

DEPARTAMENTO DE ELETROELETRÔNICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Controle de Sistemas Contínuos I

Prof. Walterley A. Moura

contato: walterley.moura@cba.ifmt.edu.br

Estabilidade

Estabilidade

- Introdução
- Conceito de estabilidade
- Análise da estabilidade via função de transferência
- Análise da estabilidade via função de espaço de estado

Introdução

- Assegurar a estabilidade é o principal objetivo de um sistema de controle malha fechada;
- A estabilidade de um sistema está relacionada com a posição dos polos da função de transferência malha fechada;
- O método de Routh-Hwrwitz é introduzido como ferramenta útil na determinação de estabilidade de sistemas.

Conceito de estabilidade

- ✓ Do ponto de vista prático, sistema instáveis não tem utilidade;
- ✓ Algumas plantas são instáveis em malha aberta, entretanto pode-se utilizar a realimentação para estabilizar essas plantas;
- ✓ Sistemas realimentados podem ser instáveis ou estáveis e, nesse caso, denominamos de **estabilidade absoluta**;
- ✓ Para um sistema estável podemos adicionar um grau de estabilidade e denominamos essa situação de estabilidade relativa;

✓ O conceito de estabilidade pode ser ilustrado considerando-se um cone de seção reta circular colocado em uma superfície horizontal plana:

Exemplo de estabilidade e instabilidade

Estável

Instável (ação do vento)

Estabilidade BIBO (Bounded Input Bounded Output)

- ✓ Um sistema dinâmico é estável se, para toda entrada delimitada (confinada), a saída permanece delimitada com o passar do tempo;
- ✓ Esta estabilidade somente é definida para resposta ao estado nulo e é aplicável somente se o sistema está inicialmente relaxado.

A estabilidade ou não de um *Sistema Linear Invariante no Tempo – SLIT* é uma propriedade do próprio sistema, não dependendo da entrada externa. Obviamente, estamos supondo que a "energia injetada ou extraída do sistema pela entrada" é finita, o que vai sempre ocorrer na prática.

Para um sistema LIT:

$$y(t) = h(t) * x(t)$$

$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$|y(t)| \le \int_{0}^{\infty} |h(\tau)||x(t-\tau)|d\tau$$

$$y(t) = \int_{0}^{t} x(\tau)h(t-\tau)d\tau$$

 \mapsto Supondo que x(t) é limitado, temos:

$$|x(t-\tau)| < K_1 < \infty$$
, logo

$$|y(t)| \le K_1 \int_{-\infty}^{\infty} |h(\tau)| d\tau$$

→ Para a estabilidade BIBO

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty \implies \text{a função } h(t) \text{ é denominada absolutamente integrável}$$

Portanto, para um sistema LIT, se sua resposta ao impulso h(t) for absolutamente integrável, o sistema BIBO é estável. Caso contrário, o sistema é instável.

Sistema SISO

(Single Input Single Output)

Teorema 1: Um sistema SISO é BIBO estável se e somente se h(t) for absolutamente integrável em $[0,\infty)$, ou

$$\int_{0}^{\infty} h(t) dt \le M < \infty,$$

sendo M uma constante.

Teorema 2: Um sistema SISO com função de transferência, G(s), é BIBO estável se e somente se todos os pólos de G(s) tem parte real negativa ou equivalentemente pertença ao semiplano "s" esquerdo

- Em geral, para analisar a estabilidade em sistemas descritos na forma de função de transferência temos que encontrar as raízes do polinômio característico;
- No critério de estabilidade de Routh-Hurwitz não é necessário calcular as raízes do polinômio característico no processo de análise de estabilidade em sistemas dinâmicos.

Métodos para estudar a estabilidade

- 1. Routh-Hurwitz (no plano-s)
- 2. Nyquist (domínio da frequência)
- 3. Análise temporal espaço de estados

Os métodos acima não calculam as raízes da Equação Característica (EC), isto é, os polos da Função de Transferência de malha fechada (MF).

Análise da estabilidade a partir da função de transferência

$$\frac{U(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}, \text{ onde } m < n$$

$$A(s) = a_0 s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n = 0 \longrightarrow \text{ equação característica}$$

Exemplo

$$FT(s) = \frac{10s^2 + 200s + 50}{s^3 + 14s^2 + 200s + 50}$$

$$E.C.: \quad s^3 + 14s^2 + 200s + 50 = 0$$

$$p_1 = -4,3736 + j13,3664$$

$$p_2 = -4,3736 - j13,3664$$

$$p_3 = -0,2528$$

$$\times p_2$$

$$\times p_3$$

$$\times p_2$$

✓ Um sistema estável as partes reais dos polos da função de transferência malha fechada forem negativas, ou seja, se os polos estiverem no semi-plano esquerdo do plano-s.

Gráfico $f(t) \times t$

Sistema Estável

Conclusões

- Um Sistema é dito instável se todos os polos da fução de transferência estiverem no semi-plano esquerdo (SPE) do plano "s";
- Para testar a estabilidade de um sistema LIT necessitamos examinar apenas os polos do sistema, isto é, as raízes da equação característica;
- São disponíveis métodos para testar a estabilidade de um sistema malha fechada baseando-se somente nas características da função de tranferência da malha.

Critério de estabilidade de Routh-Hurwitz

É um método rápido para testar a estabilidade de um sistema BIBO;

- O critério examina se existem raízes instáveis em uma equação polinomial, sem que seja necessário resolvê-la;
- O polinômio característico é

$$A(s) = a_0 s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n$$

• Para everiguar a estabilidade do sistema, é necessário se alguma das raízes de A(s) se situa no semi plano direito do plano-s.

O polinômio característico pode ser escrito na forma fatorada

$$A(s) = a_0(s - p_1)(s - p_2)...(s - p_n)$$

onde

 $p_i \longrightarrow i$ – ésima raiz da equação característica (polos da função de transferência)

Multiplicando os fatores, constata-se que

$$A(s) = a_0 s^n - a_0 (p_1 + p_2 + ... + p_n) s^{n-1}$$

$$+ a_0 (p_1 p_2 + p_2 p_3 + p_1 p_3 + ...) s^{n-2}$$

$$- a_0 (p_1 p_2 p_3 + p_1 p_2 p_4 + ...) s^{n-3} + ...$$

$$+ a_0 (-1)^n p_1 p_2 p_3 ... p_n = 0$$

- Da equação anterior, observa-se que todos os coeficientes do polinômio devem ter o mesmo sinal se todas as raízes estiverem no semiplano esquerdo;
- Para que o Sistema seja estável é necesário que todos os coeficientes sejam diferentes de zero;
- Esses requisitos são necessários, mas não suficientes;
- Ou seja, sabe-se imediatamente que o sistema é instável se eles não forem satisfeitos;
- Se forem satisfeitos, deve-se proseguir para verificar a estabilidade do Sistema.

Critério de estabilidade de Routh - Tabela de Routh

 O critério da estabilidade de Routh é baseado na ordenação dos coeficientes da equação característica

$$A(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

em uma tabela dada abaixo

s^n	$a_{0,}$	$\frac{a}{a}$ 2	a_4	a_6	
s^{n-1}	a_1	a_3	··•\a_5	a_7	• • •
s^{n-2}	b_1	b_3	b_5	b_7	• • •
s^{n-3}	c_1	C3	<i>C</i> 5	<i>C</i> 7	• • •
•	•	•	•		
s^2	k_1	k_3			
s^{I}	l_1				
s^0	m_1				

$$b_{1} = \frac{a_{1}a_{2} - a_{0}a_{3}}{a_{1}}$$

$$b_{3} = \frac{a_{1}a_{4} - a_{0}a_{5}}{a_{1}}$$

$$c_{1} = \frac{b_{1}a_{3} - a_{1}b_{3}}{b_{1}}$$

$$c_{3} = \frac{b_{1}a_{5} - a_{1}b_{5}}{b_{1}}$$

Critério de estabilidade de Routh A tabela de Routh

• De maneira semelhante, os elementos da 4^a linha, c_1 , c_3 , ... são calculados baseados nas linhas anteriores.

$$c_{1} = \frac{b_{1}a_{3} - a_{1}b_{3}}{b_{1}}$$

$$c_{3} = \frac{b_{1}a_{5} - a_{1}b_{5}}{b_{1}}$$

• Os elementos em todas as linhas subsequentes são calculados da mesma maneira.

Exemplo: Determine a estabilidade do sistema que possui o polinômio característico dado abaixo

$$A(s) = s^6 + 4s^5 + 3s^4 + 2s^3 + s^2 + 4s + 4$$

- Repare que o polinômio atende à condição necessária;
- No entanto, usando Octave, vamos calcular os polos

$$\begin{split} p_1 &= -3,26435744369664 \\ p_2 &= -0,60459632811670 + j0,99353502889359 \\ p_3 &= -0,60459632811670 - j0,99353502889359 \\ p_4 &= 0,67967616788490 + j0,74881380872851 \\ p_5 &= 0,67967616788490 - j0,74881380872851 \\ p_6 &= -0,88580223583976 \end{split}$$

• Portanto, observamos que o sistema é instável pela presença de polos no semi-plano direito.

Critério da estabilidade de Routh

Condições necessária e suficiente:

- Se todos os elementos na primeira coluna da tabela de Routh tem o mesmo sinal, então todas as raízes da equação característica tem parte real negativa;
- Se existe mudanças de sinal destes elementos, então o número de raízes com parte real não negativa é igual ao número de mudanças de sinal;
- Elementos na primeira coluna que são zero define um caso especial.

Critério de estabilidade de Routh Exemplo 1:

$$A(s) = 2s^4 + s^3 + 3s^2 + 5s + 10$$

$$A(s) = 2s^{4} + s^{3} + 3s^{2} + 5s + 10$$

$$p_{1} = 0,7555 + j1,4444$$

$$p_{2} = 0,7555 - j1,4444$$

$$p_{3} = -1,0055 + j0,9331$$

$$p_{4} = -1,0055 - j0,9331$$

A equação característica tem duas raízes com parte real positiva, pois os elementos da primeira coluna tem duas mudanças de sinal (2, 1, -7, 6,43, 10)

Critério de estabilidade de Routh-Hurwitz Caso especial 1:

- Um zero na primeira coluna:
- Solução: substituir por $\epsilon>0$ (número pequeno) o elemento zero, complete a tabela de Routh, e então faça $\epsilon\to0$

$$A(s) = s^{3} - 3s + 2$$

$$p_{1} = -2,0000$$

$$p_{2} = 1,0000$$

$$p_{3} = 1,0000$$

$$b_{1} = \frac{-3\varepsilon - 2}{\varepsilon} \rightarrow \frac{-2}{\varepsilon} \text{ (negativo)}$$

$$c_{1} = \frac{b_{1} \cdot 2}{b_{1}} = 2$$

Existe duas raízes com parte real positiva $(1, \varepsilon, -2/\varepsilon, 2)$

Exemplo 1: Dado o polinômio característico abaixo, determinar o ganho *K* que resulta em um sistema estável.

$$A(s) = s^{4} + s^{3} + s^{2} + s + K$$

$$s^{4} \quad 1 \quad 1 \quad K$$

$$s^{3} \quad 1 \quad 1 \quad 0$$

$$c_{1} = \frac{\varepsilon - K}{\varepsilon} = -\frac{K}{\varepsilon}$$

$$s^{2} \quad 0(\varepsilon) \quad K \quad 0$$

$$s^{1} \quad \frac{\varepsilon - K}{\varepsilon} \quad 0 \quad 0$$

$$s^{0} \quad K \quad 0 \quad 0$$

- Para qualquer valor positivo de K o sistema é instável;
- O último termo da primeira coluna é igual a K, e um valor negativo de K resultará em um sistema instável;
- O sistema é instável par todos os valores de ganho K.

Exemplo 2: Dado o polinômio característico abaixo, determiner o ganho *K* que resulta em um sistema estável.

$$A(s) = s^3 + 2s^2 + 4s + K$$

$$s^3$$
 1 4

$$s^2$$
 2 K

$$s^1 \quad \frac{8-K}{2} \quad 0$$

$$s^0$$
 K 0

Suponhamos K = 8, temos:

$$A(s) = s^{3} + 2s^{2} + 4s + 8$$

$$= s^{2}(s+2) + 4(s+2)$$

$$= (s+2)(s^{2} + 4)$$

$$A(s) = 0 \implies p_{1} = 2, p_{2} = j2 \text{ e } p_{3} = -j2$$

 Para que o sistema seja estável os elementos b1 e c1 devem ser positivos, ou seja:

$$\begin{cases} \frac{8-K}{2} > 0 \\ K > 0 \end{cases} \implies 0 < K < 8$$

 Conclusão: dois polos no eixo imaginário é um caso de estabilidade marginal. Assim, o caso marginal é um sistema não aceitável. • Vamos agora substituir *K*=8 na tabela de Routh, obtemos:

$$s^3$$
 1 4

 s^2 2 8 \rightarrow coeficientes do polinômio auxiliar

$$s^1 \quad 0 \quad 0$$

$$s^0 K 0$$

- \mapsto Construindo o polinômio auxiliar: $2s^2 + 8 = 2(s^2 + 4)$
- \mapsto O polinômio auxiliar obtido da tabela é o polinômio que aparece na fatoração de A(s);
- → Sempre que aparece zeros em uma linha, o polinômio da linha anterior tem alguns polos do polinômio característico.

Critério de estabilidade de Routh-Hurwitz Caso especial 2:

- Uma linha toda nula na tabela de Routh corresponde a um par de de raízes com sinais opostos.
- Solução:
 - ✓ formar um polinômio auxiliar dos coeficientes da linha acima.
 - ✓ Substituir os coeficientes zero pelos coeficientes da derivada do polinômio auxiliar.
 - ✓ Se não existir a mudança de sinal, as raízes da equação auxiliar define as raízes do sistema no eixo imaginário.

Critério de estabilidade de Routh-Hurwitz Caso especial 2 (exemplo):

- O sistema tem uma raiz com parte real positiva: (1, 1, 1, 2, -1)
- A raiz é encontrada da equação auxiliar: $s^2 1 = 0$, $s = \pm 1$

Critério de estabilidade de Routh-Hurwitz Teste do intervalo do parâmetro — Estabilidade relativa

- O critério de estabilidade de Routh-Hurwitz pode ser usado par encontrar o intervalo de um parâmetro para o qual o sitema é estável;
- Deixe o parâmetro como um coeficiente desconhecido, forme a tabela de Routh, verifique o intervalo do parâmetro tal que a primeira coluna não mude de sinal.

Critério de estabilidade de Routh-Hurwitz Exemplo: intervalo do parâmetro

$$A(s) = s^4 + 6s^3 + 11s^2 + 6s + K$$

$$c_1 = \frac{60 - 6K}{10} \qquad d_1 = K$$

Então para a estabilidade,

$$K > 0$$
$$60 - 6K > 0 \Rightarrow K < 10$$

$$\therefore \quad 0 < K < 10$$

• Dado o polinômio característico, determine o interval de K para que o sistema seja estável.

$$A(s) = s^4 + Ks^3 + s^2 + s + 1$$

Exemplo 3: Grandes robôs soldadores são usados nas fábricas de automóveis. A ponta da solda é deslocada para diferentes posições do chassi do automóvel e uma resposta rápida e exata é requerida. Um diagrama de blocos de um sistema de posicionamento de uma ponta de solda é mostrada abaixo. Determinar os valores de K e de K para os quais o sistema é estável.

→ Polinômio característico

$$A(s) = s^4 + +8s^3 + 17s^2 + (K+10)s + Ka$$

$$b_3 = \frac{126 - K}{8}, \qquad c_3 = \frac{b_3 (K + 10) - 8Ka}{b_3}$$

 \mapsto Tabela de Routh

→ Restrições:

$$\frac{126-K}{8} > 0 \implies K < 126$$

$$(2) Ka > 0$$

(3)
$$(K+10)(126-K)-64Ka>0$$

$$(K+10)(126-K)-64Ka>0 \Rightarrow a<\frac{(K+10)(126-K)}{64K}$$

 \mapsto Gráfico $a \times K$

$$a = \frac{(K+10)(126-K)}{64K}$$

K a

 $0 \quad \infty$

126 0

-10 0

Critério de estabilidade no espaço de estados