ТРЕТО КОНТРОЛНО СЪСТЕЗАНИЕ НА РАЗШИРЕНИЯ НАЦИОНАЛЕН ОТБОР

27 юни 2022г. Група G

Задача СК? ОПАШКА

Остават броени минути до откриването на новия японски ресторант *Benny's* в София. Още от ранни зори пред него се е образувала опашка от **N** души, номерирани с числата от **1** до **N**. Един от тях е Алекс, който разбира се не би пропуснал такова събитие. Той предварително е проучил всичко за ресторанта и знае, че не пускат клиентите по реда, в който са се наредили.

Политиката им е доста по-справедлива и се съобразява също с това колко време ще чака всеки един от клиентите. За даден клиент се вземат две неща в предвид – времето, което е чакал на опашката преди да отвори ресторантът – w_i и времето за изпълнение на поръчката му - t_i . Времето, което даден клиент е чакал на опашката, се равнява на сумата от w_i и времето отнело за поръчките на всички клиенти преди него - $t_1 + t_2 + \cdots + t_{i-1}$.

Benny's искат да обслужат клиентите в такъв ред, че максималното време, което е чакал даден клиент, да е минималното възможно. Оказва се обаче, че отношението маси/клиенти е твърде малко и затова ще обслужат само \mathbf{K} от \mathbf{N} -те души, като отново се стараят да ги подберат и наредят така, че да е минимизирано времето на чакане.

Алекс повече от всичко би искал да стане част от техния екип и смята да се докаже, като им помогне в избора. За жалост не разполага с много материал за смятане, затова моли Вас да му помогнете, като напишете програма **queue**, която да пресмята търсеното минимално време, което да чака клиентът, стоял на опашката най-дълго.

Вход

На първия ред на стандартния вход се въвеждат естествените числа \mathbf{N} и \mathbf{K} – броят души на опашката и колко от тях може да обслужи ресторантът. На следващите \mathbf{N} реда се въвеждат \mathbf{N} двойки числа w_i , t_i – времето, което е чакал поредния клиент до отварянето на ресторанта и времето за изпълнение на поръчката му.

Изход

На единствения ред на стандартния изход изведете едно число – търсеното минимално време на чакане.

Ограничения

- \rightarrow 1 \leq **K** \leq **N** \leq 80
- $ightharpoonup 1 \le t_i \le 250$
- $1 \le w_i \le 10^7$

ТРЕТО КОНТРОЛНО СЪСТЕЗАНИЕ НА РАЗШИРЕНИЯ НАЦИОНАЛЕН ОТБОР

27 юни 2022г. Група G

Подзадачи

Подзадача	Точки	N	K	t_i	w_i	Допълнителни
1	10	= 2	= 2	≤ 250	$\leq 10^{7}$	-
2	5	= 3	= 3	≤ 250	$\leq 10^{7}$	-
3	15	≤ 80	$= \mathbf{N}$	≤ 250	$\leq 10^{7}$	-
4	5	≤80	≤ 80	≤ 250	= 1	-
5	35	≤ 80	≤ 80	≤ 250	≤ 10 ⁷	Съществува оптимално облужване на клиентите, при което всеки следващ е с по-голям номер от предишния.
6	5	≤ 80	≤ 80	≤ 250	$\leq 10^{7}$	-

Точките за подзадача се получават само ако се преминат успешно всички тестове предвидени за нея.

Пример

Вход	Изход	Обяснение
3 3	8	Оптималният ред би бил: 6 5, 1 1, 2 3. Така
1 1		първият клиент чака време 6, вторият –
2 3		1+5=6, третият – 2+5+1=8. Максималното
6 5		време, което някой от клиентите е чакал, е 8.
Вход	Изход	Обяснение
7 7	31	Примерен оптимален ред е: 5 2, 6 3, 8 5, 7 5,
7 5		8 6, 10 8, 1 1. Тук предпоследният клиент е
8 5		чакал най-дълго.
8 6		
6 3		
10 8		
1 1		
5 2		
Вход	Изход	Обяснение
8 4	13	Четирите клиента, които ще бъдат
7 10		обслужени са: 9 3, 10 5, 3 3, 2 10 в този ред.
9 7		
10 5		
3 6		
2 10		
9 3		
8 8		
3 3		