MCA572- Neural Networks and Deep Learning V MCA 23-09-2024

Regular lab Question - 2

1. Exploring Activation Functions in Neural Networks

Objective:

To explore and compare different activation functions used in artificial neural networks and understand their impact on the output of a neural network.

Scenario:

You are tasked with implementing and visualizing various activation functions to observe how they transform inputs and affect the output. You will also train a simple neural network using these activation functions and evaluate their performance.

Lab Tasks:

- 1. Implement and Visualize Activation Functions:
 - o Implement the following activation functions in Python:
 - Step Function
 - Sigmoid Function (Binary and Bipolar)
 - Tanh Function
 - ReLU Function
 - Visualize each activation function using matplotlib/seaborn/bokeh to observe how they map input values to output values.

2. Implement a Simple Neural Network:

- Create a simple neural network with one hidden layer using each activation function (sigmoid, tanh, and ReLU).
- Train the network on a binary classification task (e.g., XOR problem) using a small dataset.
- Compare the performance of the neural network with different activation functions.

Program Evaluation Rubrics

Evaluation Criteria	
5 marks	C1-Implementation, Correctness and Complexity
2 marks	C2-Documentation and Visualization
3 marks	C3-Concept Clarity and Explanation

General Instructions

- 1. The file you have to save with your name, last 3 digits of register number and program number "Aaron_201_Lab1".
- 2. The implemented code you have to upload in Github and in the Google Classroom in the given scheduled time.
- 3. Failure to upload within the allotted time will result in the loss of all marks for the corresponding lab exercise.