

Roll No: Subject Code: BCS402

Printed Page: 1 of 3

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attem	pt <i>all</i> c	<i>l</i> questions in brief.				$2 \times 7 = 14$			
	a.	Give	the mathematical	definition	of DFA.	Differentiate	between	NFA	and	
		DEA								

	ends with 101 over alphabet $\Sigma = \{0,1\}$
c.	Give regular expressions that represent the language (L), which has all binary
	strings having two consecutive 0s and two consecutive 1s over the alphabet Σ
	$= \{0, 1\}$

Construct Deterministic Finite Automata (DFA) to accept string that always

- d. Compute the Language generated by the given CFG $G = (\{S\}, \{a, b\}, P, S\}$ where P is defined by:
 - $\{S \to SS, S \to ab, S \to ba, S \to \epsilon\}$
- e. Let G be the grammar
 - $S \rightarrow 0B \mid 1A$

d.

- $A \rightarrow 0 \mid 0S \mid 1AA$
- $B \rightarrow 1 \mid 1S \mid 0BB$
- Determine the leftmost derivation for the string 00110101
- f. Explain the concept of two stack PDA. Give an example of a language that is accepted by two stack PDA but not accepted by normal one stack PDA.
- g. Explain Multi Tape Turing Machine.

SECTION B

2. Attempt any three of the following: $7 \times 3 = 21$

a.	Construct a Finite automata (DFA) which accepts all binary numbers whose
	decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$.
h	Compute the regular expression using Arden's Theorem for the following

b. Compute the regular expression using Arden's Theorem for the following DFA.

c. Write an equivalent left linear grammar from the given right linear grammar.

S**→**0A |1B

 $A \rightarrow 0C \mid 1A \mid 0$

B→1B |1A |1 C→0 |0A

Differentiate between DPDA and NPDA. Construct a PDA that accepts language $L = \{a^n b^n \mid n \ge 1\}$.

e. Differentiate between Deterministic Turing machine and Non-Deterministic Turing machine. Design a Turing machine for the language L={ww | w ε (a + b)*}.

Printed Page: 2 of 3
Subject Code: BCS402
Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- a. State Pumping Lemma for Regular Language. Show that the given language L={a^p | Where p is a prime} is not regular.
 b. Discuss closure properties (i.e. union, concatenation, complement, intersection
- b. Discuss closure properties (i.e. union, concatenation, complement, intersection and difference) of regular language.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a. Reduce the given grammar G = ({S, A, B}, {a, b}, P, S) to Chomsky Normal form. Where P is defined by:

S → bA | aB

A → bAA | aS | a

B → aBB | bS | b
b. Design a CFG for the following language:

(i) L= {0^m 1ⁿ | m ≠ n & m, n>=1}

(ii) L= {a^p b^q c^r | p + q = r & p, q > = 1}

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

 	** *****	
a.	Construct PDA equivalent to the following CFG $G = (\{S, A\}, A)$	{0,1}, P, S}
	where P is defined by:	
	S →0S1 A	
	$\Delta \rightarrow 1 \Delta O \mid S \mid c$	

Printed Page: 3 of 3 **Subject Code: BCS402 Roll No:**

BTECH (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS **M.MARKS: 70**

b.	Find the equivalent CFG of the following PDA
	$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:
	$\delta(q0, a, z0) = (q0, az0)$
	$\delta(q0, a, a) = (q1, aa)$
	$\delta(q1, a, a) = (q1, \varepsilon)$
	$\delta(q1, \varepsilon, z0) = (q1, \varepsilon)$

7. Attempt any *one* part of the following:

iii.

 $7 \times 1 = 7$

Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb. Explain the any two of the following: b. Universal Turing Machine. i. Post Correspondence Problem. ii.

Recursive and recursively Enumerable Languages

21. Aug. 22. 52 PM 1, 15. 240. 65. 19A