Deterministic Optimization

Convexity

Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Convex Functions

Convex Function

Learning objectives:

- Recall definition of convexity
- Recall properties of convex functions
- Recognize convex functions

Convex Function

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y}) \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \text{ and } \lambda \in [0, 1]$
- "Function value at the average \le average of function values"

Convex Function

- A function f is **concave** if -f is convex, i.e. the inequality is reversed.
- A linear function is both convex and concave.
- Examples of convex functions:

o
$$f(x) = x^2$$

o
$$f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{x} + b$$

o
$$f(\mathbf{x}) = \sum_{j=1}^{n} |x_j|$$

First Order Condition

• A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

• That is, the first order Taylor's approximation is a global under-estimator.

Second Order Condition

- A twice differentiable univariate function $f : \mathbb{R} \to \mathbb{R}$ is convex if $f''(x) \ge 0$ for all $x \in \mathbb{R}$.
- \bullet That is, the slopes (or gradients) of f are non-decreasing.
- A twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(\mathbf{x})$ is **positive semidefinite** (psd) for all $\mathbf{x} \in \mathbb{R}^n$.
- A $n \times n$ matrix A is psd if $\mathbf{x}^{\top} A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- Equivalently, A is psd if all its eigenvalues are nonnegative.

Examples

- $f(x) = e^x + x^2$. Then $f'(x) = e^x + 2x$ and $f''(x) = e^x + 2 \ge 0$ for all x. So f is convex.
- $f(x) = x^3$. Then $f'(x) = 3x^2$ and f''(x) = 6x. For any x < 0, we have f''(x) < 0. Thus f is not convex.
- $f(\mathbf{x}) = ||A\mathbf{x} \mathbf{b}||^2 = (A\mathbf{x} \mathbf{b})^{\top} (A\mathbf{x} \mathbf{b}).$ Then $\nabla f(\mathbf{x}) = 2A^{\top} (A\mathbf{x} - \mathbf{b})$ (check!), and $\nabla^2 f(\mathbf{x}) = 2A^{\top} A$ (check!). Now $\mathbf{y}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{y} = \mathbf{y}^{\top} A^{\top} A \mathbf{y} = ||A\mathbf{y}||^2 \ge 0$ for any \mathbf{y} . Thus f is convex.

Operations preserving convexity

- Nonnegative weighted sum of convex functions is convex, i.e. if f_i is convex and $\alpha_i \geq 0$ for all $i = 1, \ldots, m$, then $g(\mathbf{x}) = \sum_{i=1}^m \alpha_i f_i(\mathbf{x})$ is convex.
- Maximum of convex functions is convex, i.e. if f_i is convex for all i = 1, ..., m, then $g(\mathbf{x}) = \max_i \{f_i(\mathbf{x})\}$ is convex.
- Composition: Let $f: \mathbb{R}^m \to \mathbb{R}$ be a convex function, and $g_i: \mathbb{R}^n \to \mathbb{R}$ be convex for all i = 1, ..., m. Then the composite function

$$h(\mathbf{x}) = f(g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_m(\mathbf{x}))$$

is convex if either f is nondecreasing or if each g_i is a linear function.

Checking convexity

- Apply the definition
- If twice differentiable, check second order condition
- Show that the function is obtained by applying convexity preserving operations to simple convex functions.

Example

Is the function $f(\mathbf{x}) = e^{\sum_{i=1}^{m} |a_i^{\top} \mathbf{x} - b_i|}$ convex?

- Let $g_i(\mathbf{x}) = |a_i^\top \mathbf{x} b_i|$. It is obtained by the composition of the convex function $|\cdot|$ and the linear function $a_i^\top \mathbf{x} b_i$. So it is convex.
- The function $h(\mathbf{x}) = \sum_{i=1}^{m} g_i(\mathbf{x})$ is a sum of convex functions, hence convex.
- Finally, f is obtained by taking composition of the function $m(a) = e^a$ with h, i.e. $f(\mathbf{x}) = m(h(\mathbf{x}))$. Since m is nondecreasing and h is convex, f is convex.

Summary

- We learned the definition of a convex function, some of its properties, and about operations that preserve convexity.
- In general checking convexity of a function is difficult.
- An often useful approach is to break the function down in to its simple constituents and checking convexity of the simple functions and the associated operations.