Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

ОТЧЕТ по лабораторной работе №2

Студент:	Кутняк А. В.
Руководитель:	Марцинкевич В. А.

1 ЦЕЛЬ

Изучить основные команды конфигурации IOS, научиться настраивать сетевые интерфейсы маршрутизаторов и пользовательских станций.

2 ЗАДАНИЕ

Задание состоит из теоретической и практических частей, связанных с конфигурацией подсетей и настройкой сетевых интерфейсов в пользовательских редакциях Windows и дистрибутивах Linux.

2.1 Первая часть

- 1. Взять за основу лабораторную работу №1.
- 2. Использовать Cisco Packet Tracer.
- 3. Изучить команды: interface, ip address, shutdown, show ip interface.
- 4. Сконфигурировать сетевые интерфейсы маршрутизаторов, задав IPадреса и маски подсетей. Каждый из каналов должен соответствовать указанной в варианте задания подсети. Использовать CLI.
- 5. Сконфигурировать сетевые интерфейсы пользовательских станций, задав IP-адреса и маски подсетей. Подсети выбрать по своему усмотрению. Использовать форму Desktop \rightarrow IP Configuration.

2.2 Вторая часть

- 1. Изучить как назначать IP-адреса сетевым интерфейсам в Windows.
- 2. На примере одной из настольных редакций версий 7 10, присвоить любому из доступных сетевых интерфейсов первый IP-адрес в подсети №1 из варианта задания.

2.3 Третья часть

- 1. Изучить как назначать IP-адреса сетевым интерфейсам в Linux.
- 2. На примере одного из дистрибутивов, присвоить любому из доступных сетевых интерфейсов последний IP-адрес в подсети №1 из варианта задания.

3 РЕЗУЛЬТАТ ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

3.1 Расчет масок подсетей

В таблице 3.1 представлены значения масок подсетей, определенных по условию индивидуального задания.

Таблица 3.1 – Маски подсетей

№	Подсеть	Маска подсети
1	20.105.12.128/25	255.255.255.128
2	53.48.0.0/12	255.240.0.0
3	95.217.137.0/24	255.255.255.0
4	98.128.0.0/9	255.128.0.0
5	134.137.128.0/17	255.255.128.0
6	155.245.62.96/27	255.255.255.224
7	171.75.218.32/28	255.255.255.240
8	185.245.143.192/26	255.255.255.192
9	198.102.21.128/25	255.255.255.128
10	201.63.167.0/24	255.255.255.0

3.2 Расчет первого и последнего адреса первой подсети

Представим подсеть «20.105.12.128/25» в виде двоичного кода:

$$00010100'01101001'00001100'100000000 \rightarrow 20.105.12.128$$

 $11111111'1111111'11111111'100000000 \rightarrow 255.255.255.128$

Принимая во внимание то, что биты маски изменить нельзя, получим минимальный адрес:

$$00010100'01101001'00001100'10000001 \rightarrow 20.105.12.129$$

максимальный адрес равен:

$$00010100'01101001'00001100'101111111 \rightarrow 20.105.12.191$$

поскольку полностью состоящий из единиц адрес узла будет считаться широковещательным:

$$00010100'01101001'00001100'111111111 \rightarrow 20.105.12.255$$

3.3 Конфигурации сетевых устройств топологии

Ниже представлены сведения о конфигурациях маршрутизаторов и персональных устройств топологии:

N1>show ip int br					
Interface	IP-Address	OK?	Method	Status	Protocol
<pre>GigabitEthernet0/0/0</pre>	98.128.0.2	YES	${\tt manual}$	up	up
<pre>GigabitEthernet0/0/1</pre>	20.105.12.129	YES	${\tt manual}$	up	up
GigabitEthernet0/0/2	185.245.143.193	YES	manual	up	up
N2>show ip int br					
Interface	IP-Address	OK?	${\tt Method}$	Status	${\tt Protocol}$
<pre>GigabitEthernet0/0</pre>	53.48.0.2	YES	${\tt manual}$	up	up
GigabitEthernet0/1	155.245.62.97	YES	manual	up	up
N3>show ip int br					
Interface	IP-Address	OK?	Method	Status	Protocol
GigabitEthernet0/0/0	134.137.128.2	YES	manual	up	up
GigabitEthernet0/0/1	20.105.12.130		manual	-	up
GigabitEthernet0/0/2	95.217.137.1		manual	-	up
5				•	•
N4>show ip int br					
Interface	IP-Address	OK?	Method	Status	Protocol
GigabitEthernet0/0/0	155.245.62.98	YES	manual	up	up
GigabitEthernet0/0/1	98.128.0.1	YES	manual	up	up
GigabitEthernet0/0/2	134.137.128.1	YES	manual	up	up
N5>show ip int br					
Interface	IP-Address	OK?	Method	Status	Protocol
<pre>GigabitEthernet0/0/0</pre>	198.102.21.130	YES	manual	up	up
<pre>GigabitEthernet0/0/1</pre>	171.75.218.34	YES	manual	up	up
<pre>GigabitEthernet0/0/2</pre>	172.16.1.1	YES	manual	up	up
N6>show ip int br					
Interface	IP-Address	OK?	${\tt Method}$	${\tt Status}$	${\tt Protocol}$
<pre>GigabitEthernet0/0/0</pre>	185.245.143.194	YES	${\tt manual}$	up	up
<pre>GigabitEthernet0/0/1</pre>	171.75.218.33	YES	${\tt manual}$	up	up
GigabitEthernet0/0/2	201.63.167.1	YES	manual	up	up
N7>show ip int br					
Interface	IP-Address	OK?	Method	Status	Protocol
GigabitEthernet0/0	53.48.0.1	YES	manual	up	up
GigabitEthernet0/1	172.16.0.1	YES	manual	up	up
-				-	-

```
N8>show ip int br
                   IP-Address
                                 OK? Method Status Protocol
Interface
                   95.217.137.2
GigabitEthernet0/0/0
                                 YES manual up
                                                 up
GigabitEthernet0/0/1
                   198.102.21.129 YES manual up
                                                 up
GigabitEthernet0/0/2
                   201.63.167.2
                                 YES manual up
                                                 up
PCO>ipconfig
FastEthernet0 Connection:(default port)
  IPv4 Address..... 172.16.0.2
  Subnet Mask....: 255.255.255.0
Laptop0>ipconfig
FastEthernet0 Connection:(default port)
  IPv4 Address..... 172.16.1.2
  Subnet Mask..... 255.255.25.0
```

3.4 Конфигурирование сетевого интерфейса в Windows

Для назначения IP-адреса сетевому интерфейсу в Windows можно воспользоваться командой *netsh*:

```
netsh interface ipv4 set address name="Name" static 20.105.12.128 255.255.255.128 20.105.12.129
```

3.5 Конфигурирование сетевого интерфейса в Linux

Для назначения IP-адреса сетевому интерфейсу в Linux можно воспользоваться системной утилитой *nmcli*:

```
nmcli connection modify Name ipv4.address 20.105.12.128/25 nmcli connection modify Name ipv4.gateway 20.105.12.191 nmcli connection modify Name ipv4.dns 20.105.12.191
```

4 ВЫВОДЫ

В результате выполнения лабораторной работы были изучены команды режима конфигурации Cisco IOS, а также способы установки IP-адреса для сетевого интерфейса в системах Windows и Linux.