Définition et propriétés Une relation qui permet de « classifier » : la relation d'équivalence Une relation qui permet de « comparer » : la relation d'ordre

R1.06 - Mathématiques discrètes Cours 4 - Relation binaire sur *E*

A. Ridard

A propos de ce document

- Pour naviguer dans le document, vous pouvez utiliser :
 - le menu (en haut à gauche)
 - l'icône en dessous du logo IUT
 - les différents liens
- Pour signaler une erreur, vous pouvez envoyer un message à l'adresse suivante : anthony.ridard@univ-ubs.fr

Plan du cours

Définition et propriétés

2 Une relation qui permet de « classifier » : la relation d'équivalence

3 Une relation qui permet de « comparer » : la relation d'ordre

On considère E un ensemble.

- Définition et propriétés
- 2 Une relation qui permet de « classifier » : la relation d'équivalence
- 3 Une relation qui permet de « comparer » : la relation d'ordre

Définition et propriétés Une relation qui permet de « classifier » : la relation d'équivalence Une relation qui permet de « comparer » : la relation d'ordre

Définition (relation binaire sur E)

Une relation binaire sur E est une relation binaire de E vers E.

- Diagramme sagittal

On considère la relation binaire sur $E=\{1,2,3,4\}$ définie par $U=\{(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3)\}.$

Diagramme sagittal

Lorsque les ensembles au départ et à l'arrivée coïncident, on préfère la représentation sous forme de « graphe a » :

Vannes Lie Eretagne Sad

a. On y reviendra dans un prochain module, mais on peut déjà parler de sommets pour les éléments de E et d'arcs pour les couples de U

Dans la suite de cette section $1,\,\mathscr{R}$ désigne une relation binaire sur E .

Définition (réflexivité, symétrie, antisymétrie et transitivité)

- \mathscr{R} est réflexive lorsque : $\forall x \in E, x \mathscr{R} x$
- \mathscr{R} est symétrique lorsque : $\forall x, y \in E, x \mathscr{R} y \Longrightarrow y \mathscr{R} x$
- \mathscr{R} est antisymétrique lorsque $\forall x, y \in E, (x \mathscr{R} y \text{ et } y \mathscr{R} x) \Longrightarrow x = y$
- \mathscr{R} est transitive lorsque $\forall x, y, z \in E$, $(x \mathscr{R} y \text{ et } y \mathscr{R} z) \Longrightarrow x \mathscr{R} z$

Seule l'égalité vérifie ces quatre propriétés

Propriété (caractérisation par le « graphe »)

- R est réflexive si et seulement si chaque sommet possède une boucle
- R est symétrique si et seulement si chaque arc est à double sens
- R est antisymétrique si et seulement si aucun arc n'est à double sens (excepté les boucles éventuelles)
- ullet est transitive si et seulement si pour chaque couple d'arcs adjacents, le
 - « raccourci » est un arc du graphe

L'antisymétrie n'est pas la négation de la symétrie.

- Donner un exemple de relation symétrique et antisymétrique
- Donner un exemple de relation ni symétrique, ni antisymétrique

Modifier (le moins possible) la relation ${\mathscr R}$ du début pour qu'elle soit (chaque cas est indépendant) :

- réflexivesymétriqueantisymétrique
 - transitive

- Définition et propriétés
- 2 Une relation qui permet de « classifier » : la relation d'équivalence
- 3 Une relation qui permet de « comparer » : la relation d'ordre

Définition (relation d'équivalence)

Une relation d'équivalence est une relation binaire réflexive, symétrique et transitive.

- Si $\mathscr R$ est une relation d'équivalence, on note souvent $x \sim y$ plutôt que $x \mathscr R y$
- Si $x \sim y$, on dit que x et y sont « équivalents »
- Une relation d'équivalence se comprend souvent comme une égalité « modulo » certains critères.
 - En réunissant entre eux les éléments équivalents, on définit le concept suivant.

Dans la suite de cette section 2, \sim désigne une relation d'équivalence sur E.

Définition (classe d'équivalence)

La classe d'équivalence d'un élément $x \in E$ est l'ensemble des éléments de E équivalents à x :

$$CI(x) = \{ y \in E \mid y \sim x \}$$

L'élément « privilégié » x qui permet de désigner sa classe d'équivalence est appelé un représentant de cette classe.

Propriété (partition)

Les classes d'équivalence forment une partition a de E.

a. Elles sont non vides, disjointes deux à deux et leur union est égale à E

Voici une relation d'équivalence et sa partition :

On considère la relation binaire sur ${\mathbb Z}$ définie par :

$$\forall m, n \in \mathbb{Z}, \ m \ \mathcal{R} \ n \Longleftrightarrow \exists k \in \mathbb{Z}, \ m - n = 3k$$

Montrer que \mathcal{R} est une relation d'équivalence a.

On note $\mathbb{Z}/3\mathbb{Z}$ l'ensemble des classes d'équivalence b :

$$\mathbb{Z}/3\mathbb{Z} = \left\{ \mathit{CI}(0), \mathit{CI}(1), \mathit{CI}(2) \right\} = \left\{ \overline{0}, \overline{1}, \overline{2} \right\}$$

- a. Il s'agit de la congruence modulo 3 que l'on note souvent : $m \equiv n \mod 3$ b. On choisit souvent le reste dans la division euclidienne par 3 comme représentant

- Définition et propriétés
- 2 Une relation qui permet de « classifier » : la relation d'équivalence
- 3 Une relation qui permet de « comparer » : la relation d'ordre

Définition (relation d'ordre)

Une relation d'ordre est une relation binaire réflexive, antisymétrique et transitive.

- La relation ≤ d'infériorité (au sens large) sur un ensemble de nombres est une relation d'ordre
- Si \mathscr{R} est une relation d'ordre, on note souvent $x \leq y$ plutôt que $x \mathscr{R} y$
- Si $x \le y$, on dit que x est « plus petit que » y ou que y est « plus grand que » x

Définition (diagramme de Hasse)

Un diagramme de Hasse est un « graphe allégé » spécifique aux relations d'ordre :

- les sommets sont positionnés du plus petit au plus grand a
- les boucles sont omises (sous-entendues par réflexivité)
- les raccourcis sont omis (sous-entendus par transitivité)
- a de la gauche vers la droite ou de bas en haut

On considère $E = \{a, b, c\}$ et \mathcal{R} la relation binaire sur $\mathscr{P}(E)$ définie par :

$$\forall A, B \in \mathcal{P}(E), A \mathcal{R} B \iff A \subset B$$

- Montrer que R est une relation d'ordre.
- Représenter son diagramme de Hasse (de bas en haut).

Dans la suite de cette section 3, \leq désigne une relation d'ordre sur E^{1} .

Définition (ordre total/partiel)

L'ordre est total si tous les éléments de E sont « comparables » deux à deux :

$$\forall x, y \in E, x \leq y \text{ ou } y \leq x$$

Sinon, l'ordre n'est que partiel.

- La relation ≤ d'infériorité (au sens large) sur un ensemble de nombres est un ordre total
- La relation \subset d'inclusion (au sens large) sur $\mathscr{P}(E)$ n'est qu'un ordre partiel

On considère enfin une partie A de E.

Définition (maximum)

S'il existe, le maximum de A est l'élément de A plus grand que tous les autres :

$$\max(A) \in A$$
 et $\forall x \in A, x \leq \max(A)$

- On parle aussi du plus grand élément de A
- On définit de manière analogue, s'il existe, le minimum (ou le plus petit élément) de A que l'on note min(A)
- un extremum est un maximum ou un minimum

Démontrer l'unicité du maximum de A.

Définition (majorant)

Un élément $M \in E$ est un majorant de A s'il est plus grand que tous les éléments de A:

$$\forall x \in A, x \leq M$$

- On définit de manière analogue un minorant de A
- S'il existe, le maximum de A est un majorant de A

Définition (borne supérieure)

Si elle existe ^a, la borne supérieure de A est le plus petit des majorants de A :

$$\sup(A) = \min(\{M \in E \mid \forall x \in A, \ x \le M\})$$

a. Elle est définie comme le minimum d'une partie

- On définit de manière analogue, si elle existe, la borne inférieure de A que l'on note inf(A)
- Si le maximum de A existe, la borne supérieure de A aussi et les deux coïncident
- Si la borne supérieure de A existe et si elle est dans A, le maximum de A existe aussi et les deux coïncident

Définition (élément maximal)

Un élément $M' \in A$ est maximal dans A s'il n'existe pas d'élément dans A plus grand que lui :

$$\forall x \in A, M' \leq x \Longrightarrow x = M'$$

- On définit de manière analogue un élément minimal dans A
- S'il existe, le maximum de A est maximal dans A
- Lorsque l'ordre est total, un élément maximal dans A est le maximum de A

On reprend la relation d'inclusion sur $\mathcal{P}(E)$ avec $E = \{a, b, c\}$.

- 4 L'ensemble $\mathcal{P}(E)$ admet-il un maximum (resp. minimum)?
- On considère $A = \mathcal{P}(E) \setminus \{E\}$.
 - La partie A admet-elle un minimum?
 - 2 La partie A admet-elle un maximum?
 - Superior la partie A admet-elle une borne supérieure?
 - 4 La partie A admet-elle des éléments maximaux?
- - La partie B admet-elle un minimum?
 - 2 La partie B admet-elle un maximum?
 - 6 La partie B admet-elle une borne supérieure?
 - 4 La partie B admet-elle des éléments maximaux?

