Обучение с учителем

Санкт-Петербургский государственный университет Кафедра статистического моделирования

16 сентября 2025, Санкт-Петербург

Введение

Машинное обучение — это раздел искусственного интеллекта, в котором разрабатываются методы и алгоритмы, позволяющие компьютерам обнаруживать закономерности в данных и делать прогнозы без явных инструкций.

Обучение с учителем — один из способов машинного обучения, в ходе которого для каждого примера в обучающем наборе известно, какой результат является правильным.

Пример задач:

- Регрессия: предсказание стоимости недвижимости, количества продаж некоторого товара, погоды.
- Классификация: предсказание ценовой категории товара, типа изображения, болеет ли человек или нет.

Постановка задачи

Дано:

- ① Пространство объектов X множество описаний объектов (например, фотографии, тексты, таблицы с признаками).
- ② Пространство ответов Y множество меток или значений, которые нужно предсказывать (например, классы «кот»/«собака», цена товара).
- $oldsymbol{\circ}$ Обучающая выборка $D=\{(x_i,y_i)\}_{i=1}^n$, где $x_i\in X$, $y_i\in Y$.

Модель:

$$y = f(x) + \varepsilon,$$

где f(x) — некоторая фиксированная (но неизвестная) функция, ε — шум, $\mathsf{E}\varepsilon=0$ и ε не зависит от x.

Предположение: f(x) лежит в некотором классе функций (например, в классе линейных функций).

Задача: по обучающей выборке D построить оценку $\hat{f}(x)$ функции f(x) в выбранном классе функций.

Функция потерь и ее минимизация

Чтобы оценить, насколько хорошо модель предсказывает ответы, используется функция потерь $L(y,\hat{y})$. Она показывает, насколько велико расхождение между истинными значениями y и его предсказаниями \hat{y} .

Тогда задача машинного обучения — минимизация выбранной функции потерь:

$$L(y, \hat{y}) \longrightarrow \min$$
.

В большинстве случаев вычислить точку минимума функции потерь аналитически не представляется возможным, поэтому для его нахождения прибегают к методам детерменированной и стохастической оптимизации (например, перебор значений по сетке, метод Ньютона и квазиньютоновские методы, (стохастический) градиентный спуск, случайный поиск).

Градиентный спуск

Градиентный спуск является наиболее распространенным алгоритмом оптимизации в машинном обучении.

Пусть f — некоторая гладкая функция, у которой необходимо найти минимум. Обозначим $p_n = -\nabla f(x_n)$ — направление антиградиента в точке x_n . Тогда

$$x_{n+1} = x_n + \alpha p_n,$$

где α — гиперпараметр, отвечающий за скорость обучения.

Условия сходимости: выпуклость f, липшицевость ∇f , ...

Критерий остановки: достижение определенного числа итераций, малая норма градиента, малое изменение значения функции.

Модификации градиентного спуска

В машинном обучении:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

где f_i — функция потерь для i-го наблюдения.

(Batch) Gradient Descent (GD):

$$p_n = -\nabla f(x_n) = -\sum_{i=1}^n \nabla f_i(x_n).$$

- ② Mini-batch GD: случайным образом выбирается m наблюдений и делается шаг с $p_n = -\sum_{i=1}^m \nabla f_{j_i}(x_n)$.
- **3** Stochastic GD: mini-batch GD c m=1.
- Adam (Adaptive Moment Estimation): основан на GD, каждый параметр модели имеет собственную адаптивную скорость обучения, основанную на прошлых градиентах.

Процесс обучения

Процесс обучения любого алгоритма машинного обучения выглядит следующим образом:

- ① Выборка D предварительно разбивается на тренировочную и тестовую: $D=D_{\mathsf{train}}\sqcup D_{\mathsf{test}}$.
- ② На тренировочных данных модель обучается: минимизируется выбранная функция потерь $L(y,\hat{y})$.
- Также часто присутствует и валидационная выборка D_{val} , на основе которой подбираются гиперпараметры модели/производится остановка оптимизации функции потерь.

Проверка качества модели

После обучения проверяется качество/обобщающая способность модели — на тестовых данных вычисляются различные метрики. Выбираются они в зависимости от задачи.

Таблица: Метрики для задач регрессии и классификации

Регрессия	MSE, RMSE, MAE, MAPE, WAPE
Классификация	Accuracy, Precision, Recall, F1-score,
	ROC AUC, PR AUC

Также имеет смысл сравнить полученные результаты с baseline предсказаниями (например, среднее в задаче регрессии и наиболее распространенная метка в задаче классификации).

Линейная классификация

Пусть целевая переменная y принимает значения $\{-1,1\}$. Хотим обучить линейную модель так, чтобы плоскость, которую она задает, как можно лучше отделяла объекты одного класса от другого.

Линейный классификатор:

$$\hat{y} = \hat{f}(x; w) = \operatorname{sign}\langle x, w \rangle.$$

Функция потерь:

$$L(y, \hat{y}) = \sum_{i=1}^{n} \mathbb{I}[y_i \langle x_i, w \rangle < 0] \longrightarrow \min_{w}.$$

Линейная классификация. Отступ

Величина $M_i=y_i\langle x_i,w\rangle$ называется **отступом** (margin) классификатора. Абсолютная величина отступа говорит о степени уверенности классификатора.

Проблема: функция $\mathbb{I}[M<0]$ кусочно-постоянная, следовательно функцию потерь невозможно оптимизировать градиентными методами, поскольку во всех точках производная равна нулю.

Решение: можно мажорировать эту функцию более гладкой функцией и минимизировать функцию потерь с этой мажорирующей функцией с помощью методов численной оптимизации.

Линейная классификация. Функции потерь

- ① Перцептрон: $L(M) = \max(0, -M)$ отступы учитываются только для неправильно классифицированных объектах пропорционально величине отступа.
- ② Hinge (SVM): $L(M) = \max(0, 1-M)$ объекты, которые классифицированы правильно, но не очень «уверенно», продолжают вносить свой вклад в градиент.
- **③** Логистическая: $L(M) = \ln (1 + e^{-M})$.

Логистическая регрессия

Посмотрим на задачу классификации как на задачу предсказания вероятностей (например, предсказание «кликабельности» рекламного баннера).

Принцип работы: научить линейную модель предсказывать значения $z \in \mathbb{R}$ (логиты), а затем преобразовывать их в вероятности с помощью сигмоиды:

$$z_i = \langle x_i, w \rangle = \ln \frac{p_i}{1 - p_i}, \quad p_i = \frac{1}{1 + e^{-\langle x_i, w \rangle}} = \sigma(\langle x_i, w \rangle).$$

Функция правдоподобия для распределения Бернулли:

$$p(y \mid \mathbf{X}, w) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}.$$

Прологарифмируем:

$$\sum_{i=1}^{n} \left[y_i \ln(\sigma(\langle x_i, w \rangle)) + (1 - y_i) \ln(1 - \sigma(\langle x_i, w \rangle)) \right].$$

Логистическая регрессия. Связь с отступом

Теперь пусть $y\in\{-1,1\}$. Тогда, поскольку $\sigma(z)=1-\sigma(-z)$, логарифм правдоподобия можно представить в следующем виде:

$$\ln p(y \mid \mathbf{X}, w) = -\sum_{i=1}^{n} \left[\mathbb{I}[y_i = 1] \sigma(z_i) + \mathbb{I}[y_i = -1] (1 - \sigma(z_i)) \right]$$
$$= -\sum_{i=1}^{n} \ln \sigma(y_i \langle x_i, w \rangle)$$
$$= \sum_{i=1}^{n} \ln \left(1 + e^{-M}\right)$$

Таким образом, функцию потерь в логистической регрессии можно представить в виде функции от отступа.

Метод опорных векторов (SVM): Основная идея

Геометрическая интуиция

Цель: Найти не просто разделяющую гиперплоскость, а ту, которая максимизирует зазор (отступ) между классами.

- Гиперплоскость: $\mathbf{w}^T \mathbf{x} + b = 0$
- Отступ (Margin) расстояние до ближайших точек классов.
- Опорные векторы точки, лежащие на границах отступа. Именно они «определяют» положение гиперплоскости.

Метод опорных векторов (SVM): Основная идея Постановка задачи

Задача оптимизации (для линейно разделимых данных):

$$\left\{ egin{aligned} \min_{\mathbf{w},b} rac{1}{2} ||\mathbf{w}||^2 \ \end{aligned}
ight.$$
 при условии $y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1, \quad i=1,\ldots,n
ight.$

Минимизируем норму вектора весов \Rightarrow максимизируем зазор $\gamma = \frac{2}{||\mathbf{w}||}.$

Это задача квадратичной оптимизации, которая решается путём составления двойственной задачи.

SVM для линейно неразделимых данных Мягкий зазор (Soft Margin)

- В реальных данных идеальная линейная разделимость редкость.
- Вводятся ослабляющие переменные (slack variables) $\xi_i \geq 0$.
- Они позволяют точкам нарушать границу отступа.
- ξ_i штраф за неправильную классификацию или нахождение в полосе зазора.

Новая задача оптимизации (Soft Margin SVM):

$$\begin{cases} &\min_{\mathbf{w},b,\xi_i} \frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i \\ &\text{при условии:} \\ &y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1 - \xi_i, \quad i = 1,\dots,n \\ &\xi_i \geq 0, \quad i = 1,\dots,n \end{cases}$$

Параметр C управляет компромиссом:

- **Большой** C: Больший штраф за ошибки \Rightarrow уже разделение, риск переобучения.
- Малый C: Меньший штраф за ошибки \Rightarrow шире зазор, больше обобщающая способность.

Сравнение с логистической регрессией и Ядра

От меток к отступу; От линейности к нелинейности

SVM vs. Логистическая регрессия

- Логистическая регрессия: Строит вероятностную модель $P(y=1|\mathbf{x})$. Минимизирует логистическую функцию потерь по всем объектам. Все точки влияют на решение.
- **SVM**: Строит разделяющую гиперплоскость. Фокусируется на максимизации отступа; решение зависит только от опорных векторов. Более устойчив к выбросам.

Нелинейность: Kernel Trick

Что если данные нелинейно разделимы?

Идея: Отображаем данные в пространство большей размерности ($\phi(\mathbf{x}): \mathbb{R}^p \to \mathbb{R}^m$), где они становятся линейно разделимыми.

Ядро (Kernel): $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$. Позволяет работать в высокомерном пространстве без явного вычисления $\phi(\mathbf{x})$.

Линейные и нелинейные ядра

Практическое применение

Линейное ядро

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

- Исходное признаковое пространство.
- Быстрое обучение.
- Хорошо для многих текстовых задач.

Нелинейные ядра

- RBF (Gaussian): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2)$
- Полиномиальное: $K(\mathbf{x}_i, \mathbf{x}_i) = (\gamma \cdot \mathbf{x}_i^T \mathbf{x}_i + r)^d$

Гибкие сложные границы решений. Требуют подбора параметров (γ, d) .

