Estadística Aplicada – Grado en Ingeniería Matemática – Curso 2020-21 Hoja de problemas 2

- 1. Construye un ejemplo de datos bidimensionales $(x_i, y_i) \in \mathbb{R}^2$, i = 1,...,n, de modo que se cumpla que $y_i = x_i^2$ para todo i y para los que su correlación sea 0.
- 2. Obtén mediante el método de mínimos cuadrados la expresión general de los estimadores de los parámetros β_0 y β_1 de un modelo de regresión lineal simple.
- 3. Las notas obtenidas por un grupo de alumnos en las asignaturas de Informática y Estadística son las siguientes:

I																	
\boldsymbol{E}	5	5	8	7	7	9	10	4	7	4	10	5	7	9	10	5	7

- a) Obtener la distribución marginal de las notas en ambas materias, así como su media y su varianza.
- b) Obtener la covarianza y la correlación de las calificaciones de ambas materias.
- c) Calcular la recta de regresión para explicar las notas de Estadística en función de las de Informática.
- 4. Demuestra las 6 propiedades establecidas en la Proposición 1 de los apuntes del Tema 2.
- 5. Demostrar que en el contexto de la regresión lineal simple se cumple $Cov[\bar{y}, \hat{\beta}_1] = 0$.
- 6. Un psicólogo afirma que, en base a los datos observados, el número de respuestas incorrectas dadas por un niño en un estudio experimental decrecen al aumentar la edad del niño.

Edad	2	3	4	4	5	5	6	7	7	9	9	10	11	11	12
Respuestas	11	12	10	13	11	9	10	7	12	8	7	3	6	5	5

- a) ¿Existe realmente evidencia que soporte esa afirmación?
- b) Alberto, de diez años y medio, va a participar en el experimento. ¿Cuántas respuestas incorrectas es posible esperar que realice?
- 7. Demostrar las consecuencias del supuesto S3 expuestas en los apuntes del Tema 2.
- 8. Demostrar que $\hat{\beta}_1 \cdot \sum (x_i \overline{x})(y_i \overline{y}) = MCM$.
- 9. Se han recogido mediciones de la densidad de oxígeno (*Y*, en mg/l) a diferentes profundidades (*X*, en metros) en el lago Worther (Austria), obteniéndose la siguiente distribución:

X	15	20	30	40	50	60	70
Y	6.5	5.6	5.4	6.0	4.6	1.4	0.1

- a) Ajustar una recta a los datos por medio del método de mínimos cuadrados.
- b) Analizar la correlación entre ambas variables

- c) ¿Qué densidad de oxígeno es esperable a una profundidad de 90 metros?
- 10. Considérese la siguiente distribución conjunta:

X	Y
1	10
2	100
3	1000
4	10000

- a) Ajustar una curva $Y = a \cdot 10^{bX}$ a los datos mediante técnicas de regresión lineal.
- b) ¿Cuál es el valor predicho para X = 3.5? ¿Y para X = 5?
- 11. Denotemos por ρ el coeficiente de correlación poblacional entre una variable respuesta Y y una variable explicativa X. Si $\rho \neq 0$, entonces X e Y están relacionados linealmente, y un test apropiado para contrastar las hipótesis H_0 : $\rho = 0$ vs. H_1 : $\rho \neq 0$ viene dado por

$$T = \frac{r_{XY}\sqrt{n-2}}{\sqrt{1-r_{XY}^2}}$$

donde r_{XY} es el coeficiente de correlación muestral entre X e Y, que es un estimador de ρ . Se pide:

- a) Demostrar que este test es equivalente (de hecho algebraicamente equivalente) al contraste t para las hipótesis H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$ en un análisis de regresión simple (una pista: usar que r_{XY}^2 es igual al coeficiente de determinación, que se define como...).
- b) Dar la región crítica o de rechazo en términos de *T*.
- c) Si se ha observado $r_{XY} = -0.45$ con n = 30, ¿qué conclusión se obtiene cuando $\alpha = 0.05$?
- 12. Hallar una expresión para los elementos de las matrices $\mathbf{X}'\mathbf{X}$ y $(\mathbf{X}'\mathbf{X})^{-1}$ en el contexto de la regresión lineal simple.

.