Lecture 26 Numerical Solutions of Nonlinear Systems of Equations

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Systems of Nonlinear Equations

A system of nonlinear equations:

$$f_1(x_1, x_2, \dots, x_n) = 0$$

 $f_2(x_1, x_2, \dots, x_n) = 0$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0$

or $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, where \mathbf{F} maps \mathbf{R}^n to \mathbf{R}^n as

$$\mathbf{F}(x_1, \dots, x_n) = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{pmatrix}$$

with coordinate functions f_1, \ldots, f_n .

Limits and Continuity

Definition

Let f be defined on $D \subset \mathbf{R}^n$ and mapping into \mathbf{R} . Then f has the limit L at \mathbf{x}_0 :

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L,$$

if, given any $\epsilon>0$, a $\delta>0$ exists with

$$|f(\mathbf{x}) - L| < \epsilon$$
, whenever $\mathbf{x} \in D$ and $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$

Definition

Let f be a function from $D \subset \mathbf{R}^n$ to \mathbf{R} . Then f is continuous at $\mathbf{x}_0 \in D$ if $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x})$ exists and

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$$

Also, f is continuous on a set D if f is continuous at every point of D: $f \in C(D)$.

Limits and Continuity

Definition

Let **F** be a function from $D \subset \mathbf{R}^n$ to \mathbf{R}^n :

$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))^t$$

where f_i is a mapping from \mathbf{R}^n to \mathbf{R} . Define

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{F}(\mathbf{x})=\mathbf{L}=(L_1,L_2,\ldots,L_n)^t$$

if and only if $\lim_{\mathbf{x}\to\mathbf{x}_0} f_i(\mathbf{x}) = L_i$, for $i = 1, 2, \dots, n$.

 \mathbf{F} is continuous at $\mathbf{x}_0 \in D$ if $\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{F}(\mathbf{x})$ exists and $\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{x}_0)$.

F is continuous on a set D if **F** is continuous at each **x** in D, or **F** $\in C(D)$.

Limits and Continuity

Theorem

Let f be a function from $D \subset \mathbf{R}^n$ into \mathbf{R} and $\mathbf{x}_0 \in D$. Suppose all partial derivatives of f exist and $\delta > 0$, K > 0 exist so that whenever $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ and $\mathbf{x} \in D$,

$$\left|\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_j}\right| \leqslant K, \text{ for } j = 1, 2, \dots, n$$

Then f is continuous at \mathbf{x}_0 .

Fixed Points in \mathbb{R}^n

Definition

G from $D \subset \mathbf{R}^n$ to \mathbf{R}^n has a fixed point at $\mathbf{p} \in D$ if $G(\mathbf{p}) = \mathbf{p}$.

Theorem

Let $D = \{(x_1, \dots, x_n)^t | a_i \leqslant x_i \leqslant b_i, \text{ for } i = 1, \dots, n\}$. Suppose \mathbf{G} is continuous from $D \subset \mathbf{R}^n$ into \mathbf{R}^n and $\mathbf{G}(\mathbf{x}) \in D$ whenever $\mathbf{x} \in D$. Then \mathbf{G} has a fixed point in D. Moreover, suppose all components of \mathbf{G} have continuous partial derivatives and K < 1 exists with $\frac{\partial g_i(\mathbf{x})}{\partial x_j} \leqslant \frac{K}{n}$, whenever $\mathbf{x} \in D$ for $j = 1, \dots, n$ and each g_i . Then $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by an $\mathbf{x}^{(0)}$ in D and $\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)})$ for $k \geqslant 1$ converges to the unique fixed point $\mathbf{p} \in D$ with

$$\|\mathbf{x}^{(k)} - \mathbf{p}\|_{\infty} \le \frac{K^k}{1 - K} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty}$$

Quadratically Convergent Fixed Point Iterations

Find matrix $A(\mathbf{x})$ such that $\mathbf{G}(\mathbf{x}) = \mathbf{x} - A(\mathbf{x})^{-1}\mathbf{F}(\mathbf{x})$ gives quadratic convergence to the solution of $\mathbf{F}(\mathbf{x})$.

Theorem

Let **p** be a solution of G(x) = x. Suppose $\delta > 0$ exists with

- $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x} | \|\mathbf{x} \mathbf{p}\| < \delta\}$ for all i, j.
- $\partial^2 g_i/\partial x_j \partial x_k$ is continuous, $|\partial^2 g_i/\partial x_j \partial x_k| \leq M$ from some M whenever $\mathbf{x} \in N_\delta$, for all i, j, k.
- $\partial g_i(\mathbf{p})/\partial x_j = 0$ for all i, j.

Then $\hat{\delta} \leqslant \delta$ exists such that $\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)})$ converges quadratically to \mathbf{p} for any $\mathbf{x}^{(0)}$ with $\|\mathbf{x}^{(0)} - \mathbf{p}\| \leqslant \hat{\delta}$. Moreover,

$$\|\mathbf{x}^{(k)} - \mathbf{p}\|_{\infty} \leqslant \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{p}\|_{\infty}^2, \text{ for } k \geqslant 1$$

Newton's Method

Newton's method for nonlinear systems:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - (J(\mathbf{x}^{(k-1)}))^{-1} \mathbf{F}(\mathbf{x}^{(k-1)})$$

with Jacobian matrix

$$J(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$