New York restaurant consumption analysis

New York restaurant location information, business status, customer flow, price and rating correlation analysis

Import raw data

```
In [1]:
```

```
1 import pandas as pd
2 import folium
```

In [2]:

```
data = pd.read_csv("/Users/moyang/Data-Visualization-on-Yelp-Data/Restaurant_df_
```

In [3]:

```
1 data.head()
```

Out[3]:

	categories	coordinates	display_phone	distance	id	
0	[{'alias': 'shanghainese', 'title': 'Shanghain	{'latitude': 40.7146691442891, 'longitude': -7	(212) 233-8888	1066.508550	joes- shanghai- new-york- 2	media3.fl.yelpcdn.
1	[{'alias': 'chinese', 'title': 'Chinese'}, {'a	{'latitude': 40.7142, 'longitude': -73.99787}	(212) 791-1817	1020.195988	tasty- hand- pulled- noodles- new-york	media1.fl.yelpcdr
2	[{'alias': 'chinese', 'title': 'Chinese'}, {'a	{'latitude': 40.7422275387194, 'longitude': -7	(212) 989-6699	4183.124416	buddakan- new-york	media4.fl.yelpcdn.
3	[{'alias': 'shanghainese', 'title': 'Shanghain	{'latitude': 40.7598810063385, 'longitude': -7	(718) 321-3838	14909.390990	nan-xiang- xiao-long- bao- flushing	media4.fl.yelpcdn.c
4	[{'alias': 'asianfusion', 'title': 'Asian Fusi	{'latitude': 40.7190148, 'longitude': -73.9968	(212) 334-3669	1524.985833	nyonya- new-york	media2.fl.yelpcdn.c

Extract latitude and longitude information and generate a new column

```
In [4]:
```

```
data['coordinates']
Out[4]:
0
        {'latitude': 40.7146691442891, 'longitude': -7...
            {'latitude': 40.7142, 'longitude': -73.99787}
1
2
        {'latitude': 40.7422275387194, 'longitude': -7...
        {'latitude': 40.7598810063385, 'longitude': -7...
3
        {'latitude': 40.7190148, 'longitude': -73.9968...
        {'latitude': 40.8603060990572, 'longitude': -7...
5496
        {'latitude': 40.7156225, 'longitude': -74.0073...
5497
        {'latitude': 40.6357082, 'longitude': -74.1349...
5498
         {'latitude': 40.81591, 'longitude': -73.9168399}
5499
           {'latitude': 40.74225, 'longitude': -73.87199}
5500
Name: coordinates, Length: 5501, dtype: object
```

In [5]:

```
1
   import re
 2
   latitude=[]
3
   longitude=[]
   for coordinate in data['coordinates']:
5
       num = re.findall(r''[-+]?\d*\.\d+\d+\d+", coordinate)
6
       latitude.append(num[0])
7
       longitude.append(num[1])
8
   list_df = pd.DataFrame({'latitude': latitude,
9
                             'longitude':longitude})
10
   list df
```

Out[5]:

	latitude	longitude
0	40.7146691442891	-73.9977602206654
1	40.7142	-73.99787
2	40.7422275387194	-74.0047066478157
3	40.7598810063385	-73.8325853625656
4	40.7190148	-73.9968228
5496	40.8603060990572	-73.8908256590366
5497	40.7156225	-74.0073923
5498	40.6357082	-74.1349684
5499	40.81591	-73.9168399
5500	40.74225	-73.87199

Merge two tables horizontally

5501 rows × 2 columns

In [6]:

```
new_df = pd.concat([data, list_df], axis=1)
new_df
```

Out[6]:

	categories	coordinates	display_phone	distance	id	
0	[{'alias': 'shanghainese', 'title': 'Shanghain	{'latitude': 40.7146691442891, 'longitude': -7	(212) 233-8888	1066.508550	joes- shanghai- new-york-2	media3.fl.yelç
1	[{'alias': 'chinese', 'title': 'Chinese'}, {'a	{'latitude': 40.7142, 'longitude': -73.99787}	(212) 791-1817	1020.195988	tasty-hand- pulled- noodles- new-york	media1.fl.yel
2	[{'alias': 'chinese', 'title': 'Chinese'}, {'a	{'latitude': 40.7422275387194, 'longitude': -7	(212) 989-6699	4183.124416	buddakan- new-york	media4.fl.yelp
3	[{'alias': 'shanghainese', 'title': 'Shanghain	{'latitude': 40.7598810063385, 'longitude': -7	(718) 321-3838	14909.390990	nan-xiang- xiao-long- bao- flushing	media4.fl.yelpc
4	[{'alias': 'asianfusion', 'title': 'Asian Fusi	{'latitude': 40.7190148, 'longitude': -73.9968	(212) 334-3669	1524.985833	nyonya- new-york	media2.fl.yelpc
5496	[{'alias': 'mexican', 'title': 'Mexican'}, {'a	{'latitude': 40.8603060990572, 'longitude': -7	(718) 220-1276	19295.845240	chipotle- mexican- grill-bronx- 2	media1.fl.yelr
5497	[{'alias': 'mexican', 'title': 'Mexican'}]	{'latitude': 40.7156225, 'longitude': -74.0073	(212) 393-1026	1581.060316	taco- house- new-york-5	media2.fl.yelp
5498	[{'alias': 'mexican', 'title': 'Mexican'}]	{'latitude': 40.6357082, 'longitude': -74.1349	(718) 273-2442	14173.570510	taqueria-la- roqueta- staten- island	media3.fl.yel
5499	[{'alias': 'mexican', 'title': 'Mexican'}, {'a	{'latitude': 40.81591, 'longitude': -73.9168399}	(718) 665-3336	13913.817000	delicioso- restaurant- bronx	media2.fl.yelţ
5500	[{'alias': 'mexican', 'title': 'Mexican'}]	{'latitude': 40.74225, 'longitude': -73.87199}	(718) 760-3778	11093.136080	toltecamila- taqueria- elmhurst	media1.fl.yelpc

5501 rows × 18 columns

Show the restaurant's name and URL on the map

In [7]:

```
map_yelp = folium.Map(location=[40.74220,-73.72100],zoom_start=10)
 1
   for lat,lng,name,url in zip(new_df['latitude'].astype(float),new df['longitude']
 2
 3
        label = '{}, {}'.format(name, url)
 4
        label = folium.Popup(label, parse html=True)
 5
        folium.CircleMarker(
 6
        [lat, lng],
 7
       radius=5,
 8
       popup=label,
 9
       color='green',
10
       fill=True,
11
       fill color='#3186cc',
12
       fill opacity=0.7,
13
       parse html=False).add to(map yelp)
14
   map yelp
```

Out[7]:

Clustering on the map according to whether it is closed

In [8]:

```
from folium import plugins
 1
   # let's start again with a clean copy of the map of New York City
 2
   san map = folium.Map(location = [40.74220, -73.72100], zoom start = 10)
 3
   new df['latitude'] = new df['latitude'].astype(float)
   new_df['longitude'] = new_df['longitude'].astype(float)
 5
   new df['latitude'] = new df['latitude'].astype(float)
 7
   new df['is closed'] = new df['is closed'].astype(str)
   new df1 = new df.dropna(axis=0, subset=['latitude','longitude','is closed'])
8
9
10
   # instantiate a mark cluster object for the incidents in the dataframe
   incidents = plugins.MarkerCluster().add to(san map)
11
12
   # loop through the dataframe and add each data point to the mark cluster
13
14
   for lat, lng, label, in zip(new df1.latitude, new df1.longitude, new df1.is clos
15
       folium.Marker(
            location=[lat, lng],
16
           icon=None,
17
18
           popup=label,
19
       ).add to(incidents)
20
   # add incidents to map
21
   san map.add child(incidents)
22
```

Out[8]:

Draw a heat map on the map according to the number of reviews

In [9]:

```
from folium import plugins
 1
   from folium.plugins import HeatMap
 2
 3
 4
   new df['latitude'] = new df['latitude'].astype(float)
 5
   new df['longitude'] = new df['longitude'].astype(float)
   new df['review count'] = new df['review count'].astype(float)
 6
 7
8
   heat_df = new_df[['latitude', 'longitude', 'review_count']]
9
   heat df = heat df.dropna(axis=0, subset=['latitude','longitude','review count'])
10
   heat data = [[row['latitude'],row['longitude'],row['review count']] for index, r
11
12
   heatmap city = folium.Map(location=[40.74220,-73.72100],zoom start=10)
13
14
15
   folium.TileLayer('cartodbpositron').add to(heatmap city) #cartodbpositron cartod
16
   HeatMap(heat data).add to(heatmap city)
17
18
   # add the workplace marker
19
   # folium.Marker(
20
   #
          [40.74220, -73.72100],
   #
21
         radius=5,
         tooltip='Workplace',
22
23
          icon=folium.Icon(icon='briefcase', color="green")
24
   # ).add_to(heatmap_city)
25
26
   # add the 5km radius
   # folium.Circle([40.74220,-73.72100],
27
28
   #
                          radius=5000,
29
                          color='red'
30
                         ).add to(heatmap_city)
31
   heatmap city
32
```

Out[9]:

Plot average rating and price by categories

In [18]:

```
import pygal as pg
from pygal.style import DarkStyle, NeonStyle, BlueStyle, DarkGreenStyle, LightConew_df['price'] = new_df['price'].str.len()
index = ['cat', 'price', 'rating']
clean_data = new_df[index]
avg_data = clean_data.groupby('cat').mean()
avg_data
```

Out[18]:

	price	rating
cat		
chinese	1.550321	3.626000
french	2.446875	3.697740
indpak	1.707724	3.279675
italian	2.153374	3.936500
japanese	2.079872	3.665000
korean	1.900232	3.468985
mexican	1.550931	3.670000

........

In [24]:

```
from pygal.style import Style
   # Interactive Bar Chart
 3
   custom style = Style(label font size = 15.0, major label font size = 15)
5
   ibar chart = pg.Bar(x title = 'Restaurant Categories', style = custom style)
   ibar chart.title = 'Restarants'
 6
   ibar_chart.x_labels = ['Chinese', 'French', 'Indian', 'Italian', 'Japanese', 'Ko
7
8
9
10
   for cols in avg data.columns:
11
       ibar chart.add(cols,avg data[cols])
12
13
   #galplot(ibar chart) ### display pygal in Jupyter notebook
14
15
   ibar chart.render to file('chart.svg')
16
```

In [25]:

```
from IPython.display import SVG, display
display(SVG(ibar_chart.render(disable_xml_declaration=True)))
#display({'image/svg+xml': ibar_chart.render()}, raw=True)
```


SolidGauge

In [26]:

```
clean_data.groupby(['rating']).size()
gauge = pg.SolidGauge(inner_radius=0.70)

gauge.add('price$/total', [{'value': 1339, 'max_value':5501}])
gauge.add('price$$/total', [{'value': 3072, 'max_value': 5501}])
gauge.add('price$$$/total', [{'value': 472, 'max_value': 5501}])
gauge.add('price$$$/total', [{'value': 111, 'max_value': 5501}])
```

Out[26]:

Average Price by Categories by rating

In [27]:

```
new = clean data.drop([2839,3615], axis = 0)
 1
 2
 3
 4
   p cr=new['price'].groupby([new['cat'],new['rating']]).mean()
 5
   p cr = pd.DataFrame(p cr)
   p cr = p cr.reset index(level = ['cat', 'rating'])
 6
 7
   # p cr[head]
   custom style = Style(label font size = 15.0, major label font size = 15)
8
9
   bar chart = pg.Radar(x title = 'Restaurant Categories', y title = 'Price', style
10
   bar chart.title = 'Restarants price by categories by rating'
11
   bar chart.x labels = ['Chinese', 'French', 'Indian', 'Italian', 'Japanese', 'Kor
12
13
14
15
   bar chart.add('rating = 0',list(p cr[p cr['rating'] == 0].price))
   bar_chart.add('rating = 1',list(p_cr[p_cr['rating'] == 1].price))
16
   bar_chart.add('rating = 1.5',list(p_cr[p_cr['rating'] == 1.5].price))
17
18 bar chart.add('rating = 2',list(p cr[p cr['rating'] == 2].price))
19
   bar_chart.add('rating = 2.5',list(p_cr[p_cr['rating'] == 2.5].price))
   bar_chart.add('rating = 3',list(p_cr[p_cr['rating'] == 3].price))
20
21 bar chart.add('rating = 3.5', list(p cr[p cr['rating'] == 3.5].price))
   bar chart.add('rating = 4',list(p cr[p cr['rating'] == 4].price))
22
   bar_chart.add('rating = 4.5',list(p_cr[p_cr['rating'] == 4.5].price))
23
24
   bar_chart.add('rating = 5',list(p_cr[p_cr['rating'] == 5].price))
25
26
27
   #galplot(bar chart)
   display(SVG(bar chart.render(disable xml declaration=True)))
28
```


In []:
 1