Correction de l'exercice du jour 8

- 1. **Limites.** On a $\lim_{x\to 0} \ln x = -\infty$ et $\lim_{x\to 0} -\frac{2}{x} = -\infty$, d'où par somme des limites $\lim_{x\to 0} g(x) = -\infty$. De même $\lim_{x\to +\infty} \ln x = +\infty$ et $\lim_{x\to +\infty} -\frac{2}{x} = 0$, d'où par somme des limites $\lim_{x\to 0} g(x) = +\infty$.
 - **Variations.** g est dérivable sur]0; +∞[et pour tout réel x de cet intervalle on a $g'(x) = \frac{1}{x} + \frac{2}{x^2}$ somme de deux termes positifs. La dérivée est positive : la fonction g est strictement croissante sur]0; +∞[.
 - **Annulation.** La fonction g est continue, car dérivable sur [2,3;2,4], g est strictement croissante sur cet intervalle; la calculatrice donne $g(2,3) \approx -0.04$ et

 $g(2,4) \approx 0,04$ donc d'après le corollaire du théorème des valeurs intermédiaires dans le cas des fonctions strictement croissante, l'équation g(x) = 0 admet une unique solution x_0 dans l'intervalle [2,3;2,4].

2. a. On a donc $g(x_0) = \ln x_0 - \frac{2}{x_0} = 0 \iff \ln x_0 = \frac{2}{x_0}$.

D'autre part
$$f(x_0) = \frac{5 \ln x_0}{x_0}$$
 donc $f(x_0) = \frac{5 \times \frac{2}{x_0}}{x_0}$ soit $f(x_0) = \frac{10}{x_0^2}$.

b. Soit $\mathcal{A}(a) = \int_1^a \frac{5 \ln t}{t} dt = 5 \int_1^a \frac{\ln t}{t} dt$.

$$t \longleftrightarrow \frac{\ln t}{t}$$
 est de la forme $u' \times u$ qui a pour primitive $\frac{u^2}{2}$ avec $u(t) = \ln t$.

On en déduit que
$$\mathcal{A}(a) = \frac{5}{2} (\ln a)^2$$
.

3. D'après la question 1, P_0 a pour abscisse x_0 , donc d'après la question 2. M_0 a pour coordonnées $\left(x_0; \frac{10}{x_0^2}\right)$ et enfin $H_0\left(0; \frac{10}{x_0^2}\right)$.

$$\mathcal{A}(\mathcal{D}_1) = \int_1^{x_0} f(t) dt$$

$$= \frac{5}{2} (\ln x_0)^2$$

$$= \frac{5}{2} \left(\frac{4}{x_0^2}\right)$$

$$= \frac{10}{x_0^2}$$

$$= f(x_0)$$

$$= \mathcal{A}(\mathcal{D}_2)$$

En partant de l'encadrement donné:

$$2,3 < x_0 < 2,4$$

$$\implies$$
 2,3² < x_0^2 < 2,4²

$$\implies \frac{1}{2,4^2} < \frac{1}{x_0^2} < \frac{1}{2,3^2}$$

$$\implies 10 \times \frac{1}{2,4^2} < 10 \times \frac{1}{x_0^2} < 10 \times \frac{1}{2,3^2}$$

Soit finalement: 1,736 < $\frac{10}{x_0^2}$ < 1,891.

Conclusion : 1,7 < $\mathcal{A}(\mathcal{D}_1)$ < 1,9 à 0,2 près.