PARISHRAM 2026

Mathematics

Inverse Trigonometric Functions

DPP: 1

- **Q1** The domain of $\sec^{-1} x$ is
 - $(A) (-\infty, \infty)$
 - $\text{(B)} \left(-\infty,-1\right] \cup \left[1,\infty\right)$
 - (C) [-1, 1]
 - (D) None of these
- **Q2** The domain of $\sin^{-1} x$ is equal to
 - (A) (-1, 1]
- (B) (-1,1)
- (C)[-1,1)
- (D) [-1,1]
- Which of the following corresponds to the 03 principal value branch of $\sec^{-1} x$?
 - (A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 - (B) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
 - $(C) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \{0\}$
 - (D) $[0,\pi] \{\frac{\pi}{2}\}$
- Which of the following corresponds to the principal value branch of $\sin^{-1} x$?
 - $(A)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - (B) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
 - $(C)(-\frac{\pi}{2},\frac{\pi}{2})-\{0\}$
 - (D) $(0,\pi)$
- Which of the following corresponds to the 05 principal value branch of $tan^{-1} x$?
 - (A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- (B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $(C)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)-\left\{0\right\}$
- (D) $(0,\pi)$
- **Q6** The principal value of $\mathbf{cosec}^{-1} \ x$ lies in the interval
 - $^{(A)}\left(\frac{-\pi}{2},\frac{\pi}{2}\right)-\left\{0\right\}$
 - (B) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \left\{0\right\}$
 - $(C)\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
 - $(D) \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
- **Q7** The principal value of $\cot^{-1} x$ lies in the interval.
 - (A) $(0,\pi)$
 - (B) $[0, \pi]$
 - $(C)\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
 - $(D) \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
- **Q8** Which of the following intervals can be taken as range for $\cos^{-1} x$ other than the principal value branch?
 - $(A) \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
 - (B) $[0,\pi]$
 - (C) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
 - (D) $[\pi, 2\pi]$
- **Q9** Which of the following intervals can be taken as range for $\sin^{-1} x$ other than the principal value branch?
 - (A) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \sim \left\{0\right\}$
 - (B) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
 - (C) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
 - (D) $[\pi, 2\pi]$

Answer Key

Q1 В

Q2 D

Q3 D

Q4 B

Q5 A

Q6 В

Q7 A

Q8 D

Q9 C

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Text Solution:

The domain of

$$\sec^{-1} x$$
 is $(-\infty, -1] \cup [1, \infty)$

Video Solution:

Q2 Text Solution:

The domain of $\sin^{-1} x$ is [-1,1]

Video Solution:

Q3 Text Solution:

The principal value branch of $\sec^{-1} x \text{ is } [0,\pi] \sim \{\frac{\pi}{2}\}.$

Video Solution:

Q4 Text Solution:

The principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Video Solution:

Q5 Text Solution:

Principal value branch of $\tan^{-1} x \text{ is } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

Video Solution:

Q6 Text Solution:

Since the principal value branch of $\operatorname{cosec}^{-1} x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \left\{0\right\}$, therefore, principal value of $\mathbf{cosec}^{-1} \ x$ lies in interval $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]-\left\{0\right\}$

Video Solution:

Q7 Text Solution:

Since the principal value branch of $\cot^{-1} x$ is $(0,\pi)$, therefore, principal value of $\cot^{-1} x$ lies in interval $(0,\pi)$.

Video Solution:

Q8 Text Solution:

As $\cos^{-1} x$ is one-one and onto function from [-1,1] to $[\pi,2\pi]$ $\therefore [\pi, 2\pi]$ can be taken as range other than principal branch $[0,\pi]$.

Video Solution:

Q9 **Text Solution:**

As $\sin^{-1} x$ is one-one and onto function from [-1,1] to $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ $\therefore \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ can be taken as range other than principal branch $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$

Video Solution:

Android App | iOS App | PW Website