Recurrent Neural Networks

Re-use the same weight matrix at every time-step

Recurrent Neural Networks many to one one to many one to one

Recurrent Neural Networks

Recurrent Neural Networks

×°

 $\overset{\mathsf{x}}{\mathsf{x}}$

≥

 h_2

4

h

Τεχνητή Νοημοσύνη

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Example training sequence: "**hello**"

00-0

input layer

Τεχνητή Νοημοσύνη

input chars:

×°

 \mathbf{x}^{2}

ׯ

≥

Recurrent Neural Networks

Τεχνητή Νοημοσύνη

Recurrent Neural Networks

Recurrent Neural Networks

RNN Advantages:

- Can process any length input
- Computation for step t can (in theory) use information from many steps
- Model size doesn't increase for longer input
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

Tegoritri Norihoooloni http://www

Recurrent Neural Networks

Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o] At test-time sample characters one at a time, feed back to model

Γεχνητή Νοημοσύνη

Recurrent Neural Networks

Examples - Motion prediction?

Examples - Autoencoders

Recurrent Neural Networks

Recurrent Neural Networks

Examples - Autoencoders & Denoising

Examples - Autoencoders & Superesolution

Τεχνητή Νοημοσύνη

rttp://www.vvr.ece.upatra