UNIVERSITY OF DELHI

CNC-II/093/1(25)/2023-24/69

Dated: 29.05.2023

NOTIFICATION

Sub: Amendment to Ordinance V

[E.C Resolution No. 60/ (60-1-2) dated 03.02.2023]

Following addition be made to Appendix-II-A to the Ordinance V (2-A) of the Ordinances of the University;

Add the following:

Syllabi of Semester-III of the Department of Commerce under Faculty of Commerce & Business Studies based on Under Graduate Curriculum Framework -2022 implemented from the Academic Year 2022-23.

B.COM. (HONS.)

Discipline Specific Course- 3.1(DSC-3.1): Business Mathematics CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite
		Lecture	Tutorial	Practical/ Practice		of the course (if any)
DSC -3.1: Business Mathematics	4	3	0	1	Pass in XII	NIL

Learning Objectives

The course aims to familiarize the learners with the basic mathematical tools with special emphasis on applications to business and economic situations.

Learning outcomes

After completion of the course, learners will be able to:

- 1. Assess the applicability of matrices as mathematical tools in representing a system of equations.
- 2. Apply differential calculus to solve simple business problems.
- 3. Evaluate business problems involving complex linear relationships between decision variables and their determining factors.
- 4. Explain mathematical formulation and solution of problems related to finance including different methods of interest calculation, future and present value of money.
- 5. Develop programming for business problems involving constrained optimisation.

SYLLABUS OF DSC-3.1

Unit 1: Matrices and Determinants (9 hours)

Overview of Matrices. Solution of a system of linear equations (having a unique solution and involving not more than three variables) using matrix inversion method and Cramer's Rule

Leontief Input Output Model (Open Model Only).

Unit 2: Calculus-I (6 hours)

Concepts and rules of differentiation. Concept of Marginal Analysis: Marginal Revenue, Marginal Cost. Concept of Elasticity of demand and supply. Application of Maxima and Minima problems: Revenue, Cost, Profit, Economic

Order Quantity, Optimal trade in time.

Unit 3: Calculus-II (12 hours)

Partial Differentiation: Partial derivatives up to second order. Homogeneity of a function and Euler's theorem. Production Function: Returns to factor, Returns to scale. MRTS and Elasticity of Substitution.

Application of Maxima and Minima problems involving two independent variables.

Integration: Nature of commodities and partial elasticity of demand, Applications of marginal analysis, Consumer Surplus and Producer Surplus.

Unit 4: Mathematics of Finance (9 hours)

Rates of interest: nominal, effective and their inter-relationships in different compounding situations.

Compounding a sum using different types of rates. Applications relating to Depreciation of assets and average due date.

Types of annuities: ordinary, due, and deferred - Discrete and continuous. Perpetuity. Determination of future and present values using different types of rates of interest. Applications relating to Capital Expenditure and Leasing.

Unit 5: Linear Programming (9 hours)

Formulation and Assumptions of LPP, Solution by Simplex Method- maximization and minimization cases. Shadow prices of the resources. Special Cases: Identification of unique and multiple optimal solutions, unbounded solution, infeasibility and degeneracy.

Practical Exercises:

30 hours

The learners are required to:

- 1. Assess the use of matrices in evaluating competing alternatives.
- 2. Apply differential calculus to solve hypothetical business problems.
- 3. Evaluate business problems as an application of linear programming.
- 4. Gather information about various deposit and loan schemes of banks to find out interest rate differentials, and compounded value.
- 5. Gather information about annuity schemes in the investment markets like periodic home mortgage payments, insurance payments and pension payments, life insurance products as an annuity.
- 6. Identify the decision-making variables and assess their functional relationship with other variables affecting the decision in a hypothetical business and economic situation.
- 7. Develop programming for hypothetical business problems involving constrained optimisation.

Suggested Readings:

- Anthony, M., & Biggs, N. (1996). *Mathematics for Economics and Finance*. Cambridge: Cambridge University Press.
- Ayres, F. J. (1963). *Theory and Problems of Mathematics of Finance*. New York: McGraw Hill Publishing.
- Budnick, P. (1986). *Applied Mathematics for Business, Economics, & Social Sciences*. New York: McGraw Hill Publishing.
- Dowling, E. (2011). *Introduction to Mathematical Economics*. New York: McGraw Hill Publishing Kapoor.
- Ghosh & Sinha (2018). *Business Mathematics and Statistics*. Oxford University Press.
- S.K. Sharma and Kaur, G. (2019). *Business Mathematics*. New Delhi: Sultan Chand & Sons (P) Ltd.
- Singh, J. K. (2017). *Business Mathematics*. New Delhi: Himalaya Publishing House.
- Thukral, J. K. (2009). *Mathematics For Business Studies*. New Delhi: Mayur Paperbacks.
- V. K., & Sancheti, D. C. (2014). *Business Mathematics, Theory & Applications*. Delhi: S. Chand Publishing.

Note: Suggested readings will be updated by the Department of Commerce and uploaded on Department's website.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

