T.E. (Computer) (Semester – V) Examination, Nov./Dec. 2012 (Revised Syllabus in 2007-2008) AUTOMATA LANGUAGE AND COMPUTATION

Į.	Jur	auc	1:3 Hours Max, Marks: 10	JU
	In	str	Answer any five full questions, atleast one from each Module. 2) Make suitable assumptions wherever necessary.	
			MODULE - I	
	1.	a)	Construct a DFA for the following language	
			$L = \{x \in \{a, b\}^* \mid x \text{ has neither consecutive a's nor consecutive b's}\}.$	4
		b)	Convert the following ε-NFA to minimized DFA	
			$M = (\{A, B, C, D\}, \{a, b, c\}, \delta A, \{A\}) \text{ where } \delta \text{ is } \delta = \{\delta (A, a) = B, \delta (B, b) = C, \\ \delta (B, \epsilon) = A, \delta (C, c) = D, \delta (D, \epsilon) = B\}.$	4
		c)	What are the equivalence classes of R_L in Myhill-Nerode theorem for $L = \{0^n1^n \mid n \ge 1\}$?	4
		d)	Construct a Mealy Machine to subtract two binary numbers. Convert the Mealy Machine to equivalent Moore Machine.	8
	2.	a)	Construct a NFA which accepts set of strings such that every string contains '00' as a substring and does not contain '000' as a substring. Validate the string 100100.	2)
		b)	Is the following language a regular language ? Prove your answer.	
			$L = \{0^m \ 1^n 0^{n+m} n \ge 1 \text{ and } m \ge 1\}.$	5
		c)	Let h be the homomorphism $h(a) = 01$, $h(b) = 0$	
			Find $h^{-1}(L_1)$ where $L_1 = (10 + 1)^*$	
			Find $h(L_2)$ where $L_2 = (a+b)^*$.	4
		d)	Construct the regular expression for the following DFA	
			$M = (\{A, B, C\}, \{0, 1\}, \delta, A, \{B, C\} \text{ where } \delta = \{\delta(A, 0) = B, \delta(A, 1) = C,$	
			$\delta(B, 0) = A, \ \delta(B, 1) = C, \ \delta(C, 0) = B, \ \delta(C, 1) = A$.	5
			P.T	.0.

MODULE-II

	3.	a)	Construct a CFG to generate PDA where M = ({p, q}, {0, 1}, {X, Z ₀ }, δ , q, Z ₀ where δ is defined as δ (q, 1, Z ₀) = (q, XZ ₀), δ (q, 1, X) = (q, XX), δ (q, 0, X) = (p, δ (q, ϵ Z ₀) = (q, ϵ), δ (q, 1, X) = (p, ϵ), δ (q, 0, Z ₀) = (q, Z ₀). Validate the strict 11010.	Y)	
		b)	Convert the following language into CNF. Convert the CNF to PDA usi bottom up approach.	11,000	
			$L = \{w \mid w \in \{a, b\}^*, w \text{ is divisible by 3}\}.$	8	
		c)	Let $L = \{0^n 1^m n \neq m, n, m \geq 1\}$. Construct a DPDA that recognizes L.	4	
4			Prove that the language $L = \{a^n b^n c^j n \le j \le 2^n\}$ is not a CFL.	5	
			Convert CFG into PDA	9 1	4
		90	$G = (\{S, A, B\}, \{a, b\}, P = \{S \rightarrow aB bA, A \rightarrow a aS bAA, B \rightarrow b bS aBB\}, S).$ Explain the behavior of the PDA with the help of a string bbaaba.	(3+2)	
	(c)	Define the GN form of CFG and reduce the following grammar into GNF	,/	
			$G = (\{S, A, B\}, \{a, b\}, P = \{S \rightarrow AB, A \rightarrow BS b, B \rightarrow SA a\}, S).$	5	
	(d)	Construct the CFG for the following language	(3	
			$L = \{a^i b^j c^k i \neq j \text{ or } i \neq k\}$. Validate the given string aabbbc.	5	
			MODULE-III		
5.	8	1)	Construct the Turing machine that recognizes the following language $L = \{a^n \ b^n \ c^j \mid n \le j \le 2^n\}$.		
	b		Design the Turing Machine to compute n! where n≥ 1.	6	
			Explain the variants of Turing Machine.	8	-
0				6	
О.	a) [Design the Turing Machine that computes the sum of two binary numbers.	8	
	D		Construct the Turing machine that recognizes the following language		
	1224		$= \{a^x x = i^2, i \ge 1\}.$	6	
	C		Explain the following: i) Church-Turing Thesis ii) Nondeterministic Turing Machine.		
			A = C A A A A A A A A A A	6	

MODULE-IV

7.	a)	Construct the type 1 grammar for the language $\{a^i \ i\ is\ a\ positive\ power\ of\ 2\}.$ Validate the given string aaaa.	8
	b)	Prove that the class of recursively enumerable languages are closed under union operation.	6
	c)	Explain the following : i) Rice Theorem ii) Full Trio	6
8.	a)	Prove that language L is recursive iff both L and complement of L is also recursive.	6
	b)	Construct the type 0 grammar for the language $L=\{a^nb^mc^{n+m}d^{n-m} n,m\ge 1\}$. Validate the given string aabcccd.	8
	c)	Explain the following : i) Unsolvable decision problem ii) Full AFL.	6