Cours MOdélisation, Vérification et EXpérimentations Exercices Utilisation d'un environnement de vérification Frama-c (I) par Dominique Méry 17 mars 2025

Exercice 1 Nous vous donnons des annotations que vous devez analyser avec Frama-c.

```
Listing 1 – annotation3.c
Question 1.1 /*@ requires a >= 0 \&\& b >= 0;
  @ assigns \nothing;
  @*/
int annotation (int a, int b)
  int x, y, z;
  x = a;
/*@ assert l1: x == a; */
  y = b;
/*@ \ assert \ l2: x == a \&\& y == b; */
  z = a+b-2;
/*@ assert l3: x == a && y == b && z==a+b-1; */
  return(z); // result = z
                           Listing 2 – annotation4.c
Question 1.2 /*@ requires a >= 0;
  @ assigns \nothing;
  @ ensures \ \ result == 0;
  @*/
int annotation(int a)
  int x;
  x = a;
  return(x);
  }
Exercice 2 Soit le petit programme suivant
                              Listing 3 - td61.c
void ex(void) {
  int x=2, y=4, z, a=1;
  //@ assert x \ll y;
  x = x * x;
  //@ assert x == a*y;
  y = 2*x;
  z = x + y;
```

```
//@ \ assert \ z == x+y \& x*y >= 8;
```

Analyser le correction des annotations avec Frama-c et trouver a pour que cela soit correctement analysé.

Exercice 3 Soit le petit programme suivant

```
Listing 4 - td62.c
```

```
void ex(void) {
  int x0,y0,z0;
  int x=x0,y=x0,z=x0*x0;
  //@ assert l1: x == y && z == x*y;
  x = x*x;
  //@ assert l2: x == y*y && z == x;
  y = x;
    //@ assert l3: x + y + 2*z == (x0+x0)*(x0+x0);
  z = x + y + 2*z;

//@ assert z == (x0+x0)*(x0+x0);
}
```

Analyser la correction des annotations avec Frama-c.

TD6

Exercice 4 Soit le petit programme suivant

```
Listing 5 - td63.c
```

Analyser la correction des annotations avec Frama-c.

Exercice 5 La définition structurelle des transformateurs de prédicats est rappelée dans le

tableau ci-dessous :

idoleda ci-dessous.	
S	wp(S)(P)
X := E(X,D)	P[e(x,d)/x]
SKIP	P
$S_1; S_2$	$wp(\mathbf{S}_1)(wp(\mathbf{S}_2)(P))$
$\overline{\text{IF } B \text{ S}_1 \text{ ELSE S}_2 \text{ FI}}$	$(B \Rightarrow wp(S_1)(P)) \land (\neg B \Rightarrow wp(S_2)(P))$

```
— Axiome d'affectation : \{P(e/x)\}X := E(X)\{P\}.
```

[—] Axiome du saut : $\{P\}$ **skip** $\{P\}$.

```
— Règle de composition : Si \{P\}\mathbf{S}_1\{R\} et \{R\}\mathbf{S}_2\{Q\}, alors \{P\}\mathbf{S}_1;\mathbf{S}_2\{Q\}.

— Si \{P \land B\}\mathbf{S}_1\{Q\} et \{P \land \neg B\}\mathbf{S}_2\{Q\}, alors \{P\}if B then S<sub>1</sub> then S<sub>2</sub> fi\{Q\}.

— Si \{P \land B\}\mathbf{S}\{P\}, alors \{P\}while B do S od\{P \land \neg B\}.

— Règle de renforcement/affaiblissement : Si P' \Rightarrow P, \{P\}\mathbf{S}\{Q\}, Q \Rightarrow Q', alors \{P'\}\mathbf{S}\{Q'\}.
```

Question 5.1 Simplifier les expressions suivantes :

- 1. WP(X := X+Y+7)(x+y=6)
- 2. WP(X := X+Y)(x < y)

Question 5.2 On rappelle que $\{P\}S\{Q\}$ est défini par l'implication $O \Rightarrow WP(S)(Q)$. Pour chaque point énuméré ci-dessous, monter que la propriété $\{P\}S\{Q\}$ est valide ou pas en utilisant la définition suivante :

$$\{P\}S\{Q\} = P \Rightarrow WP(S)(Q)$$

- 1. $\{x+y=7\}X := Y+X\{2\cdot x+y=6\}$
- 2. $\{x < y\}$ **IF** $x \neq y$ **THEN** x := 5 **ELSE** x := 8 **FI** $\{x \in \{5, 8\}\}$

Question 5.3 Utiliser frama-c pour vérifier les éléments suivants :

- 1. $\{x+y=7\}X := Y+X\{2\cdot x+y=6\}$
- 2. $\{x < y\}$ **IF** $x \neq y$ **THEN** x := 5 **ELSE** x := 8 **FI** $\{x \in \{5, 8\}\}$

Exercice 6 td65.c

Soit le petit programme suivant dans un fichier :

```
Listing 6 - td65.c
```

```
/*@
    assigns \nothing;

*/

void swap1(int a, int b) {
    int x = a;
    int y = b;
    //@ assert x == a && y == b;
    int tmp;
    //@ assert y == b && x == a;
    tmp = x;
    //@ assert y == b && tmp == a;
    x = y;
    //@ assert x == b && tmp == a;
    y = tmp;
    //@ assert x == b && y == a;
}
```

Question 6.1 Utiliser l'outil frama-c-gui avec la commande \$frama-c-gui ex1.c et cliquer sur le lien ex1.c apparaissant sur la gauche. A partir du fichier source, une fenêtre est créée et vous découvrez le texte du fichier.

Question 6.2 Cliquer à droite sur le mot-clé assert et clique sur Prove annotation by WP. Les boutons deviennent vert.

Question 6.3 void swap2(int a, int b) { int x = a; int y = b; //@ assert x == a && y == b; int tmp; tmp = x; x = y; y = tmp; //@ assert x == a && y == a; }

Répétez les mêmes suites d'opérations mais avec le programme suivant dans ex2.c.

Question 6.4 Ajoutez une précondition pour que les preuves soient possibles.

Question 6.5 Soit le nouvel algorithme avec un contrat qui établit ce que l'on attend de cet algorithme

Recommencer les opérations précédentes et observer ce qui a été utilisé comme outils de preuve.

Exercice 7 Etudier la correction de l'algorithme suivant en complétant l'invariant de boucle :

Listing 7 – td66.c

```
/*@
requires} 0 <= n;
ensures \result == n * n;

*/
int f(int n) {
   int i = 0;
/*@ assert i=0
   int s = 0;
/*@ loop invariant ...;
   @ loop assigns ...; */
   while (i < n) {
    i++;
    s += 2 * i - 1;
};
return s;
}
```

Exercice 8

On rappelle que l'annotation suivante du listing 8 est correcte , si les conditions suivantes sont vérifiées :

```
\begin{array}{ll} --pre(v_0) \wedge v = v_0 \Rightarrow A(v_0,v) \\ --pre(v_0) \wedge B(v_0,v) \Rightarrow post(v_0,v) \\ --A(v_0,v) \Rightarrow wp(v=f(v))(B(v_0,v) \text{ où } wp(v=f(v))(B(v_0,v)) \text{ est définie par } B(v_0,v)[f(v)/v)]. \\ \textbf{\textit{Dans le cas de frama-c, la valeur initiale d'une variable $v$ est notée $$ $\at(v,Pre)$ et aussi $\old(v)$ . Nous utiliserons la notation $v_0$ dans cet exercice.} \end{array}
```

Listing 8 – contrat

```
requires pre(v)

ensures post(\old(v),v)

type1 \ truc(type2 \ v)

/*@ \ assert \ A(v0,v); \ */

v = f(v);

/*@ \ assert \ B(v0,v); \ */

return val;
```

Soient les annotations suivantes. Les variables sont supposées de type integer.

```
Question 8.1  \begin{vmatrix} \ell_1: x=64 \ \land \ y=x\cdot z \ \land z=2\cdot x \\ Y:=X\cdot Z \\ \ell_2: \ y\cdot z=2\cdot x\cdot x\cdot z \end{vmatrix}
```

Montrer que l'annotation est correcte ou incorrecte en utilisant Frama-c

```
Question 8.2 Soient trois constantes n,m,p  \begin{cases} \ell_1 : x = 3^n \wedge y = 3^p \wedge z = 3^m; \\ T := 8 \cdot X \cdot Y \cdot Z; \\ \ell_2 : t = (y+z)^3 \wedge y = x; \end{cases}
```

Montrer que l'annotation est correcte ou incorrecte en utilisant Frama-c. On prendra soin de discuter sur les valeurs de m,n,p et notamment de donner une condition sur ces valeurs pour que cel soit correcte.

```
Listing 9 - td68.c
```

```
Exercice 9 // #include inits.h>
/*@ axiomatic auxmath {
  @ axiom \quad rule1: \ \ for all \ int \ n; \ n > 0 ==> n*n == (n-1)*(n-1)+2*n+1;
  @ } */
/*@ requires 0 \ll x;
     ensures \ \ result == x*x;
*/
int power2(int x)
\{int r, k, cv, cw, or, ok, ocv, ocw;
  r=0; k=0; cv=0; cw=0; or=0; ok=k; ocv=cv; ocw=cw;
       /*@ loop invariant cv == k*k;
          @ loop invariant k \le x;
          @ loop invariant cw == 2*k;
          @ loop\ invariant\ 4*cv\ ==\ cw*cw;
         @ loop assigns k, cv, cw, or, ok, ocv, ocw; */
  while (k < x)
           ok=k; ocv=cv; ocw=cw;
```

```
k=ok+1;
           cv = ocv + ocw + 1;
           cw = ocw + 2;
  r=cv;
  return(r);
    requires 0 \ll x;
     ensures \ \ result == x*x;
*/
int p(int x)
{
  int r;
  if (x==0)
         {
           r=0;
  else
           r = p(x-1)+2*x+1;
  return(r);
/ *@
      requires 0 \ll n;
   ensures \ \ result == 1;
int check(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1;
    };
  return r;
```

Soit le fichier <code>qpower2.c</code> qui est pariellement complété et qui permet de calculer le carré d'un nombre naturel. L'exercice vise à compléter les points d'interrogation puis de simplifier le résultat et de montrer l'équivalence de deux fonctions. Le fichier <code>mainpower2.c</code> peut être compilé pour que vous puissiez faire des experimentations sur les valeurs calculées.

Question 9.1 Compléter le fichier apower2.c et produire le fichier power2.c qui est vérifié avec fraama-c.

Question 9.2 a Simplifier la fonction itérative en supprimant les variables commençant par la lettre \circ . Puis vérifier les fonctions obtenues avec frama-c.

Question 9.3 En fait, vous avez montré que les deux fonctions étaient équivalentes. Expliquez pourquoi en quelques lignes.

Exercice 10 Soit le contrat suivant :

```
\begin{array}{l} \text{variables } X,Y,Z \\ \text{requires } x_0>=0 \land y_0>=0 \land z_0>=0 \\ Rootslst \land z_0=25 \land y_0=x_0+1 \\ \text{ensures } z_f=100; \\ \begin{bmatrix} \text{begin} \\ 0:x^2+y^2=z \land z=25; \\ (X,Y,Z):=(X+3,Y+4,Z+75); \\ 1:x^2+y^2=z; \\ \text{end} \\ \end{bmatrix}
```

Question 10.1 Traduire ce contrat avec le langage PlusCal et proposer une validation pour que ce contrat soit valide.

Question 10.2 Traduire ce contrat en ACSL et vérifier qu'il est valide ou non. S'il est non valide, proposer une correction de la pré-condition et/ou de la postcondition.

Exercice 11 Définir une fonction maxpointer (gex1.c) calculant la valeur du maxiSquaremum du ciontenu de deux adresses avec son contrat.

```
int max_ptr ( int *p, int *q ) {
if ( *p >= *q ) return *p ;
return *q ; }
```

Exercice 12 Définir une fonction abs (gex2.c) calculant la valeur absolue d'un nombre entier avec son contrat.

```
#include <limits.h>
int abs (int x) {
  if (x >= 0) return x;
  return -x;}
```

Exercice 13 Etudier les fonctions pour la vérification de l'appel de abs et max (max-abs.c,max-abs1.c,max-abs2.c)

```
int abs ( int x );
int max ( int x, int y );
// returns maximum of absolute values of x and y
int max_abs( int x, int y ) {
x=abs(x); y=abs(y);
return max(x,y);
}
```

Exercice 14 Question 14.1 Soit la fonction suivante calculant le reste de la division de a par b. Vérifier la correction de cet algorithme.

```
int rem(int a, int b) {
  int r = a;
  while (r >= b) {
    r = r - b;
  };
  return r;
}
```

Il faut utiliser une variable ghost.

Question 14.2 Soit la fonction suivante calculant la fonction fact. Vérifier la correction de cet algorithme. Pour vérifier cette fonction, il est important de définir la fonction mathématique Fact avec ses propriétés.

```
/*@ axiomatic Fact {
 @ logic integer Fact(integer n);
 @ axiom Fact_1: Fact(1) == 1;
 @ axiom\ Fact\_rec: \ \ for all\ integer\ n;\ n > 1 ==> Fact(n) == n * Fact(n-1);
 @ } */
int fact(int n) {
  int y = 1;
  int x = n;
  while (x != 1) \{
    y = y * x;
    x = x - 1;
  };
  return y;
Question 14.3 Annoter les fonctions suivantes en vue de montrer leur correction.
 int max (int a, int b) {
  if (a >= b) return a;
  else return b;
int indice_max (int t[], int n) {
  int r = 0;
  for (int i = 1; i < n; i++)
    if (t[i] > t[r]) r = i;
 return r;
int \ valeur\_max \ (int \ t[], \ int \ n) \ \{
  int r = t[0];
  for (int i = 1; i < n; i++)
    if (t[i] > r) r = t[i];
  return r;
```

La solution est donnée dans le fichier gex4-3.c.

Reprise

Exercice 15 Pour chaque question, montrer que l'annotation est correcte ou incorrecte selon les conditions de vérifications énoncées comme suit

 $\forall x, y, x', y'. P_{\ell}(x, y) \land cond_{\ell, \ell'}(x, y) \land (x', y') = f_{\ell, \ell'}(x, y) \Rightarrow P_{\ell'}(x', y')$ Pour cela, on utilisera l'environnement Frama-c.

Question 15.1

Question 15.2

$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y$
 $\ell_2 : x = 1 \land y = 24$

Question 15.3

$$\begin{array}{l} \ell_1: x = 11 \ \land \ y = 13 \\ z:=x; x:=y; y:=z; \\ \ell_2: x = 26/2 \ \land \ y = 33/3 \end{array}$$

Exercice 16 Evaluer la validité de chaque annotation dans les questions suivent.

Question 16.1

$$\ell_1: x = 64 \land y = x \cdot z \land z = 2 \cdot x$$

$$Y := X \cdot Z$$

$$\ell_2: y \cdot z = 2 \cdot x \cdot x \cdot z$$

Question 16.2

$$\ell_1 : x = 2 \land y = 4$$

 $Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + X^6$
 $\ell_2 : z = 6 \cdot (x+y)^2$

Question 16.3

$$\ell_1: x = z \land y = x \cdot z$$

$$Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + Y \cdot X \cdot Z \cdot Z \cdot X;$$

$$\ell_2: z = (x+y)^3$$

Soit l'annotation suivante :

$$\ell_1: x=1 \wedge y=2 \ X:=Y+2 \ \ell_2: x+y \geq m$$
 où m est un entier ($m \in \mathbb{Z}$).

Question 16.4 Ecrire la condition de vérification correspondant à cette annotation en upposant que X et Y sont deux variables entières.

Question 16.5 Etudier la validité de cette condition de vérification selon la valeur de m.

Exercice 17 gex7.c

$$VARIABLES \ N, V, S, I$$

$$pre(n_0, v_0, s_0, i_0) \stackrel{def}{=} \begin{cases} n_0 \in \mathbb{N} \land n_0 \neq 0 \\ v_0 \in 0..n_0 - 1 \longrightarrow \mathbb{Z} \\ s_0 \in \mathbb{Z} \land i_0 \in \mathbb{Z} \end{cases}$$

$$REQUIRES \begin{cases} n_0 \in \mathbb{N} \land n_0 \neq 0 \\ v_0 \in 0..n_0 - 1 \longrightarrow \mathbb{Z} \\ s_0 = \mathbb{Z} \land i_0 \in \mathbb{Z} \end{cases}$$

$$ENSURES \begin{cases} s_f = \bigcup_{n_0 - 1} v_0(k) \\ n_f = n_0 \\ v_f = v_0 \end{cases}$$

$$\ell_0 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ (n, v, s, i) = (n_0, v_0, s_0, i_0) \end{cases}$$

$$S := V(0)$$

$$l_1 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \\ (n, v, i) = (n_0, v_0, i_0) \end{cases}$$

$$I := 1$$

$$\ell_2 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \land i = 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$VHILE \ I < N \ DO$$

$$l_3 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \land i \in 1..n - 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$l_4 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \land i \in 1..n - 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$l_5 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \land i \in 2..n \\ (n, v) = (n_0, v_0) \end{cases}$$

$$l_6 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k = 0} v(k) \land i = n \\ (n, v) = (n_0, v_0) \end{cases}$$

La notation $\bigcup_{k=0}^{n} v(k)$ désigne la valeur maximale de la suite $v(0) \dots v(n)$. On suppose que l'opérateur \oplus est défini comme suit $a \oplus b = \max(a,b)$.

Question 17.1 Ecrire une solution contractuelle de cet algorithme.

Question 17.2 Que faut-il faire pour vérifier que cet algorithme est bien annoté et qu'il est partiellement correct en utilisant TLA+? Expliquer simplement les éléments à mettre en œuvre et les propriétés de sûreté à vérifier.

Question 17.3 Ecrire un module TLA⁺ permettant de vérifier l'algorithme annoté à la fois pour la correction partielle et l'absence d'erreurs à l'exécution.

Exercice 18 gex8.c

On considère le petit programme se trouvant à droite de cette colonne. Nous allons poser quelques questions visant à compléter les parties marquées en gras et visant à définir la relation de calcul.

On notera $pre(n_0, x_0, b_0)$ l'expression suivante $n_0, x_0, b_0 \in \mathbb{Z}$ et $in(n, b, n_0, x_0, b_0)$ l'expression $n = n_0 \land b = b_0 \land pre(n_0, x_0, b_0)$.

Question 18.1 *Ecrire un algorithme avec le contrat et vérifier le* .

#include <stdio.h>

```
VARIABLES N, X, B
REQUIRES n_0, x_0, b_0 \in \mathbb{Z}
                    n_0 < b_0 \Rightarrow x_f = (n_0 + b_0)^2
                     n_0 \ge b_0 \Rightarrow x_f = b_0
ENSURES
                     n_f = n_0
                     b_{f} = b_{0}
BEGIN
\ell_0: n = n_0 \wedge b = b_0 \wedge x = x_0 \wedge pre(n_0, x_0, b_0)
  X := N;
\ell_1 : x = n \wedge in(n, b, n_0, x_0, b_0)
IF X < B THEN
  \ell_2:
X := X \cdot X + 2 \cdot B \cdot X + B \cdot B;
  \ell_3:
ELSE
   \ell_4:
      X := B;
  \ell_5:
FI
\ell_6:
END
```

Exercice 19 Soit le petit programme suivant :

```
Listing 10 – f91
```

```
#include <math.h>
int f1(int x)
\{ if (x > 100) \}
    \{ return(x-10); 
  else
    { return(f1(f1(x+11)));
}
int f2(int x)
\{ if (x > 100) \}
    \{ return(x-10); 
  else
    { return (91);
int mc91tail(int n, int c)
\{if\ (c != 0) \}
    if (n > 100)  {
      return mc91tail(n-10,c-1);
    else
      {
```

```
return mc91tail(n+11,c+1);
  }
   else
     \{ return n; \}
int mc91(int n)
   return mc91tail(n,1);
int main()
  int val1, val2, val3, num;
   printf("Enter_a_number:_");
   scanf("%d", &num);
   // Computes the square root of num and stores in root.
   val1 = f1(num);
     val2 = f2(num);
     val3 = mc91(num);
     printf("Et\_le\_r\tilde{A}@sultat\_\_f1(%d)=\%d\_et\_la\_v\tilde{A}@rification: \_\%d\_et\_....\%d \ n", num,
   return 0;
}
On veut montrer que les deux fonctions f1 et f2 sont équivalentes avec frama-c en montrant
```

qu'elles vérifient le même contrat;

Exercice 20 Soit le petit programme suivant :

Listing 11 – qpower2.c

```
#include inits.h>
/*@ axiomatic auxmath {
  @ axiom \quad rule1: \land for all \quad int \quad n; \quad n > 0 \implies n*n \implies (n-1)*(n-1)+2*n+1;
  @ } */
/*@ requires 0 \ll x;
     requires x \ll INT\_MAX;
     requires x*x <= INT\_MAX;
  assigns \nothing;
     ensures \ \ result == x*x;
*/
int power2(int x)
{ int r, k, cv, cw, or, ok, ocv, ocw;
  r=0; k=0; cv=0; cw=0; or=0; ok=k; ocv=cv; ocw=cw;
       /*@ loop invariant cv == k*k;
          @ loop invariant k \le x;
          @ loop invariant cw == 2*k;
          @ loop\ invariant\ 4*cv\ ==\ cw*cw;
          @ loop assigns k, cv, cw, or, ok, ocv, ocw;
           @ loop variant x-k;
  while (k < x)
           ok=k; ocv=cv; ocw=cw;
           k=ok+1;
```

```
cv = ocv + ocw + 1;
           cw = ocw + 2;
  r=cv;
  return(r);
/*@ requires 0 \ll x;
     decreases x;
  assigns \setminus nothing;
     ensures \ \ result == x*x
*/
int p(int x)
  int r;
  if (x==0)
        {
           r=0;
  else
           r = p(x-1)+2*x+1;
  return(r);
      requires 0 \ll n;
  assigns \setminus nothing;
   ensures \ \ result == 1;
int check(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1;
    };
  return r;
```

On veut montrer que les deux fonctions p et power2 sont équivalentes avec frama-c en montrant qu'elles vérifient le même contrat;

Cours MOdélisation, Vérification et EXpérimentations Exercices Utilisation d'un environnement de vérification Frama-c (III) par Dominique Méry 17 mars 2025

Exercice 21 Utiliser frama-c pour vérifier ou non les annotations suivantes :

Question 21.1
$$\begin{cases} \ell_1 : x = 10 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 10 \ \land \ y = x + 2 \cdot 10 \end{cases}$$

Question 21.2
$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y$
 $\ell_2 : x = 1 \land y = 24$

Question 21.3
$$\begin{vmatrix} \ell_1 : x = 11 & \wedge & y = 13 \\ z := x; x := y; y := z; \\ \ell_2 : x = 26/2 & \wedge & y = 33/3 \end{vmatrix}$$

Question 21.4
$$\begin{array}{c} \ell_1 : x = 3 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 3 \ \land \ y = x + 6 \end{array}$$

Question 21.5
$$\begin{cases} \ell_1: x=2^4 \ \land \ y=2^{345} \ \land \ x \cdot y=2^{350} \\ x:=y+x+2^x \\ \ell_2: x=2^{56} \ \land \ y=2^{345} \end{cases}$$

Question 21.6
$$\ell_1 : x = 1 \land y = 12 \ x := 2 \cdot y + x \ \ell_2 : x = 1 \land y = 25$$

Exercice 22 Traduire ce contrat dans le langage ACSL et vérifier le contrat.

```
\begin{array}{c} \text{variables } x\\ \text{requires}\\ x_0 \in \mathbb{N}\\ \text{ensures}\\ x_f \in \mathbb{N}\\ \text{begin}\\ \ell_0: \{\ x = x_0 \wedge x_0 \in \mathbb{N}\}\\ \text{While } (0 < x)\\ \ell_1: \{0 < x \leq x_0 \wedge x_0 \in \mathbb{N}\}\\ x := x - 1;\\ \ell_2: \{0 \leq x \leq x_0 \wedge x_0 \in \mathbb{N}\}\\ \text{od};\\ \ell_4: \{x = 0\}\\ \text{end} \end{array}
```

Exercice 23 Utiliser frama-c pour vérifier le contrat suivant :

Algorithme 1: Algorithme du maximum d'une liste non annotée

Exercice 24

Utiliser frama-c pour vérifier ke contrat suivant :

Soit l'algorithme annoté suivant se trouvant à la page suivante et les pré et postconditions définies pour cet algorithme comme suit : On suppose que x1 et x2 sont des constantes.

Exercice 25 Soit la fonction suivante utiliée dans un programme

```
Listing 12 – mainpower.c
```

```
Variables: X1,X2,Y1,Y2,Y3,Z
Requires : x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0
Ensures : z_f = x 1_0^{x 2_0}
\ell_0 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, y1, y2, y3, z) = 0\}
 (x1_0, x2_0, y1_0, y2_0, y3_0, z0)
 (y_1, y_2, y_3) := (x_1, x_2, 1);
\ell_1: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0)
y_3 \cdot y_1^{y_2} = x_1^{x_2}
while y_2 \neq 0 do
                              \ell_2: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (
                                y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 < y_2 \leq x_2
                              if impair(y_2) then
                                                                \ell_3: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0
                                                                y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 < y_2 \leq x_2 \wedge impair(y_2)
                                                              y_2 := y_2 - 1;
                                                              \ell_4: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0
                                                             y_3 \cdot y_1 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y_2 \le x_2 \wedge pair(y_2)
                                                             \ell_5: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                                              (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2))
                                \ell_6: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2)
                              y_1 := y_1 \cdot y_1;
                              \ell_7: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2 \ div \ 2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2)
                              y_2 := y_2 \ div \ 2;
                              \ell_8 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                              (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2
\ell_9 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
(x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge y_2 = 0
z := y_3;
\ell_{10}: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2) = (x1_0, x2_0) \land y_3 \cdot y_1^{y_2} = (x1_0, x2_0) \land (
x_1^{x_2} \wedge y_2 = 0 \wedge z = x_1^{x_2}
```

Algorithme 2: Algorithme de l'exponentitaion indienne annoté

```
printf("%d_\%d_\%d_\cz=%d_\%d\n",cu,cv,cw,cz,ct);
          cz = cz + cv + cw;
          cv = cv + ct;
          ct = ct + 6;
          cw=cw+3;
          cu=cu+1;
          k=k+1;
    r=cz;
 return(r);
int p(int x)
  int r;
  if (x==0)
        {
          r=0;
  else
          r = p(x-1)+3*(x-1)*(x-1) + 3*(x-1)+1;
 return(r);
int check(int n){
  int r1, r2, r;
  r1 = power(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1; 
 return r;
int main () {
  int counter;
    for( counter=0; counter<5; counter++ ) {</pre>
      int v, r;
      printf("Enter_a_natural_number:");
      scanf("%d", &v);
      r = power(v);
      };
}
```

Question 25.1 Compiler ce programme et tester son exécution afin d'en dégager ses fonctionnalités.

Question 25.2 Annoter les fonctions principales.

Question 25.3 Vérifiez sa correction partielle et totale.