Discrete Mathematics, 2016 Spring - Worksheet 4

September 21, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Solve the equation n! = 720 for n.
- 2. There are six different French books, eight different Russian books and five different Spanish books.
 - (a) In how many different ways can these books be arranged on a bookshelf?
 - (b) In how many different ways can these books be arranged if all books in the same language are grouped together?
- 3. Calculate the following products:
 - (a) $\prod_{k=1}^{4} (2k+1)$
 - (b) $\prod_{k=1}^{n} \frac{1}{k}$
- 4. Can factorial be extended to negative integers? Think about the formula n! = n(n-1)!. What would be the value of (-1)!?
- 5. Write out the following sets by listing their elements between curly braces and find their cardinality.
 - (a) $\{x \in \mathbb{N} : x \le 10 \text{ and } 3|x\}$
 - (b) $\{x \in \mathbb{Z} : x \text{ is a prime and } 2|x\}$
 - (c) $\{x \in \mathbb{Z} : 10 | x \text{ and } x | 100 \}$
 - (d) $\{x \in \mathbb{Z} : 1 \le x^2 \le 2\}$
- 6. For each of the following sets, find a way to rewrite the set using set builder notation.
 - (a) $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - (b) $\{-8, -6, -4, -2, 0, 2, 4, 6, 8\}$
 - (c) $\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$
- 7. (a) Let $A = \{x \in \mathbb{Z} : 4|x\}$ and let $B = \{x \in \mathbb{Z} : 2|x\}$. Prove that $A \subseteq B$.

(b) Generalize the previous problem. Let $a, b \in \mathbb{Z}$ and let

$$A = \{x \in \mathbb{Z} : a|x\}, \qquad B = \{x \in \mathbb{Z} : b|x\}.$$

Find and prove a necessary and sufficient conditions for $A \subseteq B$. In other words, find and prove a theorem of the form

" $A \subseteq B$ if and only if some condition involving a and b."

- 8. Compute each of the following by writing either \in or \subseteq in place of \bigcirc .
 - $2 \bigcirc \{1, 2, 3\}$
 - $\{2\} \bigcirc \{1,2,3\}$
 - $\{2\} \bigcirc \{\{1\}, \{2\}, \{3\}\}$
 - $\emptyset \bigcirc \{1, 2, 3\}$
 - $\mathbb{N} \cap \mathbb{Z}$
 - $\{2\} \bigcirc \mathbb{Z}$
- 9. This problem is about power sets.
 - (a) Write out the elements and give the cardinality of the set 2^{\emptyset} . (Hint: Start with the cardinality.)
 - (b) Find the cardinality of the following sets.
 - i. $2^{2^{\{1,2,3\}}}$
 - ii. $\{x \in 2^{\{1,2,3,4\}} : |x| = 1\}$
 - (c) Complete $\{2\} \cap 2^{\mathbb{Z}}$ by $a \subseteq or \in$.
- 10. (Russel's paradox) Consider the set of all sets R that are not elements of themselves, i.e. $x \in R$ if x is a set but $x \notin x$. Does R contain itself as an element? The answer to this question signifies the breakdown of naive set theory which led to the development of axiomatic set theory. (You need to take a course in mathematical logic to learn more about this.)

Optional programming exercises (no credit)

- PE20) Note that $10! = 10 \cdot 9 \cdot 8 \cdot \dots \cdot 2 \cdot 1 = 3628800$. Find the sum of the digits in the number 100!.
- PE34) 145 is a curious number as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits.