

Trabalho Prático A

Sistemas de Informação Geográfica e Multimédia

Grupo 5:

Duarte Valente | A47657 João Valido | A51090

Docente:

Eng. Paulo Trigo

Curso: MEIM

Índice

Introd	ução	3
a)	Descrição	3
b)	Âmbito	3
c)	Cenário	3
Desen	volvimento	4
a)	Modelo conceptual	4
b)	Implementação	5
1.	Criação do modelo de dados	5
2.	Adição de dados	5
3.	Criação de funções comportamentais	6
4.	Implementação e teste de trajetória	8
5.	Implementação e teste de trajetória	9
Conclu	usão	10

Índice de ilustrações

Figura 1 - Modelo conceptual entidade-associação estendido com pictogramas espaciais	. 4
Figura 2 - Modelo conceptual Entidade-Associação	. 4
Figura 3 - Visualização no QGIS	. 6
Figura 4 - Trajetória dos objetos moveis	. 8
Figura 5 - Perseguição dos objetos móveis	9

Introdução

a) Descrição

Este trabalho tinha como objetivo investigar as capacidades do modelo relacional-estendido no suporte à manipulação de informações representadas por estruturas complexas. Aprofundar os conceitos de modelação e aplicação de extensões espaciais, utilizando o sistema de gestão de base de dados PostgreSQL e sua extensão PostGIS. Utilizar uma ferramenta de representação em camadas, como o Quantum GIS ou uDig, para informações espaciais. Desenvolver uma compreensão aprofundada da interação entre dados complexos e os métodos para sua visualização. Explorar abordagens para recuperar informações, por exemplo, através de consultas SQL, que abranjam dados alfanuméricos e estruturas complexas.

b) Âmbito

Este relatório insere-se no âmbito da realização da ficha laboratorial unidade curricular de Sistema de Informação Geográfica e Multimédia, do Mestrado em Engenharia Informática e Multimédia do DEETC do ISEL.

c) Cenário

Foi criado um mundo virtual chamado 'Distrito', onde a realidade aumentada transforma a paisagem com a coexistência de entidades do mundo real e virtual. Neste espaço virtual 2D, os principais elementos são os terrenos 'Plantação' e 'Floresta', cada um com características únicas que influenciam a velocidade dos objetos que transitam por eles.

A Plantação é um terreno que, ao ser atravessado por objetos móveis. Pode alterar em uma percentagem específica, neste caso de 20%.

A Floresta é outro terreno, com a capacidade de influenciar a velocidade dos objetos móveis que nela passam. A densidade das árvores e a complexidade do terreno fazem com que a velocidade dos objetos aumenta, com um percentual de 50%.

Além disso, ambos os terrenos podem coexistir, formando áreas híbridas onde "Plantações" e "Florestas" se entrelaçam. Nesses pontos de interseção, as características do terreno mais profundo na hierarquia têm prioridade, afetando predominantemente a velocidade dos objetos.

No meio desses terrenos, passam dois rios, compartilhando a mesma dinâmica de influência na velocidade dos objetos, descrita anteriormente, mas desta vez com um percentual de 80%.

Desenvolvimento

a) Modelo conceptual

O desenvolvimento de um modelo conceitual é essencial para compreender a complexidade e as interações no cenário virtual do "Distrito". Utilizámos a notação de entidade-associação estendida com pictogramas espaciais (EA-EPE) para representar de forma clara e visual as entidades, associações e os elementos espaciais.

Figura 2 - Modelo conceptual Entidade-Associação

Figura 1 - Modelo conceptual entidade-associação estendido com pictogramas espaciais

b) Implementação

A implementação do modelo entidade-associação estendida com pictogramas espaciais (EA-EPE) e a extensão espacial (PostGIS) envolve a criação das tabelas para representar entidades e associações, além de aproveitar as capacidades espaciais do PostGIS para lidar com os terrenos, rios e objetos móveis. Partindo do princípio de que existem dois tipos de terrenos, "Plantação" e "Floresta", cada um com um efeito específico na velocidade dos objetos móveis, dois objetos móveis, "Carro" e "Motociclo". A seguinte implementação foi realizada tendo em conta o diagrama entidade-associação referido na Figura 1.

1. Criação do modelo de dados

Como primeira fase, começámos então por implementar o modelo de dados de forma a criar as tabelas necessárias ao funcionamento do projeto. Assim, para tal efeito, foi criado um script para criar a base de dados no *pgAdmin 4* e outro script para criar as tabelas:

- · objeto movel;
- hist_objeto_movel (para armazenar as trajetórias dos objetos moveis);
- objeto_geometrico_movel (objeto para representar a geometria dos objetos moveis);
- terreno;
- rio;
- valores_max (tabela dos valores máximos de velocidade e aceleração;

Neste script também foram criadas algumas estruturas para representar a velocidade e da aceleração, assim como as suas componentes lineares. Sendo também criadas algumas funções para efetuar operações (soma, multiplicação e normalização) com as componentes da velocidade e da aceleração.

2. Adição de dados

Após a criação da estrutura principal da base de dados, optámos por introduzir alguns valores nas tabelas de forma a visualizar e compreender melhor qual o problema que se seguia, utilizando também o QGIS para visualizar estes mesmos dados.

Assim, foi criado um script para adicionar:

- Dois novos objetos móveis ("carro" e "mota") com velocidade, aceleração e posições diferentes;
- Duas geometrias para serem associadas aos objetos moveis (sendo que a mota é representada por um quadrado e o carro por um retângulo);
- quatro terrenos (dois do tipo "Floresta" e dois do tipo "Plantação");
- Dois rios;
- Os valores máximos de velocidade e aceleração à tabela valores_max);

Assim, após a execução do script podemos visualizar no QGIS os dados:

Figura 3 - Visualização no QGIS

3. Criação de funções comportamentais

Tendo em conta o objetivo de criar e visualizar a trajetória dos objetos móveis ao longo do tempo, foram desenvolvidas, seis funções que possibilitam este comportamento.

Função "novo_posicao":

- Recebe como parâmetros a posição de um objeto móvel, a sua velocidade e aceleração e o instante no qual se pretende saber a nova posição.
- Esta função faz utilização das funções algébricas criadas anteriormente para calcular a posição onde o objeto movel se vai encontrar no instante recebido e retorna essa posição.

Função "novo_orientacao":

 Recebe como parâmetros de entrada uma orientação, uma velocidade e um instante e retorna a nova orientação passado esse instante;

Função "novo_velocidade":

- Recebe uma velocidade, uma aceleração e um instante.
- Calcula a nova velocidade no instante indicado.
- Compara a nova velocidade com a velocidade máxima na tabela "valores_max" e em caso de exceder o limite define a nova velocidade como a velocidade máxima.
- Retorna a nova velocidade.

Função "atualizar_terreno_objeto_movel":

 Função que verifica para cada objeto movel se esta contido dentro de alguma geometria de um terreno. E em caso positivo atualiza o valor do id_terreno desse objeto_movel para o id do terreno onde está contido.

Função "obter_terreno_na_posicao":

- Recebe como parâmetro a posição de um ponto e retorna o id do terreno onde esse ponto está contido.
- Verifica também se a posição esta contida em um rio pois caso esteja, atualiza o "id_rio" do objeto movel para o id do rio em que se encontra e sinaliza que o objeto movel também se encontra num rio.

Função "registar trajeto":

- Principal função responsável por criar o trajeto de um objeto movel.
 Recebe como entrada apenas um instante temporal.
- Para cada objeto movel, a função verifica se o objeto movel alterou
 de terreno do instante em que se encontra para o instante
 introduzido como entrada. Se tal acontecer, altera o valor da
 aceleração desse objeto tendo em conta o valor "efeitoAltVal" que
 cada terreno possui.
- Assim como para os terrenos, também é verificado se o objeto movel se encontra no rio ao verificar o valor notificado pela função "obter_terreno_na_posicao" e atualiza a aceleração do objeto móvel conforme o valor de "efeitoAltVal" do rio.

- De seguida, é verificada se a nova aceleração calculada ultrapassa o valor máximo presente na tabela valores_max, e caso ultrapasse define a aceleração para esse valor máximo.
- Calcula a nova velocidade ao chamar a função "novo velocidade".
- Calcula a posição do objeto movel no instante ao chamar a função "novo_posicao".
- Obtém o id do terreno na posição encontrada através da função "obter_terreno_na_posicao".
- Por fim, atualiza os valores do objeto movel para os valores calculados e introduz todos os dados na tabela "hist_objeto_movel" que regista a trajetória;

•

4. Implementação e teste de trajetória

Após a criação das funções que permitem calcular a trajetória de um objeto móvel, foi então testada esta funcionalidade ao executar a função "atualizar_terreno_objeto_movel" para iniciar o valor do terreno onde se encontram os objetos móveis, e executar múltiplas vezes a função "registrar_trajeto" para o instante igual a 1 neste caso, pois assim permite visualizar precetivamente o trajeto dos objetos.

Para ser possível visualizar no QGIS estas trajetórias foi também criada a view "v_trajeto_objeto_movel" que regista as várias instâncias da tabela do histórico de posições e valores dos objetos "hist_objeto_movel" juntamente com a tabela das geometrias associadas a estes objetos para obter o efeito desejado.

Resultado da trajetória:

Figura 4 - Trajetória dos objetos moveis

5. Implementação e teste de trajetória

Após desenvolvidas as trajetórias dos objetos, passámos ao objetivo de colocar um objeto a perseguir o outro. Logo, para tal, criamos uma nova tabela chamada "hist_perseguicao" para armazenar os ids dos objetos moveis (alvo e perseguidor), e os valores da velocidade, aceleração, orientação e posição dos mesmos.

Já para efetuar o comportamento da perseguição, foram criadas três funções com as seguintes funções:

Função "novo_aceleracao_linear"

 Recebe as posições dos dois objetos e uma velocidade e retorna uma nova aceleração de forma q que o perseguidor consiga seguir o alvo.

Função "obter_aceleracao_perseguidor":

 Recebe o id do perseguidor, o id do alvo e uma velocidade e chama a função "novo_aceleracao_linear" para os ids solicitados.

Função "registrar_trajeto_perseguicao":

- Recebe os ids dos objetos moveis e um instante.
- Chama a função "obter_aceleracao_perseguidor", para calcular a nova aceleração.
- Atualiza a aceleração do perseguidor com a nova aceleração calculada.
- E por fim, regista na tabela "hist_perseguicao" os dados da perseguição nesse instante.

Resultado da perseguição:

Figura 5 - Perseguição dos objetos móveis

Conclusão

No decorrer deste projeto, explorámos e modelámos o complexo cenário virtual do "Distrito", onde entidades do mundo real coexistem harmoniosamente com elementos virtuais, proporcionando uma experiência única de realidade aumentada. Utilizando a notação de Entidade-Associação Estendida com Pictogramas Espaciais (EA-EPE) e implementando-a no modelo relacional-estendido com a extensão espacial PostGIS, conseguimos capturar de forma abrangente as interações dinâmicas entre terrenos, rios, trajetórias e objetos móveis.

A hierarquia de inclusão entre terrenos, como "Plantação" e "Floresta", revelou-se crucial para determinar a influência predominante sobre os objetos móveis, com variações percentuais de velocidade que enriqueceram a complexidade do ambiente virtual. A introdução de rios, como o "Rio", e trajetórias diversas, como "Perseguição" e "Caminho", proporcionou uma gama mais ampla de desafios e oportunidades estratégicas para os exploradores virtuais.

A implementação no PostGIS permitiu uma gestão eficaz de dados espaciais, possibilitando consultas espaciais que consideram tanto terrenos quanto rios, enriquecendo assim a análise das influências sobre os objetos móveis. A combinação de modelagem conceitual clara com a capacidade de manipular dados espaciais no nível de banco de dados oferece uma base sólida para a construção e expansão deste mundo virtual.

Em síntese, este projeto destacou a importância da modelagem precisa para a compreensão de ambientes complexos de realidade aumentada, proporcionando uma estrutura robusta para futuras implementações e desenvolvimentos. A integração de conceitos espaciais enriqueceu significativamente a dinâmica do "Distrito", demonstrando como a tecnologia pode aprimorar a interação entre entidades virtuais. Este projeto não apenas explorou os aspetos técnicos da modelação e implementação, mas também destacou as implicações práticas para a criação de ambientes virtuais complexos e imersivos.