作业 5: 贝叶斯计算: MCMC 算法

姓名(学号)

第 1 题: Rejection Sampling

假设总体分布为 $Y \sim N(\theta, 1)$, 先验分布为 $\theta \sim \text{Cauchy}(0, 1)$ 。

- (一) 记 $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$ 为来自总体 $N(\theta, 1)$ 的样本观察值, 写出 θ 的后验密度函数 $p(\theta|y)$;
- (二) 现假设参数真值为 $\theta = 2$,即总体 $Y \sim N(2,1)$,请从总体 N(2,1) 中随机抽取 n = 5 个样本观察值(Seed number 取 123456);
- (三)根据(二)中所抽取的样本观察值和(一)中的后验密度函数 $p(\theta|y)$,应用 Rejection Sampling 抽样法,试从后验分布 $p(\theta|y)$ 中抽取 1000 个样本(提示:源密度 $g(\theta)$ 可以取 $N(\bar{y},s^2)$,常数取 $c=\max[p(\theta|y)/g(\theta)]$);
 - (四)根据(三)中所抽取的后验分布样本值,计算 θ 的贝叶斯点估计,并给出估计误差;
 - (五)根据(三)中所抽取的后验样本值,做出后验密度函数 $p(\theta|y)$ 的直方图和密度曲线图。

第2题: Gibbs Sampler

假设总体分布为 $Y \sim N(\mu, \sigma^2)$, μ 和 σ^2 未知。先验分布为

$$\mu | \sigma^2 \sim N(\mu_0, \frac{\sigma^2}{k_0}), \ \sigma^2 \sim Inv - \chi^2(\nu_0, \sigma_0^2).$$

(一) 记 $\mathbf{y}=(y_1,y_2,\ldots,y_n)^T$ 为来自总体 $N(\mu,\sigma^2)$ 的样本观察值,试求 μ 的条件后验分布 $p(\mu|\sigma^2,\mathbf{y})$ 和方差 σ^2 的后验分布 $\sigma^2|\mathbf{y}$;

- (二) 试从总体 $N(10,5^2)$ 中随机抽取 n=50 个样本观察值(即总体的参数真值为 $\mu=10,\sigma=5$)(取 Seed number 为 123456);
- (三)根据 (二)中所抽取的样本值,应用 Gibbs 抽样法,试从总体参数的后验分布中抽取 N=2000个 MCMC 样本 (其中先验分布中 $\mu_0=0, k_0=1, \nu_0=5, \sigma_0=1$);
- (四)根据 (三)中所抽取的 MCMC 样本,舍去前面 1000 个 (Burn-in),利用后面 1000 个 MCMC 样本计算 μ 和 σ^2 的贝叶斯点估计,并给出估计误差;
- (五)根据(三)中所抽取的 MCMC 样本,舍去前面 1000 个(Burn-in),做出 μ 和 σ^2 的后验分布直方图。