

Learning Objectives

- Students completing this lecture will be able to
 - Explain the following terms: view normalization, perspective division
 - Write WebGL code to implement desired viewing

WebGL Camera

The WebGL Camera

- In WebGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Default Projection

Default projection is orthogonal

Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame
- Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (translate (0.0,0.0,-d);)
 - d > 0

Moving Camera back from Origin

frames after translation by -d d > 0default frames y, y_c $\rightarrow X, X_c$ (a) (b)

Moving the Camera

R

 We can move the camera to any desired position by a sequence of rotations and translations

- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix C = TR

WebGL code

 Remember that last transformation specified is first to be applied

The lookAt Function

The lookAt Function

- The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Replaced by lookAt() in MV.js
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = lookAt(eye, at, up);
```

WebGL Projection

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

default orthographic projection

In practice, we can let M = I and set the z term to zero later

Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0

Perspective Equations

Consider top (x-z) plane) and side (y-z) plane) views

$$x_p = \frac{x}{z/d}$$
 $y_p = \frac{y}{z/d}$ $z_p = c$

Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{M}\mathbf{p}$$
 where $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \implies \mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective Division

- However w ≠ 1, so we must divide by w to return from homogeneous coordinates
- This perspective division yields the desired perspective equations

$$x_p = \frac{x}{z/d} \qquad y_p = \frac{y}{z/d} \qquad z_p = d$$

 We will consider the corresponding clipping volume with MV.js functions

WebGL Orthogonal Viewing

ortho(left, right, bottom, top, near, far);

near and far measured <u>from</u> camera, negative if behind the camera, note that the function does z-flipping!

WebGL Perspective Viewing

frustum(left, right, bottom, top, near, far);

 near and far must be positive, i.e., the camera is in front of both near and far planes

Using Field of View

- With frustum it is often difficult to get the desired view
- perpective(fovy, aspect, near, far);
- Often provides a better interface
 - fovy field of view angle in the y direction
 - near and far must be positive

Example – WebGL Code

```
var render = function() {
  gl.clear( gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT);
   eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
              radius * Math.sin (theta) * Math.sin (phi),
              radius*Math.cos(theta));
  modelViewMatrix = lookAt(eye, at, up);
  projectionMatrix = perspective(fovy, aspect, near,
                                  far);
  gl.uniformMatrix4fv( modelViewMatrixLoc, false,
                       flatten(modelViewMatrix) );
  ql.uniformMatrix4fv( projectionMatrixLoc, false,
                       flatten(projectionMatrix) );
  gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
  requestAnimFrame(render);
```

Example – Vertex Shader Code

```
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
    gl_Position =
        projectionMatrix*modelViewMatrix*vPosition;
    fColor = vColor;
}
```

Projection Matrices

View Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Notes

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until the end (important for hidden-surface removal to retain depth information as long as possible)

Orthogonal Normalization

ortho(left, right, bottom, top, near, far);

normalization ⇒ find transformation to convert specified clipping volume to default

Orthogonal Matrix (1)

- Two steps
 - Move center to origin

$$T(-(right+left)/2, -(top+bottom)/2, +(far+near)/2))$$

Scale to have sides of length 2

$$S(+2/(right-left), +2/(top-bottom), -2/(far-near))$$

Orthogonal Matrix (2)

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & 0 \\ 0 & \frac{2}{top - bottom} & 0 & 0 \\ 0 & 0 & -\frac{2}{far - near} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{right + left}{2} \\ 0 & 1 & 0 & -\frac{top + bottom}{2} \\ 0 & 0 & 1 & \frac{far + near}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & -\frac{2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthogonal Matrix (3)

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & 0 \\ 0 & \frac{2}{top - bottom} & 0 & 0 \\ 0 & 0 & -\frac{2}{far - near} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{right + left}{2} \\ 0 & 1 & 0 & -\frac{top + bottom}{2} \\ 0 & 0 & 1 & \frac{far + near}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & -\frac{2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Verify for ortho(-1, 1, -1, 1, -1, 1)

Perspective Projection (1)

Side view

eye (projection center)

$$y/y' = -z/d$$

$$y' = y \times d/-z$$

Perspective Projection (2)

Same for x. So we have:

$$x' = x \times d/-z$$

 $y' = y \times d/-z$
 $z' = -d$

Put into a matrix form:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & (1/-d) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• OpenGL assume d = 1, i.e., the image plane is at z = -1

Perspective Projection (3)

- We are not done yet. We want to somewhat keep the z information so that we can perform depth comparison
- Use pseudo depth OpenGL maps the near plane to -1, and far plane to +1
- Need to modify the projection matrix: solve a and b

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1/-d) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

How to solve a and b?

Perspective Projection (4)

• Solve a and b

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1/-d) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

•
$$d = 1$$

•
$$(0, 0, -1)^T = \mathbf{M} (0, 0, -\text{near})^T$$

•
$$(0, 0, +1)^T = \mathbf{M} (0, 0, -\text{far})^T$$

•
$$a = -(far + near) / (far - near)$$

•
$$b = (-2 \text{ x far x near}) / (\text{far-near})$$

Verify this!

•
$$(0, 0, -1)^T = \mathbf{M} (0, 0, -\text{near})^T$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -near \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -a \times near + b \\ near \end{bmatrix}$$

$$\frac{-a \times near + b}{near} = -1$$

Verify this!

•
$$(0, 0, +1)^T = \mathbf{M} (0, 0, -\text{far})^T$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -far \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -a \times far + b \\ far \end{bmatrix}$$

$$\frac{-a \times far + b}{far} = +1$$

Verify this!

$$\frac{-a \times near + b}{near} = -1$$

$$\frac{-a \times far + b}{far} = +1$$

$$a = \frac{-(far + near)}{far - near}$$

$$b = \frac{-(2 \times far \times near)}{far - near}$$

Perspective Projection (5)

Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to [-1, 1] (translate and scale)

 And takes care the case that eye is not at the center of the view volume (shear)

OpenGL Perspective Matrix

 The normalization in frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation

Final Projection Matrix

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2 \times near}{right - left} & 0 & \frac{right + left}{right - left} & 0 \\ 0 & \frac{2 \times near}{top - bottom} & \frac{top + bottom}{top - bottom} & 0 \\ 0 & 0 & \frac{-(far + near)}{far - near} & \frac{-2 \times far \times near}{far - near} \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
frustum(left, right, bottom, top, near, far);

frustum(left, right, bottom, top, near, far);
near and far must be positive

 After perspective projection, the viewing frustum is also project into a canonical view volume (like in orthogonal projection)

Check implementation in MV.js

WebGL Perspective

• frustum allows for an unsymmetric viewing frustum (although perspective does not)

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- We simplify clipping