Your name:	, Roll no.:
CSE 350/550: Network Security, Mid-semester exam: Feb 29, 20	024, 90 minutes, 90 marks
Instructions:	
 The exam is in two parts: Part 1 has 8 questions that req 40 marks. Part 2 has 5 questions that require longer answ This is a "closed-book" exam. All necessary information, Write your answers in the space provided. If necessary, one of the space provided is not use unfair means. Action will be taken against you notes, computer, smart phone, etc. or share info with ot 	wers. Each question is of 10 marks → 50 marks. including tables, etc. will be provided here. use a separate sheet for rough work. u if you use unfair means. You may not use books,
Part 1: 8 questions that require short answers (5 marks each)	
 Using an ideal substitution cipher with 5-bit input and 5-bit a. what is the size of the table that maps an input to ib. what is the potential number of keys that help conc. what is the key size in bits - simply state the formu 	its output? $ \begin{array}{c} (1) & 32 = 2 \\ \hline \text{struct the table?} \end{array} $
 Assume we are using a linear congruential PRNG to general = 11, a = 4, and X(0) = 5 for instance. What is the periodicit compute the sequence of random numbers generated, with 	y of this PRNG generator? Hint: go ahead and
$\frac{\chi(0)=5}{\chi(3)=12 \mod 11=29 \mod 11=99}$	
- Periodias 5	
3. It is known Triple DES with 2 keys is significantly stronger who fundamental property of DES that allows this to be the case? [2] [Wo stages of DES counst be reduced]	State your answer briefly. There does not DES (X, K) for all x, KI, K2. Thu to one stage of DES.
Three stages Triple DES Canno	ot be reduced to single DES.
 Consider an RSA based public key cryptosystem, where n = 5 message resulting in ciphertext C = 4. Can an intruder detern of your working. 	mine the message, M? If so, what is M? Show details
2 Sty 1: Factor n=55 as n=55 = p+ 0 Step 2: = (p-1)(q-1) = 40 0 Sty	q=11*5. p3: given e=9 computa =9 since e*d=81 mod40=1
(Step 4: M = C 9 mod 55 = 49 m	
5. What makes the RSA based cryptographic scheme so difficul property involving publicly known parameter n, and public (e for one to discover the private key, (d, n)?	encryption) key, (e, n), that makes it near-impossible
	= not poss nearly impossible = n and thus obtain D,
1 not known.	* damod \$=1 since \$ c

6. It is understood that distribution of 'Public keys' in a Public-Key Cryptosystem should be done in a secure manner. Why is that? Answer the question in the context where message M is to be transferred from A to B in a confidential manner after encrypting it. Note: public key (e, n) is used to encrypt while private key (d, n) is used to decrypt. In other words, what would be the undesired consequence if the public key was compromised?

Sender uses public key of receiver to encrypt message M.

If he uses a wrong take public key of receiver then the individual rho has the deckey (d2,n) corresponding to (e2,n) hill be able to decipher the copher text. = It is IMP for sender to use correct (e,n)

7. Consider symmetric key cryptography. In order to establish a shared key for a new session, parties A and B must already have established a 'master session' between themselves. Why is there a need to set up a new session given that a 'master session' already exists?

Master keys are used sparingly only to establish session keys.

Afternatively if master key is used to exchange all messages, it
is likely to be compromised.

8. Consider AES. A <u>portion of the input</u> to 'Substitute Bytes' of the kth round is given below. What is the last row of the output from 'Substitute Box' and similarly from 'Shift Rows'? The S-box table is given below:

Output of 'Substitute Box': 91 09 00 37

BF

E6

42

0F

BB

16

A1

89

Output of 'Shift Rows': 37 91 09 00 -- 3

Part 2: 5 questions that require relatively long answers (10 marks each)

9. I have a Black-and-White photo (with no grayscale) of size 1024 x 1024 pixels of bullets seized from a suspected terror attack, all laid out neatly on a white table top. See below for an example image.

I wish to communicate this image (of 1024×1024 pixels) to district headquarters using DES encryption. Assume that each <u>pixel</u> is encoded using 8 bits. And each <u>block of 8 pixels in a given row</u> is encrypted using <u>DES</u>. This results in an encrypted image consisting of 1024×128 array of 64-bit ciphertexts which can possibly be displayed as 1024×1024 pixels (now possibly with greyscale) before or after decryption.

a. Sketch what the photograph may look like AFTER it is encrypted.

b. Is it at all possible for an intruder to look at the encrypted image and <u>estimate the number of bullets</u> <u>seized from the attack</u>? Explain why that is possible or <u>not</u> possible.

Tes, as explained above the grey scales inside & ontisde the image of a bullet vill between different, while the edges are very much blurred.

10. Continuing with <u>Question 9</u>, if you were to encrypt the photograph differently, how would you encrypt the blocks of eight pixels so that it is <u>NOT</u> possible to determine the number of bullets seized? <u>Draw one or more diagrams to illustrate your solution.</u>

Use block chaining. fee below, where "Initial value" IV is held seek secret K is the key. P1, P2, Pn are, for example, 64 bit blocks.

P1

P2

Pn

	Quotient, Q(i)	Remainder, R(i)	S(i)	T(i)
	1	R(i+1) = R(i-1) - Q(i+1)R(i)	S(i+1) = S(i-1) - Q(i+1)S(i)	T(i+1) = T(i-1) - Q(i+1)T(i)
0	(3)	Φ=7 96	1	0
1		e = 13	0	1
2	1 7 7	15	1/1	4-7
3	2	3	1-2	15
4	1	2 /	3	-22
5	1	1	\−5	37 /
6, etc	· Vandarian	The second secon		
	The state of the s	27 2006	2)	Compared to the Compared to th
What is the decryption key, $d = 37$				

12. One way devices A and B can share a symmetric encryption key, K_s, is to obtain the key from a "key distribution center", KDC, using an existing secure channel between A and KDC, & between B and KDC (as given below).

A. Above, why does KDC include $E(K_b, [K_s \mid ID_A])$ within message numbered (2) sent to Initiator A, and not send directly to responder B? In other words, how does it help?

2 aptimize its workload by reducing the no. of message

B. What purpose do messages numbered (4) and (5) serve?

2 Confirm that both A & B are able to use the same session key Ks, and the session has bee established

C. In message (5) could $f(N_2)$ be replaced simply by N2? Explain briefly.

6 Ho. Since an intruder can simply copy the entire message (sent by B to A) and sent it back to B, thus claiming itself to be initiator A without gaining any benefit, except present A & from communication.

Argue as to why time complexity of a brute-force attack on 2-stage DES is nearly the same as that for 1-stage DES. To do so:

a. Describe how a brute-force attack on 2-stage DES may be launched.

Assumption: Intruder has access to attempt one pairs (P, C)

- b. What would be the time complexity of the attack described in a. above. $0.056 \times 0.056 \times 0$
- $(2) = 0(2^{56}) + 0(2^{56}) + 2^{56} \log(2^{57}) = 0(2^{56})$
 - c. Whether the attack described in a. above will absolutely positively determine the keys K_1 and key K_2 ? Or many such attacks described in a. above would be necessary to increase one's confidence in the keys K_1 and key K_2 So discovered?
- Above step 1 (only) is not enough. We need to check in step 2 with ship pairs of (P, C) so that the level of confidence in determining ky & k2 is increased.