ගණිතය

9 ශ්ලිණිය I කොටස

පළමුවන මුදුණය 2017 දෙවන මුදුණය 2018 තෙවන මුදුණය 2019 හතරවන මුදුණය 2020

සියලු හිමිකම් ඇවිරිණි

ISBN 978-955-25-0363-4

අධහාපන පුකාශන දෙපාර්තමේන්තුව විසින් පානළුව, පාදුක්ක පිහිටි රජයේ මුදුණ නීතිගත සංස්ථාවේ මුදුණය කරවා පුකාශයට පත්කරන ලදි.

Published by: Educational Publications Department Printed by: State Printing Corporation, Panaluwa, Padukka.

ශී් ලංකා ජාතික ගීය

ශී ලංකා මාතා අප ශීූ ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා සුන්දර සිරිබරිනී, සුරැඳි අති සෝබමාන ලංකා ධානා ධනය නෙක මල් පලතුරු පිරි ජය භූමිය රමාා අපහට සැප සිරි සෙත සදතා ජීවනයේ මාතා පිළිගනු මැන අප භක්ති පූජා නමෝ නමෝ මාතා අප ශීූ ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා ඔබ වේ අප විදාහ ඔබ ම ය අප සතුන ඔබ වේ අප ශක්ති අප හද තුළ භක්ති ඔබ අප ආලෝකේ අපගේ අනුපුාණේ ඔබ අප ජීවන වේ අප මුක්තිය ඔබ වේ නව ජීවන දෙමිනේ නිතින අප පුබුදු කරන් මාතා ඥාන වීර්ය වඩවමින රැගෙන යනු මැන ජය භූමි කරා එක මවකගෙ දරු කැල බැවිනා යමු යමු වී නොපමා ජේම වඩා සැම භේද දුරැර ද නමෝ නමෝ මාත<u>ා</u> අප ශීූ ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා

අපි වෙමු එක මවකගෙ දරුවෝ එක නිවසෙහි වෙසෙනා එක පාටැති එක රුධිරය වේ අප කය තුළ දුවනා

لو

එබැවිනි අපි වෙමු සොයුරු සොයුරියෝ එක ලෙස එහි වැඩෙනා ජීවත් වන අප මෙම නිවසේ සොඳින සිටිය යුතු වේ

සැමට ම මෙත් කරුණා ගුණෙනී වෙළී සමගි දමිනී රත් මිණි මුතු තො ව එය ම ය සැපතා කිසි කල තොම දිරතා

ආනන්ද සමරකෝන්

පෙරවදන

දියුණුවේ හිණිපෙත කරා ගමන් කරතා වත්මන් ලොවට, නිතැතින්ම අවැසි වනුයේ වඩාත් නවා වූ අධාාපන කුමයකි. එමඟින් නිර්මාණය කළ යුත්තේ මනුගුණදම් සපිරුණු හා කුසලතාවලින් යුක්ත දරුපරපුරකි. එකී උත්තුංග මෙහෙවරට ජව බලය සපයමින්, විශ්වීය අභියෝග සඳහා දිරියෙන් මුහුණ දිය හැකි සිසු පරපුරක් නිර්මාණය කිරීම සඳහා සහාය වීම අපගේ පරම වගකීම වන්නේ ය. ඉගෙනුම් ආධාරක සම්පාදන කාර්යය වෙනුවෙන් සකීය ලෙස මැදිහත් වෙමින් අප දෙපාර්තමේන්තුව ඒ වෙනුවෙන් දායකත්වය ලබා දෙන්නේ ජාතියේ දරුදැරියන්ගේ නැණ පහන් දල්වාලීමේ උතුම් අදිටනෙනි.

පෙළපොත විටෙක දැනුම් කෝෂ්ඨාගාරයකි. එය තවත් විටෙක අප වින්දනාත්මක ලොවකට ද කැඳවාගෙන යයි. එසේම මේ පෙළපොත් අපගේ තර්ක බුද්ධිය වඩවාලන්නේ අනේකවිධ කුසලතා පුබුදු කරවාගන්නට ද සුවිසල් එළි දහරක් වෙමිනි. විදුබිමෙන් සමුගත් දිනක වුව අපරිමිත ආදරයෙන් ස්මරණය කළ හැකි මතක, පෙළපොත් පිටු අතර දැවටී ඔබ සමඟින් අත්වැල් බැඳ එනු නොඅනුමාන ය. මේ පෙළපොත සමඟම තව තවත් දැනුම් අවකාශ පිරි ඉසව් වෙත නිති පියමනිමින් පරිපූර්ණත්වය අත් කරගැනුමට ඔබ සැම නිරතුරුව ඇප කැප විය යුතු ය.

නිදහස් අධාාපනයේ මහානර්ඝ තාාගයක් සේ මේ පුස්තකය ඔබ දෝතට පිරිනැමේ. පෙළපොත් වෙනුවෙන් රජය වැය කර ඇති සුවිසල් ධනස්කන්ධයට අර්ථසම්පන්න අගයක් ලබා දිය හැක්කේ ඔබට පමණි. මෙම පාඨාා ගුන්ථය මනාව පරිශීලනය කරමින් නැණ ගුණ පිරි පුරවැසියන් වී අනාගත ලොව ඒකාලෝක කරන්නට දැයේ සියලු දූ දරුවන් වෙත දිරිය සවිය ලැබේවායි හදවතින් සුබ පතමි.

පෙළපොත් සම්පාදන කාර්යය වෙනුවෙන් අපුමාණ වූ සම්පත්දායකත්වයක් සැපයූ ලේඛක, සංස්කාරක හා ඇගයුම් මණ්ඩල සාමාජික පිරිවරටත් අධාාපන පුකාශන දෙපාර්තමේන්තුවේ කාර්ය මණ්ඩලයේ සැමටත් මාගේ හදපිරි පුණාමය පුදකරමි.

පී. එන්. අයිලප්පෙරුම

අධාහපන පුකාශන කොමසාරිස් ජනරාල් අධාහපන පුකාශන දෙපාර්තමේන්තුව ඉසුරුපාය බත්තරමුල්ල 2020.06.26

නියාමනය හා අධීක්ෂණය පී. එන්. අයිලප්පෙරුම මෙහෙයවීම ඩබ්ලිව්. ඒ. නිර්මලා පියසීලි සම්බන්ධීකරණය

- අධාාපන පුකාශන කොමසාරිස් ජනරාල් අධාාපන පුකාශන දෙපාර්තමේන්තුව

- කොමසාරිස් (සංවර්ධන), අධාාපන පුකාශන දෙපාර්තමේන්තුව

තනුජා මෛතී විතාරණ

ටී.ඩී.සී. කල්හාරී ගුණසේකර (2020 නැවත මුදුණය)

- සහකාර කොමසාරිස්, අධාාපන පුකාශන දෙපාර්තමේන්තුව - නියෝජා කොමසාරිස්, අධාාපන පුකාශන දෙපාර්තමේන්තුව

සංස්කාරක මණ්ඩලය

ආචාර්ය ඩී. කේ. මල්ලව ආරච්චි ආචාර්ය රොමේන් ජයවර්ධන ආචාර්ය නලින් ගනේගොඩ

ශීුමා දසනායක

ජී. පී. එච්. ජගත් කුමාර එස්. රාජේන්දම්

තනුජා මෛතී විතාරණ

ලේඛක මණ්ඩලය ආචාර්ය ජේ. රත්නායක

කේ. යූ. එස්. සෝමරත්න එච්. එම්. ඒ. ජයසේන වයි. වී. ආර්. විතාරම ඩබ්. එම්. ඩබ්. සී වලිසිංහ

අජිත් රණසිංහ අනුර ඩී. වීරසිංහ

ඩබ්ලිව්. එම්. ඩී. ලාල් විජේකාන්ත බී. එම්. බිසෝමැණිකේ එම්. රුබේරු ගුණසේකර

මෙවන් බී. දබරේරා එන්. වාගීෂමුර්ති

ආර්. එස්. ඊ. පූෂ්පරාජන්

එම්. එස්. එම් රෆීතු යූ. විවේකතාතන්

භාෂා සංස්කරණය ජයත් පියදසුන්

සෝදුපත් කියවීම

- ජොෂ්ඨ කථිකාචාර්ය, කැලණිය විශ්වවිදුහාලය - ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදාහලය

- ජොෂ්ඨ කථිකාචාර්ය, ශීූ ජයවර්ධනපුර විශ්වවිදාහලය - සහකාර අධානක්ෂ, ගණිත අංශය, අධානපන අමාතානාංශය - ජෙන්ෂ්ඨ කථිකාචාර්ය, ජාතික අධනාපන ආයතනය

- කථිකාචාර්ය, ජාතික අධාාපන ආයතනය

- සහකාර කොමසාරිස්, අධාාපන පුකාශන දෙපාර්තමේන්තුව

- ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදාහලය

- කථිකාචාර්ය, මොරටුව විශ්වවිදාහලය

- ගුරු උපදේශක, (විශුාමික)

- ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, දෙහිඕවිට - ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, කෑගල්ල - ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, හෝමාගම

- ගුරු උපදේශක, (පිරිවෙන්), මාතර දිස්තුික්කය - ගුරු සේවය, ශාන්ත තෝමස් විදහාලය, ගල්කිස්ස - ගුරු සේවය, මලියදේව බාලිකා විදාහලය, කුරුණෑගල

- විදුහල්පති, (විශාමික)

- ගුරු සේවය, සී. ඩබ්ලිව්. ඩබ්ලිව්. කන්නන්ගර විදාහලය

- අධාාපන අධාන්ෂ (විශුාමික)

- සහකාර අධාාපන අධායක්ෂ (විශාමික)

- ගුරු උපදේශක (විශුාමික) - ගුරු සේවය (විශුාමික)

- නියෝජා පුධාන උප කර්තෘ, සිඑමිණ

- ගුරු සේවය, ගොඩගම සුභාරතී මහාමාතා මහා විදාහලය, ඩී. යූ. ශීකාන්ත එදිරිසිංහ

රූපසටහන් නිර්මාණය පරිගණක අක්ෂර සංයෝජනය ආර්. ඩී. තිළිණි සෙව්වන්දී

බී. ටී. චතුරාණි පෙරේරා

- පරිගණක සහායක, අධාාපන පුකාශන දෙපාර්තමේන්තුව

පිටකවර නිර්මාණය බී. ටී. චතුරාණි පෙරේරා ආර්. එම්. රජිත සම්පත්

- පරිගණක සහායක, අධාාපන පුකාශන දෙපාර්තමේන්තුව

පටුන

		පිටුව
1.	සංඛාහ රටා	1
2.	ද්වීමය සංඛාන	16
3.	භාග	27
4.	පුතිශත	41
5.	වීජීය පුකාශන	58
6.	වීජීය පුකාශනවල සාධක	67
7.	පුතායක්ෂ	79
8.	සරල රේඛා හා සමාන්තර රේඛා ආශුිත කෝණ	92
9.	දුව මිනුම්	116
	පුනරීක්ෂණ අභාාස	
	පාරිභාෂික ශබ්ද මාලාව	
	පාඩම් අනුකුමය	

සම්පාදක මණ්ඩල සටහන

2015 වර්ෂයේ සිට කිුයාත්මක වන නව විෂය නිර්දේශයට අනුකූලව මෙම පෙළපොත රචනා කර ඇත.

පෙළපොත සම්පාදනය කෙරෙන්නේ සිසුන් වෙනුවෙනි. එබැවින්, ඔබට තනිව කියවා වුව ද තේරුම් ගත හැකි පරිදි සරල ව සහ විස්තරාත්මක ව එය රචනා කිරීමට උත්සාහ ගත්තෙමු.

විෂය සංකල්ප ආකර්ශනීය අන්දමින් ඉදිරිපත් කිරීම සහ තහවුරු කිරීම සඳහා, විස්තර කිරීම්, කිුිියාකාරකම් සහ නිදසුන් වැනි විවිධ කුම අනුගමනය කළෙමු. තව ද, අභාගස කිරීමේ රුචිකත්වය වර්ධනය වන පරිදි ඒවා සරල සිට සංකීර්ණ දක්වා අනුපිළිවෙළින් පෙළ ගස්වා තිබේ.

ගණිත විෂයයට අදාළ සංකල්ප දැක්වෙන පද, රාජා භාෂා දෙපාර්තමේන්තුව සම්පාදනය කරන ගණිතය පාරිභාෂික පදමාලාවට අනුකූලව භාවිත කළෙමු.

විෂය තිර්දේශයේ 9 ශ්‍රේණියට අදාළ විෂය කොටස් ඉගෙන ගැනීමට මින් පෙර ශ්‍රේණිවල දී ඔබ උගත් යම් යම් විෂය කරුණු අවශා වේ. එබැවින් එම පෙර දැනුම සිහි කිරීම පිණිස පුනරීක්ෂණ අභාාස සෑම පරිච්ඡේදයකම ආරම්භයේ දැක්වෙයි. ඒවා මගින් 9 ශ්‍රේණියට අදාළ විෂය කොටස් සඳහා ඔබව සූදානම් කෙරෙනු ඇත.

පන්තියේ දී ගුරුවරයා විසින් ඉගැන්වීමට පෙර, ඔබ මේ පරිච්ඡේද කියවීමෙන් සහ ඒ ඒ පරිච්ඡේදයේ එන පුනරීක්ෂණ අභාාස කිරීමෙන්, මේ පොත භාවිතයෙන් උපරිම ඵල ලැබිය හැකි ය.

ගණිත අධාාපනය පීතිමත් සහ ඵලදායක වන්නැයි අපි පුාර්ථනා කරමු.

සම්පාදක මණ්ඩලය

සංඛන රටා

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- අනුයාත පද දෙකක් අතර වෙනස සමාන වූ සංඛ්‍යා රටාවක සාධාරණ පදය ගොඩනැඟීමට
- සංඛාහ රටාවක සාධාරණ පදය දී ඇති විට, සංඛාහ රටාව ගොඩනැඟීමට
- සංඛාහා රටා ආශිුත ගැටලු විසඳීමට

හැකියාව ලැබෙනු ඇත.

්සංඛහා රටා හැඳින්වීම

පහත දැක්වෙන්නේ සංඛාා රටා කිහිපයකි.

- i. 3, 3, 3, 3, 3, ...
- ii. 2, 4, 6, 8, 10, ...
- iii. 5, 8, 11, 14, 17, ...
- iv. 2, 4, 8, 16, 32, ...
- v. 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...
- vi. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...

පළමුවන සංඛාහ රටාව ඉතා ම සරල ය. එම රටාවේ ඇති සෑම සංඛාහවක් ම 3 වේ.

දෙවන සංඛාහ රටාවේ මුල් සංඛාහව 2 වන අතර ඉන් පසු ඇති සෑම සංඛාහවක්ම ලැබෙන්නේ ඊට පෙර ඇති සංඛාහවට 2ක් එකතු වීමෙනි.

තුන්වන රටාවේ මුල් සංඛ්‍යාව 5 වන අතර, ඉන් පසු ඇති සෑම සංඛ්‍යාවක් ම ලැබෙන්නේ ඊට පෙර ඇති සංඛ්‍යාවට 3ක් එකතු වීමෙනි.

හතරවන රටාවේ මුල් සංඛාාව 2 වන අතර ඉන් පසු ඇති සෑම සංඛාාවක් ම ලැබෙන්නේ ඊට පෙර සංඛාාව 2න් ගුණ වීමෙනි.

පස්වන හා හයවන රටාවලට ද ඒවාට ම ආවේණිික ලක්ෂණ ඇත.

සංඛාහ රටාවල ඇති සංඛාහ සඳහා පද යන්න භාවිත වේ. නිදසුන් ලෙස ඉහත පළමුවන රටාවේ සෑම පදයක් ම 3 වේ;

දෙවන රටාවේ මුල් පදය (එනම්, පළමුවන පදය) 2 ද දෙවන පදය 4 ද තුන්වන පදය 6 ද ආදි වශයෙන් වේ; එහි පළමු පදයට පසු සෑම පදයක් ම ලැබෙන්නේ ඊට පෙර පදයට 2ක් එකතු වීමෙනි;

තුන්වන රටාවේ මුල් පදය (එනම්, පළමුවන පදය) 5 ද දෙවන පදය 8 ද තුන්වන පදය 11 ද ආදි වශයෙන් වේ; එහි පළමු පදයට පසු සෑම පදයක් ම ලැබෙන්නේ ඊට පෙර පදයට 3ක් එකතු වීමෙනි.

හතරවන රටාවේ පළමු පදයට පසු සෑම පදයක්ම ලැබෙන්නේ ඊට පෙර පදය 2න් ගුණ වීමෙනි.

මේ ආදි වශයෙන් පස්වන හා හයවන රටාවල පද ලැබෙන ආකාර ද විස්තර කළ හැකි නමුත් ඒවා තරමක් සංකීර්ණ විය හැකි ය.

ඉහත දැක්වෙන රටාවල පද කොමා ලකුණුවලින් වෙන් වී ඇති බවත් අවසානයේ තිත් තුනක් තබා ඇති බවත් නිරීක්ෂණය කරන්න. මෙය සාමානෲයෙන් සංඛාා රටා ලියා දක්වන ආකාරයයි. තිත් තුනෙන් දැක්වෙන්නේ රටාව දිගට ම පවතින බවයි.

රටා යන වදන සඳහා ගණිතයේ දී යොදා ගන්නා වදන වනුයේ 'අනුකුම' යන්නයි. ඒ අනුව, ඉහත දැක්වෙන්නේ 'සංඛාහ අනුකුම' (හෝ, සරලව පවසතොත්, 'අනුකුම') හයකි. අනුකුමයක පදවල අනුපිළිවෙළ වැදගත් වේ. නිදසුනක් ලෙස,

යන අනුකුමයේත්

යන අනුකුමයේත් එක ම සංඛාහ ඇතත්, ඒවා එකිනෙකට වෙනස් අනුකුම වේ.

ඉහත දැක්වෙන අනුකුමවල මුල් පද කිහිපයක් පමණක් දී, ඒවායේ රටාව විස්තර කොට ඇත. එසේ නමුත්, අනුකුමයක මුල් පද කිහිපයෙන් පමණක් එම අනුකුමයේ රටාව අනුමාන කිරීම එතරම් සුදුසු නොවේ. නිදසුන් ලෙස,

යනු සංඛාහ රටාවකි. එනම් අනුකුමයකි. එම අනුකුමයේ මුල් පද පහ පමණක් ලියා (එනම්, 1, 2, 3, 4, 5, ... ලියා) එහි ඊළඟ පදය කුමක්දැයි විමසුව හොත් එය 6 ලෙස වැරදි පිළිතුරක් ලැබිය හැකි ය. එමනිසා, අනුකුමයක මුල් පද කිහිපයක් දී එහි ඊළඟ පදය (හෝ පද කිහිපය) ඇසීම ගණිතානුකූලව නිවැරදි නොවේ.

අනුකුමයක් වඩාත් නිවැරදි ව විස්තර කළ හැකි කුමයක් වන්නේ අනුයාත එක් එක් පදය ගණනය කළ හැකි රීතියක් දීම මගිනි. ඉහත දී ඇති අනුකුම 6න් දෙවන හා තුන්වන අනුකුමවල විශේෂත්වය (හෝ, ගුණය) මෙසේ විස්තර කළ හැකි ය.

දෙවන අනුකුමයේ, පළමු පදයට පසු සෑම පදයක් ම ලැබෙන්නේ ඊට පෙර පදයට 2 යන නියත අගය එකතු වීමෙනි. එය මෙසේ විදහා දැක්විය හැකි ය.

තුන්වන අනුකුමයේ, පළමු පදයට පසු සෑම පදයක් ම ලැබෙන්නේ ඊට පෙර පදයට 3 යන නියත අගය එකතු වීමෙනි. එය මෙසේ විදහා දැක්විය හැකි ය.

මෙහි 'නියත අගය' යන්නෙහි තේරුම 'වෙනස් නොවන' යන්නයි. මෙම අනුකුම දෙකට අදාළ විශේෂත්වය මෙසේ දැක්විය හැකි ය.

"ඕනෑම පදයකින් (පළමු පදය හැර) ඊට පෙර පදය අඩු කළ විට ලැබෙන අගය නියතයකි. (එනම්, නියත අගයකි)."

$$2,4,6,8,10,\dots$$
 අනුකුමය සඳහා මෙම නියතයේ අගය 2 වේ $(4-2=6-4=8-6=10-8=2$ නිසා).

$$5, 8, 11, 14, 17, \dots$$
 අනුකුමය සඳහා මෙම නියතයේ අගය 3 වේ $(8-5=11-8=14-11=17-14=3$ නිසා).

මෙවැනි අනුයාත පද දෙකක් අතර වෙනස නියත අගයක් වන අනුකුම පිළිබඳව වැඩි දුරටත් හදාරමු.

මෙම නියත අගය එනම් නියත වූ අන්තරය (වෙනස) 'පොදු අන්තරය' ලෙස හැඳින්වේ. මේ අනුව,

පොදු අන්තරය = පළමු පදය හැර ඕනෑ ම පදයක් - ඊට පෙර පදය

ඉහත මුලින් ම දී ඇති $3,3,3,3,\ldots$ අනුකුමයට ද මෙම ගුණය ඇති බව නිරීක්ෂණය කළ හැකි ය.

මෙහි එකතු වන නියත අගය (එනම්, පොදු අන්තරය) 0 ලෙස සැලකිය හැකි ය.

පහත දැක්වෙන්නේ එම ගුණය සහිත තවත් අනුකුමයකි.

මෙම අනුකුමයේ පළමුවන පදය 17 ය. එයින් පසු සෑම පදයක් ම ලැබෙන්නේ ඊට පෙර පදයෙන් 5ක් අඩු වීමෙනි. එනම්, පෙර පදයට -5ක් එකතු වීමෙනි. ඒ අනුව, මෙම අනුකුමයේ පොදු අන්තරය -5 වේ. එනම්,

පොදු අන්තරය =
$$12 - 17 = 7 - 12 = 2 - 7 = -3 - 2 = -5$$
.

මෙවැනි නියත පොදු අන්තරයක් සහිත අනුකුමයක පොදු අන්තරයේ අගයත් පළමුවන පදයත් දන්නේ නම් එහි මුල් පද කිහිපය පහසුවෙන් ලියා දැක්විය හැකි ය. ඒ සඳහා නිදසුන් කිහිපයක් මෙසේ දැක්විය හැකි ය.

නිදසුන 1

පළමුවන පදය 4 ද පොදු අන්තරය 3 ද වන අනුකුමයේ මුල් පද 3 වන්නේ 4,7 හා 10 යි.

නිදසුන 2

පළමුවන පදය 7 ද පොදු අන්තරය -4 ද වන අනුකුමයේ මුල් පද 5 වන්නේ $7,\,3,\,-1,\,-5$ හා -9 යි.

මෙවැනි පොදු අන්තරයක් සහිත අනුකුමයක මුල් පද කිහිපය පහසුවෙන් ලිවිය හැකි ය. එහෙත් 50වන පදය හෝ, එසේත් නැත් නම් 834 වන පදය කුමක් දැයි සෙවීම පහසු නොවේ. එයට හේතුව, 50, 834 වැනි සංඛාා විශාල වීමයි.

ඒ අනුව සංඛාහ රටාවක සාධාරණ පදයක් දැන සිටීම වැදගත් ය. සාධාරණ පදය යන්නෙන් අදහස් වන්නේ කුමක් දැයි විමසා බලමු.

1.1 සංඛ්‍යා රටාවක සාධාරණ පදය

මුලින් ම, එක් එක් පදය දැක්වීම සඳහා අංකනයක් යොදා ගනිමු. ඒ සඳහා, දී ඇති යම් අනුකුමයක

පළමුවන පදය T_1 මගිනුත් දෙවන පදය T_2 මගිනුත් තුන්වන පදය T_3 මගිනුත්

ආදි වශයෙන් දක්වමු.

නිදසුනක් ලෙස

5, 11, 17, 23, ...

යන අනුකුමයේ

පළමුවන පදය $=T_1=5$ දෙවන පදය $=T_2=11$ තුන්වන පදය $=T_3=17$ හතරවන පදය $=T_4=23$

ආදි ලෙස ලියා දැක්විය හැකි ය.

ගණිතයේ දී බොහෝ විට සිදු කරන ආකාරයෙන්, යම් අනුකුමයක n වන පදය සැලකීම ද මෙහි දී ඉතා වැදගත් ය. මෙහි n මගින් දැක්වෙන්නේ ඕනෑ ම ධන නිඛිලමය අගයකි. එයට හේතුව nට ගත හැකි අගයන් වන්නේ 1,2,3,... ආදි ධන නිඛිල වීමයි. $\frac{1}{2}$ පදය, -4 වන පදය, 3.5 වන පදය ආදියට අර්ථයක් නොමැත. මෙසේ, n අගයක් සැලකූ විට, ඊට අනුරූප වන n වන පදය T_n මගින් දැක්වේ. එයට සාධාරණ පදය (හෝ පොදු පදය) යැයි කියනු ලැබේ.

එනම්, T_n මගින් අනුකුමයක n වන පදය (සාධාරණ පදය) දැක්වේ.

සාධාරණ පදය දී ඇති විට සංඛ්‍යා අනුකුමය ගොඩනැගීම

අපි සංඛාහ අනුකුමයක සාධාරණ පදය සඳහා අංකනයක් උගත්තෙමු. දැන් සාධාරණ පදය දී ඇති විට එය භාවිත කර සංඛාහ අනුකුමය ගොඩනගන අයුරු හා නම් කරන ලද පදයක් සොයන අයුරු නිදසුන් ඇසුරෙන් වීමසා බලමු.

නිදසුන 1

සාධාරණ පදය වන $T_n=2n+3$ වූ සංඛාා රටාවේ

i. මුල් පද තුන ලියන්න.

ii. විසිවන පදය සොයන්න.

iii. 123 වන්නේ කී වැනි පදය ද?

 ${f iv.}\,(n+1)$ වන පදය n ඇසුරෙන් දක්වන්න.

 ${f i}$. සාධාරණ පදය වන $T_n=2n+3$ බැවින්

$$n=1$$
 වූ විට පළමු පදය, $T_1=\ (2\times 1)+3=2+3=5,$

$$n=2$$
 වූ විට දෙවන පදය, $T_2=(2\times 2)+3=4+3=7,$

$$n=3$$
 වූ විට තුන්වන පදය, $T_3=(2\times 3)+3=6+3=9$.

$$\therefore$$
 රටාවේ මුල් පද තුන = $5, 7, 9$.

 ${f ii.}\; n=20$ යන්න 2n+3 හි ආදේශයෙන් 20 වන පදය ලැබේ.

විසිවන පදය,
$$T_{20} = (2 \times 20) + 3 = 40 + 3$$

= 43

∴ විසිවන පදය 43 වේ.

 ${f iii.}\ 123$ වන්නේ n වන පදය යැයි ගනිමු.

එවිට
$$2n + 3 = 123$$

 $2n + 3 - 3 = 123 - 3$
 $2n = 120$
 $n = \frac{120}{2}$
 $= 60$

∴ රටාවේ 123 වන්නේ 60 වන පදයයි.

 ${f iv.}\;n+1$ වන පදය ලබා ගැනීමට n වෙනුවට (n+1) ආදේශ කරමු.

$$n+1$$
 වන පදය, $T_{n+1}=2(n+1)+3$
 $=2n+2+3$
 $=2n+5$

 $\therefore n+1$ වන පදය n ඇසුරෙන් 2n+5 වේ.

නිදසුන 2

සාධාරණ පදය වන $T_{\scriptscriptstyle n} = 56 - 4n$ වූ සංඛාහ රටාවේ

- i. මුල් පද තුන ලියන්න.
- ii. 12 වන පදය සොයන්න.
- $oldsymbol{iii.}$ 0 මෙම සංඛාා රටාවේ පදයක් වන බව පෙන්වන්න.
- iv. 18 මෙම සංඛාහ රටාවේ පදයක් නොවන බව පෙන්වන්න.

$${f i.}$$
 සාධාරණ පදය, $T_{_n}$ = $56-4n$ බැවින්

$$n=1$$
 වූ විට පළමුවන පදය, $T_1=56-(4\times 1)=56-4=52,$

$$n=2$$
 වූ විට ඉදවන පදය, $T_2=56-(4\times 2)=56-8=48$,

$$n=3$$
 වූ විට තුන්වන පදය, $T_3=56-(4\times 3)=56-12=44$,

∴ රටාවේ මුල් පද තුන 52, 48, 44 වේ.

 $oxdot{iii.}\ 0$ සංඛාහා රටාවේ පදයක් නම්, කිසියම් n සඳහා

$$56 - 4n = 0$$
 විය යුතු ය.

$$56-4n+4n=4n$$
 (ඉදිපසට ම $4n$ එකතු කිරීම)

$$\frac{56}{4} = \frac{4n}{4}$$

$$14 = n$$

$$n=14$$
 \therefore රටාවේ 14 වන පදය 0 වේ.

එනම්, 0 මෙම සංඛ $\mathfrak s$ ා රටාවේ පදයක් වේ.

 ${f iv.}\ 18$ රටාවේ පදයක් නම්, කිසියම් n සඳහා 56-4n=18 විය යුතුයි.

එවිට
$$56 - 4n + 4n = 18 + 4n$$

 $56 - 18 = 18 - 18 + 4n$
 $38 = 4n$
 $9\frac{1}{2} = n$

18 රටාවේ පදයක් නම් n හි අගය ධන පූර්ණ සංඛාාවක් විය යුතුයි. $n=9\,\frac{1}{2}$ නිසා 18 මෙම සංඛාා රටාවේ පදයක් නොවේ.

1.1 අභනාසය

1. වගුව සම්පූර්ණ කරන්න.

සංඛහා රටාවේ සාධාරණ පදය	පළමුවන පදය (n = 1 ආදේශයෙන්)	දෙවන පදය (n=2 ආදේශයෙන්)	තුන්වන පදය (n=3 ආදේශයෙන්)	සංඛතා රටාවේ මුල් පද තුන
3n + 2 5n - 1 2n + 5 20 - 2n 50 - 4n 35 - n	$(3 \times 1) + 2 = 5$ $(5 \times 1) - 1 = 4$	(3 × 2) + 2 = 8	(3 × 3) + 2 = 11	5, 8, 11 ,, ,, ,,

- ${f 2}$. සංඛාහ රටාවක, සාධාරණ පදය ${f 4n-3}$ වේ. එම රටාවේ
- i. මුල් පද තුන ලියන්න.
- ii. 12 වන පදය සොයන්න.
- iii. 97 වන්නේ කී වැනි පදය ද?
- iv. 75 මෙම සංඛාහ රටාවේ පදයක් නොවන බව පෙන්වන්න.
- $oldsymbol{3}$. n වන පදය 7n+1 වූ සංඛාහ රටාවේ
- i. මුල් පද තුන ලියන්න.
- ii. 5 වන පදය සොයන්න.
- iii. 36 වන්නේ කී වැනි පදය ද?
- ${f iv.}\;n+1$ වන පදය n ඇසුරෙන් දක්වන්න.
- $oldsymbol{4}$. සාධාරණ පදය $T_{_n}=50-7n$ වූ සංඛාහ රටාවේ
- i. මුල් පද තුන ලියන්න.
- ii. 10 වන පදය සොයන්න.
- iii. n+1 වන පදය n ඇසුරෙන් දක්වන්න.
- iv. 7 වන පදයෙන් පසුව ලැබෙන පද ඍණ සංඛාා බව පෙන්වන්න.

1.2 සංඛ්යා රටාවක සාධාරණ පදය $(T_{\scriptscriptstyle oldsymbol{u}})$ සඳහා පුකාශනයක් ලබා ගැනීම

ඉහත කොටසේ දී සාධාරණ පදය වන T_n සඳහා පුකාශනයක් දී තිබුණි. මෙහිදී, T_n සඳහා n ඇසුරෙන් පුකාශනයක් ලබා ගැනීම අපගේ අරමුණයි. එවිට, අනුකුමයක යම් පදයක් කවරක්දැයි යන්න එම පුකාශනය භාවිතයෙන් පහසුවෙන් සෙවිය හැකි ය. මෙසේ පුකාශනයක් ලබා ගත හැකි ආකාරය නිදසුනක් මගින් විමසා බලමු.

 $5,\,11,\,17,\,23,\,...$ යන පොදු අන්තරයක් සහිත අනුකුමයේ 80 වන පදය සෙවිය යුතු යැයි සිතමු. එනම්, T_{80} සෙවිය යුතු ය. ඒ සඳහා, පහත වගුවේ දැක්වෙන රටාව නිරීක්ෂණය කරන්න.

n	T_{n}	පොදු අන්තරය වන 6 හා n ඇසුරෙන් $T_{_n}$ ලිවිය හැකි ආකාරය
1	5	$6 \times 1 - 1$ හෝ $5 + 0 \times 6$
2	11	6 imes 2-1 ලහා $5+1 imes 6$
3	17	6 imes 3-1 ලහා $5+2 imes 6$
4	23	6 imes4-1 ඉහර් $5+3 imes6$
5	29	6 imes 5-1 ෙනෝ $5+4 imes 6$

ඉහත වගුවේ තුන්වන තී්රයේ දැක්වෙන $6 \times 1 - 1$, $6 \times 2 - 1$, $6 \times 3 - 1$ ආදි පුකාශන එසේ ලියන ලද්දේ ඇයි දැයි යන්න ඔබට ගැටලුවක් වූවා විය හැකි ය. විශේෂයෙන් ම, 1ක් අඩු කිරීමට හේතුව කුමක් ද යන්න අපැහැදිලි වූවා විය හැකි ය. එය මෙසේ පැහැදිලි කළ හැකි ය.

දී ඇති 5, 11, 17, 23, ... අනුකුමයේ පොදු අන්තරය 6 නිසා, මුලින් ම දී ඇති අනුකුමයත් ඊට පහළින් 6හි ගුණාකාර කිහිපයකුත් ලියමු.

5, 11, 17, 23, 29, ... 6, 12, 18, 24, 30, ...

6හි ගුණාකාරවලින් 1 බැගින් අඩු වී, දී ඇති අනුකුමය ලැබෙන බව නිරීක්ෂණය කළ හැකි ය. එනම්,

අනුකුමයේ 1 වන පදය =6හි පළමු ගුණාකාරය -1

අනුකුමයේ 2 වන පදය =68 දෙවන ගුණාකාරය -1

අනුකුමයේ 3 වන පදය =6හි තුන්වන ගුණාකාරය -1

ආදි වශයෙන් ලිවිය හැකි ය.

ඒ අනුව,

අනුකුමයේ n වන පදය =6හි n වන ගුණාකාරය -1

$$T_n = 6n - 1$$

ඒ අනුව, T_{80} වන්නේ $6 \times 80 - 1 = 479$ යි. එනම්,

$$T_{\text{so}} = 6 \times 80 - 1 = 479.$$

මේ අනුව, 80 වන පදය 479 වේ.

තව ද මෙම අනුකුමය සඳහා සාධාරණ පදය වන T_n සඳහා පුකාශනය වන $T_n=6n-1$ ලෙස ඉහත දී ලබා ගෙන ඇත.

මෙම සූතුය භාවිතයෙන් ඕනෑ ම පදයක් සෙවිය හැකි ය. නිදසුනක් ලෙස, දී ඇති අනුකුමයේ 24 වන පදය සෙවීම සඳහා මෙහි n=24 ආදේශ කළ යුතු ය. එවිට,

$$T_{24} = 6 \times 24 - 1 = 143$$

එමනිසා, අනුකුමයේ 24 වන පදය 143 වේ.

තවත් නිදසුනක් සලකා බලමු.

නිදසුන 1

මුල් පද හතර $15,\,19,\,23,\,27$ වන පොදු අන්තරයක් සහිත අනුකුමයේ n වන පදය වන T_n සඳහා පුකාශයක් සොයමු.

මෙහි පොදු අන්තරය = 19-15=4 වේ. දී ඇති අනුකුමයේ මුල් පද කිහිපයත්, ඊට පහළින් 4හි ගුණාකාර කිහිපයකුත් (ධන නිඛිලමය ගුණාකාර) ලියමු.

සෑම 4හි ගුණාකාරයකට ම 11 බැගින් එකතු වීමෙන් දී ඇති අනුකුමය ලැබෙන බව පැහැදිලි ය. ඒ අනුව, පොදු පදය වන $T_{_{\parallel}}$ සඳහා වන සූතුය

$$T_n = 4n + 11$$

මගින් ලැබේ. මෙම සූතුය භාවිතයෙන් 100 වන පදය සොයමු.

$$T_{100} = 4 \times 100 + 11 = 411$$

දැන් පොදු අන්තරය ඍණ අගයක් වන, එනම් අඩු වන පදවලින් සමන්විත වන අනුකුමයක් සලකා බලමු.

නිදසුන 2

මුල් පද හතර $10,\,7,\,4,\,1$ වන පොදු අන්තරයක් සහිත අනුකුමයේ n වන පදය වන $T_{_n}$ සඳහා පුකාශනයක් සොයමු.

 $10, 7, 4, 1, \dots$ යන අනුකුමයේ පොදු අන්තරය = 7 - 10 = -3 වේ.

එමනිසා, -3 හි ගුණාකාර (නිඛලමය) හා දී ඇති අනුකුමයේ පද එකක් යටින් එකක් ලියමු.

10, 7, 4, ...

$$-3, -6, -9, \dots$$

සෑම -3හි ගුණාකාරයට ම 13 බැගින් එකතු වීමෙන් අනුකුමයේ පද ලැබෙන බව නිරීක්ෂණය කළ හැකි ය. එමනිසා,

$$T_n = -3n + 13$$

ලෙස (එසේත් නැති නම්, මුලින් ධන පදයක් ලැබෙන පරිදි $T_n = 13-3n$ ලෙස) මෙහි පොදු පදය ලිවිය හැකි ය.

නිදසුනක් ලෙස, මෙම අනුකුමයේ 30 වන පදය සෙවීම සඳහා n=30 ආදේශ කළ යුතු ය. එවිට,

$$T_{30} = -3 \times 30 + 13 = -77$$

ලෙස ලැබේ. එමනිසා, 30 වන පදය – 77 වේ.

(1.2 අභානසය

1. පහත වගුව අභාහාස පොතේ පිටපත් කර, එය සම්පූර්ණ කරන්න.

ර ටාව	අනුයාත පද දෙකක් අතර වෙනස	රටාව ගොඩනැගීමට සම්බන්ධ වන ගුණාකාරය
5, 8, 11, 14, 10, 17, 24, 31, $2\frac{1}{2}$, 4, $5\frac{1}{2}$, 7, 20, 17, 14, 11, 50, 45, 40, 35,	8-5=3	3
0.5, 0.8, 1.1, 1.4,		

2. 10, 17, 24, 31, ... යන සංඛාා රටාව ඇසුරෙන් වගුව සම්පූර්ණ කරන්න.

පද අනුපිළිවෙළ	පදය	රටාව ගොඩනැගී ඇති ආකාරය
1 වන පදය	10	7 × 1 +
2 වන පදය	17	7 × 2 +
3 වන පදය	24	+
4 වන පදය	31	+
n වන පදය		+ =

- 3. පහත දැක්වෙන එක් එක් සංඛාහ රටාවේ සාධාරණ පදය සඳහා පුකාශනයක් ලබා ගන්න.
 - **a.** 1, 4, 7, 10, ...
 - **b.** 1, 7, 13, 19, ...
 - **c.** 9, 17, 25, 33, ...
 - **d.** 4, 10, 16, 22, ...
 - **e.** 22, 19, 16, 13, ...
 - **f.** 22, 20, 18, 16, ...

1.3 සංඛාා රටා ඇතුළත් ගැටලු විසඳීම

දී ඇති තොරතුරු මගින් ගොඩනඟා ගන්නා සංඛාා රටා යොදා ගනිමින් විවිධ ගණිත ගැටලු විසඳා ගත හැකි ය.

නිදසුන 1

දුර දිවීම පුහුණු වන කීඩකයෙක් දිනපතා පුහුණුවීම්වල යෙදෙයි. ඔහු මීටර 500ක දුරක් පළමු දිනයේ දිවූ අතර, ඉන් පසු සෑම දිනක ම පෙර දිනට වඩා මීටර 100ක් බැගින් වැඩිපුර දිව්වේ ය.

- i. මුල් දින තුනේ දුවන ලද දුර වෙන වෙන ම ලියන්න.
- ${f ii.}\ n$ වන දිනයේ දී දුවන ලද දුර සඳහා සාධාරණ පදය $(T_{_{n}})$ සොයන්න.
- iii. 20 වන දිනයේ දී ඔහු දුවන දුර සොයන්න.
- iv. ඔහු 3 kmක දුරක් දුවන්නේ කී වැනි දිනයේ ද?
 - i. පළමුවන දින දුවන දුර = 500 m දෙවන දින දුවන දුර = 500 m + 100 m = 600 m තුන්වන දින දුවන දුර = 500 m + 100 m + 100 m = 700 m

සංඛහ රටාවේ මුල් පද තුන 500,600,700.

- ii. දිව යන දුර දැක්වෙන සංඛ්යා රටාව අනුව, එය ගොඩනැගෙන්නේ 100 ගුණාකාරවලිනි.
 - \therefore සාධාරණ පදය, $T_{_n}=100n+400$
- ${f iii.}\ 20$ වන දිනයේ දුවන දුර, ${f 20}$ වන පදයෙන් දැක්වෙන බව පැහැදිලි ය.

$$:$$
. සංඛාහ රටාවේ විසිවන පදය, $T_{20} = (100 \times 20) + 400$ $= 2000 + 400$ $= 2400 \ \mathrm{m}$ $= 2.4 \ \mathrm{km}$

- ∴ 20 වන දිනයේ දුවන දූර 2.4 km
- iv. 3 km = 3000 m

$$3000 \text{ mක් }$$
 දිව යන්නේ n වන දිනයේ දී යයි ගනිමු.
එවිට; $100n + 400 = 3000$
 $100n + 400 - 400 = 3000 - 400$
 $100 \ n = 2600$
 $\therefore n = \frac{2600}{100}$

= 26

 \therefore කිලෝමීටර 3ක් දිව යන්නේ 26 වන දිනයේ දී ය.

1.3 අභනාසය

1. පහත දැක්වෙන්නේ ගිනිකුරුවලින් තනන ලද රටාවකි.

ඉහත රටාව ඇසුරෙන් පහත වගුව සම්පූර්ණ කරන්න.

රූපයේ අංකය	1	2	3	4
මුළු ගිනිකුරු ගණන		9		

- i. මෙම රටාවේ 20 වන රූපය ගොඩනැඟීමට අවශා වන ගිනිකුරු ගණන සොයන්න.
- ii. ගිනිකුරු 219ක් අවශා වන්නේ මෙම රටාවේ කී වැනි රූපය සම්පූර්ණයෙන් ම ගොඩනැඟීමට ද?
- iii. ගිනිකුරු 75කින් උපරිම ගණන යොදාගනිමින් මෙම රටාවේ රූපයක් තැනූ විට 1ක් ඉතිරි වන බව පෙන්වන්න.
- 2. කාර්මිකයෙක් යකඩ කම්බි පාස්සා සාදන ගේට්ටුවක් සඳහා මීටර 5ක් දිග කම්බිකුරුවලින් එකිනෙකට වෙනස් පුමාණයේ කැබලි කපා ගනියි. කුඩා ම කැබැල්ල 15 cm වන අතර අනෙක් සෑම කැබැල්ලක් ම අනුයාත කැබලි දෙකක් අතර වෙනස 10 cm වන ලෙස කපනු ලැබේ.
 - i. කපන ලද දිගින් අඩු ම කැබලි තුනේ දිග අනුපිළිවෙළට ලියන්න.
 - ii. කුඩා ම කැබැල්ලේ සිට දිග අනුව ආරෝහණ පිළිවෙළට ගත් විට 20 වන කැබැල්ලේ දිග සොයන්න.
 - iii. දිග අනුව ආරෝහණ පිළිවෙළට සකස් කළ විට 50 වන කැබැල්ල කපා ගැනීමට 5m දිග කම්බි කුර පුමාණවත් නොවන බව පෙන්වන්න.
- 3. පාසලේ පැවැත්වූ වාර්ෂික ඉතිරි කිරීමේ දිනයේ දී යෙස්මි හා ඉඳුනි මුලින් ම රුපියල් 100 බැගින් දමා කැටයක මුදල් ඉතිරි කිරීමට ආරම්භ කළහ. ඉන් පසු ඔවුහු සතියකට වරක් කැටයට මුදල් දමති. යෙස්මි රුපියල් 10ක් ද ඉඳුනි රුපියල් 5ක් ද බැගින් නොවරදවා ම නියමිත දිනයේ දී කැටයට දමයි.
 - i. පස්වන සතියේ යෙස්මි සතු කැටයේ ඇති මුදල කීයක් වේ ද?
 - ii. දහවන සතියේ ඉඳුනි සතු කැටයේ ඇති මුදල කීය ද?
 - iii. සති 50කට පසු ඔවුන්ගේ කැට විවෘත කර ඒවායේ ඇති මුදල් පරීක්ෂා කරන ලදි. යෙස්මි ඉතිරි කර ඇති මුදල ඉඳුනි ඉතිරි කර ඇති මුදලට වඩා කීයකින් වැඩි ද?
- 4. නාටා සන්දර්ශනයක් සඳහා එළිමහන් පිට්ටනියක ආසන පිළියෙල කර තිබුණේ එහි මුල් ම පේළියේ ආසන 9ක් ද දෙවන පේළියේ ආසන 12ක් ද තුන්වන පේළියේ ආසන 15ක් ද වන ලෙස රටාවකට ය. එලෙස එම රටාවට පේළි 15ක් සාදා තිබුණි.
 - i. මුල් ම පේළි පහේ මුළු ආසන ගණන කීය ද?
 - ii. 15 වන පේළියේ ඇති ආසන ගණන කීය ද?
 - iii. මෙම රටාවට මුල් ම පේළියේ ඇති ආසන ගණන මෙන් හතර ගුණයක ආසන සංඛාාවක් 10 වන පේළියේ ඇති බව පෙන්වන්න.
 - iv. ආසන 51ක් ඇත්තේ කී වැනි පේළියේ ද?

මිශු අභාගසය

1. පහත දැක්වෙන්නේ සංඛ්යා රටා කිහිපයක සාධාරණ පදයි.

(a)
$$3n - 5$$

(a)
$$3n-5$$
 (b) $6n+5$ (c) $6n-5$

(c)
$$6n - 5$$

එම එක් එක් සංඛන රටාවේ,

- i. මුල් පද තුන ලියන්න.
- ii. 20 වන පදය සොයන්න.
- iii. n-1 වන පදය n ඇසුරෙන් සොයන්න.

2. පහත දැක්වෙන එක් එක් සංඛාහ රටාවල සාධාරණ පදය සොයන්න.

iii.
$$1\frac{1}{2}$$
, 2, $2\frac{1}{2}$, ... **iv.** -6, -3, 0, 3, ...

3.42,36,30,24,... සංඛ \mathfrak{p} රටාවේ සාධාරණ පදය 6(8-n) බව පෙන්වන්න.

4. උදිත පෞද්ගලික ආයතනයක රැකියාව කරයි. ඔහුගේ ආරම්භක මාසික වැටුප වුයේ රුපියල් 25~000කි. දෙවැනි අවුරුද්ද ආරම්භයේ සිට වාර්ෂිකව ඔහුට රු 2400~ක වැටුප් වැඩිවීම හිමි වේ.

i. දෙවැනි අවුරුද්ද ආරම්භයේ ඔහුගේ මාසික වැටුප කීය ද?

ii. මුල් වසර තුනෙහි උදිතගේ මාසික වැටුප්වල අගයයන් වෙන වෙන ම ලියන්න.

 $oldsymbol{iii.}$ n වන වසරේ වැටුප දැක්වෙන පුකාශයක් n ඇසුරෙන් දක්වන්න.

iv. පස්වන වසරේ දී ඔහුගේ මාසික වැටුප ඉහත (iii) දී ලබාගත් පුකාශනය ඇසුරෙන් සොයන්න.

- පොදු අන්තරය = පළමු පදය හැර ඕනෑම පදයක් ඊට පෙර පදය
- ullet අනුකුමයක සාධාරණ පදය T_n මගින් දැක්වේ.
- සාධාරණ පදය දන්නේ නම් ඉතිරි පදය සෙවිය හැකි ය.

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- ද්වීමය සංඛා හඳුනාගැනීමට.
- දශමය සංඛාාවක් ද්වීමය සංඛාාවක් බවට පරිවර්තනය කිරීමට
- ද්වීමය සංඛාාවක් දශමය සංඛාාවක් බවට පරිවර්තනය කිරීමට
- ද්වීමය සංඛාහ එකතු කිරීමට හා අඩු කිරීමට
- ද්විමය සංඛාහ භාවිත වන අවස්ථා හඳුනා ගැනීමට

හැකියාව ලැබෙනු ඇත.

හැඳින්වීම

හින්දු අරාබි කුමයේ දී, එනම් අප සාමානෳයෙන් භාවිත කරන කුමයේ දී, සංඛාා ලියා දක්වන ආකාරය නැවත මෙසේ මතකයට නගා ගනිමු.

නිදසුනක් ලෙස, 3~725 යන සංඛාාව සලකමු. අප මින්පෙර ශේණීවල දී උගත් දෑ අනුව, 3~725හි

5න් දැක්වෙන්නේ 1 ඒවා (එනම්, 10^{0} ඒවා) ගණනයි.

2න් දැක්වෙන්නේ 10 ඒවා (එනම්, 10^1 ඒවා) ගණනයි.

7න් දැක්වෙන්නේ 100 ඒවා (එනම්, 10^2 ඒවා) ගණනයි.

3න් දැක්වෙන්නේ $1\ 000$ ඒවා (එනම්, 10^3 ඒවා) ගණනයි.

මෙම කරුණු, පහත ආකාරයේ ගණක රාමුවක් භාවිතයෙන් ද දැක්විය හැකි ය.

මෙම 3 725 යන සංඛ්‍යාව 10 බල ඇසුරෙන් මෙසේ ද ලිවිය හැකි බව හොඳින් නිරීක්ෂණය කරන්න.

$$3725 = 3 \times 1000 + 7 \times 100 + 2 \times 10 + 5 \times 1$$

එනම්,
$$3725 = 3 \times 10^3 + 7 \times 10^2 + 2 \times 10^1 + 5 \times 10^0$$

තවත් නිදසුනක් ලෙස, 603 ගත හොත්,

$$603 = 6 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$$

ලෙස ලියා දැක්විය හැකි ය.

අප විසින් සාමානාගෙන් භාවිත කෙරෙන හින්දු අරාබි කුමයේ දී, සංඛාාවක එක් එක් ස්ථානයේ අගය (එනම් ස්ථානීය අගය) 1,10,100,1000 ආදි 10යේ බලවලින් දැක්වේ. තව ද මෙම කුමයේ දී සංඛාා ලියා දැක්වීමට 0,1,2,3,4,5,6,7,8,9 යන සංඛාාංක 10 යොදා ගැනේ. මෙසේ සංඛාාංක 10ක් යොදාගනිමින් හා එක් එක් ස්ථානයේ අගය 10යේ බලවලින් දක්වමින් සංඛාා දැක්වීම 'දහයේ පාදයෙන්' සංඛාා ලියා දැක්වීම ලෙස හැඳින්වේ. එසේ ම, විශේෂයෙන් සංඛාා පාද පිළිබඳ හැදෑරීමේ දී, මෙම සංඛාා 'දශමය සංඛාා' ලෙස ද හැඳින්වේ.

සටහන: • 'දශමය සංඛහා' යන්න 'දශම සංඛහා' සමඟ පටලවා නොගත යුතු ය.

ullet $10^\circ = 1$ වන සේ ම ඕනෑ ම පාදයක බින්දුවේ බලය එක වේ. ඒ අනුව $2^0 = 1$ වේ.

(2.1 ද්විමය ආකාරයෙන් සංඛ්‍යා දැක්වීම

සංඛාහ ලියා දක්වීමට 10 හැර වෙනත් පාද ද භාවිත කළ හැකි ය. නිදසුනක් ලෙස, 0 හා 1 යන සංඛාහංක දෙක පමණක් යොදා ගනිමින් හා එක් එක් ස්ථානයේ අගය දෙකේ බලවලින් දක්වමින් 'දෙකේ පාදයෙන්' සංඛාහ ලියා දැක්වීය හැකි ය. ඒ සඳහා මුලින් ම දෙකේ බල කිහිපයක් හඳුනා ගනිමු.

$$2^{\circ} = 1$$
 $2^{5} = 32$
 $2^{1} = 2$ $2^{6} = 64$
 $2^{2} = 4$ $2^{7} = 128$
 $2^{3} = 8$ $2^{8} = 256$
 $2^{4} = 16$ $2^{9} = 512$

මේ ආදි වශයෙන් දෙකේ බල ගණනය කරමින් ලිවිය හැකි ය.

දෙකේ පාදයෙන් සංඛාා ලියා දැක්විය හැකි ආකාරය පැහැදිලි කිරීම සඳහා දහයේ පාදයෙන් දැක්වෙන 13 යන සංඛාාව නිදසුනක් ලෙස සලකමු. 13 යන්න දෙකේ බලවල එකතුවක් ලෙස ලිවිය හැකි ආකාරය විමසා බලමු.

දෙකෙහි මුල් බල කිහිපය වන්නේ

1, 2, 4 හා 8 යි.

මෙම බල ඇසුරෙන්,

13 = 8 + 4 + 1

එනම්, $13 = 2^3 + 2^2 + 2^0$ ලෙස ලිවිය හැකි ය.

එනුම්,
$$13 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

ලෙස ලිවිය හැකි ය. මෙහි, 2^3 න් පටන් ගෙන, 2^2 , 2^1 හා 2° යන බල සියල්ල ම දක්වා ඇත. නිදසුනක් ලෙස, මෙහි 2^3 බලය ඇති නිසා එය 1×2^3 ලෙසත් 2^1 බලය නොමැති නිසා එය 0×2^1 ලෙසත් ලියා දක්වා ඇත. දෙකේ පාදයෙන් සංඛාහ ලිවීමේ දී 0 හා 1 යන සංඛාහංක පමණක් යොදා ගන්නා බව සිහි තබාගෙන, මෙම 13 යන සංඛාහව, දෙකේ පාදයෙන් මෙසේ ලියා දැක්විය හැකි ය.

1101

මෙහි ඇති 0 හා 1 සංඛාහාංක පහත පරිදි විස්තර කළ හැකි ය.

එය ගණක රාමුවක් ඇසුරෙන් ද මෙසේ දැක්විය හැකි ය.

මෙහි දී 1101 යන්න දෙකේ පාදයෙන් ලියා ඇති බව දැක්වීම සඳහා $1101_{_{\mathrm{sym}}}$ ලෙස, සංඛ්‍යාවට දකුණු පසින් පහළට වන්නට කුඩාවට දෙක ලිවීම සාමාන්‍යයන් සිදු කෙරේ. එසේ ම, දෙකේ පාදයෙන් හා දහයේ පාදයෙන් ලියා ඇති සංඛ්‍යා වෙන් වෙන්ව හඳුනාගැනීම පහසු වීම සඳහා, දහයේ පාදයේ සංඛ්‍යාවන්හි ද දකුණු පසින් කුඩාවට දහය ලෙස මෙම පාඩමේ, අවශ්‍ය තැන්හිදී, ලියා දැක්වෙනු ඇත. නිදසුනක් ලෙස, $603_{_{\mathrm{sym}}}$ ලෙස දැක්වෙන්නේ අප සාමාන්‍යයන් හඳුනන දහයේ පාදයෙන් ලියා ඇති 603යි.

තවත් නිදසුනක් සලකා බලමු. දහයේ පාදයෙන් ලියා ඇති $20_{_{\scriptscriptstyle \mathrm{DM}}}$ යන්න දෙකේ පාදයෙන් ලියමු.

මේ සඳහා, 2හි බල පිළිබඳ මතකයෙන්,

$$20 = 16 + 4$$

$$= 24 + 22$$

$$= 1 \times 24 + 0 \times 23 + 1 \times 22 + 0 \times 21 + 0 \times 20$$

ලෙස ලිවිය හැකි ය.

එමනිසා,

$$20_{emcs} = 10100_{emcm}$$

ලෙස ලිවිය හැකි ය.

මෙහි දී ඉතා වැදගත් දෙයක් කිව යුතු ය. ඕනෑ ම සංඛාාවක්, 2^0 , 2^1 , 2^2 ආදි දෙකෙහි බලවල එකතුවක් ලෙස (එක් බලයක් එක් වරක් පමණක් යොදා ගතිමින්) ලිවිය හැක්කේ එක් ආකාරයකට පමණි. නිදසුනක් ලෙස, 20 යන්න 16+4 ලෙස ලිවිය හැකි ය. ඒ අනුව, $20=2^4+2^2$ වේ. එනම් 20 දෙකෙහි වෙනස් බල දෙකක එකතුවක් ලෙස ලියා ඇත. එය, වෙනත් ආකාරයකට වෙනස් දෙකේ බලවල එකතුවක් ලෙස ලිවිය නොහැකි ය. එසේ ලිවීමට ඔබ උත්සාහ කළහොත් එසේ ලිවිය නොහැකි බව ඔබට ඒත්තු යනු ඇත. එසේ ම, ඕනෑ ම සංඛාාවක් දෙකේ බලවල එකතුවක් ලෙස ලිවිය හැකි ය. විවිධ සංඛාා දෙකේ බලවලින් ලිවීමෙන් ඔබට මෙය වටහා ගත හැකි වනු ඇත.

අතුත්ත වශයෙන් ම, දහයේ පාදයේ සංඛ්‍යාවක් දෙකේ පාදයෙන් දැක්වීමේ දී ඉහත අනුගමනය කළ කුමය, එනම් දෙකේ බලවල එකතුවක් ලෙස ලිවීම, එතරම් නිශ්චිත කුමයක් ලෙස ගත නොහැකි ය. එයට හේතුව සමහර විශාල සංඛ්‍යා එසේ එකතුවක් ලෙස ලිවීය හැකි ආකාරය සිතා ගැනීම අසීරු වීමයි. නිදසුනක් ලෙස, $3905_{\rm cm}$ යන්න දෙකේ කවර බලවලින් ලියන්නේ ද යන්න සිතා ගැනීම අසීරු විය හැකි ය. එමනිසා, ඕනෑ ම අවස්ථාවක දී යොදා ගත හැකි තවත් කුමයක් දැන් සලකා බලමු.

නිදසුනක් ලෙස, $22_{_{\{y\}_{a}}}$ දෙකේ පාදයෙන් ලිවීම සඳහා මුලින් ම කළ යුත්තේ 22 දෙකෙන් බෙදීමයි. එවිට ඉතිරි වන ගණන ද සටහන් කර ගත යුතු ය.

ඉන් පසු, 22 යන්න 2න් බෙදා ලැබෙන ලබ්ධිය වන 11 නැවත 2න් බෙදිය යුතු ය.

මෙසේ, ලබ්ධිය 2න් නැවත නැවත, ඉතිරිය ද දක්වමින්, බෙදිය යුතු ය. අවසානයේ දී ලබ්ධිය ලෙස 0 හා ශේෂය ලෙස 1 ලැබෙන තෙක් බෙදිය යුතු ය. සම්පූර්ණ බෙදීම පහත දැක්වේ.

මෙහි, කොටු කර දක්වා ඇති ඉතිරි අගයන්, අග සිට මුලට ලියා දැක්වූ විට අවශා කරන දෙකේ පාදයෙන් දැක්වෙන සංඛාාව ලැබේ. එනම්,

$$22_{exc} = 10110_{exc}$$

මෙසේ ලැබුණු දෙකේ පාදයේ සංඛ්‍යාව, ඉහත මුලින් සාකච්ඡා කළ 2හි බලවල එකතුවක් ලෙස ලිවීමෙන් සත්‍යාපනය කළ හැකි දැයි බලමු.

$$22 = 16 + 4 + 2 = 2^4 + 2^2 + 2^1 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

එනම් $22_{_{\mathrm{cym}}}=10110_{_{\mathrm{eqm}}}$ ලෙස ලිවිය හැකි බව පැහැදිලි ය. මෙයින් අවශා සතාාපනය සිදු වේ.

නිදසුන 1

පහත එක් එක් සංඛාහ දෙකේ පාදයෙන් ලියා දක්වන්න.

ii. 154 _{çocs}	2 154 2 77 2 38 2 19 2 9 2 4 2 2 2 1 0	0 1 0 1 1 1 0 0 0 1 1 154 _{ςωω} = 10011010 _{Θςω}
		,

2.1 අභාගාසය

පහත දැක්වෙන දශමය සංඛාහ (දහයේ පාදයේ සංඛාහ), ද්වීමය සංඛාහවලට (දෙකේ පාදයේ සංඛාහවලට) හරවන්න.

- **a.** 4
- **b.** 9
- **c.** 16
- **d.** 20
- e. 29

- **f.** 35
- **g.** 43
- **h.** 52
- **i.** 97
- **j.** 168

ඉහත 2.1 කොටසේ දී දශමය සංඛාා ද්විමය සංඛාා ලෙස දක්වන ලදි. මෙම කොටසේ දී එහි විලෝමය, එනම් ද්විමය සංඛාා දශමය සංඛාා ලෙස දක්වන ආකාරය සලකා බලමු. මෙය ඉතා පහසුවෙන් සිදු කළ හැකි ය. නිදසුනක් ඇසුරෙන් එය හදාරමු.

ඉහත 2.1 කොටසේ දී 13 යන දශමය සංඛාාව දෙකේ පාදයෙන් ලියූ විට $1101_{_{\mathrm{exm}}}$ ලැබිණි. මෙහි 1,1,0 හා 1 යන සංඛාාංකවලින් දැක්වෙන්නේ මොනවාදයි මතක් කර ගනිමු.

මේ අනුව, $1101_{_{\mathrm{scm}}}$ හි ඇති සියලු දෙකේ බලවල අගයන් එකතු කළ විට අවශා දශමය සංඛ්‍යාව ලැබේ. එනම්,

$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$

= $8 + 4 + 1 = 13$

ලෙස සුළු කළ විට අවශා දශමය සංඛ්යාව වන 13 ලැබේ.

නිදසුන 1

101100ූ දහයේ පාදයෙන් ලියා දක්වන්න.

මෙහි මුලින් ම දැක්වෙන සංඛාහංකයෙන් 2^5 දැක්වෙන බව මුලින් ම නිරීක්ෂණය කළ යුතු ය. එවිට, 5 සිට දර්ශකය එකින් එක අඩු කරමින්, 2හි බල ලියා, අදාළ සංගුණකයෙන් ගුණ කොට එකතු කිරීමෙන් අවශා සංඛාාව ලැබේ.

$$101100_{\text{exp}} = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$
$$= 2^5 + 2^3 + 2^2 = 32 + 8 + 4$$
$$= 44_{\text{exp}}$$

එමනිසා, 101100ූ දහයේ පාදයෙන් ලියූ විට ලැබෙන්නේ 44ූ යි.

සටහන: 44 සු යන්න නැවත ද්වීමය සංඛාහවකට පෙරළා, පිළිතුරේ නිවැරදි බව පරීක්ෂා කළ හැකි ය.

2.2 අභාගාසය

- 1. පහත දැක්වෙන ද්වීමය සංඛාහ දහයේ පාදයට (දශමය සංඛාහ බවට) හරවන්න.
- a. 101

- f. 100111_{©çm} g. 110111_{©çm} h. 111000_{©çm} i. 111110_{©çm} j. 110001_{©çm}

🛛 2.3 ද්විමය සංඛ්‍යා එකතු කිරීම

ද්වීමය සංඛාා ගණක රාමුවක නිරූපණය කිරීමේ දී එක් ගණක කුරක තිබිය හැකි උපරිම ගණක ගණන 1 බැවින් සංඛාා ගොඩනැගීමේ දී කිසියම් ගණක කුරක ගණක දෙකක් යොදනු වෙනුවට, ඊට වම් පස ඇති කුරට එක් ගණකයක් යෙදිය යුතු ය.

ද්වීමය සංඛතා දෙකක් එකතු කිරීම ගණක රාමු දෙකක් ඇසුරෙන් පැහැදිලි කර ගනිමු.

 $101_{_{
m e,m}} + 10_{_{
m e,m}}$ සුළු කරමු.

A හා B ගණක රාමු දෙකේ සංඛාා එකතුවෙන් ලැබෙන සංඛාාව, ගණක රාමුවක දක්වා එය C මගින් නිරූපණය කරමු. ගණක රාමු දෙකේ

 2^0 කුරුවල ඇති ගණකවල එකතුව 1 යි.

 2^{1} කුරුවල ඇති ගණකවල එකතුව 1 යි.

 2^2 කුරුවල ඇති ගණකවල එකතුව 1 යි.

එබැවින්
$$101_{_{\mathrm{exm}}}+10_{_{\mathrm{exm}}}=111_{_{\mathrm{exm}}}$$

A හි 2^0 කුරේ ගණකය හා B හි 2^0 කුරේ ගණකය C හි 2^0 කුරට දැමිය නොහැකි ය. ඊට හේතුව එහි ගණක 2ක් තිබිය නොහැකි වීමයි. ඒ වෙනුවට, ඊට වම් පස කුරට ගණක 1ක් දැමිය යුතුයි. එය C ගණක රාමුවේ 2^1 කුරෙහි දැක්වේ.

එබැවින්
$$101_{\text{ecm}} + 1_{\text{ecm}} = 110_{\text{ecm}}$$
 වේ.

එය පහළට එකතු කළ විට මෙය තවදුරටත් පැහැදිලි වේ.

දකුණත් පස සිට වමත් පසට එකතු කිරීම; මුලින් ම 2^0 ඒවා $1+2^0$ ඒවා $1=2^1$ ඒවා 1 සහ 2^0 ඒවා 0 ඊළඟට 2^1 ඒවා $1+2^1$ ඒවා $0=2^1$ ඒවා 1. අවසන් වශයෙන් 2^2 ඒවා $1+2^2$ ඒවා $0=2^2$ ඒවා 1.

නිදසුන 1

අගය සොයන්න.

<mark>සටහන:</mark> දෙකේ පාදයේ සංඛහා එකතු කිරීමේ දී

$$\begin{array}{l} 1_{\text{efm}} + 0_{\text{efm}} = 1_{\text{efm}} \\ 1_{\text{efm}} + 1_{\text{efm}} = 10_{\text{efm}} \\ 1_{\text{efm}} + 1_{\text{efm}} + 1_{\text{efm}} = 11_{\text{efm}} \end{array}$$

ද වන බව නිරීක්ෂණය කරන්න.

2.3 අභාගාසය

1. අගය සොයන්න.

g.
$$11_{\text{ecm}} + 111_{\text{ecm}} + 1111_{\text{ecm}}$$
 h. $11110_{\text{ecm}} + 1110_{\text{ecm}} + 1110_{\text{ecm}}$

2. පහත දැක්වෙන එක් එක් එකතු කිරීම්වල හිස් කොටු තුළට සුදුසු ඉලක්කම යොදන්න.

d.
$$\begin{array}{c}
1 \ 1 \ 1 \ 0 \\
+ \ 1 \ \Box \Box_{\text{ecm}} \\
\hline
10 \ \Box 0 \ 1_{\text{ecm}}
\end{array}$$

f.
$$\begin{array}{c} 1 & 1 & \square & 1 \\ & & 1 & 1 & \square & 1 \\ & & +1 & 1 & 1 & 0 \\ \hline & & & \boxed{1 & \square & \square & 1} \\ & & & \bigcirc_{\text{e} \in \mathbb{R}} \end{array}$$

2.4 ද්වීමය සංඛාන අඩු කිරීම

ද්වීමය සංඛාා එකතු කිරීමේ දී දකුණත් පස ස්ථානයේ එකතුව 2ක් වූ සැම විට ම ඒ වෙනුවට ඊට වමෙන් පිහිටි ස්ථානය එකක් වූ බව අපි දනිමු.

$$101_{_{
m exm}} + 1_{_{
m exm}} + 1_{_{
m exm}}$$
 (දකුණත් පස තීරුව $1_{_{
m exm}} + 1_{_{
m exm}} = 10_{_{
m exm}}$)

දැන් $110_{_{\rm e/m}}-1_{_{\rm e/m}}$ හි අගය සොයමු. ඉහත එකතු කිරීම අනුව පිළිතුර විය යුතු වන්නේ $101_{_{\rm e/m}}$. එම පිළිතුර ලැබෙන ආකාරය පැහැදිලි කර ගනිමු.

දකුණත් පස මුල් ම තීරුවේ 0න් 1ක් අඩු කළ නොහැකි නිසා යාබද වමත් පස 2^1 තීරුවෙන් 1ක් ගනිමු. එවිට එහි අගය 2^0 තීරුවේ දී 2ක් වේ. එවිට 2න් 1ක් අඩු කළ විට 1 ලැබේ. 2^1 තීරුවේ දැන් ඇත්තේ 1 වෙනුවට 0කි.

එබැවින්
$$110_{\text{ecm}} - 1_{\text{ecm}} = 101_{\text{ecm}}$$
 වේ.

නිදසුන 1

පිළිතුරේ නිවැරදිතාව $110_{
m em} + 111_{
m em}$ මගින් බලමු.

$$110_{\mathrm{exm}} + 111_{\mathrm{exm}} = \underline{1101}_{\mathrm{exm}}$$

සටහන: අඩු කිරීමෙන් පසු ලැබෙන පිළිතුරේ නිවැරදි බව, එකතු කිරීම මගින් පරීක්ෂා කිරීමට හුරු වීම ඉතා වැදගත් වේ.

2.4 අභානාසය

1. අගය සොයන්න.

e.
$$111_{\text{exm}} - 11_{\text{exm}}$$
 f. $110_{\text{exm}} - 11_{\text{exm}}$ **g.** $1100_{\text{exm}} - 111_{\text{exm}}$ **h.**

$$\begin{array}{lll} \textbf{j.} & 100011 & \textbf{k.} & 11000 & -1111 & \textbf{l.} & 101010 & -10101 & -10001 &$$

(2.5 ද්විමය සංඛ්යා භාවිතය

ද්වීමය සංඛ ${f x}$ ා පද්ධතියේ මූලික සංඛ ${f x}$ ාංක වන්නේ 0 හා 1 වේ. 0 හා 1න් දැක්වෙන අවස්ථා දෙක විදුලිය හා සම්බන්ධ කර ගනිමින් විදුයුත් පරිපථයකින් ධාරාව ලැබීම 1 ද නොලැබීම 0 ද ලෙස සලකා එය ද්වීමය සංඛාා ලෙස ආදේශ කර ගෙන ඩිජිටල් උපකරණ සාදා ඇත.

ඒ අනුව igotimes සංකේතය විදුලි ධාරාවක් ලැබීම ද igotimes නොලැබීම ද වූ විට igotimes igotimes මගින් නිරූපණය වන්නේ $1001_{
m erg}$ යි. මෙම සංකල්පය යොදා ගනිමින් ගණකය හා පරිගණකය තුළ සංඛාහ පිළිබඳ දත්ත ගබඩා කිරීම හා ගණනය කිරීම සිදු කරනු ලැබේ. එසේම, දෙකේ පාදයේ සංඛන පද්ධතිය ගොඩනැඟු ආකාරයට ම වෙනත් ඕනෑ ම පාදයක් යටතේ සංඛන පද්ධතියක් ගොඩනැඟිය හැකි ය. එසේ වෙනත් පාදයක් යටතේ ගොඩනඟන ලද සංඛාා පද්ධති ඇසුරෙන් ද දත්ත ගබඩා කිරීම වැනි කාර්යයන් සඳහා යොදා ගැනේ.

සටහන: හතරේ පාදයෙන් සංඛාා පද්ධතියක් ගොඩනැඟුව හොත් එහි භාවිත කළ හැකි මූලික සංඛාහාංක වන්නේ $0,\,1,\,2$ හා 3 පමණි.

ඒ අනුව $10_{
m mag}$ වන්නේ $4_{
m mag}$ යි. පහේ පාදයෙන් නම් මූලික සංඛාහාංක $0,\,1,\,2,\,3$ හා 4 වන අතර $10_{
m pm}$ යනු $5_{
m pm}$ යි.

මිශු අභාගසය

1. අගය සොයන්න.

a.
$$1101_{\text{ex}} + 111_{\text{ex}} - 1011_{\text{ex}}$$

c.
$$110011_{\text{exm}} - 1100_{\text{exm}} - 110_{\text{exm}}$$

- **2.** $1_{_{\mathrm{e}(m)}},\,11_{_{\mathrm{e}(m)}},\,1111_{_{\mathrm{e}(m)}},\,11111_{_{\mathrm{e}(m)}},\,111111_{_{\mathrm{e}(m)}}$ යන එක් එක් සංඛ්‍යාවට 1කින් වැඩි ඊළඟ සංඛ්‍යා වෙන වෙන ම ලියන්න.
- ${f 3.}$ දහයේ පාදයේ ${f 4}^2$ හි අගය දෙකේ පාදයේ සංඛාාවක් ලෙස දක්වන්න.
- **4. i.** $49_{_{\xi u u}} 32_{_{\xi u u}}$ යන්න සුළු කර පිළිතුර දෙකේ පාදයට හරවන්න.
 - $\mathbf{ii.}$ $\mathbf{49}_{_{(y)_{c}}}$ හා $\mathbf{32}_{_{(y)_{c}}}$ යන්න මුලින් ම දෙකේ පාදයට හරවා ඉන්පසු අඩු කර, $\mathbf{(i)}$ කොටසේ පිළිතුර ම ලැබේ දැයි පරීක්ෂා කරන්න.

සාරාංශය

- ullet දෙකේ පාදයේ සංඛාහ පද්ධතියේ මූලික ඉලක්කම් 0 හා 1 වේ.
- ullet ද්වීමය සංඛාා පද්ධතියේ ස්ථානීය අගයයන් $2^0, 2^1, \ 2^2, 2^3, \ 2^4, \ 2^5$ හා 2^6 ...ආදි වේ.

3

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- 'න්' යෙදුම ඇතුළත් භාග සහිත පුකාශන සුළු කිරීමට
- වරහන් ඇතුළත් භාග සහිත පුකාශන සුළු කිරීමට
- BODMAS කුමය හඳුනාගැනීමට හා භාග ආශුිත ගැටලු විසඳීමට

හැකියාව ලැබෙනු ඇත.

භාග

මීට ඉහත ශ්රණීවල දී භාග පිළිබඳව අප උගෙන ඇති කරුණු සිහිපත් කර ගනිමු. පහත දැක්වෙන වෘත්තය සමාන කොටස් 5කට බෙදා, එයින් කොටස් තුනක් අඳුරු කොට දක්වා ඇත.

මෙම අඳුරු කොට ඇති පෙදෙස මුළු පෙදෙසෙන් $\frac{3}{5}$ ක් ලෙස දැක්විය හැකි ය.

වෘත්තයේ වර්ගඵලය ඇසුරෙන් ද මෙය පුකාශ කළ හැකි ය. එනම්, අඳුරු කොට ඇති වර්ගඵලය, රූපයේ මුළු වර්ගඵලයෙන් $\frac{3}{5}$ කි. මුළු වර්ගඵලය ඒකක එකක් ලෙස ගත හොත්, අඳුරු කොට ඇති වර්ගඵලය ඒකක $\frac{3}{5}$ ලෙස ද දැක්විය හැකි ය.

ඒකකයක් සමාන කොටස්වලට බෙදූ විට ඉන් කොටසක් හෝ කොටස් කිහිපයක් හෝ හාගයක් ලෙස දැක්විය හැකි ය. සමූහයකින් යම් කොටසක් ද භාගයක් ලෙස දැක්විය හැකි ය. නිදසුනක් ලෙස, පිරිමි ළමයි තුන් දෙනෙකු හා ගැහැනු ළමයි දෙදෙනකු සිටින පස් දෙනකුගෙන් යුත් කණ්ඩායමක් සැලකූ විට, පිරිමි ළමයි ගණන එම කණ්ඩායමෙන් $\frac{3}{5}$ ක් ලෙස දැක්විය හැකි ය. මෙහි දී, මුළු කණ්ඩායම ම එක් ඒකකයක් ලෙස සැලකුව හොත්, පිරිමි ළමයි $\frac{3}{5}$ ක් ලෙස දැක්විය හැකි ය.

බින්දුවත් එකත් අතර පවතින $\frac{3}{4}$, $\frac{1}{2}$, $\frac{2}{3}$ වැනි භාග, තතා භාග ලෙස හැඳින්වෙන බව ඔබ මීට පෙර උගෙන ඇත.

මිශු සංඛාා හා විෂම භාග පිළිබඳ මතකය ද අවදි කර ගනිමු. පහත දැක්වෙන රූපයේ ඇති සමාන වෘත්ත දෙකෙන් එක් රූපයක් සම්පූර්ණයෙනුත් අනෙකෙන් කොටස් තුනකුත් (සමාන කොටස්වලට බෙදා) අඳුරු කොට ඇත.

එක් වෘත්තයක් එක් ඒකකයක් ලෙස සැලකුව හොත් අඳුරු කොට ඇති භාගය වන්නේ $1+\frac{3}{8}$ ය. මෙය කෙටියෙන් $1\,\frac{3}{8}$ ලෙස ලියා දැක්වේ. එය මිශු සංඛාාවක් ලෙස දැක්වීමකි. ("මිශු භාග" යන්නට "මිශු සංඛාා" යන්න භාවිත වේ). මෙය $\frac{11}{8}$ ලෙස ද දැක්වීය හැකි ය. එය විෂම භාගයක් ලෙස දැක්වීමකි. මෙම මිශු සංඛාා හා විෂම භාගයන දෙක ම දක්වා ඇත්තේ එක් වෘත්තයක් ඒකකයක් ලෙස ගැනීමෙන් බව නැවත මතක් කර ගැනීම වැදගත් ය.

ඒ අනුව නිදසුන් ලෙස,

 $1\frac{1}{2}$, $3\frac{2}{5}$, $2\frac{3}{7}$ යනු මිශු සංඛාෘ කිහිපයකි.

 $\frac{3}{2}$, $\frac{8}{5}$, $\frac{11}{4}$ යනු විෂම භාග කිහිපයකි. $\frac{3}{3}$, $\frac{5}{5}$, $\frac{1}{1}$ වැනි එකට සමාන වන භාග ද විෂම භාග ලෙස සැලකේ.

මිශු සංඛ්‍යා විෂම භාග ලෙස නිරූපණය කිරීමටත්, විෂම භාග මිශු සංඛ්‍යා ලෙස නිරූපණය කිරීමටත් ඔබ උගෙන ඇත.

ඒ අනුව,

i.
$$1\frac{1}{2} = \frac{3}{2}$$
 ę

$$ii. \frac{5}{3} = 1 \frac{2}{3}$$
 ද වේ.

භාගයක ලවයත්, හරයත් එක ම සංඛ්‍යාවකින් (ශූනෳ නොවන) ගුණ කිරීමෙන් හෝ බේදීමෙන් පළමුවන භාගයට තුලෳ වූ භාගයක් ලබා ගත හැකි වේ. නිදසුන් ලෙස,

$$\frac{2}{5} = \frac{2 \times 2}{5 \times 2} = \frac{4}{10}$$

$$\frac{8}{12} = \frac{8 \div 4}{12 \div 4} = \frac{2}{3}$$
 දැක්විය හැකි ය.

භාග එකතු කිරීමේ දී සහ අඩු කිරීමේ දී හරයන් සමාන වන විට ඒවා සුළු කිරීම ඉතා පහසු ය. නිදසුන් ලෙස,

i.
$$\frac{1}{5} + \frac{4}{5} - \frac{2}{5}$$

$$\frac{1}{5} + \frac{4}{5} - \frac{2}{5} = \frac{1+4-2}{5}$$
$$= \frac{3}{5}$$

භාගවල හර අසමාන වන විට පොදු හරයක් ලැබෙන පරිදි තුලා භාග ලියනු ලැබේ. නිදසුනක් ලෙස,

ii.
$$\frac{1}{4} + \frac{2}{3} - \frac{5}{6}$$

$$\frac{1}{4} + \frac{2}{3} - \frac{5}{6} = \frac{1 \times 3}{4 \times 3} + \frac{2 \times 4}{3 \times 4} - \frac{5 \times 2}{6 \times 2}$$

$$= \frac{3}{12} + \frac{8}{12} - \frac{10}{12}$$

$$= \frac{3 + 8 - 10}{12}$$

$$= \frac{1}{12}$$

• භාග දෙකක් ගුණ කිරීමේ දී ලැබෙන භාගයේ ලවය, භාග දෙකේ ලවයන්ගේ ගුණිතය වේ. හරය; භාග දෙකේ හරයන්ගේ ගුණිතය වේ.

$$\frac{2}{5} \times \frac{1}{3}$$

$$\frac{2}{5} \times \frac{1}{3} = \frac{2 \times 1}{5 \times 3}$$
$$= \frac{2}{15}$$

$$1\,\frac{1}{3}\,\times 1\,\frac{3}{4}$$

$$1\,rac{1}{3}\, imes 1\,rac{3}{4}\,=\,rac{4}{3} imesrac{7}{4}_{_1}$$
 (මිශු සංඛනා, විෂම භාග බවට පත් කිරීම) $=rac{7}{3}$ $=2\,rac{1}{3}$

• සංඛාා දෙකක ගුණිතය 1 වේ නම්, ඉන් එක් සංඛාාවක් අනෙක් සංඛාාවේ පරස්පරය ලෙස හැඳින්වේ.

ඒ අනුව,

$$2 \times \frac{1}{2} = 1$$
 බැවින්

2 හි පරස්පරය $\frac{1}{2}$ ද $\frac{1}{2}$ හි පරස්පරය 2 ද වේ.

භාගයක ලවය හා හරය පිළිවෙළින් හරය හා ලවය ලෙස මාරු කර ලිවීමෙන් එම සංඛාාවේ පරස්පරය ලබාගත හැකි බව ඔබ උගෙන ඇත.

එනම්, $\frac{a}{b}$ හි පරස්පරය $\frac{b}{a}$ වේ (එසේ ම, $\frac{b}{a}$ හි පරස්පරය $\frac{a}{b}$ වේ).

• සංඛ්‍යාවක් තවත් සංඛ්‍යාවකින් බේදීම යනු පළමුවන සංඛ්‍යාව දෙවන සංඛ්‍යාවේ පරස්පරයෙන් ගුණ කිරීම බව 8 ශ්‍රේණීයේ දී ඔබ උගෙන ඇත. එය නිදසුන් කිහිපයකින් පුනරීක්ෂණය කර ගනිමු.

නිදසුන 3
$$\frac{4}{3} \div 2$$
$$\frac{4}{3} \div 2 = \frac{24}{3} \times \frac{1}{2}$$

$$=\frac{2}{3}$$

$$1\frac{2}{7} \div 1\frac{1}{2}$$

$$1\frac{2}{7} \div 1\frac{1}{2} = \frac{9}{7} \div \frac{3}{2}$$

$$= \frac{^{3}\cancel{9}}{7} \times \frac{2}{\cancel{9}}_{1}$$

$$= \frac{6}{7}$$

භාග පිළිබඳ උගත් කරුණු තවදුරටත් මතක් කර ගැනීම සඳහා පහත සඳහන් පුනරීක්ෂණ අභාවසයේ යෙදෙන්න.

(පුනරීක්ෂණ අභාගාසය

- 1. පහත සඳහන් එක් එක් භාගය සඳහා තුලා භාග දෙක බැගින් ලියන්න.

- ii. $\frac{4}{5}$ iii. $\frac{4}{8}$ iv. $\frac{16}{24}$
- 2. පහත සඳහන් එක් එක් මිශු සංඛ්යාව, විෂම භාගයක් ලෙස දක්වන්න.

- i. $1\frac{1}{2}$ ii. $2\frac{3}{4}$ iii. $3\frac{2}{5}$ iv. $5\frac{7}{10}$
- 3. පහත සඳහන් එක් එක් විෂම භාගය, මිශු සංඛ්යාවක් ලෙස දක්වන්න.
- i. $\frac{7}{3}$ ii. $\frac{19}{4}$ iii. $\frac{43}{4}$ iv. $\frac{36}{7}$

4. අගය සොයන්න.

i.
$$\frac{3}{7} + \frac{2}{7}$$

ii.
$$\frac{5}{6} - \frac{2}{3}$$

i.
$$\frac{3}{7} + \frac{2}{7}$$
 ii. $\frac{5}{6} - \frac{2}{3}$ iii. $\frac{7}{12} + \frac{3}{4} - \frac{2}{3}$

iv.
$$1\frac{1}{2} + 2\frac{1}{4}$$

v.
$$3\frac{5}{6} - 1\frac{2}{3}$$

iv.
$$1\frac{1}{2} + 2\frac{1}{4}$$
 v. $3\frac{5}{6} - 1\frac{2}{3}$ vi. $1\frac{1}{2} + 2\frac{1}{4} - 1\frac{2}{3}$

5. සුළු කරන්න.

i.
$$\frac{1}{2} \times \frac{4}{7}$$

ii.
$$\frac{2}{3} \times \frac{5}{8} \times \frac{3}{10}$$

iii.
$$1\frac{3}{5} \times 2\frac{1}{2}$$

i.
$$\frac{1}{2} \times \frac{4}{7}$$
 ii. $\frac{2}{3} \times \frac{5}{8} \times \frac{3}{10}$ iii. $1\frac{3}{5} \times 2\frac{1}{2}$ iv. $3\frac{3}{10} \times 2\frac{1}{3} \times 4\frac{2}{7}$

- 6. පහත දැක්වෙන එක් එක් සංඛාාවේ පරස්පරය ලියන්න.

- i. $\frac{1}{3}$ ii. $\frac{1}{7}$ iii. $\frac{3}{8}$ iv. 5 v. $2\frac{3}{5}$
- 7. සුළු කරන්න.

i.
$$\frac{6}{7} \div 3$$

ii.
$$8 \div \frac{4}{5}$$

iii.
$$\frac{9}{28} \div \frac{3}{7}$$

iv.
$$5\frac{1}{5} \div \frac{6}{7}$$

i.
$$\frac{6}{7} \div 3$$
 ii. $8 \div \frac{4}{5}$ **iii.** $\frac{9}{28} \div \frac{3}{7}$ **iv.** $5\frac{1}{5} \div \frac{6}{7}$ **v.** $1\frac{1}{2} \div 2\frac{1}{4}$

3.1 'න්' යෙදුම ඇතුළත් භාග සහිත පුකාශන සුළු කිරීම

රුපියල් 100න් $\frac{1}{2}$ යනු රුපියල් 50 බව අපි දනිමු.

මෙය රුපියල් 100න් අඩක් බවත්, එය රු $100,\,2$ න් බෙදීමෙන් ලබා ගත හැකි බවත් දනිමු.

එය රුපියල් $100 \div 2$ ලෙස ලිවිය හැකි වේ.

එනම්, රුපියල් $100 imesrac{1}{2}$ වේ. (පරස්පරයෙන් ගුණ කිරීම)

ඒ අනුව
$$100$$
න් $\frac{1}{2} = 100$ 0 $\times \frac{1}{2} = 50$

ඉහත කරුණු අනුව 100න් $\frac{1}{2} = 100 imes \frac{1}{2}$ ලෙස ලිවිය හැකි වේ.

මේ ආකාරයට කිලෝග්රෑම් 20 න් $\frac{1}{5}$ ක් කොපමණ දැයි විමසමු.

මෙම පුමාණය, එනම් කිලෝග්රෑම් 20 සමාන කොටස් 5 ට බෙදා ඉන් කොටසක් වේ.

එය $20 \div 5$ ලෙස ලිවිය හැකි වේ.

එනම්, $20 imesrac{1}{5}$ වේ. (පරස්පරයෙන් ගුණ කිරීම)

ඒ අනුව,
$$20 \div 5 = {\stackrel{4}{20}} \times \frac{1}{5} = 4$$
 වේ.

ඉහත කරුණු අනුව 20න් $\frac{1}{5} = 20 imes \frac{1}{5}$ ලෙස ලිවිය හැකි ය.

ඉහත අවස්ථා අනුව පෙනීයන්නේ 'න්' යෙදුම වෙනුවට 'ගුණිතය' යන ගණිත කර්මය භාවිත කළ හැකි බවයි.

රුපියල්
$$100$$
න් $\frac{1}{2}$ = රුපියල් $100 \times \frac{1}{2}$

කිලෝග්රෑම්
$$20$$
න් $\frac{1}{5}$ = කිලෝග්රෑම් $20 imes \frac{1}{5}$

දැන් අපි, $\frac{1}{3}$ න් $\frac{1}{2}$ යනු කෙතරම් පුමාණයක් දැයි විමසමු.

මෙය පහත ආකාරයට රූප මගින් දක්වමු.

ඒකකයක් සමාන කොටස් තුනකට බෙදූ විට ඉන් එක් කොටසක් $\frac{1}{3}$ වේ.

මෙම පුමාණය ඒකකය ලෙස ගත් විට ඉන් $\frac{1}{3}$ ක පුමාණය පහත ϵ_{7} ක්වේ.

මෙම අඳුරු කළ කොටසින් $rac{1}{2}$ ක් වෙන් කර දක්වමු.

 $\frac{1}{2}$

මේ අනුව,

රුපයට අනුව $\frac{1}{3}$ න් $\frac{1}{2}$ යනු $\frac{1}{6}$ බව පැහැදිලි වේ.

වඩාත් නිවැරදිව කිවහොත්, යම් ඒකකයකින් $\frac{1}{3}$ ගෙන, එම $\frac{1}{3}$ න් $\frac{1}{2}$ ක් ගත හොත් ලැබෙන කොටස, මුල් ඒකකයෙන් $\frac{1}{6}$ කට සමාන වේ.

එහෙත්, භාග ගුණ කිරීම පිළිබඳ ව අප උගෙන ඇති පරිදි, $\frac{1}{3} imes \frac{1}{2} = \frac{1}{6}$ වේ. මේ අනුව $\frac{1}{3}$ න් $\frac{1}{2} = \frac{1}{3} imes \frac{1}{2}$ ලෙස පුකාශ කළ හැකි ය.

තවත් නිදසුනක් ගෙන මෙය තහවුරු කර ගනිමු. ඒ සඳහා $\frac{4}{5}$ න් $\frac{1}{3}$ සොයමු.

මේ සඳහා ඒකකයක් ලෙස පහත දැක්වෙන ඍජුකෝණාසුකාර පෙදෙස සලකමු.

4

 $\frac{4}{5}$

 $\frac{4}{5}$ න් $\frac{1}{3}$

රූපයට අනුව $\frac{4}{5}$ න් $\frac{1}{3}$ යනු $\frac{4}{15}$ බව පැහැදිලි වේ.

තව ද
$$\frac{4}{5} \times \frac{1}{3} = \frac{4}{15}$$
 වේ.

මේ අනුව
$$\frac{4}{5}$$
 න් $\frac{1}{3} = \frac{4}{5} \times \frac{1}{3}$ ලෙස ලිවිය හැකි වේ.

 $\frac{1}{3}$ න් $\frac{1}{2}$, $\frac{4}{5}$ න් $\frac{1}{3}$ යන්නෙහි 'න්' යෙදුම මගින් පුකාශ වන දේ වෙනුවට ගුණ කිරීමේ ගණිත කර්මය යොදා අගය ලබා ගත හැකි බව පැහැදිලි වේ.

නිදසුන 1

$$\frac{2}{3}$$
 න් $\frac{1}{2}$ හි අගය සොයන්න.

$$\frac{2}{3}$$
 න් $\frac{1}{2} = \frac{1}{3} \times \frac{1}{2}$ ('න්' වෙනුවට \times ගයදීම) $= \frac{1}{3}$

නිදසුන 2

$$1\frac{4}{5}$$
 න් $\frac{2}{3}$ ක් කොපමණ ද?

$$1\frac{4}{5}$$
 න් $\frac{2}{3} = \frac{3}{5} \times \frac{2}{3}$

$$= \frac{6}{5}$$

$$= 1\frac{1}{5}$$

නිදසුන 3

මීටර 500 න් $\frac{3}{5}$ ක් මීටර කොපමණ ද?

$$500 \text{ sd } \frac{3}{5} = \frac{100}{500} \times \frac{3}{5}_{1}$$

$$= 300 \text{ m}$$

3.1 අභනාසය

1. සුළු කරන්න.

$$\mathbf{i.} \frac{4}{5} \mid \frac{2}{3}$$

ii.
$$\frac{1}{3}$$
 න් $\frac{6}{7}$

iii.
$$\frac{5}{8}$$
 න් $\frac{2}{5}$

i.
$$\frac{4}{5}$$
 $rac{2}{3}$ **ii.** $\frac{1}{3}$ $rac{6}{7}$ **iii.** $\frac{5}{8}$ $rac{2}{5}$ **iv.** $\frac{9}{11}$ $rac{5}{6}$

$$\mathbf{v.} \ 1 \frac{3}{4}$$
 න් $\frac{2}{7}$

vi.
$$2\frac{5}{8}$$
 න් $1\frac{1}{3}$

v.
$$1\frac{3}{4}$$
 $\frac{2}{7}$ **vi.** $2\frac{5}{8}$ $\frac{1}{3}$ **vii.** $5\frac{1}{2}$ $\frac{3}{11}$ **viii.** $1\frac{4}{5}$ $\frac{5}{9}$

viii.
$$1\frac{4}{5}$$
 න් $\frac{5}{9}$

- 2. අගය සොයන්න.
 - ${f i.}$ රුපියල් ${f 64}$ න් ${f 3\over 4}$ ක් රුපියල් කොපමණ ද?
 - ii.400g න් $\frac{2}{5}$ ක් යනු ග්රෑම් කොපමණ ද?
- iii. 6 ha න් $\frac{1}{3}$ ක් යනු හෙක්ටයාර කීය ද?
- iv. 1 km න් $\frac{1}{8}$ ක් යනු මීටර කොපමණ ද?
- 3. ඉඩමකින් $\frac{3}{5}$ ක් අයිති අයකු ඉන් $\frac{1}{3}$ ක් තම දුවට දුන් විට, දුවට ලැබුණු ඉඩම් කොටස මුළු ඉඩමෙන් කවර භාගයක් ද?
- **4.** නිමල්ගේ මාසික ආදායම රුපියල් 40~000ක් වේ. ඔහු එම මුදලින් $\frac{1}{8}$ ක් ගමන් වියදම් සඳහා වැය කරයි. එම මුදල කොපමණ ද?

ig(3.2~වරහන් සහිත පුකාශන ${ m BODMAS}$ අනුපිළිවෙළ අනුව සුළු කිරීම

සංඛාහ සහිත පුකාශනයක (හෝ වීජිය පුකාශනයක), එකතු කිරීම, අඩු කිරීම, බෙදීම, ගුණ කිරීම, බලයට නැංවීම ආදි ගණිත කර්ම ගණනාවක් තිබිය හැකි ය. එවැනි අවස්ථාවක දී ගණිත කර්ම සිදු කරන ආකාරය පිළිබඳ පොදු සම්මුතියකුත්, එම සම්මුතිය විදහා දැක්වෙන නීති මාලාවකුත් තිබීම අවශා ය. මීට පෙර එවැනි නීති පිළිබඳ ව තරමක් දුරට ඔබ උගෙන ඇත. BODMAS යන සංකේත නාමයෙන් ලියා දැක්වෙන නීති මාලාව පිළිබඳ ව දැන් වීමසා බලමු.

BODMAS සංකේත නාමයේ ඇති අකුරුවලින් දැක්වෙන්නේ පිළිවෙළින්, වරහන් (brackets), න්/බලය (of/order), බෙදීම (division), ගුණ කිරීම (multiplication), එකතු කිරීම (addition) හා අඩු කිරීම (subtraction) යන්නයි. පුකාශන සුළු කිරීමේ දී මෙම අකුරුවලින් දැක්වෙන අනුපිළිවෙළට මූලිකත්වය දෙමින් ගණිත කර්ම සිදු කොට සුළු කිරීම සිදු කළ යුතු නමුත්, සමහර ගණිත කර්ම සඳහා මූලිකත්වය සමාන වේ; ගුණ කිරීමට හා බෙදීමට සමාන මූලිකත්වය ඇති අතර එකතු කිරීමට හා අඩු කිරීමට ද සමාන මූලිකත්ව ඇත. මේ අනුව, පහත දැක්වෙන අනුපිළිවෙළට පුකාශන සුළු කළ යුතු ය.

- 1. පළමුව, වරහන් සහිත පුකාශන ඇති නම් ඒවා සුළු කළ යුතු ය.
- 2. දෙවනුව, 'න්' ගණිත කර්මය හෝ බල, මූල (එනම් දර්ශක සහිත පුකාශන) ඇති නම් එය සුළු කළ යුතු ය.
- * බල සහිත පුකාශන සුළු කිරීම විෂය නිර්දේශයට අයත් නොවේ.
- 3. තුන්වනුව, බෙදීම හා ගුණ කිරීම සිදු කළ යුතු ය. මෙහි දී බෙදීමට හා ගුණ කිරීමට සමාන මූලිකත්ව ඇති අතර එම ගණිත කර්ම දෙක ම ඇත් නම් මූලිකත්වය ලැබෙන්නේ වමේ සිට දකුණට සුළු කරගෙන යෑමේ දී මුලින් හමු වන ගණිත කර්ම සඳහා ය.
- 4. සිව්වනුව, එකතු කිරීම හා අඩු කිරීම සිදු කළ යුතු ය. මෙහි දී මෙම ගණිත කර්ම දෙකට ම සමාන මූලිකත්ව ඇති අතර ඒ දෙකට ම මූලිකත්වය ලැබෙන්නේ, ඉහත

3හි පරිදි ම, වමේ සිට දකුණට සුළු කරගෙන යෑමේ දී මුලින් හමුවන ගණිත කර්ම සඳහා ය.

මෙම BODMAS නීති මාලාව භාග සහිත පුකාශන සුළු කිරීම සඳහා ද යොදා ගත හැකි ය. භාග සහිත පුකාශනවල 'න්' යොදා ගන්නා අවස්ථා ද ඇත. නිදසුනක් ලෙස,

$$\frac{6}{25}$$
 න් $\frac{5}{12}$

දැක්විය හැකි ය. එම පුකාශයෙන් අදහස් වන්නේ

$$\frac{6}{25} \times \frac{5}{12}$$

යන්නයි. තරමක් සංකීර්ණ පුකාශනයක් වන $\frac{2}{3} \div \frac{6}{25}$ න් $\frac{5}{12} \times \frac{1}{2}$ යන්න සුළු කළ හැකි ආකාරය පිළිබඳ පොදු එකඟතාවක් අවශා ය. එහි දී, 'න්' යන්නට \div හා \times ට වඩා වැඩි මූලිකත්වයක් දෙනු ලැබේ.

සටහන: $\frac{6}{25}$ න් $\frac{5}{12}$ " යන්න ඉංගීසි බසින් ලියනු ලබන්නේ " $\frac{5}{12}$ of $\frac{6}{25}$ " ලෙස ය. "බලයට නැංවීම" හා 'න්' යන ගණිත කර්මවලට සමාන මූලිකත්වයක් ඇති නිසා, BODMASහි ඇති O අකුර මගින් "of " හා "Order "යන ගණිත කර්ම දෙක ම දැක්වෙතැයි බොහෝ විට සැලකේ. නමුත් මෙම විෂය නිර්දේශය තුළ O අකුර මගින් "of " යන්න පමණක් භාවිත වේ.

 $\frac{1}{4} + \frac{5}{6} imes \frac{1}{2} \div \frac{3}{2}$ න් $\frac{4}{3}$ යන භාග සහිත පුකාශනය සුළු කිරීම සඳහා BODMAS නීති මාලාව යොදාගන්නා ආකාරය විමසා බලමු.

$$\frac{1}{4} + \frac{5}{6} \times \frac{1}{2} \div \frac{3}{2}$$
 න් $\frac{4}{3} = \frac{1}{4} + \frac{5}{6} \times \frac{1}{2} \div \left(\frac{3}{2} \times \frac{4}{3}\right)$ (මුලින් සිදු කළ යුතු 'න්' සඳහා \times යොදා එය මුලින් සිදු කළ යුතු බව දැක්වීමට වරහන් යෙදීමෙන්)
$$= \frac{1}{4} + \frac{5}{6} \times \frac{1}{2} \div 2$$

$$= \frac{1}{4} + \left(\frac{5}{6} \times \frac{1}{2}\right) \div 2$$
 (ඊළඟට සිදු කළ යුතු ගණින කර්මය සඳහා වරහන් යෙදීමෙන්)
$$= \frac{1}{4} + \frac{5}{12} \div 2$$

$$= \frac{1}{4} + \frac{5}{12} \times \frac{1}{2}$$
 (දෙකෙන් බෙදීම වෙනුවට $\frac{1}{2}$ න් ගුණ කිරීමෙන්)
$$= \frac{1}{4} + \left(\frac{5}{12} \times \frac{1}{2}\right)$$
 (මුලින් සිදු කළ යුතු ගණින කර්මය දැක්වීමට වරහන් යෙදීමෙන්)

$$=rac{1}{4}+rac{5}{24}$$
 $=rac{6}{24}+rac{5}{24}$ (භාග දෙක ම පොදු හරයක් සහිතව ලිවීමෙන්) $=rac{11}{24}$

සටහන: ඇත්ත වශයෙන්ම, පුකාශනයක වරහන් යොදා ගණිත කර්ම සිදු කළ යුතු ආකාරය පහසුවෙන් දැක්විය හැකි ය.

$$\frac{5}{4} \times \frac{3}{4} - \frac{1}{5}$$
 $\implies \frac{1}{3} \div \frac{2}{3} \div \frac{8}{9}$

යන්න BODMAS නීති මාලාව අනුව සිදු කළ යුතු ආකාරය මෙසේ වරහන් සහිතව දැක්විය හැකි ය.

$$\left(\frac{5}{4} \times \frac{3}{4}\right) - \left(\left(\left(\frac{1}{5} \text{ si} \frac{1}{3}\right) \div \frac{2}{3}\right) \div \frac{8}{9}\right)$$

වරහන් යෙදීමෙහි අවාසි ද ඇත. වරහන් යෙදූ විට ලැබෙන පුකාශනය දීර්ඝ වන අතර එය සංකීර්ණ ලෙස ද පෙනේ. ගණක යන්තුයක් භාවිතයෙන් මෙවැනි පුකාශනයක් සුළු කිරීමේ දී මෙම වරහන් යෙදීම පුවේශමෙන් කළ යුතු අතර අතපසුවීම් වීමට ඇති හැකියාව ද වැඩි ය. මෙවැනි බොහෝ කරුණු නිසා, වරහන් නොමැතිව පුකාශන ලියා ඇති විට ඒවා සුළු කරන ආකාරය පිළිබඳ සම්මුතියකට එළඹීම ඉතා වැදගත් වේ. විශේෂයෙන් පරිගණක මෘදුකාංග, ගණක යන්තු මෘදුකාංග ආදිය නිෂ්පාදනය කිරීමේ දී මෙවැනි සම්මුතියක් වැදගත් වේ. කරුණු එසේ වුවත්, මුළු ලොව ම පිළිගන්නා පොදු සම්මුතියක් මේ වන තුරු නොමැත. ලෝකයේ විවිධ රටවල් විසින් යොදා ගන්නා සම්මුතීන් කිහිපයක් ම ඇත. එසේ ම, නිදසුනක් ලෙස, විවිධ ගණක යන්තු නිෂ්පාදන සමාගම් විසින් විවිධ සම්මුතීන් තම ගණක යන්තු පුකුමනයේ දී යොදා ගැනේ.

BODMAS සම්මුතිය යොදා ගනිමින් භාග සහිත පුකාශන සුළු කරන අයුරු තවත් නිදසුන් කිහිපයක් ඇසුරෙන් විමසා බලමු.

නිදසුන 1

$$\left(\begin{array}{cc} rac{1}{6} + rac{1}{4} \end{array}
ight)$$
න් $rac{4}{10}$ සුළු කර පිළිතුර සරල ආකාරයෙන් තබන්න.

$$\left(\frac{1}{6} + \frac{1}{4}\right) \text{ st } \frac{4}{10} = \left(\frac{2}{12} + \frac{3}{12}\right) \text{ st } \frac{4}{10}$$
$$= \frac{5}{12} \times \frac{4}{10} = \frac{1}{\underline{6}}$$

$$\left(\ \frac{2}{3} \ -\frac{1}{2} \ \right)$$
න් $\left(\ 1 \ \frac{2}{5} \ \div 2 \ \frac{1}{3} \ \right)$ සුළු කරන්න.

$$\left(\frac{2}{3} - \frac{1}{2}\right)$$
 න් $\left(1\frac{2}{5} \div 2\frac{1}{3}\right) = \left(\frac{4}{6} - \frac{3}{6}\right)$ න් $\left(\frac{7}{5} \div \frac{7}{3}\right)$
$$= \frac{1}{6}$$
 න් $\left(\frac{17}{5} \times \frac{3}{7}\right)$
$$= \frac{1}{62} \times \frac{37}{5}$$
$$= \frac{1}{10}$$

සුළු කර පිළිතුර සරල ම ආකාරයෙන් දක්වන්න.

i.
$$\frac{1}{2} + \frac{2}{3} \times \frac{5}{6}$$
 ii. $3\frac{1}{3} \div 2\frac{1}{6}$ $\mathfrak{S}^{\frac{1}{4}}$
 iii. $\frac{3}{5} \times \left(\frac{1}{3} + \frac{1}{2}\right)$

 iv. $\left(3\frac{1}{3} \div 2\frac{1}{6}\right)$ $\mathfrak{S}^{\frac{1}{4}}$
 v. $3\frac{3}{4} \div \left(2\frac{1}{2} + 3\frac{1}{4}\right)$ vi. $\left(1\frac{2}{3} \times \frac{3}{5}\right) + \left(\frac{3}{4} + \frac{1}{2}\right)$

 vii. $2\frac{2}{3} \times \left(1\frac{1}{4} - \frac{1}{12}\right) \div 2\frac{1}{3}$
 viii. $\frac{2}{3} \times \frac{3}{4}$ $\mathfrak{S}^{\frac{5}{6}} \div \frac{7}{18}$

- 2. පුද්ගලයකු තම ආදායමෙන් $\frac{1}{4}$ ක් ආහාර සඳහා ද $\frac{1}{2}$ ක් වහාපාර සඳහා ද අනෙක් කොටස ඉතිරි කිරීම සඳහා ද වෙන් කරයි. ඉතිරි කරන කොටස මුළු ආදායමෙන් කවර භාගයක් ද?
- ${f 3.}$ කුමුදුනී ගමනක් යෑමේ දී මුළු දුරෙන් ${1\over 8}$ ක් පයින් ද ${2\over 3}$ ක් දුම්රියෙන් ද ඉතිරි දුර පුමාණය බසයෙන් ද ගමන් කළා ය.
 - i. පයින් සහ දුම්රියෙන් ගමන් කළ දුර මුළු දුරෙහි භාගයක් ලෙස දක්වන්න.
 - ii. බසයෙන් ගමන් කළ දුර පුමාණය මුළු දුරෙහි භාගයක් ලෙස දක්වන්න.
- 4. පියකු තම පුතාට ඉඩමෙන් $\frac{1}{2}$ ක් ද දියණියට ඉඩමෙන් $\frac{1}{3}$ ක් ද දුන්නේ ය. පුතා, තම කොටසෙන් $\frac{1}{5}$ ක් ද දියණිය තම කොටසෙන් $\frac{2}{5}$ ක් ද පුණා ආයතනයකට පරිතාගෙ කළහ. පුණා ආයතනය ලද මුළු ඉඩමෙන් හරි අඩක ගොඩනැගිල්ලක් ඉදි කිරීමට තීරණය කළේ ය. ගොඩනැගිල්ල ඉදි කෙරෙන ඉඩම් කොටස මුළු ඉඩමෙන් කොපමණ ද?

 $8-3 \times (4+1) + 12 \div 3 \times 3^2 \div 4$ වැනි සංඛ්‍යාත්මක පුකාශනයක් සුළු කිරීම සඳහා ද BODMAS නීති මාලාව යොදා ගැනේ. නිදසුනක් ලෙස BODMAS අනුපිළිවෙළ අනුව බල සහිත මෙම පුකාශනය සුළු කරන අයුරු විමසා බලමු. ඔබගේ අමතර දනුමට වන අතර ඇගයීම සඳහා යොදා නොගැනේ.

ullet මුලින් ම, වරහන තුළ ඇති 4+1 පුකාශනය සුළු කළ යුතු ය. එය 5 වේ. එවිට,

$$8 - 3 \times 5 + 12 \div 3 \times 3^2 \div 4$$
 ලැබේ.

 $8 - 3 \times (4 + 1) + 12 \div 3 \times 3^2 \div 4$

ullet ඉන් පසු, 3^2 නමැති බලය සුළු කළ යුතු ය. එය 9 වේ. එවිට,

$$8 - 3 \times 5 + 12 \div 3 \times 9 \div 4$$
 ලැබේ.

ullet ඉන් පසු, ගුණ කිරීම් හා බෙදීම් වමේ සිට දකුණට එකින් එක කළ යුතු ය. මුලින් ම ඇත්තේ 3 imes 5 ය. එය 15 වේ. එවිට,

$$8 - 15 + 12 \div 3 \times 9 \div 4$$
 ලැබේ.

ullet ඉන් පසු, $12 \div 3$ සුළු කළ යුතු ය. එය 4 වේ. එවිට,

$$8 - 15 + 4 \times 9 \div 4$$
 ලැබේ.

ullet ඉන් පසු 4 imes 9 සුළු කළ යුතු ය. එය 36 වේ. එවිට,

$$8 - 15 + 36 \div 4$$
 ලැබේ.

ullet ඉන් පසු, $36 \div 4$ සුළු කළ යුතු ය. එය 9 වේ. එවිට,

 දැන්, එකතු කිරීමට හා අඩු කිරීමට සමාන මූලිකත්ව ඇති නිසා වමේ සිට දකුණට ගණිත කර්ම සිදු කෙරේ.

$$-7 + 9$$

ullet අවසාන වශයෙන්, -7+9=2 ලෙස ලැබේ.

මේ අනුව, BODMAS නීති මාලාව අනුව සුළු කිරීමෙන්,

$$8-3 \times (4+1) + 12 \div 3 \times 3^2 \div 4 = 2$$
 ලැබේ.

අමතර දැනුමට

ඔබගේ අමතර දැනුමට වන අතර ඇගයීම සඳහා යොදා නොගැනේ.

2 පිටුවේ ඇති රූපය ඔබේ මතකයට නගා ගන්න.

මෙහි එක් වෘත්තයක් එක් ඒකකයක් ලෙස සැලකූ විට අඳුරු කර ඇති කොටසින් නිරූපණය වන භාගය $1\frac{3}{8}$ බව අපි දනිමු. එය $\frac{11}{8}$ වේ.

නමුත් මෙම වෘත්ත දෙකම එක් ඒකකයක් ලෙස සැලකුවහොත් අඳුරු කොට ඇති භාගය වන්නේ තතා සභාගයක් වන $\frac{11}{16}$ ය. තවත් අවස්ථාවක් සලකමු.

මෙහි එක් සමචතුරසුයක් එක් ඒකකයක් ලෙස සැලකූ විට අඳුරු කළ භාගය වන්නේ $2\frac{3}{4}$ ය. එනම්, $\frac{11}{4}$ ය.

a. සමචතුරසු තුනම එක් ඒකකයක් ලෙස ගෙන අඳුරු කොට ඇති භාගය කුමක්ද?

 ${f b}$. මෙහි සමවතුරසුයකින් අඩක් එක් ඒකකයක් ලෙස සැලකූ විට අඳුරු කළ භාගය කුමක්ද? පිළිතුරු ${f a}$. ${f 1}{f 2}$

සාරාංශය

භාග සුළු කිරීමේදී මූලික ගණිත කර්ම හසුරුවන අනුපිළිවෙල මෙසේ ය.

- වරහන් තුළ කොටස් B Brackets
- 'න්' සම්බන්ධ කොටස O Of
- බේදීම හා ගුණ කිරීම D Division
 (වමේ සිට දකුණට) M Multiplication
- එකතු කිරීම A Addition
 අඩු කිරීම S Subtraction

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- වෙළෙඳාම් කිරීමේ දී ලැබෙන ලාභය හෝ අලාභය පුමාණාත්මකව සෙවීමට
- ලාභයේ හෝ අලාභයේ පුතිශතය ගණනය කිරීමට හා ඒ ආශිුත ගැටලු විසඳීමට
- වට්ටම් හා කොමිස් යනු කුමක් දැයි හඳුනාගැනීමට
- වට්ටම් හා කොමිස් ආශුිත ගණනය කිරීම් සිදු කිරීමට

හැකියාව ලැබේ.

4.1 ලාභය සහ අලාභය

අප එදිනෙදා ජීවිතයේ පරිහරණය කරන බොහෝ දේ වෙළෙඳපොළින් මිල දී ගත් දුවාය වේ. එම දුවාය විකුණනු ලබන පුද්ගලයන් වෙළෙන්දන් ලෙසත් එම දුවාය මිල දී ගනු ලබන පුද්ගලයන් පාරිභෝගිකයන් ලෙසත් හැඳින්වේ.

වෙළෙඳුන් විකුණන්නේ තමන් නිෂ්පාදනය කළ හෝ වෙනත් අයකුගෙන් මිල දී ගත් භාණ්ඩ ය. එසේ මිල දී ගැනීමේ දී හෝ නිෂ්පාදනය කිරීමේදී යම් වියදමක් දැරීමට සිදු වේ. එසේ වියදමක් දරා ලබා ගත් භාණ්ඩයක් සාමානායෙන් විකුණනු ලබන්නේ එම දැරීමට සිදු වූ වියදමට වඩා වැඩි මිලකට ය. එසේ විකිණීමේ දී වෙළෙන්දාට එම වෙළෙඳාමෙන් ලාභයක් ලැබේ යැයි කියනු ලැබේ.

සැම විට ම වෙළෙන්දාට තම භාණ්ඩ ලාභ සහිතව විකිණීමට හැකි නොවේ. නිදසුන් ලෙස භාණ්ඩ පළ්දු වීම හෝ කල් ඉකුත් වීමට ආසන්න වීම නිසා එම භාණ්ඩ සඳහා වියදම් වූ මුදලට වඩා අඩු මුදලකට විකිණීමට සිදු විය හැකි ය. එසේ විකිණීමේ දී එම වෙළෙඳාමෙන් වෙළෙන්දාට අලාභයක් සිදු වේ යැයි කියනු ලැබේ.

වෙළෙන්දාට යම් භාණ්ඩයක් ලබා ගැනීම සඳහා යෙදවූ මුදලට ම එම භාණ්ඩය විකිණුව හොත් එහි දී ලාභයක් හෝ අලාභයක් සිදු වී නැත. ඒ අනුව,

නිදසුන 1

පාවහත් නිෂ්පාදනය කරන ආයතනයකට පාවහන් යුගලක් නිෂ්පාදන කිරීම සඳහා රු 1000ක් වියදම් වේ. එම ආයතනය පාවහන් යුගලක් රු $2\,600$ බැගින් විකුණයි. එක් පාවහන් කුට්ටමක් විකිණීමෙන් එම ආයතනය ලබන ලාභය සොයන්න.

පාවහන් යුගලක නිෂ්පාදන වියදම = රු
$$1\,000$$

විකුණුම් මිල = රු $2\,600$
 \therefore ලබන ලාභය = රු $2\,600-1\,000$
= රු $1\,600$

නිදසුන 2

වෙළෙන්දෙක් එකක් රුපියල් 45 බැගින් මිල දී ගත් පොල් ගෙඩි 50ක තොගයක්, එකක් රුපියල් 60 බැගින් විකුණනු ලැබුවේ නම් එම වෙළෙඳාමෙන් ඔහු ලැබූ ලාභය ගණනය කරන්න.

I කුමය

පොල් තොගය ගත් මිල
$$=$$
 රු 45×50 $=$ රු 2250 පොල් තොගය විකිණීමෙන් ලද මුදල $=$ රු 60×50 $=$ රු 3000 \div . පොල් තොගය විකිණීමෙන් ලද ලාභය $=$ රු $3000 - 2250$ $=$ රු 750

II කුමය

පොල් ගෙඩියක් ගත් මිල = රු 45පොල් ගෙඩියක් විකුණූ මිල = රු 60පොල් ගෙඩියක් විකිණීමෙන් ලද ලාභය = රු 60-45= රු 15පොල් තොගය විකිණීමෙන් ලද ලාභය = රු 15×50 = රු 750

වෙළෙන්දෙක් එකක් රුපියල් 20 බැගින් මිල දී ගත් අඹ 100ක තොගයක් පුවාහනය කිරීමේ දී තැළීම නිසා එකක් රුපියල් 18 බැගින් විකිණීමට තීරණය කරන ලදි. වෙළෙන්දාට සිදු වූ අලාභය ගණනය කරන්න.

I කුමය

අඹ තොගය ගත් මිල
$$=$$
 රු 20×100 $=$ රු $2\,000$ අඹ තොගය විකිණීමෙන් ලද මුදල $=$ රු 18×100 $=$ රු $1\,800$ අඹ විකිණීමෙන් සිදු වූ අලාභය $=$ රු $2\,000 - 1\,800$ $=$ රු $2\,000$

II කුමය

අඹ ගෙඩියක් ගත් මිල = රු
$$20$$
අඹ ගෙඩියක් විකුණුම් මිල = රු 18
අඹ ගෙඩියක් විකිණීමේ දී සිදු වන අලාභය = රු $20-18$
= රු 2
අඹ තොගය විකිණීමේ දී සිදු වන අලාභය = රු 2×100
= රු 200

නිදසුන 4

වෙළෙන්දෙක් මඤ්ඤොක්කා කිලෝග්රෑම් 60ක් කිලෝග්රෑමයක් රු 50 බැගින් ගොවියකුගෙන් මිල දී ගත්තේ ය. වෙළෙන්දා මුලින් ම කිලෝග්රෑම් 20ක් රු 70 බැගින් විකුණුවේ ය. ඉතිරියෙන් කිලෝගුෑම් 15ක් කිලෝග්රෑමයක් රු 60 බැගින් ද තවත් කිලෝග්රෑම් 5ක් කිලෝග්රෑමයක් රු 50 බැගින් ද තවත් කිලෝග්රෑමයක් රු 40 බැගින් ද විකිණූ අතර ඉතිරි කිලෝග්රෑම් 10 විකිණීමට නොහැකි ව ඉවත දැමීමට සිදු විය. වෙළෙන්දා මඤ්ඤොක්කා වෙළෙදාමෙන් ලැබුවේ ලාභයක් ද අලාභයක් ද යන්න නිර්ණය කර එම ලාභය හෝ අලාභය කොපමණ දයි සොයන්න.

ම කැද්කෙදාක්කා මිල දී ගැනීමට වැය වූ මුදල
$$=$$
 රු 50×60 $=$ රු 3000 මුල් 20 kg විකිණීමෙන් ලද මුදල $=$ රු 70×20 $=$ රු 1400 ඊළඟ 15 kg විකිණීමෙන් ලද මුදල $=$ රු 60×15 $=$ රු 900 ඊළඟ 5 kg විකිණීමෙන් ලද මුදල $=$ රු 50×5 $=$ රු 250 ඊළඟ 10 kg විකිණීමෙන් ලද මුදල $=$ රු 40×10 $=$ රු 400

මක්දිකෙක්කා විකිණීමෙන් ලද මුළු මුදල
$$=$$
 රු $1400+900+250+400$ $=$ රු 2950 $3000>2950$ නිසා වෙළෙන්දා අලාභයක් ලබා ඇත. වෙළෙන්දාට සිදු වූ අලාභය $=$ රු $3000-2950$ $=$ රු 50

4.1 අභාගාසය

1. දී ඇති තොරතුරු අනුව පහත වගුවේ හිස්තැන් පුරවන්න.

භාණ්ඩය	ගත් මිල/ නිෂ්පාදන වියදම (රු)	විකුණුම් මිල (රු)	ලාභ/අලාභ බව	ලාභ/අලාභය (රු)
 අත් ඔරලෝසුව	500	750		
පාසල් බෑගය	1 200	1050		
ගණක යන්තුය		1 800	ලාභය	300
බීම බෝතලය		750	අලාභය	175
වතුර බෝතලය	350		අලාභය	50
කවකටු පෙට්ටිය	275		ලාභය	75
කුඩය		450	අලාභය	100
සෙරෙප්පු		700	ලාභය	150
කුට්ටම				

- 2. පහත දී ඇති වෙළෙඳාම් යුගලය අතරින් වැඩි ලාභයක් සහිත වෙළෙඳාම කුමක් දැයි තෝරන්න.
 - i. රුපියල් 50 බැගින් මිල දී ගත් අඹ රුපියල් 60 බැගින් විකිණීම. රුපියල් 50 බැගින් මිල දී ගත් දොඩම් රුපියල් 55 බැගින් විකිණීම.
 - ii. රුපියල් 40 බැගින් මිල දී ගත් පොල් රුපියල් 60 බැගින් විකිණීම. රුපියල් 50 බැගින් මිල දී ගත් දෙල් රුපියල් 60 බැගින් විකිණීම.
 - iii. රුපියල් 10ට මිල දී ගත් පෑතක් රුපියල් 15ට විකිණීම. රුපියල් 25ට මිල දී ගත් පොතක් රුපියල් 28ට විකිණීම.
- 3. වෙළෙන්දෙක් රුපියල් 3 බැගින් රඹුටන් ගෙඩි 100ක් මිල දී ගත් අතර ඉන් ගෙඩි 10ක් නරක් වී ඇති නිසා ඉවත් කර ඉතිරි ඒවා ගෙඩියක් රුපියල් 5 බැගින් විකිණුවේ ය. වෙළෙඳාමෙන් ඔහු ලබන්නේ ලාභයක් ද අලාභයක් ද යන්න නිර්ණය කර, එම ලාභය හෝ අලාභය කොපමණ දයි සොයන්න.

- 4. වෙළෙන්දෙක් කිලෝග්රෑම් 1ක් රුපියල් 60 බැගින් බෝංචි 50 kgක් මිල දී ගනියි. පළමුවන දින කිලෝග්රෑම් 1ක් රුපියල් 75 බැගින් බෝංචි කිලෝග්රෑම් 22ක් ද දෙවන දින කිලෝග්රෑම් 1ක් රුපියල් 70 බැගින් ඉතිරි බෝංචි තොගය ද විකිණුවේ
 - i. වෙළෙන්දා එක් එක් දිනයේ ලැබූ ලාභය සොයා, වැඩි ලාභයක් ලැබුවේ කුමන දිනයේ දැයි තීරණය කරන්න.
 - ii. වෙළෙන්දා දින දෙකේ දී ම ලැබූ මුළු ලාභය සොයන්න.
- 5. වේවැල් පුටුවක නිෂ්පාදන වියදම රුපියල් 650ක් වේ. නිෂ්පාදකයෙක් එවැනි පුටු 20ක් නිෂ්පාදනය කළේ ය. එම පුටු සියල්ල විකිණීමෙන් රුපියල් 7000ක ලාභයක් ලැබීමට ඔහු අපේක්ෂා කරයි. ඒ සඳහා ඔහු පුටුවක් විකිණිය යුතු මුදල කොපමණ ද?
- 6. තොග වෙළෙන්දකුගෙන් ඇපල් මිල දී ගෙන ඒවා මාර්ගය අසල තබා ගෙන අලෙවි කරන වෙළෙන්දෙක්, එක්තරා දිනක ඇපල් ගෙඩි 200ක්, එකක් රුපියල් 25 ගණනේ මිලට ගනියි. ඒවා සියල්ල විකිණීමෙන් රුපියල් 1000ක ලාභයක් එදින ලැබීමට ඔහු බලාපොරොත්තු වේ. ඒ සඳහා, ඇපල් ගෙඩියක් විකිණිය යුතු මුදල සොයන්න.
- 7. වෙළෙන්දෙක් එෑණු කිලෝග්රෑම් 50ක්, කිලෝග්රෑමයක් රුපියල් 60 ගණනේ මිලට ගත් අතර එයින් කිලෝග්රෑම් 30ක්, කිලෝග්රෑමයක් රුපියල් 80 ගණනේ විකිණුවේ ය. ඉතිරි එෑණු පුමාණය නරක් වීමට ආසන්නව තිබූ නිසා අඩු මුදලකට විකුණූ අතර අවසානයේ දී මෙම එෑණු වෙළෙදාමෙන් ලාභයක් හෝ අලාභයක් වෙළෙන්දාට සිදු නොවී ය. වෙළෙන්දා ඉතිරි වූ එෑණු තොගය විකිණුවේ කිලෝග්රෑමයක් කීය බැගින් දයි සොයන්න.

(4.2 ලාභ අලාභ පුතිශත

රමේශ් හා සුරේශ් වෙළෙන්දෝ දෙදෙනෙකි. රමේශ් ඇදුම් වෙළෙඳසලක් පවත්වා ගෙන යන අතර ඔහු රුපියල් 800ට මිල දී ගත් කලිසමක් රුපියල් 900ට විකුණයි. සුරේශ් විදුලි උපකරණ වෙළෙඳසලක් පවත්වා ගෙන යන අතර ඔහු රුපියල් 2500ට මිලදී ගත් විදුලි කේතලයක් රුපියල් 2600ට විකුණයි.

මෙහි දී රමේශ් හා සුරේශ් විසින් විකුණනු ලබන දවා එකිනෙකට වෙනස් වන අතර ඒවායේ ගත් මිල හා විකුණුම් මිල ද සමාන නොවන බව පෙනේ. එහෙත් මෙම වෙළෙන්දන් දෙදෙනා ම ඉහත භාණ්ඩවලින් එක බැගින් විකිණීමෙන් ලබන ලාභ මුදල් සමාන වේ. එනම්,

රමේශ් කලිසමක් විකිණීමෙන් ලබන ලාභය
$$=$$
 රු $900-800$ $=$ $\underline{$ රු 100

සුරේශ් විදුලි කේතලයක් විකිණීමෙන් ලබන ලාභය = රු
$$2600-2500$$
 = $\underline{\it c}_{7}$ 100

රමේශ් සහ සුරේශ් ළඟ රුපියල් 5000 බැගින් ඇතැයි සිතමු. ඒ අනුව මෙම වෙළෙන්දන් දෙදෙනා අතරින් වඩා 'වාසිදායක' වෙළෙඳාමේ නිරත වන පුද්ගලයා කවුරු දැයි ඔබට කිව හැකි ද?

රමේශ් හා සුරේශ් ඉහත වෙළෙඳාම මගින් ලබන ලාභ මුදල් සමාන නමුත් එම ලාභ මුදල් ලැබීම සඳහා එක් එක් පුද්ගලයා වැය කරන මුදල් පුමාණය සමාන නොවන බව පැහැදිලි වේ. වඩා 'වාසිදායක' වෙළෙඳාම තීරණය කිරීම සඳහා එක් එක් පුද්ගලයා යෙදවූ මුදල ද සැලකිල්ලට ගත යුතු ය. එය තීරණය කිරීම සඳහා පහත ආකාරයේ ගණනය කිරීමක් සිදු කළ හැකි ය.

රමේශ් රුපියල්
$$800$$
ක් වියදම් කිරීමෙන් ලබන ලාභය $\,=\,$ රු $\,100$

රමේශ් ලබන ලාභය, ඔහු වියදම් කළ මුදලේ භාගයක් ලෙස
$$= \frac{100}{800}$$

සුරේශ් රුපියල්
$$2500$$
ක් වියදම් කිරීමෙන් ලබන ලාභය $=$ රු 100

සුරේශ් ලබන ලාභය, ඔහු වියදම් කළ මුදලේ භාගයක් ලෙස
$$=rac{100}{2500}$$

මෙම භාග ලෙස දැක්වූ $\frac{100}{800}$ හා $\frac{100}{2500}$ යන භාග දෙක සංසන්දනය කිරීම පහසු ය. එයට හේතුව ඒවායේ ලවයන් සමාන වීමයි.

ලවයන් අසමාන වන විට ද වාසිදායක වෙළෙඳාම සොයන්නේ මේ ආකාරයටම ය. එවිට භාග සන්සන්දනය අසීරු විය හැකි නිසා, එම භාග පුතිශත ලෙස දක්වීම බොහෝ විට සිදු වේ. එම පුතිශත මෙසේ ගණනය කරමු.

රමේෂ් ලබන ලාභය වැය කළ මුදලේ භාගයක් ලෙස
$$\dfrac{100}{800}$$
 වන නිසා රමේශ් ලබන ලාභ පුතිශතය = $\dfrac{100}{800} imes 100\%$ = 12.5%

ඒ අනුව, රමේශ් රුපියල් 100ක් වියදම් කිරීමෙන් ලබන ලාභය රුපියල් 12.50ක් බව පැහැදිලි ය.

සුරේෂ් ලබන ලාභය වැය කළ මුදලේ භාගයක් ලෙස
$$\frac{100}{2500}$$
 වන නිසා සුරේශ් ලබන ලාභ පුතිශතය $=\frac{100}{2500} \times 100\%$ $=4\%$

ඒ අනුව, සුරේශ් රුපියල් 100ක් වියදම් කිරීමෙන් ලබන ලාභය රුපියල් 4.00ක් බව පැහැදිලි ය.

12.5% > 4% නිසා රමේශ්ගේ වෙළෙදාම වඩාත් වාසිදායක යැයි තීරණය කරනු ලැබේ. මෙම පුතිශතවල අර්ථය මෙසේ දැක්විය හැකි ය.

 $\frac{100}{800} imes 100$ යනු රමේශ් රුපියල් 100ක් වියදම් කළ හොත් ලැබෙන ලාභයයි.

 $\frac{100}{2500}$ imes 100 යනු සුරේශ් රුපියල් 100ක් වියදම් කළ හොත් ලැබෙන ලාභයයි.

ඒ අනුව භාණ්ඩයක ගත් මිල/නිෂ්පාදන වියදම රුපියල් 100ක් වන විට එම භාණ්ඩය විකිණීමෙන් ලබන ලාභය (හෝ අලාභය), ලාභ (හෝ අලාභ) පුතිශතය ලෙස හැඳින්වේ. එබැවින් කිසියම් වෙළෙඳාමක දී ලැබෙන ලාභය හෝ අලාභය ගත් මිලෙහි/නිෂ්පාදන වියදමෙහි භාගයක් ලෙස දක්වීමෙන් හා එම භාගය 100%න් ගුණ කිරීමෙන් ලාභයේ හෝ අලාභයේ පුතිශතය ගණනය කළ හැකි ය.

ලාභ පුතිශතය =
$$\frac{$$
 ලාභය $}{$ ගත් මිල(හෝ නිෂ්පාදන වියදම) $} imes 100\%$ අලාභ පුතිශතය = $\frac{$ අලාභය $}{$ ගත් මිල(හෝ නිෂ්පාදන වියදම) $} imes 100\%$

නිදසුන 1

වෙළෙන්දකු රුපියල් 25 බැගින් මිල දී ගත් අභxාස පොත් රුපියල් 30 බැගින් විකුණයි නම්, අභxාස පොතක් විකිණීමෙන් ලබන ලාභ පුතිශතය ගණනය කරන්න.

ලාභය
$$=$$
 රු $30-25$
 $=$ රු 5
ලාභ පුතිශතය $=$ $\frac{5}{25} imes 100\%$
 $=$ $\frac{20\%}{25}$

නිදසුන 2

ඇඳුම් වෙළෙන්දකු රු 500කට මිල දී ගත් කලිසමක් එහි ඇති පලුද්දක් නිසා රුපියල් 450කට විකුණුවේ නම්, අලාභ පුතිශතය සොයන්න.

අලාභය = රු
$$500 - 450$$

= රු 50

අලාභ පුතිශතය =
$$\frac{50}{500} imes 100\%$$
 = 10%

වඩු කාර්මිකයකු රුපියල් 4000ක් වියදම් කොට තැනූ මේසයක් රුපියල් 5600ට විකිණූ අතර ලෝහ කාර්මිකයෙක් රුපියල් 250ක් වියදම් කොට තැනූ පිහියක් රුපියල් 360කට විකුණයි. මෙහි දී වඩා වාසිදායක වෙළදාමේ නිරත වූයේ කවුරුන්දයි නිර්ණය කරන්න.

වඩු කාර්මිකයා ලැබූ ලාභය යෙදවූ මුදලේ පුතිශතයක් ලෙස $= \frac{1600}{4000} \times 100\% = 40\%$ ලෝහ කාර්මිකයා ලැබූ ලාභය යෙදවූ මුදලේ පුතිශතයක් ලෙස $= \frac{110}{250} \times 100\% = 44\%$ එමනිසා, මෙහි දී වඩා වාසිදායක වෙළෙඳාමේ නිරත වූයේ ලෝහ කාර්මිකයා ය.

නිදසුන 4

වෙළෙන්දෙක් රු $30\,000$ කට මිල දී ගත් ලී අල්මාරියක් 15%ක ලාභ පුතිශතයක් (ගත් මිලෙන්) ලැබෙන සේ විකුණයි නම් ලී අල්මාරියේ විකුණුම් මිල සොයන්න.

I කුමය

මෙහි, ලාභ පුතිශතය 15% යන්නෙන් අදහස් වන්නේ, රුපියල් 100ක් යෙදවු හොත්, රුපියල් 15ක ලාභයක් ලැබේ යන්නයි. වෙනත් අයුරකින් පැවසුව හොත්, රුපියල් 100ක් යෙදවුවහොත් රුපියල් 115ට විකුණනු ලැබේ යන්නයි.

එමනිසා, රුපියල්
$$30\,000$$
ක් යෙදවූ විට විකුණන මිල $=\frac{115}{100} imes 30\,000$ $=\underline{\sigma_{\zeta} \ 34\,500}$

II කුමය

ඉහත I කුමයේ දී දුටු පරිදි ම,

රුපියල් 100ක් වියදම් කළ විට ලැබෙන ලාභය රුපියල් 15 නිසා,

රුපියල්
$$30\ 000$$
ක් වියදම් කළ විට ලැබෙන ලාභය $=\frac{15}{100}\ imes 30\ 000$ $=$ රු $4\ 500$ එමනිසා, භාණ්ඩයේ විකුණුම් මිල $=$ වියදම් කළ මිල $+$ ලාභය $=\ 30\ 000\ +\ 4\ 500$ $=$ රු $34\ 500$

වෙළෙන්දෙක් රු 1500කට මිල දී ගත් පාවහන් කුට්ටමක් 2%ක අලාභයක් සහිතව විකුණයි නම්, පාවහන් කුට්ටමේ විකුණුම් මිල කීය ද?

I කුමය

2% ක අලාභයක් සහිත හෙයින්

රු
$$100$$
ක භාණ්ඩයක විකුණුම් මිල $=$ රු 98

රු
$$1~500$$
ක භාණ්ඩයක විකුණුම් මිල $=$ රු $\frac{98}{100} imes 1~500$ $=$ $\underline{\sigma_{\zeta}~1~470}$

II කුමය

සිදු වූ අලාභය = රු
$$1500 \times \frac{2}{100}$$

= රු 30
විකුණුම් මිල = රු $1500 - 30$
= රු 1470

නිදසුන 6

වෙළෙන්දකු රූපවාහිනී යන්තුයක් රු $22\ 000$ ට විකිණීමෙන් 10%ක ලාභයක් ලබයි නම් වෙළෙන්දා එම රූපවාහිනිය ගත් මිල සොයන්න.

I කුමය

ගත් මිල රු 100 වන විට 10% ක ලාභයක් ලැබීම පිණිස විකිණිය යුතු මිල රු 110 කි.

$$\therefore$$
රු 110 ට 15% ක ලාභයක් සහිත විකුණන භාණ්ඩයක ගත් මිල $=$ රු 100

$$15\%$$
 ක ලාභයක් සහිත ව රු $22\ 000$ ට විකුණන භාණ්ඩයක ගත් මිල $=$ රු $\frac{100}{110} \times 22\ 000$ $=$ රු $20\ 000$

II කුමය

භාණ්ඩයේ ගත් මිල රුපියල් x නම්

ලැබෙන ලාභය = රු
$$x \times \frac{10}{100}$$
 = රු $\frac{x}{10}$ භාණ්ඩයේ විකුණුම් මිල = රු $x + \frac{x}{10}$ $\therefore x + \frac{x}{10} = 22\ 000$

$$\frac{10x + x}{10} = 22\ 000$$

$$\frac{11x}{10} = 22\ 000$$

$$x = 22\ 000 \times \frac{10}{11}$$
$$x = 20\ 000$$

එමනිසා, රූපවාහිනිය ගත් මිල රු $20\,000$ කි.

III කුමය

භාණ්ඩයේ ගත් මිල රුපියල් x නම්

විකුණුම් මිල = රු
$$x \times \frac{110}{100}$$

 $\therefore x \times \frac{110}{100} = 22\ 000$
 $x = 20\ 000$

එමනිසා, රූපවාහිනිය ගත් මිල රු $20\,000$ කි.

නිදසුන 7

කීඩා භාණ්ඩයක් විකිණීමේ දී එහි ඇති නිෂ්පාදන දෝෂයක් නිසා වෙළෙන්දකුට රු $6\,800$ ට විකිණීමට සිදු වීමෙන් 15% අලාභයක් සිදු විය. ඔහු කීඩා භාණ්ඩය ගත් මිල සොයන්න.

I කුමය

ගත් මිල රු $100\,$ වූ භාණ්ඩයක් 15% ක අලාභයක් සහිතව විකුණුම් මිල රු 85කි.

15% ක අලාභයක් සහිතව රු 85ට විකුණන භාණ්ඩයක ගත් මිල = රු 100

15% ක අලාභයක් සහිතව රු 6~800ට විකුණන භාණ්ඩයක ගත් මිල = රු $\frac{100}{85}$ imes 6~800 $= 67 \times 1000$

II කුමය

භාණ්ඩයේ ගත් මිල රුපියල් x නම්

සිදු වූ අලාභය = රු
$$x \times \frac{15}{100}$$

$$= රු \frac{3x}{20}$$
භාණ්ඩයේ විකුණුම් මිල = රු $x - \frac{3x}{20}$
එවිට $x - \frac{3x}{20} = 6800$

$$\frac{20x - 3x}{20} = 6800$$

$$\frac{17x}{20} = 6800$$

$$x = 6800 \times \frac{20}{17}$$

$$x = 8000$$
 \therefore ගත් මිල රු 8000 වේ.

1. හිස්තැන් පූරවන්න.

	ගත් මිල	විකුණුම් මිල	ලාභයක් ද අලාභයක් ද	ලාභය/	ලාභ/ අලාභ
	(_て)	(රු)	යන වග	අලාභය (රු)	පුතිශතය
i.	400	440	ලාභයකි	40	10%
ii.	600	720			
iii.	1500	1200			
iv.	60		ලාභයකි		60%
V.	180		ලාභයකි		30%
vi.	150	75	අලාභයකි		
vii.	200		අලාභයකි		10%

- **2.** ඇඳුම් වෙළෙන්දකු රු 500ට මිල දී ගත් කලිසමක් රු 650ට විකුණයි නම් වෙළෙන්දා ලබන,
 - i. ලාභය සොයන්න.
 - ii. ලාභ පුතිශතය සොයන්න.
- 3. රු $2\,500$ ක් වටිනා විදුලි ඉස්තිුක්කයක් රු $2\,300$ ට විකිණීමෙන්,
 - i. සිදු වන අලාභය සොයන්න.
 - ii. අලාභ පුතිශතය සොයන්න.
- 4. වෙළෙන්දෙක් ගෙඩියක් රුපියල් 18 බැගින් අඹ ගෙඩි 100ක් මිල දී ගනියි. නරක් වීම නිසා, අඹගෙඩි 20ක් ඉවත් කළ අතර ඉතිරි අඹ තොගය එකක් රු 30 බැගින් විකුණයි.

මෙම වෙළෙඳාමෙන් ඔහු ලැබුයේ ලාභයක් ද? අලාභයක් ද යන්න නීර්ණය කර, ඔහු ලැබු,

- i. ලාභය/ අලාභය
- ii. ලාභ/ අලාභ පුතිශතය ගණනය කරන්න.
- 5. ඇඳුම් මසන්නකු ඇඳුම් වර්ග කිහිපයක් නිම කිරීමට වැය කරන මුදල් පුමාණ හා ඒවායේ විකුණුම් මිල ගණන් පහත වගුවේ දක්වා ඇත.

ඇඳුම් වර්ගය	එක් ඒකකයක නිෂ්පාදන වියදම (රු)	විකුණුම් මිල (රු)	
ළමා කමිස	300	350	
ළමා කලිසම්	400	450	
ගවුම්	500	575	
වැහි කබා	1000	1150	

- i. ඉහත එක් එක් දේ විකිණීමෙන් ලැබෙන ලාභය හා ලාභ පුතිශතය වෙන වෙනම සොයන්න.
- ii. වඩා ලාභදායී වන්නේ කුමන ඇඳුම් වර්ගය නිෂ්පාදනය කිරීමදැයි හේතු සහිතව ලියන්න.
- 6. පොත් වෙළෙන්දකු රු 300ක් වටිනා නවකතා පොතක් 25%ක ලාභයක් ලැබෙන සේ විකුණයි නම් නවකතා පොතෙහි විකුණුම් මිල කීය ද?
- 7. රුපියල් $12\ 000$ ක් වටිනා පා පැදියක් 10%ක අලාභයක් සහිතව විකිණීමට සිදු වූයේ නම් පාපැදියේ විකුණුම් මිල සොයන්න.
- 8. ගෘහ භාණ්ඩ නිෂ්පාදකයෙක් පුටුවක් නිෂ්පාදනය කිරීම සඳහා රුපියල් 1800ක් වැය කරයි. නිෂ්පාදකයා 20%ක ලාභ පුතිශතයක් සහිතව එම පුටු තවත් ගෘහ භාණ්ඩ වෙළෙන්දකුට විකුණන අතර වෙළෙන්දා 20%ක ලාභ පුතිශතයක් සහිතව එය පාරිභෝගිකයකුට විකුණයි.
 - i. වෙළෙන්දා පුටුවක් මිල දී ගැනීමට වැය කරන මුදල කොපමණ ද?
 - ii. පුටුවක් මිල දී ගැනීමේ දී පාරිභෝගිකයාට ගෙවීමට සිදු වන මුදල කොපමණ ද?
 - iii. වඩා වැඩි ලාභයක් ලබන්නේ නිෂ්පාදකයාට ද එසේත් නැත් නම් වෙළෙන්දාට ද යන්න හේතු සහිත ව ලියන්න.
- 9. ශීතකරණයක් රු $33\,000$ ට විකිණීමෙන් වෙළෙන්දකු 10%ක ලාභයක් ලබයි නම් ශීතකරණය ගත් මිල සොයන්න.
- 10. විදුලි උඳුනක් රු $28\,500$ ට විකිණීමෙන් වෙළෙන්දකු 5%ක අලාභයක් ලබයි නම් විදුලි උඳුන ගත් මිල සොයන්න.
- 11. භාණ්ඩ කීපයක් විකිණීමෙන් වෙළෙන්දකු ලැබූ ලාභ හෝ අලාභ පුතිශතය සහ විකුණුම් මිල පහත වගුවේ දී ඇත. එම භාණ්ඩවල ගත් මිල වෙන වෙනම සොයන්න.

භාණ්ඩය	විකුණුම් මිල (රු)	ලාභ පුතිශතය	අලාභ පුතිශතය
බිත්ති ඔරලෝසුව	3 240	8%	-
විදුලි උඳුන	7500	25%	-
කැමරාව	12 048	-	4%

4.3 වට්ටම් හා කොමිස්

වට්ටම්

පොත් මිල දී ගන්නා සැමට 20% ක වට්ටමක්

භාණ්ඩයක් විකිණීමේ දී එම භාණ්ඩය විකිණිමට බලාපොරොත්තු වන මිල එම භාණ්ඩයේ ලකුණු කළ මිල ලෙස හැඳින්වේ. පාරිභෝගික පනත අනුව විකිණිම සඳහා ඇති භාණ්ඩවල මිල සඳහන් කර තිබිය යුතු ය.

රුපයෙන් දැක්වෙන්නේ පොත් සාප්පුවක පුදර්ශනය කර තිබූ දැන්වීමකි. ඉන් කියැවෙන්නේ පොතක් මිල දී ගැනීමක දී 20%ක වට්ටමක් හිමි වන බව ය. එහි අදහස වන්නේ විකිණීම සඳහා පොතේ සඳහන් කොට ඇති මිලෙන් 20%ක් අඩු කර පොත විකුණනු ලබන බවයි. එසේ අඩු කරන මුදල වට්ටම (Discount) ලෙස හැඳින්වේ. එම වට්ටම, භාණ්ඩයේ ලකුණු කොට ඇති මිලෙන් පුතිශතයක් ලෙස දැක්වීම බෙහෝ විට සිදු වේ.

පාරිභෝගිකයන් බොහෝ විට වැඩි ම වට්ටමක් හිමි වන කඩ සාප්පුවලින් භාණ්ඩ මිල දී ගැනීමට පෙලඹෙන නිසා එවැනි ස්ථානවල භාණ්ඩ අලෙවිය ද වැඩි වේ. මේ හේතුවෙන් වෙළෙන්දාගේ ලාභය ද ඉහළ යෑම සිදු වේ. භාණ්ඩ අලෙවි කිරීමේ දී වට්ටම් දීම මඟින් පාරිභෝගිකයාට සෘජු වාසි හිමිවනවා මෙන්ම එමඟින් වෙළෙන්දාට ද දීර්ඝ කාලීනව වාසි රැසක් හිමි වේ.

නිදසුන 1

කවීශ 20% ක වට්ටමක් ලබාදෙන පොත් සාප්පුවකින් රුපියල් 1500ක් වටිනා පොත් මිල දී ගනියි. කවීශට ලැබෙන වට්ටම සොයන්න.

ලැබෙන වට්ටම = රු
$$1500 \times \frac{20}{100}$$
 = $\underline{6}$ 0

ජංගම දුරකථනයක නිෂ්පාදන වියදම රුපියල් $9\ 000$ වේ. රුපියල් 3000ක ලාභයක් ලැබෙන සේ එහි මිල ලකුණු කර ඇත. එහෙත් විකිණීමේ දී ලකුණු කළ මිලෙන් 10%ක වට්ටමක් දෙනු ලැබේ නම් භාණ්ඩයේ විකුණුම් මිල සොයන්න.

I කුමය

ලකුණු කළ මිල =
$$arphi_{7} 9000 + 3000$$

= $arphi_{7} 12\ 000$

හිමිවන වට්ටම = රු
$$12\ 000 \times \frac{10}{100}$$

= රු $1\ 200$
විකිණුම් මිල = රු $12\ 000 - 1\ 200$
= රු $10\ 800$

II කුමය

10%ක වට්ටමක් සහිතව රු 100ක භාණ්ඩයක් විකුණන මිල රු 90ක් වන නිසා 10%ක වට්ටමක් සහිතව රු 100ක භාණ්ඩයක විකුණුම් මිල = රු 90

එමනිසා, 10%ක වට්ටමක් සහිතව රු 12~000ක භාණ්ඩයක = රු $\frac{90}{100} imes 12~000$ විකුණුම් මිල

සටහන: මෙහි දී දෙවන කුමයට ගැටලුව විසඳීම වඩා කෙටි වන අතර එම කෙටි කුමයට ගැටලූ විසඳීමට පුරුදු වීම ඉතා වැදගත් ය.

නිදසුන 3

රුපියල් 2~000ක අත් ඔරලෝසුවක් අත්පිට මුදලට විකිණීමේ දී රුපියල් 250ක් අඩු කර විකුණනු ලබයි නම් ලැබෙන වට්ටම් පුතිශතය සොයන්න.

වට්ටම් පුතිශතය =
$$\frac{250}{2000} imes 100\%$$
 = $\underline{12.5\%}$

8% ක වට්ටමක් සහිතව කතා පොතක් විකුණනු ලබන්නේ රු 460ට නම් කතා පොත විකිණීමට ලකුණු කර ඇති මිල කොපමණ ද?

ලකුණු කර ඇති මිල
$$=$$
 රු $460 imes \frac{100}{92}$ $=$ රු 500

කොමිස්

රූපයෙන් දැක්වෙන්නේ ඉඩම්, වාහන හා නිවාස විකුණා ගැනීම සඳහා පහසුකම් සපයන ආයතනයක දැන්වීමකි. එවැනි ආයතන මඟින් ඉහත සඳහන් ආකාරයේ විකිණීම් සඳහා ගැණුම්කරුවන් සොයා දෙන අතර එම විකිණීම් සිදු වූ පසු ගනුදෙනුවේ වටිනාකමින් කිසියම් පුතිශතයක් අය කර ගනී. එවැනි ආයතන තැරැව්කරුවන් (Brokerage) ලෙස ද හැඳින්වේ. තැරැව්කරුවන් මඟින් කිසියම් විකිණීමක් සඳහා පහසුකම් සැපයීමේ දී එම විකුණුම් මුදලෙන් කිසියම් පුතිශතයක් ලෙස අය කර ගන්නා මුදල කොමිස් මුදල් ලෙස හැඳින්වේ.

නිදසුන 5

5%ක කොමිස් පුතිශතයක් අය කරන ආයතනයක් මඟින් රුපියල් 3~000~000ක් වටිනා මෝටර් රථයක් විකුණා දීම සඳහා අය කරන කොමිස් මුදල කොපමණ ද?

අය කරන කොමිස් මුදල
$$=$$
 රු $3\ 000\ 000 imes \frac{5}{100}$ $=$ $\underline{$ රු $150\ 000}$

නිදසුන 6

දේපළ වෙළෙඳාම් සමාගමක් රු 1~200~000ක් වටිනා ඉඩමක් විකුණාදීම සඳහා රු 36~000 ක මුදලක් අය කරයි. අය කරන කොමිස් පුතිශතය ගණනය කරන්න.

කොමිස් පුතිශතය =
$$\frac{36\ 000}{1\ 200\ 000} imes 100\%$$
 = $\underline{3\%}$

4.3 අභනාසය

- 1. රු 25~000ක් ලෙස මිල ලකුණු කර ඇති රූපවාහිනියක් විකිණීමේදී 5% ක වට්ටමක් පිරිනමනු ලැබේ.
 - i. පිරිනැමු වට්ටම කොපමණ ද?
 - ii. රූපවාහිනයේ විකුණුම් මිල සොයන්න.
- 2. 5%ක වට්ටමක් හිමි වන රෙදි වෙළෙඳසලකින් රු 1500ක් ලෙස මිල ලකුණු කළ කලිසමක් හා රු 1200ක් ලෙස මිල ලකුණු කළ කමිසයක් මිල දී ගත් නිම්දියට ඒ සඳහා ගෙවීමට සිදු වන මුදල කොපමණ ද?
- 3. උත්සව සමයේ එක ම වර්ගයේ පාවහන් විකිණීමට ඇති පාවහන් වෙළෙඳසල් දෙකක අලවා තිබූ දැන්වීම් දෙකක් පහත දැක්වේ.

A වෙළෙඳසල සෑම මිල දී ගැනීමක දී ම 8% ක වට්ටමක් $m{B}$ වෙළඳසැල රු 1000කට වඩා ඕනෑ ම මිල දී ගැනීමක දී රු 100ක මිල අඩු කිරීමක්

- i. රුපියල් 1500ක් ලෙස මිල ලකුණු කර ඇති පාවහන් යුගලයක් A වෙළෙඳසලෙන් මිල දී ගැනීමේ දී ගෙවිය යුතු මුදල කොපමණ ද?
- ii. රුපියල් 1500ක් ලෙස මිල ලකුණු කර ඇති පාවහන් යුගලක් B වෙළෙඳසලෙන් මිල දී ගැනීමේ දී ගෙවිය යුතු මුදල කොපමණ ද?
- iii. B වෙළෙඳසලෙන් එම පාවහන් යුගලය මිල දී ගැනීමේ දී ලැබෙන වට්ටම් පුතිශතය කොපමණ ද?
- iv. පාවහන් යුගල කවර වෙළෙඳසලකින් මිල දී ගැනීම වඩා වාසිදායක ද?
- 4. පාපැදි අලෙවිකරුවකු, රු 8000කට මිල දී ගත් පාපැදියක්, ගත් මිලෙන් 25%ක ලාභයක් ලැබෙන පරිදි විකිණීම සඳහා මිල නියම කොට ඇත. අත්පිට මුදලට මිල දී ගන්නේ නම් 10%ක වට්ටමක් දෙනු ලැබේ.
 - i. පාපැදිය විකිණීමට ලකුණු කොට ඇති මිල සොයන්න.
 - ii. වට්ටමක් දුන් පසු පාපැදියේ මිල සොයන්න.
 - iii. පාපැදි අලෙවිකරු පාපැදිය මිල දී ගත් මුදලින් 20%ක ලාභ පුතිශතයක් ලැබෙන සේ මිල ලකුණු කළ හොත් එවිට පාපැදියේ විකුණුම් මිල සොයන්න.
- 5. වෙළෙන්දෙක් කිසියම් භාණ්ඩයක් අලෙවියෙන් 10%ක් ලාභ ලැබෙන සේ මිල ලකුණු කරයි. ලකුණු කළ මිලෙන් 10%ක වට්ටමක් දීමට ද ඔහු අදහස් කරයි. මෙම වෙළෙඳාමෙන් ඔහුට ලැබෙන ලාභය හෝ සිදු වන අලාභය විස්තර කරන්න.

- 6. එක්තරා තැරැව් සමාගමක් ඉඩමක් විකුණා දීම සඳහා 3%ක කොමිස් මුදලක් අය කරයි. රුපියල් $5\ 000\ 000$ ක් වටිනා ඉඩමක් විකිණීමේ දී,
 - i. ගෙවීමට සිදු වන කොමිස් මුදල කොපමණ ද?
 - ii. මෙම ගනුදෙනුවෙන් ඉඩම් හිමියාට ලැබෙන මුදල කොපමණ ද?
- 7. තැරැව්කරුවකු විසින් රුපියල් 300~000ක් වටිනා විදුලි ජනන යන්තුයක් විකුණා දීම සඳහා කොමිස් මුදල් වශයෙන් රු 25~000ක මුදලක් අය කරනු ලැබිණි නම්, ඒ සඳහා අය කර ඇති කොමිස් පුතිශතය ගණනය කරන්න.
- 8. වාහනයක් අලෙවි කිරීමේ දී තැරැව්කරුවකුට රු 30 000ක මුදලක් ගෙවීමෙන් පසු වාහනයේ අයිතිකරුට ලැබුණ මුදල රුපියල් 570 000ක් නම්,
 - i. වාහනයේ විකුණුම් මිල කොපමණ ද?
 - ii. අය කර ඇති කොමිස් පුතිශතය කොපමණ ද?
- 9. පුද්ගලයකු නිවසක් මිල දී ගැනීමේ දී 3%ක කොමිස් මුදලක් ගෙවයි. ඒ අනුව ඔහු කොමිස් ලෙස ගෙවූ මුදල රු $54\ 000$ නම් නිවස ගත් මිල සොයන්න.

මිශු අභාහාසය

- 1. කසුන් තම ඉඩමෙන් පර්වස් 10ක් විකිණීමට තීරණය කළ අතර පර්වසයක් රු $300\,000$ බැගින් විකිණීමට අදහස් කරයි. ගැනුම්කරුවන් සොයා ගැනීම සඳහා ඔහු තැරෑව්කරුවකුගේ සේවය ලබා ගන්නා අතර ඔහුට 3%ක කොමිස් මුදලක් ඔහුට දීමට පොරොන්දු විය. ඉඩම විකිණීමේ දී 1%ක වට්ටමක් ඔහු ගැනුම්කරුට ලබා දුන්නේ නම් ඉඩම විකිණීමෙන් ඔහු ලබන ආදායම සොයන්න.
- 2. වාහන මිලදී ගෙන විකිණීමේ වහාපාරයක නිරත වන අමල් රු 5 000 000කට වාහනයක් මිල දී ගනී. මිල දී ගැනීමෙන් පසු වාහනය රු 6 000 000කට විකිණීමට ඔහු අදහස් කරයි. නමුත් ඔහු ගැනුම්කරුට 3%ක වට්ටමක් ලබා දුන් අතර විකිණීමේ දී කොමිස් ලෙස තැරැව්කරුට 2%ක කොමිස් මුදලක් ලබා දුන්නේ ය. අමල් ලද ලාභය සොයන්න.

සාරාංශය

- ලාභය = විකුණුම් මිල වියදම් වූ මුදල
- අලාභය = වියදම් වූ මුදල විකුණුම් මිල

ලාභ පුතිශතය =
$$\frac{$$
ලාභය $}{$ ගත් මිල(හෝ නිෂ්පාදන වියදම) $} imes 100\%$

අලාභ පුතිශතය =
$$\frac{$$
අලාභය $}{$ ගත් මිල(හෝ නිෂ්පාදන වියදම) $imes 100\%$

වීපීය පුකාශන

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- සදිශ සංඛාා ආදේශයෙන් සරල වීජිය පුකාශනවල අගය සෙවීමට
- ullet $(x\pm a)\,(x\pm b)$ ආකාරයේ ද්විපද පුකාශන දෙකක ගුණිතය පුසාරණය කිරීමට
- වර්ගඵල ඇසුරෙන් ද්විපද පුකාශන දෙකක ගුණිතයේ පුසාරණය සතුාාපනය කිරීමට හැකියාව ලැබේ.

වීජීය පුකාශන

8 ශේණීයේ දී වීජීය පුකාශන පිළිබඳ උගෙන ගත් කරුණු නැවත සිහිපත් කර ගැනීම සඳහා පහත දී ඇති පූනරීක්ෂණ අභාාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාාසය

1. පුසාරණය කරන්න.

a.
$$5(x+2)$$

b.
$$3(y+1)$$

b.
$$3(y+1)$$
 c. $4(2m+3)$

d.
$$3(x-1)$$

e.
$$4(3-y)$$

f.
$$2(3x-2y)$$

g.
$$-2(y+3)$$

h.
$$-3(2+x)$$

i.
$$-5(2a+3b)$$

j.
$$-4(m-2)$$

k.
$$-(5-y)$$

1.
$$-10(-3b-2c)$$

2. පුසාරණය කරන්න.

a.
$$x(a+2)$$

b.
$$y(2b-3)$$

c.
$$a(2x + 3y)$$

d.
$$2a(x+5)$$

e.
$$2b(y-2)$$

f.
$$3p(2x-y)$$

g.
$$(-3q)(p+8)$$

h.
$$(-2x)(3-2y)$$

g.
$$(-3q)(p+8)$$
 h. $(-2x)(3-2y)$ **i.** $(-5m)(x-2y)$

3. x=3 ද y=-2 ද විට පහත දී ඇති එක් එක් පුකාශනයේ අගය සොයන්න.

$$\mathbf{a.} x + y$$

b.
$$x-y$$

c.
$$3x - 2y$$

d.
$$-2x + y$$

e.
$$2(x + y)$$

f.
$$3(2x-y)$$

4. පහත දී ඇති එක් එක් පුකාශනය පුසාරණය කර සුළු කරන්න.

a.
$$3(x+y)+2(x-y)$$
 b. $5(a+b)+4(a+c)$

b.
$$5(a+b)+4(a+c)$$

c.
$$4(a+b)+3(2a-b)$$
 d. $2(a-b)+(2a-b)$ **e.** $5(m+n)+2(m+n)$ **f.** $3(m+n)-(m-n)$

d.
$$2(a-b)+(2a-b)$$

e.
$$5(m+n)+2(m+n)$$

f.
$$3(m+n)-(m-n)$$

g.
$$5(x-y)-3(2x+y)$$
 h. $2(3p-q)-3(p-q)$

h.
$$2(3p-q)-3(p-q)$$

i.
$$-4(m+n)+2(m+2)$$

j.
$$-4(a-b)-2(a-b)$$

5.1 ආදේශය

වීජිය පුකාශනයක අඩංගු අඥාත සඳහා නිඛිල ආදේශ කිරීමෙන්, එම වීජිය පුකාශනයට සංඛාහත්මක අගයක් ලබා ගැනීමට ඔබ 8 ශේුණියේ දී උගෙනගෙන ඇත. සදිශ සංඛාහ ආදේශයෙන් වීජිය පුකාශනයක අගය සොයන ආකාරය මෙම කොටසින් විමසා බලමු.

lacktriangle විනෝද චාරිකාවකට වැඩිහිටියෝ 20දෙනෙක් හා ළමයි 16දෙනෙක් සහභාගී වූහ. එහි දී උදෑසන ආහාරය සඳහා වැඩිහිටියෙකුට ලබාදුන් පාන් පුමාණය x ද ළමයකුට ලබාදුන් පාත් පුමාණය y ද වේ. ඔවුන් සඳහා අවශා වූ මුළු පාත් පුමාණය වීජිය පුකාශනයක් ලෙස ලියා දක්වමු.

වැඩිහිටියන්
$$20$$
දෙනෙක් සඳහා ලබා දුන් පාන් පුමාණය $=20\,x$ ළමයින් 16 දෙනෙක් සඳහා ලබා දුන් පාන් පුමාණය $=16\,y$ බෙදා දෙන ලද මුළු පාන් පුමාණය $=20x+16y$

වැඩිහිටියකුට පාත් බාගයක් ද, ළමයකුට පාත් කාලක් ද ලබා දුන්නේ නම් බෙදා දී ඇති මුළු පාන් පුමාණය සොයමු.

එවිට $x=\frac{1}{2}$ හා $y=\frac{1}{4}$ වේ. බෙදා දුන් මුළු පාන් පුමාණය සෙවීම සඳහා $x=\frac{1}{2}$ හා $y=rac{1}{4}$ අගයන් 20x+16y පුකාශනයේ ආදේශ කළ යුතු ය.

ඒ අනුව, බෙදා දුන් මුළු පාන් ගෙඩි ගණන =
$$20 imes rac{1}{2} + 16 imes rac{1}{4}$$
 = $10 + 4$ = 14

නිදසුන 1

 $a=rac{1}{2}$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය සොයන්න.

i.
$$2a + 3$$

$$2a + 3 = 2 \times \frac{1}{2} + 3$$

$$= 1 + 3$$

$$= \underline{4}$$

ii.
$$6 - 4a$$

 $6 - 4a = 6 - 4 \times \frac{1}{2}$
 $= 6 - 2$
 $= \frac{4}{2}$

 $b = -\frac{2}{3}$ වන විට පහත දැක්වෙන එක් එක් වීජීය පුකාශනයේ අගය සොයන්න.

i.
$$3b + 5$$

 $3b + 5$
 $= 3 \times \frac{-2}{3} + 5$
 $= (-2) + 5$
 $= 3$

ii.
$$5-6b$$

$$5-6b$$

$$= 5-6 \times (-\frac{2}{3})$$

$$= 5+(-6) \times (-\frac{2}{3})$$

$$= 5+4$$

$$= 9$$

iii.
$$2b + \frac{1}{3}$$

$$2b + \frac{1}{3}$$

$$= 2 \times (\frac{-2}{3}) + \frac{1}{3}$$

$$= \frac{-4}{3} + \frac{1}{3}$$

$$= \frac{-3}{3}$$

$$= -1$$

නිදසුන 3

 $x=rac{1}{2}$ හා $y=-rac{1}{4}$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය සොයන්න.

i.
$$2x + 4y$$

$$2x + 4y = 2 \times \frac{1}{2} + 4 \times \left(-\frac{1}{4}\right)$$

$$= 1 - 1$$

$$= \underline{0}$$

ii.
$$2x - 2y$$

$$2x - 2y = 2 \times \frac{1}{2} - 2 \times \left(-\frac{1}{4}\right)$$

$$= 1 + \frac{1}{2}$$

$$= \frac{1}{2}$$

$$4xy = 4 \times \frac{1}{2} \times \left(-\frac{1}{4}\right)$$
$$= -\frac{1}{2}$$

iii. 4*xy*

$$i\mathbf{v.} - 2xy$$

$$-2xy = -2 \times \left(\frac{1}{2}\right) \times \left(-\frac{1}{4}\right)$$

$$= \frac{1}{4}$$

(5.1 අභනාසය

 ${f 1.} \ x = rac{1}{4}$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය සොයන්න.

i. 4*x*

ii. 2*x*

iii. 3*x*

iv. -8x

 $\mathbf{2.}\ y = \frac{-1}{3}$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය සොයන්න.

i. 3*y*

ii. 2*y*

iii. -6y **iv.** -4y

 ${f 3.}\;a=-2\;{f c}\;b=rac{1}{2}\;{f c}\;$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය

i. a + 2b

ii. 4b-a

iii. 3a + b

 $4. \ x = rac{2}{3} \ \epsilon \ y = rac{3}{4} \ \epsilon$ වන විට පහත දැක්වෙන එක් එක් වීජිය පුකාශනයේ අගය

i. 3x + 4y **ii.** 3x - 2y **iii.** 8y - 6x

5. $p = -\frac{1}{2}$ ද q = -3 ද වන විට පහත දැක්වෙන එක් එක් වීජීය පුකාශනයේ අගය සොයන්න.

i. 2p + q **ii.** 4p - q **iii.** 6pq - 2

🛚 5.2 ද්විපද පුකාශන දෙකක ගුණිතය

මුලින් ම, වීජිය සංකේත, වීජිය පද, වීජිය පුකාශන හා ද්විපද පුකාශන යන්නෙන් අදහස් වන දෑ පිළිබඳව නැවත මතක් කර ගනිමු. x,y,z,a,b,c, ආදි ඉංගීසි අකුරුවලින් වීජිය සංකේත දැක්වේ.

x,y,z, ආකාරයේ වීජීය සංකේත වීජීය පද ලෙස ගැනේ.

 $2x, 5y, -2a, \frac{x}{3}$ ලෙස, වීජිය සකේතයක් තවත් සංඛාාවකින් ගුණ වී හෝ බෙදී ඇති විට ද එය **වීජිය පදයක්** ලෙස හැඳින්වේ. එසේම, $xy,\,ay,\,rac{b}{z}$ ලෙස, වීජිය සංකේතයක් තවත් වීජිය සංකේතයකින් ගුණ වී හෝ බෙදී ඇති විට ද එය <mark>වීජිය පදයක්</mark> ලෙස හැඳින්වේ. ඒ ආකාරයෙන් ම, 2xy, -3zab, $\frac{2}{5}xy$ ආදි ලෙස වීජිය පද හා සංඛාා ගුණ වී හෝ බෙදී ඇති විට ද ඒවා වීජිය පද ලෙස හැඳින් වේ. මෙවැනි වීජිය පද වීජිය පුකාශන (එක් පදයක් පමණක් ඇති) ලෙස ද සැලකේ.

වීජිය පදවල එකතුවක් හෝ අන්තරයක් හැඳින්වෙන්නේ ද වීජිය පුකාශනයක් ලෙස ය. නිදසුන් ලෙස, x+y, 2a+xyz, $4xy^2-yz$ හා -2x+3xy වීජිය පුකාශන වේ. එසේ ම, වීජිය සංකේතයකට හෝ පදයකට සංඛාාවක් එකතු වී හෝ අඩු වී ඇති විට ද එය වීජිය පුකාශනයක් ලෙස හැඳින්වේ. නිදසුනක් ලෙස, x+4 හා 1-3ab යනු වීජිය පුකාශන වේ.

මෙතෙක් දැක්වූ සෑම වීජිය පුකාශනයක ම ඇත්තේ පද දෙකකි. පද දෙකක් පමණක් එකතු කිරීමකින් හෝ අඩු කිරීමකින් සම්බන්ධ වී ඇති පුකාශනවලට 'ද්විපද වීජිය පුකාශන' (හෝ, සරලව 'ද්විපද පුකාශන') යැයි කියනු ලැබේ.

නමුත් වීජිය පුකාශනයක පද ඕනෑ ම ගණනක් තිබිය හැකි ය. නිදසුනක් ලෙස, 3+ax-2xyz+xy යනු පද 4ක් සහිත වීජිය පුකාශනයකි. එහි වීජිය පද තුනක් හා සංඛාාවක් (නියත පදයක්) ඇත. මෙම පාඩමේ දී අපි හදාරන්නේ ද්විපද පුකාශනවල ගුණිත පිළිබඳව ය.

ද්වීපද පුකාශන දෙකක ගුණිතය පිළිබඳ ව වීමසා බලමු.

රූපයේ දැක්වෙන සමචතුරසුාකාර මල් පාත්තියේ පැත්තක දිග ඒකක x යැයි සලකමු. එම මල් පාත්තියේ එක් පැත්තක දිග ඒකක 3කින් ද අනෙක් පැත්තේ දිග ඒකක 2කින් ද වැඩි කර, වඩා විශාල සෘජුකෝණාසුාකාර මල් පාත්තියක් තනනු ලබයි නම්, එම විශාල මල් පාත්තියේ වර්ගඵලය සඳහා වීජිය පුකාශනයක් x ඇසුරෙන් ගොඩනගන ආකාරය සලකා බලමු.

විශාල මල් පාත්තියේ දිග ඒකක = x + 3විශාල මල් පාත්තියේ පළල ඒකක = x + 2

රූපයට අනුව,

විශාල මල් පාත්තියේ වර්ගඵලය = දිග \times පළල = වර්ග ඒකක (x+3)(x+2) ————(1) ආකාරයට ලියා දැක්විය හැකි ය.

(x+3)(x+2) යන්න ද්විපද පුකාශන දෙකක ගුණිතයක් බව නිරීක්ෂණය කරන්න.

මෙම විශාල මල් පාත්තියේ වර්ගඵලය වෙනත් ආකාරයකට ද සෙවිය හැකි ය. ඒ එය සැදී ඇති කුඩා කොටස් හතරෙහි වර්ගඵල එකතු කිරීමෙනි. එම කොටස් හතර වන්නේ මුලින් තිබූ සමවතුරසුාකාර කොටස හා රූපයේ දැක්වෙන කුඩා ඍජුකෝණාසුාකාර කොටස් තුනයි. ඒ අනුව,

විශාල මල් පාත්තියේ වර්ගඵලය = කුඩා කොටස් හතරෙහි වර්ගඵලය

$$=$$
 වර්ග ඒකක $x^2 + 2x + 3x + 6$
 $=$ වර්ග ඒකක $x^2 + 5x + 6$ ______(2)

යම් පුදේශයක වර්ගඵලය කුමන ආකාරයට සෙවූවත් ඒවා එකිනෙකට සමාන විය යුතු නිසා,

(1) හා (2) අනුව, තහවුරු වන්නේ පහත සමානතාවයි.

$$(x+3)(x+2) = x^2 + 5x + 6$$

දැන් මෙම සමානතාව, ඉහත ආකාරයේ රූපයක් නොමැතිව ලබා ගත හැක්කේ කෙසේ දැයි විමසා බලමු.

ඒ සඳහා, මුලින් ම ඇති වරහන තුළ ඇති සියලු පදවලින් දෙවැනි වරහන තුළ ඇති සියලු පද ගුණ කරමු.

$$(x+3) (x+2) = (x+3) (x+2)$$

$$= x (x+2) + 3 (x+2)$$

$$= x^2 + 2x + 3x + 6$$

$$= x^2 + 5x + 6$$

ඒ අනුව, රූප නොමැතිව ඉහත ආකාරයට ද්විපද පුකාශන දෙකක ගුණිතය ලබා ගත හැකි ය.

එවැනි ම තවත් කිුිිියාකාරකමක් වෙත අපේ අවධානය යොමු කරමු.

කිුියාකාරකම 1

දී ඇති තොරතුරු අනුව සුදුසු පරිදි හිස්තැන් පුරවන්න.

පැත්තක දිග සෙන්ටිමීටර x බැගින් වූ සමචතුරසුාකාර තහඩුවක් I රූපයේ දැක්වේ. එහි එක් පැත්තකින් ඒකක 2ක් ද අනෙක් පැත්තෙන් ඒකක 3ක් ද වන පරිදි පටි දෙකක් කපා ඉවත් කර ඇති ආකාරය II රූපයෙන් දැක්වේ.

I රූපය

II රූපය

ඉතිරි වූ සෘජුකෝණාසුාකාර තහඩුවේ වර්ගඵලය =(x-2)(x-3) ———①

II රූපයට අනුව,

① හා ② න්

$$= x^2 - 2 (\dots) - \dots (x - 2) - 2 \times 3$$

ඒ අනුව,
$$(x-2)(x-3) = x^2 - 2(\dots) - \dots (x-2) - 2 \times 3$$

=
=

ද්විපද පුකාශන දෙකක ගුණිතය ලබාගන්නා ආකාරය තවත් හොඳින් පැහැදිලි කර ගැනීම සඳහා නිදසුන් කීපයක් සලකා බලමු.

නිදසුන 1

(x+5)(x+3)

නිදසුන 2

$$(x+5)(x-3)$$

$$(x+5) (x+3) = x (x+3) + 5 (x+3)$$
$$= x^2 + 3x + 5x + 15$$
$$= x^2 + 8x + 15$$

$$(x+5) (x-3) = x (x-3) + 5 (x-3)$$
$$= x^2 - 3x + 5x - 15$$
$$= x^2 + 2x - 15$$

නිදසුන 3

(x-5)(x+3)

නිදසුන 4

$$(x-5)(x-3)$$

$$(x-5) (x + 3) = x (x + 3) - 5 (x + 3)$$
$$= x^{2} + 3x - 5x - 15$$
$$= x^{2} - 2x - 15$$

$$(x-5) (x-3) = x (x-3) - 5 (x-3)$$
$$= x^2 - 3x - 5x + 15$$
$$= x^2 - 8x + 15$$

නිදසුන 5

$$x = 5$$
 වන විට $(x + 8)(x - 3) = x^2 + 5x - 24$ බව පෙන්වන්න.

ව.ප
$$\tau = \xi$$
.ප τ
 $\therefore (x+8)(x-3) = x^2 + 5x - 24$

(5.2 අභනාසය

1. පහත දැක්වෙන එක් එක් ද්විපද පුකාශන දෙකෙහි ගුණිත පුසාරණය කර සුළු කරන්න.

a.
$$(x+2)(x+4)$$
 b. $(x+1)(x+3)$ **c.** $(a+3)(a+2)$

b.
$$(x + 1) (x + 3)$$

c.
$$(a+3)(a+2)$$

d.
$$(m+3) (m+5)$$
 e. $(p-4) (p-3)$ **f.** $(k-3) (k-3)$

e.
$$(p-4)(p-3)$$

f.
$$(k-3)(k-3)$$

- 2. (1) හි a, b හා e කොටස්වල දී ඇති එක් එක් ද්විපද පුකාශන දෙකෙහි ගුණිතය සඳහා සෘජුකෝණාසුයක් ඇඳ, ඒ ඇසුරෙන් (1) හි ලබාගත් පිළිතුරු සතාාපනය කරන්න.
- $oldsymbol{3.}$ පහත දැක්වෙන එක් එක් ද්විපද පුකාශන දෙකෙහි ගුණිතය පුසාරණය කර සුළු කරන්න.

a.
$$(x+2)(x-5)$$
 b. $(x+3)(x-7)$ **c.** $(m+6)(m-1)$

b.
$$(x+3)(x-7)$$

c.
$$(m+6)(m-1)$$

d
$$(r-2)(r+3)$$

e.
$$(x-5)(x+5)$$

d.
$$(x-2)(x+3)$$
 e. $(x-5)(x+5)$ **f.** $(m-1)(m+8)$

g.
$$(x-3)(x-4)$$

h.
$$(y-2)(y-5)$$

i.
$$(m-8)(m-2)$$

j.
$$(x-3)(2-x)$$

j.
$$(x-3)(2-x)$$
 k. $(5-x)(x-4)$ **l.** $(2-x)(3-x)$

1.
$$(2-x)(3-x)$$

 $f 4. \ A$ කොටසෙහි ඇති එක් එක් පුකාශනය සුළු කිරීමෙන් ලැබෙන පුකාශනය f Bකොටසේ ඇති නිවැරදි පිළිතුරට යා කරන්න.

A

$$(x+2)(x+1)$$

 $(x+3)(x-4)$
 $(x+5)(x-2)$
 $(x-3)(x-3)$
 $(x-5)(x+5)$

5. $(x+5)(x+6)=x^2+11x+30$ බව පහත දැක්වෙන එක් එක් අවස්ථාව සඳහා සතාහපනය කරන්න.

i.
$$x = 3$$
 ii. $x = -2$

6. $(x-2)(x+3)=x^2+x-6$ බව පහත දැක්වෙන එක් එක් අවස්ථාව සඳහා සතුහාපනය කරන්න.

i.
$$x = 1$$
 ii. $x = 4$ **iii.** $x = 0$

7. $(2-x)(4-x)=x^2-6x+8$ බව පහත දැක්වෙන එක් එක් අවස්ථාව සඳහා සතාහපනය කරන්න.

i.
$$x = 2$$
 ii. $x = 3$ **iii.** $x = -2$

- 8. සැරසිල්ලක් සඳහා කපා ගන්නා ලද සෘජුකෝණාසාකාර කඩදාසියක දිග $15~{\rm cm}$ ද පළල $8~{\rm cm}$ ද වේ. දිග පැත්තෙන් හා පළල පැත්තෙන් මීටර x බැගින් පටි දෙකක් කපා ඉවත් කරනු ලැබේ. ඉතිරි වන කොටසේ වර්ගඵලය සඳහා පුකාශනයක් රූප ඇසුරෙන් ලබා ගන්න. (මෙහි $x < 8~{\rm cm}$ බව සලකන්න).
- 9. දිග මීටර x ද පළල මීටර 2 ද වූ සෘජුකෝණාසාකාර මල් පාත්තියක් රූපයේ දැක්වේ. එහි දිග පැත්තෙන් මීටර 2ක් අඩු කර, පළල පැත්ත මීටර x පුමාණයකින් දික් කරන ලදි. දැන් තිබෙන පාත්තියේ වර්ගඵලය සඳහා පුකාශනයක් රූප භාවිතයෙන් x ඇසුරෙන් ගොඩනගන්න (මෙහි x > 2 m බව සලකන්න).

මිශු අභාහාසය

1. දී ඇති රූපයේ අඳුරු කර ඇති වර්ගඵලය සඳහා පුකාශනයක් ලියා සුළු කර දක්වන්න.

2. $(x+a)(x+4) = x^2 + bx + 12$ නම් a හා bහි අගය සොයන්න.

වීජීය පුකාශනවල සාධක

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- පොදු සාධක ද්විපද වූ පද 4ක් සහිත වීජිය පුකාශනවල සාධක සෙවීමට,
- \bullet $x^2 + bx + c$ ආකාරයේ තිුපද වර්ගජ පුකාශනවල සාධක සෙවීමට,
- වර්ග දෙකක අන්තරයක් ලෙස ලියා ඇති වීජිය පුකාශනවල සාධක සෙවීමට හැකියාව ලැබේ.

වීජීය පුකාශනවල සාධක

ඉහත 5 වන පාඩමේ දී වීජ ගණිතයට අදාළ පද බොහෝ ගණනක තේරුම පහදා දෙන ලදි. මෙම පාඩමේ දී වීජිය පුකාශනයක (හෝ වීජිය පදයක) සාධක යන්නෙන් අදහස් වන දෑ විමසා බලමු.

2xy යන වීජිය පදය සැලකු විට, එය සෑදී ඇත්තේ 2, x හා y යන පද තුන ගුණ වීමෙනි. එමනිසා 2, x හා y යන තුන ම එහි සාධක වේ.

2x+2y යනු ද්විපද පුකාශනයකි. එය, වීජිය පද දෙකක එකතුවක් වේ. මෙහි 2 හා x යනු 2x පදයෙහි සාධක වේ. එසේම, 2 හා y යන්න 2y පදයෙහි සාධක වේ. ඒ අනුව, 2x හා 2y යන පද දෙකටම 2 යන්න පොදු සාධකයකි. එම පොදු සාධකය ඇසුරෙන්, මෙම ද්විපද පුකාශනය 2(x+y) ලෙස ද ලිවිය හැකි බව ඔබ 8 ශේණීයේ දී උගෙන ඇත. එනම්,

$$2x + 2y = 2(x + y)$$

ලෙස ලිවිය හැකි ය. මෙසේ ලිවීමේ ඇති විශේෂත්වය වන්නේ, 2x හා 2y පදවල එකතුවක් ලෙස දක්වා ඇති වීජිය පුකාශනය, 2 හා x+y වල ගුණිතයක් ලෙස දැක්වී තිබීමයි. එවිට, මෙම 2 හා x+yට 2x+2y හි සාධක යැයි කියනු ලැබේ. වෙනත් අයුරකින් කිව හොත්, 2x+2y යන වීජිය පුකාශනය, 2 හා x+y වල ගුණිතයක් ලෙස ලිවිය හැකි ය.

ඉහත 2x+2y හි එක් සාධකයක් 2 නමැති සංඛාාව වන අතර අනෙක් සාධකය x+y නමැති වීජීය පුකාශනය වේ. එහෙත්, සාධක වීජීය පද හෝ වීජීය පුකාශන හෝ විය හැකි ය. නිදසුනක් ලෙස, xy+5xz යන්න x(y+5z) ලෙස ලිවිය හැකි නිසා, x හා y+5z එහි සාධක වේ.

ඉහත 5 වන පාඩමේ දී උගත් කරුණු අනුව, x(y+5z) ලෙස ගුණිතයකින් ලියා ඇති වීජිය පුකාශනය පුසාරණය කළ විට ලැබෙන්නේ xy+5xz යන, ඓකාෘයකින් දක්වෙන වීජිය පුකාශනයයි. මෙම පාඩමේ දී අප බලාපොරොත්තු වන්නේ, එම 5 වන පාඩමේ දී සිදු කළ කිුයාවලිය පසු පසට සිදු කරන්නේ කෙසේ ද යන්න හැදැරීමයි. එනම්, වීජිය පුකාශනයක් දී ඇති විට එය සාධකවල ගුණිතයක් ලෙස ලියන අයුරු හැදෑරීමයි.

8 වන ශේණියේ දී උගෙනගෙන ඇති පරිදි පහත දැක්වෙන පුකාශන සාධකවල ගුණිතයක් ලෙස ලියා ඇති අයුරු නිරීක්ෂණය කරන්න.

- 3x + 12 = 3(x + 4)
- 6a + 12b 18 = 6(a + 2b 3)
- -2x-6y=-2(x+3y)
- 3x 6xy = 3x(1 2y)

ඉහත නිදසුන්වල දෙවනුවට ඇති 6a+12b-18හි පදවල පොදු සාධකය වන්නේ 6 ය. එය 6, 12, 18 යන සංඛ්‍යාවල මහා පොදු සාධකය බව නිරීක්ෂණය කරන්න. සංඛ්‍යාවක් පොදු සාධකයක් වන විට, සෑම විට ම මහා පොදු සාධකය සැලකිය යුතු ය. එසේ ම, වීජිය පුකාශනවල සාධක සෙවීමේදී සංඛ්යාවල සාධක වෙන් කිරීම අනවශා ය. නිදසුනක් ලෙස, 6x+6y යන්න 6(x+y) ලෙස මිස, $2 imes 3\ (x+y)$ ලෙස ලිවීම අනවශා ය.

එම කරුණු තව දුරටත් තහවුරු කර ගැනීමට පහත පුනරීක්ෂණ අභනාසයේ යෙදෙන්න.

(පුනරීක්ෂණ අභාහාසය)

පහත දැක්වෙන එක් එක් වීජිය පුකාශනය සාධකවල ගුණිතයක් ලෙස ලියා දක්වන්න.

a.
$$8x + 12y$$

a.
$$8x + 12y$$
 b. $9a + 18y$ **c.** $3m + 6$

c.
$$3m + 6$$

d
$$20a - 30b$$

d.
$$20a - 30b$$
 e. $4p - 20q$ **f.** $12 - 4k$

f.
$$12 - 4k$$

g.
$$3a + 15b - 12$$
 h. $12a - 8b + 4$ **i.** $9 - 3b - 6c$

h.
$$12a - 8b + 4$$

i.
$$9 - 3b - 6a$$

i.
$$-12x + 4y$$
 k. $-8a - 4b$ **l.** $-6 + 3m$

k.
$$-8a - 4b$$

$$-6 + 3m$$

$$\mathbf{m}$$
. $ab + ac$

$$\mathbf{n.} \quad p - pq$$

$$\mathbf{o.} \ ab + ac - ad$$

p.
$$3x + 6xy$$

$$\mathbf{q.} \ 6ab - 9bc$$

r.
$$4ap + 4bp - 4p$$

s.
$$x^3 + 2x$$

t.
$$3m - 2nm^2$$

u.
$$6s - 12 s^2 t$$

6.1 පද හතරක් සහිත වීජීය පුකාශනවල සාධක

 $A,\,B,\,C$ හා D ලෙස නම් කර ඇති සෘජුකෝණාසු කොටස් හතරකින් සැදුම්ලත් විශාල සෘජුකෝණාසුයක රූප සටහනක් පහත දැක්වේ.

එක් එක් සෘජුකෝණාසුයේ වර්ගඵලය, දක්වා ඇති x,y,a හා b වීජිය සංකේත ඇසුරෙන් සොයමු.

A කොටසේ වර්ගඵලය $= a \times x = ax$

B කොටසේ වර්ගඵලය =b imes x = bx

C කොටසේ වර්ගඵලය $= a \times y = ay$

D කොටසේ වර්ගඵලය = b imes y = by

දැන්, විශාල සෘජුකෝණාසුයේ වර්ගඵලය සොයමු.

විශාල සෘජුකෝණාසුයේ දිග = a+b

විශාල සෘජුකෝණාසුයේ පළල=x+y

එමනිසා, විශාල සෘජුකෝණාසුයේ වර්ගඵලය = (a+b)(x+y)

දැන්, කුඩා සෘජුකෝණාසු 4හි වර්ගඵලය = විශාල සෘජුකෝණාසුයේ වර්ගඵලය වන නිසා $ax+ay+bx+by=(a+b)\ (x+y)$ වේ.

මෙම පාඩමට පෙර පාඩමේ දී අධාායනය කළ ආකාරයට (a+b)(x+y) යන ද්විපද පුකාශන දෙකෙහි ගුණිතය පුසාරණය කිරීම මගින්, ඉහත සමානතාවයේ සතාාතාව නැවත වීමසා බැලිය හැකි ය. එය මෙසේ පුසාරණය කර බලමු.

$$(a + b)(x + y) = a (x + y) + b (x + y)$$

= $ax + ay + bx + by$

එනම්, සමානතාවයේ සතාාතාව තහවුරු වේ (එනම්, සතාාපනය වේ).

මෙම පාඩමේ දී අප බලාපොරොත්තු වන්නේ ax + ay + bx + by ආකාරයේ පුකාශනයක් දී ඇති විට, එය (a + b)(x + y) ආකාරයට සාධක දෙකක ගුණිතයක් ලෙස ලිවිය හැකි කුමයක් හැදෑරීමට යි. මුලින් ම නිරීක්ෂණය කළ යුතු වන්නේ, ax, ay, bx හා by යන පද හතරටම පොදු වූ සාධකයක් නොමැති බවයි. එමනිසා පොදු සාධක පිටතට ගැනීමේ කුමය මෙහි දී එක් වර ම කළ නොහැකි ය. එහෙත්, මෙහි පද දෙක බැගින් ගත් විට පහත දැක්වෙන පරිදි පොදු සාධක පිටතට ගෙන ලිවිය හැකි ය.

$$ax + bx + ay + by = (ax + bx) + (ay + by)$$

= $x (a + b) + y (a + b)$

දැන්, අවසානයට ලැබී ඇති පුකාශනය, x(a+b) හා y(a+b) යන වීජිය පුකාශන දෙකෙහි එකතුවක් වේ. මෙම x(a+b) හා y(a+b) යන පුකාශන දෙකට ම, (a+b) යන්න පොදු සාධකයක් බව නිරීක්ෂණය කරන්න. එමනිසා, එම පොදු සාධකය පිටතට ගෙන, (a+b)(x+y) ලෙස එය ලිවිය හැකි ය. එනම්,

$$ax + bx + ay + by = x (a + b) + y (a + b)$$

= $(a + b) (x + y)$

ලෙස සාධක දෙකක ගුණිතයකින් දැක්විය හැකි ය.

නිදසුන 1

3x + 6y + kx + 2ky හි සාධක සොයන්න.

$$3x + 6y + kx + 2ky = 3(x + 2y) + k(x + 2y)$$
$$= (x + 2y)(3 + k)$$

නිදසුන 2

 $a^2-3a+ab-3b$ හි සාධක සොයන්න.

$$a^{2}-3a + ab - 3b = a (a - 3) + b (a - 3)$$
$$= \underline{(a - 3) (a + b)}$$

නිදසුන 3

 $x^2 + xy - x - y$ හි සාධක මසායන්න.

$$x^{2} + xy - x - y = x^{2} + xy - 1 (x + y)$$

$$= x (x + y) - 1 (x + y)$$

$$= (x + y) (x - 1)$$

6.1 අභාගසය

පහත දී ඇති එක් එක් වීජිය පුකාශනයේ සාධක සොයන්න.

a.
$$ax + ay + 3x + 3y$$

b.
$$ax - 8a + 3x - 24$$

$$\mathbf{c.} mp - mq - np + nq$$

d.
$$ak + al - bk - bl$$

e.
$$x^2 + 4x - 3x - 12$$

f.
$$y^2 - 7y - 2y + 14$$

g.
$$a^2 - 8a + 2a - 16$$

h.
$$b^2 + 5b - 2b - 10$$

i.
$$5 + 5x - y - xy$$

i.
$$ax - a - x + 1$$

$6.2 \ x^2 + bx + c$ ආකාරයේ නිුපද වර්ගජ පුකාශනවල සාධක

(x+3) හා (x+4) යන ද්වීපද පුකාශන දෙකෙහි ගුණිතය ලබාගත් ආකාරය නැවත මතකයට නගා ගනිමු.

$$(x+3) (x+4) = x (x+4) + 3 (x+4)$$
$$= x^2 + 4x + 3x + 12$$
$$= x^2 + 7x + 12$$

(x+3) හා (x+4) හි ගුණිතය මගින් $x^2+7x+12$ ලැබී ඇති නිසා (x+3) හා (x+4) යන ද්විපද පුකාශන දෙක $x^2+7x+12$ යන වීජිය පුකාශනයේ සාධක වේ. $x^2+7x+12$ ආකාරයේ වර්ගජ පදයක් සහිත පද තුනක් ඇති මෙවැනි පුකාශන හිපද වර්ගජ පුකාශන ලෙස හැඳින්වේ.

සටහන:

මෙහිදී අප සලකනු ලබන තුිපද වර්ගජ පුකාශනයක් සාධාරණ වශයෙන් x^2+bx+c ලෙස දැක්විය හැකි ය. මෙහි b හා c යනු සංඛාහ වේ. නිදසුනක් ලෙස, $x^2+7x+12$ යනු b=7 හා c=12 විට ලැබෙන තුිපද වර්ගජ පුකාශනයයි. තව ද bx ට මැද පදය යයි ද c ට නියත පදය යැයි ද සාමානාශයෙන් වාවහාර වේ. ඉහත දක්වා ඇති අයුරින් $x^2+7x+12$ යන්න (x+3) (x+4) ලෙස සාධක දෙකක ගුණිතයකින් දැක්විය හැකි ය. එහෙත්, එසේ සාධක දෙකක ගුණිතයකින් දැක්විය නොහැකි තුිපද වර්ගජ පුකාශන ද ඇත. නිදසුනක් ලෙස x^2+3x+4 යන තුිපද පුකාශනය සාධක දෙකක ගුණිතයක් ලෙස දක්විය නොහැකි ය.

මෙහි දී අප සලකා බලනුයේ, එසේ සාධකවල ගුණිතයක් ලෙස දැක්විය හැකි පුකාශනවල සාධක සොයන්නේ කෙසේ ද යන්නයි.

වර්ගජ පුකාශනයක් ද්විපද සාධක දෙකක ගුණිතයක් ලෙස ලිවිය හැක්කේ කෙසේද යන්න වීමසා බැලීමට ද්විපද පුකාශන දෙකක ගුණිතය ලබා ගැනීමට යොදා ගත් පියවර අග සිට මුලට විශ්ලේෂණය කර බලමු.

- $x^2 + 7x + 12$ ආකාරයට ඇති තිපද වර්ගජ පුකාශනයේ මැද පදය වන 7x, පද දෙකක එකතුවක් ලෙස එනම් 3x + 4x ලෙස දක්වා ඇත. 7x යන්න පද දෙකක එකතුවක් ලෙස ලිවිය හැකි ආකාර බොහෝ ඇත. නිදසුනක් ලෙස, 7x = 5x + 2x හා 7x = 8x + (-x) දැක්විය හැකි ය. එහෙත්, 3x හා 4x පදවල ඇති විශේෂත්වය පහත දැක්වෙන පරිදි විස්තර කළ හැකි ය.
- ullet 3x හා 4x පදවල ගුණිතය $=3x imes 4x=12x^2$ වේ.
- තව ද $x^2 + 7x + 12$ වූ තිපද වර්ගජ පුකාශනයේ මුල හා අග පදවල ගුණිතය $12x^2$ වේ. ඒ, $x \times 12 = 12x^2$ ලෙස ය.

ඉහත විශ්ලේෂණයෙන් ලද නිරීක්ෂණ තිුපද වර්ගජ පුකාශනවල සාධක සෙවීමට යොදාගත හැකි ය. එනම්, මැද පදය, පද දෙකක එකතුවක් ලෙස ලිවිය යුතු ය. එසේ ලියන ලද පද දෙකෙහි ගුණිතය, පුකාශනයේ මුල් හා අවසාන පද දෙකෙහි ගුණිතයට සමාන විය යුතු ය.

නිදසුනක් ලෙස x^2+6x+8 හි සාධක වෙන් කරමු. මෙහි මැද පදය 6x වේ. එය පද දෙකක එකතුවක් ලෙස ලිවිය යුතු ය. එසේ ම එම පද දෙකෙහි ගුණිතය $x^2\times 8=8x^2$ විය යුතු ය.

ඒ අනුව ගුණිතය $8x^2$ ද එකතුව 6x ද වන පද යුගලය සොයමු. පහත වගුවෙහි දක්වෙන්නේ, ගුණිතය වන $8x^2$ යන පදය, ඒකජ පද දෙකක (x සහිත) ගුණිතයක් ලෙස ලිවිය හැකි ආකාර කිහිපයකි.

පද යුගලය	ගුණිතය	එකතුව
x, 8x	$x \times 8x = 8x^2$	x + 8x = 9x
2x, 4x	$2x \times 4x = 8x^2$	2x + 4x = 6x

වගුව අනුව, මැද පදය වන 6x ලැබී ඇත්තේ 2x+4x මගින් බව පැහැදිලි ය. ඒ අනුව ඉහත දී ඇති x^2+6x+8 පුකාශනයෙහි සාධක සොයමු.

$$x^{2} + 6x + 8 = x^{2} + 2x + 4x + 8$$
$$= x(x+2) + 4(x+2)$$
$$= (x+2)(x+4)$$

 $\therefore x^2 + 6x + 8$ හි සාධක x + 2 හා x + 4 වේ.

ඉහත x^2+6x+8 හි මැද පදය 2x+4x වෙනුවට 4x+2x ලෙස ලියා සාධක සෙවූ විට අවසාන සාධක වෙනස් වේ දැයි බලමු.

$$x^{2} + 6x + 8 = x^{2} + 4x + 2x + 8$$
$$= x(x+4) + 2(x+4)$$
$$= (x+4)(x+2)$$

එවිට ද එම සාධක යුගලය ම ලැබී ඇත. එබැවින් තෝරා ගත් පද යුගලය ලියන අනුපිළිවෙළ අවසාන සාධක කෙරෙහි බල නොපායි.

නිදසුන 1

 $x^2 + 5x + 6$ හි සාධක වෙන් කරන්න.

පුකාශනයේ,

මුල හා අග පදවල ගුණිතය = $x^2 imes 6 = 6x^2$

මැද පදය = 5x

2x + 3x = 5x නිසාත්, $(2x)(3x) = 6x^2$ නිසාත්, පහත දැක්වෙන පරිදි සාධක සෙවිය හැකි ය.

$$x^{2} + 5x + 6 = x^{2} + 2x + 3x + 6$$

$$= x(x+2) + 3(x+2)$$

$$= (x+2)(x+3)$$

නිදසුන 2

 $x^2 - 8x + 12$ හි සාධක වෙන් කරන්න.

පුකාශනයේ මුල හා අග පදවල ගුණිතය $= x^2 \times 12 = 12x^2$ ද මැද පදය = (-8x) ද වේ. මෙහි සෘණ සහිත පදයක් ද ඇත. පහත දැක්වෙන වගුවේ, ගුණිතය $12x^2$ වන පරිදි x සහිත පද දෙකක් තොරා ගත හැකි ආකාර දක්වා ඇත.

$$\begin{array}{cccc}
 x, & 12x \\
 2x, & 6x \\
 3x, & 4x \\
 -2x, & -6x \\
 -3x, & -4x \\
 -x, & -12x
 \end{array}$$

වගුව අනුව,
$$-8x = (-2x) + (-6x)$$
 ලෙස ලියූ විට, $(-2x)(-6x) = 12x^2$ ලැබේ.

එමනිසා,
$$x^2 - 8x + 12 = x^2 - 2x - 6x + 12$$

= $x(x-2) - 6(x-2)$
= $(x-2)(x-6)$

නිදසුන 3

 $y^2 + 2y - 15$ හි සාධක වෙන් කරන්න.

පුකාශනයේ මුල හා අග පදවල ගුණිතය $=y^2 \times -15 = -15y^2$ ද මැද පදය =2y ද වේ. $-15y^2 = (5y)(-3y)$ ලෙස ලිවිය හැකි අතර (5y) + (-3y) = 2y ලෙස මැද පදය ලැබේ.

එමනිසා,
$$y^2 + 2y - 15 = y^2 - 3y + 5y - 15$$

= $y(y-3) + 5(y-3)$
= $(y-3)(y+5)$

නිදසුන 4

 $a^2 - a - 20$ හි සාධක වෙන් කරන්න.

පුකාශනයේ මුල හා අග පදවල ගුණිතය $= a^2 \times (-20) = -20a^2$ ද මැද පදය (-a) ද වේ.

 $-20a^2=(-5a)\ (4a)$ ද (-5a)+(4a)=-a ද නිසා, පහත දැක්වෙන පරිදි සාධක සෙවිය හැකි ය.

$$a^{2}-a-20 = a^{2} + 4a - 5a - 20$$
$$= a (a + 4) - 5 (a + 4)$$
$$= (a + 4) (a - 5)$$

6.2 අභනාසය

පහත දැක්වෙන වර්ගජ පුකාශනවල සාධක වෙන් කරන්න.

a.
$$x^2 + 9x + 18$$

b.
$$y^2 + 11y + 30$$

c.
$$a^2 + 10a + 24$$

d.
$$b^2 - 8b + 15$$

e.
$$x^2 - 5x + 6$$

f.
$$m^2 - 12m + 20$$

g.
$$a^2 + a - 12$$

h.
$$p^2 + 5p - 24$$

i.
$$p^2 + 6p - 16$$

l. $r^2 - 3r - 10$

i.
$$x^2 - x - 12$$

k.
$$a^2 - 3a - 40$$

$$r^2 - 3r - 10$$

m.
$$v^2 + 6v + 9$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$0.4 + 4x + x^2$$

p.
$$36 + 15x + x^2$$

n.
$$k^2 - 10k + 25$$
 o. $4 + 4x + x^2$ **q.** $30 - 11a + a^2$ **r.** $54 - 15y + 4$

r.
$$54 - 15y + y^2$$

සටහන:

තිුපද පුකාශනවල සාධක සෙවීමේ දී මැද පදය, සුදුසු පද දෙකක එකතුවක් ලෙස ලියා ගැනීම වැදගත් පියවරකි. එම පද දෙක සොයා ගත හැකි නිශ්චිත කුමයක් ඉහත විස්තර කර ඇතත්, බොහෝ විට පහසු වන්නේ, මැද පදය, පද දෙකක එකතුවක් ලෙස ලියා එහි ගුණිතයෙන්, මුල් හා අවසාන පදවල ගුණිතය ලැබේ ද යන්න පරීක්ෂා කිරීමයි. මෙම කිුිිියාවලිය පුහුණු වූ විට මනෝමයෙන් කළ හැකි ය. මෙසේ පද දෙක ලියූ පසු සුළු කිරීමේ දී පුවේසම් විය යුතුය. විශේෂයෙන් ඉහත නිදසුන 480-5a-20හි පොදු සාධකය ලෙස -5 ඉවතට ගත් විට, -5(a+4) ලැබේ. එය -5(a-4) ලෙස ලිවීම බොහෝ විට සිදුවන අත්වැරද්දකි.

$(\,6.3\,$ වර්ග දෙකක අන්තරයක් ලෙස ලියා ඇති පුකාශනයක සාධක

(x-y) හා (x+y) යන ද්විපද පුකාශන දෙකෙහි ගුණිතය සලකන්න.

$$(x-y) (x + y) = x (x + y) - y (x + y)$$

= $x^2 + xy - xy - y^2$
= $x^2 - y^2$

මේ අනුව (x+y)(x-y) යන්න x^2-y^2 පුකාශනයට සමාන වී ඇත. x^2-y^2 පුකාශනය වර්ග දෙකක අන්තරයක් ලෙස හැඳින්විය හැකි ය.

 $(x+y)(x-y)=x^2-y^2$ යන්න මඟින් පැහැදිලි වනුයේ x^2-y^2 පුකාශනයේ සාධක ලෙස x+y හා x-y ලියා දැක්විය හැකි බවයි.

 x^2-y^2 යන්න xහි වර්ගජ පුකාශනයක් ලෙස සලකා එහි සාධක සෙවිය හැකි දැයි බලමු. එම පුකාශනයේ මැද පදය 0 ලෙස යොදා ගෙන xහි තුිපද වර්ගජ පුකාශනයක් ආකාරයට එනම් x^2+0-y^2 ලෙස ලිවිය හැකි ය. දැන් එම පුකාශනයේ සාධක වෙන් කරන ආකාරය සලකා බලමු.

පුකාශනයේ මුල හා අග පදවල ගුණිතය $= x^2 \times (-y^2) = -x^2 y^2$ ද මැද පදය 0 ද වේ.

$$-x^{2}y^{2} = (-xy) \times (xy)$$
 සහ $-xy + xy = 0$ නිසා

$$x^{2} + 0 - y^{2} = x^{2} - xy + xy - y^{2}$$

$$= x (x - y) + y (x - y)$$

$$= (x - y) (x + y)$$

මෙමඟින් ද $x^2 - y^2 = (x - y)(x + y)$ ලෙස ලැබේ.

රූප සටහනක් ඇසුරෙන් ද වර්ග දෙකක අන්තරයේ සාධක සෙවීම පිළිබඳ ව විමසා බලමු.

පැත්තක දිග ඒකක a බැගින් වූ සමචතුරසුයක් සලකන්න.

මෙයින් පැත්තක දිග ඒකක b බැගින් වූ සමචතුරසුයක් කපා ඉවත් කරන්න.

ඉතිරි කොටසේ වර්ගඵලය වන්නේ වර්ග ඒකක a^2-b^2 වේ.

ඉතිරි කොටස පහත ආකාරයට පිළියෙළ කරමු.

ඉතිරි කොටසේ වර්ගඵලය රූපය II ට අනුව $(a-b)\,(a+b)$ වේ.

ඒ අනුව
$$a^2 - b^2 = (a - b)(a + b)$$

දැන් වර්ග දෙකක අන්තරයක් ලෙස ලියා ඇති පුකාශන කීපයක සාධක සෙවීමේ නිදසුන් සලකා බලමු.

නිදසුන 1

 x^2-25 හි සාධක සොයන්න.

$$x^{2}-25 = x^{2}-5^{2}$$

$$= (x-5)(x+5)$$

නිදසුන 3

 $4a^2 - 49$ හි සාධක සොයන්න.

$$4a^{2} - 49 = 2^{2}a^{2} - 7^{2}$$
$$= (2a - 7)(2a + 7)$$

නිදසුන 5

 $2x^2 - 72$ හි සාධක සොයන්න.

$$2x^{2} - 72 = 2(x^{2} - 36)$$

$$= 2(x^{2} - 6^{2})$$

$$= 2(x - 6)(x + 6)$$

නිදසුන 2

 $9-y^2$ හි සාධක සොයන්න.

$$9 - y^{2} = 3^{2} - y^{2}$$
$$= (3 - y) (3 + y)$$

නිදසුන 4

 $1-4b^2$ හි සාධක සොයන්න.

$$1 - 4b^2 = 1^2 - 2^2b^2$$

= $(1 - 2b) (1 + 2b)$

නිදසුන 6

 $33^2 - 17^2$ හි අගය සොයන්න.

$$33^2 - 17^2 = (33 + 17)(33 - 17)$$

= 50×16
= 800

නිදසුන 7

 $\frac{x^2}{4} - \frac{1}{9}$ හි සාධක සොයන්න.

$$\frac{x^2}{4} - \frac{1}{9} = \frac{x^2}{2^2} - \frac{1}{3^2}$$
$$= \left(\frac{x}{2} + \frac{1}{3}\right) \left(\frac{x}{2} - \frac{1}{3}\right)$$

නිදසුන 8 $1-\frac{9x^2}{16}$ හි සාධක සොයන්න.

$$1 - \frac{9x^2}{16} = 1^2 - \left(\frac{3x}{4}\right)^2$$
$$= \left(1 - \frac{3x}{4}\right)\left(1 + \frac{3x}{4}\right)$$

6.3 අභනාසය

පහත දී ඇති පුකාශනවල සාධක සොයන්න.

a.
$$x^2 - 100$$

b.
$$m^2 - 36$$

c.
$$p^2 - 81$$

d.
$$4 - b^2$$

e.
$$16 - a^2$$

f.
$$64 - y^2$$

g.
$$x^2 - 4y^2$$

h.
$$9a^2 - 16b^2$$

i.
$$100x^2 - 1$$

i.
$$25m^2 - n^2$$

k.
$$49 - 81p^2$$

1.
$$25a^2b^2 - 9c^2$$

මිශු අභාහාසය

1. සුදුසු ලෙස පද මාරු කිරීමෙන් සාධක සොයන්න.

i.
$$ax + by - ay - bx$$

i.
$$ax + by - ay - bx$$
 ii. $9p - 2q - 6q + 3p$

iii.
$$x-12+x^2$$
 iv. $4-k^2-3k$

iv.
$$4 - k^2 - 3k$$

2. සාධක සොයන්න.

i.
$$8x^2 - 50$$

ii.
$$3x^2 - 243$$

iii.
$$a^3b^3-ab$$

iv.
$$3 - 12q^2$$

3. අගය සොයන්න.

i.
$$23^2 - 3^2$$

ii.
$$45^2 - 5^2$$

ii.
$$45^2 - 5^2$$
 iii. $102^2 - 2^2$

 $oldsymbol{4.}$ A තීරයේ ඇති එක් එක් පුකාශනයට සමාන පුකාශනය B තීරයෙන් තෝරන්න.

A

$$x^2 - x - 6$$

$$x^2 + 5x - 3x - 15$$

$$2x^3 - 8x$$

$$4x^2 - 9m^2$$

$$\frac{x^2}{25} - 1$$

$$\left(\frac{x}{5} - 1\right) \left(\frac{x}{5} + 1\right)$$

$$2x(x-2)(x+2)$$

$$(x-3)(x+5)$$

$$(x-3)(x+2)$$

$$(2x-3m)(2x+3m)$$

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- ගණිතයෙහි එන මූලික පුතාක්ෂ 5ක් හඳුනා ගැනීමටත්
- මෙම පුතායක්ෂ 5 ඇසුරෙන් ජාාමිතික සම්බන්ධතා ගොඩනැඟීමටත්, ගණනය කිරීම් ආශිුත ගැටලු විසඳීමටත්

හැකියාව ලැබේ.

පුතාක්ෂ

ඔප්පු කිරීමකින් තොරව නිතැනින් ම සතා යැයි හැඟෙන පුකාශ පුතාක්ෂ ලෙස හැඳින්වේ. ගණිතයේ දී තර්කානුකූලව කරුණු විස්තර කිරීමට, සම්බන්ධතා ගොඩනැඟීමට හා නිගමනවලට එළඹීමට පුතාක්ෂ භාවිත වේ.

ජනාමිතියේ පියා ලෙස සැලකෙන කි.පූ. 300 දී පමණ ගීසියේ විසූ යුක්ලිඩ් නම් ගණිතඥයා විසින් ලියන ලද 'Elements' නමැති පොතේ ගණිත විෂය ට සම්බන්ධ පුතෳක්ෂ ඉදිරිපත් කර ඇත. ඒවා අතුරින් සමහරක් ජනාමිතියට විශේෂ වේ. අනෙක් පුතෳක්ෂ එසේ සීමා නොවන පොදු පුතෳක්ෂ වන අතර ඒවා වීජ ගණිතය වැනි අංශවල මෙන්ම ගණිතයෙහි අනෙක් කොටස්වල ද භාවිත කළ හැකි ය. එම පොදු පුතෳක්ෂ 5ක් මෙම පාඩමේ දී සලකා බලමු. එම පුතෳක්ෂ 5 කෙටියෙන් මෙසේ දැක්විය හැකි ය.

- 1. එක ම රාශියකට සමාන වන රාශි එකක් අනෙකට සමාන වේ.
- 2. සමාන රාශිවලට සමාන රාශි එකතු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- 3. සමාන රාශිවලින් සමාන රාශි අඩු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- 4. සමාන රාශිවලින් සමාන රාශි ගුණ කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- 5. සමාන රාශි නිශ්ශුනා සමාන රාශින්ගෙන් ද බෙදූ විට ලැබෙන රාශි ද සමාන වේ.

මෙහි 'රාශි' යන්නෙන් හැඳින්වන්නේ දිග, වර්ගඵලය, පරිමාව, ස්කන්ධය, වේගය, කෝණවල විශාලත්ව ආදියයි.

මෙම පුතාාක්ෂ පහ භාවිතයෙන් වීජ ගණිතයේ හා ජාාමිතියේ බොහෝ පුතිඵල ලබා ගත හැකි නිසා ඒවා ඉතා වැදගත් වේ. එම පුතාාක්ෂ වඩාත් සවිස්තරාත්මකව විමසා බලමු.

පුතාක්ෂය 1

එක ම රාශියකට සමාන වන රාශි, එකක් අනෙකට සමාන වේ.

මෙම පුතාාක්ෂය මෙසේ ද ලියා දැක්විය හැකි ය.

b=a හා c=a නම් එවිට b=c

මෙම පුතාක්ෂය අනුව,

"හසිත්ගේ වයස කසුන්ගේ වයසට සමාන නම් හා හර්ෂගේ වයස කසුන්ගේ වයසට සමාන නම් එවිට හසිත්ගේ වයස හර්ෂගේ වයසට සමාන වේ."

පුතාෳක්ෂය 1 ජාාමිතික පුතිඵල ලබා ගැනීමේ දී යෙදෙන ආකාරය පහත දැක්වෙන සරල නිදසුනෙන් විදහා දැක්වේ.

පහත දැක්වෙන ABCD චතුරසුයේ BC = AB සහ CD = AB වේ.

එවීට, ඉහත පුතාක්ෂයට අනුව,

$$BC = CD$$
.

නිදසුන 1

ABC තිකෝණයේ AB=AC සහ AB=BC වේ. $AC=5~{
m cm}$ නම් ABC තිකෝණයේ පරිමිතිය සොයන්න.

 $AC=5~\mathrm{cm}$ හා AC=AB නිසා පුතායක්ෂය 1ට අනුව $AB=5~\mathrm{cm}$ වේ.

AB = 5 cm හා AB = BC නිසා පුතාක්ෂය 1ට අනුව BC = 5 වේ.

$$ABC$$
 තුිකෝණයේ පරිමිතිය $=AC+BC+AB$ $=5~{
m cm}+5~{
m cm}+5~{
m cm}$ $=15~{
m cm}$

නිදසුන 2

පහත දැක්වෙන රූපයේ $X\hat{B}Y=A\hat{B}X$ සහ $X\hat{B}Y=C\hat{B}Y$ වේ. $A\hat{B}X$ සහ $C\hat{B}Y$ අතර සම්බන්ධය සොයන්න.

 \therefore පුතාක්ෂය 1 අනුව $A\hat{B}X=C\hat{B}Y$

7.1 අභාගාසය

 $m{1.}\ AB$ සහ CD සරල රේඛා Xහිදි ඡේදනය වේ. රූපයේ $D\hat{X}B=B\hat{X}Y$ වේ. $A\hat{X}C=70^\circ$ නම් $B\hat{X}Y$ විශාලත්වය සොයන්න.

2. PQRS සමාන්තරාසුයේ PQ=PR, PQ=PS වේ. පාද අනුව PSR කුමන වර්ගයේ තිකෝණයක් දැයි සඳහන් කරන්න.

3. O කේන්දුය වූ වෘත්තය මත A හා B ලක්ෂා පිහිටා ඇත්තේ OA = AB වන පරිදි ය. ABO පාද අනුව කුමන වර්ගයේ තිුකෝණයක් දැයි සඳහන් කරන්න.

පුතාක්ෂය 2

සමාන රාශිවලට සමාන රාශි එකතු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.

මෙම පුතාෳක්ෂය පහත ආකාරයට ලියා දැක්විය හැකි ය.

$$a=b$$
 නම් එවිට $a+c=b+c$ වේ.

මෙම පුතාාක්ෂය තවත් ආකාරයකට ලිවිය හැකි ය.

$$x = y$$
 සහ $p = q$ නම් එවිට $x + p = y + q$.

මෙම පුතාක්ෂය අනුව,

"එළවළු මිල දී ගැනීමට ගිය වියදම කිරි මිල දී ගැනීමට ගිය වියදමට සමාන නම් හා පලතුරු මිල දී ගැනීමට ගිය වියදම බිත්තර මිල දී ගැනීමට ගිය වියදමට සමාන නම් එවිට, එළවලු හා පලතුරු මිල දී ගැනීමට ගිය මුළු වියදම කිරි හා බිත්තර මිල දී ගැනීමට ගිය මුළු වියදමට සමාන වේ."

මෙම පුතාංක්ෂය යොදා ගෙන ලබා ගත හැකි සරල ජාාමිතික පුතිඵලයක් සලකා බලමු. රූපයේ දැක්වෙන AB රේඛාව මත X ලක්ෂාය පිහිටා ඇත. $A\hat{X}D = B\hat{X}C$ වේ.

$$A\hat{X}D=B\hat{X}C$$
 (දී ඇත)
පුතායක්ෂය 2ට අනුව $\underbrace{A\hat{X}D+C\hat{X}D}_{A\hat{X}C}=\underbrace{B\hat{X}C+C\hat{X}D}_{B\hat{X}D}$

නිදසුන 1

පහත රූපයේ දැක්වෙන $A\hat{B}D=P\hat{Q}S$ සහ $C\hat{B}D=R\hat{Q}S$ වේ. $A\hat{B}C=P\hat{Q}R$ බව පෙන්වන්න.

 $A\hat{B}D = P\hat{Q}S, C\hat{B}D = R\hat{Q}S$

 \therefore පුතාපක්ෂය 2 අනුව $A\hat{B}D + C\hat{B}D = P\hat{Q}S + R\hat{Q}S$ $\therefore A\hat{B}C = P\hat{O}R$

7.2 අභාගාසය

 $m{1.}\ XYZ$ තිකෝණයේ XY පාදය මත O ලක්ෂාය පිහිටා ඇත්තේ OZ=OY වන පරිදි ය. XY=OZ+OX බව පෙන්වන්න.

 ${f 2.}\,ABC$ තිකෝණයේ AC පාදය මත D ලක්ෂාය පිහිටා ඇත. $A\hat{BD}=B\hat{C}D$ සහ $C\hat{B}D=B\hat{A}D$ තම් $B\hat{A}D+B\hat{C}D=A\hat{B}C$ බව පෙන්වන්න.

 ${f 3.}\,ABCD$ චතුරසුයේ AB පාදය මත X හා CD පාදය මත Y පිහිටා ඇත්තේ AX=CY සහ BX=DY වන පරිදි ය. AB=CD බව පෙන්වන්න.

පුතාක්ෂය 3

සමාන රාශිවලින් සමාන රාශි අඩු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.

මෙම පුතාාක්ෂය මෙසේ ලියා දැක්විය හැකි ය.

a = b නම් එවිට a - c = b - c.

මෙම පුතානක්ෂය තවත් ආකාරයට ලිවිය හැකි ය.

$$a = b$$
 හා $c = d$ නම් එවිට $a - c = b - d$.

මෙම පුතාාක්ෂය යොදා ගෙන ලබා ගත හැකි සරල ජාාමිතික පුතිඵලයක් මෙසේය. පහත දැක්වෙන රූපයේ AD=CB වේ.

$$AD = CB$$

පුතාක්ෂය 3ට අනුව AD-CD=CB-CD

$$\therefore AC = DB$$

නිදසුන 1

AB සහ CD සරල රේඛා Pහිදි ඡේදනය වේ. $X\hat{P}D=B\hat{P}Y$ වේ.

 \hat{H} \hat{H}

i.
$$A\hat{P}D = B\hat{P}C$$
 (පුතිමුඛ කෝණ) $X\hat{P}D = B\hat{P}Y$ (දී ඇත)

$$\underline{A\hat{P}D - X\hat{P}D} = \underline{B\hat{P}C - B\hat{P}Y}$$
 (පුතාක්ෂය 3 අනුව)
 $\therefore A\hat{P}X = C\hat{P}Y$

ii.
$$A\hat{P}X = A\hat{P}D - X\hat{P}D$$

 $A\hat{P}X = 95^{\circ} - 20^{\circ}$
 $A\hat{P}X = 75^{\circ}$
 $\therefore C\hat{P}Y = 75^{\circ}$

7.3 අභාගාසය

 ${f 1.}~XY$ රේඛාව මත A සහ B ලක්ෂා පිහිටා ඇත්තේ XB=AY වන පරිදි ය. $XY=16~{
m cm}$ සහ $BY=6~{
m cm}$ නම් ABහි දිග සොයන්න.

2. AC රේඛාව මත B ලක්ෂාය පිහිටා ඇත. $A\hat{B}D = C\hat{B}E$ වේ. $A\hat{B}E = C\hat{B}D$ බව පෙන්වන්න.

3. PQRS චතුරසුයේ $S\hat{P}R = P\hat{R}Q$ වේ. $Q\hat{P}S = P\hat{R}X$ හා $S\hat{P}R = Q\hat{R}X$ තම් $Q\hat{P}R = Q\hat{R}X$ බව පෙන්වන්න.

4. පහත දැක්වෙන රූපයේ $P\hat{Q}Y=X\hat{Q}R$ වේ. $P\hat{Q}R=110^\circ$, $P\hat{Q}X=35^\circ$ නම්,

- $\mathbf{i.}~R\hat{Q}Y$ හි අගය සොයන්න.
- ${f ii.}~ X\hat{Q}Y$ හි අගය සොයන්න.

පුතාක්ෂය 4

සමාන රාශිවලින් සමාන රාශි ගුණ කළ විට ලැබෙන රාශි ද සමාන වේ.

මෙම පුතාෳක්ෂය කෙටියෙන් මෙසේ ද ලියා දැක්විය හැකි ය.

$$a = b$$
 නම් එවිට $ca = cb$.

මෙම පුතානක්ෂය ජාාමිතියේ දී යොදා ගත හැකි අවස්ථාවක් මුලින් ම සලකා බලමු.

රූපයේ දැක්වෙන පරිදි XY රේඛාව මත XA=AB=BC=CD=DY වන සේ A,B,C හා D ලක්ෂා පිහිටා ඇත. PQ රේඛාව මත PK=KL=LM=MN=NQ වන සේ K,L,M සහ N ලක්ෂා පිහිටා ඇත. තව ද XA=PK බව දී ඇතැයි ද ගනිමු.

එවිට, XY = PQ බව පෙන්වමු.

මුලින් ම,
$$XA = AB = BC = CD = DY$$
 නිසා

5 XA = XYලෙස ලිවිය හැකි බව පැහැදිලි ය.

එමස් ම,
$$PK=KL=LM=MN=NQ$$
 නිසා

5PK = PQ බව ද පැහැදිලි ය.

එහෙත්, XA = PK නිසා

පුතාක්ෂය 4 අනුව

5XA = 5PK ඉව්.

එනම්, XY = PQ.

පුත්‍‍‍‍යක්ෂය ඇසුරෙන් පුතිඵල ලැබෙන ආකාරය තේරුම් ගැනීම වැදගත් වුවත්, බොහෝ විට, පුත්‍‍‍යක්ෂ පිළිබඳ වැඩි විස්තරයක් සඳහන් නොකර ම පුතිඵල ලියා දැක්වීම සාමාන්‍‍ය සිරිතයි. එයට හේතුව, ප්‍රත්‍යක්ෂ යන වචනයෙන් ම පැහැදිලි වන පරිදි, එම ප්‍රතිඵලවල සත්‍යතාව යමකුට පහසුවෙන් වටහා ගැනීමට හැකි වීමයි. මෙම ප්‍රත්‍යක්ෂය වීජ ගණිතයේ යෙදෙන ආකාරය සලකා බලමු.

x=5 හා y=2x නම් yහි අගය සොයමු.

x=5 නිසා, ඉහත පුතාාක්ෂය අනුව, 2න් ගුණ කිරීමෙන්, 2x=2 imes 5 ලැබේ.

එහෙත්, $2 \times 5 = 10$ නිසා, ඉහත 1 වන පුතාක්ෂය අනුව,

y = 10.

නිදසුන 1

ABC තිකෝණයේ AB පාදය මත AX=XY=YB වන සේ X සහ Y ලක්ෂා ද AC පාදය මත AP=PQ=QC වන සේ P සහ Q ලක්ෂා ද පිහිටා ඇත. AX=AP නම් AB සහ AC අතර සම්බන්ධය සොයන්න.

$$AX = XY = YB$$
 (දී ඇත)
 $\therefore AB = 3AX$
 $AP = PQ = QC$ (දී ඇත)
 $\therefore AC = 3AP$
 $AX = AP$ (දී ඇත)

පුතාක්ෂය 4 අනුව 3AX = 3AP $\therefore AB = AC$

පුතාක්ෂය 5

සමාන රාශි නිශ්ශුනෳ සමාන රාශියන්ගෙන් බෙදූ විට ලැබෙන රාශි ද සමාන වේ.

මෙය, කෙටියෙන් මෙසේ දැක්විය හැකි ය.

$$a=b$$
 නම් $\frac{a}{c}=\frac{b}{c}$ මේ.

මෙහි c යනු ශූනා නොවන සංඛාාවකි. ශූනායෙන් බෙදීම අර්ථ නොදැක්වෙන නිසා එම අවස්ථාව මෙහි දී සලකනු නොලැබේ.

රූපයේ දැක්වෙන AB හා CD රේඛා ඛණ්ඩවල දිග සමාන වේ (එනම්, AB=CD). AB රේඛාව මත AX=XY=YB වන සේ X,Y ලක්ෂා පිහිටා ඇත. CD රේඛාව මත CP=PQ=QD වන සේ P හා Q ලක්ෂා පිහිටා ඇත.

එවිට, AX=CP බව පෙන්වමු.

$$AX = XY = YB$$
 නිසා $\frac{AB}{3} = AX$ වේ. $CP = PQ = QD$ නිසා $\frac{CD}{3} = CP$ වේ.

$$AB = CD$$
 නිසා පුතාක්ෂය 5 අනුව $\frac{AB}{3} = \frac{CD}{3}$

$$\therefore AX = CP$$
 වේ.

නිදසුන 1

දී ඇති රූප සටහනේ $A\hat{O}B=B\hat{O}C$ සහ $C\hat{O}D=D\hat{O}E$ වේ. $A\hat{O}C=C\hat{O}E$ නම්,

 ${f i.}~A\hat{OB}$ සහ $D\hat{OE}$ අතර සම්බන්ධය සොයන්න.

 $\mathbf{ii.}\ B\hat{O}C = 35^{\circ}$ නම් $D\hat{O}E$ අගය සොයන්න.

$$\mathbf{i.} \ A\hat{O}B = B\hat{O}C$$
 (දී ඇත)

$$\therefore A\hat{O}B = \frac{A\hat{O}C}{2}$$

$$\hat{COD} = \hat{DOE}$$
 (දී ඇත)

$$\therefore D\hat{O}E = \frac{C\hat{O}E}{2}$$

$$A\hat{O}C = C\hat{O}E$$
 (දී ඇත)
පුතාක්ෂය 5 අනුව $\frac{A\hat{O}C}{2} = \frac{C\hat{O}E}{2}$
 $\therefore A\hat{O}B = D\hat{O}E$

$$\mathbf{ii.}\ A\hat{O}B = B\hat{O}C$$
 (දී ඇත)

පුතාක්ෂය 1ට අනුව

$$A\hat{O}B = 35^{\circ}$$
.

$$A\hat{O}B = D\hat{O}E$$
 (සාධනය කර ඇත)

පුතාක්ෂය 1ට අනුව

$$D\hat{O}E = 35^{\circ}$$
.

7.4 අභාගාසය

- ${f 1.}~ABCD$ සමචතුරසුයේ හා PQRS රොම්බසයේ AB=PQ වේ. ${f 4}$ වන පුතාාක්ෂය භාවිත කර,
- ${f i.}$ ABCD සමචතුරසුයේ පරිමිතිය, PQRS රොම්බසයේ පරිමිතියට සමාන බව පෙන්වන්න.
- ${f ii.}$ AB=7 cm නම් PQRS රොම්බසයේ පරිමිතිය සොයන්න.

2. පහත දී ඇති ABC තිකෝණයේ $B\hat{A}X = X\hat{A}Y = C\hat{A}Y$ වේ. KLMNO පංචාසුයේ,

 $\hat{MON} = \hat{LOM} = \hat{KOL}$ ලේව. $\hat{BAC} = \hat{KON}$ නම්,

 $\mathbf{i.}~X\widehat{A}Y = M\widehat{O}L$ බව පෙන්වන්න.

 $ii.~X\hat{A}Y=30^\circ$ නම් $K\hat{O}N$ හි විශාලත්වය සොයන්න.

- **3.** PQRS චතුරසුයේ PQ=QR=SP සහ 2PQ=RS වේ. ABCDE සවිධි පංචාසුයේ පරිමිතිය PQRS චතුරසුයේ පරිමිතියට සමාන වේ.
 - ${f i.}~PQ$ සහ AB අතර සම්බන්ධය සොයන්න.
 - ${f ii.}$ $AB=8\,{
 m cm}$ නම් PQRS චතුරසුයේ පරිමිතිය සොයන්න.

ිවීජගණිතයේදී පුතුනක්ෂ භාවිතය

නිදසුන 1

පුතාෳක්ෂ භාවිතයෙන් පහත දැක්වෙන සමීකරණය විසඳන්න.

$$2x + 5 = 13$$

මෙහි දී, සමීකරණයක් විසඳීම යන්නෙන් අදහස් වන්නේ xහි අගය සෙවීමයි.

මුලින් ම, 2x + 5 යන රාශිය 13 යන රාශියට සමාන නිසා, තුන්වන පුතාෳක්ෂය අනුව, එම රාශි දෙකෙන් 5ක් අඩු කළ විට ලැබෙන රාශි ද සමාන නිසා,

$$2x + 5 - 5 = 13 - 5$$
.

මෙය සුළු කිරීමෙන්,

2x = 8 ලැබේ.

දැන් 2x යන රාශිය 8 යන රාශියට සමාන නිසා, එම රාශි 2න් බෙදූ විට ලැබෙන රාශි ද සමාන වේ. එමනිසා, $\frac{2x}{2}=\frac{8}{2}$ ලැබේ.

මෙය සුළු කළ විට, x=4 ලෙස ලැබේ. එනම්, සමීකරණයේ විසඳුම 4 ය.

මිශු අභාහාසය

 $egin{aligned} {f 1.}\ ABCD$ චතුරසුයේ $AD=AC,\ BC=AC,\ AB=BC$ සහ AD=CD වේ. ABCD රොම්බසයක් බව පෙන්වන්න.

- **2.** රූපයේ දැක්වෙන ආකාරයට $P\hat{R}S=S\hat{Q}R$ සහ $Q\hat{R}S=P\hat{Q}S$ වන සේ S ලක්ෂාය පිහිටා ඇත. පුතාක්ෂ ඇසුරෙන්,
 - \hat{I} . $P\hat{R}\hat{Q} = P\hat{Q}R$ බව පෙන්වන්න.
 - $\hat{RPQ} = \hat{PRQ}$ නම් PQR තිකෝණයේ කෝණ සියල්ල එකිනෙකට සමාන බව පෙන්වන්න.

 $m{3}$. ඉහත රූපයේ දැක්වෙන පරිදි $AD,\ BE,\ CF$ සරල රේඛා O ලක්ෂායේ දී එකිනෙක හරහා යයි. $D\hat{O}E=A\hat{O}F$ නම්, $B\hat{O}D=D\hat{O}F$ බව පෙන්වන්න.

- **4.** ABCDE සවිධි පංචාසුගේ $E\hat{A}D = D\hat{A}C = B\hat{A}C$ සහ $B\hat{C}A = A\hat{C}E = D\hat{C}E$ වේ.
 - $\mathbf{i.}\ B\hat{C}A=B\hat{A}C$ බව පෙන්වන්න.
 - $\mathbf{ii.}\ B\hat{A}C=36^{\mathrm{o}}$ නම් $C\hat{D}E$ හි අගය සොයන්න.

5. AB සරල රේඛාව මත X ලක්ෂපය පිහිටා ඇත. $A\hat{X}E = E\hat{X}D$ හා $B\hat{X}C = C\hat{X}D$ වේ. $C\hat{X}E$ අගය සොයන්න.

සාරාංශය

- එක ම රාශියකට සමාන වන රාශි එකක් අනෙකට සමාන වේ.
- සමාන රාශිවලට සමාන රාශි එකතු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- සමාන රාශිවලින් සමාන රාශි අඩු කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- සමාන රාශිවලින් සමාන රාශි ගුණ කිරීමෙන් ලැබෙන රාශි ද සමාන වේ.
- සමාන රාශි නිශ්ශුනා සමාන රාශින්ගෙන් බෙදූ විට ලැබෙන රාශි ද සමාන වේ.

සරල රේඛා හා සමාන්තර රේඛා ආශුිත කෝණ

මෙම පාඩම අධානය කිරීමෙන් ඔබට,

- එක් සරල රේඛාවක්, තවත් සරල රේඛාවක් හමු වීමෙන් හෝ තවත් සරල රේඛාවක් සමග ඡේදනය වීමෙන් සැදෙන බද්ධ කෝණ, පුතිමුඛ කෝණ ඇතුළත් පුමේයයන් හඳුනා ගැනීමට, සකුහාපනය කිරීමට හා ඒවා භාවිත කරමින් ගැටලු විසඳීමට
- සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වූ විට සැදෙන කෝණ හඳුනා ගැනීමට
- සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වූ විට සෑදෙන කෝණ ඇතුළත් පුමේයයන් හඳුනා ගැනීමට, සතාහපනය කිරීමට හා ඒවා භාවිත කරමින් ගැටලු විසඳීමට

හැකියාව ලැබෙනු ඇත.

හැඳින්වීම

මුලින් ම, ජාාමිතියට අදාළ ව මීට පෙර ශේණීවල දී උගත් මූලික කරුණු කිහිපයක් නැවත මතක් කර ගනිමු.

බද්ධ කෝණ

ඉහත රූපයේ දැක්වෙන $A\hat{B}D$ හා $D\hat{B}C$ කෝණ දෙකට ම පොදු ශීර්ෂයක් ඇත. එම පොදු ශීර්ෂය B වේ. ඒවාට පොදු බාහුවක් ද ඇත. එය BD වේ. පොදු බාහුව දෙපස $A\hat{B}D$ හා $D\hat{B}C$ කෝණ යුගලය පිහිටා ඇත. එවැනි කෝණ යුගල, බද්ධ කෝණ යුගල ලෙස හැඳින්වේ.

$\stackrel{\wedge}{ABD}$ හා $\stackrel{\wedge}{DBC}$ බද්ධ කෝණ යුගලයකි.

අනුපුරක කෝණ

පළමු රූපයේ, $\stackrel{\frown}{ABC}+\stackrel{\frown}{PQR}=40^\circ+50^\circ=90^\circ$ නිසා $\stackrel{\frown}{ABC}$ හා $\stackrel{\frown}{PQR}$ කෝණ යුගල දෙක අනුපූරක වේ.

දෙවන රූපයේ, PQR හා RQS බද්ධ කෝණ යුගලයකි. තව ද, $PQR + RQS = 90^\circ$ වන නිසා එම කෝණ යුගලය අනුපූරක ද වේ. එබැවින් PQR හා RQS අනුපූරක බද්ධ කෝණ යුගලයකි.

පරිපුරක කෝණ

පළමු රූපයේ $KLM + PQR = 180^\circ$ නිසා KLM හා PQR කෝණ යුගලය පරිපූරක වේ. දෙවන රූපයේ, ACD හා BCD බද්ධ කෝණ යුගලයකි. තව ද, $ACD + BCD = 180^\circ$ වන නිසා එම කෝණ යුගලය පරිපූරක ද වේ. එබැවින් ACD හා BCD පරිපූරක බද්ධ කෝණ යුගලයකි.

පුතිමුඛ කෝණ

PQ හා RS සරල රේඛා දෙක T හිදි එකිනෙක ඡේදනය වීමෙන් සෑදෙන, PTR හා STQකෝණ යුගලය පුතිමුබ කෝණ වේ.

එසේ ම $P\hat{T}S$ හා $R\hat{T}Q$ ද තවත් පුතිමුඛ කෝණ යුගලයකි. පුතිමුඛ කෝණ විශාලත්වයෙන් එකිනෙකට සමාන වේ.

එබැවින් $P\hat{T}R = S\hat{T}Q$ හා $P\hat{T}S = R\hat{T}Q$.

සමාන්තර රේඛා

එකිනෙක ඡේදනය නොවන එකම තලයක පිහිටි සරල රේඛා, සමාන්තර සරල රේඛා වේ. සමාන්තර රේඛා අතර පරතරය සෑමවිට ම නියත ව පවතී. රූපයේ දක්වා A ඇති පරිදි සමාන්තර බව ඊතල මගින් දක්වනු ලැබේ. තව ද AB හා CD සමාන්තර බව දැක්වීමට AB // CD යන අංකනය ද භාවිත කෙරේ.

මේ කරුණු පිළිබඳ දැනුම තවදුරටත් තහවුරු කර ගැනීමට පහත දැක්වෙන අභාගාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාාසය

1. පහත දැක්වෙන කෝණ අතරින් අනුපූරක කෝණ යුගල සියල්ල ලියා දක්වන්න.

- i. අනුපූරක කෝණ යුගල හතරක්
- ii. අනුපූරක බද්ධ කෝණ යුගල දෙකක්
- iii. පරිපූරක කෝණ යුගල දෙකක් ලියා දක්වන්න.

 $m{3.}$ රූපයේ $AB,\ CD$ හා EF සරල රේඛා ඛණ්ඩ එක ම ලක්ෂායක දී ඡේදනය වේ. එහි, දී ඇති තොරතුරු අනුව,

- ${f i.}$ a මගින් දැක්වෙන අගය සොයන්න.
- $\mathbf{ii.}\ b = d$ වීමට හේතුව දක්වන්න.
- ${f iii.}\ d$ මගින් දැක්වෙන අගය සොයන්න.
- ${f iv.}$ b හා c මගින් දැක්වෙන අගයයන් සොයන්න.

4. දී ඇති රූපයේ දැක්වෙන සමාන්තර රේඛා යුගල තුනක් නම් කරන්න.

8.1 සරල රේඛා ආශිුත කෝණ

AB සරල රේඛාව මත O ලක්ෂාය පිහිටා ඇතැයි සිතමු.

මෙවිට, $A\overset{\wedge}{OB}$ යනු AO හා OB බාහු ලෙස ඇති කෝණයක් ලෙස සැලකිය හැකි ය. එවැනි කෝණයකට සරල කෝණයක් යැයි කියනු ලැබේ.

කෝණ මැනීම සඳහා භාවිත වන අංශක තෝරාගෙන ඇත්තේ සරල කෝණයක අගය 180° ක් වන පරිදි ය. එබැවින්, $\stackrel{\wedge}{AOB}=180^\circ$ ලෙස ලියා දැක්විය හැකි ය.

මේ අනුව, සරල කෝණයක අගය 180° කි. පහත දැක්වෙන්නේ AB සරල රේඛාවක් මත පිහිටි O ලක්ෂායක දී කෝණ දෙකක් ඇඳ ඇති අවස්ථාවකි.

මෙහි $A\hat{O}C$ හා $B\hat{O}C$ කෝණ දෙක බද්ධ කෝණ යුගලයකි. මෙවැනි පිහිටුමක දී $A\hat{O}C$ හා $B\hat{O}C$ බද්ධ කෝණ දෙක AB සරල රේඛාව මත පිහිටා ඇතැයි කියනු ලැබේ. තව ද, $A\hat{O}B=180^\circ$ නිසා,

$$\stackrel{\wedge}{AOC} + \stackrel{\wedge}{BOC} = 180^{\circ}$$

බව පැහැදිලි ය. එනම්, $A \hat{O} C$ හා $B \hat{O} C$ කෝණ දෙක පරිපූරක බද්ධ කෝණ යුගලයකි. මෙම සාකච්ඡා කළ කරුණු මෙසේ පුමේයයක් ලෙස දැක්විය හැකි ය.

පුමේයය:

එක් සරල රේඛාවක් තවත් සරල රේඛාවකට හමුවීමෙන් සෑදෙන බද්ධ කෝණ දෙකේ ඓකාය සෘජුකෝණ දෙකකට සමාන වේ.

ඉහත සාකච්ඡා කළ කරුණු තවදුරටත් සාධාරණව ඉදිරිපත් කළ හැකි ය. නිදසුනක් ලෙස, පහත දැක්වෙන්නේ AB සරල රේඛාවක් මත පිහිටි O ලක්ෂායක දී කෝණ හතරක් ඇඳ ඇති අවස්ථාවකි.

එම කෝණවල අගයන් අංශකවලින් $a,\,b,\,c$ හා d ලෙස දක්වා ඇත. මෙවැනි පිහිටුමක දී එම කෝණ සියල්ල AB සරල රේඛාව මත පිහිටා ඇතැයි කියනු ලැබේ. තව ද $A\overset{\wedge}{OB}=180^\circ$ නිසා,

$$a + b + c + d = 180^{\circ}$$
බව පැහැදිලි ය.

මෙම සම්බන්ධතාව කෝණ ඕනෑ ම ගණනක් සඳහා සතා බව ද පැහැදිලි ය. එනම්,

සරල රේඛාවක් මත පිහිටි කෝණවල එකතුව 180° කි.

දැන්, මෙම පුමේයය භාවිතයෙන් ගැටලු විසඳන අයුරු නිදසුන් ඇසුරෙන් විමසා බලමු.

නිදසුන 1

පහත දැක්වෙන එක් එක් රූප සටහනේ PQR එකම සරල රේඛාවක් නම් x මගින් දැක්වෙන අගය සොයන්න.

$$P\hat{Q}D + D\hat{Q}R = 180^\circ$$
 (PQR සරල රේඛාව මත පිහිටි කෝණ) $100^\circ + x = 180^\circ$ $x = 180^\circ - 100^\circ$ $= 80^\circ$

නිදසුන 2

රූපයේ $A\hat{Q}R=70^\circ$ ක් ද $P\hat{Q}A$ හි සමච්ඡේදකය QB ද වේ. PQR සරල රේඛාවක් නම් $A\hat{Q}B$ හි අගය සොයන්න.

PQR එකම සරල රේඛාවක් නිසා,

$$P\hat{Q}A + A\hat{Q}R = 180^\circ$$
 (PQR සරල රේඛාව මත පිහිටි කෝණ) $P\hat{Q}A + 70^\circ = 180^\circ$ $\therefore P\hat{Q}A = 180^\circ - 70^\circ$ $= 110^\circ$

 $P \! \stackrel{\wedge}{Q} \! \! A$ හි සමච්ඡේදකය BQ නිසා,

$$P\hat{Q}B = A\hat{Q}B = \frac{1}{2}P\hat{Q}A$$

$$\therefore A\hat{Q}B = \frac{110^{\circ}}{2}$$

$$= \underline{55^{\circ}}$$

8.1 අභාගසය

 $oldsymbol{1.}$ පහත දැක්වෙන එක් එක් රූපයේ $oldsymbol{AB}$ සරල රේඛාවක් වේ. දී ඇති තොරතුරු අනුව, කුඩා ඉංගීසි අක්ෂරයෙන් දක්වා ඇති කෝණයේ අගය සොයන්න.

i. D

iv. P $A \qquad Q \qquad B$

2. රූපයේ ABC සරල රේඛාවක් වේ. $D\hat{B}C=36^\circ$ නම් $A\hat{B}D$ හි අගය $D\hat{B}C$ හි අගය මෙන් හතර ගුණයක් බව පෙන්වන්න.

3. ABC සරල රේඛාවක් වේ. රූපයේ දැක්වෙන තොරතුරු අනුව $P\stackrel{\wedge}{B}R$ සෘජුකෝණයක් බව පෙන්වන්න.

4. රූපයේ ABC සරල රේඛාවකි. $P\hat{B}C=C\hat{B}Q$ වේ. $A\hat{B}P=A\hat{B}Q$ බව පෙන්වන්න.

8.2 පුතිමුඛ කෝණ

රූපයේ දැක්වෙන AB හා CD සරල රේඛා දෙක O හිදි එකිනෙක ඡේදනය වේ.

 $\stackrel{ riangle}{AOC}$ හා $\stackrel{ riangle}{DOB}$ පුතිමුඛ කෝණ යුගලයක් ලෙස හැඳින්වේ.

ඒ ආකාරයට ම O ශීර්ෂයෙන් එක් පැත්තක $A \stackrel{ o}{O} D$ ත් ඊට විරුද්ධ පැත්තේ $B \stackrel{ o}{O} C$ ත් පිහිටා ඇති අතර O ශීර්ෂය එම කෝණ දෙකට ම පොදු වේ.

එබැවින් $\stackrel{\wedge}{AOD}$ හා $\stackrel{\wedge}{BOC}$ ද පුතිමුඛ කෝණ යුගලයකි.

මේ අනුව, සරල රේඛා දෙකක් ඡේදනය වීමෙන් පුතිමුඛ කෝණ යුගල දෙකක් සෑදෙන බව පැහැදිලි ය.

පුතිමුඛ කෝණ සම්බන්ධ පුමේයයක් පිළිබඳ සලකා බලමු.

පුමේයය:

සරල රේඛා දෙකක් එකිනෙක ඡේදනය වීමෙන් සැදෙන පුතිමුඛ කෝණ සමාන වේ.

'පුතිමුඛ කෝණ සමාන වේ' යන කරුණ රූපය දෙස බැලූ සැණින් ම ඔබට පුතාක්ෂ වන

බවට සැකයක් නැත. එසේ නමුත්, අප මෙම පාඩමේ දී ඉහත උගත් 'සරල රේඛාවක් මත කෝණවල එකතුව 180° වේ' යන කරුණත් ඉහත පාඩමක දී සාකච්ඡා කළ පුතාක්ෂ පිළිබඳ දැනුමත් යොදා ගෙන මෙම පුමේයය සාධනය කරන අයුරු දැන් සලකා බලමු.

දත්තය: AB හා CD සරල රේඛා O හිදි එකිනෙක ඡේදනය වේ.

සාධනය කළ යුත්ත: $\stackrel{\wedge}{AOC} = \stackrel{\wedge}{BOD}$ බව හා

$$\stackrel{\wedge}{AOD} = \stackrel{\wedge}{BOC}$$
 බව

සාධනයඃ

AB එකම සරල රේඛාවක් බැවින්,

$$\stackrel{\wedge}{AOC} + \stackrel{\wedge}{BOC} = 180^\circ \, (AOB \;$$
සරල රේඛාව මත පිහිටි කෝණ)

එසේ ම, CD ද එකම සරල රේඛාවක් බැවින්,

$$\stackrel{\wedge}{BOC} + \stackrel{\wedge}{BOD} = 180^\circ \, (COD \,$$
සරල රේඛාව මත පිහිටි කෝණ)

$$\therefore A\hat{O}C + B\hat{O}C = B\hat{O}C + B\hat{O}D$$
 (පුතාක්ෂ)

දෙපසින් ම $\stackrel{\wedge}{BOC}$ අඩු කිරීමෙන්,

$$A\hat{O}C + B\hat{O}C - B\hat{O}C = B\hat{O}C - B\hat{O}C + B\hat{O}D$$

$$A\hat{O}C = B\hat{O}D$$

මේ ආකාරයට ම, $\stackrel{\wedge}{AOD} + \stackrel{\wedge}{AOC} = 180^{\circ} (CD$ සරල රේඛාව මත පිහිටි කෝණ)

$$\stackrel{\wedge}{AOC} + \stackrel{\wedge}{BOC} = 180^{\circ} (AB \ සරල රේඛාවක් නිසා)$$

$$\therefore$$
 $A \stackrel{\wedge}{O}D + A \stackrel{\wedge}{O}C = A \stackrel{\wedge}{O}C + B \stackrel{\wedge}{O}C$ (පුතාක්ෂ)

සමීකරණයේ දෙපසින් ම $\stackrel{\wedge}{AOC}$ අඩු කිරීමෙන්

$$A\hat{O}D = B\hat{O}C$$

මෙම පුමේයය ඇසුරෙන් අභාහසවල යෙදීමට පහත නිදසුන් වෙත අවධානය යොමු කරන්න.

නිදසුන 1

දී ඇති රූපයේ AB, CD හා EF සරල රේඛා O හිදි එකිනෙක ඡේදනය වේ. රූප සටහනේ දැක්වෙන තොරතුරු මත හේතු දක්වමින්

ii. $A\hat{O}C$ හි අගය

සොයන්න.

i. EOF සරල රේඛාවක් නිසා,

$$E \stackrel{\wedge}{O}D + D \stackrel{\wedge}{O}B + B \stackrel{\wedge}{O}F = 180^\circ$$
 (සරල රේඛාවක් මත පිහිටි කෝණවල ඓකාය) $57^\circ + D \stackrel{\wedge}{O}B + 43^\circ = 180^\circ$ $D \stackrel{\wedge}{O}B = 180^\circ - (57^\circ + 43^\circ)$ $\therefore D \stackrel{\wedge}{O}B = 80^\circ$

(ii)
$$A \hat{O} C = D \hat{O} B$$
 (පුතිමුඛ කෝණ) $D \hat{O} B = 80^\circ$ (කලින් පෙන්වා ඇත)

$$\therefore \quad A \stackrel{\wedge}{O} C = \underline{80^{\circ}}$$

8.2 අභානාසය

 $oldsymbol{1.}$ රූපයේ $oldsymbol{AB}$ හා $oldsymbol{CD}$ සරල රේඛා $oldsymbol{O}$ හිදි එකිනෙක ඡේදනය වේ.

$${f i.}$$
 $A {\hat O} C = 80^{
m o}$ නම්, $B {\hat O} D$ හි අගය සොයන්න.

 $\overrightarrow{\mathbf{ii.}}$ \overrightarrow{AOD} ට සමාන කෝණයක් නම් කරන්න.

2. රූපයේ දැක්වෙන AB, CD හා EF සරල රේඛා O හිදි ඡේදනය වේ. දී ඇති තොරතුරු අනුව පහත දැක්වෙන කෝණවල අගයන් සොයන්න.

iii.
$$\stackrel{\wedge}{COE}$$

3. පහත දැක්වෙන එක් එක් රූප සටහනේ දැක්වෙන තොරතුරු මත, කුඩා ඉංගීසි අක්ෂරයෙන් දැක්වෙන කෝණයේ අගයයන් සොයන්න.

i.

ii.

AB හා CD සරල රේඛා වේ.

PQ හා RS සරල රේඛා වේ.

iii.

iv.

රූපයේ $AB,\,CD$ හා EF සරල රේඛා Gහිදි ඡේදනය වේ.

දී ඇති රූපයේAB හා CD සරල රේඛා වේ.

4. දී ඇති රුපයේ, AB, CD, DE හා BF සරල රේඛා වේ. තව a=d වේ. හිස්තැන් සම්පූර්ණ කරන්න.

$$a = b$$
 (......) $d =$ (දත්තය) $\cdots = b = c$

 ${f 5.}$ දී ඇති $AB,\,CD$ හා EF සරල රේඛා වේ. තව ද රූපයේ, p=r වේ. s=q බව සාධනය කරන්න.

8.3 අනුරූප කෝණ, ඒකාන්තර කෝණ හා මිතු කෝණ

රූපයේ AB හා CD සරල රේඛා දෙක, EF රේඛාවෙන් පිළිවෙළින් G හා H හිදි ඡේදනය වේ. මෙම EF රේඛාව හඳුන්වන්නේ තීර්යක් රේඛාවක් ලෙසයි.

සරල රේඛා දෙකක් හෝ වැඩි ගණනක්, කැපී යන සේ අඳිනු ලබන රේඛාවක් තීර්යක් රේඛාවක් ලෙස හැඳින්වේ.

ඉහත රූපයේ G ලක්ෂාය වටා කෝණ හතරක් ද, H ලක්ෂාය වටා කෝණ හතරක් ද තිබේ. මෙම කෝණ පිහිටා ඇති ආකාරය අනුව ඒවා යුගල වශයෙන් විශේෂ නම්වලින් හඳුන්වනු ලැබේ.

අනුරූප කෝණ

පහත දැක්වෙන කෝණ යුගල හතර සලකන්න.

(i)
$$a_1$$
 හා a_2 (ii) b_1 හා b_2 (iii) c_1 හා c_2 (iv) d_1 හා d_2

මෙම සෑම කෝණ යුගලක් ම අනුරූප කෝණ යුගලක් වේ. අනුරූප කෝණ යුගලක් වීම සඳහා පහත දැක්වෙන ලක්ෂණ, කෝණ දෙකට තිබිය යුතු ය.

1. කෝණ දෙක ම තීර්යක් රේඛාවෙන් එක ම පස තිබිය යුතු ය.

දී ඇති රූපය අනුව, a_1 හා a_2 කෝණ දෙක ම පිහිටන්නේ තීර්යක් රේඛාවෙන් වම් පස ය. එසේ ම, b_1 හා b_2 කෝණ දෙක ම පිහිටන්නේ තීර්යක් රේඛාවෙන් දකුණු පස ය. එසේ ම, c_1 හා c_2 කෝණ දෙක ම තීර්යක් රේඛාවෙන් වම් පසත් d_1 හා d_2 කෝණ දෙක ම තීර්යක් රේඛාවෙන් වම් පසත් d_1 හා d_2 කෝණ දෙක ම තීර්යක් රේඛාවෙන් දකුණු පසත් පිහිටයි.

2. කෝණ දෙක ම සරල රේඛා දෙක අනුබද්ධයෙන් එක ම දිශාවෙන් පිහිටිය යුතු ය.

දී ඇති රූපය අනුව a_1 හා a_2 කෝණ පිහිටන්නේ පිළිවෙළින් AB හා CD රේඛාවලට ඉහලිනි. එසේ ම, b_1 හා b_2 කෝණ ද පිළිවෙළින් AB හා CD රේඛාවලට ඉහළින් පිහිටයි.

 c_1 හා c_2 කෝණ පිළිවෙළින් AB හා CD රේඛාවලට පහළින් පිහිටන අතර d_1 හා d_2 කෝණ ද පිළිවෙළින් AB හා CD රේඛාවලට පහළින් පිහිටයි.

රූපයේ $A\overset{\wedge}{GE}$ හා $\overset{\wedge}{CHG}$, $B\overset{\wedge}{GE}$ හා $\overset{\wedge}{DHE}$, $A\overset{\wedge}{GH}$ හා $\overset{\wedge}{CHF}$, $B\overset{\wedge}{GH}$ හා $\overset{\wedge}{DHF}$ යන කෝණ යුගල 4 අනුරූප කෝණ වේ.

ඒකාන්තර කෝණ

පහත දැක්වෙන කෝණ යුගල ඒකාන්තර කෝණ යුගල ලෙස හැඳින්වේ.

 $\mathbf{ii.}$ c_1 හා b_2

මෙම කෝණ යුගලක් හඳුනාගැනීමට ඇති පොදු ලක්ෂණ මෙසේ ය.

1. කෝණ දෙක තීර්යක් රේඛාවෙන් දෙපස තිබිය යුතු ය.

දී ඇති රූපය අනුව, a_2 හා d_1 කෝණ දෙක පිහිටන්නේ තීර්යක් රේඛාවෙන් දෙපස ය. එසේ ම, c_1 හා b_2 කෝණ දෙක පිහිටන්නේ ද තීර්යක් රේඛාවෙන් දෙපස ය.

2. සරල රේඛා දෙක අතර පිහිටි තීර්යක් රේඛා ඛණ්ඩය කෝණ දෙකට ම පොදු බාහුවක් විය යුතු ය.

දී ඇති රූපය අනුව GH රේඛා ඛණ්ඩය, a_2 හා d_1 කෝණ දෙක සඳහාත් එසේ ම c_1 හා b_2 කෝණ දෙක සඳහාත් පොදු බාහුවකි.

රූපයේ $B\hat{G}H$ හා $G\hat{H}C$ කෝණ යුගල සහ $A\hat{G}H$ හා $G\hat{H}D$ කෝණ යුගල ඒකාන්තර කෝණ යුගල වේ.

මිතු කෝණ

මෙම රූපයේ පහත දී ඇති කෝණ යුගල දෙක මිතුකෝණ වේ.

$$\mathbf{i.}\ c_1$$
 හා a_2 $\mathbf{ii.}\ d_1$ හා b_2

මෙම රූපයේ ද සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වී ඇත. එහි AB හා CD සරල රේඛා දෙක අතර EF තීර්යක් රේඛාවෙන් එකම පැත්තේ පිහිටි කෝණ යුගල,

 $\mathbf{i.}~A \hat{G} H$ හා $C \hat{G} H$ යුගලය

 $\ddot{\mathbf{H}}$ හා $D\hat{H}G$ යුගලය

මෙම කෝණ හතරට ම $G\!H$ බාහුව පොදු වේ.

AB හා CD සරල රේඛා දෙක අතරේ හා GH පොදු බාහුවේ එකම පැත්තේ පිහිටි කෝණ යුගලක් මිතු කෝණ යුගලක් ලෙස හැඳින්වේ. ඒ අනුව,

 $A\hat{G}H$ හා $\overset{\wedge}{CHG}$ කෝණ යුගලය මිතු කෝණ යුගලක් වන අතර $B\hat{G}H$ හා $\overset{\wedge}{DHG}$ කෝණ යුගලය ද මිතු කෝණ යුගලක් වේ.

8.3 අභානාසය

1. පහත දැක්වෙන රූප සලකන්න.

(d)

I වන රූපය

II වන රූපය

III වන රූපය

එක් එක් රූපවල කුඩා ඉංගුීසි අකුරුවලින් දක්වා ඇති කෝණ සලකමින් පහත දැක්වෙන වාකාාවල හිස්තැන් සම්පූර්ණ කරන්න.

- ${f i.}$ පළමුවන රූපයේ a හා b මගින් දක්වා ඇත්තේ කෝණ යුගලයකි.
- $oldsymbol{ii.}$ දෙවන රූපයේ c හා d මගින් දක්වා ඇත්තේ කෝණ යුගලයකි.
- f iii. තුන්වන රුපයේ e හා f මගින් දක්වා ඇත්තේ කෝණ යුගලයකි.
- 2. පහත දැක්වෙන රූපය සලකන්න. කුඩා ඉංගීසි අකුරුවලින් එහි කෝණ දක්වා තිබේ.

- i. රූපයේ තීර්යක් රේඛාව ලෙස ගත හැකි රේඛාව නම් කරන්න.
- ii. තීර්යක් රේඛාවෙන් ඡේදනය වන සරල රේඛා දෙක නම් කරන්න.
- iii. එක් අනුරුප කෝණ යුගලයක් a හා e වේ. ඒ ආකාරයට ම, ඉතිරි අනුරූප කෝණ යුගල් තුන ද ලියා දක්වන්න.
- iv. මිතු කෝණ යුගල දෙක කුඩා ඉංගීසි අකුරු ඇසුරෙන් දක්වන්න.
- v. ඒකාන්තර කෝණ යුගල දෙක කුඩා ඉංගුීසි අකුරු ඇසුරෙන් දක්වන්න.

3. දී ඇති රුපයට අදාළ ව පහත දැක්වෙන කොටස්වල ට පිළිතුරු සපයන්න.

- ${f i.}$ \overrightarrow{ABP} ට අනුරූප කෝණය නම් කරන්න.
- $\ddot{\mathbf{n}}$. \ddot{BCS} ට \mathbf{a} . මිතු කෝණය නම් කරන්න.
 - b. ඒකාන්තර කෝණය නම් කරන්න.
 - c. අනුරූප කෝණය නම් කරන්න.
- $\overrightarrow{\text{iii.}}$ $\overset{\wedge}{RCD}$ හා $\overset{\wedge}{PBC}$ කුමන වර්ගයේ කෝණ යුගලයක් ද?
- $\dot{\mathbf{v}}$. $P\overset{oldsymbol{\cap}}{BC}$ හා $\overset{oldsymbol{\cap}}{BCR}$ කුමන වර්ගයේ කෝණ යුගලයක් ද?

ි 8.4 සමාන්තර රේඛා ආශිුත කෝණ

රූපයේ පරිදි PQ තීර්යක් රේඛාවෙන් AB හා CD සරල රේඛා දෙක පිළිවෙළින් R හා S හිදි ඡේදනය වේ. එවිට පහත දැක්වෙන එක් එක් අවස්ථා සඳහා AB හා CD රේඛා දෙකෙහි පිහිටීම පරීක්ෂා කරමු.

- ★ අනුරූප කෝණ සමාන වන විට
- * ඒකාන්තර කෝණ සමාන වන විට
- \star මිතු කෝණ යුගලයේ ඓකාය $180^{
 m o}$ වන විට

මේ සඳහා පහත කිුියාකාරකමෙහි යෙදෙන්න.

.____

කිුයාකාරකම 1

පියවර 1: A4 කොළයක් මත රූපයේ දැක්වෙන ආකාරයට එකිනෙක O හිදි ඡේදනය වන පරිදි හා $P \hat{O} B = 70^\circ$ ක් වන පරිදි AB හා PQ සරල රේඛා දෙකක් ඇඳග න්න. OP මත R ලක්ෂායක් ලකුණු කරන්න.

පියවර 2: කෝණමානය භාවිතයෙන්, රූපයේ දැක්වෙන ආකාරයට, R හිදි විශාලත්වය 70° ක් වන PRC අඳින්න. මෙහි POB සහ PRC අනුරූප කෝණ යුගලක් බව (PQ රේඛාව RC හා AB රේඛා ඡේදනය කරන තීර්යක් රේඛාව ලෙස සැලකූ විට) නිරීක්ෂණය කරන්න.

පියවර 3: විහිත චතුරසුයක් හා සරල දාරයක් භාවිතයෙන් AB හා RC රේඛා සමාන්තරදැයි පරීක්ෂා කර බලන්න.

පියවර 4: $P \hat{O} B$ හි අගය වෙනස් කරමින් ඉහත පියවර තුන කිහිප වතාවක් කර ලැබෙන රේඛා සමාන්තරදැයි පරීක්ෂා කර බලන්න.

පියවර 5 : ඉහත අනුරූප කෝණ සඳහා සිදු කළ පියවර ඒකාන්තර කෝණ සඳහා ද සිදු කරන්න. එම පියවර සම්පූර්ණ කිරීමේ දී මෙහි දැක්වෙන ආකාරයේ රූපයක් ඔබට ලැබෙනු ඇත.

පියවර 6 : ඉහත පියවරලදී අනුරූප කෝණ සඳහා සිදු කළ පියවර මිතුකෝණ සඳහා ද සිදු කරන්න. මෙහිදී ඉහත පියවර 2හි ඇඳි රේඛාව ඇඳිය යුත්තේ මෙහි ඇති රූපයේ දැක්වෙන ආකාරයට $\ref{CRO} = 180^\circ - 70^\circ = 110^\circ$ වන පරිදි ය.

ඉහත කුියාකාරකමේදී ඔබ ඇඳි

- i. අනුරූප කෝණ යුගල සමාන වන විට හෝ
- ii. ඒකාන්තර කෝණ යුගල සමාන වන විට හෝ
- $\ddot{ ext{iii.}}$ මිතුකෝණ යුගලවල එකතුව 180° වන විට හෝ

AB හා RC රේඛා සමාන්තර වන බව ඔබ නිරීක්ෂණය කරන්නට ඇත. මෙම පුතිඵලය සාධාරණව සතාා වන අතර එය පුමේයයක් ලෙස මෙසේ පුකාශ කළ හැකි ය.

පුමේයය : සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වීමෙන් සෑදෙන

- i. අනුරූප කෝණ යුගල සමාන වේ නම් හෝ
- ii. ඒකාන්තර කෝණ යුගල සමාන වේ නම් හෝ
- iii. මිතුකෝණ යුගලවල එකතුව සෘජුකෝණ දෙකක් වේ නම් හෝ එම රේඛා දෙක සමාන්තර වේ.

නිදසුන 1

රූපයේ දැක්වෙන තොරතුරු අනුව, AB හා DC සමාන්තර බව පෙන්වන්න. AB හා DC සරල රේඛා දෙක BC තීර්යක් රේඛාවෙන් කැපී ගිය විට සෑදෙන $\stackrel{\wedge}{ABC}$ හා $\stackrel{\wedge}{BCD}$ මිතු කෝණ යුගලයකි.

$$A\hat{B}C = 115^{\circ}$$

$$B\hat{C}D = B\hat{C}E + E\hat{C}D = 45^{\circ} + 20 = 65^{\circ}$$

$$\therefore A\hat{B}C + B\hat{C}D = 115^{\circ} + 65^{\circ} = 180^{\circ}$$

 $\stackrel{\wedge}{ABC}$ හා $\stackrel{\wedge}{BCD}$ මිතු කෝණ යුගලයේ එකතුව 180° නිසා AB හා DC සමාන්තර වේ.

සමාන්තර රේඛා ආශුිත තවත් පුමේයයක් වෙත අවධානය යොමු කරමු.

කිුියාකාරකම 2

පියවර 1: A4කොළයක්මතරූපයේදැක්වෙනආකාරයට AB හා CD සමාන්තර සරල රේඛා දෙකකුත් (විහිත චතුරසුයක් හා සරල දාරයක් යොදාගෙන සමාන්තර රේඛා ඇඳිය හැකි ය) ඒවා පිළිවෙළින් R හා S හිදි ඡේදනය වන පරිදි PQ තීර්යක් රේඛාවකුත් අඳින්න.

පියවර 2 : කෝණමානයක් ආධාරයෙන්

- i. \widehat{SRB} හා \widehat{PSD} අනුරූප කෝණ යුගල මැන අගයන් සටහන් කර ගෙන ඒවා සමානදැයි බලන්න. අනෙක් අනුරූප කෝණ යුගල ද එසේ මැන, ඒවා ද සමාන දැයි බලන්න.
- ii. CSR හා SRB ඒකාන්තර කෝණ යුගල මැන අගයන් සටහන් කර ගෙන ඒවා සමානදැයි බලන්න. අනෙක් ඒකාන්තර කෝණ යුගලය එසේ මැන ඒවා ද සමානදැයි බලන්න.
- $D\widehat{SR}$ හා $S\widehat{RB}$ මිතුකෝණ යුගල මැන අගයන් සටහන් කරගෙන ඒවා පරිපූරකදැයි බලන්න. අනෙක් මිතුකෝණ යුගලය ද එසේ මැන ඒවා ද පරිපූරකදැයි බලන්න.

පියවර 3 : PQ තීර්යක් රේඛාවේ ආනතිය වෙනස් කරමින් ඉහත පියවර දෙක නැවත කිහිප වතාවක් සිදු කරන්න.

ඉහත කිුියාකාරකමේදී, සමාන්තර රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වන විට ඔබ මිනු

- i. අනුරූප කෝණ යුගල සමාන වන බවත්
- ii. ඒකාන්තර කෝණ යුගල සමාන වන බවත්
- $f{iii.}$ මිතුකෝණ යුගලවල ඓකාය 180° බවත්

ඔබ නිරීක්ෂණය කරන්නට ඇත. මෙම පුතිඵලය සාධාරණව සතා වන අතර එය පුමේයයක් ලෙස මෙසේ පුකාශ කළ හැකි ය.

පුමේයය : සමාන්තර සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වීමෙන් සෑදෙන

- i. අනුරූප කෝණ සමාන වේ
- ii. ඒකාන්තර කෝණ සමාන වේ
- iii. මිතු කෝණ යුගලයක ඓකාය ඍජුකෝණ දෙකකට සමාන වේ.

මෙම ඉහත පුමේයය මුලින් උගත් පුමේයයේ විලෝමය බව නිරීක්ෂණය කරන්න.

නිදසුන 6

රූපයේ AB සහ CD රේඛා සමාන්තර වේ (එය $AB/\!\!/CD$ ලෙස දක්වනු ලැබේ) $B\hat{D}C=75^\circ$ ද $B\hat{A}D=25^\circ$ ද වේ.

 ${f i.}$ $\stackrel{\wedge}{ABE}$ හි අගය සොයන්න. පිළිතුරට හේතු දක්වන්න.

 ${f ii.}$ ${ADB}$ හි අගය සොයන්න. පිළිතුරට හේතු දක්වන්න.

i.
$$B\hat{D}C = 75^\circ$$
 (දක්තය) $B\hat{D}C = A\hat{B}E$ (අනුරූප කෝණ, $AB/\!\!/CD$) $\therefore A\hat{B}E = 75^\circ$

ii.
$$B\hat{A}D = 25^\circ$$
 (දක්තය) $B\hat{A}D = A\hat{D}C$ (ඒකාන්තර කෝණ, $AB/\!/CD$) $\therefore A\hat{D}C = 25^\circ$

නමුත්
$$A\hat{D}B = B\hat{D}C - A\hat{D}C$$

= $75^{\circ} - 25^{\circ}$
= 50°

8.4 අභාගාසය

 $oldsymbol{2}$. පහත දැක්වෙන එක් එක් රූපයේ ඇති තොරතුරු අනුව, AB හා CD රේඛා සමාන්තර වේදැයි හේතු දක්වමින් පෙන්වන්න.

i.

iii.

iv.

V.

3. පහත දැක්වෙන එක් එක් රූපයේ කුඩා ඉංගුීසි අකුරු මගින් දැක්වෙන කෝණ අගයයන් සොයන්න.

ii.

iii.

iv.

4.

රූපයේ දැක්වෙන තොරතුරු මත AB//CE බව පෙන්වන්න.

මිශු අභාහසය)

1. පහත දැක්වෙන එක් එක් රූපයේ කුඩා ඉංගීසි අකුරුවලින් දැක්වෙන කෝණවල විශාලත්ව සොයන්න.

i.

2.

රූපයේ $x,\ y$ හා z මගින් දැක්වෙන්නේ එක් එක් කෝණයේ විශාලත්වය වේ.

x+z=y නම්, y මගින් දැක්වෙන අගය සොයන්න.

3.

රූපයේ දැක්වෙන තොරතුරු මත,

- ${f ii.} \; x$ මගින් දැක්වෙන අගය සොයන්න.
- iii. තුකෝණයේ එක් එක් කෝණයේ අගයයන් සොයන්න.
- 4. දී ඇති රූපයේ ඇති සමාන්තර රේඛා යුගල සියල්ල ලියා දක්වන්න. ඔබේ තෝරා ගැනීමට හේතුව ද දක්වන්න.

5. රූපයේ $\stackrel{\wedge}{ABC}=p$ ද $\stackrel{\wedge}{CDE}=q$ ද ලෙස දක්වා ඇති විට p=q බව පෙන්වන්න.

සාරාංශය

- එක් සරල රේඛාවක් තවත් සරල රේඛාවකට හමුවීමෙන් සෑදෙන බද්ධ කෝණ දෙකේ ඓකාය සෘජුකෝණ දෙකකට සමාන වේ.
- සරල රේඛා දෙකක් එකිනෙක ඡේදනය වීමෙන් සෑදෙන පුතිමුඛ කෝණ සමාන වේ.
- සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වීමෙන් සැදෙන
 - i. අනුරූප කෝණ යුගල සමාන වේ නම් හෝ
 - ii. ඒකාන්තර කෝණ යුගල සමාන වේ නම් හෝ
 - iii. මිතුකෝණ යුගලවල එකතුව ඍජුකෝණ දෙකක් වේ නම් හෝ එම රේඛා දෙක සමාන්තර වේ.
- සමාන්තර සරල රේඛා දෙකක් තීර්යක් රේඛාවකින් ඡේදනය වීමෙන් සැදෙන
 - i. අනුරූප කෝණ සමාන වේ,
 - ii. ඒකාන්තර කෝණ සමාන වේ,
 - iii. මිතු කෝණ යුගලයක ඓකෳය ඍජුකෝණ දෙකකට සමාන වේ.

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

දව පරිමා මනින ඒකක ලෙස
 මිලිලීටර (ml) හා ඝනසෙන්ටිමීටර (cm³) අතර
 ලීටර (l) හා ඝනසෙන්ටිමීටර (cm³) අතර
 ලීටර (l) හා ඝනමීටර (m³) අතර
 සම්බන්ධතා සෙවීමට

• දුව පරිමා මනින ඒකක ඇතුළත් ගැටලු විසඳීමට හැකියාව ලැබෙනු ඇත.

පරිමාව හා ධාරිතාව

යම් ඝන වස්තුවක් හෝ දුවයක් හෝ අවකාශයේ අත් කර ගන්නා ඉඩ පුමාණය එම ඝන වස්තුවේ හෝ දුවයේ පරිමාව ලෙස හැඳින්වෙන බව අපි දනිමු.

ඝන වස්තුවකට ස්ථීර හැඩයක් හා ස්ථීර පරිමාවක් තිබේ. එහෙත් දුවයකට ස්ථීර පරිමාවක් ඇතත්, ස්ථීර හැඩයක් නොමැත. දුවයක් සෑම විට ම එය දරා සිටින භාජනයේ හැඩය ගනී.

පහත රූපයේ දැක්වෙන්නේ මිලි ලීටර 200ක බීම පුමාණ විවිධ හැඩයේ භාජනවලට දමා ඇති ආකාරයයි.

එම බීම පුමාණ විවිධ හැඩවල භාජනවලට දැමූ විට, එම දුවයේ හැඩය, භාජනවල හැඩය ගන්නා නමුත් 200 ml බීම පරිමාව වෙනස් නොවේ. ඉහත පළමුවන රූපයේ ඇති බීම මිලි ලීටර 200න් මුළු භාජනයම පිරී ඇත. මෙහි දී, එම භාජනයේ ධාරිතාව මිලි ලීටර 200ක් ලෙස ද දැක්විය හැකි ය. එනම්, භාජනයක ධාරිතාව යන්නෙන් අදහස් වන්නේ එම භාජනයට අල්ලන උපරිම පරිමාවයි.

පරිමාව හා ධාරිතාව ඇතුළත් මීට පෙර උගත් කරුණු මතක් කර ගැනීමට පහත පුනරීක්ෂණ අභාාසයේ යෙදෙන්න.

(පුනරීක්ෂණ අභාාසය

 $1.\,\,1\,l$ = $1000\,\mathrm{ml}$ වේ. එය භාවිත කරමින් පහත වගුව සම්පූර්ණ කරන්න.

ml	l හා ml		l (දශම සංඛ්‍යාවක් ලෙස)
	1	ml	
2500	2	500	2.5
•••••	3	000	
3500	3		
	4	500	4.5
	0	500	
200			
50			
•••••			3.25
	0	25	
			0.005

2. පහත රූපවල දැක්වෙන ඝනකයේ හා ඝනකාභයේ පරිමාව ගණනය කර ඇති ආකාරය අනුව ඊට පහළින් දැක්වෙන වගු දෙක සම්පූර්ණ කරන්න.

5 cm 4 cm

පරිමාව = $5 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} = 125 \text{ cm}^3$

පරිමාව = $10 \text{ cm} \times 5 \text{ cm} \times 4 \text{ cm} = 200 \text{ cm}^3$

i. ඝනකය

පැත්තක	පරිමාව (cm³)
දිග (cm)	
2	× =
4	
6	
7	
8	
10	
12	

ii. ඝනකාභය

දිග (cm)	පළල (cm)	උස (cm)	පරිමාව (cm³)
3	2	2	××=
5	3	4	
8	6	5	
10	5	10	
10	5	6	
12	10	8	
12	6	5	
15	8	10	
20	7	8	

3. රූපයේ දැක්වෙන භාජනයේ ඇතුළත දිග $30~{\rm cm}$ ද පළල $10~{\rm cm}$ ද උස $12~{\rm cm}$ ද වේ. එහි $7~{\rm cm}$ උසකට ජලය පුරවා ඇත.

පහත දැක්වෙන දෑ සොයන්න.

- i. භාජනයේ ධාරිතාව
- ii. භාජනය සම්පූර්ණයෙන් ම පිරවීමට අවශා ජල පරිමාව
- iii. භාජනයේ 7 cm උසට පමණක් ජලය පූරවා ඇත් නම් එම ජල පරිමාව
- iv. භාජනයේ 7 cm උසට ජලය පිරී තිබිය දී කාන්දුවීමක් නිසා, පැයක් ඇතුළත ජල මට්ටමේ උස 5 cm තෙක් පහත වැටුණ හොත් එම පැය තුළ කාන්දු වූ ජල පරිමාව

9.1 ඝන සෙන්ටිමීරය හා මිලි ලීටරය අතර සම්බන්ධතාව

රූපයේ දැක්වෙන්නේ වෛදාපවරුන් භාවිතා කරන සිරින්ජයක රූපයකි. රෝගියකුට එන්නත් කරන දියර ඖෂධ පුමාණය, එහි සඳහන් පරිමාණය භාවිතයෙන් හඳුනා ගත හැකි ය.

cc/ ml ලෙස එහි මිනුම් ඒකක සඳහන් කර තිබේ.

cc යනු 'ඝන සෙන්ටිමීටරය' යන්නයි. එය ඉංගීසියෙන් Cubic Centimetre යනුවෙන් දක්වන නිසා එම පද දෙකේ මුල් අකුරුවලින් cc යන්න ලැබී ඇත. ඝන සෙන්ටිමීටරයක් යනු පැත්තක දිග සෙන්ටිමීටර 1ක් වන ඝනකයක පරිමාවයි.

cc/ ml ඇල ඉර වන / මගින් අදහස් වන්නේ 'හෝ' යන්නයි. එනම් ඖෂධ පුමාණය cc හෝ ml ලෙස දැක්විය හැකි බවයි. එවිට අපට මතුවන පුශ්නය වන්නේ ඝන සෙන්ටිමීටරයක් මිලිලීටරයකට සමාන වේද යන්නයි. මෙටික් ඒකක කුමයේ දී, මිලි ලීටරයක පුමාණය අර්ථ දක්වා ඇත්තේ එය ඝන සෙන්ටිමීටරයක පුමාණයට සමාන වන පරිදි ය. මේ අනුව,

ඝන සෙන්ටිමීටර 1= මිලි ලීටර 1

මෙම කරුණ තවදුරටත් පරීක්ෂා කිරීමට පහත කිුිිියාකාරකමෙහි නිරත වන්න.

කිුයාකාරකම 1

- ඉහත දැක්වෙන රූපය අනුව තුනී ප්ලාස්ටික්වලින් (හෝ transparent sheet වලින්) කපාගත් පතරොමකින් 5 cm × 2 cm × 1 cm පුමාණයේ ඝනකාභය හැඩැති භාජනයක් තනා ගන්න (ජලය කාන්දු නොවන සේ සුදුසු මැලියම් හෝ සෙලෝටේප්වලින් දාර හොඳින් අලවා ගන්න).
- විදහාගාරයෙන් 100 ml පුමාණයේ මිනුම් සරාවක් ද සපයා ගන්න.
- පහත දැක්වෙන ආකාරයට වගුවක් අභාහස පොතේ සටහන් කර ගන්න.

ඝනකාභ හැඩැති භාජනයෙන් මිනුම් සරාවට ජලය එක් කරන වාර ගණන	මිනුම් සරාවේ එකතු වන ජලයේ පරිමාව		
	ඝනකාභ භාජනය අනුව cm³ වලින්	මිනුම් සරාව අනුව ml වලින්	
	10		
	20		
	30		
	40		
	50		

- ඝනකාභ හැඩැති භාජනය ජලයෙන් සම්පූර්ණයෙන් පුරවමින් මිනුම් සරාවට එම ජලය දමන්න.
- මිනුම් සරාවට ජලය එක් කිරීමෙන් පසු මිනුම් සරාවේ පාඨාංකය සටහන් කර ගන්න.
- මෙසේ වාර කිහිපයක් කරමින් පාඨාංක සටහන් කර ගන්න.
- භාජනයේ පරිමාවේ ඒකක වන cm³ හා මිනුම් සරාවේ පරිමාවේ ඒකක වන ml අතර සම්බන්ධක් ගොඩනඟන්න.

කියාකාරකම අනුව,

$$10 \text{ cm}^3 = 10 \text{ ml}$$

 $20 \text{ cm}^3 = 20 \text{ ml}$

ආදි වශයෙන් සමානතා ලැබෙනු ඇත.

 $1~{
m cm^3} = 1~{
m ml}$ යන සම්බන්ධය, භාජනවල අඩංගු දුව පරිමා ඇතුළත් ගැටලු විසඳීම සඳහා යොදා ගත හැකි ය.

නිදසුන 1

ඇතුළත දිග 20 cm, පළල 15 cm හා උස 10 cm වූ ඝනකාභ හැඩැති වීදුරු භාජනයක බෙහෙත් දියර වර්ගයක් අසුරා ඇත.

- i. භාජනයේ පරිමාව ඝන සෙන්ටිමීටරවලින් සොයන්න.
- ii. භාජනයේ ධාරිතාව ලීටරවලින් කොපමණ ද?
- iii. භාජනයේ අඩංගු දියරය, 50 ml බැගින් කුඩා නලවල අසුරනු ලැබේ නම්, මුළු දියර පුමාණය ම එසේ ඇසිරීමට අවශා කුඩා නල ගණන සොයන්න.
- i. භාජනයේ පරිමාව = $20~{
 m cm} \times 15~{
 m cm} \times 10~{
 m cm}$ = $3000~{
 m cm}^3$
- **ii.** භාජනයේ ධාරිතාව = 3000 ml = 3 *l*
- iii. මුළු දියර පුමාණය = 3000 ml

$$50 \text{ ml}$$
 බැගින් ඇසිරිය හැකි කුඩා නල ගණන $= 3000 \div 50$ $= 60$

නිදසුන 2

පතුලේ දිග 2 m හා පළල 1 m වූ ඝනකාභ හැඩැති කොන්කීට් ටැංකියකට ජලය 800 lක් පූරවා තිබේ. භාජනයේ කොතෙක් උසට ජලය පිරී පවතී දැයි සොයන්න.

ටැංකියේ ජලය සෙන්ටිමීටර x උසකට ඇතැයි ගෙන සමීකරණයක් ගොඩනගා, එය විසඳීමෙන් ජලය පිරී ඇති උස සොයමු.

ඒ සඳහා සියලු ම මිනුම් සෙන්ටිමීටරවලට හරවා ගනිමු.

ටැංකියේ දිග =
$$2 \text{ m} = 200 \text{ cm}$$

x උසකට ජලය ඇත් නම් ජල පරිමාව = $200~\mathrm{cm} \times 100~\mathrm{cm} \times x~\mathrm{cm}$ = $20~000 \times x~\mathrm{cm}^3$

එහෙත් ටැංකියේ ඇති ජල පරිමාව 800l බව දී ඇති නිසා

ටැංකියේ ඇති ජල පරිමාව
$$=800~l$$

 $= 800\ 000\ ml$

 $= 800\ 000\ cm^3$

ඉහත ආකාර දෙකෙන්ම එක ම ජල පරිමාව දැක්වෙන නිසා

$$\therefore 20\ 000 \times x = 800\ 000$$

$$x = \frac{800\ 000}{20\ 000}$$

$$=40$$

∴ ටැංකියේ 40 cm උසට ජලය පිරී පවතී.

9.1 අභනාසය

 ${f 1.}$ A කොටුවේ දැක්වෙන පරිමාවට සමාන පරිමාව B කොටුවෙන් තෝරා යා කරන්න.

	4
1000	cm ³
10	cm^3
3000	cm^3
1500	cm^3
25000	cm^3
25	cm^3

B
25 ml
25 <i>l</i>
1 <i>l</i>
10 ml
1.5 <i>l</i>
3 1

 සනකාභ හැඩැති භාජන කිහිපයක මිනුම් පහත වගුවේ දැක්වේ. එම වගුව සම්පූර්ණ කරන්න.

දිග (cm)	පළල (cm)	උස (cm)	ධාරිතාව		
			cm ³	ml	l
20	10	5			
40	20	10			
35	12	10			
50	35	12			
40	35	25			
25	20	18			

- **3.** පතුලේ වර්ගඵලය $240~{
 m cm}^2$ වූ ඝනකාභ හැඩැති භාජනයක $12~{
 m cm}$ උසට ජලය පිරී තිබේ. ජලයේ පරිමාව
 - $i.~cm^3$ වලින්

- ii. ml වලින්
- $iii.\ l$ වලින්

සොයන්න.

- **4.** සමචතුරසු හැඩැති පතුලක් සහිත ඝනකාභහැඩැති භාජනයක, පතුලේ වර්ගඵලය $225~{
 m cm}^2$ වේ. එහි ජලය 3.6~lක් පුරවා තිබේ.
 - i. ජල මට්ටමේ උස සොයන්න
 - ii. භාජනයේ උස 24 cm නම්, එහි ධාරිතාවෙන් $\frac{2}{3}$ ක් ජලයෙන් පිරී ඇති බව පෙන්වන්න.
- 5. ඇතුළතින් පැත්තක දිග $10~{\rm cm}$ වූ ඝනක හැඩැති භාජනයක් සම්පූර්ණයෙන් දුවයෙන් පුරවා, $15~{\rm e}$ වාරයක් එම දුව පුමාණ දැමීමෙන් 15~l ධාරිතාව ඇති භාජනයක් පිරවිය හැකි බව පෙන්වන්න.

් 9.2 ලීටරය හා ඝන මීටරය අතර සම්බන්ධතාව

තෙල් ගබඩා කරන විශාල ටැංකි, පිහිනුම් තටාක වැනි විශාල දුව පරිමාවක් රැස් කරන අවස්ථාවන්හි දි, එහි පරිමාව සඳහන් කිරීම සඳහා $\mathbf{m}\mathbf{l}$ හෝ \mathbf{l} යන ඒකකවලට වඩා විශාල ඒකකයක අවශානාව මතු වේ. ඒ සඳහා ඝන මීටරය නම් විශාල ඒකකයක් භාවිත කරයි.

ඝන මීටරය හඳුනා ගැනීමට පැත්තක දිග $1 \ m$ වූ ඝනක හැඩැති භාජනයක ධාරිතාව ගණනය කරමු.

රුපයේ දැක්වෙන භාජනයේ ධාරිතාව =
$$1~\mathrm{m} \times 1~\mathrm{m} \times 1~\mathrm{m} = 1~\mathrm{m}^3$$

නමුත්,
$$1 \text{ m} = 100 \text{ cm}$$
 නිසා

භාජනයේ ධාරිතාව වන
$$1~\text{m}^3=100~\text{cm}\times 100~\text{cm}\times 100~\text{cm}$$

$$= 1\ 000\ 000\ cm^3$$

$$=\frac{1000\ 000}{1000}$$
 $l\ (1000\ ml = 1\ l\ නිසා)$

$$= 1 000 l$$

මේ අනුව,

ඝන මීටරයක් යනු ලීටර 1 000කි.

$$1 \text{ m}^3 = 1000 l$$

නිදසුන 1

නිවසක දිනපතා භාවිතය සඳහා අවශා ජලය රැස් කරන ඝනකාභ හැඩැති ටැංකියක ඇතුළත දිග $1.5~\mathrm{m}$, පළල $1~\mathrm{m}$ හා උස $1~\mathrm{m}$ වේ.

- i. ටැංකියේ ධාරිතාව ලීටර් කීය ද?
- ii. නිවැසියන් දිනකට ජලය ලීටර 300 ක් පරිභෝජනය කරනු ලැබේ නම්, සම්පූර්ණයෙන් පූරවා ඇති ටැංකිය ඔවුන්ට දින කීයකට සෑහේ ද?

i. ටැංකියේ ධාරිතාව
$$= 1.5~{
m m} imes 1~{
m m} imes 1~{
m m}$$
 $= 1.5~{
m m}^3$ $= 1~500~l$ $(1~{
m m}^3 = 1000~l$ නිසා)

$${f ii.}$$
 දිනකට පාවිච්චි කෙරෙන ජල පරිමාව = $300~l$ $_{00}$ කියේ පිරී ඇති ජල පරිමාව = $1~500~l$ $_{00}$ සෑහෙන දින ගණන = $\frac{1~500}{300}$ = දින 5

9.2 අභාගාසය

1. වගුව සම්පූර්ණ කරන්න.

ඝනකාභ හැඩැති ටැංකියේ ඇතුළත මිනුම්			ටැංකියේ	ධාරිතාව
දිග (m)	පළල (m)	උස (m)	m^3	l
2	2	1		••••
2	1.5	1	••••	••••
1	1	0.5		••••
4	1	••••	8	••••
••••	1.5	3.0		9000
	••••	1	1.5	••••

- 2. පිහිනුම් කටාකයක දිග 50 m, පළල 25 m හා ගැඹුර 3 m වේ.
 - i. පිනිනුම් තටාකයේ ධාරිතාව සොයන්න.
 - ii. තටාකයේ 1.2 m උසට ජලය පුරවා තිබේ නම් එහි අඩංගු ජල පරිමාව ලීටර් කීය ද?
 - iii. පිහිනුම් තටාකය සම්පූර්ණයෙන් ම ජලයෙන් පිරවීමට තවත් කොපමණ ජල පුමාණයක් අවශා ද?

- 3. ධාරිතාව 6.5 m³ ලෙස සඳහන් කර ඇති තෙල් බවුසරයක් සම්පූර්ණයෙන් ම තෙල්වලින් ප්රවා ඇත. මෙම බවුසරයට තෙල් පිරවුම් පොළ 8කට එක් ස්ථානයකට 850 l බැගින් තෙල් නිකුත් කිරීමට නියමිතව තිබේ. බවුසරයේ ගබඩා කර ඇති තෙල් පුමාණය නියමිත පිරවුම් පොළ අටට නිකුත් කිරීමට පුමාණවත් වේ ද? ඔබේ පිළිතුරට හේතු දක්වන්න.
- 4. දිනකට එක් පුද්ගලයකුට අවම වශයෙන් ජලය ලීටර 150ක් අවශා වේ. ඇතුළත දිග $1\frac{1}{2}$ m පළල 1 m හා උස 1 m පුමාණයේ ඝනකාභ හැඩැති ටැංකියක් ජලයෙන් පිරී තිබේ නම්, එම ජල පුමාණය පුද්ගලයින් උපරිම කී දෙනෙකුට දිනකට සෑහේ ද?
- 5. ඝනක හැඩැති ටැංකියක ඇතුළත මිනුම් මීටර 1 බැගින් වේ. මෙම ටැංකිය සම්පූර්ණයෙන් ජලයෙන් පිරී පවතී. ටැංකියෙන් ජලය පිට කරන කරාමයක් විවෘත කළ විට ඉන් ජලය පිට වන්නේ මිනිත්තුවට 50~lක ඒකාකාර වේගයෙන් නම් මෙම කරාමය විවෘත කර කොපමණ කාලයකට පසු ටැංකිය සම්පූර්ණයෙන් හිස් වේ දැයි සොයන්න.

මිශු අභාගාසය

- 1. විශාල පුමාණයේ පැණි බීම බෝතලයක ධාරිතාව 1.5 l වේ. උත්සව අවස්ථාවක දී මෙම බීම වර්ගයෙන් සංගුහ කිරීමට ඒ සඳහා යොදා ගන්නා කුඩා පුමාණයේ වීදුරුවකට 150 mlක පුමාණයක් බීම දැමීමට ද බලාපොරොත්තු වේ. උත්සවය සඳහා 225 දෙනෙකු සහභාගී වේ නම් ඔවුන්ට සංගුහ කිරීම සඳහා අවශා වන විශාල පුමාණයේ බීම බෝතල් අවම ගණන සොයන්න.
- 2. නිවෙස්වල ජලය ගබඩා කරන ධාරිතා, 500 l, 1000 l, 2000 l වන වතුර ටැංකි මිල දී ගැනීමට වෙළෙඳපොළේ තිබේ. පස් දෙනකුගෙන් යුත් පවුලක ප්‍රධානියෙක් තම නිවෙසට ජලය රැස් කර තබා ගැනීම සඳහා ජල ටැංකියක් මිල දී ගැනීමට අදහස් කරයි. දිනකට එක් ප්‍රද්ගලයකුට ජලය 150 l ප්‍රමාණයක් උපරිම වශයෙන් අවශා වන අතර ගෙදරදොරේ අනෙකුත් කටයුතුවලට 200 lක් අමතරව අවශා වන බව ද තීරණය කරන ගෙහිමියා දිනකට එක් වරක් පමණක් ටැංකිය ජලයෙන් පිරවීමට බලාපොරොත්තු වේ. මෙම තීරණ අනුව එම නිවෙස සඳහා සුදුසු වන්නේ කවර ප්‍රමාණයේ ටැංකියක් දැයි නිර්ණය කරන්න.

සාරාංශය

- $1 \text{ cm}^3 = 1 \text{ ml}$
- $1 \text{ m}^3 = 1000 l$

පළමු වාර පුණරීක්ෂණ අභාගාසය

I කොටස

 $1.5, 8, 11, 14, \dots$ සංඛාහ රටාවේ පොදු පදය ලියා දක්වන්න.

$$m{2.}\ 10011_{_{
m eqm}} -$$
 $_{_{
m eqm}} = 0011_{_{
m eqm}}$ නම් හිස්තැන සම්පූර්ණ කරන්න.

- ${f 3.}$ මුදලකින් ${1\over 3}$ ක වටිනාකම රු ${f 800}$ ක් වේ. එම මුදලින් ${3\over 4}$ ක වටිනාකම කොපමණවේ ද?
- **4.** භාණ්ඩයක් රු 1500ට විකිණීමෙන් රු 300ක ලාභයක් ලබයි නම් ලාභ පුතිශතය කොපමණද?

5. $D = C \times (x+1) \text{ cm}$

ABCD සෘජුකෝණාසුයේ වර්ගඵලය x ඇසුරෙන් පුකාශ කරන්න.

6. සාධක සොයන්න. $2x^2 - x - 6$

7.

රූපයේ දී ඇති තොරතුරු ඇසුරෙන් පුතෳක්ෂ භාවිත කර

- (i) AC = PQ බව
- (ii) BC = QR බව පෙන්වන්න.

8.

AB හා CD රේඛා සමාන්තර වී ට yහි අගය සොයන්න.

9. $(x + 4)(x - 3) = x^2 + bx + c$ නම් b හා cහි අගය සොයන්න.

ධාරිතාව 2ක වූ A භාජනයේ $\frac{3}{4}$ ක් පිරවීමට ධාරිතාව $50 \mathrm{ml}$ ක්වූ B භාජනයෙන් කොපමණ වාරගණනක් ජලය වත් කළ යුතු ද?

- 12. ඉඩමක් විකිණීමේ දී 3% ක කොමිස් මුදලක් අය කරයි. කොමිස් ගෙවීමෙන් පසු ඉඩම් හිමියාට රු 9~700~000 ලැබුණේ නම් ඉඩම විකුණා ලද වටිනාකම සොයන්න.
- $13.1rac{3}{4}$ කුමන භාගයෙන් ගුණ කළ විට $3rac{3}{4}$ ලැබේද?

 $A\hat{B}D$ හා $D\hat{B}C$ කෝණවල සමච්ඡේදක පිළිවෙලින් BM හා BN අගය වේ. $A\hat{B}N + C\hat{B}N$ හි අගය සොයන්න.

II කොටස

1.

මුල් කව තුනේ නිල් බල්බ ගණන 3,5,7 ද රතු බල්බ ගණන 2,4,6 වශයෙන් වන පරිදි විදුලි බල්බ යොදාගෙන සකස් කරන ලද සැරසිල්ලක් මුල් අවස්ථා තුන ඉහත රූපයේ පෙන්වා ඇත.

- (i) හතරවන හා පස්වන අවස්ථාවන්ට උපයෝගී කරගෙන ඇති නිල් බල්බ ගණන හා රතු බල්බ ගණන පිළිවෙලින් ලියා දක්වන්න.
- (ii) මෙහි දී අවස්ථාව අනුව යොදාගෙන ඇති නිල් බල්බ හා රතු බල්බ වල රටාව හඳුනාගෙන n වන අවස්ථාව සැකසීමට අවශාවන නිල් බල්බ ගණන හා රතු බල්බ ගණන n ඇසුරෙන් වෙන වෙනම පුකාශ කරන්න.
- (iii) n වන අවස්ථාව සැකසීමට අවශා වන මුළු බල්බ ගණන ඉහත (ii) ලබා ගත් පුකාශන ඇසුරෙන් පුකාශ කරන්න.
- (iv) 10 වන අවස්ථාවට සැකසීමට අවශා වන නිල් බල්බ ගණන හා රතු බල්බ ගණන ඉහත (ii) හි ලබා ගත් පුකාශන භාවිතයෙන් සොයන්න.
- (v) මුළු බල්බ 61ක් භාවිත කර සකස් කළ හැක්කේ කීවෙනි රටාවද? එහි ඇති නිල් බල්බ ගණන සොයන්න.
- 2. (a) සුළු කරන්න

$$\frac{(i) \ 2 \frac{1}{5} + \frac{1}{2}}{\frac{3}{10}}$$

(ii)
$$(1\frac{1}{3} \text{ st } 1\frac{1}{8}) \div 2\frac{1}{2}$$

- (b) (i) ඉඩමකින් $\frac{1}{4}$ ක භූමි පුමාණයක අඹ වගා කර ඇත්නම් ඉතිරි භූමි පුමාණය කොපම්ණුද?
 - (ii) ඉතිරි භූමී පුමාණයෙන් $\frac{1}{3}$ ක කෙසෙල් වගා කර ඇති භූමි පුමාණය මුළු ඉඩ මෙන් භාගයක් ලෙස් පුකාශ කරන්න.
 - (iii) අඹ හා කෙසෙල් වගාකළ ඉඩ පුමාණය මුළු ඉඩමෙන් කුමන භාගයක්ද?
 - (iv) ඉහත වගාවන් සිදු නොකළ ඉඩ පුමාණය හෙක්ටාර 3ක් නම් ඉඩමේ මුළු භූමී පුමාණය කොපමණද?
- ${f 3.}$ $({f a})$ රු ${f 8000}$ කට මිල දී ගත් භාණ්ඩයක් ${f 25\%}$ ක ලාභයක් තබාගෙන මිල ලකුණු කරයි. එය අත්පිට විකිණීමේදී 10%ක වට්ටමක් ලබා දේ නම් ගනුදෙනුවෙන් වෙළෙන්දා ලබන ලාභයේ පුතිශතය සොයන්න.
 - (b) පුද්ගලයකු භාණ්ඩයක් 15%ක් ලාභ ලැබෙන සේ මිල ලකුණු කරයි. එය 20%ක් ලාභ ලැබෙන සේ විකුණුවේ නම් තව රු 200ක මුදලක් වැඩිපුර ලැබිය හැකිව තිබුණි. භාණ්ඩය ගත්මිල හා විකුණුම් මිල සොයන්න.
- **4.** (a) a = -2 හා b = 3 විට පහත පුකාශනවල අගය සොයන්න.
- (i) 2a + 3b (ii) b 2a (iii) $\frac{a}{3} \frac{b}{2}$

- (i) ABCD කොටසේ වර්ගඵලය සඳහා x ඇසුරෙන් පුකාශනයක් ලබා ගන්න.
- $({
 m ii})$ පාටකළ කොටසින් දැක්වෙනුයේ ABCD පිටතින් x cm පළල ඇති වර්ණ තීරුවක් අලවා ඇති ආකාරයයි. PQRS සෘජුකොණාසුාකාර කොටසේ වර්ගඵලය සොයා ඉහත (i)හි ලබාගත් පුකාශය ඇසුරෙන් පාටකරන ලද කොටසේ වර්ගඵලය x ඇසුරෙන් පුකාශ කරන්න.
- (iii) x = 3 cm නම් පාටකළ කොටසේ වර්ගඵලය ගණනය කරන්න.
- (c) සාධක සොයන්න.

(i)
$$5x^2 + 12y^2 - 4xy - 15xy$$

(ii)
$$6(x-1) + 3x - 3$$

(iii)
$$t^2 - 8t + 15$$

(iv)
$$3k^2 - 12k$$

5. (a) රූපසටහන්වල දී ඇති දත්ත උපයෝගී කරගෙන හා පුතාෳක්ෂ භාවිතයෙන් පහත පුතිඵල ලබා ගන්න.

 $A\stackrel{\wedge}{YB}=D\stackrel{\wedge}{X}C$ බව පෙන්වන්න.

 $B \stackrel{\wedge}{A} E = F \stackrel{\wedge}{D} C$ බව පෙන්වන්න.

 $\stackrel{\wedge}{p}-\stackrel{\wedge}{s}=\stackrel{\wedge}{r}-\stackrel{\wedge}{q}$ බව පෙන්වන්න.

 $oldsymbol{x}$ හි අගය සොයන්න.

x හි අගය සොයන්න.

PQ හා RS සමාන්තර රේඛා යුගලය MN හා KL තීර්යක් රේඛා මගින් රූපයේ පෙනෙන පරිදි ඡේදනය වේ. දී ඇති දත්ත ඇසුරෙන්

- (i) කෝණවල ඓකාය 180° වන අවස්ථා සියල්ල ලියා දක්වන්න.
- (ii) මිතු කෝණ යුගලයන් ලියා දක්වන්න.
- (iii) හේතු සහිතව එකිනෙක සමාන වන කෝණ සියල්ල ලියා දක්වන්න.
- (iv) $\hat{a} + \hat{e} = 180^{\circ}$ වේ ද? පැහැදිලි කරන්න.
- (\mathbf{v}) පුතාක්ෂය භාවිතයෙන් t-f=h-d බව පෙන්වන්න.
- (vi) $e = 140^{\circ}, f = 110^{\circ}$ නම් කුඩා ඉංගීසි අක්ෂරවලින් දක්වා ඇති කෝණ සියල්ලගේම අගය සොයන්න.

 ${f 6.}$ නිවසක ඇති ජල ටැංකියේ දිග, පළල හා උස පිළිවෙලින් ${f 2m,\,1.5m}$, හා ${f 1m}$ වේ.

- (i) මෙම ජල ටැංකියේ ධාරිතාව ලීටරවලින් පුකාශ කරන්න.
- (ii) එක් පුද්ගලයෙකුට දිනකට ජලය ලීටර් 150ක් අවශා වේ නම් හතර දෙනෙකු සිටින නිවසකට දිනකට අවශා ජල පුමාණය ලීටර් කොපමණද?
- (iii) ඉහත ජල ටැංකියේ ඇති මුළු ජල පුමාණය පුද්ගලයින් හතර දෙනටෙ දින කීයකට පුමාණවත් වේ ද?
- (iv) මිනිත්තුවකට $100\ l$ ක ජල සැපයුමක් භාවිත කළහොත් හිස් වූ ඉහත ටැංකිය පිරවීමට කොපමණ කාලයක් ගත වේද?ඳ
- (v) ජල ටැංකිය සම්පූර්ණයෙන්ම පිරී පැවතී දිනකදී ජල ටැංකියට සම්බන්ධ භූගත නලයක සිදු වූ හානියක් හේතුවෙන් ජලය 900l ක පුමාණයක් අපතේ යන ලද්දේ නම් ඉතිරි වූ ජල පුමාණයේ උස කොපමණ වේද?

	පාරිභාෂික ශබ්ද මාලාව	
&		Le le
අලාභය අනුරූප කෝණ අඩු කිරීම	நட்டம் ஒத்தகோணங்கள் கழித்தல்	Loss Corresponding angles Subtraction
එ එකතු කිරීම ඒකාන්තර කෝණ	கூட்டல் ஒன்றுவிட்டகோணங்கள்	Addition Alternate angles
ක කොමිස්	தரகு (கமிஷன்)	Commission
න තැරැව්කරුවා	தரகர்	Broker
ද ද්වීමය සංඛහා	துவித எண்கள்	Binary numbers
ධ ධාරිතාව	கொள்ளளவு	Capacity
න නිඛිල ප	நிறைவெண்கள்	integers
පද අතර වෙනස පරිමාව පරිවර්තනය පළමුවන පදය පාදය පොදු සාධක පුතිමුඛ කෝණ පුමේයය	உறுப்புக்களுக்கிடையேயானவித்தியாசம் கனவளவு மாற்றல் முதலாம் உறுப்பு அடி பொதுக்காரணிகள் குத்தெதிர்க்கோணங்கள் தேற்றம்	Difference of terms Volume Conversion 1st term Base Common factors Vertically opposite angles Theorem

බ

හ

භාග பினன் ஙக் ள் Fractions

ම

මිතු කෝණ நேயக்கோணங்கள் Allied angles

0

ලකුණු කළ මිල යුාුබ්න්න allow Marked Price

இலாபம் Profit

ව

වීජීය පද அட்சரகணித உறுப்பு Algebraic term වීජීය පුකාශන அட்சரகணிதக் கோவைகள் Algebraic expressions

විදහත්මක අංකනය விஞ்ஞானமுறைக் குறிப்பீடு Sciencetific notation

ස

සංඛාහ අනුකුම எ**ண் தொட**ரி Number sequence සාධාරණ පදය <mark>பொது உறுப்பு</mark> General term ස්ථානීය අගය இடப்பெறுமானம் Place Value

පාඩම් අනුකුමය

පෙළපොතේ පරිච්ඡේදය	කාලච්ඡේද ගණන
1 වාරය	
1. සංඛාහ රටා	03
2. ද්වීමය සංඛාා	03
3. භාග	05
4. පුතිශත	06
5. වීජීය පුකාශන	05
6. වීජීය පුකාශනවල සාධක	05
7. පුතාක්ෂ	04
8. සරල රේඛා, සමාන්තර රේඛා ආශිුත කෝණ	07
9. දුව මිනුම්	03
2 වාරය	
10. අනුලෝම සමානුපාත	06
11. ගණකය	02
12. දර්ශක	03
13. වටැයීම හා විදාහත්මක අංකනය	05
14. පථ හා නිර්මාණ	09
15. සමීකරණ	06
16. තුිකෝණයක කෝණ	09
17. සූතු	02
18. වෘත්තයක පරිධිය	05
19. පෙතගරස් සම්බන්ධය	04
20. පුස්තාර	04
3 චාරය	
21. අසමානතා	03
21. කුලක	07
23. වර්ගඵලය	05
24. සම්භාවිතාව	05
25. බහු-අසුවල කෝණ	05
26. වීජිය භාග	03
27. පරිමාණ රූප	08
28. දත්ත නිරූපණය හා අර්ථකථනය	10