**Date** 

Oct 31, 2019

Date

Oct 31, 2019

#### AU OPTRONICS CORPORATION

- () Preliminary Specification
- (V) Final Specification

| Module     | 21.5" Color TFT-LCD |
|------------|---------------------|
| Model Name | M215HAN01.1         |

| Customer Da                                            | ate    | Approved by  | Dat           |
|--------------------------------------------------------|--------|--------------|---------------|
|                                                        |        |              | <u>Oct 31</u> |
| Approved by                                            |        | Prepared by  | Dat           |
|                                                        |        |              | <u>Oct 31</u> |
| Note: This Specification is subject to without notice. | change | AU Optronics | s corporation |







#### AU OPTRONICS CORPORATION

#### **Contents**

| I Handling Precautions                     | 4  |
|--------------------------------------------|----|
| 2 General Description                      | 5  |
| 2.1 Display Characteristics                |    |
| 2.2 Absolute Maximum Rating of Environment | 6  |
| 2.3 Optical Characteristics                | 7  |
| 2.4 Mechanical Characteristics             | 11 |
| 3 TFT-LCD Module                           | 12 |
| 3.1 Block Diagram                          | 12 |
| 3.2 Interface Connection                   | 13 |
| 3.2.1 Connector Type                       | 13 |
| 3.2.2 Connector Pin Assignment             | 13 |
| 3.3 Electrical Characteristics             | 15 |
| 3.3.1 Absolute Maximum Rating              | 15 |
| 3.3.2 Recommended Operating Condition      |    |
| 3.4 Signal Characteristics                 | 16 |
| 3.4.1 LCD Pixel Format                     |    |
| 3.4.2 LVDS Data Format                     |    |
| 3.4.3 Color versus Input Data              |    |
| 3.4.4 LVDS Specification                   |    |
| 3.4.5 Input Timing Specification           |    |
| 3.4.6 Input Timing Diagram                 |    |
| 3.5 Power ON/OFF Sequence                  |    |
| 4 Backlight Unit                           | 23 |
| 4.1 Block Diagram                          | 23 |
| 4.2 Interface Connection                   | 24 |
| 4.2.1 Connector Type                       |    |
| 4.2.2 Connector Pin Assignment             | 26 |
| 4.3 Electrical Characteristics             | 27 |
| 4.3.1 Absolute Maximum Rating              |    |
| 4.3.2 Recommended Operating Condition      | 27 |
| 5 Reliability Test                         |    |
| 6 Shipping Label                           | 30 |
| 7 Mechanical Characteristics               | 31 |
| 8 Packing Specification                    | 32 |
| 8.1 Packing Flow                           | 32 |
| 8.2 Pallet and shipment information        |    |
| 9 Design Guide for System                  |    |



### **Product Specification**

AU OPTRONICS CORPORATION

### **Record of Revision**

| Version | Date       | Page | Old description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | New Description          | Remark |
|---------|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|
| 0.1     | 2019/6/28  | All  | First Edition for Customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |        |
| 1.0     | 2019/10/31 | 7    | R <sub>c'</sub>   Red sr   0,417   0,477   0,477   0,477   Ref yr   0,304   0,344   0,344   0,344   0,344   0,344   0,344   0,344   0,344   0,344   0,344   0,344   0,345   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0,356   0, | R <sub>c'</sub>   Ref av |        |
| 1.0     | 2019/10/31 | All  | Preliminary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final                    |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |
|         |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |



### Product Specification

#### AU OPTRONICS CORPORATION

#### I Handling Precautions

- 1) Since polarizer is easily damaged, do not touch or press the surface of polorizer with hand.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- 14) Do not apply the same pattern for a long time, it will enhance relevant defect.
- 15) When this reverse-type model(PCBA on bottom side) is used as forward-type model(PCBA on top side), AUO can not guarantee any defects of LCM.



#### 2 General Description

This specification applies to the 21.5 inch wide Color a-Si TFT-LCD Module M215HAN01.1. The display supports the Full HD -  $1920(H) \times 1080(V)$  screen format and 16.7M colors (RGB 6-bits+Hi\_FRC). The input interface is Dual channel LVDS and this module doesn't contain an driver board for backlight.

#### 2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

| ITEMS                        | Unit                 | SPECIFICATIONS                                           |  |  |  |
|------------------------------|----------------------|----------------------------------------------------------|--|--|--|
| Screen Diagonal              | [mm]                 | 546.21 (21.5")                                           |  |  |  |
| Active Area                  | [mm]                 | 476.064 (H) x 267.786 (V)                                |  |  |  |
| Pixels H x V                 | -                    | 1920(x3) x 1080                                          |  |  |  |
| Pixel Pitch                  | [um]                 | 247.95 (per one triad) ×247.95                           |  |  |  |
| Pixel Arrangement            | =                    | R.G.B. Vertical Stripe. Source board at bottom Note 2-1  |  |  |  |
| Display Mode                 | -                    | AHVA Mode (Advanced Hyper-Viewing Angle), Normally Black |  |  |  |
| White Luminance ( Center )   | [cd/m <sup>2</sup> ] | 250 (Typ.)                                               |  |  |  |
| Contrast Ratio               | -                    | 1000 (Typ.)                                              |  |  |  |
| Response Time                | [msec]               | 14 (Typ., GTG)                                           |  |  |  |
| Power Consumption            | [Watt]               | II (Тур.)                                                |  |  |  |
| (LCD Module + Backligh unit) |                      | LCD module: PDD (Typ.)= 2.3 @ White pattern,Fv=60Hz      |  |  |  |
|                              |                      | Backlight unit: PBLU (Typ.) =8.7@Is= 50 mA               |  |  |  |
| Weight                       | [Grams]              | 1580                                                     |  |  |  |
| Outline Dimension            | [mm]                 | 484.5(H) × 284.4(V) ×12.2 (D) Typ                        |  |  |  |
| Electrical Interface         | =                    | Dual channel LVDS                                        |  |  |  |
| Support Color                | =                    | 16.7M colors (RGB 6-bits +Hi_FRC)                        |  |  |  |
| Surface Treatment            | -                    | AG25%, 3H                                                |  |  |  |
| Temperature Range            |                      |                                                          |  |  |  |
| Operating                    | [°C]                 | 0 to +50                                                 |  |  |  |
| Storage (Shipping)           | [°C]                 | -20 to +60                                               |  |  |  |
| RoHS Compliance              | -                    | RoHS Compliance                                          |  |  |  |
| TCO Compliance               | -                    | TCO 8.0 Compliance                                       |  |  |  |

Note 2-1: The following shows the figure of pixel arrangement





#### 2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

| Symbol | Description                           | Min. | Max. | Unit  | Remark                        |
|--------|---------------------------------------|------|------|-------|-------------------------------|
| TOP    | Operating Temperature                 | 0    | +50  | [°C]  | Note 2-2                      |
| TGS    | Glass surface temperature (operation) | 0    | +65  | [°C]  | Note 2-2 Function judged only |
| НОР    | Operation Humidity                    | 5    | 90   | [%RH] | Note 2-2                      |
| TST    | TST Storage Temperature               |      | +60  | [°C]  |                               |
| HST    | Storage Humidity                      | 5    | 90   | [%RH] |                               |

Note 2-2: Temperature and relative humidity range are shown as the below figure.

- I. 90% RH Max ( Ta  $\leq$  39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. ( Ta  $\leq$  39°C)
- 3. No condensation



Operating Range



Storage Range





#### 2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

#### **Test Condition:**

I. Equipment setup: Please refer to Note 2-3.

2. Panel Lighting time: 30 minutes

3. VDD=5.0V, Fv=60Hz,ls=50 mA,Ta=25 $^{\circ}$ C

| Symbol                          | Description              |               | Min.  | Тур.  | Max.  | Unit                    | Remark                     |
|---------------------------------|--------------------------|---------------|-------|-------|-------|-------------------------|----------------------------|
| L <sub>w</sub>                  | White Luminance (Cente   | er of screen) | 200   | 250   | -     | [cd/m2]                 | <b>Note 2-3</b> By SR-3    |
| L <sub>uni</sub>                | Luminance Uniformity     | 75            | 80    | -     | [%]   | <b>Note 2-4</b> By SR-3 |                            |
| CR                              | Contrast Ratio (Center   | of screen)    | 700   | 1000  | -     | -                       | <b>Note 2-5</b><br>By SR-3 |
| $\theta_{\text{R}}$             | Horizontal Viewing Angle | Right         | 80    | 89    | -     |                         |                            |
| $\theta_{\scriptscriptstyle L}$ | (CR=10)                  | Left          | 80    | 89    | -     |                         |                            |
| $\Phi_{H}$                      | Vertical Viewing Angle   | Up            | 80    | 89    | -     |                         |                            |
| $\Phi_{L}$                      | (CR=10)                  | Down          | 80    | 89    | -     |                         | Note 2-6                   |
| $\theta_{\scriptscriptstyle R}$ | Horizontal Viewing Angle | Right         | 80    | 89    | -     | [degree]                | By SR-3                    |
| $\theta_{\scriptscriptstyle L}$ | (CR=5)                   | Left          | 80    | 89    | -     |                         | ,                          |
| $\Phi_{H}$                      | Vertical Viewing Angle   | Up            | 80    | 89    | -     |                         |                            |
| $\Phi_{L}$                      | (CR=5)                   | Down          | 80    | 89    | -     |                         |                            |
| T <sub>GTG</sub>                | Response Time Gray To G  |               | -     | 14    | -     | [msec]                  | <b>Note 2-7</b> By TRD-100 |
| $R_{x}$                         |                          | Red x         | 0.617 | 0.647 | 0.677 |                         |                            |
| $R_y$                           |                          | Red y         | 0.304 | 0.334 | 0.364 |                         |                            |
| $G_{x}$                         |                          | Green x       | 0.280 | 0.310 | 0.340 |                         |                            |
| $G_{y}$                         | Color Coordinates        | Green y       | 0.595 | 0.625 | 0.655 |                         | 0.000                      |
| B <sub>x</sub>                  | (CIE 1931)               | Blue x        | 0.125 | 0.155 | 0.185 | _                       | By SR-3                    |
| B <sub>y</sub>                  |                          | Blue y        | 0.020 | 0.050 | 0.080 |                         |                            |
| W <sub>x</sub>                  |                          | White x       | 0.283 | 0.313 | 0.343 |                         |                            |
| W <sub>y</sub>                  |                          | White y       | 0.299 | 0.329 | 0.359 |                         |                            |
|                                 | NTSC                     |               |       | 72    |       | [%]                     | By SR-3                    |



#### Note 2-3: Equipment setup:



Note 2-4: Luminance Uniformity Measurement

#### Definition:

 $Luminance\ Uniformity = \frac{M inimum\ Luminance\ of\ 9\ Points\ (P1 \sim P9)}{M aximum\ Luminance\ of\ 9\ Points\ (P1 \sim P9)}$ 

#### a. Test pattern: White Pattern



Note 2-5: Contrast Ratio Measurement

document version LO



#### Definition:

Contrast Ratio = Luminance of White pattern
Luminance of Black pattern

a. Measured position: Center of screen (P5) & perpendicular to the screen ( $\theta=\Phi=0^{\circ}$ )

#### Note 2-6: Viewing angle measurement

**Definition:** The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right  $(\theta_L \& \theta_R)$ Vertical view angle: Divide to up & down  $(\Phi_H \& \Phi_L)$ 



#### **Note 2-7:** Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, TF), and from "Gray level B" to "Gray level A" (rising time, TR), respectively. The response time is interval between the 10% and 90% of optical response.





The gray to gray response time is defined as the following table.

| The gray to gray response time to define as the remaining taken. |                          |  |     |                |      |      |
|------------------------------------------------------------------|--------------------------|--|-----|----------------|------|------|
| Crey Level to Crey Level                                         |                          |  | Tar | get gray level |      |      |
| Gray Lever to G                                                  | Gray Level to Gray Level |  | L63 | L127           | L191 | L255 |
|                                                                  | L0                       |  |     |                |      |      |
|                                                                  | L63                      |  |     |                |      |      |
| Start gray level                                                 | L127                     |  |     |                |      |      |
|                                                                  | L191                     |  |     |                |      |      |
|                                                                  | L255                     |  |     |                |      |      |

<sup>■</sup> T<sub>GTG\_typ</sub> is the total average time at rising time and falling time of gray to gray.



#### 2.4 Mechanical Characteristics

| Symbol   | Description          | Min. | Max. | Unit  | Remark   |
|----------|----------------------|------|------|-------|----------|
| $P_{bc}$ | Backside Compression | 2.5  |      | [Kgf] | Note 2-8 |

#### Note 2-8: Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

If the distance from the last block to each side of the End Point  $\geq$  25mm, add other blocks to make sure that most area of Bezel Back can be measured.





#### 3 TFT-LCD Module

#### 3.1 Block Diagram

The following shows the block diagram of the 21.5 inch Color TFT-LCD Module.





#### 3.2 Interface Connection

#### 3.2.1 Connector Type

| TFT-LCD Connector | Manufacturer | P-TWO                      | STM |  |
|-------------------|--------------|----------------------------|-----|--|
| TFI-LCD Connector | Part Number  | 187034-3009 MSBKT2407P30HB |     |  |
| Mating Connector  | Manufacturer | JAE or Compatible          |     |  |
| Mating Connector  | Part Number  | FI-X30HL (Locked Type)     |     |  |

#### 3.2.2 Connector Pin Assignment

| PIN# | Symbol  | Description                                         | Remark |
|------|---------|-----------------------------------------------------|--------|
| I    | RxO0-   | Negative LVDS differential data input (Odd data)    |        |
| 2    | RxO0+   | Positive LVDS differential data input (Odd data)    |        |
| 3    | RxOI-   | Negative LVDS differential data input (Odd data)    |        |
| 4    | RxOI+   | Positive LVDS differential data input (Odd data)    |        |
| 5    | RxO2-   | Negative LVDS differential data input (Odd data)    |        |
| 6    | RxO2+   | Positive LVDS differential data input (Odd data)    |        |
| 7    | GND     | Ground                                              |        |
| 8    | RxOCLK- | Negative LVDS differential clock input (Odd clock)  |        |
| 9    | RxOCLK+ | Positive LVDS differential clock input (Odd clock)  |        |
| 10   | RxO3-   | Negative LVDS differential data input (Odd data)    |        |
| - 11 | RxO3+   | Positive LVDS differential data input (Odd data)    |        |
| 12   | R×E0-   | Negative LVDS differential data input (Even data)   |        |
| 13   | RxE0+   | Positive LVDS differential data input (Even data)   |        |
| 14   | GND     | Ground                                              |        |
| 15   | RxEI-   | Negative LVDS differential data input (Even data)   |        |
| 16   | RxEI+   | Positive LVDS differential data input (Even data)   |        |
| 17   | GND     | Ground                                              |        |
| 18   | RxE2-   | Negative LVDS differential data input (Even data)   |        |
| 19   | RxE2+   | Positive LVDS differential data input (Even data)   |        |
| 20   | RxECLK- | Negative LVDS differential clock input (Even clock) |        |
| 21   | RxECLK+ | Positive LVDS differential clock input (Even clock) |        |
| 22   | RxE3-   | Negative LVDS differential data input (Even data)   |        |
| 23   | RxE3+   | Positive LVDS differential data input (Even data)   |        |
| 24   | GND     | Ground                                              |        |
| 25   | NC      | No connection (for AUO test only. Do not connect)   |        |
| 26   | NC      | No connection (for AUO test only. Do not connect)   |        |



| 27 | NC  | No connection (for AUO test only. Do not connect) |
|----|-----|---------------------------------------------------|
| 28 | VDD | Power Supply Input Voltage                        |
| 29 | VDD | Power Supply Input Voltage                        |
| 30 | VDD | Power Supply Input Voltage                        |





#### 3.3 Electrical Characteristics

#### 3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

| Sym | nbol | Description                   | Min     | Max | Unit   | Remark  |
|-----|------|-------------------------------|---------|-----|--------|---------|
| VD  | DC   | Power Supply<br>Input Voltage | GND-0.3 | 6.0 | [Volt] | Ta=25°C |

#### 3.3.2 Recommended Operating Condition

| Symbol | Description                     | Min | Тур  | Max  | Unit   |            | Ren   | nark             |
|--------|---------------------------------|-----|------|------|--------|------------|-------|------------------|
| VDD    | Power supply<br>Input voltage   | 4.5 | 5.0  | 5.5  | [Volt] |            |       |                  |
| IDD    | Power supply                    | ı   | 0.46 | 0.55 | [A]    | VDD= 5.0V, | White | Pattern, Fv=60Hz |
| טטו    | Input Current (RMS)             |     | 0.50 | 0.60 | [A]    | VDD= 5.0V, | White | Pattern, Fv=75Hz |
| BDD    | VDD Power                       | -   | 2.30 | 2.75 | [Watt] | VDD= 5.0V, | White | Pattern, Fv=60Hz |
| PDD    | Consumption                     |     | 2.50 | 3.00 | [Watt] | VDD= 5.0V, | White | Pattern, Fv=75Hz |
| IRush  | Inrush Current                  | -   | -    | 3.0  | [A]    | Note 3-1   |       |                  |
| VDDrp  | Allowable VDD<br>Ripple Voltage | -   | -    | 500  | [mV]   | VDD= 5.0V, | White | Pattern, Fv=75Hz |

#### Note 3-1: Inrush Current measurement:

#### Test circuit:



The duration of VDD rising time: 470us.



#### 3.4 Signal Characteristics

#### 3.4.1 LCD Pixel Format

|           | 1     | 2     |   |        | 1 | 91 | 9 | 19 | 920 | 0 |
|-----------|-------|-------|---|--------|---|----|---|----|-----|---|
| 1st Line  | R G I | 3 R G | В |        | R | G  | В | R  | G   | В |
|           | -     | -     |   |        |   | -  |   |    | •   |   |
|           | -     | -     |   | -      |   | -  |   |    | -   |   |
|           | -     | -     |   | -      |   | -  |   |    | -   |   |
|           | -     | -     |   | -<br>- |   |    |   |    |     |   |
|           |       | .     |   |        |   |    |   |    |     |   |
|           |       | -     |   | •      |   | •  |   |    | •   |   |
|           | :     | :     |   | •      |   |    |   |    |     |   |
|           |       | -     |   |        |   |    |   |    |     |   |
|           |       | •     |   | -      |   | •  |   |    | •   |   |
| 1080 Line | R G I | 3 R C | В |        | R | G  | В | R  | G   | В |

#### 3.4.2 LVDS Data Format



| <b>8 Bit</b> Color<br>Bit Order |    |    |    |  |  |  |  |  |  |  |  |
|---------------------------------|----|----|----|--|--|--|--|--|--|--|--|
| <b>MSB</b> R7 G7 B7             |    |    |    |  |  |  |  |  |  |  |  |
|                                 | R6 | G6 | B6 |  |  |  |  |  |  |  |  |
| R5 G5 B5                        |    |    |    |  |  |  |  |  |  |  |  |
|                                 | R4 | G4 | B4 |  |  |  |  |  |  |  |  |
|                                 | R3 | G3 | В3 |  |  |  |  |  |  |  |  |
|                                 | R2 | G2 | B2 |  |  |  |  |  |  |  |  |
| R1 G1 B1                        |    |    |    |  |  |  |  |  |  |  |  |
| LSB                             | R0 | G0 | B0 |  |  |  |  |  |  |  |  |

#### Note 3-2:

- a. O = "Odd Pixel Data" E = "Even Pixel Data"
- b. Refer to 3.4.1 LCD pixel format, the 1st data is 1 (Odd Pixel Data), the 2<sup>nd</sup> data is 2 (Even Pixel Data) and the last data is 1920 (Even Pixel Data).



#### 3.4.3 Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

|          |               |    |    |    |             |    |    |    |    |    |    | Col       | or Inp | out D | ata |    |    |    |    |    |              |    |                    |    |    |        |
|----------|---------------|----|----|----|-------------|----|----|----|----|----|----|-----------|--------|-------|-----|----|----|----|----|----|--------------|----|--------------------|----|----|--------|
| Color    | Gray<br>Level |    |    |    | RED<br>B:R7 |    |    |    |    |    |    | G<br>(MSI | — —    | N dat |     | l  |    |    |    | _  | BLUE<br>B:B7 |    | a<br><b>3</b> :80) | )  |    | Remark |
|          |               | R7 | R6 | R5 | R4          | R3 | R2 | R1 | R0 | G7 | G6 | G5        | G4     | G3    | G2  | G1 | G0 | В7 | В6 | B5 | B4           | ВЗ | В2                 | B1 | В0 |        |
| Black    | -             | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  |        |
| White    | -             | 1  | 1  | 1  | 1           | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1      | 1     | 1   | 1  | 1  | 1  | 1  | 1  | 1            | 1  | 1                  | 1  | 1  |        |
| Gray 127 | -             | 0  | 1  | 1  | 1           | 1  | 1  | 1  | 1  | 0  | 1  | 1         | 1      | 1     | 1   | 1  | 1  | 0  | 1  | 1  | 1            | 1  | 1                  | 1  | 1  |        |
|          | ம             | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  | Black  |
| Red      | :             | :  | :  | :  | :           | :  | :  | :  | :  | :  | :  | :         | :      | :     | :   | :  | :  | :  | :  | :  | :            | :  | :                  | :  | :  |        |
|          | L255          | 1  | 1  | 1  | 1           | 1  | 1  | 1  | 1  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  |        |
|          | ம             | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  | Black  |
| Green    | :             | :  | :  | :  | :           | :  | :  | :  | :  | :  | :  | :         | :      | :     | :   | :  | :  | :  | :  | :  | :            | :  | :                  | :  | :  |        |
|          | L255          | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 1  | 1  | 1         | 1      | 1     | 1   | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  |        |
|          | ம             | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0                  | 0  | 0  | Black  |
| Blue     | :             | :  | :  | :  | :           | :  | :  | :  | :  | :  | :  | :         | :      | :     | :   | :  | :  | :  | :  | :  | :            | :  | :                  | :  | :  |        |
|          | L255          | 0  | 0  | 0  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0     | 0   | 0  | 0  | 1  | 1  | 1  | 1            | 1  | 1                  | 1  | 1  |        |



#### 3.4.4 LVDS Specification

#### A. DC Characteristics:

| Symbol          | Description                               | Min  | Тур  | Max  | Units | Condition                       |
|-----------------|-------------------------------------------|------|------|------|-------|---------------------------------|
| $V_{TH}$        | LVDS Differential Input<br>High Threshold | 1    | -    | +100 | [mV]  | V <sub>CM</sub> = 1.2V          |
| $V_{TL}$        | LVDS Differential Input<br>Low Threshold  | -100 | -    | -    | [mV]  | V <sub>CM</sub> = 1.2V          |
| V <sub>ID</sub> | LVDS Differential Input<br>Voltage        | 100  | -    | 600  | [mV]  |                                 |
| V <sub>CM</sub> | LVDS Common Mode<br>Voltage               | +1.0 | +1.2 | +1.5 | [V]   | $V_{TH}-V_{TL} = 200 \text{mV}$ |

#### LVDS Signal Waveform:

Use RxOCLK- & RxOCLK+ as example.

### Single-End





#### B. AC Characteristics:

| Symbol           | Description                                                              | Min | Max | Unit | Remark |
|------------------|--------------------------------------------------------------------------|-----|-----|------|--------|
| F <sub>DEV</sub> | Maximum deviation of input clock frequency during Spread Spectrum        | -   | ± 3 | %    |        |
| F <sub>MOD</sub> | Maximum modulation<br>frequency of input clock<br>during Spread Spectrum | 1   | 200 | KHz  |        |



Fclk: LVDS Clock Frequency

document version LO



#### 3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

| Symbol    | Descript           | ion       | Min. | Тур. | Max. | Unit | Remark   |
|-----------|--------------------|-----------|------|------|------|------|----------|
| Tv        |                    | Period    | 1094 | 1130 | 1836 | Th   |          |
| Tdisp (v) | Vertical Section   | Active    | 1080 | 1080 | 1080 | Th   |          |
| Tblk (v)  |                    | Blanking  | 14   | 50   | 756  | Th   |          |
| Fv        |                    | Frequency | 47   | 60   | 76   | Hz   | Note 3-3 |
| Th        |                    | Period    | 1000 | 1050 | 1678 | Tclk |          |
| Tdisp (h) | Horizontal Section | Active    | 960  | 960  | 960  | Tclk |          |
| Tblk (h)  |                    | Blanking  | 40   | 90   | 718  | Tclk |          |
| Fh        |                    | Frequency | 51.5 | 67.8 | 96.5 | KHz  | Note 3-4 |
| Tclk      | LVDS Clock         | Period    | 10.4 | 14.0 | 19.4 | ns   | I/Fclk   |
| Fclk      |                    | Frequency | 51.5 | 71.2 | 96.5 | MHz  | Note 3-5 |

Note 3-3: The optimal vertical Frequency is 50 ~76 Hz for Best picture quality.

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.);

Fh (Typ.) = Fclk (Typ.) / Th (Typ.);

Fh (Max.) = Fclk (Max.) / Th (Min.);

Note 3-5: The equation is listed as following. Please don't exceed the above recommended value.

Fclk (Min.) = Fv (Min.)  $\times$  Th (Min.)  $\times$  Tv (Min.);

Fclk (Typ.) = Fv (Typ.)  $\times$  Th (Typ.)  $\times$  Tv (Typ.);



#### 3.4.6 Input Timing Diagram







#### 3.5 Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.



#### **Power Sequence Timing**

| Symbol |      | Value |      |      | Remark               |
|--------|------|-------|------|------|----------------------|
| Symbol | Min. | Тур.  | Max. | Unit |                      |
| T1     | 0.5  | -     | 10   | [ms] |                      |
| T2     | 0    | -     | 50   | [ms] |                      |
| T3     | 500  | -     | -    | [ms] |                      |
| T4     | 100  | -     | -    | [ms] |                      |
| T5     | 0    |       | 50   | [ms] | Note 3-6<br>Note 3-7 |
| Т6     | 0    | -     | 200  | [ms] | Note 3-7<br>Note 3-8 |
| T7     | 1000 | -     | -    | [ms] |                      |

Note 3-6: Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 3-7: During T5 and T6 period, please keep the level of input LVDS signals with Hi-Z state.

Note 3-8: Voltage of VDD must decay smoothly after power-off.(customer system decide this value)



#### 4 Backlight Unit

#### 4.1 Block Diagram

The following shows the block diagram of the 21.5 inch Backlight Unit. And it includes 60pcs LED in the LED light bar. (4 strings and 15 pcs LED of one string).





#### 4.2 Interface Connection

#### 4.2.1 Connector Type

| Backlight Connector | Manufacturer | Cvilux                                                                                                      |
|---------------------|--------------|-------------------------------------------------------------------------------------------------------------|
| Backlight Connector | Part Number  | CII406MIVLD-NH                                                                                              |
|                     | Manufacturer | ENTERY                                                                                                      |
| Mating Connector    | Part Number  | H112K-P06N-00B (Non-Locking type) H112K-P06N-11B(White) (Locking type) H112K-P06N-13B(Black) (Locking type) |

#### Backlight Connector dimension:

 $H \times V \times D = 7.7 \times 3.98 \times 4.85$ , Pitch = 1.0(unit = mm)







#### Mating Connector dimension:







#### 4.2.2 Connector Pin Assignment

| Pin# | Symbol                         | Description                               | Remark |
|------|--------------------------------|-------------------------------------------|--------|
| I    | Chl                            | LED Current Feedback Terminal (Channel I) |        |
| 2    | Ch2                            | LED Current Feedback Terminal (Channel 2) |        |
| 3    | $V_{\scriptscriptstyle{SLED}}$ | LED Power Supply Voltage Input Terminal   |        |
| 4    | $V_{\scriptscriptstyle{SLED}}$ | LED Power Supply Voltage Input Terminal   |        |
| 5    | Ch3                            | LED Current Feedback Terminal (Channel 3) |        |
| 6    | Ch4                            | LED Current Feedback Terminal (Channel 4) |        |





#### 4.3 Electrical Characteristics

#### 4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

(Ta=25°℃)

| Symbol | Description        | Min | Max | Unit | Remark          |
|--------|--------------------|-----|-----|------|-----------------|
| ls     | LED String Current | 0   | 100 | [mA] | 100% duty ratio |

#### 4.3.2 Recommended Operating Condition

(Ta=25°℃)

| Symbol            | Description                                  | Min.          | Тур. | Max. | Unit   | Remark                                                         |
|-------------------|----------------------------------------------|---------------|------|------|--------|----------------------------------------------------------------|
| ls                | LED String Current                           | -             | 50   | 55   | [mA]   | 100% duty ratio of LED chip, <i>Note 4-6</i>                   |
| Vs                | LED String Voltage                           | 37.5          | 43.5 | 49.5 | [Volt] | Is=50mA @ 100% duty ratio; <i>Note 4-1, Note 4-5, Note 4-7</i> |
| ΔVs               | Maximum Vs Voltage<br>Deviation of light bar | -             | -    | 3    | [Volt] | Is=50mA @ 100% duty ratio; <i>Note 4-2</i>                     |
| P <sub>BLU</sub>  | LED Light Bar Power Consumption              | -             | 8.7  | 9.9  | [Watt] | Note 4-3                                                       |
| LT <sub>LED</sub> | LED Life Time                                | 30,000        | -    | -    | [Hour] | Note 4-4                                                       |
| OVP               | Over Voltage Protection in system board      | 110%<br>Vsmax | -    | -    | [Volt] | Note 4-5                                                       |



- **Note 4-1:** Vs (Typ.) =  $V_F$  (Typ.) X LED No. (one string);
  - a.  $V_E$ : LED chip forward voltage,  $V_E$  (Min.)=2.5V,  $V_E$ (Typ.)=2.9V,  $V_E$ (Max.)=3.3V
  - b. The same euqation to calculate  $V_s(Min.)$  &  $V_s(Max.)$  for respective  $V_s(Min.)$  &  $V_s(Max.)$ ;



- **Note 4-2:**  $\Delta Vs$  (Max.) =  $\Delta V_F X$  LED No. (one string);
  - a.  $\Delta V_{E}$  LED chip forward voltage deviation; (0.2 V, each Bin of LED  $V_{E}$ )
- Note 4-3:  $P_{BLU}$  (Typ.) = Vs (Typ.) X ls (Typ.) X 4; (4 is total String No. of LED Light bar)  $P_{BLU}$  (Max.) = Vs (Max.) X ls (Typ.) X 4;
- *Note 4-4:* Definition of life time:
  - a. Brightness of LED becomes to 50% of its original value
  - b. Test condition: Is = 50mA and 25 $^{\circ}$ C (Room Temperature)
- *Note 4-5:* Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltage protection) should be 10% higher than max. value of LED string voltage (Vs) at least.

- Note 4-6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.
- **Note 4-7**: Ensure that the LED light bar is not subjected either forward or reverse voltage while monitor set is on standby mode or not in use.



#### 5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

| Items                             | Condition                                                                                            | Remark   |
|-----------------------------------|------------------------------------------------------------------------------------------------------|----------|
| Temperature Humidity Bias (THB)   | Ta= 50°C, 80%RH, 300hours                                                                            |          |
| High Temperature Operation (HTO)  | Ta= 50°C, 50%RH, 300hours                                                                            |          |
| Low Temperature Operation (LTO)   | Ta= 0°C, 300hours                                                                                    |          |
| High Temperature Storage (HTS)    | $Ta=60^{\circ}C$ , 300hours                                                                          |          |
| Low Temperature Storage (LTS)     | Ta= -20°C, 300hours                                                                                  |          |
| Vibration Test<br>(Non-operation) | Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)     |          |
| Shock Test<br>(Non-operation)     | Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis) |          |
| Thermal Shock Test (TST)          | -20°C/30min, 60°C/30min, 100 cycles                                                                  | Note 5-1 |
| On/Off Test                       | On/10sec, Off/10sec, 30,000 cycles                                                                   |          |
| ESD (Floating Static Disabours)   | Contact Discharge: $\pm$ 15KV, 150pF(330 $\Omega$ ) 1sec, 8 points, 25 times/ point.                 | Note 5-2 |
| ESD (Electro Static Discharge)    | Air Discharge: $\pm$ 15KV, 150pF(330 $\Omega$ ) 1sec 8 points, 25 times/ point.                      |          |
| Altitude Test                     | Operation:18,000 ft<br>Non-Operation:40,000 ft                                                       |          |

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test.
  - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost Self-recoverable

No hardware failures.

ESD discharged point should avoid display area and periphery front bezel of display area.

Suggest point were 4 side parallel edge of display area surface.

Metal front bezel must cover half area of BM(Black matrix) and metal front bezel must connect with metal back bezel to protect source IC of panel by ESD damaged.



#### *Note 5-3:* Result Evaluation Criteria:

TFT-LCD panels test should take place after gradually cooling enough at room temperature. In the normal application, there should be no patrticular problems that may affect the display function.

#### 6 Shipping Label

The label is on the panel as shown below:



- *Note 6-1:* For Pb Free products, AUO will add for identification.
- *Note 6-2:* For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add 6 for identification.
- Note 6-4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

#### 7 Mechanical Characteristics



#### 8.1 Packing Flow





Single pallet stack Illustration

#### 8.2 Pallet and shipment information

|   | Item                 |                | Remark                             |            |                                          |
|---|----------------------|----------------|------------------------------------|------------|------------------------------------------|
|   | item                 | Q'ty           | Dimension                          | Weight(kg) |                                          |
| 1 | Panel                | 1              | 484.5(H)mm × 284.4(V)mm ×12.2(D)mm | 1.58       | Note 1                                   |
| 2 | Cushion              | 1              |                                    | 1.4        |                                          |
| 3 | Box                  | 1              | 565(L)mm x 345(W)mm x 375(H)mm     | 0.56       | without Panel & cushion  Note 1          |
| 4 | Packing Box          | 12 pcs/Box     | 565(L)mm x 345(W)mm x 375(H)mm     | 20.92      | with panel &<br>cushion<br><i>Note 1</i> |
| 5 | Pallet               | 1              | 1150(L)mm x 1070(W)mm x 132(H)mm   | 15         | Note 1                                   |
| 6 | Pallet after Packing | 18boxes/pallet | 1150(L)mm x 1070(W)mm x 1257(H)mm  | 391.56     | Note 1                                   |

Note 1: Estimated value which is subject to change based on real measured data.

- 9 Design Guide for System
- 9.1 The gap between LCM and system rear bracket should be bigger than 0.5mm.
- 9.2 The system bracket should be fixed on back cover firmly.



9.3 The EMI gasket should be uniform and not push panel strongly.



9.4 For stable assembly, the system bracket should use 4 screws to fix system and panel by dual sides.



9.5 The system bracket and panel should be in parallel with having no gap after inserting screws.

Proper and Parallel gap

0 gap and no mechanical damage



9.6 Avoid scratching LCM, the rib on system front-cover should not exceed the bottom edge of LCM's front-bezel.

