[CH3] Etude de la dissociation du carbamate d'ammonium

Principe / Aspect théoriques / Questions préliminaires

Dissociation du carbamate d'ammonium

 $NH_2COONH_{4(s)} \leftrightarrow 2NH_{3(g)} + CO_{2(g)}$

La constante d'équilibres

$$K^{0}_{(T)} = (P_{NH3}^{2}/P_{0}^{2})x(P_{CO2}/P_{0}).$$

La relation liant la constante d'équilibre $K^0_{(I)}$ et l'enthalpie libre standard $\Delta_r G^0_{(I)}$:

$$\Delta_r G^{\scriptscriptstyle 0}_{\scriptscriptstyle (T)} = -RT \, \ln(K^{\scriptscriptstyle 0}_{\scriptscriptstyle (T)})$$

A température constante, $\Delta_r G^0_{(T)} = \Delta_r H^0_{(T)} - T^* \Delta_r S^0_{(T)}$

$$\leftrightarrow$$
 -RT In(K⁰_(T)) = Δ_r H⁰_{(T) -} T * Δ_r S⁰_(T)

$$\leftrightarrow$$
 In(K⁰_(T)) = (- Δ_r H⁰_(T)/R) x (1/T) + Δ_r S⁰_(T)/R

En traçant $ln(K^0_{(T)})$ en fonction de 1/T on obtient une droite de pente – $\Delta_r H^0_{(T)}/R$ et d'ordonnée à l'origine $\Delta_r S^0_{(T)}/R$

Tableau d'avancement

	NH ₂ COONH _{4(s)}	↔ 2NH _{3(g)}	+ CO _{2(g)}	Total (Gaz)
EI	n	0	0	0
EE	n - x	2x	х	3x
Pressions partielles à EE		2/3 x P _{tot}	1/3 x P _{tot}	P _{tot}

$$K^{0}_{(T)} = (2/3P_{tot})^{2}/P_{0}^{2} * 1/3(P_{tot}/P_{0}^{2})$$

 $K^{0}_{(T)} = 4/27 * (P_{tot}^{3}/P_{0}^{3})$

# Mode Opératoire :(Utile / Exact / Complet/ succins/ Clair et Accessible (Qui, Quoi, Comment, Quand))			
Liste de matériel / Liste de réactif			
Précautions spécifiques			
Schémas des dispositifs expérimentaux annotés			
Explications et descriptions			

Résultats / Discussions

<u>Influence de la température</u>

Loi de Van't Hoff (influence de la température sur le déplacement d'un équilibre) Tracer P_{tot} en fonction de la T (°C)

S'il n'y a pas de réaction chimique dans le réacteur (n_{tot} (gaz) reste constant) et si on suppose les gaz parfaits, P_{tot} en fonction de la T sera une droite.

Les points expérimentaux décollent vers le haut par rapport à la droite de GP. → la réaction étudiée est endothermique.

Détermination expérimentale des paramètres thermodynamiques des la réaction

Traçage de la droite

	Δ _r H° [kJ/mol]	Δ _r S ^o [J/mol.K]
Valeurs théoriques	157,7	459
Valeurs expérimentales	156	431

Incertitude:

source : la températures calculs de pente mini et maxi

Masse de carbamate

Une mole de carbamate se décompose en dégageant 3 moles de gaz.

 $PV = 3n_{(NH2COONH4)}RT$

 $\rightarrow m_{(NH2COONH4)} = PVM_{(NH2COONH4)} / 3RT$

Prévision du sens d'évolution après le vidange

$$\Delta_{r2}G^{0} = -\Delta_{r1}G^{0} = -\Delta_{r}H^{0} + T * \Delta_{r}S^{0}$$

$$\Delta_{r2}G_{(T)} = \Delta_{r2}G^0 + RTIn(Q) = \Delta_{r2}G^0 + RTIn(P_0^3/(P_{NH3}^2xP_{CO2})) < 0$$

D'un point de vue thermodynamique, la réaction est donc spontanée dans le sens 2.

Conclusion / Perspectives / Ouverture