D. Remarks

The claims are 1, 3 and 8-17, with claims 1 and 14 being independent.

Claims 2 and 4-7 have been cancelled. The independent claims have been amended to better define the present invention. Support for this amendment may be found throughout the specification and the Examples. Claims 8-10 have been amended to improve their form. New claims 15-17 have been added, as supported by, for example, original claims 4-7. The specification has been amended to correct a clear typographical error. No new matter has been added.

Claims 1, 2 and 8-14 stand rejected under 35 U.S.C. § 102(b) as being allegedly anticipated by U.S. Patent No. 6,381,079 B1 (Ogawa). Claims 3-7 stand rejected under 35 U.S.C. § 103(a) as being allegedly obvious from Ogawa in view of U.S. Patent No. 6,061,110 (Hisatake). The grounds for rejection are respectfully traversed.

Prior to addressing the merits of rejection, Applicant would like to briefly review some of the key features and advantages of the presently claimed invention. That invention is directed, in part, to an optical material in which $n_d > -6.667 \times 10^{-3} v_d + 1.70$ and $\theta_{g,F} \le -2 \times 10^{-3} v_d + 0.59$. Importantly, the Abbe number, v_d , is 22.7 or less. Thus, the dispersion of an optical material is increased, further differentiating the optical material from the low dispersion material. This enables the production of optical elements having novel diffraction properties.

Applicant respectfully submits that Ogawa fails to disclose or suggest such optical materials. Ogawa discloses optical materials for a negative lens in which the Abbe

number is 27-50 or 26.7, as mentioned in Numerical Example 1. These Abbe numbers are different from those presently claimed.

Furthermore, Ogawa discloses the following three conditions for optical materials:

(a)
$$n_d > -6.667 \times 10^{-3} v_d + 1.70$$

- (b) $\theta_{g,F}$ is less than 0.61 or less than 0.591
- (c) Abbe number is 27-50.

However, Ogawa fails to disclose or suggest an optical material, which satisfies all three of these conditions. The plot of the Abbe number and estimated second order dispersion of lenses 4, 6-8, 11, 12, 14 and 16 in Ogawa's Numerical Example 1 shows that neither one of the lenses satisfies both conditions (b) and (c):

This graph was plotted based on the data obtained from a website of OHARA Inc. (http://www.ohara-inc.co.jp/b/b02/b0201_op/b0201.htm). An excerpt from this table is attached. The graph representing the characteristics of lenses 4, 6-8, 11, 12, 14 and 16 was plotted using their Abbe numbers to show the approximate second order dispersion.

Optical materials of other manufacturers show the same distribution of the optical characteristics as the plot shown below, although the exact refractive indices and Abbe numbers may vary slightly according to the determination methods and the amounts of impurities present in the material.

When a person of ordinary skill in the art knows the refractive index and the Abbe number of an optical material, the second order dispersion of the material can be determined from the table. Even if the optical material is not specifically identified, the range of the second order dispersion can be obtained from the Abbe number.

In Ogawa, the refractive index and the Abbe number of the optical material of each lens is shown in Numerical Example 1. Thus, one can determine the second order dispersion from the attached table. For example, lens 7 has the same (or almost the same) characteristics as S-FPL53 (v_d =95.1 and n_d =1.43387). Therefore, the second order dispersion should be 0.534. The second order dispersion can be determined for the other lenses in the same manner.

· glass

To the contrary, the materials as presently claimed are able to satisfy the above-stated conditions a) and b) and also have the Abbe number, which is not more than 22.7. This is clearly different from conventional materials shown in the above plot or Figs. 1 and 2 in the subject application. Therefore, Applicant respectfully submits that Ogawa cannot affect the patentability of the presently claimed invention.

Hisatake discloses an optical material for a transparent refractive index medium used in a reflecting type liquid crystal display device. Like Ogawa, Hisatake fails to disclose or suggest the Abbe number as presently claimed in combination with the other claimed features.

Furthermore, Hisatake fails to teach particles as presently claimed. Hisatake teaches that the optical material may contain ITO or polystyrene in a resin, such as an acrylic resin, to enhance light diffusion and improve visual properties of the liquid crystal display. In general, in order to enhance light diffusion, the size of the particles in a resin should be at least 100 nm. That is, it is well-known that particle size should be at least 1/10 of the light wavelength to be diffused, although Hisatake does not particularly mention the particle size. When the particle size is less than 100 nm or less than 1/10 of the light wavelength to be diffused, the diffraction rate of the particles and the resin cannot be differentiated. This leads to a uniform diffraction rate, and light diffusion properties cannot be improved.

In the present invention, the inorganic particles contained in the optical

material are on a nanometer scale, e.g., 2-50 nm, too small to cause light diffusion.

Therefore, since the particles in Hisatake must enhance diffusion and therefore are at least

100 nm or at least 1/10 of the light wavelength, Hisatake fails to disclose or suggest the

presently claimed particles.

In conclusion, Applicant respectfully submits that Ogawa and Hisatake,

whether considered separately or in combination, do not disclose or suggest the presently

claimed elements.

Wherefore, Applicant respectfully requests withdrawal of the outstanding

rejections and passage to issue of the subject application.

Applicant's undersigned attorney may be reached in our New York office by

telephone at (212) 218-2100. All correspondence should continue to be directed to our

address given below.

Respectfully submitted,

ason M. Okun

Registration No. 48,512

FITZPATRICK, CELLA, HARPER & SCINTO

30 Rockefeller Plaza

New York, New York 10112-3801

Facsimile: (212) 218-2200

NY_MAIN 452551v1

- 10 -

Recommended glasses

	Glass	n _d	νd	θg, F			Glass	n _d	νd	θg, F
1	S-FPL51	1.496999	81.6	0.5375		57	S-TIH 1	1.717362	29.5	0.6047
	S-FPL52	1.455999	90,3	0.5340			S-TIH 3	1.739998	28.3	0.6079
	S-FPL53	1.438750	95.0	0.5340			S-TIH 4	1.755199	27.5	0.6103
	S-FSL 5	1.487490	70.2	0.5300	_		S-TIH 6	1.805181	25.4	0.6161
	S-BSL 7	1.516330	64.1	0,5353	\neg	61	S-TIH10	1,728250	28.5	0.6077
6	S-BSM 2	1.607379	56.8	0.5483	\dashv		S-TIH11	1.784723	25.7	0.6161
	S-BSM 4	1.612716	58.7	0.5449	-+		S-TIH13	1.740769	27.8	0.6095
	S-BSM9	1.614047	55.0	0.5508	\dashv	64	S-TIH14	1.761821	26.5	0.6136
	S-BSM10	1.622799	57.0	0.5464		65	S-TIH18	1.721507	29.2	0.6053
	S-BSM14	1.603112	60.7	0.5415			S-TIH23	1.784696	26.3	0.6135
	S-BSM15	1.622992	58.2	0.5458		67	S-TIH53	1.846660	23.8	0.6205
	S-BSM16	1.620411	60.3	0.5427		68	S-IAL 7	1.651597	58.5	0.5425
					-				53.9	0.5459
	S-BSM18	1.638539	55.4	0.5484		69	S-LAL 8 S-LAL 9	1.712995		0.5449
	S-BSM22	1.622296	53.2	0.5542				1.691002	54.8	
	S-BSM25	1.658441	50.9	0.5560		71	S-LAL10	1.719995	50.2	0.5521
	S-BSM28	1.617722	49.8	0.5603		72	S-LAL12	1.677900	55.3	0.5472
	S-BSM71	1.648498	53.0	0.5547			S-LAL13	1.693501	53.2	0.5473
	S-BSM81	1.639999	60.1	0.5370			S-LAL14	1.696797	55.5	0.5434
	S-NSL 3	1.518229	59.0	0.5457			S-LAL18	1.729157	54.7	0.5444
	S-NSL 5	1.522494	59.8	0.5440			S-LAL54	1.650996	56.2	0.5482
21	S-NSL36	1.517417	52.4	0.5564	_		S-LAL56	1.677898	50.7	0.5557
	S-BAL 2	1.570989	50.8	0.5588			S-LAL58	1.693495	50.8	0.5546
	S-BAL 3	1.571351	53.0	0.5553			S-LAL59	1.733997	51.5	0.5486
	S-BAL11	1.572501	57.8	0.5456			S-LAL61	1.740999	52.7	0.5467
	S-BAL12	1.539956	59.5	0.5441		81	S-LAM 2	1.743997	44.8	0.5655
	S-BAL14	1.568832	56.3	0.5489		82	S-LAM 3	1.717004	47.9	0.5605
L	S-BAL35	1.589130	61.2	0.5407			S-LAM 7	1.749497	35.3	0.5869
	S-BAL41	1.563839	60.7	0.5402			S-LAM51	1.699998	48.1	0.5596
	S-BAL42	1.583126	59.4	0.5434		85	S-LAM52	1.720000	43.7	0.5699
$\overline{}$	S-BAM 3	1.582673	46.4	0.5671	\dashv	86	S-LAM54	1.756998	47.8	0.5565
	S-BAM 4	1.605620	43.7	0.5721		87	S-LAM55	1.7620014	40.1	0.5765
	S-BAM12	1.639300	44.9	0.5683		88	S-LAM58	1.720000	42.0	0.5729
$\overline{}$	S-BAH10	1.670029	47.3	0.5627		89	S-LAM59	1.697002	48.5	0.5589
	S-BAH11	1.666718	48.3	0.5609		90	S-LAM60	1.743198	49.3	0.5531
	S-BAH27	1.701536	41.2	0.5765		91	S-LAM61	1.720002	46.0	0.5635
	S-BAH28	1.723420	38.0	0.5836		92	S-LAM66	1.800999	35.0	0.5864
	S-BAH32	1.669979	39.3	0.5814	\dashv	93	S-LAH51	1.785896	44.2	0.5631
$\overline{}$	S-PHM52	1.618000	63.4	0.5441		94	S-LAH52	1.799516	42.2	0.5672
	S-PHM53	1.603001	65.5	0.5401		95	S-LAH53	1.806098	40.9	0.5701
	S-TIL 1	1.548141	45.8	0.5686			S-LAH55	1.834807	42.7	0.5642
	S-TIL 2	1.540720	47.2	0.5651			S-LAH58	1.882997	40.8	0.5667
	S-TIL 6	1.531717	48.9	0.5631			S-LAH59	1.816000	46.6	0.5568
	S-TIL25	1.581439	40.7	0.5774			S-LAH60	1.834000	37.2	0.5776
	S-TIL26	1.567322	42.8	0.5731			S-LAH63	1.804398	39.6	0.5729
_	S-TIL27	1.575006	41.5	0.5767			S-LAH64	1.788001	47.4	0.5559
	S-TIM 1	1.625882	35.7	0.5893			S-LAH65	1.804000	46.6	0.5571
	S-TIM 2	1.620041	36.3	0.5879			S-LAH66	1.772499	49.6	0.5520
	S-TIM 3	1.612929	37.0	0.5862			S-LAH79	2.003300	28.3	0.5980
_	S-TIM 5	1.603420	38.0	0.5835			S-YGH51	1.754999	52.3	0.5475
	S-TIM 8	1.595509	39.2	0.5803			S-FTM16	1.592701	35.3	0.5933
	S-TIM22	1.647689	33.8	0.5938			S-NBM51	1.613397	44.3	0.5633
	S-TIM25	1.672700	32.1	0.5988			S-NBH 5	1.654115	39.7	0.5737
	S-TIM27	1.639799	34.5	0.5922			S-NBH 8	1.720467	34.7	0.5834
$\overline{}$	S-TIM28	1.688931	31.1	0.6004			S-NBH51	1.749505	35.3	0.5818
	S-TIM35	1.698947	30.1	0.6030			S-NPH 1	1.808095	22.8	0.6307
56	S-TIM39	1.666800	33.0	0.5957		112	S-NPH 2	1.922860	18.9	0.6495
<u> </u>										
<u> </u>										
<u> </u>										
	<u> </u>									