# **Analysis of Algorithms**



An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.

## Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
  - Easier to analyze
  - Crucial to applications such as games, finance and robotics



## **Experimental Studies**

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a function, like the built-in clock() function, to get an accurate measure of the actual running time
- Plot the results



## Limitations of Experiments

- ◆ It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

# Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

#### Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$   $for i \leftarrow 1 to n - 1 do$  if A[i] > currentMax then  $currentMax \leftarrow A[i]$  return currentMax

#### Pseudocode Details



- Control flow
  - if ... then ... [else ...]
  - while ... do ...
  - repeat ... until ...
  - for ... do ...
  - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method/Function call var.method (arg [, arg...])
- Return value return expression
- Expressions
  - ← Assignment (like = in C++)
  - = Equality testing
    (like == in C++)
  - n<sup>2</sup> Superscripts and other mathematical formatting allowed

# The Random Access Machine (RAM) Model

#### **♦** A CPU

An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character



Memory cells are numbered and accessing any cell in memory takes unit time.

### **Primitive Operations**

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model



- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

# Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n)# operationscurrentMax \leftarrow A[0]2for i \leftarrow 1 to n - 1 do2 + nif A[i] > currentMax then2(n-1)currentMax \leftarrow A[i]2(n-1)\{ increment counter i \}2(n-1)return currentMax1\{ Total \ 7n-1 \}
```

# **Estimating Running Time**



- Algorithm arrayMax executes 7n 1 primitive operations in the worst case.
- Define:
  - a = Time taken by the fastest primitive operation
  - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then  $a (7n 1) \le T(n) \le b(7n 1)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

#### Power Law

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



#### Power Law

**Log-log plot.** Plot running time T(N) vs. input size N using log-log scale.



Let 
$$T(N) = a N^b$$
, where  $a = 2^c$   
Thus  $\lg(T(N)) = b \lg N + c$ 

After regression:

$$b = 2.999$$
  
 $c = -33.2103$ 

power law

- **Regression.** Fit straight line through data points:  $a N^b$ .
- **Hypothesis.** The running time is about  $1.006 \times 10^{-10} \times N^{2.999}$  seconds.

# Growth Rate of Running Time

- Changing the hardware/ software environment
  - $\blacksquare$  Affects T(n) by a constant factor
  - But does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

#### **Growth Rates**

- Growth rates of functions:
  - Linear  $\approx n$
  - Quadratic  $\approx n^2$
  - Cubic  $\approx n^3$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function



| growth         | problem size solvable in minutes |                  |                      |                      |  |  |  |  |
|----------------|----------------------------------|------------------|----------------------|----------------------|--|--|--|--|
| rate           | 1970s                            | 1980s            | 1990s                | 2000s                |  |  |  |  |
| 1              | any                              | any              | any                  | any                  |  |  |  |  |
| log N          | any                              | any              | any                  | any                  |  |  |  |  |
| N              | millions                         | tens of millions | hundreds of millions | billions             |  |  |  |  |
| N log N        | hundreds of thousands            | millions         | millions             | hundreds of millions |  |  |  |  |
| $N^2$          | hundreds                         | thousand         | thousands            | tens of thousands    |  |  |  |  |
| $N^3$          | hundred                          | hundreds         | thousand             | thousands            |  |  |  |  |
| 2 <sup>N</sup> |                                  |                  |                      |                      |  |  |  |  |

| growth         | problem size solvable in minutes |                  |                      |                      |  |  |  |  |
|----------------|----------------------------------|------------------|----------------------|----------------------|--|--|--|--|
| rate           | 1970s                            | 1980s            | 1990s                | 2000s                |  |  |  |  |
| 1              | any                              | any              | any                  | any                  |  |  |  |  |
| log N          | any                              | any              | any                  | any                  |  |  |  |  |
| N              | millions                         | tens of millions | hundreds of millions | billions             |  |  |  |  |
| N log N        | hundreds of thousands            | millions         | millions             | hundreds of millions |  |  |  |  |
| N <sup>2</sup> | hundreds                         | thousand         | thousands            | tens of thousands    |  |  |  |  |
| $N^3$          | hundred                          | hundreds         | thousand             | thousands            |  |  |  |  |
| 2 <sup>N</sup> | 20                               | 20s              | 20s                  | 30                   |  |  |  |  |

| growth         |              | de a suintieu                     | effect on a program that runs for a few seconds |                                  |  |
|----------------|--------------|-----------------------------------|-------------------------------------------------|----------------------------------|--|
| rate           | name         | description                       | time for 100x<br>more data                      | size for 100x<br>faster computer |  |
| 1              | constant     | independent of input size         | -                                               | -                                |  |
| log N          | logarithmic  | nearly independent of input size  | -                                               | -                                |  |
| N              | linear       | optimal for N inputs              | a few minutes                                   | 100x                             |  |
| N log N        | linearithmic | nearly optimal for N inputs       | a few minutes                                   | 100x                             |  |
| N <sup>2</sup> | quadratic    | not practical for large problems  | several hours                                   | 10x                              |  |
| $N^3$          | cubic        | not practical for medium problems | several weeks                                   | 4–5x                             |  |
| 2 <sup>N</sup> | exponential  |                                   |                                                 |                                  |  |

| growth         |              |                                   | effect on a program that runs for a few seconds |                                  |  |
|----------------|--------------|-----------------------------------|-------------------------------------------------|----------------------------------|--|
| rate           | name         | description                       | time for 100x<br>more data                      | size for 100x<br>faster computer |  |
| 1              | constant     | independent of input size         | -                                               | -                                |  |
| log N          | logarithmic  | nearly independent of input size  | -                                               | -                                |  |
| N              | linear       | optimal for N inputs              | a few minutes                                   | 100x                             |  |
| N log N        | linearithmic | nearly optimal for N inputs       | a few minutes                                   | 100x                             |  |
| $N^2$          | quadratic    | not practical for large problems  | several hours                                   | 10x                              |  |
| $N^3$          | cubic        | not practical for medium problems | several weeks                                   | 4–5x                             |  |
| 2 <sup>N</sup> | exponential  | useful only for tiny problems     | forever                                         | 1x                               |  |

| growth         |                       | problem size solvable in minutes |                         |                      | time to process millions of inputs |         |                 |         |
|----------------|-----------------------|----------------------------------|-------------------------|----------------------|------------------------------------|---------|-----------------|---------|
| rate           | 1970s                 | 1980s                            | 1990s                   | 2000s                | 1970s                              | 1980s   | 1990s           | 2000s   |
| 1              | any                   | any                              | any                     | any                  | instant                            | instant | instant         | instant |
| log N          | any                   | any                              | any                     | any                  | instant                            | instant | instant         | instant |
| N              | millions              | tens of millions                 | hundreds of<br>millions | billions             | minutes                            | seconds | second          | instant |
| N log N        | hundreds of thousands | millions                         | millions                | hundreds of millions | hour                               | minutes | tens of seconds | seconds |
| N <sup>2</sup> | hundreds              | thousand                         | thousands               | tens of thousands    | decades                            | years   | months          | weeks   |
| $N^3$          |                       |                                  |                         |                      |                                    |         |                 |         |

| growth         | problem size solvable in minutes |                  |                      | time to process millions of inputs |         |         |                 |         |
|----------------|----------------------------------|------------------|----------------------|------------------------------------|---------|---------|-----------------|---------|
| rate           | 1970s                            | 1980s            | 1990s                | 2000s                              | 1970s   | 1980s   | 1990s           | 2000s   |
| 1              | any                              | any              | any                  | any                                | instant | instant | instant         | instant |
| log N          | any                              | any              | any                  | any                                | instant | instant | instant         | instant |
| N              | millions                         | tens of millions | hundreds of millions | billions                           | minutes | seconds | second          | instant |
| N log N        | hundreds of<br>thousands         | millions         | millions             | hundreds of<br>millions            | hour    | minutes | tens of seconds | seconds |
| N <sup>2</sup> | hundreds                         | thousand         | thousands            | tens of thousands                  | decades | years   | months          | weeks   |
| $N^3$          | hundred                          | hundreds         | thousand             | thousands                          |         |         |                 |         |

| growth         | problem size solvable in minutes |                     |                         | time to process millions of inputs |         |         | 3               |           |
|----------------|----------------------------------|---------------------|-------------------------|------------------------------------|---------|---------|-----------------|-----------|
| rate           | 1970s                            | 1980s               | 1990s                   | 2000s                              | 1970s   | 1980s   | 1990s           | 2000s     |
| 1              | any                              | any                 | any                     | any                                | instant | instant | instant         | instant   |
| log N          | any                              | any                 | any                     | any                                | instant | instant | instant         | instant   |
| N              | millions                         | tens of<br>millions | hundreds of<br>millions | billions                           | minutes | seconds | second          | instant   |
| N log N        | hundreds of<br>thousands         | millions            | millions                | hundreds of<br>millions            | hour    | minutes | tens of seconds | seconds   |
| N <sup>2</sup> | hundreds                         | thousand            | thousands               | tens of thousands                  | decades | years   | months          | weeks     |
| N <sup>3</sup> | hundred                          | hundreds            | thousand                | thousands                          | never   | never   | never           | millennia |

#### **Constant Factors**

- The growth rate is not affected by
  - constant factors or
  - lower-order terms
- Examples
  - $10^2$ **n** +  $10^5$  is a linear function
  - $10^5 n^2 + 10^8 n$  is a quadratic function



## **Big-Oh Notation**

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and  $n_0$  such that

$$f(n) \le cg(n)$$
 for  $n \ge n_0$ 

- Example: 2n + 10 is O(n)
- For what c and n is cg(n) 10  $\geq f(n)$ ?
  - $2n + 10 \le cn$
  - $(c-2) n \ge 10$
  - $n \ge 10/(c-2)$
  - Pick c = 3 and  $n_0 = 10$



## Big-Oh Example

- **Example:** the function  $n^2$  is not O(n)
  - $n^2 \leq cn$
  - $n \leq c$
  - The above inequality cannot be satisfied since c must be a constant



## More Big-Oh Examples



♦ 7n-2

e.g. Is there a c and  $n_0$  such that  $c \cdot n \ge 7n-2$ ?

What is the big-Oh? 7n-2 is **O(n)** 

[TEAMS] What are the values for c and  $n_0$ ? Need c > 0 and  $n_0 \ge 1$  such that  $7n-2 \le c \cdot n$  for  $n \ge n_0$ This is true for c = 7 and  $n_0 = 1$ 

## More Big-Oh Examples



■  $2n^2+16$   $2n^2+16$  is  $O(n^2)$ need c>0 and  $n_0 \ge 1$  such that  $2n^2+16 \le c \cdot n^2$  for  $n \ge n_0$ this is true for c=3 and  $n_0=4$ 

■  $3n^3 + 2n^2 + 9$   $3n^3 + 2n^2 + 9$  is  $O(n^3)$ need c > 0 and  $n_0 \ge 1$  such that  $3n^3 + 2n^2 + 9 \le c \cdot n^3$  for  $n \ge n_0$ this is true for c = 4 and  $n_0 = 3$ 

## Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

|                 | f(n) is $O(g(n))$ | g(n) is $O(f(n))$ |
|-----------------|-------------------|-------------------|
| g(n) grows more | Yes               | No                |
| f(n) grows more | No                | Yes               |
| Same growth     | Yes               | Yes               |

## Big-Oh Rules



- If is f(n) a polynomial of degree d, then f(n) is  $O(n^d)$ , i.e.,
  - Drop lower-order terms
  - 2. Drop constant factors
- Use the smallest possible class of functions
  - Say "2n is O(n)" instead of "2n is  $O(n^2)$ "
- Use the simplest expression of the class
  - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

# **Asymptotic Algorithm Analysis**

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
  - We find the worst-case number of primitive operations executed as a function of the input size
  - We express this function with big-Oh notation
- Example:
  - We determine that algorithm arrayMax executes at most 7n 1 primitive operations
  - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

# Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis



# Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

| Algorithm <i>prefixAverages1(X, n)</i>   |             |                   |
|------------------------------------------|-------------|-------------------|
| Input array X of n integers              |             |                   |
| Output array A of prefix averages of     | <i>X</i> #c | perations         |
| $A \leftarrow$ new array of $n$ integers |             | n                 |
| for $i \leftarrow 0$ to $n-1$ do         |             | n                 |
| $s \leftarrow X[0]$                      |             | n                 |
| for $j \leftarrow 1$ to $i$ do           | 1 + 2 +     | $\dots$ + $(n-1)$ |
| $s \leftarrow s + X[j]$                  | 1 + 2 +     | +(n-1)            |
| $A[i] \leftarrow s / (i+1)$              |             | n                 |
| return A                                 |             | 1                 |
|                                          |             |                   |

# **Arithmetic Progression**

- The running time of prefixAverages1 is O(1 + 2 + ... + n)
- The sum of the first n integers is n(n + 1)/2
  - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in O(n²) time



## Prefix Averages

- Asymptotic analysis tells us the complexity of the original algorithm.
- TEAMS] Given such a tool, how can we make the algorithm more efficient?

# Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

| Algorithm prefixAverages2(X, n)            |             |
|--------------------------------------------|-------------|
| Input array X of n integers                |             |
| Output array $A$ of prefix averages of $X$ | #operations |
| $A \leftarrow$ new array of $n$ integers   | n           |
| $s \leftarrow 0$                           | 1           |
| for $i \leftarrow 0$ to $n-1$ do           | n           |
| $s \leftarrow s + X[i]$                    | n           |
| $A[i] \leftarrow s / (i+1)$                | n           |
| return A                                   | 1           |

 $\blacksquare$  Algorithm *prefixAverages2* runs in O(n) time

## Math you need to Review

- Summations
- Logarithms and Exponents
- properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bx^a = alog_bx$$

$$log_ba = log_xa/log_xb$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$ 
 $a^b / a^c = a^{(b-c)}$ 
 $b = a^{\log_a b}$ 
 $b^c = a^{c*\log_a b}$ 

- Proof techniques
- Basic probability

## Relatives of Big-Oh



#### big-Omega

• f(n) is  $\Omega(g(n))$  if there is a constant c > 0and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

#### big-Theta

• f(n) is  $\Theta(g(n))$  if there are constants c'>0 and c''>0 and an integer constant  $n_0\geq 1$  such that  $c'\bullet g(n)\leq f(n)\leq c''\bullet g(n)$  for  $n\geq n_0$ 

#### little-oh

• f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant  $n_0 \ge 0$  such that  $f(n) < c \circ g(n)$  for  $n \ge n_0$ 

#### little-omega

• f(n) is  $\omega(g(n))$  if, for any constant c > 0, there is an integer constant  $n_0 \ge 0$  such that  $f(n) > c \cdot g(n)$  for  $n \ge n_0$ 

# Intuition for Asymptotic Notation



#### **Big-Oh**

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

#### big-Omega

• f(n) is  $\Omega(g(n))$  if f(n) is asymptotically **greater than or equal** to g(n)

#### big-Theta

• f(n) is  $\Theta(g(n))$  if f(n) is asymptotically **equal** to g(n)

#### little-oh

f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

#### little-omega

• f(n) is  $\omega(g(n))$  if is asymptotically **strictly greater** than g(n)

# Example Uses of the Relatives of Big-Oh



#### 

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

[TEAMS] What are values for c and  $n_0$ ?

Let c = 5 and  $n_0 = 1$ 

#### ■ $5n^2$ is $\Omega(n)$

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

Let c = 1 and  $n_0 = 1$ 

#### 

f(n) is  $\omega(g(n))$  if, for any constant c > 0, there is an integer constant  $n_0 \ge 0$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

Need  $5n_0^2 > c \cdot n_0 \rightarrow \text{given c}$ , the  $n_0$  that satisfies this is  $n_0 > c/5 > 0$ 

# Euclid's Algorithm

♦ An algorithm for computing the greatest common divisor (GCD) of two numbers  $M \ge N$ :

```
Algorithm GCD(M, N)
while (N != 0)
rem \leftarrow M mod N
M \leftarrow N
N \leftarrow rem
endwhile
return M
```

◆ [TEAMS] What is the Big-Oh?

# Euclid's Algorithm

♦ An algorithm for computing the greatest common divisor (GCD) of two numbers  $M \ge N$ :

```
Algorithm GCD(M, N)
while (N != 0)
rem \leftarrow M mod N
M \leftarrow N
N \leftarrow rem
endwhile
return M
```

 $\bullet$  The algorithm GCD runs is O(logn)

## Euclid's Algorithm

- ♦ Why?
  - If M ≥ N, then (M mod N) < M/2</p>
  - Thus, each iteration at least halves the value of M

### Exponentiation

**♦** A recursive algorithm to compute X to the power N:

```
Algorithm pow(X, N)
    if (N == 0) return 1
    if (N == 1) return X
    if (N is even)
        return pow(X*X, N/2)
    else
        return pow(X*X, N/2) * X
```

1

◆ [TEAMS] What is the Big-Oh?

### Exponentiation

**♦** A recursive algorithm to compute X to the power N:

```
Algorithm pow(X, N)
if (N == 0) return 1
if (N == 1) return X
if (N is even)
return pow(X*X, N/2)
else
return pow(X*X, N/2) * X
```

1

 $\bullet$  The algorithm pow is O(logn)