

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

EXAMEN FINAL - JULIO 2016

SOLUGIN Apellidos:

Nombre:

Ejercicio 1:

Dada la gramática de Tipo 0:

$$G = \{ \Sigma_T = \{ a, b, c \}, \Sigma_N = \{ S, A \}, S, \mathcal{P} \}$$

con las producciones \mathcal{G} : S::= baA abA::= c

Obtener una gramática G´, en forma de estructura de frases, tal que L(G) = L(G´)

25 minutos

BCA: = 0

BCA : = BC

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{2} = \frac{1}{3} \cdot \frac{1}{15} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15} \right)$$

$$G' = \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{15$$

Apellidos:

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

EXAMEN FINAL - JULIO 2016

SOLUCION

Nombre:

Ejercicio 2:

Dado el autómata finito A, descrito mediante el siguiente diagrama de estados obtener, mediante ecuaciones características, el lenguaje reconocido por dicho autómata.

25 minutos

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD EXAMEN FINAL - JULIO 2016

Apellidos:

SOLUCIÓN

Nombre:

Ejercicio 3:

Dada la gramática G = $\{\Sigma_T, \Sigma_N, S, \mathcal{P}\}$ donde Σ_T = $\{a, +, *,), (\}, \Sigma_N$ = $\{S, T, F\}, S$ = axioma y \mathcal{P} las producciones: $S: S + T \mid T$

$$T ::= T * F | F$$

 $F ::= (S) | a$

- a) Construir un Autómata a Pila (AP) que reconozca el lenguaje generado por G. (7 puntos). (utilizar el método en el que G no necesita estar en FNG).
- b) Obtener una derivación de la palabra (a + a * a) en G. (1 punto).
- c) Comprobar el reconocimiento en el AP de dicha palabra. (2 puntos).

25 minutos

a) Se va a construir un AP que acepte el mismo lenguaje generado por la gramática G:

$$G = \{\{a, +, *, \}, (\}, \{S, T, F\}, \mathcal{P}, S\} \qquad \mathcal{P} \equiv \begin{vmatrix} S ::= S + T \mid T \\ T ::= T * F \mid F \\ F ::= (S) \mid a \end{vmatrix}$$

$$AP = \{\Sigma_{T}, \{\Sigma_{N} \cup \Sigma_{T}\}, \{q\}, S, q, f, \emptyset\}$$

$$AP = \{ \{a, +, *, \}, (\}, \{a, +, *, \}, (, S, T, F\}, \{q\}, S, q, f, \emptyset \} \}$$

Aplicamos el ALGORITMO para obtener los movimientos del AP:

Paso 1	$\forall A :: = X \in P \rightarrow (q, X) \in f(q, \lambda, A)$
Paso 2	$\forall a \in \Sigma_T \rightarrow (q, \lambda) \in f(q, a, a)$

b) Derivación de la palabra (a + a * a) en G:

$$S \to \underline{T} \to \underline{F} \to (\underline{S}) \to (\underline{S} + \underline{T}) \to (\underline{T} + \underline{T}) \to (\underline{F} + \underline{T}) \to (\underline{a} + \underline{T}) \to (\underline{a} + \underline{T} * \underline{F}) \to (\underline{a} + \underline{F} * \underline{F}) \to (\underline{a} + \underline{a} * \underline{F}) \to (\underline{a} + \underline{a} * \underline{A})$$
 Genera la palabra formada por símbolos $\in \Sigma_T$ de G

c) Reconocimiento de la palabra (a + a * a) en el AP:

$$\begin{split} & [q,(a+a*a),S] \vdash [q,(a+a*a),T] \vdash [q,(a+a*a),F] \vdash [q,(a+a*a),(S)] \vdash \\ & [q,a+a*a),S)] \vdash [q,a+a*a),S+T)] \vdash [q,a+a*a),T+T)] \vdash [q,a+a*a),F+T)] \vdash \\ & [q,a+a*a),a+T)] \vdash [q,+a*a),+T)] \vdash [q,a*a),T)] \vdash [q,a*a),T*F)] \vdash \\ & [q,a*a),F*F)] \vdash [q,a*a),a*F)] \vdash [q,*a),*F)] \vdash [q,a),a)] \vdash [q,),)] \vdash [q,a),A] \quad \text{Acepta la palabra que } \in \Sigma \text{ del }AP \end{split}$$

Apellidos:

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

EXAMEN FINAL - JULTO 2016 /

SOLUCION

Nombre:

Ejercicio 4:

Sea la Máquina de Turing M definida según el siguiente grafo:

a) ¿Qué función aritmética sobre el alfabeto {1} calcula M? Mostrar las diferentes configuraciones finales a las que accede M cuando la situación inicial de la cinta y la posición de la cabeza de lectura-escritura son las siguientes:

b) Escribir (y describir brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal cuando simula a la máquina M y ésta recibe como entrada la palabra unaria del apartado a.3). Utilizar la siguiente codificación binaria:

$$q_0 \equiv 00; \ q_1 \equiv 01; \ q_2 \equiv 10; \ q_3 \equiv 11$$

Desplazamiento a la izquierda $I \equiv 1$; Desplazamiento a la derecha $D \equiv 0$

- c) Escribir (y describir brevemente) el contenido de la cinta de esa Máquina de Turing Universal tras simular el primer movimiento que realiza la máquina M con la entrada del apartado a.3).
- d) Escribir (y describir brevemente) el contenido de la cinta de la Máquina de Turing Universal cuando termine de simular a la máquina M con la entrada del apartado a.3).

NOTA: Todos los apartados a), b), c) y d) se responderán en el reverso de esta hoja.

Continuación ejercicio 4.	· /
	M # I# 2° w mod 3 = 0 M # ### en cuelprier otro cesso w mod 3 = 1 w mod 3 = 2.
Apartado b) / 10 10 10 10 10 10 10 10	#D
1010000 = 00011111= 4 movtes de M => 4 repistros en la cin	tz de le MTV
REG. inicial: #00 1 # 1 pue les * en la colda que M lee inicialment	z inicialmente M nte
	cambiado en la cinta respecto al apartado b) anterior)
#0 *1 0 + 0 1 1 丰。。	6
Primer marte de M con #111# es	((fo,1) = (f, #, D) => desplaces * unz
En el REG. inicial po -> p, q En le celos donde estaba miaismente	el * se escribe 0 as borrado fil de un 1 por M
#00*1+B10=AABA	
#111# M #### 1# \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Mae para en pa leyendo un # => en el REGINICI hay = 110 = El módulo localizador de le MTU busca REG que empie en por 110. No hay minque a marcan todos con d's y B's. En el último ciclo el mód. localizador marca el primer aimbolo del REG inicial I -> B y avanza buscando el apte repisivo por examinar. No qued