import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import warnings
import seaborn as sns
%matplotlib inline

df = pd.read_csv('/content/Epileptic Seizure Recognition.csv')

df = pd.read_csv('/content/Epileptic Seizure Recognition.csv')
df

	Unnamed	X1	Х2	Х3	X4	X5	Х6	Х7	X8	Х9	 X170
0	X21.V1.791	135	190	229	223	192	125	55	-9	-33	 -17
1	X15.V1.924	386	382	356	331	320	315	307	272	244	 164
2	X8.V1.1	-32	-39	-47	-37	-32	-36	-57	- 73	- 85	 57
3	X16.V1.60	-105	-101	-96	- 92	-89	-95	-102	-100	- 87	 -82
4	X20.V1.54	-9	- 65	-98	-102	-78	- 48	-16	0	-21	 4
11495	X22.V1.114	-22	-22	-23	-26	-36	-42	- 45	- 42	- 45	 15
11496	X19.V1.354	- 47	-11	28	77	141	211	246	240	193	 -65
11497	X8.V1.28	14	6	-13	-16	10	26	27	-9	4	 -65
11498	X10.V1.932	- 40	-25	-9	-12	- 2	12	7	19	22	 121
11499	X16.V1.210	29	41	57	72	74	62	54	43	31	 -59 •

df = df.replace({'y' : $\{2:0,3:0,4:0,5:0\}\}$) df

	Unnamed	X1	Х2	Х3	Х4	Х5	Х6	Х7	Х8	Х9	• • •	X170
0	X21.V1.791	135	190	229	223	192	125	55	-9	-33		-17
1	X15.V1.924	386	382	356	331	320	315	307	272	244		164
2	X8.V1.1	-32	-39	-47	-37	-32	-36	-57	- 73	-85		57
3	X16.V1.60	-105	-101	-96	- 92	-89	-95	-102	-100	- 87		-82
4	X20.V1.54	- 9	-65	-98	-102	-78	-48	-16	0	-21		4
11495	X22.V1.114	-22	- 22	-23	-26	-36	- 42	-4 5	- 42	-4 5		15
11496	X19.V1.354	-47	-11	28	77	141	211	246	240	193		-65
11497	X8.V1.28	14	6	-13	-16	10	26	27	-9	4		-65
11498	X10.V1.932	- 40	- 25	-9	-12	- 2	12	7	19	22		121
11499	X16.V1.210	29	41	57	72	74	62	54	43	31		-59
1												•

x = df.iloc[:,1:179]
y

```
X1
                    X2 X3
                              Х4
                                   Х5
                                        Х6
                                              Х7
                                                   Х8
                                                        X9 X10
                                                                 ... X169 X170 X
                   190 229
                             223 192 125
                                              55
                                                    -9
                                                        -33
                                                                              -17
        0
             135
                                                            -38
                                                                         8
             386
                   382 356
                             331 320 315
                                             307
                                                  272 244 232
                                                                       168
        1
                                                                             164
        2
              -32
                   -39 -47
                              -37
                                  -32
                                             -57
                                                   -73
                                                                        29
                                                                              57
                                       -36
                                                       -85
                                                             -94
             -105 -101
                        -96
                              -92
                                   -89
                                        -95
                                            -102 -100
                                                        -87
                                                                        -80
                                                                              -82
                   -65 -98
                            -102 -78
                                       -48
                                             -16
                                                     0
                                                             -59
                                                                        10
  = df.y
У
     0
              a
     1
              1
     2
     3
              0
     4
              0
     11495
              0
     11496
              1
     11497
     11498
              0
     11499
              a
     Name: y, Length: 11500, dtype: int64
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=1)
from sklearn.linear_model import LogisticRegression
from \ sklearn. ensemble \ import \ Random Forest Classifier, \ Gradient Boosting Classifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from \ sklearn.neighbors \ import \ KNeighbors Classifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix, accuracy_score, log_loss, precision_score, recall_score, f1_score, roc_auc_score
classifiers = [
   LogisticRegression(),
    SVC(kernel="rbf", C=0.025, probability=True),
    DecisionTreeClassifier(),
    {\tt KNeighborsClassifier(n\_neighbors=5),}
    GaussianNB(),
    RandomForestClassifier(),
    GradientBoostingClassifier(),
   MLPClassifier()]
for clf in classifiers:
    clf.fit(x_train, y_train)
    name = clf.__class__.__name__
    print("="*30)
    print(name)
    print('****Results****')
    train_predictions = clf.predict(x_test)
    # calculate score
    acc = accuracy_score(y_test, train_predictions)
    precision = precision_score(y_test, train_predictions, average = 'macro')
    recall = recall_score(y_test, train_predictions, average = 'macro')
    f_score = f1_score(y_test, train_predictions, average = 'macro')
    print("Precision: {:.4%}".format(precision))
    print("Recall: {:.4%}".format(recall))
    print("F-score: {:.4%}".format(f_score))
    print("Accuracy: {:.4%}".format(acc))
    print("="*30)
     LogisticRegression
     ****Results****
     Precision: 54.5516%
     Recall: 56.3696%
     F-score: 54.1073%
     Accuracy: 64.8348%
```

-----****Results**** Precision: 93.4795% Recall: 89.7367% F-score: 91.4551% Accuracy: 94.8870% -----_____ DecisionTreeClassifier ****Results**** Precision: 91.0051% Recall: 90.1021% F-score: 90.5441% Accuracy: 94.1565% _____ _____ KNeighborsClassifier ****Results*** Precision: 95.5377% Recall: 81.0161% F-score: 86.0339% Accuracy: 92.5913% ----------GaussianNB ****Results**** Precision: 92.2753% Recall: 92.7916% F-score: 92.5305% Accuracy: 95.3043% _____ _____ ${\tt RandomForestClassifier}$ ****Results**** Precision: 96.1993% Recall: 95.6293% F-score: 95.9110% Accuracy: 97.4609% ______ -----GradientBoostingClassifier ****Results*** Precision: 95.2895% Recall: 91.6545%

F-score: 93.3348% Accuracy: 96.0000%

-----_____

MLPClassifier

dm = pd.read_csv('/content/ML_Perfomance.csv')

	ML_Algorithm	Accuracy	Precision	Recall	F1_score
0	Log R	64.83	54.55	56.36	54.10
1	SVM	94.88	93.47	89.73	91.45
2	DT	94.11	91.00	90.10	90.54
3	KNN	92.59	95.53	81.01	86.03
4	NB	95.30	92.27	92.79	92.53
5	RF	97.46	96.19	95.62	95.91
6	GB	96.00	95.28	91.65	93.33
7	MLP	82.26	73.78	81.90	76.10

```
X_axis = np.arange(len(dm.ML_Algorithm))
plt.bar(dm.ML_Algorithm,dm.Accuracy,color='Red')
plt.bar(X_axis + 0.6,dm.Precision,color='Blue')
plt.bar(X_axis + 0.12,dm.Recall,color='Purple')
plt.bar(X_axis + 0.18,dm.F1_score,color='Green')
```

<BarContainer object of 8 artists>

plt.bar(dm.ML_Algorithm,dm.Precision,color='Blue')

plt.bar(dm.ML_Algorithm,dm.Recall,color='Purple')

<BarContainer object of 8 artists>

plt.bar(dm.ML_Algorithm,dm.F1_score,color='Green')

<BarContainer object of 8 artists>

Colab paid products - Cancel contracts here