

AERO-ASSISTED ORBITAL TRANSFER VEHICLE (AOTV)

Oliver Hill, NASA/Johnson Space Center

The AOTV will make use of the atmosphere to provide braking on return from a planetary mission or geosynchronous orbit. The minimum altitude for aerobraking is typically 255,000 ft at the equator (only the equatorial region is being considered for AOTV braking). Time of the braking maneuver is typically 480 sec from 400,000 ft to 255,000 ft and back out - about 8 min. The problem is to design a control system that will be able to handle density irregularities ("bumps") such as those that have shown up in shuttle data near 280,000 ft. To obtain data, one has to use model-produced statistics or information obtained during the atmospheric transit time. The GRAM appears to bracket the shuttle data, but it is not clear that the statistics are correct. The model-data exhibits strong density shears over small step size that are probably an artifact.

[Gamble] The shuttle entry itself, particularly in the region where the trajectory is nearly horizontal, is a new data source for middle atmosphere density. There is a new National Weather Service (NWS) rocket program to study atmospheric density along shuttle entry paths (M. Gellman).

PRECEDING PAGE BLANK NOT FILMED

NASA MISSION SUPPORT DIRECTORATE JSC

AFE PROJECT
USE OF GRAM ATMOSPHERIC MODELS

O. HILL
NOVEMBER 19-21, 1985
MPAD-JSC

MISSION PLANNING AND ANALYSIS DIVISION

NASA MISSION SUPPORT DIRECTORATE JSC

GUIDANCE OBJECTIVE

NASA

MISSION SUPPORT DIRECTORATE JSC

AFA BASELINE TRAJECTORY

MISSION PLANNING AND ANALYSIS DIVISION

NASA MISSION SUPPORT DIRECTORATE JSC

GRACE / NASA-A

"POST" AFE GROUNDDRACK U/ EXIT AEROBRAKE STATE VECTOR
DATE 10/17/85 TIME 17:48:45

PAGE 1

AFE NOMINAL MANEUVER EVENT SUMMARY

NASA MISSION SUPPORT DIRECTORATE JSC

AFE AEROBRAKING ANALYSIS

MONTE CARLO ANALYSIS

- 100 GRAM ATMOSPHERIC MODELS ARE GENERATED FOR A SPECIFIED MONTH AND ARE STORED AND CALLED SEQUENTIALLY FOR A 100 TRAJECTORY SIMULATION
- SHUTTLE DERIVED ATMOSPHERES ARE TO BE INCLUDED IN THE MONTE CARLO DATA BASE

AFE AEROBRAKING ANALYSIS

PARAMETRIC DATA

- GRAM MONTHLY MEAN IS USED FOR NOMINAL AEROBRAKING TRAJECTORIES
- SHUTTLE DERIVED ATMOSPHERES (STS 1-14) ARE USED TO SIMULATE DENSITY BIASES AND DENSITY SHEARS ABOUT THE GRAM MONTHLY MEAN ATMOSPHERES
- GRAM DENSITY SHEAR AND DENSITY BIAS
- TRAPEZOIDAL DENSITY SHEARS
 - MAGNITUDE
 - RISE TIME

DRIVERS

DENSITY GRADIENTS

- MAGNITUDE
- ONSET TIME

ORIGINAL PAGE IS
OF POOR QUALITY

NASA MISSION SUPPORT DIRECTORATE JSC

MISSION PLANNING AND ANALYSIS DIVISION

AFE BASELINE TRAJECTORY

DENSITY SHEAR AT 282 000 FT ALTITUDE

NASA MISSION SUPPORT DIRECTORATE JSC

POSITIVE TRAPEZOIDAL DENSITY SHEAR AT 282000 FT.

ΔρS	RAMP TIME	Δ RANGE	Δ ALTITUDE	APOGEE ALTITUDE	ERROR
	SEC	N.MI.	FT	N.MI.	
20%	2	9	500	-8	
30%	4	17	1000	67	
30%	8	34	2000	33	
30%	12	51	3000	-10	
35%	4	17	1000	72	
35%	8	34	2000	53	
35%	12	51	3000	59	
35%	16	68	4000	-5	

NASA

MISSION SUPPORT DIRECTORATE JSC

DENSITY SHEAR AT 282 000 FT ALTITUDE

NASA MISSION SUPPORT DIRECTORATE JSC

POSITIVE TRAPEZOIDAL DENSITY SHEAR AT 282000 FT.

	RAMP TIME	Δ RANGE	Δ ALTITUDE	APOGEE ALTITUDE	ERROR	N.MI.
	SEC		FT			
20%	2	9	500		-1	
30%	2	9	500		-39	
30%	4	17	1000		-18	
30%	8	34	2000		10	
30%	12	51	3000		11	
35%	4	17	1000		-43	
35%	8	34	2000		-2	
35%	12	51	3000		-75	
35%	16	68	4000		9	

ERATIC RESULTS

GUIDANCE SENSITIVITY TO ATMOSPHERIC DENSITY BIAS

AFE BASE LINE TRAJECTORY

- $\Delta Y = +0.20 \text{ DEG}$, $\Delta \alpha = -2.0 \text{ DEG}$:

APOGEE ALTITUDE ERROR - N.MI.

$\Delta p = -60\%$	778.5
$\Delta p = -50\%$	-13.8
$\Delta p = -40\%$	-4.0

$\Delta p = +60\%$

NO EXTREMES

- OTHER ΔY , $\Delta \alpha$ COMBINATIONS HAVE NO EXTREME ERRORS IN APOGEE ALTITUDE FOR $-60\% \leq \Delta p \leq +60\%$

CONCLUSION

PROPER DEFINITION OF THE ATMOSPHERE AT THE LOCATION OF THE AEROBRAKING MANEUVER IS CRITICAL TO THE SUCCESS OF THE MISSION

- LOW INCLINATION ORBITS (EQUATORIAL)
- HIGH INCLINATION ORBITS (POLAR)