

Cristobal Donoso Oliva

Exploit data to create/improve products and services

- Exploit data to create/improve products and services
- Business entities are hiring more and more data scientist and machine learning engineers

- Exploit data to create/improve products and services
- Business entities are hiring more and more data scientist and machine learning engineers
- As stakeholders attempt to maximize the use of their data, automated machine learning became more relevant in Machine Learning research

A paradigm for **automating the application of machine learning** to real-world problems*

*we usually call it: end-to-end process

A paradigm for **automating the application of machine learning** to real-world problems*

*we usually call it: end-to-end process

End-to-end Machine Learning process

Specific need

Specific need

Domain experts are interested in customer behavior

Specific need

Domain Expert vs Data Scientist

Domain Expert: A person who is fluent in the domain where ML is being applied but has minimal knowledge of how ML itself works

Data Scientist: A person who knows how ML works but has minimal knowledge of the domain where it is being applied.

Domain experts are interested in customer behavior Collect A LOT of data

AutoML

The term AutoML is commonly understood to denote a system that can perform the common data science tasks in an end-to-end process with minimal human intervention

Fig. 1. A typical end-to-end machine learning process, with multiple stakeholders bringing their individual expertise, tools, methods, datasets, and goals.

Levels of AutoML Systems

Task Formulation

Prediction Engineering

Feature Engineering

Machine Learning

Alternative Models Exploration, Testing and Validation

Result Summarizing and Recommendation

Automated Machine Learning

Level 0: Hand-coded implementation (ML researcher)

Level 1: C++ implementation of SVM classifier. Used as a library by data scientist.

Level 2: When training set is well-defined, data scientist can use software to perform the actual learning and parameter tuning tasks

Level 3: Like level 2 but ML and ATV together

Level 4: Minimal interaction by domain experts

Level 5: Domain expert can comfortably interact with the system

	Systems	Wha	it is automated?	Access to ML	Efficiency of data scientist
Level 6	???	TF PE	AML FE ML ATV RSR		
Level 5	ComposeML + Level 4 systems	PE	FE ML ATV		
Level 4	Darpa D3M, MLbazaar, RapidMiner		FE ML ATV		
Level 3	ATM, Rafiki, Amazon, AutoML, DataRobot, H2O, AUTO-WEKA		AML ATV		
Level 2	Scikit-Learn, Keras, Tensorflow, WEKA, ORANGE, Pytorch		(ML) (ATV)		
Level 1	Basic implementation of Decision Tree, KMeans, SVM etc.		ML		
Level 0	Programming languages like python, Java, C++				

Hands-on!

Ludwig, an open source, deep learning toolbox built on top of TensorFlow that allows users to train and test deep learning models without writing code.

Ludwig, an open source, deep learning toolbox built on top of TensorFlow that allows users to train and test deep learning models without writing code.

Ludwig is unique in its ability to help make deep learning easier to understand for non-experts and enable faster model improvement iteration cycles for experienced machine learning developers and researchers alike.

Ludwig, an open source, deep learning toolbox built on top of TensorFlow that allows users to train and test deep learning models without writing code.

Ludwig, an open source, deep learning toolbox built on top of TensorFlow that allows users to train and test deep learning models without writing code.

Ludwig is unique in its ability to help make deep learning easier to understand for non-experts and enable faster model improvement iteration cycles for experienced machine learning developers and researchers alike.

If deep learning libraries provide the building blocks to make your building, <u>Ludwig provides the buildings to make</u> your city, and you can chose among the available buildings or add your own building to the set of available ones.

Data type-specific **encoders** and **decoders**

Data type-specific **encoders** and **decoders**

Each data type has a specific processing function

Data type-specific **encoders** and **decoders**

Each data type has a specific processing function

Ludwig incorporates a set of command line utilities for training, testing models, and obtaining predictions

Data type-specific **encoders** and **decoders**

Each data type has a specific processing function

Ludwig incorporates a set of command line utilities for training, testing models, and obtaining predictions

Train models on multiple GPUs locally and in a distributed fashion through the use of Horovod

Installation

Installation

Docker

The Ludwig team publishes official <u>Docker images</u> that come with the full set of dependencies pre-installed. You can pull the <u>latest images</u> (for the most recent official Ludwig release) by running:

docker pull ludwigai/ludwig:latest

The ludwig command line tool is provided as the entrypoint for all commands.

GPU support

If your machine has a GPU to accelerate the training process, pull the official Ludwig image with GPU support:

docker pull ludwigai/ludwig-gpu:latest

Python (with Pip) recommended

pip install ludwig

This will install Ludwig's basic requirements for modeling with binary, category, number, text, image, and audio features. The requirements for additional functionality are separated out so that users are able to install only the ones they actually need:

- ludwig[serve] for serving dependencies.
- ludwig[viz] for visualization dependencies.
- ludwig[hyperopt] for hyperparameter optimization dependencies.
- ludwig[distributed] for distributed training on Ray using Dask and Horovod.

The full set of dependencies can be installed with:

pip install 'ludwig[full]'

GPU support

If your machine has a GPU to accelerate the training process, make sure you install a GPU-enabled version of PyTorch before installing Ludwig:

pip install torch -f https://download.pytorch.org/whl/cu113/torch_stable.html

The example above will install the latest version of PyTorch with CUDA 11.3. See the official PyTorch docs for more details on installing the right version of PyTorch for your environment.

title	author	description	cover	genre	price
Do Androids Dream of Electric Sheep?	Philip K. Dick	By 2021, the World War has killed millions, driving entire species into extinction and sending mankind off- planet	path-to- image/do- android- cover.jpg	sci-fi	9.32
War and Peace	Leo Tolstoy	War and Peace broadly focuses on Napoleon's invasion of Russia in 1812 and follows three of the most well- known characters in literature	path-to- image/war-and- peace-cover.jpg	historical	5.42
The Name of the Rose	Umberto Eco	In 1327, Brother William of Baskerville is sent to investigate a wealthy Italian abbey whose monks are suspected of heresy	path-to- image/name- of-the-rose- cover.jpg	historical	16.99

csv tabular data

title	author	description	cover	genre	price
Do Androids Dream of Electric Sheep?	Philip K. Dick	By 2021, the World War has killed millions, driving entire species into extinction and sending mankind off- planet	path-to- image/do- android- cover.jpg	sci-fi	9.32
War and Peace	Leo Tolstoy	War and Peace broadly focuses on Napoleon's invasion of Russia in 1812 and follows three of the most well- known characters in literature	path-to- image/war-and- peace-cover.jpg	historical	5.42
The Name of the Rose	Umberto Eco	In 1327, Brother William of Baskerville is sent to investigate a wealthy Italian abbey whose monks are suspected of heresy	path-to- image/name- of-the-rose- cover.jpg	historical	16.99

csv tabular data

```
input features:
  name: title
  type: text
  name: author
  type: category
  name: description
  type: text
  name: cover
  type: image
output_features:
  name: genre
  type: category
  name: price
  type: numerical
training:
 epochs: 10
```

YAML metadata file

Train

ludwig train -data_csv path/to/file.csv -model_definition_file
model_definition.yaml

Prediction

ludwig predict -data_csv path/to/data.csv -model_path /path/to/model

Visualize

ludwig visualize -visualization learning_curves -training_stats
results/training_stats.json

Compare models

ludwig visualize -visualization compare_performance -test_stats
path/to/test_stats_model_1.json path/to/test_stats_model_2.json

Hands-on!

Fig. 2. A flowchart showing the machine learning process. This chart highlights points of interaction between domain experts and data scientists, along with bottlenecks.

Cristobal Donoso Oliva

State of the Art: Model Generation

State of the Art: Model Generation

Figure 9: Network-level search space proposed by [129]. The blue point (top-left) indicates the fixed "stem" structure, the remaining gray and orange points are cell structure, as described above. The black arrows along the orange points indicate the final selected network-level structure. "d" and "L" indicate the down sampling rate and layer, respectively.

Figure 14: Overview of neural architecture search using reinforcement learning.