

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 November 2001 (08.11.2001)

PCT

(10) International Publication Number
WO 01/83516 A1

(51) International Patent Classification⁷: C07K 1/14,
14/47, 14/475, A61K 38/16, 38/17, 38/18, C12N 5/10,
15/12, 15/63, 15/64

MA 02113 (US). HUNTER, Dale [US/US]; 34 Green
Lodge Street, Canton, MA 02021 (US).

(21) International Application Number: PCT/US01/13943

(74) Agent: MYERS, Louis; Fish & Richardson P.C., 225
Franklin Street, Boston, MA 02110 (US).

(22) International Filing Date: 1 May 2001 (01.05.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): MASSACHUSETTS GENERAL HOSPITAL [US/US]; Building 149, Suite 1101, 13th Street, Charleston, MA 02129 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BURGESON, Robert, E. [US/US]; 103 Appleton #4, Boston, MA 02116 (US). BRUNKEN, William [US/US]; 140 Commonwealth Avenue, Chestnut Hill, MA 02167 (US). CHAMPLIAUD, Marie-France [US/US]; 23 Sheafe Street #3F, Boston,

WO 01/83516 A1

(54) Title: LAMININ 15 AND USES THEREOF

(57) Abstract: The present invention features a novel member of the laminin family, i.e., laminin 15, the methods of making these molecules, and the methods of using these molecules in treating neural disorders, e.g., retinal disorders.

LAMININ 15 AND USES THEREOF

Background of the Invention

Laminins are large heterotrimeric glycoproteins of the extracellular matrix. Each laminin heterotrimer is composed of an α , a β , and a γ chain, chosen from a number of possible homologues of each chain. Currently, eleven laminin chains have been identified: five α chains, three β chains, and three γ chains (Timpl (1996) *Curr Opin Cell Biol* 8: 618-624).

Summary of the Invention

The invention is based, in part, on the discovery of a novel member of the laminin family, laminin 15. Accordingly, the invention features a purified or isolated preparation, a recombinant preparation, or a composition of laminin 15, which includes laminin chains α 5, β 2, and γ 3. In a preferred embodiment, the laminin 15 is a trimer of an α 5, β 2, and γ 3 chain. In a preferred embodiment the laminin 15 is human laminin 15.

In a preferred embodiment the α 5 chain has a molecular weight of 380 kD, or 330 kD, the β 2 chain has a molecular weight of 190 kD or 170 kD, the γ 3 chain has a molecular weight of 220 kD, 200 kD or 170 kD.

In another preferred embodiment, the α 5 chain is reactive with or specifically binds an α 5-specific antibody, e.g., the mouse monoclonal antibody 4C7 (Engvall et al. (1986) *J Cell Biol* 103:2457-2465), or an antibody of the same laminin chain-specificity, e.g., one which can compete for the 4C7 epitope. In another preferred embodiment, the β 2 chain is reactive with or specifically binds a β 2 specific antibody, e.g., a guinea pig polyclonal GPI (Sanes et al. (1990) *J Cell Biol* 111:1685-1699), mouse monoclonal C4 (Sanes et al. (1983) *Cold Spring Harb Symp Quant Biol* 48: 667-678), or an antibody of the same laminin chain-specificity, e.g., one which can compete for the GPI or C4 epitope. In another preferred embodiment, the γ 3 chain is reactive with or specifically binds γ 3 specific a antibody, e.g., the rabbit antibody R16 or the rabbit antibody R21 (Koch et al. (1999) *J Cell Biol* 145: 605-618), or an antibody of the same laminin chain specificity, e.g., one which competes for the R16 or R21 binding site.

In yet another preferred embodiment, the α 5 chain has the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4. In a preferred embodiment, the α 5 chain is at least 60%,

65%, 70%, 75%, 80%, 85%, 90%, 95%98%, 99% homologous to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4. In a preferred embodiment, the $\alpha 5$ chain differs from the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, by at least one, but less than 5, 10, 15 amino acid residues, e.g., by at least one, but less than 5, 10, 15 non-essential amino acid residues. Preferably, the $\alpha 5$ chain retains the ability to form a heterotrimer with the $\beta 2$ chain and the $\gamma 3$ chain.

In another preferred embodiment, the $\beta 2$ chain has the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8. In a preferred embodiment, the $\beta 2$ chain is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% homologous to the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8. In a preferred embodiment, the $\beta 2$ chain differs from the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8, by at least one, but less than 5, 10, 15 amino acid residues, e.g., by at least one, but less than 5, 10, 15 non-essential amino acid residues. Preferably, the $\beta 2$ chain retains the ability to form a heterotrimer with the $\alpha 5$ chain and the $\gamma 3$ chain.

In another preferred embodiment, the $\gamma 3$ chain has the amino acid sequence of SEQ ID NO: 10. In a preferred embodiment, the $\gamma 3$ chain is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%99% homologous to the amino acid sequence of SEQ ID NO: 10. In a preferred embodiment, the $\gamma 3$ chain differs from the amino acid sequence of SEQ ID NO: 10, by at least one, but less than 5, 10, 15 amino acid residues, e.g., by at least one, but less than 5, 10, 15 non-essential amino acid residues. Preferably, the $\gamma 3$ chain retains the ability to form a heterotrimer with the $\alpha 5$ chain and the $\beta 2$ chain.

In another aspect, the invention features, a purified or isolated preparation, a recombinant preparation, or composition of laminin 15, which includes laminin chains $\alpha 5$, $\beta 2$, $\gamma 3$. In a preferred embodiment, the laminin 15 is a trimer of an $\alpha 5$, $\beta 2$, and $\gamma 3$ chain. In a preferred embodiment, the laminin 15 is human laminin 15.

The laminin chains of any laminin as disclosed herein can be the initial translation product or a degradation product, e.g., a naturally occurring degradation product of a laminin chain.

In another aspect, the invention features an isolated nucleic acid, e.g., DNA, RNA or cDNA encoding laminin 15, i.e., which encodes $\alpha 5$, $\beta 2$, or $\gamma 3$. The isolated nucleic acid can be a combination of nucleic acids each encoding one or more laminin 15 chains or a single nucleic acid, e.g., if in a vector, one or more of the chains can be in one vector or each chain

can be in a separate vector. The α_5 can be, e.g., any α_5 chain described herein. In a preferred embodiment, the nucleic acid encoding the α_5 chain has the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. In a preferred embodiment, the nucleic acid encoding the α_5 chain has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% homology, or 5 has the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. In another preferred embodiment, the nucleic acid encoding the α_5 chain hybridizes, e.g., hybridizes under stringent conditions, to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. The β_2 chain can be, e.g., any β_2 chain described herein. In a preferred embodiment, the nucleic acid encoding the β_2 chain has the nucleotide sequence of SEQ ID NO: 5 or SEQ ID NO: 7. 10 In a preferred embodiment, the nucleic acid encoding the β_2 chain has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% homology, or has the nucleotide sequence of SEQ ID NO: 5 or SEQ ID NO: 7. In another preferred embodiment, the nucleic acid encoding the γ_3 chain hybridizes, e.g., hybridizes under stringent conditions, to the nucleotide sequence of SEQ ID NO: 5 or SEQ ID NO: 7. The γ_3 chain can be, e.g., any γ_3 15 chain described herein. In a preferred embodiment, the nucleic acid encoding the γ_3 chain has the nucleotide sequence of SEQ ID NO: 9. In a preferred embodiment, the nucleic acid encoding the γ_3 chain has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% homology, or has the nucleotide sequence of SEQ ID NO: 9. In another preferred embodiment, the nucleic acid encoding the γ_3 chain hybridizes, e.g., hybridizes under 20 stringent conditions, to the nucleotide sequence of SEQ ID NO: 9.

In a preferred embodiment, the isolated nucleic acid can be expressed in one or more vectors, e.g., an expression vector or expressed directly in a cell. A vector (or vectors) containing a sequence corresponding to the sequence of the isolated nucleic acid can express the isolated nucleic acid in a suitable cell or a suitable in vitro environment.

25 In another aspect, the invention features producing laminin 15 from a cell transfected with nucleic acid encoding a laminin 15, e.g., a laminin 15 described herein.

In another aspect, the invention features producing laminin 15 from a cell transfected with nucleic acid which encodes one or more of an α_5 chain, a β_2 chain and/or a γ_3 chain, e.g., a nucleic acid described herein.

30 In another aspect, the invention features a recombinant laminin 15 which can be produced, e.g., by expressing the laminin chains of laminin 15 in a suitable cell host and under a condition suitable for the laminin chains to form laminin 15.

In a preferred embodiment, the laminin 15 differs from a naturally occurring laminin 15 by at least 1, but less than 5, 10, or 15 amino acid residues. In another embodiment, one, two, or each laminin chain of a laminin, differs from its naturally occurring counterpart by at least 1, but less than 5, 10, or 15 amino acid residues.

5 The invention provides a method for treating a disorder associated with abnormal functions of synapses, e.g., insufficient stability, viability, formation, and/or defective organization of synapses. The method comprises administering to a subject an effective amount of: laminin 15, laminin 14, or a combination thereof.

10 The invention further provides a method for modulating retinal development, e.g., in the subretinal space, in the interphotoreceptor matrix, and/or in the outer plexiform layer. The method comprises administering to a subject an effective amount of: laminin 15, laminin 14, or a combination thereof.

15 The invention provides a method for treating a disorder associated with: insufficient neural cell growth, healing and regeneration, e.g., axon outgrowth; a disorder associated with abnormal subretinal space or interphotoreceptor matrix (IPM) such as inadequate stability of IPM; a disorder associated with retina contact, continuity, and/or adhesion; a disorder associated with abnormal and/or insufficient formation of synapses; a disorder associated with viability of a neural cell, e.g., photoreceptor or an element thereof, e.g., outer segment, inner segment, cell body, and/or synapses. The method comprises administering to a subject an effective amount of laminin 15, laminin 14, or a combination thereof.

20 Another feature of the present invention provides a method of treating a disorder associated with retinal abnormality, e.g., rod dystrophy, rod-cone dystrophy, macular degeneration, retinitis pigmentosa, or retinal detachment. The method includes administering to a subject an effective amount of: laminin 15, laminin 14, or a combination thereof.

25 Another feature of the present invention provides a method of inducing neural cell growth and/or regeneration, e.g., axon outgrowth. The method includes administering to a subject an effective amount of laminin 15, laminin 14, or a combination thereof. In a preferred embodiment, the method can be used to induce neural cell growth or regeneration in the central nervous system (CNS) and/or the peripheral nervous system (PNS).

30 In a preferred embodiment, the method includes administering to a wound an effective amount of: laminin 15, laminin 14, or a combination thereof.

Still another feature of the invention provides a method of promoting a condition,

e.g., promoting retina inter-photoreceptor matrix stability; promoting the production, stability, and/or development of a retina photoreceptor or an element thereof, e.g., outer segment, inner segment, cell body, and/or synapses; promoting retinal contact, continuity, and/or adhesion; promoting the stability of synapses; and/or promoting the formation of 5 synapses. The method includes administering an effective amount of: laminin 15, laminin 14, or a combination thereof.

Another feature of the invention provides a method for preparing an implant. For example, a method of preparing an implantable tip, an implantable catheter, a retinal implant, a timed releasing device, a neural cell growth guide, an artificial tissue, an implant of the 10 central nervous system, or an implant of the peripheral nervous system. The method includes contacting, e.g., coating or incubating, the implant with laminin 15. In a preferred embodiment, laminin 15, laminin 14, or combinations thereof, can be used for treatment of a damaged eye, e.g., to increase photosensitivity in an eye, e.g., by implanting a tip coated with laminin 15, laminin 14, or a combination thereof, into the eye.

15 In a preferred embodiment, the implant is a subretinal implant, e.g., subretinal microphotodiodes, a visual prosthesis, e.g., a photoreceptive prosthesis (e.g., as reviewed in Peachey, *J Rehabil Res Dev* (1999) 36(4):371-6), an implant for photoreceptor replacement, a phototransistor, or a subretinally implanted microphotodiode array (MPDA) implant. Such implants are described in Zrenner et al. (1997) *Ophthalmic Res* 29(5):269-80; Zrenner et al. 20 (1999) *Vision Res* 39(15):2555-67, or in the abstract entitled "Can Subretinal Microphotodiodes Successfully Replace Degenerated photoreceptors?" submitted by E. Zrenner et al. at the Vision Research Conference held on May 9, 1998. An example of a corneal keratoprosthesis (the Aachen-Keratoprosthesis) is described in Kompa et al. (2000) *Int J Artif Organs* 23(5):345-8.

25 A method of evaluating a compound for the ability to interact with, e.g., bind, a subject laminin 15 is provided. The method includes: contacting the compound with the subject laminin 15; and evaluating ability of the compound to interact with, e.g., to bind or form a complex with the subject laminin 15. This method can be performed *in vitro*, e.g., in a cell free system, or *in vivo*. This method can be used to identify naturally occurring molecules which interact with subject laminin 15. It can also be used to find natural or 30 synthetic inhibitors of subject laminin 15. Screening methods are discussed in more detail below.

In one embodiment, an assay is a cell-based assay in which a cell which expresses laminin 15 or biologically active portion thereof is contacted with a test compound, and the ability of the test compound to modulate laminin 15 activity is determined.

The ability of the test compound to modulate laminin 15 binding to a compound, e.g., a laminin 15 substrate, or to bind to laminin 15 can also be evaluated.

Soluble and/or membrane-bound forms of isolated proteins (e.g., laminin 15 or biologically active portions thereof can be used in the cell-free assays of the invention. When membrane-bound forms of the protein are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)_n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl) dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N, N-dimethyl-3-ammonio-1 -propane sulfonate.

Cell-free assays involve preparing a reaction mixture of the target gene protein and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex that can be removed and/or detected.

In a preferred embodiment, the assay includes contacting laminin 15 or biologically active portion thereof with a known compound which binds laminin 15 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with laminin 15, wherein determining the ability of the test compound to interact with laminin 15 includes determining the ability of the test compound to preferentially bind to laminin 15 or biologically active portion thereof, or to modulate the activity of a target molecule, as compared to the known compound.

In another aspect, the invention provides, a method of determining if a subject is at risk for a disorder, e.g., a disorder described herein.

In a preferred embodiment, the disorder is related to a lesion in or the misexpression of a gene which encodes one or more of a laminin 15 chain, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, and/or $\gamma 3$ chain.

Such disorders include, e.g., a disorder associated with the misexpression of a laminin 15 chain, a disorder associated with the central nervous system and/or the peripheral nervous system, a retinal disorder.

The method includes one or more of the following:

detecting, in a tissue of the subject, the presence or absence of a mutation which affects the expression of one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain, or detecting the presence or absence of a mutation in a region which controls the expression of the gene, e.g., a mutation in the 5' control region;

5 detecting, in a tissue of the subject, the presence or absence of a mutation which alters the structure one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene;

10 detecting, in a tissue of the subject, the misexpression of one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene, at the mRNA level, e.g., detecting a non-wild type level of a mRNA;

15 detecting, in a tissue of the subject, the misexpression of the gene, at the protein level, e.g., detecting a non-wild type level of laminin 15.

In preferred embodiments the method includes: ascertaining the existence of at least one of: a deletion of one or more nucleotides from one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene; an insertion of one or more nucleotides into the gene, a point mutation, e.g., a substitution of one or more nucleotides of the gene, a gross chromosomal rearrangement of the gene, e.g., a translocation, inversion, or deletion.

20 For example, detecting the genetic lesion can include: (i) providing a probe/primer including an oligonucleotide containing a region of nucleotide sequence which hybridizes to a sense or antisense sequence from SEQ ID NO: or naturally occurring mutants thereof or 5'or 3' flanking sequences naturally associated with one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene; (ii) exposing the 25 probe/primer to nucleic acid of the tissue; and detecting, by hybridization, e.g., *in situ* hybridization, of the probe/primer to the nucleic acid, the presence or absence of the genetic lesion.

In preferred embodiments detecting the misexpression includes ascertaining the existence of at least one of: an alteration in the level of a messenger RNA transcript of one or 30 more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene; the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; or a non-wild type level of laminin 15.

Methods of the invention can be used prenatally or to determine if a subject's offspring will be at risk for a disorder.

In preferred embodiments the method includes determining the structure of one or more of a laminin 15 chain gene, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain gene, an abnormal structure being indicative of risk for the disorder.

In preferred embodiments the method includes contacting a sample from the subject with an antibody to one or more of the $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain, or a nucleic acid, which hybridizes specifically with the gene.

In another aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant or unwanted expression of one or more of a laminin 15 chain or a laminin 15 activity, by administering to the subject laminin 15 or an agent which modulates expression of one or more laminin 15 chain or at least one laminin 15 activity. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted laminin 15 activity or expression of one or more laminin 15 chain can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the laminin 15 aberrance, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of laminin 15 aberrance, for example, a laminin 15 agonist or laminin 15 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.

It is possible that some laminin 15 disorders can be caused, at least in part, by an abnormal level of gene product, or by the presence of a gene product exhibiting abnormal activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of disorder symptoms.

The term "effective amount" means the amount that is sufficient to reduce or alleviate at least one adverse effect or symptom of a disorder and/or to induce or enhance at least one biological activity of laminin 15. A biological activity of laminin 15 includes one or more of the ability to: 1) modulate retinal development, e.g., in the subretinal space, the interphotoreceptor matrix, the outer plexiform layer; 2) modulate, e.g., promote, neural cell growth and regeneration, e.g., axonal outgrowth; 3) modulate, e.g., promote, adhesion between cells and/or extracellular matrix, e.g., retinal contact; 4) modulate, e.g., promote,

synaptic formation; 5) modulate, e.g., promote, viability of a neural cell, e.g., a neural retinal cell, e.g., a photoreceptor or an element thereof, e.g., outer segment, inner segment, cell body or synapses; 6) interact, e.g., form a complex, with a dystrophin and/or a P-dystroglycan. An effective amount can be determined by one skilled in the art, e.g., based on the disease stage, 5 age, sex, and weight of the to be treated subject and the condition of the treatment. As a reference, the amount administered can be at a concentration of at least from about 0.1 to 500 pg/ml, from about 1 to 200 g/ml, from about 10 to 150 g/ml, or from about 10 to 100 g/ml.

The term "isolated or purified nucleic acid molecule" includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source 10 of the nucleic acid. For example, with regards to genomic DNA, the term "isolated" includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and/or 3'ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. 15 For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of 5' and/or 3' nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA 20 molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

As used herein, the term "hybridizes under stringent conditions" describes conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N. Y. (1989), 25 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used. A preferred, example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C. Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or 30 more washes in 0.2X SSC, 0.1%SDS at 55°C. A further example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Preferably, stringent

hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1%SDS at 65°C. Particularly preferred stringency conditions (and the conditions that should be used if the practitioner is uncertain about what conditions should be applied to determine if a molecule is within a hybridization limitation of the invention) are 0.5M Sodium Phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1% SDS at 65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO: 1,3, 5, 7, or 9, or corresponds to a naturally-occurring nucleic acid molecule.

As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

An "isolated" or "purified" polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, the language "substantially free" means preparation of laminin 15 having less than about 30%, 20%, 10% and more preferably 5% (by dry weight), of non-laminin 15 protein (also referred to herein as a "contaminating protein"), or of chemical precursors or non-laminin 15 chemicals. When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The invention includes isolated or purified preparations of at least 0.01, 0.1, 1 .0, and 10 milligrams in dry weight.

A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of a laminin 15 chain (e.g., the sequence of SEQ ID NO: 1, 3, 5, 7, or 9) without abolishing or more preferably, without substantially altering a biological activity, whereas an "essential" amino acid residue results in such a change. For example, amino acid residues that are conserved among the polypeptides of the present invention, e.g., those present which mediate assembly and are predicted to be particularly unamenable to alteration.

A "conservative amino acid substitution" is one in which the amino acid residue is

replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, 5 glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a protein is preferably replaced with another amino acid residue from the same side chain 10 family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a laminin 15 chain coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a laminin 15 biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO: 1, 3, 5, 7, or 9, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

15 Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows.

To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for 20 optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least and even 60%, more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at 25 corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of 30 the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) *J Mol Biol* (48): 444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at <http://www.gcg.com>), using a NWSgapdna. CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used if the practitioner is uncertain about what parameters should be applied to determine if a molecule is within a sequence identity or homology limitation of the invention) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4: 11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

“Misexpression or aberrant expression”, as used herein, refers to a non-wild type pattern of gene expression, at the RNA or protein level. It includes: expression at nonwild type levels, i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms of the splicing size, amino acid sequence, post-transitional modification, or biological activity of the expressed polypeptide; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the gene, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.

A “purified preparation of cells”, as used herein, refers to, in the case of plant or

animal cells, an *in vitro* preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.

The term "subject" as used herein refers to a mammal. Examples of mammals include human and nonhuman primates, e.g., a monkey, a goat, or a rodent, e.g., a rat or a mouse, having a disorder associated with insufficient laminin, e.g., laminin 15 activity. The mammal is preferably a primate, e.g., a human.

As used herein the term "administering" refers to delivery of a preparation, composition, an active portion, or an active fragment of laminin 15 alone, in combination with another laminin (e.g., laminin 5, laminin 14) and/or at least one other compound or preparation.

The term "stability" means structural, anatomic molecular, and/or functional integrity, intactness, or completeness which is testable or observable by any suitable means. For example, the stability of retina photoreceptor can be tested by ERG, e.g., indicated by a wave 15 and b wave.

The term "pharmaceutically acceptable carrier" is intended to include a solvent, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Such carriers include, but are not limited to, large, slowly metabolized macromolecules, such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Pharmaceutically acceptable salts can also be used in the composition, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as the salts of organic acids such as acetates, propionate, malonates, or benzoates. The composition can also contain liquids, such as water, saline, glycerol, and ethanol, as well as substances such as wetting agents, emulsifying agents, or pH buffering agents.

Liposomes, such as those described in U.S. 5,422,120; WO 95/13796; WO 91114445; or EP 524,968 B1, can also be used as a carrier. Typically, the therapeutic laminin composition is prepared as an injectable, either as a liquid solution or suspension; however, solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared. The composition can also be formulated into an entericcoated tablet or gel

capsule according to known methods in the art, such as those described in U. S. 4,853,230; EP 225,189; AU 9,224,296; and AU 9,230,801.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Brief Description of the Figures

Fig. 1A-1F depicts the nucleotide sequence of murine $\alpha 5$ (SEQ ID NO: 1) and the amino acid sequence of murine $\alpha 5$ (SEQ ID NO: 2).

Fig. 2A-2B depicts the nucleotide sequence of human $\alpha 5$ (SEQ ID NO: 3) and the amino acid sequence of human $\alpha 5$ (SEQ ID NO: 4).

Fig. 3A-3D depicts the nucleotide sequence of murine $\beta 2$ (SEQ ID NO: 5) and the amino acid sequence of murine $\beta 2$ (SEQ ID NO: 6).

Fig. 4A-4C depicts the nucleotide sequence of human $\beta 2$ (SEQ ID NO: 7) and the amino acid sequence of human $\beta 2$ (SEQ ID NO: 8).

Fig. 5A-5B depicts the nucleotide sequence of murine $\gamma 3$ (SEQ ID NO: 9) and the amino acid sequence of murine $\gamma 3$ (SEQ ID NO: 10).

Detailed Description

The invention features a novel member of the laminin family, i.e., laminin 15, and methods of making and using this novel laminin, e.g., in neural associated disorders.

In the methods of treating a disorder, such as a disorder described herein, laminin 15 can be administered alone, or in combination with at least one other laminin (e.g., laminin 5 and/or laminin 14) and/or with at least one other compound or preparation. Administration can include local or systemic administration, including injection, oral administration, particle gun, or catheterized administration, and topical administration. Various methods can be used to administer a therapeutic composition of laminin 15 alone, or in combination with one

another laminin, and/or compound, directly to a specific site in the body. For example, a small neural wound can be located and the therapeutic composition can be applied, e.g., once or several times in one or several different locations, within the wound. A therapeutic-laminin 15 composition can be directly administered to the surface of a neural wound, for example, by topical application of the composition, or can be injected into the site of a neural wound, e.g., as part of a liquid solution or suspension. X-ray imaging can be used to assist in delivery of laminin 15 to a site, e.g., the site of a neural wound. Combination therapeutic agents, including a laminin 15 protein, a laminin 15 polypeptide, or a subgenomic laminin 15 polynucleotide, and other therapeutic agents, can be administered simultaneously or sequentially. The administration of therapeutic agents can be repeated.

Receptor-mediated targeted delivery of therapeutic compositions containing laminin 15 subgenomic polynucleotides to specific tissues can also be used. Receptor mediated DNA delivery techniques are described in, for example, Findeis et al., 1993, *Trends in Biotechnol. II* 202-0.5; Chiou et al., 1994, GENE THERAPEUTICS: METHODS AND 15 APPLICATIONS OF DIRECT GENE TRANSFER (J. A. Wolff, ed.); Wu & Wu., 1988, *J. Biol. Chem.* 263:621-24; Wu et al. (1994) *J Biol Chem* 269, 542-546; Zenke et al. (1990) *Proc Natl Acad Sci U.S.A.* 87:3655-59; Wu et al. (1991) *J Biol Chem* 266:338-42.

Alternatively, a laminin 15 composition can be introduced into human cells ex vivo, and the cells then replaced into the human. Cells can be removed from a variety of locations including, for example, from a selected neural tissue or from an affected organ. Both the dose of the laminin 15 composition and the means of administration can be determined based on the specific qualities of the therapeutic composition, the condition, age, and weight of the patient, the progression of the disease, and other relevant factors. If the composition contains a laminin 15 protein or polypeptide, effective dosages of the composition are in the range of about 5 pg to about 50 pg/kg of patient body weight, about 50 pg to about 5 mg/kg, about 25 20 25 100 pg to about 500 pg/kg of patient body weight, and about 200 to about 250 pg/kg.

Therapeutic compositions containing a laminin 15 subgenomic polynucleotide can be administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 pg to about 2 mg, about 5 pg to about 500 pg, and about 20 pg to about 100 pg of DNA can also be used during a gene therapy protocol. Factors such as method of action and efficacy of transformation and expression should be considered in determining the dosage of laminin 15

polynucleotide required. Where greater expression is desired over a larger area of tissue, larger amounts of laminin 15 subgenomic polynucleotides and/or the same amounts of laminin 15 subgenomic polynucleotides can be readministered, e.g., in a successive protocol of administrations, or several administrations to different adjacent or in close proximity to the targeted tissue portions.

For example, a tumor site may be required to effect a positive therapeutic outcome. In all cases, routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect.

Isolation or recombinant production of laminin 15 ($\alpha_5 \beta_2 \gamma_3$)

Laminin 15 consists of an α_5 chain, a β_2 chain and a γ_3 chain. The laminin chain can be isolated and purified from a natural source, e.g., from a retinal tissue such as the retina inter-photoreceptor matrix, the retina outer plexiform layer, the neural retina, a Müller cell, and/or a preparation of retinal neurons.

Alternatively, laminin 15 can be produced recombinantly or chemically synthesized by conventional methods. The nucleotide and amino acid sequences of the laminin chains are known and described, for example, at Genbank Accession Number U37501 (murine α_5 chain), Genbank Accession Number: AW4 11963 (murine β_2 chain), and in Koch et al., *J Cell Biol* (1999) 145: 605-618 (murine γ_3 chain).

Methods of generating a recombinant laminin 15 protein are well known in the art. For example, the laminin 15 protein can be generated by cloning the nucleic acid sequence encoding each of the laminin chains into an expression vector, where it is operably linked to one or more expression control sequences.

A vector can include one or more of an α_5 chain, the β_2 chain, and γ_3 chain nucleic acid in a form suitable for expression of the nucleic acid in a host cell. Preferably the recombinant expression vector includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term "regulatory sequence" includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the

invention can be introduced into host cells to thereby produce proteins or polypeptides, including fusion proteins or polypeptides, encoded by nucleic acids as described herein (e.g., laminin 15 proteins, mutant forms of laminin 15 proteins, fusion proteins, and the like).

The recombinant expression vectors of the invention can be designed for expression of laminin 15 proteins in prokaryotic or eukaryotic cells. For example, polypeptides of the invention can be expressed in *E. coli*, insect cells (e.g., using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

The laminin 15 expression vector can be a yeast expression vector, a vector for expression in insect cells, e.g., a baculovirus expression vector or a vector suitable for expression in mammalian cells.

When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers) operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, *Reviews - Trends in Genetics*, Vol. 1 (1) 1986.

In another aspect, the invention features, a cell or purified preparation of cells which include one or more exogenously introduced laminin 15 chain nucleic acid, e.g., one or more of an $\alpha 5$ chain, the $\beta 2$ chain, and/or $\gamma 3$ chain, or which otherwise misexpress one or more laminin 15 chain. The cell preparation can consist of human or non-human cells, e.g., rodent

cells, e.g., mouse or rat cells, rabbit cells, or pig cells. In preferred embodiments, the cell or cells includes one or more of a laminin 15 chain nucleic acid, e.g., a heterologous form of a laminin 15 chain nucleic acid, e.g., a gene derived from humans (in the case of a non-human cell). The laminin 15 chain or chains can be misexpressed, e.g., overexpressed or underexpressed. In other preferred embodiments, the cell or cells include one or more gene(s) which misexpress an endogenous laminin 15 chain, e.g., a gene the expression of which is disrupted, e.g., a knockout. Such cells can serve as a model for studying disorders which are related to mutated or misexpressed laminin 15 chain alleles or for use in drug screening.

In another aspect, the invention features, a human cell, e.g., a hematopoietic stem cell, transformed with nucleic acid which encodes a subject laminin 15 chain polypeptide.

Also provided are cells, preferably human cells, e.g., human hematopoietic or fibroblast cells, in which one or more endogenous laminin 15 chain is under the control of a regulatory sequence that does not normally control the expression of the endogenous laminin 15 chain gene. The expression characteristics of an endogenous gene within a cell, e.g., a cell line or microorganism, can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the endogenous laminin 15 chain gene. For example, an endogenous laminin 15 gene which is "transcriptionally silent," e.g., not normally expressed, or expressed only at very low levels, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous DNA as described in, e.g., Chappel, US 5,272,071; WO 91/06667, published in May 16, 1991.

Implants

Implants described herein can be neural implants, e.g., neuromuscular stimulators; auditory prostheses, e.g., speech processors; or retinal implants. Preferred neural implants are retinal implants. Retinal implants can be, e.g., subretinal or epiretinal. Subretinal devices, e.g., MPDAs, are less than 1 cm, e.g., approximately 2 millimeters, in diameter and can be composed of tiny electrodes that are powered by a large number, e.g., 3,500, microscopic solar cells. Subretinal devices include the Optobionics™ silicon chip, in which light coming into the eye both powers the device and is transmitted to the brain as an image

by the device. Epiretinal devices can go on top of a damaged retina. A retinal implant can also be a biocompatible device or material designed to carry or deliver a compound or composition to the retina, e.g., an implantable tip, catheter, or tissue; or an electronic device that replaces photoreceptor function, e.g., a phototransistor.

5 Such implants can be contacted, e.g., coated, with the compositions described herein, e.g., for use in a subject.

Transgenic Animals

The invention provides non-human transgenic animals. Such animals are useful for studying the function and/or activity of laminin 15 and for identifying and/or evaluating modulators of a laminin 15 activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA or a rearrangement, e.g., a deletion of endogenous chromosomal DNA, which preferably is integrated into or occurs in the genome of the cells of a transgenic animal. A transgene can direct the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, other transgenes, e.g., a knockout, reduce expression. Thus, a transgenic animal can be one in which one or more of an endogenous laminin 15 chain gene, e.g., one or more of a $\alpha 5$ chain, the $\beta 2$ chain, or $\gamma 3$ chain, has been altered by, e.g., by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

Examples

Example 1: Laminin Expression

25 Antibodies which recognize the eleven known laminin chains were used to catalog the laminin chains in adult rat and human retina. The reactivity for antibodies directed against each of these chains was assessed using immunohistochemistry (Libby et al., *Invest Ophthalmol Vis Sci* (1996) 37: 1651-1661; Libby et al., *J Comp Neural* (1997) 389: 355-367). Adult rat eyecups were embedded in O.C.T. compound (Miles, Elkhart, IN) and frozen 30 by immersion in liquid nitrogen-cooled isopentane. Transverse, 10 pm thick sections, were

cut with a Leica cryostat and placed onto Superfrost Plus slides (Fisher, Pittsburgh, PA). Human retina specimens were obtained as unfixed transverse sections. Slides were stored at -20°C until use. For use, slides were returned to room temperature, immersed briefly in acetone (or, interchangeably, for all but the $\alpha 5, 93$, and $\gamma 2$ chains, MeOH) at -20 °C, washed in phosphate-buffered saline (PBS; 137 mM NaCl, 2.68 mM KCl, 10 mM Na₂HPO₄, 1.76 mM KH₂PO₄, pH 7.4), and then incubated in primary antibodies for two hours at room temperature or overnight at 4°C. Primary antibodies were diluted in PBS containing 2% goat serum, or 2% bovine serum albumin, or both. Sections were washed in PBS and incubated in species-appropriate, affinity purified, fluorescently-labeled secondary antibodies diluted in 5 2% goat serum in PBS for 1 hour at room temperature. Following washes in PBS, slides were mounted in 90% glycerol and 10% water, containing paraphenylenediamine (1 mg/ml; Sigma, St. Louis, MO) to reduce photobleaching or in Prolong (Molecular Probes, Eugene, OR). The antibodies used were: laminin 1, ccl Ply1 (Life Technologies; rabbit polyclonal); laminin cr2 chain (Life Technologies; mouse monoclonal); laminin $\alpha 3$ chain (BM-2, made in 10 one of our laboratories (REB); mouse monoclonal); laminin $\alpha 4$ chain (Miner et al. (1997) *J Cell Biol* 137:685-701; rabbit polyclonal and R17, made in one of our laboratories (REB); rabbit polyclonal), laminin $\alpha 5$ chain (Miner et al. (1995) *J Biol. Chem.* 270: 28523-28526; rabbit polyclonal and 4C7, Engvall et al. (1986) *J Cell Biol* 103: 2457-2465; Tiger et al. (1997) *J Biol. Chem.* 272: 28590-28595); laminin $\beta 1$ chain (C21, Sanes and Chiu; *Cold 15 Spring Harbor Symp. Quant. Biol.* (1983) 48:667-678; mouse monoclonal); laminin $\beta 2$ chain (GPI, Sanes et al., *J Cell Biol.* (1990) 111:1685-1699; guinea pig polyclonal, C4, Sanes and Chiu, (1983) *supra*; mouse monoclonal and D5, Hunter et al., *Nature* (1989) 338:229-234; mouse monoclonal); laminin $\beta 3$ chain (6F12, Rouselle et al. (1991) *J Cell Biol* 114:567-576, mouse monoclonal); laminin $\gamma 1$ chain (D18, Sanes et al. (1990) *supra*; mouse monoclonal); 20 laminin $\gamma 2$ chain (Sugiyama et al. (1995) *Eur. J Biochem.* 228:120-128; rabbit polyclonal); laminin $\gamma 3$ chain (R16, R21, Koch et al. (1999) *J Cell Biol* 145:605-618; rabbit polyclonals); laminin 5, $\alpha 3\beta 3\gamma 2$ (4101, Rouselle et al. (1991) *supra*; Marinkovich et al., *J Biol Chem* (1992) 267:17900-17906, 8Ln5 and 9Ln5, made in one of our laboratories (REB); rabbit 25 polyclonals). 8Ln5 and 9Ln5 were made to the same antigen as the published antiserum 4101 and have the same reactivity.

Laminin Alpha Chains

Results showed that a polyclonal antiserum which recognized the three chains of laminin 1 ($\alpha 1 \beta 1 \gamma 1$) reacted only with the vasculature in the rat and human, and not with the matrix of the neural retina itself. Laminin 1 immunoreactivity was seen on the basal side of the retinal pigmented epithelium, i.e., Bruch's membrane; and in those sections in which the inner limiting membrane was present. Laminin 1 was expressed there as well. These observations suggested that the laminin $\alpha 1$ chain, a component of laminin 1, was not associated with the matrix of either the neural retina or the IPM but was a component of the basement membranes of the retina: Bruch's membrane and the internal limiting membrane.

The laminin $\alpha 2$ chain was also present in the retinal vasculature, but was not detected as being associated with ganglion cell bodies or associated with this basement membrane. The $\alpha 2$ chain does not appear to be a component of Bruch's membrane.

In contrast, the laminin $\alpha 3$ chain was present in the interphotoreceptor matrix, prominent at the external limiting membrane and at the tips of the photoreceptor inner segments. Laminin $\alpha 3$ chain immunoreactivity was also present in the outer plexiform layer. However, in contrast to the chains of laminin 1 and the laminin $\alpha 2$ chain, which were associated with elements of the vasculature in the outer plexiform layer, the laminin $\alpha 3$ chain did not appear to be associated with the larger vessels in this region. Nevertheless, the laminin $\alpha 3$ chain did appear to be present in the outer plexiform layer. It was difficult to discern whether the laminin $\alpha 3$ chain was associated with small vessels or associated with the synaptic connections in this layer. In the human retina, weak immunoreactivity for the laminin $\alpha 3$ chain was also present surrounding cell bodies of the outer and inner nuclear layers. Finally, in human retina, the laminin $\alpha 3$ chain is diffusely associated with the inner plexiform layer.

In contrast to the laminin $\alpha 1$ - $\alpha 3$ chains, the laminin $\alpha 4$ chain appeared to have a broad distribution in rat and human retina. Immunoreactivity for the laminin $\alpha 4$ chain was present in the IPM, as well as diffusely in both the inner and outer plexiform layers. This extensive immunoreactivity in both plexiform layers, and the lack of any association with the retinal vasculature, suggested that the laminin $\alpha 4$ chain is contained within the extracellular matrix of the plexiform layers. However, the most prominent reactivity for the laminin $\alpha 4$ chain was in what appeared to be Müller cell fibers coursing through the retina. These fibers were confirmed as Müller cell processes, based on co-localization of the laminin $\alpha 4$ chain with a Müller cell marker (vimentin). Reactivity for the laminin $\alpha 4$ chain was also present in the

ganglion cell layer which may reflect that laminin $\alpha 4$ chain associated with the endfeet of Müller cells. The presence of the laminin $\alpha 4$ chain within the Müller cell suggested that the Müller cell was a source of the laminin $\alpha 4$ chain in the neural retina, consistent with the data that confirmed the Müller cell as a source of another laminin chain, $\beta 2$ (Libby et al. (1997) *supra*).⁵

Our initial localization studies using a polyclonal antiserum raised against the laminin $\alpha 5$ chain (Miner et al. (1995) *supra*) suggested that the laminin $\alpha 5$ chain was only a component of the true basement membranes of the retina, i.e., the internal limiting membrane, Bruch's membrane, and vascular basement membranes. However, a monoclonal antibody that specifically recognizes the laminin $\alpha 5$ chain (4C7, Engvall et al. (1986) *supra*; Tiger et al. (1997) *supra*) demonstrated that the laminin $\alpha 5$ chain is more broadly distributed within the neural retina: the laminin $\alpha 5$ chain had a distribution similar to that for the laminin $\gamma 3$ chain. Specifically, the laminin $\alpha 5$ chain was present in both rat and human interphotoreceptor matrices, as well as in the outer plexiform layer in the rat. In addition, the laminin $\alpha 5$ chain, like the laminin $\alpha 1$ and $\alpha 2$ chains, was associated with the retinal vasculature. This was particularly notable in the human. Laminin $\alpha 5$ chain immunoreactivity was present in the choroid, the hyaloid vessels, the outer plexiform layer vessels and the vasculature which extends through the retina from the hyaloid vessels to the outer plexiform layer. This expression in the vasculature was similar to the expression pattern for the laminin $\alpha 5$ chain in the brain.¹⁰¹⁵²⁰

Together, these data suggested that all five laminin α chains were expressed in the retina, but two--the laminin $\alpha 1$ and $\alpha 2$ chains--may be associated exclusively with the retinal vasculature. In contrast to these two laminin α chains, three chains, the laminin $\alpha 3$, $\alpha 4$ and $\alpha 5$ chains, were associated with the IPM and, potentially, associated with the neural retina at synapses in the plexiform layers. Laminins at each of these locations could be provided from the cell that spans the entire thickness of the retina, the Müller cell; the Müller cell is the likely source for at least one other laminin chain, $\beta 2$ (Libby et al. (1997) *J Comp Neural* 389:355-367).²⁵

Laminin Beta Chains

As noted above, a polyclonal serum that recognized all three chains of laminin 1, including the laminin $\beta 1$ chain, reacted only with the vasculature in rat and human retina. For³⁰

the human retina, this pattern was consistent with the previously reported expression of laminin 1 (Toti et al. (1997) *Neuromusc Disord* 7:2 1-25). Thus, the laminin $\beta 1$ chain was not an element of the matrix of either the IPM or the neural retina. A rat reactive antibody against the $\beta 1$ chain confirmed this observation. However, as there was little authentic laminin $\alpha 1$ chain in the retina, and little authentic laminin $\beta 1$ chain in the retinal vasculature of the rat, it was likely that the polyclonal serum against laminin 1 was detecting largely the laminin $\gamma 1$ chain in the vasculature of both rat and human.

As previously reported in the rat (Libby et al. (1997) *supra*), the laminin $\beta 2$ chain was present in the interphotoreceptor matrix, and appeared to be associated with the external limiting membrane. Here, a similar distribution in the human retina was demonstrated. The laminin $\beta 2$ chain, a known component of brain vasculature, was also associated with the vessels of the retina. In the human, immunoreactivity was also present surrounding cell bodies in the inner nuclear layer, as well as in the inner limiting membrane. In both species, the laminin $\beta 2$ chain was also diffusely associated with the outer plexiform layer. A comparison of this diffuse immunoreactivity to that for laminin 1 or the laminin $\alpha 2$ chain suggested that the laminin $\beta 2$ chain was not only associated with the vasculature within the outer plexiform layer. The laminin $\beta 2$ chain may also be associated with the extracellular matrix of the outer plexiform layer and localized to synapses in the central nervous system, as it is in the peripheral nervous system (Hunter et al. (1989) *Nature* 338:229-234).

Laminin $\beta 3$ chain immunoreactivity was also present in the mature rat retina, as well as the mature human retina. The $\beta 3$ chain seems largely limited to the inter-photoreceptor matrix, suggesting that laminins containing the laminin $\beta 3$ chain are components of this matrix. As laminin $\beta 3$ has a tightly restricted tissue distribution in rodent (Utani et al. (1995) *Lab Invest* 72: 300-310), and has, so far, only been demonstrated as a component of laminin 5 ($\alpha 3\beta 3\gamma 2$), it is likely that this reflects the presence of laminin 5 in the interphotoreceptor matrix.

Together, these data suggested that, although the laminin $\beta 1$ chain was associated with the basement membrane of the retinal vasculature in both rat and human retina, only two β chains, the laminin $\beta 2$ and $\beta 3$ chains, were expressed in the matrix of the IPM. Moreover, the laminin $\beta 2$ chain was also expressed in the matrix of the outer plexiform layer.

Laminin Gamma Chains

As noted above, a polyclonal serum that recognized all three chains of laminin 1, including the laminin $\gamma 1$ chain, reacted largely with the vasculature. Consistent with this observation, an antibody directed against the laminin $\gamma 1$ chain reacted only with the vasculature in both rat and human, suggesting that the anti-laminin 1 serum was reacting with at least the $\gamma 1$ chain. In addition, in the human, the laminin $\gamma 1$ chain was present at the internal limiting membrane. This may reflect production by astrocytes, the hyaloid blood vessels, and retinal ganglion cells (Sarthy and Fu (1990) *J Cell Biol* 110: 2099-2108; compare Sarthy, *Vis. Sci.* (1993) 34: 145-152). There was also some punctate immunoreactivity for the laminin $\gamma 1$ chain within the ganglion cell layer. Importantly, there was no laminin $\gamma 1$ chain reactivity in the IPM or plexiform layers. Thus, the laminin $\gamma 1$ chain was confined to the vitread side of the retina.

In contrast to the laminin $\gamma 1$ chain, the laminin $\gamma 2$ chain was present in the interphotoreceptor matrix of rat and human retina. It was also present in the hyaloid vessels, and, to a limited extent, the intraretinal capillaries of the human. Some laminin $\gamma 2$ chain was also present in the outer plexiform layer of the rat; this immunoreactivity may reflect capillary-associated laminins. As for the laminin $\beta 3$ chain, previous reports have suggested a restricted distribution of the laminin $\gamma 2$ chain (Kalhmbi et al. (1992) *J Cell Biol* 119:679-693).

The laminin $\gamma 3$ chain was the most recently isolated of the growing family of laminins (Koch et al. (1999) *supra*). The tissue distribution of this chain was quite limited. However, it was most extensively expressed in the nervous system. The results showed the presence of the laminin $\gamma 3$ chain in a portion of the human and rat central nervous system. Prominent laminin $\gamma 3$ chain immunoreactivity was present in the interphotoreceptor matrix; notably, throughout the region of photoreceptor inner segments. In addition, there was marked laminin $\gamma 3$ chain immunoreactivity associated with the external limiting membrane in the rat and surrounding cell bodies within the outer and inner nuclear layers in the human. Finally, the laminin $\gamma 3$ chain was diffusely present in the outer plexiform layer, at least in the rat. As with the laminin $\alpha 3$, $\alpha 4$, and $\beta 2$ chains, it cannot be said conclusively that the laminin $\gamma 3$ chain immunoreactivity in the outer plexiform layer was concentrated at points of synaptic contacts in the outer plexiform layer. However, the laminin $\gamma 3$ chain was not associated with the vasculature present at the vitread side of the retina, and its pattern of expression was distinct from that. For laminin chains in the vasculature, such as the $\gamma 1$ chain. Therefore, it

was probable that the laminin $\gamma 3$ chain in the outer plexiform layer was contained within the matrix of the plexiform layer.

Together, these data suggest that the laminin $\gamma 2$ and $\gamma 3$ chains were the only known laminin γ chains in the IPM. Furthermore, the laminin $\gamma 3$ chain appears to be the only laminin γ chain found potentially associated with the synaptic regions of the outer plexiform layer in both rat and human.

Thus, in the IPM, seven laminin chains: $\alpha 3$, $\alpha 4$, $\alpha 5$, $\beta 2$, $\beta 3$, $\gamma 2$ and $\gamma 3$ were present. This was consistent with the presence of one previously isolated laminin, laminin 5 ($\alpha 3\beta 3\gamma 2$), as well as several novel laminin heterotrimers. If the other chains were to combine, there would be at least two such novel laminin trimers in the IPM: $\alpha 4\beta 2\gamma 3$ and $\alpha 5\beta 2\gamma 3$. In the matrix of the outer plexiform layer, these two trimers also appear to be present, as their component chains are present. In contrast, only one laminin chain, $\alpha 4$, is prominent in the matrix of the inner plexiform layer, suggesting that other, uncharacterized, β and γ chains may be expressed in the retina.

15 Example 2: RNA Expression

cRNA probes which recognize the RNAs encoding the eleven known laminin chains were used to catalog these RNAs in the retina and to localize them to particular cell types using *in situ* hybridization. As laminin trimers are assembled prior to secretion, the RNAs encoding all three chains of any given trimer should be present in the same cell.

20 *In situ* hybridization was performed as follows. Adult rat eye cups were dissected and fixed overnight at 4°C in 4% paraformaldehyde in PBS (pH 7.4), dehydrated, and embedded in paraffin. Fifteen micron-thick sections were cut and placed onto Probe-on Plus slides (Fisher). Human retina specimens were obtained as fixed transverse sections. Rehydrated rat sections or frozen human sections were then processed for *in situ* hybridizations as previously described (Libby et al. (1997) *supra*).

25 cRNA probes for the laminin chains were generated as previously described (Libby et al. (1997) *supra*). Probes for the laminin $\beta 1$ and $\beta 2$ chains and for cellular retinaldehyde binding protein were those used previously (Libby et al. (1997) *supra*). A cRNA probe for the laminin $\alpha 5$ chain (Miner et al. (1995) *supra*) was generated. cRNAs were labeled during transcription by the incorporation of digoxigenin-UTP (Boehringer Mannheim, Indianapolis, IN); 1 μ g/ml of cRNA was used for hybridization.

Laminin Alpha Chains

RNAs encoding the laminin $\alpha 1$ and $\alpha 2$ chains were not readily detected in the rat or human retina, suggesting that both of these RNAs were not abundant in the retina. However, for both chains, some RNA was detected in the inner nuclear layer. This may reflect
5 production of these two chains by components of the vasculature.

In contrast, the RNA encoding the laminin $\alpha 3$ chain was readily detectable in the rat and human retina. This expression agrees with the high expression levels of the laminin $\alpha 3$ chain in the retina from the human expressed sequence tag database. Interestingly, laminin $\alpha 3$ chain RNA was not localized to perinuclear sites. Rather, the RNA was in fibers coursing
10 through the inner and outer nuclear layers and the outer plexiform layer. This location was consistent with production of laminin $\alpha 3$ chain RNA by Müller cells.

The RNA encoding the laminin $\alpha 4$ chain was present in a pattern similar to that encoding the laminin $\alpha 3$ chain. The RNA appeared to be located in fibers coursing through the inner and outer nuclear layers, which were likely to be Müller cell processes. Unlike
15 laminin $\alpha 3$ chain RNA, there did seem to be perinuclear laminin $\alpha 4$ chain RNA in the inner nuclear layer, particularly of the human retina, suggesting that the source of the RNA encoding the laminin $\alpha 4$ chain was a cell whose nucleus resides in the inner nuclear layer. Müller cell nuclei were in this layer. Finally, in human retina, laminin $\alpha 4$ chain RNA was present in the ganglion cell layer, in what was presumed to be Müller cell endfeet.

Similar to the laminin $\alpha 1$ and $\alpha 2$ chain, RNA encoding the laminin $\alpha 5$ chain was not detectable within the rat retina. This suggests that the RNA encoding the laminin $\alpha 5$ chain was not abundant in the rat retina. In an example of species variation, RNA encoding the laminin $\alpha 5$ chain within the human neural retina of the human was detected. The pattern of expression for laminin $\alpha 5$ chain RNA in the human retina was similar to, albeit considerably
25 less intense than, that detected with a probe for laminin $\alpha 4$ chain RNA.

Together, the patterns of expression for the RNAs encoding the laminin α chains suggest that the laminin $\alpha 3$, $\alpha 4$ and $\alpha 5$ chain RNAs were expressed in the neural retina, consistent with the presence of laminin $\alpha 3$, $\alpha 4$ and $\alpha 5$ chain protein noted above. Specifically, they suggested that laminin $\alpha 3$, $\alpha 4$ and $\alpha 5$ chains were produced in the neural
30 retina and deposited in the matrices of the IPM and outer plexiform layer, and, in the case of the laminin $\alpha 4$ chain, the inner plexiform layer.

Laminin Beta Chains

RNA encoding the laminin $\beta 1$ chain was not highly expressed in the neural retina, as previously reported (Libby et al. (1997) *supra*). These data were consistent with the lack of laminin $\beta 1$ chain protein in neural structures within the retina.

5 It was previously shown that the laminin $\beta 2$ chain was expressed in the adult rat retina (Libby et al. (1997) *supra*). RNA encoding the laminin $\beta 2$ chain was present in fibers in the outer and inner nuclear layers of the rat. In the human retina, RNA encoding the laminin $\beta 2$ chain was present in what appear to be fibers in the inner and outer nuclear layers. It was striking at the external limiting membrane, and was also present in the ganglion cell layer. It had been previously ascribed that the laminin $\beta 2$ chain RNA was in the ganglion cell layer to Müller cell endfeet (Libby et al. (1997)). There was also perinuclear RNA present in and around some cell bodies in the inner nuclear layer, suggesting a cell in the inner nuclear layer, possibly the Müller cell, was a source of the laminin $\beta 2$ chain in the neural retina. Finally, as shown here, for the rat, and here for the human, this pattern of RNA expression was similar to that for cellular retinaldehyde binding protein, an authentic marker of the Müller cell (Bunt-Milam and Saari (1983) *J Cell Biol* 97:703-712).

10

15

Laminin $\beta 3$ chain RNA appears to be expressed in the adult rat retina. RNA encoding the laminin $\beta 3$ chain was located in fibers coursing through the inner and outer nuclear layers, in the outer plexiform layer, and at the outer limiting membrane. In another example of species variation, laminin $\beta 3$ chain RNA could not be detected within the human neural retina.

20 Together, these data suggested that, in both rat and human, the laminin $\beta 2$ chain was the prominent β chain expressed in the neural retina. In addition, the laminin $\beta 3$ chain appeared to be a component of the neural retina. Finally, the laminin $\beta 1$ chain was not likely 25 to be expressed in the mature neural retina.

Laminin Gamma Chains

The RNA encoding the laminin $\gamma 1$ chain could not be detected in the neural retina. This suggested that the laminin $\gamma 1$ chain protein in the internal limiting membrane was not derived from the neural retina. The laminin $\gamma 1$ chain in the internal limiting membrane must, 30 therefore, be derived from one of the non-neural retinal cells that contact it. Both astrocytes and the hyaloid vessels contact the internal limiting membrane and have been suggested as

sources for protein components of the internal limiting membrane (Sarthy and Fu (1990) *supra*; Sarthy (1993) *supra*).

RNA encoding the laminin $\gamma 2$ chain was consistently difficult to detect in the retina. However, the RNA was detectable in the inner nuclear layer of the human retina, and to a lesser extent, the rat retina.

In contrast, RNA encoding the laminin $\gamma 3$ chain was readily detected in both the rat and human retina. Laminin $\gamma 3$ chain RNA was expressed in a pattern that is similar to that for several other laminin chain RNAs. In fibers coursing through the outer nuclear layer, at the external limiting membrane, and in presumed Müller cell endfeet in the ganglion cell layer. The $\gamma 3$ chain was, therefore, a likely component of mature retinal laminin.

Thus, the expression patterns for the laminin chain RNAs detected in the neural retina demonstrated that RNAs encoding the laminin $\alpha 3$, $\alpha 4$, $\beta 2$, $\gamma 2$ and $\gamma 3$ chains are expressed in the rat and human retina; in addition, RNA encoding the laminin $\alpha 5$ chain was detected in human retina, and that encoding the laminin $\beta 3$ chain was detected in rat retina. Although slightly different, the basic distribution of all of these RNAs was the same: largely within fibers coursing through the inner and outer nuclear layers. RNAs for the laminin $\alpha 4$ and $\beta 2$ chains also appear to be present at perinuclear sites in the inner nuclear layer as well as within the ganglion cell layer. Together, these data suggested that the Müller cell is the source of these laminin chain-encoding RNAs. In addition, it supports that the retina produces two novel laminin trimers: laminin 14 ($\alpha 4\beta 2\gamma 3$) and laminin 15 ($\alpha 5\beta 2\gamma 3$).

Example 3: Biochemical Identification of Laminin 14 and 15 in the Retina

The protein and RNA localization data suggested that laminins 5, 14 and 15 were expressed in the neural retina. These findings were extended by isolating laminins, and their component chains, from the retina.

The biochemical isolation of laminin heterotrimers was performed as follows. Bovine eyes were obtained from Pel-Freez (Rogers, AR) and dissected to isolate the retina. About 50 retina were pooled, washed in PBS containing the protease inhibitors phenylmethylsulfonyl fluoride (150 mg/l) and N-ethylmaleimide (650 mg/l), frozen in liquid nitrogen, ground in a Waring blender and resuspended in 100 ml of 2 M urea, 0.5M NaCl, 10mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 5 mM N-ethylmaleimide, and 50mM Tris-HCl (pH 7.8), then stirred for 24 hours at 4°C. The retinal extract was cleared by

centrifugation at 30,000 g for 60 min, dialyzed in 0.5M NaCl and 50mM Tris-HCl (PH 7.8), then cleared by centrifugation at 100,000 g for 60 min. Glycoproteins were isolated by applying the extract to a Concanavalin-A-Sepharose column (Pharmacia, Piscataway, NJ). Unbound material was removed by washing with 0.5M NaCl, 5m. M CaCl₂, 5 mM MgCl₂ and 50mM Tris-HCl (pH 7.4). The column was washed with 10mM α-D-methylmannopyranoside in 0.5 M NaCl and 50 mM Tris-HCl (PH 7.4) and then eluted with 1 M α-D-methylglucopyranoside in 0.5 M NaCl and 50 mM Tris-HCl pH 7.4).

To isolate laminin 14 and laminin 15, the Concanavalin-A eluate was separated without sulphydryl reduction on a 3-5% polyacrylamide-SDS gel. After staining with Coomassie Brilliant Blue R-250 (Sigma), bands containing the high molecular weight proteins were excised, washed in 0.5 M Tris-HCl pH 6.8), incubated in SDS sample buffer containing 10% P-mercaptoethanol for 30 minutes at ambient temperature, and the different laminin chains were separated on a 5% polyacrylamide-SDS gel. Proteins were analyzed by protein transfer ("Western") blot analysis using an anti-laminin α4 chain antiserum (R17), an anti-laminin β2 chain antibody (D5), and an anti-laminin γ3 chain antiserum (R21).

The 380 kD protein isolated by this method was not reactive with any of the anti-laminin antibodies. Therefore, following digestion by the protease Lys-C, peptide fragments of this protein were sequenced using matrix-assisted laser desorption time-of-flight mass spectrometry (Chait and Kent (1992) *Science* 257:1885-1 894) performed on a Finnegan Lasermat 2000.

Although the presence of the laminin α3 chain protein on protein transfer blots of retinal extracts was demonstrated, it has been impossible to isolate any heterotrimeric laminins containing the laminin α3 chain from retinal extracts, and have, therefore, been unable to confirm biochemically the presence of laminins 5 (α3β3γ2) or 13 (α3β2γ3). This may reflect a relative dearth of these trimers in the retina, or a difficulty in extracting them in a native form. However, it has been previously shown that the laminin β2 chain is present in retinal extracts (Hunter et al. (1992) *Neuron* 8:399-413). In addition, laminins eluted from an anti-laminin β2 chain resin contain the α4 chain, demonstrating that the β2 chain is associated with at least this chain in the retina.

Retinal laminins were isolated from retinal matrix by chromatography on Concanavalin A-Sepharose followed by size fractionation on polyacrylamide gels. Two high-molecular weight components were selected from this purification scheme. Each was

reduced and separated on polyacrylamide gels. The first (band "A") resolved into components of approximately 190, 220, and 380 kD. Two of these proteins were identified immunologically as the laminin $\beta 2$ (190 kD) and $\gamma 3$ (220 kD) chains. The third did not react with any of the anti-laminin antibodies (e.g., anti- $\alpha 4$). The second high molecular weight component (band "B") resolved into components of approximately 190 and 220 kD. The 190 kD component consisted of both the $\alpha 4$ and $\beta 2$ chains, and the 220 kD component was identified as the $\gamma 3$ chain. No other chains were detected as components of this complex; therefore, band "B" consists of the novel laminin composed of $\alpha 4$, $\beta 2$, and $\gamma 3$ chains, which was termed laminin 14.

The high molecular weight of this protein suggested that band "A", was a laminin α chain, perhaps the laminin $\alpha 5$ chain. However, as antibodies did not react with this protein, it was excised from a polyacrylamide gel, digested, and microsequenced. The resultant fragments were compared to known laminin sequences, and all were identical to sequences within the laminin $\alpha 5$ chain (Table One), demonstrating that this third component is the laminin $\alpha 5$ chain. Therefore, band "B" consists of the novel laminin composed of $\alpha 5$, $\beta 2$, and $\gamma 3$ chains, which was termed laminin 15.

Table One

20	peptide 1 mouse laminin $\alpha 5$ (36-48)	AHPVSNAIDGTER AHPVSNAIDGTER
25	peptide 2 mouse laminin $\alpha 5$ (53-61)	WWQSPPLSR WWQSPPLSR
30	peptide 3 mouse laminin $\alpha 5$ (83-96)	FANSPRPD LWVLER FANSPRPD LWVLER
35	peptide 4 mouse laminin $\alpha 5$ (188-198)	TNTLLGHLMGK TNTLLGHLMGK
	peptide 5 mouse laminin $\alpha 5$ (797-810)	FGFNPLEF ENFSWR FGFNPLEF ENFSWR
	peptide 6 mouse laminin $\alpha 5$ (813-827)	LELEEAATPEGH AVR LELEEAATPEGH AVR
	peptide 7 mouse laminin $\alpha 5$ (2099-2107)	AGALLPAIR AGALLPAIR

peptide 8	KLIAQAR
mouse laminin α 5 (2640-2646)	KLIAQAR

Expression of Laminins 5, 14, and 15 During Retinal Development

5 It was previously shown that the laminin β 2 chain was expressed throughout retinal development (Libby et al. (1996) *supra*; Libby et al. (1997) *supra*), at first in the subretinal space, and subsequently in the interphotoreceptor matrix and the outer plexiform layer. In addition, it was recently shown that the laminin β 2 chain is critical for proper formation and function of synapses in the outer plexiform layer (Libby et al. (1999) *J Neurosci.* 19: 9399-10 9411). These observations were extended by examining the expression of potential partners for the laminin β 2 chain, i.e., components of laminins 14 and 15, during development of the interphotoreceptor matrix and outer plexiform layer. In the course of these experiments, it was also found that the components of laminin 5 (α 3 β 3 γ 2) were expressed in the developing retina. The expression of the components of laminins 14 and 15 were examined, as well as 15 those of laminin 5 (the laminin α 3, α 4, α 5, β 2, β 3, γ 2, and γ 3 chains) from postnatal day 0 (P0) through postnatal day 15 (P15). The appearance of these chains was compared with that for two components of the photoreceptor synapse, dystrophins and pdystroglycan.

At P0, few rod photoreceptors have differentiated in the rat retina, and the outer plexiform layer had not yet formed (and, therefore, no dystrophins are present). At this age, 20 the laminin β 2 chain is prominently expressed in the subretinal space, as previously reported at E2 1 (Libby et al., 1996, *supra*), and in fibers spanning the width of the retina, as are the other components of laminins 14 and 15, the laminin α 4, α 5, and γ 3 chains. In addition, the laminin α 3, β 3, and γ 2 chains are also expressed in these locations, and an antiserum against 25 laminin 5 displays similar immunoreactivity. These immunohistochemical data are consistent with the expression of laminins 14 (α 4 β 2 γ 3), 15 (α 5 β 2 γ 3), and 5 (α 3 β 3 γ 2) at P0. However, none of the laminin chains were concentrated in the region that will eventually become the outer plexiform layer.

At P5, the central portion of the retina had begun to elaborate an outer plexiform layer, in which dystrophins were expressed, whereas the peripheral portion had not. At this 30 age, the components of laminins 14 and 15 were still present in the subretinal space and in fibers spanning the thickness of the retina. In addition, in the central portion of the retina, these laminin chains were beginning to be concentrated in the developing outer plexiform

layer. Components of laminin 5 remained associated with the subretinal space and in fibers spanning the thickness of the retina. At P10, the entire retina had developed an outer plexiform layer, in which dystrophins were prominently expressed. Interestingly, another component of the adult photoreceptor synapse, β -dystroglycan, was not detectable at this age.

5 The components of laminins 14 and 15 (the $\alpha 4$, $\alpha 5$, $\beta 2$, and $\gamma 3$ chains) were concentrated in the developing interphotoreceptor matrix and the outer plexiform layer. In addition, laminin 5 immunoreactivity remained associated with the subretinal space and the outer plexiform layer. In addition, monoclonal antibodies against all three chains of laminin 5 ($\alpha 3$, $\beta 3$ and $\gamma 2$) were reactive, suggesting that laminin 5 expression continues.

10 At P15, the outer plexiform layer was beginning to reach maturity, as judged by the continued presence of dystrophins and now detectable levels of β -dystroglycan. In other respects, the retina at P15 is similar to the adult: the components of laminins 14 and 15, including the laminin $\alpha 4$, $\beta 2$, and $\gamma 3$ chains are prominently expressed in the interphotoreceptor matrix and outer plexiform layer, the $\alpha 4$ chain is prominent in fibers spanning the retina, and laminin 5 remains. Expression of one component of the outer plexiform layer, β -dystroglycan, appeared to lag behind the others. By P26, however, the expression closely mimics that of the adult.

15 In summary, the developing retina contained components of laminins 14 and 15 throughout the period of inter-photoreceptor matrix and outer plexiform layer formation. Initially, these chains were expressed in the subretinal space and in fibers spanning the thickness of the retina. With time, they became more restricted to, the interphotoreceptor matrix and outer plexiform layer, reflecting the distribution present in the adult. In addition, components of laminin 5 are expressed in the interphotoreceptor matrix and outer plexiform layer of the developing retina, but become somewhat restricted to the interphotoreceptor matrix by the time a mature morphology is attained. Remarkably, one component of the putative laminin-binding dystrophin complex, β -dystroglycan, is expressed relatively late in retinal synaptogenesis, well after the dystrophins and laminins.

Laminins in the immunophotoreceptor Matrix (IPM) and retinal synaptic layers

20 The immunohistochemical studies reported herein, on rat and human retina, show laminin chains $\alpha 3$, $\alpha 4$, $\alpha 5$, $\beta 3$, $\gamma 2$, and $\gamma 3$ surround inner segments, which are likely to reflect a location in the IPM. In the IPM, laminins may be important in maintaining the proper

mature environment for photoreceptors. The proposed role for laminins in the IPM, given that laminins are known to be involved in adhesion and that the IPM is thought to be important in retinal adhesion is in retinal adhesion. This is particularly likely for laminin 5, previously shown to be critical for dermal adhesion. It is described herein that
5 photoreceptors can adhere to recombinant laminin β 2 chain. It will now be possible to determine whether the heterotrimeric laminins in the IPM are involved in photoreceptor adhesion. Several laminin chains are also present in the mature plexiform layers. In particular, the laminin α 3, α 4, α 5, β 2, and γ 3 chains were expressed in the outer plexiform layer in a location not likely to be associated with the vasculature.

10 **Müller cells produce retinal laminins**

The RNA encoding the laminin chains that are expressed in the mature neural retina are located in cells that span the retina. This location was consistent with the production of laminins by Müller cells. Müller cell cytoplasm is spread across the retina (Rasmussen (1972) *J Ultrastruct Res* 39:413-429) and RNA is distributed throughout these processes. In
15 addition, it was shown that the distribution of RNA encoding CRALBP, in both rat and human retina (Libby et al. (1997) *supra*), is similar to that of the laminins: throughout the retina, in fibers coursing through the retinal cell layers. Together with the immunohistochemical data noted above, these data support a Müller cell source for laminins in the IPM and synaptic layers.

20 **Laminins in the nervous system**

In the peripheral nervous system, several cell types produce a variety of laminins. For example, the glial elements that wrap peripheral nerves, Schwann cells, have long been known to produce laminins, including at least one that contains the β 2 chain. Conversely, laminins are thought to be important during Schwann cell differentiation. Also in the
25 periphery, muscle cells appear to express several different laminin trimers on their surface, which are likely to be important in guiding innervating motor neurons to their synaptic targets in the muscle, as well as for stabilization of the synapse (Hunter et al. (1989) *Nature* 338:229-234). Importantly, one laminin chain, α 2, has been shown to be involved in muscular dystrophies: mutations in α 2 have been found in murine muscular dystrophies (Xu et al.,(1994) *Nat Genet* 8:297-302; Sunada et al. (1995) *Hum Mol Genet* 4:1055-1061) and in some cases of a human congenital muscular dystrophy (Helbling-Leclerc et al. (1995) *Nat*

Genet 11:216-218).

Similarly, in the central nervous system, laminins are present in a variety of areas, particularly during development. The cellular sources of their component chains include all three major cell classes of the central nervous system: glia, neurons, and neuroglial progenitors. Glial cells, including astrocytes, Bergmann glia, and Müller cells, are thought to be a major source of laminins in the adult and developing CNS (Libby et al. (1997) *supra*). Neurons may also produce laminins (Sarthy and Fu (1990) *J Cell Biol* 110: 2099-2108). Finally, it has been shown that the retinal neuroglial progenitor may be a source of laminins during development (Libby et al. (1997) *supra*).

The ability of all of the major neural cell types of the CNS to produce laminins is consistent with the profusion of roles that have been proposed for laminins in the CNS. Most notably, as with laminins in the peripheral nervous system, laminins in the CNS are thought to be involved with axon outgrowth, based upon the laminins known roles in axon outgrowth *in vitro* (reviewed in Sanes (1989) *Ann Rev Neurosci* 12:491-516; Liesi (1990) *Experientia* 46:900-907) and their distribution along many developing pathways (see, for example, Cohen et al. (1987) *Dev Biol* 22: 407-418; and Liesi and Silver (1988) *Dev Biol* 130:774-785; Zhou (1990) *Dev Brain Res* 55:191-201). Laminins are also thought to be involved with neuronal differentiation in the CNS. For example, it has been shown that retinal laminins containing the $\beta 2$ chain can promote rod photoreceptor differentiation *in vitro* (Hunter and Brunkent (1997) *Mol Cell Neurosci* 10:7-15). In addition, it has been shown that $\beta 2$ chain-containing laminins are vital during the differentiation of photoreceptors and their synapses *in vivo* (Libby et al. (1999) *supra*).

Novel laminin trimers in the central nervous system

Retinal basement membranes contain the laminin $\alpha 1$, $\alpha 5$, $\beta 1$, $\beta 2$, and $\gamma 1$ chains. In contrast, the neural retina has a different complement of at least seven laminin chains: $\alpha 3$, $\alpha 4$, $\alpha 5$, $\beta 2$, $\beta 3$, $\gamma 2$ and $\gamma 3$. Of these, it is probable that the $\alpha 3$, $\beta 3$, and $\gamma 2$ chains assemble to form laminin 5, although laminin 5 has not been purified from retinal extracts. However, together with the biochemical data, the expression data suggest that there are at least two novel laminin trimers, laminin 14 ($\alpha 4$ $\beta 2$ $\gamma 3$) and laminin 15 ($\alpha 5$ $\beta 2$ $\gamma 3$), in the CNS. The apparent loss of the $\beta 3$ chain in the adult outer plexiform layer suggests that there could be an additional novel laminin present, laminin 13 $\alpha 3$ $\beta 2$ $\gamma 3$.

Intriguingly, laminins 14 and 15 appear to be expressed in two locations: (1) within the inter-photoreceptor matrix, and (2) in the outer plexiform layer. The location of these laminins in the outer plexiform layer suggests that they may serve to stabilize retinal synapses, in a manner analogous to that suggested for $\beta 2$ -containing laminins, perhaps including laminin 11, at the neuromuscular junction. Laminins 14 and 15 are the first laminins that could be involved in formation or stabilization of synapses within the CNS.

5 Moreover, these laminins are present at the same location as two components of the dystrophin complex--dystrophins and β -dystroglycan. The ability to examine the presence of all known laminin chains has allowed the demonstration that laminins are, in fact, associated with dystrophin complexes at central synapses, just as they are at the neuromuscular junction.

10 However, as laminin expression precedes that of one component of the dystrophin complex (β -dystroglycan), it seems likely that it is not necessary to assemble the entire complex in order to stabilize laminins at the photoreceptor synapse.

The data describing the presence of laminin 5 during development suggests that this trimer may also be involved in retinal differentiation. This data, along with the data that suggest the presence of laminins 14 and 15 during development, provide support that laminins are critical components of the extracellular environment during differentiation of the nervous system. Laminins are also ubiquitously expressed in the vertebrate nervous system. All patents and references cited herein are incorporated in their entirety by reference. Other embodiments are within the following claims.

15
20

What is claimed:

1. A substantially pure preparation, comprising: a laminin wherein the laminin comprises laminin chain $\alpha 5$, laminin chain $\beta 2$, and laminin chain $\gamma 3$.
2. The preparation of claim 1, wherein the laminin is laminin-15.
- 5 3. A cell which comprises a nucleic acid encoding a laminin $\alpha 5$ chain, a nucleic acid encoding a laminin $\beta 2$ chain, and a nucleic acid encoding a $\gamma 3$ chain, wherein the cell is capable of producing laminin-15.
4. A composition comprising the protein preparation of claim 1 and a pharmaceutically acceptable carrier.
- 10 5. A method of isolating the preparation of claim 1, comprising:
obtaining a retinal tissue selected from the group consisting of retina interphotoreceptor matrix, retina outer plexiform layer, neural retina, Müller cell, a preparation of retinal neurons; and
isolating the preparation of claim 1.
- 15 6. A method of increasing retina immunophotoreceptor matrix stability, comprising:
administering an effective amount of the preparation of claim 1.
7. A method of increasing the stability of one or more retina photoreceptor components, comprising: administering an effective amount of the preparation of claim 1.
- 20 8. The method of claim 7, wherein the retina photoreceptor component is an outer segment, inner segment, cell body, or synapse.
9. A method of increasing retina adhesion, comprising: administering an effective amount of the preparation of claim 1.

10. A method of treating a disorder associated with retina degeneration, comprising: administering an effective amount of the preparation of claim 1.

11. The method of claim 10, wherein the disorder is selected from a group consisting of: rod dystrophy, rod-cone dystrophy, retinitis pigmentosa, macular degeneration, and
5 retinal detachment.

12. A method of increasing the stability of synapses, comprising: administering an effective amount of the preparation of claim 1.

13. The method of claim 12, wherein the synapses are selected from the group consisting of synapses of central nervous system and synapses of peripheral nervous system.

10 14. A method of stimulating a condition, comprising: administering an effective amount of a compound comprising the preparation of claim 1, wherein the condition is neuroregeneration, axon outgrowth, or formation of synapses.

15. The method of claim 14, wherein the synapses are selected from the group consisting of: synapses of central nervous system and synapses of peripheral nervous system.

15 16. A method of preparing an implant, comprising: coating the implant with the preparation of claim 1.

17. The method of claim 16, wherein the implant is selected from the group consisting of: an implantable tip, an implantable catheter, an artificial joint, a retinal implant, a timed releasing device, a neural cell growth guide, and an artificial tissue.

20 18. A method of increasing photosensitivity, comprising: implanting a tip coated with an effective amount of the preparation of claim 1 into an eye.

19. The preparation of claim 1, wherein the laminin is recombinant.

20. A method for producing laminin 15, comprising: expressing laminin chain $\alpha 5$, laminin chain $\beta 2$, and laminin chain $\gamma 3$, and producing laminin 15.

21. The method of claim 20, wherein the laminin chain $\alpha 5$, laminin chain $\beta 2$, and laminin chain $\gamma 3$ are co-expressed in a cell.

5 22. The method of claim 21, wherein the laminin chain $\alpha 5$, laminin chain $\beta 2$, and laminin chain $\gamma 3$ are expressed in different cells.

Amino Acid Sequence and Nucleotide Sequence Encoding Murine Alpha5 Chain

DLYCKLVGGPVAGGDPNQTIQGQYCDICTAANSNKAHPVSNайдГTERWWQSP
PLSRGLEYNEVNVTLDLGQVFHVAYVLIKFANSPRPDWVLERSTDGFHTYQPW
QFFASSKRDCLERFGPRTLERITQDDDVICTEYSRIVPLENGEIVVSLVNGRPGAL
NFSYSPLLRLDFTKATNIRLFLRTNTLLGHLMGKALRDPTVTRRYYYSIKDISIGG
RCVCHGHADVCDAKDPLDPFLQCACQHNTCGGCDRCCPGFNQQPWKPATT
SANECQSCNCNCHGHAYDCYYDPEVDRRNASQNQDNVYQGGGVCLDCQHHTGI
NCERCLPGFFRAPDQLDSPHVCRPCDCESDFTDGTCEDLTGRCYCRPNFTGE
AAACAEGYTDFPHCYPLPSFPHNDTREQVLPAGQIVNCDNAAGTQGNACRKDPR
LGRCVCKPNFRGAHCELCAPGFHGSPCHPCQCSSPGVANSLCDPESGQCMCRTG
FEGDRCDHCALGYHFPLCQLCGCSPAGTLPEGCDEAGRCQCRPGFDGPHCDRC
LPGYHGYPDCHACACDPRGALDQQCGVGGLCHCRPGNTGATCQECPGFYGFP
SCIPCHCSADGSLHTCDPTTGQCRCRPRVTGLHCDMCVPGAYNFPYCEAGSCH
PAGLAPANPALPETQAPCMCRAHVEGPSCDRCKPGYWGLASNPEGCTRSCDP
RGTLGGVTECQNGNGQCFCKAHVCGKTCAACKDGFGLDYADYFGCRSCRC
GGALGQGCEPKTGACRCPNTQGPTCSEPAKDHYLPLDLHHMRLEEEAATPEGH
AVRFGFNPLEFENFSWRGYAHMMAIQPRIVARLNVTSPDLFRLVFRYVNRGSTS
VNGQISVREEGKLSSCTNCTEQSQPVAFPPSTEPAFVTVPQRGFEPFVLNP
GIWA
LLVEAEGVLLDYVULLPSTYYEAALLQHRVTEACTYRPSALHSTENCLVYAHLP
LDGFPSAAGTEALCRHDNSLPRPCPTEQLSPSHPPLATCFGSDVDIQL
EMA VPQPG
QYVLVVEYVGEDSHQEMGVAVHTPQRAPQQGVNLHPCPYSSLCRSPARDTQH
HLAIFHLDSEASIRLTAEQAHFFLHSVTLVPVEEFSTFVEPRVFCVSSHGT
FPNPSS
AACLASRFPKPPQPIILKDCQVLPPLPDTQSQELSPGAPPEGPQPRPTAVDPN
AEPTLLRHPQGTVVFTTQVPTLGRYAFLLHGYZQVHPSFPVEV
LINGGRIWQGH
NASFCPHGYGCRTLVLCEGQTMLDVTDNE
LT
TVTVRVP
EGRWLWLDYVLIVPED
AYSSSYLQEEPLDKSYDFISHCATQGYHIS
PSSSF
CRNAATSLSLFYNN
GALPC
GCHEVGA
VSPTCEPFGGQCP
CRGHVIGRDCSRC
ATGYWG
FPNCRPCDC
GARLCD
ELTGOCICPPRT
VPPDCLV
CQP
QSG
CHPLV
GCEEC
NC
SG
PGV
QEL
TD
PTCD
MD
GQCRC
RPNVAG
RRCD
TCAP
GFY
G
P
SC
PC
DC
CHEA
GT
MAS
VCD
PLT
GQ
CH
KE
NVQGS
RC
DQ
CR
VG
TF
SL
DA
AN
PK
G
CT
RC
FC
FG
A
TER
CG
NS
NL
AR
HE
F
V
D
ME
GW
V
L
L
SS
D
R
Q
V
V
P
H
E
H
R
P
E
I
E
L
H
A
D
L
R
S
V
A
D
T
F
S
E
L
Y
W
Q
A
P
P
S
Y
L
G
D
R
V
S
S
Y
G
G
T
L
H
Y
E
L
H
S
E
T
Q
R
G
D
I
F
I
P
Y
E
S
R
P
D
V
V
L
Q
G
N
Q
M
S
I
A
F
L
E
L
A
Y
P
P
P
G
Q
V
H
R
G
Q
L
Q
L
V
E
G
N
F
R
H
L
E
T
H
N
P
V
S
R
E
E
L
M
M
V
L
A
G
L
E
Q
L
Q
I
R
A
L
F
S
Q
T
S
S
S
V
L
R
R
V
L
E
V
A
S
E
A
R
G
R
P
P
A
S
N
V
E
L
C
M
C
P
A
N
Y
R
G
D
S
C
Q
E
C
A
P
G
Y
Y
R
D
T
K
G
L
F
L
G
R
C
V
P
C
Q
C
H
G
S
D
R
C
L
P
Q
C
L
C
R
G
L
R
H
T
T
G
P
H
C
E
R
C
A
P
G
F
Y
G
N
A
L
L
P
G
N
C
T
R
C
D
C
S
P
C
G
T
E
T
C
D
P
Q
S
G
R
C
L
C
K
A
G
V
T
G
Q
R
C
D
R
C
L
E
G
Y
F
G
F
E
Q
C
Q
G
C
R
P
C
A
C
G
P
A
A
K
G
S
E
C
H
P
Q
S
G
Q
C
H
C
Q
P
G
T
T
G
P
Q
C
L
C
E
A
P
G
Y
W
G
L
P
E
K
G
C
R
R
C
Q
C
P
R
G
H
C
D
P
H
T
G
H
C
T
P
P
G
L
S
G
E
R
C
D
T
C
S
Q
Q
H
Q
V
P
V
P
G
K
P
G
G
H
I
H
C
E
V
C
D
H
C
V
V
L
L
D
D
L
E
R
A
G
A
L
L
P
A
I
R
Q
L
Q
G
I
N
A
S
S
A
A
W
A
R
L
H
R
L
N
A
S
I
A
D
L
Q
S
K
L
R
R
P
G
P
R
Y
Q
A
A
Q
Q
L
Q
T
L
E
Q
Q
S
I
S
L
Q
Q
D
T
E
R
L
G
S
Q
A
T
G
V
Q
G
Q
A
G
Q
L
D
T
T
E
S
L
G
R
A
Q
L
L
E
S
V
R
A
G
R
A
L
N
E
L
A
S
R
M
G
Q
G
S
P
G
D
A
L
V
P
S
G
E
Q
L
R
W
A
L
A
E
V
E
R
L
L
W
D
M
R
T
R
D
L
G
A
Q
G
A
V
A
E
A
E
A
Q
R
L
M
A
R
V
Q
E
Q
L
T
S
F
W
E
E
N
Q
S
L
A
T
H
I
R
D
Q
L
A
Q
Y
E
S
G
L
M
D
L
R
E
A
L
N
Q
A
V
N
T
T
R
E
A
E
E
L
N
S
R
N
Q
E
R
V
K
E
A
L
Q
W
K
Q
E
L
S
Q
D
N
A
T
L
Q
A
A
S
L
I
L
G
H
V
S
E
L
L
Q
G
I
D
Q
A
K
E
D
L
E
H
L
A
A
S
L
D
G
A

Figure 1A

WTPLLKRMQAFSPASSKVDLVEAAEAAHQKLNLQAINLSGIILGINQDRFIQRAV
 EASNAYSILQAVQAAEDAAGQALRQASRTWEMVVQRGLAAGARQLLANSSAL
 EETILGHQGRGLAQGRLQAAGIQLHNVWARKNQLAAQIQAQAMLAMDTSET
 SEKIAHAKAVAAEALSTATHVSQLQGMQKNVERWSQLGGLQQQDLSQVER
 DASSSVSTLEKTLPPQLLAKSRLENRGVHNASLALSANIGRVRKLIAQARSAASK
 VKVSMKFNGRSGVRLRPPRDLADLAAYTALKFHIQSPVPAPEPGKNTGDHFVLY
 MGSRQATGDYMGVSLRNQKVHWVYRLKAGPTTLSIDENIGEQFAAVSIDRTL
 QFGHMSVTVEKQMVEIKGDTVAPGSEGLLNLPDDFVFFYVGYPNSFTPPEPL
 RFPGYLGCIEMETLNEEVVSLYNFEQTFMMLTAVDKPCARSKATGDPWLTDGSY
 LDGSGFARISFEKQFSNTKRFDQELRLVSYNGIIFFLKQESQFLCLAVQEGLVLF
 YDFGSGLKKADPLQPPQALTAASKAIQVFLLAGNRKRLVVRVERATVFSVDQDN
 MLEMADAYLGGVPPEQLPLSLRQLFPSGGSGVRGCIKGKALGKYVDLKRLNTT
 GISFGCTADLLVGRMTFHGHGFLPLALPDVAPITEVVYSGFGFRGTQDNNLLYY
 RTSPDGPYQVSLREGHVTLRFMNQEVTQRFADGAPHYVAFYSNVTGVWLYY
 DDQLQLVKSHERTTPMLQLQPEEPSRLLLGGLPVSGTFHNFGCISNVFVQRLRG
 PQRVFDLHQNMGSVNVSVGCTPAQLIETSRTAQKVSRSSRQPSQDLACTTPWL
 PGTIQDAYQFGGPLPSYLQFVGISPNSHRNRLHLSMLVRPHASQGLLSTAPMSG
 RSPSLVFLNHHGFVAQTEGPGLQVQSRQHSRAGQWHRVSVRWMQQIQLV
 VDGSQTWSQKALHHRVPRAERPQPYTLSVGGPASSYSSKLPVSVGSGCLKKL
 QLDKQPLRTPTQMVGVTCPVSGPLEDGLFFPGSEGVTLELPKAKMPYVSLELE
 MRPLAAAGLIFHLGQALATPYMQLKVLTEQVLLQANDGAGEFSTWVTPKLCD
 GRWHRVAVIMGRDTLREVDTQSNHTTGRLPESLAGSPALLHGLSLPKSSTARPE
 LPAYRGCLRKLINGAPVNVTASVQIQQGAVGMRGCPSTLALSKQGKALTQRHA
 KPSVSPLLWH

1	gacctctact gcaagctgg tgggggtccg gtggctggcg gagatccaa tcagacaatc
61	caggcccagt actgtacat ctgtacagct gccaacagca acaaggcaca ccctgtgagc
121	aacgccccatcg atggcacgga ggcgtggtgg cagagcccc acctgtcccg tggcctggag
181	tacaatgagg tcaacgtcac actggacctg gcccagggtgt tccatgtggc ctatgtgc
241	atcaaggttt ccaactcacc tcggctgac ctctgggtgc tggagccgtc cacagacitc
301	ggtcacactt atcagccgtg gcagttctt gcctcctcca agagggatgt ttggagccgg
361	tttggacactt ggactctaga ggcacatcag caggacgc acgtcatctg caccacagaa
421	tactcgcaa tagtgcctt ggagaatggc gagatttgigg tgccttggt aaatgggc
481	cctggggct tgaacttctc ctactcacccg ttacttcgag acttcaccaa agccaccaac
541	atccgccttgc ggittctgcg aaccaacacg ctactggcc acctcatgg caaggccgtcg
601	cgggacccca cagtcaccccg caggtattat tacagcatca aagacatcag catgggtgg
661	cgcgttgtt gicatggcca cgcagatgtc tgcacgcga aggacccatt ggatccitc
721	aggctgcgt gtgcctgcca gcacaataca tgcggaggct ctgtgaccc atgctgtcca
781	ggctcaacc agcagccgtg gaagcccccc accacggaca ggcacatga gtgcagtc
841	tgcacattgcc acggccatgc ctacgactgt tactacgacc ctgagggtgg tcggcgaat
901	gccagccaga accaggacaa ctgttaccag ggtggagggt tgcctggta ttgcacat
961	cacactacgg gatcaactg tgacgctgt ctgcctggct tctccgtgc ccctgaccag
1021	cctctcgact cacctcatgt ctgcggccc tgcactgtg agtcacagatc cacggatgg
1081	acctgtgaag acttgacggg ccgcgtttac tgcaggccga acttcacagg agagctatgt
1141	gctgcctgcg ctgaggctca cacggacttc c:acactgct accctctgcc ttcatcttct

Figure 1B

1201 cacaatgaca cgagagaaca ggtgttccc gctggacaaa tcgtgaactg tgattgcaat
 1261 gctgcaggaa cccaggccaa tgcctgcccc aaggacccaa ggttggacg gtgtgtcgc
 1321 aaacccaact tccgggggtgc ccactgttag ctctgtgcic ctggatcca cggggcttagc
 1381 tgccaccat gccagtgtc cagccctggg gtagccaaca gcctctgtga cccagagict
 1441 ggccagtgca tgfccgcac cggcttgag gggacagggt gtgaccactg tgccctggc
 1501 tatttcact tccctctctg tcagctgtg ggctgcagcc cagcaggac cctgcctgaa
 1561 ggctgtgacg aggctggccg ctgcccagtgc cggacccgtt tgacggtcc tcactgtgac
 1621 ccatgccttc caggatacca tggtaatccc gactgtcacg ctgtgcctg tgaccctcg
 1681 gggccctgg atcaacagtg tggagtggc ggttttgtcc actgcccgtcc tggcaacaca
 1741 ggtgccacit gtcaggaatg tagccccggc ttctacggct tcccccagctg catccccctgc
 1801 cactgtctg ccgatggctc ctgcataca acctgtgacc cgacaacccg ccagtgttagg
 1861 tgcgacccc gagtgacagg actacattgt gatatgtgtg taccaggcgc ctataacttc
 1921 ccctactgtg aagctggctc ttgtcatcct gctggctgg ccccagccaa tccctggccctt
 1981 ccctgagacac aggctccctg tatgtccgg gctcacgtgg aaggccaaag ctgtgatcgc
 2041 tgtaaacctg ggtactgggg gctgagccgc agcaacccctg aaggctgcac acgctgcagc
 2101 tgtaaccac gaggcaccctt ggggtggagtt actgagtgcc agggcaatgg gcagtgtttc
 2161 tgcaaggctc acgtgtgtgg caagacctgt gcacgcctgca aggtggctt ctttggccctg
 2221 gattatgtcg actactttgg ctgcccgtac ttaggtgtg atgtgggtgg tgccctgggt
 2281 cagggctgtg aaccaaagac aggtgcctgc aggtgcggcc ctaacaccca aggacccacc
 2341 tgtagcggc cagcgaagga ccactactg ccagaccctgc accacatgcg gctggaaacta
 2401 gaggaggccg ccactcccgaa ggccacgcgtt gtacgccttg gtttcaaccc cctggagttt
 2461 gagaacttta gctggagagg ctacgcacac atgatggcta tccagccctag gatttgtggcc
 2521 aggctgaacg tgacccccc tgaccctttt cgactggttt tccgatatgt caaccgtgga
 2581 tcaaccacgc tgaatggca gatctctgtt cgtgaagagg gcaagcttc cagctgtacc
 2641 aactgcacag agcagagcca gccagtggtt ttccacccca gcaactgagcc tgccttgc
 2701 actgtgccttcc agagggccctt tggggaaaccc ttgtgtctga accccggcat ctggccctt
 2761 ctggcgtgagg ctgaagggtt actcttggac tacgtggtcc tactgcccag cacctactat
 2821 gaggeagctc tcctacagca tcgagtaacg gaggcctgta cctaccgtcc ctcagccctg
 2881 cactccacag agaactgtct tgctatgtt caccatcccc tggatggctt cccttcagca
 2941 gctggaaactg aggcctgtg tcggcatgac aacagccctgc cccggccctg ccccacagag
 3001 cagctcagcc cctcacacccc accgctggcg accctgttgc gcaactgtatgtt ggacatccag
 3061 ctgcagatgg ccgtgcctca gcctggccaa tatgtctcg tgggtggata tgcgggtgag
 3121 gattcacacc aagagatggg agtggctgtg cacacccctc agagagcccc ccagcaaggg
 3181 gtgcctcaacc tccacccctg cccatatacgc tccctgtgcc ggagtccggc tggggacacc
 3241 cagcatatc tagccatctt ccacccgttgc tctgaggcttgc gcatccggctt cacagctgag
 3301 caagctact tcttcctgtca cagcgttccacc ctgggttgc tggaggagtt cagttactgag
 3361 ttgtggagc cccgggttctt ctgtgtgagc agtcatggaa cttaacccca cagcgttgc
 3421 gctgttgcattt cccggatccca cccggatccca tccatccatccaa ggactgcccag
 3481 gtcctggccgc tgcctccggaa cctgcctctg actcgttgc accggatccctc accaggttgc
 3541 ccccccggagg gaccacagcc tccggcccca actggccgggtt atcctaatgc agaaccacc
 3601 ttgtggcc accccccccggg cacgggtggc ttcaccaccc aggtggccac cctggggccgc
 3661 tatgccttc tgcgtgcacgg ctaccaggccg gtccaccctt ccttcctgtt ggaggacttc
 3721 attaatgggtt gcccgcatttgc gcaaggccac gccaacgcctt gcttttgtcc tcatggttat
 3781 ggctgcgttgc ccctgggtt gttgtggaggtt cagacgttgc tggatgttac agacaaccc
 3841 ctccaccgttca ctgtgcgttgc gccagaaggcc cgggtggctt ggctggactt cgtacttatt
 3901 gtccctggagg atgtttacag ctccaggatttac ctccaagaggaggcccttggaa caaatccat

Figure 1C

3961 gacttcatca gccactgtgc caccaggc taccacatta gccccagcag ctcatctcca
 4021 ttctgcccga atgcccac ctccttgtct ctcttctaca acaacggggc cttcccttgt
 4081 ggctgccacg aggtgggtgc ctaagcccc acgtgcgaac ctttcggggg ccagtgtccc
 4141 tgccggggcc acgttattgg ccgtgactgt tcccgctgtg ccacccggcta ctggggtttc
 4201 cccaaactgca gcccctgtga ctgtggagcc cgcctgtgtg acgagatcac gggccagtgt
 4261 atctgtccac cacgcactgt tccccctgac tgcttggctc gccagccaca gagctttgg
 4321 tgccacccct tgggtggctg tgaggagtgt aactgcttag gggccggctt ccaggagctg
 4381 acggacccta cctgtgacat ggacagcggc cagtgcagat gcagacccaa ttttagcttgg
 4441 ctgtcgctgtg atacctgtgc cccgggcttc tattggctatc ctatgtgtgc cccctgtgac
 4501 tgccatgagg caggcaccat ggcttagcgtg ttttgacccca tcacaggcca atgcccattgc
 4561 aaggagaacg tgcaggggctc aagatgtgac cagtgtcgcc tggggacccctt ctccctggat
 4621 gctgctaaacc ccaaggggctg taccctgtgc ttctgttgc gggccacaga ggcgtgtgg
 4681 aactctaacc tcgcccggca tgagttcggtg gacatggagg gctgggtgt gttgaggcgt
 4741 gaccggcagg tggtaaaaaa cggacatcgg cctggatgttggc agctgtgtca cgcacatcg
 4801 cgctctgtgg ctgacactt ctcagatgtg tactggcagg ctccggccctc ctatctggga
 4861 gacagggtgt catctacgg tggaaaccctc cactatgaggc tgcactcaga gacccagcga
 4921 ggtgataatct tcattcccta cggagacccgg cccggacgtg tgctggcagg caaccaaattg
 4981 agcatcgccctt tccctggactt ggcgttaccctt ccggccctggcc aggttcacccg aggacacgta
 5041 cagctgttag agggaaacctt ccggcacttg gagactcaca accccgtgtc ccggagaagaa
 5101 ctcatgtgg tgctggccgg cctggaggcgtg ctgcagatcc gtgtcttctt ctgcagacc
 5161 tcttccagtg tctccctgtcg tagatggta ctggagggtgg ctggcggggc tggtaggggg
 5221 cctccagccca gcaatgtggaa actgtgtatg tggccctggcc actaccgtgg ggactctgtc
 5281 caggaatgtg cccctggctttaaccgggacc accaagggttgc ttttctttagg ccgtatgtgtc
 5341 cccctgtcgt gccatggcca ttcaatgcgc tggcttcctg gcttggcat ttgtgtggc
 5401 tgccagcaca acacagaagg ggaccaatgt gggcgtgtaa ggccctggctt tgctcagcgt
 5461 gatcccagta accctgcacccatgtgtg agtgcggccctt ggcccttggc agtgccttc
 5521 aataatttttgc cagacgggttgc cgtttttaaaa aatggccgaa cccatgtgttgc ctgcaggcga
 5581 ggctatgttgc tggcttcctg cggacgggtgt gcacccgttgc tttttggaa ccccttgggt
 5641 ctggcagctt cctgtcagcc ctgcggactgc akgcgttaatg gagaccccaa catgttcc
 5701 agtgcgttgc accccctgtac ggggtgcgttgc tggggctgttgc tccgtcacac cactggggcc
 5761 cactgtgaac gctgtgtcccc accgttctat ggcaatgttgc tttttggcagg caactgtcacc
 5821 cgggtgtact gttccctatg tgggacagaa accctgtgtatc cccagatgttgc acgctgttgc
 5881 tggcaaaatgc ggggtgtactgg acaacgttgc tggggctgttgc tggggatataatccgggttt
 5941 gagcaatgttgc accgttgcggcc cccatgtgttgc tttttggcagg ctggcaatggg ctccggatgtc
 6001 caccctcaga ggggtgttgc tcaatgttgc cccatgtgttgc tttttggcagg caactgtcacc
 6061 tggcccttgc gctactgggg cccatgtgttgc aatgggttgc gggcgttgc tttttggcagg
 6121 ggccactgttgc accccacacac gggccactgttgc acctgttgc tttttggcagg cggggaccc
 6181 tttttggcaggccatgttgc gcaatgttgc tttttggcagg caactgtcacc
 6241 atacactgttgc aatgtgttgc tttttggcagg caactgttgc tttttggcagg
 6301 ggggtgttgc tttttggcaggccatgttgc tttttggcagg
 6361 tggggccatgttgc tttttggcaggccatgttgc tttttggcagg
 6421 ccacccggccatgttgc tttttggcaggccatgttgc tttttggcagg
 6481 agccttcaac accccacacac gggccactgttgc acctgttgc tttttggcagg
 6541 ggccactgttgc tttttggcaggccatgttgc tttttggcagg
 6601 gtggcgttgc tttttggcaggccatgttgc tttttggcagg
 6661 gggatgttgc tttttggcaggccatgttgc tttttggcagg

Figure 1D

6721 ctgctctggg atatgcggac gcgtgaccctg gggcccccagg gggcagtggc agaggccgaa
6781 ctggccgaag cccagaggct gatggctcggt gtccaggagc agctgaccag ctctgggag
6841 gagaaccagt cattggccac acacattcgg gaccagctgg ctcagatga gtcggcctc
6901 atggatctc gtgaggccct gaaccaggcc gtaataccca cccgggaggc tgaggaactc
6961 aacagccgca accaggaacg ggtgaaggaa gccctgcaat ggaaacagga actgtccag
7021 gacaatgcca ccctgaaggc cacttcaa gcgtccgc tcacatcttggg ccatgtttct
7081 gagcttcgtc agggcataga ccaggctaag gaggacctag agcacctggc gcccaggctg
7141 gatggaggctt ggacaccctt actgaagagg atgcaggctt ttccccctgc cagcagcaag
7201 gtggacttgg tagaggctgc tgaggccac gtcagaagc tgaaccagct ggcaatcaac
7261 ctgtctggca tcacatcttgg catcaatcg gaccgttca tccagagggc tggaaagcc
7321 tccaatgcct acagcagcat cttcaggcc gcgtcaggctg ccgaggatgc ggcaggccag
7381 gcactgaggc aggccagcc cacatgggag atgggtgtc agcggggctt agcagctgg
7441 gcccggcagc ttttagccaa cagcagtggc ctggaggaga ccacatcttgg acaccagggg
7501 aggctgggccc ttgcctcaggc cgcgtcgcag gctgcggggc tccagcttca taatgtctgg
7561 gcccaggaaaga accagctgc agcccatgac caggaggcac aagccatgtc ggcacatggac
7621 acgagcggaga ccagtggagaa gattgctcac gccaaggctg tggctggca agccctcagt
7681 acggccaccc acgtgcgtc tcacatcttgg ggtatgcaga agaatgtgg aagggtggcag
7741 agccagctgg gaggccgtca aggccaggac ctgagccagg tggaaacggg tgcaagcagt
7801 tcagtgttca ccctggagaa gacattgcca cagctgtgg cccaaactgg cccgtcttag
7861 aaccgggggat ttcacaaatgc cagcctggct ttgcctgcca acattggctg tggcgcaag
7921 ctcatggccc aagccgggat tgcgcgcagc aagggtcaagg tggcatgaa gtcacatggg
7981 cgttcagggg tacgactgcg tccccacga gaccgtcgcg accttgcgtc gtacactgcc
8041 ctcaagtcc acatccagag cccagtggca gcccggcaac ctggcaagaa cacgggggac
8101 cacttgcgtc tgtacatggg cagccggcag gccactgggg actacatggg agtgtctcg
8161 cgtaatcaga aggtgcactg ggtgtacagg cttagggaaagg ctggcccccac aactctcagc
8221 atcgacgaga acatcggggat gcaatgttca gcccgtcagca tcgacaggac cctccagtt
8281 gcccacatgt ctgtcaccgt ggagaaacag atgggtcatg agatcaagg agacacggtg
8341 gcccctgggat gcaacttcac gcccctgaa cccctccat tccctggcta cctgggtgc
8401 attgagatgg aaacactgaa tgaggaggat gtcagcctt acaatttga gcaacccatc
8461 atgctggaca cggcagtgaa taaaccttgcgtc gtcgttgcac agggccacgg tgaccatgg
8521 ctcacagatg gtccttacatggatggcagtttggccgc gcatcgttgcgtt tgagaaggcag
8581 ttcagcaaca caaaacgcgtt tgaccaggat gtcgttgcgtt tgccctacaa tgggatcatc
8641 ttttccatca agcaagagat ccagtcttgcgtc tgccctggcag tgccaggaaagg caccctgg
8701 ctcttctatg acttcggcgtc tgccctgaaagg aaggccgacc cactgcagcc cccacaagcc
8761 ttgacggcag ccagcaaggc gatccaaatgtt ttcctatgg ctggcaatcg caaacgtgt
8821 ttgggtgtc tgaggccggc cactgtgttc agcgttagacc aggataacat gctggagatg
8881 gctgtatgcctt actacttggg aggdtgttca cctgttgcac tggcccttgcgtt
8941 ctcttccctt ccggaggctc tgccctgggy tgcgttgcac gatccatcg tggcccttgcgtt
9001 tacgtggacc tcaaaacgggtt gaacaccacg ggcgttgcac tggcccttgcgtt
9061 ctgtggac gcaaccatgac ttttcacggc cacggcttcc tggcccttgcgtt
9121 gtggcaccatca tcaaccgtt ggttgcgtt ggttgcgtt ttcgttgcac ccaggac
9181 aacactgtgtt attaccgtac ctcccccggat gggccgttacc aggtatccctt gagggagg
9241 cacgtgacac tccgtttat gaaccaagag gtggaaactc aaagggttgcgtt
9301 gtccttact atgttgcctt ctatgcaat gtcacaggat gtcgttgcgtt
9361 cagctacaac tagtaaagtctcatgagaga acaactccca tgctccaact acagcccgag
9421

Figure 1E

9481 gaaccctcac ggcttctcct gggaggcctg cctgtgtctg gtaccttcca caacttcagt
9541 ggctgcata gcaatgttt tgcacagcga ctgcgggac caccgcgtgt gtttgaccta
9601 caccagaaca tggggagtgt caatgtaaac gtaggctgtta caccagccca actcatcgag
9661 acctcaaggg ccacggctca gaaggttccc cggcgttagtc gacaacccag ccaggacct
9721 gcctgcacga caccctggct ccctggact attcaggatg cataccagt tgggggaccc
9781 ctgcccagt acctacagtt tggtttatc tctccgtccc acaggaatag gtcacccatc
9841 tccatgctt tcggccaca tgcggctcc cagggcctcc tgctctctac agccccatg
9901 tggggccgca gcccctcggtt ggtactcttt ctaaacatg gacacttgt cgacagact
9961 gagggccctg ggccccggct ccaggtccag agtgcacccgc actcacggc tggccagtg
10021 cacagggtgt ccgtccgctg gggaatgcag cagatccacg ttgtgggaa cggcagccag
10081 acctggagcc agaaggctct ccaccatcggtt ccccccaggc cagagcgcacc acagccctac
10141 accctctctg taggaggctt tcctggcagc agttacagtt ccaagctccc ttgtgttgt
10201 gggttcagcg gctgtctgaa gaaattacag ctggataagc agccactgag gaccccaacg
10261 caaatggtgg gggtcacacc ctgtgtctca ggccccctgg aagatggctt gttcttccca
10321 ggcagtgagg gagttgtcac attagagctc cccaaaggccca agatgcccta ttgtgagccctg
10381 gagctagaga tgcggccctt ggcaactgtt ggcctcatct tcacactggg ccaggccctg
10441 gccactccct acatgcagct gaagggtctg acagaacagg tcctgctgca ggcaaatgat
10501 gggcagggg agtttccac gtgggtgacc tacccttcaagc ttgtgtatgg acgggtggcac
10561 cgagtggcag tgatcatggg cagggacaca ctccggctgg aggttagacac acagagcaac
10621 cacaccacag gcccgttgcc agagagcttgc tgggttcc cagcacttgc acacccctgg
10681 agectgcaca agtcttcaac tgcctggccca gagctccctg cttaccggagg atgccttgagg
10741 aagctgtga tcaatggggc ccctgtcaac gtgactgtttt ctgtacaat ccagggggca
10801 gtggggatgc gggatgccc ctcaggaacc ctggactt ccaagcaggaaaggcac
10861 acccagagggc acggccaaagcc cagttgtctcc ccgttactt ggcattgagg gttccagac
10921 ctgggggtt gcctacactt tctatgaata acaagtcatt tctggttac actgtcttt
10981 agaggaaaag gactctgttag aacagat

Figure 1F

Amino Acid Sequence and Nucleotide Sequence Encoding Human Alpha5 Chain

SGVQLRTPRDLADLAAYTALKFYIQLQGPEPEPGQGTEDRFVMYMGSRQATGDYM
 GVSLRDKKVHWVYQLGEAGPAVLSIDEQFQAAVSLRTLQFGHMSVTVER
 QMIQETKGDTVAPGAEGLLNLRPDDFVFYVGYPSTFTPPPLRFPGYRCIEMD
 TLNEEVVSLYNFERTFQLDTAVDRPCARSKSTGDPWLTDSYLDGTGFARISFDS
 QISTTKRFEQELRLVSYSGLVFFLKQQSQFLCLAVQEGLVLLYDFGAGLKKAVP
 LQPPPPLTSASKAIQVFLGGSRKRVLVRVERATVYSVEQDNDELADAYYLGG
 VPPDQLPPSLRWLFTPPTGGSVRGCVKGKALGKYVDLKRLNTTGVSAAGCTADLLV
 GRAMTFHGHGFLRLALSNAVPLTGNVYSGFGFHSAQDSALLYRASPGLCQVS
 LQQGRVSLQLLRTEVKTQAGFADGAPHYVAFYSNATGVWLYVDDQLQQMKPH
 RGPPPELQPQPEGPPRLLLGLPESGTIYNFSGCISNVFQRLLGPQRVFQDLQQNL
 GSVNVSTGCAPALQAQTPGLPGRGLQATARKASRRSRQPARHPACMLPPHLRTT
 RDSYQFGGSLSSSHLEFVGILARHRNWPSLSMHVLPRSSRGLLLFTARLRPGSPSLA
 LFLSNGHFVAQMEGLGTRLRAQSRQRSPGRWHKVSVRWEKNRILLVTDGARA
 WSQEGPHRHQHQAEPHQPHTLFVGGLPASSHSSKLPVTVGFSGVKRLRLHGRP
 LGAPTRMAGVTPCILGPLEAGLFFPGSGGVITLDLPGATLPDVGLEVRPLAVT
 GLIFHLGQARTPPYLQLQVTEKQVLLRADDGAGEFSTSVPSPVLCDGQWHRLA
 VMKSGNVLRLEVDAQSNTVGPLAAAAGAPAPLYLGGLPEPMAVQPWPPAYC
 GCMRRLAVNRSVPAMTRSVEVHGAVGASGCPAA

1	tcaggggtgc agctgcgcac cccacgggat ctggccgacc ttgctgccta cactgccctc
61	aaggtttacc tgcagggccc agaggcctgag ctggggcagg gtaccgagga tcgccttttgt
121	atgtacatgg gcagccccc gcccactggg gactacatgg gtgtgtctct cgctgacaag
181	aagggtcact ggggtatca gctgggttag gccccccctg cagtccataag catcgatgag
241	gacattgggg acaatgtcgc agctgcacg ctggacagga ctctccagtt tggccacatg
301	tccgtcacag tggagagaca gatgatccag gaaaccaagg gtgacacgggt ggccccctggg
361	gcagaggggc tgctcaacct gcccacac gacttcgtct tctacgtcgg ggggtacccc
421	agtaccctca cggccccc tctgcttcgc ttccccggct accggggctg catcgatgatg
481	gacacgttca atgaggaggt ggttgcgc tacaacttcg agaggacctt ccagctggac
541	acggctgtgg acaggccttg tgcccttc aagtgcaccc gggacccgtg gctcacggac
601	ggcttacc tggacggcac cggcttcgccc cgeatcagct tcgacagtca gatcagcacc
661	accaagcgtc tcgagcagga gctgcccgtc ttgtcctaca gccccccgtcttcttcctg
721	aaggcagcaga gcccgttcc ttgtcctggcc gtgcaagaag gcagcctgt gctgttgtat
781	gactttgggg ctggcctgaa aaaggccgtc ccactgcacg ccccaaccggc cctgacactcg
841	gccagcaagg cgatccagg tttccgtctg gggggcagcc gcaaggctgt gctgggtgcgt
901	gtggagccggg ccacgggtta cagcggtggag caggacaatg atctggagct ggcgcaccc
961	tactacctgg ggggcgtgcc gcccggccag ctggcccccga ccgtccgtat gctcttcccc
1021	accggaggtc cagtcgtgg ctgcgtcaa ggcataagg ccctggccaa gtatgtggac
1081	ctcaaggccgc tgaacacgac agggtgtggc gcccggctgca ccggccgact ctgtgtgggg
1141	cggcccatga ctgttccatgg ccacggcttc ctgcgttgcgaa cgtggcaccy
1201	ctcaactggca acgttacttc cggcttcggc ttccacagcg cccaggacag tggccctgc
1261	tactaccggg cgtccccggg tgggtatgc caggtgtccc tgcagcaggg ccgtgtgagc
1321	ctacagcttc tgaggactga agtggaaaact caagcgggtc tggccatgg tgccccccat
1381	tacgtcgct tctacagcaa tgccacggga gtctggctgt atgtcgatga ccagctccag
1441	cagatgaage cccacccggg accacccccc gagctccagc cgcagcctga gggggccccc

Figur 2A

1501 aggctcctcc tgggaggcct gcctgagtct ggcaccattt acaacttcag tggctgcata
1561 agcaacgtct tcgtgcagcg gctcctggc ccacagcgcg tatttgatct gcagcagaac
1621 ctgggcagcg tcaatgttag caccggctgt gcacccgccc tgcaagccca gacccgggc
1681 ctggggccta gaggactgca gcccacccgc cggaaggcct cccgcccgcag ccgtcagccc
1741 gccccgcata ctgcctgcat gctgccccca caccctcagga ccacccgaga ctccctaccag
1801 ttgggggtt ccctgtccag tcacctggag ttgtggca tccctggccg acataggaac
1861 tggcccgatc tctccatgca cgtccctcccg cgaagctccc gaggccctct cctcttact
1921 gcccgtctga ggcccgccag cccctccctg ggcgccttcc tgagcaatgg ccacttcgtt
1981 gcacagatgg aaggcctcgg gactcggctc cgcccccaga gcccgcagcg ctccggcct
2041 gggcgctggc acaaggcttc cgtgcgcgtgg gagaagaacc ggatcctgtt ggtgacggac
2101 gggggccggg cctggagcca ggagggggccg caccggcagc accagggggc agagcacccc
2161 cagccccaca ccctctttgt gggccgcctc cccggccagca gcccacagtc caaacttcgg
2221 gtgaccgtcg ggttcagcgg ctgtgtgaag agactgaggc tgacacggag gcccctgggg
2281 gcccccacac ggtatggcagg ggtcacaccc tgcatcttgg gcccccttgg ggcggggctg
2341 ttcttcccag gcagcgaaaaa agttatctact tttagacctcc caggagctac actgcctgat
2401 gtgggcctgg aacttggaggt gggcccccctg cgatgcacccg gactgtatctt ccacttgggc
2461 caggccccgg a ccccccccta ctgcaggatgg cagggtgcagg agaagcaagt cctgcgtgg
2521 gccggatgacg gagcagggga gttctccacg tcagtgcaccc gcccctcgtt gctgtgttat
2581 gcccaggatggc acccgcttgc ggtgtatggaa a gcccggatggatggatggatggac
2641 gcccggatggc acccgatggc accacaccgt gggcccccctg ctggccggctg cagctggatgg
2701 ctgtacccctg gggccctggc tgagcccatgg cccgtgcagg cctggccccc cgcctactgc
2761 ggctgcatga ggaggctggc ggtgaaccgg tccccctgc ccatgactcg ctctgtggag
2821 gtccacgggg cagtggggc cagtggctgc ccagccgcct aggacacagc caacccggc
2881 ccctggatggc gcccctgcag ctgcctcaca cccggccctg tgctgcgcctc ataggatgtt
2941 atttggactc taagcttac ggggtgcacaga tttttttttttaa gaatgggtt taatgttatag
3001 ttctttaaac gaaagaataa aatactgcaa aatgttttaa ttttggcccc ttccacccat
3061 ttttaattgt gagagatgtt tcaaccaatca tcaactggttc tccctaaaaa attaaaaaagt
3121 aacttctgtt gaaaaaaaaa a

Figure 2B

Amino Acid Sequence and Nucleotide Sequence Encoding Murine Beta2 Chain

MEWASGEPEGRGRQQQPLPWELRLGLLSVLAATLAQAPSVDPGCSRGS
 CYPATGDLLVGRADRLTASSTCGLHSPQPYCIVSHLQDEKKCFLCDSSRP
 FSARDNPNSHRIQNVTTSFAPQRRTAWWQSENGVPMVTIQLDLEAEFHFT
 HLIMTFKTFRPAAMLVERSADFGRTWHVYRYFSYDCGADFPGIPLAPPRR
 WDDVVCESRYSEIEPSTEGERVIYRVLDPAPIPDYSSRIQNLLKITNLRVNL
 TRLHTLGDNLDPREIREKYYALYELVIRGNFCYGHASQCAPAPGAP
 AHAEGMVHGACICKHNTRGLNCEQCQDFYQDLPWHPAEDGHTHACRKC
 ECNGHTHSCHFDMAVYLASGNVSGGVCDCGCQHNTAGRHCEFCRPFFYR
 DPTKDMRDPAVCRPCDCDPMGSQDGGRCDSHDDPVGLVSGQCRCKEH
 VVGTRCQQCRDGFGLSASDPRGCQRCQNCNSRGTVPGSSPCDSSSGTCFC
 KRLVTGHGCDRCLPGHWGLSHDLLGCRPCDCDVGGALDPQCDEATGQC
 PCRQHMIGRRCEQVQPGYFRPFLDHLTWEAAEAAGQGVLEVVERLVTNRE
 TPSWTGPGFVRLREGQEVEFLVSLPRAMDYDLLLWEPQVPEQWAEL
 LMVQRPGPVSAHSPCGHVLPKDDRIQGMLHPNTRVLVFPRPVCLEPGISY
 KLKLKLIGTGGRAQPETSYGGLIDSIVLQPHVLVLEMFSGGDAAALERR
 TTFERYRCHEEGLMPSKAPLSETCAPLLISVSLIYNGALPCQCDPQGSLSS
 ECSPHGGQCRCRCPGAFGLRCDHCQRGQWGFNCRPCVCNGRADECDTHT
 LCEGTSGQCPCRPCAFGLRCDHCQRGQWGFNCRPCVCNGRADECDTHT
 GACLGCRDYTGGEHCERCIAGFHGDPRLPYGGQCRPCPCPEGPGSQRHFA
 TSCHRDGYSQQIVCHCRAGYTGLCEACAPGPFGDPSKPGGRCQLCECSG
 NIDPMMDPACDPHTGQCLRCLHNTEGPHCGYCKPGFHGQAARQSCHRCT
 CNLLGTDPRRCPTDLCHCDPSTGQCPCLPHVQGLNCDHCAPNFWNFTSG
 RGCQPCACHPSRARGPTCNEFTGQCHCHAGFGGRTCSECQELYWGDPGL
 QCRACDCDPRGIDKPQCHRSTGHCSRPCGVSGVRCDQCARGFSGVFPAC
 HPCHACFGDWDRVVQDLAARTRRLEQWAQELQQTGVLGAFESSFLNMQ
 GKLMVQAIMSARNASAASTAKLVEATEGLRHEIGKTTERLTQLEAELTA
 VQDENFNANHALSGLERDGFALNLTQLDQHLEILKHSNFLGAYDSIRH
 AHSQSTEAEERRANASTFAVPSPVSNSADTRRRTEVLMGAQKENFNRQHL
 ANQQALGRLSAHAHTSLTGINELVCGAPGDAPCATSPCGGAGCRDEDG
 QPRCGGLGCSGAAAPADLALGRARHSQAEQLRALVEGGGILSRVSETRR
 QAEAAQQRAQAALDKANASRGQVEQANQELRELIQNVKDFLSQEGADP
 DSIEMVATRVLDISIPASPEQIQRЛАSEIAEVRSLADVTILAHTMDVRR
 AEQLLQDAHRARSRAEGERQKAETVQAALEEAQRAQGAAQGAIRGAVV
 DTQNTEQTLQRVQERMAKEKSLSNAGERARQLDALLEALKRAGNSL
 AASTAEETAGSAQSRAAEKQLREQVGDQYQTVRALAERKAEGVLA
 QARAEQLRDEARDLLQAAQDKLQLRLQELEGTYEENERALEGKAAQLDG
 LEARMRSVLQAINLQVQIYNTCQ

1 aaaggccctc gagcttccaa gtaatcttg ctgtatctcc aagagtctgt catagcggtgg
 61 cactcaaacg aagccgtacg acctgaacca acctcttcgg cctgttgtcc aggggtctgg
 121 gtggnnngcg cctagtgggt ggcgcattc caaccctcgc tccccggctg ccaggcgact
 181 ggaaagtccg gcgtggataa atatgcacaa gattcggatt cacttgttc tggtggtcca
 241 gagtcgtca cccagaaccc atcctctggg taactgagta gccacagccc atttaatca

Figure 3A

Figure 3B

3061 actgttcatc cggtggcaact gcttctgcata tggccacgc tcacagtgtg cgcctgcacc
3121 agggcgccg gcccatgcgtg agggcatgtt aaggagacttc ggatgactgg aacagggttg
3181 ccggggaggg acaggcattt cttagatgggt cgtcaacctt cccctcgat ctgcacagggt
3241 acacggagcc tgatctgc agcacaatac tcgtggactc aactgtgagc agtgtcagg
3301 ttcttatcg gaccctccctt ggcaccctgc agaggacggc catactcagc cctgtcgag
3361 tgagtggagac acagaactctt aaccgggctt tgctctgggt gagccaaaaaa gctatgtgt
3421 caagccctaa ataccttaggc ytttgtctga agggtatcag gccttgatgg cctcaaccca
3481 tgtgtctgc tacagtccaa agtgtggagct tgaagctaag ctgcaccaca aattctact
3541 atgttaccat aggctgtatga tactagcccc actcgcgtgt ctttacctag gacctggttt
3601 ccaatggtc ttgcctctt ctccagatgt tgagtgcac gggcataactc atagctgcca
3661 ctgttgcacatg gctgtctacc tggcatctgg aaatgttaagt ggaggcgat ggcgtgggt
3721 tcagcacaac acagctggc gccattgtt gttctgcggg cccctctt accgtgaccc
3781 caccaggac atgcgggacc cagctgtgtg cgtcgtaaag gctggatig ggcgtgaggc
3841 tgantctcg aactagaact aggaacgtgg attatatgac gttccagga ttgggtgtgt
3901 cagggcttgg ggttagaacca gaacaggaa agggaggct caggatggc actgcgtatgg
3961 ggtgacatca tactctcctt ttctctcgat tttgtactgtt accctatggg ttctcaagat
4021 ggtgtcgct gtgattctca tgatgaccctt gtgttagggc tggcttcagg ccagtgtcgc
4081 tgcaaagaac acgtgggtgg cactcgcgtc cagcaatgcc ttgtatggctt ctgttgcact
4141 atgtcccgatg accctcgagg gtgcacgtt atgtgccttcc tgccctaaact cctgtgtcg
4201 cctttaaccc caggccctt gtcttgatg cagttgaacc tgctttact ccctaaaatg
4261 ggctgtttt cactacaggat tgccatgttta attcacgggg cacagtgcctt gggagctccc
4321 ctgtgtacitc cagtagtgga acctgtttt gcaaggctt ggtgacccgg catggctgt
4381 acccgctgtct ggtacgactg agggatctgg ggtcctggga tccctgggtt ttctcaaaag
4441 cacatgggca aagtcccgatg ggtggacact gagagccctag agtctagtcc ttggaaagacaa
4501 ggcgtgtc tggcaggatca agggctttaga ccagtggctt gggcttgc attcaccagg
4561 ccaagtggta aattgtctgac tacctgggg gttggcaagga ggtctgtcc tggcttccag
4621 caattccctt tcccttagctt ggccacttggg gcctgaggca tgacctgtc ggtctggcgtc
4681 cctgtgtacitc tgatgtggc ggtccttggg atcctcgtt gtttttggta cagggtgt
4741 ggaggtggat gggaggcga agcatggc tttgttaac cacagcattt ctcagggtgt
4801 atgaggccac cggtcgttgc cggccggcc aacacatgt tggccggcgc tgcaacaag
4861 tgccaggcttgg ctacttccgg ctttttctgg accattttaaac ctgggaggctt gaggctgccc
4921 aaggcactg ggagcactca tatgtatgtt gttgggtgtt agagaggagg ggttgggt
4981 ggtgtcttgg ggggtctagg ttgtatgttca gtttttttttgggg aggtcttgc acaggacatg
5041 gtgttttttttgg cttgtgtgg cagaagagac agtgggtcac ctgcacaccctt atctctgtt
5101 tgactgcatt gactcagggtt gcttgggtt gtagagccgc tgggtaccaaa ccgagagact
5161 ccgtctggta ctggccctgg ctttttctgg ctgcggagaag gtcaggaaatg ggatgttcc
5221 gtgcacccctt tgccttggc catggactat gaccgtgtc tggctgggaa gccccagggt
5281 agaccctgtg gtggctgttgc tttgtgttgcata ttctgggtt ggaaggccccc ttcctactgt
5341 ctttctcc caggccctt gcaatgggc agagctggaa ctgtatggc acggccgg
5401 ggcctgtgtc gtcacacgtc cgtggggca tttgtgttgc aaggatgacc gcatcagg
5461 gatgttccac cccaaacacca ggtgaggcgg ngggtttagga ttggccacag acctctgt
5521 agactgacat tggcgtgtgt tttttccctt ttaagtccctt cccctgggtt gtttttgc
5581 aggtccatgg ctgtgtactca cagggaaagac atagataaca catggccctgc tttctcaagg
5641 gtataagttt cagaaggca gacattttt ggtctgttac tccggaaacag cttttatgt
5701 gtgacagtgtg cagttggcgtt agatgttta ctggactgtt taagggttttgg tttatattt
5761 gaagtaattt ttccctgtat ctttttccctt actactctt gtttttgc tttcttgc

Figure 3C

5821 tctttctct tcctttctt actttttctt tctctactctt acttagtctaa acttatcttc
5881 tgctcttacc tctctcttc tctcaacctg agacagggtt tctctgtata gccccaggg
5941 gtcctggaac tcactac

20059807.doc

Figure 3D

Amino Acid Sequence and Nucleotide Sequence Encoding Human Beta2 Chain

MELTSTERGRGQPLPWELRLPLLLSvlaatlaQAPAPDVGCGSCYPATADLL
 VGRADRLTASSTCGLNQRQPYCIVSHLQDEKKCFLCDSDRRFSARDNPHTRIQN
 VVTSAFAPQRRAAWWQSQNGIPAVTIQLDLEAEFHFTLIMTFKTRPAAMLVERS
 ADFGRTWHVYRYFSYHCGADFPGVPLAPPRHDDVVCESRYSEIEPSTEGEVIY
 RVLDPAIPIPDPYSSRIQNLKITNLRVNLTRLHTLGDNLLDPREIREKYYYALYE
 LVVRGNCFCYGHASECAPAPGAPAHAEGMVHGACICKHNTRGLNCEQCQDFYR
 DLPWRPAEDGHSHACRKCDRHGHTSCHFDMAVYLGSNVSGGVCDCGCQHNT
 AWRHCELCRPFFYRDPTKDLRPAVCRSCDCDPMGSQDGGRCDSHDDPALGLV
 SGQCRCKEHVVGTRCQQCRDGFFGLSISDPSGCRRCQCNRGTVPGSTPCDPNS
 GSCYCKRLVTGRGCDRCLPGHWGLSLDLLGCRPCDCDVGGALDPQCDEGTGQC
 HCRQHMVGRRCEQVQPGYFRPFLDHLIWEAENTRGQVLDVVERLVTGETPSW
 TGSGFVRLQEGQTLEFLVASVPNAMDYDLLLRLEPQVPEQWAELELIVQRPGPV
 PAHSLCGHLVPRDDRIQGTLQPHARYLIFPNPVCLEPGISYKLHLKLVRTGGSAQP
 ETPYSGPGLLIDSLLPRVLVLEMFSGGDAAALERQATFERYQCHEEGLVPSKT
 SPSEACAPLLISLSTLIYNGALPCQCNPQGSSLSECNPQHGQCLCKPGVVGRRCDT
 CAPGYYYGFGPTGCQACQCSPRGALSSLCERTSGQCLCRTGAFGLRCDACQRGQ
 WGFPSRPCVCNGHADECNTHTGACLGCRDLTGGEHCERCIAGFHGDPRLPYG
 AQCRPCPCPEGPGSQRHFATTSCHQDEYSQQIVCHCAGYTGLRCEACAPGQFGD
 PSRPGGRCQLCECSGNIDPMMDACDPHQGQCLRCLHTEGPHCAHSKPGFHGQ
 AARQSCRCTCNLLGTNPQQCPSPDQCHCDPSSGQCPCLPNVQALAVDRCAPNF
 WNLTSGHGCQPCACLPSPEEGPTCNEFTGQCHCLCGFGGRTCSECQELHWGDPG
 LQCHACDCDSRGIDTPQCHRFTGHCTCRPGVSGVRCDQCARGFSGIFPACHPCH
 ACFGDWDRVVQDLAARTQRLEQRAQELQQTGVLGAFESSFWHMQEKLGIVQGI
 VGARNTSAASTAQLVEATEELRREIGEATEHTLTQLEADLTDVQDENFNANHALS
 GLERDRLALNLTRQLDQHLDLKHSNFLGAYDSIRHAAHSQSAEERRANTSAL
 AVPSPVSNASARHRTEALMDAQKEDFNSKHMANQRALGKLSAHTHTLSLTDIN
 ELVCGAQGLHHDRTSPCGGAGCRDEDGQPRCGGLSCNGAAATADLALGRARHT
 QAEQLRALAEGGSILSRVAETRRQASEAQRAQAAALDKANASRGQVEQANQEL
 QELIQSVKDFLNQEGADPDSIEMVATRVLELSIPASAECIQHLAGAIERVRSLAD
 VDAILARTVGDVRRAEQLLQDARRARSWAEDEKQKAETVQAEEAQRAQGIA
 QGAIRGAVADTRDTEQTLYQVQERMAERALESQAGERARQLDALLEALKLKR
 AGNSLAASTAETAGSAQGRAQEAEQLLRGPLGDQYQTVKALAERKAQGVLA
 QARAEQLPDEARDLLQAAQDKLQRLQELEGTYEENERALESKAAQLDGLEARM
 RSVLQAINLQVQIYNTCQ

1	ccgccccggtg ttgcgcctt cccagaatc cgctccggcc ttccttcctt ggcgcattc
61	ccaaactttgc tcaaaggcgc cggacttaa gctgtcgag ggaccgctgg acagacctgg
121	gaactgacag agggccctgga gggaaatagg ccaaagaccc acaggatgg gctgacctca
181	accgaaagag ggaggggaca gcctctgccc tgggaacttc gactgccccct actgctaagc
241	gtgtggctg ccacactggc acaggccccct gccccggatg tccctggctg ttcaggggaa
301	agctgctacc ccgccacggc cgaccctgtg gtggccgag ctgacagact gactgcctca
361	tccacttgtg gcctgaatgg ccggcagcccc tactgcatacg tcagtcacct gcaggacgaa
421	aagaagtgtc tcctttgtga ctccggcgc cccttccttg cttagagacaa cccacacacc

Figure 4A

481 catcgcatcc agaatgttagt caccagcttt gcaccacagc ggcgggca
541 tcacagaatg gtatccctgc ggtcacatc cagctggacc tggaggctga gttcatttc
601 acacacctca ttatgacattt caagacattt cgcctgctg ccatgttgtt cgaacgtca
661 gcagactttg gccgcacccg gcatgtgtac cgatattctt ctatactg tgggctgac
721 tccccaggag tcccactagc accccacagg cactggatg atgtatgttg tgagtccgc
781 tactcagaga ttgagccatc cactgaaggc gagggtatct atcgtgtct ggacctgac
841 atccctatcc cagaccccta cagtcacgg attcagaacc tggtaagat cacaaccta
901, cgggtgaacc tgactcgatc acacacgttg ggagacaacc tactcgaccc acggaggag
961 atccgagaga agtactacta tgcccttat gagctggatg tacgtggcaa ctgcttc
1021 tacggacacg cctcagatgt tgccatggcc ccagggcac cagccatgc tgagggcatg
1081 gtgcacggag ctgcatactg caaaacaaac acacgtggcc tcaactgcga gcagtgtc
1141 gatttctatc tgacactgc ctgggtccg gctgaggacg gccatagtca tgccgttagg
1201 aagtgtgatc ggcataggca cacccacaggc tgccacttc acatggccgt atacctcgga
1261 tctggcaatg tgagtggagg tggatgtatc ggcataccg ataaacacaggc gtggcgccac
1321 tgtgagctct gtccggccctt ctctaccgt gacccaacca aggacctgcg ggtacccggct
1381 gtgtgccgtt cctgtgattt tgacccatg ggttctcaag acgggtggatg ctgtgattcc
1441 catgatgacc ctgcactggg actggctcc ggcacgtgtc gctgcaaaga acacgtggatg
1501 ggcactcgctt gccagcaatg ccgtgtatgc ttcttggcc tcaactcagtg tgaccgtct
1561 ggggtccggc gatgtcaatg taatgcacgg ggcacagtgc ctgggagcac tccctgtgac
1621 cccaaacatgt gatcctgtta ctgcacaaatgt ctatgtactg gacgtggatg tgaccgtgc
1681 ctgcctggcc actggggctt gggcctgcac ctgcctggctt ggcggccctg tgactgcac
1741 gttggatgtt ctgtgatcc ccagtgtatc gaggacacag gtcacatgcca ctgcggccag
1801 cacatggatg ggcacacgtt tgacggatgtt caacccgtt acttccggcc tccctggac
1861 cacctaattt gggaggctga gaacacccga gggcaggatgc tgcgtggatg ggagccgtt
1921 gtgacccccc gggaaaactcc atccctggact ggctcaggatgt tgcgtgcactt acaggaaggt
1981 cagaccctgg agttccctgtt ggcctctgtt ccgcacgcga tggactatgtt cctgcgtct
2041 cgcttagatgc cccaggatccc tgagcaatgg gcagatgtgg aactgtattgtt gcacgcgttca
2101 gggcctgtgc ctgcacccatgtt cctgtgtggg cattttgtgc ccaggatgtt tgccatccaa
2161 gggactctgc aaccacatgc caggactgtt atatttctt atccctgtctt ccttgagctt
2221 ggtatctctt acaagcttca tctgtatgtt tgcggacacg gggaaatgtt ccacccgtt
2281 actccctact ctggacacttgc cctgccttactt gactcgttgc tgcgtgttcc cctgtccct
2341 gtgcttagata tggttagtgg gggatgtt gtcgcctgg agcgcacccg cacccttggaa
2401 cgcttaccaat gccatgatgg gggatgtt gtcgcctgg cccacacaa tttcccttgc tgaggccct
2461 gcaccccttc tcatcagctt gtccacccatc atctacaatgt gtccctgtcc atgtcgttgc
2521 aaccctcaatg gttcaactgtt ttctgtatgtt aaccctcatg gtggatgtt cctgtgtcaatg
2581 cctggatgtt ttggccccc tgcgttgcacatg tgcgttgcactt gtcactatgtt tttggccccc
2641 acaggctgtt aaccccttgc gtcacccatg ccacccgtt ccacccgtt ccacccgtt
2701 accatgtggcc aatgtctgtt tgcgttgcactt gtcactatgtt ccacccgtt ccacccgtt
2761 cgtggccatgtt ggggatccc tgcgttgcactt gtcactatgtt ccacccgtt ccacccgtt
2821 tgcacaccc acacaggatgc tgcgttgcactt gtcactatgtt gtcactatgtt
2881 gaaaggatgtt tgcgttgcactt ccacccgtt ccacccgtt ccacccgtt
2941 ccctgtccctt gtcactatgtt ccacccgtt ccacccgtt
3001 gatgtatattt cccacacatgtt tgcgttgcactt gtcactatgtt
3061 gaagcttgc gtcacccatgtt gtcactatgtt
3121 tgcgttgcactt gtcacccatgtt
3181 caatgcctgc gtcactatgtt

Figure 4B

3241 ttccatggcc aggctgccc gcagagctgt caccgctgca catgcaacct gctggcaca
3301 aatccgcgc agtgcgcattc tccgtaccagg tgccactgtg atccaagcag tggcagtgc
3361 ccatgcctcc ccaatgtcca ggcccgtact gttagaccgct gtgcggccaa ctctggAAC
3421 ctcaccagggtg gccatggttt ccagecttgt gcctgcctcc caagccccga agaaggcccc
3481 acctgcaacg agttcacagg gcagtggcac tgccgttgcg gcttggagg gcggacttgt
3541 tctgagtgcc aagagctcca ctggggagac cctgggtgc agtgcgcattgc ctgtgattgt
3601 gactctcggt gaatagatac acctcagtgt caccgcttca caggtaactg cacgtgcccgc
3661 ccagggggtgt ctgggtgtgc ctgtgaccagg tggcccggt gcttctcagg aatcttcct
3721 gcctgcccattc cctgcccattc atgcttcggg gattgggacc gagtggtgca ggacttggca
3781 gcccgtacac agcgcctaga gcagcggcgc caggagttgc aacagacggg tggctgggt
3841 gccttggaga gcagcttcgt gcacatgcgc gagaagctgg gcattgtgc gggcatcgta
3901 ggtggccgcac acacctcgc cgccttccact gcacagcttg tggaggccac agaggagctg
3961 cggcgtaaaa ttggggggcactgagcac ctgactcgc tcgaggcaga cctgacagat
4021 gtgcaagatg agaactcaa tgccaaaccat gcactaagtgt gtctggagcg agataggctt
4081 gcacttaatc tcacactgcgc gcagctcgcac cagcatctg acttgccta accatcaaacc
4141 ttccctgggtgt cctatgcacag cttccggcat gcccattagcc agtgcgcaga ggcagaacgt
4201 cgtgccaata cctcaggccct ggcagttactt agccctgtga gcaactcgcc aagtgcctcg
4261 catcgacacag aggcactgtat ggtatgtcg aaggaggact tcaacagcaa acacatggcc
4321 aaccagcggg cacttggcaatc gctctcgcc cataccacca ccttgaggcc gacagacata
4381 aatgagctgg tgggtgggc ccagggttgc catcatgatc gtacaaggccc ttgtgggggt
4441 gccggctgtc gagatgagga tggggcagccg cgctgtgggg gcctcagctg caatggggca
4501 gccccctacag cagacccatgc actggggccgg gccccgcaca cacaggcaga gtcgcagcgg
4561 gcactggcgc aagggtgtat cttccgcgc agatggctg agactcgctg gcaggcaac
4621 gaggcacacgc agcggggccca ggcagccctg gacaaggcta atgcttccag gggacagggt
4681 gaacaggcca accaggaact tcaagaactt atccagatgt tgaaggactt cctcaaccag
4741 gagggggctgt atccitgatag ctttgcataatg tggccacac ggggtgttgc gtcctccatc
4801 ccagcttcgc ctgagcgcgtt ccagcacctg gggggcgcga ttgcagagcg agtccggag
4861 ctggcagatg tggatgcgtt cttggcactgt actgtggggat atgtgcgtcg tgccggcag
4921 ctactgcagg atgcacggcg ggcacaggagc tgggtggggat atgagaaaca gaaggcagag
4981 acatgtacagg cagactgttggacggcccg cgggcacagg gtattggccca ggggtggccatc
5041 cggggggccag tggctgacac acgggacaca gggcagaccc tggatggatgt acaggagagg
5101 atggcagggtt cagagcgggc actgagcttgc gggatggaaa gggctggca gttggatgt
5161 ctccctggagg ctctgaaattt gaaacgggcac gggatggatgtc tggcagccct tacagcggaa
5221 gaaacggccag gcaatgtggccca ggggtgttgc caggaggctg agcagatgtt acggggctt
5281 ctgggtgtatc agtaccagac ggttgcggcc ctatgttgcgc gcaaggccca aggtgtgt
5341 gctgcacagg caaggccaga acaactgcgc gatggggctc gggacctgtt gcaaggccgt
5401 caggacaagc tgcagccgtt acaggaaatggatgtt gggacccatc atgaggaaaaa tgagcggc
5461 ctggagatgtt gggcggccatc gttggacgggg tggggccatc ggtgcgcag cttgcgtt
5521 gccatcaact tgcaggttgc gatctacaac acctgcgtt gggccatc gggccatc
5581 cccatgttccatc agcactgttgc cccatgttgc tttttttttt gggccatc
5641 ggcaggccccc ccaataaacc agtgcgttgc cccaaaaaaa aaa

Figure 4C

Amino Acid Sequence and Nucleotide Sequence Encoding Gamma3 Chain

MAAAALLGLALLAPRAAGAGMGACYDGAGRQRLPVFENAAFGRLAQASH
 TCGSPPEDFCPHVGAAGAGAHCQRCDAAADPQRHNASYLTDHSQDESTWWQS
 PSMAFGVQYPTSVNITRLGKAYEITYVRLKFTSRPESFAIYKRSRADGPWEPY
 QFYSASCQKTYGRPEGQYLRPGEDERVAFTSEFSIDISPLSGGNVAFSTLEGRPSA
 YNFEESPGLQEWTSTELLISLDRNTFGDDIFKDPKVLQSYYYAVSDFSVGGRC
 KCNGHASECPDVAGQLACRCQHNTTGTDCERCLPFFQDRPWARGTAEEAH
 LPCNCGRSEECTFDRELFRSTGHGCRCHICRDHTAGPHCERCQENFYHWDR
 MPCQPCDCQSAGSLHLQCDDTGTCAKPTVTGWKCDRCLPGFHSLEGGCRPCT
 CNPAGSLDTCDPRSGRCPCKENVEGNLCDRCRPGTFNLQPHNPAGCSSCFCYGH
 SKVCASTAQFQVHHILSDFHQGAEGWWARSVGSEHSPQWSPNGVLLSPEDEEE
 LTAPGKFLGDQRFSYGQPLILTFRVPPGDSPLPVQLRLEGTLAISLRHSSLGPQ
 DARASQGGRAQVPLQETSEDVAPPLPPHFQRLLANLTSLRLRVSPGPSPAGPVF
 LTEVRLTSARPGLSPPASWVEICSCPTGYTGQFCESCAPGYKREMPQGGPYASCV
 PCTCNQHGTCDPNTGIVCSHTEGPSCERCLPGFYGNPFAQQADDQCPCPCPGQ
 SACTTIPESGEVVCTHCPPGQRGRCEVCDDGFFGDPLGLFGHPQPCHQCQCSGN
 VDPNAVGNCDPLSGHCLRCLHNTTGDHCEHCQEGFYGSALAPRPADKCMPCSC
 HPQGSVSEQMPQCDPVTGQCSCLPHVTARDCSRCPGFFDLQPGRGCRSCKCHPL
 GSQEDQCHPKTGQCTCRPGVTGQACDRCQLGFFGSSIKGCRA
 CRCSPPLGAASAQ
 CHYNGTCVCRPGFEGYKCDRCHYNFLTADGTHCQQCPSCYALVKEETAKLKA
 RLTLEGWLQSGDCGSPWGPLDILLGEAPRGDVYQGHILLPGAREAFLEQMMG
 LEGAVKAAREQLQRLNKGARCAQAGSQKTCTQLADLEAVLESSEEILHAAAIL
 ASLEIPQEGPSQPTKWSHLAIEARALARSHRTATKIAATAWRALLASNTSYALL
 WNLLEGRVALETQRDLEDRYQEVQAAQKALRTAVA
 AEVLP
 EAESV
 LATVQQVG
 ADTAPYLALLASPGALPQKSRAEDLGLKAKALEKTVASWQHMATEAARTLQTA
 AQATLRQTEPLTMARSRLTATFASQLHQGARAALTQASSVQAATVTVMGART
 LLADLEGMKLQFPRPKDQAAALQRKADSVDRLLADTRKKTKQAERMLGNAAPL
 SSSAKKKGREAEVLAKDSAKLAKALLRERKQAHRRASRLTSQTQATLQQASQQ
 VLASEARRQELEEAERVGAGLSEMEQQIRESRISLEKDIETSELLARLGSLDTHQ
 APAQALNETQWALERLRLQLGSPGSLQRKLSLLEQESQQQELQIQGFESDLAEIR
 ADKQNLEAILHSLPENCASWQ

1 ccccgccagggaaggcgggttctggccggcc agcgcgcgggt ccgcgcacccac cctagccgac
 61 gggccggca gagcgcgcgg cgtcgggtgcc ctggaccatg gcggccggctg cgcttcgtct
 121 gggctggcg ctgctggcac cgcggccggc cggccgcggc atggccggt gctatgacgg
 181 cgcaggccgc cgcagccgt gcctgcgggt ttgcagaac gcggccgttg ggcggctcgc
 241 ccaggccctcg cacacgtgcgc gcagccgcgc cgaggacttc tgcacccacg tggccgcgc
 301 gggccgggg gtcattgcgc agcgctgcga cgccgcgcac cccagcgc accacaacgc
 361 ctcc taccc accgacttcc acaggccaggga cgagaggacc tggggcaga gccgtccat
 421 ggccttcggc gtgcagtacc ccacccgtt caacatcacc ctccgcctag ggaaggctta
 481 tgagatcag tatgtgaggc tgaagttcca caccagtcgc cctgagagct ttgcacatca
 541 caagegcgc cgcgcgcacg gcccattggga gcccattccag ttctacagcg ctcctgcca
 601 gaagacatc ggccggcccc agggccagta cctgcgcaccc ggcgaggacg agcgcgtggc
 661 ctctgcacc tctgagttca ggcacatc cccgctgagt ggcggcaacg tggccttc
 721 caccctggag ggcggccca ggcctacaa ctgcaggag agccctggc tgcaggatg

Figure 5A

781 ggtcaccagg accgaactcc tcatctct agacggctc aacacgttg gggacgacat
841 ctcaaggac cccaagggtgc tccagtccta ctattatgcc gtgtccgact tctctgtggg
901 cggcagggtgc aagtgcacg ggcacgcag cgagtgcggc cccgacgtgg caggccagtt
961 ggcctgcggg tgccagcaca acaccacccg cacagactgt gagcgcgtcc tgcccttctt
1021 ccaggaccgc cctggggccc ggggcaccgc cgaggctgcc caccgatgtc tgccctgcaa
1081 ctgcagtggc cgctccgagg aatgcacgtt tgatcgggag ctctccgca gcacaggcca
1141 cggcggggcgc tgcaccaact ggcgtgacca cacagctggg ccacactgtg agegtgtca
1201 ggagaatttc tatcaactggg accccggat; ggcacgtccag cccctgtact gccagtcggc
1261 aggctcccta caccctccat ggcacgtac acggcacatgc gcctgcaagc ccacagtgac
1321 tgctgaaag tgtgacccgt gtctggccgg gtccactcg ctcagtgagg gaggctgcag
1381 accctgcact tgcaatcccg ctggcagcct ggacacctgt gaccccgca gggggcgctg
1441 cccctgcaaa gagaatgtgg aaggcaacct atgtgacaga tgctgcccgg ggacccttaa
1501 cctgcageccc cacaatccag ctggctgcag cagctgttc tgctatggcc actccaagg
1561 gtgcgcgtcc actgcccagt tccagggtca tcacatccctc agegattcc accaggggagc
1621 cgaaggctgg tggccagaa gtgtgggggg ctctgagcac tccccacaat ggagccaaa
1681 tggggtcctc ctgagcccaag aagacgagga ggaggtcaca gcaccaggaa agttctggg
1741 agaccagcgg tttagtgcata ggcagccct catactgacc ttccgggtgc ccccccgggaa
1801 cccccactc cctgtacagc tgaggctgga agggacaggc ttggccctgt cccgtaggca
1861 ctctagccctg tctggccccc aggtgcccag ggcacccatgg gggaggtagag ctcaaggatcc
1921 actgcaggag acctccgagg acgtggcccc tccactgccc ccctccact tccagcggct
1981 cctcgccaaac ctgaccagcc tccgcctcccg cgtcagtc cggcccaagee ctgcgggtcc
2041 agtgtccctc actgagggtcc ggctcacatc cggccggccca gggcttcccg cggccaccc
2101 ctgggtggag atttgtcat tccctactgg ctacacgggc cagttctgtg aatctgtgc
2161 tccgggatac aagagggaga tgccacaggg gggttccat ggcacgttg tccctgcac
2221 ctgttaaccag catggcacct gtgacccaa cacaggatc tgcgtgcac gccaccatac
2281 cgagggccca tccgtgaaac gtcgtttggc aggttctat ggcaaccctt tggggccca
2341 aacccgacgac tgccagccct gtccctggcc tggccagtcg gcctgtacga ccaccccaaga
2401 gagcggggag gtgggtgtta cccactgccc cccggggccag agagggcgcc gctgtgagg
2461 ctgtatgtat ggcttttttgg gggacccgt gggcttccctt gggcacccttcc acgcctgcca
2521 ccagtgcctc tgcgtgggaa acgtggaccc caatggctg ggcaactgtg accccctgtc
2581 tgccactgc ctgcgtgc tgccacaacac cacgggtgac cactgtgagc actgtcagga
2641 aggcttctac gggagcgc cccactgc tccctcccg accccgacac aaatgcacgc ctgcagctg
2701 tcaacccacag ggctcggtca tgagcagat gcccgtgcac ccagtgcacag gcaatgtc
2761 ctgcctgcct catgtactg cacggactg cagccgtgc tacctggct tcttcgact
2821 ccagcctggg agggctgcc ggagctgaa gtgtcacca ctggctccc aggaggacca
2881 gtgcctccca aagactggac agtgcacccgt ccccccagggt gtcacaggcc aggctgtga
2941 caggtgcctc tgggtttct tccctccatc aatcaaggcc tgccggccct gcaggtgc
3001 cccactggc gtcgcctgg cccagtgcca ctataacggc acatgcgtgt gcaggccctgg
3061 ctgcaggggc tacaatgtg accgcgtgcctt cttccacgg cagacggcac
3121 acactgcctc caatgtccgt cctgtacgc cttggtaag gaggagacag ccaagctgaa
3181 ggccagactg acitgtacgg aggggtggc ccaagggtcc gactgtggca gcccctgggg
3241 accactagac attctgtgg gagaggcccc aaggggggac gtcaccagg gcaatcacct
3301 gcttcagggt gtcggggaaag cttccctggaa gcaatgtat ggctcgagg gtgtgtcaa
3361 ggccggccgg gggcggccgg gggcggccgg gggcggccgg gggcggccgg
3421 ccagaagacc tgcacccagc tggcagaccc ggaggcagtg ctggagtccctt cggaaagagga
3481 gattctgtcat gcagctgcctt ttcgtggatt cctcggaaag gtcggccatca

Figure 5B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/18948

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/2, 8, 12; 495/825, 471, 69.1, 252.3, 320.1, 71.1, 71.2; 590/412

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,610,031 A (BURGESON ET AL) 11 March 1997 (11/03/97), see entire document.	1-22

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Z"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

09 AUGUST 2001

Date of mailing of the international search report

26 SEP 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-8280

Authorized officer

PREMA MERTZ

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

Internal application No.
PCT/US01/13945

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):

C07K 1/14, 14/47, 14/475; A61K 88/16, 88/17, 88/18; C12N 5/10, 15/12, 15/63, 15/64

A. CLASSIFICATION OF SUBJECT MATTER:
US CL :

514/2, 8, 12; 435/325, 471, 69.1, 252.5, 320.1, 71.1, 71.2; 530/412

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

WEST, CAS ONLINE, CAPLUS, MEDLINE
search terms: laminin-15, laminin alpha₅, laminin beta₂, laminin gamma₁, recombinant production, isolation, administration, therapy, method, implant, photoreceptor, photosensitivity