# LEAD SCORING CASE STUDY

Presented by:
RAHUL PRAKASH CHIKATE



# TABLE OF CONTENTS

- Problem Statement
- Work flow
- Importing libraries and warnings
- Reading datasets
- Handling of null values
- Outliers handling
- Univariate analysis
- Bivariate analysis
- Conclusion

# PROBLEM STATEMENT

- To help X education to select the most promising leads known as 'hot leads' who are most likely to convert into paid customers.
- Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads where the
  leads with higher lead score have a higher conversion chance and the leads with lower lead score have a
  lower conversion chance.
- Identify the driver variables and understand their significance which are strong indicators of lead conversion.
   Identify the outliers, if any, in the dataset and justify the same.
- Consider both technical and business aspects while building the model.
- Summarize the conversion predictions by using evaluation metrics like accuracy, sensitivity, specificity and precision.

### **WORK FLOW**



### **IMPORTING LIBRARIES AND WARNINGS**

Importing libraries
Imported pandas, numpy, matplotlib & seaborn for data loading & visualization
Imported sklearn for model building and statsmodels for model evolution.

Importing Warnings
Highlights warnings
however the program
runs.

### READING DATASET

Datafile is extracted from the given dataset. namely 'Leads.csv'

Highlighted datafile description, shape etc., in the notebook for elaborated experience in reading the data.

### DATA CLEANING AND PREPARATION

#### Leads.csv:

- Following columns contain more than 3000 null values initially, hence dropped those columns:
  - > Tags
  - Lead Quality
  - > Asymmetrique Activity Index
  - ➤ Asymmetrique Profile Index
  - > Asymmetrique Activity Score
  - > Asymmetrique Profile Score

### **DUMMY VARIABLE CREATION**

- Check the columns which are of type 'object'
- Create dummy variables using the 'get\_dummies' command for following columns 'Lead Origin', 'Lead Source', 'Do Not Email', 'Last Activity', 'What is your current occupation', 'A free copy of Mastering The Interview', 'Last Notable Activity'
- Add the results to the master dataframe
- Creating dummy variable separately for the variable 'Specialization'
- Drop the variables for which the dummy variables have been created

# **TEST-TRAIN SPLIT & SCALING**

- Put all the feature variables in X
- Put the target variable in y
- Split the dataset into 70% train and 30% test
- Scale the three numeric features i.e. 'TotalVisits', 'Page Views Per Visit', 'Total Time Spent on Website' present in the dataset

# **MODEL BUILDING**

- Import RFE and select 15 variables
- Put all the columns selected by RFE in the variable 'col'
- Fit a logistic Regression model on X\_train after adding a constant and output the summary
- Make a VIF dataframe for all the variables present
- VIFs seem to be in a decent range except for 'Lead Origin\_Lead Add Form', 'Lead 'Source\_Reference' and 'Lead Source\_Welingak Website'. Let's first drop the variable 'Lead Source\_Reference' since it has a high p-value as well as a high VIF.
- Refit the model with the new set of features
- Building Model by removing the variable whose p-value is greater than 0.05 and vif value is greater than 5%
- Predictions on test data set
- Overall accuracy 79%

|    | Features                                       | VIF   |
|----|------------------------------------------------|-------|
| 2  | Lead Origin_Lead Add Form                      | 84.19 |
| 4  | Lead Source_Reference                          | 65.18 |
| 5  | Lead Source_Welingak Website                   | 20.03 |
| 11 | What is your current occupation_Unemployed     | 3.65  |
| 7  | Last Activity_Had a Phone Conversation         | 2.44  |
| 13 | Last Notable Activity_Had a Phone Conversation | 2.43  |
| 1  | Total Time Spent on Website                    | 2.38  |
| 0  | TotalVisits                                    | 1.62  |
| 8  | Last Activity_SMS Sent                         | 1.59  |
| 12 | What is your current occupation_Working Profes | 1.56  |
| 3  | Lead Source_Olark Chat                         | 1.44  |
| 6  | Do Not Email_Yes                               | 1.09  |
| 10 | What is your current occupation_Student        | 1.09  |
| 9  | What is your current occupation_Housewife      | 1.01  |
| 14 | Last Notable Activity_Unreachable              | 1.01  |
|    |                                                |       |

20XX Pitch deck title

# **ROC CURVE**





- > Finding Optimal Cut off Point
- Optimal cut off probability is that probability where we get balanced sensitivity and specificity.
- > From the second graph it is visible that the optimal cut off is at 0.41.

### CONCLUSION

It was found that the variables that mattered the most in the potential buyers are (In descending order):

- > The total time spend on the Website.
- > Total number of visits.
- When the lead source was:
  - i. Google
  - ii. Direct traffic
  - iii. Organic search
  - iv. Welingak website
- ➤ When the last activity was:
  - i. SMS
  - ii. Olark chat conversation
- When the lead origin is Lead add format.
- When their current occupation is as a working professional. Keeping these in mind the X Education can flourish as they have a very high chance to get almost all the potential buyers to change their mind and buy their courses.

