Saranga Rajagopalan Take Home Project Report June 27, 2022

Analysis of Pokemon Dataset and Classification of Legendary Pokemon

Problem: Is it possible to build a classification model to identify legendary pokemon?

After my analysis of the Pokemon Dataset, I conclude that a classification model to identify legendary pokemon with high accuracy can be built after the correction of the following discrepancies I discovered during my analysis:

1. Data Completeness

1.1 Problem: Features had many null values.

The following features contained many null values:

- percentage male,
- type2
- height_m
- weight_kg

1.2 Problem: Non-homogenous data types within features

The *capture_rate* feature contains object(str) values as well as int64 values.

1.2 Recommendations:

- Collect more data on the height and weight of different pokemon.
- Add a category for genderless pokemon, as the majority of null values from. *percentage male* are from genderless pokemon.
- Collect more data on pokemon with a valid type2.
- Reformat values within features to be the same across pokemon for consistency.

2. Data Relevance

2.1 Problem: Features in the dataset were not significant to determining if a pokemon is legendary

The following features were removed because they did not affect the the legendary status of the pokemon:

- abilities
- classification
- name
- type1
- type2

2.2 Recommendations:

Collect more relevant statistical information to better the results of classification

3. Multicollinearity of Predictors

3.1 Problem: Multicollinearity is suggested by the dataset

The following factors suggest multicollinearity in the dataset:

- Correlation Matrices
 - The correlation matrices show a high correlation between the following independent variables:
 - base_total attack, defense, sp_attack, sp_defense, speed
- Variance Inflation Factor
 - The values for base_total,

 defense, sp_attack,

 sp_defense, and speed are
 infinity, and the values for base_eggs_steps
 and base_happiness are very large
 (pokedex_number_can_be ignored)

18	attack	inf
19	base_egg_steps	12.820566
20	base_happiness	20.207886
21	base_total	inf
22	capture_rate	5.174524
23	defense	inf
24	experience_growth	53.508518
25	height_m	4.545480
26	hp	inf
27	pokedex_number	209.208980
28	sp_attack	inf
29	sp_defense	inf
30	speed	inf

3.2 Recommendations:

- Combine the defense and attack features into their own respective features
 - For example, add the pokemon's attack and special attack stats to create a feature such as total_attack_power
 - For example, add the pokemon's defense and special defense stats to create a feature such as total_defense_power

4. What additional data would you like to collect?

- Data on evolutions (evolution_potential (binary) or evolution_level)
 - Features that describe whether the pokemon has potential to evolve or is already at its maximum evolution
- Pokemon popularity among players (popularity)
- Pokemon Accuracy (accuracy)
 - Feature that describes the accuracy of the pokemon (how often a move will miss)

5. What questions were you unable to answer?

- Can the attack and defense stat of a pokemon predict its type?
- Why are there more pokemon in odd numbered generations?
- What was the outlier treatment for this dataset?