Национальный Исследовательский Университет ИТМО Факультет программной инженерии и компьютерной техники

Реферативный обзор №1 по дисциплине «Системы ввода/вывода»

Выполнил:Ларочкин Г.И

Группа: Р3400

Преподаватель: Быковский С.В.

Санкт-Петербург 2021 г.

Оглавление

USB Type-C	3
Сигнальные линии	4
Стандартные и индустриальные разъемы	4
USB 2.0	5
Сигнальные интерфейс	6
Стандартные и индустриальные разъемы	6
HDMI	
Сигнальный интерфейс	8
Стандартные и индустриальные разъемы	9
SATA	
Сигнальные интерфейсы	10
Стандартные и индустриальные разъемы	
Список литературы	

USB Type-C

Характеристика	Значение
Скорость передачи данных	~10 Гбит /с
Уровни сетевой модели, которые	Физический, Канальный
реализованы в интерфейсе	
(физический, канальный и др.)	
Среда передачи данных (оптика,	Проводной
медный провод, воздух и т.п)	
Максимальная дальность	Порядок нескольких метров (1-2),
расположения устройств	однако есть даже 10м провода
Возможные топологии	Master-slave тип звезда
соединения устройств	
Механизмы обеспечения	USB 3.1 Gen1: 8b/10b
надежной передачи данных	USB 3.1 Gen2: 128b/130b
(использование контрольных	
сумм, пакетов подтверждения и	CRC16
др.)	
	USB Type-C Authentication
	Specification
Синхронный или асинхронный	асинхронный
интерфейс	
Симплексный / дуплексный /	Fullduplex (RX/TX)
полудуплексный	
Роли устройств (ведущий,	Master-slave, P2P
ведомы и др.)	
Особенности	Может выступать как передача
	данных, питание, передача аудио,
	передача видео.
	T. Man T. C.
	Также есть USB Type-C
	Authentication Specification для
	предотвращение не совместимых
	USB и вредоносного ПО
	Также он симметричный с обоих
	сторон и исправляет проблемы
	прошлых версий USB
	прошини верени сов

Также может быть альтернативный
режим для поддержки
проприетарных интерфейсов:
Thunderbolt
 DisplayPort
• HDMI

Virtual link

Сигнальные линии

В режиме USB 2.0 использует только два пина D+D- для передачи данных (минимальное количество).

GND	TX1+	TX1-	V _{BUS}	CC1	D+	D-	SBU1	V _{BUS}	RX2-	RX2+	GND
GND	RX1+	RX1-	V _{BUS}	SBU2	D-	D+	CC2	V _{BUS}	TX2-	TX2+	GND

В режиме 3.0/3.1/3.2 используется 2 или 4 высокоскоростных пары TX/RX для передачи данных.

GND	TX1+	TX1-	V _{BUS}	CC1	D+	D-	SBU1	V _{BUS}	RX2-	RX2+	GND
GND	RX1+	RX1-	V _{BUS}	SBU2	D-	D+	CC2	V _{BUS}	TX2-	TX2+	GND

Стандартные и индустриальные разъемы

Стандартные разъемы мы уже все видели. Держат хорошо, втыкаются двумя сторонами. Индустриальные же в основном оснащены специальными средствами для фиксации.

USB 2.0

Характеристика	Значение
Скорость передачи данных	480 Mbit/s
Уровни сетевой модели, которые	Физический, канальный
реализованы в интерфейсе	
Среда передачи данных	Провод
Максимальная дальность	~5м
расположения устройств	
Возможные топологии	Звезда, Р2Р
соединения устройств	
Механизмы обеспечения	NRZI, CRC, дополнительные
надежной передачи данных	протоколы (TODO)
Синхронный или асинхронный	Асинхронный
интерфейс	
Симплексный / дуплексный /	Half duplex
полудуплексный	
Роли устройств	Master-slave
Особенности	USB 2.0 получил широкое
	применение. Он может
	использоваться как передатчик
	данных, так аудио/видео
	передатчик.
	Также может запитать устройства
	до 0.5В.

Сигнальные интерфейс

USB 2.0 содержит два пина для питания и два пина для передачи данных.

Стандартные и индустриальные разъемы

Стандартные разъемы мы уже все видели. Индустриальные разъемы оснащены специальными фиксирующими соединение креплениями, также специальные корпуса для защиты от влаги и пыли и толстые провода.

HDMI

Характеристика	Значение
Скорость передачи данных	~48 Gbit/s для HDMI 2.1, 18Gbit/s для HDMI 2.0
Уровни сетевой модели,	Физический, канальный
которые реализованы в	
интерфейсе	
Среда передачи данных	Провод
Максимальная дальность	~25м
расположения устройств	
Возможные топологии	Звезда, Р2Р
соединения устройств	
Механизмы обеспечения	Используются фильтрующие
надежной передачи данных	дросселя для защиты устройств от
	высоковольтных помех для длинных абелей
Синхронный или асинхронный интерфейс	Синхронный/Асинхронный
Симплексный / дуплексный /	Full duplex
полудуплексный	
Роли устройств	Master-slave
Особенности	В основном используется для
	передачи видео. Может также
	использоваться для передачи звука

Сигнальный интерфейс

Интерфейс HDMI содержит довольно большое количество пинов. Однако для передачи данных достаточно первых 12 пинов. Остальные опциональные. Несколько каналов передачи данных TMDS Data, а также каналы передачи клоков TMDS Clock.

Стандартные и индустриальные разъемы

Стандартные разъемы хорошо подходят для повседневного использования. Индустриальные же содержат специальные корпуса для защиты от влаги, пыли, а также фиксации при подключении.

SATA

Характеристика	Значение
Скорость передачи данных	~6 Gbit/s
Уровни сетевой модели,	Физический, канальный,
которые реализованы в	транспортный
интерфейсе	
Среда передачи данных	Провод
Максимальная дальность	1.5м
расположения устройств	
Возможные топологии	P2P
соединения устройств	
Механизмы обеспечения	8b/10b
надежной передачи данных	Проверка чётности
Синхронный или асинхронный	Асинхронный
интерфейс	
Симплексный / дуплексный /	Full duplex
полудуплексный	
Роли устройств	Master-slave
Особенности	Используется для подключения к
	шине устройств хранения массивных
	данных.
	Кабеля очень хрупкие и могут легко
	умереть.

Сигнальные интерфейсы

SATA Pinout - Plug

SATA содержит две витые пары A+ A-, B+ B-, и 3 земли. Минимальное кол-во – 4 пина для передачи данных.

Стандартные и индустриальные разъемы

Стандартные разъемы довольно хлипкие. Особенно при изгибе провода. Поэтому индустриальные также имеют заранее изготовленный изгиб для предотвращения разрыва контактов.

Список литературы

- Dell Inc, Intel Inc, Hewlett Packard Inc. (б.д.). Serial ATA Internetional Organisation: Serial ATA Revision 3.0.
- en.wikipedia.org. (б.д.). Получено из USB Communications: https://en.wikipedia.org/wiki/USB_(Communications)
- Sony Corporation, Silicon Image, Inc., Philips Consumer Electronics, International B.V. (б.д.). High-Definition Multimedia Interface Specification Version 1.3a.
- USB. (б.д.). Получено из ru.wikipedia.org: https://ru.wikipedia.org/wiki/USB USB Type-C gets authentication to protect against malicious devices / ZDNet. (б.д.). Получено из www.zdnet.com: https://www.zdnet.com/article/usb-type-c-gets-authentication-to-protect-against-malicious-devices/
- *USB-C*. (б.д.). Получено из en.wikipedia.org: https://en.wikipedia.org/wiki/USB-C
- What's the difference between USB 3.1 Gen 1, Gen 2 and USB 3.2? (б.д.). Получено из www.kingston.com: https://www.kingston.com/en/usb-flash-drives/usb-30
- Революция интерфейсов. USB 3.1 Туре-С в деталях. Взгляд электронщика. (б.д.). Получено из habr.com: https://habr.com/ru/post/258251/