

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

DCBel Dra. Estela Cerezo Acevedo. Act 29/Nov/2011 M. C. Marcelo H. Sánchez Núñez Ing

Actualización 2011 del Programa de Ingeniería Industrial.

Relación con otras asignaturas

Anteriores Posteriores

Asignatura(s)

a) Termodinámica

Tema(s) No aplica

- a) Sustancias puras.
- b) Leyes de termodinámica
- c) Ciclo de Carnot inverso.

Nombre de la asignatura

Departamento o Licenciatura

Aire acondicionado y refrigeración Ingeniería Industrial

Ciclo Clave Créditos Área de formación curricular

3 - 4 II3474 6 Licenciatura Preespecialidad

Tipo de asignatura Horas de estudio

HT HP TH HI Seminario

32

16

48

48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar el funcionamiento de un ciclo de refrigeración reconociendo las características de operación de cada parte y los factores que influyen en su dimensionamiento para la solución de ejercicios del cálculo de las necesidades de enfriamiento de un local en específico.

Objetivo procedimental

Seguir las secuencias de un proceso para el dimensionamiento de un sistema de aire acondicionado o refrigeración adecuado a las necesidades de un área específica a partir de los cálculos necesarios, para la selección adecuada de los diferentes tipos de equipos de aire acondicionado y refrigeración, y de sus normas de instalación.

Objetivo actitudinal

Promover la cultura del esfuerzo y del trabajo en el uso del aire acondicionado y la refrigeración para el entendimiento de la energía ineficiente de estos sistemas en los sectores habitacional, comercial e industrial.

Unidades y temas

Unidad I. ANTECEDENTES GENERALES.

Describir las ventajas del uso del aire acondicionado y de la refrigeración para el entendimiento del uso energéticamente ineficiente de estos sistemas en los sectores habitacional, comercial e industrial.

- 1) Antecedentes históricos.
- 2) Beneficios del aire acondicionado y refrigeración.
- 3) Leyes de la termodinámica.
- 4) Ciclo de Carnot.
- 5) Gráficas calor temperatura, entropía ¿ temperatura.
- 6) Principios de transferencia de calor.

Unidad II. SISTEMAS DE REFRIGERACIÓN.

Explicar el funcionamiento de los diferentes equipos de refrigeración, reconociendo las características de operación de cada parte y los factores que influyen en su dimensionamiento para la solución del cálculo de las necesidades de enfriamiento de un local en específico.

1) Introducción.
a) Definición de refrigeración.
b) Ciclo reversible de Carnot.
c) Métodos de refrigeración.
d) Método por compresión mecánica de vapores.
e) Diagrama presión¿entalpía.
2) Descripción de los componentes
a) Componentes básicos.
b) Componentes auxiliares.
Unidad III. INSTALACIÓN DE AIRE ACONDICIONADO.
Revisar el funcionamiento de los diferentes tipos de aire acondicionado para el reconocimiento de las características de operación de cada parte y los factores que influyen en su dimensionamiento.
1) Determinación de las necesidades de enfriamiento
a) Conceptos de Psicrometría.
b) Análisis de procesos en la Carta psicométrica.
c) Fuentes de calor internas y externas.
2) Cálculos
a) De factores de carga de calor.
b) De carga residencial.
c) De carga comercial.

Unidad IV. APLICACIONES

Docente

Resolución de problemas

Seguir las secuencias de un proceso dimensionando un sistema de aire acondicionado o refrigeración adecuado a las necesidades de un área específica a partir de los cálculos necesarios para la selección adecuada de los diferentes tipos de equipos de aire acondicionado y refrigeración, y de sus normas de instalación.

- 1) Sistemas de refrigeración industriales
 - a) Normas, características y recomendaciones de instalación.
- 2) Sistemas de aire acondicionado industriales
 - a) Normas, características y recomendaciones de instalación.

Actividades que promueven el aprendizaje

Lectura dirigida y discusiones grupales	Investigación documental
Visita a empresas	Exposiciones en equipo
Prácticas de laboratorio	Elaboración de reportes de la visita y Prácticas

Estudiante

Realización de resúmenes.

Actividades de aprendizaje en Internet

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Prácticas y/o salidas de campo	30
Exposición	20

Tareas	20
Total	100

Fuentes de referencia básica

Bibliográficas

Cengel, Yunus A. (2009). Termodinámica. (6ª Ed.). México. McGraw Hill.

Cotell L. W. (2000). Aire acondicionado y refrigeración para regiones tropicales. México. Limusa. ISBN 9681857968.

Goribar H. E. (2003). Fundamentos de aire acondicionado y refrigeración. México. Limusa. ISBN 9681806042.

Edward G. P. (2000). Acondicionamiento de aire principios y sistemas un enfoque energético. México. CECSA. ISBN 9682612470.

Cuaderno de prácticas de Aire acondicionado y refrigeración.

Web gráficas

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Fuentes de referencia complementaria

Bibliográficas

Whitman, W. (2010). Tecnología de refrigeración y aire acondicionado. Tomo I. (6ª Ed.). México. Delmar. ISBN 6074811415. Whitman, W. (2010). Tecnología de refrigeración y aire acondicionado. Tomo II. (6ª Ed.). México. Delmar. ISBN. 6074811423.

Whitman, W. (2010). Tecnología de refrigeración y aire acondicionado. Tomo III. (6ª Ed.). México. Delmar. ISBN 6074811431.

Whitman, W. (2010). Tecnología de refrigeración y aire acondicionado. Tomo IV. (6ª Ed.). México. Delmar. ISBN 607481144X.

Carrier. (1970). Manual de Aire Acondicionado. España. Marcombo. ISBN 8426701159

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con la licenciatura en Ingeniería (Sistemas de Energía, Industrial, Mecánica, Química) o Físico, preferentemente con posgrado en ingenierías vinculadas con el uso y el aprovechamiento de la energía.

Docentes

Tener experiencia docente de tres años mínimos a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia laboral en el sector energético y/o industrial