2. Р е ш е н и е. Пусть OC — медиана треугольника OAB_1 (рис 1.).На продолжении отрезка OC за точку C возьмем точку D так,

что OC=OD; тогда OB_1DA — параллелограмм. Поскольку $OA=OA_1,\ AD=OB_1=OB$ и $\angle OAD=\angle A_1OB$ (как углы в соответственно перпендикулярными сторонами), то $\triangle AOD=\triangle A_1OB$. Далее, $\triangle OPA=\triangle OQA_1$, а $\angle APO=90^\circ$ (ибо $AD\|OB_1$, а $OB_1\perp OB$); поэтому $OC\perp A_1B$. Аналогично доказывается и второе утверждение задачи

 ${f 3.}\ x_1=3,\ y_1=(\ 2k+1\)\pi,\ {
m rge}\ k=0,\ \pm 1,\ \pm 2,\ \dots,\ 0< x_2<1,\ y_2$ - любое ве - щественное число. У казание. Пусть ${f z}=log_3x;$ тогда предложенное неравенство записывается в виде

$$z + \frac{1}{z} \ll -2\cos y \tag{1}$$

Но при любом z>0 имеем $z+\frac{1}{z}\geq 2$, а потому неравенство (1) может быть справедливым только для тех у, для которых $2\ll -2\cos y$, то есть при $\cos y=-1$. Далее, из (1) получаем z=1. Если же z<0, то $z+\frac{1}{z}\ll -2$, $a-2\ll -2\cos y$ при любом у, то есть неравенство (1) справедливо при всех z<0

4.Решение существует, если b < -1, а α — любое действительное число, или если $b \geq -1$, а

 $\kappa\pi - \arcsin A + \phi \ll \alpha \ll \kappa\pi +$

$$+\arcsin A + \phi, \kappa = 0, \pm 1, \pm 2, ...,$$
 (2)

где А и ф определяются равенствами

$$\operatorname{tg} \phi = \frac{b+1}{2}, A = \frac{|b-1|}{\sqrt{b^2 + 2b + 5}}.$$
 (3)

У к а з а н и е. Так как $x \neq \frac{\pi}{2}(2\kappa + 1)$, $y \neq \frac{\pi}{2}(2\kappa + 1)$, то исходная система эквива - лентна следующей (проверьте!):

$$x + y = \alpha$$
$$2\sin(x+y) - (b-1)\cos(x+y) =$$
$$= (b-1)\cos(x-y)$$

Следовательно, исходная система имеет решение тогда и только тогда, когда $(b-1)\cos(x-y)=2\sin\alpha-(b+1)\cos\alpha.$ (4) Если $b\neq 1$, то из (4) получаем, что параметры $a\ u\ b$ должны удовлетворять условию

$$\left|\frac{2\sin a - (b+1)\cos a}{b-1}\right| \ll 1.$$

Вводя ϕ и A по формулам (3), это условие представим в виде $/\sin \alpha - \phi \ll A$. Таким образом, либо A>1 (то есть b<-1) и α – любое действительное, либо $A\ll 1$ (то есть $b\geq -1$, $b\neq 1$), а для α получаются неравенства (2). В случае b=1 соотношение (4) исследуется непосредственно.

Физический факультет

- 1. $\frac{q^{mn}-1}{(q^n-1)q^{(m-1)^n}}$. У к а з а н и е. Заметьте, что если ν средняя скорость на перегоне A_1A_2 после отправления, то на перегоне A_nA_1 , завершающем первый круг, средняя скорость равна $\nu^{(n-1)}$, а на перегоне A_1A_2 , открывающем второй круг, она равна ν^n .
- **2.** $r^2 \ cosec \ \alpha \sin \beta \sin 2(\alpha + \beta) \cos(\alpha + \beta)$. У к а з а н и е. Рассмотреть отдельно случаи, когда $\angle ODB > \angle MDB \angle ODB < \angle MDB$, где О центр круга.

3.
$$x > 2$$
.
4. $\frac{1}{12} \ll a \ll \frac{1}{2}$; $x = (-1)^n \arcsin \frac{5\alpha \pm \sqrt{\alpha^2 + 4\alpha}}{2\alpha} + \kappa \pi$, $\kappa = 0, \pm 1, \pm 2, \dots$

МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ

$$B$$
 ариант 1

1. 23. Решение. Искомое число запишем в виде $1\theta x + y$, где x и y — целые числа, причем $1\ll x\ll 9,\; \theta\ll y\ll 9$. Так как по условию при делении двузначного числа на xy получили остаток, равный 5, то $xy\neq 0$; следовательно, $1\ll y\ll 9$. Из условия за дачи получим систему

$$\begin{cases} \frac{10x+y}{x+y} = 4 + \frac{3}{x+y}, \\ \frac{10x+y}{xy} = 3 + \frac{5}{xy}. \end{cases}$$

Подставляя t = 37, 38, 39, 40, 41 в формулы (*) получаем 5 вариантов:

батарей по 6 в	34	26	18	10	2
батарей по 16 в	1	4	7	10	13

- б) Здесь дело водится к решению уравнения 6x + 15y = 220. Однако НОД (6.15) == 3, а 220 не делится на 3. Поэтому уравнение не имеет решений в целых числах.
- 19. Сумма четного числа нечетных чисел четна, поэтому 45 рублей нельзя разменять указанным способом.
- **20.** Поскольку a = bd и делится на c, а НОД (b,c)=1, то по лемме 3 число dделится на с.
 - **21.** a), б) и г) верны; б) неверно.
- **22.** $1971 = 3^{3}*43$; 1972 = 4*17*29; 1973 — простое.
- **23.** а) если am делится на n и НОД (m,n) = 1, то $a = \kappa n$, поэтому $b = \kappa m$.
- б) пусть в разложении х на простые множители некоторое простое p входит в степени α , а в разложении y — то же p в степени b. Тогда из теоремы о единственности разложения на простые множители $a = \kappa n, b = \kappa m$. В разложении t на простые множители включим p с показателем k, и так – для всех простых множителей чисел x и y.

непосредственным вычислением показать, что $AQ = \alpha$

5. $d\sqrt{\kappa}$. У казание. Убедиться, что \triangle $MQE \sim \triangle$ PNE, причем EM u EP – cxoдственные стороны.

Факультет психологии

- **2.** Точка P должна совпадать либо с вершиной C, либо с вершиной C_1 .
- 3. $-\frac{1}{\sqrt{2}} < x < 0$.
- **4.** 11 деьалей вида A, 9 деталей вида B.

московский институт ИНЖЕНЕРОВ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

- 1. За 30 дней.
- **2.** $x_1 = 0, x_2 = -2, x_{34} = -1 \pm$ $\pm\sqrt{rac{33}{2}}$. $oldsymbol{3.}\;r=rac{25}{4}$ см.