of the LATEX mathematical environment.

2.1 Basic Mathematics

The most basic mathematical environment: x + y - z = 0... note the difference from x + y - z = 0.

- 1. Simple Mathematical Symbols.
 - (a) One useful reference in general is Detexify (Google it).
 - (b) Greek: $\alpha, \beta, \gamma, \delta, \sigma, \Sigma, \Gamma$... compare $\epsilon > 0$ with $\epsilon > 0$... also $\phi = \varphi$
 - (c) Common Symbols: $\{1,2,3\} \subseteq \{1,2,3,4\}, \infty \notin R$ a function $f(x) = x + 2... \sin x, \cos x, \log x...$ by the way, please do not write $\sin(x), \cos(x), \log(x)...$
 - (d) More Symbols: $f: A \to B, g: B \to X \implies g \circ f: A \to C$
- 2. Subscripts, Superscripts & Fractions.
 - (a) Subcripts: $x_1, x_2, x_3, \dots, x_{n+1}$
 - (b) Superscripts: $x^1, 2^{31}, 100^x$
 - (c) Fractions: $\frac{1}{2}$, $\frac{1}{1+\frac{1}{n}}$, $\frac{22}{7} \approx \pi$
 - (d) Compositions: e is the limit of the sequence $x_n = (1 + \frac{1}{n})^n$ as $n \to \infty$... $\omega_{1_{2_3}}^{4^{5^6}}$... always remember subscripts first, then superscripts ... α_1^{ε} .
- 3. Mathematical Fonts
 - (a) Default: a, b, c, d, e
 - (b) BlackboardBold: $x \in \mathbb{R}$... $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$
 - (c) Bold-faced: $\mathbf{P}(X \le a) = \frac{1}{3}$, $\mathbf{E}[X] = 0$ whereas $\mathbf{Var}[X] = 1$
 - (d) Caligraphy: $(\Omega, \mathcal{A}, \mu)$ and $A \in \mathcal{A}$... $(\sigma$ -algebra)
 - (e) Fraktur: $\mathfrak{ABCDEFG}$... Cardinality of the continuum is \mathfrak{c} . $\mathfrak{Re}[x+iy]=x$

2.2 Equations

The first thing we need to know is how to write an "equation".

This is a numbered equation:

$$e^{i\pi} + 1 = 0. (1)$$

This is an unnumbered equation:

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n).$$

Let's learn how to write split equations

$$|x-z| = |x-y+y-z|$$

$$\leq |x-y|+|y-z|$$

$$<|x-y|+|y-z|+\varepsilon.$$
(2)

2.3 Integrals, Limits, Summations

Integrals, limits, summations...

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{3}$$

$$\iint f(x_1, x_2) \, \mathrm{d}x_1 \mathrm{d}x_2. \tag{4}$$

$$\iiint f(x_1, x_2, x_3) \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3. \tag{5}$$

$$\iiint f(x_1, x_2, x_3, x_4) \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3 \mathrm{d}x_4. \tag{6}$$

$$\int \cdots \int f(x_1, \dots, x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n. \tag{7}$$

$$\oint_{\Gamma} f(z) \, \mathrm{d}z. \tag{8}$$

$$\lim_{n \to \infty} \frac{1}{n^2 + n + 1} = 0. \tag{9}$$

$$\sum_{k=1}^{n} k = \frac{n}{2}(n+1). \tag{10}$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{ij}.$$
 (11)

$$F(x) = f(x) + \left(\int_0^x g(t) dt + \dots + C\right)$$
(12)

$$\pi = \sqrt{6\sum_{n=1}^{\infty} \frac{1}{n^2}} \tag{13}$$

2.4 Matrices, Vectors

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \tag{14}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}. \tag{15}$$

Let $\vec{v} \in \mathbb{R}^n$, we may write this vector as

$$\vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} . \tag{16}$$

3 Theorems, Lemmas, Definitions & Corollaries

This section is mainly for Mathematics majors.

Definition 3.1 (Convergent Sequences). Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} . A sequence is said to converge to a limit ℓ if, for any given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $|x_n - \ell| < \epsilon$. We denote this by $x_n \to \ell$, or

$$\lim_{n \to \infty} x_n = \ell \tag{17}$$

Based on Definition 3.1 alone, we can prove the following Lemma.

Lemma 3.2. If $\lim_{n\to\infty} x_n = \ell$, then $\lim_{n\to\infty} |x_n| = |\ell|$.

Proof. The proof is left as an exercise.

Remark 3.3. The converse of Lemma 3.2 is not true in general!

Theorem 3.4 (Central Limit Theorem). Let X_1, X_2, X_3, \ldots be a sequence of IID random variables with finite mean μ and variance σ^2 . Then, as $n \to \infty$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1). \tag{18}$$

Theorem 3.4 was proved by Pierre-Simon Laplace (see [2]) a long time ago.

Corollary 3.5. Let $X \sim Binomial(n, p)$ and set q = 1 - p. Then for sufficiently large values of $n \in \mathbb{N}$, the distribution of X can be approximated by

$$Y \sim \mathcal{N}(np, npq).$$
 (19)

4 Other Stuff

4.1 Tables

This is a table:

Name	Favourite Food
Mark	Cookies
Einstein	Sandwiches

4.2 Figures

This is a figure:

Figure 1: What?!?!?

References

- [1] Mark Ng (2017), "A First Course in LATEX". NUS Mathematics Society.
- [2] Pierre-Simon Laplace (1812), "Théorie analytique des probabilités". Paris, Ve. Courcier.