Ecuaciones Diferenciales Parciales: Taller 4

16 de agosto del 2024

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons David Felipe Viuche Malaver acadenas@unal.edu.co dviuchem@unal.edu.co

Problema 1:

- 1. Suponga que u es una solución suave de la ecuación del calor $u_t \Delta u = 0$ en $\mathbb{R}^n \times (0, \infty)$. Encuentre una familia de términos $a, b \in \mathbb{R}$ tales que $u_{\lambda}(x, t) = u(\lambda^a x, \lambda^b t)$ también sea solución de la ecuación del calor para todo $\lambda \in \mathbb{R}^+$.
- 2. Use el ejercicio anterior para mostrar que $v(x,t) := x \cdot \nabla u(x,t) + 2tu_t(x,t)$ también soluciona la ecuación del calor.
- 3. Suponga que u es una solución suave para la ecuación del calor no lineal $u_t \Delta u = u^3 u_{x_1}$ en $\mathbb{R}^n \times (0, \infty)$. Encuentre una familia de términos $a, b, c \in \mathbb{R}$ tales que $u_{\lambda}(x, t) = \lambda^a u(\lambda^b x, \lambda^c t)$ también sea solución de tal ecuación del calor no lineal para todo $\lambda \in \mathbb{R}^+$.

Solución:

1. Suponga que u es una solución suave de la ecuación del calor $u_t - \Delta u = 0$ en $\mathbb{R}^n \times (0, \infty)$. Encuentre una familia de términos $a, b \in \mathbb{R}$ tales que $u_{\lambda}(x, t) = u(\lambda^a x, \lambda^b t)$ también sea solución de la ecuación del calor para todo $\lambda \in \mathbb{R}^+$. Suponga que $u_{\lambda}(x, t)$ satisface la ecuación del calor, es decir:

$$\partial_t u_\lambda(x,t) - \Delta u_\lambda(x,t) = 0,$$

en $\mathbb{R}^n \times (0, \infty)$, luego:

$$\partial_t u_{\lambda}(x,y) = u_t(\lambda^a x, \lambda^b t)$$

$$= u_t(\lambda^a x, \lambda^b t)(\lambda^b)$$

$$\Delta u_{\lambda} = \sum_{i=1}^n \frac{\partial^2 u_{\lambda}(x,t)}{\partial x_i x_i}$$

$$= \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i x_i} (\lambda^a x, \lambda^b t)(\lambda^a)^2$$

Luego:

$$\begin{aligned} u_{\lambda_t}(x,t) - \Delta u_{\lambda}(x,t) &= \lambda^b u_t(\lambda^a x, \lambda^b t) - \lambda^{2a} \Delta u(\lambda^a x, \lambda^b t) \\ &= \lambda^c (u_t(\lambda^a x, \lambda^b t) - \Delta u(\lambda^a x, \lambda^b t)) \\ &= 0 \end{aligned}$$

Luego $\lambda^c = \lambda^b = \lambda^{2a}$, por lo que podemos concluir en que 2a = b, luego $u_{\lambda}(x,t) = u(\lambda^a x, \lambda^{2a}t)$ es solución para la ecuación del calor para todo $a \in \mathbb{R}$.

2. Use el ejercicio anterior para mostrar que $v(x,t) := x \cdot \nabla u(x,t) + 2tu_t(x,t)$ también soluciona la ecuación del calor.

Note que si tomamos a=1, como para todo $\lambda \in \mathbb{R}^+$ se cumple que $u_{\lambda_t}(x,t)$ soluciona la ecuación del calor, es decir:

$$\partial_t u_{\lambda}(x,t) - \Delta u_{\lambda}(x,y) = \lambda^2 u_t(\lambda x, \lambda^2 t) - \lambda^2 \Delta u(\lambda x, \lambda^2 t),$$

= 0.

luego si derivamos respecto a λ :

$$\begin{split} \partial_{\lambda}(\partial_{t}u_{\lambda}(x,t) - \Delta u_{\lambda}(x,y)) &= \partial_{\lambda}(\lambda^{2}u_{t}(\lambda x,\lambda^{2}t)) - \partial_{\lambda}(\lambda^{2}\Delta u(\lambda x,\lambda^{2}t)), \\ &= 2\lambda u_{t}(\lambda x,\lambda^{2}t) + \lambda^{2}u_{t\lambda}(\lambda x,\lambda^{2}t) - 2\lambda\Delta u(\lambda x,\lambda^{2}t) - \lambda^{2}\partial_{\lambda}\Delta u(\lambda x,\lambda^{2}t)), \\ &= (2\lambda)(u_{t}(\lambda x,\lambda^{2}t) - \Delta u(\lambda x,\lambda^{2}t)) + (\lambda^{2})(\partial_{\lambda}u_{t}(\lambda x,\lambda^{2}t) - \partial_{\lambda}\Delta u(\lambda x,\lambda^{2}t)), \\ &= (\lambda^{2})(\partial_{\lambda}u_{t}(\lambda x,\lambda^{2}t) - \partial_{\lambda}\Delta u(\lambda x,\lambda^{2}t)), \\ &= (\lambda^{2})(\partial_{t}\partial_{\lambda}u(\lambda x,\lambda^{2}t) - \Delta\partial_{\lambda}u(\lambda x,\lambda^{2}t)), \\ &= 0. \end{split}$$

Por lo que podemos asegurar que $\partial_{\lambda}u(\lambda x,\lambda^2t)$ también es solución de la ecuación del calor.

Ahora calculemos $\partial_{\lambda} u(\lambda x, \lambda^2 t)$:

$$\partial_{\lambda} u(\lambda x, \lambda^2 t) = \nabla u(\lambda x, \lambda^2 t) \cdot x + 2\lambda t u_t(\lambda x, \lambda^2 t),$$

fijando $\lambda = 1$ se tiene que:

$$x \cdot \nabla u(x,t) + 2tu_t(x,t) = v(x,t),$$

por lo que se puede asegurar que v(x,t) es una solución de la ecuación del calor.

3. Suponga que u es una solución suave para la ecuación del calor no lineal $u_t - \Delta u = u^3 u_{x_1}$ en $\mathbb{R}^n \times (0, \infty)$. Encuentre una familia de términos $a, b, c \in \mathbb{R}$ tales que $u_{\lambda}(x, t) = \lambda^a u(\lambda^b x, \lambda^c t)$ también sea solución de tal ecuación del calor no lineal para todo $\lambda \in \mathbb{R}^+$. Suponga que $u_{\lambda}(x, t)$ es solución de la ecuación del calor no lineal, es decir:

$$\partial_t u_{\lambda}(x,t) - \Delta u_{\lambda}(x,t) = [u_{\lambda}(x,t)]^3 \partial_{x_1} u_{\lambda}(x,t),$$

en donde:

$$\begin{split} \partial_t u_\lambda(x,t) &= \lambda^{a+c} u_t(\lambda^b x, \lambda^c t), \\ \Delta u_\lambda(x,t) &= \lambda^{a+2b} \Delta u(\lambda^b x, \lambda^c t), \\ \partial_{x_1} u_\lambda(x,t) &= \lambda^{a+b} \partial_{x_1} u(\lambda^b x, \lambda^c t), \end{split}$$

por lo que tenemos que:

$$\lambda^{a+c} u_t(\lambda^b x, \lambda^c t) - \lambda^{a+2b} \Delta u(\lambda^b x, \lambda^c t) = \lambda^{4a+b} u^3(\lambda^b x, \lambda^c t) \partial_{x_1} u(\lambda^b x, \lambda^c t),$$

lo que implica que:

$$\lambda^{-3a-b+c}u_t(\lambda^b x, \lambda^c t) - \lambda^{-3a+b}\Delta u(\lambda^b x, \lambda^c t) = u^3(\lambda^b x, \lambda^c t)\partial_{x_1}u(\lambda^b x, \lambda^c t),$$
$$\lambda^d(u_t(\lambda^b x, \lambda^c t) - \Delta u(\lambda^b x, \lambda^c t)) = u^3(\lambda^b x, \lambda^c t)\partial_{x_1}u(\lambda^b x, \lambda^c t),$$

en donde d tiene que ser igual a 0, por lo que se tiene que:

$$-3a - b + c = 0,$$

$$-3a + b = 0,$$

de lo que podemos deducir que si $a \in \mathbb{R}$, entonces b=3a y c=6a, por lo que podemos asegurar que para la familia de términos (a,3a,6a) con $a \in \mathbb{R}$ se cumple que $u_{\lambda}(x,t)=\lambda^a u(\lambda^{3a}x,\lambda^{6a}t)$ es solución de la ecuación del calor no lineal anteriormente mencionada.

Problema 2:

Considere el problema de Cauchy

$$\begin{cases} u_t - \Delta u = 0, & \text{en } \mathbb{R}^n \times (0, \infty), \\ u = g, & \text{en } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

1. Suponga que $g \in C(\mathbb{R}^n)$ es una función absolutamente integrable, es decir, $\|g\|_{L^1(\mathbb{R}^n)} < \infty$. Muestre que para $0 < \beta < \frac{n}{2}$ existe una solucion u(x,t) del problema de Cauchy anterior que satisface:

$$\lim_{t \to \infty} t^{\beta} u(x, t) = 0,$$

uniformemente en $x \in \mathbb{R}^n$.

Sugerencia. Considere $u(x,t)=(\phi(\cdot,t)*g)(x)$ y muestre que $|u(x,t)|\leq \frac{\|g\|_{L^1}}{(4\pi t)^{n/2}}$.

Solución:

Note que:

$$|u(x,t)| \le \left| \int_{\mathbb{R}^n} \frac{e^{-\frac{|x-y|^2}{4t}}}{(4\pi t)^{n/2}} g(y) dy \right|,$$

$$\le \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \left| e^{-\frac{|x-y|^2}{4t}} g(y) \right| dy,$$

$$\le \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} |g(y)| dy,$$

$$\le \frac{\|g\|_{L^1}}{(4\pi t)^{n/2}}.$$

Luego, usando esto sabemos que:

$$\begin{split} |\lim_{t\to\infty} t^\beta u(x,t)| &= \lim_{t\to\infty} t^\beta |u(x,t)|, \\ &\leq \lim_{t\to\infty} \frac{t^\beta ||g||_{L^1}}{(4\pi t)^{n/2}}, \\ &\leq \lim_{t\to\infty} \frac{C}{t^{n/2-\beta}}, \\ &\leq 0. \end{split}$$

Luego como $|\lim_{t\to\infty}t^{\beta}u(x,t)|=0$, entonces $\lim_{t\to\infty}t^{\beta}u(x,t)=0$.

Problema 3:

Pregunta

Solución:

Solución

Problema 4:

Demuestre el teorema de acotación de derivadas para soluciones de la ecuación del calor. Más precisamente, para cada multi-índices α y β existe una constante $C_{\alpha,\beta} > 0$ tal que

$$\max_{C(x,t;\frac{r}{2})}|\partial_x^\alpha\partial_t^\beta u| \leq \frac{C_{\alpha,\beta}}{r^{|\alpha|+2|\beta|+n+2}}||u||_{L^1(C(x,t;r))},$$

para todo cilindro $C(x,t;\frac{r}{2})\subset C(x,t;r)\subset U_T$ y toda solución u de la ecuación de la ecuación del calor en U_T .

Solución:

Solución. Primero fijemos un punto $(x_0,t_0)\in U_T$ y r>0 suficientemente pequeño para que $C:=C(x_0,t_0;r)\subset U_T$. Definamos también $C':=C(x_0,t_0;\frac{3}{4}r)$ y $C'':=C(x_0,t_0;\frac{r}{2})$, con el mismo centro superior (x_0,t_0) . Tomemos una función suave de cierre $\zeta=\zeta(x,t)$ tal que

Extendamos $\zeta \equiv 0$ en $(\mathbb{R}^n \times [0, t_0]) - C$.

Como u es solución en U_T entonces $u \in C^{\infty}(U_T)$ y si tomamos

$$v(x,t) := \zeta(x,t)u(x,t) \qquad (x \in \mathbb{R}^n, 0 \le t \le t_0).$$

Entonces

$$v_t = \zeta u_t + \zeta_t u, \Delta v = \zeta \Delta u + 2\nabla \zeta \cdot \nabla u + \nabla \zeta u.$$

Luego

$$v = 0$$
 en $\mathbb{R}^n \times t = 0$,

У

$$v_t - \Delta v = \zeta u_t + \zeta_t u - \zeta \Delta u - 2\nabla \zeta \cdot \nabla u - \nabla \zeta u$$
$$= \zeta (u_t - \Delta u) + \zeta_t u - 2\nabla \zeta \cdot \nabla u - \nabla \zeta u$$
$$= \zeta_t u - 2\nabla \zeta \cdot \nabla u - \nabla \zeta u =: \tilde{f}$$

en $\mathbb{R}^n \times (0, t_0)$. Ahora tome

$$\tilde{v} = \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) \tilde{f}(y, s) dy ds.$$

De acuerdo a la fórmula de Duhamel