

يسم الله الرحين الدحيم

Plant Watcher

Individual Project

Project Architecture

Project Images

Sensors

Moisture Sensor

- This Moisture Sensor uses the two probes to pass current through the soil.
- Reads that resistance to get the moisture level.
- More water makes the soil conduct electricity more easily while dry soil conducts electricity poorly.

Temperature sensor (thermistor)

- The resistance in 25 °C is 10K
- The resistance goes down as it gets warmer.
- Often used for places where they can get damp.

Air Humidity & Temperature (DHT-11)

The DHT sensors are made of two parts,

- Capacitive humidity sensor
- Thermistor

Communication

WiFi, RTC & NTP

- Communication with Fog node is done through WiFi.
- Real Time Clock (RTC) is used to be able to add timestamp to messages.
- Network Time Protocol (NTP) makes the sensor node aware of the current time after a power loss.

MQTT

Developed by Andy Stanford-Clark and Arlen Nipper in 1999

MQTT | Over Network

- Max payload 256MB with binary data.
- Uses can use TCP which supports encryption using TLS.

Image credit: openlabpro.com

MQTT Use case

- MQTT is a lightweight protocol with few control options.
- It's most suitable for large networks of small devices that need to be monitored or controlled

Code diagram

Sensor Circuit

fritzing

References

https://vasters.com/blog/From-MQTT-to-AMQP-and-back/