Name - Sradha Kedia Roll no - 20234757053 m = 4, $w_1 = 1$, $w_2 = 3$, $w_3 = 3$, $w_4 = 5$ and 4 (6) 3 4 5 6 7 8 3011344677 3 4 4 4 4 4 1 2 3 4 5 6 M[0][W]=0; for w=0 +09 if $(w < w_i)$ opt (i, w) = opt(i-1, w)opt (i, w) = man(opt(i-1, w), witopt(i-1, w-wi))J- 1=1, W,=1 W=0, if $\rightarrow 0 < 1$ true; opt (1,0) = opt(0,0) W=1, if $\rightarrow 1 < 1$ false; opt (1,1) = opt(0,0), 1 + 1 = opt(0,1), 1 + 1 = opt(0,1)opt (0, 0) = man (0, 1) = 1W-2, if -> 2<1 false, opt (1,2) = man (opt (0,2), 1+ opt (0,1) = max(0, 1+0)=;

```
w=3, if-3<1, fale
                          opt (1,3) = man (opt (0,3), 1+opt (0,2)
                                   = man (0, 1+0) = 1
  W=4, if 4<1, false opt(1,4)= man(opt(0,4), 1+opt(0,3))
                                 = max(0+,1+1
  false for all w = 5 + 0 9; too

w = 5, opt(1,5) = man(opt(0,5), 1+ opt(0,4))

= man(0,1) = 1
for w=6, w=7, w=8, w=9, simialarly opt (1, w)=1.
  I = 2, w_2 = 3
                          opt(2,0) = opt(1,0) = 0
 W=0, if (023) true,
 W=1, " (1<3) "
                           opt(2,1) = opt(1,1) = 1
                          opt (2,2) = opt (1,2) = 1
 W=2, 11 (223) 11,
                           opt(2,3) = max(opt(1,3), 3 + opt(1,0)
 W=3, 4 (3<3) false,
                                   = man( 1, 3+0)=3
W=4, to 9, all fabre, : opt (2, 34) = man (opt(1,4), 3+ opt(1,1))
                               = man(1, 3+1)
     opt (9,5) = man (opt (1,5), 3+ opt (1,2))
               = man (1, 3+1) =4
     opt (2,6) = man (opt (1,6), 3+opt (1,3))
               = man(1, 3+1) = 4
    opt (2,7) = man (opt (1,7), 3+opt (1,4)) = max(1,3+1)
      opt (2,8) = man (opt (1,8), 3+ opt (1,5)) = max (1,4)
      opt (2,8) = man (opt (1,9), 3 + opt (1,6)) = man (1,4)
```

```
m = 3, w_3 = 3
w=0, if (0<3) true, opt (3,0)= opt (2,0)=0

w=1, if (1<3) true, opt (3,1)= opt (2,1)=1
                      opt (3,2) = opt(2,2) = 1
          true,
ω = 3 to ω = 9 false, opt (3,3) = mon (opt (2,3), 3-1 opt 12
                               = man (3, 3+0)
       opt (3,4) = max ( opt (2,4), 3+ opt (2,1))
                  = max (4, 3+1)=4
       opt (3,5) = man (opt (2,5), 3+ opt (2,2))
                   = man ( 4, 3+1) = 4
       opt (3,6) = man (opt (2,6), 3+ opt (2,3))
                   = max (4, 3+3) = 6
            Topt (3,6) = 6 (Ams)
       opt(3,7) = max(opt(2,7), 31 opt(2,4))
                   = man (4, 3+4) = 7
        opt (3,8) = man (opt (2,8), 3+ opt (2,5))
                = man (4, 3+4) = 7
        opt (3,9) = man(opt(2,9), 3 + opt(2,6))
                 = max (4 +, 3+4) =7
   1 , i=4, W4=5
   w=0, if (0<5)
                          opt(4,0) = opt(3,0) = 0
                          opt (4, 1) = opt (3, 1) = 1
                          opt (4,2) = opt (3,2)=1
  w=4 if (4<5)
                          opt (4,3) = opt (3,3) = 3
                          opt (4,4) = opt (3,4) = 4
```

w=5 4 (5<5) fabe, opt (4,5) = man (opt (3,5), 5+ = man (4, 5+0)=5 opt (4, 6) = man(opt(3,6), 5+opt (3, 1)) = man(6, 5+1) = 6W=6, if (655) false; W=7,8, W=9, false opt(4,7) = man(opt(3,7), 5+opt(3,9))= max(7,5+1) = 7opt (4, 8) = man(opt(3, 8), 5 + opt(3, 3))= man(7, 5 + 3) = 8opt (4, 9) = man (opt (3, 9), 5 + opt (3, 4))= man (7, 5 + 4) = 9We assume that activities are sorted in increasing order of their finishing time. Now, the Recursive activity selector is not that efficient from Greedy activity selector is an iterative approach which is greedy in nature giving O(n) complexity. But in recursive Activity selector, the algorithm can be O(n logn) in worst case. Thus, they are different algorithms where GAS is improved version (greedy version) of RAS. 4 (a)

The suitable algorithm that goes with the given assumption is bucket sorting. (4) Best cose when array is uniformly distributed and bruckets have only one elements in them thus converting it to constant time they overall all linear sorting. y- 0.11, 0.23, 0.31, 0.46, 0.51, 0.64, 0.71, 0.89, 0.92 here, buckets sizes are 1. 70.46 - 0.51 1 0.64 -> 0·71 10.89 1) 0.92 worst case, when not uniformly distributed eg = 0.19, 0.18, 0.16, 0.14, 0.43, 0.12. here all the elements goes in one bucket then here bucket's sorting will also contribute to overall time complexity. i.e. $O(n^2)$.

Date	ARTICLE
Page	
No.	(a) minoral ac-

			The second secon		the state of the s
0		0		2	3 4
3 (a)	W=0	0	IV	8	1 2 4
		1*	0	12	49
	2	8	12	0	7 3
	3	1**	4×	7	0 2
4	4	4*	9 *	3	2*0
	L				

vu start from 0, & see 1 is minimum, we shows I node.

It will not generate unique MST, as we choose second mode as I.

```
(110 7 86 X 01 (az, b1)
       A = Multiply (8 xo) = D
       B = 11(8,1) = 8
      C = \frac{1}{2} (6,0) = 0
D = \frac{1}{2} (6,1) = 6
            20, 86 for Tiio &
(11) => 07 x20 (a,bx)
         A = Multiply (0 X2) = 0
         B = Multiply (0, 0) = 0

C = 1/(7, 2) = 14
         D = \eta \quad (7,0) = 0
           for B of (11) is 140
      86 X20
(N)
        A = multiply (8,12) = 16

B = 11 (8,0) = 0

C = 11 (6,2) = 12

D " (6,0) = 0
                  10, 172
                    D for iv
         now, 7×104 + (86+140) 102 + 1720
                  = 7000 + 22600 + P20
                    = 94320 (Ams)
```

5 (a) Array 20, 47, 15, 8, 9, 4, 40, 30, 12, 17 step 1: pivot - a [mid] = 9 step 2: partition the subarray
20 47 15 08 9 4 40 30 12 17 4 47 15 08 9 20 40 30 12 17 sty3: Swap 47, 08 4, 48 8, 15, 47, 9, 20, 40, 30, 12, 7 moving left and right bound now will cross them so, our bound is at 2 and all elements left from this are smaller than pivot and on right all elements are larger than now move pivot to its final partition we get [[4,87, 9[47, 17, 20, 40, 30, 12, 15]] step 4) now, we call quicksort on left sublist [4,8], pivot will be 4.

more pivot to the end we get, our bound is at 0 in the sublist & left and right bound crossed, now we will move pivot to its

original location, we get 4, 8 we again call as on left sublist [8] so, as only one element is there, we get will return from here. Stop (.) 4,8,9,47,17,20,40,30,12,15 I'is sorted and now we will similarly continue for right subarray & get the answers. S. (b) tilonacci series 0,1,1,2,3,5,... is a sorted array so if any element is repeating more than m times then for sure it will be prisent at anyone of neighbourhood indices i-1, it! al, now once we get the middle element we will count its occurrence in (log n) complexity by BS (binary search) and the recurrence relation is T(m)= IT (m/2) + 1
for filonacii's siarching (BS algo).

Date Page_

the first loop has O(n) complimity. for (p=1; p < n; t+p) = O(n)1.a)

for (q = n'; q71; q = q/2) — O(ologn)to $(x' = 1; x < n; x = x \times 2)$ — O(logn)++ t; y

2n logn

.. T(n) = O(nlogn)

1.b) [10, 20, 30, 40, 50]

c1: INS = 4

c2: INS = 9

MS = 17