Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Ed Discussion (so that everyone can benefit from the answer) or stop at the office hours.

Problem 9.1 (2 points). Decide if there exists a function $f : \mathbb{R} \to \mathbb{R}$ that satisfies the following properties. If there exists such a function, construct an example and prove that the properties are satisfied; if not, prove that there is a contradiction.

(a) $f: \mathbb{R} \to \mathbb{R}$ is both convex and bounded, i.e., $\sup_{x \in \mathbb{R}} |f(x)| \leq C$ for some constant C.

Consider the function $f(x) = 1, \forall x \in R$, then:

(i): Convexity: $\forall \theta \in [0,1], x, y \in R, f(\theta x + (1-\theta)y) = 1$

$$\theta f(x) + (1 - \theta)f(y) = \theta + 1 - \theta = 1$$

$$\therefore f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

$$\therefore f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(ii): Boundedness:

$$\forall x \in R, \exists M \geqslant 1, \ st$$

$$\sup_{x \in R} |f(x)| = \sup\{1\} = 1 \le M$$

 \therefore Take an arbitrary M=2 would satisfy. \therefore There exists a function that's convex and bounded. Actually, we could prove that any function that's convex and bounded is a constant function. ie. $f(x)=c \quad \forall x \in R$ for some constant $c \in R$. Proof: Suppose f is a convex and bounded function that's not. constant, then. $\exists x,y \in R$, sit f(x) < f(y). $\because f$ is convex $\therefore \forall z \in R$, st. x < y < z, $f(z) \geqslant f(x) + (z-x) \frac{f(y)-f(x)}{y-x}$ This implies that f is unbounded. $\therefore f$ must be constant.

(b) $f: \mathbb{R} \to \mathbb{R}$ is both strictly convex and bounded.

Impossible. Suppose we have a function that's strictly convex and bounded, then by strict convexity we have: $\forall x,y,z \in R$, set $x < y < z, f(z) > f(x) + (z-x)\frac{f(y)-f(x)}{y-x}$ (1) which implies that f is unbounded. Since if f(x) is bounded, then $f(x) \leq M, \forall x \in R$, which means $f(x) \leq M, f(y) \leq M, \quad f(z) \leq M$. But (1) means $\forall M > 0$, we can construct a z by setting $f(x) + (z-x)\frac{f(y)-f(x)}{y-x} = M$ and $z = \frac{M-f(x)(y-x)}{f(y)-f(x)} + x$, s.t. f(z) > M, which violates the boundedness.

Proof for inequality (1):

Proof. Proof: Since f is strictly convex, $f(\theta x + (1 - \theta)z) < f(x) + (1 - \theta)f(z)$ let $y = \theta$

 $\theta x + (1 - \theta)z$, solve for θ we have $\theta = \frac{y-z}{x-z}$, then we have the following:

$$f(y) < \frac{y-z}{x-z} f(x) + \frac{x-y}{x-z} f(z)$$

$$(x-z)f(y) > (y-z)f(x) + (x-y)f(z)$$

$$\frac{x-z}{x-y} f(y) - \frac{y-z}{x-y} f(x) < f(z)$$

$$\frac{xf(y) - zf(y) - yf(x) + zf(x)}{x-y} < f(z)$$

$$f(z) > \frac{xf(y) - yf(x) + xf(x) - xf(x) + z(f(x) - f(y))}{x-y}$$

$$f(z) > \frac{x(f(y) - f(x)) + (x-y)f(x) + z(f(x) - f(y))}{x-y}$$

$$f(z) > \frac{(z-x)(f(x) - f(y))}{x-y} + f(x)$$

$$f(z) > f(x) + \frac{z-x}{y-x} (f(y) - f(x))$$

Problem 9.2 (3 points). Let $A \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. For $x \in \mathbb{R}^m$ we define

$$f(x) = ||Ax - y||^2$$
.

We will see a lot of this function when we discuss linear regression next lecture. Here we prove some useful properties of this function.

(a) Compute the gradient $\nabla f(x)$.

$$f(\vec{x}) : \vec{x}^{\top} A^{\top} A \vec{x} - 2 \vec{b}^{\top} A \vec{x} + \|\vec{y}\|_{2}^{2}$$
$$\therefore \nabla f(\vec{x}) = \left(A^{\top} A + \left(A^{\top} A \right)^{\top} \right) \vec{x} - 2 A^{\top} \vec{b} = 2 A^{\top} A \vec{x} - 2 A^{\top} \vec{b}$$

(b) Compute the Hessian $H_f(x)$.

$$H_f(\vec{x}) = \nabla(\nabla f(\vec{x}))$$
$$= \nabla \left(2A^{\top}A\vec{x} - 2A^{\top}\vec{b}\right)$$
$$= 2A^{\top}A$$

(c) Show that f is convex.

We will prove a stronger argument:

Claim: For any quadratic function $f: R^m \to R$, given by $f(\vec{x}) = \vec{x}^\top A \vec{x} + \vec{b}^\top \vec{x} + r$, where $A \in S^m, \vec{b} \in R^m, r \in R$

$$f(\vec{x}) is \ convex \Leftrightarrow A \succeq 0 \ (A \in S^n_+)$$
$$f(\vec{x}) is \ strictly \ convex \Leftrightarrow A \succ 0 \ (A \in S^n_{++})$$

Proof for (1): Since $f(\vec{x})$ is convex and twice differentible, by definition $H_f = A \geqslant 0$. conversely, if $A \geq 0$, then $h(\vec{x}) = \vec{x}^\top A \vec{x}$ is convex by definition. We now prove that $g(\bar{x}) = \vec{b}^\top \bar{x} + r$

$$\forall \theta \in [0, 1], \bar{x}, \vec{y} \in R^m,$$

$$g(\theta \vec{x} + (1 - \theta) \vec{y}) = \vec{b}^\top (\theta \vec{x} + (1 - \theta) \vec{y}) + r = \theta (\vec{b}^- \vec{x} + r) + (1 - \theta) (\vec{b} \vec{y} + r)$$

$$\leq \theta g(\vec{x}) + (1 - \theta) g(\vec{y})$$

Finally we prove that for $f_1, f_2, \dots f_n : R^m \to R, \omega_i \ge 0 \forall i$, the nonnegative weighted sum defined $l_v(\vec{x}) = \sum_{i=1}^n \omega_i f_i(\vec{x})$ is convex.

$$\forall \theta \in [0, 1], \vec{x}, \vec{y} \in R^m$$

$$t(\theta \vec{x} + (1 - \theta) \vec{y}) = \sum_{i=1}^n \omega_i f_i(\theta \vec{x} + (1 - \theta) \vec{y})$$

$$\leq \sum_{i=1}^n \omega_i (\theta f_i(\vec{x}) + (1 - \theta) f_i(\vec{y}))$$

$$= \theta \sum_{i=1}^m \omega_i f_i(\vec{x}) + (1 - \theta) \sum_{i=1}^n \omega_i f_i(\vec{y}).$$

$$= \theta t(\vec{x}) + (1 - \theta) t(\vec{y})$$

Now, notice that our quadratic function is composed of three convex functions $h(\vec{x}) = \vec{x}^{\top} A \vec{x}, g(\vec{x}) = \vec{b}^{\top} \vec{x} + r$: If $A \succeq 0$, $f(\vec{x}) = h(\vec{x}) + g(\vec{x})$ is convex If $f(\vec{x})$ is convex, then

$$H_f(\bar{x}) = A \ge 0.$$

Proof for (2): The \Leftarrow direction follows naturally from the above proof. To check the forward direction we just need to show If $h(\vec{x}) = \vec{x}^{\top} A \vec{x}$ is strictly convex, then $A \succ 0$. Assume $h(\vec{x})$ is strictly convex, then by definition.

$$h(\vec{x}) > h(\vec{y}) + \nabla f(\vec{y})^{\top} (\vec{x} - \vec{y})$$

By second order Taylor expansion we have.

second order Taylor expansion we have. $h(\vec{x}) = h(\vec{y}) + \nabla f(\vec{y})^{\top} (\vec{x} - \vec{y}) + \frac{1}{2} (\vec{x} - \vec{y})^{\top} \nabla^2 f(\vec{z}) (\vec{x} - \vec{y}) \text{ for some } \vec{z} = \theta \vec{x} + (1 - 2) \vec{y}$ $\therefore \frac{1}{2} (\vec{x} - \vec{y})^{\top} \nabla^2 f(\vec{z}) (\vec{x} - \vec{y}) > 0, \forall \vec{x} \neq \vec{y}$ $\therefore \frac{1}{2} (\vec{x} - \vec{y})^{\top} A (\vec{x} - \vec{y}) > 0, \forall \vec{x} \neq \vec{y}$ $\therefore A > 0$

 $\therefore Here \ f(\vec{x}) = \vec{x}^\top A^\top A \vec{x} - \vec{b}^\top A \vec{x} + \|\vec{y}\|_2^2 \ where \ A^\top A \in S^m_+ \ we \ can \ denote \ f(\bar{x}) = \vec{x}^\top S \vec{x} + \vec{p}^\dagger \dot{x} + r \ where \ S \in S^m_+, \vec{p} \in R^m, r \in R, \ which \ is \ a \ convex \ function.$

Problem 9.3 (3 points).

- (a) Show that the function $f(x) = \log(x)$ is concave, that is, -f(x) is convex. Note that dam $f = \{x \in R : x > 0\}$, which is definitely convex. We then use second order condition where $(-f(x))'' = \frac{1}{x^2} > 0 \forall x \in dom : -f(x)$ is convex : f(x) is concave.
- (b) Use the concavity of log, prove that for $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, and any non-negative reals $x, y \in \mathbb{R}_+$, we have the inequality $xy \leq \frac{x^p}{r} + \frac{y^q}{q}.$

<u>Hint:</u> evaluate the logarithm of the above expression.

Given $x, y \in R_+$, we have $x^n, y^n > 0$ $\therefore x^n, y^n \in \text{dom } f$. $\because f(x) = \log(x)$ is concave $\therefore f\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right) \geq \frac{1}{p}f\left(x^p\right) + \frac{1}{q}f\left(y^q\right)$ $\therefore \log\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right) \geq \frac{1}{p}\log\left(x^p\right) + \frac{1}{q}\log\left(y^q\right)$ $\therefore \log\left(\frac{1}{p}x^p + \frac{1}{q}yq\right) \geq \log(xy)$ $\because f'(x) = \frac{1}{x} > 0 \quad \forall x \in \text{dom } f$ $\therefore f(x)$ is monotonically increasing $\therefore xy \leq \frac{x^p}{p} + \frac{y^q}{q}$

(c) With the above result, show that for $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, and any $x, y \in \mathbb{R}^n$, we have

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q,$$

where $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ is the ℓ_p norm.

<u>Hint:</u> apply the inequality in part (b) to the product $\frac{|x_i|}{\|x\|_n} \frac{|y_i|}{\|y\|_{\alpha}}$.

We have the following:

Problem 9.4 (2 points). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Assume that the minimum $m \stackrel{\text{def}}{=} \min_{x \in \mathbb{R}^n} f(x)$ of f on \mathbb{R}^n is finite, and that the set of minimizers of f

$$\mathcal{M} \stackrel{\text{def}}{=} \{ v \in \mathbb{R}^n \, | \, f(v) = m \}$$

is non-empty.

(a) Show that \mathcal{M} is a convex set.

 $\forall \vec{x}, \vec{y} \in M, \text{ we have } f(\vec{x}) = m, f(\vec{y}) = m. \text{ Since } f \text{ is convex}, \forall \theta \in [0, 1], \text{ we have } f(\theta \vec{x} + (1 - \theta) \vec{y}) \leq \theta f(\vec{x}) + (1 - \theta) f(\vec{y}) \therefore f(\theta \vec{x} + (1 - \theta) \vec{y}) \leq \theta \cdot m + (1 - \theta) \cdot m = m \therefore f(\theta \vec{x} + (1 - \theta) \vec{y}) \geq m$ by definition of m.

$$\therefore f(\theta \vec{x} + (1 - \theta)\vec{y}) = m$$
$$\therefore \theta \vec{x} + (1 - \theta)\vec{y} \in M$$

- \therefore M is a convex set.
- (b) Show that if f is strictly convex, then \mathcal{M} has only one element.

Suppose $\exists \vec{x} \neq \vec{y} \in M$, we have $f'(\vec{x}) = f(\vec{y}) = m$. $f'(\vec{y}) = f(\vec{y}) = f'(\vec{y}) = f'$

$$f(\theta \vec{x} + (1 - \theta)\vec{y}) < \theta f(\vec{x}) + (1 - \theta)f(\vec{y})$$
$$= \theta \cdot m + (1 - \theta) \cdot m$$
$$= m$$

 \therefore By definition: $f(\theta \vec{x} + (1 - \theta) \vec{y}) \geqslant m$. \therefore The above statement is a contradiction. \therefore M has unique element in it.

Problem 9.5 (*). Given positive definite matrix $A \in \mathbb{R}^{n \times n}$, consider the following non-negative cost function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = ||A - xx^{\top}||_F^2, \quad x \in \mathbb{R}^n,$$

where the Frobenius norm of a matrix M is defined as $||M||_F = \sqrt{\text{Tr}(M^\top M)}$. Prove or disprove: f is convex.

Proof.

$$\begin{split} f(\vec{x}) &= \operatorname{Tr} \left[\left(A - \vec{x} \vec{x}^{\top} \right)^{\top} \left(A - \vec{x} \vec{x}^{\top} \right) \right] \\ &= \operatorname{Tr} \left[A^{\top} A - A \vec{x} \vec{x}^{\top} - \vec{x}^{\top} A + \vec{x} \vec{x}^{\top} \| \vec{x} \|_{2}^{2} \right] \\ &= \operatorname{Tr} \left(A^{\top} A \right) - \operatorname{Tr} \left(A \vec{x} \vec{x}^{\top} \right) - \operatorname{Tr} \left(\vec{x} \vec{x}^{\top} A \right) + \| \vec{x} \|_{2}^{2} \operatorname{Tr} \left(\vec{x} \vec{x}^{\top} \right) \\ &= \| A \|_{F}^{2} - 2 \operatorname{Tr} \left(A \vec{x} \vec{x}^{\top} \right) + \| \vec{x} \|_{2}^{2} \cdot \| \vec{x} \|_{2}^{2} \\ &= \| A \|_{F}^{2} - 2 \operatorname{Tr} \left(\vec{x}^{\top} A \vec{x} \right) + \| \vec{x} \|_{2}^{4} \\ &= \| \vec{x} \|_{2}^{4} - 2 \vec{x}^{\top} A \vec{x} + \| A \|_{F}^{2} \end{split}$$

For $h(\vec{x}) = ||\vec{x}||_2^*$, we compute its hessian.

$$\nabla h(\vec{x}) = \frac{\partial \left(\vec{x}^T \vec{x}\right)^2}{\partial \vec{x}} = 2 \left(\vec{x}^T \vec{x}\right) \cdot 2\vec{x}$$

$$= 4 \left(\vec{x}^T \vec{x}\right) \vec{x}$$

$$\nabla^2 h(\vec{x}) = 4 \left(\vec{x}^T \vec{x}\right) I = 4 \|\vec{x}\|_2^2 \cdot I$$

$$\therefore \nabla^2 f(\vec{x}) = 4 \|\vec{x}\|_2^2 \cdot I - 4A$$

$$= 4 \left(\|\vec{x}\|_2^2 \cdot I - A\right)$$

$$\therefore \lambda_i \left(\nabla^2 f(\vec{x})\right) = 4 \left(\|\vec{x}\|_2^2 - \lambda_i(A)\right)$$

Since the smallest eigenvalues depend on the choice of \vec{x} , we cannot grantee that $\nabla^2 h(\vec{x}) \succeq 0 \quad \forall \vec{x} \in R^n : f \text{ isn't convex } A \text{ counterexample would be letting}$

$$A = [5] \quad \vec{x} = [-2] \quad \vec{y} = [0] \quad \theta = 0.5$$

$$f(\vec{x}) = \left\| [5] - [-2][-2]^{\top} \right\|_{F}^{2} = 1$$

$$f(\vec{y}) = \left\| [5] - [0][0]^{\top} \right\|_{F}^{2} = 25$$

$$f(\theta \vec{x} + (1 - \theta) \vec{y}) = \left\| [5] - [-1][-1]^{\top} \right\|_{F}^{2} = 16.$$

$$\theta f(\vec{x}) + (1 - \theta) f(\vec{y}) = \frac{25 + 1}{2} = 13$$

$$\therefore \theta f(\vec{x}) + (1 - \theta) f(\vec{y}) < f(\theta \vec{x} + (1 - \theta) \vec{y})$$

Which violates the convexity.