流水线设计日志

王炜致 2022010542

1 算法指令与测试数据设计——基于单周期处理器

设置数据内存大小为256个字。准备好8个待排序数据,写入DataMemory.v中,作为测试样例。

```
parameter RAM_SIZE = 512;
parameter RAM_SIZE_BIT = 8;
reg [31:0] RAM_data [RAM_SIZE - 1: 0];
RAM_data[0] <= 32'h00000008; // N=8</pre>
RAM_data[1] <= 32'h00000003; // 3</pre>
RAM_data[2] <= 32'h00000028; // 40</pre>
RAM_data[3] <= 32'h00000024; // 36</pre>
RAM_data[4] <= 32'hfffffffe; // -2</pre>
RAM_data[5] <= 32'h00000006; // 6</pre>
RAM_data[6] <= 32'hffffffff9; // -7</pre>
RAM_data[7] <= 32'h0000003a; // 58
RAM_data[8] <= 32'hffffffd3; // -45</pre>
for (i = 9; i < RAM_SIZE; i = i + 1)
    RAM_data[i] <= 32'h000000000;</pre>
采用之前设计的插入排序代码 (insert sort.asm), 根据处理器实况略作修改。主函数体为:
addu $s7,$zero,$zero //compare_count
addu $a1,$zero,$zero //the address of the sequence
addi $a0,$a1,4 //&buffer[1]
lw $a1,0($a1) //N=buffer[0]
jal insertion_sort
addu $a0,$zero,$zero
sw $s7,0($a0) //buffer[0]=compare_count
end:
j end
```

参阅 MIPS 文档,指令集扩充:

	PCSrc[1:0]	Branch	RegWrite	RegDst[1:0]	MemRead	MemWrite	MemtoReg[1:0]	ALUSrc2	ALUSrc1	ExtOp	LuOp
bne	0(00)	1	0	x(xx)	x	0	x(xx)	0	0	1	х
blez	0(00)	1	0	x(xx)	x	0	x(xx)	0	0	1	х
bgtz	0(00)	1	0	x(xx)	X	0	x(xx)	0	0	1	х
bltz	0(00)	1	0	x(xx)	X	0	x(xx)	0	0	1	х
jalr	2(10)	х	1	1(01)	х	0	2(10)	х	х	х	х

相应地修改了控制信号及模块端口。

先用单周期处理器验证指令是否能正常运行,再改装为流水线。以下是写入 InstructionMemory.v 的排序算法的机器语言——直接在 DataMemory 中进行数据排序,将排序次数存入 RAM_data[0] 中。

```
8'<mark>d0</mark>:
                      Instruction <= 32'h0000b821;</pre>
                       Instruction <= 32'h00002821;</pre>
          8′<mark>d1</mark>:
          8'<mark>d2</mark>:
                      Instruction <= 32'h20a40004;</pre>
                     Instruction <= 32'h8ca50000;</pre>
          8'<mark>d3</mark>:
          8'<del>d4</del>:
                      Instruction <= 32'h0c100008;</pre>
          8'd5: Instruction <= 32'h00002021;
          8'd6: Instruction <= 32'hac970000;
                      Instruction <= 32'h08100007;</pre>
          8'<del>d</del>7:
9
10
          8'<mark>d8:</mark>
                      Instruction <= 32'h20010004;</pre>
11
          8'<mark>d9</mark>:
                    Instruction <= 32'h03a1e822;</pre>
12
          8'<mark>d10</mark>:
                       Instruction <= 32'hafbf0000;</pre>
13
          8'd11:
                      Instruction <= 32'h20060001;</pre>
14
          8'<mark>d12</mark>:
                        Instruction <= 32'h0c100013;</pre>
16
          8'd13: Instruction <= 32'h0c10002b;
^{17}
                        Instruction <= 32'h20c60001;</pre>
          8'd14:
          8'<mark>d15</mark>:
                        Instruction <= 32'h14c5fffc;</pre>
19
          8'<mark>d16</mark>:
                       Instruction <= 32'h8fbf0000;</pre>
21
          8'd17:
                        Instruction <= 32'h23bd0004;</pre>
                        Instruction <= 32'h03e00008;</pre>
23
          8'<mark>d18</mark>:
          8'<mark>d19</mark>:
                        Instruction <= 32'h20010004;</pre>
24
          8'<mark>d20</mark>:
                        Instruction <= 32'h03a1e822;</pre>
26
          8'<mark>d21:</mark>
                       Instruction <= 32'hafbf0000;</pre>
                       Instruction <= 32'h00068880;</pre>
          8'<mark>d22</mark>:
          8'<mark>d23</mark>:
                        Instruction <= 32'h00918821;</pre>
29
                        Instruction <= 32'h8e280000;</pre>
          8'd24:
31
          8'<mark>d25</mark>:
                        Instruction <= 32'h20010001;</pre>
32
                        Instruction <= 32'h00c19022;</pre>
          8'<mark>d26</mark>:
          8'<del>d27</del>:
                        Instruction <= 32'h22f70001;</pre>
34
          8'<mark>d28</mark>:
                        Instruction <= 32'h00128880;</pre>
36
                       Instruction <= 32'h00918821;</pre>
          8'<mark>d29</mark>:
37
                        Instruction <= 32'h8e290000;</pre>
          8'<del>d30</del>:
                        Instruction <= 32'h11280007;</pre>
          8'<mark>d31</mark>:
39
          8'<mark>d32</mark>:
                        Instruction <= 32'h0128502a;</pre>
41
          8'<del>d33</del>:
                        Instruction <= 32'h20010001;</pre>
42
                        Instruction <= 32'h102a0004;</pre>
43
          8'<del>d34</del>:
                        Instruction <= 32'h20010001;</pre>
          8'<del>d35</del>:
44
          8'<del>d36</del>:
                        Instruction <= 32'h02419022;</pre>
46
          8'<mark>d37</mark>:
                       Instruction <= 32'h2001ffff;</pre>
                        Instruction <= 32'h1432fff4;</pre>
          8'<mark>d38</mark>:
```

```
8'd39:
                       Instruction <= 32'h22470001;</pre>
         8'd40:
                       Instruction <= 32'h8fbf0000;</pre>
51
         8'<del>d41</del>:
                       Instruction <= 32'h23bd0004;</pre>
         8'<mark>d42</mark>:
                       Instruction <= 32'h03e00008;</pre>
53
                       Instruction <= 32'h20010004;</pre>
         8'd43:
55
                       Instruction <= 32'h03a1e822;</pre>
         8'd44:
56
         8'd45:
                        Instruction <= 32'hafbf0000;</pre>
         8'd46:
                        Instruction <= 32'h00068880;</pre>
58
                       Instruction <= 32'h00918821;</pre>
         8'd47:
60
         8'd48:
                       Instruction <= 32'h8e280000;</pre>
61
         8'<del>d49</del>:
                       Instruction <= 32'h20010001;</pre>
         8'd50:
                       Instruction <= 32'h00c19022;</pre>
63
         8'<mark>d51</mark>:
                        Instruction <= 32'h00128880;</pre>
         8'd52:
                       Instruction <= 32'h00918821;</pre>
66
         8'<del>d53</del>:
                       Instruction <= 32'h8e2b0000;</pre>
         8'd54:
                        Instruction <= 32'h22310004;</pre>
68
         8'<del>d55</del>:
                       Instruction <= 32'hae2b0000;</pre>
69
         8'd56:
                       Instruction <= 32'h20010001;</pre>
71
         8'<del>d57</del>:
                       Instruction <= 32'h02419022;</pre>
         8'd58:
                        Instruction <= 32'h0247602a;</pre>
73
         8'<del>d59</del>:
                        Instruction <= 32'h20010001;</pre>
74
75
         8'd60:
                       Instruction <= 32'h102c0002;</pre>
76
         8'<mark>d61</mark>:
                       Instruction <= 32'h1247fff5;</pre>
         8'<mark>d62</mark>:
                        Instruction <= 32'h1647fff4;</pre>
78
         8'<mark>d63</mark>:
                        Instruction <= 32'h00078880;</pre>
         8'<mark>d64</mark>:
                       Instruction <= 32'h00918821;</pre>
81
         8'<del>d65</del>:
                       Instruction <= 32'hae280000;</pre>
         8'<del>d66</del>:
                       Instruction <= 32'h8fbf0000;</pre>
83
         8'<del>d67</del>:
                        Instruction <= 32'h23bd0004;</pre>
                       Instruction <= 32'h03e00008;</pre>
         8'<mark>d68</mark>:
86
```

排序效果良好,如下:

根据验收要求,进一步验证,对24个正整数排序如下:

					ŀ	100.000000 us												
Name	Value	0 112	50 us			100 us		150 us		201	0 us		250 us		300 us	350 us	400 us	450 us
> 🛂 [29][31:0]	0																	
> 128][31:0]	0												1					
> 127][31:0]	0									_								
> 126][31:0]	0									_								
> 😼 [25][31:0]	0												1					
> 😼 [24][31:0]	27						27							<u> </u>		233		
> 😼 [23][31:0]	58					58							233	}		225		
> 😼 [22][31:0]	233					233						233	225	ŷ		200		
> 😼 [21][31:0]	177					177						X 225	200	ŷ		177		
> 😼 [20][31:0]	13					13				=	225	200	177	- }		159		
> 🛂 [19][31:0]	200				200					225	200	177	159	- }		114		
> 🕶 [18][31:0]	159				159				ŧγ	200	Ŷ	159	X 114	- }		89		
> 🕶 [17][31:0]	52			52				У.2	225	159	$\hat{\gamma}$	114	89	- }-		64		
> 🕶 [16][31:0]	64			64				X 225 X		114	- }	89	64	─ >─		58		
> 🛂 [15][31:0]	225			225				114		89	- }-	64	Ŧŷ			58		
> 🕶 [14][31:0]	8		8				114	89	=	64	- >-		58			52		
> 🕶 [13][31:0]	89		89			114	89	=	\succeq	58	=>=		52	= $$		40		
> 🕶 [12][31:0]	114		114			X X 89		58	Ŷ—	52	- >-		40	—⁄~		36		
> 🖼 [11][31:0]	58	25				58	$\hat{\mathbf{x}}$		40		- >		36			33		
> 🕶 [10][31:0]	58	33			58	40	\sim		36		 ≻		33	 }-		27		
> 🕶 [9][31:0]	40			58	40	36	- }		33		-					27		
> 🔛 [8][31:0]	36	27	X 58	40	36	33	=>=		27		\rightarrow					22		
> 🖼 [7][31:0]	33	58 🔏 5	-	36	33	27	=>=		22		₩Ŷ					13		
> 🕶 [6][31:0]	27	10 / 40	36	~	27	X 22	─ }─				^				11			
> 👑 [5][31:0]	11	6 (40) 36	27	Ŷ		11	- ≻								10			
> 14][31:0]	10	11 (40) 36)	11	$= \hat{\chi} =$		10	= }-								8			
> 🖼 [3][31:0]	6	36 \ 40 \ 36 \ 11 \	10	=>-										6				
> 🚾 [2][31:0]	3	36 (11)	6	=>-										3				
> 🖼 [1][31:0]	1	3		= }−														
> 🖼 [0][31:0]	24						24									10		
Instruction[31:0]	573636612															135266		
RF_data[31:1][31:0]	4194360,0,-8,0,														20. 0. 0. 0. 0. 0. 0.		, 33, 0, 27, 27, 9, 24, 24, 0, 0, 0,	
RAM_data[511:0][31:0]	0,0,0,0,0,0,0,0,0								0.0.0.1	0 0 0 0	0 0 0 0 0	0000000	, 0, 0, 0, 0, 0, 0, 0,	0 0 0 0 0				
									*, *, *, *,	, ., ., 0, 0,	-, -, -, 0, 0,	, ., ., ., ., ., ., .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, -, -, -, 0, 0, 0,				

2 流水线改造(无冒险处理)

Stage	R-type	Load	Branch	
IF		IR <= MemInst[P	C]; PC <= PC+4	
ID	op <= IF Branc			
EX	ALUOut <= A op B EX/MEM.ALUOut MEM/WB.ALUOut MDR	ALUOut <= A EX/ME MEM/V		
MEM		MDR <= MemData[ALUOut];	MemData[ALUout] <= B MDR	
WB	Reg[IR[15:11]] <= ALUOut	Reg[IR[20:16]] <= MDR	8	

CPU.v 的改动最大,需要在各模块输入/输出之间添加寄存器,以下介绍寄存器的初步添加,不考虑冒险。 Control.v 即控制信号模块在 IF 阶段调用,产生控制信号,为传递控制信号,在 CPU.v 中插入 IF/ID 寄存器:

```
always @(posedge reset or posedge clk) begin//IF/ID PLUGIN BEGIN | TIF
                 if (reset) begin
                      IFID_Instruction <= 32'b0;</pre>
                      IFID_RegDst <= 2'b00;</pre>
                      IFID_PCSrc <= 2'b00;</pre>
                      IFID_Branch <= 3'b000;</pre>
                      IFID_MemRead <= 1'b0;</pre>
                      IFID_MemWrite <= 1'b0;</pre>
                      IFID_MemtoReg <= 2'b00;</pre>
                      IFID_ALUSrc1 <= 1'b0;</pre>
                      IFID_ALUSrc2 <= 1'b0;</pre>
                      IFID_ALUOp <= 4'b0000;</pre>
                      IFID_ExtOp <= 1'b0;</pre>
                      IFID_LuOp <= 1'b0;</pre>
                      IFID_RegWrite <= 1'b0;</pre>
                 end
                           //more to consider
                 else begin
                       IFID_Instruction <= Instruction;</pre>
                       IFID_RegDst <= RegDst;</pre>
                       IFID_PCSrc <= PCSrc;</pre>
                       IFID_Branch <= Branch;</pre>
                       IFID_MemRead <= MemRead;</pre>
                       IFID_MemWrite <= MemWrite;</pre>
                       IFID_MemtoReg <= MemtoReg;</pre>
                       IFID_ALUSrc1 <= ALUSrc1;</pre>
                       IFID_ALUSrc2 <= ALUSrc2;</pre>
26
                       IFID_ALUOp <= ALUOp;</pre>
                       IFID_ExtOp <= ExtOp;</pre>
                       IFID_LuOp <= LuOp;</pre>
                       IFID_RegWrite <= RegWrite;</pre>
                 end
              end//IF/ID PLUGIN END ↓ID
```

ID 阶段调用寄存器堆 (读),注意 WB 阶段亦涉及调用寄存器堆 (写),考虑遵循先写后读原则 (在 RegisterFile.v 中修改)。插入 ID/EX 寄存器:

将 Jump,Branch 均置于 ID 阶段执行,则 ALU 不需要 Zero。无冒险处理的流水线例程测试如下:

Bkpt	Address	Code	Basic	
	4194304	0x20110005	addi \$17,\$0,5	1: addi \$s1,\$zero,5
	4194308			2: addi \$s2,\$zero,12
	4194312	0x2013000d	addi \$19,\$0,13	3: addi \$s3,\$zero,13
	4194316	0x20140001	addi \$20,\$0,1	4: addi \$s4,\$zero,1
	4194320			5: addi \$s5,\$s1,2
	4194324	0x08100005	j 4194324	7: j end

3 冒险处理

3.1 结构冒险

InstructionMemory 与 DataMemory 已作分离; R 型指令 Mem 阶段已空置; ALU 已作功能疏解。

3.2 数据冒险

3.2.1 同时读写寄存器堆

通过先写后读策略处理。利用 always 块的阻塞赋值实现代码执行的先后顺序。

```
always @(*) begin

if (RegWrite && (Write_register != 5'b00000))

RF_data[Write_register] = Write_data;//first write

Read_data1 = (Read_register1 == 5'b00000)? 32'h000000000: RF_data[Read_register1];

Read_data2 = (Read_register2 == 5'b00000)? 32'h000000000: RF_data[Read_register2];

end
```

验证如下:

Bkpt	Address	Code	Basic	
	4194304	0x20110005	addi \$17,\$0,5	1: addi \$s1,\$zero,5
	4194308	0x20120006	addi \$18,\$0,6	2: addi \$s2,\$zero,6
	4194312	0x20120006	addi \$18,\$0,6	3: addi \$s2,\$zero,6
	4194316	0x22320005	addi \$18,\$17,5	4: addi \$s2,\$s1,5
	4194320	0x08100004	j 4194320	6: j end

寄存器使用引起的冒险

- 指令在寄存器使用上的时间顺序关联引起了数据冒险
- · Read after write (RAW) data hazards

ALU 输出运算结果后,立刻转发给 ALU 输入端。需要修改 ALU 的输入端(二路),增加 MUX 选择合适的输入信号。

```
wire [32 -1:0] in1, in2; //rs, rt forwarding
       assign in1 = (~IDEX_ALUSrc1 && MEMWB_Memory_Read && MEMWB_Write_register
           && MEMWB_Write_register == IDEX_Instruction[25:21])? MEMWB_MemBus_Read_Data:
           (~IDEX_ALUSrc1 && MEMWB_RegWrite && MEMWB_Write_register
           && (MEMWB_Write_register == IDEX_Instruction[25:21])
           && (EXMEM_Write_register != IDEX_Instruction[25:21]
           || ~EXMEM_RegWrite))? MEMWB_ALU_out:
           (~IDEX_ALUSrc1 && EXMEM_RegWrite && EXMEM_Write_register
           && (EXMEM_Write_register == IDEX_Instruction[25:21]))? EXMEM_ALU_out:
           ALU_in1;
       assign in2 = (~IDEX_ALUSrc2 && MEMWB_Memory_Read && MEMWB_Write_register
11
           && MEMWB_Write_register == IDEX_Instruction[20:16])? MEMWB_MemBus_Read_Data:
12
           (~IDEX_ALUSrc2 && MEMWB_RegWrite && MEMWB_Write_register
           && (MEMWB_Write_register == IDEX_Instruction[20:16])
           && (EXMEM_Write_register != IDEX_Instruction[20:16]
           | | ~EXMEM_RegWrite))? MEMWB_ALU_out://mind load-store
16
           (~IDEX_ALUSrc2 && EXMEM_RegWrite && EXMEM_Write_register
           && (EXMEM_Write_register == IDEX_Instruction[20:16]))? EXMEM_ALU_out:
           ALU_in2;
19
```

验证如下:

Te:	Text Segment									
Bkpt	Address	Code	Basic							
	4194304	0x20110005	addi \$17,\$0,5	1: addi \$s1,\$zero,5						
	4194308	0x20010002	addi \$1,\$0,2	2: subi \$s2,\$s1,2						
	4194312	0x02219022	sub \$18,\$17,\$1							
	4194316	0x22330009	addi \$19,\$17,9	3: addi \$s3,\$s1,9						
	4194320	0x08100004	j 4194320	5: j end						

此外,若下一条指令为 Branch (为简便,默认 jr,jalr 使用 \$31,故不需要处理),则不能不 stall 一个周期,再将数据转发到 ID 阶段。验证如下:

> 🌃 Instruction	[31:0]	20110001	1020fff0 X 0000	20110001	1+20#ff	· X 00000	2011	0001	1e2Offfe	X 000000C
	Bkpt	Address	Code		Basic					
	DKpt	4194304		addi \$17,\$0			2: add	i \$s1,	\$zero,1	
		4194308	0x1e20fffe	bgtz \$17, -2	2		3: bgt	z \$s1,	again	
		4194312	0x08100002	j 4194312			5: je:	nd		

3.2.3 load-use 冒险

load-use 冒险包含 load-R 类和 load-store 类冒险,前者不可避免地需要 stall 一个周期。故需要将读出数据作转发。处理 load-store 冒险时,在 ALU 输入 forwarding 条件中需要分辨立即数加法与寄存值加法; DataMemory 写端口也需要引入 MUX 作 forwarding 判断。

非常特殊的情况: lw \$s1,4(\$zero), sw \$s1,0(\$s1), 由于 stall 一个周期,无法由 MEM/WB 转发,同时 \$s1 尚未更新。故需要特殊处理:

```
assign IDEX_Databus2_prevent_loadstore = (IDEX_MemWrite && MEMWB_Write_register

&& (MEMWB_Write_register == IDEX_Instruction[20:16]))? MEMWB_MemBus_Read_Data:

IDEX_Databus2;
```

一般 load-use 处理效果如下:

> 17][31:0]	00000000	00000000	X 00000 003 X		00000006
	4194304	0x8c110004 lw	\$17,4(\$0)	1: lw \$s1,	4(\$zero)#s1=3
	4194308	0x02318820 add	l \$17, \$17, \$17	2: add \$s	l, \$s1, \$s1
	4194312	0x08100002 j 4	194312	4: j end	

一般 load-store 处理效果如下:

Bkpt	Address	Code	Basic	
	4194304	0x8c110004	lw \$17,4(\$0)	1: lw \$s1,4(\$zero)
	4194308	0xac110008	sw \$17,8(\$0)	2: sw \$s1,8(\$zero)
	4194312	0x08100002	j 4194312	4: j end

特殊 load-store 处理效果如下:

Te:	xt Segment				
Bkpt	Address	Code	Basic		
	4194304	0x8c110004	lw \$17,4(\$0)	1:	lw \$s1,4(\$zero)#s1=3
	4194308	0xae310005	sw \$17,5(\$17)	2:	sw \$s1,5(\$s1)#40=3
	4194312	0x8e320005	lw \$18,5(\$17)	3:	lw \$s2,5(\$s1)#s2=3
	4194316	0x08100003	i 4194316	5.	i end

另外, load 后若紧跟 Branch 指令且发生冒险,则需要 stall 两个周期,暂不作处理,通过代码添加 3 个 nop 指令 (0x000000000)解决。

至此,数据冒险基本解决。

3.3 控制冒险

由于提前到 ID 阶段判断,分支指令、跳跃指令的下一条指令必然为 nop。据此设定修改即可。利用流水线处理器排序结果如下:

4 外设配置