AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claim 1 (Cancelled)

Claim 2 (Cancelled)

The process of Claim 11, wherein the Claim 3 (Previously presented) reactive components C) and D) are added simultaneously to the prepolymer.

The process of Claim 11, wherein Claim 4 (Previously presented) component C) is added to the prepolymer first, and then component D) is added.

The process of Claim 11, wherein Claim 5 (Previously presented) component D) is added to the prepolymer first, and then component C) is added.

Claim 6 (Cancelled)

Claim 7 (Cancelled)

Claim 8 (Previously presented) The process of Claim 11, wherein C) said low molecular weight polyol comprises ethylene glycol, butanediol, hexanediol, 1,4di-(beta-hydroxyethyl)-hydroquinone, or 1,4-di-(betahydroxyethyl)bisphenol A.

Claim 9 (Cancelled)

PO-7784

A thermoplastically processable Claim 10 (Currently amended) polyurethane elastomer (TPU) having a tensile strength of > 35 MPa, with shrinkages of < 3% and with self-extinguishing properties which comprise the reaction product of:

- a prepolymer containing NCO groups which comprises the reaction (1) product of
 - at least one organic diisocyanate comprising a diphenylmethane A) diisocyanate, or a mixture of diphenylmethane diisocyanate and up to 15 mol% of polyphenyl polymethylene polyisocyanate,

and

at least one polyether polyol having on average at least 1.8 and not B) more than 3.0 Zerewitinoff-active hydrogen atoms and a numberaverage molecular weight \overline{M}_n of 450 to 10,000;

with

- an isocyanate-reactive component comprising: (2)
 - at least one low molecular weight polyol or polyamine having on C) average at least 1.8 and not more than 3.0 Zerewitinoff-active hydrogen atoms and a number-average molecular weight $\overline{\mathrm{M}}_{\,\mathrm{n}}$ of 60 to 400 as a chain lengthener; and
 - from 1 to 15 wt.%, based on the total weight of the TPU, of at least one D) organic phosphorus-containing compound having on average about 2.0 Zerewitinoff-active hydrogen atoms and a number-average molecular weight \overline{M}_n of 60 to 10,000, wherein said organic phosphorus-containing compound is selected from the group consisting of (1) one or more phosphonates which correspond to the structural formula:

$$H = \begin{pmatrix} R^1 \\ R^2 \end{pmatrix} \times \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ R^3 \end{pmatrix} + \begin{pmatrix} R^2 \\$$

PO-7784

wherein:

R¹ and R²: are the same or different, and each independently represents a branched or unbranched alkylene radical having 1 to 24 carbon atoms, a substituted or unsubstituted arylene radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkylene radical having 6 to 30 carbon atoms, or a substituted or unsubstituted

R3:

alkarylene radical having 6 to 30 carbon atoms; represents a hydrogen atom, a branched or unbranched alkyl radical having 1 to 24 carbon atoms, a substituted or unsubstituted anyl radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkyl radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkaryl radical having 6 to 30 carbon atoms;

and

x and y

each independently represents a number from 1 to 50:

and (2) one or more phosphine oxides which correspond to the structural formula:

HO
$$\mathbb{R}^{5}$$
 \mathbb{R}^{6} OH (II)

wherein:

R⁴:

represents a hydrogen atom, a branched or unbranched alkyl radical having 1 to 24 carbon atoms, a substituted or unsubstituted aryl radical

PO-7784

having 6 to 20 carbon atoms, a substituted or unsubstituted aralkyl radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkaryl radical having 6 to 30 carbon atoms;

and

R⁵ and R⁶:

are the same or different, and each independently represents a branched or unbranched alkylene radical having 1 to 24 carbon atoms, a substituted or unsubstituted arylene radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkylene radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkarylene radical having 6 to 30 carbon atoms;

with the proviso that components C) and D) are different; and, optionally, in the presence of:

- one or more catalysts; E)
- from 0 to 70 wt.%, based on the total weight of the TPU, of at least F) one further flameproofing agent which contains no Zerewitinoffactive hydrogen atoms and has a number-average molecular weight \overline{M}_n of 60 to 10,000;

and/or

- 0 to 20 wt.%, based on the total weight of the TPU, of further G) auxiliary substances and additives; wherein the Isocyanate Index ranges from 85 to 120.
- A process for the preparation of thermoplastically 11 (Currently amended) processable polyurethane elastomers (TPU) with tensile strengths of > 35 MPa, with shrinkages of < 3% and with self-extinguishing properties, comprising:

- preparing a) a prepolymer containing NCO groups by reacting **(l)**
 - at least one organic diisocyanate comprising a diphenylmethane diisocyanate, or a mixture of diphenylmethane diisocyanate and up to A) 15 mol% of polyphenyl polymethylene polyisocyanate,

with

- at least one polyether polyol having on average at least 1.8 and not more than 3.0 Zerewitinoff-active hydrogen atoms and a number-B) average molecular weight \overline{M}_{π} of 450 to 10,000;
- reacting a) said prepolymer with b) an isocyanate-reactive component (II)comprising:
 - at least one low molecular weight polyol or polyamine having on C) average at least 1.8 and not more than 3.0 Zerewitinoff-active hydrogen atoms and a number-average molecular weight $\overline{\mathbf{M}}_{n}$ of 60 to 400 as a chain lengthener,

and

from 1 to 15 wt.%, based on the total weight of the TPU, of at least one D) organic phosphorus-containing compound having on average about 2.0 Zerewitinoff-active hydrogen atoms and a number-average molecular weight $\overline{\mathbf{M}}_n$ of 60 to 10,000, wherein said organic phosphorus-containing compound is selected from the group consisting of (1) one or more phosphonates which correspond to the structural formula:

$$H = \begin{cases} R^{1} \\ XO \end{cases} = \begin{cases} R^{2} \\ R^{3} \end{cases} O = \begin{cases} R^{2} \\ Y \end{cases} O = (R^{2} \\ Y$$

wherein:

are the same or different, and each R¹ and R²: independently represents a branched or unbranched alkylene radical having 1 to 24

carbon atoms, a substituted or unsubstituted arylene radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkylene radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkarylene radical having 6 to 30 carbon atoms;

R³:

represents a hydrogen atom, a branched or unbranched alkyl radical having 1 to 24 carbon atoms, a substituted or unsubstituted aryl radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkyl radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkaryl radical having 6 to 30 carbon atoms;

and

x and y

each independently represents a number from 1 to 50;

and (2) one or more phosphine oxides which correspond to the structural formula:

wherein:

R⁴:

represents a hydrogen atom, a branched or unbranched alkyl radical having 1 to 24 carbon atoms, a substituted or unsubstituted aryl radical having 6 to 20

PO-7784

- 7 -

carbon atoms, a substituted or unsubstituted aralkyl radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkaryl radical having 6 to 30 carbon atoms;

and

R⁵ and R⁶:

are the same or different, and each independently represents a branched or unbranched alkylene radical having 1 to 24 carbon atoms, a substituted or unsubstituted arylene radical having 6 to 20 carbon atoms, a substituted or unsubstituted aralkylene radical having 6 to 30 carbon atoms, or a substituted or unsubstituted alkarylene radical having 6 to 30 carbon atoms;

with the proviso that components C) and D) are different; with steps (I) and/or (II) optionally being carried out in the presence of

- one or more catalysts, E) and, optionally, with the addition of:
- 0 to 70 wt.%, based on the total weight of the TPU, of at least one further F) flameproofing agent which contains no Zerewitinoff-active hydrogen atoms and has a number-average molecular weight $\overline{M}_{\,n}$ of 60 to 10,000,

and/or

0 to 20 wt.%, based on the total amount of TPU, of further auxiliary G) substances and additives, wherein the Isocyanate Index ranges from 85 to 120.

-8-PO-7784