Quant II

Lab 1: DAGs, Potential Outcomes

Dias Akhmetbekov

2024-02-02

ightharpoonup Dias Akhmetbekov, 3^{th} year PhD.

- ▶ Dias Akhmetbekov, 3th year PhD.
- ► Fields: Comparative Politics

- ▶ Dias Akhmetbekov, 3th year PhD.
- ► Fields: Comparative Politics
- Email: da2669@nyu.edu

- ▶ Dias Akhmetbekov, 3th year PhD.
- ► Fields: Comparative Politics
- ► Email: da2669@nyu.edu
- ► Office: 302

Logistics (1): labs

► Lab: Fridays, 2pm - 4pm EST, Room 435

Logistics (1): labs

- ▶ Lab: Fridays, 2pm 4pm EST, Room 435
- ► Lab materials will be posted on the lab's GitHub repo: https: //github.com/AkhmetbekovDias/quant2-labs-spring2024

Logistics (1): labs

- ▶ Lab: Fridays, 2pm 4pm EST, Room 435
- ► Lab materials will be posted on the lab's GitHub repo: https: //github.com/AkhmetbekovDias/quant2-labs-spring2024
- Office hours: by appointment

► Homework due via email to Cyrus and me by the indicated deadline

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- Submit PDF document + Code used

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- Submit PDF document + Code used
 - RMarkdown recommended

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- Submit PDF document + Code used
 - RMarkdown recommended
- Code should be well commented

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- Submit PDF document + Code used
 - RMarkdown recommended
- Code should be well commented
- Tables and plots format should be of high quality

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- Submit PDF document + Code used
 - RMarkdown recommended
- Code should be well commented
- Tables and plots format should be of high quality
- Substantive answers should be presented in the written paragraphs

- Homework due via email to Cyrus and me by the indicated deadline
- Deadline is strict
- ► Submit **PDF document** + **Code used**
 - RMarkdown recommended
- Code should be well commented
- Tables and plots format should be of high quality
- Substantive answers should be presented in the written paragraphs
- ▶ Ultimately, the goal is to learn how to **do** and **communicate** empirical research

▶ **DAG** is Directed Acyclic Graph

- ▶ **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;

- ▶ **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles

- ► **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- DAGs is a parsimonious representation of the qualitative aspects of the data generating process

- ► **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- ▶ DAGs is a parsimonious representation of the qualitative aspects of the data generating process
 - Letters (X,Z,Y) etc.) are random variables;

- ► **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- DAGs is a parsimonious representation of the qualitative aspects of the data generating process
 - Letters (X,Z,Y) etc.) are random variables;
 - Arrows (X → Y) denote a (possible) direct causal effect of D on Y;

- ► **DAG** is Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- DAGs is a parsimonious representation of the qualitative aspects of the data generating process
 - Letters (X,Z,Y) etc.) are random variables;
 - Arrows (X → Y) denote a (possible) direct causal effect of D on Y;
 - no assumptions about the functional form or distribution.

Simple DAG

Simulation

```
# set seed
set.seed(1000)
# simulate data
n <- 1000
z \leftarrow rnorm(n)
x \leftarrow z + rnorm(n)
y \leftarrow x + z + rnorm(n)
# unconditional
lm1 \leftarrow lm(y\sim x)
# conditional
lm2 \leftarrow lm(y\sim x+z)
```

Simulation

```
##
                                 Dependent variable:
##
##
                     Biased unconditional
                                            Unbiased Conditional
##
                            (1)
                           1.511***
                                                 1.040***
## x
                           (0.026)
                                                 (0.032)
##
##
## 2
                                                  0.954***
                                                  (0.047)
##
##
## Constant
                           -0.008
                                                 -0.002
                           (0.038)
                                                 (0.032)
##
## Observations
                          1,000
                                                  1,000
## R2
                           0.769
                                                  0.837
## Adjusted R2
                           0.768
                                                  0.837
## Residual Std. Error 1.193 (df = 998) 1.002 (df = 997)
## F Statistic 3,317.308*** (df = 1; 998) 2,557.355*** (df = 2; 997)
## -----
## Note:
                                         *p<0.1; **p<0.05; ***p<0.01
```

More complex DAG

An example from the Mixtape inspired by Becker (1994):

I was teaching collider bias today and realized that I've never actually seen data for the "speed and height of NBA players" example. So I downloaded some Kaggle datasets of NBA 2k rating components for and turns out there is in fact a conditional negative correlation!

4:55 PM · Nov 17, 2021

 \mathbb{X}


```
# Set seed
set.seed(123)

# Simulate data
tb <- tibble(
    female = ifelse(runif(10000) >= 0.5, 1, 0),
    ability = rnorm(10000),
    discrimination = female,
    occupation = 1 + 2*ability + 0*female - 2*discrimination + rnorm(10000),
    wage = 1-1*discrimination + 1*occupation + 2*ability + rnorm(10000)
)

# Estimate regressions
lm_1 <- lm(wage - female, tb)
lm_2 <- lm(wage - female + occupation, tb)
lm_3 <- lm(wage - female + occupation + ability, tb)</pre>
```

##

## ##	Dependent variable:		
## ## ##	Biased unconditional (1)	wage Biased (2)	Unbiased Conditional (3)
## ## female	-3.066***	0.587***	-1.050***
## ##	(0.085)	(0.030)	(0.028)
## occupation		1.796***	0.987***
## ##		(0.006)	(0.010)
## ability			2.033***
## ##			(0.022)
## ## Constant	2.023***	0.222***	1.025***
##	(0.060)	(0.020)	(0.017)
## ## Observations	10,000	10.000	10.000
## R2	0.114	0.912	0.952
## Adjusted R2	0.114	0.912	0.952
	4.265 (df = 9998)		0.994 (df = 9996)
## F Statistic	1,292.306*** (df = 1; 9998)	51,551.530*** (df = 2; 9997	(df = 3; 99)
## ======== ## Note:			*p<0.1; **p<0.05; ***p<

Good Control

Good Control

M-Bias

Damned if you do, damned if you don't

Neutral Control (or even good)

Neutral Control (or even bad)

Bias Amplification

Overcontrol Bias

Neutral Control (or even good)

Neutral Control (or even good in case of sample selection)

Colliding Bias

► Potential outcomes formally encode counterfactuals (Neyman-Rubin)

- ▶ Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $ightharpoonup Y_{1i}$: outcome that unit i would have if treated;

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $ightharpoonup Y_{1i}$: outcome that unit *i* would have if treated;
 - $ightharpoonup Y_{0i}$: outcome that unit i would have if untreated;

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - \triangleright Y_{1i} : outcome that unit *i* would have if treated;
 - $ightharpoonup Y_{0i}$: outcome that unit i would have if untreated;
- Connect observed outcomes to potential outcomes (consistency)

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - \triangleright Y_{1i} : outcome that unit i would have if treated;
 - $ightharpoonup Y_{0i}$: outcome that unit *i* would have if untreated;
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$ we observe the potential outcome of observed treatment;

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - \triangleright Y_{1i} : outcome that unit i would have if treated;
 - $ightharpoonup Y_{0i}$: outcome that unit *i* would have if untreated;
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$ we observe the potential outcome of observed treatment;
- **Causal effect** for unit *i*: $\rho_i = Y_{1i} Y_{0i}$

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - \triangleright Y_{1i} : outcome that unit *i* would have if treated;
 - $ightharpoonup Y_{0i}$: outcome that unit i would have if untreated;
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$ we observe the potential outcome of observed treatment;
- **Causal effect** for unit *i*: $\rho_i = Y_{1i} Y_{0i}$
- ▶ **Ignorability assumption**: $D_i \perp \!\!\! \perp (Y_{1i}, Y_{0i})$

```
# Set random seed
set.seed(10003)

# Imagine we had a constant individual-level treatment effect
true_effect <- 2
**Our hypothetical population contains 1,000 units - imagine we could observe both Y(1) and Y(0)
N <- 1000 # Population size
dataset <- data.frame(Y0 = rnorm(N, mean = 0, sd = 3))
dataset$Y1 <- dataset$Y0 + true_effect</pre>
```

head(as_tibble(dataset))

```
## # A tibble: 6 x 2
## Y0 Y1
## <dbl> <dbl>
## 1 -3.13 -1.13
## 2 -0.297 1.70
## 3 -1.10 0.903
## 4 -1.41 0.587
## 5 1.75 3.75
## 6 5.64 7.64
```

```
# Randomized treatment (.5 probability of treatment)
dataset$D <- rbinom(N, 1, .5) # Not *exactly* half, but independent
# Treatment is a "light switch" - affects what we observe
dataset$Y <- dataset$Y1*dataset$D + dataset$Y0*(1-dataset$D)
# Let's see the data now
head(as_tibble(dataset))
```

```
## # A tibble: 6 x 4

## YO Y1 D Y

## <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <int> <dbl> </dbl
## 1 -3.13 -1.13 1 -1.13

## 2 -0.297 1.70 1 1.70

## 3 -1.10 0.903 0 -1.10

## 4 -1.41 0.587 0 -1.41

## 5 1.75 3.75 1 3.75

## 6 5.64 7.64 1 7.64
```

```
simDataset <- dataset
nIter <- 10000 # number of iterations to run
est_effect <- rep(NA, niter) # placeholder
for (i in !inIter) {
    # randomly assign treatment again
    simDataset$D <- rbinom(N, 1, .5)
    # observed outcome
    simDataset$Y <- simDataset$Y1*simDataset$D + simDataset$Y0*(1-simDataset$D)
    # difference-in-means
    est_effect[i] <- mean(simDataset$Y[simDataset$P == 1]) -
    mean(simDataset$Y[simDataset$D == 0])
}
# What's the average of treatment effect estimates in repeated samples
mean(est_effect)</pre>
```

```
## [1] 2.000468
```

hist(est_effect, xlab="ATE Estimate", ylab="Frequency", main="Histogram of difference-in-means\nsampling abline(v=true_effect, col="red", lty=2, lwd=2)


```
newDataset <- dataset # placeholder to not override dataset # Probability of treatment depends on $Y(1)$ newDataset$D <- rbinom(N, 1, pnorm(newDataset$Y1)) #pnorm is the normal CDF - high positive values = high probabilities #what is the probability that each observation in our dataset will be assigned to treatment? quantile(pnorm(newDataset$Y1))
```

```
## 0% 25% 50% 75% 100% ## 1.295055e-20 4.937063e-01 9.753327e-01 9.999673e-01 1.000000e+00
```

```
#now how many units are treated?
mean(newDataset$D)
```

```
## [1] 0.738
```

```
newSimDataset <- newDataset
nIter <- 10000 # number of iterations to run
est_effect_bias <- rep(NA, nIter) # placeholder
for (i in 1:nIter){
    # non-randomly assign treatment (High Y(1) more likely to be treated)
    newSimDataset$\(^2\) <- rbinom(N, 1, pnorm(newSimDataset$\(^2\)1))
    # observed outcome
    newSimDataset$\(^2\) <- newSimDataset$\(^2\)1*newSimDataset$\(^2\)1 + newSimDataset$\(^2\)1 / newSimDataset$\(^2\)1 - newSimDataset$\(^2\)1 / newSimDataset$\(^2\)1 - newSimDataset$\(^2\)1 / newSimDataset$\(^2\)1 == 1]) -
    mean(newSimDataset$\(^2\)1 (newSimDataset$\(^2\)1 == 0])
}
# What's the average of treatment effect estimates in repeated samples
mean(est_effect_bias)
```

```
## [1] 6.815834
```

```
hist(est_effect_bias, xlab="ATE Estimate", ylab="Frequency", main="Histogram of difference-in-means\n w/ abline(v=true_effect, col="red", lty=2, lwd=2) abline(v=mean(est_effect_bias), col="blue", lty=2, lwd=2)
```


Control for confounders / do not control for colliders;

- Control for confounders / do not control for colliders;
- ▶ Not all **pre-treatment** covariates are good controls;

- Control for confounders / do not control for colliders;
- Not all pre-treatment covariates are good controls;
- Not all post-treatment covariates are bad controls;

- Control for confounders / do not control for colliders;
- Not all pre-treatment covariates are good controls;
- Not all post-treatment covariates are bad controls;
- Difference-in-means is an unbiased estimator of average treatment effect (ATE) under completely random assignment condition.