N.D01: Caratteristiche porte logiche e semplici circuiti logici

Gruppo 23M Alessandro Costanzo Ciano, Luca Palumbo

9 aprile 2024

1 Parte A: Caratteristiche fisiche delle porte logiche

Dal datasheet dell'integrato SN7404 si ricavano i seguenti valori: le absolute maximum ratings per la tensione di ingresso $V_I = 5.5V$ e per la tensione di alimentazione $V_{CC} = 7V$; le tensioni di soglia di ingresso sono $V_{IH} = 2V$ e $V_{IL} = 0.8V$; le tensioni tipiche di uscita sono $V_{OH} = 3.4V$ (con un minimo di 2.4 V) e $V_{OL} = 0.2V$ (con un massimo di 0.4 V); le correnti di ingresso e uscita sono $I_{IH} = 40\mu A$ e $I_{OH} = -0.4$ mA.

Abbiamo alimentato l'integrato con $V_{CC} = 5V$, inviando in ingresso una rampa di 5 V.

Figura 1: Segnale di rampa e di uscita NOT.

Le stime di V_{OUT_H} (0.8 V in ingresso) e V_{OUT_L} (2.0 V in ingresso) per ciascun membro del gruppo risultano rispettivamente 3.44 V, 3.49 V e 0 V per entrambi. Avendo adottato la stessa procedura nella misura era da aspettarsi che i risultati di ogni membro fossero analoghi. I noise margin risultano quindi $NM_H = 1.44V$, 1.49 V e il noise margin low è $NM_L = 0.8V$. I valori ottenuti sono quindi molto simili a quelli riportati nel datasheet, infatti quelli ottenuti dal datasheet sono $NM_H = 1.4V$ e $NM_L = 0.6V$.

Misura del Fan-out della porta

Inviando un segnale alto abbiamo misurato la corrente in ingresso $I_{IH}=(19\pm1)\mu A$. La corrente in uscita è invece $I_{OH}=(827\pm8)\mu A$. Il fanout risulta quindi $I_{OH}/I_{IH}=(43.5\pm2)$. IL valore atteso per il fanout è 10, che è minore di quello misurato come ci aspettavamo.

Per stimare il tempo di risposta delle porte not si sono collegate in serie tutte le 6 disponibili, inviando alla prima di queste un segnale onda quadra, permettendoci di misurare all'ultima un tempo di risposta complessivo di circa $\delta t = 43ns$. Dunque il tempo di risposta di una singola porta è di $\delta t_1 = 7ns$, in accordo col valore di 8 ns del datasheet.

Figura 2: Tensione in uscita in funzione della tensione in ingresso.

Figura 3: Misura del tempo di risposta dell'integrato.

2 Costruzione di circuiti logici elementari.

Figura 4: Verifica della porta NAND (DIO 2 è l'output).

Figura 5: Schema dei circuiti utilizzando solo porte NAND. Il circuito OR si è visto a lezione. Il secondo circuito è quello che si ottiene con la funzione logica $CB + \bar{C}A$, dopo aver rimosso eventuali coppie di NOR a cascata. Il terzo è il risultato di una ricerca su internet (quello che si ottiene utilizzando le k-map e rimuovendo coppie di NOR a cascata utilizza 5 NAND, più di quelli che sono a disposizione nell'intergrato).

Figura 6: Acquisizione della porta OR costruita con NAND come porta universale (DIO 2 è l'output).

Figura 7: Acquisizione del secondo circuito costruita con NAND come porta universale (DIO 3 è l'output).

Figura 8: Acquisizione della porta XOR costruita con NAND come porta universale (DIO 2 è l'output).

3 Convertitore Gray-Binario

Un convertitore Gray-binario a 4 bit da le seguenti codifiche per 5 valori arbitrari

$$0000 \rightarrow 0000$$

 $0001 \rightarrow 0001$

 $0011 \rightarrow 0010$

 $0010 \rightarrow 0011$

Figura 9: Convertitore Gray-binario, DIO 0-1-2-3 in input e 10-11-12-13 in output. Per i 5 valori arbitrari per cui si è calcolata la conversione si verifica il risultato atteso.

Figura 10: Osservate della transizione in uscita dal numero 15 al numero 0.

Nella transizione in uscita dal numero 15 al numero 0 si osserva quanto atteso: l'ultima porta di uscita (DIO 13) è la prima a effettuare il passaggio da segnale alto a basso, mentre le precedenti presentano un ritardo sempre maggiore. Questo ritardo è dovuto al fatto che uno degli ingressi di ciascuna porta XOR dell'integrato (che produce l'output B_n) coincide con l'uscita della porta che produce l'output B_{n+1} . Dunque è naturale che tra l'ouptut n+1 e n ci sia un tempo pari al tempo di risposta della porta logica.