

Stroke-Based Rendering

**Aaron Hertzmann
University of Washington**

Lucian Freud. *Reflection* (self portrait). 1985

Many SBR algorithms...

Unified view

Vector field illustration

Input

Output

Energy function:

$$\sum \|G - B(x, y)\|^2$$

Turk and Banks, SIGGRAPH 96

Stippling

Input

Output

Secord, NPAR 02

3D illustration

**3D model/
intensity**

Hatching

Hatching orientations

From 3D data

User input

Emphasis variation

Source image

Weights

Jigsaw image mosaics

Kim and Pellacini, SIGGRAPH 02 (Friday morning)

Focus on automation

- Painting software is an artistic tool
- Computer performs repetitive tasks
 - e.g. placing brush strokes
- This talk: “High-level” paintbox

Outline

- Greedy algorithms
- Optimization algorithms

Greedy algorithms

Greedy algorithms

```
while not done  
    pick a starting point  
    create a stroke
```

Vector field visualization

- Problem statement

Input

Output

Greedy algorithm

Goal: spacing d between strokes

Vector field visualization

Illustrating smooth surfaces

Hertzmann and Zorin, SIGGRAPH 00

Painterly rendering

Problem statement

Input image

Painting

The Impressionist

Haeberli, SIGGRAPH 90

Stroke orientations

Source Image

Painting

Gallery effects

Litwinowicz, SIGGRAPH 97

First Layer

Second Layer

Final Painting

Brush strokes

Curved strokes

“Impressionist” tomatoes

文明市民 建文明城市

守交规
人车各行其道

01733

Optimization algorithms

Optimization algorithms

- Define formal energy and constraints
- Iteratively improve the rendering

Stippling

Lloyd's algorithm

With graphics support: Hoff, SIGGRAPH 99

Hausner, SIGGRAPH 01

Stippling

Weighted stippling

Input

Output

Tile mosaics

Tile mosaics

Hausner, SIGGRAPH 01

Paint by relaxation

Source image

Painting

$$\sum \left\| I(x, y) - P(x, y) \right\|^2 + N$$

Paint by relaxation

Source image

Weights

$$\sum w(x, y) \| I(x, y) - P(x, y) \|^2 + N$$

Summary

- Stroke-based rendering:
 - *Place strokes to minimize an error function*
- Two algorithmic approaches:
 - **Greedy algorithms**
 - *more intuitive to design*
 - *harder to interpret and control*
 - **Optimization algorithms**
 - *formal specification*
 - *slower*