$\rm MA_{571}$ Problem Set 2

Carlos Salinas

September 7, 2015

Problem 2.1 (Munkres §17, p. 100, 2)

Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Proof. Let C denote the closure of A in X then, by Theorem 17.4, $A = \overline{A} = C \cap Y$ is the closure of A in Y. Thus, A is closed in X since it is the intersection of two closed subsets of X.

Problem 2.2 (Munkres §17, p. 100, 3)

Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Proof. Since A is closed in X and B is closed in Y their complements $X \setminus A$ and $Y \setminus B$ are open in X and Y, respectively. Thus $(X \setminus A) \times (B \setminus Y)$ are basic open sets in the product topology on $X \times Y$ and hence, its complement

$$(X \times Y) \setminus ((X \setminus A) \times (Y \setminus B)) = A \times B$$

is closed in $X \times Y$.

Problem 2.3 (Munkres §17, p. 101, 6(b))

Let $A,\,B$ and A_{α} denote subsets of a space X. Prove the following:

(b)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

Problem 2.4 (Munkres §17, p. 101, 6(c))

Let $A,\,B$ and A_{α} denote subsets of a space X. Prove the following:

(b)
$$\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$$
.

Proof.

MA571 Problem Set 2

Problem 2.5 (Munkres §17, p. 101, 7)

Criticize the following "proof" that $\overline{\bigcup A_{\alpha}} \subset \bigcup \bar{A}_{\alpha}$: if $\{A_{\alpha}\}$ is a collection of sets in X and if $x \in \overline{\bigcup A_{\alpha}}$, then every neighborhood U of x intersects $\bigcup A_{\alpha}$. Thus U must intersect some A_{α} , so x must belong to the closure of some A_{α} . Therefore, $x \in \bigcup \bar{A}_{\alpha}$.

Critique.

Problem 2.6 (Munkres §17, p. 101, 9)

Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

Problem 2.7 (Munkres §17, p. 101, 10)

Show that every order topology is Hausdorff.

Problem 2.8 (Munkres §17, p. 101, 13)

Show that X is Hausdorff if and only if the diagonal $\Delta = \{x \times x \mid x \in X\}$ is closed in $X \times X$.

Problem 2.9 (Munkres §18, p. 111, 4)

Given $x_0 \in X$ and $y_0 \in Y$, show that the maps $f \colon X \to X \times Y$ and $g \colon Y \to X \times Y$ defined by

$$f(x) = x \times y_0$$
 and $g(y) = x_0 \times y$

are imbeddings.

Problem 2.10 (Munkres §18, p. 111-112, 8(a,b))

Let Y be an ordered set in the order topology. Let $f,g\colon X\to Y$ be continuous.

- (a) Show that the set $\{x \mid f(x) \leq g(x)\}$ is closed in X.
- (b) Let $h: X \to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}.$$

Show that h is continuous. [Hint: Use the pasting lemma.]

CARLOS SALINAS PROBLEM 2.11

Problem 2.11

Given: X is a topological space with open sets $U_1,...,U_n$ such that $\bar{U}_i=X$ for all i. Prove that the closure of $U_1\cap\cdots\cap U_n$ is X.