Geometry of diff.equations

§1 Necessary mathematics from Arnold's book

I began to understand the pages in Arnold on diff. equations..... Here it is:

Definition Let ω be 1-form on M which does not vanish. We say that it is *contact* form if

2-form $d\omega$ is non-degenerate on the plane $\omega = 0$ in TM

Since $d\omega$ is not degenerate on $\omega = 0$ and $\omega \not\equiv 0$ them dim M = 2k + 1.

Theorem Contact form is defined up to a function (Valya had a talk on it!) If ω is contact form and $f \neq 0$ then $f\alpha$ is contact also.

Let K be a distributions of 2n-dimensional planes in TM such that ω vanishes on these planes.

We say that this distribution is a contct structure *

Theorem Let N be a submanifold of M which is an integral submanifold (not necessarily maximal) of contact distribution \mathcal{K} , i.e. for every point on N the tangent vectors belong to this distribution. Then dim $N \leq n$, where dim $M \leq 2n + 1$

Proof Let ω be an arbitrary non-zero form which vanishes at \mathcal{K} . Since a form ω vanishes on vectors tangent to the manifold N, the form $d\omega$ vanishes on these vectors also:

$$\iota: N \subset M, \qquad d\left(\iota^*\omega\big|_N\right) = \iota^*dw\big|_N = 0.$$

Hence two arbitrary vectors are orthogonal to each other with respect to this form. If dimension of tangent plane is bigger than n then there exist at least two vectors which are not orthogonal, since $d\omega$ is not degenerate. Now we apply this mathematics to the differential equations.

§2 Geometry of first order equation

Let J^1M be a space of first jets of functions on manifold M. Coordinates on J^1M are (p_i, q^j, u) , where q^j are coordinates on M. Jet of every function u = u(x) has coordinates $\left(p_i = \frac{\partial u}{\partial x q^i}, q^i, u\right)$.

Consider \mathcal{C} , the Cartan distribution of 2n-dimensional planes in J^1M defined by the form $\omega = p_i dq^i - du$

$$C_{\mathbf{p}} \subset T_{\mathbf{p}}J^1M = \{T_{\mathbf{p}}(J^1M) \ni \mathbf{X}: \ \omega(\mathbf{X}) = 0\},$$

Vector field

$$M^i \frac{\partial}{\partial q^i} + N_i \frac{\partial}{\partial p_i} + A \frac{\partial}{\partial u}$$
 belongs to Cartan distribution \mathcal{C} if $A = p_i M^i$.

^{*} One can say that distribution of hyperplanes defines constant structure if an 1-form which vanishes this dstribution is non-degenerated on it

C is non-integrable distribution. It is a *contact structure* and the form $\omega_C = p_i dq^i = du$ is a contact form since

$$d\omega\big|_{\omega=0} = dp_i \wedge dq^i$$

is non-degenerte form. Consider differential equation,

$$\mathcal{E}: F(p, q, u) = 0.$$

Differential equation is sumbmanifold of codimension 1 in the space $J^1(M)$.

The Cartan distribution \mathcal{C} of hyperplanes on J^1M defines distribution $\mathcal{C}(\mathcal{E})$ in $T\mathcal{E}$:

$$\mathcal{C}(E) = \mathcal{C} \cap T\mathcal{E} .$$

$$\mathbf{X} = M^{i} \frac{\partial}{\partial q^{i}} + N_{i} \frac{\partial}{\partial p_{i}} + A \frac{\partial}{\partial u} \in \mathcal{C}(\mathcal{E}) \text{ if } A = p_{i} M^{i} \& \left(M^{i} \frac{\partial}{\partial q^{i}} + N_{i} \frac{\partial}{\partial p_{i}} + A \frac{\partial}{\partial u} \right) F(p, q, u) \big|_{F=0} = 0.$$

This distribution is not integrable.

The solution of differential equation (1) is the maximal integral of the distribution.

What is the dimension of N?

Let N be an arbitrary solution. Calculate its dimension. Any tangent plane to N belongs to Cartan distribution and is tangent to \mathcal{E} . Consider an arbitrary point $\mathbf{p} \in N$, and consider the plane $\alpha = \alpha_P = T_{\mathbf{p}}N$. Calculate dim $T_{\mathbf{p}}N$.

Fact dim $T_{\mathbf{p}}N \leq n$. We proved it above, but we repeat the considerations again. Consider the form ω_C on and its differential the form $d\omega_C$ on TN. The form ω_C vanishes on TN, hence the form $d\omega_C$ vanishes on TN also. On the other hand if dim N=p>n, then this is not true, since form $d\omega_C$ has rank 2. In coordinates: in the vicinity of the point \mathbf{p} one can choose local coordinates $\xi^1, \ldots, \xi^{2n+1}$ such that in these coordinates surface N is given by equations $\xi^{p+1} = \ldots = \xi^{2n+1} = 0$ and $d\omega_C = d\xi^1 \wedge d\xi^2 + \ldots + d\xi^{2n-1} \wedge d\xi^{2n}$ (generalised Darboux Theorem). This contradicts to the condition $d\omega_C|_{N} \equiv 0$ on N. (In the case if dimension N is maximal possible it is Lagrangian)

Now we consider some properties of hypersurfces, (recall that hypersurface is differential equation)

DEFINITION Let \mathcal{E} be an arbitrary hypersurface in M: dim $\mathcal{E} = 2n$). (Hypersurface \mathcal{E} may define differential equation F(q, u, p) = 0 (\mathcal{E} : F = 0)) We say that the hypersurface \mathcal{E} is non-characteristic hypersurface if at every point \mathbf{p} the contact hyperplane (hyperplane of distribution \mathcal{C}) and the tangent hyperplane are transversal:

$$C_{\mathbf{p}} \oplus T_p t M' = T_{\mathbf{p}} M \Leftrightarrow \dim (C_{\mathbf{p}} \cap M' \mathbf{p}) = 2n - 1.$$

DEFINITION Let \mathcal{E} be an arbitrary non-characteristic hypersurface in $J^1(M)$.

For an arbitrary point $\mathbf{p} \in E$ consider the 2n-1 dimensional subspace $\Pi_{\mathbf{p}}$ of tangent vectors which belong to contact space:

$$\Pi_{\mathbf{p}} = \mathcal{C}_{\mathbf{p}} \cap T_{\mathbf{p}}E, \quad , \dim \Pi_{\mathbf{p}} = 2n - 1$$

Thus we define the distribution of 2n-1-dimensional planes on non-characteristic differential equation F=0 (this equation defines the surface \mathcal{E} : \mathcal{E} : F=0).

Now: VERY IMPORTANT STEP: On every characteristic plane $\Pi_{\mathbf{p}} = \mathcal{C}_{\mathbf{p}} \cap T_{\mathbf{p}}E$, $d\omega_C = \sum_{i=1}^n dp_i \wedge dq^i$, and since the dimension of $\Pi_{\mathbf{p}}$ is equal to 2n-1 then one can define the direction, such that dw vanishes along this direction, and it is unique!

Problem Let σinV^* be covector in V^* and let M_{σ} , me hyperplane in V which is orthogonal to the covector \mathbf{a} :

$$M_{\mathbf{a}} = \{ \mathbf{x} \in V \colon \quad \sigma(\mathbf{x}) = 0 \}$$

Proposition Subspaces M_{σ_1} and M_{s_2} are transversal if and only if vectors σ_1, σ_2 qre linearly independent, (not proportional to each other)

Theorem Let $F = F(u, p_i, q^i) = 0$ defines hypersurface $\mathcal{E} = \mathcal{E}_F$, differential equation. Let covector dF defined by equation, and covector ω_C of contact distribution, are not proportional* Then

- a) hypersurface F = 0 is non-characteristical
- b) the characteristic direction l is defined by the vector \mathbf{X}_F

Remark If we change $F \to \lambda F$ where a function λ is not-degenerate on the surface F = 0, then the condition of linear (in)dependence of covectors dF and ω_C , and the characteristic direction \mathbf{X}_F will not change.

^{*} this condition does not depend on choice of function F defining the surface ${\cal E}$