Itération 2 : reconnaissance des types de cellules normales

1. CNN + GradCAM

Modèle LeNet

- Conv2D, 30 matrices de noyau 5x5, relu
- MaxPooling, pool size 2x2
- Conv2D, 16 matrices de noyau 3x3, relu
- Dropout, taux 20%
- Flatten
- Dense, 1024 neurones, relu
- Dense, 512 neurones, relu
- Dense, 256 neurones, relu
- Dense, 8 neurones, softmax

Prédiction sur données évaluation (3419 images) : 91%

GradCAM

Selon la classe (type de cellule), la zone prise en compte est différente.

Bon score sur les neutrophil et Platelet (96% et 99% : noyau typique (segmenté pour les neutrophil, petit et rond pour le platelet) semble permettre une meilleure identification.

Bon score pour Eosinophil (97%): prise en compte du cytoplasme très typique (granularité)

Pour les autres classes, il y a des confusions car il est nécessaire de bien prendre en compte la cellule entière en différenciant le noyau du cytoplasme, ce qui n'est pas le cas.

2. VGG16 Transfer Learning

Modèle 1 : VGG16 Transfer Learning

- Freeze de toutes les couches
- 3 couches Dense 1024, 512, 256 relu
- Pas de Dropout
- Compilation avec Adam avec learning_rate de 10-4

Score sur données évaluation (3419 images) : 96,1%

Moins bon score sur les IG (93%) et monocyte (94%) :

- mauvaise détection des IG (rappel 90%) : confusion avec neutrophil, monocyte et eosinophil
- monocyte : classification en monocyte (précision 92%) de IG

En étudiant les prédictions en pourcentage, on se rend compte que même si la cellule est mal classée, il y a souvent un doute (% notable) sur la vraie classe.

Modèle 2 : VGG16 Transfer Learning

- Freeze de toutes les couches
- 3 couches Dense 1024, 1024, 1024
- Dropout après chaque couche Dense de 20%
- Compilation avec Adam avec learning_rate de 10-4

Prédiction sur données évaluation (3419 images) : 92% La modification des couches Dense dégrade le modèle.

3. VGG16 Transfer Learning (Fine Tuning 4 couches) + GradCAM

Modèle

Reprise du modèle VGG16 Transfer Learning avec les couches de classification entrainées. **Unfreeze des 4 dernières couches** du modèle de base VGG16

Compilation avec Adam avec learning_rate de 10-4

Prédiction sur données évaluation (3419 images) : 97,1%. Légère amélioration par rapport au modèle avec toutes les couches VGG16 pré-entrainées.

GRAD CAM

Bien prise en compte de la cellule et non des données environnantes.

Bonne identification des features : prise en compte d'une partie du noyau ainsi que d'une partie du cytoplasme, ce qui permet de bien identifier les différentes granularités du cytoplasme selon les types de cellules

4. VGG16 Transfer Learning (Fine Tuning 8 couches) Adam + GradCAM

Modèle

Reprise du modèle VGG16 Transfer Learning avec les couches de classification entrainées. **Unfreeze des 8 dernières couches** du modèle de base VGG16

Compilation avec Adam avec learning_rate de 10-4

Prédiction sur données évaluation (3419 images) : 97,3%.

Pas de réelle amélioration par rapport au fine tuning avec seulement 4 couches entrainées.

GRAD CAM

Pour chaque cellule, prise en compte d'une zone plus grande de la cellule qu'avec 4 couches en entrainement.

5. VGG16 Extraction features

Modèle

Reprise du modèle entrainé basé sur VGG16 en fine tuning sur les 8 dernières couches Adam Output : 1ère couche Dense (1024)

SVC

Entrainement et évaluation sur les mêmes données que les autres modèles.

Score obtenu : 98,5%, amélioration de plus de 1% Toujours une confusion sur les IG et monocytes.

Random Forest

Entrainement et évaluation sur les mêmes données que les autres modèles.

Score obtenu: 97,7%, légèrement moins bon que SVC

6. VGG avec Augmentation de données

Modèle

Reprise du modèle VGG16 Transfer Learning avec les couches de classification entrainées. **Unfreeze des 8 dernières couches** du modèle de base VGG16

Augmentation de données : rotation aléatoire 10°, translation verticale et horizontal 10%, agranddissement 10%, retournement horizontal.

Prédiction sur données évaluation (3419 images) : 97,8%. Légère amélioration (0.5%)

GRAD CAM

Similaire au modèle sans augmentation de données

7. VGG16 Transfer Learning (Fine Tuning 8 couches) SGD

Modèle

Reprise du modèle VGG16 Transfer Learning avec les couches de classification entrainées. **Unfreeze des 8 dernières couches** du modèle de base VGG16

Compilation avec SGD avec learning_rate de 10-4 et momentum de 0.9

Prédiction sur données évaluation (3419 images) : 98,3%. Amélioration de 1% par rapport à une compilation Adam avec learning rate de 10-4