Ministère de l'Éducation Nationale

Centre National des Examens et Concours de l'Éducation

EXAMEN : Baccalauréat Général

Série: Terminale Sciences Exactes (TSE) et

Sciences et Technologie Industrielle (STI)

Épreuve: Mathématiques Durée: 4 heures Coefficient: 4

Exercice 1......(5 pts)

On désigne par A et B les points d'affixes respectives $z_A = 2 - i$ et $z_B = -2i$, et pour tout nombre complexe z différent de z_B , on pose $Z = \frac{z - z_A}{z - z_B}$.

- 1. Détermine, dans chaque cas, l'ensemble des points M(z) tel que :
 - a. Z soit un réel;
 - b. Z soit un imaginaire pur (éventuellement nul);
 - c. Z soit de module 1.
- 2. Calcule $|Z-1| \times |z-z_B|$ et en déduis que, lorsque M(z) parcourt le cercle de centre B et de rayon R, les points d'affixes Z sont tous situés sur un même cercle dont on précisera le centre et le rayon.

Exercice 2.....(5 pts)

- 1. Démontre que pour tout entier naturel n, $2^{3n} 1$ est un multiple de 7. En déduis que $2^{3n+1} 2$ et $3^{3n+2} 4$ sont des multiples de 7.
- 2. Détermine les restes de la division par 7 des puissances de 2.
- 3. Pour tout $p \in \mathbb{N}$, on considère le nombre $A_p = 2^p + 2^{2p} + 2^{3p}$.
 - a. Si p = 3n, quel est le reste de la division de A_n par 7?
 - b. Démontre que si p = 3n + 1 alors A_p est divisible par 7.
 - c. Etudie le cas où p = 3n + 2.

Les parties *A* et *B* sont indépendantes.

A) Soit f la fonction définie sur
$$[0; +\infty[$$
 par $f: x \mapsto f(x) = \ln(e^{2x} + 2e^{-x}).$

On désigne par (C) la courbe représentative de la fonction f dans un repère orthonormal $(O; \vec{i}, \vec{j})$, unité graphique: 2cm.

- 1. Montre que pour tout réel x positif : $f(x) = 2x + \ln(1 + 2e^{-3x})$.
- 2. a. Etudie la limite de f en $+\infty$.
 - b. Montre que la droite (D) d'équation y = 2x est asymptote à (C), quand x tend vers $+\infty$.
 - c. Etudie la position de(C)et(D).

République du Mali

Un Peuple-Un But-Une Foi

BAC 2020

SESSION: Septembre 2020

- 3. Etudie les variations de f.
- 4. Trace (C) et (D).
- 5. Montre que, pour tout réel α , $\alpha > 0$: $\int_0^{\alpha} e^{-3x} dx \le \frac{1}{3}$.
- 6. Etablis que, pour tout réel u, $u \ge 0$: $\ln(1+u) \le u$.
- 7. En déduis que, pour tout réel α , $\alpha > 0$: $\int_0^{\alpha} \ln(1+2e^{-3x}) dx \le \frac{2}{3}$.
- 8. Soit $A(\alpha)$ l'aire, exprimée en cm^2 , du domaine limité par les droites d'équations x = 0; $x = \alpha$; y = 2x et la courbe (C).

En déduis des questions précédentes une majoration de $A(\alpha)$ par un nombre indépendant de α .

- *B*) 1. Etudie les variations de la fonction *h* définie dans l'intervalle [2;4] par : $h: x \mapsto h(x) = 2 x + \ln x$; en déduis que l'équation h(x) = 0 admet une solution unique β .
- 2. Soit (u_n) la suite définie par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = 2 + \ln u_n$. Montre que l'image de l'intervalle [2;4] par la fonction $g: x \mapsto 2 + \ln x$ est incluse dans l'intervalle [2;4].
- 3. Montre en utilisant l'inégalité des accroissements finis que pour tout entier naturel $n: |u_{n+1} \beta| \le \frac{1}{2} |u_n \beta|$.
- 4. En utilisant un raisonnement par récurrence, prouve que pour tout entier naturel n: $|u_n \beta| \le 2 \times \left(\frac{1}{2}\right)^n$.
- 5. En déduis que (u_n) est convergente.
- 6. Détermine un entier N tel que $|u_N \beta| \le 10^{-4}$.