Tutorial 04

1. In this problem we consider the vector space \mathbb{R}^n of all real-valued column n-tuples, for n=3 and n=4, with the usual (component-wise) addition and scalar multiplication operations. For each of the cases below, determine whether or not the vector \mathbf{w} can be expressed as a linear combination of the other two vectors, \mathbf{v}_1 and \mathbf{v}_2 .

(a)
$$\mathbf{w} = \begin{pmatrix} 2 \\ -1 \\ 1 \\ -3 \end{pmatrix}$$
, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

(b)
$$\mathbf{w} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$
, $\mathbf{v}_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$.

- 2. (Problem 4 in Tutorial 03) Consider \mathbb{R}^3 with the usual (component-wise) addition and scalar multiplication operations. Show that the linear span of the vectors (1,0,0), (1,1,0), (0,1,1) is \mathbb{R}^3 itself.
- 3. Define $P_2(\mathbb{R}) \subset C^{\infty}(\mathbb{R})$, or more simply P_2 , as the set of all real polynomials of degree 2 or less; i.e.,

$$P_2(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : f(x) = a_0 + a_1 x + a_2 x^2, x \in \mathbb{R} \text{ for some real } a_0, a_1, a_2 \}.$$

Show that the linear span of the vectors (or functions) $f_1(x) = 1$, $f_2(x) = 1 + x$, and $f_3(x) = x + x^2$, where $x \in \mathbb{R}$, is P_2 itself.

- 4. If you compare your solutions to Questions 2 and 3 you will note some similarities. From the perspective of vector spaces (adding and scalar multiplying elements), how can you describe the relationship between \mathbb{R}^3 and P_2 ?
- 5. Let **V** be a vector space and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \in \mathbf{V}$ $(n \ge 2)$. Show that if $S_{(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)} = S_{(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1})}$, then $\mathbf{v}_n \in S_{(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1})}$.
- 6. In class we have seen that if $\mathbf{v}_1, \dots, \mathbf{v}_p$ and \mathbf{w} are vectors in \mathbb{R}^n , then we can convert the question "Is \mathbf{w} a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$?" into a question "Does this system of linear equations have a solution?".
 - (a) Let $\mathbf{w} = (1, 3, 5, 3)$, $\mathbf{v}_1 = (2, 4, 3, 0)$, $\mathbf{v}_2 = (1, 1, -2, -1)$, $\mathbf{v}_3 = (0, 2, 7, 3)$. What system of linear equations does the question "Is \mathbf{w} a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 ?" correspond to?

(Note: You do not have to solve the system of linear equations — the purpose of this question is just to write them down.)

(b) Conversely, consider the system of linear equations below:

Which "linear combination" problem does this system correspond to?

7. Let

$$\mathbf{W} = \left\{ (x, y, z) \in \mathbb{R}^3 : 3x - 2y + z = 0 \right\}.$$

- (a) Show, with proof, that **W** is a subspace of \mathbb{R}^3 .
- (b) Let $\mathbf{v}_1 = (1, 0, -3)$ and $\mathbf{v}_2 = (0, 1, 2)$. Check that $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{W}$.
- (c) Show that $S_{(\mathbf{v}_1,\mathbf{v}_2)} \subset \mathbf{W}$.
- (d) Check that $(4,5,-2) \in \mathbf{W}$.
- (e) Write (4,5,-2) as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .
- (f) Show that $\mathbf{W} \subset S_{(\mathbf{v}_1,\mathbf{v}_2)}$.
- (g) Show that $\mathbf{W} = S_{(\mathbf{v}_1, \mathbf{v}_2)}$.
- 8. For each of the following sets of vectors, determine if they are linearly dependent or linearly independent.
 - (a) $\{(1,2), (5,1), (1,0)\}\subset \mathbb{R}^2$.
 - (b) $\{(2,1,3),(-1,2,1),(0,4,5)\}\subset\mathbb{R}^3$.
 - (c) $\{(2,0,3),(-1,2,1),(0,4,5)\}\subset\mathbb{R}^3$.
 - (d) $\{(1,2,4), (0,0,0), (2,3,1)\} \subset \mathbb{R}^3$.
 - (e) $\{\sin(x), \cos(x), 1\} \subset C^{\infty}(\mathbb{R}).$
 - (f) $\{\sin^2(x), \cos^2(x), 1\} \subset C^{\infty}(\mathbb{R}).$
 - (g) $\{1, x, x^2\} \subset C^{\infty}(\mathbb{R})$.
 - (h) $\{(2,3), (3,5)\} \subset \mathbf{W}_2$
 - (i) $\{(2,3), (1,1)\}\subset \mathbf{W}_2$

Notes for Problem 8:

- (1) When we write something like "1" for an element of $C^{\infty}(\mathbb{R})$ we mean the constant function 1. That is, the function f(x) defined by f(x) = 1 for all $x \in \mathbb{R}$. Similarly for any other number.
- (2) When trying to decide of a set of functions is linearly dependent or linearly independent, as in (e)–(g), one way to go from an equation like $\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0$ to equations with numbers is to plug in different values of x.
- (3) In parts (h) and (i) of question 8 the space \mathbf{W}_2 is the "weird" vector space introduced in class. Namely, as a set $\mathbf{W}_2 = \{(x,y) : x,y \in \mathbb{R}, x,y > 0\}$ with operations $(x_1,y_1) + (x_2,y_2) = (x_1x_2,y_1,y_2)$ and $\alpha \cdot (x,y) = (x^{\alpha},y^{\alpha})$.