

6. Autómatas de pila

6.1. Autómatas de pila

Fernando Rosa Velardo

Autómatas de pila: los autómatas para los LIC

- ¿Qué es un autómata de pila (AP)?
 - Un AP es a un LIC...
 - ...lo que un AF es para un lenguaje regular
- AP == [ε-AFN+ "una pila"]
- ¿Por qué una pila?

Autómata de pila - Definición

- Un AP es P := $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$:
 - Q: conjunto de estados
 - ∑: alfabeto
 - Γ: símbolos de pila
 - δ: función de transición
 - q₀: start state
 - Z₀: símbolo de pila inicial
 - F: estados finales

δ: La función de transición

- $\delta : Q \times (\sum U \{\epsilon\}) \times \Gamma \rightarrow \text{conjuntos de } Q \times \Gamma^*$
- - transición del estado p al estado q
 - a es el símbolo leido de la entrada
 - 3. X el el símbolo en la cima de la pila
 - Y está en Γ^* (palabra de símbolos de pila)

Si
$$Y = \varepsilon$$
: Desapila(X)

Si
$$Y=Z_1Z_2...Z_k$$
: X se desapila y se sustituye por Y

(Z₁ pasa a ser la cima de la pila)

$$_{iv.}$$
 Si Y=ZX Apila(Z)

Ejemplo

```
Sea L_{wwr} = \{ww^R \mid w \text{ en } (0+1)^*\}

• GIC para L_{wwr}: S \rightarrow 0S0 \mid 1S1 \mid \epsilon

• AP para L_{wwr}:

• P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F)

= (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})
```

Configuración inicial del AP:

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$$

$$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$$

Se apila el primer símbolo en la pila

$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 0, 1)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

La pila crece apilando más símbolos (parte de w)

7.
$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \, \epsilon, \, Z_0) = \{(\mathbf{q}_2, \, Z_0)\}$$

Pasamos al modo de desapilar (frontera entre w y w^R)

La pila decrece desapilando símbolos (parte de w^R)

Entrada al estado de aceptación

Diagrama de estados de un AP

 $\delta(q_i, a, X) = \{(q_i, Y)\}$

Diagrama de estados de un

Ejemplo 2: paréntesis equilibrados

La pila decrece

Crece la pila

$$\sum = \{0, 1\}$$

$$\Gamma = \{Z_0, 0, 1\}$$

$$Q = \{q_0, q_1, q_2\}$$

Para permitir bloques adyacentes de paréntesis anidados

6. Autómatas de pila

6.2. Lenguajes de un AP: estado final y pila vacía

Fernando Rosa Velardo

Descripción Instantánea (ID) de un AP

- La configuración de un AP en cada momento viene dada por: (q,w,y)
 - q estado actual
 - w input que falta por leer
 - y contenido de la pila (de la cima al fondo)
- Si $\delta(q,a, X) = \{(p, A), ...\}$ es una transición:
 - (q, aw, XB) |--- (p,w,AB)
- |--- representa un movimiento del AP
- |---* representa 0 o más movimientos del AP

ID del AP para L_{wwr}

Observaciones sobre IDs

- Si (q, x, A) |---* (p, y, B) entonces para cada w ∈ Σ* y γ ∈ Γ* también se tiene que:
 - $(q, x w, A \gamma) | ---^* (p, y w, B \gamma)$
- Si (q, x w, A) |---* (p, y w, B) entonces también se tiene que:
 - (q, x, A) |---* (p, y, B)

Hay dos tipos de AP:

los que aceptan por estado final y los que aceptan por pila vacía

Aceptación por...

Comprobar:

- ¿palabra acabada?
- ¿estado final?

Estado final:

- Dado un AP P, el lenguaje aceptado por P por estado final es:
 - L(P)={w | (q_0, w, Z_0) |---* (q, ε, A) con $q \in F$ }

Pila vacía:

- Dado un AP P, el lenguaje aceptado por P por pila vacía es:
 - N(P)={w | (q_0, w, Z_0) |---* $(q, \epsilon, \epsilon), q \in Q$ }

Comprobar:

- ¿palabra acabada?
- ¿pila vacía?

Ejemplo: paréntesis equilibrados

AP que acepta por estado final

AP que acepta por pila vacía

Corrección del AP para L_{wwr}

- Teorema: El AP para L_{wwr} acepta x por estado final ⇔ x=ww^R.
- Demostración:
 - <= Si x=ww^R existe una secuencia de IDs que llevan a un estado final:

$$(q_0,ww^R,Z_0)$$
 |---* (q_0,w^R,wZ_0) |---* (q_1,w^R,wZ_0) |---* (q_1, ϵ,Z_0) |---* (q_2, ϵ,Z_0)

- _ =>
 - Por inducción sobre |x|

Los AP que aceptan por estado final y los que aceptan por pila vacía son equivalentes

- P_F: AP que acepta por estado final
 - $P_F = (Q_F, \sum, \Gamma, \delta_F, q_0, Z_0, F)$
- P_N: AP que acepta por pila vacía
 - $P_N = (Q_N, \sum, \Gamma, \delta_N, q_0, Z_0)$
- Teorema:
 - $(P_N ==> P_F)$ Para cada P_N existe un P_F t.q. $L(P_F) = N(P_N)$
 - $(P_F ==> P_N)$ Para cada P_F existe un P_N t.q. $L(P_F) = N(P_N)$

- Cuando se vacía la pila de P_N, hacemos que P_F vaya a un estado final sin consumir ningún símbolo
- Para detectar cuándo se vacía la pila de P_N: P_F apila un nuevo símbolo de pila X₀ antes de simular P_N

Ejemplo: paréntesis equilibrados

```
P_N: (\{q_0\}, \{(,)\}, \{Z_0, Z_1\}, \delta_N, q_0, Z_0)
```

$$\delta_{N}$$
: $\delta_{N}(q_{0},(,Z_{0}) = \{ (q_{0},Z_{1}Z_{0}) \}$
 $\delta_{N}(q_{0},(,Z_{1}) = \{ (q_{0},Z_{1}Z_{1}) \}$

$$\delta_{N}(q_{0},),Z_{1}) = \{ (q_{0}, \varepsilon) \}$$

$$\delta_N(q_0, \varepsilon, Z_0) = \{ (q_0, \varepsilon) \}$$

$$(,Z_{0}/Z_{1}Z_{0}$$

 $(,Z_{1}/Z_{1}Z_{1}$
 $),Z_{1}/\epsilon$
 $\epsilon,Z_{0}/\epsilon$

$$\begin{split} \delta_{f} \colon & \delta_{f}(p_{0}, \, \epsilon, X_{0}) = \{\, (q_{0}, Z_{0}) \,\} \\ \delta_{f}(q_{0}, (, Z_{0}) = \{\, (q_{0}, Z_{1} \, Z_{0}) \,\} \\ \delta_{f}(q_{0}, (, Z_{1}) = \{\, (q_{0}, \, Z_{1} Z_{1}) \,\} \\ \delta_{f}(q_{0},), Z_{1}) = \{\, (q_{0}, \, \epsilon) \,\} \\ \delta_{f}(q_{0}, \, \epsilon, Z_{0}) = \{\, (q_{0}, \, \epsilon) \,\} \\ \delta_{f}(p_{0}, \, \epsilon, X_{0}) = \{\, (p_{f}, \, X_{0}) \,\} \end{split}$$

 (Z_0/Z_1Z_0)

Por pila vacía

Por estado final

Idea:

- Cuando P_F alcanza un estado final pasamos mediante una transición ε a un nuevo estado, que vacía la pila
- Para evitar que P_F vacíe su pila antes, añadimos un nuevo símbolo de pila X₀

$$P_N = (Q \cup \{p_0, p_e\}, \sum_{i} \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

6. Autómatas de pila

6.3. Equivalencia entre las GIC y los autómatas de pila

Fernando Rosa Velardo

GICs == APs ==> LICs

GIC => AP

<u>Idea:</u> El AP simula derivaciones más a la izquierda de la GIC (y acepta por <u>pila vacía</u>)

Pasos:

- 1. Apila el cuerpo de una producción (símbolo más a la izquierda en la cima de la pila)
- 2. Sustituimos la variable más a la izquierda A (en la cima) por el cuerpo de las A-producciones
- 3. Si el símbolo de la cima es un terminal que coincide con el próximo símbolo del input, lo desapilamos
- El estado es irrelevante (basta con tener un estado)

Construcción GIC=>AP

- Entrada: G= (V,T,P,S)
- Salida: A = ({q}, T, V U T, δ, q, S)
- **δ**:

- Para cada B ∈ V :
 - $\delta(q, ε, B) = \{ (q, α) \mid "B ==>α" ∈ P \}$

- Para cada a ∈ T:

4

Ejemplo: GIC => AP

- $G = (\{S,A\}, \{0,1\}, P, S)$
- P:
 - $S \rightarrow AS \mid \epsilon$
 - A → 0A1 | A1 | 01
- AP = $(\{q\}, \{0,1\}, \{0,1,A,S\}, \delta, q, S)$
- **δ**:
 - $\delta(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}$
 - $\delta(q, \epsilon, A) = \{ (q,0A1), (q,A1), (q,01) \}$
 - $\delta(q, 0, 0) = \{ (q, \epsilon) \}$
 - $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

Ejecución del AP con la entrada 0011

Contenido de la pila (sólo la ejecución exitosa):

Acepta por pila vacía

Corrección de la construcción GIC ==> AP

- w generada por G ⇔ w es aceptada (por pila vacía) por el AP
- Demostración:
 - **=**>
 - Por inducción sobre el número de pasos de derivación
 - **<**=
 - Si $(q, wx, S) \mid --^* (q,x,B)$ entonces $S =>^*_{lm} wB$

AP => GIC

- Si $\delta(q,a,X) = \{(p, Y_1Y_2Y_3...Y_k),...\}$:
 - Se pasa del estado q a p,
 - 2. Se consume el terminal a,
 - 3. La cima X se reemplaza por k variables.
 - Idea: Consideramos una variable "[qXr]" que genera las palabras que permiten pasar de q a r, consumiendo X de la pila:
 - $[qXr] \rightarrow a[pY_1q_1] [q_1Y_2q_2] [q_2Y_3q_3]... [q_{k-1}Y_kr]$
 - Demostración en el libro

Ejemplo: paréntesis

Para evitar confusiones usamos b="(" y e=")"

6. Autómatas de pila

6.4. Autómatas de pila deterministas

Fernando Rosa Velardo

El AP para L_{wwr} es no determinista

Ejemplo: AP no determinista ≠ AP determinista (APD)

AP determinista: definición

- Un AP es determinista (APD) si
 - δ(q,a,X) contiene *a lo sumo* un elemento para cada $a ∈ Σ U {ε}$
- Si δ(q,a,X) es no vacío para algún a∈∑ entonces δ(q, ε,X) es vacío.

