Листок 22

Семинарские задачи

Задача 22.1. Исследуйте сходимость следующих рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{1}{2}}};$$
 6) $\sum_{k=2}^{\infty} \int_{0}^{\frac{1}{k}} \frac{dx}{1+x^{3}};$ B) $\sum_{k=1}^{\infty} \left(e - \left(1 + \frac{1}{k}\right)^{k}\right)^{p};$

$$\Gamma$$
) $\sum_{k=1}^{\infty} \frac{1}{k^p}$; π) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$; π e) $\sum_{k=2}^{\infty} \frac{1}{\ln k!}$.

Задача 22.2. Исследуйте ряд на сходимость, применяя признаки Даламбера и Коши:
 а)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{n!};$$
 6) $\sum_{n=1}^{\infty} \frac{n^n}{n! \cdot 3^n};$ в) $\sum_{n=1}^{\infty} \left(\frac{n^2+5}{n^2+6}\right)^{n^3}.$

Задача 22.3. Исследуйте ряд на сходимость, применяя признак Гаусса: a)
$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2;$$
 б) $\sum_{n=2}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot \ldots \cdot (3n-4)}{3^n \cdot n!}.$

Задача 22.4. Исследуйте ряд на сходимость, применяя признак Лейбница:

a)
$$\sum_{n=1}^{\infty} \frac{\cos\sqrt{2}n}{2n-5};$$

b) $\sum_{n=1}^{\infty} \frac{\cos\sqrt{2}n}{2n-5} \arctan n;$
b) $\sum_{n=2}^{\infty} \frac{\sin 4n}{\ln n - \ln \ln n};$

$$\Gamma$$
) $\sum_{n=2}^{\infty} \frac{\sin(n+2)}{\ln n} \cos \frac{1}{n};$ д) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos 3n}{\sqrt{n^2+2}};$ е) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{arctg} e^n.$

Задача 22.6. Докажите расходимость интеграла $\int_{1}^{\infty} \frac{\sin^2 x}{r^{\alpha}} dx$ при $\alpha \leqslant 1$.

Задача 22.7. Докажите, что интеграл $\int_{1}^{\infty} \frac{\sin x}{x} \, dx$ сходится условно.

Задача 22.8. Исследуйте $\int_{1}^{\infty} \frac{\sin x}{x^{\alpha}} dx$ на абсолютную и условную сходимость при всех значениях параметра α .

Домашнее задание

Задача 22.9 (ДЗ). Исследуйте сходимость следующих рядов:

a)
$$\sum_{k=1}^{\infty} (\sqrt{k+2} - \sqrt{k+1})^p \ln\left(\frac{3k+1}{3k-1}\right);$$
 6) $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^{\ln k}};$ B) $\sum_{k=1}^{\infty} \frac{k^{2k}}{(k!)^2};$ $\sum_{k=1}^{\infty} \frac{k!(2k+1)!}{(3k)!};$ $\sum_{k=1}^{\infty} \int_{0}^{1/n} \frac{\sqrt{x}}{1+x^2} dx.$

Задача 22.10 (ДЗ). Исследуйте ряд на сходимость:
 а)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!};$$
 б) $\sum_{n=1}^{\infty} \arctan^n \frac{\sqrt{3n+1}}{\sqrt{n+2}};$ в) $\sum_{n=1}^{\infty} \frac{(2n+3)!!}{n^3(2n)!!}.$

Задача 22.11 (ДЗ). Исследуйте ряд на сходимость:

а)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{3n-2}$$
; б) $\sum_{n=1}^{\infty} \frac{\cos n}{n+\ln n}$; в) $\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{2^n+n}$;

$$\Gamma) \sum_{n=1}^{\infty} \frac{(-1)^n \sin 2n}{\sqrt{n+6}}; \quad \mu \sum_{n=1}^{\infty} \frac{\sin \left(n + \frac{\pi}{3}\right)}{\ln \left(n^2 + 3\right)} e^{\frac{n+1}{n}}.$$

Дополнительные задачи

Задача 22.12 (Доп.). Пусть функция $f:[1,+\infty)\to\mathbb{R}$ имеет первообразную F. Верно ли, что из сходимости ряда $\sum_{k=1}^{\infty} f(k)$ следует ограниченность F на $[1, +\infty)$? Верно ли обратное?