### Universidad de Granada

# Análisis Matemático I Teoremas, proposiciones y definiciones

Doble Grado de Informática y Matemáticas  ${\rm Curso}~2016/17$ 

# ${\rm \acute{I}ndice}$

| 1. | Topología de un espacio métrico.<br>1.1. Concepto de espacio métrico. El espacio métrico $\mathbb{R}^N$ |   |
|----|---------------------------------------------------------------------------------------------------------|---|
| 2. | Sucesiones en $\mathbb{R}^N$ .                                                                          | 5 |
| 3. | Funciones continuas en $\mathbb{R}^N$ .                                                                 | 6 |
|    | 3.1. Clasificación de conjuntos en $\mathbb{R}^N$                                                       | 6 |
|    | 3.2. Continuidad en espacios topológicos. Topología inducida.                                           | 7 |
|    | 3.3. Teoremas sobre funciones continuas en $\mathbb{R}^N$                                               | 8 |

# 1. Topología de un espacio métrico.

# 1.1. Concepto de espacio métrico. El espacio métrico $\mathbb{R}^N$ .

**Definición (Espacio métrico).** Consideremos un conjunto X cualquiera, y una aplicación  $d: X \times X \longrightarrow \mathbb{R}$  que cumple las siguientes propiedades:

- (i)  $d(x,y) \ge 0 \quad \forall x, y \in X$ .
- (ii)  $d(x,y) = 0 \iff x = y \ \forall x, y \in X$ .
- (iii)  $d(x,y) = d(y,x) \ \forall x,y \in X$ .
- (iv)  $d(x,y) \le d(x,z) + d(z,y) \ \forall x,y,z \in X.$  (designal dad triangular)

Entonces, se dice que el par (X, d) es un espacio métrico.

Nota. En adelante, entenderemos  $\mathbb{R}^N$  como el espacio métrico  $(\mathbb{R}^N, d)$ , siendo d la distancia usual (distancia euclídea) dada por:

$$d(x,y) = \sqrt{\sum_{i=1}^{N} (y_i - x_i)^2} \quad \forall x, y \in \mathbb{R}^N.$$

Existen otras distancias en  $\mathbb{R}^N$ . Las más destacadas son las siguientes:

(i) 
$$d_1(x,y) = \sum_{i=1}^{N} |x_i - y_i| \ \forall x, y \in \mathbb{R}^N.$$

(ii) 
$$d_{\infty}(x,y) = m \acute{a} x\{|x_i - y_i|: i = 1,...,N\} \ \forall x,y \in \mathbb{R}^N.$$

(iii) 
$$d_p(x,y) = \left(\sum_{i=1}^N |x_i - y_i|^p\right)^{1/p} \quad \forall x, y \in \mathbb{R}^N.$$

**Definición.** Sean (X, d) y (X, d') dos espacios métricos sobre un mismo conjunto X. Se dice que las distancias d y d' son equivalentes si, y solo si,

$$\exists k_1, k_2 > 0: k_1 d(x, y) \le d'(x, y) \le k_2 d(x, y) \ \forall x, y \in X.$$

**Proposición.** En  $\mathbb{R}^N$ , todas las distancias mencionadas anteriormente son equivalentes entre sí. En particular, la distancia euclídea es equivalente a todas ellas.

#### 1.2. Conceptos topológicos.

**Definición (Bola abierta).** Sea (X, d) un espacio métrico, y fijemos un  $x \in X$  y un  $\varepsilon > 0$ . Se llama bola abierta de centro x y radio  $\varepsilon$  al conjunto  $B(x, \varepsilon) = \{y \in X \mid d(x, y) < \varepsilon\}$ .

**Definición (Bola cerrada).** De forma análoga, se define la bola cerrada de centro x y radio  $\varepsilon$  como el conjunto  $\bar{B}(x, \varepsilon) = \{y \in X \mid d(x, y) \leq \varepsilon\}.$ 

**Definición (Conjunto abierto).** Sea (X, d) un espacio métrico, y sea  $A \subseteq X$ . Decimos que A es abierto  $\iff \forall a \in A \ \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq A$ .

**Proposición.** Sea (X, d) un espacio métrico. Entonces,  $\forall x \in X \ \forall \varepsilon > 0$  se tiene que  $B(x, \varepsilon)$  es un conjunto abierto.

**Proposición.** Sea (X, d) un espacio métrico. Entonces, se verifican las siguientes propiedades:

- (i) Si  $\{A_{\lambda} \mid \lambda \in \Lambda\}$  es una familia de subconjuntos abiertos de X, entonces  $\bigcup_{\lambda \in \Lambda} A_{\lambda}$  es abierto.
- (ii) Si  $\{A_1, \ldots, A_n\}$  es una familia finita de abiertos de X, entonces  $\bigcap_{i=1}^n A_i$  es abierto.
- (iii)  $X, \emptyset$  son abiertos.

**Definición (Punto interior).** Sea (X, d) un espacio métrico, y consideremos  $A \subseteq X$ ,  $a \in A$ . Se dice que a es un punto interior de A si, y solo si,  $\exists \varepsilon_0 > 0 : B(a, \varepsilon_0) \subseteq A$ . Definimos  $int(A) = \mathring{A} = \{a \in A \mid a \text{ es punto interior de } A\}$ .

**Proposición.** Sea (X, d) un espacio métrico, y  $A \subseteq X$ . Entonces, se verifican las siguientes propiedades:

- (i)  $\mathring{A} \subseteq A$ .
- (ii) Å es abierto.
- (iii)  $Si \ B \subseteq A$  es un subconjunto abierto de A, entonces  $B \subseteq \mathring{A}$ . Es decir,  $\mathring{A}$  es el abierto más grande contenido en A.
- (iv)  $\mathring{A} = \bigcup \{ B \subseteq A \mid B \text{ es abierto} \}.$
- (v) A es abierto  $\iff \mathring{A} = A$ .
- (vi) int(int(A)) = int(A).
- (vii) Si  $A \subseteq B$ , entonces  $\mathring{A} \subseteq \mathring{B}$ .

**Definición (Conjunto cerrado).** Sea (X, d) un espacio métrico, y  $F \subseteq X$ . Se dice que el conjunto F es cerrado  $\iff X - F$  es abierto.

**Proposición.** Sea (X,d) un espacio métrico. Entonces,  $\forall x \in X \ \forall \varepsilon > 0$  se tiene que  $\bar{B}(x,\varepsilon)$  es un conjunto cerrado.

**Proposición.** Sea (X, d) un espacio métrico. Entonces, se verifican las siguientes propiedades:

- (i) Si  $\{F_{\lambda} \mid \lambda \in \Lambda\}$  es una familia de cerrados de X, entonces  $\bigcap_{\lambda \in \Lambda} F_{\lambda}$  es cerrado.
- (ii) Si  $\{F_1, \ldots, F_n\}$  es una familia finita de cerrados de X, entonces  $\bigcup_{i=1}^n F_i$  es cerrado.

(iii)  $X, \emptyset$  son cerrados.

**Definición (Clausura).** Sea (X, d) un espacio métrico. Se llama *clausura o cierre de A* al conjunto  $\bar{A} = X - int(X - A)$ .

**Proposición.** Sea (X, d) un espacio métrico, y  $A \subseteq X$ . Entonces, se verifican las siguientes propiedades:

- (i)  $A \subseteq \bar{A}$ .
- (ii)  $\bar{A}$  es cerrado.
- (iii) Si  $B \subseteq X$  es un subconjunto cerrado de X tal que  $A \subseteq B$ , entonces  $\bar{A} \subseteq B$ . Es decir,  $\bar{A}$  es el cerrado más pequeño que contiene a A.
- (iv)  $\bar{A} = \bigcap \{ F \subseteq X \mid F \text{ es cerrado } y \text{ } A \subseteq F \}.$
- (v) A es cerrado  $\iff \bar{A} = A$ .
- (vi)  $\bar{A} = \bar{A}$ .
- (vii)  $Si\ A \subseteq B$ , entonces  $\bar{A} \subseteq \bar{B}$ .

**Definición (Frontera).** Sea (X, d) un espacio métrico, y  $A \subseteq X$ . Llamamos frontera de A al conjunto  $\partial A = \bar{A} - \mathring{A}$ .

**Proposición.** Sea (X, d) un espacio métrico,  $y \in A \subseteq X$ . Entonces, se verifica lo siguiente:  $x \in \partial A \iff \forall \varepsilon > 0 \ B(x, \varepsilon) \cap A \neq \emptyset \ y \ B(x, \varepsilon) \cap (X - A) \neq \emptyset$ .

**Definición (Punto de acumulación).** Sea (X,d) un espacio métrico, y  $A \subseteq X$ . Dado  $x \in X$ , decimos que x es punto de acumulación de  $A \iff \forall \varepsilon > 0$   $B(x,\varepsilon) \cap (A - \{x\}) \neq \emptyset$ . Definimos  $A' = \{x \in X \mid x \text{ es punto de acumulación de } A\}$ .

**Proposición.** Sea (X,d) un espacio métrico. Entonces, se verifican las siguientes afirmaciones:

- (i)  $\mathring{A} = X \overline{X A}$
- (ii)  $\bar{A} = A \cup \partial A$ .
- (iii)  $\bar{A} = A \cup A'$
- (iv)  $X = int(A) \cup \partial A \cup int(X A)$ . Además, la unión es disjunta dos a dos.

# 2. Sucesiones en $\mathbb{R}^N$ .

**Definición (Sucesión en**  $\mathbb{R}^N$ ). Una sucesión en  $\mathbb{R}^N$  es una aplicación  $x : \mathbb{N} \longrightarrow \mathbb{R}^N$  que a cada  $n \in \mathbb{N}$  le hace corresponder un  $x(n) \in \mathbb{R}^N$ . Por simplicidad, al elemento imagen de n se le denomina  $x_n$ , y la aplicación x se denota  $\{x_n\}$ .

**Definición (Convergencia de sucesiones).** Sea (X, d) un espacio métrico,  $A \subseteq X$  y  $x \in X$ . Decimos que una sucesión  $\{x_n\}$  de puntos de A converge a x si, y solo si:

$$\forall \varepsilon > 0 \ \exists n_o \in \mathbb{N} : \ n \ge n_o \Rightarrow d(x_n, x) < \varepsilon.$$

Nota. Este concepto no depende de la distancia equivalente elegida.

**Proposición.** Sea  $A \subseteq \mathbb{R}^N$ ,  $x \in \mathbb{R}^N$ ,  $y \{x_n\}$  una sucesión de puntos de A. Adoptemos la notación  $x_n = (x_n^1, x_n^2, \dots, x_n^N)$ ,  $y = (x^1, x^2, \dots, x^N)$ . Entonces, se verifica que:

$$\{x_n\} \to x \iff \{x_n^j\} \to x^j.$$

**Definición.** Sea (X, d) un espacio métrico, y  $x \in X$ . Consideremos, para cada  $n \in \mathbb{N}$ , un punto  $a_n \in X$ . Entonces, decimos que  $d(a_n, x) \to 0 \iff \{a_n\} \to x$ .

**Definición (Conjunto acotado).** Sea  $A \subseteq \mathbb{R}^N$ . Decimos que A está acotado si, y solo si,  $\exists R > 0 : A \subseteq B(0, R)$ .

**Definición (Sucesión acotada).** Sea  $\{x_n\}$  una sucesión de puntos de  $\mathbb{R}^N$ . Entonces, decimos que  $\{x_n\}$  está acotada sí, y solo sí,  $\{x_n \mid n \in \mathbb{N}\}$  está acotado.

**Proposición.** Si una sucesión  $\{x_n\} \subseteq \mathbb{R}^N$  es acotada, entonces  $\forall i = 1, ..., n$  la sucesión  $\{x_n^i\}$  es acotada (en  $\mathbb{R}$ ).

Nota. Si un conjunto  $A\subseteq\mathbb{R}^N$  es acotado, entonces cualquier sucesión de puntos de A es acotada.

Teorema (Bolzano-Weierstrass). Sea  $\{x_n\} \subseteq \mathbb{R}^N$  acotada. Entonces, existe una sucesión parcial suya  $\{x_{\sigma_{(n)}}\}$  convergente.

**Definición (Sucesión de Cauchy).** Sea  $\{x_n\} \subseteq \mathbb{R}^N$ . Decimos que  $\{x_n\}$  es una sucesión de Cauchy  $\iff \forall \varepsilon > 0 \ \exists n_o \in \mathbb{N}: \ n, m \geq n_o \Rightarrow d(x_n, x_m) < \varepsilon$ .

Teorema ( $\mathbb{R}^N$  es completo). Sea  $\{x_n\} \subseteq \mathbb{R}^N$ . Entonces:

 $\{x_n\}$  es de Cacuchy  $\iff$   $\{x_n\}$  es convergente.

**Proposición.** Sea  $\{x_n\} \subseteq \mathbb{R}^N$  con  $\{x_n\} \to x \in \mathbb{R}^N$ . Entonces, toda sucesión parcial de  $\{x_n\}$  es convergente a x.

# 3. Funciones continuas en $\mathbb{R}^N$ .

**Definición (Función continua).** Sea  $\emptyset \neq A \subseteq \mathbb{R}^N$ ,  $f: A \longrightarrow \mathbb{R}^M$  y  $a \in A$ . Decimos que f es continua en a si, y solo si:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x \in A, \ d(x,a) < \delta \Rightarrow d(f(x), f(a)) < \varepsilon.$$

Además, se dice que f es continua si lo es en todos sus puntos.

Proposición (Caracterización de continuidad). Sea  $\emptyset \neq A \subseteq \mathbb{R}^N$ ,  $y \ f : A \longrightarrow \mathbb{R}^M$ . Entonces:

$$f$$
 es continua en  $a \iff \forall \{x_n\} \subseteq A$  con  $\{x_n\} \to a \Rightarrow \{f(x_n)\} \to f(a)$ .

**Definición (Continuidad uniforme).** Sea  $\emptyset \neq A \subseteq \mathbb{R}^N$ ,  $f: A \longrightarrow \mathbb{R}^M$ . Se dice que f es uniformemente continua si, y solo si:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x, y \in A, \ d(x, y) < \delta \Rightarrow d(f(x), f(a)) < \varepsilon.$$

**Definición (Conjunto compacto).** Sea (X, d) un espacio métrico, y sea  $\emptyset \neq A \subseteq X$ .

$$A \ es \ compacto \iff \forall \{x_n\} \subseteq A \ \exists \{x_{\sigma(n)}\} \rightarrow x \in A.$$

Proposición (Caracterización de cerrados). Sea (X, d) un espacio métrico,  $y \in X$ . Entonces, son equivalentes:

- (i) A es cerrado.
- (ii)  $\forall \{x_n\} \subseteq A \text{ convergente a un } x \in X, \text{ se verifica que } x \in A.$

Proposición (Caracterización de compactos). Sea  $A \subseteq \mathbb{R}^N$ . Entonces:

$$A \ es \ compacto \iff A \ es \ cerrado \ y \ acotado.$$

**Proposición.** Sea  $\{x_n\} \subseteq \mathbb{R}^N$  convergente a un  $x_o \in \mathbb{R}^N$ . Entonces, el conjunto  $A = \{x_n : n = 0, 1, 2, ...\}$  es compacto.

## 3.1. Clasificación de conjuntos en $\mathbb{R}^N$

**Definición (Conjunto convexo).** Un conjunto  $A \subseteq \mathbb{R}^N$  se dice *convexo* si  $\forall x, y \in A$  se tiene que el segmento de extremos x e y está incluido en A. En otras palabras:

$$A \ convexo \iff [x,y] = \{tx + (1-t)y : t \in [0,1]\} \subseteq A.$$

**Definición (Poligonalmente convexo).** Un conjunto  $A \subseteq \mathbb{R}^N$  se dice *poligonalmente convexo* si  $\forall x, y \in A$  existe una poligonal que los une y no se sale de A. En otras palabras:  $A \ poligonalmente \ convexo \iff \exists \{x = a_0, a_1, \dots, a_k = y\} \subseteq A \ \text{tal que:}$ 

$$\bigcup_{i=1}^{k} [a_{i-1}, a_i] \subseteq A.$$

**Definición (Conjunto arco-conexo).** Un conjunto  $A \subseteq \mathbb{R}^N$  se dice arco-conexo(conexo por arcos) si  $\forall x, y \in A$  existe un camino incluido en A que los une. En otras palabras, A es conexo  $por arcos \iff \exists \varphi : [a, b] \longrightarrow \mathbb{R}^N$  verificando:

$$\varphi(a) = x; \quad \varphi(b) = y; \quad \varphi([a, b]) \subseteq A.$$

**Definición (Conjunto no conexo).** Decimos que un conjunto  $A \in \mathbb{R}^N$  es NO conexo si existen U, V abiertos en  $\mathbb{R}^N$  tales que:

$$U \cap A \neq \emptyset$$
;  $V \cap A \neq \emptyset$ ;  $A \subseteq U \cup V$ ;  $A \cap U \cap V = \emptyset$ .

Nota. La misma definición se aplica para un espacio topológico  $(X, \tau)$ .

**Definición (Conjunto conexo).** Un conjunto  $A \subseteq \mathbb{R}^N$  se dice conexo si no es no conexo. Equivalentemente,  $\forall U, V$  abiertos en  $\mathbb{R}^N$  tales que  $U \cap A \neq \emptyset$ ,  $V \cap A \neq \emptyset$ ,  $A \subseteq U \cup V$ , se tiene que forzosamente  $A \cap U \cap V \neq \emptyset$ .

**Proposición.** Sea  $A \subseteq \mathbb{R}^N$ . Entonces, se verifica lo siguiente:

- (i) A es abierto y conexo por  $arcos \Rightarrow A$  es poligonalmente convexo.
- (ii) A es  $convexo \Rightarrow A$  es arco-conexo.
- (iii) A es arco- $conexo <math>\Rightarrow A$  es conexo.

**Proposición.** Sea  $A \subseteq \mathbb{R}$  un conjunto arco-conexo. Entonces, A es convexo.

### 3.2. Continuidad en espacios topológicos. Topología inducida.

**Definición (Continuidad en espacios topológicos).** Sean  $(X, \tau_x)$ ,  $(Y, \tau_y)$  dos espacios topológicos, y sea  $f: X \longrightarrow Y$ . Entonces:

$$f \ es \ continua \iff f^{-1}(B) \in \tau_x \ \forall B \in \tau_y.$$

**Definición (Topología inducida).** Sea  $(X, \tau)$  un espacio topológico, y  $A \subseteq X$ . Entonces,  $\tau_A = \{B \cap A : B \in \tau\}$  es la topología inducida en A.

Proposición (Caracterización de abiertos en topología inducida). Sea  $(X, \tau)$  un espacio topológico, y  $A \subseteq X$ . Si  $(A, \tau_A)$  es el espacio topológico inducido en A, entonces:

$$B' \in \tau_A \iff \exists B \in \tau : B' = B \cap A.$$

**Proposición.** Sea  $(X, \tau)$  un espacio topológico,  $y \in X$ . Entonces, A es no conexo si, y solo si, existen U, V abiertos en  $(A, \tau_A)$  tales que:

$$U \neq \emptyset \neq V$$
;  $A \subset U \cup V$ ;  $U \cap V = \emptyset$ .

**Definición (Continuidad en topología inducida).** Sean  $(X, \tau_x)$ ,  $(Y, \tau_y)$  dos espacios topológicos,  $A \subseteq X$ , y  $f: A \longrightarrow Y$ . Entonces:

f es continua  $\iff$  f es continua en  $(A, \tau_A)$ .

# 3.3. Teoremas sobre funciones continuas en $\mathbb{R}^N$

**Teorema (Weierstrass).** Sea (X,d) un espacio métrico,  $\emptyset \neq A \subseteq X$  compacto,  $y f : A \longrightarrow \mathbb{R}$  continua en A. Entonces,  $\exists x_1, x_2 \in A : f(x_1) \leq f(x_2) \ \forall x \in A$ . En otras palabras, la función f alcanza su mínimo y su máximo.

**Teorema (Weierstrass generalizado).** Sean (X,d), (Y,d) espacios métricos,  $\emptyset \neq A \subseteq X$  compacto,  $y \in A \longrightarrow Y$  continua. Entonces, f(A) es compacto.

**Teorema (Valor Intermedio).** Sea  $\emptyset \neq A \subseteq \mathbb{R}^N$  arco conexo,  $y \ f : A \longrightarrow \mathbb{R}^M$  continua. Entonces, f(A) es arco-conexo en  $\mathbb{R}^M$ .

Teorema (Valor Intermedio revisitado). Sea  $\emptyset \neq A \subseteq \mathbb{R}^N$  conexo,  $y \ f : A \longrightarrow \mathbb{R}^M$  continua. Entonces, f(A) es conexo en  $\mathbb{R}^M$ .