6. CW **複体**

1 CW 複体の定義

位相空間 X は Hausdorff であるとする X の部分集合の族 $\{e_{\lambda}\}$ で次の条件を満たすものが与えられたとする X

- (1) $X = \bigcup_{\lambda} e_{\lambda}$ (共通部分のない和集合)
- (2) それぞれの e_{λ} に対して,n 次元球体 D^n から e_{λ} の閉包 $\overline{e_{\lambda}}$ への連続 写像 φ_{λ} があって, φ_{λ} を D^n の内点集合に制限すると, e_{λ} への同相写像である. $(e_{\lambda}$ を n 次元セルとよぶ.)
- (3) k 次元以下のセルの和集合を X^k で表すと,n 次元セル e_λ について, $\overline{e}_\lambda \setminus e_\lambda \subset X^{n-1}$ が成り立つ.

このとき,X をセル複体 (cell complex),表示 $X=\bigcup_{\lambda}e_{\lambda}$ を X のセル分割という.また, X^k を X の k-skeleton とよぶ.X の部分集合 Y が X のセルの和集合で表されていて,Y のセル e_{λ} に対して $\overline{e}_{\lambda}\subset Y$ が成り立つとき Y を X の部分複体という.X のセルの個数が有限個のとき X を有限セル複体という.

次の条件 (C), (W) を満たすセル複体 X を CW 複体 (CW complex) とよぶ.C, W はそれぞれ,COSUTE finite, weak topology O略である.

- (C) 各点 $x \in X$ に対して $x \in Y$ であるような有限部分複体 Y が存在する .
- (W) X の部分集合 N は , X のすべてのセル e_{λ} について $\overline{e_{\lambda}} \cap N$ が閉集合のとき , 閉集合となる .

2 CW 複体の例

単体的複体 K の多面体は , それぞれの単体の内点集合をセルとする CW 複体である . 以下 , セルの次元を上付きの添字で表す .

n 次元球面 S^n はセル分割

$$S^n = e^0 \cup e^n$$

をもつ.実射影空間 $\mathbf{R}P^n$ は,増大列

$$\mathbf{R}P^0 \subset \mathbf{R}P^1 \subset \cdots \subset \mathbf{R}P^n$$

を用いて,セル分割

$$\mathbf{R}P^n = e^0 \cup e^1 \cup \dots \cup e^n$$

をもつことがわかる.同様に複素射影空間 $\mathbb{C}P^n$ は,セル分割

$$\mathbf{C}P^n = e^0 \cup e^2 \cup \dots \cup e^{2n}$$

をもつ.