Лекция 4.

Нормы на ℚ

Теорема 1. Существуют следующие (мультипликативные) нормы на \mathbb{Q} :

- тривиальная
- cmandapmnas: |x| = xsgn(x)
- p-адическая, $|x|_p = |\frac{a}{n^k}| = p^k$, p npocmoe.

Упражнение 1. Если двигаться шагами по 2^k с весом 2^{-k} от точки 0 к точке $x \in \mathbb{Z}$, то чему равен вес кратчайшего пути?

Упражнение 2. $G = \left\{ \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} \right\}$. Найти левую и правую меру Хаара.

Если пополнить p-адические числа, получим $\mathbb{Q}_{(p)}=[\mathbb{Q}]_{|\cdot|_p}$. Числа там имеют вид $\sum_{j=-\infty}^{\infty}x_jp^j$. Можно выделить абелеву подгруппу $\mathbb{Z}_{(p)}$ с числами, где нет отрицательных j.

Упражнение 3. $\mathbb{Z}_{(p)}$ — компактно.

Упражнение 4. $\mathbb{Z}_{(p)}$ — гомеоморфно p-ичному дереву и канторовскому множеству.

Упражнение 5. Записать $-1, \frac{1}{2}$ как *p*-адическую дробь.

Упражнение 6 (**). Исследовать в *p*-адических числах $e^t = 1 + x + \frac{x^2}{2} + \dots$

Упражнение 7. Доказать, что $T: x \mapsto x+1$ непрерывно, сохраняет меру Хаара, и что все сдвиги на этой группе $R_a: x \mapsto x+a$ сводятся к T.

Упражнение 8. Найти меру Хаара этой группы.

Упражнение 9. Проверить, что характеры $\mathbb{Z}_{(p)}$ — это $\gamma_{\frac{\alpha}{p^k}}(x) = \exp(2\pi i \frac{\alpha}{p^k} x)$.