Some Help with Diagnostic Plots

Chart of residual (and related) plots

When we run a simple **proc** reg step in SAS, one of the many things it outputs is a grid of plots. An example for a data set dealing with the variable life expectancy is shown below:

1 Residuals vs. Predicted Values Plot

- Used to check for constant variance (homoskedasticity) and outliers
- Simple plot of residuals
- Want to see a random scatter around 0 line (which means model is unbiased)
- A pattern or megaphone shape indicates non-constant variance (heteroskedasticity)
- This example: Has fairly constant variance

2 Normal Probability Plot (a.k.a. Q-Q Plot) for Residuals

• Used to check for normality (and outliers)

- Observed quantiles for the data vs expected quantiles is expected if data is normal
- Want to see a tight fit to the normal (diagonal) line for normality
- All but a few points falling on the line indicates normality
- Staircase pattern (plateaus and gaps) indicates a discrete response variable

• Skew

- Curved pattern with slope increasing from left to right indicates a $right\ skew$ to the data
- If the top end of our line falls above the normal line but the bottom doesn't deviate from the line, this indicates a *right skew*
- Curved pattern with slope decreasing from left to right indicates a $\mathit{left\ skew}$ to the data
- If the bottom end of our line falls below the normal line but the top doesn't deviate from the line, this indicates a *left skew*

• Kurtosis

- A normal distribution has 0 kurtosis
- Long tails off of the line at both ends indicates heavier tails (positive kurtosis)
- This example: Has approximate normality, with perhaps a slight right skew

3 Histogram of Residuals

• Used to check the distribution of the residuals

- Want a bell shape that approximately follows a normal probability distribution
- Long right tail indicates right skew in data
- Long left tail indicates left skew in data
- Generally, using the q-q plot is preferable to using the histogram
- This example: Has pretty good approximate normality, with evidence of a slight right skew

*Sequence Plot of Residuals (not in proc reg output)

- Used to test data for independence
- Produced using a **proc sgplot** step and **series** statement
- Line graph of residuals in order of observations
- We do NOT want a discernible pattern
- A random and somewhat even up-and-down scatter in peaks and dips suggests independence in data
- Only useful if the observations are ordered by time of collection.
- This example: Has a very random scatter, which suggests our data have independence

4 Studentized Residuals vs. Predicted Values Plot

- Used to check for constant variance (homoskedasticity) and outliers
- Plot of studentized (i.e. scaled) residuals
- Want to see a random scatter around 0 line
- A pattern or megaphone shape indicates non-constant variance (homoskedasticity)
- Points outside the threshold lines indicate potential outliers
- This example: Has fairly constant variance and perhaps 4-5 mild outliers

5 Observed Values vs. Predicted Values Plot

- Used to check model fit
- Plot of standardized deleted residuals

- Want to see a somewhat close fit to the diagonal line (perfect fit to line means perfect fit of model to data)
- If the points don't fit the diagonal line at all, this suggests poor model fit
- This example: The model produced at this step has a good fit to the data.

6 Residual-Fit Spread Plot (Not particularly necessary for this course)

- Used to determine model fit and variance explained by model
- Graph of the centered data vs the corresponding plotting position and residuals vs plotting position
- "Fit-Mean" should be read as "Fit minus Mean"
- Left graph (Fit Mean) is a graph of the centered data vs. corresponding plotting position
- If the left graph is taller than the right graph, \rightarrow the spread of the residuals is relatively smaller than the spread of the fitted values \rightarrow the predictor variable accounts for most of the variation in the model
- If the right graph is taller than the left graph, \rightarrow the spread of the fitted values is relatively smaller than the spread of the residuals \rightarrow there is a lot of variation not explained by the model
- ullet The residual plot shows a normal distribution o model fits the data
- ullet The residual plot does not show a normal distribution o model may not fit the data
- This example: Tells us our predictor variables explain most of the variation in our model and our residual plot looks roughly normally distributed

7 Outlier and Leverage Diagnostics Plot

- Used to find outliers and influential points
- The first, smaller version of the plot is produced automatically by a **proc** reg statement
- The second plot is produced by using a plots option, specifically, plots(label) = (RStudentByLeverage), in the **proc reg** statement
- \bullet Horizontal lines are the outlier thresholds; vertical line is leverage threshold
- (Points with high leverage indicate influential points)
- Good for preliminary investigation of influential points, follow up with Cook's D, DFBETAS, or DFFITS plots....

• This example: Shows evidence of outliers (specifically observations 50, 98, 14) and some influenital points (specifically observations 60, 108 and 78).

8 Cook's Distance (Cook's D) Plot

- Used to determine influential points
- The first, smaller version of the plot is produced automatically by a **proc** reg statement
- The second plot is produced by using a plots option, specifically, plots(label) = (CooksD), in the **proc reg** statement
- Horiztonal line is SAS's threshold

- Observations with Cook's distances that reach above the threshold are influential
- This example: Has 3-4 fairly influential points. Specifically, observations 3 and 108 have moderate influence, while observations 14 and 98 have stronger influence.

*DFBETAS plot

- Used to determine influential points
- Produced by using the plots option, specifically, plots(label) = (DFBETAS), in the **proc** reg statement
- A plot for each beta estimate in the model
- \bullet Measures how different an estimate of β_k would be if we removed one observation from the data
 - positive DFBETAS "pull" beta estimates up
 - negative DFBETAS "pull" beta estimates down
- Observations with DFBETAS that fall noticeably above or below SAS threshold lines indicate influential points

- (For $n \le 30$, |DFBETAS| > 1 indicate influential points)
- This example: Shows the plots for the first 5 of our predictor variables (plus the intercept). Some potentially significantly influential points are 3, 14, 50, 98, 108.

*DFFITS plot

- Used to determine influential points
- Produced by using the plots option, specifically, plots(label) = (DFFITS), in the **proc** reg statement
- Measures how different \hat{Y}_i would be if we removed i^{th} observation from the data
- Observations with DFFITS that fall noticeably above or below SAS threshold indicate influential points
- (For $n \le 30$, |DFFITS| > 1 indicate influential points)
- This example: Shows us we have influential points for observations 3, 14, 68, 98, 108.