

# **IBL Behavior Control - Device Registers**

**Document Version 0.1** 

#### Introduction 1.

The IBL Behavior Control device uses the most recent Harp core. This means that the comunication and synchronism of the device is covered by the Harp ecosistem.

Therefore, the device uses registers to interface with the host computer. The user can use the available tools (Python and Bonsai) to communicate with the device and write & read from these registers.

The purpose of this document is to explain the functionality of each register.

If you have doubts, comments or suggestion, please provide them to filipe@open-ephys.org

### Registers 2.

#### 2.1 **List of Registers**

Table 2-1. List of available Registers

| Name                       | Туре     | Add | Brief Description                                                                                             |
|----------------------------|----------|-----|---------------------------------------------------------------------------------------------------------------|
| CONFIG                     | U16      | 32  | Configures the device                                                                                         |
| DATA_STREAM a)             | 116      | 33  | Analog sensor, analog input, rotary encoder, and threshold events                                             |
| INPUTS a)                  | U8       | 34  | Contains the state of the digital inputs (IO2) (IO1) (IO0)                                                    |
| INPUT_IOO_CONFIG           | U8       | 35  | Configuration of port IO0 when used as digital input                                                          |
| INPUT_IO1_CONFIG           | U8       | 36  | Configuration of port IOO when used as digital input                                                          |
| INPUT_IO2_CONFIG           | U8       | 37  | Configuration of port IOO when used as digital input                                                          |
| OUTPUT_SET                 | U8       | 38  | Set to logic 1 the port IOx according to bit mask                                                             |
| OUTPUT_CLEAR               | U8       | 39  | Clear to logic 0 the port IOx according to bit mask  Toggles the current logic port IOx according to bit mask |
| OUTPUT_TOGGLE OUTPUT_WRITE | U8<br>U8 | 40  | Write to the all ports (IO0, IO1 and IO1) at once                                                             |
| ANA_SENSOR_THO_HIGH        | U16      | 42  | Sets the higher threshold 0 for the analog sensor                                                             |
| ANA_SENSOR_THO_HIGH_MS     | U16      | 43  | Sets the number of milliseconds to consider a valid high threshold 0                                          |
| ANA_SENSOR_TH0_LOW         | U16      | 44  | Sets the lower threshold 0 for the analog sensor                                                              |
| ANA_SENSOR_THO_LOW_MS      | U16      | 45  | Sets the number of milliseconds to consider a valid low threshold 0                                           |
| ANA_SENSOR_TH0_EVT_CONF    | U8       | 46  | Configures what to do when the thresholds 0 are crossed                                                       |
| ANA_SENSOR_TH1_HIGH        | U16      | 47  | Sets the higher threshold 1 for the analog sensor                                                             |
| ANA_SENSOR_TH1_HIGH_MS     | U16      | 48  | Sets the number of milliseconds to consider a valid high threshold 1                                          |
| ANA_SENSOR_TH1_LOW         | U16      | 49  | Sets the lower threshold 1 for the analog sensor                                                              |
| ANA_SENSOR_TH1_LOW_MS      | U16      | 50  | Sets the number of milliseconds to consider a valid low threshold 1                                           |
| ANA_SENSOR_TH1_EVT_CONF    | U8       | 51  | Configures what to do when the thresholds 1 are crossed                                                       |
| ANA_INPUT_THO_HIGH         | U16      | 52  | Sets the higher threshold 0 for the analog input                                                              |
| ANA_INPUT_THO_HIGH_MS      | U16      | 53  | Sets the number of milliseconds to consider a valid high threshold 0                                          |
| ANA_INPUT_TH0_LOW          | U16      | 54  | Sets the lower threshold 0 for the analog input                                                               |
| ANA_INPUT_THO_LOW_MS       | U16      | 55  | Sets the number of milliseconds to consider a valid low threshold 0                                           |
| ANA_INPUT_THO_EVT_CONF     | U8       | 56  | Configures what to do when the thresholds 0 are crossed                                                       |
| ANA_INPUT_TH1_HIGH         | U16      | 57  | Sets the higher threshold 1 for the analog input                                                              |
| ANA_INPUT_TH1_HIGH_MS      | U16      | 58  | Sets the number of milliseconds to consider a valid high threshold 1                                          |
| ANA_INPUT_TH1_LOW          | U16      | 59  | Sets the lower threshold 1 for the analog input                                                               |
| ANA_INPUT_TH1_LOW_MS       | U16      | 60  | Sets the number of milliseconds to consider a valid low threshold 1                                           |
| ANA_INPUT_TH1_EVT_CONF     | U8       | 61  | Configures what to do when the thresholds 1 are crossed                                                       |
| ENCODER_THO_HIGH           | l16      | 62  | Sets the higher threshold 0 for the encoder                                                                   |
| ENCODER_THO_HIGH_MS        | U16      | 63  | Sets the number of milliseconds to consider a valid high threshold 0                                          |
| ENCODER_THO_LOW            | l16      | 64  | Sets the lower threshold 0 for the encoder                                                                    |
| ENCODER_THO_LOW_MS         | U16      | 65  | Sets the number of milliseconds to consider a valid low threshold 0                                           |
| ENCODER_THO_EVT_CONF       | U8       | 66  | Configures what to do when the thresholds 0 are crossed                                                       |
| ENCODER_TH1_HIGH           | I16      | 67  | Sets the higher threshold 1 for the encoder                                                                   |
| ENCODER_TH1_HIGH_MS        | U16      | 68  | Sets the number of milliseconds to consider a valid high threshold 1                                          |
| ENCODER_TH1_LOW            | l16      | 69  | Sets the lower threshold 1 for the encoder                                                                    |

| ENCODER_TH1_LOW_MS   | U16 | 70 | Sets the number of milliseconds to consider a valid low threshold 1          |
|----------------------|-----|----|------------------------------------------------------------------------------|
| ENCODER_TH1_EVT_CONF | U8  | 71 | Configures what to do when the thresholds 1 are crossed                      |
| TH_ENABLE_EVENTS     | U8  | 72 | Enables each event from the thresholds                                       |
| WRITE_AO             | U16 | 73 | Writes to the analog output available on port AO                             |
| ENCODER              | 116 | 74 | Value of the digital encoder (write this register to 0 to reset the encoder) |

a) This register is read only. Writing to this register will issue an error.

#### 2.1.1 **CONFIG**

| Bit | 15           | 14               | 13          | 12            | 11                 | 10               | 9             | 8              |
|-----|--------------|------------------|-------------|---------------|--------------------|------------------|---------------|----------------|
|     | -            | DATA_1KHz        | DATA_QUIET  | IO2_TO_OUTPUT | IO2_TO_INPUT       | IO1_TO_OUTPUT    | IO1_TO_INPUT  | 100_ТО_ОПТРИТ  |
| Bit | 7            | 6                | 5           | 4             | 3                  | 2                | 1             | 0              |
|     | IO0_TO_INPUT | COM_TO_TIMESTAMP | COM_TO_MAIN | EN_AI         | ANA_INTERNAL_TO_A0 | ANA_SENSOR_TO_A0 | SYNC_TO_SLAVE | SYNC_TO_MASTER |

This register is used to configure the device. As a good practice, this register should be the first one to be written.

When writing to one of these bits, the configuration will be executed, i.e., there's no need to write all the necessary bits at once.

Example: We want to configure the device to enable the Harp Timestamp output, configure the digital IO1 to output and have data streamed at 1 KHz. We have two options (the end result is exactly the same):

Option a) Write all configuration at once

```
#define B_SYNC_TO_MASTER (1<<0)</pre>
#define B_IO1_TO_OUTPUT (1<<10)</pre>
#define B_DATA_1KHz (1<<14)</pre>
write_register(R_CONFIG, B_SYNC_TO_MASTER | B_IO1_TO_OUTPUT | B_DATA_1KHz);
```

Option b) Write each configuration individually

```
write_register(R_CONFIG, B_SYNC_TO_MASTER);
write_register(R_CONFIG, B_IO1_TO_OUTPUT);
write_register(R_CONFIG, B_DATA_1KHz);
```

### Bits 0 – SYNC\_TO\_MASTER

The device outputs the internal clock sync into CLKOUT.

Another Harp device can be connected to this bus in order to share the same timestamp base.

## Bit 1 - SYNC\_TO\_SLAVE

Setting this bit to 1, the device receives the clock sync trough CLKIN and daisy chain it into CLKOUT (to synchronize another Harp device).

### Bit 2 - ANA SENSOR TO A0

Setting this bit to 1, the analog sensor voltage value is sent to port AO. User can use this port to monitor the analog sensor.

## Bit 3 - ANA\_INTERNAL\_TO\_A0

Setting this bit to 1, the internal analog generator is sent to port AO. User can use the register WRITE AO to output an analog voltage on this port.

### Bit 4 - EN AI

Setting this bit to 1, enables the analog input reading on port AI and disables the digital input/output circuitry.

This means that this port is used as an analog port.

### Bit 5 - COM\_TO\_MAIN

The device has two microcontrollers running internally. One is dedicated to behavior and the other to timing synchronism.

When this bit is set to logic 1, the USB communication is made with the behavior microcontroller.

This feature is used only for firmware update purposes.

### Bit 6 – COM\_TO\_TIMESTAMP

When this bit is set to logic 1, the USB communication is made with the timing synchronism microcontroller.

This feature is used only for firmware update purposes.

### Bit 7 - IOO\_TO\_OUTPUT

Setting this bit to 1, configures the port IOO to be used as a digital output.

## Bit 8 - IOO\_TO\_INPUT

Setting this bit to 1, configures the port IO0 to be used as a digital input.

### Bit 9 - IO1\_TO\_OUTPUT

Setting this bit to 1, configures the port IO1 to be used as a digital output.

### Bit 10 - IO1\_TO\_INPUT

Setting this bit to 1, configures the port IO1 to be used as a digital input.

### Bit 11-IO2 TO OUTPUT

Setting this bit to 1, configures the port IO2 to be used as a digital output.

### Bit 12 - IO2\_TO\_INPUT

Setting this bit to 1, configures the port IO3 to be used as a digital input.

### Bit 13 - DATA\_QUIET

The register DATA\_STREAM can be sent to the host computer using one of two options. Sent at a frequency of 1000 samples/second or sent only when any of the thresholds is crossed (widely used to screen synchronization).

Setting this bit to 1, configures the device to send the DATA\_STREAM register only when a threshold is crossed (on any of the two ways, rising or falling).

## Bit 14 - DATA 1KHz

Setting this bit to 1, configures the device to send the DATA\_STREAM register at a frequency of 1000 samples/second.

#### 2.1.2 DATA\_STREAM

This register is an array composed of four words with 16 bits signed.

DATA\_STREAM[0] Analog reading from the analog sensor input

DATA\_STREAM[1] Analog reading from the AIO input

DATA STREAM[2] Rotary encoder's position

DATA STREAM[3] Contains a bitmask reflecting the thresholds state

Below, is the DATA STREAM[3] bitmask.

Bit 3 2 1 0 **ENCTH1 ENCTHO** AITH1 AITH0 ASTH1 **ASTHO** 

### Bits ASTHx

If this bit is set to 1, it means that the reading of analog sensor input is above the threshold ANA\_SENSOR\_THx\_HIGH for the time configured in ANA\_SENSOR\_THx\_HIGH.

If this bit is clear to 0, it means that the reading of analog sensor input is below the threshold ANA\_SENSOR\_THx\_LOW for the time configured in ANA\_SENSOR\_THx\_LOW.

This bit is always read as 0.

### Bits AITHx

If this bit is set to 1, it means that the reading of analog input is above the threshold ANA\_INPUT\_THx\_HIGH for the time configured in **ANA\_INPUT\_THx\_HIGH**.

If this bit is clear to 0, it means that the reading of analog input is below the threshold ANA\_INPUT\_THx\_LOW for the time configured in ANA\_INPUT\_THx\_LOW.

### Bits ENCTHx

If this bit is set to 1, it means that the reading of the encoder is above the threshold ENCODER\_THx\_HIGH for the time configured in **ENCODER\_THx\_HIGH**.

If this bit is clear to 0, it means that the reading of the encoder is below the threshold ENCODER\_THX\_LOW for the time configured in ENCODER\_THx\_LOW.

#### 2.1.3 **INPUTS**

This register is sent to the host computer according to registers **INPUT\_IOx\_CONFIG**.

Bit 0 102 101 100

## Bits 0 - IO0

Contains the digital state of the port IOO.

## Bits 1 - IO1

Contains the digital state of the port IO1.

### Bits 2 - IO2

Contains the digital state of the port IO2.

#### 2.1.4 INPUT\_IOx\_CONFIG

It is good practices to keep the bandwidth of the device as low as possible.

If what matters is the transition from logic 0 to logic 1 (a camera's strobe, for instance), the option 1 should be used, and the device will ignore the logic 1 to logic 0 transition.

| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1        | 0           |
|-----|---|---|---|---|---|---|----------|-------------|
|     | - | - | - | - | - | - | INPUT_OP | TIONS [1:0] |

## Bits 1:0 - INPUT\_OPTIONS [1:0]

| INPUT_OPTIONS [1:0] | Configuration                             |
|---------------------|-------------------------------------------|
| 0                   | Port IOx input is not used                |
| 1                   | Port IOx input is sensitive to both edges |
| 2                   | Reserved                                  |
| 3                   | Reserved                                  |

### 2.1.5 OUTPUT\_SET OUTPUT\_CLEAR OUTPUT\_TOGGLE OUTPUT\_WRITE

| Bit | 7 | 6 | 5 | 4 | 3 | 2   | 1   | 0   |
|-----|---|---|---|---|---|-----|-----|-----|
|     | - | - | - | - | - | 102 | IO1 | 100 |

The action is taking according to the bit mask.

### **Examples:**

Set only Port IO0 to logic 1: OUTPUT\_SET = (1<<0)

Set only Port IO2 to logic 1: OUTPUT\_SET = (1<<2)

Set both Port IO1 and IO2 to logic 1: OUTPUT\_SET = (1<<1) | (1<<2)

Clear only Port IO1 to logic 0: OUTPUT\_CLEAR = (1<<1)

Toggle the current logic state of Port IO1: OUTPUT\_TOGGLE = (1<<1)

Write IOO to logic 0, IO1 to logic 1 and IO2 to logic 1 (all at the same time): OUTPUT\_WRITE = (1<<1) | (1<<2)

#### 2.1.6 ANA\_SENSOR\_THx\_EVT\_CONF

ANA\_INPUT\_THx\_EVT\_CONF

ECNODER\_THx\_EVT\_CONF

This register configures if the threshold result is show in the digital outputs.

|     | - | _ | - | - | - | - | TH_OPTI | ONS [1:0] |
|-----|---|---|---|---|---|---|---------|-----------|
| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1       | 0         |

## Bits 1:0 - TH\_OPTIONS [1:0]

| TH_OPTIONS [1:0] | Configuration              |
|------------------|----------------------------|
| 0                | Don't output the threshold |
| <b>1</b> a)      | Threshold result on IO0    |
| 2                | Threshold result on IO1    |
| 3                | Threshold result on IO2    |

a) This option is not valid when used on registers **ANA\_INPUT\_THx\_EVT\_CONF**.

#### TH\_ENABLE\_EVENTS 2.1.7

This register allows the user to disable the non-used thresholds. It is recommended to disable the nonused ones!

| Bit | 7 | 6 | 5      | 4      | 3     | 2     | 1     | 0     |
|-----|---|---|--------|--------|-------|-------|-------|-------|
|     | - | - | ENCTH1 | ENCTH0 | AITH1 | AITH0 | ASTH1 | ASTH0 |

## Bits 5:0

Writing to logic 0 disables the correspondent threshold.

Writing to logic 1 enables the correspondent threshold.

# **Version Control**

V0.1

First version released.