Machine Learning for Graphs and Sequential Data

Graphs – Generative Models

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

Recap: Generative Models

- Generative model: statistical model to describe the data distribution
 - for unsupervised learning, e.g., p(x)
 - can also be used for generating data (hence the name)
- Typical example: Gaussian Mixture Models (GMMs)

- Generative process of a GMM:
 - 1. Specify prior probability of each cluster k is $\pi_k > 0$, $\sum_k \pi_k = 1$
 - 2. For each sample i (you want to generate)
 - a. Draw the cluster indicator $z_i \sim Cat(\pi)$
 - $z_i = k$ means that the current datapoint i belongs to cluster k
 - b. Draw the sample $x_i \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$

Generative Models for Graphs

- How to artificially generate realistic graphs?
 - Generative models for graphs
 - Challenge: What are the latent factors influencing a graph?

 Applications: Forecast user behavior, large-scale analysis of algorithms, construct new molecules,...

Roadmap

- Chapter: Graphs
 - 1. Graphs & Networks
 - 2. Generative Models
 - Models assuming (conditional) independent edges
 - Preferential Attachment Models
 - Deep Generative Models
 - 3. Clustering
 - 4. Node Embeddings
 - 5. Ranking
 - 6. Semi-Supervised Learning
 - 7. Limitations of GNNs

Generative Models for Graphs

- As you know, several laws apply for real world networks
- Goal: Generate synthetic graphs matching these criteria

- Seen before: Erdös-Renyi Random Graph Model
- Very simple generative process: Given $p \in [0,1]$ the edges are generated i.i.d. with

 $A_{ij} \sim Bernoulli(p)$

Erdös-Renyi Random Graph Model: Properties

Degree distribution

- probability of a vertex having degree k is $p_k = \binom{N-1}{k} \cdot p^k \cdot (1-p)^{N-1-k} \approx \frac{z^k e^{-z}}{k!}$ with z = p(N-1) corresponds to a Poisson distribution
- But: In real world data we observe power-law distributions ☺

Diameter

- The diameter concentrates around $\log(N)/\log(z)$, where z is the average node degree in the graph
- → The diameter grows slowly with the number of nodes
- But: In real data we observe small (constant) or even shrinking diameters ☺

Clustering Coefficient

- The clustering coefficient is equal to the connection probability p=z/(N-1)
- → No community structure and dependent on number of overall nodes
- But: Real world data looks totally different! ☺

Generative Model for Graphs with Communities

- How do we define a probabilistic model for graphs that captures community structure?
- Observation: In real graphs nodes from the same community are more likely to connect than nodes from different communities
 - using the same probability p for all edges doesn't make sense!
- Idea: Generalization of an Erdos-Renyi graph
 - nodes from the same community connect with probability p
 - nodes from different communities connect with probability q, where p>q

Planted Partition Model (PPM)

- We start with a set of nodes V, partitioned into 2 communities C_1 , C_2
 - denote community assignment of node i as $z_i \in \{-1, 1\}$ latent variables
- We generate an edge between every pair of nodes with probability

$$Pr(A_{ij} = 1 | z_i, z_j) = \begin{cases} p & \text{if } z_i = z_j \\ q & \text{if } z_i \neq z_j \end{cases}$$

 Here we consider undirected, unweighted graphs, but the model can easily be extended to other cases as well.

Graph generated by a PPM with N = 600, p = 6/600, q = 0.1/600

 $z_i = -1$ for blue nodes, $z_i = 1$ for red nodes

Limitations of the PPM

- PPM is an improvement over ER graph generator, but we would like to
 - generate graphs with an arbitrary number of communities
 - generate communities with different edge densities
 - generate graphs with "more interesting" structure than just dense communities + few edges between communities
- Can we generalize PPM even further to achieve these properties?

Stochastic Block Model (SBM)

 Stochastic block model generalizes the PPM to graphs with arbitrary numbers and sizes of communities, and varying edge densities.

$$\boldsymbol{\pi} = [\pi_1, \pi_2, \dots, \pi_k]$$

- Random variables:
 - $-z_i$ ∈ {1, ..., K}: node i belongs to block/community z_i
 - A ∈ $\{0,1\}^{N\times N}$: adjacency matrix
- Model parameters:
 - $\pi = [\pi_1, ..., \pi_K]$: community proportions
 - η_{uv} : edge probability between two nodes that are in communities u and v.

$$- Pr(z_i = k) = \pi_k$$

-
$$Pr(A_{ij}|z_i, z_j) = Bernoulli(\eta_{z_i z_j})$$

$$oldsymbol{\eta} = egin{bmatrix} \eta_{11} & \cdots & \eta_{1K} \ dots & \ddots & dots \ \eta_{K1} & \cdots & \eta_{KK} \end{bmatrix}$$

Planted Partition Model as a Stochastic Block Model

 Planted partition model can be viewed as a special case of the stochastic block model with the following parameters

$$\pi = [0.5, 0.5]$$
 $\eta = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$

Some Types of Graphs Produced by SBM

η

Assortative

 $0.02 \quad 0.02$ 0.4 0.02 0.02 0.02 0.02

Disassortative

 $\begin{bmatrix} 0.02 & 0.08 & 0.08 \end{bmatrix}$ 0.08 0.02 0.08 0.08 0.02 0.08

Ordered

 $0.15 \ 0.15$ 0.15 0.15 0 0.15

Core-periphery

 $0.15 \quad 0.03$ 0.15 0.15 0.03 0.03 0.03 0.03

Limitations of SBM

- Stochastic block model is an elegant and well-studied model for graphs with communities, but it doesn't capture all patterns of real networks
 - real graphs have power-law degree distribution → Degree-Corrected SBM
 Karrer B. and Newman M. E. J.: Stochastic Blockmodels and Community Structure in Networks, in Physical Review E 83, 2011
 - real communities have more triangles → Geometric Block Model
 Galhotra S. et al.: The Geometric Block Model, in AAAI 2018
 - real communities are overlapping → Community-Affiliation Graph Model
 Yang J. and Leskovec J.: Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach, in WSDM 2013
- For an overview of recent advances in SBM see [Abbe2018]

Abbe E.: Community Detection and Stochastic Block Models: Recent Developments, in JMLR 18, 2018

Roadmap

- Chapter: Graphs
 - 1. Graphs & Networks
 - 2. Generative Models
 - Models assuming (conditional) independent edges
 - Preferential Attachment Models
 - Deep Generative Models
 - 3. Clustering
 - 4. Node Embeddings
 - 5. Ranking
 - 6. Semi-Supervised Learning
 - 7. Limitations of GNNs

Preferential Attachment Models

- ER/PPM/SBM assume that the edges are generated independently
 - all nodes are given at the beginning; each potential edge corresponds to a Bernoulli distribution (independent of the others)
- Now: Generate network based on two processes
 - Growth: Instead of starting with all nodes, start with a small set of nodes and let the network grow over time by adding new nodes and edges
 - Preferential attachment:
 "rich get richer" idea; probability of
 connecting nodes is proportional
 to the current degree of the nodes
 - → "the rich get richer" principle leads to a power law in the degree distribution

Preferential Attachment Models

- Prominent method: Initial Attractiveness (IA)
 - Extension of well-known BA model (Barabasi and Albert)
 - Allows to generate graphs following a power law degree distribution
 - Can realize a power law exponent γ in the range [2,infty)
 - BA model was stuck to exponent of γ =3

Initial Attractiveness [DMS2000]: Algorithm

- 1. Start with m_0 many nodes
- 2. Add a new node *w*
- 3. Simultaneously insert m directed edges (u, v)
 - probability that the endpoint of an edge (u,v) corresponds to v is proportional to $A_v = A + indeg(v)$
 - A is the initial attractiveness of a node (same for all nodes)
 - indeg(v) is the number of currently (!) incoming edges (increases over time)
 - Note: Not important where the edges (u, v) start
 - Example 1: all new edges start from w (like in the BA model)
 - Example 2: randomly select existing nodes
- 4. Goto step 2 until required number of nodes is obtained

[DMS2000] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Structure of Growing Networks with Preferential Linking, Physical Review Letters

Initial Attractiveness: Properties

- Parameters: m (new edges per step) and A (initial attractiveness)
- Degree distribution:
 - The degree distribution follows a power law with exponent $\gamma = 2 + \frac{A}{m}$
 - Matches many real world data ©
- Diameter:
 - For $m \ge 2$ the diameter grows as $O(\frac{\log N}{\log \log N})$
 - Matches the small world effect (diameter much smaller than number of nodes)
 - But: still slightly increasing in contrast to real world data ⊕

Average degree:

- Remains constant over time
- But: Increases for real world data; densification law ☺

Configuration Model

- Generating networks with arbitrary specified degree distribution
 - 1. Assign a degree to each node, represented as stubs or half-links
 - 2. Randomly select a stub pair and connect them
 - Depending on the order and way in which the stubs were chosen, we obtain different networks
- Preserves degree structure

$$k_1 = 3$$
 $k_2 = 2$ $k_3 = 2$ $k_4 = 1$

Further Classical Graph Generators

- Many graph generators have been introduced
 - Overview presented in [CF2006]
 - Some further prominent methods:
 - Edge copying methods: realize community structure
 - Forest Fire Model: densification and shrinking diameter

[CF2006] Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. (CSUR) 38(1) (2006)

Roadmap

- Chapter: Graphs
 - 1. Graphs & Networks
 - 2. Generative Models
 - Models assuming (conditional) independent edges
 - Preferential Attachment Models
 - Deep Generative Models
 - 3. Clustering
 - 4. Node Embeddings
 - 5. Ranking
 - 6. Semi-Supervised Learning
 - 7. Limitations of GNNs

Motivation

- All previously introduced generative models are "hand-crafted"
 - Observe properties (power law, triangles, communities, etc.) of real graphs →
 Build a generative model that generates them
 - Difficult to discover all relevant properties of real graphs
 - Difficult to "hand-craft" a single model capturing all properties simultaneously
- How can we find a model that captures all the complex (potentially even unknown) properties of real graphs?
- Let us use the concept of deep generative models
 - i.e. flexible models that can be learned based on given data

NetGAN: First GAN for Networks/Graphs

70

- How to adopt the GAN idea to graphs?
- Naive solution: Learning a distribution over adjacency matrices directly (treat them as images)
 - Computationally infeasible: N^2 possible edges for a graph with N nodes
 - Not permutation invariant over nodes
- Solution: learn a distribution over random walks instead
 - Recall: real graphs are sparse
 - Only consider non-zero entries

Bojchevski et.al. NetGAN: Generating Graphs via Random Walks. ICML 2018

Random Walk Definition

- Given graph G = (V, E), walk length t
- Define as $\mathcal{W}_{v_i} = (w_j : 0 \le j < t; w_0 = v_i)$ a random walk with starting node v_i .
- w_i is the j-th node in the random walk, and the nodes are sampled from

$$\Pr(w_{j+1} = v_u \mid w_j) = \begin{cases} \frac{1}{d_{w_j}}, & \text{if } v_u \in \mathcal{N}(w_j) \\ 0, & \text{else} \end{cases} \forall j: 0 < j < t$$

where $\mathcal{N}(v_k)$ is the set of neighbors of node v_k and d_{v_k} its degree

NetGAN: Generator

- Based on Long Short Term Memory (LSTM) cells
- Generative process as follows:
 - 1. Sample latent noise from a normal distribution $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$
 - 2. Pass z through a neural network to obtain starting states C_0 , h_0 for the LSTM
 - 3. Run the LSTM from this state to generate a sequence of nodes (random walk)

$$\begin{aligned} \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d) \\ \boldsymbol{m}_0 &= g_{\theta'}(\boldsymbol{z}) \\ \boldsymbol{v}_1 \sim \mathrm{Cat}(\sigma(\boldsymbol{p}_1)), & (\boldsymbol{p}_1, \boldsymbol{m}_1) &= f_{\theta}(\boldsymbol{m}_0, \boldsymbol{0}) \\ \boldsymbol{v}_2 \sim \mathrm{Cat}(\sigma(\boldsymbol{p}_2)), & (\boldsymbol{p}_2, \boldsymbol{m}_2) &= f_{\theta}(\boldsymbol{m}_1, \boldsymbol{v}_1) \\ &\vdots & \vdots \\ \boldsymbol{v}_T \sim \mathrm{Cat}(\sigma(\boldsymbol{p}_T)), & (\boldsymbol{p}_T, \boldsymbol{m}_T) &= f_{\theta}(\boldsymbol{m}_{T-1}, \boldsymbol{v}_{T-1}) \end{aligned}$$

NetGAN: Generator

- **Problem**: sampling from a categorical distribution is **not differentiable** with respect to parameters π
 - Same problem as in variational inference
- But we need:
 - a) Discrete samples to feed into the discriminator
 - b) Gradients to train the generator
- Solution: Categorical Reparameterization Trick

Categorical Reparameterization Trick

lacktriangleright The random variable g is said to have a standard Gumbel distribution if

$$g = -\log(-\log(u))$$
 with $u \sim Uniform[0, 1]$

Let v be a discrete random variable $P(v=k) \propto \pi_k$ and let $\{g_k\}_{1 \leq k \leq K}$ be an i.i.d. sequence of standard Gumbel random variables. Then:

$$y_k \sim 60m06(())$$
 $v = \arg\max_k [g_k + \log \pi_k]$

- Recipe for (reparametrized) sampling from a categorical distribution:
 - 1. Draw Gumbel noise by transforming uniform samples
 - 2. Add it to $\log \pi_k$ which only has to be known up to a normalizing constant
 - 3. Take the value k that produces the maximum

Categorical Reparametrization Trick

- Problem: The argmax in $v = \arg\max_k [g_k + \log \pi_k]$ is still not differentiable
- Solution: **Approximate** it with softmax + temperature parameter τ
- All together: Approximate v via $v^* = \sigma\left(\frac{\log \pi + g}{\tau}\right)$ where σ is the softmax
 - As the temperature $\tau \to 0$, v^* converges to v
- We need to use the approximation with softmax only for the backward pass. The forward pass can be exact: $\arg\max_i v^*$
- Remark: The approximation comes only from the softmax. The reparametrization using Gumbel + argmax is exact

NetGAN: What can we do with it?

- NetGAN learns properties of real graphs without manually specifying them
- Generate graphs that have the same structure but are not replicas

Latent space interpolations produces smoothly changing graphs

Single vs. Multi-Graph Scenario

- NetGAN is designed for the setting of "learning from a single, large graph"
 - similar to classic network generators like SBM
 - Examples: social network, citation network, etc.
 - From an application point of view, the "actual entities/objects" one is usually interested in are the individual nodes of the graph (e.g. a person in a social network); different entities are interlinked with each other, thus, forming a graph
- Other scenario: learning from multiple, usually small, graphs
 - Example: molecules
 - From an application point of view, the "actual entities/objects" one is usually interested in are the graphs as a whole, i.e. the entity itself is a graph.

Questions

- Can the Erdös-Renyi model generate all graphs that the Stochastic Block Model can generate?
- Is the Initial Attractiveness model equal to the Erdös-Renyi model as $A \to \infty$?
- Why does π not need to be normalized for the Gumbel trick to work?

Summary

- Classic generative models for graphs are
 - (relatively) easy to analyze
 - but do not capture all important properties of real graphs
- Deep generative models learn to generate graphs that automatically capture the underlying laws and characteristics (e.g. power law, small world) without manually specifying them
 - though, theoretically analyzing such models is tricky
 - evaluation of generative models is hard in general, even harder for graphs
 - still a highly unexplored research field
- Reparameterization allows us to differentiate through random/stochastic discrete nodes in the computation graph

Machine Learning for Graphs and Sequential Data

Graphs – Generative Models

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

