15.06.2021 Запачи - Codeforces

у2019-4-3. Математика, криптография

А. Разложение на множители

2 секунды, 256 мегабайт

Дано число. Требуется разложить его на простые множители.

Входные данные

Вводится число $n (2 \le n \le 10^9)$.

Выходные данные

Выведите через пробел разложение на простые множители в порядке неубывания множителей.

входные данные		
17		
выходные данные		
17		

входные данные			
60			
выходные данные			
2 2 3 5			

В. Большая проверка на простоту больших чисел

2 секунды, 64 мегабайта

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число $n,\,1\leq n\leq 5000$ и далее n чисел $a_i,\,1\leq a_i\leq 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

входные да	анные		
4 1 5 10 239			
выходные д	данные		
NO YES NO YES			

С. Китайская теорема

2 секунды, 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n$, $m \le 10^6$, $0 \le a < n$, $0 \le b < m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

входные данные		
1 0 2 3		
выходные данные		
3		

3 входные данные 3 2 5 9 выходные данные 38

D. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed \mod (p-1)(q-1)=1$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M-исходное сообщение. Для его шифрования вычисляется значение $C=M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: n, e, C, $n \leqslant 10^9, e \leqslant 10^9, C < n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M $(0 \leqslant M < n)$, которое было зашифровано такой криптосхемой.

входные	данные
143	
113	
41	
выходные	данные
123	

входные	данные		
9173503 3 4051753			
выходные	данные		
111111			

Е. Перемножение полиномов

1 секунда, 256 мегабайт

Даны два полинома $A(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$ и $B(x)=b_0+b_1x+b_2x^2+\ldots+b_nx^n$. Найдите их произведение в виде $C(x)=c_0+c_1x+c_2x^2+\ldots+c_{2n}x^{2n}$.

Входные данные

Первая строка содержит число n ($1 \le n \le 10^5$). Вторая строка содержит n+1 число $-a_0,a_1,\ldots,a_n$, третья строка содержит n+1 целое число $-b_0,b_1,\ldots,b_n$ ($0 \le a_i,b_i \le 100$).

Выходные данные

Выведите 2n+1 число $-c_0,c_1,\ldots,c_{2n}$.

E	входные данные		
2 1 2	2 1		
E	выходные данные		
2	2 13 30 34 12		

F. Дуэль

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Задачи - Codeforces

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

входные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

101010101		
выходные данные		
4		
входные данные		
101001		
выходные данные		
I _		

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.

Codeforces (c) Copyright 2010-2021 Михаил Мирзаянов Соревнования по программированию 2.0