Mathématiques 1 Logique des propositions

Institut Paul Lambin

16 septembre 2021

Introduction

Qu'est-ce que la logique?

- Selon Ambrose dans son dictionnaire du diable :
 "La logique est l'art de penser et de raisonner en stricte conformité avec les limites et les incapacités de l'incompréhension humaine."
- Selon le grand mathématicien Russel :
 "La logique est le sujet à propos duquel personne ne sait de quoi on parle, ni si ce que l'on dit est vrai."
- → Pas évident de définir ce qu'est la logique!

Introduction

Logique : Science du raisonnement

Un de ses principaux objectif : définir, expliciter la notion de preuve.

Prouver une affirmation : démontrer qu'elle est vraie.

Propositions : valeurs de vérité

Proposition logique : Ne peut avoir qu'une et seule valeur de vérité :

soit vrai (1) soit faux (0).

Logique : recherche de la valeur de vérité pas du sens

 \rightarrow sinon risque de paradoxe!

Propositions : exemples de paradoxe

1) Paradoxe de Berry:

Berry définit "Le plus petit entier naturel non descriptible par une expression de quinze mots ou moins."

- → Cette définition décrit cet entier entier et fait quinze mots!
- → Contradiction avec la définition.
- → Être descriptible est une notion mal définie et donc on arrive à un paradoxe.
- 2) Soit P la phrase "Cette phrase est fausse."
 - \rightarrow Si P vraie alors P fausse!
 - \rightarrow Si P fausse alors P vraie!
 - → Contradiction
 - → Phrase ambiguë
 - Si P est après la phrase "1+1=3" alors P vraie
 - Si P est après la phrase "1+1=2" alors P fausse
 - Si pas de contexte → recherche de sens : "cette phrase" = P?
 - → Paradoxe
 - → Pas une proposition

Variables et connecteurs

Soient des **propositions élémentaires** p, p_1 , p_2 , q, r, ... (ou variables propositionnelles)

Comment construire de nouvelles propositions à partir de celles-ci?

- → 3 connecteurs de propositions à notre disposition :
 - la négation (connecteur unaire)
 - la conjonction (connecteur binaire)
 - la disjonction (connecteur binaire)

La négation : $\neg p$, not p,! p, \overline{p}

- Négation d'une proposition p : connecteur unaire (à un argument) noté ¬p.
- Valeur de vérité : $\neg p$ est $\begin{cases} vraie & \text{si} \quad p \text{ est fausse} \\ fausse & \text{si} \quad p \text{ est vraie} \end{cases}$
- Représentée généralement par le tableau :

р	¬ <i>p</i>		р	¬ <i>p</i>
faux	vrai	ou encore	0	1
vrai	faux		1	0

 \rightarrow table de vérité de la proposition $\neg p$.

La conjonction : $p \land q$, p and q, p & q, p * q

- Conjonction de proposition p et q : connecteur binaire noté $p \wedge q$.
- Valeur de vérité : $p \land q$ est **vraie** uniquement si p est **vraie** et q est **vraie**.
- Représentée généralement par le tableau :

р	q	$p \wedge q$		р
faux	faux	faux		0
faux	vrai	faux	ou encore	0
vrai	faux	faux		1
vrai	vrai	vrai		1

 \rightarrow table de vérité de la proposition $p \land q$.

 $p \wedge q$

 $\frac{q}{0}$

0

La disjonction : $p \lor q$, $p \circ r q$, $p \mid q$, p+q

- Disjonction de proposition p et q: connecteur binaire noté $p \vee q$.
- Valeur de vérité : p ∨ q est vraie si p est vraie ou q est vraie (ou les 2 sont vraies)
- Représentée généralement par le tableau :

р	q	$p \lor q$		р	q	pV
faux	faux	faux		0	0	0
faux	vrai	vrai	ou encore	0	1	1
vrai	faux	vrai		1	0	1
vrai	vrai	vrai		1	1	1

 \rightarrow table de vérité de la proposition $p \lor q$.

L'île de Puropira

Dans ce chapitre nous aurons plusieurs fois affaire avec les habitants de l'île de Puropira.

Il y a deux sortes d'habitant sur cette île :

- les Purs qui disent toujours la vérité
- les Pires qui mentent toujours

Exemple:

Si un habitant de cet île vous dit "la soleil tourne autour de la terre"

 \rightarrow Ce ne peut-être qu'un Pire car cette phrase est fausse.

Table de vérité

Permet d'établir la valeur de vérité d'une proposition en fonction des valeurs de vérités des propositions élémentaires qu'elle contient.

Exemple : table de vérité de la négation et de la conjonction

$\neg q$
1
0

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

On remarque:

- Négation : 1 proposition élémentaire et 2 lignes dans la table
- Conjonction : 2 propositions élémentaire et 4 lignes dans la table
- Passage d'une à deux variables élémentaires : chaque valeur de vérité de p (en bleu et violet) associée à toutes les valeurs de vérité de q (en rouge et vert)

Table de vérité

Proposition éléméntaire : Deux valeurs de vérité possible (0 ou 1).

ightarrow ajout d'une proposition élémentaire double le nombre de lignes.

Proposition avec n propositions élémentaires différentes \rightarrow table de vérité de 2^n lignes

Exemple : table de vérité de $p \lor q \lor r$:

р	q	r	$p \lor q \lor r$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

: 3 propositions élémentaires $\rightarrow 2^3 = 8$ lignes.

Double négation

Dire "Il n'est pas vrai que je n'ai pas raison" revient à dire "j'ai raison".

 \rightarrow une double négation est équivalent à pas de négation.

$$\rightarrow \boxed{\neg \neg p \equiv p}$$

Idempotence

Dire

- "Tu mets la table ou tu mets la table" revient à dire "Tu mets la table".
- "Tu fais tes devoirs et tu fais tes devoirs" revient à dire "Tu fais des devoirs"

Autrement dit

$$p \lor p \equiv p$$
 et $p \land p \equiv p$

Commutativité

Dire

- "Tu vas au cinéma ou à la piscine" est équivalent à "Tu vas à la piscine ou au cinéma".
- "Tu range ta chambre et tu fais tes devoirs" revient à dire "Tu fais des devoirs et tu ranges ta chambre"."

Autrement dit

$$p \lor q \equiv q \lor p$$
 et $p \land q \equiv q \land p$

Associativité

Quand on a plusieurs conjonctions ou plusieurs disjonctions consécutives on peut les faire dans n'importe quel ordre :

$$p \lor q \lor r \equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$$
et
$$p \land q \land r \equiv (p \land q) \land r \equiv p \land (q \land r)$$

Distributivité

On peut distribuer la multiplication sur l'addition : $a \cdot (b+c) = a \cdot b + a \cdot c$.

- \rightarrow même propriété avec les connecteurs.
 - 1) Distributivité de la conjonction :

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

Exemple:

"Tu rangeras ta chambre et tu feras la lessive ou la vaisselle" revient à dire "Tu rangeras ta chambre et tu feras la lessive ou tu rangeras ta chambre et tu feras la vaisselle."

Distributivité de la disjonction :

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

Distributivité pas très intuitive.

Lois de Morgan : Négation de la conjonction

Une maman dit à son fils :

"Si tu as rangé rangé ta chambre et fais tes devoirs, tu pourras aller au cinéma" Le fils n'a pas pu aller au cinéma.

- → la condition du si n'a pas été vérifiée
- → le fils n'a pas "ranger sa chambre et fait ses devoirs"
- ightarrow soit il n'a pas rangé sa chambre soit il n'a pas fait ses devoirs (ou aucun des deux).
- → La négation du et (de la conjonction) est le ou (la disjonction) des négations des arguments du et.

Autrement dit

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Lois de Morgan : Négation de la disjonction

Le fils n'a pas pu aller au cinéma.

Une maman dit à son fils :

"Si tu as rangé rangé ta chambre ou fais tes devoirs, tu pourras aller au cinéma"

- → la condition du si n'a pas été vérifiée
- → le fils n'a pas "ranger sa chambre ou fait ses devoirs"
- → il n'a ni rangé sa chambre ni fait ses devoirs.
- → La négation du ou (de la disjonction) est le et (la conjonction) des négations des arguments du ou.

Autrement dit

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Absorption

- 1) Valeur 0 absorbante pour $\wedge : 0 \wedge p$ a toujours 0 comme valeur de vérité.
 - \rightarrow Pour évaluer une expression de la forme $\boxed{condition_1 \land condition_2}$, l'évaluation de $condition_2$ n'est utile que si l'évaluation de $condition_1$ a donné 1.
- 2) Valeur 1 absorbante pour \vee : 1 \vee p a toujours 1 comme valeur de vérité.
 - \rightarrow Pour évaluer une expression de la forme condition₁ \lor condition₂, l'évaluation de condition₂ n'est utile que si l'évaluation de condition₁ a donné 0.

Certains langages de programmation permettent de forcer l'évaluation courte.

- → Java le permet via l'utilisation des opérateurs conditionnels | | et &&.
- → Augmentation de l'efficacité mais perte de la commutativité.

Priorité, neutralité et complémentarité

- Prioirité: Pas de priorité naturelle entre ∧ et ∨ :
 Les écritures p ∧ q ∨ r et p ∨ q ∧ r ambiguës → interdite
 → utilisation de parenthèses.
- 2) Complémentarité : un proposition n'a qu'une seule valeur de vérité :
 - p∨¬p a toujours 1 comme valeur de vérité (une proposition est toujours soit vraie soit fausse)
 - p ∧ ¬p a toujours 0 comme valeur de vérité (une proposition ne peut jamais être vraie et fausse en même temps)
- 3) Neutralité:
 - 0 est **neutre** pour \vee : $0 \vee p \equiv p$;
 - 1 est neutre pour \wedge : $1 \wedge p \equiv p$.

Propriété des connecteurs : Tableau récapitulatif

Double négation	$\neg\neg p \equiv p$
Idempotence	$p \wedge p \equiv p$
lucinpotenee	$ \rho \lor \rho \equiv \rho $
Commutativité	$p \wedge q \equiv q \wedge p$
Commutativite	$p \lor q \equiv q \lor p$
Associativité	$p \land q \land r \equiv (p \land q) \land r \equiv p \land (q \land r)$
Associativite	$p \lor q \lor r \equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributivité	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Distributivite	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Lois de Morgan	$ eg(p \land q) \equiv eg p \lor eg q$
Lois de Morgan	$\neg (p \lor q) \equiv \neg p \land \neg q$
Absorption	$0 \wedge p \equiv 0$
Absorption	$1 \lor p \equiv 1$
Neutralité	$1 \wedge p \equiv p$
redutante	$0 \lor p \equiv p$
Complémentarité	$p \land \neg p \equiv 0$
Complementarite	$p \lor \neg p \equiv 1$

Notations électronicienne

Notation électronicienne \rightarrow Notations additive et multiplicative

Connecteurs	Notation classique	Notation électronicienne
Négation	$\neg p$	$\overline{\rho}$
Conjonction	<i>p</i> ∧ <i>q</i>	<i>p</i> * <i>q</i> ou <i>p q</i>
Disjonction	$p \lor q$	p+q

Remarques:

- 1) Avec les nombres : * prioritaire sur +
 - → Avec les proposition aussi!
 - → Conjonction prioritaire sur la disjonction : p+q*r correspond à $p\lor(q\land r)$.
- 2) Les coefficients et les exposants n'ont pas de sens avec les propositions :

Correct	Incorrect
1+1=1	1>1<2
p+p=p	$p \Rightarrow p = 2p$
p*p=p	$p*p \leq p^2$

Notations électroniciennes : propriétés des connecteurs

Double négation	$\overline{\overline{p}} = p$
Idempotence	p*p=p
lucinpotence	p+p=p
Commutativité	p*q=q*p
Commutativite	p+q=q+p
Associativité	p*q*r = (p*q)*r = p*(q*r)
Associativite	p+q+r = (p+q)+r = p+(q+r)
Distributivité	p*(q+r) = (p*q) + (p*r)
Distributivite	p+(q*r)=(p+q)*(p+r)
Lois de Morgan	$\overline{p*q} = \overline{p} + \overline{q}$
Lois de Morgan	$\overline{p+q} = \overline{p} * \overline{q}$
Absorption	0*p=0
Absorption	1+p=1
Neutralité	1*p=p
reduante	0+p=p
Complémentarité	$p*\overline{p}=0$
Complementarite	$p + \overline{p} = 1$

L'implication : construction

Une maman dit à si son fils Luc "Si tu as fait tes devoirs alors tu pourras aller au cinéma".

Que peut-on déduire de cela?

- → Si Luc n'est pas allé au cinéma c'est qu'il n'a pas fait c'est devoir
- → Si Luc n'a pas fait c'est devoir et qu'il est allé au cinéma : contradiction?
- → NON car la proposition dit seulement ce qui doit se passer si Luc a fait ses devoirs
- → Elle ne dit rien sur ce qui doit se passer s'il n'a pas fait ses devoirs!
- → Seul cas qui contredirait la proposition : Luc a fait ses devoirs mais n'est pas allé au cinéma.

Si considère les 2 propositions

- p: "Luc a fait ses devoirs"
- q: "Luc peut aller au cinéma"

Alors la proposition de la maman se traduit par p implique q que l'on note $p \Rightarrow q$. Cette proposition est fausse uniquement si p est vraie et q est fausse

 \rightarrow fausse uniquement si $p \land \neg q$ est vraie

Conclusion : cette proposition est vraie uniquement si $\neg(p \land \neg q)$ est vraie!

L'implication : définition

- Implication d'une proposition q par une proposition p: noté $p \Rightarrow q$.
- Valeur de vérité : $p \Rightarrow q$ est vraie uniquement si $\neg (p \land \neg q)$ est vraie.
- Représentée généralement par le tableau :

p ⇒ q	q	р	
vrai	faux	faux	
vrai	vrai	faux	
faux	faux	vrai	
vrai	vrai	vrai	

ou encore $\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \end{array}$

 \rightarrow table de vérité de la proposition $p \Rightarrow q$.

L'implication : Remarques

- Appliquant la loi de Morgan on obtient $p\Rightarrow q\equiv \neg(p\wedge \neg\,q)\equiv \neg\,p\vee q$
- Le connecteur ⇒ n'est pas commutatif!
- L'opérande de gauche s'appelle antécédent.
- L'opérande de droite s'appelle conséquent.
- Une implication dont l'antécédent est faux est vraie!
- Une implication dont le conséquent est vrai est vraie!
- Le seul cas où une implication est fausse est celui où ...

l'antécédent est vrai et le conséquent faux.

L'implication : Lecture

Lorsque une implication $p \Rightarrow q$ est vraie, on dit que

- p est une condition suffisante de q (Il suffit que p soit vraie pour que q soit vraie)
- q est une condition nécessaire de p (Il est nécessaire que q soit vraie pour que p soit vraie autrement dit si q n'est pas vraie alors p ne peut pas être vraie)
- q est une conséquence logique de p

Attention! En logique, pas de notion de cause :

- \rightarrow Ce n'est pas parce que q est une conséquence de p que p est la cause de q.
- \rightarrow Si p est fausse alors l'implication est vraie quelque soit la valeur de q et donc aussi si q est vraie.
- $\rightarrow p \Rightarrow q$ n'implique pas que $q \Rightarrow p$

L'équivalence

- Équivalence de 2 propositions p et q: connecteur binaire noté $p \Leftrightarrow q$.
- Valeur de vérité : $p \Leftrightarrow q$ est **vraie** uniquement si $(p \Rightarrow q) \land (q \Rightarrow p)$ est **vraie**.
- Représentée généralement par le tableau :

р	q	p⇔q		р	q
faux	faux	vrai		0	0
faux	vrai	faux	ou encore	0	1
vrai	faux	faux		1	0
vrai	vrai	vrai		1	1

 \rightarrow table de vérité de la proposition $p \Leftrightarrow q$.

 $p \Leftrightarrow q$

L'équivalence : Remarques

- L'équivalence est un raccourci pour $(p \Rightarrow q) \land (q \Rightarrow p)$.
- Appliquant deux fois la définition de l'implication, l'équivalence se réécrit

$$p \Leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p).$$

- Deux propositions p et q sont équivalentes si et seulement si p implique q et q implique p.
- L'équivalence p ⇔ q se lit aussi p est la condition nécessaire et suffisante de q.
- Deux propositions équivalentes ont la même table de vérité!

La disjonction exclusive

La disjonction est le "ou" \rightarrow la disjonction exclusive est le "ou exclusif"

- Disjonction exclusive de 2 propositions p et q: connecteur noté $p \oplus q$.
- Valeur de vérité : $p \oplus q$ est **vraie** uniquement si $(p \land \neg q) \lor (\neg p \land q)$ est **vraie**.
- Représentée généralement par le tableau :

p	q	p⊕q	
faux	faux	faux	
faux	vrai	vrai	ou encore
vrai	faux	vrai	
vrai	vrai	faux	

$p \oplus q$	q	р
0	0	0
1	1	0
1	0	1
0	1	1

 \rightarrow table de vérité de la proposition $p \oplus q$.

Remarques:

- $p \oplus q$ est vraie si p est vraie ou q est vraie mais pas les 2 en même temps .
- La disjonction exclusive est la négation de l'équivalence : $p \oplus q \equiv \neg(p \Leftrightarrow q)$.

Tautologies

Une **tautologie** est une proposition (composée) dont la valeur de vérité est **Vrai**, quelles que soient les valeurs des propositions élémentaires qui la composent.

Exemple:

1. La proposition $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ est une tautologie. Voici sa table de vérité :

p	q	$\neg p$	$\neg q$	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$	$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	0	0	1	1	1

 \rightarrow Quelques soient les valeurs de vérité des propositions p et q, la proposition $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ est **vraie**.

Tautologies

- 2. autres exemples de tautologie :
 - $p \Rightarrow p$
 - p∨¬p
 - $(p \land (p \Rightarrow q)) \Rightarrow q$

Remarques:

- Les tautologies sont importantes : base du raisonnement logique car elles permettent de valider un raisonnement.
- La négation d'une tautologie, une proposition qui a toujours Faux comme valeur de vérité, est parfois appelée contradictoire.

Principe du tiers exclus

- Repose sur la tautologie p ∨ ¬p qui se traduit par
 "Une proposition ne peut pas être vraie et fausse en même temps."
- Souvent utilisé sous l'argument
 "si une proposition n'est pas fausse alors elle est vraie".
- Base de la technique de démonstration "par l'absurde" :
 - pour démontrer qu'une proposition est vraie on démontre qu'il est absurde qu'elle soit fausse.
- Ne fonctionne pas dans certaines logiques (certaines logiques intuitionnistes par exemple)

Modus Ponens

• Basé sur la tautologie $((p \Rightarrow q) \land p) \Rightarrow q$.

 Se traduit par "Si une implication est vraie et si son antécédent est vrai alors son conséquent est vrai aussi."

Utilisée en permanence dans les démonstrations mathématiques.

Démonstrations : Définition

- Un théorème est une proposition de la forme $p \Rightarrow q$. Où
 - p est appelé l'hypothèse
 - q est appelé la thèse

- La démonstration ou la preuve d'un théorème consiste à montrer que cette implication est vraie.
 - C'est-à-dire montrer que si p est vraie alors q est vraie.

Démonstrations : Exemple

On veut montrer l'implication suivante : $((p \land q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

 \rightarrow montrer que si $(p \land q) \Rightarrow r$ est vraie alors $p \Rightarrow (q \Rightarrow r)$ est vraie.

Démonstration:

- 1. Supposons que $(p \land q) \Rightarrow r$ est vraie et démontrons alors que si p est vraie alors $q \Rightarrow r$ est vraie.
- 2. Supposons que *p* est vraie et démontrons que si *q* est vraie alors *r* est vraie.
- 3. Supposons que q est vraie :
 - a) Par hypothèse p et q sont vraies donc $p \land q$ est vraie.
 - b) Comme $p \land q$ et $(p \land q) \Rightarrow r$ sont vraies alors par le modus ponens r est vraie.