Ch03 Évolution et tableau d'avancement

E. Machefer

10 janvier 2024

1 Tableau d'avancement

1.1 Avancement d'une réaction

Au cours d'une transformation chimique, les quantités des réactifs diminuent alors que celle des produits augmente.

Définition:

L'avancement d'une réaction (noté x) est une grandeur qui permet de modéliser la quantité de matière présente à un instant t, elle s'exprime en mol.

1.2 Courbe d'avancement

Remarque:

On peut représenter l'avancement d'une réaction par une courbe, avec en abscisse l'avancement x de la réaction et en ordonnée la quantité de matière.

 $Exemple: 2~H_2 + O_2 \rightarrow 2~H_2O$

1.3 Tableau d'avancement

Un tableau d'avancement permet de décrire la composition d'un système à l'état initial, à un état intermédiaire et à l'état final d'une transformation chimique en fonction de son avancement.

Exemple: situation précédente

2 Exploitation du tableau d'avancement

2.1 Transformation totale et non totale

Une transformation est considérée comme totale lorsque l'avancement final atteint une valeur maximale x_{max} , qui correspond à l'épuisement d'un (ou des) réactif(s).

Si une transformation est non totale, l'avancement final doit être déterminé expérimentalement.

2.2 Mélange stœchiométrique

Lorsque tous les réactifs sont limitants, il ne reste que les produits de réaction à l'état final lorsque la transformation est considérée comme totale.

Dans ce cas, le mélange est dit stœchiométrique.

Pour une réaction : α A + β B $\rightarrow \gamma$ C + δ D, on a

$$\frac{n_A}{\alpha} = \frac{n_B}{\beta}$$

Exemple : titrage d'une solution de diiode $(I_{2(aq)})$ par du thiosulfate de sodium $(S_2O_3{}^{2\text{-}}{}_{(aq)}+Na^+{}_{(aq)})$ prof

- 1. Protocole
 - faire une dilution de la solution de di
iode (F = 10 = 50.0 / 5.0)
 - remplir la burette d'une solution titrante de thiosulfate (c = 1.0e-2 mol/L)
 - prélever un volume de $10~\mathrm{mL}$ de di
iode et le verser dans l'erlenmeyer
 - mettre un barreau aimanté dans l'erlenmeyer, puis le poser sur l'agitateur magnétique
 - ajuster l'ensemble pour que l'embout de la burette soit dans l'encolure de l'erlenmeyer

- faire un premier dosage rapide en versant mL par mL, dès que la décoloration est persistante, arrêter le dosage et noter l'encadrement
- faire un deuxième plus précis en versant un volume en amont proche de du volume noté précédemment, puis verser lentement goutte à goutte. Noter le volume équivalent
- faire un troisième dosage précis pour confirmer

2. Exploitation

- (a) Les couples oxydant réducteurs sont $I_{2(aq)}/I_{(aq)}$ et $S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$. Écrire l'équation de réaction.
- (b) À l'équivalence, le mélange est stœchiométrique, il ne reste plus de réactifs. Écrire le tableau d'avancement de cette réaction.
- (c) Déterminer la quantité de matière initiale de diiode.
- (d) Vérifier que $n(I_{2(aq)})/1 = n(S_2O_3^{2-}_{(aq)})/2$
- (e) Déterminer la concentration en quantité de matière de la solution fille, puis de la solution mère.
- (f) Une bétadine de 10% a une concentration en masse de 0.1 g/ L, calculer la quantité de matière (M(I) = 126.9 g/mol)
- (g) Calculer l'écart relatif $\epsilon = \frac{exp-attendue}{attendue}$, si écart inférieur à 5% indication de l'étiquette validée

Critiques si supérieur à 5%:

- flacon ouvert depuis longtemps, transformation partielle du diiode
- incertitudes liées à la manipulation (mauvaise dilution, mauvais titrage)
- il reste du diiode après le prélévement pipette jaugée

2 Exercices PROF

- QCM 1 p 55
- 4 et 6 p 58
- 8 10 et 12 p 59
- 19 p 61
- 22 p 62