What are the quantifier negation rules?

Week 8. Deeper dive

On the Week 5 PP, did you put

I've been saying for a while that if we have negated quantifiers, there are usually two equivalent ways of translating the statement. Today, we make this claim precise with quantifier negation rules.

The basic idea

"Not everything is blue" iff "something is non-blue"

 $\neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$

 $\neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$

"Nothing is blue" iff "everything is non-blue"

Quantifier negation rules for proofs

 $\neg \forall x \varphi$

 $\exists x \neg \varphi : QN$

 $\varphi x \in \neg \exists x \varphi$

 $\forall x \neg \varphi : QN$

 $\varphi - x E$

 $\neg \forall x \varphi : QN$

 $A \times A = A \times A$

¬∃хф: QN

The slogan here is 'flip' the quantifier when you move the negation in or out.

Quantifier negation rules for proofs

 $\neg \forall x \varphi$

 $\exists x \neg \varphi : QN$

 $\neg \exists x \varphi$

 $\forall x \neg \varphi : QN$

 $\varphi - x E$

¬∀xφ: QN

 $\forall x \neg \varphi$

¬∃хф: QN

In proofs, we often use these one after the other because existentials are easier to introduce but universals are easier to eliminate!

Show that $\forall x(Px \rightarrow Qx), \neg Qa \vdash \exists z \neg Pz$

```
1. \forall x (Px \rightarrow Qx)
                    :assumption
2. ¬Qa
                    :assumption
3. Pa \rightarrow Qa
                    :E∀ 1
   l Pa
                    :assumption
  Qa
                   :E→3,4
     1 !?
                   :E~2,5
                    :|~
7. ~Pa
8. Ex~Px
                    :13 7
```

```
1. \forall x(Px \rightarrow Qx)
                 :assumption
2. ¬Qa
                 :assumption
3. Pa \rightarrow Qa
                 :E∀ 1
    \forall x Px
                 :assumption
   Pa
                 :E∀ 4
6. Qa
           :E →3,5
7. | !?
          :E~2,6
8. ~AxPx
                 :|~
9. Ex~Px
                 :QN
```

two equally good proofs!

 $\forall x(Px \rightarrow \exists yRxy), \forall x\forall y(Rxy \rightarrow Sxy), \neg \exists x\exists ySxy \vdash \neg \exists xPx$ (using base rules, shortcuts, and QN)

1. $\forall x(Px \rightarrow \exists yRxy)$: assumption

2. $\forall x \forall y (Rxy \rightarrow Sxy)$:assumption

3. ¬∃x∃ySxy :assumption

4. Pa-> \exists yRay :E∀ 1

5. \forall y(Ray \rightarrow Say) :E \forall 2

6. (Rab \rightarrow Sab) :E \forall 5

7. $\forall x \sim \exists y Sxy$:QN 3

8. ~∃ySay :E∀ 7

9. ∀y~Say :QN 8

10.~Sab :E∀ 9

using the QN rules successively to simplify

 $\forall x(Px \rightarrow \exists yRxy), \forall x\forall y(Rxy \rightarrow Sxy), \neg \exists x\exists ySxy \vdash \neg \exists xPx$ (using base rules, shortcuts, and QN)

- 1. $\forall x (Px \rightarrow \exists y Rxy)$:
- 2. $\forall x \forall y (Rxy \rightarrow Sxy)$
- 3. ¬∃x∃ySxy
- $4. Pa \rightarrow \exists yRay$
- 5. \forall y(Ray \rightarrow Say)
- 6. (Rab \rightarrow Sab)
- 7. ∀x~∃ySxy
- 8. ~∃ySay
- 9.∀y~Say

10.~Sab

assumption

:assumption

:assumption

:E∀ 1

:E∀ 2

:E∀ 5

:QN 3

:E∀ 7

:QN 8

:E∀ 9

11.~Rab

:MT 6,10

Recall MT:

From wffs of the forms

 $(\phi
ightarrow \psi)$ and $\sim \psi$, infer $\sim \phi$

 $\forall x(Px \rightarrow \exists yRxy), \forall x\forall y(Rxy \rightarrow Sxy), \neg \exists x\exists ySxy \vdash \neg \exists xPx$ (using base rules, shortcuts, and QN)

ssumption	12. ∀y~Ray	:I∀ 11
ssumption	13. ~∃yRay	:QN 12
	ssumption ssumption	

4. Pa-> \exists yRay :E \forall 1 5. \forall y(Ray \rightarrow Say) :E \forall 2 6. (Rab \rightarrow Sab) :E \forall 5

7. \(\forall x \sim \mathref{3} \text{Sxy}\) :QN 3

8. ~∃ySay :E∀ 7

9. ∀y~Say :QN 8

10.~Sab :E∀ 9

 $\forall x(Px \rightarrow \exists yRxy), \forall x\forall y(Rxy \rightarrow Sxy), \neg \exists x\exists ySxy \vdash \neg \exists xPx$ (using base rules, shortcuts, and QN)

- 1. $\forall x (Px \rightarrow \exists y Rxy)$:
- $\overline{2. \forall x \forall y (Rxy \rightarrow Sxy)}$
- 3. ¬∃x∃ySxy
- 4. Pa-> ∃yRay
- 5. \forall y(Ray \rightarrow Say)
- 6. (Rab \rightarrow Sab)
- 7. ∀x~∃ySxy
- 8. ~∃ySay
- 9.∀y~Say
- 10.~Sab

- assumption
- :assumption
- :assumption
- :E∀ 1
- :E∀ 2
- :E∀ 5
- :QN 3
- :E∀ 7
- :QN 8
- :E∀ 9

- 11.~Rab
- 12. ∀y~Ray
- 13. ~∃yRay
- 14. ~Pa

- :MT 6,10
- :I∀ 11
- :QN 12
- :MT 4,13

 $\forall x(Px \rightarrow \exists yRxy), \forall x\forall y(Rxy \rightarrow Sxy), \neg \exists x\exists ySxy \vdash \neg \exists xPx$ (using base rules, shortcuts, and QN)

- 1. $\forall x (Px \rightarrow \exists y Rxy)$:
- 2. $\forall x \forall y (Rxy \rightarrow Sxy)$
- 3. ¬∃x∃ySxy
- 4. Pa-> ∃yRay
- 5. \forall y(Ray \rightarrow Say)
- 6. (Rab \rightarrow Sab)
- 7.∀x~∃ySxy
- 8. ~∃ySay
- 9.∀y~Say
- 10.~Sab

- assumption
- :assumption
- :assumption
- :E∀ 1
- :E∀ 2
- :E∀ 5
- :QN 3
- :E∀ 7
- :QN 8
- :E∀ 9

- 11.~Rab
- 12. ∀y~Ray
- 13. ~∃yRay
- 14. ~Pa
- 15. ∀y~Py
- 16. ~∃yPy

- :MT 6,10
- :I∀ 11
- :QN 12
- :MT 4,13
- :l∀ 14
- :QN 15