Informe final* del Proyecto G012 La mastofauna del cuaternario tardío de México

Responsable: Dr. Joaquín Arroyo Cabrales

Institución: Instituto Nacional de Antropología e Historia

Sudirección de Laboratorios y Apoyo Académico

Laboratorio de Paleozoología

Dirección: Moneda # 16, Centro Histórico, Cuauhtémoc, México, DF, 06060, México

Correo electrónico: ND

Teléfono/Fax: Tel: 5522 41 62, 5522 6004 Fax: 5522 3515 Tel: 5542 6004, 5522 4162

Fax: 5522 3515

Fecha de inicio: Junio 15, 1995 Fecha de término: Enero 29, 1999

Principales

resultados:

Base de datos, Informe final

Forma de citar** el informe final y otros

resultados:

Arroyo Cabrales, J., Polaco O. J. y E. Johnson. 2005. La mastofauna del cuaternario tardío de México. Instituto Nacional de Antropología e Historia. Sudirección de Laboratorios y Apoyo Académico. **Informe final**

SNIB-CONABIO proyecto No. G012. México D. F.

Resumen:

El principal producto del proyecto será la entrega de una base de datos relacionado a la CONABIO que contendrá la información disponible de los registros de mamíferos en territorio mexicano de los últimos 120 000 años. Esta información permitirá poner a prueba las hipótesis comunitaria individualista sobre la estructura de las comunidades bióticas del pasado, así como sobre la migración de las especies y su distribución actual. Así mismo, se completará para su publicación una "lista anotada de taxa" y otra más para "Bibliografía Comentada" de todas las publicaciones consultadas, lo cual será una exploración para conocer el estado actual del conocimiento de la paleomastofauna mexicana del Cuaternario Tardío. Otro de los productos será el análisis que se realice de la base de datos, del cual se prevé su publicación ya sea en México y/o en E.U.A. Serán elaborados mapas de la República Mexicana mostrando la distribución de cada especie durante determinada temporada (Interglacial, Glacial, Holoceno Temprano, Holoceno Medio, Holoceno Tardío) que estarán disponibles para su consulta. El análisis no sólo permitirá inferir patrones generales en los cambios de distribución de las especies, sino que sustentará propuestas particulares de investigación, tanto biogeográficas como evolutivas.

 ^{*} El presente documento no necesariamente contiene los principales resultados del proyecto correspondiente o la
descripción de los mismos. Los proyectos apoyados por la CONABIO así como información adicional sobre
ellos, pueden consultarse en www.conabio.gob.mx

^{**} El usuario tiene la obligación, de conformidad con el artículo 57 de la LFDA, de citar a los autores de obras individuales, así como a los compiladores. De manera que deberán citarse todos los responsables de los proyectos, que proveyeron datos, así como a la CONABIO como depositaria, compiladora y proveedora de la información. En su caso, el usuario deberá obtener del proveedor la información complementaria sobre la autoría específica de los datos.

LA MASTOFAUNA DEL CUATERNARIO TARDIO DE MEXICO.

Joaquín Arroyo-Cabrales, Oscar J. Polaco y Eileen Johnson. Laboratorio de Paleozoología, Subdirección de Laboratorios y Apoyo Académico, INAH (JAC,OJP) y Museum of Texas Tech University (EJ)

ANTECEDENTES

La meta fundamental de la paleomastozoología del Cuaternario es el entendimiento de las interrelaciones entre los cambios ambientales y los faunisticos (Graham, 1986, 1992a; Grahan y Mead, 1987). Aunque es obvio que existe tal conexión, los mecanismos que traducen una en la otra son pobremente conocidos (Werdelin y von Koenigswald, 1994). El entendimiento de dichas interrelaciones facilita la interpretación y la separación de los cambios inducidos por el hombre de aquéllos que corresponden a causas naturales (PAGES, 1992). Sin embargo, pocos estudios se han dirigido a entender dichos mecanismos; por ejemplo, Toomey y colaboradores (1993) han mostrado la importancia de los vertebrados fósiles al contribuir a la reconstrucción de los modelos paleoclimáticos de los últimos 14,000 años en la Planicie Edwards de Texas.

Dos preguntas acerca de la relación de las respuestas faunísticas a los cambios climáticos son las más relevantes que una base de datos deberá ayudar a responder. La primera es acerca de las hipótesis sobre la estructura de las comunidades bióticas y la manera en que responden a los cambios climáticos, ya sea como un todo (Hipótesis Comunitaria) o en forma individual (Hipótesis Individualista). La primera hipótesis hace uso del Modelo Clementsiano que sugiere que las comunidades son agrupamientos de especies que están fuertemente ligados y altamente evolucionados, y que un grupo grande de especies cambia su distribución geográfica como una unidad biogeográfica intacta. Este modelo permitiría predecir fácilmente la posición geográfica preferida para futuras comunidades dados cambios climáticos específicos.

Por otro lado, el Modelo Gleasoniano predice que las especies responderán a cambios ambientales de acuerdo con sus propios limites de tolerancia y, por lo tanto, se dispersarán a diferentes tiempos y en diferentes direcciones. Por lo tanto, las comunidades serían asociaciones efímeras de especies en el tiempo geológico. Para este modelo, los corredores o avenidas para la dispersión son esenciales para permitir una respuesta a .cambios futuros, y las predicciones de cambio deben realizarse a nivel de las especies individuales. El uso de una base de datos y marcar la distribución de las especies durante períodos temporales discretos, permitirá probar ambas hipótesis.

La otra pregunta que ayudará a analizar es acerca de las migraciones y las rutas de migración. Ello es importante pues la presencia de dichas rutas de migración es crítica para las posibilidades de sobrevivencia y adaptación en ambientes cambiantes (Werdelin y von Koenigswald, 1994).

El Cuaternario Tardío (120,000 a 450 años antes del presente-AP) fue un periodo complejo de cambios climáticos, de las comunidades floristica y faunística, y de paisajes alterados que representan ecosistemas ahora extintos. Las respuestas de las plantas y animales a los últimos periodos de calentamiento y enfriamiento, de acuerdo a lo determinado en el registro fósil, pueden ser usadas para entender de manera general como los biotas terrestres responderán al calentamiento producto de futuras inversiones.

Los cambios en dichos biotas se iniciaron por cambios globales en el clima que resultaron en la deglaciación de Norteamérica. Fluctuaciones localizadas regional y microgeográficamente también estan involucradas (Nilsson, 1983; Porter, 1983). Por lo tanto, las unidades básicas para el entendimiento del Pleistoceno y de su biogeografía son las localidades individuales. Ellas ofrecen oportunidades únicas de examinar en detalle los procesos de cambio en la distribución de los taza como resultado de las fluctuaciones ambientales.

OBJETIVO

Creación de una base de datos de los mamíferos (Clase Mammalia) del Cuaternario Tardío de México.

OBJETIVOS PARTICULARES

- 1) Investigación de la evolución de las comunidades mastofaunísticas a través de los cambios de distribución de las especies individuales y los efectos sobre la composición faunística total.
- 2) Complementar las secuencias temporal o geográfica de otras dos bases de datos que ya existen, el Atlas Mastozoológico de México (AMM) y el Proyecto FAUNMAP, respectivamente.
- 3) Equilibrar el desbalance en información de los sistemas climáticos de las regiones tropicales con la existente para las zonas templadas (de acuerdo al Plan de Trabajo de PAGES, Enfoque 1- IGBP Global Change, 1994).

METODOLOGIA

La creación del formato para la documentación manual de la bibliografía revisada fue el primer paso que se realizó, pues se consideró importante tener un archivo escrito con toda la información generada en el proyecto, además de facilitar el registro cuando el equipo de cómputo no este disponible. El mismo fue probado inicialmente con una serie de publicaciones e informes, y posteriormente se afinó.

El modelo de la base de datos se generó partiendo del utilizado en el proyecto FAUNMAP, así como el Instructivo para la Conformación de Datos Compatibles con el Sistema Nacional de Información sobre Biodiversidad. De hecho, se trató de seguir, en su mayoría, los mismos formatos para los diferentes archivos del modelo, con objeto de asegurar el posible intercambio de información entre estos archivos en el futuro. Se crearon tarjetas que contienen las diferentes opciones para cada uno de los campos propuestos a partir de la base de datos del proyecto FAUNMAP (Tabla 1).

La lista base de los taza de mamíferos se generó a partir de tres fuentes básicas: (1) la lista de mamíferos recientes utilizada en el proyecto ATLAS MASTOZOOLOGICO DE MEXICO y proporcionada por el Dr. Héctor T. Arita (Instituto de Ecología, UNAM); (2) la lista de taxa incluidos en el proyecto FAUNMAP (1994); y (3) el listado obtenido a partir del libro de Wilson y Reeder (1992). Además, se <u>utilizaron</u> trabajos especializados recientes para considerar los últimos cambios nomenclaturales o taxonómicos.

Se tienen disponibles cuatro listados, el más extenso incluye todos los taxa indicados en las fuentes básicas y considerando los taxa que sólo se presentan o presentaron al norte de México. Este listado, al igual que los otros tres, contiene la numeración correspondiente de los proyectos FAUNMAP y AMM.

Los otros tres listados fueron depurados con base en la lista de mamíferos pleistocénicos anotada en la tesis de licenciatura de Barrios Rivera (1985). Uno de dichos listados contiene las numeraciones de los otros dos proyectos, así como nuestra propia numeración que se utilizó en la base de datos. Finalmente, uno de los listados tiene el propósito de conocer los ascendentes taxonómicos de los diferentes taza. Durante el análisis de la base de datos, se han realizado correcciones al listado faunístico con base en la literatura taxonómica más reciente, lo que ha permitido contar con un listado más preciso de la mastofauna rancholabreana de México (Tabla 2).

Los sitios se registraron tanto para taxa individuales como para complejos faunísticos. Los criterios para la incorporación de cada localidad a la base de datos fueron: 1) localización geográfica conocida, 2) control cronológico (fechamientos radiométricos, correlación estratigráfica, asociaciones culturales, etc.), 3) material estudiado, y 4) ejemplares, réplicas o fotografías depositados en una colección pública.

Los datos acerca del nombre del sitio, niveles de excavación, cronologías absoluta y relativa, asociaciones culturales, sistemas de deposición, atributos culturales y especies de mamíferos en cada sitio se recopiló de la literatura científica, incluyendo tesis, reportes de contratos e informes del Laboratorio de Paleozoología de la Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, que contiene la mayor parte de la documentación acerca de los estudios realizados por científicos mexicanos. Otra fuente importante de información fue el Archivo Técnico del Consejo de Arqueología del mismo Instituto, que reúne los reportes de estudios arqueológicos hechos en México (tanto por nacionales como por extranjeros) en los últimos 50 años. Asimismo, se consultaron los acervos de las bibliotecas Nacional "Eusebio Dávalos Hurtado" y de Arqueología "Profesor José Luis Lorenzo", ambas del Instituto Nacional de Antropología e Historia y de los institutos de Geología e Investigaciones Antropológicas de la Universidad Nacional

Autónoma de México, la Biblioteca del Instituto Mexicano de Recursos Naturales Renovables y de aquéllas especializadas sobre México que se hallan en Estados Unidos de América (e.g., Smithsonian Institution).

La base de datos propuesta se restringió a los últimos 120,000 años debido a varias causas. Primero, este periodo temporal cumple con el objetivo de la Corriente II de PAGES de "... reconstruir la historia de los cambios climáticos y ambientales a través de un ciclo glacial completo, con objeto de incrementar el entendimiento de los procesos naturales que reflejan los cambios climáticos globales" (PAGES, 1992: 11). Segundo, el registro fósil de los últimos 120,000 años reune el tiempo ecológico con el evolutivo, ofreciendo la oportunidad única de examinar con detalle los procesos de cambio en la distribución de los taxa como resultado de las fluctuaciones ambientales. Más aún, parte de este periodo está esencialmente dentro de los limites del fechamiento por radiocarbono. Tercero, la cantidad de información disponible para México durante el periodo considerado excede con mucho a aquélla existente para cualquier otro periodo geológico.

PROYECTOS RELACIONADOS

Un aspecto sobresaliente del proyecto que se realizó es que estará vinculado a otros dos proyectos en curso, uno en México, el otro en Estados Unidos de América (E. U. A.). El proyecto Atlas Mastozoológico de México, financiado por la CONABIO, está recopilando la información disponible acerca de los mamíferos recientes colectados en el país. El formato de su base de datos fué proporcionado al responsable de este proyecto para ser utilizada desde el inicio en la base de datos a desarrollar. Así, este trabajo será un complemento del proyecto citado y permitirá estudiar detalladamente los cambios en distribución de los mamíferos de México desde el inicio del Cuaternario Tardío.

El segundo proyecto es la Base de Datos Electrónica que Documenta la Distribución durante el Cuaternario Tardío de las Especies de Mamíferos, conocida como FAUNMAP (FAUNMAP Working Group, 1994). Dicho proyecto ha reunido registros de más de 2,000 sitios de E. U. A., tanto paleontológicos como arqueológicos, que contienen restos de mamíferos. El proyecto, que esta cerca de completarse (R Graham, comunicación personal, 1995), permite tanto el análisis distribucional (horizontal) como cronológico (vertical) de los ecosistemas a través de los últimos 40,000 años. Dicho esfuerzo se ha continuado con las localidades en Canadá de manera similar (Graham, 1992b).

Conjuntamente FAUNMAP y este proyecto proveerán con una base de datos necesaria para el estudio en Norteamérica del desarrollo paleoambiental, paleoclimático y de los ecosistemas durante el Cuaternario Tardío.

En Europa se han iniciado recientemente otros dos proyectos similares. Uno de ellos es el desarrollo de una base de datos de los mamíferos del Cuaternario de Europa (Werdelin y von Koenigswald, 1994), el cuál seguirá algunos de los procedimientos y campos de la base de datos de FAUNMAP (R Graham, comunicación personal, 1994; L. Werdelin, comunicación personal, 1993). El otro es la digitalización de las localidades de mamíferos del

Cuaternario de Francia (Vigne, 1994), el cuál se limita a un solo país para obtener resultados dentro de los próximos dos años.

RESULTADOS Y DISCUSION

Como se mencionó anteriormente, la Tabla 2 contiene la lista de especies registradas en México para el Cuaternario Tardío. Dicha lista contiene registros para 13 órdenes de la Clase Mammallia, incluyendo Proboscidea que actualmente no se encuentra en el Continente Americano. Cuarenta y cuatro familias están representadas, incluyendo cinco extintas (Gomphotheriidae, Mammutidae, Glyptodontidae, Megatheriidae y Mylodontidae) y otras seis extirpadas, tres del Continente Americano (Herpestidae, Equidae y Elephantidae) y tres de Norteamérica (Camelidae, Hydrochoeridae y Megalonychidae).

De un total de 145 géneros, 27 están extintos (18.6%) y nueve se consideran extirpados (6.2%), i.e., <u>Bison</u>, <u>Camelops</u>, <u>Cervus</u>, <u>Cuon</u>, <u>Tremarctos</u>, <u>Equus</u>, <u>Synapbomys</u>, <u>Marmota</u> y <u>Myrmecophaga</u>. Finalmente, se tienen enlistadas 286 especies, de las cuales 84 están extintas (29.4%) y nueve extirpadas (3.1%).

En total se han revisado 2214 documentos, correspondiendo a: (1) Artículos en revistas, libros o capítulos de libro, disponibles ampliamente; (2) Tesis de licenciatura o posgrado, así como resúmenes de presentaciones en congresos o simposios, disponibles en universidades e instituciones académicas; (3) Informes de trabajo, incluyendo tres categorías: abierto, restringido, cerrado, disponibles según sea el caso, a investigadores acreditados. Al respecto, de 871 documentos que cuentan con dicha información en la base de datos, 447 son artículos de revista (51,3%), 94 artículos de libro (10.8%), 24 libros, 11 tesis de licenciatura, 6 de maestría, 3 de doctorado, 15 resúmenes, 55 informes abiertos y 216 restringidos (31.1% de los informes).

De un total de 856 documentos con la información disponible, 659 son considerados como fuente primaria (77.0%), es decir, donde se documentan estudios realizados directamente con ejemplares; 142 son considerados como fuente secundaria (16.6%), donde sólo se hace mención de los taza, pero sin revisión de ejemplares; y 55 son considerados generales (6.4%), donde se menciona la presencia de algún grupo de mamíferos, sin especificar especies, en México.

Hasta el momento (1 de mayo de 1998), se tienen documentados los registros para 776 localidades en todo el país, abarcando los 31 estados y el Distrito Federal; aunque dichas localidades han sido preliminarmente depuradas, se considera que un análisis posterior permitirá tener un número más exacto de las mismas. Lo anterior se señala debido a que aún existen algunas localidades que pudieran estar repetidas, pero que no se han detectado por tener diferente designación en la base de datos, además de aquellas que quedaron de manera general (Información NO Disponible - 57, 7.35%).

Del análisis de la lista de localidades por estado (Tabla 3), es notorio y, probablemente obvio, que la mayor cantidad de sitios se concentra en el centro del país, en especial en el

Estado de México (145,18.69%), Distrito Federal (70, 9.02%) y Puebla (57, 7.35%). El número de localidades no está relacionado con la superficie del estado, puesto que los mayores estados, como Chihuahua y Sonora, presentan el número promedio o menos de localidades fosilíferas. Aunque se requiere un análisis profundo de la topografía y geomorfología de los diferentes estados, es evidente que futuras prospecciones paleontológicas deben avocarse a cubrir de manera completa muchos de los estados de la República Mexicana.

Lo anterior se ve reforzado por el número de publicaciones que se consultaron y que registraba un estado o estados en particular (Tabla 4). Los estados con un mayor número de publicaciones son, en orden descendente, Estado de México (514, 23.22%), Distrito Federal (207, 9.35%), Nuevo León (192, 8.67%) y Puebla (147, 6.64%), además de aquellas en las que la información acerca del estado es No Disponible (1%, 8.85%). Notable por no aparecer con un número grande de localidades por estado, es Nuevo León, pero el alto número de publicaciones en que se hace referencia a dicho estado se debe a que en el mismo se halla la Cueva de San Josecito, que es el sitio paleontológico más estudiado para el Pleistoceno de México (Arroyo-Cabrales, 1994).

Con respecto a la fauna representada en las diferentes localidades (Tabla 5), esta pertenece a los 10 órdenes de mamíferos terrestres reconocidos para México (Ramirez-Pulido et al., 1996), dos de mamíferos acuáticos (Cetacea y Sirenia, aunque también se tienen registros de la Familia Otariidae dentro del Orden Camivora) y uno extirpado de México y de todo el Continente Americano, Proboscidea. <u>Asimismo</u>, se tiene documentada la presencia de cinco familias de mamíferos actualmente extintas: Glyptodontidae, Megatheriidae, Mylodontidae, Gomphotheriidae y Mammutidae).

LITERATURA CITADA

- Arroyo-Cabrales, J. 1994. Taphonomy and Paleoecology of San Josecito Cave, Nuevo León, México. Ph. D. Dissertation, Department of Biological Sciences, Texas Tech University, Lubbock, 237 pp.
- Barrios Rivera, H. 1985. Estudio analítico del registro paleovertebradológico de México. Tesis Profesional no publicada, Facultad de Ciencias, Universidad Nacional Autónoma de México.
- FAUNMAP Working Group. 1994. FAUNMAP. A database documenting late Quaternary distributions of mammal species in the United States. Illinois State Museum, Scientific Papers, 25:viii + 1-690.
- Graham, It W. 1986. Response of mammalian communities to environmental changes during the late Quaternary. Pags. 300-313, en Community Ecology (J. Diamond y T. J. <u>Case</u>, editores). Harper & Row, New York, xxii + 665 pp.
- -----. 1992a. Late Pleistocene faunal changes as a guide to understanding effects of greenhouse warming on the mammalian fauna of North America. Pags. 76-87, en Global warming and biological diversity (It L. Peters y T. E. Lovejoy, editores). Yale University Press, New Haven, xxi + 386 pp.
- -----. 1992b. FAUNMAP: an electronic database documenting late Quaternary distributions of mammal species. Federal Archaeology Report, Fall 1992:11-12.
- Graham, R. W. y J. I. Mead. 1987. Environmental fluctuations and evolution of mammalian faunas during the last deglaciation in North America. Pags. 371402, en The Geology of North America. Volume K-3. North America and adjacent oceans during the last deglaciation. Geological Society of America, Boulder, Colorado, vii + 501 pp.
- IGBP Global Change (International Geosphere-Biosphere Programme: A Study of Global Change of the International Council of Scientific Unions). 1994. IGBP in Action: Work Plan 1994-1998. IGBP Global Change, Report 28,151 pp.
- Nilsson, T. 1983. The Pleistocene. Geology and life in the Quaternary ice age. D. Reidel Publishing Co., Dordrecht, Holland.
- PAGES (Past Global Changes Project). 1992. Proposed implementation plans for research activities. IGBP Global Change Report, 19:1-110.
- Porter, S. (editor). 1993. Late-Quaternary environments of the United States. Volume 1. The Late Pleistocene. University of Minnesota Press, Minneapolis, xiv + 407 pp.
- Ramírez-Pulido, J., A. Castro-Campillo, J. Arroyo-Cabrales y F. A. Cervantes. 1996. Lista taxonómica de los mamíferos terrestres de México. Occasional Papers of The Museum, Texas Tech University, 158:1-62.

- Toomey, R S., III, M. D. Blum y S. Valastro, Jr. 1993. Late Quaternary climates and environments of the Edwards Plateau, Texas. Global and Planetary Change, 7:299-320.
- Vigne, J.-D. 1994. Mapping the mammals in France excisting in the last 20,000 years. EuroMam Newsletter, 1:16.
- Werdelin, L. y W. von Koenigswald. 1994. Climate and fauna: a database of the Quaternary <u>mammals</u> of Europe. EuroMam Newsletter, 1:9-15.
- Wilson, D. E. y D. M. Reeder. 1993. Mammal species of the World: a taxonomic and geographic reference. Segunda edición. Smithsonian Institution Press, Washington, D. C, xviii + 1206 pags.

ARCHIVO DE PUBLICACIONES

AKONITO DE LOBEIONOTOREO			
Precisión			
E	exacto	geoposicionador	
CA	coordenadas aproximadas	usando mapa	
CP	coordenadas precisas	tomadas de la literatura	
CM	coordenadas municipio	del centro del municipio	

ARCHIVO DE FAUNA

	Tipo de modificac	ión por	taxón
AE	Artefacto embebido	MC	Marcas de rebanado
AS	Abrasión somera	MD	Marcas de dientes
CH	Color en hueso	MI	Marcas de impacto
DE	Decorado	MN	Mineralizado
DH	Destazado humano	MR	Marcado por raíces
DS	Desgastado	PA	Patología
ER	Estriaciones por raspado	PI	Pisoteo
ES	Estriaciones	PU	Pulimento
ET	ETCHED	QU	Quemado
FL	Fractura longitudinal	RC	Roído por carnívoro
FS	Fractura espiral	RR	Roido por roedor
FT	Fractura transversa	Conf	ianza de la identificación
HH	Herramienta en hueso	С	Cuestionable ?
IO	Estado de intemperización 0	P	Probable cf. aff.
I1	Estado de intemperización 1	S	Seguro
12	Estado de intemperización 2		Contexto
13	Estado de intemperización 3	I	Intrusivo
14	Estado de intemperización 4	R	Redepositado
15	Estado de intemperización 5	А	Articulado
LA	Laminillas		

Etapas de intemperización del hueso (Behrensmeyer, 1978)

- Etapa O La superficie del hueso no muestra signos de rajadura o laminación debido a la IO intemperie. El hueso usualmente aún está grasoso, las cavidades medulares contienen tejido, la piel o músculo/ligamento aún puede cubrir parte de todo el hueso.
- Etapa 1 El hueso muestra rajaduras, normalmente paralelas a la estructura de la fibra(es 11 decir, longitudinalmente en los huesos largos). Las superficies articulares pueden mostrar roturas en mosaico en loe tejidos que lo cubren o en el mismo hueso. Grasa, piel y otros tejidos pueden o no estar presentes.
- Etapa 2 Las capas concéntricas angostas más externas del hueso muestran laminación, 12 usualmente asociada con roturas, en las que los bordes de hueso a lo largo de ella tienden a separarse y laminarse primero. Láminas largas y angostas, con uno o más lados aún unidos al hueso, son comunes en la primera parte de esta etapa. Laminación más extensiva y profunda se continúa hasta que la mayor parte del hueso más externo ha desaparecido. Los bordes de las rajaduras son generalmente angulares en sección transversal. Vestigios de ligamentos, cartílago y piel pueden estar presentes.
- Etapa 3 La superficie del hueso se caracteriza por parches de grueso hueso compacto homogéneamente intemperizado resultando en una textura fibrosa. En estos parches, todas las capas concéntricas externas de hueso han sido removidas. Gradualmente los parches se extienden a toda la superficie del hueco. La intemperización no penetra más profundo que 1.0-1.5 mm en este estado y las fibras óseas aún están firmemente unidas unas con otras. Los bordes derajaduras usualmente están redondeados en sección trasversal. Raramente está presente algún tejido.
- Etapa 4 La superficie del hueso es fibrosa gruesa y áspera en textura; pequeñas y 14 grandes astillas se presentan y pueden estar lo suficientemente sueltas para caerse cuando se mueve el hueso. La intemperización penetra hasta las cavidades más internas. Las rajaduras están abiertas y tienen bordes astillados o redondeados.
- Etapa 5 El hueso se está desintegrando *in situ*, con grandes astillas yaciendo alrededor 15 de lo que queda, que es frágil y fácilmente se rompe por movimiento. La forma del hueso original puede ser difícil de determinar. El hueso esponjoso (CANCELLOUS) usualmente expuesto, si está presente, y puede cubrir todas las trazas de las anteriores partes externas más compactas del hueso.

ARCHIVO DE DEPOSITO

	Tablas de deposito				
	Sistema Ambiente de deposición Facies				
ċ	eposicional				
AN	Antropogénica	CU Cultural	EN Enterramiento HG Hogar MO Montículo RS Restos de ocupación		
BI	Biológica	HI Biológico	ES Estiércol MN Midden		
CV	Cueva	AB Abrigo rocoso AG Agujero (Pit) PS Fisura HZ Horizontal TL Tubo de lava CN Cenote	BC Brecha de colapso de cueva TR Travertino HO Horadación FL Fluvial LC Lacustrino AL Aluvión EO Eólica		
EO	Eólica	MI Duna OF Grava de deflación LA Lámina de arena LS Loess			
FL	Fluvial	AR Arroyo CB Cauce de canal abandonado CE Corriente entrelazada LV Lavado MP Cinturón meándrico de grano fino MG Cinturón meándrico de grano WD grueso Wadi (canal de corriente,barranca, zanja, cañada, cárcava, arroyo)	BR Barra CA Canal CS Crevasse splay (morrena) DG Deltaica grueso DQ Dique GL Grava de canal TE Terraza PI Planicie de inundación		
GR	Gravedad	AC Abanico coluvial CL Coluvión FU Flujo DE Deslizamiento, derrumbe	GP Granular fino GG Granular grueso NC No clasificado		
LA	Lacustre	LC Lago de colapso LG Lago OL Olla PA Pantano PD Poza PI Cuenca de planicie de inundación PL Playa	AP Lodo de agua profunda AS Lodo de agua somera BM Barra de meandro CP Cono de pantano DI Diatomita MA Marga PL Playa PO Poza PQ Precipitación química TU Turba VR Varvado		
	Manantial	AS Asfalto CA Canal	AA Arena asfáltica TF Tufa		
	Marino	BL Bentónico litoral BP Bentónico de mar profundo EO Plataforma de erosión por oleaje ES Estuarino			
VC	Volcánico	CC Ceniza caida FC Fragmentos de caida PL Flujo de lava NA Nube ardiente	PA Paleosol		
	Método de recuperación				
	NA El material fue donado y las técnicas de excavación se desconocen OT El material excavado fue recuperado de muestras de flotación.				
	FI Todo el material excavado fue tamizado en grueso y sólo una muestra				
мелт	representativa fue tamizada en fino. IT El material excavado no fue tamizado.				

MENT El material excavado no fue tamizado.

MUTA Una muestra del material fue tamizada y se desconoce el

PAFI Sólo parte del material excavado fue tamizado en fino.

TAFI Todo el material excavado fue tamizado en fino (luz de malla < 1.6 mm).

TAGR	Todo el material excavado	fue tamizado en grueso	(luz de malla > 1.6 mm).		
TAME	Todo el material excavado	fue tamizado en mediano	(luz de malla = 12.5mm).		
TOTL	TOTL Técnicas de recolecta completa se utilizaron.				

ARCHIVO AGENTE DE ACUMULACION

	Agente
AA	Agujero de agua
AN	Atrición natural
CN	Catástrofe natural
EC	Echadero de carnívoro
EH	Enterramiento humano
HI	Hibernaculum
NR	Nido de rata
PD	Procesos deposicionales
RD	Sitio de reposo de ave depredadora
RT	Retrabajado
SC	Sitio de matanza o destazamiento por carnívoro
SH	Sitio de matanza o destazamiento por humano
TR	Trampa

ARCHIVO DE EDAD ABSOLUTA

	Métodos de fechamiento		Tipo de material
14CA	Radiocarbono-acelerador	AMHU	Aminoácidos de hueso
14CD	Radiocarbono desconocido	APCA	Apatita/carbonato óseo
14CG	Radiocarbono-gas/benceno	ARFI	Artefacto fibroso
14CS	Radiocarbono-carbón sólido	ARPI	Artefacto de piedra
230T	230T	CAHI	Característica histórica
40KA	40K/40AR	CARS	Carbonato
MINA	Racemización de aminoácidos	CARS	Carbón
CORR	Fecha corregida	CERA	Cerámica
DEND	Dendrocronología	CEVO	Ceniza volcánica
ELSR	Resonancia por "spin" electrónico	COCA	Concha carbonatada
FISS	Trazas de fisión	CONC	Concha
HIOB	Hidratación de obsidiana	COGA	Concha orgánica
PMAG	Paleomagnetismo	COHU	Colágeno de hueso
TERM	Termoluminiscencia	CORR	Fecha corregida
U234	234U	DECO	Dendrocronología corregida
	Confianza de la edad	ESMA	Esmalte de diente
DC	Fecha Confiable	ESTI	Estiércol
DV	Fecha demasiado vieja, contaminación probable	GYTJ	Gyttja
DJ	Fecha demasiado joven, contaminación probable	HUCA	Hueso carbonizado
CX	Fecha demasiado joven, disturbio al contexto	HUES	Hueso
ΟX	Fecha demasiado vieja, disturbio al contexto	HUMA	Humates
DR	Datos rechazados por el autor	ISCO	Isotópicamente corregida
DQ	Datos cuestionados, pero no rechazados, por el autor	LACU	Lámina de cuerno
IN	Infinito	LOGA	Lodo orgánico
		MAPA	Material de planta
		MADE	Madera
		OBSI	Obsidiana
		PACA	Planta carbonizada
		PLED	Paleosol
		TURS	Turba

ARCHIVO DE EDAD RELATIVA

Isotopos O ₂	Magnetocrón	
Etapa 1	BRUN	Brunhes
Etapa 2	GAUS	Gauss
Etapa 3	MATU	Matuyama
Etapa 4	OLDU	Olduvai
Etapa 5a-5e	GILB	Gilbert

Periodo	Epoca	Edad	Edad L/M
QUAT Cuaternario	HOLO Holoceno	HOLO Holoceno LHOL Holoceno tardío MHOL Holoceno medio EHOL Holoceno temprano	
	HOPL Holoceno temprano/ Plesitoceno tardío	WIHO Wisconsiniano/Holoceno	
	PLEI Pleistoceno LPLE Pleistoceno tardío MPLE Pleistoceno medio EPLE Pleistoceno temprano	WISC Wisconsiniano LWIS Wisconsiniano tardío MWIS Wisconsiniano medio EWIS Wisconsiniano temprano SANG Sangamoniano PILL Post-Illinoiano	RAMC Rancholabreano
		ILLI Illinoiano	
		PRIL Pre-Illinoiano YARM Yarmouthiano KANS Kansano PANS Pre-Kansano AFTO Aftoniano NEBR Nebraskano PRNB Pre-Nebraskano	IRVI Irvingtoniano
		PLPL Plio-Pleistoceno	
	Plioceno		Blancano Hemphilliano

ARCHIVO DE MODIFICACIÓN (Ver archivo de fauna)

ARCHIVOS DE DEPOSITO

IDSISTEMA	SISTEMA	IDINGLES	SYSTEM
EO	Eólica	AE	Aeolian
AN	Antropogénica	AN	Anthropogenic
ВІ	Biológica	ві	Biological
CV	Cueva	cv	Cave
FL	Fluvial	FL	Fluvial
GR	Gravedad	GR	
LA	Lacustre	LA	Gravity Lacustrine
		MA	
MR	Marino		Marine
MA	Manantial	SP	Spring
VC	Volcánico	VC	Volcanic
IDAMBIENTE	AMBIENTE	IDINGLES	ENVIRONMEN
AR	Arroyo	AR	Arroyo
CC	Ceniza de calda	AF	Ash fall
AS	Asfalto	AS	Asphalt
ВІ	Biológico	ВІ	Biological
PA	Pantano	BG	Bog
CE	Corriente entrelazada	BS	Braided stream
MG	Cinturón meándrico de grano grueso	СМ	Coarse-grained meander
AC	Abanico coluvial	CF	Colluvial fan
CL	Coluvión	CL	Colluvium
CA	Canal	CD	Conduit
CU	Cultural	CU	Cultural
FC	Fragmentos de calda	DF	Debris fall
BP	Bentónico de mar profundo	DB	Deep sea benthic
GF	Grava de deflación	DL	Deflation lag
DU	Duna	DN	Dune
ES	Estuarino	ES	Estuarine
MF	Cinturón meándrico de grano fino	FM	Fine-grained meander belt
FS	Fisura	FS	Fissure
PI	Cuenca de planicie de inundación	FB	Floodplain basin
FU	Flujo	FL	Flow
HZ	Horizontal	HZ	Horizontal
OL	Olla	KT	Kettle
LG	Lago	LK	Lake
FL	Flujo de lava	LF	Lava flow
TL	Tubo de lava	LT	Lava tube
BL	Bentónico litoral	LB	Littoral benthic
LS	Loess	LS	Loess
NA	Nube ardiente	NA	Nuee ardente
LV	Lavado	OW	Outwash
LC	Lago de colapso	OX	Oxbow lake
AG	Agujero	PT	Pit
PL PD	Playa Poza	PL PD	Playa Pond
		RS	Pond Rockshelter
AB LA	Abrigo rocoso Lámina de arena	SS	Sand sheet
CN	Cenote	SS SH	Sand sneet Sinkhole
		SH SL	
DE LD	Deslizamiento, derrumbe Lago en depresión de deshielo	SL TK	Slump Thermokarst lake
WD	Wadi (canal de corriente, barranca,	WD	Wadi
***	zanja, cañada, cárcava, arroyo)	WD	vvaui
EO	Plataforma de erosión por oleaje	WP	Wave-cut plataform

ARCHIVOS DE DEPOSITO

IDFACIES	FACIES	IDINGLES	FACIE
EO	Eólica	AE	Aeolian, e o l i a n
AL	Aluvión	AL	Alluvium
AA	Arena asfáltica	AN	Asphaltic sand
СН	Chapopotera	AS	Asphaltic seep
BR	Barra	BR	Bar
PL	Playa	ВС	Beach
DS	Desintegración de roca madre	BS	Bedrock desintegration
BC	Brecha de colapso de cueva	BD	Breakdown, cave breccia
EN	Enterramiento	НВ	Burial
НО	Horadación	BW	Burrow
CA	Canal	СН	Channel
GL	Grava de canal	CL	Channel lag, channel sand
PQ	Precipitación química	CP	Chemical precipitates
GG	Granular grueso	CG	Coarse-grained
cs	Crevasse splay (morrena)	cs	Crevasse splay
AP	Lodo de agua profunda	DW	Deep water muds
DG	Deltaica grueso	DC	Deltaic coarse
DI	Diatomita	DI	Diatomite
ES	Estiércol	DG	Dung
GF	Granular lino	FG	Fine-grained
PI	Planicie de inundación	FP	Floodplain
FL	Fluvial	FL	Fluvial
LC	Lacustrino	LC	Lacustrine
DQ	Dique	LV	Levee, dike
MA	Marga	ML	Marl
HG	Hogar	MN	Midden
MO	Montículo	MD	Mound
RS	Restos de ocupación	OD	Occupation debris
PA	Paleosuelo	PA	Paleosol
TU	Turba	PT	Peat
BM	Barra de canal	Pb	Point bar
PO	Poza	PD	Pond
AS	Lodo de agua somera	sw	Shallow water muds
CP	Cono de pantano	ТС	Talus cone
TE	Terraza	TE	Terrace
TR	Travertino	TR	Travertine
TF	Tufa	TU	Tufa
NC	No clasificado	UC	Unsorted
VR	Varvado	VR	Varved

ARCHIVO DE AGENTE DE ACUMULACION

IDAGENTE	AGENTE	IDINGLES	AGENT
EC	Echadero de camino	CD	Carnivore den
SC	Silo de matanza o destazamiento por carnívoro	cs	Carnivore Fill/scavenging site
HI	Hibernaculum	DN	Den/hibernaculum
PD	Procesos deposicionales	DP	Depositional processes
EH	Enterramiento humano	НВ	Human burial
SH	Silo de matanza o destazamiento por humano	HS	Human kill/scavening site
AN	Atrición natural	NA	Natural attrition
CN	Catástrofe natural	NC	Natural catastrophe
NR	Nido de rate	PR	Pacloat
RD	Silo de reposo de ave depredadora	RR	Raptor roost
RT	Retrabajado	RW	Reworked
TR	Trampa	TR	Trap
AA	Agujero de agua	WH	Water hole

ARCHIVO DE FAUNA

IDMODIFICA	MODIFICACI	IDINGLES	MODIFY
DS	Desgastado	AB	Abraded
AE	Artefacto embebido	AE	Artifact embedded
CH	Color en hueso	ВС	Bone color
HH	Herramienta en hueso	вт	Bone tool
QU	Quemado	BU	Burning
RC	Roído por carnívoro	CG	Carnivore gnawing
RR	Roído por roedor	RG	Rodent gnawing
DE	Decorado	DE	Decorated
ET	ETCHED	ET	Etched
LA	Laminillas	FL	Flaked
DH	Destazado humano	НВ	Human butchering
MI	Marcas de impacto	IM	Impact marks
FL	Fractura longitudinal	LF	Longitudinal fracture
MN	Mineralizado	MN	Mineralized
PA	Patología	PA	Pathologies
AG	Agujereado	PT	Pitted
PU	Pulimento	PO	Polish
MR	Marcado por raíces	RE	Root etched
ER	Estriaciones por raspado	SS	Scrape striations
AS	Abrasión somera	SA	Shallow abrasions
MC	Marcas de rebanado	SM	Slice marks
FS	Fractura espiral	SF	Spiral fracture
ES	Estriaciones	ST	Striations
MD	Marcas de dientes	TP	Tooth punctures
PI	Pisoteo	TM	Trampling
FT	Fractura transversa	TF	Transverse fracture
10	Estado de intemperización 0	wo	Weathering stage 0
I 1	Estado de intemperización 1	W1	Weathering stage 1
12	Estado de intemperización 2	W2	Weathering stage 2
13	Estado de intemperización 3	W3	Weathering stage 3
14	Estado de intemperización 4	W4	Weathering stage 4
15	Estado de intemperización 5	W5	Weathering stage 5
IDCONFIANZ	CONFIANZA	IDINGLES	CONFIDENCE
Р	Probable cf. aft.	CF; AF	cf.; affinity
С	Cuestionable ?	Q	Confidence questioned
S	Seguro		
IDCONTEXTO	CONTEXTO	IDINGLES	CONTEXT
Α	Articulado	Α	Articulated
L	Intrusivo	L	Intrusive
R	Redepositado	R	Redeposited

DRECUPE	RECUPERAC	IDINGL	ES RECUPERATE
DONA	El material fue donado y las técnicas de excavación se desconocen.	DONA	Material was donated, and excavation technique is unknown
FLOT	El material excavado fue recuperado de muestras de flotación,	PLOT	Excavated material was recovered from flotation sample
GRFI	Todo el material excavado fue tamizado en grueso y sólo una muestra representativa fue tamizada en fino.	CRFI	All excavated material was coarse screened, and a representative sample was fine-screened
MENT MUTA		NOSC SACS	Excavated material was not screened Sample d material excavated was screened, mesh size/type unknown
PAFI TAFI	Sólo parte del material excavado fue tamizado en fino. Todo el material excavado fue tamizado en fino (luz de malla < 1.6 mm).	FISM FINE	Only a sample d the excavated material ass fine-screened All excavated material was fine-screened (<1/16-inch mesh)
TAGR	Todo el material excavado fue tamizado n grueso (luz de malla > 1.e mm).	CRSE	All excavated material m a coarse screened (>1/16e-inch mesh)
TAME	Todo el material excavado fue tamizado en mediano (luz de malla = 12.5mm).	MESE	All excavated material was medium screened (<1/8-inch mesh)
TOTL	Técnicas de recolecta complete se utilizaron.	TOTL	Total recovery techniques were employed

ARCHIVO DE PUBLICACION

IDPREC	ISIO PRECISION	REFERENCIA	IDINGLES	PRECISE
CA	Coordenadas aproximadas	Мара	QA	Quadrangle approximate
CM	Coordenadas canto municipio	Municipio	QC	Quadrangle in center of county
CP	Coordenadas precisas	Literatura	QP	Quadrangle precise
E	Exacto	Geoposicionador	E	Exact

ARCHIVOS DE EDAD RELATIVA

IDPERIODO	PERIODO	IDINGLES	PERIOD
QUAT	Cuaternario	QUAT	Quaternary
IDEPOCA	EPOCA	IDINGLES	EPOCH .
HOLO	Holoceno	HOLO	Holocene
HOPL	Holoceno temprano/Pleistoceno tardío	HOPL	Early Holocene/Late Pleistocene
PLEI	Pleistoceno	PLEI	Pleistocene
LPLE	Pleistoceno tardío	LPLE	Late Pleistocene
MPLE	Pleistoceno medio	MPLE	Middle Pleistocene
EPLE	Pleistoceno temprano	EPLE	Early Pleistocene
PLPL	Plio-Pleistoceno	PLPL	Plio-Pleistocene
IDEDADGEOL	EDADGEOLOG	IDINGLES	GEOL_AGE
HOLO	Holoceno	HOLO	Holocene
LHOL	Holoceno tardío	LHOL	Late Holocene
MHOL	Holoceno medio	MHOL	Middle Holocene
EHOL	Holoceno temprano	EHOL	Early Holocene
WIHO	Wisconsiniano/Holoceno	WIHO	Wisconsin/Holocene
WISC	Wisconsiniano	WISC	Wisconsin
LWIS	Wisconsiniano tardío	LWIS	Late Wisconsin (<35 ka)
MWIS	VViswnslniano medio	MWIS	Middle Wisconsin (35-65 ka)
EWIS	Wisconsiniano temprano	EWIS	Early Wisconsin (65-122 ka)
SANG	Sangamoniano	SANG	Sangamon (122-132 ka)
PILL	Post-Illinoiano	PILL	Post-Illinoian
ILLI	Illinolano	ILLI	Illinoian (132-302 ka)
PRIL	Pre-Illinoiano	PRIL	Pre-Illinoian (>302 ka)
YARM	Yarmouthiano	YARM	Yarmouthian
KANS	Kansano	KANS	Kansan
PRKS	Pre-Kansano	PRKS	Pre-Kansan
AFTO	Aftoniano	AFTO	Aftonlan
NEBR	Nebraskan	NEBR	Nebraskan
PRNB	Pre-Nebraskan	PRNB	Pre-Nebraskan
IDEDADLM	EDADLM	IDINGLES	AGELM
RANC	Rancholabreno	RANC	Rancholabrean
IRVI	Irvingtoniano	IRVI	Irvingtonian
ISOTOPO		OXIG_ISOT	
Etapa 1		Stage 1	
Etapa 2		Stage 2	
Etapa 3		Stage 3	
Etapa 4		Stage 4	
Etapa 5a-5e		Stage 5a-5e	
IDMAGNETO	MAGNETOCRO	INGLES	
BRUN	Brunhes	igual	
GAUS	Gauss	_	
MATU	Matuyama		
OLDU	Olduvai		
GILB	Gilbert		

IDFECHAMIE	FECHAMIENT	IDINGLES	DATE_METH
230T	230T	233T	230T
40KA	40K/40AR	40KÁ	40K/40AR
AMIN	Racemización de aminoácidos	AMIN	Amino acid racemization
AMAG	Arqueomagnático	AMAG	Archaeomagnetic
BIOS	Bioestratigráfico	BIOS	Biostratigraphic
CORR	Fecha corregida	CORR	Corrected date
CULT	Asociación cultural	CULT	Cutural association
DEND	Dendrocronologia	DEND	Dendrochronology
ELSR	Resonancia por "spin" electrónico	ELSR	Electron spin resona
FISS	Trazas de fisión	FIST	Fission track
HIOB	Hidratación de obsidiana	OBHY	Obsidian hydration
PMAG	Paleomagnetismo	PMAG	Paleomagnetic
14CA	Radiocarbono-acelerador	14CA	Radiocarbon-wearers
14CG	Radiocarbono-gas/benceno	14CG	Radiocarbon-gas/benzene
14CS	Radiocarbono-carbón sólido	14CS	Radiocarbon-solid carbon
14CD	Radiocarbono desconocido	14CU	Radiocarbon-unknown
TERM	Termoluminiscencia	THER	Thermoluminiscence
U234	234U	U234	U234
URTO	Uranio-torio	URTH	Uranium-Thorium
IDEDAD	EDADCONFIA	IDINGLES	CONFID_AGE
IN	Infinito	IN	Infinite
DV		OC	
	Fecha demasiado vieja, contaminación probable		Date too old, contamination probable
DX	Fecha demasiado vieja, disturbio al cortado	OM	Date too old, context disturbed
DQ	Datos cuestionados pero no rechazados por el autor	OD	Date questioned but not rejected by
DR	Datos rechazados por el autor	RJ	author
DJ	Fecha demasiado joven, contaminación probable	YC	Date rejected by author
CX	Fecha demasiado joven, disturbio al contexto	ΥM	Date too young, contamination probable
DC	Fecha Confiable		Date too young, context disturbed
IDMATERIAL		IDINGLES	
HUES	Hueso	BONE	Bone
AMHU	Aminoácidos de hueso	BOMN	Bone amino-acid
APCA	Apatita/carbonato óseo	BAPP	Bone apatite/carbonate
COHU	•	BCOL	
	Colágeno de hueso		Bone collagen
CARE	Carbonato	GARB	Carbonate
CARO	Carbón	CHAR	Charcol
HUCA		ВОСН	
	Hueso carbonizado		Charred bone
PACA	Planta carbonizada	PLCH	Charred plant
CORR	Fecha corregida	CORR	Corrected date
	-		
DECO	Dendrocronología corregida	CORO	Corroded dendrochronology
ISCO	Isotópicamente corregida	CORI	Corrected isotopically
ESTI	Estiércol	DUNG	Dung
ESMA	Esmalte de diente	ENAM	Enamel tooth
ESTR	Estructura o rasgo	FEAT	Feature or structure
ARFI	Artefacto fibroso	FART	Fibrous artifact
GYTJ		GYTJ	
	Gyttja		Gytjja
CAHI	Caracteristica histórica	HFEA	Historic feature
LACU	Lámina de cuerno	HOSH	Hom shoat
HUMA	Humates	RUMA	Humate
OBSI	Obsidiana	OBSI	Obsidian
LOGA	Lodo orgánico	ORGM	Organic mud
PLEO	Paleosol	PALS	Paleosol
TURB	Turba	PEAT	Pest
MAPA	Material de planta	PLNT	Plait material
	•	POTT	
	Cerámica		Pottery
CERA		SHEL	Shell
	Concha		Chall souhanata
CERA	Concha Concha carbonatada	SHCA	Shell-carbonate
CERA CONC COCA	Concha carbonatada		
CERA CONC COCA COGA	Concha carbonatada Concha orgánica	SHOR	Shell-organics
CERA CONC COCA	Concha carbonatada		
CERA CONC COCA COGA ARPI	Concha carbonatada Concha orgánica Artefacto de piedra	SHOR SART	Shell-organics Stone artifact
CERA CONC COCA COGA	Concha carbonatada Concha orgánica	SHOR	Shell-organics

TABLA 2. Listado de especies de la base de datos La Mastofauna del Cuaternario Tardío de México.

ORDEN	FAMILIA	GENERO	ESPECIE
Artiodactyla	Antilocapridae	Antilocapra	Antilocapra americana
		<u>Capromeryx</u>	Capromeryx mexicana
			Capromeryx minor
		Stockoceros	Stockoceros conklingi
		Tetrameryx	Tetrameryx mooseri
			Tetrameryx shuleri
			Tetrameryx tacubayensis
	Bovidae	Bison	Bison alaskensis
	_ 5 ,		Bison antiquus
			Bison bison
			Bison latifrons
			Bison priscus
		Euceratherium	Euceratherium collinum
		Oreamnos	Oreamnos harringtoni
		Ovis	Ovis canadensis
	Camelidae	Camelops	Camelops hestemus
	Carrenace	<u>cametops</u>	Camelops minidokae
			Camelops mexicanus
			Camelops traviswhitei
		Eschatius	Eschatius conidens
		<u>Escriatius</u> Hemiauchenia	Hemiauchenia blancoensi
		Heimauchema	Hemiauchenia
		Duccessolone	macrocephala
	Camidaa	<u>Procamelops</u>	Procamelops minimus
	Cervidae	<u>Cervus</u>	<u>Cervus elaphus</u>
		<u>Mazama</u>	Mazama americana
		<u>Navahoceros</u>	Navahoceros fricki
		<u>Odocoileus</u>	Odocoileus halli
			Odocoileus hemionus
	m	.	Odocoileus virginianus
	Tayassuidae	<u>Pecari</u>	Pecari tajacu
		<u>Platygonus</u>	<u>Platygonus alemanii</u>
			<u>Platygonus compressus</u>
			<u>Platygonus ticuli</u>
		<u>Tayassu</u>	<u>Tayassu pecarí</u>
Carnivora	Canidae	<u>Canis</u>	<u>Canis cedazoensis</u>
			Canis dirus
			Canis edwardii
			Canis familiaris

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Camivora	Canidae	Canis	Canis latrans
			<u>Canis lupus</u>
			Canis rufus
		<u>Cuon</u>	<u>Cuon alpinus</u>
		<u>Urocyon</u>	<u>Urocyon cinereoargenteus</u>
	Felidae	<u>Herpailurus</u>	Herpailurus yagouaroundi
		<u>Leopardus</u>	<u>Leopardus pardalis</u>
			<u>Leopardus wiedii</u>
		<u>Lynx</u>	<u>Lynx rufus</u>
		<u>Panthera</u>	Panthera atrox
			Panthera onca
		<u>Puma</u>	Puma concolor
		<u>Smilodon</u>	Smilodon fatalis
			Smilodon gracilis
	Herpestidae	<u>Chasmaporthetes</u>	Chasmaporthetes johnstoni
	Mustelidae	<u>Conepatus</u>	Conepatus leuconotus
			Conepatus mesoleucus
		<u>Lontra</u>	Lontra longicaudis
		<u>Mephitis</u>	Mephitis macroura
			Mephitis mephitis
		<u>Mustela</u>	Mustela frenata
			<u>Mustela nigripes</u>
		<u>Spilogale</u>	Spilogale putorius
	_	<u>Taxidea</u>	<u>Taxidea taxus</u>
	Otariidae	<u>Zalophus</u>	Zalophus californianus
	Procyonidae	<u>Bassariscus</u>	Bassariscus astutus
			Bassariscus ticuli
		<u>Nasua</u>	Nasua narica
		<u>Potos</u>	Potos flavus
		<u>Procyon</u>	<u>Procyon lotor</u>
	** . 1		Procyon pygmaeus
	Ursidae	<u>Arctodus</u>	Arctodus pristinus
		_	Arctodus simus
		<u>Tremarctos</u>	<u>Tremarctos floridanus</u>
Catalan	Dalalasa	<u>Ursus</u>	<u>Ursus americanus</u>
Cetacea	Delphinidae	Stenella Balantiantana	Steuella attenuata
Chiroptera	Emballonuridae	Balantiopteryx	Balantiopteryx io
	Mologoidas	<u>Saccopteryx</u>	Saccopteryx bilineata
	Molossidae	<u>Eumops</u>	Eumops bonariensis
			Eumops perotis

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Chiroptera	Molossidae	Eumops	Eumops underwoodi
		<u>Molossus</u>	Molossus rufus
		<u>Nyctinomops</u>	Nyctinomops aurispinosus
			Nyctinomops laticaudatus
		<u>Promops</u>	<u>Promops centralis</u>
		<u>Tadarida</u>	<u>Tadarida brasiliensis</u>
	Mormoopidae	<u>Mormoops</u>	Mormoops megalophylla
	_	Pteronotus	Pteronotus davyi
			Pteronotus parnellii
	Natalidae	Natalus	Natalus stramineus
	Phyllostomidae	Artibeus	Artibeus jamaicensis
	J		Artibeus lituratus
		Carollia	Carollia brevicauda
			Carollia perspicillata
		Centurio	Centurio senex
		Chiroderma	Chiroderma villosum
		Choeronycteris	Choeronycteris mexicana
		Chrotopterus	Chrotopterus auritus
		Dermanura	Dermanura phaeotis
		Desmodus	Desmodus draculae
		Desmodus	Desmodus rotundus
			Desmodus stocki
		Diphylla	Diphylla ecaudata
		Enchisthenes	Enchisthenes hartii
		Glossophaga	Glossophaga soricina
		Leptonycteris	Leptonycteris curasoae
		Leptorlycteris	<u>Leptonycteris curasoae</u> <u>Leptonycteris nivalis</u>
		Macrotus	Macrotus californicus
		<u>Microrycteris</u>	Micronycteris megalotis
		Mimon Struming	Mimon bennettii
		Sturnira Tanatia	Sturnira lilium
	V	<u>Tonatia</u>	Tonatia evotis
	Vespertilionidae	Antrozous	Antrozous pallidus
		<u>Corynorhinus</u>	<u>Corynorhinus townsendii</u>
		<u>Eptesicus</u>	Eptesicus brasiliensis
			Eptesicus furinalis
		T t- ·	Eptesicus fuscus
		<u>Lasionycteris</u>	<u>Lasionycteris noctivagans</u>
		<u>Lasiurus</u>	<u>Lasiurus cinereus</u>
			<u>Lasiurus ega</u>

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Chiroptera	Vespertilionidae	Lasiurus	Lasiurus intermedius
		<u>Myotis</u>	Myotis californicus
			<u>Myotis keaysi</u>
			Myotis thysanodes
Didelphimorphia	Didelphidae	<u>Caluromys</u>	Caluromys derbianus
		<u>Didelphis</u>	Didelphis marsupialis
		_	<u>Didelphis virginiana</u>
		<u>Marmosa</u>	Marmosa canescens
			Marmosa lorenzoi
			Marmosa mexicana
		Philander	Philander opossum
Insectivora	Soricidae	Cryptotis	Cryptotis mexicana
			Cryptotis mayensis
			Cryptotis parva
		Notiosorex	Notiosorex crawfordi
		Sorex	Sorex cinereus
		<u>~~~~</u>	Sorex oreopolus
			Sorex saussurei
Lagomorpha	Leporidae	Aztlanolagus	Aztlanolagus agilis
8-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	_oportune	<u>Lepus</u>	Lepus alleni
		<u>периз</u>	Lepus californicus
			Lepus callotis
		<u>Romerolagus</u>	Romerolagus diazi
		Sylvilagus	Sylvilagus audubonii
		<u>Syrvinagas</u>	Sylvilagus bachmani
			Sylvilagus brasiliensis
			Sylvilagus cunicularius
			Sylvilagus floridanus
			<u>Sylvilagus hibbardi</u>
			Sylvilagus leonensis
Perissodactyla	Equidae	<u>Equus</u>	Equus alaskae
crissodactyla	Lquidac	<u>Lquus</u>	<u>Equus caballus</u>
			<u>Equus calobatus</u> <u>Equus calobatus</u>
			Equus camplicatus Equus complicatus
			<u>-</u>
			Equus conversidens
			Equus excelsus Faure fraternus
			Equus fraternus
			Equus giganteus
			Equus mexicanus
			Equus occidentalis

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Perissodactyla	Equidae	<u>Equus</u>	Equus parastylidens
			Equus pacificus
			<u>Equus tau</u>
	Tapiridae	<u>Tapirus</u>	<u>Tapirus bairdii</u>
			<u>Tapirus haysii</u>
Primates	Cebidae	<u>Alouatta</u>	Alouatta palliata
			Alouatta pigra
		<u>Ateles</u>	<u>Ateles geoffroyi</u>
	Hominidae	<u>Homo</u>	<u>Homo sapiens</u>
Proboscidea	Elephantidae	<u>Mammuthus</u>	Mammuthus columbi
			Mammuthus imperator
			Mammuthus primigenius
	Gomphotheriidae	<u>Cuvieronius</u>	Cuvieronius tropicus
		<u>Stegomastodon</u>	Stegomastodon mirificus
	Mammutidae	<u>Mammut</u>	Mammut americanum
Rodentia	Agoutidae	<u>Agouti</u>	Agouti paca
	Dasyproctidae	<u>Dasyprocta</u>	Dasyprocta mexicana
			Dasyprocta punctata
	Erethizontidae	<u>Erethizon</u>	Erethizon dorsatum
		<u>Sphiggurus</u>	Sphiggurus mexicanus
	Geomyidae	<u>Cratogeomys</u>	Cratogeomys bensoni
			Cratogeomys castanops
			Cratogeomys gymnurus
			Cratogeomys merriami
			Cratogeomys tylorhinus
		<u>Orthogeomys</u>	Orthogeomys grandis
			Orthogeomys hispidus
			Orthogeomys onerosus
		<u>Thomomys</u>	Thomomys bottae
			Thomomys umbrinus
	Heteromyidae	<u>Chaetodipus</u>	Chaetodipus hispidus
			Chaetodipus nelsoni
			Chaetodipus penicillatus
		<u>Dipodomys</u>	Dipodomys nelsoni
			Dipodomys phillipsii
			Dipodomys spectabilis
		<u>Heteromys</u>	Heteromys desmarestianus
		-	<u>Heteromys gaumeri</u>
		<u>Liomys</u>	Liomys irroratus
		<u>Perognathus</u>	Perognathus flavus

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Rodentia	Heteromyidae	<u>Chaetodipus</u>	Perognathus huastecensis
	Hydrochoeridae	<u>Neochoerus</u>	Neochoerus aesopi
	Muridae	<u>Baiomys</u>	Baiomys intermedius
			Baiomys musculus
			<u>Baiomys taylori</u>
		<u>Hodomys</u>	<u>Hodomys alleni</u>
		·	<u>Hodomys</u> sp. nov.
		Microtus	Microtus californicus
			Microtus guatemalensis
			Microtus meadensis
			Microtus mexicanus
			Microtus oaxacensis
			Microtus pennsylvanicus
			Microtus quasiater
			Microtus umbrosus
		Neotoma	Neotoma albigula
			Neotoma angustapalata
			Neotoma anomala
			Neotoma cinerea
			Neotoma floridana
			Neotoma lepida
			Neotoma magnodonta
			Neotoma mexicana
			Neotoma micropus
			Neotoma phenax
			Neotoma tlapacoyana
		Neotomodon	Neotomodon alstoni
		Nyctomys	Nyctomys sumichrasti
		<u>Oligoryzomys</u>	Oligoryzomys fulvescens
		<u>Ondatra</u>	Ondatra nebracensis
		Onychomys	Onychomys leucogaster
		Oryzomys	Oryzomys alfaroi
			Oryzomys couesi
			Oryzomys melanotis
		Otonyctomys	Otonyctomys hatti
		Ototylomys	Ototylomys phyllotis
		Peromyscus	Peromyscus boylii
			Peromyscus difficilis
			Peromyscus eremicus
			Peromyscus leucopus

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Rodentia	Muridae	Peromyscus	Peromyscus levipes
			Peromyscus maldonadoi
			Peromyscus maniculatus
			Peromyscus melanophrys
			Peromyscus melanotis
			Peromyscus mexicanus
			Peromyscus ochraventer
			Peromyscus pectorallis
			Peromyscus truei
			Peromyscus yucatanicus
		Reithrodontomys	Reithrodontomys
			fulvescens
			Reithrodontomys megalotis
			Reithrodontomys
			mexicanus
			Reithrodontomys montanus
		Sigmodon	Sigmodon curtisi
			Sigmodon hispidus
		Synaptomys	Synaptomys cooperi
		Tylomys	Tylomys nudicaudus
	Sciuridae	Ammospermophilus	Ammospermophilus
			interpres
		Cynomys	Cynomys ludovicianus
		Glaucomys	Glaucomys volans
		Marmota	Marmota flaviventris
		Sciurus	Sciurus alleni
		 	Sciurus aureogaster
			Sciurus deppei
			Sciurus nayaritensis
			Sciurus variegatoides
			Sciurus yucatanensis
		Spermophilus	Spermophilus mexicanus
			Spermophilus spilosoma
			Spermophilus variegatus
Sirenia	Trichechidae	Trichechus	Trichechus manatus
Xenarthra	Dasypodidae	Cabassous	Cabassous centralis
-	J1	Dasypus	Dasypus novemcinctus
		Holmesina	Holmesina septentrionalis
		Pampatherium	Pampatherium mexicanum
	Glyptodontidae	Glyptotherium	Glyptotherium cylindricum

TABLA 2. Continuación.

ORDEN	FAMILIA	GENERO	ESPECIE
Xenarthra	Glyptodontidae	<u>Glyptotherium</u>	Glyptotherium floridanum
			Glyptotherium mexicanum
	Megalonychidae	<u>Megalonyx</u>	Megalonyx wheatleyi
	Megatheriidae	Eremotherium	Eremotherium laurillardi
		Nothrotheriops	Nothrotheriops mexicanum
			Nothrotheriops shastensis
	Mylodontidae	Glossotherium	Glossotherium harlani
	Myrmecophagidae	Myrmecophaga	Myrmecophaga tridactyla
			Tamandua mexicana

TABLA 3. Relación de número de localidades y porcentaje (%) por estado del Cuaternario Tardío de México.

ESTADO	NUMERO DE	PORCENTAJE
	LOCALIDADES	(%)
AGUASCALIENTES	21	2.71
BAJA CALIFORNIA	2	0.26
BAJA CALIFORNIA SUR	11	1.42
CAMPECHE	4	0.52
COAHUILA	21	2.71
COLIMA	1	0.13
CHIAPAS	26	3.35
CHIHUAHUA	23	2.96
DISTRITO FEDERAL	70	9.02
DURANGO	13	1.68
ESTADO DE MÉXICO	145	18.69
GUANAJUATO	13	1.68
GUERRERO	12	1.55
HIDALGO	33	4.25
INFORMACIÓN NO DISPONIBLE	57	7.35
JALISCO	30	3.87
MICHOACÁN	23	2.96
MORELOS	14	1.80
NAYARIT	4	0.52
NUEVO LEÓN	28	3.61
OAXACA	20	2.58
PUEBLA	57	7.35
QUERÉTARO	8	1.03
QUINTANA ROO	16	2.06
SAN LUIS POTOSÍ	15	1.93
SINALOA	7	0.90
SONORA	17	2.19
TABASCO	44	0.52
TAMAULIPAS	22	2.84
TLAXCALA	10	1.29
VERACRUZ	19	2.45
YUCATÁN	22	2.84
ZACATECAS	8	1.03
TOTAL	776	100.00

EDAD ABSOLUTA

TABLA 4. Relación de número de publicaciones que hacen referencia a un estado en particular y porcentaje (%) por estado del Cuaternario Tardío de México.

ESTADO	NUMERO DE	PORCENTAJE
	PUBLICACIONES	(%)
AGUASCALIENTES	96	4.34
BAJA CALIFORNIA	3	0.14
BAJA CALIFORNIA SUR	17	0.77
CAMPECHE	4	0.18
COAHUILA	42	1.90
COLIMA	1	0.05
CHIAPAS	52	2.35
CHIHUAHUA	58	2.62
DISTRITO FEDERAL	207	9.35
DURANGO	19	0.86
ESTADO DE MEXICO	514	23.22
GUANAJUATO	36	1.63
GUERRERO	14	0.63
HIDALGO	51	2.30
INFORMACIÓN NO DISPONIBLE	196	8.85
JALISCO	103	4.65
MICHOACÁN	34	1.54
MORELOS	17	0.77
NAYARIT	5	0.23
NUEVO LEÓN	192	8.67
OAXACA	51	2.30
PUEBLA	147	6.64
QUERÉTARO	8	0.36
QUINTANA ROO	18	0.81
SAN LUIS POTOSÍ	55	2.48
SINALOA	13	0.59
SONORA	55	2.48
TABASCO	5	0.23
TAMAULIPAS	47	2.12
TLAXCALA	19	0.86
VERACRUZ	37	1.67
YUCATÁN	85	3.84
ZACATECAS	13	0.59
TOTAL	2214	100.00

TABLA 5. Relación del número de especies por familia y orden de mamíferos del Cuaternario Tardío de México.

ORDEN	FAMILIA	NUMERO DE	PORCENTAJE (%
		ESPECIES	
ARTIODACTYLA		30	10.75
	ANTILOCAPRIDAE	6	2.15
	BOVIDAE	8	2.87
	CAMELIDAE	5	1.79
	CERVIDAE	6	2.15
	TAYASSUIDAE	5	1.79
CARNIVORA		39	13.98
	CANIDAE	9	3.23
	FELIDAE	9	3.23
	HERPESTIDAE	1	0.36
	MUSTELIDAE	9	3.23
	OTARIIDAE	1	0.36
	PROCYONIDAE	6	2.15
	URSIDAE	4	1.43
CETACEA		1	0.36
	DELPHINIDAE	1	0.36
CHIROPTERA		49	17.56
	EMBALLONURIDAE	3	1.08
	MOLOSSIDAE	8	2.87
	MORMOOPIDAE	3	1.08
	NATALIDAE	1	0.36
	PHYLLOSTOMIDAE	22	7.89
	VESPERTILIONIDAE	12	4.30
DIDELPHIMORPHIA		7	2.51
	DIDELPHIDAE	7	2.51
INSECTIVORA		7	2.51
11.02011,0101	SORICIDAE	7	2.51
LAGOMORPHA		12	4.30
	LEPORIDAE	12	4.30
PERISSODACTYLA		15	5.38
LIMBOODIICIILI	EQUIDAE	13	4.66
	TAPIRIDAE	2	0.72
PRIMATES		4	1.43
	CEBIDAE	3	1.08
	HOMINIDAE	1	0.36
PROBOSCIDEA		4	1.43
	ELEPHANTIDAE	$\overset{\circ}{2}$	0.72
	GOMPHOTHERIIDAE	~ 1	0.36
	MAMMUTIDAE	1	0.36

TABLA 5. Continuación.

ORDEN	FAMILIA	NUMERO DE ESPECIES	PORCENTAJE (%
RODENTIA AGOUTIDAE DASYPROCTIDAE ERETHIZONTIDAE GEOMYIDAE HETEROMYIDAE HYDROCHOERIDAE MURIDAE SCIURIDAE		96	34.41
	AGOUTIDAE	1	0.36
	DASYPROCTIDAE	2	0.72
	ERETHIZONTIDAE	2	0.72
	GEOMYIDAE	10	3.58
	HETEROMYIDAE	11	3.94
	HYDROCHOERIDAE	1	0.36
	MURIDAE	56	20.07
	SCIURIDAE	13	4.66
SIRENIA		1	0.36
	TRICHECHIDAE	1	0.36
XENARTHRA		14	5.02
GLYP' MEGA MEGA MYLC	DASYPODIDAE	4	1.43
	GLYPTODONTIDAE	3	1.08
	MEGALONYCHIDAE	1	0.36
	MEGATHERIIDAE	3	1.08
	MYLODONTIDAE	1	0.36
	MYRMECOPHAGIDAE	2	0.72
TOT	r al	279	