Recent Advances in Parsing

Wanxiang Che

Harbin Institute of Technology 2016-10

An Example

Syntactic Parsing

- Analyzing a natural language string conforming to the rules of a formal grammar, emphasizing subject, predicate, object, etc.
- A traditional and core NLP task

Elements of Parsing

Grammar

Constituency vs. Dependency

Syntactic vs. Stanford Dependency

http://nlp.stanford.edu/software/stanford-dependencies.shtml

Semantic Dependency Graph

http://www.ltp-cloud.com/intro/#sdp_how

Abstract Meaning Representation (AMR)

The boy wants the girl to believe him.
The boy wants to be believed by the girl.
The boy has a desire to be believed by the girl.
The boy's desire is for the girl to believe him.
The boy is desirous of the girl believing him.

http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf

Combinatory Categorial Grammars (CCG)

$$\frac{CCG}{NP} \quad \frac{\text{is}}{S \setminus NP/ADJ} \quad \frac{\text{fun}}{ADJ} \\
\frac{CCG}{\Delta f. \lambda x. f(x)} \quad \frac{\lambda x. fun(x)}{\lambda x. fun(x)} > \\
\frac{S \setminus NP}{\lambda x. fun(x)} < \\
\frac{S}{fun(CCG)}$$

http://groups.inf.ed.ac.uk/ccg/

Data

Rich-resource Low-resource

Multilingual

- CoNLL 2007 Shared Tasks
 - Multi-lingual Dependency Parsing
 - 12 languages
 - http://ilk.uvt.nl/conll/
- CoNLL 2009 Shared Tasks
 - Syntactic and Semantic Dependencies in Multiple Languages
 - 7 languages
 - http://ufal.mff.cuni.cz/conll2009-st/

Multi-domain

- Syntactic Analysis of Non-Canonical Language (SANCL)
 2012 Shared Task
 - https://sites.google.com/site/sancl2012/
 - Organized by Google
- Corpus
 - Google Web Treebank
 - Three web domains: CQA, Newsgroup, Online Review

Universal Treebank

- http://universaldependencies.org/
 - 40+ languages with universal dependencies and POS tags
- For multi-lingual and cross-lingual research
 - "Many Languages, One Parser" CMU
- CoNLL 2017 Shared Task
 - Multilingual Parsing from Raw Text to Universal Dependencies

Algorithm

Transition-based Dependency Parsing

- Greedily predict a transition sequence from an initial parser state to some terminal states
- State (configuration)
 - = Stack + Buffer + Dependency Arcs

Traditional Features

Configuration

Feature Vector:

- Binary
- Sparse
- High-dimensional

Feature templates: a combination of elements from the configuration.

• For example: (Zhang and Nivre, 2011): 72 feature templates

from single words

 S_0wp ; S_0w ; S_0p ; N_0wp ; N_0w ; N_0p ; N_1wp ; N_1w ; N_1p ; N_2wp ; N_2w ; N_2p ;

from word pairs

 $S_0wpN_0wp; S_0wpN_0w; S_0wN_0wp; S_0wpN_0p; S_0pN_0wp; S_0wN_0w; S_0pN_0p N_0pN_1p$

from three words

 $N_0pN_1pN_2p; S_0pN_0pN_1p; S_{0h}pS_0pN_0p; S_0pS_{0l}pN_0p; S_0pS_{0r}pN_0p; S_0pN_0pN_0p$

Table 1: Baseline feature templates. w – word; p – POS-tag.

distance

 S_0wd ; S_0pd ; N_0wd ; N_0pd ; S_0wN_0wd ; S_0pN_0pd ;

valency

 S_0wv_r ; S_0pv_r ; S_0wv_l ; S_0pv_l ; N_0wv_l ; N_0pv_l ;

unigrams

 $S_{0h}w; S_{0h}p; S_{0l}; S_{0l}w; S_{0l}p; S_{0l}l; S_{0r}w; S_{0r}p; S_{0r}l; N_{0l}w; N_{0l}p; N_{0l}l;$

 $S_0pS_{0h}pS_{0h2}p; N_0pN_{0l}pN_{0l2}p;$

third-order

 $S_{0h2}w; S_{0h2}p; S_{0h}l; S_{0l2}w; S_{0l2}p; S_{0l2}l; S_{0r2}w; S_{0r2}p; S_{0r2}l; N_{0l2}w; N_{0l2}p; N_{0l2}l; S_{0p}S_{0l}pS_{0l2}p; S_{0p}S_{0r}pS_{0r2}p;$

label set

 S_0ws_r ; S_0ps_r ; S_0ws_l ; S_0ps_l ; N_0ws_l ; N_0ps_l ;

Table 2: New feature templates.

w – word; p – POS-tag; v_l , v_r – valency; l – dependency label, s_l , s_r – labelset.

Chen and Manning NN Parser

Stack LSTM Parser

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-Based Dependency Parsing with Stack Long Short-Term Memory. ACL.

CCL 2016 Technical Review

Sentence-level Log Likelihood

$$p(y_i \mid x, \theta) = \frac{e^{f(x, \theta)_i}}{\sum_{y_j \in \text{GEN}(x)} e^{f(x, \theta)_j}}$$

$$f(x, \theta)_i = \sum_{a_k \in y_i} o(x, y_i, k, a_k)$$

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A Neural Probabilistic Structured-Prediction Model for Transition-Based Dependency Parsing. ACL.

SyntaxNet: Google

Update: maximize P(correct parse) relative to the set of alternatives

Globally Normalized SyntaxNet Architecture (Overview)

Andor, D., Alberti, Chris., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins, M. (2016). Globally Normalized Transition-Based Neural Networks. ACL.

Changes of Performance

Encoder-decoder Parsing

Vinyals, O., Kaiser, L., Koo, T., Petrov, S., & Sutskever, I. (2015). Grammar as a Foreign Language. ICLR.

Encoding: But it was the Quotron problems that ...

Decoding: But it was @L SBJ @L DEP the Quotron problems @L NMOD @L NMOD that ...

Wiseman, S., & Rush, A. (2016). Sequence-to-Sequence Learning as Beam-Search Optimization. arxiv.

Some Open Questions

Is Parsing Necessary?

	Bi-LSTM	Tree-LSTM
Stanford Sentiment TreeBank	49.8 / 50.7 (Segment)	50.4
Binary Sentiment Classification	79.0	77.4
Question-Answer Matching	56.4	55.8
Semantic Relationship Classification	75.2	76.7
Discourse Parsing	57.5	56.4

Jiwei Li, Minh-Thang Luong, Dan Jurafsky and Eduard Hovy. When Are Tree Structures Necessary for Deep Learning of Representations? EMNLP, 2015.

More Questions

Grammar

More Questions

- Grammar
 - Is richer semantic better?
- Data
 - How to obtain large (pseudo) annotation data?
- Algorithm
 - Can we utilize other supervision?

Future Trends

- Grammar
 - Trade-off between rich information and performance
- Data
 - Exploiting multiple treebanks
- Algorithm
 - Deep reinforcement learning

Thanks!