Principles of EE I Laboratory Lab 3

Thevenin's Theorem

Student A	Student B	
Full name:	Full name:	
Student number:	Student number:	

I. Objectives

In this laboratory, you will investigate:

- 1. The values for a Thevenin's equivalent circuit.
- 2. The conditions for maximum power delivered to a load.

II. Procedure

**PRELAB: You must provide all calculations in-details in separate sheets and/or simulation results as attachments.

Figure 1. The original circuit

Figure 2. The Thevenin's equivalent circuit of the original circuit.

A. Find Thévenin equivalent circuit using short-circuit current. (Method 1)

Construct the circuit shown in Figure 1.

- a. Using DMM, measure the open-circuit voltage (V_{Th}=V_{oc}) between terminals **a** and **b**.
- b. Calculate** and measure the short circuit current (Isc) of going through terminal **a** to terminal **b**.
- c. Calculate** the Thévenin Equivalent resistance using these two measured values. Use $R_{th} = V_{Th} / I_{Sc}$ for this calculation.
- d. Is it safe method to find Rth (in general)? If not, explain?

B. Find Thévenin equivalent circuit using variable load resistor. (Method 2)

Construct the circuit shown in Figure 1,

- a. Using DMM, measure the open-circuit voltage (V_{Th}=V_{oc}) between terminals **a** and **b**.
- b. Insert a 10K-ohm potentiometer across the terminals **a** and **b**, as followed:

c. Adjust the R_L until $V_L = \frac{1}{2}V_{Th}$. Carefully disconnect the potentiometer out of the circuit to measure R_L correctly. This value of R_L is now equal to R_{th} .

In your report, you should derive the equation of voltage divider to prove that $R_L = R_{Th}$ when $V_L = \frac{1}{2}V_{Th}$.

C. Determine maximum power transfer

Using the circuit in Figure 3, **adjust** the potentiometer to complete the Table 1. Use another potentiometer if needed.

Remember to disconnect the potentiometer out of the circuit every time you measure its value R_L .

Table 1.

**** * *			
$V_L \approx$	V_L Measured	R_L Measured	$P_L = \frac{V_L^2}{R_L}$
0.3*V _{Th}	2.32	850 Ohm	6.33x10^-3 W
0.4*V _{Th}	3.24	1290 Ohm	8.14x10^-3 W
0.5*V _{Th}	4.05	2000 Ohm	8.2x10^-3 W
$0.6*V_{Th}$	4.86	2970 Ohm	7.953x10^-3 W
$0.7*V_{Th}$	5.67	4580 Ohm	7.02x10^-3 W

Use a spreadsheet (Excel) to plot a graph of P_L (y-axis) versus R_L (x-axis).

In your report, you should derive some equations to theoretically determine the value of R_L so that maximum power P_L is transferred. Comment your calculations and measurements.

D. APPLICATION: Thevenin Equivalent Circuit of the Function Generator

The function generator is a complex electronic instrument, but it is possible to model the function generator with a simple Thevenin equivalent circuit (TEC).

Figure 4. Equivalent circuit of Function Generator with a Load Resistor