COMP7607: Natural Language Processing

Project Presentation | A2 FAQ | A3 Release

Yiheng Xu

Email: <u>yihengxu@connect.hku.hk</u>

Project Proposal (5%)

- A 1-2 page proposal
- Most proposals are really professional:
 - Paper Choice&Study: a good start point with novel ideas
 - Project Plan: timeline table, gantt chart, etc
 - Format: LaTeX with academic template, good references

Project Proposal (5%)

- A 1-2 page proposal
- Some minor problems:
 - Paper choice:
 - Propose a project without survey and estimation (pretraining) X
 - Properly estimate required resources (fine-tuning provided model is okay!) √
 - Contribution:
 - Simply indicate equal contribution X
 - Indicate the detailed contribution of each individual in different aspects√

Project Presentation (10%)

- A 5-minute midway presentation
- 32 groups in 3 Sessions (All team members should attend your session in person.)
 - 19:00-20:00 Group 1-10
 - 20:00-21:00 Group 11-21
 - 21:00-22:00 Group 22-32
- You presentation will be peer-reviewed
 - Professor & TA.
 - Groups in same session.

Some Points

Title & Outline slides

• be sure to include all group members names on the title slide.

Introduction

Start out with a big picture of your work: what, why, how.

Details of Your Solution

Details of the problem you are trying to solve and details of your solution

Experimental Results demonstrating/proving your solution

Present your key results; Discuss your results.

Conclusions & Potential Future Directions

Conclude with the main ideas and results of your work.

Individual Contribution & Project Progress

Some Tips

- Five minutes is not a long time, so you don't need to go over every point in detail.
- It is okay to waste space. We do not limit the number of slides.
 - Add just enough prose to present the main points and highlight the main parts of each point. Use phrases rather than complete sentences and use large fonts.
- A picture is worth a thousand words.
 - Show your solution and results with pictures or tables.

External Resources

- Presentation Advice:
 - https://www.cs.swarthmore.edu/~newhall/cs97/s00/PresentationAdvice.html
- Presentation Tips
 - 6-min report: https://people.eecs.berkeley.edu/~klein/cs294-5/fa04/cs294-5/fa04/cs294-5%20presentation%20guidelines.pdf
 - 45-min report: https://www.cs.swarthmore.edu/~newhall/cs97/s00/OralReport.html
- ACL 2021 Videos
 - https://aclanthology.org/events/acl-2021/. (Green button next to paper title https://aclanthology.org/events/acl-2021/. (Green button next to paper title

Assignment 2 FAQ

- Q: Implement both taggers?
 - Yes.
- Q: Tensorflow/Keras?
 - Yes
- Q: About the output file test.txt.
 - Handbook: "your submission should be in the same format as the test.txt file, but replace the ground truth labels with your prediction."
 - Keep the prediction in the same order: torch.utils.data.SequentialSampler

Assignment 3 Release

- 7 questions. No coding.
- Deadline: Nov 30 11:59 pm

Assignment 3

COMP7607: Natural Language Processing - University of Hong Kong

Fall 2022

Question 1: A long short-term memory (LSTM) is defined as follows. At time t it receives an input vector $\mathbf{x}_t \in \mathbb{R}^k$ of observations, an input vector $\mathbf{h}_{t-1} \in \mathbb{R}^k$ representing the previous hidden state, and a memory state $\mathbf{c}_{t-1} \in \mathbb{R}^k$ from the previous time step. The computes three gates \mathbf{i}_t , \mathbf{f}_t , and \mathbf{o}_t controlling, respectively. It additionally computes a new value for the memory $\mathbf{c}_t t$ and a new hidden representation as follows:

$$\begin{aligned} &\mathbf{i}_t = \sigma(\mathbf{I}_x \mathbf{x}_t + \mathbf{I}_h \mathbf{h}_{t-1} + \mathbf{b}_i) \\ &\mathbf{f}_t = \sigma(\mathbf{F}_x \mathbf{x}_t + \mathbf{F}_h \mathbf{h}_{t-1} + \mathbf{b}_f) \\ &\mathbf{o}_t = \sigma(\mathbf{O}_x \mathbf{x}_t + \mathbf{O}_h \mathbf{h}_{t-1} + \mathbf{b}_o) \\ &\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot g(\mathbf{C}_x \mathbf{x}_t + \mathbf{C}_h \mathbf{h}_{t-1} + \mathbf{b}_c) \\ &\mathbf{h}_t = \mathbf{o}_t \odot g(\mathbf{c}_t) \end{aligned}$$

where σ is the element-wise logistic sigmoid function and g is an element-wise nonlinearity (e.g., tanh). The behavior of the network is controlled by the parameters \mathbf{I}_x , \mathbf{I}_h , \mathbf{F}_x , \mathbf{F}_h , \mathbf{O}_x , \mathbf{O}_h , \mathbf{C}_x , and \mathbf{C}_h which are all in $\mathbb{R}^{k \times k}$. The base values $\mathbf{h}_0 = \mathbf{c}_0 = \mathbf{0}$. Finally, a new output is computed:

$$\mathbf{y}_t = f(\mathbf{W}\mathbf{h}_t + \mathbf{b})$$

Question 1a: Please briefly explain the functionality of the three gates i_t , f_t , and o_t . How do they control the LSTM?

1