Problema da Liga de Metais

Uma fábrica de componentes metálicos precisa criar uma nova liga usando três metais: A, B e C. Cada metal possui uma porcentagem específica de Alumínio (Al), Cobre (Cu), e Zinco (Zn), além de um custo por quilograma. O objetivo é determinar a quantidade de cada metal que deve ser usada na mistura para minimizar o custo total, ao mesmo tempo em que se atende às seguintes restrições:

- A nova liga deve conter no mínimo 30% de Alumínio (Al).
- A nova liga deve conter no mínimo 40% de Cobre (Cu).
- A nova liga deve conter exatamente 20% de Zinco (Zn).
- A liga deve ter um peso total de 100 kg.

As propriedades dos metais são as seguintes:

Metal	A	В	\mathbf{C}
Alumínio (Al %)	50	30	20
Cobre (Cu %)	30	50	60
Zinco (Zn %)	20	20	20
Custo $(R\$ / kg)$	20	25	30

O modelo de otimização pode ser representado da seguinte forma:

Minimizar
$$20x_1 + 25x_2 + 30x_3$$

sujeito a:

$$\begin{cases} 0.50x_1 + 0.30x_2 + 0.20x_3 \ge 0.30\\ 0.30x_1 + 0.50x_2 + 0.60x_3 \ge 0.40\\ 0.20x_1 + 0.20x_2 + 0.20x_3 = 0.20\\ x_1 + x_2 + x_3 = 100\\ x_1, x_2, x_3 \ge 0 \end{cases}$$