Review: Exponents and Logarithms

Intro to Exponents:

1) Recall that $a^n = a \cdot a \cdot a \cdot a \dots (n \text{ times})$

$$\rightarrow$$
Example: $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

2) For a^0 , we define it as $a^0 = 1$.

$$\rightarrow$$
Examples: $5^0 = 1$, $(\frac{1}{5})^0 = 1$, $e^0 = 1$

3) For a^{-b} , we define it as $(1/a^b)$

$$\rightarrow$$
Example: $5^{-3} = (1/5^3)$

Operations of Exponents:

- 1) Multiplication : $a^m \cdot a^n = a^{m+n}$
 - -To multiply two exponential terms that have the same base, add their exponents.

→ Example:
$$3^2 \cdot 3^3 = 3^{3+2} = 3^5$$

-Do not add the exponents of terms with unlike bases.

⇒ Example:
$$2^2 \cdot 3^3 \neq 6^{3+2} \neq 6^5$$

2) Division:
$$\frac{a^m}{a^n} = a^{m-n}$$

-To divide two exponential terms that have the same base, subtract their exponents.

⇒Example:
$$\frac{7^6}{7^3} = 7^{6-3} = 7^3$$

- -Do not subtract the exponents of terms with unlike bases
- 3) Exponents of Exponential Terms: $(a^m)^n = a^{mn}$
 - -To raise an exponential term to another exponent, multiply the two exponents.

→ Example:
$$(2^3)^2 = 2^{2 \cdot 3} = 2^6$$

- 4) Products/quotients raised to exponents: $(ab)^m = (a^m b^m); (\frac{a}{b})^m = \frac{a^m}{b^m}$
 - To raise a product or a quotient to an exponent, apply the exponent to each individual part

→Examples:
$$(2x)^4 = 2^4x^4 = 16x^4$$
;

Radicals are another form of exponents. Here's a helpful way to think about them:

$$\sqrt[n]{a} = a^{\frac{1}{n}};$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

-

The Logarithm

If
$$b^c = a$$
, then $\log_b a = c$

A logarithm is just another way to write an exponent. If you want to find out what 5^2 is, you multiply two fives together to get 25. But if you want to find out which power you have to raise 5 to in order to get 25, you use a logarithm.

$$\log_5 25 = ?$$

The question you ask yourself when you look at this log is: To what power should I raise 5 in order to get 25? The answer is 2.

$$\log_5 25 = 2$$

Here's the general form of a logarithm:

$$\log_b a = c$$

The Common Log, the Natural Log and Ig (log base 2)

- Logarithms can have any base (b), but the most common bases are 10, 2 and e.
- Logs with bases of 10 are called common logs, and often the 10 is left out when a common log is written.

 \rightarrow Example: $\log_{10} 100$ is the same as $\log 100$

- Logs with bases of e are known as natural logs. The shortened version of $\log_e x$ is $\ln x$.
- *e* is a constant with an approximate value of 2.71828. Don't let it scare you... it's just a number
- Logs with bases of 2 are often written as Ig

 \rightarrow Example: $\lg 32 = 5$

Simplifying Logarithms

The following rules for simplifying logarithms will be illustrated using the natural log, *In*, but these rules apply to all logarithms.

1) Adding logarithms (with the same base)

$$\ln a + \ln b = \ln(a \cdot b)$$

Two logs of the same base that are added together can be consolidated into one log by *multiplying* the inside numbers.

$$\rightarrow$$
Example: $\ln 5 + \ln 4 = \ln(5 \cdot 4) = \ln 20$

2) Subtracting logarithms (with the same base)

$$\ln a - \ln b = \ln(a/b)$$

Similarly, two logs of the same base being subtracted can be consolidated into one log by *dividing* the inside numbers.

→ Example:
$$\ln 14 - \ln 2 = \ln(14/2) = \ln 7$$

3) Exponents of logarithms

$$\ln a^b = b \ln a$$

If the inside number of the logarithm is raised to a power, you bring down the exponent as a coefficient.

$$\rightarrow$$
Example: $\ln 3^2 = 2 \ln 3$

4) Change of Base

$$\log_b a = \frac{\log a}{\log b}$$

5) Things that cancel

$$- \ln e = 1$$

-
$$\log_a a = 1$$

-
$$\ln 1 = 0$$

$$-\log_a 1 = 0$$

$$- e^{\ln x} = x$$

$$- \ln e^x = x$$

Limits as x goes to infinity

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = \infty, \quad if \ p(x) grows \ faster \ than \ q(x)$$

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = 0, \quad if \ q(x) grows \ faster \ than \ p(x)$$

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = c,$$

if p(x) and q(x) grow at the same rate and c is the ratio of the leading coefficients

Examples:

1.
$$\lim_{x\to\infty} \frac{x^5+3x^3}{10000x^2} = \infty$$

2.
$$\lim_{x \to \infty} \frac{x^5 + 3x^3}{x^7} = 0$$

3.
$$\lim_{x \to \infty} \frac{6x^5 + 3x^3}{3x^5} = 2$$

4.
$$\lim_{x \to \infty} \frac{\log x^3}{\log x} = \frac{3 \log x}{\log x} = 3$$