

Altitude Effects on Thermal Ice Protection System Performance; a Study of an Alternative Simulation Approach

Gene Addy – NASA

Bill Wright - Vantage Partners, LLC

David Orchard & Myron Oleskiw – NRC-C

Presentation will include:

- Need for Study
- Initial test results
- Study Plan
- Development of alternate scaling method
- Flight scenarios
- Reference & Scaled test conditions
- Test Description & Results
- Summary

Need for Study

10 Power Required, W/in² 8 0 Warm Hold Descent

Example IPS power

Initial Study & 2012 Test

Objectives:

- Study physics
- Test altitude scaling method (Re)

Outcomes

- Heat transfer scaled well
- Mass transfer did not
- Water drops blown off surface?

AIAA 2013-2934

Study Plan

[Icing Conditions]_{altitude} =
 [Icing Conditions]_{ground level}

- Define scaling method (alt/grd)
- Altitude Icing Wind Tunnel (AIWT)
- NACA airfoil with Heated Air IPS
- Various icing scenarios
- IPS operated in running wet mode
- Compare results: ice accreted, surface temps, heat rejection
- Assess scaling method, insight on processes

Thermal IPS Scaling Method

Parameters matched:

•Reynolds number Re = $\rho Vd/\mu$, d=2xLE radius

•Water loading $M_w = LWC \cdot V \cdot \beta$

•Impingement $K_0 = f(Re_{droplet})$

•Recovery temperature $T_r = T_s(1+r((\gamma-1)/2)M^2)$

Also matched: RHF, H_c, H_g, Nu, Sh, St, St_m

Not matched: ή, We

Alternate Thermal IPS Scaling Method

Parameters matched:

•Weber number We =
$$\rho_w \cdot V^2 \cdot d/\sigma$$
, d=2xLE radius

•Water loading
$$M_w = LWC \cdot V \cdot \beta$$

•Impingement
$$K_0 = f(Re_{droplet})$$

•Recovery temperature
$$T_r = T_s(1+r((_{\gamma}-1)/2)M^2)$$

•Model leading edge surface temperatures*

Not matched: Re, ή, RHF, H_c, H_g, Nu, Sh, St, St_m

*Requires two steps: Re match run (dry) followed by We match

Flight Scenarios for study

- Descent
- Cold Hold
- Warm Hold

Reference Conditions

	Alt.,	V,	AOA,	T _s , °C	LWC,	MVD,
Flight phase	m	kt	deg	°C	g/m³	μm
Descent	3048	180	0	-14	0.35	20
Cold Hold	4572	180	0	-30	0.24	20
Warm Hold	4572	180	0	-9	0.50	20

Altitude Thermal Scaling Study

Reference and corresponding scale conditions

Flight phase	Alt. m	V kt	T _s °C	LWC g/m³	MVD μm	Re-2xr x10 ⁶	We-2xr x10 ⁶	M _w	K _o	T _r °C
Descent (ref)	3050	180	-14	0.35	19.6	1.58	4.30	20.3	1.37	-10
(Re sc)		130	-12	0.49	24.0	1.58	2.24	20.3	1.37	-10
(We sc)		180	-14	0.35	21.1	2.15	4.30	20.3	1.37	-10
Cld Hld (ref)	4570	180	-30	0.24	17.4	1.43	4.30	13.4	1.23	-26
(Re sc)		106	-28	0.41	24.2	1.43	1.49	13.4	1.23	-26
(We sc)		180	-30	0.24	19.5	2.35	4.30	13.4	1.23	-26
Wm Hld (ref)	4570	180	-8	0.54	17.7	1.26	4.30	30.3	1.24	-5
(Re sc)		106	-6	0.91	24.5	1.26	1.50	30.3	1.24	-5
(We sc)		180	-8	0.54	19.8	2.08	4.30	30.3	1.24	-5

Facility

 NRC Canada Altitude Icing Wind Tunnel (AIWT)

- Test Section: 57 cm x 57 cm (22.5 in. x 22.5 in.)
- Airspeeds: 10 194 kts
- Air Temp: -35°C to +40°C
- LWC: 0.1 to 3 g/m³
- MVD: 8 to 100 μm
- Altitude simulation: ground level to 9100 m

Model

NACA 0018, 45.7 cm (18 in.) chord

- Simple design to study fundamentals
- Aluminum skin on aluminum spar and rib frame

Heated Air IPS

- 2D flow
- Piccolo tube, single row of holes

Runback Ice - Descent

		u		•	LWC			
	m	kPa	kt	٥C	g/m³	μm	S	g
(Ref)	3048	69.7	180	-14.1	0.38	19.5	600	32.6
(Re-sc)	453	96.0	130	-12.4	0.50	24.3	600	57.2
(We-sc)	775	92.3	180	-14.2	0.36	21.5	600	30.6

(Ref)

Runback Ice - Descent

Runback Ice - Warm Hold

- No tracings

Runback Ice - Warm Hold

Runback Ice - Cold Hold

					LWC g/m³			
(Ref)	4572	57.2	180	-30.0	0.24	17.4	600	13.3
(Re-sc)	390	96.7	106	-27.5	0.41	24.2	600	76.5
(We-sc)	781	92.3	180	-29.8	0.24	19.5	600	15.5*

* Ice remaining after partial ice shed

(Ref)

(Re - sc)

Runback Ice – Cold Hold

Runback Ice Mass

* Some ice shed

- More ice accreted for Re-scaled conditions
- Mass of ice accreted for We-scaled conditions more similar to that accreted at reference (altitude) conditions

Summary

- Surface temperatures and heat rejection rates matched well between reference and Re-scaled conditions
- Re-scaled conditions resulted in greater mass of ice accreted
- We-scaled conditions combined with T_{surf} matching resulted in ice accretions more similar in mass and location of ice
- Greater convective cooling with We-scaling does affect freezing of runback water
- Results indicate that surface water is being re-entrained in airstream
- The <u>two-step</u>, Re & We scaling method produced ice accretions more similar to those at the reference altitude conditions, but differences in convective cooling warrant further investigation
- Model of water shedding being investigated
- Joint report being written

SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures

June 22-25, 2015

Prague, Czech Republic

Test Procedure

Nomenclature

= model chord (18 in./45.7 cm) С = twice the model leading edge radius d = convective heat transfer coefficient H_{c} = convective mass transfer coefficient H_{g} **IPS** = ice protection system Κ = inertia parameter = modified inertia parameter Kο LWC = liquid water content = Mach number MVD = median volumetric diameter M_w = water loading = Nusselt number Nπ qdot = power density = recovery factor = Reynolds number Re = Reynolds number based on droplet Re_(droplet) diameter Re sc = Reynolds number scaled conditions Ref = Reference conditions RHF = Relative Heat Factor = surface distance S

= Sherwood number

Sh

= Stanton number St = Stanton number for mass transfer St_{m} T_r = recovery temperature = static temperature T_s V = true air speed = Weber number We sc = Weber number scaled conditions β = collection efficiency at stagnation = ratio of specific heats for air = freezing fraction Н = air viscosity μ = air density ρ = water density $\rho_{\rm w}$ = surface tension, water-air σ