Aula 03 - Amostragem

Prof. Dr. Thiago Martini Pereira Processamentos de sinais

Monitoria

Quartas-feiras 17:30 - 18:30

O que é Amostragem?

Sinais continuos

- s(t) existe para todo t dentro de um interval.
- s(t) pode assumir qualquer valor entre os extremos de amplitude.

Sinais Discretos

• S(t) = s(nT) existe para $t = n \times T$

Amostragem

Conceito

- Amostragem consiste no processo de tomar medidas de um sinal contínuo s(t) em intervalos consecutivos, a cada T unidades.
 - (unidades de tempo, espaço, ângulo, etc...)

 Resulta em uma seqüência sA(nT) de valores numéricos, denominados Amostras, associados aos instantes n x T

- > T = Período de Amostragem
- ➤ fA = 1 / T = Freqüência (ou Taxa) de Amostragem

Implementação matlab

Sinal Continuo

```
%% sinal continuo
freq = 3;
ezplot(@(x)sin(freq*2*pi*x),[0 1])
```


Implementação matlab

```
%% discretização
fs = 3000;
T = 1/fs;
t = 0:T:1;
freq = 2
y = sin(2*pi*freq*t);
plot(t,y)
fds = 20;
tt = 0:(1/fds):1;
sample = ismember(t,tt);
subplot(3,1,1);plot(t,y);
subplot(3,1,2);stem(t,sample);
subplot(3,1,3):stem(t,y.*sample)
```


Implementação matlab

Sinal discreto

```
%% sinal discreto em tempo
fs = 30;
T = 1/fs;
t = 0:T:1;
freq = 2
y = sin(2*pi*freq*t);
stem(t,y)
```


Quantização de sinais

O que é Quantização

Quantização de sinais

A diferença entre o sinal analógico original e sua versão quantizada é chamada de ruído de quantização.

Quanto menos bits usamos na quantização, mais grosseira ela fica, e portanto temos mais ruído adicionado.

erro de quantização

LSB

O termo LSB é o passo de quantização, e representa a distância entre um nível de quantização e outro.

$$LSB = Vmax/2^n$$