PRIST DEEMED UNIVERSITY-ONLINE EXAMINATIONS-2020

24.08.2020AN_17148C31C/ 17148S31C/171EIC31/16148S31/161MCS31/ 171MCC31C/16148C31/16148S31 _Transform and Partial Differential Equations

Email address *
REGISTER NUMBER *
17148C31C/ 17148S31C/171EIC31/16148S31/161MCS31/ 171MCC31C/16148C31/16148S31 _Transform and Partial Differential Equations
Common to EEE, EIE, BIOTECH, MECHATRONICS, CSE, MECHANICAL, IT, ECE, CIVIL - II YEAR III SEM
The differential equation of all spheres whose radii are the same then arbitrary constant is 3 4 1

If z = ax + by + c the p =1 A PDE is said the _____ if the dependent variable and the partial derivatives occur in the first degree only and separately. Linear Non Linear Constant Complete Let y(0, t) = 0 for all $t \ge 0$ is the condition Boundary Functional Arbitrary String A function f(x) is said to be _____ if and only if f(x+p) = f(x) is true for some

value of p and every value of x.

Fourier

Series

○ Total

Periodic

 $Z\{ax(n) + by(n) = a Z\{x(n)\} + bZ\{y(n)\}$ then Z - transform is ______

Linear

Additional

O Non Linear

Equality

If
$$f(z) = \frac{2z}{z - e^{-T}}$$
 then $f(0)$ is _____

2

0 -

 \circ

0 1

Let z = f(x+y) then arbitrary function is ____

O 2	
O 0	
○ 3	
x sin nx is function	
○ Transcendental	
Even	
O Fourier	
Odd	
$\underline{f}(x)$ be a function defined on $(0,1)$. Suppose $f(x)$ is sectionally continuous, then the finite Fourier transform of $f(x)$ is a function defind as $\overline{F}_{S}[f(x)]$ of infinite finite sine	
○ cos	
The pdf of a vibrating string is $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ then α^2 is	

J 111/1

Tx/m

◯ Ty/m

 $e^{\frac{-x^2}{2}}$ is ____ under Fourier cosine transform

- Inverse
- Self-reciprocal
- Real Part
- Imaginary part

1 = A(n+1) + B the A is _____

0

0

Ø 2

 \bigcirc

 $f(0) = \lim_{z \to \infty} F(z)$ is the _____ theorem

- O Value
- Initial

○ Final	
Boundary	
A solution which contains as many arbitrary constants as there are independent variables is called integral	
Minimum	
O Partial	
○ Maximum	
Complete	
$sinx = sin(x + 2\pi) = sin(x + 4\pi) = \cdots$ so $sinx$ is a period function with the period 2π is called periodic function Oran Transcendental Oran Sinusoidal Oran Position Primitive	
PDE can be obtained by eliminating functions from a given relation between the dependent and independent variables.	
Ordinary	
O Differentially	
Partically	

The power full method of obtaining particular solutions of a pde is known as separation of _____ or product methods.

- Integer
- Coordinates
- Variable
- Values

The _____ of two functions f(x) and g(x) is defined as (f*g)(x)

- Fourier
- Convolution
- Production
- Multiply

F[af(x) + bg(x)] = aF[f(x)+bF(g(x)]is _____ property

- Linear
- Singular
- Scale
- Modulation

Z transform of (n+2) is _ z/pow(z-1) + 2. z/(z-1) \bigcirc 1/z+2 + z/z-1 a/z+2 +3 z/z-1 Z/z+1 + z/z-1 α^2 is used in the heat equation because α^2 is _____ Null Negative Positive O Zero If z = ax + by +cz +d = 0 then Independent variables is _____

___ transforms are used to in the solution of partial differential equations.

0	Partical
---	----------

Integral

OFourier

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ is } _type$$

Parabolic

() float

Hyperbolic

Elliptic

If $f(-x) = \underline{\hspace{1cm}}$ then f(x) is said to be odd function

0

 \bigcirc

(x)

-f(x)

____ conditions is the function is periodic , single-valued and finite

Normal
O Fourier
O Interval
Let $Z\left[\frac{a^n}{n}\right]$ is
● Log[z/z-a]
O Log[1/z-a]
O Log[z/a-z]
O Log[a/z-a]
Partial differential equations arise in connection with several physical and engineering problems in which the functions involved depend on two or more variables such as time and coordinates in space. Dependent Independent Partial Dimension
One dimensional heat equation with the and boundary conditions
O Initial
A Temperature

· remperature
○ Thermal
○ Time
Let $B^2 - 4AC = -4$ then the equation is
○ Elliptic
O Hyperolic
○ Transform
Parabolic
The order of a pdf is the order of the partial differential coefficient in it.
Dependent
Highest
○ Lowest
○ Least
The integral in the right hand side is known as Fourier integral theorem,
O Fourier
Partial
Single
_ ··

ODouble
The hand limit of $f(x)$ at $x = a$ then it is denoted as $f(a+)$
○ Finte
Continuity
○ Left
Right
cosu(t-x) is
Cosut cost ux - sinut sinux
sinut cost ux + cosut sinux
osut sint ux + sinut cosux
osut cost ux + sinut sinux
The rate at which heat flows across any area is proportional to the area and to the temp gradient normal to the curve. This constant of proportionality is known as the conductivity(k)
Thermal
○ Head
○ String
○ Tempeature

If $f(x) - \frac{1}{2}(\pi - x)$ in the interval $(0, 2\pi)$ then a_0 is _____

-) 4
- **0 0**
- 0
- \bigcirc

$$sin^3\theta =$$

 $\frac{1}{3}[3\sin\theta - \sin 3\theta]$

 $\frac{1}{2}\left[3\sin\theta-\sin3\theta\right]$

Option 3

Option 2

 $3\sin\theta - \cos\theta$

 $\frac{1}{4}[3\sin\theta - \sin 3\theta]$

The Half range fourier cosine series for $f(x)=x\sin x$ in the interval 0 to pi then bn is

- 0
- 0 =
- 0 1

Give a function which is self reciprocal under Fourier sine and cosine _____ is $\frac{1}{\sqrt{x}}$

- Transform
- Derivation
- Functions
- Formula

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms