2006 Further Mathematics Trial Exam 1 Solutions Free download and print from www.itute.com Do not photocopy © Copyright 2006 itute.com

SECTION A Core: Data analysis

1	2	3	4	5	6	7	8	9	10	11	12	13
В	Α	В	A	A	D	C	C	Е	В	A	Е	C

SECTION B

Module 1: Number patterns and applications

1	2	3	4	5	6	7	8	9			
D	A	В	Α	Е	C	Α	C	D			
Module 2: Geometry and trigonometry											
1	2	3	4	5	6	7	8	9			
D	Е	A	В	A	В	В	C	В			
Modu	Modula 6. Matricas										

Module 6: Matrices											
	1	2	3	4	5	6	7	8	9		
	В	С	С	Α	В	С	D	С	С		

SECTION A Core: Data analysis

Q1 House prices are discrete and numerical; conditions are categorical.

Q2 Arrange the house prices in ascending order, the middle two are 269000 and 276000.

Median =
$$\frac{269000 + 276000}{2}$$
 = 272500

Q3
$$Q_1 = 48$$
, $Q_3 = \frac{69 + 70}{2} = 69.5$, $IQR = 69.5 - 48 = 21.5$

Q4
$$Q_1 - 1.5 \times IQR = 48 - 1.5 \times 21.5 = 15.75$$

$$Q_3 + 1.5 \times IQR = 69.5 + 1.5 \times 21.5 = 101.75$$

All test marks are between 15.75 and 101.75, ∴no outliers

Q5

Q6 80 is 1σ higher than the mean 70, \therefore 16% of students score higher than 80 in Science.

Q7 English mark $80 = 74 + 0.5\sigma$

Mathematics mark $70 = 61 + 0.5\sigma$

Science mark $80 = 70 + 1\sigma$

: Student has the same rank in English and Mathematics.

Q8 Negative, linear and moderate.

Q9 Residual = actual value – predicted value
=
$$3 - (5.6 - 0.81 \times 2) = -0.98 \approx -1.0$$

O10
$$v = a + bx$$
. When $x = 0$,

$$y = a = \overline{y} - r \frac{s_y}{s_x} \overline{x} = 5.28 - 0.8913 \times \frac{1.72}{0.243} \times 1.30 = 13.48$$

Q11
$$a = 13.48$$
, $b = r \frac{s_y}{s_x} = -6.31$, $\therefore y = 13.48 - 6.31x$

Q12 Fourth quarter seasonal index

$$= 4 - (0.93 + 0.90 + 0.85) = 1.32$$

Deseasonalised sale figure =
$$\frac{639500}{1.32}$$
 = 484470 dollars

Q13 Annual rainfall peaked every 6/7 years, ∴cyclical. There was a gentle up trend.

SECTION B

Module 1: Number patterns and applications

Q1 There is a common difference of $-\frac{1}{3}$ in sequence D.

Q2 Common ratio:
$$\frac{1.04}{3.12} = \frac{3.12}{x}$$
, $x = 9.36$

Q3 The sequence is formed by adding successive odd integer (1, 3, 5, ...) to a term to obtain the next term.

-1, 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. There are 11 terms.

Q4
$$a = -\frac{1}{2}$$
, $r = \frac{\frac{1}{6}}{-\frac{1}{2}} = -\frac{1}{3}$, $S_{\infty} = \frac{a}{1-r} = \frac{-\frac{1}{2}}{1-\frac{1}{3}} = -\frac{3}{8}$

Q5 For any arithmetic sequence with even number of terms, $t_1 + t_n = t_2 + t_{n-1} = t_3 + t_{n-2} = \dots$, \therefore the sum of the middle two terms equals the sum of the first and the last terms.

For any arithmetic sequence with odd number of terms, the middle term equals a half of the sum of the first and the last terms.

Q6
$$T_{n+1} = 2T_n - 9$$
, $T_n = 12.5$, $p = 2 \times 12.5 - 9 = 16$, $a = 2 \times 16 - 9 = 23$, $w = 2 \times 23 - 9 = 37$

Q7
$$u_n = \frac{1}{2}u_{n-1} - 9$$
, $\therefore u_{n-1} = 2(u_n + 9)$, $u_5 = 3$,

$$\therefore u_4 = 2(u_5 + 9) = 2(12) = 24, \ u_3 = 2(u_4 + 9) = 2(33) = 66$$
$$u_2 = 2(75) = 150, \ u_1 = 2(159) = 318$$

Q8
$$t_{n+1} = at_n + b$$
, the ratio $\frac{t_{n+1}}{t_n} = a + \frac{b}{t_n}$ is a constant if $b = 0$

and $a \neq 0$. The sequence is geometric if b = 0 and $a \neq 0$.

Q9 $t_{n+2} = t_{n+1} + t_n$ where $t_1 = t_2 = 1$. The generated sequence is 1, 1, 2, 3, 5, 8, 13, 21, 33, 54,

$$\therefore t_8 \times t_5 - t_7 \times t_6 = 21 \times 5 - 13 \times 8 = 105 - 104 = 1$$

Module 2: Geometry and trigonometry

Q1 L = the base of the large right angle triangle – the base of the small right angle triangle = $\sqrt{8^2 - 3^2} - 4 = 3.4$

Q2 Length scale factor =
$$\frac{10cm}{0.5m} = \frac{10cm}{50cm} = 0.2$$

 \therefore area scale factor = $0.2^2 = 0.04$

Q3 When the vase is upright, the depth of water would be $\frac{15+25}{2} = 20$ cm,

: volume of water = $\pi r^2 h = \pi 5^2 \times 20 = 1570.8 \text{ cm}^3 = 1.6 \text{ L}$

Area of circle = $\pi r^2 = \pi 5^2 = 78.5$ Area of ellipse = $\sqrt{2} \times 78.5 = 111.1 \text{ cm}^2$

Area
$$\mathbf{A} = \frac{1}{2} \times 5 \times 12 = 30$$
.

$$s = \frac{13 + 12 + 21}{2} = 23$$
,

area $\mathbf{B} = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{23(10)(11)(12)} = 71.1$ Total area = 30 + 71.1 = 101.1 cm²

Q6
$$\cos \theta = \frac{c^2 - a^2 - b^2}{2ab} = \frac{21^2 + 12^2 - 13^2}{2(21)(12)} = 0.8254$$
,

$$\theta = \cos^{-1}(0.8254) = 34.4^{\circ}$$

Q8 Horizontal distance from P to summit $\approx 300 \text{ m}$ Vertical distance from P to summit $\approx 1000 - 400 = 600 \text{ m}$

Average slope
$$\approx \frac{600}{300} = 2$$

Q9

 $\frac{300}{\theta}$ $600 \tan \theta = \frac{600}{300} = 2, \ \theta = \tan^{-1}(2) = 63.4^{\circ}$

Module 6: Matrices

Q1 It is not a transitional matrix. Transitional matrices are square matrices.

$$Q2 \quad 2 \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & 4 \\ 4 & 8 \\ 8 & 12 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2 & 4 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 2 & 4 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$2 \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Q3
$$A\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} m & n & o & p \\ q & r & s & t \end{bmatrix}$$

2×3 3×4 2×4

Q4
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $a+b=0$, $a=1$, $c+d=1$, $c=1$

$$\therefore b=-1\,,\ d=0$$

Q5 Inverse of
$$\begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix}$$
 is $\frac{1}{1 \times 2^{-1} \times 1} \begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix}$
= $\begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$

Q6
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -1 \\ \frac{5}{2} \end{bmatrix}$$

Q7
$$\begin{bmatrix} 0.95 & 0.30 \\ 0.05 & 0.70 \end{bmatrix}$$

Q8 Second night:
$$\begin{bmatrix} 0.50 & 0.50 \\ 0.50 & 0.50 \end{bmatrix} \begin{bmatrix} 120 \\ 60 \end{bmatrix} = \begin{bmatrix} 90 \\ 90 \end{bmatrix}$$
,

third night: $\begin{bmatrix} 0.50 & 0.50 \\ 0.50 & 0.50 \end{bmatrix} \begin{bmatrix} 90 \\ 90 \end{bmatrix} = \begin{bmatrix} 90 \\ 90 \end{bmatrix}$, steady state, 90 working light globes.

Q9
$$3y = 2$$
, $y = 5x - 1$: $0x + 3y = 2$, $5x - y = 1$
. $\begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ - \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors