Karakteristične greške u prve dvije školske zadaće

Priredili: Zvonimir Sviben, Rozarija Jakšić, Maja Resman i Kristijan-Kiki Tabak

Odabrao: Mervan Pašić

Pogreška 1.

$$\frac{\ln(n+1)}{\ln(n)} = \ln\left(\frac{n+1}{n}\right)$$

Ispravak 1.

$$\frac{\ln(n+1)}{\ln(n)} \neq \ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln(n)$$

Pogreška 2.

$$e^{\frac{1}{n}} = e^{-n}$$

Ispravak 2.

$$e^{\frac{1}{n}} = \sqrt[n]{e} \neq \frac{1}{e^n} = e^{-n}$$

Pogreška 3.

$$\left(\frac{e^n + e^{-n}}{2}\right)^2 = \frac{e^{2n} + e^{-2n}}{4}$$

Ispravak 3.

$$\left(\frac{e^n + e^{-n}}{2}\right)^2 = \frac{e^{2n} + 2 + e^{-2n}}{4}$$

Pogreška 4.

$$\sqrt[n]{n^3 + 4^n} = \sqrt[n]{n^3} + 4$$

Ispravak 4.

$$4 = \sqrt[n]{4^n} \le \sqrt[n]{n^3 + 4^n} \le \sqrt[n]{4^n + 4^n} = 4\sqrt[n]{2}$$

Pogreška 5.

$$\sum_{n=0}^{\infty} (q^2)^n = \frac{1}{1-q} \cdot \frac{1}{1-q}, \quad |q| < 1$$

Ispravak 5.

$$\sum_{n=0}^{\infty} (q^2)^n = \frac{1}{1 - q^2}, \quad |q| < 1$$

Pogreška 6. Ako za redove $\sum a_n$ i $\sum b_n$ s pozitivnim članovima vri i $a_n \leq b_n$ za sve n osim konačno mnogo i red $\sum b_n$ divergira, onda i $\sum a_n$ divergira.

Ispravak 6. Knjižica 1, str. 12, teorem 4. Obrati u tvrdnjama (1) i (2) tog teorema (kao što je ovaj gore) ne vrijede!

Pogreška 7. $\left(\lim_{n\to+\infty}a_n=0\right)\Longrightarrow\operatorname{red}\sum a_n$ konvergira.

Ispravak 7. To nije istina i red koji to opovrgava jest harmonijski red $\sum \frac{1}{n}$. Uvjet $\lim_{n\to+\infty} a_n = 0$ je nužan za konvergenciju reda, no ne i dovoljan.

Pogreška 8. Ako vrijedi $L = \lim_{n \to +\infty} \frac{a_n}{b_n} = \infty$, onda redovi $\sum a_n$ i $\sum b_n$ oba konvergiraju ili oba divergiraju, jer je $\infty \neq 0$.

Ispravak 8. U "graničnom obliku" poredbenog kriterija uvjet jest taj da limes $\lim_{n\to +\infty} \frac{a_n}{b_n}$ postoji i da je realan broj (ne ∞ !) različit od 0. Navodim primjer koji ilustrira zašto limes L mora biti konačan. Ako stavimo $a_n = \frac{1}{n}$ i $b_n = \frac{1}{n^2}$, onda je $\lim_{n\to +\infty} \frac{a_n}{b_n} = +\infty$, no nije istina da redovi $\sum \frac{1}{n}$ i $\sum \frac{1}{n^2}$ oba konvergiraju ili oba divergiraju. Isti primjer, uz zamjenu uloga a_n i b_n , pokazuje i zašto limes mora biti $\neq 0$.

Pogreška 9.

$$\frac{1}{\sqrt{n^3ch^3(n)}}\sim \frac{1}{\sqrt{n^3}}.$$

Ispravak 9. To nije istina jer:

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^3 ch^3(n)}}}{\frac{1}{\sqrt{n^3}}} = 0.$$

Medjutim, iz $\frac{1}{\sqrt{n^3ch^3(n)}} \leq \frac{1}{\sqrt{n^3}}$, i to čak za svaki n zbog $ch(x) \geq 1$, red $\sum \frac{1}{\sqrt{n^3ch^3(n)}}$ konvergira jer konvergira red $\sum \frac{1}{\sqrt{n^3}}$.

Pogreška 10. "... red divergira po Leibnitzovom kriteriju ..."

Ispravak 10. Leibnitzov kriterij daje <u>dovoljan</u> uvjet za konvergenciju reda. Drugim riječima, ako red $\sum (-1)^{n+1}a_n$ zadovoljava uvjete $a_n > 0$, $\forall n \in \mathbb{N}$ te (1) i (2) iz teorema 14, knjižica 1, onda red konvergira. To <u>ne znači</u> da svaki red koji konvergira mora zadovoljavati sve navedene uvjete. Leibnitzov kriterij samo kaže da oni redovi koji ovo zadovoljavaju, konvergiraju.

Pogreška 11. $\frac{1}{n} > \frac{1}{n+1} \Rightarrow \sin(\frac{1}{n}) > \sin(\frac{1}{n+1})$ ", bez obrazloženja zašto vrijedi implikacija. Ispravak 11. Ovakva implikacija NE VRIJEDI OPĆENITO, nego zato što je funkcija kojom djelujemo RASTUĆA U NEKOJ OKOLINI 0 (ovdje: sin(x) rastuća na $(0, \pi/2)$), a za dovoljno velik n (u ovom primjeru čak za svaki n) $\frac{1}{n}$ leži u toj okolini. Ovo je POTREBNO KOMENTIRATI prilikom rješavanja zadataka!

Pogreška 12. "... budući harmonijski red $\sum \frac{1}{n^2}$ konvergira ..." **Ispravak 12.** Red $\sum \frac{1}{n}$ zovemo harmonijski red i jedino njega tako zovemo. Nadalje, harmonijski red ne konvergira. Ovdje je greška u nazivlju, ali kao posljedicu može imati rečenice tipa "harmonijski red konvergira" i slično.

Pogreška 13. 'Površina paralelograma razapetog vektorima \overrightarrow{a} i \overrightarrow{b} je $\overrightarrow{a} \cdot \overrightarrow{b}$ **Ispravak 13.** Površina je $|\overrightarrow{a} \times \overrightarrow{b}|$.

Pogreška 14. Norma vektora $\overrightarrow{a} \times \overrightarrow{b}$ je $|\overrightarrow{a}| |\overrightarrow{b}|$

Ispravak 14. Neka je α kut izmedju vektora \overrightarrow{a} i \overrightarrow{b} . Tada je $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \alpha$.

Pogreška 15. Zadana su dva okomita vektora $\vec{a}, \vec{b} \in \mathcal{V}^3 \setminus \{\vec{0}\}$ i treba naći vektor $\vec{c} \in \mathcal{V}^3 \setminus \{\vec{0}\}$ okomit i na \vec{a} i na \vec{b} . Vektor \vec{c} odredjujemo iz jednadžbe $\vec{a} \times \vec{c} = \vec{b}$. Ispravak 15. Jednadžba $\vec{a} \times \vec{c} = \vec{b}$ ne garantira okomitost vektora \vec{a} i \vec{c} , nego samo okomitost vektora \vec{c} i \vec{b} što je samo pola uvjeta koji se traži. Vektor \vec{c} mora biti kolinearan s $\vec{a} \times \vec{b}$, stoga možemo, na primjer, uzeti da \vec{c} bude baš jednak produktu $\vec{a} \times \vec{b}$.

Pogreška 16. Zadana su dva okomita vektora $\vec{a}, \vec{b} \in \mathcal{V}^3 \setminus \{\vec{0}\}$ i treba naći vektor $\vec{c} \in \mathcal{V}^3 \setminus \{\vec{0}\}$ okomit i na \vec{a} i na \vec{b} . Vektori $\vec{a}, \vec{b}, \vec{c}$ moraju biti komplanarni i \vec{c} odredjujemo iz jednadžbe $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$.

Ispravak 16. Tri medjusobno okomita ne-nul vektora u \mathcal{V}^3 nikada nisu komplanarni. Ako su vektori \vec{a}, \vec{b} različiti od nul-vektora i okomiti te ako su $\vec{a}, \vec{b}, \vec{c}$ komplanarni, onda se \vec{c} nalazi u ravnini odredjenoj s \vec{a} i \vec{b} , stoga ne može biti okomit i na \vec{a} i na \vec{b} . Ono što je ispravno zahtijevati jest da vektor \vec{c} bude kolinearan s vektorom $\vec{a} \times \vec{b}$. Budući su u zadatku zadani vektori \vec{a} i \vec{b} bili različiti od $\vec{0}$ i okomiti, njihov vektorski produkt je takoer različit od $\vec{0}$ pa se, na primjer, moglo uzeti da je $\vec{c} = \vec{a} \times \vec{b}$ ili općenito $\vec{c} = \lambda(\vec{a} \times \vec{b})$, za svaki $\lambda \in \mathbb{R} \setminus \{0\}$.

Pogreška 17. $P_{\vec{a},\vec{b}} = \vec{a} \times \vec{b}$, gdje je $P_{\vec{a},\vec{b}}$ površina pravokutnika odreenog vektorima \vec{a} i \vec{b} . **Ispravak 17.** Površina pravokutnika je realan broj, tj. skalar, dok je vektorski produkt $\vec{a} \times \vec{b}$ vektora \vec{a} i \vec{b} ponovo vektor, a ta dva matematička objekta nikako ne mogu biti jednaki, budući nisu ni usporedivi. Ono što zaista vrijedi je formula

$$P_{\vec{a},\vec{b}} = |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\left(\langle(\vec{a},\vec{b})\rangle\right).$$

Pogreška 18. Vektori \vec{a} i \vec{b} su okomiti ako i samo ako vrijedi $\vec{a} \times \vec{b} = 0$.

Ispravak 18. Ponovo, vektorski produkt vektora je vektor, stoga nema smisla govoriti da je vektor jednak realnom broju 0. Na dalje, nije istina da su \vec{a} i \vec{b} okomiti ako i samo ako je $\vec{a} \times \vec{b} = \vec{0}$. Za svaki vektor vrijedi $\vec{a} \times \vec{a} = \vec{0}$, ali nije svaki vektor okomit sam na sebe. Ispravan uvjet okomitosti je sljedeći

$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0.$$

Dakle, za ispitivanje okomitosti dvaju vektora dobro je koristiti skalarni produkt, ne vektorski.

Pogreška 19. $|\vec{a} - \vec{b}| = \vec{a}^2 + \vec{b}^2$. Ispravak 19. $|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$. Prema tome,

$$|\vec{a} - \vec{b}| = \sqrt{\vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}} = \sqrt{\vec{a}^2 - 2 \vec{a} \cdot \vec{b} + \vec{b}^2},$$

i slično

$$|\vec{a} + \vec{b}| = \sqrt{\vec{a} \cdot \vec{a} + 2 \, \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}} = \sqrt{\vec{a}^2 + 2 \, \vec{a} \cdot \vec{b} + \vec{b}^2}.$$