Contents

Ι	We	2×4	Ĺ
	0.1	ntroduction	2
	0.2	Model representation	2
		.2.1 Single Neuron model: logistic unit	2
		.2.2 Neuronal model (Diagram representation)	3
		.2.3 Mathematical representation	3
		.2.4 Vectorized implementation	4
		.2.5 what else?	5
	0.3	Von-Linear classification examples	5
		.3.1 Exemple I	5
		.3.2 Logical AND function	6
		.3.3 Logical OR function	6
		3.4 Function Negation NOT x_1	7
		3.5 Computing x_1 XNOR x_2	7
		.3.6 ExampleII: Multiclass classification	7
\mathbf{A}	ppen	ces 9	9
	.1	One-vs-All assignment	0
	.2	Answers to Quiz	0

Neural Networks Non linear hypothesis

June 2, 2016

Part I

Week 4

0.1 Introduction

Figure 1: Non-linear classification

In this example with 2 features, one could use logistic regression with polynomial terms:

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2)$$

However, for larger number of features, the number of quadratic features will grow asymptotically. For example in a problem with 100 features $(x_1, ... x_{100})$, if we include all the 2nd order term: $x_1^2, x_1 x_2, x_2^2, ...$, we will end up with 5000 features (typically the number of quadratic features grow as $n^2/2$).

0.2 Model representation

0.2.1 Single Neuron model: logistic unit

Figure 2: Single neuron with a Sigmoid (logistic) activation function, where $h_{\theta}(x) = \frac{1}{1 + e^{(-\theta^T x)}}$

In neural network applications, the parameters $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$ are often called "weights". Note that the purpose of the activation function is to introduce non-linearity into the network. Non-linear means that the output cannot be reproduce from a linear combination of the inputs. Without a non-linear activation function in the network, a NN, no matter how many layers it had would behave just like a single perceptron. A common activation function used is tanh

0.2.2 Neuronal model (Diagram representation)

where $a_i^{(j)}$ is the activation of unit i in layer j. For example $a_1^{(2)}$ is the activation (value) of unit 1 in layer 2.

 $\Theta^{(j)}$ is the matrix of "weights" controlling the function mapping from layer j to layer (j+1).

0.2.3 Mathematical representation

The activation value of the 3 hidden units of Layer 2 are:

$$a_1^{(2)} = g \left(\Theta_{1,0}^{(1)} x_0 + \Theta_{1,1}^{(1)} x_1 + \Theta_{1,2}^{(1)} x_2 + \Theta_{1,3}^{(1)} x_3 \right)$$

$$a_2^{(2)} = g \left(\Theta_{2,0}^{(1)} x_0 + \Theta_{2,1}^{(1)} x_1 + \Theta_{2,2}^{(1)} x_2 + \Theta_{2,3}^{(1)} x_3 \right)$$

$$a_3^{(2)} = g \left(\Theta_{3,0}^{(1)} x_0 + \Theta_{3,1}^{(1)} x_1 + \Theta_{3,2}^{(1)} x_2 + \Theta_{3,3}^{(1)} x_3 \right)$$

The activation value of the Layer3 is:

$$h_{\Theta}(x) = a_1^{(3)}$$

$$= g \left(\Theta_{1,0}^{(2)} a_0^{(2)} + \Theta_{1,1}^{(2)} a_1^{(2)} + \Theta_{1,2}^{(2)} a_2^{(2)} + \Theta_{1,3}^{(2)} a_3^{(2)} \right)$$

If the network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$.

0.2.4 Vectorized implementation

$$a_{1}^{(2)} = g \underbrace{(\Theta_{1,0}^{(1)}x_{0} + \Theta_{1,1}^{(1)}x_{1} + \Theta_{1,2}^{(1)}x_{2} + \Theta_{1,3}^{(1)}x_{3})}_{z_{1}^{(2)}} = \Theta^{(1)}x = g(z_{1}^{(2)})$$

$$a_{2}^{(2)} = g \underbrace{(\Theta_{2,0}^{(1)}x_{0} + \Theta_{2,1}^{(1)}x_{1} + \Theta_{2,2}^{(1)}x_{2} + \Theta_{2,3}^{(1)}x_{3})}_{z_{2}^{(2)}} = \Theta^{(2)}x = g(z_{2}^{(2)})$$

$$a_{3}^{(2)} = g \underbrace{(\Theta_{3,0}^{(1)}x_{0} + \Theta_{3,1}^{(1)}x_{1} + \Theta_{3,2}^{(1)}x_{2} + \Theta_{3,3}^{(1)}x_{3})}_{z_{2}^{(2)}} = \Theta^{(3)}x = g(z_{3}^{(2)})$$

where $z^{(2)}$ is for layer #2.

Remember that the activation applies the sigmoid function element-wise, i.e to each elements of $z^{(2)}$.

To make the notation more consistent, we define:

- $a_0^{(2)} = 1$ the bias unit
- $a^{(1)} = x$ (i.e activation of first layer)
- $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$ where $z^{(3)} = \Theta^{(2)}a^{(2)}$

$$h_{\Theta}(x) = g(\underbrace{\Theta_{1,0}^{(2)} + \Theta_{1,1}^{(2)} a_1^{(2)} + \Theta_{1,2}^{(2)} a_2^{(2)} + \Theta_{1,3}^{(2)} a_3^{(2)}}_{z^{(3)}})$$

$$= g(z^{(3)})$$

$$= g(\Theta^{(2)} a^{(2)})$$

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \qquad \Theta^{(2)}$$

This method of computing $h_{\Theta}(x)$ is called **forward propagation**: we start by calculating the activation of the input \Rightarrow hidden \Rightarrow output layers.

0.2.5 what else?

If the Layer1 is covered up, the diagram is similar to a logistic regression, with $h_{\Theta}(x)$:

$$h_{\Theta}(x) = g(\Theta_0 a_0 + \Theta_1 a_1 + \Theta_2 a_2 + \Theta_3 a_3)$$

where the features used are now a_1, a_2, a_3 (rather than x_1, x_2, x_3), but computed by the hidden layer.

In the 3 layer neural network, the function mapping from layer 1 to layer 2 is determined by the set of parameters Θ_1 , i.e the neural network learned its own features a_1, a_2, a_3 to feed into logistic regression.

There can be other **network architectures**:

0.3 Non-Linear classification examples

0.3.1 Exemple I

Let's consider the following problem on the left (simplified version)

where x_1 and x_2 are binary $\in \{0, 1\}$.

- XOR = exclusive OR (output TRUE (y = 1) only when inputs differ $x_1 \neq x_2$).
- XNOR = NOT $(x_1$ OR $x_2)$ (complement of XOR) (output TRUE (y=1) if $(x_1=x_2)$ and FALSE (y=0) if $(x_1\neq x_2)$

0.3.2 Logical AND function

 x_1 and $x_2 \in \{0,1\}$ **AND** statement means: y = 1 if x_1 and $x_2 = 1$.

$\overline{x_1}$	x_2	$h_{\Theta}(x)$			
0	0	$g(-30) \approx 0$	0		
0	1	$g(-30) \approx 0$	0		
1	0	$g(-30) \approx 0$	0		
1	1	$g(-30) \approx 1$	1		

This represent the logical AND function, where $h_{\Theta}(x) = 1$ if $x_1 = 1$ **AND** $x_2 = 1$.

0.3.3 Logical OR function

 $x_1 \text{ and } x_2 \in \{0, 1\}$

$\overline{x_1}$	x_2	$h_{\Theta}(x)$	
0	0	$g(-10) \approx 0$	0
0	1	$g(10) \approx 1$	1
1	0	$g(10) \approx 1$	1
1	1	$g(30) \approx 1$	1

This represent the logical OR function, where $h_{\Theta}(x) = 1$ if $x_1 = 1$ **OR** $x_2 = 1$.

0.3.4 Function Negation NOT x_1

 $x_1 \text{ and } x_2 \in \{0, 1\}$

This represent the logical Negate x_1 : y = 1 if $NOT(x_1) = TRUE$.

0.3.5 Computing x_1 XNOR x_2

In summary:

- $h_{\Theta}(x) = 1$ if $(x_1 = 0 \text{ AND } x_2 = 0)$ OR $(x_1 = 1 \text{ AND } x_2 = 1)$
- $h_{\Theta}(x) = 0$ otherwise

This is modeled well the problem in the figure

0.3.6 ExampleII: Multiclass classification

In this example, we define 4 classes of objects (Pedestrian, Car, Moto and Truck), and want to classify a new object within those classes. This is a multiple output unit (One-vs-all). We will build a neuro-network with 4 output units (i.e $h_{\Theta}(x) \in \mathbb{R}^4$):

So, we want the outut $h_{\Theta}(x)$ to take the form:

$$h_{\Theta}(x) = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \quad h_{\Theta}(x) = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \quad h_{\Theta}(x) = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \quad h_{\Theta}(x) = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$
 pedestrians car moto truck

The training set would be of the form: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$, where $y^{(i)}$ is either

$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

Appendices

.1 One-vs-All assignment

.2 Answers to Quiz

• Suppose you have a multi-class classification problem with 3 classes trained with a 3 layer network. Let $a_1^{(3)} = (h_{\Theta}(x))_1$ be the activation of the 1st output unit, and similarly $a_2^{(3)} = (h_{\Theta}(x))_2$, $a_3^{(3)} = (h_{\Theta}(x))_3$. Then for any input x, it must be the case that $a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1$. \Rightarrow FALSE