- 1. Consider a text t and a pattern p such that $|t| \le 2|p|$. Prove that all occurrences of p in t create a single arithmetical progression (that is, are exactly of the form $x + \alpha \cdot y$ where $0 \le \alpha < k$).
- 2. Fibonacci words f_n are defined recursively as follows: $f_1 = b$, $f_2 = a$ and $f_{n+2} = f_{n+1}f_n$. For a word of length at least 2, let c(w) denote the word obtained from w by swapping its last two letters, for example c(ababa) = abaab. Show that $f_{n-2}f_{n-1} = c(f_{n-1}f_{n-2})$ for any $n \ge 3$.
- 3. Let $w = f_n$ for some $n \ge 3$ and consider the corresponding π array. Prove by induction that, for every $|f_{n-1}| 1 \le i < |f_n| 1$, $\pi[i] = i |f_{n-2}|$. You might find the previous question useful.
- 4. We proved that, if π'[i] ≠ -1 and π'[π'[i]] ≠ -1, then i ≥ π'[i] + π'[π'[i]] + 2, and replacing π by π' in the KMP algorithm decreases its delay (worst-case time to process a letter of the text) to O(log n). Write a pseudocode of the resulting algorithm. Then design an instance on which the delay is Ω(log n) (for some letter of the text) by considering the pattern f_n and looking at the values of π'[|f_k| 2] for 3 ≤ k ≤ n. Again, you might find the previous question useful.
- (3 points) 5. Modify the KMP algorithm so that the delay becomes O(1). There are different solutions, one proceeds as follows: the more times we need to iterate the line $j = \pi[j]$ to update the current ℓ the further to the right is the last letter of the nearest possible occurrence of the pattern, so might hope to demoartise computing the new ℓ . Can you modify the preprocessing stage (computing the π array) to also have constant delay?