A county study on demographic determinants of 2020 US presidential election results

Suqi Chen Giovanni Stivella

Statical Learning and Large Data, Scuola Superiore Sant'Anna di Pisa

May 9, 2024

- Introduction
- Preprocessing
- Unsupervised learning PCA Clustering
- Supervised Learning LASSO Regression Screening OLS after LASSO
- 6 An informed review of unsupervised learning PCA Clustering revisited
- 6 Limits and further directions

Introduction

- US election results are often investigated through a demographic lens
 - Specialised news outlets such as FiveThirtyEight have emerged in last years
- Statistical analysis has permitted to better study demographic and electoral patterns
- Using data from IPUMS and United States Religion Census we tried to identify these patterns among different counties
 - We collected individual data on multiple variables from IPUMS, county data on electoral results from MEDSL and county data on religious affiliation from United States Religion Census
 - Subsequently, we aggregated individual data on a county level
 - Then we performed statistical analysis having counties as unities of observation

Map of considered counties

Preprocessing

- There were structurally collinear columns: partitions of population obviously sum up to 1
 - One column from each group had to be eliminated in order to perform any statistical analysis
- Highly correlated columns had the potential to spoil any statistical analysis, too
 - We studied them through a correlation matrix and a dendrogram that represented clusters of variables
- Once we had found clusters, we have chosen one feature for every cluster reducing the number of considered variables

Corplot

Dendrogram

Corplot after Cut

Unsupervised learning

- We started our study by giving a look at distribution of data
 - PCA was performed in order to find directions of higher variability
 - Clustering was performed in order to find natural groups of counties emerging from data distribution
- We visualised clusters both on principal components and on the map

PCA - principal dimension 1 and 2

Some insights from PCA

- The main direction of variability combines mainly economic dimensions: income, job, education
- The second principal component is heavily influenced by ethnical and linguistic features, such as the percentage of white and protestant

Choosing the right number of clusters

Clustering - k = 2, visualized on the first two principal components

Clustering - k = 2, visualized on the map

Some insights from clustering

- Clusters are not very well defined and their optimal number is not clear, neither
 - When choosing two clusters, the dividing line appears to lie almost perfectly on the first principal component, meaning that division is on economic characteristics
 - Clustering looks more like a segmentation than a grouping
 - Looking at the map, we observe similarities between coastal California and Northeast metropolis

Supervised Learning

- We tried to investigate what determines the partisanship of a county
- In order to manage our high-dimensional dataset, we performed penalised regressions and feature screening which helped identify relevant features
- In the end, we have performed an Ordinary Least Square regression on the relevant features selected by LASSO

LASSO - Estimated Mean square error

LASSO - Coefficients with different λ

LASSO - Coefficients with $\lambda.1$ se

Screening - Variables after Sure Independence Screening

EDUC COUPLETYPE 0 RACHSING 1 OCC 2 OCC 3 OCC 10 Evangelical.Protestant Islam

OLS after LASSO

MORTGAGE	0.028***
HCOVANY	0.026*
HINSTRI	(0.015) 0.020**
HCOVPUB	(0.010)
	(0.017)
HINSVA	-0.0004 (0.011)
SCHOOL	-0.018* (0.010)
EDUC	0.092*** (0.016)
COUPLETYPE_0	0.043***
	(011)

COUPLETYPE_3	0.026*** (0.008)	OCC_2	0.030** (0.012)
HISPAN_2	-0.013* (0.007)	OCC_3	0.018 (0.013)
LANGUAGE_1	-0.077*** (0.025)	OCC_4	-0.023** (0.010)
LANGUAGE_5	-0.028*** (0.010)	осс_ь	-0.001 (0.009)
RACHSING_1	-0.050* (0.029)	OCC_6	-0.007 (0.007)
RACHSING_2	0.075*** (0.017)	OCC_9	0.017** (0.008)
RACHSING_4	0.012 (0.011)	OCC_10	-0.017** (0.008)
DEGFIELD_3	-0.035*** (0.012)	OCC_13	0.006 (0.007)
EMPSTAT_1	0.035** (0.014)	IND_1	-0.016* (0.008)

, , ,	,
Observations	398
R ²	0.843
Adjusted R ²	0.831
Residual Std. Error	0.121 (df = 367)
F Statistic	65.907*** (df = 30; 367)

^{*}p<0.1; **p<0.05; ***p<0.01

IND 9

Hinduism

Constant

Islam

Black Protestant

Evangelical. Protestant

Jehovah.s.Witnesses

Latter.day.Saints

Mainline. Protestant

0.032**

0.014 (0.010)

-0.064*** (0.009)

0.018*** (0.007)

0.008

0.012 (0.009)

-0.021*** (0.007)

-0.003

0.011*

Some remarks on supervised learning

- Counties where Democrats are stronger appear more diverse in ethnicity (RACHSING_2) and familiar composition (COUPLETYPE_0 and COUPLETYPE_3)
- Counties where Republicans are stronger have higher shares of white (RACHSING_1), native English speaker (LANGUAGE_1), people graduated in business (EMPSTAT_1) and Evangelical
- Having higher share of people occupied in IT and care jobs (OCC_2 and OCC_3) appears to favor Democrats

An informed review of unsupervised learning

- In order to better exploit the information given by supervised learning, we used coefficients of OLS to take a new look at counties
- We have taken features selected by LASSO and weighted them according to coefficients found with OLS
- Afterwards, we have performed techniques of unsupervised learning on this newly weighted dataset in order to look at possible differences
 - PCA
 - Clusterisation
- In the end, we have confronted clusters with electoral results

PCA (Revisited) - First two principal components

PCA (Revisited) - Third and fourth principal components

Some remarks on informed PCA

- PCA map is obviously less dense: however, economic and occupational variables are once again the main determinants of first dimension
- Other variables emerge more evidently, such as religious ones, especially on third and fourth principal component

Choosing the right number of clusters

Clustering (Revisited) - k = 2, visualized in the first two principal components

Clustering (Revisited) - k = 2, visualized in the map

Clustering (Revisited) - k = 5, visualized in the first two principal components

Clustering (Revisited) - k = 5, visualized in the map

Clustering (Revisited) - k = 7, visualized in the first two principal components

Clustering (Revisited) - k = 7, visualized in the map

Real Election data - visualized in the map

Some remarks on informed clustering

- Once again, the right number of clusters is not clear
 - When looking at division in two clusters, we do not observe dramatic changes with respect to results in totally unsupervised learning
 - When we increase the number of clusters, the segmentation process seems to hold and we do not observe particular geographical patterns
 - The most explanatory pattern is the one which links clusters and the segmentation of differences between parties: that is explained also by the higher weights attributed to more electorally relevant variables

Limits and further directions

- Choice of features
 - We are pretty confident that we have considered all variables that were significant in supervised learning; however, other variables can be more informative to perform clustering
- Sample problems
 - We have assumed that samples were representative not only of the total population, but also of the population of counties bianchi2020effect
- Bootstrapping our results
 - We are looking forward to bootstrap our results
- Counties are not individuals and they should be treated accordingly
- Looking at evolution in time

References

2020 U.S. Religion Census: Religious Congregations & Membership Study. (2023). URL: https://www.usreligioncensus.org/node/1639.

Data, MIT Election and Science Lab (2022). *U.S. Senate Precinct-Level Returns 2020.* Version V1. DOI: 10.7910/DVN/ER9XTV. URL:

https://doi.org/10.7910/DVN/ER9XTV.

IPUMS USA (2024). Version Version 15.0. Minneapolis, MN. DOI: 10.18128/D014.V4.0. URL: https://doi.org/10.18128/D014.V4.0.

James, Gareth et al. (2013). An Introduction to Statistical Learning: with Applications in R. Springer. URL:

https://faculty.marshall.usc.edu/gareth-james/ISL/.