

## 1. Download the dataset

### 2. Load Data

| [26]: | Row  | Number Cus | stomerki Sun | name CreditScr | ore Geography | Gender Ane Tenure | Ralance I | lumOfProducts HasCrCar | d Is Artive Member | Estimated S | alary Exited |           |     |
|-------|------|------------|--------------|----------------|---------------|-------------------|-----------|------------------------|--------------------|-------------|--------------|-----------|-----|
|       | 0    | 1          | 15634602     |                | 619           | France Female     | 42        | 2 0.00                 | 1                  | 1           | 1            | 101348.88 | - 1 |
|       | 1    | 2          | 15647311     | Hill           | 608           | Spain Female      | 41        | 1 83807.86             | 1                  | 0           | 1            | 112542.58 | 0   |
|       | 2    | 3          | 15619304     | Onio           | 502           | France Female     | 42        | 8 159660.80            | 3                  | 1           | 0            | 113931.57 | 1   |
|       | 3    | 4          | 15701354     | Boni           | 699           | France Female     | 39        | 1 0.00                 | 2                  | 0           | 0            | 93826.63  | 0   |
|       | 4    | 5          | 15737888     | Mitchell       | 850           | Spain Female      | 43        | 2 125510.82            | 1                  | 1           | 1            | 79084.10  | 0   |
|       |      |            |              |                |               |                   |           |                        |                    |             |              |           |     |
|       | 3. P | erforr     | n Belo       | ow Visu        | ualizati      | ons.              |           |                        |                    |             |              |           |     |
|       |      |            |              |                |               |                   |           |                        |                    |             |              |           |     |

| import matplotlib.pyplot as plt<br>import seaborn as sns |
|----------------------------------------------------------|
| Univariate Analysis                                      |

## "Age",grid=False,edgecolor='black') bplot:title={'center':'Age'}>]], dtyp







Resure

















0
 1

5. Handle the Missing values

df.isnull().sum(

4. Perform descriptive statistics on the dataset

6. Find the outliers and replace the outliers Our [25], <AxesSubplot:xlabel='CreditScore'>





# | Rose-Name | Constructive | Survivarior | Constructive | Construc

8. Split the data into dependent and independent variables

[[1 15634602 'Hargrave' ... 1 1 101348.88] [2 15647311 'Hill' ... 0 1 112542.58] [3 15619304 'Onio' ... 1 0 113931.57]

... [9998 15584532 'Liu' ... 0 1 42085.58] [9999 15682355 'Sabbatini' ... 1 0 92888.52] [10000 15628319 'Walker' ... 1 0 38190.78]] B = df.iloc[:, -1].values print(B) [1 0 1 ... 1 1 0]

9. Scale the independent variables from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df["CustomerId"]] = scaler.fit\_transform(df[["CustomerId"]])

| 9995 | 9996      | 0.162119  | Obijiaku            | 771        | F        |
|------|-----------|-----------|---------------------|------------|----------|
| 9996 | 9997      | 0.016765  | Johnstone           | 516        | F        |
| 9997 | 9998      | 0.075327  | Liu                 | 709        | Fra      |
| 9998 |           | 0.466637  |                     | 772        | Ge       |
| 9999 | 10000     | 0.250483  | Walker              | 792        | Fra      |
|      | Tenure Ba | lance Num | OfProducts HasCrCar | i IsActive | tember ' |

|      | Tenure | Balance NumO | fProducts | HasCrCard | IsActive | Member \ |
|------|--------|--------------|-----------|-----------|----------|----------|
| 0    | 2      | 0.00         |           | 1         | 1        | 1        |
| 1    | 1      | 83807.86     |           | 1         | 0        | 1        |
| 2    | 8      | 159660.80    |           | 3         | 1        | 0        |
| 3    | 1      | 0.00         |           | 2         | 0        | 0        |
| 4    | 2      | 125510.82    |           | 1         | 1        | 1        |
|      |        |              |           |           |          |          |
| 9995 | 5      | 0.00         |           | 2         | 1        | 0        |
| 9996 | 10     | 57369.61     |           | 1         | 1        | 1        |
| 9997 | 7      | 0.00         |           | 1         | 0        | 1        |
| 9998 | 3      | 75075.31     |           | 2         | 1        | 0        |
| 9999 | 4      | 130142.79    |           | 1         | 1        | n        |

10. Split the data into training and testing

from sklears.nodel selection import train test split
training\_data, testing\_data = train\_test\_split(df, test\_size=0.2, random\_state=25)
print(fflo, of razining examples: (razining\_data happe(0)))
print(fflo, of testing examples: (razining\_data\_shappe(0)))
No. of training examples: 1997
No. of testing\_examples: 1997