Exposys Data Labs

Data Science Internship

Arisha Akhtar

Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Loading

data=pd.read_csv('_/content/50_Startups.csv')
data.head(5)

→ ▼		R&D Spend	Administration	Marketing Spend	Profit
	0	165349.20	136897.80	471784.10	192261.83
	1	162597.70	151377.59	443898.53	191792.06
	2	153441.51	101145.55	407934.54	191050.39
	3	144372.41	118671.85	383199.62	182901.99
	4	142107 34	91391 77	366168 42	166187 94

This dataset appears to represent financial information for 50 startup companies.

R&D Spend: This column likely represents the amount of money each startup has spent on research and development (R&D) activities. R&D spending typically includes expenses related to creating new products, improving existing ones, or conducting scientific research to support innovation.

Administration: This column probably indicates the administration or operational expenses of each startup.

Marketing Spend: This column most likely represents the amount of money each startup has allocated towards marketing activities.

Profit: This column presumably indicates the profit earned by each startup. Profit is the amount of money remaining after subtracting expenses (such as R&D, administration, and marketing spend) from total revenue. It's a key metric for assessing the financial performance and viability of a business.

```
data.shape[0]
```

→ 50

data.columns

```
Index(['R&D Spend', 'Administration', 'Marketing Spend', 'Profit'], dtype='object')
```

data.isnull().sum()

R&D Spend 0
Administration 0
Marketing Spend 0
Profit 0
dtype: int64

No Null Values present in the dataset

Descriptive Statistics

```
summary_stats = data.describe()
```

print(summary_stats)

→	count mean std min 25% 50% 75%	R&D Spend 50.000000 73721.615600 45902.256482 0.000000 39936.370000 73051.080000 101602.800000	Administration 50.000000 121344.639600 28017.802755 51283.140000 103730.875000 122699.795000 144842.180000	Marketing Spend 50.000000 211025.097800 122290.310726 0.000000 129300.132500 212716.240000 299469.085000	Profit 50.000000 112012.639200 40306.180338 14681.40000 90138.902500 107978.190000 139765.977500
	75% max	101602.800000 165349.200000	144842.180000 182645.560000	299469.085000 471784.100000	139765.977500 192261.830000

R&D Spend:

Mean:73,721.62: On average, startup companies spend approximately 73,721.62 on research and development.

Standard Deviation: 45,902.26: The expenditure on R&D varies by approximately 45,902.26 around the mean.

Minimum: 0.00: The minimum R&D spend in the dataset is 0.00, indicating that some companies did not invest anything in R&D.

Maximum:165,349.20: The maximum R&D spend is 165,349.20, suggesting significant investment in innovation by some companies.

Administration:

Mean: 121,344.64: The average administration cost for these startups is approximately 121,344.64.

Standard Deviation: 28,017.80: Administration costs have relatively less variability compared to R&D spending.

Minimum: 51,283.14: The lowest administration cost is 51,283.14.

Maximum: 182,645.56: The highest administration cost is 182,645.56.

Marketing Spend:

Mean: 211,025.10: The average marketing expenditure is 211,025.10.

Standard Deviation: 122,290.31: Marketing spend varies considerably across the dataset, with a standard deviation of 122,290.31.

Minimum: 0.00: Some companies have not allocated any funds to marketing activities.

Maximum: 471,784.10: The maximum marketing spend is 471,784.10, indicating significant investment in marketing by certain companies.

Profit:

Mean: 112,012.64: The average profit earned by these startups is approximately 112,012.64.

Standard Deviation: 40,306.18: Profitability varies across the dataset, with a standard deviation of 40,306.18.

Minimum: 14,681.40: The lowest profit recorded is 14,681.40, indicating potential financial challenges for some companies.

Maximum: 192,261.83: The highest profit recorded is 192,261.83, suggesting strong performance by certain companies.

Correlation Analysis

```
correlation_matrix = data.corr()
```

print(correlation_matrix)

\rightarrow		R&D Spend	Administration	Marketing Spend	Profit
	R&D Spend	1.000000	0.241955	0.724248	0.972900
	Administration	0.241955	1.000000	-0.032154	0.200717
	Marketing Spend	0.724248	-0.032154	1.000000	0.747766
	Profit	0.972900	0.200717	0.747766	1.000000

```
# Create a heatmap
fig, ax = plt.subplots(figsize=(10, 8))
cax = ax.matshow(correlation_matrix, cmap='coolwarm', vmin=-1, vmax=1)
fig.colorbar(cax)

# Set labels for axes and title
ax.set_xticks(np.arange(len(correlation_matrix.columns)))
ax.set_yticks(np.arange(len(correlation_matrix.columns)))
ax.set_xticklabels(correlation_matrix.columns, rotation=45, ha='right')
ax.set_yticklabels(correlation_matrix.columns)
plt.title('Correlation Matrix of Startup Data', fontsize=16)

# Display the heatmap
plt.show()
```


R&D Spend vs. Profit:

Correlation coefficient: 0.973

Explanation: There is a very strong positive correlation of 0.973 between R&D Spend and Profit. This suggests a close relationship between R&D spending and the profitability of the startup companies. As R&D spending increases, profits tend to increase as well, indicating that R&D investment is a significant factor contributing to profitability.

Data Visualization

 $Histogram: Interpreting\ histograms\ involves\ understanding\ the\ distribution\ of\ the\ data\ within\ each\ variable$

Boxplot:Interpreting boxplots involves understanding whether the data is having outliers or not.

Scatter Plot:Interpreting scatter plots involves understanding the relationship between two variables.

```
plt.figure(figsize=(8, 7))
# Plot histograms for each column
plt.subplot(2, 2, 1)
sns.histplot(data['R&D Spend'], kde=True, color='blue')
plt.title('R&D Spend Distribution')
plt.subplot(2, 2, 2)
sns.histplot(data['Administration'], kde=True, color='green')
plt.title('Administration Distribution')
plt.subplot(2, 2, 3)
sns.histplot(data['Marketing Spend'], kde=True, color='orange')
plt.title('Marketing Spend Distribution')
plt.subplot(2, 2, 4)
sns.histplot(data['Profit'], kde=True, color='red')
plt.title('Profit Distribution')
plt.tight_layout()
plt.show()
```


A symmetric distribution suggests a more even distribution of profits across companies, indicating that companies have similar levels of profitability.

```
# Create box plots for each column
plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
sns.boxplot(data=data[['R&D Spend', 'Administration', 'Marketing Spend']], palette='pastel')
plt.title('Box Plot of R&D Spend, Administration, and Marketing Spend')

plt.subplot(1, 2, 2)
sns.boxplot(data=data['Profit'], palette='pastel', color='pink')
plt.title('Box Plot of Profit')

plt.tight_layout()
plt.show()
```

<ipython-input-9-331c42ab6438>:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=data['Profit'], palette='pastel', color='pink')

From the box plot we can visualize that there is no Outlier present in the data

```
plt.figure(figsize=(18, 5))

# Scatter plot between R&D Spend and Profit
plt.subplot(1, 3, 1)
sns.scatterplot(x='R&D Spend', y='Profit', data=data, color='blue')
plt.title('R&D Spend vs. Profit')

# Scatter plot between Administration and Profit
plt.subplot(1, 3, 2)
sns.scatterplot(x='Administration', y='Profit', data=data, color='green')
plt.title('Administration vs. Profit')

# Scatter plot between Marketing Spend and Profit
plt.subplot(1, 3, 3)
sns.scatterplot(x='Marketing Spend', y='Profit', data=data, color='orange')
plt.title('Marketing Spend vs. Profit')

plt.tight_layout()
plt.show()
```


The scatter plot shows the relationship between R&D spending and the profitability of the startup companies.

There is a positive correlation this indicates that as R&D spending increases, profits tend to increase as well.

Identifying Dependent and Independent Variables

118671.85

91391.77

99814.71

3

4

144372.41

142107.34

131876.90

```
# Separate independent variables (features) and dependent variable (target)
X = data[['R&D Spend', 'Administration', 'Marketing Spend']] # Independent variables (features)
y = data['Profit'] # Dependent variable (target)
print("Independent Variables (Features):\n", X)
print("\nDependent Variable (Target):\n", y)
→ Independent Variables (Features):
          R&D Spend Administration Marketing Spend
        165349.20
                                         471784.10
                        136897.80
                        151377.59
                                         443898.53
        162597.70
                                         407934.54
        153441.51
                        101145.55
```

383199.62

366168.42

362861.36

```
17/05/2024, 11:54
            134615.46
                             147198.87
                                              127716.82
            130298.13
                             145530.06
                                              323876.68
                                              311613.29
            120542.52
                             148718.95
                             108679.17
        9
            123334.88
                                               304981.62
            101913.08
        10
                             110594.11
                                              229160.95
        11 100671.96
                              91790.61
                                              249744.55
                             127320.38
                                              249839.44
        12
              93863.75
              91992.39
                             135495.07
                                              252664.93
        13
        14
            119943.24
                             156547.42
                                              256512.92
            114523.61
        15
                             122616.84
                                              261776.23
              78013.11
                             121597.55
                                              264346.06
        16
                             145077.58
        17
              94657.16
                                              282574.31
        18
              91749.16
                             114175.79
                                              294919.57
        19
              86419.70
                             153514.11
                                                   0.00
                                              298664.47
              76253.86
        20
                             113867.30
        21
              78389.47
                             153773.43
                                              299737.29
              73994.56
                             122782.75
                                               303319.26
        23
              67532.53
                             105751.03
                                               304768.73
                                              140574.81
              77044.01
                              99281.34
        24
              64664.71
                             139553.16
        25
                                              137962.62
                             144135.98
        26
              75328.87
                                               134050.07
        27
                             127864.55
              72107.60
                                              353183.81
              66051.52
                             182645.56
                                              118148.20
        28
        29
              65605.48
                             153032.06
                                              107138.38
                             115641.28
              61994.48
                                               91131.24
        30
        31
              61136.38
                             152701.92
                                               88218.23
        32
              63408.86
                             129219.61
                                               46085.25
         33
              55493.95
                             103057.49
                                              214634.81
         34
              46426.07
                             157693.92
                                               210797.67
        35
              46014.02
                              85047.44
                                              205517.64
                             127056.21
        36
              28663.76
                                              201126.82
        37
              44069.95
                              51283.14
                                              197029.42
                              65947.93
                                              185265.10
        38
              20229.59
        39
                              82982.09
                                              174999.30
              38558.51
        40
              28754.33
                             118546.05
                                              172795.67
        41
              27892.92
                              84710.77
                                              164470.71
              23640.93
                              96189.63
                                              148001.11
        42
        43
                             127382.30
              15505.73
                                               35534.17
        44
              22177.74
                             154806.14
                                               28334.72
               1000.23
                                                1903.93
        45
                             124153.04
        46
               1315.46
                             115816.21
                                               297114.46
        47
                             135426.92
                 0.00
                                                   0.00
        48
                542.05
                              51743.15
                                                   0.00
                             116983.80
        49
                 0.00
                                               45173.06
        Dependent Variable (Target):
         0
               192261.83
               191792.06
               191050.39
   X.count()
   y.count()
    <del>→</del> 50
```

Dividing the data into train and test

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Linear Regression

 $from \ sklearn.linear_model \ import \ LinearRegression$ reg=LinearRegression() reg.fit(X_train,y_train)

▼ LinearRegression LinearRegression()

reg.score(X_train,y_train)

0.9535927757257411

y_pred=reg.predict(X_test)

₹

df=pd.DataFrame({"Actual":y_test,"Predicted":y_pred})

	Actual	Predicted
13	134307.35	126703.027165
39	81005.76	84894.750816
30	99937.59	98893.418160
45	64926.08	46501.708150
17	125370.37	129128.397344
48	35673.41	50992.694863
26	105733.54	109016.553658
25	107404.34	100878.464145
32	97427.84	97700.596386
19	122776.86	113106.152922

```
plt.figure(figsize=(8, 6))
plt.scatter(df["Actual"], df["Predicted"], color='blue')
plt.plot(df["Actual"], df["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


from sklearn.metrics import mean_squared_error
Linear_Regression=mean_squared_error(y_test,y_pred)
Linear_Regression

→ 80926321.22295158

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_pred)

→ 6979.152252370402

from sklearn.metrics import r2_score
r2_score(y_test,y_pred)

0.9000653083037321

Ridge Regression model

from sklearn.linear_model import Ridge

Initialize the Ridge Regression model
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train,y_train)

₹ Ridge Ridge()

ridge_model.score(X_train,y_train)

0.9535927757257411

 ${\tt y_pred1=ridge_model.predict(X_test)}$

df1=pd.DataFrame({"Actual":y_test,"Predicted":y_pred1})
df1

	Actual	Predicted
13	134307.35	126703.027165
39	81005.76	84894.750816
30	99937.59	98893.418159
45	64926.08	46501.708150
17	125370.37	129128.397344
48	35673.41	50992.694862
26	105733.54	109016.553657
25	107404.34	100878.464145
32	97427.84	97700.596385
19	122776.86	113106.152921

```
plt.figure(figsize=(8, 6))
plt.scatter(df1["Actual"], df1["Predicted"], color='blue')
plt.plot(df1["Actual"], df1["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


Actual

from sklearn.metrics import mean_squared_error
Ridge_regression=mean_squared_error(y_test,y_pred1)
Ridge_regression

→ 80926321.22368833

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_pred1)

→ 6979.152252428612

from sklearn.metrics import r2_score
r2_score(y_test,y_pred1)

0.9000653083028223

Lasso Regression

from sklearn.linear_model import Lasso

Initialize the Lasso Regression model
lasso_model = Lasso(alpha=1.0)
lasso_model.fit(X_train,y_train)

→ Lasso Lasso()

lasso_model.score(X_train,y_train)

0.9535927757257411

y_pred2=lasso_model.predict(X_test)

df2=pd.DataFrame({"Actual":y_test,"Predicted":y_pred2})
df2

<u> </u>	Actual	Predicted
13	134307.35	126703.027183
39	81005.76	84894.750771
30	99937.59	98893.418184
45	64926.08	46501.708163
17	125370.37	129128.397364
48	35673.41	50992.694812
26	105733.54	109016.553705
25	107404.34	100878.464180
32	97427.84	97700.596436
19	122776.86	113106.153023

```
plt.figure(figsize=(8, 6))
plt.scatter(df2["Actual"], df2["Predicted"], color='blue')
plt.plot(df2["Actual"], df2["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


from sklearn.metrics import mean_squared_error
Lasso_Regression=mean_squared_error(y_test,y_pred2)
Lasso_Regression

⇒ 80926320.76116839

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_pred2)

→ 6979.152235475121

from sklearn.metrics import r2_score
r2_score(y_test,y_pred2)

0.9000653088739812

Random Forest Regressor

from sklearn.ensemble import RandomForestRegressor

Initialize the Random Forest Regression model
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train,y_train)

rf_model.score(X_train,y_train)

0.9909353043705511

y_pred3=rf_model.predict(X_test)

df3=pd.DataFrame({"Actual":y_test,"Predicted":y_pred3})
df3

→		Actual	Predicted
	13	134307.35	133831.6871
	39	81005.76	89192.0856
	30	99937.59	100239.4889
	45	64926.08	44157.3419
	17	125370.37	131047.2193
	48	35673.41	40492.4908
	26	105733.54	114781.5865
	25	107404.34	102560.8152
	32	97427.84	99888.9697
	19	122776.86	130570.5808

```
plt.figure(figsize=(8, 6))
plt.scatter(df3["Actual"], df3["Predicted"], color='blue')
plt.plot(df3["Actual"], df3["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


from sklearn.metrics import mean_squared_error
rf=mean_squared_error(y_test,y_pred3)
rf

72625008.62306513

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_pred3)

from sklearn.metrics import r2_score
r2_score(y_test,y_pred3)

0.9103164738430438

SVM

```
# prompt: support vector machine apply odel
from sklearn.svm import SVR
# Initialize the SVR model
```

Initialize the SVR model
svr_model = SVR(kernel='linear')
svr_model.fit(X_train,y_train)

svr_model.score(X_train,y_train)

0.9493135484875507

y_pred4=svr_model.predict(X_test)
df4=pd.DataFrame({"Actual":y_test,"Predicted":y_pred4})
df4

~			
*		Actual	Predicted
	13	134307.35	126550.837667
	39	81005.76	81640.943593
	30	99937.59	95354.687719
	45	64926.08	40518.231950
	17	125370.37	129640.765783
	48	35673.41	43802.709072
	26	105733.54	106859.511922
	25	107404.34	98493.962987
	32	97427.84	93721.453985
	19	122776.86	109275.503904

```
plt.figure(figsize=(8, 6))
plt.scatter(df4["Actual"], df4["Predicted"], color='blue')
plt.plot(df4["Actual"], df4["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


mean_squared_error(y_test,y_pred4)

103832131.00714561

mean_absolute_error(y_test,y_pred4)

→ 7702.623215893979

from sklearn.metrics import r2_score
r2_score(y_test,y_pred4)

0.8717792697906213

Decision Tree

```
# prompt: Decision tree
```

from sklearn import tree

Initialize the Decision Tree Regression model
dt_model = tree.DecisionTreeRegressor(max_depth=3)
dt_model.fit(X_train,y_train)

v DecisionTreeRegressor
DecisionTreeRegressor(max_depth=3)

dt_model.score(X_train,y_train)

0.9686293734459094

y_pred5=dt_model.predict(X_test)
df5=pd.DataFrame({"Actual":y_test,"Predicted":y_pred5})
df5

	Actual	Predicted
13	134307.35	136458.910000
39	81005.76	93419.583750
30	99937.59	93419.583750
45	64926.08	35577.293333
17	125370.37	136458.910000
48	35673.41	35577.293333
26	105733.54	111588.618750
25	107404.34	93419.583750
32	97427.84	93419.583750
19	122776.86	136458.910000

```
plt.figure(figsize=(8, 6))
plt.scatter(df5["Actual"], df5["Predicted"], color='blue')
plt.plot(df5["Actual"], df5["Actual"], color='red') # Add a diagonal line for comparison
plt.title('Actual vs. Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```



```
decision_tree=mean_squared_error(y_test,y_pred5)
decision_tree

→ 161865283.74642056

mean_absolute_error(y_test,y_pred5)
```

from sklearn.metrics import r2_score

r2_score(y_test,y_pred5)

0.8001150060564004

9914.697458333338

prompt: xgboost classifier
from xgboost import XGBRegressor
Initialize the XGBcost Regressor model

Initialize the XGBoost Regressor model
xgb_model = XGBRegressor(n_estimators=100, random_state=42)
xgb_model.fit(X_train,y_train)

xgb_model.score(X_train,y_train)

0.999999999985478

y_pred6=xgb_model.predict(X_test)
df6=pd.DataFrame({"Actual":y_test,"Predicted":y_pred6})
df6

₹

mean_squared_error(y_test,y_pred6)

102829917.00381728

mean_absolute_error(y_test,y_pred6)

7757.660484375001

r2_score(y_test,y_pred6)

0.8730168887250143

Comparison Table

```
final_data=pd.DataFrame({'Models':['LR','DT','RF','Ridge','SVM','LASSO','XgBoost'],
              "ACC":[reg.score(X_train,y_train)*100,
                     dt_model.score(X_train,y_train)*100,
                     rf_model.score(X_train,y_train)*100,
                     ridge_model.score(X_train,y_train)*100,
                     svr_model.score(X_train,y_train)*100,
                     lasso_model.score(X_train,y_train)*100,
                     xgb_model.score(X_train,y_train)*100],
              "R2_score":[r2_score(y_test,y_pred)*100,
                              r2_score(y_test,y_pred5)*100,
                              r2_score(y_test,y_pred3)*100,
                              r2_score(y_test,y_pred1)*100,
                              r2_score(y_test,y_pred4)*100,
                              r2_score(y_test,y_pred2)*100,
                              r2_score(y_test,y_pred6)*100],
                "MSE":[mean_squared_error(y_test,y_pred)*100,
                       mean_squared_error(y_test,y_pred5)*100,
                       {\tt mean\_squared\_error(y\_test,y\_pred3)*100,}
                       mean_squared_error(y_test,y_pred1)*100,
                       mean_squared_error(y_test,y_pred4)*100,
                       mean_squared_error(y_test,y_pred2)*100,
                        ean_squared_error(y_test,y_pred6)*100],
                  "MAE":[mean_absolute_error(y_test,y_pred)*100,
                         mean_absolute_error(y_test,y_pred5)*100,
                         mean_absolute_error(y_test,y_pred3)*100,
                         mean_absolute_error(y_test,y_pred1)*100,
                         mean_absolute_error(y_test,y_pred4)*100,
                         mean_absolute_error(y_test,y_pred2)*100,
                          mean_absolute_error(y_test,y_pred6)*100
```

final_data

_						
→ ▼		Models	ACC	R2_score	MSE	MAE
	0	LR	95.359278	90.006531	8.092632e+09	697915.225237
	1	DT	96.862937	80.011501	1.618653e+10	991469.745833
	2	RF	99.093530	91.031647	7.262501e+09	643749.774000
	3	Ridge	95.359278	90.006531	8.092632e+09	697915.225243
	4	SVM	94.931355	87.177927	1.038321e+10	770262.321589
	5	LASSO	95.359278	90.006531	8.092632e+09	697915.223548