

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Números Complejos

Semana 05

Docente: José Luis Vásquez Carhuamaca

OBJETIVOS:

- ✓ Conocer a las funciones, sus elementos, propiedades y gráficas.
- ✓ Calcular el dominio y rango en base a su regla de correspondencia.
- ✓ Desarrollar destrezas en la resolución de problemas tipo referidos al tema.

Introducción

Al observar la naturaleza detenidamente, podemos ver que muchas de las situaciones que suceden a nuestro alrededor están relacionadas.

Una de las situaciones cotidianas es el transporte de pasajeros a los distintos departamentos del Perú.

Veamos la siguiente situación :

Una empresa de transportes cuenta con 5 unidades de buses ,para transportar pasajeros a 6 ciudades del Perú, con horario de salida a las 8 de la mañana.

El siguiente diagrama muestra una posible distribución de bus y destino

Del diagrama se observa que un bus solo puede ir a una sola ciudad

FUNCIÓN

Sean A y B conjuntos no vacíos. La función f de A en B es un conjunto de pares ordenados (x; y) tal que a $x \in A$ le corresponde un único elemento $y \in B$.

Notación: $f: A \longrightarrow B$ o $A \stackrel{f}{\longrightarrow} B$

Gráficamente

Conjunto de partida

Conjunto de llegada

function.

Ejemplos

$$f = \{(-2; 4); (3; 9); (5; 25)\}$$

$$R = \{(4; 2); (9; 3); (9: -3)\}$$

CONDICIÓN DE UNICIDAD DE LA FUNCIÓN

Sea f una función.

Si
$$(x; y) \in f \land (x; z) \in f \rightarrow y = z$$

Ejemplos

• Sea g una función $g = \{(6; -3); (8; 4); (6; p)\} \rightarrow p = -3$

• Sea *h* una función

DOMINIO Y RANGO

Sea la función $f: A \rightarrow B$

Dominio de f

Es el conjunto formado por las primeras componentes de los pares ordenados que pertenecen a la función.

$$Dom f = \{x/(x; y) \in f\} \subseteq A$$

Rango de f

Es el conjunto formado por las segundas componentes de los pares ordenados que pertenecen la función.

$$\operatorname{Ran} f = \{ y / (x; y) \in f \} \subseteq B$$

Ejemplo
$$f = \{(-2, 4); (3, 9); (5, 25)\}$$

$$Dom f = \{-2; 3; 5\}$$
 Ran $f = \{4; 9; 25\}$

REGLA DE CORRESPONDENCIA

Sea $f: A \to B$ una función tal que $(x; y) \in f$. La regla de correspondencia de f es la igualdad que relaciona x e y.

Notación y = f(x)

x: Var. independiente

y: Var. dependiente

Ejemplo

FUNCIÓN REAL DE VARIABLE REAL

La función $f: A \to B$ es una función real de variable real, si A y B son subconjuntos de \mathbb{R} .

Ejemplos

•
$$f: \langle -1; 6] \rightarrow \mathbb{R}$$

 $x \rightarrow 2x - 3$

De donde podemos plantear que:

$$Dom f = \langle -1; 6] \quad \land \quad f(x) = 2x - 3$$

•
$$g = \{(x; y) \in \mathbb{R} \times \mathbb{R} / -2 < x \le 5 \land y = 3x - 1\}$$

Dom $g = \langle -2; 5 \rangle \land g(x) = 3x - 1$

Nota:

Una función está **bien definida** si se conoce su dominio y regla de correspondencia.

INTENSIVO UNI					
• Sea la función $g:$ [-	$-2;7] \rightarrow \mathbb{R}$ tal que				
$g(x) = -x^2$					
Halle el rango de la fu	ınción.				
Resolución	- ACADEMI	A —			
					CÉSAR VALLEJO

GRÁFICA DE FUNCIONES

La gráfica de una función f es la representación de todos sus pares ordenados (x,y) que pertenecen a la función en el plano cartesiano.

$$Graf(f) = \{(x, y) \in \mathbb{R}^2 / x \in Dom f \land y = f(x)\}$$

Ejemplo

$$f = \{(2;3), (4;-1), (-1;2), (-3;1)\}$$

Propiedad

Una gráfica corresponde a una función, si al trazarle rectas verticales, estas la intersecan a lo más en un solo punto.

La gráfica de *f* sí corresponde a una función.

La gráfica de *R* no corresponde a una función.

GRÁFICA DE FUNCIONES ESPECIALES

1.- Función constante

Regla de correspondencia:

$$f_{(x)} = k \quad ; \ k \in \mathbb{R}$$

- Dom $f = \mathbb{R}$ (si no es dato)
- Rang $f = \{k\}$

Ejemplos

Grafique: $f_{(x)} = 4$, $g_{(x)} = -3$

2.- Función lineal

Regla de correspondencia:

$$f_{(x)} = ax + b$$
 ; $a \neq 0$

- Dom $f = \mathbb{R}$ (si no es dato)
- Rang $f = \mathbb{R}$

Donde:

• Raíz :
$$-\frac{b}{a}$$
 • $a = \tan \theta$

3.- Función cuadrática

Regla de correspondencia:

$$f_{(x)} = ax^2 + bx + c \; ; \; a \neq 0$$

- Dom $f = \mathbb{R}$ (si no es dato)
- Ran $f \subset \mathbb{R}$
- Su gráfica es una parábola vertical.

Completando cuadrados

$$f_{(x)} = a(x-h)^2 + k$$

vértice: V = (h; k)

$$h = -\frac{b}{2a} = \frac{x_1 + x_2}{2}$$
 , $k = f_{(h)}$

donde x_1 y x_2 son raíces de $f_{(x)}$

Grafiquemos considerando dos casos:

I) a > 0 Parábola cóncava hacia arriba

II) a < 0 Parábola cóncava hacia abajo

INTENSIVO UNI Ejemplo Hallemos el rango de la siguiente función Grafique $f(x) = x^2 - 4x + 3$ $f(x) = -2x^2 + 12x + 14$ Resolución: Resolución: (hIK) Notamej: a = -2 < 0 -> Rumf = (-w; K $-(x) = x^{2} - (x+3) = (x-3)(x-1)$ taice : 3; 1 $0 = -\frac{12}{2a} = -\frac{12}{2(-2)} = 3$ -K = -(n) = -(3) = 32.3=1I= (0) 80 Runt = (-∞; 32] 4=2 (2;-4) Rant = [-1;+0)

Sea
$$f(x) = ax^2 + bx + c$$
; $a \neq 0$

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$		
	Raíces reales y diferentes	Raíces reales e iguales	Raíces no reales		
<i>a</i> > 0	X_1 X_2 X	$x_1 = x_2$	$X \longrightarrow X$		
<i>a</i> < 0	$\begin{array}{c} Y \wedge \\ \hline x_1 & x_2 \\ \hline X \end{array}$	$ \begin{array}{c} Y $	$X \longrightarrow X$		

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe