Variáveis aleatórias contínuas

Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

Sumário

- Variáveis aleatórias contínuas
 - Introdução
 - Variáveis aleatórias contínuas
- Principais modelos contínuos
 - Modelo Uniforme contínuo
 - Modelo Exponencial
 - Modelo Normal
- 3 Exercícios

Variáveis aleatórias

Em probabilidade, uma função X que associa a cada evento do espaço amostral um número real $X(\omega) \in \mathbb{R}$, é denominada uma variável aleatória (VA).

Uma variável aleatória pode ser classificada como discreta ou contínua, dependendo do domínio dos valores de X.

Exemplo: o número de alunos em uma sala é uma variável aleatória (discreta), denotada por X (maiúsculo). Uma observação dessa variável é denotada pela respectiva letra minúscula, e.g., x=50 alunos.

Em geral, denotamos a probabilidade de uma V.A. X assumir determinado valor x como

$$P[X]$$
 ou $P[X = x]$

Distribuições de probabilidade

Existem diversos *modelos probabilísticos* que procuram descrever vários tipos de variáveis aleatórias: são as **distribuições** de **probabilidade** de **variáveis aleatórias** (discretas ou contínuas).

A distribuição de probabilidades de uma VA X é, portanto, uma descrição das probabilidades associadas com os possíveis valores de X. Os valores que X assume determinam o **suporte** (S) da VA.

- Variáveis discretas → suporte em um conjunto de valores enumeráveis (finitos ou infinitos)
- Variáveis contínuas → suporte em um conjunto não enumerável de valores

Distribuições de probabilidade

Denomina-se de **distribuição de probabilidade** de alguma variável aleatória, a **regra** geral que define a

- função de probabilidade (fp) (V.A.s discretas), ou a
- função densidade de probabilidade (fdp) (V.A.s contínuas)

para a variável de interesse.

Existem muitas distribuições de probabilidade, mas algumas merecem destaque por sua importância prática.

Estas distribuições também são chamadas de modelos probabilísticos.

Variáveis aleatórias contínuas

Uma V.A. é classificada como contínua se assume valores em qualquer intervalo dos números reais, ou seja, um conjunto de valores não enumerável. Dessa forma, não é possível atribuir probabilidades para um ponto específico, apenas para intervalos da reta.

Exemplos:

- Peso de animais
- Tempo de falha de um equipamento eletrônico
- Altura da maré em uma hora específica
- Salinidade da água do mar
- Retorno financeiro de um investimento

Estudos anteriores revelam a existência de uma grande lençol de água no subsolo de uma região. No entanto, sua profundidade ainda não foi determinada, sabendo-se apenas que o lençol pode estar situado em qualquer ponto entre 20 e 100 metros.

- Determine uma função para representar a variável X (profundidade do lençol de água).
- Calcule a probabilidade de encontar água em uma profundidade pelo menos igual a 25, e menor ou igual a 29 metros.
- Qual a probabilidade de encontrar água na profundidade de 60 metros?

Função densidade de probabilidade

Não podemos atribuir probabilidades à valores específicos, pois há uma quantidade **não enumerável** (infinita) de valores em um ponto.

Atribuimos probabilidades à intervalos de valores, por meio de uma **função**. Portanto, as probabilidades são representadas por áreas.

LEG/DEST/UFPR

Função densidade de probabilidade

A função densidade de probabilidade (fdp) atribui probabilidades à intervalos de valores do tipo [a, b], e é definida por

$$P[a < X < b] = \int_a^b f(x) dx$$

com as seguintes propriedades:

É uma função não negativa

$$f(x) \ge 0$$

A área total sob a curva deve ser igual a 1

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Função densidade de probabilidade

Observações:

• P[X = x] = 0, portanto:

$$P[a \le X \le b] = P[a < X \le b] = P[a \le X < b] = P[a < X < b]$$

- Qualquer função $f(\cdot)$ que seja não negativa e cuja área total sob a curva seja igual à unidade caracterizará uma VA contínua.
- f(x) não representa a probabilidade de ocorrência de algum evento. A área sob a curva entre dois pontos é que fornecerá a probabilidade.

Exemplo

Seja a função:

$$f(x) = \begin{cases} \frac{3}{2}x^2, & \text{se } -1 \le x \le 1\\ 0, & \text{caso contrário} \end{cases}$$

- Verifique se essa função é uma fdp.
- Calcule:
 - P[X > 0]
 - P[X > 1/2]
 - $P[-1/2 \le X \le 1/2]$
 - P[X < -2]
 - P[X < 1/2]
 - $P[X < 0 \cup X > 1/2]$

(Ver também exemplos 6.2 e 6.3).

Medidas de posição para VAs contínuas

 O valor esperado (ou média) da VA contínua X com função densidade f(x), é dado pela expressão:

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx.$$

A mediana é o valor Md que tem a propriedade de

$$P(X \ge Md) \ge 1/2$$
 e $P(X \le Md) \ge 1/2$.

• A moda é o valor *Mo* tal que,

$$f(Mo) = \max_{x} f(x).$$

Variância para VAs contínuas

• Para uma VA X com densidade f(x), a variância é dada por

$$Var(X) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

Expressão alternativa

$$Var(X) = \sigma^2 = E(X^2) - E(X)^2.$$

onde

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx.$$

Exemplo

Seja a função:

$$f(x) = \begin{cases} \frac{3}{2}x^2, & \text{se } -1 \le x \le 1\\ 0, & \text{caso contrário} \end{cases}$$

Calcule E(X), Var(X), DP(X).

Sumário

- Variáveis aleatórias contínuas
 - Introdução
 - Variáveis aleatórias contínuas
- Principais modelos contínuos
 - Modelo Uniforme contínuo
 - Modelo Exponencial
 - Modelo Normal
- 3 Exercícios

Modelo Uniforme contínuo

Definição: uma VA X tem distribuição Uniforme contínua no intervalo [a,b], a < b, se sua função densidade de probabilidade é dada por

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{se } a \le x \le b \\ 0 & \text{caso contrário} \end{cases}$$

Notação: $X \sim U[a, b]$

Esperança e variância: $E(X) = \frac{a+b}{2}$ e $Var(X) = \frac{(b-a)^2}{12}$.

Modelo Uniforme contínuo

Com o objetivo de verificar a resistência à pressão de água, os técnicos de qualidade de uma empresa inspecionam os tubos de PVC produzidos.

Os tudos inspecionados têm 6 metros de comprimento e são submetidos a grandes pressões até o aparecimento do primeiro vazamento, cuja distância a uma das extremidades (fixada à priori) é anotada para fins de análise.

Escolhe-se um tubo ao acaso para ser inspecionado. Queremos calcular a probabilidade de que o vazamento esteja, a no máximo 1 metro das extremidades.

Modelo Exponencial

Definição: uma VA contínua X assumindo valores não negativos, segue o modelo exponencial com parâmetro $\alpha>0$ se sua densidade é dada por

$$f(x) = \begin{cases} \alpha e^{-\alpha x} & \text{se } x \ge 0\\ 0 & \text{caso contrário} \end{cases}$$

Notação: $X \sim \text{Exp}(\alpha)$

Esperança e variância: $E(X) = \mu = \frac{1}{\alpha}$ e $Var(X) = \frac{1}{\alpha^2}$.

Propriedade da distribuição Exponencial

$$P(a < X < b) = \int_a^b \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}.$$

Modelo Exponencial

Х

Uma indústria fabrica lâmpadas especiais que ficam em operação continuamente.

A empresa oferece a seus clientes a garantia de reposição, caso a lâmpada dure menos de 50 horas. A vida útil dessas lâmpadas é modelada através da distribuição Exponencial com parâmetro 1/8000.

- Qual é a duração média das lâmpadas?
- Determine a proporção de troca por defeito de fabricação.

Seja $X \sim \text{Exp}(1/8000)$.

- Duração média das lâmpadas: $E(X) = \frac{1}{\alpha} = \frac{1}{1/8000} = 8000$ horas.
- Proporção de troca por defeito:

$$P(X < 50) = \int_0^{50} \alpha e^{-\alpha x} dx$$

$$= \int_0^{50} \frac{1}{8000} e^{-\frac{1}{8000}x} dx$$

$$= e^{-\frac{1}{8000}0} - e^{-\frac{1}{8000}50} \qquad \text{(usando a propriedade)}$$

$$= 1 - 0.994$$

$$= 0.006$$

Definição: Dizemos que uma VA X segue o modelo normal se sua fdp é a seguinte

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty$$

onde $\mu \in \mathbb{R}$ é a média da população, $\sigma \in \mathbb{R}^+$ é o desvio-padrão populacional.

Notação: $X \sim N(\mu, \sigma^2)$

Esperança e variância: $E(X) = \mu$ e $Var(X) = \sigma^2$

Característcas da curva normal:

- É simétrica em relação à μ
- O ponto máximo (moda) de f(x) é o ponto $x = \mu$
- Os pontos de inflexão da função são $\mu-\sigma$ e $\mu+\sigma$
- A área total sob a curva é 1 ou 100%
- A curva é assintótica em relação ao eixo x

Para qualquer VA normal X, valem as seguintes relações:

$$P[X > \mu] = P[X < \mu]$$

 $P[\mu - \sigma < X < \mu + \sigma] \approx 0,683$
 $P[\mu - 2\sigma < X < \mu + 2\sigma] \approx 0,954$
 $P[\mu - 3\sigma < X < \mu + 3\sigma] \approx 0,997$

Portanto, 6σ é frequentemente referida como a largura de uma distribuição normal.

Métodos mais avançados de integração podem ser utilizados para mostrar que a área sob a função densidade de probabilidade normal de $-\infty < x < \infty$ é igual a 1.

26 / 42

Regra empírica para uma distribuição normal

۶

Para obter uma probabilidade do modelo normal, devemos calcular a área entre os pontos a e b, ou seja,

$$P[a < X < b] = \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] dx$$

No entanto, essa função não possui forma fechada, e o cálculo de probabilidades pode ser feito apenas por aproximações numéricas.

Para contornar esse problema, os valores de probabilidade são obtidos para uma distribuição normal padrão (Z) com $\mu=0$ e $\sigma^2=1$,

$$Z = \frac{X - \mu}{\sigma} \sim \mathsf{N}(0, 1)$$

A vantagem é que podemos fazer uma única tabela com as integrais aproximadas de Z, ao invés de uma tabela para cada par (μ, σ^2) .

Se $Z \sim N(0,1)$, então sua fdp é

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(z)^2\right]$$

Para se obter a probabilidade de Z estar entre a e b,

$$P[a < Z < b] = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(z)^{2}\right] dz$$

As integrais (áreas) para valores de Z entre 0,00 e 3,99 estão na tabela. Portanto, para qualquer valor de X entre a e b, podemos calcular a probabilidade correspondente através da transformação,

$$P[a < X < b] = P\left[\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right]$$

Exemplo de uso da tabela

- Calcule as probabilidades (áreas):
 - P(0 < Z < 2)
 - P(Z > 2)
 - P(Z < -2)
 - P(2, 0 < Z < 2, 5)
 - P(-2,61 < Z < 2,43)
 - P(Z > -1,63)
 - Qual é o valor de c tal que P(0 < Z < c) = 0,4?
 - Qual é o valor de d tal que P(Z > d) = 0.8?

Doentes sofrendo de certa moléstia são submetidos a um tratamento intensivo cujo tempo de cura foi modelado por uma densidade Normal de média 15 e desvio padrão 2 (em dias).

- Calcule a proporção de pacientes que demorarão mais de 17 dias para se recuperar.
- Calcule a probabilidade um paciente selecionado ao acaso demorar menos de 20 dias para se recuperar.
- Qual o tempo máximo necessário para a recuperação de 25% dos pacientes?
- Se 100 pacientes forem escolhidos ao acaso, qual seria o número esperado de doentes curados em menos de 11 dias?

Normal como aproximação da binomial

- A distribuição Normal é uma das mais importantes na Estatística:
 - Muitos fenômenos aleatórios se comportam próximos à essa distribuição
 - Pode ser usada como aproximação para outras distribuições

Se
$$X \sim \text{Bin}(n, p)$$
 então $E(X) = np$ e $Var(X) = np(1 - p)$.

Podemos aproximar a binomial pela normal, usando

$$Y \sim N(\mu = np, \sigma^2 = np(1-p)),$$

em geral, quando $np \ge 5$ e $np(1-p) \ge 5$.

Estudo do Sindicato dos Bancários indica que cerca de 30% dos funcionários de banco têm problemas de estresse, provenientes das condições de trabalho. Numa amostra de 200 bancários, qual seria a probabilidade de pelo menos 50 com essa doença?

Estudo do Sindicato dos Bancários indica que cerca de 30% dos funcionários de banco têm problemas de estresse, provenientes das condições de trabalho. Numa amostra de 200 bancários, qual seria a probabilidade de pelo menos 50 com essa doença?

Temos então $X \sim \text{Bin}(200, 0.3)$, e a probabilidade seria

$$P(X \ge 50) = \sum_{k=50}^{200} {200 \choose k} 0.3^k 0.7^{200-k}$$

que é difícil de calcular sem computador.

Mas E(X) = np = 60 e Var(X) = np(1-p) = 42. Assim, temos $Y \sim N(60, 42)$, de modo que

$$P(X \ge 50) \approx P(Y \ge 50 - 0.5) = P\left(\frac{Y - 60}{\sqrt{42}} \ge \frac{49.5 - 60}{\sqrt{42}}\right)$$

= $P(Z \ge -1.62) = 0.9474$

Obs.: o valor −0.5 é o fator de correção de continuidade.

Usando o R:

```
## Cálculo exato pela binomial
pbinom(49, size = 200, prob = 0.3, lower.tail = FALSE)
# [1] 0.9494082
## Aproximação pela Normal
pnorm(50-0.5, mean = 60, sd = sqrt(42), lower.tail = FALSE)
```

LEG/DEST/UFPR

[1] 0.9474037

Aproximação de $X \sim \text{Bin}(200, 0.3)$ com $Y \sim \text{N}(60, 42)$.

Combinação linear de Normais independentes

Se X_1, X_2, \ldots, X_n formam uma sequência de variáveis aleatórias independentes, onde $X_i \sim N(\mu_i, \sigma_i^2)$, e a_1, a_2, \ldots, a_n são constantes quaisquer, então:

$$W = \sum_{i=1}^n a_i X_i$$
 terá distribuição Normal com $W \sim \mathsf{N}(\mu_W, \sigma_W^2)$

onde:

$$\mu_{W} = E(\sum_{i=1}^{n} a_{i}X_{i}) = \sum_{i=1}^{n} E(a_{i}X_{i}) = \sum_{i=1}^{n} a_{i}E(X_{i}) = \sum_{i=1}^{n} a_{i}\mu_{i}$$

$$\sigma_{W}^{2} = Var(\sum_{i=1}^{n} a_{i}X_{i}) = \sum_{i=1}^{n} Var(a_{i}X_{i}) = \sum_{i=1}^{n} a_{i}^{2}Var(X_{i}) = \sum_{i=1}^{n} a_{i}^{2}\sigma_{i}^{2}$$

Uma corretora negocia títulos na Bolsa de Valores e utiliza um modelo probabilístico para avaliar seus lucros. Suas aplicações financeiras de compra e venda atingem três áreas: agricultura, indústria e comércio. Admita que o seguinte modelo representa o comportamento do lucro diário da corretora (em milhares):

$$L = 2L_A + 5L_I + 3L_C$$

onde L_A , L_I e L_C representam, os lucros diários nos setores de agricultura, indústria e comércio.

As distribuições de probabilidades dessas variáveis aleatórias são $L_A \sim N(3,4), \ L_I \sim N(6,9)$ e $L_C \sim N(4,16)$. Supondo independência entre os três setores, qual será a probabilidade de um lucro diário acima de 50 mil.

 $L \sim N(\mu_L, \sigma_L^2)$, onde:

$$\mu_L = \sum_{i=1}^3 a_i \mu_i = 2 \times 3 + 5 \times 6 + 3 \times 4 = 48$$

$$\sigma_L^2 = \sum_{i=1}^3 a_i^2 \sigma_i^2 = 2^2 \times 4 + 5^2 \times 9 + 3^2 \times 16 = 385$$

Portanto, $L \sim N(48, 385)$, e assim,

$$P(L > 50) = P\left(Z > \frac{50 - 48}{\sqrt{385}}\right)$$
$$= P(Z > 0.10)$$
$$= 0.4602$$

Um serviço de fiscalização é criado para averiguar se garrafas de um certo refrigerante contém, de fato, o volume especificado pelo fabricante. Para tanto, 10 garrafas do produto são compradas no varejo, em várias regiões da cidade. Cada uma dessas garrafas é esvaziada e o volume de seu conteúdo, que denotaremos por V é aferido.

Uma vez obtidos os 10 valores, a média aritmética M é calculada e, se M < 290 mililitros (ml), a companhia é multada. Estudos na linha de produção do fabricante mostraram que variações sempre ocorrem, mesmo se as especificações forem seguidas.

Por essa razão, considera-se o volume do conteúdo das garrafas como seguindo o modelo Normal, com média $\mu=300$ ml e desvio-padrão $\sigma=25$ ml. Gostaríamos de calcular qual é a probabilidade de que o fabricante seja multado injustamente.

Sumário

- Variáveis aleatórias contínuas
 - Introdução
 - Variáveis aleatórias contínuas
- Principais modelos contínuos
 - Modelo Uniforme contínuo
 - Modelo Exponencial
 - Modelo Normal
- 3 Exercícios

Exercícios recomendados

- Seção 6.1 1, 2, 3, 4 e 5.
- Seção 6.2 1 a 9.