

DATOS DE IDENTIFICACIÓN

MATERIA:	ARQUITECTURA DE COMPUTADORAS				
CENTRO ACADÉMICO:	CIENCIAS BÁSICAS				
DEPARTAMENTO ACADÉMICO:	SISTEMAS ELECTRÓNICOS				
PROGRAMA EDUCATIVO:	INGENIERIA EN ELECTRÓNICA				
AÑO DEL PLAN DE ESTUDIOS:	2019	SEMESTRE:	3°	CLAVE DE LA MATERIA:	27976
ÁREA ACADÉMICA:	HARDWARE		PERIODO EN QUE SE IMPARTE:	AGOSTO – DICIEMBRE	
HORAS SEMANA T/P:	4/1		CRÉDITOS:	9	
MODALIDAD EDUCATIVA EN LA QUE SE IMPARTE:	PRESENCIAL		NATURALEZA DE LA MATERIA:	OBLIGATORIA	
ELABORADO POR:	LAFO, JPC, AGL, PPMP, IPG, CJMA, LARP				
REVISADO Y APROBADO POR LA ACADEMIA DE:	ELECTRÓNICA EN TIEMPO DISCRETO		FECHA DE ACTUALIZACIÓN:	AGOSTO 2024	

DESCRIPCIÓN GENERAL

Es un curso teórico-práctico, de nivel intermedio en el que el estudiante conoce los fundamentos de la arquitectura de diversos tipos de procesadores CISC y RISC, las partes que conforman un CPU, la interconexión de las unidades de memoria y periféricos a través de los buses, los conjuntos de instrucciones, implementa y programa una microcomputadora basada en procesadores RISC de 8 bits, y conoce el conjunto de instrucciones y el modelo de programación del procesador MIPS; desarrolla habilidades en el estudiante para el diseño e implementación de hardware para una versión simplificada de un procesador MIPS. Este curso es simultaneo a Sistemas Digitales Secuenciales tiene como antecedentes las asignaturas Introducción a los Sistemas Digitales, e Introducción a la Ingeniería Electrónica y es consecuente para las materias Lenguaje Ensamblador, Sistemas Embebidos, Control Discreto y Sistemas Embebidos con Linux.

Código: FO-030200-13 Revisión: 02 Emisión: 13/12/11

1 de 7

OBJETIVO (S) GENERAL (ES)

Al finalizar el curso, el estudiante aplicará los conceptos de arquitectura de computadora para implementar una microcomputadora con un procesador RISC de 8 bits, y una versión reducida del procesador RISC de 32 bits, todo con un sentido ético, pensamiento crítico y autonomía.

OBJETIVOS PARTICULARES

- 1. Conocerá los conceptos de: procesador, lenguaje, hardware, software, compilador y computadora
- 2. Conocerá las partes de un procesador y su funcionamiento.
- 3. Conocerá las arquitecturas CISC, RISC de 8 bits y MIPS de 32 bits
- 4. Conocer la ejecución de las instrucciones, simulación y programación de los procesadores de 8 bits.
- 5. Utilizar los diversos periféricos del microcontrolador ATmega8515 para una aplicación real
- 6. Implementar una microcomputadora con procesador, memoria y periféricos en un sistema de 8 bits
- 7. Realizará simulaciones de programas para microprocesador MIPS de 32 bits
- 8. Analizará el diseño e implementación en hardware de un procesador MIPS de 32 bits
- Implementar un procesador básico en lenguaje de descripción de Hardware VHDL y/o discreto siendo capaz de ejecutar programas simples.

CONTENIDOS DE APRENDIZAJE

UNIDAD TEMÁTICA I: ARQUITECTURA DE LA CPU (12 HORAS)			
OBJETIVOS	CONTENIDOS	FUENTES DE CONSULTA	
PARTICULARES	CONTENIDOS		
Al término de la unidad él(la)	1 Introducción.		
alumno(a):	2 Lenguajes y compiladores.		
1. Explicará los conceptos de:	3 Representación de instrucciones en la computadora.		
procesador, lenguaje, hardware, software, compilador y computadora	4 Concepto de procesador.		
	5 Elementos básicos de un procesador	1 – 4	
	5.1 ALU		
2. Conocerá e identificará las	5.2 Decodificador de instrucciones		
diferentes partes de una computadora.	5.3 Secuenciadores		
	5.4 Registros		
3. Conocerá las arquitecturas Von	6 Memorias, tipos y funcionamiento de sus buses.		

*En caso de no aplicar algún elemento, escribir N/A

Newmann y	/ Harvard.
-----------	------------

- Conocerá cuales son los elementos principales de un procesador.
- 5. Identificará las diferencias entre las arquitecturas CISC y RISC.
- 6. Conocerá las diferencias entre microcontrolador y computadora.
- 7 Concepto y tipos de bus
- 8 Sistema mínimo.
- 9 Periféricos internos y externos.
- 10 Arquitecturas Von Newmann y Harvard
- 11 Concepto de microcontrolador.
- 12 Arquitecturas CISC y RISC.

UNIDAD TEMÁTICA II: Arquitectura de ATmega8515 (12 HORAS)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
Al término de la unidad él(la) alumno(a):	1 Introducción.		
	Características generales del microcontrolador ATMEGA8515.		
1. Conocerá la arquitectura del	3 Puertos y pines de función especial.		
ATmega8515, así como sus principios de funcionamiento, la	4 Circuito mínimo.		
introducción y la ejecución de	5 Organización de la memoria.		
programas en lenguaje de máquina de baja y mediana complejidad.	6 Registros de función especial y banderas.		
Conocerá las características más	7 Entorno y herramientas de programación.	5,6, 8 y 9	
importantes de los diferentes modos de direccionamiento del ATmega8515.	8 Estructura de programa y vector de interrupciones.		
	9 Conjunto de instrucciones.		
3. Conocerá los tipos de instrucción	10 Modos de direccionamiento.		
existentes en el CPU del ATmega8515.	11 Ejemplos.		
Realizará algunos programas en lenguaje ensamblador para el ATmega8515.			

*En caso de no aplicar algún elemento, escribir N/A

UNIDAD TEMÁTICA III: Hardware del ATmega8515 (12 HORAS)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
Al término de la unidad él(la) alumno(a): 1. Conocerá la forma de conectar periféricos en microprocesador 2. Utilizará los diversos periféricos del microcontrolador para una aplicación real.	 Descripción de hardware. 1.1 Puertos de entrada-salida. 1.2 Interrupciones y externas 1.3 Temporizadores/Contadores. 1.4 Interfaces serie. 1.6 Reinicializar ("Reset" en ingles). Expansión de memorias y periféricos externos. Ejemplos. 	5, 6, 8 y 9	
OBJETIVOS PARTICULARES	de Instrucciones y programación del procesador MIPS CONTENIDOS	FUENTES DE CONSULTA	
1. Conocerá el conjunto de Instrucciones del procesador MIPS R2000 2. Conocerá la representación de instrucciones del procesador MIPS 3. Realizará programas para el procesador MIPS 4. Simulará y verificará el funcionamiento de programas con el procesador MIPS	 Introducción al procesador MIPS Conjunto De Instrucciones del procesador MIPS Representación de las instrucciones Instrucciones 4.1 aritméticas y Lógicas 4.2 Toma de decisiones Procedimientos Datos inmediatos y direccionamiento Arreglos y Punteros Simulación de programas 	1 – 3, 7, 10	

UNIDAD TEMÁTICA V: IMPLEMENTACIÓN DE UN CPU MIPS (12 HORAS)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
Al término de la unidad él(la) alumno(a):	9 Diseño e implementación de las partes de un CPU MIPS.9.1 Implementación de la ALU.		
 5. Implementar las diferentes partes de un procesador MIPS, tales como: ALU, decodificador de instrucciones, secuenciador, registros. 6. Realizar pruebas de diferentes programas en el microprocesador MIPS completo. 	 9.2 Implementación del Decodificador de instrucciones. 9.3 Implementación del Secuenciador y registros. 9.4 Buses internos y externos. 10 Prueba de programas en el microprocesador completo de 8 bits MIPS. 	1 – 3, 7, 10	

METODOLOGÍA DE ENSEÑANZA - APRENDIZAJE

- 1. Con el apoyo de la bibliografía seleccionada, el maestro expondrá de manera oral los temas establecidos por el programa.
- 2. Para auxiliarse en la exposición el profesor utilizará medios gráficos y computacionales que se encuentren al alcance.
- 3. El alumno realizará ejercicios que reafirmen los conocimientos adquiridos.

RECURSOS DIDÁCTICOS

TRADICIONALES:

- Pizarrón
- Material de Apoyo
- Notas de la Materia
- Hojas técnicas de datos
- Instrumentación electrónica

NUEVAS TECNOLOGÍAS:

- Proyector
- Computadora

- Plataforma Moodle
- Compiladores de procesadores
- Sintetizadores de Lenguajes de Descripción de Hardware
- Simuladores de VHDL
- Simuladores de los procesadores AVR y MIPS
- Redes Sociales con enfoque educativo

Se suguiere realizar una o varias visitas guiadas en empresas y/o centro de estudio, así como viajes de estudio, con el proposito de coadyuvar al objetivo de la materia.

EVALUACIÓN DE LOS APRENDIZAJES

La evaluación diagnóstica se realizará con un cuestionario para explorar el aprendizaje afectivo alcanzado por los alumnos en los cursos previos que son base a la materia, identificando las debilidades y fortalezas del grupo para poder determinar los alcances del curso.

La evaluación motivadora se realizará en base a prácticas de laboratorio y estudios de casos que permitan al alumno comprobar los progresos con respecto a los objetivos del curso.

La evaluación formativa se llevará a cabo a través del seguimiento y la retroalimentación permanente a las participaciones y producciones generadas por el estudiante.

Criterio / Parcial	Porcentaje	Componentes
1º Teórico-práctico	20%	 Examen Tareas, Exposiciones, Investigaciones, Ejercicios, Prácticas*
2º Teórico-práctico	20%	 Examen Tareas, Exposiciones, Investigaciones, Ejercicios, Prácticas
3º Teórico-práctico	20%	 Examen Tareas, Exposiciones, Investigaciones, Ejercicios, Prácticas
Proyecto intermedio (práctico)	20%	Proyecto Reporte
Proyecto final (práctico)	20%	Proyecto Reporte
* Al menos (2 actividades por parcial) Para Tareas, exposiciones e investigaciones (teóricas)	Ponderado con respecto a las actividades	Formato para entrega de reportes de investigación. • Portada • Índice • Introducción • Contenido • Conclusiones • Bibliografía

La evaluación sumativa se dará en términos a las siguientes condiciones:

- Para tener derecho a presentar examen final, se deberá tener una asistencia mínima del 80% del tiempo de clases.
- El proyecto final se calificará en equipo y en forma individual; es decir, cada integrante del equipo tendrá su propia calificación del proyecto y no forzosamente debe ser la misma para todos los integrantes.

NOTA 1. Lenguajes para manejar: Lenguajes ensambladores de cada procesador y "VHDL".

NOTA 2. Software para utilizar: "AVR STUDIO", ISE Xilinx, Simulador SPIM

*En caso de no aplicar algún elemento, escribir $\,{
m N/A}\,$

Código: FO-030200-13

Revisión: 02 Emisión: 13/12/11

FUENTES DE CONSULTA

BÁSICAS:

- 1. Lógica digital y diseño de computadoras; T.R. McCalla; Noriega Megabyte.
- 2. Arquitectura de computadoras. M. Morris Mano, 1983; Prentice Hall Hispanoamericana.
- 3. Organización y arquitectura de computadores; Patterson, Hennessy; 4ª Edición; Morgan Kaufmann, EUA, 2012.
- 4. Organización y Arquitectura de Computadoras, Stallings, 5a Edición, Prentice Hall, 2000
- 5. The AVR microcontroller and embedded systems, Mazidi, Muhammad Ali, Pearson 2011
- 6. AVR RISC Microcontroller Handbook, C Kuhnel, Ed. Newnes 1998, 1st Edition

COMPLEMENTARIAS:

- 7. MIPS Architecture for programmers: The MIPS32 Instruction Set, Document MD00086, MIPS technologies, 2013
- 8. Hojas de datos del μC ATmega8515 (página en internet atmel.com).
- 9. Embedded C programming and the Atmel AVR, Barnett, Richard H., Ed. Thompson 2007
- 10. Simulador μP (RISC).

Código: FO-030200-13

Revisión: 02 Emisión: 13/12/11