

CE2001/ CZ2001: Algorithms

Graphs

Ke Yiping, Kelly

CE2001/ CZ2001: ALGORITHMS

Learning Objectives

At the end of this lecture, students should be able to:

- Explain the strategy of Greedy algorithms
- Solve single-source shortest paths problem using Dijkstra's algorithm
- Prove the correctness of Dijkstra's algorithm
- Describe Prim's algorithm for finding minimum spanning trees (MSTs)
- Prove the correctness of Prim's algorithm

Greedy Algorithms

CE2001/ CZ2001: ALGORITHMS

Greedy Algorithms

- In optimisation problems, the algorithm needs to make a series of choices whose overall effect is to minimise the total cost, or maximise the total benefit, of some system.
- There is a class of algorithms, called the greedy algorithms, in which we can find a solution by using only knowledge available at the time when the next choice (or guess) must be made.
- Each individual choice is the best within the knowledge available at the time.

Greedy Algorithms

- Each individual choice is not very expensive to compute.
- A choice cannot be undone, even if it is found to be a bad choice later.
- Greedy algorithms cannot guarantee to produce the optimal solution for a problem.

CE2001/ CZ2001: ALGORITHMS

Dijkstra's Algorithm

Shortest Path Problem:

The problem of finding the shortest path from one vertex in a graph to another vertex. "Shortest" may be the least number of edges, or the least total weight, etc.

Dijkstra's Algorithm:

This is an algorithm to find the shortest paths from a single source vertex to all other vertices in a **weighted**, **directed** graph. All weights must be **nonnegative**.

Dijkstra's Algorithm

CE2001/ CZ2001: ALGORITHMS

Dijkstra's Algorithm

Dijkstra's algorithm keeps two sets of vertices:

- S ---- the set of vertices whose shortest paths from the source node have already been determined [they form the tree]
- V S ---- the remaining vertices

The other data structures needed are:

- d ---- array of estimates for the lengths of shortest paths from source node to all vertices
- pi ---- an array of predecessors for each vertex

Basic Steps

The basic steps are:

- 1. Initialise d and pi
- 2. Set S to empty
- 3. While there are still vertices in V S
 - i. Move u, the vertex in V S that has the shortest path estimate from source, to S
 - ii. For all the vertices in **V S** that are connected to **u**, update their estimates of shortest distances to the source

9

CE2001/ CZ2001: ALGORITHMS

Pseudocode of Dijkstra's Algorithm

```
Dijkstra_ShortestPath ( Graph G, Node source ) {
    for each vertex v {
        d[v] = infinity;
        pi[v] = null pointer;
        S[v] = 0;
    }
    d[source] = 0;
    put all vertices in priority queue, Q, in d[v]'s increasing order;
    while not Empty(Q) {
        u = ExtractCheapest(Q);
        S[u] = 1; /* Add u to S */
```


CE2001/ CZ2001: ALGORITHMS

Pseudocode of Dijkstra's Algorithm

```
for each vertex v adjacent to u

if (S[v] ≠ 1 and d[v] > d[u] + w[u, v]) {

remove v from Q;

d[v] = d[u] + w[u, v];

pi[v] = u;

insert v into Q according to its d[v];

}

} // end of while loop
}
```

Worst case time complexity of Dijkstra's algorithm is $O(|V|^2)$ (analysis not required).

Proof of Correctness

Property of Shortest Path

Lemma 1: In a weighted graph G, suppose that a shortest path from x to z consists of a path P from x to y followed by a path Q from y to z. Then P is a shortest path from x to y and Q is a shortest path from y to z.

Proof (By Contradiction):

Assume that P is not the shortest path from x to y. Then there will be another path from x to y, P' which is shorter than P. As a result P' followed by Q will be a path **shorter** than P followed by Q. But it was known that P followed by Q is the **shortest** path. Contradiction. Same can be said about Q.

3

CE2001/ CZ2001: ALGORITHMS

Greedy choice is optimal

Proof of Theorem D1 (continued)

P: $s \rightarrow y \rightarrow z$ (shortest path for z)

$$W(P) = d[y] + W(y, z)$$

P': $s \rightarrow y \rightarrow u \rightarrow ... \rightarrow z$ (an alternative shortest path)

$$W(P') = d[y] + W(y, u)$$

+ distance from u to z

Because $d[y] + W(y, u) \ge d[y] + W(y, z)$, and distance from u to z is nonnegative, therefore $W(P) \le W(P')$.

Edge (y, z) is chosen to minimise d[y] + W(y, z) over all edges with one vertex in S and one vertex in V – S CE2001/ CZ2001: ALGORITHMS

Greedy choice is optimal

Theorem D1: Let G = (V, E, W) be a weighted graph with nonnegative weights. Let S be a subset of V and let S be a member of S. Assume that G[Y] is the shortest distance in G from S to S, for each S in S. Let S be the next vertex chosen to go into S. If edge S is chosen to minimise G[Y] + W(Y, Z) over all edges with one vertex in S and one vertex in S then the path consisting of a shortest path from S to S followed by the edge S is the shortest path from S to S.

Proof:

We will show that there is no other path from s to z that is shorter.

14

CE2001/ CZ2001: ALGORITHMS

Greedy choice is optimal

Proof of Theorem D1 (continued)

Let P be a shortest path from **s** to **y** followed by edge (y, z) Let W(P) = the distance travelled along P Let P' = any shortest path <u>different</u> from P, i.e., P' = s, $z_1, ..., z_k, ..., z$ Assume that z_k is the first vertex in P' not in set S.

W(P) = d[y] + W(y, z)

$$W(P') = d[z_{k-1}] + W(z_{k-1}, z_k) + distance from z_k to z$$

Note that: $d[z_{k-1}] + W(z_{k-1}, z_k) \ge d[y] + W(y, z)$

Since distance from z_k to z is non-negative, therefore, $W(P) \le W(P')$.

Α.

Theorem D2 and Proof

Theorem D2: Given a directed weighted graph G with nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from s.

Proof (By induction):

We will show by induction that as each vertex v is added into set S, d[v] is the shortest distance from s to v.

Basis:

The algorithm assigns d[s] to zero when the source vertex s is added to S. So d[s] is the shortest distance from s to s when S has the first vertex in it.

7

Minimum Spanning Tree

CE2001/ CZ2001: ALGORITHMS

Theorem D2 and Proof (Continued)

Inductive Hypothesis:

Assume the theorem is true when S has ${\bf k}$ vertices. That is, assume $v_0, v_1, v_2, ..., v_{k-1}$ are added where $d[v_1], d[v_2]...$ are the shortest distances.

When v_k is chosen by Dijkstra's algorithm, it means an edge (v_i, v_k) , where $i \in \{0, 1, 2, ..., k-1\}$, is chosen to minimise $d[v_i] + W(v_i, v_k)$ among all edges with one vertex in S and one vertex not in S.

By Theorem D1, $d[v_k]$ is the shortest distance from source to v_k . So the theorem is true when S has k + 1 vertices.

18

CE2001/ CZ2001: ALGORITHMS

Minimum Spanning Tree

Definition of Spanning Tree

A connected, acyclic subgraph containing all the vertices of a graph.

Definition of Minimum Spanning Tree

A minimum-weight spanning tree in a weighted graph.

Main Idea of Prim's Algorithm

Prim's Algorithm

- It works on undirected graph.
- It builds upon a single partial minimum spanning tree, at each step adding an edge connecting the vertex nearest to but not already in the current partial minimum spanning tree.
- At first a vertex is chosen, this vertex will be the first node in T.
- Set P is initialised: P = set of vertices not in tree T but are adjacent to some vertices in T.

CE2001/ CZ2001: ALGORITHMS

Main Idea of Prim's Algorithm

Prim's Algorithm (Cont.)

- In every iteration in the Prim's Algorithm, a new vertex u from set P will be connected to the tree T. The vertex u will be deleted from the set P. The vertices adjacent to u and not already in P will be added to P.
- When all vertices are connected into T, P will be empty. This means the end of the algorithm.
- The new vertex in every iteration will be chosen by using greedy method, i.e. among all vertices in P which are connected to some vertices already inserted in the tree T but themselves are not in T, we choose one with the minimum cost.

٠,

3 subsets of vertices

Prim's Algorithm classifies vertices into three disjoint categories:

- Tree vertices in the tree being constructed so far
- Fringe vertices not in the tree but adjacent to some vertices in the tree
- Unseen vertices all others

26

CE2001/ CZ2001: ALGORITHMS

Greedy choice of Prim's Algo

- Key step in the algorithm is the selection of a vertex from the fringe (which, of course, depends on the weights on incident edges).
- Prim's Algorithm always chooses a minimum weight edge from tree vertex to fringe vertex.

Main Idea of Prim's Algorithm

F (vertices adjacent to, but not in T)

W

X

Z

Choose min(w, x, y, z)

Pseudocode of Prim's Algo

CE2001/ CZ2001: ALGORITHMS

Implementing Prim's Algo

```
primMST(G, s, n) {
    initialise priority queue pq as empty;
    for each vertex v {
        d[v] = infinity; S[v] = 0;
        pi[v] = null pointer; }
    d[s] = 0; S[s] = 1;
    insert(pq, s, 0);
    while (pq is not empty) {
        u = getMin(pq); deleteMin(pq);
        S[u] = 1;
        updateFringe(pq, G, u); }
}
```

CE2001/ CZ2001: ALGORITHMS

Implementing Prim's Algo

Data Structures Used:

- Array d: distance of a fringe vertex from the tree
- Array pi: vertex connecting a fringe vertex to a tree vertex
- Array S: whether a vertex is in the minimum spanning tree being built
- Priority queue pq: queue of fringe vertices in the order of the distances from the tree

At the end of the algorithm, array pi has the minimum spanning tree.

30

CE2001/ CZ2001: ALGORITHMS

Update Fringe Set of Vertices

```
updateFringe(pq, G, v) {
  for all vertices w adjacent to v {
    if (S[w] != 1) { //if w is not a tree vertex
        newWgt = weight of edge vw;
    if (d[w] == infinity) {
        d[w] = newWgt; pi[w] = v;
        insert(pq, w, newWgt);
    } else if (newWgt < d[w]) {
        d[w] = newWgt; pi[w] = v;
        decreaseKey(pq, w, newWgt);}
    } // if w is not a tree vertex
} // for all vertices
}</pre>
```


MST Property

Minimum Spanning Tree Property

Let T be a spanning tree of G, where G = (V, E, W) is a connected, weighted graph. Suppose that for every edge (u, v) of G that is not in T, if (u, v) is added to T it creates a cycle such that (u, v) is a maximum-weight edge on that cycle. Then T has the **Minimum Spanning Tree**Property (or MST Property, in short).

33

CE2001/ CZ2001: ALGORITHMS

Proof of Lemma 1 (continued)

Inductive hypothesis: For k > 0, assume the lemma holds when there are j differing edges where $0 \le j < k$.

Let \underline{uv} be the minimum weight edge among the differing edges (assume \underline{uv} is in T_2 but not T_1).

Look at unique path in T_1 from u to v.

Suppose it is made up of $w_0, w_1, ..., w_p$ where $w_0 = u, ..., w_p = v$.

This path must contain some edge different from T_2 's.

Let w_iw_{i+1} be this differing edge.

By MST property of T_1 , $w_i w_{i+1}$ cannot be > uv's weight.

CE2001/ CZ2001: ALGORITHMS

Lemma 1 and Proof

Lemma 1: In a connected weighted graph G = (V, E, W), if T_1 and T_2 are two spanning trees that have the MST property, then they have the same total weight.

Proof by induction on k, the number of edges in T_1 but not T_2 (there are also k edges in T_2 but not in T_1).

Basis:

k = 0; i.e. $T_1 = T_2$. Therefore, they have the same weight.

34

CE2001/ CZ2001: ALGORITHMS

Proof of Lemma 1 (continued)

But since uv was chosen to be the minimum weight among differing edges, w_iw_{i+1} cannot have weight less than uv.

Therefore, $W(w_i w_{i+1}) = W(uv)$.

Add uv to T_1 (creating a cycle). Remove w_iw_{i+1} leaving tree T'_1 (which has the same weight as T_1).

But T_1 and T_2 differ only on k-1 edges.

So by inductive hypothesis, T_1 and T_2 have the same total weight. Therefore, T_1 and T_2 have same weight.

Page 392 Baase & Van Gelder

Theorem 1 and Proof

Theorem 1: In a connected weighted graph G = (V, E, W), a tree *T* is a minimum spanning tree if and only if *T* has the MST property.

Proof (**Only if**): Assume *T* is an MST for graph G.

Suppose T does not satisfy the MST property, i.e. there is some edge uv that is not in T such that adding uv creates a cycle, in which some other edge xy has weight W(xy) > W(uv).

Then, by removing xy and adding uv, we create a new spanning tree whose total weight is < W(T); This contradicts the assumption that T is an MST.

37

CE2001/ CZ2001: ALGORITHMS

Prim's Algorithm is Optimal

Lemma 2: Let G = (V, E, W) be a connected weighted graph; Let T_k be the tree with k vertices constructed by Prim's Algorithm, for k = 1, 2, ..., n; and let G_k be the subgraph induced by the vertices of T_k . Then T_k has the MST property in G_k . (**Proof is not required**)

Theorem 2: Prim's Algorithm outputs a minimum spanning tree.

Proof:

- From Lemma 2, T_n has the MST property.
- By Theorem 1, T_n is a minimum spanning tree.

CE2001/ CZ2001: ALGORITHMS

Proof of Theorem 1 (continued)

Theorem 1: In a connected weighted graph G = (V, E, W), a tree T is a minimum spanning tree if and only if T has the MST property.

Proof (**Only if**): Assume *T* is an MST for graph G.

(Cont.)

(If) Assume T has MST property.

If $T_{\rm min}$ is an MST, then $T_{\rm min}$ has MST property by the first half of the proof.

By Lemma 1, $W(T) = W(T_{min})$, so T is also an MST.

38

CE2001/ CZ2001: ALGORITHMS

Priority Queue for MST (Optional)

- Inserted by order of priority (not chronological, as in 'normal' queues – FIFO)
- Elements to be inserted have a 'key' contains the priority; element with highest priority will be selected first. [priority can be largest value (e.g. if we're computing max profit) or smallest value (e.g. if we're interested in min cost)]
- Think of pq as a sequence of pairs: (id₁,w₁), (id₂,w₂),..., (id_k,w_k). The order is in increasing w_i and id is a unique identifier for an element

Methods of Priority Queue (Optional)

The Priority Queue consists of:

Create: Constructor to set up PQ

isEmpty; getMin; getPriority: Access functions

insert; deleteMin; decreaseKey: Manipulation procedures

Insert(pq, id, w): Inserts (id, w) into an existing pq - position depends on w

decreaseKey(pq, id, neww): Rearranges pq based on new wt of element id

getMin(pq): Returns id₁;

getPriorty(pq): Returns weight of min element

11

CE2001/ CZ2001: ALGORITHMS

Summary

- Greedy algorithm is a general strategy to solve optimization problems
- Dijkstra's algorithm finds single-source shortest paths in a weighted graph of nonnegative edge weights
- Prim's algorithm finds the minimum spanning trees in weighted graphs
- Both are greedy algorithms, and use priority queue