Variable de distribución	¿Qué cuenta? $\overline{\underline{x}}$	Valores posibles x	f.d.p $f_{\overline{\underline{X}}}(x) = P(\overline{\underline{X}} = x)$	Media $\mu = E(\overline{\underline{x}})$	Varianza $\sigma^2 = V(\overline{\underline{X}})$	f.g.m $\Psi_{\overline{\underline{\chi}}} = (t)$	Acumulada $F_{\overline{\underline{\chi}}} = (x)$	
Uniforme		[a,b]	$\frac{1}{b-a}$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$		$\frac{x-a}{b-a}$	$\overline{\underline{x}} \sim U(a,b)$
Exponencial	# de ocurrencias en un intervalo de tiempo o espacio		$\beta e^{-\beta x}$	$\frac{1}{\beta}$	$\frac{1}{\beta^2}$	$\frac{\beta}{\beta-t}$	$1 - e^{-\beta x}$	$\overline{\underline{x}} \sim Exp(x; \beta)$
Gamma	# de ocurrencias en un intervalo de tiempo o espacio		$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	$rac{lpha}{eta}$	$\frac{lpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$		$\overline{\underline{x}} \sim Gamma(x; \alpha, \beta)$
Normal		(-∞,∞)	$\frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)}}{\sigma\sqrt{2\pi}}$					$\overline{\underline{x}} \sim Normal(x; \mu, \sigma^2)$

Propiedades de la función Gamma:

- 1) Si $\alpha > 1$, Entonces $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- 2) Si $n \in \mathbb{Z}^+$, Entonces $\Gamma(n) = (n-1)!$
- 3) $F_{\overline{X}}^G=1-F_{\overline{X}}^P(\alpha-1)$ con parámetro de la Poisson de $\lambda=\beta x$

Teorema central del límite

1)
$$\overline{X} \approx N(\overline{x}; \mu_{\overline{x}} = \mu, \sigma_{\overline{x}}^2 = \frac{\sigma^2}{n})$$

2)
$$\sum_{i=1}^{n} \overline{X_i} \approx N(\sum x_i; \mu_{\sum} = n\mu, \sigma_{\sum}^2 = n\sigma^2)$$