Final

due Friday March 18, 2022

Directions: Problems 1-4 are each 10 points; problem 5 is 15 points.

Part 1 (QEM)

Problem 1. Suppose $f: \{0,1\}^* \to \{0,1\}$ can be computed by a 2-round interactive proof system $\langle \mathsf{P}, \mathsf{V} \rangle$ with perfect completeness. Prove that f can be computed by a 3-round public-coin interactive proof system $\langle \mathsf{P}', \mathsf{V}' \rangle$ perfect completeness.

Problem 2. In class we proved that $\mathsf{BPP} \subset \Sigma_2$ (Sipser-Gács theorem) so $\mathsf{BPP} \subset \mathsf{PSPACE}$ (since $\mathsf{PH} \subset \mathsf{PSPACE}$). Prove directly that $\mathsf{BPP} \subset \mathsf{PSPACE}$ by showing that any $f \in \mathsf{BPP}$ can be computed by a polynomial space TM (no credit will be given for invoking Sipser-Gács).

Part 2

The problems in this section will walk you through the proof that the "large graph partition" problem is NP-hard. Define the function $f_{\mathsf{LGP}}: \{0,1\}^* \to \{0,1\}$ as follows: on input (G,M) where G = (V,E) is a graph and $M \in \mathbb{N}$ is a positive integer, $f_{\mathsf{LGP}}(G,M)$ outputs 1 if there exists $S \subset V$ such that

 $\left\{e=(v,w)\in E:v\in S\ \&\ w\notin S\right\}\geq M,$

and outputs 0 if not. The proof that f_{LGP} is $\mathsf{NP}-\mathsf{hard}$ will be via a reduction from 3SAT, and will go through the intermediate "not-unanymous" problem. The input to the $k-\mathsf{not}$ -unanymous problem is a formula Φ over variables $\{x_1,\ldots,x_n\}$ and with clauses $\varphi_1,\ldots,\varphi_m$ where each clause contains k literals. An example of a clause when k=3 is (x_i,\overline{x}_j,x_k) . The function $f_{\mathsf{kNU}}:\{0,1\}^* \to \{0,1\}$ takes input Φ and outputs 1 if there exists an assignment to the variables such that the literals in every clause are not all equal. The next two problems show that f_{LGP} is $\mathsf{NP}-\mathsf{hard}$, except for one missing step; namely that $f_{\mathsf{4NU}} \leq f_{\mathsf{3NU}}$. This can be proved in precisely the same way as $f_{\mathsf{4SAT}} \leq f_{\mathsf{3SAT}}$ (and you do not have to prove this).

Problem 3. Prove that $f_{3SAT} \leq f_{4NU}$.

Problem 4. Prove that $f_{3NU} \leq f_{LGP}$.

Part 3

In class we saw the FGLSS construction to convert a 2-round 2-prover MIP system into a graph. The exercises in this section will work through the analysis of (a simple case of) this construction. Suppose $f: \{0,1\}^* \to \{0,1\}$ is a function which is computed by a 2-round, 2-prover MIP system $\langle \mathsf{P}_1,\mathsf{P}_2,\mathsf{V}\rangle$ with perfect completeness and soundness s<1. So specifically, for all $\mathbf{x} \in \{0,1\}^*$ such that $f(\mathbf{x}) = 0$, $\Pr[\langle \mathsf{P}_1,\mathsf{P}_2,\mathsf{V}\rangle(\mathbf{x}) = 1] \leq s$. Denote the transcript of the MIP system as $((a_1,b_1),(a_2,b_2))$ where in the first round V sends a_i to P_i and in the second round, receives b_i from P_i ; then outputs the bit $\mathsf{V}_{\mathsf{out}}((\mathbf{x},(a_1,b_1),(a_2,b_2))$. We assume V 's message in the first round is computed as the output of a probabilistic computation where V first chooses a random string $r \sim \{0,1\}^m$ and then outputs $(a_1,a_2) = \mathsf{V}_1(r)$. We assume $b_1,b_2 \in \{0,1\}^\ell$.

Now, given $\mathbf{x} \in \{0,1\}^*$, the FGLSS construction outputs the graph $G_{\mathbf{x}}$ where the vertices and edges are defined as follows:

- Vertices: There is one vertex in $G_{\mathbf{x}}$ for each "accepting transcript", *i.e.*, for each $((a_1, b_1), (a_2, b_2))$ such that $V_{\text{out}}(\mathbf{x}, (a_1, b_1), (a_2, b_2)) = 1$. We denote the vertex corresponding to $((a_1, b_1), (a_2, b_2))$ as v_{a_1,b_1,a_2,b_2} .
- Edges: Vertices are connected as long as their underlying transcripts are not inconsistent.
 - · The transcripts $((a_1, b_1), (a_2, b_2))$ and $((a'_1, b'_1), (a'_2, b'_2))$ are inconsistent if $a_i = a'_i$ and $b_i \neq b'_i$ for some i = 1, 2.

Problem 5. This problem has 3 parts, each worth 5 points.

- (a) Prove that if $f(\mathbf{x}) = 1$ then $G_{\mathbf{x}}$ has a clique of size 2^m .
- (b) Prove that if $G_{\mathbf{x}}$ has a clique of size $\sigma \cdot 2^m$, then there exist cheating prover strategies P_1^* and P_2^* such that $\Pr\left[\langle \mathsf{P}_1^*, \mathsf{P}_2^*, \mathsf{V} \rangle(\mathbf{x}) = 1\right] = \sigma$.
- (c) Parts (a) and (b) say, respectively, that if $f(\mathbf{x}) = 1$ then $G_{\mathbf{x}}$ has a clique of size 2^m , while if $f(\mathbf{x}) = 0$ then the largest clique in $G_{\mathbf{x}}$ has size $s \cdot 2^m$. Deduce that if an NP-hard function f can be computed by a 2-round, 2-prover MIP system with perfect completeness and soundness s, then it is also NP-hard to distinguiush, given a graph G and a bound G, whether G has a clique of size G, or whether the largest clique in G has size at most G.