Battery-free Real-time Localization of Autonomous Robot Swarms Using UWB

Team Members: Tilboon, Peter, Colin, Renish

Problem Statement

How can small-scale, battery-free, autonomous robots achieve precise, energy-efficient localization and communication?

Problem Breakdown

Battery-free_[2]

Localization[4]

Small-scale_[1]

Autonomous[3]

Node 3

Parent node

d₃

Q₄

Node 2

Node 5

Source [1]: https://www.geekwire.com/2023/univ-of-washington-research Source [2]: http://mldevices.com/index.php/news/67-microlink-devices-ac

Source [3]: https://www.geekwire.com/2023/univ-of-washington-research Source [4]: https://www.mdpi.com/1424-8220/24/12/3925

Communication Background

Technology	Accuracy	Range	Power Consumption	Cost	Use Cases
UWB	~10-30 cm	10-100 meters	Moderate (High during Tx)	Higher	Precise localization, industrial automation
BLE	~1-5 meters	100-200 meters	Low	Low	Asset tracking, indoor navigation
Wi-Fi	~5-15 meters	100-300 meters	High	Moderate	Large-area tracking, location-based services
Zigbee	~5-10 meters	50-100 meters (mesh)	Low	Low	Mesh-based, low-power tracking
RFID	~1 meter (passive)	1-10 meters (active)	Very low (passive)	Very low	Inventory tracking, proximity-based detection

Motivation

Applications of Mobile Sensing Robots

Agricultural Monitoring (Smart Farms)

Hazardous Environmental Sensing

Industrial Infrastructure Inspection

Seed Planting and Tracking (Outdoor)

What does this all mean?

Expected Results

Simulation

Expected Results

Area of Investigation	Key Results / Metrics		
Localization Accuracy	- Avg. error (cm) across swarm sizes and anchor densities		
Power Consumption	- Power per robot (μW) and efficiency of duty-cycling		
Localization Range	- Max distance with accurate localization		
Anchor Node Optimization	- Min. number of anchors for reliable localization		
Path Planning Efficiency	- Area covered (%) vs. energy usage per robot		
Duty Cycling (UWB + BLE)	- Efficiency of UWB duty-cycling + BLE coordination		
Dynamic Leader Selection	- Impact of dynamic leader selection on energy use and coverage		
Environmental Factors	- Effect of light, obstacles on localization and energy		

Expected Conclusions

Benchmarks

Table.1. System and Performance Comparison

	Mapping Accuracy	Battery free	Weight	Total Power	Computing Power	Reference
This work	<30cm	Yes	<2g(?)	<1mW(?)	<1mW(?)	
1	<30cm	No	46g	8.96W	960mW	[1]
2	8-12cm	No	35.68g	10W	200mW	[2]
3	10- 15cm	No	34.8g	5-10W	240mW	[3]
4	8-10cm	No	44g	5-10W	350mW	[4]
5	2.14cm	No	>2kg	100W	30W	[5]

Future Work

Origami Microfliers. Wind dispersed sensors

MilliMobiles. Intermittent ground locomotion

Autonomous Aerial Microrobots. Collaboration

References

- [1] Niculescu, Vlad, et al. "Ultra-Lightweight Collaborative Mapping for Robot Swarms." arXiv preprint arXiv:2407.03136 (2024).
- [2] McGuire, K. N., et al. "Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment." *Science Robotics* 4.35 (2019): eaaw9710.
- [3] Friess, Carl, et al. "Fully Onboard SLAM for Distributed Mapping with a Swarm of Nano-Drones." IEEE Internet of Things Journal (2024).
- [4] Niculescu, Vlad, et al. "NanoSLAM: Enabling fully onboard slam for tiny robots." *IEEE Internet of Things Journal* (2023).
- [5] Shen, Hongming, et al. "PGO-LIOM: Tightly coupled LiDAR-inertial odometry and mapping via parallel and gradient-free optimization." *IEEE Transactions on Industrial Electronics* 70.11 (2022): 11453-11463.