学院	专业	班	年级		学号	姓名	 共 4 页 第 1 页
	2011~2012 学年工程硕士	考试试卷			3、设 $\{l_k(x)\}_{k=0}^n$ 是 $[a,b]$	上的以 $a \le x_0 < x_1 < \cdots < x_n$	$c_n \leq b$ 为节点的 Lagrange 插值基函数,则
	《应用数学基础》(共	4 页)			$\sum_{k=0}^{n} l_k(x_k) = \underline{\hspace{1cm}}$		
	(考试时间: 2012年 12)	月 23 日)			k=0	-	
题号 — 得分		七八九	成绩		4、设 $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$],则 det $e^A =$	·
1、有限个或可数	手小题 1 分,共 10 分) 个可数集的并集是可数集. 1 ,则 1 1 1 2 3 的充要条件是 1 4 和 2 具有相同的	的最小多项式.	[]	$5、设 A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,则 $Cond_{\infty}(A) = $	·
3、设 X 是任一内和	只空间, $x, y \in X$,则 $x \perp y \Leftrightarrow x + y ^2 =$	$\left\ x\right\ ^2 + \left\ y\right\ ^2.$	Г	1			
4 、若 $A \in R^{n,n}$ 正気 5 、线性空间 $P_n[a,n]$	eta,则求解线性方程组 $Ax=b$ 的 Jacobi 迭代 $[b]$ 是 n 维的.	格式收敛.	[]		4 3 2 0 3 -1, 求 A 的 Jordan 标	住形3 和有 壁外住形と .
6 、求积公式 $\int_a^b f($	$f(x)dx pprox \sum_{k=0}^{n} A_k f(x_k)$ 具有 $2n+1$ 次代数制	精度,当且仅当求积节点	$\vec{x}_{k} \{x_{k}\}_{k=0}^{n}$				
是 Hauss 点.			[]			
7、设 $\{x_n\}$ \subset $(X,$	$\ \cdot\ $), $\ddot{\pi}\lim_{n\to\infty}\ x_n\to x\ =0$, $\lim_{n\to\infty}\ x_n\ =\ x_n\ =\ x_n\ $	$x \ $.]]			
8、设 <i>T</i> :(<i>X</i> , ·)	\rightarrow $(Y, \ \cdot\)$ 是线性算子,则算子 T 是一个有	界算子.	[]			
9、 若 <i>A</i> 是酉矩阵	车,则 $\rho(A)=1$.]]			
二、填空题(每	的所有特征值都是小于等于零,所有偶数阶的 小题 2 分,共 10 分)		等于零.[]			
$1、设 p_3(x) 是 3 \delta$	欠 Legendre 多项式,则 $\int_{-1}^{1} (x^2 - 1) p_3(x) dx$	<i>dx</i> =					
2、设 $f(x) = f(x)$	$(x_1, x_2, x_3) = [x_1 e^{x_2}, x_1 \sin x_3]^T$, 则	$f'(x) = \underline{\hspace{1cm}}$	·				

五、(10分)写出用标准 Runge – Kutta 法求解初值问题

共4页 第2页

$$\begin{cases} y' = \frac{3y}{1+x}, & 0 < x < 1 \\ y(0) = 1, & \end{cases}$$

的计算公式.

四、(10 分) 写出求解线性方程组 Ax = b 的 Gauss—Seidel 迭代格式,并判断所写格式的收敛性,其中

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}.$$

天津大学试卷专用纸

学院专业	年级	学号	姓名	共 4 页 第 3 页
------	----	----	----	-------------

六、(12分)根据下列插值条件

х	0	0.2	0.4	0.6	0.8
f(x)	1	1. 2214	1. 4918	1.8221	2. 2255

用 3 次 Newton 插值多项式计算 f(0.15) 的近似值(结果保留至小数点后第 4 位).

七、(16分)设
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
,求

- (1) 矩阵 A 的最小多项式 $\varphi(\lambda)$;
- (2) 方阵函数 e^{At} .

八、**(10 分)** 用 *Romberg* 算法求积分 $\int_0^1 \frac{3}{1+x^2} dx$ 的近似值,并将计算结果列于下表(数据保留至小数点后第 5 位).

k	T_{2^k}	S_{2^k}	C_{2^k}	R_{2^k}
0	2.25000			
1	2.32500			
2	2.34837			
3	2.35425			
4	2.35572			

九、**计算题(10 分)** 设
$$A = \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$$
,求 $\|A\|_1$, $\|A\|_F$, $\|A\|_{\infty}$.