Machine learning

Prepared by: Dr. Hanaa Bayomi Updated By: Prof Abeer ElKorany

CLUSTERING

- Cluster Analysis is like Classification, but the class label of each object is not known.
- •Clustering can be considered the most <u>important unsupervised learning problem</u>; so, as every other problem of this kind, it deals with <u>finding a structure in a collection of unlabeled data</u>.
- Cluster is a subset of data which are similar
- **Clustering** is the *process of grouping the data into classes or clusters* so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters.

SIMPLE GRAPHICAL EXAMPLE:

• In this case we easily identify the 4 clusters into which the data can be divided; the similarity criterion is *distance*: two or more objects belong to the same cluster if they are "close" according to a given distance. This is called *distance-based clustering*.

$$\sum_{i=1}^{k} |x_i - y_i|$$

Minkowski
$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$$

APPLICATIONS OF CLUSTERING

- Marketing: finding groups of customers with similar behavior given a large database of customer data containing their properties and past buying records;
- Biology: classification of plants and animals given their features;
- Libraries: book ordering;
- Insurance: identifying groups of motor insurance policy holders with a high average claim cost; identifying frauds;
- City-planning: identifying groups of houses according to their house type, value and geographical location;
- Earthquake studies: clustering observed earthquake epicenters to identify dangerous zones;
- WWW: document classification; clustering weblog data to discover groups of similar access patterns.

Two main groups of clustering algorithms

Clustering Algorithms

- Partition/Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - (Model based clustering)
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

Hierarchical methods

Hierarchical methods again come in two varieties, agglomerative and divisive.

Agglomerative methods:

- Start with partition P_n, where each object forms its own cluster.
- Merge the two closest clusters, obtaining P_{n-1} .
- Repeat merge until only one cluster is left.

Divisive methods

- Start with P₁.
- Split the collection into two clusters that are as homogenous (and as different from each other) as possible.
- Apply splitting procedure recursively to the clusters.

Partitioning Algorithms

- Flat methods generate a single partition into k clusters. The number k of clusters has to be determined by the user ahead of time.
- Partitioning method: Construct a partition of n instances into a set of K clusters
- Given: a set of documents and the number *K*
- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion

Two main groups of clustering algorithms

K-MEANS CLUSTERING

- Intends to partition n objects into k clusters in which <u>each</u> object belongs to the cluster with the nearest mean
- This method produces exactly k different clusters of greatest possible distinction
- The best number of clusters k leading to the greatest separation (distance) is not known as a priori and must be computed from the data

K-means Clustering algorithm

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Real-Life Numerical Example of K-Means Clustering

We have 4 medicines as our training data points object and each medicine has 2 attributes. Each attribute represents coordinate of the object. We have to determine which medicines belong to cluster 1 and which medicines belong to the other cluster.

Object	Attribute1 (X): weight index	Attribute 2 (Y): pH
Medicine A	1	1
Medicine B	2	1
Medicine C	4	3
Medicine D	5	4

Step 1:

- Initial value of centroids
 - : Suppose we use medicine A and medicine B as the first centroids.
- Let and c₁ and c₂ denote the coordinate of the centroids, then c₁=(1,1) and c₂=(2,1)

•Object Centroid distance: calculate the distance between each cluster centroid and each point using Euclidean distance

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

For example, distance from medicine C = (4, 3) to the first centroid $\epsilon_1 = (1,1)$ is $\sqrt{(4-1)^2 + (3-1)^2} = 3.61$ and its distance to the second centroid is, $\epsilon_2 = (2.1)$ is $\sqrt{(4-2)^2 + (3-1)^2} = 2.83$ etc.

Step 2:

- Objects clustering : We assign each object based on the minimum distance.
- Medicine A is assigned to group 1, medicine B to group 2, medicine C to group 2 and medicine D to group 2.
- The elements of Group matrix below is 1 if and only if the object is assigned to that group.

$$\mathbf{G}^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

- Iteration-1, Objects-Centroids distances: The next step is to compute the distance of all objects to the new centroids.
- Similar to step 2, we have distance matrix at iteration 1 is

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \quad \mathbf{c}_{1} = (1,1) \quad group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) \quad group - 2$$

A B C D

$$x \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$
 $c_2 x = \frac{2+4+5}{3} = \frac{11}{3}$
 $c_2 y = \frac{1+3+4}{3} = \frac{8}{3}$

Listering: Based on the new distance matrix, we move the medicine B to Group 1 while all the other objects remain. The Group matrix is shown below

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

Compare

$$\mathbf{G}^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

Literation-1, Objects
clustering: Based on the new
distance matrix, we move the
medicine B to Group 1 while all
the other objects remain. The
Group matrix is shown below

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

• Iteration 2, determine centroids: Now we repeat step 4 to calculate the new centroids coordinate based on the clustering of previous iteration. Group1 and group 2 both has two members, thus the new centroids are c₁ = (1+2) (1+1) (1+1) (1-1) and c₂ = (4+5) (3+4) (4-1) (4-1)

•<u>Iteration-2:Object Centroid distance:</u> calculate the distance between each cluster centroid and each point

 Iteration-2, Objects clustering: Again, we assign each object based on the minimum distance.

$$\mathbf{G}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

Compare

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \\ A & B & C & D \end{array}$$

$$\mathbf{G}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \\ A & B & C & D \end{array}$$

- We obtain result that G² = G¹ Comparing the grouping of last iteration and this iteration reveals that the objects does not move group anymore.
- Thus, the computation of the k-mean clustering has reached its stability and no more iteration is needed...

We get the final grouping as the results as:

<u>Object</u>	Feature1(X): weight index	<u>Feature2</u> (Y): pH	<u>Group</u> (result)
Medicine A	1	1	1
Medicine B	2	1	1
Medicine C	4	3	2
Medicine D	5	4	2

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 - Try out multiple starting points
 - Initialize with the results of another method.

K-means Clustering – Details

- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Cluster partition unchanged.
 - Centroid positions don't change.

Does this mean that the samples in a cluster are unchanged?

Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
 - But in practice usually isn't

K-means issues, variations, etc.

- Recomputing the centroid after every assignment (rather than after all points are reassigned) can improve speed of convergence of K-means
- Assumes clusters are spherical in vector space
 - Sensitive to coordinate changes, weighting etc.
- Disjoint and exhaustive
 - Doesn't have a notion of "outliers" by default
 - But can add outlier filtering

How Many Clusters?

- Number of clusters K is given
 - Partition \mathcal{N} docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given docs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of *K* not known up front though UI may impose limits.
- Can usually take an algorithm for one flavor and convert to the other.

K not specified in advance

- Given a clustering, define the <u>Benefit</u> for a doc to be the cosine similarity to its centroid
- Define the <u>Total Benefit</u> to be the sum of the individual doc Benefits.

Why is there always a clustering of Total Benefit *n*?

Penalize lots of clusters

- For each cluster, we have a <u>Cost</u> *C*.
- Thus for a clustering with *K* clusters, the <u>Total Cost</u> is *KC*.
- Define the <u>Value</u> of a clustering to be = Total Benefit - Total Cost.
- Find the clustering of highest value, over all choices of *K*.
 - Total benefit increases with increasing *K*. But can stop when it doesn't increase by "much". The Cost term enforces this.

COMPLEXITY

 In each round, we have to examine each input point exactly once to find closest centroid

Each round is O(kN) for N points, k clusters

 But the number of rounds to convergence can be very large!

The K-Means Clustering Method

<u>Strength</u>

- · Relatively efficient. O(tkn),
 - · *n* is # objects,
 - · k is # clusters
 - *t* is # iterations.

Normally, k, $t \ll n$.

<u>Weakness</u>

- · Applicable only when *mean* is defined (e.g., a vector space)
- · Need to specify *k*, the *number* of clusters, in advance.
- · It is sensitive to noisy data and *outliers* since a small number of such data can substantially influence the mean value.