This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number :

62-089025

(43) Date of publication of application : 23.04.1987

(51) Int. CI.

GO2F 1/13

(21) Application number : 60-229104

(71) Applicant : MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

15, 10, 1985

(72) Inventor :

HISAMITSU SHINJI KOMON HIRONOBU

(54) LIQUID CRYSTAL DISPLAY PANEL AND ITS PRODUCTION

(57) Abstract:

PURPOSE: To eliminate the loss of liquid crystal materials and the pollution of a liquid crystal and to simplify production processes by arranging seal materials on liquid crystal sealing parts of one electrode substrate and putting different kinds of chemicals on them and sticking two electrode substrates in vacuum thereafter.

CONSTITUTION: Electrode substrates 11 and 12 are prepared, and seal materials 13 consisting of a resin curable by ultraviolet rays or the like are printed on two liquid crystal sealing parts of the substrate 12 by a screen printing method, and a conductive resin 14 is printed on the substrate 12 similarly. Prescribed quantities of different kinds of liquid crystal 15 are dropped on center parts surrounded with seal materials 13 on the substrate 11.

Substrates 11 and 12 are put one over the other, and they are put in a space 20 of a base 19 of a vacuum sticking machine 18 and are covered with a sheet 21, and a cover 22 is closed to fix them by a bolt. The air in a space 23 is discharged by a vacuum pump connected to an exhaust port 25. Next, air discharge from the space 20 is stopped, and air is leaked through the air exhaust port 25 to return the space 20 to the atmospheric pressure. Thereafter, the cover 22 is opened to take out substrates 11 and 12, and seal materials 13 are cured. They are divided to prescribed dimensions by cutting to obtain a liquid crystal display panel.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of

. 圆日本国特許 E.(JP)

⑪特許出願公開

@公開特許公報(A)

昭62-89025

@Int.Cl.⁴

識別記号

庁內整理番号

→ 3公開 昭和62年(1987)4月23日

1/133 1/13 G 02 F

3 2 5

8205-2H 7448-2H

未請求 発明の数 3 (全9頁) 審査請求

液晶表示パネルおよびその製造方法 の発明の名称

> 頤 昭60-229104 20特

願 昭60(1985)10月15日 四出

久 光 ②発 明 者 小門 伸 弘 宣 門真市大字門真1006番地 松下電器產業株式会社內

門真市大字門真1006番地 松下電器產業株式会社内

眀 考 母発 松下電器產業株式会社 頣 ⑪出

門真市大字門真1006番地

外1名 弁理士 中尾 赿 男 30代 理

1、発明の名称

液晶表示パネルおよびその製造方法

- 2、特許請求の範囲
 - (1) 2 核以上の電極基板の少なくとも 1 校を共用 し、シール材を介してとれら電極基板を対向配 置し、上記竜極基板とシール材により2個以上 の独立した液晶密封部を一体化して設け、上記 密封部の少なくとも一つには他と異なった液晶 が密封されてたる液晶表示パネル。
 - (2) 対向する電極蓋板の少なくとも片方にシール 材を配置し、少なくとも片方の上記電極基板上 に1種以上の液晶を一定量のせ、その後2枚の 上記電極基板を真空中で貼合せることを特徴と する液晶表示パネルの製造方法。
 - (3) 液晶としてスペーサを混入したものを使用す ることを特徴とする特許請求の範囲第2項に記 破の液晶表示パネルの製造方法。
 - (4) シール材として紫外線硬化型樹脂を用いたこ とを特徴とする特許請求の範囲第2項に記載の

液晶表示パネルの製造方法。

- (5) 対向配置された電極基板間の空間の少なくと も一部を貼合せ用のシール材とは別のシール材 を用いて密閉し、上記空間と外部との気圧差を 発生させ、上記2枚の電極基板を加圧するとと を特徴とする特許請求の範囲第2項に記載の液 晶表示パネルの製造方法。
- (a) 対向配置された電極基板を少なくとも一面が 柔軟なシートまたはフィルムからなる空間に入 れて機械的に密封し、上記空間と、上記シート またはフィルムにより上記空間と分離された他 の空間との気圧差を発生させ、上記シートまた **はフィルムを介して上記2枚の電極基板を加圧** することを特徴とする特許請求の範囲第2項に 記載の液晶表示パネルの製造方法。
- (7) 少たくとも液晶に接する側の内シールに紫外 線硬化型樹脂からたるシール材、外シールに素 外線硬化型樹脂 熱可塑性樹脂 熟硬化性樹脂 のいずれか一つからたるシール材を用い、二重 シールとしたことを特徴とする特許請求の範囲

第2項に記載の液晶表示パネルの製造方法。

- (B) 内シールにラジカル重合型、外シールにカチ オン重合型の紫外線硬化型樹脂をそれぞれ用い たことを特象とする特許請求の範囲第7項に記 数の液晶表示パネルの製造万法。
- (9) 3枚以上の電極基板のそれぞれ対向する電極 基板の少なくとも片方にシール材を配置し、上 記それぞれ対向する電極基板の少なくとも片方 にそれぞれ1種以上の液晶を一定量のせ、その 後上記各電極基板を真空中で貼合せることを特 徴とする液晶表示パネルの製造方法。
- (10) 液晶としてスペーサを混入したものを使用することを特徴とする特許請求の範囲第9項に記載の液晶表示パネルの製造方法。
- (11) シール材として無外線硬化型樹脂を用いたことを特徴とする特許請求の範囲第9項に記載の 液晶表示パネルの製造方法。
- 3、発明の詳細な説明産業上の利用分野・本発明は、薄型・軽量・低消費電力ディスプレ
 - (c) 第13図(A)~(D)に示すように対向配置された電極基板1,2をシール材3を用いて接着 固定し、前もってサントイッチ型セル構造の 容器を作り、上記シール部に前もってを設けいのでは、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では1000年では、1000年では1000年では1000年では1000年では1000年で1000年

発明が解決しようとする問題点

しかし、上記のようを従来の方法には以下に述 べるような欠点を有していた。

まず、上記(A)の方法では、特開昭49-79541号公報, 特開昭55-6881号公報 特開昭55-6882号公報にもあるように、真空を使わずに液晶と共にセル内の気泡を追い出すという方法であるため、そのコントロールが難しく、セル容積に見合った正味使用量の液晶を高下したのでは、必ず気泡が残ってしまうことになる。また、正味使用量を超えても少量であれば常に一

イとして利用されている液晶表示パネルおよびそ の製造方法に関するものである。

従来の技術

今日、液晶表示パネルは神型、軽量、低消費電力のディスプレイとして、電卓を初めとする各方面で広範に使われており、今後益々その利用度が高まるものと期待されている状況にある。

従来、との液晶表示パネルを製造する方法として、下記のようたものが提案されている。

- (a) 対向配置される片方の電極芸板上にピペットあるいは注射器などを用いて液晶を正味必要量以上滴下し、その上にスペーサを介してもう一枚の電極基板を大気中でのせ、周囲にはみ出した液晶をふき取った後、外周を接着材などでシール接着する方法。
- (b) 対向配置された電極差板をシール材を用いて接着固定し、前もってサンドイッチ型セル構造の容器を作り、上記電極基板に前もって設けられた液晶注入口より液晶を毛細管現象加圧、真空などを用いて注入、封口する方法。

定量の液晶を滴下しても気泡が残ったり残らをか ったりするので、結局セル内に気泡を残さないた めには多量の液晶を腐下する必要がある。従って、 シール材を貼り合せる前に電極基板上に液晶を滴 下、形成すると、シール材が液晶によって流され たり、シール材なよび電極基板上のシール接着面 に液晶が付着するため、シール材料の選択も限ら れ、品質上での信頼性が非常に悪いものになって しまう。そして、前もって形成するシール材の厚 みが厚いと、正味必要量とり余分の液晶が外部へ 漏れ出す前にセル内に密封され、均一な液晶層の 厚みが得られたいためにシート状のスペーサが使 用され、後でシール材を外周に塗布し接着する方 **法が採られる。との場合、信頼性,作菜性を改善** するために特開昭51-10711号公報, 特開 昭 5 1 - 1 1 9 3 4 号公報に示されているように 工夫が種々をされているが、それでも1個づつセ ルの外周にシール材を塗布し、硬化させる必要が あり、量産性が非常に悪く、かつ液晶材料のロス も大きいことから、今日ではこの方式は全く使わ

れていない。

次に、上記(P)の方法では、毎開昭49-4548 号公報・特開昭49-79541号公報かよび特 開昭35-6881号公報に示されているように、 信頼性・作業性・コストダウンの工夫がなされて いるが、電極基板の孔あけ加工は必ず必要であり、 コストアップの要因となるばかりでなく、 量産性 が悪いという欠点を有している。

以上のような理由から、上記(a), (b)の方法は今 日にとんど使用されていなく、もっぱら上記(c)の 方法で液晶表示パネルの生産が行われている。

しかしながら、 この(c) の方法も特開 昭 5 8 - 3 7 5 2 7 号公報, 特開 昭 5 8 - 4 0 7 2 6 号 会報に示されるように工夫はされてはいるが、正夫はされてはいるが、正夫はするため、①注入口端面が液晶を接触するため、②液晶が付着したその上から封口材で封口するため、あ田の接着強度が弱く、品質と接触することから、液温が疾されたり、コミが混入することから、液

することができなく、提案されていないなどの問題点を有していた。

また、上記(a)の方法を除き、上記(b),(c)の万法 は電極基板の接着工程と、液晶注入工程と、封口 工程との三工程よりなっており、工数がかかる。 このような欠点を従来の方法では有していた。

本発明は以上のようた従来の欠点を除去すべく をされたものであり、液晶材料のロスが全く完生 したく、また液晶の汚染やゴミの混入がなく、さらには工程が簡略化されるなどの特徴をもった新 規な製造方法を提供するものであり、またそれに より全く新しい構造を備えた液晶表示パネルをも 提供することを目的とするものである。

問題点を解決するための手段

この目的を造成するために本発明の液晶表示パネルの製造方法は、対向する電極基板の少なくとも片方にシール材を配置し、少なくとも片方の上記電極基板上に1.種以上の液晶を一定量のせ、その後2枚の上記電極基板を真空中で貼合せる構成としたものである。また、2枚以上の電極基板の

晶表示パネルの品質トラブルの原因とたる。をた、 この方法では、④液晶注入に時間がかかり、大型 パネルになると時には60分以上にもたることが ある。⑤液晶庄入時、電極基板がフィルムなどの 柔軟を材料である場合、気圧差により上下の電極 葢板が接触し、配向不良を起こす。 ⑥電極基板間 滆 を一定に保つために液晶中にスペーサを混入し た液晶表示パネルを製造する場合、液晶に削もっ て混入し注入することができず、対向する電極基 板を接着固定する前に電極基板の全面にスペーサ を散布する必要があるため、設備に付着する分も 含めると高価であるにもかかわらずスペーサ材料 のロスは非常に大きい。⑦少なくとも片方の鼠極 葢板を共用した2個以上のセルが無直方向に重な った多暦パネルにかいて、各セル内の液晶を2種 以上に変えて製造することは、これらの液晶が混 じり合ったりして非常に困難である。また、同様 1C 2個以上のセルが平面的に連結された液晶表示 パネルについては、各セル内の液晶を2種以上に 変えた形に構成することは、現在の技術では製作

少なくとも1枚を共用し、シール材を介してこれ ら電優基板を対向配置し、上記電極基板とシール 材により2個以上の独立した液晶密封部を一体化 して設け、上記密封部の少なくとも一つには他と 異なった液晶が密封されてなる構成としたもので ある。

作用

そして、この構成によれば2個以上の独立した

液晶密封部を一体に設け、それらの密封部に少なくとも2種以上の異なる液晶を充城してなる液晶 表示パネルを提供するととができ、その応用面での利用価値はきわめて大なるものである。

実施例

以下、本発明の寒庵例を添付図面と共に説明する。

〔冥旋例1〕

第1図(A)~(C)かよび第2図は本発明による製造工程の一実施例を示すための概略説明図、第3図は本実施例にかいて使用する実空貼合せ機の斜視図であり、第4図はその断面図を示している。

まず、第1図(A)に示すように、液晶分子を配向させるための処理が終ったガラスをとの電医素板(透明電極によりパターンが形成されているが、図面では省略してある。)11,12を用意し、一方の差板11に例えばポリエステルアクリレートにベインインエチルエーテル1多添加の紫外線で比型樹脂などよりなるシール材13、もう一方の基板12に上下電極導通用のための導電性樹脂

下ギャップという)にムラを生しやすく、できるだけ多数に分けて均一に商下する方がよいことと さらには液晶15の量の精度はそのままギャップ 精度にたることである。

したがって、これらの条件性はさ、ボールの名が、大きさ、河には、 からの条件性では、 がって、 がったが、 でったが、 ないものできたが、 ないものでもる。

次に、上記の液晶15の商下後、第1図(c)に示 すように2枚の電極蓋板11,12を真空中で貼

上述した液晶15の滴下はマイクロシリンジにより行い、正味使用量の± 7 を以内にコントロールした。ここで、注意したければたらないことに、 液晶15 が電極基板11,12を貼合せる前にシールので流れ、電極基板11,12を貼合せた時にシール部が切れたり、液晶15がシールががれたり、液晶15がシールがが少ないと、 滴下場所とそれ以外の場所とて液晶層の厚み(以

合せるのであるが、そのために、まず第2図に示すように2枚の電極基板11,12を1mmの厚みの組立用スペーサ17を介して電性パターンが正しく合うように重ね合せる。

次いて、この重ね合せた2枚の電極基板11. 1.2 を第3回,第4回に示す真空貼合せ機18の ベース19に形成された空間(凹部)20の中に 入れ、シリコンゴムなどのシート21を被せ、蓋 22を閉じて開かないようにポルト(図示せず) で固定する。そして、第4図で示された空間23 を排気口24に接がれた真空ポンプ(図示せず) により排気し、次いで電極基板11,12の入っ ている空間20を排気口25に接がれた真空ポン プ (図示せず) により排気する。ことで、生産し ようとする液晶表示パネルの形状,大きさにより 必要な真空度は異なるが、本実施例ではこの空間 20の真空腹が10 torr 以下になった時に空 間23の俳気を止め、リークパルプ(図示せず) により排気口24を通して少しづつ空気をリーク させる。との時、窒素ガスを用いてリークさせた 方が波轟15の劣化を防ぐ意味でより好きしいも .のである。

この空気をリークさせた時、、シリコンズをであるシート21は下方にふくれ、2枚の電話を拡加し、12位大気により全体的に加圧されるでに、リークパルフを完全に開けてこ2枚の明点ででは真正(1条圧)に戻す。この時点で2枚では真空中で完全に加圧接着され、12位真空中でより電極をあり、12位前に分れて密封される。なか、加圧が不ったは空気を送り込めばよい。

この後、所定寸法に切断分割して第6図のよう

液晶を注入する従来の製造方法にないても有効であるが、特に紫外線硬化型の樹脂をシール材 1 3 と別のシール材の両方に使用した時は、紫外線を重しがさえぎるようなことがなく、簡単に無射ができて非常に有効である。

また、本発明では真空中でシール材13を用いて電極基板11、12を接着すると同時にその内部に液晶15を密封する必要があり、また液晶15を密封したままシール材15を硬化して均一をギャップを得なければならず、そのため熱硬化性樹脂,熱可塑性樹脂など、接着硬化に加熱が必要を材料は有温で短時間に硬化でき、しかもポットライフが長いので、本発明に用いるシール材13としては非常に適している。

そして、本実施例では紫外線硬化型樹脂として ラジカル重合型のポリエステルアクリレートを使 用したが、その他にエポキシアクリレート、ウレ タンアクリレートなど、ラジカル重合型の樹脂は 液晶に対して悪影響を与えず使用可能である。し

な灰晶表示パネルが得られる。なな、集で図,第 4図で27は0リングである。

本実施例ではシール荷13の硬化を真空貼合せ 機18の外で行ったが、これは中で行ってもよい。 しかし、電極萎板11,12を加圧しながらシー ル材13を硬化した方が、加圧したい時よりも液 晶表示パネルのギャップは均一であった。また、 真空貼合せ機18の中の加圧の方法も上記のよう に電極基板 1 1, 1 2 の全体を均一に加圧するの ではなく、部分的に(例えばシール材13の部分 のみ)加圧する方法でもよい。さらに、加圧の方 法としては種々考えられるが、本実施例のように 気圧差を利用 して行うと、シリコンゴムのような 柔軟をフィルム状またはシート状の材料で十分均 一に加圧でき、しかもシール材13とは別のシー ル材を用いて電極基板11,12間の空間の少な くとも一部の気圧を外部の気圧に比べて小さく保 つように工夫すれば、重しも何も使用せずに電極・ 蓋板11,12を加圧することができる。この方 法は電極基板11,12を前もって貼合せ、後で

かし、通常の使用では問題はないが、温度、湿度のきびしい条件下で液晶表示パネルが使用される 場合、とれらの樹脂では耐熱、耐湿性に若干問題 が残る。

れる。

そして、この二重シールを実現するためには、 外シール、内シール、導電性樹脂の少なくとも一 つをスクリーン印刷法を使わず、定量吐出による 方法などで行えばよいものである。

また、本実施例では電極基板11,12として ガラス基板を使用したが、電極基板がフィルム状

(異施例3)

(実 施 例 4)

第11図に示すように、1枚の大きな電極基板 37と、3枚の小さな電極基板38,39,40 を使用し、シール材41,412,41bを用い の条軟で材料であっても上記画空貼合せ機13の 中で加圧接着する前に、これら葢板がたわんで接触しないように工夫すれば、本二個例と同様に液晶表示パネルを作ることができる。

(吳應例2)

て中央部に3つの液晶密封部があるものを実施例1と同様の方法で液晶表示パネルを作成した。この場合、3つの液晶密封部には1種類の液晶42を注入した。このような液晶表示パネルも実施例3で説明したように従来の方法では実質上製造することができなく、提案されていない。

さらに、本発明においてシール材中のスペーサ の侄を各セル毎に変え、各セル毎の版晶の電極基 板間隔を変えたり、配向処理およびねじれ方向の 異なる液晶材料の組合せにより、視角方向を各セ ル毎に変えることができることは説明するまでも ないことである。

発明の効果

以上のように本発明は構成されているものであり、次の通りの特徴を有している。まず、必要量の液晶を液晶容器より直接電磁基板上に配置するため、①高額材料である液晶のロスが発生しない。②液晶の汚染やゴミの混入が全くなくなる。③シール材かよび電極基板上のシール接着部に液晶が付着しないので、シール材の接着性がよい。④液

そして、本発明により今までは提供されていたかったところの、 ② 2 個以上の独立した液晶密封 部を一体を設け、 それらの密封部に少なくとも 2 種以上の異なる液晶を元頃してなる液晶表示パネルを提供することができ、全く新しいタイプの表示 要値を提供することができるものである。 また ③ 9 M パネルのような液晶表示パネルも液晶同士

35, 37, 38, 39, 40……電磁基板、 13, 33, 332, 33b, 36, 41,412, 41b……シール材、15, 30, 31, 32, 42……液晶、16……スペーサ。

代型人の氏名 弁型士 中 尾 敏 男 たか1名

が混合することなく容易に作ることができるもの である。

4、凶節の簡単を説明

第1図以上四上四は本発明の一実施例における 液晶表示パネルの製造法を説明する製造工程を示 す斜視図、第2回は同概略断面図、第3回は不発 明の製造法を集施するための真空貼合せ機を示す 斜視図、第4図は同概略断面図、第6図は本発明 の製造法により得られた液晶表示パネルの上面図、 第6図は同数略断面図、第7図は本発明の第2の 奥施例における液晶表示パネルの製造法を説明す る製造途中の斜視図、第8図は同完成状態を示す 斜視図、第9図は本発明の第3の異施例における 液晶表示パネルの製造途中の斜視図、第10図は 同完成状態を示す新視図、第11図は本発明の第 4の異施例における被晶表示パネルの製造途中の 斜視図、第12回は同完成状態を示す斜視図、第 製造法を說明する製造工程を示す斜視図である。 1 1, 1 2, 2 8, 2 8 2, 2 9, 2 9 2, 3 4,

第 2 図

麗 3 🖭

特開昭62-89025(8)

特開昭 62-89025(9**)**

