What is claimed is:

A compound of the formula !

5

10

15

20

25

$$R_8$$
 R_9
 R_9
 R_9
 R_9
 R_9

an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug;

wherein R_1 is a) -H, b) -(C_1 - C_6)alkyl-A-(C_1 - C_6)alkyl, or -(C_1 - C_3)alkyl-A-(C_0 - C_3)alkyl, wherein A for each occurrence is independently S, O, N, OH or NH₂; wherein each carbon atom is optionally substituted with 1 or 2 R_x, c) -(C_2 - C_{10})alkenyl optionally substituted with 1 or 2 R_x, d) -(C_2 - C_{10})alkynyl, -ethynyl (C_1 - C_8)alkoxy or -(C_1 - C_4)alkoxy(C_1 - C_4)alkylethynyl, wherein each carbon atom is optionally substituted with 0, 1 or 2 R_x, e) -CH=C=CH₂, f) -CN, g) -(C_3 - C_9)cycloalkyl, h) -Z-(C_6 - C_{10})aryl, i) -Z-het, j) -C(O)O(C_1 - C_6)alkyl, k) -O(C_1 - C_6)alkyl, l) -Z-S-R₁₂, m) -Z-S(O)-R₁₂, n) -Z-S(O)₂-R₁₂, o) -(C_1 - C_8)alkyl, wherein each carbon atom is optionally substituted with 1, 2, or 3 halo, p) -NR₁₂O-(C_1 - C_6)alkyl or q) -CH₂OR_x;

Z for each occurrence is independently a) -(C_0 - C_6)alkyl, b) -(C_2 - C_6)alkenyl or c) -(C_2 - C_6)alkynyl;,

 R_x for each occurrence is independently a) -OH, b) -halo, c) -Z-(C_1 - C_8)alkyl, wherein each carbon atom is optionally substituted with 1, 2, or 3 halo, d) -CN, e) -NR₁₂R₁₃, f) -(C_3 - C_6)cycloalkyl, g) -(C_3 - C_6)cycloalkenyl, h) -(C_0 - C_3)alkyl-(C_6 - C_{10})aryl, i) -het or j) -N₃;

wherein het is a 5-,6- or 7-membered saturated, partially saturated or unsaturated ring containing from one to three heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur; and including any bicyclic

5

10

15

20

25

30

group in which any of the above heterocyclic rings is fused to a benzene ring or another heterocycle; and the nitrogen may be in the oxidized state giving the N-oxide form; and optionally substituted with 1, 2 or 3 R_v ;

 $R_y \ \text{for each occurrence is independently a) -halo, b) -OH, c) -(C_1-C_6)alkyl, d)} \\ -(C_2-C_6)alkenyl, e) -(C_2-C_6)alkynyl, f) -O(C_1-C_6)alkyl, g) -O(C_2-C_6)alkenyl, h)} \\ -O(C_2-C_6)alkynyl, i) -(C_0-C_6)alkyl-NR_{12}R_{13}, j) -C(O)-NR_{12}R_{13}, k) -Z-SO_2R_{12}, l)-Z-SOR_{12}, m) -Z-SR_{12}, n) -NR_{12}-SO_2R_{13}, o) -NR_{12}-C(O)-R_{13}, p) -NR_{12}-OR_{13}, q) -SO_2-NR_{12}R_{13}, r) -CN, s) -CF_3, t) -C(O)(C_1-C_6)alkyl, u) =O, or v) -Z-SO_2-phenyl;$

 R_2 , R_3 and R_4 are each independently a) -H, b) -halo, c) -OH, d) -(C₁-C₁₀)alkyl, wherein each carbon atom is optionally substituted with 1, 2 or 3 R_x , e) -NR₁₂R₁₃, f) -Z-C(O)O(C₁-C₆)alkyl, g) -Z-C(O)NR₁₂R₁₃, h) (C₁-C₆)alkoxy, i) -Z-O-C(O)-(C₁-C₆)alkyl, j) -Z-O-(C₁-C₃)alkyl-C(O)-NR₁₂R₁₃, k) -Z-O-(C₁-C₃)alkyl-C(O)-O(C₁-C₆)alkyl, l) -O-(C₂-C₆)alkenyl, m) -O-(C₂-C₆)alkynyl, n) -O-Z-het, o) -COOH, p) -C(OH)R₁₂R₁₃ or q) -Z-CN;

 R_{12} and R_{13} for each occurrence are each independently a) -H, b) -(C_1 - C_6)alkyl wherein 1 or 2 carbon atoms, other than the connecting carbon atom, may optionally be replaced with 1 or 2 heteroatoms independently selected from S, O and N and wherein each carbon atom is optionally substituted with 1, 2 or 3 halo, c) -(C_2 - C_6)alkenyl optionally substituted with 1, 2 or 3 halo or d) -(C_2 - C_6)alkynyl wherein 1 carbon atom, other than the connecting carbon atom and the ethynyl atoms, may optionally be replaced with 1 oxygen atom and wherein each carbon atom is optionally substituted with 1, 2 or 3 halo;

or R_{12} and R_{13} are taken together with N to which they are attached to form het;

X is a) absent, b) $-CH_2$ -, c) -CH(OH)- or d) -C(O)-;

 $R_5 \text{ is a) -H, b) -Z-CF}_3, \text{ c) -}(C_1\text{-}C_6) \text{alkyl, d) -}(C_2\text{-}C_6) \text{alkenyl, e) -}(C_2\text{-}C_6) \text{alkynyl, f)} \\ -(C_6\text{-}C}_{10}) \text{aryl, g) -CHO, h) -CH=N-OR}_{12}, \text{ i) -Z-C(O)OR}_{12}, \text{ j) -Z-C(O)-NR}_{12}R_{13}, \text{ k)} \\ -Z-C(O)\text{-NR}_{12}\text{-Z-het, l) -Z-NR}_{12}R_{13}, \text{ m) -Z-NR}_{12} \text{het, n) -Z-het, o) -Z-O-het, p)} \\ -Z-(C_6\text{-}C}_{10}) \text{aryl, q) -Z-O-}(C_6\text{-}C}_{10}) \text{aryl, r) -CHOH-}(C_6\text{-}C}_{10}) \text{aryl or s) -C(O)-}(C_6\text{-}C}_{10}) \text{aryl wherein said }(C_6\text{-}C}_{10}) \text{aryl is optionally substituted with 1 or 2 of the following: -Z-OH, -Z-NR}_{12}R_{13}, -Z-NR}_{12}\text{-het, -C(O)NR}_{12}R_{13}, -C(O)O(C}_1\text{-C}_6) \text{alkyl, -C(O)-het, -NR}_{12}\text{-C(O)-}(C}_1\text{-C}_6) \text{alkyl, -NR}_{12}\text{-C(O)-}(C}_2\text{-C}_6) \text{alkenyl, -NR}_{12}\text{-C(O)-}(C}_2\text{-C}_6) \text{alkynyl, -NR}_{12}\text{-C(O)-}(C}_1\text{-C}_6) \text{alkyl, -NR}_{12}\text{-C(O)-}(C}_1\text{-C}_6) \text{alkyl, -NR}_{12}\text{-Z-C(O)-}(C}_1\text{-C}_6) \text{alk$

WO 2005/047254 PCT/IB2004/003671

-36-

 $-N(Z-C(O)O(C_1-C_6)alkyl)_2, \ -NR_{12}-Z-C(O)-NR_{12}R_{13}, \ -Z-NR_{12}-SO_2-R_{13}, \ -NR_{12}-SO_2-het, \\ -C(O)H, \ -Z-NR_{12}-Z-O(C_1-C_6)alkyl, \ -Z-NR_{12}-Z-NR_{12}R_{13}, \ -Z-NR_{12}-(C_3-C_6)cycloalkyl, \\ -Z-N(Z-O(C_1-C_6)alkyl)_2, \ -SO_2R_{12}, \ -SOR_{12}, \ -SO_2NR_{12}R_{13}, \ -O-C(O)-(C_1-C_4)alkyl, \\ -O-SO_2-(C_1-C_4)alkyl, \ -halo \ or \ -CF_3;$

 R_6 and R_9 are each independently a) -H, b) -halo, c) (C_1 - C_6)alkyl substituted with 0 to 3 halo, d) -(C_2 - C_6)alkenyl substituted with 0 to 3 halo, e) -(C_2 - C_6)alkynyl optionally substituted with 1, 2 or 3 halo, f) -CN, g) -(C_3 - C_6)cycloalkyl, h) -(C_3 - C_6)cycloalkenyl, i) -O+(C_1 - C_6)alkyl, k) -O-(C_1 - C_6)alkenyl, l) -O-(C_1 - C_6)alkynyl, m) -NR₁₂R₁₃, n) -C(O)OR₁₂ or o) -C(O)NR₁₂R₁₃;

 R_7 is a) –H, b) -(C_1 - C_{10})alkyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and - N_3 , c) -(C_2 - C_{10})alkenyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and - N_3 , d) -(C_2 - C_{10})alkynyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and - N_3 , e) -halo, f) -Z-CN, g) -OH, h) -Z-het, i) -Z-NR₁₂R₁₃,

j) -Z-C(O)-het, k) -Z-C(O)-(C_1 - C_6)alkyl, l) -Z-C(O)-NR₁₂R₁₃, m) -Z-C(O)-NR₁₂-Z-CN, n) -Z-C(O)-NR₁₂-Z-het, o) -Z-C(O)-NR₁₂-Z-(C_6 - C_{10})aryl, p) -Z-C(O)-NR₁₂-Z-NR₁₂R₁₃, q) -Z-C(O)-NR₁₂-Z-O(C_1 - C_6)alkyl, r) -(C_0 - C_6)alkyl-C(O)OH, s) -Z-C(O)O(C_1 - C_6)alkyl, t) -Z-O-(C_0 - C_6)alkyl-het, u) -Z-O-(C_0 - C_6)alkyl-(C_6 - C_{10})aryl, v) -Z-O-(C_1 - C_6)alkyl-optionally substituted with 1 or 2 R_y, w) -Z-O-(C_1 - C_6)alkyl-CH(O), x) -Z-O-(C_1 - C_6)alkyl-NR₁₂-het,

y) -Z-O-Z-het-Z-het, z) -Z-O-Z-het-Z-NR₁₂R₁₃, a1) -Z-O-Z-het-C(O)-het, b1)
 -Z-O-Z-C(O)-het, c1) -Z-O-Z-C(O)-het-het, d1) -Z-O-Z-C(O)-(C₁-C₆)alkyl, e1)
 -Z-O-Z-C(S)-NR₁₂R₁₃, f1) -Z-O-Z-C(O)-NR₁₂R₁₃, g1)
 -Z-O-Z-(C₁-C₃)alkyl-C(O)-NR₁₂R₁₃, h1) -Z-O-Z-C(O)-O(C₁-C₆)alkyl, i1)
 -Z-O-Z-C(O)-OH, j1) -Z-O-Z-C(O)-NR₁₂-O(C₁-C₆)alkyl, k1) -Z-O-Z-C(O)-NR₁₂-OH, l1)

$$\begin{split} -Z\text{-}O\text{-}Z\text{-}C(O)\text{-}NR_{12}\text{-}Z\text{-}NR_{12}R_{13}, \ m1) &-Z\text{-}O\text{-}Z\text{-}C(O)\text{-}NR_{12}\text{-}Z\text{-}het, \ n1) \\ -Z\text{-}O\text{-}Z\text{-}C(O)\text{-}NR_{12}\text{-}SO_2\text{-}(C_1\text{-}C_6)\text{alkyl, o1)} &-Z\text{-}O\text{-}Z\text{-}C(=NR_{12})(NR_{12}R_{13}), \ p1) \\ -Z\text{-}O\text{-}Z\text{-}C(=NOR_{12})(NR_{12}R_{13}), \ q1) &-Z\text{-}NR_{12}\text{-}C(O)\text{-}O\text{-}Z\text{-}NR_{12}R_{13}, \ r1) &-Z\text{-}S\text{-}C(O)\text{-}NR_{12}R_{13}, \\ s1) &-Z\text{-}O\text{-}SO_2\text{-}(C_1\text{-}C_6)\text{alkyl, t1)} &-Z\text{-}O\text{-}SO_2\text{-}(C_6\text{-}C_{10})\text{aryl, u1)} &-Z\text{-}O\text{-}SO_2\text{-}NR_{12}R_{13}, \ v1) \\ -Z\text{-}O\text{-}SO_2\text{-}CF_3, \ w1) &-Z\text{-}NR_{12}C(O)OR_{13} \ \text{or} \ x1) &-Z\text{-}NR_{12}C(O)R_{13}, \end{split}$$

30 R₈ is het.

5

10

15

25

- 2. The compound of claim 1, wherein het in all instances is a heteroaryl having five to seven members.
- 3. The compound of claim 1, wherein R_1 is a) -H, b) -(C_1 - C_{10})alkyl, wherein each carbon atom is optionally substituted with 1, 2 or 3 R_x , c)

5

10

15

20

25

30

-(C_2 - C_{10})alkenyl optionally substituted with 1 or 2 R_x, d) -(C_2 - C_{10})alkynyl, wherein each carbon atom is optionally substituted with 1 or 2 R_x, e) -(C_3 - C_6)cycloalkyl, f) -Z-(C_6 - C_{10})aryl, or g) -Z-heteroaryl having five to seven members;

wherein R_x for each occurrence is independently -OH, -halo, and -Z-CF₃; wherein R_2 is a) -H, b) -halo, c) -OH, d) -(C₁-C₆)alkyl optionally substituted with -OH, e) -Z-heteroaryl having five to seven members, f) –COOH, g) -(C₁-C₁₀)alkyl, wherein each carbon atom is optionally substituted with 1, 2 or 3 R_x .

4. The compound of claim 1, wherein R_3 and R_4 are each independently a) -H, b) -halo, c) -OH, d) -(C_1 - C_6)alkyl optionally substituted with -OH, e) -Z-heteroaryl having five to seven members, f) -COOH, g) -(C_1 - C_{10})alkyl, wherein each carbon atom is optionally substituted with 1, 2 or 3 R_x ;

wherein R_x for each occurrence is independently -OH, -halo, and -Z-CF₃.

- 5. The compound of claim 1, wherein R_5 is a) -H, b) -Z-CF₃, c) -(C₁-C₆)alkyl, d) -(C₂-C₆)alkenyl, e) -(C₂-C₆)alkynyl, f) -(C₆-C₁₀)aryl, g) -CHO, h) -CH=N-OR₁₂, i) -Z-C(O)OR₁₂, j) -Z-C(O)-NR₁₂R₁₃, k) -Z-C(O)-NR₁₂-Z-heteroaryl having five to seven members, l) -Z-NR₁₂R₁₃, m) -Z-NR₁₂-heteroaryl having five to seven members, n) -Z-heteroaryl having five to seven members.
- 6. The compound of claim 1, wherein R₆ and R₉ are each independently a) -H, b) -halo, c) (C₁-C₆)alkyl optionally substituted with 1, 2 or 3 halo, d) -(C₂-C₆)alkenyl optionally substituted with 1, 2 or 3 halo, e) -(C₂-C₆)alkynyl optionally substituted with 1, 2 or 3 halo, f) -CN, g) -(C₃-C₆)cycloalkyl, h) -(C₃-C₆)cycloalkenyl, i) -OH, j) -O-(C₁-C₆)alkyl, k) -O-(C₁-C₆)alkenyl, l) -O-(C₁-C₆)alkynyl, m) -NR₁₂R₁₃, n) -C(O)OR₁₂ or o) -C(O)NR₁₂R₁₃.
- 7. The compound of claim 1, wherein R_7 is a) –H, b) -(C_1 - C_{10})alkyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and -N₃, c) -(C_2 - C_{10})alkenyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and -N₃, d) -(C_2 - C_{10})alkynyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and -N₃, e) -halo, f) -Z-CN, g) -OH, or h) -Z-heteroaryl having five to seven members.
- 8. The compound of claim 7, wherein R_8 is a 6-membered unsaturated ring.
- 9. The compound of claim 1 selected from the group consisting of 4b-Ethyl-7-hydroxy-7-trifluoromethyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-

WO 2005/047254 PCT/IB2004/003671

-38~

carboxylic acid N'-pyridin-2-yl-hydrazide, 4b-Benzyl-7-hydroxy-7-trifluoromethyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-carboxylic acid N'-pyridin-2-yl-hydrazide, 4b-Ethyl-6,7-dihydroxy-6-methyl-7-thiazol-2-yl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-carboxylic acid N'-pyridin-2-yl-hydrazide

10. The compound of claim 8, having the formulas III, IV or V:

5

10

an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug;

wherein R_1 is (C_1-C_{10}) alkyl wherein each carbon atom is optionally substituted with 1, 2 or 3 halo or -Z-heteroaryl having five to seven members;

PCT/IB2004/003671

Z is (C_0-C_6) alkyl;

WO 2005/047254

5

10

15

20

25

30

 R_2 , R_3 and R_4 are each independently a) -H, b) -halo, c) -OH, d) -(C₁-C₁₀)alkyl, wherein each carbon atom is optionally substituted with 1, 2 or 3 -OH, -halo or -Z-CF₃; wherein R_1 is different from R_2 and R_3 is different from R_4 ;

X is a) absent, or b) -CH₂-;

 R_5 is a) -H, b) -Z-CF₃, c) -(C₁-C₆)alkyl, d) -(C₆-C₁₀)aryl or e) -Z-heteroaryl having five to seven members;

 R_6 is a) -H, b) -halo, c) (C_1 - C_6)alkyl optionally substituted with 1, 2 or 3 halo; R_7 is -H or -(C_1 - C_{10})alkyl optionally substituted with 1, 2 or 3 substituents independently selected from -halo, -OH and - N_3 ;

 R_8 is a 6-membered unsaturated ring containing from one to three heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur;

R₉ is hydrogen.

- 11. The compound of claim 10, wherein R_3 and R_4 are different; wherein said carbon atoms designated C^* , independent of each other, has R- or S-configuration.
- 12. The compound of claim 11 selected from the group consisting of all the isomers of the following compounds: 4b-Ethyl-7-hydroxy-7-trifluoromethyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-carboxylic acid N'-pyridin-2-yl-hydrazide , 4b-Benzyl-7-hydroxy-7-trifluoromethyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-carboxylic acid N'-pyridin-2-yl-hydrazide, 4b-Ethyl-6,7-dihydroxy-6-methyl-7-thiazol-2-yl-4b,5,6,7,8,8a,9,10-octahydro-phenanthrene-2-carboxylic acid N'-pyridin-2-yl-hydrazide.
- 13. A pharmaceutical composition for treating a disorder selected from the group consisting of inflammatory disorders, endocrine disorders; collagen diseases; dermatologic diseases; allergic states; ophthalmic diseases; respiratory diseases; hematologic disorders; neoplastic diseases; edematous states; and gastrointestinal diseases in a mammal comprising (1) the compound of claims 1 or 10, an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug and (2) at least one pharmaceutically acceptable carrier, vehicle, diluent, excipient.
- 14. A method of treating obesity, diabetes, anxiety, or inflammatory diseases in a mammal comprising administering an effective amount of the

WO 2005/047254 PCT/IB2004/003671

compound of claims 1 or 10, an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug.

The method of claim 14, wherein said inflammatory disorders are selected from the group consisting of arthritis, asthma, rhinitis and immunomodulation.

5

10

20

- A pharmaceutical composition comprising (1) the compound of claim 16. 1, (2) a second pharmaceutically active compound, and (3) at least one pharmaceutically acceptable carrier, vehicle, diluent, excipient.
- The pharmaceutical composition of claim 16, wherein the second 17. pharmaceutically active compound is selected from the group consisting of β_3 agonist, a thyromimetic agent, an eating behavior modifying agent, a NPY antagonist, an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, insulin, troglitazone, sulfonylureas, glipazide, glyburide, chlorpropamide, a glucocorticoid receptor agonist, a cholinomimetic drug, an anti-Parkinson's drug, an antianxialytic drug, an antidepressant drug, or an antipsychotic 15 drug.
 - A process of preparing compounds of formula I, an isomer thereof, a 18. prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug, comprising the step of coupling compound of formula ld with a hydrazine under amide forming conditions:

$$R_{g}$$
 R_{g}
 R_{g}

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and X are as defined in claim 1.