## GAUTENG DEPARTMENT OF EDUCATION



## JOHANNESBURG NORTH DISTRICT 2021 GRADE 12

MATHEMATICS
PAPER 1
PRE-TRIAL EXAM

## **MARKING GUIDELINES**

EXAMINER: V. T. SIBANDA MODERATOR: T. A. SAMBO

**MARKS:** 150

TIME: 3 HOURS

**DATE:** 13 AUGUST 2021

| QUESTION | CALCULATION                                                        | MARK ALLOCATION                                                      |
|----------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| 1.1.1    | $4x^2 - 25 = 0$                                                    | ✓✓ factors                                                           |
|          | (2x - 5)(2x + 5) = 0                                               |                                                                      |
|          | $(2x-5)(2x+5) = 0$ $x = \frac{5}{2} \text{ or } x = -\frac{5}{2}$  | ✓ Answers                                                            |
|          |                                                                    |                                                                      |
|          | OR                                                                 |                                                                      |
|          | $4x^2 = 25$                                                        | (3)                                                                  |
|          | $x^2 = \frac{25}{4}$                                               |                                                                      |
|          | x - 4                                                              | $\checkmark x^2 = \frac{25}{4}$                                      |
|          | $\sqrt{x^2} = \pm \sqrt{\frac{25}{4}}$                             | $\checkmark x^2 = \frac{25}{4}$ $\checkmark \pm \sqrt{\frac{25}{4}}$ |
|          | $\sqrt{x} - 1\sqrt{4}$                                             |                                                                      |
|          | $x = \frac{5}{2} \text{ or } x = -\frac{5}{2}$                     | ✓Answer                                                              |
|          | 2 0 2                                                              |                                                                      |
| 1.1.2    | $3x^2 + 5x - 4 = 0$                                                | ✓ standard form                                                      |
|          | $-5 \pm \sqrt{5^2 - 4(3)(-4)}$                                     | ✓ correct substitution                                               |
|          | $x = \frac{-5 \pm \sqrt{5^2 - 4(3)(-4)}}{2(3)}$                    |                                                                      |
|          | $x = \frac{-5 \pm \sqrt{73}}{6}$                                   |                                                                      |
|          | x = -2,26  or  x = 0,59                                            | ✓✓ Answers                                                           |
|          | x = 2,2007 = 0,35                                                  |                                                                      |
|          | OR                                                                 |                                                                      |
|          | $3x^2 + 5x = 4$                                                    | (4)                                                                  |
|          | $x^2 + \frac{5x}{3} + \frac{25}{36} = \frac{4}{3} + \frac{25}{36}$ | ✓ for adding $\frac{25}{36}$ both sides                              |
|          |                                                                    | From adding $\frac{1}{36}$ both sides                                |
|          | $\left(x + \frac{5}{6}\right)^2 = \frac{73}{36}$                   | $\checkmark x = -\frac{5}{6} \pm \frac{\sqrt{73}}{6}$                |
|          | $\begin{pmatrix} 6/ & 36 \\ 5 & \sqrt{73} \end{pmatrix}$           | $\sqrt{x} = -\frac{1}{6} \pm \frac{1}{6}$                            |
|          | $x = -\frac{5}{6} \pm \frac{\sqrt{73}}{6}$                         |                                                                      |
|          | x = -2,26  or  x = 0,59                                            | ✓✓ Answers                                                           |
| 1.1.3    | $2^x - 5 \cdot 2^{x+1} = -144$                                     |                                                                      |
| 1.1.5    | $2^{x}(1-5.2) = -144$                                              | ✓Factorise                                                           |
|          | $2^{x}(-9)-144$                                                    | (3)                                                                  |
|          | $2^x = 16$ $2^x = 2^4$                                             | ✓ Simplification                                                     |
|          |                                                                    | ✓Answer (3)                                                          |
| 1.1.4    | $\therefore x = 4$ $2x^2 + x - 3 > 0$                              |                                                                      |
|          | (x-1)(2x+3) > 0<br>$x > 1 \text{ or } x < -\frac{3}{2}$            | Varitical values                                                     |
|          | $x > 1 \text{ or } x < -\frac{3}{2}$                               | ✓ critical values                                                    |
|          | or $\left(-\infty, -\frac{3}{2} \cup (1; \infty)\right)^2$         | ✓✓notation                                                           |
|          |                                                                    |                                                                      |
|          |                                                                    |                                                                      |

|       | or                                                                                                       | (3)                             |
|-------|----------------------------------------------------------------------------------------------------------|---------------------------------|
|       | $\stackrel{\text{or}}{\longleftrightarrow} \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc \nearrow$ |                                 |
|       | 3 or $3$                                                                                                 |                                 |
|       | $-\frac{3}{2} \qquad \qquad 1 \qquad \qquad -\frac{3}{2} \qquad \qquad 1$                                |                                 |
| 1.2.1 | $4^{x+2} \cdot 8^{y+1} = 2^{1-x}$                                                                        |                                 |
| 1.2.1 | $2^{2(x+2)} \cdot 2^{3(y+1)} = 2^{1-x}$                                                                  | ✓Exponential Law                |
|       | 2x + 4 + 3y + 3 = 1 - x                                                                                  | ✓Exponential Law                |
|       | 3y = -3x - 6                                                                                             |                                 |
|       | y = -x - 2                                                                                               |                                 |
|       |                                                                                                          | ✓Simplify (3)                   |
| 1.2.2 | y = -x - 2(1)                                                                                            |                                 |
| 1.2.2 | y = -x - 2(1)<br>$x^2 + y^2 + xy = 7(2)$                                                                 |                                 |
|       | substitute for $y$ in (2) using expression from (1)                                                      |                                 |
|       | $x^{2} + (-x - 2)^{2} + x(-x - 2) = 7$                                                                   | ✓Substitution                   |
|       | $x^{2} + x^{2} + 4x + 4 - x^{2} - 2x = 7$ $x^{2} + 2x - 3 = 0$                                           | ✓Standard form                  |
|       | $ x^{2} + 2x - 3 = 0 $ $ (x - 1)(x + 3) = 0 $                                                            | ✓ Factors                       |
|       | x = 1  or  x = -3                                                                                        | ✓x-values                       |
|       | $\therefore y = -(1) - 2 \text{ or } y = -(-3) - 2$                                                      | $\checkmark$ y-values (5)       |
|       | y = -3 or $y = 1$                                                                                        |                                 |
| 1.3   | $6x^2 + 2gx - 3x - g = 0$                                                                                | $\checkmark$ coefficient of $x$ |
|       | $6x^{2} + 2x(g-3) - g = 0$ $\Delta = h^{2} - 4ac$                                                        | V Coefficient of x              |
|       | $\Delta = (2g - 3)^2 - 4(6)(-g)$                                                                         | ✓ correct substitution into     |
|       | $\Delta = 4g^2 - 12g + 9 + 24g$                                                                          | formula                         |
|       | $\Delta = g^2 + 12g + 9$                                                                                 | √factors                        |
|       | $\Delta = (2g+3)^2$                                                                                      | V Tactors                       |
|       | $\therefore \Delta = perfect \ square, thus \ rational \ roots.$                                         | ✓conclusion (4)                 |
|       |                                                                                                          | [AF]                            |
|       |                                                                                                          | [25]                            |

| QUESTION | CALCULATION                                                                                                                                                       | MARK ALLOCATION                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 2.1      | 37 - x - (x + 5) = x + 13 - (37 - x) $37 - x - x - 5 = x + 13 - 37 + x$ $-4x = -56$                                                                               | ✓use of common difference for an AP ✓Simplification                                   |
|          | x = 14                                                                                                                                                            | ✓Answer (3)                                                                           |
| 2.2      | $T_1 = 19, T_2 = 23, T_3 = 27$<br>d = 4<br>$T_n = 19 + (n-1)4$<br>$T_n = 4n + 15$                                                                                 | ✓Correct substitution<br>✓✓Answer (3)                                                 |
| 2.3      | $S_{3} = \frac{a(r^{n} - 1)}{r - 1}; r \neq 1$ $91 = \frac{a(3^{3} - 1)}{3 - 1}$ $91 = \frac{a \cdot 26}{2}$ $a = 7$ OR $91 = a + ar + ar^{2}$ $91 = a + 3a + 9a$ | ✓Formula<br>✓Substitution<br>✓Answer<br>$\checkmark a + ar + ar^2$<br>✓Simplification |
|          | 91 = 13a $a = 7$                                                                                                                                                  | ✓Answer (3)                                                                           |
| 2.4      | $S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$ $\frac{375}{4} = \frac{a}{1 - r}$ $375(1 - r) = 4a$                                                                    |                                                                                       |
|          | $a = \frac{375(1-r)}{4} \dots \dots eq 1$                                                                                                                         | ✓ Equation 1                                                                          |
|          | $S_2 = \frac{a(r^2 - 1)}{r - 1} \dots eq 2$ $90 = \frac{a(r - 1)(r + 1)}{r - 1}$                                                                                  | ✓ Equation 2                                                                          |
|          | $90 = \frac{375(1-r)(r+1)}{4}$ $90 = \frac{-375(r-1)(r+1)}{4}$ $90 = \frac{375(r^2-1)}{4}$                                                                        | ✓ Substitution                                                                        |

|       | $r^{2} = \frac{1}{25}$ $r = \frac{1}{5} \text{ or } r = -\frac{1}{5}$                                                                                                                                                 | ✓ Simplification                                         |                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------|
|       | $a = \frac{375\left(1 - \frac{1}{5}\right)}{4} = 75 \text{ or } a = \frac{375\left(1 - \left(-\frac{1}{5}\right)\right)}{4} = \frac{225}{2}$                                                                          | ✓✓Answers                                                | (6)             |
| 2.5.1 | 32699 32896 33091 33284 33475<br>1 <sup>st</sup> difference 197 195 193 191<br>2 <sup>nd</sup> difference -2 -2 -2                                                                                                    | ✓ 1 <sup>st</sup> difference and difference              | 2 <sup>nd</sup> |
| 2.5.2 | The 2 <sup>nd</sup> difference is constant, therefore pattern is quadratic. $T_n = 197 + (n-1)(-2)$ $T_n = 199 - 2n$                                                                                                  | ✓ conclusion  ✓ correct substitution  ✓ $T_n = 199 - 2n$ | (2)             |
| 2.5.3 | $2a = -2  \therefore a = -1$ $3a + b = 197$ $3(-1) + b = 197  \therefore b = 200$ $a + b + c = 32699$ $-1 + 200 + c = 32699  \therefore c = 32500$ $T_n = -n^2 + 200n + 32500$                                        | ✓ a ✓ b ✓ c ✓ T <sub>n</sub>                             | (4)             |
| 2.5.4 | $T_n' = -2n + 200$ $0 = -2n + 200$ $n = 100$ Maximum will be on the $100^{th}$ day.  OR                                                                                                                               | ✓✓1 <sup>st</sup> derivate<br>✓Answer                    |                 |
|       | Complete square: $-T_n = n^2 - 200n - 32500$ $-T_n = n^2 - 200n + (-100)^2 - 32500 - (-100)^2$ $-T_n = (n - 100)^2 - 42500$ $T_n = -(n - 100)^2 + 42500$ by inspection, maximum will be on the $100^{\text{th}}$ day. | ✓✓ complete the squ<br>✓Answer                           | (3)             |
|       |                                                                                                                                                                                                                       |                                                          | [26]            |

| QUESTION | CALCULATION                                                                                                                                                      | MARK ALLOCATION                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 3.1      | A(0; 6)                                                                                                                                                          | ✓Answer (1)                                                           |
| 3.2      | $x = -\frac{b}{2a} = -\frac{5}{2(-1)} = 2,5  \therefore S(5; 6)$ OR                                                                                              | using axis of symmetry:<br>✓ x-value<br>✓ y-value                     |
|          |                                                                                                                                                                  |                                                                       |
|          | y = x + 1 $6 = x + 1$ $x = 5$ $S(5; 6)$                                                                                                                          | ✓ Equating equation to 6 $\checkmark x$ -value                        |
|          | OR<br>$y = -x^{2} + 5x + 6$ $6 = -x^{2} + 5x + 6$ $-x^{2} + 5x = 0$ $x^{2} - 5x = 0$                                                                             | ✓ Equating equation to 6 $\checkmark x$ -value                        |
|          | $x(x-5) = 0$ $x = 0 \text{ or } x = 5$ $S(5; 6)$ OR $-x^2 + 5x + 6 = x + 1$ $x^2 - 4x - 1 = 0$                                                                   | ✓Equating equations ✓ valid <i>x</i> -value                           |
|          | $(x-5)(x+1) = 0$ $x = 5 \text{ or } x = -1$ Valid x value: $x = 5$ $\therefore S(5; 6)$                                                                          | (2)                                                                   |
| 3.3      | $-x^{2} + 5x + 6 = 0$ $x^{2} - 5x - 6 = 0$ $(x - 6)(x + 1) = 0$ $x = 6 \text{ or } x = -1$ $B(-1; 0) \text{ and } C(6; 0)$                                       | ✓ Factors ✓ ✓ Answers  (3)                                            |
| 3.4      | $f(x) - g(x) = 5$ $-x^{2} + 5x + 6 - (x + 1) = 5$ $-x^{2} + 5x + 6 - x - 1 = 5$ $x^{2} - 4x = 0$ $x(x - 4) = 0$ $x = 0 \text{ or } x = 4$ $OR = 4 \text{ units}$ | ✓Subtract g from f ✓Equate to 5 ✓Solve for x ✓State OR = 4 units  (4) |
| 3.5.1    | $x = -\frac{b}{2a} = -\frac{5}{2(-1)} = 2.5$ or $\frac{5}{2}$                                                                                                    | ✓Formula<br>✓CA axis of symmetry<br>✓CA substitution                  |

|          | 49                                                                | ✓CA Answer                                                    |
|----------|-------------------------------------------------------------------|---------------------------------------------------------------|
|          | $f(2,5) = -(2,5)^2 + 5(2,5) + 6 = 12,25$ or $\frac{47}{4}$        | V CA Aliswei                                                  |
|          | $M(2,5;12,25) \text{ or } M\left(\frac{5}{2};\frac{49}{4}\right)$ |                                                               |
|          | $M(2,3,12,23) \text{ or } M(\frac{1}{2},\frac{1}{4})$             |                                                               |
|          |                                                                   |                                                               |
|          | OR                                                                | ✓Midpoint Formula                                             |
|          | $x = \frac{-1+6}{2} = \frac{5}{2}$                                | ✓ CA axis of symmetry                                         |
|          |                                                                   | ✓CA substitution                                              |
|          | $y = -(2,5)^2 + 5(2,5) + 6 = \frac{49}{4}$                        | ✓CA Answer                                                    |
|          | $M\left(\frac{5}{2};\frac{49}{4}\right)$                          |                                                               |
|          | (2 1)                                                             |                                                               |
|          | OR 5                                                              | ✓1 <sup>st</sup> derivative equal to 0                        |
|          | $f'(x) = -2x + 5 = 0$ $\therefore x = \frac{5}{2}$                | ✓CA axis of symmetry                                          |
|          | $y = -(\frac{5}{2})^2 + 5(\frac{5}{2}) + 6 = \frac{49}{4}$        | ✓CA substitution<br>✓CA Answer                                |
|          | $\binom{2}{2}$ $\binom{2}{1}$ $\binom{2}{1}$ $\binom{4}{4}$       | (4)                                                           |
|          |                                                                   |                                                               |
| 3.5.2    | $PQ = -x^2 + 4x + 5$                                              | $\checkmark$ PQ in terms of $x$                               |
|          | $(PQ)' = -2x + 4 = 0 \qquad \therefore x = 2$                     | ✓1 <sup>st</sup> derivative equal to 0<br>✓CA <i>x</i> -value |
|          | $PQ \ max. = -(2)^2 + 4(2) + 5 = 9 \ units$ OR                    | ✓CA Answer                                                    |
|          |                                                                   |                                                               |
|          | 7. 4                                                              | ✓ PQ in terms of $x$                                          |
|          | $x = -\frac{b}{2a} = -\frac{4}{2(-1)} = 2$                        | ✓substitution                                                 |
|          | $PQ \ max. = -(2)^2 + 4(2) + 5 = 9 \ units$                       | ✓CA <i>x</i> -value<br>✓CA Answer                             |
|          | (=) (=) (=) (=)                                                   | (4)                                                           |
|          |                                                                   | [19]                                                          |
| QUESTION | CALCULATION                                                       | MARK ALLOCATION                                               |
| 4.1      | $y = 2^x$                                                         |                                                               |
|          | when $x = 0$                                                      |                                                               |
|          | thus $f(0) = 2^0 = 1$<br>C(0; 1)                                  | ✓y-intercept                                                  |
|          | $g(x) = -(x-1)^2 + q$                                             | ✓ Substitute and simplify                                     |
|          | $1 = -(0-1)^2 + q$                                                | (2)                                                           |
|          | q=2                                                               |                                                               |
| 4.2      | $g(x) = -(x-1)^2 + 2$                                             |                                                               |
|          | D(1;2)                                                            | ✓✓Answer                                                      |
|          |                                                                   | (2)                                                           |
| 4.3      | t=2                                                               | ✓ Answer (1) ✓ Answer                                         |
| 4.4      | $f^{-1} : x = 2^y$ $y = log_2 x$                                  | Answer (2)                                                    |
|          | $y=\iota o g_2 x$                                                 |                                                               |
| 1        |                                                                   |                                                               |

| 4.5      | $ \begin{array}{c c}  & y \\ \hline  & (0;1) \\ \hline  & 0 \\ \hline  & (1;0) \\ \hline  & f^{-1} \end{array} $                                                                            | ✓ form of the graph ✓ x-intercept ✓ any other coordinate on the graph  (3)                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 4.6      | $g(x) = -(x-1)^{2} + 2$ $g(x+1) - 2 = -(x+1-1)^{2} + 2 - 2$ $h(x) = -x^{2}$ Domain: $x \ge 0$ or $x \le 0$                                                                                  | ✓correct substitution into g ✓Answer                                                          |
| 4.7      | Domain: $x \ge 0$ or $x \le 0$                                                                                                                                                              | ✓Answer                                                                                       |
|          |                                                                                                                                                                                             | [13]                                                                                          |
| QUESTION | CALCULATION                                                                                                                                                                                 | MARK ALLOCATION                                                                               |
| 5.1.1    | $A = P(1 - i)^{n}$ $79866,96 = 180000(1 - 0,15)^{n}$ $79866,96 = 180000(0,85)^{n}$ $(0,85)^{n} = \frac{79866,96}{180000}$ $n = \frac{\log\left(\frac{79866,96}{180000}\right)}{\log(0,85)}$ | ✓Substitution                                                                                 |
|          | n = 4,999 years $n = 5 years$                                                                                                                                                               | ✓use of logs.  ✓Answer                                                                        |
|          |                                                                                                                                                                                             | (3)                                                                                           |
| 5.1.2    | $A = P\left(1 + \frac{i}{4}\right)^{n \times 4}$                                                                                                                                            |                                                                                               |
|          | $A = 49000\left(1 + \frac{0.1}{4}\right)^{5\times4}$                                                                                                                                        | ✓ values of $i$ and $n$ . ✓ substitution                                                      |
|          | $A = R80\ 292,21$<br>Yes, the money will be enough to buy the car.                                                                                                                          | ✓ conclusion (consistent with answer) (3)                                                     |
| 5.2.1    | $P = \frac{x[1 - (1+i)^{-n}]}{i}$ $P = \frac{7853,15\left[1 - \left(1 + \frac{0,1025}{12}\right)^{-234}\right]}{\frac{0,1025}{12}}$ $= R793749,25$                                          | $ √n = 234 $ $ √i = \frac{0,1025}{12} $ ✓ substitution into present value formula $ √Answer $ |

|          | OR                                                                                                                                                                                                   |                                                                                                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                      |                                                                                                                                                         |
|          | Balance outstanding =                                                                                                                                                                                |                                                                                                                                                         |
|          | Balance outstanding = $= 800\ 000 \left(1 + \frac{0,1025}{12}\right)^{6} - \frac{7853,15 \left[\left(1 + \frac{0,1025}{12}\right)^{6} - 1\right]}{\frac{0,1025}{12}}$ $= 841\ 885\ 56 - 48\ 136\ 62$ | $\sqrt{n} = 6 \text{ in both}$ $\sqrt{i} = \frac{0,1025}{12}$                                                                                           |
|          | = 841885,56 - 48136,62 $= R793748,94$                                                                                                                                                                | ✓ A – F<br>✓ Answer (4)                                                                                                                                 |
| 5.2.2    | $A = P(1+i)^n$                                                                                                                                                                                       | ( 0.1025\3                                                                                                                                              |
|          | $A = 793749,25 \left(1 + \frac{0,1025}{12}\right)^3$ $= R814263,3052$                                                                                                                                | $\checkmark 793749,25 \left(1 + \frac{0,1025}{12}\right)^3$                                                                                             |
|          | New instalment: $P = \frac{x[1 - (1+i)^{-n}]}{i}$                                                                                                                                                    |                                                                                                                                                         |
|          | $814\ 263,3052 = \frac{x\left[1 - \left(1 + \frac{0,1025}{12}\right)^{-231}\right]}{\frac{0,1025}{12}}$ $= R8\ 089,20$                                                                               | ✓ n = 231<br>✓ substitution for new P<br>✓ substitution for n and i<br>✓ Answer  (5)                                                                    |
|          |                                                                                                                                                                                                      | [15]                                                                                                                                                    |
| QUESTION | CALCULATION                                                                                                                                                                                          | MARK ALLOCATION                                                                                                                                         |
| 6.1      | $f'(x) = -3x^{2}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{-3(x+h)^{2} - 3x^{2}}{h}$ $f'(x) = \lim_{h \to 0} \frac{-3x^{2} - 6xh - 3h^{2} + 3x^{2}}{h}$        | ✓1 <sup>st</sup> principles formula                                                                                                                     |
|          | $f'(x) = \lim_{h \to 0} \frac{-3x^2 - 6xh - 3h^2 + 3x^2}{h}$ $f'(x) = \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$ $f'(x) = \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$ $f'(x) = -6x$                             | $ \begin{array}{c} \checkmark -6xh - 3h^2 \\ \checkmark \frac{h(-6x-3h)}{h} \\ \checkmark \text{Answer} \end{array} $ (4)                               |
| 6.2      | $f'(x) = -6x$ $y = 7x^4 - 5\sqrt{x} - \frac{3}{x}$ $y = 7x^4 - 5x^{\frac{1}{2}} - 3x^{-1}$ $\frac{dy}{dx} = 28x^3 - \frac{5}{2}x^{-\frac{1}{2}} + 3x^{-2}$                                           | $ \begin{array}{c} \sqrt{7}x^4 - 5x^{\frac{1}{2}} - 3x^{-1} \\ \sqrt{28}x^3 \\ \sqrt{-\frac{5}{2}}x^{-\frac{1}{2}} \\ \sqrt{+3}x^{-2} \end{array} (4) $ |
| 6.3      | $g(x) = ax^{3} - 24x + b$ $g'^{(x)} = 3ax^{2} - 24$ $0 = 3ax^{2} - 24$                                                                                                                               | ✓1 <sup>st</sup> derivative of g                                                                                                                        |

|          | $0 = 3a(-2)^2 - 24$                                                               | ✓ equating 1 <sup>st</sup> derivative to                                                   |
|----------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|          | 12a = 24                                                                          | 0 and substituting $x = -2$                                                                |
|          | a = 2                                                                             | ✓ Answer for a                                                                             |
|          | $17 = 2(-2)^3 - 24(-2) + b$                                                       | ✓ substituting $x = -2$ and                                                                |
|          | 17 = -16 + 48 + b                                                                 | y=17 into g                                                                                |
|          | b = -15                                                                           | y_17 into g<br>✓Answer for b                                                               |
|          |                                                                                   | (5)                                                                                        |
|          |                                                                                   | (3)                                                                                        |
|          |                                                                                   | [12]                                                                                       |
|          |                                                                                   | [13]                                                                                       |
| QUESTION | CALCULATION                                                                       | MARK ALLOCATION                                                                            |
| 7.1.1    | $f(x) = -2x^3 + 5x^2 + 4x - 3$                                                    |                                                                                            |
|          | $0 = (x-3)(-2x^2 - x + 1)$                                                        | $\sqrt{-2x^2-x+1}$                                                                         |
|          | $x-3=0$ or $-2x^2-x+1=0$                                                          | <b>√</b> (3; 0)                                                                            |
|          | $x = 3 \text{ or } 2x^2 + x - 1 = 0$                                              |                                                                                            |
|          | (3;0) 	 (2x-1)(x+1) = 0                                                           | ✓ factors or formula                                                                       |
|          | 2x - 1 = 0 or $x + 1 = 0$                                                         |                                                                                            |
|          | $x = \frac{1}{2} \text{ or } x = -1$ $\left(\frac{1}{2}; 0\right) \qquad (-1; 0)$ |                                                                                            |
|          | $x = \frac{1}{2}$ or $x = -1$                                                     |                                                                                            |
|          | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$                                            | ✓both coordinates                                                                          |
|          | $\left(\frac{1}{2},0\right)$ $\left(-1,0\right)$                                  |                                                                                            |
|          |                                                                                   | $\left(\frac{1}{2};0\right)$ $(-1;0)$                                                      |
|          |                                                                                   |                                                                                            |
|          |                                                                                   |                                                                                            |
|          |                                                                                   |                                                                                            |
| 7.1.2    | (() 2 3 . 5 2 . 4 2                                                               |                                                                                            |
| 7.1.2    | $f(x) = -2x^3 + 5x^2 + 4x - 3$                                                    | $\sqrt{-6x^2 + 10x + 4}$                                                                   |
|          | $f'(x) = -6x^2 + 10x + 4$ $3x^2 - 5x - 2 = 0$                                     | $\checkmark$ -0 $\chi$ + 10 $\chi$ + 4 $\checkmark$ equating 1 <sup>st</sup> derivative to |
|          |                                                                                   | 0                                                                                          |
|          | (3x+1)(x-2) = 0                                                                   | ✓ factors or formula                                                                       |
|          | $x = -\frac{1}{3} \text{ or } x = 2$                                              |                                                                                            |
|          | 3                                                                                 | ✓Answers                                                                                   |
| 7.1.2    |                                                                                   | (4)                                                                                        |
| 7.1.3    | $f'(x) = -6x^2 + 10x + 4$                                                         | ✓2 <sup>nd</sup> derivative                                                                |
|          | $f''^{(x)} = -12x + 10$                                                           | • 2 derivative                                                                             |
|          | 0 = -12x + 10                                                                     |                                                                                            |
|          | 12x = 10                                                                          |                                                                                            |
|          | $x = \frac{5}{6}$                                                                 |                                                                                            |
|          | 6                                                                                 |                                                                                            |
|          | ς                                                                                 |                                                                                            |
|          | $\therefore x < \frac{5}{6}$                                                      | ✓Answer                                                                                    |
|          | 6                                                                                 | (2)                                                                                        |
|          |                                                                                   |                                                                                            |
|          |                                                                                   |                                                                                            |
| L        | <u>l</u>                                                                          |                                                                                            |

|          |                                                                             | (4)<br>[10]                                                          |
|----------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
|          | t = -23  of  t = 10                                                         | ✓t = 10s<br>✓Answer                                                  |
|          | $t^{2} + 15t - 250 = 0$ $(t + 25)(t - 10) = 0$ $t = -25 \text{ or } t = 10$ | ✓Factors                                                             |
| 8.5      | $s(t) = t^2 + 15t = 250$                                                    | ✓ Equating $s(t) = 250$                                              |
| 8.4      | $a = s''(t) = 2m/s^2$                                                       | ✓Answer (1)                                                          |
| 8.3      | v = s'(t) = (2t + 15)m/s<br>$a = s''(t) = 2m/s^2$                           | ✓Answer (1)                                                          |
| 8.2      | v = s'(t) = (2t + 15)m/s<br>v = s'(25) = 2(25) + 15 = 65m/s                 | ✓✓CA Answer (2)                                                      |
| 8.1      | $s(t) = t^{2} + 15t$ $v = s'(t) = (2t + 15)m/s$ $v = s'(t) = (2t + 15)m/s$  | ✓✓ Answer (2)                                                        |
| QUESTION | CALCULATION                                                                 | MARK ALLOCATION                                                      |
|          |                                                                             | [17]                                                                 |
|          |                                                                             | $\checkmark x \neq 4$ (3)                                            |
|          |                                                                             | $\sqrt{x} > 2$                                                       |
| 7.2.2    | $x < -2 \text{ or } x > 2;  x \neq 4$                                       | √ <i>x</i> < −2                                                      |
|          | -2 0 2 4 $x$                                                                | points $\checkmark x$ -value of point of inflection (4)              |
| 7.2.1    | g /                                                                         | ✓ form ✓ both <i>x</i> -intercepts ✓ <i>x</i> -value of both turning |

| 9.1 | S =135                                                                                                                                                   |                                                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|     | $ \begin{array}{c c}  & & & & & \\ M & & & & \\ 2y+3 & & & & \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $                             | √12 $ √5; 12; 24 $ $ √2y+3; y; y $ $ √x $ (4)                                                 |
| 9.2 | 2y + 3 + 5 + x + 12 = 5 + x + 24 + y $y = 16$ $x + y + 5 + 24 = 60$ $x + 16 + 5 + 24 = 60$ $x = 15$                                                      | ✓ Equate expressions for Maths and Accounting ✓ Answer for <i>y</i> ✓ Answer for <i>x</i> (4) |
| 9.3 | $P(M \text{ or } P \text{ and } A) = \frac{2y + 3 + 5 + 12 + x + 24}{135}$ $= \frac{32 + 3 + 5 + 12 + 12 + 24}{135}$ $= \frac{91}{135} \text{ or } 0,67$ | $\checkmark 2y + 3 + 5 + 12$ $\checkmark x + 24$ $\checkmark \text{Answer}$ (3)               |
|     |                                                                                                                                                          | [12]                                                                                          |

**TOTAL: 150**