

Fundamentals of Deep Learning

Part 2: How a Neural Network Trains

Agenda

- Part 1: An Introduction to Deep Learning
- Part 2: How a Neural Network Trains
- Part 3: Convolutional Neural Networks
- Part 4: Data Augmentation and Deployment
- Part 5: Pre-Trained Models
- Part 6: Advanced Architectures

Recap of the Exercise

What just happened?

Data Preparation

Input as an Array

An Untrained Model

$$y = mx + b$$

X	y
1	3
2	5

$$y = mx + b$$

X	y
1	3
2	5

$$y = mx + b$$

X	y	$\widehat{\boldsymbol{y}}$
1	3	4
2	5	3

$$y = mx + b$$

X	y	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$y = mx + b$$

X	y	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6


```
data = [(1, 3), (2, 5)]
    m = -1
    b = 5
6 def get_rmse(data, m, b):
        """Calculates Mean Square Error"""
        n = len(data)
        squared_error = 0
        for x, y in data:
10 -
            # Find predicted y
11
            y_hat = m*x+b
12
            # Square difference between
13
            # prediction and true value
14
            squared_error += (
15
                y - y_hat)**2
16
        # Get average squared difference
        mse = squared_error / n
18
        # Square root for original units
        return mse ** .5
20
```


Optimizers

- Adam
- Adagrad
- RMSprop
- SGD

Building a Network

Scales to more inputs

Building a Network

- Scales to more inputs
- Can chain neurons

Building a Network

- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

Activation Functions

Linear

$$\hat{y} = wx + b$$

- 1 # Multiply each input
 2 # with a weight (w) and
 - 3 # add intercept (b)
- $4 y_hat = wx+b$

10 5 0 -5 -10 -10 -5 0 5 10

ReLU

$$\hat{y} = \begin{cases} wx + b & if wx + b > 0 \\ 0 & otherwise \end{cases}$$

```
1  # Only return result
2  # if total is positive
3  linear = wx+b
4  y_hat = linear * (linear > 0)
```


Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
1  # Start with line
2  linear = wx + b
3  # Warp to - inf to 0
4  inf_to_zero = np.exp(-1 * linear)
5  # Squish to -1 to 1
6  y_hat = 1 / (1 + inf_to_zero)
```


Activation Functions

Activation Functions

Overfitting

Why not have a super large neural network?

Overfitting

Which Trendline is Better?

Overfitting

Which Trendline is Better?

Training vs Validation Data

Avoid memorization

Training data

Core dataset for the model to learn on

Validation data

New data for model to see if it truly understands (can generalize)

Overfitting

- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

An MNIST Model

An MNIST Model

During Prediction

An MNIST Model

During Training

RMSE For Probabilities?

RMSE For Probabilities?

Cross Entropy

Cross Entropy

t(x) = target (0 if False, 1 if True)

p(x) = probability prediction of point x

Cross Entropy


```
1 def cross_entropy(y_hat, y_actual):
2    """Infinite error for misplaced confidence."""
3    loss = log(y_hat) if y_actual else log(1-y_hat)
4    return -1*loss
```


The Next Exercise

The American Sign Language Alphabet

Learning from Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

$$\frac{\partial MSE}{\partial m} = 5m + 3b - 13 \qquad \qquad \frac{\partial MSE}{\partial b} = 3m + 2b - 8$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \qquad \frac{\partial MSE}{\partial b} = -1$$

$$b = 5$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1 \qquad 6$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\lambda = .1$$

$$m := -1 + 3 \lambda = -0.7$$

$$b := 5 + \lambda = 5.1$$

