2^a Prova - FECD

Renato Assunção - DCC-UFMG

Julho de 2021

1. 5 PONTOS

Vesículas são pequenas estruturas celulares de tamanhos variados e com formato aproximadamente esférico de células. Suponha que essas esferas possuem um raio aleatório R com densidade $f_R(r) = 6r(1-r) = 6(r-r^2)$ para $r \in (0,1)$. Temos interesse em obter a distribuição de probabilidade do volume aleatório $V = 4\pi/3R^3$ induzido pelo raio R.

- Estabeleça o intervalo de valores possíveis para o volume aleatório V.
- Para um valor v no intervalo obtido acima, obtenha a distribuição acumulada $\mathbb{F}_V(v) = \mathbb{P}(V \leq v)$.
- Derive a função $\mathbb{F}_V(v)$ para obter a função densidade de probabilidade $f_V(v)$.
- A densidade $f_R(r)$ do raio é mais concentrada em torno do ponto r = 1/2, o centro do intervalo (0,1) onde os raios podem variar. A densidade $f_V(v)$ do volume também é mais concentrada em torno do ponto médio do intervalo de valores possíveis do volume? Ou ela é mais concentrada em alguma outra região desse intervalo?
- 2. $\bf 5$ **PONTOS** Temos interesse em gerar uma amostra pelo método Monte Carlo de uma v.a. X que possui densidade de probabilidade

$$f(x) = \begin{cases} 3x^2/8, & \text{se } x \in (0,2) \\ 0, & \text{se } x < 0 \text{ ou } x > 2 \end{cases}$$

Escreva uma pseudo-código (ou script python ou R) para gerar uma amostra de tamanho B usando um gerador de uma U(0,1) e o

- método da transformada inversa de Stan Ulam.
- método de aceitação e rejeição de von Neumann. Veja que você deve usar uma distribuição com densidade g(x) que tenha um suporte \mathcal{S}_g que **contenha** o suporte \mathcal{S}_f de f(x) (que é o intervalo (0,2)). Os suportes \mathcal{S}_g e \mathcal{S}_f não precisam ser idênticos mas apenas $\mathcal{S}_g \subset \mathcal{S}_f$.
- No método de aceitação e rejeição, para gerar a amostra de tamanho B de f, quantos elementos em média de g devem ser gerados?
- Método de amostragem por importância.
- 3. **5 PONTOS** A Tabela abaixo mostra a distribuição conjunta do vetor aleatório discreto (X, Y). Obtenha: (a) a distribuição marginal da variável Y, (b) a distribuição condicional (X|Y=2).

	x = 0	x = 1	x = 2	x = 3
y = 0	0.1	0.2	0.05	0.15
y=1	0.1	0.05	0.1	0.15
y=2	0.05	0.0	0.0	0.05

4. **5 PONTOS** Um ponto X é escolhido com distribuição uniforme no intervalo (0,L). Este ponto X particiona o intervalo (0,L) em dois segmentos. Calcule a probabilidade de que a razão entre o segmento menor e o segmento maior seja menor que 1/4. (Dica: faça o cálculo condicionando em cada uma das duas possibilidades, X < L/2 e $X \ge L/2$.)

1