Transcription

https://www.dnalc.org/view/16360-Animation-16-One-gene-makes-one-protein-.html

Beadle & Tatum experiment

- showed that the mutants had lost use of a specific gene that ordinarily facilitates one particular enzyme necessary to the production of arginine
- conclusion: one gene-one enzyme hypothesis

Central Dogma - Watson

- DNA flows in one direction in all living organisms
 - DNA \rightarrow RNA \rightarrow protein

Overview of Transcription

- "making a working copy"
 - makes a disposable copy of DNA → mRNA
 - 1. The mRNA will be sent to the *construction site* (ribosomes) *for building* the protein.
 - 2. RNA nucleotides use Ribose *instead* of Deoxyribose
 - This makes the RNA less stable than DNA
 - 3. In RNA, Uracil replaces Thymine.
 - -Thymine can't exit nuclear pores

Transcription

- process of making mRNA
- occurs in the nucleolus
- one DNA strand serves as a <u>template</u> for ordering the nucleotides
 - called the <u>template strand</u>
- 3 Steps:
 - 1. Initiation
 - 2. Elongation
 - 3. Termination

1. Initiation — building the factory

- transcription factors (proteins) attach to the <u>TATA</u> box to determine the direction the "factory" will proceed
 - the <u>TATA box</u> is part of the promoter sequence

1. Initiation — building the factory

- Then additional transcription factors (proteins and enzymes) are added to the "factory".
- Finally, RNA Polymerase II joins to complete the factory. The whole "factory" is called a <u>Transcription Initiation Complex</u>.

2. Elongation — making mRNA

- This must be made in the 5' → 3' direction!
 - will add the nucleotide to the 3' end of the growing strand (just like in replication)
- RNA Polymerase II separates the double helix to make room to work.
- RNA Polymerase II also adds <u>nucleotides</u> to the growing molecule.
- After RNA Polymerase II has past the DNA transcription point, the DNA reforms the helix.

3. Termination — stop

- A <u>stop codon</u> is made (for the ribosome) and the "factory" molecule slows down.
- RNA Polymerase II slows down until it stops transcription by forming an AAUAAA sequence and is then released from the DNA.

LabBench

RNA Processing- fixing the ends

- mRNA must be modified prior to leaving the nucleus
- the 5' and 3' ends are fixed
 - 5' end receives a guanine cap
 - 3' end receives a polyadenine tail

RNA Processing- fixing the middle

- also known as RNA alternative splicing
- introns (noncoding regions) are cut out of the mRNA and exons (coding regions) are glued together
 - spliceosomes perform this function

Transcription Review

- 1. Which enzyme unwinds the DNA?
- 2. Which enzyme adds new nucleotides?
- 3. Which direction does transcription occur?
- 4. What is made at the end of transcription?
- 5. Where is the mRNA made? Where does it go?
- 6. What happens to the mRNA before it goes to the ribosome?
- 7. What is spliced out of the mRNA?

Translation

Translation Overview

- occurs at the ribosome
- turns mRNA into a sequence of amino acids
- needs tRNA to transfer free amino acids from the cytoplasm, to the ribosome
- more than one ribosome complex may attach to the mRNA – called a <u>polyribosome</u>
 - allows many proteins to be made at once

Ribosome Structure

2 parts:

- 1. small sub-unit: platform for work
- 2. large sub-unit: factory
 - A site: where the next tRNA is added
 - P site: protein attachment
 - E site: where tRNA exits

Transfer RNA (tRNA)

- Each tRNA molecule is different and is made from a DNA template in the nucleus.
- tRNA has a threedimensional shape. The 3'end of the molecule holds a specific amino acid.
- The opposite end has the compliment to an mRNA codon called the anticodon.

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Transfer RNA (tRNA)

There are 45 different tRNA molecules for 61 possible codon combinations.

First Letter	Second Letter				Third
	U	C	A	G	Letter
U	phenylalanine	serine	tyrosine	cysteine	U
	phenylalanine	serine	tyrosine	cysteine	С
	leucine	serine	stop	stop	A
	leucine	serine	stop	tryptophan	G
U	leucine	proline	histidine	arginine	U
	leucine	proline	histidine	arginine	С
	leucine	proline	glutamine	arginine	A
	leucine	proline	glutamine	arginine	G
4	isoleucine	threonine	asparagine	serine	U
	isoleucine	threonine	asparagine	serine	С
	isoleucine	threonine	lysine	arginine	A
	(start) methionine	threonine	lysine	arginine	G
G	valine	alanine	aspartate	glycine	U
	valine	alanine	aspartate	glycine	С
	valine	alanine	glutamate	glycine	A
	valine	alanine	glutamate	glycine	G

tRNA – wobble effect

- Remember: there are <u>3</u> bases per anticodon!
 - Anticodons are complimentary to codons to ensure the correct amino acid is brought to the ribosome.
- However, the 3rd base does not adhere to base-pairing rules!
 - U on tRNA can bond with an A or G on mRNA.
 Hence, the reason the third base pair on a codon can be different but code for the same a.a.
 - Some tRNA has a special kind of base called Inosine (I) which can bond with U, C, or A.

Wobble Effect

Amino Acid Pick-Up

- An enzyme called <u>aminoacyl-tRNA</u> <u>synthetase</u> is used to join amino acid to tRNA in the cytoplasm.
- The addition is driven by ATP.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Initiation – building the factory

- 1. small sub-unit attaches to 5' cap of mRNA
- 2. start codon (AUG) brings the tRNA molecule with methionine attached
 - this starts productionof the protein

Initiation – building the factory

- 3. large sub-unit will bind using enzymes called <u>initiation factors</u>
 - uses GTP for energy
- 4. large sub-unit aligns methionine to P site
 - A site is now open

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Elongation — actual making of a.a.

- 1. ribosome translocates ("walks") down the mRNA *one codon* at a time using GTP
 - tRNA adds a single amino acid to the open A site
- another GTP is used to make the peptide bond between each amino acid
- *tRNA's move from A to P to E site= moving APE!

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Termination — the end

- 1. termination codon reaches the A site
 - UAA, UAG or UGA
- 2. <u>release factors</u> (enzymes) enter the A site causing a *hydrolysis* reaction
 - releases protein from tRNA
- 3. ribosomal sub-units detach & separate
- 4. mRNA will either be recycled or reused

Post-Translation Modification

- If the sequence enters a chaperonin the protein will stay in the cell
 - these proteins are made by free ribosomes

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Post-Translation Modification

- If the sequence enters the RER the protein will be exported out of the cell
 - these proteins are made by <u>bound ribosomes</u>
 - will have a <u>signal peptide</u> attached that will be recognized by the RER

