Липецкий государственный технический университет

Кафедра прикладной математики

КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ МАТЕМАТИЧЕСКИХ ИССЛЕДОВАНИЙ

Лекция 2.4

Deep Learning в R

Составитель - Сысоев А.С., к.т.н., доцент

Липецк - 2018

Outline

- 4.1. Разделы машинного обучения
- 4.2. Оценка моделей машинного обучения
- 4.3. Обработка данных, конструирование признаков и обучение признаков
- 4.4. Обобщенный процесс решения задач машинного обучения#

4.1. Разделы машинного обучения

Контролируемое обучение

- Наиболее распространенный случай
- Научить модель отображать исходные данные в известные целевые значения (аннотации) на наборе примеров (часто аннотированных людьми)
- Основную долю задач контролируемого обучения составляют классификация и регрессия, но есть и другие:
 - о <u>Генерация последовательностей</u> по заданной картинке предсказать заголовок, который ее описывает
 - о <u>Прогнозирование дерева синтаксиса</u> по имеющемуся предложению требуется спрогнозировать его разложение в дерево синтаксиса
 - о <u>Распознавание объектов</u> на имеющейся картинке требуется нарисовать рамки вокруг определенных объектов
 - о <u>Сегментирование изображений</u> по имеющейся картинке построить пиксельную маску для конкретного объекта

4.1. Разделы машинного обучения

<u>Неконтролируемое обучение</u>

- Поиск интересных преобразований входных данных без помощи каких-либо целевых значений для нужд визуализации, сжатия или очистки данных от шумов или для лучшего понимания взаимосвязей в данных.
- Неконтролируемое обучение это основа анализа данных, оно часто оказывается необходимым шагом на пути изучения набора данных перед применением методов контролируемого обучения.
- Хорошо известными примерами неконтролируемого обучения являются *пониже-* ние размерности и кластеризация.

Самоконтролируемое обучение

- Контролируется без использования меток, расставленных человеком, самоконтролируемое обучение можно считать контролируемым обучением без участия людей. Метки генерируются из исходных данных, обычно с применением эвристических алгоритмов.
- Хорошо известным примером самоконтролируемого обучения могут служить автокодировщики, которые генерируют цели по исходным, немодифицированным данным.

4.1. Разделы машинного обучения

Обучение с подкреплением

- В обучении с подкреплением *агент* получает информацию о своем окружении и учится выбирать действия, максимизирующие некоторую выгоду.
- В настоящее время обучение с подкреплением пока является областью исследований и не имеет существенных практических успехов помимо применения в играх.

- Модели нельзя оценивать на тех же данных, на которых они обучались. Спустя всего несколько эпох возникает эффект переобучения.
- Цель машинного обучения состоит в создании обобщающих моделей, дающих качественный прогноз на данных, не участвовавших в обучении, а переобучение является главным препятствием к ее достижению.
- Оценка модели всегда сводится к делению доступных данных на три набора: тренировочный, проверочный и тестовый (или контрольный).
- Процесс конструирования модели всегда связан с настройкой ее параметров: например, с выбором количества слоев или изменением их размерности (такие настройки называют *гиперпараметрами* модели, чтобы отличать их от параметров весовых коэффициентов).
- Модель не должна иметь доступа ни к какой информации из контрольного набора, даже косвенно.
- Проверка с простым расщеплением выборки (hold-out validation), перекрестная проверка по К блокам (K-fold validation) и итерационная проверка по К блокам с перемешиванием (iterated K-fold validation with shuffling).

Проверка с простым расщеплением выборки

- Некоторая часть данных выделяется в контрольный набор.
 Обучение производится на оставшихся данных, а оценка качества — на контрольных.
- Для предотвращения утечек информации модель не должна настраиваться по результатам прогнозирования на контрольных данных, поэтому требуется также зарезервировать отдельный проверочный набор.

Проверка с простым расщеплением выборки

```
Перемешивание
                                                                 данных нередко
                                                               весьма желательно
indices <- sample(1:nrow(data), size = 0.80 * nrow(data))</pre>
training_data <- data[indices, ] — Определение обучающего набора
model <- get model()</pre>
                                                          Обучение модели на
model %>% train(training data)
                                                          обучающих и оценка
validation score <- model %>% evaluate(validation data)
                                                          на проверочных данных
model <- get model()</pre>
                                              После настройки гиперпараметров
model %>% train(data)
                                              часто желательно выполнить обучение
test_score <- model %>% evaluate(test_data)
                                              окончательной модели на всех данных,
                                              не включенных в контрольный набор
```

НО! При небольшом объеме доступных данных проверочный и контрольный наборы могут содержать слишком мало образцов, чтобы считаться статистически репрезентативными.

<u>Перекрестная проверка по К блокам</u>

- Данные разбиваются на К блоков равного размера.
- Для каждого блока *i* производится обучение модели на остальных *K* 1 блоках и оценка на блоке *i*.
- Окончательная оценка рассчитывается как среднее К промежуточных оценок.
- Этот метод может пригодиться, когда качество модели слишком сильно зависит от деления данных на тренировочный / контрольный наборы.

<u>Перекрестная проверка по К блокам</u>

```
k <- 4
indices <- sample(1:nrow(data))</pre>
                                                                     Выбор блока данных
folds <- cut(indices, breaks = k, labels = FALSE)
                                                                     для проверки
validation scores <- c()
                                                                       Использовать
for (i in 1:k) {
                                                                       остальные данные
                                                                       для обучения
  validation indices <- which(folds == i, arr.ind = TRUE)</pre>
  validation data <- data[validation indices,]</pre>
                                                                        Создание
  training data <- data[-validation indices,]</pre>
                                                                        совершенно новой
                                                                        (необученной)
  model <- get model()
                                                                        модели
  model %>% train(training data)
  results <- model %>% evaluate(validation data)
                                                                         Общая оценка:
  validation_scores <- c(validation_scores, results$accuracy)</pre>
                                                                         среднее оценок
                                                                         по К блокам
validation score <- mean(validation scores)</pre>
                                                              Обучение окончательной
model <- get model()</pre>
                                                              модели на всех данных,
model %>% train(data)
                                                              не вошедших
results <- model %>% evaluate(test data)
                                                              в контрольный набор
```

<u>Итерационная проверка по К блокам с перемешиванием</u>

- Этот метод подходит для ситуаций, когда имеется относительно небольшой набор данных и требуется оценить модель максимально точно.
- Суть заключается в многократном применении перекрестной проверки по *K* блокам с перемешиванием данных перед каждым разделением на *K* блоков.
- Конечная оценка среднее по оценкам, полученным в прогонах перекрестной проверки по *К* блокам.
- В конечном счете обучению и оценке подвергается $P \times K$ моделей (где P число итераций), что может быть очень затратным.

Выбирая протокол оценки, важно помнить:

- *О репрезентативности данных* наборы тренировочных и контрольных данных должны быть репрезентативными для всего объема имеющихся данных.
- О направлении оси времени пытаясь предсказать будущее по прошлому (например, погоду на завтра, движение товаров и т. д.), нельзя производить перемешивание данных перед делением, потому что это создаст временную утечку: модель фактически будет обучаться по данным в будущем.
- Об избыточности данных если некоторые образцы присутствуют в данных в нескольких экземплярах (частое явление в реальном мире), перемешивание и деление данных на тренировочный и проверочный наборы приведет к появлению избыточности между тренировочным и проверочным наборами. Тренировочный и проверочный наборы не должны пересекаться.

Векторизация

• Все входы и цели в нейронной сети должны быть тензорами чисел с плавающей точкой (или, в особых случаях, тензорами целых чисел).

Нормализация

- Чтобы упростить обучение сети, данные должны обладать следующими характеристиками:
 - принимать небольшие значения как правило, значения должны находиться в диапазоне 0–1;
 - о *быть однородными* то есть все признаки должны принимать значения из примерно одного и того же диапазона.

```
mean <- apply(train_data, 2, mean) ← Вычисление среднего и стандартного отклонения std <- apply(train_data, 2, sd) в обучающих данных

train_data <- scale(train_data, center = mean, scale = std) ← test_data <- scale(test_data, center = mean, scale = std)

Масштабирование обучающих и контрольных данных с использованием среднего и стандартного отклонения, вычисленных по обучающим данным
```

Конструирование признаков

Конструирование признаков — это процесс использования собственных знаний о данных и алгоритме машинного обучения (в данном случае — нейронной сети), чтобы улучшить эффективность алгоритма применением предопределенных преобразований к данным перед передачей их в модель. Данные должны передаваться в модель в виде, облегчающем ее работу.

Исходные данные: сетка с пикселами	The state of the s	THE THE PARTY OF T
Более удачные	{x1: 0.7,	{x1: 0.0,
признаки:	y1: 0.7}	y2: 1.0}
координаты	{x2: 0.5,	{x2: -0.38,
стрелок	y2: 0.0}	2: 0.32}
Еще более	theta1: 45	theta1: 90
удачные	theta2: 0	theta2: 140
признаки: углы		
отклонения стре	TOV	

- Хорошие признаки позволяют решать задачи более элегантно и с меньшими затратами ресурсов. Хорошие признаки позволяют решать задачи, имея намного меньший объем исходных данных.
- Способность моделей глубокого обучения самостоятельно выделять признаки зависит от наличия большого объема исходных данных; если образцов всего несколько, то информационная ценность их признаков приобретает определяющее значение.

Основной проблемой машинного обучения является противоречие между *опти- мизацией* и *общностью*.

Под оптимизацией понимается процесс настройки модели для получения максимального качества на тренировочных данных (обучение в машинном обучении), а под общностью — качество обученной модели на данных, которые она прежде не видела.

<u>Лучший способ предотвратить</u> изучение моделью специфических или нерелевантных шаблонов, имеющих место в тренировочных данных, — увеличить объем тренировочных данных. Борьба с переобучением таким способом называется *регуляризацией*.

Влияние емкости модели на величину потерь на проверочных данных: попытка уменьшить модель

Влияние емкости модели на величину потерь на проверочных данных: попытка увеличить модель

Влияние емкости модели на величину потерь на обучающих данных: попытка увеличить модель

Добавление регуляризации весов

Принцип бритвы Оккама: если какому-то явлению можно дать два объяснение, правильным, скорее всего, будет более простое — имеющее меньшее количество допущений. Простые модели менее склонны к переобучению.

Простая модель (в данном контексте) — это модель, в которой распределение значений параметров имеет меньшую энтропию (или модель с меньшим числом параметров).

• Типичный способ смягчения проблемы переобучения заключается в уменьшении сложности сети путем ограничения значений ее весовых коэффициентов, что делает их распределение более равномерным.

Этот прием называется регуляризацией весов, он реализуется добавлением в функцию потерь сети штрафа за увеличение весов и имеет две разновидности:

- L1-регуляризация (L1 regularization) добавляемый штраф прямо пропорционален абсолютным значениям весовых коэффициентов (L1-норма весов).
- L2-регуляризация (L2 regularization) добавляемый штраф пропорционален квадратам значений весовых коэффициентов (L2-норма весов).

Добавление регуляризации весов

!!! так как штраф добавляется только на этапе обучения, величина потерь сети на этапе обучения будет намного выше, чем на этапе контроля.

Добавление прореживания

Прореживание (dropout) — один из наиболее эффективных и распространенных приемов регуляризации для нейронных сетей, разработанный Джеффом Хинтоном (Geoff Hinton) и его студентами в Университете Торонто. Прореживание, что применяется к уровню, заключается в удалении (присваивании нуля) случайно выбираемым признакам на этапе обучения.

<u>Коэффициент прореживания</u> — это доля обнуляемых признаков; обычно он выбирается в диапазоне от 0,2 до 0,5. На этапе тестирования прореживание не производится; вместо этого выходные значения уровня уменьшаются на коэффициент, равный коэффициенту прореживания, чтобы компенсировать разницу в активности признаков на этапах тестирования и обучения.

```
layer_output <- layer_output * sample(0:1, length(layer_output), replace = TRUE)

layer_output <- layer_output * 0.5

layer_output <- layer_output * sample(0:1, length(layer_output), replace = TRUE) 		— На этапе обучения

layer_output <- layer_output / 0.5 		— Обратите внимание: в данном случае происходит увеличение, а не уменьшение значений.
```

<u>Добавление прореживания</u>


```
layer_dropout(rate = 0.5)
model <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = 16, activation = "relu") %>%
  layer_dropout(rate = 0.5) %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = 1, activation = "sigmoid")
```

Наиболее распространенные способы ослабления проблемы переобучения нейронных сетей:

- увеличить объем обучающих данных;
- уменьшить емкость сети;
- добавить регуляризацию весов;
- добавить прореживание.

4.4. Обобщенный процесс решения задач машинного обучения

Определение задачи и создание набора данных

- Какой вид будут иметь входные данные? Что требуется предсказать? Вы сможете обучить сеть предсказывать что-либо только при наличии тренировочных данных?
- К какому типу относится задача? Бинарная классификация? Многоклассовая классификация? Скалярная регрессия? Векторная регрессия? Многоклассовая, многозначная (нечеткая) классификация? Что-то иное, например, кластеризация, генерация или обучение с подкреплением? Идентификация типа задачи определит выбор архитектуры модели, функции потерь и т.д.
- ✓ гипотеза о том, что выходные данные можно предсказать по входным данным;
- ✓ гипотеза о том, что доступные данные достаточно информативны для изучения отношений между входными и выходными данными

Выбор меры успеха

Для задач симметричной классификации, когда каждый класс одинаково вероятен, часто используются такие показатели, как близость и площадь под кривой рабочей характеристики приемника. Для задач несимметричной классификации можно использовать точность и полноту. Для задач ранжирования или многозначной классификации можно использовать среднее математическое ожидание. Также нередко приходится определять собственную меру успеха.

4.4. Обобщенный процесс решения задач машинного обучения

Выбор протокола оценки

Предварительная подготовка данных

Разработка модели более совершенной, чем базовый случай

Выбор функции активации для последнего уровня и функции потерь

Тип задачи	Функция активации для последнего слоя	Функция потерь
Бинарная классификация	sigmoid	binary_crossentropy
Многоклассовая однозначная классификация	softmax	categorical_crossentropy
Многоклассовая многознач- ная классификация	sigmoid	binary_crossentropy
Регрессия по произвольным значениям	Нет	mse
Регрессия по значениям между 0 и 1	sigmoid	mse или binary_ crossentropy

Масштабирование по вертикали: разработка модели с переобучением Регуляризация модели и настройка гиперпараметров