Assignment - L

Questi) $\phi \rightarrow m \times n$ matrix \rightarrow all rows nonmalized $\psi \rightarrow$ outhonoremal matrix $\psi = \psi = \sqrt{n}$ max $\psi = \sqrt{n}$ $\psi = \sqrt{n}$

Consider a unit vector g. As 2p is an outhonormal basis, g can be witten as $g = \sum_{k=1}^{n} \alpha_k V_k$

g - unit vector \Rightarrow ||g|| = 1 $\Rightarrow \sum_{k=1}^{\infty} ||x_k||^2 = 1$ (: $|x_i|^T \cdot |x_i| = 0$ for $|x_i|^T \cdot |x_i| = 1$ for $|x_i| = 1$)

 $u(g, \psi) = \sqrt{n} \max_{i \in \{0,1,-n+3\}} |g, \psi| = \sqrt{n} \max_{i \in \{0,1,-n+3\}} |\alpha_i \psi|$

(: 120j, 20il = 0 for iti)

= \in max | \ai| (\cdots | \pi; \pi| = | | \pi| | \frac{1}{2} \big| \right)

i \in \{ \cdot \in \{ \cdots \cdot \in \{ \cdot \cdot \in \{ \cdot \cdot \in \{ \cdot \cdot \cdot \} \} \right)}

Now, as g was a unit vector. Le can have every rou of & as g.

Lower value of $\mu(\phi, \Psi) = \sqrt{n}$ max $|\alpha_i|$ subject to constraints $\frac{1}{k} \propto k^2 = 1$

= Jr max Bi with \$\frac{2}{k^{2}} = 1 & Bi>0 + i.

is achieved when all Bizarce equal, i.e., n Bi=1 =>Bi> In

: lovest value of le = $\sqrt{n} \times \frac{1}{\sqrt{n}} = \frac{1}{n}$

because it maxis

<1, than III

Vir SB;2<1

S hence not possible.

Scanned by CamScanner

Highest value = \sqrt{n} max $|x_i|$ when $\sum_{k=1}^{n} x_k^2 \int_{k=1}^{\infty} |x_i|^2 dx$ ochieved when one of $|x_i| = 1$ & other = 0

Il lies between 1 & Vn