Nan	ne :	•••••		•••••			
Roll	<i>No.</i> :						
Invi	gilato	r's Sig	gnature :				
		C	S/B.Tech/(ECE-New))/SE	M-6/EC-604B/2013		
			2013				
		INF	ORMATION THEO	RY	& CODING		
Tim	e Alla	tted :	3 Hours		Full Marks: 70		
		The	e figures in the margin in	idica	te full marks.		
Ca	ndida	ates a	re required to give their as far as pra				
			GROUP - (Multiple Choice Typ		estions)		
1.	Cho	ose tl	he correct alte natives f	or an	·		
	$10 \times 1 = 10$ i) Entropy means						
	,	a)	amount of information				
		b)	rat of information				
		c)	measure of uncertainty	y			
		d)	probability of message	•			
	ii)	nnel is defined for a					
		a)	finite C	b)	BW = 0		
		c)	S/N = 0	d)	infinite <i>C</i> .		

[Turn over

6412

iii) Which of the following expressions is incorrect?

a)
$$H(Y/X) = H(X, Y) - H(X)$$

b)
$$I(X, Y) = H(X) - H(Y/X)$$

c)
$$H(X, Y) = H(X, Y) + H(Y)$$

d)
$$I(X, Y) = H(Y) - H(Y/X)$$
.

iv) Relation between message rate (r) and information rate (R) is

a)
$$R = rH$$

b)
$$r = RH$$

c)
$$r = R^2 H$$

d)
$$R = r^2 H$$
.

v) Relation between channel capacity and bandwidth of channel is related as

a)
$$C = B \left(\ln_2 \left(\frac{S}{N} \right) \right)$$

b)
$$C = B \left(\ln_2 (1 + S/N) \right)$$

c)
$$C = B/N$$

d)
$$C = B^2 N$$
.

vi) In any linear feed forward path of a (4, 3, 2) convolution encoder, we need maximum

- a) 4 shift registers
- b) 3 shift registers
- c) 2 shift registers
- d) none of these.

vii)	For <i>GF</i>	(2^3)	the elements in the set are
------	---------------	---------	-----------------------------

- a) {1 2 3 4 5 6 7}
- b) {0 1 2 3 4 5 6}
- c) {0 1 2 3}
- d) {0 1 2 3 4 5 6 7}.
- viii) A code is with minimum distance d_{min} 5. How many errors can it correct ?
 - a) 3

b) 2

c) 4

- d) 1.
- ix) The number of undetectable errors for a (n, k) linear code is
 - a) 2^{n-k}
- b) 2^{n}
- c) $2^{n} 2^{k}$
- d) 2^k .
- x) The generator polynomial of a (7, 4) cyclic code has the degree of
 - a) 2

b) 3

c) 4

d) 5.

- xi) The syndrome polynomial in a cyclic code solely depends on
 - a) generator polynomial b) parity polynomial
 - c) error polynomial d) code word.
- xii) A (63, 15) BCH code over $GF(2^6)$ can produce the code maximum error capability of
 - a) 6 b) 8
 - c) 10 d) 12

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Draw the block diagram of a typical data transmission system and explain the f nction of each block.
- 3. Prove that the entropy is maximum when the messages are equally likely
- 4. Consider a source X which produces five symbols with probabilities 1/2, 1/4, 1/8, 1/16 and 1/16. Calculate source entropy.
- 5. Explain the concept of maximum likelihood decoding.
- 6. Design a generator matrix for a (7, 4) linear binary code (LBC).
- 7. Discuss the advantages and disadvantages of convolution codes.

6412 4

2.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 8. a) Find the entropy of a source generating *n* number of messages having different probabilities of occurrence.
 - b) State and explain source encoding theorem.
 - c) An analog signal band limited to 10 kHz is qu ntized in 8 levels of a PCM system with probabilities 1/4, 1/5, 1/5, 1/10, 1/10, 1/20, 1/20, 1/20 respectively. Calculate entropy and the rate of information. 5+5+5
- 9. a) One parity check code has parity check matrix as:

- i) D termine generator matrix
- ii Find the code word that begins with [101]
- iii) If received word is [110110], then decode this word.
- b) Show that the channel capacity for a continuous channel is given by $C = B \log_2 \left[1 + S/N \right]$ bit/sec.

$$(2+3+3)+7$$

- 10. a) A (7, 1) repetition code used to encode information sent through a channel with a bit error probability of 0.01. Find the probability that an information bit is erroneous after coding.
 - b) A channel has the following channel matrix:

$$\left[\begin{array}{ccc} P\left(\frac{Y}{X}\right)\end{array}\right] \left[\begin{array}{ccc} 1-P & P & 0 \\ 0 & P & 1-P \end{array}\right]$$

Draw the channel diagram. If the source has equally likely outputs, compute the probability associated with the channel outputs for p = 0.2s

- c) What is Galois Field?
- 11. What is Hamming distance? Give relation between minimum distance and error detecting and correcting capability. Describe a Hamming code. Also define Hamming sphere and Hamming bound.
- 12. a) For a systematic (7, 4) cyclic code determine the generator matrix and parity check matrix if $g(x) = 1 + x + x^3.$
 - b) A codeword polynomial c(x), belonging to the (7, 4) code with $g(x) = x^3 + x + 1$, incurs error so giving the received polynomial v(x). Find c(x) when

i)
$$v(x) = x^5 + x^2 + 1$$

ii)
$$v(x) = x^6 + x^3 + 1.$$
 7 + 8

6

6412

13.	Write short notes on an	v <i>three</i> of the following :	3×5

- a) Viterbi decoding
- b) Turbo codes
- c) Dual codes
- d) Standard array decoding
- e) BCH codes.

6412 7 [Turn over