A mérés célja. 87%-os glicerin belső súrlódását (viszkozitását) szeretnénk meghatározni. A belső súrlódást így értelmezzük: ha egy folyadékban két párhuzamos, egymástól d távolságra lévő, A területű lemezt mozgatunk egymáshoz képest v sebességgel, akkor a folyadék belső súrlódása miatt erő lép fel közöttük, ami egyenesen arányos A-val és v-vel, és fordítottan arányos d-vel. Az arányossági tényező,

 $\eta = \frac{Fd}{Av}$

a viszkozitás.

A mérés leírása. A viszkozitást kétféle módszerrel határozzuk meg. Először Höppler-féle viszkoziméterrel. Ehhez megmérjük, hogy a viszkoziméterben mennyi idő alatt ér le a golyó a két szélső osztás között (t), ill. megmérjük a folyadék sűrűségét (ϱ_f) areométerrel. Innen az

$$\eta = K(\varrho_g - \varrho_f)t$$

összefüggéssel kaphatjuk meg a viszkozitást, ahol ϱ_g a viszkoziméter golyójának sűrűsége (8, 19g/cm³), K pedig a viszkoziméterre jellemző állandó. A glicerin hőmérsékletét is megmérjük (t_f) , hogy össze tudjuk hasonlítani a vizskozitást az irodalmi értékkel.

Másodszor a Stokes törvény segítségével mérjük a viszkozitást. Ha egy test mozog az álló folyadékhoz képest, akkor a sebességével ellentétes irányban közegellenállási erő hat rá, gömb esetén

$$F = 6\pi \eta r v.$$

Ha a golyó lefelé mozog, akkor ezen kívül még a felhajóerő és a nezézségi erő is fog rá hatni, és olyan sebességgel fog mozogni, hogy ez a három erő egyensúlyt tartson:

$$mg - F_{fel} - F = 0$$

$$\frac{4r^3\pi}{3} \cdot \varrho_g g - \frac{4r^3\pi}{3} \cdot \varrho_f g - 6\pi \eta r v = 0$$

$$\eta = \frac{2}{9} \frac{(\varrho_g - \varrho_f)r^2 g}{v}$$

Ez viszont csak akkor igaz, ha nem képződnek örvények az áramláskor. Ehhez pedig az kell, hogy a Reynolds-szám egy kritikus érték alatt legyen:

$$Re = \frac{\varrho_f rv}{\eta} < 0, 1$$

Tehát ezt is ellenőrizni fogjuk.

A golyók sűrűségét piknométerrel mérjük meg. Ez egy edény, amibe pontosan tudunk adott térfogatú folyadékot tölteni. Megmérjük az edény tömegét üresen (μ_1) , félig telerakva golyókkal (μ_2) , ugyanígy, csak teletöltve vízzel (μ_3) , és csak vízzel teletöltve (μ_4) . Ebből a golyók sűrűségét a

$$\varrho_g = \varrho_v \frac{\mu_2 - \mu_1}{\mu_4 - \mu_1 - \mu_3 + \mu_2}$$

képlettel kaphatjuk meg, ahol ϱ_v a víz sűrűsége.

A mért adatok.

t(s)	$\varrho_f \left(\frac{\text{kg/m}^3}{} \right)$	$\varrho_g \left(\mathrm{kg/m^3} \right)$	$K(\text{Pa·m}^3/\text{kg})$	t_f (°C)
116	1224	8190	$1,3\cdot 10^{-7}$	23

1. táblázat. A Höppler-viszkoziméterrel és az areométerrel mért adatok

	$d_x\left(\mathbf{m}\right)$	$d_y\left(\mathbf{m}\right)$	$d_z\left(\mathbf{m}\right)$	t(s)	s(m)
1	$3,93 \cdot 10^{-3}$	$3,98 \cdot 10^{-3}$	$3,90 \cdot 10^{-3}$	3,58	0,278
2	$2,58 \cdot 10^{-3}$	$2,86 \cdot 10^{-3}$	$2,85 \cdot 10^{-3}$	6,63	0,278
3	$3,95 \cdot 10^{-3}$	$3,97 \cdot 10^{-3}$	$3,97 \cdot 10^{-3}$	3,52	0,278
4	$3,94 \cdot 10^{-3}$	$3,92 \cdot 10^{-3}$	$3,88 \cdot 10^{-3}$	3,57	0,278
5	$1,29 \cdot 10^{-3}$	$1,30\cdot 10^{-3}$	$1,29 \cdot 10^{-3}$	27,95	0,278
6	$1,28\cdot 10^{-3}$	$1,26\cdot 10^{-3}$	$1,27\cdot 10^{-3}$	28,05	0,278
7	$1,10\cdot 10^{-3}$	$1,09 \cdot 10^{-3}$	$1,10\cdot 10^{-3}$	38,18	0,278

2. táblázat. A Stokes-törvénnyel mért adatok

$\mu_1 (\mathrm{kg})$	$\mu_2 (\mathrm{kg})$	μ_3 (kg)	$\mu_4(\mathrm{kg})$
0,03850	0,07040	0,12585	0,09960

3. táblázat. A piknométerrel mért adatok

Kiértékelés. A viszkoziméteres mérés alapján a viszkozitás $\eta = 0,105 \,\mathrm{Pa} \cdot \mathrm{s}$.

A golyók méreteit átlagoljuk, kiszámoljuk a sebességeiket, és a Reynolds-számokat az előző kísérletből megkapott η -val:

	$d\left(\mathbf{m}\right)$	$r\left(\mathbf{m}\right)$	v (m/s)	Re
1	$3,94 \cdot 10^{-3}$	$1,968 \cdot 10^{-3}$	0,0777	1,8
2	$2,76 \cdot 10^{-3}$	$1,382 \cdot 10^{-3}$	0,0419	0,68
3	$3,96 \cdot 10^{-3}$	$1,982 \cdot 10^{-3}$	0,0790	1,8
4	$3,91 \cdot 10^{-3}$	$1,957 \cdot 10^{-3}$	0,0779	1,8
5	$1,29 \cdot 10^{-3}$	$6,47 \cdot 10^{-4}$	$9,95 \cdot 10^{-3}$	0,075
6	$1,27\cdot 10^{-3}$	$6,35 \cdot 10^{-4}$	$9,91 \cdot 10^{-3}$	0,073
7	$1,10\cdot 10^{-3}$	$5,48 \cdot 10^{-4}$	$7,28 \cdot 10^{-3}$	0,047

4. táblázat. A Reynolds számok kiszámítása

Láthatjuk, hogy csak a kisebb méretű (5–7) golyókra teljesül a Re < 0, 1 feltétel. Tehát csak ezek eredményeit fogjuk figyelembe venni.

A golyók sűrűsége a piknométeres mérés alapján $\varrho_g = 5600 \pm 110 \, \text{kg/m}^3$. Ezek alapján már ki tudjuk számítani a Stokes-törvény alapján a glicerin viszkozitását:

	$\eta \left(\mathrm{Pa} \cdot \mathrm{s} \right)$
1	0,481
2	0,439
3	0,479
4	0,474
5	0,405
6	0,392
7	0,398

5. táblázat. A viszkozitások

Az így kapott η -k közül az 5–7 golyókra számítom az átlagot, és a szórás háromszorosát veszem hibakorlátnak, így $(0, 40 \pm 0, 020)$ Pa·s-t kapok.

Eredménytáblázat.

Viszkoziméter		Stokes-törvény		Irodalmi érték	
η	$\Delta \eta$	η	$\Delta \eta$	η	
0,105	$4,1\cdot 10^{-3}$	0,40	0,020	0,117	

6. táblázat. Eredménytáblázat

Az irodalmi érték forrása: http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html, $87.0 \ m/m\%$ -os glicerinre számolva 23° C-on.

Diszkusszió. A viszkoziméterrel kapott eredmény a hibahatáron túl, de nem sokkal többel tér el az irodalmi értéktől. Ennek az eltérésnek lehet az az oka, hogy a glicerin nem pontosan a dobozon feltüntetett tömegszázalékos volt, hanem ennél hígabb. Erre enged következtetni az is, hogy a mért sűrűség (1224 kg/m³) valamivel kisebb, mint amit fent említett webolalon kiszámolhatunk (1227 kg/m³).

A Stokes-törvénnyel kapott eredmények viszont teljesen rosszak. Erre nem találtam jobb magyarázatot, mint hogy esetleg a kisebb golyók sűrűsége jóval kisebb a nagyobb golyókénál. A sűrűségméréskor ugyanis csak a nagyobb golyók sűrűségét vettük figyelembe. Így elképzelhető, hogy a kis (5–7) golyóknál ez okozza az eltérést, a nagy golyóknál pedig az örvényes áramlás, mivel ott a Reynolds-szám nem 0,1, hanem 1 körüli. De valószínűleg nem ez lesz a hiba oka, mert az örvényes áramlás miatt nem kéne ekkora eltérésnek mutatkozni.