THE BATTLE OF NEIGHBOURHOODS: TORONTO

IBM Data Science on Coursera: Capstone

The Battle of Neighbourhoods

- ► Finding places to visit when we are in a new place is something that could take too long
- Data and Data Science can help us to make decision based on a data set of information about these locations
- ► Furthermore, just with a simple initial data it turns possible to make decisions based in it.

INTRODUCTION

- ► The algorithm has to compare different places in Toronto based in Data Collected on the internet using APIs and another database to help people choosing the best place to go.
- ▶ It includes parks, gym, restaurants, movie theatres etc.
- ▶ To do that, anyone who has not been in Toronto before could use it to provide the best decision based in a less time possible just entering the Borough that the person is in.

PROBLEM SITUATION

METHODOLOGY

▶ The algorithm using K-Meaning shows that it is possible to decide between data just with few inputs section. First, postal data was collected from Wikipedia and handled to merge GEO location in the data frame. The result is shown here:

		Postal code	Borough	Neighborhood	Latitude	Longitude
0		МЗА	North York	Parkwoods	43.753259	-79.329656
	1	M4A	North York	Victoria Village	43.725882	-79.315572
:	2	M5A	Downtown Toronto	Regent Park , Harbourfront	43.654260	-79.360636
;	3	M6A	North York	Lawrence Manor , Lawrence Heights	43.718518	-79.464763

RESULTS AND DISCUSSION

TORONTO MAP FOLIUM

▶ Then the clustering process is started

Here is the Borough Map Folium

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
2	Downtown Toronto	0	Clothing Store	Coffee Shop	Café	Middle Eastern Restaurant	Bubble Tea Shop
3	Downtown Toronto	0	Coffee Shop	Café	Italian Restaurant	Cocktail Bar	Restaurant
7	Downtown Toronto	0	Coffee Shop	Restaurant	Café	Gym	Bakery
11	Downtown Toronto	0	Café	Restaurant	Bar	Italian Restaurant	Japanese Restaurant
12	Downtown Toronto	0	Café	Vietnamese Restaurant	Coffee Shop	Dumpling Restaurant	Vegetarian / Vegan Restaurant
16	Downtown Toronto	0	Coffee Shop	Pizza Place	Café	Restaurant	Pub
18	Downtown Toronto	0	Coffee Shop	Japanese Restaurant	Gay Bar	Restaurant	Sushi Restaurant

FIRST CLUSTER GENERATED

CLUSTER 2 - RESULTS c_toronto_merged.loc[c_toronto_merged['Cluster Labels'] == 2, c_toronto_merged.columns[[1] + list(range(5, 36]: 1st Most Common 2nd Most Common 3rd Most Common 4th Most Common 5th Most Common Borough Labels Venue Venue Venue Venue Venue Downtown 2 Grocery Store Café Park Baby Store Coffee Shop Toronto **CLUSTER 3 - RESULTS** c_toronto_merged.loc[c_toronto_merged['Cluster Labels'] == 3, c_toronto_merged.columns[[1] + list(range(5, 37]: 2nd Most Common 3rd Most Common 4th Most Common 5th Most Common Cluster 1st Most Common Borough Labels Venue Venue Venue Venue Venue Downtown 13 Airport Service Airport Terminal Sculpture Garden 3 Airport Lounge Boutique Toronto

ANOTHER CLUSTERS GENERATED