Math Problem Set 6

Matthew Brown OSM Boot Camp 2018

July 27, 2018

Problem 9.1. Proof. Let L be an unconstrained linear objective function. Suppose that L has a minimizer x^* . I'll show that L must be constant.

Suppose that L is not constant, i.e, there exists y such that $Ly \neq Lx^*$. If $Ly < Lx^*$, then x^* is not a minimizer and we have a contradiction. If $Ly > Lx^*$, then $L(x^* - y) < 0$ and we can consider the point $x^* + x^* - y$:

$$L(x^* + x^* - y) = Lx^* + L(x^* - y) < Lx^*$$

so x^* is not a minimizer and we have a contradiction

Problem 9.2. Proof. Minimizing ||Ax - b|| is equivalent to

$$(Ax - b)^{T}(Ax - b) = (x^{T}A^{T} - b^{T})(Ax - b)$$

$$= x^{T}A^{T}Ax - x^{T}A^{T}b - b^{T}Ax + 2b^{T}b$$

$$= x^{T}A^{T}Ax - 2b^{T}Ax + 2b^{T}b$$

Note that A^TA is positive semidefinite. Taking the FOC of this expression yields:

$$2x^{T}A^{T}A - 2b^{T}A = 0$$

$$\iff x^{T}A^{T}A = b^{T}A$$

$$\iff A^{T}Ax = A^{T}b$$

And because A^TA is positive definite, the second order-condition

$$2A^TA > 0$$

will always be satisfied.

Problem 9.3. Text explication - Return here

Problem 9.4. *Proof.* I'll need to show both directions.

• \Leftarrow Suppose x_0 is chosen such that $Df(x_0)^T = Qx_0 - b$ is an eigenvector for Q, i.e, $Q(Qx_0 - b) = \lambda(Qx_0 - b)$ for some $\lambda \in \mathbb{R}$. We see that:

$$x_1 = x_0 - \alpha Q(Qx_0 - b) = x_0 - \alpha \lambda (Qx_0 - b)$$

I choose α to minimize $f(x_1)$. If $\alpha = \frac{1}{\lambda^2}$, then

$$Qx_1 = Q(x_0 - \alpha\lambda(Qx_0 - b))$$

$$= Qx_0 - \alpha\lambda^2(Qx_0 - b)$$

$$= Qx_0 - Qx_0 - b$$

$$= b$$

And if $Qx_1 = b$, then we know that x_1 is the minimum of the function, so I've chosen the right α , and the algorithm converges in one step.

• \Rightarrow Suppose the algorithm converges in one step. Then I know that $Qx_1 = b$, and thus that

$$Q(x_0 - \alpha Q(Qx_0 - b)) = b$$

Now consider the kernel of $I - \alpha Q$.

$$(I - \alpha Q)(Qx_0 - b) = Qx_0 - b - \alpha Q(Qx_0 - b)$$
$$= Q(x_0 - \alpha Q(x_0 - b)) - b$$
$$= Qx_1 - b$$
$$= 0$$

So $Qx_1 - b \in \text{Ker}(I - \alpha Q)$, and therefore it is an eigenvector of Q with eigenvalue α .

I have two different eigenvalues for the same eigenvectors - one of the directions must be wrong. Anyone see the issue?

Problem 9.5. Proof. I will begin by stating without proof a result of vector calculus.

Fact: The gradient of a function at a point $Df^{T}(x)$ is orthogonal to the level set of the function at the point x.

This fact gives some idea about where I'm going with this proof: first I'll show that I can reduce the proposition to the statement that the two gradients $Df^{T}(x_{k})$ and $Df^{T}(x_{k+1})$ are orthogonal, and then I'll use the fact to show that this is indeed the case.

Consider $\langle x_{k+1} - x_k, x_{k+2} - x_{k+1} \rangle$.

$$\langle x_{k+1} - x_k, x_{k+2} - x_{k+1} \rangle = \langle x_k - \alpha_{k+1} D f^T(x_k) - x_k, x_{k+1} - \alpha_{k+2} D f^T(x_{k+1}) - x_{k+1} \rangle$$

= $\langle -\alpha_{k+1} D f^T(x_k), -\alpha_{k+2} D f^T(x_k + 1) \rangle$

And if I want to set this equal to zero, I can pull out the scalars $-\alpha_{k+1}$, $-\alpha_{k+2}$ and set $\langle Df^T(x_k), Df^T(x_k+1) \rangle = 0$. So we see that

$$\langle x_{k+1} - x_k, x_{k+2} - x_{k+1} \rangle = 0 \iff \langle Df^T(x_k), Df^T(x_k+1) \rangle = 0$$

I'll now show that the gradients are orthogonal.

Consider the gradient $Df^{T}(x_{k})$. $-Df^{T}(x_{k})$ is the direction of steepest descent, and $x_{k+1} = x_{k} - \alpha Df^{T}(x_{k})$. We choose α to minimize $f(x_{k+1})$. Consider the evaluation of the gradient $Df(x_{k})$ at the point x_{k+1} .

Claim: $Df(x_k)(x_{k+1}) = 0$

Proof of Claim: This will be an intuitive argument which follows from the continuity of the derivative (f is C^1). Suppose $-Df(x_k)(x_{k+1}) < 0$. Then, I can go a bit further along the descent to

$$x^* = x_k - (\alpha + \varepsilon)Df^T(x_k), \varepsilon > 0$$

such that $f(x^*) < f(x_{k+1})$. Similarly, if $-Df(x_k)(x_{k+1}) > 0$, then I can go a bit less far along the descent to

$$x^* = x_k - (\alpha - \varepsilon)Df^T(x_k), \varepsilon > 0$$

such that $f(x^*) < f(x_{k+1})$. So we see that $Df(x_k)(x_{k+1}) = 0$, which proves the claim.

Excellent. Now, $Df(x_k)(x_{k+1}) = 0$, so the gradient $Df^T(x_k)$ is tangent to the level set of f at the point x_{k+1} . We know from our fact that $Df^T(x_{k+1})$ is orthogonal to the level set of f at x_{k+1} , so it is orthogonal to $Df^T(x_k)$ as well, which concludes the proof.

See Figure 1 for some geometric intuition.

Problem 9.6. Jupyter

Problem 9.7. Jupyter

Problem 9.8. Jupyter

Problem 9.9. Jupyter

Problem 9.10. Proof. We know that x^* is the unique minimizer of f iff

$$f'(x) = 0 \iff Qx^* - b = 0 \iff x^* = Q^{-1}b$$

Now let us start Newton's method from an arbitrary initial guess x_0 . Calculate x_1 :

$$x_1 = x_0 - D^2 f(x_0)^{-1} D f(x_0)$$

= $x_0 - Q^{-1} (Qx_0 - b)$
= $x_0 - x_0 + Q^{-1} b = Q^{-1} b$

which is what was desired.

Problem 9.12. Proof. Choose λ_i arbitrarily, and let v_i be its eigenvector. Then

$$Bv_i = (A + \mu I)v_i = Av_i + \mu Iv_i = \lambda_i v_i + \mu v_i = (\lambda_i + \mu)v_i$$

Problem 9.15. I'll multiply the left side by the right:

Proof.

$$(A + BCD)(A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1})$$

$$= AA^{-1} - AA^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1} + BCDA^{-1} - BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

$$= I - B(C^{-1} + DA^{-1}B)^{-1}DA^{-1} + BCDA^{-1} - BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

$$= I - B(C^{-1} + DA^{-1}B)^{-1}DA^{-1} + BCDA^{-1} - BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

$$= I + BCDA^{-1} - (B(C^{-1} + DA^{-1}B)^{-1} + BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1})DA^{-1}$$

$$= I + BCDA^{-1} - ((B + BCDA^{-1}B)(C^{-1} + DA^{-1}B)^{-1})DA^{-1}$$

$$= I + BCDA^{-1} - (BC(C^{-1} + DA^{-1}B)(C^{-1} + DA^{-1}B)^{-1})DA^{-1}$$

$$= I + BCDA^{-1} - (BC(C^{-1} + DA^{-1}B)(C^{-1} + DA^{-1}B)^{-1})DA^{-1}$$

$$= I + BCDA^{-1} - BCDA^{-1} = I$$

Problem 9.16. I'm not seeing how to apply the theorem - RETURN HERE

Problem 9.18. Proof. I choose α_k to minimize the function $\phi_k(\alpha) = f(x_k + \alpha_k d_k)$, so I need $\phi'_k(\alpha_k) = 0$. Because f is a quadratic, I know that

$$\phi'_k(\alpha) = -Df(x_k + \alpha_k d_k) \cdot d_k$$

$$= [(x_k - \alpha_k d_k)^T Q - b^T] d_k$$

$$= [x_k^T Q - b^T] d_k - (\alpha_k d_k)^T Q d_k = r_k^T d_k - \alpha_k (d_k^T Q d_k)$$

And from this last line we see:

$$\alpha_k = \frac{r_k^T d_k}{d_k^T Q d_k}$$

Problem 9.20. Proof. I will prove that $r_i^T r_k = 0$ for all i < 0 by induction on k.

Base Case: k = 1. Recall that in my proof from Problem 9.5, I showed that $Df^{T}(x_{k})$ was orthogonal to $Df^{T}(x_{k+1})$, where $x_{k+1} = x_{k} - \alpha_{k}Df^{T}(x_{k})$. In general the conjugate gradient method constructs x_{k+1} differently, so this theorem does not always apply. But in the first step, $r_0 = d_0 = -Df(x_0)^T$, so we see that:

$$x_1 = x_0 + \alpha_0 d_0 = x_0 - \alpha_0 D f^T(x_0)$$

 $\implies r_1 = D f(x_1)^T \perp D f(x_0)^T = r_0$

which shows the base case.

Inductive Case: Assume that

$$r_i^T r_k' = 0$$
 for all $i < k'$

is true for any k' < k. I will show that the statement is also true for k. There is a bit of preliminary work necessary for my argument. Define the sets $D_{k-1} = \text{span}\{d_0, ..., d_{k-1}\}$ and $R_{k-1} = \text{span}\{r_0, ..., r_{k-1}\}$. I'll state and justify a few facts about these sets.

Fact 1: D_{k-1} and R_{k-1} are both bases for subspaces of dimension k-1.

Justification: R_{k-1} and D_{k-1} are both orthogonal over some inner product space on R^n : R_{k-1} by the inductive assumption, and D_{k-1} by the property that it is Q-conjugate (and so orthogonal over the inner product space $\langle \cdot, \cdot \rangle_Q$. It is a theorem somewhere that orthogonal vectors are linearly independent, which shows the fact.

Fact 2: $D_{k-1} \subset R_{k-1}$

Justification: If $d \in D_{k+1}$, then it is a linear combination of elements $d_i, i \in \{0, 1, ..., k-1\}$. Therefore this fact will follow if I show that any element $d_i \in R_{k-1}$. And indeed,

$$\begin{aligned} d_i &= r_i - \beta_{i-1} d_{i-1} \\ &= r_i - \beta_{i-1} (r_{i-1} - \beta_{i-2} d_{i-2}) = r_i - \beta_{i-1} r_{i-1} + \beta_{i-1} \beta_{i-2} d_{i-2} \\ &= \dots \\ &= \sum_{j=0}^i \bigg(\prod_{k=j}^{i-1} -\beta_k \bigg) r_j \end{aligned}$$

The actual final expression doesn't matter - what matters is that d_i is expressed as a linear combination of the r_i s.

Fact 3: $D_{k+1} = R_{k+1}$

Justification: This follows from facts 1 and 2: Since the two spaces have the same dimension, one inclusion implies equality.

Now, we'll put this new knowledge to work and prove the inductive step. By Lemma 9.5.3, $d_i^T r_k = 0$ for any i < j. This means that $r_k \in D_{k-1}^{\perp} = R_{k-1}^{\perp}$ with the usual inner product, and therefore $r_i^T r_k = 0$ for all i < k, which was what we wanted to show.

Note: There has to be a simpler way to do this proof. Apologies if this was very roundabout, but it's all I could think of!