MATH 301: INTRODUCTION TO PROOFS **HOMEWORK 3**

SINA HAZRATPOUR

Problems.

§2.E (Chapter 2 Exercises) | 2.6, 2.14, 2.15, 2.16

Problem 1. Let X be \mathbb{Z} or \mathbb{Q} and define a sentence p by

$$\forall x \in X, \exists y \in X, (x < y \land [\forall z \in X, \neg(x < z \land z < y)]).$$

Describe what p asserts about the set X. Find the maximally negated logical formula equivalent to $\neg p$. Prove that p is true when $X = \mathbb{Z}$ and false when $X = \mathbb{Q}$.

Problem 2. Let X, Y be classical sets. Prove that $X \setminus (X \setminus Y) = X \cap Y$. Can we drop the condition of being classical about either X or Y and have the same conclusion? If so, which one?

Problem 3. Prove the De Morgan's laws for classical sets A, X, Y and a family of classical sets $\{X_i|i\in I\}$.

- $(1) \ A \setminus (X \cup Y) = (A \setminus X) \cap (A \setminus Y)$
- (2) $A \setminus (X \cap Y) = (A \setminus X) \cup (A \setminus Y)$

(3)
$$A \setminus \bigcup_{i \in I} X_i = \bigcap_{i \in I} (A \setminus X_i)$$

(4) $A \setminus \bigcap_{i \in I} X_i = \bigcup_{i \in I} (A \setminus X_i)$