

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 22 de febrero de 2022

1,630 103 1 1 100 1

1) Tres materiales semiconductores tienen masas efectivas similares, pero distinta energía de gap. En la tabla, se resumen algunos de sus parámetros físicos a temperatura ambiente. Cada uno de los materiale es dopado con impurezas aceptoras con densidad volumétrica $N=3\times 10^{10}\,\mathrm{cm}^{-3}$. Calcular la conductividad del material semiconductor con menor energía de gap.

	SC 1	SC 2	SC 3
$n_i \text{ (cm}^{-3}\text{)} \mu_n \text{ (cm}^2/\text{(Vs))}$	2.1×10^{8} 850	1.2×10^{10} 1300	3.1×10^{12} 2700
$\mu_p \ (\text{cm}^2/(\text{Vs}))$	320	390	600

- 2) Para un transistor MOSFET de canal N en saturación con V_{DS} constante, ¿qué opción es correcta respecto de la corriente de Drain?
 - A) Es una corriente de difusión de electrones, que varía al cambiar la sección del canal con V_{GS} .
 - B) Es una corriente de difusión de electrones, que varía al cambiar la densidad de portadores del canal con V_{GS}.
 - C) Es una corriente de difusión de huecos, que varía al cambiar la sección del canal con Vos.
 - D) Es una corriente de difusión de huecos, que varía al cambiar la densidad de portadores del canal con V_{GS}.
 - E) Es una corriente de arrastre de electrones, que varía al cambiar la sección del canal con V_{GS} .
 - F) Es una corriente de arrastre de electrones, que varía al cambiar la densidad de portadores del canal con V_{GS} .
 - G) Es una corriente de arrastre de huecos, que varía al cambiar la sección del canal con V_{GS} .
 - H) Es una corriente de arrastre de huecos, que varía al cambiar la densidad de portadores del canal con V_{GS} .
- 3) Se implementa un amplificador emisor común sin realimentación con un transistor PNP con parámetros $\beta=200$ y $V_A\to\infty$. La tensión de alimentación es $V_{CC}=5\,\mathrm{V}$, y el transistor está polarizado con una resistencia de base $R_B=39\,\mathrm{k}\Omega$ entre la base del transistor y tierra, y una resistencia de colector, $R_C=100\,\Omega$ conectada a tierra. A la entrada del amplificador, se conecta una señal senoidal (v_s) de tension pico $30\,\mathrm{mV}$ y resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular A_{vo} , R_{IN} y R_{OUT} .
- 4) En un proceso CMOS estándar se fabricó un inversor CMOS de forma tal que $W_n = W_p$ y $L_n = L_p$. En este proceso, se sabe que $\mu_n = 2.5 \times \mu_p$ y se puede considerar $V_{Tn} \simeq -V_{Tp}$. Se midió el tiempo de propagación de bajo a alto y se obtuvo $t_{PLH} = 50$ ns. ¿Cuánto será el tiempo de propagación de alto a bajo (t_{PHL}) ?

Lover los truc y

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 22 de febrero de 2022

5) Un transistor TBJ PNP está polarizado a temperatura ambiente. Se conoce la concentración de minoritarios en distintos puntos del dispositivo según las referencias de la figura:

- $n(-W_E x_{BE}) = 1 \times 10^2 \,\mathrm{cm}^{-3}$;
- $n(-x_{BE}) = 3.51 \times 10^9 \,\mathrm{cm}^{-3}$;
- $p(0) = 7.03 \times 10^{11} \,\mathrm{cm}^{-3}$:
- $p(W_B) = 8.26 \times 10^{-5} \, \text{cm}^{-3}$:
- $n(W_B + x_{BC}) = 4.13 \times 10^{-4} \,\mathrm{cm}^{-3}$;
- $n(W_B + x_{BC} + W_C) = 1.01 \times 10^5 \,\mathrm{cm}^{-3}$.

También se conocen las dimensiones del dispositivo ($W_E=0.4\,\mu\mathrm{m};\,W_B=0.2\,\mu\mathrm{m};\,W_C=2.0\,\mu\mathrm{m}$) así como las movilidades en cada una de las regiones:

	$\mu_n \; (\mathrm{cm}^2/(\mathrm{Vs}))$	$\mu_p \; (\mathrm{cm}^2/(\mathrm{Vs}))$
Emisor	900	300
Base	1400	450
Colector	1450	480

Determinar el valor de la densidad de corriente de base (J_B) .