Predicting Heart Disease Severity using Machine Learning

By Yashas Raman, Raghav Sriram Group 14

Why Predict Heart Disease?

- Heart disease is a leading cause of death in humans
- Improve detection methods
- Project Goal: Detect presence and severity of heart disease from clinical features
- Tasks:
 - Binary classification: disease or no disease
 - Multiclass classification: severity (0–4 scale)

Research Methods

Dataset & Preprocessing

- UCI Heart Disease dataset (303 patients)
- 13 Features
 - Age, sex, chest pain type, cholesterol, max heart rate, etc.
- Preprocessing:
 - Missing value imputation
 - Feature scaling

					Fe	eature	Correl	ation H	leatma	р					_	- 1.00
age	1.00	-0.10	0.10	0.28	0.21	0.12	0.15	-0.39	0.09	0.20	0.16	0.36	0.13	0.22		1.00
sex -	-0.10	1.00	0.01	-0.06	-0.20	0.05	0.02	-0.05	0.15	0.10	0.04	0.09	0.38	0.22		- 0.75
8-	0.10	0.01	1.00	-0.04	0.07	-0.04	0.07	-0.33	0.38	0.20	0.15	0.23	0.27	0.41		
trestbps	0.28	-0.06	-0.04	1.00	0.13	0.18	0.15	-0.05	0.06	0.19	0.12	0.10	0.13	0.16		- 0.50
chol -	0.21	-0.20	0.07	0.13	1.00	0.01	0.17	-0.00	0.06	0.05	-0.00	0.12	0.01	0.07		
tps -	0.12	0.05	-0.04	0.18	0.01	1.00	0.07	-0.01	0.03	0.01	0.06	0.15	0.07	0.06		- 0.25
thalach restecg	0.15	0.02	0.07	0.15	0.17	0.07	1.00	-0.08	0.08	0.11	0.13	0.13	0.02	0.18		- 0.00
thalach	-0.39	-0.05	-0.33	-0.05	-0.00	-0.01	-0.08	1.00	-0.38	-0.34	-0.39	-0.26	-0.28	-0.42		0.00
exang	0.09	0.15	0.38	0.06	0.06	0.03	0.08	-0.38	1.00	0.29	0.26	0.15	0.33	0.40		0.25
oldpeak	0.20	0.10	0.20	0.19	0.05	0.01	0.11	-0.34	0.29	1.00	0.58	0.30	0.34	0.50		
slope	0.16	0.04	0.15	0.12	-0.00	0.06	0.13	-0.39	0.26		1.00	0.11	0.29	0.38		0.50
g -	0.36	0.09	0.23	0.10	0.12	0.15	0.13	-0.26	0.15	0.30	0.11	1.00	0.26	0.52		
thal -	0.13	0.38	0.27	0.13	0.01	0.07	0.02	-0.28	0.33	0.34	0.29	0.26	1.00	0.51		0.75
m -	0.22	0.22	0.41	0.16	0.07	0.06	0.18	-0.42	0.40	0.50	0.38	0.52	0.51	1.00	3	

fbs restecgthalach exang oldpeak slope ca

cp trestbps chol

- -1.00

thal num

Model Development and Evaluation

- Used an 80/20 train-test split to train and evaluate our models
- Models Used:
 - Logistic Regression
 - Random Forest
 - XGBoost
 - Applied to both binary and multiclass tasks

```
"Logistic Regression": LogisticRegression(max_iter=1000),
"Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
"XGBoost": XGBClassifier(eval_metric='logloss')
```

Results and Analysis

Binary Classification Results

Most Relevant Features

Results for Multiclass Prediction

Unbalanced Multiclass Dataset

Balancing Dataset via Oversampling

Multiclass results after Class Balancing

Analysis

- All three models performed relatively similarly across binary and multiclass prediction
- Random Forest slightly improved after class balancing while Logistic Regression got slightly worse
 - Overall, class balancing did not help model performance
- All models performed very well on binary while significantly worse on multiclass

Discussion and Reflection

What We Learned

- Machine learning can be very useful in detecting presence of heart disease
- Severe class imbalance likely harmed performance
- Multiclass prediction looks to be a difficult problem in general
- Relatively small sample size could have limited model generalization

Future Directions

- Potentially use other models
 - \circ SVM
 - Neural Networks
- Attempt methods on more balanced dataset
- Apply to other diseases