Name:- Akash Patel

Roll NO: 281029

PRN:- 22310745

Assignment 5

Assignment 5: Advanced Breakdown

Objective

Use clustering algorithms to segment customers based on spending habits and income. This helps mall owners target the right customers for **offers**, **loyalty programs**, **or marketing campaigns**.

Dataset Overview

Features available:

CustomerID: Unique identifier

Gender: Categorical (Male/Female)

Age: Customer's age

Annual Income (k\$): Annual income in \$1000s

• Spending Score (1-100): Score assigned by the mall based on customer behavior and spending nature

Selected Features for Clustering

We focus on:

- Annual Income (k\$)
- Spending Score (1-100)

These are the **most relevant features** to determine customer spending behavior and affordability.

Detailed Methodology

Step 1: Data Preprocessing

- Missing values: Checked using isnull().sum() (usually clean in this dataset).
- Gender Encoding: Converted to 0 and 1 using LabelEncoder.
- **Feature Scaling:** Done using StandardScaler to normalize income and score range.

Step 2: Data Preparation

 Since clustering is unsupervised, train-test splitting is optional. But to follow best practices, we split into X_train and X_test (80-20) for evaluation.

Step 3: KMeans Clustering

How KMeans works:

- Assigns k cluster centers randomly.
- Iteratively assigns each point to the nearest cluster and updates centroids.
- Objective: Minimize **WCSS** (Within-Cluster Sum of Squares).

Elbow Method:

- Run for k=1 to 10 and plot WCSS.
- The "elbow point" (where WCSS starts decreasing slowly) gives optimal k. Usually, it's 5 for this dataset.

Cluster Visualization:

You'll see clusters like:

- Cluster 1: Low income, low spending → Likely uninterested
- Cluster 2: High income, high spending → Most Profitable

- Cluster 3: Low income, high spending → Impulse buyers
- Cluster 4: High income, low spending → Need engagement
- **Cluster 5:** Average group

Step 4: Hierarchical Clustering

How It Works:

- Uses **agglomerative clustering** (bottom-up).
- Each point is a cluster → merges the closest ones using Ward's method.
- Builds a **dendrogram** to visualize cluster formation.

Hierarchical Clustering Insight:

CODE- From Visual Studio Code.

Business Insight from Clustering

Cluster Type Action

High Income + High Spend Loyalty programs, premium services

Low Income + High Spend Offer budget-friendly packs

High Income + Low Spend Promotions to encourage spending

Low Income + Low Spend Exclude from intensive campaigns

Summary

- Both algorithms give consistent clusters, but KMeans is more scalable.
- Helps understand customer base better and boost targeted marketing.
- Visualizations like scatter plots, centroids, dendrograms make interpretation easy.