2016-2017 学年第二学期《高等数学BII》试卷(A)

课班号_	1 1 24 2 Z	学院	学号	BALL I	_姓名	
题型	填空题	计算题	综合题	总分	# #	
得分				1677	事 核	

- 一、填空题(每小题3分,共24分)
- 1. 与点 $M_1(1,-1,2)$, $M_2(3,3,1)$, $M_3(3,1,3)$, 决定的平面垂直的单位向量 $a_0 =$ _____.

得分	阅卷人			

- 2. 曲线 $\begin{cases} z = 2 x^2 y^2 \\ z = (x 1)^2 + (y 1)^2 \end{cases}$ 在 xOy 面上的投影曲线的方程为
- 3. 曲线 $\begin{cases} 3x^2yz=1 \\ y=1 \end{cases}$ 在点 $\left(1,1,\frac{1}{3}\right)$ 处的切线与 z 轴正向所成的倾角
- $4. \qquad \int\int\int\limits_{x^2+y^2\leq a^2} |xy|\,\mathrm{d}\sigma = \underline{\hspace{1cm}}$
- 5. 二次积分 $\int_{-a}^{a} dx \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy$ 在极坐标系下先对 r 积分的二次积分为_____
- 6. 差分方程 $Y_{x+1} 2Y_x = 3 \cdot 2^x$ 的通解为____
- 8. 若 y_1, y_2 都是方程y'+p(x)y=f(x)的解,且 y_1 与 y_2 线性无关,则上述方程的通解可以表示为______.
 - 二、计算题(每小题8分,共32分)

得分	阅卷人		
Assessment of the second			

已知两条直线的方程是
$$l_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}, \quad l_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1},$$
 求过 l_1 且平行于 l_2 的平面方积

求过 l_1 且平行于 l_2 的平面方程.

3. 计算二重积分
$$\iint_D (|x|+|y|) dxdy$$
, 其中 $D: |x|+|y| \leq 1$.

试求幂级数 $\sum_{n=1}^{\infty} \frac{n+1}{n} x^n$ 在其收敛域上的和函数.

三、综合题(满分44分)

1. (11分)

证明级数 $\sum_{n=1}^{\infty} (-1)^n \int_n^{n+1} \sin \frac{1}{x} dx$ 收敛.

得分	阅卷人		
	7		

2. (11 分) 试求曲面 $z=2-x^2-y^2$ 被平面 z=1 截下部分的面积.

3. (11 分) 计划作一批形状为圆柱体的油桶,每只油桶造价定为 a 元,已知油桶侧壁每单位面积的造价是其上下两面每单位面积造价的 1.5 倍,问如何设计油桶的尺寸,才能使每只油桶的容积达到最大?

4. (11 分) 已知曲线 $y = y(x)(x \ge 0)$ 过原点,位于x 轴上方,且曲线上任一点 $M(x_0,y_0)$ 处切线斜率数值上等于此曲线与x 轴,直线 $x = x_0$ 所围成的面积与该点横坐标的和,求此曲线方程.