

Distributed Architecture Case Study: BitTorrent

Pierre Kuonen & Beat Wolf

Institut of Complex Systems

Haute Ecole d'Ingénierie et d'Architecture de Fribourg

Introduction

- BitTorrent is a file sharing protocol based on a Peer-to-Peer architecture.
- Its main goal is to speed up files downloads by removing the central server bottleneck
 - All computers downloading the same file, exchange already downloaded parts of the file between each other
 - The set of all the participant of the download is called a swarm in the BitTorrent terminology
 - A swarm is created for each file download

- The are many implementations:
 - Official client, µTorrent, qBittorrent, Transmission, Vuze, BitComet and many more

Use-cases

- BitTorrent can basically provide the following services
 - Distribution of larges files on large networks
 - OS, Movies, games distribution
 - Example: facebook uses BitTorrent to distribute new releases
 - Robustness and service availability thanks to Data replication
 - This is inherent to the BitTorrent architecture
 - Illegal file-sharing
 - But without strict anonymity
 - private BitTorrent networks

BitTorrent design idea

- When downloading a file, the BitT client announces to a central BitT server that he is interested in the file
- The BitT server stores the contact information of that BitT client, and sends him not only a list of other BitT clients having the file but also a list of BitT clients which are currently downloading the file already
- The BitT client connects to the other nodes and requests the different parts of the file
 - During downloading the BitT client can be contacted to send parts of the file he already have to other BitT clients

The .torrent files

- A .torrent is a file containing the required information to download a specific file
 - Content:
 - Announce: The tracker information, basically the URI
 - Info: Information for
 - · Name: File name
 - Piece length : Size in bytes for every download part
 - · Length: Total file size
 - Pieces: Hash for every individual piece to be downloaded

```
{
    'announce':'http://bttracker.debian.org:6969/announce',
    'info':{
        'name':'debian-503-amd64-CD-1.iso',
        'piece length':262144,
        'length':678301696,
        'pieces':'841ae846bc5b6d7bd6e9aa3dd9e551559c82abc1...d14f1631d776008f83772ee170c42411618190a4'
    }
}
```


File download activity diagram

Single point of failure

- The weakness of this architecture is the tracker
 - single point of failure for a swarm
- This why new versions of BitTorrent have introduced the DHT
 - DHT stand for "Distributed sloppy hash table"
 - It is an architecture extension which makes every node part of a distributed tracker
- The DHT is a distributed *hashtable* in which key/value pairs can be stored
 - Basically we can see the DHT as a distributed redondant tracker
 - It does not have an "announce" key. Instead, it has a "nodes" key.
 - This key should be set to the K closest nodes
- By storing the information about the peers in a swarm in a distributed hash table, the need for a single tracker is removed

File download activity diagram with DHT

