Course 21	1CSC201J	Course Name	DATA STRUCTURES AND ALGORITHM	THMS	Course Category	0	PROFESSIONAL CORE	1 T P C 3 0 2 4
Pre-requisite		Nii	Co- requisite	Nii	Progres	sive	IIN	
Courses			Courses		Courses	9S		

⋛

Data Book / Codes / Standards

School of Computing

Course Offering Department

												•		
Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:	7		ľ	Pro	gram 0	utcom	es (PC	<u>~</u>				Progr	E
CLR-1:	know about searching and sorting techniques used to handle a set of data along with time and space complexity	-	2	3	4,	9	7	∞	6	10	11	12	Speci Outcor	lic nes
CLR-2:	utilize various categories of list structu <mark>res to devel</mark> op solutions	ə6p	30	7					ork		əo			
CLR-3:	explore usage of Stack and Queues in processing data for real time applications	əlw		nent Jatioi	swə				W m		ueui	бu		
CLR-4:	SLR-4: understand tree structure and its applications	Kuc	alysi		orob	I Na		Α.	БөТ	tion	8 F	inns		
CLR-5:	CLR-5: utilize hash tables for data stora <mark>ge and us</mark> e graphs to solve real time problems	guine		S	xə _l	- 1	uəw uəw	ilida	al &	soin	JgM.	 β ך∈		
		ЭΘΙ	_	uo	du	Su		5	np	nu	ţo	uo	7	5

			H		(i(מו	-	ļe	e		_	_	٦	-(-(
Course O	Course Outcomes (CO):	At the end of this course, learners will be able to:	ign∃	Prob	solu Desi	Con oo fo	роМ	The socie ivn	Sust Ethio	vibul	ოიე	Proje	əJi∫	PSC	ьгс	DSd
CO-1:	CO-1 : devise algorithms to arrange the data in required order and retriev	n required order and retrieve a specific datum in efficient manner	1	2	3					-	•	1	3	3		1
CO-2:	determine the type of list s <mark>tructure</mark> tr programming language	determine the type of list s <mark>tructure</mark> that could be used for solving a problem and implement it using C programming language	2	က	က		4	73	,		1	1	3	က	,	
CO-3:	devise solutions using linear structures Stack and Queue	Stack and Queue	2	3	3	-			-	-	•	•	3	3		
CO-4:	express proficiency in usage of tree for solving problems	r solving problems	2	3	3	-	-	-		-	-	•	3	3	•	-
CO-5:	implement Hash tables for st <mark>oring dat</mark> t	implement Hash tables for st <mark>oring dat</mark> a and algorithms to find shortest path between nodes in a graph	3	2,	3	-	,	-	-	-	-	ı	3	3	-	1
																ı

Programming in C - Primitive data types, Structures, Self-referential structures, Pointers and structures, Dynamic memory allocation, Matrix multiplication; Data Structure – Definition, Types, ADT, Operations; Unit-1 - Introduction

15 Hour Operations on List ADT – Create, Insert, Search, Delete, Display elements; Implementation of List ADT – Array, Cursor based and Linked; Types – Singly, Doubly, Circular, Applications - Sparse Matrix, Polynomial Mathematical notations - Big O, Omega and Theta, Complexity - Time, Space, Trade off. Unit-2 - List Structure

Arithmetic, Joseph Problem

15 Hour Operations on Stack ADT – Create, Push, Pop, Top; Implementation of Stack ADT – Array and Linked; Applications - Infix to Postfix Conversion, Postfix Evaluation, Balancing symbols, Function Calls, Tower of Hanoi; Operations on Queue ADT - Create, Enqueue and Dequeue; Implementation of Queue ADT – Array and Linked; Types of Queue - Circular, Double ended and Priority Queue, Applications – Scheduling 15 Hour Unit-4 - Trees and Hashing Unit-3 - Stack and Queue

15 Hour Introduction to Trees, Tree traversals, Complete Binary Tree and its height, Binary Search Trees, Need for Balance, Rotation, AVL trees, B Trees, Heaps, trees and array implementations and applications; Hash functions - Introduction, functions, Collision avoidance, Separate c<mark>haining, Open A</mark>ddressing, Linear Probing, Quadratic probing.

Introduction to Graph, Graph Traversal, Topological sorting, Minimum spannin<mark>g tree – Prims Algorithm, Kruskal's Algorithm, Shortest P</mark>ath Algorithm - Dijkstra's Algorithm Unit-5 - Graph