

Lines and Angles Ex 8.4 Q11

Answer:

The given figure is:

It is give that $AB \parallel CD$

Let us draw a line $\chi \gamma$ passing through point P and parallel to AB and CD.

We have $\mathit{XY} \parallel \mathit{CD}$, thus, $\angle \mathit{CDP}$ and $\angle 1$ are alternate interior opposite angles. Therefore,

 $\angle 1 = \angle CDP$ (i)

Similarly, we have $XY \parallel AB$, thus, $\angle ABP$ and $\angle 2$ are alternate interior opposite angles. Therefore,

 $\angle 2 = \angle ABP$ (ii)

On adding (i) and (ii):

 $\angle 1 + \angle 2 = \angle CDP + \angle ABP$

 $\angle DPB = \angle CDP + \angle ABP$

Hence proved.

Lines and Angles Ex 8.4 Q12

Answer:

The given figure is as follows:

It is give that $AB \parallel CD$

Let us draw a line $\chi \gamma$ passing through point P and parallel to AB and CD.

We have $\mathit{XY} \parallel \mathit{CD}$, thus, $\angle \mathit{CDP}$ and $\angle 2$ are consecutive interior angles. Therefore,

 $\angle 2 + \angle CDP = 180^{\circ}$ (i)

Similarly, we have $\mathit{XY} \parallel \mathit{AB}$, thus, $\angle \mathit{ABP}$ and $\angle 1$ are consecutive interior angles. Therefore,

 $\angle 1 + \angle ABP = 180^{\circ}$ (ii)

On adding equation (i) and (ii), we get:

$$\angle 2 + \angle CDP + \angle 1 + \angle ABP = 180^{\circ} + 180^{\circ}$$

$$(\angle 2 + \angle 1) + \angle CDP + \angle ABP = 360^{\circ}$$

$$\angle ABP + \angle BPD + \angle CDP = 360^{\circ}$$

Hence proved

Lines and Angles Ex 8.4 Q13

Answer:

The parallelogram can be drawn as follows:

It is given that

$$\angle A: \angle C = 2:3$$

Therefore, let:

$$\angle A = 2x$$

and
$$\angle C = 3x$$

We know that opposite angles of a parallelogram are equal.

Therefore

$$\angle A = \angle D$$

$$\angle D = 2x$$

Similarly

$$\angle B = 3x$$

Also, if $AB \parallel CD$, then sum of consecutive interior angles is equal to 180° .

Therefore,

$$\angle A + \angle C = 180^{\circ}$$

$$2x + 3x = 180^{\circ}$$

$$5x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{5}$$

$$x = 36^{\circ}$$

We have

$$\angle A = 2x$$

$$\angle A = 2(36^{\circ})$$

$$\angle A = \boxed{72^0}$$

Also.

$$\angle C = 3x$$

$$\angle C = 3(36^{\circ})$$

$$\angle C = 108^{\circ}$$

Similarly,

$$\angle D = \boxed{72^{\circ}}$$

And

$$\angle B = \boxed{108^{\circ}}$$

Hence, the four angles of the parallelogram are as follows:

$$\angle A = \boxed{72^{\circ}}$$
, $\angle B = \boxed{108^{\circ}}$, $\angle C = \boxed{72^{\circ}}$ and $\angle D = \boxed{108^{\circ}}$

********* END ********