Unit 12

——Asynchronous sequential circuit design

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

例1: 试用JK触发器设计异步模5加法计数器

- ① 确定触发器个数:需要3个JK触发器,↓触发
- ② 画状态转换图
- ③ 确定触发器CP的接法

CP	Q_3	Q_2	Q ₁
↓	Q ₃	0	0
↓	0	0	1 \
↓	0	1	0 🗸
↓	0	1	1)
↓	1	0/	0 1
↓	0	0	0

设计原则

- 时序图中,凡是触发器状态翻转的地方,都必须为其提供时钟脉冲。
- 在满足翻转的前提下, 时钟脉冲越少越好

Q₁——由CP提供下降沿, CP₁=CP

 Q_2 ——翻转两次,需两个下降沿,恰好此时 Q_1 有两个下降沿, $CP_2 = Q_1$ ↓

 Q_3 ——翻转两次,需两个下降沿,此时 Q_2 、 Q_1 都不能提供, CP_3 只能接CP

对触发器而言: 只要提供时钟, 状态的保持就必须依靠输入端 (如J、K)的控制来实现。

④ 状态转换真值表

 $CP_1 = CP_3 = CP \downarrow$, $CP_2 = Q_1 \downarrow$

确定 J_3K_3 : 看 $Q_3^{n} \rightarrow Q_3^{n+1}$ 确定 J_1K_1 : 看 $Q_1^{n} \rightarrow Q_1^{n+1}$

	现态 次态					输入					输出	
Q_3	$^{n}Q_{2}^{n}$	Q ₁ n	Q_3^{n+1}	$\mathbf{Q_2^{n+1}}$	$\mathbf{Q_1}^{n+1}$	J ₃	K ₃	J ₂	K ₂	J ₁	K ₁	Z
0	0	0	0	0	1	0	X	X	X)	1	X	0
0	0	1	0	1	0	0	X(1	X	X	1	0
0	1	0	0	1	1	0	X	X	X	1	X	0
0	1	1	1	0	0	1	X(X	1	X	1	0
1	0	0	0	0	0	X	1	X	X	0	X	1

此时 Q_1 无下降沿, J_2 K_2 为任意

确定J₂K₂: 看Q₁ⁿ→Q₁ⁿ⁺¹

⑤ 卡诺图化简

$$J_3 = Q_2^n Q_1^n$$

$$J_1 = \overline{Q}_3^n$$

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \end{cases}$$

$$J_1 = \overline{Q}_3^n, K_1 = 1$$

$$Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP$$

⑥ 逻辑图

⑦检查无关项

现态					输出				
Q_3^{l}	$^{n}Q_{2}^{n}$	$\mathbf{Q_1}^n$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	CP ₃	CP ₂	CP ₁	Z
1	0	1	0	1	0	\	↓	+	1
1	1	0	0	1	0	↓	0	↓	1
1	1	1	0	0	0	↓	↓	↓	1

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \\ J_1 = \overline{Q}_3^n, K_1 = 1 \\ Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP \end{cases}$$

例2: 用D触发器设计实现十进制异步加法计数器

- ① 确定触发器个数:需要4个D触发器, 1 触发
- ② 画状态转换图

输出方程: $C = Q_3^n Q_0^n$

③ 确定触发器CP的接法

$$CP_0 = CP$$
 $CP_1 = \overline{Q}_0$
 $CP_2 = \overline{Q}_1$
 $CP_3 = \overline{Q}_0$

选择时钟脉冲的基本原则:在满足翻转要求的条件下,触发沿越少越好。

现态

④ 状态转换真值表

$$\begin{cases} CP_0 = CP \\ CP_1 = \overline{Q}_0 \\ CP_2 = \overline{Q}_1 \\ CP_3 = \overline{Q}_0 \end{cases}$$

⑤卡诺图化简

	_	•			•
$Q_3^nQ_2^n$	ⁿ Q ₀ ⁿ	01	11	10	
00	X	0	0	X	
01	X	0	1	X	
11	X	X	X	X	
10	X	0	X	X	

$$D_3 = Q_2^n Q_1^n$$

$$D_2 = Q_2^n$$

80	01	11	10
X	1	0	X
X	1	0	X
X	X	X	X
X	0	X	X
	X X X	00 01 X 1 X 1 X X	00 01 11 X 1 0 X 1 0 X X X

次态

CP₃

CP₂ CP₁

 $Q_1^n Q_0^n Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$

 $\bigcap_{n} n \bigcap_{n} n$

			_		
D_1	=	Q	n	\mathbf{Q}_1	n

$Q_3^n Q_2^n$	1 ¹ 00 ¹	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

输入

 \cap n \cap n

 D_3

 D_1

 D_0

0

0

0

CP₀

$$D_0 = \overline{Q}_0$$

$\int CP_0 = CP$	$\int D_3 = Q_2^n Q_1^n$
$CP_1 = \overline{Q}_0$	$D_2 = \overline{Q_2}^n$
$CP_2 = \overline{Q}_1$	$\langle D_1 = \overline{Q_3}^n \overline{Q_1}^n$
$CP_3 = \overline{Q}_0$	$D_0 = \overline{Q}_0^n$
	$C = Q_3^n Q_0^n$

⑦检查无关项

将无效状态1010~1111分 别代入状态方程,可以验证 该电路能够自启动。

		现态	怎		次态				输入			
	Q_3^n	$\mathbf{Q_2}^{\mathrm{n}}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_0^n	Q ₃ n+1	Q_2^{n+1}	Q ₁ n+1	Q_0^{n+1}	CP ₃	CP ₂	CP₁	CP ₀
Ī	1	0	1	0	0	0	0	1	0	0	0	†
	1	0	1	1	0	1	0	0	†	†	†	†
	1	1	0	0	1	1	0	1	0	0	0	†
	° 1	1	0	1	0	1	0	0	†	0	†	†
	1	1	1	0	1	1	1	1	0	0	0	†
	1	1	1	1	0	0	0	0	†	<u>†</u>	†	†