Poli 30D Political Inquiry Regression

Shane Xinyang Xuan ShaneXuan.com

November 10, 2016

Contact Information

Shane Xinyang Xuan xxuan@ucsd.edu

We have someone to help you every day!

```
        Professor Desposato
        M
        1330-1500 (Latin American Center)

        Shane Xuan
        Tu
        1600-1800 (SSB332)

        Cameron Sells
        W
        1000-1200 (SSB352)

        Kelly Matush
        Th
        1500-1700 (SSB343)

        Julia Clark
        F
        1200-1400 (SSB326)
```

Supplemental Materials

Our class oriented

ShaneXuan.com

UCLA SPSS starter kit

www.ats.ucla.edu/stat/spss/sk/modules_sk.htm

Princeton data analysis

http://dss.princeton.edu/training/

Announcement

Second SPSS lab on 11/9 - 11/10 at ERC 117 (same as our last lab)!

Speed

- Take too many questions → too many examples
- Take too many questions → slow down the progress
- Tentative solution: We will finish the slides first. Then I will take questions. And you are not required to stay if you understand the materials.

Speed

- Take too many questions → too many examples
- Take too many questions → slow down the progress
- Tentative solution: We will finish the slides first. Then I will take questions. And you are not required to stay if you understand the materials.

Should be clear on what should be tested

Tentative solution: Not going to happen.

Speed

- Take too many questions → too many examples
- Take too many questions → slow down the progress
- Tentative solution: We will finish the slides first. Then I will take questions. And you are not required to stay if you understand the materials.

Should be clear on what should be tested

- Tentative solution: Not going to happen.
- TAs see the exam at the same time as the students do. I simply do not know if a particular question will be on the exam or not.

Speed

- Take too many questions → too many examples
- Take too many questions → slow down the progress
- Tentative solution: We will finish the slides first. Then I will take questions. And you are not required to stay if you understand the materials.

Should be clear on what should be tested

- Tentative solution: Not going to happen.
- TAs see the exam at the same time as the students do. I simply do not know if a particular question will be on the exam or not.
- Also, the point of learning is not for exams.

Speed

- Take too many questions → too many examples
- Take too many questions → slow down the progress
- Tentative solution: We will finish the slides first. Then I will take questions. And you are not required to stay if you understand the materials.

Should be clear on what should be tested

- Tentative solution: Not going to happen.
- TAs see the exam at the same time as the students do. I simply do not know if a particular question will be on the exam or not.
- Also, the point of learning is not for exams.
- Moreover, the professor and TAs have made it clear that homework assignments are the best study guide for the exam.

Quiz

We are half way into the quarter. I want you to evaluate your own performance in the class. So here is our quiz question:

Quiz

We are half way into the quarter. I want you to evaluate your own performance in the class. So here is our quiz question:

- (1) If you can assign yourself a participation score (on a scale of 1-10), what will it be?
- (2) Convince me why do you think so?

Again, here is the template:

LAST NAME, FIRST NAME EMAIL

ANSWER

Wrap up for controlled comparison

The following table calculates the column percentage

FEELINGS ABOUT PORNOGRAPHY LAWS * attendance at religious services * RESPONDENTS SEX Crosstabulation

				attenda	nce at religious	services	
					2.00	3.00	
RESPONDENTS SEX				1.00 often	sometimes	infrequently	Total
1 MALE	FEELINGS ABOUT	1 ILLEGAL TO ALL	Count	99	45	90	234
	PORNOGRAPHY LAWS		% within attendance at religious services	52.9%	26.8%	19.1%	28.3%
		2 ILLEGAL UNDER 18	Count	82	115	355	552
			% within attendance at religious services	43.9%	68.5%	75.4%	66.8%
		3 LEGAL	Count	6	8	26	40
			% within attendance at religious services	3.2%	4.8%	5.5%	4.8%
	Total		Count	187	168	471	826
			% within attendance at religious services	100.0%	100.0%	100.0%	100.0%
2 FEMALE	FEELINGS ABOUT	1 ILLEGAL TO ALL	Count	191	106	150	447
	PORNOGRAPHY LAWS		% within attendance at religious services	69.2%	46.5%	35.6%	48.3%
		2 ILLEGAL UNDER 18	Count	76	115	252	443
			% within attendance at religious services	27.5%	50.4%	59.9%	47.9%
		3 LEGAL	Count	9	7	19	35
			% within attendance at religious services	3.3%	3.1%	4.5%	3.8%
	Total		Count	276	228	421	925
			% within attendance at religious services	100.0%	100.0%	100.0%	100.0%

Making Regression Make Sense

- We have been primarily working on conceptualization and operationalization in the first half of the quarter. Today we will talk about inference.
- I will first give you some intuition for regressions.

Regression: Examples!

Figure: Data points

Regression: Examples!

Figure: Bad fit

Regression: Examples!

- Population

$$y_i = \alpha + \beta x_i$$

- Population

$$y_i = \alpha + \beta x_i$$

- Estimation

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i + \hat{e}$$

Population

$$y_i = \alpha + \beta x_i$$

- Estimation

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i + \hat{e}$$

- Regression Coefficient is calculated by

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

Population

$$y_i = \alpha + \beta x_i$$

- Estimation

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i + \hat{e}$$

Regression Coefficient is calculated by

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

- R² is calculated by

$$R^{2} = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Intuition

- Red squares represent the squared residuals wrt the average
- Blue squares represent the squared residuals wrt the 'best fit'
- Interpret R²

R and R^2

Suppose R = 0.96, and $R^2 = 0.92$

R and R^2

Suppose
$$R = 0.96$$
, and $R^2 = 0.92$

- Variation in X explains 92% variation in Y
- There is a strong, positive, linear relationship between X and

R and R^2

Suppose R = 0.96, and $R^2 = 0.92$

- Variation in X explains 92% variation in Y
- There is a strong, positive, linear relationship between X and

It's possible that R is negative. But R^2 is always positive.

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

Calculate $\hat{\beta}$ (coefficient), and $\hat{\alpha}$ (constant) by hand:

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

1. Calculate $\bar{y}, \bar{x}, \bar{y} - y, \bar{x} - x$

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Calculate $\bar{y}, \bar{x}, \bar{y} y, \bar{x} x$
- 2. Multiply to get $(\bar{y} y)^2$, $(\bar{x} x)^2$, $(\bar{y} y)(\bar{x} x)$

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Calculate $\bar{y}, \bar{x}, \bar{y} y, \bar{x} x$
- 2. Multiply to get $(\bar{y} y)^2$, $(\bar{x} x)^2$, $(\bar{y} y)(\bar{x} x)$
- 3. Sum over what you obtained from step 2

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Calculate $\bar{y}, \bar{x}, \bar{y} y, \bar{x} x$
- 2. Multiply to get $(\bar{y}-y)^2, (\bar{x}-x)^2, (\bar{y}-y)(\bar{x}-x)$
- 3. Sum over what you obtained from step 2
- 4. You thus obtain $\hat{\beta}$

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Calculate $\bar{y}, \bar{x}, \bar{y} y, \bar{x} x$
- 2. Multiply to get $(\bar{y}-y)^2, (\bar{x}-x)^2, (\bar{y}-y)(\bar{x}-x)$
- 3. Sum over what you obtained from step 2
- 4. You thus obtain $\hat{\beta}$
- 5. Use $y_i \hat{\beta}x_i = \alpha_i$ to get α_i 's

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Calculate $\bar{y}, \bar{x}, \bar{y} y, \bar{x} x$
- 2. Multiply to get $(\bar{y}-y)^2, (\bar{x}-x)^2, (\bar{y}-y)(\bar{x}-x)$
- 3. Sum over what you obtained from step 2
- 4. You thus obtain $\hat{\beta}$
- 5. Use $y_i \hat{\beta}x_i = \alpha_i$ to get α_i 's
- 6. Average α_i to get $\hat{\alpha}$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

Calculate R² by hand

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

1. Follow the previous slide to get $\hat{\beta}, \hat{\alpha}$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Follow the previous slide to get $\hat{\beta}$, $\hat{\alpha}$
- 2. Calculate \hat{y}_i using $\hat{y}_i = \hat{\beta}x_i + \hat{\alpha}$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Follow the previous slide to get $\hat{\beta}$, $\hat{\alpha}$
- 2. Calculate \hat{y}_i using $\hat{y}_i = \hat{\beta}x_i + \hat{\alpha}$
- 3. Calculate the residuals $(y_i \hat{y}_i) \rightsquigarrow \text{square} \rightsquigarrow \text{sum}$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Follow the previous slide to get $\hat{\beta}, \hat{\alpha}$
- 2. Calculate \hat{y}_i using $\hat{y}_i = \hat{\beta}x_i + \hat{\alpha}$
- 3. Calculate the residuals $(y_i \hat{y}_i) \rightsquigarrow \text{square} \rightsquigarrow \text{sum}$
- 4. You have $\sum_i (y_i \bar{y})^2$ from previous

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

X	18	20	22	24	24
Y	5	5	6	6	6

- 1. Follow the previous slide to get $\hat{\beta}, \hat{\alpha}$
- 2. Calculate \hat{y}_i using $\hat{y}_i = \hat{\beta}x_i + \hat{\alpha}$
- 3. Calculate the residuals $(y_i \hat{y}_i) \leadsto \text{square} \leadsto \text{sum}$
- 4. You have $\sum_i (y_i \bar{y})^2$ from previous
- 5. You obtain R² (yes!)

Let's go through the example in detail to make sure you understand it! Download the example from my website (https://shanexuan.com/teaching/).

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i + \hat{e}$$

$$\hat{\beta} = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2}$$

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \overline{y})^2}$$

Application

Suppose we have the model

$$Y = \beta_1 X_1 + \beta_2 X_2 + \beta_0 + \varepsilon$$

 \rightsquigarrow A 1-unit change in X_1 is associated with a β_1 -unit change in Y, all else equal.

 \rightsquigarrow A 1-unit change in X_2 is associated with a β_2 -unit change in Y, all else equal.