Correction

Partie I

1. $H(U) \subset \mathcal{C}^2(U,\mathbb{R})$.

La fonction nulle de U vers \mathbb{R} est harmonique.

Soit $f, g \in H(U), \lambda, \mu \in \mathbb{R}$. $\lambda f + \mu g$ est de classe C^2 sur U et:

$$\frac{\partial^2}{\partial x^2}(\lambda f + \mu g) + \frac{\partial^2}{\partial y^2}(\lambda f + \mu g) = \lambda \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right) + \mu \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}\right) = 0$$

 $\lambda f + \mu g$ est donc harmonique. H(U) est un sous-espace vectoriel.

- 2.a La condition nécessaire et suffisante cherchée est a+c=0.
- 2.b $f \operatorname{est} C^2 \operatorname{sur} \mathbb{R}^{+*} \times \mathbb{R}$.

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{2xy}{(x^2 + y^2)} \text{ et } \frac{\partial^2 f}{\partial y^2}(x,y) = -\frac{2xy}{(x^2 + y^2)} \text{ d'où } \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

- 3.a $\frac{\partial^2}{\partial x^2} \left(\frac{\partial f}{\partial x} \right) + \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) = 0 \text{ . De même pour } \frac{\partial f}{\partial y} .$
- 3.b Etablissons la propriété par récurrence forte sur $n \in \mathbb{N}$.

Pour n = 0: ok.

Supposons la propriété établie jusqu'au rang $n \ge 0$.

Si f est une fonction harmonique de classe C^{n+3} alors

f est une fonction harmonique de classe C^{n+2} et par HR ses dérivées partielles jusqu'à l'ordre n sont déjà harmoniques.

Les dérivées partielles d'ordre n+1 de f correspondent aux dérivées partielles des dérivées partielles d'ordre n de f. Or ces dernières sont harmoniques et de classe \mathcal{C}^3 , donc, par 3.a, leurs dérivées partielles sont elles aussi harmoniques. Récurrence établie.

- 4.a L'application $(r,\theta) \mapsto (r\cos\theta, r\sin\theta)$ est de classe \mathcal{C}^2 sur $\mathbb{R}^{+*} \times \mathbb{R}$. Par composition d'applications $(r,\theta) \mapsto g(r,\theta)$ l'est aussi.
- 4.b On a $q(r,\theta) = f(r\cos\theta, r\sin\theta)$ donc

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(1 + \sin\theta \frac{\partial f}{\partial y}(1))$$

$$\frac{\partial^2 g}{\partial r^2}(r,\theta) = \cos^2\theta \frac{\partial^2 f}{\partial x^2}(1 + \sin^2\theta \frac{\partial^2 f}{\partial y^2}(1 + 2\cos\theta \sin\theta \frac{\partial^2 f}{\partial x \partial y}(1))$$

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(1 + r\cos\theta \frac{\partial f}{\partial y}(1))$$

Donc
$$r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) = r^2 \left(\frac{\partial^2 f}{\partial x^2}() + \frac{\partial^2 f}{\partial y^2}() \right) = 0$$

Partie II

1.a
$$\forall (x,y) \in \mathbb{R}^2, \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = \varphi''(x)\psi(y) + \varphi(x)\psi''(y) = 0$$
 (1)

Comme f est supposée non nulle, $\exists (x_0,y_0) \in \mathbb{R}^2$ tel que $f(x_0,y_0) \neq 0$ et donc $\varphi(x_0) \neq 0$ et $\psi(y_0) \neq 0$. Posons $k = \psi''(y_0)/\psi(y_0)$.

Par la relation 1, en prenant $y = y_0$: $\forall x \in \mathbb{R}, \varphi''(x) + k\varphi(x) = 0$.

En injectant ce ceci dans 1 : $\forall (x,y) \in \mathbb{R}^2, -k\varphi(x)\psi(y) + \varphi(x)\psi''(y) = 0$

En prenant $x = x_0$ et en simplifiant : $\forall y \in \mathbb{R}, \psi''(y) - k\psi(y) = 0$.

1.b La solution générale de E_k est :

Si
$$k = 0$$
: $z(t) = \lambda . t + \mu$ avec $\lambda, \mu \in \mathbb{R}$

Si
$$k > 0$$
: $z(t) = \lambda \cos(\omega t) + \mu \sin(\omega t)$ avec $\lambda, \mu \in \mathbb{R}$ et $\omega = \sqrt{k}$.

Si
$$k < 0$$
: $z(t) = \lambda \operatorname{ch}(\omega t) + \mu \operatorname{sh}(\omega t)$ avec $\lambda, \mu \in \mathbb{R}$ et $\omega = \sqrt{-k}$.

1.c Si k = 0 alors $f(x,y) = (\lambda x + \mu)(\lambda' y + \mu')$.

Pour vérifier les conditions imposées il faut $\mu\mu' = 1, \lambda = \lambda' = 0$ ce qui donne f(x,y) = 1.

Si
$$k > 0$$
 alors $f(x,y) = (\lambda \cos(\omega x) + \mu \sin(\omega x))(\lambda' \cosh(\omega y) + \mu' \sinh(\omega y))$.

Pour vérifier les conditions imposées il faut $\lambda \lambda' = 1, \mu = \mu' = 0$ ce qui donne $f(x,y) = \cos(\omega x) \operatorname{ch}(\omega y)$.

Si k < 0, par une même démarche : $f(x,y) = \operatorname{ch}(\omega x) \cos(\omega y)$.

2.a $\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 4g'(x^2 + y^2) + 4(x^2 + y^2)g''(x^2 + y^2) = 0$.

Tout $t \in \mathbb{R}^+$ pouvant s'écrire $t = x^2 + y^2$, la fonction $t \mapsto g(t)$ est solution de l'équation différentielle tz''(t) + z'(t) = 0.

2.b La solution générale sur \mathbb{R}^{+*} de tz'(t) + z(t) = 0 est z(t) = C/t.

La solution générale sur \mathbb{R}^{+*} de tz''(t)+z'(t)=0 est $z(t)=C\ln t+D$.

- 2.c Parmi les solutions précédentes les seules qui puissent se prolonger par continuité en 0 sont z(t) = D. Ainsi les seules fonctions à la fois harmoniques et radiales sont les fonctions constantes.
- 3.a Soit $(x_0, y_0) \in \mathbb{R}^2$ tel que $f(x_0, y_0) \neq 0$ et soit (r_0, θ_0) un représentant polaire du couple (x_0, y_0) . On a $u(r_0) \neq 0$ et $v(\theta_0) \neq 0$.

Pour tout $\theta \in \mathbb{R}$: $u(r_0)v(\theta+2\pi) = f(r_0\cos\theta,r_0\sin\theta) = u(r_0)v(\theta)$ donc $v(\theta+2\pi) = v(\theta)$. Ainsi v est 2π périodique.

3.b En reprenant les notations du I.4.b : $\forall r > 0, \forall \theta \in \mathbb{R}$: $g(r,\theta) = u(r)v(\theta)$,

$$\frac{\partial g}{\partial r}(r,\theta) = u'(r)v(\theta), \frac{\partial^2 g}{\partial r^2}(r,\theta) = u''(r)v(\theta), \frac{\partial^2 g}{\partial \theta^2}(r,\theta) = u(r)v''(\theta) \text{ donc}$$

$$r^2u''(r)v(\theta) + ru'(r)v(\theta) + u(r)v''(\theta) = 0$$
 (2)

En évaluant (2) en $\theta=\theta_0$ et en prenant $k=-v''(\theta_0)/v(\theta_0)$ on a :

$$\forall r > 0, r^2 u''(r) + r u'(r) - k u(r) = 0.$$

De plus en substituant ceci dans (2):

$$\forall r > 0, \forall \theta \in \mathbb{R}, ku(r)v(\theta) + u(r)v''(\theta) = 0$$
 (3)

En évaluant (3) en $r = r_0$ puis en simplifiant :

$$\forall \theta \in \mathbb{R}, v''(\theta) + kv(\theta) = 0.$$

3.c La solution générale de F_{θ} est $z(\theta) = \lambda \theta + \mu$.

Seules les fonctions constantes $z(\theta) = \mu$ sont 2π périodiques.

La solution générale de E_r est $z(r) = C \ln r + D$ (comme en 3.b)

Seules les solutions constantes se prolongent par continuité en 0.

3.d Si k < 0 alors F_{θ} ne possède pas de solutions 2π périodiques non nulles.

Si k > 0 alors la solution générale de F_{θ} est $z(\theta) = \lambda \cos(\omega \theta) + \mu \sin(\omega \theta)$ avec $\omega = \sqrt{k}$.

$$z(\theta + 2\pi) = \lambda' \cos(\omega \theta) + \mu' \sin(\omega \theta)$$

avec
$$\begin{cases} \lambda' = \lambda \cos(2\pi\omega) + \mu \sin(2\pi\omega) \\ \mu' = -\lambda \sin(2\pi\omega) + \mu \cos(2\pi\omega) \end{cases}$$

$$\forall \theta \in \mathbb{R}, z(\theta + 2\pi) = z(\theta) \Leftrightarrow \begin{cases} \lambda(\cos(2\pi\omega) - 1) + \mu\sin(2\pi\omega) = 0\\ -\lambda\sin(2\pi\omega) + \mu(\cos(2\pi\omega) - 1) = 0 \end{cases}.$$

Il existe une solution non nulle à F_{θ} ssi ce système n'est pas de Cramer i.e. ssi

$$(\cos(2\pi\omega)-1)^2+\sin^2(2\pi\omega)=0$$
 soit $\omega\in\mathbb{N}$.

Ainsi la condition nécessaire et suffisante cherchée est k>0 et $\sqrt{k}\in\mathbb{N}$.

- 3.e La solution générale de F_{θ} est $z(\theta) = \lambda \cos(n\theta) + \mu \sin(n\theta)$.
- 3.f Soit $r \mapsto z(r)$ une fonction deux fois dérivable sur \mathbb{R}^{+*} .

Soit $w: t \mapsto u(t) = z(e^t)$, w est deux fois dérivable sur \mathbb{R} .

z est solution de E_r ssi w est solution de w''(t) - kw(t) = 0.

La solution générale en w est : $w(t) = \lambda e^{nt} + \mu e^{-nt}$

La solution générale en z est : $z(r) = \lambda r^n + \mu r^{-n}$.

La seule solution se prolongeant par continuité en 0 est $z(r) = \lambda r^n$.

Partie III

1.a Posons $P = -\frac{\partial f}{\partial y}$ et $Q = \frac{\partial f}{\partial x}$. Puisque R^2 est un ouvert étoilé et que $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, l'existence de g

fonction de classe \mathcal{C}^1 est assurée par le théorème de Poincaré. Puisque ses dérivées partielles sont \mathcal{C}^1 , g est \mathcal{C}^2 .

- 1.b $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 0$ en vertu du théorème de Schwarz.
- 2.a $(r,\theta) \mapsto (x_0 + r\cos\theta, y_0 + r\sin\theta)$ est \mathcal{C}^1 et par suite \tilde{f} et \tilde{g} le sont par composition.
- 2.b $\frac{\partial \tilde{g}}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial g}{\partial x}(1) + r\cos\theta \frac{\partial g}{\partial y}(1) = r\cos\theta \frac{\partial f}{\partial x}(1) + r\sin\theta \frac{\partial f}{\partial y}(1) = r\frac{\partial \tilde{f}}{\partial r}(r,\theta)$
- 3.a Pour $r \neq 0$, $\varphi'(r) = \frac{1}{r} \int_0^{2\pi} \frac{\partial \tilde{g}}{\partial \theta}(r, \theta) d\theta = \frac{1}{r} \left[\tilde{g}(r, \theta) \right]_0^{2\pi} = 0$.

Sachant φ' continue sur \mathbb{R} , $\varphi'(r) = 0$ sur \mathbb{R}

Finalement φ est constante égale à $\varphi(0) = \int_0^{2\pi} f(x_0, y_0) d\theta = 2\pi f(a)$.

- 3.b $\iint_{P(a,r)} f(x,y) dx dy = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} f(x_0 + r\cos\theta, y_0 + r\sin\theta) r d\theta dr = \int_{r=0}^{R} r\varphi(r) dr = \pi R^2 f(a).$
- 4. Quitte à considérée -f, supposons que f admet un minimum en a.

Pour tout $R \in \mathbb{R}^{+*}$ on a:

$$\iint_{D(a,R)} f(x,y) dx dy - \pi R^2 f(a) = \iint_{D(a,R)} (f(x,y) - f(a)) dx dy = 0.$$

Donc f est constante égale à f(a) sur D(a,R).

Ceci étant vrai pour tout R > 0, f est constante.