## Examen del bloque 2 de SIN (tipo B)

ETSINF, Universitat Politècnica de València, 14 de enero de 2020

| Apellidos: |      |           |           | N            | ombre        | :        |         |              |                |  |
|------------|------|-----------|-----------|--------------|--------------|----------|---------|--------------|----------------|--|
| Grupo:     | □ 3A | $\Box$ 3B | $\Box$ 3C | $\square$ 3D | $\square$ 3E | $\Box 3$ | ${f F}$ | $\square$ 3G | □ 4 <b>I</b> A |  |

Test (1,75 puntos)

Marca cada recuadro con una única opción. Puntuación:  $máx(0, (aciertos - errores / 3) \cdot 1,75 / 9)$ .

- Sea  $\mathbf x$  un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):
  - A)  $c(\mathbf{x}) = \arg \max \log p(\mathbf{x}, c)$ .
  - B)  $c(\mathbf{x}) = \arg\max p(c \mid \mathbf{x})^2$ c=1,...,C
  - C)  $c(\mathbf{x}) = \arg \max \sqrt{p(\mathbf{x}, c)} / p(\mathbf{x})$ . c=1,...,C
  - D) Los tres clasificadores anteriores son de error mínimo.
- Sea un clasificador en tres clases basado en las funciones discriminantes lineales bidimensionales de vectores de pesos:  $\mathbf{w}_1 = (0,0,1)^t$ ,  $\mathbf{w}_2 = (0,1,0)^t$  y  $\mathbf{w}_3 = (0.5,0,0)^t$ . Indica cuál de las figuras dadas a continuación es coherente con las fronteras y regiones de decisión que define dicho clasificador.





3 Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos no define un clasificador equivalente al dado?



B) 
$$\mathbf{w}_1 = (0, -1, 0)^t$$
 y  $\mathbf{w}_2 = (0, 0, -1)^t$ .

C) 
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 y  $\mathbf{w}_2 = (0, 0, 1)^t$ .

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.





0.5

1.0



- A)  $\mathbf{x} = (-1, 1)^t \text{ y } c = 2.$
- B)  $\mathbf{x} = (0,0)^t$  y c = 2.
- C)  $\mathbf{x} = (0,0)^t$  y c = 1.
- D)  $\mathbf{x} = (-1, 1)^t \text{ y } c = 1.$
- Sea un problema de clasificación en tres clases para objetos del tipo  $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$ , con las distribuciones de probabilidad de la derecha. ¿Cuál es el error de Bayes,  $\varepsilon^*$ , en este problema?



B) 
$$0.2 \le \varepsilon^* < 0.4$$
.

C) 
$$0.4 \le \varepsilon^* < 0.7$$
.

D)  $0.7 \le \varepsilon^*$ .

| x     |       |     |     |     |                 |
|-------|-------|-----|-----|-----|-----------------|
| $x_1$ | $x_2$ | c=1 | c=2 | c=3 | $P(\mathbf{x})$ |
| 0     | 0     | 0.6 | 0.2 | 0.2 | 0.2             |
| 0     | 1     | 0.1 | 0.1 | 0.8 | 0.3             |
| 1     | 0     | 0.3 | 0.5 | 0.2 | 0.2             |
| 1     | 1     | 1/3 | 1/3 | 1/3 | 0.3             |

- 6 Se tiene un problema de clasificación para el cual se ha aprendido un clasificador. Asimismo, se tiene un conjunto de M = 100 muestras de test con el cual se ha estimado:
  - La probabilidad de error del clasificador aprendido,  $\hat{p} = 0.10 = 10 \%$ .
  - Un intervalo de confianza al 95 % para dicha probabilidad de error,  $\hat{I} = [0.04, 0.16] = [4\%, 16\%]$ .

Se considera que la probabilidad de error estimada es razonable y que la misma no variará significativamente aunque usemos muchas más muestras de test. Ahora bien, el intervalo de confianza (al 95 %) estimado,  $\hat{I}=10\,\%\pm6\,\%$ , nos parece un poco amplio y nos preguntamos si es posible reducir su amplitud mediante el uso de más de M=100 muestras de test. Además, si ello fuera posible, nos preguntamos si sería posible reducir dicha amplitud a la mitad o menos; esto es, tal que  $\hat{I}=10\,\%\pm\hat{R}$  con  $\hat{R}\leq3\,\%$ . En relación con estas cuestiones, indica cuál de las siguientes afirmaciones es correcta.

- A) No es posible reducir la amplitud de  $\hat{I}$  ya que hemos considerado que  $\hat{p}$  no variará significativamente y, siendo así, la amplitud de  $\hat{I}$  tampoco puede variar significativamente.
- B) En general, no es posible reducir la amplitud de  $\hat{I}$  pues  $\hat{I}$  no depende significativamente de M.
- C) Sí es posible reducir la amplitud de  $\hat{I}$ , a la mitad o menos, si doblamos M al menos  $(M \ge 200)$ .
- D) Sí es posible reducir la amplitud de  $\hat{I}$ , a la mitad o menos, si empleamos al menos cuatro veces más muestras de test aproximadamente  $(M \ge 400)$ .
- 7 Dado el conjunto de muestras de 2 clases (o y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?





- 8 La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos  $\bullet$  y  $\circ$ ). La transferencia del punto  $(3,2)^t$  del cluster  $\bullet$  al cluster  $\circ$ :
  - A) produce un incremento en la Suma de Errores Cuadráticos (SEC).
  - B) no altera la SEC.
  - C) produce un decremento en la SEC.
  - D) produce una SEC negativa.



- 9 La relación al cálculo de la probabilidad  $P(y \mid M)$  con la que un modelo de Markov M genera una cadena de símbolos y, indica qué afirmación es cierta:
  - A) La única forma de calcular  $P(y \mid M)$  consiste en generar explícitamente todas las secuencias de estados, calcular la probabilidad de que cada secuencia de estados haya generado y y posteriormente sumar todas las probabilidades obtenidas.
  - B) Una forma eficiente computacionalmente de calcular  $P(y \mid M)$  consiste en aplicar el algoritmo de Viterbi.
  - C) Una forma eficiente computacionalmente de calcular  $P(y \mid M)$  consiste en aplicar el algoritmo Forward.
  - D) La única forma de calcular  $P(y \mid M)$  consiste en generar explícitamente todas las secuencias de estados mediante el algoritmo de Viterbi, calcular la probabilidad de que cada secuencia haya generado y y sumar todas las probabilidades obtenidas.

## Problema (2 puntos)

Sea un modelo de Markov de conjunto de estados  $Q = \{1, 2, F\}$  y conjunto de símbolos  $\Sigma = \{a, b\}$ . Se pide:

a) (1 punto) Sean el vector de probabilidades iniciales  $(\pi)$ , matriz de transición entre estados (A) y matriz de generación de símbolos (B):

| $\pi$ | 1   | 2   |
|-------|-----|-----|
|       | 0.6 | 0.4 |

| A | 1   | 2   | F   |
|---|-----|-----|-----|
| 1 | 0.6 | 0.3 | 0.1 |
| 2 | 0.3 | 0.4 | 0.3 |

| B | a   | b   |
|---|-----|-----|
| 1 | 0.3 | 0.7 |
| 2 | 0.8 | 0.2 |

Realiza una traza del algoritmo de Viterbi para la cadena y=aab obteniendo la mejor secuencia de estados.

b) (1 punto) Sean las tres cadenas de símbolos:  $y_1 = bbaa$ ,  $y_2 = abab$  y  $y_3 = aabbb$ . Al aplicar el algoritmo de Viterbi con un cierto modelo de Markov M, se obtienen, respectivamente, las siguientes secuencias óptimas de estados: 1122F, 2121F y 22111F. A partir de dichas cadenas y sus respectivas secuencias óptimas de estados, re-estima las probabilidades iniciales  $(\pi)$ , de transición (A) y de emisión (B) de M (del mismo modo que se hace en una iteración del algoritmo de re-estimación de Viterbi).