NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U. S. space program and to encourage their commercial application. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Simple, One Transistor Circuit Boosts Pulse Amplitude

The problem:

A requirement existed to supply a pulse voltage, higher than that normally available from emitter-follower circuits, to drive a 100-watt transmitter.

The solution:

A simple circuit that uses a single transistor to accomplish capacitor storage followed by common-base switching.

How it's done:

Capacitor C_1 is charged through R_1 and R_2 to the supply line voltage, V_1 . With no input pulse, both the emitter and base of the transistor are at the same potential, and the collector is cut off. With an input pulse V_2 present, the potential of C_1 with respect to ground is increased by V_2 . The emitter becomes more positive than the base and the transistor is switched on. This

results in an output pulse, V_3 that is equal to V_1+V_2 , minus negligible losses in C_1 and the transistor.

Notes:

- 1. In order for C₁ to reach approximate full charge between pulses, the ratio of charging interval to charging time constant must be much greater than the ratio of discharge interval to discharge time constant.
- 2. In tests, this circuit has produced a good output waveform at about twice the amplitude of the supply line voltage, V₁.
- Inquiries concerning this innovation may be made to:

Technology Utilization Officer Goddard Space Flight Center Greenbelt, Maryland 20771 Reference: B66-10480

(continued overleaf)

Patent status:

No patent action is contemplated by NASA.

Source: M. W. Matchett and T. Keon of Cutler Hammer under contract to Goddard Space Flight Center (GSFC-501)