

Lecture 7 – Spiking Neural Networks Part 2

Last lecture

But what about the neurons? Spike generation? Spike handling?

Outline – Lecture 7

- The biological neuron and it's functionality
- Mathematical neuron models
- SNN features important for learning
- Examples of SNN implementations (software)
- Make your own quiz question!

The biological neuron

- Electrochemical system
 - A cell membrane separating two ionic liquids
 - Na+, K+, Ca²⁺, and others...
- Neuronal membrane
 - Lipid bilayer with protein ion channels
 - lon concentration gradient →
 Electric field across membrane
 → membrane capacitance C_m.
 - Ionic channels "leak" ions through $\rightarrow R_m$

3

Ehsan et al. IEEE EMCSI 2017 Mattias Borg | EITP25 VT20 – Lecture 7

Dynamics of the membrane potential

- Extracellular medium (outside the cell)
 - Rich on Na⁺, Cl⁻
- Intracellular medium (inside the cell)
 - Rich on K⁺, negative proteins
- Ion transport through protein channels
 - K passive channels always open
 - Voltage controlled:
 Open/close depending on V_{mem}
 - Na channel open for $V_{mem} > -55mV$
 - K active channel open for $V_{mem} > 40 \ mV$
- Drift-Diffusion →
 Each ion have its own equilibrium state...
 - Na+ → V_{Na} = 58 mV
 - $K+ \rightarrow V_K = -93 \, mV$
- Stable resting state at -70 mV maintained by active K/Na pump using ATP→ADP
 - 3 Na⁺ out, 2 K⁺ in per ATP

$$J = -\frac{D\partial c_i}{\partial x} + qc_i \mathcal{E}$$
 Drift-Diffusion equation

At the resting potential, all voltage-gated Na^+ channels and most voltage-gated K^+ channels are closed. The Na^+/K^+ transporter pumps K^+ ions into the cell and Na^+ ions out.

Creating an action potential

- 1. Incoming signal
 - → neurotransmitters binds to receptors
 - → Some Na⁺ channels open
 - → depolarization
- 2. When $V_{mem} > -55mV$: Majority Na channels open (THRESHOLD!)
 - → Na rushes into cell
 - → V_{mem} towards Na⁺ equil. (58 mV)
- 3. When $V_{mem} > 30 40 \ mV$: Majority K channels opens
 - → K+ rushes out!
 - → V_{mem} again towards K⁺ equi. (-93 mV)
- 4. Inverted concentrations restored by Na/K pump

At the peak action potential, Na⁺ channels close while K⁺ channels open. K⁺ leaves the cell, and the membrane eventually becomes hyperpolarized.

Transmitting the action potential

- a. In response to a signal, the soma end of the axon becomes depolarized.
- b. The depolarization spreads down the axon. Meanwhile, the first part of the membrane repolarizes. Because Na⁺ channels are inactivated and additional K⁺ channels have opened, the membrane cannot depolarize again.
- c. The action potential continues to travel down the axon.

Neurons as Poisson process

- Neuron average activity can be known
 - Depends on input to neuron
- Exact spike timing stochiometric
 - Interactions → noise
- Neurons → Poisson spike sources

- Some randomness may help with learning
 - Avoids resonances, local minima, ...

Key attributes of the biological neuron?

Hodgkin-Huxley model

- A biologically plausible LIF model based on the squid axon:
- Three parallel current channels; Na, K and Leakage

Na activation function $m \in f(v)$

- $I_{Na} = g_{Na} m^3 h (v(t) V_{Na})$
- $I_K = g_K n^4 (v(t) V_K)$

Na inactivation function $h \in f(v)$

• $I_L = \frac{1}{R}(v(t) - V_L)$

K activation function $n \in f(v)$

\boldsymbol{x}	V_K [mV]	$g_x \left[\mathrm{mS} / \mathrm{cm}^2 \right]$
Na	55	40
\mathbf{K}	-77	35
L	-65	0.3

Hodgkin-Huxley parameters

- $n, m \text{ and } h \in f(v, t)$
- Parameters respond with time constant!
- → possibility for a potential spike

$$\frac{dx}{dt} = \frac{\left(x - x_0(v)\right)}{\tau_x}$$

Refractory behaviour with H-H model

- After spiking → u < 0 → Incoming spikes have harder time to initiate new spike
- → Refractory behaviour, although not explicitly defined
- In practical implementations often defined explicitly instead

The integrate-and-fire model

 $C_n \frac{dv(t)}{dt} = I_{input}(t) - \frac{1}{R_n} (v(t) - v_0) + I_{spike}^0 \delta(v(t) - v_t)$

12

A. Thomas, J. Phys. D 2013

Mattias Borg | EITP25 VT20 – Lecture 7

Adaptive threshold

- For each spiking event → increase threshold
- Threshold decays to "resting value"
- → Hard to have high spiking rate
- Keeps overall spiking rate uniform

$$\frac{dv_{th}}{dt} = -\frac{\left(v_{th} - v_{th,0}\right)}{\tau_{th}}$$

On spike: $v_{th} = v_{th} + \theta$

Time (s)

Excitatory / Inhibitory synapses

- Not all synapses shift the neuron potential towards threshold (excitation)
- Some reduce the neuron potential (inhibition)
 - → Inhibition can be a crucial feature for learning in SNNs
- Inhibition can be modeled by synapse with negative weight

Lateral inhibition - Example

- Upon firing (activation) a neuron inhibits potentiation of neighbouring neurons (in the same layer!)
- → extra spatial contrast

Mach bands illusion

Darker areas in contact with lighter areas appear darker than they are

Darker blobs appear at intersections

"Winner-takes-all"

- If all neurons in a layer can <u>completely</u> inhibit all others in the layer
 - → i.e. the first to fire will be the only one to fire...
- Typically implemented as inhibition for a certain time, matching refractive period
 - $V = V_{rest}$ on all until $t = t_s + t_{refr}$

Learning prototypes

- Lateral inhibition promotes neuronal learning of specific prototypes in the data, since only a few neurons
 can spike and adjust their receptive field towards a specific prototype
- Lateral inhibition also prevents overfitting as the competition between neurons forces them to learn different features/prototypes

Receptive field graph

Example of SNN in action

- Classification of MNIST data set
- Rate encoding + conductance synapses

Input encoding

$$f = \frac{I_{ij}}{4} < 63.75 \text{ Hz}$$

Neuron features

- LIF neurons
- Adaptive threshold
- Short refractive period
- "Soft" lateral inhibition via inhibitory neurons

Training

- Image presented for 350 ms
- 150 ms pause between images
- Weights updated by STDP (4 variants)

- Set learning rate = 0
- Fix neuron thresholds
- Present testing set
- Each neuron is
 assigned a class
 depending on highest
 response over one
 set in training

Network size

Network topology

- 100, 400, 1600 and 6400 excitatory neurons
- Trained on 3-15x training set

Diehl and Cook 2015

Training results of SNN

Possible improvements: Additional layers, localised receptive fields,... Limitations: Few spikes + Rate-encoding limits minimum presentation time

Diehl and Cook 2015 Mattias Borg | EITP25 VT20 – Lecture 7 19

Energy usage in SNN

- Variable threshold → keeps # pulses low
- Very sparse spiking: 17 spikes for one example (16 spikes correct class + 1 spike incorrect)
- Typical energy / spike in hardware? 1 spike ~1 pJ, synapse ~1 pW
- Authors estimate ~ 1 mW consumption! (smart phone ~ 1 W)

Compare to NVIDIA V100 GPU = 250W (at least)

→ 250 000 times better

Diehl and Cook 2015

Mattias Borg | EITP25 VT20 – Lecture 7 20

More advanced SNN

- Time-encoding
 - Darker pixel→ Larger input spike delay
- First layer: Convolution
 - 5x5 kernels with four predefined features
 - No learning here!
- Second layer: Data pooling
 - Max pool implemented as first pulse is propagated
- Data scaling
 - Oth-2nd layers implemented at 5 scales
- STDP learning in third layer
 - Unsupervised feature learning
 - Input from all scales!

Performance benchmark

- Beats DeepConvNet on the 3D-object data set:
 - 10 classes of objects at 72 different conditions (various angles, scales, tilt, ...)
 - The SNN got 96% vs 85.8% for DeepConvNet
- Much fewer parameters: thousands vs 60 million (DeepConvNet)
 - Allows for smaller data sets without overfitting
 - Only 3500 images used here (humans can generalize from a few images only).

Ex. Feature learning at three scales

Make your own quiz question!

- Come up with a good quiz question based on the topics of L4-L7
- You have until the end of the lecture/day → Send it to mattias.borg@eit.lth.se
- Quiz will be posted on Canvas for you to practise on..

What is the chance that you win on the lottery?

- 1. Chance? I always win
- 2. 1 in 100 000
- 3. As good as dying in a plane crash
- 4. I will win when pigs can fly

Lecture 4 – Machine Learning Topologies

Convolutional Neural Network

Recurrent Neural Network

Locally Connected Network

Lecture 5 – Hardware for Big Data

GPU

TPU

In-memory computing

Lecture 6 – Spiking Neural Networks 1

Plasticity

Hebbian learning

STDP

Lecture 7 – Spiking Neural Networks 2

Biological neuron

Hodgkin-Huxley

Integrate-and-fire