Б.Е.Винтайкин ПРИМЕНЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ В ТЕХНИКЕ.

Методические указания к лабораторной работе Э 9 по курсу общей физики. Под ред. В.Н. Корчагина. МГТУ им. Н.Э. Баумана, 1998.

Изложена теория взаимной индукция в двух контурах и основы использования этого явления для измерений силы и частоты переменных токов, магнитных полей, перемещений. Описана экспериментальная установка, позволяющая исследовать явление взаимной индукции в двух трех контурах, неоднородность магнитного поля катушек Гельмгольца и измерить перемещения с погрешностью порядка 10 микрон, регистрировать изменения частоты и сипы переменного тока. Приведена методика градуировки и использования катушек Гельмгольца и дифференциального трансформатора для измерений различных физических величин.

Для студентов 2-го курса.

<u>Цель работы</u> - изучение закона электромагнитной индукции и его применений для точного измерения перемещений и исследования пространственного распределения магнитного поля.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Согласно закону электромагнитной индукции, ЭДС индукции ${\bf E}$, возникающая в замкнутом контуре, равна взятой с обратным знаком скорости изменения потока Φ вектора магнитной индукции В через поверхность, ограниченную этим контуром:

$$\mathbf{\mathcal{E}} = -\frac{\mathbf{d}\Phi}{\mathbf{d}\mathbf{t}} \tag{1}$$

При этом, в частности, изменение потока Φ может обеспечиваться внешним контуром с изменяющимся в нем током. Теория этого явления, называемого электромагнитной индукцией в связанных контурах подробно описана в [1, 2]. Рассмотрим важные для практики стороны этого явления.

Если в первом контуре протекает ток $I_1(t) = I_{01} sin(\omega t)$, то во втором контуре поток будет изменяться по закону.

$$\Phi_2(\mathbf{t}) = \mathbf{L}_{12}\mathbf{I}_1(\mathbf{t}) = \mathbf{L}_{12}\mathbf{I}_{01}\sin(\boldsymbol{\omega}\mathbf{t})$$
 (2)

где L_{12} - коэффициент взаимной индукции контуров 1 и 2, зависящий от формы и взаимного расположения контуров. Тогда с учетом (1) ЭДС индукции ϵ в контуре 2 выражается формулой

$$\mathbf{\mathcal{E}}_{2} = -\frac{\mathbf{d}\Phi}{\mathbf{d}t} = -\mathbf{\omega}\mathbf{L}_{12}\mathbf{I}_{01}\cos(\mathbf{\omega}t) = -\mathbf{\mathcal{E}}_{02}\cos(\mathbf{\omega}t)$$
(3)

Как видно из (3), величина \mathbf{E}_{02} зависит от величин \mathbf{L}_{12} , \mathbf{I}_{01} и ω , что дает возможность определить одну из них, зафиксировав остальные. Именно такая схема является основой многих современных измерительных приборов - электронных микрометров, измерителей силы или давления (при использовании дополнительной пружины или мембраны), амперметров переменного тока, частотомеров. Точность и чувствительность таких простых устройств очень высока, например смещения можно измерять с помощью описанной ниже лабораторной установки с погрешностью до долей микрометра, причем результаты измерений получают сразу в виде электрического сигнала, что облегчает автоматизацию измерений.

Важная для практики задача измерения магнитной индукции неоднородного поля $\mathbf{B}(\mathbf{r})$, создаваемого контуром (или их сложной системой), может быть решена с помощью явления взаим-

ной индукции. Для этого необходимо второй контур сделать «пробным» - достаточно малым, чтобы вектор магнитной индукции \mathbf{B}_1 , создаваемого первым контуром в каждой точке поверхности, ограниченной вторым, можно было считать примерно постоянным. На первый контур следует подать переменный ток $\mathbf{I}_1(t) = \mathbf{I}_{01} \sin(\omega t)$, с тем, чтобы $\mathbf{B}_1(\mathbf{r}, t)$ изменялось как $\mathbf{B}_1(\mathbf{r}, t) = \mathbf{B}_{01}(\mathbf{r})\sin(\omega t)$. Тогда ЭДС индукции в пробном контуре площади S

$$\mathbf{\mathcal{E}}_{2} = -\frac{\mathbf{d}\Phi}{\mathbf{d}t} = -\mathbf{S}\frac{\mathbf{d}\mathbf{B}}{\mathbf{d}t} = -\mathbf{S}\left[\left(\frac{\mathbf{d}\mathbf{B}}{\mathbf{d}t}\right)\right]\cos\alpha = -\omega\mathbf{S}\left|\mathbf{B}_{01}(\mathbf{r})\right|\cos(\omega t)\cos\alpha \tag{4}$$

окажется пропорциональной $B_{01}(r)\cos\alpha$. Здесь α - угол между вектором $B_1(r,t)$ и нормалью n к плоскому контуру 2. Такой способ измерения позволяет очень просто получать распределение индукции магнитного поля в относительных единицах в случаях, когда известно, что $\cos\alpha=1$. Это бывает нужно для проверки однородности магнитного поля или исследования закономерностей его изменения в пространстве. Ясно, что таким способом можно определять и относительные изменения амплитуды I_{01} в удаленном недоступном контуре 1.

Зависимость амплитуды ${\bf E}_2$ от ${\bf \alpha}$ позволяет определять ориентацию вектора индукции ${\bf B}$ переменного магнитного поля с помощью пробного плоского контура. В тех случаях, когда нормаль ${\bf n}$ перпендикулярна ${\bf B}$ (${\bf B}$ лежит в плоскости контура), ${\bf E}_{02}$ будет равна нулю, а когда вектор ${\bf B}$ параллелен ${\bf n}$, ${\bf E}_{02}$ будет максимальна. Для более точного определения ориентации ${\bf B}$ в заданной точке следует поместить центр пробного контура в эту точку и определить два положения плоскости контура, обеспечивающие равенство нулю величины ${\bf E}_{02}$. Вектор ${\bf B}$ будет параллелен линии пересечения двух плоскостей, обеспечивающих равенство нулю ${\bf E}_{02}$. Можно приблизительно определять ориентацию ${\bf B}$ по ориентации ${\bf n}$, поворачивая контур по разным направлениям и добиваясь максимума ${\bf E}_{02}$. Примерно такими способами осуществляют пеленгацию радиопередатчиков. На зависимости (4) основано также измерение углов индукционным методом. Для этого используют неподвижный контур 1, создающий переменное магнитное поле, и пробный контур 2, закрепленный на поворачивающейся детали угломера. При фиксированном положении центра

пробного контура, ω и I_{01} \mathcal{E}_{02} =const; т.е. α =arccos(\mathcal{E}_{02} /const) и α =0 при \mathcal{E}_{02} /const=1. Абсолютная погрешность $\delta\alpha$ =($d\alpha/d\mathcal{E}_{02}$) $\delta\mathcal{E}_{02}$ =($\delta\mathcal{E}_{02}$ /const)/[1-(\mathcal{E}_{02} /const)²]^{1/2} минимальна при α =90°, а при α =0° $\delta\alpha$ неудовлетворительно велика.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ЛАБОРАТОРНАЯ УСТАНОВКА

Схема лабораторной установки приведена на рис. 1. Используются одинаковые жестко закрепленые на станине 3 соосные контуры - катушки 1 и 1' и подвижный небольшой соосный с ними контур - катушка 2, который может перемещаться вдоль этой оси. Перемещение контура 2 осуществляется микрометрическим винтом 4 с шагом винта 1 мм, возможные зазоры и люфты уничтожаются постоянным прижимом с помощью пружины 5. Контуры 1, 1', 2 соединены с клеммами 1к - 6к, через которые их можно по разному соединять как друг с другом, так и присоединять к источнику переменного напряжения - звуковому генератору (ЗГ) 6 или измерительному прибору - цифровому вольтметру (ЦВ) 7. Цифровой вольтметр имеет входное сопротивление намного больше, чем сопротивление контуров, поэтому он позволяет измерять ЭДС индукции **8** без введения поправок на их внутреннее сопротивление.

Рис.1. Схема лабораторной установки

Установка позволяет изучать взаимную индукцию в двух контурах 1 и 2, причем контур 1 может быть составлен из двух последовательно включенных контуров 1 и 1'. Использование составного контура 1+1' широко используется на практике. Дело в том, что одна катушка 1 создает очень неоднородное поле В на своей оси (см. рис. 2, a). Зависимость $L_{12}(\mathbf{x})$ при этом получается сильно нелинейной, что осложняет калибровку приборов.

С целью получения зависимости $L_{12}(\mathbf{x})$, максимально приближенной к линейной, используют два одинаковых соосных контура, создающих противоположно направленные поля (у нас - катушки 1 и 1'), и одну измерительную катушку 2. Часто роль измерительной катушки играет контур 1+1', а роль катушки с током - катушка 2. Такое устройство называют дифференциальным трансформатором, поскольку его можно считать составленным из двух трансформаторов (без сердечника) - 1+2 и 1'+2, вторичные обмотки 1 и 1' которых включены навстречу друг другу. Разность ЭДС во вторичных обмотках будет приблизительно линейно зависеть от разности расстояний между контуром 2 и обмотками 1 и 1'. Такое устройство называют дифференциальным трансформатором. Зависимость $L_{12}(\mathbf{x})$ для контуров 1+1' и 2 в этом случае приведена на рис.2, а. Следует заметить, что приблизительно в средней точке $L_{12}(\mathbf{x})$ близко к нулю и изме-

няет знак, поскольку в этом месте фаза потока Φ_2 и ЭДС E_2 меняются на π (левее этой точки (см. рисунок) поток от катушки 1 превосходит противоположно направленный поток от катушки 1', а правее этой точки - наоборот, поэтому результирующий поток катушек от 1 и 1' меняет

направление, а с ним и ЭДС $\mathbf{\mathcal{E}}_2$). Дифференциальный трансформатор в настоящее время является измерительной головкой многих датчиков малых смещений, обеспечивающих точность измерений в доли микрометра, в том числе электронных микрометров, индикаторов и т.д. Часто необходимо получать более однородное поле \mathbf{B} . Для этого используют два соосных, создающих сонаправленные поля контура, у нас - катушки 1 и 1', называемые катушками Гельм-

гольца. Создаваемое ими поле оказывается сравнительно однородным, особенно в значительной по объему области вблизи оси контуров 1, 1', 2 и на примерно одинаковом расстоянии от контуров 1 и 1' (см. рис. 2, δ). Такие катушки широко используются на практике, например для компенсации внешнего магнитного поля в измерительных установках, к которым необходимо обеспечить свободный доступ со всех сторон. Часто используемые для создания однородного поля соленоид или электромагнит этого сделать не позволяют, так как в этих случаях мешают

полюсы и обмотки.

Рис. 2. Зависимость $L_{12}(x)$ (слева) и картина силовых линий вектора магнитной индукции В (справа) для случаев одиночного контура 1 (a), катушек контура 1+1', соединенных как катушки Гельмгольца (δ), катушек контура 1+1' соединенных встречно (ϵ).

Следует отметить, что для проведения описанных выше измерений предъявляются сравнительно высокие требования к постоянству зафиксированных параметров, например, частоты и амплитуды подаваемого на контур 1 (или 1+1') синусоидального напряжения, для чего используется стабильный звуковой генератор. также необходимо измерять ЭДС в контуре 2 цифровым вольтметром, имеющим высокую точность и, что самое главное, очень большое входное сопротивление, обеспечивающее близость к нулю значения тока в контуре 2, что сводит к минимуму нежелательную ЭДС, действующую в контуре 1 (или 1+1') и наведенную током в контуре 2.

ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА

Задание 1. *Изучение распределения магнитного поля на оси катушки*. Клеммы 1к и 2к исследуемой катушки 1 присоединить к генератору, а клеммы 3к и 4к контура 2 - к вольтметру, клеммы 5к и 6к не использовать (см. рис.1). Контур 2 установить винтом 4 на указанном на установке расстоянии от средней точки 8. Частоту генератора задать равной 800 Гц. Установить выходное напряжение генератора, указанное на установке.

Номер точки і	X _i , MM	$\mathbf{\mathcal{E}}_2 \!\!=\!\! \mathbf{U}_2(\mathbf{x}_i), \mathbf{MB}$ (для задания 1)	$\mathbf{\mathcal{E}}_2 \!\!=\!\! \mathbf{U}_2(\mathbf{x}_i), \mathbf{MB}$ (для задания 2)	$\mathbf{\mathcal{E}}_2 = \mathbf{U}_2(\mathbf{x}_i), \mathbf{MB}$ (для задания 3)
1				
2				

Заносить показания напряжения с вольтметра $U_2(x_i)$ (приблизительно равное \mathbf{E}_2) в третий столбец таблицы, перемещая винтом 4 контур 2 с постоянным указанным на установке шагом Δx к центральной точке 8. Число точек x_i и положение точки x_1 указано на установке. Величину U_2 измерять с максимально возможной точностью - наибольшим числом значащих цифр. При перемещении контура 2 винтом 4 удобно поворачивать его на целый оборот, останавливая указатель винта 4 в нижнем вертикальном положении около отметки на корпусе установки. Этим обеспечивается постоянство шага Δx

Задание 2. Изучение распределения магнитного поля на оси катушек Гельмгольца. Соединить клеммы 2κ и 5κ проводником, клеммы 1κ и 6κ присоединить κ генератору, а клеммы 3κ и 4κ контура 2 - κ вольтметру. Снять зависимость $U_2(x)$ как в задании 1, результаты занести в четвертый столбец таблицы.

Задание 3. Исследование дифференциального трансформатора. Соединить клеммы 2к и 6к проводником, клеммы 1к и 5к присоединить к генератору, а клеммы 3к и 4к контура 2 - к вольтметру. Снять зависимость $U_2(x)$ как в задании 1, результаты занести в пятый столбец таблицы. Следует учесть, что приблизительно в средней точке (где $U_2(x)$ близко к нулю) необходимо поменять знак $U_2(x)$, поскольку в этом месте фаза потока Φ_2 и ЭДС E_2 меняются на π (левее этой точки (см. рис. 1, 2) поток от катушки 1 превосходит противоположно направленный поток от катушки 1', а правее этой точки - наоборот, поэтому результирующий поток катушек от 1 и 1' меняет направление, а с ним и ЭДС E_2). Это отмечено в теоретической части (см. также рис. 2, в).

Задание 4. Использование дифференциального трансформатора для измерения перемещений. Использовать все соединения как в задании 3. Установить катушку 2 приблизительно в среднюю точку, где U_2 =0, после чего винт 4 повернуть приблизительно на два оборота так, чтобы указатель вита 4 был направлен вниз к отметке на корпусе установки, зафиксировать винт контрагайкой 11. Измерить и записать показание вольтметра U_2 , обозначив его как U_0 . Аккуратно оттянуть пружину за рукоятку 9 (см. рисунок) и вставить в измерительный зазор 10 измеряемую деталь A, записать показание вольтметра U_2 , обозначив его как U_A . По этим данным можно будет определить размер детали (см. ниже).

Задание 5. *Изучение влияния частоты* **V** *на работу дифференциального трансформатора*. Использовать все соединения как в задании 3. Установить катушку 2 на 4 мм от средней точки,

указатель винта 4 направить вниз к отметке на корпусе установки. Измерить и записать показания вольтметра. Установить частоту генератора 900 Γ ц Измерить и записать показания вольтметра. Вычислить величину dU_2/dv , характеризующую влияние изменения частоты на изменение ЭДС, по формуле

$$\frac{dU_2}{dv} = \frac{U_2(900\Gamma_{II}) - U_2(800\Gamma_{II})}{100}$$

Заметим, что зависимость ЭДС дифференциального трансформатора от \mathbf{v} может быть использована для измерения частоты \mathbf{v} переменного тока.

Задание 6. Изучение влияния нестабильности напряжения генератора на работу дифференциального трансформатора. Использовать все соединения как в задании 3. Установить катушку 2 на 4 мм от средней точки, указатель винта 4 направить вниз к отметке на корпусе установки. Установить частоту генератора 800 Гц. Измерить и записать показания вольтметра. Установить напряжение генератора на 10% выше установленного. Измерить и записать показания вольтметра. Вычислить значение величины

$$\frac{\mathbf{d}\mathbf{U}_2/\mathbf{d}\mathbf{U}_1}{\mathbf{U}_2/\mathbf{U}_1},$$

характеризующей влияние изменения напряжения генератора на ЭДС дифференциального трансформатора как отношение

$$\frac{\Delta \mathbf{U}_2/\Delta \mathbf{U}_1}{\mathbf{U}_2/\mathbf{U}_1}.$$

Задание 7. Определение ориентации вектора индукции В переменного магнитного поля с помощью пробного плоского контура. Подключить звуковой генератор к клеммам 1к и 2к установки. установить частоту и выходное напряжение сигнала генератора в соответствии с табличкой, прилагаемой к установке. Пробный контур 2*, прилагающийся к установке, подсоединить к цифровому вольтметру. определить ориентацию вектора В в точках 1, 2, 3 (см. рис.2). для этого поместить центр контура 2* в точку 1 и определить ориентацию п, обеспечивающую макси-

мум \mathbf{E}_{02} . затем уточнить ориентацию B, добившись равенства \mathbf{E}_{02} =0 для двух ориентаций контура 2*. Тогда линия пересечения плоскости контура 2* в двух случаях дает искомое направление B. Провести описанные измерения для точек 2 и3. записать в отчет приблизительные значения угла между направлением B и осью контура 1, отмеченной линией C-C на рис.2, а для точек 1, 2, 3.

ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 1. По данным таблицы построить графики $U_2(x)$ соответственно для заданий 1-3. Согласно изложенному в теоретической части, зависимости $U_2(x)$, $L_{12}(x)$, $B_1(x)$, нормированные на соответствующие им максимальные значение $max[U_2(x)]$, $max[L_{12}(x)]$, $max[B_1(x)]$ эквивалентны.
- 2. По графику задания 2 определить диапазон положений x катушки 2, в котором $U_2(x)$, а значит и индукция поля B катушек Γ ельм Γ ольца изменяются в пределах 10% от минимального значения.
- 3. По построенному для задания 3 графику оценить область изменения величины x, в котором зависимость $U_2(x)$ изменяется линейно.
- 4. Найти чувствительность дифференциального трансформатора $S=\Delta x/\Delta U_2$ в точке, где $U_2=0$, определив котангенс угла наклона касательной к графику, построенному для задания 3. Оценить погрешность измерения смешений δx по формуле $\delta x=S\delta U_2$, считая, что погрешность измерения δU_2 составляет половину последнего разряда цифрового вольтметра.
- 3. Найти толщину детали $\mathbf{d}_{\mathbf{A}}$ по значениям $\mathbf{U}_{\mathbf{A}}$ и $\mathbf{U}_{\mathbf{0}}$, полученным в задании 4, по формуле $\mathbf{d}_{\mathbf{A}} = \mathbf{S}(\mathbf{U}_{\mathbf{A}} \mathbf{U}_{\mathbf{0}})$.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Объяснить понятие коэффициент взаимной индукции контуров. Чем определяется значение этой величины?
- 2. Объяснить принцип измерений перемещений, давления, силы и частоты электрического тока однородности магнитного поля с помощью явления электромагнитной индукции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Савельев И.В. Курс общей физики В 3-х томах. М.: Наука, 1986. Т. 2.
- 2. Матвеев А.Н. Электричество и магнетизм. М.: Высшая школа, 1985.