CONTENTS

)	Tw	o- Way	Crossed Classification	2
	5.1	"Cell l	Means" Model	4
	5.2	An "E	Effects" Model	9
		5.2.1	Baseline Restrictions	10
		5.2.2	Σ -Restrictions	17
	5.3	Norma	al Theory Gauss-Markov Model	27
		5.3.1	Analysis of Variance	27
		5.3.2	Type I Sum of Squares	36
		5.3.3	Method of Unweighted Means	
			- Type III Sum of Squares .	53
	5.4	Balan	ced Factorial Experiments	75

Two-Way Crossed Classification

Days to first germination of three varieties of carrot seed grown in two types of potting soil.

Soil		Variety	
Tpye	1	2	3
1		$y_{121} = 13 y_{122} = 15$	
2	$y_{211} = 12$ $y_{212} = 15$ $y_{213} = 19$ $y_{214} = 18$	$y_{221} = 31$	$y_{231} = 18$ $y_{232} = 9$ $y_{233} = 12$

This might be called "an unbalanced factorial experiment".

MEME16203 LINEAR MODELS© DR YONG CHIN KHIAN

Sample sizes:

Soil			
type	1	2	3

1
$$n_{11} = 3$$
 $n_{12} = 2$ $n_{13} = 2$
2 $n_{21} = 4$ $n_{22} = 1$ $n_{23} = 3$

In general we have

$$i=1,2,\ldots,a$$
 levels for the first factor $j=1,2,\ldots,b$ levels for the second factor $n_{ij}>0$ observations at the i -th level of the first factor and the j -th level of the second factor

We will restrict our attention to normal-theory Gauss-Markov models.

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

5.1 "Cell Means" Model

$$y_{ijk} = \mu_{ij} + \epsilon_{ijk}$$

where

$$\epsilon_{ijk} \sim NID(0, \sigma^2) \quad \begin{cases} i = 1, \dots, a \\ j = 1, \dots, b \\ k = 1, \dots, n_{ij} \end{cases}$$

Clearly, $E(y_{ijk}) = \mu_{ij}$ is estimable if $n_{ij} > 0$.

Overall mean response:

5 Chapter 5 Two-Way Crossed Classification 202405	6 Chapter 5 Two-Way Crossed Classification 202405
Mean response at <i>i</i> -th level of factor 1, averaging across the levels of factor 2.	Contrasts of interest: "main effects" for factor 1:
Mean response at j -th level of factor 2, averaging across the levels of factor 1	"main effects" for factor 2:
MEME16203 Linear Models@Dr Yong Chin Khian	MEME16203 Linear Models©Dr Yong Chin Khian

5.2 An "Effects" Model

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}$

CHAPTER 5 TWO-WAY CROSSED CLASSIFICATION

where

$$\epsilon_{ijk} \sim NID(0, \sigma^2)$$

$$i = 1, 2, \dots, a$$

$$j = 1, 2, \dots, b$$

$$k = 1, 2, \dots, n_{ij} > 0$$

MEME16203 Linear Models@Dr Yong Chin Khian

5.2.1 Baseline Restrictions

The resulting restricted model is

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

where

10

$$\epsilon_{ijk} \sim NID(0, \sigma^2) \begin{cases} i = 1, \dots, a \\ j = 1, \dots, b \\ k = 1, \dots, n_{ij} \end{cases}$$

and

$$\alpha_a = 0$$
 $\beta_b = 0$
 $\gamma_{ib} = 0$ for all $i = 1, ..., a$
 $\gamma_{aj} = 0$ for all $j = 1, ..., b$

We will call these the "baseline" restrictions.

				Soil
Soil				Type
Type	Variety 1	Variety 2	Variety 3	Means
1	$\mu_{11} = \mu + \alpha_1$	$\mu_{12} = \mu + \alpha_1$	$\mu_{13} = \mu + \alpha_1$	$\mu + \alpha_1$
	$+\beta_1 + \gamma_{11}$	$+\beta_2 + \gamma_{12}$		$+\frac{\beta_1+\beta_2}{3}$
				$+\frac{\gamma_{11}+\gamma_{12}}{3}$
2	$\mu_{21} = \mu + \beta_1$	$\mu_{22} = \mu + \beta_2$	$\mu_{23} = \mu$	
				$\mu + \frac{\beta_1 + \beta_2}{3}$
3.7				

Chapter 5 Two-Way Crossed Classification

Var.

11

means
$$\mu + \frac{\alpha_1}{2} + \beta_1 + \frac{\gamma_{11}}{2}$$
 $\mu + \frac{\alpha_1}{2} + \beta_2 + \frac{\gamma_{12}}{2}$ $\mu + \frac{\alpha_1}{2}$

${\bf Interpretation:}$

MEME16203 Linear Models@Dr Yong Chin Khian

 $rac{12}{lpha_i}$ Chapter 5 Two-Way Crossed Classification 202405

$$\beta_j =$$

202405

13	Chapter 5 Two-Way Crossed Classification	202405	14	CHAPTER 5 TWO-WAY CROSSED CLASSIFICATION	202405
$\gamma_{ij} =$			Matr	ix formulation:	
MEME16	203 Linear Models@Dr Yong Chin Ke	HIAN	MEME	16203 Linear Models@Dr Yong Chin K	HIAN

Least squares estimation:

MEME16203 Linear Models@Dr Yong Chin Khian

Comments:

Imposing a set of restrictions on the parameters in the "effects" model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

to obtain a model matrix with full column rank.

- (i) Avoids the use of a generalized inverse in least squares estimation.
- (ii) Is equivalent to choosing a generalized inverse for $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{y}$ in the unrestricted "effects" model.
- (iii) Restrictions must involve "non-estimable" quantities for the unrestricted "effects" model.
- (iv) Baseline restrictions using by SAS are

$$\alpha_a = 0$$
 $\beta_b = 0$
 $\gamma_{ib} = 0$ for all $i = 1, ..., a$
 $\gamma_{aj} = 0$ for all $j = 1, ..., b$

(v) Baseline restrictions using by R are

$$\alpha_1 = 0$$
 $\beta_1 = 0$
 $\gamma_{i1} = 0$ for all $i = 1, ..., a$
 $\gamma_{1j} = 0$ for all $j = 1, ..., b$

$$y_{ijk} = \omega + \gamma_i + \delta_j + \eta_{ij} + \epsilon_{ijk}$$

$$\swarrow \mu_{ij} = E(y_{ijk})$$

Chapter 5 Two-Way Crossed Classification

where

$$\epsilon_{ijk} \sim NID(0, \sigma^2)$$
 and $\sum_{i=1}^a \gamma_i = 0$ $\sum_{j=1}^b \delta_j = 0$
$$\sum_{i=1}^a \eta_{ij} = 0 \quad \text{for each } j = 1, \dots, b$$

$$\sum_{j=1}^b \eta_{ij} = 0 \quad \text{for each } i = 1, \dots, a$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Interpretation:

$$\omega =$$

18

19 Chapter 5 Two-Way Crossed Classification 202405	20 Chapter 5 Two-Way Crossed Classification 202405
$\delta_j - \delta_k =$	For a model that includes the Σ -restrictions: $\eta_{ij} =$
Similarly, $\gamma_1 - \gamma_2 =$	
MEME16203 Linear Models@Dr Yong Chin Khian	MEME16203 Linear Models@Dr Yong Chin Khian

21 Chapter 5 Two-Way Crossed Classification 202405	22 Chapter 5 Two-Way Crossed Classification 202405
Matrix formulation:	Least squares estimation:
MEME16203 Linear Models@Dr Yong Chin Khian	MEME16203 Linear Models@Dr Yong Chin Khian

If restrictions are placed on "non-estimable" functions of parameters in the unrestricted "effects" model, then

- The resulting models are reparameterizations of each other. $\hat{\mathbf{y}} = P_{\mathbf{X}}\mathbf{y}$

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (I - P_{\mathbf{X}})\mathbf{y}$$

$$SSE = \mathbf{e}^T \mathbf{e} = \mathbf{y}^T (I - P_{\mathbf{X}}) \mathbf{y}$$

$$\hat{\mathbf{y}}^T \hat{\mathbf{y}} = \mathbf{y}^T P_{\mathbf{X}} \mathbf{y}$$

$$SS_{\text{model}} = \mathbf{y}^T (P_{\mathbf{X}} - P_{\mathbf{1}})\mathbf{y}$$

are the same for any set of restrictions.

The solution to the normal equations

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

and interpretations of the corresponding parameters will not be the same for all such sets of restrictions.

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

If you were to place restrictions on estimable functions of parameters in

$$y_{ijk} = \mu + \alpha_1 + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

then you would change

• $rank(\mathbf{X})$

24

- \bullet space spanned by the columns of X
- $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{y}$ and OLS estimators of other estimable quantities.

Example 1.

In a study to examine the effect of temperature on percent shrinkage in dyeing fabrics was made on two replications for each of four fabrics in a complete randomized design. The data are the percent shrinkage of two replication fabric pieces dried at each of the four temperatures.

	Temperature			
Fabric	210°	215°	220°	225°
1	1.8,2.1	2.0,2.1	4.6, 5.0	7.5, 7.9
2	2.2, 2.4	4.2, 4.0	5.4, 5.6	9.8, 9.2
3	2.8, 3.2	4.4, 4.8	8.7, 8.4	13.2, 13.0
4	3.2, 3.6	3.3, 3.5	5.7, 5.8	10.9, 11.1

Consider the model $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$ where $\epsilon_{ijk} \sim NID(0, \sigma^2)$ and y_{ijk} denotes the percent shrinkage in dyeing fabric for the k-th fabric piece given the j-th temperature with the i-th fabric.

1. Note that the application of the lm() function in R imposes some restrictions to solve the normal equations. What are the restrictions?

MEME16203 Linear Models@Dr Yong Chin Khian

- 2. Give an interpretation of α_4 , $\alpha_2 \alpha_4$ and γ_{24} with respect to the restricted model and the mean change in systolic blood pressure.
- 3. The effects model under the R baseline restriction has parameter vector for mean responses

$$\boldsymbol{\delta} = (\mu.\alpha_2, \alpha_3, \alpha_4, \beta_2, \beta_3, \beta_4, \gamma_{22}, \gamma_{23}, \gamma_{24}, \gamma_{32}, \gamma_{33}, \gamma_{34}, \gamma_{3$$

- (a) Determine a matrix \mathbf{C} so that the testable hypothesis $H_0: \mathbf{C}\boldsymbol{\delta} = 0$ is the hypothesis $H_0: \mu_{.1} = \mu_{.2} = \mu_{.3} = \mu_{.4}$ where $\mu_{.j} = \frac{1}{4}\sum_{i=1}^{4}\mu_{ij}$.
- (b) Determine a matrix \mathbf{C} so that the testable hypothesis $H_0: \mathbf{C}\boldsymbol{\delta} = 0$ is the hypothesis $H_0: \mu_{1.} = \mu_{2.} = \mu_{3.} = \mu_{4.}$ where $\mu_{i.} = \frac{1}{3}\sum_{j=1}^{3}\mu_{ij}$.

5.3 Normal Theory Gauss-Markov Model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

5.3.1 Analysis of Variance

$$\mathbf{y}^{T}\mathbf{y} = \mathbf{y}^{T}P_{\mu}\mathbf{y} + \mathbf{y}^{T}(P_{\mu,\alpha} - P_{\mu})\mathbf{y}$$

$$+\mathbf{y}^{T}(P_{\mu,\alpha,\beta} - P_{\mu,\alpha})\mathbf{y}$$

$$+\mathbf{y}^{T}(P_{\mathbf{X}} - P_{\mu,\alpha,\beta})\mathbf{y}$$

$$+\mathbf{y}^{T}(I - P_{\mathbf{X}})\mathbf{y}$$

$$= R(\mu) + R(\alpha|\mu) + R(\beta|\mu,\alpha)$$

$$+R(\gamma|\mu,\alpha,\beta) + SSE$$

By Cochran's Theorem, these quadratic forms (or sums of squares) have independent chi-square distributions with 1, a-1, b-1, (a-1)(b-1), and $n_{\bullet\bullet} - ab$ degrees of freedom, respectively, (if $n_{ij} > 0$ for all (i, j)

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Define:

$$\mathbf{X}_{\mu} = \mathbf{X}_{\mu} \qquad \qquad P_{\mu} = \mathbf{X}_{\mu} (\mathbf{X}_{\mu}^{T} \mathbf{X}_{\mu})^{-1} \mathbf{X}_{\mu}^{T}$$

$$\mathbf{X}_{\mu,\alpha} = [\mathbf{X}_{\mu}|\mathbf{X}_{\alpha}] \qquad P_{\mu,\alpha} = \mathbf{X}_{\mu,\alpha}(\mathbf{X}_{\mu,\alpha}^T\mathbf{X}_{\mu,\alpha})^{-}\mathbf{X}_{\mu,\alpha}^T$$

$$\mathbf{X}_{\mu,\alpha,\beta} = \left[\mathbf{X}_{\mu}|\mathbf{X}_{\alpha}|\mathbf{X}_{\beta}\right] \ P_{\mu,\alpha,\beta} = \mathbf{X}_{\mu,\alpha,\beta} \left(\mathbf{X}_{\mu,\alpha,\beta}^{T} \mathbf{X}_{\mu,\alpha,\beta}\right)^{-} \mathbf{X}_{\mu,\alpha,\beta}^{T}$$

$$\mathbf{X} = [\mathbf{X}_{\mu} | \mathbf{X}_{\alpha} | \mathbf{X}_{\beta} | \mathbf{X}_{\gamma}] \quad P_{\mathbf{X}} = \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-} \mathbf{X}^{T}$$

The following three model matrices correspond to reparameterizations of the same model:

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Model 2:	Model 3:	
$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{bmatrix} \omega \\ \gamma_1 \\ \delta_1 \\ \delta_2 \\ \eta_{11} \\ \eta_{12} \end{bmatrix}$

 $R(\mu) = \mathbf{y}^T P_{\mu} \mathbf{y}$ is the same for all three models $R(\mu, \boldsymbol{\alpha}) = \mathbf{y}^T P_{\mu, \boldsymbol{\alpha}} \mathbf{y}$ is the same for all three models and so is $R(\boldsymbol{\alpha}|\mu) = R(\mu, \boldsymbol{\alpha}) - R(\mu)$ $R(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{y}^T P_{\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}} \mathbf{y}$ is the same for all three models and so is $R(\boldsymbol{\beta}|\boldsymbol{\alpha}) = R(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}) - R(\mu, \boldsymbol{\alpha})$ $R(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = \mathbf{y}^T P_{\mathbf{X}} \mathbf{y}$ is the same for all three models and so is $R(\boldsymbol{\gamma}|\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}) = R(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}) - R(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta})$

Consequently, the partition

$$\mathbf{y}^{T}\mathbf{y} = \mathbf{y}^{T}P_{\mu}\mathbf{y} + \mathbf{y}^{T}(P_{\mu,\beta} - P_{\mu})\mathbf{y}$$

$$+\mathbf{y}^{T}(P_{\mu,\alpha,\beta} - P_{\mu,\beta})\mathbf{y}$$

$$+\mathbf{y}^{T}(P_{\mathbf{X}} - P_{\mu,\alpha,\beta})\mathbf{y}$$

$$+\mathbf{y}^{T}(I - P_{\mathbf{X}})\mathbf{y}$$

$$= R(\mu) + R(\boldsymbol{\beta}|\mu) + R(\boldsymbol{\alpha}|\mu,\boldsymbol{\beta})$$

$$+R(\boldsymbol{\gamma}|\mu,\alpha,\beta) + SSE$$

is the same for all three models.

By Cochran's Theorem, these quadratic forms (or sums of squares) have independent chi-square distributions with 1, b-1, a-1, (a-1)(b-1), and $n_{\bullet \bullet} - ab$ degrees of freedom, respectively, when $n_{ij} > 0$ for all (i,j).

MEME16203 Linear Models@Dr Yong Chin Khian

We have also shown earlier that

$$SSE = \mathbf{y}^{T} (I - P_{\mathbf{X}}) \mathbf{y}$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij\bullet})^{2}$$

$$\sim \chi_{n \bullet \bullet - ab}^{2}$$

202405

Let $\mathbf{Y} \sim N(\mathbf{W}\boldsymbol{\gamma}, \sigma^2 I)$, where

- $\bullet \mathbf{W} = [\mathbf{W_1} \ \mathbf{W_2} \ \mathbf{W_3} \ \mathbf{W_4}],$
- $W_1 = 1_{20}$,
- $\bullet \mathbf{W_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes \mathbf{1_{10}},$
- $\bullet \ W_3 = \mathbf{1_2} \otimes \begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes \mathbf{1_5},$
- $\bullet \mathbf{W_4} = \mathbf{1_4} \otimes \begin{bmatrix} -8 \\ -4 \\ 0 \\ 8 \\ 4 \end{bmatrix}, \text{ and }$
- $\bullet \, \boldsymbol{\gamma} = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix}$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

- (a) Use Cochran's theorem to find the distributions of
 - $\begin{aligned} \bullet & \frac{1}{\sigma^2} SSE = \mathbf{e^T} \mathbf{e} = \mathbf{Y^T} (\mathbf{I} \mathbf{P_W}) \mathbf{Y}, \text{ where} \\ \mathbf{P_W} &= \mathbf{W} (\mathbf{W^T} \mathbf{W})^{-1} \mathbf{W^T} \end{aligned}$
 - $\frac{1}{\sigma^2}R(\gamma_1)=\mathbf{Y^TP_{W_1}Y}$ where $\mathbf{W_1}=\mathbf{1}$ is the first column of

 $\mathbf{P}_{\mathbf{W_1}} = \mathbf{W_1}(\mathbf{W_1^TW})^{-1}\mathbf{W_1^T}.$

- $\frac{1}{\sigma^2}R(\gamma_2|\gamma_1) = \mathbf{Y^T}(\mathbf{P_{W_2}} \mathbf{P_{W_1}})Y$ where $\mathbf{W_2}$ contains the first two columns of W and $P_{W_2} = W_2 (W_2^T W_2)^{-1} W_2^T$
- $\bullet \ \tfrac{1}{\sigma^2} R(\gamma_3|\gamma_1\gamma_2) = \mathbf{Y^T}(\mathbf{P_{W_3}} \mathbf{P_{W_2}})\mathbf{Y}. \ \text{where} \ \mathbf{W_3} \ \text{contains the} \\ \text{first three columns of} \ \mathbf{W} \ \text{and} \ \mathbf{P_{W_3}} = \mathbf{W_3}(\mathbf{W_3^TW_3})^{-1}\mathbf{W_3^T}.$
- $\frac{1}{\sigma^2}R(\gamma_4|\gamma_1\gamma_2\gamma_3) = \mathbf{Y}^{\mathrm{T}}(\mathbf{P_W} \mathbf{P_{W_3}})\mathbf{Y}$.

202405

(b) Report a formula for the non-centrality parameter of the non-central F distribution of

$$F = \frac{R(\gamma_3|\gamma_1, \gamma_2)}{SSE/7}$$

Use it to the null and alternative hypotheses associated with this test statistic. You are given that:

MEME
16203 Linear Models
©
Dr Yong Chin Khian

5.3.2 Type I Sum of Squares

What null hypotheses are tested by F-tests derived from such ANOVA tables $R(\mu)=$

For the carrot seed germination study:

$$\begin{split} P_{\mathbf{1}}\mathbf{X}\boldsymbol{\beta} &= \frac{1}{n}.\mathbf{1}\,\mathbf{1}^{T}\mathbf{X}\boldsymbol{\beta} \\ &= \frac{1}{n}.\mathbf{1}[n_{..},n_{1.},n_{2.},n_{.1},n_{.2},n_{.3},\\ &n_{11},n_{12},n_{13},n_{21},n_{22},n_{23}]\boldsymbol{\beta} \\ &= \frac{1}{n}.\mathbf{1}\left(n_{..}\boldsymbol{\mu} + \sum_{i=1}^{a}n_{i.}\alpha_{i} + \sum_{j=1}^{b}n_{.j}\beta_{j}\right. \\ &+ \sum_{i=1}^{a}\sum_{j=1}^{b}\gamma_{ij} \end{split}$$

The null hypothesis is

$$H_0: n_{\cdot \cdot} \mu + \sum_{i=1}^a n_{i \cdot} \alpha_i + \sum_{j=1}^b n_{\cdot j} \beta_j + \sum_i \sum_j n_{ij} \gamma_{ij} = 0$$
 With respect to the cell means

$$E(y_{ijk}) = \mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$$

this null hypothesis is

$$H_0: \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{..}} \mu_{ij} = 0$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Consider $R(\boldsymbol{\alpha}|\boldsymbol{\mu}) =$

38

Chapter 5 Two-Way Crossed Classification 202405

For the general effects model for the carrot seed germination study:

$$P_{\mu,\alpha} \mathbf{X} = \mathbf{X}_{\mu,\alpha} (\mathbf{X}_{\mu,\alpha}^T \mathbf{X}_{\mu,\alpha})^{-} \mathbf{X}_{\mu,\alpha}^T \mathbf{X}$$
$$= \mathbf{X}_{\mu,\alpha} \begin{bmatrix} n_{..} & n_{1.} & n_{2.} \\ n_{1.} & n_{1.} & 0 \\ n_{2.} & 0 & n_{2.} \end{bmatrix}^{-}$$

MEME16203 Linear Models@Dr Yong Chin Khian

Then, the first seven rows of $(\mathbf{P}_{\mu,\alpha} - \mathbf{P}_{\mu})\mathbf{X}\boldsymbol{\beta}$ are

$$\left[\mu + \alpha_{1} + \sum_{j=1}^{b} \frac{n_{1j}}{n_{1.}} (\beta_{j} + \gamma_{1j})\right] - \left[\mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{..}} \alpha_{i} + \sum_{j=1}^{b} \frac{n_{.j}}{n_{..}} \beta_{j} + \sum_{i} \sum_{j} \frac{n_{ij}}{n_{..}} \gamma_{ij}\right]$$

The last eight rows of $(P_{\mu,\alpha} - P_{\mu})\mathbf{X}\boldsymbol{\beta}$ are

$$\left[\mu + \alpha_2 + \sum_{j=1}^{b} \frac{n_{2j}}{n_{2i}} (\beta_j + \gamma_{2j})\right] - \left[\mu + \sum_{i=1}^{a} \frac{n_{i}}{n_{..}} \alpha_i + \sum_{j=1}^{b} \frac{n_{.j}}{n_{..}} \beta_j + \sum_{i} \sum_{j} \frac{n_{ij}}{n_{..}} \gamma_{ij}\right]$$

The null hypothesis is

40

$$H_0: \alpha_i + \sum_{j=1}^b \frac{n_{ij}}{n_{i.}} (\beta_j + \gamma_{ij})$$
 are all equal $(i = 1, \dots, a)$

Consider $R(\boldsymbol{\beta}|\boldsymbol{\mu},\boldsymbol{\alpha}) = \mathbf{y}^T (P_{\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\beta}} - P_{\boldsymbol{\mu},\boldsymbol{\alpha}})\mathbf{y}$ and the corresponding F-statistic

$$F = \frac{R(\pmb{\beta}|\mu, \pmb{\alpha})/(b-1)}{MSE} \sim F_{(b-1, n_{..} - ab)}(\lambda)$$

Here,

$$\frac{1}{\sigma^2}R(\boldsymbol{\beta}|\boldsymbol{\mu},\boldsymbol{\alpha}) \sim \chi^2_{\text{rank}(\mathbf{X}_{\mu,\alpha,\beta})-\text{rank}(\mathbf{X}_{\mu,\alpha})}(\lambda)$$

$$[1+(a-1)+(b-1)]-[1+(a-1)]$$

$$= b-1 \text{ degrees of freedom}$$

and

$$\lambda = \frac{1}{\sigma^2} \Big[(P_{\mu,\alpha,\beta} - P_{\mu,\alpha}) \mathbf{X} \boldsymbol{\beta} \Big]^T \Big[(P_{\mu,\alpha,\beta} - P_{\mu,\alpha}) \mathbf{X} \boldsymbol{\beta} \Big]$$

$$P_{\mu,\alpha,\beta}\mathbf{X} = \mathbf{X}_{\mu,\alpha,\beta} \begin{bmatrix} \mathbf{X}_{\mu,\alpha,\beta}^T \mathbf{X}_{\mu,\alpha,\beta} \end{bmatrix}^{-} \mathbf{X}_{\mu,\alpha,\beta}^T \mathbf{X}$$

$$= \mathbf{X}_{\mu,\alpha,\beta} \begin{bmatrix} n_{..} & n_{1.} & n_{2.} & n_{.1} & n_{.2} & n_{.3} \\ n_{1.} & n_{1.} & 0 & n_{11} & n_{12} & n_{13} \\ n_{2.} & 0 & n_{2.} & n_{21} & n_{22} & n_{23} \\ n_{.l} & n_{11} & n_{21} & n_{.1} & 0 & 0 \\ n_{.2} & n_{12} & n_{22} & 0 & n_{.2} & 0 \\ n_{.3} & n_{13} & n_{23} & 0 & 0 & n_{.3} \end{bmatrix}^{-} \mathbf{X}_{\mu,\alpha,\beta}^T \mathbf{X}$$

$$\text{call this } \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} A^{-1}B \\ I \end{bmatrix} [C - B^TA^{-1}B]^{-1} [-B^TA^{-1}|I]$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & C^{-1} \end{bmatrix} + \begin{bmatrix} I \\ -C^{-1}B^T \end{bmatrix} [A - BC^{-1}B^T]^{-1} [I | - BC^{-1}]$$

$$= \begin{bmatrix} W & -WBC^{-1} \\ -C^{-1}B^TW & C^{-1} + C^{-1}B^TWBC^{-1} \end{bmatrix}$$
 where $W = [A - BC^{-1}B^T]^{-1}$ MEME16203 Linear Models@Dr Yong Chin Khian

202405

The null hypothesis is

$$H_0: \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} (\beta_j + \gamma_{ij})$$

$$-\sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \left(\sum_{k=1}^b \frac{n_{ik}}{n_{i.}} (\beta_k + \gamma_{ik}) \right) = 0$$
for all $j = 1, \dots, b$

With respect to the cell means,

$$E(y_{ijk}) = \mu_{ij},$$

this null hypothesis is

$$H_0: \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} \mu_{ij} - \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} \left(\sum_{k=1}^{b} \frac{n_{ik}}{n_{i.}} \mu_{ik} \right) = 0$$
for all $j = 1, 2, \dots, b$.

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Consider

$$R(\boldsymbol{\gamma}|\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathbf{y}^T[P_{\mathbf{X}} - P_{\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\beta}}]\mathbf{y}$$

and the associated F-statistic

$$F = \frac{R(\boldsymbol{\gamma}|\mu, \boldsymbol{\alpha}, \boldsymbol{\beta})/[(a-1)(b-1)]}{MSE}$$
$$\sim F_{(a-1)(b-1), n..-ab}(\lambda)$$

The null hypothesis is:

$$H_0: (\mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell})$$

= $(\gamma_{ij} - \gamma_{i\ell} - \gamma_{kj} + \gamma_{k\ell}) = 0$

for all (i, j) and (k, ℓ) .

ANOVA Summary:

Sums of Squares	Associated null hypothesis
$R(\mu)$	$H_0: \mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{}} \alpha_i + \sum_{j=1}^{b} \frac{n_{.j}}{n_{}} \beta_j$
	$+\sum_{i=1}^{a}\sum_{j=1}^{b}\frac{n_{ij}}{n_{.}}\gamma_{ij}=0$
	$\left(\text{or } H_0: \sum_{i=1}^a \sum_{j=1}^b \frac{n_{ij}}{n_{}} \mu_{ij} = 0\right)$
$R(\boldsymbol{\alpha} \boldsymbol{\mu})$	$H_0: \alpha_i + \sum_{i=1}^b \frac{n_{ij}}{n_{i}} (\beta_j + \gamma_{ij})$ are equal
	$\left(\text{or } H_0: \sum_{j=1}^b \frac{n_{ij}}{n_{i}} \mu_{ij} \text{ are equal }\right)$
$R(\boldsymbol{\beta} \mu, \boldsymbol{\alpha})$	$H_0: \beta_j + \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \gamma_{ij} = \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \sum_{k=1}^b \frac{n_{ik}}{n_{k.}} (\beta_k + \gamma_{ik})$ for all $j = 1, \dots, b$
	$\left(\text{or } H_0: \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \mu_{ij} = \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \sum_{k=1}^b \frac{n_{ik}}{n_{i.}} \mu_{ik} \text{ for all } j = 1, \dots, b\right)$
$R(\boldsymbol{\gamma} \boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\beta})$	$H_0: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0$ for all (i,j) and (k,ℓ)
	(or $H_0: \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell} = 0$ for all (i, j) and (k, ℓ)

 ${\tt MEME16203}$ Linear Models@Dr Yong Chin Khian

Sums of Squares	Associated null hypothesis
$R(\mu)$	$H_0: \mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{}} \alpha_i + \sum_{j=1}^{b} \frac{n_{.j}}{n_{}} \beta_j$ $+ \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{}} \gamma_{ij} = 0$ $\left(\text{or } H_0: \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{}} \mu_{ij} = 0 \right)$
$R(\boldsymbol{\beta} \boldsymbol{\mu})$	$H_0: \beta_j + \sum_{i=1}^a \frac{n_{ij}}{n_{,j}} (\alpha_j + \gamma_{ij})$ are equal for all $j = 1, \dots, b$ or $H_0: \sum_{i=1}^a \frac{n_{ij}}{n_{,j}} \mu_{ij}$ are equal for all $j = 1, \dots, b$
$R(oldsymbol{lpha} \mu,oldsymbol{eta})$	$H_0: \sum_{j=1}^{b} \frac{n_{ij}}{n_{i.}} (\alpha_{ij} + \gamma_{ij}) = \sum_{j=1}^{b} \frac{n_{ij}}{n_{i.}} \sum_{k=1}^{a} \frac{n_{kj}}{n_{.j}} (\alpha_k + \gamma_{kj})$ for all $i = 1, \dots, a$ $\left(\text{or } H_0: \sum_{j=1}^{b} \frac{n_{ij}}{n_{i.}} \mu_{ij} = \sum_{j=1}^{b} \frac{n_{ij}}{n_{i.}} \left[\sum_{k=1}^{a} \frac{n_{kj}}{n_{.j}} \mu_{kj} \right] \right)$ for all $i = 1, \dots, a$
$R(\boldsymbol{\gamma} \mu, \boldsymbol{\alpha}, \boldsymbol{\beta})$	$H_0: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0 \text{ for all } (i,j) \text{ and } (k,\ell)$ $\left(\text{or } H_0: \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell} = 0 \text{ for all } (i,j) \text{ and } (k,\ell)\right)$

Type I sums of squares

```
#Type I Sum of Squares(A follows by B)
Y = c(6, 10, 11, 13,15,14,22,12,15,19,18,31,18,9,12)
xmu = rep(1,15)
xa1 = c(rep(1,7),rep(0,8))
xa2 = 1-xa1
xalpha = cbind(xa1, xa2)
xb1 = c(rep(1,3), rep(0,4), rep(1,4), rep(0,4))
xb2 = c(rep(0,3), rep(1,2), rep(0,6), 1, rep(0,3))
xb3 = c(rep(0,5), 1,1, rep(0,5),rep(1,3))
xb4t1 = xa1*xb1
xab12 = xa1*xb2
xab13 = xa1*xb3
xab21 = xa2*xb1
xab22 = xa2*xb2
```

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

```
xab23 = xa2*xb3
xgamma = cbind(xab11,xab12,xab13,xab21,xab22,xab23)
library(MASS)
Pmu = xmu%*%solve(t(xmu)%*%xmu)%*%t(xmu)
xma = cbind(xmu, xalpha)
Pma = xma%*%ginv(t(xma)%*%xma)%*%t(xma)
xmab = cbind(xmu, xalpha, xbeta)
Pmab = xmab%*%ginv(t(xmab)%*%xmab)%*%t(xmab)
X = cbind(xmu, xalpha, xbeta, xgamma)
PX = X%*\%ginv(t(X)%*%X)%*%t(X)
In = diag(rep(1,15))
A1 = Pmu
A2 = Pma - Pmu
A3 = Pmab - Pma
A4 = PX - Pmab

A5 = In - PX
Rmu = t(Y)%*%A1%*%Y
Rma = t(Y)%*%A2%*%Y
Rmab = t(Y)%*%A3%*%Y
Rmabg = t(Y)%*%A4%*%Y
SSE = t(Y) %*%A5%*%Y
MRmu = Rmu
MRma = Rma
MRmab = Rmab/2
MRmabg = Rmabg/2
MSE = SSE/9
Fmu = MRmu/MSE
Fa = MRma/MSE
Fb = MRmab/MSE
Fab = MRmabg/MSE
PVmu = 1-pf(Fmu,1,9)
PVa = 1-pf(Fa,1,9)
PVb = 1-pf(Fb,2,9)
PVab = 1-pf(Fab,1,9)
data.frame(Source = "Intercept", SS=Rmu, df = 1, MS = MRmu, F.Stat = Fmu,
MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN
```

Chapter 5 Two-Way Crossed Classification

202405

48

```
p.value = PVmu)
data.frame(Source = "Soil", SS=Rma, df = 1, MS = MRma, F.Stat = Fa,
p.value = PVa)
data.frame(Source = "Variety", SS=Rmab, df = 2, MS = MRmab, F.Stat = Fb,
p.value = PVb)
data.frame(Source = "Interaction", SS=Rmabg, df = 2, F.Stat = Fab,
p.value = PVab)
data.frame(Source = "Error",SS=SSE, df = 9,MS = MSE)
#Using lm() function
Y = c(6, 10, 11, 13, 15, 14, 22, 12, 15, 19, 18, 31, 18, 9, 12)
FA = as.factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,2))
FB = as.factor(c(1,1,1,2,2,3,3,1,1,1,1,2,3,3,3))
mod.fit = lm(Y ~ FA*FB)
anova(mod.fit)
 Source
 of
                         sums of
                                                    Mean
 variat.
          d.f.
                         squares
                                                    square
                                                                F p-value
 "Soils" a - 1 = 1
                         R(\boldsymbol{\alpha}|\boldsymbol{\mu}) = 52.50
                                                      52.5 \quad 3.94
                                                                      .0785
                         R(\boldsymbol{\beta}|\mu, \boldsymbol{\alpha}) = 124.73
 "Var." b - 1 = 2
                                                      62.4 \quad 4.68
                                                                      .0405
 Inter-
          (a-1)(b-1)
 action
                        R(\gamma | \mu, \alpha, \beta) = 222.76 111.38 8.35
                                                                      .0089
          \Sigma\Sigma(n_{ij} - 1) \quad \mathbf{y}^{T}(I - P_{\mathbf{X}})\mathbf{y} = 120.00 \quad 13.33
 "Res."
 Corr.
          n_{\cdot \cdot \cdot} - 1 = 14 \quad \mathbf{y}^T (I - P_1) \mathbf{y} = 520.00
 total
```

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

```
\mbox{\tt \#Type I Sum of Squares(B follows by A)}
Y = c(6, 10, 11, 13, 15, 14, 22, 12, 15, 19, 18, 31, 18, 9, 12)
xmu = rep(1,15)
xa1 = c(rep(1,7), rep(0,8))
xa2 = 1-xa1
xalpha = cbind(xa1, xa2)
xb1 = c(rep(1,3), rep(0,4), rep(1,4), rep(0,4))
xb2 = c(rep(0,3), rep(1,2), rep(0,6), 1, rep(0,3))
xb3 = c(rep(0,5), 1,1, rep(0,5), rep(1,3))
xbeta = cbind(xb1,xb2,xb3)
xab11 = xa1*xb1
xab12 = xa1*xb2
xab13 = xa1*xb3
xab21 = xa2*xb1
xab22 = xa2*xb2
xab23 = xa2*xb3
xgamma = cbind(xab11,xab12,xab13,xab21,xab22,xab23)
library(MASS)
Pmu = xmu%*%solve(t(xmu)%*%xmu)%*%t(xmu)
xmb = cbind(xmu, xbeta)
Pmb = xmb%*%ginv(t(xmb)%*%xmb)%*%t(xmb)
xmab = cbind(xmu, xalpha, xbeta)
Pmab = xmab%*%ginv(t(xmab)%*%xmab)%*%t(xmab)
X = cbind(xmu, xalpha, xbeta, xgamma)
PX = X%*\%ginv(t(X)%*%X)%*%t(X)
In = diag(rep(1,15))
A1 = Pmu
A2 = Pmb - Pmu
A3 = Pmab - Pmb
A4 = PX - Pmab
A5 = In - PX
Rmu = t(Y)%*%A1%*%Y
Rma = t(Y)%*%A2%*%Y
Rma
```

```
Rmab = t(Y)%*%A3%*%Y
Rmabg = t(Y)%*%A4%*%Y
SSE = t(Y)%*%A5%*%Y
MRmu = Rmu
MRma = Rma
MRmab = Rmab/2
MRmabg = Rmabg/2
MSE = SSE/9
Fmu = MRmu/MSE
Fa = MRma/MSE
Fb = MRmab/MSE
Fab = MRmabg/MSE
PVmu = 1-pf(Fmu,1,9)
PVa = 1-pf(Fa,1,9)
PVb = 1-pf(Fb,2,9)
PVab = 1-pf(Fab,1,9)
data.frame(Source = "Intercept", SS=Rmu, df = 1, MS = MRmu, F.Stat = Fmu,
p.value = PVmu)
data.frame(Source = "Soil",SS=Rma, df = 1, MS = MRma, F.Stat = Fa,
p.value = PVa)
data.frame(Source = "Variety", SS=Rmab, df = 2, MS = MRmab, F.Stat = Fb,
p.value = PVb)
data.frame(Source = "Interaction", SS=Rmabg, df = 2, F.Stat = Fab,
p.value = PVab)
data.frame(Source = "Error", SS=SSE, df = 9, MS = MSE)
```

MEME16203 Linear Models@Dr Yong Chin Khian

"Var."	b - 1 = 2	$R(\boldsymbol{\beta} \boldsymbol{\mu}) = 93.33$	46.67	3.50	.0751
"Soils"	a-1=1	$R(\alpha \boldsymbol{\mu},\boldsymbol{\beta}) = 83.90$	83.90	6.29	.0334
Inter- action	(a-1)(b-1) =2	$R(\boldsymbol{\gamma} \mu, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 222.76$	111.38	8.35	.0089
"Res."	$\Sigma\Sigma(n_{ij} - 1) = 9$	$\mathbf{y}^T (I - P_{\mathbf{X}}) \mathbf{y} = 120.00$	13.33		
Corr. total	$n_{} - 1 = 14$	$\mathbf{y}^T (I - P_1)\mathbf{y} = 520.00$			

Chapter 5 Two-Way Crossed Classification

Mean

square

sums of

squares

52

of

 ${\bf Source}$

variat. d.f.

202405

F p-value

5.3.3 Method of Unweighted Means Type III Sum of Squares

(Type III sums of squares in when $n_{ij} > 0$ for all (i, j)).

Use the cell means reparameterization of the model:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$
$$= \mu_{ij} + \epsilon_{ijk}$$

MEME16203 Linear Models@Dr Yong Chin Khian

The least squares estimator (b.l.u.e.) for μ is

 ${\it MEME16203}$ Linear Models@Dr Yong Chin Khian

Compute SS_{H_0} and show that

$$\frac{1}{\sigma^2}SS_{H_0} \sim \chi^2_{(a-1)}(\lambda)$$

60 Chapter 5 Two-Way Crossed Classification 202405

Compute:

$$SSE = \mathbf{y}^T (I - P_D) \mathbf{y}$$
 where $P_D = D(D^T D)^{-1} D^T$.
Show that

$$\frac{1}{\sigma^2}SSE \sim \chi^2_{\Sigma\Sigma(n_{ij}-1)}$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Then F =

Show that

$$SSE = \mathbf{y}^T \underline{(I - P_D)} \mathbf{y}$$

$$\nwarrow \text{ call this } A_1$$

is distributed independently of

$$SS_{H_0} = \mathbf{y}^T \underline{D(D^T D)^{-1} C_1^T [C_1 (D^T D)^{-1} C_1^T]^{-1} C_1 (D^T D)^{-1}} D^T \mathbf{y}$$

$$\nwarrow \text{ call this } A_2$$

MEME16203 LINEAR MODELS© DR YONG CHIN KHIAN

then $C_2 \mu =$

202405

Test

$$H_0: \frac{1}{a} \sum_{i=1}^{a} \mu_{i1} = \frac{1}{a} \sum_{i=1}^{a} \mu_{i2} = \dots = \frac{1}{a} \sum_{i=1}^{a} \mu_{ib}$$

VS.

$$H_A: \frac{1}{a}\sum_{i=1}^a \mu_{ij} \neq \frac{1}{a}\sum_{i=1}^a \mu_{ik}$$
 for some $j \neq k$

Write the null hypothesis in matrix form as

$$H_0: C_2\boldsymbol{\mu} = \mathbf{0}$$

where
$$C_2 =$$

MEME16203 Linear Models@Dr Yong Chin Khian

Compute $SS_{H_{0,2}}$ and reject H_0 if F =

Test for Interaction:

Test

66

 $H_0: \mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell} = 0$ for all (i, j) and (k, ℓ) vs.

 H_A : $\mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell} \neq 0$ for all (i,k) and $(j \neq \ell)$.

Write the null hypothesis in matrix form as

$$H_0: C_3 \boldsymbol{\mu} = \mathbf{0}$$

and perform the test.

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

```
#Type III Sum of Squares
Y = c(6,10,11,13,15,14,22,12,15,19,18,31,18,9,12)
Y = c(6,10,11,13,15,14,22,12,15,19,18,31,18,9,12)
d1 = c(rep(1,3), rep(0,12))
d2 = c(0,0,0,1,1,rep(0,10))
d3 = c(rep(0,5),1,1,rep(0,8))
d4 = c(rep(0,7), rep(1,4), rep(0,4))
d5 = c(rep(0,11), 1, rep(0,3))
d6 = c(rep(0,12), 1, 1,1)
D = cbind(d1, d2, d3, d4, d5, d6)
a = 2
b = 3
beta = solve(t(D)%*%D)%*%t(D)%*%Y
Yhat = D%*%beta
SSE = crossprod(Y-Yhat)
df2 = NROW(Y) - a*b
am1 = a-1
bm1 = b-1
Iam1 = diag(rep(1,am1))
Ibm1 = diag(rep(1,bm1))
Onea = c(rep(1,a))
Oneam1 = c(rep(1,am1))
Oneb = c(rep(1,b))
Onebm1 = c(rep(1,bm1))
C1 = kronecker(cbind(Iam1, -Oneam1),t(Oneb))
C1b = C1\%*\%beta
SSH0a = t(C1b)\%*\%
solve(C1%*%solve(crossprod(D))%*%t(C1))%*%C1b
df1 = b-1
MEME16203 Linear Models@Dr Yong Chin Khian
```

```
F = (SSH0a/df1)/(SSE/df2)
p = 1-pf(F, df1, df2)
C1
data.frame(SS=SSHOa, df = df1, F.Stat = F, p.value = p)
C2 = kronecker(t(Onea), cbind(Ibm1, -Onebm1))
C2b = C2\%*\%beta
SSHOb = t(C2b)\%*\%
solve(C2%*%solve(crossprod(D))%*%t(C2))%*%C2b
df1 = b-1
F = (SSH0b/df1)/(SSE/df2)
p = 1-pf(F, df1, df2)
C2
data.frame(SS=SSHOb, df = df1, F.Stat = F, p.value = p)
C3 = kronecker(cbind(Iam1, -Oneam1), cbind(Ibm1, -Onebm1))
C3b = C3%*%beta
SSHOab = t(C3b)%*%
solve(C3%*%solve(crossprod(D))%*%t(C3))%*%C3b
df1 = (a-1)*(b-1)
F = (SSH0ab/df1)/(SSE/df2)
p = 1-pf(F, df1, df2)
data.frame(SS=SSHOab, df = df1, F.Stat = F, p.value = p)
```

69	Chapter 5 Two-Way Crossed Classification			202405		
Source variatio	of Sum of n d.f.	Mean Squares	Square	F	p-val	ue
Soils	a-1=1	$SS_{H_0} = 123.77$	123.77	9.28	.013	9
Var.	b-1=2	$SS_{H_{0,2}} = 192.13$	96.06	7.20	.013	5
Inter	(a-1)(b-1)=2	$SS_{11} = 222.76$	111.38	8 35	008	9

MEME16203 Linear Models@Dr Yong Chin Khian

70 Chapter 5 Two-Way Crossed Classification 202405

Note that

$$\mathbf{y}^{T} P_{1} \mathbf{y} + \mathbf{y}^{T} D (D^{T} D)^{-1} [C_{1} (D^{T} D)^{-1} C_{1}^{T}]^{-1}$$

$$C_{1} (D^{T} D)^{-1} D^{T} \mathbf{y}$$

$$+ \mathbf{y}^{T} D (D^{T} D)^{-1} C_{2}^{T} [C_{2} (D^{T} D)^{-1} C_{2}^{T}]^{-1}$$

$$C_{2} (D^{T} D)^{-1} D^{T} \mathbf{y}$$

$$+ \mathbf{y}^{T} D (D^{T} D)^{-1} C_{3}^{T} [C_{3} (D^{T} D)^{-1} C_{3}^{T}]^{-1}$$

$$C_{3} (D^{T} D)^{-1} D^{T} \mathbf{y}$$

$$+ \mathbf{y}^{T} (I - P_{D}) \mathbf{y}$$

do not necessarily sum to $\mathbf{y}^T\mathbf{y}$, nor do the middle three terms $(SS_{H_0}, SS_{H_0,2}, SS_{H_0,3})$ necessarily sum to

$$SS_{\text{model,corrected}} = \mathbf{y}^T (P_D - P_1) \mathbf{y}$$
,

nor are $(SS_{H_0}\,,\,SS_{H_0,2}\,,\,SS_{H_0,3})$ necessarily independent of each other.

202405

Example 3.

A chemical production process consists of a first reaction with an alcohol and a second reaction with a base. A 3×2 factorial experiment with three alcohols and two bases was conducted. The data had unequal replications among the six treatment combinations of the two factors, Base and Alcohol. The collected data are percent yield. The data are given below.

	Alcohol					
Base	1		2		3	
1	90.0	91.3	89.4	88.1	90.2	87.9
			90.0		89.4	91.5
2	87.5	89.4	96.0		94.1	92.5
	91.8				92.8	

Consider the model $y_{ijk} = \mu_{ij} + \epsilon_{ijk}$, where $\epsilon_{ijk} \sim NID(0, \sigma^2)$, i = 1, 2, and j = 1, 2, 3 and $k = 1, \ldots, n_{ij}$. This model can be expressed in matrix form as $\mathbf{Y} = \mathbf{D}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. Examine type III sums of squares for these data.

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

(a) Specify the \mathbf{C} matrix needed to write the null
hypothesis associated with the F-test for Al-
cohol effects in the form H_0 : $\mathbf{C}\boldsymbol{\beta} = 0$.

5.4 **Balanced Factorial Experiments**

$$n_{ij} = n$$
 for $i = 1, \dots, a$
 $j = 1, \dots, b$

Example 4. Sugar Cane yields Nitrogem Level

150 lb/acre 210 lb/acre 270 lb/acre $y_{111} = 70.5 | y_{121} = 67.3 | y_{131} = 79.9$ $\begin{vmatrix} y_{112} = 67.5 \end{vmatrix} \begin{vmatrix} y_{122} = 75.9 \end{vmatrix} \begin{vmatrix} y_{132} = 72.8 \end{vmatrix}$ Variety 1 $y_{113} = 63.9 | y_{123} = 72.2 | y_{133} = 64.8$ $y_{114} = 64.2 \ | y_{124} = 60.5 \ | y_{134} = 86.3$ $y_{211} = 58.6 \ y_{221} = 64.3 \ y_{231} = 64.4$ Variety $2 | y_{212} = 65.2 | y_{222} = 48.3 | y_{232} = 67.3$ $y_{213} = 70.2 | y_{223} = 74.0 | y_{233} = 78.0$ $y_{214} = 51.8 | y_{224} = 63.6 | y_{234} = 72.0$ $y_{311} = 65.8 | y_{321} = 64.1 | y_{331} = 56.3$ Variety 3 $\begin{vmatrix} y_{312} = 68.3 \\ y_{313} = 72.7 \end{vmatrix}$ $\begin{vmatrix} y_{322} = 64.8 \\ y_{323} = 70.9 \end{vmatrix}$ $\begin{vmatrix} y_{332} = 54.7 \\ y_{331} = 66.2 \end{vmatrix}$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

 $y_{314} = 67.6 | y_{324} = 58.3 | y_{334} = 54.4$

For a balanced experiment $(n_{ij} = n)$, Type I, Type II, and Type III sums of squares are the same:

$$R(\boldsymbol{\alpha}|\boldsymbol{\mu}) =$$

76

$$R(\boldsymbol{\beta}|\boldsymbol{\mu}) =$$

$$R(\boldsymbol{\gamma}|\mu,\boldsymbol{\alpha},\boldsymbol{\beta}) =$$

ANOVA

Sum of Squares

Associated null hypothesis

$$R(\mu) = \mathbf{y}^T P_1 \mathbf{y} \qquad H_0: \mu + \frac{1}{a} \sum_{i=1}^a \alpha_i + \frac{1}{b} \sum_{j=1}^b \beta_j$$

$$= a b n \bar{y}^2... \qquad + \frac{1}{ab} \sum_{i=1}^a \sum_{j=1}^b \gamma_{ij} = 0$$

$$\left(H_0: \frac{1}{ab} \sum_{i=1}^a \sum_{j=1}^b \mu_{ij} = 0 \right)$$

$$R(\alpha | \mu) = R(\alpha | \mu, \beta) \qquad H_0: \alpha_i + \frac{1}{b} \sum_{j=1}^b (\beta_j + \gamma_{ij})$$

$$= n b \sum_{i=1}^a (\bar{y}_{i..} - \bar{y}_{...})^2 \qquad \text{are equal}$$

$$\left(H_0: \frac{1}{b} \sum_{j=1}^b \mu_{ij} \text{ are equal} \right)$$

$$R(\beta | \mu) = R(\beta | \mu, \alpha) \qquad H_0: \beta_j + \frac{1}{a} \sum_{i=1}^a (\alpha_i + \gamma_{ij})$$

$$= n a \sum_{j=1}^b (\bar{y}_{.j.} - \bar{y}_{...})^2 \qquad \text{are equal}$$

$$\left(H_0: \frac{1}{a} \sum_{i=1}^a \mu_{ij} \text{ are equal} \right)$$

MEME16203 Linear Models@Dr Yong Chin Khian

$$R(\boldsymbol{\gamma}|\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\beta}) = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij}.-\bar{y}_{i..}-\bar{y}_{.j.}+\bar{y}_{...})^{2}$$

$$H_{0}: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0$$
for all (i,j) and (k,ℓ)

$$\left(H_{0}: \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell} = 0\right)$$
for all (i,j) and (k,ℓ)