THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3301: Algebra I

December 18, 2023

9:30 am - 12:00 noon

No calculator is allowed in this examination.

Answer ALL FOUR questions

Note: You should always give precise and adequate explanations to support your conclusions. Clarity of presentation of your argument counts. So think carefully before you write.

- 1. (25%) For each of the following, determine with explanation whether it is true or false.
 - (a) The symmetric group S_4 is solvable.
 - (b) Suppose H and K are subgroups of a non-abelian group G and HK=KH.

If H and K are simple groups, then HK has to be a simple group.

- (c) If G is a group of order p^2 where p is a prime, then G is an abelian group.
- (d) Suppose R is a commutative ring with unity and I is a proper ideal of R. If the characteristic char(R/I) of the quotient ring R/I is p^2 where p is a prime, then I is not a maximal ideal.
- 2. (25%) Let G be finite group and denote its order by |G|. We say that
 - G has Property (*) if for any prime p dividing |G|, the group G has a normal subgroup of order p, and
 - G has Property (†) if for every divisor d of |G|, the group G contains a subgroup of order d.

[Remark. The trivial group has both Properties (*) and (†).]

- (a) With verification, give an example of G that does not have Property (*).
- (b) Let Q be the family of all quotient groups descended from G, i.e.

$$Q = \{G/N : N \triangleleft G\}.$$

If all groups in Q have Property (*), show that G has Property (†). [Suggestion: Argue by induction on the order of G.]

(c) Hence or otherwise, show that all p-groups have Property (\dagger).

3. (25%) Let R be a non-zero commutative ring with unity, and define

$$A = \{x \in R : x \text{ is a zero divisor}\} \cup \{0\}.$$

- (a) If R is finite and $y \in R \setminus A$, show that y is a unit of R.
- (b) With verification, give an example of R for which A is not an ideal of R.
- (c) If A is an ideal of R, show that A is a prime ideal.
- (d) If R is finite and A is an ideal of R, show that A is a maximal ideal.
- 4. (25%) Consider the polynomial ring $\mathbb{F}_3[t]$ where $\mathbb{F}_3=\mathbb{Z}_3$ is the finite field with 3 elements. Let $f(t)=t^2+t+2\in\mathbb{F}_3[t]$, and define $K=\mathbb{F}_3[t]/\langle f\rangle$.
 - (a) Show that K is a field extension of \mathbb{F}_3 .
 - (b) Let $u = \pi(t)$ where π is the natural projection from $\mathbb{F}_3[t]$ to K.
 - (i) List all the elements of K in terms of the elements in \mathbb{F}_3 and u, and
 - (ii) evaluate the degree $[K : \mathbb{F}_3]$.
 - (c) Find the two roots of the polynomial $f(x) = x^2 + x + 2$ in the field K.
 - (d) Show that the group of units of $K[x]/\langle f \rangle$ is not a cyclic group, where $f(x) = x^2 + x + 2$.

[Hint: Consider the map $\varphi:K[x]\to K\times K$ defined by

$$g(x) = (g(\alpha), g(\beta))$$
 for any $g \in K[x]$,

for some $suitable \ \alpha, \beta \in K$, and use the Isomorphism Theorem.]

***** END OF PAPER *****