Epreuve écrite

Examen de fin d'études secondaires 2007	Numéro d'ordre du candidat
Sections: B et C	ivamero d'ordre da candidat
Branche: CHIMIE	

ANN – Applications non numériques – 21 pts AN - Applications numériques - 18 pts QC - Questions de cours - 21 pts

Synthèse en deux étapes d'une cétone - 15 pts

On se propose de réaliser la synthèse en deux étapes de la 3-méthylbutan-2-one, un liquide incolore utilisé dans la synthèse de substances pharmaceutiques.

La première étape consiste dans l'hydratation en milieu acide du 3-méthylbut-1-ène pour former du 3-méthylbutan-2-ol.

a. Dresser l'équation chimique de cette réaction. Utiliser les formules semi-développées.

- b. Lors de la réaction, il se forme un mélange racémique des deux énantiomères du 3-méthylbutan-2-ol. Dresser les formules spatiales des deux énantiomères et indiquer leur configuration selon la nomenclature CIP. ANN2
- c. Ce mélange racémique est-il optiquement actif?

ANN1

- d. Dresser le mécanisme réactionnel de l'hydratation en milieu acide d'un alcène (pour l'alcène : prendre R-CH=CH₂ comme formule générale). QC3
- e. De quel type de mécanisme réactionnel s'agit-il?

ANN1

Lors de la réaction, il se forme également un produit minoritaire qui est un isomère de position du 3-méthylbutan-2-ol.

f. Dresser la formule semi-développée de cet isomère de position.

ANN1

g. Expliquer l'origine de sa formation.

ANN₂

ANN1

Dans une deuxième étape on réalise l'oxydation du 3-méthylbutan-2-ol en présence d'une solution fortement acidulée de dichromate de potassium.

- h. Dresser les demi-équations d'oxydation et de réduction ainsi que l'équation-bilan de cette réaction (simplifier l'écriture de l'alcool en prenant R₁R₂CH-OH comme formule générale). QC3
- i. La 3-méthylbutan-2-one obtenue réagira-t-elle avec la DNPH ou le réactif de SCHIFF? Motiver.

II. Le cinnamaldéhyde et son oxydation – 17 pts

Le principal constituant de l'huile de cannelle est le cinnamaldéhyde ou 3-phénylprop-2-énal. Il se trouve également dans l'huile de lavande et est utilisé dans la parfumerie.

- a. Le cinnamaldéhyde se présente sous forme de deux isomères de configuration. De quel type d'isomérie de configuration s'agit-il?
- b. Dresser la formule de structure des deux isomères de configuration et désigner-les,

ANN2

- c. L'isolation du cinnamaldéhyde à partir de l'huile de cannelle met en jeu la réaction avec l'hydrogénosulfite de sodium. Dresser l'équation de cette réaction. ANN2
- d. En dresser le mécanisme réactionnel.

QC2

e. Sachant que la réaction entre une solution d'hydrogénosulfite de sodium avec 10 g de l'huile impure donnent 13,4 q de précipité, calculer le pourcentage de masse de cinnamaldéhyde dans l'huile impure. AN3

A l'air, son groupement aldéhyde s'oxyde lentement en acide carboxylique et forme ainsi l'acide cinnamique.

f. L'acide cinnamique ainsi obtenu peut réagir avec le méthanol en milieu acide en donnant un produit à odeur de fraise. De quel type de ANN1 réaction s'agit-il?

g. Dresser l'équation de cette réaction.

ANN₂

h. En dresser le mécanisme réactionnel (simplifier l'écriture en remplacant C_6H_5 -CH=CH- par R-). QC4

сн=сн-соон acide cinnamique

III. Composés organiques azotés - 14 pts

Propriétés physiques des amines :

a. Comparer la volatilité des différentes classes d'amines à celles des hydrocarbures et des alcools de masses molaires comparables et en donner une explication. Illustrer à l'aide de schémas.

Force basique des amines :

b. Détailler la force basique des différentes classes d'amines. Expliquer et illustrer à l'aide d'un schéma. QC4

Acides aminés :

La L-valine est un acide α -aminé naturel se trouvant dans la majorité des protéines. Ainsi un adulte nécessite environ 1,6 q de valine par jour. Le groupement R de la L-valine est constitué d'une chaîne ramifiée constituée exclusivement de carbone et d'hydrogène.

- c. Sachant que la L-valine renferme 12% d'azote, calculer sa masse molaire et en déduire la formule brute. AN3
- d. Dresser sa formule semi-développée.
- e. Dresser la formule semi-développée de la valine en milieu neutre et en milieu fortement acide.
- f. Dresser la formule en projection de FISCHER de la L-valine.

ANN1

QC1 ANN1

Dosage d'une solution de pyridine - 14 pts IV.

La pyridine est un liquide incolore utilisé comme solvant dans les laboratoires. On se propose de titrer 20 cm³ d'une solution aqueuse de concentration inconnue de pyridine avec de l'acide chlorhydrique 0,5 M. La courbe de dosage se présente ci-dessous.

pH en fonction du volume d'acide chlorhydrique 0,5 M ajouté

V(HCI) [cm³]

a. Dresser l'équation de la protolyse de la pyridine par l'acide chlorhydrique.

- b. Déterminer le point d'équivalence et calculer la concentration molaire de la solution initiale de pyridine. AN2
- c. Calculer le degré de dissociation de la solution initiale de pyridine. (Formule approximation de la vérifier par le calcul le pH
- d. Vérifier par le calcul le pH
 - 1. de la solution initiale de pyridine.

ÁN2

2. après addition de 6 cm³ de HCl 0,5 M.

AN3

3. au point d'équivalence.

e. Si le dosage était réalisé sans pH-mètre, quel indicateur coloré de la liste suivante faudrait-il choisir ? Justifier le choix. ANN1

Indicateur coloré	Domaine de virage
Méthylorange	3,1 - 4,4
Bleu de bromothymol	5,5 - 7,5
Jaune d'alizarine	10,0 - 12,1
Carmin d'indigo	12,2 - 14,0

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H_3O^+) HI, HBr, HCl, HClO₄, HNO₃, H_2SO_4

bases de force négligeable

cat. hydronium	H₃O ⁺	H₂O	eau	-1,74
ac. chlorique	HClO ₃	CIO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl₃COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	[TI(H ₂ O) ₆] ³⁺	$[TI(OH)(H_2O)_5]^{2+}$	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1.23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO₄ ⁻	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HCIO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH ₂ ClCOOH	CH₂CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	$[V(H_2O)_6]^{3+}$	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN ⁻	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO	an. hypochlorite	7,55
cat. hexaqua cadmium	$[Cd(H_2O)_6]^{2+}$	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	$[Zn(H_2O)_6]^{2+}$	[Zn(OH)(H2O)5] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ -	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH₃)₃N	triméthylamine	9,87
phénol	C ₆ H₅OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH₃CH₂NH₂	éthylamine	10,75
cat. triéthylammonium	$(C_2H_5)_3NH^+$	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	$(C_2H_5)_2NH$	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH-	anion hydroxyde	15,74

	bases fortes
acides de force négligeable	(plus fortes que OH ⁻)
	O ²⁻ , NH ₂ -, anion alcoolate RO ⁻)

TABLEAU PERIODIQUE DES ELEMENTS

	υ L	T		,	ວ ີດ	5	R	$\overline{}$		
#,0 He	20,2 Ne 10 39,9 Ar	18	83,8 X			(222)	~	98		_
	19,0 F 9 35,5 C	17	9,97	35	170°,9	53	At	85		
NI VI	S.0 S.1	16	79,0 Se	34	127,6 Te	52	Po	84		
groupes principaux	14,0 N 7 8 7 8 31,0 3		74,9 7 AS		Sb	c				
groupe	l		<u>^</u>	Ì			2,702 2	83		
ıg SI	12,0 C 6 28,1 Si	14	<u></u>					82		-
	10,8 B 5 27,0 A	13	69,7 Ga	31	114,8 In	49	204,4 T	81		
		=	65,4 Zn	30	112,4 Cd	48	200'e Ha	8		
		_	63,5		107,9 Aq	47	197,0 Au	79		
			58,7 N i	;	106,4 Pd		165,1	,		
		 ≡	(1)	- (1		4		78	8)	90
	daires		5		102,9		6,		(3)	
	secon		55,8	26	101,1	44	190,2	3 94	(269)	108
	groupes secondaires		54,9	25	(97) T	43	186,2	75	(264)	107
	C,		0,6	<u>-</u>	6, 5		183,9		(90	
		-	9 52	24				2 T		Ω
			20,9	23	92,9	4	<u></u>		(2)	_
		≥	47,9	= %	91,2	40	178,5	1 62	(261)	X 401
×		E	45,0	Š	88,9	3	175,0	Lu	(260)	Lr
groupes principaux	9,0 Be 4 24,3	ב ק		င္မ	ن وا	الم 38	137,3	Ba	226,0	Ra 88
T (¥	5	9	2,9	ဟ လ	(23)	i.
g 7,0	1 6,9 13 23,0		39,1	7	82	37	2 (2)	, u	<u> </u>	

_		_		\neg	(c	_	c			7	
) - -					(507)				1	
7000	6,001	<u>2</u>	=	69	(25R)	(400)	Σ Σ	5 - -	101		
467.0	c'/01	ů	3	89	(757)	(107)	E L	=	100	201	
0 7 0 7	104,9	(2	29	1700	(524)	LI LI	2	00		
7 00,	162,5	ż	2	65 66 67 68 69	(710)	(1,02)	7	5	0	30	
0 0 0	158,9	ì	<u> </u>	65	í](247)	2	מַּ	1	18/	
	157,3	(פס	64		(247)	,	5 -	ç	96	
	152,0		H	E0 E0 E1 E2 E3 E4 E5	2	(243)		AB	1	95	
	150.4		SH	62	3	(244)		D.		94	A
	(145)		E	61	-	237.0		2	L .	63	
	144 2	! : :	Z	80	20	238 0)	_)	92	
	140 9)	7	. 0	23	231.0	5,-	מ	•	4	
	1101		٥)	00	2320	6.70	<u>ح</u>	:	٥٥	22
	130 0	0,00	7	3	2	227 0 722	0, 177	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) (σα	3
			000000000000000000000000000000000000000	latitiaillaes				() () () () ()	acillides		