Mock ARML Team

Author:

PROBLEM WRITING

CLUB

April 2, 2014

Problem 1

 $\arctan 3 + \arctan 4 = \arctan x$. Compute the value of x.

Problem 2

Compute the value of $2014 + (\lfloor \sqrt{2014} \rfloor - 1 + \lfloor \sqrt[3]{2014} \rfloor - 1 + ...)$. ($\lfloor x \rfloor$ denotes the greatest integer less than or equal to x).

Problem 3

Convex quadrilateral ABCD exists such that AD=7,CD=9,BC=11, and AB=13. There exists a point E on AD such that $CE\perp AD$. Diagonals AC and BD intersect at F and CE intersects BD at G. $\angle ECD=38^{\circ}$, $\angle BAC=7^{\circ}$, $\angle BCA=\frac{1}{2}\angle GEA$. If AF=FB, and CF=FD, compute the value of AC.

Problem 4

Let $p(x) = x^3 - 6x^2 + 9x - 4$. The range of α , for which α is real and $p(x) = \alpha$ has only one solution, is the set $\alpha \in (-\infty, -a) \cup (b, \infty)$. Find the value of a + b.

Problem 5

The Fibonacci sequence is a sequence that is defined as: $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$. A cool-sumish set is a subset of 1, 2, ..., 2013, such that the sum of the elements is equal to $F_{2014} - 1$. Let γ be the number of cool-sumish sets. Compute the value of γ .

Problem 6

2014 circles are drawn on the plane. Let N be the maxmimum number of regions that the 2014 circles can divide the plane. Find the number of divisors of N. Note that 506773 is prime.

Problem 7

Let the set a_0, a_1, a_2, a_3 be the root of $a^4-2014a+1$. Let x be $\max(a_0, a_1, a_2, a_3)$, where $\max(b_0, b_1, ...)$ returns the largest value of $b_0, b_1, ...$ Compute the value of $\lfloor \frac{1}{x^3-2014} \rfloor$. ($\lfloor x \rfloor$ denotes the greatest integer less than or equal to x).

Problem 8

Compute
$$\sum_{\alpha=2014}^{\infty} \frac{1}{\binom{\alpha}{2014}}$$

Problem 9

There exists a 2014×2015 rectangle on the cartesian plane, with one corner being (0,0), and the other at (2014,2015). Define a Swag-tile as a 1×2 tile. A monster comes and decides to destroy a pair of squares (remove a pair of squares). Let k be the number of ways the monster can do this such that you can still tile the rest of the region with Swag-tiles. Compute the value of $\lfloor \sqrt{k} \rfloor$. ($\lfloor x \rfloor$ denotes the greatest integer less than or equal to x).

Problem 10

Let f = lnx. Let the equation of a function g is $sin(f) + 2sin(\frac{\pi}{2} - 3f) \cdot sin(2f)$. Bob graphs this equation on a paper that extends indefinitely. Let S be the set of all α , where $\alpha > 1$, that are roots of g. Let find(x,S) be the function that finds the x^{th} smallest element in the set of S, and if there is no such element, it returns -2014. If $e^{\frac{k\pi}{m}} = \text{find}(2014,S)$, find the value of k + m.

- Answers 1) $-\frac{7}{11}$ 2) 2082
- 3) $\sqrt{194}$
- 4) 5
- 5) 1007
- 6) 8

- 7) -138) $\frac{2014}{2013}$ 9) 2029105
- 10)2019