06:13

Новые оксидные покрытия на монокристаллическом сапфире и спеченной керамике

© В.Н. Гурин, В.М. Крымов, В.В. Шпейзман, А.Б. Синани, М.Ф. Киреенко, А.И. Аверкин, Л.И. Деркаченко

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: vladimir.gurin@mail.ioffe.ru

Поступило в Редакцию 15 мая 2018 г.

Исследовано образование оксидных защитных и упрочняющих покрытий на поверхности монокристаллического сапфира и спеченного корунда (керамики). До настоящего времени корундовые системы с оксидными покрытиями неизвестны, и наши исследования являются пионерскими. Разработаны составы покрытия на основе смеси оксидов $Al_2O_3 + B_2O_3$, а также технология их нанесения на образцы. Проведено изучение прочности полученных образцов при испытаниях на изгиб. Показано, что упрочнение на отдельных образцах достигает $\sim 30\%$, а микротвердость HV = 30 GPa. На основе результатов исследования значительного количества образцов, полученных при различных условиях, сделан вывод о перспективности разработанного способа защиты и упрочнения корундовых изделий.

DOI: 10.21883/PJTF.2018.19.46683.17385

Во многих случаях, например в металлургии при разливке сталей и сплавов, требуется высокая устойчивость керамических изделий (в том числе из Al_2O_3) к металлическим расплавам. Известны работы по защите металлических поверхностей (например, титана) оксидными покрытиями [1–3], а также по защите сапфира "неоксидными" материалами [4]. Однако защита поверхностей оксидных изделий оксидными покрытиями неизвестна. Целью настоящей работы является поиск защитных и упрочняющих покрытий, состоящих из оксидных, но более огнеупорных компонентов. Также цель состоит в разработке технологии нанесения таких покрытий и изучении прочностных характеристик получаемых образцов.

Ранее было найдено, что при спекании порошков оксидов Al_2O_3 и B_2O_3 (иногда с добавлением элементарного бора) на поверхности спрессованного порошка корунда во всех экспериментах образовывались высокотвердые соединения $10Al_2O_3 + 2B_2O_3$ ($Al_{20}B_4O_{36}$) или сокращенно Al_5BO_9 , а также субоксид B_6O [5,6]. Все эксперименты проводились путем искрового плазменного спекания на установке СПАРК-ПЛАЗМА с использованием пульсирующего электроразряда с одновременным давлением (сжатием образца из прессованного порошка корунда). Согласно фазовой диаграмме $Al_2O_3 - B_2O_3$ [7,8], приведенной на рисунке, в системе образуются два соединения — так называемые бороалюминаты:

- 1) $2Al_2O_3 + B_2O_3$ ($Al_4B_2O_9$) с $T_m = 1150$ °C [7] (1180°C по данным [8]);
- 2) $9Al_2O_3 + B_2O_3$ ($Al_{18}B_4O_{33}$) с $T_m = 1440$ °C [7] (1930°C по данным [8]).

По измерениям, проведенным в [5] на Сатевах, существует третье соединение с формулой $Al_2O_3 + 9Al_2O_3 \cdot 2B_2O_3$ ($Al_{20}B_4O_{36}$). В [7] T_m для него не указана, а в [8] сведения об этом соединении отсутствуют.

Все указанные выше бороалюминаты являются недостаточно изученными, для них практически отсутствуют термодинамические данные (свободная энергия, теплота образования и др.), а одна из упомянутых фазовых диаграмм системы $Al_2O_3-B_2O_3$ является расчетной [7].

Как показали предыдущие исследования, самым прочным и тугоплавким соединением из приведенных выше является бороалюминат состава $Al_{20}B_4O_{36}~(Al_5BO_9)$. Он образуется при высоких температурах, и его микротвердость HV достигает 30 GPa [5,6]). Субоксид бора B_6O всегда присутствует в небольших количествах в виде субмикронных поликристаллов, не образует сплошных областей и для покрытий непригоден.

В настоящей работе оксидные покрытия получались в обычных условиях высокотемпературного прожига в атмосфере аргона. Использовались различные формы образцов и составы исходных покрытий. Керамические образцы для испытаний вырезались на станке алмазной резки "Алмаз-4" из пластины размером $50 \times 50 \times 5$ mm. Образцы монокристаллического сапфира вырезались из стержней квадратного сечения 5×5 mm, выращенных методом Степанова. Таким образом были получены образцы в форме тонких пластинок размером $25 \times 5 \times 1$ mm.

Фазовые диаграммы системы $Al_2O_3-B_2O_3$ по данным различных источников: a-[7], b-[8].

Были приготовлены составы, соответствующие фазовой диаграмме, которые наносились на одну сторону пластин из спеченной керамики и монокристаллического сапфира, которая в дальнейшем подвергалась растягивающим напряжениям при изгибе. Способ нанесения является авторским "ноу-хау". После просушивания образцы помещались в вакуумную печь и нагревались в атмосфере аргона до необходимой температуры (как правило, на $10-50^{\circ}$ C выше точки плавления на фазовой диаграмме для той фазы, состав которой был нанесен на пластину, т. е. до $\sim 1400-1600^{\circ}$ C), выдерживались в течение 4 h при этой температуре и охлаждались также 4 h. В результате на пластинах образовывались тонкие покрытия того или иного состава в зависимости

от взятой исходной смеси. На основе фазовых диаграмм и с учетом результатов анализа на Camebax [5] были выбраны два пути образования наиболее прочного и тугоплавкого соединения $Al_{20}B_4O_{36}$ в качестве покрытия.

Путь I — с использованием элементарного бора: $12Al_2O_3 + 12B = Al_{20}B_4O_{36} + 4AlB_2$;

Путь II — с использованием оксида бора: $10 Al_2 O_3 + 2 B_2 O_3 = Al_{20} B_4 O_{36}$

Следует отметить, что путь I протекает с образованием побочного соединения — AlB_2 (диборида алюминия), легкоплавкого и низкопрочного. Полученные результаты зависят от различных условий технологии, которые могут меняться от опыта к опыту, что затрудняет объективную оценку результатов. Такими условиями в первую очередь являются температурно-временные условия эксперимента, а также состав покрытий, наносимых на поверхность образцов, толщина наносимого слоя, поверхностная пористость, наличие примесей, способ

нанесения, скрепляющий компонент в исходном покрытии, крепление образцов в печи и др. Важное значение имеет также исходное состояние поверхности образца (в идеале полированная поверхность), а для кристаллических образцов — кристаллографическая ориентация образца. В наших опытах покрываемая поверхность совпадала с плоскостью основания гексагональной призмы.

Как следует из фазовой диаграммы системы Al₂O₃-B₂O₃ (см. рисунок, a, b), фазы $Al_4B_2O_9$ и $Al_{18}B_4O_{33}$ имеют T_m , более низкую на диаграмме a, чем на диаграмме b (на 39 и 490°C соответственно). Это затрудняет выбор оптимальной температуры прожига, причем экспериментально установленное нами ранее [5] соединение Al₂₀B₄O₃₆ (Al₅BO₉) на диаграммах не указано. Это может быть связано с недостаточной изученностью системы, например с отсутствием сведений о существовании не указанных на диаграмме твердых растворов, в частности Al₂₀B₄O₃₆ (Al₅BO₉).

Прочность полученных образцов определялась в испытаниях на трехточечный изгиб при комнатной температуре на универсальной испытательной машине Instron 1342. Максимальные напряжения σ рассчитывались по формуле $\sigma = M/W$, где M — максимальный изгибающий момент, а W — сопротивление изгибу, которое для прямоугольного сечения образца равно $W = bh^2/6$ (b — ширина, h — толщина образца). Расстояние между опорами составляло 20 mm, скорость движения подвижного захвата машины — 5 μ m/s. Поверхность образца с покрытием находилась на противоположной по отношению к приложенной силе стороне, т.е. в зоне растягивающих напряжений.

Была измерена прочность на изгиб в различных сериях экспериментов. Во всех случаях исследовались и сравнивались керамические образцы, полученные высокотемпературным спеканием, и образцы, вырезанные из монокристаллов сапфира.

В табл. 1 представлены результаты измерения прочности при изгибе для обоих путей образования упрочняющих покрытий на поверхности кристаллического сапфира и прессованной керамики. Испытания показали, что покрытия на монокристаллическом сапфире практически всегда приводят к большему упрочнению, чем на прессованной керамике. На основе полученных данных можно определенно заключить, что предлагаемые покрытия упрочняют кристаллический сапфир и керамику, при этом путь II (смесь оксидов) является более дешевым и доступным. В то же время следует отметить, что важную роль в

Таблица 1. Прочность на изгиб σ образцов керамики и сапфира: исходных и с покрытием, содержащим бор (каждое из значений получено в результате четырех измерений)

Образец	σ, MPa		
	Керамика	Сапфир	
Исходный, без покрытия С покрытием	420 ± 53 446 ± 31	851 ± 83 1082 ± 44	

Таблица 2. Микротвердость (HV) полированных (без покрытия) и неполированных образцов с односторонним покрытием, содержащим бор (нагрузка 200 g, каждое из значений получено в результате 24 измерений)

Керамика	HV, GPa	Сапфир	HV, GPa
Полированный образец С покрытием	18.6 ± 1.3 29.2 ± 4.7	Полированный образец С покрытием	18.6 ± 2.2 17.9 ± 4.1

упрочнении играет равномерное распределение как исходного, так и прореагировавшего покрытия на поверхности образца, в особенности при повышении температуры процесса до 1600°С. При сравнении результатов следует учитывать также толщину покрытия (что требует дополнительных исследований), а также наличие в образце микротрещин и областей высоких локальных напряжений (последствия резки образцов).

Было изучено также влияние полированной поверхности сапфира и керамики на изменение прочности на изгиб и микротвердости в сравнении с обычными нарезанными образцами. Как показали исследования (табл. 2), полировка образцов перед нанесением покрытия не привела к существенному упрочнению по сравнению с обычными необработанными образцами. При этом полированный образец сапфира практически не отличался от керамики, а керамика с покрытием показала в последних экспериментах даже более высокие значения σ , чем монокристаллический сапфир. Это связано с большей неравномерностью распределения покрытия на полированных образцах. Было установле-

но, что на полированном образце покрытие после соответствующего прожига неравномерно распределяется по полированной поверхности, образуя небольшие (десятки микрометров) участки-"кучки", которые показывают значительно более высокую микротвердость, чем соседние области на образце (можно добавить, что такая же картина, но в меньшей степени иногда наблюдалась и на неполированных образцах). Это подтверждает факт образования покрытия, содержащего твердые вещества — бороалюминаты и, в частности, $Al_{20}B_4O_{36}$. К сожалению, в условиях эксперимента нет возможности установить состав этих "кучек". Наличие таких различных участков требует использования добавок к покрытиям, которые улучшат смачиваемость поверхности образцов и обеспечат более равномерное распределение покрытия на их поверхности.

Таким образом, несмотря на то что не было проведено определение количества бороалюмината в покрытии и не был выбран его оптимальный состав, удалось упрочнить изделие на $\sim 30\%$, что само по себе является важным результатом, как и приоритет в разработке нового оксидного покрытия на монокристаллическом сапфире и спеченной керамике.

Список литературы

- [1] Фомин А.А., Штейнгауэр А.Б., Лясников В.Н., Вениг С.Б., Захаревич А.М. // Письма в ЖТФ. 2012. Т. 38. В. 10. С. 64-69.
- [2] Фомин А.А., Штейнгауэр А.Б., Родионов И.В., Фомина М.А., Захаревич А.М. // Письма в ЖТФ. 2013. Т. 39. В. 21. С. 70-75.
- [3] Фомин А.А., Фомина М.А., Родионов И.В., Кошуро В.А., ва Е.Ю., Щелкунов А.Ю., Скапцов А.А., Захаревич А.М., Аткин В.С. // Письма в ЖТФ. 2015. Т. 41. В. 18. С. 89–95.
- [4] Гурин В.Н., Синани А.Б., Деркаченко Л.И., Трунов В.А., Зайцев Г.П., Крымов В.М. // Новые огнеупоры. 2008. № 8. С. 47-52.
- [5] Гурин В.Н., Гринь Ю., Костманн С., Мейер К., Деркаченко Л.И. // Новые огнеупоры. 2015. № 1. С. 35–38.
- [6] Гурин В.Н. // Сб. материалов ХХІІІ Петербургских чтений по проблемам прочности, посвященных 100-летию ФТИ им. А.Ф. Иоффе и 110-летию чл.-корр. АН СССР А.В. Степанова. СПб.: Изд-во ВВМ, 2018. С. 61–63.
- [7] Михайлов Г.Г., Макровец Л.А., Смирнов Л.А. // Вестн. ЮУрГУ. Сер. Металлургия. 2014. Т. 14. № 4. С. 11–16.
- [8] Fact Sage. Sistems Al₂O₃-B₂O₃.