2018 China TST Test 1 #1

Tristan Shin 28 Mar 2018

Let p, q be positive reals with sum 1. Show that for any n-tuple of reals (y_1, y_2, \ldots, y_n) , there exists an n-tuple of reals (x_1, x_2, \ldots, x_n) satisfying

$$p \cdot \max\{x_i, x_{i+1}\} + q \cdot \min\{x_i, x_{i+1}\} = y_i$$

for all $i = 1, 2, \dots, 2017$, where $x_{2018} = x_1$.

Let $x_1 = x$ be variable. Suppose that we have determined x_1, x_2, \ldots, x_j . Then

$$p \cdot \max\{x_j, x_{j+1}\} + q \cdot \min\{x_j, x_{j+1}\} = y_j.$$

- Suppose that $x_j = y_j$. If $x_{j+1} \neq y_j$, then the LHS is the positive weighted average of x_j, x_{j+1} and thus is not y_j , so $x_{j+1} = y_j$.
- Suppose that $x_j > y_j$. If $x_{j+1} \ge y_j$, then the LHS is the positive weighted average of x_j, x_{j+1} and thus is greater than y_j , so $x_{j+1} < y_j$. Then

$$px_i + qx_{i+1} = y_i,$$

so
$$x_{j+1} = \frac{y_j - px_j}{q}$$
.

• Suppose that $x_j < y_j$. If $x_{j+1} \le y_j$, then the LHS is the positive weighted average of x_j, x_{j+1} and thus is less than y_j , so $x_{j+1} > y_j$. Then

$$px_{i+1} + qx_i = y_i,$$

so
$$x_{j+1} = \frac{y_j - qx_j}{p}$$
.

Define

$$a_{i}\left(t\right) = \begin{cases} \frac{y_{i} - pt}{q} & \text{if } t \geq y_{i} \\ \frac{y_{i} - qt}{p} & \text{if } t < y_{i}. \end{cases}$$

Then

$$x_{j}=a_{j-1}\circ a_{j-2}\circ \cdots \circ a_{1}\left(x\right) .$$

Observe that a_i is continuous since it is linear on $(-\infty, y_j)$ and $[y_j, \infty)$ and the functions match up at $t = y_j$.

In all cases, x_{j+1} is uniquely determined, so given x we can uniquely determine $x_1, x_2, \ldots, x_{2018}$. Now, let f(x) be the value of x_{2018} that is determined by setting $x_1 = x$. Specifically,

$$f(x) = a_{2017} \circ a_{2016} \circ \cdots \circ a_1(x)$$
.

We wish to show that f has a fixed point.

If $x = \infty$, then $x_1 = \infty$, $x_2 = -\infty$, $x_3 = \infty$, ..., $x_{2018} = -\infty$. If $x = -\infty$, then $x_1 = -\infty$, $x_2 = \infty$, $x_3 = -\infty$, ..., $x_{2018} = \infty$. So $f(-\infty) = \infty$ and $f(\infty) = -\infty$ and f is continuous since it is the convolution of continuous functions, so the Intermediate Value Theorem says that there is some t for which f(t) - t = 0. Then pick $x_1 = t$ and we are good to go.