590 HW1

Austin Turvy Derek Holste Mason Carhart

4/13/2021

```
# Load packages
library(pacman)
p_load(readr, data.table, dplyr, janitor, haven, here,
       tidyverse, skimr, lfe, stargazer, quantreg, hrbrthemes,
       tinytex, kableExtra, broom)
# Load data
af = read_dta(here("afghanistan_anonymized_data.dta"))
# Create nonoutlier column
af <- af %>% mutate(nonoutlier= ifelse((f07_num_ppl_hh_cnt > 20 & f07_observed == 1) |
                                     (f07_jeribs_cnt > 10 & f07_observed == 1)|
                                     (f07_num_sheep_cnt > 50 \& f07_observed == 1)
                                       (s08_num_ppl_hh_cnt > 20 & s08_observed == 1)|
                                       (s08_jeribs_cnt > 10 & s08_observed == 1) |
                                       (s08_num_sheep_cnt > 50 & s08_observed == 1)
                                       ,0,1))
# Tabulating nonoutliers
non_outlier_tab <- af %>% group_by(nonoutlier) %>%
    summarise(count = n(), percentage = n()/nrow(.))
non_outlier_tab
## # A tibble: 2 x 3
   nonoutlier count percentage
##
         <dbl> <int>
                          <dbl>
## 1
              0
                   76
                          0.0421
## 2
              1 1728
                          0.958
There are 76 non-outliers in the data given the specifications prior.
# Run girls regression table 4 column 1 including outliers
reg3 = felm(f07_formal_school ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 f07_{observed} == 1))
# Run boys regression table 4 column lincluding outliers
reg4 = felm(f07_formal_school ~ treatment + chagcharan | 0 | 0 | clustercode,
```

f07 observed == 1))

data = af %>% filter(f07_girl_cnt == 0 &

```
# Run girls regression table 4 column 1 with controls
reg5 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_{observed} == 1))
# Run girls regression table 4 column 1 with controls
reg6 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_observed == 1))
```

Question 3:

Question 4:

Question 4b:

```
# girls regression for column 6
reg11 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 6
reg12 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# girls regression for column 7
reg13 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 7
reg14 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
```

```
# Getting mean values for column 1
col_1 = af %>%
  filter(treatment == 1 & nonoutlier == 1 & f07_observed == 1) %>%
  select(
```

```
c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07 farsi cnt, f07 tajik cnt, f07 farmer cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Getting mean values for column 2
col 2 = af %>%
  filter(treatment == 0 & nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Create regression functions for column 3
reg_function_coef = function(x){
    reg = felm(x ~ treatment | 0 | 0 | clustercode,
               data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
    coef = coef(reg)[2]
    return(coef)
}
# Regression function for SE
reg_function_se = function(x){
  reg = felm(x ~ treatment | 0 | 0 | clustercode,
             data = af %>% filter(nonoutlier == 1 & f07 observed == 1))
  se = sqrt(diag(vcov(reg)))[2]
  return(se)
# Obtain column 3 coefficients
col_3_coefs = af %>%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
```

```
c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07 farsi cnt, f07 tajik cnt, f07 farmer cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_coef)
  ) %>% head(., 1) %>% unlist(.)
# Obtain column 3 SE
col_3_se = af \%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_se)
  ) %>% head(., 1) %>% unlist(.)
# Regression for column 7
col_7 = felm(f07_formal_school ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             \mid 0 \mid 0 \mid clustercode,
             data = af %>%
               filter(nonoutlier == 1 & f07_observed == 1 & treatment == 0))
# Regression for column 8
col_8 = felm(f07_both_norma_total ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
             data = af \%
               filter(nonoutlier == 1 & f07_observed == 1 &
                        f07_test_observed == 1 & treatment == 0))
# further analysis regression
reg_fa = felm(f07_formal_school ~ f07_girl_cnt +
         f07_nearest_scl + f07_girl_cnt*f07_nearest_scl +
         I(f07_nearest_scl^2) | 0 | 0 | clustercode,
```

```
f07 observed == 1 &
                              nonoutlier == 1))
af = af %>% mutate(dist_near = if_else(f07_nearest_scl < 2, 1, 0),
               dist_close = if_else(f07_nearest_scl >= 2 & f07_nearest_scl < 3, 1, 0),</pre>
               dist_nclose = if_else(f07_nearest_scl >= 3 & f07_nearest_scl < 4, 1, 0),</pre>
               dist_far = if_else(f07_nearest_scl >= 4, 1, 0))
# Regression for near individuals
reg_near_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
# Regression for close individuals
reg_close_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07 observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_close == 1
# Regression for not close individuals
reg_nclose_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_nclose == 1
                              ))
# Regression for far individuals
reg_far_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07 observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist far == 1
# Regression for near individuals
reg_near_b= felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
```

data = af %>% filter(treatment==0 &

```
f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
                              ))
# Regression for close individuals
reg_close_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist close == 1
                              ))
# Regression for not close individuals
reg_nclose_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_nclose == 1
# Regression for far individuals
reg_far_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_far == 1
                              ))
# Regression for near individuals
reg_test_near_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
                              ))
# Regression for close individuals
reg_test_close_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
```

```
dist_close == 1
# Regression for not close individuals
reg_test_nclose_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_nclose == 1
# Regression for far individuals
reg_test_far_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_far == 1
                              ))
# Regression for near individuals
reg_test_near_b= felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
# Regression for close individuals
reg_test_close_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_close == 1
                              ))
# Regression for not close individuals
reg_test_nclose_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_nclose == 1
                              ))
```

```
# Regression for far individuals
reg_test_far_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_far == 1
# Table 4.1
stargazer(reg1, reg2, reg5, reg6, reg7, reg8, reg9, reg10,
          keep.stat = c('n', 'rsq'),
          column.labels = c("
                                  ", " ", "
          title = "Table 4: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan",
                               "Household head's child", "Age",
                               "Years family in village", "Farsi",
                               "Tajik", "Farmers", "Age of household head",
                               "Years of education of household head", "Number of people in Household",
                               "Jeribs of land", "Number of sheep",
                               "Distance to nearest formal school"),
          dep.var.labels = c("Formaly Enroled", "Fall Test Scores"),
          \#dep.var.labels = c(""),
          type = 'latex', header = F, float = TRUE,
          font.size = "small",
          column.sep.width = "-15pt",
          omit.stat=c("f", "ser"),
          notes = c("S.E Clustered by village"), notes.append = FALSE)
# Table 4b
stargazer(reg11, reg12, reg13, reg14,
          keep.stat = c('n', 'rsq'),
          title = "Table 4b: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan"),
          \#dep.var.labels = c(""),
          omit = c("s08_heads_child_cnt", "s08_girl_cnt", "s08_age_cnt",
                   "s08_duration_village_cnt", "s08_farsi_cnt",
                   "s08_tajik_cnt", "s08_farmer_cnt", "s08_age_head_cnt",
                   "s08_yrs_ed_head_cnt", "s08_num_ppl_hh_cnt",
                   "s08_jeribs_cnt", "s08_num_sheep_cnt", "s08_nearest_scl",
                   "chagcharan"),
          type = 'latex', header = F, float = TRUE,
          notes =c("S.E Clustered by village"), notes.append = FALSE)
# Table 2
stargazer(col_7, col_8,
          keep.stat = c('n', 'rsq'),
          title = "Table 2: Demographic Characteristics By Research Groups",
          covariate.labels = c("Household head's child", "Girl",
                               "Age", "Years family in village", "Farsi",
```

Table 1: Table 4: Treatment Effects by Gender

Dependent variable:							
Formaly Enroled			Fall Test Scores			3	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
							0.400*** (0.091)
			0.086 (0.088)		-		0.118 (0.075)
						-0.156 (0.168)	0.125 (0.098)
							0.367*** (0.021)
							-0.003 (0.002)
						-0.115 (0.097)	0.094 (0.141)
							0.173*** (0.052)
							-0.082 (0.113)
						-0.001 (0.004)	0.005 (0.003)
d		0.003 (0.005)	0.002 (0.004)			0.026** (0.011)	0.048*** (0.011)
						0.007 (0.007)	-0.001 (0.014)
						0.016 (0.030)	0.018 (0.032)
		0.006 (0.004)	0.004 (0.003)			0.008 (0.008)	0.013** (0.005)
						0.001 (0.050)	-0.070 (0.049)
		-0.168	0.082 -			-2.421**	
693 0.339	797 0.164	693 0.371	797 0.245	667 0.167	707 0.045	667 0.357	707 0.404
	(1) 0.521** (0.091) 0.176** (0.085) 0.084* (0.050)	(1) (2) 0.521**0.371*** (0.091)(0.101) 0.176** 0.081 (0.085)(0.096) d.d 0.084*0.325*** (0.050)(0.058)	Formaly Enrole (1) (2) (3) 0.521**0.371***0.515**** (0.091)(0.101) (0.082) 0.176** 0.081 0.154* (0.085)(0.096) (0.082) -0.043 (0.051) 0.037** (0.016) -0.001 (0.001) -0.082 (0.051) -0.063 (0.068) -0.017 (0.035) -0.0000 (0.002) ad 0.003 (0.005) 0.007 (0.006) -0.009 (0.013) 0.006 (0.004) -0.007 (0.002) 0.084*0.325*** -0.168 (0.050)(0.058) (0.249)	Formaly Enroled (1) (2) (3) (4) 0.521**0.371***0.515**** 0.347**** (0.091)(0.101) (0.082) (0.094) 0.176** 0.081 0.154* 0.086 (0.085)(0.096) (0.082) (0.088) -0.043 0.022 (0.051) (0.051) 0.037** 0.065*** (0.016) (0.019) -0.001 -0.0001 (0.001) (0.002) -0.082 0.019 (0.051) (0.063) -0.063 0.077*** (0.068) (0.030) -0.017 -0.082** (0.035) (0.039) -0.00004-0.003 (0.002) (0.002) ad 0.003 0.002 (0.005) (0.004) 0.007 -0.001 (0.006) (0.009) -0.009 0.016 (0.013) (0.011) 0.006 0.004 (0.004) (0.003) -0.007 -0.059** (0.022) (0.024) 0.084*0.325*** -0.168 0.082 (0.050)(0.058) (0.249) (0.239)	Formaly Enroled (1) (2) (3) (4) (5) 0.521**0.371***0.515**** 0.347**** 0.691**** (0.091)(0.101) (0.082) (0.094) (0.130) 0.176** 0.081 0.154* 0.086 0.282** (0.085)(0.096) (0.082) (0.088) (0.123) -0.043 0.022 (0.051) (0.051) 0.037** 0.065*** (0.016) (0.019) -0.001 -0.0001 (0.001) (0.002) -0.082 0.019 (0.051) (0.063) -0.063 0.077*** (0.068) (0.030) -0.017 -0.082** (0.035) (0.039) -0.0004-0.003 (0.002) (0.002) ad 0.003 0.002 (0.005) (0.004) 0.007 -0.001 (0.006) (0.009) -0.009 0.016 (0.013) (0.011) 0.006 0.004 (0.004) (0.003) -0.007 -0.059** (0.022) (0.024) 0.084*0.325*** -0.168 0.082 -0.486** (0.050)(0.058) (0.249) (0.239) (0.097)	Formaly Enroled (1) (2) (3) (4) (5) (6) 0.521**0.371***0.515*** 0.347*** 0.691*** 0.424*** (0.091)(0.101) (0.082) (0.094) (0.130) (0.107) 0.176** 0.081 0.154* 0.086 0.282** 0.113 (0.085)(0.096) (0.082) (0.088) (0.123) (0.104) -0.043 0.022 (0.051) (0.051) 0.037** 0.065*** (0.016) (0.019) -0.001 -0.0001 (0.002) -0.082 0.019 (0.051) (0.063) -0.063 0.077*** (0.068) (0.030) -0.017 -0.082** (0.039) -0.0004-0.003 (0.039) -0.0004-0.003 (0.002) dd 0.003 0.002 (0.002) dd 0.003 0.002 (0.004) 0.007 -0.001 (0.006) (0.009) -0.009 0.016 (0.011) 0.006 0.004 (0.003) -0.007 -0.059** (0.002) (0.002) 0.084*0.325*** -0.168 0.082 -0.486**0.267*** (0.050)(0.058) (0.249) (0.239) (0.097) (0.091)	Formaly Enroled Fall Test Scores (1) (2) (3) (4) (5) (6) (7) 0.521**0.371***0.515*** 0.347*** 0.691***0.424***0.654*** (0.091)(0.101) (0.082) (0.094) (0.130) (0.107) (0.123) 0.176** 0.081 0.154* 0.086 0.282** 0.113 0.275** (0.085)(0.096) (0.082) (0.088) (0.123) (0.104) (0.117) -0.043 0.022 -0.156 (0.051) (0.051) (0.168) 0.037** 0.065*** 0.243*** (0.016) (0.019) (0.030) -0.001 -0.0001 -0.0001 (0.001) (0.002) (0.002) -0.082 0.019 -0.115 (0.051) (0.063) (0.097) -0.063 0.077*** -0.005 (0.068) (0.030) (0.079) -0.017 -0.082** 0.0002 (0.035) (0.039) (0.076) -0.0004 -0.003 -0.001 (0.002) (0.002) (0.004) ad 0.003 0.002 0.026** (0.005) (0.004) (0.011) 0.007 -0.001 0.007 (0.006) (0.009) (0.007) -0.009 0.016 0.016 (0.013) (0.011) (0.030) 0.006 0.004 0.008 (0.004) (0.003) (0.008) -0.007 -0.059** 0.001 (0.005) (0.004) (0.008) -0.006 0.004 0.008 (0.004) (0.003) (0.008) -0.007 -0.059** 0.001 (0.0022) (0.024) (0.050) 0.084*0.325*** -0.168 0.082 -0.486**0.267***-2.421*** (0.050)(0.058) (0.249) (0.239) (0.097) (0.091) (0.600)