

LONGEST COMMON SUBSEQUENCE

What is Longest common subsequence?

The longest common subsequence (LCS) problem is the problem of finding the longest subsequence common to all sequences in a set of sequences (often just two sequences).

WHAT IS SUBSEQUENCES?

Suppose you have a sequence

$$X = \langle A,B,C,D,E,F,G \rangle$$

of elements over a finite set S.

A sequence $Y = \langle B, C, E, G \rangle$

over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

WHAT IS COMMON SUBSEQUENCES?

Suppose that X and Y are two sequences over a set S.

If , $A = \langle A, B, C, E, D, G, F, H, K \rangle$

B=<A,B,D,F,H,K>

then a common subsequence of X and Y could be

Z=<A,F,K>

We say that Z is a common subsequence of X and Y if and only if

Z is a subsequence of X

Z is a subsequence of Y

THE LONGEST COMMON SUBSEQUENCE PROBLEM

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

NAÏVE SOLUTION

Let X be a sequence of length m, and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm would take O(n2^m) time.

INPUT: two strings

OUTPUT: longest common subsequence

ACTGAACTCTGTGCACT TGACTCAGCACAAAAAC

INPUT: two strings

OUTPUT: longest common subsequence

ACTGAACTCTGTGCACT
TGACTCAGCACAAAAAC

FACTS OF LCS Brute Force

X= ABCBDAB Y= BDCABA

Elements of X is m=7 Elements of Y is n=6 So, the complexity will calculate by O $(n2^m)$

FACTS OF LCS Brute Force Strength

- Wide applicability, simplicity
- Reasonable algorithms for some important problems such as searching, string matching, and matrix multiplication
- Standard algorithms for simple computational tasks such as sum and product of n numbers, and finding maximum or minimum in a list

FACTS OF LCS Brute Force Weakness

- Brute Force approach rarely yields efficient algorithms
- Some brute force algorithms are unacceptably slow
- Brute Force approach is neither as constructive nor creative as some other design techniques

Facts OF LCS Dynamic programming

 $A = a \times b \text{ matrix}$

How many operations to compute AB?

Facts OF LCS Dynamic programming b

Facts OF LCS Dynamic programming

Need to compute = $O(a \times b)$

Work Examples

0

5

 $X = \{ATGCTTC\}$

 $Y = \{GCTCA\}$

Z[j,i]

Here I = 1, j = 1

Z[1,1]

 $Y = \{GCTCA\}$

X

A G

Not Match

Z[1,1]

Z[j-1, i]=Z[1-1, 1]= Z[0,1]

Z[j, i-1]=Z[1, 1-1]= Z[1,0]

X Y
A G

Lets Take from Upper one

Not Match

Arrow indicate from where you Take the maximum.

 $Y = \{GCTCA\}$

X Y Max arrow

T G 0 ←

Not Match

Lets Take from left one

Arrow indicate from where you Take the maximum.

$$X = \{ATGCTTC\}$$

$$Y = \{GCTCA\}$$

Match

$$0 + 1 = 1$$

 $Y = \{GCTCA\}$

X Y Max arrow
C G 1 ←

Not Match

$$Y = \{GCTCA\}$$

X Y Max arrow

Not Match

 $Y = \{GCTCA\}$

X Y Max arrow

Not Match

 $Y = \{GCTCA\}$

X Y Max arrow
C G 1 ←

Not Match

$$Y = \{GCTCA\}$$

X Y Max arrow

Not Match

 $Y = \{GCTCA\}$

X Y Max arrow

Not Match

Lets Take from Upper one

$$Y = \{GCTCA\}$$

X Y Max arrow

G C 1

Not Match

 $Y = \{GCTCA\}$

X Y Max arrow

Match

Increment Z[i-1,j-1]

$$Y = \{GCTCA\}$$

X Y Max arrow

Not Match

 $Y = \{GCTCA\}$

In the same way...

Traceback Approach

LCS EXAMPLE **Y**j J 5 6 C Xi G Α 0 YJ 0 0 0 0 0 0 G 0 0 0 0 3 0 🗲 0 0 3 4 0 5

 $X = \{ATGCTTC\}$

 $Y = \{GCTCA\}$

Firstly have to point out highest value

For left and upper arrow we will follow the direction

For diagonal arrow we will point out the character for this cell.

LCS EXAMPLE **Y**j J 5 6 C Xi G Α 0 YJ 0 0 0 0 0 0 G 0 0 0 0 3 0 🗲 0 0 3 4 0 5

 $X = \{ATGCTTC\}$

 $Y = \{GCTCA\}$

Firstly have to point out highest value

For left and upper arrow we will follow the direction

For diagonal arrow we will point out the character for this cell.

 $Y = \{GCTCA\}$

LCS Z= {GCTC}