Assignment 1: Sentiment Classification of Twitter Tweets (NLP Pipeline)

😂 Difficulty: Advanced | 🕒 Time: 4–5 hours

Dataset: Twitter US Airline Sentiment

Tools: Python, NLTK/spaCy, Scikit-learn, Pandas, NumPy, Seaborn, Matplotlib,

Streamlit or MLflow

Problem Statement

You are working for a customer support analytics team at an airline company. Your task is to **build a sentiment classifier** that can automatically categorize tweets about airline services into **positive**, **negative**, **or neutral**. The solution should be modular and support continuous improvements and deployment.

✓ Assignment Objectives

- Build a complete ML pipeline to classify tweets using TF-IDF + traditional ML models (Logistic Regression / Naive Bayes).
- 2. Use OOP principles to structure code into reusable classes/functions.
- Deploy the model with a frontend using Streamlit or register and track it using MLflow.

Task Breakdown

Task 1: Data Cleaning & Exploration

- Load and explore the dataset
- Handle missing values
- Visualize class imbalance

Task 2: Preprocessing with OOP

- Create a class TweetPreprocessor:
 - clean_text(): remove mentions, links, emojis
 - o tokenize_and_lemmatize(): using spaCy or NLTK
 - remove_stopwords() method

Task 3: Modeling Pipeline

- Create a class SentimentModel:
 - o vectorize() using TF-IDF
 - train_model() using Logistic Regression
 - o evaluate() using F1, accuracy, confusion matrix

Task 4: Deployment

Option A – Streamlit

• User enters tweet → predicted sentiment is shown

Option B – MLflow

- Track model:
 - Preprocessing steps
 - Model accuracy
 - Parameters
- Register best model

B Deliverables

- Python notebook or scripts using modular OOP
- TF-IDF vectorizer saved
- Deployment (Streamlit or MLflow)
- Screenshot of model evaluation or UI
- README with setup and usage

Assignment 2: News Topic Classification Using BERT (Transformer-based NLP)

Oifficulty: Expert | Time: 5-6 hours

O Dataset: AG News Classification Dataset on Kaggle

Tools: HuggingFace Transformers, PyTorch or TensorFlow, Pandas, Seaborn,

Matplotlib, Streamlit or MLflow

Problem Statement

A media analytics company wants to categorize news articles automatically into one of 4 categories: **World, Sports, Business, and Sci/Tech**. You are asked to build a transformer-based pipeline using **BERT** to improve classification accuracy over traditional methods.

Assignment Objectives

- 1. Use HuggingFace's BERT model for fine-tuning on multi-class classification.
- 2. Implement reusable classes/functions for tokenization, modeling, and prediction.
- 3. Integrate experiment tracking or UI deployment using MLflow or Streamlit.

Task Breakdown

Task 1: Data Loading and Cleaning

- Load train/test CSVs
- Basic text cleanup (remove special characters, optional)

Task 2: Tokenization & Encoding

- Create class NewsTokenizer:
 - o Load BERT tokenizer

- o Tokenize and pad sequences
- o Encode target labels

Task 3: Model Training

- Create class NewsClassifier:
 - Load bert-base-uncased
 - Freeze/unfreeze layers
 - o Train with learning rate scheduling and validation loop

Task 4: Evaluation & Metrics

• Use F1 score, confusion matrix, and classification report

Task 5: Deployment

Option A – Streamlit

- Upload a text → category is predicted
- Dropdown to select pre-trained or fine-tuned model

Option B – MLflow

- Log:
 - o Training time
 - o Accuracy, F1
 - o Model name, tokenizer, parameters
- Save and register model artifact

Particular Deliverables

- Scripts: tokenizer.py, bert_model.py, utils.py
- Saved model and tokenizer
- Streamlit or MLflow deployment
- Instructions in README

☑ Bonus: Instructions Format for Submission

Each assignment should follow this directory structure: