캡스톤 디자인 '딥메이크 탐지'

#9. Adversarial training II

김지수, 김민지, 민지민

지난 캡스톤 회의 내용

- 지난번 adversarial training 의 잘못된 점을 깨달아 다시 실험 진행했음
- 샘플 논문 structure 구조 (대제목, 소제목 단락 구성)
- 캡스톤 계획 발표 준비하기

Gaussian noise test

생성한 노이즈 데이터셋을 xception 모델로 성능 측정

strong	loss : 0.6845, acc: 0.680
medium	loss : 0.6944, acc : 0.325
weak	loss : 5.6372, acc : 0.323

Salt and pepper noise test

```
1 print('-' * 50)
             2 acc = validate(valid_loader, model, criterion)
 strong
            Valid: 100%|
                                 | 3100/3100 [33:15<00:00, 1.55it/s, loss - 1.9859, acc - 0.677]
             1 print('-' * 50)
             2 acc = validate(valid_loader, model, criterion)
medium
            Valid: 100%|
                                 | 3100/3100 [17:15<00:00, 2.99it/s, loss - 0.8211, acc - 0.613]
             1 print('-' * 50)
             2 acc = validate(valid_loader, model, criterion)
  weak
            Valid: 100%|
                                  3100/3100 [17:22<00:00, 2.97it/s, loss - 4.8334, acc - 0.323]
```

Sharpening noise test

```
acc = validate(valid_loader, model, criterion)
강
       Valid: 100%
                               3100/3100 [00:42<00:00, 73.49it/s, loss - 4.7109, acc - 0.681]
         acc = validate(valid loader, model, criterion)
중
         Valid: 100%
                                3100/3100 [00:44<00:00, 69.18it/s, loss - 1.3328 acc - 0.696]
        acc = validate(valid loader, model, criterion)
                               3100/3100 [00:46<00:00, 67.13it/s, loss - 0.9815, acc - 0.615]
        Valid: 100%
```

Gaussian model adversarial train

weak model

medium model

strong model

```
Epoch 1/3
                      0/454 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages
  cpuset checked))
 Train: 100%||
                       454/454 [16:37<00:00, 2.20s/it, loss - 0.0193, acc - 0.995]
                       194/194 [03:00<00:00, 1.07it/s, loss - 0.4134, acc - 0.878]
Epoch 2/3
                       454/454 [15:16<00:00, 2.02s/it, loss - 0.0044
                                                                                   → 최고 성능
                       194/194 [02:14<00:00. 1.45it/s. loss - 0.1681 acc - 0.942]
Epoch 3/3
                       454/454 [15:19<00:00, 2.03s/it, loss - 0.0009, acc - 1.000]
                        194/194 [02:15<00:00, 1.43it/s, loss - 0.5586, acc - 0.871]
                     | 0/454 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torc
   cpuset checked))
                       454/454 [17:44<00:00. 2.34s/it.loss - 0.0851
                       194/194 [02:46<00:00, 1.16it/s, loss - 3.1775
                       454/454 [16:28<00:00, 2.18s/it, loss - 0.0133, acc - 0.996]
                       194/194 [02:17<00:00, 1.41it/s, loss - 4.4866, acc - 0.467]
                       454/454 [16:26<00:00, 2.17s/it, loss - 0.0086, acc - 0.998]
                       194/194 [02:16<00:00, 1.42it/s, loss - 4.1359, acc - 0.469]
                     | 0/454 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/to
  cpuset checked))
                     194/194 [02:54<00:00, 1.11it/s, loss - 4.0976
                       454/454 [20:21<00:00, 2.69s/it.loss - 0.0167, acc - 0.995]
                       194/194 [02:39<00:00, 1.21it/s, loss - 4.0048, acc - 0.508]
                       454/454 [20:16<00:00, 2.68s/it.loss - 0.0108, acc - 0.997]
                       194/194 [02:41<00:00, 1.20it/s, loss - 5.3524, acc - 0.440]
```

Salt and pepper model adversarial train

strong

medium

weak

```
Epoch 1/3
Train: 6%
                      | 0/454 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages.
  cpuset checked))
Train: 186%]
                       454/454 [17:84<88:88, 2.26s/it, loss - 8.8215, acc - 8.998]
Valid: 100%
                       194/194 [82:46<80:88, 1.17it/s, loss - 1.4743, acc - 8.772]
Epoch 2/3
Train: 188%
                       454/454 [16:11<88:88, 2.14s/lt, loss - 8.885], acc - 8.998]
Valid: 100%
                       194/194 [82:17<80:00, 1.41it/s, loss - 0.713], acc - 0.819]
Epoch 3/3
Train: 180%
                        454/454 [16:09<00:00, 2.14s/lt, loss - 0.0133, acc - 0.996]
Valid: 188%
                        194/194 [82:16<88:00. 1.42it/s. loss - 1.9236. acc - 8.638]
Epoch 1/3
Train: 8%
                      | 8/454 [88:86<?, ?it/s]/usr/local/lib/python3.7/dist-packages/
  cpuset checked])
Train: 1884]
                       454/454 [17:28<88:88, 2.29s/lt, loss = 8.8185 acc = 8.996]
Valid: 100%
                       194/194 [03:24<00:00, 1.05s/lt, loss - 0.1648 acc - 0.937]
Epoch 2/3
Train: 166%
                       454/454 [16:13<00:00, 2.14s/lt, loss - 0.0114, acc - 0.997]
                        194/194 [82:15:88:88, 1.43it/s, loss - 8.2142, acc - 8.919]
Valid: 186%
Epoch 3/3
Train: 188%
                        454/454 [16:16<88:88, 2.14s/it, loss - 8.8816, acc - 1.888]
Valid: 1889
                        194/194 [02:16<00:00, 1.43it/s, loss - 0.4119, acc - 0.882]
Epoch 1/3
Train: 0%[
                     | 0/454 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/
 cpuset checked))
Train: 188%
                       454/454 [17:38<88:88, 2.33s/it, loss - 8.8888, acc - 8.997]
                                                                                      → 최고 성능
Valid: 188%
                       194/194 [82:26<88:88, 1.33it/s, loss - 8.2145 acc - 8.939]
Epoch 2/3
Train: 188%
                       454/454 [16:38<80:80, 2.20s/it, loss - 0.8038, acc - 0.999]
Valid: 188%
                       194/194 [82:16<88:88, 1.42it/s, loss - 8.1688, acc - 8.938]
Epoch 3/3
Train: 188%
                       454/454 [16:48<88:88, 2.28s/it, loss - 8.8816, acc - 1.888]
Valid: 186%
                       194/194 [02:17<00:00, 1.41it/s, loss - 13.1393, acc - 0.344]
```

Sharpening model adversarial train

	sharpening (strong)	sharpening (medium)	sharpening (weak)	salt & pepper noise (strong)	salt & pepper noise (medium)	salt & pepper noise (weak)
gaussian	loss –	loss –	loss -	loss –	loss –	loss –
noise	19.4163	12.6805	9.0989	9.0557	6.1364	2.6379
(strong)	acc – 0.323	<u>acc - 0.369</u>	<u>acc - 0.443</u>	<u>acc - 0.355</u>	<u>acc - 0.435</u>	<u>acc - 0.645</u>
gaussian	loss -	loss -	loss -	loss –	loss –	loss –
noise	15.5655	10.0029	7.3472	3.8904	3.2610	1.9622
(medium)	<u>acc - 0.355</u>	<u>acc - 0.455</u>	<u>acc - 0.550</u>	<u>acc - 0.481</u>	<u>acc - 0.527</u>	<u>acc - 0.689</u>
gaussian	loss –	loss –	loss –	loss –	loss –	loss –
noise	4.7037	2.1664	1.2107	5.4284	3.0913	0.9826
(weak)	<u>acc - 0.677</u>	<u>acc - 0.677</u>	<u>acc - 0.786</u>	<u>acc - 0.677</u>	<u>acc - 0.677</u>	<u>acc - 0.621</u>

	sharpening (strong)	sharpening (medium)	sharpening (weak)	gaussian noise (strong)	gaussian noise (medium)	gaussian noise (weak)
salt & pepper noise (strong)	loss - 10.4407 <u>acc - 0.362</u>	loss - 10.0229 <u>acc - 0.412</u>	loss - 9.1598 acc - 0.452	loss - 2.1381 acc - 0.375	loss - 4.0276 <u>acc - 0.4</u>	loss - 6.2126 acc - 0.483
salt & pepper noise (medium)	loss - 5.5641 <u>acc - 0.393</u>	loss - 6.3789 acc - 0.425	loss - 6.2602 acc - 0.450	loss - 0.7999 acc - 0.665	loss - 2.6169 acc - 0.403	loss - 7.1634 acc - 0.372
salt & pepper noise (weak)	loss - 61.9681 <u>acc - 0.323</u>	loss - 60.1062 <u>acc - 0.323</u>	loss - 52.1954 <u>acc - 0.323</u>	loss - 58.9012 <u>acc - 0.323</u>	loss - 59.3096 <u>acc - 0.323</u>	loss - 45.0288 <u>acc - 0.323</u>

Т

Т

	gaussian noise (strong)	gaussian noise (medium)	gaussian noise (weak)	salt & pepper noise (strong)	salt & pepper noise (medium)	salt & pepper noise (weak)
sharpening	loss – 2.08	loss –3.09	loss -1.99	loss –13.65	loss –12.54	loss – 5.65
(strong)	acc – 0.323	acc - 0.323	acc - 0.553	acc -0.323	acc - 0.323	acc - 0.352
sharpening	loss - 0.67	loss - 0.73	loss - 1.68	loss – 6.07	loss – 5.44	loss – 2.02
(medium)	acc -0.733	acc -0.736	acc - 0.676	acc - 0.337	acc - 0.353	acc -0.639
sharpening	loss – 2.51	loss – 3.46	loss – 4.45	loss – 4.96	loss – 8.32	loss – 4.96
(weak)	<u>acc -0.388</u>	acc - 0.383	acc - 0.389	<u>acc - 0.41</u>	acc - 0.323	<u>acc -0.41</u>

^{**}눈여겨볼 점: sharpening medium모델의 gaussian noise에 대한 성능이 눈에 띄게 높음

전반적인 결과

- test set: real noise이미지 1000장, fake noise 이미지 2100장
- adversarial training한 모델 중 모두 weak모델 성능이 제일 높음
- 대다수 모델의 성능이 strong, medium보다 weak 데이터셋에 대해서 높음
- real 이미지 거의 다 맞추고, fake이미지에서 성능 대폭 하락
 - → noise real 데이터는 맞추고, noise fake이미지는 왜 못맞추는가?
- 전반적으로 낮은 성능
 - → 생성한 모델이 general하게 강인한 모델X

더 실험해보고 싶은 부분

● **두 가지 이상의 노이즈로 학습**을 시켝보기

→ 한가지로 학습시켰을 때보다는 더 general한 성능이 나올 수도 있겠다

- xception이 아닌 **다른 네트워크 사용**해보기 ()
- **테스트셋**에 아예 **다른 데이터** 사용해보기

→ 일반화되었을 가능성

참고 링크: https://www.mdpi.com/1999-5903/13/11/288/htm#B1-futureinternet-13-00288