1432 PRODUCT, SUCC

# 5.198 interval\_and\_count

DESCRIPTION LINKS GRAPH AUTOMATON

**Origin** [126]

Constraint interval\_and\_count(ATMOST, COLOURS, TASKS, SIZE\_INTERVAL)

Arguments ATMOST : int

COLOURS : collection(val-int)

TASKS : collection(origin-dvar, colour-dvar)

SIZE\_INTERVAL : int

Restrictions

```
\begin{split} & \texttt{ATMOST} \geq 0 \\ & \texttt{required}(\texttt{COLOURS}, \texttt{val}) \\ & \texttt{distinct}(\texttt{COLOURS}, \texttt{val}) \\ & \texttt{required}(\texttt{TASKS}, [\texttt{origin}, \texttt{colour}]) \\ & \texttt{TASKS}. \texttt{origin} \geq 0 \\ & \texttt{SIZE\_INTERVAL} > 0 \end{split}
```

Purpose

First consider the set of tasks of the TASKS collection, where each task has a specific colour that may not be initially fixed. Then consider the intervals of the form  $[k \cdot \mathtt{SIZE\_INTERVAL}, k \cdot \mathtt{SIZE\_INTERVAL} + \mathtt{SIZE\_INTERVAL} - 1]$ , where k is an integer. The <code>interval\_and\_count</code> constraint forces that, for each interval  $I_k$  previously defined, the total number of tasks, which both are assigned to  $I_k$  and take their colour in COLOURS, does not exceed the limit ATMOST.

Example

```
\left(\begin{array}{c} 2, \left<4\right>, \\ \text{origin} - 1 & \text{colour} - 4, \\ \left<\begin{array}{c} \text{origin} - 0 & \text{colour} - 9, \\ \text{origin} - 10 & \text{colour} - 4, \\ \text{origin} - 4 & \text{colour} - 4 \end{array}\right), 5
```

Figure 5.459 shows the solution associated with the example. The constraint interval\_and\_count holds since, for each interval, the number of tasks taking colour 4 does not exceed the limit 2.

**Typical** 

```
\begin{split} & \texttt{ATMOST} > 0 \\ & \texttt{ATMOST} < |\texttt{TASKS}| \\ & |\texttt{COLOURS}| > 0 \\ & |\texttt{TASKS}| > 1 \\ & \texttt{range}(\texttt{TASKS.origin}) > 1 \\ & \texttt{range}(\texttt{TASKS.colour}) > 1 \\ & \texttt{SIZE\_INTERVAL} > 1 \end{split}
```

20000128 1433



Figure 5.459: The interval\_and\_count solution to the **Example** slot with the use of each interval

#### **Symmetries**

- ATMOST can be increased.
- Items of COLOURS are permutable.
- Items of TASKS are permutable.
- One and the same constant can be added to the origin attribute of all items of TASKS.
- An occurrence of a value of TASKS.origin that belongs to the *k*-th interval, of size SIZE\_INTERVAL, can be replaced by any other value of the same interval.
- An occurrence of a value of TASKS.colour that belongs to COLOURS.val (resp. does not belong to COLOURS.val) can be replaced by any other value in COLOURS.val (resp. not in COLOURS.val).

## Arg. properties

- Contractible wrt. COLOURS.
- Contractible wrt. TASKS.

Usage

This constraint was originally proposed for dealing with timetabling problems. In this context the different intervals are interpreted as morning and afternoon periods of different consecutive days. Each colour corresponds to a type of course (i.e., French, mathematics). There is a restriction on the maximum number of courses of a given type each morning as well as each afternoon.

#### Remark

If we want to only consider intervals that correspond to the morning or to the afternoon we could extend the interval\_and\_count constraint in the following way:

- We introduce two extra parameters REST and QUOTIENT that correspond to nonnegative integers such that REST is strictly less than QUOTIENT,
- We add the following condition to the arc constraint: (tasks1.origin/SIZE\_INTERVAL) 

  REST(mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and QUOTIENT to 2.

1434 PRODUCT, SUCC

#### Reformulation

Let K denote the index of the last possible interval where the tasks can be assigned:  $K = \lfloor \frac{\max_{i \in [1, | \text{TASKS}|]} (\overline{\text{TASKS}[i] \cdot \text{origin}}) + \text{SIZE\_INTERVAL}}{\text{SIZE\_INTERVAL}} \rfloor$ . The interval\_and\_count(ATMOST, COLOURS, TASKS, SIZE\_INTERVAL) constraint can be expressed in term of a set of reified constraints and of K arithmetic constraints (i.e., sum\_ctr constraints).

1. For each task  ${\tt TASKS}[i]$   $(i \in [1, |{\tt TASKS}|])$  of the  ${\tt TASKS}$  collection we create a 0-1 variable  $B_i$  that will be set to 1 if and only if task  ${\tt TASKS}[i]$  takes a colour within the set of colours COLOURS:

```
\begin{split} B_i &\Leftrightarrow \mathtt{TASKS}[i].\mathtt{colour} = \mathtt{COLOURS}[1].\mathtt{val} \ \lor \\ &\mathtt{TASKS}[i].\mathtt{colour} = \mathtt{COLOURS}[2].\mathtt{val} \ \lor \\ &\ldots \\ &\mathtt{TASKS}[i].\mathtt{colour} = \mathtt{COLOURS}[|\mathtt{COLOURS}|].\mathtt{val}. \end{split}
```

2. For each task TASKS[i] ( $i \in [1, |TASKS|]$ ) and for each interval [ $k \cdot SIZE\_INTERVAL, k \cdot SIZE\_INTERVAL + SIZE\_INTERVAL - 1$ ] ( $k \in [0, K]$ ) we create a 0-1 variable  $B_{ik}$  that will be set to 1 if and only if, both task TASKS[i] takes a colour within the set of colours COLOURS, and the origin of task TASKS[i] is assigned within interval [ $k \cdot SIZE\_INTERVAL, k \cdot SIZE\_INTERVAL + SIZE\_INTERVAL - 1$ ]:  $B_{ik} \Leftrightarrow B_i \wedge$ 

```
\begin{aligned} & \texttt{TASKS}[i]. \texttt{origin} \geq k \cdot \texttt{SIZE\_INTERVAL} \wedge \\ & \texttt{TASKS}[i]. \texttt{origin} \leq k \cdot \texttt{SIZE\_INTERVAL} + \texttt{SIZE\_INTERVAL} - 1 \end{aligned}
```

3. Finally, for each interval  $[k \cdot \text{SIZE\_INTERVAL}, k \cdot \text{SIZE\_INTERVAL} + \text{SIZE\_INTERVAL} - 1]$   $(k \in [0, K])$ , we impose the sum  $B_{1k} + B_{2k} + \dots + B_{|\text{TASKS}|k}$  to not exceed the maximum allowed capacity ATMOST.

See also

**assignment dimension removed:** among\_low\_up(assignment dimension corresponding to intervals is removed).

related: interval\_and\_sum(among\_low\_up constraint replaced by sum\_ctr). used in graph description: among\_low\_up.

Keywords

application area: assignment.

**characteristic of a constraint:** coloured, automaton, automaton with array of counters. **constraint type:** timetabling constraint, resource constraint, temporal constraint. **modelling:** assignment dimension, interval.

20000128 1435

```
Arc input(s)

Arc generator

PRODUCT → collection(tasks1, tasks2)

Arc arity

2

Arc constraint(s)

Succ →

Succ →

Succ ←

variables - col (VARIABLES - collection(var - dvar), item(var - TASKS.colour))

Constraint(s) on sets

TASKS TASKS

PRODUCT → collection(tasks1, tasks2)

2

Arc constraint(s)

Succ →

Succ →

VARIABLES - collection(var - dvar), item(var - TASKS.colour))

Constraint(s) on sets
```

### **Graph model**

We use a bipartite graph where each class of vertices corresponds to the different tasks of the TASKS collection. There is an arc between two tasks if their origins belong to the same interval. Finally we enforce an <code>among\_low\_up</code> constraint on each set  $\mathcal S$  of successors of the different vertices of the final graph. This put a restriction on the maximum number of tasks of  $\mathcal S$  for which the colour attribute takes its value in COLOURS.

Parts (A) and (B) of Figure 5.460 respectively show the initial and final graph associated with the **Example** slot. Each connected component of the final graph corresponds to items that are all assigned to the same interval.



Figure 5.460: Initial and final graph of the interval\_and\_count constraint

1436 PRODUCT, SUCC

Automaton

Figure 5.461 depicts the automaton associated with the interval\_and\_count constraint. Let COLOUR $_i$  be the colour attribute of the  $i^{th}$  item of the TASKS collection. To each pair (COLOURS, COLOUR $_i$ ) corresponds a signature variable  $S_i$  as well as the following signature constraint: COLOUR $_i \in \text{COLOURS} \Leftrightarrow S_i$ .



Figure 5.461: Automaton of the interval\_and\_count constraint

20000128 1437