Programmation Efficace – Licence 3 Informatique TP : Des problèmes de gateau

Le gateau cassé

Un gateau rectangulaire est transporté dans un camion. Sur sa route, le camion heurte un obstacle et le gateau se retrouve brisé en N morceaux rectangulaires de largeur w_i et de longueur l_i pour $1 \le i \le N$. À l'arrivée, le client décide de recommander un gateau de la même dimension, mais il ne connaît que la largeur W du gateau initial. Il vous demande de l'aide pour retrouver la longueur L du gateau. Heureusement, toutes les pièces du gateau brisé ont été gardées et elles ne se sont pas tournées pendant le voyage.

Chaque fichier d'entrée a le format suivant :

- **Ligne 1**: La largeur W du gateau initial,
- Ligne 2 : Le nombre N de morceaux du gateau brisé,
- Les N lignes suivantes : la largeur w_i et la longueur l_i de chacune des pièces.

Nous avons de plus les contraintes suivantes :

- $-1 \le N \le 5000000$,
- $--1 \leq \textit{W}, L \leq 10000,$
- $-1 \le w_i, l_i \le 10000 \text{ pour } 1 \le i \le N.$

En sortie, vous devez fournir la longueur L du gateau.

Example

Le fichier d'entrée pour cet exemple est de la forme suivante :

```
      4

      7

      2
      3

      1
      4

      1
      2

      1
      2

      2
      2

      2
      2

      2
      2

      2
      1
```

La sortie attendue est 6.

Décoration d'un gateau

Un patissier souhaite décorer un gateau avec trois colorants alimentaires : jaune, rose et blanc. Ces couleurs sont identifiées par les nombres 0 pour jaune, 1 pour rose et 2 pour blanc. Afin d'obtenir une jolie mosaïque, il découpe le gateau en bandes verticales de largeur A_1, A_2, \ldots, A_n centimètres et en bandes horizontales de hauteur B_1, B_2, \ldots, B_n centimètres (n étant un entier positif). Ainsi ces bandes divisent le gateau en $n \times n$ rectangles. Le rectangle se trouvant à l'intersection de la bande verticale i et de la bande horizontale j a pour couleur (i+j)mod3 pour $1 \le i, j \le n$. Afin de commander les colorants alimentaires, notre patissier a besoin de savoir les surfaces à colorer pour chacun des colorants et il demande votre aide.

Chaque fichier d'entrée a le format suivant :

```
— Ligne 1: l'entier n,
```

- Ligne 2 : Les entiers $A_1, A_2, ..., A_n$ séparés par des espaces,
- **Ligne 3 :** Les entiers $B_1, B_2, ..., B_n$ séparés par des espaces.

Nous avons de plus les contraintes suivantes :

```
-1 \le n \le 100000,
```

$$-1 \le A_1, A_2, \dots, A_n, B_1, B_2, \dots, B_n \le 10000.$$

En sortie, vous devez fournir trois entiers représentant respectivement la surface à couvrir en jaune, celle à couvrir en rose et celle à couvrir en blanc.

Example

Le fichier d'entrée pour cet exemple est de la forme suivante :

```
3
1 1 1
1 1 1
```

La sortie attendue est 3 3 3. Voilà un autre exemple :

La sortie attendue est 155 131 197.

Le mauvais nombre de bougies

Rita adore fêter son anniversaire et depuis qu'elle a quatre ans, elle garde ses bougies d'anniversaire dans une boîte (chaque année le nombre de bougies correspond à son âge). Son petit frère Théo décide de faire la même chose à partir de ses trois ans. Mais les boîtes de Theo et Rita sont similaires tout comme leurs bougies. Un jour Rita décide de compter combien elle possède de bougies dans sa boîte et elle se rend compte qu'il y en a trop. En fait, Theo s'est parfois trompé de boîtes et a mis ses bougies dans la boîte de Rita. Il faut aider Rita à savoir combien de bougies elle a vraiment. Ainsi étant donnés la différence d'âges entre Rita et Theo et le nombre de bougies dans la boîte de Rita et celui dans la boîte de Theo, il faut déterminer combien de bougies elle doit retirer afin que sa boîte contienne le nombre exact de bougies dans sa boîte.

Chaque fichier d'entrée a le format suivant :

```
— Ligne 1: D la différence d'âge entre Rita et Théo,
```

- **Ligne 2**: R le nombre de bougies dans la boîte de Rita,
- **Ligne 3**: T le nombre de bougies dans la boîte de Theo.

Nous avons de plus les contraintes suivantes :

```
-1 < D < 20,
```

- -4 < R < 1000,
- -0 < T < 1000.

En sortie, vous devez fournir un entier correspondant au nombre de bougies que Rita doit retirer de sa boîte.

Example

Le fichier d'entrée pour cet exemple est de la forme suivante :

```
2
26
8
```

La sortie attendue est 4.

Le mystère du temps de cuisson

Dans une fameuse patisserie parisienne, un gateau spécial est conçu qui fait le bonheur des clients. La clef du succès de ce gateau est le temps de cuisson. Un espion industriel décide de placer des capteurs sur les portes du four afin de calculer ce temps de cuisson. Sa tache est facilitée par le fait que chaque gateau rentre part une porte à l'avant du four et sort par une porte à l'arrière du four après le temps de cuisson exact. Deux capteurs sont donc placés, un à l'entrée et l'autre à la sortie, ils permettent de détecter quand un gateau entre dans le four et quand un gateau sort du four. Après quelques jours, l'espion va récupérer ses capteurs et peut traiter les données collectées. Il s'aperçoit que malheureusement ces capteurs ont été défectueux et ont parfois détectés un gateau quand il n'y en avait pas et parfois ils ont manqué un gateau. Toutefois notre espion remarque qu'il pourrait obtenir une bonne estimation du temps de cuisson en trouvant la différence de temps entre les deux capteurs qui maximise le nombre de correspondances entre les temps d'entrée et de sortie. Nous devons aider l'espion à calculer ce temps.

Chaque fichier d'entrée a le format suivant :

- **Ligne 1**: le nombre N de passages détectés par le capteur d'entrée,
- **Ligne 2**: le nombre M de passages détectés par le capteur de sortie,
- **Ligne 3**: les N temps en seconde du capteur d'entrée séparés par des espaces et classés par ordre croissant,
- Ligne 3 : les M temps en seconde du capteur de sortie séparés par des espaces et classés par ordre croissant,

Nous avons de plus les contraintes suivantes :

- $-1 \le N, M \le 2000,$
- chaque temps est compris entre 0 et 1000000000.

La sortie est un simple entier correspondant au temps de cuisson le plus probable. Si plusieurs meilleurs temps de cuisson existent, alors on renverra le plus petit. Bien entendu le temps à la sortie est supérieur au temps à l'entrée.

Example

Le fichier d'entrée pour cet exemple est de la forme suivante :

```
5
5
0 10 12 20 30
1 5 17 27 50
```

La sortie attendue est 5.