SKL 1. Membaca pengukuran salah satu besaran dengan menggunakan alat ukur tertentu.

Hasil Pengukuran (HP)

$$HP = skalautama + \frac{skalanonius}{100}$$

$$HP = 2 + \frac{7}{100} = 2,07$$

Mikrometer skup

$$HP = 5.5 + \frac{15}{100} = 5.65$$

SKL 2. Menentukan besaran skalar dan vektor serta menjumlah /mengurangkan besaran-besaran vektor dengan berbagai cara.

Resultan Vektor

$$A + B + C + (-D) = 0$$

$$Ax = A \sin \mu$$
, $Ay = A \sin \mu$

$$X_{tot} = Ax + Bx + Cx$$
$$Y_{tot} = Ay + By + Cy$$

Resultan =
$$\sqrt{{x_{tot}}^2 + {y_{tot}}^2}$$

Stout are 1 \Rightarrow Tg $\theta = \frac{y_{tot}}{x_{tot}}$

Resultan 2 vektor

DIMENSI EDU CENTER

Besar resultan :
$$F_R = \sqrt{F_1^2 + F_2^2 \pm 2F_1F_2 \cos \alpha}$$

Arah resultan :
$$\frac{F_1}{\sin \alpha_2} = \frac{F_2}{\sin \alpha_1} = \frac{F_R}{\sin \alpha}$$

Dot Product : F_1 . $F_2 = |F_1|$. $|F_2|$ cos α Cross Product : $F_1 \times F_2 = |F_1|$. $|F_2|$ sin α

<u>SKL 3.</u> Menentukan besaran-besaran fisis gerak lurus, gerak melingkar beraturan, atau gerak parabola.

GERAK LURUS BERUBAH BERATURAN

Syarat : $\Delta v \# 0$ dan a kons

$$v = v_o + at$$

$$s = v_o \cdot t + \frac{1}{2} at^2$$

$$v^2 = v_o^2 + 2as$$

$$s = \frac{1}{2} (v_o + v_t)t$$

v_o = kecepatan awal v = kecepatan pada saat tertentu

a. Gerak Jatuh Bebas = GLBB, a = g, vo = 0.

Gerak Dilempar vertical ke bawah = GLBB, a = g, $vo \neq 0$

Gerak Dilempar vertical ke atas = GLBB, a = -g, vo $\neq 0$

d. Di titik tertinggi vt = 0

Gerak Parabola Gerak pada sumbu x

 $\begin{aligned} a_x &= 0 \rightarrow v_{x +} \, konstan \rightarrow GLB \\ v_o \cos \alpha &= v_p \cos \theta = v_H \\ x &= v_o \cos \alpha \cdot t \end{aligned}$

Gerak pada sumbu y

 $a_y = -g \rightarrow v_y$ berubah $v_y = v_0 \sin \alpha - gt$ $h = v_0 \sin \alpha \cdot t - \frac{1}{2}gt^2$ $v_y^2 = v_0^y \sin^2 \alpha - 2gh$

titik tertinggi $H \rightarrow \text{syarat} : v_y = 0$ titik terjauh $B \rightarrow \text{syarat} : h = 0$

$$t_{H} = \frac{v_{o} \sin \alpha}{g} = \sqrt{\frac{2h}{g}} \qquad t_{B} = 2t_{H} = \frac{2v_{o} \sin \alpha}{g}$$

$$h_{H} = \frac{v_{o}^{2} \sin^{2} \alpha}{2g} \qquad x_{B} = \frac{v_{o}^{2} \sin 2\alpha}{g}$$

Gerak Melingkar Beraturan (GMB) \rightarrow laju tetap, vector arah $v^2 - v^2$

tidak tetap. V = ω .r, $a_{sp} = \frac{v^2}{R}$, $F_{sp} = m\frac{v^2}{R}$

SKL 4. Menentukan berbagai besaran dalam hukum Newton dan penerapannya dalam kehidupan sehari-hari.

Hukum Newton I

 $\Sigma F = 0$ \rightarrow Benda diam tetap atau bergerak beraturan GLB **Hukum Newton II**

$$\Sigma F = m \cdot a$$
 atau $a = \frac{\sum F}{m}$

Arah percepatan a = arah resultan gaya ΣF

Hukum Newton III

Hukum ini dikenal dengan Hukum aksi-reaksi

GAYA GESEKAN

Gaya Gesekan Kinetik (fs)

$$f_k = \mu_k . N$$

Gaya Gesekan Statik (f_s)

Bekerja pada benda yang diam, syarat: $\Sigma F_x = 0$, f_s tidak tetap, bervariasi dari nol sampai dengan f_s maks.

$$f_s$$
 maks = μ_s . N

Umumnya : f_s maks. $> f_k \rightarrow \mu_s > \mu_k \rightarrow 0 \le \mu \le 1$

SKL 5. Menentukan hubungan besaran-besaran fisis yang terkait dengan gaya gravitasi.

Gaya Gravitasi

$$F = G \frac{mM}{r^2} \qquad g = \frac{GM}{r^2}$$

M = massa bumi

r = Jarak pusat bumi ke benda; g = percepatan gravitasi.

Hk Kappler:

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3$$

Menentukan letak titik berat dari berbagai SKL 6. benda homogen.

Letak titik berat

Dimensi satu:

$$x_0 = \frac{x_1 \ell_1 + x_2 \ell_2 + \dots}{\ell_1 + \ell_2 + \dots}$$
 $\ell = \text{panjang}$

$$x_0 = \frac{x_1 A_1 + x_2 A_2 + ...}{A_1 + A_2 + ...}$$
 A = luas

Titik Pusat massa:

$$x_0 = \frac{x_1 m_1 + x_2 m_2 + ...}{m_1 + m_2 + ...}$$
 m = massa

Menganalisis hubungan besaran-besaran yang SKL 7. terkait dengan gerak rotasi.

Massa Partikel

 $I = m_1 r_1^2 + m_3 r_3^2$

$$EK_{rot} = \frac{1}{2}I\omega^2$$
 $EK_{tot} = EK_{trans} + EK_{rot}$

DIMENSI EDU CENTER

SKL 8. Menentukan besaran-besaran yang terkait dengan usaha dan perubahan energi.

Usaha (W)

Usaha dan perubahan energi

- $W = \Delta E_n$
- $W = \Delta E_M$

Daya (P) $P = W/t = F \cdot v$

<u> SKL 9.</u> Menjelaskan sifat elastisitas benda atau penerapan konsep elastisitas dalam kehidupan sehari-hari.

HUKUM HOOKE (ELASTISITAS)

Besarnya penmbahan panjang suatu zat padat (ΔL), sebandinng dengan gaya yang bekerja padannya (F)

$$E = \frac{F}{A} : \frac{\Delta L}{L}$$
 atau $\tau = E \cdot e$

E = Modulus Young

Pada pegas

$$F = k \cdot \Delta x : E_p = \frac{1}{2} \cdot K (\Delta x)^2$$

- SKL 10. Menentukan besaran-besaran yang terkait dengan hukum kekekalan energi mekanik.
- SKL 11. Menentukan besaran-besaran fisis yang terkait dengan impuls, momentum, atau hukum kekekalan momentum.

 $I = F \cdot \Delta t$ $P = m \cdot v \rightarrow f \cdot \Delta t = m \cdot \Delta v$

Pada tumbuhan ($\Sigma F_{luar} = 0$) berlaku Hukum Kekekalan Momentum:

 $m_2 v_2' + m_1 v_1' = m_2 v_2 + m_1 v_1$

Koefisien elastisitas (e)

$$e = -\frac{(v_1 - v_2)}{(v_1 - v_2)} \rightarrow 0 \le e \le 1$$

 $e = \sqrt{\frac{h_2}{h_1}} = \frac{v_2}{v_1}$

SKL 12. Menjelaskan proses perpindahan kalor atau penerapan azas Black dalam kehidupan sehari-hari.

AZAS BALCK

Akibat pemberian kalor Q pada benda adalah:

- Perubahan suhu : $Q = m \cdot c \cdot \Delta t \rightarrow c = kalor jenis$
- Perubahan fasa : $Q = m \cdot L \rightarrow L = kalor laten$

Diagram kalor-suhu untuk air

SKL 13. Mendeskripsikan azas Bernoulli dalam fluida dan penerapannya.

Persamaan Kontinuitas

$$Q_1 = Q_2 \implies \boxed{Q = \frac{vol}{t} = A \cdot v}$$
maka $A_1v_1 = A_2v_2$

$$Q = Debit : (m^3/s).$$

Hukum Bernoulli

P + pgh +
$$\frac{1}{2}$$
 pv² = konstan

Penerapan Hukum Bernoulli pada tangki Bocor

SKL 14. Menentukan variabel-variabel pada persamaan umum gas ideal.

Hukum Boyle-Gay lussac

Merupakan penggabungan hukum Boyle dengan Gay-Lussac

$$\frac{pV}{T} = \text{konstan} \rightarrow \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Persamaan keadaan Gas ideal

DIMENSI EDU CENTER

$$\begin{aligned} & \underbrace{PV = nRT \quad atau \quad PV = NkT} \\ & n = \frac{m}{BM} = \frac{N}{N_o} \quad dan \quad R = k \ . \ No \end{aligned}$$

dengan:

= jumlah mol gas R = tetapan gas umum

m = massa 1 partikel gas = 8,31 J/mol K

BM = berat molekul = 0,082 It.atm/mol K.

N_o = bilangan Avogadro k = konstanta boltzman

=
$$6,02 \times 10^{23part}/mol$$
 = $1,38 \times 10^{-23} J/K$

$$P = \frac{1}{3} \frac{Nmv^2}{V}$$
 T= temperatur (K)

SKL 15. Menjelaskan faktor-faktor yang mempengaruhi energi kinetik gas.

Ek = 3/2 kT . Ek : Ek rata-rata

SKL 16. Menentukan berbagai besaran fisis dalam proses termodinamika pada mesin kalor.

Mesin Carnot (Mesin Ideal)

Siklus Carnot adalah sikus ideal yang terdiri dari dua proses isotherm dan dua proses adiabatis.

- $T_1 > T_2$
- Proses A \rightarrow B dan proses C \rightarrow D adalah proses isotherm.
- Proses B \rightarrow C dan proses D \rightarrow A dalah proses adiabatis Q₁ = kalor yang diberikan pada gas oleh reservoir bersuhu

Q₂ = kalor yang dilepas oleh gas pada reservoir bersuhu rendah

Kerja yang diperoleh :
$$W = Q_1 - Q_2$$
 Efisiensi : $\eta = \frac{W}{Q_1} \Rightarrow \eta = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$ $\eta = 1 - \frac{T_2}{T_1}$ T dalam Kelvin

MESIN PENDINGIN CARNOT

Koefisien Daya Guna Mesin

$$\mathsf{Kp} = \frac{T_2}{T_1 - T_2}$$

SKL 17. Menentukan besaran-besaran yang terkait dengan pengamatan menggunakan mikroskop atau teropong.

Mikroskop

- Mikroskop mempergunakan dua buah lensa positif (obyektif dan okuler)
- Benda terletak di R II dari lensa (antara f_{ob} dan 2f_{ob})

Sifat bayangan akhir : diperbesar, maya dan terbalik dari asalnya.

- Panjang mikroskop $d = S'_{ob} + S_{ok}$
- d = jarak lensa objektif dengan okuler
- bayangan oleh lensa objektif merupakan benda bagi lensa okuler
- lensa okuler berfungsi sebagai lup

- Perbesaran linier total :

$$\mathsf{M}_{\mathsf{tot}} = \mathsf{M}_{\mathsf{ob}} \cdot \mathsf{M}_{\mathsf{ok}} = \frac{S'_{ob}}{S_{ob}} \times \frac{S'_{ok}}{S_{ok}}$$

- Perbesaran sudut total untuk mata tidak berakomodasi Syarat : $S'_{ok} = \infty$, $S_{ok} = f_{ok}$

$$\mathsf{M}_{\mathsf{tot}} = \frac{S'_{ob}}{S_{ob}} \times \frac{S_n}{f_{ok}}$$

Perbesaran sudut total untuk mata berakomodasi maksimum.

Syarat:
$$S'_{ok} = -s_n$$

$$M_{tot} = \frac{S'_{ob}}{S_{ob}} \times \left[\frac{sn}{fok} + 1 \right]$$

Teropong Bintang

- mempergunakan dua buah lensa positif (objektif dan okuler)
- f_{ob} > f_{ok} karena letak benda jauh sekali
- dipergunakan untuk mengamati benda-benda angkasa luar
- memperbesar sudut penglihatan agar benda tampak lebih jelas dn dekat, buka lebih besar.
- Bayangan akhir S $_{ok}$ terbalik

Karena bintang-bintang sangat jauh, maka: $S_{ob} = \infty \rightarrow S'_{ob} = f_{ob}$

- Rumus umum perbesaran sudut $M_{tot} = \frac{S'_{ob}}{S_{ob}} \times \frac{f_{ob}}{S_{ok}}$
- Perbesaran sudut untuk mata tidak berakomodasi.

Syarat :
$$egin{aligned} S'_{ok} &= \infty \ S_{ok} &= f_{ok} \ \end{bmatrix}$$
 letak f_{ob} berhimpit f_{ok}

$$M_{tot} = \frac{f_{ob}}{S_{ok}} = \frac{f_{ob}}{f_{ok}}$$

- Teropong bumi (dengan lensa pembalik)
 d = f_{ob} + 4 f_o + f_{ok} (tanpa akomodasi)
- Teropong panggung : (lensa obj (+) ; lensa okuler (-)

DIMENSI EDU CENTER

$$d = f_{ob} - |f_{ok}|$$

<u>SKL 18.</u> Menjelaskan berbagai jenis gelombang elektromagnet serta manfaatnya atau bahayanya dalam kehidupan sehari-hari.

Gelombang Elektromagnetik

Gelombang elektromagnetik adalah gelombanggelombang yang tidak bermuatan listrik, yaitu:

gelombang radio, televise, radar, inframerah, cahaya tampak, ultra violet, sinar x, sinar γ semakin kekanan f makin besar

<u>SKL 19.</u> Menentukan besaran-besaran tertentu dari gelombang berjalan.

16. PERSAMAAN GELOMBANG BERJALAN

 $v = f . \lambda$

y = A sin (
$$\omega$$
t – kx + \mathcal{Q}_o)

$$k = \frac{2\pi}{\lambda}, \omega = 2\pi f$$

<u>SKL 20.</u> Menentukan besaran-besaran yang terkait dengan peristiwa interferensi atau difraksi cahaya.

kisi Difraksi

$$d \sin \theta = m \cdot \lambda$$
 $m = 0, 1, 2, 3, ...$

d = jarak kedua celah

I = jarak layer kecelah

$$\frac{p.d}{\ell} = \text{m.}\lambda$$

p = jarak terang ke m dari terang pusat.

 λ = panjang gelombang cahaya yang dipakai.

Syarat terjadi gelap (interferensi minimum)

$$\frac{p.d}{\ell}$$
 = (bil.ganjil) x $\frac{1}{2} \lambda$

Lenturan pada Celah Tunggal

d = lebar celah

I = jarak layer ke celah

Syarat terjadinya gelap

$$d \sin \theta = m \cdot \lambda$$
 atau $\frac{p \cdot d}{\ell} = m \cdot \lambda$
 $m = 1, 2, 3, ...$

Kisi

Syarat terjadinya terang : $d \sin \theta = m \cdot \lambda$, d = 1/N

SKL 21. Membandingkan intensitas atau taraf intensitas dari beberapa sumber bunyi yang identik.

INTENSITAS (I) DAN TARAF INTENSITAS BUNYI (TI)

Intensitas adalah energi yang dipindahkan persatuan waktu atau daya (P) per satuan luas

(A).

Intensitas (I)

$$I = \frac{P}{A}$$
 (W/m²) $I_1 : I_2 = \frac{1}{R_1^2} : \frac{1}{R_2^2}$

Taraf Intensitas (TI)

TI = 10
$$\log \frac{I}{I_o}$$

di mana:

TI = taraf intensitas (dB)

I = Intensitas bunyi (W/m²)

 I_0 = intensitas ambang = 10^{-12} W/m²

Perbandingan Intensitas

a. Jumlah (n)
$$\frac{I_2}{I_1} = \frac{n_2}{n_1}$$

b. Jarak (R):
$$\frac{I_2}{I_1} = \left(\frac{R_1}{R_2}\right)^{\frac{1}{2}}$$

$$TI_2 - TI_1 = 10 \log \frac{I_2}{I_1}$$

$$TI_2 - TI_1 = 10 \log \frac{I_2}{I_1}$$

SKL 22. Menentukan besaran-besaran tertentu yang menimbulkan efek Doppler atau menentukan perubahan akibat efek Doppler tersebut.

EFEK DOPPLER

•
$$f_p = \frac{v \pm v_p}{v \pm v_s}$$
. $f_s \rightarrow$ Bila kecepatan angin diabaikan

$$\bullet \quad \mathsf{f_p} = \frac{\left[\left(v \pm v_a\right) \pm vp\right]}{\left[\left(v \pm v_a\right) \pm v_s\right]}. \ \mathsf{fs} \ \Rightarrow \ \mathsf{Bila} \ \mathsf{kecepatan} \ \mathsf{anngin} \ \mathsf{tidak}$$

diabaikan

SKL 23. Menentukan besaran-besaran yang terkait dengan hukum Coulomb atau medan listrik.

LISTRIK STATIS

Hukum Coulomb

Menurut Coulomb besar antara 2 muatan listrik adalah :

$$F = k \cdot \frac{q_1 \cdot q_2}{r^2}$$

F = gaya coulomb, q = muatan listrik

r = jarak kedua muatan

Medan Listrik F = q . E

E = kuat medan listrik di tempat muatan

listrik q

Catatan:

- E dan F adalah besaran vector
- Jika q positif maka F searah dengan E
- Jika q negative maka berlawanan arah dengan E

$$E = \frac{F}{q'} \rightarrow E = k \cdot \frac{q}{r^2}$$
 (N/C = V/m)

Potensial Listrik

$$v = k \cdot \frac{q}{r}$$
 karena $E = k \cdot \frac{q}{k^2}$ maka $v = E \cdot r$

- R = jari-jari bola
- r = jarak ke pusat
- potensial di dalam bola = potensial di kulit bola

$$(r \le R)$$
 yaitu $v = k \cdot \frac{q}{r}$

potensial di luar bola (r>R) $v = k \cdot \frac{q}{r}$

Potensial listrik pada dua keping sejajar

$$v=E$$
 . d atau $v=\frac{\sigma}{\varepsilon_o}$. d $d=jarak$ kedua keeping

Energi potensial Listrik

Besarnya energi potensial listrik (EP) pada suatu titik yang potensialnya v adalah :

$$Ep = qV \quad sehingga \quad Ep = \frac{k \cdot q_1 q_2}{\varepsilon_o}$$

SKL 24. Menentukan hasil pengukuran kuat arus dan atau tegangan listrik.

Kuat Arus Listrik

$$I = \frac{q}{t}$$

I = dalam Ampere

q = dalam coulomb t = dalam detik

Hukum ohm

Arus listrik pada hambatan berasal dari potensial tinggi, kepotensial rendah, maka VA > VB

$$V_{AB} = I . R \rightarrow V_{AB} = V_A - V_B$$

$$V_{AB} = V_B - V_B$$

$$V_{BA} = V_B - V_A$$

Hambatan Listrik (R)

$$R = \rho \cdot \frac{\ell}{A}$$

$$H.Pengukuran = \frac{skala_tunjuk}{skala_max} xskala_alat$$

SKL Fisika SMA 2011

- Gaya pada dua kawat sejajar berarus listrik $F = \mu_o i_1 i_2$
- SKL 25. Menggunakan hukum Ohm dan hukum Kirchoff untuk menentukan berbagai besaran listrik dalam rangkaian tertutup.

Hukum Kirchoff I : Σ I masuk = Σ Ikeluar Hukum Kirchoff II : Vab = Σ I.R + Σ E

SKL 26. Menentukan besaran-besaran yang terkait dengan medan magnet induksi di sekitar kawat berarus.

Huku<u>m Faraday</u>

• $\varepsilon_{\text{ind.}} = -N \frac{d\Phi}{dt} \Rightarrow \Phi = B . A$

Fluks berubah karena A berubah

Jika kawat PQ yang panjangnya I di geser dengan kecepatan v.

SKL 28. Menjelaskan kaitan besaran-besaran fisis

pada peristiwa induksi Faraday.

DIMENSI EDU CEI

 $\varepsilon_{\text{ind.}} = B I v$ syarat : B \perp A, kalau B // A $\rightarrow \varepsilon_{\text{ind} = 0}$

KEMAGNETAN

Induksi Magnetik di sekitar kawat bawah lurus berarus

$$B = \frac{\mu_o I}{2\pi a}$$
 B = induksi magnetik

 μ_o = permeabili tas hampa

 $= 4 \pi \cdot 10^{-7} \, \text{wb/amp} \cdot \text{m}$

a = jarak dari kawat berarus

I = kuat arus listrik

• Induksi magnetik di sekitar kawat melingkar berarus

$$B_p = \frac{\mu_o I}{2a} \Rightarrow B = \frac{\mu_o NI}{2a}$$

a = jari-jari lingkaran

r = jarak titik dari kawat lingkaran

N = jumlah lilitan kawat

• Induksi magnetik dalam solenoida

Besarnya induksi magnetik di tengah-tengah Solenoida

$$B_T = \frac{\mu_o NI}{\ell}$$

Besarnya induksi magnetik di titik ujung solenoida

$$B_u = \frac{\mu_o NI}{2\ell}$$
 I = panjang solenoida

N = banyak lilitan

I = kuat arus listrik

Induksi magnetik dalam toroida

Induksi magnetik hanya ada di dalam belitan toroida

$$B = \frac{\mu_o NI}{L}$$
 L = keliling toroida

di O induksi magnetik = nol

- SKL 27. Menjelaskan timbulnya gaya magnet (gaya Lorentz) atau menentukan besaran-besaran yang mempengaruhinya.
- Gaya Lorentz pada kawat berarus

 $F_1 = BII \sin \alpha$

 α = sudut yang dibentuk oleh B dan I

Gaya Lorentz pada muatan bergerak

 $F_L = q v B sin \alpha$

 α = sudut v terhadap B

Lintasan partikel bermuatan dalam medan magnet

Bila v //B maka F = 0 → bergerak lurus

Bila v \perp B, ada gaya sentripetal F = qvB \rightarrow bergerak melingkar

$$qvB = \frac{mv^2}{R} \rightarrow R = \frac{mv}{qB} \text{ atau } \omega = \frac{qB}{m}$$

Hukum Henry

 $\varepsilon_{\text{ind}} = -L \frac{dl}{dt}$ dl/dt = perubahan arus terhadap waktu

L = koefisien induksi diri (Henry)

Energi yang tersimpan didalam kumparan (W) adalah:

$$W = \frac{1}{2}LI^2$$
 W = energi dalam inductor

Transformator

• Jika efesien (η) transformator = 100 % maka :

$$\frac{V_p}{V_s} = \frac{I_s}{I_p} \to \frac{I_s}{I_p} = \frac{N_p}{N_s}$$

• Jika efesiensi (η) transformator < 100 % maka :

$$P_{\text{sekunder}} = \eta P_{\text{primer}} V_{\text{s}} . I_{\text{s}} = \eta . V_{\text{p}} . I_{\text{p}}$$

Generator Arus Bolak-balik (Alternator)

- ε = NAB ω sin ωt
- $\varepsilon = \varepsilon_{\text{maks}} \sin \omega t$
- $\varepsilon_{\text{maks}} = N . A . B . \omega$
- SKL 29. Menentukan besaran-besaran fisis pada rangkaian arus listrik bolak-balik yang mengandung resistor, induktor, dan kapasitor.

Tegangan dan Arus Bolak-Balik

 $V = V_m \sin \omega t$ $I = I_m \sin \omega t$

Besar harga efektif/ms
$$V_{\text{eff}} = \frac{V_m}{\sqrt{2}}$$
 dan $I_{\text{eff}} = \frac{I_m}{\sqrt{2}}$

Harga rata-rata

$$I_{\rm r} = \frac{21_{\rm m}}{\pi} \quad \text{dan } V_{\rm r} = \frac{2V_{\rm m}}{\pi}$$

 I_r = kuat arus rata-rata; V_r = tegangan rata-rata Hambatan terhadap AC

$$\begin{aligned} & \mathbf{X_c} = \frac{1}{\omega c} (\Omega) & & \mathbf{X_L} = \omega \, \mathbf{L} (\Omega) \\ & \mathbf{X_c} = \frac{1}{2\pi f c} (\Omega) & & \mathbf{X_L} = 2 \, \pi \, \mathbf{f.L} (\Omega) \end{aligned}$$

$$Z = \sqrt{R^2 + (X_L - X_c)^2} \quad R = Z \cos \varphi$$

tg
$$\varphi$$
 = $\frac{X_L - X_c}{R}$, φ = sudut fasa

resonansi : $X_L = X_c \rightarrow Z = R$ sehingga $f_{res} = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$

Penjumlahan tegangan $V_R = I . R$

$$V_L = I . X_L$$
 dan $V_{tot} = I . Z$ atau $I = \frac{V_{tot}}{Z}$ $V_c = I . X_c$

Daya pada Arus Bolak-Balik

$$P = I^2 R$$

SKL 30. Membedakan teori-teori atom.

Model Atom Rutherford

- Atom terdiri dari inti atom yang bermuatan listrik positif mengandung hampir seluruh massa atom dan dikelilingi oleh electron-elektron bermuatan listrik negative seperti model tata surya.
- Selama mengelilingi inti, gaya sentripetal pada electron dibentuk oleh gaya tarik elektrostatik.
- Kelemahan:
- E_{tot} akan mengecil sehingga r mengecil hingga suatu saat bersatu dengan inti → tidak benar.
- Spektrum atom hidrogen dinyatakan kontinu → tidak benar, ternyata adalah spectrum garis.

Model atom bohr

postulat Bohr, yaitu:

 Elektron berputar mengelilingi inti pada lintasan tertentu yang disebut lintasan stasioner tanpa melepas/menyerap energi, dengan besar momentum sudut (mvr) sebagai berikut:

$$mvr = \frac{n.h}{2\pi}$$

n = bilangan kuantum utama 1, 2, 3, 4 ...

h = konstanta planck

 Elektron dapat berpindah dari lintasannya ke lintasan yang lebih rendah jika melepaskan energi (berupa foton) dan kelintasannya yang lebih tinggi jika mendapat energi. Elektron dari r₃ ke r₂ melepas energi :

 $E_3 - E_2 = h f_1 = frekuensi foton yang dilepas.$

$$r_n = n^2 \cdot r$$

 $r_n = jari-jari$ electron pada orbit ke n, $r_1 = 5,28 \times 10^{-11}$ m

$$E_n = \frac{E_1}{n^2}$$
 $E_n = \text{energi elektron pada jari-jari } r_{n'}$ $E_1 = -13,6 \text{ ev}$

energi untuk membebaskan sebuah elektron dari kulit ke n adalah:

$$E = \frac{13.6}{n^2} \text{ eV}$$

Kelemahan Bohr, yaitu:

- Lintasan elektron yang sebenarnya masih mempunyai sub orbital jadi tidak sesederhana dalam teori Bohr.
- Teori Bohr tidak dapat menerangkan kajadian-kejadian dalam ikatan kimia dengan baik, pengaruh medan magnet terhadap atom dan spectrum atom berelektron banyak.

DIMENSI EDU CENTER

Spektrum atom Hidrogen

Secara umum panjang gelombang ($\boldsymbol{\lambda}$) spectrum dirumuskan sebagai berikut :

$$\boxed{\frac{1}{\lambda} = R \left[\frac{1}{n_A^2} - \frac{1}{n_B^2} \right]}$$

$$\lambda \text{max} \rightarrow \text{n}_{\text{B}} = \text{n}_{\text{A}} + 1$$
, $\lambda \text{min} \rightarrow \text{n}_{\text{B}} = \sim$

- R = konstanta Rydberg = $1,097 \times 10^7 \text{ m}^{-1}$
- $N_B = (n_A + 1), (n_A + 2), (n_A + 3) \dots$
- Deret lyman : $n_A = 1$ Deret balmer : $n_A = 2$
- Deret paschen : n_A =
- Deret Bracket : $n_A = 4$ Deret pfund : $n_A = 5$

<u>SKL 31.</u> Menganalisis teori relativitas dan besaranbesaran yang terkait.

Relativitas Kecepatan

Penjumlahan kecepatan relativistic adalah sebagai berikut :

$$V = \frac{V_1 + V_2}{1 + \frac{V_1 V_2}{C^2}}$$

V₁ = kecepatan benda 1 terhadap tanah

V₂ = kecepatan benda 2 terhadap benda 1

V = kecepatan benda 2 terhadap tanah (kerangka acuan diam)

c = kecepatan cahaya

Relativitas Panjang (kontraksi lorentz)

$$L' = L\sqrt{1 - \frac{v_2}{c^2}}$$

L' = panjang benda diukur oleh pengamat yang bergerak terhadap benda.

L = panjang benda diukur oleh pengamat yang diam terhadap benda.

v = kecepatan relative antara kerangka acuan.

Relativitas Waktu

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - v^2 / c^2}}$$

 Δt^\prime = selang waktu yang diukur oleh pengamat yang bergerak terhadap kejadian.

 $\Delta t \, = \, selang$ waktu yang diukur oleh pengamat yang diam terhadap kejadian.

Relativitas Massa

$$m = \frac{m_o}{\sqrt{1 - v^2 / c^2}}$$

Massa dan Energi

 $E = mc^2$

EK = E_{total} – E_{diam} atau EK =
$$\frac{m_o}{\sqrt{1 - v^2 / c^2}} c^2 - m_o. c^2$$

SKL 32. Menjelaskan teori kuantum Planck dan kaitannya dengan radiasi benda hitam.

Pergeseran Wien

$$\lambda$$
max . T = C

$$T = suhu mutlak (K) C = 2,898 x 10-3 m . k$$

Teori Kuantum Max Planck

Cahaya terdiri dari paket energi (kuanta, foton) yang terkuantisasi.

 $h = tetapan planck = 6.6 \times 10^{-34} J.s$

n foton :
$$E = n \cdot h \cdot f = n \cdot h \cdot \frac{c}{\lambda}$$

Efek Foto Listrik

W = hf_o = energi ambang logam
E = W + EK
$$\rightarrow$$
 hf = hf_o + $\frac{1}{2}$ mv²

Efek Compton

- berlaku hukum kekekalan momentum
- $\lambda' \lambda = \frac{h}{m_o c} (1 \cos \theta) \rightarrow \lambda' > \lambda \text{ atau } f' < f$

Partikel/materi sebagai gelombang

Hipotesa De Broglie

$$\lambda = \frac{h}{p} \to \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mEk}} = \frac{h}{\sqrt{2mqV}}$$

SKL 33. Menentukan besaran-besaran fisis pada reaksi inti atom.

Reaksi Inti

$$A + B \rightarrow C + D$$

Berlaku Hk. Kekekalan nomor atom dan nomor massa

Energi = (reaktan - produk) x 931 MeV

E + = menghasilkan energy

E - = menyerap energi

Energi ikat inti (Eikat)

$$E_{ikat} = \Delta m \cdot c^2$$

Δm = penyusutan massa (massa defek)

 $\Delta m = m_{teori} - m_{nyata'}$ sehingga :

$$\Delta m = (zm_p + (A - Z)m_n) - m_{inti}$$

 m_n = massa proton

m_n = massa netron

- massa 1 sama = 1,66 x 10^{-27} kg \rightarrow 1 sma \approx 931,4 MeV $1eV = 1.6 \times 10^{-19}$ joule

Radioaktivitas/ Peluruhan

$$N = N_o \left(\frac{1}{2}\right)^{t/T}$$

$$dan \qquad T = \frac{1n2}{\lambda} = \frac{0,693}{\lambda}$$

 λ = konstanta peluruhan

Aktivitas : $A = \lambda N$

DIMENSI EDU CENTER

SKL 34. Menentukan jenis-jenis zat radioaktif atau mengidentifikasi manfaat radioisotop dalam kehidupan.

Sinar gamma: mengukur ketebalan logam Sinar gamma (Co-60): Membunuh sel-sel kangker

Sinar beta(β): mendeteksi kebocoran pipa Iodium: memantau kelenjer tiroid Karbon (C-14): mendeteksi umur fosil

Pemindaian(scanning)

Iodium-131: Tiroid paru-paru

Kromium-51: Limpa Selenium-75: Pankreas

Teknetium-99: tulang, paru-paru

Galium-67: Getah bening