LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING LINJÄR ALGEBRA 2015-01-12 kl 8–13

INGA HJÄLPMEDEL.

Lösningarna skall vara försedda med ordentliga motiveringar. Alla koordinatsystem får antas vara ortonormala och positivt orienterade om inget annat anges.

- 1. Låt $\bar{\mathbf{u}} = (1, 2, 2), \bar{\mathbf{v}} = (1, 1, 0)$ och $\bar{\mathbf{w}} = (1, -1, 4)$.
 - a) Beräkna $\bar{\mathbf{u}} \bullet \bar{\mathbf{v}}$, $|\bar{\mathbf{u}}|$, $|\bar{\mathbf{v}}|$ och bestäm vinkeln mellan $\bar{\mathbf{u}}$ och $\bar{\mathbf{v}}$. (0.4)
 - b) Beräkna determinanten

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 2 & 0 & 4 \end{vmatrix}.$$

(0.3)

- c) Avgör om vektorerna $\bar{\mathbf{u}}, \bar{\mathbf{v}}, \bar{\mathbf{w}}$ är linjärt oberoende samt bestäm volymen av parallellepipeden med kanterna $\bar{\mathbf{u}}, \bar{\mathbf{v}}, \bar{\mathbf{w}}$. (0.3)
- 2. Avgör för vilka värden på a som systemet

$$\begin{cases} x + 2y + z = 3 \\ x + 3y + az = 8 + a \\ 2x + ay = -8 \end{cases}$$

har oändligt många lösningar.

- 3. Bestäm en positivt orienterad ortonormerad bas $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$, $\hat{\mathbf{e}}_3$ sådan att $\hat{\mathbf{e}}_2$ är ortogonal mot planet $\pi: x+z+5=0$ och $\hat{\mathbf{e}}_3$ är ortogonal mot linjen l: (x,y,z)=(5+t,-2+2t,-1+2t).
- **4.** En linjär avbildning $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ avbildar vektorerna $\bar{\mathbf{v}}_1 = (1,2,1)$, $\bar{\mathbf{v}}_2 = (0,1,1)$, $\bar{\mathbf{v}}_3 = (-1,-2,-2)$ på $F(\bar{\mathbf{v}}_1) = (4,8,0)$, $F(\bar{\mathbf{v}}_2) = (2,3,-1)$, $F(\bar{\mathbf{v}}_3) = (-5,-8,2)$. Bestäm avbildningsmatrisen, dess rang och nolldimension samt avgör om avbildningen är inverterbar.

5. Låt P vara en kvadratisk matris

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix},$$

 $\text{där } p_{11} + p_{21} = 1 \text{ och } p_{12} + p_{22} = 1.$

- a) Låt λ vara ett egenvärde till P med egenvektor $\bar{\mathbf{v}}=(v_1,v_2)$. Visa att (0.4)antingen är $\lambda = 1$ eller så är $v_1 + v_2 = 0$.
- b) I ett visst fall har man

$$P = \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix}.$$

Beräkna P^{2015} .

(0.6)

6. a) Vilka av rummets punkter hamnar på $Q_1:(1,1,0)$ vid ortogonal projektion på planet $\pi_1: x+y+z-2=0$? Ange svaret på parameterform. (0.2)

b) Den ortogonala projektionen av punkten P på planet $\pi_1: x+y+z-2=0$ blir $Q_1:(1,1,0).$ Den ortogonala projektionen av samma punkt P på planet $\pi_2: 2x+y+2z-9=0$ blir $Q_2: (2,3,1)$. Vad blir den ortogonala projektionen av P på planet $\pi_3: 4y + 3z = 0$?

LYCKA TILL!