

EGO1 用户手册

2018.04 ver2.2

依元素科技有限公司

目录

1.	概述	2
2.	FPGA	2
3.	板卡供电	3
4.	系统时钟	3
5.	FPGA 配置	3
6.	通用 I/O 接口	4
	6.1 按键	4
	6.2 开关	5
	6.3 LED 灯	6
	6.4 七段数码管	7
7.	VGA 接口	9
8.	音频接口	10
9.	USB-UART/JTAG 接口	11
10.	USB 转 PS2 接口	11
11.	SRAM 接口	12
12.	模拟电压输入	14
13.	蓝牙模块	17
14	通用扩展 1/0	18

1. 概述

EGO1 是依元素科技基于 Xilinx Artix-7 FPGA 研发的便携式数模混合基础教 学平台。EGO1 配备的 FPGA (XC7A35T-1CSG324C)具有大容量高性能等特点,能实现较复杂的数字逻辑设计;在 FPGA 内可以构建 MicroBlaze 处理器系统,可进行 SoC 设计。该平台拥有丰富的外设,以及灵活的通用扩展接口。

平台外设概览:

编号	描述	编号	描述
1	VGA 接口	10	1 个模拟电压输入
2	音频接口	11	SRAM 存储器
3	USB-UART/JTAG 接口	12	SPI FLASH 存储器
4	USB 转 PS2 接口	13	蓝牙模块
5	2个4位数码管	14	通用扩展接口
6	16个LED灯		
7	8个拔码开关		
8	1 个 8 位 DIP 开关		
9	5个按键		

2. FPGA

EGO1 采用 Xilinx Artix-7 系列 XC7A35T-1CSG324C FPGA, 其资源如下:

	Part Number	XC7A12T	XC7A15T	XC7A25T	XC7A35T
8.0	Logic Cells	12,800	16,640	23,360	33,280
Logic Resources	Slices	2,000	2,600	3,650	5,200
Resources	CLB Flip-Flops	16,000	20,800	29,200	41,600
220000	Maximum Distributed RAM (Kb)	171	200	313	400
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	20	25	45	50
nesources	Total Block RAM (Kb)	720	900	1,620	1,800
Clock Resources	CMTs (1 MMCM + 1 PLL)	3	5	3	5
110.0	Maximum Single-Ended I/O	150	250	150	250
I/O Resources	Maximum Differential I/O Pairs	72	120	72	120
	DSP Slices	40	45	80	90
Embedded	PCle* GenZ ⁽¹⁾	1	1	1	1
Hard IP	Analog Mixed Signal (AMS) / XADC	1	1	1	1
Resources	Configuration AES / HMAC Blocks	1	1	1	1
	GTP Transceivers (6.6 Gb/s Max Rate) ⁽²⁾	2	4	4	4
	Commercial	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades	Extended	-2L, -3	-2L, -3	-2L, -3	-2L, -3
	Industrial	-1, -2, -1L	-1, -2, -1L	-1, -2, -1L	-1, -2, -11

3. 板卡供电

EGo1 提供两种供电方式: Type-C 和外接直流电源。EGo1 提供了一个 Type-C 接口,功能为 UART 和 JTAG,该接口可以用于为板卡供电。板卡上提供电压转换电路将 Type-C 输入的 5V 电压转换为板卡上各类芯片需要的工作电压。上电成功后红色 LED 灯(D18)点亮。

4. 系统时钟

EGO1 搭载一个 100MHz 的时钟芯片,输出的时钟信号直接与 FPGA 全局时钟输入引脚(P17)相连。若设计中还需要其他频率的时钟,可以采用 FPGA 内部的 MMCM 生成。

名称	原理图标号	FPGA IO PIN
时钟引脚	SYS_CLK	P17

5. FPGA 配置

EES328 在开始工作前必须先配置 FPGA, 板上提供以下方式配置 FPGA:

- USB 转 UART/JTAG 接口 J6
- 6-pin JTAG 连接器接口 J3
- SPI Flash 上电自启动

FPGA 的配置文件为后缀名.bit 的文件,用户可以通过上述的三种方法将该 bit 文件烧写到 FPGA 中,该文件可以通过 Vivado 工具生成,BIT 文件的具体功能由用户的原始设计文件决定。

在使用 SPI Flash 配置 FPGA 时,需要提前将配置文件写入到 Flash 中。Xilinx 开发工具 Vivado 提供了写入 Flash 的功能。板上 SPI Flash 型号为 N25Q64,支持 3.3V 电压配置。FPGA 配置成功后 D24 将点亮。

6. 通用 I/O 接口

通用 I/O 接口外设包括 2 个专用按键、5 个通用按键、8 个拨码开关、1 个 8 位 DIP 开关、16 个 LED 灯、8 个七段数码管。

6.1 按键

两个专用按键分别用于逻辑复位 RST(S6)和擦除 FPGA 配置 PROG(S5), 当设计中不需要外部触发复位时,RST 按键可以用作其他逻辑触发功能。

名称	原理图标号	FPGA IO PIN
复位引脚	FPGA_RESET	P15

五个通用按键, 默认为低电平, 按键按下时输出高电平。

管脚约束如下:

名称	原理图标号	FPGA IO PIN
S0	PB0	R11
S1	PB1	R17
S2	PB2	R15
S3	PB3	V1
S4	PB4	U4

6.2 开关

开关包括8个拨码开关和一个8位DIP开关。

名称	原理图标号	FPGA IO PIN
SW0	SW_0	R1
SW1	SW_1	N4
SW2	SW_2	M4
SW3	SW_3	R2
SW4	SW_4	P2
SW5	SW_5	P3
SW6	SW_6	P4
SW7	SW_7	P5
	SW0	T5
	SW1	T3
	SW2	R3
SW8	SW3	V4
	SW4	V5
	SW5	V2
	SW6	U2
	SW7	U3

6.3 LED 灯

LED 在 FPGA 输出高电平时被点亮。

名称	原理图标号	FPGA IO PIN	颜色
D1_0	LED1_0	K3	Green
D1_1	LED1_1	M1	Green
D1_2	LED1_2	L1	Green
D1_3	LED1_3	K6	Green
D1_4	LED1_4	J5	Green
D1_5	LED1_5	Н5	Green
D1_6	LED1_6	Н6	Green
D1_7	LED1_7	K1	Green
D2_0	LED2_0	K2	Green
D2_1	LED2_1	J2	Green
D2_2	LED2_2	Ј3	Green
D2_3	LED2_3	H4	Green
D2_4	LED2_4	J4	Green
D2_5	LED2_5	G3	Green
D2_6	LED2_6	G4	Green
D2_7	LED2_7	F6	Green

6.4 七段数码管

数码管为共阴极数码管,即公共极输入低电平。共阴极由三极管驱动,FPGA需要提供正向信号。同时段选端连接高电平,数码管上的对应位置才可以被点亮。因此,FPGA输出有效的片选信号和段选信号都应该是高电平。

名称	原理图标号	FPGA IO PIN
A0	CA0	B4
В0	CB0	A4
C0	CC0	A3
D0	CD0	B1
E0	CE0	A1
F0	CF0	B3
G0	CG0	B2
DP0	DP0	D5
A1	CA1	D4
B1	CB1	E3
C1	CC1	D3
D1	CD1	F4
E1	CE1	F3
F1	CF1	E2
G1	CG1	D2
DP1	DP1	H2
DN0_K1	BIT1	G2
DN0_K2	BIT2	C2
DN0_K3	BIT3	C1
DN0_K4	BIT4	H1
DN1_K1	BIT5	G1
DN1_K2	BIT6	F1
DN1_K3	BIT7	E1
DN1_K4	BIT8	G6

7. VGA 接口

EGO1 上的 VGA 接口(J1)通过 14 位信号线与 FPGA 连接,红、绿、蓝三个颜色信号各占 4 位,另外还包括行同步和场同步信号。

名称	原理图标号	FPGA IO PIN
	VGA_R0	F5
RED	VGA_R1	C6
	VGA_R2	C5
	VGA_R3	B7
	VGA_G0	B6
GREEN	VGA_G1	A6
	VGA_G2	A5
	VGA_G3	D8
	VGA_B0	C7
BLUE	VGA_B1	E6
	VGA_B2	E5
	VGA_B3	E7
H-SYNC	VGA_HSYNC	D7
V-SYNC	VGA_VSYNC	C4

8. 音频接口

EGO1上的单声道音频输出接口(J12)由下图所示的低通滤波器电路驱动。滤波器的输入信号(AUDIO_PWM)是由FPGA产生的脉冲宽度调制信号(PWM)或脉冲密度调制信号(PDM)。低通滤波器将输入的数字信号转化为模拟电压信号输出到音频插孔上。

脉冲宽度调制

脉冲宽度调制信号是一连串频率固定的脉冲信号,每个脉冲的宽度都可能不同。这种数字信号在通过一个简单的低通滤波器后,被转化为模拟电压信号,电压的大小跟一定区间内的平均脉冲宽度成正比。这个区间由低通滤波器的 3dB 截止频率和脉冲频率共同决定。例如,脉冲为高电平的时间占有效脉冲周期的10%的话,滤波电路产生的模拟电压值就是 Vdd 电压的十分之一。

下图是一个简单的 PWM 信号波形:

低通滤波器 3dB 频率要比 PWM 信号频率低一个数量级,这样 PWM 频率上的信号能量才能从输入信号中过滤出来。例如,要得到一个最高频率为 5KHz 的音频信号,那么 PWM 信号的频率至少为 50KHz 或者更高。通常,考虑到模拟信号的保真度,PWM 信号的频率越高越好。下图是 PWM 信号整合之后输出模拟电压的过程示意图,可以看到滤波器输出信号幅度与 Vdd 的比值等于 PWM 信号的占空比。

名称	原理图标号	FPGA IO PIN
AUDIO PWM	AUDIO_PWM	T1
AUDIO SD	AUDIO_SD#	M6

9. USB-UART/JTAG 接口

该模块将 UART/JTAG转换成 USB 接口。用户可以非常方便的直接采用 USB 线缆连接板卡与 PC 机 USB 接口,通过 Xilinx 的配置软件如 Vivado 完成对板卡的配置。同时也可以通过串口功能与上位机进行通信。

管脚约束如下:

名称	原理图标号	FPGA IO PIN
UART RX	UART_RX	T4 (FPGA 串口发送端)
UART TX	UART_TX	N5 (FPGA 串口接收端)

UATR 的全称是通用异步收发器,是实现设备之间低速数据通信的标准协议。"异步"指不需要额外的时钟线进行数据的同步传输,双方约定在同一个频率下收发数据,此接口只需要两条信号线(RXD、TXD)就可以完成数据的相互通信,接收和发送可以同时进行,也就是全双工。

收发的过程,在发送器空闲时间,数据线处于逻辑 1 状态,当提示有数据要传输时,首先使数据线的逻辑状态为低,之后是 8 个数据位、一位校验位、一位停止位,校验一般是奇偶校验,停止位用于标示一帧的结束,接收过程亦类似,当检测到数据线变低时,开始对数据线以约定的频率抽样,完成接收过程。本例数据帧采用:无校验位,停止位为一位。

UART 的数据帧格式,如下:

10.USB 转 PS2 接口

为方便用户直接使用键盘鼠标, EGO1 直接支持 USB 键盘鼠标设备。用户可

将标准的 USB 键盘鼠标设备直接接入板上 J4 USB 接口,通过 PIC24FJ128,转换为标准的 PS/2 协议接口。该接口不支持 USB 集线器,只能连接一个鼠标或键盘。鼠标和键盘通过标准的 PS/2 接口信号与 FPGA 进行通信。

管脚约束如下:

PIC24FJ128 标号	原理图标号	FPGA IO PIN
15	PS2_CLK	K5
12	PS2_DATA	L4

11.SRAM 接口

板卡搭载的 IS61WV12816BLL SRAM 芯片,总容量 8Mbit。该 SRAM 为异步式 SRAM,最高存取时间可达 8ns。操控简单,易于读写。

SRAM 写操作时序如下(详细请参考 SRAM 用户手册):

SRAM 读操作时序如下(详细请参考 SRAM 用户手册):

SRAM 引脚标号	原理图标号	FPGA IO PIN
I/O0	MEM_D0	U17
I/O1	MEM_D1	U18
I/O2	MEM_D2	U16
I/O3	MEM_D3	V17
I/O4	MEM_D4	T11
I/O5	MEM_D5	U11
I/O6	MEM_D6	U12
I/O7	MEM_D7	V12
I/O8	MEM_D8	V10
I/O9	MEM_D9	V11
I/O10	MEM_D10	U14
I/O11	MEM_D11	V14
I/O12	MEM_D12	T13

I/O13	MEM_D13	U13
I/O14	MEM_D14	Т9
I/O15	MEM_D15	T10
A00	MEM_A00	T15
A01	MEM_A01	T14
A02	MEM_A02	N16
A03	MEM_A03	N15
A04	MEM_A04	M17
A05	MEM_A05	M16
A06	MEM_A06	P18
A07	MEM_A07	N17
A08	MEM_A08	P14
A09	MEM_A09	N14
A10	MEM_A10	T18
A11	MEM_A11	R18
A12	MEM_A12	M13
A13	MEM_A13	R13
A14	MEM_A14	R12
A15	MEM_A15	M18
A16	MEM_A16	L18
A17	MEM_A17	L16
A18	MEM_A18	L15
OE	SRAM_OE#	T16
CE	SRAM_CE#	V15
WE	SRAM_WE#	V16
UB	SRAM_UB	R16
LB	SRAM_LB	R10

12.模拟电压输入

Xilinx 7 系列的 FPGA 芯片内部集成了两个 12bit 位宽、采样率为 1MSPS 的 ADC,拥有多达 17 个外部模拟信号输入通道,为用户的设计提供了通用的、高精度的模拟输入接口。

下图是 XADC 模块的框图:

XADC 模块有一专用的支持差分输入的模拟通道输入引脚(VP/VN),另外还最多有 16 个辅助的模拟通道输入引脚(ADXP 和 ADXN, x 为 0 到 15)。

XADC 模块也包括一定数量的片上传感器用来测量片上的供电电压和芯片温度,这些测量转换数据存储在一个叫状态寄存器(status registers)的专用寄存器内,可由 FPGA 内部叫动态配置端口(Dynamic Reconfiguration Port (DRP))的 16位的同步读写端口访问。 ADC 转换数据也可以由 JTAG TAP 访问,这种情况下并不需要去直接例化 XADC 模块,因为这是一个已经存在于 FPGA JTAG 结构的专用接口。此时因为没有在设计中直接例化 XADC 模块,XADC 模块就工作在一种预先定义好的模式叫缺省模式,缺省模式下 XADC 模块专用于监视芯片上的供电电压和芯片温度。

XADC模块的操作模式是由用户通过 DRP 或 JTAG 接口写控制寄存器来选择的,控制寄存器的初始值有可能在设计中例化 XADC 模块时的块属性(block attributes)指定。模式选择是由控制寄存器 41H 的 SEO3 到 SEO0 比特决定,具体如下图示:

SEQ3	SEQ2	SEQ1	SEQ0	Function
0	0	0	0	Default Mode
0	0	0	1	Single pass sequence
0	0	1	0	Continuous sequence mode
0	0	1	1	Single Channel mode (Sequencer Off)
0	1	X	X	Simultaneous Sampling Mode
1	0	X	X	Independent ADC Mode
1	1	X	Х	Default Mode

XADC 模块的使用方法,一是直接用 FPGA JTAG 专用接口访问,这时 XADC 模块工作在缺省模式;二是在设计中例化 XADC 模块,这是可以通过 FPGA 逻辑或 ZYNQ 器件的 PS 到 ADC 模块的专用接口访问。(详细请参考 XADC 用户手册 ug480 7Series XADC.pdf)

EGO1 通过电位器(W1)向 FPGA 提供模拟电压输入,输入的模拟电压随着电位器的旋转在 0~1V 之间变化。输入的模拟信号与 FPGA 的 C12 引脚相连,最

终通过通道 1 输入到内部 ADC。

13.蓝牙模块

EGO1 上集成了蓝牙模块(BLE-CC41-A),FPGA 通过串口和蓝牙模块进行通信。波特率支持 1200,2400,4800,9600,14400,19200,38400,57600,115200和 230400bps。串口缺省波特率为 9600bps。该模块支持 AT 命令操作方法。

BLE-CC41-A 标号	原理图标号	FPGA IO PIN
UART_RX	BT_RX	N2 (FPGA 串口发送端)
UART_TX	BT_TX	L3 (FPGA 串口接收端)

14.通用扩展 I/O

EGO1 上为用户提供了灵活的通用接口(J5)用来作 I/O 扩展,共提供 32 个双向 IO,每个 IO 支持过流过压保护。

2x18标号	原理图标号	FPGA IO PIN
1	AD2P_15	B16
2	AD2N_15	B17
3	AD10P_15	A15
4	AD10N_15	A16
5	AD3P_15	A13
6	AD3N_15	A14
7	AD11P_15	B18
8	AD11N_15	A18
9	AD9P_15	F13
10	AD9N_15	F14
11	AD8P_15	B13
12	AD8N_15	B14
13	AD0P_15	D14
14	AD0N_15	C14
15	IO_L4P	B11
16	IO_L4N	A11
17	IO_L11P	E15
18	IO_L11N	E16
19	IO_L12P	D15
20	IO_L12N	C15
21	IO_L13P	H16
22	IO_L13N	G16
23	IO_L14P	F15

24	10.1101	F1/
24	IO_L14N	F16
25	IO_L15P	H14
26	IO_L15N	G14
27	IO_L16P	E17
28	IO_L16N	D17
29	IO_L17P	K13
30	IO_L17N	J13
31	IO_L18P	H17
32	IO_L18N	G17