ERROR BACKPROPAGATION TRAINING

Layered feed forward network with hidden and output layers

EBPTA

Given are P training pairs

$$\{\mathbf{z}_1,\mathbf{d}_1,\mathbf{z}_2,\mathbf{d}_2,\cdots,\mathbf{z}_P,\mathbf{d}_P\},\$$

where \mathbf{z}_i is $(I \times 1)$, \mathbf{d}_i is $(K \times 1)$, and i = 1, 2, ..., P. Note that the I'th component of each \mathbf{z}_i is of value -1 since input vectors have been augmented. Size J-1 of the hidden layer having outputs \mathbf{y} is

selected. Note that the J'th component of y is of value -1, since hidden layer outputs have also been augmented; y is $(J \times 1)$ and o is $(K \times 1)$.

EBPTA

Step 1: $\eta > 0$, E_{max} chosen.

Weights W and V are initialized at small random values; W is $(K \times J)$, V is $(J \times I)$.

$$q \leftarrow 1, p \leftarrow 1, E \leftarrow 0$$

Step 2: Training step starts here (See Note 1 at end of list.) Input is presented and the layers' outputs computed [f(net)] as in (2.3a) is used]:

$$\mathbf{z} \leftarrow \mathbf{z}_p, \ \mathbf{d} \leftarrow \mathbf{d}_p$$

 $y_j \leftarrow f(\mathbf{v}_j^t \mathbf{z}), \quad \text{for } j = 1, 2, ..., J$

where \mathbf{v}_{i} , a column vector, is the j'th row of \mathbf{V} , and

$$o_k \leftarrow f(\mathbf{w}_k^t \mathbf{y}), \quad \text{for } k = 1, 2, \dots, K$$

where \mathbf{w}_k , a column vector, is the k'th row of \mathbf{W} .

Step 3: Error value is computed:

$$E \leftarrow \frac{1}{2}(d_k - o_k)^2 + E$$
, for $k = 1, 2, ..., K$

Step 4: Error signal vectors $\boldsymbol{\delta}_o$ and $\boldsymbol{\delta}_y$ of both layers are computed. Vector $\boldsymbol{\delta}_o$ is $(K \times 1)$, $\boldsymbol{\delta}_y$ is $(J \times 1)$. (See Note 2 at end of list.) The error signal terms of the output layer in this step are

$$\delta_{ok} = \frac{1}{2}(d_k - o_k)(1 - o_k^2), \quad \text{for } k = 1, 2, ..., K$$

The error signal terms of the hidden layer in this step are

$$\delta_{yj} = \frac{1}{2}(1 - y_j^2) \sum_{k=1}^K \delta_{ok} w_{kj}, \quad \text{for } j = 1, 2, ..., J$$

Step 5: Output layer weights are adjusted:

$$w_{kj} \leftarrow w_{kj} + \eta \delta_{ok} y_j$$
, for $k = 1, 2, ..., K$ and $j = 1, 2, ..., J$

Step 6: Hidden layer weights are adjusted:

$$v_{ji} \leftarrow v_{ji} + \eta \delta_{yj} z_i$$
, for $j = 1, 2, ..., J$ and $i = 1, 2, ..., I$

Step 7: If p < P then $p \leftarrow p + 1$, $q \leftarrow q + 1$, and go to Step 2; otherwise, go to Step 8.

EBPTA

Step 8: The training cycle is completed.

For $E < E_{\text{max}}$ terminate the training session. Output weights \mathbf{W} , \mathbf{V} , q, and E.

If $E > E_{\text{max}}$, then $E \leftarrow 0$, $p \leftarrow 1$, and initiate the new training cycle by going to Step 2.

- For best results, patterns should be chosen at random from the training set (justification follows in Section 4.5).
- NOTE 2 If formula (2.4a) is used in Step 2, then the error signal terms in Step 4 are computed as follows

$$\delta_{ok} = (d_k - o_k)(1 - o_k)o_k$$
, for $k = 1, 2, ..., K$

$$\delta_{ok} = (d_k - o_k)(1 - o_k)o_k, \quad \text{for } k = 1, 2, ..., K$$

$$\delta_{yj} = y_j(1 - y_j) \sum_{k=1}^K \delta_{ok} w_{kj}, \quad \text{for } j = 1, 2, ..., J$$

Figure 4.8a Error back-propagation training (EBPT algorithm): (a) algorithm flowchart.

Figure 4.8b Error back-propagation training (EBPT algorithm) (continued): (b) block diagram illustrating forward and backward signal flow.

Learning Factors

Initial Weights

- Initialization strongly affects the ultimate solution
- Initial weights with equal weight values → if the solution requires unequal weights to be developed→ wrong training
- Network disturbance by random factors or the random character of input patterns during training > result in symmetric weights
- Continuing training beyond a certain low-level results in the undesirable drift of weights-
 - network learning should be restarted with other random weights

Cumulative weight Adjustment versus incremental Updating

- Cumulative weight adjustment after each completed training cycle
- Advisable to use the incremental weight updating after each pattern presentation, but choose patterns in a random sequence from a training set

Steepness of the Activation Function (Steepness factor)

- Determines slope of activation function
- Depends on value of net
- multiplying factor in building components of the error signal vectors δ_0 , and δ_y
- both the choice and shape of the activation function strongly affect the speed of network learning
- derivative of the activation function-

$$f'(net) = \frac{2\lambda \exp(-\lambda net)}{\left[1 + \exp(-\lambda net)\right]^2}$$

reaches a maximum value of 1/2λ at net = 0

Steepness of the Activation Function

- For a fixed learning constant all adjustments of weights in proportion to the steepness coefficient λ
- Using activation functions with large λ may yield results similar as in the case of large learning constant
- Keep λ at a standard value of 1, and control the learning speed using solely the learning constant η, rather than controlling both λ and η

Learning Constant

- choice of the learning constant → depends strongly on the class of the learning problem and on the network architecture
- values ranging from 10 -3 to 10 reported as successful
- For large learning constants, the learning speed can be drastically increased

Momentum Method (Factor)

 To accelerate the convergence of the error back-propagation learning algorithm

$$\Delta w(t) = -\eta \nabla E(t) + \alpha \Delta w(t-1) \leftarrow momentum term$$

• α is chosen between 0.1 and 0.8