

planetmath.org

Math for the people, by the people.

proof of arithmetic-geometric-harmonic means inequality

Canonical name ProofOfArithmeticgeometricharmonicMeansInequality

Date of creation 2013-03-22 15:09:37 Last modified on 2013-03-22 15:09:37 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 10

Author Mathprof (13753)

Entry type Proof

Classification msc 26D15

For the Arithmetic Geometric Inequality, I claim it is enough to prove that if $\prod_{i=1}^n x_i = 1$ with $x_i \geq 0$ then $\sum_{i=1}^n x_i \geq n$. The arithmetic geometric inequality for y_1, \ldots, y_n will follow by taking $x_i = \frac{y_i}{\sqrt[n]{\prod_{k=1}^n y_k}}$. The geometric harmonic inequality follows from the arithmetic geometric by taking $x_i = \frac{1}{y_i}$.

So, we show that if $\prod_{i=1}^n x_i = 1$ with $x_i \ge 0$ then $\sum_{i=1}^n x_i \ge n$ by induction on n.

Clear for n=1.

Induction Step: By reordering indices we may assume the x_i are increasing, so $x_n \ge 1 \ge x_1$. Assuming the statement is true for n-1, we have $x_2 + \cdots + x_{n-1} + x_1 x_n \ge n-1$. Then,

$$\sum_{i=1}^{n} x_i \ge n - 1 + x_n + x_1 - x_1 x_n$$

by adding $x_1 + x_n$ to both sides and subtracting x_1x_n . And so,

$$\sum_{i=1}^{n} x_i \ge n + (x_n - 1) + (x_1 - x_1 x_n)$$

$$= n + (x_n - 1) - x_1 (x_n - 1)$$

$$= n + (x_n - 1)(1 - x_1)$$

$$> n$$

The last line follows since $x_n \ge 1 \ge x_1$.