so η is also expressed in terms of λ , μ .

The condition $\nu > (p_f + q_f)/(p+q)$ cannot be satisfied if $p_f + q_f = p+q$, but in this case all points fail the margin, which indicates that δ is too big, so we reduce ν and try again.

Remark: The equation

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j = \nu$$

implies that either there is some i_0 such that $\lambda_{i_0} > 0$ or there is some j_0 such that $\mu_{j_0} > 0$, which implies that $p_m + q_m \ge 1$.

Another way to compute η is to assume the Standard Margin Hypothesis for (SVM_{s3}). Under the **Standard Margin Hypothesis** for (SVM_{s3}), either there is some i_0 such that $0 < \lambda_{i_0} < K_s$ or there is some j_0 such that $0 < \mu_{j_0} < K_s$, in other words, there is some support vector of type 1. By the complementary slackness conditions $\epsilon_{i_0} = 0$ or $\xi_{j_0} = 0$, so we have

$$w^{\top}u_{i_0} - b = \eta$$
, or $-w^{\top}v_{j_0} + b = \eta$,

and we can solve for η .

Due to numerical instability, when writing a computer program it is preferable to compute the lists of indices I_{λ} and I_{μ} given by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid 0 < \lambda_i < K_s \}$$

$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid 0 < \mu_j < K_s \}.$$

Then it is easy to see that we can compute η using the following averaging formulae: If $I_{\lambda} \neq \emptyset$, then

$$\eta = w^{\top} \left(\sum_{i \in I_{\lambda}} u_i \right) / |I_{\lambda}| - b,$$

and if $I_{\mu} \neq \emptyset$, then

$$\eta = b - w^{\top} \left(\sum_{j \in I_{\mu}} v_j \right) / |I_{\mu}|.$$

Theoretically the condition $\nu > (p_f + q_f)/(p + q)$ is less restrictive that the **Standard Margin Hypothesis** but in practice we have never observed an example for which $\nu > (p_f + q_f)/(p + q)$ and yet the **Standard Margin Hypothesis** fails.

The "kernelized" version of Problem (SVM $_{s3}$) is the following:

Soft margin kernel SVM (SVM $_{s3}$):

minimize
$$\frac{1}{2}\langle w, w \rangle + \frac{1}{2}b^2 - \nu \eta + K_s \left(\epsilon^{\top} \quad \xi^{\top} \right) \mathbf{1}_{p+q}$$
subject to
$$\langle w, \varphi(u_i) \rangle - b \geq \eta - \epsilon_i, \quad \epsilon_i \geq 0 \qquad i = 1, \dots, p$$
$$-\langle w, \varphi(v_j) \rangle + b \geq \eta - \xi_j, \quad \xi_j \geq 0 \qquad j = 1, \dots, q,$$