Lecture 2 – Intro to ML Fundamentals

CPE 393 Machine Learning Operations

Consumer ML

Face Detection

Voice Interface

Smart Home

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี King Mongkut's University of Technology Thonburi

What exactly is machine learning?

- Machine learning (ML) is a method of data analysis that automates analytical model building.
- Using algorithms that iteratively learn from data, machine learning allows computers to find hidden insights without being explicitly programmed where to look.

Why machine learning matter

- Automatic: Train it once and it can be run automatically
- Fast: With big data, work faster than human
- Accurate: Can predict groups more accurately than manual methods
- Scale: Able to handle large data

Machine Learning Model Development Workflow

Timeline

Type of ML

Type of ML

Style of Learning

Supervised Unsupervised Semi-supervised Reinforcement learning learning learning learning Use deep learning to Data scientists provide Builds a model through Self-interpreting but based a mix of labeled and on a system of rewards input, output and arrive at conclusions feedback to build model and patterns through unlabeled data, a set of and punishments learned (as the definition) unlabeled training data. categories, suggestions through trial and error, and exampled labels. seeking maximum reward. **EXAMPLE ALGORITHMS: EXAMPLE ALGORITHMS: EXAMPLE ALGORITHMS: EXAMPLE ALGORITHMS: Linear regressions** Apriori Generative adversarial **0-learning** sales forecasting sales functions networks word associations risk assessment policy creation ■ searcher audio and video consumption reduction Support vector machines manipulation K-means clustering Model-based value image classification data creation estimation financial performance performance monitoring Self-trained Naïve Baves linear tasks comparison searcher intent classifier estimating parameters **Decision tree** natural language predictive analytics processing pricing

Advanced Machine Learning

Advanced Machine Learning

Advanced Machine Learning

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Known issues

- Overfitting
- Specialized learning vs generalized learning
- Unbalanced data
- Noisy (uncleaned) data
- Optimization

Foundations

Classification Model

Supervised Learning

Classification Model

Supervised Learning

Slide

https://github.com/santitham/data-science/blob/main/lectures/8-classification-with-decision-tree.pdf

CoLab

https://colab.research.google.com/drive/1cvP80R1XhTRYG1Jx33wosLCk23UumyOJ#scrollTo=fYenyFzA9cdZ

Regression Model

Supervised Learning

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี King Mongkut's University of Technology Thonburi

1/22/2025

Classification Model

Supervised Learning

Slide

https://github.com/santitham/data-science/blob/main/lectures/7-linear-regression.pdf

CoLab

https://colab.research.google.com/drive/10ByXWKbplyoqnWVKBNwjwMz3wUZGsCNy

Clustering Unsupervised Learning

Clustering Unsupervised Learning

Slide

https://github.com/santitham/data-science/blob/main/lectures/10-clustering.pdf

CoLab

https://colab.research.google.com/drive/1Ts03orFSjtPhbCABcsAbBNWjV3Ncf2Zo?usp=sharing

Anomaly detection

Unsupervised Learning

Anomaly Detection

Unsupervised Learning

Slide

https://github.com/santitham/data-science/blob/main/lectures/12-anomaly-detection.pdf

CoLab

https://colab.research.google.com/drive/1jLNQB5uhxmq7-Auy-79XSDWIcoZLUded

Use Case: Next Best Product Offering

Data: Demographics (all), Previous Contracts (all), Payments (all), Time, etc.

Target: Added Contract

Use Case: Loan Customer Lifetime Value Prediction

Deployment

Creation and Operation

Production environment

Continuous Delivery

©ThoughtWorks 2020

Example: Deployment

