Zhengdong Zhang

Homework - Chapter 3 Exercises

Email: zhengz@uoregon.edu ID: 952091294

Course: MATH 681 - Algebraic Geometry I Term: Fall 2025

Instructor: Professor Nick Addington Due Date: Oct 22nd, 2025

Exercise 3.2

Let R be a UFD. Show that any prime ideal of height one is principal.

Solution: Let \mathfrak{p} be a prime ideal in R. The zero ideal (0) is properly contained in \mathfrak{p} , so there exists a nonzero element $x \in \mathfrak{p}$. Since R is a UFD, x can be written as

$$x = ux_1 \cdots x_n$$

where $u \in R$ is a unit and x_1, \ldots, x_n are irreducible elements in R. We know that \mathfrak{p} is a prime ideal, so at least one $x_i \in \mathfrak{p}$ for $1 \le i \le n$. Without loss of generality, we can assume $x_1 \in \mathfrak{p}$. The principal ideal $(x_1) \subset \mathfrak{p}$ is also prime because x_1 is irreducible, and since \mathfrak{p} has height $1, (x_1) = \mathfrak{p}$, namely the prime ideal \mathfrak{p} is principal.

Exercise 3.19

Consider the curve C in \mathbb{A}^2 whose equation is $y^2 - x^3$. Show that C can be parametrized by the map

$$\phi: \mathbb{A}^1 \to \mathbb{A}^2,$$
$$t \mapsto (t^2, t^3).$$

Describe the map $\phi^*: A(C) \to A(\mathbb{A}^1)$. Show that ϕ is bijective but not an isomorphism. Show that the function field of C equals k(t).

Solution: For all $t \in \mathbb{A}^1$, it is easy to see that the point $\phi(t) = (t^2, t^3)$ is a point on C, so $\operatorname{Im} \phi \in C$. Moreover, ϕ is injective because

$$\begin{cases} t_1^2 = t_2^2 \\ t_1^3 = t_2^3 \end{cases}$$

implies that $t_1 = t_2$. Conversely, suppose (a, b) is a point on C. If a = b = 0, choose t = 0 and $\phi(0) = (a, b)$. If $a \neq 0$ and $b \neq 0$, the equation $x^2 = a$ has two different solutions in \mathbb{C} . Suppose t is such a solution. Note that

$$t^6 = (t^2)^3 = a^3 = b^2$$
.

This implies that either $t^3 = b$ or $t^3 = -b$. Choose the solution t satisfying $t^3 = b$. Thus, we find a preimage $t \in \mathbb{A}^1$. This proves that C can be parametrized by the map ϕ which is a bijective map.

The map $\phi^*: A(C) \to A(\mathbb{A}^1)$ is given by

$$\phi^* : k[x, y]/(y^2 - x^3) \to k[t], \tag{1}$$

$$x \mapsto t^2,$$
 (2)

$$y \mapsto t^3$$
. (3)

This map ϕ^* is not surjective as $t \in k[t]$ is not in the image. Hence, ϕ is not an isomorphism of affine varieties.

The image of $\phi^*(A(C))$ is isomorphic to the subring of k[t] with only degree ≥ 2 part. It is an integral domain. Let F be the field of fractions for this subring, which is isomorphic to the function field of C. We claim that it is isomorphic to k(t). Indeed, note that

$$t = t^3 \cdot (t^2)^{-1}, \quad t^{-1} = (t^3)^{-1} \cdot t^2.$$

This implies F is subfield of k(t) containing t and t^{-1} , so F = k(t).