本科概率论与数理统计作业卷(九)

一、填空题

- 1.设总体 $X \sim U(0,\theta], \theta > 0$ 为未知参数,样本观测值为 0.3, 0.8, 0.27, 0.35, 0.62, 0.55, 则 θ 的矩法估计值为
- 2.为检验某种自来水消毒设备效果,现从消毒后的水中随机抽取 50 升,化验每升水中大 肠杆菌的个数(设一升水中大肠杆菌个数服从参数为 λ 的泊松分布), 化验结果如下:

大肠杆菌个数/升	0	1	2	3	4	5	6
升数	17	20	10	2	1	0	0

- 3.设两个独立总体X和Y的均值都为 μ ,方差都为 σ^2 ,现分别从中抽取容量为 n_1,n_2 的两组 样本,样本均值分别为 \bar{X} 和 \bar{Y} ,记 $T = a\bar{X} + b\bar{Y}$,为使T成为 μ 的无偏估计,且使T的方差达 到最小,则 a= ,*b*= .
- 4.某厂生产的 100 瓦灯泡的使用寿命 $X \sim N(\mu, 100^2)$ (单位:小时).现从一批灯泡中随机抽 取 5 知测得它们的使用寿命如下:1455,1502,1370, 1610,1430.由此可得这批灯泡平均使 用寿命 μ 的置信度为 95%的置信区间为______.已知 $\mu_{0.025}$ =1.96

二、选择题

1.设总体 $X \sim U(0,\theta], \theta > 0$ 为未知参数, $X_1,...,X_n$ 为样本,则 θ 的极大似然估计为_

(A)
$$\max(X_1, ..., X_n)$$
 (B) $\min(X_1, ..., X_n)$ (C) $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ (D) $\frac{1}{n} \sum_{i=1}^n X_i^2$

2.已知总体 X 的数学期望为 EX=0,方差为 $DX=\sigma^2,X_1,...,X_n$ 为总体 X 的一组简单随机样 本, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$,则下列属于 σ²的无偏估计量的是_____

(A)
$$n(\bar{X})^2 + S^2$$
 (B) $\frac{1}{2} \left[n(\bar{X})^2 + S^2 \right]$ (C) $\frac{n}{3} (\bar{X})^2 + S^2$ (D) $\frac{1}{4} \left[n(\bar{X})^2 + S^2 \right]$

3.设 X_1, X_2 是取自正态总体 $N(\mu, 2)$ 的两个样本,下列四个无偏估计中较优的是

(A)
$$\hat{\mu}_1 = \frac{1}{4}X_1 + \frac{3}{4}X_2$$
 (B) $\hat{\mu}_2 = \frac{2}{5}X_1 + \frac{3}{5}X_2$ (C) $\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{2}X_2$ (D) $\hat{\mu}_4 = \frac{4}{7}X_1 + \frac{3}{7}X_2$

4.设 $X_1, ..., X_n$ 是总体 X 的样本, $DX = \sigma^2, \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,则下列论断

成立的是

- (A) S 是 σ 的无偏估计
- (B) S 是 σ 的极大似然估计
- (C) S 是 σ 的一致估计 (D) S 与 \overline{X} 相互独立

三、计算、证明题

- 1.总体 X 服从二项分布 B(m,p),设 $X_1,...,X_n$ 是 X 的样本,求未知参数 m 和 p 的矩估计.
- 2.设总体 X 有概率密度 $p(x) = \begin{cases} \frac{4x^2}{a^3\sqrt{\pi}} e^{\frac{-x^2}{a^2}}, x > 0, a > 0$ 是待估参数, $X_1, ..., X_n$ 是 X 的样本,
 - (1) 求 a 的矩估计; (2) 求 a 的极大似然估计.
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 是 X 的一组样本,试证 $\hat{\mu}_1 = \frac{1}{4}(X_1 + 2X_2 + X_3)$ 和 $\hat{\mu}_2 = \frac{1}{2}(X_1 + X_2 + X_3)$ 都是总体期望 μ 的无偏估计,并比较哪一个更有效?
- 4.冷抽铜丝的折断力服从正态分布.从一批铜丝中任取 10 根测它们的折断力(单位:千克) 如下: 578, 572, 570, 568, 572, 570, 570, 596, 584, 572.求方差 σ^2 和标准差 σ 的 90%的置 信区间.已知 $\chi^2_{\alpha/2}(9) = \chi^2_{0.05}(9) = 16.919$, $\chi^2_{1-\alpha/2}(9) = \chi^2_{0.95}(9) = 3.325$

本科概率论与数理统计作业卷(十)

一、填空题

- 1. 设总体 $X \sim N(\mu, 2^2)$, x_1, \dots, x_{16} 是一组样本值, $\bar{x} = \frac{1}{16} \sum_{i=1}^{16} x_i$. 已知检验问题为 $H_0: \mu = 0 \iff H_1: \mu \neq 0$. 若拒绝域 $W = \{|\bar{x}| > 1.29\}$, 则此检验的显著水平 $\alpha = \underline{\hspace{1cm}}$, 犯第一类错误的概率是
- 2. 设 X_1, \dots, X_{25} 是 来 自 总 体 $X \sim N(\mu, 4^2)$ 的 样 本 , 其 中 μ 未 知 , 检 验 问 题 $H_0: \mu \leq \mu_0 \iff H_1: \mu > \mu_0$,若 H_0 的拒绝域为 $W = \{\overline{x} \mu_0 > C\}$,则常数 $C = ___$ 时可使检验的显著水平 $\alpha = 0.05$.

二、选择题

- 1.设总体 $X \sim N(\mu, \sigma^2)$,现对 μ 进行假设检验, 若在显著性水平 α =0.05 下接受了 $H_0: \mu = \mu_0$,则在显著性水平 α = 0.01 ______
 - (A)接受 H_0 (B)拒绝 H_0 (C)可能接受,可能拒绝 H_0 (D)犯第一类错误概率变大
- 2.设 X_1, \dots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的一个样本,其中 σ^2 未知,检验问题 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,则选取的统计量及其拒绝域分别是______

(A)
$$T = \frac{\overline{X} - \mu_0}{S_n} \sqrt{n-1}$$
, $|T| > t_{\alpha/2}(n-1)$ (B) $U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, $|U| > u_{\alpha/2}$

(C)
$$T = \frac{\overline{X} - \mu_0}{S_n} \sqrt{n-1}$$
, $|T| > t_{\alpha/2}(n)$ (D) $\chi^2 = \frac{nS_n^2}{\sigma^2}$, $\chi^2 > \chi^2_{\alpha/2}(n-1)$

三、计算、证明题

- 1.已知某灯泡厂生产的灯泡寿命服从正态分布,即 $X \sim N(1800,100^2)$ (单位:小时).今从生产的一批灯泡中抽取 25 只灯泡进行检测,测得其灯泡平均寿命为 $\bar{x}=1730$ 小时.假定标准差保持不变,问能否认为这批灯泡的平均寿命仍为 1800 小时?
- 2.某厂生产的维尼纶纤度 $X \sim N(\mu, \sigma^2)$,其中 σ^2 未知,正常生产时有 $\mu \ge 1.4$.现从某天生产的维尼纶中随机抽取 5 根,测得其纤度为 1.32,1.24,1.25,1.14,1.26.问该天的生产是否正常? ($\alpha = 0.05$)
- 3.某厂用自动包装机包装奶粉,今在某天生产的奶粉中随机抽取 10 袋,测得它们的重量 (单位:克)如下: 495, 510, 505, 489, 503, 502, 512, 497, 506, 492.设包装机包装出的奶粉 重量服从正态分布 $X \sim N(\mu, \sigma^2)$,若(1)已知 $\mu = 500$; (2) μ 未知,分别检验各袋净重的标准差是否为 $\sigma_0 = 5$ 克? (取显著性水平 $\alpha = 0.05$)
- 4.设甲乙两车间生产罐头食品,由长期积累的资料知,它们的水分活性均服从正态分布,且均方差分别为 0.142 和 0.105.今各取 15 罐,测得它们的水分活性平均值分别为 0.811 和 0.862.问甲乙两车间生产的罐头食品水分活性均值有无显著差异?(取显著性水平 $\alpha=0.05$)