## **Solar Energy Conversion Technology**

#### **Solar Concentrating Collectors**



#### Dr. Pankaj Kalita

Associate Professor School of Energy Science and Engineering Indian Institute of Technology, Guwahati

- ✓ Fundamentals of concentrating collectors
- ✓ Analysis of parabolic trough collector

## **Concentrating Solar Power (CSP) Technology**

- Concentrating solar power (CSP) technology utilizes focused sunlight.
- Concentrators increases the amount of incident energy on the absorber surface as compared to that on the concentrator aperture.
- Utilizes mirrors or lenses to concentrate (focus) sun's energy and convert it into high-temperature heat.

## **Concentrating Solar Power (CSP) Technology**

Concentrating Solar Power (CSP) system follows the sun so that the beam radiation are always focused on to the absorber.

A solar concentrator generally consists of Solar Concentrators advantages

- Highesotelin/erycteinpreproturide desuitting in it letter atternspayen no incidency.
- Retracking skesickulor to best invaterial following the compared to FPC systems.
- Storing heat at higher temperatures results in reducing the storage cost.
- Temperature as high as 3500 °C, have been achieved.
- Solar Collectors are used for thermal as well as PV conversion of solar energy.

Solar Concentrators Drawback

- No use of diffused radiation.
- Clear sky is preferred in the location.

### **Functioning of Solar Concentrator**

Concentrating solar power systems generate electricity with heat.

- Concentrating solar collectors use mirrors and lenses to concentrate and focus sunlight onto a thermal receiver, similar to a boiler tube.
- The receiver absorbs and converts sunlight into heat.
- The heat is then transported to a steam generator or engine where it is converted into electricity.

#### CSP technology generate electricity for a variety of applications-

- Ranging from remote power systems as small as a few kilowatts (kW) up to grid connected applications of 200-350 megawatts (MW) or more.
- A concentrating solar power system that produces 350 MW of electricity displaces the energy equivalent of 2.3 million barrels of oil.

### Solar Thermo-Mechanical System

- Converts solar thermal energy to mechanical energy through heat engines (using Rankine cycle, Stirling cycle or Brayton cycle).
- Mechanical energy produced may be used as shaft power such as water lifting.
- Mechanical energy produced may also be converted to electricity using generator.

#### Limitations of conversion of solar thermal energy to mechanical energy:

- Conversion efficiency is low (approx. 9-18 %).
- Efficiency of the collector system decreases as the collection temperature increases while the efficiency of a heat engine increases as the working fluid temperature increases.
- Solar collectors are generally more expensive than engines.
- A part of thermal energy is lost during the transportation of the working fluid from the collector to the heat engine.
- A very large area is required to install the solar collector system.
- Due to the intermittent nature of solar energy, storage of thermal energy is also required.



#### **Parameters Characterizing Solar Concentrators**

- Aperture Area  $(A_a)$ : Area through which the solar radiation is incident
- Absorber area ( $A_{abs}$ ): Total area of the absorber surface that receives the concentrated radiation. It is also the area from where useful energy can be obtained.
- Acceptance Angle ( $2\theta_s$ ): Defines the angular limit to which the incident ray may deviate from the normal to the aperture plane and still reach the absorber /receiver.
- Intercept factor: Fraction of the radiation, which is reflected or refracted from the concentrator and in the concentrator a
- Optical Efficiency: I the concentrator's and reflection/trans transmittance, absorb

#### **Concentration Ratio**

Geometrical Concentration Ratio, C= Ratio of aperture area to the absorber area.

$$C = A_a / A_{abs}$$

Local Concentration Ratio: Ratio of the solar radiation at any point on the absorber surface to the incident radiation at the aperture of the solar concentrator.



Half-angle subtended by the sun at the earth ( $\theta_s$ ) is 0.267 °

A concentrator with large acceptance angle needs only seasonal adjustment while a concentrator with small acceptance angle is required to track the sun continuously.

### Radiative Heat Exchange Between the Sun and the Receiver

The sun is assumed to be a blackbody at  $T_s$  and the radiation from the sun on the aperture/receiver is the fraction of the radiation emitted by the sun which is intercepted by the aperture.

$$Q_{s\to r} = A_a \; \frac{r^2}{R^2} \; \sigma \; T_s^4$$

Where,  $\sigma = 5.6697 \times 10^{-8} \text{ W/m}^2 \text{K}^4$ 

A perfect receiver, such as a blackbody, radiates energy equal to  $A_rT_r^4$  and a fraction of this reaches the sun.

$$Q_{r\to s} = A_r \ \sigma \ T_r^4 \ E_{r\to s}$$

#### **Maximum Concentration Ratio**

When  $T_r$  and  $T_s$  are the same, the second law of thermodynamics requires that  $Q_{s\rightarrow r}$  be equal to  $Q_{r\rightarrow s}$ .

$$\frac{A_a}{A_r} = \frac{R^2}{r^2} E_{r \to s}$$

Since the maximum value of  $E_{r\to s}$  is unity, the maximum concentration ratio for circular concentrators is

$$\left(\frac{A_a}{A_r}\right)_{circular, max} = \frac{R^2}{r^2} = \frac{1}{\sin^2 \theta_s}$$

For linear concentrators, maximum concentration ratio is

$$\left(\frac{A_a}{A_r}\right)_{linear, max} = \frac{R}{r} = \frac{1}{\sin \theta_s}$$

With  $\theta_s$ = 0.267°, the maximum possible concentration ratio for circular concentrators is 46,000 and for linear concentrators, it is 215.

## Concentrating collectors configurations



$$C_{max, 3-D} = \frac{1}{\sin^2 \theta}$$
, for a point focusing system
$$C_{max, 2-D} = \frac{1}{\sin \theta}$$
, for a line focusing system

Concentration ratio for a line-focus concentrator is 215 and for a point focus concentrator it is 46000.

Concentrating collector configurations: (a) tubular absorbers with diffuse back reflector; (b) tubular absorbers with specular cusp reflectors; (c) plane receiver with plane reflectors; (d) parabolic concentrator; (e) Fresnel reflector; (f) array of heliostats with central receiver.

In the first three types, the maximum concentration ratio is 4.

The actual values of C is much lower since acceptance angle is usually greater than 0.267°. These include tracking errors, imperfections in the reflecting or refracting components of the concentrator, mechanical misalignment etc.

## **Comparison of FPC and Concentrating collector**

- Area absorbing solar radiation is the same as the area intercepting solar radiation.
- FPC can be designed to get a temperature around 100-110 °C to heat liquids/gases.
- Advantage of using both beam and diffuse solar radiation.
- Do not require orientation towards the sun.
- Mechanically simpler in design and require little maintenance.



- Concave reflectors or mirrors are used to concentrate the radiation falling into a smaller receiver to increase the energy flux.
- Temperature ranges from 260 °C to 3500 °C depending upon the application and type of concentrator used.
- Utilizes direct beam radiation and reject majority of the diffused radiation.
- Oriented in varying degrees to track the sun so that beam radiation is directed on to the absorbing surface.
- Maintenance is difficult particularly to retain the quality of optical systems for long periods of time against dirt, weather, oxidation etc.

All these factors add to the cost.

Parabolic Shaped Reflective Trough or Mirrors

Rotational W Fuid IN Collector Supports

## Mode of classification of Concentrating collectors



## Concentric Solar Technology based on application



### Comparison between different Concentrating Solar Power (CSP) technology

| CSP Technology                   | Storage Integration Possibility       | Advantages                                                                                                                  | Disadvantages                                                                                                                     |  |
|----------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Parabolic trough collector (PTC) | Possible                              | <ul><li>Relatively low installation cost</li><li>Large experimental feedback</li></ul>                                      | <ul> <li>Relatively large area occupied</li> <li>Low thermodynamic<br/>efficiency due to low<br/>operating temperature</li> </ul> |  |
| Linear Fresnel Reflector (LFR)   | Possible                              | <ul> <li>Relatively low installation cost</li> </ul>                                                                        | <ul> <li>Low thermodynamic<br/>efficiency due to low<br/>operating temperature</li> </ul>                                         |  |
| Solar Power Tower (SPT)          | Highly possible with low storage cost | <ul> <li>High thermodynamic<br/>efficiency due to high<br/>operating temperature</li> </ul>                                 | <ul> <li>Large space area occupied</li> <li>Relatively high installation cost</li> <li>High heat losses</li> </ul>                |  |
| Parabolic Dish (PD)              | Difficult                             | <ul> <li>Relatively small area occupied</li> <li>High thermodynamic efficiency due to high operating temperature</li> </ul> | <ul> <li>Relatively high installation cost</li> <li>Little experimental feedback</li> </ul>                                       |  |

## **Thermal Analysis of Concentrating collectors:**

Under steady-state condition, energy balance equation on the absorber yields:

$$q_u = A_a S - q_l$$

(assuming diffuse component of solar radiation is negligible)

Where  $q_{"}$  = rate of useful heat gain

 $A_{\alpha}$  = effective area of the aperture of the concentrator

S =Solar beam radiation per unit effective aperture area absorbed in the absorber

 $q_{l}$  = rate of heat loss from the absorber

The rate of heat loss in terms of overall loss coefficient,

$$q_l = U_l A_p \left( T_{pm} - T_a \right)$$

By combining the above two equations:

where

 $U_l$  = overall loss coefficient

 $A_p$  = area of the absorber surface

 $T_{pm}$  = average temperature of the absorber surface

 $T_a$  = temperature of the surrounding air

$$q_u = A_a \left[ S - \frac{U_l}{C} \left( T_{pm} - T_a \right) \right]$$

where

$$C = \frac{A_a}{A_p} = concentration \ ratio$$

## CSP system efficiency as a function of receiver temperature



[Source: Concentrating solar power technology: Principles, developments and applications, Woodhead Publishing]

Flat Plate collector, C = 1Parabolic trough, C = 80Solar Tower, C = 500Parabolic dish, C = 2000

Overall efficiency of CSP,

$$\eta_{system} = \eta_{collector} \times \eta_{carnot}$$

With increase in temperature,

$$\eta_{collector}\downarrow~\&~\eta_{carnot}\uparrow$$

## **Concentrating Solar Power Applications**

#### **Utility/ Commercial Scale**

#### Power Generation:

- ✓ Stand alone
- ✓ Grid connected systems
- ✓ Hybrid systems

#### Thermal Needs:

- ✓ Hot Water and Steam (Industrial & Commercial Uses)
- ✓ Air Conditioning Absorption Chillers
- ✓ Desalination of seawater by evaporation

#### Solar Chemistry:

- ✓ Manufacture of metals and semiconductors
- ✓ Hydrogen production (e.g. water splitting)

#### Materials Testing Under Extreme Conditions:

✓e.g. Design of materials for shuttle reentry

#### **Domestic/Small Scale**

- ✓ Hot Water Collector
- ✓ Solar HVAC
- ✓ Solar Steam Cooking
- ✓ Solar Ovens/Cookers
- ✓ Solar Food Dryers

## Concentrating Solar Power (CSP) technology analysis

| CSP Technology                    | Relative<br>cost | Land<br>occupancy | Thermodynamic efficiency | Operating<br>Temperature<br>range (°C) | Solar concentration ratio | Improvement<br>potential |
|-----------------------------------|------------------|-------------------|--------------------------|----------------------------------------|---------------------------|--------------------------|
| Parabolic trough collector (PTC)  | Low              | Large             | Low                      | 20–400                                 | 15–45                     | Limited                  |
| Solar Power<br>Tower (SPT)        | High             | Medium            | High                     | 300–565                                | 150–1500                  | Very significant         |
| Linear Fresnel<br>Reflector (LFR) | Very low         | Medium            | Low                      | 50–300                                 | 10–40                     | Significant              |
| Parabolic Dish<br>(PD)            | Very high        | Small             | High                     | 120–1500                               | 100–1000                  | High potential           |

### **Analysis of Parabolic Trough Collector**



$$C = \frac{\text{Effective aperture area}}{\text{Absorber tube area}} = \frac{\left(W - D_o\right)L}{\pi D_o L} = \frac{\left(W - D_o\right)}{\pi D_o}$$

- ➤ Aperture of the concentrator: *W*
- $\triangleright$  Length L  $\phi$ ,
- Rim angle:



- ✓ Radiation flux is same along the length
- ✓ Temperature drops across the absorber tube and the glass cover are neglected



- ✓ Absorber inner Dia: D<sub>i</sub>,
- $\checkmark$  outer diameter  $D_{o}$
- ✓ Concentric glass cover of inner dia  $D_{ci}$ , outer dia  $D_{co}$ ,

- ✓ Fluid being heated has a mass flow rate  $\dot{m}$
- ✓ Fluid inlet temperature ,  $T_{fi}$
- ✓ Fluid outlet temperature ,  $T_{fo}$

## **Analysis of Parabolic trough collector**

An energy balance on an elementary slice dx of the absorber tube at a distance x from the inlet, yields the steady state equation

$$dq_{u} = \left[I_{b}r_{b}\left(W - D_{o}\right)\rho\gamma\left(\tau\alpha\right)_{b} + I_{b}r_{b}D_{o}\left(\tau\alpha\right)_{b} - U_{l}\pi D_{o}\left(T_{p} - T_{a}\right)\right]dx$$

(A)

Incident beam radiation absorbed in the absorber tube after reflection

Absorbed incident beam radiation which fall directly on the absorber tube

Loss by convection and reradiation

Absorbed solar flux:

$$S = I_{b} r_{b} \rho \gamma \left(\tau \alpha\right)_{b} + I_{b} r_{b} \left(\tau \alpha\right)_{b} \left(\frac{D_{o}}{W - D_{o}}\right)$$

(B)

Using eq.(B) in eq.(A)

$$dq_{u} = \left[s - \frac{U_{l}}{C} \left(T_{p} - T_{a}\right)\right] \left(W - D_{o}\right) dx$$

(C)

Useful heat gain rate

$$dq_u = h_f \pi D_i \left( T_p - T_f \right) dx$$

(D)

$$dq_u = \dot{m}C_p dT_f$$

(E)

Combining eq. (C) and (D)

$$dq_{u} = F' \left[ s - \frac{U_{l}}{C} \left( T_{p} - T_{a} \right) \right] \left( W - D_{o} \right) dA$$

(F)

Collector efficiency factor

$$-\frac{1}{U_{l}\left[\frac{1}{U_{l}}+\frac{D_{o}}{D_{l}h_{f}}\right]}$$

(G)

$$\frac{dT_f}{dx} = \frac{F'\pi D_o U_l}{\dot{m}C_p} \left[ \frac{CS}{U_l} - \left( T_f - T_a \right) \right]$$

(H)

Integrating and using the initial conditions:

$$x = 0, T_f = T_{fi}$$

Temperature distribution:

$$\frac{\left(\frac{CS}{U_l} + T_a\right) - T_f}{\left(\frac{CS}{U_l} + T_a\right) - T_{fi}} = \exp\left\{-\frac{F'\pi D_o U_l x}{\dot{m}C_p}\right\}$$

Fluid temperature is obtained by putting  $T_f = T_{fi}$  and x = L

$$\frac{T_{fo} - T_{fi}}{\frac{CS}{U_l} + T_a - T_{fi}} = 1 - \exp\left\{-\frac{F'\pi D_o U_l L}{\dot{m}C_p}\right\}$$

Useful heat gain rate,

$$q_{u} = \dot{m}C_{p}\left(T_{fo} - T_{fi}\right) = \dot{m}C_{p}\left[\frac{CS}{U_{l}} + T_{a} - T_{fi}\right]\left[1 - \exp\left\{-\frac{F'\pi D_{o}U_{l}L}{\dot{m}C_{p}}\right\}\right]$$

$$q_{u} = F_{R}\left(W - D_{o}\right)L\left[1 - \exp\left\{-\frac{F'\pi D_{o}U_{l}L}{\dot{m}C_{p}}\right\}\right]$$

Collector Heat removal factor,

$$F_{R} = \frac{\dot{m}C_{p}}{\pi D_{o}LU_{l}} \left[ 1 - \exp\left\{ -\frac{F'\pi D_{o}U_{l}L}{\dot{m}C_{p}} \right\} \right]$$

#### Instantaneous collector efficiency

$$\eta_i = \frac{q_u}{\left(I_b r_b + I_d r_d\right) WL}$$

If the ground reflected radiation is neglected



$$\eta_i = \frac{q_u}{I_b r_b WL}$$

#### Overall loss coefficient and heat transfer correlations

$$\frac{q_l}{L} = h_{p-c} \left( T_{pm} - T_c \right) \pi D_o + \frac{\sigma \pi D_o \left( T_{pm}^4 - T_c^4 \right)}{\left\{ \frac{1}{\varepsilon_p} + \frac{D_o}{D_{ci}} \left( \frac{1}{\varepsilon_c} - 1 \right) \right\}}$$

$$= h_w \left( T_c - T_a \right) \pi D_{co} + \sigma \pi D_{co} \varepsilon_c \left( T_c^4 - T_{sky}^4 \right)$$

#### Heat Transfer coefficient between the absorber tube and the cover

$$\frac{k_{eff}}{k} = 0.317 (Ra *)^{1/4} \qquad (Ra *)^{1/4} = \frac{\ln(D_{ci}/D_o)}{b^{3/4} \left(\frac{1}{D_o^{3/5}} + \frac{1}{D_{ci}^{3/5}}\right)^{5/4}} Ra^{1/4}$$

$$\frac{2\pi k_{\it eff}}{\ln\left(D_{\it ci}/D_{\it o}\right)}\!\!\left(\!T_{\it pm}-T_{\it c}\right)\!=h_{\it p-c}\pi\!D_{\it o}\!\left(\!T_{\it pm}-T_{\it c}\right)$$



**Heat Transfer coefficient on the outside** surface of the cover

Hilpert's correlation  $Nu = C_1 \operatorname{Re}^n$ 

$$40 < \text{Re} < 4000, C_1 = 0.615, n = 0.466$$
  
 $4000 < \text{Re} < 40000, C_1 = 0.174, n = 0.618$   
 $40000 < \text{Re} < 400000, C_1 = 0.0239, n = 0.805$ 

**Churchili and Bernstein** : Valid upto  $Re = 10^7$ 

$$Nu = 0.3 + \frac{0.62 Re^{\frac{1}{2}} Pr^{\frac{1}{3}}}{\left[1 + \left(0.4 / Pr\right)^{\frac{2}{3}}\right]^{\frac{1}{4}}} \left[1 + \left(\frac{Re}{282000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}$$
For 20000
$$Nu = 0.3 + \frac{0.62 Re^{\frac{1}{2}} Pr^{\frac{1}{3}}}{\left[1 + \left(0.4 / Pr\right)^{\frac{2}{3}}\right]^{\frac{1}{4}}} \left[1 + \frac{Re}{282000}\right]^{\frac{1}{2}}$$

$$Nu = 0.3 + \frac{0.62Re^{\frac{1}{2}}Pr^{\frac{1}{3}}}{\left[1 + \left(0.4 / Pr\right)^{\frac{2}{3}}\right]^{\frac{1}{4}}} \left[1 + \frac{Re}{282000}\right]^{\frac{1}{2}}$$

#### Heat Transfer coefficient on the inside surface of the absorber tube

Nu = 3.66

For laminar flow Re < 2000

For turbulent flow Re > 2000

Assumption: Flow is fully developed as L/D<sub>i</sub> is grater than 20

**Dittus-Boelter equation:** 

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$

**Hong and Bergles** 

$$Nu = 5.172 \left[ 1 + 0.005484 \left\{ \Pr(\text{Re}/X)^{1.78} \right\}^{0.7} \right]^{0.5}$$

$$X = \frac{H}{D_i} = \text{tape twist ratio}$$

 $H = \text{length over which the tape is twisted through } 180^{\circ}$ 

#### **Pressure drop (Date and Singham)**

$$f \text{ Re} = 38.4 (\text{Re}/X)^{0.05}$$
  $6.7 \le (\text{Re}/X) \le 100$   
=  $C_2 (\text{Re}/X)^{0.3}$   $(\text{Re}/X) > 100$ 

$$f$$
 = friction factor  $C_2 = 8.8201 \, X - 2.1193 \, X^2 + 0.2108 \, X^3 - 0.0069 \, X^4$ 

# Summary

- Fundamentals of concencetrating collectors
- Classification based on
  - Reflecting type utilizing mirrors
  - Refracting type utilizing Fresnel lenses
  - Imaging (point focus and line focus)
  - Concentration ratio (operating temperature)
  - Tracking

• Basic Energy Balance 
$$q_u = A_a \left[ S - \frac{U_l}{C} (T_{pm} - T_a) \right]$$

Analysis of Parabolic Trough Collector and heat transfer coefficient