MATH1350, Winter 2025 Mini-Assignment 1

1. Which of the following is a row echelon form (REF) of the system below.

$$\begin{array}{rcl} x_1 - 2x_2 + x_3 & = & 0 \\ 2x_2 - 8x_3 & = & 8 \\ -4x_1 + 5x_2 + 9x_3 & = & -9 \end{array}$$

2. The following system is in REF. How many free variables are there?

$$\begin{array}{rcl} x_1 + 2x_2 + 3x_3 - x_4 + 2x_5 + x_7 + 10x_9 & = & 0 \\ \frac{1}{2}x_3 - x_4 + 3x_5 - 2x_6 + x_7 - x_8 & = & 0 \\ x_4 + 2x_6 + 3x_7 - x_8 - 4x_9 & = & 0 \\ x_5 - 3x_6 - x_7 - x_9 & = & 0 \\ x_8 + 2x_9 & = & 0 \\ 0 & = & 0 \end{array}$$

Answer: 4. The leading variables are x_1, x_3, x_4, x_5, x_8 , while x_2, x_6, x_7 and x_9 are free.

3. Find the solution set for this system.

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)$$

$$A: \{(-24, -7, 4)\} \quad B: \{(-24-2s+3t, -7-2s+2t, 4) | s, t \in \mathbb{R}\} \quad C: \{(-24+2s-3t, -7+2s-2t, 4) | s, t \in \mathbb{R}\}$$

$$D: \{(-24+2s-3t, -7+2s-2t, 4, s, t) | s, t \in \mathbb{R}\} \quad E: \{(-24-2s+3t, -7-2s+2t, s, t, 4) | s, t \in \mathbb{R}\}$$

$$F: \{(-24+2s-3t, -7+2s-2t, t, s, 4) | s, t \in \mathbb{R}\} \quad \boxed{G}: \{(-24+2s-3t, -7+2s-2t, s, t, 4) | s, t \in \mathbb{R}\}$$

$$H: \text{Neither}$$

4. Which (if any) of the following tuples is a solution to the system below.

$$x_1 - 2x_2 + 3x_3 + x_4 = -3$$
$$2x_1 - x_2 + 3x_3 - x_4 = 0$$

$$A:(0,0,0,0)$$
 $B:(0,0,0,-3)$ $\boxed{\mathbf{C}}:(1,2,0,0)$ $\boxed{\mathbf{D}}:(1,4,1,1)$ $E:(2,3,0,0)$ $F:(0,0,-1,0)$ $\boxed{\mathbf{G}}:(2,5,1,2)$ $H:(2,4,0,0)$ $I:(1,1,1,1)$ $J:$ Neither

5. Find all values for k such that the following system has only one solution. $x_1 - 2x_2 = 4$

$$A:k=0$$
 $B:k=4$ $C: \mathrm{Any}\ k \neq 4$ $D: \mathrm{Any}\ k \neq 0$ $\boxed{\mathrm{E}}: \mathrm{Any}\ k \in \mathbb{R}$ $F: \mathrm{Neither}$

(It doesn't matter what the value for k is, this determines x_2 which we plug in to row 1 get a value for x_1 .)

$$A:n=0$$
 $\boxed{\mathrm{B}}:n=1$ $C:\mathrm{Any}\;n\neq0$ $D:\mathrm{Any}\;n\neq1$ $E:\mathrm{Any}\;n\in\mathbb{R}$ $F:\mathrm{Neither}$

(Put into REF to see this; i.e. do the row operation $R_2 - R_1$. If $n \neq 1$ we get one solution $(x_1, x_2) = (0, 0)$, and if n = 1 we have that x_2 is a free variable.)