Partial Differential Equations 2

AMATH 453

Kevin Lamb

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 453 during Fall 2021 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Contents

Preface		1	
1	Wav	res and Diffusions	3
	1.1	The wave equation	3
	1.2	Conservation laws	3
	1.3	The Diffusion Equation & Maximum principle	4
	1.4	Uniqueness of the Dirichlet Problem	5
	1.5	Diffusion on the Whole Line	6

Waves and Diffusions

1.1 The wave equation

We already know the wave equation (c > 0):

$$u_{tt} - c^2 u_{xx} = 0, \qquad -\infty < x < \infty,$$

and the general solution is of the form

$$u(x,t) = f(x+ct) + g(x-ct).$$

With initial conditions imposed, we have the IVP

$$u_{tt} - c^2 u_{xx} = 0,$$

$$\begin{cases} u(x,0) = \phi(x), \\ u_t(x,0) = \psi(x). \end{cases}$$

The solution to IVP is then

$$u(x) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds.$$

To interpret the integral, we can let $\psi(x) = \mu'(x)$, then the integral becomes

$$\int_{x-ct}^{x+ct} \psi(s) ds = \mu(x+ct) - \mu(x-ct).$$

1.2 Conservation laws

Given a wave equation, we multiply by u_t :

$$u_t u_{tt} - c^2 u_t u_{xx} = 0$$

$$\frac{\partial}{\partial t} \left(\frac{1}{2} u_t^2 \right) - c^2 \left[\frac{\partial}{\partial x} (u_t u_x) - u_{tx} u_x \right] = 0$$

$$\frac{\partial}{\partial t} \left(\frac{1}{2} u_t^2 + \frac{c^2}{2} u_x^2 \right) - \frac{\partial}{\partial x} \left(c^2 u_t u_x \right) = 0$$

Then the conservation law states that

$$\frac{\partial R}{\partial t} + \frac{\partial F}{\partial x} = 0,$$

where $R \in (-\infty, +\infty)$, and $F \to 0$ with $x \to \pm \infty$.

1.3 The Diffusion Equation & Maximum principle

The diffusion equation is given by

$$u_t = ku_{xx}, \quad -\infty < x < \infty$$

with diffusion constant k > 0.

We define

$$R = (a,b) \times (0,\infty)$$

 $R_T = (a,b) \times (0,T]$
 $\overline{R_T} = [a,b] \times [0,T]$
 $C_T = \{a \le x \le b, t = 0\} \cup \{a, 0 \le t \le T\} \cup \{b, 0 \le t \le T\}$

Theorem 1.1: Maximum principle

If $u \in C(\overline{R_T}) \cap C^2(R_T)$ is a solution of the diffusion equation, then $u(x,t) \leq \max_{C_T} \{u\}$ for all $(x,t) \in R_T, T > 0$. Here C_T is called the parabolic boundary of R_T .

Remark:

- 1. We can replace $u_t ku_{xx} = 0$ with $u_t ku_{xx} \le 0$.
- 2. A stronger version of the theorem exists which says that $u(x,t) < \max_{C_T} \{u\}$ unless u is constant
- 3. Same result applies to the minimum of u by replacing u with -u. However, in this case, (1) doesn't apply. Now we need $u_t ku_{xx} \ge 0$.

Here are some intuitions. Consider a rod lying on [a,b] with initial non-constant temperature $T_0(x)$. Then as time goes, only blue T is possible, not red T.

Proof:

Let $M = \max_{C_T} u$. Note that M exists since u is continuous on C_T , and C_T is a closed boundary. We need to show that $u \leq M$ on $\overline{R_T}$.

Let

$$v(x,t) = u(x,t) + \epsilon x^2, \quad \epsilon > 0$$

Let $r = \max\{|a|, |b|\}$. Then $v(x, t) \leq M + \epsilon r^2$ on C_T . Now we prove that $v \leq M + \epsilon r^2$ on R_T .

On R_T , we have

$$u = v - \epsilon x^2 \le M + \epsilon (r^2 - x^2)$$

Now if we take the derivative,

$$v_t - kv_{xx} = u_t - ku_{xx} - 2k\epsilon = -2k\epsilon < 0 \tag{*}$$

(i) Suppose v(x,t) has a maximum at an interior point (x_0,t_0) , i.e., $(x_0,t_0) \in (a,b) \times (0,T)$. Then

 $v_t(x_0, t_0) = 0$. Moreover, $v_{xx}(x_0, t_0) \le 0$. Then

$$v_t(x_0, t_0) - kv_{xx}(x_0, t_0) = -kv_{xx}(x_0, t_0) \ge 0$$

contradicting (*), thus there are no interior max.

(ii) Suppose v(x,t) has a maximum at an interior point of the upper boundary. $v_t(x_0,T) \geq 0$. Then

$$v_t(x_0, t_0) - kv_{xx}(x_0, t_0) \ge 0$$

contradicting (*), thus there are no maximum along the upper boundary.

But v is continuous on $\overline{R_T}$, thus it has a maximum value which we now know must occur on C_T . Hence $v \leq M + \epsilon r^2$ on $\overline{R_T}$. Letting $\epsilon \to 0$, we have $u \leq M$ on R_T .

1.4 Uniqueness of the Dirichlet Problem

$$u_t - ku_{xx} = f(x,t) \qquad a < x < b, 0 < t < \infty$$

$$u(x,0) = \phi(x)$$

$$u(a,t) = g(t)$$

$$u(b,t) = h(t)$$

$$(1.1)$$

Theorem 1.2

The solution of (1.1) is unique.

Proof:

Suppose there are two solutions $u_1(x,t)$ and $u_2(x,t)$. Let $w(x,t) = u_1 - u_2$. Now we calculate

$$w_t - kw_{xx} = (u_{1t} - ku_{1xx}) - (u_{2t} - u_{2xx}) = f - f = 0$$

$$w(x,0) = u_1(x,0) - u_2(x,0) = \phi - \phi = 0$$

$$w(a,t) = w(b,t) = 0$$

By maximum principle, we have $w \le 0$ on the boundary, and my minimum principle, $w \ge 0$, since $\max_{C_T} \{w\} = \min_{C_T} \{w\} = 0$. Then we conclude that $w \equiv 0$.

Now we present a second proof using energy method:

Proof:

Given $w_t - kw_{xx} = 0$, multiply both sides by w:

$$0 = ww_t - kww_{xx} = \frac{\partial}{\partial t} \left(\frac{1}{2} w^2 \right) - k \frac{\partial}{\partial x} (ww_x) + kw_x^2$$

If we integrate both sides,

$$\frac{d}{dt} \int_{a}^{b} \frac{1}{2} w^{2} dx = k \int_{a}^{b} (ww_{x})_{x} dx - k \int_{a}^{b} w_{x}^{2} dx = kww_{x} \Big|_{a}^{b} - k \int_{a}^{b} w_{x}^{2} dx$$

Thus

$$\frac{d}{dt} \int_a^b \frac{1}{2} w^2 \, \mathrm{d}x = -k \int_a^b w_x^2 \, \mathrm{d}x$$

Then

$$\int_a^b \frac{1}{2} w^2 dx = 0 \quad \text{for all the time}$$

Then $w \equiv 0$ on $a \le x \le b, 0 \le t \le T$.

Now let's examine stability. Consider

$$u_t - ku_{xx} = 0$$
$$u(a,t) = u(b,t) = 0$$

and let $u_i(x, t)$ be the solution for $u(x, 0) = \phi_i(x)$ for j = 1, 2.

Let $w = u_1 - u_2$. Proceeding as before (energy method) we have

$$\int_{a}^{b} (u_1 - u_2)^2 \, \mathrm{d}x \le \int_{a}^{b} (\phi_1 - \phi_2)^2 \, \mathrm{d}x$$

This tells us $\|u_1 - u_2\|_2 \to 0$ as $\|\phi_1 - \phi_2\|_2 \to 0$. This is called **stability in the square integrable sense**. Alternatively, by maximum principle,

$$\max |u_1 - u_2| \le \max |\phi_1 - \phi_2|$$

using maximum & minimum principle, i.e.,

$$\max\{u_1 - u_2\} \le \max\{\phi_1 - \phi_2\}$$

 $\min\{u_1 - u_2\} \ge \min\{\phi_1 - \phi_2\}$

This is called **stability in the uniform sense**.

1.5 Diffusion on the Whole Line

Consider the initial value problem

$$u_t - ku_{rr} = 0$$
 on $-\infty < x < \infty$, $0 < t < \infty$ (1.2)

$$u(x,0) = \phi(x) \tag{1.3}$$

If s(x,t) is a solution of (1.2), then so is

$$u(x,t) = \int_{-\infty}^{\infty} s(x - y, t)g(y) dy$$
 (1.4)

for any function g(y). We can find u_t, u_x, u_{xx} and take it into (1.2):

$$u_t - ku_{xx} = \int_{-\infty}^{\infty} \left[s_t(x - y, t) - ks_{xx}(x - y, t) \right] g(y) \, dy = 0$$

So we now find a solution of (1.2) with the property that $s(x,0) = \delta(x)$, i.e., solve

$$s_t - k s_{xx} = 0$$
$$s(x, 0) = \delta(x)$$

To do this, consider the problem:

$$v_t - kv_{xx} = 0$$

 $v(x,0) = v_0 H(x)$ (1.5)
 $H = \text{Heaviside function}$

 v_0 carries the dimension of v, thus H(x) is dimensionless.

Similarity solution of (1.5)

Let $Q = \frac{v}{v_0}$ which is dimensionless, then the original problem gets transformed to

The solution can only be a function of x, t and k: Q = F(x, t, k). Then we can apply dimensionless analysis. This means Q can only depend on dimensionless combinations of x, t and k. We have

$$[x] = L$$
$$[t] = T$$
$$[k] = \frac{L^2}{T}$$

Then

$$[x^a t^b k^c] = L^a T^b \frac{L^{2c}}{T^c} \implies b = c, 2c = -a$$

This tells us

$$Q = f(\theta)$$
 where $\theta = \frac{x}{\sqrt{kt}}$

By chain rule, we have

$$Q_t = f'(\theta) \cdot \theta_t = -\frac{1}{2} \frac{\theta}{t} f'(\theta)$$

$$Q_x = f'(\theta) \cdot \theta_x = \frac{1}{\sqrt{kt}} f'(\theta)$$

$$Q_{xx} = \frac{1}{kt} f''(\theta)$$

Then

$$Q_t - kQ_{xx} = -\frac{\theta}{2t}f' - \frac{k}{kt}f'' = 0$$
$$f''(\theta) = -\frac{1}{2}\theta f'(\theta)$$
$$f'(\theta) = Ae^{-\frac{\theta^2}{4}}$$
$$f(\theta) = A\int_{-\infty}^{\theta} e^{-s^2/4} ds + C$$

As
$$x \to +\infty$$
, $\theta \to +\infty$, and $Q(x,t) = f(\theta) \to 1$. Then $\lim_{\theta \to +\infty} f(\theta) = 1$. As $x \to -\infty$, $\theta \to -\infty$ and $Q(x,t) = f(\theta) \to 0$, $\lim_{\theta \to -\infty} f(\theta) = 0$.

Therefore, *C* must be 0, and $A \int_{-\infty}^{\infty} e^{-s^2/4} ds = 1$. Using the change of variable $\eta = \frac{s}{2}$:

$$\int_{-\infty}^{\theta} e^{-s^2/4} ds = 2 \int_{-\infty}^{\theta/2} e^{-\eta^2} d\eta = 2 \int_{-\infty}^{x/\sqrt{4kt}} e^{-\eta^2} d\eta$$

So if we take $\theta = \frac{x}{\sqrt{4kt}}$ at the beginning, we get $\tilde{A} = 2A$ and

$$\tilde{A} \int_{-\infty}^{\infty} e^{-s^2} ds = 1 \implies \tilde{A} = \frac{1}{\sqrt{\pi}}$$

Thus we get

$$Q = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x/\sqrt{4kt}} e^{-s^2} \, \mathrm{d}s$$

Note that for
$$x > 0$$
, as $t \to 0^+$, $\frac{x}{\sqrt{4kt}} \to +\infty$ and $Q(x,t) \to \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^2} ds = 1$.

And for x < 0 as $t \to 0^+$, $Q \to 0$.