Chi-square tests

1. Chi-square test of Association

2×2 Contingency Table

The outcome of a certain IQ test is tabularized as follows.

	Pass		Fail		Total
Male	O=28	E=	O=12	E=	40
Female	O=34	E=	O=26	E=	60
Total	62		38		

The two variables here are "Gender of Candidate" and "Results of the Candidate".

When you have two categorical variables from the same population, you may test whether there is a significant association between the two variables using the Chi-square Test.

Hypothesis

 H_0 : There is no relationship between gender and results

 H_1 : There is a significant relationship between gender and results

Test Statistic

$$\chi_{cal}^2 = \sum \frac{(O_i - E_i)^2}{E_i} \sim \chi_{df, \alpha\%}^2 \quad ; df = (r - 1)(c - 1)$$

Under H₀

Expected frequency
$$=\frac{\text{Row total} \times \text{Column total}}{\text{Grand total}}$$

$$\chi^2_{cal} =$$

$$\chi^2_{1.5\%} = 3.84$$

Decision

$h \times k$ Contingency Table

Example: A survey of 200 families, known to the regular television viewers was undertaken. They were asked which of the TV channels they watched most during a common week, and the observations are as follows.

TV channel	Region						
watched most	North	East	South	West			
1	19	16	42	23			
2	6	11	26	7			
3	15	3	12	10			

Test the hypothesis that there is no association between the TV channel watched most and the Region, using the Chi-square test.

2. Chi-square Goodness of Fit test

Example 1

From a list of 500 digits the occurrence of each distinct digit is observed. Test at 5% significance level, whether the sequence is a random sample from **the Uniform distribution**.

Digit	0	1	2	3	4	5	6	7	8	9
Frequency	40	58	49	53	38	56	61	53	60	32

Example 2

The table below gives the number of heavy rainstorms reported by 330 weather stations over a one year period.

- a) Find the expected frequencies of rainstorms given by the Poisson distribution having the same mean and the total as the observed distribution.
- b) Use the Chi-square test to check the adequacy of the **Poisson distribution** to model these data.

# rainstorms	0	1	2	3	4	5	More than 5
# weather stations	102	114	74	28	10	2	0

Moments and Moment Generating Function

Moments

In Statistics, the **mathematical expectation** is called the **moments** of the distribution of a random variable.

Definition(rth moment of ar.v.)

The rth moment of a random variable X denoted by μ'_r is the expected value of the random variable's rth power; i.e. $E(X^r)$.

For
$$r=1,2,3,...$$

$$\mu'_r = E(X^r) = \sum x^r P(x) \text{ ; when } X \text{ is discrete}$$

$$\mu'_r = E(X^r) = \int_{-\infty}^{+\infty} x^r f(x) dx \text{ ; when } X \text{ is continuous}$$

Special Application: $\mu'_1 = E(X^1) = E(X) = \mu$ (mean of r.v. X)

Definition (rth moment about the mean of ar.v.)

The rth moment about the mean of a random variable X denoted by μ_r is the expected value of $(X - \mu)^r$; i.e. $E[(X - \mu)^r]$.

For
$$r=1,2,3,...$$

$$\mu_r = E[(X-\mu)^r] = \sum (x-\mu)^r P(x) \text{ ; when } X \text{ is discrete}$$

$$\mu_r = E[(X-\mu)^r] = \int_{-\infty}^{+\infty} (x-\mu)^r f(x) dx \text{ ; when } X \text{ is continuous}$$

Special Application: $\mu_2 = E[(X - \mu)^2] = V(X) = \sigma^2$ (variance of r.v. X)

Theorem:

$$\sigma^2 = \mu'_2 - \mu^2$$
; i.e. $V(X) = E(X^2) - [E(X)]^2$

Proof:

Moment Generating Function (MGF)

- The moments of most distributions can be determined directly by evaluating the respective integrals or sums.
- MGF is an alternative procedure, which sometimes provides considerable simplifications to find the moments.
- MGF can be used to find the expected value of ar.v. and its variance.

Definition

 $M_X(t)$ is the value which the function M_X assumes for the real variable (t).

The MGF of ar.v. X is given by;

$$M_X(t) = E(e^{tx}) = \sum e^{tx} P(x);$$
 when X is discrete
$$M_X(t) = E(e^{tx}) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx;$$
 when X is continuous

where,
$$M_X(t) = E(e^{tx}) = E[1 + tx + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \dots + \frac{(tx)^r}{r!} + \dots$$

$$M_X(t) = E(e^{tx}) = 1 + tE(x) + \frac{t^2 E(x^2)}{2!} + \frac{t^3 E(x^3)}{3!} + \dots + \frac{t^r E(x^r)}{r!} + \dots$$

and,
$$M'_X(t) = \frac{d M_X(t)}{dt}$$

$$= \frac{d E(e^{tx})}{dt} = 0 + E(x) + \frac{2t E(x^2)}{2!} + \frac{3t^2 E(x^3)}{3!} + \dots + \frac{rt^{r-1} E(x^r)}{r!} + \dots$$

$$M''_X(t) = \frac{d^2 M_X(t)}{dt^2}$$

$$= \frac{d^2 E(e^{tx})}{dt^2} = 0 + 0 + \frac{2E(x^2)}{2!} + \frac{6t E(x^3)}{3!} + \dots + \frac{r(r-1_t^{r-2}E(x^r)}{r!} + \dots$$

Properties of the MGF

1.
$$M'_X(t)|_{t=0} = E(X) = \mu$$

2.
$$M''_X(t)|_{t=0} = E(X^2)$$

3.
$$V(X) = M''_X(t)|_{t=0} - (M'_X(t)|_{t=0})^2$$

Example 1

Find the MGF and E(X) and V(X) for the r.v.X whose pdf is given by

$$f(x) = \left\{ \begin{array}{cc} e^{-x}, & for \ x > 0 \\ 0, & otherwise \end{array} \right\}$$

Example 2

Suppose $Y \sim Bin (n,p)$. Find E(X) and V(X) using its MGF.

Exercises

- 1. Let Y be a continuous r.v with $pdff(y)=2e^{-3y}$; $y \ge 0$, Find the mean and the variance of Y.
- 2. Given that the probability distribution of a r.v. is $1/8 {}_{r}^{3}C$ for r=1,2,3. Find the MGF, mean and variance for this random variable.