Package 'SRTsim'

August 21, 2024

Title Simulator for Spatially Resolved Transcriptomics

Version 0.99.7

Date 2024-08-14

Maintainer Jiaqiang Zhu < jiaqiang@umich.edu>

Description An independent, reproducible, and flexible Spatially Resolved Transcrip-

tomics (SRT) simulation framework that can be used to facilitate the development of SRT analytical methods for a wide variety of SRT-specific analyses. It utilizes spatial localization information to simulate SRT expression count data in a reproducible and scalable fashion. Two major simulation schemes are implemented in 'SRTsim': reference-based and reference-free.

License GPL (>= 3) Encoding UTF-8 LazyData true RoxygenNote 7.3.2

Type Package

Imports

concave man, sf, sp, spatstat. geom, parallel, pdist, MASS, S4 Vectors, stats, Matrix, Morpho, matrix Stats, plotly, shiny, viridis, shiny, ggplot2, ggpubr, DT, spatstat.random, magrittr, FNN, dplyr, magick

Suggests knitr,rmarkdown,BiocStyle,RefManageR,BiocManager,sessioninfo

VignetteBuilder knitr

Depends R (>= 3.5.0), methods

NeedsCompilation no

Collate 'SRTaffine.R' 'SRTcount.R' 'SRTfit.R' 'SRTmodels.R'

'SRTsim_class.R' 'body.R' 'compareSRT.R' 'createSRT.R' 'data.R'

'globals.R' 'reGenCountshiny.R' 'runapp.R' 'server.R'

'shiny2srt.R' 'sidebar.R' 'simSRTLocs.R' 'subsetSRT.R'

'SRTcci.R' 'ui.R' 'utilies_func.R' 'visualize_gene.R'

'visualize_metrics.R'

Author Jiaqiang Zhu [aut, ctb, cre] (https://orcid.org/0000-0002-1455-0041), Lulu Shang [aut] (https://orcid.org/0000-0002-2480-3065), Xiang Zhou [aut] (https://orcid.org/0000-0002-4331-7599)

Repository CRAN

Date/Publication 2024-08-21 08:10:05 UTC

2 compareSRT

Contents

	compareSRT										 	2
	convert_grid										 	3
	createSRT										 	4
	EstParam										 	4
	exampleLIBD										 	5
	fit_pos_optim										 	6
	get_metrics_pd										 	6
	get_stats_gene										 	7
	get_stats_loc										 	7
	metaParam										 	8
	refcolData										 	8
	refCounts										 	9
	refrowData										 	10
	reGenCountshiny .										 	10
	Shiny2SRT										 	11
	simcolData										 	12
	simCounts										 	12
	simNewLocs										 	13
	simrowData										 	14
	srtsim_cci_free										 	14
	srtsim_cci_ref										 	15
	srtsim_count										 	16
	srtsim_count_affine										 	18
	srtsim_fit										 	19
	srtsim_newlocs										 	20
	SRTsim_shiny										 	21
	subsetSRT										 	21
	toyData										 	22
	toyShiny										 	23
	visualize_gene										 	23
	visualize_metrics .										 	24
Index												26
compa	areSRT	Summar	ize m	etrics f	or ref	erence	data	and sy	nthetic	data		

Description

Summarize metrics for reference data and synthetic data

Usage

compareSRT(simsrt)

convert_grid 3

Arguments

simsrt

A SRTsim object

Value

Returns an object with summarized metrics

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
## Compute metrics
toySRT <- compareSRT(toySRT)</pre>
```

convert_grid

Convert continuous coordinate into integer, essential for BayesSpace to determine the neighborhood info

Description

Convert continuous coordinate into integer, essential for BayesSpace to determine the neighborhood info

Usage

```
convert_grid(x)
```

Arguments

Χ

A numeric vector of continuous coordinate

Value

Returns a numeric vector oof integer coordinate

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)

## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)</pre>
```

4 EstParam

```
## Convert non-integer x-coordinates into an integer value
newGrid_x <- convert_grid(simcolData(toySRT2)$x)</pre>
```

createSRT

Create simSRT object

Description

Create simSRT object

Usage

```
createSRT(count_in, loc_in, refID = "ref1")
```

Arguments

count_in A gene expression count matrix

loc_in A location dataframe with colnames x,y,label

refID A character reference sample identifier. Default = ref1.

Value

Returns a spatialExperiment-based object

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
## Explore the object
toySRT</pre>
```

EstParam

Access Model Fitting Parameters

Description

Access Model Fitting Parameters

Usage

EstParam(x)

Arguments

Χ

SRTsim object

exampleLIBD 5

Value

Returns a list of estimated parameters by fitting models

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
EstParam(toySRT)</pre>
```

exampleLIBD

Data used for creating vignettes

Description

A data list containing the a gene expression matrix and a location dataframe

Usage

exampleLIBD

Format

A data list

```
example_count A sparse matrix with 80 rows and 3611 columns. example_loc A data frame with 3611 rows and 6 columns.
```

Source

created based on a SpatialLIBD data (SampleID: 151673) to serve as an example

```
data(exampleLIBD) #Lazy loading. Data becomes visible as soon as called
```

get_metrics_pd

fit_pos_optim

fitting data with poisson through optim function

Description

fitting data with poisson through optim function

Usage

```
fit_pos_optim(x, maxiter = 500)
```

Arguments

x A vector of count values to be fitted

maxiter number of iteration

Value

Returns a vector with mean paramter lambda, loglikelihood value llk, convergence

get_metrics_pd

Extracted summarized metrics for reference data and synthetic data

Description

Extracted summarized metrics for reference data and synthetic data

Usage

```
get_metrics_pd(simsrt, metric = "GeneMean")
```

Arguments

simsrt A SRTsim object

metric Specification of metrics to be plotted.

Value

Returns a dataframe for ggplot

get_stats_gene 7

get_stats_gene	Summarize	gene-wise sur	nmary metrics
gc t_3 tat3_gcnc	Summerize	gene wise sui	minury memes

Description

Summarize gene-wise summary metrics

Usage

```
get_stats_gene(mat, group, log_trans = TRUE)
```

Arguments

mat A count matrix group A group label

log_trans A logical constant indicating whether to log transform the gene mean and vari-

ance

Value

Returns a n by 5 dataframe with location metrics

get_stats_loc Summarize location-wise summary metrics

Description

Summarize location-wise summary metrics

Usage

```
get_stats_loc(mat, group, log_trans = TRUE)
```

Arguments

mat A count matrix group A group label

log_trans A logical constant indicating whether to log transform the libsize

Value

Returns a n by 3 dataframe with location metrics

8 refcolData

metaParam

Access User-Specified Parameters

Description

Access User-Specified Parameters

Usage

```
metaParam(x)
```

Arguments

Х

SRTsim object

Value

Returns a list of user-specified parameters

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
metaParam(toySRT)</pre>
```

refcolData

Access reference colData

Description

Access reference colData

Usage

```
refcolData(x)
```

Arguments

Х

SRTsim object

refCounts 9

Value

Returns the colData of reference data

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refcolData(toySRT)</pre>
```

refCounts

Access reference count matrix

Description

Access reference count matrix

Usage

```
refCounts(x)
```

Arguments

х

SRTsim object

Value

Returns a reference count matrix

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refCounts(toySRT)[1:3,1:3]</pre>
```

10 reGenCountshiny

refrowData

Access reference rowData

Description

Access reference rowData

Usage

```
refrowData(x)
```

Arguments

Х

SRTsim object

Value

Returns the rowData of reference data

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refrowData(toySRT)</pre>
```

reGenCountshiny

ReSimulate Count Data with Parameters Specification from Shiny

Description

ReSimulate Count Data with Parameters Specification from Shiny

Usage

```
reGenCountshiny(shinyOutput, NewSeed = NULL)
```

Arguments

shinyOutput A list of Shiny Output. Including a simCount, simInfo,simcountParam,simLocParam

NewSeed A new seed for data generation. Useful when multiple replicates are needed.

Shiny2SRT 11

Value

Returns a Count DataFrame

Examples

```
## Re-generate Count Data based on ShinyOutput Parameters, should be same as simCount in ShinyOutput
cMat <- reGenCountshiny(toyShiny)

## Generate Count Data with A New Seed based on ShinyOutput Parameters
cMat2 <- reGenCountshiny(toyShiny,NewSeed=2)

## Comparison across the output
toyShiny$simCount[1:3,1:3]
cMat[1:3,1:3]
cMat2[1:3,1:3]</pre>
```

Shiny2SRT

Create a SRTsim object from reference-free shinyoutput

Description

Create a SRTsim object from reference-free shinyoutput

Usage

```
Shiny2SRT(shinyOutput)
```

Arguments

shinyOutput

A list of Shiny Output. Including a simCount, simInfo,simcountParam,simLocParam

Value

Returns a SRTsim object with user-specified parameters stored in metaParam slot.

```
shinySRT <- Shiny2SRT(toyShiny)
## Explore the new SRT object
shinySRT@metaParam
shinySRT@simCounts[1:3,1:3]
shinySRT@simcolData</pre>
```

12 simCounts

simcolData

Access synthetic colData

Description

Access synthetic colData

Usage

```
simcolData(x)
```

Arguments

Х

SRTsim object

Value

Returns the colData of synthetic data

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simcolData(toySRT)</pre>
```

simCounts

Access synthetic count matrix

Description

Access synthetic count matrix

Usage

```
simCounts(x)
```

Arguments

Х

SRTsim object

simNewLocs 13

Value

Returns a synthetic count matrix

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simCounts(toySRT)[1:3,1:3]</pre>
```

simNewLocs

Fit the marginal distributions for single gene

Description

Fit the marginal distributions for single gene

Usage

```
simNewLocs(newN, lay_out = c("grid", "random"), preLoc)
```

Arguments

newN A integer specifying the number of spatial locations in the synthetic data

lay_out A character string specifying arrangement of new generated spatial locations.

Default is "grid"

preLoc A data frame of shape n by 3 that x, y coodinates and domain label

Value

Returns a n by 2 dataframe with newly generated spatial locations

srtsim_cci_free

simrowData

Access synthetic rowData

Description

Access synthetic rowData

Usage

```
simrowData(x)
```

Arguments

Х

SRTsim object

Value

Returns the rowData of synthetic data

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simrowData(toySRT)</pre>
```

srtsim_cci_free

Generate Data with Cell-Cell Interaction Under Reference-Free Mode

Description

Generate Data with Cell-Cell Interaction Under Reference-Free Mode

Usage

```
srtsim_cci_free(
  zero_prop_in = 0,
  disper_in = Inf,
  mu_in = 1,
  numGene = 1000,
  location_in,
```

srtsim_cci_ref

```
region_cell_map,
fc = 3,
LR_in,
sim_seed = 1,
numKNN = 4,
numSingleCellType = 2000
)
```

Arguments

zero_prop_in A number specifying zero proportion for the count model, default is 0

disper_in A number specifying dispersion for the count model, default is Inf. Same as the

size parameter in rnbinom.

mu_in A number specifying mean for background count model, default is 1

numGene An integer specifying the number of genes in the synthetic data, default is 1000

location_in A dataframe with x, y, and region_label

region_cell_map

A dataframe specifying the cell type proportion in each region. Row: region, Column:

cell type.

fc A number specifying effect size for ligand-receptor pairs that mediate the cel-

cell communication, default is 3

LR_in A dataframe specifying ligand and receptor pairs, containing four columns: pro-

tein_a, protein_b, celltypeA, and celltype B

sim_seed A number for reproducible purpose

numKNN A number specifying number of nearest neighbors with elevated gene expressin

levels, default is 4

numSingleCellType

A number specifying number of spots in the background pool. Gene expression

count are then sampled from this background pool.

Value

Returns a SRTsim object with a newly generated count matrix and correspoding parameters

srtsim_cci_ref	Generate Data with Cell-Cell Interaction Under Reference-Based
	Mode

Description

Generate Data with Cell-Cell Interaction Under Reference-Based Mode

16 srtsim_count

Usage

```
srtsim_cci_ref(
   EstParam = NULL,
   numGene = 1000,
   location_in,
   region_cell_map,
   fc = 3,
   LR_in,
   sim_seed = 1,
   numKNN = 4,
   numSingleCellType = 2000
)
```

Arguments

EstParam A list of estimated parameters from srtsim_fit function, EstParam slot if the

simSRT object.

numGene An integer specifying the number of genes in the synthetic data, default is 1000

location_in A dataframe with x, y, and region_label

region_cell_map

A dataframe specifying the cell type proportion in each region. Row: region, Column:

cell type.

fc A number specifying effect size for ligand-receptor pairs that mediate the cel-

cell communication, default is 3

LR_in A dataframe specifying ligand and receptor pairs, containing four columns: pro-

tein_a, protein_b, celltypeA, and celltype B

sim_seed A number for reproducible purpose

numKNN A number specifying number of nearest neighbors with elevated gene expressin

levels, default is 4

numSingleCellType

A number specifying number of spots in the background pool. Gene expression

count are then sampled from this background pool.

Value

Returns a SRTsim object with a newly generated count matrix and correspoding parameters

srtsim_count Generate Data with Estimated Parameters

Description

Generate Data with Estimated Parameters

srtsim_count 17

Usage

```
srtsim_count(
    simsrt,
    breaktie = "random",
    total_count_new = NULL,
    total_count_old = NULL,
    rrr = NULL,
    nn_num = 5,
    nn_func = c("mean", "median", "ransam"),
    numCores = 1,
    verbose = FALSE
)
```

Arguments

simsrt A object with estimated parameters from fitting step

breaktie A character string specifying how ties are treated. Same as the "tie.method" in

rank function

total_count_new

The (expected) total number of reads or UMIs in the simulated count matrix.

total_count_old

The total number of reads or UMIs in the original count matrix.

rrr The ratio applies to the gene-specific mean estimate, used for the fixing average

sequencing depth simulation. Default is null. Its specification will override the

specification of total_count_new and total_count_old.

nn_num A integer of nearest neighbors, default is 5.

nn_func A character string specifying how the psedo-count to be generated. options

include 'mean', 'median' and 'ransam'.

numCores The number of cores to use

verbose Whether to show running information for srtsim_count

Value

Returns a SRTsim object with a newly generated count matrix

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
## Explore the synthetic count matrix
simCounts(toySRT)[1:3,1:3]</pre>
```

18 srtsim_count_affine

srtsim_count_affine Generate Data with Estimated Parameters For A New Designed Pattern

Description

Generate Data with Estimated Parameters For A New Designed Pattern

Usage

```
srtsim_count_affine(
    simsrt,
    reflabel,
    targetlabel,
    breaktie = "random",
    nn_func = c("mean", "median", "ransam"),
    nn_num = 5,
    local_sid = NULL,
    numCores = 1
)
```

Arguments

simsrt	A SRTsim object with estimated parameters from fitting step
reflabel	A character vector specifying labels for reference regions
targetlabel	A character vector specifying labels for target regions
breaktie	A character string specifying how ties are treated. Same as the "tie.method" in rank function
nn_func	A character string specifying how the psedo-count to be generated. options include 'mean', 'median' and 'ransam'.
nn_num	A integer of nearest neighbors, default is 5.
local_sid	A numberic seed used locally for the affine transformation. Default is NULL.
numCores	A number of cores to use

Value

Returns a SRTsim object with a newly generated count matrix

```
## Prepare Data From LIBD Sample
subinfo <- exampleLIBD$info[,c("imagecol","imagerow","layer")]
colnames(subinfo) <- c("x","y","label")
gns <- c("ENSG00000168314","ENSG00000183036", "ENSG00000132639")
## Create a simSRT Object with Three Genes For a Fast Example</pre>
```

srtsim_fit 19

```
simSRT1 <- createSRT(count_in= exampleLIBD$count[gns,],loc_in =subinfo)</pre>
## Estimate model parameters for data generation: domain-specific
simSRT1 <- srtsim_fit(simSRT1,sim_schem="domain")</pre>
## Define New Layer Structures
simSRT1@refcolData$target_label <- "NL1"</pre>
simSRT1@refcolData$target_label[simSRT1@refcolData$label %in% paste0("Layer",4:5)] <- "NL2"
simSRT1@refcolData\$target_label[simSRT1@refcolData\$label \%in\% c("Layer6","WM")] <- "NL3" in the context of th
## Perform Data Generation for New Defined Layer Structures
## Reference: WM --> NL3, Layer5--> NL2, Layer3 --> NL1
simSRT1 <- srtsim_count_affine(simSRT1,</pre>
reflabel=c("Layer3","Layer5","WM"),
targetlabel=c("NL1","NL2","NL3"),
nn_func="ransam"
)
## Visualize the Expression Pattern for Gene of Interest
visualize_gene(simsrt=simSRT1,plotgn = "ENSG00000168314",rev_y=TRUE,ptsizeCount=1)
```

srtsim_fit

Fit the marginal distributions for each row of a count matrix

Description

Fit the marginal distributions for each row of a count matrix

Usage

```
srtsim_fit(
  simsrt,
  marginal = c("auto_choose", "zinb", "nb", "poisson", "zip"),
  sim_scheme = c("tissue", "domain"),
  min_nonzero_num = 2,
  maxiter = 500
)
```

Arguments

simsrt

A SRTsim object

marginal

Specification of the types of marginal distribution. Default value is 'auto_choose' which chooses between ZINB, NB, ZIP, and Poisson by a likelihood ratio test (lrt), AIC and whether there is underdispersion. 'zinb' will fit the ZINB model. If there is underdispersion, it will fit the Poisson model. If there is no zero at all or an error occurs, it will fit an NB model instead. 'nb' fits the NB model and chooses between NB and Poisson depending on whether there is underdispersion. 'poisson' simply fits the Poisson model. 'zip' fits the ZIP model and chooses between ZIP and Poisson by a likelihood ratio test

20 srtsim_newlocs

sim_scheme a character string specifying simulation scheme. "tissue" stands for tissue-based simulation; "domain" stands for domain-specific simulation. Default is "tissue".

min_nonzero_num

The minimum number of non-zero values required for a gene to be fitted. De-

fault is 2.

maxiter The number of iterations for the model-fitting. Default is 500.

Value

Returns an object with estimated parameters

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")</pre>
```

srtsim_newlocs

Fit the marginal distributions for each row of a count matrix

Description

Fit the marginal distributions for each row of a count matrix

Usage

```
srtsim_newlocs(
    simsrt,
    new_loc_num = NULL,
    loc_lay_out = c("grid", "random"),
    voting_nn = 3
)
```

Arguments

simsrt A SRTsim object

new_loc_num A integer specifying the number of spatial locations in the synthetic data

loc_lay_out a character string specifying arrangement of new generated spatial locations.

Default is "grid"

voting_nn A integer of nearest neighbors used in label assignment for new generated loca-

tions. Default is 3.

Value

Returns a object with estimated parameters

SRTsim_shiny 21

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)

## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)

## Explore New Generated Locations
simcolData(toySRT2)</pre>
```

SRTsim_shiny

Run the SRTsim Shiny Application

Description

Run the SRTsim Shiny Application

Usage

```
SRTsim_shiny()
```

Value

A list that contains a count matrix, a location dataframe, and all parameter specifications.

Examples

```
## Not run:
    ## Will Load an Interactive Session
shinyOutput <- SRTsim_shiny()
## End(Not run)</pre>
```

subsetSRT

Subset SRT object based on domain labels of interest

Description

Subset SRT object based on domain labels of interest

Usage

```
subsetSRT(simsrt, sel_label = NULL)
```

22 toyData

Arguments

simsrt A SRTsim object

sel_label A vector of selected domain labels used for the data generation

Value

Returns a spatialExperiment-based object

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Only Keep the Spatial Locations labelled as "A" in the reference data
subtoySRT <- subsetSRT(toySRT,sel_label = "A")</pre>
```

toyData

A toyExample to showcase reference-based simulations

Description

A data list containing the a gene expression matrix and a location dataframe

Usage

toyData

Format

A data list

toyCount A sparse matrix with 100 rows and 251 columns.

toyInfo A data frame with 251 rows and 3 columns.

Source

created based on a ST Human Breast Cancer data to serve as an example

```
data(toyData) #Lazy loading. Data becomes visible as soon as called
```

toyShiny 23

toyShiny

A toyExample to showcase reference-free simulations

Description

A list of shiny output

Usage

toyShiny

Format

A list of shiny output

simCount A data frame with 150 rows and 980 columns.
simInfo A data frame with 980 rows and 4 columns: x, y, group, foldchange
simcountParam A list of user-specified parameters for count generation
simLocParam A list of user-specified parameters for pattern design

Source

created based using the SRTsim_shiny()

Examples

```
data(toyShiny) #Lazy loading. Data becomes visible as soon as called

visualize_gene Visualize expression pattern for the gene of interest in reference data and synthetic data
```

Description

Visualize expression pattern for the gene of interest in reference data and synthetic data

Usage

```
visualize_gene(
   simsrt,
   plotgn = NULL,
   ptsizeCount = 2,
   textsizeCount = 12,
   rev_y = FALSE,
   virOption = "D",
   virDirection = -1
)
```

24 visualize_metrics

Arguments

simsrt A SRTsim object

plotgn A gene name selected for visualization

ptsizeCount Specification of point size. Default is 2.

textsizeCount Specification of axis font size. Default is 12.

rev_y Logical indicating whether to reverse the y axis. Default is FALSE. Useful for

Visualize the LIBD data.

virOption Specification of option in the scale_color_viridis. Default is "D". User

can choose a letter from 'A' to 'H'.

virDirection Specification of direction in the scale_color_viridis. Default is "-1". User

can choose '1' or '-1'.

Value

Returns two expression plots for the gene of interest

Examples

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)

## Estimate model parameters for data generation
toySRT2 <- srtsim_fit(toySRT2,sim_schem="tissue")

## Generate synthetic data with estimated parameters
toySRT2 <- srtsim_count(toySRT2,rrr=1)

## compare the expression pattern of HLA-B in synthetic data and reference data
visualize_gene(simsrt=toySRT2,plotgn = "HLA-B")</pre>
```

visualize_metrics

Visualize summarized metrics for reference data and synthetic data

Description

Visualize summarized metrics for reference data and synthetic data

Usage

```
visualize_metrics(
   simsrt,
   metric_type = c("all", "genewise", "locwise", "GeneMean", "GeneVar", "GeneCV",
        "GeneZeroProp", "LocZeroProp", "LocLibSize"),
```

visualize_metrics 25

```
colorpalette = "Set3",
  axistextsize = 12
)
```

Arguments

simsrt A SRTsim object

metric_type Specification of metrics to be plotted. Default value is 'all', which will plot

all six metrics: including four gene-wise metrics and two location-wise metrics. "genewise" will produce violin plots for all four gene-wise metrics; "loc-wise" will produce violin plots for all two location-wise metrics; "GeneMean", "GeneVar", "GeneCV", "GeneZeroProp", "LocZeroProp", and "LocLibSize" will

produce single violin plot for the corresponding metric.

colorpalette Specification of color palette to be passed to palette in the scale_fill_brewer.

Default is "Set3"

axistextsize Specification of axis font size. Default is 12.

Value

Returns a list of ggplots

```
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)

## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")

## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)

## Compute metrics
toySRT <- compareSRT(toySRT)

## Visualize Metrics
visualize_metrics(toySRT)</pre>
```

Index

```
* datasets
                                                visualize_gene, 23
    exampleLIBD, 5
                                                visualize_metrics, 24
    toyData, 22
    toyShiny, 23
compareSRT, 2
convert_grid, 3
createSRT, 4
EstParam, 4
exampleLIBD, 5
fit_pos_optim, 6
get_metrics_pd, 6
get_stats_gene, 7
get_stats_loc, 7
metaParam, 8
refcolData, 8
refCounts, 9
refrowData, 10
reGenCountshiny, 10
Shiny2SRT, 11
simcolData, 12
simCounts, 12
simNewLocs, 13
simrowData, 14
srtsim_cci_free, 14
srtsim_cci_ref, 15
srtsim\_count, 16
srtsim_count_affine, 18
srtsim_fit, 19
srtsim_newlocs, 20
SRTsim_shiny, 21
subsetSRT, 21
toyData, 22
toyShiny, 23
```