### Integrating Timeseries of Reef Fish Community Monitoring Data



BX Semmens<sup>1</sup>, **EE Holmes**<sup>1</sup>, EJ Ward<sup>1</sup>, CV Pattengill-Semmens<sup>2</sup>, and BI Ruttenberg<sup>3</sup>

<sup>1</sup>NOAA Northwest Fisheries Science Center (Seattle), <sup>2</sup>Reef Environmental Education Foundation (REEF), <sup>3</sup>NOAA Southeast Fisheries Science Center



### Study overview

Goal: To develop estimates of reef fish population trends using data collected from multiple monitoring programs and incorporating temporal variability in population growth rates plus variability from observation error.

How: Use Multivariate Auto-regressive State Space (MARSS) models to analyze changes in abundance as stochastic process through time, with multiple observations of that population process

# Time varying population growth leads to a "random walk"



Every year, decline 2%

Every year, decline 2% but there is observation error

Average yearly decline is 2%, but actual declines vary from year to year

# Typical ways time-varying population growth is included in MARSS models

Year-to-year uncorrelated variability with some (estimated) constant mean and variance

Year-to-year correlated variability;
 mean growth rate is changing



 Variability that is modeled as a (estimated) function of measured or known factors (temp, Ph, salinity, month<sup>n</sup>, year<sup>n</sup>)

# A second type of variability in reef fish (and other) monitoring data



- Temporal variability reef fish population dynamics
- Observation error

The variability due to observation error is difficult to estimate because it arises from changes in detectability and is a complex (often unknown) function of the environment.



### Stochastic abundances observed with error "state-space" model



# Application: estimation of long-term mean population growth rates and population index for Florida reef fish

REEF Fish Survey Project – Volunteer divers, average 60 minute search time, multiple habitats,  $\log_{10}$  abundance categories; "Citizen science" survey

SEFSC/NOAA Reef Fish Long-term
Monitoring Program –Visual Count, 15m
circular plots, randomized over habitats,
5 min counts; Prof. scientific survey



Data from Molasses Reef (Florida Keys, US), 1993-2010 (REEF) and 1993-2008 (RVC). 1,741 REEF surveys and 227 RVC surveys.

# Analysis approach: MARSS models Multivariate Auto-regressive State Space

State 
$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{u} + \mathbf{w}_t$$
 where  $\mathbf{w}_t \sim MVN(0, \mathbf{Q})$   
Obs  $\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$  where  $\mathbf{v}_t \sim MVN(0, \mathbf{R})$ 

- Well established, flexible and widely used in quantitative fields
- Combines a process and obs. model
- Simple framework for many different data and population structure
- Estimates of the unseen "true" state
- Merge multivariate time-series data



### Analysis assumptions

Simultaneously model trends in abundance in each of 10 species on Molasses Reef:

- Variance in year-to-year population growth rates is unique to each species
- Observation errors are unique to each survey method (but shared across species)
- For a single spp, both surveys are reporting information on the same unobserved true population abundance through time.

## Model (showing 2 spp instead of 10 actually used)



All analyses were carried out in the R open source software environment using the MARSS Package (freely available on CRAN; Holmes, E.E., E.J. Ward. 2010. Analysis of multivariate time-series DATA using the MARSS package. Google: MARSS CRAN)

#### Results

'R' is average annual abundance score based on REEF surveys.

'C' is average annual density based on RVC surveys ( $log_{10}+1$  transformed).

The black line represents the model results, showing an estimated "true" population abundance removing the observation error but leaving in the process error

#### Lutjanus griseus, grey snapper



#### Caranx ruber, bar jack



#### Microspathodon chrysurus, yellowtail damselfish



#### Sparisoma aurofrenatum, redband parrotfish



#### Haemulon plumierii, white grunt



### Key results

Observation errors were similar –

REEF: variance of 0.07

RVC: variance of 0.06

Average species process variance (population stochasticity) was 0.01, with the a high of 0.05 (white grunt). These are fairly typical levels for vertebrates.

#### Summary

The REEF program yields valuable information separate from but comparable to "professional" long-term monitoring programs.

Variability in the time series data from both methods was dominated by observation error rather than year-to-year variability in population growth..

This multivariate approach provides a more accurate estimate of the true states of reef fish populations through time.

