UNION FIND

[Deme, seconda edizione] cap. 9

Quest'opera è in parte tratta da (Damiani F., Giovannetti E., "Algoritmi e Strutture Dati 2014-15") e pubblicata sotto la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia.

Per vedere una copia della licenza visita http://creativecommons.org/licenses/by-nc-sa/3.0/it/.

Il problema

Mantenere una collezione di insiemi disgiunti (sottoinsiemi di un insieme-universo E) sulla quale siano possibili le seguenti operazioni:

union(A,B): fonde gli insiemi A e B in un unico insieme $A \cup B$ (i vecchi insiemi A e B vengono quindi persi)

find(x): restituisce il nome dell'insieme contenente l'elemento x
makeSet(x): crea il nuovo insieme {x}, avente x come unico
elemento.

Nota: Gli insiemi rimangono sempre disgiunti, quindi ad ogni istante ogni elemento appartiene a non più di un insieme.

Nota2: Per distinguere tra diversi insiemi senza dover elencare tutti i loro elementi, possiamo individuare (per ogni insieme) un elemento rappresentante, cosicché union(a,b) fonda i due insiemi rappresentati dagli elementi a e b

Esempio

Elementi: società che hanno svolto un ruolo nella storia economica **Insiemi o rappresentanti:** società esistenti ad un certo istante

```
{Sip} {Stipel} {Teti} {Fiat} {Lancia} {AlfaRomeo} {Ferrari} {Innocenti}
union(Sip, Teti); union(Sip, Stipel); union(Lancia, Innocenti);
{Sip, Stipel, Teti}, {Fiat}, {Lancia, Innocenti}, {Ferrari}
makeSet(Telecom); union(Telecom, Sip); union(Fiat, Lancia);
union(Fiat, Ferrari);
{Telecom, Sip, Stipel, Teti}, {Fiat, Lancia, Innocenti, Ferrari}
eccetera.
```

L'elemento in grassetto è il rappresentante di un insieme

Esempio (generico)

makeset(1), ... makeset(6) union (2,3)find(1)find(3) -> 2find(2)union (6,2)3 find(3)6 5 union (5,1)3 4) 5 find(1)5 union (6,5)6 3

6

find(1)

UnionFind di 6 elementi tutti distinti

Il numero di insiemi è decrementato di 1

Nota: raffinamento della definizione di Union

Per comodità, invece che definire union(a,b) come l'unione degli insiemi rappresentati da a e b, definiamo union come l'unione degli insiemi contenenti a e b.

In questo modo scriviamo

union(a,b)

intendendo

union(find(a),find(b))

Implementazione

Esistono 2 tipi di approcci elementari:

- Quelli che privilegiano un'esecuzione efficiente dell'operazione di find (QuickFind)
- e Quelli che privilegiano un'esecuzione efficiente dell'operazione di union (QuickUnion)

ATTENZIONE: sono quelli che vedremo noi. Ce ne possono essere tanti differenti.

QuickFind

Gli approcci di tipo QuickFind utilizzano alberi con 2 livelli per rappresentare le UnionFind.

La radice di ogni albero contiene il rappresentante di un insieme.

Le foglie rappresentano gli elementi dell'insieme.

Nota: il rappresentante è contenuto sia nella radice che in una foglia.

Operazioni su QuickFind

makeSet(x) crea un nuovo albero composto da una radice ed una foglia. In entrambi posiziona x. Costo O(1).

find(x) accede alla foglia corrispondente all'elemento x. Risale di un livello nell'albero incontrando la radice (l'albero ha solo 2 livelli) e restituisce l'elemento contenuto nella radice. Costo O(1)

union(a,b) considera l'albero A contenente a e B contenente b. Per ogni foglia di B, sostituisce il puntatore al padre con un puntatore alla radice di A. Cancella la radice di B. Costo O(n)

QuickUnion

Gli approcci di tipo QuickUnion utilizzano alberi con più di 2 livelli per rappresentare le UnionFind.

La radice di ogni albero contiene il rappresentante di un insieme.

I nodi (tutti) rappresentano gli elementi dell'insieme.

Nota: in questo caso il rappresentante sta solo nella radice.

Operazioni su QuickUnion

makeSet(x) crea un nuovo albero composto da un unico nodo contenente x. Costo O(1).

find(x) accede alla foglia corrispondente all'elemento x. Risale **fino alla radice** dell'albero e restituisce l'elemento contenuto nella radice. Costo O(n) (Perché?)

union(a,b) considera l'albero A contenente a e B contenente b. Rende la radice di B figlio della radice di A. Costo O(1)

Perché O(n)?

In molti alberi (bilanciati) visti fino ad ora abbiamo sempre considerato le operazioni di «risalita» da una foglia alla radice di costo O(log n). Perché qui è O(n)?

Perché in questo caso non abbiamo nessun bilanciamento sull'albero, quindi nel caso peggiore dobbiamo considerare alberi «lineari» in altezza.

Questa sequenza di union produce un albero lineare in altezza

```
union (n-1, n)

union (n-2, n-1)

union (n-3, n-2)

:

union (2, 3)

union (1, 2)
```

Nota sulla complessità

In generale, le UnionFind si usano per gestire insiemi che vengono via via uniti, fino a risultare in un unico insieme. Durante queste unioni, vengono fatte una serie di find. In generale, si considerano

n makeSet,

n-1 union (n-1 è il limite massimo di union eseguibili dopo n makeSet) e m find (il numero di find invece non dipende dalle makeSet)

Per questo motivo, non è «saggio» concentrarsi sul costo nel caso peggiore di una singola operazione.

Ciò che ci interessa è il costo totale di queste operazioni, o in altre parole il costo ammortizzato di ogni singola operazione su una (qualsiasi) sequenza di questo tipo.

Euristiche di Bilanciamento e Compressione

Le ottimizzazioni proposte cercano di ridurre il costo ammortizzato delle operazioni su una sequenza di n makeSet, n-1 union ed m find.

Ci concentreremo su

- Il bilanciamento dell'operazione di union
 - Per algoritmi di tipo QuickFind (con una union inefficiente), cerchiamo di migliorare le prestazioni della union
 - Per algoritmi di tipo QuickUnion (con una find inefficiente), cerchiamo di mantenere alberi con meno livelli (così da migliorare la find)
- La compressione in fase di find (comprimiamo gli alberi «approfittando» delle risalite fatte per la find)

Bilanciamento su QuickFind

L'operazione più costosa dell'approccio QuickFind è la union.

Per migliorarla, invece che operare alla cieca su A e B, andiamo a considerare come insieme primario quello con cardinalità maggiore, e modifichiamo il padre delle foglie dell'altro insieme.

Introduciamo un valore size(x) (inizializzato da makeSet a 1), che memorizza cardinalità dell'insieme x.

Quando facciamo union(A,B), usiamo size per identificare l'insieme primario, poi scriviamo la radice di A nella radice dell'albero risultante.

In più size(A) = size(A) + size(B).

Analisi Ammortizzata

Qual è la complessità della gestione di una QuickFind bilanciata? (analizziamo il costo di m find, n makeSet e n-1 union) m find hanno costo O(m)

n makeSet e n-1 union analizzato con il metodo dei crediti

Metodo dei Crediti (o Accantonamenti)

(vedi [Deme] Sez. 2.7.1 o [Cormen] Sez. 17.1)

Utilizzato per determinare il costo ammortizzato di una sequenza di operazioni, senza andare nel dettaglio delle dipendenze tra di loro.

1 credito vale O(1) passi di esecuzione

Le funzioni meno costose «depositano» dei crediti sugli oggetti (caricandosi di un costo maggiore di quello che fanno effettivamente).

I crediti così depositati possono essere «prelevati» dalle funzioni più costose.

Il costo ammortizzato di ogni operazione nella sequenza è poi dato dalla somma di tutti i costi diviso il numero di operazioni.

NOTA: L'importante è definire i crediti in maniera che qualsiasi sequenza lecita di operazioni non porti i crediti accumulati ad essere negativi.

Metodo dei Crediti - esempio

DOBBIAMO CALCOLARE LA COMPLESSITA' DI:

Push (di un elemento) e Multipop (di k elementi) su uno stack:

Push ha complessità O(1) e, nel caso peggiore, Multipop O(n).

CON IL METODO DEI CREDITI:

Carichiamo Push di un costo aggiuntivo di una operazione. Il suo costo ora è 2 crediti (ancora costante), di cui 1 consumato dall'operazione stessa, l'altro lasciato sull'oggetto inserito. (nota: per ogni elemento nello stack viene accumulato esattamente 1 credito)

A Multipop assegniamo il costo di **0 crediti**. Ogni volta che un'operazione Multipop rimuove un elemento, per farlo consuma il suo credito accumulato. In questo modo il costo di Multipop è **costante**.

Quindi il costo ammortizzato di ogni operazione in una sequenza ammissibile di Push e Multipop è costante, o meglio O(1).

Stack senza crediti

Stack con crediti

Analisi Ammortizzata - continua

n makeSet e n-1 union analizzato con il metodo dei crediti:

NUMERO MASSIMO CAMBI PADRE: prima di tutto, osserviamo che ad ogni union, se una foglia cambia padre, il nuovo insieme che la contiene sarà grande **almeno il doppio di quello di partenza** (a causa del bilanciamento). Quindi una foglia dopo **k cambi di padre** apparterrà ad un insieme di 2^k elementi. Siccome il numero totale di elementi è n, $2^k \le n$, quindi $k \le \log_2 n$.

DEPOSITO CREDITI: assegniamo ad ogni makeSet un costo aggiuntivo di log_2 n crediti. In totale, con n makeSet, accumuliamo n log_2 n crediti.

COSTO UNION: ogni union, per ogni foglia che cambia padre, consuma 1 credito per il costo dell'operazione di cambio del padre. Ma poiché i cambi di padre sono limitati a log₂ n per ogni foglia, si consumano in totale n log₂ n crediti.

Di conseguenza, il costo ammortizzato di ogni operazione in una sequenza di n makeSet e n-1 union è $O(log_2 n)$, quindi in totale $O(n log_2 n)$.

Costo m find, n makeSet e n-1 union: $O(m + n \log_2 n)$

Bilanciamento su QuickUnion

2 ottimizzazioni possibili sulla union per approcci QuickUnion, per mantenere alberi con meno livelli:

- Union by rank: nell'unione degli insiemi A e B, rendiamo la radice dell'albero più basso figlia della radice dell'albero più alto
- Union by size: nell'unione degli insiemi A e B, rendiamo la radice dell'albero con meno nodi figlia della radice dell'albero con più nodi

(Quick)Union by rank

Introduciamo un parametro **rank** (rank(x) inizializzato a 0 da makeSet(x)) che tiene conto dei **livelli dell'albero**.

Quando facciamo una union, se rank(B)<rank(A)</pre> rendiamo la radice
di B figlio della radice di A.

Se rank(A)<rank(B), rendiamo la radice di A figlio della radice di B, e scambiamo le due radici. Poi rank(A) = rank(B).

Se rank(A)=rank(B), rendiamo la radice di B figlio della radice di A e rank(A) = rank(A)+1

union
$$(A,B)$$

rank $(A) < \text{rank } (B)$

Analisi - I

Poiché in questa ottimizzazione vogliamo ottimizzare l'operazione di find, dobbiamo dimostrare qual è il limite massimo di altezza dell'albero per numero di nodi, o, in alternativa, qual è il limite minimo di nodi di un albero con una certa altezza.

Dimostriamo che l'albero con radice x ha almeno 2^{rank(x)} nodi.

DIMOSTRAZIONE (per induzione sul numero di union).

Base: rank(A) = 0 e 1 solo nodo. $|A| = 1 \ge 2^0 = 2^{\operatorname{rank}(A)}$.

Dopo ogni union (passo, con ip. Ind. $|L| \ge 2^{\operatorname{rank}(L)}$):

```
Se rank(A) > rank(B):

|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} > 2^{rank(A)} = 2^{rank(A \cup B)}
```

Se rank(A) > rank(B) simmetrico al precedente

Se rank(A) = rank(B): $|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} = 2 * 2^{rank(A)} = 2^{rank(A)+1}$ $= 2^{rank(A \cup B)}$

Analisi - II

Ma il numero massimo di nodi di un albero è n (il numero di makeSet).

Quindi $2^{\operatorname{rank}(x)} \le n$.

Quindi $rank(x) \leq log_2 n$.

Cioè, l'altezza di un albero è limitata superiormente da log_2 n con n = numero di makeSet.

La find richiede tempo O(log n)

(Quick)Union by size

Utilizziamo lo stesso parametro size visto per la QuickFind.

size(x) = numero nodi nell'albero di cui x è radice

Quando eseguiamo una union,

se size(B) ≤ size(A) rendiamo la radice di B figlio della radice di A.

se size(A) < size(B), rendiamo la radice di A figlio della radice di B, e scambiamo le due radici.

Infine, size(A) = size(A) + size(B)

Anche in questo caso, (si può dimostrare che) costruiamo alberi di altezza logaritmica.

Compressione nell'operazione find

Le euristiche di compressione vengono applicate durante l'esecuzione di una find, e hanno lo scopo di diminuire (ulteriormente) l'altezza di un albero per algoritmi di tipo QuickUnion (quelli di tipo QuickFind non possono essere ulteriormente diminuiti).

Ne vediamo 3 tipi:

- Path compression
- Path splitting
- Path halving

Path Compression

Siano u_0 , u_1 , ..., u_{t-1} i nodi incontrati nel cammino esaminato da find(x), con x = u_0

rendi il nodo u_i figlio della radice u_{t-1} , per ogni i \leq t-3

«appiattisce» molto velocemente l'albero. Tuttavia ad ogni find si deve portare dietro un gran numero di puntatori.

Path Splitting

Siano u_0 , u_1 , ..., u_{t-1} i nodi incontrati nel cammino esaminato da find(x), con x = u_0

rendi il nodo u_i figlio del nonno u_{i+2} , per ogni i \leq t-3

È più lento ad appiattire rispetto alla path compression, ma ha bisogno di solo 2 puntatori.

Path Halving

Siano u_0 , u_1 , ..., u_{t-1} i nodi incontrati nel cammino esaminato da find(x), con x = u_0

rendi il nodo $\mathbf{u_{2i}}$ figlio del nonno $\mathbf{u_{2i+2}}$, per ogni $i \leq \left\lfloor \frac{(t-1)}{2} \right\rfloor - 1$

Ha bisogno di solo 1 puntatore.

Combinazione delle euristiche

È possibile combinare ciascuna euristica di bilanciamento con ciascuna euristica di compressione

(union by rank o union by size)

X

(path splitting, path compression, o path halving)

Ottenendo 6 algoritmi diversi.

Esempio: QuickUnion con union by rank e path compression

Sia n il numero massimo di elementi

Sia π il vettore (foresta) dei padri definito come segue:

- $\pi[i] = -1$ se i non appartiene a nessun insieme
- π[i] = i se i è la radice del suo albero (i è il rappresentante del suo insieme)
- $\pi[i] = j$ se i è figlio di j

Sia rank un vettore di n interi tale che rank[i] è il rank di i se π [i] = i

QuickUnion con union by rank e path compression - II

Definiamo le operazioni come segue:

```
 \begin{array}{lll} \text{makeSet(x)} & \text{union(x,y)} \\ \pi[x] <- x & x <- \operatorname{find(x)} \\ \operatorname{rank[x]} <- 0 & y <- \operatorname{find(y)} \\ & \text{if } \operatorname{rank[x]} > \operatorname{rank[y]} \\ & \pi[y] <- x \\ & \text{else } \pi[x] <- y \\ & \text{if } \operatorname{rank[x]} = \operatorname{rank[y]} \\ & \pi[x] <- \operatorname{find(x)} & \operatorname{rank[y]} <- \operatorname{rank[y]} + 1 \\ & \text{return } \pi[x] \end{array}
```

Se n non è noto a priori, possiamo utilizzare array dinamici per π e rank. In questo modo il costo ammortizzato di makeSet rimane O(1).

Analisi - La funzione log*n

Definiamo log*n come

$$\log^* n = \left\{ \min i \mid \log^{(i)} n \le 1 \right\}$$

Informalmente, log*n ci dice quante volte dobbiamo applicare la funzione log su n affinché il risultato sia minore di 1.

Notiamo che cresce molto lentamente

$$\log^* x = 0 \quad 0 < x \le 1$$

$$x \le 1 \qquad \qquad \log^* x = 3 \quad 4 < x \le 16$$

$$log*x = 1 1 < x \le 2$$

$$\log^* x = 4 \quad 16 < x \le 65536$$

$$\log^* x = 2 \quad 2 < x \le 4$$

$$\log^* x = 5 \quad 65536 < x \le 2^{65536}$$

Analisi - II

Si può dimostrare (noi non lo facciamo) che, combinando le euristiche di bilanciamento e compressione, una qualunque sequenza di n makeSet, m find ed n-1 union può essere eseguita in tempo

O((n+m) log*n)

Con log*n che è «quasi» costante, possiamo dire che eseguiamo 2n – 1 + m operazioni in un tempo «circa» O(n+m).

Quindi, con O(n+m) operazioni in tempo O(n+m), possiamo dire che, in una sequenza di operazioni come sopra, ogni operazione ha un costo ammortizzato di O(1).

Cosa devo aver capito fino ad ora

- Problema UnionFind
- Approcci base
- Ottimizzazioni con euristiche e loro impatto
- Ottimizzazioni con combinazioni di euristiche e costo

...se non ho capito qualcosa

- Alzo la mano e chiedo
- Ripasso sul libro
- Chiedo aiuto sul forum
- Chiedo o mando una mail al docente