Data-Driven Smart Synthesis of Two-Dimensional Materials

4

University at Buffalo

Department of Materials Design and Innovation

School of Engineering and Applied Sciences

College of Arts and Sciences

Chu Te Chen¹, Akshayadevi Tiroucoumarane¹, Durga Venkata Siva Prasad Kosana¹, Rebekah Finster¹, Yu Fu¹, Anthony Butler¹, Anindita Chakravarty², Huamin Li², Scott Broderick¹, Krishna Rajan¹, Fei Yao¹ (<u>feiyao@buffalo.edu</u>)

1 Department of Materials Design and Innovation, University at Buffalo

2 Department of Electrical Engineering, University at Buffalo

Introduction

Molybdenum disulfide (MoS₂) (Fig. 1a), a representative two-dimensional semiconductor, exhibits enormous potential in electronic and electrochemical applications [1]. While it can be synthesized using chemical vapor deposition (CVD), the process is far from optimization due to high-dimensionality of the synthesis parameter space and complex correlation among the process variables [2]. In this work, we exploited machine learning (ML) techniques to predict the success of MoS₂ synthesis and identified the crucial growth parameters. Leverage the knowledge gained, we successfully synthesized the material using CVD (Fig. 1b) and demonstrated high-performance MoS₂-based field-effect transistor (FET).

Fig. 1 Schematic illustration of (a) MoS₂ and (b) CVD.

Materials & Methods

- 300 data points
- 61% positive39% negative
- Data split
- 80% training

• 20% testing

- Logistic regression
 - regressionKNNDecision tree

Random forest

10-fold cross

4 classifiers

validate

data (# 2.1 M)

Find prob. of
success > 90%

Grow MoS₂ with
conditions fitting
our experiment
limitation

Generate mock

Fig. 2 ML model construction and analysis.

		Add NaCl	Dist. of S (in cm)	Flat/ Tilted	Flow rate (sccm)	Reaction temp. (°C)	Ramp time (min)	Reaction time (min)	Can grow
		0	2.0	Flat	50	500	13	10	0
		1	2.0	Tilted	200	550	20	5	1
		1	2.0	Flat	60	750	16	10	0
		:	:	:	•	•	•	:	:
k-0	Min	0	0.5	-	10	500	10	5	0
	Max	1	3.5	_	250	975	30	15	1
\	Avg	0.3	2.1	-	72	728	16	12	0.6
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Std	0.5	0.5	-	42	95	2	3	0.5

Table 1 Open source dataset for MoS₂ CVD growth [3].

Results

	Model	Accuracy	Precision	Recall	
, X	Logistic regression	0.691	0.644	0.853	
	KNN	0.879	0.861	0.912	
	Decision tree	0.896	0.872	1.0	
``.	Random forest	0.913	0.868	0.971	

Table 2 Performance comparison of ML classifiers.

The most significant factors affecting the success of MoS₂ CVD growth

- Gas flow rate (#4)
- Reaction temp. (#5)
- Reaction time (#7)

Fig. 3 Feature evaluation from random forest classifier.

Results cont.

(in		(sccm)	(°C)	(min)	(min)	grow pred.
0 2	2.9 Flat	80	750	19	14	1
0 1	.7 Flat	80	800	23	12	1
0 1	.7 Flat	75	780	39	22	1

Table 3 ML suggested growth conditions.

The ML proposes a set of growth condition with over 90% probability of success by exploring 2.1 millions of possible combinations.

Fig. 4 (a) Optical image, (b) Raman spectrum, and (c) AFM image of as-synthesized MoS₂.

High crystallinity and monolayer MoS₂ was successfully synthesized using the ML-suggested optimal growth conditions.

Fig. 5 (a) Schematic of MoS₂-based FET (b) Output and (c) Transfer characteristics of the device.

The MoS₂-based FET showed an on/off ratio of 10⁷ and a typical n-type semiconductor behavior [4].

Conclusions

- The ML method can be employed to accelerate the exploration of CVD synthesis parameter space.
- The random forest model showed an 91.3% accuracy for the success of CVD synthesis prediction.
- The random forest model could improve the MoS₂ CVD experiments success rate from 61% to 90%.
- Monolayer MoS₂ with high crystallinity was successfully synthesized using the ML-predicted parameters.

Acknowledgement

This work is an MDI interconnect project (MDI 501 and 503, spring semester). Part of the experimental data is collected in the NETLab (Dr. F. Yao) with funding support from CMI under award C160186.

References

- [1] Zuoli He, Wenxiu Que, (2016) Applied Materials Today, Volume 3
- [2] Bhowmik, S., & Govind Rajan, A. (2022). iScience, Volume 25
- [3] Tang et. al, (2020), Materials Today, Volume 41 [4] Tong et al. (2015) Nano-Micro Lett. 7, 203–218