Algebra, PD 7

Heorhii Lopatin

16 stycznia 2024

Zadanie 1

Rozłóż elementy a=15-15i, b=7-i na czynniki nierozkładalne w pierścieniu $\mathbb{Z}[i]$. Użyj tych rozkładów do wyznaczenia NWD(a,b) w $\mathbb{Z}[i]$.

Rozwiązanie

Korzystając z wiedzy z wykładu, liczby nierozkładalne w $\mathbb{Z}[i]$ to liczby pierwsze w \mathbb{Z} postaci 4k+3 i liczby postaci a+bi, że a^2+b^2 jest liczbą pierwszą. $a=15(1-i)=3\cdot 5(1-i)=3(2+i)(2-i)(1-i)$ - każdy z czynników jest nierozkładalny.

b=7-i=(2-i)(3+i)=(2-i)(1+2i)(1-i)każdy z czynnkiów jest nierozkładalny.

Wiec NWD(a, b) = (2 - i)(1 - i).

Zadanie 2

Użyj algorytmu Euklidesa w $\mathbb{Q}[x]$ do wyznaczenia NWD(f,g), gdzie $f=x^4+x^3+x^2+2x+1, g=x^3+2x^2+2x+1$. Wyznacz wielomiany $u,v\in\mathbb{Q}[x]$ takie, że fu+gv=NWD(f,g).

Rozwiązanie

Zadanie 3

Niech R_1, R_2 będą pierścieniami. Wykaż, że każdy ideał I w iloczynie prostym $R_1 \times R_2$ jest postaci $I_1 \times I_2$, gdzie I_j jest pewnym idealem w R_j , dla j = 1, 2.

Rozwiązanie

Pokażmy równoważnie, że $I=e_1I+e_2I(\because(a,b)=e_1a+e_2b)$, gdzie $e_1=(1,0),e_2=(0,1).$

Skoro Ijest zamknięty na mnożenie i jest grupą z dodawaniem, $e_iI\subseteq I \implies e_1I+e_2I\subset I$

Z drugiej strony, $\forall x \in I \ x = e_R I = x = (e_1 + e_2) x \in e_1 I + e_2 I \implies I \subseteq e_1 I + e_2 I$

Więc, $I = e_1 I + e_2 I$