Maths for Computing

Lecture 2: Functions

Manuele Leonelli

School of Human Sciences and Technology, IE University

Today's Objective

- Introduce functions
- ▶ Define various components of a function
- ► Discuss properties of functions

In many instances we assing to each of a set a particular element of a second set. For example, suppose that each student in a mathematics class is assigned a letter grade from the set $\{A, B, C, D, F\}$. Suppose that the grades are A for Adams, C for Chou, B for Goodfriend, A for Rodriguez and F for Stevens. This assignment is an example of a *function*.

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B we write $f: A \rightarrow B$.

Functions are specified in many different ways. Sometimes we explicitly state the assignments, as in the maths class example. Often we give a formula, such f(x) = x + 1. Other times we use a computer program to specify a function.

If f is a function from A to B we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b we say that b is the *image* of a and a is the *preimage* of b. The *image* of f is the set of all images of elements of f. Also, if f is a function from f to f we say that f maps f to f.

- ► Domain:
- ► Codomain:
- ► Image:

- ▶ Domain: { Adams, Chou, Goodfriend, Rodriguez, Stevens}
- ► Codomain: { A, B, C, D, F }
- ► Image: { A, B, C, F }

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the square of an integer to this integer.

- Domain:
- ► Codomain:
- ► Image:
- ► Function definition:

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the square of an integer to this integer.

- ► Domain: the set of all integers
- ► Codomain: the set of all integers
- Image: the set of all integers that are perfect squares
- Function definition: $f(x) = x^2$

Real-valued functions

A function is called *real-valued* if its codomain is the set of real numbers, and it is called *integer-valued* if its codomain is the set of integers.

Let f_1 and f_2 be functions from A to \mathbb{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1f_2)(x) = f_1(x)f_2(x)$

Real-Valued Functions

Let f_1 and f_2 be functions from $\mathbb R$ to $\mathbb R$ such that $f_1(x)=x^2$ and $f_x(2)=x-x^2$.

- $ightharpoonup (f_1 + f_2)(x) =$
- $ightharpoonup (f_1f_2)(x) =$

Real-Valued Functions

Let f_1 and f_2 be functions from $\mathbb R$ to $\mathbb R$ such that $f_1(x)=x^2$ and $f_x(2)=x-x^2$.

- $(f_1 + f_2)(x) = x$
- $(f_1f_2)(x) = x^3 x^4$

Injective Functions

A function f is said to be *injective* or *one-to-one* if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

Increasing Functions

A function f whose domain and codomain are subsets of the set of real numbers is called *increasing* if $f(x) \le f(y)$, and *strictly* increasing if f(x) < f(y) whenever x < y and x and y are in the domain of f.

Similarly, f is called *decreasing* if $f(x) \ge f(y)$, and *strictly decreasing* if f(x) > f(y) whenever x < y and x and y are in the domain of f.

A function that is either strictly increasing or strictly decreasing must be one-to-one.

A function that is increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-to-one.

Surjective Functions

A function f from A to B is called *surjective* or *onto* if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Bijective Functions

The function f is *bijective* if it is both one-to-one and onto.

Bijective Functions

The function f is *bijective* if it is both one-to-one and onto.

Bijective Functions

The function f is *bijective* if it is both one-to-one and onto.

- Consider the function $f(x) = x^2$ from the set of integers to the set of integers. This is not injective since for instance f(1) = f(-1) = 1 but $1 \neq -1$. It is not surjective since for instance there is no integer x with $x^2 = -1$. Therefore is not bijective.
- Consider the function f(x) = x + 1 from the set of integers to the set of integers. It is injective since $x + 1 \neq y + 1$ when $x \neq y$. It is surjective since for every integer y there is an integer x such that f(x) = y. Therefore it is bijective.
- ▶ Consider the function $f: A \rightarrow A$, such that f(x) = x. This is called *identity* function. It is bijective.

Inverse Functions

Let f be a bijective function from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence $f^{-1}(b) = a$ when f(a) = b. A bijective function is called *invertible* since we can define its inverse.

20/23

Inverse Functions

- Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. It is invertible since it is bijective. To find the inverse, suppose that y is the image of x so that y = x + 1. Then x = y 1. This means that y 1 is the unique element of \mathbb{Z} that is sent to y by f. Thus $f^{-1}(y) = y 1$.
- ▶ Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. It is not invertible since it is not bijective.
- ▶ Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ such that $f(x) = x^2$. One can show that it is bijective and therefore it is invertible. Its inverse can be derived as $f^{-1}(y) = \sqrt{y}$.

The Graph of a Function

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b)|a\in A \text{ and } f(a)=b\}$.

FIGURE 8 The Graph of f(n) = 2n + 1 from Z to Z.

FIGURE 9 The Graph of $f(x) = x^2$ from Z to Z.

The Graph of a Function