Dwelling Energy Insights – Week 11

Team members: Merel Kreszner, Olivier van Luijk, Rajeev Kalloe, Santiago Puertas Puchol, Emilio Caba Batuecas & Teo Čurčić

Product Owner: Dr. ir. T.B. Salcedo Rahola

Sprint 5

- Clarification of the project goal:
 - Can we gain energy insights of the characteristics of the dwellings and the people using the data from smart meters?
 - Prediction of the heating system type
 - Prediction of the number of solar panels
 - Prediction of the number of people
- We planned working on these algorithms:
 - Logistic Regression
 - K-nearest neighbor
 - Support Vector Machine
 - Multilayer Perceptron
 - K-means
 - RNN

Done in sprint 5

- We worked on these algorithms:
 - Logistic Regression
 - K-nearest neighbor
 - Support Vector Machine
 - Multilayer Perceptron
 - K-means
 - RNN
- Using the KNMI temperature data
 - T (Temperature)
 - SQ (Duration of the sunshine) Q (Global radiation (J/cm2)) N (Cloud cover index (1 9))

SVM with KNMI-data per day for all houses

Before

	precision	recall	f1-score	support
E WP	0.77 0.47	0.39 0.37	0.52 0.41	6088 5920
Zon	0.46	0.79	0.59	5992
accuracy macro avg weighted avg	0.57 0.57	0.52 0.52	0.52 0.51 0.51	18000 18000 18000

After

Score of the model: 0.6074910210364289								
precision recall f1-score support								
E	0.60	0.38	0.47	713				
WP	0.61	0.85	0.71	876				
Zon	0.61	0.47	0.53	360				
accuracy 0.61 1949								
macro avg	0.61	0.57	0.57	1949				
weighted avg	0.61	0.61	0.59	1949				

K-nearest Neighbor

Before

	precision	recall	f1-score	support
E WP Zon	0.49 0.62 0.55	0.51 0.66 0.39	0.50 0.64 0.46	360 465 175
accuracy macro avg weighted avg	0.55 0.56	0.52 0.56	0.56 0.53 0.56	1000 1000 1000

After

	precision	recall	f1-score	support
1 2 3	0.89 0.94 0.89	0.85 0.94 0.95	0.87 0.94 0.92	383232 497946 191824
accuracy macro avg weighted avg	0.90 0.91	0.92 0.91	0.91 0.91 0.91	1073002 1073002 1073002

Logistic regression

Before

	precision	recall	f1-score	support
E WP	0.56 0.59	0.56 0.81	0.56 0.68	351 475
Zon	0.00	0.00	0.00	174
accuracy			0.58	1000
macro avg weighted avg	0.38 0.48	0.46 0.58	0.41 0.52	1000 1000
weighten avg	0.40	0.56	0.52	1000

After

THE RESIDENCE OF THE PARTY OF T

Accuracy on training: 0.715 Accuracy on test: 0.716 True: [2 2 1 1 2 2 1 2 1 1] False: [2 2 1 1 2 2 1 1 1 2] recall f1-score precision support 0.72 0.76 0.80 109138 0.71 0.92 0.80 142853 1.00 0.01 0.02 54581 306572 0.72 accuracy 306572 macro avg 0.81 0.58 0.53 weighted avg 0.77 0.72 306572

0.65

RNN with KNMI-data

delivery	consumption	Т	SQ	Q	week	month	season	day	hour
0.0	0.031	14.8	0.0	0.0	37	9	2	12	0
0.0	0.037	14.8	0.0	0.0	37	9	2	12	0
0.0	0.034	14.8	0.0	0.0	37	9	2	12	0
0.0	0.296	14.6	0.0	0.0	37	9	2	12	1
0.0	0.311	14.6	0.0	0.0	37	9	2	12	1

Predictions:

- Heating system type
- No. Of people
- No. Of Solar Panels

1 day of data

```
Layer (type) Output Shape Param #

lstm_1 (LSTM) (None, 92, 30) 4920

dropout_1 (Dropout) (None, 92, 30) 0

dense_1 (Dense) (None, 92, 4) 124
```

Total params: 5,044

Trainable params: 5,044 Non-trainable params: 0

possible outputs

Long short-term memory predicting heating system

Long short-term memory predicting heating system

Lr = 0.01Epoch = 60

Long short-term memory predicting number of solar panels

		precision	recall	f1-score	support
<=10 1	1.0	0.75	0.79	0.77	148488
11-12 2	2.0	0.72	0.66	0.69	101384
>12	3.0	0.69	0.69	0.69	95036
accura	асу			0.73	344908
macro a	avg	0.72	0.72	0.72	344908
weighted a	avg	0.73	0.73	0.73	344908
			1		

Long short-term memory predicting number of solar panels

Lr = 0.01 Epochs = 50

Long short-term memory predicting number of people

Long short-term memory predicting number of people

Lr = 0.01Epochs = 60

Remaining tasks

- Improving our models with the one-against-all approach
- Clean up our environment
- Try our models on the new dataset with 120 houses
- Resume writing the research paper

Questions/Feedback

Are there any questions or feedback based on this presentation?

MINITURE AND WORK AND THE SECOND WELL STREET OF THE SECOND SECOND