ÁP DỤNG GIẢI THUẬT DI TRUYỀN GIẢI BÀI TOÁN THIẾT KẾ MẠNG CHỊU LÕI MÔ HÌNH ĐA TẦNG

Presenter: Nguyễn Văn Lương

Khoa học máy tính – K52

NỘI DUNG

- A. Các khái niệm cơ bản
- B. Phát biểu bài toán
- C. Các nghiên cứu liên quan
- D. Mô hình đề xuất: Giải thuật di truyền
- E. Dataset

A. CÁC KHÁI NIỆM CƠ BẢN

- 1. Data transmission in Optical network
- 2. Multilayer network
- 3. Physical and Logical topology, Lightpaths
- 4. Survivable network

1. DATA TRANSMISSION IN OPTICAL NETWORK

1. DATA TRANSMISSION IN OPTICAL NETWORK

➤ Bước sóng sử dụng truyền dữ liệu

1. DATA TRANSMISSION IN OPTICAL NETWORK

➤ Kỹ thuật ghép kênh WDM

2. MULTILAYER NETWORK

Cấu trúc lớp mạng trong thực tế

- ✓ Mang WDM
- ✓ OXC là nút physical
- ✓ Các nút physical nối với nhau bởi physical link
- ✓ Nút physical có thể không xuất hiện trong logical topology

- ✓ Mang IP
- ✓ IP router là nút logical
- ✓ Các nút logical nối với nhau bởi logical link
- ✓ Nút logical luôn luôn là một nút trong physical

Physical

Logical

Logical topology

Physical topology

Logicai linkg chịu lỗi

(a) Physical topology.

(b) Lightpaths.

(c) Virtual topology.

> Mapping

- ❖ Việc ánh xạ các lightpath trên Logical topology với các physical link trên Physical topology.
- ❖ Việc ánh xạ tất cả các logical link với các physical link => ánh xạ logical topology vào physical topology

- Các kiểu lỗi mạng
 - Lỗi điều khiển hay trục trặc phần cứng
 - Lỗi xảy ra ở tại nút
 - Lỗi xảy ra ở trên đường truyền
- ➤ Nguyên nhân:
 - · Con người phá hoại
 - Thiên tai
 - Hao mòn thiết bị
 - •

- ➤ Khôi phục mạng:
 - Điều chỉnh sao cho thông tin truyền qua kết nối lỗi được truyền qua kết nối dự phòng
 - Thời gian khôi phục: là nhân tố quan trọng để đánh giá khả năng chịu lỗi của mạng

- Tính chịu lỗi của mạng:
 - Mạng có khả năng đáp ứng được các yêu cầu kết nối khi xảy ra sự cố.

- Các thiết kế chịu lỗi
 - Cơ chế bảo vệ 1+1: Mỗi yêu cầu kết nối có đồng thời 2 đường truyền song song. Đường nào tốt hơn thì nhận.
 - Cơ chế bảo vệ 1:1: Tín hiệu chỉ truyền trên 1 đường dẫn, khi phát hiện lỗi thì tín hiệu truyền qua đường dẫn dự phòng
 - Cơ chế chia sẻ bảo vệ: M kết nối dự phòng cho N kết nối.(Vòng bảo vệ p)

So sánh các cơ chế bảo vệ:

Known concepts

Dedicated protection:

- 1+1 path protection
- 1:1 path protection
- M:N path protection

Shared protection:

shared path protection

Properties

very fast (switching in endnodes)

time

Resource consumption

very high
(allocates every
backup path)

high
(allocates many
backup paths)

Very low (backup paths share capacity)

capacity

> Input:

- $G_1(V_1,E_1)$
- $G_2(V_2, E_2, c)$
 - C chi phí cài đặt cho mỗi cạnh vật lý e∈E₂
 - G₂ đầy đủ, khả năng thông qua trên mỗi cạnh là vô hạn
- K tập yêu cầu
 - $t_i(o_i,d_i) \in K$: Yêu cầu kết nối từ o_i đến d_i . $(o_i,d_i \in E_1)$
 - $t_i:L_i^1$ và $L_i^2:2$ đường định tuyến không chung nút trên G_1

> Output:

• Với mỗi yêu cầu, chỉ ra 2 đường truyền vật lý độc lập về nút tương ứng với 2 đường định tuyến L_i^1 và L_i^2 sao cho tổng chi phí cài đặt là nhỏ nhất

≻Ví dụ:

3/31/2012

Thiết kế mạng chịu lỗi

≻Ví dụ:

≻Nhận xét:

- Quan hệ chặt chẽ với một vài lớp bài toán cổ điển và một phần trong bài toán người du lịch.
- Chỉ với 1 yêu cầu, bài toán đã là NP-khó (trừ 1 số trường hợp)
- => Áp dụng giải thuật heuristic để giải bài toán. Cụ thể là giải thuật di truyền.

C. CÁC NGHIÊN CỨU LIÊN QUAN

- ➤ SMART: TungDT
- ➤ Design of survivable IP-over-optical networks
- > Multilayer Survivable Optical Network Design
- ➤ The Multilayer Capacitated Survivable IP Network Design Problem valid inequalities and Branch-and-Cut
- ➤ Thiết kế topo ảo trong mạng quang sử dụng PSO

D. MÔ HÌNH ĐỀ XUẤT : GIẢI THUẬT DI TRUYỀN

1. MÃ HÓA

Working Backup

t_1	t_2	t_3	$t_{\scriptscriptstyle{4}}$	$t_{\scriptscriptstyle{5}}$	$t_{\scriptscriptstyle 6}$	t ₇	••••	t_k
1	0	1	0	1	0	0		1
1	1	0	0	1	1	1		0

1

ID = 1

Chi phí: $C = c(N_7, N_1) + c(N_1, N_5) + c(N_5, N_6) + c(N_6, N_9) + c(N_9, N_{17})$

- Thứ tự kết nối: $\{N_7, N_1, N_5, N_6, N_9, N_{10}, N_{17}\}$

2. KHỞI TẠO QUẦN THỂ

- Mỗi router paths sẽ tương ứng 1 tập physical link
- > Chọn L1 là đường đi working, L2 là đường đi backup.
- ➤ L1, L2 tương ứng 1 tập physical link: M1, M2 với M1, M2 chỉ có chung 2 đỉnh đầu và cuối của yêu cầu.
- ➤ Vấn đề:
 - Xây dựng tập M1, M2 như thế nào?
 - Chọn thêm bao nhiều đỉnh ,chọn đỉnh nào, thứ tự đường đi?
- ➤ Đề xuất giải pháp:
 - 1 đường chính là đường logical link. ID = 0;
 - 1 đường nữa là đường logical link + 1 điểm ngẫu nhiên trong các điểm còn lại. ID = 1;

2. KHỞI TẠO QUẦN THỂ

- Số lượng cá thể trong quần thể: Tùy chọn (50 chẳng hạn)
- Với mỗi request, chọn ngẫu nhiên (0,1) 1 đường working và 1 đường backup

- 0: đường đi trùng logical link (L1)1: đường đi tạo bởi logical link (L1) + 1 điểm ngẫu nhiên
- 0: đường đi trùng logical link (L2)1: đường đi tạo bởi logical link (L2) + 1 điểm ngẫu nhiên

Working Backup

_	t ₁	t_2	t_3	t ₄	t_5	$t_{\scriptscriptstyle 6}$	t ₇	••••	t_k
	1	0	1	0	1	0	0		1
	1	1	0	0	1	1	1		0

3. HÀM THÍCH NGHI

Tổng chi phí cho các yêu cầu kết nối.

$$\mathsf{F} = \sum_{1}^{k} C_{i}$$

C_i: chi phí cho kết nối ti

 $C_{i} = C_{iw} + C_{ib}$

C_{iw}: Tổng chi phí trên đường đi working (Lấy được từ id đường đi)

C_{ib}: Tổng chi phí trên đường đi backup (Lấy được từ id đường đi)

4. LỰA CHỌN CHA MẠ

- ➤ Chọn lọc theo xếp hạng
- Chọn 10 cá thể xếp hạng cao nhất.

- ➤ Lai ghép đổi chéo NST
- > 1 cặp (cha, mẹ) -> 2 con

- ➤ Lai ghép 1 điểm cắt
- ➤ 1 cặp (cha, mẹ) -> 2 con

- Lai ghép 1 điểm cắt + đổi chéo cặp NST
- > 1 cặp (cha, mẹ) -> 2 con

- Lai ghép số học: sử dụng phép AND.
 - Working AND Working => Working
 - Backup AND Backup => Backup
- ➤ 1 cặp (cha, mẹ) -> 1 con

Cha

0	1	0	1	1	0	1
0	1	0	1	0	1	1

AND

Mę

0	1	1	0	1	1	1
0	0	1	0	0	1	0

Con

0	1	0	0	1	0	1
0	0	0	0	0	1	0

6. ĐỘT BIẾN

▶ Đột biến đảo bit: đảo giá trị của 1 gen ngẫu nhiên trong cặp NST.

6. ĐẤU TRANH SINH TỒN

- Phương pháp giữ lại các cá thể ưu tú.
- Sau khi sinh ra m cá thể mới, đánh giá độ thích nghi cho toàn bộ quần thể mới và loại đi m cá thể xấu nhất

7. ĐIỀU KIỆN DÙNG

➤ Sau một số lần lặp biết trước.

E. DATASET

➤ Bộ dữ liệu ngẫu nhiên. Sử dụng bộ dữ liệu TSPLib, bộ dữ liệu cho bài toán người du lịch.

E. DATASET

Ví dụ: file: a6_4_2.txt

DIMENSIONS

6 sommetsG2

4 sommetsG1

2 dem

SOMMETS

0 N0 C 288 149

1 N1 C 288 129

2 N2 T 270 133

3 N3 C 256 141

4 N4 C 256 157

5 N5 T 246 157

DEMANDES

41(41)(431)

34(34)(304)

EOF

- Chi phí đường đi tính bằng khoảng cách Euclide
- N1 xấp xỉ 0.75 N2
- Việc chọn số demandes : N1: N2 xấp xỉ theo tỷ lệ 25%:50%:70%
- Việc chọn 2 router paths cho mỗi demandes hoàn toàn ngẫu nhiên
- Việc xác định các router paths như sau:
 - Đầu tiên chọn ngẫu nhiên từ tập các đỉnh trong đồ thị G1(trừ 2 đỉnh đầu và cuối) một số đỉnh -> được đường router paths thứ nhất
 - > Tiếp theo chọn ngẫu nhiên trong các đỉnh chưa sử dụng -> đường router 2.

E. DATASET

- Xây dựng dữ liệu trong thực tế:
 - N2 : most populated cities (Physical layer)
 - N1: most populated in N2 (Logical layer)
 - D: Most important demands
 - Chi phí giữa các thành phố có thể coi bằng chi phí cho thiết lập dây cáp quang giữa 2 thành phố -> tỷ lệ với khoảng cách euclide
 - 2 router paths là 2 đường shortest paths giữa 2 điểm đầu và cuối.

TÀI LIỆU THAM KHẢO

- ➤ Design of Survivable Optical Networks by Mathematical Optimization; *Diplom*, *Adrian Zymolka*, Berlin 2007, pp7-39.
- ➤ Multilayer Survivable Optical Network Design; *Sylvie Borne, Virginie Gabrel, Ridha Mahjoub, and Raouia Taktak*, Springer-Verlag Berlin Heidelberg 2011
- Design of survivable IP-over-optical networks; *Sylvie Borne*, *Eric Gourdin*, *Bernard Liau*, *A. Ridha Mahjoub*, Springer Science + Business Media, LLC 2006
- > Các bài viết trên mạng

Question?