Financial Forwards and Futures

Tyler J. Brough January 29, 2019

Section 5.1 Alternative Ways to Buy a Stock

Introduction

- Financial futures and forwards
 - On stocks and indexes
 - On currencies
 - On interest rates
- How are they used?
- How are they priced?
- How are they hedged?

Alternative Ways to Buy a Stock

- Four different payment and receipt timing combinations
 - Outright purchase: ordinary transaction
 - Fully leveraged purchase: investor borrows the full amount
 - Prepaid forward contract: pay today, receive the share later
 - Forward contract: agree on price now, pay/receive later
- Payments, receipts, and their timing

S ₀ a eith	our different ways to buy a share of stock that has price, at time 0. At time 0 you agree to a price, which is paid ther today or at time T . The shares are received either at or T . The interest rate is r .			
Description	Pay at Time	Receive Security at Time	Payment	
Outright purchase	0	0	S_0 at time 0	
Fully leveraged purchase	T	0	S_0e^{rT} at time T	
Prepaid forward contract	0	T	?	
Forward contract	T	T	$? \times e^{rT}$	

Pricing Prepaid Forwards

• If we can price the prepaid forward (F^P) , then we can calculate the price for a forward contract

$$F =$$
Future Value of F^P

- Three possible methods to price prepaid forwards
 - Pricing by analogy
 - Pricing by discounted cash flows
 - Pricing by arbitrage
- For now, assume that there are no dividends

Pricing Prepaid Forwards (cont'd)

- Pricing by analogy
 - In the absence of dividends, the timing of delivery is irrelevant
 - Price of the prepaid forward contract same as current stock price
 - $-F^{P}=S_{0}$ (where the asset is bought at t=0, delivered at t=T)
- Pricing by discounted present value (α : risk-adjusted discount rate)
 - If expected t=T stock price at t=0 is $E_0(S_T)$, then $F^P=E_0(S_T)e^{-\alpha T}$
 - Since t=0 expected value of price at t=T is $E_0(S_T)$, satisfy $E_0(S_T) = S_0 e^{\alpha T}$. Combining the two, $F_{0,T}^P = S_0 e^{\alpha T} = S_0$

Pricing Prepaid Forwards (cont'd)

- Pricing by arbitrage
 - Arbitrage: a situation in which one can generate positive cash flow by simultaneously buying and selling related assets, with no net investment and with no risk. Free money!
 - If at time t=0, the prepaid forward price somehow exceeded the stock price, i.e., $F_{0T}^{P} > S_{0}$, an arbitrageur could do the following

TABLE 5.2		flows and transactions to undertake arbitrage where a paid forward price, $F_{0,T}^{P}$, exceeds the stock price,		
		Cash Flows		
Transaction		Time 0	Time T (expiration)	
Buy stock @	S_0	$-S_0$	$+S_T$	
Sell prepaid f	orward @ $F_{0,T}^P$	$+F_{0,T}^{P}$	$-S_T$	
Total		$F_{0,T}^{P} - S_{0}$	0	

• The price mechanism will ensure that these sort of arbitrage opportunities cannot persist, at equilibrium we can expect: $F_{0,T}^P = S_0$

Pricing Prepaid Forwards (cont'd)

- What if there are dividends? Is $F_{0,T}^P = S_0$ still valid?

 No, because the holder of the forward will not receive dividends that will be paid to the holder of the stock, $F_{0,T}^P > S_0$
- $-F_{0,T}^P=S_0$ PV(all dividends paid from t=0 to t=T)
 For discrete dividends D_{t_i} at times $t_i, i=1,\ldots,n$
- - The prepaid forward price: $F_{0,T}^P = S_0 \sum_{i=1}^n PV_0(D_{t_i})$
 - For continuous dividends with an annualized yield δ , the prepaid forward price is $F_{0,T}^P = S_0 e^{-\delta T}$

Pricing Prepaid Forwards (cont'd)

- Example 5.1
 - XYZ stock costs \$100 today and is expected to pay a quarterly dividend of \$1.25. If the risk-free rate is 10% compounded continuously, how much does a 1-year prepaid forward cost?

2

 $-F_{0,1}^{P} = \$100 - \sum_{i=1}^{4} \$1.25e^{-0.025i} = \$95.30$

Pricing Prepaid Forwards (cont'd)

• Example 5.2

- The index is \$125 and the dividend yield is 3% continuously compounded. How much does a 1-year prepaid forward cost?
- $-F_{0,1}^{P} = \$125e^{-0.03} = \121.31

Section 5.3 Forward Contracts on Stock

Pricing Forwards on Stock

- Forward price is the future value of the *prepaid* forward price
 - No dividends
 - $F_{0,T} = FV(F_{0,T}^P) = FV(S_0) = S_0 e^{rT}$ Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

Pricing Forwards on Stock (cont'd)

- Forward premium
 - The difference between current forward price and stock price
 - Can be used to infer the current stock price from forward price
 - Definition:
 - * Forward premium: $F_{0,T}/S_0$
 - * Annualized forward premium = $(1/T) \ln (F_{0,T}/S_0)$

Creating a Synthetic Forward

- One can offset the risk of a forward by creating a synthetic forward to offset a position in the actual forward contract
- How can one do this? (assume continuous dividends at rate δ)
 - Recall the long forward payoff at expiration = $S_T F_{0,T}$
 - Borrow and purchase shares as follows

TABLE 5.3		Demonstration that borrowing $S_0e^{-\delta T}$ to buy $e^{-\delta T}$ shar of the index replicates the payoff to a forward contract $S_T - F_{0,T}$.		
		Cash Flows		
Tran	saction	Time 0	Time T (expiration)	
Buy	$e^{-\delta T}$ units of the index	$-S_0e^{-\delta T}$	$+ S_T$	
Born	ow $S_0e^{-\delta T}$	$-S_0e^{-\delta T}$ $+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$	
Tota	ı	0	$S_T - S_0 e^{(r-\delta)T}$	

• Note that the total payoff at expiration is same as forward premium

Creating a Synthetic Forward (cont'd)

- The idea of creating synthetic forward leads to following
 - Forward = Stock zero-coupon bond
 - Stock = Forward zero-coupon bond
 - Zero-coupon bond = Stock forward
- Cash-and-Carry arbitrage: Buy the index, short the forward

TABLE 5.6	Transactions and cash flows for a cash-and-carry: A market- maker is short a forward contract and long a synthetic forward contract.				
	Cash Flows		Cash Flows		
Transaction		Time 0	Time T (expiration)		
Buy tailed position in stock, paying $S_0e^{-\delta T}$		$-S_0e^{-\delta T}$	$+S_T$		
Borrow $S_0e^{-\delta T}$		$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$		
Short forward		0	$F_{0,T} - S_T$		
Total		0	$F_{0,T} - S_0 e^{(r-\delta)T}$		

Creating a Synthetic Forward (cont'd)

- Cash-and-carry arbitrage with transaction costs
 - Trading fees, bid-ask spreads, different borrowing/lending rates, the price effect of trading in large quantities, make arbitrage harder
 - Suppose
 - * Bid-ask spreads: for stock $S^b < S^a$, and for forward $F^b < F^a$
 - * Cost k of transacting forward
 - * Interest rate for borrowing and lending are $r^b < r^l$
 - * No dividends and no time T transaction costs for simplicity
 - Arbitrage possible if

 - * $F^b > F^+ = (S_0^a + 2k)e^{r^bT}$ * $F^a < F^- = (S_0^b 2k)e^{r^lT}$

Other Issues in Forward Pricing

- Does the forward price predict the future price?
 - According to the formula $F_{0,T} = S_0 e^{-(r-\delta)T}$ the forward price conveys no additional information beyond what S_0 , r, and δ provides
 - Moreover, the forward price underestimates the future stock price
- Forward pricing formula and cost of carry

Forward Price = Spot Price + Interest to carry the asset – asset lease rate
$$\frac{\text{Cost of carry, } (r-\delta)S}{\text{Cost of carry, } (r-\delta)S}$$