

分布式文件系统-Ceph

Ceph

Ceph 是一种为优秀的性能、可靠性和可扩展性而设计的统一的、分布式文件系统。

Ceph

简单定义为以下3项:

- 1. 可轻松扩展到数 PB 容量
- 2. 支持多种工作负载的高性能(每秒输入/输出操
- 作 [IOPS] 和带宽)
- 3. 高可靠性

Ceph

但是,这些目标之间会互相竞争(例如,可扩展性会降低或者抑制性能或者影响可靠性)。 Ceph的设计还包括保护单一点故障的容错功能,它假设大规模(PB级存储)存储故障是常见现象而不是例外情况。

Ceph

它的设计并没有假设某种特殊工作负载,但包括了适应变化的工作负载,并提供最佳性能的能力。它利用 POSIX 的兼容性完成所有这些任务,允许它对当前依赖 POSIX 语义(通过以 Ceph 为目标的改进)的应用进行透明的部署。

Ceph

Ceph 生态系统架构可以划分为四部分:

1. Clients: 客户端(数据用户)

2. cmds: Metadata server cluster,元数据服务器(缓存和同步分布式元数据)

Ceph

3. cosd: Object storage cluster, 对象存储集群 (将数据和元数据作为对象存储, 执行其他关键职能)

4. cmon: Cluster monitors,集群监视器(执行监视功能)

Ceph

5.ceph 中引入了 PG (placement group) 的概念, PG 是一个虚拟的概念而已,并不对应什么实体,具体的解释下面很清楚。

Ceph-object 映射成 PG,然后从 PG 映射成 OSD。 object 可以是数据文件的一部分,也可以是 journal file,也可以目录文件(包括内嵌的 inode 节点)

Ceph

Figure 3: Files are striped across many objects, grouped into *placement groups* (PGs), and distributed to OSDs via CRUSH, a specialized replica placement function.

Ceph

如果有一个OSD,默认有192个PG。如果有2 各OSD则默认有2*192=384个PG.

Ceph 生态系统的框架

Ceph 未来发展

作为分布式文件系统,其能够在维护 POSIX 兼容性的同时加入了复制和容错功能。从 2010 年 3 月底,您可以在 Linux 内核(从 2.6.34 版开始)中找到 Ceph 的身影,作为 Linux 的文件系统备选之一,Ceph.ko 已经集成入 Linux 内核之中。虽然目前 Ceph 可能还不适用于生产环境,但它对测试目的还是非常有用的。

GNU/Linux-Ceph Ceph 未来发展

Ceph 不仅仅是一个文件系统,还是一个有企业级功能的对象存储生态环境。

现在,Ceph 已经被集成在主线 Linux 内核中,但只是被标识为实验性的。在这种状态下的文件系统对测试是有用的,但是对生产环境没有做好准备。但是考虑到 Ceph 加入到 Linux 内核的行列,不久的将来,它应该就能用于解决海量存储的需要了。

Ceph 未来发展

一些开源的云计算项目已经开始支持 Ceph,事实上 Ceph 是目前 OpenStack 生态系统中呼声最高的开源存储解决方案。这些项目都支持通过 libvirt 调用 Ceph 作为块设备进行读写访问。

Ceph 试验拓扑

实现 Ceph

1. 在所有节点创建一个账户, 所谓 ceph 的管理账户

2. 所有节点上为创建的账户授予 root 权限 #cat /etc/sudoers.d/ceph Defaults:snow !requiretty snow ALL = (root) NOPASSWD:ALL

#chmod 440 /etc/sudoers.d/ceph

实现 Ceph

3.在 Deploy 服务器生成 ssh 秘钥 #su - snow \$ssh-keygen

4. 在 Deploy 服务器建立 ssh 独立配置文件 \$vi ~/.ssh/config

实现 Ceph

Host cephsrv
Hostname cephsrv.niliu.edu
User snow
Host node01
Hostname node01.niliu.edu
User snow

实现 Ceph

Host node02
Hostname node02.niliu.edu
User snow
Host node03
Hostname node03.niliu.edu
User snow

实现 Ceph

- 5. 设定权限 \$ chmod 600 ~/.ssh/config
- 6. 向其他节点传输 ssh-key \$ssh-copy-id node01 \$ssh-copy-id node02 \$ssh-copy-id node03

实现 Ceph

7. 安装 Ceph 管理节点及其他节点 \$sudo yum -y install epel-release yum-pluginpriorities \ http://download.ceph.com/rpminfernalis/el7/noarch/ceph-release-1-

1.el7.noarch.rpm

实现 Ceph

7. 安装 Ceph 管理节点及其他节点 \$sudo sed -i -e "s/enabled=1/enabled=1\npriority=1/g" /etc/yum.repos.d/ceph.repo

实现 Ceph

7. 安装 Ceph 管理节点及其他节点 \$sudo yum install ceph-deploy -y

8. 建立 ceph 目录

\$ mkdir ceph

\$ cd ceph

实现 Ceph

9. 部署 ceph, 生成监控节点信息 \$ceph-deploy new node01

10. 定义对象存储资源 \$vi ./ceph.conf //* 于最后追加 osd pool default size = 2

//*Object Storage Device, 提供存储资源。

实现 Ceph

11. 修改 20 行, 设定 ceph 版本 \$exit # vi /usr/lib/python2.7/sitepackages/ceph_deploy/install.py

改为 ceph 现行版本 args.release = 'infernalis'

#su - snow

实现 Ceph

12. 将 ceph 安装到所有节点 \$ceph-deploy install dlp node01 node02 node03

13. 初始化监控及秘钥 \$ ceph-deploy mon create-initial

实现 Ceph

14. 在所有节点上创建存储目录

Node1:

#mkdir -v /storage01 #chown ceph. /storage01

Node2: #mkdir -v /storage02 #chown ceph. /storage02

实现 Ceph

14. 在所有节点上创建存储目录

Node3:

#mkdir -v /storage03 #chown ceph. /storage03

实现 Ceph

15. 准备资源池

\$ ceph-deploy osd prepare node01:/storage01 node02:/storage02 node03:/storage03

实现 Ceph

16. 激活资源池

\$ ceph-deploy osd activate node01:/storage01 node02:/storage02 node03:/storage03

实现 Ceph

17. 传输 ceph 配置文件

\$ ceph-deploy admin cephsrv node01 node02 node03

\$ sudo chmod 644 /etc/ceph/ceph.client.admin.keyring

实现 Ceph

18. 查看 ceph 资源池状态

\$ ceph health

实现 Ceph

//* 如果打算重新建立资源池

- 1. 移除 ceph 软件包
- \$ ceph-deploy purge cephsrv node01 node02 node03

//* 移除配置

\$ ceph-deploy purgedata cephsrv node01 node02

node03

\$ ceph-deploy forgetkeys

使用 Ceph

//* 对客户端进行安装及配置管理

\$ ceph-deploy install client

\$ ceph-deploy admin client

使用 Ceph

//* 位于客户端操作

#su - snow \$ sudo chmod 644 /etc/ceph/ceph.client.admin.keyring

使用 Ceph GNU/Linux-Ceph

//* 位于客户端操作

//* 创建一个磁盘为 disk01, 大小为 10G \$ rbd create disk01 --size 10240

\$ rbd Is -I

//* 将磁盘映射为 rdb 设备 \$ sudo rbd map disk01 \$ rbd showmapped

使用 Ceph

//* 位于客户端操作

\$ sudo mkfs.xfs /dev/rbd0

\$ sudo mount /dev/rbd0 /mnt

\$ df -hT

基于网络系统挂载 Ceph

//* 位于 ceph-deploy 操作

1. 在指定节点创建元数据服务器 \$ ceph-deploy mds create node01

基于网络系统挂载 Ceph

//* 元数据(Metadata),又称中介数据、中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。元数据算是一种电子式目录,为了达到编制目录的目的,必须在描述并收藏数据的内容或特色,进而达成协助数据检索的目的。

基于网络系统挂载 Ceph

//* 位于 node1 操作

2. 在指定节点创建 pools

\$ sudo chmod 644

/etc/ceph/ceph.client.admin.keyring

\$ ceph osd pool create cephfs_data 128

\$ ceph osd pool create cephfs_metadata_1

基于网络系统挂载 Ceph

//* 位于 node1 操作

3. 启用 pools

\$ ceph fs new cephfs cephfs_metadata cephfs_data

\$ ceph fs Is

\$ ceph mds stat

基于网络系统挂载 Ceph

//* 客户端挂载资源池

1. 安装 ceph 源 #yum install http://download.ceph.com/rpminfernalis/el7/noarch/ceph-release-1-

1.el7.noarch.rpm -y

基于网络系统挂载 Ceph

//* 客户端挂载资源池

2. 安装 ceph 挂载工具 # yum install ceph-fuse -y

基于网络系统挂载 Ceph

//* 客户端挂载资源池

3. 获取 admin 秘钥 # ssh snow@node01.niliu.edu "sudo cephauthtool -p /etc/ceph/ceph.client.admin.keyring" > admin.key

chmod 600 admin.key

基于网络系统挂载 Ceph

//* 客户端挂载资源池

4. 挂载

mount -t ceph node01.niliu.edu:6789://mnt/o name=admin,secretfile=admin.key

5. 测试 #df -hT

