第5章 原子结构和元素周期系

- 2. 下列的电子运动状态是否存在? 为什么?
 - ① n=2, l=2, m=0, $m_s=+\frac{1}{2}$;
 - ② n=3, l=2, m=2, $m_s=+\frac{1}{2}$;
 - ③ n=4, l=1, m=-3, $m_s=+\frac{1}{2}$;
 - (4) n=3, l=2, m=0, $m_s=+\frac{1}{2}$.
- 解: ① 不存在,因为 l=n。
 - ②、④ 存在。
 - ③ 不存在。因为m > l
- 3. 对下列各组轨道,填充合适的量子数:

①
$$n=?$$
, $l=2$, $m=0$, $m_s=+\frac{1}{2}$;

②
$$n=2$$
, $l=?$, $m=-1$, $m_s=-\frac{1}{2}$;

- ③ n=4, l=2, m=0, $m_s=?$;
- (4) n=2, l=0, m=?, $m_s=+\frac{1}{2}$.

解: ①
$$n \ge 3$$
; ② $l = 1$; ③ $m_s = +\frac{1}{2}$ 或 $-\frac{1}{2}$; ④ $m = 0$ 。

- 4. 试用 s, p, d, f 符号表示下列各元素原子的电子分布式,并分别指出它们各属于第几周期、第几族?① $_{18}$ Ar; ② $_{26}$ Fe; ③ $_{29}$ Cu; ④ $_{35}$ Br。
- 解: ① ₁₈Ar
- $1s^22s^22p^63s^23p^6$

第三周期 VIIIA 族

- ② ₂₆Fe
- $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

第四周期 ⅧB族

- ③ 29Cu
- $1s^22s^22p^63s^23p^63d^{10}4s^1$

第四周期 ІВ族

4 35Br

- $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$
- 第四周期 ⅦA族

5. 填充下表:

原子序数	电子分布式	外层电子构型	周期	族	X
28					
	$1s^22s^22p^5$				
		$4d^55s^1$			
			6	IIB	

解:

川十.	•					
	原子序	电子分布式	外层电	周期	族	X
	数		子构型			
	28	$1s^22s^22p^63s^23p^63d^84s^2$	$3d^84s^2$	四	VIIIB	d⊠
	9	$1s^22s^22p^5$	$2s^22p^5$	<u> </u>	VIIA	p⊠
	42	$1s^22s^22p^63s^23p^63d^{10}4s^24$	$4d^55s^1$	五.	VIB	d⊠

	$p^64d^55s^1$				
80	$1s^22s^22p^63s^23p^63d^{10}4s^24$	$5d^{10}6s^2$	6	IIB	ds ⊠
	$p^{6}4d^{10}4f^{14}5s^{2}5p^{6}5d^{10}6s^{2}$				

6. 已知下列元素的原子的外层电子构型分别为:

① $3s^2$; ② $2s^22p^4$; ③ $3d^34s^2$; ④ $4d^{10}5s^2$ 。试指出它们在周期系中各处于哪一个区、哪一周期、哪一族以及它们最高正氧化值各为多少?

解:

外电子层结构	X	周期	族	最高正氧化值
① $3s^2$ Mg	S	111	II A	+2
② $2s^22p^4$ O	p	=	VIA	+6
③ $3d^34s^2$ V	d	四	VB	+5
(4) $4d^{10}5s^2$ Cd	ds	五	II B	+2

- 7. 第四周期某元素,其原子失去 3 个电子,在 *l*=2 的轨道内电子半充满,试推断该元素的原子序数、外层电子构型,并指出位于周期表中哪一族?是什么元素?
- 解:该元素的原子失去 3 个电子为 M^{3+} ,则外电子层结构为 $3d^54s^0$ 。

该元素为 M,则外电子层结构为 $3d^64s^2$,其电子结构为 $1s^22s^22p^63s^23p^63d^64s^2$ 该元素为 $2e^6$ Ee。

- 8. 若元素最外层仅有一个电子,该电子的量子数为n=4, l=0, m=0, $m_s=+\frac{1}{2}$ 问:① 符合上述条件的元素可以有几个?原子序数各为多少?② 写出相应元素的电子分布式,并指出在周期表中所处的位置(周期、族、区)。
- 解:① 此最外层电子为 4s,符合上述条件的元素有 3 个。
 - ② ₁₉K 1s²2s²2p⁶3s²3p⁶4s¹ 处于 s 区,第四周期 I A 族;

 $_{24}$ Cr $1s^22s^22p^63s^23p^63d^54s^1$ 处于 d 区,第四周期 VIB 族;

 $_{29}$ Cu $1s^22s^22p^63s^23p^63d^{10}4s^1$ 处于 ds 区,第四周期 I B 族。

9. 写出下列各种离子的外层电子构型:

① Mn^{2+} ; ② Ti^{4+} ; ③ Fe^{3+} ; ④ Cd^{2+} 。

离子	外层电子构型	外层电子构型
① Mn ²⁺	$3s^23p^63d^5$	9~17e
② Ti ⁴⁺	$3s^23p^6$	8e
③ Fe ³⁺	$3s^23p^63d^5$	9~17e
④ Cd ²⁺	$4s^24p^64d^{10}$	18e