B.Sc./Grad. Dip.: Probability Models and Time Series MAS programmes: Stochastic Models and Time Series Spring 2020

PMTS - Assignment C/SMTS - Assignment 2

Deadline: Thursday, 30th April, 2020

Total marks: [25]. Marks are shown in boxes []. There are 2 questions in this assignment.

1. Consider a process $\{Y_t\}$ that satisfies the model equation

$$Y_{t} = \frac{21}{5} Y_{t-1} - \frac{19}{5} Y_{t-2} + \frac{3}{5} Y_{t-3} + \epsilon_{t}, \qquad t \in \mathbb{Z}.$$

- (a) Find the equation satisfied by the process, $\{W_t\}$, of first differences, where $W_t = Y_t Y_{t-1}$.
- (b) Is $\{W_t\}$ a stationary process? [3]

2. Let $\{Z_t\}$ be an ARIMA(1,0,3) process which satisfies the relation

$$(1 - \phi L)Z_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \theta_3 \epsilon_{t-3}, \qquad t \in \mathbb{Z},$$

where L is the lag operator such that $LZ_t = Z_{t-1}$, $\{\epsilon_t\}$ is a white noise process such that the ϵ_t are NID(0, σ^2), ϕ is the autoregressive parameter, and θ_1 , θ_2 , and θ_3 , are moving average parameters. Let z_1, z_2, \ldots, z_T denote an observed realization of the process up to time T. Consider the forecasting problem with T the origin of the forecasts, h the lead time and $\hat{z}_T(h)$ the corresponding minimum mean square error forecast, for lead times $h \geq 1$.

(a) Deduce that an iteration scheme for the forecasts can be characterized by the following relations:

$$\hat{z}_{T}(1) = \phi z_{T} + \theta_{1} \epsilon_{T} + \theta_{2} \epsilon_{T-1} + \theta_{3} \epsilon_{T-2}
\hat{z}_{T}(2) = \phi \hat{z}_{T}(1) + \theta_{2} \epsilon_{T} + \theta_{3} \epsilon_{T-1}
\hat{z}_{T}(3) = \phi \hat{z}_{T}(2) + \theta_{3} \epsilon_{T}
\hat{z}_{T}(h) = \phi \hat{z}_{T}(h-1), \quad h \ge 4.$$

[8]

- (b) By working with an appropriately explicit expression for Z_{T+2} , derive an explicit formula for each of the following:
 - i) the forecast error at lead time h = 2, formulated in terms of one or more members of the white noise process; [6]
 - ii) the forecast error variance at lead time h = 2, namely V(2) (involving nothing more than σ^2 , θ_1 , and ϕ).
- (c) Consider a stationary process $\{Y_t\}$ that satisfies the following model equation

$$Y_t = \phi Y_{t-1} + \epsilon_t + \omega_1 \epsilon_{t-1} + \omega_2 \epsilon_{t-2} + \omega_3 \epsilon_{t-3}, \quad t \in \mathbb{Z},$$

where ϕ, ω_1, ω_2 , and ω_3 , are parameters.

Suppose that $\hat{y}_T(2) = 12.904$, the estimated white noise variance $\hat{\sigma}^2 = 0.297$, and that the estimated values of ϕ , ω_1 , ω_2 , and ω_3 , are 0.56, -1.383, 0.533, and -0.0625, respectively.

Stating any assumptions you make, and with reference to appropriate percentage points from statistical tables, find a 99% prediction interval for Y_{T+2} . [4]

Important Note:

• Please read the current version of the *Mathematics & Statistics Coursework Policy*. Copies can be obtained from the course website, or in hardcopy from the programme administrator.