NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lee Yung Hei, Joseph Nah

MA1102R Calculus AY 2007/2008 Sem 1

Question 1

- (a) Since $\lim_{x\to 2} x^2 4 = 0$ and $\lim_{x\to 2} x^3 8 = 0$, we apply L'Hôpital's rule to get $\lim_{x\to 2} \frac{2x}{3x^2} = \frac{2\cdot 2}{3\cdot 2^2} = \frac{1}{3}$.
- (b) Using L'Hôpital's rule repeatedly, we get,

$$\lim_{x \to 0} \left(\frac{1}{\sin(x^2)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin(x^2)}{x^2 \sin(x^2)} = \lim_{x \to 0} \frac{x^2}{\sin(x^2)} \lim_{x \to 0} \frac{x^2 - \sin(x^2)}{x^4}$$

$$= 1 \cdot \lim_{x \to 0} \frac{2x - 2x \cos(x^2)}{4x^3}$$

$$= \lim_{x \to 0} \frac{1 - \cos(x^2)}{2x^2}$$

$$= \lim_{x \to 0} \left(\frac{1 - \cos^2(x^2)}{x^4} \right) \left(\frac{x^2}{2(1 + \cos(x^2))} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin(x^2)}{x^2} \right)^2 \lim_{x \to 0} \frac{x^2}{2(1 + \cos(x^2))}$$

$$= 1^2 \cdot 0 = 0.$$

(c) Since
$$\lim_{x\to 0^+} \sin x = \lim_{m\to\infty} \frac{1}{m}$$
, we have $\lim_{x\to 0^+} (\sin x)^{\sin x} = \lim_{m\to\infty} \left(\frac{1}{m}\right)^{\frac{1}{m}} = \lim_{m\to\infty} m^{\left(-\frac{1}{m}\right)}$. Using L'Hôpital's rule, $\lim_{m\to\infty} \ln\left(m^{\left(-\frac{1}{m}\right)}\right) = \lim_{m\to\infty} \frac{-\ln m}{m} = \lim_{m\to\infty} \frac{-1}{m} = 0$. Since $f: \mathbb{R}^+ \to \mathbb{R}$ such that $f(x) = e^x$ is continuous on \mathbb{R} , we have
$$\lim_{x\to 0^+} (\sin x)^{\sin x} = \lim_{m\to\infty} m^{\left(-\frac{1}{m}\right)} = \lim_{m\to\infty} f\left(\ln\left(m^{\left(-\frac{1}{m}\right)}\right)\right) = f\left(\lim_{m\to\infty} m^{\left(-\frac{1}{m}\right)}\right) = f(0) = 1.$$

Question 2

(a) We have,

$$\int_0^1 \frac{x^3 + 2}{4 - x^2} dx = \int_0^1 \left(-x + \frac{2.5}{2 - x} - \frac{1.5}{2 + x} \right) dx$$
$$= \left[-\frac{x^2}{2} - 2.5 \ln(2 - x) - 1.5 \ln(2 + x) \right]_0^1$$
$$= -\frac{1}{2} + 4 \ln 2 - 1.5 \ln 3.$$

(b) We have,

$$\int_0^1 x^3 e^{x^2} dx = \int_0^1 \frac{x^3}{2x} \cdot 2x e^{x^2} dx = \int_0^1 \frac{x^2}{2} \cdot 2x e^{x^2} dx$$
$$= \left[\frac{x^2}{2} \cdot e^{x^2} \right]_0^1 - \int_0^1 x e^{x^2}$$
$$= \frac{e}{2} - \left[\frac{e^{x^2}}{2} \right]_0^1 = \frac{1}{2}.$$

Question 3

(a) Let $b_n = \frac{1}{\sqrt{\ln \ln n}}$, $n \in \mathbb{Z}_{\geq 3}$. Since 3 > e and \ln is an increasing function, for all $n \geq 3$, we have $\ln \ln n > 0$, and so $b_n > 0$. Also, $\ln \ln(n+1) > \ln \ln(n)$, and so $b_{n+1} = \frac{1}{\sqrt{\ln \ln(n+1)}} < \frac{1}{\sqrt{\ln \ln n}} = b_n$, and $\lim_{n \to \infty} \frac{1}{\sqrt{\ln \ln n}} = 0$. Therefore by Alternating Series test, the series is convergent.

(b) We notice that $(\ln \ln n)^{\ln n} = e^{\ln((\ln \ln n)^{\ln n})} = e^{(\ln n)(\ln \ln \ln n)} = e^{\ln(n^{(\ln \ln \ln n)})} = n^{\ln \ln \ln n}.$ When $n \ge e^{e^{e^2}}$, we have $\ln \ln \ln n \ge 2$, and so $\frac{1}{(\ln \ln n)^{\ln n}} = \frac{1}{n^{\ln \ln \ln n}} \le \frac{1}{n^2}.$ Since $\sum_{n=3}^{\infty} \frac{1}{n^2}$ is convergent, by Comparison Test, $\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}}$ is convergent.

(c) $\sum_{n=1}^{\infty} \left(\sin \frac{1}{2n} - \sin \frac{1}{2n+1} \right) = \sum_{n=2}^{\infty} \left((-1)^n \sin \frac{1}{n} \right).$ Since $\lim_{n \to \infty} \sin \frac{1}{n} = 0$ and $0 < \sin \frac{1}{n+1} < \sin \frac{1}{n}$ for all n > 2. By Alternating Series Test, the series is convergent.

Question 4

Let the length of the track be a and the radius of the semicircles be $\frac{b}{2}$.

From the length of the track, we have $2a + \pi b = 5$.

Therefore, the shaded area, $A = ab = \left(\frac{5}{2} - \frac{\pi}{2}b\right)b = \frac{5}{2}b - \frac{\pi}{2}b^2$.

This give us $\frac{dA}{db} = \frac{5}{2} - \pi b$ and $\frac{d^2A}{db^2} = -\pi$. When $\frac{dA}{db} = 0$, we have $\frac{5}{2} - \pi b = 0$, i.e. $b = \frac{5}{2\pi}$.

Since $\frac{d^2A}{db^2} = -\pi$, A attain maximum when $b = \frac{5}{2\pi}$.

This give us $A = \frac{5}{2}b - \frac{\pi}{2}b^2 = \frac{5}{2}\left(\frac{5}{2\pi}\right) - \frac{\pi}{2}\left(\frac{5}{2\pi}\right)^2 = \frac{25}{8\pi}$

Question 5

It suffice to consider only the part with $y \geq 0$.

Thus we have
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1 \implies y^{\frac{2}{3}} = 1 - x^{\frac{2}{3}} \implies y = \left(\sqrt{1 - x^{\frac{2}{3}}}\right)^3$$
.

This give us
$$\frac{dy}{dx} = \left(\frac{3}{2}\right)\sqrt{1-x^{\frac{2}{3}}}\left(-\frac{2}{3}x^{-\frac{1}{3}}\right) = -x^{-\frac{1}{3}}\sqrt{1-x^{\frac{2}{3}}}.$$

Surface area of revolution
$$= 2 \int_0^1 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$= 4\pi \int_0^1 \left(\sqrt{1 - x^{\frac{2}{3}}}\right)^3 \sqrt{1 + x^{-\frac{2}{3}} \left(1 - x^{\frac{2}{3}}\right)} dx$$

$$= -\frac{12\pi}{5} \int_0^1 \left(\sqrt{1 - x^{\frac{2}{3}}}\right)^3 \left(-\frac{2}{3}x^{-\frac{1}{3}}\right) \left(\frac{5}{2}\right) dx$$

$$= -\frac{12\pi}{5} \left[\left(\sqrt{1 - x^{\frac{2}{3}}}\right)^5\right]_0^1 = \frac{12\pi}{5}.$$

Question 6

Notice that
$$\lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{n}\right)^n x^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \cdot |x| = |x|.$$

Thus radius of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$, R = 1.

When x=1, we have $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n x^n = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \neq 0$, and so by the Test of

Divergence, $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$ is divergent when x = 1.

When x = -1, we have $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n x^n = \lim_{n \to \infty} (-1)^n \left(1 + \frac{1}{n}\right)^n$, which does not exists.

Thus by the Test of Divergence, $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$ is divergent when x = -1.

Therefore, the interval of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$ is $x \in (-1, 1)$.

Question 7

(a) By L'Hôpital's rule, we have $\lim_{y\to 0} y \ln y = \lim_{y\to 0} \frac{\ln y}{\frac{1}{y}} = \lim_{y\to 0} \frac{\frac{1}{y}}{\frac{-1}{y^2}} = \lim_{y\to 0} -y = 0.$ Since $\ln 0$ is undefined, we have,

$$\int_{0}^{1} \ln x \, dx = \lim_{y \to 0} \int_{y}^{1} \ln x \, dx$$

$$= \lim_{y \to 0} [x \ln x - x]_{y}^{1}$$

$$= (0 - 1) - \lim_{y \to 0} (y \ln y - y)$$

$$= -1 - \lim_{y \to 0} y \ln y - \lim_{y \to 0} y$$

$$= -1 + 0 + 0 = -1.$$

Page: 3 of 5

(b) For all $x \in \mathbb{R}^+$, we have $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0$, and so $\ln x$ is increasing on \mathbb{R}^+ .

Thus by considering Riemann sum for $\int_0^{1-\frac{1}{n}} \ln x \ dx$ with n-1 intervals of width $\frac{1}{n}$, we have

$$\int_0^{1-\frac{1}{n}} \ln x \ dx \le \sum_{i=1}^{n-1} \frac{1}{n} \ln \left(\frac{i}{n} \right) = \frac{1}{n} \left(\ln \frac{(n-1)!}{n^{n-1}} \right) = \ln \left(\frac{(n-1)!}{n^{n-1}} \right)^{\frac{1}{n}}.$$

Also by considering Riemann sum for $\int_{\frac{1}{n}}^{1} \ln x \ dx$ with n-1 intervals of width $\frac{1}{n}$, we have

$$\int_{\frac{1}{n}}^{1} \ln x \, dx \ge \sum_{i=1}^{n-1} \frac{1}{n} \ln \left(\frac{i}{n} \right) = \frac{1}{n} \left(\ln \frac{(n-1)!}{n^{n-1}} \right) = \ln \left(\frac{(n-1)!}{n^{n-1}} \right)^{\frac{1}{n}}.$$

(c) From (7b.), we have

$$\lim_{n \to \infty} \int_0^{1 - \frac{1}{n}} \ln x \, dx \le \lim_{n \to \infty} \ln \left(\frac{(n - 1)!}{n^{n - 1}} \right)^{\frac{1}{n}} \le \lim_{n \to \infty} \int_{\frac{1}{n}}^1 \ln x \, dx$$

$$\int_0^1 \ln x \, dx \le \lim_{n \to \infty} \ln \left(\frac{(n - 1)!}{n^{n - 1}} \right)^{\frac{1}{n}} \le \int_0^1 \ln x \, dx \qquad \text{(Since } \lim_{n \to \infty} \frac{1}{n} = 0\text{)}$$

$$-1 \le \lim_{n \to \infty} \ln \left(\frac{(n - 1)!}{n^{n - 1}} \right)^{\frac{1}{n}} \le -1 \qquad \text{(From Q7a)}.$$

Thus by Squeeze theorem, we have $\lim_{n\to\infty} \ln\left(\frac{(n-1)!}{n^{n-1}}\right)^{\frac{1}{n}} = -1.$

Since $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = e^x$ is a continuous function on \mathbb{R} , we have

$$\lim_{n \to \infty} \left(\frac{n!}{n^n} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n \cdot (n-1)!}{n \cdot n^{n-1}} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{(n-1)!}{n^{n-1}} \right)^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} f \left(\ln \left(\frac{(n-1)!}{n^{n-1}} \right)^{\frac{1}{n}} \right)$$

$$= f \left(\lim_{n \to \infty} \ln \left(\frac{(n-1)!}{n^{n-1}} \right)^{\frac{1}{n}} \right)$$

$$= f(-1) = e^{-1}.$$

Question 8

(a) Since f'(x) is continuous on [a, b], by Extreme Value Theorem, there exists $c_1, c_2 \in [a, b]$ such that for all $x \in [a, b]$, we have $f'(c_1) \leq f'(x) \leq f'(c_2)$. Let $c = c_1$ if $|f'(c_1)| \geq |f'(c_2)|$, and $c = c_2$ otherwise. Then for all $x \in [a, b]$, we have $|f'(x)| \leq |f'(c)|$.

By Mean Value Theorem, for all $s \in (a, u)$, there exists $m \in (a, s)$ such that $\frac{f(s) - f(a)}{s - a} = f'(m)$. Thus, $f(s) = |f(s) - f(a)| = |f'(m)||s - a| = |f'(m)|(s - a) \le |f'(c)|(s - a)$. Similarly for all $t \in (u, b)$, there exists $n \in (t, b)$ such that $\frac{f(b) - f(t)}{b - t} = f'(n)$. Thus, $f(t) = |f(b) - f(t)| = |f'(n)||b - t| = |f'(n)|(b - t) \le |f'(c)|(b - t)$. Therefore $c \in [a, b]$ is what we wanted.

(b) Let $u = \frac{a+b}{2}$.

Then there exists $r \in [a, b]$ such that for every $x \in \left(a, \frac{a+b}{2}\right)$, we have $f(x) \leq |f'(r)|(x-a)$. Therefore,

$$\int_{a}^{\frac{a+b}{2}} f(x) dx \leq \int_{a}^{\frac{a+b}{2}} |f'(r)|(x-a) dx$$

$$= |f'(r)| \int_{a}^{\frac{a+b}{2}} (x-a) dx$$

$$= |f'(r)| \left[\frac{(x-a)^{2}}{2} \right]_{a}^{\frac{a+b}{2}}$$

$$= |f'(r)| \frac{(b-a)^{2}}{8}.$$

Similarly, there exists $r \in [a, b]$ such that for every $x \in \left(\frac{a+b}{2}, b\right)$, we have $f(x) \leq |f'(r)|(b-x)$. So,

$$\int_{\frac{a+b}{2}}^{b} f(x) dx \leq \int_{\frac{a+b}{2}}^{b} |f'(r)|(b-x) dx$$

$$= |f'(r)| \int_{\frac{a+b}{2}}^{b} (b-x) dx$$

$$= |f'(r)| \left[\frac{-(b-x)^{2}}{2} \right]_{\frac{a+b}{2}}^{b}$$

$$= |f'(r)| \frac{(b-a)^{2}}{8}.$$

Thus,

$$\int_{a}^{b} f(x) dx = \int_{a}^{\frac{a+b}{2}} f(x) dx + \int_{\frac{a+b}{2}}^{b} f(x) dx$$

$$\leq |f'(r)| \frac{(b-a)^{2}}{8} + |f'(r)| \frac{(b-a)^{2}}{8}$$

$$= |f'(r)| \frac{(b-a)^{2}}{4}$$

$$|f'(r)| \geq \frac{4}{(b-a)^{2}} \int_{a}^{b} f(x) dx.$$