《基础物理实验》实验报告

实验名	称_						2	实验名称				指导教师_		朱中村	主	
姓名_	张	钰堃	学	2号_		20	2K8	800992602	.0	_ 分班分组及	座号	2 - 08 - 11	号	(例:1-0	04- 5	号)
实验日	期	2023	年	_11_	月	7	日	实验地点	713	_ 调课/补课	否	成绩评定				

1 实验内容

1.1. 用示波器测量动态磁滞回线

1.1.1. 测量铁氧体的饱和动态磁滞回线

- (1) 按照实验原理正确连接电路,调节各项参数 $f = 100Hz, R_1 = 2.0\Omega, R_2 = 50k\Omega, C = 10.0\mu F$ 。示波器选择 X-Y 模式,调节励磁电流大小及示波器的水平垂直位移按钮,在示波器屏上调节出一个相对于原点较为对称的饱和磁滞回线图形,分别测量磁滞回线上下半支的 B_s, B_r, H_c
- (2) 固定信号源幅度,在仪器频率范围内,测量不同频率对应的饱和磁滞回线。保持 R_1,R_2C 不变,分别测量频率 f=95Hz, f=150Hz 时的 B_r 和 H_c
- (3) 固定以下参数: $f = 50HzI_m = 0.1AR_1 = 2.0\Omega$, 改变积分常量 R_2C 分别为 0.01s, 0.05s, 0.5s 观察不同积分常量下 $u_R u_C$ 的李萨如图形。

1.1.2. 测量铁氧体的动态磁滞回线

- (1) 调节参数 $f=100Hz, R_1=2.0\Omega R_2=50k\Omega, C=10.0\mu F$,调节励磁电流幅度,测量并画出动态磁化曲线
 - (2) 根据测量数据计算并画出 $\mu_m H_m$ 曲线
 - (3) 得到起始磁导率

1.1.3. 测量不同频率下硅钢的动态磁滞回线

调节参数 $R_1=2.0\Omega, R_2=50k\Omega, C=10.0\mu F$,调节积分常量,使得交变磁场幅度 $H_m=400A/m$,分别测出当 f=20Hz, 40Hz, 60Hz 时的 B_m, B_r, H_c

1.1.4. 测量铁氧体在不同直流偏置磁场下的可逆磁导率

调节参数 $f=100Hz, R_1=2.0\Omega, R_2=50k\Omega, C=2.0\mu F$,调节直流偏置磁场从 0 到 H_s 单调增加,根据数据画出 μ_R-H 曲线

1.2. 用霍尔传感器测量铁磁材料的(准)静态磁滞回线

1.2.1. 测量模具钢样品的起始磁化曲线

(1) 对样品进行退磁。先将电流调到一个比较大的值,然后将电流减到 0, 反转电流方向 后再将电流调到略小于上一次的电流的值, 然后再将电流调到 0 后反转电流。如此循环直到 电流为 0。如果磁感应强度很小,则退磁成功。

(2) 从电流为 0 开始, 依次增加电流, 测量相应的磁感应强度

1.2.2. 测量模具钢的磁滞回线

- (1) 将线圈的电流调到磁场接近饱和的范围,保持电路不变,把换向开关来回拨动 8-10 次
- (2) 将磁化线圈的电流逐渐减小到 0, 然后将电流换向,将电流调到对应的负值,测量电流对应的磁感应强度,然后重复上述过程。

2 实验数据及处理

以下的数据均是根据原始数据换算得来,原始数据在原始数据表格中有记录

2.1. 观测铁氧体的动态磁滞回线

2.1.1. 测量 f = 100Hz 时的饱和磁滞回线

B(T)点 1 点 2 H(A/m)-60 -4.62 -3.920.00-1.61 0.00 0.75-0.914.62 1.56 0.0063.46 4.62 B_r 0.83 H_c 4.27

表 1: 测量铁氧体饱和磁滞回线数据

绘制图像:

可以得到 $B_S = 0.52T, B_r = 0.22T, H_c = 9.93m/A$

2.1.2. 饱和磁滞回线随频率的变化规律

表 2: 饱和磁滞回线参数随频率变化数据

	95Hz	150Hz
B_r	0.97	0.81
H_c	4.85	4.62

随着频率 不断增大,磁性材料的磁滞回线中 , , 三个指标都不断减小,磁滞回线所围成的面积也随之减小

原因是电路中存在电感 L,增大频率会使得感抗增大,电感上分压也相应增大,导致磁场测量部分的分压减小,因此各指标都呈减小。

2.1.3. 积分常量分别为 0.5s, 0.05s, 0.01s 下的李萨如图形

为什么积分常量会影响 $u_{R_1} - u_c$ 李萨如图形的形状?

实验原理中,公式 $u_C = \frac{Q}{C} = \frac{1}{C} \int i_2 dt = \frac{1}{CR_2} \int u_{R_2} dt \approx \frac{1}{CR_2} \int u_2 dt$ 的推导最后用的是约等于,而约等于的条件是积分常数 $R_2 C \gg T$,本实验频率 f = 100Hz,即 T = 0.02s,因此,在积分常数为 0.5s 时,此条件基本上满足,而变为 0.05s 与 0.01s 时,该条件不再满足,因此会改变李萨如图形的形状

积分常量是否会影响真实的 B-H 磁滞回线的形状?

 u_c 的改变会影响 u_x 和 u_y 的比例,但 u_x 与 u_y 只影响到示波器上显示的图像,而真实的 B-H 磁滞回线的形状并不会因为示波器的显示而改变,故积分常量本质上对真实的磁滞回线并无影响。

2.2. 观测铁氧体的动态磁滞回线

表 3: 铁氧体的动态磁滞回线测量数据

	1	2	3	4	5	6	7	8	9	10
H(A/m)	22.5	24.23	27.12	29.42	31.73	38.08	38.65	41.54	50.19	66.92
B(T)	0.67	0.75	0.83	0.86	0.89	0.91	0.91	0.94	0.96	1
$\mu_m(\mathrm{H/m})$	23768	24719	24456	23265	22247	19101	18816	18025	15897	16210
	11	12	13	14	15	16	17	18	19	20
H(A/m)	70.96	107.31								
B(T)	1.1	1.13								
$\mu_m(\mathrm{H/m})$	12360	8373								

绘制图像:

可以估计得到铁氧体的起始磁导率大约为 12000H/m

2.3. 观测硅钢的动态磁滞回线

	20Hz	40Hz	60Hz
B_m	0.97	0.91	0.94
B_r	0.54	0.59	0.7
H_c	62.3	73.85	80.77

观察比较三个频率下对应的数据,可以发现 B_m , B_r 的变化不大,在误差允许范围内可视作不变。而 H_c 随着频率的增加而显著增大。

2.4. 测量铁氧体在不同直流偏置磁场下的可逆磁导率

表 4: 铁氧体在不同直流偏置磁场下的可逆磁导率

	1	2	3	4	5	6	7	8	9	10
电流 (A)	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
H(A/m)	0.46	1.85	2.65	4.26	11.54	14.42	14.42	15.23	15.23	8.08
B(T)	0.003	0.007	0.009	0.009	0.017	0.015	0.013	0.009	0.007	0.002
μ_R	5191	3152	2837	1764	1187	807	712	494	359	212

绘制图像:

通过观察图像可以发现, u_R 随着 H 的增大而减小

2.5. 测量铁磁材料准静态磁滞回线

2.5.1. 测量模具钢起始磁化曲线

表 5: 模具钢的起始磁化曲线数据

I(mA)	B(mT)	H(A/m)	修正 H(A/m)
0	1.2	0.0	-8.0
60.9	12.5	507.5	424.6
120.6	43.2	1005.0	718.5
180.6	80	1505.0	974.5
239.4	116.8	1995.0	1220.4
300.3	159.5	2502.5	1444.8
359.7	202.6	2997.5	1654.0
420.7	245.6	3505.8	1877.1
480.3	284.2	4002.5	2117.8
541.1	319.2	4509.2	2392.4
599.6	348.7	4996.7	2684.3

与理论曲线比较, 实验所得图像与理论图像接近

2.5.2. 测量模具钢的磁滞回线

(mA)	B (mT)	H (A/m)	修正H(A/m)
603.6	381	5030	2503.415235
548.6	373.6	4571.666667	2094.154677
498.7	365.7	4155.833333	1730.709847
474.1	361.3	3950.833333	1554.888253
430.6	352.2	3588.333333	1252.734504
389.8	342	3248.333333	980.3753556
350.9	330.2	2924.166667	734.4598706
300.3	310.7	2502.5	442.1065974
250.6	286.1	2088.333333	191.0737502
198.6	254.7	1655	-34.03186237
148.4	220.3	1236.666667	-224.2431067
100.1	184.5	834.1666667	-389.3369792
49.1	144.9	409.1666667	-551.7313186
0	105.2	0	-697.6291791
_	63.9		
-50.8		-423.3333333	-847.0833765
-103.7	20	-864.1666667	-996.7957882
-143.3	-13.1	-1194.166667	-1107.294592
-202.9	-69.2	-1690.833333	-1231.936573
-250.3	-100.9	-2085.833333	-1416.719415
-301.9	-141.6	-2515.833333	-1576.819153
-354.4	-204.1	-2953.333333	-1599.853148
-413.9	-225.1	-3449.166667	-1956.425904
-451.3	-250.9	-3760.833333	-2097.001004
-501	-282.7	-4175	-2300.287368
-551.5	-311.7	-4595.833333	-2528.808475
-601.8	-336.7	-5015	-2782.188739
-645.7	-355.1	-5380.833333	-3026.003281
-596.6	-349.2	-4971.666667	-2655.962205
-548.9	-342.7	-4574.166667	-2301.56667
(mA)	B (mT)	H (A/m)	修正H(A/m)
(mA) -548.9	B (mT) -342.7	H (A/m) -4574.166667	修正H(A/m) -2301.56667
-548.9 -496.3	-342.7 -334.4	-4574.166667 -4135.833333	-2301.56667 -1918.274422
-548.9 -496.3 -436.6	-342.7 -334.4 -322.9	-4574.166667 -4135.833333 -3638.333333	-2301.56667 -1918.274422 -1497.036167
-548.9 -496.3 -436.6 -400.4	-342.7 -334.4 -322.9 -314.4	-4574.166667 -4135.833333 -3638.333333 -3336.666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877
-548.9 -496.3 -436.6 -400.4 -340.2	-342.7 -334.4 -322.9 -314.4 -296.5	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.3333333	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8 372	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8 182 221.7	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665 3100	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994 1629.806188
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8 372 423.6 486.1	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8 182 221.7 259.1 300.9	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665 3100 3530 4050.833333	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994 1629.806188 1811.789731 2055.4282
-548.9 -496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8 372 423.6 486.1 546	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8 182 221.7 259.1 300.9 335.9	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665 3100 3530 4050.833333	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994 1629.806188 1811.789731 2055.4282 2322.493904
-496.3 -436.6 -400.4 -340.2 -299.4 -253.8 -195 -149.6 -95.3 -51 0 50.4 79.2 90.6 96.3 127 180.9 221.6 281.1 319.8 372 423.6 486.1	-342.7 -334.4 -322.9 -314.4 -296.5 -280.8 -259.1 -224.5 -193.7 -153.8 -119.5 -78.7 -37.8 -14 -4.6 0 26.1 70.8 104.2 151.8 182 221.7 259.1 300.9	-4574.166667 -4135.833333 -3638.333333 -3336.666667 -2835 -2495 -2115 -1625 -1246.666667 -794.1666667 -425 0 420 660 755 802.5 1058.333333 1507.5 1846.666667 2342.5 2665 3100 3530 4050.833333	-2301.56667 -1918.274422 -1497.036167 -1251.736877 -868.7732737 -632.8871341 -396.7897309 -136.2381111 37.84637512 225.7512777 367.459001 521.8955931 670.6690396 752.8403851 785.5046979 802.5 885.2523298 1037.99291 1155.668944 1335.844968 1458.074994 1629.806188 1811.789731 2055.4282

绘制图像:

根据图像,可以看出硅钢的饱和磁感应强度约为 $B_m=0.38(T)$,饱和磁场强度约为 2800(A/m),矫顽力约为 $H_c=800(A/m)$

但实验得到的图像与理论整体趋势一致,但是有明显的误差。这可能是由于磁锻炼不充分导致。实际实验中,磁场和电流的读数均不稳定,存在由于读数引起的误差。

在开关拉动时,应该使触点从接触到断开的时间长一些,这会使得材料在当前磁场中磁 化达到稳定。

3 思考题

1. 铁磁材料的动态磁滞回线与静态磁滞回线在概念上有什么区别? 铁磁材料动态磁滞回线的形状和面积受哪些因素影响?

区别: 动态磁滞回线是在交变电场的作用下得到的 B-H 关系曲线,静态磁滞回线是在材料磁化完全后,测量材料的 B-H 关系曲线。

影响因素: 动态磁滞回线受到铁磁材料种类、大小、交流电频率和振幅等多种因素的影响, 其围成的面积等于一个周期的能量损耗, 这些损耗除了磁滞损耗外, 还包括涡流损耗与剩余损耗, 这些也与铁磁材料种类、大小、交流电频率和振幅等有关, 静态磁滞回线因为没有磁场大小随时间的变化, 因此几乎没有涡流损耗和剩余损耗

2. 什么叫做基本磁化曲线? 它和起始磁化曲线间有何区别?

基本磁化曲线指的是在磁场逐渐增加的过程中,铁磁材料磁化强度随着磁场的变化所呈现的曲线。而起始磁化曲线指的是在铁磁材料未经过磁化处理时,随着磁场的变化,其磁感应强度所呈现的曲线。两者的主要区别在于,基本磁化曲线是在经过磁化处理后才出现的,因此在磁化强度上会比起始磁化曲线高一些。

此外,铁磁材料动态磁滞回线是描述材料在外加磁场下磁化强度随时间变化的曲线,其形状和面积受材料本身的磁性质、外加磁场的强度、频率和方向等因素的影响。而静态磁滞回线是描述材料在稳态下(即外加磁场恒定不变)的磁化强度和磁场的关系,其形状和面积主要受材料本身的磁性质影响。

3. 铁氧体和硅钢材料的动态磁化特性各有什么特点?

铁氧体的饱和磁感应强度一般较低。在高频磁场作用下,铁氧体材料的动态磁滞损耗较小。铁氧体材料的磁导率较高,硅钢材料的磁导率较低。

4. 动态磁滞回线测量实验中,电路参量应怎样设置才能保 $u_{R_1} - u_C$ 所形成的李萨如图形正确反映材料动态磁滞回线的形状?

时间积分常数要满足 $R_2C\gg T$,才能使用推导中的近似公式,使得示波器中的图形可以反映动态磁滞回线的形状。

5. 准静态磁滞回线测量实验中,为什么要对样品进行磁锻炼才能获得稳定的饱和磁滞回线?

磁锻炼会使材料的 B-H 关系不断接近饱和状态下的理论曲线,最终得到较为稳定的磁滞回线。

4 实验总结与反思

- 1. 本次实验中,使用示波器进行测量误差较大,原因是实验使用的示波器无法自动得出 所需的电压值,需要人工肉眼调试,容易出现差错
 - 2. 在判断磁滞回线是否饱和时,存在较大的主观因素。
 - 3. 实验采集数据点过少,尤其测量铁氧体的动态磁化曲线时,绘图时误差较大

附: 原始实验数据

						(1)		田当 二 端	_ 10	- 101	224	*			器 計		
						(mA)	-	二部分 岩里并占 岩田方 名 美后岩	三条限编点	三條既編成	銀五条茶 B1	编点条件 H	电源		製造株品 取 f=100 (一定報告 外系現底)		
						(mT)	8	第二部分:用器次形物超滤器建铁磁材料(准)静态磁谱回线 1、 速度中高级处的形式相关。 高度表次的多数于相似为过程的中央。现为个类形态、速度并加的控码性化高度,实验中记录上 高度表次的多数于相似为过程的中央。现为个类形态、速度并加的控码性化高度,实验中记录上 可以,建设的支撑,在未来的由中外型。PRBE上的微微。并创用。PRB是正的微微。其中机构 证如心性(2015年),并不是有的一种工程,但可以是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		-			0.01	-	4、避损产品(特殊体)在不可直接管理操作的可能操导等。 发 产100 kg. 也是没有区型为。在2010 kg. 2010 kg.	7	В,
						(A/III)	н	专感器测 化曲线。 化曲线。 在实验器 形、利用2			18-V18-V 88-V88-V 16-V 136-N	V/4.	0.01/A 0.01 A 80.0 A 10.0 A 10.0 A	0.3	の 在不同 参数改算 を集 10 部 い い い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	+	
		-				-		量快車 国区的中点 出生中半角 公式(7)			18.8-1	1127	0.03A	ω	直然偏置 为: R;=2; 回报小线(108mV	20mV
						(2010)	日田 一番	数料 (准 版 20 版 # 20 版 # 20			18.8 V	64- V 9.2- V 148- V 40-V 50-V	0.04/4	*	200 R-		-
ų,							(MA))静态 个采样点 E.#65数值			1600	front.	0.0 VA	on	可遊離等30000.00	11-11	Llow
							ė —	数据回线 1、 类原并 1、 并和			13.6,1		0.06A	0	-2.0 μF.	7	-
							a B	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			RmV	1 may	0.07A	7	200 St. 100 St	-	T
		-				1	(A/m)	正后的 #			15-15-15-15-15-15-15-15-15-15-15-15-15-1	21 PM 8 15 MW 25	1600 USO 0 0100	00	1. 非经界 0. 人名比斯	Land	Lhm V
			1	1			(m)	服		1	1.4×1.5	1.8.V	1/60	4	回遊離時		1
	Ħ		T			-	(A/m)	中利用	L	1	14.7	000	B 3c		3 4 3		
						L	1										

对释品进行搬运练后,磁化线圈的电流从饱和电流点升加速步骤。50 又从印物加焊点。重复上途过程。再照到点。每隔 50mA 测一但(I, B) 值。实验中记录 I 和 B. 课 届通出计算。在实验模像中补充 J 和移建 I 的数值,并利用 J 和格准正常的 I 给账。 I 和特正 I 的 数值,

方法同上	В	Н	修正H	I	В	H (A/m)	修正 H (A/m)
(mA)	(mT)	(A/m)	(A/m)	(mA)	(mT)	(A/m)	(AVIII)
603.6	391,0			-601.8	-336.7		
548.6	373.6			-645.7	-3551	A COLUMN	
498.7	365.7			-596.6	-349.2		
474.1	361,3			-548.9	-342.7		
430.6	352.2			- \$96.3	-334.4		
389.8	342.0			- 436.6	-377.9		
350.9	330.2			-400.4	-314.4		
300.3	310.7			-340.2	-246.5		
250.6	286.1			-299.4	-290.8		
198.6	254.7			-253.8	-259.1		
148.4	320.3			-195,0	-224.5		
100.	184.5			-149,6			
49,1	144.1			-95.3	-153.8		
0	105.2			-51.0	-111.5		
-50.8	63.9			D	-78.7		
-103.7	20.0	200	1933	50.4	-37.8		
-143.3	-0.13.1		Page 1	79.2	- 64.0		
202.9	-69.2		2 66 9 5	90.6	-4.6		
2503	-/00.7			+96.3	0		
-301.9	-141.	1000	100000	127.4	76.1		
	-204.1			180.9	70.8		
384.4	-2251			22/16	109.2		
-451.3				281.1	151.8		
-501.0	-2821			319.8	182-0		
-551.5	-311.7			372.0			100
	0 1			603.5	319.0		
423.6				6410	379.4		
486.1				- 111			
546.0	335.9						

1.02.5	400.3	351.0	2 666	277.7	204.9	150.8	100.3	45	(mA)	将程2 和 B, 课后 讲义公式	Name of the same o
2/6.3	9.851	776.0	189	154.3	116.7	81.4	191	12-7	B (mT)	等语次传感愿置于墨场均区的中央。取20 个采样点,测量样品的起始组化曲线。实验中记录 J 和 B,联语通过计算,在实验报告中补充 J和修正 J的数值,并利用 B和修正后的 J他服。其中利用 讲义公式(3)米计算 H,利用公式(7)米对 J进行修正。	、 两重杆品的起始磁化曲线。
									(M/W)	级场均匀区的 生实验报告中:	6曲线。
									修正 H (A/m)	中央。取 20 / 补充 // 和修正 (7) 来对 // 进	
						629.9	606.3	8.155	(mA)	》采样点、测划 用的数值、并 行修正。	
						372.5	382.9	3423	(mT)	上样品的起始! 利用 B和修订	
						-	100.00		(M/W)	發化曲线。实验 三后的 #绘图。	
							100		修正 H (A/m)	验中记录 I 其中利用	