Protein aggregation vs subcellular location

Initialization

Install all the needed libraries.

```
#install.packages("UniprotR")
#install.packages("BiocManager")
#BiocManager::install("Biostrings")
#BiocManager::install("GenomicAlignments")
#install.packages("sjmisc")
#install.packages("hash")
#install.packages("dplyr")
#install.packages("Peptides")
```

Load the needed libraries.

```
library(UniprotR)
library(sjmisc) # Used for str_contains
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`)
library(hash) # Used to make a disctionary
## hash-2.2.6.1 provided by Decision Patterns
library(dplyr) # Used for aggregate (get avg tango score of protein)
##
## Caricamento pacchetto: 'dplyr'
## I seguenti oggetti sono mascherati da 'package:stats':
##
##
       filter, lag
## I seguenti oggetti sono mascherati da 'package:base':
##
       intersect, setdiff, setequal, union
library(Peptides) # Used for charge (get the charge of a peptide sequence) ETC
library(ggplot2)
library(dplyr)
library(ggrepel)
library(tidyverse)
## -- Attaching packages -----
                                                    ----- tidyverse 1.3.1 --
## v tibble 3.1.6
                       v purrr 0.3.4
## v tidyr 1.1.4
                      v stringr 1.4.0
```

Define the working directory.

```
directory = dirname(rstudioapi::getSourceEditorContext()$path) # Should work when data is placed in sam
setwd(directory)
```

Load the data.

```
source("load_data.R")
return_value = read_data() # See load_data.R
data = return_value$data
hashed_proteins = return_value$hashed_proteins
rm(return_value) # To get rid of the extra memory usage
```

TANGO scores

```
source("tango_scores.R")
```

Average tango score distribution in all proteins

```
plot_average_tango_scores_complete_proteins()

## Warning: Removed 3 rows containing non-finite values (stat_boxplot).

## Warning: Removed 3 rows containing non-finite values (stat_summary).
```


plot_average_tango_scores_complete_proteins_joined_secreted()

Warning: Removed 3 rows containing non-finite values (stat_boxplot).

Warning: Removed 3 rows containing non-finite values (stat_summary).

Average tango score distribution in proteins with an APR region plot_average_tango_scores_APR_proteins()

Warning: Removed 1317 rows containing non-finite values (stat_boxplot).

Warning: Removed 1317 rows containing non-finite values (stat_summary).

plot_average_tango_scores_APR_proteins_joined_secreted()

Warning: Removed 1317 rows containing non-finite values (stat_boxplot).

Warning: Removed 1317 rows containing non-finite values (stat_summary).

Distribution of maximal tango scores

plot_max_tango_scores()

Distribution of number of APR regions per protein normalized for protein length $plot_average_tango_scores_complete_proteins()$

- ## Warning: Removed 3 rows containing non-finite values (stat_boxplot).
- ## Warning: Removed 3 rows containing non-finite values (stat_summary).

plot_average_tango_scores_complete_proteins_joined_secreted()

Warning: Removed 3 rows containing non-finite values (stat_boxplot).

Warning: Removed 3 rows containing non-finite values (stat_summary).

Pie Plot for the residues

protein_sequences_GK_peptides = get_charge(GK_peptides)
protein_sequences_FR_peptides = get_charge(FR_peptides)

```
Lysine (Lys) -> K Arginine (Arg) -> R Aspartic acid (Asp) -> D Glutamic acid (Glu) -> E source("gatekeeper.R")
```

Only for the GK regions

```
GK_analysis = analyse_gate_keeper_regions()

PERCENTAGE OF ALL RESIDUES FOR ALL OF THE GK REGIONS IN ALL PROTEINS
pie_plot_percentage_of_all_residues(GK_analysis$cts_gk, "GK REGIONS")
```


sine (Lys) -> K Arginine (Arg) -> R Aspartic acid (Asp) -> D Glutamic acid (Glu) -> E Serine (Ser) -> S Proline (Pro) -> P PERCENTAGE OF INTERESTED RESIDUES FOR ALL OF THE GK REGIONS IN ALL PROTEINS

GK_analysis_interested_aa = analyse_interested_gate_keeper_regions(GK_analysis)

pie_plot_percentage_of_interested_residues(GK_analysis_interested_aa\$cts_interest_gk, "GK REGIONS")

PERCENTAGE OF INTERESTED RESIDUES FOR ALL OF THE GK REGIONS IN ALL PROTEINS

ESTED RESIDUES FOR ALL OF THE $\mathrm{GK} + \mathrm{FL}$ REGIONS IN ALL PROTEINS

pie_plot_percentage_of_interested_residues(GK_analysis_interested_aa\$cts_interest_gk_fl, "GK + FL REGIO

PERCENTAGE OF INTERESTED RESIDUES FOR ALL OF THE GK + FL REGIONS IN ALL PROTEINS

PERCENTAGE OF INTERESTED RESIDUES FOR ALL OF THE GK SIDES

```
GK_analysis_GK_residues = analyse_gate_keeper_residues(GK_analysis$cts_gk_side)
side_string = "GK"
```

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$lys_ct, "LYS", side_string)

PERCENTAGE OF LYS RESIDUES FOR ALL OF THE GK SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$arg_ct, "ARG", side_string)

PERCENTAGE OF ARG RESIDUES FOR ALL OF THE GK SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$asp_ct, "ASP", side_string)

PERCENTAGE OF ASP RESIDUES FOR ALL OF THE GK SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$glu_ct, "GLU", side_string)

PERCENTAGE OF GLU RESIDUES FOR ALL OF THE GK SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$ser_ct, "SER", side_string)

PERCENTAGE OF SER RESIDUES FOR ALL OF THE GK SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_residues\$pro_ct, "PRO", side_string)

PERCENTAGE OF PRO RESIDUES FOR ALL OF THE GK SIDES

PERCENTAGE OF INTER-

ESTED RESIDUES FOR ALL OF THE GK + FL SIDES

GK_analysis_GK_and_FL_residues = analyse_gate_keeper_residues(GK_analysis\$cts_gk_fl_side)
side_string = "GK + FL"

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$lys_ct, "LYS", side_string)

PERCENTAGE OF LYS RESIDUES FOR ALL OF THE GK + FL SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$arg_ct, "ARG", side_string)

PERCENTAGE OF ARG RESIDUES FOR ALL OF THE GK + FL SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$asp_ct, "ASP", side_string)

PERCENTAGE OF ASP RESIDUES FOR ALL OF THE GK + FL SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$glu_ct, "GLU", side_string)

PERCENTAGE OF GLU RESIDUES FOR ALL OF THE GK + FL SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$ser_ct, "SER", side_string)

PERCENTAGE OF SER RESIDUES FOR ALL OF THE GK + FL SIDES

pie_plot_percentage_of_specific_residue(GK_analysis_GK_and_FL_residues\$pro_ct, "PRO", side_string)

PERCENTAGE OF PRO RESIDUES FOR ALL OF THE GK + FL SIDES

Subcellular location

Previous analyses are done for all of the proteins, but now we will be working on all the proteins that belong to a specific subcellular location

```
# Statistics for each subcellular location
for (i in 1:length(search_terms)) {
  counts = get_counts_for_subcellular_location(search_terms[i], GK_analysis)
  residue_category = "all"
  pie_plot_subcellular_location(counts$cts_gk, residue_category, "GK", search_terms[i])
  pie_plot_subcellular_location(counts$cts_gk_fl, residue_category, "GK + FL", search_terms[i])
  # PERCENTAGE OF INTERESTED PROTEINS IN SUBCELLULAR LOCATIONS
  counts interest <- analyse interested gate keeper regions(counts)</pre>
  residue category = "interested"
  pie_plot_subcellular_location(counts_interest$cts_interest_gk, residue_category, "GK", search_terms[i
  pie_plot_subcellular_location(counts_interest$cts_interest_gk_fl, residue_category, "GK + FL", search
  # NOW THE SIDES PART
  counts_side_gk <- analyse_sides(counts$cts_gk_side)</pre>
  counts_side_gk_fl <- analyse_sides(counts$cts_gk_fl_side)</pre>
  region_string = "GK"
  pie_plot_sides(counts_side_gk$lys_ct, "LYS", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk$arg_ct, "ARG", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk\$asp_ct, "ASP", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk$glu_ct, "GLU", region_string, search_terms[i])
 pie_plot_sides(counts_side_gk$ser_ct, "SER", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk$pro_ct, "PRO", region_string, search_terms[i])
  region string = "GK + FL"
  pie_plot_sides(counts_side_gk_fl$lys_ct, "LYS", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk_fl$arg_ct, "ARG", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk_fl$asp_ct, "ASP", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk_fl$glu_ct, "GLU", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk_fl$ser_ct, "SER", region_string, search_terms[i])
  pie_plot_sides(counts_side_gk_fl$pro_ct, "PRO", region_string, search_terms[i])
```


Percentage of interested residues in GK regions for Cell membrane

Percentage of interested residues for Cell membrane

Percentage of LYS residue sides in GK regions for Cell membrane

Percentage of ARG residue side for Cell membrane

0.2%
Side
Between
L
R

Percentage of ASP residue sides in GK + FL regions for Cell membrane

Percentage of GLU residue side for Cell membrane

0.5%

Percentage of PRO residue side for Cell membrane

50.8%

Percentage of SER residue sides in GK + FL regions for Cell membrane

Percentage of all residues in GK regions for Mitochondrion

Percentage of interested residues in GK regions for Mitochondrion

Percentage of interested residues for Mitochondrion

Percentage of LYS residue sides in GK regions for Mitochondrion Percentage of ARG residue sides in for Mitochondrion 0.2% 47.8% Side 48.2% 52.2% L R Percentage of GLU residue sic for Mitochondrion Percentage of ASP residue sides in GK regions for Mitochondrion 0.3% Side Between 54.5% 45.1% 48.6% R

Percentage of ASP residue sides in GK + FL regions for Mitochondrion Percentage of GLU residue side for Mitochondrion 0.5% 0.3% Side 47.5% Between L 50.4% 52.2% R Percentage of SER residue sides in GK + FL regions for Mitochondrion Percentage of PRO residue side for Mitochondrion 0.4% 1%

Percentage of all residues in GK regions for Nucleus

Percentage of interested residues in GK regions for Nucleus

Percentage of interested residues for Nucleus

Percentage of ASP residue sides in GK + FL regions for Nucleus

Percentage of GLU residue side for Nucleus

0.44%

Percentage of PRO residue side for Nucleus

50.16%

Percentage of SER residue sides in GK + FL regions for Nucleus

Percentage of all residues in GK regions for Endoplasmic Reticulum

Percentage of interested residues in GK regions for Endoplasmic Reticulum

Percentage of interested residues for Endoplasmic Reticulum

Percentage of LYS residue sides in GK regions for Endoplasmic Reticulum

Percentage of ARG residue sides in for Endoplasmic Reticulum

Percentage of ASP residue sides in GK regions for Endoplasmic Reticulum

Percentage of GLU residue side for Endoplasmic Reticulum

Percentage of SER residue sides in GK regions for Endoplasmic Reticulum

Percentage of PRO residue sides in for Endoplasmic Reticulum

Percentage of LYS residue sides in GK + FL regions for Endoplasmic Reticulum

Percentage of ARG residue side for Endoplasmic Reticulum

Percentage of ASP residue sides in GK + FL regions for Endoplasmic Reticulum

Percentage of GLU residue side for Endoplasmic Reticulum

Percentage of SER residue sides in GK + FL regions for Endoplasmic Reticulum

Percentage of PRO residue side for Endoplasmic Reticulum

Percentage of interested residues in GK regions for Golgi apparatus

Percentage of interested residues for Golgi apparatus

Percentage of PRO residue sides ir for Golgi apparatus

Percentage of LYS residue sides in GK + FL regions for Golgi apparatus

Percentage of ARG residue side for Golgi apparatus

Percentage of SER residue sides in GK + FL regions for Golgi apparatus

Percentage of PRO residue side for Golgi apparatus

Percentage of interested residues in GK regions for Lysosome

Percentage of interested residues for Lysosome

Percentage of all residues in GK regions for Cytoplasm

Percentage of interested residues in GK regions for Cytoplasm

Percentage of interested residues for Cytoplasm

Percentage of all residues in GK regions for Secreted

Percentage of interested residues in GK regions for Secreted

Percentage of interested residues for Secreted

Percentage of all residues in GK regions for Extracellular space

Percentage of interested residues in GK regions for Extracellular space

Percentage of interested residues for Extracellular space

Percentage of PRO residue sides in for Extracellular space

Percentage of LYS residue sides in GK + FL regions for Extracellular space

Percentage of ARG residue side for Extracellular space

Percentage of ASP residue sides in GK + FL regions for Extracellular space

Percentage of GLU residue side for Extracellular space

0.31%

Percentage of PRO residue side for Extracellular space

49.38%

