```
In [1]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
         df=pd.read csv('heart.csv')
In [2]:
         df
In [3]:
Out[3]:
               age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                                    233
            0 63
                     1 3
                               145
                                          1
                                                  0
                                                       150
                                                               0
                                                                      2.3
                                                                              0
                                                                                 0
                                                                                     1
                                                                                            1
               37
                        2
                               130
                                    250
                                                  1
                                                       187
                                                               0
                                                                                 0
                                                                                      2
            1
                                          0
                                                                      3.5
                               130
                                    204
            2
               41
                     0
                       1
                                          0
                                                  0
                                                       172
                                                               0
                                                                      1.4
                                                                              2 0
                                                                                      2
               56
                                    236
                                          0
                                                       178
                                                               0
                                                                                 0
                                                                                      2
            3
                        1
                               120
                                                  1
                                                                      8.0
                     0 0
                                    354
                                                                      0.6
            4
               57
                               120
                                          0
                                                  1
                                                       163
                                                               1
                                                                              2 0
                                                                                      2
            5
               57
                        0
                               140
                                    192
                                          0
                                                  1
                                                       148
                                                               0
                                                                      0.4
                                                                                 0
                                                                                     1
                                                                              1
                                    294
                                                  0
                                                                                      2
            6
               56
                     0 1
                               140
                                          0
                                                       153
                                                               0
                                                                      1.3
                                                                              1 0
            7
               44
                     1
                        1
                               120
                                    263
                                          0
                                                  1
                                                       173
                                                               0
                                                                      0.0
                                                                              2
                                                                                 0
                                                                                      3
                     1 2
                                                                              2 0
            8
               52
                               172
                                    199
                                          1
                                                  1
                                                       162
                                                               0
                                                                      0.5
               57
            9
                        2
                               150
                                    168
                                          0
                                                  1
                                                       174
                                                               0
                                                                                      2
                                                                      1.6
                                                                                 0
                     1 0
                               140
                                    239
                                          0
                                                       160
                                                                                      2
           10
               54
                                                  1
                                                               0
                                                                      1.2
                                                                              2 0
                        2
           11
                48
                     0
                               130
                                    275
                                          0
                                                  1
                                                       139
                                                               0
                                                                      0.2
                                                                              2
                                                                                 0
                                                                                      2
               49
                     1 1
                               130
                                    266
                                          0
                                                  1
                                                       171
                                                               0
                                                                      0.6
                                                                              2 0
                                                                                      2
           12
                     1 3
           13
               64
                               110
                                    211
                                          0
                                                  0
                                                       144
                                                               1
                                                                      1.8
                                                                              1 0
                                                                                      2
                                                                                            1
               58
                     0 3
                               150 283
                                                       162
                                                                      1.0
                                                                              2 0
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
15	50	0	2	120	219	0	1	158	0	1.6	1	0	2	1
16	58	0	2	120	340	0	1	172	0	0.0	2	0	2	1
17	66	0	3	150	226	0	1	114	0	2.6	0	0	2	1
18	43	1	0	150	247	0	1	171	0	1.5	2	0	2	1
19	69	0	3	140	239	0	1	151	0	1.8	2	2	2	1
20	59	1	0	135	234	0	1	161	0	0.5	1	0	3	1
21	44	1	2	130	233	0	1	179	1	0.4	2	0	2	1
22	42	1	0	140	226	0	1	178	0	0.0	2	0	2	1
23	61	1	2	150	243	1	1	137	1	1.0	1	0	2	1
24	40	1	3	140	199	0	1	178	1	1.4	2	0	3	1
25	71	0	1	160	302	0	1	162	0	0.4	2	2	2	1
26	59	1	2	150	212	1	1	157	0	1.6	2	0	2	1
27	51	1	2	110	175	0	1	123	0	0.6	2	0	2	1
28	65	0	2	140	417	1	0	157	0	0.8	2	1	2	1
29	53	1	2	130	197	1	0	152	0	1.2	0	0	2	1
273	58	1	0	100	234	0	1	156	0	0.1	2	1	3	C
274	47	1	0	110	275	0	0	118	1	1.0	1	1	2	C
275	52	1	0	125	212	0	1	168	0	1.0	2	2	3	C
276	58	1	0	146	218	0	1	105	0	2.0	1	1	3	C
277	57	1	1	124	261	0	1	141	0	0.3	2	0	3	C
278	58	0	1	136	319	1	0	152	0	0.0	2	2	2	C
279	61	1	0	138	166	0	0	125	1	3.6	1	1	2	C
280	42	1	0	136	315	0	1	125	1	1.8	1	0	1	C
281	52	1	0	128	204	1	1	156	1	1.0	1	0	0	C

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
282	59	1	2	126	218	1	1	134	0	2.2	1	1	1	C
283	40	1	0	152	223	0	1	181	0	0.0	2	0	3	C
284	61	1	0	140	207	0	0	138	1	1.9	2	1	3	C
285	46	1	0	140	311	0	1	120	1	1.8	1	2	3	C
286	59	1	3	134	204	0	1	162	0	0.8	2	2	2	C
287	57	1	1	154	232	0	0	164	0	0.0	2	1	2	C
288	57	1	0	110	335	0	1	143	1	3.0	1	1	3	C
289	55	0	0	128	205	0	2	130	1	2.0	1	1	3	C
290	61	1	0	148	203	0	1	161	0	0.0	2	1	3	C
291	58	1	0	114	318	0	2	140	0	4.4	0	3	1	C
292	58	0	0	170	225	1	0	146	1	2.8	1	2	1	C
293	67	1	2	152	212	0	0	150	0	0.8	1	0	3	C
294	44	1	0	120	169	0	1	144	1	2.8	0	0	1	C
295	63	1	0	140	187	0	0	144	1	4.0	2	2	3	C
296	63	0	0	124	197	0	1	136	1	0.0	1	0	2	C
297	59	1	0	164	176	1	0	90	0	1.0	1	2	1	C
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	C
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	C
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	C
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	C
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	C

303 rows × 14 columns

In [4]: sns.pairplot(data=df)


```
len(youth)
         middleage=df[(df.age>40) & (df.target==1)]
         len(middleage)
Out[23]: 152
In [20]: df.target.value counts()
Out[20]: 1
              165
              138
         Name: target, dtype: int64
In [21]: df.sex.value_counts()
Out[21]: 1
              207
               96
         Name: sex, dtype: int64
In [24]: sns.countplot('sex',data=df)
Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1f1fd7dbdd8>
            200
            175
            150
            125
          8 100
             75
             50
             25
                                   sex
```

```
In [26]: sns.countplot('target',data=df)
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x1f1fd7e9748>
            160
            140
            120
          count
            80
             60
             20
                                  target
In [27]: df.columns
Out[27]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thala
         ch',
                 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
In [28]: X=df[['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalac
         h',
                 'exang', 'oldpeak', 'slope', 'ca', 'thal']]
In [29]: y=df['target']
In [30]: from sklearn.cross_validation import train_test_split
In [32]: X_train, X_test, y_train, y_test = train_test_split(X, y, test size=0.4
          , random_state=101)
```

```
In [33]: from sklearn.linear model import LogisticRegression
In [34]: lm=LogisticRegression()
In [40]: lm.fit(X train,y train)
Out[40]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=
         True,
                   intercept scaling=1, max iter=100, multi class='ovr', n jobs=
         1,
                   penalty='l2', random state=None, solver='liblinear', tol=0.00
         01,
                   verbose=0, warm start=False)
In [ ]:
In [37]: from sklearn.metrics import classification report
In [39]: from sklearn.metrics import confusion_matrix
In [42]: predictions=lm.predict(X test)
In [46]: print(classification report(y test,predictions))
                      precision
                                   recall f1-score
                                                      support
                           0.92
                                     0.77
                                               0.84
                                                           60
                   0
                           0.81
                                     0.94
                                               0.87
                                                           62
                           0.86
                                     0.85
                                               0.85
                                                          122
         avg / total
In [47]: print(confusion_matrix(y_test,predictions))
         [[46 14]
```

In []:
In []: