NAIVE

BAYESIAN

CLASSIFICATION

Bayes Formula

$$\underline{P(C|x)} = \underline{P(x|C)} \cdot \underline{P(C)} / \underline{P(x)}$$
posterior = likelihood · prior/evidence

- one of main formulae in probability and statistics
- used for classification for labels
- Naive Bayesian classifier

Bayes Formula

$$\underline{P(C|x)} = \underline{P(x|C)} \cdot \underline{P(C)} / \underline{P(x)}$$
posterior = likelihood · prior/evidence

- P(C|x) conditional probability of class C given training inputs x
- P(x|C) conditional probability of training inputs x given class C
- $\bullet P(C)$ probability of class C
- P(x) probability of the training data x

- two bins: W and L
- W: 2 red, 2 green tokens, \$1
- L: 1 red, 2 green tokens

- equally likely choices
- prior probabilitites:

$$P(W) = P(L) = 0.5$$

- can see one token from a bin
- token is 'green'
- what is $P(W \mid g)$?

Intuition

- L has a higher percentage of green tokens
- likelihoods:

$$P(g|W) = 0.5, P(g|L) = 2/3$$

Intuition

• a green token means more likely that we are looking at bin L

Applying Formula

$$\underline{P(W|g)} = \underline{P(g|W)} \cdot \underline{P(W)} / \underline{P(g)}$$
posterior = likelihood · prior/evidence

Applying Formula

$$P(W|g) = \frac{P(g|W) \cdot P(W)}{P(g|W)P(W) + P(g|L) \cdot P(L)}$$
$$= \frac{0.5 \cdot 0.5}{0.5 \cdot 0.5 + (2/3) \cdot 0.5} = 0.43$$

Example: "Spam" Mail

- 40% of email is "spam" (s)
- 30% of spam contains "free" keyword (f)
- 1% of no-spam $(\neg s)$ contains f keyword
- a new email contains f
- what is P(s|f) probability it is a spam?

Example: "Spam" Mail (cont'd)

$$P(S) = 0.4$$

$$P(\neg S) = 0.6$$

$$P(f|s) = 0.3$$

$$P(f|\neg S) = 0.01$$

$$P(s|f) = ?$$

- prior probability p(S) = 0.4
- intuition: p(S|f) > 0.4
- why? we saw f

Computing P(S|f)

$$P(S|f) = \frac{P(f|S) \cdot P(S)}{P(f)}$$

$$= \frac{P(f|S) \cdot P(S)}{P(f|S) \cdot P(S) + P(f|S) \cdot P(S)}$$

$$= \frac{0.3 \cdot 0.4}{0.3 \cdot 0.4 + 0.01 \cdot 0.6}$$

$$= \frac{0.12}{0.12 + 0.06}$$

$$= 2/3$$

• note P(S|f) > P(S)

Day	Weather	Play
1	sunny	no
2	rainy	yes
3	sunny	yes
4	rainy	no
5	sunny	yes
6	overcast	yes
7	sunny	yes
8	overcast	yes
9	rainy	no
10	rainy	yes

- assume Weather = sunny
- what is $P(yes \mid sunny)$?

Python Code

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import \
                     LabelEncoder
from sklearn.naive_bayes import \
                     MultinomialNB
df = pd.DataFrame(
   {"Day": [1,2,3,4,5,6,7,8,9,10],
    "Weather": ["sunny", "rainy",
                "sunny", "rainy",
                "sunny", "overcast",
                "sunny", "overcast",
                "rainy", "rainy"],
    "Play":["no","yes","yes",
             "no", "yes", "yes",
             "yes", "yes",
             "no", "yes"]},
    columns = ["Day", "Weather",
              "Play"] )
```

Computing Priors

Day	Weather	Play
1	sunny	no
2	rainy	yes
3	sunny	yes
4	rainy	no
5	sunny	yes
6	overcast	yes
7	sunny	yes
8	overcast	yes
9	rainy	no
10	rainy	yes

$$P(yes) = 7/10$$

 $P(no) = 3/10$

• unconditional probabilities

Computing Priors in Python

>> df_play = df["Play"].value_counts()

>> df_play

yes 7

no 3

Name: Play, dtype: int64

$$P(yes) = 7/10$$

$$P(no) = 3/10$$

Computing Evidence

Day	Weather	Play
1	sunny	no
2	rainy	yes
3	sunny	yes
4	rainy	no
5	sunny	yes
6	overcast	yes
7	sunny	yes
8	overcast	yes
9	rainy	no
_10	rainy	yes

$$P(\text{sunny}) = 4/10$$

$$P(\text{rainy}) = 4/10$$

$$P(\text{overcast}) = 2/10$$

Computing Evidence in Python

```
>> df_weather = df.groupby(["Weather",
                          "Play"]).size()
>> df_weather
Weather Play
overcast yes
rainy
          no
          yes
sunny
          no
          yes
       int64
dtype:
           P(\text{sunny}) = 4/10
            P(\text{rainy}) = 4/10
        P(\text{overcast}) = 2/10
```

• unconditional probabilities

Computing Likelihoods

Day	Weather	Play
1	sunny	no
2	rainy	yes
3	sunny	yes
4	rainy	no
5	sunny	yes
6	overcast	yes
7	sunny	yes
8	overcast	yes
9	rainy	no
10	rainy	yes

$$P(\text{sunny} \mid \text{yes}) = 3/7$$

• conditional probabilities

Computing Likelihood in Python

Applying the Formula

- likelihood: $P(\text{sunny}|\text{ yes}) = \frac{3}{7}$
- prior: $P(yes) = \frac{7}{10}$
- evidence: $P(\text{sunny}) = \frac{4}{10}$

$$P(\text{yes} \mid \text{sunny}) = \frac{P(\text{sunny} \mid \text{yes})P(\text{yes})}{P(\text{sunny})}$$
$$= \frac{3}{7} \cdot \frac{7}{10} / \frac{4}{10}$$
$$= \frac{3}{4}$$

Naive Bayesian Classification

- assume multiple features x_1, \ldots, x_n with class label C
- want to compute $P(C|x_1, \ldots x_n)$
- how? use the Bayes formula:

$$P(C|x_1, \dots x_n) = \frac{P(x_1, \dots, x_n|C) \cdot P(C)}{P(x)}$$
$$\propto P(x_1, \dots, x_n|C) \cdot P(C)$$

- Q: where is difficulty?
- A: joint probability $P(x_1, \ldots, x_n | C)$

Naive Bayesian Classification (cont'd)

• assume feature independence

$$P(x_1,\ldots,x_n|C) = P(x_1|C)\cdots P(x_n|C)$$

Bayes simplifies to

$$P(C|x_1, \dots x_n) \propto [P(x_1|C) \cdots P(x_n|C)] P(C)$$

• assign $x^* = (a_1, \dots, a_n)$ to class C^* with maximium value $P(C^*|x^*)$

$$C^* = \operatorname{argmax}_C [P(a_1|C) \cdots P(a_n|C)] P(x^*)$$

Naive Bayesian in SkLearn

- three classifiers:
- (a) GaussianNB: features are continuous and follow normal distribution
- (b) MultinomialNB: features are frequencies
- (c) BernouilliNB: features are boolean

Naive Bayesian Example

• additional features: wind and temperature

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
10	rainy	mild	low	yes

• $x^* = (sunny, cold, low)$?

Python Code

```
import pandas as pd
from sklearn.preprocessing import \
                      LabelEncoder
from sklearn.naive_bayes import \
                      MultinomialNB
df = pd.DataFrame(
{"Day": [1,2,3,4,5,6,7,8,9,10],
"Weather": ["sunny", "rainy", "sunny",
      "rainy", "sunny", "overcast", "sunny",
      "overcast", "rainy", "rainy"],
"Temperature": ["hot", "mild", "cold", "cold",
  "cold", "mild", "hot", "hot", "hot", "mild"],
"Wind": ["low", "high", "low", "high", "high",
       "low", "low", "high", "high", "low"],
"Play": ["no", "yes", "yes", "no", "yes",
           "yes", "yes", "yes", "no", "yes"]},
columns = ["Day", "Weather", "Temperature",
            "Wind", "Play"] )
```

Naive Bayesian Example (cont'd)

- $x^* = (sunny, cold, low)$?
- need a label c* to maximize
- $P(\operatorname{sunny}|C^*) \cdot P(\operatorname{cold}|C^*) \cdot P(\operatorname{low}|C^*)$
 - need conditional probabilities
 - 1. weather: P(sunny|C)
 - 2. temperature: P(cold|C)
 - 3. wind: P(low|C)
 - compute during learning phase

Cond. Probability: Weather

Weather	Play = yes	Play = no
sunny	3/7	1/3
overcast	2/7	0
rainy	2/7	2/3

$$P(\text{sunny} \mid \text{yes}) = 3/7$$

 $P(\text{sunny} \mid \text{no}) = 1/3$

Cond. Probability: Weather (Python)

```
>> df_weather = data.groupby(["Weather", "Play"]).size()
>> df_weather
Weather Play
overcast yes 2
rainy no 2
    yes 2
sunny no 1
    yes 3
dtype: int64
P(sunny \mid yes) = 3/7
P(sunny \mid no) = 1/3
```

Cond. Probability: Temperature

Temperature	Play = yes	Play = no
cold	2/7	1/3
mild	3/7	0
hot	2/7	2/3

$$P(\text{cold} \mid \text{yes}) = 2/7$$

 $P(\text{cold} \mid \text{no}) = 1/3$

Cond. Probability: Temperature (Python)

```
>> df_temp = data.groupby(["Temperature",
                        "Play"]).size()
>> df_temp
Temperature Play
cold
               no
               yes
hot
               no
               yes
mild
               yes
       int64
dtype:
         P(\text{cold} \mid \text{yes}) = 2/7
          P(\text{cold} \mid \text{no}) = 1/3
```

Cond. Probability: Wind

Wind	Play = yes	Play = no
high	3/7	2/3
low	4/7	1/3

$$P(\text{low} \mid \text{yes}) = 4/7$$

 $P(\text{low} \mid \text{no}) = 1/3$

Cond. Probability: Wind (Python)

```
>> df_wind = data.groupby(["Wind", "Play"]).size()
>> df_wind
Wind Play
high no 2
    yes 3
low no 1
    yes 4
dtype: int64
P(\text{low} \mid \text{yes}) = 4/7
P(\text{low} \mid \text{no}) = 1/3
```

Computing Label

• $x^* = (\text{sunny, cold, low})$?

$$P(\text{yes}|x^*) = P(\text{sunny}|\text{yes})P(\text{cold}|\text{yes})$$
$$\cdot P(\text{low}|\text{yes})P(\text{yes})$$
$$= 3/7 \cdot 2/7 \cdot 4/7 \cdot 0.7 = 0.049$$

$$P(\text{no}|x^*) = P(\text{sunny}|\text{no})P(\text{cold}|\text{no})$$

$$\cdot P(\text{low}|\text{no})P(\text{no})$$

$$= 1/3 \cdot 1/3 \cdot 1/3 \cdot 0.3 = 0.011$$

- $P(\text{yes}|x^*) > P(\text{no}|x^*)$
- therefore, $x^* \mapsto yes$

Python Code

```
import numpy as np
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import LabelEncoder
data = pd.DataFrame(
        {'Day':
                        [1,2,3,4,5,6,7,8,9,10],
        'Weather':
                       ['sunny', 'rainy', 'sunny', 'rainy',
                         'sunny', 'overcast', 'sunny', 'overcast',
                        'rainy','rainy'],
        'Temperature': ['hot', 'mild', 'cold', 'cold', 'cold',
                        'mild','hot','hot', 'hot','mild'],
                       ['low','high','low','high','high',
        'Wind':
                         'low', 'low', 'high', 'high', 'low'],
                        ['no', 'yes','yes','no','yes',
        'Play':
                         'yes','yes','yes','no','yes']},
        columns = ['Day', 'Weather', 'Temperature', 'Wind', 'Play'])
input_data = data[['Weather', 'Temperature', 'Wind']]
dummies = [pd.get_dummies(data[c]) for c in input_data.columns]
binary_data = pd.concat(dummies, axis=1)
X = binary_data[0:10].values
le = LabelEncoder()
Y = le.fit_transform(data['Play'].values)
NB_classifier = MultinomialNB().fit(X, Y)
new_instance = np.asmatrix([0,0,1,1,0,0,0,1])
prediction = NB_classifier.predict(new_instance)
ipdb> prediction[0]
1
```

Naive Bayesian: Continuous Case

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
x_2	5.50	150	8	green
x_3	5.33	130	7	green
x_4	5.75	150	9	green
x_5	6.00	180	13	red
x_6	5.92	190	11	red
x_7	5.58	170	12	red
x_8	5.92	165	10	red

•
$$P(\text{green}) = P(\text{red}) = 0.5$$

•
$$(H=6, W=160, F=10) \rightarrow ?$$

Naive Bayesian: Continuous Case (cont'd)

$$(H=6, W=160, F=10) \rightarrow ?$$

Computing the Label

• assume H, W, F independent

$$P(C|x^*) = \frac{P(x^*|C)P(C)}{P(x^*)}$$
$$= \frac{P(H|C)P(W|C)P(F|C)P(C)}{P(x^*)}$$

- term $P(x^*)$ same for each class
- assign C^* to x^* if for $C \neq C^*$:

$$P(H|C^*)P(W|C^*)P(F|C^*)P(C^*)$$

Computing the Parameters

• assume Gaussian

label C	height H		weight W		foot F	
label C	μ	σ	μ		μ	σ
green	5.39	0.27	132.5	20.46	7.5	1.12
red	5.86	0.16	176.25	9.60	11.5	1.12

Python Code for Probabilities

```
import pandas as pd
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
    'Label': ['green', 'green', 'green', 'green',
              'red', 'red', 'red', 'red'],
    'Height': [5, 5.5, 5.33, 5.75,
           6.00, 5.92, 5.58, 5.92],
    'Weight': [100, 150, 130, 150,
           180, 190, 170, 165],
    'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
    columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
df_1 = data[data['Label'] == 'green']
h_mu_1 = df_1['Height'].values.mean()
h_sigma_1 = df_1['Height'].values.std()
w_mu_1 = df_1['Weight'].values.mean()
w_sigma_1 = df_1['Weight'].values.std()
f_mu_1 = df_1['Foot'].values.mean()
f_sigma_1 = df_1['Foot'].values.std()
df_2 = data[data['Label'] == 'red']
h_mu_2 = df_2['Height'].values.mean()
h_sigma_2 = df_2['Height'].values.std()
w_mu_2 = df_2['Weight'].values.mean()
w_sigma_2 = df_2['Weight'].values.std()
f_mu_2 = df_2['Foot'].values.mean()
f_sigma_2 = df_2['Foot'].values.std()
```

Python Code for Cond. Probabilities

```
from scipy.stats import norm
h, w, f = 6, 160, 10
p_green = 0.5; p_red = 0.5
prob_h_green = norm.pdf((h - h_mu_1)/h_sigma_1)
prob_w_green = norm.pdf((w - w_mu_1)/w_sigma_1)
prob_f_green = norm.pdf((f - f_mu_1)/f_sigma_1)
prob_h_red = norm.pdf((h - h_mu_2)/h_sigma_2)
prob_w_red = norm.pdf((w - w_mu_2)/w_sigma_2)
prob_f_red = norm.pdf((f - f_mu_2)/f_sigma_2)
# unnormalized probabilities
posterior_red = p_red *prob_h_red *prob_w_red *prob_f_red
posterior_green = p_green *prob_h_green *prob_w_green *prob_f_green
normalized_red = posterior_red /(posterior_red + posterior_green)
normalized_green = posterior_green /(posterior_red + posterior_green)
ipdb> normalized_red
0.96
```

$$x^* = (H = 6, W = 160, F = 10)$$

 $\mapsto \text{red}$

Python Code for Naive Bayesian

```
import numpy as np
import pandas as pd
from sklearn.naive_bayes import GaussianNB
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],
        'Label': ['green', 'green', 'green', 'green',
                         'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                            6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                                 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
X = data[['Height', 'Weight', 'Foot']].values
Y = data[['Label']].values
NB_classifier = GaussianNB().fit(X, Y)
new_instance = np.asmatrix(np.asmatrix([6, 160, 10])
prediction = NB_classifier.predict(new_instance)
ipdb> prediction[0]
red
```

Naive Bayesian: IRIS

```
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
url = r'https://archive.ics.uci.edu/ml/' + \
           r'machine-learning-databases/iris/iris.data'
iris_feature_names = ['sepal-length', 'sepal-width',
                            'petal-length', 'petal-width']
data = pd.read_csv(url, names=['sepal-length', 'sepal-width',
                         'petal-length', 'petal-width', 'Class'])
class_labels = ['Iris-versicolor', 'Iris-virginica']
data = data[data['Class'].isin(class_labels)]
X = data[iris_feature_names].values
le = LabelEncoder()
Y = le.fit_transform(data['Class'].values)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
                                       test_size=0.5, random_state=3)
NB_classifier = GaussianNB().fit(X_train, Y_train)
prediction = NB_classifier.predict(X_test)
error_rate = np.mean(prediction != Y_test)
ipdb> error_rate
0.04
```

Concepts Check:

- (a) conditional probability
- (b) Bayes formula
- (c) prior and posterior probabilities
- (d) feature independence assumption
- (e) naive bayesian classification
- (f) discrete cases
- (g) continuous case