Neural Networks - Deep Learning

Artificial Intelligence @ Allegheny College

Janyl Jumadinova

March 15-20, 2023

Credit: Google Workshop

Structure of a prototypical biological neuron

Neural computing requires a number of **neurons**, to be connected together into a **neural network**.

Neurons are arranged in layers.

Two main **hyperparameters** that control the architecture or topology of the network: 1) the number of layers, and 2) the number of nodes in each hidden layer.

Activation Functions

- The activation function is generally non-linear.
- Linear functions are limited because the output is simply proportional to the input.

McCulloch and Pitts: every Boolean function can be implemented

Activation Functions

Janyl Jumadinova

Network structures

Two phases in each iteration:

- Calculating the predicted output y, known as feed-forward
- 2 Updating the weights and biases, known as backpropagation

Feed-forward example

 $\label{eq:Feed-forward} \mbox{Feed-forward network} = \mbox{a parameterized family of nonlinear functions:}$

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Feed-forward networks:

- Single-layer perceptrons
- Multi-layer perceptrons

Single-layer Perceptrons

Output units all operate separately - no shared weights.

Adjusting weights moves the location, orientation, and steepness of cliff.

Multi-layer Perceptrons

- Layers are usually fully connected.
- Numbers of hidden units typically chosen by hand.

Neural Networks: A fully connected NN layer

Implementation as Matrix Multiplication

Non-Linear Data Distributions

- Most current machine learning works well because of human-designed representations and input features.
- Machine learning becomes just optimizing weights to best make a final prediction.

- Most current machine learning works well because of human-designed representations and input features.
- Machine learning becomes just optimizing weights to best make a final prediction.
- Deep learning algorithms attempt to learn multiple levels of representation of increasing complexity/abstraction.

- Each neuron implements a relatively simple mathematical function.
- $y = g(\overline{w} \cdot \overline{x} + b)$

- $y = g(\overline{w} \cdot \overline{x} +$
- The composit

Book: http://www.deeplearningbook.org/

Chapter 5

"A core idea in deep learning is that we assume that the data was generated by the composition of factors or features, potentially at multiple levels in a hierarchy."

Results get better (to a degree) with:

- more data
- bigger models
- more computation

Results get better (to a degree) with:

- more data
- bigger models
- more computation

Better algorithms, new insights and improved methods help, too!

- Open source Machine Learning library
- Especially useful for Deep Learning
- For research and production
- Apache 2.0 license
- tensorflow.org

Adoption of Deep Learning Tools on GitHub

- Epoch: a training iteration (one pass through the dataset).
- Batch: Portion of the dataset (number of samples after dataset has been divided).
- Regularization: a set of techniques that helps learning models to converge (http://www.godeep.ml/regularization-using-tensorflow/).

A multidimensional array.

• Operates over **tensors**: n-dimensional arrays A graph of operations.

 $\hbox{A multidimensional array}.\\$

- Operates over tensors: n-dimensional arrays A graph of operations.
- Using a flow graph: data flow computation framework

- $5.7 \leftarrow Scalar$
- Number, Float, etc.

Tensors have a Shape that is described with a vector

29 / 36

- Tensors have a **Shape** that is described with a vector
- [1000, 256, 256, 3]
- 10000 Images
- Each Image has 256 Rows
- Each Row has 256 Pixels
- Each Pixel has 3 values (RGB)

Computation is a dataflow graph with state

Core TensorFlow data structures and concepts

- **Graph**: A TensorFlow computation, represented as a dataflow graph:
 - collection of ops that may be executed together as a group.

Core TensorFlow data structures and concepts

- Graph: A TensorFlow computation, represented as a dataflow graph:
 - collection of ops that may be executed together as a group.
- Operation: a graph node that performs computation on tensors

Core TensorFlow data structures and concepts

- Graph: A TensorFlow computation, represented as a dataflow graph:
 - collection of ops that may be executed together as a group.
- Operation: a graph node that performs computation on tensors
- Tensor: a handle to one of the outputs of an Operation:
 - provides a means of computing the value in a TensorFlow Session.

Constants

- Constants
- Placeholders: must be fed with data on execution.

- Constants
- Placeholders: must be fed with data on execution.
- Variables: a modifiable tensor that lives in TensorFlow's graph of interacting operations.

- Constants
- Placeholders: must be fed with data on execution.
- Variables: a modifiable tensor that lives in TensorFlow's graph of interacting operations.
- **Session**: encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

Category	Examples
Element-wise math ops	Add, Sub, Mul, Div, Exp, Log, Greater, Less
Matrix ops	Concat, Slice, Split, Constant, Rank, Shape
Matrix ops	MatMul, MatrixInverse, MatrixDeterminant
Stateful ops	Variable, Assign, AssignAdd
NN building blocks	SoftMax, Sigmoid, ReLU, Convolution2D
Checkpointing ops	Save, Restore
Queue & synch ops	Enqueue, Dequeue, MutexAcquire
Control flow ops	Merge, Switch, Enter, Leave

https://playground.tensorflow.org