

VAE

赵洲 浙江大学计算机学院

VAE模型家族

AE

■ VAE

Auto-encoder

Embedding, Latent Representation, Latent Code

- More than minimizing reconstruction error
- More interpretable embedding

Auto-encoder (MINIST)

与PCA等降维方法联系

线性层的输出是目标物体的编码

深度Auto-encoder

与PCA等降维方法对比

编码可视化

PCA的非线性泛化

Linear vs nonlinear dimensionality reduction

去噪Auto-encoder

基于CNN的Auto-encoder

Deconvolution

Auto-encoder (特征解耦)

An object contains multiple aspect information

特征解耦

语音转换

语音转换

例子

Do you want to study a PhD?

Go away!

Student

Do you want to study a PhD?

Student

离散表示(VQ-VAE)

离散表示(VQ-VAE)

AE的问题

■ AE通过编码器z = g(X),将每个图片编码成向量z;它的解码器 f(z)利用编码向量z来重构原始图片。

■ 当AE作为合成模型,针对随机生成的编码向量z,f(z)只会生成一些没有意义的噪声。

■ 原因在与AE没有对z的分布p(z)进行建模,所以不确定哪些z能够生成有用的图片(训练f(z)数据有限,f只能对极有限的z响应,而编码向量是一个太大的空间)。

从AE到VAE

■ 在AE的基础上,显性对z的分布p(z)进行建模,使得自编码器成为一个合格的生成模型(VAE)。

例子解释

例子解释

VAE的编码和解码过程

优化目标

$$\mathcal{L}_{VAE} = -\lambda D(q_{\phi}(z) \| p(z)) + \mathbb{E}_{p_{data}(x)} \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x|z)
ight]$$

