- **01** (Les questions sont indépendantes)
 - La suite (u_n) est définie par : $u_0 = 2$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = 2u_n 3$. Montrer que : $(\forall n \in \mathbb{N})$, $u_n = 3 - 2^n$.
 - On considère la suite (u_n) définie par : $u_0=0$ et $(\forall n\in\mathbb{N}), u_{n+1}=\frac{5u_n-1}{4u_n+1}$. Montrer que $(\forall n\in\mathbb{N}), u_n\neq \frac{1}{2}$.
- Soit la suite numérique (u_n) définie par : $u_0 = 2$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{1}{5}u_n + 3 \times 0, 5^n$.
 - **1 a.** Recopier et, à l'aide de la calculatrice, compléter le tableau des valeurs de la suite (u_n) approchées à 10^{-2} près :

n	0	1	2	3	4	5	6	7	8
u_n	2								

- **b.** D'après ce tableau, énoncer une conjecture sur le sens de variation de (u_n) .
- **2 a.** Démontrer, par récurrence, que : $(\forall n \in \mathbb{N}^*), u_n \ge \frac{15}{4} \times 0, 5^n$.
 - **b.** En déduire que, $(\forall n \in \mathbb{N}^*)$, $u_{n+1} u_n \leq 0$.
- **3** Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n 10 \times 0, 5^n$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** En déduire que : $(\forall n \in \mathbb{N}), u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0, 5^n$.
- On considère la suite numérique (u_n) définie par : $u_0 = 1$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.
 - 1 Calculer les quatre premiers termes de la suite.
 - **2** Prouver par récurrence que : $(\forall n \in \mathbb{N}), u_n \ge 1$.
 - **3** Démontrer que la suite est majorée par $\sqrt{3}$.
 - **4** Déterminer le sens de variation de la suite (u_n) .
 - **5** On considère la suite (v_n) définie par : $(\forall n \in \mathbb{N}), v_n = \frac{u_n \sqrt{3}}{u_n + \sqrt{3}}$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** Exprimer v_n , puis u_n , en fonction de n

- **1** Déterminer u_0 , u_4 , r et u_n .
- **2** On considère la suite (v_n) définie par : $(\forall n \in \mathbb{N}), v_{n+1} = \sqrt{2 + v_n^2}$ et $v_0 = 1$.
 - **a.** Calculer v_1 , v_2 et v_3 .
 - **b.** On pose $(\forall n \in \mathbb{N})$, $w_n = v_n^2$.
 - i. Montrer que (w_n) est une suite arithmétique dont on donnera le premier terme et la raison.
 - ii. Déterminer w_n et v_n en fonction de n.
- 3 On considère la suite (a_n) définie par : $(\forall n \in \mathbb{N}), a_{n+1} = \frac{9a_n}{4a_n + 3}$ et $a_0 = \frac{1}{2}$.
 - **a.** Montrer que $a_n \neq 0$.
 - **b.** On pose $(\forall n \in \mathbb{N})$, $b_n = 2 \frac{3}{a_n}$.
 - i. Montrer que (b_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - ii. Déterminer b_n et a_n en fonction de n.
- On considère la suite (u_n) définie par : $u_0 = 3$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{8(u_n 1)}{u_n + 2}$.
 - **1** Montrer que $(\forall n \in \mathbb{N})$, $2 < u_n < 4$.
 - **2** Étudier la monotonie de la suite (u_n) .
 - **3 a.** Montrer que $(\forall n \in \mathbb{N})$, $4 u_{n+1} \le \frac{4}{5}(4 u_n)$.
 - **b.** En déduire $(\forall n \in \mathbb{N}), 4 u_n \le (\frac{4}{5})^n$.
 - **c.** On pose $S_n = u_0 + u_1 + u_2 + \dots + u_n$. Montrer que $(\forall n \in \mathbb{N}), S_n \ge 4n - 1 + \frac{4^{n+1}}{5^n}$.
 - $\boxed{\textbf{4}} \text{ On pose } (\forall n \in \mathbb{N}), v_n = \frac{u_n 4}{u_n 2}.$
 - **a.** Montrer que (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** Déterminer v_n et u_n en fonction de n.
 - **c.** On pose $S_n = v_0 + v_1 + v_2 + \dots + v_n$. Déterminer S_n en fonction de n.
- On considère la suite (u_n) définie par $u_0 = 3$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = 1 \frac{9}{4u_n}$.
 - 14 Montre que $(\forall n \in \mathbb{N}), u_n > \frac{3}{2}$

07

La suites (u_n) est définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n + 3}{2}$ pour $n \in \mathbb{N}$.

La suite (S_n) est définie par $S_n = u_0 + u_1 + \dots + u_{n-1} + u_n = \sum_{k=0}^n u_k$ pour $n \in \mathbb{N}$.

- **1** Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 3$.
- **2** En déduire le sens de variation de la suite (u_n) .
- Soit (w_n) la suite définie par $w_n = u_n 3$ pour tout $n \in \mathbb{N}$.
 - **a.** Démontrer que (w_n) est une suite géométrique dont on donnera la raison.
 - **b.** En déduire : $u_n = -\frac{3}{2^n} + 3$ pour tout $n \in \mathbb{N}$.
- **4 a.** Déterminer le sens de variations de la suite (S_n) .
 - **b.** Cours. Démontrer que pour $q \ne 1$ et $n \in \mathbb{N}$, $1 + q + q^2 + \dots + q^n = \frac{1 q^{n+1}}{1 a}$.
 - **c.** En déduire un expression de S_n en fonction de n.
- Dans cette question, toute trace de recherche, même partielle, sera évaluée. Soient une suite $(x_n)_{n\in\mathbb{N}}$ et la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=x_0+x_1+\cdots+x_n$. Dire, en justifiant, si l'affirmation suivante est vraie ou fausse : « les suites (x_n) et (s_n) ont le même sens de variation. »