问题的由来

例1: 炮击某一目标O, 已知弹着点(X,Y)服从二维正 态分布. 点(X,Y)与目标O的距离 $Z = \sqrt{X^2 + Y^2}$ 服从什 么分布?

例2: 由统计物理学, 气体分子运动速率 v 服从马克

$$f(x) = \begin{cases} \frac{4x^2}{\alpha^3 \sqrt{\pi}} e^{\frac{-x^2}{\alpha^2}} & x > 0, \alpha > 0 \\ 0 & x \le 0 \end{cases}$$

分子运动动能 $η = \frac{1}{2} m v^2$ 服从什么分布?

引例1博彩问题

一个庄家在一个签袋中放有8个白、8个黑 的围棋子。规定:每个摸彩者交一角钱作 "手续费",然后一个从袋中摸出五个棋子, 按下面"摸子中彩表"给"彩金"。

摸到	五个白	四个白	三个白	其它
彩金	2元	2角	5分	共乐一次

设X表示摸出的白围棋子个数, Y表示一 次得到的彩金,则X,Y的分布律为

X	0	1	2	3	4	5
P	0.0128	0.1282	0.3590	0.3590	0.1282	0.0128
Y	0	0	0	0.05	0.2	2
P	0.0128	0.1282	0.3590	0.3589	0.1282	0.0128

已知X的分布律,如何确定Y=g(X)的分布律?

思路:

- ① 确定Y的所有可能取值
- ② 找出与Y取值 所对应的X取值
- ③ 确定Y的取值所对应的概率

引例2 骰子点数和

抛两颗骰子,分析点数之和的分布.

设X表示第一颗骰子的点数、Y表示第二 颗骰子的点数, Z表示点数之和, 则

思路:

- ① 先考虑Z的所有可能取值
- ② 找出与Z取值对应的(X,Y)组合
- ③ 计算Z所有取值对应的概率

电子科技大学数学科学学院 杜绵飞	hongfeida@qq.com	M	U

_						
Z	2	3	4	5	6	7
(X,Y)	1种	2种	3种	4种	5种	6种
Z	8	9	10	11	12	
(X,Y)	5种	4种	3种	2种	1种	

从而Z的分布律为:

Z	2	3			6						
D	1	2	3	4	5	6	5	4	3	2	1
1	36	36	36	36	36	36	36	36	36	36	36

	函数的分	布律				
褪	·(X,Y)的I	关合分布律	XY	0	1	
为		7C 12 74 17 17	0	3/10	3/10	
			1	3/10	1/10	
		2) X +		4) max(2	K, Y) 的分	乍律.
解	由(X,Y)的	分布律得				
	P	3/10	3/10	3/10	1/10	
	(X,Y)	(0,0)	(0,1)	(1,0)	(1,1)	
	X	0		1		
	sin X	0		sin 1		
	X + Y	0	1	1	2	
	XY	0	0	0	1	
	max(X,Y)	0	1	1	1	
		电子科技大学数学科学	7元 社当て hongleidsをqq-com			U

P 3/1		.0	3/10		3/1	0		1/1	.0				
X			0			1							
sin X			0				sin1						
(X,Y)		(0,	0,0)		(0,1)		(1,0)		(1,	1)			
X + Y		0			1		1		2				
XY		0	0		0		0		1				
$\max(X,Y)$		0	D		1		1		1				
sin X	n X 0		sin 1		X + Y	0		1		2]		
P 0.6			0.4	0.4	0.4		P	0.3		0.6		0.1	
		1		max(X	(,Y) 0)						
P 0.9)	0.1		P		0.3	3	0.	.7	î		

均匀分布之和

设随机变量X, Y 相互独立, 均服从区间(0, 1) 上的均 匀分布, 求: Z = X + Y 的概率密度 $f_Z(z)$ 。

系统寿命

设系統L由两个功能相似且相互独立的子系统 L_1 , L_2 连接而成,连接的方式分别为:1) 串联 2) 并联 3) 备用, 如图所示. 设 L_1 , L_2 的寿命分别为X, Y 它们的概率密度分别为:

 $f_X(x) = \begin{cases} \alpha e^{-\alpha x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} \beta e^{-\beta y} & y > 0 \\ 0 & y \le 0 \end{cases}$

试求出在以上3种连接方式下系统寿命T的概率密度

2) 并联系统

由于当 L_1, L_2 都损坏时,系统L才 停止工作,此时系统寿命 $T = \max(X, Y)$

T 的概率密度函数为:

$$f_{T}(t) = f_{X}(t)F_{Y}(t) + f_{Y}(t)F_{X}(t)$$

$$= \begin{cases} \alpha e^{-\alpha t} + \beta e^{-\beta t} - (\alpha + \beta)e^{-(\alpha + \beta)t} & t > 0 \\ 0 & t \le 0 \end{cases}$$

电子科技大学数学科学学院 杜湾飞 hongfeidu@qq.com

3) 备用系统

由于当 L_1 损坏时, L_2 才开始工作此时系统寿命T=X+Y

由卷积公式当t>0时,T的概率密度函数为:

$$f_{T}(t) = \int_{-\infty}^{+\infty} f_{X}(t-y) f_{Y}(y) dy = \int_{0}^{t} ae^{-a(t-y)} \cdot \beta e^{-\beta y} dy$$
$$= \frac{\alpha \beta}{\beta - \alpha} \left(e^{-\alpha t} - e^{-\beta t} \right)$$

当 t≤0 时: $f_T(t)=0$ 从而T 的概率密度为

$$f_{T}(t) = \begin{cases} \frac{\alpha \beta}{\beta - \alpha} \left(e^{-\alpha t} - e^{-\beta t} \right) & t > 0 \\ 0 & t \le 0 \end{cases}$$

商的分布

已知随机变量X,Y相互独立同分布.

$$f_x(x) = f_y(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & +$$
它

求: X/Y 的分布.

解: 今
$$G = \{(y,z): yz > 0, y > 0\}$$

$$= \{(y,z): y > 0, z > 0\}$$

$$f(yz,y) = f_X(yz)f_Y(y)$$

$$= \begin{cases} e^{-yz-y} & (y,z) \in G \\ 0 &$$
其它

电子科技大学数学科学学院 牡州飞 hompfeidat@qq.com

