Model Validation and Selection

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Reading.

Ch. 6 of https://mlbook.cs.aalto.fi

https://scikit-learn.org/stable/model_selection.html

Model Validation

How do we know a ML method is any good?

Model Selection

How to choose between different alternative methods?

Learning Goals

- know train err is bad quality measure for ML method
- val.err. is more useful as quality measure for a ML model
- basic idea of k-fold CV
- hyper-parameter tuning = model selection
- Python implementations of k-fold CV / gridsearch

"Model"

Hypothesis Space

What are three main components of machine learning?

1. Data

Data

- set of "data points" (atomic unit of information)
- data point has features and labels
- features are properties that can measured easily
- labels = higher-level facts or quantities of interest

Data Point = "Some Ski Day"

feature x : morning temperature

label y: maximum daytime temperature

Data = Bunch of Data Points

7/21/22

Sample Size

"sample size" m

_

number of (labeled) data points

Sample Size m = 4

2. Hypothesis Space

How Many Hypotheses Are There?

predicted max temp.

$$\hat{y} = -2.3$$

Model 1:

Linear Predictors (Degree 1 Polyn.)

Model 2:

Nested Models – I

Model 1: linear predictors

Model 2: degree 3 polyn.

Nested Models - II

ANN, 1 hidden layer

ANN, 2 hidden layers

Nested Models - III

effective hyp. space @ 1 GD step

2 GD steps

3 GD steps

Math Notation

$$\mathcal{H}^{(n)} = \left\{ h(x) = \sum_{l=0}^{n-1} w_l x^l \text{ with some } w_l \right\}$$

 $\mathcal{H}^{(2)}$... linear hypotheses

 $\mathcal{H}^{(4)}$... degree 3 polyn.

$$\mathcal{H}^{(1)} \subseteq \mathcal{H}^{(2)} \subseteq \mathcal{H}^{(3)} \subseteq \mathcal{H}^{(4)} \subseteq \dots$$

3. Loss Function

Learn Linear Predictor

Learn Degree 3 Polyn.

Training Errors

model 2: degree 3 polyn.

Overfitting

training error

$$E_t = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

feature x
A. Jung HCML Summer School'22

Small Training Error Does Not Imply Good Performance on New Data Points!

Small Training Error Merely Indicates That Optimization/Training Algorithm Works

A Case in Point

we can perfectly fit (almost) any m data points using polynomials of degree n-1 as soon as

Reminder: Probabilistic Model

- data points are realizations of RVs
- joint pdf p(x,y) of features and label
- training set is a RV
- learnt hypothesis h(.) is a RV
- prediction h(x) is a RV

Why is Train. Err. Misleading?

- consider expected loss of hypothesis
- estimate expectation using sample average
- this only works if hypothesis does not depends on data points used in average
- does not hold for training error

Model Validation and Selection

Basic Idea of Validation

divide data points into two subsets

use training set to learn predictor

use validation set to estimate loss

Split into Training and Validation Set

Train and Validate Model 1

Train and Validate Model 2

Basic Idea of Model Selection choose model via validation error

model 1: linear maps

model 2: degree 3 polyn.

Train/Val Error vs Model Complexity

$$\mathcal{H}^{(n)} = \left\{ h(x) = \sum_{l=0}^{n-1} w_l x^l \text{ with weights } w_l \right\}$$

model dimension/complexity n

k-Fold Cross Validation

- might be unlucky with train/val split
- problematic for small datasets
- •IDEA: randomly split several times
- "average out" unlucky splits

K-Fold Cross Validation

k-Fold Cross Validation

how to choose nr of folds (the "k" in k-fold CV)?

- train fold should be sufficiently large (avoid overfitting)
- val folds should sufficiently large (to get reliable estimate of generalization)

CAUTION!

• k-fold CV requires a method to split into folds

most basic method: evenly divide into k folds

• works if data is i.i.d. ("order of data points is arbitrary")

• fails if data points are grouped or ordered

Imbalanced Classes and Group Structure

- e.g. data points with same label are contiguous blocks
- or data points are obtained at consecutive time instants (→ correlations)

Group-Preserving Splitting

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupKFold.html

Class-Ratio Preserving Splitting

Temporal Successive Splitting

source: https://scikit-learn.org/stable/

Bias and Variance Decomposition

Toy Data

$$y = g(x) + "noise"$$

learn hypothesis h(.) using a randomly selected training set

compute prediction h(x') for a fixed feature value x'

Ensemble of Learnt Hypotheses

Bias and Variance

$$\hat{y} = h(x')$$

RV since obtained from a randomly selected training set

$$\mathsf{E}\{\left(\hat{y} - y\right)^{2}\} = \left(\mathsf{E}\{\hat{y}\} - y\right)^{2} + \mathsf{E}\{\left(\hat{y} - \mathsf{E}\{\hat{y}\}\right)^{2}\}$$

Bias and Variance Tradeoff

"Prediction Error = Bias + Variance"

bias reduction typically incurs variance increase and vice versa

Smaller Model (Poly.Degree)

- small variance
- large bias

Larger Model (Poly. Degree)

- large variance
- small bias

Bias vs. Variance Lin.Reg.

average loss

Bias vs. Variance Poly.Reg. ayerage loss

Bias vs. Variance Dec. Tree. ayerage loss

Bias vs. Variance Deep Learning

average loss

Bias vs. Variance Grad. Desc.

average loss

More Data

small variance

Less Data

large variance

Learning Curve

Alex' Rule of Thumb

effective number of training data points

>

10 * nr. tunable effective model parameters

stretch the term "effective" as much as possible!

ML Diagnosis

Simple Recipe

- consider ML method with some hypothesis space
- learn hypothesis by min. average loss on train.set
- training error = average loss of learnt hypothesis
- compute validation error
- compare val err, train err with a baseline

Benchmark/Baseline

could be obtained from

- probabilistic models
- domain expertise
- existing ML methods
- human performance

•

- small train error -> hypothesis space is large
- large val err -> overfitting
- Workaround?

- large train error -> no good hypothesis found
- Workaround?

training validation error

Case Solved!

Take Home Messages

- · large models (e.g. deep nets) often overfit
- small training error does not mean much!
- diagnosis by comparing train/val err
- bias/variance analysis can guide model improvement

Thank You!