Supplementary Information 3

Table SI.3.1. Membership information for six trophic role groups derived from REGE analysis.

Food web name	Group ID	Group Member ID
Bar	Group 1	38, 38.1, 38.2, 37, 39, 40, 41
	Group 2	3, 9, 9.1, 7, 1, 1.1, 1.2
	Group 3	32, 20, 11, 8, 8.1, 8.2, 8.3, 18, 18.1, 8.4, 8.5, 8.6, 8.7, 8.8,
		10, 8.9, 16, 6, 13, 8.1, 2, 2.1, 2.2, 30, 30.1, 28, 28.1, 30.2,
		22, 33, 27, 35
	Group 4	29, 29.1, 34, 34.1, 31, 36
	Group 5	23, 21, 21.1, 21.2, 23.1, 21.3, 23.2, 23.3, 21.4, 17, 5, 15,
		19, 25, 23.4, 23.5, 23.6, 24, 26
	Group 6	4, 4.1, 4.2, 14, 14.1, 14.2, 12, 12.1
Pws	Group 1	6, 6.1, 23, 5, 5.1, 14, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6,
		14.7, 14.8, 14.9, 11, 8, 9, 12, 4, 10
	Group 2	29, 29.1, 29.2, 29.3, 29.4
	Group 3	18, 1, 2, 13, 13.1
	Group 4	44, 43, 44.1, 45, 45.1, 45.2, 45.3, 45.4, 46, 47, 48
	Group 5	33, 36, 33.1, 36.1, 33.2, 36.2, 20, 16, 20.1, 20.2, 7, 17, 15,
		15.1, 15.2, 15.3, 3, 3.1, 3.2, 33.3, 36.3, 33.4, 36.4, 24,
		24.1, 39, 39.1, 21, 33.5, 36.5, 39.2, 33.6, 36.6, 37
	Group 6	34, 35, 30, 27, 22, 25, 26, 31, 28, 28.1, 28.2, 41, 42, 34.1,
		35.1, 34.2, 35.2, 34.3, 35.3, 34.4, 35.4, 41.1, 42.1, 41.2,
		42.2, 41.3, 42.3, 41.4, 42.4, 41.5, 42.5, 38, 40, 38.1, 32,
		19
Chs	Group 1	25, 25.1, 25.2, 25.3, 25.4, 25.5, 41
	Group 2	43, 42, 44, 45
	Group 3	18, 20, 22, 11, 12, 13, 13.1, 13.2, 30, 34, 35, 32, 38, 39, 40
	Group 4	36, 24, 24.1, 23, 24.2, 24.3, 24.4, 23.1, 24.5, 24.6, 24.7,
		24.8, 4, 23.2, 23.3, 16, 17, 1, 2, 6, 7, 8, 21, 10, 21.1, 23.4,
		15, 15.1, 15.2, 15.3, 15.4, 14, 27, 27.1, 31
	Group 5	28, 28.1, 28.2, 5, 3, 26, 37
	Group 6	29, 29.1, 29.2, 9, 19, 19.1, 33
Car	Group 1	14
	Group 2	70, 71
	Group 3	74, 83, 75, 54, 69, 82, 81, 55, 58, 44, 51, 65, 64, 63, 59,
		61, 62, 57, 45, 66, 60, 79, 77, 53, 80, 76, 78, 67, 68, 42

	Group 4	38, 39, 41, 52, 48, 50, 49, 40, 23, 72, 24, 47, 43, 73, 56,
		46
	Group 5	1, 2, 3, 4, 5, 6, 7, 8
	Group 6	11, 19, 15, 18, 20, 22, 21, 16, 29, 30, 32, 31, 17, 25, 26,
		27, 28, 35, 33, 34, 37, 36, 13, 10, 12, 9
Gad	Group 1	70, 72, 76, 80, 83, 69, 79, 64, 89, 67, 77, 78
	Group 2	34, 37, 36, 35, 38, 39, 42, 46, 40, 45, 44, 43, 41
	Group 3	85, 74, 75, 68, 47, 52, 57, 58, 62, 61, 48, 63, 60, 55, 54,
		53, 56, 59, 71, 66, 81, 82, 84, 86, 88, 65, 87, 1, 13, 33, 73
	Group 4	16, 15, 21, 31, 29, 26, 25, 28, 30, 24
	Group 5	95, 11, 96, 17, 93, 90
	Group 6	14, 12, 94, 51, 3, 2, 49, 50, 22, 91, 19, 5, 4, 23, 20, 6, 7,
		10, 27, 8, 9, 32, 18, 92

Table SI.3.2. Membership information for six trophic role groups derived from TSM analysis.

Food web name	Group ID	Group Member ID
Bar	Group 1	32, 17, 19, 25, 26, 29, 29.1, 30, 30.1, 28, 28.1, 30.2, 31
	Group 2	20, 4, 4.1, 4.2, 11, 18, 18.1, 14, 14.1, 14.2, 5, 10, 15, 16,
		13, 12, 12.1, 34, 34.1, 33, 38, 38.1, 38.2, 35, 36, 37, 39,
		40, 41
	Group 3	3, 9, 9.1, 7, 1, 1.1, 1.2
	Group 4	23, 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 24
	Group 5	8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 6, 8.1, 2, 2.1,
		2.2
	Group 6	21, 21.1, 21.2, 21.3, 21.4, 22, 27
Pws	Group 1	44, 43, 44.1, 45, 6, 6.1, 23, 18, 5, 5.1, 1, 2, 29, 29.1, 29.2,
		29.3, 29.4, 13, 13.1, 30, 20, 16, 27, 11, 20.1, 8, 20.2, 7, 17,
		22, 25, 9, 12, 4, 15, 15.1, 10, 26, 31, 15.2, 15.3, 3, 3.1,
		3.2, 28, 28.1, 28.2, 41, 24, 24.1, 41.1, 41.2, 41.3, 39, 39.1,
		21, 41.4, 41.5, 38, 40, 38.1, 39.2, 32, 45.1, 45.2, 45.3,
		45.4, 19, 37, 46, 47, 48
	Group 2	34, 35, 34.1, 35.1, 34.2, 35.2, 34.3, 35.3, 34.4, 35.4
	Group 3	33, 33.1, 33.2, 33.3, 33.4, 33.5, 33.6
	Group 4	36, 36.1, 36.2, 36.3, 36.4, 36.5, 36.6
	Group 5	14, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9
	Group 6	42, 42.1, 42.2, 42.3, 42.4, 42.5
Chs	Group 1	43, 36, 28, 28.1, 28.2, 4, 5, 16, 17, 1, 2, 3, 6, 7, 18, 8, 10,
		20, 22, 11, 12, 13, 13.1, 13.2, 14, 27, 26, 27.1, 30, 31, 34,
		35, 32, 37, 38, 39, 40, 41, 42, 44, 45
	Group 2	29, 29.1, 29.2, 9, 19, 19.1, 33
	Group 3	24, 24.1, 24.2, 24.3, 24.4, 24.5, 24.6, 24.7, 24.8
	Group 4	25, 25.1, 25.2, 25.3, 25.4, 25.5
	Group 5	23, 23.1, 23.2, 23.3, 23.4
	Group 6	21, 21.1, 15, 15.1, 15.2, 15.3, 15.4
Car	Group 1	38, 39, 70, 71, 14, 41, 52, 48, 50, 49, 42, 40, 23, 72, 24,
		47, 43, 73, 19, 56, 46, 32, 27, 28, 1, 2, 3, 4, 5, 6, 7, 8
	Group 2	11, 15, 18, 20, 16, 29, 30, 31, 17, 25, 26, 13, 10, 12, 9
	Group 3	74, 83, 75, 69, 81, 65, 64, 63, 59, 61, 66, 60, 77, 78, 67,
		68
	Group 4	54, 82, 51, 79, 53, 80, 76
	Group 5	55, 58, 44, 62, 57, 45
	Group 6	22, 21, 35, 33, 34, 37, 36

Gad	Group 1	85, 74, 75, 68, 47, 52, 57, 58, 62, 61, 63, 60, 55, 54, 53,
		56, 59, 71, 66, 81, 82, 84, 86, 88, 65, 87, 73
	Group 2	70, 72, 76, 80, 83, 69, 79, 64, 89, 67, 77, 78
	Group 3	16, 14, 21, 31, 29, 26, 25, 28, 30, 24
	Group 4	15, 95, 11, 12, 96, 94, 51, 2, 49, 50, 17, 22, 91, 19, 23, 20,
		34, 93, 27, 32, 90, 48, 18, 92, 1, 13, 33
	Group 5	3, 5, 4, 6, 7, 10, 8, 9
	Group 6	37, 36, 35, 38, 39, 42, 46, 40, 45, 44, 43, 41

Table SI.3.3. Testing our null hypothesis of random species assemblage using various numbers of trophic role groups for Barents Sea food web.

Number of		Number of		Mean	S.E. for	
clusters	Cluster k	nodes*	m_k	m_{k_random}	m_{k_random}	p-value
3	1	65(3)	5.90	6.27	0.09	0.001
	2	7(0)	4.10	6.25	0.73	0.007
	3	7(4)	2.67	6.31	0.72	0.001
4	1	32(2)	5.86	6.26	0.26	0.060
	2	7(0)	4.10	6.26	0.76	0.004
	3	33(1)	5.84	6.26	0.24	0.045
	4	7(4)	2.67	6.29	0.74	0.001
5	1	32(2)	5.86	6.28	0.24	0.045
	2	7(0)	4.10	6.32	0.71	0.001
	3	27(0)	5.20	6.26	0.28	0.001
	4	6(1)	4.80	6.27	0.78	0.035
	5	7(4)	2.67	6.24	0.78	0.001
6	1	32(2)	5.86	6.26	0.25	0.061
	2	7(0)	4.10	6.28	0.76	0.005
	3	8(0)	5.54	6.25	0.65	0.140
	4	19(0)	4.58	6.27	0.38	0.001
	5	6(1)	4.80	6.26	0.78	0.045
	6	7(4)	2.67	6.31	0.72	0.001
7	1	10(2)	4.04	6.28	0.59	0.001
	2	22(0)	5.20	6.28	0.35	0.003
	3	7(0)	4.10	6.28	0.74	0.004
	4	8(0)	5.54	6.30	0.67	0.139
	5	19(0)	4.58	6.26	0.37	0.001
	6	6(1)	4.80	6.27	0.82	0.044
	7	7(4)	2.67	6.23	0.73	0.001
8	1	10(2)	4.04	6.30	0.57	0.001
	2	22(0)	5.20	6.26	0.33	0.002
	3	7(0)	4.10	6.28	0.72	0.003
	4	6(0)	5.53	6.27	0.83	0.179
	5	19(0)	4.58	6.26	0.37	0.001
	6	2(0)	2.00	6.31	1.72	0.013
	7	6(1)	4.80	6.28	0.81	0.044
	8	7(4)	2.67	6.28	0.78	0.001
9	1	10(2)	4.04	6.29	0.58	0.002

	2	22(0)	5.20	6.27	0.32	0.002
	3	7(0)	4.10	6.21	0.73	0.003
	4	6(0)	5.53	6.31	0.82	0.158
	5	19(0)	4.58	6.27	0.37	0.001
	6	2(0)	2.00	6.29	1.80	0.014
	7	6(1)	4.80	6.21	0.81	0.049
	8	3(0)	2.67	6.28	1.37	0.009
	9	4(4)	0.00	NA	NA	NA
10	1	10(2)	4.04	6.26	0.59	0.001
	2	22(0)	5.20	6.26	0.34	0.001
	3	7(0)	4.10	6.30	0.74	0.004
	4	6(0)	5.53	6.27	0.83	0.171
	5	17(0)	4.49	6.27	0.41	0.001
	6	2(0)	3.00	6.30	1.83	0.052
	7	2(0)	2.00	6.27	1.75	0.020
	8	6(1)	4.80	6.26	0.81	0.054
	9	3(0)	2.67	6.30	1.43	0.011
	10	4(4)	0.00	NA	NA	NA

Table SI.3.4. Testing our null hypothesis of random species assemblage using various numbers of trophic role groups for Prince William Sound food web.

Number of		Number of	· · · · · · · · · · · · · · · · · · ·	Mean	S.E. for	
clusters	Cluster k	nodes*	m_k	m_{k_random}	m_{k_random}	p-value
3	1	11(3)	3.46	6.57	0.54	0.001
· ·	2	70(2)	6.16	6.56	0.13	0.003
	3	31(0)	5.69	6.56	0.28	0.003
4	1	11(3)	3.46	6.56	0.53	0.001
	2	36(1)	6.38	6.56	0.25	0.245
	3	34(1)	5.62	6.56	0.26	0.001
	4	31(0)	5.69	6.57	0.28	0.002
5	1	11(3)	3.46	6.59	0.55	0.001
	2	36(1)	6.38	6.56	0.24	0.225
	3	34(1)	5.62	6.55	0.26	0.002
	4	21(0)	5.98	6.56	0.36	0.067
	5	10(0)	4.27	6.58	0.56	0.001
6	1	11(3)	3.46	6.57	0.54	0.001
	2	36(1)	6.38	6.55	0.24	0.234
	3	34(1)	5.62	6.56	0.26	0.002
	4	21(0)	5.98	6.57	0.37	0.067
	5	5(0)	3.60	6.61	0.90	0.002
	6	5(0)	2.60	6.55	0.88	0.001
7	1	11(3)	3.46	6.58	0.51	0.001
	2	24(1)	6.06	6.59	0.33	0.052
	3	34(1)	5.62	6.55	0.24	0.001
	4	21(0)	5.98	6.54	0.35	0.062
	5	5(0)	3.60	6.57	0.91	0.003
	6	5(0)	2.60	6.59	0.85	0.001
	7	12(0)	5.33	6.54	0.53	0.012
8	1	11(3)	3.46	6.56	0.54	0.001
	2	24(1)	6.06	6.57	0.34	0.061
	3	24(1)	5.73	6.57	0.34	0.010
	4	10(0)	4.73	6.57	0.57	0.002
	5	21(0)	5.98	6.56	0.35	0.062
	6	5(0)	3.60	6.59	0.88	0.001
	7	5(0)	2.60	6.51	0.93	0.001
	8	12(0)	5.33	6.55	0.50	0.008
9	1	11(3)	3.46	6.59	0.55	0.001

2	21(1)	5.77	6.57	0.37	0.021
3	24(1)	5.73	6.58	0.34	0.008
4	10(0)	4.73	6.54	0.59	0.003
5	21(0)	5.98	6.55	0.37	0.068
6	5(0)	3.60	6.58	0.89	0.001
7	5(0)	2.60	6.54	0.89	0.001
8	3(0)	2.67	6.58	1.28	0.002
9	12(0)	5.33	6.56	0.50	0.010
1	2(0)	2.00	6.47	1.75	0.012
2	9(3)	3.67	6.56	0.62	0.001
3	21(1)	5.77	6.56	0.36	0.018
4	24(1)	5.73	6.57	0.33	0.009
5	10(0)	4.73	6.57	0.57	0.001
6	21(0)	5.98	6.56	0.36	0.052
7	5(0)	3.60	6.52	0.91	0.001
8	5(0)	2.60	6.57	0.91	0.001
9	3(0)	2.67	6.60	1.27	0.003
10	12(0)	5.33	6.57	0.51	0.010
	3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	3 24(1) 4 10(0) 5 21(0) 6 5(0) 7 5(0) 8 3(0) 9 12(0) 1 2(0) 2 9(3) 3 21(1) 4 24(1) 5 10(0) 6 21(0) 7 5(0) 8 5(0) 9 3(0)	3 24(1) 5.73 4 10(0) 4.73 5 21(0) 5.98 6 5(0) 3.60 7 5(0) 2.60 8 3(0) 2.67 9 12(0) 5.33 1 2(0) 2.00 2 9(3) 3.67 3 21(1) 5.77 4 24(1) 5.73 5 10(0) 4.73 6 21(0) 5.98 7 5(0) 3.60 8 5(0) 2.60 9 3(0) 2.67	3 24(1) 5.73 6.58 4 10(0) 4.73 6.54 5 21(0) 5.98 6.55 6 5(0) 3.60 6.58 7 5(0) 2.60 6.54 8 3(0) 2.67 6.58 9 12(0) 5.33 6.56 1 2(0) 2.00 6.47 2 9(3) 3.67 6.56 3 21(1) 5.77 6.56 4 24(1) 5.73 6.57 5 10(0) 4.73 6.57 6 21(0) 5.98 6.56 7 5(0) 3.60 6.52 8 5(0) 2.60 6.57 9 3(0) 2.67 6.60	3 24(1) 5.73 6.58 0.34 4 10(0) 4.73 6.54 0.59 5 21(0) 5.98 6.55 0.37 6 5(0) 3.60 6.58 0.89 7 5(0) 2.60 6.54 0.89 8 3(0) 2.67 6.58 1.28 9 12(0) 5.33 6.56 0.50 1 2(0) 2.00 6.47 1.75 2 9(3) 3.67 6.56 0.62 3 21(1) 5.77 6.56 0.36 4 24(1) 5.73 6.57 0.33 5 10(0) 4.73 6.57 0.57 6 21(0) 5.98 6.56 0.36 7 5(0) 3.60 6.52 0.91 8 5(0) 2.60 6.57 0.91 9 3(0) 2.67 6.60 1.27

Table SI.3.5. Testing our null hypothesis of random species assemblage using various numbers of trophic role groups for Chesapeake Bay food web.

Number of		Number of		Mean	S.E. for	1
clusters	Cluster k	nodes*	m_k	m_{k_random}	m_{k_random}	p-value
3	1	26(7)	5.22	5.09	0.26	0.309
	2	35(0)	4.26	5.09	0.20	0.001
	3	14(0)	5.68	5.07	0.39	0.054
4	1	19(6)	5.05	5.10	0.33	0.443
	2	35(0)	4.26	5.08	0.20	0.001
	3	14(0)	5.68	5.09	0.40	0.066
	4	7(1)	4.00	5.07	0.63	0.058
5	1	4(3)	0.00	NA	NA	NA
	2	35(0)	4.26	5.08	0.19	0.001
	3	14(0)	5.68	5.09	0.41	0.075
	4	7(1)	4.00	5.09	0.64	0.047
	5	15(3)	4.89	5.09	0.37	0.295
6	1	4(3)	0.00	NA	NA	NA
	2	35(0)	4.26	5.09	0.20	0.001
	3	7(0)	4.67	5.08	0.62	0.250
	4	7(0)	6.48	5.08	0.62	0.009
	5	7(1)	4.00	5.12	0.62	0.042
	6	15(3)	4.89	5.07	0.39	0.320
7	1	4(3)	0.00	NA	NA	NA
	2	8(0)	4.32	5.08	0.59	0.092
	3	7(0)	4.67	5.08	0.62	0.254
	4	7(0)	6.48	5.09	0.60	0.007
	5	27(0)	3.99	5.08	0.25	0.001
	6	7(1)	4.00	5.11	0.63	0.042
	7	15(3)	4.89	5.08	0.39	0.314
8	1	4(3)	0.00	NA	NA	NA
	2	8(0)	4.32	5.10	0.56	0.090
	3	7(0)	4.67	5.13	0.62	0.236
	4	7(0)	6.48	5.07	0.64	0.006
	5	27(0)	3.99	5.08	0.24	0.001
	6	7(1)	4.00	5.11	0.62	0.038
	7	12(1)	4.84	5.06	0.42	0.319
	8	3(2)	0.00	NA	NA	NA
9	1	4(3)	0.00	NA	NA	NA

	2	8(0)	4.32	5.09	0.57	0.093
	3	7(0)	4.67	5.15	0.63	0.217
	4	7(0)	6.48	5.10	0.62	0.014
	5	17 (0)	3.93	5.09	0.34	0.001
	6	7(1)	4.00	5.09	0.60	0.040
	7	10(0)	3.84	5.09	0.50	0.008
	8	12(1)	4.84	5.06	0.44	0.309
	9	3(2)	0.00	NA	NA	NA
10	1	4(3)	0.00	NA	NA	NA
	2	8(0)	4.32	5.07	0.57	0.096
	3	7(0)	4.67	5.07	0.60	0.243
	4	7(0)	6.48	5.09	0.64	0.011
	5	17 (0)	3.93	5.08	0.34	0.001
	6	7(1)	4.00	5.10	0.63	0.047
	7	10(0)	3.84	5.10	0.50	0.005
	8	8(0)	3.29	5.10	0.57	0.002
	9	3(2)	0.00	NA	NA	NA
	10	4(1)	2.00	5.12	0.90	0.001

Table SI.3.6. Testing our null hypothesis of random species assemblage using various numbers of trophic role groups for Carpinteria Salt Marsh food web.

Number of	C1 1	Number of		Mean	S.E. for	1
clusters	Cluster k	nodes*	m_k	m_{k_random}	m_{k_random}	p-value
3	1	16(0)	6.09	6.72	0.40	0.064
	2	34(8)	5.55	6.74	0.22	0.001
	3	33(0)	5.41	6.73	0.22	0.001
4	1	16(0)	6.09	6.73	0.40	0.058
	2	26(0)	5.55	6.72	0.28	0.001
	3	33(0)	5.41	6.73	0.23	0.001
	4	8(8)	0.00	NA	NA	NA
5	1	16(0)	6.09	6.74	0.39	0.046
	2	26(0)	5.55	6.73	0.27	0.001
	3	32(0)	5.45	6.74	0.23	0.001
	4	1(0)	0.00	NA	NA	NA
	5	8(8)	0.00	NA	NA	NA
6	1	16(0)	6.09	6.73	0.39	0.051
	2	26(0)	5.55	6.73	0.28	0.001
	3	30(0)	5.39	6.73	0.25	0.001
	4	2(0)	2.00	6.69	1.89	0.010
	5	1(0)	0.00	NA	NA	NA
	6	8(8)	0.00	NA	NA	NA
7	1	16(0)	6.09	6.75	0.39	0.055
	2	24(0)	5.66	6.71	0.30	0.001
	3	30(0)	5.39	6.73	0.25	0.001
	4	2(0)	2.00	6.68	1.94	0.016
	5	1(0)	0.00	NA	NA	NA
	6	2(0)	5.00	6.76	1.93	0.173
	7	8(8)	0.00	NA	NA	NA
8	1	9(0)	5.50	6.74	0.62	0.029
	2	24(0)	5.66	6.73	0.29	0.002
	3	30(0)	5.39	6.72	0.24	0.001
	4	2(0)	2.00	6.59	1.98	0.014
	5	1(0)	0.00	NA	NA	NA
	6	7(0)	5.43	6.77	0.72	0.047
	7	2(0)	5.00	6.75	1.91	0.189
	8	8(8)	0.00	NA	NA	NA
9	1	9(0)	5.50	6.75	0.58	0.029

	2	24(0)	5.66	6.72	0.30	0.001
	3	30(0)	5.39	6.73	0.25	0.001
	4	2(0)	2.00	6.76	2.00	0.017
	5	1(0)	0.00	NA	NA	NA
	6	7(0)	5.43	6.69	0.71	0.053
	7	2(0)	5.00	6.71	1.91	0.177
	8	3(3)	0.00	NA	NA	NA
	9	5(5)	0.00	NA	NA	NA
10	1	5(0)	5.40	6.68	0.95	0.099
	2	24(0)	5.66	6.74	0.30	0.001
	3	30(0)	5.39	6.73	0.25	0.001
	4	4(0)	4.83	6.72	1.13	0.059
	5	2(0)	2.00	6.78	1.97	0.012
	6	1(0)	0.00	NA	NA	NA
	7	7(0)	5.43	6.72	0.71	0.050
	8	2(0)	5.00	6.71	1.92	0.187
	9	3(3)	0.00	NA	NA	NA
	10	5(5)	0.00	NA	NA	NA

Table SI.3.7. Testing our null hypothesis of random species assemblage using various numbers of trophic role groups for Grande de Gredos food web.

Number of	- T	Number of		Mean	S.E. for	
clusters	Cluster k	nodes*	m_k	m_{k_random}	m_{k_random}	p-value
3	1	44(5)	6.25	7.39	0.21	0.001
	2	12(3)	4.61	7.38	0.60	0.001
	3	40(2)	5.39	7.39	0.23	0.001
4	1	44(5)	6.25	7.39	0.22	0.001
	2	12(3)	4.61	7.40	0.57	0.001
	3	10(0)	4.24	7.40	0.64	0.001
	4	30(2)	5.57	7.38	0.30	0.001
5	1	44(5)	6.25	7.38	0.21	0.001
	2	12(3)	4.61	7.36	0.56	0.001
	3	10(0)	4.24	7.40	0.65	0.002
	4	24(2)	5.48	7.4 1	0.35	0.001
	5	6(0)	5.13	7.4 1	1.00	0.016
6	1	31(5)	6.30	7.39	0.29	0.001
	2	12(3)	4.61	7.39	0.57	0.001
	3	10(0)	4.24	7.38	0.67	0.001
	4	24(2)	5.48	7.40	0.35	0.001
	5	6(0)	5.13	7.4 1	0.99	0.019
	6	13(0)	4.77	7.39	0.55	0.001
7	1	31(5)	6.30	7.40	0.30	0.001
	2	12(3)	4.61	7.38	0.61	0.001
	3	10(0)	4.24	7.36	0.66	0.001
	4	12(2)	5.56	7.40	0.57	0.002
	5	6(0)	5.13	7.38	0.97	0.015
	6	12(0)	5.24	7.41	0.57	0.002
	7	13(0)	4.77	7.39	0.55	0.001
8	1	31(5)	6.30	7.38	0.27	0.001
	2	12(3)	4.61	7.39	0.55	0.001
	3	10(0)	4.24	7.42	0.65	0.001
	4	12(2)	5.56	7.42	0.57	0.001
	5	6(0)	5.13	7.41	0.99	0.018
	6	3(0)	3.33	7.35	1.93	0.036
	7	9(0)	5.06	7.39	0.70	0.002
	8	13(0)	4.77	7.38	0.53	0.001
9	1	28(3)	6.40	7.39	0.31	0.004

	2	12(3)	4.61	7.41	0.56	0.001
	3	10(0)	4.24	7.44	0.63	0.001
	4	12(2)	5.56	7.37	0.59	0.004
	5	6(0)	5.13	7.35	1.03	0.028
	6	3(0)	3.33	7.37	1.88	0.026
	7	9(0)	5.06	7.40	0.71	0.001
	8	13(0)	4.77	7.39	0.52	0.001
	9	3(2)	0.00	NA	NA	NA
10	1	28(3)	6.40	7.39	0.32	0.001
	2	12(3)	4.61	7.38	0.59	0.001
	3	10(0)	4.24	7.39	0.65	0.001
	4	12(2)	5.56	7.37	0.60	0.009
	5	4(0)	5.00	7.32	1.45	0.066
	6	2(0)	7.00	7.48	2.45	0.433
	7	3(0)	3.33	7.44	1.93	0.026
	8	9(0)	5.06	7.44	0.70	0.001
	9	13(0)	4.77	7.42	0.57	0.001
	10	3(2)	0.00	NA	NA	NA

Table SI.3.8. Testing our null hypothesis of random species assemblage with phylogenetic constraint (REGE-based). Significant results are in bold font. Random groups were generated with w=1 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	7(4)	2.67	6.55	1.11	0.001
	2	7 (0)	4.10	6.49	0.61	0.001
	3	32(2)	5.86	6.21	0.25	0.087
	4	6(1)	4.80	6.48	0.78	0.028
	5	19(0)	4.58	6.04	0.38	0.001
	6	8(0)	5.54	6.25	0.62	0.134
Pws	1	21(0)	5.98	6.59	0.33	0.031
	2	5(0)	2.6	6.54	0.80	0.001
	3	5(0)	3.6	6.46	0.85	0.002
	4	11(3)	3.46	6.50	0.61	0.001
	5	34(1)	5.62	6.46	0.25	0.001
	6	36(1)	6.38	6.60	0.24	0.174
Chs	1	7(1)	4	4.99	0.65	0.071
	2	4(3)	0	NA	NA	NA
	3	15(3)	4.89	5.16	0.36	0.228
	4	35(0)	4.26	4.98	0.19	0.001
	5	7(0)	4.67	5.11	0.55	0.205
	6	7(0)	6.48	5.39	0.56	0.022
Car	1	1(0)	0	NA	NA	NA
	2	2(0)	2	6.55	1.93	0.022
	3	30(0)	5.39	6.59	0.23	0.001
	4	16(0)	6.09	6.68	0.36	0.053
	5	8(8)	0	NA	NA	NA
	6	26(0)	5.55	6.75	0.25	0.001
Gad	1	12(3)	4.61	7.13	0.67	0.001
	2	13(0)	4.77	7.28	0.51	0.001
	3	31(5)	6.3	7.36	0.31	0.001
	4	10(0)	4.24	7.13	0.70	0.001
	5	6(0)	5.13	7.16	0.90	0.016
	6	24(2)	5.48	7.19	0.39	0.001

Table SI.3.9. Testing our null hypothesis of random species assemblage with phylogenetic constraint (REGE-based). Significant results are in bold font. Random groups were generated with w=2 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	7(4)	2.67	6.28	1.31	0.028
	2	7(0)	4.10	6.22	0.66	0.002
	3	32(2)	5.86	6.09	0.22	0.147
	4	6(1)	4.80	6.20	0.77	0.064
	5	19(0)	4.58	5.53	0.39	0.006
	6	8(0)	5.54	6.09	0.56	0.161
Pws	1	21(0)	5.98	6.49	0.31	0.048
	2	5(0)	2.6	5.99	0.97	0.001
	3	5(0)	3.6	5.93	0.86	0.004
	4	11(3)	3.46	6.12	0.70	0.001
	5	34(1)	5.62	6.17	0.24	0.010
	6	36(1)	6.38	6.62	0.23	0.156
Chs	1	7(1)	4	4.74	0.59	0.110
	2	4(3)	0	NA	NA	NA
	3	15(3)	4.89	5.18	0.32	0.184
	4	35(0)	4.26	4.78	0.18	0.001
	5	7(0)	4.67	5.04	0.47	0.204
	6	7(0)	6.48	5.88	0.50	0.101
Car	1	1(0)	0	NA	NA	NA
	2	2(0)	2	5.52	2.33	0.105
	3	30(0)	5.39	6.24	0.26	0.001
	4	16(0)	6.09	6.50	0.34	0.130
	5	8(8)	0	NA	NA	NA
	6	26(0)	5.55	6.44	0.27	0.001
Gad	1	12(3)	4.61	6.43	0.73	0.006
	2	13(0)	4.77	6.55	0.62	0.003
	3	31(5)	6.3	7.01	0.33	0.014
	4	10(0)	4.24	6.10	0.88	0.020
	5	6(0)	5.13	6.60	0.90	0.055
	6	24(2)	5.48	6.57	0.45	0.013

Table SI.3.10. Testing our null hypothesis of random species assemblage with phylogenetic constraint (REGE-based). Significant results are in bold font. Random groups were generated with w=3 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	7(4)	2.67	4.91	1.65	0.156
	2	7(0)	4.10	5.04	0.71	0.104
	3	32(2)	5.86	5.95	0.16	0.302
	4	6(1)	4.80	5.46	0.70	0.235
	5	19(0)	4.58	4.98	0.31	0.086
	6	8(0)	5.54	5.78	0.40	0.275
Pws	1	21(0)	5.98	6.21	0.23	0.160
	2	5(0)	2.6	4.29	1.17	0.096
	3	5(0)	3.6	4.80	0.84	0.062
	4	11(3)	3.46	5.01	0.72	0.016
	5	34(1)	5.62	5.86	0.18	0.085
	6	36(1)	6.38	6.50	0.17	0.241
Chs	1	7(1)	4	4.37	0.50	0.252
	2	4(3)	0	NA	NA	NA
	3	15(3)	4.89	5.08	0.25	0.215
	4	35(0)	4.26	4.50	0.14	0.039
	5	7(0)	4.67	4.85	0.34	0.307
	6	7(0)	6.48	6.25	0.32	0.244
Car	1	1(0)	0	NA	NA	NA
	2	2(0)	2	3.62	2.26	0.305
	3	30(0)	5.39	5.74	0.20	0.025
	4	16(0)	6.09	6.27	0.27	0.252
	5	8(8)	0	NA	NA	NA
	6	26(0)	5.55	5.92	0.23	0.038
Gad	1	12(3)	4.61	5.46	0.61	0.078
	2	13(0)	4.77	5.54	0.52	0.047
	3	31(5)	6.3	6.60	0.27	0.152
	4	10(0)	4.24	4.95	0.69	0.146
	5	6(0)	5.13	5.79	0.72	0.176
	6	24(2)	5.48	5.91	0.36	0.124

Table SI.3.11. Testing our null hypothesis of random species assemblage with phylogenetic constraint (REGE-based). Significant results are in bold font. Random groups were generated with w=4 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	7(4)	2.67	4.18	1.47	0.231
	2	7(0)	4.10	4.32	0.42	0.369
	3	32(2)	5.86	5.88	0.09	0.429
	4	6(1)	4.80	5.00	0.45	0.413
	5	19(0)	4.58	4.67	0.16	0.352
	6	8(0)	5.54	5.60	0.19	0.427
Pws	1	21(0)	5.98	6.04	0.13	0.356
	2	5(0)	2.6	3.03	0.77	0.352
	3	5(0)	3.6	3.94	0.52	0.300
	4	11(3)	3.46	4.22	0.62	0.137
	5	34(1)	5.62	5.69	0.11	0.268
	6	36(1)	6.38	6.42	0.10	0.354
Chs	1	7(1)	4	4.13	0.29	0.390
	2	4(3)	0	NA	NA	NA
	3	15(3)	4.89	4.96	0.16	0.343
	4	35(0)	4.26	4.33	0.09	0.187
	5	7(0)	4.67	4.73	0.20	0.422
	6	7(0)	6.48	6.41	0.16	0.391
Car	1	1(0)	0	NA	NA	NA
	2	2(0)	2	2.37	1.22	0.450
	3	30(0)	5.39	5.48	0.12	0.232
	4	16(0)	6.09	6.14	0.16	0.407
	5	8(8)	0	NA	NA	NA
	6	26(0)	5.55	5.64	0.14	0.296
Gad	1	12(3)	4.61	4.94	0.43	0.263
	2	13(0)	4.77	4.96	0.29	0.291
	3	31(5)	6.3	6.40	0.16	0.357
	4	10(0)	4.24	4.44	0.40	0.344
	5	6(0)	5.13	5.31	0.40	0.381
	6	24(2)	5.48	5.59	0.20	0.353

Table SI.3.12. Testing our null hypothesis of random species assemblage with phylogenetic constraint (TSM-based). Significant results are in bold font. Random groups were generated with w=1 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	13(0)	5.64	6.34	0.43	0.053
	2	29(6)	6.61	6.31	0.30	0.147
	3	7(0)	4.10	6.49	0.61	0.001
	4	8(0)	4.32	6.04	0.66	0.009
	5	15(0)	5.09	6.10	0.44	0.018
	6	7(1)	5.60	6.17	0.71	0.203
Pws	1	72(5)	6.61	6.57	0.13	0.397
	2	10(0)	3.38	6.47	0.54	0.001
	3	7(0)	3.81	6.30	0.70	0.001
	4	7(0)	3.81	6.27	0.74	0.001
	5	10(0)	4.09	6.65	0.53	0.001
	6	6(0)	5.87	6.68	0.75	0.135
Chs	1	41(7)	4.91	5.08	0.18	0.176
	2	7(0)	6.48	5.36	0.58	0.023
	3	9(0)	4.11	5.05	0.50	0.033
	4	6(0)	4.00	4.96	0.63	0.066
	5	5(0)	2.40	4.89	0.74	0.001
	6	7(0)	3.90	5.02	0.57	0.033
Car	1	32(8)	6.57	6.70	0.26	0.292
	2	15(0)	5.10	6.71	0.38	0.001
	3	16(0)	5.29	6.60	0.40	0.003
	4	7(0)	4.76	6.59	0.67	0.004
	5	6(0)	4.00	6.57	0.77	0.001
	6	7(0)	4.95	6.77	0.66	0.009
Gad	1	27(2)	6.40	7.36	0.33	0.002
	2	12(3)	4.61	7.11	0.68	0.001
	3	10(0)	4.24	7.08	0.75	0.001
	4	27(5)	5.82	7.28	0.38	0.001
	5	8(0)	4.71	7.09	0.85	0.009
	6	12(0)	3.92	7.21	0.57	0.001

Table SI.3.13. Testing our null hypothesis of random species assemblage with phylogenetic constraint (TSM-based). Significant results are in bold font. Random groups were generated with w=2 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	13(0)	5.64	6.15	0.34	0.069
	2	29(6)	6.61	6.44	0.27	0.276
	3	7 (0)	4.10	6.21	0.65	0.002
	4	8(0)	4.32	5.53	0.67	0.034
	5	15(0)	5.09	5.78	0.41	0.043
	6	7(1)	5.60	5.94	0.71	0.302
Pws	1	72(5)	6.61	6.58	0.12	0.423
	2	10(0)	3.38	5.79	0.66	0.001
	3	7 (0)	3.81	5.52	0.75	0.010
	4	7 (0)	3.81	5.57	0.78	0.010
	5	10(0)	4.09	6.28	0.56	0.001
	6	6(0)	5.87	6.68	0.73	0.139
Chs	1	41(7)	4.91	5.02	0.16	0.238
	2	7(0)	6.48	5.89	0.50	0.105
	3	9(0)	4.11	4.91	0.48	0.049
	4	6(0)	4.00	4.77	0.64	0.124
	5	5 (0)	2.40	4.38	0.78	0.003
	6	7(0)	3.90	4.84	0.54	0.040
Car	1	32(8)	6.57	6.63	0.25	0.407
	2	15(0)	5.10	6.30	0.43	0.002
	3	16(0)	5.29	6.21	0.41	0.010
	4	7 (0)	4.76	6.16	0.72	0.023
	5	6(0)	4.00	5.95	0.88	0.009
	6	7 (0)	4.95	6.44	0.70	0.017
Gad	1	27(2)	6.40	7.04	0.33	0.032
	2	12(3)	4.61	6.36	0.72	0.008
	3	10(0)	4.24	6.04	0.90	0.025
	4	27(5)	5.82	6.82	0.40	0.008
	5	8(0)	4.71	6.27	1.01	0.070
	6	12(0)	3.92	6.29	0.70	0.001

Table SI.3.14. Testing our null hypothesis of random species assemblage with phylogenetic constraint (TSM-based). Significant results are in bold font. Random groups were generated with w=3 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	13(0)	5.64	5.84	0.25	0.224
	2	29(6)	6.61	6.56	0.18	0.395
	3	7(0)	4.10	5.02	0.71	0.108
	4	8(0)	4.32	4.81	0.51	0.175
	5	15(0)	5.09	5.35	0.30	0.203
	6	7(1)	5.60	5.73	0.49	0.384
Pws	1	72(5)	6.61	6.59	0.09	0.447
	2	10(0)	3.38	4.52	0.65	0.024
	3	7(0)	3.81	4.65	0.69	0.117
	4	7(0)	3.81	4.58	0.67	0.136
	5	10(0)	4.09	5.09	0.62	0.057
	6	6(0)	5.87	6.24	0.55	0.280
Chs	1	41(7)	4.91	4.95	0.13	0.376
	2	7(0)	6.48	6.27	0.32	0.258
	3	9(0)	4.11	4.55	0.40	0.125
	4	6(0)	4.00	4.35	0.47	0.255
	5	5(0)	2.40	3.54	0.72	0.039
	6	7(0)	3.90	4.38	0.43	0.141
Car	1	32(8)	6.57	6.59	0.19	0.438
	2	15(0)	5.10	5.62	0.36	0.055
	3	16(0)	5.29	5.67	0.32	0.106
	4	7(0)	4.76	5.40	0.64	0.153
	5	6(0)	4.00	4.87	0.80	0.116
	6	7(0)	4.95	5.57	0.66	0.177
Gad	1	27(2)	6.40	6.64	0.27	0.194
	2	12(3)	4.61	5.44	0.62	0.088
	3	10(0)	4.24	4.92	0.70	0.160
	4	27(5)	5.82	6.27	0.30	0.058
	5	8(0)	4.71	5.23	0.77	0.291
	6	12(0)	3.92	4.90	0.61	0.036

Table SI.3.15. Testing our null hypothesis of random species assemblage with phylogenetic constraint (TSM-based). Significant results are in bold font. Random groups were generated with w=4 (see main text).

Food webs	Cluster	Number	m_k	Mean	S.E. for	p-value
	k	of		m_{k_random}	m_{k_random}	
		nodes*				
Bar	1	13(0)	5.64	5.69	0.15	0.399
	2	29(6)	6.61	6.58	0.12	0.416
	3	7(0)	4.10	4.34	0.44	0.352
	4	8(0)	4.32	4.46	0.30	0.379
	5	15(0)	5.09	5.15	0.17	0.418
	6	7(1)	5.60	5.65	0.31	0.463
Pws	1	72(5)	6.61	6.59	0.06	0.427
	2	10(0)	3.38	3.72	0.42	0.222
	3	7(0)	3.81	4.04	0.41	0.351
	4	7(0)	3.81	4.05	0.42	0.341
	5	10(0)	4.09	4.32	0.38	0.329
	6	6(0)	5.87	5.97	0.33	0.446
Chs	1	41(7)	4.91	4.92	0.08	0.447
	2	7(0)	6.48	6.41	0.17	0.408
	3	9(0)	4.11	4.26	0.25	0.322
	4	6(0)	4.00	4.08	0.28	0.437
	5	5(0)	2.40	2.83	0.50	0.219
	6	7(0)	3.90	4.04	0.27	0.374
Car	1	32(8)	6.57	6.57	0.12	0.439
	2	15(0)	5.10	5.23	0.22	0.322
	3	16(0)	5.29	5.38	0.18	0.344
	4	7(0)	4.76	4.94	0.36	0.364
	5	6(0)	4.00	4.24	0.45	0.342
	6	7(0)	4.95	5.12	0.40	0.392
Gad	1	27(2)	6.40	6.46	0.15	0.423
	2	12(3)	4.61	4.94	0.42	0.260
	3	10(0)	4.24	4.44	0.40	0.343
	4	27(5)	5.82	5.98	0.20	0.208
	5	8(0)	4.71	4.83	0.39	0.441
	6	12(0)	3.92	4.18	0.38	0.287