Zdarzenie elementarne

Każdy możliwy wynik eksperymentu losowego nazywamy zdarzeniem elementarnym ω , a zbiór wszystkich możliwych wyników eksperymentu (wszystkich zdarzeń elementarnych) nazywamy zbiorem zdarzeń elementarnych i oznaczamy $\Omega, (\omega \in \Omega)$.

Aksjomaty prawdopodobieństwa

Dla danego zbioru zdarzeń elementarnych Ω oraz σ -ciała zdarzeń losowych \mathcal{F} , **prawdopodobieństwem** nazywamy funkcje $P: \mathcal{F} \to \mathcal{R}$ spełniającą:

- 1. Dla dowolnego zdarzenia losowego $A \in \mathcal{F}$, $P(A) \geqslant 0.$
- 2. $P(\Omega) = 1$.
- 3. Dla dowolnego nieskończonego ciągu zdarzeń losowych $A_1, A_2, \dots, \forall_{n \in \mathcal{N}} A_n \in \mathcal{F}$, parami rozłącznych, mamy $P\left(\bigcup_{n=1}^{\infty}\right)$ $\sum_{n=1}^{\infty} P(A_n).$

Dla dowolnych zdarzeń A, B mamy $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Prawdopodobieństwo warunkowe

Prawdopodobieństwo A pod warunkiem że zaszło zdarzenie B: $P(A|B) = \frac{P(A \cup B)}{P(B)}$

Jeżeli $P(A_1 \cap \ldots \cap A_n) > 0$, to $P(A_1 \cap \ldots \cap$ A_n) = $P(A_1) \prod_{i=2}^n P(A_i | A_1 \cap ... \cap A_{i-1})$.

Prawdopodobieństwo zupełne

Ciag zdarzeń nazywamy zupełnym, ieśli:

- 1. $\bigcup_i A_i = \Omega$,
- $2. \ \forall_{i\neq j} A_i \cap A_j = \emptyset,$
- 3. $\forall_i P(A_i) > 0$.

Twierdzenie

Jeśli zdarzenia tworza układ zupełny, to dla dowolnego zdarzenia B mamy P(B) = $\sum_{i} P(B|A_i)P(A_i)$

Regula Bayesa

Twierdzenie Niech A_i tworzą układ zupełny. Wtedy dla dowolnego zdarzenia losowego B, P(B) > 0 i dowolnego j zachodzi $P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_i P(B|A_i)P(A_i)}$

Niezależność zdarzeń

Definicja Zdarzenia są wzajemnie niezależne $\operatorname{gdy} P(A \cap B) = P(A) \cdot P(B)$

Jeżeli zdarzenia A i B sa niezależne, to nieza-

leżne sa również zdarzenia A i \overline{B} , \overline{A} i B, \overline{A} i

Zdarzenia są wzajemnie niezależne jeśli $P\left(\bigcap_{j=1}^k A_{i_j}\right) = \prod_{j=1}^k P(A_{i_j}).$

Jeśli $A_1 \dots$ są zdarzeniami wzajemnie niezależnymi, to $(\bigcup_{i=1}^{n} A_i) = 1 - \prod_{i=1}^{n} (1 - P(A_i))$ Doświadczenie Bernoulliego

Doświadczenie kończące się sukcesem z prawdopodobieństwem p lub porażka z prawdopodobieństwem 1-p.

Ciag n doświadczeń z prawd. sukcesu p oznaczamy b(n, p).

Prawdopodobieństwo uzyskania ciagu składajacego się z k sukcesów, przy założeniu niezależności: $p^k(1-p)^{n-k}$.

Prawdopodobieństwo uzyskania k sukcesów w n niezależnych doświadczeniach z $p \in [0, 1]$: $b(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$.

Dla $n \ge 25$ i $\lambda = n \cdot p \le 10$ możemy przybliżyć rozkładem Poissona (fr. ryba): $b(k; n, p) \approx$ $e^{-np}\frac{(np)^k}{k!}$, na przykład:

 $\sum_{k=0}^{14} b(k; 500, 0.02) \approx F(14; 500 \cdot 0.02)$, gdzie \overline{F} jest dystrybuanta rozkładu Ryby, dostępna w tablicach.