Chapter 9 Theory and Applications of Transmission Lines

Application: Signal Transmission

Models

Electromagnetic theory

General method

Very complicate

Lump-element model

Applied to transmission line only

Common types of transmission lines

Each structure (including the twin lead) may have a dielectric between two conductors used to keep the separation between the metallic elements constant, so that the electrical properties would be constant.

Microstrip line

MICROSTRIP TRANSMISSION LINE

Twin lead

Coaxial cable

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \quad \text{since} \quad \mathbf{E} \propto e^{i\omega t} \quad \Rightarrow \quad \nabla^2 \mathbf{E} + \frac{\omega^2}{c^2} \mathbf{E} = 0 \left(\nabla^2 \mathbf{E} + k_0^2 \mathbf{E} = 0 \right)$$

Assume it's a plane wave propagate in the z with polarization in y direction.

$$\frac{d^2}{dz^2}E_y + k_0^2 E_y = 0 \quad \Rightarrow \quad \mathbf{E} = \hat{y}\widetilde{E}_0 e^{-ik_0 z + i\omega t}$$

$$\mathbf{H} = -\hat{x} \frac{1}{\sqrt{\frac{\mu}{\varepsilon}}} \widetilde{E}_0 e^{-ikz + i\omega t} = H_x \hat{x}$$

Crossing the boundary from dielectric medium to the perfect conduction plates:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \& \quad \nabla \times \vec{B} = \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$$

$$\rightarrow \nabla \times \vec{E} = -i\omega\mu\vec{H} \& \nabla \times \vec{H} = i\omega\varepsilon\vec{E}$$

$$\mathbf{E} = \hat{y}\widetilde{E}_{v}(z,t), \quad \mathbf{H} = \hat{x}\widetilde{H}_{x}(z,t) \quad (\vec{E} \to V, \vec{H} \to \sigma \to I)$$

basic differential equations

$$\begin{vmatrix} \hat{i} & \hat{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & E_{y} & 0 \end{vmatrix} = -i\omega\mu H_{x} \Rightarrow \frac{dE_{y}}{dz} = i\omega\mu H_{x} & \frac{dH_{x}}{dz} = i\omega\varepsilon E_{y}$$

$$\int_{0}^{d} \frac{dE_{y}}{dz} dy = i\omega\mu \int_{0}^{d} H_{x} dy \qquad \rightarrow -\frac{dV(z)}{dz} = i\omega LI(z)$$

 $L = \mu \frac{d}{w}$ is the inductance per unit length

$$\int_0^w \frac{dH_x}{dz} dx = i\omega\varepsilon \int_0^w E_y dx \qquad \Rightarrow -\frac{dI(z)}{dz} = i\omega CV(z)$$

 $C = \varepsilon \frac{w}{d}$ is the capacitance per unit length

$$\frac{d^2V(z)}{dz^2} = -\omega^2 LCV(z) \qquad V(z) = V_0 e^{-ikz}$$

$$\frac{d^2I(z)}{dz^2} = -\omega^2 LCI(z) \qquad I(z) = I_0 e^{-ikz}$$

impedance
$$Z_0 = \frac{V(z)}{I(z)} = \frac{V_0}{I_0} = \frac{\omega L I_0}{k I_0} = \sqrt{\frac{L}{C}} = \sqrt{\frac{\mu d/w}{\varepsilon w/d}} = \frac{d}{w} \sqrt{\frac{\mu}{\varepsilon}}$$

velocity of propagation
$$v = \frac{\omega}{k} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(\mu d/w)(\varepsilon w/d)}} = \frac{1}{\sqrt{\mu \varepsilon}}$$
 along the line

Dielectric medium between two conductors having a perimittivity and a conductivity

Conductance C

The two conductors have a very large but finite conductivity

Resistance R

Coaxial transmission line Example: E,H,V,I

$$V = -\int_{b}^{a} \mathbf{E} \cdot \mathbf{dr}$$
$$I = \oint_{I} \mathbf{H} \cdot \mathbf{dl}$$

Cross-section of a coaxial cable showing the electric and magnetic fields

Coaxial transmission line

D2.1A Electric field intensity inside a coaxial cable

D2.3A Magnetic field inside a coaxial cable

D2.4A Electric current density inside a coaxial cable

9-3 General Transmission-line equations Lumped-element model

Small section of a transmission line (length = Δz)

represented by an equivalent circuit

- *R*: Resistance of both conductors per unit length (Ω/m)
- Inductance of both conductors per unit length (H/m)
- G: Conductance of the insulation medium per unit length (S/m)
- C: Capacitance of the two conductors per unit length (F/m)

1. Applying Kirchhoff's voltage law

$$v(z,t) = v_R + v_L + v(z + \Delta z, t)$$

$$= \left[R \Delta z \right] i(z,t) + \left[L \Delta z \right] \frac{\partial i(z,t)}{\partial t} + v(z + \Delta z, t)$$

$$v(z + \Delta z, t) - v(z,t)$$

$$\Rightarrow \frac{v(z+\Delta z,t)-v(z,t)}{\Delta z} = -Ri\left(z,t\right)-L\,\frac{\partial i(z,t)}{\partial t}$$

at node N

$$i(z,t) = i_G + v_C + i(z + \Delta z, t)$$

$$= \left[G\Delta z\right] v(z + \Delta z, t) + \left[C\Delta z\right] \frac{\partial v(z + \Delta z, t)}{\partial t} + i(z + \Delta z, t)$$

$$\Rightarrow \frac{i(z + \Delta z, t) - i(z, t)}{\Delta z} = -Gv(z + \Delta z, t) - C\frac{\partial v(z + \Delta z, t)}{\partial t}$$

2. Taking the limit as Δz tends to zero, we have

$$\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t}$$
$$\frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$$

Time-domain form of the Transmission-line equations

Solving this equation with the appropriate initial conditions and boundary condition, we can determined the voltage and current

For sinusoidal steady-state conditions, phasors can be used

$$v(z,t) = \text{Re}\left[V(z)e^{j\omega t}\right]$$

 $i(z,t) = \text{Re}\left[I(z)e^{j\omega t}\right]$

$$\frac{\partial v(z,t)}{\partial t} = \frac{\partial \operatorname{Re} \left[V(z) e^{j\omega t} \right]}{\partial t}$$

$$= \operatorname{Re} \left[V(z) \frac{\partial e^{j\omega t}}{\partial t} \right]$$

$$= \operatorname{Re} \left[j\omega V(z) e^{j\omega t} \right]$$

$$\frac{\partial v(z,t)}{\partial t} = \frac{\partial \operatorname{Re}\left[V(z)e^{j\omega t}\right]}{\partial t} \qquad \frac{\partial v(z,t)}{\partial z} = \frac{\partial \operatorname{Re}\left[V(z)e^{j\omega t}\right]}{\partial z} \\
= \operatorname{Re}\left[V(z)\frac{\partial e^{j\omega t}}{\partial t}\right] \qquad = \operatorname{Re}\left[\frac{dV(z)}{dz}e^{j\omega t}\right]$$

Similarly,

$$\frac{\partial i(z,t)}{\partial t} = \operatorname{Re}\left[j\omega I(z)e^{j\omega t}\right]$$

$$\frac{\partial i(z,t)}{\partial z} = \operatorname{Re}\left[\frac{dI(z)}{dz}e^{j\omega t}\right]$$

Therefore, the transmission-line equations becomes

$$-\frac{dV(z)}{dz} = (R + i\omega L)I(z)$$

$$-\frac{dI(z)}{dz} = (G + i\omega C)V(z)$$

- Transmission-line equations in phasor form
- The solution of the equations is the sinusoidal excited steady-state voltage and current phasor along the transmission line

$$-\frac{dV(z)}{dz} = (R + i\omega L)I(z) \qquad -\frac{dI(z)}{dz} = (G + i\omega C)V(z)$$

$$\frac{d^2V}{dz^2} = \frac{d}{dz} \left(-\left(R + i\omega L \right) I \right) = \left(R + i\omega L \right) \left(-\frac{dI}{dz} \right) = \left(R + i\omega L \right) \left(G + i\omega C \right) V(z)$$

let
$$V(z) = e^{-kz}$$
 & $\frac{d^2V}{dz^2} = k^2V(z)$

 α : attenuation constant β : phase constant

A wave is traveling in the positive z direction.

$$V(z) = V_0^+ e^{-kz} + V_0^- e^{+kz} \qquad v(z,t) = V_0^+ e^{-kz+i\omega t} + V_0^- e^{+kz+i\omega t}$$

$$I(z) = I_0^+ e^{-kz} + I_0^- e^{+kz} \qquad i(z,t) = I_0^+ e^{-kz+i\omega t} + I_0^- e^{+kz+i\omega t}$$

$$\Rightarrow \qquad \frac{V_0^+}{I_0^-} = -\frac{V_0^-}{I_0^-} = \frac{R+i\omega L}{k}$$

characteristic impetance:
$$Z_0 = \frac{R + i\omega L}{k} = \sqrt{\frac{R + i\omega L}{G + i\omega C}} \left(\propto \frac{V/l_z}{I/l_z} \right)$$

Three limiting cases

- 1. Lossless Line (R = 0, G = 0. There is no real part in k.)
 - (a) Propagation constant: $k = i\omega\sqrt{LC}$, $\alpha = 0$, $\beta = \omega\sqrt{LC}$
 - (b) Phase velocity: $v_{phase} = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$
 - (c) Characteristic impedance: $Z_0 = R_0 + iX_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}} = \sqrt{\frac{L}{C}}$, $R_0 = \sqrt{\frac{L}{C}}$, $X_0 = 0$

Three limiting cases

2. Low-Loss Line
$$(R << \omega L, G << \omega C)$$

(a) Propagation constant:

$$\begin{split} k &= i\omega\sqrt{LC}\sqrt{\left(1-i\frac{R}{\omega L}\right)\left(1-i\frac{G}{\omega C}\right)} \cong i\omega\sqrt{LC}\left(1-i\frac{R}{2\omega L}-i\frac{G}{2\omega C}\right) \\ &= \frac{R}{2}\sqrt{\frac{C}{L}} + \frac{G}{2}\sqrt{\frac{L}{C}} + i\omega\sqrt{LC} \end{split}$$

$$\alpha \cong \frac{R}{2} \sqrt{\frac{C}{L}} + \frac{G}{2} \sqrt{\frac{L}{C}}, \ \beta \cong \omega \sqrt{LC}$$

(b) Phase velocity:
$$v_{phase} = \frac{\omega}{\beta} \cong \frac{1}{\sqrt{LC}}$$

(c) Characteristic impedance:
$$Z_0 = R_0 + iX_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}}$$

$$Z_0 = \sqrt{\frac{L}{C}} \left(1 - i \frac{R}{\omega L}\right)^{1/2} \left(1 - i \frac{G}{\omega C}\right)^{-1/2} \cong \sqrt{\frac{L}{C}} \left(1 - i \frac{R}{2\omega L} + i \frac{G}{2\omega C}\right), \ \ R_0 = \sqrt{\frac{L}{C}} \ ,$$

$$X_0 = \frac{G}{2\omega C} \sqrt{\frac{L}{C}} - \frac{R}{2\omega} \frac{1}{\sqrt{LC}}$$

Three limiting cases

3. Distortionless Line
$$(R/L = G/C)$$

(a) Propagation constant:
$$k = i\omega\sqrt{LC}\left(1 - i\frac{R}{\omega L}\right) = \sqrt{\frac{C}{L}}R + i\omega\sqrt{LC}$$

$$\alpha \cong R\sqrt{\frac{C}{L}} \; , \; \; \beta \cong \omega \sqrt{LC}$$

(b) Phase velocity:
$$v_{phase} = \frac{\omega}{\beta} \cong \frac{1}{\sqrt{LC}}$$

(c) Characteristic impedance:
$$Z_0 = R_0 + iX_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}} = \sqrt{\frac{R}{G}} = \sqrt{\frac{L}{C}} \implies$$
,

$$R_0 = \sqrt{\frac{L}{C}} , \quad X_0 = 0$$

Table 2-1: Transmission-line parameters R', L', G', and C' for three types of lines.

Parameter	Coaxial	Two Wire	Parallel Plate	Unit
R'	$\frac{R_{\rm s}}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$	$\frac{R_{\rm S}}{\pi a}$	$\frac{2R_{\mathrm{s}}}{w}$	Ω/m
L'	$\frac{\mu}{2\pi}\ln(b/a)$	$\frac{\mu}{\pi} \ln \left[(d/2a) + \sqrt{(d/2a)^2 - 1} \right]$	$\frac{\mu d}{w}$	H/m
G'	$\frac{2\pi\sigma}{\ln(b/a)}$	$\frac{\pi\sigma}{\ln\left[(d/2a) + \sqrt{(d/2a)^2 - 1}\right]}$	$\frac{\sigma w}{d}$	S/m
C'	$\frac{2\pi\varepsilon}{\ln(b/a)}$	$\frac{\pi\varepsilon}{\ln\left[(d/2a) + \sqrt{(d/2a)^2 - 1}\right]}$	$\frac{\varepsilon w}{d}$	F/m

Notes: (1) Refer to Fig. 2-4 for definitions of dimensions. (2) μ , ε , and σ pertain to the insulating material between the conductors. (3) $R_{\rm s} = \sqrt{\pi f \mu_{\rm c}/\sigma_{\rm c}}$. (4) $\mu_{\rm c}$ and $\sigma_{\rm c}$ pertain to the conductors. (5) If $(d/2a)^2 \gg 1$, then $\ln \left[(d/2a) + \sqrt{(d/2a)^2 - 1} \right] \simeq \ln(d/a)$.

Summary of Basic TL formulas

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{+\gamma z}$$

$$\gamma = \alpha + j\beta = \left[(R + j\omega L)(G + j\omega C) \right]^{\frac{1}{2}}$$

$$Z_0 = \left(\frac{R + j\omega L}{G + j\omega C}\right)^{1/2}$$

guided wavelength $\equiv \lambda_g$

$$\lambda_g = \frac{2\pi}{\beta} [m]$$

phase velocity
$$\equiv v_p$$

$$v_p = \frac{\omega}{\beta}$$
 [m/s]

Ampl. of voltage wave propagating in positive z direction at z=0.

Terminating impedance (load)

Ampl. of voltage wave propagating in negative z direction at z=0.

Where do we assign z = 0?

The usual choice is at the load.

Note: The length ℓ measures distance from the load: $\ell =$

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

What if we know

$$V^+$$
 and V^- @ $z = -\ell$

Can we use z = - l as a reference plane?

$$V_0^+ = V^+(0) = V^+(-\ell)e^{-\gamma\ell}$$

Hence

Terminating impedance (load)

$$V^{-}(-\ell) = V^{-}(0)e^{-\gamma\ell}$$

$$\Rightarrow V_0^- = V^-(0) = V^-(-\ell)e^{\gamma\ell}$$

$$V(z) = V^{+}(-\ell)e^{-\gamma(z+\ell)} + V^{-}(-\ell)e^{\gamma(z+\ell)}$$

Terminating impedance (load)

Compare:

$$V(z) = V^{+}(0)e^{-\gamma z} + V^{-}(0)e^{+\gamma z}$$

$$V(z) = V^{+}(-\ell)e^{-\gamma(z-(-\ell))} + V^{-}(-\ell)e^{\gamma(z-(-\ell))}$$

Note: This is simply a change of reference plane, from z = 0 to $z = -\ell$.

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

What is $V(-\ell)$?

$$V\left(-\ell\right) = V_0^+ e^{\gamma\ell} + V_0^- e^{-\gamma\ell}$$

propagating forwards

Terminating impedance (load)

propagating backwards

The current at $z = -\ell$ is then

$$I(-\ell) = \frac{V_0^+}{Z_0} e^{\gamma \ell} - \frac{V_0^-}{Z_0} e^{-\gamma \ell}$$

 $\ell \equiv$ distance away from load

Total volt. at distance ℓ from the load

$$V(-\ell) = V_0^+ e^{\gamma \ell} + V_0^- e^{-\gamma \ell} = V_0^+ e^{\gamma \ell} \left(1 + \frac{V_0^-}{V_0^+} e^{-2\gamma \ell}\right)$$

Ampl. of volt. wave prop. towards load, at the load position (z = 0).

Ampl. of volt. wave prop. away from load, at the

load position (
$$z=0$$
). Γ_{ℓ} = Reflection coefficient at $z=-\ell$

 $\Gamma_I \equiv \text{Load reflection coefficient}$

$$=V_{\scriptscriptstyle 0}^{\scriptscriptstyle +}e^{\gamma\ell}\left(1+\Gamma_{\scriptscriptstyle L}e^{-2\gamma\ell}\right)$$

Similarly,

$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{\gamma \ell} \left(1 - \Gamma_L e^{-2\gamma \ell}\right)$$

$$V\left(-\ell\right) = V_0^+ e^{\gamma\ell} \left(1 + \Gamma_L e^{-2\gamma\ell}\right)$$

$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{\gamma \ell} \left(1 - \Gamma_L e^{-2\gamma \ell}\right)$$

$$Z\left(-\ell\right) = \frac{V\left(-\ell\right)}{I\left(-\ell\right)} = Z_0 \left(\frac{1 + \Gamma_L e^{-2\gamma\ell}}{1 - \Gamma_L e^{-2\gamma\ell}}\right)$$

31

At the load ($\ell = 0$):

Voltage reflection coefficient of the load impedance

$$Z(0) = Z_0 \left(\frac{1 + \Gamma_L}{1 - \Gamma_L} \right) \equiv \mathbf{Z}_L \implies \Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta_{\Gamma}}$$

Recall
$$Z(-\ell) = Z_0 \left(\frac{1 + \Gamma_L e^{-2\gamma\ell}}{1 - \Gamma_L e^{-2\gamma\ell}} \right)$$

Thus,
$$Z(-\ell) = Z_0 \left(\frac{1 + \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma \ell}}{1 - \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma \ell}} \right)$$

Simplifying, we have

$$\begin{split} Z(-\ell) &= Z_0 \left(\frac{1 + \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma \ell}}{1 - \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma \ell}} \right) = Z_0 \left(\frac{(Z_L + Z_0) + (Z_L - Z_0) e^{-2\gamma \ell}}{(Z_L + Z_0) - (Z_L - Z_0) e^{-2\gamma \ell}} \right) \\ &= Z_0 \left(\frac{(Z_L + Z_0) e^{+\gamma \ell} + (Z_L - Z_0) e^{-\gamma \ell}}{(Z_L + Z_0) e^{+\gamma \ell} - (Z_L - Z_0) e^{-\gamma \ell}} \right) \\ &= Z_0 \left(\frac{Z_L \cosh(\gamma \ell) + Z_0 \sinh(\gamma \ell)}{Z_0 \cosh(\gamma \ell) + Z_L \sinh(\gamma \ell)} \right) \end{split}$$

Hence, we have

$$Z(-\ell) = Z_0 \left(\frac{Z_L + Z_0 \tanh(\gamma \ell)}{Z_0 + Z_L \tanh(\gamma \ell)} \right)$$

$$\gamma = \alpha + j\beta = j\beta$$

$$V\left(-\ell\right) = V_0^+ e^{j\beta\ell} \left(1 + \Gamma_L e^{-2j\beta\ell}\right)$$

$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{j\beta\ell} \left(1 - \Gamma_L e^{-2j\beta\ell}\right)$$

$$Z(-\ell) = Z_0 \left(\frac{1 + \Gamma_L e^{-2j\beta\ell}}{1 - \Gamma_L e^{-2j\beta\ell}} \right)$$

$$Z(-\ell) = Z_0 \left(\frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_L \tan(\beta \ell)} \right)$$

Impedance is periodic with period $\lambda_{\rm g}/2$

tan repeats when

$$\beta \ell = \pi$$

$$\frac{2\pi}{\lambda_g} \ell = \pi$$

$$\Rightarrow \ell = \lambda_g / 2$$

Note: $\tanh(\gamma \ell) = \tanh(j\beta \ell) = j \tan(\beta \ell)$

For the remainder of our transmission line discussion we will assume that the transmission line is lossless.

$$V\left(-\ell\right) = V_0^+ e^{j\beta\ell} \left(1 + \Gamma_L e^{-2j\beta\ell}\right)$$
$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{j\beta\ell} \left(1 - \Gamma_L e^{-2j\beta\ell}\right)$$

$$Z(-\ell) = \frac{V(-\ell)}{I(-\ell)} = Z_0 \left(\frac{1 + \Gamma_L e^{-2j\beta\ell}}{1 - \Gamma_L e^{-2j\beta\ell}} \right)$$
$$= Z_0 \left(\frac{Z_L + jZ_0 \tan(\beta\ell)}{Z_0 + jZ_L \tan(\beta\ell)} \right)$$

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\lambda_g = \frac{2\pi}{\beta}$$

$$v_p = \frac{\omega}{\beta}$$

9-4 Terminated Transmission Line Matched Load

 \bigcirc Matched load: $(Z_L = Z_0)$

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = 0$$

No reflection from the load

$$\Rightarrow V\left(-\ell\right) = V_0^+ e^{+j\beta\ell}$$

$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{+j\beta\ell} \qquad \Rightarrow Z\left(-\ell\right) = Z_0$$
 For any ℓ

9-4 Terminated Transmission Line Short-Circuit Load

(B) Short circuit load: ($Z_L = 0$)

$$\Gamma_{L} = \frac{0 - Z_{0}}{0 + Z_{0}} = -1$$

$$\Rightarrow Z(-\ell) = jZ_{0} \tan(\beta \ell)$$

 Z_0,eta

Note: $\beta \ell = 2\pi \frac{\ell}{\lambda_{e}}$

Always imaginary!

$$\Rightarrow Z(-\ell) = jX_{sc}$$

(c)

Quarter-Wave Transformer

$$Z_{in} = Z_{0T} \left(\frac{Z_L + jZ_{0T} \tan \beta \ell}{Z_{0T} + jZ_L \tan \beta \ell} \right)$$

$$\beta \ell = \beta \frac{\lambda_g}{4} = \frac{2\pi}{\lambda_g} \frac{\lambda_g}{4} = \frac{\pi}{2}$$

$$\Rightarrow Z_{in} = Z_{0T} \left(\frac{jZ_{0T}}{jZ_L} \right)$$

SO

$$Z_{in} = \frac{Z_{0T}^2}{Z_L}$$

$$\Gamma_{in} = 0 \implies Z_{in} = Z_0$$

$$\Rightarrow Z_0 = \frac{Z_{0T}^2}{Z_T}$$

This requires Z_L to be real.

Hence

$$Z_{0T} = \left[Z_0 Z_L\right]^{1/2}$$

Voltage Standing Wave Ratio

$$V(-\ell) = V_0^+ e^{j\beta\ell} \left(1 + \Gamma_L e^{-2j\beta\ell} \right)$$
$$= V_0^+ e^{j\beta\ell} \left(1 + \left| \Gamma_L \right| e^{j\phi_L} e^{-2j\beta\ell} \right)$$

$$\left|V\left(-\ell\right)\right| = \left|V_0^+\right| \left|1 + \left|\Gamma_L\right| e^{j\phi_L} e^{-j2\beta\ell}\right|$$

$$V_{\text{max}} = |V_0^+| (1+|\Gamma_L|)$$

$$V_{\min} = \left| V_0^+ \right| \left(1 - \left| \Gamma_L \right| \right)$$

Voltage Standing Wave Ratio (SWR) =
$$\frac{V_{\text{max}}}{V_{\text{min}}}$$

$$S = \frac{1 + \left| \Gamma_L \right|}{1 - \left| \Gamma_L \right|}$$

$$\Gamma = 0$$
, $S = 1$ for $Z_L = Z_0$ matched load

$$\Gamma = -1$$
, $S \to \infty$ for $Z_L = 0$ short circuit

$$\Gamma = +1,$$
 $S \to \infty$ for $Z_L \to \infty$ open circuit

For resistance-terminated lossless lines

$$Z_{L} = R_{L} \qquad Z_{0} = R_{0}$$

$$R_{L} > R_{0} \quad \theta_{\Gamma} = 0 \quad S = \frac{R_{L}}{R_{0}}$$

$$R_{L} < R_{0} \quad \theta_{\Gamma} = -\pi \quad \frac{1}{S} = \frac{R_{L}}{R_{0}}$$

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta_{\Gamma}}$$

$$S = \frac{|V_{\text{max}}|}{|V_{\text{min}}|} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

9-4 Terminated Transmission Line Line with arbitrary termination

$$Z_{i} = R_{i} + jX_{i} = R_{0} \frac{R_{m} + jR_{0} \tan \beta l_{m}}{R_{0} + jR_{m} \tan \beta l_{m}}$$

 Z_L can be determined by measuring S and the distance z'_m

$$l_m + z'_m = \lambda/2$$

$$|\Gamma| = \frac{S-1}{S+1}$$

$$\theta_{\Gamma} = 2\beta z_{m} - \pi$$

$$Z_{L} = R_{L} + jX_{L} = R_{0} \frac{1 + |\Gamma| e^{j\theta_{\Gamma}}}{1 - |\Gamma| e^{j\theta_{\Gamma}}}$$

9-6 Smith Chart: Introduction

Introduction

A graphical tool used to solve transmission line problems.

Today, a presentation medium in computeraided design (CAD) software and measuring equipment for displaying the performance of microwave circuits.

9-6 Smith-Chart

Normalized load impedance
$$z_L = \frac{Z_L}{R_0} = r + jx$$

Voltage reflection coefficient
$$\Gamma = \frac{z_L - 1}{z_L + 1} = \Gamma_r + j\Gamma_i$$

$$z_L = \frac{1+\Gamma}{1-\Gamma}$$

$$\left(\Gamma_r - \frac{r}{r+1}\right)^2 + \Gamma_i^2 = \left(\frac{1}{r+1}\right)^2$$

$$(\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2$$

9-6 Smith-Chart

For the constant *r* circles:

- 1.The centers of all the constant *r* circles are on the horizontal axis real part of the reflection coefficient.
- 2. The radius of circles decreases when *r* increases.
- 3.All constant r circles pass through the point $\Gamma_r = 1$, $\Gamma_i = 0$. To general
- 4. The normalized resistance $r = \infty$ is at the point $\Gamma_r = 1$, $\Gamma_i = 0$.

For the constant x (partial) circles:

- 1.The centers of all the constant x circles are on the Γ_r =1 line. The circles with x > 0 (inductive reactance) are above the Γ_r axis; the circles with x < 0 (capacitive) are below the Γ_r axis.
- 2. The radius of circles decreases when absolute value of *x* increases.
- 3. The normalized reactances $x = \pm \infty$ are at the point $\Gamma_r = 1$, $\Gamma_i = 0$

The constant *r* circles are orthogonal to the constant *x* circles at every intersection.

- 1. All $|\Gamma|$ -circles are centered at the origin, and their radii vary uniformly from 0 to 1.
- 2. The angle, measured from the positive real axis, of the line drawn from the origin through the point representing z_1 equals θ_{r} .
- 3. The value of the r-circle passing through the intersection of the $|\Gamma|$ -circle and the positive real axis equals the standing-wave ratio S

