Trajectory estimation from GPS data using an adaptive smoothing spline

Zhanglong Cao

Mathematics and Statistics Department University of Otago

19 Dec 2016

Overview

- Preliminary
- 2 "Tractor Spline"
 - A New Objective Function and Its Solution
 - Basis Funtions of Tractor Spline
 - Cross Validation of Tractor Spline
 - Adjusted Penalty Term
- 3 Gaussian Process Regression and Tractor Spline
- Simulation and Application
- 5 Future Work and Acknowledgment
- 6 References

1.1 GPS points and Trajectory

GPS units record time series data of a moving object. These data are in the form of

$$T = \{ p_t = [x_t, y_t, v_t, \omega_t, b_t, \cdots] | t \in \mathbb{R} \}.$$
 (1)

X	longitude				
у	latitude				
V	velocity				
ω	bearing				
b	boom status				

Trajectory is a connection by a time series successive position recorded by GPS devices.

Line-based Trajectory Sr

Χ

 \succ

2.1 A New Objective Function

If we have some knots, such that $a < t_1 < \cdots < t_n < b$, and $z_i = (x_i, y_i)$, $w_i = (u_i, v_i)$, for $i = 1, 2, \cdots, n$, and a positive piecewise parameter $\lambda(t)$, which will control penalty functions, then the equation

$$J[f] = \frac{1}{n} \sum_{i=1}^{n} |f(t_i) - z_i|^2 + \frac{\gamma}{n} \sum_{i=1}^{n} |f'(t_i) - w_i|^2 + \sum_{i=1}^{n} \lambda_i \int_{t_i}^{t_{i+1}} |f''(t)|^2 dt$$
 (2)

is minimised by a tractor spline, which is linear outside the knots.

2.2 Basis Funtions of Tractor Spline

Hermite Spline basis functions on an arbitrary interval $[t_i, t_{i+1}]$

$$h_{00}^{(i)}(t) = \begin{cases} 2(\frac{t-t_i}{t_{i+1}-t_i})^3 - 3(\frac{t-t_i}{t_{i+1}-t_i})^2 + 1, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{10}^{(i)}(t) = \begin{cases} \frac{(t-t_i)^3}{(t_{i+1}-t_i)^2} - 2\frac{(t-t_i)^2}{t_{i+1}-t_i} + (t-t_i), & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{01}^{(i)}(t) = \begin{cases} -2(\frac{t-t_i}{t_{i+1}-t_i})^3 + 3(\frac{t-t_i}{t_{i+1}-t_i})^2, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{11}^{(i)}(t) = \begin{cases} \frac{(t-t_i)^3}{(t_{i+1}-t_i)^2} - \frac{(t-t_i)^2}{t_{i+1}-t_i}, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

To construct a tractor spline on the entire interval $[t_1, t_n]$, the new basis functions are defined in such way, that $N_1 = h_{00}^{(1)}$, $N_2 = h_{10}^{(1)}$, and for all $k = 1, 2, \ldots, n-2$,

$$N_{2k+1} = \begin{cases} h_{01}^{(k)} + h_{00}^{(k+1)} & \text{if } t < t_n \\ 2(\frac{t - t_{n-1}}{t_n - t_{n-1}})^3 - 3(\frac{t - t_{n-1}}{t_n - t_{n-1s}})^2 + 1 & \text{if } t = t_n \end{cases},$$
(3)

$$N_{2k+2} = \begin{cases} h_{11}^{(k)} + h_{10}^{(k+1)} & \text{if } t < t_n \\ \frac{(t - t_{n-1})^3}{(t_n - t_{n-1})^2} - 2\frac{(t - t_{n-1})^2}{t_n - t_{n-1}} + (t - t_{n-1}) & \text{if } t = t_n \end{cases}, \tag{4}$$

and

$$N_{2n-1} = \begin{cases} h_{01}^{(n-1)} & \text{if } t < t_n \\ -2(\frac{t-t_{n-1}}{t_n-t_{n-1}})^3 + 3(\frac{t-t_{n-1}}{t_n-t_{n-1}})^2 & \text{if } t = t_n \end{cases},$$
 (5)

$$N_{2n} = \begin{cases} h_{11}^{(n-1)} & \text{if } t < t_n \\ \frac{(t-t_{n-1})^3}{(t_n-t_{n-1})^2} - \frac{(t-t_{n-1})^2}{t_n-t_{n-1}} & \text{if } t = t_n \end{cases}$$
 (6)

Theorem

The functions N_1, \ldots, N_{2n} provide a basis for the set of functions on $[t_1, t_n]$ which are continuous, have continuous first and second derivatives and which are cubic on each open interval (t_i, t_{i+1}) .

Solution to The New Objective Function

The tractor spline f(t) is a linear combination of basis functions

$$f(t) = \sum_{j=1}^{2n} N_j(t)\theta_j$$

and the objective function reduces to

$$MSE(\theta, \lambda, \gamma) = (\mathbf{z} - \mathbf{B}\theta)^{T}(\mathbf{z} - \mathbf{B}\theta) + \gamma(\mathbf{w} - \mathbf{C}\theta)^{T}(\mathbf{w} - \mathbf{C}\theta) + n\theta^{T}\Omega_{\lambda}\theta,$$

where $\mathbf{z} = \{z(x_i, y_i)\}$ are the knots and $\mathbf{w} = \{(u_i, v_i)\}$ are the tangent at knots.

After solving the above equation, we have

$$\hat{\theta} = (\mathbf{B}^T \mathbf{B} + \gamma \mathbf{C}^T \mathbf{C} + n \mathbf{\Omega}_{\lambda})^{-1} (\mathbf{B}^T \mathbf{z} + \mathbf{C}^T \mathbf{w}). \tag{7}$$

Then tractor spline could be represented as

$$\hat{f}(t) = \sum_{j=1}^{2n} N_j(t)\hat{\theta}_j \tag{8}$$

2.3 Cross Validation of Tractor Spline

Because \hat{f} and \hat{f}' could be written in the form of

$$\hat{f} = B\hat{\theta} = Sz + \gamma Tw$$

 $\hat{f}' = C\hat{\theta} = Uz + \gamma Vw$

Then

$$CV = \frac{1}{n} \sum_{i} (\hat{f}^{(-i)}(t_i) - z_i)^2$$

$$= \frac{1}{n} \sum_{i} \left(\frac{\hat{f}(t_i) - z_i + \gamma \frac{T_{ii}}{1 - \gamma V_{ii}} (\hat{f}'(t_i) - w_i))}{1 - S_{ii} - \gamma \frac{T_{ii}}{1 - \gamma V_{ii}} U_{ii}} \right)^2$$

Application

Regarding to the boom status (0 and 1), we divided the penalty function into two parts: Ω_u and Ω_d . That brings two penalty parameters λ_u and λ_d .

Thus, we totally have three parameters λ_u , λ_d and γ .

Trajectory Reconstruction

2.4 Adjusted Penalty Term

The crazy curves are caused by tricky points, where there is a break and a long time gap. At these points the velocity $v \approx 0$. To adjust this issue, we bring an adjusted penalty term

$$\lambda(t) = \begin{cases} \frac{\Delta t_i^3}{\Delta d_i^2} \lambda_d, & \text{when } b = 1\\ \frac{\Delta t_i^3}{\Delta d_i^2} \lambda_u, & \text{when } b = 0 \end{cases}, t_i \le t < t_{i+1}.$$
 (9)

Penalty Function

The penalty parameter λ becomes a function $\lambda(t)$ that varying on different domains.

$$\lambda(t) = b \frac{\Delta t^3}{\Delta d^2} \lambda_d + (1-b) \frac{\Delta t^3}{\Delta d^2} \lambda_u, \text{ where } \begin{cases} b=1 & \text{if boom is working} \\ b=0 & \text{if boom is not working} \end{cases}. \tag{10}$$

3.1 Gaussian Process Regression

If the observed function f(t) has zero mean, and

$$f(t) \sim N(0, k(t, t'))$$

where k(t, t') is covariance matrix, then the prediction mean is

$$\bar{f}_* = K_* K^{-1} y \tag{11}$$

and uncertainty in this estimate is captured in its variance

$$var(f_*) = K_{**} - K_* K^{-1} K_*^T$$
 (12)

3.2 Hilbert Space and Reproducing Kernel for Tractor Spline

For any $f \in \mathbb{H}$, $f = \sum_{i=1}^{2n} \theta_i N_i(t)$. Building up a new space

$$\mathcal{C}^2_{p.w.}[0,1] = \{f: f,f' \text{ continuous, } f'' \text{ piecewise continuous on } [0,1]\}.$$

Equipped with an appropriate inner product

$$(f,g) = f(0)g(0) + f'(0)g'(0) + \int_0^1 f''g''dx, \qquad (13)$$

the space $C_{p,w}^2[0,1]$ is made a reproducing kernel Hilbert space.

 $f \in \mathcal{C}^2_{p.w.}[0,1]$ can be written as

$$f(x) = d_1 + d_2 x + \sum_{j=1}^{n} c_j R_1(x_j, x) + \sum_{i=j}^{n} b_j \dot{R}_1(x_j, \cdot),$$
 (14)

where \mathbf{d}, \mathbf{c} and \mathbf{b} are coefficients. $f = \phi^{\top} \mathbf{d} + \xi^{\top} \mathbf{c} + \psi^{\top} \mathbf{b}$, with the coefficients given by

$$\mathbf{d} = (T^{\top} M^{-1} T)^{-1} T^{\top} M^{-1} \begin{bmatrix} Y \\ V \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{c} \\ \mathbf{b} \end{bmatrix} = (M^{-1} - M^{-1} T (T^{\top} M^{-1} T)^{-1} T^{\top} M^{-1}) \begin{bmatrix} Y \\ V \end{bmatrix},$$

where
$$T = \begin{bmatrix} S \\ S' \end{bmatrix}$$
 and $M = \begin{bmatrix} Q + n\lambda I & P \\ Q' & P' + \frac{n\lambda}{\gamma}I \end{bmatrix}$.

Numeric Testing

When λ is chosen 0.001, smoothing spline and GPs return the same results.

4.1 Simulation

By setting initial $y_0 = 0$ and $a_0 = 0$, and $y_{i+1} = y_i + (v_i + v_{i+1}) \frac{t_{i+1} - t_i}{2}$ to calculate positions.

Original Functions with Noises

Generated Position Functions with Noises

Comparing with Other Methods

- wavelet(sure) in Library("WaveThresh") of R
- wavelet(Bayesian)
- P-spline (penalized B spline)
- ullet Tractor Spline without velocity term in MSE $(\gamma=0)$
- ullet Tractor Spline without adjusted penalty term $(\frac{\Delta t^0}{\Delta d^0})$
- Tractor Spline

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{\lambda,\gamma}(t_i))^2,$$
 (15)

MSE (10 ⁻⁴)	SNR	Tractor Spline	TS $\gamma = 0$	TS without APT	P-spline	Wavelet(sure)	Wavelet(Bayes)
Blocks	7	16.53	15.99	16.69	16.14	*15.39	16.68
Blocks	3	89.79	*87.64	89.94	88.27	98.35	90.24
Bumps	7	4.40	4.19	4.55	4.33	*4.18	4.59
Bumps	3	23.93	*23.19	24.10	23.55	26.23	23.74
HeaviSine	7	4.16	4.01	4.16	4.02	*3.79	4.19
HeaviSine	3	22.63	*22.19	22.65	22.02	23.53	22.07
Doppler	7	1.15	*1.07	1.10	1.15	*1.07	1.13
Doppler	3	6.27	*5.94	6.28	6.05	6.85	6.29

TMSE =
$$\frac{1}{n} \sum_{i=1}^{n} (f(t_i) - \hat{f}_{\lambda,\gamma}(t_i))^2$$
. (16)

TMSE (10^{-6})	SNR	Tractor Spline	TS $\gamma = 0$	TS without APT	P-spline	Wavelet(sure)	Wavelet(Bayes)
Blocks	7	*1.75	54.25	28.68	54.76	201.02	182.12
Blocks	3	*16.44	152.5	30.76	171.59	1138.08	712.36
Bumps	7	*1.64	23.44	21.10	24.21	71.71	69.26
Bumps	3	*8.51	77.78	37.12	77.52	330.77	238.79
HeaviSine	7	*1.53	7.80	1.56	9.54	55.37	44.88
HeaviSine	3	*8.21	33.56	8.49	34.26	240.72	110.49
Doppler	7	1.51	6.67	*1.08	8.26	14.87	12.01
Doppler	3	*8.10	22.14	8.25	19.95	81.48	50.33

4.2 Application

Black dots represent the value of $log(\lambda(t))$. The bigger penalty values, the larger dots.

5.1 Future Work

- Moving from batch inference to online inference
- Deducing high-level description of farm vehicle motion

5.2 Acknowledgment

- Ministry of Business, Innovation & Employment
 - Grant UOOX 1208
- TracMap
- Dr Matthew Parry
- Professor David Bryant

Ministry of Business, Innovation & Employment

6 References

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin (2001)

The Elements of Statistical Learning: data mining, inference and prediction.

P. J. Green. (1994)

Nonparametric regression and generalized linear models : a roughness penalty approach

Y.J. Kim and C. Gu (2004)

Smoothing spline gaussian regression: more scalable computation via efficient approximation

Journal of the Royal Statistical Society: Series B (Statistical Methodology) vol. 66, no. 2, pp. 337-356

Blight, B.J.N. and Ott, L. (1975)

A Bayesian Approach to Model Inadequacy for Polynomial Regression. $Biometrika\ 62(1):79-88.$

G.P.Nason. (2008)

Wavelet Methods in Statistics with R.

The End