PRINTABLE VERSION

Practice Test 4

Question 1

Differentiate $y = 2e^{3x} \arcsin(x)$. Product $y = 6e^{3x} \arcsin(x) + 2e^{3x} \cot(x) + 2e^$

a)
$$-2e^{3x}\arcsin(x) + \frac{2e^{3x}}{\sqrt{1-x^2}}$$

b)
$$-6e^{3x}\arcsin(x) + \frac{2e^{3x}}{\sqrt{1+x^2}}$$

c)
$$6e^{3x}\arcsin(x) + \frac{2e^{3x}}{\sqrt{1-x^2}}$$

d)
$$\frac{6e^{3x}}{\sqrt{1+x^2}}$$

e)
$$\frac{6e^{3x}}{\sqrt{1-x^2}}$$

Question 2

Differentiate the given function $y = \cosh(\ln(6x^4))$.

a)
$$12x^3 - \frac{2}{x^4}$$
 $y = \sinh(\ln(6x^4)) \cdot \frac{(6x^4)^3}{6x^4}$
b) $3x^3 + \frac{1}{3x^5}$ $= \sinh(\ln(6x^4)) \cdot \frac{24x^3}{6x^4}$
 $= \sinh(\ln(6x^4)) \cdot \frac{24x^3}{6x^4}$

$$x^{3} = \frac{2}{x^{4}}$$

$$y = \sinh(\ln(6x^{4})). \frac{(6x^{4})}{6x^{4}}$$

$$= \sinh(\ln(6x^{4})). \frac{24x^{3}}{6x^{4}}$$

$$= \sinh(\ln(6x^{4})). \frac{24x^{3}}{6x^{4}}$$

$$= \sinh(\ln(6x^{4})). \frac{24x^{3}}{6x^{4}}$$

$$= \ln(6x^{4}). \frac{24x^{4}}{6x^{4}}$$

$$=$$

Print Test

Q3, $y = A \cos h(Cx) + B \sin h(Cx)$ c) $12x^3 - \frac{1}{3x^5}$ $y' = AC \sinh(Cx) + BC \cosh(Cx)$ d) $3x^3 - \frac{4}{x^5}$ $y'' = AC^2 \cosh(Cx) + BC^2 \sinh(Cx)$ $y'' = AC^2 \cosh(Cx) + BC^2 \sinh(Cx) - 25(Acch(Cx)) + BSinh(Cx)$ +BSinh(Cx)e) $4x^3 + \frac{1}{3x^4}$ \Rightarrow $(Ac^2 - 25A) \cosh(Cx) + (Bc^2 - 25B) \sinh(Cx) = 0$ Question 3 \Rightarrow $(Ac^2 - 25A) \cosh(Cx) + (Bc^2 - 25B) \sinh(Cx) = 0$

Determine A, B, and C so that $y=A\cosh(Cx)+B\sinh(Cx)$ satisfies the conditions $y''-25y=0,\ y(0)=1,\ y'(0)=2$ Take C>0.

② y(0)= I implies Acosh(0)+Bsinh(0)=I ⇒ A=I -(I)

a) [A - 5/2, B - 2, C - 5]b) [A = 4, B = 2/5, C = 1] (0) = 2 implies A(sighto) + B(coshto) = 2

c) A = 3, B = 1/2, C = 5 By (I) (I) $C^2 = 5$ (= 5 or A = 3)

d) $\cup [A-1, B=2/5, C-5]$

e) A = 5, B = 5/2, C = 0

Question 4

A rectangular playground is to be fenced off and divided into two parts by a fence parallel to one side of the playground. 1080 feet of fencing is used. Find the dimensions of the playground that will enclose the greatest total 1 max, function xy area.

290 by 190 feet with the divider 190 feet long 3x+2y = 1050 The relation 3x+2y = 1050

270 by 270 feet with the divider 270 feet long $\times > 0$, $\times > 0$, b)

 $f(x) = 540 - 3X \Rightarrow f(x) = 0$ implies $X = \frac{540}{3} = 180$.

=> -A+B-16=0, A=16B

- d) $280\,\mathrm{by}\,190$ feet with the divider $280\,\mathrm{feet}$ long
- 270 by 180 feet with the divider 180 feet long e)

Question 5

Find A and B given that the function $y = \frac{A}{\sqrt{x}} + B\sqrt{x}$ has a minimum value of 32 at x = 16. $\Rightarrow 0$ At x = 16, there is a min.

a)
$$A = 128 \text{ and } B = 8 = 32 = 48 \text{ Th}$$
 $y = -\frac{A}{2} \cdot x^{\frac{3}{2}} + \frac{B}{2} x^{\frac{1}{2}}$

b)
$$A = 128 \text{ and } B = 4$$
 $= \frac{A}{4} + 4B$ $= \frac{-A + B \times}{2 \times \frac{2}{2}}$

c)
$$A = 64$$
 and $B = 12$

d)
$$A = 64$$
 and $B = 4$

By $O(2)$ $32 = \frac{16B}{4} + 4B = 8B \Rightarrow B = 4$.

A=64 and $B = 8$

Check min $y = \frac{-64 + 4X}{2 \times \frac{3}{2}}$

Number like

e)
$$A = 64 \text{ and } B = 8$$

Question 6

Use differentials to estimate the value
$$(80.8)^{1/4}$$
.

(1) Find Function $f(x) = x/4$. $\Rightarrow f(x) = \frac{1}{4}x/7$

(2) Given $= 80.8$, pick up $\alpha = 81$ (since $81.4 = 3$)

$$1621 \quad (3) \quad h = -0.2$$

b)
$$\frac{1621}{540}$$
 $\frac{3}{5}$ $h = -0.2$

$$\frac{1349}{540} \quad \text{(So.8)}^{7} = f(ath) \approx f(a) + f(a) \cdot h$$

$$\begin{array}{rcl}
 & 540 \\
 & = 81^{4} + \frac{1}{4} \cdot \frac{2}{81^{4}} \cdot (-\frac{2}{10}) \\
 & = 3 + \frac{1}{4} \cdot \frac{1}{20} \cdot (-\frac{1}{5})
\end{array}$$

$$= 3 - \frac{1}{540} = \frac{1619}{540^{4/27/2015 08:43 \text{ AM}}}$$

Change 58° to radians: $58^{\circ} = 58 \cdot \frac{11}{180} = 9 \cdot 10$.

e)
$$-\frac{14}{5}$$
 O Find the function $f(x) = \cos(x)$

Question 7

$$\Rightarrow f(x) = -sin(x)$$

Use differentials to estimate the value $\cos(58^{\circ})$.

(2) Prok up
$$Q = \frac{TT}{3}$$
 (since $\cos(\frac{T}{3}) = \frac{1}{2}$)

a)
$$\sqrt{\frac{1}{2}} + \frac{\sqrt{3}}{180}\pi$$
 (3) $N = \frac{587}{80} - \frac{77}{3} = \frac{-277}{180} = \frac{-77}{90}$

b)
$$\frac{1}{2} + \frac{\sqrt{3}}{90} \pi$$
 \bigcirc $\cos(58^{\circ}) = f(a+h) \approx f(a) + f(a) \cdot h$

c)
$$\frac{\sqrt{3}}{2} - \frac{1}{180}\pi = \cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{3}\right) \cdot \left(-\frac{\pi}{90}\right)$$

d)
$$\frac{1}{2} - \frac{\sqrt{3}}{180} \pi$$
 $= \frac{1}{2} - \frac{1}{2} \frac{1}{90} \frac{1}{90}$

e)
$$\frac{\sqrt{3}}{2} - \frac{1}{90}\pi$$

Question 8 Using log differentiation, let $y = (8x + 3)$

Find the derivative of $(8x+3)^{3x}$ In $y = 3x \cdot ln(3x+3)$

a) $(3\ln(8x+3) + \frac{24x}{8x+3}) + \frac{24x}{9} = 3 \cdot \ln(8x+3) + 3x \cdot \frac{8}{8x+3}$

b)
$$24x(8x+3)^{3x-1}$$
 $3y = 3\ln(8x+3) + \frac{24x}{8x+3} (8x+3)^{3x}$

c)
$$(8x+3)^{3x} \left(3\ln(8x+3) + \frac{24x}{8x+3}\right)^{1}$$

d)
$$(8x+3)^{3x} \left(3\ln(8x+3) - \frac{3}{8x+3} \right)$$

e)
$$3x(8x+3)^{3x-1}$$

Calculate the limit: $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos(5x)} \cdot \frac{\left(\frac{0}{0}\right)}{1 - \cos(5x)} \cdot \frac{e^x - e^x}{5 \sin(5x)}$

- a) 1
- \mathbf{c}) 0

 $=\frac{e^{\circ}+e^{\circ}}{25\cos(\circ)}=\frac{2}{25}$

 $= \lim_{x \to 0} \frac{e^{x} + e^{x}}{25\cos(5x)}$

- **d)** $\frac{4}{25}$

e) $\frac{20}{2}$ Question 10

Calculate the limit: $\lim_{x \to \infty} (x^9 + 1)^{\frac{1}{\ln(x)}}$ Exp function is conti.

a) $-e^9$ Qw $\lim_{x \to \infty} (x^9 + 1)^{\frac{1}{\ln(x)}}$ Cyp function is conti.

b) e^{10} $\lim_{x \to \infty} \lim_{x \to \infty} (x^9 + 1)^{\frac{1}{\ln(x)}}$ $\lim_{x \to \infty} (x^9 + 1)^{\frac{1}{\ln(x)}}$

- \mathbf{e}) 0

Question 11

Compute the upper Riemann sum for the given function $f(x) = \sin(x)$ over the interval $x \in [0, \pi]$ with respect to the partition $P = \left[0, \frac{\pi}{3}, \frac{5\pi}{6}, \pi\right]$.

Subindenial length max value a)
$$\frac{5}{12}\pi + \frac{\sqrt{3}}{12}\pi$$
 $\left[0,\frac{\sqrt{3}}{3}\right]$ $\frac{\sqrt{3}}{3}$ $\sin(\frac{\sqrt{3}}{3}) = \frac{\sqrt{3}}{2}$

b)
$$\sqrt{\frac{17}{36}}\pi + \frac{\sqrt{3}}{9}\pi$$
 $\left[\frac{V}{3}, \frac{5V}{6}\right]$ $\frac{V}{2}$ $Sin(\frac{V}{2}) = 1$

c)
$$\sqrt{\frac{1}{4}}\pi$$

$$\begin{bmatrix} \frac{517}{6}, \frac{11}{11} \end{bmatrix} \qquad \frac{7}{6} \qquad 57 \ln \left(\frac{57}{6} \right) = \frac{1}{2}$$

d)
$$\frac{13}{36}\pi + \frac{\sqrt{3}}{18}\pi$$
 $1 + \frac{1}{3} = \frac{17}{3} = \frac{1}{2} = \frac{1}{2}$

e)
$$\sqrt{\frac{7}{12}} \pi + \frac{\sqrt{3}}{6} \pi$$

e)
$$-\frac{7}{12}\pi + \frac{\sqrt{3}}{6}\pi$$
 $-\frac{\sqrt{3}}{6}\Pi + \frac{7}{12}\Pi$

Question 12

Given that

$$\int_0^1 f(x) \, dx = 4, \int_0^4 f(x) \, dx = 6 \text{ and } \int_4^5 f(x) \, dx = 3 \text{ find } \int_5^1 f(x) \, dx.$$

a)
$$\Rightarrow \int_{5}^{1} f x y dx = -\int_{1}^{5} f x y dx$$

$$= -\left[\int_{4}^{5} f(x) dx + \int_{\delta}^{4} f(x) dx - \int_{0}^{1} f(x) dx\right]$$

$$=-[3+6-4]=-5$$

d) 3

e)
$$\sqrt{-5}$$

The graph of f is shown below on the interval [-2, 4].

The area bounded between the graph of f and the x-axis on [-2, -1] is $\frac{7}{3}$, =Area(I) the area bounded between the graph of f and the x-axis on [-1, 3] is $\frac{32}{3}$, =Area(I) and the area bounded between the graph of f and the x-axis on [3, 4] is $\frac{7}{3}$.=Area(II)

Determine $\int_{-2}^{-1} f(x) dx = Area I = \frac{7}{3}$

a)
$$-\frac{7}{3}$$

c)
$$-\frac{46}{3}$$

Find a formula for f(x) given that f is continuous and $x^6 + x^4 + 7x = \int_{-\infty}^{x} f(t) dt.$

a)
$$\int f(x) = x^6 + x^4 + 8x$$

b)
$$\int f(x) = 1/7 x^7 + 1/5 x^5 + 7/2 x^2 + 7$$

c)
$$\int f(x) = x^6 + x^4 + 7x$$

e)
$$(x) = 6x^5 + 4x^3 + 7$$

$|X-3| = \begin{cases} X-3, X-3>0; \\ -(X-3), X-3<0. \end{cases}$ $= \{ X-3, X>3 \}$

Question 15

Evaluate the definite integral: $\int_{-\infty}^{\infty} |x-3| dx$

b)
$$\frac{5}{2}$$

c)
$$-\frac{33}{2}$$

$$= \int_{1}^{3} (3-x) dx + \int_{3}^{4} (x-3) dx$$

$$= \left[3X - \frac{X^2}{z}\right]_1^3 + \left[\frac{X^2}{z} - 3X\right]_3^4$$

$$=3(3+)-\frac{1}{2}(3^{2}-2)+\frac{1}{2}(4^{2}-3^{2})-3(4-3)$$

$$=6-4+\frac{7}{2}-3=\frac{5}{2}$$

d)
$$0 - \frac{111}{2}$$

e)
$$= -\frac{3}{2}$$

Find
$$\int_{-3}^{4} f(x) dx$$
 given that $f(x) = \begin{cases} x+2 & -3 \le x \le 0 \\ 2 & 0 < x \le 1 \\ 4-2x & 1 < x \le 4 \end{cases}$

a)
$$\frac{1}{2} \int_{-3}^{0} (x+2) dx + \int_{0}^{1} 2 dx + \int_{1}^{4} (4-2x) dx$$

b)
$$-3 = \left[\frac{\chi^2}{2} + 2\chi\right] \frac{1}{3} + \left[2\chi\right] \frac{1}{0} + \left[4\chi - \chi^2\right] \frac{1}{1}$$

b)
$$-3 = \begin{bmatrix} \chi^2 \\ 2 \end{bmatrix} + 2\chi \end{bmatrix} = \begin{bmatrix} 0 \\ 2\chi \end{bmatrix} + \begin{bmatrix} 2\chi \end{bmatrix} + \begin{bmatrix} 4\chi - \chi^2 \end{bmatrix}$$

$$= -\frac{9}{12} + 6 + 2 + 12 - 15 = \pm 1$$

e)
$$= -\frac{1}{2} + 6 + 2 + 12 - 15 = \frac{1}{2}$$

Question 17

Calculate the indefinite integral: $\int \frac{2x^3 - 5}{x^2} dx. \stackrel{\bigvee}{=} \int \frac{2x^3}{x^2} - \frac{5}{x^2} dx$

a)
$$= \int \left(2X - \frac{5}{X^2}\right) dX$$

c)
$$6 - \frac{4x^3 - 10}{x^3} + C$$

d)
$$\bigcirc \frac{2}{3} x^3 - 5x + C$$

e)
$$2x + \frac{5}{x} + C$$

Calculate the indefinite integral: $\int \left(5x^3 + 2\sqrt{x} + \frac{1}{x^3}\right) dx$.

a)
$$15x^2 + \frac{1}{\sqrt{x}} - \frac{3}{x^4} + C$$
 = $\frac{5}{4}x^4 + 2\frac{x^2}{2} + \frac{x^2}{2} + C$

b)
$$-\frac{5}{4}x^4 + \frac{4}{3}x^{3/2} - \frac{1}{x} + C = \frac{5}{4}x^4 + \frac{4}{3}x^{3/2} - \frac{1}{2X^2} + C$$

c)
$$\frac{5}{3}x^3 - \frac{4}{3}x^{3/2} - \frac{1}{2x^2} + C$$

d)
$$\sqrt{\frac{5}{4}} x^4 + \frac{4}{3} x^{3/2} - \frac{1}{2 x^2} + C$$

e)
$$\sqrt{\frac{5}{4}} x^4 - \frac{4}{3} x^{3/2} - \frac{1}{2 x^2} + C$$

Question 19

Find f givent that f'(x) = 4x - 6 and f(1) = 1.

a)
$$f(x) = 4x - 1$$
 $f(x) = \int (4x - 6) dx = 2x - 6x + C$

b)
$$\int f(x) = 4x + 2$$
 $\left| = f(1) = 2(1)^2 - 6 \cdot (+ C) = -4 + C$.

d)
$$\int f(x) = 2x^2 - 6x + 8$$

e)
$$f(x) = 2x^2 - 6x + 2$$

Calculate:
$$\int \sec(2x+4)\tan(2x+4)\,dx$$

a)
$$\frac{1}{2}\sec(2x+4)\tan(2x+4) + C$$

b)
$$\sqrt{\frac{1}{2}} \sec(2x+4) + C$$

c)
$$\frac{1}{2}\tan(2x+4) + C$$

d)
$$2 \tan(2x+4) + C$$

e)
$$2\sec(2x+4)+C$$

$$\Rightarrow \frac{dy}{z} = dx$$

$$=\frac{1}{2}\int Sec(u) \frac{1}{2} ancu) du$$

Seclustancus du

$$=$$
 \pm $Sec(u) + C$

*		