Devoir surveillé n°01: corrigé

Solution 1

Notons $\mathcal{P}_n: \ll (1+x)^n \geq 1+nx$ ». \mathcal{P}_0 est clairement vraie. Supposons que \mathcal{P}_n est vraie pour n certain $n \in \mathbb{N}$. Alors $(1+x)^n \geq 1+nx$. Or $1+x \geq 0$ donc

$$(1+x)^n(1+x) \ge (1+nx)(1+x)$$

ou encore

$$(1+x)^{n+1} \ge 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

Ainsi \mathcal{P}_{n+1} est vraie. Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Solution 2

Posons pour $n \in \mathbb{N}$

$$\mathcal{P}_n: 1 \leq u_n \leq n^2$$

Initialisation. Puisque $u_1 = 1$ et $u_2 = 2$, \mathcal{P}_1 et \mathcal{P}_2 sont vraies.

Hérédité. Supposons que \mathcal{P}_n et \mathcal{P}_{n+1} soient vraies pour un certain $n \in \mathbb{N}^*$. Ainsi,

$$1 \le u_n \le n^2$$
$$1 \le u_{n+1} \le (n+1)^2$$

On en déduit donc que

$$1 + \frac{2}{n+2} \le u_{n+2} \le (n+1)^2 + \frac{2n^2}{n+2}$$

En particulier, il est clair que $u_{n+2} \ge 1$. Reste à montrer que

$$(n+1)^2 + \frac{2n^2}{n+2} \le (n+2)^2$$

Calculons donc la différence suivante :

$$(n+2)^2 - \left[(n+1)^2 + \frac{2n^2}{n+2} \right] = 2n + 3 - \frac{2n^2}{n+2}$$
$$= \frac{(2n+3)(n+2) - 2n^2}{n+2} \qquad = \frac{5n+6}{n+2} \ge 0$$

On a donc bien montré que

$$(n+1)^2 + \frac{2n^2}{n+2} \le (n+2)^2$$

et par conséquent que

$$u_{n+2} \le (n+2)^2$$

 \mathcal{P}_{n+2} est donc vraie.

Conclusion. Par récurrence double, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

Solution 3

Tout d'abord, $u_0 = 1 = 0!$ et $u_1 = 1 = 1!$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $u_n = n!$ et $u_{n+1} = (n+1)!$. Alors

$$u_{n+2} = (n+1)(n! + (n+1)!) = (n+1)(n! + n!(n+1)) = (n+1)n!(n+2) = (n+2)!$$

Par récurrence double, $u_n = n!$ pour tout $n \in \mathbb{N}$.

Solution 4

On raisonne par l'absurde. Supposons que $\sqrt{n^2+1}$ soit un entier. Il existe donc $k \in \mathbb{N}^*$ tel que $\sqrt{n^2+1} = k$. Ainsi $n^2+1=k^2$ ou encore (k-n)(k+n)=1. Comme k et n sont deux entiers naturels, on a nécessairement k-n=k+n=1. Notamment

$$2n = (k + n) - (k - n) = 1 - 1 = 0$$

et donc n = 0, ce qui contredit l'énoncé. Ainsi $\sqrt{n^2 + 1}$ n'est pas un entier.

Solution 5

- 1. D'après l'énoncé, $f(0)^2 = f(0)$ donc $f(0) \in \{0, 1\}$. De plus, f(0)f(1) = f(0) + 1 donc on ne peut avoir f(0) = 0. Ainsi f(0) = 1.
- **2.** Pour tout $x \in \mathbb{R}$

$$f(x)f(0) = f(0) + x + 0$$

donc

$$f(x) = x + 1$$

3. Réciproquement, si f(x) = x + 1 pour tout $x \in \mathbb{R}$,

$$f(x)f(y) = (x+1)(y+1) = xy + 1 + x + y = f(xy) + x + y$$

On en déduit que l'unique fonction $f: \mathbb{R} \to \mathbb{R}$ telle que

$$\forall (x, y) \in \mathbb{R}^2, \ f(x)f(y) = f(xy) + x + y$$

est la fonction $x \mapsto x + 1$.

Solution 6

1. Soit $(x, y) \in (\mathbb{R}_+)^2$. Remarquons que

$$d_2(x,y) = \left| \frac{y-x}{(x+1)(y+1)} \right| = \frac{|y-x|}{(x+1)(y+1)}$$

Ainsi il est clair que $d_2(x, y) = 0$ si et seulement si x = y.

2. Soit $(x, y, z) \in (\mathbb{R}_+)^3$. Posons

$$X = \frac{x}{x+1}$$

$$Y = \frac{y}{y+1}$$

$$Z = \frac{z}{z+1}$$

Puisque X - Z = X - Y + Y - Z, d'après l'inégalité triangulaire,

$$|X - Z| \le |X - Y| + |Y - Z|$$

c'est-à-dire

$$d_2(x,z) < d_2(x,y) + d_2(y,z)$$

3. Soit $(x, y) \in (\mathbb{R}_+)^2$. On rappelle que

$$d_2(x,y) = \frac{|y-x|}{(x+1)(y+1)} = \frac{d_1(x,y)}{(1+x)(1+y)}$$

Or $x \ge 0$ et $y \ge 0$ donc $1 + x \ge 1$ et $1 + y \ge 1$. Par conséquent, $(1 + x)(1 + y) \ge 1$ donc

$$d_2(x, y) \le d_1(x, y)$$

4. Raisonnons par l'absurde en supposant l'existence d'un tel λ . Notamment, pour tout $x \in \mathbb{R}_+$,

$$d_1(x,0) \le \lambda d_2(x,0)$$

c'est-à-dire

$$x \le \lambda \frac{x}{x+1}$$

Notamment, pour tout $x \in \mathbb{R}_+^*$

$$\lambda \ge x + 1$$

ce qui est évidemment absurde. Il n'existe donc pas de réel λ tel que

$$\forall (x, y) \in (\mathbb{R}_+)^2, \ d_1(x, y) \leq \lambda d_2(x, y)$$

Solution 7

On raisonne par équivalence.

$$(1-\lambda)\sqrt{x}+\lambda\sqrt{y}\leq\sqrt{(1-\lambda)x+\lambda y}$$
 \iff
$$\left[(1-\lambda)\sqrt{x}+\lambda\sqrt{y}\right]^2\leq(1-\lambda)x+\lambda y \qquad \text{car tous les membres de l'inégalité précédente sont positifs}$$
 \iff
$$(1-\lambda)^2x+\lambda^2y+2(1-\lambda)\lambda\sqrt{x}\sqrt{y}\leq(1-\lambda)x+\lambda y$$
 \Leftrightarrow
$$0\leq\left[(1-\lambda)-(1-\lambda)^2\right]x+\left[\lambda-\lambda^2\right]y-2\lambda(1-\lambda)\sqrt{x}\sqrt{y}$$
 \Leftrightarrow
$$0\leq\lambda(1-\lambda)x+\lambda(1-\lambda)y-2\lambda(1-\lambda)\sqrt{x}\sqrt{y}$$
 \Leftrightarrow
$$0\leq\lambda(1-\lambda)\left[x+y-2\sqrt{x}\sqrt{y}\right]$$
 \Leftrightarrow
$$0\leq\lambda(1-\lambda)(\sqrt{x}-\sqrt{y})^2$$

La dernière inégalité est vraie car $\lambda \ge 0$ et $1 - \lambda \ge 0$ donc la première l'est également par équivalence.

Solution 8

1.

$$\begin{split} A \setminus (B \cap C) &= A \cap \overline{B \cap C} \\ &= A \cap (\overline{B} \cup \overline{C}) \\ &= (A \cap \overline{B}) \cup (A \cap \overline{C}) \qquad \text{par distributivit\'e de l'intersection sur l'union} \\ &= (A \setminus B) \cup (A \setminus C) \end{split}$$

2. D'une part,

$$A \setminus (B \cup C) = A \cap \overline{B \cup C}$$
$$= A \cap \overline{B} \cap \overline{C}$$

D'autre part,

$$(A \setminus B) \cap (A \setminus C) = (A \cap \overline{B}) \cap (A \cap \overline{C})$$
$$= (A \cap A) \cap \overline{B} \cap \overline{C}$$
$$= A \cap \overline{B} \cap \overline{C}$$

Ainsi $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

3. D'une part,

$$A \cap (B \setminus C) = A \cap B \cap \overline{C}$$

D'autre part,

$$(A \cap B) \setminus (A \cap C) = A \cap B \cap \overline{A \cap C}$$

$$= A \cap B \cap (\overline{A} \cup \overline{C})$$

$$= (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) \qquad \text{par distributivit\'e de l'union sur l'intersectuion}$$

$$= \emptyset \cup (A \cap B \cap \overline{C}) \qquad \text{car } A \cap \overline{A} = \emptyset$$

$$= A \cap B \cap \overline{C}$$

Ainsi $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

4. Si on prend A = B = C,

$$A \cup (B \setminus C) = A \cup \emptyset = A$$
$$(A \cup B) \setminus (A \cup C) = A \setminus A = \emptyset$$

Notamment, si A est non vide (ce qui est possible dès que E est non vide), $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$.