(a)	Briefly o	describe	two	phenomena	associated	with	the	photoelectric	effect	that	cannot	be
	explained using a wave theory of light.			4								

1 water mitten	emmission!

(b) The maximum energy E_{MAX} of electrons emitted from a metal surface when illuminated by light of wavelength λ is given by the expression

$$E_{\text{MAX}} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$$

where h is the Planck constant and c is the speed of light.

(ii) The variation with $\frac{1}{\lambda}$ of E_{MAX} for the metal surface is shown in Fig. 10.1.

Fig. 10.1

1. Use Fig. 10.1 to determine the magnitude of λ_0 .

$$\lambda_0 = \frac{2 \cdot 2 \times 10^6}{m[1]}$$

Use the gradient of Fig. 10.1 to determine a value for the Planck constant h.

 $hC = 2 \times 10^{-2.5}$ $h = \frac{2 \times 10^{-2.5}}{3 \times 10^{8}}$ 6.66×10^{-34}

The metal surface in (b) becomes oxidised. Photoelectric emission is still observed but the work function energy is increased.

On Fig. 10.1, draw a line to show the variation with $\frac{1}{\lambda}$ of E_{MAX} for the oxidised surface. [2]

7 31	atioi	lary isolated fiddleds effits a 7-ray photorrol energy 0.5 time v.	
(a)	Sta	te what is meant by a <i>photon</i> .	

		[2]	
(b)	For	the γ -ray photon, calculate	
	(i)	its wavelength,	
		hc = 0.51 x (.6 x 10-19 x 106	
		K= hc 816×10-16	
		wavelength = m [2]	
	(ii)	its momentum.	
١			
		人: と	
		momentum =	
		25	
(c)	(i)	For this nucleus, determine the change in mass Δm during the decay that gives rise to the energy of the γ -ray photon.	
	2	the onergy of the first priorent	
	ζ.		
		$\Delta m =$	
2	(ii)	Explain why, after the decay, the nucleus is no longer stationary.	
7	•		
		[1]	
		(Total: 9)	

(a)	Describe the photoelectric effect.	, ACI
	It is the emmission of e- off of a surf of netal when photons of energy greater the work function energy hit it.	than [2]
(b)		
	Φ/J	
	sodium 3.8×10^{-19} zinc 5.8×10^{-19}	
	Fig. 10.1	
	Light of wavelength 420 nm is incident on the surface of each of the metals.	
	(i) State what is meant by a <i>photon</i> .	
		[2]
	(ii) Calculate the energy of a photon of the incident light.	
	$E = \frac{hC}{\lambda}$ = $\frac{hC}{420 \times 10^{-9}} = 4.73 \times 10^{-19}$	
	energy = 4.73×10^{-19}	J [2]
A	(iii) State whether photoelectric emission will occur from each of the metals.	
	zinc:	
		[1]
		[Total: 7]

.....[2

- (b) A stationary cobalt-60 (⁶⁰₂₇Co) nucleus emits a γ-ray photon of energy 1.18 MeV.
 - (i) Calculate the wavelength of the photon.

$$\frac{hC}{L} = 1.18 \times 10^{6} \times 1.6 \times 10^{-19}$$

$$L = \frac{hC}{1888 \times 10^{-16}} = 1.052 \times 10^{-12}$$

wavelength = 1.09×10^{-12} m [2]

(ii) Show that the momentum of the photon is $6.3 \times 10^{-22} \,\mathrm{Ns}$.

$$l = \frac{h}{p}$$
 $p = \frac{h}{L} = 6.3 \times 10^{-22}$

[2]

(c) Use information in (b)(ii) to determine the recoil speed of the cobalt-60 nucleus when the γ-ray photon is emitted.

$$P = m V$$

$$V = P = \frac{6-3 \times (0^{-22})}{60 \times (.66 \times (0^{-27}))}$$

speed =
$$\frac{6.3 \times 16^{3}}{1000}$$
 m s⁻¹ [2]

[Total: 8]