Electrostatic Field

Outline

- Electrostatic Potential due to Discrete and Continuous Charge Distributions
- Boundary Conditions on Electric Field and Electrostatic Potential
- Energy of a Discrete and Continuous Charge Distributions

Objectives

- To understand how to incorporate boundary conditions.
- ② To understand and be able to compute the energy of a charge configuration.

Recap

Electrostatic Field using Coulomb's Law

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{r}')}{|\vec{R}|^2} \hat{R} d\tau'$$

where \hat{R} is the unit vector along the seperation vector given by, $\vec{R} = \vec{r} - \vec{r}'$.

• Electric Potential $V(\vec{r})$.

$$\nabla \times \vec{E} = 0 \quad \Rightarrow \quad \vec{E}(\vec{r}) = -\nabla V(\vec{r})$$

• Poisson's Equation:

$$\nabla^2 V(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

In charge free regions, Poisson's equation turns out to be Laplace's Equation,

$$\nabla^2 V(\vec{r}) = 0$$

• The external work that should be done to shift a unit test charge with infinitesimally small speed from \vec{a} to \vec{b} is,

$$W_{ext} = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$
$$= \int_{a}^{b} (\nabla V) \cdot d\vec{l}$$
$$= V(\vec{b}) - V(\vec{a})$$

- Potential differences are physically measurable not potentials.
 Therefore, potentials are defined up to an arbitrary constant, or with respective to a reference potential.
- One of the famous reference voltage is $V \to 0$ as $r \to \infty$. (in general this reference works for all except infinite charge distributions).
- In physical situations, there won't be any infinite distributions. Therefore, $V \to 0$ as $r \to \infty$ fits well into physical situations.

• Electrostatic potential due to a point charge with charge q poistioned at \vec{r}' ,

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r} - \vec{r}'|}$$

- A collection of point charges with charge q_i located at \vec{r}'_i .
- Principle of superposition can be used in this case, as Poisson's equation $\left(\nabla^2 V = \frac{-\rho(\vec{r})}{\varepsilon_0}\right)$ is linear,

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=0}^n \frac{q_i}{|\vec{r} - \vec{r}_i'|}$$

• A continuous charge distribution can be visualised as a discrete collection of infinite number of point charges with infinitesimally small charges. In simple words, if $n \to \infty$ and $q_i \to \rho \, d \, \tau_i$,

$$V(\vec{r}) = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{4\pi\varepsilon_0} \frac{\rho(\vec{r}_i') d\tau_i'}{|\vec{r} - \vec{r}_i'|}$$
$$= \int_{V} \frac{1}{4\pi\varepsilon_0} \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$

 Electrostatic potential for a volume charge distribution can be modulated to surface charge distribution and linear charge distribution.

$$\rho d\tau = \sigma da = \lambda dl = dq$$

Electrostatic potential due to a surface charge distribution,

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_S \frac{\sigma(\vec{r}')}{|\vec{r} - \vec{r}'|} da'$$

Electrostatic potential due to a linear charge distribution,

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_L \frac{\lambda(\vec{r}')}{|\vec{r} - \vec{r}'|} dl'$$

- In general, electrostatic potential is easier to deal with, as compared to the electric field.
- Potential is a scalar with only one component and with no direction associated.
- Most of the measurements that are done in laboratory are energy related, and energy can be easily related to potential.

- How does the electric field behave very close to the surface?
 - Is it discontinuous or continuous? Is it always discontinuous or only in the presence of charge?
 - Is it discontinuous along all directions, or just along a specific direction?
- Consider a cuboid with a small top/bottom rectangular area(A) locally parallel to the surface and with a much smaller height(ε). Applying Gauss law on this cuboid,

$$\int_{S} \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\varepsilon_{0}}$$

• Length of the cuboid ε can be made arbitrarily small, such that the flux passing through the lateral surface of the cuboid is negligible when compared to the total flux through the cuboid.

$$(E_{above}^{\perp}\hat{n}) \cdot (A\hat{n}) + (E_{below}^{\perp}\hat{n}) \cdot (-A\hat{n}) = \frac{Q_{enc}}{\varepsilon_0}$$

$$(E_{above}^{\perp} - E_{below}^{\perp})A = \frac{Q_{enc}}{\varepsilon_0}$$

$$E_{above}^{\perp} - E_{below}^{\perp} = \frac{\sigma}{\varepsilon_0}$$

- ullet This indicates discontinuity in E^\perp at a charged surface.
- ullet If the surface is charge free, then E^{\perp} is continuous.
- Note that E[⊥] in the above formula are just above and just below the surface, not far away.

 Consider a rectangular loop with a small length(I) locally parallel to the surface and much smaller width(w) perpendicular to the surface.

$$\oint \vec{E} \cdot d\vec{l} = 0$$

 Width(w) can be made arbitrarily small, such that the line integral along width(w) is negligible compared to the line integral along length(I).

$$(E_{above}^{\parallel} - E_{below}^{\parallel})I = 0$$

$$E_{above}^{\parallel} = E_{below}^{\parallel}$$

- This indicates that the E^{\parallel} component is continuous across a charged surface.
- Also note that the perpendicular to the surface direction is unique, whereas the parallel direction isn't unique.
- However one can prove that $E_{above}^{\parallel} = E_{below}^{\parallel}$ along all parallel directions in the exact same way.
- Note that E^{\parallel} in the above formula are just above and just below the surface, not far away.

- We have obtained boundary conditions for both perpendicular and parallel components of Electric field.
- Now, summing up these boundary conditions into a single equation,

$$\vec{E}_{above} - \vec{E}_{below} = \frac{\sigma}{\varepsilon_0} \hat{n}$$

where \hat{n} is the unit normal to the surface from below to above.

• Note that \vec{E} in the above formula are just above and just below the surface, not far away.

Boundary Conditions on Electrostatic Potential

 How does the electrostatic potential behave very close to the surface? Does the presence of charge affect the continuity of Potential?

$$V_{above} - V_{below} = -\int_{below}^{above} \vec{E} \cdot d\vec{l}$$
$$= -\lim_{\varepsilon \to 0} \int_{z_0 - \varepsilon}^{z_0 + \varepsilon} \vec{E} \cdot d\vec{l}$$

• As \vec{E} is finite for all sort of surface charge distributions, the above integral is zero in the limit $\varepsilon \to 0$.

$$V_{above} = V_{below}$$

- Potential is continuous across a charged surface.
- Note that *V* in the above formula are just above and just below the surface, not far away.

Boundary Conditions on Electrostatic Potential

 Boundary conditions on Electric field can be converted to Boundary conditions on Electrostatic Potential.

$$E_{above}^{\perp} - E_{below}^{\perp} = \frac{\sigma}{\varepsilon_0}$$

$$\frac{\sigma}{\varepsilon_0} = \vec{E}_{above} \cdot \hat{n} - \vec{E}_{below} \cdot \hat{n}$$

$$= (\nabla V_{below}) \cdot \hat{n} - (\nabla V_{above}) \cdot \hat{n}$$

$$= \frac{\partial V}{\partial n} \Big|_{below} - \frac{\partial V}{\partial n} \Big|_{above}$$

where $\frac{\partial V}{\partial n}$ represents the directional derivative along \hat{n} , $\frac{\partial V}{\partial n} = (\nabla V) \cdot \hat{n}$.

$$\frac{\partial V}{\partial n}\Big|_{above} - \frac{\partial V}{\partial n}\Big|_{below} = -\frac{\sigma}{\varepsilon_0}$$

Energy of a Discrete Charge Distribution

- What is the external work that should be done to arrange three point charges q_1, q_2, q_3 at positions $\vec{r}_1, \vec{r}_2, \vec{r}_3$?
- As electrostatic force is conservative, energy is a state function and is independent of the path one follows.
- Let's assume that initially q_1 is brought from infinity to \vec{r}_1 with infinitesimally small speed. As there is no other charge to affect, the work done in the process is zero.
- External work done that should be done to bring charge q_2 from infinity to \vec{r}_2 can be found using work-energy theorem,

$$\begin{array}{lcl} W_{\text{ext}_1} & = & q_2 \, V_1(\vec{r}_2) - q_2 \, V_1(\infty) + \Delta \mathcal{K}.E \\ & = & q_2 \frac{1}{4\pi\varepsilon_0} \frac{q_1}{|R_{21}|} - 0 + 0 \\ & = & \frac{1}{4\pi\varepsilon_0} \frac{q_1 \, q_2}{|R_{21}|} \end{array}$$

where \vec{R}_{12} is the seperation vector given by, $\vec{R}_{21} = \vec{r}_2 - \vec{r}_1$.

Energy of a Discrete Charge Distribution

• External work done that should be done to bring charge q_3 from infinity to \vec{r}_3 can be found using work-energy theorem,

$$W_{ext_2} = q_3 V_1(\vec{r}_3) - q_3 V_1(\infty) + q_3 V_2(\vec{r}_3) - q_3 V_2(\vec{r}_3) + \Delta K.E$$

$$= q_3 \frac{1}{4\pi\varepsilon_0} \frac{q_1}{|R_{31}|} - 0 + q_3 \frac{1}{4\pi\varepsilon_0} \frac{q_2}{|R_{32}|} - 0 + 0$$

$$= \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1 q_3}{|R_{31}|} + \frac{q_2 q_3}{|R_{32}|} \right]$$

• Total work done in arranging these three charges q_1, q_2, q_3 at positions $\vec{r}_1, \vec{r}_2, \vec{r}_3$ is,

$$W = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1q_2}{|R_{21}|} + \frac{q_1q_3}{|R_{31}|} + \frac{q_2q_3}{|R_{32}|} \right]$$
$$= W_{12} + W_{23} + W_{31}$$

Energy of a Discrete Charge Distribution

• What is the external work that should be done to arrange n point charges q_1, q_2, \dots, q_n at positions $\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n$?

$$W = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} W_{ij}$$
$$= \frac{1}{2} \cdot \frac{1}{4\pi\varepsilon_{0}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{q_{i}q_{j}}{|R_{ij}|}$$

Can this be expressed in terms of potentials?

$$W = \frac{1}{2} \cdot \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n q_i \left[\sum_{j=1, j \neq i}^n \frac{q_j}{|R_{ij}|} \right]$$
$$= \frac{1}{2} \sum_{i=1}^n q_i V(\vec{r}_i')$$

where $V(\vec{r}'_i)$ is the potential due to all charges except q_i at \vec{r}_i .

Energy of a Continuous Charge Distribution

• We can use the expression derived for discrete charge distribuion here in the limit $n \to \infty$.

$$W = \frac{1}{2} \lim_{n \to \infty} \sum_{i=1}^{n} q_{i} V(\vec{r}'_{i})$$

$$= \frac{1}{2} \lim_{n \to \infty} \sum_{i=1}^{n} \rho(\vec{r}'_{i}) V(\vec{r}'_{i}) d\tau'_{i}$$

$$= \frac{1}{2} \int V(\vec{r}') \rho(\vec{r}') d\tau'$$

Using
$$abla \cdot ec{E} = rac{
ho}{arepsilon_0},$$

$$W = rac{arepsilon_0}{2} \int V(
abla \cdot ec{E}) d au'$$

Energy of a Continuous Charge Distribution

• Using $\nabla \cdot (V\vec{E}) = V(\nabla \cdot \vec{E}) + \vec{E} \cdot (\nabla V)$,

$$W = \frac{\varepsilon_0}{2} \left[\int \nabla \cdot (V \vec{E}) d\tau - \int \vec{E} \cdot (\nabla V) d\tau \right]$$

Using Divergence theorem on the first integral,

$$W = \frac{\varepsilon_0}{2} \left[\oint_{S} (V \vec{E}) \cdot d\vec{a} - \int \vec{E} \cdot (\nabla V) d\tau \right]$$

• If we consider the whole space,

$$\oint_{S} (V\vec{E}) \cdot d\vec{a} \sim \lim_{r \to \infty} \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{1}{r} \cdot \frac{1}{r^{2}}\right) r^{2} \sin\theta d\theta d\phi$$

$$\sim \lim_{r \to \infty} \frac{4\pi}{r}$$

$$\sim 0$$

One can consider an arbitrary surface also, but will end up with the same result in the limit $r \to \infty$.

Energy of a Continuous Charge Distribution

• Using the above result $\oint_S (V\vec{E}) \cdot d\vec{a} = 0$,

$$W = -\frac{\varepsilon_0}{2} \int \vec{E} \cdot (\nabla V) d\tau$$

Using $\vec{E} = -\nabla V$,

$$W = \frac{\varepsilon_0}{2} \int \vec{E} \cdot \vec{E} \, d\tau$$
$$= \int \left(\frac{1}{2} \varepsilon_0 E^2\right) d\tau$$

• Therefore the energy of a continuous charge distribution is,

$$W = \frac{\varepsilon_0}{2} \int E^2 d\tau$$

Energy of a Point Charge

• What is the energy needed to create a point charge?

$$W = \frac{\varepsilon_0}{2} \int_{r=0}^{\infty} \frac{q^2}{(4\pi\varepsilon_0)^2 r^4} r^2 \sin\theta dr d\theta d\phi$$
$$\sim \int_0^{\infty} \frac{1}{r^2} dr$$

 Energy needed to create a point charge diverges according to classical electrodynamics.

Energy of a Uniformly Charged Spherical Shell

 What is the energy needed to create a uniformly charged spherical shell of radius R and charge Q?

$$W = \frac{\varepsilon_0}{2} \int_{r=0}^{\infty} E^2 d\tau$$

$$= \frac{\varepsilon_0}{2} \left[\int_{r=0}^{R} E^2 d\tau + \int_{r=R}^{\infty} E^2 d\tau \right]$$

$$= \frac{\varepsilon_0}{2} \left[0 + \int_{r=R}^{\infty} \frac{Q^2}{(4\pi\varepsilon_0)^2 r^4} r^2 \sin\theta dr d\theta d\phi \right]$$

$$= \frac{Q^2}{8\pi\varepsilon_0 R}$$

• Will we obtain the same result if we use the initial expression $\frac{1}{2} \int V(\vec{r}') \rho(\vec{r}') d\tau'$?

Energy of a Uniformly Charged Spherical Shell

$$W = \frac{1}{2} \oint_{S} V(\vec{r}') \sigma(\vec{r}') da'$$

$$= \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{Q}{4\pi \varepsilon_{0} R} \cdot \frac{Q}{4\pi R^{2}} R^{2} \sin\theta d\theta d\phi$$

$$= \frac{Q^{2}}{8\pi \varepsilon_{0} R}$$

 Yes, we have obtained the same result through both the methods.

Energy of a Uniformly Charged Solid Sphere

- Energy of a Solid Sphere can be obtained in multiple ways.
 - Using the energy formula in terms of Electric field.

$$W = \frac{1}{2}\varepsilon_0 \int E^2 d\tau$$

Using the energy formula in terms of Electrostatic Potential.

$$W = \frac{1}{2} \int V(\vec{r}') \rho(\vec{r}') d\tau'$$

• A charge dq is brought from infinity and smeared over a sphere of charge q and radius r, to obtain a sphere of charge q+dq and radius r+dr. Energy required in the process is,

$$dW = V(r)dq = \frac{q(r)}{4\pi\varepsilon_0 r}dq$$
$$= \frac{1}{4\pi\varepsilon_0 r} \cdot Q \frac{r^3}{R^3} \cdot Q \frac{3r^2}{R^3}dr$$

• All the above methods lead to the same answer, $W = \frac{3Q^2}{20\pi\epsilon_0 R}$.

Some Comments

• Energy of a charge distribution doesn't follow the principle of superposition because of its non-linear (quadratic) dependence on \vec{E} , i.e., $W_{1+2} \neq W_1 + W_2$, for two charge distributions ρ_1 and ρ_2 , giving rise to electric fields \vec{E}_1 and \vec{E}_2

$$W_{1+2} = \frac{1}{2}\varepsilon_0 \int |\vec{E}_1 + \vec{E}_2|^2 d\tau \neq \frac{1}{2}\varepsilon_0 \int [E_1^2 + E_2^2] d\tau = W_1 + W_2$$

• What does the each term mean in W_{1+2} ?

$$W_{1+2} = \frac{1}{2} \varepsilon_0 \int \left[E_1^2 + E_2^2 + 2 \vec{E}_1 \cdot \vec{E}_2 \right] d\tau$$

- The first and second terms represent the electrostatic self energy of charge distributions 1 and 2, respectively.
- The third term represents the interaction energy between those charge distributions.

Some Comments

- Where is the energy stored?
 - All over the space in form of electrostatic field?

$$W = \frac{1}{2}\varepsilon_0 \int E^2 d\tau$$

• All over the charge distribution as potential energy of charge?

$$W = \frac{1}{2} \int V(\vec{r}') \rho(\vec{r}') d\tau'$$

• Both the views work as far as electrostatics is concerned.

Some Comments

- There is a slight difference between energy of discrete and continuous charge distribution.
 - In the discrete charge distribution, we assume that the point charges exist initially and we calculate just the energy required to assemble the configuration.
 - In the continuous charge distribution, we calaculate the total energy stored in the charge distribution.
 - In the formula for discrete case, $V(\vec{r}'_i)$ is the potential due to all charges except q_i .
 - Whereas in continuous case, $V(\vec{r}')$ is the potential due to the whole distribution.
 - Energy required to assemble the configuration(Interaction energy) might be negative.
 - Total energy(Self energy+Interaction energy) in the charge distribution is always positive.