We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more

 $0.3 x_1 + 0.4 x_2 \ge 2000$ $0.4 x_1 + 0.2 x_2 \ge 1500$ $0.2\,x_1 \;+\; 0.3\,x_2 \geq 500$

$$x_2 \leq 6000$$
 and $x_1, x_2 \geq 0;$

-->Phase-1<--

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint-1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1
- 2. As the constraint-2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2
- 3. As the constraint-3 is of type $' \ge '$ we should subtract surplus variable S_3 and add artificial variable A_3
- 4. As the constraint-4 is of type ' \leq ' we should add slack variable S_4
- 5. As the constraint-5 is of type ' \leq ' we should add slack variable S_5

After introducing slack, surplus, artificial variables

Iteration-1		C_j	0	0	0	0	0	0	0	1	1	1	
В	C_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	S ₃	S ₄	S ₅	A_1	A2	A_3	$\frac{X_B}{x_2}$
A_1	1	2000	0.3	0.4	-1	0	0	0	0	1	0	0	$\frac{2000}{0.4} = 5000$
A_2	1	1500	0.4	0.2	0	-1	0	0	0	0	1	0	$\frac{1500}{0.2} = 7500$
A ₃	1	500	0.2	(0.3)	0	0	-1	0	0	0	0	1	$\frac{500}{0.3} = 1666.6667 \to$
S_4	0	9000	1	0	0	0	0	1	0	0	0	0	
S_5	0	6000	0	1	0	0	0	0	1	0	0	0	$\frac{6000}{1} = 6000$
Z = 4000		Z_{j}	0.9	0.9	-1	-1	-1	0	0	1	1	1	
		Z_j - C_j	0.9	0.9 ↑	-1	-1	- 1	0	0	0	0	0	

Positive maximum Z_i - C_i is 0.9 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 1666.6667 and its row index is 3. So, the leaving basis variable is A_3 .

 \therefore The pivot element is 0.3.

Entering = x_2 , Departing = A_3 , Key Element = 0.3

- $+ R_3(\text{new}) = R_3(\text{old}) \div 0.3$
- $+ R_1(\text{new}) = R_1(\text{old}) 0.4R_3(\text{new})$

 $+ R_2(\text{new}) = R_2(\text{old}) - 0.2R_3(\text{new})$

- $+ R_4(\text{new}) = R_4(\text{old})$
- $+ R_5(\text{new}) = R_5(\text{old}) R_3(\text{new})$

Iteration-2		C_j	0	0	0	0	0	0	0	1	1	
В	C_B	X_B	<i>x</i> ₁	x ₂	S_1	S ₂	S ₃	S ₄	S ₅	A_1	A_2	MinRatio $\frac{X_B}{S_3}$
A_1	1	1333.3333	0.0333	0	-1	0	(1.3333)	0	0	1	0	$\frac{1333.3333}{1.3333} = 1000 \rightarrow$
A_2	1	1166.6667	0.2667	0	0	-1	0.6667	0	0	0	1	$\frac{1166.6667}{0.6667} = 1750$
x_2	0	1666.6667	0.6667	1	0	0	-3.3333	0	0	0	0	
S_4	0	9000	1	0	0	0	0	1	0	0	0	
S_5	0	4333.3333	-0.6667	0	0	0	3.3333	0	1	0	0	$\frac{4333.3333}{3.3333} = 1300$
Z = 2500		Z_j	0.3	0	-1	-1	2	0	0	1	1	
		Z_j - C_j	0.3	0	-1	-1	2 ↑	0	0	0	0	

Positive maximum Z_j - C_j is 2 and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 1000 and its row index is 1. So, the leaving basis variable is A_1 .

: The pivot element is 1.3333.

Entering = S_3 , Departing = A_1 , Key Element = 1.3333

- $+ R_1(\text{new}) = R_1(\text{old}) \div 1.3333$
- $+ R_2(\text{new}) = R_2(\text{old}) 0.6667R_1(\text{new})$
- $+ R_3(\text{new}) = R_3(\text{old}) + 3.3333R_1(\text{new})$
- $+ R_4(\text{new}) = R_4(\text{old})$
- $+ R_5(\text{new}) = R_5(\text{old}) 3.3333R_1(\text{new})$

Iteration-3		C_j	0	0	0	0	0	0	0	1	
В	C_B	X_B	<i>x</i> ₁	x ₂	<i>S</i> ₁	S ₂	S_3	S_4	S ₅	A2	$\frac{X_B}{S_1}$
S_3	0	1000	0.025	0	-0.75	0	1	0	0	0	
A_2	1	500	0.25	0	0.5	-1	0	0	0	1	$\frac{500}{0.5} = 1000$
x_2	0	5000	0.75	1	-2.5	0	0	0	0	0	<u> </u>
S_4	0	9000	1	0	0	0	0	1	0	0	

S ₅	0	1000	-0.75	0	(2.5)	0	0	0	1	0	$\frac{1000}{2.5} = 400 \rightarrow$
Z = 500		Z_{j}	0.25	0	0.5	-1	0	0	0	1	
		Z_j - C_j	0.25	0	0.5 ↑	-1	0	0	0	0	

Positive maximum Z_j - C_j is 0.5 and its column index is 3. So, the entering variable is S_1 .

Minimum ratio is 400 and its row index is 5. So, the leaving basis variable is S_5 .

∴ The pivot element is 2.5.

Entering = S_1 , Departing = S_5 , Key Element = 2.5

$$+ R_5(\text{new}) = R_5(\text{old}) \div 2.5$$

$$+ R_1(\text{new}) = R_1(\text{old}) + 0.75R_5(\text{new})$$

$$+ R_2(\text{new}) = R_2(\text{old}) - 0.5R_5(\text{new})$$

$$+ R_3(\text{new}) = R_3(\text{old}) + 2.5R_5(\text{new})$$

$$+ R_4(\text{new}) = R_4(\text{old})$$

Iteration-4		C_j	0	0	0	0	0	0	0	1	
В	C_B	X_B	<i>x</i> ₁	x ₂	S ₁	S ₂	S ₃	S ₄	S ₅	A_2	MinRatio $\frac{X_B}{x_1}$
S_3	0	1300	-0.2	0	0	0	1	0	0.3	0	
A_2	1	300	(0.4)	0	0	-1	0	0	-0.2	1	$\frac{300}{0.4} = 750 \longrightarrow$
x_2	0	6000	0	1	0	0	0	0	1	0	
S_4	0	9000	1	0	0	0	0	1	0	0	$\frac{9000}{1} = 9000$
S_1	0	400	-0.3	0	1	0	0	0	0.4	0	
Z = 300		Z_{j}	0.4	0	0	-1	0	0	-0.2	1	
		Z_j - C_j	0.4 ↑	0	0	-1	0	0	-0.2	0	

Positive maximum Z_i - C_j is 0.4 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 750 and its row index is 2. So, the leaving basis variable is A_2 .

: The pivot element is 0.4.

Entering = x_1 , Departing = A_2 , Key Element = 0.4

$$+ R_2(\text{new}) = R_2(\text{old}) \div 0.4$$

$$+ R_1(\text{new}) = R_1(\text{old}) + 0.2R_2(\text{new})$$

- $+ R_3(\text{new}) = R_3(\text{old})$
- $+ R_4(\text{new}) = R_4(\text{old}) R_2(\text{new})$
- $+ R_5(\text{new}) = R_5(\text{old}) + 0.3R_2(\text{new})$

Iteration-5		C_j	0	0	0	0	0	0	0	
В	C_B	X_B	<i>x</i> ₁	x ₂	S_1	S_2	S ₃	S ₄	S ₅	MinRatio
S_3	0	1450	0	0	0	-0.5	1	0	0.2	
x_1	0	750	1	0	0	-2.5	0	0	-0.5	
x_2	0	6000	0	1	0	0	0	0	1	
S_4	0	8250	0	0	0	2.5	0	1	0.5	
S_1	0	625	0	0	1	-0.75	0	0	0.25	
Z = 0		Z_j	0	0	0	0	0	0	0	
		Z_j - C_j	0	0	0	0	0	0	0	

Since all Z_j - $C_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 750, x_2 = 6000\,$

Min Z = 0

-->Phase-2<--

we eliminate the artificial variables and change the objective function for the original, Min $Z=20x_1+15x_2+0S_1+0S_2+0S_3+0S_4+0S_5$

Iteration-1		C_j	20	15	0	0	0	0	0	
В	C_B	X _B	<i>x</i> ₁	x ₂	<i>S</i> ₁	S ₂	S_3	S ₄	S ₅	$\frac{\textbf{MinRatio}}{\frac{X_B}{S_5}}$
S_3	0	1450	0	0	0	-0.5	1	0	0.2	$\frac{1450}{0.2} = 7250$
<i>x</i> ₁	20	750	1	0	0	-2.5	0	0	-0.5	
x_2	15	6000	0	1	0	0	0	0	1	$\frac{6000}{1} = 6000$
S_4	0	8250	0	0	0	2.5	0	1	0.5	$\frac{8250}{0.5} = 16500$
S_1	0	625	0	0	1	-0.75	0	0	(0.25)	$\frac{625}{0.25} = 2500 \rightarrow$
Z = 105000		Z_{j}	20	15	0	-50	0	0	5	
		Z_j - C_j	0	0	0	-50	0	0	5 ↑	

Positive maximum Z_j - C_j is 5 and its column index is 7. So, the entering variable is S_5 .

Minimum ratio is 2500 and its row index is 5. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 0.25.

Entering = S_5 , Departing = S_1 , Key Element = 0.25

- $+ R_5(\text{new}) = R_5(\text{old}) \div 0.25$
- $+ R_1(\text{new}) = R_1(\text{old}) 0.2R_5(\text{new})$
- $+ R_2(\text{new}) = R_2(\text{old}) + 0.5R_5(\text{new})$
- $+ R_3(\text{new}) = R_3(\text{old}) R_5(\text{new})$
- $+ R_4(\text{new}) = R_4(\text{old}) 0.5R_5(\text{new})$

Iteration-2		C_{j}	20	15	0	0	0	0	0	
В	C_B	X_B	<i>x</i> ₁	<i>x</i> ₂	S_1	S ₂	S ₃	S ₄	S ₅	MinRatio
S_3	0	950	0	0	-0.8	0.1	1	0	0	
<i>x</i> ₁	20	2000	1	0	2	-4	0	0	0	
x_2	15	3500	0	1	-4	3	0	0	0	
S_4	0	7000	0	0	-2	4	0	1	0	
S_5	0	2500	0	0	4	-3	0	0	1	
Z = 92500		Z_j	20	15	-20	-35	0	0	0	
		Z_j - C_j	0	0	-20	-35	0	0	0	

Since all Z_j - $C_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 2000, x_2 = 3500$

Min Z = 92500

Solution provided by AtoZmath.com

Any wrong solution, solution improvement, feedback then Submit Here

🚹 💟 🗓 🕒 😭 Share this solution or page with your friends.

What's new Home

College Algebra

Games

Feedback

About us

Copyright © 2021. All rights reserved. Terms, Privacy

