Pierre-Antoine Graham

HOMEWORK 2: LINEARIZED GRAVITY

David Kubiznak and Ghazal Geshnizjani *Relativity*

Contents

1	Linearized field equations	2
2	Let's simplify our lives	3
3	Gravitomagnetism	2
4	Acknowledgement	5

1 Linearized field equations

Weak gravitational effects can be modeled as a perturbation of the flat Minkowski metric η . On the level of manifolds, this perturbation can be seen as a diffeomorphism $\phi: M \to M'$ mapping flat spacetime M into a weakly curved manifold M'. A global coordinate chart $\psi: M \to \mathbb{R}^4$ on the flat spacetime can be converted to a coordinate chart ψ' on the disformed manifold as $\psi' = \psi \circ \phi^{-1}: M' \to \mathbb{R}^4$. Taking the coordinates on M to be cartesian, we work with the inherited coordinates on M' as a starting point. In these coordinates, the full metric $g_{\mu\nu}$ can be Taylor expanded in a small parameter λ as $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} + O(\lambda^2)$ where $h_{\mu\nu}$ is the perturbation depending linearly on λ . For all the following calculations, we drop the $O(\lambda^2)$ but keep in mind that everything represents a first-order expansion in λ .

To write the first-order contribution to the Einstein equations arising from this perturbation, we first compute the inverse metric. Expanding it in λ around the inverse Minkowski metric, we have $g_{\mu\nu} = \eta^{\mu\nu} + f^{\mu\nu}$ and

$$\delta_{\rho}^{\nu} = g_{\rho\mu}g^{\mu\nu} = \eta_{\rho\mu}\eta^{\mu\nu} + h_{\rho\mu}\eta^{\mu\nu} + \eta_{\rho\mu}f^{\mu\nu} \iff f_{\rho}^{\nu} = -h_{\rho}^{\nu} \iff f^{\rho\nu} = -h^{\rho\nu}.$$

Then the expansion of the Christoffel symbols read

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} (g_{\mu\rho,\nu} + g_{\rho\nu,\mu} - g_{\mu\nu,\rho}) = \frac{1}{2} (\eta^{\sigma\rho} - h^{\sigma\rho}) (h_{\mu\rho,\nu} + h_{\rho\nu,\mu} - h_{\mu\nu,\rho}) = \frac{1}{2} \eta^{\sigma\rho} (h_{\mu\rho,\nu} + h_{\rho\nu,\mu} - h_{\mu\nu,\rho})$$

because $\eta_{\mu\nu,\rho}=0$ in cartesian coordinates. The Riemann tensor can now be expressed as

$$\begin{split} R^{\rho}{}_{\sigma\mu\nu} &= \Gamma^{\rho}{}_{\nu\sigma,\mu} - \Gamma^{\rho}{}_{\mu\sigma,\nu} + \Gamma^{\rho}{}_{\mu\lambda}\Gamma^{\lambda}{}_{\nu\sigma} - \Gamma^{\rho}{}_{\nu\lambda}\Gamma^{\lambda}{}_{\mu\sigma} \\ &= \Gamma^{\rho}{}_{\nu\sigma,\mu} - \Gamma^{\rho}{}_{\mu\sigma,\nu} = \frac{1}{2}\eta^{\rho\lambda}(h_{\nu\lambda,\sigma\mu} + h_{\lambda\sigma,\nu\mu} - h_{\nu\sigma,\lambda\mu}) - \frac{1}{2}\eta^{\rho\lambda}(h_{\mu\lambda,\sigma\nu} + h_{\lambda\sigma,\mu\nu} - h_{\mu\sigma,\lambda\nu}) \\ &= \frac{1}{2}\eta^{\rho\lambda}(h_{\nu\lambda,\sigma\mu} - h_{\nu\sigma,\lambda\mu} - h_{\mu\lambda,\sigma\nu} + h_{\mu\sigma,\lambda\nu}). \end{split}$$

Contracting the ρ and μ indices, we get the following Ricci tensor:

$$\begin{split} R_{\sigma\nu} &= \frac{1}{2} \eta^{\mu\lambda} (h_{\nu\lambda,\sigma\mu} - h_{\nu\sigma,\lambda\mu} - h_{\mu\lambda,\sigma\nu} + h_{\mu\sigma,\lambda\nu}) = \frac{1}{2} (h_{\nu}^{\mu}_{,\sigma\mu} - h_{\nu\sigma,\lambda}^{\lambda} - h^{\lambda}_{\lambda,\sigma\nu} + h^{\mu}_{\sigma,\mu\nu}) \\ &= \frac{1}{2} (h_{\nu}^{\mu}_{,\sigma\mu} + h^{\mu}_{\sigma,\mu\nu} - \Box h_{\nu\sigma} - h_{,\sigma\nu}), \quad h = h^{\lambda}_{\lambda} \end{split}$$

where we used the fact raising indices with $g^{\mu\nu}$ for tensors proportionnal to λ reduces to contracting them with $\eta^{\mu\nu}$ at first order in λ (the $-h^{\mu\nu}$ term only contributes to second order). Contracting the remaining indices (with the Minkowski) metric yields the Ricci scalar

$$R = \eta^{\sigma \nu} R_{\sigma \nu} = \frac{1}{2} (h^{\sigma \mu}_{,\sigma \mu} + h^{\sigma \mu}_{,\mu \sigma} - \Box h^{\nu}_{,\nu} - h_{,\nu}^{\nu}) = h^{\sigma \mu}_{,\sigma \mu} - \Box h.$$

Combining all the previous results, the linearised Einstein tensor can be written as

$$G_{\sigma \nu} = R_{\sigma \nu} - \frac{1}{2} \eta_{\sigma \nu} R = \frac{1}{2} (h_{\nu \mu, \sigma \mu}^{\mu} + h_{\sigma, \mu \nu}^{\mu} - \Box h_{\nu \sigma} - h_{, \sigma \nu} - \eta_{\sigma \nu} h_{\rho \mu}^{\rho \mu} + \eta_{\sigma \nu} \Box h).$$

We define $\bar{h}_{\sigma \nu} = h_{\sigma \nu} - \frac{1}{2} \eta_{\sigma \nu} h$ with trace $\bar{h} = \eta^{\sigma \nu} \bar{h}_{\sigma \nu} = h - \frac{4}{2} h = -h$. With this in mind, the perturbation can be written as $h_{\sigma \nu} = \bar{h}_{\sigma \nu} + \frac{1}{2} \eta_{\sigma \nu} (-\bar{h})$. Substitution of this form in the Einstein tensor leads to

$$\begin{split} G_{\sigma \nu} &= \frac{1}{2} (h_{\nu}{}^{\mu}{}_{,\sigma \mu} + h^{\mu}{}_{\sigma,\mu \nu} - \Box h_{\nu \sigma} - h_{,\sigma \nu} - \eta_{\sigma \nu} h^{\rho \mu}{}_{,\rho \mu} + \eta_{\sigma \nu} \Box h) \\ &= \frac{1}{2} (\bar{h}_{\nu}{}^{\mu}{}_{,\sigma \mu} - \frac{1}{2} \bar{h}_{,\sigma \nu} + \bar{h}^{\mu}{}_{\sigma,\mu \nu} - \frac{1}{2} \bar{h}_{,\sigma \nu} - \Box \bar{h}_{\sigma \nu} + \frac{1}{2} \eta_{\sigma \nu} \Box \bar{h} + \bar{h}_{,\sigma \nu} - \eta_{\sigma \nu} \bar{h}^{\rho \mu}{}_{,\rho \mu} + \frac{1}{2} \eta_{\sigma \nu} \Box \bar{h} - \eta_{\sigma \nu} \Box \bar{h}) \\ &= \frac{1}{2} (\bar{h}_{\nu}{}^{\mu}{}_{,\sigma \mu} + \bar{h}^{\mu}{}_{\sigma,\mu \nu} - \Box \bar{h}_{\sigma \nu} - \eta_{\sigma \nu} \bar{h}^{\rho \mu}{}_{,\rho \mu}) \end{split}$$

with

$$\begin{split} h_{\nu}{}^{\mu}{}_{,\sigma\mu} &= \bar{h}_{\nu}{}^{\mu}{}_{,\sigma\mu} - \frac{1}{2}\eta_{\nu}{}^{\mu}\bar{h}_{,\sigma\mu} = \bar{h}_{\nu}{}^{\mu}{}_{,\sigma\mu} - \frac{1}{2}\bar{h}_{,\sigma\nu}, \quad h^{\mu}{}_{\sigma,\mu\nu} = \bar{h}^{\mu}{}_{\sigma,\mu\nu} - \frac{1}{2}\eta^{\mu}{}_{\sigma}\bar{h}_{,\mu\nu} = \bar{h}^{\mu}{}_{\sigma,\mu\nu} - \frac{1}{2}\bar{h}_{,\sigma\nu} \\ \Box h_{\sigma\nu} &= \bar{h}_{\sigma\nu} - \frac{1}{2}\eta_{\sigma\nu}\Box\bar{h}, \quad h_{,\sigma\nu} &= -\bar{h}_{,\sigma\nu}, \quad \eta_{\sigma\nu}h^{\rho\mu}{}_{,\rho\mu} = \eta_{\sigma\nu}\bar{h}^{\rho\mu}{}_{,\rho\mu} - \frac{1}{2}\eta_{\sigma\nu}\eta^{\rho\mu}\bar{h}_{,\rho\mu} = \eta_{\sigma\nu}\bar{h}^{\rho\mu}{}_{,\rho\mu} - \frac{1}{2}\eta_{\sigma\nu}\Box\bar{h}. \end{split}$$

Finally, the relation between the Einstein tensor and the stress-energy tensor $T_{\mu\nu}$ is provided by Einstein equations. We take $T_{\mu\nu}$ to be of the order of λ consistently with the weak field on almost flat space ($T_{\mu\nu}$ has no zeroth order contribution) assumptions. The perturbation satisfies the equation

$$\frac{1}{2}(\bar{h}^{\mu}{}_{\nu,\sigma\mu}+\bar{h}^{\mu}{}_{\sigma,\nu\mu}-\Box\bar{h}_{\sigma\nu}-\eta_{\sigma\nu}\bar{h}^{\rho\mu}{}_{,\rho\mu})=\frac{1}{2}(2\bar{h}^{\mu}{}_{(\sigma,\nu)\mu}-\Box\bar{h}_{\sigma\nu}-\eta_{\sigma\nu}\bar{h}^{\rho\mu}{}_{,\rho\mu})=8\pi G T_{\sigma\nu}$$

with gravitational coupling strength G.

2 Let's simplify our lives

(a) Since coordinate transformations locally transform the metric components without changing the spacetime it describes, we can interpret them as gauge transformations on a tensor component field $g_{\mu\nu}$. To preserve the validity of our linearized expansion, we consider the effect of infinitesimal coordinate transformations $x^{\mu\prime}(x) = x^{\mu} - \xi^{\mu}(x)$ with ξ at order in λ . This ensures that a coordinate change preserves $\eta_{\mu\nu}$ at zeroth order and sends $h_{\mu\nu}$ to a perturbation in the range satisfying the linearized Einstein equations. The transformed components $h'_{\mu\nu}(x')$ will satisfy the equation and we recover a notion of linearized covariance. Relating the $g_{\mu\nu}(x)$ components and the gauge transformed components $g'_{\mu\nu}(x')$ at first order, we have

$$\begin{split} \eta_{\mu\nu} + h_{\mu\nu}(x) &= g_{\mu\nu}(x) = x^{\mu\prime}_{,\mu} x^{\nu\prime}_{,\nu\prime} g^{\prime}_{\mu\nu}(x^{\prime}(x)) \\ &= (\delta^{\sigma}_{\mu} - \xi^{\sigma}_{,\mu}(x))(\delta^{\rho}_{\nu} - \xi^{\rho}_{,\nu}(x))(\eta_{\sigma\rho} + h^{\prime}_{\sigma\rho}(x^{\prime}(x))) \\ &= \eta_{\mu\nu} + h^{\prime}_{\mu\nu}(x^{\prime}(x)) - \delta^{\sigma}_{\mu} \eta_{\sigma\rho} \xi^{\rho}_{,\nu}(x) - \delta^{\rho}_{\nu} \eta_{\sigma\rho} \xi^{\sigma}_{,\mu}(x) \\ &= \eta_{\mu\nu} + h^{\prime}_{\mu\nu}(x^{\prime}(x)) - \xi_{\mu,\nu} - \xi_{\nu,\mu} \end{split}$$

Comparing the right and left-hand sides of this expression yields $h'_{\mu\nu}(x'(x)) = h_{\mu\nu}(x) + \xi_{\mu,\nu}(x) + \xi_{\nu,\mu}(x)$. To bring the dependency of $h'_{\mu\nu}$ to x explicitly, we write the expansion $h'_{\mu\nu}(x'(x)) = h'_{\mu\nu}(x) + \xi^{\sigma}(x)h'_{\mu\nu,\sigma}(x)$ where the second term is second order in λ and does not contribute so $h'_{\mu\nu}(x'(x)) = h'_{\mu\nu}(x)$.

(b) Using the previous result, the gauge transformation of $\bar{h}_{\sigma \nu}$ to $\bar{h}'_{\sigma \nu}$ reads

$$\begin{split} \bar{h}'_{\mu\nu}(x) &= h_{\mu\nu}(x) + \xi_{\mu,\nu}(x) + \xi_{\nu,\mu}(x) - \frac{1}{2} \eta_{\mu\nu} \eta^{\sigma\rho} (h_{\sigma\rho}(x) + \xi_{\sigma,\rho}(x) + \xi_{\sigma,\rho}(x)) \\ &= \bar{h}_{\mu\nu}(x) + \xi_{\mu,\nu}(x) + \xi_{\nu,\mu}(x) - \eta_{\mu\nu} \xi_{\sigma,\sigma}^{\ \sigma}(x). \end{split}$$

Now we contract the μ index of $\bar{h}_{\mu\nu}$ with a derivative and get

$$\begin{split} \bar{h}'_{\mu\nu,}{}^{\mu}(x) &= \bar{h}_{\mu\nu,}{}^{\mu}(x) + \xi_{\mu,\nu}{}^{\mu}(x) + \xi_{\nu,\mu}{}^{\mu}(x) - \eta_{\mu\nu}{}^{\mu}\xi_{\sigma,}{}^{\sigma}(x) \\ &= \bar{h}_{\mu\nu,}{}^{\mu}(x) + \xi_{\mu,\nu}{}^{\mu}(x) + \xi_{\nu,\mu}{}^{\mu}(x) - \xi_{\sigma,\nu}{}^{\sigma}(x) \\ &= \bar{h}_{\mu\nu,}{}^{\mu}(x) + \Box \xi_{\nu}(x). \end{split}$$

Choosing ξ_{ν} to make $\bar{h}'_{\mu\nu}{}^{\mu}(x)$ vanish constitutes a choice of gauge called the *De Donder gauge*. The coordinate transforms leading to this gauge are constrained by

$$\Box \xi_{\nu}(x) = -\bar{h}_{\mu\nu}^{\mu}(x)$$

which is a wave equation with $-\bar{h}_{\mu\nu}^{\ \mu}(x)$ sources for each ν . Given any starting $\bar{h}_{\mu\nu}$, we can compute the associated source and solve the wave equation to go to the De Donder gauge. In this gauge, the Einstein equations derived above become

$$8\pi G T_{\sigma \nu} = \frac{1}{2} (\bar{h}'_{\mu \sigma,}{}^{\mu}{}_{\nu} + \bar{h}'_{\mu \nu,}{}^{\mu}{}_{\sigma} - \Box \bar{h}'_{\sigma \nu} - \eta_{\sigma \nu} (\bar{h}'_{\rho \mu,}{}^{\mu})^{\rho}) = -\frac{1}{2} \Box \bar{h}'_{\sigma \nu} \iff \Box \bar{h}'_{\sigma \nu} = -16\pi G T_{\sigma \nu}.$$

In the following steps, we work in De Donder gauge and drop $^\prime$ to simplify notation.

3 Gravitomagnetism

(a) The linearization of gravity works for $T_{\sigma\nu}$ of the order of λ which is realised far from sources. Going further, the Newtonian limit is taken by approximating that the only significant $T_{\sigma\nu}$ component is mass density $\rho=T_{00}$. Then, all other components of Einstein equations have no significant sources at all times and vanish in the Newtonian limit. We can identify the Newtonian gravitationnal potential ϕ with $-\frac{1}{4}\bar{h}_{00}$ (or $h_{00}=\bar{h}_{00}-\frac{1}{2}\bar{h}_{00}=-2\phi$, $\bar{h}=\eta^{\mu\nu}\bar{h}_{\mu\nu}=-\bar{h}_{00}$ because only one diagonal element is non-zero). The Einstein equation associated with this component reads

$$\Box \bar{h}_{00} = -16\pi G T_{00} \iff 4\pi G \rho = -\left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right) \phi$$

and in the quasi-static field limit (slowly changing ϕ , not enough to emit considerable gravitational radiation, of the order of the field variations in celestial mechanics) we recover $\nabla^2 \phi = 4\pi G \rho$. The solution for $h_{\mu\nu}$ consistent with $\bar{h}_{\mu\nu}$ is

$$h_{\mu\nu} = \bar{h}_{\mu\nu} + \frac{1}{2} \eta_{\mu\nu} (-\bar{h}) = \begin{cases} \frac{1}{2} \bar{h}_{00} \delta_{ij}, & (\mu, \nu) = (i, j) \\ 0, & (\mu, \nu) = (i, 0) \\ \frac{1}{2} \bar{h}_{00}, & (\mu, \nu) = (0, 0). \end{cases}$$

which leads to the linearized metric

$$ds^2 = \left(-1 + \frac{1}{2}\bar{h}_{00}\right)dt^2 + \left(1 + \frac{1}{2}\bar{h}_{00}\right)(dx^2 + dy^2 + dz^2).$$

We make sense of the g_{ij} elements by comparing them to the weak field limit of the Schwarzschild for spherically symmetric energy density ρ .

We consider a point mass moving on a curve $\gamma: \mathbb{R} \to M'$. Its points are represented in the coordinate chart inherited from cartesian coordinates on M by $x^{\mu}(\tau)$ parametrized by proper time τ (Lorentzian arc length for timelike velocities). In the Newtonian limit, an infinitesimal proper time change on γ reads

$$-d\tau^2 = -(1-2\phi)dt^2 + (1+2\phi)\left(dx^2 + dy^2 + dz^2\right) \\ \Longrightarrow -1 = -(1-2\phi)\left(\frac{dt}{d\tau}\right)^2 + (1+2\phi)\left(\left(\frac{dx}{d\tau}\right)^2 + \left(\frac{dy}{d\tau}\right)^2 + \left(\frac{dz}{d\tau}\right)^2\right).$$

At leading order in λ (\sim neglecting gravitational time dilation and associated space effect) the proper time parametrization behaves the same way it does in Minkowski space. To go from Minkowsk-like proper time to Galilean-like absolute time we take $\frac{dx}{d\tau}$, $\frac{dy}{d\tau}$ $\frac{dz}{d\tau}$ to be small (neglecting special relativistic time dilation). This means that the Minkowski-like coordinate system is such that the three-velocity of the mass stays close to the time direction for all τ where the Newtonian limit applies. This three-velocity constraint reduces the previous equation to $1 = \frac{dt}{d\tau}$ implying parametrizing by proper time is equivalent to parametrizing by coordinate time t. A schematic way to write this conclusion is $x^{\mu}(\tau(t)) = x^{\mu}(t + O(v^2) + O(\lambda)) = x_0^{\mu}(t) + O(v^2) + O(\lambda)$ and $\frac{d}{d\tau} = \frac{dt}{d\tau} \frac{d}{d\tau} = (1 + O(\lambda) + O(v^2)) \frac{d}{dt}$ where ν represents three-velocity (the dependency starts at $O(\nu^2)$ because of the Minkowski lorentz factor expansion). With this conclusion in mind, we can write the geodesic equation describing the free trajectory in M' as follows

$$\begin{split} 0 &= \frac{d^2 x^{\mu}(\tau)}{d\tau^2} + \Gamma^{\mu}{}_{\alpha\tau} \frac{dx^{\alpha}(\tau)}{d\tau} \frac{dx^{\beta}(\tau)}{d\tau} \\ &= (1 + O(\lambda) + O(v^2))^2 \frac{d^2 x_0^{\mu}(t) + O(v^2) + O(\lambda)}{dt^2} + \Gamma^{\mu}{}_{\alpha\beta} (1 + O(\lambda) + O(v^2))^2 \frac{dx_0^{\alpha}(t) + O(v^2) + O(\lambda)}{dt} \frac{dx_0^{\beta}(t) + O(\lambda) + O(v^2)}{dt}. \end{split}$$

Since $\Gamma^{\mu}{}_{a\tau}$ is first order in λ (see linearized expression given above), the leading order in ν and λ of the geodesic equation is $0 = \frac{d^2x^{\mu}(\tau)}{dt^2}$ (Newton's principle of inertia). To retrieve the dominant gravitationnal effets we go to first order in λ and define $x^{\mu}(\tau(t)) = x_1^{\mu}(t) + O(\nu^2) + O(\lambda^2)$ to get

$$0 = (1 + O(\lambda) + O(v^2))^2 \frac{d^2 x_1^{\mu}(t) + O(v^2) + O(\lambda^2)}{dt^2} + \Gamma^{\mu}{}_{\alpha\beta} (1 + O(\lambda) + O(v^2))^2 \frac{d x_1^{\alpha}(t) + O(v^2) + O(\lambda^2)}{dt} \frac{d x_1^{\beta}(t) + O(\lambda^2) + O(\lambda^2)}{dt}$$

Gravitationnal dilation effects vanish in the first term at $O(\lambda)$ because x_1^{μ} is already at $O(\lambda)$ and all other $O(\lambda)$ factors are neglected

$$=\frac{d^2x_1^{\mu}(t)}{dt^2}+\Gamma^{\mu}{}_{\alpha\beta}\frac{dx_0^{\alpha}(t)}{dt}\frac{dx_0^{\beta}(t)}{dt}, \quad \text{For the } \Gamma^{\mu}{}_{\alpha\beta}=O(\lambda) \text{ term, only the zeroth order contributions } x_0^{\mu} \text{ are preserved}$$

$$=\frac{d^2x_1^{\mu}(t)}{dt^2}+\Gamma^{\mu}{}_{00}\frac{dx_0^{0}(t)}{dt}\frac{dx_0^{0}(t)}{dt}, \quad dx^i/d\tau=(1+O(\lambda)+O(v^2))dx^i/dt=O(v)+O(\lambda): \text{ spacial velocities factors vanish at } O(v^0)$$

$$=\frac{d^2x_1^{\mu}(t)}{dt^2}+\frac{1}{2}\eta^{\mu\rho}(h_{0\rho,0}+h_{\rho0,0}-h_{00,\rho}), \quad \text{principle of inertia at } O(\lambda^0) \Longleftrightarrow x_0^0=t$$

$$\Longrightarrow 0=\frac{d^2x_{1,i}(t)}{dt^2}-\frac{1}{2}h_{00,i}=\frac{d^2x_{1,i}(t)}{dt^2}+\phi_{,i}, \quad \text{lowering the index to get a gradient, } h_{00}=\bar{h}_{00}-\frac{1}{2}\bar{h}_{00}=-2\phi$$

(b) If we allow significant energy flux ($T_{0i}=T_{i0}$ components) while keeping the stress (T_{ij} components) negligible, the non-vanishing components of $\bar{h}_{\mu\nu}$ becomes $\bar{h}_{\mu0}=\bar{h}_{0\mu}$. These components can be associated with a four-potential $A_{\mu}=-\bar{h}_{\mu0}/4$ sourced by the four-courent $J_{\mu}=-T_{0\mu}$. Writing Einstein's equations and the De Donder gauge condition for the nonzero components gives

$$-4\Box A_{\mu} = \Box \bar{h}_{0\mu} = -16\pi G T_{0\mu} = 16\pi G J_{\mu} \iff \Box A_{\mu} = -4\pi G J_{\mu}, \quad \bar{h}_{0\mu,}{}^{\mu} = -4A_{\mu,}{}^{\mu} = 0 \iff A_{\mu,}{}^{\mu} = 0$$

which is analogous to Maxwell's equations for electromagnetism (an important difference remains through energy conditions that forbid negative charge densities T_{00}). As before we work in the quasi-static field limit where $A_{\mu,0}$ is taken negligible. Again, the Newtonian limit is used to write the geodesic equation for a point mass up to $O(\lambda)$ and $O(\nu)$ (we go further than to extract leading order gravitomagnetic effects) as

$$\begin{split} 0 &= (1 + O(\lambda) + O(v^2))^2 \frac{d^2 x_1^\mu(t) + O(v^2) + O(\lambda^2)}{dt^2} + \Gamma^\mu_{\ \alpha\beta} (1 + O(\lambda) + O(v^2))^2 \frac{d x_1^\alpha(t) + O(v^2) + O(\lambda^2)}{dt} \frac{d x_1^\beta(t) + O(\lambda^2) + O(v^2)}{dt} \\ &= \frac{d^2 x_1^\mu(t)}{dt^2} + \Gamma^\mu_{\ \alpha\beta} \frac{d x_0^\alpha(t)}{dt} \frac{d x_0^\beta(t)}{dt} = \frac{d^2 x_1^\mu(t)}{dt^2} + \Gamma^\mu_{\ 00} \frac{d x_0^0(t)}{dt} \frac{d x_0^0(t)}{dt} + \Gamma^\mu_{\ 0i} \frac{d x_0^0(t)}{dt} v^i(t), \quad \text{with } v^i = \frac{d x_0^i(t)}{dt} \\ &= \frac{d^2 x_1^\mu(t)}{dt^2} + \frac{1}{2} \eta^{\mu\rho} (h_{0\rho,0} + h_{\rho 0,0} - h_{00,\rho}) + \eta^{\mu\rho} (h_{\rho i,0} + h_{\rho 0,i} - h_{0i,\rho}) v^i = \frac{d^2 x_1^\mu(t)}{dt^2} - \frac{1}{2} h_{00,}^\mu - 4(A^\mu_{\ ,i} - A_{i,}^\mu) v^i, \ h_{0i} = \bar{h}_{0i} - \frac{1}{2} \eta_{0i} \bar{h} = \bar{h}_{0i} \\ &\Longrightarrow 0 = \frac{d^2 x_{1,j}(t)}{dt^2} - E_j - 4(\varepsilon_{ij}{}^k B_k) v^i = \frac{d^2 x_{1,j}(t)}{dt^2} - E_j + 4\varepsilon_i{}^k{}_j v^i B_k. \end{split}$$

where we identified $\epsilon_{ij}{}^k B_k = A_{j,i} - A_{i,j}$ and $E_i = -\phi_{,i} - A_{i,0} = -\phi_{,i}$ in analogy with the electromagnetic field extracted from the four-potential. The equivalent of Lorentz force was recovered. Its associated *electric* charge q equals the inertial mass m of the particle and cancels with it. The coefficient of the magnetic term is 4 times as big as the coefficient in electromagnetism and has a reversed sign.

Acknowledgement

Thanks to Nikhil for a discussion about the interpretation of the $h_{\mu\nu}$ solution obtained from the $\bar{h}_{\mu\nu}$.

References

- [1] David Kubizňák. Introduction to Relativity. 2021.
- [2] Aldo Riello. Fourteen Lectures in CLASSICAL PHYSICS. 2023.