

무[遮]계획

서태원, 신재환, 류은환, 최승렬

1

Contents

- 프로젝트 개요
- . 프로젝트 필요성
- . 개발 진행 과정
 - 아키텍처 설계
 - 후처리 적용
- 팀원별 역할분담
- 활동 기록
- 향후 계획

프로젝트 개요

J

딥러닝 모델의 <mark>최적화</mark>를 통한

임베디드보드에서의 추론 속도 향상

이미지나 비디오에서 <mark>객체를 인식</mark>하고, 위치를 특정하는 <mark>컴퓨터 비전 기술</mark>

5

Object detection Models

RetinaNet

EfficientDet

CenterNet

6

YOLOv9: SOTA Object Detection Model Explained

최신 YOLO Series, 2024년 2월 공개

Real-time Object Detection 분야 SOTA

SOTA: State Of The Art, 최고 성능 모델

프로젝트 필요성

8

프로젝트 필요성

일반적으로 고성능 딥러닝 모델은 GPU나 GPU서버 같은 고사양의 컴퓨팅 자원을 필요로 함

GPU 자원 X Network 자원 X

임베디드 보드와 같은 제한된 환경 딥러닝 모델을 구동하기 어려움

9

<mark>온디바이스 AI</mark> 추세에 따라 딥러닝 모델도 **Edge device** 에서 구동하는 것이 트렌드

고성능 GPU를 설치는 비효율적 Network 사용 → 보안 문제

따라서, **딥러닝 모델을 경량화** 하는 방법을 탐색하고, 이를 바탕으로 <mark>모델 구조 재설계 및 추론 속도 향상</mark>을 목표

개발 진행 과정

개발 진행 과정

. 두가지 분야로 개발 진행

모델 자체를 설계하는 아키 텍 처

학습된 모델에 적용하는 후 처 리

아키텍처

YOLOv9 논문 및 코드, 모델 블록 분석

Netron 도구를 이용하여 아키텍처 시각화 및 분석 수행

14

YOLOv9 논문 및 코드, 모델 블록 분석

YOLOv9-c 모델 기반 추론 속도 향상 모델 설계 실험

test2: 최대 레이어의 크기를 128로 제한, 보조분기 적용

test10: activation 함수 변경 (SILU→LeakyReLU), 레이어 크기 수정, 보조분기 적용

MODEL NAME	YOLOv9-c-converted (Paper DL)	test2-converted_COCO_300	
mAP50 score:	0.699	0.578	
mAP50-95 score:	0.53	0.423	
RPI avg inference time:	3334.0ms	1435.2ms	

YOLOv7 시리즈 참조하여 YOLOv9-Tiny와 유사한 모델 설계 실험 중

모델 학습 진행

모델 연산 블록 분석 과정

모델 파라미터(weights) 디스플레이 및 수정 코드 작성

연산량(FLOPs) 및 추론 시간(Speed)을 분석 실험

```
model . 22 . cv3 . 2 . ft . conv . weight
                                                                          tensor([[[[-9.10282e-04. -7.48158e-04. 2.14577e-03].
torch.set printoptions(threshold=188888888) # 이 많은 파리미터를 출력하기 위해 설명
                                                                                     [ 1.11580e-03. 9.37939e-04. 4.16946e-03].
                                                                                      [ 4.87137e-03. 4.87900e-03. 6.33240e-03]].
cfg = "./models/detect/yolov9-c.yaml"
model = Model(cfg, ch=3, nc=88, anchors=3) # 아카텍처 구조 출력
                                                                                    [[-8.24451e-04. -5.93662e-04. -8.10146e-04].
                                                                                     [-3.65973e-04, -2.26021e-04, -1.06621e-03],
ckot = torch.load('/home/moh/MGH/volov9-c.ot', map location='cuda')
                                                                                     [-6,46114e-04, -1,01280e-03, -1,54400e-03]].
model.names = ckpt['model'].names
                                                                                    for k, v in model.state_dict().items(): # k = 때라이터 이름, v = 때라이터 같
                                                                                     [-2.34365e-04. 4.89712e-04. -1.32370e-03].
   print(ckpt['model'].state_dict()(k])
                                                                                     [-2.66838e-03. -2.75993e-03. -4.21524e-03]].
```


후처리

후처리라?

아키텍처는 모델 자체의 구조를 설계 및 학습

후처리는, 학습된 모델에 대해 추가 처리를 통해 라즈베리파이에서 연산을 최적화 하여 추론 속도를 향상시키는 것

ONNX(Open Neural Network Exchange)

서로 다른 ML 프레임워크에서 개발된 모델을 서로 호환할 수 있도록 하는 표준 모델 포맷

다양한 프레임워크와 환경에서 모델 활용 가능 다양한 최적화 기술 및 옵션 적용 가능

ORT : 모바일 및 웹 애플리케이션과 같이 크기가 제한된 환경에서 사용하는 데 적합

MODEL NAME	YOLOv9-c-converted (Paper DL)	YOLOv9-c-converted_onnx	YOLOv9-c-converted_ort	
mAP50 score:	0.699	0.696	0.696	
mAP50-95 score:	0.53 ONN	X 적용 0.528 ORT	적용 0.528	
RPI inference time:	3334.0ms	1762.5ms	1689.3ms	

Pruning (가지치기)

중요도가 낮은 weight 및 connection을 <mark>제거</mark>하거나 최대한 <mark>희소(sparse)</mark>하게 만드는 방법

Before pruning

After pruning

MODEL NAME	YOLOv9-c-converted (Paper DL)	YOLOv9-c-converted_pruning_20	
mAP50 score:	0.699	0.654	
mAP50-95 score:	0.53	6 향상	
RPI avg inference time:	3334.0ms \square	2953.6ms	

양자화

모델의 <mark>가중치</mark>를 낮은 비트의 데이터 형식으로 변환하여 더 빠른 추론을 가능하게 하는 방법

양자화의 종류

Quantization-aware Training : 학습 중에 양자화를 고려해서 모델을 조정

> Post-training Quantization : 훈련 후 가중치를 줄이는 방법

Dynamic Quantization : 추론하면서 동적으로 양자한 진행

역할 분담

아키텍처 팀

서태원 [팀장]

YOLOv9 논문 실험 구현 YOLOv9 논문 분석 YOLOv9 코드 및 연산구조 분석 연산량 및 추론속도 분석 실험 CPU 온도 및 추론속도 영향 실험

192시간

류은환 [팀원]

YOLOv9 논문 실험 구현 YOLOv9 논문 분석 YOLOv9 코드 분석 파라미터 분석 경량화 모델 설계 및 실험 PTQ(Post Training Quantization)

199시간

팀원별 역할분담

활동 기록

활동 기록

						최종 변함차
() 원예디로M	2024년 6월 5일		● 전형 중	오프라인	(2) 서태원	🕡 승强 최
🖰 교수님 미팅	2024년 5월 23일	16:00 - 17:30	(登里)	오프라인	● 서태원	서태원
h 3-8차 회의	2024년 5월 23일	10:30 - 00:00	(원료)	오프라인	♣ 서태원	😝 승멸 최
🕒 3-7자 회의	2024년 5월 22일	14:30 = 23:45	(製量)	<u>ㅇ프라인</u>	서태원	👴 승립 최
🖹 3-6자 회의	2024년 5월 21일	18:00 - 00:00	(野菜)	오프라인	서태원	🕝 승립 죄
🗎 3-5차 회의	2024년 5월 20일	15:00 - 00:10	● 원료	O프라인	● 会教 毎	😁 승렬 최
🖹 3-4차 회의	2024년 5월 19일	15:00 - 22:30	(20 E	오프라인	💮 숨렬 최	📵 승립 최
🕒 3-3차 회의	2024년 5월 18일	15:00 - 23:30	(日本)	오프라인	● 品新 冊	😝 승립 최
🕒 3-2차 회의	2024년 5월 16일	15:00 - 00:45	(표원로)	onne	❷ 서대원	😝 승렬 최
🕒 3-1차 회의	2024년 5월 15월	14:00 - 22:30	문료	오프라인	※ 28 冊	📵 승립 최
🕒 2-37차 회의	2024년 5월 14일	15:00 - 00:30	원로	오프라인	◎ 은함 듀	😝 승强 최
🕒 2-36자 회의	2024년 5월 13일	1930 - 2230	(원보)	오프라인	응 은왕 류	📵 승렬 최
🕒 2-35차 회의	2024년 5월 12일	1820 - 22:30	(EEE)	오프라인	서태원	👴 숭盟 죄
[]) 2-34자 회의	2024년 5월 10일	17:00 - 22:30	● 22	오프라인	● 은환류	😝 승별 최
<u></u> 2-33차 회의	2024년 5월 9월	18:30 - 20:30	환료	디스코드	💮 승립 최	😝 승립 최
🖺 2-32차 회의	2024년 5월 7월	13:00 - 21:30	(EE)	오프라인	👵 승립 최	😝 승립 최
🕒 2-31차 회의	2024년 5월 6월	18:00 ~ 23:00	(BE)	<u> </u>	経路会	😈 승립 최
🕒 2-30차 회의	2024년 5월 3월	13:00 ~ 16:00	원로	오프라인	● 項製 平	📵 승립 최
🕒 2-29차 회의	2024년 5월 2월	15:00 - 21:30	(원류)	опер	📵 승强 최	😝 승립 최
🕒 2-28차 회의	2024년 5월 1일	18:30 - 23:00	환료	오프라인	응 은함 류	📵 술렴 최
🖹 2-27차 회의	2024년 4월 30일	18:00 - 23:00	(원류)	오프라인	意 会 報	👵 승립 최
🗎 2-26차 회의	2024년 4월 29일	16:00 - 23:00	문문로	9 महाराष्ट्र	● 88 #	● 은함 류
2-25차 회의	2024년 4월 26일	15:00 = 22:30	(SE	<u>오</u> 프라인	● 은한 류	📵 승립 최
(% 2.24% Blot	202418 422 2531	1400 - 2200	9514	OWNER	0 03 11	B ISO

향후 계획

TO-BE

추가 실험을 통해 최적화 모델 성능 향상

실험 내용을 바탕으로 졸업 논문 작성

1

응용 분야 설정 특화 개발

분야 세분화 및 실험 정밀화 하여 KCI급 논문 투고

해외 학술지 논문 분석 및 학술지 논문 투고

Thank you

무[無]계획

