

PADERBORN UNIVERSITY

MONOTONICITY IN DEEP

LEARNING: STATE OF THE

ART

SEMINAR: MACHINE LEARNING PRESENTATION

Varun Nandkumar Golani

Paderborn, February 18, 2021

 Deep Neural Network(s) (DNN): State-of-the-art results on tasks like image, speech recognition etc. [3, 4].

- Deep Neural Network(s) (DNN): State-of-the-art results on tasks like image, speech recognition etc. [3, 4].
- Monotonicity: Increase in the input variable results in increase (or decrease) of an output variable [1]

- Deep Neural Network(s) (DNN): State-of-the-art results on tasks like image, speech recognition etc. [3, 4].
- Monotonicity: Increase in the input variable results in increase (or decrease) of an output variable [1]
- Input feature \uparrow , output variable \uparrow (\downarrow) \Rightarrow Monotonic increasing (decreasing)

- Deep Neural Network(s) (DNN): State-of-the-art results on tasks like image, speech recognition etc. [3, 4].
- Monotonicity: Increase in the input variable results in increase (or decrease)
 of an output variable [1]
- o Input feature \uparrow , output variable \uparrow (\downarrow) \Rightarrow Monotonic increasing (decreasing)
- E.g.: Monotonic decreasing trend, SCHUFA score (German credit score) and the loan interest rates

- Deep Neural Network(s) (DNN): State-of-the-art results on tasks like image, speech recognition etc. [3, 4].
- Monotonicity: Increase in the input variable results in increase (or decrease)
 of an output variable [1]
- o Input feature \uparrow , output variable \uparrow (\downarrow) \Rightarrow Monotonic increasing (decreasing)
- E.g.: Monotonic decreasing trend, SCHUFA score (German credit score) and the loan interest rates
- All (Subset) input features, output variable ⇒ Total (Partial) monotonicity

Categorization of techniques to enforce Monotonicity

Configuration of the Network Architecture (CNA)

- Special layers which ensures monotonicity
- Positive (or Negative) weight constraints on the monotone input features

Penalizing Non-Monotonicity (PNM)

- Penalty for non-monotonicity in the loss function
- General loss function: training error + non-monotonicity error + regularization term (if required)

Outline

Tests for monotonicity

Heuristic Test

Global Monotonicity Verification (GMV)

Techniques for enforcing monotonicity

Configuration of the Network Architecture (CNA)

Monotone MIN-MAX Networks (MMMN)

Deep Lattice Networks (DLN

Penalizing Non-Monotonicity (PNM)

Domain Adapted Neural Network(s) (DANN

Point-wise Loss (PWL)

Certified Monotonic Neural Network(s) (CMNN

Heuristic Test [7]

Removed variable(s)	Comparable pairs	DgrMon
- (original data)	5717	0.9645
AGE	6984	0.9255
KM	7635	0.9280
WEIGHT	6131	0.9444
COLOR	7714	0.9615
CC	6018	0.9658
HP	6799	0.9657
QUART-TAX	6402	0.9647

Figure: Heuristic test for Toyota Car Dataset. Image Source: [7]

Global Monotonicity Verification (GMV) [2]

- \circ Checks for all the data points in the input domain ${\mathcal X}$
- Solves the problem via an optimization approach
- \circ Let f be a diff. fn., x_{α} be a subset of input features that are monotonic
- To verify monotonicity we have to show $\partial_{x_l} f(x) \ge 0$, for all $l \in \alpha$, $x \in \mathcal{X}$
- Therefore, monotonicity can be verified by solving:
 - $U_{\alpha} := \min_{x, l \in \alpha} \{ \partial_{x_l} f(x), x \in \mathcal{X} \}$
- \circ For verification it is sufficient to show that $U_{lpha} \geq \mathsf{O}$

Outline

Tests for monotonicity

Heuristic Test

Global Monotonicity Verification (GMV)

Techniques for enforcing monotonicity

Configuration of the Network Architecture (CNA)

Monotone MIN-MAX Networks (MMMN)

Deep Lattice Networks (DLN)

Penalizing Non-Monotonicity (PNM)

Domain Adapted Neural Network(s) (DANN

Point-wise Loss (PWL)

Certified Monotonic Neural Network(s) (CMNN

Monotone MIN-MAX Networks (MMMN) [5]

Figure: Architecture of a 3 layer Total Monotonic MIN-MAX Network. Image Source: [5]

Deep Lattice Networks (DLN) [8]

Figure: An example of a 9 layer DLN: calibrators, linear embedding, calibrators, ensemble of lattices, calibrators, ensemble of lattices, calibrators, lattice, calibrators, calibrators,

Outline

Tests for monotonicity

Heuristic Test

Global Monotonicity Verification (GMV)

Techniques for enforcing monotonicity

Configuration of the Network Architecture (CNA)

Monotone MIN-MAX Networks (MMMN)

Deep Lattice Networks (DLN

Penalizing Non-Monotonicity (PNM)

Domain Adapted Neural Network(s) (DANN)

Point-wise Loss (PWL)

Certified Monotonic Neural Network(s) (CMNN)

Domain Adapted Neural Network(s) (DANN) [9]

Incorporates monotonic domain knowledge in the training process

o
$$Loss_D(\hat{Y}_1, \hat{Y}_2) = \sum_{i=1}^m \mathbb{I}\left((x_1^i < x_2^i) \wedge (\hat{y}_1^i > \hat{y}_2^i)\right). ReLU(\hat{y}_1^i - \hat{y}_2^i)$$

- Interpretation of $Loss_D(\hat{Y}_1, \hat{Y}_2)$:
 - $x_1^i < x_2^i$ and $\hat{y}_1^i < \hat{y}_2^i \Rightarrow$ monotonic behaviour $\Rightarrow [Loss_D(\hat{Y}_1, \hat{Y}_2)]_i = 0$
 - $x_1^i < x_2^{\bar{i}}$ and $\hat{y}_1^i > \hat{y}_2^{\bar{i}} \Rightarrow$ non-monotonic relationship \Rightarrow $[Loss_D(\hat{Y}_1, \hat{Y}_2)]_i = Penalty$
 - ReLU part of the equation can be thought of as a weight i.e. magnitude of the error

Point-wise Loss (PWL) [6]

- Incorporates a priori knowledge regarding monotonicity
- Can be used with any NN/DNN architecture
- Partial monotonicity with NN/DNN
- Penalizes negative (non-monotonic) gradients
- Objective Function: $\min \mathcal{L}_{mono} = \min \left\{ \sum_{i=1}^{n} \max(O, -\nabla_{\cdot M} f(x_i; \theta)) + \mathcal{L}_{NN} \right\}$
- Does not guarantee monotonicity

Certified Monotonic Neural Network(s) (CMNN) [2]

- NN/DNN guaranteed to be monotonic
- Two step process:
 - Step 1: Train an NN f with loss function $\mathcal{L}(f) + \lambda R(f)$
 - R(f) = O means that f is monotonic with respect to the monotonic features
 x_α in the dataset
 - Step 2: Check if $U_{\alpha} \geq 0$ (Test: GMV)
 - If Yes, the algorithm terminates
 - If No, increase λ and go back to Step 1
- GMV extended to DNN by considering them as two layer networks

Summary & Comparison

Table: The best state-of-the-art technique to enforce monotonicity is CMNN [2].

	MMMN [5], [7] (1998,2010)	DLN [8] (2017)	PWL [6] (2019)	CMNN [2] (2020)	DANN [9] (2018)
Category	CNA	CNA	PNM	PNM	PNM
How is Mono. enforced?	Positive weight constraints, MIN and MAX layers	Linear Embedding, Calibration & Ensemble of Lattice layers	Loss function by penalizing negative gradients	2 steps, Loss Function + Global Mono. Verification	Mono. constraint in the loss function
Test for Mono.	Yes	No	No	Yes	No
Mono. Guarantee	Yes	Yes	No	Yes	No
Can the technique be applied to existing NN/DNN architectures?	No	No	Yes	Yes	Yes

 Monotonicity increases the interpretability of the black box NN/DNN models [2]

- Monotonicity increases the interpretability of the black box NN/DNN models [2]
- Monotonicity makes the learner biased towards specific hypothesis in the hypothesis space

- Monotonicity increases the interpretability of the black box NN/DNN models [2]
- Monotonicity makes the learner biased towards specific hypothesis in the hypothesis space
- In some cases, monotonicity can improve performance in situations with limited data, data with poor quality and noisy training data [9]

- Monotonicity increases the interpretability of the black box NN/DNN models [2]
- Monotonicity makes the learner biased towards specific hypothesis in the hypothesis space
- In some cases, monotonicity can improve performance in situations with limited data, data with poor quality and noisy training data [9]
- Monotonicity should only be used if there exists a total/partial monotonic relationship between the input features and output variable

References I

- Toptal, https:
 - //www.toptal.com/machine-learning/monotonic-ai-models
- Liu X., Han X., Zhang N., Liu Q.: Certified Monotonic Neural Networks. In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
- He K., Zhang X., Ren S., Sun J.: Deep Residual Learning for Image Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). doi:10.1109/CVPR.2016.90
- Heymann J., Drude L., Haeb-Umbach R.: Wide Residual BLSTM Network with Discriminative Speaker Adaptation for Robust Speech Recognition. Computer Speech and Language (2016).

References II

//papers.nips.cc/paper/1358-monotonic-networks.pdf

Daniels H., Velikova M.: Monotone and partially monotone neural networks. In: IEEE Transactions on Neural Networks, 21(6):906–917 (2010). ISSN 1045-9227. doi:10.1109/TNN.2010.2044803

References III

Muralidhar N., Islam M. R., Marwah M., Karpatne A., Ramakrishnan N.: Incorporating Prior Domain Knowledge into Deep Neural Networks. In: IEEE International Conference on Big Data (2018). doi:10.1109/BigData.2018.8621955