FIGURE 1

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG CTAAGCGAGGCCTCCTCCCCGCAGATCCGAACGGCCTGGGCGGGGTCACCCCGGCTGGGA GGTGTGAGTGGGTGTGTGCGGGGGGGGGGGGGTTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG CCGCCGCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCCCAGCCTCCCGCACCCCCATCGCCGG ${\tt AGCTGCGCCGAGAGCCCCAGGGAGGTGCC}$ CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGCGTCGTGGACTGCGCGCGGGGC CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG CGTGCACAGCGTGCGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAAACATCTAGAA GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCTGGGCCCCCATTCTGCTCCCTCGA GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC TCACTTCCTTTGGAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC CCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC CTGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAGAT TTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGTGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

FIGURE 2

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

signal peptide:
amino acids 1-22

N-myristoylation sites: amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 48-59

HBGF/FGF domain: amino acids 80-131

FIGURE 3B

FIGURE 4A

FIGURE 6A FIGURE 6B

Trig (mM)

T

food intake (g/d)

infusion day

FIGURE 9

FIGURE 10.

Fig. 11

Fig. 13

Fig. 14.

Fig. 15.

*P < 0.05 vs Wt controls

Figure 17

*P < 0.05 vs Vehicle controls with the same cycle on the same day

Figure 19

Figure 20

38.77 +/- 3.32 0.48 + /- 0.080.29 +/- 0.160.40 + /- 0.080.5 µg 0.70 +/- 0.10 0.57 +/- 0.26 0.63 + /-0.203.48 +/- 1.5 rhFGF19 2.0 µg 0.26 + /-0.101.49 +/- 0.42 0.47 + /-0.090.81 + /-0.235.0 µg Vehicle 1.0 + /- 0.161.0 + /- 0.331.0 +/- 0.27 1.0 +/- 0.08 MC4-R POMC AgRP NPY