Sommaire et ressources pour le mémoire : Modélisation de Pandémies par GNNs

30 mai 2025

1 Éléments Essentiels du Mémoire

1.1 Introduction

- Contexte:
 - Enjeux des pandémies (dynamique spatio-temporelle, interdépendances régionales)
 - Limites des modèles classiques (SIR/SEIR)
- Problématique :
 - Exploitation des réseaux complexes et de l'hétérogénéité spatiale
- Objectifs :
 - Framework GNN avec transfer learning
 - Validation sur données réelles

1.2 Revue de Littérature

- Épidémiologie Mathématique (modèles compartimentaux)
- Deep Learning pour séries temporelles (LSTM, Transformers)
- Graph Neural Networks (GCN, GAT, MPNN)
- Transfer Learning (adaptation de domaine)

1.3 Modèle Proposé : Pandemic GNN-Transfer

- Architecture :
 - Module spatial : GAT pour agrégation des voisins
 - Module temporel : LSTM couplée
 - Mécanisme de transfert : adaptation de domaine
- Formalisation Mathématique :

$$h_v^{(t)} = \text{LSTM}\left(\left[x_v^{(t)}, \sum_{u \in \mathcal{N}(v)} \alpha_{vu} h_u^{(t-1)}\right]\right)$$
$$\alpha_{vu} = \text{attention}(Wh_u, Wh_v)$$
$$\mathcal{L} = \mathcal{L}_{\text{MSE}} + \lambda \mathcal{L}_{\text{transfert}}$$

1.4 Expérimentations & Résultats

- Données
 - Épidémiologiques (OMS, CDC (Centers for Disease Control and Prevention), Johns Hopkins)
 - Graphes de mobilité (Google, OSM (OpenStreetMap))
 - Contextuelles (démographie, politiques)
- Résultats (espérés) :
 - --+15% de précision vs LSTM
 - Identification des régions super-propagatrices

1.5 Discussions

1.5.1 Robustesse

1.5.2 Limites & Perspectives

1.6 Conclusion

Références

2 Ressources Informatiques

2.1 Matériel

— \mathbf{GPU} : NVIDIA ≥ 8 Go VRAM (RTX 3080+)

- **CPU/RAM** : 8 cœurs + 32Go RAM

— Stockage : SSD ≥ 512 Go

— Cloud: AWS/GCP/Azure (V100/A100)

2.2 Logiciels & Bibliothèques

Table 1 – Bibliothèques clés

Catégorie	Bibliothèques
GNNs	PyTorch Geometric, DGL
Deep Learning Traitement de données	PyTorch, TensorFlow Pandas, NumPy
Visualisation Visualisation	Matplotlib, Plotly

2.3 Données & Stockage

— Sources: Google Mobility, OMS, OpenStreetMap

— Espace requis : ≥ 50 Go

— Formats : Parquet/HDF5 pour compression

2.4 Gestion de Projet

Versioning : Git + DVCConteneurisation : Docker

FROM pytorch/pytorch:2.0.1-cuda11.7

RUN pip install torch-geometric pandas

2.5 Optimisation

Table 2 – Estimation des coûts

Phase	Temps (GPU V100)	Coût (AWS)
Pré-traitement Entraînement Inférence	2-6h 10-30h <1h	$\sim 5\$$ $30-90\$$ $< 2\$$

2.6 Solutions Économiques

- Google Colab Pro (∼10\$/mois)
- Techniques d'optimisation :
 - Mini-batching
 - Mixed Precision (FP16)