Übungen Analysis 1

Abgabe bis Dienstag, den 15.11 um 8:15

Übung 4.1. Sei X eine teilgeordnete Menge. Man zeige: Besitzt eine Teilmenge $Y \subset X$ ein größtes Element $g \in Y$, so gilt $g = \sup Y$. Man zeige: Sind Teilmengen $Z \subset Y \subset X$ gegeben und besitzen Z und Y ein Supremum in X, so gilt $\sup Z \leq \sup Y$.

Beveis:

Insgesamt:
$$g = \tilde{g} = \sup Y$$

Übung 4.2. Seien X und Y nichtleere nach oben beschränkte Teilmengen von \mathbb{R} . Mit der Notation $X+Y\subset\mathbb{R}$ für die Menge $\{x+y\mid x\in X,\ y\in Y\}$ zeige man $\sup(X+Y)=\sup X+\sup Y$.

Beweis:

Es gilt:

$$X + Y \leq \sup X + y \leq \sup X + \sup Y \quad \forall (x+y) \in (X+Y)$$

=> sup X + sup Y ist obese Schranke von X+Y

Es bleibt noch zz: sup X + sup Y ist kleinste obere Schranke von X+Y.

Sei ZER mit Z < sup X + sup Y

Dann existieren α , $\beta \in \mathbb{R}$ mit $\alpha < \sup X$, $\beta < \sup Y$ and $z < \alpha + \beta$ Weiter existieren $x' \in X$ and $y' \in Y$ mit $x' \ge \alpha$ and $y' \ge \beta$ Wegen

$$2 < \alpha + \beta \leq x' + y' \in X + Y$$

ist 2 heine obese Schranke von X+Y.

=> sup X + sup Y ist die Weinste obere Schranke von X+Y Also gilt sup (X+Y) = sup X + sup Y

Übung 4.3. Man zeige: Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = x für $x \in \mathbb{Q}$ und f(x) = 0 für $x \notin \mathbb{Q}$ ist nur an der Stelle p = 0 stetig. 1) zeige: f ist stetig on der Stelle p=0 Sei I= (a,b) c R mit a < 0 < b Behaupte: f(I) < I L. Beweis der Behauptung: Sei f(x) ef(I) beliebiq. => $(x \in I, also a < x < b)$ und (f(x) = 0 oder f(x) ∈ Q)1st $f(x) \in Q \setminus \{0\}$ gilt a < x = f(x) = x < b⇒ f(x) ∈ I 1st f(x)=0, dann ist f(x) E I War. Somit haben wir für jede Umgebung I von f(0)=0 eine Umgebung I'= I von O gefunden, so dass $f(I) \subset I$ => f ist an der Stelle O stetiq 2 zeige: f nicht stetig an Stelle p Ype IR1 {0} Sei also pelR1903 Fall 1: $P \in \mathbb{Q}$. $\Rightarrow f(p) = p$ $\overline{L} = (\frac{1}{2}p, \frac{3}{2}p)$ ist eine Umgebung von f(p) = p und es gilt $0 \notin \overline{L}$. Ist U eine beliebige Umgebung von p, dann existiert I=(a,b)=U mit a<p<b. und abeQ Es gilt $c = \alpha \left(1 - \frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2}b \in (a,b) \setminus Q$ => f(c)= 0 ¢ I → A Umgebung U von p so dass f(UnR) = f(U)c I => f ist nicht stetig in p.

Fall 2: perRIQ

=> f(p) = 0

 $I = (-\frac{7}{2}1\text{pl}, \frac{7}{2}\text{lpl})$ ist eine Umgebung von f(p)=0.

Sei U eine Ungebung von p.

Dann existiest I'= (a,b) < U mit a < p < b.

Fall 2.1: p>0

Mit der 4. Aussage aus Korollar 2.4.9 wissen wir

FXEQ mit pxxxb, also xEI'

 $\Rightarrow f(x) = x > 0$

 $\Rightarrow f(x) \notin I$

⇒ Allngebung U von p mit f(u)cI

Fall 2.2: p 40

Mit der 4. Aussage aus Korollar 2.4.9 wissen wir

IXEQ mit axxxp, also XEI'

 $\Rightarrow f(x) = x < b$

 $\Rightarrow f(x) \notin I$

=> 7 Ungebung U von p mit f(u)cI

Insgesamt eshalten wir:

f ist nicht stetig für PEIR\{0}

Übung 4.4. Man zeige: Gegeben $f,g,h: \bar{\mathbb{R}}^n \supset D \to \bar{\mathbb{R}}$ mit $f(x) \leq g(x) \leq h(x) \ \forall x \in D \ \text{und} \ f,h \ \text{stetig bei} \ p \in D \ \text{mit} \ f(p) = h(p) \ \text{ist auch} \ g \ \text{stetig bei} \ p.$

22 g ist stetig bei p

Beweis:

Wegen $f(p) \leq g(p) \leq h(p)$ and f(p) = h(p) gilt:

$$\alpha(\rho) = f(\rho) = h(\rho)$$

Sei Veine Umgebung von f(p). Betrachte ein Intervall $I \subset U$ mit $g(p) \in I$. Da f,g stetig existiesen Umgebungen U,U' von p mit $f(u) \subset I$ und $h(u') \subset I$

 $U'' = U \cap U'$ ist wiedes eine Ungebung von p und wegen $U'' \subset U$, $U'' \subset U'$ gilt: $f(U'') \subset T \text{ und } h(U'') \subset T$

Weiter gilt f(z) = g(z) = h(z) $\forall z \in U''$, $da f(z), h(z) \in I$ and I ein Intervall ist, establen wir $g(z) \in I$ $\forall z \in U''$ Also $g(u'') \in I \in V$ $\Rightarrow q$ ist stefig in p.