In each of Problems 13 through 20, find the solution of the given initial value problem.

13.
$$y' - y = 2te^{2t}$$
, $y(0) = 1$

14.
$$y' + 2y = te^{-2t}$$
, $y(1) = 0$

15.
$$ty' + 2y = t^2 - t + 1$$
, $y(1) = \frac{1}{2}$, $t > 0$

16.
$$y' + (2/t)y = (\cos t)/t^2$$
, $y(\pi) = 0$, $t > 0$

17.
$$y' - 2y = e^{2t}$$
, $y(0) = 2$

18.
$$ty' + 2y = \sin t$$
, $y(\pi/2) = 1$, $t > 0$

18.
$$ty' + 2y = \sin t$$
, $y(\pi/2) = 1$, $t > 0$
19. $t^3y' + 4t^2y = e^{-t}$, $y(-1) = 0$, $t < 0$

20.
$$ty' + (t+1)y = t$$
, $y(\ln 2) = 1$, $t > 0$

In each of Problems 1 through 8, solve the given differential equation.

1.
$$y' = x^2/y$$

3.
$$y' + y^2 \sin x = 0$$

5.
$$y' = (\cos^2 x)(\cos^2 2y)$$

$$7. \ \frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}$$

2.
$$y' = x^2/y(1+x^3)$$

4.
$$y' = (3x^2 - 1)/(3 + 2y)$$

6.
$$xy' = (1 - y^2)^{1/2}$$

$$8. \ \frac{dy}{dx} = \frac{x^2}{1 + y^2}$$

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.

9.
$$y' = (1 - 2x)y^2$$
, $y(0) = -1/6$

9.
$$y' = (1 - 2x)y^2$$
, $y(0) = -1/6$ 10. $y' = (1 - 2x)/y$, $y(1) = -2$ 11. $x dx + ye^{-x} dy = 0$, $y(0) = 1$ 12. $dr/d\theta = r^2/\theta$, $r(1) = 2$

11.
$$x dx + ye^{-x} dy = 0$$
, $y(0) = 1$

12.
$$dr/d\theta = r^2/\theta$$
, $r(1) = 2$

15.
$$y' = 2x/(1+2y)$$
, $y(2) = 0$

13.
$$y' = 2x/(y + x^2y)$$
, $y(0) = -2$ 14. $y' = xy^3(1 + x^2)^{-1/2}$, $y(0) = 1$ 15. $y' = 2x/(1 + 2y)$, $y(2) = 0$ 16. $y' = x(x^2 + 1)/4y^3$, $y(0) = -1/\sqrt{2}$

17.
$$y' = (3x^2 - e^x)/(2y - 5),$$
 $y(0) = 1$

18.
$$y' = (e^{-x} - e^x)/(3 + 4y), y(0) = 1$$

19.
$$\sin 2x \, dx + \cos 3y \, dy = 0$$
, $y(\pi/2) = \pi/3$

20.
$$y^2(1-x^2)^{1/2}dy = \arcsin x \, dx$$
, $y(0) = 1$

Determine whether each of the equations in Problems 1 through 12 is exact. If it is exact, find the solution.

1.
$$(2x + 3) + (2y - 2)y' = 0$$

2.
$$(2x + 4y) + (2x - 2y)y' = 0$$

3.
$$(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)y' = 0$$

4.
$$(2xy^2 + 2y) + (2x^2y + 2x)y' = 0$$

$$5. \ \frac{dy}{dx} = -\frac{ax + by}{bx + cy}$$

6.
$$\frac{dy}{dx} = -\frac{ax - by}{bx - cy}$$

7.
$$(e^x \sin y - 2y \sin x) + (e^x \cos y + 2\cos x)y' = 0$$

8.
$$(e^x \sin y + 3y) - (3x - e^x \sin y)y' = 0$$

9.
$$(ye^{xy}\cos 2x - 2e^{xy}\sin 2x + 2x) + (xe^{xy}\cos 2x - 3)y' = 0$$

10.
$$(y/x + 6x) + (\ln x - 2)y' = 0, \quad x > 0$$

11.
$$(x \ln y + xy) + (y \ln x + xy)y' = 0;$$
 $x > 0, y > 0$

12.
$$\frac{x}{(x^2+y^2)^{3/2}} + \frac{y}{(x^2+y^2)^{3/2}} \frac{dy}{dx} = 0$$

Bernoulli Differential Equations

2.72
$$3xy' - 3xy^4 \ln x - y = 0$$
 $\sum_{x=0}^{\infty} \frac{1}{y^3} = -\frac{3}{4}x(2\ln x - 1) + \frac{C}{x}; y = 0$

2.73
$$\frac{dy}{dx} = \frac{4x^3y^2}{x^4y + 2}$$
 As $x^4 = -\frac{1}{y} + Cy$; $y = 0$

2.74
$$y(6y^2 - x - 1) dx + 2x dy = 0$$
 $\frac{1}{y^2} = \frac{1}{x} (6 + Ce^{-x}); y = 0$

2.75
$$(1+x)(y'+y^2)-y=0$$
 $(1+x)(y'+y^2)-y=0$ $(1+x)(y'+y^2)-y=0$

2.76
$$xyy' + y^2 - \sin x = 0$$
 $x^2y^2 = -2x\cos x + 2\sin x + C$

2.77
$$(2x^3 - y^4) dx + xy^3 dy = 0$$
 As $y^4 = 8x^3 + Cx^4$

2.78
$$y' - y \tan x + y^2 \cos x = 0$$
 $\frac{1}{y} = \cos x (x + C); y = 0$

2.79
$$6y^2 dx - x(2x^3 + y) dy = 0$$
 $(y-2x^3)^2 = Cyx^6; y = 0$

Exact Differential Equations

2.20
$$(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0$$
 $(3x^3 + 3x^2y^2 + y^4) = 0$

2.21
$$(2x^3 - xy^2 - 2y + 3) dx - (x^2y + 2x) dy = 0$$

2.22
$$(xy^2 + x - 2y + 3) dx + x^2y dy = 2(x + y) dy$$

$$x^2y^2 + x^2 + 6x - 4xy - 2y^2 = C$$

2.23
$$3y(x^2 - 1) dx + (x^3 + 8y - 3x) dy = 0$$
, when $x = 0$, $y = 1$

$$As x^3y - 3xy + 4y^2 = 4$$

2.24
$$(x^2 + \ln y) dx + \frac{x}{y} dy = 0$$
 As $\frac{1}{3}x^3 + x \ln y = C$

2.25
$$2x(3x + y - ye^{-x^2}) dx + (x^2 + 3y^2 + e^{-x^2}) dy = 0$$

$$2x^3 + x^2y + ye^{-x^2} + y^3 = C$$

2.26
$$(3 + y + 2y^2 \sin^2 x) dx + (x + 2xy - y \sin 2x) dy = 0$$

As
$$3x + xy + xy^2 - \frac{1}{2}y^2 \sin 2x = C$$

2.27
$$(2xy + y^2) dx + (x^2 + 2xy + y^2) dy = 0$$
 $x^2y + xy^2 + \frac{1}{3}y^3 = C$

Variable Separable

2.1
$$\cos^2 y \, dx + (1 + e^{-x}) \sin y \, dy = 0$$
 As $\ln(e^x + 1) = -\frac{1}{\cos y} + C$; $\cos y = 0$

2.2
$$\frac{dy}{dx} = \frac{x^3 e^{x^2}}{y \ln y}$$
 As $y^2 \left(\ln y - \frac{1}{2} \right) = e^{x^2} (x^2 - 1) + C$

2.3
$$x \cos^2 y \, dx + e^x \tan y \, dy = 0$$
 As $e^{-x}(x+1) = \frac{1}{2 \cos^2 y} + C$; $\cos y = 0$

2.4
$$x(y^2 + 1) dx + (2y + 1) e^{-x} dy = 0$$

$$(x-1)e^x + \ln(y^2+1) + \tan^{-1}y = C$$

2.5
$$xy^3 dx + e^{x^2} dy = 0$$
 $e^{-x^2} + \frac{1}{y^2} = C; y = 0$

2.6
$$x \cos^2 y \, dx + \tan y \, dy = 0$$
 As $x^2 + \tan^2 y = C$

2.7
$$xy^3 dx + (y+1)e^{-x} dy = 0$$
 $e^x(x-1) - \frac{1}{y} - \frac{1}{2y^2} = C; y=0$

Homogeneous and Special Transformations

2.8
$$\frac{dy}{dx} + \frac{x}{y} + 2 = 0$$
 As $\ln|x+y| + \frac{x}{x+y} = C$; $y = -x$

2.9
$$x dy - y dx = x \cot\left(\frac{y}{x}\right) dx$$
 $\cos\left(\frac{y}{x}\right) = \frac{C}{x}$

2.10
$$\left[x\cos^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0$$
 As $\ln|x| + \tan\frac{y}{x} = C$; $\cos\frac{y}{x} = 0$

2.11
$$x dy = y(1 + \ln y - \ln x) dx$$
 $A \otimes y = x e^{Cx}$

2.12
$$xy dx + (x^2 + y^2) dy = 0$$
 $(2x^2 + y^2) = C$

2.13
$$\left[1 + \exp\left(-\frac{y}{x}\right)\right] dy + \left(1 - \frac{y}{x}\right) dx = 0$$
 As $x \exp\left(\frac{y}{x}\right) + y = C$

2.14
$$(x^2 - xy + y^2) dx - xy dy = 0$$
 (y-x) $e^{y/x} = C$

2.15
$$(3+2x+4y)y'=1+x+2y$$

$$||\mathbf{A}\mathbf{y}|| ||\mathbf{a}\mathbf{y} - \mathbf{a}\mathbf{y} + \mathbf{b}\mathbf{y} - \mathbf{a}\mathbf{y} + \mathbf{b}\mathbf{y} - \mathbf{b}\mathbf{y} - \mathbf{a}\mathbf{y} + \mathbf{b}\mathbf{y} - \mathbf{b}\mathbf$$

2.16
$$y' = \frac{2x+y-1}{x-y-2}$$
 $\sqrt{2} \tan^{-1} \frac{y+1}{\sqrt{2}(x-1)} = \ln[(y+1)^2 + 2(x-1)^2] + C$

2.17
$$(y+2) dx = (2x+y-4) dy$$
 $(y+2)^2 = C(x+y-1); y=1-x$

2.18
$$y' = \sin^2(x-y)$$
 As $x = \tan(x-y) + C$; $x - y = \frac{\pi}{2} \pm k\pi$, $k = 0, 1, 2, ...$

2.19
$$\frac{dy}{dx} = (x+1)^2 + (4y+1)^2 + 8xy + 1$$
 $\frac{2}{3}(x+4y+1) = \tan(6x+C)$