

Modelamiento de Legged Robots con ROS

Seykarin Mestre Muelas

Facultad de minas - Sede Medellín

Introducción

• Los *legged robots* ofrecen versatilidad y estabilidad en terrenos irregulares.

• ROS permite el desarrollo y simulación de estos sistemas de manera modular.

• Esta presentación aborda los principios matemáticos detrás del modelamiento de *legged robots* basándose en la tesis Optimization-based motion planning for legged robots

Problemas:

- Cambio de las ecuaciones que rigen el proceso, aumentando notablemente su complejidad.
- Introducción a un nuevo entorno de trabajo.
- Problemas de hardware a la hora de simular.

$$M(q)\ddot{q} + h(q,\dot{q}) = S^T \tau + J(q)^T f$$

$$\frac{\mathrm{d}}{\mathrm{d}t}A\dot{q} = \begin{bmatrix} mg + \sum_{i=1}^{n_i} f_i \\ \sum_{i=1}^{n_i} f_i \times (r(q) - p(q)) \end{bmatrix}$$

$$A(q)\dot{q} + \dot{A}(q)\dot{q} = \begin{bmatrix} mg + \sum_{i=1}^{n_i} f_i \\ \sum_{i=1}^{n_i} f_i \times (r(q) - p(q)) \end{bmatrix}$$

Herramientas

- Búsqueda en el navegador
- Inteligencias artificiales.
- Asesorías

Modelos

Mejora del entendimiento de modelos matemáticamente avanzados o desconocidos.

Cuerpo rígido dinámico

$$M(q)\ddot{q} + h(q,\dot{q}) = S^T \tau + J(q)^T f$$

Dinámica centroidal

$$\frac{\mathrm{d}}{\mathrm{d}t}A\dot{q} = \begin{bmatrix} mg + \sum_{i=1}^{n_i} f_i \\ \sum_{i=1}^{n_i} f_i \times (r(q) - p(q)) \end{bmatrix}$$

Rigid Body Dynamics (RBD)

Modelos

· Cuerpo rígido dinámico único

$$m\ddot{r} = mg + \sum_{i=1}^{n_i} f_i$$

$$I(\theta)\dot{w} + w \times I(\theta)w = \sum_{i=1}^{n_i} f_i \times (r - p_i)$$

· Péndulo invertido lineal

$$\begin{split} m\ddot{r}_{x} &= \sum_{i=1}^{n_{i}} f_{i,x} = \frac{mg}{r_{z} - p_{z}} \left(r_{x} - \frac{\sum_{i=1}^{n_{i}} f_{i,z} p_{i,x}}{\sum_{i=1}^{n_{i}} f_{i,z}} \right) = \frac{mg}{h} (r_{x} - p_{c,x}) \\ \ddot{r_{c}} &= \frac{g}{z_{c}} (r_{x} - p_{c,x}) \end{split}$$

Planes a futuro

 Analizar las formas en las que es controlado este Legged Robot.

 Presentar una explicación simplificada de la programación del robot con el fin de relacionarlo con las ecuaciones presentadas.

Resultados

- Adaptación didáctica del material:
- M ∈ R^{(6+n)×(6+n)} es la matriz de inercia generalizada, que describe cómo las masas y sus distribuciones afectan la aceleración q.
- h ∈ R⁶⁺ⁿ representa las fuerzas no lineales, como:
- Fuerza centrífuga: generada por el movimiento giratorio de las articula-
- Fuerza de Coriolis: describe cómo el movimiento de una parte del robot afecta dinámicamente a otras.
- Gravedad: que actúa hacia el suelo
- es una matriz de selección que aplica los torques de articulaciones τ únicamente a las coordenadas actuadas. En este caso las primeras n filas representan las cooredandas del tronco, pero este no se ve afectado por ningun torque directo.
- J(q) es el jacobiano de las coordenadas generalizadas, que provecta las fuerzas externas f en las coordenadas del sistema.

2.1.3 Ejemplo Práctico

Imaginemos un robot cuadrúpedo con las siguientes características:

- Masa total del robot: m = 50 kg.
- Aceleración gravitacional: q = 9.81 m/s².
- El CoM se encuentra en $\mathbf{r}(q) = [0.0, 0.0, 0.5] \,\mathrm{m}$
- Cada pata genera una fuerza de contacto f: v se encuentran en:
 - Pata 1: $\mathbf{p}_1 = [-0.2, 0.1, 0.0] \,\mathrm{m}$
- Pata 2: $\mathbf{p}_2 = [0.2, 0.1, 0.0] \,\mathrm{m}$
- Pata 3: $\mathbf{p}_3 = [-0.2, -0.1, 0.0] \,\mathrm{m}$

- Pata 4: $\mathbf{p}_4 = [0.2, -0.1, 0.0] \,\mathrm{m}$

Supongamos que las fuerzas normales son:

$$\mathbf{f}_1 = \mathbf{f}_2 = \mathbf{f}_3 = \mathbf{f}_4 = [0, 0, 122.625] \, \mathrm{N}$$

Esto compensa el peso del robot ($mg = 50 \times 9.81 = 490.5 \text{ N}$).

Simulación

Objetivo final

- Generar un documento base de fácil entendimiento para los que quieran adentrarse en el mundo de los Legged Robot.
- Generar una pequeña base del funcionamiento de ROS con el fin de incentivar y facilitar su uso.

Referencias

1. Winkler, A. W. (2018). *Optimization-based motion planning for legged robots* (Tesis doctoral, ETH Zurich). Agile & Dexterous Robotics Lab, Institute for Robotics and Intelligent Systems.

Recuperado de: https://www.research-collection.ethz.ch/handle/20.500.11850/272432

Gracias

<u>Universidad</u> Nacional de Colombia