UNCLASSIFIED

AD NUMBER

ADA033266

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 10 MAY 1968. Other requests shall be referred to Naval Ships Systems Command, Washington, DC 20350.

AUTHORITY

31 May 1980, DoDD 5200.10; NAVSEA per DTIC form 55

ADA US3266

MOST Project ->
UNCLASSIFIED

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

HEAVY MILITARY ELECTRONICS DEPARTMENT - SYRACUSE N.

GENERAL BELEGTRIC

ASSIFIED

UNCLASSIFIED INAL REP YELOCITY OF SOUND STUDY. Contract N00024-67-C-1517 Item 5) GE Requisition No. 88184 Prepared by General Electric Company Heavy Military Electronics Department Syracuse, New York System. 149510 Prepared for Navy Department Naval Ships Systems Command PMS-85 GROUP 4 Downgraded at 3-Year Intervals Declassified After 12 Years DOD Dir. 5200,10

PUBLITION STATEMENT A

e proved for public release; Distribution Unlimited

This material pontains information afficiency and the national state of the United Miles of this conference of the United Miles of the Espirate Espirate State 18, U.S.C., Sections 793 and T. This mission or revelation of its contain manner to an unauthorized person is prohibited to the containing of the containing of

680528-0271

/19 510 UNBLASSIFIED +

TABLE OF CONTENTS

Section	<u>Title</u>	Page
I	INTRODUCTION	1
II	ASSUMPTIONS	3
	1. Detection Model	3
	2. Theoretical Beam Pattern	5
III	RESULTS	9
	 Vertical Beam Coverage Study	9 9 35
	2. Compromise Beamformer Feasibility Study	37
IV	CONCLUSIONS	121
	1. Vertical Beam Coverage Study	121
	2. Compromise Beamformer Feasibility Study	121

LIST OF TABLES

Table	Title	Page
1	Peak Response of Theoretical Beam Patterns	42
2	Peak Response Values for Four-Array Compromise	48
3	Peak Response Values for Three-Array Compromise	53
4	Peak Response Values for Various Two-Array Compromises	68

UNICLASSIFIED

\$86529 °271

Figure	Title	Page
1	SNR Contours for a 10-Knot Snorkler with Target and Receiver on Same Side of Layer	10
2	SNR Contours for a Skipjack Submarine with Target and Receiver on Same Side of Layer	12
3	SNR Contours for a Permit Submarine with Target and Receiver on Same Side of Layer	13
4	SNR Contours for a 10-Knot Snorkler with Target and Receiver on Opposite Sides of Layer	14
5	SNR Contours for a Skipjack Submarine with Target and Receiver on Opposite Sides of Layer	15
6	SNR Contours for a Permit Submarine with Target and Receiver on Opposite Sides of Layer	16
7	Vertical Beam Patterns without Broadening	18
8	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by 62.5 µs	19
9	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by $125 \mu s$	20
10	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by 187.5 μ s	21
11	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by $250 \mu s$	22
12	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by 312.5 µs	23
13	Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by $375 \mu s$	24
14	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer	26
15	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer	27
16	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer	28
17	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer	29
18	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer	30
19	SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer	31
	an,	(*)

Propagation

Logical B

Serve a A

Table 1

LIST OF ILLUSTRATIONS (continued)

Figure	<u>Title</u>	Page
20	SNR Contours for a Permit Submarine with Target and Receiver on Sa ne Side of Layer and Sea State 4	32
21	SNR Contours for a Permit Submarine with Target and Receiver on Opposite Sides of Layer and Sea State 4	33
22	BQR-7 DIMUS Beamformer Correlation Patterns Based on a Sound Velocity of 5120 Feet per Second	34
23	BQR-7 DIMUS Beamformer Correlation Patterns (Beams 2 through 5) Based on a Sound Velocity of 4950 Feet per Second	36
24	BQR-7 DIMUS Beamformer Correlation Patterns (Beams 28 through 31) Based on a Sound Velocity of 4950 Feet per Second	36
25	Normalized Autocorrelation Function for Assumed Signal Spectrum	38
26	Theoretical Horizontal Beam Patterns for SS(N) 594	38
27	Theoretical Horizontal Beam Patterns for SSB(N) 598	39
28	Theoretical Horizontal Beam Patterns for SSB(N) 608	40
29	Theoretical Horizontal Beam Patterns for SS(N) 671	41
30	Horizontal Beam Patterns of SS(N) 594 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations	44
31	Horizontal Beam Patterns of SSB(N) 598 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations	45
32	Horizontal Beam Patterns of SSB(N) 608 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations	46
33	Horizontal Beam Patterns of SS(N) 671 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations	47
34	Plot of Peak Response Values for Four-Array Compromise	49
35	Horizontal Beam Patterns of SS(N) 594 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations	50
36	Horizontal Beam Patterns of SSB(N) 598 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations	51
37	Horizontal Beam Patterns of SSB(N) 608 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations	52
3 8	Plot of Peak Response Values for Three-Array Compromise	54
39	Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 598 Configurations	55

LIST OF ILLUSTRATIONS (continued)

Figure	<u>Title</u>	Page
40	Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SS(N) 594 add SSB(N) 598 Configurations	56
41	Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SSB(N) 608 and SS(N) 671 Configurations	57
42	Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SSB(N) 608 and SS(N) 671 Configurations	58
43	Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 608 Configurations	59
44	Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 608 Configurations	60
45	Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SS(N) 671 Configurations	61
46	Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SS(N) 671 Configurations	62
47	Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SS(N) 671 Configurations	63
48	Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SS(N) 671 Configurations	64
49	Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations	65
50	Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations	66
51	Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations	67
52	Plot of Peak Response Values for a Two-Array Compromise Between the SS(N) 594 and SS(N) 671 and a Two-Array Compromise Between the SSB(N) 608 and SSB(N) 598 Configurations	69
53	Plot of Peak Response Values for a Two-Array Compromise Between the SS(N) 594 and SSB(N) 608 and a Two-Array Compromise Between the SSB(N) 598 and SS(N) 671 Configurations	70
54	Plot of Peak Response Values for a Two-Array Compromise Between the SSB(N) 608 and SS(N) 671 and a Two-Array Compromise Between the SS(N) 594 and SSB(N) 598 Configurations	71
55	Worst Case Loss in Peak Response Resulting from Various Combinations of Compromise Beamformers	72
56	Arrival Times for SS(N) 594 Class Submarine	73
57	Sampling Times for SS(N) 594 Class Submarine	79

LIST OF ILLUSTRATIONS (concluded)

Figure	Title	Page
58	Arrival Times for SSB(N) 598 Class Submarine	85
59	Sampling Times for SSB(N) 598 Class Submarine	91
60	Arrival Times for SSB(N) 608 Class Submarine	97
61	Sampling Times for SSB(N) 608 Class Submarine	103
62	Arrival Times for Compromise Beamformer Between the SSB(N) 598 and SSB(N) 608 Class Submarine	109
63	Sampling Times for Compromise Beamformer Between the SSB(N) 598 and SSB(N) 608 Class Submarine	115

SECTION I

INTRODUCTION

Present implementation of the beamformer for the BQR-7 submarine sonar provides for stave-to-stave delays only. Consequently, it lacks the capability of steering or broadening the vertical beam by utilization of a time delay taper across the vertical dimension of the array. In essence, the array is optimized to receive target radiated noise through the surface duct mode. For short ranges between the target and the receiver, this gives satisfactory operation since most of the energy is in the surface duct.

At longer ranges, however, most of the energy may be propagated via the bottom bounce mode. This results in less than theoretically maximum performance for long ranges since the energy enters through the sidelobes of the vertical beam pattern. For targets of interest, the signal-to-noise ratio (SNR) at short ranges is high enough so that one might consider sacrificing some system gain at short ranges if the detection performance at longer ranges can be significantly improved.

There are several methods which might be utilized in upgrading the performance at long ranges. One method consists of steering the beam downward to intercept the energy arriving via the bottom bounce mode through the main beam of the vertical pattern. An alternate method consists of broadening the vertical beam pattern, without vertical steering, to intercept both bottom bounce and surface duct energy with the main beam. A third choice consists of a suitable combination of vertical steering and broadening to optimize the detection performance for all ranges.

A study was undertaken to investigate the various aspects of vertical beam steering and broadening and its effect on detection performance. An attempt was then made to verify the theoretical results by beamforming actual sea test data previously recorded at the hydrophone level aboard an SSB(N) 640 class submarine.

The feasibility of designing a compromise beamformer to handle numerous classes of submarines was also examined. Specifically, the classes of submarines examined were the SS(N) 594, SSB(N) 598, SSB(N) 608, and the SS(N) 671.

The results of the vertical beam coverage study as well as the compromise beamformer feasibility study are reported herein.

SECTION II

ASSUMPTIONS

1. DETECTION MODEL

The analytical model used to investigate the detection performance of the BQR-7 DIMUS beamformer calculates the SNR at the output of the detector. In general, the SNR at the output of a passive detection system is given by

$$SNR = \frac{\left[\int_{f_1}^{f_2} P_s(f, R) df\right]^2}{\frac{1}{2T} \int_{f_1}^{f_2} P_n^2(f) df}$$
(1)

where

 $P_s(f, R)$ = signal power spectrum at the input to the detector as a function of frequency (f) and range (R)

 $P_n(f)$ = noise power spectrum at the input to the detector

T = the integration time of the output filter

f, = lower frequency limit of receiver operating band

f₂ = upper frequency limit of receiver operating band

The signal power spectrum at the input to the detector is calculated from the following expression:

$$P_{s}(f, R) = \sum_{i=1}^{N_{P}} \frac{L_{T}(f) N_{B_{i}}(f, R) T_{R}(f) Y(f)}{N_{W_{i}}(f, R)}$$
(2)

where

 $L_{T}(f)$ = target radiated noise power

N_P = number of paths from the target to the receiver

 $N_{B_i}(f, R)$ = vertical beam shape factor (the loss suffered by the signal arriving from the i^{th} path due to arrival off the main response axis of the array or due to beam broadening)

 $T_{R}(f)$ = the transducer power response characteristic

Y(f) = the pre-emphasis filter characteristic

 $N_{W_i}(f, R)$ = the propagation loss for the i^{th} path from the target to the receiver

The noise power spectrum at the input to the detector, on the other hand, is given by:

$$P_{n}(f) = \frac{\left[L_{SN}(f) + L_{ON}(f)\right] T_{R}(f) Y(f)}{N_{DI}(f)}$$
(3)

where

 $L_{SN}(f) = own ship's self-noise level$

 $L_{ON}(f)$ = ocean background level

 $N_{DI}(f) = directivity index$

A computer program has been developed to calculate the SNR as given in Equation (1). The program calculates the signal power spectrum and the noise power spectrum at discrete points within the receiver operating band by use of Equations (2) and (3). Equation (1) is then evaluated by numerical integration. The computations are repeated for each of the desired ranges.

Since the objective of the present study was to determine the effect of vertical beam broadening and depression, the previous computations were carried out under numerous combinations of vertical depression angle and vertical beam broadening. The effects of broadening can be accounted for by appropriate adjustment of the vertical beam shape factor.

The directivity index for the BQR-7 DIMUS utilized for the computations was taken from a rough draft copy of a memo (no title) issued by USNUSL, dated 31 July 1967. No change in directivity was assumed due to beam depression. However, adjustments were made in the vertical beam shape factor to account for the loss in directivity due to beam broadening.

The vertical beam shape factor was assumed to be that of a three-element line array (similar to the BQR-7 stave) having a 39-inch spacing between the elements. Broadening was accomplished by delaying the outer two elements equal amounts with respect to the center element, thus resulting in a vertical time delay taper which is an even function of element location. This results in a less coherent addition of signals arriving in the form of a plane wave along the vertical boresight, thereby producing a reduction in vertical directivity.

The propagation loss characteristics used for the study were those which are published in USNUSL Technical Memo 2111-020-67. The ocean model is the Norwegian Sea (during summer) having a depth of 2000 fathoms, a layer depth of 100 feet, and sea state of either 2 or 4. The spectral characteristics of the target model were also taken from this document,

2. THEORETICAL BEAM PATTERN

A CONTRACT

The theoretical beam pattern, as implied in this report, is the normalized plot of only that portion of the array output that is due to signal. It also includes the effects of timing errors.

If the instantaneous output of the array is considered as some voltage, the average value of the voltage squared is proportional to the average power out of the array. If the instantaneous output of the array is considered as some digital number, the average value of the number squared is the variance of the distribution of numbers out of the array. In either case, there will be some power (or variance) out of the array when no signal i^ present due to noise. The signal addition will cause this output power (or variance) to change. It is only this change in output which is of significance in the theoretical beam pattern.

For any fixed target strength, the change in output power will vary with the angle of arrival of the plane wave from the target. A three-dimensional plot of how this change in output varies with the angle of arrival, and normalized to a peak of unity, defines the theoretical beam pattern.

To define the theoretical beam pattern in mathematical terms, let

 $f_i(t)$ = total output of element i at time t

 T_i = applied time delay in output of element i

 W_{i} = arbitrary weighting applied to output of element i

 $f_{o}(t) = \text{total output of array at time t}$

N = number of elements used in array

Since the array output is formed by adding the delayed outputs of each element, it follows that

$$f_{o}(t) = \sum_{i=1}^{N} W_{i} f_{i}(t - T_{i})$$
 (4)

The output of each element is composed of a noise portion, and a signal portion.

 $f_{ni}(t)$ = noise portion of output of element i at time t

 $f_{si}(t)$ = signal portion of output of element i at time t

then

$$f_{i}(t) = f_{si}(t) + f_{ni}(t)$$
 (5)

Consider some hypothetical omnidirectional element located at an arbitrary reference point. Let

 $f_s(t)$ = output of hypothetical reference element at time t due to a plane wave signal from a distant point source target

t, = transit time of plane wave front from reference point to element i

w_i = relative response of element i compared to hypothetical standard; w_i can be made a function of angle of arrival to account for element directivity

From the above definitions, it follows that

$$f_{si}(t) = w_i f_s(t - t_i)$$
(6)

Squaring Equation (4), taking the average value, and combining with Equations (5) and (6) leads to the average variance (or power) out of the array

$$\sigma_{o}^{2} = \overline{f_{o}^{2}(t)} = \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{W_{i} W_{j} [w_{i} f_{s}(t - t_{i} - T_{i}) + f_{ni}(t - T_{i})] [w_{j} f_{s}(t - t_{j} - T_{j}) + f_{nj}(t - T_{j})]}$$
(7)

A bar over a quantity indicates time average and is assumed to be the same as an ensemble average.

Since the signal and noise are independent of each other, the average value of cross product terms between signal and noise in Equation (7) is zero. Equation (7) thus simplifies to

$$\sigma_{o}^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} (W_{i} \ w_{i})(W_{j} \ w_{j}) \frac{f_{s}(t - t_{i} - T_{i}) f_{s}(t - t_{j} - T_{j})}{W_{i} W_{j} f_{ni}(t - T_{i}) f_{nj}(t - T_{j})}$$

Notice that the first term in the above accounts only for signal, while the second is only noise. In keeping with the definition of the theoretical beam pattern presented earlier, interest lies only in the signal portion of this output.

The time delays T_i are chosen such that when the signal is on boresight, $T_i = -t_i$. On boresight then, the time averaged quantity reduces to $\frac{1}{t_s^2}$ (t). Normalizing the signal portion of Equation (8) to this peak value on boresight and recognizing the normalized autocorrelation function of the signal as indicated in Equation (9) leads to Equation (10).

$$\rho_{s}(-t_{i}-T_{i}+t_{j}+T_{j}) = \frac{\overline{f_{s}(t-t_{i}-T_{i})} \, f_{s}(t-t_{j}-T_{j})}{\overline{f_{s}^{2}(t)}}$$
(9)

$$p = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (W_i \ w_i)(W_j \ w_j) \ \rho \ (-t_i - T_i + t_j + T_j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} (W_i \ w_i)(W_j \ w_j)}$$
(10)

where

p = theoretical beam pattern of linear beamformer

Finding the argument of the autocorrelation coefficient in terms of the geometry of the array still remains. Let

 \vec{r}_i = vector from the arbitrarily chosen reference point for the hypothetical standard transducer discussed above to element i

c = magnitude of the velocity of propagation of the plane wave front (signal)

c = unit vector in the direction of propagation of the plane wave front

Using conventional notation for a vector dot product, it follows that the transit time from the reference point to element i is

$$\mathbf{t_i} = (\frac{1}{\mathbf{c}}) \ \overrightarrow{\mathbf{r_i}} \cdot \overrightarrow{\mathbf{c}}$$
 (11)

Let

 \vec{s} = unit vector in the direction chosen for boresight

It follows from the definition of \vec{c} and \vec{s} that when a target is on boresight, vectors \vec{c} and \vec{s} coincide. Consequently, the exact time delay required for beamforming is the negative of the transit time given by Equation (11) when \vec{c} is replaced by \vec{s} .

The applied time delay (T_i) may deviate slightly from this ideal value due to quantizing errors. The error in time delay actually used will then be given by

$$\mathbf{e}_{\mathbf{i}} = -\left[\mathbf{T}_{\mathbf{i}} + \left(\frac{1}{\mathbf{c}} \right) \, \overrightarrow{\mathbf{r}}_{\mathbf{i}} \cdot \overrightarrow{\mathbf{s}} \right] \tag{12}$$

The argument of the autocorrelation coefficient in Equation (10) can now be found by combining Equations (11) and (12) and factoring. Thus

$$(-t_{i} - T_{i} + t_{j} + T_{j}) = (\frac{1}{c}) (\overrightarrow{r}_{i} - \overrightarrow{r}_{j}) \cdot (\overrightarrow{s} - \overrightarrow{c}) + (e_{i} - e_{j})$$

$$(13)$$

Notice that this argument is independent of the arbitrarily chosen origin. It depends only on the vector distance between elements i and j, and the difference between boresight and the actual angle of arrival.

Equations (10) and (13) give the desired theoretical beam pattern by letting the vector $\vec{\mathbf{c}}$ scan through the region of interest. Arbitrary spectra are accounted for by appropriately specifying the normalized autocorrelation function $\rho_{\mathbf{S}}$. If the power density spectral distribution of a signal is known, its autocorrelation function can be derived by a Fourier transform relationship. Element directivity, amplitude weighting to shape beams, and opaque arrays can be accounted for by the factors W_i w_i . (These are unity for omnidirectional elements in a transparent array.) Errors in timing are accounted for by \mathbf{e}_i .

When computing the theoretical beam patterns, it has been assumed that the element directivity is unity, and that the amplitude weighting is uniform. Timing errors which are included in the theoretical beam patterns are due to two sources. One type of timing error is caused by time delay quantization. The second type of error results from using a single compromise set of time delays for two or more classes of submarines.

SECTION III

RESULTS

1. VERTICAL BEAM COVERAGE STUDY

a. Theoretical Results

One of the objectives of this study was to determine whether the detectability of targets could be improved by depressing or broadening the vertical beam. However, the term "detectability" is arbitrary since there is no clear cut definition of what is required to constitute a target detection. The approach which was taken here was to calculate the SNR at the detector output. This performance measure can then, at least in theory, be related to the probability of detection. Calculation of the probability of detection, however, is not considered within the scope of this report.

The computer program which has been developed calculates the SNR for a given input target range. The set of target ranges which was utilized is 1.0, 1.6, 2.5, 4.0, 6.3, 8.0, 10.0, 16.0, 25.0, 40.0, and 50.0 kiloyards. This choice of ranges was used since the propagation loss data for these parameters has been published. To present the computer output in a useful format for the present study, the SNR was calculated for these ranges at 1° increments in vertical steering angle ranging from 0 through 45° depression angle. The data was then linearly interpolated to determine the contours of constant SNR on a vertical depression angle versus range plot.

Numerous inputs are required in order to calculate the signal power spectrum and the noise power spectrum. For this purpose it was assumed that the input signal spectrum was weighted by the present BQR-7 pre-emphasis filter and that the power response characteristic of the transducer was uniform. Furthermore, the own ship's self-noise level was modeled after the SSB(N) 616 platform moving at a speed of five knots.

All SNR contour plots shown in this section of the report are evaluated on the basis of an output filter integration time of 0.5 second. In other words, the term $\frac{1}{2T}$ in the denominator of Equation (1) has been set equal to unity. If a filter integration time other than 0.5 second is used, the SNR is theoretically shifted by 10 \log_{10} (2T). If an integration time of 12.8 seconds is used, as is anticipated for the BQR-7 DIMUS, the SNR curve is shifted by about 14 dB.

Figure 1. SNR Contours for a 10-Knot Snorkler with Target and Receiver on Same Side of Layer

Three target models for which the spectral characteristics were available were used to calculate the signal power spectrum. These were a 10-knot snorkler, a Skipjack [SS(N) 585], and a Permit [SS(N) 594] submarine. Figures 1 through 3 are the respective SNR contour plots for these three targets in the absence of vertical beam broadening. The results for these plots are based on the assumption that the target and the receiver are located on the same side of the layer. The plots are repeated in Figures 4 through 6 for the case where the target and the receiver are located on opposite sides of the layer. Sea state 2 is assumed in each case.

As expected, the high SNR contours decrease in range as the vertical beam is depressed. This occurs since the energy in the surface duct (which is the primary propagation mode at short range) enters the system off the main response axis of the vertical beam pattern. For noisy targets such as the 10-knot snorkler, a definite range improvement is noted by depressing the vertical beam by 9 or 10°. It should be emphasized that this improvement is totally due to the fact that the target is extremely noisy and that the signal energy in the bottom bounce propagation mode is sufficient to yield a high SNR at long ranges. The results indicate that the 24-dB contour extends beyond the 50-kyd range for an integration time of 0.5 second regardless of whether the target and receiver are located on the same or opposite sides of the layer. With an integration time of 12.8 seconds each of the contours shown is theoretically improved by an additional 14 dB.

For quiet targets such as the Permit submarine, an improvement in range is not so obvious. It tends to be limited by the assumptions with respect to the environment, directivity, and the improvement resulting from an increased integration time. If there is no loss in the vertical directivity due to depressing the beam and the full 14 dB of SNR improvement is realized by the BQR-7 DIMUS 12.8 seconds integration time, the 0-dB contour would fall between the present -12 and -18 dB contour in Figure 3. This would then result in improved range performance for the 0-dB contour if the beam were depressed 10 to 15°. It should be emphasized however, that if in practice the SNR improvement is closer to 6 dB, then the 0-dB contour gives considerably worse range performance than it would if the vertical beam had not been depressed at all. The same general conclusions can be made with respect to the case where the target and the receiver are situated on opposite sides of the layer (see Figure 6). If the theoretical improvement due to time averaging 12.8 seconds could be achieved, the best 0-dB range contour would be obtained by depressing the beam between 20 and 25°.

Figure 2. SNR Contours for a Skipjack Submarine with Target and Receiver on Same Side of Layer

Figure 3. SNR Contours for a Permit Submarine with Target and Receiver on Same Side of Layer

Figure 4. SNR Contours for a 10-Knot Snorkler with Target and Receiver on Opposite Sides of Layer

Figure 5. SNR Contours for a Skipjack Submarine with Target and Receiver on Opposite Sides of Layer

Figure 6. SNR Contours for a Permit Submarine with Target and Receiver on Opposite Sides of Layer

SNR contour plots including the effects of vertical beam broadening using the Permit submarine for target radiated noise were computed. This target model was chosen since it has the least favorable (quietest) characteristics for detection. Before presenting the results, a few comments are in order to clarify the method used to achieve the vertical beam broadening.

Computerized implementation of vertical beam broadening was accomplished by appropriate adjustment of the vertical beam shape factor of Equation (2). The vertical beam pattern was assumed to be independent of the horizontal steering angle. Furthermore, the vertical pattern was assumed to be equivalent to that of a three-element line array. Broadening was achieved by delaying the outer two elements by equal amounts. Originally it was intended to accomplish beam broadening by computing the applied time delays on the basis of an erroneous velocity of sound which is higher than that experienced at sea. Since it was more feasible however, from the standpoint of existing computer programs to implement the broadening procedure as outlined above, the former approach was selected. This method also has the flexibility of varying the depression angle and the broadening independently.

To illustrate that vertical beam broadening can be achieved by use of this method, the vertical beam patterns for the BQR-7 array were calculated using various amounts of delay for the upper and lower layers (or rows) of elements. The results are shown in Figures 7 through 13. Each of these figures shows the vertical beam pattern for seven specific beams. Beams 1 through 3 are directed toward the stern of the ship, Beam 12 is directed toward the port side, and Beams 29 through 31 are directed forward. Note that a separate abscissa is drawn for each beam. Each beam is normalized so that the 0-dB point represents completely coherent addition of the input signal (a theoretical maximum). Any loss is therefore caused by the time delay errors required for broadening or time delay errors due to quantization. Ticks are drawn at 3-dB intervals from the peak response of each beam.

The State of the S

Figure 7 represents the vertical patterns without broadening. Figures 8 through 13 indicate the results obtained by applying delays up to 375 μ s in steps of 62.5 μ s. Note specifically how the beam is broadened by increasing amounts of delay. Further note that broadening is accompanied by a noticeable reduction in gain along boresight.

Figure 7. Vertical Beam Patterns Without Broadening

Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by 62.5 μs Figure 8.

Vertical Beam Patterns Obtained by Delaying Upper and Lower Rows of Elements by 125 μs Figure 9.

The second secon

CONFIDENTIAL

CONFIDENTIAL

Figures 14 through 16 are the SNR contours for various amounts of broadening with the target and receiver on the same side of the layer. Figure 14 indicates the results obtained by applying a 62.5- μ s delay to each of the outer elements of the stave while Figures 15 and 16 are the results for applying 125- and 187.5- μ s delays, respectively. Figures 17 through 19 indicate the results for identical amounts of broadening but with the target and receiver on opposite sides of the layer.

The particular delays chosen to implement vertical beam broadening for the SNR contours were selected to give a specified amount of phase shift between the outer and center elements. The resulting phase shifts at the band center frequency are $\frac{\pi}{8}$, $\frac{\pi}{4}$, and $\frac{3\pi}{8}$ radians.

One observes the same trends for broadening as were observed for depression only. Low SNR contours show improved range performance. The range improvement for low SNR contours is achieved however at the expense of reduced performance at higher SNR contours. The detectability of quiet targets, such as the Permit, at shorter ranges has been impaired.

Figures 20 and 21 show the results for a Permit target, no vertical beam broadening and sea state 4. Note from these curves that even if a 12-dB improvement were achieved through integration, beam depression would result in lower ranges for the 0-dB SNR contour.

Figure 14. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer

Figure 15. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer

Figure 16. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Same Side of Layer

Figure 17. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer

Figure 18. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer

Figure 19. SNR Contours with Vertical Beam Broadening for Permit Submarine with Target and Receiver on Opposite Sides of Layer

Figure 20. SNR Contours for a Permit Submarine with Target and Receiver on Same Side of Layer with Sea State 4

Figure 21. SNR Contours for a Permit Suomarine with Target and Receiver on Opposite Sides of Layer with Sea State 4

Figure 22. BQR-7 DIMUS Beamformer Correlation Patterns Based on a Sound Velocity of 5120 Feet per Second

b. Results from Sea Test Data

An attempt was made to verify the theoretical results by beamforming taped data recorded at sea. The tape is a recording of the BQR-7 preamplifier outputs aboard the SSB(N) 657, Francis Scott Key. The USS Angler served as the target ship. Although Key was on her first exercise following commissioning, the performance of her sonar appeared to be excellent.

Tape No. 10 was utilized for the present experimental verification, and taken while Angler circled Key at a range of about 2000 yards. Angler was snorkeling while Key, situated at periscope depth, maintained a 3-knot straight course. Sea states 2 and 3 existed. The water depth was approximately 1650 fathoms. The velocity of sound was estimated at 4975 feet per second.

Figures 22 through 24 illustrate the correlation patterns obtained by hard-limiting, sampling, and beamforming the hydrophone outputs. The ordinate values on each of the plots correspond to a digital number proportional to the beamformer output.

Figure 22 illustrates plots of all 62 of the BQR-7 DIMUS beams. The velocity of sound used to compute the delays for beamforming this data is 5120 feet per second, which is 145 feet per second higher than estimated actual velocity. The steering angles used to beamform the data were chosen on the basis of giving the best coverage for the Key hull configuration.

Figures 23 and 24 are plots of the outputs of four of the aft beams (Beams 2 through 5) and four forward beams (Beams 28 through 31) using a sound velocity of 4950 feet per second. Performance of only those beams most sensitive to the velocity of sound were verified. This was primarily done to conserve computer time since the beamforming runs are quite lengthy.

If the theoretical results are to be verified by actual sea test data, then the response curves of Figures 23 and 24 should show better performance than the corresponding curves illustrated in Figure 22. This should be true especially since the target was at close range where the surface duct is the primary propagation mode. Consequently, beam depression or vertical beam broadening should hinder rather than enhance detection of the target. Upon comparing the response curves of the respective beams, it is observed that the best performance is obtained by calculating time delays using a sound velocity of 4950 feet per second.

CONFIDENTIAL

The second secon

2. COMPROMISE BEAMFORMER FEASIBILITY STUDY

It was the intent of this phase of the study to determine whether a suitable compromise beamformer, or perhaps two compromise beamformers, could be designed to accommodate the following four classes of submarines.

SS(N) 594* SS(N) 671 SSB(N) 598 SSB(N) 608**

The definition of a compromise beamformer, as implied here, is that it must provide suitable fixed steering delays to perform the beamforming function for more than one class of submarines. The selection of the time delays for the compromise beamformer must therefore be made on the basis of optimizing the combined performance of more than one class of submarines.

To provide a standard of comparison, the theoretical horizontal beam patterns were calculated for each of the four classes of submarines. These are the patterns which are obtained by computing the steering delays for each class of submarines assuming a sound velocity of 4950 feet per second. These delays are then quantized to the nearest $62-\mu s$ interval. The pattern is subsequently generated using these delays in conjunction with Equation (10). For the purpose of generating the theoretical patterns, a flat spectrum having a bandwidth of 1000 Hz and centered at 1000 Hz was assumed. This results in a normalized autocorrelation function as depicted in Figure 25.

The theoretical beam patterns are plotted in Figures 26 through 29. Only 31 of the 62 beams are plotted since the other 31 beams are identical to those shown (because of the symmetry of the array). Note that in each of the theoretical patterns three of the beams are appreciably degraded. This results from the fact that some of the steering delays for these beams are larger than the available delays of the beamformer. Consequently, the output from these elements is added with a delay which is less than required. The delays however, are selected so that there will be positive correlation with the output of the remaining elements. This is achieved by selecting a proper time delay based on the

^{*} The results for the SS(N) 594 are also applicable to the SS(N) 637.

^{**} The results for the SSB(N) 608 are also applicable to the SSB(N) 616 and the SSB(N) 640.

Figure 25. Normalized Autocorrelation Function for Assumed Signal Spectrum

Figure 26. Theoretical Lorizontal Beam Patterns for SS(N) 594

Figure 27. Theoretical Horizontal Beam Patterns for SSB(N) 598

Figure 28. Theoretical Horizontal Beam Patterns for SSB(N) 608

Figure 29. Theoretical Horizontal Beam Patterns for SS(N) 671

normalized autocorrelation function. In practice the elements which are improperly delayed degrade the beam output very little since the elements which are affected have very little response in the boresight direction of the beams involved. The peak responses for the theoretical beam patterns for the four classes of submarines are tabulated in Table 1.

TABLE 1
PEAK RESPONSE OF THEORETICAL BEAM PATTERNS

	Gain (dB)			
Beam Number	SS(N) 594	SSB(N) 598	SSB(N) 608	SS(N) 671
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	-1.69 -1.04 -0.56 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.04 -0.05 -0.03	-1.51 -1.04 -0.56 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04	-1.69 -1.05 -0.56 -0.12 -0.04 -0.04 -0.04 -0.03 -0.03 -0.04	-1.78 -1.17 -0.56 -0.15 -0.04 -0.05 -0.04 -0.05 -0.03 -0.04 -0.03 -0.03 -0.03 -0.04 -0.03 -0.04 -0.05 -0.04 -0.04 -0.05 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
27 28 29 30 31	-0.04 -0.04 -0.05 -0.04 -0.04	-0.05 -0.04 -0.04 -0.04 -0.04	-0.03 -0.04 -0.04 -0.04 -0.03	-0.04 -0.03 -0.05 -0.04 -0.04

Compromise beamformers were investigated for various combinations of array configurations (classes of submarines). The delay values for the compromise beamformer were calculated on the basis of the following method. The average delay value per element was computed for each beam and class of submarine. The average delay value was then adjusted so that the corresponding beam of each class of submarine possessed the same average delay per element. The adjustment was made by adding or subtracting a constant to each delay value for each beam (different for each beam but the same for each element). This does not alter the pattern since it is only the delay difference between elements which is instrumental in producing the pattern. Thereafter, the mean value of the delays of the corresponding elements in corresponding beams was computed to determine the compromise delay values. Any constant delay which had been added or subtracted to adjust the mean delay per element was then reinstated.

Figures 30 through 33 illustrate the beam patterns for the four classes of submarines if a single compromise beamformer was designed to handle all four classes. Table 2 lists the corresponding peak responses for each class submarine using the four-array compromise and plots of these losses are shown in Figure 34.

Figures 35 through 37 are the beam patterns for the SS(N) 594, SSB(N) 598, and the SSB(N) 608 using a compromise beamformer for these three classes of submarines.

The corresponding losses in peak response are tabulated in Table 3 and a plot of these losses is shown in Figure 38. Various other two-array compromises were attempted. The corresponding beam patterns are shown in Figures 39 through 51. The resulting losses in peak response are tabulated in Table 4 and plotted in Figures 52 through 54.

The "worst case" losses in peak response resulting from all combinations of compromise delay values were tabulated on a beam to beam basis. These are plotted in Figure 55.

The arrival times and the sampling times for numerous configurations have been compiled and are shown in Figures 56 through 63. The arrival time is computed by subtracting the delay time from a positive constant greater than the largest required delay. The relationship between the delay times and the sampling times, however, is not so obvious. Using the beamformer design as given in "Final Report, AN/BQR-7, All Digital Preformed Beam Receiver Study (U)" dated September 30, 1965, the sampling times can be computed from the arrival time as outlined in this document.

Figure 30. Horizontal Beam Patterns of SS(N) 594 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations

Figure 31. Horizontal Beam Patterns of SSB(N) 598 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations

Figure 32. Horizontal Beam Patterns of SSB(N) 608 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations

Figure 33. Horizontal Beam Patterns of SS(N) 671 Using a Four-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, SSB(N) 608, and SS(N) 671 Configurations

TABLE 2

PEAK RESPONSE VALUES FOR FOUR-ARRAY COMPROMISE

	Gain (dB)			
Beam	SS(N) 594	SSB(N) 598	SSB(N) 608	SS(N) 671
Number	ος,	S	σ2	02
1	-1.73	-1.83	-1.71	-1.85
2	-1.09	-1.28	-1.08	-1.22
3	-0.60	-0.82	-0.60	-0.77
4	-0.13	-0.25	-0.14	-0.24
5	-0.15	-0.32	-0.11	-0.28
6	-0.12	-0.27	-0.10	-0.37
7	-0.14	-0.34	-0.08	-0.42
8	-0.11	-0.32	-0.02	-0.46
9	-0.10	-0.41	-0.04	-0.57
10	-0.07	-0.39	-0.07	-0,62
11	-0.12	-0.50	-0.06	-0.57
12	-0.07	-0.58	-0.08	-0.58
13	-0.12	-0.54	-0.12	-0.49
14	-0.06	-0.49	-0.08	-0.64
15	-0.10	-0.51	-0.10	-0.69
16	-0.13	-0.62	-0.08	-0.60
17	-0.08	-0.53	-0.14	-0.66
18	-0.08	-0.59	-0.14	-0.72
19	-0.10	-0.54	-0.13	-0.57
20	-0.11	-0.64	-0.10	-0.52
21	-0.11	-0.57	-0.11	-0.42
22	-0.10	-0.52	-0.09	-0,26
23	-0.09	-0.44	-0.17	-0,28
24	-0.16	-0.40	-0.16	-0.29
25	-0.07	-0.44	-0.16	-0.26
26	-0.14	-0.38	-0.21	-0.19
27	-0.15	-0.45	-0.18	-0.17
28	-0,11	-0.54	-0.20	-0.12
29	-0.09	-0.66	-0.23	-0.12
30	-0.20	-0.67	-0.24	-0.20
31	-0.12	-0.72	-0.31	-0.21

Figure 34. Plot of Peak Response Values for Four-Array Compromise

Figure 35. Horizontal Beam Patterns of SS(N) 594 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations

Figure 36. Horizontal Beam Patterns of SSB(N) 598 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations

Figure 37. Horizontal Beam Patterns of SSB(N) 608 Using a Three-Array Compromise Beamformer Based on SS(N) 594, SSB(N) 598, and SSB(N) 608 Configurations

TABLE 3
PEAK RESPONSE VALUES FOR THREE-ARRAY COMPROMISE

	Gain (dB)			
Beam Number	SS(N) 594	SSB(N) 598	SSB(N) 608	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	-1.70 -1.09 -0.65 -0.13 -0.10 -0.13 -0.12 -0.10 -0.13 -0.08 -0.09 -0.09 -0.09 -0.09 -0.10 -0.13 -0.14	-1.82 -1.26 -0.69 -0.22 -0.26 -0.19 -0.23 -0.16 -0.17 -0.20 -0.16 -0.27 -0.22 -0.22 -0.25 -0.30 -0.33 -0.36 -0.43 -0.38	-1.67 -1.09 -0.62 -0.08 -0.09 -0.10 -0.06 -0.12 -0.13 -0.16 -0.17 -0.17 -0.16 -0.14 -0.17 -0.19 -0.16 -0.13 -0.15	
22 23 24 25 26 27 28 29 30 31	-0.13 -0.15 -0.17 -0.13 -0.16 -0.18 -0.14 -0.24 -0.22 -0.19	-0.31 -0.35 -0.41 -0.38 -0.44 -0.40 -0.52 -0.37 -0.55 -0.51	-0.24 -0.20 -0.19 -0.17 -0.19 -0.24 -0.17 -0.34 -0.30 -0.39	

Figure 38. Plot of Peak Response Values for Three-Array Compromise

Figure 39. Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 598 Configurations

Figure 40. Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 598 Configurations

Figure 41. Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SSB(N) 608 and SS(N) 671 Configurations

Figure 42. Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SSB(N) 608 and SS(N) 671 Configurations

Figure 43. Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 608 Configurations

Figure 44. Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SSB(N) 608 Configurations

Figure 45. Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SS(N) 671 Configurations

Figure 46. Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SS(N) 671 Configurations

Figure 47. Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SS(N) 671 Configuration

~;

Figure 48. Horizontal Beam Patterns of SS(N) 671 Using a Two-Array Compromise Beamformer Based on SS(N) 594 and SS(N) 671 Configurations

Figure 49. Horizontal Beam Patterns of SSB(N) 608 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations

Figure 50. Horizontal Beam Patterns of SSB(N) 598 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations

THE SECTION OF THE SE

Figure 51. Horizontal Beam Patterns of SS(N) 594 Using a Two-Array Compromise Beamformer Based on SSB(N) 598 and SSB(N) 608 Configurations

THE PARTY OF THE P

PEAK RESPONSE VALUES FOR VARIOUS TWO-ARRAY COMPROMISES

				6	~ ~							0.0			~		~	_						~ ~		~		_	_	~	-41	$\overline{}$
	rs	809 (N		-1.68	-1.15	-0.04	-0.10	٦,	-0.14	- ·	-0.16	-0.12	-0.20	-0.22	-0.22	-0.2	-0.28	c,	-0.21	∾.	oi i	N, I	-0.26	N (\sim	-0.28	-0.31	-0.27	-0.24	-0.38		-0.50
	ise Pair	79 (A) 298		-1.71	-1.15	-0.11	-0.16	-0.15	-0.14	-0.14	-0.16	-0.23	-0.17	-0.24	-0.22	-0.26	-0.20	-0.21	-0.31	-0.25	-0.22	-0.26	-0.16	-0.15	-0.19	-0.23	-0.19	-0.27	-0.36	-0.33	-0.46	-0.36
	Compromise		(N)ss	-1.81	-1.09	-0.17	-0.20	-0.22	-0.25	-0.23	67.0.	-0.28	-0.28	-0.17	-0.27	-0.19	-0,16	-0.26	-0.26	-0.14	-0.17	-0.15	60.0-	-0.16	-0.15	-0.10	-0.11	-0.10	-0.08	-0.08	•	-0.17
	Co	₽69	(N)SS	-1.86	-1,11	-0.65 -0.15	-0.17	ᅻ.	-0.19	-0.21	-0.24	-0.10	-0.24	-0.27	-0.18	-0.27	-0.26	-0.19	-0.18	-0.24	-0.18	-0.14	-0.18	-0.14	-0.14	-0.16	-0.12	-0.10	-0.12	-0.08	60.0-	-0.13
	SJ		(N)SS	-1.88	-1.34	-0.21	-0.22	-0,35	-0.37	-0.43	-0.41	-0.20	-0.57	-0.50	-0.53	-0.44	-0.59	-0.59	-0.83	-0.63	-0.48	-0.53	-0.36	-0.32	-0.34	-0,31	-0.25	-0.25	-0.33	-0.32	•	-0.46
(dB)	ise Pair	1) 298		-1.67	-1.31	-0.58	-0,32	-0.25	-0.33	-0.34	-0.45	-0.41	-0.56	-0.50	-0.54	-0.67	-0.57	-0.61	-0.48	-0.49	ය	-0.44	-0.30	Ŋ	-0.23	OI .	લ	-0.28	-0.19	-0.29	-0.34	-0.37
Gain (dB)	ompromise	809 (1		-1.70	-1.68	-0.07	60.0-	-0.05	-0.05	90.0-	20.0-	0000	-0.05	90.0-	-0.05	-0.08	-0.08	-0.12	-0.08	60.0-	-0.07	-0.07	-0.07	-0.10	-0.07	-0.12	-0.11	90.0-	60.0-	-0.12		-0.21
	သ		(N)SS	-1.77	-1.07	-0.61 -0.05	-0.04	-0.05	-0.10	90.0-	90.0-	-0.00 -0.05	-0.08	-0.07	90.0-	-0.05	-0.07	-0.04	-0.07	-0.07	-0.10	-0.10	-0.12	80.0-	-0.12		80.0-	-0.13	-0.11	-0.12	-0.18	80.0-
	s,	1) 268		-1.59	~; (-0.65	. =	60.0-	-0.12	-0.12	-0.12	-0.12	-0.19	-0.25	-0.20	-0.28	-0.22	-0.18	-0.27	-0.20	-0.22	-0.23	-0.15	-0.19	-0.18	-0.21	-0.16	-0.19	-0.21	-0.22	-0.34	-0.33
	ise Pairs	•	(N)SS	-1.72	-1.12	-0.08 -0.08	-0.11	-0.10	80.0-	-0.10	-0.13	-0.13	-0.13	-0.11	-0.18	-0.12	-0.21	-0.27	-0.21	-0.24	-0.24	-0.21	-0.15	-0.16	-0.23	-0.20	-0.27	-0.23	-0.25	-0.27	-0.20	-0.27
	Compromise		(N)SS	-1.84	-1.23	-0.59	-6,13	-0.15	-0.16	-0.11	-0.16	12.0-	-0.25	-0.14	-0.14	-0.23	-0.20	-0.18	-0.23	-0.15	-0.19	-0.17	80.0-	-0.10	-0.15	-0.13	-0.10	-0.10	-0.11	-0.13	80.0-	60.0-
	ပိ	809 (1 1)	SSB (I	-1.81	-1.23	-0.13	-0.16	-0.13	-0.14	-0.21	-0.20	-0-11	-0.16	-0.23	-0.21	-0.14	-0.17	-0.16	-0.15	-0.18	-0.14	-0.13	-0.16	-0.17	-0.14	-0.13	-0.11	-0.11	-0.10	-0.12	-0.12	-0.07
			Beam Number	1	77	დ 4	ດນ	9	_	∞ ‹	တ ငှ	7 -	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31

Figure 52. Plot of Peak Response Values for a Two-Array Compromise Between the SS(N) 594 and SS(N) 671 and a Two-Array Compromise Between the SSB(N) 608 and SSB(N) 598 Configurations

Figure 53. Plot of Peak Response Values for a Two-Array Compromise Between the SS(N) 594 and SSB(N) 608 and a Two-Array Compromise Between the SSB(N) 598 and SS(N) 671 Configurations

Figure 54. Plot of Peak Response Values for a Two-Array Compromise Between the SSB(N) 608 and SS(N) 671 and a Two-Array Compromise Between the SS(N) 594 and SSB(N) 598 Configurations

Worst Case Loss in Peak Response Resulting from Various Combinations of Compromise Beamformers Figure 55.

L

E

E

O

				HYDROP	HONE NUM	BER					2
		1	2	3	4	5	6	7	8	9	10
	1							1	6	15	20
	2			1	6	14	19	26	31	39	·44 ફ
	3	1	6	12	16	22	27	32	37	44	48
	4	4	8	13	16	22	26	30	34	40	44
	5	10	13	18	20	25	28	32	35	40	43
	6	21	24	28	30	34	37	40	42	47	49
	7	31	33	36	38	42	44	47	49	53	5 5
	8	41	43	46	47	50	52	54	56	59	61
ER	9	52	54	56	58	60	51	63	65	67	69
BEAM NUMBER	10	55	56	58	59	61	62	63	64	66	68
Z	11	70	71	72	73	74	75	76	76	78	79
BEA1	12	79	79	80	80	81	81	82	82	83	83
	13		82	83	83	83	93	83	83	83	83
	14		85	85	85	84	83	83	83	82	82
	15		89	89	88	87	56	85	84	83	83
	16		94	93	92	90	89	87	86	85	84
	17		99	98	96	94	92	90	89	87	85
	18		103	101	99	96	94	92	90	87	86
	19			102	100	97	94	91	89	86	84
	20			105	103	99	96	93	90	86	84
	21				106	101	98	94	92	87	84

HYDROPHONE NUMBER

9	10	11	12	13	14	15	16	17	18	19	20	21	55
15	20	27	33	40	46	52	60	66	73	79	85	92	99
39	-44	50	56	63	69	75	83	89	95	101	108	114	121
44	48	53	59	64	70	75	82	87	93	98	104 -	110	117
40	44	48	53	58	62	67	73	78	93	88	93	98	105
40	43	47	51	55	59	64	69	7.3	77	82	86	91	97
47	49	53	56	60	63	67	71	75	79	83	87	91	96
53	5 5	58	61	64	67	7,1	75	78	82	85	89	93	98
59	61	64	67	69	72	75	7,9	82	95	88	91	95	99
67	69	71	73	76	78	81	84	86	89	92	95	98	102
66	68	69	71	73	75	77	80	82	54	87	39	92	95
78	79	80	81	83	84	86	88	90	92	94	96	98	101
83	83	84	85	86	87	89	90	91	93	94	' 96	98	101
83	83	83	84	84	85	86	87	88	59	90	91	93	95
82	82	82	82	82	82	83	83	84	84	85	86	87	88
83	83	82	81	81	81	81	81	81	51	81	82	82	83
85	84	83	82	81	80	80	80	79	79	78	78	78	79
87	85	84	82	81	80	80	78	77	77	76	75	75	75
87	86	84	82	80	78	78	76	175	7,3	72	71	70	70
86	84	4	79	77	75	74	72	70	68	66	65	64	63
86	84	81	78	7.6	73	1 72	69	67	65	63 .	61	59	58
87	84	81	78	75	72	71	67	64	62	59	57	55	53

HYDROPHONE NUMBER

22	23	24	25	26	27	28	29	30	31	32
99	104	110	115	118	120	118	114	109	105	98
121	103	109	115	120	113	113				
117	122	104	111	117						
105	110	116	122	104						
97	101	107	114	170						
96	101	106	112	119						
98	102	107	113	119						
99	103	108	114	120						
102	106	110	116	122						
95	99	103	108	114						
101	104	108	113	119						
101	103	107	112	117						
95	97	100	105	110	118					
88	90	93	97	102	110					
83	85	87	91	96	103					
79	80	82	85	90	97					
75	76	77	80	85	92					
70	70	71	74	78	85					
63	63	63	65	69	76	82				
58	57	57	59	62	, 69	75				
53	52	52	53	56	95	68	75			

5.5.

HYDROPHONE NUMBER

37 38 39 40 41 42 43 44 45 46 47 48

35

Figure 56. Arriva

CONFIDENT

HYDROPHONE NUMBER

45 46 47 48 49 50 51 52

Figure 56. Arrival Times for SS(N) 594 Class Submarine (Sheet 1)

73/74

		•	_	HYDRO 3	PHONE NUM	ивен 5	6	7	8	9	10	11
		1	2	s	•	103	100	96	93	88	85	81
	22					100	106	102	99	93	. 90	86
	23						100	103	99	93	90	85
	24							100	101	95	91	86
	-								101	97	93	88
	26									,,	94	89
	27											92
	28											-
	29											
	30											
	31											
BER	32											
(MO)	33											
BEAM NUMBER	34											
BE/	35											
	36											
	3?											
	38											
	39											
	40											
	41											
	42											
	43											
	44											

HYDROPHONE NUMBER

				11.12.10									
11	12	13	14	15	16	17	18	19	20	21	22	23	24
	76	74	71	69	65	62	39	56	53	51	48	47	46
81		7a	74	72	68	64	61	58	54	51	49	47	46
86	82 .	76 77	73	70	66	62	58	54	51	47	44	42	40
85	81	77	73	70	65	60	56	52	48	45	41	38	36
86	82	77 78	73	71	65	6.0	56	51	47	43	39	36	34
88	čs	78	73	70	64	59	34	49	45	40	36	33	30
89	83		76	72	66	61	56	51	46	41	36	33	29
92	87	81	76	72	66	60	54	49	44	38	33	29	25
	86	82	75	73	66	60	54	48	42	36	30	26	21
		83	81	, s 17	69	63	36	50	44	38	31	26	21
			8 6	83	75	69	62	56	50	43	36	31	25
			00	89	81	75	68	62	55	49	41	36	30
				07	88	82	75	69	62	55	48	42	36
					00	86	79	73	66	60	52	47	40
						,	52	76	70	63	56	50	44
								81	79	68	61	55	49
									73	67	60	54	48
										60	53	48	41
											59	53	47
												74	. 68
													77

		H YDRO!	PHONE NU	MBER									HYDROPH	ON
24	25	26	27	28	29	30	31	32	33	34	35	36	37	3
46	47	50	56	62	68	74								1
46	46	48	54	60	66	. 73	78							3
40	40	42	47	53	59	66	71	78						74.4
36	36	37	42	48	54	60	66	73	79					7
34	32	33	38	43	50	. 56	62	69	75	81				
30	28	29	33	38	44	51	56	63	70	. 76	82			•
29	27	27	31	36	42	48	54	61	68	74	80	86		,
25	22	22	25	29	35	41	47	54	61	67 -	73	80	86	Ì
21	18	16	18	22	28	33	39	46	52	59	55	72	78 ′	Š
21	17	14	16	19	24	29	34	41	47	54	60	66	73	1,
25	20	17	17	50	24	59	33	40	46	52	58	64	70	
30	24	50	20	21	24	29	33	39	45	50	56	62	68	;
36	30	25	24	25	27	31	34	40	45	50	55	61	66	
40	34	29	27	27	29	32	35	40	44	49	54	59	64	
44	37	32	29	29	30	33	36	40	45	49	54	58	, 63	
49	42	37	34	33	34	36	39	43	47	51	55	59	64	,
48	41	35	32	31	31	33	35	39	42	46	50	54	58	
41	35	29	25	23	23	25	27	30	33	36	40	43	47	,
47	40	34	30	28	27	28	30	32,	35	38	41	45	48	
. 68	61	55	51	48	47	48	49	51	53	56 '	59	62	65	,
77	70	64	59	56	55	35	56	57	59	. 61	64	66	69	
	76	70	65	61	50	59	60	61	62	64	66	. 68	70	,
	86	79	74	70	68	67	67	68	69	70	72	, 73	75	
		,												3

86														
78	86													
73	80	86												
70	78	84												
68	75	81	97											
66	73	78	84	.90										
64	70	75	81	86	91									
63	69	74	79	84 ,	89	94								
64	69	74	79	83	68	93	97							
58	63	68	72	76	51	85	89	95						
47	52	56	60	64	68	* 72	76	, 82	85					
48	52	56	60	63	67	71	74	79	83	87				
65	68	72	75	78	95	85	88	93	96	100	103			
69	/2	75	78	81	84	87	90	94	97	100	103	107		
. 70	73	76	78	81	83	86	88	92	94	- 97	100	104	106	
75	77	80	82	84	86	88	90	93	95	98	100	103	106	
-														

YDROPHONE NUMBER

38

39

Figure 56. Arrival Times for SS(N) 594 Cla Submarine (Sheet 2)

HYDROPHONE NUMBER

51

75/

2

HYDROPHONE NUMBER

11 12 13 14 15 16 17 18 19 20 21 22 23 24

102 108 113 117

		HYDRO	OPHONE NU	MBER									HYDROPH
24	25	26	27	26	29	30	31	32	33	34	35	36	37
		81	76	72	69	68	67	68	68	69	70	71	73
		91	86	81	78	76	76	75	75	76	76	77	78
		96	91	86	82	50	79	78	78	78	78	78	79
		105	99	94	90	88	86	85	84	83	83	83	83
		110	105	99	95	92	90	88	87	86	85	85	84
		114	108	102	98	94	92	90	88	87	85	84	83
			117	111	106	103	100	97	95	93	92	90	89
			118	112	106	102	99	96	93	91	89	67	85
			119	113	108	103	100	96	93	90	88	85	83
			120	114	108	103	99	95	92	89	86	83	80
			118	111	105	100	96	92	88	64	81	78	75
			120	114	108	102	98	93	89	85	81	78 '	74
			120	114	107	102	97	92	87	83	19	75	71
			120	113	107	101	96	90	85	81	76	72	67
			104	122	115	109	104	97	92	86	81	76	,71
			120	114	107	124	119	112	106	100	94	89	83
	114	114	123	118	112	105'	123	116	110	103	97	93	84
11,7	121	123	123	119	114	108	103	96	89	83	76	70	63

	*****	WONE NUM	ogo,									HYDRO	PHONE NU	JMBER
		PHONE NUM							.=		47	48	49	50
36	37	38	39	40	41	42	43	44	45	46				
71	73	74	76	78	80	51	83	85	87	89	91	93	96	98
77	78	79	81	82	83	54	86	87	89	90	92	93	96	97
78	79	79	81	81	82	83	84	85	86	87	88	89	91	92
83	83	83	84	84	84	95	85	86	86	87	88	88	90	9 0 8 6
85	84	84	84	84	84	84	84	84	84	84	84	85	a 5	86
84	83	82	83	82	81	81	80	ao	79	79	79	79	79	7 🕏
90	89	87	87	86	85	54	83	82	81	80	80	79	79	7
87	85	83	83	81	79	78	77	76	74	73	12	71	70	69
				78	76	74	72	70	68	67	65	64	, 62	69
85	83	81	80							60	58	56	54	5 3
83	80	. 77	76	74	71	69	67	65	62]
78	75	71	70	67	64	61	58	56	53	51	48	46	43	45
78 '	74	70	68	65	62	59	55	53	49	47	44	41	38	/ 3€
75	71	67	65	61	57	54	50	47	43	40	57	34	30	27
72	67	62	59	5 5	51	47	43	39	34	31	27	24	19	14
76	,71	65	62	57	52	47	43	39	32	29	24	20	14	11
89	83	76	73	67	61	56	50	46	39	34	29	24	17	14
					59	52	46	41,	32	27	. 21	15	7	1
90	84	76	72	65							T			,
70	63	55	51	44	37	31	24	19	, 10	4				,

Figure 56. Arrival Times for Submarine (Sheet

		HYDRO	PHONE NU	MBER		
46	47	48	49	50	51	52
89	91	93	96	98	101	
90	92	93	96	97	100	
87	88	89	91	92	94	
97	88	88	90	90	òS	
84	84	85	85	86	87	
79	79	79	79	79	80	
86	80	79	79	18	, 7¥	79
73	12	71	70	69	69	68
67	65	64	62	61	61	60
60	58	56	54	53	52	50
51	48	46	43	41	40	38
47	44	41	38	136	34	31
40	57	34	30	27	25	25
31	27	24	19	16	13	10
29	24	20	14	11	7	3
34	. 29	24	17	13	9	4
27	21	15	7	2		

Figure 56. Arrival Times for SS(N) 594 Class Submarine (Sheet 3)

77/78

				HYDRO	PHONE NU	MBER						
		1	2	3	4	5	6	7	8	9	10	11
	1							41	56	75	90	107
	2			0	16	34	49	66	81	99	114	7
	3	101	116	12	26	42	57	72	87	104	118	10
	4	104	118	13	26	42	36	70	84	100	114	4
	5	110	123	18	30	45	58	72	85	100	113	3
	6	121	10	28	40	54	67	80	92	107	119	9
	7	7	19	36	48	62	74	87	99	113	1	14
	8	17	30	46	57	70	82	94	106	119	7	50
æ	9	28	41	56	68	80	91	103	115	3	15	27
BEAM NUMBER	10	31	43	58	69	81	92	103	114	2	14	45
DN 1	11	47	58	72	83	94	105	116	2	14	25	36
EAM	12	56	66	80	90	101	111	122	5	7.8	29	40
pa.	13		69	83	93	103	113	123	9	19	29	39
	14		72	95	95	104	113	123	9	18	28	38
	15		76	89	98	107	116	1	10	19	29	38
	16		81	93	102	110	119	3	12	21	30	39
	17		86	98	106	114	122	6	15	23	31	40
	18		90	101	109	116	0	8	16	23	32	40
	19			102	110	117	9	7	15	22	30	37
	20			105	113	119	5	9	16	22	30	37
	-				4	4.24	4	10	1.8	23	30	37

CONFIDENTIAL

HYDROPHOME NUMBER

	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	107	9	17	33	52	70	86	103	119	12	29	46	61	77
4	7	23	40	56	75	93	109	1	18	35	51	68	60	76
10	10	26	41	57	75	92	107	123	15	31	47	64	79	71
4	4	20	35	49	67	63	98	113	4	20	35	52	67	83
23 23	3	18	32	46	64	79	93	107	122	12	28	44	58	74
,	9	23	37	50	67	81	95	109	123	13	28	43	58	73
*	14	28	41	54	71	85	98	112	1	15	30	45	5.9	74
7	20	34	46	59	75	89	102	115	4	17	32	46	60	75
ĝ.	27	40	53	65	81	94	106	119	8	21	35	49	63	77
15	25	38	5 ₀	62	77	90	102	114	3	15	28	42	56	70
-14		48	60	71	86	98	110	122	10	27	34	48	61	75
25	36	52	63	74	89	100	111	123	10	22	34	48	60	74
29	40 39		61	72	86	97	108	119	6	17	29	41	54	67
29		51 48	59	69,	83	93	104	114	1	12	23	34	46	60
28	38	47	58	66	81	91	101	111	121	8	18	29	41	53
29	38				80	90	99	109	118	4	14	25	36	48
30	39	48	57 57	67 67	80	88	97	107	116	1	11	21	32	43
31	40	48		64	78	86	95	103	112	121	6	16	26	37
32	40	48	56			82	90	98	106	115	0	9	19	29
30	37	45	53	61	74		87	95	103	111	119	4	13	23
30	37	44	52	59	71	79		92	99	107	115	123	8	18
30	37	44	51	58	70	76	84	76	77	107	117		•	

		HYDRO	OPHONE NU	MBER									HYDR	OPHONE N
	24	25	26	27	28	29	30	:31	32	33	34	35	36	37
1	77	92	105	120	5	11	16	22	25					
. 0	76	92	107	113	123									
79	71	88	104											
67	83	99	91											
58	74	91	107											
58	73	89	106											
,	74	90	106											
0	75	91	107											
63	77	93	109											
36	70	85	101											
61	75	90	106											
60	74	89	104	_										
54	67	82	97	118										
40	60	74	89	110										
41	53	68	83	103 97										
36	48	62	77	97										
32	43	5 ₆	72 64	92 85										
26	37	50	6 1 55	76	92									
19	29 23	41 35	48	68	85									
13	23	20	42	61	77	95								

je 3

4

NUMBER

38 39 40 41 42 43 44 45 46 47 48 49 50 51

Figure 57. Sampling Times for SS(N) 594 C Submarine (Sheet 1)

HYDROPHONE NUMBER

		1	2	3	4	5	6	7	8	9	10	11		
	22					,123	6	12	19	24	31	37		
	23					,	12	18	25	29	36	42		
	24							19	25	29	36	41		
	25								27	31	37	48		
	26									33	39	44		
	27										40	45		
	28											48		
	29													
	30													
M NUMBER	31													
	32													
N N	33													

CONFIDENTIAL

HYDROPHONE NUMBER

11	12	13	14	15	16	7	18	19	20	21	22	23	24
37	44	50	57	68	74	81	89	96	103	111	118	3	12
42	48	54	60	71	77	83	91	98	104	111	119	3	12
41	47	53	59	69	75	81	87	94	101	107	114	122	6
42	48	53	59	69	74	79	85	91	98	105	111	118	5
44	49	54	59	70	74	79	85	90	96	103	109	116	0
45	49	54	59	69	73	78	83	88	94	99	106	113	120
48	53	57	62	71	75	80	85	90	95	100	105	113	119
	54	58	62	71	75	79	83	88	93	97	102	108	115
		59	63	72	75	79	83	87	91	95	99	105	110
			67	7,6	78	82	85	89	93	97	100	105	110
			74	82	84	88	91	. 95	99	102	105	110	114
				88	90	94	97	101	104	108	110	115	119
					ر 9	101	104	108	111	114	117	121	1
						105	168	112	115	119	121	5	5
							111	115	119	122	1	5	9
								120	0	3	6	10	14
									122	2	5	>	13
										119	122	3	6
											4	8	12
												29	33
													43

		HYDR	OPHONE N	UMBER									HYDRO	PHONE NU
	24	25	26	27	28	29	30	(31	32	33	34	35	36	37
3	12	23	36	55	71	88	104							
3	12	22	34	53	69	85	103	118						
5	6	16	28	46	62	78	96	111	4					
L	2	12	23.	41	57	73	59	106	123	15				
16	0	8	19	37	52	69	· 85	102	119	11	27			
	120	4	15	32	47	63	80	95	113	6	55	38		
3	119	3	13	30	45	61	77	93	111	4	20	36	52	
8	115	122	8	24	38	54	70	86	103	121	13	29	46	62
05	110	118	2	17	31	47	62	78	95	111	5	21	38	54
05	110	116	0	15	28	43	58	73	90	106	0	16	32	49
10	114	119	3	16	29	43	58	72	89	105	121	14	30	46
15	119	123	6	19	30	43	58	72	88	104	119	12	28	44
21	1	. 5	11	23	34	46	60	73	89	104	119	11	27	42
2	5	9	15	26	36	48	61	74	89	103	118	9	25	40
5	9	12	18	28	38	49	62	75	89.	104	118	•	24	39
10	14	17	23	33	42	53	65	78	92	106	120	10	25	40
•	13	16	20	31	40	50	62	74	88	101	115	5	19	34
3	6	10	14	23	32	42	54	66	79	92	105	119	8	22
8	12	15	19	28	37	46	37	69	81	94	107	120	10	23
29	33	37	41	50	57	66	77	88	100	112	1	14	27	41
	43	46	50	58	65	74	84	95	106	118	6	19	31	45
	10	75	- •	•	-						_		••	

10.1

L	1
_	ı
	•

MBER									HYDI	ROPHONE N	UMBER		
38	39	40	41	42	43	44	45	46	47	48	49	50	51
72													
	85												
64													
61	80	96											
59	77	93	109										
56	74	90	105	120									
55	73	88	103	118	9								
55	73	88	102	117	8	23	•						
49	67	81	95	110	. 0	14	31						
38	55	69	83	97	111	' 1	. 17	31					
38	55	69	82	96	110	123	14	28					
54	71	84	97	111	ð	•	28						
							ı					,	
					•								
63	79	91	103	115	3	15	25	•0	·54	00	79	92	
	61 59 56 55 55 49 38 38	72 66 85 64 83 61 80 59 77 56 74 55 73 49 67 38 55 38 55 54 71 58 74 59 75	72 66 85 64 83 61 80 96 59 77 93 56 74 90 55 73 88 55 73 88 49 67 81 38 55 69 38 55 69 54 71 84 58 74 87 59 75 87	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 55 73 88 103 55 73 88 102 49 67 81 95 38 55 69 83 38 55 69 82 54 71 84 97 58 74 87 100 59 75 87 100	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 55 73 88 102 117 49 67 81 95 110 38 55 69 83 97 38 55 69 82 96 54 71 84 97 111 58 74 87 100 113 59 75 87 100 112	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 49 67 81 95 110 0 38 55 69 83 97 111 38 55 69 82 96 110 54 71 84 97 111 0 58 74 87 100 113 2	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 38 55 69 83 97 111 1 38 55 69 82 96 110 123 54 71 84 97 111 0 13 58 74 87 100 113 2 15 59 75 87 100 112 1	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 17 38 55 69 82 96 110 123 14 54 71 84 97 111 0 13 28 58 74 87 100 113 2 15 29 59 75 87 100 112 1 13 27	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 1 17 31 38 55 69 82 96 110 123 14 28 54 71 84 97 111 0 13 28 42 58 74 87 100 113 2 15 29 43 59 75 87 100 112 1 13 27 39	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 1 17 31 38 55 69 82 96 110 123 14 28 43 54 71 84 97 111 0 13 28 42 56 58 74 87 100 113 2 15 29 43 56 59 75 87 100 112 1 13 27 39 53	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 1 17 31 38 55 69 82 96 110 123 14 28 43 54 71 84 97 111 0 13 28 42 56 69 58 74 87 100 113 2 15 29 43 56 69 59 75 87 100 112 1 13 27 39 53 66	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 1 7 31 38 55 69 82 96 110 123 14 28 43 54 71 84 97 111 0 13 28 42 56 69 58 74 87 100 113 2 15 29 43 56 69 83 59 75 87 100 112 1 13 27 39 53 66 80	72 66 85 64 83 61 80 96 59 77 93 109 56 74 90 105 120 55 73 88 103 118 9 55 73 88 102 117 8 23 49 67 81 95 110 0 14 31 38 55 69 83 97 111 1 17 31 38 55 69 82 96 110 123 14 28 43 54 71 84 97 111 0 13 28 42 56 69 58 74 87 100 113 2 15 29 43 56 69 83 59 75 87 100 112 1 13 27 39 53 66 80 92

Figure 57. Sampling Times for SS(N) 594 (
Submarine (Sheet 2)

CONFIDENTIAL

HYDROPHONE NUMBER

1 2 3 4 5 6 7 8 9 10

45
46
47
48
49
50
51
52
53
54
55
56
56
57

12

11

2

HYDROPHONE NUMBER

11 12 13 14 1⁵ 16 17 18 19 20 21 22 23 24

37 53 68 82

HYDE	OPHONE NU	JMBER									HYDRO	PHONE NUI	MBER
25	26	t 27	28	29	30	.31	32	33	34	35	36	37	38
	67	75	81	88	97	106	117	3	14	25	36	48	60
	77	85	90	97	105	115	0	10	21	31	42	53	65
	82	90	, 95	101	109	118	3	13	53	33	43	54	65
	91	98	103	109	117	1	10	19	28	38	48	58	69
	96	104	100	114	121	5	13	22	31	40	50	59	70
	100	107	111	117	123	7	15	23	32	40	49	58	67
		116	120	1	8	15	22	30	38	47	55	64	72
		117	121	1	7	14	21	28	36	44	52	60	68
		118	122	3	8	15	21	28	35	43	50	58	66
		119	123	3	8	14	20	27	34	41	48	55	62
		117	120	0	5	11	17	23	29	36	43	50	56
		119	123	3	7	13	18	24	30	36	43	49	5 5
		119	123	2	7	12	17	22	28	34	40	46	52
		119	122	2	6	11	15	20	26	31	37	42	47
		102	7	10	14	19	22	27	31	36	41	46	50
		119	123	2	29	34	37	41	45	49	54	58	61
89	99	122	3	7	10	38	41	45	48	52	55	59	61
96	108	122	4	9	13	18	21	24	28	31	35	38	40

BER									HYDR	OPHONE NU	MBER			i Š
38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
60	75	87	99	110	122	10	22	34	46	59	72	84	100	, 4
65	80	91	102	113	1	12	24	35	47	59	72	Вз	99	3
65	80	90	101	112	123	10	21	32	43	54	67	78	93	Į.
69	83-	93	103	114	0	11	21	32	43	53	66	76	91	1
70	63	93	103	113	123	9	19	29	39	50	60	72	86	Í
67	82	91	100	110	119	5	14	24	34	44	54	64	79	4
72	86	95	104	113	122	7	16	25	35	44	54	63	78	8
68	82	90	98	107	116	1	9	18	27	36	45	54	67	7
66	78	87	95	103	111	119	3	12	20	29	37	46	59	6
62	74	85	90	98	106	114	121	5	13	,21	29	38	50	5
56	68	75	82	89	97	105	112	120	3	11	18	26	38	4
55	66	73	80	57	93	102	108	116	123	6	13	21	35	3
52	63	69	75	82	88	95	102	109	116	123	5	12	53	3
47	57	63	69	75	81	87	92	99	106	113	118	1	11	1
50	60	65	7g.	75	81	87	90	97	102	109	113	120	5	t i
61	71	75	79	84	88	94	97	102	107	113	116	122	7	ı
61	70	73	77	90	84	89	90	95	99	103	105	110		,
40	49	52	55	59	62	' 67	68	72						`.

Figure 57. Sampling Times for SS(N) 594 Class Submarine (Sheet 3)

83/8

					HYDROPHONE NUMBER								
		1	2	3	4	5	6	7	8	?	10	14	12
	1	0	5	12	19	24	30	36	41	48	54	60	66
	2	0	5	11	17	22	27	32	37	43	48	54	59
	3	0	4	10	16	19	24	29	33	39	43	48	53
	4	1	5	10	15	18	22	26	30	35	39	44	48
	5	12	15	20	24	27	30	34	37	71	45	49	52
	6	19	21	25	29	32	35	38	41	45	48	51	55
	7	28	30	34	37	40	42	45	48	51	54	57	60
	8	31	33	36	39	41	43	46	48	51	53	56	58
BEAM NUMBER	9	47	48	51	53	5 5	57	59	61	63	65	67	70
NON	10	56	57	59	61	62	64	65	67	69	70	72	74
AM:	11	66	67	69	70	71	72	73	74	76	/7	78	80
BE	12	77	77	79	79	80	81	82	82	83	84	85	86
	13		80	81	81	81	82	82	82	83	83	83	84
	14.		82	83	82	82	82	82	82	82	82	82	82
	15		91	91	90	90	89	88	8.8	87	87	86	86
	16		92	91	90	89	88	87	86	85	84	83	82
	17		96	96	93	92	91	89	88	86	85	84	82
	18		100	99	96	95	93	91	89	87	85	84	82
	19			103	99	98	95	93	91	88	86	84	82
	50			113	109	107	104	102	99	96	94	91	88
	21				107	105	101	98	96	92	89	86	83

HYDROPHONE NUMBER

12	13	14	15	16	17	18	19	50	21	5.5	23	24	25
66	72	77	86	91	97	103	109	116	122	105	111	118	115
59	65	69	78	82	86	94	99	105	111	118	121	107	114
53	58	62	70	74	79	84	89	94	100	106	112	119	102
48	52	56	63	67	71	76	81	85	90	96	102	109	116
52	56	59	66	69	73	77	81	85	90	95	101	107	114
55	58	61	67	70	73	77	81	85	89	94	100	105	112
60	63	66	71	74	77	80	84	87	91	95	101	106	112
58	61	63	68	70	73	76	79	82	86	89	95	100	106
70	72	74	78	80	82	85	83	90	93	97	102	107	112
74	76	77	81	83	85	87	89	91	94	97	102	106	111
80	81	95	85	87	88	90	92	94	96	98	103	107	112
86	87	88	90	91	92	93	95	96	98	100	105	108	112
84	84	85	87	87	88	89	90	91	92	94	98	101	105
82	82	82	83	83	84	84	85	85	86	87	91	93	97
86	86	85	86	86	86	86	86	86	86	87	90	92	95
82	81	81	81	80	80	79	79	79	73	78	82	83	85
82	81	80	80	79	78	77	76	75	75	74	77	78	80
82	80	79	78	76	75	74	72	71	70	69	71	72	73
82	•80	78	76	75	73	71	69	68	66	65	67	66	67
88	86	84	82	80	77	75	73	71	69	67	68	68	68
83	80	78	75	73	70	67	65	62	60	57	58	57	57

. 2.48

HYDROPHONE NUI HYDROPHONE NUMBER

index courses

4

DPHONE NUMBER

38 39 40 41 42 43 44 45 46 47 48 49 50 51

Figure 58. Arrival Times for SSB(N) 598 Class Submarine (Sheet 1)

85/8

BEAM NUMBER

HYDROPHONE NUMBER												
	1	2	3	4	5	6	7	8	9	10	11	12
3 2					106	103	99	96	92	89	85	82
						110	106	103	98	95	91	87
23							108	104	99	95	91	87
24								107	101	97	92	88
25									102	97	92	88
56									•	105	100	95
27											96	91
28											7.0	103
29												103
30												

12	13	14	15	16	17	18	19	20	21	22	23	24	25
82	79	76	73	70	67	64	61	58	55	52	53	51	51
87	83	80	77	74	70	67	63	60	57	53	53	51	50
87	83	79	75	72	68	64	60	57	53	49	49	46	45
88	84	80	75	72	67	63	59	55	51	47	46	43	41
88	83	79	74	70	65	61	57	52	48	43	42	38	36
95	90	86	80	76	71	66	62	57	52	47	45	41	38
91	86	81	76	71	66	61	56	51	46	40	38	34	30
103	98	93	87	82	77	71	66	60	55	49	46	41	37
_	90	85	78	73	67	61	55	49	44	37	33	28	23
		99	92	86	80	74	68	62	56	48	44	38	32
		96	89	83	77	70	64	58	51	44	39	32	26
		-	89	84	77	71	64	58	51	44	38	31	24
				89	83	77	70	64	57	50	44	36	29

HYDROPHONE NUMBER

	HYDRO	PHONE NU	MBER									HYDRO	PHONE NUME
25	26	27	28	29	30	31	32	33	34	35	36	37	38
51	52	60	66	73	80								
50	51	59	65	72	79	85							
45	45	52	58	65	72	79	86						
41	41	48	53	61	68	74	81	87					
36	35	42	47	54	62	68	75	81	87				
38	38	43	49	56	63	69	77	83	89	95			
30	29	34	39	47	54	60	67	73	80	ěΰ	92		
37	35	39	44	51	98	64	72	78	84	90	97	103	
23	20	23	27	34	41	46	54	60	66	73	79	85	91
32	29	30	34	40	47	52	59	65	71	78	84	90	95
26	5.5	55	25	31	37	41	48	54	60	66	72	78	83
24	20	19	21	26	31	35	41	47	53	58	64	70	75
29	24	22	23	27	35.	35	41	46	51	56	62	67	12
21	22	19	50	23	27	29	35	39	44	49	5♦	59	63
32	27	23	24	26	30	32	37	41	46	50	55	60	64
28	23	18	18	21	24	25	30	34	38	42	47	51	55
40	35	30	29	31	34	35	39	43	47	51	55 '	59	62
42	36	31	30	31	34	34	38	41	45	48	52	56	59
49	43	37	36	37	39	39	42	45	48	51	55	58	61
72	66	60	58	58	60	59	62	65	67	70	73	76	79
73	67	60	58	58	59	58	60	62	65	67	70	12	74
78	12	65	63	62	63	61	63	65	67	69	71	73	75
95	. 79	72	69	68	68	66	67	.69	70	72	73	75	77

4

51

HYDROPHONE NUMBER

91												
95	105											
83	92											
75	83	88										
12	80	84	90									
63	71	75	80	95								
64	71	75	80	85	90							
55	62	66	70	75	79	84						
62	69	72	76	81	85	89	94					
59	65	68	72	76	80	84	89	92				
61	66	69	73	76	80	83	88	91	95			
79	84	86	89	' 93	. 96	99	103	106	109	113		
74	79	81	84	87	90	92	96	98	101	104	106	
75	79	81	83	85	88	90	93	95	98	101	102	106
77	80	81	83	85	87	89	92	94	96	98	101	103

OPHONE NUMBER

Figure 58. Arrival Times for SSB(N) 598 Clas Submarine (Sheet 2)

87/

HYDROPHONE NUMBER

1 2 3 4 5 6 7 8 9 10 11 12

46

47

48

49

50

51

52

56

57

58

59

60

61

62

CONFIDENTIAL

and the same of the same of the same of the

HYDROPHONE NUMBER

12 13 14 15 16 17 18 19 20 21 22 23 24 25

HYDRO	PHONE NUM	MBER .									HYDRO	PHONE NUM	BER
26	27	28	29	30	31	35	33	34	35	36	37	38	39
87	79	76	74	74	71	72	73	74	75	76	78	79	8:
92	84	80	78	77	74	75	75	76	76	77	78	79	8
98	90	86	84	82	79	79	79	79	79	79	80	80	8
105	97	93	90	88	84	83	83	Ą2	82	82	82	82	8
112	104	99	96	93	89	88	87	86	86	85	85	84	8
122	113	108	104	101	97	95	94	93	92	91	90	89	8
	120	116	111	108	103	101	99	97	69	94	93	92	9
	118	113	108	104	99	96	94	92	90	88	86	85	8
	118	113	107	103	28	94	92	89	87	85	82	81	7
	115	110	104	99	94	90	87	84	81	78	76	74	7
	117	111	105	100	54	90	86	83	80	77	74	71	6
	117	111	105	99	9.3	89	85	81	78	74	71	58	6
	116	110	104	98	92	87	83	79	75	71	67	64	6
	118	112	105	99	93	88	83	79	74	70	66	63	5
	122	116	109	103	96	90	85	80	75	71	66	62	9
	111	105	122	115	109	102	97	91	86	61	75	71	(
	123	117	110	123	120	113	.107	101	95	90	84	79	7
	122	117	120	112	106	123	116	110	104	97	91	86	7

79 79 80 82 84 89 92	MBER									HYDRO	PHONE NU	MBER		
è	39	40	41	42	43	44	45	46	47	48	49	50	51	52
79	82	83	84	86	88	89	91	93	94	96	97	100	103	
79	81	82	83	84	85	86	88	89	90	92	93	95	97	
80	82	82	83	84	84	85	86	87	88	89	89	91	93	
82	83	83	83	84	84	84	85	85	86	56	86	87	89	
84	85	84	84	84	84	84	84	84	84	84	84	84	85	
89	89	88	87	87	86	86	85	85	84	84	83	83	84	
92	91	90	89	88	87	86	85	84	83	82	81	41	81	30 ,
85	84	82	81	79	78	76	75	73	72	71	70	48	68	67
81	79	77	75	73	71	69	67	66	64	62	61	59	58	57.
74	71	69	67	64	65	60	57	5 5	53	51	49	47	46	44
71	68	66	63	60	58	55	52	50	47	44	42	39	38	36
68	64	62	58	5 5	52	49	46	43	40	37	34	31	29	27
64	60	57	53	⁵ 0	46	43	39	36	32	29	26	55	5.0	17
63	58	5 5	51	47	43	39	35	32	28	24	21	17	14	11,
62	57	53	48	44	39	35	30	26	55	17	14	9	5	2
71	65	51	56	51	46	41	35	31	26	21	17	11	7	3
79	72	681	62	56	51	46	39	34	29	23	19	12	а	3
86	79	73	67	61	55	49	42	36	30	24	19	12	7	5

Figure 58. Arrival Times for SSB(N) 598 Class Submarine (Sheet 3)

89/9

UVDD	ODUONE	NUMBER
HVIIR	OPHUNE	MOMPEN

1 2 3 4 5 6 7 8 9	10	11	12
1 100 115 12 29 44 60 76 91 108	1	17	33
2 100 115 11 27 42 57 72 67 103	118	11	26
3 100 114 10 26 39 54 69 83 99	113	4	20
4 101 115 9 25 38 52 66 80 95	109	0	15 🧃
5 112 1 20 84 47 60 74 87 171	115	5	19
6 119 7 25 3,9 52 65 78 91 105	118	7	2 2
7 4 16 34 47 60 72 85 98 111	0	13	27
8 7 19 36 49 61 73 86 98 111	123	12	24
· · · · · · · · · · · · · · · · · · ·	11	23	37 🖠
9 23 35 51 63 75 87 99 111 123 10 32 44 59 71 82 94 105 117 5 2 11 43 54 69 80 91 102 113 0 12 12 54 64 79 89 100 111 122 8 19	16	28	41
Z 11 43 54 69 80 91 102 113 0 12	23	34	47 🖥
전 H 12 54 64 79 89 100 111 122 8 19	30	41	53 🧣
13 67 81 91 101 112 122 8 19	29	39	51
14 69 83 92 102 112 122 8 18	28	38	48
15 78 91 100 110 119 4 14 23	33	42	52
16 79 91 100 109 118 3 12 21	30	39	48
17 83 96 103 112 121 5 14 22	31	40	48
18 87 99 106 115 123 7 15 23	31	40	48, 3
19 103 109 118 1 9 17 24	32	40	48
20 113 119 3 10 18 25 32	40	47	54
21 117 1 7 14 22 28	35	42	49 🖁

HYD HYDROPHONE NUMBER 93: .13 11 3 48,

UVDDODUONI	NUMBER

HYDROI	PHONE NUM	IBER									35	36	37	38
25	26	27	28	29	,	30	31	32	33	34	35	30	•	
92	107													
91	107													
79	95													
93	109													
91	106													
89	104													
89	105													
83	98													
89	105													
88	103													
89	104													
89	104													
82	96	119												
74	88	111												
72	86	109												
62	76	99												
56	70	93												
49	62	86												
43	56	79	95											
44	56	79	. 95											
33	45	66	83	1	00									

HYDROPHONE NUMBER

1 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Figure 59. Sampling Times for SSB(N) 598 Class Submarine (Sheet 1)

91/92

TIVOUR DESCRIPTION OF THE	STITESTON

				•	11DIOI IIO.	12 1101112-11							
		1	2	3	4	5	6	7	8	9	10	11	12
	00	1	•	•		2	9	15	2 2	28	35	41	48
	22						16	22	29	34	41	47	53
	23						••	24	30	35	41	47	53
	24							-	33	37	43	48	54
	25									.38	43	48	54
	26									•	51	56	61
	27						•				,-	52	57
	28												69
	29												•
بہ	30												
IBEI	31												
NON NON	32												
EAM NUMBER	33												

CONFIDENTIAL

		ну	DROPHONE	NUMBER									HYDRO
12	13	14	15	16	17	18	19	20	21	22	23	24	25
48	5 5	62	72	79	87	94	101	108	115	122	9	17	27
53	59	66	76	83	90	97	103	110	117	123	9	17	26
53	59	65	74	81	87	94	100	107	113	119	5	12	21
54	60	66	74	81	86	92	99	. 05	111	117	2	9	17
54	59	65	73	79	84	90	96	102	108	113	122	4	12
61	66	72	79	85	90	95	101	107	112	117	1	7	14
57	62	67	75	8ò	85	90	95	100	105	110	118	0	6
69	74	79	86	91	96	100	105	109	115	119	2	7	13
	66	71	77	82	86	90	94	98	103	106	112	118	123
		85	91	95	99	103	107	111	115	117	0	4	8
		82	88	92	96	99	103	107	110	113	118	121	2
			88	93	96	100	103	107	110	113	117	120	123
				98	102	106	109	113	116	119	123	1	4
					100	104	107	111	115	117	121	0	2
						109	112	116	120	123	2	5	7
							108	. 115	116	119	122	1	3
								0	4	7	10	13	15
									5	8	12	15	17
										15	18	21	24
											42	45	48
												46	49
													54
													61

HYDROPHONE NUMBER

HYDRO	PHONE NUM	BER											10
25	26	27	28	29	30	31	32	33	34	35	36	37	38
27	38	59	75	93	110								
26	37	58	74	92	109	1							
21	31	51	67	81	102	119	12						
17	27	47	62	80	98	114	7.	23					
12	21	41	56	73	91	108	1	17	33				
14	24	42	58	75	92	109	3	19	35	, 51			
6	15	33	48	66	83	99	117	9	26	42	58	70	
13	21	33	53	70	87	103	122	14	30	46	63	79	77
123	6	55	36	53	70	85	103	120	12	20	45	61	
8	15	29	43	.59	76	91	108	1	17	34	50	66	81 69
2	8	21	34	50	66	80	97	113	6	22	38	54	
123	6	18	30	45	60	74	90	100	122	14	20	46	
4	10	21	32	46	61	74	90	105	120	12	28	43	
2	7	18	29	42	56	68	84	9(1	113	4	20	35	
7	12	55	33	45	59	71	86	100	115	5	21	36	
3	8	16	?7	40	53	64	79	93	107	121	12	27	
15	20	29	38	50	63	74	88	102	116	6.	50	35	
17	21	30	39	50	63	73	87	100	114	3	17	32	
24	28	36	45	56	68	78	91	104	117	6	20	34	
48		59	67	77	89	98	111	0	12	25	39	5	
49		59	67	7 7	88	97	109	121	10	2?	35		
54		64	72	81	92	100	112	0	12	24	36		
61		71	78	87	97	105	116	4	15	27	38	5	1 63
•••	• •												

*

HYDROPHONE NUMBER

فية وأولاع أوادية	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
j 1															
	77														
•	81	104													
+	69	91													
1	61	95	97												
	58	79	93	109											
'	49	70	84	99	114										
	50	70	84	99	114	5									
	41	61	75	89	104	118	9								
	48	68	81	95	110	0	14	30							
	45	64	77	91	105	119	9	24	38						
	47	65	78	92	105	119	8	23	37	51					
	65	83	95	108	122	11	24	39	52	65	79				
	60	78	90	103	116	5	17	31	44	57	70	8.5			
	61	78	90	102	114	3	15	28	40	54	67	78	92		
	63	79	90	102	114	2	14	27	39	52	64	76	39		

Figure 59. Sampling Times for SSB(N) 598 Class Submarine (Sheet 2)

93/94

HYDROPHONE NUMBER

HYDROPHONE NUMBER

12 13 14 15 16 17 18 19 20 21 22 23 24 25

, y =

HYDROPHONE NUMBER

HYDR	OPHONE NUM			_		31	32	33	34	35	36	37	38 39
25	26	27	28	29	30			8	19	30	41	54	65
	73	78	85	93	103	110	121		21	31	42	53	65
	78	83	89	97	106	113	0	10			44	55	66
	84	89	95	103	111	118	4	14	24	34			68
	91	96	102	109	117	123	8.	18	27	37	47	57	
	98	103	108	115	122	4	13	55	31	41	50	60	70
	108	112	117	123	6	12	20	29	38	47	56	65	75
	100		1	6	13	18	26	34	42	51	59	68	78
		119		3	9	14	21	29	37	45	53	61	70
		117	122		8	13	19	27	34	42	50	57	66
		117	. 122	2		9	15	22	29	36	43	51	59
		114	119	152	4				28	35	42	49	56
		116	120	, 0	5	9	15	21		33	39	46	53
		116	120	0	4	8	14	20	26			42	49
		115	119	123	3	7	12	18	24	30	36		
		117	121	0	4	8	13	18	24	29	35	41/	48
		121	1	4	8	11	15	20	25	30	36	41	47
			114	17	20	24	27	32	36	41	46	50	56
		109		5	28	35	38	42	46	50°	55	59	64
		122	2	_			48	51	55	59	62	66	71
		121	5	15	17	21	70	,,	•				

. . .

HYDROPHONE N	IUMBER
--------------	--------

ì	39	40		41	42	43	44	45	46	47	48	49	50	51	52
65	; t	i	92	103	115	3	14	26	38	49	62	73	86	102)
6	5 (n	91	102	113	, 0	11	23	34	45	58	69	81	96	<u> </u>
60	s (11	91	102	113	123	10	21	32	43	54	65	77	92	, J
61	. (12	92	102	113	123	9	50	30	41	51	61	73	88	•
7	, (14	93	103	113	123	9	19	29	39	49	59	70	84	9 11
7	5 (18	97	106	116	1	11	, 20	30	39	49	58	68	83	į
74	•	0	99	108	117	5	11	20	29	38	47	56	66	80	89
7) (13	91	100	108.	117	1	10	18	27	36	45	53	66	75
6	5	77	86	94	102	110	118	5	11	19	27	36	44	56	65,
5	9 (39	77	85	93	101	109	116	0	8	16	24	32	44	52
5	6	56	74	81	88	97	104	111	119	. 5	9	17	24	36	44
5	3 (32	70	76	83	90	98	105	112	119	5	9	16	27	35,
4	9 !	38	65	71	78	84	91	97	105	111	118	, 1	7	18	25
4	8 !	56	63	69	75	81	87	93	100	107	113	120	2	12	19
4	7 9	i5	61	66	72	77	83	8.8	94	100	105	113	118	3	10
5	6	33	69	74	79	84	89	93	99	104	109	116	120	5	11
6	4	70	76	80	84	89	94	97	102	107	111	118	121	6	115
7	1	77	81	85	89	93	97	100	104	108	112	117	121	5	10

Figure 59. Sampling Times for SSB(N) 598 Class Submarine (Sheet 3)

95/**96**

				HYDROP	HONE NUM	BER							
		1	2	3	4	5	6	7	8	9	10	11	12
	1	0	6	13	18	25	31	37	42	49	55	61	67
	2	1	7	13	17	24	29	34	39	45	51	56	62
	3	0	5	10	14	20	24	29	33	39	44	49	54
	4	1	5	10	14	19	23	27	31	36	40	44	49
	5	11	15	19	22	26	30	33	36	41	44	48	52
	6	20	23	27	29	33	36	39	42	46	49	53	56
	7	27	29	33	35	38	41	44	46	50	53	56	59
~*	8	36	38	41	43	46	48	51	53	56	58	61	64
BEAM NUMBER	9	47	49	52	53	56	58	6ŋ	61	64	66	68	70
NUN	10	55	56	59	60	62	63	65	66	68	70	71	73
AM	11	65	66	68	69	70	71	72	73	75	76	77	79
BE	12	75	76	77	77	78	79	80	80	81	82	83	84
	13		80	81	81	81	81	82	82	82	83	83	84
	14		81	82	81	81	81	81	80	80	80	80	80
	15		82	82	8 1	80	80	79	78	78	77	77	76
	15		88	88	86	85	84	83	82	81	80	79	78
	17		91	91	89	87	86	84	83	81	80	78	77
	18		95	94	92	90	88	86	84	82	89	78	76
	19			96	94	91	89	86	84	82	7 9	77	75
	20			102	99	96	93	90	88	85	82	79	77
	21				101	97	94	91	88	84	81	78	75

HYDROPH HYDROPHONE NUMBER

ú9

HYDROPHONE NUMBER

¥-											HYD	ROPHONE N	IUMBER	
	OPHONE NU				70	31	32	33	34	35	36	37	38	39
, 5	26	27	28	29	30	31	J.							
15	120													
116	112													
103	110													
117	122													
114	121													
115	121													
113	119													
113	120													
115	121													
113	119													
114	119													
113	119													
108	113	120												
99	104	111												
89	94	101												
85	89	96												
78	82	89												
72	75	82												
65	68	74	81											
61	64	70	76											
54	56	62	68	1	75									

و در در ا

HYDROPHONE NUMBER

RUMBER

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Figure 60. Arrival Times for SSB(N) 608 Class Submarine (Sheet 1)

97/98

			HYDRO	PHONE NU	MBER							
	1	2	3	4	5	6	7	8	9	10	11	12
22	-				99	95	92	89	85	81	78	74
23						99	95	91	87	83	79	75
							103	9 9	94	90	86	81
24								93	88	83	79	74
25									90	85	80	75
26										91	86	81
27										,-	80	75
28											80	
29												84
30												
31												
MBER 32												

CONFIDENTIAL

2	· ·

f :			HYDR	OPHONE N	UMBER									HYDR
1	12	13	14	15	16	17	18	19	50	21	5 2	23	24	25
78	74	71	68	66	62	60	57	54	52	50	48	47	47	47
79	75	72	68	66	65	59	56	53	50	48	45	44	43	43
86	81	77	73	71	66	63	59	56	53	50	47	46	44	44
.79	74	70	65	63	57	54	50	46	43	40	36	34	33	32
80	75	70	66	63	57	53	49	45	41	37	34	31	29	28
86	81	76	71	68	61	57	53	48	44	40	36	33	31	29
80	75	70	64	61	54	50	45	40	36	31	27	24	21	18
.	84	78	73	69	62	57	52	47	42	37	32	28	25	55
		82	76	72	64	59	53	48	42	37	31	27	23	19
			80	76	67	62	56	50	44	36	32	27	22	18
			82	78	69	64	58	51	45	39	32	27	21	16
:				84	75	70	64	57	51	44	37	32	26	50
					81	76	70	63	57	50	43	37	31	25
						85	79	72	66	59	52	46	40	34
							79	73	66	60	53	47	40	34
								74	68	95	5 5	49	42	36
									73	67	60	54	47	41
è										76	70	64	57	50
											73	67	61	54
												65	59	5?
													82	75
														7.3

HYDROPHONE	NUMBER

	HYDR	OPHONE NU	PHONE NUMBER									14	36 37 38		
:4	25	26	27	28	29	30	31	32	33	34	35	3 6	37		
47	47	49	55	61	68	74								** **	
43	43	44	50	56	63	69	75							ý	
44	44	45	50	56	63	69	75	81						;	
33	32	32	37	43	49	56	62	68	74						
29	28	28	32	38	44	51	57	63	70	76					
31	29	28	32	38	44	51	57	63	70	76	82				
21	18	18	21	27	33	39	45	52	58	65	71	77		,	
25	22	50	23	28	34	40	46	53	59	66	72	78	83		
23	19	16	19	23	29	34	40	47	53	59	66	72	77	8(
55	18	15	16	20	25	30	35	42	48	54	60	66	71	8(
21	16	12	13	16	20	25	30	36	41	47	53	59	64	7;	
26	20	15	15	17	21	25	59	35	40	45	51	56	61	• <u>• • • • • • • • • • • • • • • • • • </u>	
31	25	50	18	20	23	26	30	34	29	44	49	54	58	6: 6:	
40	34	28	26	27	29	32	35	39	43	48	52	57	61		
40	34	28	26	26	28	30	33	37	41	45	49	53	57	6	
42	36	30	27	27	28	30	32	36	39	43	47	51	54	6	
47	41	35	31	31	32	33	35	38	41	45	48	52	55	6	
57	50	44	41	40	40	41	43	45	48	51	54	57	60	6	
61	54	48	44	42	42	43	44	46	48	51	54	57	59 51	6	
59	5?	46	42	40	39	39	40	42	44	46	48	51	53		
82	75	69	64	62	61	61	61	62	64	65	67	69	71	7	
	7.3	67	62	59	58	57	57	58	59	60	61	63	65		
	82	75	70	67	6°	64	63	64	64	65	66	67	69	7	

ř.

HYDROPHONE NUMBER

49

50

,	38	39	40	41	42	43	44	45	46	47	48	77	70	<i>,</i>
î k														
Ž.														
.														
r R R														
13														
17	86													
71	80	86												
j 4	72	78												
1	69	75	81											
58	66	71	77	82										
1	68	73	78	83	88	•								
;7	53	68	73	78	83	88								
54	60	65	69	74	79	83	88							
35	61	65	69	73	78	82	86	92						
įc	65	69	73	77	81	85	89	94	97					
6	64	67	71	74	78	82	85	90	93	97				
3	57	60	63	66	70	73	76	80	83	87	90			
71	75	78 [,]	80	83	86	89	92	95	98	101	104	107		
5	68	70	73	75	77	80	82	85	88	90	93	96	99	
59	71	73	75	77	79	81	83	86	88	90	92	95	97	
, ,	/ 4	/ 4	73	′′	/ 7	0.1	a y	a v	0.0	70	7 6	,,	• •	

NUMBER

Figure 60. Arrival Times for SSB(N) 608 Class Submarine (Sheet 2)

99/10

56

60

1 2 3 4 5 6 7 8

45

46

47

48

49

50

51

52

53

54

55

HYDROPHONE NUMBER

HYDROPHONE NUMBER

12 13 14 15 16 17 18 19 20 21 22 23 24 25

HYDROPHONE	NIIIMBED

HYD	ROPHONE NU	MBER									HYDRO	PHONE NUMBER
25	26	27	28	29	30	31	32	33	34	35	36	37 38
-	82	77	73	71	6 9 ,	.68	68	68	68	69	סי	71
	88	83	79	76	74	73	72	72	72	72	72	73
	96	91	86	83	81	79	78	77	76	76	76	76
	104	99	94	91	88	86	84	83	82	81	80	80
		103	98	94	91	88	86	85	83	82	81	81
	109			103	99	96	94	92	90	88	87	86
	118	112	107	•	103	100	97	94	92	90	88	87
		117	112	107				97	94	92	89	88
		122	116	111	107	103	100					84
		122	116	111	106	102	98	95	92	89	86	
		118	112	107	101	97	93	89	86	82	79	77
		120	114	108	103	98	94	90	86	82	79	76
		120	114	108	102	97	93	88	84	80	76	73
		119	112	106	100	95	90	85	80	76	72	69
		120		108	102	96	91	86	81	76	71	68
						104		93	87	82	77	73
		105		116	110				92			76
		111	105	122	116	110	104					
		115	119	113	106	124	117	111	105	99	93	88
		123	117	121	115	109	123	120	113	107	100	95

,										HYDROPH	ONE NUME	3ER			
MBER				42	2 43	5 44	ı 45	46	47	48	49	50	51	52	
38	39	40	, 41 76	יי . 77	79	80	82	84	86	87	89	91	93	96	
	72	74		77	79	83	81	82	84	85	87	88	90	92	
,	74	75	76	19	80	80	81	82	83	84	85	86	87	89	
•	77	78	78		81	82	82	82	83	83	84	84	85	87	
, È	80	81	81	81		79	79	79	79	79	79	79	19	81	
,	80	80	80	79	79			80	80	80	79	79	79	80	
	84	84	84	83	85	82	81		77	76	75	74	74	74	
	85	84	83	82	81	80	79	78		73	71	70	69	69	
	85	84	83	81	80	78	77	75	74		63	61	60	59	
	81	80	78	76	74	72	70	68	66	65				46	
,	73	72	69	67	64	62	60	57	5 5	53	51	48	47	39	
	72	70	67	64	61	58	56	53	50	48	45	42	40		
1	68	66	63	59	56	53	50	46	44	41	38	34	32	30	
,	63	61	57	53	50	46	43	39	36	32	29	25	55	50	
	62	59	55	51	47	43	39	35	32	28	24	50	17	14	
,	66	63	58	54	49	45	40	35	31	27	72	17	14	11	
	69	65	60	5 5	50	45	40	34	30	25	50	14	10	6	
•		76	70	64	59	53	47	41	36	31	25	19	14	10	
• •	80	/ O	74	69	63	57	51	43	38	32	26	19	13	8	

Figure 60. Arrival Times for SSB(N) 608 Class Submarine (Sheet 3)

101/

BEAM NUMBER

			HYDRO	PHONE NU	MBEK							
	1	2		4	5	6	7	8	9	10	11	12
1	100	116	13	28	45	61	77	92	109	2	18	34
5	101	117	13	27	44	59	74	89	105	121	13	29
3	100	115	10	24	40	54	69	83	99	114	5	21
4	101	115	9	24	39	53	67	81	96	110	0	16
5	111	1	19	32	46	60	73	86	101	114	4	19
6	120	9	27	39	5 3	6 6	79	92	106	119	9	23
7	3	15	33	45	58	71	84	96	110	123	12	26
8	12	24	41	53	66	78	91	103	116	4	17	21
9	23	36	52	63	76	88	100	111	0	12	24	37
10	31	43	59	70	\$ 2	93	105	116	4	16	27	40
11	42,	53	68	79	90	101	112	123	11	22	33	46
12	52	63	77	87	98	109	120	6	17	28	39	51
13	-	47	84	91	101	111	122	•	18	29	39	51
14		68	82	91	101	111	121	6	16	26	36	46
15		69	82	91	100	110	119	4	14	23	33	42
16		75	88	96	105	114	123	•	17	26	35	44
17		78	91	99	107	116	0	9	17	26	34	43
18		82	94	102	110	118	2	10	18	26	34	42
19			96	104	111	119	2	10	18	25	33	41
20			102	109	116	123	6	14	21	28	35	43
				111	117	0	7	14	20	27	34	41
21				•••								

		HYDI	ROPHONE N	UMBER									HYDROP
12	13	14	15	16	17	18	19	20	21	22	23	24	25
34	50	67	86	104	119	13	29	45	59	54	70	86	92
29	44	60	79	97	111	4	20	36	5 2	69	60	77	93
21	36	51	69	86	100	116	8	24	40	56	72	88	80
16	30	45	63	79	93	104	123	15	31	46	62	78	94
19	33	47	64	80	93	108	122	13	29	44	59	75	91
23	37	50	67	83	96	110	0	15	30	45	60	76	9 2
26		52	69	84	96	110	0	14	29	44	59	74	90
	39				99	113	2	16	31	45	60	75	90
21	43	56	73	87		117	6	19	. 34	48	62	77	92
37	50	65	78	92	104	117	6	19	25	47	61	75	90
40	52	44	80	93	105			21	34	48	62	76	91
46	57	69	84	97	198	120	9			49	62	76	• •0
51	62	73	88	100	111	123	11	52	35				85
51	61	72	87	98	109	120	7	19	21	43	57	71	
46	57	68	•2	93	103	114	1	12	24	36	48	62	76
42	52	63	77	87	97	107	118	5	16	27	39	52	66
44	53	63	77	87	96	106	116	3	13	24	36	48	62
43	52	61	75	84	93	102	112	122	8	19	30	42	54
42	51	ı 5 9	73	81	90	99	108	118	4	14	24	36	48
41	49	57	69	78	86	95	104	113	122	8	18	29	41
43	50	58	70	78	86	94	103	111	120	5	15	26	37
40	20	20	, ,		• •	• •	- •	_					

[~]67

HYDROP

. 19

2
Ĵ

												нур	ROPHONE NU	MBER
		PHONE NUM			••	70	31	32	33	34	35	36	37	38
	25	26	27	28	29	30	31							
86	92	107		•										
77	93	99												
88	80	97												
78	94	109												
75	91	108												
76	92	108												
74	90	106												
75	90	107												
77	92	108												
75	90	104												
76	91	106												
76	9 0	106												
71	85	100	120											
62	76	91	111											
5 2	66	81	101											
48	62	76	96											
42	54	69	89											
36	48	61	82											
29	41	54	74	91										
24	37	50	69	86										
Ř	-	•												

HYDROPHONE NUMBER

10 70 40 41 42 43 44 45 46 47 48 49 50 51 52

Figure 61. Sampling Times for SSB(N) 608 Class Submarine (Sheet 1)

103/104

					HYDR	ophone nu	MBER						
	,	Ą	_	2	3	4	5	6	7	8	9	10	11
			1	4	v	·	119	1	8	15	21	27	34
	55							5	11	17	23	29	35
	23								19	25	30	36	42
	24									19	24	29	35
	25										26	31	36
	26											37	42
	27												36
	28												
	29												
	30												
ER	31												
BEAM NUMBER	32												
Z Z	33												
BEA	34												
	35												
	36												
	37												
	38												
	39												
	40												
	41												
	42												
	43'												
	44												

34 40 47 54 65 71 79 87 94 102 110 118 3 10 3	1:	12	13	14	15	16	17	18	19	20	21	22	23	24 13
35 41 48 54 65 71 78 85 93 100 108 115 0 4 42 47 53 59 70 75 82 88 96 103 1.C 117 2 10 35 40 46 51 62 66 73 79 85 92 100 106 114 123 36 41 46 52 62 66 72 78 84 90 96 104 111 118 42 47 52 57 67 70 76 82 87 93 99 106 113 121 36 41 46 50 60 63 69 74 79 85 90 96 103 111 36 41 46 50 60 63 69 74 79 85 90 96 103 111 58 62 71 73 78 81 82 87 91 96 101 107 115 58 62 71 73 78 82 87 91 96 100 106 112 58 64 75 76 81 85 89 93 97 101 106 112 48 77 78 83 87 90 94 98 101 106 111 83 84 89 93 96 100 103 106 111 113 115 114 125 2 2 5 115 126 2 5 9 12							79	87	94	102	110	118	3	
35 41 48 35 59 70 75 82 88 96 103 112 117 2 10 35 40 46 51 62 66 73 79 85 92 100 106 114 123 36 41 46 32 62 66 72 78 84 90 96 104 111 119 42 47 52 57 67 70 76 82 87 93 99 106 113 121 36 41 46 50 60 63 69 74 79 85 90 96 103 111 36 41 46 50 60 63 69 74 79 85 90 96 103 111 36 62 71 73 78 82 87 91 96 100 106 112 4 66 75 76 81 85 89							78	85	93	100	10	115	0	
42 47 53 59 70 70 70 70 70 78 85 92 100 106 114 123 35 40 46 51 62 66 72 78 84 90 96 104 111 119 36 41 46 52 57 67 70 76 82 87 93 99 106 113 121 36 41 46 50 60 63 69 74 79 85 90 96 103 111 36 50 54 59 68 71 78 81 86 91 96 100 107 115 58 62 71 73 78 82 87 91 96 100 106 112 58 66 75 76 81 85 89 93 97 101 106 111 59 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 3 108 122 2 5 99 12 109 120 120 120 120 120 120 120 120 120 120									96	103	110	117	2	10
35 40 46 51 62 68 72 78 84 90 96 104 111 119 36 41 46 52 57 67 70 76 82 87 93 99 106 113 121 36 41 46 50 60 63 69 74 79 85 90 96 103 111 36 50 54 59 68 71 73 78 82 87 91 96 100 106 112 58 62 71 73 78 82 87 91 96 100 106 112 66 75 76 81 85 89 93 97 101 106 111 68 77 78 83 87 90 94 98 101 106 110 83 84 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 108 12 2 5 9 12	42	47	53							92	100	106	. 114	123
36 41 46 52 62 66 72 76 82 87 93 99 106 113 121 42 47 52 57 67 70 76 82 87 93 99 106 113 121 36 41 46 50 60 63 69 74 79 85 90 96 103 111 50 54 59 68 71 73 78 82 87 91 96 100 106 112 58 62 71 73 78 83 87 90 94 98 101 106 111 66 75 76 81 85 89 93 97 101 106 111 83 84 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 12 2 5 9 12 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22	35	40	46	51								104	111	119
42 47 52 57 67 70 76 82 87 90 96 103 111 36 41 46 50 60 63 69 74 79 85 90 96 103 111 50 54 59 68 71 73 78 82 87 91 96 100 106 112 58 62 71 73 78 83 87 90 94 98 101 106 111 66 75 76 81 85 89 93 97 101 106 111 68 77 78 83 87 90 94 98 101 106 110 83 54 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 108 12 2 5 9 12 11 15 19 22 18 22 26	36	41	46	52	62	66							113	121
36 41 46 50 60 63 69 74 79 85 90 101 107 115 116 120 116 120 117 118 118 121 1 5 118 122 2 5 9 12 116 120 118 120 118 120 118 121 15 119 122 12 118 121 15 119 122 12 18 18 121 1 15 119 122 12 18 18 121 1 15 119 122 12 18 18 121 1 15 118 121 1 15 120 120 120 120 120 120 120 120 120 120	42	. 47	52	57	. 67	70	76							
50 54 59 68 71 76 81 86 91 96 100 106 112 58 62 71 73 78 82 87 91 96 100 106 111 66 75 76 81 85 89 93 97 101 106 111 48 77 78 83 87 90 94 98 101 106 110 83 84 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 18 22 26		41	46	50	60	63	69	74	79					
58 62 71 73 78 82 87 91 96 100 106 112 66 75 76 81 85 89 93 97 101 106 111 68 77 78 83 87 90 94 98 101 106 110 83 84 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 18 22 26	•				68	71	76	81	86	91				
66 75 76 81 85 89 93 97 101 106 111 48 77 78 83 87 90 94 98 101 106 110 83 84 89 93 96 100 103 106 111 115 116 120 104 108 111 115 118 121 1 5 108 112 116 120 113 117 121 0 4 7 122 2 5 9 12 116 122 2 6 18 122 1 15 119 122 2 18 122 1 15 123 125 125 125 125 125 125 125 125 125 125		,					78	82	87	91	- 96	100		
88 77 78 83 87 90 94 98 101 106 110 83 84 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22			70					85	89	93	97	101	106	
83 54 89 93 96 100 103 106 111 115 90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22 18 22 26									90	94	98	101	106	110
90 95 99 102 106 109 112 116 120 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22				68						100	103	106	111	115
90 95 99 102 105 12 12 1 5 104 108 111 115 118 121 1 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22 18 22 26					83							112	116	120
104 108 111 115 119 122 2 5 108 112 115 119 122 2 5 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22 18 22 26						90								
108 112 115 147 200 113 117 121 0 4 7 122 2 5 9 12 11 15 19 22 16 18 22 26							104	108						
113 117 121 0 122 2 5 9 12 11 15 19 22 18 22 26								104	112					
11 15 19 22 18 22 26									113	117	121			
18 22 26										122	2	5		
•											11	15	19	2.2
20 24												18	22	26
													20	24

		HYDRO	PHONE NUM	IBER						•			HYDRO	PHONE NUM
ξ. . .	24	25	26	27	28	29	30	31	32	33	34	35	36	37
3	13	23	35	54	. 70	88	104							ì
Ò	•	19	30	49	65	82	99	115						
2	10	20	31	49	65	\$ 2	99	115	7					, ,
114	123	8	18	36	52	40	85	102	118	10				ň
11	119	• 4	14	31	47	63	80	96	113	6	22			ÿ
13	121	5	14	31	47	63	80	96	113	6	22	38		7
3 03	111	118	4	20	36	52	68	84	101	118	11	27	43	1
107	115	122	6	22	37	5 3	69	85	102	119	12	28	44	59
105	112	119	2	18	32	48	63	79	96	112	5	22	38	53
106	111	117	1	. 15	29	44	59	74	91	107	0	16	32	47
106	110	115	121	12	25	39	54	69	85	100	116	9	25	40
111	115	119	0	14	26	40	54	68	84	• 9	114	7	5.5	37
116	120	0	5	17	29	42	55	69	92	98	113	4	20	34
1	5	9	14	25	36	48	61	74	88	102	117	7	23	37
2	5	9	13	25	35	47	59	72	86	100	114	4	19	33
4	7	11	15	26	36	47	59	71	85	98	112	2	16	30
9	12	16	20	30	40	51	62	74	67	100	114	3	17	31
19	22	25	30	40	49	59	70	82	94	107	120	9	55	36
.	26	29	34	43	51	61	72	83	95	107	120	9	5.5	35
50	24	27	31	41	49	58	68	79	91	103	115	2	16	28
20	48	51	55	63	71	40	90	100	111	123	10	55	34	47
:	70	49	53	61	68	77	86	96	107	118	5	16	28	40
!		58	61	69	76	84	93	102	113	123	10	21	32	44 :

HYDROPHON

36	37	28	39	40	41	42	43	44	45	46	47	70	•	
														1000
														4
														1
														,
43														,
44	59													J
38	53	72												
25	47	66	85											
25	40	58	77											
23	37	55	74	90										
20	34	52	70	86	101									
23	37	54	72	87	102	117,	3							
19	33	49	67	82	97	112	3	13						
16	30	46	64	78	93	108	122 121	11	28					
17	31	47	64	78	92	107 110	0	14	30	43				
22	36	51	68	82	96 93	107	121	10	25	39	53			
22	35	50	66	80	85	99	112	1	15	28	43	56		
16	28	43	59	72 89	102	115	4	17	30	44	57	70	83	
34	47	61	77	82	94	106	119	7	20	33	46	59	72	
28	40	54	69 72	84	96	108	120	8	21	33	45	58	71	
32	44	57	12				-							

HYDROPHONE NUMBER

Figure 61. Sampling Times for Submarine (Sheet 2)

HYDROPHONE NUMBER

52

28
30 43
25 39 53
15 28 43 56
30 44 57 70 83
20 33 46 59 72 85
21 33 45 58 71 83

Figure 61. Sampling Times for SSB(N) 608 Class Submarine (Sheet 2)

105/106

HYDROPHONE NUMBER

1 2 3 4 5 6 7 8 9 10 13

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

HYDROPHONE NUMBER

10 11 12 13 14 15 16 17 18 10 20 21 22 23 24

HYDROPH ON

		nıbn	OPHONE NO.		•,									
23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
-			68	76	. 62	90	78	107	117	3	13	24	35	1
			74	82	88	95	103	112	121	7	17	27	37	1
			82	90	95	102	110	118	3	12	21	31	41	1
			90	98	103	110	117	1	9	18	27	36	45	1
			95	102	107	113	120	3	11	20	28	37	46	
			104	111	116	122	4	11	19	27	35	43	52	9
			- - ·	116	121	2	•	15	22	29	37	45	53	•
				121	1	6	12	18	25	32	39	47	54	
				121	1	6	11	17	23	30	37	44	51	9
				1117	121	2	6	12	18	24	31	37	44	•
				119	123	3	5	13	19	25	31	37	44	
				119	123	3	7	12	18	23	29	35	41	•
				118	121	<i>l</i> 1	5	10	15	20	25	31	37	1
				119	123	3	7	11	16	21	26	31	36	
					7	11	15	19	23	28	32	37	42	
				103		17	21	25	29	33	37	41	46	
				109	114	1/ 8	11	39	42	46	50	54	58	
				113	4				48	55	58	62	65	
				122	2	16	50	24	70	37	,,	•		

HYDROPHONE

36	37	38	39	40	41	42	43	44	45	70	4/	70	4,	• •
35	46	58	73	85	96	108	119	7	19	31	42	55	67	7
37	48	60	74	85	96	108	119	6	17	29	40	52	64	7
41	51	63	77	87	98	109	119	6	17	28	39	50	62	7
45	55	66	80	98	100	110	121	7	17	28	38	49	59	7
			79	89	98	108	118	4	14	24	34	44	54	(
46	56	65			102	111	121	6	15	25	35	44	54	
52	61	69	83	93	•		119	4	_	22	31	40	49	9
53	62	70	83	92	101	110			10	19	28	36	45	!
š RA	£3.	70	83	92	100	109	117	2	10	* *			• •	

75.

•3

HYDROPHONE NUMBER

Figure 61. Sampling Times for Submarine (Sheet 3)

HYDROPHONE NUMBER

5	46	47	48	49	50	51	52
19	31	42	55	67	79	95	
17	29	40	52	64	76	91	
17	28	39	50	62	73	88	
17	28	38	49	59	71	86	
14	24	34	44	54	64	. 80	
15	25	35	44	54	64	79	
13	55	31	40	49	59	72	*2
10	19	28	36	45	54	67	76
3	11	20	28	36	45	57	66
116	0	8	16	23	32	44	52
112	119	3	10	17	25	37	44
105 -	113	120	3	9	17	28	. 35
97	105	111	118	0	7	18	25
93	100	107	113	119	2	12	19
93	99	105	111	116	123	9	14
92	98	103	108	113	119	4	10
99	104	109	113	118	123	8	12
101	106	110	114	117	122	6	10

Figure 61. Sampling Times for SSB(N) 608 Class Submarine (Sheet 3)

107/108

				HYDRO	OPHONE NU	MBER							ļ
		1	2	3	4	5	5	7	8	9	10	11	12
	1	n	5	13	19	25	31	37	12	49	55	61	67
	2	1	5	12	17	3 2	28	33	38	44	49	55	60
	5	1	5	11	15	50	25	30	34	39	44	49	54
	1	1	4	9	1.3	17.	55	26	29	34	39	43	47
	3	1,2	15	21	23	27	50	34	37	41	45	49	52
	6	29	23	27	٤j	53	36	39	42	46	49	53	56
	,	28	30	34	35	59	42	45	47	51	54	57	60
œ	a	37	32	35	37	40	42	45	47	50	52	55	57
NUMBER	9	15	47	49	51	53	35	57	5 9	61	63	66	68
Ď	20	>6	57	6 ŋ	11	63	54	66	67	69	71	13	74
ВЕАМ	11	40	67	69	49	/1	72	73	74	15	17	78	79
æ	٤:	7%	15	77	79	78	79	80	80	81	82	83	84
	13		용0	91	*1	81	92	82	82	42	83	83	84
	1.4		93	83	8.3	33	92	82	82	82	82	82	82
	15		81	81	H٥	a 0	79	78	78	17	77	76	74
	٠, ٧		91	9 1	e 9	38	47	86	85	84	83	95	81
	1 /		91	91	49	37	96	84	83	81	80	19	71
	13		95	74	°1	30	38	86	84	82	80	78	7(
	:9			103	100	98,	96	93	91	88	86	84	81
	21			102	93	96	93	9 n	98	85	82	79	71
	21				160	98	24	91	38	45	82	/9	7;

HYDROPHONE N	UMBER
--------------	-------

11	12	13	1 4	15	16	17	18	19	20	21	2?	23	24
61	67	73·	/9	કે ક	93	99	105	111	117	122	107	113	119
55	60	56	71	79	r4	89	95	101	107	113	119	101	108
49	54	29	63	7 ŋ	76	40	95	91 '	96	102	108	114	121
43	47	52	>6	62	6.7	71	76	81	86	91	97	103	109
49	52	26	60	65	70	13	78	82	36	91	96	102	108
53	56	5 c	63	69	72	75	79	8.3	87	45	97	102	108
57	60	53	66	79	/4	17	٩0	84	88	92	96	102	107
55	57	50	63	67	10	73	76	73	83	86	90	95	100
66	68	10	12	76	19	81	94	87	90	93	97	102	106
13	74	76	78	81	P 4	8.6	9.8	90	93	96	99.	104	108
78	79	Αl	82	85	۲7	88	٥٥	9.5	95	97	100	104	108
83	84	45	46	88	93	91	92	94	96	98	100	104	108
83	84	94	ง 85	87	48	88	99	91	92	94	96	99	102
82	82	42	82	84	⊬ 4	g4	95	84	87	86	89	92	95
76	76	15	75	76	76	76	76	76	77	18	79	81	84
82	81	46	80	, 8 n	rŋ	79	79	79	` 79	19	79	,82	84
19	77	16	75	15	7.4	13	72	72	71	71	71	73	74
78	76	15	73	73	/1	70	59	63	67	66	66	67	68
84	82	10	78	17	75	13	72	70	69	68	67	68	68
79	77	14	72	71	43	66	54	62	60	59	57	58	58
/9	76.	+3	70	09	65	63	50	53	56	54	52	52	52
,,		••	, •	-,									

	HYDROPHONE	NUMBER
36	37	38

35

34

32 33

25	26	27	58	29	30
115	121				
115	121				
193	109				
116	122				
114	120				
114	1/0				
113	119				
106	112				
112	117				
113	119				
113	118				
112	117				
106	111	120			
99	103	112			
9.7	91	100			
36	90	99			
71	⊣ 0	89			
70	73	81			
79	12	80	∺6		
59	61	69	75		
52	54	51	67	74	
	115 115 116 116 116 117 113 116 117 118 116 99 97 86 77 70 79	115 121 115 121 115 121 117 109 116 122 114 120 114 120 113 119 110 112 117 113 119 115 118 112 117 106 111 99 103 87 91 86 90 77 40 70 73 70 72 59 61	115 121 115 121 115 121 115 121 115 109 116 122 117 120 114 120 113 119 116 112 117 113 119 115 118 117 116 111 120 19 103 112 17 166 111 120 17 166 111 120 17 166 111 120 17 166 111 120 17 186 90 99 17 18 99 1	115 121 115 121 115 121 115 121 115 121 117 116 120 117 117 117 118 119 115 118 117 116 111 120 99 103 112 97 91 100 96 90 99 77 40 89 70 73 81 70 72 80 86 59 61 69 75	115 121 115 121 115 121 115 109 116 122 114 120 114 120 113 119 116 112 117 113 119 115 118 117 116 111 120 99 103 112 97 91 100 36 90 99 77 40 89 70 73 81 70 72 80 86 59 61 69 75

HYDROPHONE NUMBER

E NUMBER

38 39 40 41. '42 43 44 45 46 47 48 49 50 51

Figure 62. Arrival Times for Compromise Ber former Between the SSB(N) 598 ar SSB(N) 608 Class Submarines (Sheet

109,

CONFIDENTIAL

				HYDR	OPHONE N	UMBER							
		1	,	3	4	5	5	7	8	9	10	11	12
	72					100	97	93	90	86	83	79	76
	23						99	95	92	87	84	80	76
	24							103	99	94	90	86	82
	25 25								94	89	84	80	75
										90	86	81	76
	36										86	81	76
	21											83	77
	23												87
	29												0,
	513												
×	11												
NUMBER	75												
Z	5.5												

CONFIDENTIAL

	12	15	14	เร	16	17	18	17	20	21	55	23	24	25
79	76	13	10	67	64	61	58	95	53	50	48	48	47	47
80	76	15	28	66	52	59	36	53	50	47	44	43	42	41
86	82	79	74	71	67	63	40	56	53	50	46	45	43	42 }
80	75	71	67	6 5	53	55	31	47	4.5	40	36	54	32	30
81	76	/1	67	63	51	54	49	45	41	37	33	31	28	26
81	76	'1	66	62	55	52	17	43	38	34	29	27	24	21
83	77	,5	67	63	57	25	17	42	38	33	28	25	22	17
	87	81	16	71	43	60	54	49	44	39	33	30	26	22 }
		43	11	72	63	60	54	43	43	37	31	27	55	19
			80	14	67	62	35	49	43	37	31	56	20	15
			83	77	7:)	64	58	51	45	39	32	27	21	15
				84	12	71	55	59	52	45	38	33	26	20
					42	76	59	63	56	50	43	37	30	23 }
						81	75	68	65	55	48	42	35	23
							90	74	68	61	54	48	41	34
								74	68	62	55	48	41	34 🖠
									73	67	60	54	47	40
										17	70	64	57	50 3
											74	68	61	54 3
												66	59	១ ខ ខ្លី
													80	75

,

	มงกอ	OPHONE N	more									HYDR	OPHONE NU	MBEK .
ř.	75	26	27 27	28	29	30	31	32	33	34	35	36	37	38
47	47	48	55	71	68	75) i
42	41	42	49	55	68	59	75							j
43	42	43	49	55	62	59	75	81						<u>.</u>
32	30	31	36	42	49	56	63	69	15					,
28	26	26	31	37	44	51	57	64	70	76				•
24	51	21	26	31	38	45	51	58	64	70	76			
22	19	ι8	33	27	34	41	47	54	60	66	73	79		
26	22	20	24	29	36	42	48	55	61	68	74	80	86	0.5
52	19	15	19	55	28	35	40	47	53	60	66	72	78	85
20	15	12	13	17	23	>9	34	41	47	53	59	65	71	78 70
21	15	11	11	1 4	19	25	59	36	41	47	53	59	65	72
26	50	15	14	17	21	26	30	36	41	47	>2	58	63	70 65
30	23	18	16	18	21	25	ટ્રક	34	39	44	49	54	59	
35	23	23	21	21	24	27	311	35	39	44	48	53	58	63
41	34	28	25	26	2#	₹1	3.3	38	42	46	51	55	59	65
41	34	28	25	25	27	58	31	35	59	43	47	51	55	60
47	46	54	30	29	31	₹3	34	38	41	45	49	53	56	65
57	50	44	30	38	39	41	42	45	48	51	55	58	62	64 65
61	54	46	43	42	42	4.5	44	47	49	52	55	58	61	58
59	53	46	41	39	39	40	40	42	44	47	49	52	55	
80	7.5	ი7	61	59	58	59	58	60	62	64	66	68	71	73
<u>;</u> :	73	66	6નંગ	58	57	57	56	57	59	60	67	64	66	68
	81	14	6я	65	64	63	6?	63	64	65	66	67	69	71

4,8

46

30

u e													
85	•												
78 72	86 79												
		0.5											
70	77	82											
65	72	77	85										
63	70	74	79	85									
65	71	75	80	85	90								
60	66	70	74	79	84	88							
61,	66	70	74	78	83	87	92						
66	71	74	78	82	86	90	95	98					
65	69	73	76	50	83	87	91	95	98				
58	62	65	68	71	75	78	82	85	88	92			
73	77	80	82	85	88	95	94	97	100	103	100		
68	71	73	76	78	81	83	66	e 8	91	94	95	19	
71	74	75	17	79	81	83	86	88	90	92	24	47	

NUMBER 38

Figure 62. Arrival Times for Compromise Leam former Between the SSB(N) 592 and SSB(N) 608 Class Submarines (Sheet 2)

111/11

HYDROPHONE NUMBER

1 2 3 4 5 5 7 8 9 10 11

45
46
47
48
49
70
51
52
53
66
57
58
60
61
62

HYDROPHONE NUMBER

12 14 15 16 17 18 19 20 21 22 23 24 25

HYD	ROPHONE N	UMBER							• •	* E	36	37	38
25	26	27	48	24	ξ ()	31	35	33	34	35	30	J,	
	81	74	71	69	68	66	67	67	68	69	70	71	72
	88	81	17	15	73	71	71	71	71	12	72	73	74
	97	90	R6	83	91	78	78	77	17	77	77	77	78
	105	98	94	90	98	85	84	83	82	82	81	81	81
	106	99	94	91	98	84	83	81	80	79	79	78	78
	116	109	104	100	97	93	91	89	87	86	85	84	83
		116	111	107	103	99	96	94	92	90	89	87	86
		120	115	110	106	101	98	96	93	91	89	87	85
		120	115	110	195	100	97	94	91	88	86	84	81
		117	111	1 05	100	95	92	86	85	82	79	,77	74
		117	111	105	100	95	91	87	83	80	77	74	70
		120	114	108	102	97	92	8.8	84	80	77	73	70
		118	112	105	100	94	89	84	80	75	72	68	64
		120	114	107	101	95	90	85	81	76	72	68	63
		124	120	113	106	100	94	89	84	79	74	70	:.4
		111	105	122	115	109	103	97	91	86	80	76	70
		124	118	111	104	122	115	109	103	97	91	86	79
		155	117	121	114	108	123	118	112	105	99	93	A6

, . ,

BER									HYDRO	PHONE NUM	IBER			
38	39	40	41	42	4.5	44	45	46	47	48	49	0,0	51	>5
72	75	76	77	79	81	82	84	86	68	89	91	93	96	
74	76	77	78	79	80	81	83	84	85	87	bn	90	92	
78	79	80	80	91	82	83	84	84	85	86	ò١	48	ሳባ	
81	82	82	82	83	83	83	84	84	85	85	ล์ร	3F	89	
78	78	78	17	77	77	77	77	77	17	77	13	11	79	
83	83	82	81	81	80	80	79	79	/8	78	11	11	79	
86	85	84	8.3	92	81	80	79	78	77	76	75	15	15	14
85	84	83	81	90	78	77	75	74	73	71	71	49	59	~1
81	80	78	16	74	72	70	68	67	65	63	41	۲,	59	٠, ۶
74	72	69	67	64	65	60	57	55	53	51	40	17	4.6	* 4
70	6R	65	62	60	57	54	51	49	46	44	41	13	57	44
70	67	64	60	57	54	51	47	45	42	39	11	13	31	، نے
64	61	58	54	50	47	43	39	36	33	30	ch	23	21	1/
63	60	56	52	48	44	40	36	33	29	25	51	1,3	15	t.
64	60	56	51	47	42	38	33	29	24	20	10	¹ 1	ન	
70	65	60	55	50	45	40	34	30	25	50	4.3	1.0	7	
19	74	69	63	58	52	46	40	35	30	24	1,3	13	٥	
		75	68	62	55	50	43	37	31	25	. >	1.3	4	
86	მე	1.3	90	- E		- •	_							

Figure 62. Arrival Times for Compromise Beam former Between the SSB(N) 598 and SSB(N) 608 Class Submarines (Sheet

113/1

uvne	OPHON	IE NIIN	IRER
תענח	OFILL	12 11 0 11	uDDI

	•	1	2	3	4	5	6	7	S	9	10	11	12
	1	100	116	13	29	45	61	77	92	109	5	18	34
	s	101	115	12	27	42	58	73	88	104	119	12	27
	3	101	115	11	25	40	55	70	84	99	114	5	21
	4	100	114	8	23	37	52	66	79	94	109	123	14
	5	112	1	20	33	47	60	74	37	101	115	5	19
	6	120	9	27	40	53	56	79	92	106	119	9	52
	7	4	16	34	46	59	72	85	97	111	0	13	27
3ER	А	6	18	35	47	50	72	85	97	110	122 ,	11	23
TUME	9	21	34	49	61	73	85	97	109	121	9	22	35
BEAM NUMBER	10	5 <i>2</i>	44	60	71	83	94	106	117	5	17	29	41
BEA	11	4.5	54	69	79	91	102	113	0	11	23	34	46
	12	52	63	77	88	98	109 .	120	6	17	59	39	51
	13		67	81	91	101	112	122	8	18	29	39	51
	14		70	83	93	133	112	122	8	18	28	38	44
	15		58	81	90	100	109	118	4	13	53	32	42
	16		78	91	99	108	117	2	11	20	29	38	47
	17		78	91	99	107	116	0	9	17	26	35	43
	18		82	94	101	110	118	5	10	18	26	34	42
	19			103	110	118	5	9	17	24	32	40	44
	50			102	108	116	123	6	14	?1	28	डेंड	43
	21				110	118	0	7	14	. 21	28	35	44

HYDROPHONE NUMBER

			HIDRO	JEHONE NO]
11	12	13	14	15	16	17	18	19	50	21	55	23	24	25
18	34	50	66	86	103	119	12	28	44	59	54	70	86	92
12	27	43	58	78	94	109	1	18	34	50	66	58	75	92
5	. 21	36	50	70	86	100	115	8	23	39	55	71	88	80
123	14	29	45	62	77	91	106	121	13	28	44	60	76	93
5	19	33	47	65	80	93	108	122	12	28	43	59	75	91
9	23	37	50	68	82	y 5	109	123	13	29	44	59	75	91
13	27	40	53	70	84	47	110	0	14	29	43	59	74	90
13	23	3,7	50	-67	80	93	106	119	9	22	37	52	67	83
	35	3,7 47	59	76	89	103	114	3	16	29	44	59	73	89
53 55	41	4 . 53	65	81	94	106	118	6	19	32	46	61	75	90
i	46	58 58	69	85	97	108	120	Я	21	33	47	61	75	90
34	51	62	73	88	100	111	155	10	22	34	47	61	75	89
39			12	87	98	108	119	7	18	30	42	56	69	83
39	51 48	61 59	69	84	94	104	115	2	13	24	35	48	62	76
. 38	42		45	76	86	96	106	116	3	14	25	37	50	64
32	47	51 56	67	80	90	99	109	119	5	15	25	38	50	63
38	43	5°	61	75	84	93	102	112	121	7	17	29	40	53
•			5 9	73	81	90	99	108	117	2	12	23	34	46
34	42	51		73 77	85	93	102	110	119	4	13	24	34	46
40 2	48	56	64		78	86	94	102	110	119	3	14	24	35
उंड	43	50	58	70	74	93	90	98	106	114	122	8	18	28
35	42	49	56	67	/ •	30	•							

HYD

III	ODWONE NO	u nnn									HADBO	PHONE NUM	aaa
HYDR	OPHONE NU	MBER											
25	26	27	28	29	30	31	32	33	· 34	35	36	37	38
92	108												
92	108												
80	46												
93	109												
91	107												
91	107												
90	106												
83	99												
89	104												
90	106												
90	105												
89	104												
83	98	120											
76	30	112											
64	78	100											
63	77	99											
53	67	89											
46	59	81											
46	58	8 ŋ	96										
35	47	69	85										

76 '

4

UMBER HYDROPHONE NUMBER

38 39 40 41 42 ,43 44 45 46 47 48 49 50 51

Figure 63. Sampling Times for Compromise Bean former Between the SSB(N) 598 and SSB(N) 608 Class Submarines (Sheet 1

115/1

BEAM NUMBER

HYDROPHONE NUMBER

	1	2	3	4	5	6	7	8	9	10	11	16
22	-	-			120	3	9	16	22	29	35	42 42 42 42 42 42 42 42 42 42 42 42 42 4
						5	11	18	23	30	36	42 🦣
23							19	25	30	36	42	48 🖟
24								20	25	30	36	48 41 42 42 42 42 42 42 42 42 42 42 42 42 42
25								20				42
26									26	32	37	10.4
27										35	37	42
2.9											59	43 है
												53 🦠
29												ž

			HYDRO	PHONE NU	MBER									.6
11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
35	42	49	56	66	73	80	98	95	103	- 110	118	4	13	ટર્ફ
	•		55	65	71	78	85	93	100	107	114	123	8	17
36	42	48			76	82	89	96	103	110	116	1	9	1
42	48	54	60	70		74	90	86	92	100	106	114	155	•
36	41	47	53	62	68		78	84	90	96	103	111	118	3
37	42	47	53	62	67	73		82	87	93	98	107	114	12
37	42	47	52	61	65	/1	76			92	97	104	112	119
39	43	46	53	65	66	71	76	81	87			109	116	3
	53	57	62	70	74	79	83	88	93	98	102			127
		59	63	71	74	, 79	83	87	92	96	100	106	111	11
			66	73	76	. 81	54	88	92	96	100	105	109	11) 3
			69	76	79	83	87	90	94	98	101	106	110	11
				83	86	90	94	97	101	104	. 107	112	115	រេដ្ឋ
					91	95	98	102	105	109	112	116	119	12
						100	104	107	111	114	117	121	0	
							109	113	117	120	123	3	6	Į.
								113	117	121	0	3	6	a A
									123	2	5	9	12	i
										1?	15	19	55	Ź
											19	23	26	1

HYĎ

÷ ,

	HYDRO	PHONE NUM	MBER									HYDROPE	IONE NUMB	ER
	25	26	27	28	29	30	31	32	33	34	35	36	37	38
13	23	34	54	70	88	105								
8	17	28	48	64	81	99	115							
9	13	29	48	64	81	99	115	7						
122	6	17	35	51	68	95	102 .	119	11					
118	2	12	30	46	63	80	96	114,	6	55				
114	121	7	25	40	57	74	90	138	0	, 16	32			
112	119	4	21	36	53	70	86	103	120	12	29	45		
116	122	6	23	38	55	71	87	194	121	14	30	46	62	
111	118	1	. 17	31	47	54	79	96	112	6	55	38	54	71
109	114	122	12	26	42	38	73	90	106	123	15	31	47	64
110		120	10	23	39	54	68	85	100	116	9	25	41	5(
Ī	114	120	13	26	40	55	69	85	100	116	8	24	39	50
115	119	3	15	27	40	54	67	93	98	113	4	50	, 35	5
119	122			30	43	56	69	84	98	113	3	19	. 34	49
0	3	8	19	35	47	60	72	87	101	115	6	21	35	5
6	9	1,3	24		46	58	, 70	84	98	112	2	16	31	4
6	9	13	24	34	50 50	62	73	87	100	114	•	18	35	4
12	15	19	29	38		70	81	94	107	120	10	23	38	5
55	25	30	38	47	58		83	96	108	121	10	23	37	5
26	29	54	. 42	51	61	72	79	91	103	116	4	17	30	4
24	2,	31	40	48	511	69	97	109	121	9	21	33	47	
46	49	53	6ŋ	68	77	38		106	118	5		29	41	
	49	52	59	67	76	, 86	95		. 123	10		32	44	
	57	60	67	74	83	92	101	112	. 153	10		_	•	

legari d	38	,39	٠	40	41	42	43	44	45	46	47	48	49	5 C	51
idensta															
S. Jack															
* A 18															
62 54															
62															
54	71														
47	64		35												
41 39	58	,	78												
39	56	. 7	76	91											
35	51	. 7	71	86	101		•								
34	49	. 6	59	83	98	114									
35	51	. 7	70	84	99	114	5								
31	46	. (55	79	93	108	123	13							
25	47		55	79	93	107	122	12	28						
38	52	: 7	7 n	83	97	111	1	15	31	44					
37	51		5 B	82	195	109	122	12	26	41	54				
30	44		61 .	74'	87	100	114	3	17	30	44	58			
47	59	, ;	76	89	101	114	3	16	29	43	. 56	69	85		
41	54	;	7 0	H5	95	107	120	' 8	21	33	47	60	72	85	
44	57	, ;	73	84	96	108	120	8	21	33	45	58	7.0	43	

UMBER

Figure 63. Sampling Times for Compromise Beam former Between the SSB(N) 598 and SSB(N) 608 Class Submarines (Sheet 2

117/1

HYDROPHONE NUMBER

		1	5	3	4	ל	0	,	0	,	10	11
	45											
	46											
	47											
	48											
	49											
	50											
BER	51											
NOM	52											
BEAM NUMBER	53											
BE	54											
	55											
	56											
	57											
	58											
	59											
	60											
	61											
	62											

HYDROPHONE NUMBER

11 12 13 14 15 16 17 18 19 20 21 22 23 24

.

HYDROPHONE NUMBER HYDROPHONE NUMBER

24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
		67	73	80	88	97	105	116	2	13	24	35	46	
		74	3 f)	86	94	102	110	120	6	16	27	37	48	
		83	89	95	102	110	117	3	12	22	32	42	52	,
		91	97	103	109	117	า	9	18	27	37	46	56	!
		92	98	103	110	117	123	8	16	25	34	44	53	,
		102	108	113	119	2	А	16	24	32	41	50	59	
			115	120	2	8	14	21	29	37	45	54	62	
			119	n	5	11	16	23	31	38	46	54	62	
			119,	0	5	10	15	2 2	29	36	43	51	59	
			116	120	o	5	10	17	23	30	37	44	52	
			116	120	0	5	10	16	22,	28	35	42	49	
			119	í23	3	7	17	17	53	29	35	, 42	48	
			117	121	0	5	9.	14	19	25	31	, 37	. 43	
			119	123	5	6	10	15	50	56	31	37	43	
			123	5	8	11	15	19	24	29	34	39	45	
			109	114	17	50	24	28	32	36	41	45	51	
			123	. 3	6	9	37	40	44	48	52	56	61	
			121	. 2	16	19	23	48	53	57	60	64	68	

DROP	IONE NUM	BER				•							HYDRO	PHONE NUM
	5 7	38	39	40	41	42 '	43	44	45	46	47	48	49	50
35	46	58	74	85	967	108	120	. 7	19	31	43	55	47	79
37	48	60	75	86	97	108	119	6	18	29	40	52	64	76
42	52	64	78	#9	99	110	121	8	19	59	40	51	63	74
46	56	67	81	91	101	112	. 122	8	19	29	40	50	60	72
44	53	63	77	87	96	106	116,	2	12	55	32	42	52	62
50	59	68	82	91	100	110	119	5	14	24	33	43	52	62
54			84	93	102	ļ11	120	5	14	23	32	41	50	60
	62	71		92	100	109	117	5	10.	19	28	36	45	54
54	62	70	83		95	103	111	119	3	12	20	28	36	45
51	59	66	78	87			101	109	116	0	8	16	24	35
44	52		7 n	77	85	93,		103	110	118	1	9	16	1 24
42	49	5 5	66	73	80	88	96		106	114	121	4	11	18
, 42	48	55	65	72	78	85	92	100				119	1	8
, 37	, 43	49	59	66	77	78	85	91	97	105	112			
37	43	48	58	64	70	75	8.2	88	94	101	108	114	120	3
39	45	49	58	64	69	75	80	86	91	97	102	109	115	189
45	51	55	63	68	73	78	83	88	92	98	103	108	114	119
56	61		72	77	81	96	90	94	98	103	108	112	118	155
64	68		7 ₈	83	86	90	94	98	101	105	109	113	117	122

Figure 63. Sampling Times for Conformer Between the SSSB(N) 608 Class Subm

HYDROPHONE NUMBER

•	47	48	49	50	51	5?
31	43	55	47	79	95	
5.8	40	52	64	76	91	
29	40	51	63	74	139	
29	40	50	60	72	87	
22	32	42	52	62	77	
24	33	43	52	62	77	
23	32	41	50	60	73	83
19	28	36	45	54	67	76
12	20	28	36	45	57	56
0	8	16	24	15	44	52
118	1	9	16	24	35	43
114	121	, 4	11	18	59	37
105	112	119	1	8	19	45
101	108	114	129	3	13	20
97	102	109	115	120	5	12
98	103	108	114	119	5	10
103	108	112	118	1,5	7	12
105	109	115	117	172	5	10

Figure 63. Sampling Times for Compromise Beamformer Between the SSB(N) 598 and SSB(N) 608 Class Submarines (Sheet 3)

119/120

SECTION IV

CONCLUSIONS

1. VERTICAL BEAM COVERAGE STUDY

It is difficult to make a clear-cut decision as to whether vertical beam broadening and depression are beneficial to the overall detection problem. For noisy targets, such as a snorkler, the detection range is improved somewhat by beam depression. For quiet targets, such as the Permit submarine, the detection range may be impaired. Beam depression and vertical beam broadening is effective only in cases where array gain for surface duct reception can be sacrificed at the expense of improved bottom bounce reception. This trade-off can be costly in terms of detectability of quieter targets.

It is evident that any conclusions are very sensitive to the characteristics of the model. Whereas one set of specified inputs might dictate a certain degree of beam depression and broadening, this might be detrimental to target detectability for another set of inputs. To assure the detectability of quiet targets with the array gain provided by the BQR-7 DIMUS, it appears that vertical beam broadening and depression is not desirable.

2. COMPROMISE BEAMFORMER FEASIBILITY STUDY

Several of the classes of submarines are quite compatible for the purpose of designing a suitable compromise beamformer. Chief candidates for a suitable two-array compromise are the following pairs.

SS(N) 594 and SSB(N) 608 SSB(N) 608 and SS(N) 671

Degradation of the peak response for most beams is less than 0.2 dB utilizing these pairings. The least desirable combinations for a two-array compromise are the following pairs.

SSB(N) 598 and SS(N) 671 SSB(N) 598 and SSB(N) 608

The degradation for these pairings is considered unnecessarily large when compared to other two-array compromises.

The largest degradation for the three-array and four-array compromises which were considered in Section III are approximately 0.5 and 0.8 dB, respectively.

If a peak loss of 0.8 dB due to the effects of compromising the delays is considered acceptable, the four-array compromise is suitable. If a peak loss in the vicinity of 0.5 dB is acceptable, a three-array compromise between the SS(N) 594, SSB(N) 598, and the SSB(N) 608 is recommended. If both of these degradations are excessive, the best pair of two-array compromises which include all four classes of submarines is the following.

SSB(N) 608 and SS(N) 671 SS(N) 594 and SSB(N) 598

The largest degradation for these pairings is approximately 0.3 dB.

