MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 07	Andrés Montoya	405409
9. Juni 2021	<u> </u>	Til Mohr	405959

 $E ext{-}Test$

Aufgabe 2

(a)

$$W_0 = \{6, 7, 8, 9\}$$

 $W_1 = \{0, 1, 2, 3, 4, 5\}$

Position	Spieler 0	Spieler 1
0	-	0
1	_	1
2	-	2
3	-	4
4	-	3
5	-	0
6	∞	-
7	1	-
8	∞	_
9	0	_

- (b) $\mathcal G$ ist nicht fundiert, da es unendliche Partien gibt (z.B. $(6,8,6,8,\dots)$). $\mathcal G$ ist determiniert, $W_0\cup W_1=V$
- (c) Wenn Spieler 1 vorher die Position 9 entfernt, hat nun Spieler 1 eine Gewinnstrategie für jede Position und Spieler 0 hat keine mehr. Sprich, Spieler 1 gewinnt dann immer.

$$(a)_s \coloneqq 2$$

$$f_0: 1 \mapsto 0, 3 \mapsto 2, 6 \mapsto 8, 7 \mapsto 9$$

 $f_1: 2 \mapsto 1, 4 \mapsto 2, 8 \mapsto 6$

Spieler 1 gewinnt.

$$v_s \coloneqq 2$$

$$f_0: 1 \mapsto 0, 3 \mapsto 2, 6 \mapsto 8, 7 \mapsto 9$$

 $f_1: 2 \mapsto 1, 4 \mapsto 2, 8 \mapsto 6$

Unentschieden. Spieler 0 muss zu 8 gehen, da sonst verloren. Spieler 8 muss zurück zu 6 gehen, da sonst verloren (Spieler 0 kann sonst von 7 zu 9).

(b)

- (a) (i)
 - (ii)
 - (iii)
- (b)
- (c)

- (a)
- (b)
- (c)
- (d)