MATH 2301

* Today: Use NFAs to simulate the remaining regexes.

* Back to (4): ~= ~, ~2

(DFAs or NFAs) Suppose we have M_1 , M_2 with $L(M_1) = L(T_1)$ and $L(M_2) = L(T_2)$. Want M_1 , such that $L(M) = L(M_1) \circ L(M_2)$.

Connect every accept state of M, to the start

State of M2 by an arrow labelled &

Then change every accepting state of M, to a rejecting state

** RME: If M, has no accept states, then M₂ is inaccessible $\Rightarrow L(M) = \phi$ (This is ole: $L(M_1) = \phi$, $L(M_2)$ is something, $L(M_1) \circ L(M_2) = \phi \circ L(M_2) = \phi$.)

** Why does M work?

- i) if W = Ay where $X \in L(M)$, $y \in L(M)$, then $W \in L(M)$.
- 2) If $w \notin L(M_1) \circ L(M_2)$, then $w \notin L(M)$. Equivalently, if $w \in L(M)$, then w has a splitting w = xy as above.
- 1) Suppose w= xy, where xEL(M1) 4 yEL(M2)

Then among all possible branches of the calculation tree, at least one does the following:

- a) Run & through "M,", ending at one of the old accepting states of M,
- 10) Portal to go by an E arrow.
- c) Run y through the M_2 portion, ending at an accept state of M_2 , hence of M.

2) -

Any accepting branch for w must have a step that passes through the middle portion (highlighted). These are all E-arrows. This gives the break point: the portion of w before this is a valid choice for x, and the rest is y

* Case (6): Y= Y,*.

Given M, with $L(M_i) = L(Y_i)$, construct M such that $L(M) = L(M_i)^*$.

- ① Connect each
 accepting state of
 M, to the start
 state of M, by E
 arrows
- 2) Make a new start state go, and

connect it to q_0 by an ϵ arrow. [q_0 is no longer the start state.]

3) Make q-1 accepting.

** Check [sketch]:

- M accepts E
- If |w| > 0, then M accepts w if and only if $w = x_1 \cdots x_k$, where each $x_i \in L(M_i)$.

(Similar argument to the previous case.)

Summary: We have converted every regex construction into a DFA or NFA construction

NFAs are at least as powerful as regexes!

* Question: What is the relationship between DFAs & NFAs?

an NFA; it satisfies the definition automatically

** Easy observation: There are NFAs that are not DFAs:

** Theorem: If M is an NFA, we can always find a DFA M' such that L(M') = L(M).

In other words, any NFA can always be simulated by a DFA.

** Example

States $Q = \{g_0, g_i\}$ Start state g_0 Transition function

△: Q × (∑ ∪ {E}) → P(Q)

Set of accept states $A = \{g_i\}$

