Examen Final- Mécanique 3

Durée 2h – Documents interdits – Calculatrices non programmables autorisées- 2 pages

Dynamitage d'une cheminée

On assimile une cheminée à une tige homogène OA de masse M et de longueur L. On dynamite sa base (point O) et elle amorce une rotation dans un plan vertical autour du point O bloqué par les débris de l'explosion. On note Oz la verticale ascendante, zOx le plan de chute et $\theta(t)$ l'angle que fait OA avec Oz à l'instant t (voir figure ci-dessous). Le moment d'inertie de la cheminée par rapport à l'axe Oy est $J = \frac{1}{3}ML^2$. Au moment de l'explosion (t = 0), on a $\theta = 0$ et $\dot{\theta} = 0$. On admet que l'action du sol sur la cheminée se résume à une force $\vec{R} = R_r \vec{e_r} + R_\theta \vec{e_\theta}$ appliquée en O. On note g l'intensité de pesanteur.

Partie A: Rotation de la cheminée avant brisure

- 1) Calculer l'énergie mécanique de la tige.
- 2) Pourquoi y-a-t-il conservation de l'énergie mécanique de la tige ?
- 3) En utilisant la conservation de l'énergie mécanique de la tige (entre t et t=0), montrer que :

$$\dot{\theta}^2 = \frac{3g}{L}(1 - \cos\theta)$$

- 4) En déduire une relation entre $\ddot{\theta}$ et θ .
- 5) Retrouver la relation de la question 4 par une étude dynamique.
- 6) Enoncer le théorème du centre de masse pour un système fermé.
- 7) En appliquant le théorème de centre de masse sur la tige, montrer que la force \vec{R} s'écrit :

$$\vec{R} = Mg \frac{(5\cos\theta - 3)}{2} \vec{e}_r - \frac{1}{4} Mg \sin\theta \vec{e}_\theta$$

Partie B : Brisure de la cheminée

A un certain moment, la cheminée va se briser en un point B. On envisage la portion OB de la cheminée de longueur x, de masse $m = M \frac{x}{L}$. L'action de la partie BA de la cheminée sur la partie OB peut se résumer à l'action combinée d'une force $\vec{F} = N\vec{e}_r + T\vec{e}_\theta$ appliquée en B et d'un couple $\vec{\Gamma} = \Gamma\vec{e}_y$ (voir figure ci-dessous).

- 8) Appliquer le théorème du centre de masse sur la portion OB. Projeter ce théorème selon $\overrightarrow{e_r}$ et $\overrightarrow{e_\theta}$.
- 9) En appliquant le théorème du moment cinétique à OB, on trouve que Γ s'écrit sous la forme : $\Gamma = -\frac{Mg}{4L^2} x (L-x)^2 \sin\theta.$

$$\Gamma = -\frac{Mg}{4L^2} x(L - x)^2 \sin\theta.$$

On admet que la cheminée se brise si $|\Gamma|$ atteint une valeur critique Γ_c . Cette valeur est atteinte, lorsque la fonction $x(L-x)^2$ est maximale.

Où se brise donc la cheminée dynamitée ?

10) L'image ci-dessous, extraite d'une vidéo-enregistrement, vérifie-t-elle le résultat obtenue? Sinon pourquoi?

Fin de l'Examen