A dynamic network analysis of ancient Roman social complexity

· work in progress ·

Antonio Rivero Ostoic School of Culture and Society

Networks 2021 Conference & 9 July 2021

Ancient Roman provinces historical periods

white time intervals

sdam::plot.dates(x, taq, tpq, ...)

ased on www unry com/nrovince

Chronological periods of ancient Rome

example with a 546 years range of time

Roman Empire transport network (maximum extent ca. 117 AD) main roads & maritime routes and province types

routes based on Rodrigue (2013)

sdam::plot.map(type = "si")

Main maritime routes

Roman Empire transport network

Spatial networks

transportation systems

The spatial network of the ancient Roman transport system constitutes one domain of a multilevel configuration

In a graph representation of a transportation network

- settlements, crossing roads, and terminals are vertices
- roads and shipping routes are edges (two "modes")
 - → where distance is a deterrence function of journey cost

 unlike social networks, the design and evolution of spatial networks are physically constrained

Spatial networks construction techniques

Assumed agency to create connection

- Maximum distance expressed in units of time
 - convert journey costs into a likehood
- Proximal point
- Efficiency criterion

Mathematical

- Delaunay triangulation
 - → geodesic distances
- Gabriel graph
 - → allows temporal distances between places

Nodes with province and government types

"multimodal" network graphs

Binomial projection

Roman provinces and government types

multimodal network graphs

Multilevel systems

addressing complexity

A $\it multilevel\ network\ X^M$ for vertex sets N (domain), M (codomain), and edge sets E

$$X^M = \langle N, M, E_N, E_M, E_{N \times M} \rangle$$

- An affiliation network is $X^B = \langle N, M, E_{N \times M} \rangle$, where $E_N, E_M = \emptyset$
- A *valued* network $X^V = \langle N, E, V \rangle$ with V for weights
- A *multiplex* system adds R for types of E
- A *dynamic* system has t > 1 time stamps, $X^+ = X_1 \dots X_t$

Multilevel structures

a projection of Roman Empire transport network with political affiliations

 $\label{eq:circles:actors} \begin{array}{l} \text{circles: } \textit{actors} \text{ in } N \\ \\ \text{squares: } \textit{events} \text{ in } M \end{array}$

Roman Empire transport network

main roads & maritime routes under a tetrarchy (ca. 284 AD)

sdam::plot.map(type = "tetra")

a dynamic spatial network analysis

Oriens diocese in Asian continent example

- both network size and density are reduced at t_2
 - → affect centrality measures

- there is one less cycle
 - → double transportation cost from syr6 to syr5 and viceversa
- there are changing pendants
 - mes1 and syr6 become structurally equivalent

Path-finding problems in spatial networks

reachability and betweenness centrality

Reachability is an indicator of potential flow diffusion paths in networks

- static: vertex adjacency
- dynamic: plus concurrence or precedence of relational "events"
 - ⇒ time-ordered events

 combine with changing affiliations over time with another path problem of temporal betweenness centrality

Algebra for dynamic networks

Use algebraic structures with the composition of interval sets for analysis of temporal or dynamic (simple) networks

A temporal interval [u,v] from a base set $\mathbb E$ where each element

$$E = \cup_i \in \{1, 2, \dots, t\}[u_i, v_j] \in \mathbb{E}$$

is finite, disjoint, and bounded.

- $\longrightarrow u$ and v are *onset* and *offset* resp.
- \rightarrow (u-v) is the duration of the interval
- \implies a discrete time point is when u=v
- \Longrightarrow the set of endomorphisms over $\mathbb E$ is denoted as $\mathbb H$

Relational compositions

for time-ordered paths and decay

• The composition of interval sets $E_1=\bigcup_{p\in\{1...r\}}[u_p,v_p]$ and $E_2=\bigcup_{q\in\{1...s\}}[t_q,w_q]$ in $\mathbb E$ is

$$E_1 \otimes E_2 = \bigcup_{\substack{p=1...r\\q=1...s}} [u_p, v_p] \otimes [t_q, w_q]$$

being w the latest time point.

• Another operation on $\mathbb E$ is the pairwise interval union over all the intervals in $E_1,E_2\in\mathbb E$

$$E1 \oplus E2 = \bigcup_{i,j} ([u_i, v_i] \cup [t_j, w_j])$$

 ordered semirings with composition and union operations over time help us to compute solutions to path-finding problems

Reachability in dynamic networks

a path-finding problem for transport systems

Determine H^* , the quasi-inverse of $H \in \mathbb{H}$, to compute solutions to path-finding problems

$$H^* = \lim_{k \to \infty} H^{(k)}$$

going further ...

- Complex dynamic systems: develop visualization tools and perform algebraic analyses
 - implement algorithms for the computation of multilevel graphs, semirings and other algebraic structures
 - describe the evolution of social complexity—case periods of the Roman Empire—through dynamic networks analysis
 - ⇒ geography and time support in R packages sdam, multiplex and multigraph

- II. Temporal uncertainty with network imputation methods
 - apply to Roman inscriptions in Latin and Greek from the EDH dataset

Epigraphic networks

addressing social complexity

Similarity among Egyptian epigraphs

Thanks!

Social Dynamics in the Ancient Mediterranean Sea – CEDHAR

Research programme activities at the Department of History and Classical Studies, AU

github.com/mplex

jaro@cas.au.dk