Rank-74051 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(2) is 74051

General information

Number of lines	10
Number of points	13
Number of singular points	1
Number of Eckardt points	2
Number of double points	9
Number of single points	1
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{10}
Type of lines on points	$5, 3^2, 2^9, 1$

Singular Points

The surface has 1 singular points:

0:
$$P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{Pl}(0,0,1,0,0,1)_{22}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1,0,0,1,0,0)_{6}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \mathbf{Pl}(0,1,1,0,0,1)_{24}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0,1,1,0,0,1)_{24}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1,1,0,0,1,1)_{29}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \mathbf{Pl}(1,1,0,1,1,1)_{31}$$

Rank of lines: (0, 4, 11, 30, 14, 34, 25, 18, 9, 23)

Rank of points on Klein quadric: (0, 2, 22, 5, 6, 1, 24, 4, 29, 31)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0), T = 2$$

1:
$$P_{10} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1)$$
. $T = 9$

Double Points

The surface has 9 Double points:

The double points on the surface are:

$$\begin{array}{ll} P_0 = (1,0,0,0) = \ell_0 \cap \ell_1 & P_{11} = (1,1,0,1) = \ell_4 \cap \ell_6 \\ P_5 = (1,1,0,0) = \ell_0 \cap \ell_2 & P_9 = (1,0,0,1) = \ell_4 \cap \ell_7 \\ P_6 = (1,0,1,0) = \ell_1 \cap \ell_8 & P_4 = (1,1,1,1) = \ell_6 \cap \ell_8 \\ P_8 = (1,1,1,0) = \ell_2 \cap \ell_9 & P_{13} = (1,0,1,1) = \ell_7 \cap \ell_9 \\ P_3 = (0,0,0,1) = \ell_3 \cap \ell_5 & P_{13} = (1,0,1,1) = \ell_7 \cap \ell_9 \end{array}$$

Single Points

The surface has 1 single points:

The single points on the surface are:

0 : $P_{12} = (0,0,1,1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789
0	0111100000
1	1010011110
2	1100011101
3	1000110011
4	1001001100
5	0111001100
6	0110110110
7	0110111001
8	0101001001
9	0011000110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_1	P_1

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_0	P_2	P_2	P_2	P_2	P_6

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6	ℓ_7	ℓ_9
in point	P_5	P_2	P_2	P_2	P_2	P_8

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_8	ℓ_9
in point	P_1	P_1	P_3	P_{10}	P_{10}

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_7
in point	P_1	P_1	P_{11}	P_9

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_7
in point	P_2	P_2	P_3	P_2	P_2

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_2	P_2	P_{11}	P_2	P_2	P_4

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_9
in point	P_2	P_2	P_9	P_2	P_2	P_{13}

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_9
in point	P_6	P_{10}	P_4	P_{10}

Line 9 intersects

Line	ℓ_2	ℓ_3	ℓ_7	ℓ_8
in point	P_8	P_{10}	P_{13}	P_{10}

The surface has 13 points: The points on the surface are:

 $\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 5: \, P_5 = (1,1,0,0) & 10: \, P_{11} = (1,1,0,1) \\ 1: \, P_1 = (0,1,0,0) & 6: \, P_6 = (1,0,1,0) & 11: \, P_{12} = (0,0,1,1) \\ 2: \, P_2 = (0,0,1,0) & 7: \, P_8 = (1,1,1,0) & 12: \, P_{13} = (1,0,1,1) \\ 3: \, P_3 = (0,0,0,1) & 8: \, P_9 = (1,0,0,1) \\ 4: \, P_4 = (1,1,1,1) & 9: \, P_{10} = (0,1,0,1) \end{array}$