CSE530 Algorithm and Complexity: Assignment I (due 3/19)

Jong Yun Kim (20185053)

PROBLEM I

The answers are given in the table I below.

 $\begin{tabular}{ll} TABLE\ I \\ THE\ ANSWER\ OF\ PROBLEM\ 1 \\ \end{tabular}$

Problem	f(n) = o(g(n))	$f(n) = \Omega(g(n))$
(a)	correct	-
(b)	-	correct
(c)	correct	-
(d)	-	correct
(e)	-	correct

PROBLEM II

II-(a)

Proof:
$$\forall n \ f(n), g(n) \geq 0, \ f(n) = \Theta(g(n)) \rightarrow f(n) + g(n) = \Theta(g(n))$$

 $f(n) = \Theta(g(n))$ is given so that there exist 3 constants $c_1 > 0$, $c_2 > 0$, $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies Inequality (1) below.

$$|c_1|q(n)| < |f(n)| < c_2|q(n)|$$
 (1)

Let h(n)=f(n)+g(n). It is obvious that $h(n)\geq 0$. There exist 3 constants $c_1^*=c_1+1,\ c_2^*=c_2+1,\ n_0^*=n_0$ such that $n\geq n_0^*$ implies

$$c_1^*|g(n)| \le |h(n)| \le c_2^*|g(n)|$$
 (2)

We can obtain Inequality (2) by adding g(n) at every side of Inequality (1), considering the following equations below.

$$c_1|g(n)| + g(n) = (c_1 + 1)|g(n)|$$
$$|f(n)| + g(n) = |h(n)|$$
$$c_2|g(n)| + g(n) = (c_2 + 1)|g(n)|$$

Therefore $h(n) = f(n) + g(n) = \Theta(g(n))$.

II-(b)

The example of function f and g is given as follows.

$$f(n) = -\sin(n)$$

$$g(n) = sin(n)$$

Note that h(n) = f(n) + g(n) = 0. The functions still hold the condition $f(n) = \Theta(g(n))$. Because Equation (1) yields

 $\frac{1}{2}|sin(n)| \le |-sin(n)| \le 2|sin(n)|$ for $n \ge n_0$ if we choose $c_1 = \frac{1}{2}, c_2 = 2, n_0 = 1$.

However, the function f and g do NOT hold Inequality (2) anymore no matter what $c_1^*>0, c_2^*>0$, and $n_0^*\in \mathbf{N}$ are

$$c_1^*|g(n)| \le |h(n)| = 0 \le c_2^*|g(n)| \tag{3}$$

There dose NOT exist constant c_1^* satisfying the left side Inequality (3) because c_1^* can not become zero.

PROBLEM III

III-(a)

Note that I followed similar steps and descriptions of the solution of exercise 1 of this course

Proof: Algorithm 1 is correct (loop invariant method) We are going to use the following loop invariant: For every $i \geq 2$, at the start of the ith iteration of the loop, the subarray A[1...i-1] contains x which is the smallest number of the subarray A[1...i-1] or the second smallest number of the whole array A[1...n].

Let me prove the three properties of this loop invariant. Let s_1, s_2 be the smallest and the second smallest number of A[1...n] respectively. **Initialization.** x = A[1] at the second iteration of the loop. It means that the subarray A[1] contains the smallest number of the subarray (*i.e.* loop invariant is true).

Maintenance. Suppose that the invariant is true before ith iteration of the loop for $i \geq 2$. So there are x in the subarray A[1...i-1]. And we head to the start of the i+1th iteration of the loop. Then the invariant is still true. For the reason we can think into two ways. First, if $x = \min(A[1...i-1]) \neq s_2$ at the beginning of ith iteration, then still $x = \min(A[1...i])$ (because $A[i] > x_{i_1} \to x_i = x_{i-1} = \min(A[1...i-1]) = \min(A[1...i])$). Second, if $x = s_2$ at the start of ith iteration, then x holds s_2 at the start of the next iteration. Because y should be s_1 . In other words, x+y will not become smaller (i.e. no update). Note that if s_1 is prior to s_2 , x sticks to s_1 which is not s_2 .

Termination. When the loop terminates, we have i=n, and thus the subarray A[1...n-1] contains x which is s_2 or $\min(A[1...n-1])$. If $x=s_2$, then $y=s_1$. And if $x=\min(A[1...n-1])\neq s_2$, it implies $x=s_1$ which obviously yields $y=s_2$

III-(b)

Note that $T_k(n)$ is how many times k line was implemented and $e_i j$ is the binary number indicating whether

TABLE II RUNNING TIME OF EACH LINE OF ALGORITHM 1

Line	Cost	Times
1	c_1	$T_1(n) = 1$
2	c_2	$T_2(n) = 1$
3	c_3	$T_3(n) = \sum_{i=1}^{n} (1) = n$
4	c_4	$T_4(n) = \sum_{i=1}^n \sum_{j=i+1}^{n+1} (1) = \frac{n^2}{2} + \frac{n}{2} - 1$
5	c ₅	$T_5(n) = \sum_{i=1}^n \sum_{j=i+1}^n (1) = \frac{n^2}{2} - \frac{n}{2}$
6	c_6	$T_6(n) = \sum_{i=1}^n \sum_{j=i+1}^n (e_{ij}) \le \frac{n^2}{2} - \frac{n}{2}$
7	c ₇	$T_7(n) = \sum_{i=1}^n \sum_{j=i+1}^n (e_{ij}) \le \frac{n^2}{2} - \frac{n}{2}$
8	c_8	$T_8(n) = 1$

conditional statement if on the line 5 was implemented at nested for loop index i and j. It is obvious that $T_6(n) =$ $T_7(n) \leq T_5(n)$ as stated in the table III. Therefore the running time T(n) of the Algorithm 1 is given below.

$$T(n) = \sum_{k=1}^{n} c_k T_k \tag{4}$$

Note that I didn't write the whole term of the running time because a long equation won't be aligned in this environment but you can still get the whole term by referring Table III above.

III-(c)

$$T(n) = \Theta(n^2) \tag{5}$$

The asymptotic notation of the running time of Algorithm 1 is given in Equation (5).

Proof: $T(n) = \Theta(n^2)$

We can divide the running time into 2 cases.

Case I: Best case

The best case means that the conditional statement is not executed. It happens when A[1] and A[2] are the two smallest numbers. In other word, $e_i j$ is always 0. Then the running time is given as follows.

$$T_b(n) = \left(\frac{c_4}{2} + \frac{c_5}{2}\right)n^2 + \left(c_3 + \frac{c_4}{2} - \frac{c_5}{2}\right)n + (c_1 + c_2 - c_4 + c_8)$$
(6)

Case II: Worst case

The worst case means that the conditional statement is executed every time. It happens when A is sorted in decreasing order. In other word, $e_i j$ is always 1. Then the running time is given as follows.

$$T_w(n) = \left(\frac{c_4 + c_5 + c_6 + c_7}{2}\right) n^2 + \left(c_3 + \frac{c_4}{2} - \frac{c_5 + c_6 + c_7}{2}\right) n \quad \text{IV-(b)}$$
$$+ (c_1 + c_2 - c_4 + c_8) \tag{7}$$

So, the relation between the cases and running time is given as follows.

$$T_b(n) \le T(n) \le T_w(n) \tag{8}$$

A property of $\Theta(\cdot)$ is given in the slide of this course. You can see the property below as well.

If
$$f(n)$$
 is a d -th polynomial, then $f(n) = \Theta(n^d)$

The property and Equation (6) and (7) yield two equations below because the coefficients of n^2 in Equation (6) and (7) can not be zero.

$$T_b(n) = \Theta(n^2) \tag{9}$$

$$T_w(n) = \Theta(n^2) \tag{10}$$

The definition of $\Theta(\cdot)$ at the Equation (9) and (10) implies that there exist four constants $c_1 > 0$, $c_2 > 0$, n_b , and n_w such that

$$c_1 n^2 \le T_b(n) \,, \quad n \ge n_b \tag{11}$$

$$T_2(n) \le c_2 n^2 \,, \quad n \ge n_w \tag{12}$$

Inequality (11) and (12) can be combined with Inequality (8).

$$c_1 n^2 \le T_b(n) \le T(n) \le T_w(n) \le c_2 n^2$$
 (13)

, where $n \ge n_0 = \max[n_b, n_w]$. The existence of $c_1 > 0$, $c_2 > 0$, and n_o at Inequality (13) directly means T(n) = $\Theta(n^2)$.

III-(d)

TABLE III FASTER ALGORITHM THAN ALGORITHM 1

Algo	Algorithm 2			
01: procedure FAST 2-MIN($A[1n]$))				
02:	$key \leftarrow A[1], IDx \leftarrow 1$			
03:	for $i \leftarrow 2, n$ do			
04:	if $A[i] < key$ then			
05:	$key \leftarrow A[i], IDx \leftarrow i$			
06:	$\mathbf{x} \leftarrow key$			
07:	if IDx==1 then			
08:	$key \leftarrow A[2]$			
09:	else			
10:	$key \leftarrow A[1]$			
11:	for $j \leftarrow 2, n$ do			
12:	if $j == IDx$ then			
13:	continue;			
14:	if $A[j] < key$ then			
15:	$key \leftarrow A[j]$			
16:	$y \leftarrow key$			
17:	return x,y			

The numbers of implementation of each line are only one except for loops (line $4\sim5$ and line $11\sim15$). The two for loop are parallel instead of being mutually nested. So the running time of this algorithm is $\Theta(n)$.

PROBLEM IV