Вопросы для подготовки к экзамену по физике

Май 2025

Ответы на вопросы

1. Основная задача кинематики. Способы задания движения. Кинематические уравнения движения.

Основная задача кинематики: Описать движение тел без учета причин, его вызывающих, определяя положение, скорость и ускорение как функции времени.

Способы задания движения:

- *Координатный*: через зависимости координат от времени x(t), y(t), z(t).
- Векторный: через радиус-вектор $\vec{r}(t)$.
- $\it Ecmecmsehhhi\ddot{u}$: через траекторию, закон движения $\it s(t)$ и начало отсчета.

Кинематические уравнения (для равноускоренного движения):

$$x = x_0 + v_0 t + \frac{1}{2} a t^2,$$

$$v = v_0 + a t,$$

$$v^2 = v_0^2 + 2a(x - x_0).$$

2. Скорость и ускорение. Координатный и векторный способы задания.

Скорость: Производная радиус-вектора по времени, $\vec{v}=\frac{d\vec{r}}{dt}$. В координатной форме: $v_x=\frac{dx}{dt},\,v_y=\frac{dy}{dt},\,v_z=\frac{dz}{dt}$. Ускорение: Производная скорости по времени, $\vec{a}=\frac{d\vec{v}}{dt}=\frac{d^2\vec{r}}{dt^2}$. В координат-

ной форме: $a_x=\frac{dv_x}{dt}$, $a_y=\frac{dv_y}{dt}$, $a_z=\frac{dv_z}{dt}$. Векторный способ: \vec{v} , \vec{a} задаются как векторы с компонентами.

Координатный способ: через проекции на оси координат.

3. Движение точки по окружности. Нормальное и тангенциальное ускорения.

Движение по окружности: Точка движется по окружности радиусом R с

угловой скоростью $\omega=\frac{d\phi}{dt}$. Тангенциальное ускорение: $a_{\tau}=\frac{dv}{dt}=R\frac{d\omega}{dt}=R\alpha$, где α — угловое ускорение.

Нормальное ускорение: $a_n=\frac{v^2}{R}=\omega^2 R$, направлено к центру окружности. Полное ускорение: $\vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$, где $a = \sqrt{a_{\tau}^{2} + a_{n}^{2}}$.

4. Поступательное и вращательное движение абсолютно твердого тела. Угол поворота, угловая скорость и угловое ускорение.

Поступательное движение: Все точки тела движутся одинаково (траектории и скорости совпадают).

Вращательное движение: Тело вращается вокруг оси, каждая точка описывает окружность.

Угол поворота: ϕ (рад), определяет поворот тела.

Угловая скорость: $\omega = \frac{d\phi}{dt}$ (рад/с). Угловое ускорение: $\alpha = \frac{d\omega}{dt}$ (рад/с²). Уравнения для равноускоренного вращения:

$$\phi = \phi_0 + \omega_0 t + \frac{1}{2} \alpha t^2,$$

$$\omega = \omega_0 + \alpha t.$$

- 5. Взаимосвязь линейных и угловых кинематических величин.
 - Линейное перемещение: $s = R\phi$.
 - Линейная скорость: $v = R\omega$.
 - Линейное ускорение: $a_{\tau} = R\alpha$, $a_n = R\omega^2$.

R — расстояние от оси вращения. Эти формулы связывают параметры точки на вращающемся теле с угловыми характеристиками.

- 6. Законы Ньютона. Принцип относительности Галилея. Законы Ньютона:
 - (а) Тело сохраняет состояние покоя или равномерного прямолинейного движения, пока внешняя сила не изменит его ($\vec{F} = 0 \implies \vec{v} = \text{const}$).
 - (b) Ускорение пропорционально силе: $\vec{F} = m\vec{a}$.
 - (c) Действие равно противодействию: $\vec{F}_{12} = -\vec{F}_{21}$.

Принцип относительности Галилея: Законы механики одинаковы во всех инерциальных системах отсчета (ИСО).

7. Система материальных точек. Внутренние и внешние силы. 2-й закон Ньютона для системы материальных точек. Закон сохранения импульca.

Система материальных точек: Совокупность взаимодействующих точек. Внутренние силы: Силы взаимодействия между точками системы (суммируются в нуль).

Внешние силы: Силы, действующие извне.

2-й закон Ньютона для системы: $\sum ec{F}_{ exttt{BHeIII}} = rac{dec{P}}{dt}$, где $ec{P} = \sum m_i ec{v}_i$ — импульс системы.

3акон сохранения импульса: Если $\sum \vec{F}_{\mathtt{BHeIII}} = 0$, то $\vec{P} = \mathtt{const.}$

8. Работа и мощность.

Pабота силы: $A=\vec{F}\cdot\vec{s}\cos\alpha$, где α — угол между \vec{F} и \vec{s} . Единица: Дж. Мощность: $P=\frac{dA}{dt}=\vec{F}\cdot\vec{v}\cos\alpha$. Единица: Вт.

9. Кинетическая энергия. Вывод теоремы об изменении кинетической энер-

Кинетическая энергия: $K = \frac{1}{2} m v^2$.

Теорема об изменении кинетической энергии: Работа равна изменению кинетической энергии.

Вывод: Из $\vec{F}=m\vec{a}$, умножим на $d\vec{s}$: $\vec{F}\cdot d\vec{s}=m\vec{a}\cdot d\vec{s}$. Так как $\vec{a}\cdot d\vec{s}=\vec{v}\cdot d\vec{v}$, то:

$$A = \int \vec{F} \cdot d\vec{s} = \int m\vec{v} \cdot d\vec{v} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = \Delta K.$$

10. Потенциальная энергия. Взаимосвязь силы и потенциальной энергии.

Потенциальная энергия: Энергия, зависящая от положения. Примеры: U =mgh (гравитация), $U = \frac{1}{2}kx^2$ (упругость).

Взаимосвязь: Сила — градиент потенциальной энергии с обратным знаком: $\vec{F} = -\nabla U$.

11. Консервативные и неконсервативные силы. Их характеристики.

Консервативные силы: Работа не зависит от траектории (гравитация, упругость). Характеристики: $U = \text{const}, \oint \vec{F} \cdot d\vec{l} = 0$.

Неконсервативные силы: Работа зависит от траектории (трение). Энергия рассеивается.

12. Закон сохранения энергии в механике. Теорема об изменении механической энергии.

Закон сохранения энергии: В замкнутой системе с консервативными силами E = K + U =const.

Теорема: Работа неконсервативных сил равна изменению полной энергии: $A_{\text{HeKOHC}} = \Delta(K+U)$.

13. Момент импульса. Момент силы.

Момент импульса: $\vec{L}=\vec{r}\times\vec{p}=\vec{r}\times m\vec{v}$. Единица: кг·м²/с.

Mомент силы: $\vec{M} = \vec{r} \times \vec{F}$. Единица: Н \cdot м. Связь: $\frac{d\vec{L}}{dt} = \vec{M}$.

14. Основное уравнение динамики вращательного движения. Закон сохранения момента импульса.

3

Основное уравнение: $M=I\alpha$, где I — момент инерции.

Закон сохранения: Если $\vec{M}_{\mathtt{BHeIII}} = 0$, то $\vec{L} = I\omega = \mathtt{const.}$

15. Момент инерции и его свойства.

Момент инерции: $I = \sum m_i r_i^2$ или $I = \int r^2 dm$.

Свойства:

- Зависит от распределения массы и оси вращения.
- Аддитивен: $I_{\text{сумм}} = I_1 + I_2 + \dots$
- Теорема Штейнера: $I = I_0 + md^2$.

16. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульса твердого тела.

Основное уравнение: $M = I\alpha$.

Закон сохранения: $I\omega=\mathrm{const}\;\mathrm{при}\;\vec{M}_{\mathrm{внеш}}=0.$

17. Работа силы и кинетическая энергия тела при вращении.

Работа: $A = M\phi$.

Кинетическая энергия: $K = \frac{1}{2}I\omega^2$.

Работа равна изменению кинетической энергии: $A = \Delta K$.

18. Свободные колебания. Характеристики и уравнение колебаний.

Свободные колебания: Колебания без внешнего воздействия.

Характеристики: Амплитуда (*A*), период (*T*), частота ($\nu = \frac{1}{T}$), циклическая частота ($\omega = 2\pi \nu$).

Уравнение: $x = A\cos(\omega t + \phi_0)$. Для пружины: $\omega = \sqrt{\frac{k}{m}}$.

19. Затухающие колебания. Характеристики затухающих колебаний.

Затухающие колебания: Колебания с уменьшающейся амплитудой.

Уравнение: $x=A_0e^{-\delta t}\cos(\omega't+\phi_0)$, где $\omega'=\sqrt{\omega_0^2-\delta^2}$.

Xарактеристики: Логарифмический декремент $\lambda = \ln \frac{A_n}{A_{n+1}} = \delta T$, добротность $Q = \frac{\pi}{\lambda}$.

20. Вынужденные колебания. Резонанс.

Вынужденные колебания: Колебания под действием внешней силы.

Уравнение: $x = A\cos(\omega t + \phi)$.

Резонанс: Максимальная амплитуда при $\omega \approx \omega_0$.

21. Понятие волны. Характеристики волны. Продольные и поперечные волны.

Волна: Распространение колебаний в среде.

Характеристики: Длина волны (λ), частота (ν), период (T), скорость ($v=\lambda \nu$), амплитуда (A).

Продольные волны: Колебания вдоль направления распространения (звук). Поперечные волны: Колебания перпендикулярно направлению (волны на струне).

22. Уравнения плоской и сферической волны. Волновое уравнение.

Плоская волна: $u(x,t) = A\cos(\omega t - kx + \phi_0)$, где $k = \frac{2\pi}{\lambda}$.

Сферическая волна: $u(r,t)=\frac{A}{r}\cos(\omega t-kr+\phi_0)$. Волновое уравнение: $\frac{\partial^2 u}{\partial t^2}=v^2\frac{\partial^2 u}{\partial x^2}$.

23. Волновой перенос энергии и его характеристики: поток, плотность потока, интенсивность.

Поток энергии: Энергия через поверхность за единицу времени.

Плотность потока: $\Phi = \rho v A^2 \omega^2$.

Интенсивность: $I = \frac{1}{2} \rho v A^2 \omega^2$. Единица: Вт/м².

- 24. Постулаты Эйнштейна. Преобразование длины и интервалов времени. Постулаты Эйнштейна:
 - (а) Законы физики одинаковы во всех ИСО.

(b) Скорость света $c={\sf const.}$

Преобразование длины: $L=L_0\sqrt{1-rac{v^2}{c^2}}$. Преобразование времени: $\Delta t=rac{\Delta t_0}{\sqrt{1-rac{v^2}{c^2}}}$.

25. Релятивистская динамика.

Релятивистский импульс: $\vec{p} = \frac{m\vec{v}}{\sqrt{1-\frac{v^2}{c^2}}}$.

2-й закон Ньютона: $\vec{F}=rac{dec{p}}{dt}$. Релятивистская масса: $m_{
m pe\pi}=rac{m}{\sqrt{1-rac{v^2}{c^2}}}$.

26. Энергия релятивистской частицы. Взаимосвязь массы и энергии.

Полная энергия: $E=\gamma mc^2$, где $\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}.$

Кинетическая энергия: $K = (\gamma - 1)^{\text{v}} c^{c}$.

Энергия покоя: $E_0 = mc^2$. Взаимосвязь: $E = m_{\rm pen}c^2$.

27. Термодинамические параметры. Понятие идеального газа. Уравнение состояния идеального газа.

Параметры: Давление (p), объем (V), температура (T), количество вещества (n).

Идеальный газ: Молекулы не взаимодействуют, кроме упругих столкновений.

 $\it Уравнение состояния: pV = nRT$, где $\it R = 8.31\,$ Дж/(моль·К).

28. Опытные газовые законы.

- Бойля-Мариотта: pV = const (T = const).
- Гей-Люссака: $\frac{V}{T}=$ const (p= const).
- Шарля: $\frac{p}{T}=\mathrm{const}$ ($V=\mathrm{const}$).
- Авогадро: Равные объемы содержат одинаковое число молекул.

29. Внутренняя энергия идеального газа. Распределение энергии по степеням свободы молекулы.

Внутренняя энергия: $U=\frac{f}{2}nRT$, где f — число степеней свободы. Распределение: На каждую степень свободы — $\frac{1}{2}kT$.

- Одноатомный газ: f = 3.
- Двухатомный газ: f = 5.
- Многоатомный газ: $f \ge 6$.

30. Работа в термодинамике. Работа при различных процессах. Теплообмен. Первое начало термодинамики.

5

Pабота газа: $A = \int p dV$.

- Изотермический: $A=nRT\ln rac{V_2}{V_1}.$
- Изобарический: $A = p(V_2 V_1)$.

• *Изохорический*: A = 0.

Tеплообмен: $Q = \Delta U + A$. Первое начало: $\Delta U = Q - A$.

- 31. Применение первого начала термодинамики к изопроцессам.
 - Изотермический ($T=\mathrm{const}$): $\Delta U=0$, $Q=A=nRT\ln\frac{V_2}{V_2}$.
 - Изобарический (p= const): $\Delta U=\frac{f}{2}nR\Delta T$, $A=p(V_2-V_1)$, $Q=\Delta U+A$.
 - Изохорический (V= const): A=0, $\Delta U=Q=rac{f}{2}nR\Delta T$.
 - Адиабатический (Q = 0): $\Delta U = -A$.
- 32. Теплоемкость идеального газа. Молярная и удельная теплоемкости. Формула Майера.

Молярная теплоемкость:

- При постоянном объеме: $C_V = \frac{f}{2} R$.
- При постоянном давлении: $C_p = C_V + R$.

Удельная теплоемкость: $c = \frac{C}{\mu}$. Формула Майера: $C_p - C_V = R$.

33. Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе.

Адиабатический процесс: Q=0, $pV^{\gamma}=\mathrm{const}$, где $\gamma=\frac{C_p}{C_V}$. Уравнение Пуассона: $pV^{\gamma}=\mathrm{const}$, $TV^{\gamma-1}=\mathrm{const}$, $p^{1-\gamma}T^{\gamma}=\mathrm{const}$. Работа газа: $A=-\Delta U=\frac{p_1V_1-p_2V_2}{\gamma-1}$.

34. Цикл. Тепловые и холодильные машины.

Цикл: Процесс, возвращающий систему в исходное состояние.

 $ag{Tenлoвaя}$ машина: $ilde{ ext{K}\Pi} ext{Д}$ $ilde{\eta}=rac{\dot{A}}{Q_1}=1-rac{Q_2}{Q_1}$.

Холодильная машина: Коэффициент эффективности $\varepsilon = \frac{Q_2}{\Lambda}$.

35. Цикл Карно. Вывод формулы для КПД цикла Карно. Теорема Карно.

Цикл Карно: Две изотермы и две адиабаты.

 $K\Pi A : \eta = 1 - \frac{T_2}{T_1}$.

Вывод: Работа $A=Q_1-Q_2$, $Q_1=nRT_1\ln\frac{V_2}{V_1}$, $Q_2=nRT_2\ln\frac{V_4}{V_3}$. Так как $\frac{V_2}{V_1}=\frac{V_4}{V_3}$, то $\eta = 1 - \frac{T_2}{T_1}$.

Теорема Карно: КПД цикла Карно максимален.

36. Второе и третье начала термодинамики.

Второе начало: Тепло не переходит от холодного тела к горячему без работы. $\oint \frac{dQ}{T} \leq 0$.

Tретье начало: Энтропия $S \to 0$ при $T \to 0$ К.

37. Концепция энтропии. Статистическая природа второго начала термодинамики.

Энтропия: Мера беспорядка, $S=\int \frac{dQ_{\rm ofp}}{T}.$ Статистическая природа: $S=k\ln\Omega$, где Ω — число микросостояний. Второе начало отражает стремление к максимуму Ω .

38. Формула Больцмана. Статистический смысл энтропии.

Формула Больцмана: $S=k\ln\Omega$, где $k=1.38\cdot 10^{-23}$ Дж/К.

Статистический смысл: Энтропия измеряет степень беспорядка системы.

39. Первое начало термодинамики для систем с переменным числом частиц. Химический потенциал.

Первое начало: $dU=dQ-dA+\mu dN$, где μ — химический потенциал. Химический потенциал: $\mu=\left(\frac{\partial U}{\partial N}\right)_{S,V}$. Единица: Дж/моль.

40. Реальные газы. Уравнение Ван-дер-Ваальса.

Реальные газы: Учитывают межмолекулярные взаимодействия.

Уравнение Ван-дер-Ваальса: $(p + \frac{a}{V^2})(V - b) = nRT$, где a — притяжение молекул, b — объем молекул.

41. Внутренняя энергия реального газа. Эффект Джоуля-Томпсона.

Внутренняя энергия: $U = \frac{f}{2} nRT - \frac{an^2}{V}$. Эффект Джоуля-Томпсона: Изменение температуры при дросселировании.

Коэффициент: $\mu_{JT} = \left(\frac{\partial T}{\partial p}\right)_{IJ}$

42. Электрический заряд. Дискретность заряда. Закон сохранения заряда. Закон Кулона.

Электрический заряд: Свойство частиц. Единица: Кл.

Дискретность: Заряд кратен $e = 1.6 \cdot 10^{-19}$ Кл.

Закон сохранения: Суммарный заряд замкнутой системы сохраняется.

Закон Кулона: $F = k \frac{q_1 q_2}{r^2}$, где $k = \frac{1}{4\pi \varepsilon_0}$.

43. Напряженность электрического поля. Поле точечного заряда. Принцип суперпозиции электрических полей.

 $\vec{E} = \frac{\vec{F}}{q}$. Единица: В/м.

Поле точечного заряда: $E = \frac{kq}{\pi^2}$

Принцип суперпозиции: $\vec{E} = \sum \vec{E_i}$.

44. Теорема Гаусса. Расчет поля заряженной сферы с использованием теоремы Гаусса.

Теорема Гаусса: $\oint \vec{E} \cdot d\vec{S} = \frac{Q}{arepsilon_0}$.

Поле заряженной сферы:

- Вне сферы (r > R): $E = \frac{kQ}{r^2}$.
- Внутри проводящей сферы (r < R): E = 0.
- Внутри диэлектрической сферы: $E=\frac{kQr}{R^3}$.
- 45. Работа сил электрического поля. Потенциал. Разность потенциалов. Принцип суперпозиции.

Pабота: $A = q(U_1 - U_2)$. Потенциал: $U = \frac{W}{q}$. Единица: В.

Разность потенциалов: $\Delta U = -\int \vec{E} \cdot d\vec{l}$. Принцип суперпозиции: $U = \sum U_i$, где $U_i = \frac{kq_i}{r_i}$.

46. Связь между потенциалом и напряжённостью электрического поля. Работа вдоль замкнутого контура и циркуляция вектора напряжённости

7

электростатического поля.

 \pmb{C} вязь: $\vec{E} = -\nabla U$.

Работа по замкнутому контуру: $\oint \vec{E} \cdot d\vec{l} = 0$.

Циркуляция: $\oint \vec{E} \cdot d\vec{l} = 0$.

47. Электрическая ёмкость. Конденсаторы. Ёмкость плоского конденсато-

Электрическая ёмкость: $C=rac{Q}{U}$. Единица: Ф.

Конденсаторы: Устройства для накопления заряда.

Ёмкость плоского конденсатора: $C = \frac{\varepsilon_0 \varepsilon S}{d}$.

48. Энергия конденсатора. Плотность энергии электрического поля.

Энергия конденсатора: $W=\frac{1}{2}CU^2=\frac{1}{2}\frac{Q^2}{C}$. Плотность энергии: $w=\frac{1}{2}\varepsilon_0\varepsilon E^2$.

49. Электрический диполь. Дипольный момент. Диполь во внешнем электрическом поле.

Электрический диполь: Система зарядов +q и -q на расстоянии l.

Дипольный момент: $\vec{p} = q\vec{l}$.

 $\vec{\mathcal{J}}$ иполь в поле: Энергия $\vec{U} = -\vec{p}\cdot\vec{E}$, момент силы $\vec{M} = \vec{p} \times \vec{E}$.

50. Поляризация диэлектриков. Виды поляризации и их особенности.

Поляризация: Смещение зарядов, $\vec{P} = \frac{\sum \vec{p}}{V}$.

Виды:

- Электронная: Смещение электронных облаков.
- Ионная: Смещение ионов.
- Ориентационная: Поворот диполей.

51. Сегнетоэлектрики и их свойства. Гистерезис. Домены. Точка Кюри.

Сегнетоэлектрики: Диэлектрики с самопроизвольной поляризацией.

Гистерезис: Зависимость поляризации от поля с запаздыванием.

Домены: Области с одинаковой ориентацией диполей.

Точка Кюри: Температура, выше которой свойства теряются.

52. Электрический ток. Его характеристики и условия существования.

Электрический ток: Упорядоченное движение зарядов, $I = \frac{dq}{dt}$.

Характеристики: Сила тока (*I*), плотность тока ($j = \frac{I}{S}$).

Условия: Наличие свободных зарядов и электрического поля.

53. Законы Ома в интегральной и дифференциальной формах.

Интегральная форма: $I = \frac{U}{R}$.

Дифференциальная форма: $\vec{j} = \sigma \vec{E}$, где σ — проводимость.

54. Работа и мощность тока. Закон Джоуля-Ленца.

Pабота тока: A = IUt.

Мощность: $P = IU = I^2R$.

 $\emph{Закон}$ Джоуля-Ленца: $Q=I^2Rt$, в дифференциальной форме: $q=
ho j^2t$.

55. Магнитное поле и его источники. Магнитная индукция.

Магнитное поле: Создается токами или магнитами.

Источники: Токи, движущиеся заряды, магнитные моменты. Магнитная индукция: \vec{B} , единица: Тл. Сила Лоренца: $\vec{F} = q\vec{v} \times \vec{B}$.

56. Принцип суперпозиции магнитных полей. Закон Био-Савара.

Принцип суперпозиции: $\vec{B} = \sum_{i} \vec{B}_{i}$. Закон Био-Савара: $d\vec{B} = \frac{\mu_{0}}{4\pi} \frac{I d\vec{l} \times \vec{r}}{r^{3}}$, где $\mu_{0} = 4\pi \cdot 10^{-7} \, \Gamma$ н/м.

57. Закон полного тока. Магнитное поле соленоида.

Закон полного тока: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{CKB}}$.

Магнитное поле соленоида: $B = \mu_0 nI$, где $n = \frac{N}{I}$.

58. Сила Ампера. Взаимодействие прямолинейных проводников с током.

Сила Ампера: $d\vec{F} = Id\vec{l} \times \vec{B}$. Для прямого проводника: $F = IlB \sin \theta$. Взаимодействие проводников: $F = \frac{\mu_0 I_1 I_2 l}{2\pi d}$.

59. Сила Лоренца. Движение заряженных частиц в магнитном поле.

Сила Лоренца: $\vec{F} = q\vec{v} \times \vec{B}$.

Движение:

- Перпендикулярно \vec{B} : окружность, $R = \frac{mv}{qB}$.
- Параллельно \vec{B} : прямолинейное.
- Под углом: спираль.
- 60. Магнитный поток. Потокосцепление. Теорема Гаусса для магнитного поля.

Mагнитный nоток: $\Phi = BS \cos \theta$. Единица: Bб.

Потокосцепление: $\Psi = N\Phi$.

Теорема Гаусса: $\oint \vec{B} \cdot d\vec{S} = 0$.

61. Магнитные моменты атомов. Орбитальный и спиновый магнитные моменты.

Магнитный момент: $\vec{\mu} = I\vec{S}$.

Oрбитальный момент: $\mu_{ ext{cпин}} = rac{evr}{2}$. Спиновый момент: $\mu_{ ext{cпин}} = rac{ear{h}}{2m_e}$.

62. Намагниченность. Магнитные восприимчивость и проницаемость сре-

Намагниченность: $\vec{M} = \frac{\sum \vec{\mu}}{V}$. Восприимчивость: $\chi = \frac{M}{H}$.

Проницаемость: $\mu = \mu_0(1+\chi)$, где $\vec{B} = \mu \vec{H}$.

63. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.

Электромагнитная индукция: ЭДС при изменении магнитного потока.

Закон Фарадея: $\mathcal{E} = -\frac{d\Phi}{dt}$.

Правило Ленца: Индукционный ток противодействует изменению потока.

64. Явление самоиндукции. Индуктивность. Индуктивность длинного соленоида.

Самоиндукция: ЭДС от изменения собственного тока.

Uндуктивность: $L=\frac{\Phi}{I}$. Единица: Гн.

Индуктивность соленоида: $L = \mu_0 n^2 Sl$.

65. Энергия катушки индуктивности с током. Энергия и плотность энергии магнитного поля.

Энергия катушки: $W = \frac{1}{2}LI^2$. Плотность энергии: $w=\frac{1}{2}\frac{B^2}{\mu_0}$.

66. Явление интерференции. Когерентные волны. Интенсивность света при наложении двух когерентных волн.

Интерференция: Усиление или ослабление волн.

Когерентные волны: Одинаковая частота, постоянная разность фаз.

Интенсивность: $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \Delta \phi$.

67. Расчет интерференционной картины от двух когерентных источников.

Разность хода: $\Delta = d \sin \theta$.

Условие максимума: $\Delta = m\lambda$.

Условие минимума: $\Delta = (m + \frac{1}{2})\lambda$.

Положение максимумов: $y_m = \frac{2}{m} \frac{m\lambda L}{d}$.

68. Интерференция в тонких пленках. Полосы равного наклона и равной толщины. Кольца Ньютона.

Интерференция: Наложение волн от границ пленки. $\Delta = 2nd\cos\theta \pm \frac{\lambda}{2}$.

Полосы равного наклона: Разный угол падения.

Полосы равной толщины: Изменение толщины.

Кольца Ньютона: Радиус $r_m = \sqrt{m\lambda R}$.

69. Явление дифракции. Условия наблюдения. Принцип Гюйгенса-Френеля.

Дифракция: Огибание препятствий.

Условия: Размер препятствия $\approx \lambda$.

Принцип Гюйгенса-Френеля: Каждая точка фронта — источник вторичных волн.

70. Дифракция на щели. Условие максимумов и минимумов.

Для щели шириной a:

Условие минимумов: $a \sin \theta = m\lambda$.

Условие максимумов: Центральный при $\theta = 0$.

71. Дифракционная решетка. Условие главных максимумов. Применение дифракционной решетки. Угловая дисперсия и разрешающая способность.

Условие максимумов: $d \sin \theta = m\lambda$.

Применение: Разложение света в спектр.

Угловая дисперсия: $D=\frac{d\theta}{d\lambda}=\frac{m}{d\cos\theta}$. Разрешающая способность: $R=\frac{\lambda}{\Delta\lambda}=Nm$.

72. Поляризация света. Естественный и поляризованный свет. Степень поляризации света.

Поляризация: Ориентация вектора \vec{E} .

Естественный свет: Неполяризованный.

Поляризованный свет: \vec{E} в одной плоскости. Степень поляризации: $P = \frac{I_{\text{пол}} - I_{\text{непол}}}{I_{\text{пол}} + I_{\text{непол}}}$.

73. Двойное лучепреломление. Закон Малюса. Призма Николя.

Двойное лучепреломление: Расщепление луча на обыкновенный и необыкновенный.

Закон Малюса: $I = I_0 \cos^2 \theta$.

Призма Николя: Устройство для получения поляризованного света.

74. Природа теплового излучения и его равновесность. Характеристики теплового излучения.

Природа: Излучение от теплового движения.

Равновесность: Равновесие излучения с веществом.

Характеристики: Спектральная плотность (u_{ν}) , светимость $(R = \sigma T^4)$.

75. Законы теплового излучения.

- Стефана-Больцмана: $R = \sigma T^4$, $\sigma = 5.67 \cdot 10^{-8} \, \mathrm{BT/(m^2 \cdot K^4)}$.
- Buha: $\lambda_{\text{max}}T = b$, $b = 2.9 \cdot 10^{-3}$ M·K.
- *Kupxroфa*: $\frac{\varepsilon_{\nu}}{a_{\nu}} = u_{\nu}(T)$.

76. Испускательная способность абсолютно черного тела. Гипотеза План-

Испускательная способность: $u_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT}-1}$.

Гипотеза Планка: Энергия излучается квантами: $E = h\nu$, $h = 6.63 \cdot 10^{-34}$ Дж·с.

77. Внешний фотоэффект и его законы. Уравнение Эйнштейна.

Внешний фотоэффект: Выбивание электронов светом.

Законы:

- (а) Число фотоэлектронов пропорционально интенсивности.
- (b) Энергия зависит от частоты.
- (c) Существует пороговая частота ν_0 .

Уравнение Эйнштейна: $h\nu = A + \frac{1}{2}mv_{\max}^2$.

78. Квантовая гипотеза света. Фотоны. Энергия, масса и импульс фотона.

Квантовая гипотеза: Свет состоит из фотонов.

Энергия фотона: $E = h\nu$.

Macca: $m_0 = 0$, $m = \frac{h\nu}{c^2}$. *Импульс*: $p = \frac{h\nu}{c} = \frac{h}{\lambda}$.

79. Опыты Резерфорда. Закономерности спектров излучения атома водорода. Дискретность энергетических уровней в атоме.

Опыты Резерфорда: Рассеяние α -частиц, ядерная модель атома.

Спектры водорода: $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$, $R = 1.097 \cdot 10^7 \, \mathrm{M}^{-1}$. Дискретность: $E_n = -\frac{13.6}{n^2} \, \mathrm{эB}$.

80. Атом водорода и его спектр излучения по теории Бора.

Теория Бора:

- (a) Электроны на стационарных орбитах: $L = n\bar{h}$.
 - (b) Излучение при переходе: $h\nu = E_n E_m$.

Энергия уровней: $E_n = -\frac{13.6}{n^2}$ эВ.

81. Уравнение Шрёдингера для атома водорода. Собственные значения энергии электрона в атоме водорода. Квантовые числа.

Уравнение Шрёдингера: $-\frac{\dot{h}^2}{2m_e}\nabla^2\psi - \frac{e^2}{4\pi\varepsilon_0 r}\psi = E\psi$. Энергия: $E_n = -\frac{13.6}{n^2}$ эВ.

Квантовые числа:

- Главное (п): определяет энергию.
- Орбитальное (l): 0 < l < n 1.
- Магнитное (m_l): $-l \le m_l \le l$.
- Спиновое (m_s): $\pm \frac{1}{2}$.

82. Спонтанное и вынужденное излучение. Лазеры.

Спонтанное излучение: Самопроизвольный переход с испусканием фото-

Вынужденное излучение: Переход под действием фотона, когерентное излучение.

Лазеры: Используют вынужденное излучение и инверсию населённости.

83. Получение и природа рентгеновских лучей. Тормозное и характеристическое излучение. Закон Мозли.

Получение: Ускоренные электроны ударяются о мишень.

Тормозное излучение: Непрерывный спектр.

Характеристическое излучение: Линейчатый спектр.

Закон Мозли: $\sqrt{\nu} = a(Z - b)$.

84. Атомное ядро. Строение ядер. Модели ядра.

Строение: Протоны и нейтроны (нуклоны).

Модели:

- Капельная: Ядро как капля жидкости.
- Оболочечная: Нуклоны на энергетических уровнях.
- Коллективная: Комбинация капельной и оболочечной.

85. Дефект массы. Энергия связи атомного ядра.

Де $\hat{m{\phi}}$ ект массы: $\Delta m = Z m_p + (A-Z) m_n - M$.

Энергия связи: $E_{\rm cb} = \Delta m c^2$.

86. Радиоактивность. α - и β -распад. γ -излучение. Закон радиоактивного распада.

Радиоактивность: Самопроизвольное испускание частиц или излучения.

 α -распад: Испускание ядра ${}_{2}^{4}$ Не.

 β -распад: Испускание электрона (β^-) или позитрона (β^+).

 γ -излучение: Испускание фотона.

Закон распада: $N = N_0 e^{-\lambda t}$, $T_{1/2} = \frac{\ln 2}{\lambda}$.

87. Ядерные реакции. Энергетический выход ядерной реакции. Ядерные реакции деления.

Ядерные реакции: Изменение состава ядра.

Энергетический выход: $Q = (M_{\text{исх}} - M_{\text{кон}})c^2$.

Реакции деления: Деление тяжелого ядра (235 U) на два легче, $Q \approx 200\,\mathrm{M}$ эВ.