КОНТРОЛЬНІ РОБОТИ З МАТЕМАТИКИ. 10 КЛАС. ПРОФІЛЬНИЙ РІВЕНЬ

Н. С. Біла, м. Славута, Хмельницька обл.

ГЕОМЕТРІЯ

Систематизація й узагальнення фактів і методів планіметрії

Контрольна робота № 1

Варіант 1

1. (0,5 бала) Укажіть неправильне твердження.

A	1	Б	В	Γ
Діаго	налі	Діагоналі	Діагона-	Діа-
паралел	ограма	квадрата	лі ромба	гоналі
перетин	аються	перетина-	рівні	прямо-
і точкої	ю пере-	ються під		кутника
тину ді	ляться	прямим		рівні
нав	піл	кутом		

2. (*0,5 бала*) Чому дорівнює радіус кола, описаного навколо правильного трикутника зі стороною 12 см?

A	Б	В	Γ
$12\sqrt{3}$ cm	$6\sqrt{3}$ cm	$4\sqrt{3}$ cm	$2\sqrt{3}$ cm

3. (0,5 бала) Катети прямокутного трикутника дорівнюють 5 і 12. Чому дорівнює синус кута, що лежить проти меншого катета?

A	Б	В	Γ
5	5	$\underline{12}$	12
$\overline{13}$	$\overline{12}$	$\overline{13}$	5

4. (0,5 бала) Середня лінія рівнобічної трапеції, у яку можна вписати коло, дорівнює 12 см. Знайдіть бічну сторону трапеції.

A	Б	В	Γ
6 см	12 см	24 см	Не можна
			визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між фігурою (1-4) та її площею у см² (A-Д).

1	Ромб, діагоналі якого дорівню-	Α	84 см ²
	ють 4 см і 6 см		
2	Площа трикутника зі сторонами	Б	50 см2
	13 см, 14 см, 15 см		
3	Паралелограм, сторони якого	В	48 cm ²
	дорівнюють 8 см і 12 см, а кут		
	між ними — 30°		
4	Рівнобічна трапеція, основи	Γ	12 см ²
	якої дорівнюють 2 см і 8 см,		
	бічна сторона — 5 см		
		Д	20 см ²

- **6.** (*1 бал*) Перпендикуляр, проведений із точки перетину діагоналей ромба до його сторони, ділить її на відрізки 3 см і 12 см. Знайдіть площу ромба.
- 7. (2 бали) Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці M, DC:CM=3:5, BC менша основа трапеції. Сума основ трапеції дорівнює 26 см. Знайдіть BC.
- **8.** (2 бали) Бісектриса прямого кута прямокутного трикутника ділить гіпотенузу на відрізки завдовжки 15 см і 20 см. Знайдіть площу трикутника.
- 9. (3 бали) Діагональ рівнобічної трапеції перпендикулярна до бічної сторони, а основи дорівнюють 28 см і 100 см. Знайдіть довжини відрізків, на які висота трапеції, проведена з вершини тупого кута, ділить діагональ.

Варіант 2

1. (0,5 бала) Укажіть неправильне твердження.

A	Б	В	Γ
Протилеж-	Діагоналі тра-	Діагоналі	Діагона-
ні сторони	пеції перетина-	прямо-	лі ромба
парале-	ються і точкою	кутника	є бісек-
лограма	перетину ді-	рівні	трисами
рівні	ляться навпіл		його ку-
			тів

2. (0,5 бала) Знайдіть радіус кола, описаного навколо трикутника ABC, якщо $AB = 6\sqrt{3}$ см, $\angle C = 60^{\circ}$.

A	Б	В	Г
6 см	8 см	12 см	16 см

3. (0,5 бала) Катети прямокутного трикутника дорівнюють 5 і 12. Чому дорівнює синус кута, що лежить проти більшого катета?

A	Б	В	Γ
5	5	12	12
$\overline{13}$	$\overline{12}$	$\overline{13}$	$\frac{}{5}$

4. (0,5 бала) Бічні сторони трапеції дорівнюють 3 см і 7 см. Знайдіть середню лінію трапеції, якщо в неї можна вписати коло.

A	Б	В	Γ
4 см	5 см	6 см	Не можна
			визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між фігурою (1-4) та її площею (A-Д).

1	Паралелограм, висоти якого дорівнюють 3 см і 4 см, кут між ними — 30°	A	80 см ²
2	Трикутник, дві сторони якого дорівнюють 3 см і 2 см, а кут між ними — 30°	Б	24 см ²
3	Прямокутник, бісектриса кута якого ділить його сторону на відрізки 2 см і 8 см, якщо рахувати від вершини протилежного кута	В	3 см ²
4	Рівнобічна трапеція з основами 2 см і 6 см, гострий кут якої при основі дорівнює 45°	Γ	12 см ²
		Д	8 cm ²

- **6.** (1 бал) Перпендикуляр, проведений із точки перетину діагоналей ромба до його сторони, ділить її на відрізки 4 см і 25 см. Знайдіть площу ромба.
- **7.** (2 бали) Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці O. Знайдіть AB, якщо AO = 18 см, BC: AD = 5:9.
- **8.** (2 бали) Бісектриса гострого кута прямокутного трикутника ділить катет на відрізки завдовжки 6 см і 10 см. Знайдіть площу трикутника.

9. (3 бали) Менша діагональ прямокутної трапеції ділить її тупий кут навпіл, а другу діагональ ділить у відношенні 5:2, рахуючи від вершини гострого кута. Знайдіть периметр трапеції, якщо її менша бічна сторона дорівнює 12 см.

Контрольна робота №2

Варіант 1

1. (0,5 бала) Знайдіть координати середини відрізка AB, де A(-3;0), B(1;-8).

A	Б	В	Γ
(-3;7)	(-1;-4)	(-2;-2)	(-6;14)

2. (0,5 бала) Знайдіть скалярний добуток векторів \vec{a} і \vec{b} , якщо $\vec{a}(-1;3)$ і $\vec{b}(0;5)$.

A	Б	В	Γ
11	-15	15	0

3. (0,5 бала) Діагоналі паралелограма ABCD перетинаються в точці O. Виразіть вектор \overrightarrow{BC} через $\overrightarrow{AO} = \overrightarrow{a}$ і $\overrightarrow{OB} = \overrightarrow{b}$.

A	АБ		Γ
$\vec{a} + \vec{b}$	$\vec{b} - \vec{a}$	$\vec{a} - \vec{b}$	$\frac{1}{2}(\vec{a}+\vec{b})$

4. (0,5 бала) Знайдіть відстань від центра кола, заданого рівнянням $(x-2)^2 + (y+3)^2 = 25$, до точки (-2;0).

A	Б	В	Γ
25	$\sqrt{5}$	5	7

5. (За кожну відповідність 0,5 бала) Установіть відповідність між геометричним перетворенням (1-4) над колом, заданим рівнянням $(x-3)^2 + (y+1)^2 = 3$, та рівнянням його образу $(A-\Pi)$ за цього геометричного перетворення.

	(11 д) он двого теометри мего перетверени				
1	Паралельне перенесення, задане формулами $x' = x - 1, y' = y + 1$	A	$(x+3)^2 + (y+1)^2 = 3$		
2	Симетрія відносно початку координат	Б	$\left(x-2\right)^2+y^2=3$		
3	Симетрія відносно осі Ox	В	$(x+3)^2 + (y-1)^2 = 3$		
4	Симетрія відносно осі <i>Оу</i>	Γ	$(x+3)^2 + (y+1)^2 = 3$		
		Д	$(x-3)^2 + (y-1)^2 = 3$		

- **6.** (16ал) Знайдіть координати вершини A паралелограма ABCD, якщо B(5;5), C(8;-1), D(6;-2).
- **7.** (1 бал) Пряма проходить через точку A(4;2) і має кутовий коефіцієнт 0,75. Знайдіть рівняння прямої.
- **8.** (2 бали) Вершинами трикутника є точки D(1;3), E(-6;3), F(-8;-1). Знайдіть довжину медіани DA трикутника DEF.
- **9.** (2 бали) На стороні CD паралелограма ABCD позначено точку M таку, що CM: MD = 2:3. Виразіть вектор \overrightarrow{AM} через вектори \vec{a} і \vec{b} , де $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AD}$.
- **10.** (2 бали) Вектори \vec{a} і \vec{c} утворюють кут 60° , $|\vec{a}|=1, \ |\vec{c}|=2.$ Знайдіть $|2\vec{a}-3\vec{c}|$.

Варіант 2

1. (0,5 бала) Знайдіть координати середини відрізка AB, де A(-5;6), B(1;-10).

A	А Б		Γ	
(-6;-4)	(-4;8)	(-3;-2)	(-2;-2)	

2. (0,5 бала) Знайдіть скалярний добуток векторів \vec{a} і \vec{b} , якщо $\vec{a}(0;9)$ і $\vec{b}(-1;2)$.

A	Б	В	Γ
-18	-15	18	0

3. (0,5 бала) Діагоналі паралелограма ABCD перетинаються в точці O. Виразіть вектор \overrightarrow{DC} через $\overrightarrow{AO} = \vec{a}$ і $\overrightarrow{OB} = \vec{b}$.

A	Б	В	Γ
$\vec{a} + \vec{b}$	$\vec{a} - \vec{b}$	$\frac{1}{2}(\vec{a}+\vec{b})$	$\vec{b} - \vec{a}$

4. (0,5 бала) Знайдіть відстань від центра кола, заданого рівнянням $(x+2)^2 + (y-1)^2 = 16$, до точки (3;-1).

A	Б	В	Γ	
$\sqrt{29}$	29	5	1	

5. (За кожну відповідність 0,5 бала) Установіть відповідність між геометричним перетворенням (1-4) над колом, заданим рівнянням $(x-2)^2 + (y-1)^2 = 5$, та рівнянням його образу (A-Д) за цього геометричного перетворення.

1	Паралельне перенесення, задане формулами $x' = x - 1, y' = y + 1$	A	$(x-1)^2 + (y-2)^2 = 5$
2	Симетрія відносно початку координат	Б	$\left(x-3\right)^2+y^2=5$
3	Симетрія відносно осі <i>Ох</i>	В	$(x-2)^2 + (y+1)^2 = 5$
4	Симетрія відносно осі <i>Оу</i>	Г	$(x+2)^2 + (y+1)^2 = 5$
		Д	$(x+2)^2 + (y-1)^2 = 5$

- **6.** (16ал) Знайдіть координати вершини C паралелограма ABCD, якщо A(-3;3), B(-1;4), D(1;1).
- **7.** (1 бал) Пряма проходить через точку B(-8;2) і має кутовий коефіцієнт 0,25. Знайдіть рівняння прямої.
- **8.** (2 бали) Вершинами трикутника є точки A(-3;1), B(2;-2), C(-4;6). Знайдіть довжину медіани AM трикутника ABC.
- **9.** (2 бали) На сторонах AB і BC паралелограма ABCD позначено відповідно точки M і K такі, що AM:MB=1:2, BK:KC=2:3. Виразіть вектор \overline{KM} через вектори \vec{a} і \vec{b} , де $\vec{a}=\overline{AB}$, $\vec{b}=\overline{AD}$.
- **10.** (2 бали) Вектори \vec{a} і \vec{c} утворюють кут $120^{\circ}, \ |\vec{a}|=9, \ |\vec{c}|=5.$ Знайдіть $|\vec{a}-\vec{c}|.$

Вступ до стереометрії Варіант 1

1. (*0,5 бала*) Скільки різних площин можна провести через три точки, що не лежать на одній прямій?

A	Б	В	Γ	Д
Одну	Дві	Жодної або безліч	Жодної	Безліч

- 2. (0,5 бала) Укажіть неправильне твердження.
- А Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку
 - Б Через пряму і точку можна провести площину, і тільки одну
 - В Якщо дві точки прямої належать площині, то вся пряма належить цій площині
 - Г Через дві прямі, що перетинаються, можна провести площину, і тільки одну
 - Д Через дві точки простору можна провести одну пряму

3. $(0.5 \, 6ana)$ Задано чотирикутник ABCD і точку K, що не лежить у його площині. Визначте пряму перетину площин KAB і KAC.

A	Б	В	Γ	Д
AB	KC	AD	KA	AC

4. (0,5 бала) Пряма лежить у площині α . Скільки точок прямої належить площині α ?

A	Б	В	Γ	Д
Одна	Дві	Три	Безліч	Жодної

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між точкою перетину прямої та площини (1-4) і прямою (A-Д), на якій вона міститься.

1	Точка перетину прямої MK із площиною ABC	A	BC
2	Точка перетину прямої MK із площиною $A_1B_1C_1$	Б	AD
3	Точка перетину прямої C_1K із площиною ABC	В	AB
4	Точка перетину прямої $D_1 M$ із площиною ABC	Г	DC
		Д	A_1B_1

- **6.** (1 бал) Задано три точки A, B, C. Скільки площин можна провести через них, якщо AB=4 см, BC=3 см, AC=7 см?
- 7. (2 бали) Площини α і β перетинаються по прямій n. Пряма a лежить у площині α , а пряма b у площині β . Прямі a і b перетинаються у точці K. Доведіть, що точка K належить прямій n.
- **8.** (2 бали) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Побудуйте лінію перетину площин MKC і $A_1B_1C_1$.

9. (3 бали) Задано куб $ABCDA_1B_1C_1D_1$. Побудуйте переріз куба площиною, яка проходить через точки A, B, C_1 . Знайдіть периметр і площу перерізу, якщо ребро куба дорівнює 4 см.

Варіант 2

1. (0,5 бала) Скільки різних площин можна провести через пряму і точку, що належить прямій?

A	Б	В	Г	Д
Одну	Дві	Жодної	Одну або безліч	Безліч

- 2. (0,5 бала) Укажіть правильне твердження.
- А Якщо дві точки прямої належать площині, то пряма перетинає цю площину
 В Через будь-яку пряму можна провести площину, і до того ж тільки одну
 В Якщо дві площини перетинаються, то вони мають тільки одну спільну точку
 Г Якщо дві прямі мають спільну точку, то через них можна провести одну площину
 Д Через дві точки в просторі можна провести безліч прямих
- **3.** (0,5 бала) Задано паралелограм ABCD і точку P, що не лежить у його площині. Визначте пряму перетину площин PAB і PAD.

A	Б	В	Γ	Д
PA	PC	AB	PD	AD

4. (0,5 бала) Точка A належить площині α і β . Скільки спільних точок мають ці площини?

A	Б	В	Γ	Д
Одну	Дві	Три	Чотири	Безліч

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між точкою перетину прямої та площини (1-4) і прямою (A-Д), на якій вона міститься.

1	Точка перетину прямої MK із площиною ABC	A	DC
2	Точка перетину прямої MK із площиною $A_1B_1C_1$	Б	AD
3	Точка перетину прямої C_1K із площиною ABC	В	AB
4	Точка перетину прямої B_1M із площиною ABC	Γ	A_1D_1
		Д	BC

- **6.** (1 бал) Задано три точки A, B, C. Скільки площин можна провести через них, якщо AB=5 см, BC=6 см, AC=10 см?
- 7. (2 бали) Площини α і β перетинаються по прямій m. Пряма n лежить у площині α і перетинає площину β у точці M. Доведіть, що точка M лежить на прямій m.
- **8.** (2 бали) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Побудуйте лінію перетину площин MKC і ABC.

9. (3 бали) Задано куб $ABCDA_1B_1C_1D_1$. Побудуйте переріз куба площиною, яка проходить через точки B_1 , C, D. Знайдіть периметр і площу перерізу, якщо ребро куба дорівнює 2 см.

Паралельність прямих і площин Варіант 1

1. (0,5 бала) Скільки можна провести прямих, паралельних заданій площині через точку, яка не належить цій площині?

A	Б	В	Γ	Д
Одну	Дві	Жодної	Три	Безліч

2. (0,5 бала) Яке з наведених тверджень є ознакою паралельності прямих у просторі?

A	Дві прямі паралельні в просторі, якщо вони лежать в одній площині і не перетинаються
Б	Дві прямі, паралельні до однієї площини, паралельні
В	Якщо дві прямі не перетинаються, то вони паралельні
Γ	Через дві паралельні прямі можна провести площину, і тільки одну
Д	Дві прямі, паралельні третій прямій, паралельні між собою

3. (0,5 бала) Задано паралельні прямі a і b. Скільки існує площин, які проходять через пряму a і паралельні прямій b?

A	Б	В	Γ	Д
Жодної	Одна	Дві	Три	Безліч

4. (0,5 бала) Точки A, B, C, D не лежать в одній площині. Як розміщені прямі AB і CD?

A	Б	В	Γ	Д
Пара-	Перети-	Лежать	Мимо-	Перети-
лельні	наються	в одній	біжні	наються
		площині		або па-
				ралельні

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між фігурами (1–4) та їхнім взаємним розташуванням (А–Д).

1	Прямі АВ і АС	A	Паралельні
2	Пряма AB і площина CDD_1	Б	Перетинаються в точці A
3	Прямі AB і DC_1	В	Мимобіжні
4	Пряма DC і площина BB_1C_1	Г	Перетинаються в точці C
		Д	Перетинаються в точці <i>В</i>

- **6.** (1 бал) Точка P не належить площині паралелограма ABCD. Доведіть, що пряма AB паралельна площині PCD.
- 7. (2 бали) Через кінці відрізка AB і його середину M проведено паралельні прямі, які перетинають площину α в точках A_1 , B_1 , M_1 відповідно. Знайдіть довжину відрізка MM_1 , якщо $AA_1 = 10$ см, $BB_1 = 12$ см і відрізок AB перетинає площину α .
- **8.** (2 бали) Площина α , паралельна стороні BC трикутника ABC, перетинає його сторони AB і AC у точках M і K відповідно. MK = 5 см, AK : KC = 3 : 4. Знайдіть довжину сторони BC трикутника.
- **9.** (3 бали) Через вершину A паралелограма ABCD проведено площину, через точки B, C, D паралельні прямі, які перетинають цю площину в точках B_1 , C_1 , D_1 . Знайдіть BB_1 , якщо $DD_1 = 14$ см, $CC_1 = 18$ см.

Варіант 2

1. (0,5 бала) Скільки спільних точок мають пряма, паралельна заданій площині, і пряма, яка належить цій площині?

A	Б	В	Γ	Д
Одну	Дві	Жодної або безліч	Жодної	Безліч

- **2.** (0,5 бала) Яке з наведених тверджень є ознакою паралельності прямої й площини в просторі?
- А Якщо пряма і площина не перетинаються, то вони паралельні

 В Якщо пряма, яка не належить площині, паралельна якій-небудь прямій у цій площині, то вона паралельна і площині

 В Пряма і площина паралельні, якщо вони перетинаються в одній точці

- Якщо пряма в площині паралельна якій-небудь прямій у цій площині, то вона паралельна площині
 Дві площини, паралельні третій, паралельні між собою
- **3.** (0,5 бала) Задано мимобіжні прямі a і b. Скільки існує площин, які проходять через пряму a і паралельні прямій b?

A	Б	В	Γ	Д
Жодної	Одна	Дві	Три	Безліч

4. (0,5 бала) Точки *K*, *P*, *M*, *O* не лежать в одній площині. Як розміщені прямі *KP* і *MO*?

A	Б	В	Γ	Д
Пара-	Перети-	Лежать	Мимо-	Немож-
лельні	наються	в одній	біжні	ливо ви-
		площині		значити

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між фігурами (1-4) та їхнім взаємним розташуванням (A-Д).

1	Прямі ВС і ВВ	A	Паралельні
2	Пряма BB_1 і площина CDD_1	Б	Перетинаються в точці A
3	Π рямі BB_1 і DC	В	Перетинаються в точці <i>С</i>
4	Пряма CC_1 і площина ABC	Г	Мимобіжні
		Д	Перетинаються в точці <i>В</i>

- **6.** (1 бал) Точка K не належить площині трапеції ABCD ($BC \parallel AD$). Доведіть, що пряма BC паралельна площині AKD.
- **7.** (2 бали) Через кінці відрізка AP і його середину C проведено паралельні прямі, які перетинають площину α в точках A_1 ,

- P_1 , C_1 відповідно. Знайдіть довжину відрізка CC_1 , якщо $AA_1=8$ см, $PP_1=14$ см і відрізок AP перетинає площину α .
- 8. (2 бали) Площина α , паралельна стороні AB трикутника ABC, перетинає його сторони BC і AC у точках K і O відповідно. AB=12 см, BK:KC=1:5. Знайдіть довжину відрізка OK.
- 9. (3 бали) Задано паралелограм і площину, що не перетинає його. Через вершину паралелограма проведено паралельні відрізки, які кінцями впираються у площину. Довжини трьох послідовних відрізків дорівнюють 15 см, 18 см і 33 см. Обчисліть довжину четвертого відрізка.

Паралельність площин. Властивості паралельного проектування

Варіант 1

1. (0,5 бала) Скільки площин, паралельних площині α , можна провести через деяку точку A?

A	Б	В	Γ	Д
Жодної	Дві	Безліч	Одну	Одну або жодної

2. (0,5 бала) Укажіть правильне твердження.

A	Якщо в одній із площин є пряма, паралель-
	на прямій, що належить іншій площині, то
	площини паралельні
Б	Паралельні відрізки фігури зображуються
	на площині паралельними прямими
В	Паралельною проекцією трапеції є парале-
	лограм
Г	За паралельного проектування величини
	кутів зберігаються
Д	Відрізки паралельних прямих, що містяться

3. (0,5 бала) Яка фігура не може бути паралельною проекцією ромба?

між двома паралельними площинами, рівні

A	Б	В	Γ	Д
Парале-	Ромб	Прямо-	Трапе-	Відрізок
лограм		кутник	ція	

4. (0,5 бала) Користуючись зображенням куба $ABCDA_1B_1C_1D_1$, укажіть пару паралельних площин.

A	Б	В	Γ	Д
ABC	ABC	ABC	AA_1D_1	$A_1B_1C_1$
i A_1BB_1	i $B_1C_1D_1$	i DCC_1	i $\overrightarrow{DCC_1}$	i AA_1B_1

5. (За кожну відповідність 1 бал) Установіть відповідність між відрізком (1–4) та його довжиною (А–Д).

1	A_1B_1 — проекція відрізка AB на площину α . $AB=10$ см. Точка C лежить на відрізку AB . $AC=5$ см, $A_1B_1=6$. Знайдіть довжину відрізка A_1C_1	A	10 см
2	Відрізок прямої AB поділений точкою C так, що $AC:CB=2:3$. $A_1,\ B_1,\ C_1$ — проекції точок A , $B,\ C$ на площину α . Знайдіть A_1C_1 , якщо $A_1B_1=25$ см	Б	3 см
3	Задано паралельні площини α і β . Точки A і B лежать у площині β , а точки C і D — у площині β . Відрізки AC і BD перетинаються в точці O . Знайдіть AO , якщо $AB=6$ см, $DC=4$ см, $OC=12$ см	В	5 см
4	Площини α і β паралельні, точки A і B лежать у площині α , точки M і P — у площині β , причому $AM \parallel BP$, $AM = 5$ см. Знайдіть довжину відрізка BP	Г	15 см
		Д	18 см

- **6.** (1 бал) Задано зображення ромба ABCD. Точка K належить стороні BC. Побудуйте зображення перпендикуляра, проведеного з точки K до прямої AC.
- **7.** (2 бали) Доведіть, що паралельні площини перетинаються січною площиною по паралельних прямих.
- **8.** (2 бали) Дві площини паралельні між собою. Із точки K, що не лежить у цих пло-

- щинах або між ними, проведено дві прямі, які перетинають ці площини відповідно в точках A_1 і A_2 та B_1 і B_2 . $KA_1=3$ см, $B_1B_2=12$ см, $A_1A_2=KB_1$. Знайдіть KA_2 .
- **9.** (3 бали) У кубі $ABCDA_1B_1C_1D_1$ проведено переріз через середини ребер A_1B_1 , A_1D_1 і вершину A. Побудуйте переріз через середину D_1C_1 , паралельно заданому перерізу. Знайдіть його площу, якщо ребро куба дорівнює 4 см.

Варіант 2

1. (0,5 бала) Якщо дві площини паралельні одній і тій самій прямій, то вони...

A	Б	В	Γ	Д
збіга-	пара-	перети-	паралельні	немож-
ються	лельні	нають-	чи перети-	ливо ви-
		ся	наються	значити

2. (0,5 бала) Укажіть неправильне твердження.

A	Якщо дві прямі, що перетинаються однією площиною, відповідно паралельні двом прямим другої площини, то ці площини паралельні
Б	Площини називають паралельними, якщо
	вони не перетинаються
В	Через точку поза заданою площиною мож-
	на провести площину, паралельну заданій,
	і до того ж тільки одну
Γ	За паралельного проектування величини
	кутів зберігаються
Д	За паралельного проектування зберігається
	відношення відрізків однієї прямої або па-
	ралельних прямих

3. (0,5 бала) Яка фігура не може бути паралельною проекцією квадрата?

A	Б	В	Γ	Д
Парале-	Ромб	Трапе-	Квадрат	Відрізок
лограм		ція		

4. (0,5 бала) Користуючись зображенням куба $ABCDA_1B_1C_1D_1$, укажіть, які з пар прямих, що належать паралельним площинам BAA_1 і D_1C_1C , є мимобіжними.

A	Б	В	Γ	Д
AB	AB	AD	AA_1	BB_1
i DD_1	i C_1D_1	i C_1D_1	i $\overrightarrow{CC_1}$	i $\overrightarrow{CC_1}$

5. (За кожну відповідність 1 бал) Установіть відповідність між відрізком (1–4) та його довжиною (А–Д).

	010 (11 円).		
на п ка <i>I</i> <i>AK</i>	H_1 — проекція відрізка AM площину α . AM = 8 см. Точ- K належить відрізку AM . = 4 см, A_1M_1 = 10 см. Зна-	A	6 см
точк α, т β, п	щини α і β паралельні, ки C і D лежать у площині гочки M і P — у площині кричому $CP \parallel DP$, $CD = 6$ см. йдіть довжину відрізка MP	Б	10 см
лилі <i>AM</i> проє на п	різок прямої AB поді- м точкою M так, що $:MB=1:2.\ A_1,\ B_1,\ M_1$ — екції точок $A,\ B,\ M$ млощину $\alpha.$ Знайдіть M_1B_1 , по $A_1B_1=15$ см	В	5 см
пере <i>ABC</i> рону Знай	паралельні площини α і β стинають сторону BA кута C у точках D і D_1 , а сто- C BC — у точках E і E_1 . Айдіть DE , якщо $BD=3$ см, $E=15$ см, $E=10$ см	Γ	2 см
		Д	18 см

- **6.** (1 бал) Задано зображення квадрата ABCD. Побудуйте зображення перпендикуляра, проведеного з точки перетину діагоналей квадрата до сторони AB.
- **7.** (2 бали) Доведіть, що відрізки паралельних прямих, які відтинаються паралельними площинами, рівні.
- 8. (2 бали) Через точку O, що лежить між паралельними площинами α і β , проведено прямі a і b, які перетинають площину α відповідно в точках A_1 і B_1 , а площину β у точках A_2 і B_2 . Обчисліть OB_1 , якщо $A_1B_1=15\,$ см, $A_2B_2=27\,$ см, $B_1B_2=14\,$ см.

9. (3 бали) У кубі $ABCDA_1B_1C_1D_1$ проведено переріз через AC і середину BB_1 . Побудуйте переріз через середину A_1D_1 паралельно заданому перерізу. Знайдіть його периметр, якщо ребро куба дорівнює 4 см.

Перпендикулярність прямої й площини. Кут між прямими

Варіант 1

- 1. (0,5 бала) Укажіть неправильне твердження.
- А Дві прямі називають перпендикулярними, якщо вони перетинаються під прямим кутом В Якщо пряма перпендикулярна до якої-небудь прямої, що лежить у площині, то вона перпендикулярна і до площини
 В Дві прямі, перпендикулярні до однієї і тієї площини, паралельні
 Г Якщо пряма перпендикулярна до однієї з двох паралельних прямих, то вона перпендикулярна і до другої прямої
 Д Перпендикуляр коротший за довільну похи-
 - **2.** (0,5 бала) Скільки прямих, перпендикулярних до прямої, можна провести у просторі через точку, що лежить на заданій прямій?

лу, проведену до площини з тієї самої точки

A	Б	В	Γ	Д
Одну	Дві	Три	Жодної	Безліч

3. (*0,5 бала*) Якщо відрізок *AO* — перпендикуляр до площини α , *AB* — похила, то...

A	Б	В	Γ	Д
AO = AB	AO < AB	AO > AB	BO > AB	BO = AB

4. (0,5 бала) Із точки A до площини проведено перпендикуляр і похилу, довжина якої дорівнює 20 см. Кут між похилою та її проекцією на площину становить 60° . Знайдіть довжину перпендикуляра.

A	Б	В	Γ	Д
10 см	$10\sqrt{2}$ cm	$10\sqrt{3}$ cm	$\sqrt{20}$ cm	$20\sqrt{3}$ см

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між кутом (1-4) та його градусною мірою (A-Д).

1	Кут між прямими AB_1 і AD_1	A	0 °
2	Кут між прямими AA_1 і DC_1	Б	30°
3	Кут між прямими AC і B_1D_1	В	45°
4	Кут між прямими BB_1 і DD_1	Г	60°
		Д	90°

- **6.** (1 бал) У ромбі ABCD O точка перетину діагоналей. Точка M не належить площині ромба і MD = MB. Доведіть, що BD перпендикуляр до площини MOC.
- 7. (2 бали) Через вершину C прямокутного трикутника ABC ($\angle ACB = 90^{\circ}$) до його площини проведено перпендикуляр KC. Знайдіть довжину AC, якщо AB = 15 см, KC = 5 см, KB = 13 см.
- **8.** (2 бали) Сторона рівностороннього трикутника дорівнює $5\sqrt{3}$ см. Точка A рівновіддалена від кожної вершини трикутника на 13 см. Обчисліть відстань від точки A до площини трикутника.
- 9. (3 бали) Із точки M до площини α проведено дві рівні взаємно перпендикулярні похилі MA і MB. Знайдіть кут між похилою MA та її проекцією на площину α , якщо кут між проекціями похилих дорівнює 120° .

Варіант 2

- 1. (0,5 бала) Укажіть неправильне твердження.
- А Якщо дві прямі, що перетинаються, паралельні відповідно двом перпендикулярним прямим, то вони теж перпендикулярні
- Б Пряма, перпендикулярна до однієї з двох паралельних площин, паралельна другій площині
- В Якщо пряма перпендикулярна до двох прямих, які лежать у площині і перетинаються, то вона перпендикулярна до заданої площини

- Г Кутом між мимобіжними прямими називають кут між прямими, які перетинаються і паралельні заданим мимобіжним прямим
- Д Перпендикуляр коротший за будь-яку похилу
- **2.** (0,5 бала) Як розміщені прямі, перпендикулярні до однієї і тієї площини?

A	Б	В	Γ	Д
Мимо-	Пара-	Перпен-	Перети-	Немож-
біжні	лельні	дику-	наються	ливо ви-
		лярні		значити

3. (0,5 бала) Із точки A до площини α проведено перпендикуляр AO і похилі AB і AC. Якщо AB=12 см, AC=7 см, то...

A	Б	В	Γ	Д
BO = OC	BO < OC	BO > OC	AO > AB	AB > OC

4. (0,5 бала) Із точки *А* до площини проведено перпендикуляр, довжиною 8 см і похилу. Кут між похилою та її проекцією на площину дорівнює 30°. Знайдіть довжину перпендикуляра.

A	Б	В	Γ	Д
16 см	$8\sqrt{2}$ cm	$8\sqrt{3}$ cm	8 см	$16\sqrt{3}$ см

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між кутом (1–4) та його градусною мірою (А–Д).

1	Кут між прямими AB_1 і DD_1	Α	30°
	Кут між прямими BC і A_1D_1	Б	0°
-	* *	D	
3	Кут між прямими BD і BC_1	В	45°
4	Кут між прямими BC і DD_1	Г	60°
		Л	90°

6. (1 бал) У паралелограмі $ABCD\ O$ — точка перетину діагоналей. Точка M не нале-

- жить площині паралелограма, MA = MC і MD = MB. Доведіть, що MO перпендикуляр до площини ABCD.
- 7. (2 бали) Через вершину A прямокутного трикутника ABC ($\angle ACB = 90^{\circ}$) до його площини проведено перпендикуляр AK. Знайдіть довжину AB, якщо BC = 5 см, KC = 17 см, KA = 8 см.
- **8.** (2 бали) Відстані від точки M до всіх вершин квадрата дорівнюють 13 см. Обчисліть відстань від точки M до площини квадрата, якщо сторона квадрата дорівнює 10 см.
- **9.** (3 бали) Із точки K до площини α проведено дві рівні похилі KM і KP, кут між якими дорівнює 60° . Знайдіть кут між похилою KM та її проекцією на площину α , якщо проекції похилих утворюють кут 120° .

Перпендикулярність площин. Кути між площинами

Варіант 1

1. (0,5 бала) Скільки площин, перпендикулярних до заданої площини, проходить через пряму, що не перпендикулярна до пієї площини?

A	Б	В	Γ	Д
Одна	Дві	Безліч	Жодної	Інша
				відповідь

2. (0,5 бала) MA — перпендикуляр до площини трикутника ABC. Як розміщені площини ABC і AMC?

A	Б	В	Γ	Д
Збіга-	Пара-	Перети-	Перпен-	Визна-
ються	лельні	наються,	дику-	чити
		але не	лярні	немож-
		перпенди-		ливо
		кулярні		

3. (0,5 бала) Трикутник ABC належить площині α . Точка D не належить цій площині, причому $BD \perp \alpha$. BM — висота трикутника ABC. Укажіть кут між площинами ACD і α (∂ub . puc. uac. ua

A	Б	В Г		Д
∠DAB	∠DMB	$\angle DCB$	$\angle MBD$	$\angle ABD$

4. (0,5 бала) Знайдіть відстань від вершини C куба $ABCDA_1B_1C_1D_1$ до площини AA_1D_1 , якщо ребро куба дорівнює 6 см.

A	Б	В	Γ	Д
12 см	3 см	6 см	$6\sqrt{2}$ cm	$6\sqrt{3}$ cm

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Точки M, K — середини бічних ребер куба. Установіть відповідність між кутом (1–4) та його градусною мірою (А–Д).

1	Кут між площинами ABC і $A_1B_1C_1$	A	0°
2	Кут між площинами <i>ABC</i> і <i>AMK</i>	Б	90°
3	Кут між площинами ABC і DCD_1	В	45°
4	Кут між площинами ABC і AB_1C_1	Γ	60°
		Д	$arctg \frac{1}{2}$

- **6.** (1 бал) AK перпендикуляр до площини прямокутника ABCD. Доведіть, що площини AKB і AKD перпендикулярні.
- **7.** (2 бали) Кінці відрізка, довжина якого дорівнює 24 см, належать двом перпендикулярним площинам. Відстані від кінців відрізка до лінії перетину цих площин

- відповідно дорівнюють 12 см і $12\sqrt{2}$ см. Обчисліть кути, утворені відрізком із цими плошинами.
- 8. (2 бали) Кут між площинами трикутників ABC і ABD дорівнює 45° . Трикутник ABC рівносторонній зі стороною $4\sqrt{3}$ см, трикутник ABD рівнобедрений, $AD = BD = \sqrt{14}$ см. Знайдіть довжину відрізка CD.
- **9.** (*3 бали*) Через сторону правильного трикутника проведено площину, яка утворює з площиною трикутника кут 30°. Знайдіть кути, які утворюють дві інші сторони трикутника з цією площиною.

Варіант 2

1. (0,5 бала) Пряма a перпендикулярна до площини β , а площина α паралельна прямій a. Як розміщені площини α і β ?

A	Б	В	Γ	Д
Пара-	Пер-	Перетина-	Пара-	Немож-
лельні	пенди-	ються під	лельні	ливо ви-
	кулярні	гострим	або збі-	значити
		кутом	гаються	

2. (0,5 бала) MO — перпендикуляр до площини ромба ABCD (O — точка перетину діагоналей ромба). Як розміщені площини BMO і CMO?

A	Б	В	Γ	Д
Збіга-	Пара-	Перетина-	Перпен-	Визна-
ються	лельні	ються, але	дику-	чити не-
		не перпен-	лярні	можливо
		дикулярні		

3. (0,5 бала) Прямокутний трикутник ABC ($\angle C = 90^{\circ}$). Точка K належить площині α , $BK \perp \alpha$. Укажіть кут між площинами ACK і α .

A	Б	В	Γ	Д
$\angle KAB$	∠KCB	$\angle KBC$	∠KBA	∠KAC

4. (0,5 бала) Знайдіть відстань від вершини A куба $ABCDA_1B_1C_1D_1$ до площини BB_1C_1 , якщо ребро куба дорівнює 4 см.

A	Б	В	Γ	Д
8 см	4 см	2 см	$4\sqrt{2}$ cm	$4\sqrt{3}$ cm

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Точки P, N — середини бічних ребер куба. Установіть відповідність між кутом (1—4) та його величиною (А—Д) і їх градусними мірами (А—Д).

1	Кут між площинами DA_1B_1 і DD_1C_1	A	0 °
2	Кут між площинами ABC і APN	Б	90°
3	Кут між площинами AA_1B_1 і DD_1C_1	В	45°
4	Кут між площинами AA_1B_1 і $A_1B_1C_1$	Γ	60°
		Д	$arctg \frac{1}{2}$

- **6.** (1 бал) *OP* перпендикуляр до площини квадрата *ABCD* (*O* точка перетину діагоналей квадрата). Доведіть, що площини *BOP* і *COP* перпендикулярні.
- 7. (2 бали) Із кінців відрізка, що належать двом взаємно перпендикулярним площинам, до лінії перетину цих площин проведено перпендикуляри, відстань між основами яких дорівнює 3 см. Проекції відрізка на ці площини дорівнюють $3\sqrt{2}$ см і $3\sqrt{3}$ см. Обчисліть кути, утворені відрізком із заданими площинами.
- **8.** (2 бали) Кут між площинами трикутників ABC і AKC дорівнює 60° . AC=24 см, BC=BA=20 см, KC=KC=15 см. Знайдіть довжину відрізка BK.

9. (*3 бали*) Через катет прямокутного рівнобедреного трикутника проведено площину, яка утворює з площиною трикутника кут 60°. Знайдіть кути, які утворюють дві інші сторони трикутника з цією площиною.

Координати і вектори в просторі

Варіант 1

1. (*0,5 бала*) Яка з наведених точок належить площині *Oxy*?

A	Б	В	Γ	Д
Mig(-1;6;2ig)	K(0;3;-9)	P(0;0;-2)	C(5;0;9)	B(4;-5;0)

2. (0,5 бала) Яка з точок є серединою відрізка AB, якщо A(1;-1;1), B(1;-1;1)?

A	Б	В	Γ	Д
C(2;-2;0)	D(1;-1;0)	M(-1;1;1)	K(0;1;-1)	N(2;0;1)

3. (0,5 бала) Знайдіть довжину відрізка AB, якщо A(1;0;-2), B(-1;2;0).

A	Б	В	С	Д
12	$2\sqrt{3}$	$3\sqrt{2}$	$2\sqrt{2}$	8

4. (0,5 бала) Знайдіть координати вектора \overrightarrow{AB} , якщо A(3;-5;0), B(-2;7;1).

A	Б	В
$\overrightarrow{AB}(1;-12;-1)$	$\overrightarrow{AB}ig(-5;12;1ig)$	$\overrightarrow{AB}(5;-12;-1)$
Г	Д	
$\overrightarrow{AB}(1;2;1)$	$\overrightarrow{AB}ig(-5;2;1ig)$	

5. (За кожну відповідність 0,5 бала) Установіть відповідність між векторами (1-4) і співвідношенням між ними (A-Д).

1	$\vec{a}(6;-9;3)$ i $\vec{b}(2;-3;1)$	A	Вектори перпендикулярні
2	$\vec{c}(-5;2;-7)$ i $\vec{d}(6;-4;3)$	Б	Вектори колінеарні
3	$\vec{m}(1;2;-1)$ i $\vec{n}(2;-3;-4)$	В	Вектори мають рівні довжини
4	$\vec{p}(2;-2;2)$ i $k(1;-3;\sqrt{2})$	Γ	Сума векторів дорівнює (1;-2;4)
		Д	Вектори рівні

6. (1 бал) Задано ABCD — паралелограм. A(-4;1;5), B(-5;4;2), C(3;-2;-1). Знайдіть координати вершини D.

- **7.** (1 бал) При яких значеннях a вектори $\vec{c}(2;-3;8)$ і $\vec{d}(-7;-2;a)$ перпендикулярні?
- **8.** (2 бали) Знайдіть на осі Oy точку, рівновіддалену від точок A(-3;7;4) і B(2;-5;-1).
- **9.** (*2 бали*) Задано вектори $\vec{a}(5;2;1)$ і $\vec{b}(0;-3;2)$. Знайдіть довжину вектора $\vec{c}=2\vec{a}-\vec{b}$
- **10.** (2 бали) Знайдіть кут між векторами \overline{AB} і \overline{CD} , якщо $A(1;0;2),\ B(1;\sqrt{3};3),\ C(-1;0;3),\ D(-1;-1;3).$

Варіант 2

1. (*0,5 бала*) Яка з наведених точок належить площині *Oyz*?

A	Б	В	Γ	Д
M(0;6;2)	K(9;3;-9)	P(3;0;0)	C(5;0;9)	B(4;-5;0)

2. (0,5 бала) Яка з точок є серединою відрізка AB, якщо A(6;-2;8), B(-2;6;-2)?

A	Б	В	Γ	Д
C(8;-8;10)	D(1;-1;0)	K(4;4;6)	M(2;2;3)	N(2;0;1)

3. (0,5 бала) Знайдіть довжину відрізка KP, якщо K(2;1;0), P(1;0;-1).

	. ,		,	
A	Б	В	C	Д
3	$2\sqrt{3}$	$\sqrt{3}$	12	$2\sqrt{2}$

4. (0,5 бала) Знайдіть координати вектора \overrightarrow{AB} , якщо A(1;-3;5), B(5;-1;3).

A	Б	В
$\overrightarrow{AB}ig(-4;-2;2ig)$	$\overrightarrow{AB}ig(4;-4;-2ig)$	$\overrightarrow{AB}ig(4;2;-2ig)$
Γ	Д	
$\overrightarrow{AB}(6;-4;8)$	$\overrightarrow{AB}ig(-5;2;1ig)$	

5. (За кожну відповідність 0,5 бала) Установіть відповідність між векторами (1-4) і співвідношенням між ними (A-Д).

1	$\vec{a}(7;-2;3)$ i $\vec{b}(0;-3;-1)$	A	Вектори перпендикулярні
2	$\vec{c}(-5;2;4)$ i $\vec{d}(2;-1;3)$	Б	Вектори колінеарні
3	$\vec{m}(1;2;-2)$ i $\vec{n}(0;0;3)$	В	Вектори мають рівні довжини
4	$\vec{p}(2;-3;5)$ i $\vec{k}(-6;9;-15)$	Γ	Сума векторів дорівнює (7;-5;2)
		Д	Вектори рівні

- **6.** (1 бал) Задано ABCD паралелограм, A(1;-2;3), B(2;3;-5), D(-4;5;1). Знайдіть координати вершини C.
- **7.** (1 бал) При яких значеннях a вектори $\vec{c}(-2;4;1)$ і $\vec{d}(a;-2;3)$ перпендикулярні?
- **8.** (2 бали) Знайдіть на осі Oz точку, рівновіддалену від точок A(-2;0;3) і B(0;2;-1).
- **9.** (2 бали) У трикутнику з вершинами A(-1;2;0), B(0;3;-1), C(2;1;-3). Знайдіть довжину медіани AM.
- **10.** (2 бали) Знайдіть кут між векторами \overrightarrow{CA} і \overrightarrow{DB} , якщо $A(2;-1;\sqrt{2})$, B(1;-2;0), C(1;-3;0), D(2;-2;0).

Геометричні перетворення

Варіант 1

1. (0,5 бала) Відносно якої точки симетричні точки C(3;5;6) і A(-1;-3;4)?

A	Б	В	Γ	Д
M(-2;4;-1)	K(4;8;2)	P(0;0;-2)	O(2;2;10)	B(1;1;5)

2. (0,5 бала) Сферу задано рівнянням $x^2 + (y-1)^2 + z^2 = 25$. Знайдіть координати її центра O і довжину радіуса R.

A	Б	В	Γ	Д
O(0;1;-1,)	O(0;1;-1,)	O(0;-1;1,)	O(0;-1;1,)	O(1;-1;0,)
$\hat{R} = 25$	R=5	R=5	$\hat{R} = 25$	R=5

3. (0,5 бала) Унаслідок гомотетії в початку координат трикутник ABC переходить у трикутник $A_1B_1C_1$. Знайдіть координати точки B_1 , якщо A(2;0;0), $A_1(6;0;0)$, B(0;-1;0), C(0;0;-9).

A	Б	В	Γ	Д
$B_{1}(0;3;0)$	$B_{1}(3;0;0)$	$B_1(0;0;-3)$	$B_1(-3;0;0)$	$B_1(0;-3;0)$

4. (0,5 бала) Яка з точок належить сфері $x^2 + (y-1)^2 + z^2 = 4$?

A	Б	В	Γ	Д
A(0;0;1)	B(2;0;-1)	C(4;0;0)	D(0;1;2)	E(-1;2;1)

5. (За кожну відповідність 0,5 бала) У прямокутній системі координат у просторі задано точку M(1;-4;8). Установіть відповідність між початком речення (1-4) і його закін-

ченням (А-Д) так, щоб утворилось правильне твердження.

1	Точка, симетрична точці М відносно початку ко-	A	$M_1(-1;-4;-8)$
	''		
	ординат, це точка		
2	Точка, симетрична точці	Б	$M_1(-1;4;-8)$
	М відносно площини		
	хОу, це точка		
3	Точка, симетрична точці	В	$M_1(1;4;-8)$
	M відносно осі Ox , це		
	точка		
4	Точка, симетрична точці	Г	$M_1(-1;-4;8)$
	М відносно площини		
	xOz, це точка		
		Д	$M_1(1;-4;-8)$

- **6.** (1 бал) Унаслідок паралельного перенесення точка A(-4;-6;2) переходить у точку K(2;3;-1). Знайдіть координати точки, у яку за цього паралельного перенесення переходить точка B(-4;3;2).
- **7.** (1 бал) Периметр правильного трикутника ABC дорівнює 21. Знайдіть скалярний добуток векторів $\overrightarrow{AB} \cdot \overrightarrow{CB}$.
- **8.** (*2 бали*) Знайдіть радіус і координати центра сфери, заданої рівнянням

$$x^2 + y^2 + z^2 + 6y - 2z = 26.$$

- **9.** (2 бали) Знайдіть площу трикутника, побудованого на векторах \vec{a} і \vec{b} , якщо ці вектори утворюють кут 60° і $\vec{a} \cdot \vec{b} = 4$.
- **10.** (2 бали) Знайдіть координати точки перетину прямої AB із віссю абсцис, якщо $A(1;-3;-1),\ B(2;-1;1).$

Варіант 2

1. (0,5 бала) Відносно якої точки симетричні точки M(20;-18;6) і K(-12;-2;4)?

A	Б	В
A(8;-20;10)	Oig(8;-10;5ig)	P(3;0;0)
Γ	Д	
C(4;-10;5)	B(16;-10;5)	

2. (0.5 бала) Сферу задано рівнянням $(x-2)^2 + (y+2)^2 + z^2 = 9$. Знайдіть координати її центра O і довжину радіуса R.

A	Б	В	Γ	Д
O(0;2;-2)	O(2;-2;0,)	O(-2;2;0)	O(2;-2;0)	O(-2;2;0,)
R=3	R = 3	R = 3	R = 9	R=9

3. (0,5 бала) Унаслідок гомотетії в початку координат трикутник ABC переходить у трикутник $A_1B_1C_1$. Знайдіть координати точки C_1 , якщо A(2;0;0), $A_1(8;0;0)$, B(0;-1;0), C(0;0;-2).

A	Б	В	C	Д
$C_1(0;0;-8)$	$C_1(0;0;8)$	$C_1(0;8;0)$	$C_1(8;0;0)$	$C_1(-8;0;0)$

4. (0,5 бала) Яка з точок належить сфері $x^2 + (y+2)^2 + z^2 = 9$?

A	Б	В	Γ	Д
A(0;0;1)	B(2;0;-1)	C(4;0;0)	D(6;-4;8)	Eig(-1;2;1ig)

5. (За кожну відповідність 0,5 бала) У прямокутній системі координат у просторі задано точку K(2;5;-8). Установіть відповідність між початком речення (1-4) і його закінченням (A-Д) так, щоб утворилось правильне твердження.

1	Точка, симетрична точці K відносно початку координат, це точка	A	K ₁ (2;-5;-8)
2	Точка, симетрична точ- ці K відносно площини xOy , це точка	Б	$K_1(-2;-5;8)$
3	Точка, симетрична точці K відносно осі Ox , це точка	В	$K_1(2;-5;8)$
4	Точка, симетрична точці K відносно площини xOz , це точка	Γ	$K_1(-2;-5;-8)$
		Д	$K_1(2;5;8)$

- **6.** (1 бал) Унаслідок паралельного перенесення точка H(-2;5;-1) переходить у точку N(2;-1;3). Знайдіть координати точки, у яку за цього паралельного перенесення переходить точка A(-2;3;1).
- **7.** (1 бал) Периметр правильного трикутника ABC дорівнює 18. Знайдіть скалярний добуток $\overrightarrow{AB} \cdot \overrightarrow{CA}$.

8. (*2 бали*) Знайдіть радіус і координати центра сфери, заданої рівнянням

$$x^2 + y^2 + z^2 - 2x + 4z = 4$$
.

- **9.** (2 бали) Знайдіть площу паралелограма, побудованого на векторах \vec{a} і \vec{b} , якщо ці вектори утворюють кут 30° і $\vec{a} \cdot \vec{b} = \sqrt{3}$.
- **10.** (2 бали) Знайдіть координати точки перетину прямої AB із віссю ординат, якщо A(2;4;1), B(-1;3;1).

Підсумкова робота

Варіант 1

- 1. (0,5 бала) Укажіть правильне твердження.
- А Через пряму і точку можна провести площину, і тільки одну

 Б Ортогональною проекцією трапеції на площину може бути прямокутник

 В Кут між мимобіжними прямими це кут між прямими, які перетинаються і паралельні заданим мимобіжним прямим

 Г Кут між паралельними прямою і площиною дорівнює 180°

 Д Через точку поза площиною можна провести безліч площин, паралельних заданій площині
 - **2.** (0,5 бала) Площини α і β паралельні. Пряма a перетинає площину α . Як розміщена ця пряма відносно площини β ?

A	Б	В	Γ	Д
Пара-	Лежить	Перети-	Залежить	Немож-
лельна	у пло-	нає пло-	від роз-	ливо ви-
площи-	щині	щину	міщення	значити
ні			прямої	

3. (0.5 бала) Знайдіть відстань від точки A(2;3;6) до осі Oz.

A	Б	В	Γ	Д
5	6	7	$\sqrt{13}$	$3\sqrt{5}$

4. $(0.5 \ бала)$ До площини квадрата ABCD проведено перпендикуляр DM. Сторона квадрата дорівнює 5 см. Знайдіть довжину проекції похилої MB.

A	Б	В	Γ	Д
$5\sqrt{2}$ см	5 см	3 см	4 см	$5\sqrt{3}$ cm

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$, ребро якого дорівнює 5 см. Установіть відповідність між кутом (1–4) та його градусною мірою (A–A).

1	Кут між прямими AB_1 і AD_1	A	0 °
2	Кут нахилу прямої AB_1 до площини ABC	Б	$arctg \frac{\sqrt{2}}{2}$
3	Кут між площинами ABC і $BB_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}$	В	45°
4	Кут між прямими BB_1 і DD_1	Г	60°
		Д	90°

- **6.** (1 бал) Задано $\vec{a}(0;1;1)$ і $\vec{b}(4;2;0)$. Знайдіть $|2\vec{a}+\vec{b}|$.
- 7. (2 бали) Задано трикутник ABC. Площина α , паралельна прямій AB, перетинає сторону AC у точці K, а сторону BC у точці M. Знайдіть AB, якщо KC=12 см, AC=18 см, KM=36 см.
- **8.** (2 бали) Знайдіть на осі Oy точки, віддалені від точки A(-6;4;8) на відстань 6.
- 9. (3 бали) Із точки до площини трикутника, сторони якого дорівнюють 13 см, 14 см і 15 см, проведено перпендикуляр довжиною 16 см. Основою цього перпендикуляра є вершина кута, що лежить проти сторони завдовжки 14 см. Обчисліть відстань від заданої точки до цієї сторони.

Варіант 2

1. (0,5 бала) Дві площини не можуть...

A	Б	В	Γ	Д
мати	не мати	мати рів-	мати рів-	мати рів-
безліч	спільних	но одну	но дві	но одну
спільних	точок	спільну	спільні	спільну
точок		точку	точки	пряму

2. (*0,5 бала*) Дві прямі перетинаються. Скільки площин можна провести через ці прямі?

A	Б	В	Г	Д
Жодної	Дві	Безліч	Одну	Безліч або одну

3. (0,5 бала) Знайдіть координати точки M, відносно якої симетричні точки B(-3;8;7) і C(-9;6;1).

A	Б	В
Mig(-6;7;4ig)	M(-12;14;8)	M(0;0;0)
Γ	Д	
M(3;1;13)	Mig(6;-7;-4ig)	

4. (0,5 бала) До площини квадрата ABCD проведено перпендикуляр AK. Сторона квадрата дорівнює 3 см. Знайдіть довжину проекції похилої KC.

A	Б	В	Γ	Д
$3\sqrt{2}$ cm	5 см	3 см	4 см	$3\sqrt{3}$ cm

5. (За кожну відповідність 0,5 бала) На рисунку зображено куб $ABCDA_1B_1C_1D_1$, ребро якого дорівнює 4 см. Установіть відповідність між кутом (1-4) та його градусною мірою (A-A).

1	Кут між прямими AA_1 і DC_1	A	0 °
2	Кут нахилу прямої AC_1 до площини ABC	Б	$arctg \frac{\sqrt{2}}{2}$
3	Кут між площинами ABC і $A_1B_1C_1$	В	45°
4	Кут між прямими BD і $A_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}$	Γ	60°
		Д	90°

6. (1 бал) Задано $\vec{a}(-2;4;1)$ і $\vec{b}(-2;2;0)$. Зна-йдіть $\left|\vec{a}-0,5\vec{b}\right|$

- 7. (2 бали) Задано трикутник ABC. Площина α , паралельна прямій AB, перетинає сторону AC у точці K, а сторону BC у точці M. Знайдіть AC, якщо KC=3 см, AB=12 см, KM=4 см.
- **8.** (2 бали) Знайдіть на осі Oz точки, віддалені від точки A(-4;0;6) на відстань 2.
- 9. (3 бали) Катети прямокутного трикутника дорівнюють 9 см і 12 см. Із вершини прямого кута побудовано перпендикуляр до площини трикутника завдовжки 3 см. Знайдіть відстані від кінців перпендикуляра до гіпотенузи.

ЛІТЕРАТУРА

- 1. *Державний* стандарт базової і повної загальної середньої освіти.
- 2. *Навчальна* програма з математики для учнів 10–11 класів загальноосвітніх навчальних закладів. Профільний рівень.
- 3. Бевз Г. П., Бевз В. Г., Владімірова Н. Г., Владіміров В. М. Геометрія. Підручник для 10 класу загальноосвітніх навчальних закладів. Профільний рівень. К.: Генеза, 2010.
- 4. Бевз Г. П., Бевз В. Г., Владімірова Н. Г., Владіміров В. М. Геометрія. Підручник для 11 класу загальноосвітніх навчальних закладів. Академічний рівень, профільний рівень. К.: Генеза, 2011.
- 5. *Карпік В. В.* Відпрацюй навички та перевір себе. Увесь шкільний курс математики у тестах та завданнях. — Х.: Вид. група «Основа», 2010.
- 6. Карпік В. В. Тестовий тренінг. Підготовка до ЗНО. Х.: Вид. група «Основа», 2012. (Б-ка журн. «Математика в школах України»; Вип. 3 (111)).
- 7. *Карпік В. В.* Тестовий контроль. Геометрія. Підготовка до ЗНО. Х. : Вид. група «Основа», 2015. (Б-ка журн. «Математика в школах України»; Вип. 10 (154)).
- 8. Мерзляк А. Г., Полонський В. Б., Рабінович Ю. М., Якір М. С. Геометрія. 10 клас. Збірник задач і контрольних робіт. Х.: Гімназія, 2010.
- 9. Мерзляк А. Г., Полонський В. Б., Рабінович Ю. М., Якір М. С. Геометрія. 11 клас. Збірник задач і контрольних робіт. Х. : Гімназія, 2011.
- 10. Погорєлов О. В. Геометрія. Підручник для $7{\text -}11$ класів середньої школи. К. : Освіта, 1992.