

Structure : Silicon Monolithic Integrated Circuit

Product name : Wide Bandwidth Audio-Video SW for TV

Type : **BH7645KS2**

Outer dimensions : Fig.1 SQFP-T52

Block diagram : Fig.2

- Features :
- 1) Video inputs selector : 2-inputs component, 2-inputs Y/C, and 2-inputs composite
  - 2) Component inputs : Correspond to D5 standard
  - 3) Built-in LPF selector(6.75MHz/13.5MHz/30MHz/Through)
  - 4) Built-in Video MUTE function
  - 5) Audio inputs selector : 6-inputs (Lch, Rch)
  - 6) Built-in Power-on MUTE function
  - 7) I<sup>2</sup>C-BUS control
  - 8) Optional Slave address modifications(90H/92H)
  - 9) I<sup>2</sup>C-BUS is compatible with fast mode of Version2.0, but not compatible with Hs mode
  - 10) Built-in detector 3ch(S\_SW1/S\_SW2/S\_SW3)
  - 11) Built-in output port 2ch(PORT1\_OUT/PORT2\_OUT)

#### ○ Absolute Maximum Ratings (Ta=+25°C)

| Parameter                                          |                        | Symbol           | Ratings      | Unit |
|----------------------------------------------------|------------------------|------------------|--------------|------|
| Supply voltage1 (2pin, 29pin, 33pin, 39pin, 44pin) |                        | Vcc1             | 7            | V    |
| Supply voltage2 (12pin)                            |                        | Vcc2             | 8.8          | V    |
| Power dissipation                                  |                        | Pd               | 1300 *1      | mW   |
| Input voltage range                                | VIDEO PART, LOGIC PART | V <sub>IN1</sub> | 0 ~ Vcc1+0.2 | V    |
|                                                    | AUDIO PART             | V <sub>IN2</sub> | 0 ~ Vcc2+0.2 | V    |
| Storage temperature range                          |                        | Tstg             | -55 ~ +125   | °C   |

\*1 When mounting on a 70mm × 70mm × 1.6mm PCB board

Reduced by 13mW/°C at Ta = +25°C or higher

#### ○ Operating Range

| Parameter                                          | Symbol | Range       | Unit |
|----------------------------------------------------|--------|-------------|------|
| Supply voltage1 (2pin, 29pin, 33pin, 39pin, 44pin) | Vcc1   | +4.5 ~ +5.5 | V    |
| Supply voltage2 (12pin)                            | Vcc2   | +7.5 ~ +8.5 | V    |
| Operating temperature range                        | Topr   | -40 ~ +85   | °C   |

\* This product is not designed for protection against radioactive rays.

\* Note the power supply sequence.

○Electrical characteristics (Unless otherwise specified, Ta= 25°C, Vcc1=5.0V, Vcc2=8.0V)

| Item                                                | Symbol              | Limits             |      |      | Unit  | Conditions                   |                             |
|-----------------------------------------------------|---------------------|--------------------|------|------|-------|------------------------------|-----------------------------|
|                                                     |                     | Min.               | Typ. | Max. |       |                              |                             |
| <b>[VIDEO PART]</b>                                 |                     |                    |      |      |       |                              |                             |
| Circuit current                                     | ICC <sub>V</sub>    | —                  | 55   | 80   | mA    | No signal                    |                             |
| Voltage gain                                        | GV <sub>V</sub>     | -0.5               | 0.0  | 0.5  | dB    | Vin=1.0Vpp, f=100kHz         |                             |
| Frequency characteristics1<br>[f=6.75MHz LPF MODE]  | GF <sub>1-1V</sub>  | -1.5               | 0.0  | 1.0  | dB    | Vin=1.0Vpp, f=6.75MHz/100kHz |                             |
|                                                     | GF <sub>1-2V</sub>  | —                  | -30  | -20  | dB    | Vin=1.0Vpp, f=27MHz/100kHz   |                             |
| Frequency characteristics 2<br>[f=13.5MHz LPF MODE] | GF <sub>2-1V</sub>  | -1.5               | 0.0  | 1.0  | dB    | Vin=1.0Vpp, f=13.5MHz/100kHz |                             |
|                                                     | GF <sub>2-2V</sub>  | —                  | -30  | -20  | dB    | Vin=1.0Vpp, f=54MHz/100kHz   |                             |
| Frequency characteristics 3<br>[f=30MHz LPF MODE]   | GF <sub>3-1V</sub>  | -1.5               | 0.0  | 1.0  | dB    | Vin=1.0Vpp, f=30MHz/100kHz   |                             |
|                                                     | GF <sub>3-2V</sub>  | —                  | -18  | -10  | dB    | Vin=1.0Vpp, f=74MHz/100kHz   |                             |
| Frequency characteristics 4<br>[f=THROUGH MODE]     | GF <sub>4-1V</sub>  | -3.0               | -0.5 | 2.0  | dB    | Vin=1.0Vpp, f=54MHz/100kHz   |                             |
| Maximum output level                                | VOM <sub>V</sub>    | 2.6                | 3.0  | —    | Vpp   | f=10kHz, THD=1.0%            |                             |
| SW crosstalk                                        | CTSW <sub>V</sub>   | —                  | -60  | -50  | dB    | Vin=1.0Vpp, f=10MHz          |                             |
| Channel crosstalk                                   | CTCH <sub>V</sub>   | —                  | -60  | -50  | dB    | Vin=1.0Vpp, f=10MHz          |                             |
| MUTE attenuation                                    | MT <sub>V</sub>     | —                  | -60  | -50  | dB    | Vin=1.0Vpp, f=10MHz          |                             |
| Bias input terminal Input impedance                 | ZIN <sub>V</sub>    | 100                | 150  | —    | kΩ    |                              |                             |
| <b>[AUDIO PART] (at Gain=0dB)</b>                   |                     |                    |      |      |       |                              |                             |
| Circuit current                                     | ICC <sub>A</sub>    | —                  | 10   | 15   | mA    | No signal                    |                             |
| Voltage gain                                        | 0dB                 | GV0 <sub>A</sub>   | -0.5 | 0.0  | 0.5   | dB                           |                             |
|                                                     | 6dB                 | GV6 <sub>A</sub>   | 5.5  | 6.0  | 6.5   | dB                           |                             |
| Frequency characteristics                           | GF <sub>A</sub>     | -3.0               | 0.0  | 3.0  | dB    | Vin=1.0Vrms, f=50kHz/1kHz    |                             |
| Total harmonic distortion                           | THD <sub>A</sub>    | —                  | 0.03 | 0.1  | %     | Vin=1.0Vrms, f=1kHz ≈1       |                             |
| Maximum output level                                | 0dB                 | VOM0 <sub>A</sub>  | 2.0  | 2.4  | —     | Vrms                         |                             |
|                                                     | 6dB                 | VOM6 <sub>A</sub>  | 2.0  | 2.4  | —     | Vrms                         |                             |
| Channel crosstalk                                   | CTCH <sub>A</sub>   | —                  | -100 | -85  | dB    | Vin=2.0Vrms, f=1kHz ≈1       |                             |
| SW crosstalk                                        | CTSW <sub>A</sub>   | —                  | -100 | -85  | dB    | Vin=2.0Vrms, f=1kHz ≈1       |                             |
| MUTE attenuation                                    | MT <sub>A</sub>     | —                  | -100 | -85  | dB    | Vin=2.0Vrms, f=1kHz ≈1       |                             |
| Remain noise                                        | N <sub>A</sub>      | —                  | 30   | 50   | uVrms | ≈1                           |                             |
| PSRR                                                | PSRR <sub>A</sub>   | —                  | -45  | -38  | dB    | ≈2                           |                             |
| Input impedance                                     | ZIN <sub>A</sub>    | 100                | 150  | —    | kΩ    |                              |                             |
| <b>[LOGIC PART etc.]</b>                            |                     |                    |      |      |       |                              |                             |
| [SCL]<br>[SDA]                                      | VIL                 | Vin1L              | 0    | —    | 1.0   | V                            | Low Level input voltage     |
|                                                     | VIH                 | Vin1H              | 2.0  | —    | Vcc1  | V                            | High Level input voltage    |
|                                                     | Input bias current  | IINI2C             | -10  | 0    | 10    | uA                           |                             |
|                                                     | SDA output voltage  | VinL               | 0    | —    | 0.4   | V                            | I <sub>L</sub> =3.0mA(sink) |
| [ADR]                                               | VIL                 | Vin2L              | 0    | —    | 1.0   | V                            | Low Level input voltage     |
|                                                     | VIH                 | Vin2H              | 2.0  | —    | Vcc1  | V                            | High Level input voltage    |
|                                                     | Input impedance     | ZIN <sub>ADR</sub> | 70   | 100  | 130   | kΩ                           |                             |
| [S_SW1]<br>[S_SW2]<br>[S_SW3]                       | VIL                 | Vin2L              | 0    | —    | 1.0   | V                            | Low Level input voltage     |
|                                                     | VIH                 | Vin2H              | 2.0  | —    | Vcc1  | V                            | High Level input voltage    |
|                                                     | Input impedance     | ZIN <sub>SSW</sub> | 100  | 150  | —     | kΩ                           | Pull up resistance          |
| [PORT1_OUT]<br>[PORT2_OUT]                          | PORT output voltage | V <sub>PL</sub>    | —    | —    | 0.5   | V                            | I <sub>L</sub> =2.5mA       |
|                                                     | Leak current        | I <sub>PH</sub>    | —    | —    | 5.0   | uA                           | Vcc2=8.0V                   |

≈1 400HzHPF + 30kHzLPF ON

≈2 Vin=0.3Vpp, f=100Hz at VCC, 30kHzLPF ON

○Physical dimensions



Fig.1 SQFP-T52 ( UNIT:mm )

○Block diagram



Fig.2 Block diagram

| Pin number | Pin name        | Pin number | Pin name | Pin number | Pin name      | Pin number | Pin name        |
|------------|-----------------|------------|----------|------------|---------------|------------|-----------------|
| 1          | Y1in1           | 14         | L1in     | 27         | Rout          | 40         | PORT1 OUT       |
| 2          | Vcc5V Video IN1 | 15         | R1in     | 28         | Lout          | 41         | CYin1           |
| 3          | CVBS1           | 16         | L2in     | 29         | Vcc5V AU      | 42         | ADDRESS         |
| 4          | Vref Video      | 17         | R2in     | 30         | DGND          | 43         | CYin2           |
| 5          | Y1in2           | 18         | L3in     | 31         | SCL           | 44         | Vcc5V Video IN2 |
| 6          | GND             | 19         | R3in     | 32         | SDA           | 45         | PBin1           |
| 7          | CVBS2           | 20         | L4in     | 33         | DVcc5V        | 46         | TEST1           |
| 8          | GND Video IN    | 21         | R4in     | 34         | PR/Cout1      | 47         | PBin2           |
| 9          | C1in1           | 22         | L5in     | 35         | GND RGBout    | 48         | S SW3           |
| 10         | Vref AU         | 23         | R5in     | 36         | PBout1        | 49         | S SW2           |
| 11         | C1in2           | 24         | L6in     | 37         | GND           | 50         | PRin1           |
| 12         | Vcc8V AU        | 25         | R6in     | 38         | CY/Y/CVBSout1 | 51         | S SW1           |
| 13         | PORT2 OUT       | 26         | GND AU   | 39         | Vcc5V RGBout  | 52         | PRin2           |

○Pin number and Pin name

## ○Cautions for use

### (1) Absolute maximum ratings

If the absolute maximum ratings for applied voltage and/or operation temperature are exceeded, LSI damage may result. Therefore, do not apply voltage or use in a temperature that exceeds these absolute maximum ratings. If it is possible that absolute maximum ratings will be exceeded, use a physical safety device such as a fuse and make sure that no conditions that might exceed the absolute maximum ratings will be applied to the LSI IC.

### (2) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.

### (3) GND potential

Regardless of the operation mode, the voltage of the GND pin should be at least the minimum voltage. Actually check whether or not the voltage at each pin, including transient phenomena, is less than the GND pin voltage.

### (4) Thermal design

The thermal design should be done using an ample margin that takes into consideration the allowable dissipation under actual use conditions.

### (5) Shorts between pins and mounting errors

When mounting LSI ICs onto the circuit board, make sure each LSI's orientation and position is correct. The ICs may become damaged if they are not mounted correctly when the power is turned on. Similarly, damage may also result if a short occurs, such as when a foreign object is positioned between pins in an IC, or between a pin and a power supply or GND connection.

### (6) Operation in strong electromagnetic field

When used within a strong electromagnetic field, evaluate carefully to avoid the risk of operation faults.

### (7) Power supply sequence

#### [Power-up sequence]

Supply voltage1 (Vcc1 : 2pin, 29pin, 33pin, 39pin, 44pin) must be powered up before or at the same time as the supply voltage2 (Vcc2 : 12pin).

#### [Power-down sequence]

Supply voltage2 (Vcc2 : 12pin) must be powered up before or at the same time as the supply voltage1(Vcc1 : 2pin, 29pin, 33pin, 39pin, 44pin).

## Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.

**ROHM Customer Support System**

<http://www.rohm.com/contact/>

