Plant Disease Detection System for Sustainable Agriculture

Madhav K AICTE Student Internship ID: STU66a1f414251071721889812

1. Problem Statement

In modern agriculture, early detection of plant diseases is critical to ensure crop health and maximize yield. Manual inspection is time-consuming and prone to human error. To address this, we propose a CNN (Convolutional Neural Network)-based model capable of automatically detecting and classifying diseases from leaf images of crops such as apple, cherry, grape, and corn.

Key Challenges

- Accurate classification of healthy vs. diseased leaves.
- Identification of specific disease types (e.g., apple scab, grape black rot).
- Handling variations in leaf appearance due to lighting, orientation, and background noise.

Solution Approach

- A deep learning-based system that processes leaf images and predicts disease conditions.
- Integration with precision agriculture tools for early intervention and sustainable farming.

2. Project Pipeline

The workflow follows a structured data-driven pipeline to ensure model accuracy and efficiency:

(1) Data Collection & Loading

- Source datasets from publicly available repositories such as PlantVillage and Kaggle.
- Dataset includes labeled images of healthy and diseased leaves across multiple crop types.

(2) Dataset Directory Structure

The dataset is organized into three subsets for training, validation, and testing:

• Train Directory

• Validation Directory

• Testing Directory

AppleCedarRust1	☑ TomatoEarlyBlight4
AppleCedarRust2	₫ TomatoEarlyBlight5
AppleCedarRust3	■ TomatoEarlyBlight6
AppleCedarRust4	☐ TomatoHealthy1
AppleScab1	■ TomatoHealthy2
AppleScab2	■ TomatoHealthy3
AppleScab3	☑ TomatoHealthy4
☑ CornCommonRust1	™ TomatoYellowCurlVirus1
☑ CornCommonRust2	■ TomatoYellowCurlVirus2
☑ CornCommonRust3	™ TomatoYellowCurlVirus3
	☑ TomatoYellowCurlVirus4
PotatoEarlyBlight2	☑ TomatoYellowCurlVirus5
PotatoEarlyBlight3	™ TomatoYellowCurlVirus6
☑ PotatoEarlyBlight4	
PotatoHealthy1	
PotatoHealthy2	
☑ TomatoEarlyBlight1	
☑ TomatoEarlyBlight2	
☑ TomatoEarlyBlight3	

(3) Data Upload & Extraction

- \bullet Compress the dataset into a .zip file.
- $\bullet\,$ Upload the file to Google Drive and mount it in Google Colab.
- Use Python's zipfile library to extract and load images.

(4) Image Preprocessing & Augmentation

- Resize images to a uniform dimension (e.g., 128x128 pixels).
- Apply augmentation techniques such as rotation, flipping, and brightness adjustment to improve model robustness.

(5) CNN Model Architecture

- Input Layer: Accepts 128x128x3 RGB images.
- Convolutional Layers: Extract features using ReLU activation functions.
- Pooling Layers: Perform dimensionality reduction using MaxPooling.
- Fully Connected Layers: Classify features using Softmax activation.
- Output Layer: Predicts disease class (e.g., "healthy," "apple_scab").

(6) Model Training & Validation

- Train the model on the training set and validate it using the validation set.
- Optimize hyperparameters such as learning rate and batch size.

(7) Testing & Evaluation

- Evaluate the model's performance on an unseen test dataset.
- Use metrics such as Accuracy, Precision, Recall, and F1-Score.

3. Expected Outcomes

- A high-accuracy CNN model for classifying plant diseases.
- Potential integration with mobile applications or IoT-based farming systems.
- Contribution to sustainable agriculture by reducing crop loss and improving yield quality.