

Related Work

- •Localized Template Matching to improve the positional offset (Chiang et al. 08)
 - The templates used for matching are not accurate
- •Cluster corner points to extract road intersections (Habib and Uebbing 99)
 - Cannot extract accurate intersection position and orientation
- •Geometrical analyses to extract lines (Cao et al. 02 and Li et al. 00)
 - Do not extract intersection templates
- •Color segmentation to extract lines (Khotanzad and Zink 03; Chen et al. 06)
 - Do not extract intersection templates

22

Discussion

- Our technique automatically extracts accurate road intersection templates from raster maps.
 - Average positional offset: 0.4 pixels
 - Average orientation offset: 0.24 degrees
- Accurate road intersection templates help to:
 - Reduce search space for map conflation applications
 - Use the intersection templates as seed points to extract road from imagery
 - More...

23

Future Work Include manual training Extract more information from raster maps Labels, landmarks Process more complex maps A metro map with different types of lines Identify the training process that minimizes human intervention Reuse the training results on similar maps

