Probabilidad y Estadística (C)

Primer Parcial - Tema 03

23 de mayo de 2023

E_1	E_2	E_3	E_4	E_5	E_6	E ₇	E_8	E_9	Calificación
10	10	10	10	10	10	10	10	20	100

NOMBRE Y APELLIDO: Padro Fuentes Unfun

LIBRETA:

- Tiene cuatro horas para realizar el examen.
- En los ejercicios E_1 a E_8 , debe rodear/marcar con claridad la opción que considere correcta. Evitar redondeos en cuentas intermedias. Redondear al final y considerar 4 posiciones decimales. Estos ejercicios valen 10 puntos
- El ejercicio E_9 debe resolverse en hoja aparte y vale 20 puntos.
- Para aprobar, se requiere un mínimo de 60 puntos.

1. Ejercicio E_1 :

Una urna contiene 9 bolas rojas, 10 azules, 8 verdes y 5 negras. Se eligen tres bolas al azar. ¿Cuál es la probabilidad de que todas sean del mismo color si se las selecciona con reposición?

0.0722

ъ. 0.3891

d. 0.3534

2. Ejercicio E2:

Se estima que el 16% de cierta población padece una enfermedad viral. Cierto test para detectar la enfermedad, se sabe que resulta negativo en el 23% de los casos. Sin embargo, este porcentaje cambia cuando se testea a la población de verdaderos enfermos con el virus: al 18.75% de la población que padece la enfermedad viral, el test para detectarla le resulta negativo. Si un paciente adulto elegido al azar recibe un test negativo para la enfermedad, ¿cuál es la probabilidad de que realmente la padezca?

a. 0.039

c. 0.5652

d. 0.1688

3. Ejercicio E_3 :

Se tienen dos dados: uno cargado, en el que los números impares tienen probabilidad 0.24 de salir cada uno, y uno equilibrado. Se lanza una moneda normal: si sale cara, se elige el dado cargado y si sale ceca, el equilibrado. Luego, se arroja el dado 9 veces de forma independiente. Indicar el valor de la probabilidad de obtener impar en 7 lanzamientos.

0.1767

b. 0.0352

c. 0.2831

d. 0.8723

4. Ejercicio E_4 :

En la producción de cierto tipo de tela, el número de defectos por metro (Y) es una variable aleatoria que puede asumirse que se distribuye como una Poisson de parámetro 12. La ganancia del fabricante (en unidades monetarias por metro de tela) puede suponerse dada por $X = 296 - 2Y - Y^2$. Indicar cuál de los siguientes resultados corresponde a la ganancia esperada.

a. 296

c. 476

d. 248

Ejercicio E₅:

Sea X una variable aleatoria con función de densidad

$$f_X(x) = \frac{27k}{(x+3)^5}$$
, para $x \ge 0$.

Indicar el valor que corresponde a k.

6. Ejercicio E_6 :

Los colectivos de la línea 19 salen de la cabecera en intervalos de 12 minutos a partir de las 7:00 am. Si un pasajero llega a la parada de cabecera a una hora uniformemente distribuida entre las 7:00 am y las 7:24 am, indicar el valor que corresponde a la probabilidad de que deba esperar menos de 4 minutos el colectivo.

a. $\frac{2}{12}$

b. $\frac{1}{12}$

- $\bigcirc \frac{1}{3}$
- d. $\frac{1}{36}$

7. Ejercicio E_7 :

Sea Y una variable aleatoria con función de densidad

$$f_Y(y) = \frac{2}{3}ye^{-y^2/3}$$
, para $y \ge 0$.

Indicar el valor que corresponde al percentil 76 de la variable $X = Y^2$.

- a. 0.8233
- 6 4.2813
- c. 0.9074
- d. 2.0691

8. Ejercicio E₈:

Sea (X,Y) el vector aleatorio con función de densidad conjunta

$$f_{XY}(x,y) = 4(1-(x+y)^2)$$
, para $0 \le x \le 1, 0 \le y \le 1, 0 \le x+y \le 1$.

Indicar el valor que corresponde a P(X + Y < 0.63).

- 0.6363
- b. 0.3969
- c. 0.1575
- d. 0.5838

9. Ejercicio E_9 :

Diariamente, una empresa hormigonera produce una cierta variedad de cemento (en bolsas) cuyo peso, en kg, es una v.a. con media $\mu=10.05$ y varianza $\sigma^2=0.45$. Para todo lo que sigue, suponer que todas las variables involucradas en esta situación son i.i.d. Usar el Teorema Central del Límite para calcular cuántas unidades, como mínimo, deberán producirse un día cualquiera de la semana si se quiere satisfacer un pedido de al menos 3031 kg con probabilidad aproximada mayor que 0.9812.

Este ejercicio debe desarrollarse en hoja aparte y se califica con dos criterios: 1) la correcta definición de variables, eventos, supuestos que deben hacerse y resultados que se utilizan para su resolución, 2) la correcta resolución del ejercicio.

Resumen de distribuciones

	$p_X(x) \circ f_X(x)$	$\mathbb{E}(X)$	$\mathbb{V}(X)$
$X \sim \mathcal{B}(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
$X \sim \mathcal{G}(p)$	$(1-p)^{x-1}p$	1/p	$(1-p)/p^2$
$X \sim \mathcal{BN}(r,p)$	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	r/p	$r(1-p)/p^2$
$X \sim \mathcal{P}(\lambda)$	$(\lambda^x e^{-\lambda})/x!$	λ.,	λ
$X \sim \mathcal{H}(N, D, n)$	$\binom{D}{x}\binom{N-D}{n-x}/\binom{N}{n}$	nD N	$\frac{nD(N-D)(N-n)}{N^2(N-1)}$
$X \sim \mathcal{U}(a,b)$	1/(b-a)	(a + b)/2	$(b-a)^2/12$
$X \sim \mathcal{E}(\lambda)$	$\lambda e^{-\lambda x}$	1/λ	$1/\lambda^2$
$X \sim \Gamma(\nu, \lambda)$	$\frac{\lambda^{\nu}}{\Gamma(\nu)}x^{\nu-1}e^{-\lambda x}$	ν/λ	ν/λ^2
$X \sim \mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2

