Mastering SQL for Data Science

Unlock the power of structured data

Duration: 1 hour

By

Ishaya, Jeremiah Ayock

Introduction to Data

Understanding the Foundation – Data

- ***** What is Data?
- Raw, unprocessed facts.
- **Examples:** Numbers, text, images, videos.
- Sources of Data
- Databases,
- > APIs,
- > IoT devices,
- > Social media,
- > Surveys.

- Types of Data
- > Structured: Databases (tables with rows and columns).
- > Semi-Structured: JSON, XML.
- ➤ Unstructured: Images, videos, emails.
- ***** How is Data Generated?
- User interactions
- Automated systems
- > Sensors.

From Data to Knowledge

The Journey: $Data \rightarrow Information \rightarrow Knowledge$

! Information: Processed data that provides meaning.

Example: Data = Sales transactions, **Information** = Total revenue for a product.

* Knowledge: Actionable insights derived from information.

Example: Knowledge = Increase inventory for a high-demand product.

Databases

The core of Data Storage

- ***** What are Databases?
- Organized collections of data for easy access, management, and updating.
- Used to store and retrieve data efficiently.
- **❖** Relational Databases (RDBMS)
- Data organized into rows and columns (tables).

Examples: MySQL, PostgreSQL, Oracle Database.

Features:

- Structured schema.
- > ACID compliance for reliability.

Use Cases: Banking systems, e-commerce platforms.

- **❖** Non-Relational Databases (NoSQL)
- Flexible, unstructured data (documents, key-value, graph, or wide-column).

Examples: MongoDB, Cassandra, Redis.

Features:

> Scalability, flexible schema.

Use Cases: Social media data, IoT data, real-time analytics.

Notes:

- RDBMS to a traditional library (organized and structured) and NoSQL to a digital archive (flexible, adaptable).
- SQL's evolution is also used toward querying non-relational databases using SQL-like tools.

Relational vs. Non-Relational Databases

Choosing the Right Database

- ***** Advantages of Relational Databases
- > Data integrity, strong consistency.
- Easy to use with SQL.
- Disadvantages
- Limited scalability for big data.

- ***** Advantages of Non-Relational Databases
- Handles unstructured data.
- > High scalability.
- Disadvantages
- Not ideal for transactions requiring ACID compliance.

OLAP Vs. OLTP

Understanding Database Systems

- **OLTP** (Online Transaction Processing)
- **Focus:** Operational, real-time transactions.

Example: Banking systems.

- **Advantages:** Real-time processing, low latency.
- **Disadvantages:** Not optimized for analytics.
- **OLAP** (Online Analytical Processing)
- **Focus:** Analytical queries, decision-making.

Example: Data warehousing for business intelligence.

- Advantages: Aggregates historical data for insights.
- **Disadvantages:** High latency for real-time transactions.

Technology Behind OLAP and OLTP

- > OLTP Technologies: MySQL, PostgreSQL, SQL Server.
- ➤ OLAP Technologies: Snowflake, Amazon Redshift, Google Big Query.

Note: SQL's versatility in both systems and its relevance to data science.

What is Data Science?

The Power Behind Modern Insights

Definition:

The practice of extracting meaningful insights from data using statistical, programming, and machine learning techniques.

***** Importance

- Driving business decisions.
- > Automating processes.

***** Applications

- Predictive modelling in finance.
- Customer segmentation in retail.
- Fraud detection in banking.

Note: Think about how Spotify suggests your favourite songs or how Uber predicts demand – "that' is Data Science in action".

The Data Science Process

From Raw Data to Actionable Insights

- Problem Definition.
- Data Collection.
- Data Cleaning and Pre-processing.
- Exploratory Data Analysis (EDA).
- Modelling.
- Evaluation and Deployment.

Note: Focus on SQL's role in the process: data extraction, cleaning, and integration.

SQl for Data Science

The Data Scientist's Superpower

- ***** Why SQL for Data Science?
- Most data resides in databases, making SQL essential for accessing and analysing it.

SQL is efficient for:

- Extract and Transform data for Analysis
- Summarize and aggregate data for Insights
- Connect to databases from analysis tools like Python, R, Tableau, or Power BI
- Clean and prepare data for Analysis

- ***** Use Cases of SQL in Data Science
- Fetching data for machine learning models.
- Creating dashboards and reports.
- Exploratory Data Analysis (EDA).
- > Joining datasets from multiple sources.

Notes: Over 80% of a data scientist's time is spent cleaning and preparing data?

SQL makes this efficient and scalable.

Introduction to SQL for Data Science

The Basics that Matter

- **SQL** Essentials
- > SELECT: Retrieve data.
- > WHERE: Filter data.
- > JOIN: Combine tables.
- ➤ GROUP BY: Aggregate data.
- ORDER BY: Sort data.
- SELECT delds>
 FROM Table A
 NNER JOIN Table B
 ON A key = B key

 SELECT delds>
 FROM Table B
 ON A key = B key

 SELECT delds>
 FROM Table B
 ON A key = B key

 SELECT delds>
 FROM Table B
 ON A key = B key

 SELECT delds>
 FROM Table B
 ON A key = B key

 WHERE B key IS NULL

- Practical Examples
- > Fetch top-performing products.
- > Summarize monthly sales revenue.
- ❖ SQL in Data Science Tools
- Integrated in tools like Python (via Pandas), R, Tableau, and Power BI.

Intermediate SQL for Data Science

Level Up Your SQL Skills

- **Advanced Concepts**
- **Subqueries:** Use queries within queries.
- Window Functions: Perform row-wise operations (e.g., rankings, running totals).
- Common Table Expressions (CTEs): Simplify complex queries.
- **Recursive Queries:** Solve hierarchical problems.

- Use Cases
- Identify top customers based on lifetime spending (Window Functions).
- Extract monthly growth trends (CTEs).
- **Best Practices**
- Optimize queries for performance.
- ➤ Avoid **SELECT** * in production queries

SQL Place in Data Science Project

Seamlessly Integrating SQL

- Data Preparation:
- Cleaning datasets.
- Aggregating data for insights.
- * Model Input:
- Joining and transforming datasets.
- Exporting data for ML models.

- Data Visualization:
- SQL as a backend for Tableau, Power BI, or custom dashboards.
- Real-Time Analytics
- Streaming queries for live dashboards.

Note: From preprocessing to live dashboards, SQL powers every stage of data-driven decision-making.

DataSet

✓ MariaDB	<	1 SELECT * 2 FROM customerpurchasedata											
PostgreSQL	٧												
.‡. ⊙ ' 0.17.0 beta		: customerid		aauntme		neaduated	neadustnama	nradustantan	nrica	nurahaaadata	haushi		
Table		• customend	name	country	age	productid	productname	productcateg	price	purchasedate	bought		
■ customerpurchasedata	<	1	EmmanuelA	USA	30	101	Laptop	Electronics	1000.00	2024-12-01	t		
⊞ demo	<	2	KanuB	Canada	25	102	Smartphone	Electronics	800.00	2024-12-02	t		
	<	3	Francis	UK	35	103	Tablet	Electronics	500.00	2024-12-03	t		
		4	Batis	Germany	28	104	Headphones	Accessories	150.00	2024-12-04	t		
		5	John	France	40	105	Smartwatch	Wearables	300.00	2024-12-05	t		
		6	Blessing	Australia	22	106	Camera	Electronics	700.00	2024-12-06	t		
		7	Salome	USA	33	107	Gaming Console	Gaming	400.00	2024-12-07	f		
		8	Zialesi	India	29	108	Fitness Tracker	Wearables	120.00	2024-12-08			

Benefits of Normalization

- **Eliminates Redundancy**: Customer and product information are stored only once in their respective tables.
- > Improves Data Integrity: Changes in customer or product data need to be updated in only one place.
- Enhances Query Performance: Joining smaller tables on specific keys is often more efficient than querying a large flat file.
- * Approaches Followed
- 1. Entity Identification: Recognizing Customers, Products, and Purchases as distinct entities.
- 2. Primary Keys: Assigning unique identifiers (e.g., CustomerID, ProductID, PurchaseID) for each table.
- 3. Foreign Keys: Establishing relationships (e.g., *CustomerID and ProductID* in the Purchases table).
- **4. Data Integrity**: Ensuring consistency by linking the tables with well-defined keys.
- **5. Query Optimization**: Making it easy to retrieve meaningful data using joins.

: customerid	name	country	age	gender	• productid	productname	productcategory	price
	Emmanue/A	USA	30	М	101	Laptop	Electronics	1000.00
	KanuB	Canada	25		102	Smartphone	Electronics	800.00
	Francis	UK	35	М	103	Tablet	Electronics	500.00
	Batis	Germany	28	M	104	Headphones	Accessories	150.00
	John	France	40	M	105	Smartwatch	Wearables	300.00
	Blessing	Australia	22		106	Camera	Electronics	700.00
	Salome	USA	33		107	Gaming Console	Gaming	400.00
	Zialesi	India	29		108	Fitness Tracker	Wearables	120.00
: purchaseid		customerid		productid		purchasedate	bought	
201		1		101		2024-01-01	t	
202		2		102		2024-01-02	t	
203		3		103		2024-01-03	t	
204		4		104		2024-01-04		
205		5		105		2024-01-05	t	
206		6		106		2024-01-06		
207		7		107		2024-01-07	f	
208		8		108		2024-01-08		

Summary and Key Takeaways

SQL for Data Science: Master the Essentials

- ➤ Databases are the backbone of data storage; understanding relational and non-relational systems is crucial.
- > SQL is indispensable for data extraction, cleaning, and preparation.
- > Start with basic SQL commands and progress to advanced features for complex data manipulations.
- > SQL empowers data scientists to work efficiently with structured data and integrate it into data science workflows.

Note

- ✓ SQL is not just a tool for data engineers; it is a data scientist's secret weapon.
- ✓ I encourage you all to practice writing queries on open datasets or platforms like Kaggle.