Dichotomy of Control: Separating What You Can Control from What You Can Not

Sherry Yang

Dale Schuurmans

Pieter Abbeel

Ofir Nachum

Paper: https://drive.google.com/file/d/109ktTzxF2FRkM8s412xYFVSguGvxEWCa/view?usp=sharing

Background

Training large-scale generative models has emerged as the dominant approach in NLP, vision, etc.

Thoppilan, et al. "LaMDa" (2022).

Yu, et al. "Parti" (2022).

Background

What about reinforcement learning (RL)?

Can we apply similar paradigms to RL?

Background: Decision Transformers

MGDT: Build a generalist agent that acts in interactive environments

Results: One agent plays 41 Atari games. Rapid transfer to new games.

Background: Decision Transformer Scales

Have not plateaued

- CQL (Impala)
- Online C51
 DQN (Impala)
- Behavioral Cloning Transformer

Number of Model Parameters

"o-R-a-r" Decision Transformers

Don't Optimize for Return - Ask for Optimality

Issues with Decision Transformer - Stochasticity

RCSL / Decision Transformer

Dichotomy of Control: Control the Controllable

RCSL / Decision Transformer Dichotomy of Control

Return/Future Conditioned Supervised Learning

Return-conditioned supervised learning:

$$\mathcal{L}_{ ext{RCSL}}(\pi) := \mathbb{E}_{ au \sim \mathcal{D}} \left| \sum_{t=0}^{H} -\log \pi(a_t | au_{0:t-1}, s_t, z(au)) \right|$$

Future-conditioned supervised learning:

$$\mathcal{L}_{\text{VAE}}(\pi, q, p) := \mathbb{E}_{\tau \sim \mathcal{D}, z \sim q(z|\tau)} \left[\sum_{t=0}^{H} -\log \pi(a_t|\tau_{0:t-1}, s_t, z) \right] + \beta \cdot \mathbb{E}_{\tau \sim \mathcal{D}} \left[D_{\text{KL}}(q(z|\tau) || p(z|s_0)) \right]$$

Dichotomy of Control

Max-likelihood as before

$$\mathcal{L}_{\text{DoC}}(\pi, q) := \mathbb{E}_{\tau \sim \mathcal{D}, z \sim q(z|\tau)} \left[\sum_{t=0}^{H} -\log \pi(a_t | \tau_{0:t-1}, s_t, z) \right]$$

Dichotomy of Control

Max-likelihood as before

$$\mathcal{L}_{\text{DoC}}(\pi, q) := \mathbb{E}_{\tau \sim \mathcal{D}, z \sim q(z|\tau)} \left[\sum_{t=0}^{H} -\log \pi(a_t | \tau_{0:t-1}, s_t, z) \right]$$

s.t.
$$MI(r_t; z \mid \tau_{0:t-1}, s_t, a_t) = 0, MI(s_{t+1}; z \mid \tau_{0:t-1}, s_t, a_t) = 0,$$

 $\forall \tau_{0:t-1}, s_t, a_t \text{ and } 0 \le t \le H,$

Cannot predict environment stochasticity from z

```
MI(r_t; z | \tau_{0:t-1}, s_t, a_t) = D_{KL} \left( \Pr[r_t, z | \tau_{0:t-1}, s_t, a_t] | \Pr[r_t | \tau_{0:t-1}, s_t, a_t] \Pr[z | \tau_{0:t-1}, s_t, a_t] \right)
```

```
\begin{aligned} & \text{MI}(r_t; z | \tau_{0:t-1}, s_t, a_t) \\ &= D_{\text{KL}} \left( \Pr[r_t, z | \tau_{0:t-1}, s_t, a_t] \| \Pr[r_t | \tau_{0:t-1}, s_t, a_t] \Pr[z | \tau_{0:t-1}, s_t, a_t] \right) \\ &= \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \left[ \log \left( \frac{\Pr[r_t | z, \tau_{0:t-1}, s_t, a_t]}{\Pr[r_t | \tau_{0:t-1}, s_t, a_t]} \right) \right] \end{aligned}
```

```
\begin{split} & \operatorname{MI}(r_{t}; z | \tau_{0:t-1}, s_{t}, a_{t}) \\ &= D_{\operatorname{KL}} \left( \Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}] \| \Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}] \Pr[z | \tau_{0:t-1}, s_{t}, a_{t}] \right) \\ &= \mathbb{E}_{\Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}]} \left[ \log \left( \frac{\Pr[r_{t} | z, \tau_{0:t-1}, s_{t}, a_{t}]}{\Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}]} \right) \right] \\ &= \mathbb{E}_{\Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}]} \log \Pr[r_{t} | z, \tau_{0:t-1}, s_{t}, a_{t}] - \mathbb{E}_{\Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}]} \log \Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}] \right] \end{split}
```

```
\begin{aligned} & \operatorname{MI}(r_{t}; z | \tau_{0:t-1}, s_{t}, a_{t}) \\ &= D_{\operatorname{KL}} \left( \Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}] \| \Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}] \Pr[z | \tau_{0:t-1}, s_{t}, a_{t}] \right) \\ &= \mathbb{E}_{\Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}]} \left[ \log \left( \frac{\Pr[r_{t} | z, \tau_{0:t-1}, s_{t}, a_{t}]}{\Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}]} \right) \right] \\ &= \mathbb{E}_{\Pr[r_{t}, z | \tau_{0:t-1}, s_{t}, a_{t}]} \log \Pr[r_{t} | z, \tau_{0:t-1}, s_{t}, a_{t}] - \mathbb{E}_{\Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}]} \log \Pr[r_{t} | \tau_{0:t-1}, s_{t}, a_{t}] \\ &= \omega(r_{t} | z, \tau_{0:t-1}, s_{t}, a_{t}) \propto \rho(r_{t}) \exp \left\{ f(r_{t}, z, \tau_{0:t-1}, s_{t}, a_{t}) \right\} \end{aligned}
```

```
MI(r_t; z | \tau_{0:t-1}, s_t, a_t)
      = D_{KL} \left( \Pr[r_t, z | \tau_{0:t-1}, s_t, a_t] || \Pr[r_t | \tau_{0:t-1}, s_t, a_t] \Pr[z | \tau_{0:t-1}, s_t, a_t] \right)
      = \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \left[ \log \left( \frac{\Pr[r_t | z, \tau_{0:t-1}, s_t, a_t]}{\Pr[r_t | \tau_{0:t-1}, s_t, a_t]} \right) \right]
      = \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \log \Pr[r_t | z, \tau_{0:t-1}, s_t, a_t] - \mathbb{E}_{\Pr[r_t | \tau_{0:t-1}, s_t, a_t]} \log \Pr[r_t | \tau_{0:t-1}, s_t, a_t]
            \omega(r_t|z, \tau_{0:t-1}, s_t, a_t) \propto \rho(r_t) \exp\{f(r_t, z, \tau_{0:t-1}, s_t, a_t)\}
     \max_{t} \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \left[ \log \omega(r_t | \tau_{0:t-1}, s_t, a_t) \right]
= \max_{\mathbf{f}} \mathbb{E}_{\Pr[r_t, z \mid \tau_{0:t-1}, s_t, a_t]} \left[ f(r_t, z, \tau_{0:t-1}, s_t, a_t) - \log \mathbb{E}_{\rho(\tilde{r})} \left[ \exp\{ f(\tilde{r}, z, \tau_{0:t-1}, s_t, a_t) \} \right] \right]
```

$$MI(x): x|x \mapsto s_{x}(x)$$

 $= D_{KL} \left(\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t] || \Pr[r_t | \tau_{0:t-1}, s_t, a_t] \Pr[z | \tau_{0:t-1}, s_t, a_t] \right)$

 $\omega(r_t|z, \tau_{0:t-1}, s_t, a_t) \propto \rho(r_t) \exp\{f(r_t, z, \tau_{0:t-1}, s_t, a_t)\}$

 $\mathcal{L}_{\text{DoC}}(\pi, q) = \max_{f} \mathbb{E}_{\tau \sim \mathcal{D}, z \sim q(z|\tau)} \left[\sum_{t=0}^{H} -\log \pi(a_t | \tau_{0:t-1}, s_t, z) \right]$

 $= \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \left[\log \left(\frac{\Pr[r_t | z, \tau_{0:t-1}, s_t, a_t]}{\Pr[r_t | \tau_{0:t-1}, s_t, a_t]} \right) \right]$

 $\max_{t} \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} [\log \omega(r_t | \tau_{0:t-1}, s_t, a_t)]$

$$\mathrm{MI}(r_t;z| au_{0:t-1},s_t,a_t)$$

$$\Pi(x): x|x_0 \mapsto x_0 = x_0$$

 $= \mathbb{E}_{\Pr[r_t, z | \tau_{0:t-1}, s_t, a_t]} \log \Pr[r_t | z, \tau_{0:t-1}, s_t, a_t] - \mathbb{E}_{\Pr[r_t | \tau_{0:t-1}, s_t, a_t]} \log \Pr[r_t | \tau_{0:t-1}, s_t, a_t]$

 $= \max_{f} \mathbb{E}_{\Pr[r_{t}, z \mid \tau_{0:t-1}, s_{t}, a_{t}]} \left[f(r_{t}, z, \tau_{0:t-1}, s_{t}, a_{t}) - \log \mathbb{E}_{\rho(\tilde{r})} \left[\exp\{ f(\tilde{r}, z, \tau_{0:t-1}, s_{t}, a_{t}) \} \right] \right]$

 $+\beta \cdot \sum \mathbb{E}_{\tau \sim \mathcal{D}, z \sim q(z|\tau)} \left[f(r_t, s_{t+1}, z, \tau_{0:t-1}, s_t, a_t) - \log \mathbb{E}_{\rho(\tilde{r}, \tilde{s}')} \left[\exp\{f(\tilde{r}, \tilde{s}', z, \tau_{0:t-1}, s_t, a_t)\}\right] \right]$

Algorithm 1 Inference with Dichotomy of Control

```
Inputs Policy \pi(\cdot|\cdot,\cdot,\cdot), prior p(\cdot), value function V(\cdot), initial state s_0, number of samples hyperparameter K.

Initialize z^*; V^* 
ho Track the best latent and its value.

for k=1 to K do

Sample z_k \sim p(z|s_0) 
ho Sample a latent from the learned prior.

if V(z_k) > V^* then

z^* = z_k; V^* = V 
ho Set best latent to the one with the highest value.

return \pi(\cdot|\cdot,\cdot,z^*) 
ho Policy conditioned on the best z^*.
```

Formalization: Inconsistency

Definition 1 (Consistency). A future-conditioned policy π and value function V are **consistent** for a specific conditioning input z if the expected return of z predicted by V is equal to the true expected return of π_z in the environment: $V(z) = V_{\mathcal{M}}(\pi_z)$.

Formalization: Inconsistency

Definition 1 (Consistency). A future-conditioned policy π and value function V are **consistent** for a specific conditioning input z if the expected return of z predicted by V is equal to the true expected return of π_z in the environment: $V(z) = V_{\mathcal{M}}(\pi_z)$.

Assumption 2 (Data and environment agreement). The per-step reward and next-state transitions observed in the data distribution are the same as those of the environment. In other words, for any $\tau_{0:t-1}$, s_t , a_t with $\Pr[\tau_{0:t-1}, s_t, a_t | \mathcal{D}] > 0$, we have $\Pr[\hat{r}_t = r_t | \tau_{0:t-1}, s_t, a_t, \mathcal{D}] = \mathcal{R}(\hat{r}_t | \tau_{0:t-1}, s_t, a_t)$ and $\Pr[\hat{s}_{t+1} = s_{t+1} | \tau_{0:t-1}, s_t, a_t, \mathcal{D}] = \mathcal{T}(\hat{s}_{t+1} | \tau_{0:t-1}, s_t, a_t)$ for all \hat{r}_t , \hat{s}_{t+1} .

Assumption 3 (No optimization or approximation errors). DoC yields policy π and value function V that are Bayes-optimal with respect to the training data distribution and q. In other words, $V(z) = \mathbb{E}_{\tau \sim \Pr[\cdot|z,\mathcal{D}]}[R(\tau)]$ and $\pi(\hat{a}|\tau_{0:t-1},s_t,z) = \Pr[\hat{a}=a_t|\tau_{0:t-1},s_t,z,\mathcal{D}].$

Formalization: Inconsistency

Definition 1 (Consistency). A future-conditioned policy π and value function V are **consistent** for a specific conditioning input z if the expected return of z predicted by V is equal to the true expected return of π_z in the environment: $V(z) = V_{\mathcal{M}}(\pi_z)$.

Assumption 2 (Data and environment agreement). The per-step reward and next-state transitions observed in the data distribution are the same as those of the environment. In other words, for any $\tau_{0:t-1}, s_t, a_t$ with $\Pr[\tau_{0:t-1}, s_t, a_t | \mathcal{D}] > 0$, we have $\Pr[\hat{r}_t = r_t | \tau_{0:t-1}, s_t, a_t, \mathcal{D}] = \mathcal{R}(\hat{r}_t | \tau_{0:t-1}, s_t, a_t)$ and $\Pr[\hat{s}_{t+1} = s_{t+1} | \tau_{0:t-1}, s_t, a_t, \mathcal{D}] = \mathcal{T}(\hat{s}_{t+1} | \tau_{0:t-1}, s_t, a_t)$ for all \hat{r}_t, \hat{s}_{t+1} .

Assumption 3 (No optimization or approximation errors). DoC yields policy π and value function V that are Bayes-optimal with respect to the training data distribution and q. In other words, $V(z) = \mathbb{E}_{\tau \sim \Pr[\cdot|z,\mathcal{D}]}[R(\tau)]$ and $\pi(\hat{a}|\tau_{0:t-1},s_t,z) = \Pr[\hat{a}=a_t|\tau_{0:t-1},s_t,z,\mathcal{D}].$

Theorem 4. Suppose DoC yields π , V, q with q satisfying the MI constraints:

$$MI(r_t; z | \tau_{0:t-1}, s_t, a_t) = MI(s_{t+1}; z | \tau_{0:t-1}, s_t, a_t) = 0,$$
(10)

for all $\tau_{0:t-1}$, s_t , a_t with $\Pr[\tau_{0:t-1}, s_t, a_t | \mathcal{D}] > 0$. Then under Assumptions 2 and 3, V and π are consistent for any z with $\Pr[z|q,\mathcal{D}] > 0$.

Experiments: Stochastic Bandit

Experiments: Stochastic Gridwalk, MuJoCo

Experiments: Stochastic Gridwalk, MuJoCo

