

MIDTERM ESSAY

Course: Mining Massive Data Sets

Duration: 03 weeks

I. Formation

- The essay is conducted in groups with 03-05 students.

- Student groups conduct designated tasks and submit the essay by the deadline.

II. Requirements

Given **baskets.csv** file, consisting of shopping data, in which the first row is header and the remaining ones are records.

• Member number: customer number

• **Date**: date in dd/mm/yyyy

• itemDescription: product name

• year: year

• month: month

• day: day

• day_of_week: day of week

For example,

Member_number	Date	itemDescription	year	month	day	day_of_week
1249	01/01/2014	citrus fruit	2014	1	1	2
1249	01/01/2014	coffee	2014	1	1	2
1381	01/01/2014	curd	2014	1	1	2
1381	01/01/2014	soda	2014	1	1	2
1440	01/01/2014	other vegetables	2014	1	1	2
1440	01/01/2014	yogurt	2014	1	1	2
1659	01/01/2014	specialty chocolate	2014	1	1	2

III. Requirements

1) Task 1 (3.0 point(s)): A-Priori Algorithm for Frequent Customers

- Store data in HDFS and then implement a Hadoop MapReduce program (Java) to discover groups of customers going shopping in the same date.
- Implement the A-Priori algorithm to identify frequent customer pairs in form of 02 Hadoop MapReduce programs (Java), each one corresponding to a pass.

2) Task 2 (3.0 point(s)): PCY Algorithm for Frequent Items

- Store data in Google Drive, using PySpark DataFrames to identify baskets (sets of items bought a customer in a date).
- Implement the PCY algorithm to identify frequent pairs and generate association rules based on a given support threshold s and a confidence threshold c. Describe, in details, the hashing function and bucket management.
- The algorithm is organized in form of OOP classes to support software deployment. Refer to the FPGrowth class of PySpark for examples.

Ton Duc Thang University Faculty of Information Technology

3) Task 3 (3.0 point(s)): MinHashLSH for Similar Dates

- Store data in Google Drive and use PySpark DataFrames for this task.
- Two dates (day, month, year) are said to be similar if and only if they share at least 50%, Jaccard similarity, distinct items bought by customers.
- *Approach 1:* Students apply the MinHashLSH algorithm to discover similar pairs of dates whose Jaccard similarity is at least *s* provided as a parameter. pyspark.ml.feature.MinHashLSH is allowed in this case to avoid manual implementation.
- *Approach 2:* Students implement another approach in which all possible pairs of dates are evaluated to discover similar pairs of dates as mentioned above.
- Finally, draw a chart to contrast the running time of the two approaches for s in range [0.0, 1.0], step = 0.1.

4) Task 4 (1.0 point(s)): Report

- Student groups compose the project report using the IEEE conference proceeding template.
- Recommended editor: Overleaf.
- Selective contents:
 - o *Title*: the project title
 - o Authors: group member's information, the lecturer is appended as the last author.
 - o *Abstract*: summarize the project requirements, approaches, experimental results, and levels of completion.
 - Each following section presents a task in the project, with a meaningful and human-readible title. Briefly introduce the approach to tackle the problem and illustrate results with related figures/tables, etc.
 - o "Contributions" section: individual tasks, individual completion levels (0%-100%).
 - o "Self-evaluation" section: self-evaluate task completion and estimate scores.
 - o "Conclusion" section: summarize the project requirements, approaches, experimental results, and levels of completion.
- References are in the IEEE format.
- Maximal length is 05 pages.

IV. Submission Notice

- Create a folder whose name is like **midterm_<Group ID>_<Your Student ID>**:
 - o **Source**: consists of the project source code, each task is implemented in an individual sub-directory, preserving the outputs of all cells in ipynb files, output files as well.
 - o Report/: report source (exported from Overleaf), report.pdf file.
- Compress the folder as a zip file and submit by the deadline.

Ton Duc Thang University Faculty of Information Technology

- Every member submits the project to the elearning system.

V. Policy

- Student groups submitting late get 0.0 points for each member.
- Copying source code on the internet/other students, sharing your work with other groups, etc., cause 0.0 points for all related groups.
- If there exist any signs of illegal copying or sharing of the assignment, then extra interviews are conducted to verify student groups' work.
- Evaluation scores of individual tasks are only recorded if and only if the student group give a reasonable presentation and justification to avoid cheating by AI tools, rental of doing the project, imbalance contributions, missing discussing, cooperating of group members in the project, etc.
- AI tools are forbidden in the project.

-- THE END --