Predicting Catalog Demand

Step 1: Business and Data Understanding

- 1. What decisions need to be made?
 - a. We have a predictive business problem which requires linear logistical regression to solve
 - b. The data which we'll use is rich
 - c. The goal is to generate expected profit then decide whether the company will decide to send the catalogs or not to the 250 customers
- 2. What data is needed to inform those decisions?
 - Data on the customers from this year and previous year such as number of years as customers and purchase of sales data and expected profit from each catalog

Step 2: Analysis, Modeling, and Validation

- 1. I've selected the Customer_Segments and Avg_Num_Products_Purchased as the predictors for the linear regression model
- 2. I chose them because they have high significant codes as well as P-Value codes below 0.05. As opposed to the last submission where I added Store Number and X_Years_As_Customer even though they had low significant code and P-Value higher than 0.05. Also, simple analysis using scatterplot shows that there is somewhat strong relationship between target variable and avg_sale_amount as well as customer_segments
- 3. To explain the p-values and r-squared values, the p-values first of all are all 2.2e-16 which is lower than 0.05 which signifies that the outcome was not by chance and thus there is a relationship between the variables. As for the r-squared, the value was 0.8366 which means that over 84% of variance is explained by model. So the fit is good.
- 4. Results of the linear model as well as scatterplot is listed below

Basic Summary

Call

 $Im(formula = Avg_Sale_Amount \sim Customer_Segment + Avg_Num_Products_Purchased, \, data = the.data)$

Residuals:

Min	1Q	Median	3Q	Max
-663.8	-67.3	-1.9	70.7	971.7

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e-16 ***
Customer_SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e-16 ****
Customer_SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e-16 ***
Customer_SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e-16 ***
Avg_Num_Products_Purchased	66.98	1.515	44.21	< 2.2e-16 ***

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.48 on 2370 degrees of freedom

Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366

F-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value < 2.2e-16

Type II ANOVA Analysis

Response: Avg_Sale_Amount		M258A-1		
	Sum Sq	DF	F value	Pr(>F)
Customer_Segment	28715078.96	3	506.4	< 2.2e-16 ***
Avg_Num_Products_Purchased	36939582.5	1	1954.31	< 2.2e-16 ***
Residuals	44796869.07	2370		

5. Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Graph

erplot of Avg_Sale_Amount versus Avg_Num_Products_P

6.

7. The linear regression equation ended up being Y = 303.46 + (-149.36 * Customer_SegmentLoyalty Club Card Only) + (281.84 * Customer_SegmentLoyalty Club and Credit Card) + (-245.42 * Customer_SegmentStore Mailing List) + (66.98 * Avg_Num_Products_Purchased) + (Credit Card * 0)

a. The model fits well because of R-squared is a high 0.8369 as well as the adjusted R-squared being high 0.8366. The variables chosen are also high significant as the p-values shows.

Step 3: Presentation/Visualization

- 1. What is your recommendation?
 - a. My recommendation is that the company should send out the catalog to 250 customers as the profit is greater than \$10,000
- 2. How did you come up with your recommendation?
 - a. First, multiply the expected revenue with score_yes to get probable predicted revenue
 - b. The values are then totaled by adding
 - c. After total, multiply by gross margin of 50%
 - d. Then subtract the cost of catalog per customer which is 250 * 6.50
 - e. The profit is then \$21,987.44 which is greater than the \$10,000 limit
 - f. Below are the results attached

g.

