

서울시 따릉이 대여량 예측

홍수지

목차

CONTENT S

01

경진대회 목적 및 규칙

CONTENT S

04

모형 학습 및 검증

CONTENT

02

데이터 변수 소개

CONTENT S

05

결과 해석 및 분석

CONTENT S

03

EDA 및 데이터 전처리

경진대회 목적 및 규칙

목적 : 주어진 데이터를 바탕으로 따릉이 대여량을 예측

규칙

평가 산식 : RMSE

사용 가능 언어 : Python, R

데이터 변수 소개

- * id 고유 id
- * hour 시간
- * temperature 기온
- * precipitation 비가 오지 않았으면 0, 비가 오면 1
- * windspeed 풍속(평균)
- * humidity 습도
- * visibility 시정(視程), 시계(視界)(특정 기상 상태에 따른 가시성을 의미)
- * ozone 오존
- * pm10 미세먼지(머리카락 굵기의 1/5에서 1/7 크기의 미세먼지)
- * pm2.5 미세먼지(머리카락 굵기의 1/20에서 1/30 크기의 미세먼지)
- * count 시간에 따른 따름이 대여 수

[대회링크](https://dacon.io/competitions/open/235576/data)

train 데이터

	id	hour	hour_bef_temperature	hour_bef_precipitation	hour_bef_windspeed	hour_bef_humidity	hour_bef_visibility	hour_bef_ozone	hour_bef_pm10	hour_bef_pm2.5	count
0	3	20	16.3	1.0	1.5	89.0	576.0	0.027	76.0	33.0	49.0
1	6	13	20.1	0.0	1.4	48.0	916.0	0.042	73.0	40.0	159.0
2	7	6	13.9	0.0	0.7	79.0	1382.0	0.033	32.0	19.0	26.0
3	8	23	8.1	0.0	2.7	54.0	946.0	0.040	75.0	64.0	57.0
4	9	18	29.5	0.0	4.8	7.0	2000.0	0.057	27.0	11.0	431.0

#	Column	Non-Null Count	Dtype
	2 <u>2.00 12.1-10.0</u>		
0	id	1459 non-null	int64
1	hour	1459 non-null	int64
2	hour_bef_temperature	1457 non-null	float64
3	hour_bef_precipitation	1457 non-null	float64
4	hour_bef_windspeed	1450 non-null	float64
5	hour_bef_humidity	1457 non-null	float64
6	hour_bef_visibility	1457 non-null	float64
7	hour_bef_ozone	1383 non-null	float64
8	hour_bef_pm10	1369 non-null	float64
9	hour_bef_pm2.5	1342 non-null	float64
10	count	1459 non-null	float64
0.000	es: float64(9), int64(2) ry usage: 125.5 KB		

test 데이터

	id	hour	hour_bef_temperature	hour_bef_precipitation	hour_bef_windspeed	hour_bef_humidity	hour_bef_visibility	hour_bef_ozone	hour_bef_pm10	hour_bef_pm2.5
0	0	7	20.7	0.0	1.3	62.0	954.0	0.041	44.0	27.0
1	1	17	30.0	0.0	5.4	33.0	1590.0	0.061	49.0	36.0
2	2	13	19.0	1.0	2.1	95.0	193.0	0.020	36.0	28.0
3	4	6	22.5	0.0	2.5	60.0	1185.0	0.027	52.0	38.0
4	5	22	14.6	1.0	3.4	93.0	218.0	0.041	18.0	15.0

#	Column	Non-Null Count	Dtype
	·		7.00
0	id	715 non-null	int64
1	hour	715 non-null	int64
2	hour_bef_temperature	714 non-null	float64
3	hour_bef_precipitation	714 non-null	float64
4	hour_bef_windspeed	714 non-null	float64
5	hour_bef_humidity	714 non-null	float64
6	hour_bef_visibility	714 non-null	float64
7	hour_bef_ozone	680 non-null	float64
8	hour_bef_pm10	678 non-null	float64
9	hour_bef_pm2.5	679 non-null	float64
dtyp	es: float64(8), int64(2)		
memo	ry usage: 56.0 KB		

test 데이터

	id	hour	hour_bef_temperature	hour_bef_precipitation	hour_bef_windspeed	hour_bef_humidity	hour_bef_visibility	hour_bef_ozone	hour_bef_pm10	hour_bef_pm2.5
0	0	7	20.7	0.0	1.3	62.0	954.0	0.041	44.0	27.0
1	1	17	30.0	0.0	5.4	33.0	1590.0	0.061	49.0	36.0
2	2	13	19.0	1.0	2.1	95.0	193.0	0.020	36.0	28.0
3	4	6	22.5	0.0	2.5	60.0	1185.0	0.027	52.0	38.0
4	5	22	14.6	1.0	3.4	93.0	218.0	0.041	18.0	15.0

#	Column	Non-Null Count	Dtype
	·		7.00
0	id	715 non-null	int64
1	hour	715 non-null	int64
2	hour_bef_temperature	714 non-null	float64
3	hour_bef_precipitation	714 non-null	float64
4	hour_bef_windspeed	714 non-null	float64
5	hour_bef_humidity	714 non-null	float64
6	hour_bef_visibility	714 non-null	float64
7	hour_bef_ozone	680 non-null	float64
8	hour_bef_pm10	678 non-null	float64
9	hour_bef_pm2.5	679 non-null	float64
dtyp	es: float64(8), int64(2)		
memo	ry usage: 56.0 KB		

상관관계(heat map)

박스플롯(Box Plot)

시간과 습도에 대한 Boxplot

비의 유무와 count에 대한 Boxplot

히스토 그램(Histogram)

왜도<0인 경우: 최빈값>중앙값>평균 처리방법: 삭제, 반대로그변환, 제곱변환, 반대Box-Cox변환

비의 유무와 count에 대한 히스토그램

시간대별 사용자 수에 대한 line plot

6시부터 10시, 16시부터 20시 사용자수가 급격히 많아진것으로 분류를 해볼 수 있다.

미세먼지에 대한 사용자수 1

pm2.5 안좋은날 사용자수가 많아 변수를 변경하거나 추가 할 수 있다.

'very bad' :76이상

'bad' :36이상 76미만

'not bad':16이상 36미만

'good' :16미만

미세먼지에 대한 사용자수 2

pm2.5 안좋은날 사용자수가 많아 변수를 변경하거나 추가 할 수 있다.

'very bad' :76이상

'bad' :36이상 76미만

'not bad':16이상 36미만

'good' :16미만

train 데이터 전처리 방법

- 1. 결측값처리
- 2. 이상치 처리
- 3. 데이터 정규화

- 1. 결측값 처리 방법
 - (1) fillna 함수 사용

```
[] 1 train = train.fillna(0)
```

1 train = train.fillna(train.mean())

결측값에 0 또는 평균, 중앙값등 대입

1. 결측값 처리 방법

(2) Iterative Imputer

피처 간의 상관관계를 활용하여 결측값을 예측하므로, 특히 피처 간 상관관계가 높은 데이터셋에서 유용합니다.

```
1 # 결측값 처리
2 from sklearn.experimental import enable_iterative_imputer # IterativeImputer를 사용하기 위해 필요
3 from sklearn.impute import IterativeImputer
4 from sklearn.linear_model import BayesianRidge
5
6 imputer = IterativeImputer(estimator=BayesianRidge(), max_iter=10, random_state=0)
7 target = train.pop('count')
8 for col in train.columns:
9     train[col] = imputer.fit_transform(train[[col]])
10     test[col] = imputer.transform(test[[col]])
```

1. 결측값 처리 방법

(2) Iterative Imputer

Iterative Imputer의 장점

- * 더 나은 예측 성능: 피처들 간의 상관관계를 고려하여 결측값을 예측하기 때문에 단순한 평균이나 중앙값 대체보다 더 정확한 값을 제공할 수 있습니다.
- * 다양한 모델 사용 가능 : BayesianRidge 외에도 결정 트리, 랜덤 포레스트 등 다양한 회귀 모델을 사용할 수 있어 데이터 특성에 맞춘 유연한 결측값 처리 가능.
- * **다중 대체 가능성**: 반복적 과정에서 여러 번의 예측값을 생성하므로, 다중 대체 방식으로 불확실성을 고려한 분석이 가능합니다.

1. 결측값 처리 방법

(2) Iterative Imputer

Iterative Imputer의 단점

- *계산비용: 반복적으로 모델을 학습하고 예측해야 하므로, 대규모데이터셋에서는 시간이 많이 소요될 수 있습니다.
- * 복잡성: 알고리즘이 단순한 대체법보다 복잡하기 때문에 이해하고 설정하는 데 더 많은 노력이 필요합니다.
- * 모델 편향: 잘못된 모델을 선택하면 결측치 대체가 잘못될 수 있습니다. 따라서 데이터에 적합한 모델을 선택하는 것이 중요합니다.

2. 이상치 처리 방법

(1) Winsorize

극단적인 값들을 제거하지 않고, 일정한 범위 내의 값으로 대체하여 데이터의 분포를 조정합니다.

```
[ ] 1 from scipy.stats.mstats import winsorize
2 train = train.apply(lambda x: winsorize(x, limits=[0.05, 0.05]))
```

2. 이상치 처리 방법

(1) Winsorize

Winsorize의 장점:

- * 이상치의 영향 감소 : 평균, 표준편차와 같은 통계적 측정치가 이상치의 영향을 덜 받게 되어 더 안정적인 결과를 얻을 수 있습니다.
- * 데이터 손실 방지: Winsorize는 데이터를 잘라내는 대신 극단적인 값을 대체하기 때문에, 데이터 손실을 최소화할 수 있습니다.
- * 분포 왜곡 감소: 데이터의 분포를 극단적인 값 없이 더 명확하게 파악할 수 있습니다.

2. 이상치 처리 방법

(1) Winsorize

Winsorize의 단점:

- * 데이터의 진짜 특성 왜곡 가능성 : 극단적인 값을 대체함으로써, 원래데이터의 특성과 분포가 왜곡될 수 있습니다.
- * 주관적인 한계 설정 : 어느 비율을 Winsorize할지 결정하는 것은 주관적이며, 적절한 한계 설정이 필요합니다.
- * 결과 해석의 어려움 : 통계 결과 해석 시 Winsorize가 적용된 데이터를 사용했다면, 이를 고려하여 해석해야 합니다.

2. 이상치 처리 방법

(2) IQR(Interquartile Range, 사분위 범위)

IQR은 데이터의 1사분위수(Q1, 25번째 백분위수)와 3사분위수(Q3, 75번째 백분위수)의 차이를 말합니다.

```
1 # IQR
2 train['count'] = target
3 for col in train.columns:
4    Q1 = train[col].quantile(0.25)
5    Q3 = train[col].quantile(0.75)
6    IQR = Q3-Q1
7    Iower = Q1-1.5*IQR
8    upper = Q3+1.5*IQR
9    train_iqr = train[(train[col]<lower)|(train[col]>upper)]
10    train = train.drop(train_iqr.index,axis=0)
```

2. 이상치 처리 방법

(2) IQR(Interquartile Range, 사분위 범위)

IQR 이상치 처리의 장점

- * 간단함: IQR을 사용하는 방법은 계산이 간단하고 직관적입니다.
- * 비모수적 방법: 데이터가 특정 분포를 따르지 않아도 적용할 수 있어 유연합니다.
- * 이상치의 영향 감소 : 이상치를 처리함으로써 평균이나 분산 같은 통계량이 이상치에 의해 왜곡되는 것을 방지합니다.

2. 이상치 처리 방법

(2) IQR(Interquartile Range, 사분위 범위)

IQR 이상치 처리의 단점

*정보 손실: 이상치를 제거하거나 대체함으로써 데이터의 중요한 정보가 손실될 수 있습니다.

*임의성: IQR과 1.5 배수를 사용한 이상치 기준은 임의적일 수 있으며, 특정 분석에 적합하지 않을 수 있습니다.

.

3. 데이터 정규화

(1) Standard Scaler

Standard Scaler는 데이터의 평균을 0, 표준편차를 1로 맞추어 정규화합니다.

```
1 # StandatdScaler
2 from sklearn.preprocessing import StandardScaler
3 scaler = StandardScaler()
4 train = pd.DataFrame(scaler.fit_transform(train), columns=train.columns)
5 test = pd.DataFrame(scaler.transform(test), columns=test.columns)
```

3. 데이터 정규화

(1) Min-MaxScaler

MinMax Scaler는 데이터를 주어진 최소값과 최대값 사이로 스케일링합니다. 보통 0과 1 사이로 정규화합니다.

```
1 # MinMaxScaler
2 from sklearn.preprocessing import MinMaxScaler
3 scaler = MinMaxScaler()
4 train = pd.DataFrame(scaler.fit_transform(train), columns=train.columns)
5 test = pd.DataFrame(scaler.transform(test), columns=test.columns)
```

1. Linear Regression:43.514

```
1 from sklearn.linear_model import LinearRegression
 2 Ir = LinearRegression()
 3 lr.fit(x_tr,y_tr)
 4 pred = Ir.predict(x_val)
 6 print(rmse(y_val, pred))
43.51417799033894
```

2. Logistic Regression: 63.434

```
1 #LogisticRegression
 2 from sklearn.linear_model import LogisticRegression
 3 log = LogisticRegression()
 4 log.fit(x_tr,y_tr)
 5 pred = log.predict(x_val)
 8#평가
 9 print(rmse(y_val, pred))
63.43392111621461
```

3. RandomForest Regression: 36.735

```
1 from sklearn.ensemble import RandomForestRegressor
2 rf = RandomForestRegressor(n_estimators=200, max_depth=15, random_state=2023)
3 rf.fit(x_tr,y_tr)
4 pred = rf.predict(x_val)
5
6 print(rmse(y_val, pred))
36.73478424655903
```

4. LightGBM:37.270

```
1 from lightgbm import LGBMRegressor
 2 lgbm = LGBMRegressor()
 3 lgbm.fit(x_tr,y_tr)
 4 \text{ pred} = \text{lgbm.predict}(x_val)
 6 print(rmse(v_val, pred))
/usr/local/lib/python3.10/dist-packages/dask/dataframe/__init__.py:42: FutureWarning:
Dask dataframe query planning is disabled because dask-expr is not installed.
You can install it with 'pip install dask[dataframe]' or 'conda install dask'.
This will raise in a future version.
 warnings.warn(msg, FutureWarning)
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000193 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 550
[LightGBM] [Info] Number of data points in the train set: 986, number of used features: 8
[LightGBM] [Info] Start training from score 109.134888
37.26970935899319
```

5. XGBoost: 39.537

```
1 from xgboost import XGBRegressor
2 xgb = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, objective='reg:squarederror',random_state=110)
3 xgb.fit(x_tr,y_tr)
4 pred = xgb.predict(x_val)
```

39.53703830239874

6. Gradient Boosting: 40.253

```
1 # GradientBoosting
 2 from sklearn.ensemble import GradientBoostingRegressor
 3 gb = GradientBoostingRegressor(n_estimators=100)
 4 gb.fit(x_tr,y_tr)
 6 pred = gb.predict(x_val)
 7 print(rmse(y_val, pred))
40.25310393630883
```

7. AdaBoosting: 42.910

```
1 from sklearn.ensemble import AdaBoostRegressor
2 ada = AdaBoostRegressor(n_estimators=50, random_state=110)
3 ada.fit(x_tr,y_tr)
4
5 pred = ada.predict(x_val)
6 print(rmse(y_val, pred))
42.910450714795125
```

8. Decision Tree : 44.420

```
1 #DecisionTreeClassifier
2 from sklearn.tree import DecisionTreeRegressor
3 dtc = DecisionTreeRegressor(max_depth=5, min_samples_split=2, min_impurity_decrease=0.0)
4 dtc.fit(x_tr, y_tr)
5 pred = dtc.predict(x_val)
6 print(rmse(y_val, pred))

44.42039759734831
```

9. Bagging: 42.910

```
1 # Bagging
 2 from sklearn.ensemble import BaggingRegressor
 3 base_model = RandomForestRegressor()
 4 bag = BaggingRegressor(estimator=base_model,
                             n_estimators=300,
                             bootstrap=True,
                             n_jobs=-1,
                             random_state=110)
 9 bag.fit(x_tr,y_tr)
10 pred = bag.predict(x_val)
11 print(rmse(y_val, pred))
36.89213319680365
```

9. Bagging: 42.910

```
1 # Bagging
 2 from sklearn.ensemble import BaggingRegressor
 3 base_model = RandomForestRegressor()
 4 bag = BaggingRegressor(estimator=base_model,
                             n_estimators=300,
                             bootstrap=True,
                             n_jobs=-1,
                             random_state=110)
 9 bag.fit(x_tr,y_tr)
10 pred = bag.predict(x_val)
11 print(rmse(y_val, pred))
36.89213319680365
```

결과 해석 및 분석

현재 점수는 44.615로 다양한 방법을 조합하여 다른 점수를 낼 수 있다

2024-08-28 09:46:37 44.6147126697

pycaret의 다양한 기능을 이용하여 여러 가지 회귀 모델을 쉽게 생성하고 비교할 수 있습니다.

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	24.8809	1311.9799	36.0890	0.7854	0.4199	0.4279	0.2980
lightgbm	Light Gradient Boosting Machine	25.0643	1352.7758	36.4861	0.7790	0.4352	0.4280	0.6140
xgboost	Extreme Gradient Boosting	25.0877	1368.9240	36.8784	0.7765	0.4298	0.3977	0.1380
rf	Random Forest Regressor	25.7269	1397.5426	37.2067	0.7719	0.4219	0.4304	0.6810
gbr	Gradient Boosting Regressor	26.1621	1457.4649	37.9752	0.7610	0.4435	0.4595	0.1620
Ir	Linear Regression	34.8424	2084.7624	45.5594	0.6580	0.6589	0.7345	1.2760
lar	Least Angle Regression	34.8424	2084.7616	45.5594	0.6580	0.6589	0.7345	0.0380
ada	AdaBoost Regressor	36.5918	2089.0494	45.6302	0.6574	0.6355	0.8761	0.1370
ridge	Ridge Regression	35.0168	2097.7645	45.7067	0.6561	0.6602	0.7274	0.0470
br	Bayesian Ridge	35.0672	2103.3408	45.7665	0.6553	0.6631	0.7275	0.0290
llar	Lasso Least Angle Regression	35.0729	2108.8075	45.8231	0.6547	0.6625	0.7270	0.0310
lasso	Lasso Regression	35.0728	2108.8048	45.8231	0.6547	0.6625	0.7270	0.0410
huber	Huber Regressor	34.6232	2132.7930	46.0997	0.6510	0.6654	0.6812	0.0880
en	Elastic Net	37.0998	2396.4305	48.7958	0.6096	0.6744	0.7683	0.0450
dt	Decision Tree Regressor	32.6643	2523.9388	49.9720	0.5863	0.5231	0.4601	0.0510
knn	K Neighbors Regressor	38.5640	2738.8530	52.0866	0.5543	0.6760	0.8168	0.0530
par	Passive Aggressive Regressor	48.1270	3351.9645	57.5208	0.4524	0.8380	1.3542	0.0270
omp	Orthogonal Matching Pursuit	56.0585	4975.1479	70.4038	0.1885	0.8858	1.4249	0.0250
dummy	Dummy Regressor	63.6039	6252.5797	79.0027	-0.0204	1.0117	1.9440	0.0220

결과 해석 및 분석

과적합이 일어나는 이유

- 1. **모델 복잡도**: 모델이 너무 복잡하거나 파라미터가 많을 때, 훈련 데이터에 과도하게 맞추게 됩니다.
- 2. 데이터 부족: 훈련 데이터가 충분하지 않을 때, 모델이 훈련 데이터의 패턴을 과도하게 학습하게 됩니다.
- 3. **노이즈**: 훈련 데이터에 노이즈가 많을 경우, 모델이 이를 학습하면서 과접합이 발생할 수 있습니다.
- 4. **불균형 데이터**: 훈련 데이터의 클래스 비율이 불균형할 경우, 모델이 특정 클래스에만 집중하게 되어 과접합이 발생할 수 있습니다.

결과 해석 및 분석

과적합을 줄이는 방법

- 1. 더 많은 데이터 수집
- 2. 모델 단순화: 복잡한 모델 대신, 적절한 복잡도의 모델을 선택
- 3. **정규화 기법 사용** :
 - a. L1, L2 정규화: 모델의 가중치를 제어해 과도하게 큰 가중치가 발생하지 않도록 하여 과접합을 방지합니다.
 - b. 드롭아웃(Dropout): 신경망의 특정 뉴런을 무작위로 제거함으로써 과적합을 줄입니다.
- 4. **교차 검증(Cross-Validation):** 모델 평가 시 데이터를 여러 부분으로 나누어 검증을 수행
- 5. **조기 종료(Early Stopping)** : 훈련 중에 검증 오차가 증가하기 시작하면 학습을 멈춰 과접합을 방지할 수 있습니다.

Thank you