Error surface is rugged ...

Tips for training: Adaptive Learning Rate

Training stuck ≠ Small Gradient

 People believe training stuck because the parameters are around a critical point ...

Wait a minute ...

Training can be difficult even without critical points.

This error surface is convex.

Learning rate cannot be one-size-fits-all

$$\eta$$
 = 10^{-2}

$$\eta = 10^{-7}$$

Different parameters needs different learning rate

Formulation for **one** parameter:

$$\begin{aligned} \boldsymbol{\theta}_i^{t+1} &\leftarrow \boldsymbol{\theta}_i^t - \eta \boldsymbol{g}_i^t \\ \boldsymbol{g}_i^t &= \frac{\partial L}{\partial \boldsymbol{\theta}_i}|_{\boldsymbol{\theta} = \boldsymbol{\theta}^t} \\ \boldsymbol{\theta}_i^{t+1} &\leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t \end{aligned}$$
Parameter dependent

Root Mean Square $\theta_i^{t+1} \leftarrow \theta_i^t - \left| \frac{\eta}{\sigma_i^t} \right| g_i^t$

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - \left| rac{\eta}{\sigma_i^t} oldsymbol{g}_i^t
ight|$$

$$\boldsymbol{\theta}_i^1 \leftarrow \boldsymbol{\theta}_i^0 - \frac{\eta}{\sigma_i^0} \boldsymbol{g}_i^0 \qquad \sigma_i^0 = \sqrt{\left(\boldsymbol{g}_i^0\right)^2} = \left|\boldsymbol{g}_i^0\right|$$

$$\boldsymbol{\theta}_i^2 \leftarrow \boldsymbol{\theta}_i^1 - \frac{\eta}{\sigma_i^1} \boldsymbol{g}_i^1 \qquad \sigma_i^1 = \sqrt{\frac{1}{2} \left[\left(\boldsymbol{g}_i^0 \right)^2 + \left(\boldsymbol{g}_i^1 \right)^2 \right]}$$

$$\boldsymbol{\theta_i^3} \leftarrow \boldsymbol{\theta_i^2} - \frac{\eta}{\sigma_i^2} \boldsymbol{g_i^2} \qquad \sigma_i^2 = \sqrt{\frac{1}{3} \left[\left(\boldsymbol{g_i^0} \right)^2 + \left(\boldsymbol{g_i^1} \right)^2 + \left(\boldsymbol{g_i^2} \right)^2 \right]}$$

$$\vdots$$

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t} \quad \sigma_{i}^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (\boldsymbol{g}_{i}^{t})^{2}}$$

Root Mean Square

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - \overline{\overline{\sigma}_i^t} oldsymbol{g}_i^t$$

$$\sigma_i^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t (\boldsymbol{g}_i^t)^2}$$

Used in **Adagrad**

Learning rate adapts dynamically

RMSProp

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - oldsymbol{eta}_i^t oldsymbol{g}_i^t$$

$$\boldsymbol{\theta_i^1} \leftarrow \boldsymbol{\theta_i^0} - \frac{\eta}{\sigma_i^0} \boldsymbol{g_i^0}$$

$$\sigma_i^0 = \sqrt{\left(\boldsymbol{g}_i^0\right)^2}$$

$$0 < \alpha < 1$$

$$\boldsymbol{\theta}_i^2 \leftarrow \boldsymbol{\theta}_i^1 - \frac{\eta}{\sigma_i^1} \boldsymbol{g}_i^1$$

$$\sigma_i^1 = \sqrt{\alpha (\sigma_i^0)^2 + (1 - \alpha) (\boldsymbol{g}_i^1)^2}$$

$$\boldsymbol{\theta}_i^3 \leftarrow \boldsymbol{\theta}_i^2 - \frac{\eta}{\sigma_i^2} \boldsymbol{g}_i^2$$

$$\boldsymbol{\theta}_i^3 \leftarrow \boldsymbol{\theta}_i^2 - \frac{\eta}{\sigma_i^2} \boldsymbol{g}_i^2 \qquad \sigma_i^2 = \sqrt{\alpha (\sigma_i^1)^2 + (1 - \alpha) (\boldsymbol{g}_i^2)^2}$$

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{\eta}{\sigma_i^t} oldsymbol{g}_i^t$$

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t \quad \sigma_i^t = \sqrt{\alpha (\sigma_i^{t-1})^2 + (1-\alpha) (\boldsymbol{g}_i^t)^2}$$

RMSProp

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \boxed{\frac{\eta}{\sigma_i^t}} \boldsymbol{g}_i^t$$

The recent gradient has larger influence, and the past gradients have less influence.

Adam: RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector) \longrightarrow for momentum
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                      for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Without Adaptive Learning Rate

Learning Rate Scheduling

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{oldsymbol{\eta}^t}{\sigma_i^t} oldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

Learning Rate Scheduling

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{oldsymbol{\eta}^t}{\sigma_i^t} oldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

We further explore n=18 that leads to a 110-layer ResNet. In this case, we find that the initial learning rate of 0.1 is slightly too large to start converging⁵. So we use 0.01 to warm up the training until the training error is below 80% (about 400 iterations), and then go back to 0.1 and continue training. The rest of the learning schedule is as done previously. This 110-layer network converges well (Fig. 6, middle). It has *fewer* parameters than other deep and thin

Residual Network

https://arxiv.org/abs/1512.03385

5.3 Optimizer

We used the Adam optimizer [17] with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-9}$. We varied the learning rate over the course of training, according to the formula:

$$lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$$
 (3)

This corresponds to increasing the learning rate linearly for the first $warmup_steps$ training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used $warmup_steps = 4000$.

Transformer

https://arxiv.org/abs/1706.03762

⁵With an initial learning rate of 0.1, it starts converging (<90% error) after several epochs, but still reaches similar accuracy.

Learning Rate Scheduling

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{oldsymbol{\eta}^t}{\sigma_i^t} oldsymbol{g}_i^t$$

Learning Rate Decay

After the training goes, we are close to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

At the beginning, the estimate of σ_i^t has large variance.

Please refer to RAdam

https://arxiv.org/abs/1908.03265

Summary of Optimization

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \eta \boldsymbol{g}_i^t$$

Various Improvements

$$\boldsymbol{\theta_i^{t+1}} \leftarrow \boldsymbol{\theta_i^t} - \frac{\eta^t}{\sigma_i^t} \overset{\longleftarrow}{\boldsymbol{m_i^t}} \overset{\text{Learning rate scheduling}}{\text{Momentum: weighted sum of the previous gradients}} \quad \begin{array}{c} \text{Consider direction} \end{array}$$

root mean square of the gradients

only magnitude

To Learn More

https://youtu.be/4pUmZ8hXIHM
 (in Mandarin)

https://youtu.be/e03YKGHXnL8 (in Mandarin)

Next Time

Source of image: https://arxiv.org/abs/1712.09913

Better optimization strategies: If the mountain won't move, build a road around it.

Next time

Can we change the error surface?
Directly move the mountain!