

ABV-INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT GWALIOR-474 015

DATABASE MANAGEMENT SYSTEM MINI PROJECT

Movie-Ticket-Booking-System by

AMAN KUMAR

(2020IMT-007)

ANSH RUSIA

(2020IMT-012)

SHUBHAJEET PRADHAN

(2020IMT-097)

VARUN KUMAR TIWARI

(2020IMT-112)

under the guidance and supervision of

Dr. DEBANJAN SADHYA (Asstt. Professor)

Contents

1	Intr 1.1 1.2	Description of the movie ticket booking system
2	Sch	ema of the Databases
3	$\mathbf{E}\mathbf{R}$	diagram
4	Tab	les
	4.1	Customer Table
		4.1.1 Query
		4.1.2 Output Table
	4.2	Movie Table
		4.2.1 Query
		4.2.2 Output Table
	4.3	Movie Room Table
		4.3.1 Query
		4.3.2 Output Table
	4.4	Reservation Table
		4.4.1 Query
		4.4.2 Output Table
	4.5	Seat Table
		4.5.1 Query
		4.5.2 Output Table
	4.6	Shows Table
		4.6.1 Query
		4.6.2 Output Table
	4.7	Ticket Table
		4.7.1 Query
		4.7.2 Output Table
ó	Nor	malisation
	5.1	Customer Table
	5.2	Movie Table
	5.3	Movie Room Table
	5.4	Reservation Table
	5.5	Seat Table
	5.6	Shows Table
	5.7	Ticket Table
3	Que	eries and Results
	6.1	Show all the details of people who booked movie for only "Executive Class".
		6.1.1 Relational Algebra Expression
		6.1.2 WorkFlow

	6.1.3	R.A. Result Table	14
	6.1.4	SQL Query	14
	6.1.5	SQL Result Table	14
6.2	Show	all the details of peoples who booked for a movie whose price is less	
	than 9	925	15
	6.2.1	Relational Algebra Expression	15
	6.2.2	WorkFlow	15
	6.2.3	R.A. Result Table	16
	6.2.4	SQL Query	16
	6.2.5	SQL Result Table	16
6.3	Show	the age of all customers who are watching the movie "The Eternals".	17
	6.3.1	Relational Algebra Expression	17
	6.3.2	WorkFlow	17
	6.3.3	R.A. Result Table	18
	6.3.4	SQL Query	18
	6.3.5	SQL Result Table	18
6.4	Show	seat id of customer whose name is "ANSH RUSIA"	19
	6.4.1	Relational Algebra Expression	19
	6.4.2	WorkFlow	19
	6.4.3	R.A. Result Table	20
	6.4.4	SQL Query	20
	6.4.5	SQL Result Table	20
6.5	Show	all the Customers who is watching "Iron-Man 2" in "ENT 3"	21
	6.5.1	Relational Algebra Expression	21
	6.5.2	WorkFlow	21
	6.5.3	R.A. Result Table	22
	6.5.4	SQL Query	22
	655	Result Table	22

1 Introduction

1.1 Description of the movie ticket booking system

- As the name suggests the movie ticket management system is a database management system for a multiplex. The database is designed to accommodate multiple theater rooms at same time to have a hassle free experience for the customer and the staff.
- The project is highly flexible and is well efficient for managing all information about the customer. The key focus is: well management of data and easy retrieval of information. The speed and accuracy should be maintained in a proper way.
- Due to faster output of data the system becomes efficient. Their is no manual searching of files and hence loss of data due to human error is less.

1.2 Benefits of our Database design

- Less human error
- Strength and strain of manual labour can be reduced
- Security
- Data redundancy can be avoided to some extent
- Data consistency
- Easy to handle
- Easy data updating
- Easy record keeping

2 Schema of the Databases

3 ER diagram

4 Tables

4.1 Customer Table

4.1.1 Query

```
CREATE TABLE Customer
(
Cust_Id VARCHAR NOT NULL,
Cust_Name VARCHAR NOT NULL,
Cust_Age INT NOT NULL,
Cust_Phone NUMERIC NOT NULL,
PRIMARY KEY (cust_Id)
);
```

4.1.2 Output Table

! Cust_ld	Cust_Name	Cust_Age	Cust_Phone
P1	AMAN KUMAR	20	12345678
P2	ANSH RUSIA	20	23456789
P3	SHUBHAJEET PRADHAN	20	34567891
P4	VARUN KUMAR TIWARI	20	45678912

4.2 Movie Table

4.2.1 Query

```
CREATE TABLE movie

(
    movie_Name VARCHAR NOT NULL,
    duration VARCHAR NOT NULL,
    genre VARCHAR NOT NULL,
    rating VARCHAR NOT NULL,
    PRIMARY KEY (movie_Name)
);
```

4.2.2 Output Table

I movie_Name	duration	genre	rating
Inception	148	Thriller	5
Iron-Man 2	100	Sci-Fi	5
The Eternals	157	Sci-Fi	4

4.3 Movie Room Table

4.3.1 Query

```
CREATE TABLE movie_room

(
    ent_Id VARCHAR NOT NULL,
    total_Seats INT NOT NULL,
    room_Name VARCHAR NOT NULL,
    PRIMARY KEY (ent_Id)
);
```

4.3.2 Output Table

1 ent_ld	total_Seats	room_Name
ENT1	5	Silver
ENT2	5	Gold
ENT3	5	Executive

4.4 Reservation Table

4.4.1 Query

```
CREATE TABLE Reservation

(
    reservation_Id VARCHAR NOT NULL,
    ticket_Id VARCHAR NOT NULL,
    show_Id VARCHAR NOT NULL,
    seat_Id VARCHAR NOT NULL,
    PRIMARY KEY (reservation_Id),
    FOREIGN KEY (ticket_Id) REFERENCES Ticket(ticket_id),
    FOREIGN KEY (show_Id) REFERENCES Shows(show_id),
    FOREIGN KEY (seat_Id) REFERENCES Seat(seat_id)
);
```

4.4.2 Output Table

! reservation_ld	ticket_ld	show_ld	seat_id
RE01	TCK1	SHW1	E2G4
RE02	TCK2	SHW2	E1S2
RE03	TCK3	SHW3	E3E5
RE04	TCK4	SHW4	E3E5

4.5 Seat Table

4.5.1 Query

```
CREATE TABLE seat

(

seat_Id VARCHAR NOT NULL,

seat_Number INT NOT NULL,

seat_Row VARCHAR NOT NULL,

ent_Id VARCHAR NOT NULL,

PRIMARY KEY (seat_Id),

FOREIGN KEY (ent_Id) REFERENCES movie_room(ent_Id)
);
```

4.5.2 Output Table

! seat_ld	seat_Num	seat_Row	ent_ld
E1S1	1	R1	E1
E1S2	2	R1	E1
E1S3	3	R2	E1
E1S4	4	R2	E1
E1S5	5	R3	E1
E2G1	1	R1	E2
E2G2	2	R1	E2
E2G3	3	R2	E2
E2G4	4	R2	E2
E2G5	5	R3	E2
E3E1	1	R1	E3
E3E2	2	R1	E3
E3E3	3	R2	E3
E3E4	4	R2	E3
E3E5	5	R3	E3

4.6 Shows Table

4.6.1 Query

```
CREATE TABLE shows
(
    show_Id VARCHAR NOT NULL,
    show_slot VARCHAR NOT NULL,
    show_Date DATE NOT NULL,
    ent_Id VARCHAR NOT NULL,
    movie_Name VARCHAR NOT NULL,
    pRIMARY KEY (show_Id),
    FOREIGN KEY (ent_Id) REFERENCES movie_room(ent_Id),
    FOREIGN KEY (movie_Name) REFERENCES movie(movie_Name)
);
```

4.6.2 Output Table

! show_ld	show_slot	show_Date	ent_ld	movie_Name
SHW1	slotA	2021-09-07	ENT1	The Eternals
SHW2	slotB	2021-08-05	ENT2	Inception
SHW3	slotC	2021-06-11	ENT3	Iron-Man 2
SHW4	slotD	2021-06-23	ENT3	Iron-Man 2

4.7 Ticket Table

4.7.1 Query

```
CREATE TABLE Ticket

(
    ticket_Id VARCHAR NOT NULL,
    price INT NOT NULL,
    Cust_Id VARCHAR NOT NULL,
    show_Id VARCHAR NOT NULL,
    pRIMARY KEY (ticket_Id),
    FOREIGN KEY (cust_Id) REFERENCES Customer(Cust_Id),
    FOREIGN KEY (Show_Id) REFERENCES Shows(show_Id)
);
```

4.7.2 Output Table

! ticket_ld	Cust_ld	show_ld	price
TCK1	P1	SHW1	750
TCK2	P2	SHW2	300
TCK3	P3	SHW3	925
TCK4	P4	SHW4	1030

5 Normalisation

5.1 Customer Table

Functional dependencies in this table are: F.D. = {cust_id \rightarrow cust_age cust_name cust_phone} Candidate key = cust_id

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {cust_id \rightarrow cust_name, cust_age, cust_phone} Since the left side of the FD is the super key, the relation follows BCNF.

5.2 Movie Table

Functional dependencies in this table are : F.D. = { movie_name → room_name total_seats} Candidate key = movie_name

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {movie_name → duration, genre, rating} Since the left side of the FD is the super key, the relation follows BCNF.

5.3 Movie Room Table

Functional dependencies in this table are : F.D. = $\{ \text{ ent_id} \rightarrow \text{room_name total_seats} \}$ Candidate key = ent_id

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {ent_id → total_seats, room_name} Since the left side of the FD is the super key, the relation follows BCNF.

5.4 Reservation Table

Functional dependencies in this table are : F.D. = { reservation_id \rightarrow ticket_id, show_id, seat_id} Candidate key = reservation_id

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {reservation_id \to \ticket_id, \show_id, \seat_id} Since the left side of the FD is the super key, the relation follows BCNF.

5.5 Seat Table

Functional dependencies in this table are : F.D. = { seat_id \rightarrow seat_number, seat_row, ent_id} Candidate key = seat_id

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {seat_id → seat_number, seat_row, ent_id} Since the left side of the FD is the super key, the relation follows BCNF.

5.6 Shows Table

Functional dependencies in this table are : F.D. = { $show_id \rightarrow show_slot, show_date, ent_id, movie_name}$ Candidate key = $show_id$

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {show_id \to show_slot, show_date, ent_id, movie_id} Since the left side of the FD is the super key, the relation follows BCNF

5.7 Ticket Table

Functional dependencies in this table are : F.D. = { ticket_id \rightarrow price, cust_id, show_id} Candidate key = ticket_id

- No multivalued attribute, hence the relation is in 1NF.
- Since there is only one attribute in the candidate key, all the non-key attributes are fully functional dependent on the primary key, and hence the relation is in 2NF form.
- Since there are no transitive dependencies present (no non-prime attribute derives other non-prime attributes), the relation is in 3NF.
- {ticket_id → price, cust_id, show_id} Since the left side of the FD is the super key, the relation follows BCNF.

- 6 Queries and Results
- 6.1 Show all the details of people who booked movie for only "Executive Class".
- 6.1.1 Relational Algebra Expression

π Cust_Name,Cust_Phone,Cust_Age (σ room_Name = 'Executive' (CUSTOMER ⋈ TICKET ⋈ SHOW ⋈ MOVIE_ROOM))

6.1.2 WorkFlow

 $\begin{array}{c} \pi_{\text{ Cust_Name, Cust_Phone, Cust_Age}} (\sigma_{\text{ room_Name}} = \text{'Executive'}} (((\text{CUSTOMER} \bowtie \text{TICKET}) \bowtie \text{SHOW}) \bowtie \text{MOVIE_ROOM})) \end{array}$

6.1.3 R.A. Result Table

CUSTOMER.Cust_Name	CUSTOMER.Cust_Phone	CUSTOMER.Cust_Age
'SHUBHAJEET PRADHAN'	34567891	20
"VARUN KUMAR TIWARI"	45678912	20

6.1.4 SQL Query

SELECT cust_name, cust_phone, cust_age
FROM customer NATURAL JOIN ticket NATURAL JOIN shows NATURAL JOIN movie_room
WHERE room_name = 'Executive';

6.1.5 SQL Result Table

cust_name	cust_phone	
SHUBHAJEET PRADHAN VARUN KUMAR TIWARI (2 rows)	34567891	20 20

6.2 Show all the details of peoples who booked for a movie whose price is less than 925.

6.2.1 Relational Algebra Expression

π Cust_Name,Cust_Phone,Cust_Age (σ price<925 (CUSTOMER μ TICKET))

6.2.2 WorkFlow

 $\pi_{\text{Cust_Name, Cust_Phone, Cust_Age}}$ ($\sigma_{\text{price} < 925}$ (CUSTOMER \bowtie TICKET))

6.2.3 R.A. Result Table

CUSTOMER.Cust_Name	CUSTOMER.Cust_Phone	CUSTOMER.Cust_Age
'AMAN KUMAR'	12345678	20
'ANSH RUSIA'	23456789	20

6.2.4 SQL Query

SELECT cust_name, cust_phone, cust_age FROM customer NATURAL JOIN ticket WHERE price < 925;

6.2.5 SQL Result Table

	cust_phone	
AMAN KUMAR ANSH RUSIA (2 rows)	12345678 23456789	20 20

6.3 Show the age of all customers who are watching the movie "The Eternals".

6.3.1 Relational Algebra Expression

π Cust_Age (σ movie_Name = 'The Eternals' (CUSTOMER ⋈ TICKET ⋈ SHOW ⋈ MOVIE))

6.3.2 WorkFlow

 $\pi_{Cust_Age} (\sigma_{movie_Name = 'The \; Eternals'} (((CUSTOMER \bowtie TICKET) \bowtie SHOW) \bowtie MOVIE))$

6.3.3 R.A. Result Table

CUSTOMER.Cust_Age

6.3.5 SQL Result Table

```
cust_age
-----
20
(1 row)
```

6.4 Show seat id of customer whose name is "ANSH RUSIA".

6.4.1 Relational Algebra Expression

π seat_Id (σ Cust_Name = 'ANSH RUSIA' (CUSTOMER MTICKETM SEATM RESERVATION))

6.4.2 WorkFlow

 $\pi_{\text{seat_Id}}$ ($\sigma_{\text{Cust_Name} = \text{'ANSH RUSIA'}}$ (((CUSTOMER \bowtie TICKET) \bowtie SEAT) \bowtie RESERVATION))

6.4.3 R.A. Result Table

SEAT.seat_Id

'E1S2'

6.4.4 SQL Query

6.4.5 SQL Result Table

```
seat_id
-----
E1S2
(1 row)
```

- 6.5 Show all the Customers who is watching "Iron-Man 2" in "ENT 3" $\,$
- 6.5.1 Relational Algebra Expression

π Cust_Name, Cust_Phone, show_slot, price (σ movie_Name = 'Iron-Man 2' ν ent_Id = 'ENT 3'
(CUSTOMER Μ TICKET Μ SHOW Μ MOVIE_ROOM Μ MOVIE))

6.5.2 WorkFlow

 Π Cust_Name, Cust_Phone, show_slot, price (σ movie_Name = 'Iron-Man 2' or ent_Id = 'ENT 3' ((((CUSTOMER ⋈ TICKET) ⋈ SHOW) ⋈ MOVIE_ROOM) ⋈ MOVIE))

6.5.3 R.A. Result Table

CUSTOMER.Cust_Name	CUSTOMER.Cust_Phone	SHOW.show_slot	TICKET.price
'SHUBHAJEET PRADHAN'	34567891	'slotC'	925
'VARUN KUMAR TIWARI'	45678912	'slotD'	1030

6.5.4 SQL Query

SELECT cust_id, cust_name, cust_phone, cust_age, show_slot, price
FROM customer NATURAL JOIN ticket NATURAL JOIN shows
WHERE movie_name = 'Iron-Man 2' AND ent_id = 'ENT3';

6.5.5 Result Table

cust_id	cust_name	cust_phone		_	
'	SHUBHAJEET PRADHAN VARUN KUMAR TIWARI	34567891	20	slotC slotD	925 1030