Data Warehousing and Data Mining

Lecture 2
Data Warehousing and Technology

Outline

- Introduction to traditional data warehouses
- Basic data warehouse architecture
- Rationale for using a data warehouse
- Data warehouse implementation
- Common problems

In the beginning...

- We have a business
- Businesses use databases for everyday operations
- We want to analyse the data without affecting business
- Data warehouse!

What is a Data Warehouse?

- A database **maintained separately** from operational database
- Aggregate data from many applications
- Consolidate historical data
- Used as a base for analysis

In short...

- "A data warehouse is a **subject-oriented**, **integrated**, **time-variant**, and **nonvolatile** collection of data in support of management's decision making process" William H. Inmon
- Subject-oriented Organised around subjects
- Integrated Constructed from many sources
- Time-variant Contains elements of **time** in dataset
- Nonvolatile Separated from operational environment

Why use a Data Warehouse?

- We have lots of data, and we want to analyse all of it
- Queries on operational databases are complex!
- We don't want to touch business transactions (database locking, etc)
- We want to preprocess and store some attributes
- When we want to analyse it, we want to analyse it fast!

Terminology

- OLTP Online Transaction Processing
 - "Operational" database
- OLAP Online Analytic Processing
 - Platform for data analytics

Differences between traditional databases and data warehouses?

Table 3.1 Comparison between OLTP and OLAP systems.			
Feature	OLTP	OLAP	
Characteristic	operational processing	informational processing	
Orientation	transaction	analysis	
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)	
Function	day-to-day operations	long-term informational requirements, decision support	
DB design	ER based, application-oriented	star/snowflake, subject-oriented	
Data	current; guaranteed up-to-date	historical; accuracy maintained over time	
Summarization	primitive, highly detailed	summarized, consolidated	
View	detailed, flat relational	summarized, multidimensional	
Unit of work	short, simple transaction	complex query	
Access	read/write	mostly read	
Focus	data in	information out	
Operations	index/hash on primary key	lots of scans	
Number of records accessed	tens	millions	
Number of users	thousands	hundreds	
DB size	100 MB to GB	100 GB to TB	
22000	100 1.12 10 02		
Priority	high performance, high availability	high flexibility, end-user autonomy	
Metric	transaction throughput	query throughput, response time	
NOTE: Table is partially based on [CD97].			

Key difference

- Database schema
- Amount of read vs write operations
- Amount of data stored

Technologies used for data warehousing

- OLAP shows the users analytics, but how it is implemented underneath can vary
- Some implementations are
 - ROLAP Relational OLAP
 - Use relational database as backend
 - MOLAP Multidimensional OLAP
 - Use array-based multidimensional storage engine as backend (can be memory-based)
 - HOLAP Hybrid OLAP
 - Combination of the above

Data warehouse architecture

What is a Data Cube?

- Method of conceptualising datasets in higher dimension
- High dimensional 'table'
- Can exceed 3 dimensions

How are data cubes represented in databases?

- By using different database schemas
 - Star Schema
 - Snowflake Schema
- Each 'measure' exists in one table
- Each dimension exists in other tables
- Joined together and aggregated when needed to generate reports

More terminology

- Fact table table with the data we want to infer to
- Dimension table table with the factors we want to infer from

Star schema

- A single fact table
- Multiple dimension tables link directly to the fact table
- Dimension tables are denormalised

Snowflake schema

- A single fact table
- Multiple dimension tables link directly to the fact table
- Dimension tables are normalised

A more concrete example

A more concrete example

Comparison of schemas

	Star	Snowflake
Query complexity	Less	More
Redundancy	More	Less
Normalization	All tables are denormalized	Dimension tables may be normalized
When to use	Every other time	When dimension tables get big

^{*}Note: Oracle recommends the Star schema, unless you have a good reason to use Snowflake

How to systematically analyse data cubes

- 1. Extract, clean, load data into the warehouse
- 2. Compute **measures**
- 3. Build a concept hierarchy
- 4. Interactively **analyse** data in a systematic way (using OLAP)

Computing measures

- As we know, traditionally, a 'measure' is a value
- In a data cube, it represents a numerical aggregation function
- Three main categories
 - Distributive can be computed in a distributed manner
 - eg. count, sum
 - Algebraic can be computed using algebraic functions
 - eg. average, standard deviation
 - Holistic can ONLY be computed by using the whole dataset at once
 - eg. mode, median

Concept hierarchy

- Different data will have inherited structure
- Constructing these hierarchies will
 - Help clarify your understanding of the data
 - Help plan your approach to analysing the data

OLAP operations

- Roll-up Move from small to big in concept hierarchy
- Drill-down Move from big to small in concept hierarchy
- Slice Select one dimension
- Dice Select a "subcube" of the data
- Pivot "rotate" the axis of the data table or data cube

Constructing a data warehouse

- 1. Choose a **business process**
- 2. Choose the **granularity** of the data
- 3. Choose the dimensions
- 4. Choose the **measures**

Common issues with data warehousing

- Need to compute a lot of data for fact tables
 - The "Curse of dimensionality"
- Speed in joining data sets
 - Need efficient table "join" operations

Curse of dimensionality

- Problems occur when you have too many attributes
 - Combinatorics
 - Large feature space
 - Irrelevant data points
- These do not occur in low dimension datasets
- Can be solved by dimensionality reduction techniques!

Table 'join' operations

- When consolidating data for reports, we will need to fetch attributes from various tables
- Join operations consume a lot of computational power
 - This is reduced by the use of indexes

Notable (proprietary) vendors

Shifting paradigms

- What we have covered are traditional data warehousing architectures and technologies
- All of this is very 'textbook'
- Most of what was covered only exist in large enterprises
- Business requirements are slowly changing
- We will cover these upcoming trends...if we have time