

75.06 Organización de Datos Primer Cuatrimestre de 2017

Trabajo Práctico 1 Análisis Exploratorio

Apellido y nombre	Padrón
Palmeira, Agustín Daniel	90.856
Erramuspe, Florencia	97.461
Nicoletta, Anarella	94.551
Sánchez, Bárbara Mariana	97.759

Introducción

El objetivo del presente trabajo es realizar un análisis exploratorio del set de datos provisto por la cátedra sobre el sistema de alquiler de bicicletas público de la bahía de San Francisco. El set cuenta con 4 archivos: station.csv,status.csv, trips.csv y weather.csv

Trips.csv cuenta con los siguientes campos: donde cada fila representa un viaje en bicicleta

- id
- duration (seconds)
- start_date
- start_station_name
- start_station_id
- end_date
- end_station_name
- end_station_id
- bike_id
- subscription_type
- zip_code (client zip code)

weather.csv cuenta con los siguientes campos: donde cada fila tiene datos del clima para cada fecha y zipcode

- date
- max_temperature_f
- mean_temperature_f
- min_temperature_f
- max_dew_point_f
- mean_dew_point_f
- min_dew_point_f
- max_humidity
- mean_humidity
- min_humidity
- max_sea_level_pressure_inches
- mean_sea_level_pressure_inches
- min_sea_level_pressure_inches
- max_visibility_miles
- · mean_visibility_miles
- min_visibility_miles
- max_wind_Speed_mph
- mean_wind_speed_mph
- max_gust_speed_mph
- precipitation_inches

- cloud_cover
- events
- wind_dir_degrees
- zip_code

Station.csv cuenta con los siguientes campos:

- **id** unique identifier for the station
- **name** station's name
- lat latitude
- long longitude
- **dock_count** number of bikes the station can hold
- city
- installation_date

Status.csv cuenta con los siguientes campos:

- station_id
- bikes_available
- docks_available
- time

Como funciona el sistema de alquiler de bicicletas en la Bahía de San Francisco:

- Los clientes pueden optar por una membresía anual o una de 24 hs o 3 días.
- Los viajes de hasta 30 minutos son ilimitados pero en el caso de sobrepasar esta duración, se les cobra un cargo adicional, por lo tanto, los clientes deben devolver las bicicletas y pedir un nuevo código en el caso de las membresías de 24 hs o 30 minutos.

Análisis Exploratorio

Link del repositorio:

https://github.com/agustinpalmeira/TP-BicycleRental

En primer lugar comenzamos analizando el archivo trips.csv y nos planteamos las siguientes preguntas:

• ¿Cómo es la distribución de la cantidad de trips por año?

Probablemente la baja cantidad de trips registrados para el año 2013 y 2015 se deba a que trip.csv sólo registra el alquiler de bicicletas desde Agosto de 2013 hasta Agosto de 2015.

• ¿Cómo es la distribución de la cantidad de trips por día de la semana?

En este plot se puede visualizar que en la semana se realizaron más viajes que en el fin de semana, creemos que esto puede deberse a que la gran mayoría de los usuarios de bicicletas las utilizan como medio de transporte hasta sus respectivos empleos, escuelas y/o universidades.

¿Cómo es la distribución de la cantidad de trips según el tipo de membresía?

En este plot se observa que la mayor cantidad de viajes fueron hechos por personas con una membresía anual.

• ¿Cómo es la distribución de la cantidad de trips por hora?

En este plot se observa que la mayor cantidad de viajes registrados fueron en los horarios: de 7 a 9 am y de 16 a 18 pm, lo que coincide con el horario pico.

Con el objetivo de llegar a conclusiones que puedan ser útiles para la empresa de alquiler, se realizaron las siguientes preguntas:

¿Cuál es la distribución de las duraciones de los trips en minutos?

A partir del análisis realizado y de este plot, se puede afirmar que la mayor cantidad de trips fueron de una duración menor a los 40 minutos, y afortunadamente para la empresa, el porcentaje de clientes que no cumplen la regla de devolución de las bicicletas a los 30 minutos es bajo.

• ¿Cuál es el top20 del Ratio: cantidad de bicis devueltas/cantidad de bici alquiladas en una estación?

University and Emerson	0.591270
San Mateo County Center	0.292683
Redwood City Public Library	0.253521
San Jose Civic Center	0.245295
Broadway at Main	0.238806
California Ave Caltrain Station	0.207602
Palo Alto Caltrain Station	0.187589
Franklin at Maple	0.169643
Arena Green / SAP Center	0.145722
Rengstorff Avenue / California Street	0.141718
Cowper at University	0.122999
Japantown	0.120419
Park at Olive	0.120000
Stanford in Redwood City	0.112385
Evelyn Park and Ride	0.107978
Mezes Park	0.105572
Redwood City Caltrain Station	0.099743
San Jose City Hall	0.095696
San Salvador at 1st	0.094563
SJSU 4th at San Carlos	0.094017

Con el objetivo de determinar en que estaciones deberían dejar más bicicletas disponibles y dónde debería haber más personal de venta, se realizó la siguiente pregunta:

¿Cuáles son las 20 estaciones desde las cuales parten más bicicletas?

A partir del gráfico se puede observar que las tres estaciones desde las cuales salen más bicicletas son:

- 1- San Francisco Caltrain (Townsend at 4th) (id = 70), siendo el punto de partida de 49092 usuarios.
- 2- San Francisco Caltrain 2 (330 Townsend) (id = 69), siendo el punto de partida de 33742 usuarios.
- 3- Harry Bridges Plaza (Ferry Building) (id = 50), siendo el punto de partida de 32934 usuarios.

Con el objetivo de determinar las estaciones en donde debería haber más lugar para devolver las bicicletas, se planteó la siguiente pregunta:

• ¿Cuáles son las 20 estaciones a las cuales llegan más bicicletas?

A partir del gráfico se puede observar que las tres estaciones a las cuales llegan más bicicletas son las mismas de las cuales parten la mayor cantidad de bicicletas.

- 1- San Francisco Caltrain (Townsend at 4th) (id = 70), siendo el punto de llegada de 63179 usuarios.
- 2- San Francisco Caltrain 2 (330 Townsend) (id = 69), siendo el punto de llegada de 35117 usuarios.
- 3- Harry Bridges Plaza (Ferry Building) (id = 50), siendo el punto de llegada de 33193 usuarios.

Con el objetivo de discriminar según día de semana y fin de semana, se plantearon las siguientes preguntas:

• ¿Cuáles son las 10 estaciones con más bicicletas de salida (de lunes a viernes)?

San Francisco Caltrain (Townsend at 4th) San Francisco Caltrain 2 (330 Townsend) Harry Bridges Plaza (Ferry Building) Temporary Transbay Terminal (Howard at Beale) 2nd at Townsend Steuart at Market Market at Sansome Townsend at 7th Embarcadero at Sansome Market at 10th	46234 31706 26520 25084 22723 22594 21932 21655 21094 17968	 ¿Cuáles son las 10 estaciones con menos bicicletas de salida (de lunes a viernes)?
Market at 10th	17968	(de lunes a viernes)?

San Jose Government Center	22
Broadway at Main	52
Franklin at Maple	148
Redwood City Public Library	157
San Mateo County Center	258
Mezes Park	287
Redwood City Medical Center	294
Stanford in Redwood City	416
Park at Olive	574
California Ave Caltrain Station	701

• ¿Cuáles son las 10 estaciones más populares de salida de día laboral en horario pico(7 a 9 y 16 a 18)?

San Francisco Caltrain (Townsend at 4th)	35048
San Francisco Caltrain 2 (330 Townsend)	23234
Temporary Transbay Terminal (Howard at Beale)	19259
Harry Bridges Plaza (Ferry Building)	18970
Steuart at Market	16249
2nd at Townsend	15842
Townsend at 7th	14386
Embarcadero at Sansome	14137
Market at Sansome	12976
Market at 10th	11840

• ¿Cuáles son las 10 estaciones con más bicicletas de salida (sábado y domingo)?

Embarcadero at Sansome	6619
Harry Bridges Plaza (Ferry Building)	6414
Market at 4th	3486
Embarcadero at Bryant	3227
2nd at Townsend	3114
Powell Street BART	2990
Grant Avenue at Columbus Avenue	2864
San Francisco Caltrain (Townsend at 4th)	2858
Powell at Post (Union Square)	2357
Market at 10th	2304

¿Cuáles son las 10 estaciones con menos bicicletas de salida (sábado y domingo)?

San Jose Government Center	1
Broadway at Main	15
Redwood City Medical Center	17
Stanford in Redwood City	20
San Mateo County Center	29
Mezes Park	54
Redwood City Public Library	56
Santa Clara County Civic Center	66
Franklin at Maple	76
Adobe on Almaden	115

Con el objetivo de determinar información útil para el Ministerio de espacio público de la Bahia de San Francisco, se decidió analizar cuáles son los viajes más comunes según origen y destino. A nuestro criterio, esta información podría ser útil para determinar cuáles son las zonas más transitadas y colocar espacios de descanso o de venta de alimentos

• ¿Cuáles son los viajes más comunes, según origen y destino?

Se puede observar que los viajes más comunes se dan entre las siguientes estaciones, siendo origen y destino respectivamente:

- 1. San Francisco Caltrain 2 (330 Townsend) (id = 69) y Townsend at 7th (id=65) con una cantidad de 6189 viajes aproximadamente.
- 2. Harry Bridges Plaza (Ferry Building) (id = 50) y Embarcadero at Sansome (id=60) con una cantidad de 6140 viajes aproximadamente.
- 3. Townsend at 7th (id=65) y San Francisco Caltrain (Townsend at 4th) (id = 70) con una cantidad de 5019 viajes aproximadamente.

• ¿Cuáles son los viajes más populares de fin de semana?

start station name	end station name	
Harry Bridges Plaza (Ferry Building)	Embarcadero at Sansome	1550
Embarcadero at Sansome	Harry Bridges Plaza (Ferry Building)	907
	Embarcadero at Sansome	873
Harry Bridges Plaza (Ferry Building)	Harry Bridges Plaza (Ferry Building)	841
Embarcadero at Bryant	Embarcadero at Sansome	483
	Harry Bridges Plaza (Ferry Building)	459
Embarcadero at Vallejo	Embarcadero at Sansome	451
University and Emerson	University and Emerson	448
2nd at Townsend	Harry Bridges Plaza (Ferry Building)	415
Powell Street BART	Market at 10th	412

• ¿Cuáles son los 10 viajes mas populares de día de semana en horario pico(7 a 9 y 16 a 18)?

start station name	end station name	
San Francisco Caltrain 2 (330 Townsend)	Townsend at 7th	3658
2nd at Townsend	Harry Bridges Plaza (Ferry Building)	3264
Harry Bridges Plaza (Ferry Building)	2nd at Townsend	3243
Embarcadero at Folsom	San Francisco Caltrain (Townsend at 4th)	3191
Townsend at 7th	San Francisco Caltrain (Townsend at 4th)	3182
Embarcadero at Sansome	Steuart at Market	3093
Harry Bridges Plaza (Ferry Building)	Embarcadero at Sansome	3075
Steuart at Market	2nd at Townsend	2945
Temporary Transbay Terminal (Howard at Beale)	San Francisco Caltrain (Townsend at 4th)	2920
Steuart at Market	San Francisco Caltrain (Townsend at 4th)	2709

Además realizamos las siguientes preguntas que pueden resultar de interés:

• ¿Cuál es el top10 de viajes con mayor promedio de duración, de día de semana y en horario pico?

		size	mean
start_station_name	end_station_name		
Harry Bridges Blaze (Form, Building)	Embarcadero at Sansome	3075	1063.781138
Harry Bridges Plaza (Ferry Building)	San Francisco Caltrain (Townsend at 4th)	2182	831.148029
San Francisco Caltrain (Townsend at 4th)	Market at Sansome	2039	823.132908
Market at 10th	San Francisco Caltrain (Townsend at 4th)	2535	786.864300
San Francisco Caltrain (Townsend at 4th)	Harry Bridges Plaza (Ferry Building)	2681	745.986945
	Temporary Transbay Terminal (Howard at Beale)	2599	726.017314
Steuart at Market	San Francisco Caltrain (Townsend at 4th)	2709	725.410853
Embarcadero at Folsom	San Francisco Caltrain (Townsend at 4th)	3191	701.274835
San Francisco Caltrain (Townsend at 4th)	Steuart at Market	2357	699.029699
Temporary Transbay Terminal (Howard at Beale)	San Francisco Caltrain (Townsend at 4th)	2920	644.416438

• ¿Cuál es el Top10 de viajes de día de semana y en horario pico con duración más variable?

		size	mean	std
start_station_name	end_station_name			
Market at 10th	San Francisco Caltrain (Townsend at 4th)	2535	786.864300	4523.796296
Market at Sansome	2nd at South Park	2262	443.255526	2880.419426
Mountain View Caltrain Station	Mountain View City Hall	2085	411.705995	2692.106160
Harry Bridges Plaza (Ferry Building)	Embarcadero at Sansome	3075	1063.781138	2513.807266
San Francisco Caltrain (Townsend at 4th)	Market at Sansome	2039	823.132908	2452.355243
Embarcadero at Folsom	San Francisco Caltrain (Townsend at 4th)	3191	701.274835	2440.397087
Steuart at Market	Embarcadero at Sansome	2025	632.006420	1707.484570
San Francisco Caltrain (Townsend at 4th)	Temporary Transbay Terminal (Howard at Beale)	2599	726.017314	1632.042390
Steuart at Market	San Francisco Caltrain (Townsend at 4th)	2709	725.410853	1512.311844
2nd at Townsend	Harry Bridges Plaza (Ferry Building)	3264	554.430453	1346.866430

• ¿Cuáles fueron los eventos climáticos registrado para cada ciudad?

• Algunos aspectos que analizamos del clima

Aclaración:

Para analizar la relación entre el clima y los trips, se hizo previamente una filtración de aquellos trips cuya duración es menor a un día, puesto que no tiene sentido analizar la relación entre las condiciones climáticas y las características del trip en los otros casos.

A su vez, también hemos considerado que las condiciones climáticas no varían notablemente entre las cinco ciudades de las cuales se tienen registro, por lo tanto, para el análisis se ha tomado el zip_code para el cual la cantidad total de valores null es la mínima (zip_code = 94107).

Nos propusimos analizar la correlación entre las distintas variables climáticas registradas y la cantidad y duración promedio de los viajes, nos hicimos las siguientes preguntas:

• ¿Hay correlación entre la duración promedio en minutos y la temperatura promedio en Fahrenheit para el trip más popular?

A partir de la siguiente visualización podemos deducir que, en general, la gente tiende a disminuir su velocidad (y por ende aumentar la duración del paseo) cuando las temperaturas son más cálidas. Esto era lo que esperábamos, puesto que la mayoría de los usuarios disfrutan más de andar en bicicleta con climas cálidos.

• ¿Hay alguna correlación entre la velocidad promedio del viento y la duración promedio del trip más popular ?

A partir de la siguiente visualización, podemos ver que en general, los paseos en bicicleta tienden a extenderse a medida que aumenta la velocidad del viento. Esto se debe, probablemente, a la resistencia que opone el viento si la persona se encuentra viajando en sentido opuesto a él.

• ¿Hay alguna correlación entre la velocidad máxima de las ráfagas de viento y la duración promedio en minutos para el trip mas popular?

A partir de la siguiente visualización, podemos ver que, en general, la duración de los paseos suele aumentar mientras mayor es la máxima velocidad de las ráfagas de viento. Creemos que esto está directamente relacionado con lo concluido anteriormente.

• ¿Hay alguna correlación de precipitation inches y promedio de duración en minutos para el trip más popular?

A partir de la siguiente visualización, podemos ver que a medida que aumentan las precipitation inches, dismunuye la duración promedio de los trips. Creemos que esto se puede deber a que los clientes al ver que llueve deciden parar a refugiarse de la lluvia, y por esto se prolonga más el tiempo de viaje.

• ¿Hay alguna correlación entre cloud cover y duración promedio en minutos para el trip más popular?

No pudimos concluir nada a partir de esta visualizacion.

• Correlación entre las distintas variables del clima y la duración de los trips

Nuestro objetivo principal fue intentar visualizar cómo se ve afectada la duración de los trips por los distintos factores climáticos, pero vemos que la correlación de la misma con los últimos es muy baja, con lo cual no pudimos extraer ninguna conclusión al respecto.

Station y Status

Al iniciar el análisis exploratorio sobre los archivos 'station.csv' y 'status.csv', nos encontramos con el siguiente inconveniente: el archivo 'status.csv' contiene información minuto a minuto del estado de las estaciones, lo cual implica un volumen de almacenamiento de cerca de 2.0 GB. Esto hacía que en algunas de las computadoras de los miembros del equipo fuese imposible levantar el archivo a través de la herramienta Jupyter Notebook, más allá de los múltiples intentos realizados. Por ello, decidimos hacer una leve modificación sobre el data set, con el fin de reducir la cantidad de registros presentes en el mismo (aproximadamente 72 millones). A través de un script en Python recorrimos el archivo CSV original y generamos un nuevo archivo en el que teníamos la información a nivel de intervalos de tiempo, en lugar de minuto a minuto. Se tomaron las condiciones de una estación (cantidad de bicicletas y docks disponibles) en un determinado minuto y se controló hasta qué momento se mantenían las mismas intactas. Entonces se almacenó una línea en el archivo 'status_red.csv' con la información para esa estación y los timestamps de inicio y fin de ese intervalo. El script utilizado fue **modificación_status.py**, y se compone de las siguientes instrucciones:

```
#!/usr/bin/env python
import csv
def replace_hyphens (string):
   """Funcion auxiliar para reemplazar guiones por barras en aquellas
   fechas que lo ameriten"""
   if "-" in string:
      return string.replace("-","/")
   return string
def main():
   counter = 0
   with open("status.csv", "r") as f:
      status = csv.reader(f)
       with open("status_red.csv", "w") as d:
          status_red = csv.writer(d)
          status_red.writerow(["station_id", "bikes_available", \
          "docks available", "start time", "end time"])
          station_id_previous = ""
          bikes_available_previous = ""
          docks_available_previous = ""
          start_time_previous = "'
          end_time_previous = ""
          primer_registro = True
          status.next()
          for station id, bikes available, docks available, time in \
          status:
             \#counter = counter + 1
             if primer_registro == True:
                 station_id_previous = station_id
                 bikes_available_previous = bikes_available
                 docks_available_previous = docks_available
                 start_time_previous = replace_hyphens(time)
                 end_time_previous = replace_hyphens(time)
                 primer_registro = False
             else:
                 if (station_id_previous == station_id and \
                 bikes_available_previous == bikes_available and \
```

```
docks_available_previous == docks_available):
                    end_time_previous = replace_hyphens(time)
                else:
                    status_red.writerow([station_id_previous, \
                    bikes_available_previous,
                    {\tt docks\_available\_previous, start\_time\_previous, } \setminus
                    end_time_previous])
                    station_id_previous = station_id
                    bikes_available_previous = bikes_available
docks_available_previous = docks_available
                    start_time_previous = replace_hyphens(time)
                    end_time_previous = replace_hyphens(time)
            #if counter == 70:
                #break
        status_red.writerow([station_id_previous, \
       bikes_available_previous, docks_available_previous, \
start_time_previous, end_time_previous])
#print counter
```

main()

De esta manera, el archivo obtenido, 'status_red.csv' consiste en un conjunto de 2 millones de registros, que bien permite trabajar a los datos.

Bicicletas agotadas

Para obtener esta visualización hemos considerado aquellos intervalos de tiempo en los que no había bicicletas disponibles en la estación. Agrupando a los registros por día de la semana, y acumulando la duración de estos intervalos de tiempo obtuvimos el gráfico arriba expuesto.

Como se puede ver, durante el fin de semana los valores son considerablemente más bajos dando a entender que las bicis tienden a agotarse mayormente en el rango de días incluido entre lunes y viernes.

• Cantidad de bicicletas disponibles durante el horario pico (7:00 - 9:00 y 16:00 – 18:00) y cantidad de bicicletas disponibles durante el fin de semana

Analizamos qué sucede con la disponibilidad de bicicletas en las estaciones en momentos puntuales de la semana, como ser los intervalos de horario pico (entre las 7 am y las 9 am, y entre las 16 pm y las 18 pm) y los fines de semana.

Comenzando por la fracción de intervalos que están contenidos, total o parcialmente, en el horario pico, destacamos qué hay algunas estaciones en las que es poco frecuente que haya baja disponibilidad de bicicletas, como ser las identificadas por los ids 13, 23, 36, 38. También se observa que es frecuente encontrar bicicletas disponibles en las estaciones, por lo que a primera vista el horario no influiría negativamente en la disponibilidad.

Continuando con el análisis del segundo gráfico, se observan casi las mismas conclusiones para el fin de semana aunque cabe destacar que en muy pocos casos la disponibilidad de bicicletas es cero.

Bibliografía y material consultado

Principalmente:

- Apunte de la cátedra Capítulo 3: Visualización
- Notebooks de Análisis Exploratorio de la cátedra (link en Piazza)

Algunos links que fueron de ayuda para resolver determinadas dudas:

- http://www.bayareabikeshare.com/open-data (Para ver si podíamos extraer información interesante)
- https://www.unitedstateszipcodes.org/ (Para saber qué zip_code de weather se correspondía con cada ciudad de stations)
- http://seaborn.pydata.org/generated/seaborn.heatmap.html
- http://stackoverflow.com/questions/32723798/how-do-i-add-a-title-to-seaborn-heatmap
- http://seaborn.pydata.org/generated/seaborn.regplot.html
- http://stackoverflow.com/questions/11264521/date-ticks-and-rotation-in-matplotlib