Lecture 6 – Tree-based methods: Bagging, Boosting and Random Forests

Jens Sjölund

https://jsjol.github.io/ Department of Information Technology Uppsala University

Course webpage

Summary of Lecture 5 (I/IV)

When choosing models/methods, we are interested in how well they will perform when faced with new unseen data.

The new data error

$$E_{\text{new}} \triangleq \mathbb{E}_{\star} \left[E(\widehat{y}(\mathbf{x}_{\star}; \mathcal{T}), y_{\star}) \right]$$

describes how well a method (which is trained using data set \mathcal{T}) will perform "in production". E is for instance mean squared error (regression) or misclassification (classification).

The overall goal in supervised machine learning is to achieve small $E_{\rm new}$.

 $E_{\mathrm{train}} \triangleq \frac{1}{n} \sum_{i=1}^{n} E(\widehat{y}(\mathbf{x}_i; \mathcal{T}), y_i)$ is the training data error. Not a good estimate of E_{new} .

Summary of Lecture 5 (II/IV)

Two methods for estimating $E_{\rm new}$:

- 1. Hold-out validation data approach: Randomly split the data into a training set and a hold-out validation set. Learn the model using the training set. Estimate $E_{\rm new}$ using the hold-out validation set.
- 2. k-fold cross-validation: Randomly split the data into k parts (or folds) of roughly equal size.
 - a) The first fold is kept aside as a validation set and the model is learned using only the remaining k-1 folds. $E_{\rm new}$ is estimated on the validation set.
 - b) The procedure is repeated k times, each time a different fold is treated as the validation set.
 - c) The average of all k estimates is taken as the final estimate of E_{new} .

Summary of Lecture 5 (III/IV)

$$\bar{E}_{\text{new}} = \underbrace{\mathbb{E}_{\star} \left[\left(\bar{f}(\mathbf{x}_{\star}) - f_{0}(\mathbf{x}_{\star}) \right)^{2} \right]}_{\text{Bias}^{2}} + \underbrace{\mathbb{E}_{\star} \left[\mathbb{E}_{\mathcal{T}} \left[\left(\widehat{y}(\mathbf{x}_{\star}; \mathcal{T}) - \bar{f}(\mathbf{x}_{\star}) \right)^{2} \right] \right]}_{\text{Variance}} + \underbrace{\frac{\sigma^{2}}{\text{Irreducible error}}}_{\text{where}} \bar{f}(\mathbf{x}) = \mathbb{E}_{\mathcal{T}} \left[\widehat{y}(\mathbf{x}_{\star}; \mathcal{T}) \right]$$

- Bias: The inability of a method to describe the complicated patterns we would like it to describe.
- Variance: How sensitive a method is to the training data.

The more prone a model is to adapt to complicated pattern in the data, the higher the **model complexity** (or model flexibility).

Summary of Lecture 5 (IV/IV)

Finding a balanced fit (neither over- nor underfit) is called the **the bias-variance tradeoff**.

Contents – Lecture 6

- 1. Tree-based methods
- 2. Bagging a general variance reduction technique
- 3. Random forests
- 4. Boosting

Tree-based methods

The idea behind tree-based methods

In both regression and classification settings we seek a function $\widehat{y}(\mathbf{x})$ which maps the input \mathbf{x} into a prediction.

One **flexible** way of designing this function is to partition the input space into disjoint regions and fit a simple model in each region.

= Training data

- Classification: Majority vote within the region.
- Regression: Mean of training data within the region.

Finding the partition

The key challenge in using this strategy is to find a good partition.

Even if we restrict our attention to seemingly simple regions (e.g. "boxes"), finding an **optimal** partition w.r.t. minimizing the training error is **computationally infeasible!**

Instead, we use a "greedy" approach: recursive binary splitting.

1. Select one input variable x_j and a cut-point s. Partition the input space into two half-spaces,

$$\{\mathbf{x} : x_j < s\} \qquad \{\mathbf{x} : x_j \ge s\}.$$

2. Repeat this splitting for each region until some stopping criterion is met (e.g., no region contains more than 5 training data points).

Recursive binary splitting

Partitioning of input space

•= Training data

Tree representation

Regression trees

Once the input space is partitioned into L regions, R_1, R_2, \ldots, R_L the prediction model is

$$\widehat{y}_{\star} = \sum_{\ell=1}^{L} \widehat{y}_{\ell} \mathbb{I}\{\mathbf{x}_{\star} \in R_{\ell}\},\,$$

where $\mathbb{I}\{\mathbf{x}_{\star} \in R_{\ell}\}$ is the indicator function

$$\mathbb{I}\{\mathbf{x}_{\star} \in R_{\ell}\} = \begin{cases} 1 & \text{if } \mathbf{x}_{\star} \in R_{\ell} \\ 0 & \text{if } \mathbf{x}_{\star} \notin R_{\ell} \end{cases}$$

and \widehat{y}_{ℓ} is a constant prediction within each region.

For regression trees we use

$$\widehat{y}_{\ell} = \mathsf{average}\{y_i : \mathbf{x}_i \in R_{\ell}\}$$

Recursive binary splitting for a regression tree

Recursive binary splitting is **greedy** - each split is made in order to minimize the loss **without looking ahead** at future splits.

For any j and s, define

$$R_1(j,s) = \{ \mathbf{x} \mid x_j < s \}$$
 and $R_2(j,s) = \{ \mathbf{x} \mid x_j \ge s \}.$

We then seek (j, s) that minimize

$$\sum_{i:\mathbf{x}_i \in R_1(j,s)} (y_i - \widehat{y}_1(j,s))^2 + \sum_{i:\mathbf{x}_i \in R_2(j,s)} (y_i - \widehat{y}_2(j,s))^2$$

where

$$\begin{split} \widehat{y}_1 &= \mathsf{average}\{y_i : \mathbf{x}_i \in R_1(j,s)\} \\ \widehat{y}_2 &= \mathsf{average}\{y_i : \mathbf{x}_i \in R_2(j,s)\} \end{split}$$

This optimization problem is easily solved by "brute force".

Classification trees

Classification trees are constructed similarly to regression trees, but with two differences.

Firstly, the class prediction for each region is based on the proportion of data points from each class in that region. Let

$$\widehat{\pi}_{\ell m} = \frac{1}{n_{\ell}} \sum_{i: \mathbf{x}_i \in R_{\ell}} \mathbb{I}\{y_i = m\}$$

be the proportion of training data points in the $l{\rm th}$ region that belong to the $m{\rm th}$ class. Then we approximate

$$p(y = m \mid \mathbf{x}_{\star}) \approx \sum_{\ell=1}^{L} \widehat{\pi}_{\ell m} \mathbb{I}\{\mathbf{x}_{\star} \in R_{\ell}\}$$

Classification trees

Secondly, the squared loss used to decide the splits needs to be replaced by a measure suitable to categorical outputs.

Three common error measures are,

 $\mbox{Misclassification error:} \quad 1 - \max_{m} \widehat{\pi}_{\ell m}$

Entropy/deviance: $-\sum_{m=1}^{M} \widehat{\pi}_{\ell m} \log \widehat{\pi}_{\ell m}$

Gini index: $\sum_{m=1}^{M} \widehat{\pi}_{\ell m} (1 - \widehat{\pi}_{\ell m})$

Classification error measures

ex) Spam data

Classification tree for spam data:

	Tree	LDA
Test error:	11.3 %	10.9 %

Improving CART

The performance of (simple) CARTs is often unsatisfactory!

The flexibility/complexity of classification and regression trees (CART) is decided by the tree depth.

- ! To obtain a small bias the tree need to be grown deep,
- ! but this results in a high variance!

To improve the practical performance:

- ▲ **Pruning** grow a deep tree (small bias) which is then pruned into a smaller one (reduce variance).
- ▲ Ensemble methods average or combine multiple trees.

Bagging

Probability detour - Variance reduction by averaging

Let z_b , $b=1,\ldots,B$ be identically distributed random variables with mean $\mathbb{E}[z_b]=\mu$ and variance $\mathrm{Var}[\sigma^2]$. Let ρ be the correlation between distinct variables.

Then,

$$\mathbb{E}\left[\frac{1}{B}\sum_{b=1}^{B} z_{b}\right] = \mu,$$

$$\operatorname{Var}\left[\frac{1}{B}\sum_{b=1}^{B} z_{b}\right] = \underbrace{\frac{1-\rho}{B}\sigma^{2}}_{\text{small for large }B} + \rho\sigma^{2}.$$

The variance is reduced by averaging (if $\rho < 1$)!

Bagging (I/II)

For now, assume that we have access to B independent datasets $\mathcal{T}^1, \dots, \mathcal{T}^B$. We can then train a separate deep tree $\hat{y}^b(\mathbf{x})$ for each dataset, $1, \dots, B$.

- Each $\widehat{y}^b(\mathbf{x})$ has a low bias but high variance
- By averaging

$$\widehat{y}_{\mathsf{bag}}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{y}^b(\mathbf{x})$$

the bias is kept small, but variance is reduced by a factor B!

Bagging (II/II)

Obvious problem. We only have access to one training dataset.

Solution Bootstrap the data!

- ullet Sample n times with replacement from the original training data $\mathcal{T} = \{\mathbf{x}_i, y_i\}_{i=1}^n$
- ullet Repeat B times to generate B "bootstrapped" training datasets $\widetilde{\mathcal{T}}^1,\dots,\widetilde{\mathcal{T}}^B$

For each bootstrapped dataset $\widetilde{\mathcal{T}}^b$ we train a tree $\widetilde{y}^b(\mathbf{x})$. Averaging these,

$$\widetilde{y}_{\mathsf{bag}}^b(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B \widetilde{y}^b(\mathbf{x})$$

is called "bootstrap aggregation", or bagging.

Bagging - Toy example

ex) Assume that we have a training set

$$\mathcal{T} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \}.$$

We generate, say, B=3 datasets by bootstrapping:

$$\begin{split} \widetilde{\mathcal{T}}^1 &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_3, y_3) \} \\ \widetilde{\mathcal{T}}^2 &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_4, y_4), (\mathbf{x}_4, y_4), (\mathbf{x}_4, y_4) \} \\ \widetilde{\mathcal{T}}^3 &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_2, y_2) \} \end{split}$$

Compute B=3 (deep) regression trees $\tilde{y}^1(\mathbf{x})$, $\tilde{y}^2(\mathbf{x})$ and $\tilde{y}^3(\mathbf{x})$, one for each dataset $\tilde{\mathcal{T}}^1$, $\tilde{\mathcal{T}}^2$, and $\tilde{\mathcal{T}}^3$, and average

$$\tilde{y}_{\mathsf{bag}}(\mathbf{x}) = \frac{1}{3} \sum_{b=1}^{3} \tilde{y}^b(\mathbf{x})$$

ex) Predicting US Supreme Court behavior

Random forest classifier built on SCDB data¹ to predict the votes of Supreme Court justices:

 $Y \in \{ \text{affirm}, \, \text{reverse}, \, \text{other} \}$

Result: 70% correct classifications

D. M. Katz, M. J. Bommarito II and J. Blackman. A General Approach for Predicting the Behavior of the Supreme Court of the United States. arXiv.org, arXiv:1612.03473v2, January 2017.

¹http://supremecourtdatabase.org

ex) Predicting US Supreme Court behavior

Not only have random forests proven to be "unreasonably effective" in a wide array of supervised learning contexts, but in our testing, random forests outperformed other common approaches including support vector machines [...] and feedforward artificial neural network models such as multi-layer perceptron

— Katz, Bommarito II and Blackman (arXiv:1612.03473v2)

Random forests

Random forests

- ▲ Bagging can drastically improve the performance of CART!
- ▼ However, the B bootstrapped dataset are correlated⇒ the variance reduction due to averaging is diminished.

<u>Idea:</u> De-correlate the B trees by randomly perturbing each tree.

A **random forest** is constructed by bagging, but for each split in each tree only a **random subset** of $q \le p$ inputs are considered as splitting variables.

Rule of thumb: $q = \sqrt{p}$ for classification trees and q = p/3 for regression trees.

Random forest pseudo-code

Algorithm Random forest for regression

- 1. For b = 1 to B (can run in parallel)
 - (a) Draw a bootstrap data set $\widetilde{\mathcal{T}}$ of size n from $\mathcal{T}.$
 - (b) Grow a regression tree by repeating the following steps until a minimum node size is reached:
 - i. Select q out of the p input variables uniformly at random.
 - ii. Find the variable x_j among the q selected, and the corresponding split point s, that minimizes the squared error.
 - iii. Split the node into two children with $\{x_j \leq s\}$ and $\{x_j > s\}$.
- 2. Final model is the average of the B ensemble members,

$$\widehat{y}_{\star}^{\mathsf{rf}} = \frac{1}{B} \sum_{b=1}^{B} \widetilde{y}_{\star}^{b}.$$

Random forests

Recall: For i.d. random variables $\{z_b\}_{b=1}^B$

$$\operatorname{Var}\left(rac{1}{B}\sum_{b=1}^{B}z_{b}
ight)=rac{1-
ho}{B}\sigma^{2}+
ho\sigma^{2}$$

The random input selection used in random forests:

- ▼ increases the bias, but often very slowly
- \blacktriangledown adds to the variance (σ^2) of each tree
- \blacktriangle reduces the correlation (ρ) of the trees

The reduction in correlation is typically the dominant effect \Rightarrow there is an overall reduction in MSE!

ex) Toy regression model

For the toy model previously considered...

Overfitting?

The complexity of a bagging/random forest model increases with an increasing number of trees B.

Will this lead to overfitting as B increases?

No – more ensemble members *does not* increase the *flexibility* of the model!

Regression case:

$$\widehat{y}_{\star}^{\mathsf{rf}} = \frac{1}{B} \sum_{k=1}^{B} \widetilde{y}_{\star}^{b} \to \mathbb{E}\left[\widetilde{y}_{\star} \mid \mathcal{T}\right],$$
 as $B \to \infty$,

where the expectation is w.r.t. the randomness in the data bootstrapping and input selection.

Advantages of random forests

Random forests have several computational advantages:

- ▲ Embarrassingly parallelizable!
- lacktriangle Using q < p potential split variables reduces the computational cost of each split.
- ▲ We *could* bootstrap fewer than n, say \sqrt{n} , data points when creating $\widetilde{\mathcal{T}}^b$ very useful for "big data" problems.
- ... and they also come with some other benefits:
 - ▲ Often works well off-the-shelf few tuning parameters
 - ▲ Requires little or no input preparation
 - ▲ Implicit input selection

ex) Automatic music generation

ALYSIA: automated music generation using random forests.

- User specifies the lyrics
- ALYSIA generates accompanying music via
 - rythm model
 - melody model
- Trained on a corpus of pop songs.

https://www.youtube.com/watch?v=whgudcj82_I https://www.withalysia.com/

M. Ackerman and D. Loker. Algorithmic Songwriting with ALYSIA. In: Correia J., Ciesielski V., Liapis A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART. 2017.

Boosting

Boosting

Even a simple (classification or regression) model can typically capture some aspects of the input-output relationship.

Can we then learn an *ensemble* of "weak models", each describing some part of this relationship, and combine these into one "strong model"?

Boosting:

- **Sequentially** learns an ensemble of **weak models**.
- Combine these into one *strong model*.
- General strategy can in principle be used to improve any supervised learning algorithm.
- A very successful idea!

Boosting

The models are built **sequentially** such that each models tries to **correct the mistakes** made by the previous one!

Boosting vs. bagging

Bagging	Boosting
Learns base models in parallel	Learns base models sequentially
Uses bootstrapped datasets	Uses reweighted datasets
Does not overfit as ${\cal B}$ becomes large	Can overfit as B becomes large
Reduces variance but not bias (suitable for models with low bias)	Primarily reduces bias! (models with high bias are fine)

Boosting does **not** require each base model to have low bias. Thus, a shallow classification tree (say, 4-8 terminal nodes) or even a tree with a single split (2 terminal nodes, a "stump") is often sufficient.

Binary classification

We will restrict our attention to binary classification.

- Class labels are -1 and 1, i.e. $y \in \{-1, 1\}$.
- We have access to some (weak) base classifier, e.g. a classification tree.

Note. Using labels -1 and 1 is mathematically convenient as it allows us to express a majority vote between B classifiers $\widehat{y}^1(\mathbf{x}), \ldots, \widehat{y}^B(\mathbf{x})$ as

$$\operatorname{sign}\left(\sum_{b=1}^B \widehat{y}^b(\mathbf{x})\right) = \begin{cases} +1 & \text{if more plus-votes than minus-votes,} \\ -1 & \text{if more minus-votes than plus-votes.} \end{cases}$$

Boosting procedure (for classification)

Boosting procedure:

- 1. Assign weights $w_i^1 = 1/n$ to all data points.
- 2. For b = 1 to B
 - (a) Train a weak classifier $\hat{y}^{(b)}(\mathbf{x})$ on the weighted training data $\{(\mathbf{x}_i, y_i, w_i^b)\}_{i=1}^n$.
 - (b) Update the weights $\{w_i^{b+1}\}_{i=1}^n$ from $\{w_i^b\}_{i=1}^n$:

 - i. Increase weights for all points misclassified by $\widehat{y}^{(b)}(\mathbf{x})$. ii. Decrease weights for all points correctly classified by $\widehat{y}^{(b)}(\mathbf{x})$.

The predictions of the B classifiers, $\widehat{y}^{(1)}(\mathbf{x}), \ldots, \widehat{y}^{(B)}(\mathbf{x})$, are combined using a weighted majority vote:

$$\widehat{y}_{\mathsf{boost}}^B(\mathbf{x}) = \mathsf{sign}\left(\sum_{b=1}^B \alpha^{(b)} \widehat{y}^{(b)}(\mathbf{x})\right).$$

ex) Boosting illustration

Important details

Q1: How do we reweight the data?

Q2: How are the coefficients $\alpha^{(1)}, \ldots, \alpha^{(B)}$ computed?

AdaBoost pseudo-code

- 1. Assign weights $w_i^1 = 1/n$ to all data points.
- 2. For b = 1 to B
 - (a) Train a weak classifier $\widehat{y}^{(b)}(\mathbf{x})$ on the weighted training data $\{(\mathbf{x}_i,y_i,w_i^b)\}_{i=1}^n$.
 - (b) Update the weights $\{w_i^{b+1}\}_{i=1}^n$ from $\{w_i^b\}_{i=1}^n$:
 - i. Increase weights for all points misclassified by $\widehat{y}^{(b)}(\mathbf{x})$.
 - ii. Decrease weights for all points correctly classified by $\widehat{y}^{(b)}(\mathbf{x}).$
 - i. Compute weighted classification errorCompute $E^b_{ ext{train}} = \sum_{i=1}^n w^b_i \mathbb{I}\{y_i \neq \widehat{y}^{(b)}(\mathbf{x}_i)\}$
 - ii. Compute classifier "confidence" Compute $\alpha^b = 0.5 \log((1-E_{\rm train}^b)/E_{\rm train}^b)$
 - iii. Compute new weightsCompute $w_i^{b+1} = w_i^b \exp(-\alpha^{(b)} y_i \widehat{y}^{(b)}(\mathbf{x}_i)), i = 1, \dots, n$
 - iv. Normalize. Set $w_i^{b+1} \leftarrow w_i^{b+1} / \sum_{i=1}^n w_i^{b+1}$, for $i = 1, \dots, n$.
- 3. Output $\widehat{y}_{\mathsf{boost}}^{(B)}(\mathbf{x}) = \mathrm{sign}\left(\sum_{b=1}^{B} \alpha^{(b)} \widehat{y}^{(b)}(\mathbf{x})\right)$.

Y. Freund and R. E. Schapire. Experiments with a New Boosting Algorithm. Proceedings of the 13th International Conference on Machine Learning (ICML). Bari, Italy, 1996.

ex) The Viola-Jones face detector

A few concepts to summarize lecture 6

CART: Classification and regression trees. A class of nonparametric methods based on partitioning the input space into regions and fitting a simple model for each region.

Recursive binary splitting: A greedy method for partitioning the input space into "boxes" aligned with the coordinate axes.

Gini index and deviance: Commonly used error measures for constructing classification trees.

Ensemble methods: Umbrella term for methods that average or combine multiple models.

Bagging: Bootstrap aggregating. An ensemble method based on the statistical bootstrap.

Random forests: Bagging of trees, combined with random feature selection for further variance reduction (and computational gains).

Boosting: Sequential ensemble method, where each consecutive model tries to correct the mistakes of the previous one.

AdaBoost: The first successful boosting algorithm. Designed for binary classification.