```
#import python libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt #visualizing data
%matplotlib inline
import seaborn as sns
import plotly graph objects as go
import plotly.express as px
#import csv file
df = pd.read_csv('Sales Data.csv',encoding = 'unicode_escape')
df.shape
(11251, 15)
print(df)
                  Cust name Product ID Gender Age Group Age
       User ID
Marital Status
       1002903
                  Sanskriti P00125942
                                             F
                                                   26-35
                                                           28
0
1
       1000732
                     Kartik
                             P00110942
                                                   26-35
                                                           35
1
2
       1001990
                      Bindu
                             P00118542
                                             F
                                                   26-35
                                                           35
1
3
       1001425
                     Sudevi
                             P00237842
                                                    0-17
                                                           16
0
4
       1000588
                       Joni
                             P00057942
                                                   26-35
                                                           28
                                             М
1
. . .
11246
     1000695
                    Manning
                             P00296942
                                                   18-25
                                                           19
11247
                Reichenbach
      1004089
                            P00171342
                                             М
                                                   26-35
                                                           33
11248
       1001209
                      0shin
                             P00201342
                                                   36-45
                                                           40
                            P00059442
11249
       1004023
                     Noonan
                                             М
                                                   36-45
                                                           37
11250
                    Brumley P00281742
       1002744
                                                   18-25
                                                           19
                State
                           Zone
                                      Occupation Product_Category
0rders
          Maharashtra
                        Western
                                      Healthcare
0
                                                              Auto
1
1
       Andhra Pradesh Southern
                                             Govt
                                                              Auto
3
```

2	Uttar Pradesh		Central Automobil		Auto	
3	Va mataka		Couthorn	Construction	A.,+ o	
3 2 4	Karnataka		Southern	Construction	Auto	
4	Gujarat		Western	Food Processing	Auto	
2	Gujuruc				7.0.00	
				<u> </u>		
11246	Maharashtra		Western	Chemical	Office	
4 11247	ш	arvana	Northern	Healthcare	Veterinary	
3	Haryana		Northern	Heatthcare	veterinary	
11248	Madhya Pradesh		Central	Textile	Office	
4	·					
11249	Karnataka		Southern	Agriculture	Office	
3	Mahawaahtwa		Mostorn	Hoolthoons	0444.00	
11250 3	Maharashtra		Western	Healthcare	Office	
5						
	Amount	Status	unnamed1			
0	23952.0	NaN	NaN			
1	23934.0	NaN	NaN			
2	23924.0	NaN	NaN			
4	23912.0 23877.0	NaN NaN	NaN NaN			
	23077.0	ivaiv	ivaiv			
11246	370.0	NaN	NaN			
11247	367.0	NaN	NaN			
11248	213.0	NaN	NaN			
11249	206.0	NaN	NaN			
11250	188.0	NaN	NaN			

[11251 rows x 15 columns]

df.head

		rame.head o		er_ID	Cust_name	Product_ID
Gender	Age Group	Age Marit	al_Status	\		
0	1002903	Sanskriti	P00125942	F	26-35	28
0						
1	1000732	Kartik	P00110942	F	26-35	35
1						
2	1001990	Bindu	P00118542	F	26-35	35
1						
3	1001425	Sudevi	P00237842	М	0-17	16
0						
4	1000588	Joni	P00057942	М	26-35	28
1						

11246	1000695	Mar	nning	P002	296942	М	18-25	19
1 11247	1004089	Reicher	nbach	P00	171342	М	26-35	33
0						Е		
11248 0	1001209		Oshin	P002	201342	F	36-45	40
11249	1004023	No	oonan	P000	959442	М	36-45	37
0 11250	1002744	Bri	umley	P002	281742	F	18-25	19
0								
		State	Zo	ne	0cc	upation	Product	_Category
Orders 0	\ Mahar	ashtra	Weste	ern	Hea	lthcare		Auto
1								
1 3	Andhra F	radesn	Southe	ern		Govt		Auto
2	Uttar F	radesh	Centr	al	Aut	omobile		Auto
3 3	Kar	nataka	Southe	ern	Const	ruction		Auto
2 4	r.	Gujarat	Weste	rn	Food Pro	cessina		Auto
2		ajarac	Weste	5111	1000 110	cessing		Auto
11246	Mahar	ashtra	Weste	ern	C	hemical		Office
4 11247	H	laryana	Northe	ern	Hea	lthcare	V	eterinary
3 11248	Madhya F	Pradech	Centr	-21		Textile		0ffice
4	_							
11249 3	Kar	nataka	Southe	ern	Agri	culture		Office
11250	Mahar	ashtra	Weste	ern	Hea	lthcare		Office
3								
0	Amount 23952.0	Status NaN	unnan	ned1 NaN				
1	23934.0	NaN		NaN				
2	23924.0	NaN		NaN				
4	23912.0 23877.0	NaN NaN		NaN NaN				
 11246	 370.0	 NaN		 NaN				
11247	367.0	NaN		NaN				
11248	213.0	NaN		NaN				
11249 11250	206.0 188.0	NaN NaN		NaN NaN				
[11251	rows x 1	.5 columi	ns]>					

```
df.head(50)
 {"summary":"{\n \"name\": \"df\",\n \"rows\": 11251,\n \"fields\":
  [\n {\n \"column\": \"User_ID\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 1716,\n \"min\":
1000001,\n \"max\": 1006040,\n \"num_unique_values\":
3755,\n \"samples\": [\n 1005905,\n 1003730,\n 1003730,\n 1005326\n ],\n \"semantic_type\": \"\",\n \"description\": \"\n \"num_unique_values\": \"category\",\n \"num_unique_values\": 1250,\n \"samples\": [\n \"Nida\",\n \"Lacy\",\n \"category\",\n \"num_unique_values\": 1250,\n \"samples\": [\n \"Nida\",\n \"Lacy\",\n \"dtype\": \"',\n \"description\": \"\n \"n \"semantic_type\": \"\",\n \"description\": \"\n \"n \"num_unique_values\": 2351,\n \"samples\": [\n \"P00224442\",\n \"P00347442\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\n \"num_unique_values\": 2351,\n \"P00347442\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\n \"n \"num_unique_values\": 2,\n \"dtype\": \"category\",\n \"n \"num_unique_values\": 2,\n \"samples\": [\n \"dtype\": \"category\",\n \"n \"num_unique_values\": 2,\n \"samples\": [\n \"mum_unique_values\": 2,\n \"mum_unique_values\"
  \"dtype\": \"number\",\n \"std\": 1716,\n \"min\":
 [\n \"M\",\n \"F\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n },\n {\n \"column\": \"Age Group\",\n \"properties\": {\n \"dtype\": \"category\",\n
                                                                                                                                                                                                                      }\
 \"num_unique_values\": 7,\n \"samples\": [\n \"26-35\",\n \"0-17\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\":
 \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\":
 [\n 1,\n 0\n ],\n \"semantic_ty \"\",\n \"description\": \"\"\n }\n },\n {\n
                                                                                                                                                                          \"semantic type\":
 \"column\": \"State\",\n \"properties\": {\n
                                                                                                                                                                                         \"dtvpe\":
 \"category\",\n \"num_unique_values\": 16,\n \"samples\": [\n \"Maharashtra\",\n \"Andhra\\
u00a0Pradesh\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n \"column\": \"Zone\",\n \"properties\": {\n \"dtype\": \"category\",\n
 \"num_unique_values\": 5,\n \"samples\": [\n
 \"Southern\",\n\\"Eastern\"\n\],\n
 \"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                                                                                                                                                                      }\
 n },\n {\n \"column\": \"0ccupation\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 15,\n \"samples\": [\n
```

```
\"Retail\",\n \"Aviation\"\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                                                                     }\
n },\n {\n \"column\": \"Product_Category\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 18,\n \"samples\": [\n \"Auto\",\n \"Hand & Power Tools\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                                                                    }\
n },\n {\n \"column\": \"0rders\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\

\"semantic_type\": \"\",\n \"description\": \"\"\n }\
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Amount\",\n \"properties\":
{\n \"dtype\": \"number\",\n \"std\":
5222.355869186444,\n\\"min\": 188.0,\n\\"max\": 23952.0,\n\\"num_unique_values\": 6584,\n\\"samples\":
[\n 19249.0,\n 13184.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n \"column\": \"Status\",\n \"properties\":
{\n \"dtype\": \"number\",\n \"std\": null,\n
\"min\": null,\n \"max\": null,\n \"num_unique_values\":
n}","type":"dataframe","variable name":"df"}
df.drop(['Status', 'unnamed1'],axis=1,inplace=True)
df
 {"summary":"{\n \"name\": \"df\",\n \"rows\": 11251,\n \"fields\":
 [\n {\n \"column\": \"User_ID\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 1716,\n \"min\":
\"dtype\": \"number\",\n \"std\": 1716,\n \"min\":
1000001,\n \"max\": 1006040,\n \"num_unique_values\":
3755,\n \"samples\": [\n 1005905,\n 1003730,\n 1005326\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\":
\"Cust_name\",\n \"properties\": {\n \"dtype\":
\"category\",\n \"num_unique_values\": 1250,\n \"samples\": [\n \"Nida\",\n \"Lacy\",\n \"Caudle\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\":
\"Product_ID\",\n \"properties\": {\n \"dtype\":
\"category\",\n \"num_unique_values\": 2351,\n
```

```
\"samples\": [\n \"P00224442\",\n \"P00205242\",\n \"P00347442\"\n ],\n \"semantic_type\": \"\",\n
\"Gender\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"M\",\n \"F\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Age Group\",\n
\"properties\": {\n \"dtype\": \"category\",\n
\"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 7,\n \"samples\": [\n \"26-
35\",\n \"0-17\"\n ],\n \"semantic_type\":
\"\",\n \"description\": \"\"\n }\n },\n {\n
\"column\": \"Age\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 12,\n \"min\": 12,\n
\"max\": 92,\n \"num_unique_values\": 81,\n \"samples\":
[\n 18,\n 28\n ],\n \"semantic_type\":
\"\",\n \"description\": \"\"\n }\n },\n {\n
\"column\": \"Marital Status\" \n \"properties\": {\n
\"column\": \"Marital_Status\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"semantic_type\": [\n 1,\n 0\n ],\n \"semantic_type\":
\"\",\n \"description\": \"\"\n }\n {\overline{\mathbb{N}}}
\"column\": \"State\",\n \"properties\": {\n
                                                                                     \"dtype\":
\"category\",\n \"num_unique_values\": 16,\n \"samples\": [\n \"Maharashtra\",\n \"Andhra\\
u00a0Pradesh\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n \"column\": \"Zone\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 5,\n \"samples\": [\n
\"Southern\",\n\\"Eastern\"\n\\],\n
}\
\"num_unique_values\": 15,\n \"samples\": [\n
\"Retail\",\n\\"Aviation\"\n
                                                                 1.\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                                              }\
n },\n {\n \"column\": \"Product_Category\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 18,\n \"samples\": [\n
\"Auto\",\n \"Hand & Power Tools\"\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
       },\n {\n \"column\": \"Orders\",\n \"properties\":
n
{\n \"dtype\": \"number\",\n \"std\":
5222.355869186444,\n \"min\": 188.0,\n \"max\":
```

```
23952.0,\n \"num_unique_values\": 6584,\n \"samples\": [\n 19249.0,\n 13184.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
 n }\n ]\n}","type":"dataframe","variable name":"df"}
 df.tail()
 \"dtype\": \"number\",\n \"std\": 1566,\n \"min\":
 1000695,\n \"max\": 1004089,\n \"num_unique_values\":
 5,\n \"samples\": [\n 1004089,\n 1002744,\n 1001209\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cust_name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": \"
 \"string\",\n \"num_unique_values\": 5,\n \"samples\":
[\n \"P00171342\",\n \"P00281742\",\n
\"P00201342\"\n ],\n \"semantic_type\": \"\,\n
\"description\": \"\"\n }\n \"num_unique_values\": 2,\n \"samples\":
\"category\",\n \"num_unique_values\": 2,\n \"samples\":
[\n \"F\",\n \"M\"\n ],\n
\"semantic_type\": \"\,\n \"description\": \"\"\n }\\n \,\n \"column\": \"Age Group\",\n
\"properties\": \\n \"dtype\": \"string\",\n
\"num_unique_values\": \\]\"samples\": [\n \"18-
```

```
\"semantic_type\": \"\",\n \"description\": \"\"\n
1,\n
\"num unique_values\": 4,\n
                               \"samples\": [\n
\"Healthcare\",\n \"Agriculture\"\n
                                              ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                         }\
\"num unique_values\": 2,\n
                               \"samples\": [\n
\"Veterinary\\",\n \"Office\"\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
   },\n {\n \"column\": \"Orders\",\n \"properties\":
{\n \"dtype\": \"number\",\n \"std\": 0,\n
\"min\": 3,\n \"max\": 4,\n \"num_unique_values\": 2,\n
\"samples\": [\n 3,\n 4\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
   \"properties\":
          \"dtype\": \"number\",\n \"std\":
{\n
                                              \mbox{"max}: 370.0,\n
91.47513323302677,\n\\"min\": 188.0,\n
\"num_unique_values\": 5,\n \"samples\": [\n 367.0,\n
df.dropna(inplace=True)
df['Amount'] = df['Amount'].astype('int')
df['Amount'].dtypes
dtype('int64')
df.columns
Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group',
'Age',
      'Marital Status', 'State', 'Zone', 'Occupation',
'Product_Category',
      'Orders', 'Amount'],
     dtype='object')
#rename column
df.rename(columns = {'Marital Status':'Shaadi'})
{"summary":"{\n \"name\": \"df\",\n \"rows\": 11251,\n \"fields\":
[\n {\n \"column\": \"User_ID\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 1716,\n \"min\":
1000001,\n \"max\": 1006040,\n \"num_unique_values\": 3755,\n \"samples\": [\n 1005905,\n 1003730,\n 1005326\n ],\n \"semantic_type\": \"\",\n
n 1005326\n ],\n \"semantic_type\": \"\",\"description\": \"\"\n \}\n \}\n \"column\":
\"Cust_name\",\n \"properties\": {\n
                                            \"dtype\":
```

```
\"category\",\n \"num_unique_values\": 1250,\n
\"samples\": [\n \"Nida\",\n \"Lacy\",\n
                ],\n \"semantic_type\": \"\",\n \".\"\"\n \\n \\n \\"colu
\"Caudle\"\n
\"Gender\",\n \"properties\": {\n \"dtype\":
\"category\",\n \"num_unique_values\": 2,\n
                                                                  \"samples\":
\"column\": \"Age\",\n \"properties\": {\n
                                                                  \"dtype\":
\"number\",\n \"std\": 12,\n \"min\": 12,\n \"max\": 92,\n \"num_unique_values\": 81,\n \"samples\": [\n 18,\n 28\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n
\"column\": \"Shaadi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"samples\": \"\",\n \"description\": \"\"\n }\n \"\"
\"column\": \"State\",\n \"properties\": {\n
                                                                      \"dtype\":
\"category\",\n \"num_unique_values\": 16,\n \"samples\": [\n \"Maharashtra\",\n \"Andhra\\
u00a0Pradesh\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n \"column\":
                                                                  \"Andhra\\
\"Zone\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num unique values\": 5,\n \"samples\": [\n
\"Southern\",\n \"Eastern\"\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                             }\
n },\n {\n \"column\": \"0ccupation\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num unique values\": 15,\n \"samples\": [\n
\"Retail\",\n \"Aviation\"\n ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
                                                                             }\
n },\n {\n \"column\": \"Product_Category\",\n
\"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 18,\n \"samples\": [\n
\"Auto\",\n \"Hand & Power Tools\"\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
n },\n \"column\": \"Orders\",\n \"properties\":
{\n
             \"dtype\": \"number\",\n \"std\": 1,\n
```

```
\"min\": 1,\n \"max\": 4,\n \"num_unique_values\": 4,\n
\"samples\": [\n 3,\n 4\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Amount\",\n \"properties\":
{\n \"dtype\": \"number\\",\n \"std\\": 5222.355869186444,\n \"min\\": 188.0,\n \\"max\\": 23952.0,\n \\"num_unique_values\\": 6584,\n \\"samples\\":
[\n 19249.0,\n 13184.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
n }\n ]\n}","type":"dataframe"}
#use describe() for specific cloumns
df[['Age', 'Orders', 'Amount']].describe()
{"summary":"{\n \"name\": \"df[['Age', 'Orders', 'Amount']]\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Age\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 3965.0199871765367,\n \"min\": 12.0,\n \"max\": 11251.0,\n \"num_unique_values\": 8,\n \"samples\": [\n
n },\n {\n \"column\": \"Orders\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\":
3977.0664408388902,\n\\"min\": 1.0,\n\\"max\": 11251.0,\
n \"num_unique_values\": 8,\n \"samples\": [\n 2.4892898409030306,\n 2.0,\n 11251.0\n \"semantic_type\": \"\",\n \"description\": \"\"\n n },\n {\n \"column\": \"Amount\",\n \"proper
                                                                                           ],\n
                                                                                          }\
                                                                       \"properties\":
{\n \"dtype\": \"number\",\n \"std\":
7024.070625946779,\n \"min\": 188.0,\n \"max\": 23952.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 9453.610857727557,\n 8109.0,\n 11239.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
n }\n \[ \]\n}","type":"dataframe"}
# plotting a bar chart for Gender and It's count
ax = sns.countplot(x = 'Gender', data = df)
for bars in ax.containers:
     ax.bar label(bars)
```


In this graph there is more count of women than men

```
# plotting a bar chart fort gender vs total amount
sales_gen = df.groupby(['Gender'], as_index=False)
['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender', y= 'Amount' ,data = sales_gen, color='red')

<Axes: xlabel='Gender', ylabel='Amount'>
```


In this graph Female spent more money than men

```
ax = sns.countplot(data = df, x = 'Age Group', hue='Gender')
for bars in ax.containers:
   ax.bar_label(bars)
```


there is a count of people according to thier age

```
#total amount vs age group
sales_age = df.groupby(['Age Group'], as_index=False)
['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age,
color='red', palette='rocket')
<ipython-input-29-ea2b9d5bcad3>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
`legend=False` for the same effect.

sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age,
color='red', palette='rocket')

<Axes: xlabel='Age Group', ylabel='Amount'>
```


the age group of 26 and 35 sell more products

```
sales_state = df.groupby(['State'], as_index=False)
['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
custom_color = sns.color_palette('husl',10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(x = 'State',y= 'Orders', data = sales_state,
palette=custom_color)
<ipython-input-32-9db373daf273>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x = 'State',y= 'Orders', data = sales_state,
palette=custom_color)

<Axes: xlabel='State', ylabel='Orders'>
```


the maximum order is got from the uttarpradesh remains are poor Aura ∞

```
sales_state = df.groupby(['State'], as_index=False)
['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
custom_color = sns.color_palette('husl',10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(x = 'State',y= 'Orders' ,data = sales_state,
palette=custom_color)
<ipython-input-37-9db373daf273>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x = 'State',y= 'Orders' ,data = sales_state,
palette=custom_color)

<Axes: xlabel='State', ylabel='Orders'>
```


once again, Uttar pradesh is showing their status

```
# prompt: sales state = df.groupby(['State'], as index=False)
['Orders'].sum().sort values(by='Orders', ascending=False).head(10)
# custom color = sns.color palette('husl',10)
# sns.set(rc={'figure.figsize':(18,5)})
# sns.barplot(x = 'State',y= 'Orders' ,data = sales state,
palette=custom color) --> i want sales like orders*amount
# Calculate total sales (Orders * Amount)
#df['Amount'] = df['Orders'] * df['Amount']
# Group by state and sum total sales
sales state = df.groupby(['State'], as index=False)
['Amount'].sum().sort values(by='Amount', ascending=False).head(10)
# Customize the plot
custom color = sns.color palette('husl', 10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(x='State', y='Amount', data=sales state,
palette=custom color)
<ipython-input-41-d2a11e0b5a32>:15: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
`legend=False` for the same effect.
  sns.barplot(x='State', y='Amount', data=sales state,
palette=custom color)
<Axes: xlabel='State', ylabel='Amount'>
```


People of Uttar Pradesh earn more than other poor state(Rajasthan)

```
ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
```

```
for bars in ax.containers:
   ax.bar_label(bars)
```


this figure shows that the unmarried people have high graph

```
sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)
['Amount'].sum().sort_values(by='Amount', ascending=False)

sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')

<Axes: xlabel='Marital_Status', ylabel='Amount'>
```



```
sns.set(rc = {'figure.figsize':(20,8)})
ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
   ax.bar_label(bars)
```



```
sales_state = df.groupby(['Occupation'], as_index=False)
['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')

<Axes: xlabel='Occupation', ylabel='Amount'>
```



```
sns.set(rc = {'figure.figsize':(30,8)})
ax = sns.countplot(data = df, x = 'Product_Category')

for bars in ax.containers:
   ax.bar_label(bars)
```



```
sns.set(rc = {'figure.figsize':(30,8)})
sns.barplot(data = df, x = 'Product_Category',y= 'Amount')
<Axes: xlabel='Product_Category', ylabel='Amount'>
```


prompt: I want to conclude my analysis and want recommendation by analysing the all graphs above

Recommendations based on the provided analysis:

1. Target Female Customers:

- # Females contribute significantly more to overall sales than males.
- # Focus marketing and product development efforts towards female demographics.

2. Focus on Age Group 26-35:

- This age group exhibits the highest spending.
- # Tailor product offerings and marketing campaigns to resonate with this demographic.

3. Prioritize Uttar Pradesh:

- # Uttar Pradesh demonstrates the highest sales volume and revenue.
- # Increase marketing efforts and inventory in this region.
- # Explore reasons for high sales in this state and replicate successful strategies in other regions.

4. Consider Marital Status:

- # Unmarried individuals constitute a larger customer base.and promoitons.
- # Further investigation could examine if marital status influe
- # Analyze purchasing patterns within this group to personalize offers nces spending habits.

5. Product Category Optimization:

- # Analyze the best-selling product categories and identify any correlations with other factors like age, gender, or location.
- # Optimize inventory levels for top-performing product categories in high-demand areas.

6. Occupation-based Targeting:

```
- Analyze the spending patterns based on occupation to tailor
marketing campaigns.
     - Certain occupations may have higher disposable incomes or
specific product needs.
# 7. Deeper Data Analysis:
     - Investigate the correlations between various factors such as
age, gender, marital status, occupation, product category, and
location to develop more nuanced customer segments.
      - Consider A/B testing different marketing strategies across
different segments.
      - Analyze seasonality and trends to identify periods of peak
demand and optimize stock levels.
# 8. Geographic Expansion:
     - Explore opportunities to expand into new markets or regions
with similar demographic profiles to Uttar Pradesh.
# 9. Customer Retention:
      - Implement customer loyalty programs and personalized
recommendations to retain high-value customers.
      - Analyze customer churn and identify factors that contribute to
it.
# Assuming df is already defined
sales profit by segment = df.groupby('Segment').agg({'Sales': 'sum',
'Profit': 'sum'}).reset_index()
# Use plotly express color palette
color palette = px.colors.qualitative.Pastel
# Create figure
fig = go.Figure()
# Add Sales Bar
fig.add trace(go.Bar(
    x=sales profit by segment['Segment'],
    y=sales profit_by_segment['Sales'],
    name='Total Sales',
    marker color=color palette[0]
))
# Add Profit Bar
fig.add trace(go.Bar(
    x=sales_profit_by_segment['Segment'],
    y=sales profit by segment['Profit'],
    name='Total Profit',
    marker color=color palette[1]
```

```
))
# Update layout
fig.update layout(
    barmode='stack',
    title='Total Sales and Profit by Segment',
    xaxis_title='Segment',
    vaxis title='Amount'
)
# Show plot
fig.show()
KevError
                                          Traceback (most recent call
last)
<ipython-input-17-31b683141270> in <cell line: 0>()
      1 # Assuming df is already defined
----> 2 sales profit by segment = df.groupby('Segment').agg({'Sales':
'sum', 'Profit': 'sum'}).reset index()
      4 # Use plotly express color palette
      5 color palette = px.colors.qualitative.Pastel
/usr/local/lib/python3.11/dist-packages/pandas/core/frame.py in
groupby(self, by, axis, level, as index, sort, group keys, observed,
dropna)
   9181
                    raise TypeError("You have to supply one of 'by'
and 'level'")
   9182
-> 9183
                return DataFrameGroupBy(
   9184
                    obj=self,
   9185
                    keys=by,
/usr/local/lib/python3.11/dist-packages/pandas/core/groupby/groupby.py
in init (self, obj, keys, axis, level, grouper, exclusions,
selection, as index, sort, group keys, observed, dropna)
   1327
   1328
                if grouper is None:
-> 1329
                    grouper, exclusions, obj = get grouper(
   1330
                        obi,
   1331
                        keys,
/usr/local/lib/python3.11/dist-packages/pandas/core/groupby/grouper.py
in get grouper(obj, key, axis, level, sort, observed, validate,
dropna)
   1041
                        in axis, level, gpr = False, gpr, None
   1042
                    else:
-> 1043
                        raise KeyError(gpr)
```

```
1044
                elif isinstance(gpr, Grouper) and gpr.key is not None:
                    # Add key to exclusions
   1045
KeyError: 'Segment'
# Assuming df is already defined
# Check if 'Segment' column exists, if not, create it based on
available data
if 'Seament' not in df.columns:
    # Example: Create 'Segment' based on 'Age Group' or any other
relevant column
    df['Segment'] = pd.cut(df['Age'], bins=[0, 25, 35, 45, 55, 100],
                           labels=['<25', '26-35', '36-45', '46-55',
'>55'1)
sales profit by segment = df.groupby('Segment').agg({'Amount':
'sum'}).reset index()
color palette = px.colors.qualitative.Pastel
fig = go.Figure()
fig.add trace(go.Bar(
    x=sales_profit_by_segment['Segment'],
    y=sales profit by segment['Amount'],
    name='Total Sales',
    marker color=color palette[0]
))
fig.update layout(
    title='Total Sales by Segment',
    xaxis_title='Segment',
    yaxis title='Amount'
# Show plot
fig.show()
<ipython-input-30-d6a4afd8ecc3>:8: FutureWarning:
The default of observed=False is deprecated and will be changed to
True in a future version of pandas. Pass observed=False to retain
current behavior or observed=True to adopt the future default and
silence this warning.
sales profit by segment = df.groupby('Segment').agg({'Amount':
'sum'}).reset index()
sales profit by segment['Sales to Profit Ratio'] =
sales profit by segment['Amount'] / sales profit by segment['Amount']
print(sales profit by segment[['Segment', 'Sales to Profit Ration']])
```

```
<ipython-input-33-4c664a7a0ecf>:1: FutureWarning:
The default of observed=False is deprecated and will be changed to
True in a future version of pandas. Pass observed=False to retain
current behavior or observed=True to adopt the future default and
silence this warning.
KeyError
                                          Traceback (most recent call
last)
<ipython-input-33-4c664a7a0ecf> in <cell line: 0>()
      1 sales profit by segment = df.groupby('Segment').agg({'Amount':
'sum'}).reset index()
      2 sales profit by segment['Sales to Profit Ratio'] =
sales profit by segment['Amount'] / sales profit by segment['Amount']
---> 3
print(sales_profit_by_segment[['Segment','Sales_to_Profit Ration']])
/usr/local/lib/python3.11/dist-packages/pandas/core/frame.py in
__getitem__(self, key)
                    if is_iterator(key):
   4106
   4107
                        key = list(key)
-> 4108
                    indexer = self.columns. get indexer strict(key,
"columns")[1]
   4109
   4110
                # take() does not accept boolean indexers
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
_get_indexer_strict(self, key, axis_name)
   6198
                    keyarr, indexer, new indexer =
self. reindex non unique(keyarr)
   6199
-> 6200
                self. raise if missing(keyarr, indexer, axis name)
   6201
                keyarr = self.take(indexer)
   6202
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
raise if missing(self, key, indexer, axis name)
   6250
   6251
                    not found = list(ensure index(key)
[missing mask.nonzero()[0]].unique())
                    raise KeyError(f"{not found} not in index")
-> 6252
   6253
   6254
            @overload
KeyError: "['Sales to Profit Ration'] not in index"
```

```
sales profit by segment = df.groupby('Segment').agg({'Amount':
'sum'}).reset index()
sales profit by segment['Sales to Profit Ratio'] =
sales profit by segment['Amount'] / sales profit by segment['Amount']
print(sales profit by segment[['Segment', 'Sales to Profit Ratio']])
  Segment Sales to Profit Ratio
0
      <25
                             1.0
    26-35
1
                             1.0
2
    36-45
                             1.0
3
    46-55
                             1.0
4
     >55
                             1.0
<ipython-input-35-98fb7dd2c6df>:1: FutureWarning:
The default of observed=False is deprecated and will be changed to
True in a future version of pandas. Pass observed=False to retain
current behavior or observed=True to adopt the future default and
silence this warning.
fig = px.bar(sales profit by segment,x = 'Segment',y =
'Sales to Profit Ratio',color = 'Segment',title = 'Sales to Profit
Ratio by Segment')
fig.update_traces(textposition='inside')
fig.update layout(title text='Sales to Profit Ratio by
Segment',title font = dict(size=24))
fig.show()
# prompt: conclude the above graph
# Recommendations based on the provided analysis:
# 1. Target Female Customers:
# - Females contribute significantly more to overall sales than
males.
     - Focus marketing and product development efforts towards female
demographics.
# 2. Focus on Age Group 26-35:
     - This age group exhibits the highest spending.
     - Tailor product offerings and marketing campaigns to resonate
with this demographic.
# 3. Prioritize Uttar Pradesh:
    - Uttar Pradesh demonstrates the highest sales volume and
revenue.
# - Increase marketing efforts and inventory in this region.
     - Explore reasons for high sales in this state and replicate
successful strategies in other regions.
```

- # 4. Consider Marital Status:
 - Unmarried individuals constitute a larger customer base.
- # Analyze purchasing patterns within this group to personalize offers and promotions.
- # 5. Product Category Optimization:
- # Analyze the best-selling product categories and identify any correlations with other factors like age, gender, or location.
- # Optimize inventory levels for top-performing product categories in high-demand areas.
- # 6. Occupation-based Targeting:
- # Analyze the spending patterns based on occupation to tailor marketing campaigns.
- # Certain occupations may have higher disposable incomes or specific product needs.
- # 7. Deeper Data Analysis:
- # Investigate the correlations between various factors such as age, gender, marital status, occupation, product category, and location to develop more nuanced customer segments.
- # Consider A/B testing different marketing strategies across different segments.
- # Analyze seasonality and trends to identify periods of peak demand and optimize stock levels.
- # 8. Geographic Expansion:
- # Explore opportunities to expand into new markets or regions with similar demographic profiles to Uttar Pradesh.
- # 9. Customer Retention:
- # Implement customer loyalty programs and personalized recommendations to retain high-value customers.
- # Analyze customer churn and identify factors that contribute to it.