

WE CLAIM:

1. An improved copper chromite catalyst having the molar composition

wherein

$a = 10 - 40$ mole %
 $b = 10 - 40$ mole %
 $c = 10 - 30$ mole %
 $d = 5 - 40$ mole %

and $a + b + c + d = 100$

and characterised by XRD pattern as shown in table 1

Table I: XRD analysis of the copper chromite catalyst

θ	Intensity (%)
18	100
26.2	100
27.4	48
35.8	92
44.2	48

Suh (a)

2. A process for the preparation of an improved copper chromite catalyst having the molar composition

wherein

$$a = 10 - 40 \text{ mole \%}$$

$$b = 10 - 40 \text{ mole \%}$$

$$c = 10 - 30 \text{ mole \%}$$

$$d = 5 - 40 \text{ mole \%}$$

$$\text{and } a + b + c + d = 100$$

and characterised by XRD pattern as shown in table 1

Table I: XRD analysis of the copper chromite catalyst

θ	Intensity (%)
18	100
26.2	100
27.4	48
35.8	92
44.2	48
56.6	44

which comprises preparing aqueous solutions of source of copper, a source of aluminium and a source of zinc, adding to this mixture a solution of source of chromium, under stirring conditions to obtain the precipitate, separating the precipitate by conventional methods, drying the precipitate at a temperature ranging between 80 to 110 °C, calcining the dried material in static air at a temperature ranging between 200 to 500 °C for a period ranging between 2 to 5 hrs., to obtain the