UNIVERSITE DE ZIGUINCHOR

UFR Sciences et Techniques

♦♦♦♦♦

DÉPARTEMENT D'INFORMATIQUE

Examen de Réseaux : Session normale durée 2h30mn)

Documents non autorisés

Partie 1 : Téléinformatique (7 points)

1. Sur un support de transmission, le rapport S/B vaut 400. Quelle est la valeur de ce rapport en décibels ? (*Ipoint*)

Un rapport S/B de 400 correspond à $10*\log_{10}400: 10*(\log_{10}10_4 + \log_{10}100)$. D'où : $20*(\log_{10}2 + \log_{10}100) = 26 \text{ dB}$

- 2. Soit un signal numérique dont la rapidité de modulation est 4 fois plus faible que le débit binaire.
 - a) Quelle est la valence du signal? (*1point*)

 D'après la formule $D = R \log_2 V$, nous trouvons : $D/R = \log_2 V$ soit : $V = 2^{D/R}$, c'est-àdire que la valence vaut **16**.
 - b) Si la rapidité de modulation du signal vaut 2 400 bauds, quel est le débit binaire disponible? (*Ipoint*)

En appliquant la même formule, nous trouvons : D = 2400*4 = 9600 bit/s.

- 3. Une transmission de voix numérisée nécessite un débit binaire de 64 kbit/s.
- a) En supposant que la transmission se fasse par des signaux modulés de valence 32, quelle est la bande passante disponible, sachant que celle-ci est égale à la moitié de la rapidité de modulation utilisée ? (1point)

On utilise la formule $D = R*log_2V$. On obtient : $64*10^3 = R*log_232$, ce qui donne D = 5R, d'où : R = 12800 bauds. La bande passante est donc égale à **6 400 Hz**

b) Quel doit être le rapport S/B de la ligne de transmission offrant un débit binaire de 64 kbit/s et possédant une largeur de bande trouvée dans la question précédente ? (1point)

```
En utilisant la formule de Shannon D = W*log_2(1 + S/B), on trouve : 64*10^3 = 6 \ 400*log_2(1 + S/B), d'où : log_2(1 + S/B) = 10, c'est-à-dire que S/B = 2^{10} - 1, soit 1023
```

- 4. Deux supports de transmission sans fil S_1 et S_2 sont caractérisés par leur bande passante respectives (90Mhz-110Mhz et 300Mhz-320Mhz) à 20dB.
 - a) Calculer le débit binaire maximal sur chacun des supports de transmission. (*1point*) Pour chacun des supports la bande passante W=20Mhz= 20.10^6 Hz D=nR= W*log2(1 + S/B) avec $20=10 \log_{10}$ S/B, donc \log_{10} S/B = 2, S/B=100 D=nR= W*log2(1 + S/B)= $138 \cdot 10^5$ bits/s pour les deux supports
 - b) La quelle des bandes passantes choisir en transmission sans fil,? Justifier votre réponse. (Ipoint)

On peut choisir le support $\underline{S_1}$ avec les frequences basses par exemple pour augmenter la portée de transmission.

Partie 2: Réseaux informatiques (13 points)

Bonne chance Dr Y, FAYE

- On forme le réseau filaire avec des câbles à paires torsadées (droit ou croisé), des ordinateurs, 1 Hub, 2 Switchs, 1 pont et un routeur comme l'indique le schémal.
 Entourer les domaines de collision en bleu et les domaines de diffusion en noir (avec stylo ou crayon). (3points)
- 2. Mettez la mention câble droit ou câble croisé sur le schéma entre chaque paire d'équipements pour indiquer le type de câble à utiliser? (2points)

Schémal

Sachant que les câbles sont full-duplexe (câble à paire torsadée) on a : Corrigé schém2

3. Soit le réseau du schéma2.

Schéma2

Sans changer les informations existantes, donner les paramètres de configuration nécessaires à chaque équipement (ordinateurs, switchs et routeurs) pour que tous les PCs (PC1, PC2, PC3, PC4 et PC5) puissent se communiquer.). (7points)

Les informations en rouge on été complétées :

- Rien à faire sur le switch
- Configuration les tables de routage sur les routeur
- Configuration éventuelle des adresses IP, masque de sous-réseau et passerelle par défaut des ordinateurs

Bonne chance Dr Y. FAYE

NB: le schéma a été réctifié au niveau de l'adresse IP et la passerelle par défaut de PC5, on en tiendra compte dans la correction.

Corrigé schém2

Table pour le Routeur1

Réseaux	Masque	Passerelle
192.168.0.0	255.255.255.0	192.168.1.4
10.0.2.0	255.255.255.0	10.0.1.1

Table pour le Routeur1

Réseaux	Masque	Passerelle
10.0.0.0	255.255.255.0	10.0.1.2
192.168.1.0	255.255.255.0	10.0.1.2
192.168.0.0	255.255.255.0	10.0.1.2

Table pour le Routeur1

Réseaux	Masque	Passerelle
10.0.0.0	255.255.255.0	192.168.1.3
10.0.1.0	255.255.255.0	192.168.1.3
10.0.2.0	255.255.255.0	192.168.1.3

Bonne chance Dr Y. FAYE