Réseaux de neurones (Partie 1a) « Backprop » illustré sur le XOR

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

Avril 2022

UE IA L3

Le problème du XOR avec 2 neurones (1/2)

• La fonction z = XOR(x, y)

X	0	0	1	1
У	0	1	0	1
XOR	0	1	1	0

 On souhaite approximer cette fonction avec un (mini-)réseau de neurones

Une solution avec 2 neurones

 mini-réseau de neurones approximant la fonction XOR

Vocabulaire

Neurone

- Possède des entrées, une sortie avec une valeur d'activation.
- Possède des connexions avec des neurones entrants, un biais.
- Possède une fonction d'activation
- Il appartient à une couche.
- Synonyme : « unité »

Connexion

- Relie deux neurones entre eux
- Elle a un poids.

Biais, poids

- Valeur numérique d'une connexion
- Valeur d'activation
 - Valeur de sortie du neurone
- Entrée, sortie
 - Les entrées d'un neurone sont soit les entrées du réseau, soit connectées à la sortie de neurones entrants
 - La sortie d'un neurone est connectée à un neurone, elle contient la valeur d'activation du neurone.

Couche

- Ensemble de neurones lorsque le réseau est structurés en couches

Réseau

- Ensemble de couches si le réseau est structurés en couches, ou de neurones sinon

Calcul de la valeur d'activation ou « sortie » d'un neurone

- Pour calculer sa sortie, le neurone :
 - Effectue une combinaison linéaire de ses entrées avec les poids des connexions et le biais :
 - Pour le neurone H : somme = $1 \times 7.1 + 1 \times (-2.76) + 0 \times 7.1 = 4.34$
 - Applique une fonction d'activation f:
 - Pour le neurone H :
 - sortie = f(somme)
 - sortie = f(4.34) = 0.987

Fonction d'activation sigmoïde

- La fonction d'activation permet de calibrer les sorties.
- Sur l'exemple, c'est la fonction sigmoïde.

$$- f(x) = 1 / (1+e^{-x})$$

- Propriétés
 - Valeurs entre 0 et 1

-
$$f(0) = 0.5$$
 $f(-∞) = 0$ $f(+∞) = 1$

- f'(x) = f(x) (1 f(x)) (sauriez vous le montrer ?) Valeurs ent
- Approximation continue et dérivable de la fonction à seuil
 - seuil(x) = 1 si x>0
 - seuil(x) = 0 si x<0
 - seuil(0) = 0.5

Calcul en avant, sortie du réseau

- Calcul en avant :
 - Les sorties des neurones sont calculées en cascade des neurones proches des entrées vers la sortie.
 - Pour (x, y) = (1, 0)
 - Sortie de H = 0.987
 - Pour Z:
 - somme = 1x(-4.95) + 0x(-4.95) + 0.987x + 10.9 + 1x(-3.29) = 2.52
 - sortie = f(somme) = 0.926
- Sur les 4 entrées possibles, le calcul en avant du réseau donne :

- Le résultat est satisfaisant :
 - les sorties sont « correctes »
 - l'erreur de sortie est inférieure à 0.1

X	0	0	1	1
У	0	1	0	1
XOR	0	1	1	0
réseau	0.067	0.926	0.926	0.092
erreur	0.067	0.074	0.074	0.092

Formalisation

Pour un neurone j ayant les entrées i:

```
o_i = f(net_i) avec net_i = b_i + \sum_i w_{ii} o_i (1b)
```

o_i: sortie (output)

w_{ii} : poids (weight) de la connexion i j

o; entrée i du neurone j (égale sortie du neurone i)

Backprop

- Rumelhart & al 1986
- But : trouver W un vecteur des poids des connexions de manière automatique
 - pour que les sorties du réseau correspondent aux sorties attendues.
- Idée : considérer la fonction d'erreur E du réseau.
 - Soit W le vecteur des poids w_{ii} du réseau
 - Soit E(W, X) l'erreur commise par le réseau sur un exemple X en utilisant W
 - erreur = différence entre la sortie attendue du réseau et la sortie effective du réseau.
 - (La sortie attendue est fournie par l'expertise du domaine, un « oracle »)
 - Soit E(W) l'erreur commise par le réseau sur un ensemble d'exemples connus en utilisant W
 - Par exemple : erreur = moyenne des erreurs sur tous les exemples
 - E(W) est une fonction continue dérivable de W : son gradient est calculable analytiquement
 - On peut appliquer l'algorithme de la descente de gradient.
 - Cela donne des formules de mises à jour de W
 - A la fin de la descente de gradient E(W) W est proche du minimum W*.
 - Le réseau à appris W pour que l'erreur soit la plus faible possible.

Formules de mises à jour de W (1/2)

 Pour un neurone k en sortie du réseau, on considère son « signal d'erreur » d_k

$$- d_k = (t_k - o_k) f'(net_k)$$
 (2)

- t_k est la valeur attendue (cible, Target en anglais)
- F est la fonction sigmoïde

$$- f'(net_k) = o_k(1 - o_k)$$
 (3)

• Formule issue de la descente de gradient (cf algo descente de gradient)

$$- \Delta W_{jk} = V d_k O_j$$
 (4)

- v est le « pas » d'apprentissage
- Δ w_{jk} signifie que l'on modifie w_{jk} d'une valeur égale à celle située à droite du signe = de l'équation.

Formules de mises à jour de W (2/2)

 Pour un neurone caché j, on considère aussi son « signal d'erreur » d_i

$$- d_j = f'(net_j) \sum_k d_k w_{jk}$$
 (5)

- Les indices k désignent les neurones dont une entrée correspond à la sortie du neurone j
- Le signal d'erreur est une moyenne pondérée des signaux d'erreurs des neurones « au dessus » du neurone j
- Formule issue de la descente de gradient (cf algo descente de gradient)

$$- \Delta w_{ij} = v d_i o_i$$
 (6)

Sur neurone Z du problème du XOR (1/2)

• Supposons que :

```
W = 0
x=1, y=0, t=1 (valeur attendue du XOR(1, 0))
\nu = 0.1
```

- On effectue un calcul en avant pour connaître h et z
 - h=0.5
 - -z=0.5

Sur le neurone Z qui possède 3 entrées X, Y, H, les formules (2) (3) (4) donnent :

$$- d_z = (1 - 0.5) 0.5 (1 - 0.5) = 0.125$$

$$- w_{zx} = 0 + 0.1x0.125x1 = 0.0125$$

$$- w_{zy} = 0 + 0.1 \times 0.125 \times 0 = 0$$

$$- w_{zh} = 0 + 0.1x0.125x0.5 = 0.00625$$

$$- w_{zbz} = 0 + 0.1x0.125x1 = 0.0125$$

Sur le neurone caché du problème du XOR (2/2)

• Supposons que :

```
W est issu de la mise à jour sur le neurone Z x=1, y=0, t=1 (valeur attendue du XOR(1, 0)) v=0.1
```

- Sur le neurone H qui possède 2 entrées X, Y les formules (5) (6) donnent :
 - $d_h = 0.5 (1 0.5) 0.125 0.00625 = 0.000195$
 - $-W_{hx} = 0 + 0.1 \ 0.000195 \ 1 = 0.0000195$
 - $-W_{hy} = 0 + 0.1 \ 0.000195 \ 0 = 0$
 - $-W_{zh} = 0 + 0.1 \ 0.125 \ 0.5 = 0.00625$
 - $-W_{hbh} = 0 + 0.1 \ 0.000195 \ 1 = 0.0000195$
- W a encore été modifié très légèrement.
 - Sur l'exemple (1, 0), Z = 0.507
 - L'erreur à légèrement diminué
- On a effectué un calcul en arrière.
- D'où le nom backprop de l'algorithme.

1
0
1
0.507
0.493

Sur le problème du XOR

• On effectue le calcul en arrière sur les 4 exemples. Après 1 itération :

X	0	0	1	1
у	0	1	0	1
XOR	0	1	1	0
réseau	0.4999	0.4998	0.4998	0.4997
erreur	0.4999	0.5002	0.5002	0.4997

Les valeurs ont très légèrement changé (pas nécessairement dans le bon sens).

- Backprop itère plusieurs fois (c'est une descente de gradient) sur les 4 exemples.
- Backprop s'arrête lorsque l'erreur est descendue en dessous d'un seuil acceptable.
- A la fin, le réseau donne les sorties attendues à l'erreur près.

Sur le problème du XOR

 Avec ν = 0.1 et après suffisamment d'itérations du calcul en arrière sur les 4 exemples:

X	0	0	1	1	
У	0	1	0	1	
XOR	0	1	1	0	
réseau	0.07	0.92	0.92	0.09	
erreur	0.07	0.08	0.08	0.09	

Les valeurs sont correctes à 0.09 près.

• Backprop possède les mêmes qualités/défaut d'une descente de gradient.

Qualités et défauts de Backprop (1/2)

- Dépendance aux valeurs initiales
 - W = 0
 - W initialisé aléatoirement
- Minimum local ou global
 - Dépend de l'initialisation
 - Du pas d'apprentissage
- Convergence dépendante du pas d'apprentissage V
 - Petites valeurs :
 - convergence lente : nombre d'itérations grand.
 - Valeurs mises au point :
 - · convergence aussi rapide que possible : nombre d'itérations « minimal »
 - Grandes valeurs:
 - · convergence vers un point incorrect
 - · non convergence

Qualités et défauts de Backprop (2/2)

 Deux initialisations différentes produisent des réseaux corrects mais complètement différents

	Whx	Why	Whb	Wzx	Wzy	Wzh	Wzb
Init.	0	0	0	0	0	0	0
fin	8,9	8,9	-3,88	-9,46	-9,46	19,56	-5,23
Init.	0,34	-0,1	0,28	0,29	0,41	-0,3	-0,16
fin	9,88	-9,09	4,62	9,68	-9,37	-19,5	14,42

Conclusion de la partie 1a

- Illustration de backprop sur le problème du XOR
 - 2 neurones
 - Backprop est une descente de gradient
 - Rumelhart, Hinton, Williams: Learning internal representations by error propagation, (1986)
- A suivre :
 - Propriété théorique d'un unique neurone (partie 1b)
 - Perceptron
 - Réseaux à plusieurs couches (partie 2)
 - Multi-Layer Perceptron (MLP)
 - Deep learning