stmglossaries package description

Copyright © 2023 DLR SY STM v20230914

Martin Rädel

2023-09-14

For larger documents, such as reports and thesis, it is nice to have LATEX take care of things like a list of acronyms or symbols.

If you write multiple documents you maybe want to make sure that the acronyms and symbols you use throughout all your texts are consistent. And you maybe also want to have the chance to change a symbol at a single location instead of crawling through every equation that might be affected by a change in notation.

This package provides an expendable set of commonly used acronyms as well as symbols in structural mechanics. It is build upon the glossaries package.

Contents

Lis	st of Tables	3
1.	Example	3
2.	Requirements	3
3.	Contents 3.1. Acronyms 3.2. Glossary 3.3. Symbols	4
4.	Usage - in the preamble 4.1. Base package	5 6 6 8

	4.4.		he glossary Options .														
	15		he symbols														
	4.0.		$\begin{array}{ccc} \text{Options} & . \end{array}$	_													
		1.5.1.	Options .				•		•		 •		 •	•	•	 •	 J
5.	Usag	ge - in i	the docum	ent													10
	5.1.	Acrony	ms														 10
	5.2.	Glossa	ry														 10
	5.3.	Symbo	ls														 10
		5.3.1.	$Lists \ \dots \ .$														 10
		5.3.2.	Combine la	sts													 11
		5.3.3.	Command	3													 11
_	G. 1																10
Ь.	Style		, 1														12
	0.1.		m styles .														
	0.0	6.1.1.	J	•													
	6.2.		ry styles .														
		6.2.1.	stmglossa														
		6.2.2.	stmglossa	•	•	•											
		6.2.3.	stmglossa	•													
		6.2.4.	stmglossa	•			•	•									
	6.3.		l styles														
		6.3.1.	stmsymbol	•													
		6.0.1.	stmonecol														
		6.0.1.	stmtwocol	papersy	mbol	lst	yl	е.			 ٠				•		
		6.0.1.	stmindexs	•													
		6.0.1.	stmexpone	ntstyle													
		6.0.1.	stmoperat	orstyle													 15
Re	feren	ces															16
Inc	lex																17
Α.	All a	cronym	ıs														18
		J	entries														30
C.	All S	ymbols															33
D.	The	code															39
		_	ssaries.s	•													
	D.2.	stmglo	ssariesba	se.sty .													 43
	D.3.	stmglo	ssariesac	ronyms.:	sty												 45
	D.4.	stmglo	ssariesac	ronymsc	omma	and	s.s	sty									 47
	D.5.	stmglo	ssariesac	ronymss	tyle	es.:	sty	<i>j</i> .									 48

D.6	. stmglossariesglossary.sty										 52
D.7	. stmglossariesglossarycommands.sty										 55
D.8	stmglossariesglossarystyles.sty .										 56
D.9	stmglossariessymbols.sty										 62
D.10	O.stmglossariessymbolscommands.sty										 64
D.1	1.stmglossariessymbolstyles.sty							•		•	 68
List o	of Tables										
1.	Package description	٠								•	 4

1. Example

This is a simple test. It uses an acronym auxiliary power unit (APU). You can use all the acronyms defined in Appendix A. The example also has an equation to test the symbols:

$$F = ma (1)$$

It creates a nice little list of symbols

Scalars

Symbol	Name	Description
a	Acceleration	
m	Mass	
F	Force	

2. Requirements

Perl is required to use the arara makeglossaries rule. Either install Perl or include a path to a binary to the system PATH variable. E.g. a Perl binary is shipped with Git under GITINSTALLPATH\usr\bin\.

3. Contents

There are multiple packages included:

Table 1: Package description

Package	Description
stmglossaries	Wrapper around the definitions for acronyms and
	symbols with options to load both
stmglossariesbase	Loads the underlying base package
stmglossariesacronyms	Main package for acronyms
stmglossariesacronymscommands	Acronym utility and shortcut commands
stmglossariesacronymsitems	Acronym definitions
stmglossariesacronymsstyles	Styles for printing acronym lists
stmglossariesglossary	Main package for glossary
stmglossariesglossarycommands	Glossary utility and shortcut commands
stmglossariesglossaryitems	Glossary entry definitions
stmglossariesglossarystyles	Styles for printing glossary lists
stmglossariessymbols	Main package for symbols
stmglossariessymbolscommands	Utility commands for symbols
stmglossariessymbolsitems	Symbol definitions
stmglossariessymbolsstyles	Styles for printing symbol lists

3.1. Acronyms

stmglossariesacronyms.sty is the control package for acronyms. It can be used to control the acronym package modules.

stmglossariesacronymsitems.sty contains all acronym definitions. These can be used by the \gls-like commands of glossaries, see section 6.1 of the glossaries documentation.

stmglossariesacronymsstyles.sty contains implementations for the style option in a call to \printglossary[type=\acronymtype,style=STYLENAME]. See subsection 6.1 for details.

3.2. Glossary

stmglossariesglossary.sty is the control package for the glossary. It can be used to control the glossary package modules.

stmglossariesglossaryitems.sty contains all acronym definitions. These can be used by the \gls-like commands of glossaries, see section 6.1 of the glossaries documentation.

stmglossariesglossarystyles.sty contains implementations for the style option in a call to \printglossary[type=main,style=STYLENAME]. See subsection 6.2 for details.

3.3. Symbols

stmglossariessymbols.sty is the control package for symbols. It can be used to control the symbol package modules.

stmglossariessymbolsitems.sty contains all symbol definitions. These can be used by the \glssymbol command of glossaries, see section 6.2 of the glossaries documentation.

stmglossariessymbolsstyles.sty contains implementations for the style option in a call to \printglossary[type=scalarlist,style=STYLENAME]. See subsection 6.3 for details.

stmglossariessymbolscommands.sty contains utility commands to facilitate the use of symbols and operators.

4. Usage - in the preamble

There are different options to load acronyms, symbols or the whole thing. Additionally, the package offers some predefined styles to set your symbols in a nice way.

4.1. Base package

stmglossariesbase loads the underlying base package. It must not be loaded explicitly by the user. All other packages check if the package was already loaded with

\usepackage{stmglossariesbase}

In case you or another package have not loaded *stmglossariesbase* with own options beforehand, the package will load the underlying base package with the options acronym, nomain and toc.

4.1.1 Change titles

There are different possibilities to change the displayed title for the individual \printglossary calls. Especially in case the acronyms and glossary packages are used in combination, the from glossaries documentation, please use

```
\renewcommand*{\acronymname}{...}
\renewcommand*{\glossaryname}{...}%
\renewcommand*{\symbolname}{...}%
instead of changing the title locally with
\printglossary[...,title={...}]
```

as the latter does not affect the name in references.

4.2. Load the whole package - acronyms, glossary and symbols

This way, the acronyms, glossary as well as the symbol items are loaded. Load the package by adding

\usepackage{stmglossaries}

to your preamble.

4.2.1 Options

Option acronyms This is a boolean option. Expected values are either true or false. It controls whether to load the acronym definitions.

\usepackage[acronyms=true]{stmglossaries}

acronyms=true is the default and loads the acronyms. It is used in case acronyms=false is not set explicitly.

Option symbols This is a boolean option. Expected values are either true or false. It controls whether to load the symbol definitions.

\usepackage[symbols=true] {stmglossaries}

symbols=true is the default and loads the symbols. It is used in case symbols=false is not set explicitly.

Option items This is a boolean option. Expected values are either true or false. It controls whether to load the item definitions.

\usepackage[items=true] {stmglossaries}

items=true is the default and loads the styles. It is used in case items=false is not set explicitly.

Option styles This is a boolean option. Expected values are either true or false. It controls whether to load the style definitions.

\usepackage[styles=true]{stmglossaries}

styles=true is the default and loads the styles. It is used in case styles=false is not set explicitly.

Option commands This is a boolean option. Expected values are either true or false. It controls whether to load the additional command definitions.

\usepackage[commands=true]{stmglossaries}

styles=true is the default and loads the styles. It is used in case styles=false is not set explicitly.

Option morewrites This is a boolean option. Expected values are either true or false. It controls whether to load the morewrites package.

\usepackage[morewrites=true] {stmglossaries}

morewrites=true is the default. It is used in case morewrites=false is not set explicitly.

Option *makeglossaries* This is a boolean option. Expected values are either true or false. It controls whether to execute the \makeglossaries command at an appropriate location.

\usepackage[makeglossaries=true] {stmglossaries}

makeglossaries=true is the default. It is used in case makeglossaries=false is not set explicitly.

Option autoaddglossaryentrytoacronym This is a boolean option. Expected values are either true or false. It controls whether to invoke a call to the corresponding glossary entry in case an acronym is used.

\usepackage[autoaddglossaryentrytoacronym=false]{stmglossaries}

autoaddglossaryentrytoacronym=false is the default. It is used in case autoaddglossaryentrytoacron is not set explicitly.

Option *linkacronymtoglossary* This is a boolean option. Expected values are either true or false. It controls whether to add a link to the glossary entry in the list of acronyms.

\usepackage[linkacronymtoglossary=false]{stmglossaries}

linkacronymtoglossary=false is the default. It is used in case linkacronymtoglossary=true is not set explicitly.

4.3. Load the acronyms package

This way, the acronyms are loaded. Load the package individually by adding

\usepackage{stmglossariesacronyms}

to your preamble.

In case you load the package individually, you have to add \makeglossaries at a convenient location in your preamble.

4.3.1. Options

Option *items* This is a boolean option. Expected values are either true or false. It controls whether to load the item definitions from stmglossariesacronymsitems.

\usepackage[items=true]{stmglossariesacronyms}

items=true is the default. It is used in case items=false is not set explicitly.

Option styles This is a boolean option. Expected values are either true or false. It controls whether to load the style definitions from stmglossariesacronymsstyles.

\usepackage[styles=true]{stmglossariesacronyms}

styles=true is the default. It is used in case styles=false is not set explicitly.

4.4. Load the glossary package

This way, the acronyms are loaded. Load the package individually by adding

\usepackage{stmglossariesglossary}

to your preamble.

In case you load the package individually, you have to add \makeglossaries at a convenient location in your preamble.

4.4.1. Options

Option items This is a boolean option. Expected values are either true or false. It controls whether to load the item definitions from stmglossariesglossaryitems.

\usepackage[items=true] {stmglossariesglossary}

items=true is the default. It is used in case items=false is not set explicitly.

Option styles This is a boolean option. Expected values are either true or false. It controls whether to load the style definitions from stmglossariesglossarystyles.

\usepackage[styles=true]{stmglossariesglossary}

styles=true is the default. It is used in case styles=false is not set explicitly.

4.5. Load the symbols package

This way, the symbols are loaded. Load the package individually by adding

\usepackage{stmglossariessymbols}

to your preamble. In case you have not loaded *glossaries* with your own options beforehand, the package will load the package with the options acronym, nomain and toc.

In case you load the package individually, you have to add \makeglossaries at a convenient location in your preamble.

4.5.1. Options

Option items This is a boolean option. Expected values are either true or false. It controls whether to load the item definitions from stmglossariessymbolsitems.

\usepackage[items=true] {stmglossariessymbols}

styles=true is the default. It is used in case styles=false is not set explicitly.

Option styles This is a boolean option. Expected values are either true or false. It controls whether to load the style definitions from stmglossariessymbolsstyles.

\usepackage[styles=true]{stmglossariessymbols}

styles=true is the default. It is used in case styles=false is not set explicitly.

Option commands This is a boolean option. Expected values are either true or false. It controls whether to load the command definitions from stmglossariessymbolscommands.

\usepackage[commands=true] {stmglossariessymbols}

styles=true is the default. It is used in case styles=false is not set explicitly.

5. Usage - in the document

5.1. Acronyms

Print the list of acronyms with the style stmacronymstyle and without number using nonumberlist with

\printglossary[type=\acronymtype,style=stmacronymstyle,nonumberlist]

For a description of acronym styles, see subsection 6.1.

A shortcut command using the default style is available:

\printstmacronyms

For the latter to work, the package stmglossariescommands must be loaded, which is the default for the stmglossaries package.

5.2. Glossary

Print the glossary with the style stmglossarystyle and without number using nonumberlist with

\printglossary[type=main,style=stmglossarystyle,nonumberlist]

For a description of glossary styles, see subsection 6.2.

A shortcut command using the default style is available:

\printstmglossary

For the latter to work, the package stmglossariescommands must be loaded, which is the default for the stmglossaries package.

5.3. Symbols

5.3.1. Lists

stmglossariessymbolitems defines a number of lists for different types of symbols:

scalarlist A list for scalar values

vectorlist A list for vectors

matrixlist A list for matrices

statelist A list for peridynamic states

indexlist A list for indices

exponentlist A list for exponents

operatorlist A list for mathematical operators

5.3.2. Combine lists

In case you want to combine the predefined lists and print a single combined list, e.g. for papers, use

```
\documentclass{...}
\usepackage{stmglossaries}
\newglossary[slg1]{symbollist}{syi1}{syg1}{Nomenclature}
\forallglsentries[scalarlist]{\lfoo}{\glsmoveentry{\lfoo}{symbollist}}
\forallglsentries[vectorlist]{\lfoo}{\glsmoveentry{\lfoo}{symbollist}}
\forallglsentries[matrixlist]{\lfoo}{\glsmoveentry{\lfoo}{symbollist}}
\forallglsentries[statelist]{\lfoo}{\glsmoveentry{\lfoo}{symbollist}}
\makeglossaries
\begin{document}
...
\printglossary[type=symbollist,style=YOURSTYLENAME,nonumberlist]
\end{document}
as described in section 16.1 of the glossaries documentation.
```

5.3.3. Commands

Styling There might be a time where you very locally want to define a symbol without adding it to the global list of symbol. Despite that, you want to make sure that the symbol, e.g. for a vector, a matrix or a state, uses the correct notation style.

Therefore, stmglossariessymbolscommands defines a couple of useful styling commands

\romanscalarsymbol A roman scalar symbol
\greekscalarsymbol A greek scalar symbol
\romanvectorsymbol A roman vector symbol
\greekvectorsymbol A greek vector symbol
\romanmatrixsymbol A roman matrix symbol
\scalarstatesymbol A greek matrix symbol
\romanvectorstatesymbol A roman vector state symbol
\romandoublestatesymbol A roman double state symbol

Utility stmglossariessymbols commands defines a couple of useful utility commands to facilitate access to symbols and operators. These automatically add the operator symbol to the respective list.

\csyslocal {a}		\hat{a}
\csysmaterial {a}		\bar{a}
\difference {a}		Δa
\mean {a}		\overline{a}
\norm {a}	2-norm	a
\transpose {a}		a^T
\inverse {a}		a^{-1}
\timederivativeshort {a}		\dot{a}
\timederivativeshorttwo {a}		\ddot{a}
\partialderivativeshort {a}{b}		$a_{,b}$

Printing There are several shortcut commands available for printing the different glossary lists using the respective default style:

```
\printstmscalarglossary
\printstmvectorglossary
\printstmmatrixglossary
\printstmstateglossary
\printstmindexglossary
\printstmexponentglossary
\printstmoperatorglossary
```

In case you want the whole thing at once, use

\printallstmsymbols

6. Styles

6.1. Acronym styles

6.1.1. stmacronymstyle

Description This is a style for acronyms. It has one item column which is left aligned. The columns are Abbreviation and Description. Column headings are not printed.

6.2. Glossary styles

6.2.1. stmglossarystyle

Description This glossary style has two columns. The columns are *Entry* and *Description*. Both columns are left aligned.

6.2.2. stmglossarysourcestyle

Description This glossary style has three columns. The columns are *Entry*, *Description* and Sources. The first two columns are left aligned, the last column is centered.

In case you use this style, at least the following compile sequence is necessary:

```
pdflatex
makeglossaries
pdflatex
biber
pdflatex
pdflatex
```

6.2.3. stmglossarylabelsourcestyle

Description This glossary style has four columns. The columns are *Label*, *Entry*, *Description* and *Sources*. The first and third column are left aligned, the second and last column are centered.

In case you use this style, at least the following compile sequence is necessary:

```
pdflatex
makeglossaries
pdflatex
biber
pdflatex
pdflatex
```

6.2.4. stmglossarylabelsourcestyle2

Description This glossary style has three columns. The columns are *Label*, *Entry* and *Sources*. The first column is left aligned, the last two column is centered. The description is printed on a separate line over all columns.

In case you use this style, at least the following compile sequence is necessary:

```
pdflatex
makeglossaries
pdflatex
biber
pdflatex
pdflatex
```

6.3. Symbol styles

6.3.1. stmsymbolstyle

Description This is the basic style for variables. It has one item column which is left aligned. The columns are *Symbol*, *Name* and *Description*. Column headings are printed.

Example

Scalars

Symbol	Name	Description
a	Acceleration	
m	Mass	
F	Force	

6.0.1. stmonecolpapersymbolstyle

Description This is a style for variables for papers with one centered item column. The columns are *Symbol* and *Name*. Column headings are not printed.

Example

Scalars

- a Acceleration
- m Mass
- F Force

6.0.1. stmtwocolpapersymbolstyle

Description This is a style for variables for papers with two centered item column. The columns are *Symbol* and *Name*. Column headings are not printed.

Example

Scalars

a Acceleration F Force

m Mass

6.0.1. stmindexstyle

Description This is a style for variable indices with one left align item column. The columns are *Symbol* and *Description*. Column headings are printed.

Example

 ε_0 (2)

Indices

Symbol Description

 $()_0$ Reference configuration

6.0.1. stmexponentstyle

Description This is a style for variable exponents with one left align item column. The columns are *Symbol* and *Description*. Column headings are printed.

Example

$$\varepsilon^e$$
 (3)

Exponents

Symbol Description

 $()^e$ Elastic

6.0.1. stmoperatorstyle

Description This is a style for variable operators with one left align item column. The columns are *Symbol* and *Description*. Column headings are printed.

Example

 ∇ (4)

Operators

Symbol Description

 ∇ () Fréchet derivative

References

- [1] Composite Aircraft Structure. Standard FAA AC 20-107B. FAA, Aug. 2009. URL: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC20-107B.pdf (visited on 09/22/2021).
- [2] Modelling & Simulation CS-25 Structural Certification Specifications. Standard EASA CM-S-014 Issue 01. EASA, July 2020. URL: https://www.easa.europa.eu/document-library/product-certification-consultations/proposed-certification-memorandum-modelling (visited on 09/17/2021).
- [3] Guide for Verification and Validation in Computational Solid Mechanics. Standard ASME V&V 10-2006. ASME, 2006. URL: https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics (visited on 09/17/2021).
- [4] Digital Twin: Definition & Value. AIAA & AIA, Dec. 2020. URL: https://www.aiaa.org/docs/default-source/uploadedfiles/issues-and-advocacy/policy-papers/digital-twin-institute-position-paper-(december-2020).pdf (visited on 08/01/2023).
- [5] M. Fowler. Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch. Addison-Wesley Signature Series (Fowler). Pearson Education, 2012. ISBN: 9780133065213. URL: https://books.google.de/books?id=vqTfNFDzzdIC.
- [6] Material Point Method. 2020. URL: https://wmcoombs.github.io/mpm/ (visited on 05/15/2020).
- [7] Ben H. Thacker et al. Concepts of Model Verification and Validation. LA-14167-MS. Los Alamos National Laboratory, 2020. URL: https://www.osti.gov/servlets/pur1/835920/ (visited on 07/20/2020).

Index

autoadd glossaryentrytoacronym, 7	Perl, 3
linkacronymtoglossary, 7	
makeglossaries, 3, 7–9	title, 5

A. All acronyms

Acronyms

Label	Acronym	Description
acr:4ENF	4ENF	4-point end-notched flexure
acr:4PBP	4PBP	4-point bending plate
acr:6ECT	$6\mathrm{ECT}$	6-point edge crack torsion
acr:6PBP	6PBP	6-point bending plate
acr:8PBP	8PBP	8-point bending plate
acr:AC	AC	advisory circular
acr:ACARE	ACARE	advisory council for aviation research and innova- tion in europe
acr:ACO	ACO	ant colony optimisation
acr:ADCB	ADCB	asymmetric double cantilever beam
acr:ADL	ADL	allowable damage limit
acr:ADS	ADS	advancing UK aerospace, defence, security & space industries
acr:AECMA	AECMA	European association of aerospace industries
acr:AFP	AFP	automated fibre placement
acr:AI	AI	artificial intelligence
acr:AIA	AIA	aerospace industries association
acr:AIAD	AIAD	federazione aziende italiane per l'aerospazio, la difesa e la sicurezza
acr:AITM	AITM	Airbus industries test method
acr:ALE	ALE	arbitrary Lagrangian-Eularian
acr:ALM	ALM	additive layer manufacturing
acr:AMC	AMC	acceptable means of compliance
acr:AMM	AMM	aircraft maintenance manual
acr:API	API	application programming interface
acr:APU	APU	auxiliary power unit
acr:AR	AR	augmented reality
acr:ASD	ASD	aerospace and defence industries association of europe
acr:ASTM	ASTM	American society for testing and materials
acr:ATC	ATC	air traffic control
acr:ATL	ATL	automated tape laying
acr:BB	ВВ	bond-based

acr:BB-PD	BB-PD	bond-based peridynamics
acr:BC	$_{ m BC}$	boundary condition
acr:BEM	BEM	boundary element method
acr:BFGS	BFGS	Broydon-Fletcher-Goldfarb-Shanno
acr:BIPM	BIPM	bureau international des poids et mesures
acr:BLI	BLI	boundary layer ingestion
acr:BMI	$_{ m BMI}$	bismaleimide
acr:BOM	BOM	bill of material
acr:BS	BS	british standard
acr:BSD	BSD	Berkeley software distribution
acr:BVID	BVID	barely visible impact damage
acr:BVP	BVP	boundary value problem
acr:BWA	BWA	box-wing aircraft
acr:BWB	BWB	blended wing body
acr:CA	CA	consortium agreement
acr:CAD	CAD	computer-aided design
acr:CAE	CAE	computer-aided engineering
acr:CAGR	CAGR	compound annual growth rate
acr:CAI	CAI	compression after impact
acr:CAM	CAM	computer-aided manufacturing
acr:CAPRI	CAPRI	controlled atmospheric pressure resin infusion
acr:CAS	CAS	calibrated air speed
acr:CAx	CAx	computer-aided system
acr:CBA	CBA	cost benefit analysis
acr:CbA	CbA	certification by analysis
acr:CCAI	CCAI	cyclic compression after impact
acr:CCM	CCM	classical continuum mechanic
acr:CDM	CDM	continuum damage mechanics
acr:CDR	CDR	critical design review
acr:CDS	CDS	central difference scheme
acr:CE	$^{ m CE}$	constraint equation
acr:CEL	CEL	coupled Eulerian-Lagrangian
acr:CELS	CELS	calibrated end-loaded split
acr:CEN	CEN	comité européenne normalisation
acr:CER	CER	composite engineering requirements
acr:CFEP	CF/EP	$\operatorname{carbon\ fibre/epoxy}$
acr:CFD	CFD	computational fluid dynamics
acr:CFL	CFL	Courant-Friedrichs-Lewy
acr:CFRP	CFRP	carbon fibre reinforced plastic
acr:CG	CG	centre of gravity
acr:CGPM	CGPM	general conference on weights and measures
acr:CLA	CLA	contributor license agreement
acr:CLC	CLC	combined loading compression

acr:CLS	CLS	cracked lap shear
acr:CLT	CLT	classical laminate theory
acr:CM	$_{ m CM}$	continuum mechanic
acr:CME	$_{\mathrm{CME}}$	coefficient of moisture expansion
acr:CMM	CMM	compact mixed mode
acr:CMR	CMR	certification maintenance requirements
acr:CoI	CoI	community of interest
acr:CPA	CPA	critical point analysis
acr:CPACS	CPACS	common parametric aircraft configuration schema
acr:CPPS	CPPS	cyber-physical production system
acr:CPS	CPS	cyber-physical system
acr:CPU	CPU	central processing unit
acr:CRAG	CRAG	composite research advisory group
acr:CRI	CRI	certification review item
acr:CRS	CRS	crack rail shear
acr:CS	CS	certification specification
acr:CSM	CSM	computational structural mechanics
acr:CT2	CT	compact tension
acr:CT	CT	computed tomography
acr:CTE	CTE	coefficient of thermal expansion
acr:CTT	CTT	compact tension test
acr:CVI	CVI	chemical vapour infiltration
acr:CWB	CWB	center wing box
acr:CZM	CZM	cohesive zone model
D. CD	D.CD	
acr:DCB	DCB	double cantilever beam
acr:DDES	DDES	delayed detached eddy simulation
acr:DDMS	DDMS	digital design, manufacturing and services
acr:DEA	DEA	dielectrical analysis
acr:DELiS	DELiS	design environment for lightweight structures
acr:DENF	DENF	double end-notched flexure
acr:DES	DES	detached eddy simulation
acr:DFG:de	DFG	Deutsche Forschungsgemeinschaft e.V.
acr:DFG:en	DFG	German research foundation
acr:DFG	DFG	German research foundation
acr:DFP	DFP	dry fibre placement
acr:DGO	DGO	direct gradient-based optimization
acr:DIC	DIC	digital image correlation
acr:DIN	DIN	Deutsches Institut für Normung
acr:DIS	DIS	draft international standard
acr:DKT	DKT	discrete Kirchhoff theory
acr:DLJ	DLJ	double lap joint
acr:DLR:de	DLR	Deutsches Zentrum für Luft- und Raumfahrt e.V.
acr:DLR:en	DLR	German aerospace center

acr:DLR	DLR	German aerospace center
acr:DMA	DMA	dynamic mechanical analysis
acr:DMMB	DMMB	dissimilar mixed-mode bending
acr:DMS	DMS	data management system
acr:DMTA	DMTA	dynamic mechanical thermal analysis
acr:DMU	DMU	digital mock-up
acr:DNS	DNS	direct numerical simulation
acr:DNSCB	DNSCB	double-notched split cantilever beam
acr:DOA	DOA	design organization approval
acr:DOC	DOC	direct operating costs
acr:DOE	DOE	design of experiments
acr:DOF	DOF	degree of freedom
acr:DOI	DOI	digital object identifier
acr:DSC	DSC	differential scanning calorimetry
acr:DSG	$\overline{\mathrm{DSG}}$	design service goal
acr:DSM	$_{ m DSM}$	design structure matrix
acr:DT	DT	damage tolerance
acr:DTO	DTO	data transfer object
acr:E2E	E2E	end to end
acr:EA	$\mathrm{E}\mathrm{A}$	evolutionary algorithm
$\operatorname{acr}:\operatorname{EAQG}$	EAQG	European aerospace quality group
acr:EAS	EAS	equivalent air speed
acr:EASA	EASA	European aviation safety agency
acr:ECT	ECT	edge crack tension
acr:EDA	EDA	European defence agency
acr:EDIG	EDIG	European defence industries group
acr :EFG	EFG	element-free Galerkin
acr :EFGM	EFGM	element-free Galerkin method
acr:EIS	EIS	entry into service
acr:EKDF	EKDF	environment knock-down factor
acr:ELS	ELS	end-loaded split
acr:EN	EN	european norm
acr:ENF	ENF	end-notched flexure
acr:EoD	EoD	effects of defects
acr:EOM	EOM	equation of motion
acr:EOS	EOS	equation of state
acr:EP	EP	epoxy
acr:ERP	ERP	enterprise resource planning
acr:ERR	ERR	energy release rate
acr:ESG	ESG	extended service goal
acr:ESIS	ESIS	European structural integrity society
acr:EUROCAE	EUROCAE	European organization for civil aviation equipment
acr:EWVT	EWVT	extended weighted Voronoi tesselation

acr:FaDT F&DT fatigue and damage tolerance	
acr:FAA FAA Federal Aviation Administratio	n
acr:FAIR FAIR findable, accessible, interoperab	ole, usable
acr:FAL FAL final assembly line	
acr:FAR FAR federal aviation regulations	
acr:FAW FAW fibre areal weight	
acr:FBG FBG fibre bragg grating	
acr:FCM FCM finite cell method	
acr:FDM FDM finite difference method	
acr:FDT FDT functional dependency table	
acr:FE FE finite element	
acr:FEA FEA finite element analysis	
acr:FEM FEM finite element method	
acr:FFA FFA fast Fourier analysis	
acr:FFT FFT fast Fourier transform	
acr:FGM FGM functionally graded materials	
acr:FHC FHC filled hole compression	
acr:FML FML fibre metal laminate	
acr:FMU FMU functional mock-up unit	
acr:FOM FOM figure of merit	
acr:FOSS FOSS free and open-source software	
acr:FOT FOT fibre-optical temperature	
acr:FP:gb FP fibre placement	
acr:FP:us FP fiber placement	
acr:FP FP fibre placement	
acr:FPD FPD formalised process description	
acr:FPF FPF first ply failure	
acr:FRF FRF frequency response function	
acr:FRP FRP fiber reinforced plastic	
acr:FSDT FSDT first-order shear deformation the	neory
acr:FSI FSI fluid-structure interaction	
acr:FSW FSW friction stir welding	
acr:FTE FTE full time equivalent	
acr:FTF FTF flap track faring	
acr:FTI FTI flight test installation	
acr:FTIR FTIR Fourier transform infrared spec	toscropy
acr:FTMS FTMS flight test management system	
acr:FV FV finite volume	
acr:FVC FVC fibre volume content	
acr:FVM FVM finite volume method	
acr:GA GA genetic algorithm	
acr:GCI GCI grid convergence index	

acr:GFEM	GFEM	global finite element model
acr:GIFAS	GIFAS	groupement des industries françaises aéronautiques
		et spatiales
acr:GLARE	GLARE	glass laminate aluminum reinforced epoxy
acr:GPL	GPL	GNU General Public License
acr:GSE	GSE	ground support equipment
acr:GUI	GUI	graphical user interface
acr:HW	$\mathrm{H/W}$	$\mathrm{hot/wet}$
acr:HDF5	HDF5	hierarchical data format
acr:HFEC	$_{ m HFEC}$	high frequency eddy current
acr:HGF:de	HGF	Helmholtz-Gemeinschaft Deutscher Forschungszentren e. V.
acr:HGF:en	$_{ m HGF}$	Helmholtz association of German research centres
acr:HGF	HGF	Helmholtz association of German research centres
acr:HITL	HITL	hardware in the loop
acr:HM	$_{ m HM}$	high modulus
acr:HMS	$_{ m HMS}$	high modulus/high strength
acr:HPC	HPC	high performance computing
acr:HSB	HSB	Handbuch Struktur Berechnung
acr:HST	HST	high failure strain
acr:HT	${ m HT}$	high tenacity
acr:HTP	HTP	horizontal tail plane
acr:IO	I/O	input and output
acr:IAB	IAB	industrial advisory board
$\operatorname{acr}: IAQG$	IAQG	international aerospace quality group
acr:IAS	IAS	indicated air speed
acr:ICAO	ICAO	international civil aviation organization
acr:IDE	IDE	integrated development environment
acr:IEEE	IEEE	institute of electrical and electronics engineers
acr:IFF	IFF	inter fibre failure
acr:IFSS	IFSS	interfacial shear strength
acr:IGA	IGA	isogeometric analysis
acr:IITRI	IITRI	Illinois institute of technology research institute
acr:ILSS	ILSS	interlaminar shear strength
acr:IM	IM	intermediate modulus
acr:IPO	IPO	input-process-output
acr:IPS	IPS	individual product specification
acr:IR	IR	infrared
acr:ISO	ISO	international organization for standardization
acr:ISPH	ISPH	incompressible smoothed particle hydrodynamics
acr:IT	IT	information technology

acr:JAA acr:JAR acr:jCoMoT acr:JIS acr:jMeS acr:JSON acr:JVM	JAA JAR jCoMoT JIS jMeS JSON JVM	joint aviation authorities joint aviation requirements Java computational mechanics format translator Japan industrial standard Java mechanics suite JavaScript object notation Java virtual machine
acr:KDF	KDF	knock-down factor
acr:KPI	KPI	key performance indicator
acr:LCA	LCA	life cycle assessment
acr:LCM	$_{ m LCM}$	liquid composite moulding
acr:LDS	LDS	life data sheet
acr:LEF	LEF	load eleviation factor
acr:LEFM	$_{ m LEFM}$	linear-elastic fracture mechanics
acr:LES	LES	large eddy simulation
acr:LL	${ m LL}$	limit load
acr:LPF	$_{ m LPF}$	last ply failure
acr:LPS	LPS	linear peridynamic solid
acr:LRI	LRI	liquid resin infusion
acr:LRTM	LRTM	light resin transfer molding
acr:LSP	LSP	lightning strike protection
acr:LVI	LVI	low-velocity impact
acr:MAC	MAC	mean aerodynamic chord
acr:MAE	MAE	mean absolute error
acr:MBS	MBS	multibody simulation
acr:MBSE	MBSE	model-based systems engineering
acr:MDA	MDA	multi-disciplinary analysis
acr:MDAO	MDAO	multi-disciplinary analysis and optimization
acr:MDO	MDO	multi-disciplinary optimization
acr:MES	MES	manufacturing execution system
acr:MiniTED	Mini-TED	mini trailing edge device
acr:MITC	MITC	mixed interpolation of tensorial components
acr:ML	ML	machine learning
acr:MLG	MLG	main landing gear
acr:MLM	MLM	modified Logvinovich model
acr:MMB	MMB	mixed-mode bending
acr:MMFD	MMFD	modified method of feasible direction
acr:MMS	MMS	method of manufactured solutions
acr:MoC	MoC	means of compliance
acr:MOR	MOR	model order reduction
acr:MoS	MoS	margin of safety

acr:MPC acr:MPD acr:MPI acr:MPM acr:MRL acr:MRO acr:MTOW acr:MVI acr:MWE acr:MZFW	MPC MPD MPI MPM MRL MRO MTOW MVI MWE MZFW	multi-point constraint maintenance planning document message passing interface material point method manufacturing readiness level maintenance, repair and overhaul maximum take-off weight modified vacuum infusion process manufacturing weight empty maximum zero fuel weight
acr:NASA acr:NAV acr:NCF acr:NDA acr:NDI acr:NDT acr:NFC acr:NFC acr:NGO acr:NLG acr:NRC acr:NSB acr:NSB-PD acr:NSGAII acr:NTSB acr:NVH	NASA NAV NCF NDA NDI NDT NF NFC NGO NLG NRC NSB NSB-PD NSGAII NTSB NVH	national aeronautics and space administration numeical algorithm verification non-crimp fabric non-disclosure agreement non-destructive inspection non-destructive testing normes françaises near filed communication non-gradient based optimization nose landing gear non-recurring cost non-ordinary state-based peridynamics non-dominated sorting genetic algorithm II national transportation safety board noise, vibration harshness
acr:OA acr:ODE acr:OEM acr:OHC acr:OHT acr:OLB acr:OLP acr:ONF acr:OOA acr:OSB acr:OSB	OA ODE OEM OHC OHT OLB OLP ONF OOA OSB	open access ordinary differential equation original equipment manufacturer open hole compression open hole tension over-leg bending offline programming over-notched flexure out-of-autoclave ordinary state-based ordinary state-based peridynamics P&P
acr:PBC acr:PCMM acr:PD	PBC PCMM PD	periodic boundary condition predictive capability maturity model peridynamic

acr:PDE	PDE	partial differential equation
acr:PDF	PDF	probability density function
acr:PDM	PDM	product data management
acr:PDR	PDR	preliminary design review
acr:PEEK	PEEK	polyetheretherketon
acr:PEI	PEI	polyetherimid
acr:PENF	PENF	prestressed end-notched flexure
acr:PF	PF	progressive failure
acr:PFST	PFST	picture frame shear test
acr:PI	PΙ	polyimid
acr:PICM	PICM	particle-in-cell method
acr:PIRT	PIRT	phenomena identification and ranking table
acr:PIV	PIV	particle image velocimetry
acr:PLB	PLB	pin loaded bearing
acr:PLM	PLM	product lifecycle management
acr:PLT	PLT	pin loaded tension
acr:PMC	PMC	polymer matrix composite
acr:PO	РО	Pareto optimal
acr:POJO	POJO	plain old Java object
acr:prEN	prEN	preliminary european norm
acr:PSCB	PSCB	prestressed split cantilever beam
acr:PSE	PSE	principal structural element
acr:PSL	PSL	porous scrim layering
acr:PSO	PSO	particle swarm optimisation
acr:QA	QA	quality assurance
acr:QI	QI	quasi-isotropic
acr:QM	$\overline{\mathrm{QM}}$	quality management
acr:QMS	$\overline{\mathrm{QMS}}$	quality management system
acr:QOI	QOI	quantity of interest
acr:RaD	R&D	research and development
acr:RANS	RANS	Reynolds averaged Navior-Stokes
acr:RAR	RAR	requirement allocation review
acr:RBF	RBF	radial basis function
acr:RC	RC	recurring cost
acr:RCE	RCE	remote component environment
acr:RF	RF	reserve factor
acr:RFI	RFI	resin film infusion
acr:RFID	RFID	radio frequency identification
acr:RFLP	RFLP	requirement, functional, logical and physical
acr:RIFT	RIFT	resin infusion under flexible tooling
acr:RMS	RMS	risk mitigation structure
acr:RMSE	RMSE	root mean squared error

acr:ROM	ROM	reduced order modeling
acr:RPB	RPB	rear pressure bulkhead
acr:RPK	RPK	revenue passenger kilometers
acr:RRSE	RRSE	root relative squared error
acr:RSE	RSE	relative squared error
acr:RT	RT	room temperature
acr:RTCA	RTCA	radio technical commission for aeronautics
acr:RTI	RTI	resin transfer injection
acr:RTM	RTM	resin transfer molding
acr:RVE	RVE	representative volume element
acr:SACMA	SACMA	suppliers of advanced composite materials association
acr:SAE	SAE	society of automotive engineers
acr:SAI	SAI	shear after impact
acr:SAM	SAM	space allocation model
acr:SB-PD	SB-PD	state-based peridynamics
acr:SBW	SBW	strut-braced wing
acr:SC	SC	steering committee
acr:SCB2	SCB	single cantilever beam
acr:SCB	SCB	split cantilever beam
acr:SCM2	SCM	source code management
acr:SCM	SCM	supply chain management
acr:SDM	SDM	simulation data management
acr:SEM	SEM	scanning electron microscopy
acr:SENB	SENB	single-edge-notched bend
acr:SERR	SERR	strain energy release rate
acr:SHM	SHM	système international
acr:SI	SI	steering committee
acr:SLB	SLB	single leg bending
acr:SLFPB	SLFPB	single-leg four point bending
acr:SLJ	SLJ	single lap joint
acr:SLP	SLP	sequential linear programming
acr:SMA	SMA	shape memory alloy
acr:SMART	SMART	specific, measurable, achievable, reasonable, time-
CMTD	CMTD	bound
acr:SMT	SMT	shear-moment-torque
acr:SoC	SoC	separation of concerns
acr:SOFF	SOFF	säkerhets- och försvarsföretagen
acr:SPDM	SPDM	simulation process & data management
acr:SPDR	SPDR	system preliminary design review
acr:SPH	SPH	smoothed particle hydrodynamics
acr:SQA	SQA	software quality assurance
acr:SQE	SQE	software quality engineering

acr:SQP	SQP	sequential quadratic programming
acr:SQRTM	$\widetilde{\operatorname{SQRTM}}$	same qualified resin transfer molding
acr:SRM:SACMA	$\tilde{\mathrm{SRM}}$	SACMA recommended methods
acr:SRM	SRM	structural repair manual
acr:SRR	SRR	system requirement review
acr:SSD	SSD	steady state dynamics
acr:STC	$\overline{\mathrm{STC}}$	supplemental type certificate
acr:STFT	STFT	short time Fourier transform
acr:STOVL	STOVL	short take-off vertical landing
acr:SVD	SVD	singular value decomposition
acr:SVM	SVM	support vector machines
aci.b v 1vi	5 7 171	support vector machines
acr:TAI	TAI	tension after impact
acr:TAS	TAS	true air speed
acr:TC	TC	${ m thermocouple}$
acr:TDCB	TDCB	tapered double cantilever beam
acr:TED	TED	trailing edge device
acr:TEDAE	TEDAE	asociación Española de tecnologías de defensa,
		aeronáutica y espacio
acr:TFP	TFP	tailored fibre placement
$\operatorname{acr}:\operatorname{TGA}$	TGA	thermo-gravimetric analysis
acr:TLAR	TLAR	top-level aircraft requirement
acr:TMA	TMA	thermo-mechanical analysis
acr:TRL	TRL	technology readiness level
acr:TRPIV	TRPIV	time-resolved particle image velocimetry
acr:TSDT	TSDT	third-order shear deformation theory
acr:UAV	UAV	unmanned aerial vehicle
acr:UCUM	UCUM	unified code for units of measure
acr:UD	UD	unidirectional
acr:UHM	$_{ m UHM}$	ultra high modulus
acr:UID	UID	unique identifier
acr:UL	UL	ultimate load
acr:UML	UML	unified modeling language
acr:UOM	UOM	units of measurement
acr:URANS	$\overline{\text{URANS}}$	unsteady Reynolds averaged Navior-Stokes
acr:US	US	ultrasonic
acr:UUID	UUID	universally unique identifier
acr:UV	UV	ultraviolet
o on Vo V	1 70- 1 7	wanifestion from lidetion
acr:VaV	V&V	verification & validation
acr:VAP	VAP	vacuum-assisted process
acr:VAPP	VAPP	vacuum-assisted prepreg process
acr:VARI	VARI	vacuum-assisted resin infusion

acr:VARTM	VARTM	vacuum-assisted resin transfer molding
acr:VAVCP	VAVCP	vibration-assisted vacuum composite processing
acr:VCCT	VCCT	virtual crack closure technique
acr:VCS	VCS	version control system
acr:VCT	VCT	vibration correlation technique
acr:VID	VID	visible impact damage
acr:VIP	VIP	vacuum infusion process
acr:VPE	VPE	virtual product engineering
acr:VPH	VPH	Virtual Product House
acr:VR	VR	virtual reality
acr:VT	VT	virtual testing
$\operatorname{acr:VTOL}$	VTOL	vertical take-off and landing
acr:VTP	VTP	vertical tail plane
acr:W3C	W3C	world wide web consortium
acr:WCSPH	WCSPH	weakly compressible smoothed particle hydrody-
		namics
acr:WORA	WORA	write once, run anywhere
acr:WP	WP	work package
acr:WVT	WVT	weighted Voronoi tesselation
acr:XDMF	XDMF	eXtensible data model and format
acr:XDSM	XDSM	extended design structure matrix
acr:XFEM	XFEM	extended finite element method
acr:XML	XML	extensible markup language
acr:XSD	XSD	XML schema definition
acr:XSPH	XSPH	eXtended smoothed particle hydrodynamics
acr:YAML	YAML	YAML ain't markup language

B. All glossary entries

Glossary

Label Entry Sources glo:allowable allowable [1]Material values that are determined from test data at the laminate or lamina level on a probability basis (e.g., A or B basis values, with 99% probability and 95% confidence, or 90% probability and 95% confidence, respectively). The amount of data required to derive these values is governed by the statistical significance (or basis) needed. API glo:API An Application Programming Interface is a particular set of rules and specifications that a software program can follow to access and make use of the services and resources provided by another particular software program that implements that API Calibration glo:calibration The process of adjusting physical modelling parameters in the computational model to improve agreement with experimental data. glo:adequacy calibration [3] The condition of satisfying all requirements for model acceptance, including those for model accuracy and for programmatic constraints such as implementation, cost, maintenance, and ease of use. glo:calculation:verification calibration [3] The process of determining the solution accuracy of a particular calculation glo:calibration:experiment calibration experiment An experiment performed to improve estimates of some parameters in the mathematical model. glo:code code [3] The computer implementation of algorithms developed to facilitate the formulation and approximate solution of a class of problems. glo:component component [1] A major section of the airframe structure (e.g., wing, body, fin, horizontal stabilizer) which can be tested as a complete unit to qualify the structure.

 ${\it glo:} {\it model:} {\it conceptual} \qquad \qquad {\it conc}$

conceptual model

[3]

The process of determining that the numerical algorithms are correctly implemented in the computer code and of identifying errors in the software.

glo:coupon coupon [1]

A small test specimen (e.g., usually a flat laminate) for evaluation of basic lamina or laminate properties or properties of generic structural features (e.g., bonded or mechanically fastened joints).

glo:damage damage [1]

A structural anomaly caused by manufacturing (processing, fabrication, assembly or handling) or service usage.

glo:delamination delamination [1]

The separation of the layers of material in a laminate. This may be local or may cover a large area of the laminate. It may occur at any time in the cure or subsequent life of the laminate and may arise from a wide variety of causes.

glo:design:values design values [1]

Material, structural elements, and structural detail properties that have been determined from test data and chosen to assure a high degree of confidence in the integrity of the completed structure. These values are most often based on allowables adjusted to account for actual structural conditions, and used in analysis to compute margins-of-safety.

glo:detail detail [1]

A non-generic structural element of a more complex structural member (e.g., specific design configured joints, splices, stringers, stringer runouts, or major access holes).

glo:disbond detail [1]

An area within a bonded interface between two adherends in which an adhesion failure or separation has occurred. It may occur at any time during the life of the substructure and may arise from a wide variety of causes. Also, colloquially, an area of separation between two laminae in the finished laminate (in this case, the term "delamination" is normally preferred).

glo:digitaltwin:aiaa digital twin [4]

A set of virtual information constructs that mimics the structure, context and behavior of an individual / unique physical asset, or a group of physical assets, is dynamically updated with data from its physical twin throughout its life cycle and informs decisions that realize value.

glo:DTO DTO [5]

An object that carries data between processes in order to reduce the number of method calls.

glo:element element [1]

A generic element of a more complex structural member (e.g., skin, stringers, shear panels, sandwich panels, joints, or splices).

glo:environment environment [1]

External, non-accidental conditions (excluding mechanical loading), separately or in combination, that can be expected in service and which may affect the structure (e.g., temperature, moisture, UV radiation, and fuel).

glo:MPM MPM [6]

The Material Point Method is an alternative to pure Lagrangian approaches and is well suited to problems involving very large deformations. In the method, equilibrium computations take place on a background grid but the calculations are based on information (mass, volume, stress, state variables, etc.) held at material points that are convected through the background grid as the material deforms. This allows computations to take place on an undistorted background mesh (structured or unstructured) whilst modelling problems involving very large deformations. One way to summarise the material point method is: a finite element method where the integration points (material points) are allowed to move independently of the mesh.

glo:simulation Simulation [7]

The ensemble of models - deterministic, load, boundary, material, performance, and uncertainty - that are exercised to produce a simulation outcome.

glo:bonding:structural structural bonding [1]

A structural joint created by the process of adhesive bonding, comprising of one or more previously-cured composite or metal parts (referred to as adherends)

glo:bond:weak Weak bond [1]

A bond line with mechanical properties lower than expected, but without any possibility to detect that by normal NDI procedures. Such situation is mainly due to a poor chemical bonding.

C. All symbols

Scalars

Label	Symbol
sym:scalar:csys:material:component:1	1
sym:scalar:csys:material:component:2	2
sym:scalar:csys:material:component:3	3
sym:scalar:acceleration	a
sym:scalar:load:bodyforce	b
sym:scalar:pd:bond:constant	c
sym:scalar:geo:diameter	d
sym:scalar:pd:bond:elongation	e
sym:scalar:thickness	h
sym:scalar:geo:r1:length	l
sym:scalar:mass	m
sym:scalar:pd:volume:weighted	m_V
sym:scalar:pd:stretch	s
sym:scalar:pd:stretch:critical	s_C
sym:scalar:time	t
sym:scalar:timestep	Δt
sym: scalar: displacement	u
sym: scalar: displacement: component: global: x	u_x
sym: scalar: displacement: component: global: y	u_y
sym: scalar: displacement: component: global: z	u_z
sym:scalar:velocity	v
sym:scalar:pd:bond:energy:potential	w
sym: scalar: csys: structure: global: component: 1	x
sym: scalar: csys: structure: local: component: 1	\hat{x}
sym: scalar: csys: structure: global: component: 2	y
sym: scalar: csys: structure: local: component: 2	\hat{y}
sym: scalar: csys: structure: global: component: 3	z
sym: scalar: csys: structure: local: component: 3	\hat{z}
sym:scalar:scalarromannull	
sym:scalar:geo:r2:surface	A
sym: scalar: mech: tensor: component: stiffness	C
sym:scalar:mat:modulus:young	E
sym:scalar:load:force	F
sym:scalar:mat:modulus:shear	G
sym:scalar:mat:energyreleaserate	G_0

sym:scalar:mat:energyreleaserate:critical	G_{0C}
sym:scalar:mat:energyreleaserate:mode:I	G_I
sym:scalar:mat:energyreleaserate:critical:mode:I	G_{IC}
sym:scalar:mat:energyreleaserate:mode:II	G_{II}
sym:scalar:mat:energyreleaserate:critical:mode:II	G_{IIC}
sym:scalar:pd:family	\mathcal{H}
sym:scalar:mat:modulus:bulk	K
sym:scalar:load:moment	M
sym:scalar:fe:shapefunction	N
sym:scalar:mat:strength	R
sym:scalar:system:euclidean	\mathbb{R}
sym:scalar:temperature	T
sym:scalar:geo:r3:volume	V
sym:scalar:mech:energy:strain:density	$\overset{\prime}{W}$
sym-scarar-meen-energy-stram-density	**
sym:scalar:pd:function:damage:bond	χ
sym:scalar:pd:horizon	δ
sym:scalar:geo:separation	δ_c
sym:scalar:mech:strain:normal:engineering	arepsilon
sym:scalar:mech:strain:tensor:component	ϵ
sym:scalar:csys:natural:component:2	η
sym:scalar:mech:strain:shear:engineering	$\overset{\cdot}{\gamma}$
sym:scalar:mat:poissonratio	$\stackrel{'}{ u}$
sym:scalar:domain:partial	ω
sym:scalar:pd:function:influence	ω
sym:scalar:pd:function:influence:radial	$\omega_{\mathcal{E}}$
sym:scalar:pd:function:damage:family	arphi
sym:scalar:rotation	$\overset{\prime}{\psi}$
sym:scalar:mat:density	$\stackrel{'}{ ho}$
sym:scalar:mech:stress:normal:engineering	σ
sym:scalar:mech:stress:shear:engineering	au
sym:scalar:pd:dilatation	heta
sym:scalar:geo:angle:debonding	$ heta_c$
sym:scalar:csys:natural:component:1	
sym:scalar:pd:bond:undeformed:component	ξ ξ
sym:scalar:csys:natural:component:3	Ċ
sym:scalar:scalargreeknull	5
sym:scalar:discretization:distance:node	Δx
sym:scalar:domain:boundary	Γ
sym:scalar:domain	Ω
	u <i>u</i>

Vectors

Label	Symbol
sym:vector:pd:bond:deformed	η
sym:vector:pd:bond:undeformed	ξ
sym:vector:load:bodyforce	b
sym:vector:unit	\mathbf{e}
sym:vector:pd:force	${f f}$
sym:vector:mech:strain	arepsilon
sym:vector:mech:stress:cauchy	σ
sym:vector:pd:bondforcedensity	\mathbf{t}
sym:vector:mech:deformation	\mathbf{u}
sym:vector:mech:acceleration	ü
sym:vector:mech:velocity	ů
sym:vector:position:undeformed	x
sym:vector:position:deformed	${f y}$

Matrices & Tensors

Label	Symbol
sym:matrix:laminate:membrane	${f A}$
sym:matrix:laminate:coupling	В
sym:matrix:mat:stiffness	\mathbf{C}
sym:matrix:mech:tensor:stiffness	\mathbf{K}
sym:matrix:laminate:bending	D
sym:matrix:mech:strain:green	${f E}$
sym:matrix:mech:gradient:deformation	${f F}$
sym:matrix:laminate:shear	\mathbf{H}
sym:matrix:mech:gradient:displacement	\mathbf{H}
sym:matrix:identity	I
sym:matrix:interpolationoperator	\mathbf{I}_{Γ}
sym:matrix:jacobian	J
sym:matrix:mech:tensor:shape	\mathbf{K}
sym:matrix:stiffness	\mathbf{K}
sym:matrix:mass	${f M}$
sym:matrix:mech:stress:piolakirchhoff:first	P
sym:matrix:laminate:ply:stiffness	${f Q}$
sym:matrix:mat:compliance	\mathbf{S}
sym:matrix:mech:stress:piolakirchhoff:second	${f S}$

States

Label	Symbol
sym:state:scalar:influence	$\underline{\omega}$
sym:state:scalar:extension	\underline{e}
sym:state:scalar:force	\underline{t}
sym: state: scalar: position: undeformed	\underline{x}
sym: state: scalar: position: deformed	\underline{y}
sym:state:scalar:stateromannull	
sym:state:vector:force	$\underline{\mathbf{T}}$
sym:state:vector:direction:deformed	$\underline{\mathbf{M}}$
sym:state:vector:position	$\underline{\mathbf{X}}$
sym:state:vector:deformation	$\underline{\mathbf{Y}}$
sym:state:vector:stateromannull	
sym:state:double:modulus	$\underline{\mathbb{K}}$

Indices

Label	Symbol
sym:index:zero	0
sym:index:csys:material:component:1	1
sym:index:csys:material:component:2	2
sym:index:csys:material:component:3	3
sym:index:csys:material:components	1, 2, 3
sym:index:csys:natural:component:1	ξ
sym:index:csys:natural:component:2	η
sym:index:csys:natural:component:3	ζ
sym:index:csys:natural:components	ξ,η,ζ
sym:index:hardening	H
sym:index:csys:structure:component:1	x
sym: index: csys: structure: component: 2	y
sym: index: csys: structure: component: 3	z
sym: index: csys: structure: components	x,y,z
sym:index:mat:damage:mode:I	I
sym:index:mat:damage:mode:II	II

sym:index:mat:damage:mode:III	III
sym:index:load:compression	\mathbf{C}
sym:index:load:compression:long	cmp
sym:index:critical	C
sym:index:init	init
sym:index:load:shear	\mathbf{S}
sym:index:load:shear:long	shr
sym:index:load:tension	${ m T}$
sym:index:load:tension:long	an
sym:index:yield	y

Exponents

Label	\mathbf{Symbol}
sym:exponent:midplane	0
sym:exponent:deviatoric	d
sym:exponent:elastic	e
sym:exponent:linear	l
sym: exponent: nonlinear	nl
$\operatorname{sym:exponent:plastic}$	p
sym:exponent:volumetric	v

Operators

Label	Symbol
	<i>(</i> ^\
sym:operator:csys:local	()
sym:operator:csys:material	$(\bar{})$
sym:operator:Delta	$\Delta(\)$
sym: operator: differential: Newton	()
sym: operator: differential: Newton: 2	(")
sym: operator: differential: partial: short	$(\)_{,x}$
sym: operator: differential: Euler	D()
sym:operator:differential:Lagrange	()'

sym: operator: differential: Leibnitz	$d(\)$
sym:operator:differential:partial	$\partial(\)$
sym:operator:divergence	$\operatorname{div}(\)$
sym:operator:product:dot	•
sym: operator: kronecker delta	δ_{ij}
sym:operator:matrix:inverse	$(\)^{-1}$
sym:operator:matrix:transpose	$(\)^T$
sym:operator:mean	$\overline{(\)}$
sym:operator:derivative:frechet	abla(
sym:operator:norm	$\ (\)\ $
sym:operator:product:tensor	\otimes

D. The code

D.1. stmglossaries.sty

```
2 % Header
4 %
5\, % This file includes the common LaTeX
6 % glossaries definitions
7 % (acronyms, glossaries, symbols)
8 % for structural mechanics
9 % Based upon the glossaries package:
10 % https://ctan.org/pkg/glossaries
11 %
12 % Usage
13 % - Preamble:
14 % - \usepackage{stmglossaries}
15 % - \makeglossaries
16 % - Document: e.g. (Adapt to your type of glossary item)
17 % - \printglossary[type=\acronymtype] or
      - \printglossary[type=\acronymtype,nonumberlist]
19 % - Compilation: e.g. (Adapt to your type of glossary item)
20 % - makeindex -s [MYTEXFILENAME].ist -o [MYTEXFILENAME].acr [
     MYTEXFILENAME].acn
21 %
22 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
23 %
                       Initial draft
24 %
25 % Contact: Martin Raedel, martin.raedel@dlr.de
26 %
             DLR Lightweight Systems
27 %
28 %
                               __/|__
29 %
                              /_/_/_/
30 %
                               |/ DLR
             www.dlr.de/sy/en
32 % Copyright (C) 2019-... DLR Lightweight Systems
33 %
35 % Content
37
38 % Declare that this style file requires at least LaTeX version 2e.
39 \NeedsTeXFormat{LaTeX2e}
```

```
40
41 % Provide the name of your page, the date it was last updated, and a
                     comment about what it's used for
42 \ProvidesPackage{stmglossaries}[2023/02/12 STMs custom LaTeX glossaries
                     definitions]
43
44 % -----
45 % Options
46 % -----
47
48 % For options
49 \ensuremath{\mbox{\sc original}{\mbox{\sc original}{\sc original}{\mbox{\sc original}{\sc original}{\sc
50
51 \SetupKeyvalOptions{%
52
                family=stmglossaries,%
53
                prefix=stmglossaries@,%
54
                setkeys=\kvsetkeys,%
55 }
56
57 % Acronyms
58 \DeclareBoolOption[true] {acronyms}
59
60 % Acronyms
61 \DeclareBoolOption[false]{glossary}
62
63 % Symbols
64 \DeclareBoolOption[true] {symbols}
65
66 % Load items
67 \DeclareBoolOption[true] {items}
68
69 % Load styles
70 \DeclareBoolOption[true] {styles}
71
72 % Load commands
73 \DeclareBoolOption[true] {commands}
74
75 % Load morewrites
76 \DeclareBoolOption[true] {morewrites}
77
78 % Load morewrites
79 \DeclareBoolOption[true] {makeglossaries}
80
81 % Automatically add the corresponding glossary entry to the acronym
```

```
82
   \DeclareBoolOption[false] {autoaddglossaryentrytoacronym}
83
84 % Add a link from the acronym to the glossary entry
85 \DeclareBoolOption[false] {linkacronymtoglossary}
86
87 % Process options
88 \ProcessKeyvalOptions{stmglossaries}
89
90 % -----
91 % Load the base package
92 % -----
93
94 % If not loaded in advance, load the glossaries package with some default
95
   \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
       }}%
96
97 % -----
98 % Modules 1
99 % newglossary can only be used before makeglossaries
100 % -----
101
102 % Load morewrites
103 \@ifpackageloaded{morewrites}{}{\%
     \ifstmglossaries@morewrites%
104
105
       \RequirePackage{morewrites}%
106
     \fi%
107 }%
108
109 % Load the symbols
   \ifstmglossaries@symbols
110
      \@ifpackageloaded{stmglossariessymbols}{}{%
111
112
       \RequirePackage[%
113
         commands={\ifstmglossaries@commands true\else false\fi},%
114
         items={\ifstmglossaries@items true\else false\fi},%
115
         styles={\ifstmglossaries@styles true\else false\fi},%
116
       ]{stmglossariessymbols}%
     }%
117
118
   \fi
119
120 % -----
121 % Makeglossaries command
122 % -----
123
```

```
124
    \ifstmglossaries@makeglossaries
125
      \@ifpackageloaded{etoolbox}{}{%
126
        \RequirePackage{etoolbox}
127
128
129
      % May not be at \AtEndPreamble in case the original implementation of "
       see" key in glossaryentry definition is used.
130
      \AtEndPreamble{%
131
        \makeglossaries%
132
133 \fi
134
135 % -----
136 % Modules 2
137 % -----
138
139 % Load the glossary
   \ifstmglossaries@glossary
140
      \@ifpackageloaded{stmglossariesglossary}{}{\%
141
142
        \RequirePackage[%
143
          commands={\ifstmglossaries@commands true\else false\fi},%
144
          items={\ifstmglossaries@items true\else false\fi},%
145
          styles={\ifstmglossaries@styles true\else false\fi},%
146
        ]{stmglossariesglossary}%
147
      }%
148 \fi
149
150 % Load the acronyms
151 \ifstmglossaries@acronyms
      \@ifpackageloaded{stmglossariesacronyms}{}{\%
152
153
        \RequirePackage[%
154
          commands={\ifstmglossaries@commands true\else false\fi},%
155
          items={\ifstmglossaries@items true\else false\fi},%
156
          styles={\ifstmglossaries@styles true\else false\fi},%
157
          autoaddglossaryentry={\
       ifstmglossaries@autoaddglossaryentrytoacronym true\else false\fi},%
158
          linktoglossary={\ifstmglossaries@linkacronymtoglossary true\else
       false\fi},%
159
        ]{stmglossariesacronyms}%
160
      }%
161
   \fi
162
164 % That's it
```

D.2. stmglossariesbase.sty

```
2 % Header
4 %
5 % This file includes the common LaTeX
6 % symbol definitions
7 % for structural mechanics
8
9 % It can be used independently if only
10 % symbols are necessary or bundled in
11 % stmglossaries.sty
12 %
13 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
14 %
                     Initial draft
15 %
16 % Contact: Martin Raedel, martin.raedel@dlr.de
17 %
            DLR Lightweight Systems
18 %
19 %
                             __/|__
20 %
                            /_/_/_/
21 %
            www.dlr.de/sy/en
                             |/ DLR
22 %
23 % Copyright (C) 2019-... DLR Lightweight Systems
24 %
26 % Usage
28 %
29 % Symbols-Glossary
30 %
31 % Compilation:
32 %
33 % %S - main tex source file name
34 %
35 % without any helpers:
36 %
```

```
37 %
      pdflatex %S.tex
38 %
      makeindex -s %S.ist -t %S.slg1 -o %S.syi1 %S.syg1
39 %
      makeindex -s %S.ist -t %S.slg2 -o %S.syi2 %S.syg2
41 %
     pdflatex %S.tex
42 %
      pdflatex %S.tex
43
44 % with perl interpreter installation
45 %
46 %
    pdflatex %S.tex
47 % makeglossaries %S
48 %
     pdflatex %S
49 %
    pdflatex %S
50 %
51 % with LuaLaTeX
52 %
53 %
     makeglossaries-lite doc
54 %
56 % Requirements
58
59 % Declare that this style file requires at least LaTeX version 2e.
60 \NeedsTeXFormat{LaTeX2e}
61
62 % Provide the name of your page, the date it was last updated, and a
      comment about what it's used for
  \ProvidesPackage{stmglossariesbase}[2023/02/12 STMs custom LaTeX base
      glossaries definitions]
64
65 % If not loaded in advance, load the glossaries package with some default
       options
  \@ifpackageloaded{glossaries}{}{%
66
67
    \RequirePackage[%
68
      acronym,
              % create a list of acronyms
69
               % do not use the main glossary
70
               % add glossary titles to table of contents
71
    ]{glossaries}%
72 }%
73
75 % That's it
77
```

78 \endinput

D.3. stmglossariesacronyms.sty

```
2 % Header
3
4 %
5 % This file includes the common LaTeX
6 % acronyms definitions
7 % for structural mechanics
8 % Based upon the glossaries package:
9 % https://ctan.org/pkg/glossaries
10 %
11 % Usage
12 % - Preamble:
13 %
      - \usepackage{stmglossariesacronyms}
14 %
      - \makeglossaries
15 % - Document: e.g. (Adapt to your type of glossary item)
16 %
      - \printglossary[type=\acronymtype] or
17 %
      - \printglossary[type=\acronymtype,nonumberlist]
18 % - Compilation: e.g. (Adapt to your type of glossary item)
19
  " - makeindex -s [MYTEXFILENAME].ist -o [MYTEXFILENAME].acr [
     MYTEXFILENAME].acn
20 %
21 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
22 %
                      Initial draft
23 %
24 % Contact: Martin Raedel, martin.raedel@dlr.de
25 %
             DLR Lightweight Systems
26 %
27 %
                               __/|__
28 %
                               /_/_/_/
29 %
             www.dlr.de/sy/en
                               / DLR
30 %
31 % Copyright (C) 2019-... DLR Lightweight Systems
32 %
34 % Content
37 % Declare that this style file requires at least LaTeX version 2e.
38 \NeedsTeXFormat{LaTeX2e}
39
```

```
40\, % Provide the name of your page, the date it was last updated, and a
       comment about what it's used for
   \ProvidesPackage{stmglossariesacronyms}[2023/02/12 STMs custom LaTeX
41
       acronym definitions]
42
43 % If not loaded in advance, load the glossaries package with some default
   \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
44
       }}%
45
46 % -----
47 % Options
48 % -----
49
50 % For options
51 \ensuremath{\mbox{\sc of packageloaded{kvoptions}{}}{\ensuremath{\mbox{\sc heavy}}}\ensuremath{\mbox{\sc of package{kvoptions}}}{\ensuremath{\mbox{\sc of package{kvoptions}}}}
52
53 \SetupKeyvalOptions{%
54
     family=stmglossariesacronyms,%
     prefix=stmglossariesacronyms@,%
55
56
     setkeys=\kvsetkeys,%
57 }
58
59 % Load styles
60 \DeclareBoolOption[true] {commands}
61
62 % Load styles
63 \DeclareBoolOption[true] {items}
64
65 % Load styles
66 \DeclareBoolOption[true] {styles}
67
68 % Automatically add the corresponding glossary entry to the acronym
69 \DeclareBoolOption[false] {autoaddglossaryentry}
70
71 % Add a link from the acronym to the glossary entry
72 \DeclareBoolOption[false] {linktoglossary}
73
74 % Process options
75 \ProcessKeyvalOptions{stmglossariesacronyms}
76
77 % -----
78 % Modules
79 % -----
```

```
80
81 % Load the items
82 \ifstmglossariesacronyms@items%
83
      \@ifpackageloaded{stmglossariesacronymsitems}{}{\%
84
        \RequirePackage[%
85
         autoaddglossaryentry={\ifstmglossariesacronyms@autoaddglossaryentry
        true\else false\fi},%
86
         linktoglossary={\ifstmglossariesacronyms@linktoglossary true\else
       false\fi},%
87
       ]{stmglossariesacronymsitems}%
88
     }%
89 \fi%
90
91 % Load the styles
92 \ifstmglossariesacronyms@styles
93
      \Oifpackageloaded{stmglossariesacronymsstyles}{}{\RequirePackage{
       stmglossariesacronymsstyles}}
94
   \fi
95
96 % Load the print commands
97 \ifstmglossariesacronyms@commands%
98
      \@ifpackageloaded{stmglossariesacronymscommands}{}{\%
99
        \RequirePackage{stmglossariesacronymscommands}%
100
     }%
101
   \fi
102
104 % That's it
106
107 % Finally, we'll use \endinput to indicate that LaTeX can stop reading
       this file. LaTeX will ignore anything after this line.
108 \endinput
```

D.4. stmglossariesacronymscommands.sty

```
9 % It can be used independently if only
10 % symbols are necessary or bundled in
11 % stmglossaries.sty
13 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
14 %
                     Initial draft
15 %
16 % Contact: Martin Raedel, martin.raedel@dlr.de
17 %
            DLR Lightweight Systems
18 %
19 %
                              __/|__
20 %
                             /_/_/_/
21 %
                             |/ DLR
             www.dlr.de/sy/en
22 %
23 % Copyright (C) 2019-... DLR Lightweight Systems
24 %
26 % Content
28
29 % Declare that this style file requires at least LaTeX version 2e.
30 \NeedsTeXFormat{LaTeX2e}
31
32 % Provide the name of your page, the date it was last updated, and a
     comment about what it's used for
33 \ProvidesPackage{stmglossariesacronymscommands}[2023/02/12 STMs custom
     LaTeX acronym commands]
34
35 % -----
36 % Commands
37 % -----
38
39 \newcommand{\printstmacronyms} {\printglossary[type=\acronymtype,
     style=stmacronymstyle ,nonumberlist]}
40
42 % That's it
44
45 \endinput
```

D.5. stmglossariesacronymsstyles.sty

```
2 % Header
4 %
5 % This file includes the common LaTeX
6 % acronym style definitions
7 % (acronyms, glossaries, symbols)
8 % for structural mechanics
9 %
10 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
11 %
                      Initial draft
12 %
13 % Contact: Martin Raedel, martin.raedel@dlr.de
14 %
            DLR Lightweight Systems
15 %
16 %
                              __/|__
17 %
                              /_/_/_/
18 %
                             |/ DLR
             www.dlr.de/sy/en
19 %
20 % Copyright (C) 2019-... DLR Lightweight Systems
21 %
23 % Content
26\, % Declare that this style file requires at least LaTeX version 2e.
27 \NeedsTeXFormat{LaTeX2e}
28
29 % Provide the name of your page, the date it was last updated, and a
      comment about what it's used for
  \ProvidesPackage{stmglossariesacronymsstyles}[2023/02/12 STMs custom
30
      LaTeX acronyms style definitions]
31
32 % If not loaded in advance, load the glossaries package with some default
      options
33
  \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
      }}%
34
35 %
36 \@ifpackageloaded{xltabular}{}{\RequirePackage{xltabular}}
37
39 % Functionality
41
```

```
43 % Redefine package options
46 %Den Punkt am Ende jeder Beschreibung deaktivieren
47 \renewcommand*{\glspostdescription}{}
48 % \renewcommand*{\glspostdescription}{\dotfill}
49
51 % Own styles
53
54 % -----
55 % Acronym-styles
56 % -----
57
58 \newglossarystyle{stmacronymstyle}{\%
59
     \renewenvironment{theglossary}%
60
      {\xltabular[1]{\linewidth}{1X}}%
61
      {\endxltabular}%
    % Header line
62
63
     \renewcommand*{\glossaryheader}{%
      %\textbf{Label} & \textbf{Symbol}
64
65
      \tabularnewline%
66
      \tabularnewline%
67
    }%
     % indicate what to do at the start of each logical group
68
69
     %\renewcommand*{\glsgroupheading}[1]{}%
     %\renewcommand*{\glsgroupskip}{}% What to do between groups
70
71
    \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
      groups
72
     \renewcommand*{\glossentry}[2]{%
73
      \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}
        & \glossentrysymbol{##1}\glossentrydesc{##1}\glspostdescription ##2
74
      % Description
75
      \tabularnewline%
     }
76
77
  }
78
79
   \newglossarystyle{stmacronymnogroupskipstyle}{%
80
     \renewenvironment{theglossary}%
81
      {\xltabular[1]{\linewidth}{1X}}%
82
      {\endxltabular}%
    % Header line
83
```

```
84
      \renewcommand*{\glossaryheader}{%
85
        %\textbf{Label} & \textbf{Symbol}
86
        \tabularnewline%
87
        \tabularnewline%
88
      }%
89
      % indicate what to do at the start of each logical group
90
      %\renewcommand*{\glsgroupheading}[1]{}%
91
      %\renewcommand*{\glsgroupskip}{}% What to do between groups
92
      \renewcommand*{\glsgroupskip}{}% What to do between groups
93
      \renewcommand*{\glossentry}[2]{%
94
         \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}
95
          & \glossentrysymbol{##1}\glossentrydesc{##1}\glspostdescription ##2
        % Description
96
        \tabularnewline%
97
      }
98 }
99
100 % Style for usage in papers with:
101 % - header line: no
102 % - initial empty lines: none
103 % - group heading: none
104 % - group skip: no
105 % - columns: 1
106 % - indent of first column: no
107 \newglossarystyle{stmacronympaperstyle}{%
108
      \renewenvironment{theglossary}%
109
         {\left\{ x \right\} } {\left\{ x \right\} } 
110
        {\endxltabular}%
111
      % Header line
112
      \renewcommand*{\glossaryheader}{%
113
        %\textbf{Label} & \textbf{Symbol}
114
        %\tabularnewline%
115
      }%
      % indicate what to do at the start of each logical group
116
117
      %\renewcommand*{\glsgroupheading}[1]{}%
118
      \renewcommand*{\glsgroupskip}{}% What to do between groups
119
      \renewcommand*{\glossentry}[2]{%
120
         \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}
121
           & \glossentrysymbol{##1}\glossentrydesc{##1}\glspostdescription ##2
        % Description
122
        \tabularnewline%
      }
123
124
125
```

```
127 % Style to show the keys
128 % -----
129
130 \newglossarystyle{stmacronymlabelstyle}{\%
     \renewenvironment{theglossary}%
131
132
       {\xltabular[1]{\linewidth}{lcX}}%
133
       {\endxltabular}%
     % Header line
134
135
     \renewcommand*{\glossaryheader}{%
136
       \textbf{Label} & \textbf{Acronym} & \textbf{Description}
137
       \tabularnewline%
138
       \tabularnewline%
139
     }%
140
     % indicate what to do at the start of each logical group
141
     %\renewcommand*{\glsgroupheading}[1]{}%
142
     %\renewcommand*{\glsgroupskip}{}% What to do between groups
143
     \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
       groups
144
     \renewcommand*{\glossentry}[2]{%
145
       \glsentrycounterlabel{##1} &%
       146
147
       \glossentrysymbol{##1}\glossentrydesc{##1}\glspostdescription ##2%
       Description
148
       \tabularnewline%
149
     }
150 }
151
153 % That's it
155
156 % Finally, we'll use \endinput to indicate that LaTeX can stop reading
       this file. LaTeX will ignore anything after this line.
157 \endinput
```

D.6. stmglossariesglossary.sty

```
7 % for structural mechanics
8 % Based upon the glossaries package:
9 % https://ctan.org/pkg/glossaries
10 %
11 % Usage
12 % - Preamble:
13 %
       - \usepackage{stmglossariesglossary}
14 %
       - \makeglossaries
15 % - Document: e.g. (Adapt to your type of glossary item)
16 % - \printglossary[type=main] or
17 %
       - \printglossary[type=main,nonumberlist]
18 % - Compilation: e.g. (Adapt to your type of glossary item)
19 % - makeindex -s [MYTEXFILENAME].ist -o [MYTEXFILENAME].acr [
      MYTEXFILENAME].acn
20 %
21 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
22
                         Initial draft
23 %
24 % Contact: Martin Raedel, martin.raedel@dlr.de
25 %
              DLR Lightweight Systems
26 %
27 %
                                  __/|__
28 %
                                 ////
29 %
                                   / DLR
               www.dlr.de/sy/en
30 %
31 % Copyright (C) 2019-... DLR Lightweight Systems
32 %
34 % Content
36
37\, % Declare that this style file requires at least LaTeX version 2e.
38 \NeedsTeXFormat{LaTeX2e}
39
40 % Provide the name of your page, the date it was last updated, and a
      comment about what it's used for
41 \ProvidesPackage{stmglossariesglossary}[2023/02/12 STMs custom LaTeX
      glossary definitions]
42
43
   % If not loaded in advance, load the glossaries package with some default
       options
   \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase
44
      }}%
45
```

```
46 % -----
47 % Options
48 % -----
50 % For options
51 \ensuremath{\mbox{\sc offpackageloaded{kvoptions}}} \ensuremath{\mbox{\sc heavy}} \ensuremath{\mbox{\sc heavy}} \ensuremath{\mbox{\sc offpackageloaded{kvoptions}}} \ensuremath{\mbox{\sc heavy}} \ensuremath{\mbox{\sc offpackageloaded{kvoptions}}} \ensuremath{\mbox{\sc offpa
52
53 % Option family
54 \SetupKeyvalOptions{%
55
                family=stmglossariesglossary,%
56
                prefix=stmglossariesglossary@,%
57
                setkeys=\kvsetkeys,%
58 }
59
60 % Load styles
61 \DeclareBoolOption[true] {commands}
62
63 % Load styles
64 \DeclareBoolOption[true] {items}
65
66 % Load styles
67 \ \ensuremath{\texttt{NeclareBoolOption[true]}\{styles\}}
68
69 % Process options
70 \ProcessKeyvalOptions{stmglossariesglossary}
71
72 % -----
73 % Modules
74 % -----
75
76 % Load the items
77 \ifstmglossariesglossary@items
                \@ifpackageloaded{stmglossariesglossaryitems}{}{\RequirePackage{
78
                     stmglossariesglossaryitems}}
79 \fi
80
81 % Load the styles
82 \ifstmglossariesglossary@styles
                \@ifpackageloaded{stmglossariesglossarystyles}{}{\RequirePackage{
                     stmglossariesglossarystyles}}
84 \fi
85
86 % Load the print commands
87 \ifstmglossariesglossary@commands%
```

D.7. stmglossariesglossarycommands.sty

```
2 % Header
4 %
5\, % This file includes the common command shortcuts
6 % for acronyms and glossaries
7 % for structural mechanics
8 %
9 % It can be used independently if only
10 % symbols are necessary or bundled in
11 % stmglossaries.sty
12 %
13 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
14 %
                     Initial draft
15 %
16 % Contact: Martin Raedel, martin.raedel@dlr.de
17 %
            DLR Lightweight Systems
18 %
19 %
                             __/|__
20 %
                            /_/_/_/
21 %
            www.dlr.de/sy/en
                             / DLR
22 %
23 % Copyright (C) 2019-... DLR Lightweight Systems
24 %
26 % Content
28
29 % Declare that this style file requires at least LaTeX version 2e.
```

```
30 \NeedsTeXFormat{LaTeX2e}
31
32 % Provide the name of your page, the date it was last updated, and a
     comment about what it's used for
33 \ \ensuremath{\mbox{\sc NProvidesPackage{stmglossariesglossarycommands}[2023/02/12 STMs custom]} 
     LaTeX glossary commands]
34
35 % -----
36 % Commands
37 % -----
38
39 \newcommand{\printstmglossary}
                                  {\printglossary[type=main,style=
      stmglossarystyle ,nonumberlist]}
40
42 % That's it
                               %
44
45 \endinput
```

D.8. stmglossariesglossarystyles.sty

```
2 % Header
3
4 %
5 % This file includes the common LaTeX
6 % glossary style definitions
7 % (glossary, glossaries, symbols)
8 % for structural mechanics
9 %
10 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
11 %
                     Initial draft
12 %
13 % Contact: Martin Raedel, martin.raedel@dlr.de
14 %
            DLR Lightweight Systems
15 %
16 %
                            __/|__
17 %
                            /_/_/_/
                            / DLR
18 %
            www.dlr.de/sy/en
20 % Copyright (C) 2019-... DLR Lightweight Systems
21 %
```

```
23 % Content
25
26\, % Declare that this style file requires at least LaTeX version 2e.
27 \NeedsTeXFormat{LaTeX2e}
28
29 % Provide the name of your page, the date it was last updated, and a
     comment about what it's used for
30 \ProvidesPackage{stmglossariesglossarystyles}[2023/02/12 STMs custom
     LaTeX glossary style definitions]
31
32 % If not loaded in advance, load the glossaries package with some default
      options
  \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
33
     }}%
34
35 %
36 \@ifpackageloaded{xltabular}{}{\RequirePackage{xltabular}}
37
38 %
39 \@ifpackageloaded{stmbibliography}{}{\RequirePackage{stmbibliography}}%
40 \addbibresource{stmglossariesglossarysources.bib}
41
43 % Functionality
45
47 % Redefine package options %
49
50 %Den Punkt am Ende jeder Beschreibung deaktivieren
51 \renewcommand*{\glspostdescription}{}
52 % \renewcommand*{\glspostdescription}{\dotfill}
53
55 % Own styles
57
58 % -----
59 % glossary-styles
60 % -----
61
62 \newglossarystyle{stmglossarystyle}{%
```

```
63
      \renewenvironment{theglossary}%
64
        {\xltabular[1]{\linewidth}{1X}}%
65
        {\endxltabular}%
66
      % Header line
      \renewcommand*{\glossaryheader}{%
67
68
        %\textbf{Entry} & \textbf{Symbol}
69
        \tabularnewline%
70
        \tabularnewline%
        %\endhead%
71
72
        %\endfoot%
73
      }%
74
      % indicate what to do at the start of each logical group
      %\renewcommand*{\glsgroupheading}[1]{}% Group heading
75
76
      \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
        groups
      % This version only works with \RequirePackage{glossaries}[=v4.49]
77
78
      %\renewcommand*{\glossaryentryfield}[5]{%
79
      % \glsentryitem{##1}\glstarget{##1}{##2}
80
           & ##3\glspostdescription ##5% Description
81
      % \tabularnewline%
82
      %}
83
      % This version works with v4.50 of \RequirePackage{glossaries} and
84
       hopefully higher
85
      \renewcommand*{\glossentry}[2]{%
        \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}
86
87
          & \glossentrysymbol{##1}\glspostdescription ##2% Description
88
        \tabularnewline%
89
      }%
90 }
91
92 % -----
93 % Style to show entries with sources
94 % -----
95
96
    \newglossarystyle{stmglossarysourcestyle}{%
      \renewenvironment{theglossary}%
97
98
        {\xltabular[1]{\linewidth}{1Xc}}%
99
        {\endxltabular}%
100
      % Header line
101
      \renewcommand*{\glossaryheader}{%
        %\textbf{Entry} & \textbf{Symbol} & \textbf{Sources}
102
103
        \tabularnewline%
104
        \tabularnewline%
```

```
105
        %\endhead%
106
        %\endfoot%
107
      1%
108
      % indicate what to do at the start of each logical group
109
      %\renewcommand*{\glsgroupheading}[1]{}% Group heading
110
      \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
        groups
111
      \renewcommand*{\glossentry}[2]{%
112
        \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &%
113
                     \glossentrysymbol{##1}\glspostdescription ##2 &%
114
        \tabularnewline%
115
                    \ifglshasfield{useri}{##1}{\space%
116
          % in the event of multiple cites, \glsentryuseri{##1} needs to be
        expanded before being passed to \cite.
117
          \glsletentryfield{\thiscite}{##1}{useri}%
          \expandafter\cite\expandafter{\thiscite}%
118
119
                    }{}%
120
      }
121 }
122
123 % -----
124 % Style to show the keys
125 % -----
126
127
    \newglossarystyle{stmglossarylabelstyle}{%
128
      \renewenvironment{theglossary}%
129
        {\xltabular[1]{\linewidth}{lcX}}%
130
        {\endxltabular}%
131
      % Header line
132
      \renewcommand*{\glossaryheader}{%
133
        \textbf{Label} & \textbf{Entry} & \textbf{Description}
134
        \tabularnewline%
135
        \tabularnewline%
136
        %\endhead%
137
        %\endfoot%
138
      }%
139
      % indicate what to do at the start of each logical group
140
      %\renewcommand*{\glsgroupheading}[1]{}%
141
      %\renewcommand*{\glsgroupskip}{}% What to do between groups
142
      \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
        groups
143
      \renewcommand*{\glossentry}[2]{%
144
        \glsentrycounterlabel{##1} &%
145
        \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}&%
```

```
146
        \glossentrysymbol{##1}\glspostdescription ##2% Description
147
        \tabularnewline%
148
      }
149 }
150
151 % -----
152
    % Style to show the keys with sources
153 % -----
154
    \newglossarystyle{stmglossarylabelsourcestyle}{%
155
      \renewenvironment{theglossary}%
156
157
        {\xltabular[1]{\linewidth}{lcXc}}%
        {\endxltabular}%
158
159
      % Header line
160
      \renewcommand*{\glossaryheader}{%
        \textbf{Label} & \textbf{Entry} & \textbf{Description} & \textbf{
161
        Sources}
162
        \tabularnewline%
163
        \tabularnewline%
164
        %\endhead%
165
        %\endfoot%
166
167
      % indicate what to do at the start of each logical group
168
      %\renewcommand*{\glsgroupheading}[1]{}%
169
      %\renewcommand*{\glsgroupskip}{}% What to do between groups
      \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
170
        groups
171
      \renewcommand*{\glossentry}[2]{%
172
        \glsentrycounterlabel{##1} &%
173
        \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}&%
174
        \glossentrysymbol{##1}\glspostdescription ##2&%
175
                    \ifglshasfield{useri}{##1}{\space%
          % in the event of multiple cites, \glsentryuseri{##1} needs to be
176
        expanded before being passed to \cite.
          \glsletentryfield{\thiscite}{##1}{useri}%
177
          \expandafter\cite\expandafter{\thiscite}
178
179
                    }{}%
180
        %\space ##2%
181
        \tabularnewline%
182
183
184
185 % -----
186 % Style to show the keys with sources and the content in a new line
```

```
187 % -----
188
189
    \newglossarystyle{stmglossarylabelsourcestyle2}{%
190
      \renewenvironment{theglossary}%
        {\xltabular[1]{\linewidth}{lcc}}%
191
192
        {\endxltabular}%
193
      % Header line
194
      \renewcommand*{\glossaryheader}{%
        \textbf{Label} & \textbf{Entry} & \textbf{Sources}
195
196
        \tabularnewline%
197
        \tabularnewline%
198
        %\endhead%
        %\endfoot%
199
200
      }%
201
      % indicate what to do at the start of each logical group
202
      %\renewcommand*{\glsgroupheading}[1]{}%
203
      %\renewcommand*{\glsgroupskip}{}% What to do between groups
204
      \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
        groups
205
      \renewcommand*{\glossentry}[2]{%
206
        \glsentrycounterlabel{##1} &%
207
        \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}}&%
208
        %##3\glspostdescription ##5&%
209
                    \ifglshasfield{useri}{##1}{\space%
210
          % in the event of multiple cites, \glsentryuseri{##1} needs to be
        expanded before being passed to \cite.
211
          \glsletentryfield{\thiscite}{##1}{useri}%
212
          \expandafter\cite\expandafter{\thiscite}
213
                    }{}%
214
        %\space ##2%
215
        \tabularnewline%
216
        \label{lem:likelihood} $$ \mathbf{X}_{X}_{\sc ntrysymbol\{\#\#1\}\c} = \mathbb{F}^{3}_{X}_{\sc ntrysymbol\{\#\#1\}\c} $$
        glspostdescription ##2}
217
        \tabularnewline%
218
        \tabularnewline%
219
      }
220 }
221
223 % That's it
225
226 % Finally, we'll use \endinput to indicate that LaTeX can stop reading
     this file. LaTeX will ignore anything after this line.
```

227 \endinput

D.9. stmglossariessymbols.sty

```
2 % Header
3
4 %
5 % This file includes the common LaTeX
6 % symbols definitions
7 % (acronyms, glossaries, symbols)
8 % for structural mechanics
9 % Based upon the glossaries package:
10 % https://ctan.org/pkg/glossaries
11 %
12 % Usage
13 % - Preamble:
14 % - \usepackage{stmglossaries}
15 % - \makeglossaries
16 % - Document: e.g. (Adapt to your type of glossary item)
17 % - \printglossary[type=\acronymtype] or
18 %
      - \printglossary[type=\acronymtype,nonumberlist]
19 % - Compilation: e.g. (Adapt to your type of glossary item)
20 % - makeindex -s [MYTEXFILENAME].ist -o [MYTEXFILENAME].acr [
     MYTEXFILENAME].acn
21 %
22 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
23 %
                       Initial draft
24 %
25 % Contact: Martin Raedel, martin.raedel@dlr.de
26 %
             DLR Lightweight Systems
27 %
28 %
                               __/|__
29 %
                              /_/_/_/
30 %
                              I/ DLR
             www.dlr.de/sy/en
31 %
32 % Copyright (C) 2019-... DLR Lightweight Systems
33 %
35 % Content
37
38 % Declare that this style file requires at least LaTeX version 2e.
39 \ \NeedsTeXFormat\{LaTeX2e\}
```

```
40
41 % Provide the name of your page, the date it was last updated, and a
                   comment about what it's used for
42 \ProvidesPackage{stmglossariessymbols}[2023/02/12 STMs custom LaTeX
                   symbol definitions]
43
44 % If not loaded in advance, load the glossaries package with some default
                     options
        \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
45
46
47 % -----
48 % Options
49 % -----
50
51 % For options
52 \ensuremath{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}{\mbox{\colored}}{\mbox{\colored}}\mbox{\colored}{\mbox{\colored}}\mbox{\colored}}\mbox{\colored}}\mbox{\colored}\mbox{\colored}}\mbox{\colored}\mbox{\colored}}\mbox{\colored}\mbox{\colored}\mbox{\colored}}\mbox{\colored}\mbox{\colored}\mbox{\colored}}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\colored}\mbox{\co
53
54 % Option family
55 \SetupKeyvalOptions{%
56
           family=stmglossariessymbols, %
57
               prefix=stmglossariessymbols@,%
               setkeys=\kvsetkeys,%
59 }
60
61 % Load commands
62 \DeclareBoolOption[true] {commands}
63
64 % Load styles
65 \DeclareBoolOption[true] {items}
66
67 % Load styles
68 \DeclareBoolOption[true] {styles}
69
70 % Process options
71 \ProcessKeyvalOptions{stmglossariessymbols}
72
73 % -----
74 % Modules
75 % -----
76
77 % Load the items
78 \ifstmglossariessymbols@items
79 \@difpackageloaded{stmglossariessymbolsitems}{}{\RequirePackage{
```

```
stmglossariessymbolsitems}}
80 \fi
81
82 % Load the styles
83 \ifstmglossariessymbols@styles
84
     \Oifpackageloaded{stmglossariessymbolsstyles}{}{\RequirePackage{
      stmglossariessymbolsstyles}}
85 \fi
86
87 % Load the commands
88 \ifstmglossariessymbols@commands
89
     \Oifpackageloaded{stmglossariessymbolscommands}{}{\RequirePackage{
      stmglossariessymbolscommands}}
90 \fi
91
93 % That's it
95
96\, % Finally, we'll use \endingut to indicate that LaTeX can stop reading
      this file. LaTeX will ignore anything after this line.
97 \endinput
```

D.10. stmglossariessymbolscommands.sty

```
2 % Header
4 %
5 % This file includes the common LaTeX
6 % symbol commands definitions
7 % for structural mechanics
8 %
9 % It can be used independently if only
10 % symbols are necessary or bundled in
11 % stmglossaries.sty
12 %
13 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
14 %
                      Initial draft
15 %
16 % Contact: Martin Raedel, martin.raedel@dlr.de
17 %
             DLR Lightweight Systems
18 %
19 %
```

```
20 %
                              /_/_/_/
21 %
             www.dlr.de/sy/en
                             |/ DLR
22 %
23 % Copyright (C) 2019-... DLR Lightweight Systems
24 %
26 % Usage
29 % Declare that this style file requires at least LaTeX version 2e.
30 \NeedsTeXFormat{LaTeX2e}
31
32 % Provide the name of your page, the date it was last updated, and a
      comment about what it's used for
33
  \ProvidesPackage{stmglossariessymbolscommands}[2023/02/12 STMs custom
     LaTeX symbol command definitions]
34
35
  \@ifpackageloaded{stmglossariessymbolsitems}{}{\RequirePackage{
36
      stmglossariessymbolsitems}}%
37
39 % Commands
41
42 % -----
43 % Shortcuts
44 % -----
45
46 \newcommand{\csyslocal}[1]{\%
47
    %The symbol
    \ensuremath{\hat{#1}}%
48
    %Add the operator to the list
49
50
    \glsadd{sym:operator:csys:local}%
51
  }
52
53
  \newcommand{\csysmaterial}[1]{%
54
    %The symbol
55
    \ensuremath{\bar{#1}}%
56
    %Add the operator to the list
    \glsadd{sym:operator:csys:material}%
57
58
  }
59
60 \newcommand{\difference}[1]{%
```

```
61
      %The symbol
62
       \ensuremath{\glssymbol{sym:operator:Delta}#1}%
63 }
64
65 \ \mbox{\ \ learned {\ \ \ \ } [1] {\ \ \ \ \ \ }}
66
      %The symbol
67
       \ensuremath{\glssymbol{sym:operator:dif}#1}%
68
      %Add the operator to the list
69
       \glsadd{sym:operator:dif}%
70 }
71
72 \newcommand{\timederivativeshort}[1]{\%
73
      %The symbol
74
       \ensuremath{\det{\#1}}%
75
      %Add the operator to the list
 76
       \glsadd{sym:operator:dif:short:time}%
77 }
78
79 \newcommand{\timederivativeshorttwo}[1]{\%}
80
      %The symbol
       \ensuremath{\ddot{#1}}%
81
82
      %Add the operator to the list
83
       \glsadd{sym:operator:dif:short:time:2}%
84 }
85
86 \ \mbox{newcommand{\mbox{\mbox{\mbox{$\sim$}}}} [1] {\%}
87
      %The symbol
88
      \ensuremath{\overline{#1}}%
89
      %Add the operator to the list
90
       \glsadd{sym:operator:mean}%
91 }
92
93 \newcommand{\norm}[1]{\%
      %The symbol
94
95
       \ensuremath{\glssymbol{sym:operator:norm:left}#1\glssymbol{sym:operator
         :norm:right}}%
96
      %Add the operator to the list
97
       \glsadd{sym:operator:norm}%
98 }
99
100
    \newcommand{\transpose}[1]{%
101
       \ensuremath{#1^{\glssymbol{sym:operator:matrix:transpose}}}%
102 }
103
```

```
104
    \newcommand{\inverse}[1]{%
105
      \ensuremath{#1^{\glssymbol{sym:operator:matrix:inverse}}}%
106
107
108 \newcommand{\partialderivativeshort}[2]{\%
109
      %The symbol
110
      \left\{1_{,\#2}\right\}
111
      %Add the operator to the list
112
      \glsadd{sym:operator:differential:partial:short}%
113 }
114
115 % -----
116 % Printing
117 % ------
118
119
    \newcommand{\printstmscalarglossary} {\printglossary[type=scalarlist
       style=stmsymbolstyle ,nonumberlist]}
120
    \newcommand{\printstmvectorglossary} {\printglossary[type=vectorlist
       style=stmsymbolstyle ,nonumberlist]}
121
    \newcommand{\printstmmatrixglossary} {\printglossary[type=matrixlist
       style=stmsymbolstyle ,nonumberlist]}
122
    \newcommand{\printstmstateglossary}
                                        {\printglossary[type=statelist
       style=stmsymbolstyle ,nonumberlist]}
123
    \newcommand{\printstmindexglossary}
                                        {\printglossary[type=indexlist
       style=stmsymbolstyle ,nonumberlist]}
124
    \newcommand{\printstmexponentglossary}{\printglossary[type=exponentlist,
       style=stmsymbolstyle ,nonumberlist]}
125
    \newcommand{\printstmoperatorglossary}{\printglossary[type=operatorlist,
       style=stmoperatorstyle,nonumberlist]}
126
127
    \newcommand{\printallstmsymbols}{\%
128
      \printstmscalarglossary%
129
      \printstmvectorglossary%
130
      \printstmmatrixglossary%
131
      \printstmstateglossary%
132
      \printstmindexglossary%
133
      \printstmexponentglossary%
134
      \printstmoperatorglossary%
135 }
136
137
    138 % That's it
    139
140
```

141 \endinput

D.11. stmglossariessymbolstyles.sty

```
2 % Header
4 %
5 % This file includes the common LaTeX
6 % glossaries style definitions
7 % (acronyms, glossaries, symbols)
8 % for structural mechanics
9 %
10 % Revisions: 2019-10-27 Martin Raedel <martin.raedel@dlr.de>
11 %
                       Initial draft
12 %
13 % Contact: Martin Raedel, martin.raedel@dlr.de
14 %
              DLR Lightweight Systems
15 %
16 %
                                __/|__
17 %
                               /_/_/_/
18 %
                                / DLR
              www.dlr.de/sy/en
19 %
20 % Copyright (C) 2019-... DLR Lightweight Systems
21 %
23 % Content
25
26\, % Declare that this style file requires at least LaTeX version 2e.
27 \NeedsTeXFormat{LaTeX2e}
28
29 % Provide the name of your page, the date it was last updated, and a
      comment about what it's used for
30 \ProvidesPackage{stmglossariessymbolsstyles}[2023/02/12 STMs custom LaTeX
      glossaries style definitions]
31
32 % Now paste your code from the preamble here
33
34 % If not loaded in advance, load the glossaries package with some default
      options
   \@ifpackageloaded{stmglossariesbase}{}{\RequirePackage{stmglossariesbase}
35
      }}%
36
```

```
37 %
38 \@ifpackageloaded{xltabular}{}{\RequirePackage{xltabular}}
39 \@ifpackageloaded{multicol}{}{\RequirePackage{multicol}}\%
42 % Functionality
44
46 % Redefine package options
48
49 %Den Punkt am Ende jeder Beschreibung deaktivieren
50 \renewcommand*{\glspostdescription}{}
51 % \renewcommand*{\glspostdescription}{\dotfill}
52
54 % Own styles
56
57 % -----
58 % Coordinate-system style
59 % -----
60
61 %\newglossarystyle{mycoordinatesystemstyle}{%
62 % %\renewcommand{\glossarysection}[2][]{}% no title
63 % \renewcommand*{\glsclearpage}{}% avoid page break before glossary
64 % \renewenvironment{theglossary}%
65 % {\begin{longtabu} to \linewidth {cX}}%
      {\end{longtabu}}%
66 %
67 % % Header line
68 % \renewcommand*{\glossaryheader}{%
69 %
     % Requires booktabs
70 %
     %\toprule%
71 %
     \textbf{Symbol} & \textbf{Description}%
     \tabularnewline%
72
73 %
      \tabularnewline%
     %\midrule%
74 %
     \endhead%
75 %
     %\bottomrule%
76 %
77 %
    \endfoot%
78 % }%
79 % % indicate what to do at the start of each logical group
80 % %\renewcommand*{\glsgroupheading}[1]{}%
```

```
81 % %\renewcommand*{\glsgroupskip}{}% What to do between groups
82 % \renewcommand*{\glsgroupskip}{\tabularnewline}% What to do between
       groups
83 % \renewcommand*{\glossentry}[1]{%
84 %
        \glsentryitem{##1}% Entry number if required
        \glstarget{##1}{\glossentrysymbol{##1}} &
85 %
      %\glossentrysymbol{##1} & % Symbol
86 %
87 %
        %\glossentryname{##1}
                                   & % Name
        \glossentrydesc{##1}
                                  %& % Description
88 %
       %\glsentryuseri{##1}%
                                  % Unit in User1-Variable
        \tabularnewline%
91 % }%
92 %}
93
94 % -----
95 % Symbols-styles
96 % -----
97
98 \land \text{newglossarystyle}\{\text{stmsymbolstyle}\} 
99
      %\renewcommand{\glossarysection}[2][]{}% no title
100
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
101
      \renewenvironment{theglossary}%
102
        %{\begin{longtabu} to \linewidth {clX}}%c}}%
103
        %{\end{longtabu}}%
104
        %{\begin{longtblr}{colspec = {clX}, width = \linewidth}}%
105
        %{\end{longtblr}}%
106
        {\xltabular[1]{\linewidth}{clX}}%
107
        {\endxltabular}%
108
        %{\begin{tabular}{cllc}}%
        %{\end{tabular}}%
109
      % Header line
110
      \renewcommand*{\glossaryheader}{%
111
112
        \textbf{Symbol} & \textbf{Name} & \textbf{Description}%
        \tabularnewline%
113
        \tabularnewline%
114
        %\\%
115
116
        %\\%
        %\endhead%
117
118
        %\endfoot%
119
120
      % What to do between groups
      \renewcommand*{\glsgroupskip}{\tabularnewline}
121
122
      % How the entry looks like
123
      \renewcommand*{\glossentry}[1]{%
```

```
124
        \glsentryitem{##1}% Entry number if required
125
        \glstarget{##1}{\glossentrysymbol{##1}} &
126
        %\glossentrysymbol{##1}
                                    &% Symbol
127
        \glossentryname{##1} &% Name
128
        \glossentrydesc{##1}%&% Description
129
        %\glsentrvuseri{##1}%
                                 % Unit in User1-Variable
130
        \tabularnewline%
131
      }%
132 }
133
134 % -----
135
    % Symbols-styles for papers
136
      % -----
137
138
      \newglossarystyle{stmonecolpapersymbolstyle}{%
139
        %\renewcommand{\glossarysection}[2][]{}% no title
        \renewcommand*{\glsclearpage}{}% avoid page break before glossary
140
141
        \renewenvironment{theglossary}%
142
          %{\begin{longtabu} to \linewidth {clXcl}}%c}}%
143
          %{\end{longtabu}}%
144
          {\xltabular[1]{\linewidth}{clXcl}}%
145
          {\endxltabular}%
146
        % Header line
        \renewcommand*{\glossaryheader}{}%
147
148
        % indicate what to do at the start of each logical group
        %\renewcommand*{\glsgroupheading}[1]{}
149
150
        % What to do between groups -> no skip
151
        \renewcommand*{\glsgroupskip}{}
        % How the entry looks like
152
        \renewcommand*{\glossentry}[1]{
153
154
          \glsentryitem{##1}% Entry number if required
155
          \glstarget{##1}{\glossentrysymbol{##1}} & % Symbol
156
          \glossentryname{##1}
                                     %& % Name
           \tabularnewline%
157
158
        }%
      }
159
160
161 % https://tex.stackexchange.com/a/216434/44634
162 % needs: \usepackage{multicol}
    \newglossarystyle{stmtwocolpapersymbolstyle}{%
163
164
      %\renewcommand{\glossarysection}[2][]{}% no title
      \renewenvironment{theglossary}%
165
166
        {\begin{multicols}{2}\raggedright}
167
        {\end{multicols}}
```

```
168
      % Header line
169
      \renewcommand*{\glossaryheader}{}%
170
      \renewcommand*{\glsgroupheading}[1]{}% indicate what to do at the start
         of each logical group
171
      \renewcommand*{\glsgroupskip}{}% What to do between groups -> no skip
172
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
173
      % set how each entry should appear:
174
      \renewcommand*{\glossentry}[2]{
        \noindent\makebox[2.5em][c]{\glstarget{##1}{\glossentrysymbol{##1}}}%
175
         Symbol
176
        \glossentryname{##1}% Name
177
        \newline
178
      }
179 }
180
181 % -----
182
    % Exponent-styles
183 % -----
184
185
    \newglossarystyle{stmexponentstyle}{%
186
      %\renewcommand{\glossarysection}[2][]{}% no title
187
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
188
      \renewenvironment{theglossary}%
189
        {\xltabular[1] {\linewidth}{@{\ \ }r@{}lX}}
190
        {\endxltabular}%
191
      % Header line
192
      \renewcommand*{\glossaryheader}{%
193
        \mbox{\mbox{$\mbol}$} \& \mbol} \& \mbox{\mbonly} 
194
        \tabularnewline%
195
        \tabularnewline%
196
      }%
      % What to do between groups
197
198
      \renewcommand*{\glsgroupskip}{\tabularnewline}
      % How the entry looks like
199
      \renewcommand*{\glossentry}[1]{%
200
201
        \glsentryitem{##1}% Entry number if required
202
        \protect\ensuremath{\protect\left(\protect\phantom{a}\protect\right)}
203
        \glstarget{##1}{\protect\ensuremath{\protect\vphantom{a}^{\
        glossentrysymbol{##1}}} &
204
        \glossentrydesc{##1}% Description
205
        \tabularnewline%
206
      }%
207 }
```

```
208
209 % -----
210 % Index-styles
211 % -----
212
213 \newglossarystyle{stmindexstyle}{%
214
      %\renewcommand{\glossarysection}[2][]{}% no title
215
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
216
      \renewenvironment{theglossary}%
217
        {\xltabular[1] {\linewidth}{@{\ \ }r@{}lX}}%
218
        {\endxltabular}%
219
      % Header line
220
      \renewcommand*{\glossaryheader}{%
221
        \mbox{\mbox{$\mbol}$} \& \mbol} \& \mbox{\mbonly} 
222
        \tabularnewline%
223
        \tabularnewline%
224
      }%
225
      % What to do between groups
226
      \renewcommand*{\glsgroupskip}{\tabularnewline}
227
      % How the entry looks like
228
      \renewcommand*{\glossentry}[1]{%
229
        \glsentryitem{##1}% Entry number if required
230
        \protect\ensuremath{\protect\left(\protect\phantom{a}\protect\right)}
231
        \glstarget{##1}{\protect\ensuremath{\protect\vphantom{a}_{\}}
        glossentrysymbol{##1}}} &%
232
        \glossentrydesc{##1}% Description
233
        \tabularnewline%
234
      }%
235 }
236
237 % -----
238 % Operator style
239 % -----
240
241
    \newglossarystyle{stmoperatorstyle}{%
242
      %\renewcommand{\glossarysection}[2][]{}% no title
243
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
244
      \renewenvironment{theglossary}%
245
        {\tilde{1}_{\tilde{0}}} {\tilde{0}_{\tilde{0}}} 
246
        {\endxltabular}%
247
      % Header line
248
      \renewcommand*{\glossaryheader}{%
249
        \mbox{\mbox{$\mbol}} & \mbox{\mbol} \
```

```
250
        \tabularnewline%
251
        \tabularnewline%
252
      }%
253
      % What to do between groups
254
       \renewcommand*{\glsgroupskip}{\tabularnewline}
255
      % How the entry looks like
256
      \renewcommand*{\glossentry}[1]{%
257
         \glsentryitem{##1}% Entry number if required
258
         \glsentryuseri{##1} &
259
         \glsentryuserii{##1} &
260
         \glsentryuseriii{##1} &
261
         \glossentrydesc{##1}
                                   %% % Description
        \tabularnewline%
262
263
      }%
264 }
265
266 % -----
267 % Style to show the keys
268 % -----
269
270 \newglossarystyle{stmsymbollabelstyle}{%
271
      \renewcommand*{\glsclearpage}{}% avoid page break before glossary
272
      \renewenvironment{theglossary}%
273
         {\xltabular[1]{\linewidth}{Xc}}%
274
        {\endxltabular}%
275
      % Header line
276
      \renewcommand*{\glossaryheader}{%
277
        \textbf{Label} & \textbf{Symbol}
278
        \tabularnewline%
279
        \tabularnewline%
280
      }%
281
      % What to do between groups
282
      \renewcommand*{\glsgroupskip}{\tabularnewline}
283
      % How the entry looks like
284
      \renewcommand*{\glossentry}[1]{%
285
         \glsentryitem{##1}% Entry number if required
286
        \glsentrycounterlabel{##1} &
287
         \glstarget{##1}{\glossentrysymbol{##1}}% &
        \tabularnewline%
288
289
      }%
290
    }
291
292 \ \newglossarystyle{stmoperatorlabelstyle}{\%}
293
       \renewcommand*{\glsclearpage}{}% avoid page break before glossary
```

```
294
       \renewenvironment{theglossary}%
295
         {%
296
           %\begingroup%
297
           %\renewcommand{\arraystretch}{1.4}%
298
           \x = \frac{1}{\pi}{\pi} {X@{\ \;}r@{\c@{\}1}}
299
        }%
300
        {%
301
           \endxltabular%
302
           %\endgroup
303
        }%
304
      % Header line
305
       \renewcommand*{\glossaryheader}{%
306
         \label{label} & \multicolumn{3}{@{}c@{}}{\textbf{Symbol}}\% & \%
307
        \tabularnewline%
308
        \tabularnewline%
309
      }%
      % What to do between groups
310
311
      \renewcommand*{\glsgroupskip}{\tabularnewline}
312
      % How the entry looks like
313
      \renewcommand*{\glossentry}[1]{%
314
         \glsentryitem{##1}% Entry number if required
         \glsentrycounterlabel{##1} &
315
316
        \glsentryuseri{##1} &
317
         \glsentryuserii{##1} &
318
        \glsentryuseriii{##1}% &
319
        \tabularnewline%
320
      }%
321 }
322
323 %\newglossarystyle{stmoperatorlabelstyle}{%
324 %
       %\renewcommand{\glossarysection}[2][]{}% no title
325 %
       % avoid page break before glossary
326 %
       \renewcommand*{\glsclearpage}{}
327 %
       \renewenvironment{theglossary}%
328 %
329 %
            \begingroup%
330 %
            \renewcommand{\arraystretch}{1.4}%
331 %
           \ \begin{longtabu} to \linewidth {X0{\ \;}r0{}c0{}1}
332 %
           \x| 1 {\left( \frac{1}{\sqrt{x}} \right)} 
333 %
         }%
334 %
         {%
335 %
            %\end{longtabu}
336 %
            \endxltabular%
337 %
            \endgroup
```

```
338 % }%
339 % % Header line
340 % \renewcommand*{\glossaryheader}{%
341 %
         \label{label} & \multicolumn{3}{0{}co{}}}{\text{Label}} & \multicolumn{3}{0{}}co{}}{\text{Label}} % & % \\
342 %
         \tabularnewline%
343 %
        \tabularnewline%
344 %
        %\endhead%
345 %
        %\endfoot%
346 % }%
347 % % indicate what to do at the start of each logical group
348 % %\renewcommand*{\glsgroupheading}[1]{}%
349 % What to do between groups
350 % %\renewcommand*{\glsgroupskip}{}%
351 % % What to do between groups
352 % \renewcommand*{\glsgroupskip}{\tabularnewline}
353 % \renewcommand*{\glossentry}[1]{%
354 %
         \glsentryitem{##1}% Entry number if required
355 %
        \glsentrycounterlabel{##1} &
356 %
        \glsentryuseri{##1} &
357 %
        \glsentryuserii{##1} &
358 %
        \glsentryuseriii{##1}% &
359 %
       \tabularnewline%
360 % }%
361 %}
362
363
365 % That's it
367
368 % Finally, we'll use \endinput to indicate that LaTeX can stop reading
       this file. LaTeX will ignore anything after this line.
369 \endinput
```