Representation of Finite Groups

- Some Solutions to Exercises

CONTENTS

CONTENTS		
1	Generalities on linear representations	2
2	Character Theory	2
3	Subgroups, Products, Induced Representations	5
4	Compact Groups	7
5	Examples	7
6	The Group Algebra	7

1 Generalities on linear representations

No exercises in this section.

2 CHARACTER THEORY

Exercise 2.1 One can realize $\chi + \chi'$ as the character of $\rho \oplus \rho'$. Pick $s \in G$. Suppose

$$(e_1,\ldots,e_m), \quad (e'_1,\ldots,e'_n)$$

are eigenbasis for ρ , ρ' with eigenvalues (λ_i, λ_i') are \mathbb{C} -valued functions of G)

$$(\lambda_1,\ldots,\lambda_m), (\lambda'_1,\ldots,\lambda'_n)$$

then one can define a basis of $\rho \oplus \rho'$ by

$$(e_1'',\ldots,e_{m+n}''):=(e_1,\ldots,e_m,e_1',\ldots,e_n')$$

with corresponding eigenvalues

$$(\lambda_1'',\ldots,\lambda_{m+n}''):=(\lambda_1,\ldots,\lambda_m,\lambda_1',\ldots,\lambda_n')$$

Now we compute:

$$(\chi + \chi')_{\sigma}^2 = \operatorname{Tr}(\rho \oplus \rho') = \sum_{i \leq j} \lambda_i'' \lambda_j'' = \left(\sum_{i \leq m < j} + \sum_{i \leq j \leq m} + \sum_{m < i \leq j}\right) \lambda_i'' \lambda_j'' = \chi \chi' + \chi_{\sigma}^2 + \chi_{\sigma}'^2$$

We omit the similar computation for alternating squares.

EXERCISE 2.2 Let $(e_i)_{i \in X}$ be a basis of X, suppose for each $s \in G$ that

$$\rho_s(e_i) = \sum_{j \in X} r_{ji}(s)e_j$$

then we have

$$\chi = \sum_{i} r_{ii}$$

Since ρ is permutation representation of the group action G on X, we get

$$r_{ji}(s) = \delta_{si,j}$$

From this observation, we get

$$\chi(s) = \sum_{i} r_{ii}(s) = \sum_{i} \delta_{si,i}$$

This is the number of elements in X fixed by *s*.

EXERCISE 2.3 The idea is to define $\rho'_s(x') = x' \circ \rho_s^{-1}$. In a more informal way :

$$\rho' = \circ \rho^{-1}$$

We have the following calculation:

$$<\rho'_{s}(x'), \rho_{s}x>=< x'\rho_{s}^{-1}, \rho_{s}x>=< x', x>$$

This shows existence of ρ' ; uniqueness follows from nondegeneracy of <, >.

To compute the character χ' of ρ' , take an eigenbasis e_i of ρ with values λ_i define $e_i' \in V'$ by

$$\langle e_i', e_i \rangle = \delta_{ij}$$

then we have

$$<\rho'_{s}(e'_{i}), e_{j}> = < e'_{i}, \rho_{s}^{-1}e_{j}> = <\lambda_{i}^{*}e'_{i}, e_{j}>$$

so by non-degeneracy of <, >, we see that $\rho'_s(e'_i) = \lambda_i^* e'_i$, hence

$$\chi' = \sum_i \lambda_i^* = (\sum_i \lambda_i)^* = \chi^*$$

EXERCISE 2.4 The fact that it is a representation is straightfoward. Let us show that ρ , $\rho'_1 \otimes \rho_2$ are isomorphic representations, where ρ'_1 the contragredient of ρ_1 in **EXERCISE 2.3**. Suppose (d_1, \ldots, d_m) , (e_1, \ldots, e_n) are good basis for ρ_1 , ρ_2 with eigenvalues $(\lambda_1, \ldots, \lambda_m)$, (μ_1, \ldots, μ_m) .

- Define basis (d'_1, \ldots, d'_m) for ρ'_1 as in **Exercise 2.3**; it has eigenvalues $(\lambda_1^*, \ldots, \lambda_m^*)$. Now we get a good basis $(d'_i \otimes e_j)$ for $\rho'_1 \otimes \rho_2$ with eigenvalues $\lambda_i^* \mu_j$.
- Define basis $(f_{11}, f_{21}, \ldots, f_{mn})$ of ρ by

$$f_{ij}(d_k) = \delta_{ik}e_j$$

then we have

$$\rho_{s}(f_{ij})(d_{k}) = (\rho_{2,s}f_{ij}\rho_{1,s}^{-1})(d_{k}) = \lambda_{k}^{*}\mu_{j}\delta_{ik}e_{j} = \lambda_{k}^{*}\mu_{j}f_{ij}(d_{k}) = \begin{cases} 0, & \text{if } k \neq i \\ \lambda_{i}^{*}\mu_{j}f_{ij}(d_{k}), & \text{if } k = i \end{cases}$$

so we get $\rho_s(f_{ij})(d_k) = \lambda_i^* \mu_j f_{ij}(d_k)$, hence f_{ij} has eigenvalue $\lambda_i^* \mu_j$.

Now define a linear map between the representation spaces of ρ and $\rho'_1 \otimes \rho_2$:

$$T: f_{ij} \longmapsto d'_i \otimes e_j$$

This clearly defines an isomorphism of representations.

EXERCISE 2.5 The number of times ρ contains 1 is given by

$$(\rho|1) = \frac{1}{g} \sum_{t \in G} \chi(t)$$

by using Theorem 4 and the fact that the character of 1 is the constant function with value 1.

EXERCISE 2.6

(a) By decomposing the representation by restriction to orbits, it suffices to show:

If G acts transitively on X, then ρ decomposes as $1 \oplus \psi$, and that the corresponding this decomposition, we have a decomposition of χ into $1 + \psi$ such that $(\psi|1) = 0$.

This follows directly from the computation

$$(\chi|1) = \frac{1}{g} \sum_{t \in G} \chi(t) = \frac{1}{g} \sum_{t \in G} |X_t| = \frac{1}{g} \sum_{x \in X} |G_x| = \frac{1}{g} \sum_{x \in X} \frac{g}{|Gx|} = \frac{1}{g} \sum_{x \in X} \frac{g}{|X|} = 1$$

(the first equality is by **Exercise 2.5**, the second by **Exercise 2.2**, the third by a counting argument, the fourth by orbit-stabilizer, the fifth by the assumption that G acts transitively.)

- (b) Identify this representation with the tensor product $\rho \otimes \rho$.
- (c) Equivalence between (i)-(iii) is already established in the hint. The hint also said that (iii) is equivalent to $(\psi^2|1)=1$. Since ψ is real-valued (since χ , 1 are), we get $(\psi^2|1)=(\psi|\psi)$. These observations establishes the equivalence between (iii) and (iv).

EXERCISE 2.7 Suppose χ is one of such with dimension 1, let χ_i be the irreducible characters of G of dimension n_i , we have the following observation :

$$(\chi, \chi_i) = \frac{1}{g} \sum_{t \in G} \chi(t) \chi_i(t^{-1}) = \frac{nn_i}{g} n_i$$

Take $\chi_i = 1$, we see that n/g is a non-negative integer; this will suffice.

EXERCISE 2.8 In the canonical decomposition of V given by

$$V = \bigoplus_{i} V_{i}$$

choose a decomposition of V_i as

$$V_i = \bigoplus_i W_{i,j}$$

where each $W_{i,j}$ is isomorphic to W_i , then we also have canonical injections :

$$\alpha_{i,j}: W_i \xrightarrow{\sim} W_{i,j} \longrightarrow V_i \longrightarrow V$$

and projection maps

$$\rho_{i,j}:\ V \longrightarrow V_i \longrightarrow W_{i,j} \stackrel{^\sim}{\longrightarrow} W_i$$

Notice that these maps are all morphisms of representations.

(a) Assume $h \neq 0$. By assumption, h is a morphism of representations. Take the subrepresentation Ker(h), we see that h is injective. Compose h with the projection maps $\rho_{i,j}$, we see that as a vector space, we have

$$H_i = \bigoplus_i \operatorname{Span}(\alpha_{i,j})$$

4

From this, we see that H_i has the required dimension.

- (b) Since G acts trivially on each Span($\alpha_{i,j}$) (the G-structure on H_i given in **EXERCISE 2.4**), the above decomposition is readily a direct sum decomposition. Restriction of F to each Span($\alpha_{i,j}$) \otimes W_i induce an isomorphism (of representations) to W_{i,j}.
- (c) Since G acts trivially on each Span($\alpha_{i,j}$) (as remarked in (b)), H_i is a trivial G-space, hence any direct sum decomposition H_i as direct sum of lines (as vector spaces), is readily a direct sum decomposition of trivial representations.

Exercise 2.9 Recall the maps $\alpha_{i,j}$ in **Exercise 2.8**. The image of the evaluation morphism is

$$\operatorname{Span}(\alpha_{i,j}(e_{\alpha})) = V_{i,\alpha}$$

so we are done already.

EXERCISE 2.10 Since $x \in V_i$, we have

$$x=p_i(x)=(\sum_{\alpha}p_{\alpha\alpha})(x)=(\sum_{\alpha}p_{\alpha1}p_{1\alpha})(x)=\sum_{\alpha}p_{\alpha1}(x_1^{\alpha})\in\sum_{\alpha}\mathrm{W}(x_1^{\alpha})$$

It is easy to see that V(x) admits another description :

$$V(x) = \operatorname{Span}(\rho_t(x))_{t \in G}$$

By the direct description of $p_{1\alpha}$, we get

$$x_1^{\alpha} = p_{1\alpha}(x) = \frac{n}{g} \sum_{t \in G} r_{\alpha 1}(t^{-1}) \rho_t(x) \in \text{Span}(\rho_t(x))_{t \in G} = V(x)$$

These two observations establishes the identity

$$V(x) = \sum_{\alpha} W(x_1^{\alpha})$$

3 Subgroups, Products, Induced Representations

EXERCISE 3.1 Each ρ_t is an automorphism of representation, so are homotheties, hence any one dimensional subspace is a subrepresentation.

Exercise 3.2

- (a) Since ρ_s is a morphism for $s \in C$, we have by Schur's lemma that ρ_s is a homothety. Since the eigenvalues of ρ_s lies on the unit circle, we get $|\chi(s)| = n$ consequencely.
- (b) By orthogonality of characters and (a) that

$$g = \sum_{t \in G} |\chi(s)|^2 \ge \sum_{t \in C} |\chi(s)|^2 = cn^2$$

(c) Recall that each element in G has finite order. Define $\xi = \exp(2\pi i/g)$. By (a), for each $t \in C$, there exists an integer μ_s such that

$$\rho_s = \xi^{\mu_s}$$

Let $d = \gcd(\mu_s)_{s \in \mathbb{C}}$, then there exists integers a_s such that

$$d = \sum_{s \in C} a_s \mu_s$$

Define an element *t* in C by

$$t = \prod_{s \in C} s^{a_s}$$

then we get $\rho_t = \xi^d$. Since ρ is faithful, we see that t generates C.

EXERCISE 3.3 A character from an abelian group is just a homomorphism from G to \mathbb{C}^* . The group structure on \mathbb{C}^* then endows \hat{G} with a structure of an abelian group. To check that the map into the double dual of G is an injection, notice that

$$\chi(x) = \chi(y)$$
 for all $\chi \in \hat{G}$ iff $\chi(xy^{-1}) = 1$ for all $\chi \in \hat{G}$ iff $x = y$

This will suffice. For reasons of cardinality, this map is a bijection.

EXERCISE 3.4 Use the hint and Example 1,3 in that subsection.

EXERCISE 3.5 We already know that W can be identified as the space of elements in V that vanishes off H. Notice that the explicit description of the action of G on V implies that $\rho_s W$ is the space of elements in V that that vanishes off Hs^{-1} ; from this observation, the conditions of the definition of an induced representation is easily checked.

EXERCISE 3.6 The idea is to calculate the characters of ρ and $\theta \otimes r_K$. Let $(u, v) \in H \times K$, we get

$$\chi_{\rho}(uv) = \sum_{\substack{t \in K \\ t^{-1}uvt \in H}} \chi_{\theta}(t^{-1}uvt)$$

We pause for a bit to consider what does this summation does.

• Suppose v = 1, then we have for all $t \in K$ that $t^{-1}uvt = u$, and that

$$\{t \in \mathbf{K} : t^{-1}uvt \in \mathbf{H}\} = \mathbf{K}$$

• Suppose $v \neq 1$, then we have for all $t \in K$ that $t^{-1}uvt \notin H$, so

$$\{t \in \mathbf{K} : t^{-1}uvt \in \mathbf{H}\} = \emptyset$$

From these two observations, we get

$$\chi_{\rho}(uv) = \sum_{\substack{t \in \mathbb{K} \\ t^{-1}uvt \in \mathbb{H}}} \chi_{\theta}(t^{-1}uvt) = \begin{cases} k\chi_{\theta}(u) & \text{if } v = 1 \\ 0 & \text{if } v \neq 1 \end{cases}$$

On the other hand, we know that

$$\chi_{\theta \otimes r_{K}}(uv) = \chi_{\theta}(u)\chi_{r_{K}}(v) = \begin{cases} k\chi_{\theta}(u) & \text{if } v = 1\\ 0 & \text{if } v \neq 1 \end{cases}$$

so ρ is isomorphic to $\theta \otimes r_K$.

4 Compact Groups

No exercises in this section.

5 Examples

nah.

6 THE GROUP ALGEBRA

EXERCISE 6.1 Let us show (i) implies (ii). Define the nontrivial proper submodule V as given in the hint, suppose it has a complementary summand W. Take some nontrivial element

$$x = \sum_{t \in G} a_t t \in W$$
, $\sum_{t \in G} a_t \neq 0$

then the element $\sum_{s \in G} sx$ is non-trivial and lies in the intersection of W and V.

EXERCISE 6.2 The formula is bilinear in each argument, so it suffices to treat the case where $u, v \in G$. By definition, we get

$$\langle u, v \rangle = q \delta_{uv^{-1}}$$

so we only need to show

$$\delta_{uv^{-1}} = \frac{1}{g} \sum_{i} n_i \chi_i(uv^{-1})$$

which is clear by the character theory of the regular representation of G.

Exercise 6.3

(a) Since U is finite and contains G, the first assertion is clear. For the identity

$$\operatorname{Tr}_{W_i}(\rho_i(s^{-1})u_i)^* = \operatorname{Tr}_{W_i}(u_i'\rho_i(s))$$

recall that we may choose an eigenbasis for W_i with respect to ρ_i , so we may safely say that $\text{Tr}_{W_i}(\rho_i(s^{-1})u_i)$ is the sum of eigenvalues. Observe also that

$$(\rho_i(s^{-1})u_i)(u_i'\rho_i(s)) = 1$$

so we deduce the identity by using an argument like

$$\operatorname{Tr}_{W_i}(\rho_i(s^{-1})u_i)^* = \sum \lambda_j^* = \sum \lambda_j^{-1} = \operatorname{Tr}_{W_i}(u_i'\rho_i(s))$$

The identity

$$\operatorname{Tr}_{W_i}(u_i'\rho_i(s)) = \operatorname{Tr}_{W_i}(\rho_i(s)u_i')$$

is clear by noticing that $u'_i \rho_i(s)$, $\rho_i(s) u'_i$ are conjugates.

(b) By (a) and **EXERCISE 6.1**, we see that

$$\sum_{t \in G} |u(t)|^2 = \sum_{t \in G} u(t)u'(t^{-1}) = \frac{1}{g} \langle u, u' \rangle = \frac{1}{g} \sum_{i=1}^h n_i \operatorname{Tr}_{W_i}(uu') = \frac{1}{g} \sum_{i=1}^h n_i^2 = 1$$

- (c) Obvious.
- (d) Take $U = \mathbb{Z}[G]$.

Exercise 6.4 By the computation

$$\omega_k(p_i) = \frac{1}{n_k} \sum_{t \in G} \frac{n_i}{g} \chi_i(t^{-1}) \chi_k(t) = \delta_{ik}$$

we see that the image of the elements p_i under the isomorphism described in proposition 13 form a basis of \mathbb{C}^h , so p_i form a basis, and it also follows from the computations

$$\omega_k(p_i p_j) = \omega_k(p_i) \omega_k(p_j) = \delta_{ik} \delta_{jk} = \delta_{ij} \delta_{ik} = \begin{cases} \omega_k(p_i) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
$$\omega_k(\sum_i p_i) = \sum_i \delta_{ik} = 1 = \omega_k(1)$$

that the other required identities are verified.

Exercise 6.5 Let ν be a homomorphism from the center of $\mathbb{C}[G]$ to \mathbb{C} . **Exercise 6.4** says

$$\begin{cases} v(p_i) \in \{0, 1\} \\ \sum_i v(p_i) = 1 \end{cases}$$

It is easy to deduce from this that v is just one of the ω_i .

EXERCISE 6.6 Firstly, since

$$\bigoplus_{i} \mathbb{Z}e_{i} \subseteq \operatorname{Cent.}(\mathbb{C}[G])$$

we get $\bigoplus_i \mathbb{Z}e_i \subseteq \text{Cent.}(\mathbb{Z}[G])$. For the reverse, choose some

$$u = \sum_{t \in G} u(t)t \in \text{Cent.}(\mathbb{Z}[G])$$

Suppose $t, t' \in G$ lie in the same conjugacy class, say,

$$st = t's$$

for some $s \in G$, then by us = su, we get u(t) = u(t'). This observation shows $u \in \bigoplus_i \mathbb{Z}e_i$.

EXERCISE 6.7 By the hint, we are done by applying the triangle inequality.

EXERCISE 6.8 (For each nonnegative integer N, we define $\xi_N := \exp(2\pi i/N)$.) Let f(x) be the minimal polynomial of a over \mathbb{Q} , then $f(x) \in \mathbb{Z}[x]$ by integrality. In order to show $|A| \leq 1$, it suffices to show the following :

Claim : The conjugates of a (roots of f(x)) over Q all have length ≤ 1 .

Since λ_i are roots of unities, may take an integer $N\gg 0$ such that $\lambda_i\in\{\xi_N^0,\ldots,\xi_N^{N-1}\}$. We have the following diagram of field extensions :

$$\mathbb{Q}(\xi_{N})$$
 —— $\mathbb{Q}(a)$ —— \mathbb{Q}

Recall that the Galois group of the cyclotomic extension $\mathbb{Q}(\xi_N)/\mathbb{Q}$ is given by

$$\operatorname{Gal}(\mathbb{Q}(\xi_{\mathrm{N}})/\mathbb{Q}) = \{\theta_d: \xi_{\mathrm{N}} \mapsto \xi_{\mathrm{N}}^d | (d, \mathrm{N}) = 1\} \simeq (\mathbb{Z}/\mathrm{N}\mathbb{Z})^\times$$

8

Define a polynomial

$$F(x) := \prod_{\sigma \in Gal(\mathbb{Q}(\xi_{\mathbb{N}})/\mathbb{Q})} (x - \sigma(a)) = \prod_{d:(d,\mathbb{N})=1} (x - \theta_d(a))$$

then $F(x) \in \mathbb{Q}[x]$ and f(x)|F(x) by the property of minimal polynomials. By the definition of θ_d , we have the following calculation :

$$\theta_d(a) = \theta_d(\frac{1}{n}(\sum_{i=1}^h \lambda_i)) = \frac{1}{n}(\sum_{i=1}^h \lambda_i^d)$$

so $|\theta_d(a)| \le 1$, so the roots of F(x) (hence those of f(x)) all have length ≤ 1 ; this proves the claim. By the definition of f(x), we see that the constant term of f(x) is $\pm A$, so we get $A \in \mathbb{Z}$. Since $|A| \le 1$, $A \in \{0, \pm 1\}$. If A = 0, a = 0; If $A = \pm 1$, |a| = 1 by our claim, and hence $\lambda_i = a$ for all i.

EXERCISE 6.9 Since the e_i lies in the center of the group algebra, it follows immediately that

$$\frac{c(s)}{n}\chi(s)$$

are all algebraic integers (for each $s \in G$). For the second assertion, we claim that

$$\frac{1}{n}\chi(s)$$

is an algebraic integer; this follows from the fact that $\chi(s)/n$ is a \mathbb{Z} -combination of the algebraic integers $\chi(s)$ and $c(s)\chi(s)/n$ by using the assumption that (c(s),n)=1. By **EXERCISE 6.8**, the eigenvalues of ρ_s are all the same given $\chi(s)\neq 0$, so ρ_s is a homothety.

EXERCISE 6.10 By the character theory of the regular representation of G, we get

$$1 + \sum_{\chi \neq 1} \chi(1) \chi(s) = 0$$

whenever $s \neq 1$. Notice that suppose every irreducible character of G satisfies

Either
$$\chi(s) = 0$$
 or $p|\chi(1)$

then we see that

$$-1 = \sum_{\chi \neq 1} \chi(1)\chi(s) = \sum_{\substack{\chi \neq 1 \\ p \mid \chi(1)}} \chi(1)\chi(s)$$

This formula then exhibits 1/p as an algebraic integer in view of Proposition 15. For the second assertion, notice that given ρ , χ satisfying the condition, we see that

$$\chi(s) \neq 0$$
 and $(\chi(1), c(s)) = 1$

so in view of **EXERCISE 6.9**, $\rho(s)$ is just a homothety.

For the last part, notice first that since χ isn't trivial, N \neq G. Next, since

 $sN \in Cent.(G/N)$ iff the commutator [st] with any $t \in G$ lies in G iff $\rho([st]) = 1$ for all $t \in G$ we see that the last assertion is clearly true by the observation that $\rho(s)$ is a homothety.