Ficha 2

Topologia do espaço \mathbb{R}^n . Funções de \mathbb{R}^n para \mathbb{R}^m . Domínios e gráficos

- 1. Em cada uma das alíneas seguintes S representa o conjunto de todos os pontos $(x,y) \in \mathbb{R}^2$ que verificam as desigualdades dadas. Esboce S no plano, diga e justifique se S é aberto ou fechado. Determine a fronteira de S e indique, justificando, um ponto interior, um ponto fronteiro e um ponto de acumulação de S. Se os conjuntos são compactos? conexos?
 - (a) $x^2 + y^2 > 1$;
 - (b) $1 \le x^2 + y^2 < 2$;
 - (c) $x^2 + y^2 \le 2x$;
 - (d) $3x^2 + 2y^2 < 6$;
 - (e) $1 \le x \le 2$ e 3 < y < 4;
 - (f) $y = x^2$;
 - (g) $y < x^2$ e |x| < 2;
 - (h) $(x^2 + y^2 1)(4 x^2 y^2) > 0$;
 - (i) $x^2 + y^2 2y \ge 0$ e $x^2 + y^2 4y \le 0$.
- 2. Em cada uma das alíneas seguintes S representa o conjunto de todos os pontos $(x, y, z) \in \mathbb{R}^3$ que verificam as desigualdades dadas. Esboce S, e diga justificando se S é aberto ou fechado. Se os conjuntos são compactos? conexos?
 - (a) $z^2 x^2 y^2 > 1$;
 - (b) $|x| \le 1$, |y| < 1 e |z| < 1;
 - (c) x + y + z < 1;
 - (d) $x^2 + y^2 \le 4$ e $-3 \le z \le \sqrt{x^2 + y^2}$.
- 3. Determine o domínio das funções seguintes
 - (a) $f(x,y) = x^4 + y^4 2x^2y^2$;
 - (b) $f(x, y, z) = \ln(x^2 + y^2 + z^2)$;
 - (c) $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 2 & \text{se } (x,y) = (0,0); \end{cases}$
 - (d) $f(x,y) = \frac{1}{y}\cos x^2$;

(e)
$$f(x,y) = \arcsin\sqrt{\frac{x}{y}}$$
.

Determine os conjuntos de nível em cada caso. Faça ilustração geométrica onde possível.

4. Encontre o domínio D da função de duas variáveis

- (a) $f(x,y) = \arcsin(x^2 + y^2)$;
- (b) $f(x,y) = \arcsin \frac{y}{x}$.

Desenha no plano coordenado o conjunto D, a sua aderência \overline{D} e as linhas de nível da função f.

5. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)},$$

e o conjunto $A = D_f \cup \{(-1,0)\}$, onde $D_f \subset \mathbb{R}^2$ representa o domínio de f.

- (a) Determine interior, fronteira, fecho, derivado e conjunto de pontos isolados de A;
- (b) Diga, justificando, se o conjunto A é aberto, fechado, conexo, compacto.

Faça ilustração geométrica.

6. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \frac{\sqrt{x - \sqrt{y}}}{\ln(x^2 + y^2)}.$$

Determine o domínio $D\left(f\right)$ da função f e responde às perguntas seguintes.

- (a) Se o conjunto D(f) é aberto ou fechado?
- (b) Se o conjunto D(f) é conexo?
- (c) Quais são pontos da fronteira $\partial D\left(f\right)$ que não pertencem a $D\left(f\right)$?
- (d) Se o conjunto $\partial D(f) \setminus D(f)$ é compato? conexo?

Justifica bem cada resposta. Dê ilustração geométrica.

7. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \frac{\sqrt{9 - x^2 - y^2} \ln(x^2 + y^2)}{xy - 1}.$$

Determine o domínio D(f) de f e responde às perguntas seguintes:

- (a) Se o conjunto D(f) é aberto ou fechado?
- (b) Se o conjunto $\overline{D(f)}$ (aderência de D(f)) é compacto ? conexo?
- (c) Determine o conjunto derivado D(f)' e a fronteira $\partial D(f)$.
- (d) Se D(f) tem pontos isolados? quais são?

Justifica bem cada resposta. Dê ilustração geométrica.

8. Considere a função de duas variáveis

$$f(x,y) = \frac{\arcsin(x - y^2)}{xy}.$$

- (a) Determine o domínio D(f) desta função e representa-o geometricamente.
- (b) Se o conjunto D(f) é conexo ou não ?
- (c) Determine a aderência $\overline{D(f)}$ do domínio. Se $\overline{D(f)}$ é um conjunto conexo?

9. Encontre as superfícies de nível da função

$$u = \sqrt{x^2 + y^2 - z^2}.$$

Interprete geometricamente.

10. Determine as superfícies de nível da função

$$f\left(x,y,z\right) = \frac{x^2 + y^2}{z}.$$

Interprete geometricamente (dê esboço pelo menos de três superfícies de nível consecutivas).

3

11. Desenha superfície em \mathbb{R}^3 definida implicitamente com a equação:

(a)
$$4x^2 + y^2 - 9z^2 = 4$$
;

(b)
$$z^2 + 4y - x^2 - 2x - y^2 = 5$$
;

(c)
$$(x^2 - y^2 - z)(x^2 + y^2 - z) = 0.$$

12. Desenha superfície em \mathbb{R}^3 definida parametricamente com as equações:

(a)
$$\begin{cases} x = r \cos \theta, \\ y = 2r \sin \theta, \\ z = r^2, \quad r \ge 0, \theta \in [0, 2\pi[.]] \end{cases}$$
(b)
$$\begin{cases} x = \cos \theta \sin \varphi, \\ y = 2 \sin \theta \sin \varphi, \\ z = 3 \cos \varphi, \quad \theta \in [0, 2\pi[.]] \varphi \in [0, \pi]. \end{cases}$$

(c)
$$\begin{cases} x = \cos \theta + \sin \theta, \\ y = \cos \theta - \sin \theta, & \theta \in [0, 2\pi[...]] \end{cases}$$

13. Determine o contradomínio das funções seguintes e verifique se é limitado e fechado:

(a)
$$f(x,y) = \sqrt{9 - x^2 - y^2}$$
;

(b)
$$f(x,y) = 3 - x - y$$
;

(c)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
.

Nas alíneas (a) e (b) construi os gráficos de respectivas funções.

14. Encontre o domínio da aplicação $f:\mathbb{R}^2 \to \mathbb{R}^2$ definida abaixo e desenhe-o no plano

$$f(x,y) = (\ln(1-x^2-y^2), \sqrt{x^2-2x+y^2}).$$