Frühjahr 22 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Bestimmen Sie explizit die Lösung des Anfangswertproblems

$$x'(t) = \pi \cos t \cdot (1 + x^2(t)), \quad x(0) = 0$$

und deren maximales Existenzintervall.

(b) Es sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein stetig differenzierbares Vektorfeld mit

$$\langle f(x), x \rangle = 0$$
 für alle $x \in \mathbb{R}^n$ und $f(0) = 0$.

(Hierbei bezeichnet $\langle .,. \rangle$ das euklidische Standard-Skalarprodukt im \mathbb{R}^n .) Zeigen Sie, dass für jede Lösung $x:I\to\mathbb{R}^n$ der autonomen Differentialgleichung x'=f(x) die euklidische Norm $t\mapsto \|x(t)\|$ konstant ist und dass die Ruhelage 0 dieser Differentialgleichung stabil ist.

Lösungsvorschlag:

- (a) Weil die Strukturfunktion stetig differenzierbar, also lokal lipschitzstetig ist, ist die Maximallösung zu jedem Anfangswert eindeutig bestimmt. Durch Trennung der Variablen erhält man, die Lösung $x(t) = \tan(\pi \sin(t))$. Der Tangens ist für Argumente zwischen $-\frac{\pi}{2}$ und $\frac{\pi}{2}$ definiert, also existiert die Lösung für alle t mit $|\sin(t)| < \frac{1}{2}$. Mit der Arkussinusfunktion erhält man also $(\arcsin(-\frac{1}{2}), \arcsin(\frac{1}{2})) = (-\arcsin(\frac{1}{2}), \arcsin(\frac{1}{2}))$ als maximales Existenzintervall.
- (b) Wir werden zeigen, dass $g:t\mapsto \|x(t)\|^2$ konstant ist, weil $\|\cdot\|$ nur nichtnegative Werte annimmt, ist dann auch $t\mapsto \|x(t)\|$ konstant. Wir bestimmen die Ableitung von g und erhalten wegen $g(t)=\langle x(t),x(t)\rangle=\sum_{i=1}^n x_i(t)\cdot x_i(t)$ für die Ableitung $g'(t)=\sum_{i=1}^n x_i'(t)\cdot x_i(t)+x_i(t)\cdot x_i'(t)=2\sum_{i=1}^n x_i'(t)\cdot x_i(t)=2\langle f(x(t)),x(t)\rangle=0.$ Damit ist g stetig differenzierbar und konstant 0, also g konstant. Um Stabilität zu zeigen, nutzen wir die Definition. Nach Voraussetzung ist 0 eine Nullstelle von f also eine Ruhelage. Weil die Norm jeder Lösung konstant ist, insbesondere jede Lösung also beschränkt bleibt, existiert jede maximale Lösung global. Für alle $\varepsilon>0$ wählen wir $\delta=\varepsilon$ und erhalten für alle $\xi\in\mathbb{R}^n$ mit $\|\xi\|<\delta$ für die Lösung zur Anfangsbedingung $x(0)=\xi$ also $\|x(t)-0\|=\|x(t)\|=\|x(0)\|=\|\xi\|<\delta=\varepsilon$. Per Definitionem ist 0 stabil.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$