COMP417 Lecture 5

Learning the Network: SLP with Multiple Outputs

Dr. Hend Dawood

30MP417

Recap: Learning the perceptron

- Two methods:
 - The perceptron learning algorithm
 - The delta rule

- Before using SLP, make sure the data is linearly separable
 - Visualize the data (not possible for more than 2 features)

The perceptron learning algorithm

```
1: while \exists p \in P and error too large do
       Input p into the network, calculate output y \{P \text{ set of training patterns}\}\
       for all output neurons \Omega do
 3:
          if y_{\Omega} = t_{\Omega} then
 4:
             Output is okay, no correction of weights
 5:
          else
 6:
             if y_{\Omega} = 0 then
 7:
                for all input neurons i do
 8:
                  w_{i,\Omega} := w_{i,\Omega} + o_i \{... increase weight towards \Omega by o_i\}
 9:
                end for
10:
            end if
11:
             if y_{\Omega} = 1 then
12:
                for all input neurons i do
13:
                   w_{i,\Omega} := w_{i,\Omega} - o_i \{... \text{decrease weight towards } \Omega \text{ by } o_i \}
14:
                end for
15:
             end if
16:
          end if
17:
       end for
18:
19: end while
```

OMP417

The delta rule

• Same as the previous example. Just updating weights is different

$$w_{i,\Omega} \coloneqq w_{i,\Omega} + \eta \ o_i \ (t_{\Omega} - y_{\Omega})$$

For previous example:

```
\circ w1 := w1 + \eta * x1 * (t - y)

\circ w2 := w2 + \eta * x2 * (t - y)

\circ w_bias := w_bias + \eta * bias * (t - y)
```

30MP417

Example: SLP with multiple outputs

х1	x2	t1	t2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

The two output neurons can have different threshold values

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0									0	0
0	1									1	0
1	0									1	0
1	1									1	1

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	у2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1			0	0
0	1									1	0
1	0									1	0
1	1									1	1

COMP417

Example: SLP with multiple outputs

x1	х2	w11	w21	wb1	w12	w22	wb2	у1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0		0	0
0	1									1	0
1	0									1	0
1	1									1	1

Assume threshold1 = 0.1, threshold2 = 1

net1 >= 0.1?
$$\rightarrow$$
 y = 1
else? \rightarrow y = 0

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1									1	0
1	0									1	0
1	1									1	1

net2 >= 1?
$$\rightarrow$$
 y = 1
else? \rightarrow y = 0

COMP417

Example: SLP with multiple outputs

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2						1	0
1	0									1	0
1	1									1	1

y1 is OK

don't change its weights

30MP417

Example: SLP with multiple outputs

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2						1	0
1	0									1	0
1	1									1	1

y2 is wrong

update its weights: (We can either use perceptron learning algorithm or delta rule)

Assume we are using delta rule, $\eta=0.1$

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9			1	0
1	0									1	0
1	1									1	1

w12 := w12 + 0.1 * x1 * (t2 - y2)
$$\rightarrow$$
 0.2 + 0.1 * 0 * -1 \rightarrow 0.2
w22 := w22 + 0.1 * x2 * (t2 - y2) \rightarrow 0.3 + 0.1 * 0 * -1 \rightarrow 0.3
wb2 := wb2 + 0.1 * (t2 - y2) \rightarrow 1 + 0.1 * -1 \rightarrow 0.9

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0		1	0
1	0									1	0
1	1									1	1

calculate net1, y1

$$net1 = 0.1 * 0 + 0.2 * 1 - 0.2 = 0$$

$$net1 < 0.1 \rightarrow y1 = 0$$

x1	х2	w11	w21	wb1	w12	w22	wb2	у1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0									1	0
1	1									1	1

calculate net2, y2

$$net2 >= 1 \rightarrow y2 = 1$$

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1						1	0
1	1									1	1

Update weights of y1

$$w11 = 0.1 + 0.1 * 0 * (1 - 0) = 0.1$$

 $w21 = 0.2 + 0.1 * 1 * (1 - 0) = 0.3$
 $wb1 = -0.2 + 0.1 * (1 - 0) = -0.1$

x1	х2	w11	w21	wb1	w12	w22	wb2	у1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8			1	0
1	1									1	1

Update weights of y2

$$w12 = 0.2 + 0.1 * 0 * (0 - 1) = 0.2$$

 $w22 = 0.3 + 0.1 * 1 * (0 - 1) = 0.2$

$$wb2 = 0.9 + 0.1 * (0 - 1) = 0.8$$

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	8.0	0		1	0
1	1									1	1

Calculate net1 and y1

$$net1 = 0.1 * 1 + 0.3 * 0 - 0.1 = 0$$

$$\rightarrow$$

$$y1 = 0$$

x1	х2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1									1	1

Calculate net2 and y2

$$y2 = 1$$

x1	х2	w11	w21	wb1	w12	w22	wb2	y 1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1	0.2	0.3	0						1	1

Update weights of y1

$$w11 = 0.1 + 0.1 * 1 * (1 - 0) = 0.2$$

 $w21 = 0.3 + 0.1 * 0 * (1 - 0) = 0.3$
 $wb1 = -0.1 + 0.1 * (1 - 0) = 0$

x1	x2	w11	w21	wb1	w12	w22	wb2	у1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7			1	1

Update weights of y2

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7	1		1	1

Calculate net1 and y1

net1 =
$$0.2 * 1 + 0.3 * 1 + 0 = 0.5$$
 \rightarrow y1 = 1

x1	х2	w11	w21	wb1	w12	w22	wb2	у1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7	1	1	1	1

Calculate net2 and y2

net2 =
$$0.1 * 1 + 0.2 * 0.7 + 0 = 1$$
 \Rightarrow y2 = 1

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	8.0	0	1	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7	1	1	1	1
Next weigh	ts	0.2	0.3	0	0.1	0.2	0.7				

both y1 and y2 are OK

Don't update weights

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.1	0.2	-0.2	0.2	0.3	1	0	1	0	0
0	1	0.1	0.2	-0.2	0.2	0.3	0.9	0	1	1	0
1	0	0.1	0.3	-0.1	0.2	0.2	0.8	0	1	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7	1	1	1	1
Next weigh	ts	0.2	0.3	0	0.1	0.2	0.7				

We need to run another epoch

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.2	0.3	0	0.1	0.2	0.7			0	0
0	1									1	0
1	0									1	0
1	1									1	1

Second epoch

x1	x2	w11	w21	wb1	w12	w22	wb2	y1	y2	t1	t2
0	0	0.2	0.3	0	0.1	0.2	0.7	0	0	0	0
0	1	0.2	0.3	0	0.1	0.2	0.7	1	0	1	0
1	0	0.2	0.3	0	0.1	0.2	0.7	1	0	1	0
1	1	0.2	0.3	0	0.1	0.2	0.7	1	1	1	1
Next weigh	ts	0.2	0.3	0	0.1	0.2	0.7				

Second epoch