디지털신호처리

이산 시간 신호 및 시스템

학습내용

- ❖ 이산 시간 신호
- ❖ 이산 시간 시스템

학습목표

- ❖ 이산 신호의 정의와 표현에 대해 이해하고 간단한 이산 신호 변환을 할 수 있다.
- ❖ 이산 시간 시스템에 대하여 이해하고 설명할 수 있다.

1. 이산 시간 신호의 정의 및 표현

1) 정의

- 연속 신호: 모든 연속적인 시간 t에 대하여 정의
- 이산 신호: 특정한 시각에서만 값을 갖는 신호
- 연속 신호 x(t)를 T_s 의 일정한 간격으로 샘플링하면 이산 신호 $x[n] = x(nT_s)$

- 1. 이산 시간 신호의 정의 및 표현
 - 2) 표현

함수

$$\mathbf{x}[\mathbf{n}] = egin{cases} \mathbf{1}, & & \mathbf{n} = \mathbf{1}, \mathbf{3} \ \mathbf{4}, & & \mathbf{n} = \mathbf{2} \ \mathbf{0}, & & extcolor{local}
ightarrow
ho$$
이외에

丑

n	 -2	-1	0	1	2	3	4	5	
x[n]	 0	0	0	1	4	1	0	0	

수열

심볼↑에 의해 표현되는 원점(n=0)을 갖는 무한 구간 신호 또는 수열 표현

$$x[n] = \{...0, 0, 1, 4, 1, 0, 0, ...\}$$

- 2. 기본적인 이산 시간 신호
 - 1) 단위 임펄스 신호(Unit Impulse Signal)

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

■ 임의의 이산 시간 신호 x[n]을 임펄스 신호로 표현

$$x[n] = \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$
$$= \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

2. 기본적인 이산 시간 신호

예제 23-01

단위 임펄스 신호를 이용하여 다음 그림과 같은 이산 신호 x[n]을 표현해 보자.

$$x[n] = \delta[n+3] + 3\delta[n+1] + 4\delta[n] + 3\delta[n-1] + \delta[n-2] - 2\delta[n-3] + \delta[n-4]$$

🌣 이산 시간 신호

- 2. 기본적인 이산 시간 신호
 - 2) 이산 단위 계단 신호(Unit Step Signal)

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

3) 지수 신호

$$x[n] = a^n$$
, 모든 n 에 대하여

이산 시간 신호

- 3. 이산 시간 신호의 간단한 변환
 - 1) 독립 변수(시간)의 변환
 - 수열 x[n]의 독립 변수 n을 n-k(k는 정수)로 변형함으로써 신호 x[n]은 시간축 상에서 이동
 - x[n]과 x[n−k]의 관계
 - ⇒ k = 양의 정수, 시간 이동은 k 만큼 오른쪽으로 신호의 지연(Delay)을 의미
 - ⇒ k = 음의 정수, 시간 이동은 k 만큼 왼쪽으로 진전된 시간 이동을 의미

3. 이산 시간 신호의 간단한 변환

3. 이산 시간 신호의 간단한 변환

- 2) 시간 스케일링 변환
 - 다운 샘플링(Down Sampling)과 업 샘플링(Up Sampling)
 - $y[n] = x[\mu n]$ 으로 변환되는 y[n] 신호는 이산 신호 x[n]를 시간축으로 다운 샘플링 또는 업 샘플링하는 변환 ※ 참고: μ는 정수

3) [예] 다운 샘플링 된 영상 신호

원본 영상 신호 (640x480)

※ 이미지 출처: www.iclickart.com

2배 다운 샘플된 영상 신호 (320x240)

4배 다운 샘플된 영상 신호 (160x120)

4) [예] 업 샘플링 된 영상 신호

원본 영상 신호 (160x120)

2배 업 샘플된 영상 신호

4배 업 샘플된 영상 신호 (640x480)

※ 이미지 출처: www.iclickart.com

3. 이산 시간 신호의 간단한 변환

[예제풀이]

• 신호 y[n]은 x[0]에서 시작되는 x[n]으로 부터 서로 다른 샘플들을 취함으로써 얻어지는 신호로,

n	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
x[n]	-3	-2	-1	0 .	1	2	3	4:	4	, 4	4	4	4	4	0
y[n] = x[2n]	0	0	0	0	≥ -2	> 0	2	4⁄	4	4.4	4	0	0	0	0

- 신호 x[n]이 아날로그 신호 x_a (t)에 대한 샘플링을 통해 얻어진다면 $x[n]=x_a$ (nT)가 성립, T는 샘플링 간격, $y[n]=x[2n]=x_a$ (2Tn)
- 스케일링 연산은 1/T에서 1/2T로 샘플링율을 변화시키는 것과 동일 즉, 샘플링율은 두 배 감소 ⇒ 다운샘플링 연산

🧰 이산 시간 신호

3. 이산 시간 신호의 간단한 변환

예제 23-04

이산 신호의 업 샘플링은 원 신호 샘플 사이에 새로운 샘플을 생성하는 문제가 발생한다. 다음과 같은 이산 신호 x[n]에 대하여 업 샘플링한 y[n]=x[n/2] 신호를 계산해 보자.

[예제풀이]

• 다음과 같은 이산신호 x[n]에 대하여 업 샘플링한 y[n]=x[n/2] 신호를 계산해 보면

n (yº/ n)	0	1	2	3	4	5	6	7
y[n]	x[0] = 0	x[0.5] = ?	x[1] = 1	x[1.5] = ?	x[2] = 2	x[2.5] = ?	x[3]=3	x[3.5]=?
n (yº n)	8	9	10	11	12	13	14	
y[n]	x[4]=2	x[4.5]=?	x[5]=1	x[5.5]=?	x[6]=0	x[6.5]=?	x[7]=0	

- 이산신호의 업 샘플링의 경우 실제 샘플 된 값보다 더 많은 양의 신호를 필요함에 따라 정의되지 않은 x[0.5], x[1.5], x[2.5], x[3.5], x[4.5] =???의 값을 어떻게 생성하느냐가 중요
- 실제 이산신호 x[n]의 값에서는 정의되지 않은 신호임

 ⇒ 이들의 값을 정할 수 있는 방법은? 보간법
- 대표적으로 영차 보간법과 일차(선형) 보간법이 있음

3. 이산 시간 신호의 간단한 변환

[예제풀이]

• 영차 보간법에 의한 업 샘플링

정의되지 않은 값에 0을 삽입하여 신호를 업 샘플링

n (y≏ n)	0	1	2	3	4	5	6	7
y[n]	x[0] = 0	x[0.5] = 0	x[1] = 1	x[1.5] = 0	x[2] = 2	x[2.5] = 0	x[3]=3	x[3.5]=0
n (y≏ n)	8	9	10	11	12	13	14	
y[n]	x[4]=2	x[4.5]=0	x[5]=1	x[5.5]=0	x[6]=0	x[6.5]=0	x[7]=0	

• 일차(선형) 보간법에 의한 업 샘플링

정의되지 않은 값에 선형 보간함으로써 업 샘플링

n (yº n)	0	1	2	3	4	5	6	7
y[n]	x[0] = 0	x[0.5] = 0.5	x[1] = 1	x[1.5] = 1.5	x[2] = 2	x[2.5] = 2.5	x[3]=3	x[3.5]=2.5
n (yº/ n)	8	9	10	11	12	13	14	
y[n]	x[4]=2	x[4.5]=1.5	x[5]=1	x[5.5]=0.5	x[6]=0	x[6.5]=0	x[7]=0	

🍑 이산 시간 시스템

- 1. 이산 시간 시스템의 정의
 - 1) 이산 시간 시스템(Discrete System)
 - 다양한 디지털 신호처리 응용에서 <mark>이산 시간 신호를 입력 신호로</mark> 받아 다양한 연산을 수행하도록 하는 어떤 장치나 알고리즘

2. 이산 시간 시스템의 입출력 표현

- 1) 표현 방법
 - 입출력 신호 사이의 관계를 명확히 정의하는 수학적 표현 또는 규칙으로 구성

차분 방정식

$$y[n] \equiv S\{x[n]\}$$

$$y[n] + a_1y[n-1] + \dots + a_py[n-p] = b_0x[n] + \dots + b_qx[n-q]$$

🊺 이산 시간 시스템

2. 이산 시간 시스템의 입출력 표현

예제 23-05

다음과 같은 이산 시스템의 입력 신호 x[n]과 출력 신호 y[n]이 다음과 같이 수학적으로 표현된다. 출력 신호, y[n]을 구하고, 그래프로 나타내보자.

$$x[n]$$
 이산 시스템 $y[n]$ $y[n]$ $y[n]$ $y[n]$ $y[n]$ $y[n] = \begin{cases} |n|, & -2 \le n \le 2 \\ 0, & elsewhere \end{cases}$ $y[n] = \frac{1}{2}(x[n-1] + x[n])$

$$x[n] = \{\cdots 0, 2, 1, 0, 1, 2, 0, \cdots\}$$

$$y[-3] = \frac{1}{2}(x[-4] + x[-3]) = \frac{1}{2}(0+0) = 0$$

$$y[-2] = \frac{1}{2}(x[-3] + x[-2]) = \frac{1}{2}(0+2) = 1$$

$$y[-1] = \frac{1}{2}(x[-2] + x[-1]) = \frac{1}{2}(2+1) = 3/2$$

$$y[0] = \frac{1}{2}(x[-1] + x[0]) = \frac{1}{2}(1+0) = 1/2$$

$$y[1] = \frac{1}{2}(x[0] + x[1]) = \frac{1}{2}(0+1) = 1/2$$

$$y[2] = \frac{1}{2}(x[1] + x[2]) = \frac{1}{2}(1+2) = 3/2$$

$$y[3] = \frac{1}{2}(x[2] + x[3]) = \frac{1}{2}(2+0) = 1$$

$$y[4] = \frac{1}{2}(x[3] + x[4]) = \frac{1}{2}(0+0) = 0$$

🌣 이산 시간 시스템

2. 이산 시간 시스템의 입출력 표현

[예제풀이] (계속)

🍑 이산 시간 시스템

3. 이산 시간 시스템의 블록도 표현

- 1) 이산 신호 상수 곱셈기
 - 기본적인 이산 신호 블록을 이용하여 이산 시간 시스템을 블록선도로 표현 가능
 - 이산 신호 상수 곱셈기(Constant Multiplier) 이산 신호의 크기를 상수배하는 동작을 수행

$$x[n]$$
 \xrightarrow{a} $y[n] = ax[n]$

2) 이산 신호 덧셈기

■ 두 이산 신호를 더하는 동작을 수행

3) 이산 신호 곱셈기

■ 신호를 곱해서 다른 신호로 만드는 동작

🍑 이산 시간 시스템

3. 이산 시간 시스템의 블록도 표현

- 4) 단위 시간 지연기
 - 통과하는 신호를 단순히 한 개의 샘플만큼 지연시키는 동작

5) 단위 시간 선행기

■ 단위 시간 지연기와는 반대로 입력 신호를 한 샘플씩 먼저 출력

🌣 이산 시간 시스템

3. 이산 시간 시스템의 블록도 표현

예제 23-06

이산 시간 시스템의 연산에 대한 구성 요소들을 가지고, 다음 입출력 관계를 가지는 이산 시간 시스템의 블록도를 그려보자.

$$y[n] = \frac{1}{2}y[n-1] + \frac{1}{3}x[n] + x[n-1]$$

핵심정리

이산 시간 신호

- 이산 신호: 연속 신호가 모든 연속적인 시간 t에 대하여 정의되는 반면
 특정한 시각에서만 값을 갖는 신호
- 함수, 표, 수열 및 그래프 등으로 다양하게 표현할 수 있다.
- 단위 임펄스 신호, 단위 스텝신호, 지수신호 등이 있다.
- $y[n]=x[\mu n]$ 으로 변환되는 y[n] 신호는 이산 신호 x[n]를 시간 축으로 다운 샘플링 또는 업 샘플링하는 변환임
- 이산시간 신호의 업 샘플링의 경우 보간법(Interpolation)이 필요하고,
 영차보간법과 일차 보간법을 이용하여 업 샘플링함

이산 시간 시스템

■ 이산 시스템: 이산 신호를 가지고 정해진 연산을 수행하도록 하는 어떤 장치나 알고리즘

■ 블록선도 표현과 차분 방정식으로 입출력을 표현 가능함