Cover song similarity

Dimitris Loupas

August 2025

1 Introduction

In this report, we explore cover song similarity with neural networks—a classic task in Music Information Retrieval. We work on the Da-TACOS dataset and compare two models: (i) a classical Convolutional Neural Network, which is a Siamese 1D CNN that learns embeddings and compares pairs directly; and (ii) a hybrid variant that keeps the same backbone but inserts a small quantum layer on top of the embedding to see if it gains any extra performance. The goal isn't to exhaust every design choice—given time constraints, we focus on a simple comparison. We first sketch the dataset and features, then describe the two architectures and training setup, and finally report results.

2 Dataset

We use Da-TACOS.^{1 2} (cover—song dataset), which follows the SecondHand-Songs setup: each "work" is a cover clique and each "performance" is a specific recording. Filenames are the performance IDs (PID, e.g., P_22) and the class label is the work ID (WID, e.g., W_14). The corpus comes in two subsets: a **benchmark** subset (15k performances) for running fair comparisons, and a **cover-analysis** subset (10k) for investigate how versions relate. No audio here—only pre-extracted features and metadata (which is fine for our experiments).

¹https://github.com/MTG/da-tacos

²https://mtg.github.io/da-tacos/

- Organization. Data are structured by WIDs (works) and their PIDs (performances). This makes it straightforward to retrieve all versions of the same work and to form positive/negative pairs for training.
- Features (HDF5). Features were extracted from 44.1 kHz MP3 audio and released as HDF5 files in two layouts: (i) single-files per performance, where each H5 contains multiple entries for one song; and (ii) per-feature folders that store only one feature per song. Common keys include hpcp, crema (CREMA-PCP), chroma_cens, mfcc_htk, key_extractor (key, scale, strength), madmom_features (novfn, snovfn, onsets, tempos), tags, plus label and track_id.
- Metadata (JSON). Metadata live under da-tacos_metadata as JSON dictionaries keyed by WID. Each WID entry lists its PIDs with fields such as perf_title, perf_artist, work_title, work_artist, release_year, SecondHandSongs perf_id/work_id, and an instrumental flag. Where available, records are augmented with MusicBrainz matches (e.g., artist MBIDs, per-performance MBIDs with length, and genre/style tags). Coverage of these enrichments is partial.
- Intended use. The benchmark subset is designed for quantitative evaluation of cover identification systems; the cover-analysis subset supports qualitative/quantitative studies of musical variation across versions.

In our analysis, we stick to the **benchmark** part of Da-TACOS. It has about **15,000** performances; where **1,000** work IDs that each have **13** covers, so roughly **13,000** are cover versions and the remaining **2,000** are noncovers. We focus on two features: **HPCP** (Harmonic Pitch Class Profile; a 12-D pitch-class energy vector per frame that tracks harmonic content) and **CREMA** (a chroma/PCP variant designed to be a bit more robust to timbre and tuning drift). The two feature distributions we use are shown in the plots below.

Figure 1: CREMA feature

Figure 2: HPCP feature

Although raw values lie in [0,1], we also normalize each frame to unit L2 norm so that every 12-D vector has length 1. The histogram of sequence lengths is also shown below; the mean duration is about 18,124.5 ms.

Figure 3: Histogram of feature length

Due to computational constraints, we **downsample each sequence to** a total of 2,000 frames. If a sequence is still longer after downsampling, we *truncate* it to 2,000; if it is shorter, we *right-pad with zeros* so that all inputs have the same length.

3 Model Architectures

We keep things simple and compare two variants of the same Siamese idea: (i) a **1D CNN with residual blocks** that turns a time–feature sequence into a compact embedding, and (ii) the same backbone but with a small **quantum layer** dropped after the embedding layer. The overall logic follows the Siamese setup in [1] (two networks with shared weights, compare their outputs, train end-to-end).

Figure 4: Siamese architecture. Source [2]

Comparator (same for both models). Each branch outputs an embedding $\mathbf{v}_a, \mathbf{v}_b \in R^D$ (we use D=128). We score the pair with a weighted squared distance pushed through a sigmoid:

$$p(x_a, x_b) = \sigma \left(\sum_{j=1}^{D} \alpha_j (v_a^{(j)} - v_b^{(j)})^2 \right),$$

where $\sigma(\cdot)$ is the logistic function and α_i are learnable weights.

Loss (binary cross-entropy). We train with BCE on the pair label $y(x_a, x_b)$, where we set y=0 for cover (similar) and y=1 for non-cover (dissimilar):

$$\mathcal{L}(x_a, x_b) = - [(1 - y(x_a, x_b)) \log p(x_a, x_b) + y(x_a, x_b) \log (1 - p(x_a, x_b))].$$

Threshold. We use a fixed decision threshold of 0.5 on the predicted similarity probability $p(x_a, x_b)$. Pairs with $p \geq 0.5$ are classified as non-cover (label 0), and pairs with p < 0.5 as cover (label 1). All accuracies reported use this rule, while ROC curves are threshold—free and summarize performance across all possible thresholds.

Networks.

- Residual 1D CNN. Four residual blocks (Conv1d+BN+ReLU with skips) with time pooling between blocks, then global average/max pooling and a small MLP to get $\mathbf{v} \in R^{128}$.
- Hybrid (quantum) variant. Same CNN up to the embedding; then we project to the required size, run a small variational quantum circuit (AmplitudeEmbedding on q qubits + entanglers, readout as E[Z] per qubit), map back to 128-D to get the embedding. Everything is still trained end-to-end using pennylane.

The two architectures are summarized in the next two tables

Table 1: Residual 1D CNN (Feature Extractor) and Siamese head. Input is a time–feature matrix [B,T,F] (e.g., $F\!=\!12$ for HPCP or $F\!=\!24$ for HPCP+CREMA).

#	Layer	Parameters / Notes
1	Input	[B,T,F]
2	Transpose	[B, F, T] (channels-first for Conv1d)
3	ResBlock1D	$F \rightarrow 32$, two Conv1d($k=3$, $s=1$, $p=1$) + BN + ReLU + Dropout(0.2);
4	MaxPool1d	$kernel = 4$, $stride = 4$ (time downsample $\times 4$
5	ResBlock1D	$32 \rightarrow 64$, same as above
6	MaxPool1d	kernel = 4, stride = 4
7	ResBlock1D	$64 \rightarrow 128$, same as above
8	MaxPool1d	kernel = 4, stride = 4
9	ResBlock1D	$128 \rightarrow 256$, same as above
10	MaxPool1d	kernel = 4, stride = 4
11	Global AvgPool1d	output $[B, 256, 1] \Rightarrow [B, 256]$
12	Global MaxPool1d	output $[B, 256, 1] \Rightarrow [B, 256]$
13	Concatenate	$[B, 512]$ (avg \parallel max)
14	Dense	$512 \rightarrow 512, \mathrm{ReLU}$
15	Dropout	p = 0.3
16	Dense	$512 \rightarrow 128 \text{ (embedding)}$
17	L2 Normalization	unit-norm embedding $[B, 128]$
18	Siamese sharing	two branches share weights of layers $1-17$
19	Squared difference	$(\mathbf{v}_1 - \mathbf{v}_2)^2 \in R^{128}$
20	Dense (head)	$128 \rightarrow 1$, Sigmoid (pair similarity score)

Table 2: Residual 1D CNN + **Quantum** block (Siamese). Same backbone as Table 1, with a quantum layer inserted on top of the 128-D embedding.

#	Layer	Parameters / Notes	
1-17	Residual 1D CNN backbone	As in Table 1; produces $[B, 128]$ embedding (L2-normalized	
18	(Optional) Pre-projection	If $2^q \neq 128$: Linear $128 \rightarrow 2^q$, ReLU.	
19	AmplitudeEmbedding	Input length 2^q over q wires; normalized amplitudes.	
20	Entangling circuit	BasicEntanglerLayers with L layers on q wires.	
21	Quantum readout	Expectation values $\{E[Z_i]\}_{i=1}^q \Rightarrow [B,q].$	
22	Post-projection	Linear $q \to 128$, ReLU (map back to 128-D).	
23	L2 Normalization	Unit-norm embedding $[B, 128]$ (after quantum block).	
24	Siamese sharing	Two branches share all weights (backbone + quantum).	
25	Squared difference	$(\mathbf{v}_1 - \mathbf{v}_2)^2 \in R^{128}$.	
26	Dense (head)	$128 \rightarrow 1$, Sigmoid (pair similarity score).	

Notes. (i) If you set q=7 (so $2^q=128$), step 18 is skipped because the CNN output already matches the amplitude size. (ii) If you set q=6 ($2^q=64$), step 18 uses Linear $128\rightarrow64$ before the quantum layer, and step 22 maps q=6 back to 128 with Linear $6\rightarrow128$. (iii) The quantum node returns q expectation values (E[Z] per wire).

4 Results

In this section, we present the results of our analysis. We consider a dataset of 6000 total song pairs, where 50% are similar (song covers) and the remaining 50% are not. We split the dataset as follows:

Table 3: Splitting of the total dataset in training, validation and test sets

Total dataset	Training set	Validation set	Test set
5000	3000	1000	1000

and used the following hyperparameters.

Table 4: Hyperparameters

epochs	learning rate	optimizer	loss
20	0.0005	Adam	Binary cross entropy

CNN

The training and validation curves for the CNN are shown in Figs. 5–6. The **train loss** steadily decreases, while the **validation loss** decreases at first and then oscillates around a higher plateau. This gap points to mild *overfitting* after the first few epochs.

Figure 5: Training and validation loss (CNN).

Validation accuracy rises early but then fluctuates, whereas train accuracy keeps improving. The training accuracy reaches about ~ 0.74 while the best validation accuracy is around ~ 0.63 . This suggests the model is learning useful patterns but overfits a bit on the training data.

Figure 6: Training and validation accuracy (CNN).

The ROC curve confirms there is signal: AUC ≈ 0.70 , well above random. All ROC curves are computed on the *test set* using the checkpoint with the best validation accuracy.

Figure 7: ROC curve (CNN), evaluated on the test set with the best validation checkpoint.

Comments (CNN).

- Clear train/val gap \Rightarrow use **early stopping** near the first validation-loss minimum and/or a small LR scheduler.
- Test accuracy for this model is **0.62**.

CNN with Quantum Layer

With the quantum layer inserted, the overall behavior is similar: train loss decreases smoothly; validation loss drops early and then plateaus with small oscillations.

Figure 8: Training and validation loss (CNN + quantum).

Train accuracy also reaches ~ 0.74 , while the best validation accuracy is about ~ 0.68 .

Figure 9: Training and validation accuracy (CNN + quantum).

The ROC curve shows a small but consistent improvement: AUC ≈ 0.71 (vs. ~ 0.70 for the plain CNN). As above, ROC is computed on the *test set* using the best validation checkpoint.

Figure 10: ROC curve (CNN + quantum), evaluated on the test set with the best validation checkpoint.

Comments (CNN + quantum).

- The AUC increase suggests a slight *ranking* gain; ideally verify with multiple random seeds for robustness.
- Test accuracy for this model is **0.65**.

5 Conclusion

We trained two Siamese models on the Da-TACOS benchmark subset, using BCE on a learned squared–difference head and evaluating with the checkpoint that achieved the best validation accuracy. The plain 1D-CNN reaches a **test accuracy of 0.62** with **AUC** ≈ 0.70 ; adding a small *quantum* block gives **0.65** test accuracy and **AUC** ≈ 0.71 .In short, the quantum variant yields a small improvement in AUC and a modest gain in accuracy.

Learning curves look similar for both models: training loss/accuracy improve steadily, while validation flattens early and oscillates, indicating over-fitting. With the quantum layer, the validation curves oscillate much less and are smoother, which makes the "when to stop" signal cleaner.

Limitations. We downsample each song to **2000 frames** for speed, which can discard useful temporal context. We also used **5,000 training pairs**—compact and reproducible, but not huge—so some variance across runs is expected. Finally, we reported accuracy with a fixed threshold of 0.5; calibrating the threshold on the validation set can yield higher accuracy.

Next steps.

- Threshold calibration: tune the decision threshold on the validation set (or use temperature/Platt scaling).
- Regularization: slightly stronger dropout/weight decay; consider Group-Norm if batch sizes are small.
- Robustness (seeds): repeat training with multiple random seeds (different initializations/shuffles) and report mean±std; add confidence intervals for AUC.
- Quantum block: repeat across seeds to assess whether the small gain is consistent and worth the compute cost.
- Architecture: Explore more architectures.

Overall, the baseline already learns a useful embedding ($AUC \approx 0.70$). The hybrid model improves class separability—positives are closer and negatives farther—yielding a small AUC gain and a modest accuracy improvement. More experiments are needed to establish significance and validate the result.

References

[1] M. Stamenovic, Towards cover song detection with siamese convolutional neural networks, 2020. arXiv: 2005.10294. [Online]. Available: https://arxiv.org/abs/2005.10294.

[2] N. Serrano and A. Bellogín, "Siamese neural networks in recommendation," Neural Computing and Applications, vol. 35, pp. 13941–13953, 2023. [Online]. Available: https://doi.org/10.1007/s00521-023-08610-0.