МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» («ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №4 по дисциплине «Высокопроизводительные вычислительные комплексы»

Вариант 7

Выполнил студент группы І	ИВТ-42	/Рзаев А. Э./
Проверил преподаватель		

Синтез СОО с заданным временем пребывания задач U* <u>Задание №1-3.</u>

Рассчитать V[1]min

Исходные данные:

 Π ямда0 = 0,2

Среднее кол-во обращений к устройствам:

Альфа[1] = 50; Альфа[2] = 50; Альфа[3] = 2;

Среднее кол-во операций на устройстве[оп]:

Q[1] = 16000; Q[2] = 5; Q[3] = 1;

Стоимостные коэффициенты пребывания задачи:

K[1] = 1; K[2] = 5000; K[3] = 100000;

Предельная время пребывания задачи $U^* = 20[c]$

Предельная стоимость $S^* = 400000$ [руб.]

Решение:

 $V_{i min} = \lambda_0 * \alpha_i * Q_i$

V[1]min = 0.2*50*16000 = 160000

V[2]min = 0.2*50*5 = 50

V[1]min = 0.2*2*1 = 0,4

Задание №4-6.

Рассчитать S[1]min

Решение:

Si min = ki*Vi min

S[1]min = 1*160000 = 160000

S[2]min = 5000*50 = 250000

S[3]min = 100000*0,4 = 40000

Задание №7-9.

Рассчитать V[1]

Решение:

$$V_{i}\!=\lambda_{0}\!*\!\alpha_{i}\!*\!\theta_{i}\!+\left(1\,/\left(\lambda_{0}\!*\!U^{*}\right)\right)\,*\!\sqrt{\left(\lambda_{i}\!*\!\theta_{i}\right)/\,k_{i}}\,*\,\sum_{i=1}^{n}\!\!\sqrt{\lambda_{j}\!*\!\theta_{j}\!*\!k_{j}}\;,$$

V[1] = 270000

V[2] = 77,5

V[3] = 0.95

Задание №10.

Рассчитать S

Решение:

$$S = \lambda_0 * \sum_{i=1}^{n} k_i * \alpha_i * \theta_i + (1/U^*) * (\sum_{i=1}^{n} \sqrt{k_i * \alpha_i * \theta_i})^2 = 752500$$

Задание №11.

Рассчитать S0

Решение:

$$S0 = S - Smin = 302500$$

График зависимости $S = f(U^*)$

Синтез СОО с заданной стоимостью S*

Задание №12-14.

Рассчитать Vmin

Решение:

 $V_{i min} = \lambda_0 * \alpha_i * Q_i$

V[1]min = 0.2*50*16000 = 160000

V[2]min = 0.2*50*5 = 50

V[1]min = 0.2*2*1 = 0,4

Задание №15.

Рассчитать Smin

Решение:

Si $min = \sum ki*Vi min$

Smin = 1*160000 + 5000*50 + 100000*0, 4 = 450000

Задание №16-18.

Рассчитать V

Решение:

$$V_{i} = \lambda_{0} * \alpha_{i} * \theta_{i} + \left(1 \ / \ (\lambda_{0} * U^{*})\right) \ * \sqrt{\left(\lambda_{i} * \theta_{i}\right) \ / \ k_{i}} \ * \sum_{j=1}^{n} \sqrt{\lambda_{j} * \theta_{j} * k_{j}} \ ,$$

$$V[1] = 305454,5454$$

 $V[2] = 86,3636$

V[3] = 1,1273

Задание №19. Рассчитать S0

Решение:

$$S0 = S* - S_{min} = -50000$$

Задание №20.

Рассчитать U

Решение:

$$U=(1/S_0)*(\sum_{i=1}^{n} (\sum_{i=1}^{n} (k_i * \alpha_i * Q_i))^2 = -121$$

График зависимости $U=g(S^*)$

Выводы:

1) Синтез СОО с заданным временем пребывания задачи в системе

В ходе выполнения лабораторной работы была посчитана минимальная сумма Smin = 450000 руб., необходимая для построения теоретически работоспособной СОО. Однако в системе стоимостью S = Smin среднее время нахождения заявки в системе получается большим, чем минимально допустимое U* = 20 с. Для достижения заданного времени нахождения заявки в системе U* = 20 требуется увеличить быстродействие устройств системы. Для этого потребуется добавить ещё 302500 руб, получив таким образом S = 752500 руб.

Таким образом, для синтеза СОО с заданным средним временем нахождения заявки в системе U* = 20 с необходимо потратить 752500 руб.

2) Синтез СОО с заданной стоимостью системы.

Минимальная сумма, необходимая для построения теоретически работоспособной СОО равняется 450000 руб. Однако в распоряжении имеется лишь 400000 руб. Для уменьшения минимально необходимой стоимости требуется выбрать другие устройства с меньшими стоимостными коэффициентами.

На данный момент система состоит из устройств со стоимостными коэффициентами 1, 5000 и 100000, к которым происходит в среднем 16000, 5 и 1 обращений. Для уменьшения минимальной стоимости системы целесообразно уменьшать стоимостные коэффициенты устройств 1 и 2, так как в среднем к ним происходит больше обращений. Например, можно заменить 2 устройство на другое со стоимостным коэффициентом 3000 вместо 5000. В таком случае система будет иметь стоимость 350000 руб. Оставшиеся 50000 руб. можно использовать для уменьшения среднего времени нахождения заявки в системе до 97,45 с.

3) Синтез оптимальной СОО

Для синтеза оптимальной СОО нужно подобрать такую стоимость Sm, чтобы U = F(Sm) принимала максимальное значение. Sm можно найти аналитическими методами, например, вычислением производной. Sm можно вычислить, зная необходимое условие существования экстремума:

f'(S) = 0 или производная не существует;

Вычисление первой производной:

$$U = \frac{1}{S_0} * (\sum_{i=1}^n \sqrt{Q^* K_i * \alpha_i})^2$$

$$f(S) = \frac{1}{S - S_{min}} * (\sum_{i=1}^n \sqrt{Q_i * K_i * \alpha_i})^2 = \frac{1}{S - S_{min}} * b, \text{где } b = (\sum_{i=1}^n \sqrt{Q_i * K_i * \alpha_i})^2$$

$$f'(S) = -\frac{1}{(S - S_{min})^2} * b$$

Необходимому условию экстремума удовлетворяет S = Smin. Однако функция не определена при S = Smin, а значит эта точка не является экстремумом функции. Однако можно использовать другой подход в определении оптимальной системы. Оптимальная система — это система, для которой дальнейшее вложение средств нерентабельно. Для оценки рентабельности вложения средств можно использовать два подхода.

3.1)

Вложение средств будет рентабельно до точки максимальной кривизны функции U = f(S). В точке максимальной кривизны угол между касательной и осью $OX = -45^{\circ}$, так как функция U = f(S) монотонно убывает. Таким образом, для вычисления S необходимо найти точку максимальной кривизны функции U = f(s).

Решение:

Так как $f'(S) = tg \ \alpha$, где α - угол между касательной и осью OX, то в точке максимальной кривизны $f'(S) = tg \ (-45) = -tg \ (45) = -1$

$$f'(S)=-rac{1}{(S-S_{min})^2}*b=-1$$
 где $b=(\sum_{i=1}^n\sqrt{Q_i*K_i*lpha_i})^2=6050001$,11 $S_{min}=450000$

$$\frac{1}{(S-450000)^2}*6050001,11=1$$

$$(S-450000)^2=6050001,11$$

$$|S-450000|=\sqrt{6050001,11}$$

$$S-450000=\sqrt{6050001,11}$$

$$S=\sqrt{6050001,11}+450000$$
 или $S=-\sqrt{6050001,11}+450000$ отсюда $S=452459,675$ или $S=447540,325$

Решение S = 447540,325 < Smin, поэтому отбрасывается. Таким образом, S = 452459,675. U = 2459,675 с.

3.2)

Оптимальная система, стоимость которой рассчитана в предыдущем задании, имеет слишком большое среднее время нахождения заявки в системе. Поэтому, для определения оптимальной системы необходимо использовать другой подход: необходимо увеличивать стоимость системы на один процент до тех пор, пока изменение среднего времени нахождения заявки в системе не будет меньше одного процента. Тогда последняя система, вложение в которую дополнительных средств оказалось рентабельно (т.е. привело к изменению U на 1 процент и более) и будет оптимальной.

В качестве начальной стоимости системы примем S=752500 (стоимость системы с заданным средним временем пребывания заявки в системе U=20 c). Тогда изменение стоимости на 1% будет равно 7525.

Изменение U на 1% равно 0,2.

Результаты вычисления рентабельности вложенных средств представлены в таблице 3.

Таблица 3 – результаты вычисления рентабельности вложенных средств.

S, руб	U = F(S), c	ΔU	S, руб	U = F(S), c	ΔU
752500	20	0	850325	15,11272	0,289519
760025	19,51456	0,485445	857850	14,83389	0,278836
767550	19,05212	0,462438	865375	14,56515	0,268733
775075	18,61109	0,441028	872900	14,30598	0,259169
782600	18,19002	0,421072	880425	14,05588	0,250107
790125	17,78758	0,40244	887950	13,81436	0,241513
797650	17,40256	0,385018	895475	13,58101	0,233353
805175	17,03386	0,368703	903000	13,35541	0,225601
812700	16,68045	0,353404	910525	13,13718	0,218228
820225	16,34141	0,339038	918050	12,92597	0,211211
827750	16,01588	0,32553	925575	12,72144	0,204527
835275	15,70307	0,312814	933100	12,52329	0,198155
842800	15,40224	0,300829			

Полученная оптимальная система имеет стоимость S = 925575 руб и среднее время нахождения заявки в системе U = 12,72144 с.

Таким образом, в ходе выполнения лабораторной работы была синтезирована оптимальная СОО, которая имеет следующие характеристики: стоимость S=925575 руб, среднее время нахождения за U=12,72144 с и быстродействие $\lambda_0=0,2$ с⁻¹