Computer Evolution

PC che ora costano 500€ una volta,nel 1985, costavano 1M€. Ciò è dato da:

- Miglioramenti nella tecnologia dei semiconduttori
- Miglioramenti nel design dei computer
- Innovazione nei software

Datasphere: quantità di dati che usiamo e/o trasportiamo La **Global Datasphere** annuale è di circa 175 **zettabyte**; uno **zettabyte** sono 10^{23} byte. Questa sta aumentando esponenzialmente negli ultimi anni, soprattutto grazie all'avvento del 5G, AI etc.

Crescita dei microprocessori

Si parte dal 1970, con il VAX. Ogni anno i processori aumentavano del 25% rispetto alla performance.

Da quando è stato introdotta l'architettura RISC, l'incremento è diventato del 50% annuale. Negli anni 2000, inizia la lotta a chi aveva il processore *più grande* tra le grandi aziende, tra cui **Intel**, **AMD** o **IBM**. Infatti in quel periodo vennero rilasciati una moltitudine di processori. Dopo un po' si sono resi conto che era meglio dividere i core nel sistema, anche per limitazioni varie, e così nascono i multicore.

Legge di Amdahl

$speedup = \frac{performance with enhancement}{performance without enhancement}$

The speedup resulting from an enhancement depends on two factors:

- fraction_{enhanced}: the fraction of the computation time that takes advantage of the enhancement
- speedup_{enhanced}: the size of the enhancement on the parts it affects.

execution time_{new} =

execution time_{old}
$$\times ((1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}})$$

$$speedup_{overall} = \frac{execution time_{old}}{execution time_{new}} =$$

1

$$(1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}}$$

Fraction: Somma dei cicli di clock delle istruzioni che subiranno il miglioramento / Numero di cicli di clock totali prima del miglioramento

Speedup: Cicli di clock dell'istruzione singola prima del miglioramento / Cicli di clock dell'istruzione singola dopo il miglioramento

Esempio Ahmdal

main:	daddui r1,r0,0	F	D	E	M	W																																			5
	daddui r2,r0,100		F	D	Е	M	W														Т	Т	Т			Т								Т			Т				1
loop:	l.d fl,vl(rl)			F	D	Е	M	W																																	1
	l.d f2,v2(r1)				F	D	Е	M	W	7																											Т				1
	div.d f5,f1,f2					F	D	S	/	1	1	/	/	M	I W																										9/6
	l.d f3,v3(r1)						F	S	D	Е	M	W														Т											Т				0
	add.d f5, f5,f3								F	D	S	S	S	+	+	N.	W	7																							2
	l.d f4, v4(r1)									F	S	S	S	D	Е	S	M	[V	V	П	П	Т	Т			Т	П							Т	Т		Т				1
	div.d f6,f3,f4													F	D	S	S	1	1	1	1	1	N	vI '	W																9/6
	mul.d f1,f1,f2														F	S	S	D	*	*	*	*	*	: :	* >	k	M	W									Т				1/3
	add.d f6,f6,f1																	F	D	S	S	S	S	:	S S	3	+	+	M	W	7										2
	s.d f5,v5(r1)			Т										П					F	S	S	S	S	. :	s s	5	D	Е	S	M	W			Т	Т	Т	Т			\Box	1
	s.d f6,v6(r1)																										F	D	S	Ε	M	W	1								1
	daddui r1,r1,8																											F	S	D	Е	M	V	7			П				1
	daddi r2,r2,-1																													F	D	Е	N	1 V	V						1
	bnez r2,loop																														F		D	E		M	W				2
	halt																															F	F	-	-	-	-	-			1
	Total													6+	100	* 3	3 /	//	6+	100	* 2	9	(SPI	EEI	OUP	sin	n =	1.1	38)												2906
																																									3306

Consideriamo soltanto il miglioramento dove l'operazione di DIV ci mette 6 cicli di clock invece di 9(durante la fase di EXE).

In questo caso, lo **Speedup** è $\frac{9}{6}$ mentre la **Fraction** è $\frac{9*2*100}{3306} = \frac{1800}{3306} = 0.54$ dove $9 \times 2 \times 100$ è la somma dei cicli di clock delle istruzioni che subiranno il miglioramento(in questo caso le **2** DIV, da **9** cicli ciascuna, che vengono ripetute **100** volte)