Szimuláció **

Autóút járdával

Egy utat középen egy gyalogosátkelő két szakaszra oszt, a zebrához közlekedési lámpát helyeztek. Az útszakaszokat négyzetes cellákra osztjuk. N cella van a lámpa előtt, 1 cella a zebra, újabb N cella van a lámpa mögött. A mozgás szabályai:

• egy autó egy időegység alatt egy cellával mozdulhat el

Pl:	X		X			X		X		\rightarrow		X		X			X		X	
-----	---	--	---	--	--	---	--	---	--	---------------	--	---	--	---	--	--	---	--	---	--

- egy útszakaszon két autó között mindig kell lenni legalább 1 üres cellának (akkor is, ha sűrűbben érkeznének)
- a közlekedési lámpa periodikusan váltakozik piros és zöld között, piros lámpaállásnál autó nem léphet a zebrára.

Pl:	X		X	Χ	X	\rightarrow	X	X		X	X	
												П

Készíts programot, amely megadja, hogy az egyes autók melyik időpillanatban jutnak ki az útszakasz végén!

Bemenet

A standard bemenet első sorában a 2 útszakasz hossza $(1 \le N \le 1000)$ és a bejövő autók száma $(0 \le B \le 100)$ van. A következő sorban B darab szám található, melyek a (csak balról jövő) autók belépési idejét mondják meg. A harmadik sor két újabb számot, P-t és U-t határozza meg $(0 < P \le N * 2 + 1, 0 \le U < P)$, aminek a jelentése a közlekedési lámpa P időnkénti periodicitásának utolsó U időpillanatában piros a lámpa (pl P=5, U=2, akkor 1-3., 6-8. ... időpillanatokban zöld, 4-5., 9-10. ...-ban piros).

Kimenet

A standard kimenet B sorból kell álljon, mely megadja az autók kilépésének időpillanatát, az érkezésük sorrendjében!

Példa

В	em∈	enet	Kimenet
4	3		13
3	6	9	15
7	3		20

Korlátok

Időlimit: 0.5 mp.

Memórialimit: 32 MB