w

Note Title

28/11/2023

PRODOTTI SCALARI IN GENERALE

Prodotto scalare Sia V uno sp. vettoriale

INPUT: 2 vettori ve Ve WeV

OUTPUT: Numero 4U, W>

Proprietà: -> simmetia < U, w> = < w, u>

-> liveonità rispetto alle due variabili

 $\langle U_1 + U_2, W \rangle = \langle U_1, W \rangle + \langle U_2, W \rangle$

 $<\lambda \cup, \omega > = \lambda < \cup, \omega >$

Matrice associata ad un prodotto scalare

Sia V uno sp. vettoriale, sia {vz,..., vm} una base di V

e sia < U, w> un prodotto scalare in V.

Allora posso costruire la matrice mem B definita da

Bi, = < vi, vy >

Si tratta di una matrice simmetrica

Bi, j = < vi, vj > = < vj, vi > = Bj,i

Esempio Se V= R^ e abbiano ; I solito prodotto scalare con la solita base causuica, Da matrice B = Id

Utilità della matrice: < v, w> = ytBx dove

x pensato come comma son le componenti di v rispetto a vz,..., un

Y

Nota bene y B	, x =] = nume	no	
< u, w > = ytz	3x = (yt E trasposto di un numero		ty = xtB	y = < w, v >	
Domanda Se E Se ca maki	mpio pase		A	ile sava Con nu	.ova
Risposta:	M ^t BM	•	alla { Uz, - zhive dhe ha		
2040	Allora le		di vew,	vispetto alla I	
Domanda finale.		bene la bo matrice B		, può divento	ne
Può diventare dia (syevestrizzazio	_	u solo 0,1	.,-1 sulla (diagonale	
Achtung! Abbia		utato 2 probl M-1AM a		Jordan	
-> Mahici cougr					

 Consideriamo i prodotti scalari in R² rappresentati, rispetto alla base canonica, dalle seguenti matrici:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \qquad \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \qquad \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

Per ciascuno di essi si richiede di

- (a) determinare se è definito positivo oppure no,
- (b) determinare il prodotto scalare tra i vettori (1, 2) e (3, −1),
- (c) determinare la matrice che lo rappresenta rispetto alla base {(-1,2), (3,-2)} (si consiglia per le prime volte di svolgere questo punto sia direttamente con la definizione, sia con il cambio di base),
- (d) determinare l'equazione cartesiana del sottospazio ortogonale al vettore (-1, 1),
- (e) determinare un vettore ortogonale al sottospazio di equazione cartesiana x + 2y = 0,
- (f) determinare una base "Sylvesterizzante".

(a)
$$\begin{pmatrix} 2 & -3 \end{pmatrix}$$
 $Tr = 6$ Det = -1 no Autor + - no No Def. pos.

$$(3,-1)\begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix}\begin{pmatrix} 1 \\ 2 \end{pmatrix} = (3-1)\begin{pmatrix} -4 \\ 5 \end{pmatrix} = -17$$

1º modo BOVINO

$$\langle \vec{U}_{2}, \vec{U}_{3} \rangle = (-12)(2-3)(-1) = (-12)(-8) = 30$$

$$\langle \hat{U}_{2}, \hat{U}_{2} \rangle = (3-2) \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = (3-2) \begin{pmatrix} 12 \\ -17 \end{pmatrix} = 70$$

$$\langle \hat{U}_{4}, \hat{U}_{2} \rangle = (-1 \ 2) \begin{pmatrix} 2 \ -3 \\ -3 \ 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = (-1 \ 2) \begin{pmatrix} 12 \\ -17 \end{pmatrix} = -46$$

La unva matrice
$$\tilde{e}$$
 $(30-46)\tilde{v_1} = \tilde{B}$ $(-46 + 0)\tilde{v_2} = \tilde{B}$

2º modo Uso cambio base
$$\hat{B} = M^{\dagger}BM$$
 dove

$$M = \begin{pmatrix} -1 & 3 \\ 2 & -2 \end{pmatrix}$$
 Jupert: componenti risp. $\alpha \{\hat{v_1}, \hat{v_2}\}$ alla compuica

$$\widehat{B} = \begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -8 & 12 \\ 11 & -17 \end{pmatrix} = \begin{pmatrix} 30 & -46 \\ -46 & 70 \end{pmatrix}$$

$$(xy)$$
 $\begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix} = (xy)$ $\begin{pmatrix} 5 \\ -7 \end{pmatrix} = 5x - 7y = 0$

metterlo a dx lo stesso sobtosparsio Do posso descrivere come Span ((7,5))

(e) Trovare un vettore
$$L$$
 al $S.Sp.$ di equatione $y+2x=0$
Lo Scrios intents come $Span((1,-2))$
e ora trovo un vettore $Span((1,-2))$:

$$(\times y)$$
 $\begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -2 \end{pmatrix} = (2\times -3y - 3\times +4y) \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

$$= 2x - 3y + 6x - 8y = 8x - 11y$$

Una possibilità è (11,8)

Verifica:
$$(1-2)\begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix}\begin{pmatrix} 11 \\ 8 \end{pmatrix}$$

$$(1-2)\begin{pmatrix} -2\\ -1 \end{pmatrix} = -2+2 = 0$$
 $""$

(2) Sybresheriztone De makice

Dero Fronze makice
$$H$$
 invertibile tale ale

Mt B $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Sulla diagonale aureuro

Mt B $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

No $M = M$

Buiamo $U_3 = (1,-1)$. Quanto fa U_3 , U_4 , U_5

Poniamo $U_2 = (1,-1)$. Quanto fa U_4 , U_5

Poniamo $U_2 = (1,-1)$. Sappiamo dal Conto preciolente che

 U_4 , U_4 , U_5 = 0

Quanto fa U_5 , U_5 , U_7

Se uno come bare U_7 , U_7 = U_7 , U_7 and U_7

Basta dividere U_4 e U_2 per U_7 , U_7 , U_7

Poniamo

 U_7
 U_7