Masters thesis topic

Structure

Introduction

The problem

Identify the cause

Collinearity

Classification

Introduction

Overview

$$S_{\kappa} = \frac{1}{V} \int_{A} \mathbf{q} \cdot d\mathbf{A} = -2 \frac{\kappa}{r} \frac{\partial T}{\partial r}$$

$$\int_{A} \mathbf{q} \cdot d\mathbf{A} = \frac{3 p}{2 \tau_{E}}$$

The problem

Energy confinement time

$$\tau_{\text{E,th}} = \alpha_0 I_{\text{p}}^{\alpha_I} B_{\text{t}}^{\alpha_B} \overline{n}_{\text{e}}^{\alpha_B} P_{\ell,\text{th}}^{\alpha_P} R_{\text{geo}}^{\alpha_R} \kappa_{\text{a}}^{\alpha_K} \epsilon^{\alpha_E} M_{\text{eff}}^{\alpha_M}$$

Progression of regression coefficients

Database	αO	al	аВ	αР	an	aM	aR	ae	ak	no_of_points
DB2.8	0.0913	0.776	0.323	-0.666	0.437	0.189	2.22	0.578	0.4	1310
DB2.8 ITER	0.136	0.963	0.147	-0.664	0.334	0.3	1.84	0.372	0.6	732
DB4	0.115	0.794	0.251	-0.616	0.389	0.0646	1.97	0.712	0.471	3237
DB4 ITER	0.157	1.06	-0.0129	-0.615	0.322	0.155	1.59	0.378	0.725	2275
DB5.2.3	0.128	1.13	0.0724	-0.683	0.175	0.214	1.45	0.0636	0.28	6250
DB5.2.3 ITER	0.147	1.38	-0.182	-0.669	0.112	0.303	1.07	-0.136	0.712	5220

Identify the cause

Optimisation problem

Minimize
$$\ell_2$$

Maximize
$$|\alpha_{R_{no_dev}} - \alpha_{R_{dev}}|$$
 s.t $\alpha_{R_{dev}} < \alpha_{R_{no_dev}}$

7

Multi-collinearity

Uncorrelated clusters

N (dimensionality of predictor space)
clusters provide sufficient data to
determine a pseudo stable
regression hyperplane

Correlated variables

$$y = 2x$$

 It is clear that the smallest deviations in data cause wild fluctuations in coefficients

Classification

- Can we find a well defined boundary in a (to be determined) feature space
- Can we make sense of that boundary
 - Physically
 - With a data driven relation