Retomando a Notação O, θ , Ω .

Prof. José Carlos Althoff

Na análise de algoritmos na maioria das vezes usase o estudo de complexidade assintótica ou seja analisa-se o algoritmo quando o valor de n tende a infinito.

$$n \Rightarrow \infty$$

LIMITE ASSINTÓTICO SUPERIOR NOTAÇÃO "O"

$$f(n) = O(g(n))$$

Então existe uma constate positiva c e n_0 tal que

$$0 \le f(n) \le c. g(n) \ \forall n \ge n_0$$

Observações.

- Utilizada como limite superior, pior caso.
- $f(n) = \theta(g(n))$ implica em f(n) = O(g(n)) mas não o contrário.
- Podemos escrever $\theta(g(n)) \subset O(g(n))$.

LIMITE ASSINTÓTICO INFERIOR NOTAÇÃO "Ω"

$$f(n) = \Omega(g_{(n)})$$

então existe uma constante c e n_0 tal que:

$$0 \le C \cdot g(n) \le f(n), \forall n \ge n_0$$

NOTAÇÃO θ

DEFINIÇÃO DA NOTAÇÃO θ

Agora vamos definir formalmente o que significa essa notação.

Para duas funções f(n) e g(n), dizemos que f(n) é $\Theta(g(n))$ se

$$0 \le C_1 g(n) \le f(n) \le C_2 g(n) \quad \forall n \ge n_0$$

 $c_1, c_2 \ e \ n_o > 0$

Vamos entender o que essa inequação complicada quer nos dizer.

Em um resumo bem simplista ela está dizendo que se a gente "imprensar" f(n) com g(n) multiplicada por duas constantes diferentes, dizemos que f(n) é $\Theta(g(n))$

Exemplo.

$$\frac{1}{2}n^2 - 3n \, \text{\'e} \, \theta(n^2)$$
 ?

Se for $\theta(n^2)$ é necessário encontrar constantes $c_1, c_2 e n_0$ tais que:

$$C_1 n^2 \le \frac{1}{2} n^2 - 3n \le C_2 n^2$$
, $\forall n > n_0$ onde $c_1 > 0$; $c_2 > 0$ e $n_0 > 0$

Procurando as constantes:

$$C_1 \frac{n^2}{n^2} \le \frac{1}{2} \frac{n^2}{n^2} - 3 \frac{n}{n^2} \le C_2 \frac{n^2}{n^2}$$
 Então teremos:

$$C_1 \le \frac{1}{2} - \frac{3}{n} \le C_2$$

Procurando as constantes:

$$C_1 \le \frac{1}{2} - \frac{3}{n}$$

Observe o lado esquerdo da inequação. Se fizermos n variar n= 1,2,3,4,5,6,7. Observe o lado esquerdo da inequação.

$$C_1 \le \frac{1}{2} - \frac{3}{n}$$

Se fizermos n variar n = 1, 2, 3, 4, 5, 6, 7.

Quando chegarmos a n=7 teremos $c_1 \le \frac{1}{14}$ o que atende o lado esquerdo da equação.

Agora vamos observar o lado direito da equação.

Se pensarmos que n tende ao infinito teremos:

 $\frac{1}{2} - \frac{3}{\infty} \le c_2$ a divisão de 3 por um número muito grande tende a zero. Logo o lado direito teremos que $c_2 \ge \frac{1}{2}$

- Portanto determinamos $c_1 = \frac{1}{14}$, $c_2 = \frac{1}{2}$ $e n_0 = 7$
- ▶ $0 \le \frac{1}{14}g(n) \le f(n) \le \frac{1}{2}g(n) \ \forall n \ge 7$
- ▶ O que atende a igualdade: $\frac{1}{2}n^2 3n = \theta(n^2)$

Portanto a igualdade é verdadeira.

O que atende a igualdade:

Note que existe outras escolhas para esta constantes c_1 e c_2 , mas o fato Importante é que a escolha existe.

 \blacktriangleright Observe que a notação θ define um conjunto de funções:

$$\{f: N \to R^+ \mid \exists c_1 > 0, c_2 > 0, n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0\}$$

Exercício

► Usando a definição formal de Θ prove que $6n^3 \neq \theta(n^2)$?

Solução

Suponha que não, ou seja, suponha que $6n^3 = \theta(n^2)$.

Assim, pela definição formal da notação Θ, existem constantes positivas c1, c2 e n0 tais que

 $0 \le c1g(n) \le f(n) \le c2g(n)$ para todo $n \ge n0$.

Neste caso, temos que f(n) = $6n^3$, g(n) = n^2 e c $1n^2 \le 6n^3 \le c2n^2$.

Ao dividirmos cada termo dessa inequação por n^2 , temos: $c1 \le 6n \le c2$.

Não existem constantes positivas c2 > 0 e n0 tais que 6n \leq c2 para todo n \geq n0. Assim, a suposição $6n^3 = \theta(n^2)$ não é verdadeira, logo $6n^3 \neq \theta(n^2)$ é verdadeira.

Mais sobre a notação Assintótica de funções.

- Existem duas outras notações na análise assintótica de funções:
 - Notação o ("O" pequeno)
 - Notação ω

 Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω, respectivamente.

Notação o

 O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não.

– Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite $2n = O(n^2)$ não é.

 A notação o é usada para definir um limite superior que não é assintoticamente firme.

• Formalmente a notação *o* é definida como:

$$f(n) = o(g(n))$$
, para qq $c > 0$ e $n_0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0$

• Exemplo, $2n = o(n^2) \text{ mas } 2n^2 \neq o(n^2)$.

- As definições das notações O (o grande) e o (o pequeno) são similares.
 - A diferença principal é que em f(n) = O(g(n)), a expressão $0 \le f(n) \le cg(n)$ é válida para todas constantes c > 0.
- Intuitivamente, a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito. Isto pode ser expresso da seguinte forma:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

→ Alguns autores usam este limite como a definição de o.

Notação ω

• Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação o.

• Formalmente a notação ω é definida como:

$$f(n) = \omega(g(n))$$
, para qq $c > 0$ e $n_0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0$

• Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$.

• A relação $f(n) = \omega(g(n))$ implica em

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty,$$

se o limite existir.

Comparação de programas

 Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.

- Um programa com tempo de execução O(n) é melhor que outro com tempo $O(n^2)$.
 - Porém, as constantes de proporcionalidade podem alterar esta consideração.

- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?
 - Depende do tamanho do problema.
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n.
- Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é $O(n^2)$.
- Entretanto, quando n cresce, o programa com tempo de execução $O(n^2)$ leva muito mais tempo que o programa O(n).

Complexidade Constante

- f(n) = O(1)
 - O uso do algoritmo independe do tamanho de n.
 - As instruções do algoritmo são executadas um número fixo de vezes.

O que significa um algoritmo ser O(2) ou O(5)?

Complexidade Logarítmica

- $f(n) = O(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores.
 - Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande.
 - Supondo que a base do logaritmo seja 2:
 - Para n = 1000, log₂ ≈ 10.
 - Para n = 1000000, $\log_2 \approx 20$.
 - Exemplo:
 - Algoritmo de pesquisa binária.

Complexidade Linear

- $\bullet \ f(n) = O(n)$
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída.
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra.

- Exemplos:
 - Algoritmo de pesquisa seqüencial.
 - Algoritmo para teste de planaridade de um grafo.

Complexidade Linear Logarítmica

- $f(n) = O(n \log n)$
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções.
 - Caso típico dos algoritmos baseados no paradigma divisão-e-conquista.
 - Supondo que a base do logaritmo seja 2:
 - Para n = 1000000, $log_2 ≈ 20000000$.
 - Para n = 2000000, $\log_2 \approx 42000000$.
 - Exemplo:
 - Algoritmo de ordenação MergeSort.

Complexidade Quadrática

- $f(n) = O(n^2)$
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro do outro
 - Para n = 1000, o número de operações é da ordem de 1000000.
 - Sempre que n dobra o tempo de execução é multiplicado por 4.
 - Algoritmos deste tipo s\(\tilde{a}\) \(\text{o}\) \(\text{tivamente}\) pequenos.

Exemplos:

Algoritmos de ordenação simples como seleção e inserção.

Complexidade Cúbica

- $f(n) = O(n^3)$
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos.
 - Para n = 100, o número de operações é da ordem de 1 000 000
 - Sempre que n dobra o tempo de execução é multiplicado por 8.
 - Algoritmos deste tipo s\(\tilde{a}\) úteis para resolver problemas de tamanhos relativamente pequenos.
 - Exemplo:
 - Algoritmo para multiplicação de matrizes.

Complexidade Exponencial

- $f(n) = O(2^n)$
 - Algoritmos desta ordem de complexidade n\u00e3o s\u00e3o \u00fateis sob o ponto de vista pr\u00e1tico.
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los.
 - Para n = 20, o tempo de execução é cerca de 1 000 000.
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado.

- Exemplo:
 - Algoritmo do Caixeiro Viajante

Complexidade Fatorial

$$f(n) = O(n!)$$

Um algoritmos de complexidade O(n!) é pior do complexidade Exponencial. No entanto, alguns autores acabam falando que ele tem complexidade exponencial.

Apesar de O(n!)ter um coportamento muito pior que $O(2^n)$

Geralmente ocorre quando se usa força bruta na solução do problema.

Considerando:

- -n = 20, temos que 20! = 2432902008176640000, um número com 19 dígitos.
- -n = 40 temos um número com 48 dígitos.

Comparação de funções de complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	anos
3 ⁿ	0,059 s	58 min	6,5 anos	3855 sec	10 ⁸ sec	10 ¹³ sec

Hierarquias de funções

A seguinte hierarquia de funções pode ser definida do ponto de vista assintótico:

$$1 \prec \log \log n \prec \log n \prec n^{\epsilon} \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{c^{n}}$$

onde ϵ e c são constantes arbitrárias com $0 < \epsilon < 1 < c$.