Exam Optimization

Kasper Rosenkrands Fall 2019

Contents

1	Introduction	3
2	Line search 2.1 Exercise 1: Gradient descent	
3	Calculating derivatives 3.1 Exercise 1 3.2 Exercise 2 3.3 Exercise 3	5
4	Quasi Newton	6
5	Least Squares	7
6	Constrained Optimization	8

1 Introduction

This is a collection of the possible exam subjects at the optimization exam of the 2019 fall semester at Aalborg University.

2 Line search

Throughout this exercise we will utilize the cars dataset and we will refer to speed by s and distance by d.

2.1 Exercise 1: Gradient descent

We want to fit a straight line of the form $m(s) = a + b \cdot s$ to the data. We want to determine a and b. One way is to minimise the objective function given by

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} f_i(a,b), \tag{1}$$

where

$$f_i(a,b) = (m(s_i) - d_i)^2.$$
 (2)

2.1.1 What is the gradient of f?

We find the gradient by differentiating the function given by the following, first w.r.t. a and then b

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} (m(s_i) - d_i)^2$$
(3)

The gradient becomes

$$\nabla f(a,b) = \left[\frac{2}{n} \sum_{i=1}^{n} m(s_i) - d_i, \quad \frac{2}{n} \sum_{i=1}^{n} (m(s_i) - d_i) s_i \right]$$
(4)

- 2.1.2 Implement gradient descent and then use it to find the best straight line
- 2.1.2.1 What is meant by the best straight line in relation to the objective function above
- 2.1.2.2 Discuss different ways to determine the step sizes
- 2.1.3 Try with different ways to choose step sizes and illustrate it (including plotting the objective function and the iterates, $\{x_k\}_k$)
- 2.1.4 Show some iterates in a plot showing the data (e.g. plot(dist ~ speed, cars))
- 2.2 Exercise 2: Stochastic gradient descent / incremental gradient descent
- 2.2.1 What is the difference between stochastic gradient descent and gradient descent?
- 2.2.2 How do you think the optimisation path (the path $(k, f(x_k))$) looks like for stochastic gradient descent compared to that of the gradient descent?
- 2.2.3 Optional: Implement stochastic gradient descent.
- 2.2.4 Optional: Illustrate the behaviour of the stochastic gradient descent, including:
- 2.2.4.1 Different ways to choose step sizes.
- 2.2.4.2 The total objective function with a discussion of how it differs from a similar plot from the gradient descent method.
- 2.2.4.3 Some iterates in a plot showing the data (e.g. plot(dist ~ speed, cars)).

3 Calculating derivatives

- 3.1 Exercise 1
- 3.2 Exercise 2
- 3.3 Exercise 3

4 Quasi Newton

5 Least Squares

6 Constrained Optimization