Лекция 8. Несущественные и существенные переменные

Определение 1. Переменная x_i для функции n переменных $f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ называется necymecmsenhoй, если для любых наборов значений переменных, отличающихся только значениями переменной x_i , будет выполняться равенство

$$f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n) = f(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_n), \tag{*}$$

т.е. изменение x_i при любом одинаковом наборе остальных переменных не изменяет значения функции.

Замечание 1. Если выполнено (*), функция $f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ по существу зависит от n-1 переменной, т.е. представляет собой функцию $g(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$:

$$f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) \to g(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Данную функцию можно получить из функции $f(x_1, ..., x_n)$ путем удаления несущественной переменной x_i . И наоборот, иногда полезно вводить несущественную переменную, т.е. можно любую функцию сделать функцией сколь угодно большого числа переменных, что часто бывает удобно.

Пример 1. Доказать, что для функций одной переменной $f_{1,0}(x)$ и $f_{1,3}(x)$ единственная переменная x является несущественной.

Решение. 1) Функция $f_{1,0}(x)$ задается таблицей 1.

Таблица 1

x	$f_{1,0}(x)$
0	0
1	0

Из этой таблицы видно, что

$$\begin{cases} f_{1,0}(0) = 0, \\ f_{1,0}(1) = 0; \end{cases}$$

т.е. изменение значения переменной x не приводит к изменению значения функции. Следовательно, x — несущественная переменная.

2) Функция $f_{1,3}(x)$ задается таблицей 2.

Таблица 2

x	$f_{1,3}(x)$
0	1
1	1

Из этой таблицы видно, что

$$\begin{cases} f_{1,3}(0) = 1, \\ f_{1,3}(1) = 1, \end{cases}$$

т.е. изменение значения переменной x не приводит к изменению значения функции. Следовательно, x — несущественная переменная.

Упражнение 1 (д/з). Доказать, что для функций двух переменных $f_{2,0}(x_1, x_2)$ и $f_{2.15}(x_1, x_2)$ обе переменные x_1 и x_2 являются несущественными.

Пример 2. Доказать, что функция $f_{2,3}(x_1,x_2)$ имеет одну несущественную переменную: а) найти ее, б) обосновать.

Решение. 1) Функция $f_{2,3}(x_1, x_2)$ задается таблицей 3.

Таблица 3

x_1	x_2	$f_{2,3}(x_1,x_2)$
0	0	0
0	1	0
1	0	1
1	1	1

Из этой таблицы видно, что

$$\begin{cases} f_{2,3}(0,0) = 0, \\ f_{2,3}(0,1) = 0, \\ f_{2,3}(1,0) = 1, \\ f_{2,3}(1,1) = 1, \end{cases}$$

т.е. изменение значения переменной x_2 при одинаковых значениях x_1 не приводит к изменению значения функции. Следовательно, x_2 — несущественная переменная.

2) Из доказанного следует, что функции $f_{2,3}(x_1,x_2)$ соответствует функция только одной переменной $g_{2,3}(x_1)$. Исключая x_2 из табл. 3, получим табл. 4 — таблицу задания функции $g_{2,3}(x_1)$, причем $g_{2,3}(x_1) \sim x_1$, т.е. функция $g_{2,3}(x_1)$ эквивалентна тождественной функции $f_{1,1}(x_1) \equiv x_1$.

Таблица 4

x_1	$g_{2,3}(x_1)$
0	0
1	1

Упражнение 2 (д/з). Доказать, что каждая из функций $f_{2,5}(x_1, x_2), f_{2,10}(x_1, x_2)$ и $f_{2,12}(x_1, x_2)$ имеет одну несущественную переменную: а) найти ее, б) обосновать.

Замечание 2. Из примера 1 следует, что из 4 функций одной переменной 2 функции $f_{1,0}(x)$ и $f_{1,3}(x)$, т.е. 50 процентов, имеют несущественные переменные. Из примера 2 и упражнений 1-2 следует, что из 16 функций двух переменных 6 функций $f_{2,0}(x_1,x_2), f_{2,3}(x_1,x_2), f_{2,5}(x_1,x_2), f_{2,10}(x_1,x_2), f_{2,12}(x_1,x_2)$ и $f_{2,15}(x_1,x_2)$, т.е. 37,5 процентов, имеют несущественные переменные.

Замечание 3. Можно показать, что с ростом числа переменных доля функций с несущественными переменными убывает и стремится к нулю.

Замечание 4. Если переменная не является несущественной, то она является *существенной*, т.е. имеет место

Определение 2. Переменная x_i называется cyщественной для функции n переменных $f(x_1,\ldots,x_n)$, если существует хотя бы один набор значений $(a_1^*,\ldots,a_{i-1}^*,a_{i+1}^*,\ldots,a_n^*)$

всех ее переменных, кроме x_i , для которого выполняется условие

$$f(a_1^*, \dots, a_{i-1}^*, 0, a_{i+1}^*, \dots, a_n^*) \neq f(a_1^*, \dots, a_{i-1}^*, 1, a_{i+1}^*, \dots, a_n^*).$$

Пример 3. Зададим произвольным образом логическую функцию трех переменных в виде табл. 5. Определим существенные и несущественные переменные для этой функции.

Таблица 5

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Решение. Проверим несущественность переменной x_3 . Для этого мы должны сравнить значения функции при одинаковых значениях x_1 и x_2 . Запишем их:

$$\begin{cases} f(0,0,0) = 0, \\ f(0,0,1) = 0, \\ f(0,1,0) = 1, \\ f(0,1,1) = 1, \\ f(1,0,0) = 1, \\ f(1,0,1) = 1, \\ f(1,1,0) = 0, \\ f(1,1,1) = 0. \end{cases}$$

Из этих соотношений следует, что изменение значения переменной x_3 при одинаковых значениях x_1 и x_2 не приводит к изменению значения функции. Следовательно, x_3 является несущественной переменной. Исключая из табл. 5 переменную x_3 , т.е. вычеркивая третий столбец и по одной из каждых двух одинаковых строк, получим табл. 6, задающую функцию двух переменных $g(x_1, x_2)$, эквивалентную функции $f_{2.6}(x_1, x_2)$.

Таблица 6

x_1	x_2	$g(x_1, x_2)$
0	0	0
0	1	1
1	0	1
1	1	0

 $\overline{\mathbf{Упражнение 3}}$ (д/з). Доказать, что для функции $g(x_1,x_2)$ переменные x_1 и x_2 являются существенными.