Wikipedia query Engine

EPFL

NTDS Team 2 - Fall 2019

EL Amrani Ayyoub Micheli Vincent Myotte Frédéric Sinnathamby Karthigan

Contents

- Introduction/Motivation
- Acquisition
- Exploration
- Exploitation
- Results & Limitations
- Data product

Introduction

Motivation

- Wikipedia
 - Variety of data
 - Completeness of Information
 - Rich Graph
- Graph ML:
 - Robust.
 - Leveraging hidden features and attributes
- Goal:
 - Recommend interesting pages related to the user's query desire.

Acquisition

Seealsology

https://densitydesign.github.io/strumentalia-seealsology/

Wikipedia Python AP

https://pypi.org/project/wikipedia/

Seealsology

- Seed: Machine learning, Natural language processing, Artificial intelligence, Artificial neural network, Chatbot, Intelligent agent, Data visualization
- Graph:
 - Nodes: each page
 - Edges: from the "See also section"
- Keywords extraction through TF-IDF

Exploration

NetworkX

https://networkx.github.io/documentation/stable/

WordCloud

https://amueller.github.io/word_cloud/

Graph Properties

- Connected Components & Diameter
- Sparsity & Degree distribution

Exploration - Graph Properties

Key properties:

- Connected Graph
- 1166 nodes & 1439 edges
- Diameter of 9

Exploration - Graph Properties

Sparsity of the original graph (left) and its pruned version (right)

Degree distributions (log-log scale) of the original graph (left) and its pruned version (right)

Exploration

NetworkX

https://networkx.github.io/documentation/stable/

WordCloud

https://amueller.github.io/word_cloud/

Graph Properties

- Connected Components & Diameter
- Sparsity & Degree distribution
- Type of Graph Identification

Exploration - Type of Graph Identification

Degree distributions (log-log scale) of the original network (left) and its best fit approximation that follows a powerlaw (right)

Exploration

NetworkX

https://networkx.github.io/documentation/stable/

WordCloud

https://amueller.github.io/word_cloud/

Graph Properties

- Connected Components & Diameter
- Sparsity & Degree distribution
- Type of Graph Identification
- Nodes Properties
 - Clustering Coefficients
 - Centrality

Exploration -Nodes Properties

Distribution of the clustering coefficient of nodes

Distribution of the average centrality among communities

Exploration

NetworkX

https://networkx.github.io/documentation/stable/

WordCloud

https://amueller.github.io/word_cloud/

- Graph Properties
 - Connected Components & Diameter
 - Sparsity & degree distribution
- Type of Graph Identification
- Nodes Properties
 - Clustering Coefficients
 - Centrality
- Analysis Of Nodes Attributes

Exploration – Nodes Attributes Analysis

WordCloud performed on nodes attributes (keywords extracted from pages summaries)

fastText

https://arxiv.org/abs/1607.04606 https://fasttext.cc/docs/en/english-vectors.html

Node2Vec

<u>https://cs.stanford.edu/~jure/pubs/node2vec-kd</u> <u>d16.pdf</u>

https://github.com/eliorc/node2vec

Models - Node Embeddings

- Spectral Clustering
- Node2Vec
- FastText walks

fastText

https://arxiv.org/abs/1607.04606 https://fasttext.cc/docs/en/english-vect ors.html

Node2Vec

<u>https://cs.stanford.edu/~jure/pubs/node2vec-kd</u> <u>d16.pdf</u>

https://github.com/eliorc/node2vec

Spectral Clustering

- We compute the eigenvectors u1, u2, ..., uk associated with the k smallest eigenvalues of the normalized laplacian of our graph.
- We set $U_k = [u1|u2|...|uk] \in RN \times k$
- Embed the i-th node to the normalized i-th entry of U_k

fastText

https://arxiv.org/abs/1607.04606 https://fasttext.cc/docs/en/english-vecors.html

Node2Vec

<u>https://cs.stanford.edu/~jure/pubs/node2vec-kd</u> <u>d16.pdf</u>

https://github.com/eliorc/node2vec

Node2Vec

- Random Walks
- Word2Vec

fastText

https://arxiv.org/abs/1607.04606 https://fasttext.cc/docs/en/english-vectors.html

Node2Vec

https://cs.stanford.edu/~jure/pubs/node2vec-kd d16.pdf

<u> https://github.com/eliorc/node2vec</u>

fastText walks

```
Input:

An embedding map M. A node n_{source}.

A list of walks L starting from n_{source}.

Output: A new embedding for n_{source}.

buffer = empty_list()

for walk in L do

source_contribution = source_weight \times M(n_{source});

walk_contribution =

\frac{1-source\_weight}{length(walk)-1} \times \sum_{i=1}^{length(walk)} M(walk[i]);

new_embedding = source_contribution +

walk_contribution;

buffer.append(new_embedding);

end

return buffer.mean()

Algorithm 1: Walk averaged node embedding
```


fastText

https://arxiv.org/abs/1607.04606 https://fasttext.cc/docs/en/english-vectors.html

Node2Vec

<u>https://cs.stanford.edu/~jure/pubs/node2vec-kd</u> <u>d16.pdf</u>

https://github.com/eliorc/node2vec

Recommendation algorithm

- Query embedding
- Recommendation

Results

- Quantitative
 - o Link Prediction
- Qualitative
 - o Queries
 - Clustering

Result - Queries

Model	Result: cosine score
Node2Vec	machine learning: 0.99
	machine learning in bioinformatics: 0.83
	explanation-based learning: 0.77
	one-shot learning: 0.75
	model selection: 0.69
	quantum machine learning: 0.69
	quantum image: 0.68
	hyperparameter optimization: 0.67
	quantum annealing: 0.66
	automated machine learning: 0.65
	machine learning: 0.99
	machine learning in bioinformatics: 0.91
	explanation-based learning: 0.83
	one-shot learning: 0.55
Spectral	automated machine learning: 0.42
Spectral	gene expression programming: 0.37
	quantum machine learning: 0.35
	weak ai: 0.33
	parallel distributed processing: 0.31
	hyperparameter optimization: 0.31
	automated machine learning: 0.86
	machine learning: 0.86
	quantum machine learning: 0.85
	rule-based machine learning: 0.85
FastText	applications of machine learning: 0.84
rasticat	machine learning in bioinformatics: 0.84
	computer-assisted language learning: 0.82
	never-ending language learning: 0.81
	representation learning: 0.81
	virtual world language learning: 0.81

Model	Result: cosine score
Node2Vec	natural language processing: 0.77
	artificial intelligence: 0.74
	1 the road: 0.67
	spoken dialogue system: 0.65
	truecasing: 0.65
	philosophy of artificial intelligence: 0.64
	printing press check: 0.63
	computer-assisted reviewing: 0.62
	foreign language writing aid: 0.62
	natural language user interface: 0.62
	natural language processing: 0.72
	artificial intelligence: 0.69
	1 the road: 0.53
	automated essay scoring: 0.53
Cnastral	biomedical text mining: 0.53
Spectral	language and communication technologies: 0.53
	language technology: 0.53
	spoken dialogue system: 0.53
	transformer (machine learning model): 0.53
	truecasing: 0.53
FastText	natural language processing: 0.92
	natural-language processing: 0.90
	philosophy of artificial intelligence: 0.89
	marketing and artificial intelligence: 0.88
	natural computation: 0.88
	artificial development: 0.87
	computational models of language acquisition: 0.87
	existential risk from artificial general intelligence: 0.87
	personality computing: 0.87

"artificial intelligence, natural language processing" (Top)

"Machine Learning" (Left)

Model	Result: cosine score
Node2Vec	None (not in the corpus)
Spectral	None (not in the corpus)
FastText	cash transfers: 0.74 redistribution of income and wealth: 0.67 revenue shortfall: 0.66 negative income tax: 0.65 universal credit: 0.65 fairtax: 0.64 post-scarcity economy: 0.64 consumer demand tests (animals): 0.63 guaranteed minimum income: 0.63 working time: 0.63

"Money money money"

Results - Clusters

Limitations

- Graph acquisition
 - Insightful graph
- User-Friendliness
 - o Out-of-Corpus
- Scalability
 - Laplacian Computation

Data Product

Interactive Data visualisation implemented with Dash by Plotly

Link: ec2-18-219-204-33.us-east-2.compute.amazonaws.com

Conclusion

- Powerful in extracting meaningful recommendations
 - Strength of the embeddings
- Exploitation of the graph structure
 - All methods
- Exploitation of the semantic content
 - FastText
- Improvable
 - more data to construct the attributes

Ressources

Seealsology

https://densitydesign.github.io/strumentalia-seealsology/

Wikipedia Python API

https://pypi.org/project/wikipedia/

fastText

https://arxiv.org/abs/1607.04606

https://fasttext.cc/docs/en/english-vectors.html

Node2Vec

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

https://github.com/eliorc/node2vec

Dash by Plotly

https://plot.ly/dash/

