ICAPS 2018 Tutorial

Decision Diagrams in Automated Planning and Scheduling

Scott Sanner

DD Definition

- Decision diagrams (DDs):
 - DAG variant of decision tree
 - Decision tests ordered

- Used to represent:
 - f: Bⁿ → B (boolean BDD, set of subsets {{a,b},{a}} – ZDD)
 - f: Bⁿ → Z (integer MTBDD / ADD)
 - f: $B^n \rightarrow R$ (real ADD)

more expressive domains / ranges possible – @ end

What's the Big Deal?

More than compactness

 Ordered decision tests in DDs support efficient operations

- ADD: -f, $f \oplus g$, $f \otimes g$, max(f, g)
- BDD: $\neg f$, $f \land g$, $f \lor g$
- ZDD: $f \setminus g$, $f \cap g$, $f \cup g$
- Efficient operations key to planning / inference

Tutorial Outline

- Need for Bⁿ → B / Z / R & operations in planning
- DDs for representing Bⁿ → B / Z / R
 - Why important?
 - What can they represent compactly?
 - How to do efficient operations?
- Extensions and Software
 - ZDDs, AADDs, (F)EVBDDs ...
- DDs vs. Compilation (d-DNNF)

Factored Representations

Natural state representations in planning

- State is inherently factored
 - Room location: $R = \{1,2,3,4,5,6\}$
 - Door status: D_i={closed/0,open/1}; i=1..7
- Relational fluents, e.g., At(r₁,6), (STRIPS) are ground variable templates: at-r1-6

For simplicity we will assume all state vars are boolean {0,1} – all DD ideas generalize to multi-valued case

Using Factored State in Planning

- Classical planning
 - State given by variable assignments
 - (R=1, D₁=0, D₂=c, ..., D₇=0)
 - Planning operators efficiently update state
 - Satisficing tracks dominated by search-based algorithms
 - But representation of $B^n \to B / Z / R$ important for optimal tracks
- Non-det./probabilistic planning, temporal verification
 - To compute progressions and regressions, often need:
 - State sets: $B^n \to B$ (states satisfying condition)
 - Policies: $B^n \to Z$ (action ids $\to Z$)
 - Value functions: Bⁿ → R
 - And operations on these functions

Factored Transition Systems I

- If have factored state
 - exploit factored transition systems with graphical model (arcs encode dependences)

X ₁	X ₂	X ₂ '	T/P
0	0	0	1
0	0	1	0
0	1	0	0

- Can represent
 - (Non-)deterministic transitions
 - $T(x_1' \mid x_1, x_2): (x_1', x_1, x_2) \rightarrow B$
 - Probabilistic transitions
 - $P(x_1' | x_1, x_2): (x_1', x_1, x_2) \rightarrow R \text{ (really [0,1])}$

How is table different for det / non-det cases?

Factored Transition Systems II

- (Non-)det. transition systems
 - Forward reachability (FR) / backward reachability (BR)

• Progression:

- given a single state $x_1=0$, $x_2=1$

»
$$FR(x_1', x_2') = T(x_1'|x_1=0, x_2=1) \land T(x_2'|x_2=1)$$

- given a set of possible states S: $(x_1, x_2) \rightarrow B$

»
$$FR(x_1', x_2') = \exists x_1 \exists x_2 T(x_1'|x_1, x_2) \land T(x_2'|x_2) \land S(x_1, x_2)$$

- Note: $\exists x \ F(x, ...) = F(x=1, ...) ∨ F(x=0, ...)$

When use ∀?

Regression: given goal function G: (x₁', x₂') → B

- BR(
$$x_1, x_2$$
) = $\exists x_1' \exists x_2' T(x_1' | x_1, x_2) \land T(x_2' | x_2) \land G(x_1', x_2')$

Factored Transition Systems III

Probabilistic transition systems

- State updates: given $P(x_1, x_2)$
 - State sample: $x_1' \sim P(x_1')$: $\sum_{x_1} \sum_{x_2} P(x_1' | x_1, x_2) \otimes P(x_1, x_2)$ $x_2' \sim P(x_2')$: $\sum_{x_1} \sum_{x_2} P(x_2' | x_2) \otimes P(x_1, x_2)$

Decisiontheoretic regression

- Note: $\sum_{x} F(x, ...) = F(x=1, ...) \oplus F(x=0, ...)$
- State belief update:

$$P(x_1', x_2') = \sum_{x_1} \sum_{x_2} P(x_1'|x_1, x_2) \otimes P(x_2'|x_2) \otimes P(x_1, x_2)$$

- **DTR**: given value $V'(x_1', x_2')$, compute $E[V](x_1, x_2)$
 - $V(x_1, x_2) = \sum_{x_1} \sum_{x_2} P(x_1' | x_1, x_2) \otimes P(x_2' | x_2) \otimes V'(x_1', x_2')$ Avoids state

Factored Transition Systems IV

Adversarial transition systems

Adversarial DTR

In a zerosum setting

- Given value V'(x₁', x₂'), compute E[V](x₁, x₂)
- Opponent chooses non-det. transitions to minimize V
 V(x₁, x₂) = min_{x1}, min_{x2}, T(x₁, x₂) ⊗ T(x₂, x₂) ⊗ V'(x₁, x₂)
- Note: $\min_{x} F(x, ...) = \min(F(x=1, ...), F(x=0, ...))$
- Many other multi-agent formalizations
 - Often alternating turns with action variables...

Factored/Symbolic Planning Approaches

- Classical and Adversarial planning
 - Classical: recent work by Torralba, Alcázar, et al
 - Games: Gamer, CGamer
- (Non-det) planning
 - Planning as model checking
 - Conformant planning
 - Temporal verification, e.g., x₁ Until x₂?
 (Bertoli, Cimatti, Pistore, Roveri, Traverso, ...)
 see refs @ http://mbp.fbk.eu/AIPS02-tutorial.html
- Probabilistic planning
 - MDPs: SPUDD (Hoey, Boutilier et al)
 http://www.cs.uwaterloo.ca/~jhoey/research/spudd/index.php
 - POMDPs: Symbolic Perseus (*Poupart et al*)
 http://www.cs.uwaterloo.ca/~ppoupart/software.html

All use of Bn \rightarrow B / Z / R in representation All planning as operations on these functions

OK, we need $B^n \rightarrow B/Z/R$ for Planning

But why Decision Diagrams?

Function Representation (Tables)

- How to represent functions: Bⁿ → R?
- How about a fully enumerated table...

...OK, how to do operations?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Manipulating Discrete Distributions

Marginalization

$$\sum_{b} P(A, b) = P(A)$$

A	Pr
 0	.4
1	.6

Manipulating Discrete Distributions

Maximization

$$\max_{b} P(A, b) = P(A)$$

A	Pr
 0	.3 (B=1)
1	.4 (B=0)

Manipulating Discrete Distributions

Binary Multiplication

$$P(A|B) \cdot P(B|C) = P(A,B|C)$$

A	В	Pr
0	0	.1
0	1	.9
1	0	.2
1	1	.8

В	C	Pr
0	0	.1
0	1	.9
1	0	.2
1	1	.8

A	B	<u>C</u>	Pr
0	0	0	.01
0	0	1	.09
0	1	0	.18
0	1	1	.72
•••	•••	•••	•••

- Same principle holds for all binary ops
 - +, -, /, max, etc...

Discrete Inference & Optimization

Observation 1: all discrete functions can be tables

$$P(A,B) = \begin{array}{c|cccc} A & B & Pr \\ \hline 0 & 0 & .1 \\ \hline 0 & 1 & .3 \\ \hline 1 & 0 & .4 \\ \hline 1 & 1 & .2 \\ \end{array}$$

- Observation 2: all operations computable in closed-form
 - $f_1 \oplus f_2, f_1 \otimes f_2$
 - $\max(f_1, f_2), \min(f_1, f_2)$
 - $-\sum_{x} f(x)$
 - $(arg)max_x f(x), (arg)min_x f(x)$

Are we done? Why do we need DDs?

Why DDs for Planning?

- Reason 1: Space considerations
 - V(Door-1-open, ..., Door-40-open) requires~1 terabyte if all states enumerated
- Reason 2: Time considerations
 - With 1 gigaflop/s. computing power, binary operation on above function requires ~1000 seconds

Function Representation (Tables)

- How to represent functions: Bⁿ → R?
- How about a fully enumerated table...

 ...OK, but can we be more compact?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (Trees)

How about a tree? Sure, can simplify.

a	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

Why not a directed acyclic graph (DAG)?

a	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

Why not a directed acyclic graph (DAG)?

a	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Think of BDDs as {0,1} subset of ADD range

Trees vs. ADDs

- Trees can compactly represent AND / OR
 - But not XOR (linear as ADD, exponential as tree)
 - Why? Trees must represent every path

Binary Operations (ADDs)

- Why do we order variable tests?
- Enables us to do efficient binary operations...

Summary

- We need $B^n \rightarrow B/Z/R$
 - We need compact representations
 - We need efficient operations
 - → DDs are a promising candidate

Not claiming DDs solve all problems... but often better than tabular approach

- Great, tell me all about DDs...
 - OK ◎

Decision Diagrams: Reduce

(how to build canonical DDs)

How to Reduce Ordered Tree to ADD?

- Recursively build bottom up
 - Hash terminal nodes R → ID
 - leaf cache
 - Hash non-terminal functions $(v, ID_0, ID_1) \rightarrow ID$

Reduce Algorithm

```
Algorithm 1: Reduce(F) \longrightarrow F_r
 input : F : Node id
  output: F_r: Canonical node id for reduced ADD
  begin
      // Check for terminal node
      if (F is terminal node) then
          return canonical terminal node for value of F;
      // Check reduce cache
     if (F \to F_r \text{ is not in reduce cache}) then
          // Not in cache, so recurse
          F_h := Reduce(F_h);
          F_l := Reduce(F_l);
          // Retrieve canonical form
          F_r := GetNode(F^{var}, F_h, F_l);
          // Put in cache
          insert F \to F_r in reduce cache;
      // Return canonical reduced node
      return F_r;
```

end

GetNode

- Returns unique ID for internal nodes
- Removes redundant branches


```
Algorithm 1: GetNode(v, F_h, F_l) \longrightarrow F_r
  input: v, F_h, F_l: Var and node ids for high/low branches
  output: F_r: Return values for offset,
            multiplier, and canonical node id
  begin
       // If branches redundant, return child
      if (F_l = F_h) then
           return \hat{F}_l;
      // Make new node if not in cache
      if (\langle v, F_h, F_l \rightarrow id \text{ is not in node cache}) then
           id := currently unallocated id;
           insert \langle v, F_h, F_l \rangle \rangle \to id in cache;
      // Return the cached, canonical node
      return id;
  end
```

Reduce Complexity

- Linear in size of input
 - Input can be tree or DAG

- Because of caching
 - Explores each node once
 - Does not need to explore all branches

Canonicity of ADDs via Reduce

- Claim: if two functions are identical, Reduce will assign both functions same ID
- By induction on var order
 - Base case:
 - Canonical for 0 vars: terminal nodes
 - Inductive:
 - Assume canonical for k-1 vars
 - GetNode result canonical for kth var (only one way to represent)

Impact of Variable Orderings

- Good orders can matter
- Good orders typically have related vars together
 - e.g., low tree-width order in transition graphical model

Graph-Based Algorithms for Boolean Function Manipulation Randal E. Bryant; IEEE Transactions on Computers 1986.

Reordering

- Rudell's sifting algorithm
 - Global reordering as pairwise swapping
 - Only need to redirect arcs
 - Helps to use pointers
 - → then don't need to redirect parents, e.g.,

Decision Diagrams: Apply

(how to do efficient operations on DDs)

Recap

Recall the Apply recursion

Apply Recursion

- Need to compute F₁ op F₂
 - e.g., op \in {⊕,⊗,∧,∨}
- Case 1: F₁ & F₂ match vars

 - $F_r = GetNode(F_1^{var}, F_h, F_l)$

Apply Recursion

- Need to compute F₁ op F₂
 - e.g., op \in {⊕,⊗,∧,∨}
- Case 2: Non-matching var: v₁≺v₂

 - $F_r = GetNode(F_2^{var}, F_h, F_l)$

Apply Base Case: ComputeResult

 F_1 (op) F_2

 Constant (terminal) nodes and some other cases can be computed without recursion

$ComputeResult(F_1, F_2, op) \longrightarrow F_r$		
Operation and Conditions	Return Value	
$F_1 \ op \ F_2; \ F_1 = C_1; \ F_2 = C_2$	$C_1 op C_2$	
$F_1 \oplus F_2; \ F_2 = 0$	F_1	
$F_1 \oplus F_2; \ F_1 = 0$	F_2	
$F_1 \ominus F_2; \ F_2 = 0$	F_1	
$F_1 \otimes F_2; \ F_2 = 1$	F_1	
$F_1 \otimes F_2; \ F_1 = 1$	F_2	
$F_1 \oslash F_2; \ F_2 = 1$	F_1	
$\min(F_1, F_2); \max(F_1) \square \min(F_2)$	F_1	
$\min(F_1, F_2); \max(F_2) \square \min(F_1)$	F_2	
similarly for max		
other	null	

Table 1: Input and output summaries of ComputeResult.

Apply Algorithm

Note: Apply works for *any* binary operation!

Why?

Algorithm 1: $Apply(F_1, F_2, op) \longrightarrow F_r$

```
input: F_1, F_2, op: ADD nodes and op output: F_r: ADD result node to return begin

| // Check if result can be immediately
```

```
// Check if result can be immediately computed
if (ComputeResult(F_1, F_2, op) \rightarrow F_r \text{ is not null }) then
     return F_r;
// Check if result already in apply cache
if (\langle F_1, F_2, op \rangle \to F_r \text{ is not in apply cache}) then
     // Not terminal, so recurse
     var := GetEarliestVar(F_1^{var}, F_2^{var});
     // Set up nodes for recursion
     if (F_1 \text{ is non-terminal} \wedge var = F_1^{var}) then
          F_{l}^{v1} := F_{1,l}; \quad F_{h}^{v1} := F_{1,h};
     else
      F_{l/h}^{v1} := F_1;
     if (F_2 \text{ is non-terminal } \land var = F_2^{var}) then
          F_l^{v2} := F_{2,l}; \quad F_h^{v2} := F_{2,h};
     else
      F_{l/h}^{v2} := F_2;
     // Recurse and get cached result
     F_l := Apply(F_l^{v1}, F_l^{v2}, op);
     F_h := Apply(\tilde{F}_h^{v1}, \tilde{F}_h^{v2}, op);
     F_r := GetNode(var, F_h, F_l);
     // Put result in apply cache and return
  insert \langle F_1, F_2, op \rangle \to F_r into apply cache;
return F_r;
```

 \mathbf{end}

Apply Properties

- Apply uses Apply cache
 - $-(F_1,F_2,op) \rightarrow F_R$
- Complexity
 - Quadratic: $O(|F_1| \cdot |F_2|)$
 - |F| measured in node count
 - Why?
 - Cache implies touch every pair of nodes at most once!

- Canonical?
 - Same inductive argument as Reduce

Reduce-Restrict

Important operation

Trivial when restricted var is root node

- Have
 - F(x,y,z)
- Want

$$-\left.\mathsf{G}(\mathsf{x},\mathsf{y})=\mathsf{F}\right|_{\mathsf{z}=\mathsf{0}}$$

- Restrict F|_{v=value} operation performs a Reduce
 - Just returns branch for v=value whenever v reached
 - Need Restrict-Reduce cache for O(|F|) complexity

Marginalization, etc.

Use Apply + Reduce-Restrict

$$-\sum_{x} F(x, ...) = F|_{x=0} \oplus F|_{x=1}$$
, e.g.

- Likewise for similar operations...
 - ADD: $\min_{x} F(x, ...) = \min(F|_{x=0}, F|_{x=1})$
 - BDD: $\exists x \ F(x, ...) = F|_{x=0} \lor F|_{x=1}$
 - BDD: $\forall x F(x, ...) = F|_{x=0} \land F|_{x=1}$

Apply Tricks I

- Build $F(x_1, ..., x_n) = \sum_{i=1..n} x_i$
 - Don't build a tree and then call Reduce!
 - Just use indicator DDs and Apply to compute

- In general:
 - Build any arithmetic expression bottom-up using Apply!

$$x_1 + (x_2 + 4x_3) * (x_4)$$

 $\rightarrow x_1 \oplus (x_2 \oplus (4 \otimes x_3)) \otimes (x_4)$

Apply Tricks II

Build ordered DD from unordered DD

ZDDs (zero-suppressed BDDs)

Represent sets of subsets

ZDDs for Sets of Subsets

Example BDD and ZDD

Figure 2. The BDD and the ZDD for the set of subsets $\{\{a,b\}, \{a,c\}, \{c\}\}.$

An Introduction to Zero-Suppressed Binary Decision Diagrams Alan Mishchenko

ZDDs vs. BDDs

But ZDDs not universal replacement for BDDs...

Figure 1. BDD and ZDD for F = ab + cd.

An Introduction to Zero-Suppressed Binary Decision Diagrams Alan Mishchenko

How to Modify Apply for ZDDs?

- Simple
 - F_x is sub-ZDD for set with x
 - $F_{\setminus x}$ is sub-ZDD for set *without* x

- F ∩ G:
 - if (x in set)
 - then $F_x \cap G_x$
 - else $F_{\setminus x} \cap G_{\setminus x}$

- This is just standard Apply
 - With properly defined GetNode, leaf ops: $\cap = \land$, $\cup = \lor$

Affine ADDs

ADD Inefficiency

- Are ADDs enough?
- Or do we need more compactness?
- Ex. 1: Additive reward/utility functions

$$- R(a,b,c) = R(a) + R(b) + R(c)$$

= 4a + 2b + c

Ex. 2: Multiplicative value functions

$$- V(a,b,c) = V(a) \cdot V(b) \cdot V(c)$$
$$= \gamma^{(4a + 2b + c)}$$

Affine ADD (AADD)

- Define a new decision diagram Affine ADD
- Edges labeled by offset (c) and multiplier (b):

• Semantics: if (a) then $(c_1+b_1F_1)$ else $(c_2+b_2F_2)$

Affine ADD (AADD)

Maximize sharing by normalizing nodes [0,1]

• Example: if (a) then (4) else (2)

Need top-level affine transform to recover original range

AADD Reduce

Key point:

automatically finds

additive structure

AADD Examples

- Back to our previous examples...
- Ex. 1: Additive reward/utility functions

•
$$R(a,b) = R(a) + R(b)$$

= $2a + b$

Ex. 2: Multiplicative value functions

•
$$V(a,b) = V(a) \cdot V(b)$$

= $\gamma^{(2a+b)}$; $\gamma < 1$

$$<0, \frac{\gamma^2 - \gamma^3}{1 - \gamma^3}$$
 $<0, \frac{\gamma^2 - \gamma^3}{1 - \gamma^3}$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$
 $<0, 0>$

AADD Apply & Normalized Caching

Need to normalize Apply cache keys, e.g., given

$$\langle 3+4F_1 \rangle \oplus \langle 5+6F_2 \rangle$$

before lookup in Apply cache, normalize

$$8 + 4 \cdot \langle 0 + 1F_1 \rangle \oplus \langle 0 + 1.5F_2 \rangle$$

$GetNormCacheKey(\langle c_1,b_1,F_1\rangle,\langle c_2,b_2,F_2\rangle,op) \longrightarrow \langle \langle c_1',b_1'\rangle\langle c_2',b_2'\rangle\rangle \ \ \mathbf{and} \ \ \mathit{ModifyResult}(\langle c_r,b_r,F_r\rangle) \longrightarrow \langle c_r',b_r',F_r'\rangle$		
Operation and Conditions	Normalized Cache Key and Computation	Result Modification
	$\langle c_r + b_r F_r \rangle = \langle 0 + 1F_1 \rangle \oplus \langle 0 + (b_2/b_1)F_2 \rangle$	$\langle (c_1 + c_2 + b_1 c_r) + b_1 b_r F_r \rangle$
$\langle c_1 + b_1 F_1 \rangle \ominus \langle c_2 + b_2 F_2 \rangle; \ F_1 \neq 0$	$\langle c_r + b_r F_r \rangle = \langle 0 + 1F_1 \rangle \ominus \langle 0 + (b_2/b_1)F_2 \rangle$	$\langle (c_1 - c_2 + b_1 c_r) + b_1 b_r F_r \rangle$
$\langle c_1 + b_1 F_1 \rangle \otimes \langle c_2 + b_2 F_2 \rangle; \ F_1 \neq 0$	$\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \otimes \langle (c_2/b_2) + F_2 \rangle$	$\langle b_1b_2c_r+b_1b_2b_rF_r angle$
$\langle c_1 + b_1 F_1 \rangle \oslash \langle c_2 + b_2 F_2 \rangle; \ F_1 \neq 0$	$\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \oslash \langle (c_2/b_2) + F_2 \rangle$	$\langle (b_1/b_2)c_r + (b_1/b_2)b_rF_r \rangle$
$\max(\langle c_1 + b_1 F_1 \rangle, \langle c_2 + b_2 F_2 \rangle);$	$\langle c_r + b_r F_r \rangle = \max(\langle 0 + 1F_1 \rangle, \langle (c_2 - c_1)/b_1 + (b_2/b_1)F_2 \rangle)$	$\langle (c_1 + b_1 c_r) + b_1 b_r F_r \rangle$
$F_1 \neq 0$, Note: same for min		
any $\langle op \rangle$ not matching above:	$\langle c_r + b_r F_r \rangle = \langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle$	$\langle c_r + b_r F_r \rangle$
$\langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle$		

ADDs vs. AADDs

• Additive functions: $\sum_{i=1...n} x_i$

ADDs vs. AADDs

- Additive functions: $\sum_{i} 2^{i} x_{i}$
 - Best case result for ADD (exp.) vs. AADD (linear)

ADDs vs. AADDs

• Additive functions: $\sum_{i=0..n-1} F(x_i, x_{(i+1)\%n})$

Pairwise factoring evident in AADD structure

Main AADD Theorem

- AADD can yield exponential time/space improvement over ADD
 - and never performs worse!
- But...
 - Apply operations on AADDs can be exponential
 - Why?
 - Reconvergent diagrams possible in AADDs (edge labels), but not ADDs →
 - Sometimes Apply explores all paths if no hits in normalized Apply cache

Other DDs

Multivalued (MV-)DD

- A DD with multivalued variables
 - straightforward k-branch extension
 - e.g., k=6

Multi-terminal (MT-)BDD

Imagine terminal is 3 bits... use 3 BDDs

- MT-BDD combine into single diagram
 - Same as ADD using bit vector (integer) leaves

(F)EV-BDDs

- EdgeValue-BDD is like AADD where only additive constant substracted
 - Not a full affine transform
 - Better numerical precision properties than AADD
 - Additive, but no multiplicative compression like AADD
- Factor-EVBDD is for integer leaves Z
 - Instead of dividing by range...
 factors out largest prime factor as multiplier

Further Afield

- K*DDs, BMDs, K*BMDs
 - Like ZDD, different ways to do decomposition
 - Mainly used in digitial verification literature
- FODDs, FOADDs
 - Support first-order logical decision tests
 (Wang, Joshi, Khardon, JAIR-08)
 (Sanner, Boutilier, AlJ-09)
- XADDs: continuous variables → (Sanner, UAI-11)

Approximation

Sometimes no DD is compact, but bounded approximation is...

Problem: Value ADD Too Large

• Sum: $(\sum_{i=1..3} 2^i \cdot x_i) + x_4 \cdot \varepsilon$ -Noise

How to approximate?

Solution: APRICODD Trick

Merge ≈ leaves and reduce:

Error is bounded!

Can use ADD to Maintain Bounds!

- Change leaf to represent range [L,U]
 - Normal leaf is like [V,V]
 - When merging leaves...
 - keep track of min and max values contributing

More Compactness? AADDs?

• Sum: $(\sum_{i=1...3} 2^i \cdot x_i) + x_4 \cdot \varepsilon$ -Noise

How to approximate? Error-bounded merge

Solution: MADCAP Trick

Merge ≈ nodes from bottom up:

Decision Diagram Software

Work with decision diagrams in < 1 hour!

Software Packages

- CUDD
 - BDD / ADD / ZDD
 - http://vlsi.colorado.edu/~fabio/CUDD/
 - Hands down, the best package available
- JavaBDD (native interface to CUDD / others):
 - http://javabdd.sourceforge.net/
- NuSMV Model Based Planner (MBP)
 - http://mbp.fbk.eu/
- SPUDD ADD-based value iteration for MDPs
 - http://www.computing.dundee.ac.uk/staff/jessehoey/spudd/index.html
- Symbolic Perseus Matlab / Java ADD version of value PBVI for POMDPs
 - http://www.cs.uwaterloo.ca/~ppoupart/software.html
- Java BDDs / ADDs / AADDs
 - https://code.google.com/p/dd-inference/
 - Scott's code, not high performance, but functional
 - Includes Java version of SPUDD factored MDP solver & variable elimination

Example Applications using Decision Diagrams

Do they really work well?

Empirical Comparison: Table/ADD/AADD

• Sum: $\sum_{i=1}^{n} 2^i \cdot x_i \oplus \sum_{i=1}^{n} 2^i \cdot x_i$

Variables

• Prod: $\prod_{i=1}^{\mathbf{n}} \gamma^{\wedge}(2^{i} \cdot x_{i}) \otimes \prod_{i=1}^{\mathbf{n}} \gamma^{\wedge}(2^{i} \cdot x_{i})$

Application: Bayes Net Inference

- Use variable elimination
 - Replace CPTs with ADDs or AADDs
 - Could do same for clique/junction-tree algorithms

Exploits

- Context-specific independence
 - Probability has logical structure:

P(a|b,c) = if b ? 1 : if c ? .7 : .3

- Additive CPTs
 - Probability is discretized linear function:

 $P(a|b_1...b_n) = c + b \cdot \sum_i 2^i b_i$

- Multiplicative CPTs
 - Noisy-or (multiplicative AADD):

 $P(e|c_1...c_n) = 1 - \prod_i (1 - p_i)$

If factor has above compact form, AADD exploits it

Bayes Net Results: Various Networks

Bayes Net	Table		ADD		AADD	
	# Entries	Time	# Nodes	Time	# Nodes	Time
Alarm	1,192	2.97s	689	2.42s	405	1.26s
Barley	470,294	EML*	139,856	EML*	60,809	207m
Carpo	636	0.58s	955	0.57s	360	0.49s
Hailfinder	9,045	26.4s	4,511	9.6s	2,538	2.7s
Insurance	2,104	278s	1,596	116s	775	37s
Noisy-Or-15	65,566	27.5s	125,356	50.2s	1,066	0.7s
Noisy-Max-15	131,102	33.4s	202,148	42.5s	40,994	5.8s

*EML: Exceeded Memory Limit (1GB)

Application: MDP Solving

- SPUDD Factored MDP Solver (Hoey et al, 99)
 - Originally uses ADDs, can use AADDs
 - Implements factored value iteration...

$$V^{n+1}(x_1...x_i) = R(x_1...x_i) + DD$$

$$\gamma \cdot \max_a \sum_{x_1'...x_i'} \prod_{F_1...F_i} P(x_1'|...x_i) \dots P(x_i'|...x_i')$$

$$V^{n}(x_1'...x_i')$$

Application: SysAdmin

- SysAdmin MDP (GKP, 2001)
 - Network of computers: c₁, ..., c_k
 - Various network topologies
 - Every computer is running or crashed
 - At each time step, status of c_i affected by
 - Previous state status
 - Status of incoming connections in previous state
 - Reward: +1 for every computer running (additive)

Results I: SysAdmin (10% Approx)

Results II: SysAdmin

Traffic Domain

 Binary cell transmission model (CTM)

- Actions
 - Light changes
- Objective:
 - Maximize empty cells in network

Results Traffic

Application: POMDPs

- Provided an AADD implementation for Guy Shani's factored POMDP solver
- Final value function size results:

	ADD	AADD
Network Management	7000	92
Rock Sample	189	34

Cost-optimal Planning with DDs

- Torralba et al, e.g.
 - A.Torralba's PhD thesis
 - A.Torralba, V. Alcazar, P. Kissmann, S. Edelkamp, Efficient Symbolic Search for Cost-Optimal Planning. Artificial Intelligence Journal volume 242, pages 52–79, 2017
 - Many other works

Numerous contributions

- (Bidirectional) symbolic search
- Propagating invariants
- Abstraction heuristics
- Won sequential optimal track of IPC-2014

Credit: A. Torralba Thesis Slides

Inference with Decision Diagrams vs. Compilations (d-DNNF, etc.)

Important Distinctions

BDDs in NNF

- Can express BDD as NNF formula
- Can represent NNF diagrammatically

Defintions / Diagrams from "A Knowledge Compilation Map", Darwiche and Marquis. JAIR 02

 Decomposable NNF: sets of leaf vars of conjuncts are disjoint

 Deterministic NNF: formula for disjuncts have disjoint models (conjunction is unsatisfiable)

d-DNNF

Defintions / Diagrams from "A Knowledge Compilation Map", Darwiche and Marquis. JAIR 02

- D-DNNF used to compile single formula
 - d-DNNF does not support efficient binary operations (∨,∧,¬)
 - d-DNNF shares some polytime operations with OBDD / ADD
 - (weighted) model counting (CT) used in many inference tasks
 - → Size(d-DNNF) ≤ Size(OBDD) so more efficient on d-DNNF

child is subset of \rightarrow parent

Children inherit polytime operations of parents

Size of children ≥ parents

Notation	Query
CO	polytime consistency check
VA	polytime validity check
CE	polytime clausal entailment check
\mathbf{IM}	polytime implicant check
\mathbf{EQ}	polytime equivalence check
SE	polytime sentential entailment check
CT	polytime model counting
ME	polytime model enumeration

Table 4: Notations for queries.

Compilations vs Decision Diagrams

Summary

Typically not a good idea in sequential probabilistic inference or decision-making

- If you can compile problem into single formula then compilation is likely preferable to DDs
 - provided you only need ops that compilation supports
- Not all compilations efficient for all binary operations
 - e.g., all ops needed for progression / regression approaches
 - fixed ordering of DDs help support these operations
- Note: other compilations (e.g., arithmetic circuits)
 - Great software: http://reasoning.cs.ucla.edu/

And that's a crash course in DDs!

Take-home point:

- If your problem is factored
- and you're currently using a tabular representation
- and you need binary operations on these tables
- → consider using a DD instead.