PHYSICS ASSIGNMENT - (MODULE - 1)

F.M - 100

Group-I

Each question carries 2 mark.

<u>Group-II</u>				
(a) longitudinal waves	(b) transver	rse waves	(c) both (a) and (b)	(d) none of them
10. Light waves are				
a) 2√2cm b) 2cm	c) 1/√2 cm	d)	√2 cm	
potential energy (amplitude	= 4cm) is?			
9. The displacement of a simple harmonic motion doing oscillation when kinetic energy =				
c) Balastic galvanometer	d) Discharge of a charged capacitor through a resistance			
a) Dead beat galvanomete	er b) Tangent	galvanomet	er	
8. Example of weakly damped harmonic oscillator is				
a) $x = 0$ b) $x = A$	c) x = -A	d) $x = A/2$		
7. The maximum velocity of a particle executing SHM represented by $x = A \sin(wt)$ occurs at				
a) A/4 b) A/2	c) 3A/4			
mean position is the potenti	al energy of th	e body one f	ourth of its total energ	y?
6. A body executes simple I	harmonic motic	on with ampli	tude A. At what displa	cement from the
a) ½ b) ¾	c) Zero	d)	1/4	
of the total energy is kinetic		·	·	
5. In a simple harmonic motion, when the displacement is one half the amplitude, what fraction				
a) 2/3 E b) 1/8 E	c) 1/4 E	d) 1/2 E		
point is	·			•
4. The potential energy of a simple harmonic oscillation when the Particle is halfway to its end				
c) Potential energy is 100J d) Potential energy is 120J				
a) Potential energy is 160			gy is zero	
mechanical energy of 160J.				
3. A linear harmonic oscillator of force constant 2×10 ⁶ N/m and amplitude 0.01m has a total				
a) k, a, m b) k,		-	-	
2. The total energy of a part	,	•	, , ,	
a) $(\pi a \sqrt{3})/T$ b) $(\pi$				Λ/T
time period T. The speed of				ampilitude a and
1. A simple pendulum perfo	rms simple har	rmonic motio	x = 0 with an	amplitude a and

Each question carries 6 mark.

Question-1: What is coupled oscillation? Obtain the equation of motion in terms of normal co-ordinates for two oscillators of equal mass coupled with each other. [6]

Question-2: What is forced harmonic oscillation? Formulate the differential equation of a particle executing forced harmonic oscillation. Obtain the conditions for resonance. [6] **Question-3:** Starting from expression for wave function, obtain the wave equation for a wave travelling along Z-direction. [6]

Question-4: Mention the changes occur in reflected and transmitted waves, when an incident wave meets at a rarer boundary. [6]

Question-5: Define the following terms for Damped oscillation

- a) Relaxation time
- b) Q-factor
- c) Rate of energy loss

Question-6: What is Resonance? Give two examples. Obtain the condition for resonance and the maximum value of amplitude at resonance. [6]

Question-7: Show that the total energy of a particle executing SHM is constant. [6]

Question-8: Define Normal Co-ordinates. Mention its uses and write the expressions for Normal mode frequencies for two oscillators of equal mass coupled with each other. [6]

Group-III

Each question carries 16 mark.

Question-1: What is damped harmonic oscillation? Write its differential equation and obtain its solution. Explain the under damped, over damped and critically damped oscillation with graph and examples. [16]

Question-2: Discuss the theory of oscillation of two oscillators of equal mass connected with each other by means of a light spring and suspended from a rigid support with equal length of strings. [16]

Question-3: Define Forced Oscillation. Obtain the equation of motion for it. Write the solution defining each term. And find out the average energy and average power. [16]

* * * * * * *