МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 7304	 Субботин А.С.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Ход работы

1. С использованием функции numpy.random.uniform модуля numpy для языка Python были сгенерированы в соответствии с равномерным законом распределения и отсортированы три массива – и использованием 100% данных, а также 80% и 60%. Результат представлен в Таблице 1.

i	Равномерное	Равномерное	Равномерное
1	(100% данных)	(80% данных)	(60% данных)
1	0,533	0,422	1,500
2	1,618	0,634	2,748
3	4,085	0,677	3,920
4	4,417	1,323	5,243
5	5,205	1,705	6,280
6	5,371	1,874	7,540
7	5,671	2,294	7,847
8	6,445	2,410	8,911
9	7,570	6,205	9,758
10	8,156	6,756	10,521
11	8,794	7,501	12,997
12	8,798	7,801	14,201
13	9,809	8,766	14,461
14	9,811	11,566	14,647
15	10,391	13,374	17,371
16	10,653	13,450	18,635
17	12,091	13,754	19,241
18	12,732	15,310	19,920
19	13,364	15,316	

20	13,850	16,136	
21	14,902	16,772	
22	15,972	17,493	
23	16,014	17,552	
24	16,065	18,426	
25	16,419		
26	16,583		
27	16,827		
28	18,077		
29	18,982		
30	19,007		

Таблица 1 – Равномерный закон распределения

2. Вычисления для n = 30:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.600$$

19,6 > 15,5 - условие сходимости выполнено

Поиск m, формулы представлены ниже, результаты – в Таблице 2.

$$f_n(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3,994987	2,631655	1,363332
32	3,027245	2,419419	0,607826
33	2,558495	2,238861	0,319634
34	2,255465	2,083381	0,172084
35	2,034877	1,948094	0,086783
36	1,863448	1,829305	0,034143
37	1,724559	1,724171	0,000388
38	1,608729	1,630464	0,021735

Таблица 2 — Поиск минимума (равн, 100%)

Минимум при m = 37, B = m - 1 = 36

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0,005253214$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
31	31,726612
32	38,071934
33	47,589918
34	63,453224
35	95,179836
36	190,35967

Время до полного завершения тестирования: 466,381 дней

Полное время тестирования: 794,594 дня

3. Вычисления для n = 24:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12,5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 17,293$$

17,293 > 12,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 3.

m	f	g	f-g
25	3,73429	3,113927	0,620364
26	2,77596	2,756305	0,019653
27	2,31596	2,472364	0,156406

Таблица 3 – Поиск минимума (равн, 80%)

Минимум при m = 26, B = m - 1 = 25

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0.012671771$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
25	78,915566

Время до полного завершения тестирования: 78,916 дней

Полное время тестирования: 296,431 дней

4. Вычисления для n = 18:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.192$$

12,192 > 9,5 – условие сходимости выполнено

Поиск m, результаты в Таблице 4.

m	f	g	f-g
19	3,495108	2,643844	0,851264
20	2,547740	2,305249	0,242491
21	2,097740	2,043535	0,054205
22	1,812025	1,835186	0,023161
23	1,607480	1,665392	0,057912

Таблица 4 – Поиск минимума (равн, 60%)

Минимум при m = 22, B = m - 1 = 21

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0,00937556$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
19	35,553430
20	53,330145
21	106,660291

Время до полного завершения тестирования: 195,544 дней Полное время тестирования: 391,285 день

5. С использованием функции numpy.random.exponential модуля numpy для языка Python были сгенерированы в соответствии с экспоненциальным законом распределения и отсортированы три массива – и использованием 100% данных, а также 80% и 60%. Результат представлен в Таблице 5.

i	Экспонента	Экспонента	Экспонента
1	(100% данных)	(80% данных)	(60% данных)
1	0,365	0,550	0,370
2	0,378	0,733	0,944
3	0,814	2,507	1,575
4	0,971	2,675	3,489
5	1,071	3,063	6,974
6	1,604	3,334	7,045
7	2,631	3,969	7,455
8	3,043	4,390	7,624
9	3,250	5,231	8,094
10	3,277	5,525	8,576
11	3,969	6,069	12,540
12	4,919	6,758	16,078
13	5,457	6,943	17,693
14	5,817	7,836	20,534
15	6,332	8,830	22,117
16	6,556	9,262	23,821
17	8,143	10,416	28,034
18	8,698	11,993	32,589
19	8,839	13,217	
20	10,280	13,677	
21	10,865	14,615	
22	14,177	16,137	
23	15,400	19,885	
24	17,171	42,387	

25	17,380	
26	18,251	
27	21,286	
28	22,424	
29	22,798	
30	25,354	

Таблица 5 – Экспоненциальный закон распределения

6. Вычисления для n = 30:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 22.431$$

22,431 > 15,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 6.

m	f	g	f-g
31	3,99499	3,500899	0,494088
32	3,02725	3,135049	0,107804
33	2,55850	2,838429	0,279934

Таблица 6 – Поиск минимума (эксп, 100%)

Минимум при m = 32, B = m - 1 = 31

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0.01154617$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
31	86,60880764

Время до полного завершения тестирования: 86,609 дней

Полное время тестирования: 358,132 дней

7. Вычисления для n = 24:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12,5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 17,743$$

17,743 > 12,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 7.

m	f	g	f-g
25	3,77596	3,307018	0,46894
26	2,81596	2,906521	0,090563
27	2,35442	2,59255	0,238131

Таблица 7 – Поиск минимума (эксп, 80%)

Минимум при m = 26, B = m - 1 = 25

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0.013211415$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
25	75,69212187

Время до полного завершения тестирования: 75,692 дней

Полное время тестирования: 295,693 дней

8. Вычисления для n = 18:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 13,275$$

8

13,275 > 9,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 8.

m	f	g	f-g
19	3,49511	3,14433	0,350778
20	2,54774	2,676743	0,129004
21	2,09774	2,330221	0,232481

Таблица 8 – Поиск минимума (эксп, 60%)

Минимум при m = 20, B = m - 1 = 19

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0.011867452$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
19	84,26408915

Время до полного завершения тестирования: 84,264 дня

Полное время тестирования: 309,817 дней

9. С использованием функции numpy.random.rayleigh модуля numpy для языка Python были сгенерированы в соответствии с релеевским законом распределения и отсортированы три массива – и использованием 100% данных, а также 80% и 60%. Результат представлен в Таблице 9.

i	Релеевское	Релеевское	Релеевское
1	(100% данных)	(80% данных)	(60% данных)
1	2,043	3,096	1,357
2	3,725	4,097	2,557
3	3,752	4,196	2,713
4	3,916	4,475	5,258
5	4,624	4,499	5,589
6	4,711	4,557	5,591
7	4,843	4,775	5,658
8	5,179	6,432	6,349

9	5,482	6,625	6,818	
10	6,214	7,390	7,324	
11	6,321	7,614	11,088	
12	6,383	7,946	11,998	
13	7,826	7,991	15,149	
14	7,859	10,749	15,912	
15	8,184	11,059	18,811	
16	8,204	11,225	21,314	
17	8,847	11,443	22,849	
18	9,009	11,743	29,181	
19	10,547	12,773		
20	10,673	13,559		
21	10,772	13,719		
22	11,149	14,754		
23	11,807	16,604		
24	12,018	23,103		
25	13,572			
26	15,461			
27	15,590			
28	16,814			
29	18,919			
30	20,791			

Таблица 9 – Релеевский закон распределения

10.Вычисления для n = 30:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.801$$

19,801 > 15,5 - условие сходимости выполнено

Поиск m, результаты в Таблице 10.

m	f	g	f-g
31	3,99499	2,678704	1,316284
32	3,02725	2,459128	0,568117
33	2,55850	2,272822	0,285673
34	2,25546	2,112758	0,142707
35	2,03488	1,973756	0,061121
36	1,86345	1,851915	0,011533
37	1,72456	1,744242	0,019683

Таблица 10 – Поиск минимума (рел, 100%)

Минимум при m = 36, B = m - 1 = 35

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0,006728565$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
31	29,72402
32	37,15502
33	49,54003
34	74,31005
35	148,62010

Время до полного завершения тестирования: 339,349 дней

Полное время тестирования: 614,581 дней

11. Вычисления для n = 24:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12,5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15,853$$

15,853 > 12,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 11.

m	f	g	f-g
25	3,77596	2,623838	1,15212
26	2,81596	2,365253	0,450705
27	2,35442	2,153064	0,201356
28	2,05812	1,975812	0,082312
29	1,84384	1,825525	0,018313
30	1,67832	1,696484	0,018164
31	1,54499	1,584482	0,039495

Таблица 11 – Поиск минимума (рел, 80%)

Минимум при m = 30, B = m - 1 = 29

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0,007559272$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
25	26,457575
26	33,071969
27	44,095958
28	66,143938
29	132,287875

Время до полного завершения тестирования: 302,057 дня

Полное время тестирования: 526,482 дней

12.Вычисления для n = 18:

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5; \ A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 13.015$$

13,015 > 9,5 — условие сходимости выполнено

Поиск m, результаты в Таблице 12.

m	f	g	f-g
19	3,49511	3,007583	0,487525
20	2,54774	2,576998	0,029258
21	2,09774	2,254263	0,156523

Таблица 12 – Поиск минимума (рел, 60%)

Минимум при m = 20, B = m - 1 = 19

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}}$$
$$= 0,013180482$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
19	75,8697613

Время до полного завершения тестирования: 75,87 дней

Полное время тестирования: 271,386 день

13. Результаты:

Оценка первоначального числа ошибок представлена в Таблице 13.

	Равномерный	Экспоненциальный	Релеевский
n = 30	36	31	35
n = 24	25	25	29
n = 18	21	19	19

Таблица 13 – Оценка первоначального числа ошибок

Оценка полного времени проведения тестирования представлена в Таблице 14.

	Равномерный	Экспоненциальный	Релеевский
n = 30	794,594	358,132	614,581
n = 24	296,431	295,693	526,482
n = 18	391,285	309,817	271,386

Таблица 14 – Оценка полного времени проведения тестирования

Экспоненциальный закон распределения показывает наилучшие результаты по двум оценкам сразу при любых входных данных (кроме времени тестирования при n = 18), так как по предположению модели Джелински-Моранды время до следующего отказа программы распределено экспоненциально.

Также можно заметить, что оценка полного времени проведения тестирования зависит от первоначального числа ошибок: так при равных В (для 80% данных) экспоненциальный и равномерный законы распределения демонстрируют близкие временные результаты, подобная ситуация и с равными В для экспоненциального и релеевского распределения (60% данных), а наихудшие показатели времени можно обнаружить в ячейках, соответствующих ячейкам с наихудшими показателями первоначального числа ошибок.

Выводы

В ходе выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок.