		Note	
		I	II
Name Vorname			
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN	6		
Fakultät für Mathematik	6		
Klausur	7		
MA9202 Mathematik für Physiker 2			
(Analysis 1)	8		
Prof. Dr. R. König			
	\sum		
23. Februar 2018, 8:00 – 9:30 Uhr			
Hörsaal: Platz:	I Erstkorrektur		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II		
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ${f ein}$ selbsterstelltes DIN A4 Blatt			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	_		

Vorzeitig abgegeben um

Besondere Bemerkungen:

1. Vollständige Induktion

[8 Punkte]

Vollständige Induktion Beweisen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n-1} k^3 = \frac{(n-1)^2 n^2}{4}.$$

$\mathbf{Maximum}/\mathbf{Minimu}$ Gegeben sei $M:=\{\mathbf{c}$	um, Infimum $os(\pi \frac{k}{n}) \mid k, n$	$\mathbf{n}/\mathbf{Suprem}$ $\in \mathbb{N}, k \leq n$	$raket{ \ \ \ \ } \subset \mathbb{R}$	Menge		[12 Punkte
(a) Kreuzen Sie ger						
	$-2 \in M$	$\Box -1 \in M$	$\square\ 0\in \mathit{N}$	$I \square 1$	$\equiv M \qquad \Box \ 2$	$i \in M$
(b) Geben Sie, wen	n möglich, ei	ne Folge an	, die in M	enthalten i	st und geger	1 - 1 konvergiert.
(c) Geben Sie, wen	n möglich, ei	ne Folge an	, die in M	enthalten is	st und geger	1 konvergiert.
(1) W: 1:	:1- M:-:	- /М:	1 IC	/C	J M	
(d) Wie lauten jewe • min M	ens wimmun	ı/ waxımun	i una imim	um/Supren	ium der Mei	nge M :
	$\Box = -1$	$\Box = 0$	$\square = 1$	$\Box = 2$	$\Box = \infty$	□ ist nicht definie
ullet inf M						
$\Box = -\infty$	$\Box = -1$	$\Box = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	□ ist nicht definie
$\bullet \max M$						
$\Box = -\infty$	$\Box = -1$	$\square = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	□ ist nicht definie
$\bullet \sup M$						
$\Box = -\infty$	$\square = -1$	$\Box = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	□ ist nicht definie
(e) Entscheiden Sie	mit kurzer l	Begründung	s, ob die fol	gende Auss	age wahr ist	;;
Für jede stet	ige Funktion	$f: \mathbb{R} \to \mathbb{R}$	nimmt die	Funktion f	$f _M:M o\mathbb{R}$	R ihr Supremum an.

3. Konvergenz von Folgen und Reihen

[8 Punkte]

(a) Bestimmen Sie den Grenzwert: $\lim_{n\to\infty} \left(n^2 - \sqrt{n^4 - n^2}\right)$

 $\square = -\infty \qquad \square = -\frac{1}{2} \qquad \square = 0 \qquad \square = \frac{1}{2} \qquad \square = 1 \qquad \square = \infty$

 \square ist nicht definiert

(b) Schreiben Sie die Reihe $\frac{5}{6} + \left(\frac{5}{6}\right)^2 + \left(\frac{5}{6}\right)^3 + \cdots$ mit dem Summenzeichen und bestimmen Sie gegebenenfalls ihren Wert.

 \sum

(c) Die Reihe $\sum_{n=1}^{\infty} \frac{1 + n(-1)^n}{n^2}$ ist

• bestimmt divergent:

 \square Ja □ Nein

• konvergent:

 \square Ja \Box Nein

• absolut konvergent:

 \square Ja □ Nein

4. Potenzreihen Geben Sie mit Begründung alle $x \in \mathbb{R}$ an, für die die Potenzreihe $p(x) = \sum_{n=1}^{\infty} \frac{3^n}{n^4} x^{2n}$	[12 Punkte]
Geben Sie mit Begründung alle $x \in \mathbb{R}$ an, für die die Potenzreihe $p(x) = \sum_{n=1}^{\infty} \frac{3^n}{n^4} x^{2n}$	konvergiert.
n=1	

5. Grenzwerte von Funktionen

[5 Punkte]

(a) Welchen Wert hat $\lim_{x\to 1} \frac{x^2-1}{\log x}$?

 $\square - \infty \qquad \square - 2 \qquad \square - 1 \qquad \square - \frac{1}{2} \qquad \square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ 1 \qquad \square \ 2 \qquad \square \ \infty \qquad \square \ \text{existiert nicht}$

- (b) Welchen Wert hat $\lim_{x \to 1} \left(\frac{x^2 1}{\log x} \right)^2$? $\lim_{x \to 1} \left(\frac{x^2 1}{\log x} \right)^2 =$
- (c) Geben Sie an, für welches $c \in \mathbb{R}$ die Funktion $f:(0,\infty) \to \mathbb{R}$ stetig ist, wobei

 $f(x) = \begin{cases} c & \text{für } x = 1, \\ \frac{x^2 - x}{x^2 + x - 2} & \text{für } x \neq 1. \end{cases}$

 $\square \ c = -3 \quad \square \ c = -1 \quad \square \ c = -\frac{1}{3} \quad \square \ c = 0 \quad \square \ c = \frac{1}{3} \quad \square \ c = 1 \quad \square \ c = 3 \quad \square \ \text{für kein} \ c \in \mathbb{R}$

6. Taylorentwicklung

[11 Punkte]

Wir betrachten die Funktion $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$.

(a) Wie lautet das Taylorpolynom sechster Ordnung von f im Entwicklungspunkt 0?

 $(T_0^6 f)(x) =$

(b) Zeigen Sie, dass für alle $x \in [-2, 2]$ gilt:

 $|f(x) - (T_0^6 f)(x)| \le \frac{1}{5}.$

7. Integration [11 Punkte]

- (a) Bestimmen Sie die Ableitung von $x\mapsto \mathrm{e}^{-x^2}$.
- (b) Geben Sie eine Stammfunktion von $x\mapsto x\mathrm{e}^{-x^2}$ an.
- (c) Berechnen Sie $I_1 := \int_0^\infty x e^{-x^2} dx$.
- (d) Berechnen Sie $I_2 := \int_0^\infty x^2 e^{-x^2} dx$ unter Verwendung von $I_0 := \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

HINWEIS: In (d) partielle Integration mit Hinblick auf (b).

8. Matrixexponential

[11 Punkte]

Gegeben ist die Matrix $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

(a) Berechnen Sie die Matrix A^n für $n \in \mathbb{N}_0$.

$$A^n = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

(b) Berechnen Sie die Matrix $B(t) = \exp(tA)$ für $t \in \mathbb{R}$.

$$\begin{pmatrix} B_{11}(t) B_{12}(t) \\ B_{21}(t) B_{22}(t) \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$$

(c) Berechnen Sie die Lösung x(t) des Anfangswertproblems $\dot{x} = Ax, \ x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} =$$