

REPUBLIQUE DU BENIN

MIMISTERE DE L'ENSEIGNEMENT SUPERIER ET DE LA RECHERCHE SCIENTIFIQUE (MESRS

Année 2022 - 2023

Premières années FC. FM et et MA Durec 2h

COMPOSITION DE CA

Exercice 1

Le circuit de la figure ci-dessaus est alimente sous une tension $u=240\sqrt{2\cos\left(\omega t-\frac{\pi}{2}\right)}$. Les impédances des éléments du circuit sont $R_1=1.\Omega$, $L_1\omega=1.\Omega$, $R_2=3.\Omega$, $L_2\omega=3.\Omega$, $1/C\omega=3.\Omega$.

- Ecrire l'impédance complexe de chacune des branches du circuit.
- Exprimer l'impédance complexe de l'ensemble du circuit sous la forme <u>Z</u> = R + jX . (Expliciter les valeurs de R et X)
- 3 Déterminer l'expression complexe <u>l</u> de l'intensité i du courant fourni par l'alimentation;
- 4 Calculer la valeur complexe de la tension U₁ aux bornes de l'ensemble (R₁, L₁).
- 5 Calculer la valeur complexe l₁ de l'intensité i₁ qui traverse le condensateur ;
- 6 Determiner la valeur complexe 12 de l'intensité 12 de courant traversant la bobine

Exercice 2

On considère deux courants sinusoidaux de même fréquence f = 50 Hz et de valeurs instantanées respectives en mA suivantes.

$$i_1 = -150\sqrt{2\cos\omega t}$$
 et $2 = 200\sqrt{2\cos(\omega t + \frac{\pi}{4})}$

- 1 Calculez la valeur efficace et l'angle de phase à l'origine de chacun de ces courants et leur pulsation oi ,
- 2 En utilisant la méthode complexe, déterminez la valeur efficace ls et l'angle de phiase à l'origine θ₃ du courant t₃ = t₂ 2t₁.
- 3 Ecrivez l'expression de la valeur instantanee du courant t₄ de même amplitude que le courant t₃ et en retard sur celui-ci de ⁿ/₂

REPUTLY TO DU SHEN

MINISTERE DE L'ENSEIGNEMENT 5 PREFE R ET DE LA RECHERCHE SA JENTS DE L'ENSEIGNEMENT 5 PREFE R ET DE LA RECHERCHE

Exercice 3

On considère le circuit électrique schématisé ci-dessous. On donne $S_1 = (60 \text{V} \cdot 30^\circ)$, $E_2 = 48j$, $E_3 = 6$, $Z_1 = 100 \cdot 1 + 3j$, $Z_2 = (150 + 50j)$, $Z_3 = 120j$ $Z_4 = 90$

- Détermine, en utilisant le théoreme de superposition, les courants dans unites les branches de ce circuit.
- Caicuse la différence de potentiei mit bornes de chaque impédance.
- Reprends les questions precedentes en unissant le théoreme de Milliman.

1/2