《数字信号处理》

期末不挂科

课时4 DFT和DFS

	知识点	重要程度	常考题型
	1DFS定义	X	选择,填空
\$	2DFT定义	**	计算
×	3DFT,DTFT,Z变换三者关系	**	理解
	4DFT隐含周期性	**	选择,填空,计算
	5DFT的基本性质	***	计算
	6频域采样定理	**	选择
	7频谱分析三大问题	**	简答

1离散傅立叶级数(DFS)

定义:周期序列 $\tilde{x}(n)$ 则周期序列的离散傅立叶级数变换为

$$\widetilde{X}(k) = DFS[\widetilde{x}(n)] = \sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j\frac{2\pi}{N}nk} \qquad (\lambda 2)$$

$$\widetilde{x}(n) = IDFS[\widetilde{X}(k)] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) e^{j\frac{2\pi}{N}nk} \quad (\lambda 2)$$

2离散傅立叶变换 (DFT)

定义:x(n)是一个长度为M的有限长序列,则定义x(n)的N点离散傅里叶变换为

$$X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n) \sqrt[N]{kn}, k=0, 1, \dots, N-1$$
 (10)

X(k)的离散傅里叶逆变换为

$$x(n) = \text{IDFT}[X(k)] = \underbrace{\frac{1}{N}}_{k=0}^{N-1} X(k) W_N^{-kn}, \text{ n=0, 1, ..., N-1}$$
 (λ)

式中N称为DFT变换区间长度N≥M

题1 x(n)=R4(n), 求x(n)的4点和8点DFT。

解:设变换区间N=4,则

$$X(k) = \sum_{n=0}^{3} x(n) \underbrace{W_4^{kn}}_{4} = \sum_{n=0}^{3} e^{-j\frac{2\pi}{4}kn} = \frac{1 - e^{-j2\pi k}}{1 - e^{-j\frac{2\pi}{4}k}} = \begin{cases} 4 & k = 0\\ 0 & k = 1,2,3 \end{cases}$$

$$e^{-j\frac{2\pi}{4}k} = \begin{cases} 4 & k = 0\\ 0 & k = 1,2,3 \end{cases}$$

题1 x(n)=R4(n), 求x(n)的4点和8点DFT。

解:设变换区间N=4,则

$$X(k) = \sum_{n=0}^{3} x(n) \underbrace{W_4^{kn}}_{4} = \sum_{n=0}^{3} e^{-j\frac{2\pi}{4}kn} = \frac{1 - e^{-j2\pi k}}{1 - e^{-j\frac{2\pi}{4}k}} = \begin{cases} 4 & k = 0\\ 0 & k = 1,2,3 \end{cases}$$

$$e^{-j2\pi k} = \begin{bmatrix} 4 & k = 0\\ 0 & k = 1,2,3 \end{bmatrix}$$

x(n)=R4(n), 求x(n)的4点和8点DFT。

解:设变换区间N=4,则

$$X(k) = \sum_{n=0}^{3} x(n) W_4^{kn} = \sum_{n=0}^{3} e^{-j\frac{2\pi}{4}kn} = \frac{1 - e^{-j2\pi k}}{1 - e^{-j\frac{2\pi}{4}k}} = \begin{cases} 4 & k = 0\\ 0 & k = 1,2,3 \end{cases}$$

设变换区间*N*=8,则

设变换区间
$$N=8$$
,则
$$X(k) = \sum_{n=0}^{7} x(n) W_8^{kn} = \sum_{n=0}^{3} e^{-j\frac{2\pi}{8}kn} = e^{-j\frac{3}{8}\pi k} \frac{\sin(\frac{\pi}{2}k)}{\sin(\frac{\pi}{8}k)}, k = 1,2,...,N-1$$

$$= 1 - e^{-j\frac{2\pi}{8}k \cdot 4} = 1 - e^{-j\frac{\pi}{8}k}$$

3 DFT与傅里叶变换和Z变换的关系

$$X(e^{j\omega}) = DTFT[x(n)] = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$Z(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n)W_N^{kn}, k=0, 1, \dots, N-1$$

 $\begin{cases} X(e^{j\omega}) = X(z)|_{z=e^{j\omega}} \\ X(k) = X(e^{j\omega})|_{\omega = \frac{2\pi}{N}k} \\ X(k) = X(z)|_{z=e^{j} \frac{2\pi}{N}k} \end{cases}$

2

总结: DTFT 在 [0,2Π]上N点等间隔采样得到DFT

② Z变换 在 单位圆上N点等间隔采样得到DFT

3 DFT与傅里叶变换和Z变换的关系

FT

 $(\Omega s=2\pi/T_S)$

 $(\Omega_0=2\pi/T)$

DFT

4DFT的隐含周期性

由 W_N^{kn} 的周期性,使X(k)隐含周期性,周期为N。对任意整数m,总有

4DFT的隐含周期性

定义

x(n): 有限长序列, n=0,1,2, ...N-1

x(n): 无限长, 周期为N

$$\tilde{x}(n) = \sum_{m=-\infty}^{\infty} x(n+mN) \longrightarrow \text{SIMER}$$

$$x(n) = \tilde{x}(n) \cdot R_N(n)$$
 一 主值序列

通常表示为: $x(n) = x((n))_N$

5离散傅立叶变换的性质

线性性质:
$$x_3(n) = ax_1(n) + bx_2(n)$$

$$X_3(k) = aX_1(k) + bX_2(k)$$

圆周移位性质(循环移位):

序列循环移位: $x_m(n) = x((n+m))_N R_N(n)$

时域循环移位: $y(n) = x((n+m))_N R_N(n) \Leftrightarrow Y(k) = X(k) e^{j\frac{2\pi}{N}km} = X(k) W_N^{-km}$

频域圆周移位性质: $Y(k) = X((k+l))_N R_N(k) \Leftrightarrow y(n) = x(n) e^{-j\frac{2\pi}{N}nl} = x(n) W_N^{nl}$

5离散傅立叶变换的性质

循环卷积定理:有限长序列 $x_1(n)$ 和 $x_2(n)$,长度为 N_1 , N_2 , N点循环卷积后,

$$x(n) = \sum_{m=0}^{N-1} \underline{x_1(m)} \ \underline{x_2((n-m))_N} \underline{R_N(n)}$$

题2 $x_1(n)=\{1,2,2,1\}, x_2(n)=\{1,-1,-1,1\},请计算:$ (1)线性卷积 (2)5点循环卷积 (3)4点循环卷积 (4)7点循环卷积

解: (1){1, 1, -1, -2, -1, 1, 1} 列表法										ı	1 结果			
	名称	-3	-2	-1	0	1	2	3	4	5	6	7	$y(n) = x_1(n) * x_2(n)$	
(T) V	$x_1(m)$	0	0	0	1	2	2	1	0	0	0	0	\	
	$x_2(m)$	0	0	0	1	-1	-1	<u> </u>	0	0	0	0	\	
2	<i>x</i> ₂ (-m)	1	-1	-1	1	0	0	0'	0	0	0	0	y(0) = 1	
	$x_2(1-m)$	0	1	-1	-1	1	0	0	0	0	0	0	y(1) = 1	
	$x_2(2-m)$	0	0	1	-1	-1	1	0	0	0	0	0	y(2) = -1	
	$x_2(3-m)$	0	0	0	1	-1	-1	1	0	0	0	0	y(3) = -2	
	$x_2(4-m)$	0	0	0	0	1	-1	-1	1	0	0	0	y(4) = -1	
	$x_2(5-m)$	0	0	0	0	0	1	-1	-1	1	0	0	y(5) = 1	
	x ₂ (6-m)	0	0	0	0	0	0	1 (-1	-1	1	0	y(6) = 1	V
	$x_2(7-m)$	0	0	0	0	0	0	0	1	-1	-1	1	y(7) = 0	

题2

$$x_1(n)=\{1,2,2,1\}, x_2(n)=\{1,-1,-1,1\},$$
请计算: 4

(1)线性卷积

(3)4点循环卷积

(2)5点循环卷积

(4)7点循环卷积

4+4-1=7

解: $(1)\{1, 1, -1, -2, -1, 1, 1\}$ 7

 $(2){2,2,-1,-2,-1}$

 $(3)\{0,2,0,-2\}$

 $(4)\{1, 1, -1, -2, -1, 1, 1\}$ 7

N乡线性散坡循环系统工线性卷积

5离散傅立叶变换的性质

共轭对称性:
$$x_{ep}(n) = \frac{1}{2}[x((n))_N + x^*((N-n))_N]R_N(n) = \frac{1}{2}[x(n) + x^*(N-n)]$$

共轭反对称性: $x_{op}(n) = \frac{1}{2}[x((n))_N - x^*((N-n))_N]R_N(n) = \frac{1}{2}[x(n) - x^*(N-n)]$

复数序列:

$$x(n) = \operatorname{Re} [x(n)] + j \cdot \operatorname{Im}[x(n)] = x_{ep}(n) + x_{op}(n)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$X(k) = X_{ep}(k) + X_{op}(k) = \text{Re}[X(k)] + j \cdot Im[X(k)]$$

频域:
$$\begin{cases} X_e(\mathbf{k}) = \frac{1}{2}[X(\mathbf{k}) + X^*(\mathbf{k})] \\ X_o(\mathbf{k}) = \frac{1}{2}[X(\mathbf{k}) - X^*(\mathbf{k})] \end{cases}$$

$\chi(n) \longrightarrow \chi(N-n) \longrightarrow \chi(p(n), \chi \circ p(n))$

题3 已知
$$x(n) = \{2 + j, 4 + 2j, 3 + 3j\}$$
,试求 $x_{ep}(n)$ 、 $x_{op}(n)$ 。

解:
$$x^*(N-n) = \{3 - 3j, 4 - 2j, 2 - j\}$$

$$x_{ep}(n) = \frac{1}{2} [x(n) + x^*(N-n)] = \{\frac{5-2j}{2}, 4, \frac{5+2j}{2}\}$$

$$x_{op}(n) = \frac{1}{2} [x(n) - x^*(N-n)] = \{\frac{-1+4j}{2}, 2j, \frac{1+4j}{2}\}$$

题4已知 $x_1(n)$, $x_2(n)$ 都是N点实序列, $X_1(k)$ 为 $x_1(n)$ 的N点DFT, $X_2(k)$ 为 $x_2(n)$ 的N点DFT; 试用一次N点DFT运算同时计算 $X_1(k)$ 与 $X_2(k)$ 。

$$X(k) = X_{ep}(k) + X_{op}(k) = \operatorname{Re}\left[X(k)\right] + j \cdot \operatorname{Im}[X(k)]$$

$$\Rightarrow x(n) = x_1(n) + jx_2(n)$$

$$\gamma(n) = \gamma_1(n) + j\gamma_2(n)$$

$$X_1(k) = X_{ep}(k) = \frac{1}{2} [X(k) + X^*(k)] \qquad \text{if } = \text{DFT}[\Lambda(n)]$$

$$X_2(k) = X_{op}(k) = \frac{1}{2} [X(k) - X^*(k)]$$

6频域采样定理

时域采样定理

当采样频率大于等于奈奎斯特采样频率,即 f_s ,则可无失真恢复。 $\geq 2f_h$

频域采样定理

序列x(n)长度为M, 当频域采样点数 $N \ge M$ 时, 可无失真恢复。

内插公式和内插函数 (了解即可)

6频域采样定理

6点采样

7频谱分析三大问题

——简答题(背)

\$>2th

名称	成因	解决方法	备注
混叠失真	时域采样	増大采样频率,加装防混叠滤波器 より下	可以消除
频谱泄漏	时域截断	增加数据截取长度,改变窗函数形状(减小旁瓣)	不可以消除,只可以降低
栅栏效应	频域采样	增加频率采样点数,在有效数据不变时尾部补零 //	不可以消除,只可以降低