

Ein graphtheoretischer Ansatz für das *multiple* sequence Alignment-Problem

Bachelorarbeit

vorgelegt von:

Joschka Strüber

Matrikelnummer: 418702 Studiengang: B.Sc. Informatik

Thema gestellt von:

Prof. Dr. Jan Vahrenhold

Arbeit betreut durch:

Prof. Dr. Jan Vahrenhold Prof. Dr. Xiaoyi Jiang

Münster, 8. April 2018

Inhaltsverzeichnis

1	Einl	eitung und Motivation	1
	1.1	Multiple Sequence Alignments	1
	1.2	Einsatzgebiete	1
	1.3	Komplexität	1
2	Dyn	amische Programmierung	3
	2.1	Trivia	3
	2.2	Das Paradigma	
	2.3	Der Algorithmus von Needleman und Wunsch	3
3	DIAL	LIGN	5
	3.1	Theoretische Grundlagen	5
	3.2	Gewichtsfunktionen und Substitutionsmatrizen	8
		3.2.1 Gewichtsfunktionen in DIALIGN 1	8
		3.2.2 Substitutionsmatrizen	8
		3.2.3 Gewichtsfunktionen in DIALIGN 2	10
	3.3	Paarweise Alignments mit dynamischer Programmierung	11
	0.0	3.3.1 Speichereffiziente Berechnung der paarweisen <i>Alignments</i>	13
		3.3.2 Laufzeit	15
		3.3.3 Beispiel zur Berechnung paarweiser <i>Alignments</i>	16
	3.4	Überlappgewichte	19
	•••	3.4.1 Umsetzung im Programm und Laufzeit	19
		3.4.2 Beispiel Überlappgewichte	21
	3.5	Konsistenz	22
	0.0	3.5.1 Laufzeit	22
	3.6	Gieriges multiples Alignment	22
	0.0	3.6.1 Laufzeit	22
	3.7	Gesamtkomplexität	22
	3.8	Probleme	22
4	Ein I	Min-Cut-Ansatz für das Konsistenzproblem	23
	4.1	Flussnetzwerke	
		4.1.1 Einführung	
		4.1.2 Wichtige Algorithmen	23
		4.1.3 Der Max-Flow-Min-Cut-Satz	23
	4.2	Inzidenzgraphen und das Auflösen von Inkosistenzen mit Hilfe von Fluss-	
		netzwerken	23
		4.2.1 Komplexität	23
	4.3	Sukzessorgraphen und der Algorithmus von Pitschi	23
	4.4	Ankerpunkte	23
	4.5		2:

Inhaltsverzeichnis

5	Prog	grammierung	25
	5.1	Speichereffiziente Umsetzung der dynamischen Programmierung	25
6	Vali	dierung der Ergebnisse	27
	6.1	Vorstellung BAliBase und (D)IRMBASE	27
	6.2	Test auf BAliBase	27
	6.3	Test auf DIRMBASE und IRMBASE	27
7	Fazi	t	29
	7.1	Zusammenfassung	29
	7.2	Future Works	29

1 Einleitung und Motivation

- 1.1 Multiple Sequence Alignments
- 1.2 Einsatzgebiete
- 1.3 Komplexität

2 Dynamische Programmierung

- 2.1 Trivia
- 2.2 Das Paradigma
- 2.3 Der Algorithmus von Needleman und Wunsch

3 DIALIGN

In diesem Kapitel stelle ich zunächst das DIALIGN-Verfahren für multiples Sequenzalignment nach Morgenstern et al. (1996) vor. Dabei werde ich alle Anpassungen und Verbesserungen des Verfahrens vorstellen, die bis zur Version 2.2 umgesetzt wurden. Anders als der im letzten Kapitel vorgestellte Algorithmus von Needleman-Wunsch aligniert DIALIGN keine einzelnen Symbole, sondern gleich ganze Segmente der Eingabesequenzen. Das hat die Vorteile, dass man zum einen auf die Kosten zum Einfügen von Lücken verzichten kann und dadurch weitgehend von benutzerdefinierten Eingaben unabhängig wird, und weiterhin ist man so in der Lage sowohl global, als auch lokal verwandte Sequenzen einander auszurichten: Wenn man feststellt, dass in einem Bereich keine Segmente vorliegen, die einander ähnlich sind, dann verzichtet man darauf diese sich gegenseitig zuzuweisen und sie werden nicht Teil des *Alignments*.

DIALIGN kann genau wie Needleman-Wunsch im Sinne der jeweiligen Zielfunktion mathematisch optimale paarweise *Alignments* berechnen. Anders als bei letzterem, kann man aber auch mit Hilfe einer Heuristik effizient multiple Alignments berechnen, die aus drei oder mehr Sequenzen bestehen. Das grobe Vorgehen sieht dabei wie folgt aus:

Algorithmus 1 DIALIGN

```
Require: Menge S von Sequenzen mit |S| = n
 1: procedure DIALIGN(S)
        Weise allen möglichen Fragmenten f ein Gewicht w^*(f) zu
 2:
        Berechne mit dynamischer Programmierung alle möglichen \binom{n}{2} paarweisen
 3:
           Alignments aus S
        Sortiere alle Fragmente der paarweisen Alignments nach ihrem Gewicht als f_{1,\dots,n}
 4:
                                                      ▶ Initialisiere Ausgabe für Alignment
 5:
        for i=1, ..., n do
 6:
           if f_i ist zu allen bisher gewählten Fragmenten konsistent then
 7:
 8:
                                                            ▶ Füge f<sub>i</sub> zum Alignment hinzu
           end if
 9:
        end for
10:
        return A
11:
12: end procedure
```

Unter Konsistenz können wir uns zunächst informell vorstellen, dass es bei einer Zuweisung weder zu Überkreuzungen kommt, noch dazu, dass ein Symbol einer Sequenz gleichzeitig mehreren einer anderen zugewiesen wird.

Möchte ich das lieber hier ha ben oder zwischen Definition und Beispielen zu Konsistenz

3.1 Theoretische Grundlagen

Um multiple Sequenzalignments genauer zu verstehen und die dazu nötigen Algorithmen analysieren zu können, brauchen wir einige Definitionen. Diese sind Morgenstern

et al. (1996), Abdeddaïm und Morgenstern (2000) und Corel et al. (2010) entnommen. Dazu betrachten wir im Folgenden eine n-stellige Menge von Sequenzen S über einem endlichen Alphabet. Dabei gibt L_i die Länge der i-ten Sequenz an.

3.1.1 Definition (Stelle und Stellenraum)

Eine Stelle ist ein Tupel (i,p), bei dem i die Sequenz und p die Position eines Zeichens innerhalb dieser Sequenz angibt. Als Stellenraum bezeichnen wir die Menge aller Stellen über unseren Sequenzen $S:\mathcal{S}:=\{(i,p)|1\leq i\leq n,1\leq p\leq L_i\}$ Der Einfachheit identifizieren wir die Stellen der i-ten Sequenz als \mathcal{S}_i . Auf dem Stellenraum existiert eine Halbordnung ' \leq ', wobei $(i,p)\leq (i',p')$ genau dann gilt, falls i=i' und $p\leq p'$.

Nachdem wir bis jetzt nur umgangssprachlich mit *Alignments* und *Konsistenz* zu tun hatten, möchte ich diese Begriffe nun formalisieren.

3.1.2 Definition (Alignment und Konsistenz)

Ein Alignment \mathcal{A} ist eine Äquivalenzrelation auf der Menge \mathcal{S} , die ein bestimmtes Konsistenzkriterium erfüllt. Sei zunächst \mathcal{R} eine beliebige binäre Relation auf \mathcal{S} . Wir können diese mit ' \leq ' zu der Präordnung (auch Quasiordnung genannt) $\leq_{\mathcal{R}=(\leq \cup \mathcal{R})_t}$ erweitern, also einer zweistelligen Relation, die reflexiv und transitiv, aber nicht antisymmetrisch ist. Hierbei bezeichnet \mathcal{X}_t die transitive Hülle einer Relation \mathcal{X} .

Wir bezeichnen \mathcal{R} als konsistent, wenn $\leq_{\mathcal{R}} = (\leq \cup \mathcal{R})_t$ die natürliche Ordnung auf jeder Sequenz erhält, also $x \leq_{\mathcal{R}} y \implies x \leq y$ für alle $x,y \in S_i \forall 1 \leq i \leq n$ gilt. Außerdem nennen wir eine Menge von Relationen $\{\mathcal{R}_1,\ldots,\mathcal{R}_n\}$ konsistent, wenn ihre Vereinigung $\cup_i \mathcal{R}_i$ konsistent ist, sowie ein Paar $(x,y) \in \mathcal{S}^2$ konsistent mit einer Relation \mathcal{R} , falls $\mathcal{R} \cup \{(x,y)\}$ konsistent ist.

Für ein Alignment \mathcal{A} und (x, y) gilt $x\mathcal{A}y$ genau dann, wenn die Stellen x und y durch \mathcal{A} aligniert werden oder identisch sind.

Im Folgenden wollen wir zwei Beispiele betrachten, um das Konzept der Konsistenz und Alignments besser zu veranschaulichen. Informell können wir uns ein Alignment als eine Relation vorstellen, bei der es weder zu einer Überkreuzung von Zuweisungen kommt, noch zu Fällen, bei denen ein Symbol (transitiv) gleichzeitig mehreren Symbolen aus einer einzigen anderen Sequenz zugewiesen ist.

Für alle *Stellen*, die aus der selben kommen Sequenz stammen, gilt $x \leq_{\mathcal{R}y \implies x \leq y}$, wie beispielsweise für a_1 und a_5 : $a_1 \mathcal{A} c_3$, $c_3 \leq c_4$, $c_4 \mathcal{A} b_4$, $b_4 \mathcal{A} a_3$ und $a_3 \leq a_5$. Es folgt $a_1 \leq_{\mathcal{R}} a_5$. Also ist die Relation auf \mathcal{S} konsistent und somit ein Alignment.

Hier handelt es sich um kein Alignment, denn die Konsistenz ist gleich an mehreren Stellen verletzt. Erstens gilt $a_2 \leq_{\mathcal{R}} a_1$, denn $a_2\mathcal{R}c_1, c_1 \leq c_2$ und $c_2\mathcal{R}c_1$. Da aber $c_1 \leq c_2$ gilt, erhält die Relation die natürliche Ordnung auf der erstens Sequenz nicht. Der Grund liegt hier an der Überkreuzung von mehreren Zuweisungen. Des Weiteren gilt $b_5 \leq_{\mathcal{R}} b_3$, weil $b_5\mathcal{R}c_5, c_5\mathcal{R}a_4$ und $a_4\mathcal{R}b_3$, aber $b_5 \nleq b_3$. Hier ist das Problem eine transitive Mehrfachzuweisung von mehreren Symbolen der einen Sequenz auf das gleiche einer anderen (sowohl b_3 als auch b_5 stehen in Relation zu beispielsweise a_4).

Es lässt sich zeigen, dass eine Relation $\mathcal A$ genau dann ein *Alignment* ist, wenn es möglich ist zwischen den alignierten Symbolen Lücken einzufügen, sodass gerade die einander zugewiesenen untereinander stehen. Deshalb bezeichnet man die Äquivalenzklassen $[x]_{\mathcal A} = \{y \in \mathcal S \colon x\mathcal Ay\}$ von $\mathcal A$ auch als *Spalten*. Man kann sich leicht überlegen, dass das bei Überkreuzungen und transitiven Mehrfachzuweisungen nicht möglich ist. Bei unserem ersten Beispiel von oben würde das so aussehen:

Alle Symbole, die Teil einer Zuweisungsspalte sind, also einer Äquivalenzklasse mit mehr als einer *Stelle*, wurden als Großbuchstabe dargestellt, während die unalignierten kleingeschrieben wurden.

Da DIALIGN ein segmentbasiertes Alignmentverfahren ist, brauchen wir noch eine Bezeichnung für eine paarweise, lückenlose Zuweisung von direkt aufeinanderfolgenden Elementen zweier Sequenzen.

3.1.3 **Definition** (Fragment)

Gegeben seien zwei Sequenzen S_1 und S_2 und ein $Alignment \, \mathcal{A}$ auf diesen Sequenzen. Dann definieren wir das Fragment mit Länge l, das an den Stellen i in S_1 und j in S_2 endet mit $1 \leq i \leq l(S_1), 1 \leq j \leq l(S_2)$ und $i-l \geq 0 \leq j-l$, als $f_{i,j,l}$, wenn $S_1[i-k]\,\mathcal{A}\,S_2[j-k]\,\forall\,0 \leq k \leq l-1$ gilt. Manchmal werden Fragmente auch als Gragmante bezeichnet, weil sie in der Matrix des Needleman-Wunsch-Verfahrens als Diagonale von mehreren aufeinanderfolgenden einander zugeordneten Symbolen stehen würden.

Wir können unter einem *Alignment* auch eine Kette von zueinander *konsistenten Frag*menten verstehen.

3.2 Gewichtsfunktionen und Substitutionsmatrizen

3.2.1 Gewichtsfunktionen in DIALIGN 1

Um zwei Fragmente miteinander vergleichen zu können, müssen wir die Ähnlichkeit zwischen ihnen quantifizieren. Je ähnlicher sich zwei Fragmente sind, desto eher können wir davon ausgehen, dass sie einen gemeinsamen evolutionären Ursprung haben und als desto wichtiger schätzen wir sie für unser Alignment ein. In der ersten Variante von DIALIGN hat man eine starre stochastische Gewichtsfunktion benutzt, indem man davon ausging, dass alle Symbole gleichverteilt mit Wahrscheinlichkeit p=0,25 für DNA und p=0,05 für Proteine auftreten (Morgenstern et al., 1996). Gegeben sei ein Fragment f der Länge f0, mit f1 in beiden Sequenzen übereinstimmenden Symbolen. Dann lautet die Wahrscheinlichkeit, dass ein solches Fragment der Länge f2 m oder mehr Übereinstimmungen hat wie folgt:

$$P(l,m) = \sum_{i=m}^{l} {l \choose i} \cdot p^i \cdot (1-p)^{l-i}$$
(3.1)

Wie in anderen Disziplinen, wie der Informationstheorie oder statistischen Mechanik benutzen wir als Gewichtsfunktion nun den negativen Logarithmus von P(l,m). Dadurch bekommen wir ein umso höheres Gewicht, je niedriger die Wahrscheinlichkeit ist, dass das vorliegende Fragment zufällig entstanden ist. Ziel wird es im Folgenden sein die Summe der Gewichte aller Fragmente eines Alignments zu maximieren. Diese bezeichnen wir als Score des Alignments.

$$w(f) := -\ln(P(l, m)) \tag{3.2}$$

3.2.2 Substitutionsmatrizen

Es hat sich jedoch herausgestellt, dass diese Gewichtsfunktion nicht immer zielführend ist. Nicht alle Aminosäuren sind gleich ähnlich und die Übergangswahrscheinlichkeiten zwischen ihnen können dramatisch verschieden sein. So ist beispielsweise eine Veränderung von Arginin zu Lysin recht wahrscheinlich, während jene von Tryptophan zu Glycin nur sehr selten vorkommt (Pearson, 2013).

Deswegen verwenden wir genau wie bei Needleman-Wunsch Substitutionsmatrizen, wie beispielsweise BLOSUM62, um die Ähnlichkeit zwischen zwei *Fragmenten* zu berechnen. Sei dazu $f_{i,j,l}$ ein *Fragment* aus den zwei Sequenzen S_1 und S_2 und S_3 und S_4 eine Substitutionsmatrix. Dann berechnet folgende Formel das Gewicht von S_4 und S_4 und S_5 und S_6 und

$$w(f_{i,j,l}) := \sum_{l=1}^{l} M[i-l+k, j-l+k]$$
(3.3)

Dieses Vorgehen hat einige Vorteile gegenüber der alten Gewichtsberechnung. Zum einen kann man das Gewicht eines $Fragments\ f_{i,j,l}$ sehr einfach berechnen, wenn man das Gewicht des $Fragments\ f_{i-1,j-1,l-1}$ bereits kennt, indem man einen einzigen Ähnlichkeitswert zur Summe hinzu addiert. Zum anderen kann man die Berechnung vieler Gewichte frühzeitig abbrechen und zwar, wenn eine Teilsumme der Ähnlichkeitswerte negativ ist. Dann weiß man, dass ein *Alignment* mit höherem *Score* berechnen werden kann, wenn man diesen Teil des Fragments weglässt. Diese beiden Eigenschaften werden wir

uns im nächsten Abschnitt über die effiziente Berechnung der paarweisen *Alignments* zunutze machen.

Nun wollen wir Substitutionsmatrizen und die Theorie dahinter genauer betrachten. Das werden wir anhand der von Henikoff und Henikoff (1992) entwickelten BLOcks Substitution Matrix (BLOSUM) tun, da andere verbreitete Substitutionsmatrizen ähnlich entstanden sind. Die Matrizen wurden empirisch bestimmt, indem man sich Blöcke von Proteinmotiven anguckte, bei denen ein korrektes *Alignment* bekannt war. Als *Block* bezeichnen wir einen längeren, zusammenhängenden alignierten Bereich ohne gelöschte oder eingefügte Segmente. Für die Berechnung eines Eintrags der Matrix $M_{i,j}$ brauchen wir die Wahrscheinlichkeit, mit der die beiden Aminosäuren auftreten q_i und q_j , sowie die Wahrscheinlichkeit, dass gerade diese beide Aminosäuren miteinander aligniert werden $p_{i,j}$.

$$M_{i,j} := \frac{1}{\lambda} \log \left(\frac{p_{i,j}}{q_i \cdot q_j} \right) \tag{3.4}$$

Der Korrekturterm λ wird benutzt, um die Werte auf ganze Zahlen zu runden, die weniger anfällig für Rundungsfehler und andere Ungenauigkeiten in der Computerarithmetik sind. Diese Vorgehensweise wird, da man den Logarithmus einer Wahrscheinlichkeit berechnet, als log-odd-Verfahren bezeichnet. Der Eintrag $M_{i,j}$ gibt ein Maß für die Wahrscheinlichkeit an, dass das betrachtete Paar in einem Alignment aus genau diesen beiden Aminosäuren auftritt und die Wahrscheinlichkeit für eine längere Folge aufeinanderfolgender Paare wird mit der Summe der Einträge berechnet. Das funktioniert aufgrund der Rechenregeln des Logarithmus: $\log(p_1 \cdot p_2) = \log(p_1) + \log(p_2)$. Möchte man die ursprünglichen Wahrscheinlichkeiten berechnen, muss man lediglich die Summe der Ähnlichkeitswerte exponentieren.

Henikoff und Henikoff (1992) haben mehrere Substitutionsmatrizen entwickelt. Die Zahl hinter jeder BLOSUM gibt die Ähnlichkeit der zur Berechnung der Matrix verwendeten Proteinsequenzen an. Für die BLOSUM62 wurden beispielsweise nur Blöcke benutzt, bei denen es eine Ähnlichkeit von höchstens 62% gab. Im Allgemeinen wird dazu geraten BLOSUMs mit geringen Suffixen wie beispielsweise BLOSUM45 zum alignieren von entfernt verwandten, mit großen wie BLOSUM80 für eng verwandte und BLOSUM62 für durchschnittlich eng verwandte Sequenzen zu benutzen.

BLOSUM62

BLOSUM62 IM ANHANG???

Bei DNA wird meistens nur eine simple Unterscheidung zwischen Treffern und Nichttreffern gemacht. Als Substitutionsmatrix entspräche dies der Einheitsmatrix. Dies hat aber die Nachteile, dass alle *Fragmente* positive Gewichte haben und damit potentiell für unser *Alignment* in Betracht kommen. Besser sind positive Werte für ähnliche und negative für sehr unähnliche Abschnitte, weil sich so der Rechenaufwand verringern lässt. Außerdem kann man mit Matrizen, die dem Einsatzgebiet angepasst sind, oft bessere Ergebnisse erzielen. Nach Pearson (2013) sind die Ähnlichkeiten zwischen zu vergleichenden DNA-Sequenzen deutlich größer, als bei Proteinen. Sie betragen zwischen homologen menschlichen DNA-Abschnitten etwa 99,9% und bei proteinkodierenden Regionen zwischen Mensch und Maus immer noch 80%, während Ähnlichkeiten von unter 50%, anders als bei Proteinen, quasi nicht mehr zu entdecken sind. Dementsprechend können +1/-3 für Treffer und Nichttreffer bei 99%, +2/-3 bei 90% und +5/-4 bei 70% Übereinstimmung benutzt werden.

Ich muss jedoch zugeben, dass die Wahl der richtigen Substitutionsmatrix ein bisschen

dem Henne-Ei-Problem ähnelt: um die Ähnlichkeit von zwei Sequenzen zu bestimmen, müssen wir sie mit der passenden Matrix alignieren. Für die Wahl dieser Matrix sollten wir jedoch wissen, wie ähnlich sich die beiden Sequenzen sind.

Wann genau sich die Berechnung der Gewichte in DIALIGN verändert hat, steht leider in keiner Veröffentlichung, auch wenn sie bereits in Morgenstern *et al.* (1996) als kommende Ergänzung in Betracht gezogen wurde. Spätestens in DIALIGN TX, der neuesten Version des Programms wie wir sie auf der Website der Göttinger Bioinformatik finden (Subramanian *et al.*, 2008), wird diese Technik jedoch angewendet. Dort dient eine modifizierte BLOSUM 62, die nur nichtnegative Werte enthält, als Matrix für Proteinsequenzen, während bei DNA lediglich die Einheitsmatrix benutzt wird.

3.2.3 Gewichtsfunktionen in DIALIGN 2

Das liegt daran, dass die Gewichtsfunktion w einem langen $Fragment\ f$ quasi das gleiche Gewicht zuordnet, wie die Summe der Gewichte der Teilfragmente f_1,\ldots,f_n , wenn man f in diese teilt. Das sorgt dafür, dass man oft bessere Scores erhält, wenn man größere Fragmente aufteilt und dazwischen einzelne Regionen mit geringen Übereinstimmungen weglässt, statt große Fragmente auszuwählen. Neben der Abhängigkeit vom willkürlichen Parameter T und der Tendenz kleine, unbedeutende Übereinstimmungen auszuwählen, hat dies auch den Nachteil, dass die rechenintensive Aktualisierung der Konsistenzgrenzen öfter durchgeführt werden muss.

Deshalb ist man in DIALIGN 2 dazu übergegangen statt der Wahrscheinlichkeit P(l,m), dass in einem Fragment der Länge l mindestens m Übereinstimmungen auftreten, zu berechnen, wie wahrscheinlich es ist, dass in den beiden Gesamtsequenzen S_1 und S_2 mit Längen l_1 respektive l_2 überhaupt eine Sequenz mit Länge l und m Übereinstimmungen auftritt.

$$P^*(l,m) \approx l_1 \cdot l_2 \cdot P(l,m) \tag{3.5}$$

Als neue Gewichtsfunktion w^* ergibt sich dann mit $K := \log(l_1) + \log(l_2)$:

$$w^*(f) := w(f) - K \tag{3.6}$$

Wenn man f nun in $f_1, \ldots f_n$ aufteilt, wird der Korrekturterm K nicht nur einmal, sondern n-mal abgezogen. Das sorgt dafür, dass tendentiell längere Fragmente ausgewählt werden (Morgenstern, 1999). Ein weiterer Vorteil ist, dass der Erwartungswert des Gewichts eines zufälligen Fragments nicht mehr 1, sondern 0 ist. Dadurch haben alle Abschnitte mit unterdurchschnittlicher Ähnlichkeit automatisch negative Gewichte und wir haben eine einfache und schnelle Möglichkeit zu entscheiden, ob ein Fragment weiter für unser Alignment in Betracht gezogen werden muss.

Wie sich der Effekt von w^* auswirkt, wenn man eine Substitutionsmatrix benutzt, die einem zufälligen Fragment im Schnitt ein negatives Gewicht zuordnet, werden wir später nach der Programmierung empirisch feststellen. Möglicherweise ist es dann besser auf ihn zu verzichten. Mit einer (+2/-3)-Matrix haben wir beispielsweise einen Erwartungswert von $E(w(f_{i,j,l})) = \left(\frac{3}{4} \cdot (-3) + \frac{1}{4} \cdot 2\right) \cdot l = -\frac{7}{4} \cdot l$ für ein zufälliges DNA-Fragment der Länge l. Ein anderer Ansatz verbindet die Substitutionsmatrix mit dem Korrekturterm K, indem wir wie DIALIGN TX eine Substitutionsmatrix benutzen, die aber keine negativen Werte enthält. Dafür ziehen wir aber weiterhin K vom Gewicht ab.

3.3 Paarweise Alignments mit dynamischer Programmierung

Nachdem wir uns jetzt genauer mit den Gewichten von Fragmenten beschäftigt haben, können wir uns der Berechnung der paarweisen *Alignments* mit Hilfe von dynamischer Programmierung widmen. Dabei beziehe ich mich, außer wenn anders gekennzeichnet, auf die speichereffiziente Umsetzung aus DIALIGN 2.2, die in Morgenstern (2002) vorgestellt wurde.

Wie bei dynamischer Programmierung üblich, stellen wir zunächst eine Rekursionsgleichung auf. Sei dazu Sc[i,j] der maximal mögliche Score aller Fragmente bis zu den Elementen $S_1[i]$ und $S_2[j]$ zweier Sequenzen S_1 und S_2 . An dieser Stelle tritt sehr ähnlich zu Needleman-Wunsch eine von drei Situationen auf: Die ersten beiden Möglichkeiten sind, dass wir die Stelle (1,i) oder die Stelle (2,j) nicht zu unserem Alignment hinzufügen. Oder aber wir wählen ein Fragment $f_{i,j,l}$ aus, das in (i,j) endet. In diesem Fall wählen wir genau das aus, welches den Score aller in (i,j) endenden Alignments maximiert. Welcher der drei Fälle der richtige ist, um den höchstmöglichen Score bis (i,j) zu berechen, erfahren wir, indem wir das Maximum über sie berechnen.

$$Sc[i,j] = \max \begin{cases} Sc[i-1,j], \\ Sc[i,j-1], \\ \max_{l \ge 1} \{Sc[i-l,j-l] + w^*(f_{i,j,l})\} \end{cases}$$
(3.7)

3.3.1 Satz

Mit der obigen Rekursionsgleichung lässt sich ein optimales paarweises *Alignment* zweier Sequenzen mit Längen L_1 und L_2 in $O(L^3)$ Zeit und $O(L^2)$ Speicherplatz berechnen für $L = \max(L_1, L_2)$. Außerdem gilt für die Menge der möglichen Fragmente $F: |F| \in O(L^3)$.

Beweis. Insgesamt müssen wir $L_1 \cdot L_2 \in O(L^2)$ -viele Tabelleneinträge berechnen, die wir im Allgemeinen auch gleichzeitig im Speicher vorhalten. Für jeden zu berechnenden Eintrag Sc[i,j] brauchen wir Zugriffe auf $(\min(i,j)+2)$ -viele Einträge in der Matrix und müssen $\min(i,j)$ Gewichte neu berechnen. Dabei dominiert die Berechnung der Gewichte, wobei jedes Gewicht nur genau einmal berechnet werden muss (für den Score des Tabelleneintrags, in dem das Fragment endet). Im schlimmsten Fall gilt $L_1=L_2$. Dann gibt es Fragmente der Länge 1 mit jeweils L möglichen Endpunkten in S_1 und S_2 , der Länge zwei mit jeweils L-1 möglichen Endpunkten und so weiter. Die Anzahl aller Fragmente $|F|=\sum_{k=0}^{L-1}(L-k)^2=\frac{1}{6}\cdot L(2L^2+3L+1)\in O(L^3)$ und die naiv berechnete

Anzahl der Zugriffe ist $\sum_{k=0}^{L-1}(L-k)^2\cdot k=\frac{1}{12}\cdot (L-1)L^2(L+1)\in O(L^4)$. Glücklicherweise kann man das Gewicht jedes Fragments $f_{i,j,l}$ in O(1) Zeit aus $f_{i,j,l-1}$ berechnen, denn $w^*(f_{i,j,l})=w^*(f_{i,j,l-1})+M[i-l+1,j-l+1]$, wodurch sich die Laufzeit auf $O(L^3)$ verkleinern lässt.

Um nicht nur den *Score* eines perfekten paarweisen *Alignments* berechenen zu können, sondern auch dieses *Alignment* selbst, müssen wir zunächst noch einige Definitionen einführen. Zunächst definieren wir für ein *Fragment* $f \in F$ das *Präfixgewicht* W(f), das die maximale Summe der Gewichte einer Kette von *Fragmenten* bezeichnet, die mit f endet.

$$W(f) := \max \left\{ \sum_{k=0}^{M} w^*(f_k) : f_1 \ll \ldots \ll f_M = f \right\}$$
 (3.8)

3.3.2 Definition (Vorgänger)

Sei $f_1 \ll \ldots \ll f_M$ eine Kette von *Fragmente*, die das Maximum der vorherigen Gleichung erreicht. Dann bezeichnen wir $P(f) = f_{M-1}$ als den *Vorgänger* von f. Außerdem sei Pr[i,j] das letzte *Fragment* einer optimalen Kette, die spätestens in (i,j) endet.

Jetzt können wir für ein Fragment $f \in F$, das in (i,j) startet, das Gesamtgewicht und den Vorgänger genau definieren. Das Präfixgewicht ist genau das Gewicht von f addiert mit dem Score der Fragmente, die vor f stehen. P(f) und Pr[i,j] sind zwar strenggenommen nicht wohldefiniert und es könnte mehrere Fragmente mit diesen Eigenschaften geben. Wie auch schon in Morgenstern et al. (1996) wählen wir dann das in den Sequenzen am weitesten rechts stehende aus.

$$W(f) = Sc[i-1, j-1] + w^*(f)$$
(3.9)

Der Vorgänger von f ist das letzte Element einer Kette von Fragmente, die vor f enden.

$$P(f) = Pr[i-1, j-1]$$
(3.10)

Damit können wir jetzt (3.7) mit unseren neuen Definitionen umformulieren, denn der dritte Fall der obigen Gleichung ist genau das maximale *Präfixgewicht* eines *Fragments*, das in (i, j) endet.

$$Sc[i,j] = \max \begin{cases} Sc[i-1,j], \\ Sc[i,j-1], \\ \max W(f) : f \text{ endet in } (i,j) \end{cases}$$
(3.11)

Analog zu den Fällen von W(f) können wir jetzt auch Pr[i,j] setzen. Das letzte Fragment einer optimalen Kette bis (i,j) ist das selbe wie bei (i-1,j) beziehungsweise (i,j-1), wenn diese in keinem dieser beiden Stellenpaare endet. Endet sie hingegen in (i,j), dann ist das gesuchte Fragment das, welches das Präfixgewicht aller in (i,j) endenden Fragment maximiert.

$$Pr[i,j] = \begin{cases} Sc[i-1,j], & \text{if } Sc[i,j] = Sc[i-1,j] \\ Sc[i,j-1], & \text{if } Sc[i,j] = Sc[i,j-1] \\ \hat{f}, & \text{if } Sc[i,j] = \max \{W(f) : f \text{ endet in } (i,j)\} \end{cases}$$
(3.12)

Hier gilt $\hat{f} = argmax\{W(f): f \text{ endet in } (i,j)\}$. Jetzt stehen uns alle Informationen zur Verfügung, um neben dem *Score* einer optimalen Kette von *Fragmenten* auch diese selbst zu berechnen. Zunächst sei $f_{\max} = argmax_{f \in F}(W(f))$ das letzte Element dieser Kette. Man erhält es, indem man sich das letzte Element einer optimalen Kette anguckt, die bis ganz ans Ende von S_1 und S_2 reichen kann: $f_{\max} = Pr[L_1, L_2]$. Mit einem Backtrackingalgorithmus sind wir nun in der Lage das optimale paarweise *Alignment* zu berechnen, indem wir mit f_{\max} starten und immer den direkten *Vorgänger* des aktuellen *Fragments* auswählen.

$$f_0 = f_{\text{max}} \text{ und } f_{k+1} = P(f_k)$$
 (3.13)

3.3.1 Speichereffiziente Berechnung der paarweisen Alignments

In diesem Abschnitt beschäftigen wir uns mit einer sehr speichereffizienten und schnellen Implementierung des soeben gesehenen Ansatzes. Zunächst beschränken wir die maximale Länge eines $Fragments\ l_{\rm max}$ auf eine kleine, feste Zahl, beispielsweise 40. Je nach gewünschter Genauigkeit und benötigter Geschwindigkeit kann man diesen Wert vergrößern oder verkleinern. Auch wenn diese Einschränkung den maximal zu erreichenden Score senkt und wir daher keine perfekten Alignments mehr berechnen, hat $l_{\rm max}$ in der Praxis kaum einen Einfluss auf die Güte der Ergebnisse. Das liegt daran, dass wir im Fall von geringen Ähnlichkeiten zwischen Sequenzen nur selten Fragmente mit Längen haben, die $l_{\{max\}}$ überschreiten und im Fall von sehr ähnlichen Sequenzen können wir lange Fragmente auch in mehrere kleinere in der Größenordnung unserer Begrenzung aufteilen. Wir werden zeigen, dass mit dieser Einschränkung ein paarweises Alignment in $O(L^2)$ Zeit und $O(L+N_{\rm max})$ Speicherplatz berechnet werden kann, wobei $N_{\rm max}$ die Anzahl an gleichzeitig gespeicherten Fragmenten ist (Morgenstern, 2002), die durch |F| begrenzt wird.

Wir gehen unsere *Score*matrix Spalte für Spalte von links nach rechts durch. An jeder Position (i,j) berechnen wir mit 3.9 und 3.10 W(f) und P(f) für alle *Fragmente* $f \in \{f_{i+k,j+k,k}: 1 \le k \le l_{\max}\}$, die an der Stelle (i,j) beginnen. Dabei speichern wir Pointer auf W(f) und P(f) in den Listen F_{j+k} , die mit der Spalte j+k assoziiert werden in denen die jeweiligen *Fragmente enden*. Alles was wir dafür an Informationen benötigen sind Sc[i-1,j-1] und Pr[i-1,j-1]. Deshalb müssen wir nicht permanent die ganze Matrix vorhalten, sondern benötigen nur die zuletzt berechnete und die aktuelle Spalte für Sc und Pr, also vier eindimensionale Arrays der Länge L_1 .

Bevor wir zur (j+1)-ten Spalte übergehen, berechnen wir alle Einträge von 1 bis i für die j-te Spalte. Dazu greifen wir auf die Werte der vorhergehenden Spalte (j-1) und auf die zuvor gespeicherten Listen aller $Fragmente\ F_j$ zu , die in der j-ten Spalte enden, wobei wir die Formeln 3.11 und 3.12 benutzen. Man kann sich überlegen, dass für jeden Eintrag (i,j) höchstens $l_{\max} \in O(1)$ Fragmente gespeichert wurden. Sobald wir mit der Berechnung der j-ten Spalte fertig sind, können wir die Werte von Pr[i,j-1] und Sc[i,j-1] für $1 \le i \le L_1$ löschen.

Diesen Vorgang wiederholen wir, bis wir schlussendlich auch alle Werte der letzten, also L_2 -ten, Spalte berechnet haben. Dann kennen wir mit $Sc[L_1, L_2]$ den Score des paarweisen Alignments und können mithilfe der Backtrackingprozedur 3.13 die Fragmente aus denen es besteht bestimmen. Dazu brauchen wir die Mengen F_j , deren Einträge aber glücklicherweise nicht alle dauerhaft gespeichert werden müssen. Sobald Sc[i,j] und

Pr[i,j] für eine Position i,j) berechnet wurden, können wir alle Fragmente, die dort enden, löschen, abgesehen von Pr[i,j], für das immer noch in Frage kommt, dass es Teil der optimalen Kette von Fragmenten ist. Sollte Pr[i,j] nicht in (i,j) enden, können wir sogar alle Einträge aus F_i löschen, die in Zeile i enden.

Algorithmus 2 Speichereffizientes paarweises DIALIGN

```
Require: Zwei Sequenzen S_1 und S_2 mit den Längen L_1 und L_2
 1: procedure PAIRWISEALIGNMENT(S_1, S_2, l_m ax)
         for i \leftarrow 0 \operatorname{do} L_1
 2:
              Sc[i, 0] \leftarrow 0
 3:
         end for
 4:
         for j \leftarrow 1 to L_2 do
 5:
 6:
              for i \leftarrow 1 to L_1 do
 7:
                   for l \leftarrow 1 to l_{\max} do
                       W(f_{i+l,j+l,l}) \leftarrow w^*(f_{i+l,j+l,l}) + Sc[i-1,j-1]
 8:
                        P(f_{i+l,j+l,l}) \leftarrow Pr[i-1,j-1]
 9:
                       F_{i+l} \leftarrow F_{i+l} \cup f_{i+l,i+l,l}
                                                         ▶ Speichere Fragment für Spalte in der es endet
10:
                   end for
 11:
                                       Sc[i-1,j],
                   Sc[i, j] = \max \left\{ Sc[i, j-1], \right.
12:
                                      \max W(f) : f \text{ endet in } (i, j)
                   Setze Pr[i, j] analog zu Sc[i, j]
13:
                   lösche Sc[i, j-1] und Pr[i, j-1]
                                                                              ▶ Lösche alte Spalteneinträge
14:
                   for all f_{i,j,k} \in F_i mit f /Pr[i,j] do
15:
16:
                        lösche F_{i,j,k}
                                                      ▶ Lösche die, die in keiner opt. Kette in (i, j) enden
                   end for
17:
              end for
18:
19:
         end for
         f_0 \leftarrow Pr[L_1, L_2]
20:
         while f_k MIL do
                                                            ▶ Backtracking, um Alignment zu bestimmen
21:
              f_{k+1} \leftarrow P(f_k)
22:
              k \leftarrow k + 1
23:
         end while
24:
25: end procedure
```

Da wir wissen, dass nur Fragmente mit positiven Gewichten Teil unseres Alignments sein können, sind wir in der Lage die Mengen F_j von gespeicherten Fragmenten weiter einzuschränken. Wenn die Teilsumme von Ähnlichkeitswerten bis zu einem bestimmten Punkt negativ, können wir den Durchlauf von 2.7 sofort abbrechen, weil wir wissen, dass wir ein besseres Alignment finden, wenn wir den Teil mit der negativen Summe von Gewichten ignorieren. Außerdem gibt es zwei Situationen bei denen wir die Berechnung der Gewichte für Fragmente zwar nicht abbrechen, aber wissen, dass das aktuell betrachtete Element nicht gespeichert werden muss:

• Bei negativem Gewicht. Es kann beispielsweise sein, dass w(f) zwar positiv ist, aber $w^* = w(f) - K < 0$ gilt. Dann kann dieses *Fragment* den Score zwar nicht erhöhen, aber vielleicht ist es Teil eines größeren, das Teil des finalen *Alignments* sein kann.

- Wenn das Gewicht kleiner ist, als das größte bisher gefundene eines Fragments, das in (i, j) startet. In diesem Fall wissen wir, dass ersteres auf jeden Fall ein besseres Alignment liefern würde.
- Bei DNA: Wenn das Residuenpaar direkt hinter dem Ende des aktuellen Fragments einen positiven Ähnlichkeitswert hat. Das bedeutet, dass dieses auf jeden Fall bessere Ergebnisse liefert und wir das aktuelle nicht speichern müssen. Im Programm können wir dies so umsetzen, dass wir das Fragment $f_{i+l,j+l,l}$ erst dann zu F_{j+l} hinzufügen, wenn wir im nächsten Durchlauf der Schleife 2.7 keins mit einem größeren Gewicht finden. Auf diese Art und Weise suchen wir quasi nach lokalen Maxima der Fragmentgewichte und speichern nur diese. Bei Proteinsequenzen funktioniert dieses Vorgehen nicht, weil es sein könnte, dass es für eins der beiden Symbole weiter hinten in der jeweils anderen Sequenz einen besseren Partner gibt. In diesem Fall brauchen wir aber das andere

Guckt man sich 2.12 genauer an, stellt man fest, dass man gar nicht alle *Fragmente* kennen muss, die in (i, j) enden. Es reicht das zu kennen, welches das *Präfixgewicht* W(f) aller dort endenden Ketten maximiert. Anstatt alle dieser *Fragmente* in F_j zu speichern reicht es zu überprüfen, ob der dritte Fall von 2.12 eintritt und erst dann in 2.10 zu sichern. Das bedeutet, dass wir keine ganze Liste von *Fragmenten* für jede Stelle unserer Tabelle speichern müssen, sondern nur ein einziges.

Widmen wir uns nun N_{\max} , der Anzahl an Fragmenten, die maximal gleichzeitig gespeichert werden. Die Anzahl an gesicherten Fragmenten, die wir noch nicht für Sc[i,j] betrachtet haben, beträgt $l_{\max} \cdot L_1 \in O(L)$, weil wir für jede der nächsten l_{\max} Spalten und dort jede der L_1 -vielen Zeilen das Fragment speichern, das W(f) für alle dort endenden maximiert. Zusätzlich wird die Reihe von Vorgängern für jeden aktuellen Spalteneintrag gesichert, indem wir in Pr[i,j] einen Pointer auf das letzte Fragment einer optimalen Kette für die Teilsequenzen bis zu den Stellen i und j in den beiden Sequenzen speichern. Dieses wiederum speichert einen Pointer auf seinen eigenen Vorgänger und so weiter. Im schlimmsten Fall befinden wir uns in der letzten Spalte der Tabelle und die in den Einträgen endenden optimalen Ketten sind alle unabhängig voneinander. Dann kann es sein, dass diese jeweils aus $O(L_2)$ nah aufeinanderfolgenden Fragmenten der Länge O(1) bestehen. In diesem Fall ist $N_{\max} \in O(L^2)$, genau wir der insgesamt benötigte Speicherplatz. In der Praxis kann man aber erwarten, dass N_{\max} deutlich kleiner ist.

Morgenstern (2002) hat sein Verfahren mit verschiedenen Sequenzen getestet. Dabei hat er festgestellt, dass N_{max} für unabhängige zufällig erstelle Sequenzen im Vergleich zur Größe L zu vernachlässigen ist. Und selbst wenn sehr ähnliche Sequenzen miteinander aligniert wurden, befand sich N_{max} in der Größenordnung von $L \cdot l_{\mathrm{max}}$. So gesehen bietet dieser Ansatz einen großen Vorteil gegenüber der naiven Umsetzung der Rekursionsformel für paarweise Alignments.

3.3.2 Laufzeit

3.3.3 Satz

Ein paarweises optimales Alignment zwischen zwei Sequenzen S_1 und S_2 mit Längen L_1 und L_2 , gegeben eine maximale Fragmentlänge l_{\max} , lässt sich in $O(L^2)$ Zeit berechnen für $L = \max\{L_1, L_2\}$.

Beweis. Das Allokieren des Speicherplatzes für die vier Tabellenspalten (je zwei für Sc[i,j] und Pr[i,j]) und das initialisieren der ersten Spalten benötigt O(L) Zeit. Das Berechnen Vorgänger und Präfixgewichte, sowie das Speichern in $F_{j'}$, der in (i,j) startenden Fragmente benötigt jeweils O(1) Zeit, da ihre Länge durch l_{\max} beschränkt ist. Sc[i,j] und Pr[i,j] lassen sich auch in konstanter Zeit berechnen, da wir nur das Maximum von drei Werten bestimmen müssen. Sollte nicht das Fragment gewählt werden, welches das Präfixgewicht aller in (i,j) endenden Fragmente maximiert, löschen wir diesen einzelnen Eintrag in O(1) Zeit. Dies wird für jeden möglichen der $L_1 \cdot L_2 \in O(L^2)$ Tabelleneinträge berechnet, was auch die Laufzeit der geschachtelten for-Schleifen ist. Der Backtrackingprozess zur Berechnung des optimalen Alignments ist in O(L) Zeit möglich, da wir lediglich der Pointerkette von Vorgänger zu Vorgänger folgen müssen, bis wir am Anfang der Sequenzen angelangt sind. Es folgt die behauptete Laufzeit von $O(L^2)$.

Da wir Alignments zwischen allen $\binom{n}{2} \in O(n^2)$ -vielen Paaren mit jeweils $O(L^2)$ Laufzeit berechnen müssen, kommen wir für die paarweisen Alignments insgesamt auf eine Laufzeit von $O(n^2 \cdot L^2)$

3.3.3 Beispiel zur Berechnung paarweiser Alignments

Um das Verfahren, das diese Bachelorarbeit behandelt, genauer zu verstehen, widmen wir uns jetzt einem Beispiel mit vier DNA-Sequenzen. Zu diesen werden wir im Lauf der Kapitel immer wieder zurückkehren und an ihnen die verschiedenen Schritte unseres Algorithmus der Reihe nach durchführen.

- 1. ADGTCTCA
- 2. GTCADCTCA
- 3. TATCADGG
- 4. DGTCADATC

Als erstes berechnen wir nach dem oben beschriebenen Algorithmus ein paarweises *Alignment* zwischen den ersten beiden Sequenzen.

	Sc	Sc[i,j] $Pr[i,j]$		<i>i</i> , <i>j</i>]	ADGTCTCA GTCADCTCA
j	0	1	0	1	Hier beginnende Fragmente und Kommentare
0	0	0	NIL	NIL	
1	"	"	"	"	
2	"		"	"	$F_2[4] = \{f_{4,2,2}, W(f) = 2, P(f) = NIL\}$
3	"		"	"	$F_3[5] = \{f_{5,3,3}, W(f) = 5, P(f) = NIL\}$
4	"		"	"	0[-1 (0,0,0,0) (7 -7 (7)
5	"		"	"	
6	"		"	"	
7	"		"		
8	"		"		
	Sc[i,j]		[i,j] $Pr[i,j]$		
	Sc	[i, j]	Pr	[i,j]	ADGTCTCA GTCADCTCA
j	Sc 1	[<i>i</i> , <i>j</i>]	<i>Pr</i>	2 2	
j 0					GTCADCTCA
j 0 1	1	2	1	2	GTCADCTCA
j 0 1 2	1 0	2	1 NIL	2 NIL	GTCADCTCA
1	1 0 "	2	1 NIL	2 NIL	GTCADCTCA
1 2	1 0 "	2	1 NIL "	2 NIL "	GTCADCTCA Hier beginnende Fragmente und Kommentare
1 2 3	1 0 "	2	1 NIL "	2 NIL "	GTCADCTCA
1 2 3 4	1 0 "	2 0 " " " 2	1 NIL "	2 NIL " "	
1 2 3 4 5	1 0 " " " " " " "	2 0 " " " 2 "	1 NIL "	2 NIL " " f4,2,2	GTCADCTCA Hier beginnende Fragmente und Kommentare

3.3 Paarweise Alignments mit dynamischer Programmierung

	Sc	[<i>i</i> , <i>j</i>]	Pr[[i, j]	ADGTCTCA GTCADCTCA
j	2	3	2	3	Hier beginnende Fragmente und Kommentare
0	0	0	NIL	NIL	
1	"	"	"	"	
2	"		"	"	
3	"		"	"	
4	2	2	$f_{4,2,2}$	$f_{4,2,2}$	
5	"	5	ín'	$f_{4,2,2}$ $f_{5,3,3}$	
6	"		"	"	
7	"		"	"	$F_4[8]$ wird nicht aktualisiert
8	"	"	"	"	ar-1

	Sc	[<i>i</i> , <i>j</i>]	Pr[i,j]		ADGTCTCA GTCADCTCA
j	3	4	3	4	Hier beginnende <i>Fragmente</i> und Kommentare
0	0	0	NIL	NIL	$ F_5[2] = \{f_{2,5,2}, W(f) = 2, P(f) = \text{NIL}\}, F_7[4] = \{f_{4,7,4}, W(f) = 4, P(f) = \text{NIL}\}, \\ F_8[5] = \{f_{5,8,5}, W(f) = 7, P(f) = \text{NIL}\} $
1	"	"	"	"	
2	"	"	"	"	
3	"	"	"	"	
4	2	2	$f_{4,2,2}$	$f_{4,2,2}$	
5	5	5	$f_{5,3,3}$	$f_{5,3,3}$	
6	"	"	"	11	
7	"	"	"	"	
8	"	"	"	"	$f_{5,3,3}$ statt $f_{8,4,3}$, wähle vorderes <i>Fragment</i> bei Gleichstand; lösche $f_{8,4,3}$ aus $F_4[8]$

	Sc	[<i>i</i> , <i>j</i>]	Pr	[i, j]	ADGTCTCA GTCADCTCA			
j	4	5	4	5	Hier beginnende Fragmente und Kommentare			
0	0	0	NIL	NIL				
1	"	"	"	"	$F_7[4]$ und $F_8[5]$ werden nicht aktualisiert			
2	"	2	"	$f_{2,5,2}$				
3	"	"	"	"				
4	2	"	$f_{4,2,2}$	$f_{4,2,2}$				
5	5	5	$f_{5,3,3}$	$f_{5,3,3}$	bevorzuge $(i, j - 1)$ gegenüber $(i - 1, j)$			
6	"	"	"	"				
7	"	"	"	"				
8	"	"	"	"				

	Sc	[<i>i</i> , <i>j</i>]	Pr[i,j]		ADGTCTCA GTCAD <mark>C</mark> TCA
j	5	6	5	6	Hier beginnende <i>Fragmente</i> und Kommentare
0	0	0	NIL	NIL	
1	"	"	"	"	
2	2	2	$f_{2,5,2}$	$f_{2,5,2}$	
3	"	"	ii ii	ii '	
4	"	"	$f_{4,2,2}$	$f_{4,2,2}$	
-	_	-	1 1		$F_7[6] = \{f_{6,7,2}, W(f) = 4, P(f) = f_{4,2,2}\}, F_8[7] = \{f_{7,8,3}, W(f) = 7, P(f) = f_{4,2,2}\}$
5	5	5	$f_{5,3,3}$	$f_{5,3,3}$	$F_9[8] = \{f_{9,8,4}, W(f) = 10, P(f) = f_{4,2,2}\}$
6	"	"	"	"	~ C 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
7	"	"	"	"	
8	"	"	"	"	

	Sc	[i, j]	Pr	[i, j]	ADGTCTCA GTCADC <mark>T</mark> CA
j	6	7	6	7	Hier beginnende <i>Fragmente</i> und Kommentare
0	0	0	NIL "	NIL "	
2	2	2	f _{2,5,2}	$f_{2,5,2}$	
4 5 6	2 5 "	4 5 "	f _{4,2,2} f _{5,3,3}	<i>f</i> _{4,7,4} <i>f</i> _{5,3,3}	$F_8[7]$ und $F_9[8]$ nicht aktualisiert; <i>Score</i> zwar erreicht, aber nicht übertroffen
7	"	"	"	"	
8	"	"	"	"	
	Sc	[i, j]	Pr[i,j]		ADGTCTCA GTCADCT <mark>C</mark> A
j	7	8	7	8	Hier beginnende <i>Fragmente</i> und Kommentare
0	0	0	NIL "	NIL "	
1 2 3	2	2	f _{2,5,2}	f _{2,5,2}	
4 5 6	4 5 "	4 7 "	f _{4,7,4} f _{5,3,3}	f _{4,7,4} f _{5,8,5}	$F_8[7]$ und $F_9[8]$ nicht aktualisiert; <i>Score</i> zwar erreicht, aber nicht übertroffen
7 8	"	"	"	"	lösche $F_8[7], F_9[8]$ wird nicht aktualisiert
	Sc	[i, j]	Pr	[i, j]	ADGTCTCA GTCADCTCA
j	8	9	8	9	Hier beginnende <i>Fragmente</i> und Kommentare
0	0	0	NIL "	NIL "	
1 2 3	2	2	f _{2,5,2}	$f_{2,5,2}$	
4	4	4	$f_{4,7,4}$	$f_{4,7,4}$	
5	7	7	f _{5,8,5}	$f_{5,8,5}$	
6 7	"	"	"	"	
8	"	10	"	<i>f</i> 9,8,4	

 $f_0=f_{\max}=Pr[8,9]=f_{9,8,4},\,f_1=P(f_0)=f_{4,2,2}$ und zuletzt $f_2=P(f_1)=$ NIL. Das paarweise Alignment zwischen ADGTCTCA und GTCADCTCA sieht also wie folgt aus:

Hierbei wurden alignierte Stellen großgeschrieben und als Zuweisungsspalten genau übereinander gereiht.

Dies sind die Ergebnisse der anderen Alignments:

Sequenzen	Alignments	Score	Sequenzen	Alignments	Score	
1	adgTCTCA	10	1	aDGTCTCa	7	
3	TATCAdgg	10	4	-DGTCadaTC-	1	
2	-gTCADctca	8	2	-GTCADCTCa	16	
3	taTCADgg	0	4	dGTCADATC-	10	
3	taTCADgg-	8				
4	dgTCADatc	0				

3.4 Überlappgewichte

Beim multiplen Sequenzalignment werden normalerweise DNA- oder Proteinsequenzen miteinander verglichen bei denen man davon ausgeht, dass sie einen gemeinsamen evolutionären Ursprung haben. Gibt es diesen, dann sind fast ausnahmslos auch gemeinsame Motive erhalten geblieben, die in vielen oder sogar allen Sequenzen vorkommen. Für ein biologisch korrektes *Alignment* ist es notwendig diese zu finden und über möglichst viele Sequenzen hinweg einander zuzuweisen. Hat man erstmal diese verwandten Abschnitte gefunden und miteinander aligniert, werden in der Regel auch die Zuweisungen zwischen diesen sogenannten *Ankerpunkten* besser (Morgenstern *et al.*, 2006).

Es ist jedoch nicht immer leicht diese Motive zu finden, weil es sein kann, dass sie im Vergleich zu zufälligen Übereinstimmungen klein sind. Dann bekommen diese nur geringe Gewichte durch unsere Gewichtsfunktion und wenn wir am Ende von DIALIGN durch gieriges Auswählen der *Fragmente* das multiple *Alignment* bestimmen, kann es sein, dass sie nicht berücksichtigt werden, weil andere höher gewichteten Zuweisungen zu ihnen *inkonsistent* sind.

Um dieses Problem zu verhindern und Motive zu bevorzugen, die in möglichst vielen Sequenzen vorkommen, führen wir das Konzept der sogenannten Überlappgewichte ein (Morgenstern et al., 1996). Betrachten wir dazu drei verschiedene Sequenzen S_1 , S_2 und S_3 und zwei Fragmente $f^{1,2}$ und $f^{2,3}$ zwischen diesen. Dann kann es sein, dass die beiden Fragmente eine Überlappung in S_2 haben. In diesem Fall ist an dem Alignment ein drittes implizites Fragment $f^{1,3}$ zwischen S_1 und S_3 beteiligt, das auf ein gemeinsames Motiv zwischen allen drei Sequenzen hindeutet. Daher ist es angemessen die ursprünglichen Fragmente stärker zu gewichten, indem wir zu ihnen das Gewicht der Überlappung addieren.

$$\tilde{w}(f^{1,2}, f^{2,3}) \coloneqq w(f^{1,3})$$
 (3.14)

Das Überlappgewicht eines Fragments mit sich selbst und zwischen zwei Fragmenten, die sich nicht überschneiden, definieren wir als 0.

Analog definieren wir das Überlappgewicht eines einzelnen Fragments als sein Gewicht addiert mit der Summe aller Überlappgewichte zwischen sich selbst und allen anderen Fragmenten:

$$\hat{w}(f) := w^*(f) + \sum_{e \in F} \tilde{w}(f, e)$$
 (3.15)

Benutzt man Überlappgewichte, muss man jedoch die Zusammensetzung der Sequenzen stärker beachten. Hat man nämlich eine große Subfamilie von sehr ähnlichen Sequenzen, dann werden alle *Fragmente* zwischen einer Sequenz innerhalb und einer Sequenz außerhalb dieser Familie durch hohe Überlappgewichte gegenüber denen bevorzugt, die zwischen zwei Sequenzen berechnet wurden, die nicht aus der Sequenzfamilie stammen. Vingron und Sibbald (1993) stellen Methoden vor, die solchen Problemen vorbeugen.

3.4.1 Umsetzung im Programm und Laufzeit

Bei DIALIGN werden naiv alle *Fragmente* der paarweisen *Alignments* miteinander verglichen und auf Überschneidungen untersucht. Da es in den $O(n^2)$ *Alignments* zwischen n

Sequenzen jeweils bis zu O(L) Fragmente gibt, kommt man so auf eine Gesamtlaufzeit von $O(n^4 \cdot L^2)$ (Morgenstern, 1999).

Untersucht man das Problem jedoch genauer, stellt man fest, dass man für ein *Fragment* $f^{k,l}$ gar nicht alle *Fragmente* auf Überlappungen überprüfen muss, sondern nur die, an denen eine der beiden Sequenzen S_k oder S_l unseres *Fragments* beteiligt ist. Außerdem müssen wir nicht jedes *Fragment* eines anderen paarweisen *Alignments* betrachten, sondern wir können in sortierten Fragmentketten durch die Start- und Endpunkte sehr genau abschätzen welche für Überlappungen in Frage kommen.

3.4.1 Satz

Für eine Menge S von n Sequenzen und eine Menge F von paarweisen Fragmenten zwischen diesen Sequenzen, lassen sich in $O(n^3 \cdot L)$ Zeit die Überlappgewichte berechnen.

Beweis. Zwischen den n Sequenzen gibt es $\binom{n}{2} \in O(n^2)$ paarweise Alignments. Wir gehen davon aus, dass der vorherige Schritt unseres Verfahrens diese in einer Tabelle A gespeichert hat, wobei $A_{i,j}$ die Fragmente des paarweisen Alignments zwischen S_i und S_j in einer sortierten Liste enthält. Das können wie o.B.d.A. annehmen, weil der Algorithmus diese ohnehin in sortierter Reihenfolge berechnet.

Betrachten wir ein *Alignment* zwischen den Sequenzen S_i und S_k . Dann müssen wir für die *Überlappgewichte* nur die Einträge $A_{i,k}$ und $A_{l,j}$ mit $1 \le k, l \le n$ betrachten, denn es sind nur die *Alignments* relevant, bei denen eine der Sequenzen übereinstimmt. In einer vollständigen Tabelle sind das alle Listen, die in der selben Spalte oder Zeile stehen, also O(n) viele.

Seien $A_{i,k}$ und $A_{k,j}$ zwei Alignments von denen wir die Überlappgewichte berechnen wollen. Dazu müssen wir die Überlappung zwischen allen Fragmenten in S_k bestimmen. Dies können wir in linearer Zeit machen, indem wir parallel über die beiden sortierten Listen traversieren und anhand der Start- und Endpunkte in S_k die impliziten Fragmente zwischen S_i und S_j bestimmen, sowie die Gewichte der Fragmente aktualisieren. Dafür benötigen wir nur O(L) Zeit, weil wir einmalig jedes Element der beiden Listen betrachten, es bis zu O(L) Fragmente pro Alignment gibt und jedes von diesen in der Länge durch $l_{\max} \in O(1)$ beschränkt ist. Insgesamt haben wir also $O(n^2)$ paarweise Alignments für die mit jeweils O(n) anderen Alignments Überlappgewichte berechnet werden müssen, was jeweils O(L) Zeit kostet. Es folgt die Gesamtlaufzeit von $O(n^3 \cdot L)$.

Genau genommen brauchen wir keine quadratische Tabelle, weil der Eintrag $A_{i,j}$ aus Symmetriegründen identisch zu $A_{j,i}$ ist. Auch die Diagonale können wir uns sparen, denn das alignieren einer Sequenz mit sich selbst ist unnötig. Des Weiteren kann man sich beim obigen Algorithmus noch die Hälfte des Aufwands sparen, denn die Überlappgewicht zwischen $A_{i,k}$ und $A_{k,j}$ müssen wir nicht doppelt berechnen, sondern können sie gleich zu den Gewichten in beiden Alignments addieren. Obgleich das nichts an

Tabelle 3.1: Jeder Tabelleneintrag $A_{i,j}$ enthält Liste von *Fragmenten*

der asymptotischen Laufzeit ändert, macht es in der Praxis einen Unterschied.

3.4.2 Beispiel Überlappgewichte

Widmen wir uns den Überlappgewichten an unserem Beispiel und betrachten dazu das Alignment zwischen den Sequenzen S_1 und S_3 . Um das Gewicht zu aktualisieren, müssen wir alle Alignments auf Überlappungen überprüfen, in denen eine der beiden Sequenzen vorkommt.

Da unsere Tabelle nicht vollständig ist, reicht es nicht die Einträge der selben Spalte und Zeile zu überprüfen, weil diese unter Umständen nicht vollständig ist. Stattdessen müssen wir alle Einträge in der ersten und dritten Spalte oder Zeile betrachten. Dann gehen wir alle *Fragmente* der Reihe nach durch und gucken anhand der Startund Endpunkte in der gemeinsamen Sequenz, ob es Überschneidungen gibt. Falls ja, bestimmen wir diese und addieren das Gewicht zu dem unseres *Fragments*.

Tabelle 3.2: Auf Überlappungen zu überprüfende *Alignments*

Zur Erinnerung hier nochmal der bisherige Stand mit den paarweisen Alignments:

<u> </u>			•	•	•
Sequenzen	Alignments	Score	Sequenzen	Alignments	Score
1	adgTCTCA	10	1	aDGTCTCa	7
3	TATCAdgg	10	4	-DGTCadaTC-	1
2	-gTCADctca	0	2	-GTCADCTCa	16
3	taTCADgg	0	4	dGTCADATC-	10
3	taTCADgg-	0	1	adGTCTCA	
4	dgTCADatc	0	2	GTcadCTCA	

Wie wir sehen enthält das von uns betrachtete *Alignment* nur das eine Fragment $f_{8,5,5}$ mit drei Übereinstimmungen und einer Abweichung. Als erstes überprüfen wir die Überlappung mit $A_{2,1}$. Beide haben den gemeinsamen Abschnitt CTCA in S_1 , woraus sich das neue Fragment $\binom{\text{CTCA}}{\text{ATCA}}$ zwischen S_2 und S_3 ergibt. Dieses hat drei Übereinstimmungen, eine Abweichung und somit ein Gewicht von S_3 . In der Folge addieren wir diese Zahl zum Gewicht von $f_{8,5,5}^{1,3}$ und zu dem von $f_{8,9,4}^{1,2}$. Wenn wir diese Anweisungen auch mit und zwischen allen anderen *Alignments* durchführen, kommen wir zu den folgenden *Überlappgewichten*:

Seq.	Frag.	Ü-Gew.	Seq.	Frag.	Ü-Gew.	Seq.	Frag.	Ü-Gew.
2	GTCADCTC	69	1	TCTCA	41	1	GT	20
4	GTCADATC	09	3	TATCA	41	2	GT	20
3	TCAD	47	1	CTCA	34	1	TC	20
4	TCAD	47	2	CTCA	3 4	4	TC	20
3	TCAD	41	1	DGTC	21			
4	TCAD	41	4	DGTC	31			

Da wir im nächsten Schritt die *Fragmente* für unser multiples *Alignment* basierend auf ihren Gewichten gierig auswählen, wurden die Abschnitte bereits sortiert. Ein Algorithmus wird als *gierig* bezeichnet, wenn er eine Entscheidung lokal optimal trifft und danach nicht wieder ändert. In unserem Fall bedeutet das, dass die *Fragmente* mit höheren Gewichten früher gewählt werden und wir sie selbst dann nicht wieder aus unserem multiplen *Alignment* entfernen, wenn sie durch *Inkonsistenzen* verhindern, dass andere, zusammen möglicherweise bessere *Fragment* gewählt werden können. Durch diese radikale Vorgehensweise haben gierige Algorithmen oft gute Laufzeiten, liefern aber nicht

immer die bestmöglichen Ergebnisse. Zu bekannten Vertretern dieses Paradigmas gehören beispielsweise der Algorithmus von Dijkstra zur Bestimmung der kürzesten Pfade aus einem einzelnen Knoten oder die Algorithmen von Prim und Kruskal zur Bestimmung von minimalen Spannbäumen.

3.5 Konsistenz

Die nach ihrem Gewicht sortierten *Fragmente* möchten wir der Reihe nach in unser multiples *Alignment* einfügen, vorausgesetzt, das gerade gewählte ist nicht *inkonsistent* zu den zuvor integrierten.

3.5.1 Laufzeit

$$O(n^3*l+n^2*l^2)$$

3.6 Gieriges multiples Alignment

3.6.1 Laufzeit

$$O(n^2 * l * log(n^2 * l))$$

3.7 Gesamtkomplexität

$$O(n^3 * l * log l + n^2 * l^2)$$

3.8 Probleme

4 Ein Min-Cut-Ansatz für das Konsistenzproblem

-skizzierter Ablauf des Algorithmus

4.1 Flussnetzwerke

- 4.1.1 Einführung
- 4.1.2 Wichtige Algorithmen
- 4.1.3 Der Max-Flow-Min-Cut-Satz
- 4.2 Inzidenzgraphen und das Auflösen von Inkosistenzen mit Hilfe von Flussnetzwerken
- 4.2.1 Komplexität

$$O(n^4 * l^{7/2})$$

4.3 Sukzessorgraphen und der Algorithmus von Pitschi

 $O(n^3*l)$ für n-faches Topological Sort auf einem Knoten mit $O(n^2*l)$ -vielen Kanten im schlimmsten Fall.

4.4 Ankerpunkte

4.5 Gesamtkomplexität

$$O(n^4*l^{7/2})$$

5 Programmierung

5.1 Speichereffiziente Umsetzung der dynamischen Programmierung

6 Validierung der Ergebnisse

- 6.1 Vorstellung BAliBase und (D)IRMBASE
- 6.2 Test auf BAliBase
- 6.3 Test auf DIRMBASE und IRMBASE

7 Fazit

7.1 Zusammenfassung

7.2 Future Works

- Statt paarweisen Alignments, Alignments von je drei Sequenzen berechnen
- · Conditional Random Fields statt Gewichtsfunktionen
- Bessere Heuristik zum Löschen der Kanten aus dem Sukzessorgraph benutzen (gerade wenn Tests zeigen, dass oft sehr viele Kanten gelöscht werden) das könnte vor allem dann vorkommen, wenn die Sequenzen große Überkreuzungen enthalten, weil man dann große Zyklen mit sehr hohen Kantengewichten hat. -> mögliches Paper?
- Statt DIALIGN 2 DIALIGN TX zwischen den Ankerpunkten nutzen
- Wir wollen aus dem Sukzessorgraph möglichst wenige Knoten löschen. Dafür sind Sites, die aber als einzige in ihren Knoten vorkommen, irrelevant.
 - Jede Kante hinter Knoten hat Gewicht von Anzahl an Sites 1 => bevorzugt Zuweisungen über möglichst viele Sequenzen hinweg. Es kann aber sein, dass dadurch viele kleine Zuweisungen aufgelöst werden
 - Jede Kante hinter Knoten hat Gewicht 1, falls mehr als eine Sequenz beteiligt und Gewicht 0, falls nicht => bevorzugt viele kleine Alignments und minimiert Anzahl der Löschungen
- Teile des Algorithmus lassen sich gut parallelisieren:
 - 1. Die $(\frac{1}{2}*(n^2-n))$ -vielen paarweisen Alignments lassen sich parallelisiert berechnen.
 - 2. Die Überlappgewichte lassen sich gut parallelisiert berechnen, weil keins der Ergebnisse von denen der anderen abhängt. Paralleles Lesen der paarweisen Alignments ist kein Problem.
 - 3. Min-Cuts können innerhalb jeder Zusammenhangskomponente parallelisiert berechnet werden.
 - 4. Bei der alten Methode können auch die kürzesten Pfade durch den Sukzessionsgraphen parallelisiert werden, bei den beiden neuen Ansätzen nicht. Das ist aber nicht so schlimm, weil dieser Abschnitt die Laufzeit nicht dominiert.

Literaturverzeichnis

- Abdeddaïm, S. und Morgenstern, B. Speeding up the DIALIGN multiple alignment program by using the 'Greedy Alignment of BIOlogical Sequences LIBrary' (GABIOS-LIB. In Computational Biology: First International Conference on Biology, Informatics, and Mathematics, Seiten 1–11 (2000).
- Corel, E., Pitschi, F. und Morgenstern, B. A *min-cut* algorithm for the consistency problem in multiple sequence alignment. *Bioinformatics*, Band 26:8:1015–1021 (2010).
- Henikoff, S. und Henikoff, J. Amino acid substitution matrices from protein blocks. In *Proceedings of the National Academy of Sciences, USA*, Band 89:22, Seiten 10915–10919. Natl. Acad. Sci. USA (1992).
- Morgenstern, B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. *Bioinformatics*, Band 15:3:211–218 (1999).
- Morgenstern, B. A Simple and Space-Efficient Fragment-Chaining Algorithm for Alignment of DNA and Protein Sequences. *Applied Mathematics Letters*, Band 15:1:11–16 (2002).
- Morgenstern, B., Atchley, W., Hahn, K. und Dress, A. Segment-based scores for pairwise and multiple sequence alignments. In *ISMB-98 Proceedings*, Seiten 115–121. AAAI (1998).
- Morgenstern, B., Dress, A. und Werner, T. Multiple DNA and protein sequence alignment based on segment-to-segment comparison. In *Proceedings of the National Academy of Sciences, USA*, Band 93, Seiten 12098–12103. Natl. Acad. Sci. USA (1996).
- Morgenstern, B., Prohaska, S., D., P. und Stadler, P. Multiple sequence alignment with user-defined anchor points. *Algorithms for Molecular Biology*, Band 1:6 (2006).
- Pearson, W. Selecting the Right Similarity Matrix. *Curr Protoc Bioinformatics*, Band 43:3.5:1–9 (2013).
- Subramanian, A., Kaufman, M. und Morgenstern, B. DIALIGN TX download. http://dialign-tx.gobics.de/download (2008). Accessed: 2018-03-31.
- Vingron, M. und Sibbald, P. Weighting in sequence space: a comparison of methods in terms of generalized sequences. In *Proceedings of the National Academy of Sciences, USA*, Band 90:19, Seite 8777–8781. Natl. Acad. Sci. USA (1993).

Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit über "Titel" selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt wordersind und dass die Stellen der Arbeit, die anderen Werken – auch elektronischen Medien – dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter Angabe de Quelle als Entlehnung kenntlich gemacht worden sind.	enutzt worden onischen Medi-
Vorname Nachname, Münster, 8. April 2018	

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Vorname Nachname, Münster, 8. April 2018