

Microwave and Antenna Laboratory

(5th Semester)

Lab Report 3

Aim of the Experiment: To design Yagi-Uda Array antenna and to find the directivity and Half power beam width form the radiation patterns.

Design Problem: Design a three element Yagi-Uda Array for operation in 1 GHz. Obtain the radiation patterns and hence find the half power beam widths.

Software to be used: CST studio suite 2019 (Student edition)

Mathematical Calculation:

Initial dimensions:

length of the feeder= 0.47λ

length of the director=0.5λ

length of the director=0.406λ

spacing between reflector and feeder=0.25λ

spacing between feeder and director=0.34\(\lambda\)

Length of dipole antenna =
$$\frac{\lambda}{2} = \frac{c}{2f} = \frac{3 \times 10^8}{2 \times (10^9)} = 150 \text{ mm}$$

Design of 3 element Yagi-Uda array

S11 Characteristics

Radiation pattern and half power beam width

Half power beam width is 66.4 deg.

Half power beam width is 104.9 deg.

Directive Gain

Conclusion

The design of a Yagi-Uda array antenna antenna operating at 1 GHz was done successfully. The computed result for directive gain was found to be 5.4124 with the half power beam width equal to 66.4 degrees and 104.9 degrees for E-field and H-field pattern respectively.

The S11 characteristics was plotted in which it was found that the dipole was resonating at 1 GHz frequency.

Name: Rishabh Panda Roll Number: 1904215

Section: ETC-3