Introduction to Deep Learning for Computer Vision

Adhyayan '23 - ACA Summer School Department of Computer Science and Engineering Indian Institute of Technology Kanpur

Lecture 2

Training Neural Networks!

We want to find network weights that achieve the lowest loss.

$$\mathbf{W^*} = \operatorname{argmin}_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$

$$\mathbf{W^*} = \operatorname{argmin}_{\mathbf{W}} J(\mathbf{W})$$
Remember:
$$\mathbf{W} = \{W^{(0)}, W^{(1)}, \cdots\}$$

 w_0

Remember:

 w_1

Randomly pick an initial (w_0, w_1)

Take small step in opposite direction of the gradient

Gradient Descent

Repeat Until Convergence

Gradient Descent

- Algorithm:
 - Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
 - 2. Loop until convergence:

 - 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$ 4. Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
 - Return weights

How does a small change in one weight (ex. w_2) affect the final loss J(W)

$$\frac{\partial J(W)}{\partial w_2} = \frac{\partial J(w)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(w)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_1}$$
 Apply Chain Rule

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(w)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial z_1} \times \frac{\partial z_1}{\partial w_1}$$

 $x \longrightarrow x_1 \longrightarrow x_2 \longrightarrow y \longrightarrow y$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(w)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial z_1} \times \frac{\partial z_1}{\partial w_1}$$

Repeat this for **every weight in the network** using gradients from later layers

Neural Networks in Practice: Optimization!

Training Neural Networks is Difficult!

Loss Functions Can Be Difficult To Optimize

Remember: Optimization through Gradient Descent

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

Loss Functions Can Be Difficult To Optimize

Remember: Optimization through Gradient Descent

How can we set the learning rate?

Setting the Learning Rate

Small learning rates converge slowly and get stuck in a false local minima.

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge.

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima.

How to deal with this?

Idea 1:

Try lots of different learning rates and see what works "just right".

How to deal with this?

Idea 1:

Try lots of different learning rates and see what works "just right".

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape!

Adaptive Learning Rates

- Learning Rates are no longer fixed
- Can be made larger or smaller depending on:
 - How large gradient is
 - How fast learning is happening
 - Size of particular weights
 - o etc...

Gradient Descent Algorithms

Algorithm	Reference
SGD	Kiefer, Jack, and Jacob Wolfowitz. "Stochastic estimation of the maximum of a regression function." <i>The Annals of Mathematical Statistics</i> (1952): 462-466.
Adam	Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." <i>arXiv preprint arXiv:1412.6980</i> (2014).
Adadelta	Zeiler, Matthew D. "Adadelta: an adaptive learning rate method." arXiv preprint arXiv:1212.5701 (2012).
Adagrad	Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." <i>Journal of machine learning research</i> 12.7 (2011).
RMSProp	Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26–31.

Neural Networks in Practice: Mini-batches!

Gradient Descent

- Algorithm:
 - Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$

 - 3.
 - Loop until convergence: Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \psi$
 - Return weights

Can be very computationally intensive to compute.

Stochastic Gradient Descent

Algorithm:

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- 3. Pick a single data point i
- Compute gradient, $\frac{\partial J_i(W)}{\partial W}$ Update weights, $W \leftarrow W \eta$ 5.

Return weights 6.

Easy to compute but very noisy (stochastic)!

Stochastic Gradient Descent

• Algorithm:

- 1. Initialize weights randomly $\sim \mathcal{N}(0,\sigma^2)$
- 2. Loop until convergence:
- 3. Pick a batch of **B** data points.
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$

6. Return weights

Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

- More accurate estimation of gradient:
 - Smoother convergence
 - Allows for larger learning rate
- Mini-batches lead to fast training!
 - Can parallelize computation
 - Achieve significant speed increases of GPUs!

Neural Networks in Practice: Overfitting!

The Problem of Overfitting

Model does not have capacity to fully learn the data

Too complex, extra parameters do not generalize well

Regularization

- What is it?
 - Technique that constrains our optimization problem to discourage complex models

Regularization

- What is it?
 - Technique that constrains our optimization problem to discourage complex models
- Why do we need it?
 - o Improve generalization of our model on unseen data.

Regularization I : Dropout!

- During training, randomly set some activations to 0.
 - Typically 'drop' 50% of activations in layer
 - Forces the network to not rely on any one node.

(a) Standard Neural Net

(b) After applying dropout.

Regularization II: Early Stopping

Stop training before we have a possibility to overfit.

Next Lecture: Convolutional Neural Networks!