Christopher J. Miles

http://www.chrisjohnmiles.com/

Physicist and applied mathematician

Interests: Active matter, fluid mechanics, optimal control theory, and nonlinear dynamics.

EDUCATION

Massachusetts Institute of Technology

Batchelor of Science in Physics with a minor in Mechanical Engineering

Cambridge, MA

Mobile: +1-760-562-8157

Sept. 2006 - June. 2010

University of Michigan

Masters of Science in Applied and Interdisciplinary Mathematics

Ann Arbor, MI

Sept. 2012 - Dec 2014

Email: chris.john.miles@gmail.com

Ann Arbor, MI Sept. 2012 - Present

University of Michigan

Ph.D. Candidate in Physics

Advisor: Prof. Charles R. Doering

Highlighted Graduate Coursework:

o Physics: Quantum Field Theory, Quantum Mechanics, Electromagnetism, Statistical Mechanics, Complex Adaptive Systems, Fractals and Percolation

- o Scientific computing: Machine Learning, Computer Modeling in Complex Systems, Numerical Methods for Differential Equations, Numerical Linear Algebra
- o Applied mathematics: Mathematical Fluid Mechanics, Stochastic Processes, Dynamical Systems and Chaos, Measure Theory, Functional Analysis, Complex Analysis, Asymptotic Analysis

Academic Research Experience

MIT: Coolant system design for superconducting power transmission

Cambridge, MA

 $Undergraduate\ Researcher$

Spring and Summer 2008

- Researched feasibility of using long-distance superconducting cables for high-power transmission.
- Analyzed thermal pathways for different conceived cable designs that vary in coolant, refrigeration set-up, insulation material, superconductor, and internal support structure.
- Determined pressure and temperature profile of coolant along cable length, which depended on flow rate, cross-sectional area, coolant type, and outside temperature.
- For more information, see articles:
 - * L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Current lead optimization of cryogenic operation at intermediate temperature in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 577, 2010
 - * L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Coolant topology options for high temperature superconducting transmission and distribution systems, in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 871, 2010

University of Michigan: Nucleation in acoustic droplet vaporization

Ann Arbor, MI Spring 2013-July 2016

Graduate Student Research Assistant

- Investigated the physics of acoustic droplet vaporization (the vaporization of micron-sized droplets by ultrasound) to inform the optimization of this mechanism in its potential chemotherapy applications.
- Constructed a theoretical model of the acoustic wave-droplet fluid dynamic interaction with the addition of classical nucleation theory to predict a nucleation event.
- Conducted experiments of ultrasound pulses on a bed of droplets to verify the theoretical prediction of the ultrasonic nucleation pressure threshold.
- o For more information, see article: C. J. Miles, C. R. Doering, O. D. Kripfgans, Nucleation pressure threshold in acoustic droplet vaporization, Journal of Applied Physics 120, 034903, 2016

Woods Hole Oceanographic Institution: Invasion of active matter into a fluid Woods Hole, MA

Research Fellow Summer 2016

- Conducted research on an active matter system in collaboration with Prof. Michael Shelley (NYU) and Prof. Saverio Spagnolie (UW-Madison).
- Modeled a bacterial swarm in a continuum model governed by the Smolukowski equation.
- Analytically and numerically investigated the nonlinear dynamics of this model under various bacterial configurations.
- For more information, see pre-print article: C. J. Miles, Michael J. Shelley, and Saverio E. Spagnolie, Unstable self-stretching and stealth invasion of active matter into a viscous fluid, (to appear in WHOI GFD 2016 proceedings and in preparation for journal submission)

University of Michigan: Optimal control of fluid mixing

Ann Arbor, MI

Graduate Student Research Assistant

Spring 2013 - Present

- Constructed and analyzed a shell model, an ordinary differential equation model mimicking the spectral dynamics of the advection-diffusion equation, to study optimal mixing.
- Discovered that diffusion can limit the mixing effectiveness of incompressible flows in some cases.
- $\circ\,$ For more information, see articles:
 - * C. J. Miles, C. R. Doering, A shell model for optimal mixing, Journal of Nonlinear Science, 2017
 - * C. J. Miles, C. R. Doering, Diffusion-limited mixing by incompressible flows, (submitted)

Industry Research Experience

General Atomics: Plasma Fusion Group

San Diego, CA

Experimental Research Intern

Summer 2009

- Studied the thermal pathway along the edge plasma fluid to understand the high-heat flux distribution across the fusion reactor divertor plates. This flux must remain below a critical value to avoid damage.
- Analyzed the empirical relationship of the divertor heat flux profile to fundamental tokamak parameters such as plasma current, toroidal magnetic field, density, and neutral beam power.

Continental Tires R&D: Pattern, Contour, and Layout

Hanover, Germany

Mechanical Engineering Intern

Fall 2010 - Winter 2011

- Simulated the interaction between the tire tread and gravel to predict the likelihood of trapping stones in tire tread grooves to assess the potential threat to tire wear and damage.
- Contributed to early concept-phase development of tire tread pattern designs for upcoming products.

On-Ramp Wireless: Communications Physical Layer

San Diego, CA

Systems Engineering Intern

Participant

Summer 2011-Fall 2011

- Investigated signal interference between ORW's wireless network and WiFi networks.
- Contributed to system design features to eliminate signal interference problems.
- Learned digital communications and signal processing fundamentals.

DATA SCIENCE AND MACHINE LEARNING EXPERIENCE

Michigan Datathon hosted by Citadel and Correlation One

Ann Arbor, MI November 2017

• Chosen to participate based on selective assessment test.

o Competed with a four-person team against 22 other teams in an intensive seven-hour competition.

Santa Fe Institute's Complexity Challenge

Participant September 2017

• Used a multi-agent reinforcement learning approach to address the research challenge problem.

Complex Systems Advanced Academic Workshop

Co-organizer

Ann Arbor, MI 2015-2017

- o Organize biweekly meetings for graduate student talks, journal discussions, and tutorials
- o Organized Introduction to Agent-Based Modeling short course taught by Bill Rand (July 2015)
- o Organized Complex Systems Research Hackathon (September 2016)
- o Organized Evolutionary Game Theory short course taught by Carl Simon, Charles Doering, and Christoph Adami (July 2017)

Introduction to Mechanics: Lab. Course Graduate Student Instructor	Ann Arbor, MI Fall 2013-Fall 2014
• Electromagnetism II Graduate Student Assistant	Ann Arbor, MI Spring 2015
• Evolutionary Game Theory Graduate Student Assistant	Ann Arbor, MI Fall 2016
• Electromagnetism (Honors) • Graduate Student Assistant	Ann Arbor, MI Winter 2017
Theory of Complex Systems Graduate Student Assistant	Ann Arbor, MI Fall 2017
Nonlinear Dynamics and Chaos Graduate Student Assistant	Ann Arbor, MI Fall 2017
• Evolutionary Game Theory Graduate Student Assistant	Ann Arbor, MI Winter 2018

AWARDS AND FELLOWSHIPS

Graduate Student Assistant

• National Undergraduate Fellowship in Plasma Science and Fusion Technology

Summer 2009

Ann Arbor, MI

Winter 2018

• University of Michigan's Rackham Merit Fellowship

Agent-based modeling in complex systems

June 2012-Present

• Woods Hole Oceanographic Institute's Geophysical Fluid Dynamics Fellowship

Summer 2016

Computer and Programming Skills

- Programming: Experience in Python, Javascript, Netlogo, Jupyter notebooks, and Matlab.
- Version control: Experience with Git, Mecurial, Github, and Bitbucket.

Workshops and Conferences	
• Control theory short course	Minneapolis, MN, June 2014
• Turbulent transport and mixing workshop - IPAM, UCLA	Los Angeles, CA, October 2014
• APS Meeting Division of Fluid Dynamics	Boston, MA, November 2015
• Extreme events and criticality in fluid mechanics	Toronto, ON, January 2016
• Challenges in non-equilibrium statistical physics and fluid dynamics	Provo, UT, May 2016
• Genetic programming: theory and practice	Ann Arbor, MI, May 2016
• APS Meeting Division of Fluid Dynamics	Portland, OR, November 2016
• Turbulent dissipation, mixing, and predictability workshop	Los Angeles, CA, January 2017
• Santa Fe Institute's Complex Systems Summer School	Santa Fe, NM, June 2017
• APS Meeting Division of Fluid Dynamics	Devner, CO, November 2017

Presentations

Optimal fluid mixing	Ann Arbor, MI, 2014
• Optimization tutorial and fluid mixing	Ann Arbor, MI, 2015
• A shell model for optimal fluid mixing	Ann Arbor, MI, 2015
• Optimal control of a shell model for mixing	Boston, MA, 2015
• A shell model for optimal fluid mixing	Ann Arbor, MI, 2015
• Clusters, confinement, and collisions in active soft matter	Ann Arbor, MI, 2016
• Nucleation pressure threshold in acoustic droplet vaporization	Portland, OR, November 2016
• Unstable self-stretching and stealth invasion of active matter into a fluid	Denver, CO, November 2017

Publications

- L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Current lead optimization of cryogenic operation at intermediate temperature in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 577, 2010
- L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Coolant topology options for high temperature superconducting transmission and distribution systems, in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 871, 2010
- C. J. Miles, C. R. Doering, O. D. Kripfgans, Nucleation pressure threshold in acoustic droplet vaporization, Journal of Applied Physics 120, 034903, 2016
- C. J. Miles, C. R. Doering, A shell model for optimal mixing, Journal of Nonlinear Science, 2017
- C. J. Miles, C. R. Doering, Diffusion-limited mixing by incompressible flows, (submitted)
- C. J. Miles, Michael J. Shelley, and Saverio E. Spagnolie, Unstable self-stretching and stealth invasion of active matter into a viscous fluid, (to appear in WHOI GFD 2016 proceedings and in preparation for journal submission)