2. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

 $Gruppe\ HA\text{-}EH\text{-}Fr\text{-}10\text{-}12\text{-}MA544\text{-}3$

Aufgabe 1: Turing-Maschine

$z_0\square$	\vdash^1_M
$1z_1\square$	\vdash^1_M
$z_0 11$	\vdash^1_M
$1z_21$	\vdash^1_M
$z_{2}11$	\vdash^1_M
$z_2\Box 11$	\vdash^1_M
$z_0\square 111$	\vdash^1_M
$1z_1111$	\vdash^1_M
z_31111	\vdash^1_M
z_3111	\vdash^1_M
$z_{3}11$	\vdash^1_M
z_31	\vdash^1_M
$z_3\square$	\vdash^1_M
$z_4\square$	

Insgesamgt macht M13 Konfigurationsübergänge und hält auf z_4 mit leerem Band

Aufgabe 2: Turing-Berechenbarkeit

(a) Die Funktion entspricht der Funktion aus Beispiel 4 der 2. Vorlesung. Somit ist f berechenbar da es entweder konstant 1 ist, oder es existiert eine Zahl $N \in \mathbb{N}$ sodass

$$f(n) = \begin{cases} 1, & n \le N \\ 0, & \text{sonst} \end{cases}$$

(b) Trivial:

$$f(n) = \begin{cases} 1, & n \ge 7 \\ 0, & \text{sonst} \end{cases}$$

(c) Die Funktion ist Turing berechenbar da π bis zu einen beliebigen Grad von Präzision berechnet werden kann. Daraus folgt, dass die Differenz von π und eine weitere rationale Zahl auch bis zu einem beliebigen Grad von Präzision berechenbar ist.

Aufgabe 3: LOOP- und GOTO-Programme

- (a) Nein, bei den Eingabewerten $x_1 \ge x_2$ nicht. Bei P_1 wird der LOOP nicht ausgeführt, somit wird auch kein Wert von x_2 für x_0 zugewiesen.
- (b) Nein, P_2 befindet sich in einer Endlosschleife bei jedem Eingabewert $x_2 > x_1$, da der Wert x_3 in M_1 nie dekrementiert wird. In P_1 ist das dekrementieren einer Laufvariable in einem LOOP impliziert, somit befinden sich P_1 und P_2 in unterschiedlichen Endzuständen.
- (c) Ja, im Fall von $x_2 < x_1$ ist $x_3 = max(0, x_2 x_1)$ immer 0. Bei P_1 wird der LOOP nicht ausgeführt und bei P_2 wird direkt zu M_2 gesprungen und das Programm terminiert. Somit wird bei beiden Programmen der implizierte Anfangswert von $x_0 = 0$ angenommen.