

PROF. MATHEUS FRANCO

<u>Lista de Exercícios 5 – Funções</u>

- 1. Crie uma função chamada *ehPar(int num)* que retorna 1 caso um numero seja par e 0 caso seja ímpar.
- 2. Criar uma função para calcular a potencia de um numero pelo segundo. int pot(int ,int); Onde o primeiro parametro será a base e o segundo a potencia.
- 3. Crie uma função para apresentar o fatorial de n.
- 4. Criar uma função para mostrar o n-ésino termo da sequência de Fibonacci.
- 5. Verificar se um número é primo, retorne 1 caso seja e 0 caso não seja.
- 6. Crie uma função que retorne quantos numeros primos existem entre 1 e N. <u>Use a função acima nesta função.</u>
- 7. Efetuar a soma de N valores informados pelo usuário. N que é a quantidade de valores a serem lidos será passado como parâmetro. A função deve retornar a soma dos N valores.
- 8. Criar uma função que recebe, por parâmetro, a altura (alt) e o sexo de uma pessoa e retorna o seu peso ideal. Para homens, calcular o peso ideal usando a fórmula peso ideal = 72.7 x alt 58 e, para mulheres, peso ideal = 62.1 x alt 44.7.
- 9. Crie uma função que receba como parâmetro 3 notas e sua frequência e retorne a situação do aluno.
 - a. Retorne 1 caso ele esteja aprovado
 - b. Retorne 2 caso ele esteja de prova final
 - c. Retorne 3 caso eles esteja reprovado

Condições:

- (Se media>=6 e freq>=75) "Aprovado"
- (Se media<6 e media>=4 e freq>=75) "Final"
- (Se media<4 ou freq<75) "Reprovado"

PROF. MATHEUS FRANCO

Desafios

10. Carnaval

O Carnaval é um feriado celebrado normalmente em fevereiro; em muitas cidades brasileiras, a principal atração são os desfiles de escolas de samba. As várias agremiações desfilam ao som de seus sambas-enredos e são julgadas pela liga das escolas de samba para determinar a campeã do Carnaval.

Cada agremiação é avaliada em vários quesitos; em cada quesito, cada escola recebe cinco notas que variam de 5,0 a 10,0. A nota final da escola em um dado quesito é a soma das três notas centrais recebidas pela escola, excluindo a maior e a menor das cinco notas.

Como existem muitas escolas de samba e muitos quesitos, o presidente da liga pediu que você escrevesse uma função que, dadas as notas da agremiação, calcula a sua nota final num dado quesito.

Entrada: Sua função deve receber como parâmetro cinco números N_i ($1 \le i \le 5$), todos com uma casa decimal, indicando as notas recebidas pela agremiação em um dos quesitos.

Saída: Sua função deve retornar, um número contendo a nota final da escola de samba no quesito considerado.

Exemplos

Entrada	Saída	
6.4 8.2 8.2 7.4 9.1	23.8	
Entrada	Saída	
Entrada 10.0 10.0 5.0 5.0 10.0	Saída 25.0	

11. Pedágio

A invenção do carro tornou muito mais rápido e mais barato realizar viagens de longa distância. Realizar uma viagem rodoviária tem dois tipos de custos: cada quilômetro percorrido na rodovia tem um custo associado (não só devido ao consumo de combustível mas também devido ao desgaste das peças do carro, pneus, etc.), mas também é necessário passar por vários pedágios localizados ao longo da rodovia.

Os pedágios são igualmente espaçados ao logo da rodovia; o começo da estrada não possui um pedágio, mas o seu final pode estar logo após um pedágio (por exemplo, se a distância entre dois pedágios consecutivos for de 37 km e a estrada tiver 111 km, o motorista deve pagar um pedágio aos 37 km, aos 74 km e aos 111 km, logo antes de terminar a sua viagem).

Dadas as características da rodovia e os custos com gasolina e com pedágios, sua função deve calcular e retornar o custo total da viagem.

Entrada: Sua função deve receber quatro valores como parâmetros, sendo dois inteiros $L \in D(1 \le L, D \le 10^4)$, indicando o comprimento da estrada e a distância entre pedágios, respectivamente. Outros dois também inteiros $K \in P$ ($1 \le K, P \le 10^4$), indicando o custo por quilômetro percorrido e o valor de cada pedágio. O primeiro pedágio está localizado no quilômetro D da estrada (ou seja, a distância do início da estrada para o primeiro pedágio é D quilômetros).

Saída: Sua função deve retornar um único inteiro, indicando o custo total da viagem.

PROF. MATHEUS FRANCO

Entrada	Saída
111 37 1 10	141

Entrada	Saída
100 30 3 14	342