

4 中国电信

1 大规模天线技术分析 目录 2 天线形态与部署分析

CONTENTS

3 大规模天线标准进展

4 应用与测试思考

目录 CONTENTS	1 2 3	大规模天线技术分析 天线形态与部署分析 大规模天线标准进展 应用与测试思考
		<3> 5G通信

大规模天线简介

➤ 大规模天线Massive MIMO,又称为large-scale MIMO,顾名思义, 就是在基站端安装上百根天线(128根、192根),从而实现上百个 天线同时发数据。

瑞典Lund大学——基于USRP RIO的大规模MIMO测试台

大规模天线分集增益

- ➤ 与传统的MIMO相比,Massive MIMO的不同之处主要在于,天线趋于很多(无穷)时,信道之间趋于正交。系统的很多性能都只与大尺度相关,与小尺度无关。
- ➤ 在继承传统的MIMO技术的基础上,利用空间分集Massive MIMO可以有效提升数据传输的鲁棒性。

Time, s

(合)5G通信

大规模天线复用增益

128根天线组成圆柱形天线阵列

128根天线组成的直线形天线阵列

瑞典Linkiping University、瑞典Lund University和贝尔实验室合作开发了工作于2.6GHz的128天线阵列,天线阵列的阵元间隔为λ/2;

大规模天线复用增益

发送端:采用最大 比发送(MRT)方式 的两种天线阵列的 下行合速率对比。

接受端:单天线4 个用户

128天线圆柱阵列 性能

图示: 下行合速率 vs 基站天线数目

した 5G頭信

大规模天线增益概述

大规模天线高低频应用

▶ 大规模天线技术在高/低频应用逐渐广泛

(合)5G通信

1 大规模天线技术分析

<9>

目录

CONTENTS

- 2 天线形态与部署分析
- 3 大规模天线标准进展
- 4 应用与测试思考

天线形态发展

7-11	2天线	8天线	Massive MIMO
频段	1.8G	1.8G	2.6GHz
大小 (mm³)	$1360\times160\times80$	$1410 \times 320 \times 105$	$900\times500\times190$
重量 (kg)	10kg	20.5kg	40kg
接口	2接口/扇区	9接口/扇区	光纤接口/扇区
阵子 (个数)	10×1×2 (20)	8×4×2 (64)	8×8×2 (128)
单列 (dBi)	≥16.5~17	≥14~17	≥14~17

大规模天线增益分析

设备商样机架构

- ➤ 业界普遍认为,大规模天线是满足5G峰值吞吐量的重要手段之一,多家公司已经完成了样机的研发和验证。
- ➤ 在6GHz以下频段大规模天线样机仍以国内厂家为主。

- 全数字架构DBF
- ▶ 目前大部分厂商采用数字架构实现大规模天线样机
 - ◆ 为测试需要,实现更高的峰值速率;
 - ◆ 低频器件成本相对较低;
 - ◆ 容量与覆盖兼顾:

区 5G通信

2.6G单基站大规模天线性能

华为天线数192天线, 64TxRU, 频点 2.4G, 带宽100MHz; 测试终端2天线, 24个测试终端;

最高小区频谱效率: 30.5bps/Hz;

- ◆ 2.6G频点样机以TDD为基础进行研究, 在单站测试中,下行平均频谱效率都 获得相对于现有LTE系统3倍的增益。
- ◆ 更复杂环境下的性能需进一步检验。

● 公 5G通信

3.5G单基站大规模天线性能

- ◆ 厂家5G样机工作在3.5G频点\TDD\200M带 宽基础上,在单站测试中,下行峰值频谱 效率接近70~80bps/Hz,极限速率达到 19Gbps (200MHz带宽)。
- ◆ 更高速率来源于测试终端,8天线以及更强 处理能力。

公司	天线阵 子	RF Chain	载频	架构	测试峰值
Huawei	192	64	3.5GHz (200M)	数字	16Gbps
ZTE	192	64	3.5GHz (200M)	数字	19Gbps
CATT	256	128	3.5GHz (200M)	数字	未测

19

运 5G通信

大规模天线组网性能仿真

> R1-150445 (CMCC)

Simulation results of baseline case for channel reciprocity based operation with MU-MIMO 2Tx SRS (RU: 50%)

3D-UMi, 200m ISD	8TXRU	Case 1 (8,4,2,16) subarray	Case 2 (8,4,2,32) subarray	Case 3 (8,4,2,64) One-to-one
5%UPT(bps/Hz)	0.44	0.8 (181.8%)	1.14 (259.1%)	1.25 (284.1%)
50%UPT(bps/Hz)	2.29	3.82 (166.8%)	4.48 (195.6%)	4.73 (206.5%)
Mean UPT(bps/Hz)	2.62	3.53	4.04	4.22
RU	50%	37%	31%	30%

大规模天线增益分析

▶ 覆盖:

- ✔ 考虑公共信道作为覆盖基础,则典型覆盖场景下,8天线和大规模 天线相对2天线覆盖增益不明显:
- ✓ 赋形还可能带来公共信道覆盖稳定性差的隐患;
- ✓ 未来网络很可能以业务信道吞吐量为覆盖标准,则8天线和大规模 天线会带来较明显的覆盖增益;移动测试供参考,以5Mbps小区 边缘速率的要求,8天线下行覆盖半径相对2天线平均提升约39%; 上行覆盖半径平均提升约44%:
- ✓ 大规模天线调整覆盖形态/减少邻区干扰,能提供更好的覆盖概率。

▶ 容量:

- ✓ 大规模天线可以带来小区容量提升:
- ✓ 大规模天线技术的复杂性也会带来增益的不稳定性,需要仔细评 估组网条件下大规模天线的性能。

いどう5G通信

<21>

5G系统--帧结构

▶ 帧结构

- 支持子帧(subfame)、时隙(slot)和微时隙(mini-slot)结构,以及自包含(self-contained)子帧结构;
- 帧长固定10ms, 子帧长固定1ms:
- 时隙slot长度
 - ✓子载波间隔60KHz及以下: 7或14个符号:
 - ✓子载波间隔60KHz以上: 14个符号;
- 子载波间隔
 - ✓ 载频6GHz以下: 15KHz、30KHz、60KHz:
 - ✓ 载频6GHz以上: 60KHz、120KHz、240KHz;
- 一个PRB包含的子载波数目: 12

合 5G通信

5G系统--帧结构

<23>

5G系统--自包含帧结构

- ▶ 自包含帧结构
 - 一个子帧中包含上行和下行
 - 下行数据和ACK/NACK在同一个子帧内传输
 - 下行调度信令和上行数据在同一个子帧内传输

5G系统—波形与编码

- ➤ PCI (Physical cell ID)数目
 - 1008 (LTE PCI=PSS+3*SSS, 504个)
- > ECI 36bits -- 687亿 (LTE 28bits)
- ▶ 波形
 - DL: CP-OFDM
 - UL: CP-OFDM或DFT-S-OFDM
- ▶ 信道编码
 - eMBB数据信道: LDPC (Turbo)
 - eMBB控制信道/广播信道: Polar

5G系统—载波聚合与多天线

- ▶ 带宽
 - 单载波最大带宽400MHz (LTE: 20MHz)
- ▶ 载波聚合/双连接
 - 最多支持16个载波 (LTE 下行5个)

<27>

大规模天线 - LTE演进

更多天线端口,更精确的信道反馈

CRS based MIMO

DMRS based MIMO

Rel-10: TM9 for 8TX

Up to 8 layers

Rel-12:

- Double Codebook 4Tx,
- **CQI** report mode: PUSCH3-2

Rel-13:

- 2D codebook for up to 16 ports
- Beamformed CSI-RS

Rel-14:

- advance d CSI Up to 32 ports
- Aperiodi c BF-CSI-RS

Rel-8

TM5 for

MU

Rel-8:

TM4 for

2Tx

TM7/8/9 TDD (non-CB)

随着基站天线数增加,导频设计要耗费大量 时频资源。

TDD可以利用信道的互易性进行信道估计, 不需要导频进行信道估计。

(公)5G通信

大规模天线 - 5G NR

> MIMO

- CSI-RS: 至少32个端口
- DM-RS
 - ✓ SU-MIMO: 最多8个端口
 - ✓ MU-MIMO: 最多12个端口

> Multi-panel天线传输

● 集多面板传输,分布式传输,CoMP等多种概念的传输集合;

> 波束管理 (Beam Management)

- · Beam monitor:
- · Beam reporting:
- · Beam Selection/Switching;
- Beam Recovery:

、公约5G通信

<29>

大规模天线 - 5G NR

> 信道反馈

- 对于全信道互易性,干扰反馈
 - ✓ 显式干扰反馈: e.g., Interference covariance matrix, diagonal elements of interference covariance matrix
 - ✓ 隐式干扰反馈: e.g., Interference PMI feedback
 - ✓ 显示信道反馈: e.g., CSI of multiple TRPs
- 对部分信道互易性
 - ✓ 部分CSI反馈给eNB以获得全信道信息
- 研究CSI-RS和SRS在相同时隙传输,用于快速信道获取

应用与测试思考

◆ 前传带宽

大规模天线导致前 传带宽要求剧增, 需要寻求新的解决 方式

应用与测试思考

◆ 前传带宽

5N研究底层CU/DU分离方案,缓解前传压力

<33>

心 5G通信

应用与测试思考

- ➤ 由于2天线和8天线设备在移动TD-LTE网络中已经大规模商用,加上TD-SCDMA前期积累,产业链较为成熟,部署成本低,可以在2.6GHz网络建设中优先考虑:
- ▶ 2T2R设备可考虑部署在覆盖要求高,而流量要求相对较低的地区,以提供覆盖为主;
- ▶ 8T8R设备可以考虑部署在站址密集,覆盖不受限而干扰受限地区,以提供容量增益为主;
- ▶ 部分混合场景可以考虑插花部署:
- ▶ 64TxRU大规模天线成本高,产业不成熟,对站址要求高,可以先开展试点测试;
- ▶ 性价比是网络部署的重要因素,同时网络的绝对速率和产业链成熟也是网络部署 考虑的重要因素;

2天线

8天线

大规模天线

● 公 5G通信

应用与测试思考

> 从设备测试角度分析

- ◆ 2天线产品测试方法最成熟;
- ◆8天线设备通过大规模商用,积累了大量经验,测试方法相对成熟;并且RF 通道数相对少, 天线和基站可以分开测试, 这些都降低了测试复杂度, 但是 现网性能增益仍待检验;
- ◆ 大规模天线(64TxRU)产品集成度高,测试方法不成熟;通道数多,赋形方 式复杂,天线和RF设备一体化程度高,都对测试提出较高要求:

<35>

应用与测试思考

公55通信

> 模块天线设计

- ◆ 研究目的:
- 由于射频模块与天线集 成在一起,增加整体天 线厚度和重量,增加部 署难度;
- 通道数多, 检测困难;
- ◆ 优势:
- 减轻天线重量,降低天 线安装/维护难度;
- 实现天线按场景组合;
- 降低天线检测难度;

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-loT、4G+(Vol.TE)资料。

