When Does Self-Supervision Improve Few-Shot Learning?

Jong-Chyi Su, Subhransu Maji, Bharath Hariharan ECCV 2020

Outline

- Investigate the role of Self-Supervision Learning (SSL) in Few-Shot Learning (FSL)
- Findings
 - SSL improves the few-shot learner even when the datasets are small and only use images within the dataset
 - SSL can hurt when the distribution of images using for meta-learning and SSL are different
- Propose a simple approach to classify unlabeled data to pick data from similar domains

Fig. 1: Combining supervised and self-supervised losses for few-shot learning. Self-supervised tasks such as jigsaw puzzle or rotation prediction act as a data-dependent regularizer for the shared feature backbone. Our work investigates how the performance on the target task domain (\mathcal{D}_s) is impacted by the choice of the domain used for self-supervision (\mathcal{D}_{ss}) .

Few-shot with Self-supervision

Few-shot loss

$$\mathcal{L}_s := \sum_{(x_i,y_i) \in \mathcal{D}_s} \ellig(g \circ f(x_i), y_iig) + \mathcal{R}(f,g).$$

Self-supervision loss

 $\mathcal{L}_{ss} := \sum_{x_i \in \mathcal{D}_{ss}} \ellig(h \circ f(\hat{x}_i), \hat{y}_iig).$

Data: (x_i, y_i)

Augmented data: (x_hat_i, y_hat_i)

Encoder: f

FSL classifier: g

Self-supervision

- Jigsaw puzzle task loss:
 - The input x is tiled into 3x3 regions, then permuted to obtain x_hat
 - The label y_hat is the index of the permutation.
 - The y_hat is then grouped by hamming distance to control the difficulty of the task
- Rotation task loss:
 - The image is rotated by angle of 0, 90, 180, 270 degree

Loss	Birds	Cars	Aircrafts	Dogs	Flowers
	5-way 5-shot				
Softmax	$81.5 {\pm} 0.5$	$87.7 {\pm} 0.5$	$89.2 {\pm} 0.4$	$77.6 {\pm} 0.6$	$91.0 {\pm} 0.5$
Softmax + Jigsaw	$83.9 {\pm} 0.5$	$90.6 {\pm} 0.5$	$89.6 {\pm} 0.4$	$77.8 {\pm} 0.6$	$91.1 {\pm} 0.5$
MAML	$81.2 {\pm} 0.7$	$86.9 {\pm} 0.6$	$88.8 {\pm} 0.5$	$77.3 {\pm} 0.7$	$79.0 {\pm} 0.9$
MAML + Jigsaw	$81.1 {\pm} 0.7$	$89.0 {\pm} 0.5$	$89.1 {\pm} 0.5$	$77.3 {\pm} 0.7$	$82.6 {\pm} 0.7$
ProtoNet	$87.3 {\pm} 0.5$	$91.7 {\pm} 0.4$	$91.4 {\pm} 0.4$	$83.0 {\pm} 0.6$	$89.2 {\pm} 0.6$
ProtoNet + Jigsaw	89.8±0.4	92.4 \pm 0.4	91.8±0.4	$\textbf{85.7} {\pm} \textbf{0.5}$	92.2±0.4

Domain shift

- (a) SSL and FSL are trained on the same domain
- (b) SSL and FSL are trained on different domains

(a) Effect of number of images on SSL.

(b) Effect of domain shift on SSL.

Data selection for SSL

- Using a "domain weighted" model to select the top images based on a domain classifier.
- Binary classifier with positive sample from training set and negative from unlabeled data

- No SSL: FSL only on 20% dataset (lower bound)
- SSL 20% dataset: FSL + SSL on 20% dataset
- SSL pool random: randomly select from the pool
- SSL pool weight: using binary classifier
- Oracle: FSL on 20% and SSL on 100% dataset

