Mang Máy Tính Computer Networks

Phạm Văn Nam

Email: nampv@ntu.edu.vn; pvnamk19@yahoo.com

Địa chỉ liên hệ: Văn phòng Bộ môn Mạng & Truyền thông - Khoa Công nghệ Thông tin, Trường Đại học Nha Trang

Điện thoại: 831149-214

Môn học nói về?

- Mạng máy tính (MMT) đa năng
 - Không phải là những mạng chuyên dụng (vd: telephone)
- □ Những nguyên lý cơ bản của MMT
 - Không khảo sát tất cả các chuẩn giao thức hiện hành
- □ Tập trung vào kiến trúc phần mềm mạng
 - Chỉ thảo luận một số phần cứng mạng thiết yếu

Tài liệu môn học

□ Tài liệu chính

- Computer Networking by Jim Kurose and Keith Ross, Addison-Wesley, 2nd Edition, 2002
- Mạng máy tính và các hệ thống mở, Nguyễn Thúc Hải, NXB Giáo dục, 1999
- Computer Networks by Andrew S. Tanenbaum, Prentice Hall, 4th Edition, 2002

□ Tài liệu đọc thêm

- TCP/IP Illustrated Vol. 1 & 2 by W. Richard Stevens, Addision-Wesley, 1994
- Computer Networks and Internets by Douglas E. Comer, Prentice Hall, 2nd Edition, 1998

Chương 1: Các khái niệm cơ bản về mạng máy tính và mạng Internet

- □ Thế nào là một mạng máy tính?
- Các thành phần của một MMT
- □ Internet là gì?
- □ Kiến trúc Internet (Internet Architecture)
- □ Các chiến lược dồn kênh
- Mạng chuyển mạch kênh, gói
- □ Những vấn đề cơ bản trong MMT

Thế nào là một mạng máy tính?

- Mạng cung cấp sự kết nối
 - Một tập các máy tính/thiết bị chuyển mạch được kết nối bởi các liên kết truyền thông
 Nhằm chia sẻ thông tin và tài nguyên
- □ Topologies (đồ hình mạng)

- □ Nhiều phương tiện vật lý khác nhau
 - Coaxial cable, twisted pair, fiber optic, radio, satellite
- Mạng cục bộ, Mạng đô thị, Mạng diện rộng, vv... (Local/Metropolitan/Wide Area Networks - LANs, MANS, WANS, etc.)

Các thành phần của một MMT

- trạm, hệ thống đầu cuối
 - pc's, workstations, servers
 - PDA's, phones, toasters
 chạy các ứng dụng mạng
- liên kết truyền thông
 - fiber, copper, radio, satellite
 - điểm điểm và quảng bá
 - băng thông
- switches và routers: chuyến tiếp các gói dữ liệu qua mạng
- internet (liên mạng): mạng của các mạng
 - Internet là một liên mạng công cộng cụ thể

Internet là gi?

☐ The **Internet**:

Tập hợp các mạng và bộ định tuyến trải rộng trên phạm vi toàn thế giới và sử dụng tập giao thức TCP/IP để hình thành một mạng ảo cộng tác, đơn.

□ Intranet:

Sự kết nối của các LANs khác nhau trong một tổ chức

- Riêng tư (Private)
- Có thể dùng đường thuê bao riêng (leased lines)
- Thông thường thì nhỏ, nhưng có thể bao gồm đến vài trăm routers
- Có thể được kết nối ra the Internet (hoặc không), bởi bức tường lửa (thông thường)

Internet Architecture (Kién trúc Internet)

Các chiến lược dồn kênh

Chia sẻ tài nguyên mạng giữa nhiều người sử dụng Multiplexing

- Những chiến lược dồn kênh thông thường
 - Dồn kênh chia thời gian-Time Division Multiplexing (TDM)
 - Dồn kênh chia tần số-Frequency Division Multiplexing (FDM)
- Cả hai chiến lược trên đều là kỹ thuật chuyển mạch kênh (circuit switching technology)

Chuyển mạch kênh: FDMA và TDMA

TDMA

Mang chuyển mạch kênh - Circuit Switched Networks

- Tất cả tài nguyên (vd: các liên kết truyền thông) cần thiết cho một cuộc gọi được dành riêng trong suốt cuộc gọi
 - Ví dụ: mạng điện thoại

Note: if one circuit/link, A-to-F call blocks B-to-E call

<u>Dòn kênh thống kê - Statistical</u> <u>Multiplexing</u>

Multiplexing

- Tương tự như dồn kênh theo thời gian nhưng tùy vào nhu cầu hơn là cố định
- Kế hoạch lại đường truyền dựa vào nền tảng từng gói
- Các gói từ các nguồn khác nhau được chèn vào đường truyền
- Những gói "đấu tranh" dành đường truyền sẽ được đưa vào vùng đệm (buffer)
- Sự tích tụ vùng đệm được gọi là nghẽn-congestion
- Đây là kỹ thuật chuyển mạch gói, được dùng trong MMT

Mang chuyển mạch gói - Packet Switched Networks

- Dữ liệu đưa lên mạng được được chia thành nhiều "gói" gọi là "packets"
- Phương pháp Lưu giữ và chuyển tiếp (Store-and-forward): packets được lưu giữ trong vùng đệm trước khi được truyền đi
- Packets chay trên mang chia sẻ tài nguyên với các packets khác
 - O Việc sử dụng tài nguyên tùy thuộc vào nhu cầu hay chia sẻ tài nguyên theo thống kê
- Khi tài nguyên hạn chế: độ trễ xếp hàng, mất gói tin

Tại sao chia sẻ tài nguyên theo thống kê?

- Sự tận dụng hiệu quả tài nguyên mạng
- □ Kịch bản ví dụ
 - Link bandwidth (dåi thông): 1 Mbps
 - Mỗi cuộc gọi cần 100 Kbps khi truyền thông tin
 - Mỗi cuộc gọi có dữ liệu để gửi ("hoạt động") chỉ chiếm 10% thời gian
- Chuyển mạch kênh Circuit switching
 - Mỗi cuộc gọi cần 100 Kbps: chỉ hỗ trợ 10 cuộc gọi đồng thời
- Chuyển mạch gói Packet switching
 - Hỗ trợ nhiều cuộc gọi hơn với xác suất "tranh giành" nhau là nhỏ
 - 35 cuộc gọi đang thực hiện: xác suất mà > 10 cuộc gọi *"hoạt động"* < 0.0017!

So sánh giữa chuyển mạch kênh và chuyển mạch gói

Mục so sánh	Chuyển mạch kênh	Chuyển mạch gói
Đường dẫn "đồng" chuyên biệt	Có	Không
Băng thông sẵn có	Cố định	Biến động
Khả năng lãng phí băng thông	Có	Không
Truyền dẫn lưu giữ-chuyển tiếp	Không	Có
Các gói tin đi theo cùng một lộ trình	Có	Không
Thiết lập kết nối	Yêu cầu	Không cần thiết
Khả năng tắc nghẽn xảy ra khi	Thiết lập kết nối	Đối với mỗi gới tin
Ảnh hưởng của tắc nghẽn	Cuộc gọi bị chặn	Độ trễ xếp hàng

Network Taxonomy (Phân loại mạng)

Những vấn đề cơ bản trong MMT

- □ Đặt tên/Đánh địa chỉ
 - Làm thế nào để tìm tên/địa chỉ của đối tác mà bạn muốn giao tiếp
 - Địa chỉ: một chuỗi byte định danh một nút (node)
 - Các loai địa chỉ
 - Unicast: địa chỉ đơn hướng
 - · Broadcast: địa chỉ quảng bá
 - · Multicast: địa chỉ đa hướng
- Dịnh tuyến/Chuyển tiếp: là quá trình xác định làm thế nào để gởi các gói tin đến đích dựa trên địa chỉ của nó
- Tìm "hàng xóm", xây dựng các bảng dẫn đường

Những trở ngại cơ bản trong MMT

- □ Những gì có thể sai sót?
 - O Các lỗi ở mức bit: do sự nhiễu tín hiệu điện
 - Các lỗi ở mức gói: mất gói tin do tràn vùng đệm hay nghẽn
 - Sự phân phát sai thứ tự gói tin: các gói tin có thể đi theo các con đường khác nhau
 - Hỏng hóc tại các nút hoặc đường truyền (link/node failures): đứt cáp hoặc hệ thống bị sập
- □ Những gì có thể làm được?
 - O Bổ sung thêm các bits dư thừa để chuẩn đoán và sửa các packets bị lỗi
 - O Xác nhận các gói nhận được và truyền lại các gói bị mất
 - Gán các số chuỗi (sequence numbers) và sắp xếp lại theo thứ tự các gói ở bên nhân
 - "Cảm nhận" link/node failures và đi vòng qua các failed links/nodes
- Mục tiêu: để thu hẹp khoảng cách giữa những gì các ứng dụng mong đợi và những gì mà công nghệ nền tảng (underlying technology) có thể cung cấp

Tóm tắt chương

- □ Những thành phần của một mạng máy tính
 - O Kiến trúc Internet
- Chuyển mạch kênh và chuyển mạch gói
 - Dòn kênh theo thống kê
- □ Các vấn đề cơ bản trong mạng máy tính
 - O Đặt tên/đánh địa chỉ và định tuyến/chuyển tiếp
 - Kiểm soát lỗi/luồng/tắc nghẽn