Suites Réelles Opérations sur les suites

MPSI 2

1 Structure d'algèbre des suites

Soit \mathcal{E} l'ensemble des suites réelles. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles.

Addition

On pose $u + v = (u_n + v_n)_{n \in \mathbb{N}}$

 $(\mathcal{E},+)$ est un groupe abélien (commutatif):

- Il possède un élément neutre: $(0)_{n\in\mathbb{N}}$
- Il possède un élément symétrique: $-u_n = (-u_n)_{n \in \mathbb{N}}$

Multiplication

On pose $u \times v = (u_n \times v_n)_{n \in \mathbb{N}}$

 \times est associative

 \times est distributive sur +

 \times admet un lment neutre: $(1)_{n\in\mathbb{N}}$

On dit que $(\mathcal{E}, +, \times)$ est un <u>anneau commutatif</u> (car pas compltement symtrique)

Multiplication externe

On pose $\forall \lambda \in \mathbb{R}, \ \lambda \cdot u = (\lambda \times u_n)_{n \in \mathbb{N}}$

On a de plus $\lambda \cdot (u \times v) = (\lambda \cdot u) \times v = u \times (v \cdot \lambda)$

On dit que $(\mathcal{E}, +, \cdot)$ est un espace vectoriel.

On dit que $(\mathcal{E}, +, \times, \cdot)$ est une <u>algbre commutative</u>.

Propriété 1.0.1

On note \mathcal{E}_b l'ensemble des suites bornes.

On note \mathcal{E}_c l'ensemble des suites convergentes.

On a:

- $\mathcal{E}_c \subset \mathcal{E}_b \subset \mathcal{E}$
- $(\mathcal{E}_b, +, \times, \cdot)$ et $(\mathcal{E}_b, +, \times, \cdot)$ sont des algbres commutatives.

Limites Relles

Propriété 1.0.2

- Si u converge vers l et v converge vers l', alors u + v converge vers l + l'.
- Si u converge vers l et v converge vers l', alors $u \times v$ converge vers $l \times l'$.
- Si u converge vers l et $\lambda \in \mathbb{R}$, alors $\lambda \cdot u$ converge vers λl
- Si u converge vers l ≠ 0, alors il existe un rang n₀ a partir duquel (¹/_{u_n})_{n≥n₀} ait un sens, et (¹/_{u_n})_{n≥n₀} converge vers ¹/_l
 Si u converge vers l et v converge vers l' ≠ 0, alors il existe un rang n₀ a partir duquel
- Si u converge vers l et v converge vers $l' \neq 0$, alors il existe un rang n_0 a partir duquel $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ ait un sens, et $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ converge vers $\frac{l}{l'}$

• Premier point:

Utiliser les dfinitions des limites avec $\frac{\varepsilon}{2}$, à ε fix.

Puis, avec l'addition des deux, utiliser l'ingalit triangulaire.

• Deuxime point:

Soit u et v tendant vers l et l'.

Montrer que $u v \xrightarrow[n \to +\infty]{} l l'$

Soit ε un rel strictement positif.

Montrer que $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |_n v_n - l l'| < \varepsilon$

De plus: $|u_n v_n - l l'| = |u_n v_n - u_n l' + u_n l' - l l'|$ u est convergente, donc borne. = $|u_n(v_n - l) + l'(u_n - l)|$

$$|u_n v_n - l l'| \le |u_n| |v_n - l| + |l'| |u_n - l|$$

Soit M le majorant de |u|.

Donc $|u_n v_n - l l'| \le M |v_n - l| + |l'| |u_n - l|$

On utilise ensuite la convergence de u avec $\frac{\varepsilon}{2(|l'|+1)}$ et de v avec $\frac{\varepsilon}{2(M+1)}$

Donc: $\exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow |u_n - l| < \frac{\varepsilon}{2(|l'| + 1)}$ Soit n_1 et n_2 deux tels

$$\exists n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_2 \Rightarrow |v_n - l| < \frac{\varepsilon}{2(M+1)}$$

rels. Posons $n_0 = \max(\{n_1, n_2\})$

Donc $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |_n v_n - l \ l'| < M \frac{\varepsilon}{2(M+1)} + |l'| \frac{\varepsilon}{2(|l'|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$

Ce raisonnement tant vrai pour tout ε , $uv \xrightarrow[n \to +\infty]{} ll'$

• Quatrime point:

Soit u une suite tendant vers un rel l diffrent de 0.

- Dmontrer l'existence de $\left(\frac{1}{u_n}\right)_{n \ge n_0}$ $\exists n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \ge n_2 \Rightarrow \frac{|l|}{2} < u_n < \frac{3|l|}{2}$

Donc il existe un rang n_0 tel que l'inverse de u_n soit dfini.

- Montrer que:
$$\left(\frac{1}{u_n}\right)_{n\geqslant n_0}$$
 converge vers $\frac{1}{l}$

$$\iff \forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n\geqslant n_1 \Rightarrow \left|\frac{1}{u_n}-\frac{1}{l}\right|$$

$$\left|\frac{1}{u_n}-\frac{1}{l}\right| = \left|\frac{l-u_n}{l\,u_n}\right| \ = \frac{|l-u_n|}{|u_n|\,|l|}$$
Or $|u_n|>\frac{|l|}{2}$
Donc $\forall n\in \mathbb{N}, \ n\geqslant n_0 \Rightarrow \left|\frac{1}{u_n}-\frac{1}{l}\right|<\frac{|u_n-l|}{|\frac{l}{2}\times|l|}\leqslant \frac{2}{|l|^2}\,|u_n-l|$
On applique la convergence de u avec $\frac{|l|^2}{2}\varepsilon$
Donc $\exists n_1\in \mathbb{N}, \ \forall n\in \mathbb{N}, \ n\geqslant n_1\Rightarrow \left|\frac{1}{u_n}-\frac{1}{l}\right|<\frac{2}{|l|^2}\times\frac{|l|^2}{2}\varepsilon\leqslant\varepsilon$
Donc il existe un rang n_1 a partir duquel $\left|\frac{1}{u_n}-\frac{1}{l}\right|$ est infrieur à ε Cela tant vrai pour tout $\varepsilon, \ \frac{1}{u_n} \xrightarrow[n\to+\infty]{l}$

Corollaire 1.0.1
$$u_n \underset{n \to +\infty}{\longrightarrow} l \iff u_n - l \underset{n \to +\infty}{\longrightarrow} 0$$
 $\iff \frac{u_n}{l} \underset{n \to +\infty}{\longrightarrow} 1$

Limites Infinies

Propriété 1.0.3

Somme:

- De même avec $u \xrightarrow[n \to +\infty]{} -\infty$

<u>Produit</u>

 $Si \ v_n < 0, \ u_n \ v_n \xrightarrow[n \to +\infty]{} -\infty$ $Si \ v_n > 0, \ u_n \ v_n \xrightarrow[n \to +\infty]{} +\infty$

 $-Si \ v_n \xrightarrow[n \to +\infty]{} 0$, on ne peut pas conclure a priori,

 $Sauf^{n \to +\infty}$ $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow v_n = 0 \ Dans \ ce \ cas, \ u_n v_n \xrightarrow[n \to +\infty]{} 0$

• De même avec $u \xrightarrow[n \to +\infty]{} -\infty$

Inverse

• Si $|u_n| \underset{n \to +\infty}{\longrightarrow} +\infty$, alors il existe un rang n_0 a partir duquel $\left(\frac{1}{u_n}\right)_{n \ge n_0}$ existe et $\begin{pmatrix} \frac{1}{u_n} \end{pmatrix} \xrightarrow[n \to +\infty]{} 0$ Cela s'applique aussi a $u_n \xrightarrow[n \to +\infty]{} -\infty$

- $\bullet \ Si \ u \underset{n \to +\infty}{\longrightarrow} 0$
 - Si a partir d'un certain rang n_0 , tous les u_n sont non nuls, alors $\left(\frac{1}{u_n}\right)_{n\geqslant n_0}$ existe.
 - Si de plus u_n garde un signe constant a partir d'un rang $n_1 \geqslant n_0$, $\left(\frac{1}{u_n}\right) \underset{n \to +\infty}{\longrightarrow} \pm \infty$ selon le signe de u_n

Inverse

Montrer que si $u_n \xrightarrow[n \to +\infty]{} 0$ et, à partir d'un certain rang, $u_n < 0$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} -\infty$

Soit u une suite convergeant vers 0 et strictement ngative a partir d'un rang

Donc: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_2 \Rightarrow |u_n| < \varepsilon$

Soit n_2 un tel rel, ε un rel positif, et $n_3 = \max(\{n_1, n_2\})$

Pour tout n suprieur a n_3 , $\frac{1}{u_n}$ existe.

Montrer que $\frac{1}{u_n}$ diverge vers $-\infty$

Soit K un rel.

- Si $K \geqslant 0$: $\forall n \in \mathbb{N}, \ n \geqslant n_3 \Rightarrow \frac{1}{u_n} < 0 \geqslant K$
- Si K < 0

En appliquant la convergence de u avec le rel $\frac{1}{|K|}$:

 $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_4 \Rightarrow -\frac{1}{|K|} < u_n < \frac{1}{u_n}$ Soit n_0 un tel rel.

$$\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow \frac{1}{K} < u_n$$

$$\Rightarrow \frac{1}{u_n} < K$$

Ce raisonnement tant valable pour tout K rel, $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} -\infty$

Propriété 1.0.4

Tout rel est limite d'une suite de rationnels.

Montrer que $\forall x \in \mathbb{R}, \ \exists (q_n)_{n \in \mathbb{N}} \in \mathcal{E}, \ (\forall n \in \mathbb{N}, \ q_n \in \mathbb{Q}) \ \text{et} \ (q_n \underset{n \to +\infty}{\longrightarrow} x)$ Soit x un rel.

• Existence de la suite:	