Matrix-Product Periodic Systems of Molecules

Ray Hefferlin

Physics Department, Southern College, Collegedale, Tennessee 37315-0370

Received May 18, 1993®

Direct products of the periodic chart of the elements, considered as a matrix, with itself produce 2N-dimensional periodic systems of N-atomic molecules. It is shown that these periodic systems subsume a large number of published molecular periodic systems.

Consider any two-dimensional form of the periodic chart of the elements, surrounded with zeros such that it is bounded by a square. Let it be a two-subscript matrix with subscripts R (the row or period number) and C (the column or group number). Perform the direct product of this matrix with itself N-1 times to obtain the periodic system of N-atomic molecules, a 2N-dimensional matrix with subscripts R_1 , R_2 , ..., C_1 , C_2 , The elements of the original matrix include symbols of the chemical elements, and those of the product matrix include molecular symbols (amid zeros). Heteronuclear molecules appear more than once. These architectures fulfill all of Dias' definitions of a periodic table set,² generalized to apply to more than two dimensions. The independent variables R_1, C_1, R_2 , and C_2 have proven very useful for making approximate predictions of erroneous or as-yet-unknown values of diatomic-molecular properties, to more precision than has been achieved using Z_1 and Z_2 .³

It is the purpose of this paper to show how various cuts and projections of these product matrices produce previously published (or communicated) molecular periodic systems, which are useful representations of molecular behavior just as the chart of the elements provides an easily-grasped representation of atomic behavior. If it is not explicitly stated that N > 2, then the systems being described relate to diatomic molecules.

- 1. Several tesselated molecular periodic systems of diatomic molecules have been proposed. They consist of two-dimensional charts, each produced by a slice through the four-dimensional periodic system of diatomic molecules. Each is similar to the chart of the elements but with a different atomic symbol in the first (or second) place of the molecular symbol; they can be tiled⁴ or presented separately.^{5,6}
- 2. Kong's elegant two-dimensional periodic chart consists of a complete series of slices like those just described, but overlapped in such a way that the center of each chart (R_1, C_1) , lies at (R_2, C_2) . More succinctly, it is a *projection* [and reduction] of the four-dimensional architecture defined by

$$x = R_1 + R_2$$
 (the molecular period number)

$$y = C_1 + C_2$$
 (the molecular group number)

$$p = R_1 - R_2$$
 [into the plane of the chart]

$$q = C_1 - C_2$$
 [into the plane of the chart]

(Figures 1 and 2). Kong gives tables of (p,q). Kong's system (x,y) can be extended to triatomic, tetraatomic (being prepared for publication), and larger molecules without limit, but the tables for p, q, r, ... become too lengthy for publication.

3. Cut-and-stack molecular periodic systems require serpentine cuts and result in a stacked series of charts like those described in ref 11. Cut (a),

$$R_1 = 1, 2, ...$$

 $R_2 = R_1, R_1 + 1, ...$

was presented in 1979⁹ but then replaced by another which much better fits the data, i.e., (b) a monotonic increase in the quantity R_1R_2 .¹⁰ Each plane in these three-dimensional structures has coordinates (C_1,C_2) and contains molecules which are isovalent (homologous) to molecules having the same coordinates on the other planes (Figure 3). There may be several blocks if the atomic chart on which they are based was formed of separate blocks (e.g., molecules formed from p atoms, Figure 3). Cut (c),

$$C_1 + C_2 = 1, 2, ...$$

(each one defining a block of the system)

$$C_1 - C_2 = n, n - 2, ...$$

(defining the stacking order; n is an integer)

was proposed by Monyakin in 1980 (Figure 4).¹¹ The planes stacked in this manner in each block contain isovalent molecules addressed by coordinates (R_1,R_2) . Isoelectronic molecules are found on lines perpendicular to the planes.

The procedure is not restricted to commencing with twodimensional atomic periodic charts bounded by straight lines. Consider, for example, a polar-coordinate chart containing only representative-group elements from periods 2 through 6 (Figure 5). The elements lie at (R,θ) , where R is the period number and the integer n, in $\theta = n\pi/8$, is the group number. The direct product produces a kind of hypersphere in the space $(R_1,\theta_1,R_2,\theta_2)$. Cuts (θ_1,θ_2) produce planes (R_1,R_2) such as which make up the volume in Figure 4. Cuts (R_1,R_2) produce tori upon which fixed-row molecules are addressed by (θ_1,θ_2) .¹² Cuts (R_1,θ_1) produce circles resembling the

Abstract published in Advance ACS Abstracts, February 15, 1994.

TABLE 1
THE PERIODIC TABLE OF THE DIATOMIC MOLECULES

					2000					Minhay		,				
Periodic Number	-	2	3	4	3	و	7	8	٩	2	F	12.	13	11	57	16
1	1 (H H)	2 (H ⁻ H)											Diatos		70	Total
æ	m	# ₂	S HHe ³	6 He ₂									Molecular Number N	ular 26	N2 CO	Nuclear Charge z
	1	8	6	10	=	12	13	2.7	13	16						
· •		(гін)	(BEH)	(BH)	(G	(MH)	(OH)	(HP)	(HINe)	(HeNe)				Molecula	Molecular Formula	4
•	17 LINe 13	18 142	19 LiBe	20 Be ₂	PeB 9	22 10 B ₂	23 BC ¹¹	24 12 C2	25 GN 13	26 14 N2	27 NO 15	28 0 ₂ 16	29 OF	30 18 F2	31 NeF ¹⁹	32 20 Ne ₂
sn.	33 NaNe 21	34 Nali 14	35 NaBe 15	36 MgBe 16	37 17 MgB	38 A1B	39 Alc ¹⁹	40 Sic ²⁰	41 Sin ²¹	42 22 PN	43 23 PO	44 24 SO 24	45 SF ²⁵	46 C1F ²⁶	47 NaC1 ²⁷	48 Near ²⁸
9	49 KNe 29 NaAr 39		S1 NaMg ²³ Lica ²³	52 24 Mg ₂ 24 BeGa 24	MgAr 25 MgAr 25 BeGe 25	A12 26 GaB 26	151 ²⁷ eB ²⁷	66 80 S1 ₂ 28 GeC 28	57 SiP ²⁹ AgC ²⁹	68 30 P2 ABN 30	69 31 PS SeN 41	70 32 S ₂ 42 SeO 42	71 SC1 Bro ⁴³	72 34 C1 34 BrF 44	73 Arc1 KrF ⁴⁵	74 36 Ar ₂ 46 Nekr
7	75 RbNe 47 KAE 55	76 KMa 30 RbLi 40	ľ	78 CaMg ³² SrBe 42	9 Alca 33 SrB 43	90 AlGa InB ⁴³	GB 35	92 GeSi 36 SnC ⁴⁶		94 48 A&P SbN 58	95 49 Ass ⁴⁹ Sbo ⁵⁹	96 SeS TeO	97 Sec1 TeF ⁶¹	98 Brc1 1F ⁶²		100 Arkr ⁵⁴ Xene ⁶⁴
60	101 Fbar Naxe 65	102 38 K248	103 KCa 39 RbMg 49	104 40 Ca ₂ 50 SrHq 50	15 51 CaGa SrA1 51	116 52 Ga 2 11A1 52	127 GaGe ⁵³ InS1 ⁵³	128 54 Ge 2 6nS 1	129 55 GeAs SnP ⁵⁵	130 56 As 2 SbP ⁵⁶	131 67 As Se SbS ⁶⁷	132 68 Se ₂ TeS	133 69 SeBr Tecl ⁶⁹	134 70 Br ₂ 70 IC1	135 Kebr ⁷¹ Ari ⁷¹	136 72 Kr ₂ 72 Arxe
6	137 73 RDKr 73	138 56 RbK	139 57 Rbca	140 SB SrCa	SI 69	162 70 InGa	163 InGe 71	64 72 GeSn	165 73 Sn As	166 74 Aste	167 SbSe	168 Te Se	169 Tebr	170 88 IBr	171 Kr1	172 KrXe
10	173 Rbxe	174 74 Rb ₂ 74	175 75 RbSr	176 76 Sr ₂	187 SrIn	198 86 In ₂	199 InSn	200 Sn ₂	201 SnSb	202 Sb ₂	203 Sbfe	اتتا	205 TeI	2 1	207 Xe.	7 7
Ground Configuration State Spectral Term	1. d. 3.	124	102	124	12.2	π ² 35-	1 2 E	4	*3z	2 DZ		7		-	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	7 2 2
1ted	. D #2	10,0		π, 3π					7 D H 4	9 T	2.∇2 2.ΔΣ		, u		± 2	
Multiplicity	7	1	~	7	2	3	2	1	2	1	2	3	2	1	2	-
Free Radical	ouom	non	ouo	non	ouo	D 1	mono.	non	Mono	non	mono	ā	ouo	non	ouom	non
Magnetic Susceptibility	para	anti	para	anti	para	para	para	anti	para	anti	para	Para	Para	anti	Para	anti
Frontier HOMO	D2	D 2	ρχ	ρλ	Š	ķ	5	H A	ρ×	χQ	X X	L A	F .	*	Q .	2
Orbitals LUMO	λα	λg	I/A	L A	Ď	ρx	×	×	# >	*	ρ'n	D	,	2		

Figure 1. Kong's periodic system of main-group diatomic molecules. The group number (increasing horizontaly) is the sum of the atomic group numbers; the period number (increasing down) is the sum of the atomic period numbers. The "diatomic molecular number" at the top left of each compartment is serial (except where jumps of 10 allow for transition-metal molecules), so as to play

the same role as the atomic number in the atomic chart. Some separated atoms (H H and H-H) and some molecules with row-1 atoms are included in the first three periods; rare-gas atoms are counted as being in both atomic groups 0 and 8. The values of some molecular properties are shown at the bottom. Reprinted by permission from ref 3. Copyright 1989 The Edwin Mellen Press.

Figure 2. Kong's periodic chart for diatomic molecules, redrawn as a three-architecture by using his Table 2, giving the molecules in various compartments. The system is symmetric front-to-back across a plane passing through homonuclear molecules. Only right-hand sides are shaded. Vacant portions of Kong's Table 2 account for the alternate vacant volumes in the figure. The main portion of the architecture would continue more toward points at the front and rear if highly ionically-bonded molecules had been included in Kong's tables.

Figure 3. One block of a period system of molecules, formed from an atomic periodic chart in which s, p, d, and f atoms are in separate blocks. The molecule BB is at the bottom left; BNe is at the bottom rout and back corners; NeNe is at the bottom right; and 118118 (presumably the next rare-gas homonuclear diatomic molecule) is at the top right. The stacking order is n_1n_2 . Reprinted by permission from ref 13. Copyright 1987 Southern College.

original polar-coordinate chart; on each circle the hydrides, ..., borides, carbides, ... are addressed by (R_2, θ_2) .

ACKNOWLEDGMENT

The author thanks Gary Burdick for the definitions of p and q and for discussions about the hypersphere and the ways of cutting it.

Figure 4. $C_1 + C_2 = 9$ block of Monyakin's periodic system. The bottom area of this system has $C_1 - C_2 = 7$ (the group numbers of regal metals and of the iron family being set to 1 and 8); the next area up has $C_1 - C_2 = 5$. The structures at the top of the chart can be related to a very strange chart of the atoms. Reprinted by permission from ref 3. Copyright 1989 The Edwin Mellen Press.

Figure 5. One main-group cycle of a polar coordinate chart of the elements. Reprinted by permission from ref 3. Copyright 1989 The Edwin Mellen Press.

REFERENCES AND NOTES

- Hefferlin, R.; Kuhlman, H. The Periodic System for Free Diatomic Molecules—III. Theoretical Articulation. J. Quant. Spectrosc. Radiat. Transfer 1980, 24, 379-383.
- (2) Dias, J. R. Enumeration of a Benzenoid Series Having a Constant Number of Isomers. Chem. Phys. Lett. 1991, 176, 559-562. Dias, J. R. Benzenoid Series Having a Constant Number of Isomers. 3. Total Resonant Sextet Benzenoids and Their Topological Characteristics. J. Chem. Inf. Comput. Sci. 1991, 31, 89-96.
- (3) Hefferlin, R. In Periodic Systems and Their Relation to the Systematic Analysis of Molecular Data; Hefferlin, R., Ed.; Edwin Mellen Press: Lewiston, NY, 1989; Chapter 7.
- (4) Clark, C. H. D. The Periodic Groups of Non-Hydride Di-Atoms. Trans. Faraday Soc. 1935, 4, 1017-1036.
- (5) Syrkin, Ya. K. In 100 Let Periodicheskovo Zakona Khimicheskikh Elementov. 1869-1969 (X Yubileinyi Mendeleevskii Sezd). Dokaldy na Plenarnykh Zasedaniyakh X Yubileinovo Mendeleevskovo Sezda); Semenov, N. N., Ed.; Nauka: Moscow, 1969; p 85.
- (6) Kaslin, V. M. Tables of Force Constants k_e and Vibration Constants ω_e of Ground Electronic States of Diatomic Molecules, Composed of Atoms with Composition of s and p Shells (Atom from the Chemical Groups of Lithium, Beryllium, Boron and Carbon/Nitrogen, Oxygen, Fluorine and Neon). Preprints 302, 303; Optics Laboratory, Physical Institute:

- Moscow, 1983. The text and some graphs, but not the tables, werepublished in: Kaslin, V. M. O Svyazi Spektroskopicheskikh Konstant Dvukhatomnykh Molekul c Parametrami Atomov. (Relationship of Spectroscopic Constants of Diatomic Molecules with Atomic Parameters). Opt. Spectra 1985, 59, 667-670.
- (7) Kong, F. The Periodicity of Diatomic Molecules. J. Mol. Struct. 1982, 90, 17-28.
- (8) Kong, F. In Ref 3, Chapter 11.
- (9) Hefferlin, R.; Campbell, R.; Gimbel, D.; Kuhlman, H.; Cayton, T. The Periodic Table of Diatomic Molecules—I. An Algorithm for Retrieval
- and Prediction of Spectrophysical Properties. J. Quant. Spectrosc. Radiat. Transfer 1979, 21, 315-336.
 (10) Hefferlin, R. A.; Zhuvikin, G. V.; Caviness, K. E.; Duerksen, P. J. Periodic
- System of N-atom Molecules. J. Quant. Spectrosc. Radiat. Transfer 1984, 32, 268 (see note added in proof).
 (11) Monyakin, A. P. In Ref 3, Chapter 12, Section 3.
- (12) This description improves upon the one in: Ref 3, Chapter 10, Section
- 5.1, and pp 429, 436, and 437.
 (13) Hefferlin, R. The 50th Anniversary of Work on Molecular Periodic Systems: Broad Scientific and Human Interest Aspects. South. Scholars J. 1987, 38-43.