Lec-22. 区间估计

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

1. 区间估计

2. 枢轴量(补充)

3. 单侧置信区间

区间估计

- 根据具体样本观测值, 点估计对未知参数提供一个明确的数值.
- 但这种判断的把握有多大,点估计本身并没有告诉人们.为弥补这种不足,提出区间估计的概念

区间估计

设 X 是总体, $X_1, ..., X_n$ 是一样本. 区间估计的目的 是找到两个统计量:

$$\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n), \quad \hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n),$$

使随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 以一定可靠程度盖住 θ .

定义

设总体 X 的分布函数 $F(x;\theta)$, θ 未知. 对给定概率值 $\alpha(0 < \alpha < 1)$, 有两个统计量

$$\underline{\theta} = \underline{\theta}(X_1, \cdots, X_n), \quad \overline{\theta} = \overline{\theta}(X_1, \cdots, X_n),$$

使得

$$P\Big\{\underline{\theta}(X_1,\cdots,X_n)<\theta<\overline{\theta}(X_1,\cdots,X_n)\Big\}\geq 1-\alpha$$

则

- $(\underline{\theta}, \overline{\theta})$ 称为 θ 的置信水平为 1α 的(双侧) 置信区间;
- θ 和 $\overline{\theta}$ 分别称为置信下限和置信上限.

• 参数 θ 虽然未知, 但是一个确定的值.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\theta, \overline{\theta}$ 是统计量, 随机的, 依赖于样本.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\underline{\theta}, \overline{\theta}$ 是统计量, 随机的, 依赖于样本.
- 置信区间 $(\underline{\theta}, \overline{\theta})$ 不唯一, 依赖于样本.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\underline{\theta}$, $\overline{\theta}$ 是统计量, 随机的, 依赖于样本.
- 置信区间 $(\underline{\theta}, \overline{\theta})$ 不唯一, 依赖于样本.
- 对于有些样本观察值,区间可能覆盖 θ ,但对于 另一些样本观察值,区间也可能不覆盖 θ

设总体 $X \sim N(\mu, 4), \mu$ 未知, $X_1, ..., X_4$ 是一样本. 则 $\overline{X} \sim N(\mu, 1)$.

$$P\{\overline{X} - 2 < \mu < \overline{X} + 2\} = P\{|\overline{X} - \mu| < 2\}$$

= $2\Phi(2) - 1 \approx 0.9544$

 $\Rightarrow (\overline{X} - 2, \overline{X} + 2)$ 是 μ 的置信水平为 0.95 的置信区间.

若 $\mu = 0.5$, 当 \bar{x} 分别为 3, 2, 1 时, 对应置信区间为:

$$(-1,3)$$
 $(1,5)$ $(0,4)$

对于一个具体的区间而言,或者包含真值,或者不包含真值,无概率可言.

 $(\overline{X}-2,\overline{X}+2)$ 是 μ 的置信水平为 0.95 的置信区间中"置信水平为 0.95"的意义是什么?

一般地.

$$P\left\{\underline{\theta}(X_1,\ldots,X_n)<\theta<\overline{\theta}(X_1,\ldots,X_n)\right\}=1-\alpha,$$

则置信区间 $(\underline{\theta}, \overline{\theta})$ 的含义为:

• 反复抽样多次 (各次样本容量都为 n). 每个样本值确定一个区间 $(\underline{\theta}, \overline{\theta})$, 每个这样的区间或包含 θ 的真值, 或不包含 θ 的真值. 按伯努利大数定律, 在这些区间中, 包含 θ 真值的比例约为 $1-\alpha$.

例如反复抽样 10000 次,

- 当 $\alpha = 0.05$, 即置信水平为 95% 时, 10000 个区间中包含 θ 真值的约为 9500 个;
- 当 $\alpha = 0.01$, 即置信水平为 99% 时, 10000 个区间中包含 θ 的真值的约为 9900 个.

求置信区间步骤

设 θ 是总体的未知参数, X_1,\dots,X_n 为样本,给定置信水平 $1-\alpha$.

1. 构造枢轴量(不依赖 θ 及未知参数的函数)

$$W = W(X_1, \cdots, X_n; \theta).$$

2. 确定常数 a, b 使得

$$P\{a < W(X_1, \dots, X_n; \theta) < b\} = 1 - \alpha$$

3. 解得 θ 的取值范围即为置信区间.

例

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1 - \alpha$ 的置信区间.

例

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1 - \alpha$ 的置信区间.

解: \overline{X} 是 μ 的无偏估计, 且

$$(\overline{X})^* = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

 $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 所服从的分布 N(0,1) 不依赖于任何未知参数. 按标准正态分布的上 α 分位数的定义,有

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}\right\} = 1 - \alpha,$$

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right\} = 1 - \alpha.$$

这样,我们就得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}x_{\alpha/2}, \quad \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

这样的置信区间常写成

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$$
.

这样,我们就得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}x_{\alpha/2}, \quad \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

这样的置信区间常写成

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$$
.

• 正态总体, σ^2 已知, 则未知参数 μ 的枢轴量为 $(\overline{X})^* = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$, 置信区间为 $(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$.

枢轴量(补充)

枢轴量和统计量的区别:

- (1) 枢轴量是样本和待估参数的函数, 其分布不依赖于任何未知参数;
- (2) 统计量只是样本的函数, 其分布常依赖于未知参数.
 - 枢轴量通常可由未知参数的点估计得到. 比如 正态总体的区间估计.

单个正态总体 $N(\mu, \sigma^2)$ 的枢轴量

• μ 的枢轴量:

• σ^2 的枢轴量: $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, μ 未知.

两个正态总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的枢轴量

μ₁ – μ₂ 的枢轴量:

$$\begin{cases} \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1), & (\sigma_1^2, \sigma_2^2 \ \text{Epp}) \\ \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), & (\sigma_1^2 = \sigma_2^2 \text{*Epp}) \end{cases}$$

其中 $S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}.$ • $\frac{\sigma_1^2}{\sigma_2^2}$ 的枢轴量: $\frac{S_1^2}{S_2^2} / \frac{\sigma_1^2}{\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$ (μ_1, μ_2

单侧置信区间

定义

若

$$P\{\theta > \underline{\theta}(X_1, ..., X_n)\} \ge 1 - \alpha,$$

则 $(\underline{\theta}, \infty)$ 称为参数 θ 的置信水平为 $1-\alpha$ 的<mark>单侧置信区间</mark>, $\underline{\theta}$ 称为单侧置信下限.

若

$$P\left\{\theta < \overline{\theta}(X_1, \dots, X_n)\right\} \ge 1 - \alpha,$$

则 $(-\infty, \overline{\theta})$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间. $\overline{\theta}$ 称为单侧置信上限.

单侧置信区间和双侧置信区间的关系

 $\underline{\theta}$ 是 θ 的置信水平为 $1 - \alpha_1$ 的单侧置信下限, $\overline{\theta}$ 是 θ 的置信水平为 $1 - \alpha_2$ 的单侧置信上限, $\Longrightarrow (\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1 - \alpha_1 - \alpha_2$ 的双侧置信区间.

证明: $P\{\underline{\theta} < \theta\} \ge 1 - \alpha_1$, $P\{\theta < \overline{\theta}\} \ge 1 - \alpha_2$ 由加法公式.

$$P\{\underline{\theta} < \theta < \overline{\theta}\} = P\{\underline{\theta} < \theta\} + P\{\theta < \overline{\theta}\} - 1$$

$$\geq 1 - \alpha_1 - \alpha_2.$$

例

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1 - \alpha$ 的单侧置信上限.

例

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的单侧置信上限.

解: 枢轴量为

$$(\overline{X})^* = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

$$P\left\{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} > z_{1-\alpha} = -z_{\alpha}\right\} = 1 - \alpha,$$

$$P\left\{\mu < \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}\right\} = 1 - \alpha.$$

所以 μ 的置信水平为 $1-\alpha$ 的单侧置信上限为 $\overline{\mu}=X+\frac{\sigma}{\sqrt{n}}z_{\alpha}$.