Cpr E 281 HW03

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

NAND/NOR Gates with Synthesis Minimization and Karnaugh Maps Assigned: Week 4

Due Date: Feb. 12, 2023

P1 (12 points): Given the expression $G(W,X,Y,Z) = \sum m(0,1,3,7,8,15)$, implement this function using no more than 8 NAND gates. The NAND gates that you use may have any number of inputs. You may not use NOT gates to create this circuit.

P2 (16 points): Given the expression $H(A, B, C) = \sum m(0, 1, 5, 7)$, perform the following:

- a. Write the expression for H as a simplified SOP expression.
- b. Write the expression for H as a simplified POS expression.
- c. Implement H using exactly five NOR gates and no other gates.
- d. Did you use the SOP expression or the POS expression to implement the circuit? Why?

P3 (9 points): Produce the simplified sum-of-products (SOP) expressions for the following K-maps:

A 00 01 11 10 W					10	WX	00	01	11	10
0 1 0 0	00	1	0	0	1	00	0	0	0	0
1 1 1 0 0 0)1	1	1	0	0	01	0	1	0	0
1	.1	1	1	0	0	11	1	0	0	0
1	.0	0	0	0	0	10	1	0	0	1

P4 (21 points): For each shorthand expression below, derive the simplest SOP expression:

A: $F_1(w, x, y, z) = \sum m(4,6,10,11,14,15)$

B: $F_2(x, y, z) = \sum m(2,5,6,7)$

C: $F_3(w, x, y, z) = \sum m(0,2,3,7,8,10,11,15)$

P5 (21 points): For each expression below, derive the simplest POS expression:

A: $G_1(a, b, c, d) = \prod M(0,1,2,3,4,5,10,11)$

B: $G_2(a, b, c) = \prod M(0,2,3,6)$

C: $G_3(a, b, c, d) = \prod M(0,2,5,9,13)$

P6 (21 points): Use Karnaugh Maps to convert the following expressions to <u>simplified SOP expressions</u>:

I: $H_1(A, B, C, D) = \overline{C}D + B\overline{C} + BC\overline{D} + AC\overline{D} + A\overline{B}C$

II: $H_2(A, B, C, D) = (A + C + D)(B + C + \overline{D})(\overline{A} + B + \overline{C})$

III: $H_3(A, B, C, D) = \prod M(0,2)$

P2) H(A,B,C) = Em (0,1,5,7)

a) S'implified SOP b) Simplified POS c) Implement d) sop?

why?

S NOR d) Sop? a) $\overline{ab} + ac$ SOP $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array}\end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c$ (a+b) (a+c) B POS is far easier to implement using NOR gates compared to SOP, as

P4) A)
$$F_1(w,x,y,z) = \sum m(4,6,10,11,14,15)$$

SOP B) $F_2(x,y,z) = \sum m(2,5,6,7)$
C) $F_3(w,x,y,z) = \sum m(0,2,3,7,8,10,11,15)$

PS) A)
$$G_{1}(a,b,c,d) = \prod M(0,1,2,3,4,5,10,11)$$

POS B) $G_{2}(a,b,c) = \prod M(0,2,3,6)$
 $G_{3}(a,b,c,d) = \prod M(0,2,5,9,13)$

Mse K MAPS to convert to simplified Soperpressions

I)
$$H_1(A,B,C,D) = \overline{C} D + B \overline{C} + B C \overline{D} + AC \overline{D} + A \overline{B} C$$

II) $H_2(A,B,C,D) = (A+C+D)(B+C+\overline{D})(\overline{A}+B+\overline{C})$

III) $H_3(A,B,C,D) = [M(0,2)]$

III) $H_3(A,B,C$