MODPATH7

Li

MODPATH version 7 works with MODFLOW-2005 and MODFLOW-USG.

Support for unstructured grids in MODFLOW-USG is limited to smoothed, rectangular-based quadtree and quadpatch grids.

Figure 4. Unstructured quadtree and quadpatch rectangular grids.

Particle Tracking for Structured Grids

Figure 2. Schematic showing the computation of the exit point and travel time for the case of two-dimensional flow in the x-y plane.

粒子运动速度(在各单元(i,j,k)的面上)等于穿过面的体积流量除以(面的横截面积*孔隙度n):

$$v_{x_1} = \frac{Q_{x_1}}{(n\Delta y \Delta z)}, \qquad v_{x_2} = \frac{Q_{x_2}}{(n\Delta y \Delta z)}$$

$$v_{y_1} = \frac{Q_{y_1}}{(n\Delta x \Delta z)}, \qquad v_{y_2} = \frac{Q_{y_2}}{(n\Delta x \Delta z)}$$

$$v_{z_1} = \frac{Q_{z_1}}{(n\Delta x \Delta v)}, \qquad v_{z_2} = \frac{Q_{z_2}}{(n\Delta x \Delta v)}$$

MODPATH使用线性插值得到单元中的粒子速度:

$$v_{x} = A_{x} (x - x_{1}) + v_{x_{1}}$$

$$v_{y} = A_{y} (y - y_{1}) + v_{y_{1}}$$

$$v_{z} = A_{z} (z - z_{1}) + v_{z_{1}},$$

Particle Tracking for Unstructured Grids

quadtree和quadpatch网格都是基于传统的矩形结构网格,称为基础网格(base grid)。在水平方向上以因子2连续细化基础网格。MODPATH不允许使用垂向细化分层的模型。

Figure 4. Unstructured quadtree and quadpatch rectangular grids.

Particle Tracking for Unstructured Grids

Figure 5. Cell connections and face flows in a smoothed, unstructured grid.

Figure 7. Schematic of pathline produced using the subcell method.

Figure 6. Definition of subcells for particle tracking with unstructured grids.

图5显示了一个典型的非结构网格单元的面连接和面流动的方法视图。

图6显示图5中的阴影单元分解为4个subcell,标记为ABCD

Subcell内的流动计算以及存在细化分级差异的cell-to-cell的粒子跟踪误差较大。 具体算法见手册。

艰苦樸素求真务實

Deformed Vertical Grids

各单元的局部坐标z。 粒子从侧向,从一个单元进入另一个单元,其局部坐标z不变。 变化厚度和dip的承压含水层的 变化厚度和dip的承压含水层的 侧向流动过程示意见图8A和图 8B,当所有分层厚度不变时, 方法简化为真实矩形单元网格的 算法,见图8C。

分层3D网格的优点是:相比使用水平分层的网格, stratigraphic grid可使用较少分层模拟复杂的水文地质系统。 缺点是:引入空间离散误差,特别是粒子轨迹计算。

Figure 8. Schematic representation of an inclined aquifer with variable thickness.

Backward Tracking

粒子可以沿着"上游"方向逆向跟踪(以反方向运行粒子跟踪算法)。

取所有速度分量的反值,然后实施与向前跟踪相同的算法。

Transient Flow

非恒定过程可分解为分段的恒定阶段,各恒定阶段实施与恒定流相同的粒子轨迹跟踪算法。

不同的恒定阶段的孔隙度等条件可能有不同。

Solute Retardation

反应溶质(v*)的速度的线性吸收效应,可使用对速度分量除以滞留因子R的方法,用于粒子轨迹跟踪:

$$v_x^* = \frac{v_x}{R}, v_y^* = \frac{v_y}{R}, v_z^* = \frac{v_z}{R}$$

非反应型的溶质不会与周围的岩石发生相互作用,滞留因子R=1

The retardation factor is a function of the porosity, the density of the geologic material, and the sorption coefficient. 速度滯留不会影响速度的方向。

Time Concepts

Figure 9. Schematic representation of time concepts used by MODPATH.

注意:模拟时间和跟踪时间的起始点和结束点。

Flow Boundaries

(i, j, k - 1)(i - 1, j, k) **IFACE** 文件中的默认的IFACE。 (i, j - 1, k)O(i, j + 1, k)(i, j, k)j (column) (i + 1, j, k)i (row) k (layer) (i, j, k + 1)

MODPATH使用IFACE识别单元 的面。大部分的驱动软件包的 紧凑budget文件都包含IFACE 信息,除了RCH和EVT软件包, 需要用户指定或使用基础数据

Figure 10. Diagram showing definition of the cell face index, IFACE.

Terminating Particles

一个粒子终止跟踪计算的原则有:

- it reaches an external boundary face or an internal sink or source cell that captures the particle,
- it enters a cell with a zone code that designates the cell as a termination location,
- the cumulative tracking time has reached the maximum allowed value, or
- it encounters an abnormal condition that will not allow tracking to continue.

MODPATH会持续跟踪粒子轨迹,直到所有粒子都终止计算。

Model Input and Output

- MODPATH basic data file
- MODFLOW discretization file
- MODPATH unstructured grid file
- MODPATH time discretization file
- MODFLOW head output file
- MODFLOW cell-by-cell budget output file

基本数据文件包含MODFLOWBAS软件的数据文件和分层属性(LPF)软件的数据文件,还包含孔隙度,是MODPATH需要的,MODFLOW不需要。

结构网格时,时空离散直接包含在DIS文件。非结构网格时,DISU不包含所有MODPATH需要的空间网格信息,为此MODPATH定义了自己的非结构空间离散文件(MPUGRID)以及单独的时间离散文件(TDIS)。

MODPATH使用MODFLOW输出的水头,来计算饱和含水层厚度,提供干单元的分布信息。MODPATH需要水头输出保存为二进制格式。

MODPATH需要的flow-rate数据,从MODFLOW的budget文件的地下水流速计算得到。建议使用紧凑的budget输出文件,紧凑的收支输出文件包含IFACE值,允许更精确地表征流动边界条件(通过分配驱动软件流动给具体的单元面)。

流体-系统文件

Listing文件

Debug文件

粒子坐标文件

粒子坐标文件记录了粒子运动的结果,是后处理的输入文件,有4种类型:

- Endpoint simulation
- Pathline simulation
- Time-series simulation
- Combined pathline and time series

举例

使用一个假想的地下水系统,分别使用结构网格和USG建模,做粒子轨迹跟踪模拟。

Figure 11. Conceptual model for hypothetical groundwater flow system (ft, foot; ft³, cubic foot; ft/d, foot per day).

MODFLOW-2005结构网格

MODPATH的输入输出文件格式和内容介绍,参考手册。

Explanation

Well cell

River cell

Figure 12. Structured grid for example 1, used in the MODFLOW-2005 simulation.

MODFLOW-USG非结构网格

Explanation

Well cell

River cell

Figure 22. MODPATH unstructured grid for example 2. (Red square indicates the well, which is located in cell 1,623 in layer 3.)

