Universidade Federal do Rio Grande do Norte
Unidade Acadêmica Especializada em Ciências Agrárias
Escola Agrícola de Jundiaí
Curso de Análise e Desenvolvimento de Sistemas
TAD0006 - Sistemas Operacionais - Turma 01

Introdução

Antonino Feitosa antonino.feitosa@ufrn.br

Macaíba, março de 2025

Sumário

- 1. Sistema Operacional
- 2. Revisão de Hardware

Sistema Computacional

- Componentes de um Computador
 - Processadores
 - Memórias
 - Periféricos
 - Mouse
 - Teclado
 - Monitor
 - Software

Sistema Computacional

- Sistema Computacional: computador completo para realização de um processamento.
 - Rede de Computadores
 - Cluster de Computadores

Sistema Computacional

 Como os programadores de aplicativos conseguem compreender todas esses componentes em detalhes para desenvolverem as aplicações?

 Como gerenciar esses componentes de forma otimizada, ou seja, fazendo o melhor uso deles?

 Sistema Operacional (SO): dispositivo de software cuja função é fornecer aos programas do usuário um modelo do computador melhor, mais simples e mais limpo, assim como lidar com o gerenciamento de todos os recursos mencionados.

- Em geral, programas que os usuários interagem não fazem parte do sistema operacional.
 - Shell
 - GUI (Graphical User Interface)

- Computadores apresentam dois modos de execução:
 - Modo Núcleo (ou supervisor): o software tem acesso completo a todo o hardware e pode executar qualquer instrução que a máquina for capaz de executar.
 - Modo Usuário: apenas um subconjunto das instruções da máquina está disponível.
 - Instruções que afetam o controle da máquina ou realizam E/S (Entrada/Saída) são proibidas.

Sistema Operacional: Características

- São softwares enormes, complexos e de vida longa.
 - Difíceis de desenvolver.
- Exemplos:
 - Windows
 - Linux

SO como Máquina Estendida

- Abstrações para o uso de hardware. Exemplo: arquivos.
- A função dos sistemas operacionais é criar boas abstrações e então implementar e gerenciar os objetos abstratos criados desse modo.
 - Visa esconder o hardware, apresentando programas com abstrações de qualidade, limpas, elegantes e consistentes com as quais trabalhar.
 - Clientes: programas aplicativos.

SO como Máquina Estendida

FIGURA 1.2 Sistemas operacionais transformam hardwares feios em belas abstrações.

SO como Gerenciador de Recursos

 Visa manter um controle sobre quais programas estão usando qual recurso, conceder recursos requisitados, contabilizar o seu uso, assim como mediar requisições conflitantes de diferentes programas e usuários.

SO como Gerenciador de Recursos

- O gerenciamento de recursos inclui a multiplexação (compartilhamento).
 - No tempo: diferentes programas ou usuários se revezam usando-o.
 - Determinar como o recurso é multiplexado no tempo quem vai em seguida e por quanto tempo — é a tarefa do sistema operacional.
 - No espaço: cada programa tem direito a uma parte do recurso.
 - Alocar espaço de disco e controlar quem está usando quais blocos do disco é uma tarefa típica do sistema operacional.

- SO está diretamente relacionado com a criação de abstrações para hardware e com a gerência de recursos de hardware.
 - Que hardware é esse?

 Hardware é a parte física de um sistema de computação, composta pelos componentes eletrônicos e dispositivos periféricos que possibilitam o funcionamento do computador.

(Tanenbaum - Estruturas de Computadores e Redes - 5ed)

Modelo abstrato simples de um computador pessoal.

FIGURA 1.6 Alguns dos componentes de um computador pessoal simples.

Processadores

Processadores

- CPU: unidade central de processamento.
- Busca instruções da memória e as executa.
- O ciclo básico:
 - Buscar a primeira instrução da memória;
 - Decodificá-la para determinar o seu tipo e operandos;
 - Executá-la.
- O ciclo é repetido até o programa terminar.

Processadores

- Cada CPU tem um conjunto específico de instruções que ela consegue executar.
- Todas as CPUs têm alguns registradores internos para armazenamento de variáveis e resultados temporários.
 - O tempo para acessar a memória para buscar uma instrução é muito maior do que o tempo para executar uma instrução.
 - Movimentações entre memória e registrador.

Processadores: Registradores Especiais

- Contador de Programa: contém o endereço de memória da próxima instrução a ser buscada.
 - Após essa instrução ter sido buscada, o contador de programa é atualizado para apontar a próxima instrução.
- Ponteiro de Pilha: que aponta para o topo da pilha atual na memória.
 - A pilha contém uma estrutura para cada rotina que foi chamada, mas ainda não encerrada.
- PSW (Program Status Word): contém os bits do código de condições, que são estabelecidos por instruções de comparação, a prioridade da CPU, o modo de execução (usuário ou núcleo) e vários outros bits de controle.

Processadores e SO

- O SO deve monitorar todos os registradores.
- Exemplo: multiplexação de tempo da CPU.
 - O sistema operacional tem de salvar todos os registradores de maneira que eles possam ser restaurados quando o programa for executado mais tarde.
- CPU superescalar: presença de unidade múltiplas de execução.
 - Execução fora de ordem!

Processadores: Multithread e Multinúcleo

FIGURA 1.8 (a) Chip quad-core com uma cache L2 compartilhada.

(b) Um chip quad-core com caches L2 separadas.

- Memória: armazenamento de dados e instruções.
- Deve ser rápida (mais rápida que a CPU), abundante e barata.
 - Hierarquia: velocidade x armazenamento (custo)

- Registradores: internos à CPU
- Cache: controlada por hardware.
 - Mantém parte dos dados acessados mais frequentemente.
 - Se o dado n\u00e3o estiver na cache, ele ser\u00e1 transferido
 - Quando que um item deve ser substituído?
 - Pode ser organizada em vários níveis.
- Memória Principal (Random Access Memory)
 - Volátil!

- ROM (Read Only Memory): programada na fábrica e não pode ser modificada depois.
 - Ela é rápida e barata.
 - Em alguns computadores, contém o carregador (bootstrap loader) usado para inicializar o computador.
 - Alguns controles de dispositivos de baixo nível utilizam ROM.
- EEPROM (Electrically Erasable PROM)
- Memória Flash

- Disco Rígido
 - Armazenamento abundante.
 - Dispositivo mecânico.
- SSD (Solid State Disks).
 - Memória flash.

Memória Virtual

- Permite a execução de programas maiores que a memória física colocando-os no disco e usando a memória principal como um tipo de cache para as partes mais intensivamente executadas.
- MMU (Memory Management Unit)
 - Mapeamento de endereços (físico x RAM)
- Cache e MMU aumentam o desempenho.
 - Chaveamento de contexto: mudança entre programas.

- Dispositivos de Entrada: Teclado, Mouse, Scanner, Microfone,
 Câmera digital, etc.
- Dispositivos de Saída: Monitor, Impressora, Alto-falantes,
 Projetor, etc.
- Dispositivos de Entrada/Saída: Dispositivos de armazenamento de dados do computador, Telas sensíveis ao toque, etc.

- São compostos por duas partes:
 - Controlador: é um chip ou um conjunto de chips que controla fisicamente o dispositivo.
 - Recebe comando do SO
 - Dispositivo: dispositivo em si.

- Drive de Dispositivo: software que envia comandos e recebe respostas do controlador.
 - Cada fabricante de controladores tem de fornecer um driver para cada sistema operacional a que dá suporte.

- Drives devem ser executados em modo núcleo
 - Isso é flexibilizado em SOs modernos
- Três modos:
 - Religar o núcleo com o novo driver a reiniciar o sistema.
 - Adicionar uma entrada em um arquivo de configuração e então reiniciar o sistema.
 - Carregamento dinâmico: aceitar novos drivers enquanto estiver sendo executado e instalá-los rapidamente sem a necessidade da reinicialização.
 - Hot-pluggable (USB)

Dispositivos e E/S: Espera Ocupada

Espera Ocupada

- Programa do usuário emite uma chamada de sistema.
- SO traduz em uma chamada de rotina para um driver.
- O driver então inicia a E/S e aguarda usando um laço curto, inquirindo continuamente o dispositivo para ver se ele terminou a operação.
- O driver coloca os dados (se algum) onde eles são necessários e retorna.
- Simples, porém mantém a CPU ocupada.

Dispositivos e E/S: Interrupção

Interrupção

- O driver inicia o dispositivo e pede a ele que o interrompa quando tiver terminado.
- O sistema operacional bloqueia então o programa que o chamou, se necessário, e procura por mais trabalho para fazer.
- Quando o controlador detecta o fim da transferência, ele gera uma interrupção para sinalizar o término.
- Pode gerar overhead: o processador é frequentemente interrompido.

Dispositivos e E/S: Interrupção

- DMA (Direct Memory Access): hardware dedicado.
 - A CPU configura o chip DMA, dizendo a ele quantos bytes transferir, o dispositivo e endereços de memória envolvidos, e a direção, e então o deixa executar.
 - Quando o chip de DMA tiver finalizado a sua tarefa, ele causa uma interrupção, que é tratada como já descrito.
- Pode ser mais lento que os modos anteriores.

Barramentos

Barramentos

 Barramento: linhas de comunicação entre os componentes do computador, como CPU, memória e periféricos.

Inicializando o Computador

Inicializando o Computador

- Placa principal armazena um programa chamado de BIOS
 - BIOS (Basic Input Output System): rotinas básicas de E/S
 - Memória não volátil
- BIOS é executado ao ligar o computador.
 - Verifica memória e identificar dispositivos conectados.
 - Determina o dispositivo de inicialização: CD-ROM, flash, HD, SSD.
 - Carrega o sistema operacional.
 - SO consulta a BIOS para verificar os drivers necessários.
 - Solicita a instalação dos novos drivers e os carrega no núcleo.

Resumo

Resumo

- SO como Máquina Estendida
- SO como Gerenciador de Recursos
- Principais Componentes de Hardware
 - Processador, Memória e Periféricos
- Inicialização do Computador

Dúvidas?