Übungsblatt 4

Topologie

Viktor Kleen viktor.kleen@uni-due.de

Sabrina Pauli sabrinp@math.uio.no

AUFGABE 4.1. Ein Hausdorffraum X heißt lokalkompakt, falls für jeden Punkt $x \in X$ eine offene Menge $U \subset X$ und eine kompakte Menge $K \subset X$ existieren mit $x \in U \subset K$. Zeigen Sie:

- (i) Sei X lokalkompakt. Dann enthält jede Umgebung U von $x \in X$ eine kompakte Menge K und eine Umgebung V von x mit $x \in V \subset K \subset U$.
- (ii) Sei X lokalkompakt, $K \subset X$ kompakt und $U \supset K$ offen. Dann gibt es eine kompakte Menge $V \subset X$ mit $K \subset V^{\circ} \subset V \subset U$.

AUFGABE 4.2. Sei $X = \{(x, \sin(1/x)) : x \in (0, 1]\} \cup \{0\} \times [-1, 1]$ die *topologist's sine curve*. Zeigen Sie, dass $X \subseteq \mathbb{R}^2$ abgeschlossen und zusammenhängend aber nicht wegzusammenhängend ist.

AUFGABE 4.3. Sei (X,d) ein metrischer Raum. Eine Menge $A \subset X$ heißt beschränkt, wenn es ein $x \in X$ und ein R > 0 gibt mit $A \subset B_R(x)$. Zeigen Sie, dass jede kompakte Menge $K \subset X$ abgeschlossen und beschränkt ist.

Finden Sie einen metrischen Raum mit einer abgeschlossenen und beschränkten Teilmenge, die nicht kompakt ist.

AUFGABE 4.4. Ein topologischer Raum X heißt total unzusammenhängend, wenn für je zwei verschiedene Punkte $x,y\in X$ keine zusammenhängende Teilmenge $U\subset X$ existiert mit $x,y\in U$. Zeigen Sie, dass $\mathbb{Q}\subset \mathbb{R}$ mit der Teilraumtopologie total unzusammenhängend ist. Insbesondere muss eine Menge, deren Abschluss zusammenhängend ist, nicht selbst zusammenhängend sein.