

DataFunSummit

语音交互中的无效query识别

崔世起 小米人工智能部-小爱

PART 01. **无效query介绍**

PART 02. 非人机交互识别

PART 03. 意图不明识别

PART 04. **小结**

PART 01. 无效query介绍

用户query的类型划分

	Query类型	Query示例	意图
有效query (可以结果满足)	单轮意图明确	打开客厅空调	智能家居
	场景意图明确	干与干寻 (前台应用:music) 换一个 (上一轮:讲个笑话)	音乐 笑话
	多意图	灰姑娘	音乐 电台 视频
无效query (无法结果满足)	非人机交互	你没打完呢	无
	意图不明	让谁先待会儿下雨	未知

非人机交互query

定义 query不是用户给设备下发的指令

原因 误录入周围的人声

你没打完呢

那个跨年演讲不错

影响 乱响应,打扰用户

影响全双工连续对话体验

意图不明query

定义 query是人机交互指令,但根据query无法判断用户意图

类型 乱序无意义 *播放吴楚丽江穿个*

Query意图比较模糊 *召唤、天空*

影响 误落入精品垂域,答非所问

非人机交互 + 意图不明 占比:5%-20%

无效query体验优化

非人机交互:识别 + 不响应

意图不明:识别 + 兜底回复或者引导澄清

PART 02. 非人机交互识别

非人机交互识别-难点

信息不完备

- 判断是否人机交互,需要多维度的信息(声音、视觉等)
- 只靠音频信息会有很大的歧义性

语音变化的多样性

- 同一句话,由于语气、语调、语速、音色的不同,产生不同的音频
- 数据样本难以覆盖每种类型的语音

鸡尾酒会效应

• 嘈杂环境下的有效指令识别

非人机交互识别-问题建模

1. Language understanding Or Speech understanding

- $\mathcal{P}(Y|X)$
- 缺失了音频中包含的识别信号
- ASR错误传播

- $\mathcal{P}(Y|A)$
- **√**

非人机交互识别-问题建模

2. 是否需要依赖上文

- $\mathcal{P}(Y|X)$
- 缺少音频特征
- ASR错误传播

- $\mathcal{P}(Y|A)$
- **√**
- $\mathcal{P}(Y|X,C)$

- 轮次之间弱依赖
- 增加上文依赖,建模难度增大

非人机交互识别-解决方案

建模

针对单轮语音的二分类

关键任务

数据集构建 + 特征和模型设计

非人机交互识别-数据集构造

非人机数据标注成本很高

听音频标注,标注10万条样本耗费100人日。

提升数据标注质量

- 1. 存在大量的模糊样本,需提高label一致性
 - 详细的标注规范,针对各类型音频提供示例
 - 多人标注验证
- 数据质量的提升 -> 模型效果的提升

非人机交互识别-数据集构造

样本挖掘

- 1. 提升样本的多样性
 - 随机采样
 - 正样本挖掘:基于ASR置信度、基于误唤醒检测
- 2. 提升样本的有效性
 - 挖掘困难样本:模型打分置信度低
 - 挖掘错误分类样本

非人机交互识别-模型分析

语音特征

频谱 优于 mfcc、fbank特征

加入通过声学信号处理获取的特征没有提升

语音Encoder

CNN -> CNN+LSTM+ATTENTION

CNN是个很强的baseline

非人机交互识别-模型分析

文本Encoder

CNN、TRANSFORMER、BERT效果差异不明显

语音Encoder和文本Encoder的融合

concat 优于 attention

用户行为反馈

用户反馈类型

误拒识反馈: 拒识后重复说

欠拒识反馈:用户说"闭嘴"

反馈生效方式

在线:动态调整策略

离线:反馈数据进入模型迭代

个性化策略

实时反馈 非人机识别 用户行为 Query 服务 在线 磨线 模型 模型训练 离线挖掘

引入Context:基于用户的历史行为和session

非人机交互识别-能力现状评估

疑问:基于语音的非人机交互识别,天花板在哪里?

评估方法:评估普通人在非人机交互识别上的平均水平。

评估对象:普通标注人员,未经过非人机交互标注的专业训练。

	标注人员1	标注人员2	标注人员3
准确率	84.03%	78.40%	93.21%
召回率	91.32%	95.85%	77.74%

结论:

普通人的识别准确率/召回率方差很大,平均F1值约为0.86。目前在手机语音助手上已经接近普通人的水平。

PART 03. 意图不明识别

意图不明识别-问题类型划分

1. 乱序无意义

播放我在接桌子

关机后还会提醒说明天

你给我关闭台灯唯一听的为说

语法规范性

解决方案:分而治之

2. 表达不完整

眼泪是怎么

播放一首

明天上午8点

语义完整性

3. 意图模糊

安装包

成为

答案

意图强弱

乱序无意义识别

目标:将有序的query和乱序的query区分开

衡量文本有序性的指标: perplexity,通过语言模型计算

$$ppl(W) = P_{LM}(W)^{-1/N} = e^{CE_loss(W)}$$

打开支付宝付款码

播放米小圈上学记

今天天气怎么样

有序

汤吃汤麦芽度杜鹃绚丽

放越来越难一别水

莱纳布朗灯

乱序

乱序无意义识别-如何得到更合理的perplexity

1. 足够多的训练数据,包含各种长尾知识、新词。

圣锤之毅的缺点

犹留正气参天地永剩丹心照古今

以雷霆击碎黑暗

打工人

新冠肺炎

网抑云

2. 足够大的语言模型:BERT、GPT

乱序无意义识别-语言模型方案

LSTM

BERT

$$P_{MLM}(W) \approx \prod_{t=1}^{N} P_{MLM}(w_t|w_{\backslash t})$$

- Masked Language Model
- 训练:每个句子只Mask一个token
- 预测:依次Mask每个token,计算交叉熵损失
- 效果:同等Precision, Recall提升
- 缺点:预测阶段的时间复杂度太高

乱序无意义识别-语言模型方案

BERT

- Left-To-Right LM
- Precision/Recall相当
- 预测复杂度降低N倍

乱序无意义识别-语言模型方案面临的挑战

有序和乱序边界的样本如何区分

四五六快进二十分钟

有明确意图

你给我关闭台灯唯一听

有明确意图

缺点:只用perplexity作为阈值,无法有效区分边界区域的混淆样本

解决思路:引入更丰富的特征,训练二分类,识别边界区域的正负样本

表达不完整识别

目标:判断一句话是否语义完整

播放一首

眼泪是怎么

今天是什么

周杰伦的

明天上午8点

建模

语言模型:P(EOS|X) ,预测query下一个token是句尾的概率

二分类:P(complete|X), 预测query语义完整的概率

表达不完整识别

语言模型不好解决的case

倒装:放一首歌刘德华的(完整) 前截断:成都的天气(不完整)

倒装:定个闹钟8点的(完整)

省略:一加一等于(完整)

特殊实体:播放我以为(完整)

表达不完整识别

上下文相关的case

Q:明天早上八点(不完整)

Q: 定个明天早上的闹钟 - A: 明天早上几点?

Q:明天早上八点(完整)

建模方案

单轮分类:P(complete | X),根据当前query判断是否完整

多轮分类:P(complete | X, context),判断当前query结合context是否完整

模型:BERT分类

小结

非人机交互识别

信息不完备的机器学习任务

基于语音和语义特征的神经网络模型

意图不明识别

乱序无意义识别和表达不完整识别两个任务

技术方案框架:语言模型+分类模型

THANKS!