Section 8.6. *Bounded Kepler orbits* Section 8.7. *Unbounded Kepler Orbits* Read Sections 8.6 and 8.7.

Review some equations we know ...

•
$$u(\phi) = A \omega s(\phi - \delta) + \frac{\gamma m}{\ell^2}$$

• $u(\phi) = A \omega s(\phi - \delta) + \frac{\gamma m}{\ell^2}$
• $u(\phi) = A \omega s(\phi) + \frac{\gamma m}{\ell^2}$
• $u(\phi) = A \omega s(\phi) + \frac{\gamma m}{\ell^2}$
• $u(\phi) = \frac{1}{n} = \frac{C}{1 + \epsilon \omega s(\phi)}$
• $c = e^2$
• $c = e^2$

Exercise: What about $\gamma = 0$?

Use $\{a, \varepsilon\}$ to define the ellipse.

Now relate energy (E) and angular momentum (ℓ) to semimajor axis (a) and eccentricity (ε).

• Angular morrentum
$$l = \mu r^2 \dot{\phi}$$

We have $c = \frac{\ell^2}{8\mu}$ and $c = a(1-\epsilon^2)$

Solve $\ell^2 = \gamma \mu a(1-\epsilon^2)$

Solve a and ϵ .

• Energy =
$$\frac{1}{2}m\dot{r}^2 + \frac{l^2}{2\mu r^2} - \frac{8}{r}$$

Express E in terms of $\{a, E\}$,
 $E = \frac{l^2}{2\mu r_{min}^2} - \frac{8}{r_{min}} = \frac{8\mu a(1-E^2)}{2\mu \left[\frac{c}{1+E}\right]^2} - \frac{8}{\left[\frac{c}{1+E}\right]^2}$
= $\frac{8\mu c(1+E)^2}{2c^2} - \frac{8\mu a(1-E^2)}{2\mu \left[\frac{c}{1+E}\right]^2} = \frac{8\mu a(1-E^2)}{2\mu \left[\frac{c}{1+E}\right]^2}$
= $\frac{8\mu c(1+E)^2}{2c^2} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c^2} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu c(1+E)^2}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu a(1-E^2)}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu a(1-E^2)}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu a(1-E^2)}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu a(1-E^2)}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$
= $\frac{8\mu a(1-E^2)}{2c} - \frac{8\mu a(1-E^2)}{2c} = \frac{8\mu a(1-E^2)}{2c}$

Results

$$\ell^2 = \mu \gamma a (1 - \epsilon^2)$$

$$E = -\gamma / (2a)$$

$$\gamma = G m_1 m_2 = GM \mu$$

Kepler's third law (1619)

By analyzing Tycho's observations of the planets, Kepler concluded that $\tau^2 \propto a^3$ for all the planets; in other words, $\tau^2 / a^3 =$ constant.

It's not precisely true, but it is very close.
(1) Derivation from Newton's theory,
for circular orbits.

$$\mu \vec{r} = -\frac{y}{r^2} \hat{r}$$

$$\vec{r} = -\frac{y^2}{r} \hat{r} \quad \text{(circular motion)}$$

$$\frac{\mu v^2}{r} = \frac{y}{r^2} \implies v^2 = \frac{y}{\mu r}$$
The Stead in constant, so the period
$$\vec{r} = \frac{y}{r} = \frac{y}$$

Now,
$$S = Gm_1 m_2 = GMM$$
.
So $T^2 = \frac{4\pi^2 r^3}{GM} = \frac{4\pi^2 r^3}{G(M_S + M_{planet})}$
 $T^2 \approx \frac{4\pi^2 r^3}{GM_S}$ Keylev's third (an for a circular orbit

(2) Derivation for elliptical orbits.

Recall Kepler's
$$2^{nd}$$
 law, which we derived in Chapter 3; "equal areas in equal times";

$$\frac{dA}{dt} = \frac{1}{2\mu} \quad \text{for any central force}$$
is constant, so $A = \frac{1^{nc}}{2\mu}$
What is the area of an ellipse?

What is the area of un ellipse?

$$A = \pi r^2$$

$$A = \pi ab$$

$$\int dA = \int_{-a}^{a} 2y \, dx \, dx = \pi ab$$

$$= \int_{-a}^{a} 2b \sqrt{1-x_{A^2}^2} \, dx = \pi ab$$

So
$$C = \frac{2u}{2} \pi ab$$
 Pacult: $a = \frac{c}{l-\epsilon^2}$

and $b = \frac{c}{\sqrt{l-\epsilon^2}} \approx b = a\sqrt{l-\epsilon^2}$
 $C = \frac{2u}{\sqrt{u} \sqrt{a(l-\epsilon^2)}} \pi a \cdot a\sqrt{l-\epsilon^2} = 2\pi a^{\frac{3}{2}} \sqrt{\frac{u}{3}}$
 $C = \frac{e\pi a^{\frac{3}{2}}}{\sqrt{6\pi}}$ same as for a circular orbit $C = \frac{e\pi a^{\frac{3}{2}}}{\sqrt{6\pi}}$

Section 8.6. Bounded Kepler Orbits

We have been considering bounded Kepler orbits. These have energy E < 0. The orbits are ellipses with eccentricity ε in the range $0 \le \varepsilon < 1$. (A circular orbit has $\varepsilon = 0$.)

Equations

$$r(\varphi) = \frac{c}{1 + \varepsilon \cos \varphi}$$

$$r_{\min} = c$$

$$0 \le \varepsilon < 1$$

$$c = l^2 / (\gamma \mu) \quad \text{and} \quad l = \mu r^2 \dot{\varphi}$$

$$E = \frac{1}{2} \mu \dot{r}^2 + \frac{l^2}{2 \mu r^2} - \frac{\gamma}{r}$$

Section 8.7. *Unbounded Kepler Orbits* Now consider orbits with $E \ge 0$.

We can reuse some of the equations that we had before; they are valid for either E < 0 or E > 0.

Equations

$$r(\varphi) = \frac{c}{1 + \varepsilon \cos \varphi}$$

$$r_{\min} = \varepsilon \ge 1$$

$$c = l^2 / (\gamma \mu) \quad \text{and} \quad l = \mu r^2 \dot{\varphi}$$

$$E = \frac{1}{2} \mu \dot{r}^2 + \frac{l^2}{2 \mu r^2} - \frac{\gamma}{r}$$

Parabolic orbits have $\varepsilon = 1$.

$$r(\varphi) = \frac{-\frac{c}{1 + \cos\varphi}}$$

Why is this a parabola?

$$x = r \cos \varphi$$

 $y = r \sin \varphi$

$$(1 + \cos\varphi) r = r + x = c$$

$$r^2 = x^2 + y^2 = (c - x)^2 = c^2 - 2cx + x^2$$

$$x = (c^2 - y^2)/(2c)$$

the eq. for a parabola

Or,
$$y = \pm \operatorname{sqrt} (c^2 - 2cx)$$

The energy for the parabolic orbit

$$E = \frac{1}{r_{min}} \left(\frac{\ell^2}{2\mu r_{min}} - \gamma \right) = \frac{1}{r_{min}} \left(\frac{\ell^2}{2\mu \ell} \frac{2\gamma u}{2} - \gamma \right) = 0$$

$$E = 0$$

Hyperbolic orbits have ε > 1.

$$r(\varphi) = \frac{-C}{1 + \epsilon \cos \varphi}$$

Why is this a hyperbola?

$$x = r \cos \varphi$$

 $y = r \sin \varphi$

Note that $r \to \infty$ as $\phi \to \phi_{max}$

where
$$\cos \varphi_{\text{max}} = -\frac{1}{\epsilon}$$

which requires $\varepsilon > 1$

The energy for a hyperbolic orbit.

$$E = \frac{l^{2}}{2\mu r_{min}^{2}} - \frac{\chi}{r_{min}} \quad (\dot{r} = 0 \text{ at perih.})$$

$$Recull \quad c = \frac{l^{2}}{\chi n} \quad \text{and} \quad r_{min} = \frac{c}{(l+\epsilon)}$$

$$E = \frac{\chi^{2} u}{2l^{2}} (\epsilon^{2}-1) \quad \text{so} \quad E > 0.$$

- Given the position and velocity vectors at one point on the orbit, the constants of motion ℓ and E are determined.
- The sign of E determines the curve: E < 0 bounded elliptical

E = 0 unbounded parabolic E > 0 unbounded hyperbolic

- Given ℓ and E, the geometric parameters are determined; e.g., $\{r_{\min}, \epsilon\}$.
- These are the Kepler orbits in space; but what about the time dependence?

Exam 3 is Monday.

Homework assignment #14 is due next Friday.