Problems to Week 9 Tutorial — MACM 101 (Fall 2014)

- 1. For each of the following functions, determine whether it is one-to-one and determine its range.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1;
 - (b) $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 2x + 1;
 - (c) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^3 x;$
- 2. Let $f: A \to B$ where $A = X \cup Y$ with $X \cap Y = \emptyset$. If $f|_X$ and $f|_Y$ are one-to-one, does it follow that f is one-to-one?
- 3. For each of the following functions $f: \mathbb{Z} \to \mathbb{Z}$, determine whether the function is onto. If the function is not onto, determine the range of f.
 - (a) f(x) = 2x 3;
 - (b) $f(x) = x^2 + x$.
- 4. Prove each of the following for all $n \ge 1$ using the principal of mathematical induction.

(a)
$$1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

(b)
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

(c)
$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1$$

5. (Only for those familiar with complex numbers) Prove DeMoivre's theorem

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$$

6. Prove that for all natural numbers n if n > 3 then $2^n < n!$.