

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS ESTADÍSTICA MATEMÁTICA DEBER 01

Fecha entrega: 2015/05/12

EJERCICIOS

1. Sean X_1, X_2, \ldots, X_n variables aleatorias *i.i.d.* de distribución $Gamma(\alpha, \lambda)$ con α, λ desconocidos. Pruebe que la función de distribución conjunta de $X = (X_1, \ldots, X_n)$ pertenece a una familia exponencial. Considere que si $X_i \rightsquigarrow Gamma(\alpha, \lambda)$, su función de densidad viene dada por:

$$f(x_i, \alpha, \lambda) = \frac{\lambda^{\alpha} x_i^{\alpha - 1} exp(-\lambda x_i)}{\Gamma(\alpha)}$$

- 2. Demuestre que la familia de distribuciones $Binomial(n, \theta)$ con θ desconocido es una familia exponencial. Encuentre la esperanza y la varianza del estadístico T(X) respectivo.
- **3.** Suponga que X_1, \ldots, X_n son variables aleatorias *i.i.d.* con función de densidad:

$$f(x; \theta_1, \theta_2) = \begin{cases} a(\theta_1, \theta_2)h(x), & \text{si } \theta_1 \le x \le \theta_2, \\ 0, & \text{caso contrario.} \end{cases}$$

donde h(x) es una función conocida definida en los reales.

a. Demuestre que:

$$a(\theta_1, \theta_2) = \left(\int_{\theta_1}^{\theta_2} h(x) dx\right)^{-1}$$

- **b.** Demuestre que $(X_{(1)}, X_{(n)})$ es suficiente para (θ_1, θ_2) .
- **4.** Suponga que X_1, \ldots, X_n son variables aleatorias *i.i.d.* uniformes en el intervalo $[0, \theta]$ con $\theta > 0$. Sean $X_{(1)} = min(X_1, \ldots, X_n)$ y $X_{(n)} = max(X_1, \ldots, X_n)$.
 - **a.** $\xi X_{(1)}$ es ancilar para θ ?
 - **b.** $\lambda X_{(n)}$ es ancilar para θ ?

Un estadístico T se dice ancilar para θ si su distribución (función de densidad) no depende de θ .

5. Suponga que X_1, \ldots, X_n son variables aleatorias i.i.d. con función de densidad:

$$f(x; \mu, \theta) = \begin{cases} \frac{1}{2\theta}, & \text{si } \mu - \theta \le x \le \mu + \theta, \\ 0, & \text{caso contrario.} \end{cases}$$

Sean $X_{(1)} = min(X_1, \dots, X_n)$ y $X_{(n)} = max(X_1, \dots, X_n)$.

- a. Definiendo $T = X_{(n)} X_{(1)}$. ¿T es ancilar para θ ?
- **b.** ξ T es ancilar para μ ?
- **6.** Suponga que X_1, \ldots, X_n son variables aleatorias *i.i.d.* con función de densidad:

$$f(x;\theta) = \theta(1+x)^{-(\theta+1)}$$
 $para x \ge 0$

donde $\theta > 0$ es un parámetro desconocido.

a. Demuestre que T definido como sigue, es suficiente para θ .

$$T = \sum_{i=1}^{n} \ln(1 + X_i)$$

- **b.** Encuentre E(T), Var(T).
- 7. Suponga que X_1, \ldots, X_n son variables aleatorias *i.i.d.* con función de densidad:

$$f(x; \mu) = exp[-(x - \mu)]$$
 $para x \ge \mu$

- a. Demuestre que $Z_{(1)}=min(X_1,\ldots,X_n)$ es un estadístico suficiente para μ .
- **b.** Demuestre que $Z_{(1)}$ converge en probabilidad a μ cuando $n \to \infty$