sèrie 1

PAU. Curs 2005-2006

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona consta de dues opcions, A o B, entre les quals cal triar-ne una.

Primera part

Exercici 1 [2,5 punts]

[Per a cada qüestió només es pot triar una resposta. Resposta ben contestada 0,5 punts; resposta mal contestada –0,16 punts; resposta no contestada 0 punts]

Qüestió 1

Un transformador monofàsic, que es pot considerar ideal, té un debanat de 460 espires. Es mesuren les tensions en els debanats i s'obté una tensió de 230 V en aquest debanat i de 100 V en l'altre debanat. El nombre d'espires de l'altre debanat és:

- a) 25
- b) 50
- c) 150
- d) 200

Qüestió 2

La funció lògica corresponent al diagrama de portes de la figura és:

- a) s = a + b
- b) s = a + b + c
- c) s = b + c
- d) $s = b + \overline{c}$

Qüestió 3

Un motor de corrent continu d'imants permanents arrossega una càrrega de parell constant. Si la tensió d'alimentació s'incrementa, la velocitat del motor

- a) s'incrementa
- b) disminueix
- c) no varia
- d) canvia de signe (sentit)

Qüestió 4

En una instal·lació, la densitat de corrent màxima admesa és de σ = 6 A/mm². Si es vol alimentar un consum monofàsic de potència aparent S = 3 kVA a una tensió U = 230 V, la mínima secció normalitzada a instal·lar és:

- a) 1,5 mm²
- b) 2,5 mm²
- c) 4 mm²
- d) 6 mm²

Qüestió 5

Una màquina síncrona de 3 parells de pols connectada a una xarxa de 50 Hz gira a una velocitat de

- a) 314,16 rad/s
- b) 157,08 rad/s
- c) 104,72 rad/s
- d) 78,54 rad/s

Exercici 2 [2,5 punts]

En el circuit de la figura, alimentat amb una tensió composta *U*, determineu:

a) Els corrents de línia I₁. [1 punt]

b) La potència activa *P*. [0,5 punts]

c) La potència reactiva Q. [0,5 punts]

d) El factor de potència. [0,5 punts]

Segona part

Opció A

Exercici 3 [2,5 punts]

Del circuit de la figura, amb l'interruptor obert, determineu:

- a) La mesura del voltímetre V_1 . [0,5 punts]
- b) La potència activa *P* entregada per la font de tensió. [0,5 punts]

Amb l'interruptor tancat, determineu:

- c) La nova mesura del voltímetre V_1 '. [1 punt]
- d) El factor de potència del conjunt. [0,5 punts]

Exercici 4 [2,5 punts]

Un motor d'inducció trifàsic té la següent placa de característiques:

$$P = 220 \text{ kW}$$
 $U = 693/400 \text{ V}$ $I = 230/398 \text{ A}$ $n = 975 \text{ min}^{-1}$ $\cos \varphi = 0.85$ $f = 50 \text{ Hz}$

Amb el motor treballant en condicions nominals, determineu:

- a) El rendiment η . [1 punt]
- b) El nombre p de parells de pols. [0,5 punts]
- c) El parell Γ desenvolupat. [0,5 punts]

Si es vol connectar a una xarxa de 400 V:

d) Amb quina connexió caldria fer-ho i quins corrents de línia I_{linia} circularien? [0,5 punts]

Opció B

Exercici 3 [2,5 punts]

 $U_{\rm N} = 50 \text{ V}$ $I_{\rm N} = 6 \text{ A}$ $n_{\rm N} = 1200 \text{ min}^{-1}$

Un motor de corrent continu d'imants permanents té la placa de característiques de la figura. Les pèrdues mecàniques i de les escombretes es poden considerar negligibles. La potència nominal $P_{\rm N}$ s'ha esborrat de la placa com a conseqüència d'un cop. Per tal de determinar-la es fa treballar el motor en condicions nominals i es mesura el parell, s'obté un valor de $\Gamma_{\rm N}$ = 2 N·m. Determineu:

a) La potència nominal $P_{\rm N}$. [0,5 punts]

b) El rendiment η en condicions nominals. [0,5 punts]

c) El valor de la resistència d'induït $R_{\rm i}$. [0,5 punts]

d) La velocitat a què giraria si, amb la tensió nominal d'alimentació, el parell fos nul. [1 punt]

Exercici 4 [2,5 punts]

En una màquina de soldadura de plàstic s'utilitza una resistència de potència P=1 kW a una tensió U=120 V. El cable bipolar d'alimentació té una longitud L=100 m i és d'un material de resistivitat $\rho=0.01786~\mu\Omega\cdot m$. Es vol que la caiguda de tensió del cable no superi el 3%.

a) Determineu la secció mínima que ha de tenir el cable. [1 punt]

b) Escolliu una secció normalitzada entre les següents: 4 mm², 6 mm², 10 mm², 16 mm², 25 mm², 35 mm², 50 mm²

[0,5 punt]

c) Amb la secció escollida, quina caiguda de tensió en percentatge hi haurà?

[1 punt]

Electrotècnia

sèrie 3

PAU. Curs 2005-2006

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona consta de dues opcions, A o B, entre les quals cal triar-ne una.

Primera part

Exercici 1 [2,5 punts]

[Per a cada qüestió només es pot triar una resposta. Resposta ben contestada: 0,5 punts; resposta mal contestada –0,16 punts; resposta no contestada 0 punts]

Qüestió 1

La funció lògica corresponent al diagrama de portes de la figura és:

a)
$$s = a + b$$

b)
$$s = a + b + c$$

c)
$$s = b + c$$

d)
$$s = b + \overline{c}$$

Qüestió 2

Un motor de corrent continu d'imants permanents té la següent placa de característiques:

$$P = 2400 \text{ W}$$
 $U = 200 \text{ V}$ $I = 10 \text{ A}$ $n = 1200 \text{ min}^{-1}$

Si treballa a tensió nominal i amb un corrent de 5 A, la seva velocitat serà

- a) tan alta que es trencarà
- b) superior a 1200 min⁻¹
- c) inferior a 1200 min⁻¹
- d) igual a 1200 min-1

Qüestió 3

Una màquina síncrona de 2 parells de pols connectada a una xarxa de 50 Hz gira a una velocitat de

- a) 314,16 rad/s
- b) 157,08 rad/s
- c) 104,72 rad/s
- d) 78,54 rad/s

Qüestió 4

Un motor d'inducció trifàsic té la placa de característiques adjunta. El parell nominal és:

$$P = 10 \text{ kW}$$
 $U = 400 \text{V}$ $I = 21 \text{ A}$ $n = 720 \text{ min}^{-1}$ $\cos \varphi = 0.85$ $f = 50 \text{ Hz}$

- a) 44,2 N·m
- b) 76,6 N·m
- c) 132,7 N·m
- d) 229,7 N·m

Qüestió 5

En una instal·lació la densitat de corrent màxima admesa és de σ = 6 A/mm². Si es vol alimentar un consum trifàsic de potència aparent S = 20 kVA a una tensió (composta) U = 400 V, la mínima secció normalitzada a instal·lar és:

- a) 1,5 mm²
- b) 2,5 mm²
- c) 4 mm²
- d) 6 mm²

Exercici 2 [2,5 punts]

En el circuit de la figura, amb l'interruptor obert les mesures dels voltímetres són $V_1 = 10 \text{ V}$ i $V_2 = 10 \text{ V}$. En aquestes condicions, determineu:

a) Les tensions U_1 i U_2 . [0,5 punts]

b) Les potències P_1 i P_2 entregades per les fonts. [0,5 punts]

Amb l'interruptor tancat, determineu:

c) Els corrents I_1 i I_2 entregats per les fonts. [1 punt]

d) Les mesures V_1 ' i V_2 ' dels voltímetres. [0,5 punts]

Segona part

Opció A

Exercici 3 [2,5 punts]

En el circuit de la figura, alimentat amb una tensió composta *U*, determineu:

a) Els corrents de línia $I_{\rm L}$. [1 punt]

b) La potència activa *P*. [0,5 punts]

c) La potència reactiva Q. [0,5 punts]

d) El factor de potència. [0,5 punts]

Exercici 4 [2,5 punts]

El transformador del circuit de la figura, de relació de transformació r_{t} , es pot considerar ideal. El costat de tensió menor és el 2. Determineu:

a) La tensió a la sortida U_2 . [0,5 punts]

b) El corrent l_2 a la resistència. [0,5 punts]

c) El corrent I_1 del costat 1 del transformador. [0,5 punts]

d) Les potències activa *P*, reactiva *Q* i aparent *S* del conjunt. [1 punt]

Opció B

Exercici 3 [2,5 punts]

En el circuit de la figura, la tensió *U* es manté constant en totes les circumstàncies.

Amb l'interruptor obert, es coneix la mesura del voltímetre $V_1 = 100 \text{ V}$. Determineu:

a) La tensió *U*. [1 punt]

b) La potència activa *P*. [0,5 punts]

Amb l'interruptor tancat, determineu:

c) La nova mesura del voltímetre V_1 '. [1 punt]

Exercici 4 [2,5 punts]

El circuit de la figura s'alimenta amb una tensió U = 230 V a una freqüència f = 50 Hz. Els díodes es poden considerar ideals.

- a) Dibuixeu, indicant-ne les escales, la forma d'ona de la tensió i del corrent de la resistència R.
 [1 punt]
- b) Determineu el valor màxim del corrent.

[0,5 punts]

c) Determineu la potència dissipada en la resistència.

[1 punt]