Министерство науки высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

Факультет технологий искусственного интеллекта

Лабораторная работа №4

Анализ данных на предмет выбросов и дрифтов

Выполнили:

Гончаренко Данила Олегович, группа J4150 Стрельницкая Татьяна Викторовна, группа J4140

Преподаватель:

Старобыховская Анастасия Александровна

Оглавление

Задание	2
Основные этапы	3
Вывод	8

Задание

В рамках данной лабораторной работы поставлена цель — проанализировать датасет предыдущих лабораьорных работ на предмет шумов, отклонений и дрифтов.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Взять задачу из прошлых лабораторных и датасет,
- 2. Проанализировать данные для датасета на наличие шумов, выбросов/аномалий, дрифтов.
 - 3. Выбрать алгоритм определения дрифта и применить его,
 - 3+. Прикрутить инструмент мониторинга.
- 4. Проанализировать полученные результаты. Сделать выводы и описать почему они могли получиться именно такими.
 - 6. Написать отчёт.

Основные этапы

Была взята задача классификации качества вина.

Входные переменные - различные физико-химические свойства вина – представлены в таблице 1.

Таблица 1 – Набор входных данных для модели логистической регрессии

Название	Описание
характеристики	
Fixed Acidity	Уровень кислотности, который остается после
	ферментации
Volatile Acidity	Количество уксусной кислоты, влияющей на вкус
Citric Acid	Лимонная кислота – усиливает вкус, придает
	свежесть
Residual Sugar	Сахар, остающийся после ферментации
Chlorides	Хлориды – содержание соли
Free Sulfur Dioxide	Свободный диоксид серы – действует как
	противомикробное средство
Total Sulfur Dioxide	Общее количество диоксида серы
Density	Плотность вина, связанная с содержанием алкоголя
	и сахара
рН	Уровень кислотности
Sulphates	Сульфаты, способствующие микробной
	стабильности
Alcohol	Процент алкоголя
Quality	Сенсорная оценка качества (от 0 до 10)

Выходная переменная: показатель качества (0-10), определяемый на основе сенсорных данных.

Задача – определить выбросы и отклонения в датасете.

Взят датасет качества вина из прошлых лабораторных работ.

Рисунок 1 – Исходный датасет качества вина.

Далее отделяем зависимые переменные от целевой переменной. Для анализа были выделены следующие переменные: 'fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol'.

Рисунок 2 – Подготовленный датасет зависимых переменных

Проводим анализ выбросов при помощи ящиков с усами. При помощи ящиков с усами были выявлены выбросы по каждому показателю.

Рисунок 3 – Ящики с усами по зависимым переменным.

Затем для нахождения дрифта датасет был разделен на два тестовых датасата..

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
	fixed acidity	volatile acidity	citric acid	residual suga	r chlorides	free sulfur dioxide	total sulfur dioxide	density	, рН	sulphates	s alcohol
799	9 9.4	4 0.500	0.34	3.6	0.082	5.0	14 (0.99870	3 29	0.52	2 10.7
		0.500	0.5	51.				0.55010	, ,	0.32	10.7
800	0 7.2										
80		2 0.610	0.08	4.0	0.082	26.0	108.0	0.99641	3.25	0.51	9.4
	1 8.6	2 0.610 5 0.550	0.08	4.0 3.3	0.082	26.0 8.0	108.0 17.0	0.99641	3.25 3.23	0.51 0.44	9.4 1 10.0

Рисунок 4 – Тестовые датасеты

Для нахождения дрифта данных был выбран алгоритм Колмагорова-Смирнова.

	Feature	KS-statistic	P-value
7	density	0.464770	9.666870e-79
10	alcohol	0.310853	1.057344e-34
0	fixed acidity	0.274646	3.738210e-27
4	chlorides	0.201912	1.064279e-14
2	citric acid	0.194121	1.231822e-13
3	residual sugar	0.174332	4.762430e-11
8	рН	0.152927	1.326065e-08
6	total sulfur dioxide	0.105842	2.186888e-04
5	free sulfur dioxide	0.094387	1.486029e-03
1	volatile acidity	0.067300	4.881952e-02
9	sulphates	0.066383	5.574066e-02

Рисунок 5 – Результаты работы алгоритма Колмагорова-Смирнова.

Для мониторинга был использован EVENDITLY AI. Для анализа дрифтов датасет был разделен на два равных тестовых сабсета. В результате анализа было найдено 7 колонок, имеющих дрифты: chlorides, alcohol, citric acid, pH, free sulfur dioxide, density.

Dataset Drift ft is detected. Dataset drift detection t	hreshold is 0.5
7 Drifted Columns	0.636 Share of Drifted Columns
Data Drift Summary	
s (7 out of 11).	
	ft is detected. Dataset drift detection the Tourness of Tourness o

Рисунок 6 – Результаты анализа датасета на наличие дрифтов.

Рисунок 7 – Результаты анализа датасета по переменным.

Рисунок 8 – Data drift clorides.

Рисунок 9 – Data drift alcohol

Рисунок 10 – Data drift citric acid

Рисунок 11 – Data drift pH

Рисунок 12 – Data drift free sulfur dioxide

Рисунок 13 – Data drift density

Выводы

В результате определения дрифта при помощи алгоритма Колмагорова-Сморнова можно сделать вывод, что данные имеют не выбросы каждому показателю, а дрифты наблюдаются в 7 показателях. Ссылка