Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №1

2x - y + z = -4Если $(x_0; y_0; z_0)$ — решение системы $\begin{cases} 2x + z = -2 \\ 3x + y + z = -1 \end{cases}$, то значение выражения $5x_0 - 3z_0$ равно:

Задание №2

Если
$$A = \begin{pmatrix} -1 & 4 & 7 \\ 3 & 1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 5 \\ -1 & 1 & 4 \end{pmatrix}$, то $4A - B$ равно

- $\begin{pmatrix} -6 & 16 & 23 \\ 13 & 3 & -12 \end{pmatrix} \qquad \begin{pmatrix} -1 & 4 & 12 \\ 2 & 2 & 2 \end{pmatrix} \qquad \begin{pmatrix} -2 & 0 & 35 \\ -3 & 1 & -8 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 0 \\ -4 & 4 & -1 \end{pmatrix}$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 3 & 1 \\ 0 & 3 & 4 \end{pmatrix}$, расположенный на пересечении первого столбца и третьей строки.

$$-7$$
 $-\frac{7}{47}$ 47 6

$$\frac{6}{47}$$

Задание №4

Если $\vec{a} = \{7, 4\}, \vec{b} = \{1, 3\}, \vec{c} = \{-5, 2\},$ то разложение вектора \vec{a} по базису \vec{b} , \vec{c} ($\vec{a} = \alpha \vec{b} + \beta \vec{c}$) имеет вид:

$$\vec{a} = \frac{3}{5}\vec{b} - \frac{4}{5}\vec{c}$$
 $\vec{a} = \vec{b} + \vec{c}$ $\vec{a} = \vec{b} - 6\vec{c}$ $\vec{a} = 2\vec{b} - \vec{c}$

$$\vec{a} = \vec{b} + \vec{c}$$

$$\vec{a} = \vec{b} - 6\vec{c}$$

$$\vec{a} = 2\vec{b} - \vec{c}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Точка B(2;-1;5) — конец вектора $\vec{a} = \{-2;4;0\}$. Координаты точки A — начала вектора \vec{a} , имеют вид:

$$(-4;-1;-5)$$
 $(0;3;5)$ $(-4;-4;0)$ $(4;-5;5)$

$$(-4; -4; 0)$$

$$(4; -5; 5)$$

Задание №6

Если $\vec{a} = \{-2; 5; 4\}, \vec{b} = \{-1; 0; 3\},$ то значение выражения $(2\vec{a} - \vec{b}) \cdot (4\vec{a} + 3\vec{b})$ равно:

200

358

150

192

0

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Площадь треугольника ABC: A(1; -2; 0), B(3; -5; 1), C(0; 1; 2), составляет:

$$\frac{\sqrt{115}}{2}$$

$$\frac{\sqrt{145}}{2}$$

Задание №8

Являются ли векторы $\vec{a}=\{-6;2;3\}, \vec{b}=\{-2;1;1\}, \vec{c}=\{-10;-7;5\}$ компланарными?

да

нет

возможно

Перейти к заданию

- 1
- 2
- 3

- 4
- 5
- 6

7

8

9

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №9

Сумма собственных значений матрицы $\begin{pmatrix} 7 & -2 \\ 1 & 4 \end{pmatrix}$ равна:

0

25

49

9

11

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания