

## Nonparametric methods: Improved periodogram methods



#### Per Mattsson

Systems and Control
Department of Information Technology
Uppsala University

2019-09-06

per.mattsson@it.uu.se SysCon, IT, UU



#### Summary from last lecture

#### Practical non-parametric methods

Periodogram:

$$\hat{\phi}_p(\omega) = \frac{1}{N} \left| \sum_{t=1}^N y(t) e^{-i\omega t} \right|^2$$

Correlogram:

$$\hat{\phi}_c(\omega) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k)e^{-i\omega k}, \qquad \hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} y(t)y^*(t-k)$$

- Periodogram and Correlogram
- Asymptotically Unbiased
- ► High variance (inconsistent)
- ▶ Resolution  $\omega \approx 2\pi/N$

Today: How can the periodogram be improved?



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

- ▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.
- Adding up many errors.



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

- ▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.
- Adding up many errors.

#### Idea:

▶ Why not just remove the terms with large |k|?



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

- ▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.
- Adding up many errors.

#### Idea:

▶ Why not just remove the terms with large |k|? I.e., use

$$\hat{\phi}(\omega) = \sum_{k=-(M-1)}^{M-1} \hat{r}(k)e^{-i\omega k}, \quad M < N.$$



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

- ▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.
- Adding up many errors.

#### Idea:

lacktriangle Why not just remove the terms with large |k|? I.e., use

$$\hat{\phi}(\omega) = \sum_{k=-(M-1)}^{M-1} \hat{r}(k)e^{-i\omega k}, \quad M < N.$$

ightharpoonup Smaller M should give less variance. But at what cost?



- ▶ Bias: Smearing and leakage. Goes to zero as  $N \to \infty$ .
- ▶ Variance: High even when  $N \to \infty$ .

#### Some intuition:

- ▶ Large error in the estimate  $\hat{r}(k)$  for large |k|.
- Adding up many errors.

#### Idea:

lacktriangle Why not just remove the terms with large |k|? I.e., use

$$\hat{\phi}(\omega) = \sum_{k=-(M-1)}^{M-1} \hat{r}(k)e^{-i\omega k}, \quad M < N.$$

- ightharpoonup Smaller M should give less variance. But at what cost?
- More generally, we could give different weights to different lags |k|. Small |k| higher weight.





► The Blackman-Tukey PSD estimate:

$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}$$



► The Blackman-Tukey PSD estimate:

$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}$$

 $\blacktriangleright$  w(k) is called a lag window.



► The Blackman-Tukey PSD estimate:

$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}$$

- $\blacktriangleright$  w(k) is called a lag window.
- ▶ Rectangular window: w(k) = 1 for  $|k| < M \Rightarrow$  truncated sum.



► The Blackman-Tukey PSD estimate:

$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}$$

- $\blacktriangleright$  w(k) is called a lag window.
- ▶ Rectangular window: w(k) = 1 for  $|k| < M \Rightarrow$  truncated sum.
- ▶ Generally: w(0) = 1, w(-k) = w(k).



Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .



- Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .
- $\qquad \qquad \mathbf{Periodogram} \colon \, \hat{\phi}_p(\omega) \text{ is the DTFT of } \hat{r}(k).$



- Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .
- ▶ Periodogram:  $\hat{\phi}_p(\omega)$  is the DTFT of  $\hat{r}(k)$ .
- ▶ Blackman-Tukey:  $\hat{\phi}_{\mathrm{BT}}(\omega)$  is the DTFT of  $w(k)\hat{r}(k)$ .



- Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .
- ▶ Periodogram:  $\hat{\phi}_p(\omega)$  is the DTFT of  $\hat{r}(k)$ .
- ▶ Blackman-Tukey:  $\hat{\phi}_{\mathrm{BT}}(\omega)$  is the DTFT of  $w(k)\hat{r}(k)$ .
- Expressed as a convolution:

$$\hat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta) W(\omega - \zeta) d\zeta,$$



- Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .
- ▶ Periodogram:  $\hat{\phi}_p(\omega)$  is the DTFT of  $\hat{r}(k)$ .
- ▶ Blackman-Tukey:  $\hat{\phi}_{\mathrm{BT}}(\omega)$  is the DTFT of  $w(k)\hat{r}(k)$ .
- Expressed as a convolution:

$$\hat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta) W(\omega - \zeta) d\zeta,$$

where the spectral window  $W(\omega)$  is the DTFT of the lag window w(k).



- Let  $\hat{r}(k) = 0$  for  $|k| \ge N$  and w(k) = 0 for  $|k| \ge M$ .
- ▶ Periodogram:  $\hat{\phi}_p(\omega)$  is the DTFT of  $\hat{r}(k)$ .
- ▶ Blackman-Tukey:  $\hat{\phi}_{\mathrm{BT}}(\omega)$  is the DTFT of  $w(k)\hat{r}(k)$ .
- Expressed as a convolution:

$$\hat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta) W(\omega - \zeta) d\zeta,$$

where the spectral window  $W(\omega)$  is the DTFT of the lag window w(k).

▶ Possible interpretation:





## **Analysis**



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{p}(\zeta)W(\omega - \zeta)d\zeta.$$



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{p}(\zeta)W(\omega - \zeta)d\zeta.$$

"Smoothed periodogram".



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{p}(\zeta)W(\omega - \zeta)d\zeta.$$

- "Smoothed periodogram".
- ▶ Reduces variance. Smaller M gives smaller variance.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{p}(\zeta)W(\omega - \zeta)d\zeta.$$

- "Smoothed periodogram".
- ▶ Reduces variance. Smaller M gives smaller variance.
- ightharpoonup Slightly increases bias. Smaller M gives higher bias, and worse resolution.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta)W(\omega - \zeta)d\zeta.$$

- "Smoothed periodogram".
- ightharpoonup Reduces variance. Smaller M gives smaller variance.
- ightharpoonup Slightly increases bias. Smaller M gives higher bias, and worse resolution.
- ▶ If  $W(\omega) \ge 0$ , then  $\hat{\phi}_{BT}(\omega) \ge 0$ .



## **Example: The Bartlett (triangular) window**



The triangular window with M=25. Main lobe 3db:  $2\pi/M$ .



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$



True spectrum estimated with N=256 samples.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$



True spectrum estimated with N=256 samples. Periodogram M=N=256 and w(k)=1



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$



True spectrum estimated with N=256 samples. Blackman-Tukey with M=32.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$



True spectrum estimated with N=256 samples. Blackman-Tukey with M=4.



#### Time-Bandwidth product

For the typical window functions, we can define

Equivalent time width: 
$$N_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)}$$

Equivalent bandwidth: 
$$\beta_e = \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)}$$



#### **Example: Rectangular window**



$$N_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} = 2M - 1$$



## **Example: Triangular window**



$$N_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} = M$$



#### **Time-Bandwidth product**

By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

.



#### Time-Bandwidth product

By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

. Hence

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} =$$



By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = 1.$$



By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

. Hence

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = 1.$$

Equivalent time-bandwidth product:  $N_e\beta_e=1$ .



By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = 1.$$

- Equivalent time-bandwidth product:  $N_e\beta_e=1$ .
- Window cannot be arbitrarily limited in both time and freq.



By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = 1.$$

- Equivalent time-bandwidth product:  $N_e\beta_e=1$ .
- ▶ Window cannot be arbitrarily limited in both time and freq.
- $ightharpoonup N_e = \mathcal{O}(M).$



### By the DTFT:

$$W(0) = \sum_{k=-(M-1)}^{M-1} w(k), \text{ and } w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) \mathrm{d}\omega$$

$$N_e \beta_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \times \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = 1.$$

- Equivalent time-bandwidth product:  $N_e\beta_e=1$ .
- ► Window cannot be arbitrarily limited in both time and freq.
- $ightharpoonup N_e = \mathcal{O}(M).$
- $\beta_e = \mathcal{O}(1/M).$



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

▶ Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

- ▶ Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .
- ▶ Variance:  $\mathcal{O}(M/N)$ .



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

- ▶ Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .
- ▶ Variance:  $\mathcal{O}(M/N)$ .
- ightharpoonup Bias/variance: Increasing M decreases bias but increases variance.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

- Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .
- ▶ Variance:  $\mathcal{O}(M/N)$ .
- ightharpoonup Bias/variance: Increasing M decreases bias but increases variance.
- lackbox Once M is chosen, the window shape controls mainlobe vs sidelobes (smearing vs leakage).



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

- Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .
- ▶ Variance:  $\mathcal{O}(M/N)$ .
- ightharpoonup Bias/variance: Increasing M decreases bias but increases variance.
- Once M is chosen, the window shape controls mainlobe vs sidelobes (smearing vs leakage).
- No "correct" way to choose M, depends on application. But important to know how choice of M affects estimate.



$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}.$$

- ▶ Resolution:  $\beta_e = 1/N_e = \mathcal{O}(1/M)$ .
- ▶ Variance:  $\mathcal{O}(M/N)$ .
- ightharpoonup Bias/variance: Increasing M decreases bias but increases variance.
- Once M is chosen, the window shape controls mainlobe vs sidelobes (smearing vs leakage).
- $\triangleright$  No "correct" way to choose M, depends on application. But important to know how choice of M affects estimate.
- Rule of thumb:  $M \leq N/10$ .



## **Fixed window functions**

TABLE 2.1: Some Common Windows and their Properties

The windows satisfy  $w(k) \equiv 0$  for  $|k| \geq M$ , and w(k) = w(-k); the defining equations below are valid for  $0 \le k \le (M-1)$ .

| Window      |                                                         | Approx. Main Lobe     | Sidelobe   |
|-------------|---------------------------------------------------------|-----------------------|------------|
| Name        | Defining Equation                                       | Width (radians)       | Level (dB) |
| Rectangular | w(k) = 1                                                | $2\pi/M$              | -13        |
| Bartlett    | $w(k) = \frac{M-k}{M}$                                  | $4\pi/M$              | -25        |
| Hanning     | $w(k) = 0.5 + 0.5\cos\left(\frac{\pi k}{M}\right)$      | $4\pi/M$              | -31        |
| Hamming     | $w(k) = 0.54 + 0.46 \cos\left(\frac{\pi k}{M-1}\right)$ | $\Big) \qquad 4\pi/M$ | -41        |
| Blackman    | $w(k) = 0.42 + 0.5 \cos\left(\frac{\pi k}{M-1}\right)$  | $6\pi/M$              | -57        |
|             | $+0.08\cos\left(\frac{\pi k}{M-1}\right)$               |                       |            |



## Window design

### Windows with design parameter:

- Chebyshev (constant peak sidelobe ripples)
- Kaiser (main lobe/sidelobe trade-off.  $\gamma = 0 \implies \text{rect.}$ )

$$w(k) = \frac{I_0(\gamma\sqrt{1 - [k/(M-1)]^2})}{I_0(\gamma)}, |k| \le M - 1$$



## Window design

Windows with design parameter:

- Chebyshev (constant peak sidelobe ripples)
- Kaiser (main lobe/sidelobe trade-off.  $\gamma = 0 \implies \text{rect.}$ )

$$w(k) = \frac{I_0(\gamma\sqrt{1 - [k/(M-1)]^2})}{I_0(\gamma)}, |k| \le M - 1$$

## Optimal design

E.g. Minimize the relative energy in the sidelobes, or equivalently, maximizing the relative energy in the main lobe



## Window design

Windows with design parameter:

- ► Chebyshev (constant peak sidelobe ripples)
- ► Kaiser (main lobe/sidelobe trade-off.  $\gamma = 0 \implies$  rect.)

$$w(k) = \frac{I_0(\gamma \sqrt{1 - [k/(M-1)]^2})}{I_0(\gamma)}, |k| \le M - 1$$

## Optimal design

E.g. Minimize the relative energy in the sidelobes, or equivalently, maximizing the relative energy in the main lobe

- ▶ Temporal lag windows (for the Periodogram) can also be designed
- ▶ One can relate the lag windows to temporal windows
- ► These windowed Periodograms have the same *average* behavior as the corresponding windowed Correlograms



# Windows (1)





# Windows (2)





# Windows (3)





frequency



# Windows (4)





# Other methods



## The Bartlett method

- ightharpoonup Split up available sample into L = N/M subsamples
- Average the Periodograms obtained from each

That is,  $y_j(t) = y((j-1)M + t), t = 1, ..., M, j = 1, ..., L$ 

$$\hat{\phi}_j(\omega) = \frac{1}{M} \left| \sum_{t=1}^M y_j(t) e^{-i\omega t} \right|^2$$

$$\hat{\phi}_{\mathrm{B}}(\omega) = \frac{1}{L} \sum_{j=1}^{L} \hat{\phi}_{j}(\omega)$$

- Reduces the variance of the estimate
- ► Reduces the resolution (fewer samples)
- ▶ Similar to  $\hat{\phi}_{BT}(\omega)$  with a rectangular window.



## The Welch method

- Refines the Bartlett method in two ways:
  - ightharpoonup Overlapping subsamples ightarrow more averaging (but correlated)
  - Windowing the data (reduce correlation)
- ▶ S subsamples, 1 K/M overlap, P window power

$$y_j(t) = y((j-1)K + t), t = 1, \dots, M, j = 1, \dots, S$$

$$\hat{\phi}_j(\omega) = \frac{1}{MP} \left| \sum_{t=1}^M v(t) y_j(t) e^{-i\omega t} \right|^2$$

$$\hat{\phi}_{\mathrm{W}}(\omega) = \frac{1}{S} \sum_{j=1}^{S} \hat{\phi}_{j}(\omega)$$

- $ightharpoonup K = M \implies$  no overlap, as in Bartletts
- ▶ Commonly used: K = M/2



## Wrapping up

- ► There are many variations of the Periodogram/Correlogram
- Reduce variance at the cost of resolution (bias)
- Smoothing or averaging the spectrum
- All can essentially be expressed as Blackman-Tukey estimators
- All special cases of the Filter bank approach (Lecture 8)

24 / 26 per.mattsson@it.uu.se



## Wrapping up

- ► There are many variations of the Periodogram/Correlogram
- Reduce variance at the cost of resolution (bias)
- Smoothing or averaging the spectrum
- ► All can essentially be expressed as Blackman-Tukey estimators
- All special cases of the Filter bank approach (Lecture 8)

### Twist

The refined methods are needed for estimating continuous PSDs, but the *unmodified* Periodogram can be shown to be a satisfactory estimator for discrete (or line) spectra corresponding to sinusoidal signals.



- ► How can we improve the periodogram?
- ► The Blackman-Tukey method
- Different window functions and design
- ► Time-Bandwidth product
- The Bartlett method
- The Welch method



- ► How can we improve the periodogram?
- ► The Blackman-Tukey method
- Different window functions and design
- ► Time-Bandwidth product
- The Bartlett method
- The Welch method

Lab next week! Discuss your results with lab assistant to pass.



- ► How can we improve the periodogram?
- ► The Blackman-Tukey method
- Different window functions and design
- ► Time-Bandwidth product
- The Bartlett method
- The Welch method

**Lab next week!** Discuss your results with lab assistant to pass.

Exercise session next week!



- How can we improve the periodogram?
- ► The Blackman-Tukey method
- Different window functions and design
- ► Time-Bandwidth product
- The Bartlett method
- The Welch method

**Lab next week!** Discuss your results with lab assistant to pass.

### Exercise session next week!

#### Next lecture:

Parametric Methods for Rational Spectra

### **Exercises:**

Exercise 1.5, 1.7, 1.10, 2.3, 2.6, 2.10



## MATLAB

### Useful functions:

btse()

### Try the following:

Implement the BT estimator using the FFT (how?)

#### Remember:

- ► The MATLAB built-in functions might note be directly compatible with the provided code!
- Window functions in MATLAB are defined differently, use the definitions in the book to compute the window vectors directly!