1、实验名称及目的

固定翼以固定俯仰角飞行实验:该例程通过平台固定翼控制接口控制固定翼俯仰角,让固定翼以固定 10°的俯仰角前飞。

2. 实验原理

2.1. 软/硬件在环仿真(SIL/HIL)的实现[1][2]

从实现机制的角度分析,可将 RflySim 平台分为运动仿真模型、底层控制器、三维引擎、外部控制四部分。

- 运动仿真模型:这是模拟飞行器运动的核心部分。在 RflySim 平台中,运动仿真模型是通过 MATLAB/Simulink 开发的,然后通过自动生成的 C++代码转化成 DLL (动态链接库)文件。在使用 RflySim 平台进行软硬件在环仿真时,会将 DLL 模型导入到 CopterSim,形成运动仿真模型。这个模型在仿真中负责生成飞行器的运动响应,它拥有多个输入输出接口与底层控制器、三维引擎、地面控制站和外部控制进行数据交互,具体数据链路、通信协议及通信端口号见 API.pdf 中的通信接口部分。
- 底层控制器:在软/硬件在环仿真(SIL/HIL)中,真实的飞行控制硬件(如PX4飞行控制器)被集成到一个虚拟的飞行环境中。在软件在环仿真(SIL)中,底层控制器(通过wsl上的PX4仿真环境运行)通过网络通信与运动仿真模型交互数据。在硬件在环仿真(HIL)中,它(将PX4固件在真实的飞行控制器(即飞控)硬件上运行)则通过串口通信与运动仿真模型进行数据交互。飞控与CopterSim通过串口(硬件在环HITL)或网络TCP/UDP(软件在环SITL)进行连接,使用MAVLink进行数据传输,实现控制闭环。
- 三维引擎:这部分负责生成和处理仿真的视觉效果,提供仿真环境和模型的三维视图,使用户能够视觉上跟踪和分析飞行器的运动。CopterSim 发送飞机位姿、电机数据到三维引擎,实现可视化展示。
- 外部控制 (offboard): 从仿真系统外部对飞行器进行的控制,包括自动飞行路径规划、远程控制指令等。在平台例程中主要通过地面控制站 (QGC)、MATLAB 和 Python 调用对应接口实现。

2.2. 通过外部控制接口(python)进行单机姿态控制

单机控制脚本 AircraftMathworksAttCtrl.py 中依次调用了 RflySim 平台飞机控制接口协议文件 PX4MavCtrlV4.py 中定义的以下接口函数

创建通信示例

mav1 = PX4MavCtrl.PX4MavCtrler(1)

创建一架飞机的通信示例

启用 Mavlink 消息监听循环

```
mav1.InitMavLoop()
```

配置 CopterSim 通信模式,该函数的参数定义如下:

```
def InitMavLoop(self,UDPMode=2):
```

""" Initialize MAVLink listen loop from CopterSim

0 and 1 for UDP_Full and UDP_Simple Modes, 2 and 3 for MAVLink_Full and MAVLink_Simple modes, 4 for MAVLink_NoSend

The default mode is MAVLink_Full

默认通信模式为 Mavlink_Full: Python 直接发送 MAVLink 消息给 CopterSim, 再转发给 PX4,数据量较大适合单机控制;适合单机或少量飞机仿真,无人机数量小于4;

设定航路点

```
n = 30
r = 400
missionPoints=[]
for i in range(n):
    angle = 2*math.pi*i/n
    x=r*math.sin(angle)
    y=r*math.cos(angle)
    missionPoints.append([x,y,-100])
```

用一组离散的点模拟圆形运动轨迹,并在循环中通过 append 方法逐个将相应的轨迹点存入目标点列表 (missionPoints)。missionPoints.append([x,y,-100])表示在 missionPoints 列表的末尾添加一个新的列表[x,y,-100]。

根据欧拉公式:

$$e^{ix} = \cos x + i\sin x$$

这些点将在 x-y 平面上形成一个圆形轨迹。

飞行阶段

完成上述设置后,程序会通过检查一个 flag 变量的值来决定无人机应该执行哪些动作。

当 flag == 0 时,解锁飞机

解锁飞机

mav1.SendMavArm(True)

设定起飞目标点

```
targetPos=[200, 0, -100]
```

mav1.sendMavTakeOff(targetPos[0],targetPos[1],targetPos[2])

发送绝对的 GPS 坐标作为起飞目标点,使用 sendMavTakeOffGPS 命令,最后三位分别是经度、维度、和高度,会先从 uavPosGPSHome 向量中提取解锁 GPS 坐标,在此基础上用绝对坐标

当 flag == 1 时,无人机起飞和初始航迹

位置检测

curPos=mav1.uavPosNED

dis = math.sqrt((curPos[0]-targetPos[0])**2+(curPos[1]-targetPos[1])**2)

计算飞机当前位置和起飞目标位置的水平距离,用于判断是否到达目标位置,以开始下 一阶段任务。

启动外部控制 (offboard)

mav1.initOffboard()

使 px4 控制器进入外部控制模式,且以 30HZ 的频率发送 offboard 指令

航路寻迹模式

targetPos=missionPoints[flagI]

mav1.SendPosNED(targetPos[0], targetPos[1], targetPos[2])

会通过航路点索引 flagI 的值从 missionPoints 列表中读取相应的航点,并通过 SendPosNED 函数更新为下一个目标点。

当 flag == 2 时,无人机姿态和油门的控制

mav1.SendAttPX4([0,10,0],mav1.uavThrust)

这里设置无人机的俯仰角为 10 度,并保持油门值为悬停油门。这是为了改变无人机的 飞行方向。

2.3. 通过外部控制接口(python)进行多机姿态控制

多机控制脚本 AircraftMathworksAttCtrl.py 脚本的实现逻辑与单机控制相同,只是需要创建 3 架飞机,再将相同的控制指令复制 3 份

创建通信示例

VehilceNum = 3

mav=[]

for i in range(VehilceNum):

mav=mav+[PX4MavCtrl.PX4MavCtrler(1+i)]

创建3架飞机的通信示例

启用 Mavlink 消息监听循环

for i in range(VehilceNum):

mav[i].InitMavLoop()

配置 3 架飞机的 CopterSim 通信模式

3. 实验效果

固定翼在软硬件在环仿真中, 能按照期望俯仰角度飞行。

4. 文件目录

文件夹/文件名称	说明
AircraftMathworksAttCtrl.py	单个固定翼固定俯仰角飞行文件。
AircraftMathworksMavlinkHITLRun.bat	硬件在环仿真批处理文件。
AircraftMathworksMavlinkSITLRun.bat	软件在环仿真批处理文件。
AircraftMathworksAttCtrl3.py	多个固定翼固定俯仰角飞行文件。

PX4MavCtrlV4.py	程序调用接口文件。
AircraftMathworks.dll	固定翼无人机 DLL 模型文件

5. 运行环境

序号	软件要求	硬件要求			
17 ⁻ 77		名称	数量		
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1		
2	RflySim 平台免费版	PX4 飞控 [©]	1		
3	Python3.11	数据线	1		

- ① 推荐配置请见: https://doc.rflysim.com
- ② 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html

6. 实验步骤

6.1. Python 库文件部署

以 VsCode 打开 "C:\PX4PSP\RflySimAPIs\RflySimSDK\ ReLabPath.py",并运行。

```
∠ 1.CarR1DiffPosCtrl_Py

                                                                                                                 ReLabPath.py X
 1 import sys
      print(sys.base_prefix)
      basepath = sys.base_prefix
      if not (basepath[-8:] == "Python38"):
       print("The Python version maybe wrong, please confirm!")
#sys.exit(0)
     rflyPath = basepath[:-9]
print('RflySim install Path is:',rflyPath)
      pthPath = basepath+'\\Lib\\site-packages\\rflysim.pth'
      curPath = sys.path[0]
      print('Current Path is:',curPath)
      with open(pthPath, 'w') as f:
    f.write(curPath+'\n')
           f.write(curPath+'\\comm'+'\n')
           f.write(curPath+'\\ctrl'+'\n')
          f.write(curPath+'\\ue'+'\n')
f.write(curPath+'\\vision'+'\n')
```

完成 Python 公共库环境部署。

6.2. 软件在环仿真

6.2.1. 单架固定翼仿真

Step 1:

右键以管理员身份运行"AircraftMathworksMavlinkSITLRun.bat"批处理文件, 在弹出的

终端窗口中输入1,启动1架飞机的软件在环仿真。

Step 2:

完成初始化。

Step 3:

打开 AircraftMathworksAttCtrl.py 文件并运行。

可从 CopterSim 右下角看到固定翼按期望指令以 10° 俯仰角前飞。

X 251.216	Y <u>-190.854</u>	Z 93.031
Vx 16.696	Vy2. 263	Vz 3.159
		1
Ф 0.01	θ 10.808	Ψ -7.576

也可从 QGC 罗盘处看到固定翼按期望指令以 10° 俯仰角前飞。

6.2.2. 多架固定翼仿真

Step 1:

多架固定翼仿真在运行"AircraftMathworksMavlinkSITLRun.bat"文件后,在弹出的终端窗口中输入 3.

Step 2:

完成初始化。

Step 3:

三架固定翼初始化完成后, 打开 AircraftMathworksAttCtrl3.py 文件并运行

```
◆ AircraftMathworksAttCutBpy ** X
2.7 工程等 7-202-11音楽 模型型 2-43巨文件 2-5 保証報 2 重要素 > PythonCutApt > 固定異称の角控制 > ◆ AircraftMathworksAttCutBpy > __ 1
    # import required libraries
2    import required libraries
3    import and import px4MavCtrlv4 as Px4MavCtrl

6    import Px4MavCtrlv4 as Px4MavCtrl

7    vehicetum = 3
    import px4MavCtrl px4MavCtrl
```


可在QGC上方切换飞机,从QGC罗盘处看到每一架固定翼按期望指令以10°俯仰角前飞。

或观察每个 CopterSim 右下角看出固定翼按期望指令以 10° 俯仰角前飞。

x	251. 216	ч -	-190. 854	Z	93. 031
٧x	16. 696	۷у	-2. 263	٧z	3.159
ф	0.01	θ	10.808	ψ	_7. 576

6.3. 硬件在环仿真

Step 1:

按下图所示将飞控与计算机链接。

Step 2:

在 Rflytools 文件夹中打开 QGC 地面站。

💯 3DDisplay	2023/7/27 15:02	快捷方式	1 KB
opterSim 28	2023/7/27 15:02	快捷方式	1 KB
F FlightGear-F450	2023/7/27 15:02	快捷方式	2 KB
HITLRun	2023/7/27 15:02	快捷方式	2 KB
🥦 Python38Env	2023/7/27 15:02	快捷方式	2 KB
2 QGroundControl	2023/7/27 15:02	快捷方式	1 KB
RflySim3D	2023/7/27 15:02	快捷方式	1 KB
📜 RflySimAPIs	2023/7/27 15:02	快捷方式	1 KB
RflySimUE5	2023/7/27 15:02	快捷方式	1 KB
SITLRun	2023/7/27 15:02	快捷方式	2 KB
Win10WSL	2023/7/27 15:02	快捷方式	2 KB

Step 3:

在机架界面设置机架型号为"Standard Plane",设置完毕后点击右侧"应用并重启"。

Step 4:

在"安全"界面,选择"HITL enabled"启动硬件在环仿真,之后在概况界面中确认配置完成后,重新插拔飞控完成设置。

Step 5:

"AircraftMathworksHITLRun.bat"批处理文件,在弹出的终端窗口中根据提示输入串口号 5,启动硬件在环仿真。

Step 6:

之后测试步骤与 5.1.1 中 Step2 到 Step3 与以及 5.1.2 中的 Step2 到 Step3 相同,运行后可在 QGC 与 RflySim3D 中观测运行状态与角度。

注意事项: 在固定翼的 offboard 控制中, 用到如下控制接口:

- 1) SendMavTakeOff: 起飞指令。
- 2) SendAttPX4:设置姿态角。

7. 参考资料

- [1]. DLL/SO 模型与通信接口..\..\.API.pdf
- [2]. 外部控制接口..\..\API.pdf
- [3].

8. 常见问题

Q1.

A1.