Set Complementation

If U is a universal set and A is a subset of U, then

a.
$$U^c = \emptyset$$

b.
$$\emptyset^c = U$$

$$\mathbf{c.} \ (A^c)^c = A$$

a.
$$U^c = \emptyset$$
 b. $\emptyset^c = U$ **c.** $(A^c)^c = A$ **d.** $A \cup A^c = U$ **e.** $A \cap A^c = \emptyset$

e.
$$A \cap A^c = \emptyset$$

The operations on sets satisfy the following properties.

Properties of Set Operations

Let U be a universal set. If A, B, and C are arbitrary subsets of U, then

$$A \cup B = B \cup A$$

Commutative law for union

$$A \cap B = B \cap A$$

Commutative law for intersection

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 Associative law for union

$$A\cap (B\cap C)=(A\cap B)\cap C$$
 Associative law for intersection

$$A \cup (B \cap C)$$

$$=(A\cup B)\cap (A\cup C)$$
 Distributive law for union

$$A \cap (B \cup C)$$

$$= (A \cap B) \cup (A \cap C)$$

Distributive law for intersection

Two additional properties, referred to as De Morgan's laws, hold for the operations on sets.

De Morgan's Laws

Let A and B be sets. Then

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

(2)