

MVA MET calibration with NN

<u>Tanja Kopf</u>, Stefan Wunsch, Roger Wolf, Günter Quast tanja.kopf@cern.ch, stefan.wunsch@cern.ch

Former work in our group

- in our group have been MVA MET approaches by Raphael Friese with BDTs
- our goal is to improve this approach with neural networks (NN)
- performance of NN exceeds performance of BDT

In the right handed response plot MVA represents the BDT result

MVA approach

Input and output features

Legend:

Sum E_T: Sum of absolute values of transverse momentum of all particles used in MET definition

(p_{T,x}; p_{T,y}): Transverse momentum in cartesian coordinates

NN workflow for one gradient step

The general NN workflow consists of 3 steps

- 1. Subsetting the events to a sample on which the NN trains
- 2. Formulating a loss function to calculate the loss between the prediction and desired output
- 3. Minimizing the loss
- → For the NN MET approach the **batch selection** and **loss** are individually tailored to the problem

Batch selection

Problem:

 p_T -distribution has strong decrease over p_T

- → It's likely that bins with high p_T are empty
- → Reweighting doesn't work

Solution:

- 1. Fit Crystal ball function $g(p_T)$ to p_T -distribution
- Randomly choose subsets of data as batches with **probability p** associated with each event

$$p = \frac{1}{g(p_T)}$$

 \rightarrow Get in p_T uniformly distributed batches

Loss function

Goal of the NN calibration: best response

Problem:

- Distribution of PF/Puppi response is asymmetric around 1
- Let the NN handle the asymmetry → part of loss

Loss addresses two goals:

- Minimize deviation from response=1
- Minimize asymmetry of response in p_τ and #PV bins

Minimize deviation of response inclusive

Loss I_R for minimize error from response = 1 in batch with size N_R :

$$l_R = \sum_{i=1}^{N_B} (R-1)^2$$

$$R = \frac{U_{\parallel}}{-p_T^Z}$$

→ Minimizes the deviation inclusive over the whole batch

Minimize asymmetric distribution

- 1. Create 2D binning in batch over p_{τ} and #PV \rightarrow ensure to have same population in each bin
 - a. For p_{τ} the batches are uniformly distributed \rightarrow uniform binning
 - b. For #PV take percentiles with each 20 % of the batch

	20 (GeV	18	Рт 110 GeV						200 Ge
	,	C ₁	C ₆	C ₁₁	C ₁₆	C ₂₁	C 26	C ₃₁	C ₃₆	C41
۲ *	25	C ₂	C ₇	C ₁₂	C ₁₇	C ₂₂	C ₂₇	C ₃₂	C ₃₇	C ₄₂
=		C4	C 9	C14	C 19	C ₂₄	C 29	C34	C 39	C44
		C 5	C ₁₀	C ₁₅	C ₂₀	C 25	C ₃₀	C 35	C 40	C 45
	50			2	·					

Number of p_T bins:

$$N_{p_T} = 9$$

Number of #PV bins:

$$N_{PV} = 5$$

2D binning in loss

- 2. Each bin results in its own cost value c_i
- 3. Sum up over all costs $c_i \rightarrow loss l$

→ Minimizes the asymmetry of the distribution in each bin

Cost values

cost value for each bin:

$$c_i = \sum_{j}^{N_B} b_{ij} \cdot (R_j - 1)^2 + s \cdot \left(\sum_{j}^{N_B} b_{ij} \cdot max(0, R_j - 1) - \sum_{j}^{N_B} b_{ij} \cdot max(0, 1 - R_j) \right)^2$$

$$R = \frac{U_{\parallel}}{p_T^Z}$$

 $s \in \mathbb{R}$, global scale factor

$$b_i \in \{0, 1\}$$

Cost values

Boolean arrays are binning the batches while ensuring the bins are all equally well populated

Minimizing loss

Each gradient step results in one loss value

$$l = \sum_{i=1}^{N_{p_T} \cdot N_{PV}} c_i$$

- Optimization of the NN:
 - Calculate gradients of the loss with respect of the NN weights
 - Apply the gradients to the weights
 - Minimize loss along gradients with optimizer algorithms
 - → in this case: Adam

→ The NN will optimize its weights with respect to minimizing the loss

Application

- dataset settings:
 - MC Summer 17
 - Drell-Yan Z→ μμ
 - ~2 Mio events for training and application
 - 20 GeV $\leq p_T^Z \leq$ 200 GeV
 - 0 ≤ number primary vertices (#PV) ≤ 50

- plotting settings
 - color coding: Puppi, PF, NN

NN topology

Loss

Convergence of loss function

Response

Response inclusive

MET definition: mean ± standard deviation

 0.93 ± 0.55

→ The custom loss manages to **minimize the asymmetry of the distribution** while **optimizing the response** to be one in mean

Response =
$$\langle \frac{U_{\parallel}}{-p_T^Z} \rangle$$

Response vs. p_T

- p_T binning in the loss results in p_T independent response
- NN is closest to 1 over the whole p_T range

Response = $\langle \frac{U_{\parallel}}{-p_T^Z} \rangle$

Response vs. #PV

- #PV binning in loss results in minimal deviation of response over #PV range
- NN is closest to 1 over whole #PV range

Resolution parallel

Resolution_{||} = $\sigma \left(U_{||} + p_T^Z \right)$

Resolution parallel: inclusive

- Distribution of resolution with small bias for NN
- NN has the best parallel resolution inclusive

Resolution_{||} = $\sigma \left(U_{||} + p_T^Z \right)$

resolution para vs. p_T

- Resolution of Puppi exceeds PF for large p_⊤ values
- Minimum resolution for NN over p_T range

Resolution perpendicular

Resolution $\perp = \sigma (U_{\perp})$

Resolution perpendicular: inclusive

- Perpendicular resolution smaller than parallel resolution for Puppi and PF
- Not optimized in loss of NN
- Minimum resolution for NN inclusive

Resolution $\perp = \sigma (U_{\perp})$

Resolution perp vs. p_T

- In smallest p_T bin the resolutions of NN and Puppi are the same
 - NN response next to 1 in this bin
 - Puppi response < 1 in this bin</p>
- NN smallest resolution for higher p_Ts

Conclusion

Performance inclusive overview

		Response	Resolution parallel	Resolution perpendicular
	Puppi	0.93±0.55	±18.62	±16.29
	PF	0.93±0.68	±22.36	±21.42
	NN	1.00±0.48	±16.11	±15.88
d, de	Puppi	0.93±0.55	±20.02	±17.52
Response corrected ¹	PF	0.93±0.68	±24.04	±23.03
Re So	NN	1.00±0.48	±16.11	±15.88

Conclusion

- PF has less tails than Puppi
- Puppi has better resolution than PF
 - → NN is able to combine these two advantages for a overall promising result

Outlook

- Physics benchmark with reweight W-mass-reconstruction
- Combined contribution for MVA W-mass-reconstruction with
 - Pedro Vieira De Castro Ferreira Da Silva, CMS
 - Paolo Gunnellini, Uni Hamburg (CMS)
- GitHub repository for everyone to use with support

Appendix

Histogram absolute MET

- Mean of inclusive MET highest for PF
- Mean of inclusive MET for NN under Puppi
- Less tails for NN

Resolution_{||} = $\sigma \left(U_{||} + p_T^Z \right)$

resolution para vs. #PV

- Puppi and NN are less dependent on #PV than PF
- Advantage of NN in comparison to Puppi stable over #PV

Resolution $\perp = \sigma (U_{\perp})$

Resolution perp vs. #PV

- Puppi and NN are less dependent on #PV than PF
- Perpendicular resolution of NN and Puppi comparable over #PV