

Thermal management using 'Generic Thermal FW'

Jonghwa Lee assistant engineer Samsung Electronics

Contents

- Generic Thermal Framework
 - Thermal zone device
 - Cooling device
 - Binding & Thermal instance
 - Governors
 - SYSFS interfaces
- Thermal management
 - CPU Cooling device
 - EXYNOS thermal driver

THERMAL FRAMEWORK

Thermal Framework

- Thermal zone
- Thermal sensor unit
- Cooling device
- Governor
 - Fair share
 - Step wise
 - User
- SYSFS interface

Thermal FW diagram (example)

Devices in Thermal FW

- Thermal zone device
 - Represents a region managed by thermal framework.
 - Includes a thermal sensor and multiple cooling devices.

Thermal zone diagram

Thermal zone diagram

Thermal zone diagram

Devices in Thermal FW

- Cooling devices
 - Actual functional units for cooling down the thermal zone.
 - Can be hardware devices and also be software method.
 - Hardware: Fans, various physical cooler
 - Software: CPU frequency control

- Thermal zone devices and cooling devices will work after proper binding.
- Binding happens when any of thermal devices is newly registered.
- As a succeed result of binding, thermal instance would be created.

- Thermal instance
 - Describes how cooling devices work at certain trip point in the thermal zone.
 - Created at binding time of thermal zone devices and cooing devices.
 - Added to thermal devices' own thermal instances list.
 - Governor handles the thermal instance not thermal devices.

```
thermal_tz_list
```

- thermal_zone_dev.0
- thermal_zone_dev.1

thermal_cdev_list

```
cooling_dev.0
```

cooling_dev.1

cooling_dev.2

```
thermal_tz_list

- thermal_zone_dev.0

- thermal_zone_dev.1

- thermal_zone_dev.2
```

```
thermal_cdev_list
- cooling_dev.0
- cooling_dev.1
- cooling_dev.2
:
```

- Newly thermal zone device is registered.
- After attaching to the list, it seeks cooling devices which can be bound to it.

- Newly thermal zone device is registered.
- After attaching to the list, it seeks cooling devices which can be bound to it.

```
thermal_tz_list

thermal_zone_dev.0

thermal_zone_dev.1

thermal_zone_dev.2

thermal_zone_dev.2

thermal_zone_dev.2
```

- Binding can be done with
 - platform data's matching function (.match())
 - driver's binding function (.bind())

• After succeed binding, thermal instance will be created.

```
thermal_tz_list

- thermal_zone_dev.0

- thermal_zone_dev.1

- thermal_zone_dev.2

thermal_instance_list

thermal_instance

thermal_instance
```

- Lastly, it adds thermal instance to related device's list
- It is almost same when cooling device is registered.

Governors

- Determines cooling policy.
- Currently, three candidates exist.
 - USER_SPACE
 - FAIR_SHARE
 - STEP_WISE
- Can be varied for each thermal zone.

Governors

- Step wise governor
 - Sets cooling state based on thermal trend.
 (STABLE, RAISING, DROPPING,
 RASING_FULL, DROPPING_FULL)
 - Allows only one step change for increasing or decreasing at decision time.

Governors

- Fair share governor
 - Sets cooling state according to its efficiency and potential ability and also current state.

$$\frac{Current_trip}{total_trips} \times max_state \times \frac{weight}{100}$$

 Gives the higher cooing state to more weighted device.

SYSFS interface

- Nodes under '/sys/class/thermal/thermal_zone'
 - Get basic information (name, enabling, cooling devices)

 - Monitor current state
- Nodes under '/sys/class/thermal/cooling_device'
 - Get basic information (name)
 - Set/get cooling state

THERMAL MANAGEMENT

Thermal management

- Thermal management starts with updating thermal zone.
 - thermal_zone_device_update().
- Possible factors for updating thermal zone.
 - Polling
 - Interrupt
 - Passive

Thermal management

Thermal management

- CPU cooling device
 - Controls CPU frequency according to cooling state.
 - Higher cooling state, lower frequency.
 - Limits the maximum CPU frequency with updating CPUFREQ policy. (Indirect)

CPU Cooling Flowchart

- EXYNOS TMU(thermal management unit)
 - Features
 - HW interrupt (Falling/Raising)
 - Trip point (hardware)
 - Temperature history (currently not using)
 - Trimming
 - Emulation

Trimming

- Trimming value is runtime value supported by HW. (TRIMINFO register)
- Sensor's value can be calibrated with.
 (noise compensation)

```
T_{ERROR} = TRIM - 25
T(^{\circ}C) = sensor_T - (T_{ERROR})
```

Emulation

- For test purpose, EXYNOS TMU supports hardware emulation mode.
- Emulation temperature can be set with sysfs node, 'emul_temp'.
- Hardware interrupt also works in emulation mode.

- Cooling device
 - Currently exynos_thermal driver uses CPU cooling device only.
 - When create CPU cooling device, it sets 0 for CPU mask. (Core 0)
 - At binding time, it creates multiple thermal instances based on number of ACTIVE trips.

Thermal management in TIZEN

- Up to TIZEN 2.0, it doesn't support generic thermal framework.
 - It supports same functionality with private platform driver.
- Generic thermal framework will be supported from 3.0.

To do

- Thermal FW is isolated.
 - No available APIs to get thermal data.
 - Hard to know current thermal state.
- Solution can be one of followings,
 - Introducing APIs to get thermal data.
 - Implementing notification method.
 - Allowing to add own thermal handler.

In progress

- To open thermal data is now attempting.
 - [Patch] : 'Get thermal zone device by name'
- To separate sensor from thermal zone as a new thermal device. It'll enable,
 - multiple sensors in one thermal zone.
 - more intuitive binding of thermal zone units.

Q & A