INTERNAL USE

Introduction to SDK 1.2.0 for MT7687/7697

Maxx Chen ACS/ACS7/AE5 2016/03/03

Outline

- MT7687/7697 Family
- A map to SDK
- Getting started with SDK
- Application demo Smart connection
- Create your own project
- Add a module into Middleware

High-Level Feature – MT7687/MT7697/MT7697D

	MT7687F	MT7697	MT7697D		
	Pin to Pin & SW Compatible				
Process	40nm RFCMOS technology	40nm RFCMOS technology	40nm RFCMOS technology		
Package	QFN68(8x8)	QFN68(8x8)	QFN68(8x8)		
Apps CPU	ARM Cortex-M4 MCU with FPU up to 192MHz clock speed	ARM Cortex-M4 MCU with FPU up to 192MHz clock speed	ARM Cortex-M4 MCU with FPU up to 192MHz clock speed		
Memory	Embedded 352KB SRAM 64KB boot ROM	Embedded 352KB SRAM 64KB boot ROM	Embedded 352KB SRAM 64KB boot ROM		
Flash	Embedded 2MB Supports eXecute In Place (XIP) on flash	External SPI Flash support (QPI mode) Supports eXecute In Place (XIP) on flash	External SPI Flash support (QPI mode) Supports eXecute In Place (XIP) on flash		
Lower power RTC	Low power RTC mode with 32KHz crystal support	Low power RTC mode with 32KHz crystal support	Low power RTC mode with 32KHz crystal support		
Security Boot & Crypto Engine	Security Boot supported Hardware crypto engines (AES, DES/3DES and SHA2)	dware crypto engines Hardware crypto engines			
RF	1x1n 2,4G	1x1n 2.4G BLE	1x1n 2.4G/5G BLE		
Connectivity	SPI, UART, I2C, I2S, PWM, ADC, IrDA, GPIO	SPI, UART, I2C, I2S, PWM, ADC, IrDA, GPIO	SPI, UART, I2C, I2S, PWM, ADC, IrDA, GPIO		

A map to SDK

Suggested order of study

1. SDK Release Note

2. Getting started document

User level

Developer level

5. Memory layout developer's guide

8. Internet API reference manual

3. Flash tool user manual

4. Open source user guide

6. API reference manual

7. WiFi developer's guide

9. System log developer's guide

Getting started with SDK

Getting started with SDK

- Getting started document
 - "Getting_Started_with_SDK_vX.X_on_MTXXXX.pdf"
 - this document includes the feature lists and step by step to setup the environment for the SDK.

Main features-WiFi

Table 1 Wi-Fi station features

Item	Features	
Standard	802.11 b/g/n station	
Channel	Channel 1~13	
Personal Security	Open, WEP-Open, WPA, WPA2	
Enterprise Security	N/A	
WPS	Enrollee (PBC / PIN)	
Advanced	AMPDU, Rx-Filter, DTIM	

Table 2 Wi-Fi AP features

Item	Features
Standard	802.11 b/g/n Soft AP
Channel	Channel 1~13
Personal Security	Open, WEP-Open, WPA, WPA2
Support Clients	9 STAs(AP only mode)
WPS	Registrar (PBC/PIN), Enrollee (PIN)
Enterprise Security	N/A

Main features-Network

Table 3 Supported network protocols

Item	Features
IP Stack	
IP Stack	IPv4 (LWIP)
	TCP_UDP
	• ICMP
	DHCP Client/Server
	DNS Client
	• NETCONN
	• SOCKET
SNTP	Simple Network Time Protocol
	• RFC4330
	Support SNTP receive timeout
	Support SNTP update delay
	Support SNTP max server
НТТР	• HTTP 1.1
	Client (Post/Get)
HTTPS	HTTP 1.1
	Client (Post/Get)
SSL/TLS	• mbedTLS
	Client, Server (not test)
	• SSL3.0, TLS1.0, 1.1, 1.2
	AES, 3DES, DES, ARC4
	• MD5, SHA-1, SHA-256
	RSA/PKCS#1 v1.5

Main features-Peripheral

Table 4 Supported peripheral drivers

Item	Features		
GPIO	GPIO OUT/IN mode		
	Set Pull Up/Down for GPIO IN mode		
PWM	● 256 Duty Cycle range		
	32KHz, 2MHz, XTAL clock for PWM frequency reference		
UART	2 Full Set (Tx/Rx) UART support		
	Baud rate up to 921600		
Flash	Default 2MB SIP Flash		
	Support external flash up to 16MB		
ADC	Analog to Digital Convert		
	12bit, 4channel, 125KHz sample rate		
I2C-Master	• I2C * 2		
	Support 50/100/200/400 KHz Transmit Rate		
IrDA	• Tx (NEC, RC5, RC6, Pulse Width)		
	Rx (RC5,PulseWidth)		
GPC O	General Purpose Counter		
Y	Support 1MHz pulse detection		

Main features-Peripheral

Item	Features	
WDT	Support H/W, S/W watchdog	
	Support whole chip reset	
I2S-Slave	• Support sample rate: 8k/12k/16k/24k/32k/48k	
	Support mono and stereo mode	
SPI-Master	Serial Peripheral Interface	
RTC	Real Time Clock	
GDMA	General Purpose DMA	
Security	• SHA1, SHA2 (256, 384, 512), MD5, AES, 3DES	
TRNG	Truly Random Number Generator	
	Generate 32bit random number	

Advanced features

Table 5 Advanced feature list

Item	Features
XML	Mini-xml
	Support Entity
	Support Get/Set
	Support Index
	Support Search
JSON	• cJSON
	JSON string parser
Smart Connection	MTK smart connection
CLI command	CLI command parser

SDK on MT7687 architecture layout

WEDIATEK

INTERNAL USE

System requirement

- Building the project on Linux OS.
- Downloading the project on Windows OS
- The default GCC toolchain is supported on the following versions of the Linux 32/64 bits hosts
 - Ubuntu 8.x or later (tarball).
 - Ubuntu LTS 10.04 or later (PPA).
 - RHEL 4/5/6 (tarball).

Source Folder

- Directories
 - doc/ : documents
 - **driver**/ :source code of drivers
 - kernel/ : source code of RTOS and system services
 - middleware/: source code of middleware
 - project/ : user projects
 - <board> /apps/<project>/GCC
 - <board>/apps/<project>/GCC/Makefile
 - <board>/apps/<project>/GCC/feature.mk
 - config/: config files of chips, boards, and projects
 - chip/<ic_name>/chip.mk
 - board/<board name>/board.mk
 - project/<board>/<project script>
- Files
 - **build.sh**: build command see the next page

Project makefile, the main file that trigger other makefile listed in chip.mk to generate libs and form the final bin file

Project's feature option are defined in this file

Compiler, CFLAGS, Middleware Module Path are defined in this file

Extra CFLAGS used for each board are defined in this file

Build Image

./build.sh would list all available <board> <project> can be built

```
Usage: ./build.sh <board> <project> [bl|libs|clean]
available boards & projects:
       mt7687 evb E2
                apps
                hal examples
                iot sdk
               mt7687 bl
       mt7697 evb
                iot sdk
available modules:
       freertos
[libs] - only build libs .a
[bl] - build bootloader
[clean] - Clean...
Usage: ./build.sh clean : delete all
Usage: ./build.sh <board> clean : delete all projects in <board>
Usage: ./build.sh <board> <project> clean : delete a project in <board>
```

- ./build.sh <board> <project>
 - ./build.sh mt7687_evb_E2 iot_sdk
 - 1. run the script config/project/mt7687_evb_E2/iot_sdk
 - 2. build in project/mt7687 evb E2/apps/iot sdk/GCC
 - -> to make libs .a in Makefile
 - -> build image
 - 3. Result is in out/mt7687 evb E2/iot sdk/

```
flash_download.ini
flash download.txt

iot_eal.cmm
lib

log
mt7687_bootloader.bin
mt7687_iot_sdk_xip.bin
mt/68/_iot_sdk_xip.elf
mt7687_iot_sdk_xip.elf.s
mt7687_iot_sdk_xip.elf.s
mt7687_iot_sdk_xip.hex
mt7687_iot_sdk_xip.hex
mt7687_iot_sdk_xip.map
obi
WIFI_RAM_CODE_MT7687_in_flash.bin
```

Firmware upgrade (Step 1/5)

Set the jumper J25 on to FLASH Recovery mode

Firmware upgrade (Step 2/5)

 Connect MT7687 reference board to PC using micro-USB cable.

Firmware upgrade (Step 3/5)

Firmware upgrade (Step 4/5)

Firmware upgrade (Step 5/5)

 Set the MT7687 reference board to FLASH Normal mode by removing J25

Remove it!

Application demo - Smart connection

Background

- IoT device will need to connect to Wi-Fi network
- IoT device doesn't have any input interface

INTERNAL USE

- IoT device Wi-Fi set as sniffer mode, capture the packets in the air.
- In sniffer mode, IoT device doesn't have the AP's password and it can't decrypt the data.
- Solution: encode data in 802.11 packet MAC address
 - -- 802.11 packet header is not encrypted.
 - -- IPv4 multicast address low-order 23 bits same as MAC address low-order 23 bits.

INTERNAL USE

IPv4 multicast address and MAC address mapping

		4bits	5bits	23bits
IPv4		1110	The 5 bits not used	Multicast group ID
MAC	00000001	1 00000000 01011110 0		Multicast group ID
		25bits		Low-order 23 bits of multicast group ID are copied to Ethernet address

- IPv4 multicast address mapping MAC address range: 01:00:5e:00:00:00 ~ 01:00:5e:7f:ff:ff
- IPv4 multicast address low-order 23 bits are copied to Ethernet MAC address low-order 23 bits.
- encode data in IPv4 multicast address low-order 23 bits (SSID, PWD...).

INTERNAL USE

acket	Source	Destination	BSSID	Transmitter
117	■ 60:E7:01:6D:07:5E	■ Mcast IP IANA802:12:12:12	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
119	■ 60:E7:01:6D:07:5E	■ Mcast IP IANA802:13:13:13	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
120	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:14:14:14	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
121	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:15:FF:FF	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
122	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:17:FF:FF	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
123	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:18:32:07	■ SumpIndust:9C:	■ 60:E7:01:6D:07:5E
124	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:19:08:08	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
126	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:1A:65:73	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
127	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:18:E0:7F	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
128	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:1D:B7:7B	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
129	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:1E:05:38	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:1F:11:4C	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
133	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:22:3B:A4	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
134	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:23:20:D9	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
135	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:24:7A:D5	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
137		Mcast IP IANA802:25:0B:7D	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP JANA802:26:E9:10	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP/IANA802:27:17:D5	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:28:52:77	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:29:32:55	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:2A:A1:E9	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:2B:19:A4	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
144	60:E7:01:6D:07:5E	Mcast IP IANA802:2B:19:A4	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
145		Mcast IP IANA802:2B:19:A4	JumpIndust:9C:	■ 60:E7:01:6D:07:5E
147	■ 60:E7:01:6D:07:5E	Mcast IP IANA802:2C:AF:EC	JumpIndust:9C:	■ 60:E7:01:6D:07:5E

INTERNAL USE

IPv4 multicast address and MAC address mapping

7bits	8bits	8bits	Payload
idx	CO	C1	payload

Encode format:

- Bits $[0\sim15]$: carry information
- Bit[$16 \sim 23$ } : index

Example

- ssid = "mtk"
- pwd = "password"

Notes:

- 1. SYNC and MAC ADDR repeat 3 times.
- 2. Length of data field is fixed, used as a filter.
- 3. Idx start from 0x15.
- 4. All above digits are hexadecimal.
- 5. mac field used to configure which device to receive the packets, set to FF:FF:FF:FF:FF:means configuring all IoT devices.

Sync field: 0x12, 0x12, 0x13, 0x13, 0x14, 0x14

MAC field: Target device MAC address

Ver: version code

R: reserved, default set to 0

HL: Header Length

DL: Data Length

CRC: CRC16 for Header & Data

Option: For protocol extension if needed

Data: APP Layer Data.

Source Files

smt_conn.c

smtcn_init

smtcn_start

smtcn_lock_channel

smtcn_rx_timeout

smtcn_done

elian.c

smtcn_proto_ops efunc_table

init

cleanup

rx_handler

switch_channel_rst

report_evt

start_timer

stop_timer

aes128_decrypt

core.c

elian_input

elian_init

elian_stop

elian_rst

- Initialize timer
- Switch channel
- Lock channel

- Adapter
- smtcn_proto_ops
- efunc_table

- Decoding data
- Get information
- Binary release

Code Flow

INTERNAL USE

Demo – phone with Elian

Elian

Version:1.0.17, libVersion:15, protocolVersion:4

SSID AE5

Password

12345678

custom

Send V1

Send V4

Send Both

Stop

Demo - IOT device

```
$ smart connect
$ smart_config_mutex:0x2001ed28
>>>>> mtk_smart_connection begin <<<<<<
channel locked at 1, scaned 14 times
sync succeed.
ssid:AE5/3, passwd:12345678/8
unregister rx handler finished.
set hot channel:[1]
orignal hot 1:[11], hot 2:[1], hot 3:[6]
Smart connection finished.
Now start scan and connect.
>>>>> start scan <<<<<
ch ssid
                                       BSSID
                                                            Auth
                                                                    Cipher
                                                                            RSSI
                                       28:c6:8e:8f:7b:2b
   AE 5
scan finished!
ssid:[AE5], channel:[1], authMode:[7], encrypt type:[6], psk:[12345678]
wifi_config_set_ssid - ssid = AE5, ssid_length = 3
wifi_config_set_security_mode - auth_mode = 7, encrypt_type = 6
>>>>> sc_connect <<<<<:
wifi_config_reload_setting
give smart_config_mutex:[0x2001ed28]
[T: 93984 M: inband C: WARNING F: inband_evt_handler L: 393]: WARN! u2PacketType(0xe000), ucEID(0x76), ucSeqNum(0x0) not handled!
IW_ASSOC_EVENT_FLAG: CONNECTED MAC - 28:c6:8e:8f:7b:2b
wifi connect. 3
[T: 96011 M: common C: INFO F: ip_change_call_back L: 209]: *******
T: 96018 M: common C: INFO F: ip_change_call_back L: 210]: DHCP got IP:192.168.1.3
T: 96026 M: common C: INFO F: ip_change_call_back L: 211]: *********************
(00:02:00)
                3166
```

Create your own project

How to create a project (1/5)

- Here we showing how to create a project named iot_sdk_demo on board mt7687_evb_E2
- Create a folder under project/mt7687_evb_E2/apps/ named iot_sdk_demo
- Copy download_config, GCC, inc, MDK-ARM, and src folder under project/mt7687_evb_E2/apps/iot_sdk to your project folder

How to create a project (2/5)

- Add your project files
 - inc folder: header files
 - src folder: source files

P.S. you can create your own folder under inc & src if needed

How to create a project (3/5)

Modify the red colored part in Makefile to your own

How to create a project (4/5)

- Add a project config file named iot_sdk_demo to config/project/mt7687_evb_E2 folder
- Copy the example below & paste into jot_sdk_demo
- modify the red colored part to your own

gva/config/project/mt7687_evb_E2/iot_sdk_demo

#!/bin/bash

echo "Config...iot_sdk_demo"

export TARGET_PATH=project/mt7687_evb_E2/apps/iot_sdk_demo/GCC

export FREERTOS_CONFIG_PATH=\$PWD/project/mt7687_evb_E2/apps/iot_sdk_demo/inc

How to create a project (5/5)

 Now you can build your project and see if the bin file of your project generated successfully

21 KB

Build project:

Check if bin file exists:

./build.sh mt7687_evb_E2 iot_sdk_demo

detect sensor

flash_download.ini
flash_download.txt

iot_eal.cmm
lib

leg
mt7687_bootloader.bin
mt7687_iot_sdk_demo_xip.bin

mt7687_iot_sdk_demo_xip.elf
mt7687_iot_sdk_demo_xip.elf.s
mt7687_iot_sdk_demo_xip.hex
mt7687_iot_sdk_demo_xip.hex
mt7687_iot_sdk_demo_xip.map
obi
WIFI_RAM_CODE_MT7687_in_flash.bin

The .o and .d files of your project files will be placed under the corresponding folder

Add a module into Middleware

How to add a module into middleware (1/5)

- Here we showing how to add a module named mymodule into project iot_sdk_demo on board mt7687_evb_E2
- Create a folder under middleware/third_party named mymodule
- Add your module files

MEDIATEK

- inc folder: header files
- src folder: source files

How to add a module into middleware (2/5)

- Create a file named module mk under module folder
 - Copy the example below & paste into module.mk
 - modify the red colored part to your own

How to add a module into middleware (3/5)

include \$(SOURCE_DIR)/.rule.mk

rm -rf \$(BUILD_DIR)

rm -rf \$(OUTPATH)/\$(TARGET LIB).a

clean:

- Create a file named Makefile under module folder
 - Copy the example below & paste into Makefile
 - modify the red colored part to your own


```
gva/middleware/third_party/mymodule/Makefile
SOURCE DIR = ../../..
BINPATH = ~/gcc-arm-none-eabi/bin
                                                                the path to your project
PROJ PATH = ../../project/mt7687 evb E2/apps/iot sdk demo/GCC
CONFIG PATH ?=
                                                                folder that contains
CFLAGS += -I$(PROJ PATH)/../inc
                                                                project Makefile
CFLAGS += -I$(SOURCE DIR)/$(CONFIG PATH)
FEATURE ?= feature.mk
include $(PROJ_PATH)/$(FEATURE)
# Gloabl Config
-include $(SOURCE_DIR)/.config
# IC Config
-include $(SOURCE_DIR)/config/chip/$(IC_CONFIG)/chip.mk
# Board Config
-include $(SOURCE_DIR)/config/board/$(BOARD_CONFIG)/board.mk
# Project name
                                                                the lib name for the
TARGET LIB=libmymodule
                                                                added module
BUILD DIR = Build
OUTPATH = Build
# Sources
include module.mk
C_OBJS = (C_FILES:%.c=(BUILD_DIR)/%.o)
.PHONY: $(TARGET LIB).a
all: $(TARGET_LIB).a
        @echo Build $< Done
```

How to add a module into middleware (4/5)

Add module to linking LIBS & make command in project Makefile

Add \$(MID_MY_MODULE_PATH) definition to project related chip.mk

How to add a module into middleware (5/5)

- Now you can build your project and see if the lib of the added module generate successfully
 - Build project:
 - ./build.sh mt7687_evb_E2 iot_sdk_demo
 - Check if the lib exists

45

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.

Appendix 1 Boot up sequence of MT7687

H/W Architecture (dual core)

- Step 1:
 - Chip power on
 - N9:
 - boot from N9-ROM
 - CM4 : reset asserted

Step 2:

- N9:
 - Setting TOP cfg. registers (PLL setting, etc.)
 - de-assert reset signal of CM4

Step 3:

• CM4:

boot from CM4-ROM

Step 4:

• CM4:

 get F/W download information of N9 from external Flash

Step 5:

- CM4:
 - set PDA (Patch Decryption Accelerator) cfg. registers for prepare to F/W download
 - set SPI cfg.
 registers for
 prepare to F/W
 download

- Step 6:
 - N9:
 - PDA F/W download, from external flash memory to N9-IDLM.

Step 7:

- N9:
 - execute instructions from IDLM
- CM4:
 - execute
 instructions
 from cache or
 external flash
 memory

MT7687 Boot-Up Flow

ROM Code Loader Configr ation Firmware Host

RAM

- Step1: ROM Code--- bootstrap check
- Step2: ROM Code--- load loader Image from Flash to RAM
- Step3: Loader --- start run XIP Host driver
- Step4: Host --- load Wi-Fi Firmware to RAM
- Step5: Firmware --- initial Wi-Fi Register start Wi-Fi State Machine
- Step6: Host --- Run Host Task

Appendix 2 FOTA of MIT7687

57

FOTA architecture layout

Generate Package File

FOTARomPacker Tool (Win OS)

- Follow these steps as below:
 - 1. Put new bin in "_Load" folder.
 - 2. Configure FOTARomPacker.ini file in "_ini" folder.
 - a) set load path in "general setting" line.
 - b) set bin file name and the start address of this bin in flash. (For7687, CM4 start addr is 0x7c000)
 - 3. Click "gen_image.bat", find the generated FOTA package file in "_Output folder".

Compile options for the FOTA update

Option	Description	Build the ARM Cortex- M4	Build the bootloader
MTK_FOTA_ENABLE	FOTA module on/off	=y	=y
MTK_TFTP_ENABLE	TFTP module on/off	=y	=n
MTK_FOTA_CLI_ENABLE	Command line on/off	=y	=n
MTK_BL_FOTA_LOG_ENALBE	Bootloader logging on/off	=n	=y
MTK_HAL_PLAIN_LOG_ENABLE	HAL debug	=n	=y

FOTA buffer partition configuration

Change the start address and length of the FOTA buffer

driver\chip\mt7687\inc\flash_map.h

```
#define FLASH LOADER SIZE
                                     0x8000
                                                       32kB *
#define FLASH COMM CONF SIZE
                                     0x1000
                                                        4kB
                                                        4kB
#define FLASH STA CONF SIZE
                                    0x1000
#define FLASH AP CONF SIZE
                                                       4kB *
                                    0x1000
#define FLASH N9 RAM CODE SIZE
                                    0x71000
                                                   /* 452kB */
#define FLASH CM4 XIP CODE SIZE
                                    0xBF000
                                                     764kB */
#define FLASH TMP SIZE
                                     0xBF000
                                                      764kB */
                                                       20kB */
#define FLASH USR CONF SIZE
                                    0x5000
#define FLASH EEPROM SIZE
                                     0x1000
                                                        4kB */
#define CM4 FLASH LOADER ADDR
                                    0x0
#define CM4 FLASH COMM CONF ADDR
                                     (CM4 FLASH LOADER ADDR
                                                                + FLASH LOADER SIZE)
#define CM4 FLASH STA CONF ADDR
                                     (CM4 FLASH COMM CONF ADDR + FLASH COMM CONF SIZE)
#define CM4 FLASH AP CONF ADDR
                                     (CM4 FLASH STA CONF ADDR
                                                                + FLASH STA CONF SIZE)
#define CM4 FLASH N9 RAMCODE ADDR
                                     (CM4 FLASH AP CONF ADDR
                                                                + FLASH AP CONF SIZE)
#define CM4 FLASH CM4 ADDR
                                     (CM4_FLASH_N9_RAMCODE_ADDR + FLASH_N9_RAM_CODE_SIZE)
#define CM4 FLASH TMP ADDR
                                     (CM4 FLASH CM4 ADDR
                                                                + FLASH CM4 XIP CODE SIZE)
#define CM4 FLASH USR CONF ADDR
                                     (CM4 FLASH TMP ADDR
                                                                + FLASH USR CONF SIZE)
#define CM4 FLASH EEPROM ADDR
                                     (CM4 FLASH USR CONF ADDR
                                                                + FLASH EEPROM SIZE)
```


7687 FOTA Scenario

Bootloader Update Flow

Trigger Flag & Update Result

Temp partition

Update result structure:

```
typedef struct {
   int32_t m_ver;
   int32_t m_error_code;
   int32_t m_behavior;
   int32_t m_is_read;
   char m_marker[32];
   int32_t reserved[4];
} fota_update_info_t;
```