

Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors:

Watson AI Lab The Voyage Home (to STRIPS) Masataro Asai, IBM Research, MIT-IBM Watson AILab Christian Muise, Queen's U.

1. Our Objectives Visually presented classical planning domains

However: Original Mandrill image We want to solve 15-puzzle → Requires better scalability

2. Image-based planning: LatPlan (AAAI18)

3. State AutoEncoder(SAE): Binary Conrete VAE

4. Action AutoEncoder(AAE): Gumbel Softmax VAE with a Skip Connection

5. LatPlan is incompatible with SotA heuristics e.g. LMcut/M&S(Helmert et al, 09,14)

6. The core elements missing in AAE

AAE: $z_{t+1} = apply(z_t, a)$ STRIPS: $z_{t+1} = (z_t / del(a)) \cup add(a)$

Issue1: Effects must be disentangled from z_t. → apply may have conditional effects

Issue2: Z is fixed / Z and A are trained separately → Z may not have a compact STRIPS model

Solution: Train Z and A end-to-end + Restrict A to STRIPS

 \rightarrow Z must adapt to A (STRIPS)

7. Cube-Space AE: end-to-end SAE+AAE

8. How to enforce STRIPS?

Naive method (Gumbel-Softmax + min/max)

Discrete → Continuous (logit) → Discrete

→: using Batch Normalization (loffe, Szegedy, 2015)

Thm. BtL Guarantees STRIPS encoding

Training performance BtL \gg min/max. Batchnorm is a must. End-to-end is a must

ı		·														
		(1) Bt	L Cube-	Space AE	(2)	Total loss	(3)	Ablation s	study	(4) Direct loss under $A = 300 \rightarrow 100$						
	Domain	Rec.	Succ.	Direct	MinMax	Smooth	BtL	-BN	-Direct	-Succ.	Cube-Space AE	SAE+Cube-AAE				
	Hanoi	.001	.002	.001	.439	.436	.003	.019	.088	.501	$.001 \rightarrow .001$.001 → .002				
	LOut	.000	.000	.000	.506	.506	.000	.002	.239	.412	$.001 \rightarrow .008$.010 → .040				
	Twisted	.000	.001	.000	.458	.487	.001	.002	.154	.498	$.000 \rightarrow .002$.001 → .011				
	Mandrill	.000	.001	.001	.500	.600	.002	.035	.046	.495	$.001 \rightarrow .002$.000 → .006				
	Mnist	.000	.000	.000	.512	.506	.001	.002	.158	.462	$.000 \rightarrow .001$.002 → .005				
ı	Spider	.001	.001	.001	.607	.563	.003	.026	.073	.376	$.003 \rightarrow .002$.001 → .003				

Planning performance

blind		gc			blind			gc				blind			gc			lama			LMcut			M&S		6	
f	V	o	f	v	o	f	v	0	f	v	0	Domain	f	V	0	f	V	0	f	V	0	f	v	0	f	V	0
0	0	0	8	4	3	1	0	0	19	0	0	LOut(30)	30	30	30	30	30	17	30	21	5	30	30	30	30	30	30
0	0	0	4	0	0	0	0	0	14	2	2	Twisted(30)	30	25	25	30	26	5	30	20	4	30	29	29	30	25	25
15	14	14	17	17	16	15	15	15	13	12	12	Mandrill(30)	30	29	13	30	18	9	30	23	11	30	29	13	30	30	13
0	0	0	0	0	0	0	0	0	0	0	0	Mnist(30)	30	25	24	30	4	4	30	7	7	30	25	24	30	26	24
8	8	8	4	4	4	3	3	1	13	3	0	Spider(30)	30	28	16	30	27	12	28	22	14	30	28	16	30	28	16
	SAI	F + A	ΔF+	ΔD		S	ΔF±	Cube	ΔΔ	F+A	D	15puzzle(40) →	32	32	29	28	Q	Q	38	13	3	38	38	33	38	38	33

Search (Blind)

Plans f(ound), v(alid) and o(ptimal) by (left) AMA2 and (right) Cube-Space AE

Expansion (Blind)

4x4 LightsOut and 8 puzzle Mandrill 15-puzzle △ vs LMcu

 Cube-Space AE outperforms previous baselines (in f. v. o) LMcut/M&S significantly improves the performance vs. blind search

9. Results Strong generalization:

Plans do not contain examples "copied" from training data

10. Conclusion

- We proposed how to learn symbolic STRIPS model using NNs completely unsupervised.
- SotA planning heuristics work out of the box w/o extra training + has optimality guarantee
- · A strong candidate for replacing model-free RL which needs a huge amount of training