TOTEM

27 September 2024 15:12

Interfaces

PC104: CAN, I2C

CAN: https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1733044391620&ref_url=https%253A%

252F%252Fwww.google.com%252F

1Mbps

I2C:

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

AQWQWAQZWQAWQWQA XAWX100kbps -> 5Mbps

Debug:

UART + Ethernet

TOTEM Datasheet

27 September 2024

15:13

DVB-S2

27 September 2024

27 September 2024 15:14

https://www.etsi.org/technologies/dvb-s-s2

ETSI is the standards body that defined DVB-S2

DVB-S2X targets the core application areas of DVB-S2 and new application areas requiring very-low carrier-to-noise and carrier-to-interference operation (VL-SNR), such as mobile applications. It also provides format to enable beam hopping operations.

From < https://www.etsi.org/technologies/dvb-s-s2>

https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en 30230701v010401p.pdf

ETSI EN 302 307-1 V1.4.1

DVB-S2 Standard

What is DVB-S2

- a flexible input stream adapter, suitable for operation with single and multiple input streams of various formats (packetized or continuous);
 • a powerful FEC system based on LDPC (Low-Density Parity Check) codes
- concatenated with BCH codes, allowing Quasi-Error-Free operation at about 0,7 dB to ${\bf 1}~{\rm dB}$ from the Shannon limit, depending on the transmission mode (AWGN channel, modulation constrained Shannon limit);
- a wide range of code rates (from 1/4 up to 9/10); 4 constellations, ranging in spectrum efficiency from 2 bit/s/Hz to 5 bit/s/Hz, optimized for operation over nonlinear transponders;
- a set of three spectrum shapes with roll-off factors 0,35, 0,25 and 0,20; Adaptive Coding and Modulation (ACM) functionality, optimizing channel coding and modulation on a frame-by-frame basis.

DVB-S2 Defines **FORWARD PATH**. Several Return path implementations:

- DVB-RCS
- DVB-RCP
- DVB-RCC

Uses APSK. Gives circular constellation, QAM gives square.

Transmission System

ETSI EN 302 307-1 V1.4.1 (2014-11)

15

Figure 1: Functional block diagram of the DVB-S2 System

"The System is designed to support source coding as defined in ISO/IEC 13818 [1], TR 101 154 [i.3] and TS 102 005 [i.1]. Data services may be transported in Transport Stream format according to EN 301 192 [4] (e.g. using Multi-protocol Encapsulation), or Generic Stream format.'

FEC: "Transport Stream Packet Error Ratio PER< 10-7 before de-multiplexer"

Bose-Chaudhuri-Hocquenghem (BCH) codes (outer)

From https://www.google.com/search?q=bch+code&rlz=1C1GCEA_enGB1120GB1120 &oq=bch+code&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdlBBzgwMGowajeoAgCwAgA&source

https://www.etsi.org/deliver/etsi_tr/102300_102399/10237601/01.02.01 60/tr 10237601v010201p.pdf

Implementation guidelines

UTF-8>

Concatenated with LDPC inner "(rates 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10). "

In Adaptive coding is used, FEC and modulation modes are constant within frame, can change between frames.

CRC-8 (packetised only)

QPSK, 8PSK, 16APSK, 32APSK constellations

Physical Layer Framing

- Synchronous with FEC frames
- Includes
 - o Physical Layer Signalling
 - Start of frame
 - Transmission mode
 - o (optional) pilot insertion
 - 36 pilot symbols / 16 slots of 90 symbols
 Pilotless adds 2.4% useful capacity
 - o Physical Layer scrambling
- Dummy PLFRAME sent when no useful data
- Slot = 90 modulated symbols

Base Band Filtering, Quadrature modulation

Rolloff factors: 0.35, 0.25 or 0.20

Configurations

ETSI EN 302 307-1 V1.4.1 (2014-11)

Table 1: System configurations and application areas

System cor	Broadcast services	Interactive services	DSNG	Professional services	
QPSK	1/4,1/3, 2/5	0	N	N	N
	1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10	N	N	N	N
8PSK	3/5, 2/3, 3/4, 5/6, 8/9, 9/10	N	N	N	N
16APSK	2/3, 3/4, 4/5, 5/6, 8/9, 9/10	0	N	N	N
32APSK	3/4, 4/5, 5/6, 8/9, 9/10	0	N	N	N
CCM		N	N (see note 1)	N	N
VCM		0	0	0	0
ACM		NA	N (see note 2)	0	0
FECFRAME (normal)	64 800 (bits)	N	N	N	N
FECFRAME (short)	16 200 (bits)	NA	N	0	N
Single Transport Stream		N	N (see note 1)	N	N
Multiple Transport Streams		0	O (see note 2)	0	0
Single Generic Stream		NA	O (see note 2)	NA	0
Multiple Generic Streams		NA	O (see note 2)	NA	0
Roll-off 0,35, 0,25 and 0,20		N	N	N	N
Input Stream Synchronizer		NA except (see note 3)	O (see note 3)	O (see note 3)	O (see note 3)
Null Packet Deletion		NA except (see note 3)	O (see note 3)	O (see note 3)	O (see note 3)
Dummy Frame insertion		NA except (see note 3)	N	N	N
Wide-band mode	(see annex M)	0	0	0	0
N = normative. O = optional	NA = not applicable	70 10 0		100	7.

N = normative, O = optional, NA = not applicable.

NOTE 1: Interactive service receivers shall implement CCM and Single Transport Stream.

NOTE 2: Interactive Service Receivers shall implement ACM at least in one of the two options: Multiple Transport Streams or Generic Stream (single/multiple input).

NOTE 3: Normative for single/multiple TS input stream(s) combined with ACM/VCM or for multiple TS input streams combined with CCM.

Within the present document, a number of configurations and mechanisms are defined as "Optional". Configurations and mechanisms explicitly indicated as "optional" within the present document, for a given application area, need not be implemented in the equipment to comply with the present document. Nevertheless, when an "optional" mode or mechanism is implemented, it shall comply with the specification as given in the present document.

Subsystems

Mode Adaption

- Input Interfacing
- Input Stream Sync (optional)
- Null packet deletion (TS, ACM)
- CRC-8 (packetized)
- Stream merging (multi streams)
- Input stream slicing in DATA FIELD
- Base band signalling to indicate Mode Adaption Format

Input sequences:

- Single or multiple Transport Stream (TS)
- Single or multiple generic streams (packetised or continuous)
- Output
 - 80 bit BBHEADER
 - DATA FIELD

Table 2: System interfaces

Location	Interface	Interface type	Connection	Multiplicity
Transmit station	Input	MPEG [1, 4] Transport Stream (see note 1)	from MPEG multiplexer	Single or multiple
Transmit station	Input (see note 2)	Generic Stream	From data sources	Single or multiple
Transmit station	Input (see note 3)	ACM command	From rate control unit	Single
Transmit station	Output	70 MHz/140 MHz IF, L-band IF, RF (see note 4)	to RF devices	Single or multiple
Transmit station	Input	Mode Adaptation	from Mode Adaptation block	Single

NOTE 2: For data services.

https://www.sunshine2k.de/articles/coding/crc/understanding_crc.htm

-Understanding CRC / CRC-8

Table 2: System interfaces

Location	Interface	Interface type	Connection	Multiplicity
Transmit station	Input	MPEG [1, 4] Transport Stream (see note 1)	from MPEG multiplexer	Single or multiple
Transmit station	Input (see note 2)	Generic Stream	From data sources	Single or multiple
Transmit station	Input (see note 3)	ACM command	From rate control unit	Single
Transmit station Output		70 MHz/140 MHz IF, L-band IF, RF (see note 4)	to RF devices	Single or multiple
Transmit station	Input	Mode Adaptation	from Mode Adaptation block	Single

NOTE 1: For interoperability reasons, the Asynchronous Serial Interface (ASI) with 188 bytes format, data burst mode (bytes regularly spread over time) is recommended.

NOTE 2: For data services.

NOTE 3: For ACM only, Allows external setting of the ACM transmission mode.

NOTE 4: IF shall be higher than twice the symbol rate.

Transport Stream

- User Packets (UP)
- 188*8 bits
- First byte is sync byte, 0x47
- Generic Stream
 - Continuous bit stream
 - Or Stream of constant-length UP of length UPL

 - UPL Max is 64kb
 UPL = 0 -> continuous stream
 - Variable length packet stream or UPL > 64kb -> cont stream

http://www.satmagazine.com/story.php?number=330838379

Mainly for high throughput

Implementation

27 September 2024 15:14

https://uk.mathworks.com/help/satcom/ug/dvbs2-hdl-transmitter.html

Mathworks DVB-S2 HDL Transmitter example Built for RFSoC

DVB-S2 HDL Transmitter

CLB LUT 10701 CLB Registers 9024 RAMB36 99 RAMB18 6 DSP48 42			
CLB Registers 9024 RAMB36 99 RAMB18 6			
RAMB36 99 RAMB18 6	CLB LUT		10701
RAMB18 6	CLB Regi	sters	9024
	RAMB36		99
DSP48 42	RAMB18		6
	DSP48		42

53k LUT on Zynq 7020 20% utilisation is too high?

https://www.design-reuse.com/

ASIC IP vendors

Zedboard Development

Tuesday, December 03, 2024 12:03 PM

Petalinux

https://github.com/sdonchez/petalinux-zedboard-test

Board Support / Reference

Only supports software versions up to like 2017

https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/

Again, very out of date vivado support

https://github.com/jiafulow/zedboard-guide/tree/master?tab=readme-ov-file

ADI Toolbox

05 November 2024

14:24

GNU Radio

01 November 2024

15:06

https://github.com/drmpeg/gr-dvbs2 GNU Radio flow graph for DVB-S2 tx

https://igorauad.github.io/gr-dvbs2rx/

Receiver and transmitter

Open Source Toolchains

22 October 2024

12:07

https://github.com/kangyuzhe666/ZYNQ7010-7020 AD9363/blob/main/README.md

Looks like they're running pluto

https://github.com/hz12opensource/libresdr

Libre/zyng SDR

Pluto firmware clone

https://wiki.gnuradio.org/index.php?title=Zynq

Obsolete instructions for zynq development with gnuradio

https://strathprints.strath.ac.uk/86118/1/Siauciulis etal NEWCAS2023

100GBit s RF sample offload for RFSoC.pdf

StrathSDR paper on gnu radio

https://github.com/ryanvolz/radioconda

Installing gnuradio on windows

https://wiki.analog.com/resources/tools-software/linux-software/libiio

About libiio

https://www.adiuvoengineering.com/post/microzed-chronicles-industrial-input-output-petalinux

Libiio example

https://analogdevicesinc.github.io/hdl/library/axi_ad9361/index.html

Ad9361 IP core

https://ez.analog.com/fpga/f/q-a/51874/what-is-difference-between-ad9361-ad9364

Should be fine to use 61 for 64

https://ez.analog.com/linux-software-drivers/f/q-a/85538/crosscompiling-gnuradio-for-zedboard-fmcomms2

This guy compiling gnuradio for zedboard w. ad9361

Toolchain:

GNU Radio -> Libiio driver -> DVB accelerator IP -> AD IP -> DAC

ADC -> AD IP -> DVB rx accelerator IP -> Libiio driver -> GNURadio

https://github.com/analogdevicesinc/hdl/tree/main/library/axi ad9361

https://github.com/analogdevicesinc/hdl/blob/main/docs/library/axi ad9361/index.rst

https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

Gnu radio on ad9361

17:25 28/10/2024

https://www.controlpaths.com/2021/04/05/managing-axi4-stream-from-matlab/

https://github.com/controlpaths/matlab libiio

LIBIIO + axi interface from MATLAB w. HDL Coder

AD9364 eval board

22 October 2024 12:43

 $\underline{https://ez.analog.com/linux-software-drivers/f/q-a/85538/crosscompiling-gnuradio-for-zedboard-\underline{fmcomms2}$

https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms4-ebz

Matlab HDL Coder Ex

20 October 2024 16:04

20/10/2024

https://uk.mathworks.com/help/satcom/ug/dvbs2-hdl-transmitter.html

Utilisation

Original example compiled for RFSoC, reran and compiled for 7020

+ Site Type	Used Fixed Prohibited Available Util%
+ Slice LUTs* LUT as Logic LUT as Memory	++ 11762 0 0 53200 22.11 7963 0 0 53200 14.97 3799 0 0 17400 21.83
LUT as Shift Reg	9453 0 0 106400 8.88
Register as Flip F Register as Latch F7 Muxes	0 0 0 106400 0.00 1509 0 0 26600 5.67
F8 Muxes +	20 0 0 13300 0.15

22% Slice LUTS 75% BRAM util!

```
+-----+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-----+
| Block RAM Tile | 104 | 0 | 0 | 140 | 74.29 |
| RAMB36/FIFO* | 99 | 0 | 0 | 140 | 70.71 |
| RAMB36E1 only | 99 | | | | |
| RAMB18 | 10 | 0 | 0 | 280 | 3.57 |
| RAMB18E1 only | 10 | | |
```

Verification

07 October 2024

15.44

https://uk.mathworks.com/help/satcom/ug/dvbs2_receiver_using_sdr.html Receiver example

Resource Optimisation

17 October 2024 12:48

- Modulation
 Only implement Q/8PSK
 Probs not going to have the bandwidth to go higher
 Coding
 Limited coding rate selection?

Research Page 15

				Cost-Optimi	ized Device	s	
	Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020
	Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020
	Processor Core		Single-Core ortex™-A9 N p to 766MH	APCore™	Cor	tex-A9 MPC	Core
Proc	essor Extensions				D Engine ar	d Single/Do	ouble Precis
	L1 Cache L2 Cache				321	(B Instruction	on, 32KB Da 512KB
External M	On-Chip Memory emory Support ⁽²⁾						256KB DR3L, DDR
External Static M	DMA Channels					8 (4	ad-SPI, NAI dedicated
Peripherals v	Peripherals v/ built-in DMA ⁽²⁾			2	x USB 2.0 (OTG), 2x Tri	i-mode Gig
	Security ⁽³⁾			AES	and SHA 25	66b Decrypt	tion and Au
Programmable Log (Primary Interfaces &						4x AX	Master, 2x I 64b/32b I AXI 64b AC 16 Interrup
7 Ser	ies PL Equivalent	Artix*-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7
	Logic Cells	23K	55K	65K	28K	74K	85K
Look-	Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200
	Flip-Flops	28,800	68,800	Dual-Core A Cortex-A9 Mi z Up to 866k EON™ SIMD Engine and Single/T 32KB Instruct DDR3, 2x Q 8 (A) 2x UART, 2x CAN 2x USB 2.0 (OTG), 2x T RSA Authentica AES and SHA 256b Decry 2x AXI 32t 4x A Artix-7 Artix-7 Artix-7 65K 28K 74K 40,600 17,600 46,200 3.8Mb 2.1Mb 3.3Mb (107) (60) (95) 170 80 160	92,400	106,400	
	Total Block RAM (# 36Kb Blocks)	1.8Mb (50)	2.5Mb (72)		XC72010 XC		4.9Mb (140)
	DSP Slices	66	120	170	80	160	220
	PCI Express*	-	Gen2 x4	_		Gen2 x4	-
Analog Mixed Signa		mber XC720075 **Core ARM** C ARM** C					
	Security ⁽³⁾			ES & SHA 25	6b Decrypt		entication i
	Commercial		-1			0.77	
Speed Grades	Extended		-2			the second second second second	
	industrial		-1, -2			-1, -2, -11	

Packets

28 October 2024

17:27

https://public.ccsds.org/Pubs/660x2g2.pdf https://www.omg.org/spec/XTCE/1.2/PDF

https://pypi.org/project/space-packet-parser/4.0.1/ XTCE parser Could use in PS

NASA XTCE Tutorial

https://ntrs.nasa.gov/api/citations/20090017706/downloads/20090017706.pdf

https://github.com/nasa/CCDD/tree/CCDD-2

Link Analysis

$$\frac{E_b}{N_0} = \frac{S T_b}{N/W} = \frac{S/R_b}{N/W}$$
(3.29)

Data one, in suits of bits per second, is one of the most recenting parameters is digital communications. We therefore simplify the nontrine throughout the book by using it instead of R_0 to represent bits is, and we rewrite Equation (2.29) to emphasize that E_0/V_0 is just a version of SNcommitted by backed has did not as followed:

$$\frac{E_b}{N_0} = \frac{S}{N} \left(\frac{W}{R} \right)$$
(3.3)

 $\kappa = Boltzmann's constant = 1.38 <math display="inline">\times~10^{-23}$ J/K or W/K-Hz

off — minimum, datas.

Alternational noise power N that could be coupled from the state personner into the flour end of an amplifier is

$$N = K^{**}W$$
 watts (S.

entainers single-sided noise power spectral density N₀ (noise power in a 1 Hz bandwidth, available at the amplifier input, is

$$N_0 = \frac{N}{W} = \kappa T^o$$
 watts/hertz (5.17)

$$\frac{P_r}{N} = \frac{S}{N} = \frac{C}{N} = \frac{C}{\kappa T^2 W}$$

Has FER / PER rates

Feature Creep!

07 October 2024

6.21

Radiation

07 October 2024

15:44

https://github.com/LCSR-lab/MODNET https://github.com/LCSR-lab/NetFi3

2 Programs that inject faults into netlists to evaluate coverage.

TinyGS

07 October 2024

16:21

https://github.com/myriadrf/LoRa-SDR

SDR LoRa implementation

Predistortion

15 October 2024

12.15

https://work-microwave.com/take-advantage-predistortion/

Logs

Monday, January 06, 2025 10:47 AM

Setting up MATLAB

- Reinstalled OS, have to reinstall all tools
- Setting up ADI toolbox for transceiver integration
- Resetting up HDL Coder example

Setting up C++ environment

- Installed req programs
- Setup vscode

Vivado + Vitis

• Some issues with generating device list.

12/01 Transmitter

Sunday, January 12, 2025 2:07 PM

MATLAB

Had to switch to 2024b to get the correct simulink block. Existing Simulink model outputs fixed, need int16 vector https://uk.mathworks.com/help/soc/ref/ad936xtransmitter.html

New issue:

MATLAB System block 'dvbs2hdlTransmitter/DVB-S2 HDL Transmitter/AD936x Transmitter/Sink Variant/To Connected IO/AD936x Transmitter' error occurred when invoking 'validateInputsImpl' method of 'comm.SDRTxAD936x'. The error was thrown from '

'/home/daniel/Documents/MATLAB/SupportPackages/R2024b/toolbox/shared/sdr/rfconverter_libii o/+comm/+libiio/+AD9361/tx.p' at line 0

'\undersigned \text{\undersigned \text{\undersigned

• In single channel mode the number of samples per frame must be even.

Supervisor Meeting 3/12/24

Tuesday, December 03, 2024 10:48 AM

- Showed Louise progress on Interim Report
 - O Flow of subsystem research -> overall design
 - O Relaxation of filter coefficients
- Told her that I'm focusing on engineering model as TOTEM not ready
- She suggesed adding numbers to project plan
- Seemed satisfied with progress
- Louise will be away a lot of next week.
 - O Can send draft of interim, leave time to spare!
- Meetings next semester
 - Around this time looks good
 - O 471 has lecture scheduled at 10am, probs not real
 - O 579 appearin gsomewhere
- Oral in consolidation week
 - O Probs Monday, Tue / wed
 - O Will try to schedule a meeting before then
 - O Consider having some work done between interim report submission and oral!
 - Having nothing new might look bad

19496_statement_of_intent_...

Department of Electronic & Electrical Engineering MEng/BEng in EEE 19496 Individual Project

This document is organised in to six parts

PART 1: STATEMENT OF INTENT
PART 2: PROJECT WORK PLAN
PART 3: RESOURCE REQUIREMENTS
PART 4: RISK ASSESSMENT
PART 5: SUSTAINBILITY, ETHICS, INCLUSIVITY
PART 6: SAFETY DECLARATION & ETHICS APPROVAL

- All parts of the form must be completed jointly by the student and Project Supervisor, and lodged (by the student) on MyPlace by 14.00 on 16th October 2024.
 Copies of the completed form should be sent to the Project Supervisor.
 The student is advised to retain a copy of the completed form for future reference ideally affixed inside their project logbook.
 Students will be asked to reflect upon parts 1, 2 and 4 at the interim stage and also in the final report.

	Supervisor's Name:	Student's Name:
	Project Title:	
_		

PART 1: STATEMENT OF INTENT

The purpose of the guide for assessing supervisors.	s section is: (i) to pro g the project. Studer	vide a concise descrip nts should note the imp	tion of the project, and contance of item (ii), when	(ii) to state a set of object nich should be discussed it	tives that will provide the in detail with their proje
below (in about 20	nsultation with the Pro 0 to 300 words). Note	that simply copying de	scriptions in the projec	oject in THEIR OWN WOR I listing is unacceptable. The racy of the description. Di	HIS PART SHOULD NO

Project Description:

Objectives:

- 1. Assess previous investigations into downlink.
- Research DVB-S2 standard
 Research existing implementation
- Review of provided software and RTL from manufacturer.
 Write RTL for transmitter.
- 6. Write verification testbenches and study robustness of design and processing pipelines.
- pipelines.

 7. Optimise resource requirements to ensure compatibility with target hardware, including all RTL required for mission.

 8. Write and test software drivers for GNU Radio.

 9. Analyse performance of solution to ensure compliance with mission requirements.

 10. Collaborate with STRATHcube masters team.

- Collaborate with of Through Haster's teath.
 (Stretch) Test implementation on development board.
 (Stretch) Test implementation on TOTEM SDR.

From https://sharepoint.com/personal/daniel stebbings 2021 uni strath ac uk/Documents/EEE/Y4/Dissertation/Dissertation/S0Project%20Proposal.docx>

B. Project Objectives:

Project Objectives:

Project Objectives must be lated in such a way that they can be translated into achievable goals during the conduct of the project. For this reason, the stand objectives must be specific and markets to be attained within the time provided. If will be very helpful if appearance encourage their students to come up with intial objectives from students' perspective as this exercise could help students to better understand the aims of the project in the important to not lear that excitivements of the project which will be massered against the objective stated here. Copies of this section will be made available to persons involved with the assessment of this project.

- Under the "Importance" column below, enter one of the following as appropriate: "Major", "Minor", or "Optional".
 if at a latter stage, the project objectives change significantly, these changes must be communicated clearly in the interim and final report as appropriate.

Project Objectives	Importance

PART 2: PROJECT WORK PLAN Identify project milestones and summarise your work plans in the table below in the order you do them. (Example: preliminary design, prototyping, simulation modelling, results validation, write-up, etc.).

	Project Milestones/Work Phases	Expected Week Time Enter start and end week Ex.: Week 6 to week 8
1		
2		
3		
4		
5		
6		

PART 3: RESOURCE REQUIREMENTS

19496 Statement of Intent 2024/25

A. Software: List the software required for the project. This includes programming languages, application packages, CAD

19496 Statement of Intent 2024/25	

2

Software (indicate version no. if applicable)	Software Administrator (EEE/MAE/C/S Dept. Comp. Centre)	Installed Location (Dept/Central University/ Personal computer).	Expected Usage (hours/week)
B. Hardware: ist major hardware compor pecial purpose equipment a		icrocontrollers, LSI/VLSI integrated	d circuits, and
. Background Informat	ion & Required Reading		
Describe sources of informa	tion (in library and elsewhere) req	uired to undertake project	
Describe details of the tree			
Provide details of the two mi	ost important sources of information	on aiready identified	
1 -1			
Indicate the laboratory ro	a: om(s) and/or project work area	for the project	
maiosia illa laboratory los	sing) and a project west area	var trib project.	
Vith regards to practical s	work there is no expectation	/requirement that practical work	on the proje
carried out anywhere of	ther than on University cam sor and explicitly covered b	pus. Any work that is carried or y the project's risk assessment	ut off-site mu
. Logbook:			
supervisor and/or arran	gements have been made fo	logbook that has been viewed to or shared access for electronic	
logbook/progress recor	rds. (Teams/OneNote recom	mended) YES/NO	(delete one)

gement o ongoing of proposa roject out indicate e but exan completion	ageme n ong ect pro projec , indic ce but compl	ingoing process. As the first stage to the proposal. Risk in this context is taken to ject outcomes or significantly impede pridicate what actions you would take to but examples of such risks include non-direct examples of such risks include non-direct.	nical risk be assessed in advance, during initial planning and his process, identify any aspects of risk associated with your man any event or action (or inaction) that would jeopardise roject progress. Furthermore, having identified such potential miligate the effects of this risk. (Consult your supervisor for elivery of a key component, limess or absence from University, erable, equipment maifunction, extended learning curves-new
Pose	Π,	Possible Risk:	Mitigating Action:
	1	I Common Night	anagaang ration.
	-		
!	2		
3	3		
1	4		
5	5		
oject stude gh the cre ocus of s s. ajor driven sinability c roject and developme	roject igh the focus irs. najor d ainabi project devel	the creation of prototypes, software too us of such development is typically all- or drivers of technology advancement, en- ability could be demonstrated by compa- iect and making comparison to status q- velopments to address current needs st- velopments to address current needs st-	HICS AND INCLUSIVITY It implement and develop technological advancements, either sha and or generation of new know-how/ways of doing things, gned to a combination of technological, societal or financial gineers have key role in stewardship of the planet's resources, ring the developments, techniques and ideas that encompass up, how resources can be savedreserved etc. Furthermore, louid not negatively impact the ability of future generations to that be achieved/developed in the course of the project?
ct outcom dered and , raw ma mentation	ict out idered a, raw ement	outcomes are all treated fairly, equally ered and applied to the different phases of raw materials, components etc.); mile	actise and ensure that project teams and persons affected by copenly and with integrity. These ethical standards can be the project planning; sourcing and utilisation of project inputs stones/decision points through the course of the project; ufacturing; safety implications, both during the course of the
iety shoul	ciety s		nd technological solutions to the many challenges we face as embers of society irrespective of age, gender, race, ability or

In considering your project, describe how aspects of sustainability, ethics and inclusivity have been considered and impacted the project and its outcomes. The Sol can be used to capture how such factors have influenced the initial planning of the project and subsequent reports, both interim and final, can be used to record how such factors have influenced the course of the project, deliverables, milestones, and outcomes.

19496 Statement of Intent 2024/25

Deliverables Page 29

PART 6: SAFETY DECLARATION & ETHICS APPROVAL SAFETY DECLARATION All project students must be aware of the need for safe working during the conduct of their project. The Area Safety Regulations for the Department of Electronic and Electrical Engineering, which appear in the Project and Course MyPlace pages and provide general guidance. Project students should consult with their Supervisor to obtain specific instructions or written additional Risk Assessment relating to their own project. By signing at the end of his form, the project student is declaring that they have: 1. attended the EEE UG Individual Project safety seminar. 2. completed the online safety assessment quality. 3. read and understood the Area Safety Regulations and will abide by these regulations during the conduct of the project, and 4. consulted with the Project Supervisor who, if applicable, has specified any additional Risk Assessment or additional Safe Systems of Work and Standard Operating Procedures. These need to be specified in a risk assessment completed and uploaded to the University's eRisk server. https://safetysystems.trath.ac.uk/i in due course. Location (Provide a summary of intended additional risk assessments. Enter NONE it not applicable) ETHICS APPROVAL Please indicate below if the project may require ethics approval. Approval will be required if the project will utilise or generate personal data obtained directly from individuals (interviews, surveys, on-site measurements) or use clinical or personal data obtained from a 3rd aparty. The supervisor has ultimate responsibility to identify and then obtain appropriate ethics approval and the project will not progress (in this area) until such approval is granted. Summarise below where/why ethics approval may be sought and when will be applied for Approved Y/N Signature of Student Date Signature of Student

19496 Statement of Intent 2024/25

Interim Report

Saturday, November 30, 2024

5:59 PM

Interim Report Meeting

15 November 2024 12:09

Draft 12h00 06 Dec 2024

Final 12h00 13 Dec 24

"originality" subjective

Cover, project status report
2 pages context bckground
1 page project plan
1 page fully describe plan and tech risk
More pages for bib.
No additional allowed

Body 4 pages A4 What why - financial, societal

Possible to have no technical risk. Explain why!

Include changes made, and location of code / files in logbook

Links

Saturday, November 30, 2024 5:59 PM

Frequencies

Amsat band: https://rsgb.org/main/operating/band-plans/vhf-uhf/432mhz-band/

OFCOM FAT: https://www.ofcom.org.uk/siteassets/resources/documents/spectrum/spectrum-

 $\underline{information/frequency-allocation-table/uk-fat-2017.pdf?v=322554}$

(Very unhelpful to read tbh)

Requirements

Saturday, November 30, 2024

8:10 PM

SRD

Saturday, November 30, 2024 8:11 PM

Found a good ESA example

https://climate.esa.int/media/documents/Snow_cci_D3.2_SSD_v4.0.pdf