Update 04/03

GIOELE CONSANI

04/03/20

Qubit parameters:

$$E_{J,q} = 99.34 \text{ GHz},$$

 $C_{J,q} = 4 \text{ fF},$
 $L = 3.2 \text{ nH},$
 $C_{sh} = 0 \text{ fF}.$

Coupler parameters:

$$E_J = 19.87 \text{ GHz},$$

 $C_J = 4.3 \text{ fF},$
 $C_a = 2.5 \text{ fF}.$

Coupling parameter (Averin):

Loaded coupler island capacitance = 13.7 fF. A larger capacitance reduces the interaction parameter

System spectrum:

Lowest 4 transition energies vs. coupler island charge bias (qubits biased at 0.5 Φ_0). Spectrum is basically **flat**.

Extracted params:

Extracted params:

Note how all the interactions are "ferromagnetic" (negative in sign)

Extracted params:

Note how all the interactions are "ferromagnetic" (negative in sign). This is because the capacitors configuration results in static interaction terms between qubit charges (same as in the inductive case)

$$C_c = 3.5 \text{ fF}$$

Coupling parameter (Averin):

Loaded coupler island capacitance = 13.0 fF

Extracted params:

$$C_c = 3.5 \text{ fF}$$

$$C_c = 1 \text{ fF}$$

Coupling parameter (Averin):

Loaded coupler island capacitance = 10.9 fF

Extracted params:

$$C_c = 1 \text{ fF}$$

 J_{yy} and $c=\frac{1}{4}\partial^2 E_{0,c}/\partial Q_{g,c}^2$ seem related by a linear transformation dependent on the coupling capacitance C_c :

Here ratio is defined as

$$Ratio = \frac{c - \langle c \rangle}{J_{yy} - \langle J_{yy} \rangle},$$

where $\langle \cdot \rangle$ is the average over a period.

 J_{yy} and $c=\frac{1}{4}\partial^2 E_{0,c}/\partial Q_{g,c}^2$ seem related by a linear transformation dependent on the coupling capacitance C_c :

Here ratio is defined as

$$Ratio = \frac{c - \langle c \rangle}{J_{yy} - \langle J_{yy} \rangle},$$

where $\langle \cdot \rangle$ is the average over a period.

The order of magnitude of this ratio seems compatible with $1/|\langle g|\hat{Q}|e\rangle|^2$ (in units of $1/4e^2$), where $\langle g|\hat{Q}|e\rangle$ is a matrix element of the qubit charge operator.

Extracted params: shunted qubits variant

Qubit parameters:

$$E_{J,q} = 99.34 \text{ GHz},$$

 $C_{J,q} = 4 \text{ fF},$
 $L = 1.6 \text{ nH},$
 $C_{Sh} = 45 \text{ fF}.$

 $C_c = 5$ fF (coupler island loaded capacitance = 18.4 fF): SWT breaks \odot , coupler 1st excited state below 2*qubit first excited state.

Extracted params: shunted qubits variant

Qubit parameters:

$$E_{J,q} = 99.34 \text{ GHz},$$

 $C_{J,q} = 4 \text{ fF},$
 $L = 1.6 \text{ nH},$
 $C_{sh} = 45 \text{ fF}.$

$$C_c$$
 = 3.5 fF (coupler island loaded capacitance = 15.8 fF)

Extracted params: shunted qubits variant

Extracted params: shunted qubits variant

Qubit parameters:

$$E_{J,q} = 99.34 \text{ GHz},$$

 $C_{J,q} = 4 \text{ fF},$
 $L = 1.6 \text{ nH},$
 $C_{sh} = 45 \text{ fF}.$

$$C_c = 1$$
 fF (coupler island loaded capacitance = 11.1 fF)

Extracted params: shunted qubits variant

Charge qubits case:

Qubit parameters:

$$E_{I,q} = 2.48 \text{ GHz},$$

$$C_{I,q} = 1 \text{ fF}.$$

```
C_c = 5 fF (coupler island loaded capacitance = 13.0 fF)
```

Charge qubits case: extracted parameters

Charge qubits case: extracted parameters vs coupling capacitance C_c ($Q_{g,c} = 0.5$)

Charge qubits case: extracted parameters vs coupling capacitance C_c ($Q_{a,c}=0.5$)

Note that the coupler levels are always well separated due to the qubits small capacitance (small loading)

