Machine learning challenges in the real-world computational advertising

techblog.rtbhouse.com/jobs

Agenda

Real-Time Bidding

Basic model

Gotchas!

Real-Time Bidding

Retargeting

Advertiser

Publisher Advertiser

Retargeting

Retargeting

Business model

- 5¢ per click
- 5\$ per order
- 5% of order value

(And we pay for each impression.)

Data structure

- User's previous interactions with the advertiser's website
 - Recent impressions and clicks
 - Ad/bid context

Event types

Home

Product

Listing

Basket

Order

bid = α * CTR * CR * CV * 5%

bid = $\alpha * CTR * CR * CV * 5%$

(Click-Through Rate)

bid = α * CTR * CR * CV * 5%

(Conversion Rate)

bid = $\alpha * CTR * CR * CV * 5%$

(Conversion Value)

bid = $\alpha * CTR * CR * CV * 5%$

(% of order value)

bid = α * CTR * CR * CV * 5%

Estimated impression value

bid = a * CTR * CR * CV * 5%

(roughly: 1 - margin)

Second-price auctions

Second-price auctions

Truthful bidder is the best bidder

(Vickrey's theorem)

But...

1. We never know the real impression value. We just estimate...

news.com

2000 imps 60 clicks 3% CTR

bid = \$0.03

sport.news.com

1000 imps 50 clicks 5% CTR

bid = \$0.05

moto.news.com

1000 imps 10 clicks 1% CTR

bid = \$0.01

sport.news.com

1000 imps 50 clicks 5% CTR

bid =
$$$0.05$$

moto.news.com

1000 imps 10 clicks 1% CTR

$$bid = $0.01$$

(our bid = \$0.03)

But...

2. There will be more auctions. We may buy later, cheaper...

techblog.rtbhouse.com/jobs

Choosers

Choosers

Rule-based

TwoLastSeenRestSimilarChooser

Item-to-item

Customers who viewed this item also viewed

Page 1 of 5

Intel BOXNUC8i5BEK1 Bean Canyon NUC Components Other 会会会会。9 \$365.99

Co-occurrence matrix

e.g.: A[x, y] = How many users viewed both items?

Singular Value Decomposition

A[x, y] = embeddings[x] * embeddings[y]

And more....

- Metadata
- Word2vec etc...
- Graph convolutions

End-to-end

Preselecting -> Scoring -> Composition

End-to-end

Preselecting -> Scoring -> Composition

e.g.

Deep Neural Networks for YouTube Recommendations
Paul Covington, Jay Adams, Emre Sargin

It's all about targets!

Too implicit: what item user will view next?

Too explicit: how will user rank this item?

Pretty good: will user **buy** this item?

Typical: will user click this item?

Click-baits

How do you sell a wood splitter on ebay?

Story

Item has high CTR Model thinks it's good Item becomes more popular Model thinks it's very good Item makes it to the top 10 Model thinks it's great Items is now No. 1

The item is more and more popular

Model recommends the item more and more

RTBHOUSE =

techblog.rtbhouse.com/jobs

So, I've just bought this fridge...

Fridge 3.4%

typically

buy after

buying

a fridge?

Something else

96.6%

Pst!

Pst!

RTBHOUSE =

techblog.rtbhouse.com/jobs

