ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	ІКОЙ		
ПРЕПОДАВАТЕЛЬ			
канд. техн. наук,			А. В. Аграновский
должность, уч. степен	ъ, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛАІ	БОРАТОРНОЙ РАБО	TE № 5
CE	тевые исто	ЧНИКИ ПОСТОЯНН	ОГО ТОКА
		по курсу:	
		по курсу.	
	ЭЛЕКТРОН	ИКА И СХЕМОТЕХН	НИКА
РАБОТУ ВЫПОЛНИ	Л		
СТУДЕНТ гр. №	4326		Г. С. Томчук
		подпись, дата	инициалы, фамилия

1 Цель работы

∐ель работы: исследовать характеристики сетевых источников постоянного тока на основе однополупериодного и двухполупериодного выпрямителей. Изучить зависимость уровня пульсаций выходного напряжения от величины сопротивления нагрузки и ёмкости сглаживающего Определить влияние типа выпрямительной конденсатора. схемы на эффективность сглаживания выходного напряжения.

2 Схема экспериментальной установки

На рис. 1-3 изображены схемы экспериментальной установки, составленные в Місго-Сар. За неимением полупроводникового диода типа 27-02 в библиотеке программы, было решено заменить его на аналогичный 1SMA5936BT3 (U_z =30 B, P_z =1,5 Bt).

Рисунок 1 — Исследование источника питания с однополупериодным выпрямителем

Рисунок 2 — Исследование источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой

Рисунок 3 — Исследование источника питания с двухполупериодным выпрямителем на основе диодного моста

3 Таблицы с результатами исследований

По итогу симуляции и анализа заданных схем в Місто-Сар были составлены таблицы 1-6. В таблицы 1, 2 были внесены данные по исследованию источника питания с однополупериодным выпрямителем.

Таблица 1 — Исследование источника питания с однополупериодным выпрямителем

$$C = 100$$
 мк Φ

R _H , OM	100	300	500	700	1000	1500	2000	5000
U _Π , B	3,175	1,739	1,197	0,902	0,663	0,46	0,359	0,138

Таблица 2 — Исследование источника питания с однополупериодным выпрямителем

$$R_{\rm H} = 100 \ \rm OM$$

С, мкФ	10	50	100	500	750	1500	3000	5000
U_{Π} , B	4,021	3,828	3,175	1,127	0,782	0,368	0,184	0,108

В таблицы 3, 4 были внесены данные по исследованию источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

Таблица 3 — Исследование источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой

$$C = 100 \text{ мк}\Phi$$

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U _Π , B	1,886	0,874	0,588	0,451	0,331	0,221	0,175	0,055

Таблица 4 — Исследование источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой

$$R_{H} = 100 \text{ Om}$$

С, мкФ	10	50	100	500	750	1500	3000	5000
U⊓, B	3,837	2,659	1,886	0,544	0,345	0,138	0,076	0,015

В таблицы 5, 6 были внесены данные по исследованию источника питания с двухполупериодным выпрямителем на основе диодного моста.

Таблица 5 — Исследование источника питания с двухполупериодным выпрямителем на основе диодного моста

$$C = 100$$
 мк Φ

R _H , OM	100	300	500	700	1000	1500	2000	5000
U _Π , B	1,58	0,729	0,507	0,368	0,268	0,168	0,138	0,061

Таблица 6 – Исследование источника питания с двухполупериодным выпрямителем на основе диодного моста

$$R_{\scriptscriptstyle H}$$
 = 100 Om

С, мкФ	10	50	100	500	750	1500	3000	5000
U_{Π} , B	3,252	2,247	1,58	0,393	0,27	0,117	0,043	0,023

4 Графики зависимостей уровня пульсаций напряжения на выходе источника питания от параметров схемы

На рис. 4-9 изображены графики зависимостей уровня пульсаций напряжения на выходе источника питания от параметров схемы.

Рисунок 4 – Однополупериодный выпрямитель (по R_н)

Рисунок 5 – Однополупериодный выпрямитель (по С)

Рисунок 6 — Двухполупериодный выпрямитель на базе трансформатора со средней точкой (по $R_{\scriptscriptstyle H}$)

Рисунок 7 – Двухполупериодный выпрямитель на базе трансформатора со средней точкой (по C)

Рисунок 8 — Двухполупериодный выпрямитель на основе диодного моста $(\text{по }R_{\scriptscriptstyle H})$

Рисунок 9 – Двухполупериодный выпрямитель на основе диодного моста (по C)

5 Выводы

В ходе работы были собраны и исследованы три схемы источников питания: с однополупериодным выпрямителем, с двухполупериодным трансформатора средней точкой и выпрямителем на основе co двухполупериодным выпрямителем на основе диодного моста. В процессе измерений было установлено, что уровень пульсаций выходного напряжения уменьшается при увеличении сопротивления нагрузки и при увеличении ёмкости сглаживающего конденсатора. Наиболее высокий уровень пульсаций однополупериодной наблюдается схеме, a наименьший двухполупериодной мостовой схеме. Результаты эксперимента показали, что эффективного сглаживания выходного напряжения рекомендуется использовать двухполупериодный выпрямитель с большим сглаживающим конденсатором и высоким сопротивлением нагрузки. Полученные данные подтвердили теоретические представления о работе выпрямительных схем и влиянии их параметров на уровень пульсаций.