MATH 110 WORKSHEET, AUGUST 7TH

JAMES MCIVOR

- (1) For each of the following operators, say whether it is normal, self-adjoint, or an isometry, or any combination of these. Where possible, try to understand the map geometrically.
 - (a) T on \mathbb{R}^3 given by the matrix $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ (in standard bases).

 - (b) T on \mathbb{R}^3 given by the following rule: reflect a vector across the xy-plane, and then multiply it by 2. (c) T on \mathbb{R}^2 given by the matrix $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ (your answer will depend on a and b say for which values of a and b it has the properties.
- (2) Let $T: V \to W$ be a linear map and dim V = n, dim W = m. Prove that dim Null $T \dim \text{Null } T^* = n m$.
- (3) **Definition:** If $S, T \in \mathcal{L}(V)$, we say S is a square root of T if $S^2 = T$.
 - (a) Find a square root of the identity operator on \mathbb{R}^2 .
 - (b) Prove that the 2×2 zero matrix has infinitely many square roots.
 - (c) Prove that any normal operator on a complex space has a square root. [hint: use the spectral theorem]
- (4) Let $T \in \mathcal{L}(V)$, with V a real vector space. Suppose T is unitary, self-adjoint, and has positive eigenvalues. Prove that T is the identity map on V.
- (5) Challenge: Prove that every normal operator on a complex space is a linear combination of orthogonal projection operators.