Power Generation Planning (PGP2)

- Problem: select power generators that minimize the total cost of supplying enough electricity to satisfy regional demand.

 Assignment Project Exam Help
- Decision:
 - Stage 1: (must decide https://pre/charmencapacity to acquire for each type of generator. (e.g., gas, coal, nuclear)
 Stage 2: (can postpone until the demand is seen) how much electricity to
 - Stage 2: (can postpone until the clemand is seen) how much electricity to generate, once the demand is observed.
- Demand is random for planning purposes.

Load Curve (Demand)

Figure 1.1: Chronological load curve

Figure 1.2: Load duration curve

Figure 1.3: Discretized load duration curve

All-in-one

MIN

	Symb ol	Meaning		
		Capacity for generator type (kw) Stage 1 decision		
Assignment Pro	ject Exa	Annualized capital cost (\$/kw) m Help Budget (\$)		
https://powe	coder.co	Phihimum capacity requirement (kw)		
Add WeCh	Gilepting cost (\$/kw-hr)			
		Load duration (hour)		
		kw of demand segment served using generator type (kw) Stage 2 decision		
		Demand during load (random, kw)		

^{*} Inclex sets:

$$n = 4$$
, $m = 3$, $b = 220$, $M = 15$, $p = 1000$,

$$c_j = (10, 7, 16, 6), f_j = (40, 45, 32, 55)$$

$$\beta_i = (1, 0.6, 0.1)$$

https://po

Add We

Data and Scenarios

The random vector is defined by marginal Assignment distributions.

Assume independence.

Each possible combination of

will become one scenario.

The demand distributions are as follows:

Project Exam Help								
$\widetilde{\omega_1}$		$\widetilde{\omega_2}$		$[\widetilde{\omega_{_3}}]$				
owcod	er.com	Value	Prob.	Value	Prob.			
Chat p	owcode	r 0.0	0.0013	0.0	0.0013			
1.0	0.00125	1.5	0.0215	0.5	0.0215			
2.5	0.0215	2.5	0.2857	1.5	0.2857			
3.5	0.2857	4.0	0.3830	3.0	0.3830			
5.0	0.3830	5.5	0.2857	4.5	0.2857			
6.5	0.2857	6.5	0.0215	5.5	0.0215			
7.5	0.0215	8.0	0.00125	7.0	0.00125			
9.0	0.00125	8.5	0.00005	7.5	0.00005			
9.5	0.00005							