

APLICACIONES LINEALES

Tema 2

Mar Angulo Martínez mar.angulo@u-tad.com Curso 2024-2025

Tema 2. Aplicaciones lineales

- 2.1.Definición y propiedades
- 2.2. Núcleo e imagen de una aplicación lineal.
- 2.3. Clasificación de las aplicaciones lineales.
- 2.4.El espacio vectorial de las aplicaciones lineales.
- 2.5. Aplicaciones lineales y matrices.
- 2.6.Descomposición canónica de una aplicación lineal.
- 2.7. Matriz de cambio de base.
- 2.8.El espacio dual.
- 2.9. Formas lineales.
- 2.10.Bases duales y subespacios vectoriales ortogonales.
- 2.11. Aplicación lineal traspuesta.

Aplicaciones lineales. Definición y propiedades

Aplicación lineal

Si V y W son espacios vectoriales sobre el mismo cuerpo de escalares K, una aplicación lineal (homomorfismo) de V en W es una aplicación que verifica:

1)
$$f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v}) \quad \forall \vec{u}, \vec{v} \in V$$

2) $f(\alpha \vec{u}) = \alpha f(\vec{u}) \quad \forall \alpha \in R, \forall \vec{u} \in V$

O equivalentemente: $f(\alpha \vec{u} + \beta \vec{v}) = \alpha f(\vec{u}) + \beta f(\vec{v}) \quad \forall \alpha, \beta \in R, \forall \vec{u}, \vec{v} \in V$

Ejemplos

- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $f(x_1, x_2, x_3) = (x_1^2, 0, x_2 + x_3)$ no es aplicación lineal
- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $f(x_1, x_2, x_3) = (x_1 + 3, 0, x_2 + x_3)$ no es aplicación lineal
- $f: R^3 \longrightarrow R^3$ $f(x_1, x_2, x_3) = (x_1 x_2, 0, 3x_2 + 2x_3)$ sí es aplicación lineal
- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $f(x_1, x_2, x_3) = (x_1, x_2, 0, x_2 + x_3)$ no es aplicación lineal

Aplicaciones lineales. Definición y propiedades

Propiedades

1) f(0)=0

- 2) $f(-\vec{u}) = -f(\vec{u}) \quad \forall x \in V$
- 3) La imagen de un subespacio vectorial S de V es un subespacio vectorial de W f(V) se denomina Imf
- 4) Si $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_n}\}$ es un sistema generador de S, entonces $\{f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), f(\overrightarrow{u_n})\}$ es un sistema generador de f(S)
- 4) Si T es un subespacio de W, $f^{-1}(W)$ es un subespacio de V
- 5) Si $\{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ son linealmente dependientes, entonces $\{f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), ..., f(\overrightarrow{u_n})\}$ también son l.d.
- 6) Las aplicaciones lineales conservan la dependencia lineal, no la independencia lineal, es decir, si $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_n}\}$ son linealmente independientes, entonces $\{f(\overrightarrow{u_1}), f(\overrightarrow{u_2}),f(\overrightarrow{u_n})\}$ no necesariamente son l.i.

Ejemplo: $f: R^4 \longrightarrow R^3$ $f(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_1 + x_2, x_1 + x_2 + x_3)$ (1,0,0,0) y (0,1,0,0) son linealmente independientes; sus imágenes son l. dependientes

Aplicaciones lineales. Definición

☐ Tipos de aplicaciones

- Una aplicación es **inyectiva** (monomorfismo) si no hay dos elementos distintos que tengan imágenes iguales.
- Una aplicación es **suprayectiva** (/sobreyectiva) (epimorfismo)si todos los elementos del conjunto final *B* son la imagen de algún elemento de *A*.
- Una aplicación es **biyectiva** si es a la vez inyectiva y suprayectiva. (Isomorfismo)Estas aplicaciones establecen una relación de uno a uno entre los conjuntos *A* y *B*, pues a cada elemento de *A* le corresponde uno de *B*, y a cada elemento de *B* le corresponde uno (y no más) de *A*.
- Si f es **biyectiva** entonces existe su inversa, denotada $f^{-1}: W \to V$

Núcleo e Imagen de una aplicación lineal

■ Núcleo de una aplicación lineal

Si V y W son espacios vectoriales sobre R, y f: V —— W es una aplicación lineal

Se llama núcleo de f y se denota $N(f)=Ker f = \{x \in V / f(x)=0\} = f^{-1}(0_W)$

- ✓ Es por tanto el conjunto de vectores del espacio de partida que tienen como imagen al vector nulo del espacio de llegada
- □ Propiedades del núcleo
- ☐ Kerf es un subespacio vectorial de V
- \Box f es una aplicación lineal inyectiva si y sólo si ker f = {0}
- ☐ Ker f = {0} si y sólo si la imagen de cualquier sistema libre de vectores de V es un sistema libre de vectores de W

Núcleo e Imagen de una aplicación lineal

- Imagen de una aplicación lineal
 - Si V y W son espacios vectoriales sobre R, y f: V ——— W es una aplicación lineal
 - Se llama Imagen de f y se denota $Imf = \{y \in W / \exists x \in V \ t. \ q. \ f(x) = y\}$
 - ✓ Es por tanto el conjunto de vectores del espacio de llegada W que son imagen de algún vector de V
- Propiedades de Im f
- La **imagen de un sistema generador** del subespacio S es un sistema generador del subespacio S es un sistem
- ☐ La imagen de un conjunto linealmente dependiente de vectores es otro conjunto linealmente dependiente de vectores
- ☐ La **imagen de un conjunto linealmente independiente** es un conjunto linealmente independiente <u>sólo si la aplicación lineal es inyectiva</u>.

Núcleo e Imagen de una aplicación lineal

Rango de una aplicación lineal

El rango de una aplicación lineal es la dimensión de Im f: rang f = dim (Imf) Cuando los espacios V y W son de dimensión finita, se verifica

dim Ker f + dim Imf = dim V

- Propiedades
- \square Una aplicación $f: V \to W$ es inyectiva si y sólo si ker $f = \{0\}$
- \square Una aplicación $f: V \to W$ es suprayectiva si Imf=W
- \square Si V tiene dimensión finita, entonces f es inyectiva si y sólo si $\dim(V) = \dim(f(V))$.
- ☐ Si B es una base de V, $f:V \to W$ es inyectiva si y sólo si f(B) es una base de f(V), es decir, si es un sistema de vectores linealmente independientes en W.

Aplicaciones lineales. Clasificación

Clasificación

- Si V=W la aplicación lineal se denomina endomorfismo
- Si f : V → W es suprayectiva, se llama epimorfismo
- Si f: V → W es biyectiva, f es un isomorfismo
- Un endomorfismo biyectivo se denomina automorfismo

□ Teorema

- Si f:V W es una aplicación lineal. Son equivalentes:
- ☐ 1) f es inyectiva
- 2) f conserva la independencia lineal
- ☐ 3) La imagen por f de una base de V es una base de W
- \Box 4) dim V = dim(Imf)
- \Box 5) kerf = {0}

Aplicaciones lineales. Clasificación

■ Isomorfismos

- Un isomorfismo es una aplicación lineal biyectiva
- \square f: V \longrightarrow W es un isomorfismo si y sólo si ker f = {0} e Im f = W
- ☐ Dos espacios vectoriales sobre un cuerpo K de dimensión finita son isomorfos si y sólo si tienen la misma dimensión
- ☐ La relación de isomorfía entre espacios vectoriales sobre K es una relación de equivalencia.

Ejemplos

- $R^4 = \{ (a, b, c, d) \text{ t. } q.a, b, c, d \in R \}$
- ❖ $P_3(x) = \{a + bx + cx^2 + dx^3 / a, b, c, d \in R\}$
- $M_2 = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} / a, b, c, d \in R \}$

son espacios vectoriales isomorfos

El espacio vectorial de las aplicaciones lineales

Dados U, V y W espacios vectoriales sobre un cuerpo K y

f: U
$$\longrightarrow$$
 V; g: U \longrightarrow V y h: V \longrightarrow W y siendo $\alpha \in K$

☐ Suma de aplicaciones lineales

f+g:
$$U \longrightarrow V$$

 $u \longrightarrow (f+g)(u)=f(u)+g(u)$

 $lue{}$ Producto del escalar lpha por una aplicación lineal

$$\alpha$$
 f: U \longrightarrow V $(\alpha f)(u) = \alpha f(u)$

☐ Composición de aplicaciones lineales

$$h_0 f: U \longrightarrow W$$

 $u \longrightarrow (h_0 f)(u) = h[f(u)]$

El espacio vectorial de las aplicaciones lineales

Dadas las aplicaciones lineales

f: U \longrightarrow V; g: U \longrightarrow V y h: V \longrightarrow W y siendo $\alpha \in K$

- **Teorema**
 - ☐ La suma f+g es una aplicación lineal
 - \Box El producto α f es una aplicación lineal
 - ☐ La composición hof es una aplicación lineal
- \Box Denotamos $\mathcal{L}(U,V)$ al conjunto de aplicaciones lineales de U en V. Entonces;
- $\square(\mathcal{L}(U,V),+)$ es un grupo conmutativo
- \square (\mathscr{L} (U,V), .K) verifica las siguientes propiedades: $\forall f,g \in \mathscr{L}$ (U,V) y $\forall \gamma,\mu \in K$
 - a) $(\gamma + \mu)f = \gamma f + \mu f$ (distributiva respecto a la suma de escalares)
 - b) $\gamma(f+g) = \gamma f + \gamma g$ (distributiva respecto a la suma de vectores)
 - c) $\gamma(\mu f) = (\gamma \mu) f$

d) 1. f = f

☐ Por tanto (② (U,V),+,.K) tiene estructura de espacio vectorial y tiene dimensión mn

■ Matriz de una aplicación lineal

Si V y W son espacios vectoriales sobre R de dimensiones n y m, $B=\{e_1,e_2,...e_n\}$ es una base de V y $B'=\{u_1,u_2,...u_m\}$ es una base de W

Si
$$f(e_1)=a_{11}u_1+a_{21}u_2+...a_{m1}u_m$$

 $f(e_2)=a_{12}u_1+a_{22}u_2+...a_{m2}u_m$

$$\begin{split} \mathsf{f}(e_n) = & a_{1n} u_1 + a_{2n} u_2 + \dots \, a_{mn} u_m \\ \mathsf{f}(\mathsf{x}) = & \mathsf{f}\left(x_1 e_1 + x_2 e_2 + x_n \, e_n\right) = x_1 \mathsf{f}(e_1) + x_2 \mathsf{f}(e_2) + \dots \, x_n \mathsf{f}(e_n) = x_1 \, \left(a_{11} u_1 + a_{21} u_2 + \dots \, a_{m1} u_m\right) + \\ & x_2 \, \left(a_{12} u_1 + a_{22} u_2 + \dots \, a_{m2} u_m\right) + \\ & x_n \, \left(a_{1n} u_1 + a_{2n} u_2 + \dots \, a_{mn} u_m\right) \end{split}$$

Matricialmente: Y=AX
$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ a_{21} & a_{22} & a_{2n} \\ \vdots \\ a_{m1} & a_{m2} & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 Es decir A=(f(e₁)|....|f(e_n))

Importante

es la expresión analítica de la aplicación lineal f

- lacktriangle La matriz $M_{B,B'}(f)$ se denomina matriz asociada a f en las bases B y B'
- ☐ Es una matriz de dimensión mxn
- La columna j de la matriz está formada por las coordenadas de $f(e_i)$ respecto de B´.
- ☐ El rango de la matriz A es la dimensión de Imf
- Si f=Id, entonces la $M_{B,B'}$ (Id) es la matriz que transforma las coordenadas de x respecto a la base B en las coordenadas de x respecto a B': es la matriz del cambio de base de B a B'.

Importante

- a) Puntos correspondientes a los datos
- b) Rotación de 45º
- c) Estiramiento de la coordenada horizontal por 2
- d) Combinación de reflection, giro y estiramiento

We consider three linear transformations of a set of vectors in \mathbb{R}^2 with the transformation matrices

$$\boldsymbol{A}_{1} = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}, \ \boldsymbol{A}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{A}_{3} = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix}.$$
 (2.97)

Draft (2022-01-11) of "Mathematics for Machine Learning". Feedback: https://mml-book.com.

Importante

- \Box f es inyectiva \longleftrightarrow rang A = n
- \Box fes suprayectiva \iff rang A = m
- ☐ f es un isomorfismo ← A es cuadrada y regular

□ Proposición

Dadas las aplicaciones lineales

$$f: U \longrightarrow V$$
; $g: U \longrightarrow V$ $y h: V \longrightarrow W$;

B, B', y B'' son bases respectivas de los mismos y $\alpha \in K$; entonces

- \square $M_{B,B'}(f+g) = M_{B,B'}(f) + M_{B,B'}(g)$
- $\square M_{B,B'}(\alpha f) = \alpha M_{B,B'}(f)$
- \square $M_{B,B''}(h_0f) = M_{B',B''}(h)$. $M_{B,B'}(f)$

¿Qué relación existe entre las matrices de una misma aplicación lineal en distintas bases?

Tendremos que utilizar las matrices de cambio de base

Si $f \in \mathcal{L}(U,V)$, para todas las bases A, A' de U y B, B' de V se verifica:

$$M_{A'B'}(f) = M_{BB'} M_{AB}(f) M_{A'A}$$

Procedimiento

- □ $M_{A'A}$ transforma las coordenadas de un vector u∈ U respecto a la base A' en las coordenadas de u respecto a A: tiene en sus columnas los vectores de A' en la base A
- \square $M_{AB}(f)$ es la matriz de la aplicación lineal: transforma u en f(u)
- $M_{BB'}$ transforma las coordenadas de un vector $f(u) \in V$ respecto a la base B en las coordenadas de f(u) respecto a B': tiene en sus columnas los vectores de B en la base B'.

 $M_{A'B'}(f) = M_{BB'} M_{AB}(f) M_{A'A}$ Es la matriz asociada a la composición de aplicaciones $f = Id_V$ o fo Id_U

¿Y si la aplicación lineal es un endomorfismo?

 \square La matriz asociada a un endomorfismo es una matriz cuadrada $M_B(f)$

Si $f \in \mathcal{L}(V)$, para todas las bases B y B' de V se verifica:

$$M_{B'}(f) = M_{BB'} M_B(f) M_{B'B}$$

- \square Como $M_{BB'}$ y $M_{B'B}$ son matrices inversas: si las llamamos $Pm\overline{\partial}$ ny P, tenemos $M_{B'}(f) = P^{-1}M_B(f)$ P
- □ Las matrices asociadas a un endomorfismo en distintas bases son semejantes

Procedimiento

- $M_{B'B}$ transforma las coordenadas de un vector $u \in U$ respecto a la base B' en las coordenadas de u respecto a B: tiene en sus columnas los vectores de B' en la base B
- \square $M_B(f)$ es la matriz de la aplicación lineal: transforma u en f(u)
- $M_{BB'}$ transforma las coordenadas de un vector $f(u) \in V$ respecto a la base B en las coordenadas de f(u) respecto a B': tiene en sus columnas los vectores de B en la base B'.

 $M_{A'B'}(f) = M_{BB'} M_{AB}(f) M_{B'B}$ Es la matriz asociada a la composición de aplicaciones $f = Id_V$ o fo Id_U

Matrices equivalentes, congruentes y semejantes

Repasando conceptos...

■ Matrices equivalentes

- Dos matrices A y B de orden mxn se dicen equivalentes si una se puede obtener a partir de la otra mediante operaciones elementales de filas y columnas.
- \triangleright Dos matrices A y B de orden mxn son equivalentes si, respecto de bases adecuadas, están asociadas a una misma aplicación lineal de K^n en K^m , es decir si existen dos matrices regulares P (nxn) y Q (mxm) tales que $B=Q^{-1}AP$ tales que A=MBN
- ➤ 2 matrices son equivalentes → rang A=rang B

Matrices equivalentes:

- ✓ representan al mismo homomorfismo en distintas bases
- √ tienen el mismo rango

Matrices equivalentes, congruentes y semejantes

■ Matrices congruentes

Problem Dos matrices A y B cuadradas de orden n son congruentes si existe una matriz Problem Problem

□Consecuencias

- Si dos matrices A y B son congruentes, entonces A y B son equivalentes Basta considerar $M = P^t$ y N=P
- Si dos matrices A y B son congruentes, entonces rang A = rang B
- La congruencia de matrices es una relación de equivalencia en M_{nxn}
 - Propiedad reflexiva $A = I^t AI$ P=I
 - Propiedad simétrica $A = P^t BP \longrightarrow B = (P^{-1})^t A P^{-1}$
 - Propiedad transitiva $A = P^t BP y B = Q^t CQ \longrightarrow A = P^t Q^t CQP = (QP)^t CQP$

Matrices equivalentes, congruentes y semejantes

■ Matrices semejantes

Dos matrices A y B cuadradas de orden n son semejantes si están asociadas a un mismo endomorfismo, es decir si existe una matriz P regular P_{nxn} tal que $B = P^{-1}BP$ (P se denomina matriz de paso)

Matrices semejantes:

- ✓ representan al mismo endomorfismo en distintas bases
- √ tienen el mismo rango
- La semejanza de matrices es una relación de equivalencia en M_{nxn}
 - Propiedad reflexiva $A = I^{-1}AI$ P=I
 - Propiedad simétrica $A = P^{-1}BP \longrightarrow B = (P^{-1})^{-1}AP^{-1}$
 - Propiedad transitiva $A = P^{-1}BP$ y $B = Q^{-1}CQ \longrightarrow A = P^{-1}Q^{-1}CQP = (QP)^{-1}CQP$

Primer teorema de isomorfía

- Si $f \in \mathcal{L}(U,V)$, entonces U/kerf e Imf son isomorfos
- La aplicación $\tilde{f}: U/\ker f \longrightarrow Imf$

 $u + ker f \rightarrow f(u)$ es un isomorfismo

¿ cómo es la relación entre f y f?

$$\pi$$
: U \longrightarrow U/ ker f

Es un epimorfismo

es un monomorfismo (inclusión)

Teorema general de homomorfismos

El teorema fundamental de homomorfismos relaciona la estructura de dos objetos entre los que hay definido un homomorfismo, y, a partir de ahí, definir una relación entre ker f e Im f

Si f: U \rightarrow V es un homomorfismo y N es un subgrupo normal contenido en el núcleo de f, entonces existe un único homomorfismo \tilde{f} tal que \tilde{f} o $\pi = f$

 π se denomina proyección canónica y es un epimorfismo

 \square Comprobamos que para todo $u \in U$

(i o
$$\tilde{f}$$
 o π) (u) = (i o \tilde{f}) (u +kerf) = i[f(u)] = f(u)

U

 π
 i

U/Kerf \widetilde{f}

- lacksquare i o $ilde{f}$ o π es la descomposición canónica de f
- ☐ Toda aplicación lineal puede expresarse como la composición de un epimorfismo con un isomorfismo y un monomorfismo

Ejemplo Descomposición canónica de una aplicación lineal

Dada $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ cuya matriz respecto de las bases canónicas es:

$$A = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ -1 & -1 & 4 & -3 \end{pmatrix}$$

Obtener la descomposición canónica de f

1) Calculamos el ker f:{ $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ /f $(x_1, x_2, x_3, x_4)=0$ }

$$\begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ -1 & -1 & 4 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow 2x_1 - x_2 + x_3 = 0; x_1 - x_2 + 2x_3 - x_4 = 0; -x_1 - x_2 + 4x_3 - 3x_4 = 0;$$

Base de ker f:{(1,3,1,0);(1,2,0,-1)}

Completamos hasta obtener una base de R^4 : (0,0,1,0) y (0,0,0,1)

- Obtenemos el espacio cociente: R⁴/kerf
- Una base de R^4 /ker f es por tanto:C={C[0,0,1,0]; C[0,0,0,1]}={(0,0,1,0)+kerf, (0,0,0,1)+kerf}
- 2) Obtenemos una base de Imf

Como rang A=2 : Base de Im $f=\{(2,1,-1); (1,1,1)\}$

- ¿Qué hacen las diferentes aplicaciones...?
- $\pi(x) = c[x]$
- $\tilde{f}(c[x])=f[x]$
- = i(x)=x

(i o
$$\tilde{f}$$
 o π) $(u) = (i o \tilde{f})$ (u+kerf) = i[f(u)] = f(u)

• ¿Cómo funciona $\pi(x)$? Vamos a calcular la matriz N asociada en las bases canónicas $\pi(1,0,0,0)=(1,0,0,0)+kerf=\alpha[(0,0,1,0)+kerf]+\beta[(0,0,0,1)+kerf]$

El vector
$$(1,0,-\alpha,-\beta)$$
 ha de pertenecer a kerf \iff rang $\begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 2 & 0 & -1 \\ 1 & 0 - \alpha & -\beta \end{pmatrix} = 2 \iff \alpha = 2; \beta = 3$

Entonces $\pi(1,0,0,0) = 2[(0,0,1,0) + kerf] + 3[(0,0,0,1) + kerf]$

 $Y\binom{2}{3}$ es la primera columna de la matriz N

Repetimos el proceso para los otros 3 vectores de la base canónica de R^4 $\pi(0,1,0,0)=(0,1,0,0)+kerf=\alpha[(0,0,1,0)+kerf]+\beta[(0,0,0,1)+kerf]$

El vector
$$(0,1,-\alpha,-\beta)$$
 ha de pertenecer a kerf \iff rang $\begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 2 & 0 & -1 \\ 0 & 1-\alpha & -\beta \end{pmatrix} = 2 \iff \alpha = -1; \beta = -1$

Entonces $\pi(0,1,0,0) = -[(0,0,1,0) + kerf] - [(0,0,0,1) + kerf]$

 $Y \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ es la segunda columna de la matriz N

$$\pi(0,0,1,0) = (0,0,1,0) + kerf = \alpha[(0,0,1,0) + kerf] + \beta[(0,0,0,1) + kerf]$$

Trivialmente $\pi(0,0,1,0) = 1[(0,0,1,0) + kerf] + 0[(0,0,0,1) + kerf]$

 $Y \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ es la tercera columna de la matriz N

$$\pi(0,0,0,1)=(0,0,0,1)+kerf=\alpha[(0,0,1,0)+kerf]+\beta[(0,0,0,1)+kerf]$$

Trivialmente $\pi(0,0,0,1) = 0[(0,0,1,0) + kerf] + 1[(0,0,0,1) + kerf]$

 $Y\begin{pmatrix}0\\1\end{pmatrix}$ es la cuarta columna de la matriz N

• La matriz asociada al epimorfismo π es N= $\begin{pmatrix} 2 & -1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix}$

Para saber más sobre los teoremas de isomorfía:

http://abstract.ups.edu/aata-es/section-group-isomorphism-theorems.html

Ejemplos: https://es.wikipedia.org/wiki/Descomposici%C3%B3n de una aplicaci%C3%B3n lineal

- ¿Cómo funciona \tilde{f} ? \tilde{f} (c[x])=f[x]
- Vamos a calcular la matriz \tilde{A} asociada a \tilde{f} en las bases canónicas
- Calculamos para ello las imágenes de los vectores de una base de R^4/\ker

$$\tilde{f}\left[(0,0,1,0) + kerf\right] = f(0,0,1,0) = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ -1 & -1 & 4 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

Para hallar las coordenadas del vector (1,2,4) en la base de Imf:

$$(1,2,4)=\alpha(2,1,-1)+\beta(1,1,1)$$
 \iff $\alpha=-1; \ \beta=3 \implies$ 1ª columna de la matriz \tilde{A}

$$\tilde{f}\left[(0,0,0,1) + kerf\right] = f(0,0,0,1) = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ -1 & -1 & 4 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -3 \end{pmatrix}$$

Para hallar las coordenadas del vector (1,2,4) en la base de Imf:

$$(0,-1,-3)=\alpha(2,1,-1)+\beta(1,1,1) \iff \alpha=1; \ \beta=-2 \implies 2^{\underline{a}} \text{ columna de la matriz } \tilde{A} = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix}$$

- ¿Cómo funciona la aplicación i?
- Tenemos las imágenes obtenidas en la base canónica de R^3
- i(2,1,-1)=(2,1,-1); i(1,1,1)=(1,1,1)

La matriz I es por tanto
$$I = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}$$

¿Cuál es la matriz asociada a la composición de aplicaciones?

(i o
$$\tilde{f}$$
 o π) $(u) = (i o \tilde{f})$ (u+kerf) = i[f(u)] = f(u)

(u)=A(u)

$$\begin{vmatrix} 1 \cdot \tilde{A} \cdot N = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ -1 & -1 & 4 & -3 \end{pmatrix} = A$$

El espacio dual. Formas lineales

- ☐ Forma lineal de un espacio vectorial sobre K es una aplicación lineal de V en K
- ☐ El espacio dual de V:

 V^* es el conjunto de las formas lineales de V, es decir, $V^* = \mathcal{L}(V,K)$

- \triangleright Una forma lineal $f \in V^*$ transforma vectores en escalares.
- \succ Como cualquier aplicación lineal, queda completamente determinada calculando las imágenes de los vectores de una base B= $\{v_1, v_2, ..., v_n\}$ de V
- La matriz asociada a f respecto de la base B de V y la base canónica de K ({1}) es una matriz fila $M_B(f) = (f(v_1), f(v_2), \dots f(v_n)) \in M_{1xn}(K)$

Ejemplo: $f: R^2 \longrightarrow R$ $f(x_1, x_2) = 2x_1 + 3x_2$ La matriz de f respecto a las bases canónicas $M(f) = (f(1,0), f(0,1)) = (2 \ 3) \in M_{1x2}(R)$ El espacio dual V^* está formado por todas las aplicaciones $f: R^2 \longrightarrow R$ $f(x_1, x_2) = ax_1 + bx_2$ a,b $\in R$ Cada forma lineal queda caracterizada por el par (a,b). Base dual: $\{\varphi_1(x_1, x_2) = x_1; \varphi_2(x_1, x_2) = x_2\}$

- Si V es un espacio vectorial de dimensión n sobre un cuerpo K, y B= $\{v_1, v_2, ..., v_n\}$ es una base de V, entonces el espacio dual V^* también tiene dimensión n y una de sus bases es B^* = $\{\varphi_1, \varphi_2, ..., \varphi_n\}$ siendo φ_i : V \longrightarrow K $\bar{x} \longrightarrow x_i$ (coord. i-ésima de \bar{x} en B)
- $\square B^*$ es la base dual de B. Para cada base B de un espacio vectorial V, existe una base de V^* que es dual de B

 $B^* = {\varphi_1, \varphi_2, ..., \varphi_n}$ se define por la delta de Kronecker

$$\varphi_i(v_j) = \delta_{ij} \ i, j = 1, 2, ..., n \ con \delta_{ij} = \begin{cases} 1 & si \ i = j \\ 0 & si \ i \neq j \end{cases}$$

- \Box Las coordenadas de una forma lineal φ de V^* en la base dual B^* son $\varphi(v_1)$, $\varphi(v_2)$... $\varphi(v_n)$
- □ 1º propiedad de las bases duales: Si B^* es la base dual de B, entonces para cada forma lineal f los elementos de su matriz asociada en la base B coinciden con sus coordenadas en la base B^* .

Ejemplo:

Sea B= $\{u_1 = (1, -1, 1), u_2 = (-1, 2, -1), u_3 = (-1, 1, 0)\}$ una base de \mathbb{R}^3 . Vamos a calcular la base dual de B

- \blacktriangleright Tenemos que calcular 3 formas lineales: f_1 , f_2 , f_3 : bastará con obtener sus matrices asociadas en la base canónica
- $M_{B_C}(f_1)=(a_{11}\ a_{12}\ a_{13})$ $f_1(x_1,x_2,x_3)=a_{11}x_1+a_{12}x_2+a_{13}x_3$ Sabemos que $f_1(1,-1,1)=1$ $f_1(-1,2,-1)=0$ $f_1(-1,1,0)=0$

Es decir:
$$(a_{11} \ a_{12} \ a_{13}) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 1$$
 $(a_{11} \ a_{12} \ a_{13}) \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = 0$ $(a_{11} \ a_{12} \ a_{13}) \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = 0$

O equivalentemente
$$(a_{11} \ a_{12} \ a_{13}) \begin{pmatrix} 1 & -1 & -1 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Para calcular f_2y f_3 , obtendremos dos sistemas de ecuaciones lineales similares, con incógnitas $(a_{21} \ a_{22} \ a_{23})$ y $(a_{31} \ a_{32} \ a_{33})$ respectivamente \longrightarrow el problema se reduce a calcular la inversa de la matriz que tiene por columnas las coordenadas de los vectores dados.

□ Proposición

Si V es un espacio vectorial de dimensión n y B = $\{v_1, v_2, ..., v_n\}$ es una base de V cuyos vectores, escritos por columnas, forman la matriz A, entonces la base dual de B, $B^* = \{f_1, f_2, ..., f_n\}$ viene dada por las filas de A^{-1} y viceversa

Ejemplo:

Si $f_1, f_2, f_3: R^3 \to R$ son 3 formas lineales tales que $f_1(x, y, z) = x + y + z$ $f_2(x, y, z) = x + y$ $f_3(x, y, z) = x$ ¿forman una base del espacio dual de R^3 ?

Basta probar que son linealmente independientes porque dim $(R^3)^* = 3$ ¿Cómo? Sabemos que la matriz asociada a cada forma en la base canónica nos proporciona las coordenadas de esa forma en la base dual de la base canónica

$$f_1 \leftrightarrow (1\ 1\ 1)\ f_2 \leftrightarrow (1\ 1\ 0)\ f_3 \leftrightarrow (1\ 0\ 0)$$
 luego bastará comprobar que $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} \neq 0$

Para encontrar la base B de la que es dual la que nos dan, bastará calcular la matriz inversa. Las columnas de esa matriz son los vectores que forman la base B de V. Comprobar B={(0,0,1);(0,1,-1);(1,-1,0)}

■ La matriz inversa es $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}$

Efectivamente $B=\{(0,0,1);(0,1,-1);(1,-1,0)\}$

El espacio dual. Subespacios vectoriales ortogonales

☐ 2ª Propiedad de las bases duales

Si B^* = { f_1 , f_2 ,... f_n } es la base dual de B, entonces dado un vector x de , si x = (x_1 , x_2 ,... x_n) en la base B, entonces se verifica que x_i = f_i (x) $\forall i = 1,2,... n$

- ☐ Anulador de un subespacio S es el conjunto
- an(S) = $\{f \in V^* / f(v)=0 \quad \forall v \in S\}$ es el conjunto de formas lineales que anulan todos los vectores del subespacio
 - \square an(S) es un subespacio vectorial de V^*
 - ☐ an(S) = an (L(S)): es decir basta con encontrar el anulador de un sistema generador del subespacio
 - ☐ También se llama subespacio vectorial ortogonal a S

El espacio dual. Subespacios vectoriales ortogonales

Ejemplo

En R^4 consideramos U=L<(1, -1,0,1), (1,1,-1,0), $u_3 = (2,0,-1,1)$ } ¿Cómo calcularías el subespacio anulador de U: an(U)?

- \triangleright Primero comprobar si los vectores del sistema generador de U son linealmente independientes y vemos que U= L< u_1, u_2 > (u_3 es c.l. de los otros dos vectores)
- Para que una forma lineal f con matriz asociada en la base canónica $(a_1 \ a_2 \ a_3 \ a_4)$ esté en an(U) es necesario y suficiente que anule a u_1 y a u_2 . Es decir:

- Así obtenemos las ecuaciones: a_1 a_2 + a_4 =0 a_1 + a_2 a_3 = 0 que son las ecuaciones cartesianas de an(U) en la base $(B_c)^*$
- Una base puede ser $\{(1\ 1\ 2\ 0), (-11\ 0\ 2)\}$: es decir las formas lineales: $f(x,y,z,t) = x+y+2z\ y\ g(x,y,z,t)=-x+y+2t$

Aplicación lineal traspuesta

- □ Si V y V´ son espacios vectoriales sobre un cuerpo K, f: V \longrightarrow V´ es una aplicación lineal cuya matriz asociada es $A = M_{BB'}(f)$.
- ☐ Se puede definir una aplicación lineal entre los duales mediante f
- \square Consideramos $\varphi \in (V')^*$ y tenemos

- \square Entonces φ of: V _____ K es un elemento de V^*
- \square Esta aplicación lineal $f^t: (V')^* \longrightarrow V^*$

 $\varphi \longrightarrow \varphi$ of es la aplicación traspuesta de f

- \Box f^t es una aplicación lineal
- \square La matriz asociada a f^t en las bases duales de las canónicas es la matriz A^t siendo A la matriz asociada a f en las bases canónicas.

El espacio dual. Subespacios vectoriales ortogonales

Ejemplo

Dados $P_2(x)$ y g una aplicación lineal cuya matriz asociada $M_{B_C}(g) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Obtener la matriz asociada al operador traspuesto g^t

Teorema

Si M es la matriz de una aplicación lineal h:V \rightarrow W en unas bases B_V y B_W , entonces la aplicación lineal

traspuesta en las bases
$$h^t : W^* \to V^*$$
 es M^t . Entonces $M^t = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$