Comp 6321 - Machine Learning - Assignment 3

Federico O'Reilly Regueiro

November 10^{th} , 2016

Question 1: Midterm preparation question

Propose an adequate learning algorithm for each instance.

- 1.a 1000 samples, 6-dimensional continuous space, classify ${\sim}100$ examples.
- 1.b Clasifier for children in special-ed, justified to the board before it's implemented.
- 1.c Binary classification of 1 million bits (empirical preference rate for others), very large data-set. Frequent updates.
- 1.d 40 attributes, discrete and continuous, some have noise; only about 50 labeled observations.

Question 2: Properties of entropy

2.a Compute the following for (X, Y):

$$p(0,0) = 1/3, p(0,1) = 1/3, p(1,0) = 0, p(1,1) = 1/3.$$

i
$$H[x] = -\frac{1}{3}log_2\left(\frac{1}{3}\right) - \frac{2}{3}log_2\left(\frac{2}{3}\right) = .9182$$

ii
$$H[y] = -\frac{1}{3}log_2(\frac{1}{3}) - \frac{2}{3}log_2(\frac{2}{3}) = .9182$$

iii
$$H[y|x]=\sum_x p(x)H[Y|X=x]=\frac{2}{3}\left(-\frac{1}{2}log_2\left(\frac{1}{2}\right)-\frac{1}{2}log_2\left(\frac{1}{2}\right)\right)=\frac{2}{3}$$

iv
$$H[x|y] = \sum_{y} p(x)H[X|Y=y] = \frac{2}{3}\left(-\frac{1}{2}log_2\left(\frac{1}{2}\right) - \frac{1}{2}log_2\left(\frac{1}{2}\right)\right) = \frac{2}{3}$$

v
$$H[x,y] = 3\left(-\frac{1}{3}log_2\left(\frac{1}{3}\right)\right) = -log_2\left(\frac{1}{3}\right) = 1.5849$$

vi
$$I[x,y] = \sum_{x} \sum_{y} p(x,y) log_2 \left(\frac{p(x,y)}{p(x)p(y)} \right) = H[x] - H[x|y] = 0.2516$$

2.b Prove maximum entropy in a discrete distribution happens in U

We wish to find:

$$\arg\max_{p_n} \sum_{n=1}^{N} p_n log(p_n)$$

With constraints:

$$1 - \sum_{n=1}^{N} p_n = 0$$

We use a Lagrangian multiplier such that:

$$\nabla_{p_1, p_2, \dots p_N} \sum_{n=1}^{N} p_n log(p_n) = \nabla_{p_1, p_2, \dots p_N} \lambda (1 - \sum_{n=1}^{N} p_n)$$

We are thus left with a system:

$$\frac{\partial}{\partial p_1} \sum_{n=1}^{N} p_n log(p_n) = \frac{\partial}{\partial p_1} \lambda (1 - \sum_{n=1}^{N} p_n)$$

$$\frac{\partial}{\partial p_2} \sum_{n=1}^{N} p_n log(p_n) = \frac{\partial}{\partial p_2} \lambda (1 - \sum_{n=1}^{N} p_n)$$

$$\vdots$$

$$\frac{\partial}{\partial p_N} \sum_{n=1}^{N} p_n log(p_n) = \frac{\partial}{\partial p_N} \lambda (1 - \sum_{n=1}^{N} p_n)$$

$$1 - \sum_{n=1}^{N} p_n = 0$$

Which in turn yields:

$$log(p_1) + 1 = \lambda p_1$$

$$log(p_2) + 1 = \lambda p_2$$

$$\vdots$$

$$log(p_N) + 1 = \lambda p_N$$

$$1 - \sum_{i=1}^{N} p_i = 0$$

From which it is clear that $p_1 = p_2 = \dots p_N = \frac{1}{N}$, which is precisely a discrete uniform distribution.

2.c Show that T_1 wins

The notes show two possible tests for a decision tree. T1, where the left child has [20+, 10-] possible outcomes in its sub-trees and the right node has [10+, 0-]. T2, on the other hand, yields: left = [15+, 7-]; right = [15+, 3-].

The best choice should yield the maximum information gain $I[p, T_n], n \in \{1, 2\}$. So for T_1 :

$$\begin{split} H[p] &= -\frac{1}{4}log_2\left(\frac{1}{4}\right) - \frac{3}{4}log_2\left(\frac{3}{4}\right) = 0.8112\\ H[p|T_1 = t] &= -\frac{2}{3}log_2\left(\frac{2}{3}\right) - \frac{1}{3}log_2\left(\frac{1}{3}\right) = 0.9182\\ H[p|T_1 = f] &= 0\\ H[p|T_1] &= p(T_1 = t)H[p|T_1 = t] + p(T_1 = f)H[p|T_1 = f]\\ &= 0.6887\\ I[p, T_1] &= H[p] - H[p|T_1] = 0.1225 \end{split}$$

Whereas for T_2 we have:

$$\begin{split} H[p|T_2=t] &= -\frac{15}{22}log_2\left(\frac{15}{22}\right) - \frac{7}{22}log_2\left(\frac{7}{22}\right) = 0.9024 \\ H[p|T_2=f] &= -\frac{15}{18}log_2\left(\frac{15}{18}\right) - \frac{3}{18}log_2\left(\frac{3}{18}\right) = 0.65002 \\ H[p|T_2] &= p(T_2=t)H[p|T_2=t] + p(T_2=f)H[p|T_2=f] \\ &= \frac{22}{40}0.9024 + \frac{18}{40}0.65002 = 0.7888 \\ I[p,T_2] &= H[p] - H[p|T_2] = 0.02245 \end{split}$$

From which we can see that we gain much more information from knowing the result of T_1 than by knowing the result of T_2 .

Question 3: Kernels

Suppose $k_1(\boldsymbol{x}, \boldsymbol{z})$ and $k_2(\boldsymbol{x}, \boldsymbol{z})$ are valid kernels over $\mathbb{R}^n x \mathbb{R}^n$. Prove or disprove that the following are valid kernels.

Use Mercer's theorem regarding the kernel or Gram matrix or the fact that a kernel can be expressed as $k(x, z) = \phi(\mathbf{x})^T \phi(\mathbf{z})$.

preliminaries

From Mercer, we know for each $k_1(x, z)$ and $k_2(x, z)$ we have corresponding kernel matrices M_1 and M_2 which are symmetric and positive semi-definite.

For both M_1 and M_2 :

Symmetry:

$$\boldsymbol{M}_i = \boldsymbol{M}_i^T \tag{1}$$

Positive semidefiniteness:

$$\boldsymbol{x}^T \boldsymbol{M}_i \boldsymbol{x} \ge 0 \tag{2}$$

$$|\boldsymbol{M}_i| \ge 0 \tag{3}$$

3.a
$$k(x, z) = ak_1(x, z) + bk_2(x, z), a, b > 0; a, b \in \mathbb{R}$$

Firstly, we establish that for any valid kernel $k(\boldsymbol{x}, \boldsymbol{z}), ak(\boldsymbol{x}, \boldsymbol{z})|a>0; a\in\mathbb{R}$: We know that for a square matrix \boldsymbol{A} of size nxn, $|a\boldsymbol{A}|=a^n\,|A|$,, and since $a^n\geq 0 \forall n\in\mathbb{N}, a>0$ Then the property from equation 3 holds for both of our summands. Additionally, since the scalar multiplication of a symmetric matrix yields another symmetric matrix, both summands are valid kernels.

Now, let us say:

$$ak_1(\boldsymbol{x},\boldsymbol{z}) = k_1'(\boldsymbol{x},\boldsymbol{z})$$

and

$$bk_2(\boldsymbol{x},\boldsymbol{z}) = k_2'(\boldsymbol{x},\boldsymbol{z})$$

are both valid kernels with kernel matrices M'_1 and M'_2 . The addition of two symmetric matrices yields a symmetric matrix, so we need to check for positive semi-definiteness.

Since both M_1' and M_2' are symmetric we can write:

$$oldsymbol{M}_1' = oldsymbol{U}^T oldsymbol{U} \ oldsymbol{M}_2' = oldsymbol{V}^T oldsymbol{V}$$

and using equation 2:

$$(\boldsymbol{x}^T \boldsymbol{U}^T \boldsymbol{U} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{V}^T \boldsymbol{V} \boldsymbol{x}) \ge 0$$
$$\boldsymbol{x}^T (\boldsymbol{U}^T \boldsymbol{U} + \boldsymbol{V}^T \boldsymbol{V}) \boldsymbol{x} \ge 0$$
$$\boldsymbol{x}^T (\boldsymbol{M}_1' + \boldsymbol{M}_2') \boldsymbol{x} \ge 0$$

Which proves that $k(\boldsymbol{x}, \boldsymbol{z}) = ak_1(\boldsymbol{x}, \boldsymbol{z}) + bk_2(\boldsymbol{x}, \boldsymbol{z}), a, b > 0; a, b \in \mathbb{R}$ is a valid kernel.

3.b
$$k(x, z) = ak_1(x, z) - bk_2(x, z), a, b > 0; a, b \in \mathbb{R}$$

Suppose:

$$a=1,b=1,M_1=\begin{bmatrix}1&1\\1&1\end{bmatrix},M_2=\begin{bmatrix}1&0\\0&1\end{bmatrix},$$

Both M_1 and M_2 symetric, positive semi-definite matrices. Yet $M' = aM_1 - bM_2$ would yield:

$$M_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The eigenvalues of which are $\lambda_1 = -1, \lambda_2 = 1$, making M' a non positive semi-definite matrix and thus k(x, z) is not a valid kernel.

3.c
$$k(x,z) = k_1(x,z)k_2(x,z)$$

The kernel matrix M' of the product of two matrices $k_1(x, z)$, $k_2(x, z)$ is equivalent to the element-wise multiplication of the respective two kernel matrices M_1, M_2 . This is also known as the Hadamard product or the Schur product. The Schur product theorem states that the Schur product of two positive semi-definite matrices is also positive semi-definite. It is trivial to show that symmetry is preserved under such conditions.

3.d
$$k(\boldsymbol{x}, \boldsymbol{z}) = f(\boldsymbol{x}) f(\boldsymbol{z}), where \ f : \mathbb{R}^n \to \mathbb{R}$$

Here we rely on the fact that a kernel can be expressed as $k(x, z) = \phi(\mathbf{x})^T \phi(\mathbf{z})$ where $\phi(\mathbf{x})$ maps \mathbf{x} onto an n-dimensional space.

It is trivial to see that if n=1 and $\phi=f, f(\boldsymbol{x})f(\boldsymbol{z})$ constitutes a valid kernel.

3.e
$$k(x, z) = f(x)f(z)$$
, where p pdf.

The same rationale as question 3.d applies here.

Question 4: Nearest neighbour vs decision trees, do boundaries coincide?

Boundaries do not necessarily coincide for these two classification strategies. Boundaries for trees are composed of hyper-planes that are orthogonal to the feature(s) chosen for the separation and pass through the midpoint between neighboring points along the axis of the chosen feature(s); so their boundaries can have one direction out of a set number of directions for a given space. Conversely, boundaries for nearest-neibours correspond to a Voronoi tessellation, where the space is populated with hyper-planes running orthogonal to lines uniting nearest neighbors (thus said hyperplanes can have an arbitrary direction) and passing through the midpoint between neighbours along this axis.

To illustrate: Suppose an

Question 5: Bayes rate

For the following univariate case where $P(\omega_i) = \frac{1}{c}$ and

$$P(x|\omega_i) = \begin{cases} 1 & 0 \le x \le \frac{cr}{c-1} \\ 1 & i \le x \le i+1 - \frac{cr}{c-1} \\ 0 & otherwise \end{cases}$$

5.a Show that $P^* = r$

The minimal multi-class classification error rate P^* is given by:

$$P^* = 1 - \int \arg\max_{i} P(\omega_i) P(x|\omega_i) dx$$

And given the class density and probability, we can see that for any region with overlapping densities, the choice of any i will maximize. Thus:

$$P^* = 1 - \int P(\omega_1)P(x|\omega_1)dx$$

$$= 1 - \frac{1}{c} \int_0^{\frac{cr}{c-1}} dx - \sum_{i=1}^c \frac{1}{c} \int_i^{i+1-\frac{cr}{c-1}} dx$$

$$= 1 - \left(\frac{r}{c-1} + 1 - \frac{cr}{c-1}\right)$$

$$= 1 - \left(\frac{r + (c-1) - cr}{c-1}\right)$$

$$= 1 - \left(\frac{r(c-1) - (c-1)}{c-1}\right)$$

$$= 1 + r - 1$$

$$= r$$

If, however, $r<0, |r|<\frac{c-1}{c},$ there are c-1 density overlaps. Thus we would need to develop otherwise:

$$P^* = 1 - \int P(\omega_1) P(x|\omega_1) dx$$

$$= \sum_{i=1}^{c-1} \frac{1}{c} \int_{i+1}^{i+1 + \frac{c|r|}{c-1}} dx$$

$$= \left(\frac{c-1}{c} \frac{|r|}{c-1}\right)$$

$$= |r|$$

5.b Show the nearest-neighbor rate $P = P^*$

$$\begin{split} LNN &= \int \left[1 - \sum_{i=1}^{c} P^{2}(\omega_{i}|x)\right] p(x) dx \\ &= \int \left[1 - \sum_{i=1}^{c} \left(\frac{P(x|\omega_{i})P(\omega_{i})}{p(x)}\right)^{2}\right] p(x) dx \\ &= \int p(x) - \sum_{i=1}^{c} \frac{P(x|\omega_{i})^{2}P(\omega_{i})^{2}}{p(x)} dx \\ &= \int p(x) - \sum_{i=1}^{c} \frac{P(x|\omega_{i})P(\omega_{i})(P(x|\omega_{i})P(\omega_{i}))}{p(x)} dx \\ &= \int p(x) - \sum_{i=1}^{c} \frac{P(x|\omega_{i})P(\omega_{i})p(x)}{p(x)} dx \\ &= \int p(x) dx - \frac{1}{c} \int_{0}^{\frac{cr}{c-1}} dx - \sum_{i=1}^{c} \frac{1}{c} \int_{i}^{i+1-\frac{cr}{c-1}} dx \\ &= 1 - \frac{1}{c} \frac{cr}{c-1} - 1 - \frac{cr}{c-1} \\ &= \frac{cr-r}{c-1} \\ &= r \end{split}$$

Question 6: Implementation