Linear Combinations

Donato Martinelli

February 16, 2024

Let $\vec{v}_1, \ldots, \vec{v}_n \in V$ and $a_1, \ldots, a_n \in K$. The vector

$$a_1\vec{v}_1 + \dots + a_n\vec{v}_n \tag{a}$$

is called a linear combination of the vectors $\vec{v}_1, \ldots, \vec{v}_n$, and a_1, \ldots, a_n are called coefficients of the linear combination. If all coefficients are equal to 0, then (a) equals the zero vector $\vec{0}$ and is called a trivial linear combination of $\vec{v}_1, \ldots, \vec{v}_n$. Every linear combination of $\vec{v}_1, \ldots, \vec{v}_n$ where the coefficients are not all zero is called non-trivial.

Proposition 0.1. Let $\{\vec{v}_1,...,\vec{v}_n\}$ be a finite subset of vectors in V. The set

$$\langle \vec{v}_1, ..., \vec{v}_n \rangle$$

consisting of all linear combinations of $\vec{v}_1, ..., \vec{v}_n$ is a subspace of V. It is equal to the intersection of all subspaces of V containing $\{\vec{v}_1, ..., \vec{v}_n\}$.

We call $\langle \vec{v}_1,...,\vec{v}_n \rangle$ the subspace generated by $\vec{v}_1,...,\vec{v}_n$. Note that if $1 \leq m < n$, the subspace $\langle \vec{v}_1,...,\vec{v}_m \rangle$ is contained in $\langle \vec{v}_1,...,\vec{v}_n \rangle$, because every linear combination of $\vec{v}_1,...,\vec{v}_m$ is also a linear combination of $\vec{v}_1,...,\vec{v}_n$.

$$a_1\vec{v}_1 + \dots + a_m\vec{v}_m = a_1\vec{v}_1 + \dots + a_m\vec{v}_m + 0\vec{v}_{m+1} + \dots + 0\vec{v}_n.$$

We say that $\vec{v}_1, ..., \vec{v}_n$ generate V, or that $\{\vec{v}_1, ..., \vec{v}_n\}$ is a set of generators of V, if $\langle \vec{v}_1, ..., \vec{v}_n \rangle = V$. In symbols,

$$\vec{v}_1,...,\vec{v}_n$$
 generate $V \Leftrightarrow \forall \vec{v} \in V, \exists a_1,...,a_n \in K : \vec{v} = a_1\vec{v}_1 + ... + a_n\vec{v}_n$.

"

Linearly Dependent and Independent Vectors

Definition 0.1. Vectors $\vec{v}_1, ..., \vec{v}_n \in V$ are called linearly dependent if there exist scalars $a_1, ..., a_n \in K$, not all zero, such that

$$a_1 \vec{v}_1 + \dots + a_n \vec{v}_n = \vec{0},$$

or equivalently, if the vector $\vec{0}$ can be expressed as a nontrivial linear combination of them.

Otherwise, $\vec{v}_1, ..., \vec{v}_n$ are called linearly independent.

Fundamental Properties of Linearly Dependent and Independent Vectors

Proposition 0.2. A vector \vec{v} is linearly dependent if and only if $\vec{v} = 0$.

Proof. The proof is obvious.

Proposition 0.3. If \vec{v}_1 and \vec{v}_2 are two vectors such that \vec{v}_2 is proportional to \vec{v}_1 , i.e., such that $\vec{v}_2 = a\vec{v}_1$ for some $a \in K$, then \vec{v}_1 and \vec{v}_2 are linearly dependent.

Proof. Indeed, $a\vec{v}_1 - \vec{v}_2 = \vec{0}$ is a linear combination of them with coefficients a and -1, and therefore not both zero.

Conversely, if \vec{v}_1 and \vec{v}_2 are two linearly dependent vectors, then one of them is a multiple of the other. Specifically, $a_1\vec{v}_1 + a_2\vec{v}_2 = \vec{0}$, i.e., $a_2\vec{v}_2 = -a_1\vec{v}_1$, with $(a_1, a_2) \neq (0, 0)$, implies, assuming $a_2 \neq 0$, that $\vec{v}_2 = a\vec{v}_1$, where $a = -a_1a_2^{-1}$.

Proposition 0.4. $\vec{v}_1,...,\vec{v}_n \in V$ $n \leq 2$ are linearly dependent if and only if at least one of them can be expressed as a linear combination of the others.

Proof. If $\vec{v}_1, ..., \vec{v}_n$ are linearly dependent, then $\vec{0} = a_1 \vec{v}_1 + ... + a_n \vec{v}_n$, with $a_i \neq 0$ for some i; hence

$$a_i \vec{v}_i = -(a_1 \vec{v}_1 + \dots + a_{i-1} \vec{v}_{i-1} + a_{i+1} \vec{v}_{i+1} + \dots + a_n \vec{v}_n)$$

that is,

$$\begin{split} \vec{v}_i &= -a_i^{-1} \big(a_1 \vec{v}_1 + \ldots + a_{i-1} \vec{v}_{i-1} + a_{i+1} \vec{v}_{i+1} + \ldots + a_n \vec{v}_n \big) \\ \vec{v}_i &= -a_i^{-1} a_1 \vec{v}_1 - \ldots - a_i^{-1} a_{i-1} \vec{v}_{i-1} - a_i^{-1} a_{i+1} \vec{v}_{i+1} - \ldots - a_i^{-1} a_n \vec{v}_n \end{split}$$

Conversely, if for some i

$$\vec{v}_i = b_1 \vec{v}_1 + \dots + b_{i-1} \vec{v}_{i-1} + b_{i+1} \vec{v}_{i+1} + \dots + b_n \vec{v}_n$$

then $\vec{v}_1, ..., \vec{v}_n$ are linearly dependent.

Proposition 0.5. If the set $\{\vec{v}_1,...,\vec{v}_n\}$ contains the vector $\vec{0}$, then $\vec{v}_1,...,\vec{v}_n$ are linearly dependent.

Proof. Suppose we have $\vec{v}_i = \vec{0}$ for $1 \le i \le n$. Then we have

$$0\vec{v}_1 + \dots + 0\vec{v}_{i-1} + 1\vec{v}_i + 0\vec{v}_{i+1} + \dots + 0\vec{v}_n = \vec{v}_i = \vec{0},$$

and $\vec{0}$ is a nontrivial linear combination of $\vec{v}_1,...,\vec{v}_n.$

Proposition 0.6. If $\vec{v}_1, ..., \vec{v}_n$ are linearly independent, and $a_1, ..., a_n, b_1, ..., b_n \in K$ are such that

$$a_1\vec{v}_1 + ... + a_n\vec{v}_n = b_1\vec{v}_1 + ... + b_n\vec{v}_n,$$

then $a_1 = b_1$, $a_2 = b_2$, ..., $a_n = b_n$.

Proof. Since

$$\vec{0} = a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n - (b_1 \vec{v}_1 + \ldots + b_n \vec{v}_n) = (a_1 - b_1) \vec{v}_1 + \ldots + (a_n - b_n) \vec{v}_n$$

we must have

$$a_1 - b_1 = \dots = a_n - b_n = 0.$$