Basic of Robotics

Er. Arpit Joon Doctorate Student Poznan University of Technology

What is Robotics?

O2 Types of Robots

Kinematic Model

Previous Projects

What is Robotics?

Defination of a Robot: Machines controlled by computers that are used to perform jobs automatically. [1]

Defination of Robotics: the science of making and using robots. [1]

[1].Cambridge Dictionary. Accessed on 22-10-2023. https://dictionary.cambridge.org/dictionary/english/robotics.

History of Robots

Year:1739

"Digesting Duck" was created by Jacques de Vaucanson in 1739 [2].

INTERIOR OF VAUCANSON'S AUTOMATIC DUCK.

A, clockwork; B, pump; C, mill for gringing grain; F, intestinal tube; J, bill; H, head; M, feet.

History of Robots

Year:1921

In his play "R.U.R.: Rossum's Universal Robots," the Czech writer Karel Čapek tells the tale of a factory in which thousands of synthetic humanoids have been created [2].

[2]. Carr, Dr Steven M. Digesting Duck, www.mun.ca/biology/scarr/4270_Reductionism.html. Accessed on 22-10-2023. 5

History of Robots

Year:1959

First robotic arm is installed on a factory floor [2].

[2]. Carr, Dr Steven M. Digesting Duck, www.mun.ca/biology/scarr/4270_Reductionism.html. Accessed on 22-10-2023. 6

Robots In the Agriculture Industry

Seeding and Spraying Robots

Drones for seeding and spraying are still a new thing, but they are commercially available [3].

[3]. Agricultural Robots: A revolutionary tool for farmers worldwide.https://howtorobot.com/expert-insight/agricultural-robots. Accessed on 22-10-2023.

Fruit and Vegetable Harvesting Robots

Fruit and vegetable harvesting robots are still in the prototype stages. They show great promise [3].

[3]. Agricultural Robots: A revolutionary tool for farmers worldwide.https://howtorobot.com/expert-insight/agricultural-robots. Accessed on 22-10-2023.

Aerial Imaging Robots

Using aerial drones to inspect crops from the air is well established. Aerial imaging produces valuable insights into crop health and soil conditions [3].

[3]. Agricultural Robots: A revolutionary tool for farmers worldwide.https://howtorobot.com/expert-insight/agricultural-robots. Accessed 22 Oct. 2023.

Robots In Industries

Robots In Manufacturing

From factories to farms, there are a growing number of places and situations where industrial robots can be adapted to perform [4].

[4]. The good, the bad, and the ugly of Industrial Robots In Manufacturing. Industrial Robots: Manufacturing Examples. https://www.autodesk.com/design-make/articles/industrial-robotics. Accessed on 22-10-2023.

Robots In Food Industries

The brainchild of convenience store chain Żabka and Kraków tech firm VeloxAlpha SA, the one-armed sausage server called Robbie can complete its task in three simple steps [5].

First the robotic arm pulls a bun out of a closed drawer compartment and puts it on a hot grill to heat and toast it.

Then it takes out the bun and slips it under a tube that squirts in your condiment of choice [5].

Next the robot places the bun on a little metal bed and carefully slides the hot dog into it. The arm uses suctions to pick up a paper sleeve for the hot dog and slips it onto the bun.

Lastly, the robot picks the hot dog up and places it into a stand up tray which lowers and the door slides open when the whole process is finished so you can safely take it out.

Happy customer: Monica said the experience was quick and efficient but regretted that the company has yet to introduce a vegan version [5].

What is a Mobile Robot?

A mobile robot is a machine controlled by software that use sensors and other technology to identify its surroundings and move around its environment [6].

[6]. Tech Target netwrok. https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics. Accessed on 22-10-2023.

Types of Mobile Robot

Car-like robot

[7]

[7]

[7]. https://www.google.com/search?q=car+like+robot&sca_esv=575810318&tbm=isch&sxsrf=AM9HkKlRh0-qfjWqqFrCohNdG_Zbph8q3g:1698073474637&source=lnms&sa=X&ved=2ahUKEwi9gIjSuIyCAxWNSmwGHelpBa8Q_AUoAXoECAEQAw&biw=1536&bih=695&dpr=1.25#imgrc=MRESkn6Q-6WntM.

Omni-Directional Mobile Robot with Mecanum Wheels

[8]

[8]. Force Vector Diagrams for an Omni-directional Mobile Robot. https://automaticaddison.com/force-vector-diagrams-for-an-omni-directional-mobile-robot/. Accessed on 22-10-2023.

22

Omni-Directional Mobile Robot with Mecanum Wheels

[10]

[9]

[9]. Robot shop. https://www.robotshop.com/products/4wd-omni-directional-arduino-compatible-mobile-robot. Accessed on 22-10-2023.

[10]. superdroidrobots. https://www.superdroidrobots.com/store/usage/programmable-robots/product=1486.

Unicycle-Like Mobile Robot / Two Wheeled Mobile Robot

[11]

[11].Sun, Chung-Hsun et al. "Design of T-S fuzzy controller for two-wheeled mobile robot." Proceedings 2011 International Conference on System Science and Engineering (2011): 223-228.

[12]. Kowalczyk, Wojciech. (2019). Rapid Navigation Function Control for Two-Wheeled Mobile Robots. Journal of Intelligent & Robotic Systems. 93. 10.1007/s10846-018-0879-4.

Kinematic Model of Unicycle-Like Mobile Robot

The kinematic model of the mobile robot is written as:

The robot pose is represented by vector $\begin{bmatrix} x & y & \theta \end{bmatrix}^{\top}$. x, y, θ are the variables representing the pose of the robot in the global reference frame. The control vector is $\begin{bmatrix} v & \omega \end{bmatrix}^{\top}$ where v and ω are linear and angular velocity controls of the robot respectively.

Linear velocity

Linear velocity, v, is defined as the rate of change of linear displacement, s, with respect to time, t, and for motion in a straight line:

$$v=rac{s}{t}$$

Linear velocity

Angular velocity

Angular velocity w is defined as the rate of change of angular displacement, θ , with respect to time, t,:

$$w=rac{ heta}{t}$$

When the linear velocity and angular velocity will be given then the robot will form a curve or a circle.

PYTHON IDE

https://code.visualstudio.com/

How to write mathematical equations into codes?

$$egin{bmatrix} \dot{\dot{x}} \ \dot{\dot{y}} \ \dot{\dot{ heta}} \end{bmatrix} = egin{bmatrix} \cos heta & 0 \ \sin heta & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} v \ \omega \end{bmatrix} \; ,$$

```
def update_pose(self, v, omega, dt):
    # Update the robot's pose based on linear velocity (v) and angular velocity (omega)
    self.x += v * np.cos(self.theta) * dt
    self.y += v * np.sin(self.theta) * dt
    self.theta += omega * dt

return self.x,self.y,self.theta
```

How to write mathematical equations into codes?

```
import numpy as np
     class UnicycleRobot:
         def init (self, x, y, theta):
             self.x = x # Initial X position
             self.y = y # Initial Y position
 6
             self.theta = theta # Initial orientation (angle)
         def update_pose(self, v, omega, dt):
             # Update the robot's pose based on linear velocity (v) and angular velocity (omega)
10
             self.x += v * np.cos(self.theta) * dt
11
             self.y += v * np.sin(self.theta) * dt
12
13
             self.theta += omega * dt
14
15
             return self.x, self.y, self.theta
16
```

How to write mathematical equations into codes?

```
init x = 0.5
17
     init y = 1
18
     init theta = 0
19
20
21
     print("Initial Pose :",init x,init y,init theta)
22
     Robot 1 = UnicycleRobot(init x, init y, init theta)
23
24
     v = 0 \# m/s
25
     omega = 1.52 # rad/sec
26
     dt = 1 # sec
27
     x,y,theta = Robot 1.update pose(v, omega, dt)
28
29
     print("Pose :",x,y,theta)
30
```

How to write mathematical equations into codes?


```
Initial Pose : 0.5 1 0
Pose : 0.5 1.0 1.52
PS C:\Users\ARPIT JOON>
```

```
import numpy as np
     import matplotlib.pyplot as plt
     import math
     x list = []
     y list = []
     theta list = []
     time_list = []
     class UnicycleRobot:
         def init (self, x, y, theta):
             self.x = x # Initial X position
             self.y = y # Initial Y position
13
             self.theta = theta # Initial orientation (angle)
14
         def update pose(self, v, omega, dt):
             # Update the robot's pose based on linear velocity (v) and angular velocity (omega)
17
             self.x += v * np.cos(self.theta) * dt
             self.y += v * np.sin(self.theta) * dt
             self.theta += omega * dt
20
             if(self.theta>math.radians(360)):
                 self.theta = 0
24
             return self.x, self.y, self.theta
```

```
26
27
     init x = 0.5
     init y = 1
28
     init theta = 0
29
     print("Initial Pose :",init_x,init_y,init_theta)
30
31
32
     Robot 1 = UnicycleRobot(init x, init y, init theta)
33
     V = 0.1 \# m/s
34
     omega = 0.152 # rad/sec
35
     dt = 0.1 # sec
     time = 0
37
     for x in range (500):
         x,y,theta = Robot 1.update pose(v, omega, dt)
39
         time +=dt
41
42
         x list.append(x)
         y list.append(y)
43
          theta_list.append(theta)
44
          time list.append(time)
45
```

```
46
     plt.figure()
47
     plt.plot(x list, y list, label="Robot Trajectory")
48
     plt.xlabel("X Position")
49
     plt.ylabel("Y Position")
50
     plt.title("XY plot of robot")
51
     plt.grid(True)
52
     plt.legend()
53
54
     plt.figure()
55
     plt.plot(time list, theta list, label="Robot theta")
56
     plt.xlabel("Time [sec]")
57
     plt.ylabel("Theta [radians]")
58
     plt.title("Robot Orientation Over Time")
59
     plt.grid(True)
60
61
     plt.show()
62
```


Download Codes from Github

github.com/Arpitjoon

Download Codes from Github

Eamil id's:

joonarpit@gmail.com

arpit.joon@doctorate.put.poznan.pl