Лекция 20.5.2021

1 Изпъкнали множества — продължение

Припомняне от миналия път

Нека \mathcal{A} е афинно пространство, моделирано върху линейното пространство U.

Определение 1 Подмножеството C на \mathcal{A} се нарича *изпъкнало*, ако за всеки две точки $P_0, P_1 \in C$ отсечката P_0P_1 лежи в C.

Забележка 1 В горната дефиниция няма значение дали се има предвид отворената или затворената отсечка P_0P_1 , защото краищата ѝ P_0 и P_1 така или иначе са си в C.

Твърдение 1 Ако B е афинно подпространство на A и $P_0, P_1 \in B$ са различни точки, то B съдържа правата, определена от P_0 и P_1 .

Следствие 1 Всяко афинно подпространство е изпъкнало множество.

Твърдение 2 Полупространствата (и отворените, и затворените) са изпъкнали множества.

Твърдение 3 В геометричната равнина или геометричното пространство нека точките P_0 , P_1 , P_2 не са на една права и нека O е произволна точка. Тогава точката P лежи в затворения тризгълник $P_0P_1P_2$

$$\Leftrightarrow \exists \lambda_1, \lambda_2 \geq 0, \ \lambda_1 + \lambda_2 \leq 1 : \overrightarrow{P_0P} = \lambda_1 \overrightarrow{P_0P_1} + \lambda_2 \overrightarrow{P_0P_2} \\ \Leftrightarrow \exists \lambda_0, \lambda_1, \lambda_2 \geq 0, \ \lambda_0 + \lambda_1 + \lambda_2 = 1 : \overrightarrow{OP} = \lambda_0 \overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \lambda_2 \overrightarrow{OP_2}.$$

Твърдение 4 B геометричното пространство нека точките P_0 , P_1 , P_2 , P_3 не лежат в една равнина и нека O е произволна точка. Тогава точката P лежи в затворения тетраедър $P_0P_1P_2P_3$

$$\Leftrightarrow \exists \lambda_1, \lambda_2, \lambda_3 \geq 0, \ \lambda_1 + \lambda_2 + \lambda_3 \leq 1 \colon \overrightarrow{P_0P} = \lambda_1 \overrightarrow{P_0P_1} + \lambda_2 \overrightarrow{P_0P_2} + \lambda_3 \overrightarrow{P_0P_3} \\ \Leftrightarrow \exists \lambda_0, \lambda_1, \lambda_2, \lambda_3 \geq 0, \ \lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 = 1 \colon \overrightarrow{OP} = \lambda_0 \overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \lambda_2 \overrightarrow{OP_2} + \lambda_3 \overrightarrow{OP_3}.$$

Последните две твърдения мотивират следната дефиниция.

Определение 2 Нека точките $P_0, \ldots, P_k \in \mathcal{A}$ не лежат в (k-1)-мерно афинно подпространство на \mathcal{A} . ${\it Отворен \atop \it 3amsopen}$ k-мерен $\it cumnлекс\ c\ \it bspxobe\ P_0, \ldots, P_k$ се нарича множеството

$$\left\{P \in \mathcal{A}: \exists \lambda_1, \dots, \lambda_k \geq 0, \lambda_1 + \dots + \lambda_k \leq 1: \overrightarrow{P_0P} = \lambda_1 \overrightarrow{P_0P_1} + \dots + \lambda_k \overrightarrow{P_0P_k}\right\}.$$

Пример 1 От дефиницията на отсечка следва, че 1-мерните отворени (съответно затворени) симплекси са отворените (съответно затворените) отсечки.

Пример 2 Твърдение 3 и Твърдение 4 показват, че 2-мерните отворени (съответно затворени) симплекси в геометричната равнина или геометричното пространство са отворените (съответно затворените) триъгълници, а 3-мерните отворени (съответно затворени) симплекси в геометричното пространство са отворените (съответно затворените) тетраедри.

Поради това и в произволно афинно пространство 2-мерните и 3-мерните симплекси се наричат съответно триъгълници и тетраедри.

Твърдение 5 Нека точките $P_0, \ldots, P_k \in \mathcal{A}$ не лежат в (k-1)-мерно афинно подпространство и нека O е произволна точка. Тогава k-мерният затворен симплекс $P_0 \ldots P_k$

$$= \left\{ P \in \mathcal{A} : \exists \lambda_1, \dots, \lambda_k \geq 0, \lambda_1 + \dots + \lambda_k \leq 1 : \\ \overrightarrow{OP} = (1 - \lambda_1 - \dots - \lambda_k) \overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \dots + \lambda_k \overrightarrow{OP_k} \right\}$$

$$= \left\{ P \in \mathcal{A} : \exists \lambda_0, \lambda_1, \dots, \lambda_k \geq 0, \lambda_0 + \lambda_1 + \dots + \lambda_k = 1 : \\ \overrightarrow{OP} = \lambda_0 \overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \dots + \lambda_k \overrightarrow{OP_k} \right\}.$$

От второто равенство в горното твърдение получаваме

Следствие 2 Редът на точките в дефиницията на симплекс няма значение.

Дотук беше припомнянето от миналия път.

Изпъкнали множества — продължение

Твърдение 6 Нека $K = Oe_1 \dots e_n$ е афинна координатна система в \mathcal{A} и спрямо нея нележащите в (k-1)-мерно афинно подпространство точки P_0, \dots, P_k имат координати $P_j(x^j), j = 0, \dots, k$. Тогава спрямо K параметрични уравнения на k-мерния отворен затворен симплекс $P_0 \dots P_k$ са

$$x = (1 - \lambda_1 - \dots - \lambda_k)x^0 + \lambda_1 x^1 + \dots + \lambda_k x^k, \quad \lambda_1, \dots, \lambda_k \ge 0, \ \lambda_1 + \dots + \lambda_k \le 1,$$

или еквивалентно,

$$x = \lambda_0 x^0 + \lambda_1 x^1 + \dots + \lambda_k x^k, \quad \lambda_0, \lambda_1, \dots, \lambda_k \geq 0, \ \lambda_0 + \lambda_1 + \dots + \lambda_k = 1.$$

 \overrightarrow{OP} има спрямо K координатен вектор x. Аналогично $\overrightarrow{OP_0}, \dots, \overrightarrow{OP_k}$ имат спрямо Kкоординатни вектори съответно x^0, \dots, x^k . Тогава

 $\overrightarrow{OP} = (1 - \lambda_1 - \dots - \lambda_k)\overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \dots + \lambda_k \overrightarrow{OP_k} \Leftrightarrow x = (1 - \lambda_1 - \dots - \lambda_k)x^0 + \lambda_1 x^1 + \dots + \lambda_k x^k$ и от първото равенство в Твърдение 5 получаваме $P \in {}_{\mathsf{Затворения}}^{\mathsf{получаваме}}$ симплекс $P_0 \dots P_k$

$$\Leftrightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \lambda_1 + \dots + \lambda_k \leq 1 : \overrightarrow{OP} = (1 - \lambda_1 - \dots - \lambda_k) \overrightarrow{OP_0} + \lambda_1 \overrightarrow{OP_1} + \dots + \lambda_k \overrightarrow{OP_k}$$

$$\Leftrightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \lambda_1 + \dots + \lambda_k \leq 1 : x = (1 - \lambda_1 - \dots - \lambda_k) x^0 + \lambda_1 x^1 + \dots + \lambda_k x^k.$$

От това следват първите параметрични уравнения, а вторите следват по същия начин от второто равенство в Твърдение 5 или пък като в първите параметрични уравнения се положи $\lambda_0 = 1 - \lambda_1 - \dots - \lambda_k$.

(Всъщност в Твърдение 5 са написани векторни параметрични уравнения на двата вида симплекси, така че написвайки ги покоординатно получаваме скаларни параметрични уравнения.)

Твърдение 7 Симплексите (и отворените, и затворените) са изпъкнали множесmea.

Доказателство: Нека Q и R са произволни точки от затворения симплекс $P_0 \dots P_k$. Тогава, фиксирайки произволна точка O, имаме

$$\overrightarrow{OQ} = \sum_{i=0}^k \mu_i \overrightarrow{OP_i}$$
 за някой $\mu_i \mathop{>}\limits_{\geq} 0, \ i=0,\ldots,k$: $\sum_{i=0}^k \mu_i = 1,$

$$\overrightarrow{OR} = \sum_{i=0}^k \nu_i \overrightarrow{OP_i}$$
 за някой $\nu_i \mathop{>}\limits_{\geq} 0, \ i=0,\ldots,k$: $\sum_{i=0}^k \nu_i = 1.$

Нека точката P е от отворената отсечка QR. Тогава $\overrightarrow{OP} = \varkappa \overrightarrow{OQ} + \lambda \overrightarrow{OR}$ за някои $\varkappa, \lambda > 0$:

$$\varkappa+\lambda=1.$$
 Следователно $\overrightarrow{OP}=\sum_{i=0}^k (\varkappa\mu_i+\lambda\nu_i)\overrightarrow{OP_i}$ и

$$\underbrace{\varkappa}_{>0} \underbrace{\mu_i}_{\geq 0} + \underbrace{\lambda}_{>0} \underbrace{\nu_i}_{\geq 0} \stackrel{>}{\geq} 0, \ i = 0, \dots, k, \quad \sum_{i=0}^k (\varkappa \mu_i + \lambda \nu_i) = \varkappa \underbrace{\sum_{i=0}^k \mu_i}_{=1} + \lambda \underbrace{\sum_{i=0}^k \nu_i}_{=1} = \varkappa + \lambda = 1.$$

Значи P лежи в отворения симплекс $P_0 \dots P_k$. Следователно отворената отсечка QRсе съдържа в тоя симплекс. Тъй като Q и R бяха произволни точки от симплекса, това означава, че той е изпъкнало множество. \Box

Забележка 2 Ако в Определение 2 точките $P_0,\dots,P_k\in\mathcal{A}$ лежат в (k-1)-мерно афинно подпространство, то полученото множество можем да наречем изроден отворен (съответно затворен) k-мерен симплекс и за него горните три твърдения и следствието остават в сила и доказателствата са съвършено същите. Но прилагателното "k-мерен" е неуместно, защото размерността на това множество e < k.

Ако П е отворен успоредник в геометричната равнина или геометричното пространство, дефиниран с точката P_0 и неколинеарните вектори u и v, то точката $P \in \Pi \Leftrightarrow \overrightarrow{P_0P} = \lambda u + \mu v$, където $0 \leq \lambda, \mu \leq 1$.

Аналогично, ако П е отворен паралелепипед в геометричното пространство, дефиниран с точката P_0 и некомпланарните вектори $u,\,v,\,w,$ то точката $P\in\Pi\Leftrightarrow\overrightarrow{P_0P}=\lambda u+\mu v+\nu w,$ където $0\leqq\lambda,\mu,\nu\leqq1.$

Това мотивира следната дефиниция.

Определение 3 Нека $P_0 \in \mathcal{A}$, а $v_1, \ldots, v_k \in U$ са линейно независими. Отворен 3атворен k-мерен паралелепипед, определен от точката P_0 и векторите v_1, \ldots, v_k , се нарича множеството

$$\left\{P \in \mathcal{A}: \exists \lambda_1, \dots, \lambda_k \in (0,1) : \overrightarrow{P_0P} = \lambda_1 v_1 + \dots + \lambda_k v_k\right\}.$$

Пример 3 1-мерните отворени (съответно затворени) паралелепипеди са отворените (съответно затворените) отсечки.

2-мерните отворени (съответно затворени) паралелепипеди в геометричната равнина или геометричното пространство са отворените (съответно затворените) успоредници. Поради това и в произволно афинно пространство 2-мерните паралелепипеди се наричат успоредници.

3-мерните отворени (съответно затворени) паралелепипеди в геометричното пространство са си отворените (съответно затворените) паралелепипеди.

Твърдение 8 Нека $K=Oe_1\dots e_n$ е афинна координатна система в $\mathcal A$ и спрямо нея точката $P_0 \in \mathcal{A}$ и линейно независимите вектори $v_1, \dots, v_k \in U$ имат координати $P_0(x^0), \ v_i(\xi_i), \ j=1,\ldots,k$. Тогава спрямо K параметрични уравнения на k-мерния отворен (съответно затворен) паралелепипед, определен от P_0 и v_1,\ldots,v_k са

$$x = x^0 + \lambda_1 \xi_1 + \dots + \lambda_k \xi_k, \quad 0 \le \lambda_1, \dots, \lambda_k \le 1.$$

Доказателство: Ако точката P има спрямо K координатен вектор x, то векторът $\overrightarrow{P_0P}$ има спрямо K координатен вектор $x-x^0$. Тъй като v_1,\ldots,v_k имат спрямо K координатни вектори съответно ξ_1, \dots, ξ_k , то

$$P_0P = \lambda_1 v_1 + \dots + \lambda_k v_k \Leftrightarrow x - x^0 = \lambda_1 \xi_1 + \dots + \lambda_k \xi_k \Leftrightarrow x = x^0 + \lambda_1 \xi_1 + \dots + \lambda_k \xi_k$$
 и от Определение 3 получаваме $P \in {}^{\text{отворения}}_{\text{ затворения}}$ паралеленинед, определен от P_0 и v_1, \dots, v_k

$$\Leftrightarrow \exists \lambda_1, \dots, \lambda_k \in (0,1) : \overrightarrow{P_0P} = \lambda_1 v_1 + \dots + \lambda_k v_k$$

$$\Leftrightarrow \exists \lambda_1, \dots, \lambda_k \in (0,1) \atop [0,1] : x = x^0 + \lambda_1 \xi_1 + \dots + \lambda_k \xi_k.$$

От това следва, че паралелепипедът има исканите параметрични уравнения.

Твърдение 9 Паралелепипедите (и отворените, и затворените) са изпъкнали множества.

Доказателство: Нека Q и R са произволни точки от отворения паралелепипед, определен от точката P_0 и векторите v_1, \ldots, v_k . Тогава

$$\overrightarrow{P_0Q}=\mu_1v_1+\cdots+\mu_kv_k$$
 за някой $\mu_i\in {}^{(0,1)}_{[0,1]},\ i=1,\ldots,k,$

$$\overrightarrow{P_0R} = \nu_1 v_1 + \dots + \nu_k v_k$$
 за някой $\nu_i \in {(0,1) \atop [0,1]}, \ i=1,\dots,k.$

Нека точката P е от отворената отсечка QR. Тогава $\overrightarrow{P_0P}=\varkappa\overrightarrow{P_0Q}+\lambda\overrightarrow{P_0R}$ за някои

$$\varkappa,\lambda>0$$
: $\varkappa+\lambda=1$. Следователно $\overrightarrow{P_0P}=\sum_{i=1}^{\kappa}(\varkappa\mu_i+\lambda\nu_i)v_i$ и

$$\underbrace{\varkappa}_{>0}\underbrace{\mu_i}_{\geq 0} + \underbrace{\lambda}_{>0}\underbrace{\nu_i}_{\geq 0} \stackrel{>}{\geq 0}, \quad \underbrace{\varkappa}_{>0}\underbrace{\mu_i}_{\leq 1} + \underbrace{\lambda}_{>0}\underbrace{\nu_i}_{\leq 1} \stackrel{<}{\leq} \varkappa + \lambda = 1, \qquad i = 1, \dots, k,.$$

Значи P лежи в отворения паралелепипед, определен от P_0 и v_1,\dots,v_k . Следователно отворената отсечка QR се съдържа в тоя паралелепипед. Тъй като Q и R бяха произволни точки от паралелепипеда, това означава, че той е изпъкнало множество.

Забележка 3 Ако в Определение 3 векторите $v_1, \ldots, v_k \in U$ са линейно зависими, то полученото множество можем да наречем изроден отворен (съответно затворен) k-мерен паралеленинед и за него горните две твърдения остават в сила и доказателствата са съвършено същите. Но прилагателното "k-мерен" е неуместно, защото размерността на това множество е < k.

Твърдение 10 Произволно сечение на изпъкнали множества е изпъкнало множество.

Доказателство: Нека $C_i, i \in I$, са изпъкнали множества. Нека $P_0, P_1 \in \bigcap_{i \in I} C_i$. Следователно $P_0, P_1 \in C_i$ за всяко $i \in I$. Тъй като за всяко $i \in I$ множеството C_i е изпъкнало, то за всяко $i \in I$ отсечката P_0P_1 се съдържа в C_i . Значи отсечката P_0P_1 се съдържа в $\bigcap_{i \in I} C_i$. Следователно $\bigcap_{i \in I} C_i$ е изпъкнало множество.

2 Нормални вектори на афинно подпространство. Разстояние между афинни подпространства

Нека A е евклидово афинно пространство, моделирано върху линейното пространство U.

Определение 4 Нека B е афинно подпространство на A, моделирано върху линейното пространство V. Тогава ортогоналното на V линейно пространство V^{\perp} се нарича нормално или ортогонално, или перпендикулярно на B пространство, а векторите от V^{\perp} се наричат нормални или ортогонални, или перпендикулярни на B вектори.

Оттук нататък A е n-мерно и $K = Oe_1 \dots e_n$ е ортонормирана координатна система в A.

Твърдение 11 Нека афинното подпространство B на A има спрямо K уравнения

(1)
$$B: a_{i1}x_1 + \dots + a_{in}x_n + b_i = 0, \quad i = 1, \dots, m.$$

Тогава:

- 1. Векторите N_1, \ldots, N_m , чиито координати спрямо K са $N_i(a_{i1}, \ldots, a_{in}), i = 1, \ldots, m$, са нормални на B и нормалното пространство на B е тяхната линейна обвивка.
- 2. (1) е общо уравнение на $B \Leftrightarrow N_1, \dots, N_m$ са линейно независими, тоест когато (N_1, \dots, N_m) е базис на нормалното пространство на B.

Доказателство: Нека V е направляващото пространство на B.

- 1. Имаме $v(\xi_1, \dots, \xi_n) \in V \Leftrightarrow a_{i1}\xi_1 + \dots + a_{in}\xi_n = 0, i = 1, \dots, m,$ $\Leftrightarrow \langle v, N_i \rangle = 0, i = 1, \dots, m,$ (защото K е ортонормирана) $\Leftrightarrow v \perp N_i, i = 1, \dots, m.$ Следователно $N_1, \dots, N_m \in V^\perp$, тоест N_1, \dots, N_m са нормални на B. Горната еквивалентност всъщност означава, че $V = \{N_1, \dots, N_m\}^\perp$ и тъй като $\{N_1, \dots, N_m\}^\perp = l(N_1, \dots, N_m)^\perp$, то $V = l(N_1, \dots, N_m)^\perp$. Следователно $V^\perp = l(N_1, \dots, N_m)^{\perp \perp} = l(N_1, \dots, N_m)$ и от това също е ясно, че $N_1, \dots, N_m \in V^\perp$.
- 2. (1) е общо уравнение на $B \Leftrightarrow m = n \dim B \Leftrightarrow m = n \dim V \Leftrightarrow m = \dim V^{\perp}$ $\Leftrightarrow m = \dim l(N_1, \ldots, N_m) \Leftrightarrow N_1, \ldots, N_m$ са линейно независими, тоест когато (N_1, \ldots, N_m) е базис на $l(N_1, \ldots, N_m) = V^{\perp}$.

Твърдение 12 Нека $P_0 \in A$, W е линейно подпространство на U и $W = l(N_1, \ldots, N_m)$. Нека спрямо K координатите на P_0 и N_1, \ldots, N_m са $P_0(x_1^0, \ldots, x_n^0)$, $N_i(a_{i1}, \ldots, a_{in})$, $i = 1, \ldots, m$. Тогава съществува единствено афинно подпространство B на A, за което $P_0 \in B$ и W е нормалното пространство на B, и спрямо K то има уравнения

(2)
$$B: a_{i1}(x_1 - x_1^0) + \dots + a_{in}(x_n - x_n^0) = 0, \quad i = 1, \dots, m.$$

B частност, ако (N_1,\ldots,N_m) е базис на W, то (2) е общо уравнение на B.

Доказателство: Ако имаме афинно подпространство на A, което е моделирано върху линейното подпространство V на U и за което W е нормалното пространство, то $W = V^{\perp}$ и следователно $V = V^{\perp \perp} = W^{\perp}$. Но ние знаем, че съществува единствено афинно подпространство B на A, което съдържа P_0 и е моделирано върху W^{\perp} . И неговото нормално пространство ще е $W^{\perp \perp} = W$. Така че наистина съществува единствено афинно подпространство B на A, което съдържа P_0 и има нормално пространство W.

Тъй като (2) е линейна система, то тя задава спрямо K някое афинно подпространство. То съдържа P_0 , защото координатите на P_0 очевидно удовлетворяват (2), а по 1. на Твърдение 11 нормалното му пространство е $l(N_1, \ldots, N_m)$, тоест W. Значи това афинно подпространство е B, тоест наистина B се задава спрямо K с уравненията (2). Последното изречение в твърдението следва от 2. на Твърдение 11.

Частни случаи:

1. Хиперравнина:

Твърдение 11' Нека хиперравнината B в A има спрямо K общо уравнение $a_1x_1 + \cdots + a_nx_n + b = 0$. Тогава векторът N, чишто координати спрямо K са (a_1, \ldots, a_n) , е нормален на B и образува базис на нормалното пространство на B, тоест нормалните вектори на B са векторите от вида λN , $\lambda \in \mathbb{R}$.

Твърдение 12' Нека точката $P_0 \in A$ и ненулевият вектор $N \in U$ имат спрямо K координати $P_0(x_1^0, \ldots, x_n^0)$, $N(a_1, \ldots, a_n)$. Тогава съществува единствена хиперравнина B в A през P_0 , за която N е нормален вектор, и спрямо K тя има общо уравнение $a_1(x_1-x_1^0)+\cdots+a_n(x_n-x_n^0)=0$.

- 2. Права в 2-мерно евклидово афинно пространство (в частност, в геометричната равнина):
 - В Твърдение 11' и Твърдение 12' n=2 и "хиперравнина" се заменя с "права".
- 3. Равнина в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):
 - В Твърдение 11' и Твърдение 12' n=3 и "хиперравнина" се заменя с "равнина".
- 4. Права в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Твърдение $11'^{\vee}$ *Нека правата l в A има спрямо K общо уравнение*

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}.$$

Тогава векторите N_1 и N_2 , чиито координати спрямо K са $N_i(A_i, B_i, C_i)$, i = 1, 2, са нормални на l и образуват базис на нормалното пространство на l.

Твърдение 12^N Нека точката $P_0 \in A$ и линейно независимите вектори $N_1, N_2 \in U$ имат спрямо K координати $P_0(x_0, y_0, z_0)$, $N_i(A_i, B_i, C_i)$, i = 1, 2. Тогава съществува единствена права l в A през P_0 , за която N_1 и N_2 са нормални вектори, и спрямо K тя има общо уравнение

$$\begin{cases} A_1(x-x_0) + B_1(y-y_0) + C_1(z-z_0) = 0 \\ A_2(x-x_0) + B_2(y-y_0) + C_2(z-z_0) = 0 \end{cases}$$

Твърдение 13 Нека B е афинно подпространство на A и $P_0 \in A$. Тогава:

- 1. Съществува единствена точка $P_0' \in B$, за която векторът $\overrightarrow{P_0'P_0}$ е перпендикулярен на B.
- 2. Ako $P \in B$, mo $|PP_0| \ge |P_0'P_0|$ $u = \Leftrightarrow P = P_0'$.

Доказателство: Ако ви е нужна някаква нагледна представа, можете да си мислите за права в геометричната равнина или геометричното пространство или за равнина в геометричното пространство.

Нека V е направляващото пространство на B.

1. Първо ще докажем единствеността, защото това ще ни подсети как да конструираме P'_0 за да докажем съществуването.

Нека $P_0' \in B$ е такава, че $\overrightarrow{P_0'P_0} \perp B$. Нека $P \in B$. Тогава $\overrightarrow{PP_0} = \overrightarrow{PP_0'} + \overrightarrow{P_0'P_0}$. Това

означава, че относно раздагането $U=V\oplus V^{\perp}$ имаме $\overrightarrow{PP_0}=\overrightarrow{PP_0}^{\parallel}+\overrightarrow{PP_0}^{\perp}$, където $\overrightarrow{PP_0}^{\parallel}=\overrightarrow{PP_0}^{\prime}$, $\overrightarrow{PP_0}^{\perp}=\overrightarrow{PP_0}^{\prime}$, $\overrightarrow{PP_0}^{\perp}=\overrightarrow{PP_0}^{\prime}$.

Ако и $P\in B$ е такава, че $\overrightarrow{PP_0}\perp B$, то $\overrightarrow{PP_0}\in V^\perp$ и следователно $\overrightarrow{PP_0}^\parallel=0$, тоест $\overrightarrow{PP_0}'=0$. Значи $P=P_0'$. С това единствеността е доказана.

Съществуване: Нека P е произволна точка от B. Нека относно разлагането $U=V\oplus V^\perp$ имаме $\overrightarrow{PP_0}=\overrightarrow{PP_0}^{\parallel}+\overrightarrow{PP_0}^{\perp}$. Тъй като $P\in B$ и $\overrightarrow{PP_0}^{\parallel}\in V$, то съществува единствена точка $P_0'\in B$ такава, че $\overrightarrow{PP_0'}=\overrightarrow{PP_0}^{\parallel}$. Следователно $\overrightarrow{P_0'P_0}=\overrightarrow{PP_0}-\overrightarrow{PP_0'}=\overrightarrow{PP_0}-\overrightarrow{PP_0}^{\parallel}=\overrightarrow{PP_0}^{\perp}\in V^\perp$, тоест $\overrightarrow{P_0'P_0}\perp B$. С това е доказано и съществуването

2. За произволно $P \in B$ имаме както по-горе $\overrightarrow{PP_0} = \underbrace{\overrightarrow{PP_0'}}_{\in V} + \underbrace{\overrightarrow{P_0'P_0}}_{\in V}$. Тогава от теоремата на Питагор получаваме $\left|\overrightarrow{PP_0'}\right|^2 = \left|\overrightarrow{PP_0'}\right|^2 + \left|\overrightarrow{P_0'P_0}\right|^2 \geq \left|\overrightarrow{P_0'P_0}\right|^2$ и = $\Leftrightarrow \left|\overrightarrow{PP_0'}\right| = 0$, тоест

на Питагор получаваме $|PP_0| = |PP_0'| + |P_0'P_0| \ge |P_0'P_0|$ и = $\Leftrightarrow |PP_0'| = 0$, тоест когато $\overrightarrow{PP_0'} = 0$. Следователно $|PP_0| \ge |P_0'P_0|$ и = $\Leftrightarrow P = P_0'$.

Определение 5 Нека B е афинно подпространство на A и $P_0 \in A$. Тогава единствената точка $P_0' \in B$, за която векторът $P_0'P_0$ е перпендикулярен на B, се нарича *ортогонална проекция на* P_0 *върху* B, а $|P_0'P_0|$ се нарича *разстояние от* P_0 *до* B и се означава с $d(P_0, B)$.

Пример 4 Нека $P_0 \in B$. Тогава $\overrightarrow{P_0P_0} = 0$ е перпендикулярен на B и следователно $P_0' = P_0$ и $d(P_0,B) = |P_0P_0'| = 0$.

Използвайки въведената в Определение 5 терминология, от Твърдение 13 директно получаваме:

Твърдение 14 Ако B е афинно подпространство на A и $P_0 \in A$, то $\min\{|PP_0|: P \in B\}$ съществува, достига се за ортогоналната проекция P_0' на P_0 върху B и е равен на разстоянието от P_0 до B.

Твърдение 15 Нека спрямо K хиперравнината B в A има общо уравнение $a_1x_1+\cdots+a_nx_n+b=0$, а точката $P_0\in A$ има координатен вектор x^0 . Означаваме $F(x)=a_1x_1+\cdots+a_nx_n+b$. Тогава $d(P_0,B)=\frac{|F(x^0)|}{\sqrt{a_1^2+\cdots+a_n^2}}$, а ортогоналната проекция

 P_0' на P_0 върху B има спрямо K координатен вектор $x' = x^0 - \frac{F(x^0)}{a_1^2 + \dots + a_n^2} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

Доказателство: Ако ви е нужна някаква нагледна представа, можете да си мислите за права в геометричната равнина или за равнина в геометричното пространство.

По Твърдение 11' векторът N, чиито координати спрямо K са (a_1,\ldots,a_n) , е нормален на B и образува базис на нормалното пространство на B. Тъй като и $\overrightarrow{P_0'P_0}$ е нормален на B, то съществува единствено $\lambda \in \mathbb{R}$ такова, че $\overrightarrow{P_0'P_0} = \lambda N$. Следователно

$$d(P_0, B) = |\overrightarrow{P_0'P_0}| = |\lambda|.|N| = |\lambda|.\sqrt{a_1^2 + \dots + a_n^2}.$$

Нека координатният вектор спрямо K на P_0' е x'. Тогава координатният вектор спрямо K на $\overrightarrow{P_0'P_0}$ е x^0-x' и от $\overrightarrow{P_0'P_0}=\lambda N$ получаваме $x^0-x'=\lambda.$

$$x' = x^0 - \lambda.$$
 $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$, Toect $x'_i = x_i^0 - \lambda a_i$, $i = 1, \dots, n$.

Значи за да намерим $d(P_0, B)$ и x' е достатъчно да определим λ .

От
$$P_0' \in B$$
 следва $F(x') = 0$, тоест $\sum_{i=1}^n a_i x_i' + b = 0$. Значи $\sum_{i=1}^n a_i (x_i^0 - \lambda a_i) + b = 0$,

тоест
$$\underbrace{\left(\sum_{i=1}^n a_i x_i^0 + b\right)}_{F(x^0)} - \lambda \sum_{i=1}^n a_i^2 = 0$$
. Следователно $\lambda = \frac{F(x^0)}{\sum_{i=1}^n a_i^2}$. Така получаваме

$$d(P_0, B) = |\lambda| \cdot \sqrt{\sum_{i=1}^n a_i^2} = \frac{|F(x^0)|}{\sqrt{\sum_{i=1}^n a_i^2}}, \qquad x' = x^0 - \lambda \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = x^0 - \frac{F(x^0)}{\sum_{i=1}^n a_i^2} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}. \qquad \Box$$

Забележка 4 Тъй като за дължината на нормалния вектор $N(a_1,\dots,a_n)$ на B имаме $|N|=\sqrt{a_1^2+\dots+a_n^2}$, то $\overrightarrow{P_0'P_0}=\frac{F(x^0)}{\sqrt{a_1^2+\dots+a_n^2}}\frac{N}{|N|}$. Числото $\delta(P_0,B)=\frac{F(x^0)}{\sqrt{a_1^2+\dots+a_n^2}}$ се нарича ориентирано разстояние от P_0 до B. Имаме $d(P_0,B)=|\delta(P_0,B)|$. Също, отворените полупространства относно B са $\{P_0(x^0)\in A:F(x^0)>0\}$ и $\{P_0(x^0)\in A:F(x^0)<0\}$ и следователно те могат да се напишат и като

 $\{P_0 \in A : \delta(P_0,B) > 0\}$ (тоест отвореното полупространство, в което "сочи" N) и

 $\{P_0 \in A : \delta(P_0, B) < 0\}$ (тоест отвореното полупространство, в което "сочи" -N).

Забележка 5 Ако нормалният вектор $N(a_1, \ldots, a_n)$ на B е единичен, то уравнението $a_1x_1 + \cdots + a_nx_n + b = 0$ се нарича *нормално уравнение на B спрямо K* и $d(P_0, B) = |F(x^0)|$.

Частни случаи:

- 1. Права в 2-мерно евклидово афинно пространство (в частност, в геометричната равнина):
 - В Твърдение 15 и забележките след него n=2 и "хиперравнина" се заменя с "права", а "полупространство" с "полуравнина".
- 2. Равнина в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):
 - В Твърдение 15 и забележките след него n=3 и "хиперравнина" се заменя с "равнина".

Твърдение 16 Нека B_1 и B_2 са афинни подпространства на A, моделирани съответно върху линейните пространства V_1 и V_2 . Тогава:

- 1. Съществуват точки $P_1 \in B_1$, $P_2 \in B_2$, за които векторът $\overrightarrow{P_1P_2}$ е перпендикулярен на B_1 и B_2 .
- 2. Векторът $\overrightarrow{P_1P_2}$ в 1. е единствен, тоест ако $Q_1 \in B_1$, $Q_2 \in B_2$ са такива, че $\overrightarrow{Q_1Q_2}$ е перпендикулярен на B_1 и B_2 , то $\overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2}$.
- 3. Точките P_1 и P_2 в 1. са единствени $\Leftrightarrow V_1 \cap V_2 = \{0\}$.
- 4. Ако $Q_1 \in B_1$, $Q_2 \in B_2$, то $|Q_1Q_2| \ge |P_1P_2|$ $u = \Leftrightarrow \overrightarrow{Q_1Q_2}$ е перпендикулярен на B_1 и B_2 , тоест когато $\overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2}$ (поради 2.).

Доказателство: Ако ви е нужна някаква нагледна представа, можете да си мислите за прави в геометричното пространство.

Първо ще докажем 2., 3., 4., защото това ще ни подсети как да конструираме P_1 и P_2 в 1..

Нека $P_1 \in B_1, P_2 \in B_2$ са като в 1., тоест $\overrightarrow{P_1P_2} \perp B_1, B_2$. Нека $Q_1 \in B_1, Q_2 \in B_2$. Тогава

$$\overrightarrow{Q_1Q_2} = \overrightarrow{Q_1P_1} + \overrightarrow{P_1P_2} + \underbrace{\overrightarrow{P_2Q_2}}_{-\overrightarrow{Q_2P_2}} = \underbrace{\left(\underbrace{\overrightarrow{Q_1P_1}}_{\in V_1} - \underbrace{\overrightarrow{Q_2P_2}}_{\in V_2}\right)}_{\in V_1 + V_2} + \underbrace{\overrightarrow{P_1P_2}}_{=(V_1 + V_2)^{\perp}}.$$

Следователно относно разлагането $U = (V_1 + V_2) \oplus (V_1 + V_2)^{\perp}$ имаме $\overrightarrow{Q_1Q_2} = \overrightarrow{Q_1Q_2}^{\parallel} + \overrightarrow{Q_1Q_2}^{\perp}$, където $\overrightarrow{Q_1Q_2}^{\parallel} = \overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2}$, $\overrightarrow{Q_1Q_2}^{\perp} = \overrightarrow{P_1P_2}$.

- 2. Нека $Q_1 \in B_1, \ Q_2 \in B_2$ са такива, че $\overrightarrow{Q_1Q_2} \perp B_1, B_2$. Следователно $\overrightarrow{Q_1Q_2} \in V_1^{\perp} \bigcap V_2^{\perp} = (V_1 + V_2)^{\perp}$. Значи $\overrightarrow{Q_1Q_2} = \overrightarrow{Q_1Q_2}^{\perp} = \overrightarrow{P_1P_2}$. С това 2. е доказано.
- 3. Нека отново $Q_1 \in B_1, \ Q_2 \in B_2$ са такива, че $\overrightarrow{Q_1Q_2} \perp B_1, B_2$. От доказаното в 2. тогава имаме $\overrightarrow{Q_1Q_2} \in (V_1+V_2)^{\perp}$ и следователно $\overrightarrow{Q_1Q_2}^{\parallel} = 0$, тоест $\overrightarrow{Q_1P_1} \overrightarrow{Q_2P_2} = 0$. Значи $\underbrace{\overrightarrow{Q_1P_1}}_{\in V_1} = \underbrace{\overrightarrow{Q_2P_2}}_{\in V_2} \in V_1 \cap V_2$.

Нека $V_1 \cap V_2 = \{0\}$. Тогава $\overrightarrow{Q_1P_1} = 0 = \overrightarrow{Q_2P_2}$. Следователно $Q_1 = P_1$ и $Q_2 = P_2$, тоест получаваме единствеността на P_1 и P_2 .

Обратно, нека $V_1 \cap V_2 \neq \{0\}$. Тогава съществува $v \in V_1 \cap V_2, v \neq 0$. Тъй като $P_1 \in B_1$ и $v \in V_1$, то съществува единствена точка $Q_1 \in B_1$ такава, че $Q_1 \in B_2$ и $v \in V_2$, то съществува единствена точка $Q_2 \in B_2$ такава, че $Q_1 \in B_2$ и $Q_2 \in B_2$ такава, че $Q_2 \in B_2$ и $Q_2 \in B_2$ и имаме $Q_1 \neq P_1$, $Q_2 \neq P_2$. Следователно

$$\overrightarrow{Q_1Q_2} = \left(\overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2}\right) + \overrightarrow{P_1P_2} = (v - v) + \overrightarrow{P_1P_2} = \overrightarrow{P_1P_2} \perp B_1, B_2.$$

Значи при $V_1 \cap V_2 \neq \{0\}$ точките P_1 и P_2 в 1. не са единствени. Стова 3. е доказано.

4. Нека
$$Q_1 \in B_1, Q_2 \in B_2$$
. Както видяхме по-горе, $\overrightarrow{Q_1Q_2} = \underbrace{\left(\overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2}\right)}_{\in V_1+V_2} + \underbrace{\overrightarrow{P_1P_2}}_{\in (V_1+V_2)^{\perp}}$.

Тогава от теоремата на Питагор получаваме $\left| \overrightarrow{Q_1Q_2} \right|^2 = \left| \overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2} \right|^2 + \left| \overrightarrow{P_1P_2} \right|^2 \geq \left| \overrightarrow{P_1P_2} \right|^2 \text{ и} = \Leftrightarrow \overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2} = 0, \text{ тоест когато } \overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2}.$ Следователно $|Q_1Q_2| \geq |P_1P_2|$ и $= \Leftrightarrow \overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2},$ тоест когато $\overrightarrow{Q_1Q_2} \perp B_1, B_2$ (поради 2.). С това е доказано 4..

1. Нека $Q_1 \in B_1, \ Q_2 \in B_2$ са произволни. Нека относно разлагането $U = (V_1 + V_2) \oplus (V_1 + V_2)^\perp$ имаме $Q_1 Q_2 = \overline{Q_1} Q_2^{\parallel} + \overline{Q_1} \overline{Q_2}^{\parallel}$. Тъй като $\overline{Q_1} \overline{Q_2}^{\parallel} \in V_1 + V_2$, то съществуват $v_1 \in V_1, \ v_2 \in V_2$ такива, че $\overline{Q_1} \overline{Q_2}^{\parallel} = v_1 + v_2$. От $Q_1 \in B_1, \ v_1 \in V_1$ следва, че съществува единствена точка $P_1 \in B_1$ такава, че $\overline{Q_1} \overline{P_1} = v_1$. Аналогично, от $Q_2 \in B_2, \ -v_2 \in V_2$ следва, че съществува единствена точка $P_2 \in B_2$ такава, че $\overline{Q_2} \overline{P_2} = -v_2$. Следователно

$$\overrightarrow{P_1P_2} = \overrightarrow{Q_1Q_2} - \left(\overrightarrow{Q_1P_1} - \overrightarrow{Q_2P_2}\right) = \overrightarrow{Q_1Q_2} - (v_1 + v_2) = \overrightarrow{Q_1Q_2} - \overrightarrow{Q_1Q_2}^{\parallel}$$

$$= \overrightarrow{Q_1Q_2}^{\perp} \in (V_1 + V_2)^{\perp} = V_1^{\perp} \bigcap V_2^{\perp}.$$

Значи $\overrightarrow{P_1P_2} \perp B_1, B_2$. С това е доказано и 1..

Определение 6 Нека B_1 и B_2 са афинни подпространства на A. Тогава $|P_1P_2|$, където $P_1 \in B_1$, $P_2 \in B_2$ и P_1P_2 е перпендикулярен на B_1 и B_2 , се нарича разстояние между B_1 и B_2 и се означава с $d(B_1, B_2)$.

(Дефиницията е коректна: Точки P_1 и P_2 с нужните свойства съществуват по 1. на Твърдение 16, а независимостта от избора на P_1 и P_2 следва от 2. на Твърдение 16.)

Пример 5 Нека $B_1 \cap B_2 \neq \emptyset$. Тогава, ако $P_0 \in B_1 \cap B_2$, то $\overrightarrow{P_0P_0} = 0$ е перпендикулярен на B_1 и B_2 и следователно $d(B_1, B_2) = |P_0P_0| = 0$.

Използвайки въведената в Определение 6 терминология, от Твърдение 16 директно получаваме:

Твърдение 17 Ако B_1 и B_2 са афинни подпространства на A, то $\min\{|P_1P_2|: P_1 \in B_1, P_2 \in B_2\}$ съществува и е равен на разстоянието между B_1 и B_2 .

Забележка 6 Нещата за разстояние от точка до афинно подпространство са частен случай на нещата за разстояние между афинни подпространства: В Твърдение 16, Определение 6 и Твърдение 17 взимаме $B_1 = B$, $B_2 = \{P_0\}$ и получаваме съответно Твърдение 13, Определение 5 и Твърдение 14.

3 Детерминанта на Грам. Обем на паралелепипед и на симплекс

Детерминанта на Грам

Нека U е евклидово линейно пространство.

Определение 7 *Матрица на Грам на системата вектори* $u_1, \ldots, u_k \in U$ се нарича $k \times k$ -матрицата $G(u_1, \ldots, u_k)$, чийто (i, j)-ти елемент е $\langle u_i, u_j \rangle$, тоест

$$G(u_1, \dots, u_k) = \begin{pmatrix} \langle u_1, u_1 \rangle & \langle u_1, u_2 \rangle & \dots & \langle u_1, u_k \rangle \\ \langle u_2, u_1 \rangle & \langle u_2, u_2 \rangle & \dots & \langle u_2, u_k \rangle \\ \vdots & \vdots & & \vdots \\ \langle u_k, u_1 \rangle & \langle u_k, u_2 \rangle & \dots & \langle u_k, u_k \rangle \end{pmatrix}.$$

 $\det G(u_1,\ldots,u_k)$ се нарича детерминанта на Грам на системата вектори $u_1,\ldots,u_k.$

Лема 1 Нека $u_1, \ldots, u_k, v \in U$ и v^{\perp} е ортогоналната към $l(u_1, \ldots, u_k)$ компонента на v (която съществува, защото $l(u_1, \ldots, u_k)$ е крайномерно). Тогава $\det G(u_1, \ldots, u_k, v) = \det G(u_1, \ldots, u_k) \cdot |v^{\perp}|^2$.

Доказателство: Тъй като $l(u_1, ..., u_k)$ е крайномерно, то

$$U = l(u_1, \dots, u_k) \oplus l(u_1, \dots, u_k)^{\perp}$$

Нека относно това разлагане $v=v^{\parallel}+v^{\perp}$. Тъй като $v^{\parallel}\in l(u_1,\ldots,u_k),$ то $v^{\parallel}=\sum_{j=1}^k\lambda_ju_j$ за някои $\lambda_j\in\mathbb{R},\ j=1,\ldots,k.$ Имаме

$$\langle u_i, v \rangle = \langle u_i, v^{\parallel} \rangle + \underbrace{\langle u_i, v^{\perp} \rangle}_{=0} = \sum_{j=1}^k \lambda_j \langle u_i, u_j \rangle, \qquad i = 1, \dots, k,$$

$$\langle v, v \rangle = \langle v, v^{\parallel} \rangle + \langle v, v^{\perp} \rangle = \sum_{j=1}^k \lambda_j \langle v, u_j \rangle + \underbrace{\langle v^{\parallel}, v^{\perp} \rangle}_{=0} + \langle v^{\perp}, v^{\perp} \rangle = \sum_{j=1}^k \lambda_j \langle v, u_j \rangle + \left| v^{\perp} \right|^2.$$

Значи (k+1)-вият стълб на $G(u_1,\ldots,u_k,v)$ е

$$\sum_{j=1}^k \lambda_j (j\text{-ти стълб на } G(u_1,\ldots,u_k,v)) + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \left|v^{\perp}\right|^2 \end{pmatrix}.$$

Следователно, изваждайки $\sum_{j=1}^k \lambda_j(j$ -ти стълб на $G(u_1,\dots,u_k,v))$ от (k+1)-вия стълб на $G(u_1,\dots,u_k,v)$, получаваме

$$\det G(u_1, \dots, u_k, v) = \det \begin{pmatrix} \langle u_1, u_1 \rangle & \dots & \langle u_1, u_k \rangle & 0 \\ \vdots & & \vdots & \vdots \\ \langle u_k, u_1 \rangle & \dots & \langle u_k, u_k \rangle & 0 \\ \langle v, u_1 \rangle & \dots & \langle v, u_k \rangle & |v^{\perp}|^2 \end{pmatrix}$$

$$= \det \begin{pmatrix} \langle u_1, u_1 \rangle & \dots & \langle u_1, u_k \rangle \\ \vdots & & \vdots \\ \langle u_k, u_1 \rangle & \dots & \langle u_k, u_k \rangle \end{pmatrix} \cdot |v^{\perp}|^2 = \det G(u_1, \dots, u_k) \cdot |v^{\perp}|^2. \quad \Box$$