Временные ограничения

Оглавление

Временные ограничения	1
Input Timing Constraints	2
System Synchronous Inputs	2
Source Synchronous Inputs	3
Register-To-Register Timing Constraints	
Manually Related Synchronous Clock Domains	
Asynchronous Clock Domains	
Output Timing Constraints	
System Synchronous Output	
Source Synchronous Outputs	
Timing Exceptions	7
False Paths	
Multi-Cycle Paths	

The most common types of path categories include:

- Input paths
- Synchronous element to synchronous element paths
- Path specific exceptions
- Output Paths

Input Timing Constraints

System Synchronous Inputs

Figure 2-1: Simplified System Synchronous interface with associated SDR timing

NET "SysClk" TNM_NET = "SysClk"; TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%; OFFSET = IN 5 ns VALID 5 ns BEFORE "SysClk";

Source Synchronous Inputs

Figure 2-3: Simplified Source Synchronous input interface with associated DDR timing

NET "SysClk" TNM_NET = "SysClk"; TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%; OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE "SysClk" RISING; OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE "SysClk" FALLING;

Register-To-Register Timing Constraints

Automatically Related Synchronous DCM/PLL Clock Domains

Figure 2-5: The input clock of the design goes to a DCM example

NET "ClkIn" TNM_NET = "ClkIn"; TIMESPEC "TS_ClkIn" = PERIOD "ClkIn" 5 ns HIGH 50%;

Manually Related Synchronous Clock Domains

Figure 2-6: Two related clocks entering the FPGA device through separate external pins

```
NET "Clk1X" TNM_NET = "Clk1X";

NET "Clk2X180" TNM_NET = "Clk2X180";

TIMESPEC "TS_Clk1X" = PERIOD "Clk1X" 5 ns;

TIMESPEC "TS_Clk2X180" = PERIOD "Clk2X180" TS_Clk1X/2 PHASE + 1.25 ns ;
```

Asynchronous Clock Domains

Figure 2-7: Two unrelated clocks entering the FPGA device through separate external pins

```
NET "CLKA" TNM_NET = FFS "GRP_A";

NET "CLKB" TNM_NET = FFS "GRP_B";

TIMESPEC TS_Example = FROM "GRP_A" TO "GRP_B" 5 ns DATAPATHONLY;
```

Output Timing Constraints

System Synchronous Output

Figure 2-9: Simplified System Synchronous output interface with associated SDR timing

Figure 2-10: Timing diagram for System Synchronous SDR output interface

NET "ClkIn" TNM_NET = "ClkIn"; OFFSET = OUT 5 ns AFTER "ClkIn";

Source Synchronous Outputs

Figure 2-11: Simplified Source Synchronous output interface with associated DDR timing

Figure 2-12: Timing diagram for an ideal Source Synchronous DDR

NET "SysClk" TNM_NET = "SysClk"; TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%; OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE "SysClk" RISING;

Timing Exceptions

False Paths

Figure 2-13: Path between two registers that does not affect the timing of the design

```
NET "CLK1" TNM_NET = FFS "GRP_1";
NET "CLK2" TNM_NET = FFS "GRP_2";
TIMESPEC TS_Example = FROM "GRP_1" TO "GRP_2" TIG;
```

Multi-Cycle Paths

Figure 2-14: Path between two registers clocked by a common clock enable signal

```
NET "CLK1" TNM_NET = "CLK1";
TIMESPEC "TS_CLK1" = PERIOD "CLK1" 5 ns HIGH 50%;
NET "Enable" TNM_NET = FFS "MC_GRP";
TIMESPEC TS_Example = FROM "MC_GRP" TO "MC_GRP" TS_CLK1*2;
```