

XLVII Olimpiada Matemática Española

Primera Fase Primera sesión

Viernes mañana, 21 de enero de 2011

1. Los años recientes se han podido expresar como sumas, restas y multiplicaciones de números con un mismo y único dígito; por ejemplo:

$$2009 = 7 \times 7 \times 7 \times 7 - 7 \times 7 \times 7 - 7 \times 7$$
, $2010 = 66 \times 6 \times 6 - 66 \times 6 + 6 \times 6 - 6$

¿Se puede hacer lo mismo con el 2011, sin repetir jamás sumandos iguales? Por ejemplo, no es admisible $2011 = 1 + 1 + 1 + \dots$

- 2. Dos semirrectas tienen su común origen en el punto O. Se considera una circunferencia C_1 tangente a ambas semirrectas, cuyo centro está situado a distancia d_1 de O, y cuyo radio es r_1 . Se construyen sucesivamente las circunferencias C_n , de modo que C_n es tangente a las semirrectas, tangente exterior a C_{n-1} y tal que la distancia de su centro a O, d_n , es menor que d_{n-1} , para n > 1. Halla la suma de las áreas de los círculos limitados por las circunferencias C_n , para todo n, en función de r_1 y d_1 .
- **3.** Saber cuál es la última cifra de 2009^{2011} es muy fácil, pero ¿cuántos ceros preceden a esa última cifra?

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.

XLVII Olimpiada Matemática Española

Primera Fase

Segunda sesión

Viernes tarde, 21 de enero de 2011

- **4.** Calcula todos los números enteros a, b y c tales que $a^2 = 2b^2 + 3c^2$.
- 5. Dos esferas de radio r son tangentes exteriores. Otras tres esferas de radio R son tangentes exteriores entre sí, dos a dos. Cada una de estas tres esferas es, además, tangente exterior a las dos primeras. Encuentra la relación entre R y r.
- **6.** Denotamos por $\mathbb{N} = \{1, 2, 3, \ldots\}$ el conjunto de números naturales excluido el cero y por $\mathbb{N}^* = \{0, 1, 2, 3, \ldots\}$ el conjunto de números naturales incluido el cero. Encuentra todas las funciones $f: \mathbb{N} \to \mathbb{N}^*$ que sean crecientes, es decir $f(n) \geq f(m)$ si n > m, y tales que f(nm) = f(n) + f(m), para todo $n, m \in \mathbb{N}$.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.