1. Исследовать равномерную сходимость интеграла

(a)
$$\int_0^\infty \frac{\sin(x^2)}{1+x^p} dx$$
, $p \ge 0$, (b) $\int_0^1 \frac{1}{x^t} \sin \frac{1}{x} dx$, $t \in (0,2)$.

2. Вычислить интеграл:

(a)
$$\int_0^\infty e^{-x^2-a^2/x^2} dx$$
, (b) $\int_0^\infty \frac{e^{-\alpha x^2} - \cos(\beta x)}{x^2} dx$, $\alpha \ge 0$.

- 3. Найти преобразование Фурье функций: (a) f(x)=x при $x\in [a,b]$ и f(x)=0 вне [a,b]. (b) $f(x)=x^2e^{-|x|}$, (c) $f(x)=x/(1+x^2)$, (d) $f(x)=\sin x/(1+x^2)$.
 - 4. Найти преобразование Фурье обобщенных функций:
 - (a) $\sin x$; (b) $(\sin x)^2$; (c) $\sin(x^2)$; (d) |x|; (e) $x \sin x$.
- 5. Доказать, что существует следующая обобщенная функция и найти ее преобразование Φ урье:

$$(a) V.P. \frac{1}{x} := \lim_{\varepsilon \to 0+} \frac{1}{x} I_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]};$$
$$(b) \frac{1}{x+i0} := \lim_{\varepsilon \to 0+} \frac{1}{x+i\varepsilon}.$$

Выяснить, равны ли эти обобщенные функции.