

तेल एवं गैस उत्पादन प्रौद्योगिकी संस्थान Institute of Oil and Gas Production Technology

पनवेल, नवी मुंबई Panvel, Navi Mumbai

Project Report

on

असम परिसंपत्ति में आर.डी.एस जी.जी.एस-3 के संचालन को आर.डी.एस जी.जी.एस-2 में स्थानांतरण करने के लिए साध्यता अध्ययन

Feasibility Study to Migrate RDS GGS-3 Operations to RDS GGS-2, Assam
Asset

तेल एवं गैस उत्पादन प्रौद्योगिकी संस्थान

Institute of Oil and Gas Production Technology

पनवेल, नवी मुंबई Panvel, Navi Mumbai

कं.सं.: IO.22I.PT_SB.011S

दिनांक: 05/12/2022

विषय: असम परिसंपत्ति में आर.डी.एस जी.जी.एस-3 के संचालन को आर.डी.एस जी.जी.एस-2 में स्थानांतरण करने के लिए साध्यता अध्ययन

Subject: Feasibility Study to Migrate RDS GGS-3 Operations to RDS GGS-2, Assam Asset

" असम परिसंपत्ति में आर.डी.एस जी.जी.एस-3 के संचालन को आर.डी.एस जी.जी.एस-2 में स्थानांतरण करने के लिए साध्यता अध्ययन "रिपोर्ट की प्रति आपके अवलोकनार्थ संलग्न है।

Please find enclosed a copy of the report on "Feasibility Study to Migrate RDS GGS-3 Operations to RDS GGS-2, Assam Asset" for your kind perusal.

एन . बी . जोशी N. B. Joshi Head of Department, SF & PE

वितरण / Distribution:

- 1. परिसंपत्ति प्रबंधक, असम परिसंपत्ति / Asset Manager, Assam Asset
- 2. भूतल प्रबंधक, असम परिसंपत्ति / Surface Manager, Assam Asset
- 3. आईओजीपीटी समन्वयक, असम परिसंपत्ति / IOGPT Coordinator, Assam Asset

तेल एवं गैस उत्पादन प्रौद्योगिकी संस्थान

Institute of Oil and Gas Production Technology

पनवेल, नवी मुंबई Panvel, Navi Mumbai

<u>Project No: IO.221.PT_SB.011S</u> **Acc No:** 3072

असम परिसंपत्ति में आर.डी.एस जी.जी.एस-3 के संचालन को आर.डी.एस जी.जी.एस-2 में स्थानांतरण करने के लिए साध्यता अध्ययन

Feasibility Study to Migrate RDS GGS-3 Operations to RDS GGS-2, Assam Asset

कार्यकेंद्र : असम परिसंपत्ति Work Centre: Assam Asset

मुख्य अन्वेषक अमन शर्मा , सहायक कार्यकारी अभियंता (उत्पादन)

Chief Investigator Aman Sharma, AEE(P)

सह-अन्वेषक पी. वी. खेरोद्कर, महाप्रबंधक (उत्पादन)

Co-investigator P. V. Kherodkar, GM(P)

मनीष कुमार गुप्ता, अधीक्षण अभियंता (उत्पादन)

Manish Kumar Gupta, SE(P)

प्रभारी वी. के. सिंह, महाप्रबंधक (उत्पादन)

Incharge V. K. Singh, GM(P)

<u>कार्य संघ</u> आर. के. सिन्हा, मुख्य- महाप्रबंधक (उत्पादन) , असम परिसंपत्ति

Work Association R.K. Sinha., CGM(P), Assam Asset

समीक्षित एन.बी.जोशी , मुख्य-महाप्रबंधक (उत्पादन) - विभागाध्यक्ष

Reviewed by N. B. Joshi , CGM (P) – HOD

अनुमोदित: रजीव निस्चल, समूह महाप्रबंधक-संस्थान प्रमुख

Approved by Rajiv Nischal , GGM-HOI

Institute of Oil and Gas Production Technology

Panyel. Navi Mumbai

Executive Summary

This pertains to the project titled "Feasibility Study to Migrate RDS GGS-3 Operations to RDS GGS-2" taken up by IOGPT as a scheduled project under AWP 2022-23.

The existing facilities at GGS-2 are revamped in the year 2010. However, the existing GGS-3 commissioned in the year 1976 is very old and its facilities are deteriorating day-by-day. Asset wants to explore the feasibility of migrating the GGS-3 operations to GGS-2, which is expected to result in less OPEX, less manpower requirement and lower statutory compliance liability.

Simulation studies have been carried out using Aspen HYSYS process simulator and Pipesim software to review adequacy of the existing facilities to process the combined load of the two GGSs and to conceptualize additional facilities required, if any, at GGS-2. The study reveals that the existing 2-phase HP separator of GGS-2 is inadequate, to overcome which a new HP separator has been conceptualized at GGS-2. Further, as per IOGPT study for RDS redevelopment; ETP, GCP and flare system were found inadequate and have already been recommended for up-gradation. However, same recommendations were revisited considering additional flow from GGS-3, and as per study, flare system will need further up-gradation.

Additionally, two separate well-fluid lines, one for HP well-fluid and one for LP-well fluid, have been envisaged to route the well fluid from GGS-3 headers to GGS-2 headers. Also, a test line from GGS-3 test header to GGS-2 test header is envisaged to facilitate well testing. In order to supply gas from GGS-2 to the existing GGS-3 gas consumers, a pipe line is conceptualized from MP KOD of GGS-2 to GGS-3.

Details of the study have been elaborated in the report.

Rajiv Nischal,

Rajiv Nischal

GGM-HOI IOGPT

Contents

1.0	Background	01
2.0	Scope of Work	01
3.0	Basic of Study	01
4.0	Simulation Study & Scheme Conceptualization	06
5.0	Summary & Conclusion	11
6.0	Annexures	12

1. Background

Rudrasagar Field of Assam Asset consists of Rudrasagar GGS-1, Rudrasagar GGS-2, GCP & ETP, Rudrasagar GGS-3, Rudrasagar GGS-4 and Charali GGS. The existing facilities at GGS-1 and GGS-2 are revamped in the year 2010. Existing GGS-3 commissioned in the year 1976 is very old and has operational problems. Asset wants to explore feasibility of migrating the GGS-3 operations to GGS-2, which will result in less OPEX, less manpower requirement and lower statutory compliance liability. Hence, Asset wants to check the feasibility study to mitigate RDS GGS-3 operations to RDS GGS-2.

2. Scope of Work

- Study of the existing facilities and operations at RDS GGS-2 and RDS GGS-3
- Simulation study for diverting well-fluid and export products
- Pros and cons of unmanning RDS GGS-3

3. Basis of Study

The input data for this study like long-term production profile, gas composition, crude oil analysis etc. are provided by the Asset. The design basis considered for the surface facilities is briefed below:

3.1. Long term production profile of GGS-2 is given below in Table 3.1

		Tab	le 3.1: Pr	oduction pr	ofile of Ru	ıdrasagar G	GS-2		
Year	Drilling Input OP	Liquid m³/d	Oil m³/d	Gas SCMD	Water m³/d	Injection Gas SCMD	Total Gas (AG+IG) SCMD	Annual Oil, MMt	Annual Gas, MMm³
2021-22		827	117	61080	710	165400	226480	0.037	22.29
2022-23	1	861	118	60585	743	172249	232834	0.038	22.11
2023-24	2	938	135	65650	803	187578	253228	0.043	23.96
2024-25	1	1170	156	72356	1014	234058	306414	0.050	26.41
2025-26		1170	158	72359	1012	234058	306416	0.051	26.41
2026-27	1	1198	153	55067	1045	239537	294604	0.049	20.10
2027-28		1198	148	53292	1050	239537	292829	0.047	19.45
2028-29	1	1232	145	52271	1087	246386	298657	0.046	19.08
2029-30		1232	143	51328	1089	246386	297714	0.046	18.73
2030-31	1	1259	138	49842	1121	251866	301707	0.044	18.19
2031-32		1259	135	48470	1125	251866	300335	0.043	17.69
2032-33	1	1287	131	47203	1156	257345	304548	0.042	17.23
2033-34		1287	128	46034	1159	257345	303380	0.041	16.80
2034-35	1	1314	125	44955	1189	262825	307780	0.040	16.41
2035-36		1314	122	43960	1192	262825	306784	0.039	16.05
2036-37		1314	113	40575	1201	262825	303399	0.036	، 14.81

2037-38		1314	104	37450	1210	262825	300275	0.033	13.67
2038-39		1314	96	34567	1218	262825	297391	0.031	12.62
2039-40		1314	89	31905	1225	262825	294730	0.028	11.65
Total	9							0.785	353.67

3.2. Long term production profile of GGS-3 is given below in Table 3.2

		Tab	le 3.2: Pr	oduction pro	ofile of Ru	drasagar G	GS-3		
Year	Drilling Input OP	Liquid m³/d	Oil m³/d	Gas SCMD	Water m³/d	Injection Gas SCMD	Total Gas (AG+IG) SCMD	Annual Oil, MMt	Annual Gas, MMm³
2021-22		208	116	16629	92	41600	58229	0.037	6.07
2022-23		208	107	15349	101	41600	56949	0.034	5.60
2023-24		208	99	14167	109	41600	55767	0.032	5.17
2024-25	1	242	100	14360	143	48449	62810	0.032	5.24
2025-26		242	101	14539	142	48449	62988	0.032	5.31
2026-27	1	276	101	14704	175	55299	70002	0.032	5.37
2027-28		276	102	14856	174	55299	70154	0.033	5.42
2028-29		276	94	13712	182	55299	69010	0.030	5.00
2029-30		276	87	12656	189	55299	67955	0.028	4.62
2030-31		276	80	11681	196	55299	66980	0.026	4.26
2031-32		276	74	10782	202	55299	66081	0.024	3.94
2032-33		276	68	9952	208	55299	65250	0.022	3.63
2033-34		276	63	9186	213	55299	64484	0.020	3.35
2034-35		276	58	8478	218	55299	63777	0.019	3.09
2035-36		276	54	7825	223	55299	63124	0.017	2.86
2036-37		276	50	7223	227	55299	62521	0.016	2.64
2037-38		276	46	6667	231	55299	61965	0.015	2.43
2038-39		276	42	6153	234	55299	61452	0.014	2.25
2039-40		276	39	5680	237	55299	60978	0.012	2.07
Total	2							0.474	78.33

3.3. Gas composition (Attached at Annexure-II)

Table 3.3: Gas composition									
	Rudrasagar	Rudrasagar	Rudrasagar	Rudrasagar	GCP				
Components (Mole %)	GGS-1	GGS-2	GGS-3	GGS-4	GCF				
Methane	89.13	92.08	82.73	94.09	92.08				
Ethane	3.88	3.29	6.42	2.39	3.29				
Propane	2.26	1.63	5.33	1.10	1.63				
i-Butane	0.67	0.51	1.30	0.30	0.51				
n-Butane	0.95	0.58	1.64	0.41	0.58				
i-Pentane	0.36	0.10	0.51	0.10	0.10				
n-Pentane	0.12	0.04	0.27	0.08	0.04				
n-Hexane+	1.09	0.61	0.45	0.28	0.61				

CO2	1.42	1.04	1.25	1.15	1.04
Nitrogen	0.12	0.12	0.10	0.10	0.12
Mol. Wt.	19.35	18.23	20.79	17.62	18.23

3.4. Crude oil analysis are attached at **Annexure-II**.

3.5. Existing surface facilities of RDS GGS-2

Asset informed that GGS-2 is revamped in the year 2010 and desires for adequacy check of the installation considering peak quantities as per the profile.

i. Existing Process:

Well fluid from wells are received at the GGS-2 installation in four separate headers namely HP, MP, LP and test headers. Presently, there are two trains. Each train comprises of facilities, i.e., MP well fluid-produced water exchanger, LP well fluid-treated crude exchanger, bath heater having three coils (MP, LP and test), MP and LP separators, MP and LP KOD, heater treater.

Well-fluid from MP header is diverted to well fluid/ produced water heat exchanger, where it is preheated with hot produced water from the heater treater. After preheating, well-fluid is sent to MP coil in water bath heater for heating to ~50-60 °C. Well-fluid from bath heater flows into MP separator for processing. Gas separated in MP separator is sent to GCP located near GGS-2 for further compression and also to CPP. Liquid from MP separator joins LP liquid at the inlet of the LP separator.

From LP header, well-fluid is preheated in well fluid/crude oil heat exchanger, where it exchanges heat with hot crude oil from heater treater. Pre-heated well-fluid from heat exchanger is fed into LP coil of water bath heater. After heating to ~ 50-60 °C in bath heater, it is sent for processing in LP separator along with liquid received from MP separator. Gas from LP separator is fed to fuel gas header. Liquid from LP separator is sent to heater treater for heating up to ~ 70 °C. The treated crude oil from heater treaters is sent via LP well fluid/crude oil heat exchanger to storage tank and pumped to DJP via existing pipeline. The produced water from heater treaters is sent to ETP.

Well fluid from HP header is routed to HP separator for separation of gas and liquid. The separated gas from HP separator is routed to HP KOD for separation of carried over liquid, if any. The gas from HP KOD is routed to common gas header which feeds to CPP, town gas and grid gas (GCP-Lakwa via DJP). The liquid from HP separator and HP KOD is routed to MP separator. The schematic of oil and gas processing facilities at GGS-2 is shown in Figure 3.1.

Figure 3.1: Schematic of existing oil and gas processing facilities of Rudrasagar GGS-2

- ii. Other design parameters considered in the study
 - Operating pressure & temperature of HP separator at GGS-2: 14-15 kg/cm²g & 25-30 °C
 - Operating pressure & temperature of MP separator at GGS-2: 5.0-6.0 kg/cm²g & 25-30 °C
 - Operating pressure & temperature of LP separator: 3.0-4.5 kg/cm²g & 25-30 °C

3.6. Existing surface facilities of RDS GGS-3

As per Asset all the facilities at GGS-3 are very old and and its facilities are deteriorating day-by-day. Well fluid from wells are received at the GGS-3 installation in three separate headers namely HP, LP and test headers.

- A. Other design parameters considered in the study
 - Operating pressure & temperature of HP separator: 14.0-15.0 kg/cm2g & 25-30 0C
 - Operating pressure & temperature of LP separator: 3.0-4.5 kg/cm2g & 25-30 0C
- B. Present sales gas details:

Presently, sales gas is supplied to various consumers at GGS-3. The quantities of sales gas to various local consumers are as follows:

- AGCL consumer: 6,500 SCMD
- SVS colony: 4,500 SCMD
- CISF colony: 5,500 SCMD

- Remaining gas is routed to RDS GCP-Lakwa grid pipeline. Presently 9,000 SCMD gas is being routed to grid pipeline.
- **3.7.** Lift gas requirement: As per profile, the envisaged peak lift gas quantity requirement are 2.63 LSCMD for GGS-2 and 0.55 LSCMD for GGS-3.
- **3.8.** Product specification:
 - Stabilized oil at the outlet of heater treater: < 0.2% BS & W in treated oil
- **3.9.** A detailed pipeline routing map of RDS field (placed at Annexure –III)

4. Simulation study & Scheme Conceptualization

4.1. Capacity of the installations

Capacities of various facilities at the installations are firmed up on the basis of envisaged maximum quantity of liquid, oil, gas and water as per the production profile and the details are shown in Table 4.1.

Tal	Table 4.1: Peak quantity of oil, gas & produced water envisaged at each installation									
Installations	Liquid, m ³ /day	Oil, m³/d	Water, m ³ /d	Gas,	Inj. Gas,	Total Gas (Gas+ Inj				
Ilistaliations	Liquid, myday	Oii, iii%u	vvaler, m/u	LSCMD	LSCMD	Gas), LSCMD				
GGS-2	1314	158	1225	0.72	2.63	3.08				
GGS-3	276	107	237	0.15	0.55	0.71				

Note:

- GCP & ETP are located near GGS-2.
- Gas from GGS-1, 2, 3 and 4 is routed to GCP located near GGS-2 for lift gas compression.
- Effluent water from GGS-1, 2, 3 & 4 and Charali GGS is routed to ETP located near GGS-2 for further treatment and injection/disposal.

4.2. Simulation study overview

Simulation has been done in the study for the peak combined load of GGS-2 and GGS-3 well-fluids. Simulation has been done for following points:

- a. Sizing of pipeline from GGS-3 header to GGS-2 header
- b. Adequacy check of surface facilities at GGS-2 for combined well-fluid load
- c. Sales gas supply scheme to GGS-3 consumers

4.3. Sizing of pipelines from GGS-3 to GGS-2

Presently there are 5 wells at GGS-3 and additional 2 new wells are expected in future. Out of the existing 5 wells, 2 high pressure wells are in self flow mode and 3 low pressure wells are in SRP mode. It has been also indicated in the profile that the 2 new wells will come in HP mode. A distance of 10.015 km between GGS-2 and GGS-3 is considered in the study for the back-pressure calculation.

Simulation study has been done in Pipesim software for calculating the maximum back pressures at the well head after routing the well- fluid from GGS-3 header to GGS-2 header. The results of the study are shown in Table 4.2.

				Ta	able 4.2 V	Well-wise back press	sure at GGS-3 wells i	in various sce	narios		
SN	Well	Lift Mode	Current	Current Q,	Current	Current well head	Back pressure at the	Pressure drop	Lift gas quantity	Future well head	Pressure drop in pipeline
	No.		Q, oil	water	Q, gas	pressure corresponding	well head after diverting	in pipeline (HP	(*), m3/d	pressure after	(HP line: 6" x 10 km & LP
			(m^3/d)	(m ³ /d)	(m^3/d)	to separator pressure of	wells to GGS-2	line: 6" x 10 km	(Q liquid after	diverting wells	line: 8" x 10 km), kg/cm ²
						GGS-3 (HP-14 ksc, LP-5	(HP separator pr: 10	& LP line: 8" x	gas lift)	with lift gas,	
						ksc), kg/cm2	ksc, LP sep. Pr.: 4.5 ksc)	10 km), kg/cm ²		kg/cm2,	
1	R-191-	Self				15 - ABP	13.2	3.2	2244	14.0	4.0
	HP		62.0	15.8	8612				(63)		
	(THP:		02.0	10.0	0012						
	70 ksc)										
2	R-192-	Self				15 - ABP	13.2	3.2	2244	14.1	4.1
	HP		60.0	21.8	8545				(63)		
	(THP:		00.0		00.0						
	50 ksc)										
3	R-194-	SRP	29.5	27.7	500	-	5.8	1.3	8000	5.9	1.4
	LP								(29.5)		
4	R-84A-	SRP	7.2	2.4	700	-	5.7	1.2	30123	6.5	2.0
	LP								(18)		
5	R-075-	SRP	29.5	27.4	500	-	5.8	1.3	8000	5.9	1.4
	LP								(29.5)		
6	New	Self	34	-	-	-	12.7	2.7	2244	13.7	3.7
	Well-1-		(Future)						(34)		
	HP	0 16					10.5		2244		
7	New	Self	34	-	-	-	12.7	2.7	2244	13.7	3.7
	Well-2-		(Future)						(34)		
Nata.	HP										

Note:

- 1. (*) Lift gas rates are taken from the report, "Selection Of Suitable Artificial Lift Mode For The Wells Of GGS-3 RDS", issued in July 2022 from IOGPT.
- 2. Flow rates for new wells is calculated from the long term profile

From Table 4.2, following can be summarized:

- 1. For HP well-fluid, one 6" line will be required from GGS-3 to GGS-2, which will result in maximum back-pressure of 14.1 ksc at the well head.
- 2. For LP wells, one 8" line will be required from GGS-3 to GGS-2, which will result in maximum back-pressure of 6.5 ksc at the well head.
- 3. For the testing of wells, one 4" line is needed from GGS-3 test header to GGS-2 test header.

4.4. Adequacy Check of Surface facilities for Rudrasagar GGS-2

A simulation model for existing surface facilities of GGS-2 was developed in Aspen HYSYS process simulator. In the study, combined well fluid load of GGS-2 and GGS-3 are considered.

A. Peak well fluid considered for adequacy check of Rudrasagar GGS-2 is shown in Table 4.3 below:

	Table 4.3 : Peak quantities of Rudrasagar GGS-2								
Ac par profile	Well fluid from wells of GGS-2								
As per profile	Total	HP header	MP header	LP header					
Peak Liquid, m ³ /d	1314		946	369					
Peak Oil, m ³ /d	158		120	51					
Peak Water, m ³ /d	1225		894	331					
Asso. Gas, LSCMD	0.72	0.19	0.43	0.18					
Lift gas, LSCMD	2.63								
Total Gas, LSCMD	3.08								

B. Peak well fluid considered for adequacy check of Rudrasagar GGS-3 is shown in Table 4.4 below:

	Table 4.4 : Peak quantities of Rudrasagar GGS-3									
Ac per profile	Well fluid from wells of GGS-3									
As per profile	Total	HP header	LP header							
Peak Liquid, m ³ /d	276	200	76							
Peak Oil, m ³ /d	107	165	72							
Peak Water, m ³ /d	237	93	14							
Asso. Gas, LSCMD	0.15	0.14	0.014							
Lift gas, LSCMD	0.55									
Total Gas, LSCMD	0.71									

C. Peak well fluid considered for adequacy check of Rudrasagar GGS-2 is shown in Table 4.5 below:

Table 4.5 : Combined peak production of RDS GGS-2 and RDS GGS-3								
As per profile		Well fluid from wells of GGS-2 and GGS-3						
As per profile	Total	HP header	MP header	LP header				
Peak Liquid, m ³ /d	1590	200	946	445				
Peak Oil, m ³ /d	265	165	120	123				
Peak Water, m ³ /d	1462	93	894	345				
Asso. Gas, LSCMD	0.87	0.33	0.43	0.194				

Lift gas, LSCMD	3.18	 	
Total Gas, LSCMD	3.79		

D. Adequacy check of surface facilities at RDS GGS-2:

Considering combined well-fluid production of RDS GGS-2 and GGS-3, adequacy check of GGS-2 was carried out, result of which is shown in Table 4.6.

	Table 4.6: Adequacy che	ck of Rudrasagar GGS-2	
Equipment	Existing Size / Capacity / Duty	Required Size / Capacity / Duty	Remarks
MP well fluid- produced water heat exchanger	0.76 MMkcal/hr	0.25 MMkcal/hr (each)	Adequate
LP well fluid-treated crude heat exchanger	0.133 MMkcal/hr	0.08 MMkcal/hr (each)	Adequate
Bath heater (MP, LP and test coils) 02-FF-101A/B	1.63 MMkcal/hr (each bath heater	MP /LP Well fluid inlet/outlet op. temperature: 40 / 60 °C Test well fluid Inlet/Outlet op. temperature: 30 / 60 °C 1.07 MMkcal/hr (each)	Adequate
HP separator	Dia: 1.0 m Height:2.5 m Feed Nozzle: 6", Gas Outlet Nozzle: 4", Liquid outlet Nozzle: 2"	Dia: 1.0 m Height:3.0 m Feed Nozzle: 4", Gas Outlet Nozzle: 4", Liquid outlet Nozzle: 2"	Indequate
HP KOD	Dia: 0.9 m Height:2.25 m Feed Nozzle: 4", Gas Outlet Nozzle: 4", Liquid outlet Nozzle: 1.5"	Dia: 0.9 m Height:1.8 m Feed Nozzle: 4", Gas Outlet Nozzle: 3", Liquid outlet Nozzle: 1"	Adequate
MP Separator A/B	Dia:1.6 m Height:4.8 m, Feed Nozzle: 8", Gas Outlet Nozzle: 6", Liquid outlet Nozzle: 3"	Dia:1.6 m Height:3.2 m, Feed Nozzle: 4", Gas Outlet Nozzle: 2", Liquid outlet Nozzle: 3"	Adequate
MP KOD A/B	Dia:1.0 m Height:2.5 m, Feed Nozzle: 6", Gas Outlet Nozzle: 6", Liquid outlet Nozzle: 1.5"	Dia:1.0 m Height:1.8 m, Feed Nozzle: 3", Gas Outlet Nozzle: 2", Liquid outlet Nozzle: 1"	Adequate
LP Separator A/B	Dia:1.6 m Height:4.8 m, Feed Nozzle: 6", Gas Outlet Nozzle: 6", Liquid outlet Nozzle: 4"	Dia:1.6 m Height:3.8 m, Feed Nozzle: 4", Gas Outlet Nozzle: 2", Liquid outlet Nozzle: 3"	Adequate
LP KOD A/B	Dia:1.0 m Height:2.5 m, Feed Nozzle: 6", Gas Outlet Nozzle: 6", Liquid outlet Nozzle: 1.5"	Dia:1.0 m Height:1.8 m, Feed Nozzle: 3", Gas Outlet Nozzle: 2", Liquid outlet Nozzle: 1"	Adequate
Heater Treater (2 no.)	2 x 1080 m³/day (45 m³/hr); total: 2160 m³/day heat duty (each): 2.6 MMkcal/hr	Op. pressure: 2.5 kg/cm ² g Inlet/Outlet temp:60-70 °C heat duty (each): 0.46 MMkcal/hr	Adequate

Crude Storage Tanks	4200 m ³ (1 x 2000 m ³ , 5 x 400 m ³ , 1 x 200 m ³)	993 m³ (Considering 3 days storage; 80% filling capacity)	Adequate
Crude transfer pumps	100 m ³ /hr (1 operating+1 standby	66 m ³ /hr (Considering 4-5 hrs pumping)	Adequate
Line from GGS-2 to GCP	6" line of 500 m	10" line of 500 m	Inadequate, a 10" line is required
Enclosed Ground Flare system	11,200 kg/hr (~3.27 LSCMD)	7.58 LSCMD (peak load) (Gas to GCP-GG S-2: 6.71 LSCMD lift gas+GGS-2 associated gas + GGS-3 associated gas)	Inadequate, Asset may contact vendor for scale up of existing ground flare system.

Remarks:

- 1. Fire water requirement is calculated based on crude storage tank area of GGS and single compressor shed area of GCP. Considering single major fire scenario, fire water requirement is found adequate based on guidelines in OISD-189. As per OISD-189, for calculating fire water flow rate for compressor shed of GCS/GCP, the shed area should be divided into suitable number of segments so that maximum water requirement can be optimized. However, the fire water requirement needs to be reviewed and worked out considering the new compressor facilities and GDU envisaged in GCP during detailed engineering.
- 2. As per IOGPT study for RDS redevelopment; ETP, GCP and flare system were found inadequate and are being recommended for up-gradation. Same recommendations were revisited considering additional flow from GGS-3, and it has been found that flare system will need further up-gradation.

4.5. Sales gas supply scheme to GGS-3 consumers:

Two options have been explored for sales gas supply to consumers of GGS-3 gas:

Option-1: Route the gas from GGS-2 (MP KOD) to GGS-3 for sales using the existing gas metering system and existing pipeline network

Basis:

- MP KOD at GGS-2 will operate at 5 6 kg/cm2g
- Distance between GGS-2 and GGS-3 is 3 km
- Pressure required at GGS-3 for sales gas supply is 4 kg/cm2g

A single 6" pipeline can be used to route the sales gas from the MP KOD of GGS-2 to the sales gas header at GGS-3 end, which will result in maximum backpressure of 4.8 kg/cm² at the GGS-3 end. Exiting metering facility can be used at GGS-3 for metering the sales gas to the consumers.

Option-2: Use the DJP (junction point) to tap gas for consumers at GGS-3

For using the DJP junction point to supply the gas to consumers, additional facilities, viz., a KOD and Flare unit will be required. However, since the purpose of the study is to unman the RDS GGS-3, this option will defeat this objective.

Hence, option-1 is a better option in the context of unmanning the GGS. However, in Option-1, liquid-free gas from GGS-2 is to be ensured to meet sales gas quality, if required as per the sales agreement.

5. Summary and Conclusion:

The main objective of study is to migrate the operations of RDS GGS-3 to RDS GGS-2. Simulation studies have been carried out using Aspen HYSYS process simulator and Pipesim software to review adequacy of the existing facilities to process the combined load of the two GGSs and to conceptualize additional facilities required, if any, at GGS-2. The study reveals that the existing 2-phase HP separator of GGS-2 is inadequate, to overcome which a new HP separator has been conceptualized at GGS-2.

Further, as per IOGPT study for RDS redevelopment; ETP, GCP and flare system were found inadequate and are being recommended for up-gradation. However, same recommendations were revisited considering additional flow from GGS-3, and as per study, flare system will need further up-gradation.

Based on the simulation results, following pipelines have been conceptualized in the study:

- 1. 6" x 10 km pipeline for HP well fluid from GGS-3 HP header to GGS-2 HP header
- 2. 8" x 10 km pipeline for LP well fluid from GGS-3 LP header to GGS-2 LP header
- 3. 4"x 10 km test pipeline from GGS-3 test header to GGS-2 test header for testing of GGS-3 wells.
- 4. 6" x 10 km pipeline for sales gas from GGS-2 MP KOD to GGS-3 sales gas header
- 5. 10" x 0.5 km pipeline from GGS-2 to GCP.

6. Annexures

Annexure-I

Long term oil & gas profile provided by the Asset

		F	Rudrasag	ar Production	n profile		WHAT WHE	GGS-1			Ri	ıdrasagar P	roduction pro	ofile			GGS-2	
Year	Driffing	QI	Qu	Qg	Qw	Annual Oil,	Annual Gas.	Inj Gas Regulrement	Year	Drilling Input		Qo.	Qg (scmtl)	Qw	Annual	Annual Gas	Inj Gas Requirement	
	STATE OF THE PARTY OF	(m3/d)	[(m3/d)	(scmd)	(m3/d)	MMt	MMm3	M/3/day	Section 1	OF	(m3/d)	(m3/d)		(m3/d)	(MMt)	(MMm3)	Mi3/day	
0004.00	OP .	471	54	18829	417	0.017	6.87	94200	2021-22	- Ci	827	117	61080	710	0.037	22.29	165400	1
2021-22	1	520	62	21574	458	0.017	7.87	104000	2022-23	1	861	118	60585	743	0.038	22.11	172249	1 1-21
2022-23 2023-24	1	535	69	24108	466	0.020	8.80	107000	2023-24	2	938	135	65650	803	0.043	23.96	187578	4 14 / 19/0
2023-24 2024-25	2	816	86	30243	730	0.022	11.04	163200	2023-24	1	1170	156	72356	1014	0.050	26.41	234058	Calman .
2024-25 2025-26	2	816	101	35306	715	0.020	12.89	163200	2025-26		1170	158	72359	1012	0.051	26.41	234058	(J. Jan CEST) oir)
2025-20		816	93	32587	723	0.032	11.89	163200	2026-27	1	1198	153	55067	1045	0.049	20.10	239537	CATHE CALETY
2020-21		816	86	30078	730	0.027	10.98	163200	2027-28		1198	148	53292	1050	0.047	19.45	239537	(B). St (F)
2028-29	1	843	86	30159	757	0.028	11.01	168600	2028-29	1	1232	145	52271	1087	0.046	19.08	246386	Co. Mager C
2029-30	1	877	95	33231	782	0.030	12.13	175400	2029-30		1232	143	51328	1089	0.046	18.73	246386	War
2030-31	1	904	103	36066	801	0.033	13.16	180800	2030-31	1	1259	138	49842	1121	0.044	18.19	251866	G. Sather 19/07. (Gr. SATHEESH) Manager (Persenoir)
2031-32		904	102	35686	802	0.033	13.03	180800	2031-32		1259	135	48470	1125	0.043	17.69	251866	
2032-33	1	931	101	35335	830	0.032	12.90	186200	2032-33	1	1287	131	47203	1156	0.042	17.23	257345	_
2033-34		931	100	35012	831	0.032	12.78	186200	2033-34		1287	128	46034	1159	0.041	16.80	257345	111
2034-35	1	958	99	34713	859	0.032	12.67	191600	2034-35	1	1314	125	44955	1189	0.040	16.41	262825	// /
2035-36		958	98	34438	860	0.031	12.57	191600	2035-36		1314	122	43960	1192	0.039	16.05	262825	
2036-37		958	91	31786	867	0.029	11.60	191600	2036-37		1314	113	40575	1201	0.036	14.81	262825	() (
2037-38		958	84	29338	874	0.027	10.71	191600	2037-38		1314	104	37450	1210	0.033	13.67	262825	
2038-39		958	77	27079	881	0.025	9.88	191600	2038-39		1314	96	34567	1218	0.031	12.62	262825	G. Venleteshular
2039-40		958	71	24994	887	0.023	9.12	191600	2039-40		1314	89	31905	1225	0.028	11.65	262825	a toshwar
Total	8		1000	1 50%		0.530	211.91	1.5	Total	9					0.785	353.67		6 / Pull = 110
			T. Cale	100 May	_													a Cinic
		F	Rudrasag	ar Production	profile			GGS-3		-	Rı	idrasagar P	roduction pro	ofile	1000000000	Commence of the last of the la	GGS-4	
	Drilling																	
	ETSLIMBLE !	OI	Da		Chu	Annual	Annual	Inj Gas		Drilling	OI			Ow	Annual	Annual	Inj Gas	
Year	Input	Q1	Qo	Og (samd)	Qw tro3(th)	OII	Gas	Inj Gas Requirement	Year	Drilling Input	QI	Qo (m3/d)	Qg (scmd)	Qw (m3/d)	011	Gas	Inj Gas Requirement	mark
Year	Input		Qo (m3/d)	ag (samd)	Qw (m3/d)			Requirement			QI (m3/d)	Qo (m3/d)	Qg (scmd)	Qw (m3/d)				wateshwarh
	DESCRIPTION OF THE PERSON NAMED IN	(m3/d)	(m3/d)		(m3/d)	OII	Gas			Input	QI	Qo (m3/d) 59	Qg (scmd)		011	Gas	Requirement	Venkateshwarh
2021-22	Input OP			Og (scmd) 16629 15349		OII (MML)	Gas (MMm3)	Requirement M3/day	Year	Input	(m3/d)			(m3/d)	Oll (MMt)	Gas (MMm3) 6.71 6.39	M3/day 85000 88000	G. Venkateshwarh G. Venkateshwarh G. Venkateshwarh
2021-22 2022-23	Input OP	(m3/d) 208	(m3/d)	16629	(m3/d) 92	OII (MML) 0.037	Gas (MMm3) 6.07	Requirement M3/dey 41600	Year 2021-22	Input	(m3/d) 425	59	18395	(m3/d) 366	Oll (MMt) 0.019	Gas (MMm3) 6.71 6.39 6.09	M3/day 85000 88000 88000	G. Venkateshwarh G. Venkateshwarh Chief Manager (Res Chief Manager)
2021-22 2022-23 2023-24	Input OP	208 208	(m3/d) 116 107	16629 15349	92 101	OII (MMt) 0.037 0.034	Gas (MMm3) 6.07 5.60	M3/day 41600 41600	2021-22 2022-23 2023-24 2024-25	Input	(m3/d) 425 440 440 689	59 56 54 71	18395 17509 16692 22131	366 384 386 618	Oil (MMt) 0.019 0.018 0.017 0.023	Gas (MMm3) 6.71 6.39 6.09 8.08	M3/day 85000 88000 88000 137849	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Manager (Res Chief (
Year 2021-22 2022-23 2023-24 2024-25 2025-26	Input OP	208 208 208 208	(m3/d) 116 107 99	16629 15349 14167	92 101 109	OII (MME) 0.037 0.034 0.032	Gas (MMm3) 6.07 5.60 5.17	M3/day 41600 41600 41600 48449 48449	2021-22 2022-23 2023-24 2024-25 2025-26	Input	(m3/d) 425 440 440 689 717	59 56 54 71 94	18395 17509 16692 22131 29274	366 384 386 618 622	OII (MMt) 0.019 0.018 0.017 0.023 0.030	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68	Requirement M3/day 85000 88000 88000 137849 143329	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Manager) Chief Manager Chief
2021-22 2022-23 2023-24 2024-25 2025-26	Input OP	208 208 208 208 242	(m3/d) 116 107 99 100	16629 15349 14167 14360	92 101 109 143	Off (MMt) 0.037 0.034 0.032 0.032	Gaa (MNm3) 6.07 5.60 5.17 5.24	Requirement M3/clay 41600 41600 41600 48449 48449 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27	Input	(m3/d) 425 440 440 689 717 717	59 56 54 71 94 94	16395 17509 16692 22131 29274 29143	366 384 386 618 622 623	OII (MMt) 0.019 0.018 0.017 0.023 0.030	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68	Requirement M3/day 85000 88000 88000 137849 143329 143329	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Masagn Asset) ONGC, Assam Asset)
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27	Input OP	208 208 208 208 242 242	(m3/d) 116 107 99 100 101	16629 15349 14167 14360 14539	92 101 109 143 142	Off (MMt) 0.037 0.034 0.032 0.032 0.032	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31	Requirement M3/day 41600 41600 41600 48449 48449 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28	Input	(m3/d) 425 440 440 689 717 717 744	59 56 54 71 94 94	18395 17509 16692 22131 29274 29143 29022	366 384 386 618 622 623 650	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64	Requirement M3/day 85000 88000 137849 143329 143329 148808	G. Venkaleshwaft G. Venkaleshwaft Chief Manager (Res ONGC, Assen Asset, I ONGC, Assen
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28	Input OP	208 208 208 208 242 242 242 276	(m3/d) 116 107 99 100 101 101	16629 15349 14167 14360 14539 14704	92 101 109 143 142 175	OII (MANL) 0.037 0.034 0.032 0.032 0.032	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00	Requirement M3/day 41600 41600 41600 48449 48449 55299 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29	Input	(m3/d) 425 440 440 689 717 717 744 744	59 56 54 71 94 94 94 93	18395 17509 16692 22131 28274 29143 29022 28911	366 384 386 618 622 623 650 651	Oil (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59	Requirement M3/day 85000 88000 88000 137849 143329 14808 148808	G. Venkaleshwah G. Venkaleshwah Chief Manager (Pes ONGC, Assam Asset, I ONGC, Assam
2021-22 2022-23 2023-24 2024-25	Input OP	208 208 208 208 242 242 276 276	(m3/d) 116 107 99 100 101 101 102 94 87	16629 15349 14167 14360 14539 14704 14856 13712 12656	92 101 109 143 142 175 174 182	OII (MMt) 0.037 0.034 0.032 0.032 0.032 0.032 0.033 0.030 0.028	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62	Requirement M3/rlay 41600 41600 41600 48449 48449 55299 55299 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30	Input	(m3/d) 425 440 440 689 717 717 744 744	59 56 54 71 94 94 94 93 86	18395 17509 16692 22131 28274 29143 29022 28911 26685	366 384 386 618 622 623 650 651 658	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.030	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74	Requirement M3/day 85000 88000 88000 137849 143329 143329 148808 148808	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Manager) ONGC, Assam Asset,
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30	Input OP	208 208 208 208 242 242 276 276 276	(m3/d) 116 107 99 100 101 101 102 94 87 80	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681	92 101 109 143 142 175 174 182 189	OII (MML) 0.037 0.034 0.032 0.032 0.032 0.032 0.033 0.033 0.030 0.028 0.026	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26	Requirement M3/Hay 41600 41600 41600 48449 48449 55299 55299 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 744	59 56 54 71 94 94 94 93 86 79	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630	366 384 386 618 622 623 650 651 658 665	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74	Requirement M3/day 85000 88000 88000 137849 143329 143329 148808 148808	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Massan Asset, ONGC, Assan Asset,
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29	Input OP	208 208 208 242 242 276 276 276 276	(m3/d) 116 107 99 100 101 101 102 94 87 80 74	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681 10782	92 101 109 143 142 175 174 182 189 196 202	OII (MMt) 0.037 0.034 0.032 0.032 0.032 0.032 0.033 0.030 0.028	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94	Requirement #3/Hay 41600 41600 41600 48449 45529 5529 5529 5529 5529 5529 5529	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32	Input	(m3/d) 425 440 440 689 717 717 744 744 744 778	59 56 54 71 94 94 94 93 86 79	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630 25387	(m3/d) 366 384 386 618 622 623 650 651 658 665 696	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.026	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74 8.99 9.27	Requirement M3/day 85000 88000 88000 137849 143329 148329 148808 148808 148808	G. Venkaleshwah G. Venkaleshwah Chief Manager (Pes ONGC, Assam Asset, I ONGC, Assam
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32	Input OP	208 208 208 242 242 276 276 276 276 276	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681 10782 9952	92 101 109 143 142 175 174 182 189 196 202 208	OII (MMI) 0.037 0.034 0.032 0.032 0.032 0.032 0.033 0.030 0.028 0.028 0.024	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63	Requirement M3/I/Ay 41800 41800 41600 41600 41600 45449 55299 55299 55299 55299 55299 55299 55299	Year 2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 778 778	59 56 54 71 94 94 94 93 86 79 82 84	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630 25387 26087	(m3/d) 366 384 386 618 622 623 650 651 658 665 696	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.026	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74 8.99 9.27	Requirement M3/day 85000 88000 88000 137849 143329 143329 148808 148808 148808 155658	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Manager) ONGC, Assam Asset,
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34	Input OP	(m3/d) 208 208 208 242 242 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681 10782 9952 9186	(m3/d) 92 101 109 143 142 175 174 182 189 196 202 208 213	OII (MML) 0.037 0.034 0.032 0.032 0.032 0.032 0.032 0.032 0.030 0.028 0.026 0.026	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35	Requirement M3/Hay 41600 41600 41600 41600 48449 5529 5529 5529 55299 55299 55299 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 778 778 806	59 56 54 71 94 94 94 93 86 79 82 84 85	18395 17509 16692 22131 28274 25143 29022 28911 26685 24630 25387 26087	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 694 721	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.026 0.027	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 9.74 8.99 9.27 9.52 9.56	Requirement M3/day 85000 88000 88000 137849 143329 143329 148328 148808 148808 148808 148808	G. Venkaleshwahi G. Venkaleshwahi Chief Manayer (Res Chief Manayer (Re
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35	Input OP	(m3/6) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63 58	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681 10782 9952 9186 8478	(m3/d) 92 101 109 143 142 175 174 182 189 196 202 208 213 218	OH (MMt) 0.037 0.034 0.032 0.032 0.032 0.032 0.032 0.032 0.030 0.028 0.026 0.024 0.024 0.020 0.000	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09	Requirement M3/Hay 41600 41600 41600 41600 48449 48449 55299 55299 55299 55299 55299 55299 55299 55299	Year 2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-34 2034-35	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 778 778 806 806	59 56 54 71 94 94 93 86 79 82 84 85	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630 25387 26087 26201 26307	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 694 721 721	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.025 0.025 0.027 0.027	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74 8.99 9.27 9.52 9.56 9.60	Requirement M3/dny 85000 88000 88000 137849 143329 148808 148808 148808 155658 155658 161137	G. Venkaleshwah G. Venkaleshwah Chief Manager (Pes Chief Massam Asset, I ONGC, Assam
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35 2035-36	Input OP	(m3/6) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63 58	16629 15349 14167 14380 14539 14704 14856 137712 12656 11681 10782 9952 99186 8478 7825	(m3/d) 92 101 109 143 142 175 174 182 189 196 202 208 213 218 223	OH (MMA) 0.037 0.034 0.032 0.032 0.032 0.033 0.030 0.028 0.028 0.026 0.024 0.022 0.020 0.017	Gas (MMm3) 6.07 5.60 5.17 5.24 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09 2.86	Requirement M3/Hay 41600 41600 41600 41600 4549 4849 4849 5529 5529 5529 5529 5529 5529 5529 55	2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2033-34 2033-34 2033-36	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 778 806 806 806	59 56 54 71 94 94 93 86 79 82 84 85 85 78	18395 17509 16692 22131 29274 29143 26022 28911 26685 24630 25387 26087 26307 26307	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 694 721 727	Oil (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.027 0.027	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74 8.99 9.27 9.52 9.56 9.60 8.86	Requirement M3/day 85000 85000 88000 88000 137849 143329 143329 148808 148808 148808 155658 155658 161137 161137	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res Chief Manager) ONGC , Assam Asset, I
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35 2035-36 2036-37	Input OP	(m3/d) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	116 107 99 100 101 101 102 94 87 80 74 68 63 58 54	16629 15349 14167 14360 14539 14704 14856 13712 12656 11681 10782 9952 9186 8478 7825 7223	(m3/d) 92 101 109 143 142 175 174 182 189 196 202 208 213 218 223	OH (MML) 0.037 0.034 0.032 0.032 0.032 0.033 0.030 0.028 0.028 0.024 0.022 0.020 0.017	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09 2.86 2.64	Requirement M3/I/ay 41600 41600 41600 41600 48449 48449 5529 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299	2021-22 2022-23 2023-24 2024-25 2025-26 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35 2035-36 2035-37	Input OP	(m3/d) 425 440 440 689 717 717 744 744 7744 778 806 806 806 806	59 56 54 71 94 94 94 93 86 79 82 84 85 78	18395 17509 16692 22131 28274 29143 29022 26911 26685 24630 25387 26001 2607 24281 24212	(m3/d) 366 384 386 618 622 623 650 651 658 666 694 721 727 733	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.025 0.025 0.027 0.027 0.027 0.025 0.025	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.59 10.55 9.74 8.99 9.27 9.52 9.56 9.66 8.86 8.18	Requirement M3/riay 85000 88000 88000 137849 143329 143329 143808 148808 148808 155658 161137 161137 161137 161137	G. Venkaleshwahi G. Venkaleshwahi Chief Manayer (Res Chief Manayer (Re
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35 2035-36 2036-37	Input OP	(m3/d) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63 58 54 50 46	16629 15349 14167 14380 14539 14704 14856 13712 12656 13712 12681 10782 9952 9186 8478 7823 6667	(m3/d) 92 101 109 143 142 175 174 189 196 202 208 213 218 223 227 231	OH (MARI) 0.037 0.034 0.032 0.032 0.032 0.033 0.030 0.002 0.026 0.024 0.024 0.020 0.017 0.016 0.015	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09 2.86 2.64 2.43	Requirement M3/I/ay 41600 41600 41600 41600 48449 48449 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299	Year 2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2023-33 2033-34 2034-35 2035-36 2036-37 2037-38	Input OP	(m3/d) 425 440 440 689 717 744 744 744 748 806 806 806 806	59 56 54 71 94 94 93 86 79 82 84 85 85 78 72	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630 25387 26087 26207 26207 26207 26207 26208 26307 26307	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 721 727 733 739	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.026 0.027 0.027 0.027 0.025 0.023 0.021	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.55 9.74 9.27 9.52 9.56 9.886 8.86 8.18	Requirement M3/day 88000 88000 88000 137849 148329 148329 148329 148808 148808 155658 155658 155658 15137 161137 161137	G. Venkaleshwah G. Venkaleshwah Chief Manager (Res ONGC, Assam Asset, I ONGC, Assam
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2035-36 2036-37 2037-38	Input OP	(m3/d) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63 58 54 50 46	16629 15349 14167 14360 14539 14704 14704 14856 13712 12656 11681 10782 9952 99186 8478 7825 7223 7263 6153	(m3/d) 92 101 109 143 142 175 174 182 189 196 202 208 213 218 223 227 231	OH (MMA) 0.037 0.034 0.032 0.032 0.032 0.033 0.030 0.030 0.026 0.024 0.020 0.001 0.017 0.016 0.015	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09 2.86 2.64 2.43	Requirement M3/Hay 41600 41600 41600 41600 41600 48449 48449 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299	Year 2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2029-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-36 2035-36 2035-36 2035-36 2035-38	Input OP	(m3/d) 425 440 440 689 717 717 744 744 744 778 806 806 806 806 806	59 56 54 71 94 94 93 86 79 82 84 85 85 78 67 62	18395 17509 16692 22131 28274 26022 28911 26085 24630 25387 26087 26207 24281 26307 24307 26307	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 694 721 727 733 739 744	Oil (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.025 0.025 0.027 0.027 0.027 0.027 0.022	Gas (MMm3) 6.71 6.39 6.09 8.08 10.64 10.55 9.74 8.99 9.27 9.52 9.56 9.60 8.86 8.18 7.55 8.97	Requirement M3/day 85000 88000 88000 137849 143329 143329 143329 143808 148808 148808 155658 161137 161137 161137 161137	G. Venkaleshwah G. Venkanager (Res Chief Manager (Res ONGC , Assam Asset, I
2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2032-33 2033-34 2034-35 2035-36 2036-37 2037-38	Input OP	(m3/d) 208 208 208 242 242 276 276 276 276 276 276 276 276 276 27	(m3/d) 116 107 99 100 101 101 102 94 87 80 74 68 63 58 54 50 46	16629 15349 14167 14380 14539 14704 14856 13712 12656 13712 12681 10782 9952 9186 8478 7823 6667	(m3/d) 92 101 109 143 142 175 174 189 196 202 208 213 218 223 227 231	OH (MARI) 0.037 0.034 0.032 0.032 0.032 0.033 0.030 0.002 0.026 0.024 0.024 0.020 0.017 0.016 0.015	Gas (MMm3) 6.07 5.60 5.17 5.24 5.31 5.37 5.42 5.00 4.62 4.26 3.94 3.63 3.35 3.09 2.86 2.64 2.43	Requirement M3/I/ay 41600 41600 41600 41600 48449 48449 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299 55299	Year 2021-22 2022-23 2023-24 2024-25 2025-26 2026-27 2027-28 2028-29 2029-30 2030-31 2031-32 2023-33 2033-34 2034-35 2035-36 2036-37 2037-38	Input OP	(m3/d) 425 440 440 689 717 744 744 744 748 806 806 806 806	59 56 54 71 94 94 93 86 79 82 84 85 85 78 72	18395 17509 16692 22131 28274 29143 29022 28911 26685 24630 25387 26087 26207 26207 26207 26207 26208 26307 26307	(m3/d) 366 384 386 618 622 623 650 651 658 665 696 721 727 733 739	OII (MMt) 0.019 0.018 0.017 0.023 0.030 0.030 0.030 0.030 0.028 0.025 0.026 0.027 0.027 0.027 0.025 0.023 0.021	Gas (MMm3) 6.71 6.39 6.09 8.08 10.68 10.64 10.55 9.74 9.27 9.52 9.56 9.88 8.86 8.18 7.55	Requirement M3/day 88000 88000 88000 137849 148329 148329 148329 148808 148808 155658 155658 155658 15137 161137 161137	G. Venkaleshwahi G. Venkaleshwahi Chief Manager (Res Chief Manager (Res Chief Manager) Chief Manager (Res Chief Manager)

Annexure-II

Gas composition of Rudrasagar GGS-1, 2, 3, 4

onec	ASIAA BASIN,	SIVASAGR – 785697, A GAS ANALYSIS REPO				
1. Test Report No.	-	-			Deted: 03.19.2019	
2. Sample ID No.	378-(19-20)	SVS /	RGL/CL/GS/05/1	9-20/204	Deced. 03.11.2019	
3. Type of Sample	376-(19-20)	379-(19-20)	381-(19-20)	382-(19-20)	374-(19-20)	
	Mkypur T.E	Sibbari T.E., Geleky T.E.;	mples collected from	n supply headers of:	377 (15-20)	
4.Consumer	GLK GGS I	ONGC Colony, Nazira. GLK GGS II	Borsila T.E. GLK GGS III	Maduri T.E., Charali GGS	Nahrobi T.E. Lakwa GGS-VI	
5. Pressure (Kg/cm²)	4.7	2.8	45			
6. Date/ Time of collection (hr.)	25.11.2019/ NA	25.11.2019/ NA	4.2 25.11.2019/ NA	2.5		
7.Collected / provided by			Date of the second	26.11.2019/ NA	21.11.2019/ NA	
8.Date of receipt in Lab	26.11.2019	**************************************	ST-SVS	-		
9. Analysis data	20.11.2019	26.53.2019	25.11.2019	27.11.2019	22.11.2019	
Component	%mol	Ymai	2000	-		
Methane	77.27	82.91	%mol.	3/mail	%mal	
Ethane	8.60	7.95	81.21	78.68	82.40	
Propane	6.15	4.61	8.41 5.25	6.06	7.77	
so-Butane	1.55	1.29	1.35	6.48	4.58	
n-Butane	2.30	1.39 •	1.78	1.98	1.35	
iso-Pentane	0.86	0.53	0.55	2.80	1.66	
n-Pentane	0.52	0.25	0.32	0.91	0.60	
Hexane +	1.10	0.56	0.51	0.63	0.31	
Carbon-di-oxide	1.57	0.45		1.03	0.59	
Nitrogen	0.08	0.06	0.55	1.30	0.62	
SUM:	100.00	100.00	0.07	0.13	0.12	
Properties (calculated)#		200,00	100.00	100.00	100.00	
Sp.Gr. (Real)	0.7830	0.7115	0.7282	6 mate		
Density, Kg/SM ³	0.9595	0.8719	0.7282	0.7865	0.7204	
Mol. Wt.	22.59	20.54	21.02	0.9637	0.8827	
Nett C.V., Kcal / SM ³	10741.646	10052.595	10245.640	22.69	20.80	
Gross C.V., Kcal / SM ³ # Calculations are as per ISO: 6976 (1995)	11824.214	11089.017	11296.679	10833.107 11923.104	10123,417	
W Last Calibration done on: 22 11 2019 R25 content: WL Sign.	Madhuriya Gogoli ITA (Chemist)	2		(Prettka Basumatary) Chemist		

Crude Oil Analysis

RGL, A&AA Basin Sivasagar	Test Report of Routine Sample	Sourches 04 . Date of lesser 38 30 3035
	NO. ROL/SVS/HEC/DUPS	Frey Picc - 80 Date of New : 56 Fregs 3 of 3

TEST REPORT NO.: 100/2017-18

TEST REPORT OF CRUDE OIL SAMPLES OF CHARALI GGS, RDS GGS-I & II

A. Sample Details:

1	Sample Lab (D)	205/2017-18	206/2017-18	207/2017-18
2	Type of Sample	Crude Oil	Craide Oil	Crude Oil
3	Source of Collection / Wirll No.	Charali GGS	RDS GGS-8	BDS GGS-F
4	Area/Field	RDS	RDS	RDS
5	Date & Time of Collection	08.01.2018 @ 11:30 hrs	10.01.2018 @ 16.50 hrs	12.01.2018 @ 14.30 fm
6	Egliected by	Mr. Tilak Singh, Ci	hief Chemist	Maria a series
7	Date of Receipt in Lab	09.01.2018	11.01.2018	17.01.2018
8	Sample Received from	Mr. Tilak Sireh, Cl	hief Chemist	

B. Test Results: Distillation Data (As per ASTM D 86)

ID- 205/2017-18: Charali GGS

189 = 58°C

SI. No.	Temperature Range (°C)	Percentage of Fractions (% v/v)	Cumulative Percentage of Fractions (% v/v)
1.	18P-75	3.0	3.0
2	75-100	4.5	7.5
3	100-125	6.0	13.5
4	125-150	5.0	16.5
5	150-175	6.0	24.5
6	175-200	6.0	30.5
3	200-225	4.0	34.5
	225-250	5.5	40.0
9	250-275	7.0	67.0
10	275-300	8.5	55.5

Recovery upto 300°C = 55.5 % (v/v) Residue upto 300°C = 43.6 % (v/v) Valume loss upto 300°C = 0.9 % (v/v)

Banate 34,0130/8

Pakyluly

ID: 206/2017-18: RDS GGS-II

BF=80°C

St. No.	Temperature Range (°C)	Percentage of Fractions (% v/v)	Cumulative Percentage of Fractions (% v/v)
1	IBP-100	1.5	3.5
2	100-125	3.9	5.0
7	125-150	4.0	9.0
4	150-175	5.0	14.0
5	175-200	5.0	19.0
6	200-225	5.0	24.0
7	225-250	7.0	31.0
B	250-275	8.0	19.0
9.	275-300	10.0	49.0

Recovery upto 300°C = 49.0 % (v/v) Residue upto 300°C = 50.1 % (v/v) Volume loss upto 300°C = 0.9 % (v/v)

ID-207/2017-18: RDS GGS-I

BIP = 70°C

St. No.	Temperature Range (°C)	Percentage of fractions (% w/w)	Cumulative Percentage of Fractions (16 v/v)
1	IBP-100	2.0	2.0
2	100-125	2.0	4.0
3	125-150	2.0	6.0
.4	150-175	4,0	30.0
5	175-200	4.0	34.0
6	200-225	5.0	19.0
1	225-250	7.0	26.0
.8	250-275	9.0	35.0
9	275-300	11.5	66.5

Recovery upto $300^{\circ}\text{C} = 46.5 \% |w/v|$ Residue upto $300^{\circ}\text{C} = 52.8 \% |w/v|$ Volume loss upto $300^{\circ}\text{C} = 0.7 \% |w/v|$

Bemarks/Comments -

Phine Jan 3615, Milon Iyoti Keiri TA-(II (Chem)

Sanghamitra Basas Chemist

Rakesh Kumar Chief Chemist

Distribution:

- 1. DGM (Chem), I/c- Chemistry, Surface Team, Assam Asset.
- 2. Office copy.

Annexure-III

Routing map of pipelines at RDS

तेल एवं गैस उत्पादन प्रौद्यौगिकी संस्थान Institute of Oil and Gas Production Technology

फेस-II, पनवेल, नवी मुंबई - 410221 Phase-II; Panvel, Navi Mumbai - 410221 दू: 91-22-27451891, फ़ैक्स: +91-22-27451690

पंजीकृत कार्यालय : दीन दयाल ऊर्जा भवन, 5 नेल्सन मंडेला मार्ग

वसंत कुंज , नई दिल्ली - 110070

Registered Office: Deendayal Urja Bhavan, 5 Nelson Mandela Marg

Vasant Kunj, New Delhi- 110 070, (India)

दू: 91-11-26750999, 26129000. Fax: 91-11-26129091