

KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno Pavel Pernička		Datum měření 17.4.2025				
Semestr Letní 2025	Ročník 1.	Datum odevzdání 6.5.2025				
Stud. skupina 6	Lab. skupina 1031	Klasifikace				
Číslo úlohy 8	Název úlohy Studium mechanických kmitů – Pohlovo kyvadlo					

1 Úkol měření

- 1. Proměřte kmitočtové charakteristiky nucených kmitů Pohlova kyvadla pro různá tlumení.
- 2. Změřte koeficient útlumu a periodu volných kmitů Pohlova kyvadla pro různá tlumení.

2 Seznam použitých přístrojů

- Stopky
- Pohlovo kyvadlo

3 Měření

3.1 Postup

- 1. Zapneme elektromotor připojený k aparatuře kyvadla
- 2. Pomocí měření času 10 otáček při různých napětích na motoru zjistíme závislost budící frekvence na napětí.
- 3. Pro několik různých budících frekvencí měříme amplitudu ručičky kyvadla. Měříme výchylky na obou stranách, z nich vytvoříme průměr. Volíme různá nastavení tlumení:
 - Brzdící elektromagnet je zcela odpojen $(I_{B0} = 0)$
 - Proud tekoucí elektromagnetem je $I_{B1}=0,25A$
 - Proud tekoucí elektromagnetem je $I_{B2} = 0,40A$
 - Proud tekoucí elektromagnetem je $I_{B3} = 0,55A$
 - Proud tekoucí elektromagnetem je $I_{B4} = 0,90A$
- 4. Vypneme elektromotor
- 5. Pro stejné nastavení brzdícího elektromagnetu jako výše opakovaně změříme čas 10 kmitů při manuálním natažení ručičky kyvadla do krajní pozice stupnice.
- 6. Během měření předchozího bodu si zapisujeme posloupnost výchylek na jedné ze stran stupnice.

3.2 Naměřené hodnoty

#	<i>U</i> [V]	$\check{ ext{C}}$ as 10 otáček t_{10} [s]
1	4,6	29,74
2	10,5	11,95
3	15,0	7,91
4	12,1	10,11

Tabulka 1: Závislost otáček na napětí

#	U [V]	$A(I_{B0})$		$A(I_{B1})$		$A(I_{B2})$		$A(I_{B3})$		$A(I_{B4})$	
		A+	A-								
1	4,0	-0,1	1,2	-0,1	1,2	-0,1	1,3	-0,1	1,2	-0,1	1,2
2	6,3	-1	2	-1	2,1	-1	2,2	-0,9	2,1	-1	2
3	6,9	-2	3	-2,2	3,1	-9	10	-2	3	-1,2	2,2
4	7,5	-6	7,2	-7,3	8,9	-7	8	-4,1	5,3	-2	3
5	8,0	-20	20	-16	17	-8	9	-5	6,1	-2	3
6	9,0	-20*	20*	-2	3	-1	2,1	-1	2,2	-1	2
7	9,7	-7	8	-0,3	1,9	-0,2	1,9	-0,2	1,3	-0,1	1,3
8	11,0	-0,1	1,2	0	1,1	0	1,1	0	1,1	0	1,1

Tabulka 2: Závislost amplitudy na napětí na elektromotoru při různých brzdných proudech

#	$T_{10}(I_{B0})$ [s]	$T_{10}(I_{B1})$ [s]	$T_{10}(I_{B2})$ [s]
1	17,18	17,27	17,25
2	17,50	17,14	17,30
3	17,49	17,22	17,13

 ${\bf Tabulka}$ 3: Perioda kmitů kyvadla při počáteční pozici v maximu stupnice a různých brzdných proudech, t=10~s

A	$A(I_{B0})$,)	F	$A(I_{B1}$	$A(I_{B2})$ $A(I$			$A(I_{B2})$		$A(I_{B3})$)	$A(I_{B4})$.)
1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
19	18	19	18	18	18	18	17	17	15	15	15	11	11	11
18	18	18	17	17	14	18	17	17	12	12	12	6	7	6
17	17	17	16	16	15	13	13	13	9	9	9	4	4	4
16	16	16	15	15	14	11	11	11	7	7	8	3	3	3
16	15	16	14	14	14	9	9	9	5	6	5	2	2	2
14	14	15	13	13	13	8	8	8	4	4	4	1	1	1
14	13	14	12	12	12	7	7	6	3	3	2	1	1	1
13	13	13	11	10	11	6	5	6	2	2	3	1	1	1

Tabulka 4: Posloupnost amplitudových výchylek v čase ve zvolených brzdných proudech

4 Výpočty

Pro výpočet logaritmického dekrementu Λ a koeficientu δ použijeme vzorce odvozené ze zadání:

• Logaritmický dekrement:

$$\Lambda = \ln \left(\frac{x(t)}{x(t+T)} \right)$$

• Koeficient δ :

$$\delta = \frac{\Lambda}{T}$$

Na základě měření v tabulce \ref{log} , kde jsme zprůměrovali amplitudu v obou stranách, a vzorců výše byly pro jednotlivé hodnoty brzdného proudu I_B stanoveny veličiny v tabulce \ref{log} ?

I_B [A]	T [s]	f [Hz]	Λ	δ
0.00	1.739	0.575	0.0541	0.0311
0.25	1.721	0.581	0.0000	0.0000
0.40	1.723	0.580	0.0572	0.0332
0.55	1.700	0.588	0.0000	0.0000
0.90	1.680	0.595	0.0000	0.0000

Tabulka 5: Přehled vypočtených hodnot $T,\,f,\,\Lambda$ a δ pro jednotlivé hodnoty brzdného proudu I_B

5 Grafy

Obrázek 1: Závislost amplitudy kyvadla na čase pro různá tlumení I_B . Body odpovídají naměřeným hodnotám, přímky byly získány metodou nejmenších čtverců.

Obrázek 2: Amplitudová charakteristika Pohlova kyvadla pro různá tlumení I_B .

6 Závěr

Cílem úlohy bylo experimentálně ověřit chování Pohlova kyvadla při volném i nuceném kmitání a stanovit kmitočtové charakteristiky a útlumové konstanty pro různá nastavení tlumení. Pomocí grafů naměřených hodnot jsme ověřili, že s rostoucím brzdným proudem I_B dochází ke snižování maximálních amplitud a ke zvyšování míry tlumení. Z amplitudových charakteristik byla patrná rezonance u nižších hodnot tlumení, s rostoucím tlumením se rezonanční amplituda výrazně snižovala a křivka zplošťovala.

U malého tlumení bylo možné určit logaritmický dekrement Λ a koeficient útlumu δ s dostatečnou přesností. U většího tlumení byl pokles amplitudy mezi maximy příliš malý a výpočet Λ nebyl možný bez větší nejistoty. Tyto nejistoty je obtížné objektivně odhadnout, protože samotné Pohlovo kyvadlo se chovalo poměrně nepředvídatelně a reakční doba lidského faktoru při odečítání výchylek byla neuspokojivá.

Seznam použité literatury

- [1] Milan Červenka. Studium mechanických kmitů Pohlovo kyvadlo. Laboratorní úloha, 2013. Dostupné online: https://planck.fel.cvut.cz/praktikum/downloads/navody/pohl.pdf.
- [2] Milan Červenka. Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum, 2020. Dostupné online: https://planck.fel.cvut.cz/praktikum/downloads/navody/zpracdat.pdf.