MATH3411 INFORMATION, CODES & CIPHERS

Test 2 2018 S2 SOLUTIONS

Version A

Multiple choice: b, c, a, e, c, c, d, b, b, a

- 1. (b): This is the only codeword which has 1221 in the information positions.
- 2. (c): If the sent codeword is \mathbf{x} , then $\mathbf{y} = \mathbf{x} + a\mathbf{e}_i$ for some $a \in \mathbb{Z}_3$ and $i \in \{1, \dots, 7\}$. Since $S(\mathbf{y}) = H\mathbf{y}^T = 022^T = 2H\mathbf{e}_5^T$, twice the 5th column of H, and that $S(\mathbf{y}) = aH\mathbf{e}_i^T$, we see that a = 2 and i = 5, so $\mathbf{x} = \mathbf{y} - 2\mathbf{e}_5 = 0021010$, so $\mathbf{m} = 1010$.
- 3. (a): 1001 and 0121 are the only codewords and, of these, only 1001 can encode 10.
- 4. (e): By trial and error, we see that none of the four words for c_4 are suitable:

(a)
$$\mathbf{c}_4 \mathbf{c}_4 = \mathbf{c}_2$$
 (b) $\mathbf{c}_4 = \mathbf{c}_1 \mathbf{c}_2$ (c) $\mathbf{c}_4 = \mathbf{c}_1 \mathbf{c}_1 \mathbf{c}_1$ (d) $\mathbf{c}_4 \mathbf{c}_2 \mathbf{c}_4 = \mathbf{c}_1 \mathbf{c}_3 \mathbf{c}_3 \mathbf{c}_1$

- 5. (c): The Kraft-McMillan number $K = \sum \frac{1}{2^{\ell_i}}$ must be at most 1 for UD codes. Testing values of $\ell = 1, 2, 3, \dots$ gives us that $\ell = 4$ is the minimum length that satisfies this. You can also draw a decision tree.
- 6. (c): Encode the message $ba \bullet$: \mathbf{width} Assignment Project Ex $0.4 \times 0.3 = 0.12$ https://powcoder.com so the message encodes as a number in the interval [0.484, 0.52].

7. (d): 1. b 2. a 3. aa 4. aab 5. aaa 8. (b): Use one dummy symbol (and Khath's hat power der

9. **(b)**:
$$\lim_{n \to \infty} \frac{L_3^{(n)}}{n} = H_3(S) = -0.4 \log_3 0.4 - 0.3 \log_3 0.3 - 0.3 \log_3 0.3 - 0.3 \log_3 0.3 = 1.16.$$

10. **(a)**:

$$\begin{array}{c|cccc} p_i & \frac{1}{p_i} & \ell_i & \text{code} \\ \hline 0.4 & 2.5 & 2 & 00 \\ 0.3 & 3.3 & 2 & 01 \\ 0.2 & 5 & 3 & 100 \\ 0.1 & 10 & 4 & 1010 \\ \hline \end{array}$$

So, the message $\mathbf{m} = s_1 s_4 s_2$ is encoded as 00101001.

11. (a) Let us now calculate the Huffman codes $\operatorname{Huff}_{\rm E}, \operatorname{Huff}_{(1)}, \operatorname{Huff}_{(2)}, \operatorname{Huff}_{(3)}$:

Source	p_i	Huff_E	Source	p_i	$\mathrm{Huff}_{(1)}$	Source	p_i	$\operatorname{Huff}_{(2)}$	Source	p_i	$\operatorname{Huff}_{(3)}$
s_1	$\frac{6}{17}$	00	s_1	0.7	0	s_1	0.2	10	s_1	0.1	01
s_2	$\frac{7}{17}$	1	s_2	0.2	10	s_2	0.6	0	s_2	0.4	00
s_3	$\frac{4}{17}$	01	s_3	0.1	11	s_3	0.2	11	s_3	0.5	1

(b) The average lengths of these codes

$$L_E = \frac{27}{17} \approx 1.59$$
 $L_{(1)} = 1.3$ $L_{(2)} = 1.4$ $L_{(3)} = 1.5$

The Markov Huffman code has average length

$$L_M = \frac{6}{17}L_{(1)} + \frac{7}{17}L_{(2)} + \frac{4}{17}L_{(3)} = \frac{6}{17}1.3 + \frac{7}{17}1.4 + \frac{4}{17}1.5 \approx 1.39$$

c) We encode $s_1s_3s_2s_1$:

so this is encoded as 00110010.

https://powcoder.com

Add WeChat powcoder

Version B

Multiple choice: a, d, d, d, b, b, e, a, a, c

- 1. (a): This is the only codeword which has 1221 in the information positions.
- 2. (d): If the sent codeword is \mathbf{x} , then $\mathbf{y} = \mathbf{x} + a\mathbf{e}_i$ for some $a \in \mathbb{Z}_3$ and $i \in \{1, \dots, 7\}$. Since $S(\mathbf{y}) = H\mathbf{y}^T = 002^T = H\mathbf{e}_3^T$, the 3rd column of H, and $S(\mathbf{y}) = aH\mathbf{e}_i^T$, we see that a = 1 and i = 3, so $\mathbf{x} = \mathbf{y} - \mathbf{e}_3 = 1101111$, so $\mathbf{m} = 1101$.
- 3. (d): 1201 is the only codeword here that can encode 10.
- 4. (d): This choice of c_4 gives an I-code and thus a UD-code.
- 5. (b): The Kraft-McMillan number $K = \sum \frac{1}{2^{\ell_i}}$ must be at most 1 for UD codes. Testing values of $\ell = 1, 2, 3, \ldots$ gives us that $\ell = 3$ is the minimum length that satisfies this. You can also draw a decision tree.
- 6. (b): Encode the message $ab \bullet$: subinterval start width begin 0 0.4 0 + 0.4 * 0.4 = 0.16 $0.4 \times 0.4 = 0.16$ $0.16 + 0.8 \times 0.16 \equiv 0.288 \quad 0.2 \times 0.16 \equiv 0.032$
- 7. (e): 1. b 2. ba 3. baa 4. baab 5. baaa 8. (a): Use one dummy that Sand Kpi Swin Conder Com
- 9. (a): $\lim_{n \to \infty} \frac{L_4^{(n)}}{n} = H_4(S) = -0.4 \log_4 0.4 0.2 \log_4 0.2 0.2 \log_4 0.2 0.1 \log_4 0.1 0.1 \log_4 0.1 \approx 1.06.$
- 10. **(c)**:

p_i	$\frac{1}{p_i}$	ℓ_i	code
0.4	2.5	2	00
0.2	5	3	010
0.2	5	3	011
0.1	10	4	1000
0.1	10	4	1001

So, the message $\mathbf{m} = s_1 s_4 s_2$ is encoded as 001000010.

11. (a) Let us now calculate the Huffman codes $\operatorname{Huff}_{\rm E}, \operatorname{Huff}_{(1)}, \operatorname{Huff}_{(2)}, \operatorname{Huff}_{(3)}$:

Source	p_i	Huff_E	Source	p_i	$\operatorname{Huff}_{(1)}$	Source	p_i	$\operatorname{Huff}_{(2)}$	Source	p_i	$\operatorname{Huff}_{(3)}$
s_1	$\frac{10}{27}$	00	s_1	$\frac{1}{4}$	10	s_1	$\frac{1}{2}$	1	s_1	$\frac{1}{4}$	00
s_2	$\frac{13}{27}$	1	s_2	$\frac{2}{3}$	0	s_2	$\frac{1}{3}$	00	s_2	$\frac{1}{2}$	1
s_3	$\frac{4}{27}$	01	s_3	$\frac{1}{12}$	11	s_3	$\frac{1}{6}$	01	s_3	$\frac{1}{4}$	01

(b) The average lengths of these codes are

$$L_{(1)} = \frac{4}{3}$$
 $L_{(2)} = 1.5$ $L_{(3)} = 1.5$

The Markov Huffman code has average length

$$L_M = \frac{10}{27}L_{(1)} + \frac{13}{27}L_{(2)} + \frac{4}{27}L_{(3)} = \frac{10}{27}\frac{4}{3} + \frac{13}{27}1.5 + \frac{4}{27}1.5 = \frac{233}{162} \approx 1.44$$

c) We encode $s_1s_3s_2s_1$:

so this is encoded as 0011111.

https://powcoder.com

Add WeChat powcoder