# 1. 오라클 데이터베이스 구조 탐색

## 오라클 DB 서버 구조

인스턴스 : physical database 내의 물리적인 data를 입/출력 할 수 있도록 해주는 하나의 소프트웨어로 메모리와 프로세스로 구성되어 있다.

- 메모리
  - System global area (SGA): 데이터를 읽거나 변경하기 위해 사용하는 공용 메모리 영역
    - Shared pool : 오라클 DB를 운영하는데 필요한 정보를 저장하는 메모리 영역
    - 데이터베이스 버퍼 캐시 : 데이터 파일에서 읽은 데이터 블록 본사본을 보관
    - 리두 로그 버퍼: DDL, DML 문장에 의해 DB에 변경되는 사항을 저장하는 메모리 영역
    - Large pool : SGA 내부의 대규모 메모리 할당을 제공하기 위한 선택전인 공간
    - Java pool : Java 프로그램 실행을 돋기 위한 메모리 공간
    - Streams pool : 데이터 공유, 복제 툴
  - Program global area (PGA) : DB에 접속하는 모든 유저에게 할당되어 각각의 서버 프로세스가 독자적으로 사용하는 메모리 영역
    - Stack space : 바인드 변수(Bind Variable) 사용 시 해당 바인드 변수를 저장
    - User global area (UGA) : 사용자 세션과 관련된 메모리 영역, DB 접속 방식에 따라 SGA또는 PGA 내에 존재
- 프로세스
  - 유저 프로세스 : 오라클 DB에 연결하는 응용 프로그램 또는 도구
  - 데이터베이스 프로세스
    - 서버 프로세스 : 유저 프로세스의 요청을 처리하는 프로세스
    - 백그라운드 프로세스
      - □ DBWn: 데이터베이스 버퍼 캐시의 수정된(더티) 버퍼를 디스크에 기록
      - □ LGWR : 리두 로그 버퍼를 디스크의 리두 로그 파일에 기록
      - □ CKPT: DBWn에 체크포인트 신호를 주고, control file과 datafile header에 해당 체크포인트 정보를 기록
      - □ SMON : 인스턴스 비정상 종료 시 Redo log file을 참조하여 recovery를 수행
      - □ PMON : 비정상 종료된 데이터베이스의 접속을 정리
      - □ RECO: 분산 데이터베이스에서 네트워크 또는 시스템 장애로 실패한 분산 트랜잭션 오류를 자동으로 처리
      - □ LREG : oracle net 리스너를 사용하여 데이터베이스 인스턴스 및 디스패처 프로세스에 대한 정보 등록
      - □ ARCn : 로그 스위치가 발생한 후에 리두 로그 파일을 지정된 장치로 복사
  - Daemon 과 응용프로그램 프로세스

#### 데이터베이스

- Data file : 실제 data를 저장하는데 사용되는 파일
- Control file : DB를 유지, 관리 하기 위한 내부 정보를 저장하고 있는 파일
- Online redo log file : DB에서 발생한 모든 변경사항을 기록하는 파일

# DB의 논리적/물리적 구조

#### 논리적 구조

- Block : 오라클 DB에 data가 저장되는 최소 단위

- 오라클 DB의 I/O 단위
- Block의 크기는 2, 4, 8, 16, 32 KB가 제공되며 기본 크기는 8 KB이다.
- Extent : 연속적인 Block들의 집합
  - Segment의 공간 할당 단위
- Segment : 하나 이상의 Extent로 구성
- Tablespace : 하나 이상의 Data File로 구성되며, 논리적으로는 여러개의 Segment가 모여서 구성
  - SYSTEM Tablespace : DB 운영에 필요한 기본 정보를 담고 있는 Data Dictionary Table이 저장되는 공간
  - SYSAUX Tablespace : SYSTEM Tablespace에 있는 다양한 유틸리티 및 기능들을 분리하여 저장하는 공간
- Database : 하나 이상의 Tablespace로 구성

#### 물리적 구조

- Data file : 실제 data를 저장하는데 사용되는 파일
  - 논리적 저장구조인 Tablespace는 하나 이상의 Data file로 구성

## 오라클 DB Instance 구성

Single server 구성 : 하나의 DB에 하나의 instance가 할당되는 구성

- instance 장애 발생 시 storage 데이터에 접근할 수 없다.

High Availability (HA) 구성 : 같은 장비를 두개 구축하여 이중화 하는 방식

- Active-Standby로 구성하여 Active서버에 문제 발생 시 Standby서버가 Active로 전환
- 동일한 장비를 구축하는데 많은 비용이 발생
- Standby 서버의 자원 낭비
- Standby 서버가 동작할 때 데이터 유실이 발생할 수 있다.

Oracle Parallel Server (OPS): 하나의 DB에 두개의 instance로 구성

- Storage를 공유하기 때문에 다른 instance에서 같은 데이터를 조회, 변경 할 수 있다.
- 특정 instance에서 변경된 데이터가 다른 instance에 적용될 때 Disk를 통해 데이터를 전송하므로 성능 저하 (RAC Ping)

Real Application Cluster (RAC): 하나의 DB에 여러개의 instance로 구성

- OPS의 RAC Ping문제를 개선하여 성능이 크게 향상
- 특정 instanace에서 변경된 데이터를 디스크 경유 없이 바로 다른 instance로 전송한다. (Cache Fusion)
- Public IP: RAC 유지/보수를 위해 관리자가 사용하는 망
- Private IP (Interconnet) : 각 instance를 연결하는 망
- Service IP (VIP) : 서비스 제공 망

#### DB Instance 연결

Connection : 유저 프로세스와 오라클 서버 프로세스간의 물리적 연결

Session : 사용자가 현재 데이터베이스 인스턴스에 아이디와 패스워드를 입력하고 로그인한 상태

# 2. 오라클 데이터베이스 관리 도구

# 오라클 12c 설치 (학습용)

- https://edelivery.oracle.com 접속
- Sign In
- Oracle Database 12c Enterprise Edition 검색 후 아래 이미지의 링크 클릭

DLP: Oracle Database 12c Enterprise Edition 12.1.0.2.0 (Oracle Database Enterprise Edition)

- 우측 상단의 View Items / Continue 클릭



- Continue / Continue / Download
- Oracle\_SSN\_DLM\_07220855.exe 실행
- 파일 경로 설정 후 Next
- V47115-01\_1of2.zip / V47115-01\_2of2.zip 압축풀기
- database₩setup.exe 실행
- Oracle Database 12c 릴리스 1 설치 프로그램 단계 1/10
  - My Oracle Support를 통해 보안 갱신 수신(W) 체크 해제
- Oracle Database 12c 릴리스 1 설치 프로그램 단계 2/10
  - 데이터베이스 소프트웨어만 설치(D)
- Oracle Database 12c 릴리스 1 설치 프로그램 단계 3/10
  - 단일 인스턴스 데이터베이스 설치(S)
- Oracle Database 12c 릴리스 1 설치 프로그램 단계 6/11
  - Windows 내장 계정 사용(L)
- 설치 완료 후 Database Configuration Assistant 실행
- Database Configuration Assistant 시작 단계 1/6
  - 데이터베이스 생성(A)
- Database Configuration Assistant 데이터베이스 생성 단계 1/14
  - 고급 모드(R)
- Database Configuration Assistant 데이터베이스 생성 단계 3/14

- 범용 또는 트랜잭션 처리
- Database Configuration Assistant 데이터베이스 생성 단계 4/14
  - 전역 데이터베이스 이름(A): orcl
  - SID(C) : orcl
- Database Configuration Assistant 데이터베이스 생성 단계 6/14
  - 모든 계정에 동일한 관리 비밀번호 사용(C): oracle 4U
- Database Configuration Assistant 데이터베이스 생성 단계 7/15
  - 새 리스너 생성(C)
  - 리스너 이름(D): LISTENER
  - 리스너 포트(E): 1521
- Database Configuration Assistant 데이터베이스 생성 단계 9/15
  - 샘플 스키마(E)
- Database Configuration Assistant 데이터베이스 생성 단계 10/15 메모리(C)
  - 메모리 크기(SGA 및 PGA)(J): 1024 MB
  - 자동 메모리 관리 사용(K)

# **SQL** Developer

- <u>https://otn.oracle.com</u> 접속



# **Downloads**

Database Downloads

Java Downloads

SQL Developer

Oracle Instant Client

Oracle WebLogic Server

### All Downloads

- Windows 64-bit with JDK 8 included Download

# SQL Developer 환경설정

- 도구 환경설정 코드 편집기 글꼴
- 도구 환경설정 데이터베이스 NLS 날짜 형식(F): YYYY/MM/DD
- 도구 환경설정 데이터베이스 객체 뷰어 한 번 눌러 객체 열기(O) 체크 해제

# DB 접속



create user oral identified by oracle\_4U;

grant connect,
resource,
create view,
create synonym,
unlimited tablespace to oral;



setup.sql 실행

# 3. 데이터베이스 Instance 관리

# 초기화 파라미터 파일

초기화 파라미터 파일 : 인스턴스가 시작될 때 필요한 설정들에 대한 파라미터 값을 가지고 있는 파일

- SPFILE (Sever Parameter File)
  - 2진 Binary 파일로 구성되어 있으며, OS에서 수정이 불가능
  - ALTER 문을 통해 DB운영 중에도 파라미터를 수정 할 수 있고 서버를 재시작 하지 않아도 적용
  - 기본 파일명 : spfile < SID > .ora
- PFILE (Parameter File)
  - Text 형태로 구성되어 있으며, OS에서 수정이 가능 (수정 후 DB를 재시작해야 적용)
  - 기본 파일명 : init<SID>.ora

# 초기화 파라미터 값 변경

#### 파라미터

- Static parameter
  - 파라미터 파일에서만 수정 가능
  - 인스턴스를 재시작해야 적용
- Dynamic parameter
  - DB운영 중에도 파라미터 수정 가능
- 파라미터 변경시 SCOPE 옵션
  - SCOPE 옵션
    - Memory : 변경 사항이 메모리에만 적용, DB가 재시작 되면 변경 이전 값으로 돌아감
    - Spfile: 변경 사항이 spfile에만 저장되고 현재 DB에는 영향을 미치지 않음
      - Static parameter은 spfile 옵션만 지정 가능 (DB를 재시작해야 적용 가능)
    - Both: 변경 사항이 메모리와 spfile에 모두 저장, 현재와 DB 재시작 후 모두 영향을 미침

# 오라클 시작 및 종료

#### 오라클 시작

- SHUTDOWN: 오라클이 완전 정지 된 상태
- NOMOUNT : 파라미터 파일에 접근하여 Instance를 실행
- MOUNT: NOMOUNT 상태의 파라미터 파일에 지정된 Control file을 실행
- OPEN: Control file을 읽어 Data file과 Redo log file의 정보를 확인하고 모든 파일 open

## 오라클 종료

- ABORT : 강제종료, 다음 오라클 시작시 인스턴스 복구가 필요
- IMMEDIATE: commit된 데이터를 Data file에 저장하고 commit되지 않은 데이터를 rollback 시킨 후 인스턴스 종료
- TRANSCTIONAL : 새로운 트랜잭션을 할 수 없으며, 모든 트랜잭션이 종료되면 인스턴스 종료
- NOMAL: 새로운 사용자의 접속을 허용하지 않으며, 모든 사용자가 세션을 종료하면 인스턴스 종료

| 종료모드              | ABORT | IMMEDIATE | TRANSCTIONAL | NOMAL |
|-------------------|-------|-----------|--------------|-------|
| 새로운 연결 허용         | X     | X         | X            | X     |
| 현재 세션 종료 시까지 대기   | X     | X         | X            | 0     |
| 현재 트랜잭션 종료 시까지 대기 | X     | X         | 0            | 0     |
| 체크포인트 적용 및 파일 닫기  | Х     | 0         | 0            | 0     |

# 4. 오라클 네트워크 환경 구성

# Oracle net 리스너

리스너 : 네트워크를 이용하여 클라이언트에서 오라클 서버로 연결하기 위한 오라클 네트워크 관리자

- 파일 형식: listener.ora

## 이름 지정 방식

이름 지정 방식을 이용하여 원하는 데이터베이스로 접속할 수 있는 정보를 획득

Easy connect: 대상 데이터베이스의 TCP/IP를 이용하여 대상 데이터베이스에 접속하는 방식

- 기본적으로 활성화되며 클라이언트의 구성이 필요 하지 않음
- TCP/IP만 지원
- 고급 연결 옵션 지원하지 않음

로컬 이름 지정 : 클라이언트에 존재하는 tnsnames.ora 파일에 등록된 대상 데이터베이스의 정보를 이용하여 접속하는 방식

- 클라이언트에 tnsnames.ora 파일이 필요
- 모든 oracle net 프로토콜 지원
- 고급 연결 옵션 지원

디렉토리 이름 지정 : 별도로 존재하는 디렉토리 서버에서 대상 데이터베이스의 정보를 모두 관리하는 방식

- tnsnames.ora 파일과 함께 LDAP 필요
- 고급 연결 옵션 지원

외부 이름 지정: 비오라클 방식으로 오라클과 호환되는 서드파티 도구나 응용프로그램에서 사용

# Dedicated server 와 Shared server 구성 비교

Dedicated server : 유저프로세스와 서버 프로세스가 1:1로 연결되는 환경

- 서버프로세스 각각의 PGA가 할당된다.
- 유저프로세스와 서버프로세스가 1:1로 연결되기 때문에 좋은 성능을 가진다.
- OLTP환경에서 자원이 낭비된다.

Shared server: 다수의 유저프로세스가 소수의 서버프로세스를 공유해서 사용하는 환경

- Dispatcher를 사용하여 자원낭비를 줄일 수 있다.

- Dispatcher : 클라이언트에서 보낸 요청을 받아 requst queue에 전달하는 역활
- Shared server환경에서의 UGA(User Global Area)는 SGA 내부에 생성 된다.
- Shared server 구성 시 고려 사항 Shared server를 사용하여 수행하지 않아야 하는 특정 데이터베이스 작업유형
  - 데이터베이스 관리
  - 백업 및 복구 작업
  - 일괄 처리 및 대량 로드 작업
  - 데이터 웨어하우스 작업

# 5. 유저 보안 관리

# 데이터베이스 계정

#### 유저 계정

각 데이터베이스 유저 계정에는 아래의 내용이 포함되어 있다.

- 고유 username
- 인증 방식
- 기본 테이블스페이스
- 임시 테이블스페이스
- 유저 프로파일
  - 프로파일: 리소스의 소비를 제어하고 계정 상태 및 암호 만료를 관리하기 위해 생선하는 하나의 오브젝트
- 초기 Consumer Group
- 계정 상태

스키마: 데이터베이스 유저가 소유하는 데이터베이스 객체의 모음

#### 기본적으로 생성되는 관리 계정

- SYS : Oracle DB 관리자로 Super user이다. Oracle 시스템의 기반이 되는 Data dictionary 소유자이며 DB 생성과 삭제 가능
  - SYSDBA의 권한을 가짐
- SYSTEM : SYS와 유사한 권한을 가지고 있지만 DB 생성과 삭제가 불가능, 생성된 DB를 운영 하기 위한 권한을 갖는 계정
  - SYSOPER의 권한을 가짐
- SYSBACKUP: Oracle RMAN 백업 및 Recovery 작업을 지원
- SYSDG: Oracle Data Guard 작업을 지원
- SYSKM: Transparent Data Encryption 전자 지갑(wallet) 작업을 지원

## 권한

#### 유저 권한

- 시스템 권한 : 유저가 DB에서 특정 작업을 수행할 수 있도록 한다.
  - WITH ADMIN OPTION을 사용하여 시스템 권한 취소



- 객체 권한 : 유저가 특정 객체를 access 및 조작할 수 있도록 한다.
  - WITH GRANT OPTION을 사용하여 객체 권한 취소



#### 관리 권한

- SYSDBA: Oracle 시스템에서 모든 권한을 가지며, DB 생성과 삭제가 가능하다.
- SYSOPER: DB를 운영 관리하기 위한 권한으로 DB 생성과 삭제가 불가능하며, 다른 유저 소유의 DB에는 접근할 수 없다.
- SYSBACKUP: Oracle RMAN 또는 SQL Plus를 사용하는 RMAN 백업 및 Recovery 작업
- SYSDG: Data Guard Broker 또는 DGMGRL 명령행 인터페이스를 사용하는 Data Guard 작업
- SYSKM: Transparent Data Encryption 전자 지갑(wallet) 작업 관리

## 인증

#### 유저 인증

- Password 인증 : 오라클 데이터베이스에 의한 인증
  - Password File을 사용하여 DB 계정 및 패스워드를 확인

- External 인증: 데이터베이스 외부의 방식으로 인증
  - 운영체제: OS에 의한 인증을 의미하며 DB 계정 및 패스워드를 확인하지 않고 쉽게 DB에 접근 가능
  - kerberos
  - o radius
- Global 인증: LDAP 기반 디렉토리 서비스를 사용하여 인증

#### 관리자 인증

- 운영체제 보안
  - DBA는 파일을 생성하고 삭제하는 OS권한을 가져야 한다.
  - 일반 유저는 파일을 생성하고 삭제하는 OS권한을 가질 수 없다.
- 관리자 보안
  - SYSDBA 및 SYSOPER 연결
    - Password File 인증 방식에서는 DBA 유저 이름에 대한 감사 수행
    - OS인증에서는 OS계정 이름에 대한 감사 수행
    - OS인증이 Password File인증보다 우선순위가 높음
    - Password File은 대소문자를 구분하는 암호를 사용

# 롤(Role)을 사용하여 권한 관리

롤(Role): 하나 이상의 권한으로 이루어진 집합체

- 롤에 권한 부여/취소 가능
- 롤을 유저나 다른 롤에 부여/취소 가능
- 시스템 및 객체 권한으로 구성
- 롤을 활성화 하려면 암호가 필요할 수 있음
- 롤은 유저가 소유하지 않으며 스키마에 존재하지 않음

#### 롤 사용 시의 이점

- 권한 관리 용이 : 유저에게 롤을 부여한 후 롤에 권한을 부여
- 동적 권한 관리 : 롤에 관한 권한을 수정하면 그 롤을 부여받은 유저는 즉시 수정된 권한을 얻는다.
- 권한의 선택적 가용성 : 롤을 활성화/비활성화 하여 권한을 일시적으로 설정/해제 가능

#### 기본적으로 생성되는 롤

- CONNECT ROLE: 사용자가 DB에 접속 가능하도록 하기 위해서 가장 기본적인 시스템 권한들이 부여된 롤
- RESOURCE ROLE : 사용자가 객체(테이블, 뷰, 인덱스)를 생성할 수 있도록 하기 위한 시스템 권한들이 부여된 롤
- DBA ROLE : 모든 시스템 권한이 부여된 롤

# 6. 데이터베이스 저장 영역 구조 관리

## 데이터베이스 블록

블록: 오라클 DB에 data가 저장되는 최소 단위 (논리적)

- 블록 헤더 : 블럭의 내부 정보를 저장하며, 위에서 아래로 확장
  - 데이터 블록 주소
  - 세그먼트 유형
  - 테이블 디렉토리
  - 행 디렉토리
  - 트랜잭션 슬롯
- 행 데이터 : 블록에 있는 행의 실제 데이터
  - 블록은 처음 구성될 때 블록 헤더와 사용 가능 영역으로만 구성되어 있으며, 데이터가 Insert될 때마다 아래에서 위로 확장
- 사용 가능 영역 : 블록의 가운데 위치하며, 필요에 따라 헤더와 행 데이터의 확장 공간이 될 수 있다.

## 테이블스페이스 설정

#### TABLESPACE TYPE

- Permanent : 영구히 데이터를 저장하는 일반적인 테이블스페이스
  - SYSTEM : DB운영에 필요한 기본 정보를 담고 있는 Data dictionary table 이 저장되는 공간
  - SYSAUX : SYSTEM 테이블스페이스에 있는 다양한 유틸리티 및 기능을 분리하여 저장한 공간
- Temporary : 임시로 데이터를 저장하는 임시 테이블스페이스 (주로 sort 작업할 때 사용)
- Undo: rollback을 위한 undo 데이터를 저장하는 테이블스페이스

## **BIGFILE**

- Bigfile : 하나의 테이블스페이스에 하나의 데이터 파일만 저장 가능
- Smallfile : 하나의 테이블스페이스에 여러개의 데이터 파일 저장 가능

#### **EXTENT ALLOCATION**

- Automatic : 테이블스페이스 내의 extent의 크기가 시스템에 의해 관리
  - 임시 테이블스페이스에 대해서는 Automatic 지정 불가
- Uniform : 사용자가 지정한 동일한 extent의 크기로 테이블스페이스 관리
  - Undo 테이블스페이스에 대해서는 Uniform 지정 불가

#### LOGGING

- Logging : 테이블스페이스의 객체에 대한 변경 내용을 리두 로그에 기록
- No logging : 리두 로그 생성이 억제되어 logging 테이블 보다 적은 내용만 리두 로그에 기록
  - 리두 로그가 전혀 생성 되지 않는 것은 아니다.

#### SEGMENT SPACE MANAGEMENT

- Automatic : 비트맵을 이용하여 세그먼트 내의 영역 관리
  - ASSM(Automatic Segment Space Management)을 사용하여 세그먼트 영역을 자동으로 관리
- Manual : Freelist를 이용하여 사용 가능 영역을 수동으로 관리
  - Freelist: Insert할 공간이 있는 데이터 블록 리스트

#### **COMPRESSION**

- Basic : 데이터베이스 블록내의 데이터들을 압축
  - Compress 장/단점
    - 장점
      - 저장 공간 절약
      - I/O 감소로 성능 향상 및 버퍼캐시 사용 효율 증대
      - SELECT문의 성능 향상
    - 단점
      - CPU 사용률 증가
      - UPDATE문의 성능 저하
- None
- OLTP

# **OMF (Oracle Managed Files)**

OMF (Oracle Managed Files) : 오라클 DB를 구성하는 운영체제 파일을 오라클 서버에 의해 자동으로 관리

| 파라미터                        | 설명                                 |
|-----------------------------|------------------------------------|
| DB_CREATE_FILE_DEST         | 데이터 파일 및 임시 파일에 대한 디렉토리의 위치를 정의    |
| DB_CREATE_ONLINE_LOG_DEST_n | 리두 로그 및 Control File 생성을 위한 위치를 정의 |
| DB_RECOVERY_FILE_DEST       | Fast Recovery Area의 기본 위치 정의       |

# 데이터베이스 확장

데이터베이스 확장 방법

- 새 테이블스페이스 생성
- 기존 Small File 테이블스페이스에 데이터 파일 추가
- 데이터 파일 크기 증가
- 데이터 파일의 동적 증가 제공

# 7. 공간 관리

## 블록 공간 관리

Row Migration : update문 수행 등으로 인해 로우 데이터의 크기가 커져 데이터 블록의 빈 공간에 들어갈 수 없게되었을 때 다른 데이터 블록에 로우 데이터가 저장 되는 현상

- Row Migration이 발생하면 기존 데이터 블록에는 새로운 데이터 블록에 대한 포인터 값이 남게 되고 원하는 데이터를 얻어 오려면 여러개의 블록을 스캔해야 하기 때문에 성능이 저하 된다.

Row Chaining : 하나의 로우 데이터의 크기가 블록의 데이터 저장 공간보다 클 때 발생하는 현상으로 하나의 로우 데이터를 분리하여 서로 다른 블록에 저장한다.

- Row Migration과 마찬가지로 여러개의 블록을 스캔해야 원하는 로우 데이터를 얻을 수 있기 때문에 성능이 저하 된다.

PCTFREE : 데이터 블록에 실제 데이터가 Insert될 때 설정해준 값만큼 여유 공간을 만들며, Row Migration현상을 방지하기 위해 사용한다.

- PCTFREE의 기본값은 10(%) 이다.

## 익스텐트 관리

Extent management 방식

- Dictionary 방식: extent정보를 시스템 테이블스페이스에 저장된 데이터 딕셔너리에서 관리
  - 테이블스페이스에 존재하는 extent의 정보가 변경될 때마다 데이터 딕셔너리의 해당 extent 정보를 갱신해야 한다.
  - Segment마다 각각 다른 extent size 설정이 가능
  - 데이터 딕셔너리 테이블에서 undo가 발생
  - 모든 segment가 소수의 딕셔너리 테이블을 조회하고 갱신해야 하므로 데이터 딕셔너리 테이블에 대한 경합이 발생할 가능 성이 높다.
  - 주기적으로 extent를 병합하거나 처음부터 extent크기를 동일하게 구성해야한다.
- Local 방식 : extent정보를 bitmap을 이용하여 테이블스페이스의 header에서 관리
  - 데이터 딕셔너리 테이블을 갱신하거나 참조하지 않는다. 따라서 데이터 딕셔너리 테이블에 대한 경합이 감소한다.

#### Extent 크기 조정

- Autoallocate : 테이블스페이스 내의 extent의 크기가 시스템에 의해 관리
  - 임시 테이블스페이스에 대해서는 Automatic 지정 불가
- Uniform : 사용자가 지정한 동일한 extent의 크기로 테이블스페이스 관리

## 세그먼트 유형

Segment : 하나 이상의 extent로 구성

- Object 중에서 저장 공간을 가지고 있는것

#### Segment의 종류

- Data Segments : table, table partition, cluster

- Index Segments : index-oraganised table, index partition

- Undo Segments : rollback segment

- Temporary Segments

## 세그먼트 공간 관리

FLM (Free List Management) : Freelist를 이용하여 사용 가능 영역을 수동으로 관리

- 프리 블록의 여부는 PCTFREE의 속성에 의해 결정
- 세그먼트 헤더 블록의 Freelist에서 프리 블록의 시작과 끝을 관리
- 개별 데이터 블록에는 블록이 Freelist에 존재하는지의 여부와 다음 프리 블록의 위치 정보를 저장
- 블록의 계속적인 I/O 작업을 반복하기 때문에 비효율적

ASSM (Automatic Segment Space Management) : 비트맵을 이용하여 세그먼트 내의 영역을 자동으로 관리

## **Deferred\_segment\_creation**

Deferred\_segment\_creation: 테이블을 생성시 데이터가 들어오기 전까지 세그먼트를 만들지 않게하는 파라미터

- Default로 설정되어 있다.

## 세그먼트 축소

SHRINK : Segment에 할당된 Extent를 Tablespace로 반환하는 작업

- Shrink 작업으로 Segment를 축소 (Tablespace의 용량은 변하지 않음)
- Insert, Delete를 통해 데이터를 이동하기 때문에 추가적인 공간이 필요하지 않음
- 일부 데이터만 이동하기 때문에 Row Migration이나 Chaining이 전체적으로 해결되지 않음
- Shrink 명령어
  - ALTER TABLE <테이블명> SHRINK SPACE [COMPACT] [CASCADE];
    - COMPACT
      - Shrink 명령어 뒤에 COMPACT를 명시하면 shrink작업은 진행하지만 HWM는 재조정하지 않고, 공간 또한

즉시 반환하지 않는다.

- ALTER TABLE ~ SHRINK SPACE 명령을 사용하여 HWM을 재조정하고 단편화된 공간을 회수해야 한다.
- HWM에 대한 정보를 바꾸는 것은 온라인성 작업이 아니기 때문에 두 단계로 나눔
  - HWM(High Water Mark) : 마지막까지 등록된 블록 위치
- CASCADE
  - Shrink 작업의 대상인 테이블과 관련된 모든 오브젝트들도 Shrink작업을 수행

# 테이블 압축

Basic : Direct path I/O 작업의 경우에만 압축 가능

- Bulk loading 작업이 빈번하게 일어날 때 유리
- 압축 과정
  - 압축이 되지 않은 상태로 데이터 삽입
  - PCTFREE에 도달하면 압축 진행
  - 다시 압축이 되지 않은 상태로 데이터 삽입
  - PCTFREE에 도달하면 압축 진행
  - 위의 과정 반복

Advanced : 모든 DML작업에 대해 압축 가능

- OLTP환경에 적합
- ACO (Advanced Compression Option) 옵션을 구매해야 정식으로 사용 가능
- 반복되는 데이터를 블록 헤더에 한번만 저장하는 방식

# 8. 언두 데이터 관리

# 언두 데이터

언두 데이터: 사용자가 DML을 수행할 경우 발생하는 원본 데이터

- 데이터 조작어를 통해 수정되기 전 원래 데이터의 본사본
- 데이터를 변경하는 모든 트랜잭션에 대해 캡처
- 트랜잭션이 종료될 때까지 보존
- 지원하는 작업
  - 롤백
  - 읽기 일관성 및 Flashback Query
  - 실패한 트랜잭션 Recovery

언두 세그먼트 : 언두 데이터를 저장하는 세그머트

- 각 트랜잭션은 하나의 언두 세그먼트에만 할당
- 경우에 따라 하나의 언두 세그먼트로 여러개의 트랜잭션을 처리 가능

언두 테이블스페이스 : 언두 세그먼트를 저장하는 테이블스페이스

- 서버 프로세스가 직접 관리
- 단일 인스턴스와만 연관

# 언두 데이터 및 리두 데이터 비교

|       | 언두                    | 리두              |
|-------|-----------------------|-----------------|
| 기록 내용 | 변경 사항을 되돌리는 방법        | 변경 사항을 재생성하는 방법 |
| 사용 목적 | 롤백, 읽기 일관성, Flashback | DB 변경 사항 롤포워드   |
| 저장 위치 | 언두 세그먼트               | 리두 로그 파일        |

## 언두 관리

언두 관리를 통해 아래의 오류를 방지

- 언두 테이블스페이스의 공간 오류 (ORA-30036)
  - 언두 테이블스페이스 확장
  - 새로운 언두 테이블스페이스 생성

- 쿼리문의 로직을 작은 단위로 잘라서 실행
- "Snapshot too old" 오류 (ORA-01555)
  - 적절한 언두 retention 간격 구성
  - 언두 테이블스페이스의 크기를 적절히 조정
  - 언두 retention 보장을 고려

#### 자동 언두 관리

- 언두 테이블스페이스에서 언두 데이터 및 언두 공간 관리 완전 자동화
  - 장기 실행 query를 충족하도록 Autoextend
  - Retention을 최적화하도록 고정 크기 테이블스페이스에서 자체 튜닝

UNDO\_RETENTION: 이미 커밋된 언두 정보를 보존해야 하는 기간을 초 단위로 지정하는 파라미터

- UNDO\_RETENTION 파라미터를 설정하는 경우
  - Autoextend 옵션이 활성화된 경우
  - LOB에 대해 언두 Retention을 설정할 경우
  - Retention을 보장하려는 경우
- Status

ACTIVE : 커밋되지 않은 언두 정보UNEXPIRED : 커밋된 언두 정보

○ EXPIRED : UNDO\_RETENTION이 만료 된 언두 정보

### GUARANTEE 옵션

- GUARANTEE : 언두 테이블스페이스의 저장 공간이 부족해도 Retention 보장
  - ORA-01555 에러가 발생하지 않지만, ORA-30036이 발생할 가능성이 높아지고 트랜잭션 실패 가능성이 높다.
- NOGUARANTEE : 언두 테이블스페이스의 저장 공간이 부족할 때 UNEXPIRED를 덮어써 Retention을 보장하지 않음
  - ORA-01555 에러 발생률은 높아지고, ORA-30036 에러는 발생하지 않는다.

# 임시 언두

## 임시 언두 이점

- 언두 테이블스페이스에 저장되는 언두의 양을 감소
- 리두 로그의 크기를 감소
- Oracle Active Data Guard 옵션이 있는 물리적 Standby Database의 임시 테이블에서 DML작업을 수행 가능

# 9. 데이터 동시성 관리

# **LOCK**

다중 세션에서 동일한 데이터를 동시에 변경하는 것을 방지 주어진 명령문에 대해 가능한 가장 낮은 레벨에서 자동으로 획득

# LOCK 매커니즘

높은 레벨의 데이터 동시성을 제공

- 행 레벨의 Lock 획득
- 일반적인 Select문 쿼리에서는 Lock을 걸지 않음

자동 큐 관리

트랜잭션이 종료(Commit, Rollback)될 때까지 Lock 보유

## **DML LOCK**

각 DML 트랜잭션은 다음의 Lock 획득

- 갱신 중인 행에 대한 EXCLUSIVE 행 잠금
- ROW EXCLUSIVE(RX) 모드에서 DDL문을 실행하지 못하도록 테이블에 대한 테이블 Lock(TM) 획득

# ENQUEUE 매커니즘

Lock은 자동으로 큐에 저장되며, Lock을 보유하는 트랜잭션이 완료되면 다음 트랜잭션이 Lock을 보유 Lock을 이미 보유한 세션은 해당 Lock의 변환 요청 가능

# LOCK 충돌

## Lock 충돌 원인

- Commit 되지 않은 변경 사항
- 장기 실행 트랜잭션
- 필요 이상으로 높은 Lock 레벨

## Lock 충돌 해결

- Lock을 보유하는 세션을 커밋 또는 롤백
- Lock을 보유하는 세션을 종료 (Kill Session)

# **Deadlock**

둘 이상의 세션이 각각 Lock 된 데이터를 서로 대기하고 있는 경우

- Oracle DB는 Deadlock을 자동으로 감지
- 트랜잭션 종료(Commit, Rollback)를 통해 해결

# 10. 오라클 데이터베이스 감사(Audit) 구현

## 데이터베이스 보안

보안 시스템은 내부 데이터의 기밀성을 보장

- 데이터 및 서비스에 대한 액세스 제한
- 유저 인증
- 의심스러운 작업 모니터

## 의심스러운 작업 모니터

#### 감사 (Audit)

- 사용자의 행동을 감시하거나 DB에 관한 통계자료를 얻는 목적으로 사용

#### 감사 형태

- 필수 감사 : 모든 오라클 데이터베이스는 다른 감사 옵션이나 파라미터에 관계없이 특정 작업을 감사한다.
- 표준 데이터베이스 감사 : 데이터베이스에 영향을 끼치는 작업을 감사하거나 특정 데이터베이스 작업에 대한 데이터를 모니 터하고 수집한다.
- 값 기준 감사: 데이터베이스 감사 뿐만 아니라 DML 수행에 의해서 변경된 데이터까지 감사한다.
  - 데이터베이스 트리거를 통해 구현
- FGA (Fine-Grained Auditing): 특정 사용자의 조회 및 DML 작업을 감사한다.

# 11. 백업 및 Recovery 개념

# Database Fail 유형

Statement Failure: 데이터베이스 작업이 정상적으로 실행되지 않고 오류가 발생하는 경우

- 주 원인
  - 오타, 문법 오류
  - 권한이 부족한 상태에서 작업 수행
  - 저장 공간 부족
- 해결 방법
  - 오타 수정, 문법 수정
  - 적절한 객체 권한, 시스템 권한 부여
  - 저장 공간 확장

User Process Failure: 데이터베이스에 접속된 유저의 세션이 끊기는 경우

- 주 원인
  - 유저가 비정상적으로 연결은 끊은 경우
  - 유저 세션이 비정상적으로 종료된 경우
  - 세션을 종료시키는 프로그램의 오류
- 해결 방법
  - PMON이 커밋되지 않은 변경사항을 자동으로 롤백하고 Lock을 해제

Network Failure: 데이터베이스 접속이 되지 않는 경우 (네트워크 장애는 주로 네트워크 관리자나 업체에 문의)

- 주 원인
  - 리스너가 꺼져 있는 경우
  - 리스너가 비정상 종료된 경우
  - NIC에 문제가 발생한 경우
  - 네트워크에 문제가 있는 경우
- 해결 방법
  - 리스너를 키고 데이터베이스 재시작
  - 백업 리스너 구성
  - 다중 네트워크 카드 구성
  - 백업 네트워크망 구성

User error : 정상적으로 작업이 실행되지만 잘못된 작업을 수행한 경우

- 주 원인
  - 유저의 실수로 데이터를 삭제하거나 수정
  - 유저가 테이블을 삭제한 경우

- 해결 방법
  - 트랜잭션 롤백
  - Recycle bin에서 테이블을 복구 (Flashback 작업)
    - Flashback : 특정 시간 또는 특정 시점으로 되돌려 데이터를 복구하는 기술
  - Recycle bin이 이미 지워졌거나 PURGE옵션으로 테이블을 삭제한 경우 PITR을 사용하여 복구

Instance Failure: 데이터베이스 Instance가 비정상 종료되는 경우

- 주 원인
  - Server PC 다운, 정전
  - 비상 종료 (SHUTDOWN ABORT, STARTUP FORCE)
  - 주요 백그라운드 프로세스 중 하나의 문제가 있는 경우
- 해결 방법
  - STARTUP 명령을 사용하여 Instance 재시작 (SMON이 자동으로 데이터베이스를 동기화 시킨다.)

Media Failure: 데이터베이스를 구성하는 필수 물리적인 파일 중 하나가 손상/손실 된 경우

- 주 워인
  - DB를 구성하는 필수 파일 삭제 또는 손상
- 해결 방법
  - 백업 파일을 사용하여 손상된 파일을 복구

# **Instance Recovery**

CKPT(체크포인트) 프로세스

- DBWn이 SGA의 수정된 데이터 블록을 디스크에 기록한 내용을 Control File에 저장
- 로그 스위치가 발생할 경우 CKPT 프로세스는 체크포인트 정보를 데이터 파일의 헤더에 기록
  - 체크포인트 정보
    - 체크포인트 위치 : 리두 로그 파일에서 Instance Recovery가 시작될 위치
    - SCN (System Change Number) : 유저가 commit 할때 해당 트랜잭션에 부여되는 고유번호

#### 리두 로그 파일

- 데이터베이스 변경 내용 기록
- 데이터 손실로부터 보호하려면 다중화 되어야 한다.

LGWR 프로세스: 리두 로그 버퍼를 디스크의 리두 로그 파일에 기록

- LGWR 활동 주기
  - 커밋을 수행할 때
  - 리두 로그 버퍼의 1/3 이상 사용되었을 때
  - 1MB 이상의 리두 로그가 생성 되었을 때
  - DBWn에 의해 변경된 데이터 블록을 저장하기 전
  - 리두 로그 스위치가 발생 하였을 때
  - 3초 마다

## Instance Recovery 특징

- 종료 시 동기화되지 않은 파일이 있는 데이터베이스를 열려고 할 때 발생
- 리두 로그 그룹에 저장된 정보를 사용하여 파일 동기화

## Instance Recovery 단계

- Instance 시작 (데이터 파일이 동기화되지 않음)
- 롤 포워드 (파일에 commit된 데이터와 commit되지 않은 트랜잭션 모두)
- 데이터베이스 open
- 롤백 (파일에 commit되지않은 데이터)

## Instance Recovery 튜닝

- Instance Recovery동안 체크포인트 위치와 리두 로그 끝 사이의 트랜잭션이 데이터 파일에 적용되어야 한다.
- 체크포인트 위치와 리두 로그 끝 사이의 차이를 제어함으로써 Instance Recovery 튜닝

# Media Recovery 종류

Complete Recovery: recovery가 요청된 시점까지 커밋된 모든 데이터 변경 사항을 포함하여 최신의 상태로 복구

Incomplete Recovery: recovery가 요청되기 전의 지정된 과거 시점으로 복구

# 12. 백업 및 Recovery 구성

# Fast Recovery Area 구성

Fast Recovery Area: Oracle DB의 복구와 관련된 파일들의 통합된 저장 영역

- 간편한 백업 저장 영역 관리를 위해 권장
- 작업 중인 데이터베이스 파일과는 구분되는 저장 공간
- 위치는 DB\_RECOVERY\_FILE\_DEST 파라미터로 지정
- 크기는 DB\_RECOVERY\_FILE\_DEST\_SIZE 파라미터로 지정
- Oracle DB의 복구와 관련된 파일들을 모두 보관할 수 있을 만큼 커야 한다.

## Control File 다중화

#### ASM

- 초기화 파라미터 설정 변경
  - ALTER SYSTEM SET control files =
    - '+DATA₩orcl₩controlfile₩current.260.836857429',
    - '+DATA' SCOPE = SPFILE;
- 데이터베이스 instance 종료
  - shutdown immediate
- 데이터베이스 NOMOUNT
  - rman target /
  - startup nomount
- RMAN툴을 사용하여 기존 Control File 복사
  - RESTORE CONTROLFILE FROM
    - '+DATA\orcl\controlfile\current.260.836857429';
- 데이터베이스 MOUNT
  - alter database mount;
- 데이터베이스 Open
  - alter database open ;

## File System

- 초기화 파라미터 설정 변경
  - ALTER SYSTEM SET control\_files =
     'C:\#app\#WORK\#DISK1\#control01.ctl',
     'C:\#app\#WORK\#DISK2\#control02.ctl' SCOPE = SPFILE;
- 데이터베이스 Instance 종료
  - shutdown immediate
- 운영 체제 명령을 사용하여 기존 Control File 복사
  - host copy C:₩app\WORK\oradata\orcl\control01.ctl C:\app\WORK\DISK1\control01.ctl
  - host copy C:₩app\WORK\oradata\orcl\control01.ctl C:\op\WORK\DISK2\control02.ctl

- 데이터베이스 Open
  - startup

## 리두 로그 파일 다중화

- 리두 로그 그룹 정보 확인
  - SELECT group#, sequence#, status, archived, members, bytes/ 1024/ 1204 size\_mb FROM v\$log;
  - SELECT group#, member, status FROM v\$logfile ORDER BY group#;
- 각 그룹마다 멤버 파일 추가
  - ALTER DATABASE ADD LOGFILE MEMBER
  - 'C:\#app\#WORK\#ORK\#DISK1\#redo01a.log' TO GROUP 1,
  - 'C:₩app\WORK\ORK\DISK1\redo02a.log' TO GROUP 2,
  - 'C:₩app\WORK\ORK\DISK1\redo03a.log' TO GROUP 3,
  - 'C:\app\WORK\ORK\DISK1\redo01b.log' TO GROUP 1,
  - 'C:\app\WORK\ORK\DISK1\redo02b.log' TO GROUP 2,
  - 'C:\app\WORK\ORK\DISK1\redo03b.log' TO GROUP 3;
- 수동 Log Switch 및 강제 Check Point 수행
  - ALTER SYSTEM SWITCH LOGFILE;
  - ALTER SYSTEM CHECKPOINT;

## 아카이브로그 모드

#### 아카이브로그 모드

- NOARCHIVELOG 모드 : 로그 스위치가 발생할 때마다 리두 로그 파일을 덮어 쓴다.
- ARCHIVELOG 모드 : 로그 스위치가 발생할 때 리두 로그 파일을 지정된 위치에 복사 한다.

#### ARCn 프로세스

- 선택적 백그라운드 프로세스
- 데이터베이스가 ARCHIVELOG 모드인 경우 활성화
- 데이터베이스에서 수행한 모든 변경 사항을 기록

#### **ASM**

ASM(Automatic Storage Management): 오라클에서 스토리지를 직접 관리하는 방식

- File System과 Raw Device의 장점만을 결합한 방식
  - File System
    - OS를 통하여 데이터를 저장하고 관리하는 방식
    - 사용자 편의성이 좋다.

- OS의존도가 높아 OS의 성능에 따라 오라클의 성능에 영향을 받는다.
- Raw Device
  - 오라클에서 직접 storage에 데이터를 저장하는 방식
  - OS를 거치지 않고 직접 디스크에 I/O를 발생하기 때문에 속도가 빠르다.
  - 관리하기 어렵다.

#### - ASM 특징

- 효율적인 디스크 관리 : 디스크 그룹에 새로운 디스크를 추가, 제거하면 ASM에서 자동으로 Rebalancing 작업 수행
  - Rebalancing : 디스크를 추가하거나 제거하면 자동적으로 데이터를 균등하게 분산
- 디스크 I/O의 효과적 분산: AU(Allocation Unit) 단위로 나누어서 서로 다른 디스크에 균등하게 분산시켜 저장
- 비용 절감: 고가의 RAID 장비나 별도의 하드웨어, 소프트웨어 없이 오라클에서 소프트웨어적으로 관리 가능

# 13. 데이터베이스 백업 수행

## 백업의 종류

수동 백업 (User Managed Backup) : 데이터베이스 구동에 필요한 파일을 별도의 저장매체에 직접 백업하는 작업

- 운영조건에 따라 Hot 백업, Cold 백업을 선택하여 수행
  - Hot 백업 : 데이터베이스 Open 상태에서 백업 진행 (백업 중에도 데이터베이스 서비스 가능)
    - 아카이브로그 모드에서만 가능
    - 데이터 파일, 컨트롤 파일만 백업 가능
    - Hot 백업 중에 DML작업으로 변경 된 내용들은 리두 로그 파일에 저장되었다가 백업이 끝나면 데이터파일에 적용
  - Cold 백업: 데이터베이스를 정상 종료 시킨 후 백업 (백업 중에는 데이터베이스 서비스 불가능)
    - 모든 파일의 시점이 동일해야 한다.
    - 아카이브로그 모드, 노아카이브로그 모드 모두 사용 가능
    - 데이터 파일, 컨트롤 파일, 리두 로그 파일 모두 백업 가능

RMAN 백업 (Recovery Managed Backup): Recovery Manager라는 오라클 패키지를 이용하여 백업

- Backup set : 여러 데이터 파일에서 실제로 사용되는 블록만 추출하여 하나의 백업 파일로 묶어서 저장
  - 저장 공간 절약
  - 데이터 파일 복구 시 Restore 작업이 필요하므로 작업 시간이 길다.
  - Full 백업, Incremental 백업 가능
- Image copy : 데이터 파일별로 각각의 백업 파일을 만들어서 저장 (빈 블록을 포함)
  - 많은 저장 공간 소요
  - 데이터 파일 복구 시 Restore 작업이 필요 없기 때문에 작업 시간이 짧다.
  - Full 백업만 가능
    - Full 백업 : 사용된 모든 데이터 파일을 복사하는 작업
    - Incremental 백업
      - cumulative 백업
      - differential 백업

백업 솔루션을 이용한 백업 (Third Party Solution)

- 위의 두기 백업 방법을 이용하여 편하도록 Third Party Solution을 만든 프로그램
  - Netbackup
  - Backup Xcelerator

## Control File을 Trace File로 백업

Trace File: 데이터베이스에 문제가 발생했을 때 그 문제를 진단하고 디버깅할 수 있는 정보를 제공하는 파일

- Control File을 재생성하는 SQL 명령을 통해 Control File을 Trace File로 백업
- 모든 Control File이 손실될 경우 Control File Trace 백업을 사용하여 복구 가능

# 14. 데이터베이스 Recovery 수행

# Control File 복구

#### **ASM**

- Enterprise Manager를 사용하여 단계별 Recovery 수행
- RMAN을 사용하여 Recovery 수행
  - 데이터베이스 NOMOUNT모드로 설정
  - RMAN에 연결하고 RESTORE CONTROLFILE 명령을 실행하여 Control File 복원
  - Control File 복원 후 데이터베이스 Open

#### 파일 시스템

- 데이터베이스 종료
- 손실된 Control File을 대체할 다중화 된 Control File을 복사

# 리두 로그 파일 복구

## 리두 로그 파일 손실

- 정상적인 Instance 작업에는 영향을 주지 않는다.
- Alert log를 통해 누락된 로그 파일을 확인한다.

## 리두 로그 파일 복구

- 손실된 리두 로그 멤버 삭제
- 새 멤버를 추가

# 데이터 파일 복구

#### NOARCHIVELOG 모드

- 데이터베이스 종료
- 모든 데이터 파일 및 Control File을 포함하여 전체 데이터베이스를 백업에서 복원
- 데이터베이스 Open
- 마지막 백업 이후 변경된 모든 사항 재입력

#### ARCHIVELOG 모드

- Noncritical 데이터 파일 손실 (SYSTEM 또는 UNDO 테이블스페이스에 속하지 않는 데이터 파일 손상/손실)
  - 누락된 데이터 파일을 복원하고 복구
- Critical 데이터 파일 손실 (SYSTEM 또는 UNDO 테이블스페이스에 속하는 데이터 파일 손상/손실)
  - 데이터베이스 종료
  - 데이터베이스 MOUNT모드로 설정
  - 누락된 데이터 파일을 복원하고 복구
  - 데이터베이스 Open

# 15. 데이터 이동

# **Oracle Data Pump**

Data Pump : 고속 데이터/메타 데이터 이동을 위한 서버 기반 기능

- DBMS\_DATAPUMP 패키지를 통해 호출
- 다양한 데이터 이동 방법 제공
  - 데이터 파일 복사
  - Direct path
  - External Table
  - 네트워크 링크 지원

#### Data Pump 이점

- JOB 컨트롤 기능: Interactive mode를 통해 Data Pump 작업 통제 가능
  - Data Pump 작업을 중단/재시작 가능
  - 동적으로 Dump File 할당 가능
  - 장애가 발생하여 작업이 중지되어도 장애 복구 후 재시작 가능
- 병렬 수행 지원: PARALLEL 파라미터를 통해 Data Pump 작업의 프로세스를 병렬화 가능
  - 여러개의 데이터 파일에 데이터를 쓰거나 여러개의 데이터 파일로부터 데이터를 읽어 데이터베이스에 저장
  - 병렬 수행을 지원함으로써 수행 속도 단축
- 작업에 필요한 공간 예상: ESTIMATE\_ONLY 파라미터를 통해 작업이 소비하는 공간의 양 예측 가능
- 원격지 수행: DB LINK를 통해 원격지 데이터에 대한 Data Pump 수행 가능
- Remapping 지원: 유저 스키마, 테이블 스페이스, 데이터 파일 등과 같은 정보들을 Data Pump시 변경 가능

## **SQL** Loader

SQL Loader: 외부 데이터 파일의 데이터를 데이터베이스의 테이블로 넣기 위한 유틸리티

- Data File : SQL Loader를 사용하여 데이터베이스에 입력될 텍스트 형식으로 구성된 데이터 파일
  - 제어 파일에 지정된 하나 이상의 파일에서 데이터를 읽는다.
  - 데이터 파일의 데이터는 레코드로 구성
- Control File: SQL Loader를 사용하는데 필수적인 파일로써 데이터 정의어 지침을 포함하는 텍스트 파일
  - 데이터 검색 위치
  - 데이터 구문 분석 및 해석 방법
  - 데이터 삽입 위치
- Log File: 데이터 로드 상태 정보, 로드 된 행의 수, 로드 진행중 거부된 행의 수 등 자세한 테이블 로드 정보 포함

- Bad File: SQL Loader 또는 오라클 데이터베이스가 거부한 레코드를 포함
  - 입력 형식에 부적합할 경우
  - 제약조건을 위해 하였을 경우
- Discard File: SQL Loader가 실행되는 동안 폐기되는 파일
  - 컨트롤 파일에 명시한 WHEN절의 조건에 맞지 않는 데이터를 저장

# 로드 방식

Conventional Path Load : SQL Loader에서 설정된 일정량의 버퍼를 채우면 SQL Insert 문장을 이용해 로딩

- Conventional Path Load 방식을 사용해야 하는 상황
  - 데이터 로딩 중에도 DML이 계속 수행돼야 하는 경우
  - Direct Path 방식을 지원하지 않는 클러스터 테이블을 로딩해야 하는 경우
  - 데이터 로딩 중에 제약조건에 의해 에러가 발생한 데이터를 걸러야 할 경우
  - 사이즈가 큰 인덱스가 있는 테이블에 적은 양의 데이터를 로딩해야 할 경우
  - 데이터 로딩 중에 트리거가 동작해야 할 경우

Direct Path Load : 버퍼 캐시를 거치지 않고 디스크에 직접 로딩

|            | Conventional Path        | Direct Path                       |
|------------|--------------------------|-----------------------------------|
| 속도         | 느림                       | 빠름                                |
| 가용성        | 로드 작업 중 다른 유저가 테이블 수정 가능 | 로드 작업 중 다른 유저가 테이블 수정 불가          |
| 리두 생성 조건   | 항상                       | Archive mode에서만 리두 생성             |
| 클러스터 테이블   | 클러스터 테이블에 load 가능        | 클러스터 테이블에 load 불가                 |
| 제약 조건      | 모든 제약 조건 검증              | PRIMARY KEY, UNIQUE, NOT NULL만 검증 |
| INSERY 트리거 | 실행                       | 실행되지 않음                           |

## **External Table**

External Table : 오라클 데이터베이스 외부의 운영체제에 파일로 저장되는 읽기 전용 테이블

#### External Table 이점

- 외부의 파일에서 직접 데이터를 사용하거나 다른 데이터베이스로 데이터를 로드할 수 있다.

- 외부의 데이터를 로드할 필요 없이 데이터베이스에 상주하는 테이블과 병렬로 직접 Join 및 Query할 수 있다.
- 복합 Query의 결과는 외부의 파일로 언로드할 수 있다.
- 로드를 위해 다른 소스에서 생성된 파일을 결합할 수 있다.

# 16. 데이터베이스 유지 관리

# **AWR(Automatic Workload Repository)**

AWR(Automatic Workload Repository) : 데이터베이스 서버에서 정기적으로 데이터베이스에 대한 통계 및 성능자료 등을 수집해 스냅샷을 만들고 그 데이터를 저장하는 공간

- AWR에 수집된 정보를 통해 서버 튜닝, 데이터베이스 관리, 장애와 복구에 대한 효과적인 작업 가능
- 데이터베이스 SGA에서 60분마다 자동으로 통계 정보를 캡처하여 스냅샷의 형태로 AWR에 저장
- 스냅샷은 MMON 백그라운드 프로세스에 의해 디스크에 저장
  - MMON(Memory Monitor): 자가 진단을 위해 메모리에 존재하는 데이터베이스 통계 정보를 주기적으로 AWR에 저장
- 스냅샷은 기본적으로 8일간 보관
- Repository 테이블에 대한 DML 명령은 지원되지 않음

#### AWR 관리

- statistics level : 자동 유지 관리 작업을 포함하여 다양한 통계 및 Advisor캡처를 제어하는 파라미터
  - BASIC: AWR 통계 및 metrics가 계산되지 않고 ASMM을 사용할 수 없으며 advisor 기능이 비활성화
  - TYPICAL: 데이터베이스 자체 관리에 필요한 주요 통계 수집
    - 데이터베이스 동작을 모니터하는데 필요한 항목
    - 오래되거나 잘못된 통계로 인해 SQL문의 성능이 저하될 가능성을 줄여주는 자동 통계 수집 포함
  - ALL : 가능한 모든 통계 캡처
    - 특정 진단 테스타가 필요한 경우 외에는 사용하지 않는 것을 권장

#### **AWR Baseline**

AWR Baseline : AWR에서 태그를 지정하고 보존하는 중요 기간에 대한 스냅샷 데이터의 집합

- 성능 저하 문제 발생 시 이 데이터를 기준으로 성능 튜닝을 수행

# **ADDM(Automatic Database Diagnostic Monitor)**

ADDM: AWR 데이터를 이용해 데이터베이스의 문제점을 자동으로 분석하는 기능

- AWR 스냅샷 생성 후 자동으로 실행되며 마지막 두 스냅샷에 해당하는 기간을 분석
- Instance를 사전에 모니터하여 심각한 문제로 발전하기 전에 대부분의 병목 지점을 감지
- ADDM의 분석 결과는 AWR에 저장

# AutoTask(Automated Maintenance Task)

#### Autotask 기능

- Automatic Optimizer Statics Collection
- Automatic Segment Advisor
- Automatic SQL Tuning Advisor

## Autotask 작업 순서

- Maintenance Window가 열린다.
- Autotask 백그라운드 프로세스가 작업 일정을 잡는다.
- Scheduler가 작업을 시작한다.
- Resource Manager가 Autotask작업의 영향을 제한하여 과도한 자원 낭비를 막는다.

# 17. 성능 관리

## 성능 관리

성능 계획: 하드웨어, 소프트웨어, 운영 체제, 네트워크 Infrastructure 등과 같은 환경을 설정하는 과정

- 투자 옵션
- 시스템 구조
- 확장성
- 응용 프로그램 설계 원칙
- 작업 로드 테스트, 모델링 및 구현
- 새 응용 프로그램 배치

Instance Tuning: 데이터베이스의 성능이 향상되도록 데이터베이스 파라미터와 OS 파라미터를 조정

- 명확한 목표 수립
- 데이터베이스 구조에 메모리 할당
- 데이터베이스의 각 부분에서 I/O 요구 사항을 고려
- 데이터베이스가 최적의 성능으로 실행되도록 운영 체제를 튜닝

SQL Tuning : 응용 프르그램이 효율적인 SQL문을 실행하도록 조정

- 잘못 튜닝된 SQL문을 식별
- 개별 명령문을 튜닝
- 전체 응용 프로그램을 튜닝

## 메모리 관리

메모리 구성 요소 관리

- 수동 관리
- ASMM(Automatic Shared Memory Management) : SGA 구성요소(Shared\_pool, DB\_buffer\_cache, Large\_pool, Java\_pool, Streams\_pool)에 관하여 오라클이 스스로 현재 부하상황을 판단하여 메모리를 관리하는 방법
  - MMAN(Memory Manager) 백그라운드 프로세스가 주기적으로 수집한 작업 부하 정보를 바탕으로 동적으로 구성
  - ASMM 사용 조건
    - STATISTICS\_LEVEL 파라미터 값이 TYPICAL 또는 ALL로 설정
    - SGA TARGET 파라미터 값을 0보다 큰 값으로 설정
    - SGA\_TARGET은 SGA\_MAX\_SIZE보다 반드시 작거나 동일한 값으로 설정

- AMM(Automatic Memory Management) : SGA + PGA를 자동으로 관리하는 방법
  - AMM 사용 조건
    - SGA\_TARGET과 PGA\_AGGREGATE\_TARGET의 값을 0으로 지정
    - MEMORY\_TARGET 파라미터 값을 0보다 큰 값으로 설정
    - MEMORY\_TARGET은 MEMORY\_MAX\_TARGET보다 반드시 작거나 동일한 값으로 설정

## 옵티마이저

옵티마이저 : 옵티마이저 통계를 통해 가장 효율적인 방법으로 SQL을 수행할 최적의 실행 계획을 생성하는 알고리즘

- 표현식 및 조건 평가
- 객체 및 시스템 통계를 사용
- 데이터 access 방법을 결정
- 테이블 조인 방법을 결정
- 가장 효율적인 경로 결정

#### 옵티마이저 통계 수집

- 객체 통계
- 운영 체제 통계

#### 통계 수집 방법

- 자동: 자동 유지 관리 작업
- 수동 : DBMS STATS 패키지
- 데이터베이스 초기화 파라미터 설정
- 다른 데이터베이스에서 통계 임포트

# **SQL Plan Directive**

SQL Plan Directive : 옵티마이저가 더 나은 Plan을 생성하는데 사용할 수 있는 추가 정보 및 지침

- 누락된 통계 수집
- 열 그룹 통계 생성
- 동적 샘플링 수행

#### SQL Plan Directive 유지 및 관리

- SYSAUX 테이블스페이스에 저장
- 자동으로 유지 관리되며, 필요에 따라 생성
- 사용하지 않으면 1년 후 삭제

# **Adaptive Plan**

Adaptive Plan : SQL 실행 중 옵티마이저 예측의 부정확함이 발견되면 Query계획이 변경

- Query 실행 중 수집되는 통계를 기반
- OPTIMIZER\_ADAPTIVE\_REPORTING\_ONLY가 기본값인 FALSE로 설정된 경우 Adaptive 실행 계획 사용

# 18. Database Resource Manager 사용

## **Data Resource Manager**

Data Resource Manager : 비효율적인 OS 관리로 초래된 문제들을 해결하기 위해 데이터베이스 서버가 자원 관리를 결정

- Resource Manager 구성 요소
  - Resource Consumer Group : 시스템 및 데이터베이스 리소스의 사용이 유사한 사용자 또는 세션의 집합
  - Resource Plan : 다양한 Resource Consumer Group간 리소스 분배 방법을 지정
  - Resource Plan Directive : Consumer Group 또는 Subplan간 특정 리소스 공유 방법을 지정
    - Subplan : Database Resource Manager에 의해 플랜 내부에 플랜을 생성
- Resource Manager 관리 요소
  - CPU: Consumer Group과 Subplan간 CPU 리소스가 할당되는 방식을 지정
    - MGMT\_MTH 파라미터를 사용하여 CPU 사용량 할당
      - EMPHASIS : 단일 레벨 또는 다중 레벨 Plan에 사용되며 백분율을 사용하여 CPU가 분배되는 방식을 지정
      - RATIO : 단일 레벨 Plan에 사용되며 비율을 사용하여 CPU가 분배되는 방식을 지정
  - Degree of Parallelism Limit : Consumer Group내의 모든 작업에 대하여 최대 병렬 처리 수준을 제어
  - Active Session Pool with Queuing: Consumer Group 또는 Subplan에 대한 동시 활성 세션 수를 제한
    - DBA가 모든 Consumer Group에 사용되는 자원의 양을 간접적으로 제어 가능
    - 시스템 내의 자원을 점유하는 서버의 개수를 감소 (비효율적인 페이징, 스와핑 및 리소스 부족 문제 해결)
    - Active Session Pool이 활성화 세션으로 가득 차면 다른 활성화 세션이 완료되거나 비활성화 될 때까지 활성화를 시도하는 모든 후속 세션을 큐에 저장
  - Undo Pool: Consumer Group 또는 Subplan에 의해 생성될 수 있는 총 언두 크기를 제어
  - Execution Time Limit : 작업에 허용되는 최대 실행 시간을 지정
  - Idle Time Limit : 세션이 Idle 상태로 있는 시간을 지정
    - 세션이 지정된 제한 시간을 초과하면 PMON 프로세스가 강제로 세션을 종료하고 해당 세션의 상태를 정리
  - Consumer Group Switching : 세션에서 Consumer Group을 전환하게 하는 조건을 지정
  - Database Consolidation : Resource Manager를 사용하여 동시 데이터베이스 세션 간에 리소스 할당 최적화
    - Database Consolidation을 수행하려면 응용 프로그램들을 서로 분리해야 한다.
    - 각 응용 프로그램끼리 서로 영향을 미치면 안된다.
    - 각 응용 프로그램의 성능에는 일관성이 있어야 한다.
  - Server Consolidation : 대부분의 테스트, 개발 및 소규모 운용 데이터베이스는 서버를 완전히 활용하지 못하므로 Server Consolidation을 사용
    - CPU 경합이 발생 할 수 있으며 하나의 Instance에 작업 로드 과부하로 인해 악영향을 끼칠 수 있다.
    - Instance Caging : CPU COUNT 초기화 파라미터를 사용하여 하나의 Instance가 사용할 수 있는 CPU 수를 제한
      - Over Provisioning 방식 : non-critical 데이터베이스 및 로드가 낮은 non-critical 운용 시스템에 적합
        - 각 Instance에 대한 CPU 제한의 합이 실제 CPU 수를 초과
        - 각 Instance가 서로의 성능에 영향을 준다.

- Partitioning 방식 : critical 제품 시스템에 적합
  - 각 Instance에 대한 CPU 제한의 합이 실제 CPU 수와 동일
  - 각 Instance의 CPU 리소스가 고정되므로 서로 다른 Instance에 영향을 줄 수 없다.

# 19. Oracle Scheduler 사용

## Scheduler

Scheduler : 데이터베이스 관리자와 응용 프로그램 개발자가 Scheduler를 사용하여 데이터베이스 환경에서 여러 작업이 수행되는 시기와 위치를 제어

#### Scheduler 구성 요소

- 작업(Job) : 프로그램과 스케줄을 지정
- 스케줄(Schedule): 작업의 실행 시기와 횟수를 지정
  - Time-Based
    - Calendaring 표현식 : 반복 간격과 작업 시작 날짜를 사용하여 다음 작업의 시작 시간 계산
      - INCLUDE: Calendaring 표현식 결과에 날짜 리스트 추가
      - EXCLUDE: Calendaring 표현식 결과에 날짜 리스트 제거
      - INTERSECT : 두 개 이상의 스케줄에 공통되는 날짜만 사용
    - Date-Time 표현식 : 지정된 표현식에 따라 다음 작업 실행 시간 결정
  - Event-Based : 특정 이벤트 발생시 작업 시작
- 프로그램(Program) : 수행 프로그램 및 argument 지정

## 작업 체인

체인 : 결속된 목표를 위해 함께 연결된 일련의 명명된 프로그램 (종속형 스케줄링)

#### 작업 체인 생성

- 체인 객체 생성: CREATE\_CHAIN 프로시저를 사용하여 체인을 생성
- 체인 단계 정의: 단계 정의 시 이름을 부여하고 단계 중 발생하는 사항을 지정
- 체인 규칙 정의 : 단계가 실행되는 시기와 단계 간의 종속성을 정의
- 체인 시작
  - ENABLE 프로시저를 사용하여 체인을 활성화
  - CHAIN 유형의 작업을 생성

# 고급 Scheduler

고급 Scheduler 기능을 사용하여 작업 윈도우 및 작업 우선 순위 지정과 같은 스케줄링의 다양한 측면을 더 세밀하게 제어

- 윈도우 : 시작 시간과 종료 시간이 시간 간격으로 표시

- 시간대 별로 다양한 Resource Plan을 활성화하는데 사용
- 윈도우 그룹 : 윈도우 리스트
  - 윈도우를 보다 쉽게 관리
- 작업 클래스 : 공통적인 리소스 사용 요구사항과 기타 특성을 공유하는 작업 카테고리를 정의
- Resource Consumer Group : 작업 클래스의 작업에 할당되는 리소스를 결정
- Resource Plan : Resource Consumer Group에서 리소스의 우선 순위를 지정