ROBEM I When p is prime, p > 2, $A \mid p^{\alpha}$, find all the solution of $y^2 \equiv A \pmod{p^{\alpha}}$.

SOLTON. Since $A \mid p^{\alpha}$, then it is equal to find the solution of $y^2 \equiv 0 \pmod{p^{\alpha}}$. Next, we will prove that the solution of $y^2 \equiv 0 \pmod{p^{\alpha}}$ are $\{y \in \mathbb{Z} : V_p(y) \geq \frac{\alpha+1}{2}\}$.

Let $y = \prod_{r \in P} r^{V_r(y)}$, where P is all the prime, $V_r(n) = \min\{k \in \mathbb{N} : r^k \mid n\}, r \in P, n \in \mathbb{Z}$. If $p^{\alpha} \mid y^2 = \prod_{r \in P} r^{2V_r(y)}$, then $V_p(y) \ge 1$ and $\alpha \mid 2V_p(y)$. So $\frac{\alpha+1}{2} \le V_p(y)$.

And obviously, $\forall y: V_p(y) \geq \frac{\alpha+1}{2}$, then $V_p(y^2) = 2V_p(y) \geq \alpha$, then $p^{\alpha} \mid y^2$.

BOBEM II Prove:

$$ax^2 + bx + c \equiv 0 \pmod{m}, \gcd(2a, m) = 1$$

has solution. \iff

$$x^2 \equiv q \pmod{m}, q = b^2 - 4ac$$

has solutions, which can infer the solution of $ax^2 + bx + c \equiv 0 \pmod{m}$.

SOLION. Since $\gcd(2a,m)=1$, then $2 \nmid m, a \nmid m$, then $\gcd(4a,m)=1$. So the solution of $ax^2+bx+c\equiv 0\pmod m \iff$ it is the solution of $(2ax+b)^2+(4ac-b^2)\equiv 0\pmod m \implies$ $y^2+4ac-b^2\equiv 0\pmod m$, where $y\equiv 2ax+b\pmod m$. Since $\gcd(2a,m)=1$, then the solution of $y^2+4ac-b^2\equiv 0\pmod m$ y, we let $x\equiv A(y-b)\pmod m$, where $A(2a)\equiv 1\pmod m$, x is the solution of $(2ax+b)^2+(4ac-b^2)\equiv 0\pmod m$.