

Segment Tree

- General Windowing Query

Junhui DENG

deng@tsinghua.edu.cn

Windowing Non-orthogonal Segments

❖ Input:

- a set of disjoint segments

in general position:

$$S = \{ s_i \mid 1 \leq i \leq n \}$$

- a closed query window:

$$W = [x, x'] \times [y, y']$$

❖ Output:

- all line segments that intersect the window:

$$S \cap W = \{ s_i \mid s_i \cap W \neq \emptyset \}$$

Type A

- ❖ Again, the output segments can be divided into 2 types
- ❖ Segments with at least one endpoint in W
 can be reported
 - using a 2D range tree
 of size O(nlogn)
 - in $O(r + \log^2 n)$ time
 - //improved to O(r + logn) by FC
 - after an O(nlogn) time preprocessing

"interval tree + range trees" doesn't help finding all
those segments spanning W //That's why we turn to segment trees ...

