

Congruent Triangles Ex 10.1 Q1

Answer:

It is given that

BA = AD

CA = AE

We have to prove that $DE \parallel BC$

Now considering the two triangles we have

In $\triangle EAD \& \triangle BAC$

EA = AC (Given)

AD = AB (Given)

We need to show $\angle CED = \angle ECB$ or $\angle BDE = \angle DBC$ to prove $DE \parallel BC$.

 $\angle EAD = \angle BAC$ (Vertically opposite angle)

So by SAS congruence criterion we have

 $\Delta EAD \cong \Delta CAB$

So $\angle AED = \angle ACB$ and

 $\angle ADE = \angle ABC$

Then

 $\angle CED = \angle ECB$, and

 $\angle BDE = \angle ABC$

Hence from above conditions $DE \parallel BC$

Congruent Triangles Ex 10.1 Q2

Answer:

It is given that

$$PQ = QR$$

And L is the mid point of PQ

So
$$PL = LQ$$

And M is the mid point of QR

So
$$QM = MR$$

And N is the mid point of RP

So
$$RN = NP$$

We have to prove that LM = MN

In ΔPQR , we have

$$PQ = QR$$
 and $\angle R = \angle P$ (Equilateral triangle)

Then

$$\frac{1}{2}PQ = \frac{1}{2}QR$$
, and $\angle P = \angle R$

$$PL = MR$$
, and $\angle P = \angle R$

Similarly comparing ΔMRN and ΔLPN we have

$$PL = MR$$
, and $\angle P = \angle R$

And PN = NR (Since N is the mid point of PR)

So by SAS congruence criterion, we have

$$\Delta MRN \cong \Delta LPN$$

Hence MN = LN

******* END ********