CLAIMS

WHAT IS CLAIMED IS:

1	1. A method of coupling a photonic component with a waveguide comprising:
2	positioning the photonic component against the waveguide; and
3	aligning the photonic component with markings that have been
4	lithographically-placed on a surface of the waveguide.
1	2. The method of claim 1, wherein the photonic component is a fiber optic bundle.
_	bundle.
1	3. The method of claim 2 further comprising:
2	aligning outermost optical fibers of the fiber optic bundle with the markings
3	on the surface of the waveguide.
1	4. The method of claim 3 further comprising:
2	bonding the fiber optic bundle to the waveguide.
1	5. The method of claim 1, wherein the photonic component is a second
2	waveguide.
1	6. A method of aligning a fiber optic bundle with a waveguide comprising:

2	using a lithographic process to place a marking on a surface of the
3	waveguide, the marking indicative of an optical channel within the
4	waveguide;
5	positioning the fiber optic bundle against the waveguide based on the
6	marking; and
7	adjusting the fiber optic bundle until alignment is achieved.
1	7. The method of claim 6 further comprising:
2	using the lithographic process to place a second marking on the surface of
3	the waveguide, the second marking indicative of a second optical
4	channel within the waveguide, wherein the positioning of the fiber
5	optic bundle against the waveguide is also based on the second
6	marking.
1	8. The method of claim 7, wherein the lithographic process uses an etch to place
2	the first and second markings.
1	9. The method of claim 7, wherein the lithographic process uses an ink to place
2	the first and second markings.
1	10. The method of claim 7, wherein the lithographic process deposits a layer of
2	material that is distinguishable by the human eye to place the first and second markings

1	11. The method of claim /, wherein the marking is directly above the optical
2	channel.
1	12. The method of claim 7, wherein the marking is lateral to the optical channel.
1	13. The method of claim 7, wherein the positioning of the fiber optic bundle
2	against the waveguide is also based on alignment markings on the fiber optic bundle.
1 2	14. The method of claim 13 further comprising: applying an epoxy between the fiber optic bundle and the waveguide.
1	15. A waveguide comprising:
2	a first optical channel within the waveguide; and
3	a first lithographically-defined marking on a surface of the waveguide
4	indicative of the first optical channel within the waveguide.
1	16. The waveguide of claim 15 further comprising:
2	a second optical channel within the waveguide; and
3	a second lithographically-defined marking on the surface of the
4	waveguide indicative of the second optical channel within the
5	waveguide.

- 1 17. The waveguide of claim 16, wherein the first lithographically-defined
 2 marking and the second lithographically-defined marking are directly above the first
 3 optical channel and the second optical channel, respectively.
 - 18. The waveguide of claim 17, wherein the first lithographically-defined marking and the second lithographically-defined marking are at an edge of the waveguide.

1

2

3

1

1

- 19. The waveguide of claim 18, wherein the waveguide comprises glass.
- 20. The waveguide of claim 18, wherein the waveguide comprises silicon.
- 1 21. The waveguide of claim 18, wherein the first optical channel and the second optical channel are on opposite sides of the waveguide.