B BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAM

Offenlegungsschrift

29 03 612

C 07 C 103/46

C 07 C 103/84

C 07 C 103/38 C 07 D 333/24 C 07 D 307/68 C 07 C 103/78 A 01 N 9/20

(1) (2)

Aktenzeichen:

P 29 03 612.2

2

Anmeldetag: Offenlegungstag:

Int. Cl. 2:

31. 1. 799. 8. 79

30

Unionspriorität:

@ 33 31

Bezeichnung:

2. 2.78 Italien 19896 A-78

4. 7. 78 Italien 25295 A-78

(S4)

....

Neue Acylaniline, deren Herstellung und deren Verwendung als

Fungizide

Ø)

Anmelder:

Montedison S.p.A., Mailand (Italien)

@

Vertreter:

Erfinder:

Wirth, P., Dipl.-Ing.; Dannenberg, G.E.M., Dipl.-Ing.;

Schmied-Kowarzik, V., Dr.; Weinhold, P., Dr.; Gudel, D., Dr.;

Schubert, S., Dipl.-Ing.; Pat.-Anwälte, 6000 Frankfurt und 8000 München

72)

Bosone, Enrico, Mailand; Camaggi, Giovanni, Lodi, Mailand (Italien);

Vries, Lambertus de, Hilversum (Niederlande);

Garavaglia, Carlo, Cuggiono, Mailand; Garlaschelli, Luigi, Pavia;

Cozzo, Franco, San Donato Milanese, Mailand (Italien); Overeem, Jan Cornelis, Scherpenzeel (Niederlande); Lorusso, Simone, San Giuliano Milanese, Mailand (Italien)

JE 29 03 612 A

9 7. 79 909 832/655

24/120

Patentansprüche

Verbindungen der allgemeinen Formel (I):

$$X = (CH_2)_{11} \xrightarrow{R^3} C \xrightarrow{R^4} C = Z$$

$$R \xrightarrow{\qquad \qquad \qquad } R^1$$

$$(1)$$

in welcher R und R¹, die gleich oder verschieden sein können, für H, CH_3 , C_2H_5 , n- C_3H_7 , - CH_2 -CH= CH_2 oder -CH=CH- CH_3 stehen; R^3 und R^4 , die gleich oder verschieden sein können, stehen für H, C₁₋₃ Alkyl, Halogenmethyl, Cl, F, CN, O-Alkyl, S-Alkyl oder Alkoxymethyl oder R3 und R4 , bedeuten, zusammen genommen (CH₂=)

$$X = -C - R^9$$
; $-C - 0 - R^9$ ($R^9 = alkyl C_1 - C_3$); CN; $-CH(OR^5)_2$ ($R^5 = 0$)

Alkyl oder Alkyliden); $R^{-N} = R^6$ (R^6 und $R^7 = H$, Alkyl)

$$n = 0, 1$$

$$Z = \text{wahlweise substituiertes Phenyl; } -(CH)_{m} - Y; CH_{2} - C - R^{8}$$

und $R^2 = H$, CH_3 ; m = 1, 2;

Y steht für C2-8 Alkinyl, wahlweise substituiertes Phenyl, Phenylacetyl, Furyl, Thienyl, Pyridyl, oder eine heterocyclische Gruppe mit 2 oder 3 Heteroatomen, von denen eines von Stickstoff verschieden ist; und $R^8 = CH_3$, Alkoxymethyl, Halogenmethyl oder O-Alkyl.

30 2.- Verbindungen nach Anspruch 1 mit der Formel:

in welcher R, R¹, R³, R⁴, R⁸, X und n die Bedeutung wie in Anspruch 1 haben.

3.- Verbindungen nach Anspruch 1 und 2 mit der Formel:

in welcher R, R^1 , R^3 , R^4 und R^8 dieselbe Bedeutung wie in Anspruch 1 haben und Y für G-O-R⁹ steht.

4.- Verbindungen nach Anspruch 1 bis 3 mit der Formel:

$$R^9 - 0 - \frac{c}{0} - \frac{R^3}{0} - \frac{0}{0} - \frac{0}{0} - \frac{0}{0} - \frac{8}{0}$$

in welcher R, R¹ und R⁸ dieselbe Bedeutung wie in Anspruch 1 haben und R⁹ für c_{1-3} Alkyl steht und R³ CH₃ oder c_2 H₅ bedeutet.

5.- N-(2,6-Dimethylphenyl)-N-acetoacetyl-d-aminomethylpropionat.

6.- N-(2.6-Dimethylphenyl)-N-acetoacetyl-d-aminoathylpropionat.

7.- N-(2-Methyl-6-allyphenyl)-N-carboxymethylacetyl-q(-aminomethyl-propionat.

8.- N-(2,6-Diallylphenyl)-N-carboxymethylacetyl-d-aminomethylpropionat.

9.- N-(2,6-Dimethylphenyl)-N-carboxymethylacetyl-q-aminomethylpropionat.

10.- N-(2-Methyl-6-äthylphenyl)-N-carboxymethylacetyl-d-aminomethyl-propionat.

11.- N-(2,6-Diäthylphenyl)-N-carboxymethylacetyl-d-aminomethylpropionat.

12.- N-(2,6-Dimethylphenyl)-N-chloracetoacetyl-d-aminomethylpropionat.

13.- N-(2,6-Diallylphenyl)-N-acetoacetyl-x-aminomethylpropionat.

14.- N-(2-Methyl-6-allylphenyl)-N-acetoacetyl-d-aminomethylpropionat.

15.- N-(2,6-Dimethylphenyl)-N-acetoacetyl-d-aminoisopropylpropionat.

16.- N-/2 Methyl-6-(1'-propenyl)-phenyl -N-acetoacetyl-d-aminomethylpropionat.

17.- N-(2-Allylphenyl)-N-acetoacetyl-&-aminomethylpropionat.

18.- N-(2,6-Dimethylphenyl)-N-acetoacetyl-A-aminomethylbutyrat.

19.- Verbindungen nach Anspruch 1 und 2 mit der Formel:

in welcher R, R¹, R³, R⁴, R⁸ und n dieselbe Bedeutung wie in Anspruch 1 haben und X für OR⁵ steht, wobei R⁵ Alkyl bedeutet.

CH OR⁵

20.- Verbindungen nach Anspruch 1, 2 und 19 mit der Formel:

25

in welcher R, R¹ und R⁸ dieselbe Bedeutung wie in Anspruch 1 haben und \mathbb{R}^3 für H oder \mathbb{CH}_3 steht.

21.- N-(2,2-Dimethoxyäthyl)-N-(2,6-dimethylphenyl)-carboxymethylacetamid.

22.- N-(1-Methyl-2,2-dimethoxyäthyl)-N-(2,6-dimethylphenyl)-acetoacetamid.

23.- Verbindungen nach Anspruch 1 und 2 mit der Formel:

in welcher R, R^1 , R^3 , R^4 , R^8 und X dieselbe Bedeutung wie in Anspruch 1 haben.

24.- Verbindungen nach Anspruch 1, 2 und 23 mit der Formel:

$$R^{0} - 0 - C - CH_{2} - CH_{2} - C - R^{8}$$

 20 in welcher R, R 1 und R 8 dieselbe Bedeutung wie in Anspruch 1 haben, R 3 für H oder CH $_3$ steht und R 9 C $_{1-3}$ Alkyl bedeutet.

25.- N-(2,6-Dimethylphenyl)-N-acetoacetyl-G-aminomethylpropionat.

26.- Verbindungen nach Anspruch 1 mit der Formel:

$$X - (CH2)n R \xrightarrow{R4 0 | || C - z}$$

in welcher R, R¹, R³, R⁴, X und n die in Anspruch 1 genannte Bedeutung haben und Z für eine wahlweise substituierte Phenylgruppe steht.

27.- Verbindungen nach Anspruch 1 und 26 mit der Formel:

35

$$X - \begin{bmatrix} R^3 & 0 \\ CH & C \\ R & C \end{bmatrix} = Z$$

in welcher R, R^1 , R^3 und X die in Anspruch 1 genannte Bedeutung haben und Z für eine wahlweise substituierte Phenylgruppe steht.

28.- Verbindungen nach Anspruch 1, 26 und 27 mit der Formel:

$$R^{9}O - C - CH \xrightarrow{CH}_{S} C - Z$$

in welcher R, R^1 und R^9 dieselbe Bedeutung wie in Anspruch 1 haben und Z für eine wahlweise substituierte Phenylgruppe steht.

29.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-benzamid.

10

30.- N-(2,6-Dimethylphenyl)-N-(1-carboisopropoxyäthyl)-benzamid.

31.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-2-methylbenzamid.

20 32.- N-(2-Allylphenyl)-N-(1-carbomethoxyäthyl)-benzamid.

33.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-4-methoxybenzamid.

34.- N-(2,6-Dimethylphenyl)-N-(1-carboathoxyathyl)-benzamid.

25 35.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-4-chlorbenzamid.

36.- Verbindungen nach Anspruch 1 und 26 mit der Formel:

$$X - (CH_2) = R + R^4 = R^4 =$$

in welcher R, R¹, R³, R⁴ und n dieselbe Bedeutung wie in Anspruch 1

35 haben und Z für eine wahlweise substituierte Phenylgruppe steht sowie

X für OR⁵ steht, wobei R⁵ Alkyl bedeutet.

CH OR⁵

- 42 -

2903612

37.- Verbindungen nach Anspruch 1, 26 und 36 mit der Formel:

$$CH_{3}^{0}$$
 CH_{2}^{0} CH_{2}^{0} CH_{3}^{0} $CH_$

in welcher R, R^1 , R^3 und n dieselbe Bedeutung wie in Anspruch 1 haben.

38.- N-(1-Methyl-2,2-dimethoxyäthyl)-N-(2,6-dimethylphenyl)-benzamid.

39.- N-(2,2-Dimethoxyäthyl)-N-(2,6-dimethylphenyl)-benzamid.

15 40.- Verbindungen nach Anspruch 1 mit der Formel:

in welcher Z für _-(CH)_m-Y steht und R, R¹, R³, R⁴, X, R², Y, m und n

dieselbe Bedeutung wie in Anspruch 1 haben

41.- Verbindungen nach Anspruch 1 und 40 mit der Formel:

30

35

20

in welcher R, R^1 , R^2 , R^3 , R^4 , X and Y dieselbe Bedeutung wie in Anspruch 1 haben.

42.- Verbindungen nach Anspruch 1, 40 und 41 mit der Formel:

- 45 -

2903612

$$R^{9} = 0 - C R^{4 \cdot 0} C C C C C C C$$

$$R^{9} = 0 - C R^{1} C C C C C$$

$$R^{1} C C C C$$

$$R^{1} C C C C$$

10 in welcher R, R¹, R³, R⁴ und R⁹ dieselbe Bedeutung wie in Anspruch 1 haben und Y für Furyl, Thienyl oder C₃₋₈ Cycloalkyl steht.

43.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-(2)-furylacetamid.

44.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-(2)-thienylacetamid.

45.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-cyclohexylacetamid.

46.- Verbindungen nach Anspruch 1 und 40 mit der Formel:

$$R^9 - 0 - C \qquad R^{3} \qquad R^{4} \qquad 0 - CH_2 - Y$$

 25 in welcher R, 1 , 3 , 4 und 9 dieselbe Bedeutung wie in Anspruch 1 haben und Y für eine wahlweise substituierte Phenylgruppe steht.

47.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-phenylacetamid.

48.- N-(2,6-Dimethylphenyl)-N-(1-carboisopropoxyäthyl)-phenylacetamid.

49.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyvinyl)-phenylacetamid.

50.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxypropyl)-phenylacetamid.

51.-N-(2.6-Dimethylphenyl)-N-(1-carboathoxyathyl)-phenylacetamid.

52.- N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-4-methoxyphenyl-acetamid.

2903612

53.- Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1 bis 52, dadurch gekennzeichnet, daß man ein Anilin der allgemeinen Formel (II)

$$x - (CH_2)_n \xrightarrow{R^3} C$$

$$R \xrightarrow{NH} R^1$$
(II)

in welcher R, R¹, R³, R⁴, X und n dieselbe Bedeutung wie in Anspruch 1 haben, in einem inerten Lösungsmittel und in Anwesenheit von Dimethylformamid oder einer Halogenwasserstoff akzeptierenden Base mit dem Chlorid einer Carbonsäure der Formel:

in welcher Z dieselbe Bedeutung wie in Anspruch 1 hat, umsetzt.

54.- Verfahren zur Herstellung der Verbindungen nach Anspruch 1, in welchen Z für CH₂-CO-CH₃ steht, dadurch gekennzeichnet, daß man ein Anilin der Formel (II):

$$X - (CH_2)_{n} \\ R \\ Q \\ R^4$$
(II)

in welcher R, R^1 , R^3 , R^4 , X und n dieselbe Bedeutung wie in Anspruch 1 haben, in einem inerten Lösungsmittel mit Diketen

$$CH_2 = C - O \\ CH_2 - C = O$$

umsetzt.

15

25

30

55.- Die Verwendung der Verbindungen gemäß Anspruch 1 bis 52 als Fungizid zur Bekämpfung von Infektionen phytopathogener Fungi auf Nutzpflanzen, wenn die Infektion noch nicht begonnen hat (präventive Wirkung) oder bereits eingesetzt hat (kurative Wirkung), dadurch gekennzeichnet, daß man auf die Pflanzen oder den Boden eine wirksame Menge einer oder mehrerer Verbindungen nach Anspruch 1 bis 52, per se oder als geeignetes Präparat, aufbringt.

- 45 -

2903612

56.- Die Verwendung gemäß Anspruch 55, dadurch gekennzeichnet, daß die Pflanze und/oder der Boden behandelt wird.

57.- Die Verwendung nach Anspruch 55 und 56, dadurch gekennzeichmet, daß Rebenmehltau (Plasmopara viticola (B. et C.) Berl et de Toni), Tabakmehltau (Peronospora tabacina Adam) und/oder Tomatenmehltau (Phytophthora infestans (Mont) De Bary) bekämpft wird.

Der Patentanwalt:

Aland le grins

15

10

20

· 25

30

2903612

PATENTANWALTE

Dipl-Ing. P. WIRTH · Dr. V. SCHMIED-KOWARZIK

Dipl. Ing. G. DANNENBERG · Dr. P. WEINHOLD · Dr. D. GUDEL

335024 TELEFON: (089) 335025 SIEGFRIEDSTRASSE 8 8000 MUNCHEN 40 SK/SK K.2543 + K.2619

Montedison S.p.A. Foro Buonaparte 31 Mailand / Italien

Neue Acylaniline, deren Herstellung und deren Verwendung als Fungizide

Die vorliegende Erfindung bezieht sich auf neue Acylaniline, insbesondere auf solche mit fungizider Wirkung, sowie auf die Herstellung und Verwendung derselben.

Neuerlich ist die bakterizide und fungizide Wirkung einiger Derivate von Anilin und Glycin beschrieben worden, die auf dem Stickstoffatom eine unterschiedlich substituierte Phenylgruppe und eine Acylgruppe unterschiedlicher Natur tragen. Die Acylgruppe kann insbesondere aus einer doder B-Halogenalkanoylgruppe (vgl. die DE OS 2 513 789), einer Acetylgruppe, die ind-Stellung durch ein Schwefel- oder Sauerstoffaton aubstituiert ist. das seinerseits an unterschiedliche Gruppen gebunden ist (vgl. die französische Patentanmeldung 7 510 722), oder aus einer 2-Furoylgruppe, einer 2-Thienoylgruppe oder einer Pyridyl-2-carboxylgruppe bestehen (vgl. die DE OSS 2 513 732 und 2 513 788). Ebenfalls beschrieben wurde die mikrobiozide Aktivität von Methylalaminaten, die auf dem Stickstoffatom eine 2,6-Dialkylphenylgruppe und eine der folgenden Gruppen tragen: Cyclopropanoyl, Acryloyl, Crotonoyl (vgl. die schweizerischen Patentanmeldungen 4 998/74 und 2 906/75). Das Interesse zum Auffinden neuer Derivate von Acylanilinen mit fungizider Wirkung beruht auf dem Wunsch, eine hohe fungizide Aktivität in Kombination mit fehlender Phytotoxizität zu finden. Einige der bereits bekannten Produkte zeigen zwar eine ausgezeichnete fungizide Wirkung,

- 2/ -

2903612

sind jedoch gegenüber Pflanzen, die vor Pilzinfektionen geschützt werden sollen, toxisch.

5 Ziel der vorliegenden Erfindung sind nun neue fungizide Acylaniline der allgemeinen Formel (I):

$$X - (CH2) = R + R + O = R$$

in welcher R und R¹, die gleich oder verschieden sein kömmen, für H, CH₃, C₂H₅, n-C₃H₇, -CH₂-CH=CH₂ oder -CH=CH-CH₃ stehen; R³ und R⁴, die gleich oder verschieden sein können, stehen für H, C₁₋₃ Alkyl, Halogenmethyl, Cl, F, CN, O-Alkyl, S-Alkyl oder Alkoxymethyl oder R³ und R⁴ bedeuten, zusammen genommen (CH₂=)

$$X = -C - R^{9}; \quad -C - 0 - R^{9} \quad (R^{9} = \text{Alkyl } C_{1} - C_{3}); \quad CN; \quad -CH(OR^{5})_{2} \quad (R^{5} = \text{Alkyl oder Alkyliden}); \quad C - N < R^{6} \quad (R^{6} \text{ und } R^{7} = \text{H, Alkyl})$$

$$n = 0, 1$$
 $Z = \text{ wahlweise substituiertes Phenyl};$
 R^2
 $-(CH)_{m} - Y;$
 $CH_2 - C - R^8$

und
$$R^2 = H$$
, CH_2 ; $m = 1, 2$;

10

Y steht für C_{2-8} Alkinyl, wahlweise substituiertes Phenyl, Phenylacetyl, Furyl, Thienyl, Pyridyl, oder eine heterocyclische Gruppe mit 2 oder 3 $_{30}$ Heteroatomen, von denen eines von Stickstoff verschieden ist; und $R^8 = CH_3$, Alkoxymethyl, Halogenmethyl oder O-Alkyl.

Die Verbindungen der Formel (I) haben eine hohe fungizide Aktivität mit einer geringen Phytotoxizität.

Die Synthese der Acylaniline gemäß Formel (I) erfolgt durch Kondensieren von Anilinen der allgemeinen Formel (II):

2903612

$$X = (CH_2)^n R$$

$$R$$

$$Q$$

$$R$$

$$Q$$

$$R$$

$$Q$$

$$R$$

$$Q$$

$$R$$

$$Q$$

$$R$$

in welcher X, R, R¹, R³, R⁴ und n die obige Bedeutung haben, mit einer Verbindung der Formel (III):

in welcher Z die obige Bedeutung hat, in Anwesenheit einer Halogenwasserstoff akzeptierenden Base oder Dimethylformamid.

Einige der Aniline der allgemeinen Formel (II) sind im Handel erhältlich die anderen sind, ausgehend von 2,6-disubstituierten Anilinen, nach bekannten Reaktionen leicht herstellbar. Die in 2- und/oder 6-Stellung durch Alkenylgruppen substituierten Aniline sind in den italienischen Patentanmeldungen 23 809 A/77 und 28817 A/77 beschrieben worden. Verbindungen der allgemeinen Formel (III) sind z.B. Benzoylchlorid, Phenylacetylchlorid, das Monochlorid eines Malonsäureesters (Cl-CO-CH₂-COO-Alkyl), das Chlorid von Chloracetoessigsäure (Cl-CO-CH₂-CO-CH₂Cl) usw.

Verbindungen der Formel (I), in welcher $Z = CH_2-CO-R^8$ steht und $R^8 = CH_3$ ist, können auch durch Reaktion eines Anilins der allgemeinen Formel (II) mit Diketen $(CH_2=C-O)$ hergestellt werden. $CH_2-C=O$

- Die in der folgenden Tabelle 1 genannten Verbindungen sind nach den obigen Verfahren hergestellt worden; dabei bedeuten:
 - (a) die Schmelzpunkte sind nicht korrigiert worden
 - (b) es sind nur die bedeutendsten Bänder aufgeführt
 - (c) die NMR Spektren von Verbindung 1 und 3 wurden mit CCl₄ als Lösungsmittel festgestellt, bei den anderen Spektren wurde CDCl₃ verwendet s =: Singlet, d =: Dublet, t = Triplet, q = Quadruplet, m = Multiplet
 - (d) Elementaranalyse: berechnet Chlor = 10,25; gefunden Chlor = 9,68
 - (e) Mischung von Tautomeren

	MS,	H 2-6) H 3-6) H 3-6) H 3-0) H 3-0) H 3-0)	CH) H ₃ 2 - CH L ₃ - Ø) H ₃ - Ø) H ₃ - Ø) H ₃ - Ø) Sonenda	512
	(c) NMR (d, ppm)/TMs/	1,04(d,3H, CH_3 -CH) 2,23(s,3H, CH_3 - ϕ) 2,29(s,3H, CH_3 - ϕ) 3,79(s,3H, CH_3 -0) 4,30(q,1H,CH) 6,83-7,33(m,8H. aromatische Protonen	1,2(d,3H,CH3-CH) 1,3 (d,6H, (CH3)2-CH7 2,3(s,3H,CH3-\phi) 2,32(s,3H,CH3-\phi) 4,4(q,1H,CH3-CH) 5,2(\hat{m},1H,(CH3)2CH\hat{m} 6,8-7,5(\hat{m},8H,\hat{aras} \hat{matische Protonersh}	the state of the s
	(b) IR Max (cm ⁻ 1)	1635 1730 1745	1630 1715 1720	grades de la constitución de la
4	nalyse (%) gefunden	C: 73,8 H: 7,0 N: 4,4	C: 74,45 H: 7,77 N: 4,25	ocas har ye ilirah ammunipilinin dida aka diri daga
ре 1 1	<u>Elementaranalyse</u> berechnet gefund	C: 73,29 H: 6,80 N: 4,50	C: 74,31 H: 7,42 N: 4,13	e course de cour
о в	(a) OC	96-100	97-100	
i	Formel	H ₂ C-0-c-cH CH ₂ C-C ₆ H ₅ N CH ₃	$(cH_3)_2 cH - 0 - c - cH_5$ 0 0 0 0 0 0 0 0 0 0	
	Verbin- dung No.	-	8	

	30	9 q B	20 O T T	Fortsetzung)	: 10	5
Verbin- dung No.	Formel	(a ၁	Elementaranalyse berechnet gefunc	nalyse (%) gefunden	(b) IR Max (cm-1)	(c) NMR (δ,ppm)
m 2002210	H ₃ C-O-C-CH 0 N 0 CH ₃ H ₃ C CH ₃	114-115				1,20(d, 3H, CH ₃ -CH) 2,27(s, 3H, CH ₃ -\phi) 2,37(s, 3H, CH ₃ -\phi) 2,47(s, 3H, CH ₃ -\phi) 3,83(s, 3H, CH ₃ -\phi) 4,30(q, 1H, CH ₃ -CH) 6,63-7,20(m, 7H, aromatische Proto-nen)
7	CH ₃ C-CH ₂ -C ₆ H ₅ H ₃ C CH ₂ -C ₆ H ₅	78-80	C: 78,32 H: 7,12 N: 4,30	C: 75,34 H: 7,47 N: 4,64	1660	0,98(d,3H,CH ₃ -CH) 1,85(s, 3H, CH ₃ -Ø) 2,4(s, 3H, CH-Ø) 3,25(s, 2H, CH ₂) 3,8(s, 3H, CH ₂) 4,45(q, 1H, CH ₃ -CH) 6,85-7,3(m, 8H, aromatische Protonen)

_	1	4	
_	4	_	_

		-13 -	
5	(c) NWR (d, ppm) 2TM <u>s</u> 7		2,2(s, 6H, $CH_3-\phi$) 3,3(s, 6H, CH_3-0) 3,9(d, 2H, CH_2-N) 4,95(t, 1H, CH_2^0) 7-7,3(m 8H, aromatische Protonen)
10	(b) IR Max (cm ⁻ 1)		
Tabelle I (Fortsetzung)	(a) Elementaranalyse $(%)$ of berechnet gefunden	61 C: 73,37 C: 75,4 H: 7,70 H: 8,4 N: 4,18 N: 4,3	58-59 C: 72,81 C: 73,14 H: 7,40 H: 7,66 N: 4,47 N: 4,69
35 E-1 30	Formel	H ₃ C-0 CH ₃ C-C ₆ H ₅ H ₃ C-0 N N OH ₃	H ₃ C-0 H ₃ C-0 CH-CH ₂ C-C ₆ H ₅ H ₃ C N 0 H ₃ C CH ₃
and special control of the special control of	Verbin- dung No.	r.	. 9

35	U .	ല പ്പ ല	1 1 e	Forts	r I (Fortsetzung	o ~		þ
Verbin- dung No.	Formel	(a) o ^F	Elementaranalyse (%) berechnet gefunden	nalyse (% gefunden	(%)	(b) IR Max1 (cm)	(c) NMR (d,ppm) (IMS7	52
СН- Н3С-0-С-СН 9 Н3С	CH ₂ -CH N CH ₃ CH ₃ CH ₃	105-108	105-108 C: 70,36 H: 6,79 N: 4,10	C: 7C	70,5 6,9 4,0	1630 1750	1,3(d,3H, c_{H_3} -CH) 2,3(s, 6H, c_{H_3} - ϕ) 3,7(s, 3H, c_{H_3} -0- ϕ) 3,85(s, 3H, c_{H_3} -0- ϕ) 4,45(q, 1H, c_{H_3} - c_{H_3} 6,75-7,6(m, 7H, aromatische Protonen)	$\frac{1}{2}$ -CH) $\frac{1}{2}$ $\frac{1}{2}$ - $\frac{6}{2}$) $\frac{1}{2}$ $\frac{1}{2}$ - $\frac{6}{2}$) $\frac{1}{2}$ $\frac{1}{2}$ - $\frac{6}{2}$) $\frac{1}{2}$ $\frac{1}{$
СН (СН ₃)2СН-0-С-СН 0	CH ₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0	C: 74,76 H: 7,70 N: 3,96	N: 7	73,84 7,91 3,99	1650	1,2-1,45(9H) 2,3(s, 6H, CH ₃ -\phi) 4,4(q, 1H, N-CH) 5,2(m, 1H, COOCH) 6,8-7,5(m, 8H, aromatische Protonen)	H ()

**************************************	(c) NWR) (d,ppm) <u></u>	2,05(s, 6H, CH ₅ -\$) 3,4(s, 2H, CH ₂ -\$) 5,85(s, 3H, COCH ₃) 4,6-5,4(d,d,2H,CH ₂ =C) 7,1-7,3(m,8H, aromatische Protonen)	The state of the s
· 10	(b) IR Max (cm ⁻ 1)		
Tabelle I (Fortsetzung)	(a) <u>Elementaranalyse (%)</u> o _C berechnet gefunden	56-57	51-52 C: 74,31 C: 74,03 H: 7,42 H: 7,52 N: 4,13 N: 4,07
30	Formel	$H_3^{C-0-C-C}$ $H_3^{C-0-C-C-C}$ $H_3^{C-0-C-C-C}$ $H_3^{C-0-C-C-C}$	$\begin{array}{c} c_2^{H_5} \\ H_5^{C-\bullet-C-CH} \\ 0 \\ N \\ 0 \\ N \\ \end{array} $ $CH_5 \\ CH_5$
	Verbin- dung No.	# L	12

	T a D e 1 1	o 0	I (Fortsetzung))	*
Verbin- Formel dung No.	o ဂ က ၁	<u>Elementara</u> berechnet	Elementaranalyse (%) berechnet gefunden	(b) IR Max (cm-1)	(c) NMR (<,ppm) _Tms_
13 $H_5c_2-0-c-cH$ $C-cH_2-O$ $C-cH_3$ $C-cH_3$ $C-cH_3$	Ö	C: 74,31 H: 7,42 N: 4,13	C: 72,96 H: 7,16 N: 4,34		
H ₅ C ₂ -0-C-CH $\stackrel{CH_2}{\circ}$ $\stackrel{C}{\circ}$ $\stackrel{C}{$	69-70	C: 73,82 H: 7,12 N: 4,30	C: 73,41 H: 7,28 N: 4,31		

4	(c) NMR $(\phi, ppm) \overline{Lins}$	1,27(d, 3H, CH_3 -CH) 2,3(s, 6H, CH_3 - \emptyset) 3,8(s,3H, $COOCH_3$) 4,45(q, 1H, CH_3 - CH) 6,9-7,4(m, 7H, aromatische Protonen)	
10	(b) IR Max (cm ⁻ 1)	1630 1730 1745	1650
e I (Fortsetzung	Elementaranalyse (%) berechnet gefunden	65,99 C: 67,0 5,83 H: 5,9 4,05 N: 3,7	72,47 C: 71,75 8,82 H: 9,12 4,22 N: 3,81
[[e q 8 [(a) <u>Ele</u> or ber	97-100 C: H: N:	60-64 C:
30	Formel	CH ₂ O-C-CH O-C	H ₃ C-0-C-CH B ₃ C C-CH ₂ -(H) H ₃ C CH ₃
	Verbin- dung No.	D 15 H ₃ C-0-c-C 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9

5	(c) NMR (ć,ppm) /TMS7		0,98(d, 3H, CH_3 -CH) 2,12 2,15 2,39 2,43 3,70 2,92 3,70 4,40 6,96-7,26 (3H aromatische Protein) 13,93 (s,0H)
10	(b) IR Max (cm 1)	1655 1745	0 นุขุนนุ - นุขุมนุจุจุด นั
elle I (Fortsetzung)	Elementaranalyse (%) berechnet gefunden	C: 70,96 C: 70,59 H: 7,09 H: 7,28 N: 3,94 N: 3,70	The state of the s
ე ი ლ	(a) C ^F O	90-93	ĮQ.
30 35	Formel	H ₃ C-0-f ₁ -cH ₁ H ₃ C-0-f ₁ -cH ₂ N ₃ CH ₃	H C C-0-F CH C-CH-C-CH C-CH C-CH C-CH C-CH C-CH
	Verbin- dung No.	17	18 (e)

7	(c) NWR (d, ppm) [TMS]	0,99 (d, 3H, $\overline{\text{CH}}_{3}$ -CH) 1,29 (t.3H, $\overline{\text{CH}}_{3}$ -CH2) 2,08 2,40 2,40 1,71 ($\overline{\text{CH}}_{3}$ - $\overline{\text{C}}$ - $\overline{\text{C}}$) 2,91 ($\overline{\text{CO}}$ - $\overline{\text{C}}$ - $\overline{\text{C}}$) 4,16 ($\overline{\text{CH}}_{3}$ - $\overline{\text{C}}$) 4,50 ($\overline{\text{CH}}_{3}$ - $\overline{\text{C}}$) 5,90 (OH)
10)	(b) IR Max (cm 1)	0 + 0,00,00,0 + 0,4 4,0 H W
10 10	g	
50 50	L L e Elementa berechne	
	а С В С С С С С С С С С С С С С С С С С С	QΙ
30	Formel	5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5
35		₹
	Verbin- dung No.	(e) HC -b-C-D-C-D-C-D-C-D-C-D-C-D-C-D-C-D-C-D-C

					- 2	5 - ·					
				* **			-	• • •	29	0361	
5	(c)	nwr (6, ppm) /Tw <u>s</u> 7									derman territoris de de la semplea de la companya del companya de la companya de la companya del companya de la
10	_1	IR Max1 (cm)	1660 1745				1660	- - - -			
20	1 l e I (Fortsetzung) Elementaranalyse (%)	berechnet gefunden	C: 64,85 C: 64,84 H: 6,95 H: 7,24	N			C: 66,83 C: 67,93	3,90 N:			A. 1-1. HTMM: 1988 . ANY SERY NEW LEWIS OF THE VERY NEW TRY, ASSEMBLY LINES OF THE COMPANIENCE OF THE CONTROL O
) كو	о О	₄ ,υ	ΰı				ĆΊ				THE THE PERSON OF THE PERSON O
. 30	Formel		O-G-CH C-G-CH -G-OCH 3	3 C CH - C			Hoo-5- Ho-5-CHJ		>		MARINA STA AMARIKUMANT KOMUT KANGTI KANGKA MARIKATI KASA "N. T. VIN. I VAR. MARITUT TOR A KUNSKIN
	Verbin-	and a second)			0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	21 2. e.	-		

E 5 5 5 75 - 75 - Tabelle I (Fortsetzung)	Formel (a) Elementaranalyse (%) (b) (c) $\frac{F}{C}$ in NMR of berechnet gefunden $\frac{Max}{C}$ (δ ,ppm) 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,97-0,99(3H,d,d,CH ₃ -CE) 1,27 (3H,t,CH ₃ -CE) 1,27 (3H,t,CH ₃ -CE) 2,27-2,46 (3H,s,s,CH ₃ -E) 2,85 (2H,s,CH ₂ -CO) 2,85 (2H,s,CH ₂ -CH ₃) 2,60-3,72(6H,s,s,OCH ₃) 4,37(1H,m,CH ₃ -CH) 6,93-7,30(3H,m,aroma-tische Protonen)	
30	Formel	3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		THE PARTY OF THE P
· ·	Verbin- dung No.		23	

- X 5	(c) NMR (d, ppm) [IM <u>s</u> 7	0,97 (3H,d,CH ₃ -CH) 1,23 (6H,t,CH ₃ -CH ₂) 2,83 (2H,s,CH ₂ -CO) 2,13-3,17(4H,m,CH ₂ -CH ₃) 3,57-3,70 (6H,s,g,CH ₃) 4,33 (1H,m,CH-CH ₃) 6,97-7,37 (3H,m,arome-tische Protonen)	290 3612
10	(b) IR Max (cm		Canada a la companya.
Tabelle I (Fortsetzung)	(a) Elementaranalyse $(%)$ $^{\mathrm{F}}$ $^{\mathrm{C}}$ berechnet gefunden		105–110
30 35	Formel	CH -CH -CH -CH -CH -CH -CH -CH -CH -CH -	H.C-O-C-CH - CH - CH - CH - CH - CH - CH -
·	Verbin- dung No.	54	52

		- 20	<i>y</i> -
5	(c) NMR (δ,ppm) /TMS7		2903612
10	(b) IR Max1 (cm 1)	1630 1650 1720 1745	1630 1650 1715 1745
20	e 1 l e I (Fortsetzung) Elementaranalyse (%) berechnet gefunden	C: 69,95 C: 68,60 H: 7,34 H: 7,30 N: 4,08 N: 4,32	C: 68,12 C: 65,85 H: 7,30 H: 7,49 N: 4,41 N: 4,35
25	(a (ďΣ	Ğ,
30	Formel	H C-0-fi-CH 3 C-0-fi-CH CH. = CH-CH CH. = CH-CH	H, C-O-C-CH 13 - O-C-CH 14 - C-CH 15 - CH - CH-CH 16 - CH-CH
	Verbin- dung No.	56	27

35	30	25	20	15	10	5
Verbin- dung No.	Formel	(a (Tabelle I (a) Elementarg P oC berechnet	<pre>1 l e I (Fortsetzung) Elementaranalyse (%) berechnet gefunden</pre>	(b) IR Max1 (cm 1)	(c) NMR (δ,ppm) (TMS7
(CH.) CH-0-C-CH 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Ğ1	C: 67,69 H: 7,89 N: 4,38	C: 67,71 H: 8,32 N: 4,40	1630 1655 1740	
0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0	H-1-2-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Δ1	C: 68,12 H: 7,30 N: 4,41	C: 67,70 H: 7,33 N: 4,36	1630 1750	
		Transfer of the Control of the Contr	TO ANTHONY COME A TOTAL COME AND A COMMANDA	TO THE PROPERTY OF THE PROPERT	The state of the s	2903612

909832/0655

5	(c) nmr (d,ppm)/Tms/		29	3612
e . tzung)	(b) IR Max (cm ⁻ 1)	1630 1650 1720 1740		
. I (Fortsetzung)	nalyse (%) gefunden	C: 66,2 H: 6,90 N: 4,90		Parameter and another designation of the state of the sta
	Elementara berechnet	C: 67,31 H: 6,98 N: 4,62		an e de mandre (de depicto) des desentes estados de composito de compo
25	(a) OC	Ŏ1	78-48	
30	Formel	1 C-O-C-H - C-C-H - C-	H C-O-C-CH 3 - CH 3	
	Verbin- dung No.	30	£	

8	(c) NWR (6,ppm) /IMS/			2903612
				region of transaction of
: :	(b) IR Max (cm-1)	1660		The transport A. Antonioren
15	I (Fortsetzung) taranalyse (%) net gefunden	C: 61,06 H: 7,84 H: 4,47	C: 65,76 H: 8,43 N: 4,89	
· 20	lemer erech	C: 62,12 H: 7,49 N: 4,53	C: 66,43 H: 8,20 H: 4,56	* ***
25	Tabell (a) E	Δ 1	δı	
30	Formel	CH -CH -C- OCH 3 CH -C- CH	5-0 5-0 5-0 5-0 5-0 5-0	energia de l'est describe de l'estre de l'es
35	Verbin- dung No.	32 H.C.O. S.C.O.	33 H C-0 H CH C	Angering the state of the state

	ZSWI7	aroma-	2903612
5 :	(c) NWR (δ,ppm) 2TM <u>s</u> 7	2,19(s,3H,CH ₃ -\phi) 2,22(s,3H,CH ₃ -\phi) 2,62(t,2H,CH ₂) 3,78(t,2H,CH ₂) 3,55(s,3H,OCH ₃) 2,10(s,CH ₃ -CO) 1,73(s,CH ₃ -CO) 4,27(s,CH ₂ -CO) 4,27(s,CH ₂ -CO) 4,27(s,CH ₂ -CO) 14,25(OH)	
; ′ 10		2,19(s,3H,CH; 2,22(s,3H,CH; 2,62(t,2H,CH; 3,78(t,2H,CH; 3,55(s,3H,OC; 2,10(s,CH; 1,73(s,CH; 4,27(s,CH=C-) 4,27(s,CH=C-) 6,99-7,20(m; tische Protor 14,25(OH)	
5 tzung)	(b) IR Ma <u>x</u> 1 (cm		
B G (Fortsetzung)	analy gef		
T T e Q E J	Elementar. berechnet		Principle Control of the Control of
	(a)	65-68	
30	Formel	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
35		34(e) H, Co-C-CH -CH	
P	Verbin- dung No.	34(6)	

5	(c) NWR (d, ppm) /TMs7	1,0 (d,3H,CH ₃ -CH) 2,1 (s,3H,CH ₃ -Ø) 2,4 (s,3H,CH ₃ -Ø) 3,3 (s,2H,CH ₂ CO) 3,8 (s,3H,OCH ₃) 4,4 (q,1H,CH ₃ -CH) 5,9-7,5 (m,6H, aromatische Protonen)	2903612
in 15	(b) IR Max (cm ⁻ 1)	1655	Title the first of the date to proportion the state of th
Tabelle I (Fortsetzung	(a) Elementaranalyse $(\%)$ or berechnet gefunden	01 C: 68,55 C: 67,61 H: 6,71 H: 6,70 N: 4,44 N: 4,57	THE PARTY OF THE P
30	Formel	3 C-C-CH 3 C-C-CH 3 C CH 3 C CH 3 C CH	
	Verbin- dung No.	ر ا ا	

2903612

Die Verbindungen der allgemeinen Formel (I) haben eine ausgezeichnete fungizide Aktivität gegenüber phytopathogenen Fungi, wobei diese Wirkung sowohl präventiv (d.h. zum Schutz vor dem Entstehen der Erkrankung) als auch kurativ (d.h.nach bereits erfolgter Infektion) ist. Die Verbindungen besitzen weiterhin gute systemische Eigenschaften, d.h. sie werden in die verschiedenen Pflanzenteile transportiert, weshalb man sie durch die Blätter oder den Boden aufbringen kann.

Die fungiziden Eigenschaften einiger erfindungsgemäßer Verbindungen gegen Rebenmelhtau (Plasmopara viticola (B. et C.) Berl et de Toni), Tabakmehltau (Peronospora tabacina Adam) und Tomatenmehltau (Phytophthora infestans) sind in Tabelle 2, 3 und 4 aufgeführt. Die Fungizide Aktivität der erfindungsgemäßen Verbindungen wurde gemäß Beschreibung in Beispiel 14 bis 22 ausgewertet und ist in Tabelle 2, 3 und 4 von 100 (vollständig aktiv, gesunde Pflanze) bis 0 (keine Aktivität, vollständig infizierte Pflanze) bewertet.

Die aus einem Vergleich mit Zineb, einem handelsüblichen, häufig verwendeten Fungizid, erhaltenen Daten zeigen, daß die erfindungsgemäßen Verbindungen bei gleichen Dosen wesentlich aktiver sind.

In den folgenden Tabellen bedeuten:

- (a) Tage von der Behandlung bis zur Infektion oder vice versa
- (b) N-(2,6-Dimethylphenyl)-N-acetoacetyl-&-amino-methylpropionat
- (c) N-(2,6-Dimethylphenyl)-N-acetoacetyl-d-amino-athylpropionat

30

Tabelle 2

⁵ Fungizide Wirkung gegen Plasmopara viticola bei Reben

	Verbin-	Wirkungs- weise	präve	ntiv	kura	tiv	immun system	is. nisch	syste misch	
10	dung	Behandlg.			auf	Blätt.	auf O	berbl.	durch B	ogen
	No.	Dosis (%)	Tage ((a) 7	Tage	(a) 7	Tage 1		Tage	
	18 (b)	1	100 1	100	100	100	100	100	100	100
		0.5	100 1	100	100		100	100	100	
15		0.1	100 1	100	100		100	100		
	19 (c)	1	100 1	100			100			
		0.5	100	.						
2C		0.1	100				•			
					-			. '	•	
	Zineb	1	90	- 1		ĺ	•			l
	(Ver- gleichs-	0.5	70							j
2:	fungizid)	0.1	,30		•				•	

- 38 -

2903612

Tabelle 3

Fungizide Wirkung gegen Peronospora tabacina

Ver-	Wirkungsweise	präventiv	kurativ
bindung	Behandlung	auf Blätter	auf Blätter
No.	Dosis (%)	Tage (a) 2	Tage (a) 2
18 (p)	1	100	100
	0.5	100	100

15

10

Tabelle 4

Fungizide Wirkung gegen Phytophthora infestans bei Tometen

0	Ver-	Wirkungsweise	präventiv	kurativ	systemisch
	bindung	Behandlung	auf Blätter	auf Blätter	durch Boder
	No.	. (%)	(a)	(a)	(a) ₃
	18 ^(b)	Í	100	100	100
5		0.5	100	100	100
		0.1	-	-	100

30

Tabelle 5 zeigt die fungizide Aktivität einiger neuer, erfindungsgemäßer Acylaniline sowie ihre Phytotoxizität. Beide Daten werden mit denen von "Furalaxyl", einem bekannten Produkt der DE PS 2 513 788 und "Ridomil" der DE PS 2 515 091 verglichen. Die Werte der fungiziden Aktivität und Phytotoxizität wurden gemäß Beispiel 23 und 15 bestimmt. Aus einem Vergleich der aufgeführten Daten wird es klar, daß die erfindungsgemäßen Verbindungen bei gleichen Dosen die gleiche fungizide Aktivität wie "Furalaxyl" und "Ridomil", jedoch eine wesentlich geringere Phytotoxizität haben.

Tabelle 5

15	Verbindung (vgl. Tabelle 1)	Schutzwirkung gegen Plasmopara viticola bei Reben durch Aufbringung auf infizierte Blätter 24 std nach Infektion in Dosen von 0,1 %	Phototoxizi- tätsindex bei Dosen von 3 %
13		-	•
	1	100	25
	2	100	0
00	3 ·	100	5
20	4 .	100	10
	Ridomil	100	100
	Furalaxy1	100	100

Furalaxyl = N-(2,6-Dimethylphenyl)-N-(1'-carbomethoxyäthyl)-2-furoylamid

: 25

30

35

Ridomil = N-(2,6-Dimethylphenyl)-N-(1'-carbomethoxy-äthyl)-methoxy-acetamid

Die durch Phytotoxizität gegen-über Pflanzen bewirkten Schäden können nicht vermieden werden, wenn man das fungizide Produkt in Dosen verwendet, die den besten Kompromiss zwischen fungizider Aktivität und Phytotoxizität darstellen. Bei praktischer Verwendung in der Landwirtschaft variiert die tatsächlich auf der Pflanze verbleibende Menge an fungizidem Produkt erheblich mit den Wetterbedingungen, insbesondere der Häufigkeit der Niederschläge sowie der richtigen, vom Landwirt durchgeführten Behandlung und deren Anzahl. Man braucht daher fungizide Produkte mit guter Aktivität sowie einem breiten Sicherheitsbereich, so daß selbst hohen Dosen des Produktes die Pflanzen nicht schädigen können.

Die folgende Tabelle 6 zeigt einen Vergleich zwischen der fungiziden Aktivität einiger erfindungsgemäßer Verbindungen und die Aktivität von Furalaxyl und Ridomil bei unterschiedlichen Verwendungsdosen sowie die Phytotoxizität derselben bei erhöhten Dosen.

Ein Vergleich der Daten von Tabelle 6 zeigt, daß die fungizide Aktivität der erfindungsgemäßen Verbindungen in derselben Größenordnung wie die der Kontrollverbindungen liegt, die Phytotoxizität bei erhöhten Dosen jedoch erheblich geringer ist.

25

30

3!

2	9	0	36	1	2

2		·						·	2903	612				
5														
*		osen	6		0	37		100	100	, seem an expension to the best of				
. 10		Phytotoxizitätsindex bei den angegebenen Dosen	index enen D	index enen D	index enen D	index enen D	· %	25	0	10	30	100	100	de von de ed en han den ingene e
:			1.5			0	-	53	. 54					
		Phytoto bei den	0.75			0	:	32	30	an bangadan kasin pelanjara, an arang mengel				
20	11e 6	Kurative Wirkung gegen Plasmopara vitivola bei Re- ben bei den angegebenen Dosen (0/00)	0,005	41	09	100	100	100	100	estendina (ven Jena * Associación (déser es es				
A Company of the Comp	Таре		0.01	. 26	70	100	100	100	100	· (printer, printer, printer) · the printer, pr				
25	H		. 50.0	86	80	100	100	100	100	Mary was designating, man designate was common				
30		Kurat Plasm ben b Dosen	0.1	100	100	100	100	100	100	endelendam (;). Un un disept op der				
		Verbin- dung	(vgi. Tabelle1)	H	67	.4	∞	Furalaxyl	Ridomil					
35			*			·								

. 29 .

2903612

Die folgenden Beispiele veranschaulichen die vorliegende Erfindung, ohne sie zu beschränken.

Beispiel__1

5 Herstellung von N-(2,6-Dimethylphenyl)-N-acetoacetyl-α-aminomethylpropionat (Verbindung 18 von Tabelle 1)

des Methylesters der 7,06 g frisch destilliertes Diketen wurden zu 14,5 g/N-(2,6-Dimethyl-phenyl)-2-aminopropionsäure in 25 ccm Toluol zugefügt. Die Reaktionsmischung wurde 24 Stunden zum Rückfluß erhitzt. Nach dem Abkühlen und Abdampfen des Lösungsmittels wurde der Rückstand durch Chromatographie auf einer Kieselsäuregelkolonne mit Chloroform als Eluierungsmittel gereinigt. So erhielt man 20 g des gewünschten Produktes als Öl in einer Ausbeute von 98 g d.Th. Die dem Produkt zugeschriebene Struktur wurde durch NMR Spektroskopie bestätigt. Unter den verwendeten Arbeitsbedingungen erscheint die Verbindung als Mischung der Tautomeren, was sich aus den Signalen entsprechend der verschiedenen, in Tabelle 1 genannten Protonen zeigt.

Beispiel 2

Herstellung von N-(2,6-Diallylphenyl)-N-acetoacetyl-x-aminomethyl-propionat (Verbindung 26 von Tabelle 1)

0,02 Mol des Methylesters von N-(2,6-Diallylphenyl)-6-aminopropionsäure wurde in 10 ccm Toluol gelöst. Zur Lösung wurde 0,025 Mol frisch destilliertes Diketen zugefügt und die Mischung 24 Stunden zum Rückfluß erhitzt Nach Abkühlen und Abdampfen des Lösungsmittels wurde der Rückstand durch Chromatographie auf einer Kieselsäuregelkolonne unter Verwendung einer 4:1 Hexan/Äthylacetat-Mischung als Eluierungsmittel gereinigt. So erhielt man 3 g des gewünschten Produktes als Öl.

Beispiel Herstellung von N-(2-Allylphenyl)-N-acetoacetyl-O-aminomethylpropionat (Verbindung 30 von Tabelle 1)

0,02 Mol des Methylesters von N-(2-Allylphenyl)-o-aminopropionsäure wurde
in 20 ccm Benzol gelöst. Zur Lösung wurden 0,5 Mol Pyridin und 0,25 Mol
frisch destilliertes Diketen zugefügt und die Reaktionsmischung 10
Stunden zum Rückfluß erhitzt. Nach Abkühlen wurde mit Benzol verdünnt,
mit 1-Liger, konz. Chlorwasserstofflösung und mit Wasser gewaschen.

2903612

die organische Phase wurde abgetrennt, mit Na2SO4 getrecknet und das Lösungsmittel abgedampft. Mer Rückstand wurde auf einer Kieselsäuregelkolonne mit einer 4:1 Hexan/Äthylacetat-Mischung als Eluierungsmittel gereinigt. So erhielt man 3 g des gewünschten Produktes als Öl. Beispiel

Ausgehend von den entsprechenden Zwischenprodukten wurden nach den Verfahren von Beispiel 1, 2 oder 3 die Verbindungen 19, 27, 28, 29, 31, 33 und 34 von Tabelle 1 hergestellt.

Beispiel Herstellung von N-(2-Methyl-6-allylphenyl)-N-(carboxymethylacetyl)-α-aminomethylpropionat (Verbindung 20 von Tabelle 1)

5 g (0,021 Mol) des Methylesters der N-(2-Methyl-6-allylphenyl)-N-aminopropionsäure wurden in 120 ccm Toluol gelöst. Zur Lösung wurden unter Rühren in 15 Minuten bei Zimmertemperatur 3,5 g (0,027 Mol) Malonsäuremethylestermonochlorid (C1CO-CH₂-COOCH₃) zugefügt, dann wurde die Reaktionsmischung 1 Stunde bei Zimmertemperatur gerührt und 5 Stunden zum Rückfluß erhitzt. Nach Abkühlen wurde die Lösung filtriert und das Lösungsmittel abgedampft. Der ölige Rückstand wurde durch Chromatographie auf einer Kieselsäuregelkolonne mit einer 3:1 Hexan/Äthylacetat-Mischung als Eluierungsmittel gereinigt. So erhielt man 4,6 g des gewünschten Produktes als rotes Öl.

Beispiel

Herstellung von N-(2,6-Dimethylphenyl)-N-(2,2-dimethoxyäthyl)-carbomethoxyacetamid (Verbindung 32 von Tabelle 1)

Zu einer Lösung aus 4,45 g (0,02 Mol) N-(2,2-Dimethoxyäthyl)-2,6-dimethylanilin, 2,76 ccm (0,02 Mol) Triäthylamin in 25 ccm Äthyläther wurden bei 0 bis 5°C unter Rühren in 15 Minuten 2,1 ccm (0,02 Mol) Malonsäuremethylestermonochlorid eingetropft. Die Reaktionsmischung wurde 1 Stunde bei 0° C und 10 Minuten bei Zimmertemperatur gerührt, filtriert, zweimal mit je 10 ccm einer 5-% igen Chlorwasserstofflösung und dann 3 Mal mit je 10 ccm Wasser neutral gewaschen. Die organische Phase wurde auf wasserfreiem 35 Na $_2$ SO $_4$ getrocknet und das Lösungsmittel abgedampft. Das verbleibende gelbe Öl wurde durch Chromatographie auf einer Kieselsäuregelkolonne mit einer 7:3-Hexan/Athylacetat-Mischung als Eluierungsmittel gereinigt. So erhielt man 2,1 g des gewünschten Produktes als Öl.

Beispiel 7

Ausgehend von den entsprechenden Zwischenprodukten wurden gemäß Verfahren von Beispiel 5 oder 6 die Verbindungen 21, 22, 23, 24 und 25 von Tabelle 1 hergestellt.

Beispiel 8

Herstellung von N-(2,6-Dimethylphenyl)-N-(1-carbomethoxyäthyl)-phenyl-acetamid (Verbindung 4 von Tabelle 1)

10 17 g (0,11 Mol) Phenylacetylchlorid wurden in 30 Minuten bei Zimmertemperatur zu einer Lösung aus 21,2 g (0,1 Mol) N-(1-Carbomethoxyäthyl)-2,6-dimethylanilin (Reinheit = 95 %) in 150 ccm Toluol und 1 ccm Dimethylformamid eingetropft. Die Reaktionsmischung wurde 1 Stunde bei Zimmertemperatur und 3 Stunden bei Rückflußtemperatur gerührt, dann auf Zimmertemperatur abgekühlt und mit einer wässrigen NaHCO₃ Lösung (5-%ig) und anschließend mit Wasser gewaschen. Die organische Phase wurde abgetrennt und mit wasserfreiem Na₂SO₄ getrocknet. Das Lösungsmittel wurde abgedampft und das erhaltene Rohprodukt aus Ligroin (75-120°C) umkristallisiert; so erhielt man 26 g des gewünschten Produktes als weißen Feststoff mit einem F. von 78-80°C.

Beispiel 9

Gemäß Beispiel 8 erhielt man mit den entsprechenden Zwischenprodukten die Verbindungen 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 und 34 von Tabelle 1, wobei die Verbindungen 10, 13 und 34 (Öl bei Zimmertemperatur) jedoch statt der Umkristallisation durch Chromatographie auf einer Kieselsäuregelkolonne mit 3:1 Hexan/Äthylacetat als Eluierungsmittel gereinigt wurden.

Beispiel 10

Herstellung von N-(2',2'-Dimethoxyäthyl)-N-(2,6-dimethylphenyl)-benzamid (Verbindung 6 von Tabelle 1)

2,81 g (0,02 Mol) Benzoylchlorid wurden in 20 Minuten bei 0 bis 5°C zu einer Lösung aus 4,45 g (0,02 Mol) N-(2',2'-Dimethoxyäthyl)-2,6-dimethylanilin in 20 ccm Äthyläther, die 2,76 ccm (0,02 Mol) Triäthylamin enthielt, eingetropft. Die Reaktionsmischung wurde bei Zimmertemperatur 15 Minuten gerührt, das erhaltene Salz abfiltriert und die Lösung mit 8 ccm wässriger, 5-%iger Salzsäurelösung und dann mit Wasser neutral gewaschen. Die organische Phase wurde mit wasserfreiem Na₂SO_{1,} getrocknet und das Lösungsmittel abgedampft; so erhielt man 5,2 g eines weißen Feststoffes,

2903612

der nach Umkristallisation aus 25 ccm Petroläther 4,5 g Produkt einer Reinheit von 91 % (laut GLC) in 65,5-% iger Ausbeute als weißen Feststoff mit einem F. von 58-59 °C lieferte.

5 Beispiel 11

Gemäß Beispiel 10 erhielt man aus N-(1'-Methyl-2',2'-dimethoxyäthyl)-2,6-dimethylanilin und Benzoylchlorid N-(1'-Methyl-2',2'-dimethoxyäthyl). N-(2,6-dimethylphenyl)-benzamid (Verbindung 5 von Tabelle 1) als klares Öl.

10 Beispiel 12

: 15

. 30

Herstellung von N-(Methyl-methoxycarbonylmethylen)-2,6-dimethylanilin

Zu einer Lösung aus 37,2 ccm (0,3 Mol) 2,6-Dimethylanilin in 200 ccm Benzol wurde 0,5 g ZnCl₂ zugefügt und 33,2 ccm (0,33 Mol) Methylpyruvat bei Zimmertemperatur eingetropft. Die Reaktionsmischung wurde 7 Stunden zum Rückfluß erhitzt, wobei das gebildete Reaktionswasser azeotrop abdestilliert wurde; dann wurde das Lösungsmittel abgedampft und lieferte 65 g eines Oles. Dieses wurde destilliert und die bei 87-88°C/0,07 mm Hg Druck siedende Fraktion gesammelt. So erhielt man 42,5 g eines Produktes einer Reinheit von 92 % laut GLC in einer Ausbeute von 63,5 %.

Beispiel 13

Herstellung von N-(2,6-Dimethylphenyl)-N-(1'-carbomethoxyvinyl)-phenylacetamid (Verbindung 11 von Tabelle 1)

4,35 ccm (0,033 Mol) Phenylacetylchlorid wurden bei Zimmertemperatur zu einer Lösung aus 6,7 g (0,03 Mol) N-(Methylmethoxycarbonylmethylen)-2,6-dimethylanilin (hergestellt gemäß Beispiel 12 mit einer Reinheit von 92 %) in 100 ccm Toluol eingetropft. Die Reaktionsmischung wurde zum Rückfluß erhitzt und 3 Stunden in einem Stickstoffstrom gehalten, worauf das Lösungsmittel abgedampft wurde. So erhielt man 10,8 g eines hell gelben Öles, das sich nach Reiben verfestigte. Das so erhaltene Rohprodukt wurde aus Petroläther umkristallisiert und lieferte 2 g eines weißen, festen, reinen (laut TLC) Produktes in einer Ausbeute von 21 %.

Beispiel 14

Präventive Wirkung gegen Rebenmehltau (Plasmopara viticola (B. et C.) Berl et de Toni

Blätter von in Töpfen in einer konditionierten Umgebung von 25°C und 60 % relativer Feuchtigkeit gezüchteten Reben cv. Dolcetto wurden durch Besprühen beider Seiten mit den Testprodukten in einer wässrig-acetonischen Lösung (20 Vol. Aceton) behandelt. In unterschiedlichem Zeitabstand nach der Behandlung wurden die Blätter auf ihrer Unterseite mit einer wässrigen Conidiensuspension von Plasmopara viticola (200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung bei 21°C. wurden die Pflanzen für eine 7-tägige Inkubationszeit in eine Umgebung mit 70 % relativer Feuchtigkeit und 21°C übergeführt. Dann wurde die Intensität der Infektion von 100 (gesunde Pflanze) bis I (vollständig infizierte Pflanze) ausgewertet.

Kurative Wirkung gegen Rebenmehltau (s.o.)

Blätter von in Töpfen in einer konditionierten Umgebung von 25°C und 60 % relativer Feuchtigkeit gezüchteten Rebenpflanzen cv. Dolcetto wurden auf ihrer Unterseite mit einer wässrigen Conidiensuspension von Plasmopara viticola (200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweil zeit in einer feuchtigkeitsgesättigten Umgebung bei 21°C wurden die Pflanzen in drei Gruppen geteilt. Jede Pflanzengruppe wurde durch Besprühen der Blattseiten mit den Testprodukten in einer wässrig-acetonischen Lösung (20 % Aceton Vol./Vol.) 1, 2 bzw. 3 Tage nach der Infektion besprüht. Nach einer Inkubationszeit von 7 Tagen wurde die Schwere der Infektion visuell von 100 (gesunde Pflanze) bis 0 (vollständig infizierte Pflanze) bewertet.

Beispiel 16

Immunisierungswirkung gegen Rebenmehltau (s.o.)
Blätter von in Töpfen in einer konditionierten Umgebung gezüchteten
Rebenpflanzen cv. Dolcetto wurden auf der Oberseite mit dem Testprodukt
in wässrig-acetonischer Lösung (20 % Vol./Vol. Aceton) besprüht und dann
6 Tage in einer konditionierten Umgebung gehalten. Am 7. Tag wurden sie
auf der Unterseite mit einer Condiensuspension von Plasmopara viticola

- 34-

2903612

(200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung wurden die Pflanzen wiederum in eine konditionierte Umgebung übergeführt. Nach 7-tägiger Inkubationszeit wurde die Schwere der Infektion visuell von 100 (gesunde Pflanze) bis 0 (vollständig infizierte Pflanze) bewertet.

Beispiel 17

Präventive systemische Wirkung gegen Rebenmehltau (s.o.)

In Töpfen in einer konditionierten Umgebung von 25°C und 60 % relativer Feuchtigkeit gezüchtete Rebenpflanzen,cv. Dolcetto wurden behandelt, indem man in den Boden eine wässrig-acetonische Lösung (10 % Vol./Vol. Aceton) des Testproduktes in einer Konzentration von 0,01 %, bezogen auf das Bodenvolumen, einführte. Die Pflanzen wurden in einer konditionierten Umgebung gehalten, und in unterschiedlichen Zeitabständen nach der Behandlung wurden die Blattunterseiten mit einer wässrigen Conidiensuspension von Plasmopara viticola (200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung bei 21°C wurden die Pflanzen für die Inkubationszeit von 7 Tagen in eine Umgebung mit 70 % relativer Feuchtigkeit und 21°C übergeführt. Dann wurde die Schwere der Infektion visuell ausgewertet und wie oben bewertet.

Beispiel 18

Präventive Wirkung gegen Tabakmehltau (Peronospora tabacina Adam)

Die Blätter von in Töpfen in einer konditionierten Umgebung gezüchteten Tabakpflanzen cv. Burley wurden durch Besprühen beider Blattseiten mit dem Testprodukt in einer wässrig-acetonischen Lösung (20 % Vol./Vol. Aceton) behandelt. 2 Tage nach dieser Behandlung wurden die Blattunterseiten mit einer wässrigen Conidiensuspension von Peronopsora tabacina (200 000 Conidien/ccm) besprüht. Nach 6-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung wurden die Pflanzen in einer konditionierte Umgebung von 20 c und 70 % relativer Feuchtigkeit zum Bebrüten des Fungus übergeführt. Nach 6-tägiger Inkubationzeit wurde die Schwere der Infektion wie oben visuell ausgewertet.

35 Beispiel 19

Kurative Wirkung gegen Tabakmehltau (s.o.)

Die Blätter von in Töpfen in einer konditionierten Umgebung gezüchteten Tabakpflanzen cv. Burley wurden auf der Unterseite mit einer wässrigen Comidiensuspension von Peronospora tabacina (200 000 Comilien/ccm) besprüht.

Nach 6-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung wurden die Pflanzen in 2 Gruppen geteilt und in eine konditionierte Umgebung von 20°C und 70 % relativer Feuchtigkeit zum Bebrüten des Fungus übergeführt. 24 und 48 Stunden nach der Infektion wurde die erste bzw. zweite Gruppe durch Besprühen mit dem Testprodukt in einer wässrigacetonischen Lösung (20 % Vol./Vol.) Aceton) auf beide Blattseiten behandelt. Nach 6-tägiger Inkubationszeit wurde die Schwere des Befalles visuell wie oben ausgewertet.

to Beispiel 20

Präventive wirkung gegen Comatenmehltau (Phytophthora infestans (Mont) de Bary)

Blätter von in Töpfen in einer konditionierten Umgebung von 26°C und 60 % relativer Feuchtigkeit gezüchteten Tomatenpflanzen cv. Marmande wurden mit einer wässrig-acetonischen Lösung (20 % Vol./Vol. Aceton) der Testprodukte besprüht. Einen fag danach erfolgte die Infektion durch Besprühen der unteren Blattseiten mit einer wässrigen Couldiensuspension von Phytophthora infestans (200 000 Conilien/ccm). Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung bei 21°C wurden die Pflanzen für die Inkubationszeit von 4 Tagen in eine konditionierte Umgebung von 70 % relativer Feuchtigkeit und 21°C übergeführt. Danach wurde die Schwefe der Infektion wie oben ausgewertet.

Reispiel 21

... Kurative tirkung gegen Tomatenmehltau (s.o.)

Blätter von in Töpfen in einer konditionierten Umgebung von 26°C und 60 % relativer Feuchtigkeit gezüchteten Tomatenpflanzen cv. Marmande wurden auf der Unterseite mit einer wässrigen Conidiensuspension von Phytophthora infestans (200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung wurden die Blätter mit dem Testprodukt in wässrig-acetonischer Lösung (20 ½ Vol./Vol. Aceton) durch Besprühen beider Blattseiten behandelt. Nach 4-tägiger Inkubationszeit wurde die Schwere der Infektion visuell wie oben bewertet.

Beispiel 22

Praventive systemische Firkung gegen Comatenmehltau (s.o.)

In Föpfen in einer konditionierten Umgebung von $26^{\circ}\mathrm{C}$ und $60^{\circ}\mathrm{c}$ relativer Feuchtigkeit gezüchteten Tomatenpflanzen cv. Marmande wurden behandelt,

909832/0655.

2903612

- 36 -

in-dem man eine wässrig-acetonische Lösung (10 % Vol./Vol. Aceton) des Testproduktes in einer Konzentration von 0,01 %, bezogen auf das Boden-volumen, in den Boden gab. Die Pflanzen wurden in einer konditionierten Umgebung gehalten, 3 Tage nach der Behandlung wurden die Blätter auf der Unterseite mit einer wässrigen Conidiensuspension von Phytophthora infestans (200 000 Conidien/ccm) besprüht. Nach 24-stündiger Verweilzeit in einer feuchtigkeitsgesättigten Umgebung bei 21°C wurden die Pflanzen in eine andere konditionierte Umgebung von 70 % relativer Feuchtigkeit und 21°C übergeführt und für die Inkubationszeit von 4 Tagen stehen gelassen. Danach wurde die Intensität der Infektion wie oben ausgewertet.

Beispiel 23

Bestimmung der Phytotoxizität

Die Blätter von in Töpfen bei 25°C und 60 % relativer Feuchtigkeit gezüchteten Rebenpflanzen cv. Dolcetto wurden durch Besprühen beider Seiten mit den Testprodukten in einer wässrig-acetonischen Lösung (20 % Vol./Vol. Aceton) behandelt. 7 Tage danach wurde die Schwere der phytotoxischen Symptome visuell von 100 (vollständig geschädigte Pflanze) bis 0 (gesunde Pflanze) bewertet.

25

30

35

Die oben für die Verbindungen der Formel I genannten Reste haben z.B. die folgende Bedeutung:

C₁₋₃-Alkyl: Methyl, Äthyl, Propyl, i-Propyl
Alkyl - ohne nähere Angabe der Kettenlänge - ist insbesondere
eine Alkylgruppe mit 1-6, vorzugsweise 1-4, Kohlenstoffatomen, wie Methyl, Äthyl, Propyl, i-Propyl, Butyl,
i-Butyl, sec.-Butyl, t-Butyl, Pentyl, Hexyl.

Dies gilt auch für entsprechend zusammengesetzte Reste wie Alkoxy, Alkylthio, Alkoxymethyl.

Halogen ist F, Cl, Br oder J.

Alkyliden steht vorzugsweise für einen C₁₋₆-Rest, wie Methylen, Propylen (1,2 oder 1,3), Butylen (1,2; 1,3; 1,4;), Pentylen etc.

Alkinyl ist vorzugsweise ein Rest mit 2, 3, 4, 5 oder 6 Kohlenstoffatomen, wie Äthinyl, Propinyl, Butinyl oder Hexinyl.

Cycloalkyl ist z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl.

Die heterocyclischen Gruppen können insbesondere 5 oder 6

Ringatome enthalten und gesättigt oder ungesättigt sein; sie können auch einen ankondensierten Benzolring enthalten. Das von Stickstoff verschiedene Heteroatom ist vorzugs-weise Sauerstoff oder Schwefel.

Die Phenylgruppen können gegebenenfalls mit 1, 2 oder 3 gleichen oder verschiedenen Gruppen wie C_{1-4} Alkyl, C_{1-4} Alkoxy, F, Cl oder Br substituiert sein.

35

: : 15

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.