

(ApprovedInstitute of Technology by NBA &

(Autonomous Institute, Affiliated to VTU) by AICTE, New Delhi & Govt. of Karnataka)

Accredited

NAAC with 'A' Grade

EXAMINATIONS SEPTEMBER /OCTOBER 2020 SUPPLEMENTARY SEMESTER / GRADE IMPROVEMENT/ RE -REGISTERED CANDIDATES

Program : **B.E. : Computer Science Engineering** Semester : **IV**Course Name : **Design and Analysis of Algorithm** Max. Marks : 100

Course Code : **CS42** Duration : 3 Hrs

Instructions to the Candidates:

• Answer any one full question from each unit.

UNIT - I

1. a) Check if the following equalities are correct or not. If not correct, CO1 (06) then write the proper justification for the same.

i. $5n^2 - 6n = \theta(n^2)$

ii. $n! = O(n^n)$

iii. $2n^22^n + n \log n = \theta(n^22^n)$

b) Determine the stable matching set S for the following set of men CO1 (06)

and women using Gale-Shapley algorithm.

М	Men's Preference List				
Α	R	Q	S	Р	
В	Q	Р	R	S	
U	Q	S	Р	R	
D	R	Р	S	0	

Women's Preference List				
Р	Α	В	D	C
Q	С	Α	D	В
R	С	В	D	Α
S	В	Α	С	D

- c) What is meant by "Best Valid Partner" with respect to Gale- CO1 (08) Shapley algorithm? Prove that "Every execution of the G-S algorithm results in the set S*".
- 2. a) Write an algorithm to find out the maximum distance between a CO1 (05) pair of points in a given plane with n points.
 - b) Prove that "For every b>1 and every x>0, we have $\log_{\mathbb{B}} n$ CO1 (05) = $O(n^{x})$ ".
 - c) Describe the five representative problems with examples to each. CO1 (10)

UNIT - II

- 3. a) List the different applications of BFS and DFS algorithms. CO2 (04)
 - b) Analyze the running time of Merge-Sort using the following CO2 (06) methods:
 - i. Unrolling method ii. Substituting a solution.
 - c) Write the Counting Inversion algorithm. Find out the number of CO2 (10) inversions for the following set of number. (25, 14, 19, 22, 15, 16, 20, 10, 17)
- 4. a) Find the Topological ordering for the following given graph using CO2 (06) Source Removal method and DFS method.

- b) Write an algorithm to sort the given numbers using divide and CO2 (06) conquer method.
- c) Design an algorithm to determine whether a given graph is CO2 (08) bipartite or not.

UNIT - III

- 5. a) Prove that "Greedy algorithm for interval scheduling returns an CO3 (05) optimal set A".
 - b) Construct the optimal prefix code for $S=\{a,b,c,d,e,f\}$ and CO3 (07) frequencies $f_a=0.25$, $f_b=0.30$, $f_c=0.15$, $f_d=0.15$, $f_e=0.08$, $f_f=0.07$. Find the average code word length.
 - c) Discuss Kruskal's algorithm to find the minimum spanning tree. CO3 (08) Apply the same for the following graph.

- 6. a) Write the greedy algorithm for Interval Scheduling for minimizing CO3 (06) the maximum lateness. Explain the running time of the algorithm.
 - b) Prove that the "Prim's Algorithm produces a minimum spanning CO3 (06) tree for the given graph G".
 - c) Construct single source shortest path for the following graph with CO3 (08) "A" as the source vertex. Using Dijkstra's algorithm.

Fig.6(c)

UNIT - IV

- 7. a) Design a memoization procedure to determine the maximum CO4 (05) weight for a given set of n intervals, and each interval having a weight w.
 - b) Discuss an algorithm to find the shortest path for a given graph CO4 (06) G using Bellman Ford algorithm. Explain how it is different from Dijkstra's algorithm.
 - c) Apply the Ford Fulkerson algorithm to find the maximum flow CO4 (09) path from $\bf S$ to $\bf T$ in the given flow network.

(06)

- 8. a) Write the algorithm for Subset Sum problem. Discuss the CO4 (06) recurrence relation used in the algorithm.
 - b) Explain the airline scheduling algorithm. CO4

C) Calculate the maximum value for the following problem by using CO4 (08) knapsack algorithm with capacity W=10.

at angument that capacity it is							
Item	Weight	Value					
1	3	100					
2	2	20					
3	4	60					
4	1	40					

UNIT - V

9. a) Find all the Hamiltonian Paths in the given graph. CO5 (05)

Fig.9(a)

- b) Explain the general strategy to prove the given problems as NP- CO5 (05) Complete problems.
- c) Explain Vertex cover and Independent set problem with an CO5 (10) example. Construct a proof to determine that both of the problems are NP-Complete.
- 10. a) Prove that Hamiltonian Path is NP-Complete. CO5 (05) b) Define P, NP, NP-Complete & NP-Hard problems. Give examples. CO5 (05)
 - c) Explain how the Circuit Satisfiability is a NP-Complete problem. CO5 (10)
