Optimizing Trading Strategy Using Self-Generated Rewards in Deep RL

Tanmay Naik – Sohan Shankar

Under the Mentorship of - Prof. Greg Chism

Category	Hyperparameter	Value	Description
SRDDQN Agent	State Dim	200 (10 features × 20 steps)	Flattened sequence input dimension
	Action Dim	3	Number of actions: Sell, Hold, Buy
	Gamma	0.9	Discount factor for future reward
	Epsilon	0.9	Exploration rate (ε-greedy policy)
	Learning Rate	0.0001	For DQN optimizer
	Replay Memory Size	1000	Max size of replay buffer
	Batch Size	32	Samples drawn per update
	Episodes	100	Total training episodes

- The Reward Net comprises of three components: Input Block, Feature Extraction Block, and the Reward Block.
- It leverages supervised learning to mimic expert behavior through a self-generated reward function.

Portfolio results show that a \$10,000 investment using the proposed algorithm (DJI, Jan 2021–Dec 2023) yields a 43.55% return (~\$4,355 ROI).

- The proposed algorithm would yield approximately 43.55% return (~\$4,355 ROI).
- In contrast, a conventional strategy yields up to 23% (~\$2,300 ROI).
- The proposed approach significantly outperforms traditional trading methods.

- Developed a Self-Rewarding Deep RL (SRDRL) mechanism with a self-generated reward function to enhance traditional RL.
- Addressed reward design challenges with a scalable, adaptable method for dynamic environments.
- Applied SRDQN to optimize trading strategies using expert metrics like Min-Max, Sharpe Ratio, and Returns.

College of Information Science

- Future work will refine the integration of self-rewarding mechanisms in more complex and dynamic trading environments.
- Multi-agent learning systems will be explored within the SRDRL framework.
- Large language models (e.g., GPT, FinBERT) will be incorporated for sentiment analysis and market trend prediction
- Sentiment-driven insights from LLMs will support more informed and context-aware trading decisions.