Sleuth-Kit overview[2]

File System Tools

File System Layer Tools

fsstat: Shows file system details and statistics including layout, sizes, and labels.

File Name Layer Tools

ffind: Finds allocated and unallocated file names that point to a given meta data structure.

fls: Lists allocated and deleted file names in a directory.

Meta Data Layer Tools

icat: Extracts the data units of a file, which is specified by its meta data address (instead of the file name).

ifind: Finds the meta data structure that has a given file name pointing to it or the meta data structure that points to a given data unit.

ils: Lists the meta data structures and their contents in a pipe delimited format.

istat: Displays the statistics and details about a given meta data structure in an easy to read format.

Data Unit Layer Tools

blkcat: Extracts the contents of a given data unit.

blkls: Lists the details about data units and can extract the unallocated space of the file system.

blkstat: Displays the statistics about a given data unit in an easy to read format.

blkcalc: Calculates where data in the unallocated space image (from blkls) exists in the original image. This is used when evidence is found in unallocated space.

File System Journal Tools

jcat: Display the contents of a specific journal block.

ils: List the entries in the file system journal.

Volume System Tools

mmls: Displays the layout of a disk, including the unallocated spaces.

mmstat: Display details about a volume system (typically only the type).

mmcat: Extracts the contents of a specific volume to STDOUT.

Image File Tools

img stat: tool will show the details of the image format

img cat: This tool will show the raw contents of an image file.

Disk Tools

disk_sreset: This tool will temporarily remove a HPA if one exists. After the disk is reset, the HPA will return.

disk stat: This tool will show if an HPA exists.

Other Tools

hfind: Uses a binary sort algorithm to lookup hashes in the NIST NSRL, Hashkeeper, and custom hash databases created by md5sum.

mactime: Takes input from the fls and ils tools to create a timeline of file activity.

sorter: Sorts files based on their file type and performs extension checking and hash database lookups.

sigfind: Searches for a binary value at a given offset. Useful for recovering lost data structures.

References

- [1] CARRIER, BRIAN: The Sleuth Kit. http://www.sleuthkit.org/
- [2] CARRIER, BRIAN: The Sleuth Kit Wiki, TSK Tool Overview. http://wiki.sleuthkit.org/index.php?title=TSK_ Tool_Overview
- [3] GRUNDY, BARRY J.(2008): The Law Enforcement and Forensic Examiners Introduction to Linux v3.78. A Practioner's Guide to Linux as a Computer Forensic Platform http://www.linuxleo.com/
- [4] SANS-INSTITUTE http://www.sans.org/

The Forensic-Cheat-Sheet for Linux and TSK

Jens Vieweg

Last updated 2009/07/29

Inspired by the S.A.N.S. Institute's[4] Forensic Cheatsheet and based on the modus operandi Barry J. Grundy introduces in his Book.[3]

Retrieving disk information

fdisk -l /dev/sdb

Partition start, end and type

sfdisk -l -uS image.dd or /dev/sda1

Partition start and end in Sectors

Imaging

dd

Make an image Inputfile, Outpufile, Blocksize

dd if=/dev/sda1 of=/evidence/image.dd bs=4096
dc3dd

dc3dd if=/dev/sdb1 of=/evidence/image1.dc3dd
progress=on hashwindow=32M hash=md5
log=/evidence/image1.dc3dd.log

Calculates md5-hash for 32MB packages, writes hashes and errors to log mounting

mount -t ntfs -o ro,noexec,loop image.dd
/mnt/analysis

Mount an NTFS-Image on loopbackdevice

NetCat

Suspect machine:

dd if=/dev/sda |nc 192.168.55.20 4747 Analysis machine:

nc -1 -p 4747 |dd of=/evidence/net_image.dd Extracting partition images from full disk image:

dd if=image.dd of=image.part1.dd bs=512 skip=57
count=10203

bs, skip and count from sfdisk output

Integrity Checking

```
# sha1sum /dev/sdb > image.sha1
Calculate SHA1 Cheksum
# find . -type f -exec sha1sum {} \; >
/evidence/image.filelist.sha1
List all files with SHA1 Checksum (run in mounted Image root)
# sha1sum -c /evidence/image.sha1
Checks if image matches original partition
# sha1sum -c /evidence/image.filelist.sha1 | grep
Checks if all files match originals (run in mounted Image root)
All checks can be done with md5sum instead of sha1sum
```

Search for hidden files

```
Gather information about the image:
# img_stat image.dd
# mmls image.dd
# mmls -i raw -t dos
03: 00:01 0000010260 0000112859 0000102600 Linux
(0x83)
Gather information about filesystem(s):
# fsstat -o 10260 image.dd
Show root directory:
# fls -o 10260 image.dd
d/d 11105: .001
Show directory content
# fls -o 10260 image.dd 11105
Show all deleted files with inodes:
# fls -o 10260 -Frd image.dd
Show all filenames for an inode:
# ffind -o 10260 image.dd 1239
Get information and content for an inode: # istat -o 10260
image.dd 2139
# icat -o 10260 image.dd 2139 |file -
Recover deleted file:
# icat -o 10260 image.dd 2139 > filename.2139
```

String Searches & some Calculations

ffind -o 10260 image.dd 10090

```
String searches on Image:
# strings -radix=d image.dd
# cat image.dd strings grep -i -f wordlist -A 2
-B 2
# grep -abi password image.dd
treat as text, byte offset, not casesensitive
10561603: * password for root...
Hexeditor view of the line by File offset:
xxd -s 10561603 image.dd |head -n 5
Find out Sectornumber:
# echo "10561603/512" !bc
20628
Find out Partition offset in blocks:
# mmls image.dd
03: 00:01 0000010260 0000112859 0000102600
(0x83)
Change Partition offset to blocks and subtract from File offset:
# echo "10561603-(10260*512)" |bc
5308483
Retrieve Block or Clustersize:
# fsstat -o 10260 -f ext image.dd
Calculate Blocknumbber in the partition:
# echo "5308483/1024 |bc
5184
Find out if block is allocated:
# blkstat -o 10260 -f ext image.dd 5184
Find inode vor blocknumber:
# ifind -o 10260 -f ext -d 5184 image.dd
10090
Get fileinformation and file:
# istat -o 10260 -f ext image.dd 10090
# icat -r -o 10260 -f ext image.dd 10090 >
filename.10090
Maybe do a search before:
```

```
Handling Unallocated Space
```

```
Extract unallocated space from disk or partition:
# blkls image.part1.dd or -o 10260 image.dd
# blkls image.part1.dd > image.blkls
Discover evidence:
# blkls image.part1.dd | strings | less
# grep -abi word image.blkls
1631299:looking for the word...
Find in original image:
# echo "1631299/1024" |bc
# blkcalc -o 10260 -u 1593 image.dd
Retrieve information:
# blkstat -o 10260 image.dd 5184
# blkcat -o 10260 image.dd 5184 |xxd |less
```

NTFS Alternate Data Streams (ADS)

Followed by ifind, istat, icat

```
Find ADS suspects in image:
# fls -Fr -f ntfs image.part1.dd|grep -v \\$|grep
:.*: r/r 137-128-3: normal.doc
r/r 137-128-4: normal.doc:badhack.txt
View ADS:
# icat -f ntfs image.part1.dd 137-128-4
```

```
Sorting
First preview:
# sorter -1 -o 59 -f ntfs image.dd
Full overview in subdirectory with index.html:
«««<.mine sorter -d ./sort dir -md5 -h -s -o 59 -f</pre>
ntfs image.dd
====== sorter -d ./sort_dir -md5 -h -s -o 59 -f
ntfs image.dd
»»»> .r48 Preparing NIST NSRLFile:
# hfind -i nsrl-md5 NSRLFile.txt
Leaving out known files by hash:
NSRLFile.txt -f ntfs image.dd ====== # sorter
-s -d ./sort_dir -o 59 -n NSRLFile.txt -f ntfs
image.dd
»»»> .r48
```