Tutorial Sheet No. 3 January 25, 2016

Continuity and limits of functions of several variables

(1) Examine whether the following limits exist and find their values if they exist

(d)
$$\lim_{(x,y)\to(0,0)} \frac{|x|}{y^2} e^{-|x|/y^2}$$
 (e) $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}$ (f) $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$

(2) For the functions $f: \mathbb{R}^2 \to \mathbb{R}$ given below examine continuity at (0,0) and show that **exactly** two of the following limits exist and are equal:

$$\lim_{(x,y)\to(0,0)} f(x,y), \quad \lim_{x\to 0} \lim_{y\to 0} f(x,y), \quad \lim_{y\to 0} \lim_{x\to 0} f(x,y).$$
(a)
$$f(x,y) := \left\{ \begin{array}{ll} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right.$$
(b)
$$f(x,y) := \left\{ \begin{array}{ll} y + x \sin(1/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{array} \right.$$
(c)
$$f(x,y) := \left\{ \begin{array}{ll} x + y \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{array} \right.$$

(3) For the functions $f: \mathbb{R}^2 \to \mathbb{R}$ given below show that **exactly one** of the following limits exists:

$$\lim_{(x,y)\to(0,0)} f(x,y), \quad \lim_{x\to 0} \lim_{y\to 0} f(x,y), \quad \lim_{y\to 0} \lim_{x\to 0} f(x,y).$$
(a)
$$f(x,y) := \begin{cases} x\sin(1/y) + y\sin(1/x) & \text{if } xy \neq 0, \\ 0 & \text{if } xy = 0. \end{cases}$$
(b)
$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} + x\sin(1/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$
(c)
$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} + y\sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- (4) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) := \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that the iterated limits $\lim_{x\to 0}\lim_{y\to 0}f(x,y)$ and $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ exist and are unequal
- (5) A function $f:A\subset\mathbb{R}^n\to\mathbb{R}$ is said to be **uniformly continuous** if the following holds: For any $\epsilon > 0$ there is a $\delta > 0$ such that $x, y \in A$ and $||x - y|| < \delta \Longrightarrow |f(x) - f(y)| < \epsilon$. Show that f is uniformly continuous if and only if for every $(x_k) \subset A$ and $(y_k) \subset A$ such that $||x_k - y_k|| \to 0 \Longrightarrow |f(x_k) - f(y_k)| \to 0$ as $k \to \infty$. If A is compact and f is continuous on A then show that f is uniformly continuous. Test uniform continuity of $f(x,y) := x^2 + y^2$ on \mathbb{R}^2 .
- (6) A function $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is said to be **Lipschitz** continuous if there a nonnegative number α such that $|f(x)-f(y)| \leq \alpha \|x-y\|$ for all $x,y \in A$. Show that $f(x):=\|x\|$ is Lipschitz continuous on \mathbb{R}^n . Show that $g(x) := \sqrt{x}$ is uniformly continuous on $[0, \infty)$ but is not Lipschitz continuous. Finally show that h(x) := 1/x is continuous on (0,1) but is not uniformly continuous.
- (7) Suppose that f is uniformly continuous on $A \subset \mathbb{R}^n$. If (\mathbf{x}_k) is a Cauchy sequence in A, then show that $(f(\mathbf{x}_k))$ is a Cauchy sequence. Show by an example that if f is continuous on A then $(f(\mathbf{x}_k))$ may not be a Cauchy sequence.

**** End ****