

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение
высшего образования
«Московский государственный технический университет
имени Н.Э. Баумана
(национальный исследовательский университет)»
(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ» $\label{eq: KAPE}$ КАФЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Баллистическое проектирование артиллерийских орудий»

Вариант 24

Студент СМ6-72			М.В. Ерофеев	
	(Группа)	(Подпись, дата)	(И.О.Фамилия)	
Руководитель курсовой	i работы _		В.А. Федулов	

(Подпись, дата) (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

УТВЕРЖДАЮ

	Заведуюц	ций кафедрой <u>СМ6</u> (Индекс)
		В.М.Кашин
	(И.О.Фамилия)
«	»	20 г.

ЗАДАНИЕ на выполнение курсовой работы

по дисциплине Газовая динамика	
Студент группы СМ6-72	
	Ерофеев Максим Викторович
(Фамилия, имя, отчество)	Брофеев Мемены Викторови I
Тема курсовой работы <u>Баллистическое проектирование артил</u> на сжатом газе	лерийских орудий
Направленность КР (учебная, исследовательская, практическ Учебная	ая, производственная, др.)
Источник тематики (кафедра, предприятие, НИР) <u>Кафедра</u>	
Γ рафик выполнения работы: 25% к $\underline{4}$ нед., 50% к $\underline{8}$ нед., 75% г	к $\underline{12}$ нед., 100% к $\underline{14}$ нед.
Задание Найти оптимальные параметры ствола и условий за	ъряжания при решении обратной задачи

математической модели — квазиодномерная (KM), критерий оптимальности — $Z_{
m B1},\,p_{
m m}^{
m max}=390$ МПа, $l_{
m m}^{
m max}$

внутренней баллистики. При этом d=85 мм, q=5 кг, $v_{\rm pm}=950$ м/с, тип орудия — НР, тип

=65 ед.d, $v_{
m pm\text{-}50}=850$ м/с, $p_{
m mz+5}0=180$ МПа.

Оформление курсовой работы:		
Расчетно-пояснительная записка на	листах формата А4.	
T 19 6 9094		
Дата выдачи задания « <u>13</u> » <u>сентября</u> <u>2024</u> г.		
Руководитель курсовой работы		В.А. Федулов
	(Подпись, дата)	(И.О.Фамилия)
Студент		М.В. Ерофеев
	(Подпись, дата)	(И.О.Фамилия)

Оглавление

1 Прямая задача внутренней баллистики				
	1.1 Описание математической модели	3		

Введение

Данная курсовая работа посвящена нахождению оптимальных параметров артиллерийского орудия и условий заряжания путем решения обратной задачи внутреннй баллистики. Ключевым критерием оптимальности решения является критерий качества баллистического решения $Z_{\rm B1}$.

Решение должно удовлетворять следующим требованиям:

- $p_{\rm m}^{\rm max} \le 390 \ {\rm M}\Pi{\rm a}$
- $l_{\mathrm{m}}^{\mathrm{max}} \leq 65$ ед.d

Также на решение наложены следующие ограничения:

- $v_{\mathrm{pm-50}} = 830 \; \mathrm{m/c}$
- $p_{\mathrm{mz+50}} = 180 \mathrm{~M\Pi a}$

Условие задания:

- d = 85 mm
- \bullet q=5 кг
- $v_{
 m pm} = 950 \; {
 m m/c}$
- Тип орудения нарезное (НР)
- Тип мат. модели квазиодномерная (КМ)

Данная задача будет решаться с использованием мат. аппарата квазиодномерной модели внутренней. баллистики. Также использованы методы оптимизации для нахождения оптимального решения обратной задачи с учетом критериев и ограничений.

Вычисления проводились с помощью языка программирования Python с использованием библиотеки PyBallistics [1], визуализация данных осуществлялась через библиотеку Matplotlib [2].

Глава 1

Прямая задача внутренней баллистики

1.1 Описание математической модели

Выстрел предствавляет собой довольно сложный быстропротекающий физико-химический процесс. Его физическая сущность состоит в том, что при сгорании порохового заряда образуются газообразные продукты сгорания под большим давлением, под действием которого снаряд выталкивается из канала ствола с огромной скоростью. Прямая задача состоит в том, чтобы описать движение снаряда массой q по каналу ствола диаметра d под действием давления продуктов сгорания заряда пороха массой ω , находящимся в объеме W_0 . Схема процесса вместе с качественными распределениями давления и скорости представлена на рисунке 1. Для упрощения вводится ствол с камерой приведенной длины l_0 , имеющей тот же обеъем W_0 , но с диаметром, равным калибру ствола d.

Рис. 1.1: Схема процесса выстрела

Наиболее соверменным и точным описанием процесса выстрела является газодинамический подход, по размерности в нашем случае модель является одномерной (квазиодномерной). Эта модель выстрела содержит некоторые допущения:

- Гипотеза односкоростной газопороховой смеси (ОГПС)
- Геометрический закон горения пороха

В пространстве между дном ствола и дном снаряда (заснарядный объём) в процессе движения снаряда по каналу ствола находятся газообразные продукты сгорания пороха и конденсированные частицы несгоревшего пороха. Для упрощения принимается, что пороховые газы и конденсированные элементы

представляют собой гомогенную смесь, которая движется с общей скоростью. Такое допущение называется гипотезой односкоростной газопороховой смеси (ОГПС). Уравнение состояния ОГПС представляется в виде:

$$\varepsilon = \frac{p}{k-1} \left(\frac{1}{\rho} - \frac{1-\psi}{\delta} - b\psi \right) + (1-\psi) \frac{f}{k-1},\tag{1.1}$$

где ε — удельная внутрення энергия ОГПС, ρ — плотность ОГПС, b — коволюм порохового газа (эффективный собственный объём молекул), k — показатель адиабаты, $\psi = \omega_b / \omega$ — отношение массы сгоревшего элемента у его исходной массе, ω_b — масса сгоревшего пороха, ω — исходная масса пороха. δ — плотность пороха.

Геометрический закон горения пороха выражается в виде формулы (1):

$$\frac{dz}{dt} = \frac{p^{\nu}}{I_e},\tag{1.2}$$

где p — давление газа, ν — показатель степени в законе горения. В артиллерии, как правило, $\nu=1$. z=e $/e_1$ — безразмерная толщина сгоревшего свода порохового элемента. В свою очередь e — координата текущего положения поверхности горения, а e_1 — полная толщина горящего свода порохового элемента. I_e — полный импульс давления пороховых газов:

$$I_e = \int_0^{t_e} p^v dt = \frac{e_1}{u_1},$$

где u_1 – скорость горения при единичном горении, определяемая экспериментальным путем.

Далее рассмотрим систему уравнений для газодинамической задачи в приближении ОГПС. ОГПС в данном случае представляет собой «псевдогаз», её движение в заснарядном объёме описывается стандартными уравнениями сохранения массы, импульса и энергии в лагранжевых координатах:

$$\frac{\partial v}{\partial m} = \frac{d}{dt} \left(\frac{1}{\rho S} \right) \tag{1.3}$$

$$\frac{dv}{dt} + S\frac{\partial p}{\partial m} = 0, (1.4)$$

$$\frac{d\epsilon}{dt} + p \frac{\partial}{\partial m} (vS) = 0. \tag{1.5}$$

Здесь т – массовая лагранжева координата.

СПИСОК ЛИТЕРАТУРЫ

- [1] PyBallistics
- [2] Matplotlib