```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Boston.csv')

df.head()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	I
(0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

Ducu	COTAIIII	(cocar II coramii	٠,٠
#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	int64
4	NX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

df.describe()

	CRIM	ZN	INDUS	CHAS	NX	RM	A(
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.57490
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.14886
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.90000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.02500
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.50000
/	0.077000	10 500000	10 100000	0.00000	0.004000	0.000500	04.07504

df.isna().sum()

Г⇒	CRIM	0
_	ZN	0
	INDUS	0
	CHAS	0
	NX	0
	RM	0
	AGE	0
	DIS	0
	RAD	0
	TAX	0
	PTRATIO	0
	В	0
	LSTAT	0
	MEDV	0
	dtype: int	64

df.nunique()

CRIM	504
ZN	26
INDUS	76
CHAS	2
NX	81
RM	446
AGE	356
DIS	412
RAD	9
TAX	66
PTRATIO	46
В	357
LSTAT	455
MEDV	229
dtype: int	64

sns.pairplot(df)


```
df.columns
```

```
Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO', 'B', 'LSTAT', 'MEDV'],
           dtype='object')
y = df['MEDV']
X = df[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
       'PTRATIO', 'B', 'LSTAT']]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=.20)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
     ((404, 13), (102, 13), (404,), (102,))
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
     LinearRegression()
y_pred = model.predict(X_test)
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squa
mean_absolute_error(y_test,y_pred)
     3.2635674962986227
mean_absolute_percentage_error(y_test, y_pred)
     0.15620169046127025
mean_squared_error(y_test, y_pred)
     23.607008294613323
sample = df.sample()
sample
```

CRTM 7N TNDIS CHAS NX RM ΔGF DTS RAD TAX PTRATTO R X_new = sample.loc[:,X.columns]

X_new

CRIM ΖN INDUS CHAS NX RM**AGE** DIS RAD TAX PTRATIO В 0.03113 0.0 4.39 385.64 345 0 0.442 6.014 48.5 8.0136 3 352.0 18.8

model.predict(X_new)

array([16.07004304])

Colab paid products - Cancel contracts here

✓ 0s completed at 10:23 PM

×