

MATHEMATICS HIGHER LEVEL PAPER 1

Thursday 4 November 20	010 (afternoon)
------------------------	-----------------

2 hours

	C	andi	aate	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 4]
	Find the set of values of x for which $ x-1 > 2x-1 $.

2. [Maximum mark: 5]

Consider the matrix $\begin{pmatrix} k & 1 & 1 \\ 0 & 2 & k-1 \\ k & 0 & k-2 \end{pmatrix}.$

Find all possible values of k for which the matrix is singular.

3.	[Maximum	mark.	4
J.	IVIUXIIIIUIII	murn.	71

Expand and simplify $\left(x^2 - \frac{2}{x}\right)^4$.

														 			 											•
				 										 			 											•

4.	[Maximum	mark:	5	7

Jenny goes to school by bus every day. When it is not raining, the probability that
the bus is late is $\frac{3}{20}$. When it is raining, the probability that the bus is late is $\frac{7}{20}$.
The probability that it rains on a particular day is $\frac{9}{20}$. On one particular day the bus
is late. Find the probability that it is not raining on that day.

J. IMMAIIIMII IIMIN. O	5.	[Maximum	mark:	6
------------------------	----	----------	-------	---

The twe the	nty	y	te	rn	ıs												-												
			٠			 •							 	•	 		 •	 •	 			•		٠	•	 •	 	•	
			٠										 		 		 •		 						•		 	•	
						 -							 		 				 								 		

6. [Maximum mark: 8]

The sum, S_n , of the first n terms of a geometric sequence, whose n^{th} term is u_n , is given by

$$S_n = \frac{7^n - a^n}{7^n}$$
, where $a > 0$.

- (a) Find an expression for u_n . [2 marks]
- (b) Find the first term and common ratio of the sequence. [4 marks]
- (c) Consider the sum to infinity of the sequence.
 - (i) Determine the values of a such that the sum to infinity exists.

(ii)	Find the sum to infinity when it exists.

[2 marks]

7. [Maximum mark: 8]

Consider the plane with equation 4x-2y-z=1 and the line given by the parametric equations

$$x = 3 - 2\lambda$$
$$y = (2k - 1) + \lambda$$
$$z = -1 + k\lambda.$$

Given that the line is perpendicular to the plane, find

(a)	the value of k ;	[4 marks]
(b)	the coordinates of the point of intersection of the line and the plane.	[4 marks]

8. [Maximum mark: 7]

Find y in terms of x, given that $(1+x^3)\frac{dy}{dx} = 2x^2 \tan y$ and $y = \frac{\pi}{2}$ when x = 0.

.....

.....

.....

.....

9. [Maximum mark: 8]

Consider the function $f: x \to \sqrt{\frac{\pi}{4} - \arccos x}$.

(a) Find the largest possible domain of f.

[4 marks]

(b) Determine an expression for the inverse function, f^{-1} , and write down its domain.

[4 marks]

						 																					 		•								•
						 																				•	 										
_		_											_				_	_				_	_									_		_	_	_	_

.....

10. [Maximum mark: 5]

Let α be the angle between the unit vectors \boldsymbol{a} and \boldsymbol{b} , where $0 \le \alpha \le \pi$.

(a) Express |a-b| and |a+b| in terms of α .

[3 marks]

(b) Hence determine the value of $\cos \alpha$ for which |a+b|=3|a-b|.

[2 marks]

.....

.....

.....

.....

Do NOT write solutions on this page. Any working on this page will NOT be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 19]

Consider the complex number $\omega = \frac{z+i}{z+2}$, where z = x+iy and $i = \sqrt{-1}$.

(a) If $\omega = i$, determine z in the form $z = r \operatorname{cis} \theta$.

[6 marks]

(b) Prove that $\omega = \frac{(x^2 + 2x + y^2 + y) + i(x + 2y + 2)}{(x + 2)^2 + y^2}$.

[3 marks]

(c) **Hence** show that when $Re(\omega) = 1$ the points (x, y) lie on a straight line, l_1 , and write down its gradient.

[4 marks]

(d) Given $\arg(z) = \arg(\omega) = \frac{\pi}{4}$, find |z|.

[6 marks]

12. [Maximum mark: 18]

(a) A particle P moves in a straight line with displacement relative to origin given by

$$s = 2\sin(\pi t) + \sin(2\pi t), \ t \ge 0,$$

where t is the time in seconds and the displacement is measured in centimetres.

- (i) Write down the period of the function s.
- (ii) Find expressions for the velocity, v, and the acceleration, a, of P.
- (iii) Determine all the solutions of the equation v = 0 for $0 \le t \le 4$.

[10 marks]

(b) Consider the function

$$f(x) = A\sin(ax) + B\sin(bx), A, a, B, b, x \in \mathbb{R}$$
.

Use mathematical induction to prove that the $(2n)^{th}$ derivative of f is given by $f^{(2n)}(x) = (-1)^n \left(Aa^{2n} \sin(ax) + Bb^{2n} \sin(bx) \right)$, for all $n \in \mathbb{Z}^+$. [8 marks]

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

13. [Maximum mark: 23]

Consider the curve $y = xe^x$ and the line y = kx, $k \in \mathbb{R}$.

- (a) Let k = 0.
 - (i) Show that the curve and the line intersect once.
 - (ii) Find the angle between the tangent to the curve and the line at the point of intersection.

[5 marks]

(b) Let k = 1. Show that the line is a tangent to the curve.

[3 marks]

- (c) (i) Find the values of k for which the curve $y = xe^x$ and the line y = kx meet in two distinct points.
 - (ii) Write down the coordinates of the points of intersection.
 - (iii) Write down an integral representing the area of the region A enclosed by the curve and the line.
 - (iv) **Hence**, given that 0 < k < 1, show that A < 1.

[15 marks]

