CLAIMS

1. A compound of formula (I),

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_n \xrightarrow{X} X \xrightarrow{R^1} (I)$$

5

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

10 n is 0 or 1; s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15

Y is -N < or -CH <;

Q is –NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

25

30

20

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR⁶R⁷ (a-1),
-O-H (a-2),
-O-R⁸ (a-3),
-S- R⁹ (a-4), or
—C
$$\equiv$$
N (a-5),

wherein

$$\begin{split} R^6 \text{ is -CHO, } C_{1\text{-}6} \text{alkyl, hydroxy} C_{1\text{-}6} \text{alkyl, } C_{1\text{-}6} \text{alkylcarbonyl,} \\ \text{di}(C_{1\text{-}6} \text{alkyl}) \text{amino} C_{1\text{-}6} \text{alkyl, } C_{1\text{-}6} \text{alkylcarbonylamino} C_{1\text{-}6} \text{alkyl,} \end{split}$$

piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkyl, arylcarbonylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl; and R^7 is hydrogen or C_{1-6} alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_{t}-Z-$$
 (b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

HN
$$R^{10}$$
 HN R^{10} HN R^{10} HN R^{10} HN R^{10} (c-4)

15

25

5

$$R^{10}$$
 R^{10} R^{10}

$$R^{11}$$
 R^{10}
 R^{10}

wherein each R^{10} independently is hydrogen, $C_{1\text{-}6}$ alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryloxy(hydroxy) $C_{1\text{-}6}$ alkyl, haloindazolyl, aryl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino;

each R¹¹ independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

- 5 with the proviso that 6-(cyclohexyl-1*H*-imidazol-1-ylmethyl)-3-methyl-2(1*H*)-quinoxalinone is not included.
- A compound as claimed in claim 1 wherein X is -N= or -CH=; R¹ is C₁-6alkyl; R³ is hydrogen, C₁-6alkyl, a radical selected from (a-1), (a-2), (a-3) or (a-4) or a group of formula (b-1); R⁶ is di(C₁-6alkyl)aminoC₁-6alkyl or C₁-6alkyloxyC₁-6alkyl; Rⁿ is hydrogen; R³ is di(C₁-6alkyl)aminoC₁-6alkyl; t is 0 or 2; Z is a heterocyclic ring system selected from (c-1), (c-5), (c-6), (c-8), (c-10), (c-12) or (c-13); each R¹⁰ independently is hydrogen, C₁-6alkyl, hydroxy, C₁-6alkyloxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkylamino, morpholino, C₁-6alkylimidazolyl, or pyridinylC₁-6alkylamino; each R¹¹ independently is hydrogen or hydroxy; and aryl is phenyl.
 - 3. A compound according to claim 1 and 2 wherein n is 0; X is CH; Q is –NH-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, or arylC₁₋₆alkyl; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is hydrogen, hydroxy or a group of formula (b-1); t is 0; Z is a heterocyclic ring system selected from (c-8) or (c-13); each R¹⁰ independently is hydrogen; and aryl is phenyl.

20

25

4. A compound according to claim 1, 2 and 3 wherein the compound is selected from compound No 7, compound No 2, compound No 1 and compound No 11.

5. A compound as claimed in any of claims 1 to 4 for use as a medicine.

- 6. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.
- 5 7. A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 4 are intimately mixed.
- 8. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein the compound is a compound of formula (I)

$$(CH_2)_{s} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} \xrightarrow{R^1} (I)$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

20

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is
$$-N < or -CH <$$
;

25

Q is
$$-NH$$
-, $-O$ -, $-C(O)$ -, $-CH_2$ - CH_2 - or $-CHR^5$ -, wherein R^5 is hydrogen, hydroxy, C_{1-6} alkyl, aryl C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino or haloindazolyl;

30 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

 $R^3\, is$ hydrogen, $C_{1\text{--}6}alkyl$ or a radical selected from

- NR ^o R'	(a-1),
-О-Н	(a-2),
-O-R ⁸	(a-3),
-S- R ⁹	(a-4), or
—C≡N	(a-5),

wherein

5

15

25

$$\begin{split} R^6 \text{ is -CHO, } C_{1\text{-}6} \text{alkyl, hydroxy} C_{1\text{-}6} \text{alkyl, } C_{1\text{-}6} \text{alkylcarbonyl,} \\ \text{di}(C_{1\text{-}6} \text{alkyl}) \text{amino} C_{1\text{-}6} \text{alkyl, } C_{1\text{-}6} \text{alkylcarbonylamino} C_{1\text{-}6} \text{alkyl,} \\ \text{piperidinyl} C_{1\text{-}6} \text{alkyl, piperidinyl} C_{1\text{-}6} \text{alkylaminocarbonyl, } C_{1\text{-}6} \text{alkyloxy,} \end{split}$$

10 C_{1-6} alkyloxy C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^7 is hydrogen or C_{1-6} alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

$$R^{10}$$
 R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

$$R^{11}$$
 R^{10}
 R^{10}

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; each R¹¹ independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

10

5

- 9. Use according to claim 8 of a PARP inhibitor of formula (I) for the manufacture of a medicament for the treatment of a PARP-1 mediated disorder
- 10. Use according to claim 8 and 9 wherein the treatment involves chemosensitization.

15

- 11. Use according to claims 8 and 9 wherein the treatment involves radiosensitization.
- 12. A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

20

$$(CH_2)_{s} \xrightarrow{R^2} (CH_2)_{n} \xrightarrow{X} \xrightarrow{X} R^1$$

$$(I)$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

25

s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <;

Q is –NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

 R^1 is C_{1-6} alkyl or thienyl;

—C≡N

 R^2 is hydrogen or taken together with R^3 may form =0;

10

15

5

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR^6R^7 (a-1), -O-H (a-2), -O-R⁸ (a-3), -S- R^9 (a-4), or

wherein

 R^6 is –CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl, C_{1-6} alkylcarbonylamino C_{1-6} alkyl,

(a-5),

- 20 piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^7 is hydrogen or C_{1-6} alkyl;
- 25 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z-$$
 (b-1),

wherein

30 t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

$$HN = R^{10} + N = R^{10} + R^{10} = R^{10} + R^{10} = R^{10} + R^{10} = R^{$$

5 wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N

10

20

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; each R¹¹ independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

13. A process for preparing a compound as claimed in claim 1, characterized by a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} R^1$$

$$(VII I)$$

$$(I)$$

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents.

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \qquad O \qquad (CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \qquad (CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \qquad (I-j)$$

10

15

5

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{NH_2} R^1 \xrightarrow{O} OR^{h} \xrightarrow{NH_2} R^2 (CH_2)_{\overline{n}} \xrightarrow{N} R^2$$

$$(XI) \qquad (XII) \qquad (I-i)$$

20