

planetmath.org

Math for the people, by the people.

Neumann problem

Canonical name NeumannProblem
Date of creation 2013-03-22 15:19:59
Last modified on 2013-03-22 15:19:59
Owner dczammit (9747)
Last modified by dczammit (9747)

Numerical id 10

Author dczammit (9747)

Entry type Definition
Classification msc 31B15
Classification msc 31B05
Classification msc 31A05

Related topic HarmonicFunction

Suppose Ω is a region of \mathbb{R}^n and $\partial\Omega$ is the boundary of Ω . Further suppose f is a function $f:\partial\Omega\to\mathbb{C}$, and suppose $\frac{\partial}{\partial n}$ corresponds to taking a derivative in a direction normal to the boundary $\partial\Omega$ at any point. Then the Neumann problem is to find a function $\phi\colon\Omega\cup\partial\Omega\to\mathbb{C}$ such that

$$\begin{array}{rcl} \frac{\partial \phi}{\partial n} & = & f, & \text{on } \partial \Omega, \\ \nabla^2 \phi & = & 0, & \text{in } \Omega. \end{array}$$

Here ∇^2 represents the Laplacian operator and the second condition is that ϕ be a harmonic function on Ω . The condition for the existence of a solution ϕ of the Neumann problem is that integral of the normal derivative of the function ϕ , calculated over the entire boundary $\partial\Omega$, vanish. This follows from the identic equation

$$\int_{\partial\Omega}\frac{\partial\phi}{\partial n}d\sigma=\int_{\Omega}\nabla\!\cdot\!(\nabla\phi)d\tau=\int_{\Omega}\nabla^2\phi\,d\tau$$

and from the fact that $\nabla^2 \phi = 0$.