VLSI Design Verification and Testing

IDDQ Current Testing

Mohammad Tehranipoor

Electrical and Computer Engineering

University of Connecticut

23 April 2007

Overview

- History and motivation
- **■** Basic principle
- lacktriangle Faults detected by I_{DDO} tests
- Instrumentation difficulties
- Sematech study
- **Limitations of** I_{DDO} **testing**
- Summary

23 April 2007

Motivation

- Early 1990's Fabrication Line had 50 to 1000 defects per million (dpm) chips
 - IBM wants to get 3.4 *defects per million* (dpm) chips (0 defects, 6σ)
- Conventional way to reduce defects:
 - Increasing test fault coverage
 - Increasing burn-in coverage
 - Increase Electro-Static Damage awareness
- New way to reduce defects:
 - I_{DDO} Testing also useful for Failure Effect Analysis

23 April 2007

Faults Detected by $I_{\mbox{\scriptsize DDQ}}$ Tests

23 April 2007

5

Stuck-at Faults Detected by $I_{\mathcal{D}\mathcal{D}\mathcal{Q}}$ Tests

- Bridging faults with stuck-at fault behavior
 - Levi Bridging of a logic node to V_{DD} or V_{SS} few of these
 - Transistor gate oxide short of 1 K Ω to 5 K Ω
- Floating MOSFET gate defects do not fully turn off transistor

23 April 2007

NAND Open Circuit Defect - Floating gate

 The fault manifests as stuck-at, weak ON for N-FET, or delay fault.
 Some manifestations can be tested by I_{DDO} tests

23 April 2007

7

Floating Gate Defects

- Small break in logic gate inputs (100 200 Angstroms) lets wires couple by electron tunneling
 - Delay fault and $I_{\mbox{\scriptsize DDQ}}$ fault
- $\begin{tabular}{ll} {\bf Large open results in stuck-at fault-not}\\ {\bf detectable by } I_{DDO} {\bf test} \\ \end{tabular}$

23 April 2007

Bridging Faults $S_1 - S_5$

- Caused by absolute short (< 50
 Ω) or higher R
- Segura et al. evaluated testing of bridges with 3 CMOS inverter chain
- I_{DDQRb} tests fault when $R_b > 50 \text{ K}\Omega \text{ or}$ $0 \le R_b \le 100 \text{ K}\Omega$
- Largest deviation when $V_{in} = 5 \text{ V}$ bridged nodes at opposite logic values

23 April 2007

Delay Faults

- Most random CMOS defects cause a timing delay fault, not catastrophic failure
- $\hbox{ Many delay faults detected by I_{DDQ} test-late switching of logic gates keeps I_{DDQ} elevated }$
- ullet Delay faults not detected by I_{DDO} test
 - Resistive via fault in interconnect
 - Increased transistor threshold voltage fault

23 April 2007

11

Leakage Faults

 Gate oxide shorts cause leaks between gate & source or gate & drain

Weak Faults

- *n*FET passes logic 1 as 5 V V_{tn}
- pFET passes logic 0 as $0 \text{ V} + |V_{tp}|$
- Weak fault one device in C-switch does not turn on
 - Causes logic value degradation in C-switch

23 April 2007

Transistor Stuck-Closed Faults

- Due to gate oxide short (GOS)
- k = distance of short from drain
- R_S = short resistance
- I_{DDQ2} current results show 3 or 4 orders of magnitude elevation

23 April 2007

Instrumentation Problems

- Need to measure < 1 μA current at clock > 10 kHz
- ullet Off-chip I_{DDO} measurements degraded
 - Pulse width of CMOS IC transient current
 - Impedance loading of tester probe
 - Current leakages in tester
 - High noise of tester load board
- Much slower rate of current measurement than voltage measurement

23 April 2007

17

Sematech Study

- IBM Graphics controller chip CMOS ASIC, 166,000 standard cells
- 0.8 μm static CMOS, 0.45 μm Lines (L_{eff}), 40 to 50 MHz Clock, 3 metal layers, 2 clocks
- Full boundary scan on chip
- Tests:
 - Scan flush 25 ns latch-to-latch delay test
 - 99.7 % scan-based stuck-at faults (slow 400 ns rate)
 - 52 % SAF coverage functional tests (manually created)
 - 90 % transition delay fault coverage tests
 - 96 % pseudo-stuck-at fault cov. I_{DDO} Tests

23 April 2007

Sematech Results

- Test process: Wafer Test → Package Test
- → Burn-In & Retest → Characterize & Failure Analysis
- Data for devices failing some, but not all, tests.

ğ	IDDQ (5 µA limit)					
송		pass	pass	fail	fail	
based Stuck-a	pass		6	1463	7	pass
	fail	14	0	34	1	pass
	pass	6	1	13	8	fail
	fail	52	36	1251		fail
ä		pass	fail	pass	fail	
Ö		_	•		•	•

23 April 2007

19

Sematech Conclusions

Functional

- Hard to find point differentiating good and bad devices for $I_{DDO}\,\&$ delay tests
- High # passed functional test, failed all others
- High # passed all tests, failed I_{DDO} > 5 μA
- Large # passed stuck-at and functional tests
 - Failed delay & IDDQ tests
- Large # failed stuck-at & delay tests
 - Passed I_{DDO} & functional tests
- Delay test caught delays in chips at higher
 Temperature burn-in chips passed at lower T.

23 April 2007

Limitations of I_{DDQ} Testing

- Sub-micron technologies have increased leakage currents
 - Transistor sub-threshold conduction
 - Harder to find $I_{\mbox{\scriptsize DDQ}}$ threshold separating good & bad chips
- IDDO tests work:
 - When average defect-induced current greater than average good IC current
 - Small variation in $I_{\mbox{\scriptsize DDQ}}$ over test sequence & between chips
- Now less likely to obtain two conditions

23 April 2007

21

Summary

- ullet I_{DDO} tests improve reliability, find defects causing:
 - Delay, bridging, weak faults
 - Chips damaged by electro-static discharge
- No natural breakpoint for current threshold
 - Get continuous distribution bimodal would be better
- $\,\blacksquare\,$ Conclusion: now need stuck-fault, I_{DDQ} and delay fault testing combined
- ullet Still uncertain whether I_{DDQ} tests will remain useful as chip feature sizes shrink further

23 April 2007