Algèbre avancée

Modules sur un anneau

Question 1/36

$$f: M \to N$$

 $\operatorname{coker}(f)$

Réponse 1/36

 $N/\operatorname{im}(f)$

Question 2/36

A-module

Réponse 2/36

Groupe abélien (M, +) muni d'une application $A \times M \to M$ telle que a(m+m') = am + am'(a+a')m = am + a'm(aa')m = a(a'm) $1_A m = m$

Question 3/36

M est un A-module libre

Réponse 3/36

M admet une base Un tel module est isomorphe à $A^{(I)}$

Question 4/36

Propriété de $\operatorname{Hom}_A(M,N)$ pour M libre

Réponse 4/36

Si $(m_i)_{i\in I}$ est une base de M alors $\phi: \operatorname{Hom}_A(M,N) \longrightarrow N^I$ est un $u \longmapsto (u(m_i))_{i\in I}$ isomorphisme de A-modules

Question 5/36

Propriétés des modules d'un anneau noethérien

Réponse 5/36

Si A est un anneau noethérien et M est un A-module de type fini alors M est noethérien et de présentation finie

Question 6/36

Base de M

Réponse 6/36

Famille libre et génératrice de M

Question 7/36

PU du quotient

Réponse 7/36

Si M et P sont deux modules, et N est un sous-module de M, soit $f:M\to P$ une application A-linéaire telle que $N\subseteq \ker(f)$ alors il existe une unique application A-linéaire \overline{f} telle que $f=\overline{f}\circ\pi$

Question 8/36

Complexe de A-modules

Réponse 8/36

Suite
$$M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$$
 telle que $\operatorname{im}(u_i) \subseteq \ker(u_{i+1})$

Question 9/36

Sous-module de M engendré par les $(m_i)_{i \in I}$

Réponse 9/36

$$\left\{ \sum_{i \in I} a_i m_i, (a_i)_{i \in I} \in A^{(I)} \right\}$$
 C'est un générateur de M si M est engendré par ces combinaisons

Question 10/36

Structure isomorphe à $\operatorname{Hom}_A(A^m, A^n)$

Réponse 10/36

 $\mathcal{M}_{n,m}(A)$ via l'image de la « base canonique »

Question 11/36

Suite exacte de A-modules

Réponse 11/36

Suite
$$M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$$
 telle que $\operatorname{im}(u_i) = \ker(u_{i+1})$

Question 12/36

Suite de A-modules

Réponse 12/36

Diagramme de la forme $M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$ avec u_i des morphismes de A-modules

Question 13/36

M est un A-module noethérien

Réponse 13/36

Tous les sous-modules de M sont de type fini

Question 14/36

Suite exacte courte

Réponse 14/36

Suite exacte de la forme
$$0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$$

Question 15/36

$$M = \bigoplus_{i \in I} M_i \text{ pour } M_i \subseteq M$$

Réponse 15/36

$$f: \bigoplus_{i=1}^{n} M_i \to M$$
 est un isomorphisme

Dans le cas où
$$I = [1, n], M = \bigoplus_{i=1}^{n} M_i$$
 si et

seulement si pour tout $m \in M$, il existe d'uniques $m_i \in M_i$ tels que $m = \sum_{i=1}^n m_i$

Question 16/36

Propriétés des quotients d'un module de type fini

Réponse 16/36

Ils sont de type fini

Question 17/36

Théorème de Cayley-Hamilton

Réponse 17/36

$$\chi_M(M) = 0$$
 pour tout $M \in \mathcal{M}_n(A)$

Question 18/36

$$(m_i)_{i\in I}$$
 est libre

Réponse 18/36

Si
$$\sum_{i \in I} a_i m_i = 0, (a_i)_{i \in I} \in A^{(I)}$$
 alors pour tout $i \in I, a_i = 0$

Question 19/36

Isomorphisme de A-modules

Réponse 19/36

$$f \in \operatorname{Hom}_A(M, N)$$
 pour laquelle il existe $g \in \operatorname{Hom}_A(N, M)$ telle que $f \circ g = \operatorname{id}_M$ et $g \circ f = \operatorname{id}_N$

Question 20/36

PU de la somme directe de A-modules

Réponse 20/36

Si $(M_i)_{i \in I}$ est une famille de A-modules et N est un A-module et $f_i: M_i \to N$ est une famille de A-modules alors il existe une unique application linéaire $f: \bigoplus M_i \to N$ telle que $f_{|M_i} = f_i$

Question 21/36

M est un A-module de type fini

Réponse 21/36

 ${\cal M}$ admet une famille génératrice finie

Question 22/36

CNS pour avoir une suite scindée

Réponse 22/36

La suite exacte courte $0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$ est scindée si et seulement si v admet une section $s: M_1 \to M_2$, vérifiant $v \circ s = \mathrm{id}_{M_3}$

Question 23/36

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$$
 $\mathcal{B}=(e_1,\cdots,e_m)$ une famille génératrice de M
et $\mathcal{C}=(f_1,\cdots,f_n)$ une famille génératrice de N

Réponse 23/36

$$(a_{i,j})_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,m\rrbracket}$$
 où $u(e_j)=\sum_{i=1}^n a_{i,j}f_i$
Une telle matrice n'est pas unique

Question 24/36

Caractère noethérien dans une suite exacte courte

Réponse 24/36

Dans la suite exacte courte $0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$ M_2 est noethérien si et seulement si M_1 et M_3 le sont En particulier, $M \oplus M'$ est noethérien ssi Met M' le sont

Question 25/36

CNS pour le caractère injectif et surjectif de $u \in \operatorname{End}_A(M)$

Réponse 25/36

u est surjectif si et seulement si u est un isomorphisme si et seulement si $\det(u) \in A^{\times}$ u est injectif si et seulement si $\det(u)$ n'est pas un diviseur de 0

Question 26/36

Stabilité des modules noethérien

Réponse 26/36

Sous sous-module et tout quotient d'un module noethérien est noethérien

Question 27/36

M est de présentation finie

Réponse 27/36

Il existe une présentation de la forme

 $A^{(J)} \xrightarrow{\phi'} A^{(I)} \xrightarrow{\phi} M \longrightarrow 0$ avec I et J finis

Question 28/36

Sous-module

Réponse 28/36

Sous-groupe stable par l'action de l'anneau

Question 29/36

M est un A-module libre de rang fini

Réponse 29/36

M admet une base finie Le cardinal de toute base est le même, c'est le rang de M

Question 30/36

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$$
 $\mathcal{B}=(e_1,\cdots,e_m)$ une base de M et $\mathcal{C}=(f_1,\cdots,f_n)$ une base de N

Réponse 30/36

$$(a_{i,j})_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,m\rrbracket}$$
 où $u(e_j)=\sum_{i=1}a_{i,j}f_i$
 $\operatorname{Hom}_A(M,N)\longrightarrow \mathcal{M}_{n,m}(A)$ est un $u\longmapsto \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$ isomorphisme de A -modules

Question 31/36

Suite exacte courte scindée

Réponse 31/36

Suite exacte telle qu'il existe un isomorphisme de A-modules $\theta: M_2 \to M_1 \oplus M_3$ $0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$ $\downarrow_{\mathrm{id}} \qquad \downarrow_{\theta} \qquad \downarrow_{\mathrm{id}}$ $0 \longrightarrow M_1 \xrightarrow{\iota_1} M_1 \oplus M_3 \xrightarrow{\pi_3} M_3 \longrightarrow 0$

Question 32/36

Premier théorème d'isomorphisme

Réponse 32/36

$$\overline{f}:M/\ker(f)\to \operatorname{im}(f)$$
 est un isomorphisme de
 $A ext{-modules}$

Question 33/36

Application linéaire entre A-modules

Réponse 33/36

$$f: M \to N \text{ telle que}$$

$$f(am) = af(m)$$

$$f(n+m) = f(n) + f(m)$$

Question 34/36

Structure de $\operatorname{Hom}_A(M,N)$

Réponse 34/36

A-module en posant
$$(f+g)(m) = f(m) + g(m)$$

Question 35/36

Module M/N

Réponse 35/36

Le groupe quotient d'un A-module par un sous-module peut être muni d'une unique structure de A-module qui rend $\pi:M\to M/N$ A-linéaire

Question 36/36

Présentation de M

Réponse 36/36

Suite exacte de la forme $A^{(J)} \xrightarrow{\phi'} A^{(I)} \xrightarrow{\phi} M \longrightarrow 0$ C'est une description par générateurs et relations