Um Estudo de Ferramentas de Gerenciamento de Requisição de Mudança

Julho de 2017

Vagner Clementino Rodolfo Resende - Orientador

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Contexto

Contexto

Problema

Contexto

Problema

Objetivos

Contexto

Problema

Objetivos

Metodologia

Contexto

Problema

Objetivos

Metodologia

Resultados

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Ameças à Validade

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Ameças à Validade

Conclusão e Trabalhos Futuros

Importância da Manutenção de Software

- Dentro do ciclo de vida do software o processo de Manutenção de Software tem papel fundamental.
- Devido ao seu alto custo, que pode variar entre 60% e 90% do preço final do sistema [11], sua importância vêm sendo considerada tanto pela comunidade científica quanto pela indústria.

Conceito de Manutenção de Software

- Manutenção de Software: processo de modificar um componente ou sistema de software após a sua entrega com o objetivo de corrigir falhas, melhorar o desempenho ou adaptá-lo devido à mudanças ambientais [8].
- Manutenibilidade: propriedade de um sistema ou componente de software em relação ao grau de facilidade que ele pode ser corrigido, melhorado ou adaptado [8].

Tipos de Manutenção em Software

- A manutenção de software pode ser dividida em Corretiva, Adaptativa, Perfectiva e Preventiva [14, 8].
- A ISO 14764 [9] ropõe que exista um elemento denominado Requisição de Mudança (RM) que corresponde a uma agregação de características que representam uma solicitação de manutenção de qualquer das quatro categorias.

Tipos de Manutenção em Software

Figura 1: Tipos de manutenção segundo a norma ISO/IEC 14764 [9]

Papéis na Manutenção de Software

- Nesta dissertação consideramos os seguintes papéis desempenhados no processo de manter e evoluir software:
 - Usuário Afetado: Indivíduo que utiliza o software correspondente à Requisição de Mudanças (RM) que será relatada. O defeito, a melhoria ou evolução no software, representada pela RM, estão relacionadas com os desejos e necessidades deste papel.
 - Reportador: Responsável por registrar a RM. Em certas situações este papel é desempenhado tanto pelo usuário do sistema quanto pela equipe de manutenção.

Papéis na Manutenção de Software

- Gerente de Requisição de Mudança (Maintenance-request manager): Responsável por decidir se uma RM será aceita ou rejeitada. Além disso, ele define qual tipo de manutenção deverá ser aplicada. Posteriormente cabe ao profissional que cumpre este papel encaminhar a RM para o Agente de Triagem.
- Agente de Triagem (Scheduler): Deve planejar a fila de RMs e atribuí-las para o desenvolvedor mais apto. A decisão pode considerar a carga de trabalho existente

Papéis na Manutenção de Software

- Desenvolvedor: Responsável por realizar as ações que irão solucionar a RM.
- Analista de Qualidade: Tem por responsabilidade avaliar se uma RM solucionada por um Desenvolvedor foi resolvida de forma correta e dentro dos padrões de qualidade exigidos pelo projeto.
- Chefe da Manutenção (Head of Maintenance): Este papel é responsável por definir os padrões e procedimentos que compõem o processo de manutenção que será utilizado.

Requisição de Mudança

 Requisição de Mudança (RM) corresponde ao registro da informação sobre o defeito, evolução ou melhoria de um sistema [23]

Figura 2: Modelo conceitual de uma Requisição de Mudanças

Atributos de uma RM

Figura 3: Informações que compõem uma RM. Baseado em trabalho de Singh & Chaturvedi [21]

Exemplo de uma RM

Figura 4: RM do Projeto Eclipse

Ciclo de Vida da RM

Figura 5: Diagrama de estados de uma RM. Extraído de [23]

Problemas e Desafios da Gestão das RMs

- Localização do Problema
- Dificuldade na Visualização das Informações das RMs
- Baixa Qualidade do Relato
- Identificação de RMs Duplicadas
- Atribuição (Triagem) de RM
- Classificação da RM
- Estimativa de Esforço da RM
- Recomendação de RMs

Volume de RMs do Projeto . . .

 Incluir uma figura ou tabela com o volume de RMs de um projeto

Ferramentas de Gerenciamento de Requisição de Mudança (FGRM)

- Gerenciar as atividades de manutenção e seus artefatos possui um alto custo.
- Dependendo do tamanho do projeto de software é necessário a utilização de uma FGRM para gerenciar as suas requisições de mudança.
- As partes interessadas (stakeholders) necessitam de um espaço único onde possam registrar as falhas encontradas e as melhorias que necessitam [20].

Ferramentas de Gerenciamento de Requisição de Mudança

Além do que Gerenciar RMs

- Ponto central para a comunicação e coordenação das diversas partes interessadas [3].
- Possibilita que os usuários participem do processo de solução das RMs [5].
- Suporte para atividades como [6]:
 - estimativa do custo do software
 - análise do impacto de uma modificação
 - planejamento do projeto
 - rastreabilidade de uma falha
 - extração de conhecimento

Problema

- Apesar da inegável importância das FGRMs percebe-se um aparente desacoplamento de suas funcionalidades com as necessidades de seus usuários [1, 10].
- A utilização de "demanda" parece estar distante das necessidades práticas dos projetos, especialmente no ponto de vista dos desenvolvedores [2].
- Diversas extensões (plugins) estão sendo propostas na literatura [19, 22, 13].

Objetivos

- Elaboramos um estudo sobre as FGRMs com os seguintes objetivos:
 - entender os requisitos e funcionalidades oferecidas por este tipo de ferramenta;
 - (ii) mapear as melhorias para as FGRMs que estão sendo propostas na literatura;
- (iii) avaliar sobre o ponto de vista dos profissionais a situação atual funcionalidades oferecidas pelas FGRMs;
- (iv) propor melhorias para as funcionalidades das FGRMs.

Metodologia

- Estudo sobre as funcionalidades das FGRMs
- Mapeamento Sistemático da Literatura [17]
- Levantamento (Survey) com desenvolvedores [24]
- Sugestões de melhorias para as FGRMs
- Implementação de extensão para FGRM

- Análise das funcionalidades oferecidas pelas FGRMs
- Inspeção inicial resulto em aproximadamente 50 ferramentas¹.
- Optamos por conduzir o estudo em um conjunto menor

¹https://en.wikipedia.org/wiki/Comparison_of_ issue-tracking_systems

- Etapas do estudo
 - (i) Seleção das Ferramentas
 - (ii) Inspeção da Documentação
- (iii) Agrupamento das Funcionalidades

- Seleção das Ferramentas
 - Levantamento por Questionário
 - Dois grupos de participates
 - 52 participações
 - 06 ferramentas escolhidas

- Inspeção da Documentação
 - Leitura do material disponível na Internet
 - As funcionalidades foram classificadaa através da técnica de Cartões de Classificação - Sorting Cards [10, 16, 15].

Nome da Ferramenta

Bugzilla

URL Documentação

https://www.bugzilla.org/features/#searchpage

Nome da Funcionalidade

Advanced Search Capabilities

Descrição da Funcionalidade

Bugzilla offers two forms of search: A basic Google-like bug search that is simple for new users and searches the full text of a bug. A very advanced search system where you can create any search you want, including time-based searches (such as "show me bugs where the priority has changed in the last 3 days") and other very-specific queries.

Observações Adicionais

Conforme a documentação a funcionalidade tem foco no usuário final.

Figura 6: Exemplo de um cartão ordenado para uma funcionalidade da FGRM Bugzilla

- Agrupamento das Funcionalidades
 - Análise Individual: O autor e um outro especialista realizam de forma separada os agrupamentos.
 - Analise Compartilhada: Em um segundo momento tanto o autor quanto o especialista discutem as possíveis divergências até que um consenso seja obtido.

Mapeamento Sistemático da Literatura

- Mapeamento com base nas diretrizes propostas por Petersen e outros [17].
- Questões de Pesquisa
 - Questão 01: Quais as melhorias e novas funcionalidades estão sendo propostas para as FGRM?
 - Questão 02: Quais papéis envolvidos no processo de manutenção de software as melhorias das funcionalidades visam dar suporte?

Mapeamento Sistemático da Literatura

- Os estudos primários coletadosdas bases de pesquisa IEEE Explore, ACM Digital Library, Scopus, e Inspec/Compendex.
- As sentenças de buscas foram produzidas com base na metodologia PICO (Population, Intervention, Comparison and Outcomes) [12].

Mapeamento Sistemático da Literatura

Figura 7: Número de artigos incluídos durante o processo de seleção dos estudos. Figura baseada em [18]

- Questão 01: Qual a opinião dos profissionais envolvidos em manutenção de software com relação as funcionalidades oferecidas pelas FGRM?
- Questão 02: Na visão dos profissionais envolvidos em manutenção de software quais das melhorias nas funcionalidades das fgrms propostas na literatura teriam maior relevância em suas atividades?

- Questão 03: As práticas propostas pelos agilistas estão sendo utilizadas no processo de manutenção de software?
- Questão 04: Como as FGRMs podem ajudar as equipes de manutenção na adoção das práticas propostas pelos agilistas?

Fonte de Amostragem corresponde a um banco de dados, não necessariamente automatizado, em que um subconjunto válido da população pode ser recuperado. Outra característica é permitir a extração aleatória de amostras da população de interesse [7].

Identificador	Fonte de Amostragem	URL
FA01	Python	https://bugs.python.org/
FA02	Stack Overflow	https://stackoverflow.com

Tabela 1: Fontes de Amostragem utilizadas no estudo

Formulário preenchido por 85 participantes

Função Desempenhada	Total
Desenvolvedor	23
Engenheiro de Software	17
Gerente	12
Arquiteto de Software	5
Pesquisador	5
Consultor	4
Estudante	3
Analista de Qualidade	1
Designer	1

Tabela 2: Função desempenhada pelos participantes

Sugestões de Melhorias

- Sugestões foram compiladas utilizando a literatura da área e os levantamentos realizados nesta dissertação, especialmente com Mapeamento Sistemático e Levantamento com Profissionais;
- E nos estudos que propõem melhorias para as FGRM [25, 4, 21].

Sugestões de Melhorias

- Propostas 08 sugestões de melhorias
- Avaliadas através de um levantamento mediante questionário com profissionais que contribuem em projetos de código aberto hospedados no Github.

Participantes
4
4
4
3
2
2
6

Tabela 3: Projetos que os participantes contribuem.

Implementação de Extensão

- Implementação da Sugestão #1 na plataforma Github.
- Cliente para API do Github² que possibilita analisar a qualidade da informação fornecida no relato.
- Batizada de IssueQuality

Sugestão #01: As FGRMs devem fornecer realimentação (feedback) relacionado com a qualidade do texto relatado.

²https://api.github.com/

Implementação de Extensão

Figura 8: Visão geral do funcionamento da extensão IssueQuality

Mapeamento Sistemático da Literatura

Situação: Feito

Caracterização de Requisitos das FSPS

- Situação: Em andamento
- Resultados Parciais:
 - CRUD dos problemas
 - CRUD de interessados (desenvolvedores, usuários, gerentes de projeto e etc)
 - Regras relacionando Problemas vs Interessados
 - Classificação (Prioridade e Severidade)

Survey com os desenvolvedores

- Situação: Em andamento
- Atividades:
 - Planejamento do Survey (Feito)
 - Ferramenta de Coleta (Em andamento)
 - "Survey Piloto" (Em andamento)

Discussão

Ameças à Validade

Conclusão e Trabalhos Futuros

Dúvidas?

References I

- [1] O. Baysal and R. Holmes, "A Qualitative Study of Mozillas Process Management Practices," David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-10, 2012.
- [2] O. Baysal, R. Holmes, and M. W. Godfrey, "Situational awareness: Personalizing issue tracking systems," in *Proceedings of the 2013 International Conference on Software Engineering*, ser. ICSE '13. Piscataway, NJ,

References II

USA: IEEE Press, 2013, pp. 1185–1188. [Online]. Available: http://dl.acm.org.ez27.periodicos.capes.gov.br/citation.cfm?id=2486788.2486957

[3] D. Bertram, A. Voida, S. Greenberg, and R. Walker, "Communication, collaboration, and bugs: The social nature of issue tracking in small, collocated teams," in *Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work*, ser. CSCW '10. New York, NY, USA: ACM, 2010, pp. 291–300. [Online].

References III

Available: http://doi.acm.org/10.1145/1718918.1718972

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann, "What makes a good bug report?" in *Proceedings of the 16th* ACM SIGSOFT International Symposium on Foundations of software engineering. ACM, 2008, pp. 308–318.

References IV

S. Breu, R. Premraj, J. Sillito, and [5] T. Zimmermann, "Information needs in bug reports: Improving cooperation between developers and users," in *Proceedings of the* 2010 ACM Conference on Computer Supported Cooperative Work, ser. CSCW '10. New York, NY, USA: ACM, 2010, pp. 301-310. [Online]. Available: http://doi.acm.org/10.1145/1718918.1718973

References V

- [6] Y. C. Cavalcanti, P. A. d. M. S. Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. de Lemos Meira, "The bug report duplication problem: an exploratory study," *Software Quality Journal*, vol. 21, no. 1, pp. 39–66, 2013.
- [7] R. M. de Mello, P. C. da Silva, P. Runeson, and G. H. Travassos, "Towards a framework to support large scale sampling in software engineering surveys," in *Proceedings of the 8th ACM/IEEE International Symposium on*

References VI

Empirical Software Engineering and Measurement. ACM, 2014, p. 48.

[8] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," *IEEE Std* 610.12-1990, pp. 1–84, Dec 1990.

References VII

[9] ISO/IEC, "International Standard - ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering 2013; Software Life Cycle Processes 2013; Maintenance," ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pp. 01–46, 2006.

References VIII

- [10] S. Just, R. Premraj, and T. Zimmermann, "Towards the next generation of bug tracking systems," in 2008 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, 2008, pp. 82–85.
- [11] U. Kaur and G. Singh, "A review on software maintenance issues and how to reduce maintenance efforts," *International Journal of Computer Applications*, vol. 118, no. 1, 2015.

References IX

- [12] S. Keele, "Guidelines for performing systematic literature reviews in software engineering," in *Technical report, Ver. 2.3 EBSE Technical Report. EBSE*, 2007.
- [13] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, "Dashboards: Enhancing developer situational awareness," in *Companion Proceedings of the 36th International Conference on Software Engineering*, ser. ICSE Companion 2014. New York, NY, USA: ACM,

References X

2014, pp. 552–555. [Online]. Available: http://doi.acm.org.ez27.periodicos.capes.gov. br/10.1145/2591062.2591075

[14] B. P. Lientz and E. B. Swanson, Software Maintenance Management. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1980.

References XI

- [15] N. A. Maiden and G. Rugg, "Acre: selecting methods for requirements acquisition," *Software Engineering Journal*, vol. 11, no. 3, pp. 183–192, 1996.
- [16] S. McGee and D. Greer, "A software requirements change source taxonomy," in Software Engineering Advances, 2009. ICSEA'09. Fourth International Conference on. IEEE, 2009, pp. 51–58.

References XII

[17] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping studies in software engineering," EASE'08 Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, pp. 68–77, 2008. [Online]. Available: http: //dl.acm.org/citation.cfm?id=2227115.2227123

References XIII

[18] K. Petersen, S. Vakkalanka, and L. Kuzniarz, "Guidelines for conducting systematic mapping studies in software engineering: An update," *Information and Software Technology*, vol. 64, pp. 1–18, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2015.03.007

References XIV

- [19] H. Rocha, G. Oliveira, H. Marques-Neto, and M. T. Valente, "Nextbug: a bugzilla extension for recommending similar bugs," *Journal of Software Engineering Research and Development*, vol. 3, no. 1, 2015. [Online]. Available: http://dx.doi.org/10.1186/s40411-015-0018-x
- [20] N. Serrano and I. Ciordia, "Bugzilla, itracker, and other bug trackers," *IEEE Software*, vol. 22, no. 2, pp. 11–13, March 2005.

References XV

- [21] V. Singh and K. K. Chaturvedi, "Bug tracking and reliability assessment system (btras)," International Journal of Software Engineering and Its Applications, vol. 5, no. 4, pp. 1–14, 2011.
- [22] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo, "Buglocalizer: Integrated tool support for bug localization," in *Proceedings of the 22Nd ACM* SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE

References XVI

2014. New York, NY, USA: ACM, 2014, pp. 767–770. [Online]. Available: http://doi.acm.org.ez27.periodicos.capes.gov.br/10.1145/2635868.2661678

[23] P. Tripathy and K. Naik, Software Evolution and Maintenance. Wiley, 2015. [Online]. Available: https://books.google.com.br/books?id= 0UXxBQAAQBAJ

References XVII

- [24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, *Experimentation in software engineering*. Springer Science & Business Media, 2012.
- [25] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, "Improving bug tracking systems." in ICSE Companion. Citeseer, 2009, pp. 247–250.