Question number	Scheme	Marks
1.	$(4-3x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} \left(1 - \frac{3}{4}x\right)^{-\frac{1}{2}}$	
	$= \frac{1}{2} \left(1 + \frac{3}{8}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{3}{4}x\right)^2}{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-\frac{3}{4}x\right)^3}{6} + \dots \right)$	B1 M1
	$= \frac{1}{2} + \frac{3}{16}x_{1} + \frac{27}{256}x^{2}_{1} + \frac{135}{2048}x^{3}_{1} + \dots$	A1, A1, A1
		(5 marks)
2.	26x + 26yy'; -10xy' - 10y = 0	M1A1; M1A1
	y'(26y - 10x) = 10y - 26x	
	$y' = \frac{10y - 26x}{26y - 10x} = \frac{5y - 13x}{13y - 5x}$	M1 A1
		(6 marks)
3.	$x = \tan \theta$ $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta \Rightarrow I = \int \frac{\sec^2 \theta}{\sec^4 \theta} \mathrm{d}\theta$	M1 A1
	Limits $\frac{\pi}{4}$ and 0	B1
	$I = \int \cos^2 \theta \ d\theta = \int \frac{\cos 2\theta + 1}{2} d\theta$	M1 A1
	$= \left[\frac{\sin 2\theta}{4} + \frac{\theta}{2}\right]_0^{\frac{\pi}{4}}$	M1 A1
	$=\frac{1}{4}+\frac{\pi}{8}\tag{*}$	A1 cao
		(8 marks)

Ques		Scheme	Mar	rks
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \sec^2 t \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 2\cos 2t, \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2t}{\sec^2 t}$	M1 A1, :	⇒ M1
		When $t = \frac{\pi}{3}$ gradient is $-\frac{1}{4}$	B1	(4)
	(b)	$y - \frac{\sqrt{3}}{2} = -\frac{1}{m}(x - \sqrt{3})$ $P \text{ has coordinates } (\sqrt{3}, \frac{\sqrt{3}}{2})$ $y - \frac{\sqrt{3}}{2} = 4(x - \sqrt{3})$	B1	
		$y - \frac{\sqrt{3}}{2} = 4(x - \sqrt{3})$	M1	
		$y = 4x - \frac{7}{2}\sqrt{3}$	A1	(3)
	(c)	$\frac{dy}{dx} = 0 \implies$ gradient of tan = 0, gradient of normal undefined	M1	
		$\therefore x = \tan \frac{\pi}{4}, \text{i.e. } x = 1$	A1	(2)
			(9	marks)
5.	(a)	$5 + \lambda = 2 - 3\mu$, $3 - 2\lambda = -11 - 4\mu$	B1 B1	
		$\lambda + 3\mu + 3 = 0$ $2\lambda - 4\mu - 14 = 0$		
		$2\lambda - 4\mu - 14 = 0$		
		$2\lambda + 6\mu + 6 = 0$		
		$10\mu + 20 = 0 \implies \mu = -2 :: \lambda = 3$	M1 A1	
		∴ point is $(8, -3, 4)$	A1	(5)
	(b)	$\therefore a - 10 = 4 \qquad \Rightarrow a = 14$	M1 A1	(2)
	(c)	$\cos \theta = \frac{-3+8+10}{\sqrt{9}\sqrt{25+25}}$	M1 A1	
		$=\frac{15}{3\times5\sqrt{2}} \qquad \qquad =\frac{1}{\sqrt{2}}$		
		Angle = 45°	M1 A1	(4)
			(11	marks)

Question number	Scheme	Marks
6. (a)	$11x - 1 \equiv A(2+3x) + B(1-x)(2+3x) + C(1-x)^2$	
	Putting $x = 1 \Rightarrow A = 2$	B1
	Putting $x = -\frac{2}{3} \Rightarrow -\frac{25}{3} = \frac{25}{9}C \implies C = -3$	B1
	$cf x^2 \qquad 0 = -3B + C \Rightarrow B = -1$	M1A1 (4)
(b)	$\int_{0}^{\frac{1}{2}} \frac{2}{(1-x)^{2}} - \frac{1}{(1-x)} - \frac{3}{(2+3x)} dx$ $= \left[\frac{2}{1-x} + \ln 1-x - \ln 2+3x \right]$	
	$= \left[\frac{2}{1-x} + \ln 1-x - \ln 2+3x \right]$	M1 A1ft A1ft A1ft
	$= [4 + \ln \frac{1}{2} - \ln 3 \frac{1}{2} - (2 - \ln 2)]$	M1
	$=2+\ln\frac{\frac{1}{2}\times2}{3\frac{1}{2}}$	M1
	$=2 + \ln \frac{2}{7}$	A1 (7)
		(11 marks)
	$\frac{du}{dx} = \frac{1}{2} - \frac{1}{2}\cos 4x; = \frac{1}{2} - \frac{1}{2}(1 - 2\sin^2 2x) = \sin^2 2x$	M1 A1; M1 A1 (4)
(b)	$V = \pi \int x \sin^2 2x \mathrm{d}x$	M1
	$= \pi \left[x \left(\frac{x}{2} - \frac{1}{8} \sin 4x \right) - \int \frac{x}{2} - \frac{1}{8} \sin 4x dx \right]_0^{\frac{\pi}{4}}$	M1 A1 A1
	$= \pi \left[\frac{x^2}{2} - \frac{x}{8} \sin 4x - \left(\frac{x^2}{4} + \frac{1}{32} \cos 4x \right) \right]_0^{\frac{\pi}{4}}$	M1 A1
	$= \pi \left[\frac{\pi^2}{64} + \frac{1}{32} + \frac{1}{32} \right] = \pi \left[\frac{\pi^2}{64} + \frac{1}{16} \right]$	M1 A1 (8)
		(12 marks)

Question number	Scheme	Marks
8. (a)	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{r^2}$	B1
	$A = \pi r^2 \qquad \therefore \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	M1A1
	Scheme $\frac{dr}{dt} = \frac{k}{r^2}$ $A = \pi r^2 \qquad \therefore \frac{dA}{dr} = 2\pi r$ $\therefore \frac{dA}{dt} = 2\pi r \frac{k}{r^2} = \frac{(2\pi k)}{r}; = \frac{(2\pi k)}{\left(\frac{A}{\pi}\right)^{\frac{1}{2}}} = \frac{2\pi^{\frac{3}{2}}k}{\sqrt{A}}$ $\therefore \frac{dA}{dt} \propto \frac{1}{\sqrt{A}} (*)$ $\int \sqrt{s} ds = \int 2^{2t} ds$	M1; M1
	$\therefore \frac{dA}{dt} \propto \frac{1}{\sqrt{A}} (*)$ $\int \sqrt{S} dS = \int 2e^{2t} dt$ $\frac{2}{3} S^{\frac{3}{2}} = e^{2t} + C$ $t = 0, S = 9 \implies C = 17$ $\therefore \frac{2}{3} S^{\frac{3}{2}} = e^{2t} + 17 \text{ and use } S = 16$	A1 (6)
(b)	$\int \sqrt{S} \mathrm{d}S = \int 2e^{2t} \mathrm{d}t$	M1
	$\frac{2}{3}S^{\frac{3}{2}} = e^{2t} + C$	M1A1
	$t = 0, S = 9 \implies C = 17$	B1
	$\therefore \frac{2}{3}S^{\frac{3}{2}} = e^{2t} + 17 \text{ and use } S = 16$	M1
	$\left(\frac{128}{3} - 17\right) = e^{2t} \qquad \Rightarrow t = \frac{1}{2} \ln \left[\frac{77}{3}\right]$	M1
	= 1.6	A1 (7)
		(13 marks)