Solubilidad

♦ PROBLEMAS

Solubilidad

- 1. A 25 °C se disuelven un máximo de 0,07 g de yoduro de plomo(II) en 100 cm³ de agua. Calcula:
 - a) La concentración de iones plomo(II) y iones yoduro en una disolución acuosa saturada.
 - b) El producto de solubilidad (K_{ps}) del yoduro de plomo(II) a 25 °C.

(A.B.A.U. extr. 22)

Rta.: a) $[Pb^{2+}] = 0.00152 \text{ mol/dm}^3$; $[I^-] = 0.00304 \text{ mol/dm}^3$; b) $K_s = 1.40 \cdot 10^{-8}$.

- 2. a) Calcula la solubilidad en agua pura, expresada en g/dm³, del sulfato de plomo(II). Datos: K_{ps} (PbSO₄, 25 °C) = 1,8·10⁻⁸. (A.B.A.U. extr. 18) **Rta.**: a) $s' = 0,041 \text{ g/dm}^3$.
- 3. b) Para preparar 250 cm³ de una disolución saturada de bromato de plata (AgBrO₃) se emplean 1,75 g de la sal. Calcula el producto de solubilidad de la sal.

(A.B.A.U. extr. 17)

Rta.: b) $K_s = 8.81 \cdot 10^{-4}$.

4. b) Cuál es el pH de una disolución saturada de hidróxido de zinc si su K_s a 25 °C es 1,2·10⁻¹⁷?

(A.B.A.U. ord. 17)

Rta.: b) pH = 8,5.

• Efecto del ion común

- 1. La solubilidad del hidróxido de manganeso(II) en agua es de 1,96 mg/dm³. Calcula:
 - a) El producto de solubilidad de esta sustancia y el pH de la disolución saturada.
 - b) La solubilidad del hidróxido de manganeso(II) en una disolución de concentración 0,10 mol/dm³ de hidróxido de sodio, considerando que esta sal está totalmente disociada.

(A.B.A.U. extr. 23)

Rta.: a) $K_s = 4.28 \cdot 10^{-14}$; pH = 9.64; b) $s_2 = 4.28 \cdot 10^{-12}$ mol/dm³.

- 2. La solubilidad del BaF₂ en agua es de 1,30 g/dm³. Calcula:
 - a) El producto de solubilidad de la sal.
 - b) La solubilidad del BaF₂ en una disolución acuosa de concentración 1 mol/dm³ de BaCl₂, considerando que esta sal está totalmente disociada.

(A.B.A.U. ord. 22)

Rta.: a) $K_s = 1,63 \cdot 10^{-6}$; b) $s_2 = 6,38 \cdot 10^{-4} \text{ mol/dm}^3$.

- 3. El producto de solubilidad, a 20 °C, del sulfato de bario es 8,7·10⁻¹¹. Calcula:
 - a) Los gramos de sulfato de bario que se pueden disolver en 0,25 dm³ de agua.
 - b) Los gramos de sulfato de bario que se pueden disolver en 0,25 dm³ de una disolución de sulfato de sodio de concentración 1 mol/dm³, considerando que esta sal está totalmente disociada.

(ARAII and 21)

Rta.: a) $m(BaSO_4) = 5.4 \cdot 10^{-4} \text{ g en } 0.25 \text{ dm}^3 \text{ H}_2\text{O}; \text{ b}) \ m'(BaSO_4) = 5.1 \cdot 10^{-9} \text{ g en } 0.25 \text{ dm}^3 \text{ D Na}_2\text{SO}_4.$

- 4. A 25 °C a solubilidad en agua del bromuro de calcio es $2,0\cdot10^{-4}$ mol/dm³.
 - a) Calcula K_{ps} para la sal a la dicha temperatura.
 - b) Calcula la solubilidad del CaBr₂ en una disolución acuosa de concentración 0,10 mol/dm³ de NaBr considerando que esta sal está totalmente disociada.

(A.B.A.U. extr. 20)

Rta.: a) $K_s = 3.2 \cdot 10^{-11}$; b) $s_2 = 3.2 \cdot 10^{-9} \text{ mol/dm}^3$.

- 5. a) Determina la solubilidad en agua del cloruro de plata a 25 °C, expresada en g/dm³, si su K_{ps} es $1,7\cdot 10^{-10}$ a dicha temperatura.
 - b) Determina la solubilidad del cloruro de plata en una disolución de concentración 0,5 mol/dm³ de cloruro de calcio, considerando que esta sal se encuentra totalmente disociada.

(A.B.A.U. extr. 19)

Rta.: a) $s' = 1,9 \cdot 10^{-3} \text{ g/dm}^3$; b) $s_2' = 2,4 \cdot 10^{-8} \text{ g/dm}^3$.

- 6. A 25 °C el producto de solubilidad del Ba $(IO_3)_2$ es 6,5·10⁻¹⁰. Calcula:
 - a) La solubilidad de la sal y las concentraciones molares de los iones yodato y bario.
 - b) La solubilidad de la citada sal, en g/dm³, en una disolución de concentración 0,1 mol/dm³ de KIO₃ a 25 °C considerando que esta sal se encuentra totalmente disociada.

(A.B.A.U. ord. 19)

Rta.: a) $s = [Ba^{2+}] = 5,46 \cdot 10^{-4} \text{ mol/dm}^3$; $[(IO_3)^-] = 1,09 \cdot 10^{-3} \text{ mol/dm}^3$; b) $s' = 3,17 \cdot 10^{-5} \text{ g/dm}^3$.

♦ CUESTIONES

- Se dispone de una disolución acuosa saturada de CaCO₃ en equilibrio con su sólido. Indique cómo se verá modificada su solubilidad al añadirle Na₂CO₃, considerando esta sal totalmente disociada. Razona la respuesta indicando el equilibrio y la expresión de la constante del producto de solubilidad (K_{ps}). (A.B.A.U. extr. 21)
- 2. b) Razona cómo varía la solubilidad del FeCO₃ (sal poco soluble) al añadir Na₂CO₃ a una disolución acuosa de la dicha sal.

(A.B.A.U. extr. 18)

3. b) Razona si es correcta la siguiente afirmación: la solubilidad del cloruro de plata (sal poco soluble) es igual en agua pura que en una disolución de cloruro de sodio.

(A.B.A.U. ord. 18)

♦ LABORATORIO

- 1. Se mezclan 20 cm³ de una disolución de cloruro de bario de concentración 1,0 mol/dm³ con 50 cm³ de una disolución de sulfato de potasio de concentración 1,0 mol/dm³, obteniéndose cloruro de potasio y un precipitado de sulfato de bario.
 - a) Escribe la reacción que tiene lugar y calcula el rendimiento de la reacción si se obtienen 3,5 g de sulfato de bario.
 - b) Explica detalladamente como procederías en el laboratorio para llevar a cabo la separación del precipitado obtenido empleando una filtración a vacío, indicando todo el material necesario.

(A.B.A.U. ord. 24)

Rta.: a) Rendimiento = 75 %

- Mezclamos en un vaso de precipitados 25 cm³ de una disolución de CaCl₂ de concentración 0,02 mol/ dm³ con 25 cm³ de una disolución de Na₂CO₃ de concentración 0,03 mol/dm³, formándose un precipitado en el fondo del vaso.
 - a) Escribe la reacción química que tiene lugar, nombra y calcula la cantidad en gramos del precipitado obtenido.
 - b) Describe el procedimiento que llevarías a cabo en el laboratorio para separar el precipitado, dibujando el montaje que emplearías y nombrando el material.

(A.B.A.U. extr. 23)

Rta.: a) $m = 0.050 \text{ g CaCO}_3$.

3. Se disuelven 3,0 g de SrCl₂ en 25 cm³ de agua y 4,0 g de Li₂CO₃ en otros 25 cm³ de agua. A continuación, se mezclan las dos disoluciones, llevándose a cabo la formación de un precipitado del que se obtienen 1,55 g.

- a) Escribe la reacción que tiene lugar, identificando el precipitado, y calcula el rendimiento de la misma.
- b) Describe el procedimiento que emplearía en el laboratorio para separar el precipitado obtenido, dibujando el montaje y el material que precisa emplear.

(A.B.A.U. ord. 22)

Rta.: Rendimiento del 56 %.

- 4. Se mezclan 20 cm³ de una disolución acuosa de BaCl₂ de concentración 0,5 mol/dm³ con 80 cm³ de una disolución acuosa de CaSO₄ de concentración 0,04 mol/dm³.
 - a) Escribe la reacción química que tiene lugar, nombra los compuestos y calcula la cantidad en gramos del precipitado obtenido.
 - b) Nombra y dibuja el material y describe el procedimiento que emplearía en el laboratorio para separar el precipitado.

(A.B.A.U. extr. 21)

Rta.: a) $m = 0.75 \text{ g BaSO}_4$

- 5. En el laboratorio se mezclan 20,0 cm³ de una disolución de concentración 0,03 mol/dm³ de cloruro de bario y 15 cm³ de una disolución de concentración 0,1 mol/dm³ de sulfato de cinc.
 - a) Escribe la reacción que tiene lugar y calcula el rendimiento si se obtuvieron 0,10 g de sulfato de bario.
 - b) Describe el procedimiento e indica el material que emplearía para separar el precipitado.

(A.B.A.U. ord. 20)

Rta.: Rendimiento del 71 %

- 6. En el laboratorio se mezclan 30 cm³ de una disolución de concentración 0,1 mol/dm³ de Pb(NO₃)₂ y 40 cm³ de una disolución de concentración 0,1 mol/dm³ de KI, obteniéndose 0,86 gramos de un precipitado de Pbl₂.
 - a) Escribe la reacción que tiene lugar y calcula el porcentaje de rendimiento de la misma.
 - b) Indica el material y el procedimiento que emplearías para separar el precipitado formado.

(A.B.A.U. ord. 19)

Rta.: Rendimiento del 93 %

- 7. Se mezclan 20 cm³ de disolución de Na₂CO₃ de concentración 0,15 mol/dm³ y 50 cm³ de disolución de CaCl₂ de concentración 0,10 mol/dm³, obteniéndose 0,27 g de un precipitado de CaCO₃.
 - a) Escribe la reacción que tiene lugar y calcula el porcentaje de rendimiento de la reacción.
 - b) Describe el procedimiento que emplearías en el laboratorio para separar el precipitado obtenido, haciendo un esquema del montaje y el material que hay que emplear.

(A.B.A.U. extr. 18)

Rta.: Rendimiento del 90%

- 8. Al mezclar 25 cm³ de una disolución de AgNO₃ de concentración 0,01 mol/dm³ con 10 cm³ de una disolución de NaCl de concentración 0,04 mol/dm³ se obtiene un precipitado de cloruro de plata.
 - a) Escribe la reacción que tiene lugar y calcula la cantidad máxima de precipitado que se podría obtener.
 - b) Describe el procedimiento y nombra el material que utilizarías en el laboratorio para separar el precipitado.

(A.B.A.U. ord. 18)

Rta.: m = 0.036 g AgCl.

- 9. Se mezclan 10 cm³ de una disolución de BaCl₂ de concentración 0,01 mol/dm³ con 40 cm³ de una disolución de sulfato de sodio de concentración 0,01 mol/dm³ obteniéndose cloruro de sodio y un precipitado de sulfato de bario.
 - a) Escribe la reacción que tiene lugar e indica la cantidad de precipitado que se obtiene.
 - b) Indica el material y el procedimiento que emplearías para separar el precipitado formado.

(A.B.A.U. extr. 17)

Rta.: $m = 0.023 \text{ g BaSO}_4$.

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Actualizado: 12/06/24