Primeira Lista-Quântica I

1. Considere os operadores lineares \hat{A} e \hat{B} , representados numa certa base ortonormal pelas matrizes

$$\hat{A} = \frac{1}{2} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix} \tag{0.1}$$

$$\hat{B} = \frac{1}{4} \begin{pmatrix} 7 & -\sqrt{2} & 1\\ -\sqrt{2} & 6 & \sqrt{2}\\ 1 & \sqrt{2} & 7 \end{pmatrix}$$
 (0.2)

- a) Calcule $[\hat{A}, \hat{B}]$;
- b) Encontre os autovalores e autoestados do operador \hat{A} ;
- c) Encontre a matriz que representa \hat{B} numa base de autoestados de \hat{A} ;
- d) Encontre uma base de autoestados simultâneos para \hat{A} e \hat{B} e mostre que estes podem ser univocamente rotulados pelos autovalores desses operadores. O que se pode dizer sobre o conjunto (\hat{A}, \hat{B}) no que concerne a completeza?
- e) Encontre as matrizes que realizam as mudanças entre a base inicial e a base do item c); entre a base inicial e a base do item d); entre a base do item c) e a base do item d);
- 2. Usando as regras da álgebra de bra-kets, prove:
 - a) $\operatorname{tr}(\hat{X}\hat{Y}) = \operatorname{tr}(\hat{Y}\hat{X})$, onde \hat{X} e \hat{Y} são operadores;
 - b) $(\hat{X}\hat{Y})^{\dagger} = \hat{Y}^{\dagger}\hat{X}^{\dagger};$
- 3. Considere dois kets $|\alpha\rangle$ e $|\beta\rangle$. Suponha que $\langle a'|\alpha\rangle$, $\langle a''|\alpha\rangle$, ..., e $\langle a''|\beta\rangle$, $\langle a'''|\beta\rangle$, ... são todos conhecidos, onde $|a'\rangle$, $|a''\rangle$, ... formam um conjunto completo de kets de base. Encontre a representação matricial para o operador $|\alpha\rangle\langle\beta|$ nessa base.