Programme année de 1^{ire} Spécialité Janvier - Juin 2024 :

5 avril 2025

Table des matières

1	ALGEBRE 1.1 Suites numériques, modèles discrets	2 2 2
2	ANALYSE 2.1 Dérivation, variations et courbes représentatives des fonctions	2 2 2
3	GEOMETRIE 3.1 Calcul vectoriel et produit scalaire	2 2 2
4	PROBABILITES ET STATISTIQUES 4.1 Probabilités conditionnelles et indépendance	2 2 2
5	ALGORITHMIQUE ET PROGRAMMATION	2
6	VOCABULAIRE ENSEMBLISTE ET LOGIQUE	2

1 ALGEBRE

- 1.1 Suites numériques, modèles discrets
- 1.2 Equations, fonctions polynômes du second degré

2 ANALYSE

- 2.1 Dérivation, variations et courbes représentatives des fonctions
- 2.2 Fonction exponentielle
- 2.3 Fonctions trigonométriques
- 3 GEOMETRIE
- 3.1 Calcul vectoriel et produit scalaire
- 3.2 Géométrie repérée

4 PROBABILITES ET STATISTIQUES

- 4.1 Probabilités conditionnelles et indépendance
- 4.2 Variables aléatoires réelles
- 5 ALGORITHMIQUE ET PROGRAMMATION
- 6 VOCABULAIRE ENSEMBLISTE ET LOGIQUE

EXERCICES

I) Fonction exponentielle

A) Révisions des bases

Exercice: 0.1 (Vrai / Faux)

Parmi les propositions suivantes, quelles sont celles qui sont exactes?

1. Pour tous réels a et b, $e^{a-b} = \frac{e^a}{e^b}$

Correction: Vrai, c'est une propriété de l'exponentielle

- 2. Le nombre $-e^{-x}$ est toujours strictement positif Correction: Faux, en effet $\forall x \in \mathbb{R}, \ e^x > 0$. On a par exemple $-e^0 = -1$
- 3. La droite d'équation y = x + 1 est tangente à la courbe représentative de la fonction exponentielle au point d'abscisse 1

Correction : Faux, cette équation est tangente à la courbe représentative de la fonction exponentielle au point d'abscisse 0

4. La tangente à la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{1+e^x}$ au point d'abscisse 0 est parallèle à la droite d'équation $y = -\frac{1}{4}x$

Correction: Vrai, il suffit de calculer f'(0)

Exercice: 0.2 (Propriétés algébriques)

Simplifier et factoriser si possible les expressions suivantes :

$$A = \frac{e^{x+y}}{e^x} - e^{2y}, \quad B = \frac{e^{2x+2y}}{e^x e^{2y}}$$

Correction:

- $A = \frac{e^{x+y}}{e^x} e^{2y} = \frac{e^x e^y}{e^x} e^{2y} = e^y (1 e^y)$
- $R = e^x$

B) Approfondissement

Exercice: 0.3 (Cosinus et sinus hyperboliques)

Les fonctions ch et sh sont définies sur \mathbb{R} comme :

$$ch(x) = \frac{e^x + e^{-x}}{2} et \ sh(x) = \frac{e^x - e^{-x}}{2}$$

3

1. Dresser le tableau des signes de ces fonctions

Correction:

$$sh(x) \le 0 \quad \Leftrightarrow e^x - e^{-x} \le 0$$

$$\Leftrightarrow e^x \le e^{-x}$$

$$\Leftrightarrow x \le -x$$

$$\Leftrightarrow x \le 0$$

$$ch(x) \ge 0 \quad \Leftrightarrow e^x + e^{-x} \ge 0$$

$$\Leftrightarrow x \in \mathbb{R}$$

On trouve alors aisément leurs tableaux de signes.

2. Calculer ch' et sh'.

Quel lien y-a-t-il entre ch' et sh? Entre sh' et ch? Correction: $\forall x \in \mathbb{R}, \ ch'(x) = \frac{e^x - e^{-x}}{2} = sh(x).$ et $\forall x \in \mathbb{R}, \ sh'(x) = \frac{e^x + e^{-x}}{2} = ch(x).$ 3. Dresser les tableaux de variations de ch et sh.

Correction:

Correction	•				
x	$-\infty$		0		$+\infty$
ch'(x)		_	0	+	
ch(x)	+∞ _		→ ₁ <i>—</i>		→ +∞
x	$-\infty$		$+\infty$		
sh'(x)		+			
sh(x)	+∞		+∞		

- 4. Montrer que pour tout $x \in \mathbb{R}$, $ch^2(x) sh^2(x) = 1$
 - (a) En dérivant $f: x \mapsto ch^2(x) sh^2(x)$
 - (b) Par un calcul algébrique

Correction : $ch^{2}(x) - sh^{2}(x) = (\frac{e^{x} + e^{-x}}{2})^{2} - (\frac{e^{x} - e^{-x}}{2})^{2} = \frac{e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - + e^{-2x}}{4} = \frac{4}{4} = 1$ 5. Montrer que : $\forall x \in \mathbb{R}$ on a $sh(2x) = 2ch(x) \times sh(x)$ et $ch(2x) = ch^{2}(x) + sh^{2}(x)$ Correction : On a $2ch(x) \times sh(x) = 2(\frac{e^{x} + e^{-x}}{2})(\frac{e^{x} - e^{-x}}{2}) = \frac{e^{2x} - e^{-2x}}{2} = sh(2x)$ Et $ch^{2}(x) + sh^{2}(x) = (\frac{e^{x} + e^{-x}}{2})^{2} + (\frac{e^{x} - e^{-x}}{2})^{2} = \cdots = ch(2x)$

6. Donner une représentation graphique de ch et sh

II) Fonctions trigonométriques

A) Révisions des bases

Exercice: 0.4

QCM : Pour chaque question, trouver la bonne réponse :

	A	B	C
$Si cos(\alpha) = \frac{1}{2}, alors$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$cos(\pi - \alpha)$ est égal à :			
$Si \ \alpha \in [0; \frac{\pi}{2}] \ et \ si$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$sin(\alpha) = \frac{1}{2} \ alors$	_	_	
$sin(\frac{\pi}{2} - \alpha)$ vaut :			
$Si \ \alpha \in [-\frac{\pi}{2};0] \ et \ si$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$
$cos(\alpha) = \frac{1}{2} \ alors$			
$sin(\frac{\pi}{2} - \alpha) \ vaut :$			
$Si \ sin(\alpha) = \frac{1}{2} \ alors$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$sin(\alpha + \pi)$ est égal à :	_	_	_
$Si \ \alpha \in [\frac{\pi}{2};\pi] \ et \ si$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$
$sin(\alpha) = \frac{1}{2} \ alors$	-	_	
$cos(\alpha)$ vaut:			

Exercice: 0.5 (Identité trigonométrique)

Montrer que pour tout réel x on a :

$$(\cos(x) + \sin(x))^{2} + (\cos(x) - \sin(x))^{2} = 2$$

Correction: On a $2(cos(x)^2 + sin(x)^2) = 2$

B) Approfondissement

Exercice: 0.6 (Etablir un encadrement)

1. On désigne g la fonction numérique définie sur $[0; \pi]$ par :

$$g(x) = x\cos(x) - \sin(x)$$

Etudier g et dresser son tableau de variation.

En déduire le signe de g(x) sur $[0;\pi]$

Correction: $g'(x) = -x\sin(x)$ et on déduit que g est décroissante sur $[0; \pi]$. De plus g(0) = 0 et $g(\pi) = -\pi$. Donc g est négative sur $[0, \pi]$.

2. Soit f la fonction numérique définie sur $[0;\pi]$ par :

$$\begin{cases} f(0) = 1\\ f(x) = \frac{\sin(x)}{x} , x \in]0; \pi] \end{cases}$$

Calculer $\lim_{x\to 0} f(x)$ puis étudier les variations de f.

Correction: On étudie le taux d'accroissement de $sin: x \mapsto sin(x)$ en 0. On a :

$$\lim_{h \to 0} \frac{\sin(0+h) - \sin(h)}{h} = \lim_{h \to 0} \frac{\sin(h)}{h} = \sin'(0) = \cos(0) = 1$$

 $D'où: \lim_{x\to 0}\frac{\sin(x)}{x}=1.$

Pour étudier la variation de f il suffit de l'étudier sur $]0,\pi]$. Et on a:

$$\forall x \in]0, \pi], \ f'(x) = \frac{g(x)}{x^2}$$

5

On en déduit par la question 1) que f est strictement décroissante sur $[0,\pi]$

3. Prouver que, pour tout nombre réel $x \ge 0$, on a :

$$0 \le x - \sin(x) \le \frac{x^3}{6}$$

(Astuce : On peut introduire la fonction ϕ définie sur $[0; +\infty[$ par :

$$\phi(x) = \sin(x) - x + \frac{x^3}{6}$$

On calculera les dérivées ϕ',ϕ'',ϕ''' et on en déduira le signe de $\phi(x)$)

Correction: On se place dans $[0, \pi]$ et on a:

$$\begin{cases} \phi(x) = \sin(x) - x + \frac{x^3}{6}, \\ \phi'(x) = \cos(x) - 1 + \frac{x^2}{2}, \\ \phi''(x) = -\sin(x) + x, \\ \phi'''(x) = -\cos(x) + 1, \end{cases}$$

On trouve que $\phi'''(x) \ge 0$ donc ϕ'' est croissante.

De plus $\phi''(0) = 0$ donc elle est positive. Donc ϕ' est croissante.

De même $\phi'(0) = 0$ donc elle est positive. Donc ϕ est croissante.

Et on a $\phi(0) = 0$ donc $\phi(x) \ge 0$

Finalement, De $\phi(x) \ge 0$ on obtient $: -\sin(x) + x + \frac{x^3}{6} \ge 0 \Rightarrow \sin(x) - x \le \frac{x^3}{6}$ Et de $\phi''(x) \ge 0$ on obtient $: -\sin(x) + x \ge 0$. D'où l'inégalité

III) Calcul vectoriel et produit scalaire

A) Révisions des bases

On note "." le produit scalaire

Exercice: 0.7 (Vrai / Faux)

Dire si les propositions suivantes sont vraies ou fausses :

1. $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\widehat{\vec{u}, \vec{v}})$

Correction: Vrai, c'est la définition du produit-scalaire

2. Un produit scalaire est toujours positif

Correction : Faux, par exemple avec $\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ on a $\vec{u} \cdot \vec{v} = -1$

3. Si $\vec{u} \cdot \vec{w} = \vec{v} \cdot \vec{w}$ alors $\vec{u} = \vec{v}$

Correction : Faux, par exemple si $\vec{w} = \vec{0}$

- 4. L'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$ (où $k \in \mathbb{R}$) est un cercle de centre le milieu [AB]. Correction: Faux, on a la propriété $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$ où I est le milieu de AB. Si on prend AB=2, alors pour les k < -1 les points M définient comme ci-dessus, représentent l'ensemble vide.
- 5. Si \vec{u} et \vec{v} sont deux vecteurs non nuls orthogonaux, alors :

$$||\vec{u} + \vec{v}|| = ||\vec{u} - \vec{v}||$$

Correction : Vrai, on utilise les propriétées du produit-scalaire : $\vec{u} \cdot \vec{v} = \frac{1}{4}(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$ et $\vec{u} \cdot \vec{v} = \frac{1}{4}(-||\vec{u}||^2 - ||\vec{v}||^2 + ||\vec{u} + \vec{v}||^2)$

Exercice: 0.8 (Calcul de longueur)

ABC est un triangle. H est le pied de la hauteur issue de A, et $H \in [BC]$.

On a:AB=3, BH=2 et HC=3.

1. Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ Correction: $\overrightarrow{BA} \cdot \overrightarrow{BC} = 10$

2. En déduire la longueur AC

Correction : $AC = \sqrt{14}$

B) Approfondissement

Exercice: 0.9

Dans un repère othonormé, on considère les points $A=(-3;2),\ B=(3;5)$ et C=(5;-4).

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ Correction: $\overrightarrow{AB} \cdot \overrightarrow{AC} = 30$
- 2. Calculer les distances AB et AC

Correction: $AB = \sqrt{45}$ et AC = 10

- 3. Déduire des questions précédentes une valeur approchée au degré près de l'angle \widehat{BAC} Correction : $\widehat{BAC} \approx 63$ degrés
- 4. Soit D = (1,5;3). Montrer que $(CD) \perp (AB)$ et que $(BD) \perp (AC)$ Correction : On calcule le produit scalaire de ces vecteurs, et on trouve 0
- 5. Que représente le point D pour le triangle ABC ?

 Correction : C'est l'orthocentre, car il est l'intersection des hauteurs du triangle
- 6. Soit H le point d'intersection des droites (BD) et (AC).

 Sans faire de calcul, expliquer pourquoi $\overrightarrow{AB} \cdot \overrightarrow{AC} = AH \times AC$. En déduire AH = 3cmCorrection: Par définition, H est le projeté orthogonal de B sur (AC). Donc, par définition du produit scalaire, $\overrightarrow{AB} \cdot \overrightarrow{AC} = AH \times AC$.

 Or $\overrightarrow{AB} \cdot \overrightarrow{AC} = 30$ d'après la question 1.

 Donc $AH \times AC = 30$, soit $AH = \frac{30}{AC} = \frac{30}{10} = 3$

IV) Variables aléatoires réelles

A) Révisions des bases

Exercice: 0.10 (Vrai / Faux)

Indiquer si les affirmations suivantes sont vraies ou fausses.

- 1. Soit X une variable aléatoire définie sur $\Omega = \{x_1, \dots, x_n\}$. Alors : $E(X) = \sum_{k=1}^n x_k \mathbb{P}(X = x_k)$ Correction : Vrai, c'est la définition de l'espérence d'une variable aléatoire.
- Si une variable aléatoire X ne prend que des valeurs positives ou nulle, alors E(X) ≥ 0
 Correction: Vrai, on utilise la définition, on voit que c'est une somme de termes toujours positifs dans ce cas là.
- 3. Si $E(X) \ge 0$ alors la variable aléatoire X ne prend que des valeurs positives ou nulle **Correction**: Faux, on prend la loi uniforme sur $\Omega = \{-1, 1, 2\}$

Exercice: 0.11 (Ticket gagnant)

Un supermarché de San Francisco distribue des tickets à ses 1000 premiers clients. 500 tickets font gagner 10\$, 90 font gagner 20\$, 10 font gagner 50\$ et 400 ne font rien gagner. Un ticket est distribué au hasard à chaque client à son passage en caisse. X est la variable aléatoire qui à chaque ticket distribué associe le gain inscrit sur celui-ci.

- 1. Déterminer l'ensemble des valeurs prises par X Correction : X prend les valeurs 0, 10,20 et 50
- 2. Dresser le tableau de la loi de probabilité de X

Commention	$Gain x_i$	0	10	20	50
Correction:	$P(X=x_i)$	0,4	0,5	0,09	0,01

- 3. Quelle est la probabilité d'obtenir un ticket faisant gagner 20\$ ou plus ? Correction : $P(X \ge 20) = 0, 1$
- 4. Quelle est l'espérance mathématique de la variable aléatoire X ? $Correction : \mathbb{E}(X) = 7,3$

B) Approfondissement

Exercice: 0.12 (Loi d'une variable aléatoire)

Une urne contient 10 boules blanches et n boules noires, n étant un nombre entier supérieur ou égal à 2. Toutes les boules ont la même probabilité d'être tirées.

Pour chaque boule blanche obtenue on gagne 2 et pour une boule noire on perd 3. On désigne par X la variable aléatoire correspondant au gain algébrique du joueur

- 1. Le joueur tire une boule
 - (a) Quelles sont les valeurs prises par X?

 Correction: X peut prendre -3 et 2
 - (b) Donner, en fonction de n, la loi de probabilité de X

Correction:	x_i	-3	2
Correction.	$P(X=x_i)$	$\frac{n}{10+n}$	$\frac{10}{10+n}$

- (c) Exprimer E(X) en fonction de nCorrection : $\mathbb{E}(X) = \frac{-3n+20}{10+n}$
- (d) Déterminer les valeurs de n pour lesquelles le jeu est favorable au joueur.

Correction: Le jeu est favorable aux joueurs si $\mathbb{E}(X) \geq 0$. Or, n est un nombre positif, donc le jeu est favorable au joueur si et seulement si :

$$-3n + 20 > 0 \Leftrightarrow n < \frac{20}{3}$$

n est un nombre entier supérieur ou égal à 6, donc le jeu est favorable au joueur pour 2,3,4,5 et 6

8

- 2. Le joueur tire successivement deux boules, et sans remise.
 - (a) Quelles sont les valeurs possibles pour X

Correction: X peut prendre -6, -1 et 4. Car il peut perdre les deux parties, perdre une partie et gagner l'autre ou il peut gagner les deux parties.

(b) Donner la loi de probabilité de X

Correction : On peut faire un arbre de probabilités pour s'aider à mieux comprendre les issues de l'expérience aléatoire. On obtiendra alors :

x_i	-6	-1	4
$P(X=x_i)$	$\frac{n(n-1)}{(n+10)(n+9)}$	$\frac{20n}{(n+10)(n+9)}$	$\frac{90}{(n+10)(n+9)}$

(c) Exprimer E(X) en fonction de n

Correction: $\mathbb{E}(X) = \frac{-6n^2 - 14n + 360}{(n+10)(n+9)}$

(d) Déterminer les valeurs de n pour lesquelles le jeu est défavorable au joueur

Correction : De même que pour la question 1) on cherche lorsque $\mathbb{E} > 0$. On cherche donc le signe de $-6n^2 - 14n + 360$.

On obtient les racines $n_1 = \frac{20}{3}$ et $n_2 = -9$. Le coefficient de n^2 étant négatif, on en déduit que $\mathbb{E} > 0$ entre les racines. D'où pour $0 < n < \frac{20}{3}$. Le jeu est donc favorable pour les valeurs 2,3,4,5 et 6. Et défavorable pour les valeurs supérieures à 7.