Πολυτεχνείο Κρήτης

Σχολή ΗΜΜΥ

Τηλεπικοινωνιακά Συστήματα Ι

Παράδοση 1^{ης} εργασίας

Ημερομηνία Παράδοσης: 31 Μαρτίου 2023

Μονάδες 130/1000

Ομάδα 121

	Φοιτητής 1	Φοιτητής 2
Επώνυμο	Αγγελόπουλος	Χούλης
Όνομα	Δημήτριος	Χαράλαμπος
A.M.	2020030038	2020030023

Ώρες ενασχόλησης :

ΜΑΤΙΑΒ (5 ώρες) – Αναφορά (5 ώρες)

$$\phi(t) = \begin{cases} \frac{1}{\sqrt{T}}, & |t| \leq \frac{T}{2} \\ 0, & \alpha \lambda \lambda o \dot{v} \end{cases}$$

Η συνάρτηση αυτοομοιότητας του σήματος δίνεται από τον τύπο:

$$R_{\phi\phi}(\tau) = \int_{-\infty}^{+\infty} \phi(t)\phi(t+\tau)dt$$

Θα υπολογίσουμε το ολοκλήρωμα χωρίζοντας τα διαστήματα ως εξής :

$$\Rightarrow t \in [0,T]$$

$$R_{\phi\phi}(\tau) = \int_{-\frac{T}{2}}^{\frac{T}{2}-\tau} \phi(t)\phi(t+\tau)dt = 1 - \frac{\tau}{T}$$

$$\Rightarrow t \in [-T, 0)$$

$$R_{\phi\phi}(\tau) = 1 + \frac{\tau}{T}$$

$$\Rightarrow t \in (-\infty, -T) \cup (T, +\infty)$$

$$R_{\phi\phi}(\tau) = 0$$

Επομένως,

$$R_{\phi\phi}(au) = egin{cases} 1+rac{ au}{T}, & t\in[-T,0) \ 1-rac{ au}{T}, & t\in[0,T] \ 0, & lpha\lambda\deltao\acute{\mathrm{v}} \end{cases}$$

Κάνοντας την αλλαγή μεταβλητών t' = t - 2, dt' = dt, έχουμε :

$$R_{\phi\phi}(\tau) = \begin{cases} 1 + \frac{\tau}{T}, & t \in [-T - 2, -2) \\ 1 - \frac{\tau}{T}, & t \in [-2, T - 2] \\ 0, & \alpha\lambda\lambda o\acute{\upsilon} \end{cases}$$

Θ.3

$$\phi(t) = \begin{cases} \frac{1}{\sqrt{T}}, & 0 \le t < \frac{T}{2} \\ -\frac{1}{\sqrt{T}}, & \frac{T}{2} \le t \le T \\ 0, & \alpha \lambda \lambda o \dot{v} \end{cases}$$

Με την ίδια λογική υπολογίζουμε:

$$\Rightarrow t \in \left[-T, \frac{T}{2}\right]$$

$$R_{\phi\phi}(\tau) = -1 - \frac{\tau}{T}$$

$$\Rightarrow t \in \left(-\frac{T}{2}, 0\right]$$

$$R_{\phi\phi}(\tau) = 1 + \frac{3\tau}{T}$$

$$\Rightarrow t \in \left(0, \frac{T}{2}\right]$$

$$R_{\phi\phi}(\tau) = 1 - \frac{3\tau}{T}$$

$$\Rightarrow t \in \left(\frac{T}{2}, T\right]$$

$$R_{\phi\phi}(\tau) = -1 + \frac{\tau}{T}$$

A.1 Θα δημιουργήσουμε SRRC παλμούς για τα διάφορα roll-off factors

Από την γραφική παρατηρούμε πως όσο αυξάνεται το roll off τόσο ταχύτερα φθίνει και η SRRC γεγονός το οποίο είναι λογικό, εφόσον το roll off υποδεικνύει την αύξηση του bandwidth. Συγκεκριμένα για α=0 το εύρος φάσματος είναι περιορισμένο όμως όπως είναι αναμενόμενο στην χρονική διάσταση παρατηρούνται πολλές ταλαντώσεις. Αυξάνοντας το α οι ταλαντώσεις στον άξονα του χρόνου μειώνονται και ταυτόχρονα το BW αυξάνει.

Α.2 Η φασματική πυκνότητα ενέργειας για τα διάφορα roll-off είναι :

Για να μελετήσουμε όμως τις τιμές της φασματικής πυκνότητας ενέργειας θα επαναλάβουμε το παραπάνω Plot σε λογαριθμικό κατακόρυφο άξονα.

A.3

Υπολογίζουμε το την θεωρητική τιμή του εύρους φάσματος για κάθε roll-off $\Gamma \text{I} \alpha = 0, 0.5, 1 \text{ BW} = 500, 750, 1000 \text{ αντίστοιχ} \alpha.$

Τώρα, θα σχεδιάσουμε μια οριζόντια γραμμή $c=rac{T}{10^3}$ στην φασματική πυκνότητα ενέργειας στην λογαριθμική κλίμακα και θα έχουμε :

Υπολογίζουμε τα αντίστοιχα εύρη φάσματος: BW = 673, 756, 986

Σχεδιάζουμε νέα οριζόντια ευθεία $c=rac{T}{10^5}.$

Υπολογίζουμε τα αντίστοιχα εύρη φάσματος: BW = 2143, 1323, 1215

Ο πιο αποδοτικός παλμός είναι αυτός για α = 0.5 όταν $c = 10^{\circ}(-6)$ καθώς έχει την μικρότερη απόκλιση από την θεωρητική του τιμή. Από την άλλη ο πιο αποδοτικός παλμός όταν $c = 10^{\circ}(-8)$ είναι αυτός όπου a = 1 για τον ίδιο λόγο.

Β.1 Οι παλμοί φ(t) και φ(t – kT) για κάθε roll-off και k είναι :

Τα αντίστοιχα γινόμενα φαίνονται στις παρακάτω γραφικές παραστάσεις

Παρατηρούμε παρακάτω ότι για κάθε μετατόπιση το άθροισμα των γινομένων των παλμών είναι κοντά στο 0 εκτός από την περίπτωση που η μετατόπιση είναι 0, για κάθε roll-off. Το γεγονός ότι οι τιμές δεν είναι ακριβώς 0 προκύπτει από το floating point error του αθροίσματος, δηλαδή τα τρία SRRC σήματα που έχουμε χρησιμοποιήσει είναι προσεγγιστικά ορθοκανονικά.

C.1

Αφού δημιουργήσουμε την εντολή b = (sign(randn(N, 1)) + 1)/2 στο MATLAB

C.2

Φτιάχνουμε την συνάρτηση που μετατρέπει την ακολουθία από bits σε2-PAM σύμβολα X, όπως φαίνεται στο αντίστοιχο αρχείο στο MATLAB.

Στην συνέχεια κάνουμε upsample το σήμα συμβόλων και παίρνουμε σήμα $X\delta(t)$:

Τώρα περνάμε το σήμα συμβόλων από τον transmitter, δηλαδή από το φ(t) και παίρνουμε :

Το σήμα μας περνάει από ιδανικό κανάλι και στην συνέχεια μπαίνει στον receiver, δηλαδή στο $\varphi(-t)$. Ύστερα δειγματοληπτούμε το σήμα και έχουμε :

