

Essender reboling ino (= Q = QL = 1Q.

Exercícios
and the state of t

- D Exreve as expresses reculeur conespondentes (E = 10, 11):

 a) I w I w começa com um 1 e fermina com um 0!

 10, 101, 110, 1000, 1110, ...
 - 1. (0+1)*.0
 - b) { w l w consern pelo memos bies 1x 1
 - 0,70,70,7(0+7),
 - c) fu le comprimente de us é une mérime s'
 - (3+2+0)(3+2+0)(3+2+0)(3+2+0)
 - 6 ve forse "ignola 5" vao teria os 8's
 - 1 L 3 W et ragmi Easirer dost /w/ (b. (3+L) * ((L+O) 1)
- 2 Simplifique os expressões:
 - a) Ea(b1c) + aa E
 - a(b+c) + ca = a((b+c)+a) = a(b+c+a)
 - 10+ (((1+0)01 +10) +(1+3) Ø (d
 - Q + 01 = 01
 - c)(0+1+E) +01*0+(E+0+1)+(E+0+1)
 - 0 *10 + (2+0+3) = 0 *10 + (2+0+3) + (2+0+3) + (2+0+3)
 - 9) 0 + 0TO
 - DE+010 = 0(E+10) =
 - e) abtb (ate)
 - $ab^{\dagger}b(a+\epsilon) = ab^{\dagger}(a+\epsilon)$
 - if) a+(b+c+&)a(b+c)+ca+ba
 - $\frac{\epsilon\alpha + (b+c+\epsilon)\alpha(b+c) + (c+b)\alpha = (\epsilon+c+b)\alpha + (b+c+\epsilon)\alpha(b+c)}{(b+c+\epsilon)\alpha(b+c)}$
 - = (b+c+E) aE+ (b+c+E)a (b+c) = (b+c+E)a(E+b+c)
 - = (b+c+E)a(b+c+E)

