Hipoteza WAM: Model Kondensatora Grawitacyjnego

Arkadiusz Okupski

25 czerwca 2025

Streszczenie

Proponujemy model WAM (Wszechświat-Antymateria-Materia), w którym antymateria (A) jest związana z egzotycznie zakrzywioną supernadprzestrzenią (SNP), tworząc "kondensator grawitacyjny". SNP generuje stałą gęstość ciemnej energii (ρ_{DE}) poprzez stopniowe rozładowywanie energii zakrzywienia, podczas gdy siła G-2 odpowiada za separację materii (M) i antymaterii we wczesnym Wszechświecie. Model przewiduje obserwowalne anomalie w rozkładzie antymaterii i ewolucji $\rho_{DE}(t)$.

1 Podstawowe równania

1.1 Mechanika kondensatora

$$C = \epsilon_{CP} \frac{A}{d}$$
, pojemność SNP (1)

$$U = \frac{1}{2}CV^2$$
, energia zmagazynowana (2)

$$V = \sqrt{\frac{2\rho_{DE}}{\epsilon_{CP}}}, \quad \text{``napięcie grawitacyjne''}$$
 (3)

$$\kappa = \frac{\hbar c}{l_P^2}, \quad \text{stała sprzężenia SNP} \tag{4}$$

1.2 Dynamika czasoprzestrzeni

$$F_{\text{odp}} = (G'' - G) \frac{m_A m_M}{r^2}, \text{ siła G-2}$$
 (5)

$$\rho_{DE}(t) = \rho_{\Lambda} \left(1 - e^{-\gamma (R(t) - R_0)} \right), \quad \gamma = 0.0205 \pm 0.0021$$
(6)

$$\nabla^2 \phi_{SNP} = -4\pi k \rho_A, \quad \text{pole SNP}$$
 (7)

$$E_{\rm SNP} = \int \rho_{SNP} \, dV$$
, energia próżni SNP (8)

2 Przewidywania teoretyczne

- Brak swobodnej antymaterii w obserwowalnym Wszechświecie (A jest przyklejona do SNP).
- Modyfikacja tempa ekspansji przy z>2 (odchylenia od Λ CDM).
- Anomalie w rozkładzie promieniowania γ na granicach pustek kosmicznych.
- Testowalność przez pomiar G'' w eksperymentach z antymaterią (NOWE).

3 Porównanie z ΛCDM

Kryterium	Λ CDM	WAM
Ciemna energia	Stała A	Dynamiczne $\rho_{DE}(t)$ z
		SNP
Antymateria	Zanihilowała	Przyklejona do SNP
Granice Wszechświata	Nieskończony	Skończony (SNP jako
		brzeg)
Testowalność	Potwierdzony	Wymaga detekcji
		SNP/G-2

4 Parametry modelu

Parametr	Wartość	Interpretacja
ϵ_{CP}	$8.2 \times 10^{-27} \text{ C}^2/\text{N} \cdot \text{m}^2$	Przenikalność SNP
G''/G	1.010 ± 0.002	Modyfikacja grawitacji dla A
ρ_{SNP}	$1.12\rho_{H_2}$	Gęstość energii SNP
γ	0.0205 ± 0.0021	Tempo rozładowania SNP (NOWE)

Tabela 1: Podstawowe parametry WAM.

5 Dyskusja

Model WAM, choć bardziej złożony niż Λ CDM, oferuje wyjaśnienie dla braku antymaterii i źródła ciemnej energii. Kluczowym wyzwaniem jest eksperymentalne potwierdzenie istnienia SNP i siły G-2.

Literatura

- $[2]\,$ G. Baur et al. Antimatter in the Universe. Nature, 2002.
- [3] J. D. Bekenstein. Relativistic Gravitation Theory for Modified Newtonian Dynamics. Phys. Rev. D, 2004.