EA614 - Análise de Sinais EFC4 - Filtros Analógicos

Rafael Gonçalves (186062)

9 de Maio de 2018

1 Filtro de Chebyshev

(a) Segue o gráfico de $|H(j\omega)| \times \omega$:

Figura 1: Módulo da resposta em frequência em função de ω para diferentes n

Percebe-se que o aumento do parâmetro n promove uma diminuição mais abrupta do ganho após o ponto $\omega = \omega_C$. Por outro lado para $\omega < \omega_C$ o sinal apresenta mais oscilações conforme o aumento do parâmetro n. Nota-se que num ponto próximo ao ponto $\omega = \omega_C$ o valor do gráfico é o mesmo para essa configuração independente de ϵ .

(b) Gráfico de $|H(j\omega)| \times \omega$:

Figura 2: Módulo da resposta em frequência em função de ω para diferentes ϵ

É possível observar que o aumento parâmetro ϵ é responsável pelo aumento da amplitude das oscilações para $\omega < \omega_C$ bem como pela diminuição mais abrupta do ganho após o ponto $\omega = \omega_C$. Num ponto próximo ao ponto $\omega = \omega_C$ o valor do gráfico para um mesmo n coincide independente de ϵ .

2 Filtro de Butterworth

(c) Gráfico de $|H(j\omega)|\times\omega$:

Figura 3: Módulo da resposta em frequência em função de ω para diferentes n

Observa-se que conforme o parâmetro n aumenta, a curva começa a decair mais próximo ao ponto $\omega = \omega_C$, e também decai mais abruptamente (dando impressão de que a curva está mais "achatada" em torno do ponto $\omega = \omega_C$). Neste gráfico um fenômeno semelhante aos anteriores pode ser observado em que no ponto $\omega = \omega_C$ é o mesmo independente de n.

3 Filtragem de Pulso Retangular

(d) Modelando o pulso retangular como:

$$x(t) = u(t + \frac{\tau}{2}) - u(t - \frac{\tau}{2}) \tag{1}$$

Temos que sua transformada de Fourier é dada por:

$$X(j\omega) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} x(t)e^{-j\omega t}dt$$
 (2)

$$X(j\omega) = \int_{\frac{-\tau}{2}}^{\frac{\tau}{2}} 1 \cdot e^{-j\omega t} dt$$
 (3)

$$X(j\omega) = \left[\frac{e^{-j\omega t}}{-j\omega}\right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}} = \frac{e^{\frac{-j\omega\tau}{2}}}{-j\omega} - \frac{e^{\frac{j\omega\tau}{2}}}{-j\omega} = \frac{2}{\omega} \left[\frac{e^{\frac{j\omega\tau}{2}} - e^{\frac{-j\omega\tau}{2}}}{2j}\right] = \frac{2}{\omega} sen(\frac{\tau\omega}{2})$$
(4)

Dado que $\tau = \frac{2\pi}{\omega_C}$:

$$X(j\omega) = \frac{2}{\omega} sen(\frac{\pi\omega}{\omega_C})$$

Gráfico de $|X(j\omega)| \times \omega$:

Figura 4: Módulo de $X(j\omega)$

Os pontos em que o valor de $|X(j\omega)|$ é zero são os pontos em que ω é múltiplo de ω_C . Isso se dá pois nesta circunstância o argumento do seno em $X(j\omega)=\frac{2}{\omega}\sin(\frac{\pi\omega}{\omega_C})$ é múltiplo de π .

(e) Módulo da resposta em frequência de um filtro passa-baixa ideal $|H(j\omega)|$:

Figura 5: Módulo de $H(j\omega)$

Módulo da saída $|Y(j\omega)|=|H(j\omega)||X(j\omega)|$:

Figura 6: Módulo de $Y(j\omega)$

(f) Gráfico com o módulo da resposta em frequência do filtro de Chebyshev $(|H_C(j\omega)|)$ bem como o módulo da resposta do sinal $X(j\omega)$ ao passar pelo filtro:

Figura 7: Módulo de $H_C(j\omega)$ e de $Y_C(j\omega)$

(g) Gráfico com o módulo da resposta em frequência do filtro de Butterworth $(|H_B(j\omega)|)$ bem como o módulo da resposta do sinal $X(j\omega)$ ao passar pelo filtro:

Figura 8: Módulo de $H_B(j\omega)$ e de $Y_B(j\omega)$

(h) Gráficos respectivamente dos módulos de $H(j\omega)$ e dos módulos de $Y(j\omega)$:

Figura 9: Módulo de $H(j\omega)$

Figura 10: Módulo de $Y(j\omega)$

Como observado na primeira figura acima, o filtro de Chebyshev se comporta de maneira mais parecida à um filtro passa-baixa ideal para $\omega > \omega_C$, enquanto que o filtro de Butterworth se comporta de maneira mais parecida à um filtro passa-baixa ideal para $\omega < \omega_C$. Isso é perceptivel através da segunda figura em que Y_B é praticamente a mesma curva que a saída do filtro ideal para frequências pequenas, enquanto que Y_C apresenta menos deformações na curva (em relação à saída do filtro ideal) para $\omega > \omega_C$, mas apresenta mais deformação para frequências mais baixas ($\omega < \omega_C$). Mesmo assim é possível perceber que ambos se comportam como filtros passa-baixa (ganho elevado para frequências baixas e ganho próximo a zero para frequências altas) e isso se reflete em respostas que se assemelham muito com o sinal de entrada para $\omega < \omega_C$ e são muito próximos de zero para $\omega > \omega_C$.