

EECS 598 VLSI for Wireless Communication and Machine Learning

DFG, Retiming, Pipelining

Prof. Hun-Seok Kim

hunseok@umich.edu

Slides from Prof. Zhengya Zhang's EECS 598 F13

Algorithm Transform

- Algorithm: a set of computational steps needed to achieve a specific functionality
- Architecture: physical manifestation of a computational engine, on which one or more algorithms can be mapped
 - Examples: microprocessor architecture, application-specific integrated circuit (ASIC) architecture
- Algorithm transform: the process of modifying algorithms in order to make them VLSI architecture friendly, and for mapping algorithms to practical VLSI architectures
 - Based on the data-flow diagram (DFG) representation of the algorithm

Representing DSP Algorithms

- Example: 3-tap FIR filter y(n) = ax(n) + bx(n-1) + cx(n-2)
 - non-terminating, i.e., $n=1...\infty$
- Definitions:
 - Iteration: execution of all the computations in the algorithm once
 - Iteration period: the time required for one iteration
 - Sampling rate (or throughput): number of samples processed per second
 - Critical path: the longest path (computation time) between inputs and outputs (in combinational circuits), or the longest path between any two sequential delay elements (in sequential circuits)
 - Minimum clock period: determined by the critical path
 - Latency: the difference between the time an output is generated and the time at which
 its corresponding input was received by the system
 - Combinational circuit: latency is in terms of absolute time units
 - Sequential circuit: latency is in terms of number of clock cycles

Block Diagram

- Example: 3-tap FIR filter y(n) = ax(n) + bx(n-1) + cx(n-2)
 - non-terminating, i.e., $n = 1...\infty$

- Consists of functional blocks connected with directed edges
- Represents data flow from its input to output
- Clock period is lower bounded by the critical path computation time

Data-Flow Graph (DFG)

- Example: 3-tap FIR filter y(n) = ax(n) + bx(n-1) + cx(n-2)
 - non-terminating, i.e., $n=1...\infty$

- Nodes represent computations. Each has a delay in absolute time unit.
- Directed edges represent data paths. Each has a weight in clock cycles (with period D).
- Any node can fire when all inputs are available, and many nodes can fire concurrently
- DFG is used to derive concurrent implementations onto parallel hardware

Paths and Loops

- Path: $p = B \rightarrow C \rightarrow D$: sequence of nodes connected by arcs
- Path weight: $w(p) = \sum_{e_i} w(e_i)$, path delay: $d(p) = \sum_{U_i} d(U_i)$
- Loop: a path that begins and ends at the same node
- Critical path: the path in the acyclic DFG with the longest delay (critical path delay)
- Critical path delay is the achievable lower-bound on the clock period needed to support a direct-mapped error-free execution of the DFG

Iteration-Period Bound

- Three loops: L1, L2, L3
- Loop bound: $T_{LB}(l) = \frac{d(l)}{w(l)}$
- Critical loop: loop with the maximum loop bound
- Iteration-period bound (T_{IPB}): the loop bound of the critical loop
- Iteration-period bound is the achievable lower bound on clock period needed to support any error-free execution of the algorithm represented by the DFG

Retiming

- Retiming: changing locations of delay elements without affecting the input/output characteristics
 - Reduce critical path and clock period (without changing iteration-period bound)
 - Reduce number of registers
 - Reduce power consumption by reducing switching: e.g., place registers at the inputs of nodes with large capacitances

Cutset and Delay Transfer

- Cutset
 - Cut: separate the vertices of a graph into two disjoint subsets: G1, G2
 - Cutset: the set of edges whose end points are in different subsets
- Delay transfer
 - Only affect edges in the cutset
 - Add *k* delays to each edge from G1 to G2
 - Remove k delays to each edge from G2 to G1

• Single node subgraph

• Remove 1 delay from each outgoing edge and add 1 delay to each incoming edge

• Pipelining

• Edges only going one direction

Delay Scaling

- Delay scaling: replaces each delay element D by αD , and interleave the input stream by $\alpha-1$ zeros/null operations
 - Example: replace each D by 2D, input sample every alternate cycle
 - Null operation used for odd clock cycle
 - Hardware utilized only 50% of the time

Clock	
0	A0→B0
1	
2	A1→B1
3	
4	A2→B2

Delay Scaling

• 100-stage lattice filter

Delay scaling

Delay Transfer

Delay transfer

- New critical path delay:
- New sample period:

- Retiming attempts to place delays on all arcs
 - Reduces the clock period, T_{cp}
- Systolic DFG: a DFG with no delayfree arcs
 - strives to place delays on all arcs
 - $T_{CP} = max_{\forall U}[d(U)]$
 - Systolic DFG has the smallest T_{CP} of all topologically similar DFGs

Systolic Retiming Example

- Pipelining reduces the iteration period bound T_{IPB} .
- Pipelining followed by retiming reduces the iteration period T_{IP} .
- Difference between pipelining and retiming
 - Retiming moves delays around without impacting latency
 - Pipelining introduces delay and increases latency

D Flip-Flops

- T_h : hold time
- T_{cq}: clock-to-Q time
- T_{CLK} : clock period

Fast Path

- $T_{cq} + T_{fast} > T_{skew} + T_h$
- Ensure fastest path is sufficiently slow
 - Output to be registered on the rising edge of the NEXT clock cycle

Slow Path

- $T_{cq} + T_{slow} + T_{su} < T_{skew} + T_{CLK}$
- The slowest path determines the clock period

Fast and Slow Path Constraints

- Both fast and slow path constraints need to be met
- Slow path (setup) violations
 - Corrected by increasing T_{CLK}
 - Reduces throughput
- Fast path (hold) violations cannot be corrected by adjusting $T_{\it CLK}$
- Clock skews
 - Positive clock skew
 - good for setup but bad for hold time
 - Negative clock skew
 - good for hold time but bad for setup

Pipelining Feed-Forward DFG

- Cut: separate the vertices of a graph into two disjoint subsets
- Cutset: the set of edges whose end points are in different subsets
- Feed-forward cutset: data move in the forward direction on all the edges of the cutset
- Place registers across any feed-forward cutset of the graph
- Watch out for fast path constraint violation

Pipelining an FIR Filter

- Assume d(mult) = 3ns, d(add) = 1ns
- $T_{cp, serial} = d(\text{mult}) + 2d(\text{adder}) = 5\text{ns}$
- $T_{cp, pipe} = \max(d(\text{mult}), 2d(\text{adder})) = 3\text{ns}$

Uniform Pipelining

- Pipeline with equal delay stages
- Split multiplier: $d(\text{mult}_1) = d(\text{mult}_2) + 2d(\text{adder}) = 2.5 \text{ns}$
- Speed-up = 2X, but practical speed up < 2X due to T_s , T_{cq} , T_{skew} .

Pipelining as a Low Power Technique

• Delay and dynamic power move in opposite directions as a function of V_{dd}

•
$$t_p \sim \frac{CV_{dd}}{k(V_{dd} - V_t)^{\alpha}}$$
 $P = CV_{dd}^2 f$

- For $\alpha = 2$, $V_{dd} >> V_t$
- *M*-level pipeline increases speed by *M* times faster
- Only need to operate at a supply V_{dd}/M to meet the same throughput
- Power savings by M^2

Practical Limitations

- α < 2
- As M increases
 - Sub-linear increase in speed due to pipeline timing overhead
 - Power overhead of pipeline registers
 - Exponential increase in delay as V_{dd} approaches V_t

Pipelining Linear Recursions

An infinite impulse response (IIR) filter

$$y[n] = b_0 x[n] + a_1 y[n-1] + a_2 y[n-2]$$

- $T_{IPB} = d(\text{mult}) + 2d(\text{adder})$
- Retiming to reduce critical path?
- To reduce T_{IPB} , need to introduce delays in loops

Clustered Look-Ahead (CLA) Pipelining

Look ahead one step, replace y[n-1] term

$$y[n] = b_0x[n] + a_1y[n-1] + a_2y[n-2]$$

$$= b_0x[n] + a_1(b_0x[n-1] + a_1y[n-2] + a_2y[n-3]) + a_2y[n-2]$$

$$= b_0x[n] + a_1b_0x[n-1] + (a_1^2 + a_2)y[n-2] + a_1a_2y[n-3]$$

- $T_{IPB} = 1/2 (d(mult) + 2d(adder))$
- Need extra 1 mult, 1 adder

Pipelining Non-Linear Recursions

- Examples of non-linear recursions
 - Decision feedback equalizer (DFE)
 - Differential pulse code modulation (DPCM)
 - Sigma-delta modulator

Pipelining Non-Linear Recursions

$$y[n] = Q[a_1y[n-1] + x[n]]$$

- $T_{cp} = T_{mult} + T_{add} + T_{quant}$
- Look-ahead cannot be applied directly

Transform to Index Domain

- Operate in the index domain
- Define $y_0[n]$
 - $y_0[n] = 1$ if $y[n] = I_1$
 - $y_0[n] = 0$ if $y[n] = I_0$
- Define q[x]
 - q[x] = 1 if $Q[x] = I_1$
 - q[x] = 0 if $Q[x] = I_0$
- Then

$$y[n] = Q[a_1y[n-1] + x[n]]$$

$$y_0[n] = y_0[n-1]q[a_1l_1 + x[n]] + \overline{y_0}[n-1]q[a_1l_0 + x[n]]$$

Transform to Index Domain

$$y_0[n] = y_0[n-1]q[a_1l_1 + x[n]] + \overline{y_0}[n-1]q[a_1l_0 + x[n]]$$

•
$$T_{CP} = T_{mux}$$