Билет 51

Автор 1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 51: Теоре	ом Абона о н	поизволици	ранов		1				1
0.1	рилет эт, теоре	ема Абеля б п	роизведении	рядов	(С леммои)		 	 	 •	1

0.1. Билет 51: Теорема Абеля о произведении рядов (с леммой).

Теорема 0.1 (Абеля).

$$\sum a_n = A$$
, $\sum b_n = B$, $\sum c_n = C$

И
$$\sum c_n$$
 – произведение $\sum a_n$ и $\sum b_n$

Тогда AB = C.

Лемма.

$$x_n \to x$$
, $y_n \to y$ при $n \to \infty$.

Тогда

$$\frac{x_1y_n + x_2y_{n-1} + x_3y_{n-2} + \dots + x_ny_1}{x_n} \to xy$$

Доказательство.

Пусть
$$y=0$$
. надо доказать, что $\frac{x_1y_n+x_2y_{n-1}+x_3y_{n-2}+...+x_ny_1}{n} \to 0$

Есть две последовательности, имеющие предел, значит они ограничены. Значит, есть какаято константа M, что $|x_n| \leqslant M \ |y_n| \leqslant M \ \forall n$

$$\forall \epsilon > 0 \exists N \ \forall n \geqslant N \ |y_n| < \epsilon$$

Возьмем n > N.

$$|x_1y_n| + |x_2y_{n-1}| + \dots + |x_{n-N}y_{N+1}| + |x_{n-N+1}y_N| + \dots + |x_ny_1|$$

Первые n-N слагаемых оценим сверху, как $(n-N)M\epsilon$. Оставшиеся оценим как $\leqslant M^2N$

$$|x_1y_n| + |x_2y_{n-1}| + \dots + |x_{n-N}y_{N+1}| + |x_{n-N+1}y_N| + \dots + |x_ny_1| \le M\epsilon(n-N) + M^2N$$

$$\left|\frac{x_1y_n + x_2y_{n-1} + \dots x_ny_1}{n}\right| \leqslant \frac{M\epsilon(n-N) + M^2N}{n} < \epsilon M + \epsilon M$$

(Последнее – при достаточно больших n).

Пусть $y_n = y$

$$\frac{x_1y_n + x_2y_{n-1} + \dots + x_ny_1}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}y \to xy$$

(Последнее показывается по теореме Штольца).

Общий случай.

$$\begin{split} \tilde{y}_n &:= y_n - y \to 0 \\ \frac{x_1 \tilde{y}_n + x_2 \tilde{y}_{n-1} + \dots + x_n \tilde{y}_1}{n} &\to 0 \\ \frac{x_1 y + x_2 y + \dots + x_n y}{n} &\to xy \end{split}$$

И сложим. Получим ровно то, что надо.

Доказательство. (теоремы)

$$\frac{A_1B_n + A_2B_{n-1} + \dots + A_nB_1}{n} \to AB$$
 по лемме.

Но что же написано в числителе?

$$a_1(b_1 + b_2 + \dots + b_n) + (a_1 + a_2)(b_1 + b_2 + \dots + b_{n-1}) + \dots + (a_1 + a_2 + \dots + a_n)b_1 =$$

$$= na_1b_1 + (n-1)(a_1b_2 + a_2b_2) + (n-2)(a_1b_3 + a_2b_2 + a_3b_1) + \dots =$$

$$= nc_1 + (n-1)c_2 + (n-2)c_3 + \dots + c_n = C_1 + C_2 + \dots + C_n$$

Получается, что знаем, что $\frac{C_1+C_2+\ldots+C_n}{n}\to AB$

Но с другой стороны, $\frac{C_1+C_2+\ldots+C_n}{n} \to C$

$$\implies C = AB$$