Molekulsko-kinetička teorija gasova

Zadaci za domaći

- 1. Izračunati zapreminu jednog mola gasa pri normalnim uslovima: $p=101.3\,kPa,\,T=273.15\,K.$
- 2. Na visinama od nekoliko stotina kilometara nad Zemljom molekuli atmosfere imaju brzine koje odgovaraju temperaturama od nekoliko hiljada stepeni. Zašto se ne istope sateliti koji kruže oko Zemlje na tim visinama?
- 3. Planetu mase m i poluprečnika r okružuje atmosfera stalne gustine. Molarna masa molekula atmosfere je M. Naći temperaturu u atmosferskom sloju uz površinu planete, ako je debljina tog sloja iskazana kao h << r.
- 4. Stakleni balon je napunjen nekim gasom na pritisku p. Masa balona sa gasom je m. Balon se otvori, pritisak u njemu se smanji na p_1 , te se onda ponovo zatvori. Tada je masa balona sa gasom m_1 . Kolika je masa toga gasa koji ispunjava balon pri normalnom atmosferskom pritisku p_0 ? Smatrati da je temperatura gasa u svim slučajevima ista (ne znači da treba primijeniti Bojl-Mariotov zakon).
- 5. U sudu zapremine $1\,l$ nalazi se $0.28\,g$ azota (N_2) zagrijanog do temperature od $1500\,K$. Pri toj temperaturi, $30\,\%$ molekula azota je disosovano na atome. Odrediti pritisak gasa u sudu.
- 6. Cilindričan horizontalni sud podijeljen je pokretnim klipom na dva jednaka dijela. Sa obje strane klipa nalazi se neki gas. Kad se sud postavi u vertikalan položaj, pri temperaturi od $300\,K$, u ravnotežnom stanju, zapremina ispod klipa je duplo manja nego iznad. Do koje temperature treba zagrijati gas u donjem dijelu suda, da bi se izjednačile zapremine gasa u oba dijela? Trenje je zanemarljivo, nema kondukcije.
- 7. Zatvoreni sud A zapremine $9\,l$, spojen je kratkom cjevčicom sa zatvorenim sudom B zapremine $1\,l$. U cjevčici postoji ventil koji dozvoljava prolaz gasa iz suda A u sud B, samo ako je pritisak u prvom barem za $120\,kPa$ veći nego u drugom sudu. U početnom trenutku, u sudu A, gas je na temperaturi od $300\,K$ i pritisku od $100\,kPa$, a u sudu B je vakuum. Kad se ventil otvori, cijeli sistem se zagrije do $420\,K$. Koliki su tada pritisci u sudovima A i B?

Zadaci 6. i 7. su nešto teži od ostalih.

¹Disosijacija je reverzibilno razlaganje materije. Preciznije, razlaganje molekula na atome ili manje molekule. U našem slučaju, odgovarajuća reakija je: $N_2 \to 2N$.