Planejamento e Gestão Ambiental

Engenharia Ambiental e Sanitária - Ufal

P + L APLICADA À INDÚSTRIA DE PAPEL E CELULOSE

Ana Letícia Gaia da Rocha Almeida Nicolli Albuquerque de Carvalho

Passo 01: Descrição do problema

- Exemplo: a **lavagem da celulose** antes dela ser encaminhada ao branqueamento.
- **Processo inadequado**: matéria orgânica dissolvida e compostos alcalinos são carreados para o branqueamento.

Passo 02: Interpretação do problema

- A fábrica possui um **resíduo oculto** em seu processo.
- Causa: deficiência na lavagem da polpa não branqueada.
- Consequências: consumo de dióxido de cloro e de ácidos no branqueamento, aumento da poluição e dos custos, redução da qualidade da polpa por super cloração e da capacidade de produção da fábrica.

Passo 03: Preparação de fluxogramas de entradas e de saídas

Entradas de Materiais Etapa do Processo Saídas Polpa kraft Rejeitos de Cavacos de madeira cozimento "Shives" Água 1 - Digestor kraft Licor branco \rightarrow Licor preto Vapor residual Calor junto à Licor preto reciclado polpa e líquidos Vapor de "flash" Entradas de Materiais Etapa do Processo Saídas Filtrado sujo para evaporação Polpa n\u00e3o Polpa suia Licor preto branqueada Contaminantes lavada Rejeitos fibrosos (rejeitos e "Shives" "shives") 2 - Lavagem e Água de lavagem Fibras perdidas Depuração da Polpa Condensados de \rightarrow nos filtrados da \rightarrow Não Branqueada lavagem para a lavagem Agentes químicos evaporação de drenagem, "Carry-over" tensoativos, etc. auímico e "Anti-pitch" orgânico com a polpa Calor com a massa e filtrados Entradas de Materiais Etapa do Processo Saídas Polpa deslignificada · Polpa lavada e Filtrado residual depurada Perdas de fibras Oxigênio "Carry-over" orgânico e Soda cáustica 3 - Deslignificação com Oxigênio químico junto à Filtrado com "carry-over" \rightarrow polpa no filtrado químico e orgânico que a acompanha "Shives" Calor Vapor e calor acompanhando a polpa e filtrados

"Shives"

Entradas de Materiais

- Polpa não branqueada lavada
- Filtrado sujo
- Contaminantes fibrosos ("shives")
- Água ou líquido de lavagem

 \rightarrow

 \rightarrow

- DOQ
- NaOH, Na₂S, Na₂CO₃, etc.
- Calor que acompanha a polpa e filtrado

Etapa do Processo

4 - Lavagem da Polpa Deslignificada ao Oxigênio

 \rightarrow

Saídas

- Filtrado sujo para lavagem da polpa não branqueada
- Polpa deslignificada lavada
- "Shives"
- Fibras perdidas nos filtrados da lavagem
- "Carry-over" químico e orgânico com a polpa
- Calor que acompanha a polpa e filtrado

Entradas de Materiais

- Polpa deslignificada lavada e depurada
- "Carry-over"
 químico e orgânico
 junto à polpa
- Calor devido temperatura da polpa
- Reagentes oxidantes
- Vapor
- Soda cáustica
- Produtos "antipitch"
- Água de lavagem
- Filtrados de lavagem oriundos da máquina de secagem

Etapa do Processo

Branqueamento da

Celulose

Polpa branqueada Filtrados ácido e

 Filtrados ácido e alcalino para o efluente

Saídas

- Fibras perdidas nos efluentes
- Residuais de químicos
- AOX

 \rightarrow

- Carga orgânica (DQO) nos efluentes
- Íons (sódio, cloretos, cloratos, etc.)
- Calor perdido junto aos filtrados

Passo 04: Identificação dos problemas associados a essa lavagem deficiente

- 1. Flutuações na eficiência de lavagem;
- 2. Flutuações na qualidade da polpa branqueada produzida;
- 3. Perdas adicionais de fibras na lavagem e no branqueamento devido a sobrecargas operacionais;
- 4. Maior consumo de cloro ativo no branqueamento;
- 5. Maior consumo de ácido, utilizado para correção de pH;
- 6. Maior presença de DQO nos filtrados do branqueamento;
- 7. Maior concentração de DQO nos efluentes bruto e tratado da fábrica;
- 8. Maior geração de lodo secundário na ETE Estação de Tratamento de Efluentes;
- 9. Maior concentração de halogenados orgânicos no efluente e na polpa branqueada;
- 10. Maior agressividade toxicológica dos lodos e efluentes;
- 11. Significativa perda de produção operacional e econômica da fábrica;
- 12. Maior perda de calor junto ao filtrado da polpa deslignificada lavada;
- 13. Menor qualidade da celulose final branqueada em termos de sua viscosidade;
- 14. Maiores consumos de outros químicos no branqueamento devido ao efeito em cascata.

Passo 05: Identificação das possíveis causas e potenciais danos

- 1. As práticas de operação são as melhores para esse tipo de sistema?
- 2. A capacidade dos equipamentos estão sendo obedecidas?
- 3. O controle de processo e de automação afeta a performance do sistema?
- 4. A presente tecnologia é obsoleta?
- 5. Quais são os valores otimizados para essa operação?
- 6. O tipo de celulose está afetando a performance da lavagem da polpa?
- 7. A qualidade dos filtrados está influenciando na lavagem da polpa?
- 8. Os operadores estão conscientizados, motivados, treinados?
- 9. Quais as perdas valiosas que estão ocorrendo com a má lavagem?
- 10. Quais os impactos ambientais que esse procedimento oferece?
- 11. Quais os impactos às pessoas que essa má lavagem oferece?
- 12. Quais os impactos dessa má lavagem em outras áreas da fábrica?
- 13. Quais os contaminantes adicionais são levados ao meio físico e biótico?
- 14. Como as especificações dos produtos estão sendo afetadas pela má eficiência da lavagem?

Como as práticas de operação poderiam ser melhoradas para o sistema de lavagem?

Existe algum tipo de nova tecnologia que possa vir a ser implementada na área de lavagem de forma efetiva?

Como o processo atual poderia ser modificado de forma a minimizar o problema?

Existiria algum tipo de especificação exagerada e desnecessária no produto final?

ESTUDO DE CASO

Passo 06: Geração de soluções técnicas alternativas

Passo 07: Quantificação das perdas físicas e econômicas

Perda econômica total = Custos adicionais de fabricação + Receita Líquida Perdida pela não produção

Ou seja: 8.170 US\$/dia + 42.000 US\$/dia = **50.170 US\$/dia**

Passo 08: Eleição das oportunidades de P+L a implementar

Técnicas de melhoria e de eficiência operacional	Alternativa de produção mais limpa a ser implementada	Investimento requerido US\$	Custo operacional adicional para efetivação da melhoria US\$/dia
Limpeza & Organização	Limpeza melhor dos bicos dos chuveiros Limpeza melhor das telas dos filtros Regular e lubrificar melhor os equipamentos pneumáticos das prensas		zero
Controle de processo	 Criar indicadores de manutenção para a seção de lavagem Criar indicadores operacionais para a área de lavagem da polpa Negociar com o laboratório novas análises laboratoriais de perdas alcalinas, "carry-over" de DQO, consistências, etc. Instalar manômetros e vacuômetros online 		200
Modificações dos equipamentos atuais da área de lavagem	Substituir perna barométrica por bomba de vácuo em um dos tambores lavadores Substituir o sistema de prensagem em uma das prensas lavadoras	780.000	1.850

Passo 08: Eleição das oportunidades de P+L a implementar

Mudança tecnológica na área de lavagem	 Instalar mais uma prensa lavadora completa ao final da lavagem da polpa deslignificada 	1.250.000	1.300
Mudanças em outras áreas afins e correlatas	 Instalar na área de evaporação um sistema de limpeza para melhoria da qualidade do condensado limpo utilizado na lavagem da polpa 		850
Recuperações na área de lavagem	 Enviar o filtrado com fibras para o filtro de recuperação de fibras atualmente existente no processo 	50.000	(-160) Ganho líquido com as fibras recuperadas
Mudanças nas especificações do produto celulose branqueada	Sem modificações	zero	zero
Geração de subprodutos vendáveis	Não ocorre	zero	zero
Somatórios		3.230.000	4.040

Passo 09: Balanço global e cálculo do payback dos investimentos

- O balanço líquido diário:
 50.170 US\$/dia 4.040 US\$/dia =
 US\$ 46.130 / dia
- Pay-back do investimento:
 US\$ 3.230.000 / US\$ 46.130 = 70
 dias

Passo 10: Quantificação dos ganhos ambientais do projeto

- Menor consumo de água: 1.400 m³/dia
- Menor perda de fibras: 160 kg as/dia
- Menor geração de lodo secundário úmido: 3,4 t/dia
- Menor perda de Na+ pelo filtrado: 4 t/dia
- Menos perda de Cl- pelo filtrado: 3,5 t/dia
- Menor perda DQO para ETE: 9,5 tas /dia
- Menor perda de calor pelo filtrado quente: 19 Gcal/dia
- Menor consumo de dióxido de cloro: 2,17 t ClO2/dia
- Menor geração de AOX no efluente: 20 kg/dia
- Menor consumo de ácido em Do: 1,5 t/dia

Passo 11: Quantificação dos ganhos sociais do projeto

- Menores riscos de acidentes e de emergências;
- Maior limpeza da área;
- Maior beleza estética;
- Maior tranquilidade e menor nível de stress aos operadores;
- Menores conflitos entre áreas.

Passo 12: Elaboração de um relatório detalhado para a administração

- Eleitas as opções de P+L para melhorar a ecoeficiência da lavagem da polpa, feitas as devidas quantificações, a equipe deve agora elaborar um conciso e objetivo relatório com as sugestões e resultados esperados.
- O que se espera com a produção mais limpa e com a ecoeficiência: **fazer mais com menos** uso de recursos naturais, **fazer melhor e com menos** impactos ambientais e reduzir a geração de resíduos e desperdícios.

Passo 13: Geração de documentação e de procedimentos para a sustentação dos ganhos

- Com a decisão aprovada pelos acionistas e gestores, a equipe deve criar os **indicadores e as normas** para monitorar se os ganhos esperados estarão sendo alcançados e mantidos no longo prazo.
- Faz-se ainda necessária uma **avaliação das potenciais barreiras** que possam interferir nesse projeto.

Gratidão

Toda equipe que participa de um projeto sente-se gratificada com os ganhos e com o reconhecimento da empresa, dos gestores e dos colegas.

Reconhecimento

Treinamento do pessoal em cursos;

Eventos;

Visitas;

Participações em reuniões de entidades setoriais.

Investimentos

Livros;

Biblioteca;

Internet grátis para todos na empresa.

ESTUDO DE CASO

Passo 14: Júbilo e comemoração

OBRIGADA!

Dúvidas?

anita.gaia@hotmail.com albuquerquenicolli@hotmail.com