

ESERCITAZIONE 6: ELETTRONICA DIGITALE, PORTE LOGICHE

G. Galbato Muscio

L. Gravina

L. Graziotto

27 Novembre 2018

Gruppo 11

Abstract

Si studiano i livelli di commutazione delle porte logiche TTL dell'integrato 74LS00. Si realizza un circuito XOR con porte NAND e un multiplexer a due ingressi. Si costruisce un flip-flop set-reset con porte NAND.

Indice

1	Livello di commutazione delle porte logiche TTL	2
2	Circuito XOR con porte NAND	2
3	Multiplexer a due ingressi	3
4	Flip-Flop Set-Reset	3
5	Appendice	4

1 Livello di commutazione delle porte logiche TTL

Si utilizzerà per tutta l'esperienza l'integrato 74LS00, che è alimentato con una tensione di 5 V, mentre il GND è posto a massa, comune ai generatori di tensione e di segnali e all'oscilloscopio. Per visualizzare rapidamente il livello delle uscite saranno utilizzati dei LED, protetti da resistenze dell'ordine di $500\,\Omega$ verso massa. Inoltre, per realizzare gli ingressi statici si utilizza una resistenza di pull-up di $(111\pm111)\,\mathrm{k}\Omega$ connessa a $5\,\mathrm{V}$.

Si studia il livello di commutazione di una porta NOT realizzata utilizzando una porta NAND dell'integrato, mandando ad entrambi gli ingressi la stessa tensione V_i , compresa tra 0 e 5 V mediante un alimentatore diverso da quello utilizzato per alimentare l'integrato. Al variare della tensione V_i si studia il conseguente andamento della tensione di uscita V_o , evidenziando i valori per cui si ha il passaggio dal livello logico 0 a 1 o viceversa. Il circuito è il seguente.

Si riportano in Tabella 1 i punti sperimentali individuati, e nel grafico di Figura ?? l'andamento della tensione in uscita in funzione della tensione di ingresso. Si osserva che il valore logico 1 dell'uscita corrisponde ad una tensione di (111 ± 111) V, ottenuta dalla media dei primi 111 punti, per i quali V_o è costante all'aumentare di V_i , prima di raggiungere la regione in cui si ha la rapida decrescita. Allo stesso modo, prendendo la media degli ultimi 111 punti, successivi alla regione di decrescita e nella zona di costanza di V_o , si ottiene per il valore logico 0 una tensione corrispondente di (111 ± 111) V.

I risultati ottenuti sono compatibili con le definizioni dello standard logico TTL, per le quali si ha un valore di 0 logico (nel caso analizzato corrispondente all'1 in uscita dalla porta NOT) per una tensione di 0.2 V, e un valore di 1 logico (nel caso analizzato corrispondente allo

0 in uscita dalla porta NOT) per una tensione di $5\,\mathrm{V}.$

Tabella 1: Misure per il livello di commutazione delle porte logiche TTL

$$V_i$$
 [V] | V_o [V]

Per controllare se la transizione dipende dal valore di partenza, si costruiscono due cicli di *isteresi*, ovvero si pone $V_i = 0 \, \text{V}$, la si aumenta fino a $5 \, \text{V}$ e si ritorna a $0 \, \text{V}$; quindi si esegue il procedimento inverso. Si riporta in Figura ?? il grafico per i due differenti cicli.

2 Circuito XOR con porte NAND

Si costruisce un circuito XOR utilizzando le quattro porte NAND dell'integrato, realizzando la funzione logica:

$$Q = \overline{\overline{A(\overline{AB})} \cdot \overline{B(\overline{AB})}}$$
$$= (\overline{AB}) + (A\overline{B}),$$

dove l'uguaglianza si ottiene applicando le Leggi di De Morgan. Il circuito è il seguente,

dove la resistenza scelta per proteggere il diodo vale $R=(111\pm111)\,\mathrm{k}\Omega,$ e non ha influenza rilevabile sul comportamento del circuito.

Si verifica che il circuito si comporti come previsto dalla tavola della verità dello XOR applicando i valori logici 0 e 1 mediante livelli in continua (con gli ingressi statici muniti di resi-

stenza di pull-out descritti prima), e misurando con il multimetro la tensione in uscita¹.

Si pone quindi l'ingresso A a 0 logico e si invia all'ingresso B un'onda quadra TTL (con valore di tensione variabile tra 0 e 5 V) mediante il generatore di segnali. Si osserva al canale CH1 dell'oscilloscopio l'ingresso B e al CH2 l'uscita del circuito. Si riporta in Figura \ref{star} uno screenshot dell'oscilloscopio per la configurazione descritta, in cui è possibile osservare come l'uscita riproduca l'onda quadra in ingresso. Ponendo invece l'ingresso A a livello 1 logico, si osserva (si veda la Figura \ref{star}) invece come l'onda quadra in uscita sia sfasata di un semiperiodo.

3 Multiplexer a due ingressi

Si realizza un circuito multiplexer a due ingressi,

4 Flip-Flop Set-Reset

¹Si usa infatti il LED solo come verifica rapida del funzionamento del circuito, ma per compiere le misure ci si rivolge ad uno strumento.

5 Appendice