1.1. given
$$Q_{A} = \begin{cases} O & O \leq x \leq 1 \\ Sin(b(x-1)) & 1 \leq x \leq 2 \end{cases}$$

1.2. $Q = O & O = V(4) = O$

(b) Standard S.L form: $\frac{d}{dx}(py) + qy + \lambda^{2}wy = O$

Py" + $qy + \lambda^{2}wy = O$

Py" + $qy + \lambda^{2}wy = O$

Po solve $y = A \sin(\lambda x) + B \cos(\lambda x)$

BC1 $y(0) = A \sin(0) + B \cos(0) = B = O ::B = C$

So the solution simplifies to $y = A \sin(\lambda x)$
 $y'(x) = A \lambda \cos(\lambda x)$

B.c. $2y'(4) = A \lambda \cos(\lambda x)$

B.c. $2y'(4) = A \lambda \cos(\lambda x)$

Odd multiples of T makes cosine = O

Odd multiples of T makes cosine = O
 $A = (2n-1) \frac{\pi}{2}$

Eigenfunction $Y_{n}(x) = \sin(\frac{(2n-1)\pi x}{8})$
 $Y_{n} = \sin(\frac{(2n-1)\pi x}{8})$
 $Y_{n} = \sin(\frac{(2n-1)\pi x}{8})$
 $Y_{n} = \sin(\frac{(2n-1)\pi x}{8})$

$$y'' + \lambda^2 y = 0$$
 $y(0) = y'(4) = 0$

1. a. c

$$Q_{(x)} = \sum_{i=1}^{\infty} C_{i} \gamma_{i} \longrightarrow Q_{(x)} \gamma_{n} = \sum_{i=1}^{\infty} C_{i} \gamma_{i} \gamma_{n} = \sum_{i=1}^{\infty} \left(\frac{\hat{Q}_{n} \gamma_{n}}{\hat{N}_{n}} \right)$$

multiply both Sides by w(x) and integrate between bounds

$$\hat{Q}_{n} \int_{0}^{h} Q(x) w(x) y_{n} dx = \sum_{i=1}^{n} C_{i} \int_{0}^{h} Q_{i} y_{n} w(x) dx$$

·. c^u\u00e4^u

$$N_{n} = \int_{0}^{\infty} = \gamma_{n} w(x)$$

given
$$y_n(x)$$
 from 1.2.9 and $Q(x)$ bands from problem statement for both \square 2 \square

G Sin (Anx)