Last name(s)	Name	ID
Einal EDA Essara Lar		12/01/2017
Final EDA Exam Ler	ngth: 3 hours	12/01/2017
 The exam has 4 sheets, 8 sides Write your full name and ID of Write your answers within the 	on every sheet.	sheet.
Problem 1		(2 pts.)
Fill the following gaps as precise	ly as possible:	
(a) (0.25 pts.) A graph with n ver	rtices has $O(\bigcirc)$ ed	ges.
(b) (0.25 pts.) A connected graph	n with n vertices has $\Omega($) edges.
(c) (0.25 pts.) A complete graph	with n vertices has $\Omega($) edges.
(d) (0.25 pts.) A min-heap with n	i vertices has $\Theta(\bigcirc)$) leaves.
(e) (0.25 pts.) A binary search tre	ee with n vertices has heigh	ht $\Omega($ \bigcirc $).$
(f) (0.25 pts.) A binary search tre	ee with n vertices has heigh	ht <i>O</i> ().
(g) (0.25 pts.) An AVL tree with	<i>n</i> vertices has height $\Omega($).
(h) (0.25 pts.) An AVL tree with	<i>n</i> vertices has height $O($).

This side would be intentionally blank if it were not for this note.

Last name(s)	Name	ID
roblem 2		(3 pts.
et $G = (V, E)$ be a directed graph roblem of, given a vertex $s \in V$, he graph. ecall that:		
a path is a sequence of vertice	es that are connected co	onsecutively by arcs: tha
is to say, (u_0, u_1, \ldots, u_k) such		
• the <i>weight</i> of a path is the sur	n of the weights of its a	arcs:
$\omega(u_0,u_1)$	$(u_{i-1},\ldots,u_k)=\sum_{i=1}^k\omega(u_{i-1},u_i)$	$u_i)$.
• the <i>distance</i> of a vertex <i>u</i> to a vertex <i></i>	9	-
it exists.		
to say, all weights are 1. Which problem of the distances?	•	* *
a) (0.2 pts.) Let us assume that to say, all weights are 1. Which	•	* *
a) (0.2 pts.) Let us assume that to say, all weights are 1. Which	ch algorithm can we us $e^{-\epsilon}$ any edge $e \in E$, we have	se to solve efficiently the vertical $\omega(e) \geq 0$; that is to say
a) (0.2 pts.) Let us assume that to say, all weights are 1. Which problem of the distances? b) (0.2 pts.) Let us assume that for all weights are non-negative.	ch algorithm can we us $e^{-\epsilon}$ any edge $e \in E$, we have	se to solve efficiently the vertical $\omega(e) \geq 0$; that is to say
a) (0.2 pts.) Let us assume that to say, all weights are 1. Which problem of the distances? b) (0.2 pts.) Let us assume that for all weights are non-negative.	th algorithm can we use any edge $e \in E$, we have Which algorithm can we use to solve efficient	se to solve efficiently the $\omega(e) \geq 0$; that is to say we use to solve efficiently
a) (0.2 pts.) Let us assume that it to say, all weights are 1. Which problem of the distances? b) (0.2 pts.) Let us assume that for all weights are non-negative. It the problem of the distances? c) (0.2 pts.) Which algorithm can	th algorithm can we use any edge $e \in E$, we have Which algorithm can we use to solve efficient	se to solve efficiently the $\omega(e) \geq 0$; that is to say we use to solve efficiently
a) (0.2 pts.) Let us assume that it to say, all weights are 1. Which problem of the distances? b) (0.2 pts.) Let us assume that for all weights are non-negative. It the problem of the distances? c) (0.2 pts.) Which algorithm can	the cycles of the graph	se to solve efficiently the $\omega(e) \geq 0$; that is to say we use to solve efficiently the problem of the must be satisfied so that

(e) (1 pt.) A function $\pi: V \to \mathbb{R}$ is a *potential* of the graph if it satisfies that, for any edge $(u, v) \in E$, we have $\pi(u) - \pi(v) \le \omega(u, v)$. Moreover, the *reduced weights* ω_{π} are defined as $\omega_{\pi}(u,v) = \omega(u,v) - \pi(u) + \pi(v)$ for any $(u,v) \in E$. Prove that if *c* is a path from *u* to *v* then $\omega_{\pi}(c) = \omega(c) - \pi(u) + \pi(v)$. (f) (1 pt.) Suppose that the graph has a potential π . Then, it can be proved that for all pairs of vertices $u, v \in V$ there is a minimum path with weights ω from u to v. Assuming this fact, explain how to use the potential π to compute the distance from a given vertex s to all vertices of the graph with an alternative algorithm to that of part (c) when the weights can be negative.

Last name(s)	Name	ID
roblem 3		(2 pts.)
We define a type <i>matrix</i> to represer ollowing program:	nt square matrices of rea	al numbers. Consider the
typedef vector <vector<double< td=""><td>e≫ matrix;</td><td></td></vector<double<>	e ≫ matrix;	
matrix aux(const matrix& A, coint $n = A.size$ (); matrix $C(n, vector < double)$ for (int $i = 0$; $i < n$;	>(n, 0)); +j) ++k) B[k][j]; M) {	
a) (0.5 pts.) What does the function terms of the matrix <i>M</i> ?	on matrix mystery(cons	t matrix& M) compute in
Cins of the matrix Wi		
(0.5 pts.) If M is an $n \times n$ matrix tion matrix mystery(const matrix		

Last name(s)	Name	ID

Problem 4 (3 pts.)

The problem of HAMILTONIAN GRAPH consists in, given an (undirected) graph, to decide whether it is Hamiltonian, that is to say, whether there exists a cycle that visits all its vertices exactly once. It is well-known that HAMILTONIAN GRAPH is an NP-complete problem.

It is also known that, from the proof that a problem belongs to class NP, one can derive a brute force algorithm that solves it. The following function **bool** ham(const vector < vector < int >> & G) which, given a graph G represented with adjacency lists, returns if G is Hamiltonian, implements this algorithm in the case of HAMILTO-NIAN GRAPH.

```
bool ham_rec(const vector < vector < int > & G, int k, vector < int > & p) {
       int n = G.size ();
2
       if (k == n) {
3
         vector < bool > mkd(n, false);
4
         for (int u : p) {
           if (mkd[u]) return false;
           mkd[u] = true;
         for (int k = 0; k < n; ++k) {
9
           int u = p[k];
10
           int v;
11
           if (k < n-1) v = p[k+1];
12
                         v = p[0];
13
           if (find(G[u].begin(), G[u].end(), v) == G[u].end()) return false;
15
         return true;
16
17
       for (int v = 0; v < n; ++v) {
18
         p[k] = v;
19
         if (ham\_rec(G, k+1, p)) return true;
20
21
       return false;
22
23
24
    bool ham(const vector<vector<int≫& G) {
25
       int n = G.size ();
26
       vector < int> p(n);
27
       return ham\_rec(G, 0, p);
28
29
```

Note: The function of the STL library

Iterator find (Iterator first, Iterator last, int val);

returns an iterator to the first element in the range [first, last) that compares equal to *val*. If no such element exists, the function returns last.

	witness when the function <i>ham</i> returns true .
(b)	(0.5 pts.) Identify the code corresponding to the verifier in the previous program. To that end, use the line numbers on the left margin.
(c)	(1 pt.) Fill the following gaps so that the function <i>ham2</i> computes the same as the function <i>ham</i> , but more efficiently.
	bool $ham2_rec(const\ vector < vector < int) & G, int k, int u, vector < int) & next)$ int $n = G.size$ ();
	if $($
	for (int $v : G[u]$) if $(next[v] =)$ { next[u] = ; if $(ham2_rec(G, k+1, v, next))$ return true; next[u] = -1;
	<pre> } return false; }</pre>
	bool $ham2(\mathbf{const}\ vector < vector < \mathbf{int} \gg \&\ G)\ \{$ $\mathbf{int}\ n = G.size\ ();$ $vector < \mathbf{int} > next(n, -1);$
	return ham2_rec(G, (), 0, next); }
(d)	(0.5 pts.) Suppose that the adjacency lists of the representation of <i>G</i> are sorted (for example, increasingly). Explain how to use this to make the function of part (c) more efficient.
(e)	(0.5 pts.) Suppose that <i>G</i> is a disconnected graph. Explain how to use this to make the function of part (c) more efficient.