

# Plan Chapitre 5 — D'Internet au réseau Domestique

#### ○ 5.1 – Vue d'ensemble d'Internet

- Architecture d'Internet
- Hiérarchie et vocabulaire
- Différence entre client et serveur
- Besoins

### ∘ 5.2 – Le réseau domestique

- Architecture
- Besoins

### • 5.3 − DHCP

- Répond à quel besoin?
- Principe et protocole

### $\circ$ 5.4 – NAT

- Répond à quel besoin?
- Mise en oeuvre

### $\circ$ 5.5 – DNS

- Répond à quel besoin?
- Domaine et hiérarchie
- Protocole et mise en oeuvre

# 5.1 VUE D'ENSEMBLE DU RÉSEAU

- o Introduction via un dessin en cours de:
  - La notion d'AS
  - La hiérarchie dans les AS (tiers 1, tiers 2-3)
    - o Un AS est client d'un autre
  - Le positionnement des clients et leur accès => FAI
  - Les communications
    - o entre clients directes
    - entre clients serveurs (notion de Fournisseur de Services ou Fournisseur de Contenus)
    - o entre clients en passant par des serveurs (exemple du mail)
  - Le besoin de configurer les machines:
    - DHCP dans un réseau local (exemple pour un serveur)
    - PPP pour un accès ADSL

# 5.2 LE RÉSEAU DOMESTIQUE

- Home Network
  - Plusieurs équipements avec chacun une adresse IP



- Ethernet
- Wifi
- Quelles adresses IP pour les équipements?
  - Le FAI ne donne qu'une adresse publique
  - Utilisation de quelle type d'adresses?
  - Besoin de communiquer avec Internet
- Communiquer avec un serveur?
  - Nom =/= adresse IP!
- Sécuriser



# **5.3 DHCP**

#### **OBJECTIFS**

- Dynamic Host Configuration Protocol
  - Protocole du monde IETF
  - RFC 2131, RFC 1533

# Objectifs

- Configuration Automatique et Dynamique d'IP sur une machine
  - o Adresse IP de l'interface
  - Masque
  - Passerelle par défaut
  - o DNS
- Installation d'un OS au boot via l'extension de BOOTP [RFC 1542]

# **5.3 DHCP**

### COMMENT? (1)

- Protocole utilisant UDP en mode client / serveur
  - Port 67 en écoute
  - Mais : « Comment obtenir une configuration en utilisant le réseau que l'on veut configurer? »
- Utilisation du broadcast
  - Au niveau IP
  - Au niveau de la technologie sous-jacente (ex: Ethernet)

# 5.3 DHCP *COMMENT? (2)*

• La configuration classique



# 5.3 DHCP LE BAIL

- Qu'obtient-on?
  - Adresse IP mais pas que...
  - Masque, adresse de diffusion
  - Options IP, TCP, ...
  - Adresses de routeur, serveur DNS, serveur de temps, impression, ...
  - Nom de domaine, ...
- Notion de bail (lease) DHCP
  - Allocation pour une durée donnée
    - o éventuellement infini
  - Nécessité d'actualiser régulièrement
    - o permet de détecter les arrêts
  - Abandon explicite du client (dhclient –r)

# **5.3 DHCP**

### AUTRE CAS

• Refus de configuration

DHCPDISCOVER

Client

DHCPOFFER

DHCPDECLINE

• Libération de bail

Client

DHCPRELEASE

Client

Serveur

# **5.3 DHCP**

### FORMAT DES MESSAGE

| op                | htype | hlen  | hops |  |
|-------------------|-------|-------|------|--|
| xid               |       |       |      |  |
| secs              |       | flags |      |  |
| ciaddr            |       |       |      |  |
| yiaddr            |       |       |      |  |
| siaddr            |       |       |      |  |
| giaddr            |       |       |      |  |
| chaddr (16 bytes) |       |       |      |  |
| sname (64 bytes)  |       |       |      |  |
| file (128 bytes)  |       |       |      |  |
| options           |       |       |      |  |

# 5.4 LE NAT OBJECTIFS

- Network Address Translation
  - Traduction d'adresse
    - o Ici Source
    - Mais peut aussi être faite sur la destination
- o Objectifs du sNAT dans un home network
  - Pouvoir permettre à des machines du réseau
  - De communiquer avec Internet
  - Alors qu'elles sont en adressage privé

# 5.4 LE NAT COMMENT?

- Transformation à la volée des adresses sources
  - Aussi appelé la Mascarade (*Masquerade*)
  - Mais
    - o besoin de tables de correspondance
    - o besoin d'une adresse publique
  - Sous linux
    - Iptables –t nat
- Mais seulement les adresses, est-ce suffisant?
  - Illustration via l'exemple de la box

# 5.4 NAT BILAN

### Avantages

- Permet d'augmenter le nombre
  - o d'utilisateurs d'Internet
  - o d'équipements dans Internet
- Quid d'une forme de sécurité?
  - C'est plutôt faux

### Désavantages

- Middlebox
  - Pas de communication entrante
  - o Besoin de mécanismes ou d'ouvertures de ports fixes
- Complexité

# 5.5 LE DNS OBJECTIFS

- o Problème: Mémoriser des adresses IP
  - Analogie numéro de téléphone
  - L'être humain préfère les noms
- Correspondance?
  - Statique
    - Fichier host ou host.txt
    - o Problème de la maintenance de la liste
  - Annuaire dynamique
    - o Centralisé ou distribué?
- o Domain Name Server/System

### GÉNÉRALITÉS

- Annuaire distribué
  - nom symbolique <-> adresse IP
  - chaque domaine gère sa partie
- Définition
  - d'un protocole de communication [RFC 1034] [RFC 1035]
  - d'une politique de délégation [RFC 1591]
  - RFC 6895 et des centaines...
  - https://www.isc.org/community/rfcs/dns/
- o Fondé sur
  - Une organisation de l'espace
  - Un système de serveurs hiérarchisés
  - De nombreux clients appelés resolver
- Deux parties
  - Un protocole de communication
  - Une politique de répartition des noms de domaines

# 5.5 LE DNS ORGANISATION DE L'ESPACE DES NOMS (I)



### ORGANISATION DE L'ESPACE DES NOMS (II)

- Fully Qualified Domain Name
  - www.enseeiht.fr. = Nom absolu
  - www = hôte (serveur web)
  - Profondeur maximale = 127 niveaux
  - 255 caractères max
- Notion de zone
  - Ex: enseeiht.fr
  - Peut être subdivisée (bde.enseeiht.fr)
  - Deux ou plus serveurs de noms DNS par zone
    - Primaire
    - Secondaire(s)

#### Serveurs de noms DNS

- Les Serveurs Racines
  - 13 serveurs racine au monde de a.root-servers.net » à « m.root-servers.net »
  - Gérés par 12 entités
  - Et répartis physiquement sur beaucoup de serveurs (virtualisation)
  - <a href="http://www.root-servers.org/">http://www.root-servers.org/</a>
  - Un serveur DNS racine comme k-root reçoit plus de 40000 requêtes à la seconde (<a href="https://www.ripe.net/analyse/dns/k-root/#stats">https://www.ripe.net/analyse/dns/k-root/#stats</a>)
- Serveurs de domaine
  - o Autorité sur une zone
  - o Déclaré au serveur de domaine directement supérieur
- Logiciel
  - Plus commun = BIND (<u>Berkeley Internet Name Domain</u>)

#### RESOLVERS

### Définition

• Processus client qui contacte les serveurs de noms

### o Rôles

- Dialogue avec le serveur de nom
- Interprétation des réponses
- Restituer l'information au logiciel appelant
- Mise en place d'un système de cache local

### LE PROTOCOLE (I)

# Messages

- Questions
- Réponses
- Utilisation d'UDP
- Port d'écoute 53

# Principe

• Renvoyer le message au serveur DNS le plus apte à répondre

### • Deux modes d'interrogation des serveurs

- Itératif
  - o Envoie de l'info la plus détaillée dont le serveur dispose
- Récursif
  - Serveur prend en charge la suite des requêtes
- Dépendant du serveur interrogé
  - o Notion de serveur maître
  - Couplage des modes

# LE PROTOCOLE (II)



# 5.5 LE DNS LES MESSAGES

| identification      | flags          |  |  |
|---------------------|----------------|--|--|
| nb of questions     | nb of answers  |  |  |
| nb of authority RRs | nb of add. RRs |  |  |
| questions           |                |  |  |
| answers             |                |  |  |
| authority           |                |  |  |
| additionnal         |                |  |  |

#### EOT

### 5.5 LE DNS

#### LES MESSAGES

Q opcode AA TC RI RA 0 rcode

- $\circ$  Q : 0 = requête
- $\circ$  opcode 0 = standard, 1 = inverse
- AA = authoritative
- $\circ$  TC = truncated
- RD = recursion desired
- RA = recursion available

# 5.5 LE DNS LES MESSAGES

name
query type class

3 w w w 8 e n s e e i h t 2 f r o

5.5 LE DNS LES QUESTIONS

Query type Signification

A Adresse IP

NS Serveur de nom

CNAME Nom canonique

PTR Noms d'une adresse

HINFO Informations

MX Serveur mail

Les Enregistrements (Ressource Record)

| domain name |       |  |
|-------------|-------|--|
| type        | class |  |
| ttl         |       |  |
| data length |       |  |
| data        | •     |  |

# 1.2 – Domain Name Server

### DNS et sécurité

- Point critique d'Internet
  - DNS permet de faire association
    - o nom symbolique
    - Adresse IP
  - Faux DNS = Fausse réponse
- Points faibles
  - Aucune préoccupation de sécurité
  - Interception et forge
  - Déni de service
- Solutions
  - DNSSEC
  - Ne pas se référer à n'importe quel DNS!