(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 January 2004 (29.01.2004)

PCT

(10) International Publication Number WO 2004/009016 A 2

(51) International Patent Classification⁷:

(21) International Application Number:

PCT/US2003/022299

(22) International Filing Date: 17 July 2003 (17.07.2003)

(25) Filing Language:

English

A61K

(26) Publication Language:

English

(**30**) Priority Data: 60/396,907

18 July 2002 (18.07.2002) US

- (71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Route 206 and Provinceline Road, Princeton, NJ 08543-4000 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DOWEYKO, Arthur [US/US]; 9 Highland Avenue, Long Valley, NJ

07853 (US). **NADLER, Steven, G.** [US/US]; 164 Neil Court, Princeton, NJ 08540 (US).

- (74) Agents: SHER, Audrey et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543-4000 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS INVOLVING NUCLEAR HORMONE RECEPTOR SITE II

(57) Abstract: A binding site in nuclear hormone receptors is described and its structural coordinates are provided. The invention provides machine-readable data storage media comprising structure coordinates of Site II and computer systems comprising the machine-readable data storage media. The invention provides methods used in the design and identification of ligands of Site II and of modulators of nuclear hormone The invention provides ligands of receptors. Site II, modulators of NHRs, pharmaceutical compositions comprising modulators of NHRs, methods of modulating NHRs, and methods of treating diseases by administering modulators of an NHR. Also provided are methods of designing mutants, mutant NHRs, Site II binding assays, and models of Site II.

WO 2004/009016 A2

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPOSITIONS AND METHODS INVOLVING NUCLEAR HORMONE RECEPTOR SITE II

This invention claims priority from provisional U.S. application Serial No. 60/396,907, filed July 18, 2002, which is incorporated herein by reference in its entirety.

5

10

15

20

25

30

FIELD OF THE INVENTION

The present invention generally relates to a binding site, termed Site II, in nuclear hormone receptors. The present invention relates to: machine-readable data storage media comprising structure coordinates of Site II; computer systems capable of producing three-dimensional representations of all or any part of Site II; methods used in the design and identification of ligands of Site II and of modulators of nuclear hormone receptors (NHRs); ligands of Site II; modulators of NHRs; methods of modulating NHRs; pharmaceutical compositions comprising modulators of NHRs; methods of designing mutants; mutant NHRs or portions of mutant NHRs; methods of measuring the binding of a test molecule to Site II; and models of Site II.

BACKGROUND OF THE INVENTION

The nuclear hormone receptor (NHR) family of transcription factors bind low molecular weight ligands and either stimulate or repress transcription. (in The Nuclear Receptor Facts Book, V. Laudet and H. Gronemeyer, Academic Press, p345, 2002). NHRs stimulate transcription by binding to DNA and inducing transcription of specific genes. NHRs may also stimulate transcription by not binding to DNA itself, rather they may modulate the activity of other DNA binding proteins (Stocklin, E., et al., Nature (1996) 383:726-8). The process of stimulation of transcription is called transactivation. NHRs repress transcription by interacting with other transcription factors or coactivators and inhibiting the ability of these other transcription factors or coactivators to induce transcription of specific genes. The process of repression of transcription is called transrepression. (for a review see The Nuclear Receptor Factsbook, V. Laudet and H. Gronemeyer, Academic Press, p42, 2002). For example, the glucocorticoid receptor, estrogen receptor, androgen

5

10

15

20

25

30

receptor and peroxisome proliferator activated receptors α and γ have been shown to repress the activity of the transcription factors AP-1 and NF- κ B (Jonat, C., et al., Cell, 62, p1189-1204, (1990) Kallio, P.J., et al., Mol. Endocrinol., 9, p1017-1028 (1995), Keller, E.T., et al., J. Biol. Chem., 271, p26267-26275 (1996), Jones, D.C., et al., J. Biol. Chem., 277 (9), p6838-6845, (2002), Ricote, M., et al., Nature, 391, p79-82, (1998), Valentine, J.E., et al., J. Biol. Chem., 275, p25322-25329, (2000).

The nuclear hormone receptor family includes the glucocorticoid receptor (Hollenberg, S.M. et al. (1985) Nature, 318, p635), progesterone receptor (Misrahi, M. et al. (1987) Biochem. Biophys. Res. Commun. 143, p740), androgen receptor (Lubahn D. B., et al (1988), estrogen receptors (Green, S., et al. (1986) Nature 320, p134), mineralocorticoid receptor (Arriza, J.L., et al., (1987) Science 237, p268), retinoid receptors (RXRs and RARs) (Mangelsdorf, et al. (1990) Nature, 345, p224 and Petkovich M., et al (1987) Nature 330, p444), Vitamin D receptor, thyroid receptor (TR) (Nakai, A. et al., (1988) Mol. Endocrinol. 2, p1087), peroxisome proliferator activated receptor (PPAR) (Greene, M.E., et al. (1995) Gene Expression 4, p281), orphan nuclear receptors and others. Glucocorticoid receptor, progesterone receptor, androgen receptor, estrogen receptor, and mineralocorticoid receptor are steroid hormone receptors (SHRs).

Although the sequences vary amongst the various nuclear hormone receptors, they can be divided into functional domains including an N-terminal transactivation domain, a central DNA binding domain and a C-terminal ligand and dimerization domain. The ligands which bind these receptors act in a ligand, cell type, and promoter dependent fashion and include: glucocorticoids, progestins, retinoids, mineralocorticoids, and others. In addition to steroids, recent studies have shown that non-steroids can bind to nuclear hormone receptors and induce a biologic response (Coghlan, MJ, et al, J. Med. Chem. 44, p2879, 2001). Ligand cross-talk can occur between the receptors, for example, progesterone can bind not only the progesterone receptor but the glucocorticoid receptor as well (Zhang, S., Mol. Endocrinology 10, p24, 1996).

Three-dimensional structures of some of the nuclear hormone receptors have been elucidated through crystallization or homology modeling. A homology model

of the glucocorticoid receptor is disclosed in WO 00/52050, published September 8, 2000.

Recent publications by the same research group: Bledsoe, et. al., Cell, online publication by Cell Press, July 1, 2002, DOI: 10.1016/S0092867402008176; Cell, Vol 110, 93-105, 12 July 2002; and Apolito, et. al., in WO 03/015692 A2, published February 27, 2003; describe the successful crystallization and xray structural elucidation of the glucocorticoid receptor LBD as the dimer. X-ray structure coordinates were provided in WO 03/015692. Disruption of the dimeric structure was found to occur upon mutation of selected residues at the dimerization interface. Despite structural similarity to other steroid receptors, the GR LBD dimer represents a unique dimer configuration. The GR LBD used for this crystalization was a mutant (F602S) designed to provide a more soluble LBD construct.

5

10

15

20

25

30

Also recently, Kauppi et. al. published the stucture of the GR LBD bound to an antagonist, RU-486, in: the Journal of Biological Chemistry Online, JBC Papers In Press as DOI:10.1074/JBC.M212711200, April 9, 2003; and in J. Biol. Chem., Vol. 278, Issue 25, 22748-22754, June 20, 2003. In this structure, the GR LBD exhibits a significant displacement of helix 12, typical of antagonist action. In addition to the antagonist-bound LBD, a dimer structure similar to that reported by Bledsoe, et. al. was also described. The structure of the GR LBD – RU-486 complex was deposited in with the RCSB (1nhz.pdb)

Three dimensional structures of other nuclear hormone receptors are disclosed as follows, with RCSB (Research Collaboratory for Structural Bioinformatics, pdb file format) references in parentheses: RXRalpha (11bd) Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., Moras, D. Nature 375 pp. 377 (1995); PPAR-gamma (2prg) Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., Milburn, M. V. Nature 395 pp. 137 (1998); RARgamma (2lbd) Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., Moras, D. Nature 378 pp. 681 (1995); PR (1a28) Williams, S. P., Sigler, P. B. Nature 393 pp. 392 (1998); VitDR (1db1) Rochel, N., Wurtz, J. M., Mitschler, A., Klaholz, B., Moras, D. Mol. Cell 5 pp. 173 (2000); AR (1e3g) Matias, P. M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Basler, S., Schafer, M., Egner, U.,

Carrondo, M. A. J.Biol.Chem. 275 pp. 26164 (2000); ERalpha (1a52) Tanenbaum, D. M., Wang, Y., Williams, S. P., Sigler, P. B. Proc Natl Acad Sci U S A 95 pp. 5998 (1998); ERbeta (112j) Shiau, A. K., Barstad, D., Radek, J. T., Meyers, M. J., Nettles, K. W., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Agard, D. A., Greene, G. L. Nat.Struct.Biol. 9 pp. 359 (2002). It is generally thought that all steroid ligands bind to nuclear hormone receptors at the classical ligand binding site, which we term site I (Evans, RM. Science 240, p889, 1988). Limited proteolysis studies and cell transfection/mutagenesis studies have delineated the functional domains of nuclear hormone receptors which include a DNA binding domain, ligand binding domain and a transactivation domain. These studies provided the evidence that hormones bind to the ligand binding domain. Mutagenesis of GR has defined the dexamethasone interacting surface, defined as Site I, which includes amino acids Met-560, Met-639, Gln-642 and Thr-739 (Lind, U., et al. J. Biol. Chem. 275, p19041, 2000).

Recently, a second ligand binding site in ER-α and ER-β has been reported based on computational analysis and docking experiments with steroids. (van Horn, W. J. Med. Chem. 45, p584, 2002). This second binding site is not completely delineated. It is reported to have no obvious function, to be an evolutionary remnant, and to be absent in other nuclear receptors such as RARγ. Furthermore, there is no discussion of transrepression whatsoever. In addition, Endocrine Society Meeting June 2003, presentation OR34-1, Wang, Y., Chirgadze, NY, Briggs, SL, Khan, S., Jensen, EV., Burris, TP., A second binding site for hydroxytamoxifen with the ligand binding domain of estrogen receptor beta, describes the crystal structure of estrogen receptor bound with 4-hydroxytamoxifen, in which the ligand is found in two locations: the usual steroid binding pocket and a second site located along the hydrophobic groove near the cofactor binding region. This second site is remote from the Site II location described in this application.

The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor family of transcription factors, and a member of the steroid hormone family of transcription factors. Affinity labeling of the glucocorticoid receptor protein allowed the production of antibodies against the receptor which facilitated cloning the human (Weinberger, et al. Science 228, p740-742, 1985, Weinberger, et al. Nature, 318, P635-641, 1985) and rat (Miesfeld, R. Nature, 312, p779-781, 1985)

glucocorticoid receptors. Subsequently, glucocorticoid receptors from other species were cloned including mouse (Danielson, M. et al. EMBO J., 5, 2513), sheep (Yang, K., et al. J. Mol. Endocrinol. 8, p173-180, 1992), and marmoset (Brandon, D.D., et al, J. Mol. Endocrinol. 7, p89-96, 1991). There is also a C-terminally distinct isoform of GR termed GR-beta. This isoform is identical to GR up to amino acid 727 and then diverges in the last C-terminal 15 amino acids. GR-beta is not known to bind glucocorticoids, is unable to transactivate, but does bind DNA (Hollenberg, SM. et al. Nature, 318, p635, 1985, Bamberger, C.M. et al. J. Clin Invest. 95, p2435, 1995). It is possible that GR-beta binds compounds other than the typical glucocorticoids.

5

10

15

20

25

30

Glucocorticoids which interact with GR have been used for over 50 years to treat inflammatory diseases. It has been clearly shown that glucocorticoids exert their anti-inflammatory activity via the inhibition by GR of the transcription factors NF-κB and AP-1. This inhibition is termed transrepression. It has been shown that the primary mechanism for inhibition of these transcription factors by GR is via a direct physical interaction. This interaction alters the transcription factor complex and inhibits the ability of NF-kB and AP-1 to stimulate transcription (Jonat, C., et al. Cell, 62, p1189, 1990, Yang-Yen, H.F., et al. Cell 62, p1205, 1990, Diamond, M.I. et al. Science 249, p1266, 1990, Caldenhoven, E. et al., Mol. Endocrinol. 9, p401, 1995). Other mechanisms such as sequestration of co-activators by GR have also been proposed (Kamer Y, et al., Cell 85, p403, 1996, Chakravarti, D. et al., Nature 383, p99, 1996). NF-κB and AP-1 play key roles in the initiation and perpetuation of inflammatory and immunological disorders (Baldwin, AS, Journal of Clin. Investigation 107, p3, 2001, Firestein, G.S., and Manning, A.M. Arthritis and Rheumatism, 42, p609, 1999, Peltz, G., Curr. Opin, in Biotech. 8, p467, 1997). NF-κB and AP-1 are involved in regulating the expression of a number of important inflammatory and immunomodulatory genes including: TNF-alpha, IL-1, IL-2, IL-5, adhesion molecules (such as E-selectin), chemokines (such as Eoxtaxin and Rantes), Cox-2, and others.

Although glucocorticoids are very effective anti-inflammatory agents, their systemic use is limited by their side effects which include diabetes, osteoporosis, glaucoma, Cushingoid syndrome, muscle loss, facial swelling, personality changes,

5

10

15

20

25

30

and others. (Stanbury, RM, and Graham, EM, Br. J. Opthalmology 82, p704, 1998, Da Silva, JAP., Bijlsma, J. Rheumatic Disease Clinics of North America, 26, p859, 2000)

In addition to leading to transrepression, the interaction of a glucocorticoid with GR can lead to stimulation by GR of transcription of certain genes. This stimulation of transcription is termed transactivation. Transactivation requires dimerization of GR and binding to a glucocorticoid response element (GRE). DNA binding is mediated via Zn fingers in the DNA binding domain (Giguere, V. et al Cell 46, p645, 1986; Rusconi, S. and Yamamoto, K.R. EMBO J., 6, p1309, 1987). DNA sequence specific interactions are determined by the C-terminal part of the first Zn finger (Danielsen, M., et al. Cell 57, p1131, 1989). Several GR target genes have been identified including MMTV, metallothionein, and tyrosine amino transferase (Ringold, GM et al, Cell 6, p299,1975; Scheidereit, C., et al Nature, 304, p749, 1983; Hager, LJ, Palmiter RD, Nature 291, 340, 1981; Grange, T., et al. Oncogene, 20, p3028, 2001). Transrepression, as opposed to transactivation, can occur in the absence of dimerization, and as mentioned above is believed to involve the direct interaction of GR with AP-1 and NF-κB.

Recent studies using a transgenic GR dimerization defective mouse which cannot bind DNA have shown that the transactivation (DNA binding) activities of GR could be separated from the transrepressive (non-DNA binding) effect of GR. These studies also indicate that many of the side effects of glucocorticoid therapy are due to the ability of GR to induce transcription of various genes involved in metabolism, whereas, transrepression, which does not require DNA binding leads to suppression of inflammation. (Tuckermann, J. et al. Cell 93, p531, 1998; Reichardt, HM. EMBO J., 20, p7168, 2001).

Compounds which can induce transrepression of GR with none to minimal induction of transactivation have been termed "dissociated steroids" (Vayassiere, BM, et al., Mol. Endocrinology, 11, p1249, 1997). Such "dissociated" compounds would be useful to treat inflammatory diseases. See Figure 1 for a graphical description of transactivation mediated by GR dimers versus transrepression mediated by GR monomers. It is possible that these "dissociated" compounds bind to GR without inducing dimerization yet allow the monomer to transrepress AP-1

6

5

10

15

20

25

30

and NF-kB. Another plausible explanation is that "dissociated" compounds may alter the conformation of GR to enable transrepression without inducing a DNA binding conformation.

There are several examples in the literature of compounds that possess dissociated activity as defined by the ratio of the effective concentration required to induce DNA binding in a cellular assay relative to the effective concentration required to transrepress, or inhibit AP-1 or NF-kB activity. The first report of a "dissociated steroid" published by Vayssiere, et al. Molecular Endocrinology, 11, p1245, 1997, showed that a derivative of dexamethasone had potent in vitro and in vivo anti-inflammatory activity with minimal induction of DNA binding. Subsequent studies (Coghlan, MJ, et al., J. Med. Chem. 44, p4481, 2001) have shown that non-steroidal compounds can bind to GR and elicit transrepressive activity with moderate transactivation activity. It is believed that each of the compounds described above act via the dexamethasone binding site.

Ursodeoxycholic acid (UDCA) has recently been shown to repress NF-kB activity via a GR mediated pathway. The compound appears to be "dissociated" as it does not induce DNA binding in a cellular assay. This compound, although acting in a GR dependent fashion, does not compete for dexamethasone binding to GR. Although direct binding of UDCA to GR has not been demonstrated, mutagenesis studies suggest that the ligand binding domain (LBD) of GR is required for activity. (Miura, T., J. Biol. Chem. 276, p47371, 2001). However, these studies did not delineate the specific amino acids which are involved in UDCA activity.

The art is in need of modulators of NHRs. A modulator of an NHR may be useful in treating NHR-associated diseases, that is diseases associated with the expression products of genes whose transcription is stimulated or repressed by NHRs. For instance, the art is in need of modulators of NHR that induce inhibition of AP-1 and NF-kB, as such modulators would be useful in the treatment of inflammatory and immune associated diseases and disorders, such as osteoarthritis, rheumatoid arthritis, multiple sclerosis, asthma, inflammatory bowel disease, transplant rejection, and graft vs. host disease.

The art is in need of compounds that possess dissociated activity, as such compounds would be useful in treating inflammatory and immune associated

5

10

15

25

30

diseases and disorders without exhibiting unwanted side effects. For instance, in the case of GR, although glucocorticoids are potent anti-inflammatory agents, their systemic use is limited by side effects. A dissociated compound that retained the anti-inflammatory efficacy of glucocorticoids while minimizing the side effects such as diabetes, osteoporosis and glaucoma would be of great benefit to a very large number of patients with inflammatory diseases.

The art is in need of compounds that antagonize transactivation. For instance, in the case of GR, such compounds may be useful in treating metabolic diseases associated with increased levels of glucocorticoid, such as diabetes, osteoporosis and glaucoma.

The art is in need of compounds that induce transactivation. For instance, in the case of GR, such compounds may be useful in treating metabolic diseases associated with a deficiency in glucocorticoid. Such diseases include Addison's disease.

In order to design compounds that modulate an NHR in specific ways, one needs to understand how ligands bind to an NHR and modulate the activity of the NHR.

SUMMARY OF THE INVENTION

We have identified a second binding site in the ligand binding domain of nuclear hormone receptors (NHRs). We refer to this second binding site as Site II.

Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. Table I is located under the heading for Example 21.

Figure 2 shows the amino acids of Site II in various human NHRs. The structure coordinates of Site II in the NHRs of Figure 2 are given in Table III, located under the heading for Example 22. Two sets of xray structure coordinates of Site II in GR are given in Table IV, located under the heading for Example 23, and Table V,

located under the heading for Example 24. Figure 6 shows the amino acids of Site II in the GR of various species.

We have found that ligands of Site II modulate NHRs. Ligands of Site II induce transrepression. Ligands of Site II possess dissociated activity. Ligands of Site II antagonize transactivation.

5

10

15

20

25

30

The invention provides machine-readable data storage media comprising data storage material encoded with machine readable data comprising all or any part of the structure coordinates of Site II. The invention provides computer systems comprising the machine-readable data storage media of the invention capable of producing three-dimensional representations of all or any part of Site II.

The invention provides methods used in the design and identification of ligands of Site II and modulators of NHRs. The invention provides: methods of docking a test molecule into all or any part of the cavity circumscribed by Site II; methods comprising identifying structural and chemical features of all or any part of Site II; methods of designing a ligand of Site II comprising modeling all or any part of Site II and designing a chemical entity that has structural and chemical complementarity with all or any part of Site II; methods of evaluating the potential of a chemical entity to bind to all or any part of Site II; methods for identifying a modulator of an NHR; and methods for identifying a ligand of Site II.

The invention provides ligands of Site II. The invention provides modulators of NHRs.

The invention provides methods of modulating an NHR.

The invention provides pharmaceutical compositions comprising modulators of NHRs.

The invention provides methods of treating diseases by administering a modulator of an NHR. Such diseases include NHR-associated diseases, diseases associated with NHR transactivation, diseases associated with NHR transrepression, diseases associated with AP-1-dependent gene expression, diseases associated with NF-kB-dependent gene expression, inflammatory or immune associated diseases and disorders, diseases treatable by inducing NHR transrepression, and diseases treatable by antagonizing NHR transactivation.

The invention provides methods of designing mutants comprising mutating Site II by making an amino acid substitution, deletion or insertion, and the resultant mutant NHRs, or portions of mutant NHRs, comprising a mutation in Site II.

The invention provides methods of measuring the binding of a test molecule to Site II.

The invention provides models of Site II.

10

All documents referred to herein, including but not limited to U.S. patent applications, are incorporated herein by reference in their entirety.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Graphical description of transactivation mediated by GR dimers versus transrepression mediated by GR monomers.

Figure 2. Consensus alignments carried out using ICM (Molsoft LLC, La Jolla, CA) between human GR (glucocorticoid receptor) LBD and other human NHR LBDs, 15 indicating by shading the residues of Site II, i.e. residues corresponding to residues of GR Site II. Dots are spaceholders and do not represent amino acids. Numbers refer to the first residue in each line, are specific for each NHR and are based on the fulllength NHR. For the NHRs listed below, with the exception of GR and MR, structural data was obtained from the RCSB references listed below, and the 20 numbering system in the RCSB references was used. For GR and MR, structural data was obtained by homology modeling using the literature references below, and the numbering system in those literature references was used. The RCSB references (in parentheses) and literature references for the various NHRs are as follows: RXRalpha (SEQ ID NO:3) (1lbd) Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, 25 H., Moras, D. Nature 375 pp. 377 (1995); PPAR-gamma (SEQ ID NO:4) (2prg) Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., Milburn, M. V. Nature 395 pp. 137 (1998); RARgamma (SEQ ID NO:5) (2lbd) Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., Moras, D. Nature 378 pp. 681 (1995); PR 30 (SEO ID NO:6) (1a28) Williams, S. P., Sigler, P. B. Nature 393 pp. 392 (1998);

VitDR (SEO ID NO:7) (1db1) Rochel, N., Wurtz, J. M., Mitschler, A., Klaholz, B.,

Moras, D. Mol. Cell 5 pp. 173 (2000); AR (SEQ ID NO:8) (1e3g) Matias, P. M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Basler, S., Schafer, M., Egner, U., Carrondo, M. A. J.Biol.Chem. 275 pp. 26164 (2000); ERalpha (SEQ ID NO:9) (1a52) Tanenbaum, D. 5 M., Wang, Y., Williams, S. P., Sigler, P. B. Proc Natl Acad Sci U S A 95 pp. 5998 (1998); ERbeta (SEQ ID NO:10) (112j) Shiau, A. K., Barstad, D., Radek, J. T., Meyers, M. J., Nettles, K. W., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Agard, D. A., Greene, G. L. Nat. Struct. Biol, 9 pp. 359 (2002); TRbeta (SEO ID NO:11) (1bsx) Wagner, R. L., Darimont, B. D., Apriletti, J. W., Stallcup, M. R., 10 Kushner, P. J., Baxter, J. D., Fletterick, R. J., Yamamoto, K. R. Genes Dev. 12 pp. 3343 (1998). MR and GR structural data were obtained by homology modeling to PR using the sequences from the following references: GR (SEQ ID NO:12), PIR Accession Number QRHUGA, Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M. Nature (1985) 15 318: 635-641; MR (SEQ ID NO:13), PIR Accession Number A29613, Arriza, J.L.; Weinberger, C., Cerelli, G., Glaser, T.M., Handelin, B.L., Housman, D.E., Evans, R.M., Science (1987) 237: 268-275..

Figure 3. GR homology model displayed in ribbon format with dexamethasone (green) and Compound 15 (violet) displayed as space-filling models docked in Site I and Site II, respectively. The location of Site I (dexamethasone site) represents the classical steroid binding site (eg, consistent with the location of progesterone in PR, 1A28). The location of Site II (Compound 15 site) represents the novel binding site which is the subject of this invention.

25

Figure 4. Twenty-seven analogues used in the correlation of observed AP-1 inhibition and calculated contact energy scores as derived from docking into the homology model of GR Site II. Compound numbers are given to the left of each compound.

30

Figure 5. The relationship between calculated contact energies of a series of twenty-seven analogues of Compound 15 and their %AP-1 inhibition (at 10µM). Each

analogue was modeled as the S-enantiomer and manually positioned in GR Site Π in a manner consistent with the orientation depicted in Figure 3. Energetics were calculated after geometry/energy minimization using Flo (Colin McMartin, Thistlesoft, Colebrook, CT).

5

10

15

20

Figure 6. Sequence alignments of the GR from various species conducted using the program LOOK (Version 3.5.2, Molecular Applications Group, Palo Alto, CA). The sequence for each GR starts at residue 1. Alignments were made based on pair-wise sequence identity. Site II residues are shaded. Dots are spaceholders and do not represent amino acids. Numbers refer to the first residue in each line, are specific for each GR, and are based on the full-length GR. GR sequences were obtained from the following sources: Squirrel (SEQ ID NO:14) (Saimiri boliviensis boliviensis) (GenBank U87951) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Pig GR (SEQ ID NO:15) (GenBank AF141371) Gutscher, M., Eder, S., Mueller, M. and Claus, R. Submitted to GenBank (08-APR-1999) Institut fuer Tierhaltung und Tierzuechtung (470), FG Tierhaltung und Leistungsphysiologie, Universitaet Hohenheim, Garbenstr. 17, Stuttgart 70599, Germany; Guinea Pig (SEQ ID NO:16) (GenBank L13196) Keightley, M.C. and Fuller, P.J. Mol. Endocrinol. 8 (4), 431-439 (1994); Marmoset (SEQ ID NO:17) (GenBank U87953) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Ma'z Monkey (SEO ID NO:18) (GenBank U87952) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); rat (SEQ ID NO:19) (GenBank M14053) Miesfeld, R., Rusconi, S., Godowski, P.J., Maler, B.A., Okret, S., Wikstrom, A.C., Gustafsson, J.A. and Yamamoto, K.R. Cell 46 (3), 389-399 (1986); mouse (SEQ ID NO:20) (GenBank X04435) Danielsen, M., Northrop, J.P. and

Wikstrom, A.C., Gustafsson, J.A. and Yamamoto, K.R. Cell 46 (3), 389-399 (1986);
mouse (SEQ ID NO:20) (GenBank X04435) Danielsen, M., Northrop, J.P. and
Ringold, G.M. EMBO J. 5 (10), 2513-2522 (1986); Human (SEQ ID NO:21) (PIR Accession Number QRHUGA) Hollenberg, S.M., Weinberger, C., Ong, E.S.,
Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M., Nature
(1985) 318: 635-641.

Figure 7. Ribbon diagram of the LBDs of 11 NHRs detailed in Figure 2, based on a consensus alignment paradigm (ICM, Molsoft LLC, La Jolla, CA). The glucocorticoid receptor (GR) homology model is represented by the blue ribbon.

- Figure 8. Graphic demonstration that in a highly sensitive, artificial assay, mutations in Site II inhibit the ability of Site II ligands to induce transactivation, whereas there was a minimal effect on the Site I compound dexamethasone. RLU on the Y-axis is relative light units, a measurement of transactivation. Various mutants and the wild-type are given on the X-axis. Compound A, a Site II ligand, is indicated by the left, darker, solid bar in each pair of bars. Dexamethasone is indicated by the right, lighter, hatched bar in each pair of bars.
- Figure 9. Graphic demonstration that the Site I antagonist RU486 inhibits dexamethasone-mediated repression of AP-1 activity, whereas Site II compounds, such as Compound A and Compound B, act in an additive fashion with dexamethasone to repress AP-1 activity. The Y-axis denotes % inhibition of AP-1 activity. The X-axis denotes concentration of dexamethasone. Concentrations of RU486, Compound A, and Compound B are denoted by the indicated symbols.
- Figure 10. Graphic demonstration of an assay to indirectly measure the interaction of Site II ligands with GR showing that Site II ligands which do not inhibit dexamethasone on their own can displace other Site II ligands which do inhibit dexamethasone, thereby allowing dexamethasone to bind to GR. Compound D is a Site II ligand that does inhibit dexamethasone. Compound A, Compound B, and Compound C are Site II ligands that do not inhibit dexamethasone on their own. Compound A, Compound B, and Compound C are denoted by the indicated symbols and are the competitor compounds whose concentration is denoted on the X-axis. The Y-axis denotes % inhibition of dexamethasone binding.
- 30 Figures 11a and 11b. Graphic demonstrations that a Site Π ligand inhibits AP-1-mediated transcription in a GR dependent fashion. The Y-axes denote relative light units (RLU), a measurement of AP-1 activity. On the X-axes, Compound A is a Site

II ligand, DEX is dexamethasone, and PMA is phorbol myristic acid. In Figure 11a, AP-1 activity is measure without the presence of GR. In Figure 11b, AP-1 activity is measured in the presence of GR.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

We have identified a second binding site in the ligand binding domain of nuclear hormone receptors (NHRs). We refer to this second binding site as Site Π .

Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. That is, a Site II is any structure that falls within the given root mean square deviation. Table I is located under the heading for Example 21.

Figure 2 shows the amino acids of Site II in various human NHRs. The structure coordinates of Site II in the NHRs of Figure 2 are given in Table III, located under the heading for Example 22. Two sets of xray structure coordinates of Site II in GR are given in Table IV, located under the heading for Example 23, and Table V, located under the heading for Example 24. Figure 6 shows the amino acids of Site II in the GR of various species.

We have found that ligands of Site II modulate NHRs. Ligands of Site II induce transrepression. Ligands of Site II possess dissociated activity. Ligands of Site II antagonize transactivation.

For all of the present inventions described further below, the following information on possible and preferable embodiments applies.

Said Site II preferably is a nuclear hormone receptor (NHR) Site II, more preferably steroid hormone receptor (SHR) Site II, most preferably a glucocorticoid receptor (GR) Site II.

Said NHR is preferably an SHR, more preferably a GR.

Preferably said NHR is selected from the group consisting of: RXR-alpha; RXR-beta; progesterone receptor (PR); androgen receptor (AR); estrogen receptor-alpha (ER-alpha); ER-beta; vitamin D receptor (VitDR); peroxisome proliferator

activated receptor–gamma (PPAR-gamma); thyroid receptor-alpha (TR-alpha); TR-beta; mineralocorticoid receptor (MR); and glucocorticoid receptor (GR). More preferably, said NHR is selected from the group consisting of: RXR-alpha; RXR-beta; progesterone receptor (PR); androgen receptor (AR); vitamin D receptor (VitDR); peroxisome proliferator activated receptor-gamma (PPAR-gamma); thyroid receptor-alpha (TR-alpha); TR-beta; mineralocorticoid receptor (MR); and glucocorticoid receptor (GR). Most preferably, said NHR is selected from the group consisting of: RXR-alpha; RXR-beta; androgen receptor (AR); vitamin D receptor (VitDR); peroxisome proliferator activated receptor-gamma (PPAR-gamma); thyroid receptor-alpha (TR-alpha); TR-beta; mineralocorticoid receptor (MR); and glucocorticoid receptor (GR).

5

10

15

Preferably said SHR is selected from the group consisting of: PR; AR; ERalpha; ER-beta; MR; and GR. More preferably, said SHR is selected from the group consisting of: PR; AR; MR; and GR. Most preferably, said SHR is selected from the group consisting of: AR; MR; and GR.

Said RXR-alpha Site II preferably is composed of amino acids L236-P244, A272-A273, Q276-W283, G305-S313, H316-R317, A320-V321, T329, L368-G369, and R372 according to Figure 2. Preferably said structure coordinates of said RXRalpha Site II define the structure of amino acids L236-P244, A272-A273, Q276-W283, G305-S313, H316-R317, A320-V321, T329, L368-G369, and R372 according 20 to Table III, or define the structure of the conserved residue backbone atoms according to Table III. By this it is meant that preferably said structure coordinates define the same shape as the structure of the amino acids according to Table III, or as the structure of the residue backbone atoms according to Table II, but not necessarily that the structure coordinates are identical to those of the amino acids or residue 25 backbone atoms in the table, as the structure coordinates may be of a coordinate system other than Cartesian coordinates. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids L236-P244, A272-A273, O276-W283, G305-S313, H316-R317, A320-V321, T329, L368-G369, and R372 according to Table III. 30

Said RAR-gamma Site II preferably is composed of amino acids S194-P202, L233-A234, C237-F244, A266-R274, T277-R278, T280-E282, D290, T328-G329

and S332 according to Figure 2. Preferably said structure coordinates of said RAR-gamma Site II define the structure of amino acids S194-P202, L233-A234, C237-F244, A266-R274, T277-R278, T280-E282, D290, T328-G329 and S332 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids S194-P202, L233-A234, C237-F244, A266-R274, T277-R278, T280-E282, D290, T328-G329 and S332 according to Table III.

5

20

25

30

Said PR preferably is composed of amino acids M692-V698, L721-G722, Q725-W732, S754-G762, W765-R766, K769-H770, P780, F818-L819 and K822 according to Figure 2. Preferably said structure coordinates of said PR Site II define the structure of amino acids M692-V698, L721-G722, Q725-W732, S754-G762, W765-R766, K769-H770, P780, F818-L819 and K822 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III.

More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids M692-V698, L721-G722, Q725-W732, S754-G762, W765-R766, K769-H770, P780, F818-L819 and K822 according to Table III.

Said AR Site II preferably is composed of amino acids E678-V684, L708-G709, Q712-W719, S741-A749, W752-R753, T756-N757, P767, F805-L806 and K809 according to Figure 2. Preferably said structure coordinates of said AR Site II define the structure of amino acids E678-V684, L708-G709, Q712-W719, S741-A749, W752-R753, T756-N757, P767, F805-L806 and K809 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids E678-V684, L708-G709, Q712-W719, S741-A749, W752-R753, T756-N757, P767, F805-L806 and K809 according to Table III.

Said ER-alpha Site II preferably is composed of amino acids L320-I326, L348-A349, E352-W359, A381-G389, W392-R393, E396, P405, F444-V445 and K448 according to Figure 2. Preferably said structure coordinates of said ER-alpha Site II define the structure of amino acids L320-I326, L348-A349, E352-W359, A381-G389, W392-R393, E396, P405, F444-V445 and K448 according to Table III, or define the structure of the conserved residue backbone atoms according to Table

III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids L320-I326, L348-A349, E352-W359, A381-G389, W392-R393, E396, P405, F444-V445 and K448 according to Table III.

5

10

15

20

25

30

Said ER-beta Site II preferably is composed of amino acids L273-H279, L297-A298, E301-W308, C330-G338, W341-R342, D345, P354, Y393-L394 and K397 according to Figure 2. Preferably said structure coordinates of said ER-beta Site II define the structure of amino acids L273-H279, L297-A298, E301-W308, C330-G338, W341-R342, D345, P354, Y393-L394 and K397 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids L273-H279, L297-A298, E301-W308, C330-G338, W341-R342, D345, P354, Y393-L394 and K397 according to Table III.

Said VitDR Site II preferably is composed of amino acids L136-D144, L182-V183, S186-F193, S215-R223, E226-S227, T229-D231, G238, H279-V280 and M283 according to Figure 2. Preferably said structure coordinates of said VitDR Site II define the structure of amino acids L136-D144, L182-V183, S186-F193, S215-R223, E226-S227, T229-D231, G238, H279-V280 and M283 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids L136-D144, L182-V183, S186-F193, S215-R223, E226-S227, T229-D231, G238, H279-V280 and M283 according to Table III.

Said PPAR-gamma Site II preferably is composed of amino acids Y219-P227, R288-S289, A292-Y299, G321-M329, S332-L333, N335-K336, E343, L384-A385 and I388 according to Figure 2. Preferably said structure coordinates of said PPAR-gamma Site II define the structure of amino acids Y219-P227, R288-S289, A292-Y299, G321-M329, S332-L333, N335-K336, E343, L384-A385 and I388 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids Y219-P227, R288-S289, A292-Y299, G321-M329, S332-L333, N335-K336, E343, L384-A385 and I388 according to Table III.

Said MR Site II preferably is composed of amino acids E743-I749, L772-A773, Q776-W783, S805-A813, W816-R817, K820-H821, P831, Y869-T870 and K873 according to Figure 2. Preferably said structure coordinates of said MR Site II define the structure of amino acids E743-I749, L772-A773, Q776-W783, S805-A813, W816-R817, K820-H821, P831, Y869-T870 and K873 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids E743-I749, L772-A773, Q776-W783, S805-A813, W816-R817, K820-H821, P831, Y869-T870 and K873 according to Table III.

Said TR-beta Site II preferably is composed of amino acids T226-Q235, I267-I268, A271-F278, C300-R308, V311-R312, D314-E316, G324, V362-A363 and Q366 according to Figure 2. Preferably said structure coordinates of said TR-beta Site II define the structure of amino acids T226-Q235, I267-I268, A271-F278, C300-R308, V311-R312, D314-E316, G324, V362-A363 and Q366 according to Table III, or define the structure of the conserved residue backbone atoms according to Table III. More preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids T226-Q235, I267-I268, A271-F278, C300-R308, V311-R312, D314-E316, G324, V362-A363 and Q366 according to Table III.

Said GR Site II preferably is composed of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Figure 2. Preferably said structure coordinates of said GR Site II define the structure of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I, Table III, Table IV or Table V, or define the structure of the aforementioned amino acids according to the structure coordinates disclosed in Bledsoe, et. al., Cell, online publication by Cell Press, July 1, 2002; DOI: 10.1016/S0092867402008176, or define the structure of the conserved residue backbone atoms according to any of the aforementioned. Preferably, said structure coordinates of said Site II are the structure coordinates of Site II amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I, Table III, Table IV or Table V.

Said GR Site II is preferably selected from the group consisting of: human GR Site II composed of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Figure 6; squirrel GR Site II composed of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to 5 Figure 6; pig GR Site II composed of amino acids E501-V507, L530, G531, Q534-W541, S563-A571, W574, R575, R578, Q579, P589, Y627, L628 and K631 according to Figure 6; guinea pig GR Site II composed of amino acids E531-V537, L560, G561, Q564-W571, S593-A601, W604, R605, K608, Q609, P619, Y557, L558 and K561 according to Figure 6; marmoset GR Site II composed of amino acids 10 E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Figure 6; ma'z monkey GR Site II composed of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, O615, P625, Y663, L664 and K667 according to Figure 6; rat GR Site II E555-V561, L584, G585, Q588-W595, S617-A625, W628, R629, R632, Q633, P643, Y681, L682 15 and K685 according to Figure 6; and mouse GR Site II E543-V549, L572, G573, Q576-W583, S605-A613, W616, R617, R620, Q621, P631, Y669, L670 and K673 according to Figure 6.

Said nuclear hormone receptor can be of any source, preferably human.

Said glucocorticoid receptor can be of any source, preferably human, rat, mouse, sheep, marmoset, squirrel, pig, guinea pig, or m'az monkey. Most preferably said glucorticoid receptor is human.

20

25

30

Said NHR Site II may be native or mutant. Preferably said NHR Site II is a native NHR Site II. Said SHR Site II maybe native or mutant. Preferably said SHR Site II is a native SHR Site II. Said GR Site II may be native or mutant. Preferably said GR Site II is a native GR Site II.

Said Site II may be found on a protein of any source, including mammalian, fungal, bacterial and plant. Preferably said Site II is found on a mammalian protein, more preferably on a human protein.

Preferably the conserved residue backbone atoms of said Site II have a root mean square deviation of less than 1.9, 1.8, 1.7, 1.6 or 1.5 Å, more preferably of less than 1.4, 1.3, 1.2, 1.1, 1.03, 1.02, or 1.0 Å, yet more preferably of less than 0.93, 0.92,

0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 1.02, 0.92 or 0.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.

Preferably the conserved residue backbone atoms of said Site II have a root mean square deviation of less than 2.0, 1.9, 1.8, 1.7, 1.6 or 1.5 Å, more preferably of less than 1.4, 1.3, 1.2, 1.1, 1.03, 1.02, or 1.0 Å, yet more preferably of less than 0.93, 0.92, 0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 1.02, 0.92 or 0.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, O615, P625, Y663, L664 and K667 according to Table IV.

5

10

15

20

25

30

Preferably the conserved residue backbone atoms of said Site II have a root mean square deviation of less than 2.0, 1.9, 1.8, 1.7, 1.6 or 1.5 Å, more preferably of less than 1.4, 1.3, 1.2, 1.1, 1.03, 1.02, or 1.0 Å, yet more preferably of less than 0.93, 0.92, 0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 1.02, 0.92 or 0.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table V.

Said structure coordinates may be those determined for a Site II to which a ligand is bound or to which no ligand is bound. Said structure coordinates may be those determined for a Site II of a ligand binding domain in which a Site I ligand is bound to Site I. Said structure coordinates may be those determined for a Site II of an NHR that is in monomer, dimer, or other form.

As is illustrated in Figure 3, the cavity circumscribed by Site II and the cavity circumscribed by Site I (in GR, the dexamethasone binding site) share a common wall section. That is, some amino acids are common to both Site II and Site I. However the cavity circumscribed by Site II is distinct from the cavity circumscribed by Site I, as the two cavities are on opposite sides of the common wall. We manually docked dexamethasone into GR Site I (see Example 10) and determined that the following amino acid residues are in contact distance, i.e. within 2-3 Angstroms, of dexamethasone and thus make up GR Site I: M560, L563, N564, L566, G567, Q570, M601, M604, A605, L608, R611, F623, M639, Q642, M646, L732, Y735, C736,

T739 and E748. The following amino acid residues are common to both GR Site I and Site II: L566, G567, Q570, M601, M604, A605 and R611. The following amino acid residues are unique to GR Site II, i.e. they are not part of GR Site I: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667. The following amino acid residues are unique to GR Site I, i.e. they are not part of GR Site II: M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748. The amino acids in other NHRs and non-human GR corresponding to the above-recited GR amino acids can be seen in Figures 2 and 6 respectively. We have identified Site II in NHRs as a binding site whose ligands modulate NHRs.

10

5

15

20

25

30

We defined Site II through use of structure coordinates of the ligand binding domain (LBD) of the glucocorticoid receptor (GR), which are provided in Table I. The structure coordinates of the LBD of GR were determined using homology modeling, and later confirmed based on the xray structural elucidation of the GR LBD provided in Apolito, et. al., in WO 03/015692 A2, published February 27, 2003, and Kauppi et. al. in the Journal of Biological Chemistry Online, JBC Papers In Press as DOI:10.1074/JBC.M212711200, April 9, 2003. Thus, some description of homology models and structure coordinates is appropriate here.

Homology models are useful when there is no experimental information available on the three-dimensional structure of the protein of interest. A three dimensional model can be constructed on the basis of the known structure of a homologous protein (Greer et. al., 1991, Lesk, et. al., 1992, Cardozo, et. al., 1995, Sali, et. al., 1995). Those of skill in the art will understand that a homology model is constructed on the basis of first identifying a template, or, protein of known structure which is similar to the protein without known structure. This can be accomplished through pairwise alignment of sequences using such programs as the MODELLER module found in InsightII (Accelrys, Inc., San Diego, CA).

Those of skill in the art will understand that a set of structure coordinates for a protein or part of a protein is a relative set of points that define a shape in three dimensions. For a number of reasons, including those that follow below, the structure coordinates that define two identical or almost identical shapes may vary slightly. If variations are within an acceptable standard error as compared to the

original coordinates, the resulting three-dimensional shape is considered to be equivalent. Thus, for example, a ligand that bound to the structure defined by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I would also be expected to bind to a site having a shape that fell within the acceptable error. Such sites with structures within the acceptable standard error are also within the scope of this invention.

5

10

15

20

25

30

Various computational analyses are therefore necessary to determine whether a molecule or a portion thereof is sufficiently similar to all or parts of the disclosed homology model to be considered equivalent. Such analyses may be carried out in current software applications, such as InsightII (Accelrys Inc., San Diego, CA) Version 2000 as described in the User's Guide, online (www.accelrys.com) or software applications available in the SYBYL software suite (Tripos Inc., St. Louis, MO).

Using the superimposition tool in the program Insight∏, for instance, comparisons can be made between different structures and different conformations of the same structure. The procedure used in InsightII to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalencies in these structures; 3) perform a fitting operation; and 4) analyze the results. Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); the second structure (i.e., moving structure) is identified as the source structure. Since atom equivalency within InsightII is defined by user input, for the purpose of this invention we will define equivalent atoms as protein backbone atoms, also known as residue backbone atoms, (N, Ca, C and O) for all residues between the two structures being compared. We will also consider only rigid fitting operations. When a rigid fitting method is used, the moving structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atoms is an absolute minimum. This number, given in Angstroms (Å), is reported by Insight II.

Three-dimensional coordinates give the location of the centers of all atoms in a protein molecule and are typically expressed as Cartesian coordinates (eg, distances in three directions, each perpendicular to the other), or polar coordinates (eg, sets of angle/distance pairs from a universal origin), or internal coordinates (eg, sets of angle/distance pairs from one atom center to the next). Thus, it is possible that an entirely different set of coordinates could define an identical or similar shape, depending on which coordinate system is used.

5

10

15

20

25

30

Slight variations in the individual coordinates, as emanate from generation of similar homology models using different alignment templates, and/or using different methods in generating the homology model, will have minor effects on the overall shape.

Variations in coordinates may also be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates set forth in Table I could be manipulated by fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.

The structure coordinates of an actual xray structure of a protein would be

expected to have some variation from the homology model of that very same protein. For example, the location of sidechains may vary to some extent. As examples, the homology model GR Site II coordinates were compared to the GR Site II x-ray structure coordinates available from the disclosures in WO 03/015692 A2, February 27, 2003 Apolito, et. al. and Kauppi et. al., in the Journal of Biological Chemistry Online, JBC Papers In Press as DOI:10.1074/jbc.M212711200, April 9, 2003, RCSB file: 1nhz.pdb (GR LBD bound to an antagonist, RU 486). When the backbone atoms of the homology model Site II residues, ie, E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I were compared, root mean square deviations (rmsds) of 0.92 and 1.02 Å were obtained between the homology model of Table I Site II residues and the Apolito Site II residues, and between the homology model of Table I Site II residues and the Kauppi Site II residues, respectively. These observations underscore the similarity of the Site II homology model structure to actual crystal structures.

Variations in structure coordinates can be due to mutations, additions, substitutions, and/or deletions of amino acids of a protein being studied.

5

10

15

20

25

30

Variations in structure coordinates can be due to variations in proteins whose shape is being described by the structure coordinates given. For instance, rigid fitting operations conducted (see Example 13) between the GR LBD homology model and several closely-related NHRs known to have similar structure and function (ie, progesterone receptor LBD, androgen receptor LBD, estrogen receptor alpha LBD and estrogen receptor beta LBD as examples) yielded Site II root mean square (rms) deviations in conserved residue backbone atom comparisons of 0.57-0.71 Å. These Site II rms deviations could be greater if other variation factors described above were present in the calculations. GR LBDs from non-human species may also have slight variations in shape from that of human GR LBD defined by the structure coordinates in Table I.

For the purpose of this invention, any structure that has a root mean square deviation of residue backbone atoms (N, C α , C, O) of less than 2.0 Angstroms (Å) when superimposed on the relevant residue backbone atoms described by structure coordinates listed in Table I is considered to be equivalent. Preferably the root mean square deviation is less than 1.9, 1.8, 1.7, 1.6 or 1.5 Å, more preferably of less than 1.4, 1.3, 1.2, 1.1, 1.03, 1.02, or 1.0 Å, yet more preferably of less than 0.93, 0.92, 0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 1.02, 0.92 or 0.0 Å.

Within the context of the present invention, "conserved" refers to a portion of a protein backbone which is found in common between two proteins. That is, if portions of two proteins are aligned and compared using the three-dimensional coordinates of their residue backbone atoms for super-positioning, and comparison of the structure coordinates of the residue backbone atoms yields an rms of 2.0 Å or less, then the residue backbone atoms are considered to be conserved between the two proteins.

We made the claimed inventions through a series of experiments described below in the Examples. To help in understanding the invention, that series of experiments is summarized here.

Twenty-seven compounds, which are analogues, were synthesized and shown to inhibit GR binding in GR Site I binding assays and to induce transrepression in

5

10

15

20

25

30

AP-1 cellular transrespressional assays. Some of these compounds were tested in cellular transcriptional assays and shown to induce none to minimal transactivation. Thus these compounds were shown to have dissociated activity.

Twelve analogues of the twenty-seven compounds (some of which are among the twenty-seven compounds) were synthesized and the racemic mixtures were separated into enantiomers. Each of these twenty-four enantiomers was tested in the GR binding assay and the cellular transrepressional assay. It was observed that the S enantiomer of each pair induced AP-1 inhibitory activity when GR was present but did not inhibit well dexamethasone binding to GR, while the R enantiomer of each pair induced minimal AP-1 inhibitory activity when GR was present and inhibited well dexamethasone binding to GR. Each enantiomer was also tested in the cellular transcriptional assay and induced none to minimal transactivation. This suggested that there is an alternate site on GR to which these compounds bind that does not result in inhibition of dexamethasone binding to GR.

A homology model of the ligand binding domain (LBD) of GR was constructed using the known crystal structure of the progesterone receptor (PR). Site II in the LBD of GR was identified by the complementarity of three-dimensional shape and functional features between the Site II and compounds having AP-1 inhibitory activity. Manual docking of one such compound was performed and confirmed the identity of Site II and its role in transrepression. Binding energetics of the S enantomer of the twenty-seven compounds to Site II were calculated and correlated with AP-1 inhibitory activity of these compounds. This positive correlation further confirmed the identity and role of Site II.

As binding energetics to Site II correlates to AP-1 inhibitory activity and all compounds that were tested for binding to Site II are dissociated compounds, Site II was determined to be a target for compounds that have AP-1 inhibitory activity as well as compounds that have dissociated activity.

Additional studies were performed to elucidate the relationship between binding at Site II and binding at Site I. One S enantiomer and dexamethasone were used concurrently in cellular transrepressional assays and cellular transcriptional assays. In the cellular transrepressional assays, it was observed that the dissociated compound (i.e. the S enantiomer) and dexamethasone had an additive effect on AP-

25

1 inhibitory activity. In the cellular transcriptional assays, it was observed that the presence of a dissociated compound along with dexamethasone reduced transactivation as compared to dexamethasone alone.

The cellular transcriptional assay was performed with a titration of dexamethasone in the presence or absence of each of both enantiomers of a pair. Again, an additive effect on AP-1 inhibitory activity was seen with each of the enantiomers and dexamethasone. In contrast, the Site I antagonist RU 486 inhibited the ability of dexamethasone to induce transrepression.

5

10

15

20

25

30

Other studies performed have shown that mutations in Site Π alter the ability of an S enantiomer to modulate GR function. In a highly sensitive, artificial assay system to measure transactivation, it was shown that mutations of residues 543 or 607 prevented the compound from inducing transactivation, whereas, in the wild type protein transactivation was seen. Dexamethasone induced transactivation in both the mutants and the wild type protein.

A further study demonstrated that both an S enantiomer and dexamethasone act in a GR-dependent fashion.

The studies performed to date suggest that both enantiomers interact with Site II. Example 17 shows that both enantiomers R (Compound B) and S (Compound A) act in an additive fashion with saturating levels of dexamethasone to suppress AP-1 activity. Since dexamethasone binds to Site I, it is most likely that the R and S enantiomers interact with Site II to allosterically enhance the repressive activity.

The following definitions are provided to more fully describe the present invention in its various aspects. The definitions are intended to be useful for guidance and elucidation, and are not intended to limit the disclosed invention and its embodiments. Additional definitions may be provided elsewhere in the specification.

The terms "nuclear hormone receptor" and "NHR," as used herein, refer to a member of the nuclear hormone receptor family of transcription factors which bind low molecular weight ligands and stimulate or repress transcription. NHRs include, but are not limited to, glucocorticoid receptors (GRs), progesterone receptors (PRs), androgen receptors (ARs), estrogen receptors (ERs), mineralocorticoid receptors

(MRs), retinoid receptors (RXRs and RARs), Vitamin D receptors (VitDRs), thyroid receptors (TRs), peroxisome proliferator activated receptors (PPARs), and orphan nuclear receptors (i.e. receptors for which the ligands are not yet identified) that bind nuclear hormones. "Nuclear hormone receptor" includes orphan nuclear receptors, which are gene products that embody structural features of nuclear hormone receptors and were identified without any prior knowledge of their association with a putative ligand.

5

10

15

20

25

30

The structural features that define a nuclear hormone receptor, including an orphan nuclear receptor, are the four following features (as disclosed in Giguere, V. (1999) Endocrine Reviews 20(5) p689: 1. An NHR has a modulator domain including the AF-1 domain responsible in part for transcriptional activation function. Modulator domains can also include regions for promoters and cell-specific cofactors and can interact with steroid receptor co-activators (SRCs). 2. An NHR has a DNA binding domain (DBD) composed of two zinc finger modules composed of 60-70 amino acids and a carboxy-terminal extension (CTE) that providesprotein-protein and protein-DNA interactions upon homo- or heterodimer receptorbinding. 3. An NHR has a hinge region that is the hinge between the DBD and the carboxy-terminal ligand binding domain. The hinge region is variable is primary structure and amino acid

sequence length. 4. An NHR has a ligand binding domain (LBD) that contains the AF-2 motif (which corresponds to helix 12 of NHRs) and provides a structured region whereby AF-2 (helix 12) is packed closely to the LBD core forming an interface with at least 3 other helices of the core. The interface is involved with binding of coactivator or co-repressor polypeptides.

"Nuclear hormone receptor" and "NHR," as used herein, refer to NHRs from any source, including but not limited to: glucocorticoid receptor as disclosed in Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M., Nature (1985) 318: 635-641; progesterone receptor as disclosed in Misrahi, M. et al. (1987) Biochem. Biophys. Res. Commun. 143, p740; androgen receptor as disclosed in Lubahn D. B., et al (1988); estrogen receptors as disclosed in Green, S., et al. (1986) Nature 320, p134); mineralocorticoid receptor as disclosed in Arriza, J.L., et al., (1987) Science 237,

p268; retinoid receptors (RXRs and RARs) as disclosed in Mangelsdorf, et al. (1990) Nature, 345, p224 and Petkovich M., et al (1987) Nature 330, p444; Vitamin D receptor, thyroid receptor (TR) as disclosed in Nakai, A. et al., (1988) Mol. Endocrinol. 2, p1087; peroxisome proliferator activated receptor (PPAR) as disclosed in Greene, M.E., et al. (1995) Gene Expression 4, p281; RXRalpha (1lbd) as disclosed 5 in Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., Moras, D. Nature 375 pp. 377 (1995); PPARgamma (2prg) as disclosed in Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., Milburn, M. V. Nature 395 pp. 137 (1998); RARgamma (2lbd) as disclosed in Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., 10 Gronemeyer, H., Moras, D. Nature 378 pp. 681 (1995); PR (1a28) as disclosed in Williams, S. P., Sigler, P. B. Nature 393 pp. 392 (1998); VitDR (1db1) as disclosed in Rochel, N., Wurtz, J. M., Mitschler, A., Klaholz, B., Moras, D. Mol. Cell 5 pp. 173 (2000); AR (1e3g) as disclosed in Matias, P. M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Basler, S., 15 Schafer, M., Egner, U., Carrondo, M. A. J.Biol.Chem. 275 pp. 26164 (2000); ERalpha (1a52) as disclosed in Tanenbaum, D. M., Wang, Y., Williams, S. P., Sigler, P. B. Proc Natl Acad Sci U S A 95 pp. 5998 (1998); ERbeta (112j) as disclosed in Shiau, A. K., Barstad, D., Radek, J. T., Meyers, M. J., Nettles, K. W., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Agard, D. A., Greene, G. L. Nat. Struct. Biol. 9 pp. 359 20 (2002); TRbeta (1bsx) as disclosed in Wagner, R. L., Darimont, B. D., Apriletti, J. W., Stallcup, M. R., Kushner, P. J., Baxter, J. D., Fletterick, R. J., Yamamoto, K. R. Genes Dev. 12 pp. 3343 (1998); GR, PIR Accession Number QRHUGA, as dislcosed in Hollenberg, S.M., Weinberger, C., Ong, E.S.; Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M., Nature (1985) 318: 635-641; MR, 25 PIR Accession Number A29613, as disclosed in Arriza, J.L.; Weinberger, C., Cerelli, G., Glaser, T.M., Handelin, B.L., Housman, D.E., Evans, R.M., Science (1987) 237: 268-275. Orphan nuclear receptors include but are not limited to: Rev Erb(alpha) (1hlz) as disclosed in Sierk, M.L., et. al., Biochemistry (2001) 40: pp. 12833; Pxr (1ilh) as disclosed in Watkins, R.E., et. al., Science (2002) 292: pp. 2329; ERR3 30 (1kv6) as disclosed in Greschik, H., et. al., Mol. Cell (2002) 9: pp. 303; Nurrl (1ovl) as disclosed in Wang, Z., et. al., Nature (2003) 423: pp. 555; ERR1 as disclosed in

Guiguere, V., et al., Nature (1988) 331: 91-94. Other NHRs, including orphan nuclear receptors, include those disclosed in: The Nuclear Receptor Facts Book, V. Laudet and H. Gronemeyer, Academic Press, p345, 2002; and Francis et al, Annu. Rev. Physiol. 2003, 65:261-311.

5

10

The terms "steroid hormone receptor" and "SHR," as used herein, refer to a member of the nuclear hormone receptor family of transcription factors which bind steroids and stimulate or repress transcription. SHRs include, but are not limited to, glucocorticoid receptors (GRs), progesterone receptors (PRs), androgen receptors (ARs), estrogen receptors (ERs), mineralocorticoid receptors (MRs), and orphan receptors (i.e. receptors for which the ligands are not yet identified) that bind steroids. These terms, as used herein, refer to steroid hormone receptors from any source, including but not limited to human.

The terms "glucocorticoid receptor" and "GR," as used herein, refer to a member of the nuclear hormone receptor family of transcription factors which bind glucocorticoids and stimulate or repress transcription, and to the GR-beta isoform. 15 These terms, as used herein, refer to glucocorticoid receptor from any source, including but not limited to: human glucocorticoid receptor as disclosed in Weinberger, et al. Science 228, p740-742, 1985, and in Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, 20 M.G., Evans, R.M.; Nature (1985) 318: 635-641,; rat glucocorticoid receptor as disclosed in Miesfeld, R. Nature, 312, p779-781, 1985; mouse glucocortoid receptor as disclosed in Danielson, M. et al. EMBO J., 5, 2513; sheep glucocorticoid receptor as disclosed in Yang, K., et al. J. Mol. Endocrinol. 8, p173-180, 1992; marmoset glucocortoid receptor as disclosed in Brandon, D.D., et al, J. Mol. Endocrinol. 7, p89-25 96, 1991; human GR-beta as disclosed in Hollenberg, SM. et al. Nature, 318, p635, 1985, Bamberger, C.M. et al. J. Clin Invest. 95, p2435, 1995; Squirrel (Saimiri boliviensis boliviensis) (GenBank U87951) as disclosed in Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Pig GR (GenBank AF141371) as disclosed in Gutscher, M., Eder, S., Mueller, M. and Claus, R. Submitted to GenBank (08-APR-1999) Institut fuer Tierhaltung und Tierzuechtung 30 (470), FG Tierhaltung und Leistungsphysiologie, Universitaet Hohenheim, Garbenstr. 17, Stuttgart 70599, Germany; Guinea Pig (GenBank L13196) as disclosed in

Keightley,M.C. and Fuller,P.J. Mol. Endocrinol. 8 (4), 431-439 (1994); Marmoset (GenBank U87953) as disclosed in Reynolds,P.D., Pittler,S.J. and Scammell,J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Ma'z Monkey (GenBank U87952) as disclosed in Reynolds,P.D., Pittler,S.J. and Scammell,J.G. J. Clin. Endocrinol.
Metab. 82 (2), 465-472 (1997); rat (GenBank M14053) as disclosed in Miesfeld,R., Rusconi,S., Godowski,P.J., Maler,B.A., Okret,S., Wikstrom,A.C., Gustafsson,J.A. and Yamamoto,K.R. Cell 46 (3), 389-399 (1986); mouse (GenBank X04435) as disclosed in Danielsen,M., Northrop,J.P. and Ringold,G.M. EMBO J. 5 (10), 2513-2522 (1986); Human (Protein Information Resource (PIR) Accession Number
QRHUGA) as disclosed in Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G., Oro, A., Leba, R., Thompson, E.B.,
Rosenfeld, M.G., Evans, R.M., Nature (1985) 318: 635-641.

The term "binding site," as used herein, refers to a region of a molecule or molecular complex that, as a result of its shape, favorably associates with, i.e. binds, another molecule, such other molecule being a ligand of the binding site. A binding site, such as Site II, is analogous to a wall and circumscribes a space referred to as a "cavity" or "pocket." The ligand of the binding site situates in the cavity.

15

20

25

30

The terms "binds" in all its grammatical forms, as used herein, refers to a condition of proximity between or amongst molecules, chemical compounds or chemical entities. The association may be non-covalent (i.e. non-bonded or reversible), wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions, or it may be covalent (i.e. bonded or irreversible).

The term "soaked," as used herein, refers to a process in which the protein crystal is transferred to a solution containing the compound of interest.

The terms "at least a portion of," "a portion of," "any part of," and "any portion of," in all their grammatical forms, as used herein when referring to Site II, or the structure coordinates of Site II, or the cavity circumscribed by Site II, refer to all or any part of Site II, or the structure coordinates of Site II, or the cavity circumscribed by Site II, wherein Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the

structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. Preferably the terms relate to a sufficient number of residues or the corresponding structure coordinates so as to be useful in docking or modeling a ligand in the cavity circumscribed by Site II. Preferably, the terms comprise one or more of the following residues or the corresponding structure coordinates: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667. These are the residues of Site II that are not also part of Site I. More preferably, the terms comprise one or more of the following residues or the corresponding structure coordinates: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Y663, L664 and K667. Preferably, the terms relate to at least four amino acid residues, more preferably at least fifteen amino acid residues, more preferably at least fifteen amino acid residues, more preferably at least twenty-five amino acid residues, most preferably at least thirty amino acid residues.

The term "mutant," as used herein, refers to a protein, or portion of protein, having one or more amino acid deletions, insertions, inversions, repeats, or substitutions as compared to the relevant native protein or relevant portion of native protein. A native protein is one occurring in nature. A mutant Site II falls within the scope of this invention so long as the rms deviation in conserved residue backbone atoms between such mutant Site II and the the Site II residues according to Table I falls within 2.0 Angstroms. A mutant may have the same, similar, or altered activity as compared to the native protein. Activity refers to transrepression, transactivation, and ligand binding. Preferred mutants have at least 25% sequence identity, more preferably at least 50% sequence identity, more preferably at least 75% sequence identity, and most preferably at least 95% sequence identity to the native protein or portion of native protein.

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein or portion of

a protein from the relevant portion of the backbone of another protein, such as the LBD defined by the structure coordinates of Table I.

5

10

15

20

25

30

The term "structure coordinates," "structural coordinates," "atomic coordinates," or "atomic structure coordinates" refers to coordinates that specify the location of the centers of atoms in a protein molecule or molecular complex. The terms include, but are not limited to, Cartesian coordinates, polar coordinates, and internal coordinates. The structure coordinates may be generated by any means, including the building of a homology model or derivation from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a molecule or molecular complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the molecule or molecular complex.

The term "molecule," as used herein, has the meaning generally used in the art and includes, but is not limited to, proteins, nucleic acids, and chemical compounds, including small organic compounds. "Small organic compounds" are also known as "small organic molecules" or "small molecules."

The term "complex" or "molecular complex," as used herein, refers to a covalent or non-covalent association of a molecule with its ligand.

The term "chemical entity," as used herein, refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such chemical compounds or complexes. A modulator may be a chemical entity. A ligand may be a chemical entity.

The term "compound," as used herein, refers to a chemical compound.

The term "test molecule," as used herein, refers to a molecule, preferably a chemical compound, that is being tested for specific characteristics.

The term "ligand," as used herein, refers to a molecule that binds to another molecule or portion of another molecule.

The term "modulator," as used herein, refers to a molecule whose presence induces an activity in the molecule that it modulates. A modulator can bind to the molecule that it modulates, i.e. be a ligand of the molecule it modulates. A preferred modulator is a ligand of the molecule that it modulates. Modulators include, but are

not limited to, small organic molecules, chemical compounds, peptides, peptidomimetics (eg., cyclic peptides, peptide analogs, or constrained peptides) and nucleic acids. Modulators can be natural or synthetic. Preferred modulators are small organic molecules.

5

10

15

20

25

30

The term "modeling" in all its grammatical forms, as used herein, refers to the development of a mathematical construct designed to mimic real molecular geometry and behavior in proteins and small molecules. These mathematical constructs include, but are not limited to: energy calculations for a given geometry of a molecule utilizing forcefields or ab initio methods known in the art; energy minimization using gradients of the energy calculated as atoms are shifted so as to produce a lower energy; conformational searching, ie, locating local energy minima; molecular dynamics wherein a molecular system (single molecule or ligand/protein complex) is propagated forward through increments of time according to Newtonian mechanics using techniques known to the art; calculations of molecular properties such as electrostatic fields, hydrophobicity and lipophilicity; calculation of solvent-accessible or other molecular surfaces and rendition of the molecular properties on those surfaces; comparison of molecules using either atom-atom correspondences or other criteria such as surfaces and properties; quantitiative structure-activity relationships in which molecular features or properties dependent upon them are correlated with activity or bio-assay data.

The term "fits spatially" in all its grammatical forms, as used herein, refers to when the three-dimensional structure of a compound is accommodated geometrically by a cavity or pocket of a protein, such as the cavity circumscribed by Site II.

The terms "docking" and "performing a fitting operation," in all their grammatical forms, as used herein, refer to the computational placement of a chemical entity (eg. a potential ligand, preferably a small organic molecule) within a space (i.e. cavity) at least partially enclosed by the protein structure (i.e. binding site) so that structural and chemical feature complementarity (i.e. binding contacts) between chemical entity and binding site components can be assessed in terms of interactions typical of protein/ligand complexes. Specifically, the structural and chemical features may include both bonded and non-bonded interactions, and more generally, the non-bonded interactions which occur in the bulk of reversible protein/ligand complexes

would include forces such as hydrogen-bonding, electrostatic or charge interactions, vander Waal's interactions, and hydrophobic interactions. Such placement could be conducted manually or automatically using software designed for such purpose.

The term "transrepress" or "transrepression," in all their grammatical forms, is used herein to refer to the process in which an NHR represses transcription by inhibiting a transcription factor or coactivator from inducing transcription. The term is not limited to any specific mechanism of action, any specific transcription factor or coactivator, or any specific gene whose transcription is repressed. AP-1 and NF-KB are two transcription factors, among others, that can be inhibited by an NHR.

5

10

15

20

25

30

The term "transactivate" or "transactivation," in all their grammatical forms, is used herein to refer to the process in which an NHR stimulates transcription, either by binding to DNA and inducing transcription, or by modulating the activity of another DNA binding protein that induces transcription. The term is not limited to any specific mechanism of action or any specific gene whose transcription is stimulated.

The term, "NF-kB-dependent gene expression," as used herein, refers to the expression of those genes that are under the regulatory control of the NF-kB transcription factor. Such genes include, but are not limited to the immune-related and inflammatory genes encoding TNF-alpha, IL-1, IL-2, IL-5, adhesion molecules (such as E-selectin), chemokines (such Eoxtaxin and Rantes), and Cox-2.

The term, "AP-1-dependent gene expression," as used herein, refers to the expression of genes that are under the regulatory control of the AP-1 transcription factor. Such genes include, but are not limited to the immune-related and inflammatory genes encoding TNF-alpha, IL-1, IL-2, IL-5, adhesion molecules (such as E-selectin), chemokines (such Eoxtaxin and Rantes), and Cox-2.

The term "dissociated compound" is used herein to refer to a modulator of an NHR that induces transrepression and induces none to minimal transactivation. The term "dissociated activity" refers to the activity in which a dissociated compound induces transrepression and induces none to minimal transactivation.

The term "treat", "treating", or "treatment," in all grammatical forms, as used herein refers to the prevention, reduction, or amelioration, partial or complete alleviation, or cure of a disease, disorder, or condition.

The term "NHR-associated disease," as used herein, refers to a disease or disorder associated with the expression product of a gene whose transcription is stimulated or repressed by an NHR. Stimulation is through transactivation. Repression is through transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with AP-1-dependent gene expression, diseases associated with NF-kB-dependent gene expression, diseases associated with NHR transrepression, diseases associated with NHR transactivation, diseases treatable by inducing NHR transrepression, and diseases treatable by antagonizing NHR transactivation.

5

10

15

20

25

30

The term "SHR-associated disease," as used herein, refers to a disease or disorder associated with the expression product of a gene whose transcription is stimulated or repressed by an SHR. Stimulation is through transactivation. Repression is through transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with AP-1-dependent gene expression, diseases associated with NF-κB-dependent gene expression, diseases associated with SHR transrepression, diseases associated with SHR transrepression, and diseases treatable by antagonizing SHR transactivation.

The term "GR-associated disease," as used herein, refers to a disease or disorder associated with the expression product of a gene whose transcription is stimulated or repressed by a GR. Stimulation is through transactivation. Repression is through transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with AP-1-dependent gene expression, diseases associated with NF-κB-dependent gene expression, diseases associated with NHR transrepression, diseases associated with GR transactivation, diseases treatable by inducing GR transrepression, and diseases treatable by antagonizing GR transactivation.

The term "disease associated with NHR transrepression," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transrepressed by an NHR. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with NF-κB-dependent gene expression, diseases, diseases associated with

AP-1-dependent gene expression, and diseases treatable by inducing NHR transrepression.

5

10

15

20

25

30

The term "disease associated with SHR transrepression," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transrepressed by an SHR. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with NF-κB-dependent gene expression, diseases, diseases associated with AP-1-dependent gene expression, and diseases treatable by inducing SHR transrepression.

The term "disease associated with GR transrepression," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transrepressed by a GR. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders, diseases associated with NF-κB-dependent gene expression, diseases, diseases associated with AP-1-dependent gene expression, and diseases treatable by inducing GR transrepression.

The term "disease associated with NHR transactivation," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transactivated by an NHR. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, AIDS, the condition of wound healing, prostate cancer, breast cancer, primary or secondary andrenocortical insufficiency, and Addison's disease.

The term "disease associated with SHR transactivation," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transactivated by an SHR. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, and AIDS, the condition of wound healing, prostate cancer, breast cancer, primary or secondary andrenocortical insufficiency, and Addison's disease.

The term "disease associated with GR transactivation," as used herein, refers to a disease or disorder associated with the transcription product of a gene whose transcription is transactivated by a GR. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes,

5

10

15

20

25

30

hypertension, obesity, depression, and AIDS, the condition of wound healing, primary or secondary andrenocortical insufficiency, and Addison's disease.

The term, "disease associated with NF-κB-dependent gene expression," as used herein, refers to a disease or disorder associated with the expression product of a gene under the regulatory control of NF-κB. Such diseases include, but are not limited to: inflammatory and immune associated diseases and disorders; cancer and tumor disorders, such as solid tumors, lymphomas and leukemia; fungal infections such as mycosis fungoides; ischemic or reperfusion injury such as ischemic or reperfusion injury that may have been incurred during organ transplantation, myocardial infarction, stroke or other causes; and DNA and RNA viral replication diseases, such herpes simplex type 1 (HSV-1), herpes simplex type 2 (HSV-2), hepatitis (including hepatitis B and hepatitis C), cytomegalovirus, Epstein-Barr, and human immunodeficiency virus (HIV).

The term, "disease associated with AP-1-dependent gene expression," as used herein, refers to a disease or disorder associated with the expression product of a gene under the regulatory control of AP-1. Such diseases include, but are not limited to: inflammatory and immune associated diseases and disorders; cancer and tumor disorders, such as solid tumors, lymphomas and leukemia; and fungal infections such as mycosis fungoides.

The term "inflammatory or immune associated diseases or disorders" is used herein to encompass any condition, disease, or disorder that has an inflammatory or immune component, including, but not limited to, each of the following conditions: transplant rejection (e.g., kidney, liver, heart, lung, pancreas (e.g., islet cells), bone marrow, cornea, small bowel, skin allografts, skin homografts (such as employed in burn treatment), heart valve xenografts, serum sickness, and graft vs. host disease, autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, juvenile diabetes, asthma, inflammatory bowel disease (such as Crohn's disease and ulcerative colitus), pyoderma gangrenum, lupus (systemic lupus erythematosis), myasthenia gravis, psoriasis, dermatitis, dermatomyositis; eczema, seborrhoea, pulmonary inflammation, eye uveitis, hepatitis, Grave's disease, Hashimoto's thyroiditis, autoimmune thyroiditis, Behcet's or Sjorgen's syndrome (dry eyes/mouth), pernicious or immunohaemolytic anaemia, atherosclerosis, Addison's

disease (autoimmune disease of the adrenal glands), idiopathic adrenal insufficiency, autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome), glomerulonephritis, scleroderma, morphea, lichen planus, viteligo (depigmentation of the skin), alopecia areata, autoimmune alopecia, autoimmune hypopituatarism, Guillain-Barre syndrome, and alveolitis; T-cell mediated 5 hypersensitivity diseases, including contact hypersensitivity, delayed-type hypersensitivity, contact dermatitis (including that due to poison ivy), uticaria, skin allergies, respiratory allergies (hayfever, allergic rhinitis) and gluten-sensitive enteropathy (Celiac disease); inflammatory diseases such as osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma, acute respiratory distress syndrome, 10 Sezary's syndrome and vascular diseases which have an inflammatory and or a proliferatory component such as restenosis, stenosis and artherosclerosis. Inflammatory or immune associated diseases or disorders also includes, but is not limited to: endocrine disorders, rheumatic disorders, collagen diseases, dermatologic disease, allergic disease, opthalmic disease, respiratory disease, hematologic disease, 15 gastrointestinal disease, inflammatory disease, autoimmune disease, Congenital adrenal hyperplasia, Nonsuppurative thyroiditis, Hypercalcemia associated with cancer, Psoriatic arthritis, Rheumatoid arthritis, including juvenile rheumatoid arthritis, Ankylosing spondylitis, Acute and subacute bursitis, Acute nonspecific tenosynovitis, Acute gouty arthritis, Post-traumatic osteoarthritis, Synovitis of 20 osteoarthritis, Epicondylitis, Systemic lupus erythematosus, Acute rheumatic carditis. Pemphigus, Bullous dermatitis herpetiformis, Severe erythema multiforme, Exfoliative dermatitis, Psoriasis, Seborrheic dermatitis, Seasonal or perennial allergic rhinitis, Serum sickness, Bronchial asthma, Contact dermatitis, Atopic dermatitis, Drug hypersensitivity reactions, Allergic conjunctivitis, Keratitis, Herpes zoster 25 ophthalmicus, Iritis and iridocyclitis, Chorioretinitis, Optic neuritis, Symptomatic sarcoidosis, Fulminating or disseminated pulmonary tuberculosis chemotherapy, Idiopathic thrombocytopenic purpura in adults, Secondary thrombocytopenia in adults, Acquired (autoimmune) hemolytic anemia, Leukemias and lymphomas in adults, Acute leukemia of childhood, Ulcerative colitis, Regional enteritis, Crohn's 30 diease, Sjogren's syndrome, Autoimmune vasculitis, Multiple sclerosis, Myasthenia

gravis, Anklyosing spondylitis, Chronic obstructive pulmonary disease, Solid organ transplant rejection, Sepsis, and Allergy.

The term "disease treatable by inducing NHR transrepression," as used herein, refers to a disease that can be treated by inducing NHR transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders.

5

10

15

20

25

30

The term "disease treatable by inducing SHR transrepression," as used herein, refers to a disease that can be treated by inducing SHR transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders.

The term "disease treatable by inducing GR transrepression," as used herein, refers to a disease that can be treated by inducing GR transrepression. Such diseases include, but are not limited to, inflammatory and immune associated diseases and disorders.

The term "disease treatable by antagonizing NHR transactivation," as used herein, refers to a disease that can be treated by antagonizing NHR transactivation. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, and AIDS, the condition of wound healing, prostate cancer, breast cancer, and primary or secondary andrenocortical insufficiency.

The term "disease treatable by antagonizing SHR transactivation," as used herein, refers to a disease that can be treated by antagonizing SHR transactivation. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, and AIDS, the condition of wound healing, prostate cancer, breast cancer, and primary or secondary andrenocortical insufficiency.

The term "disease treatable by antagonizing GR transactivation," as used herein, refers to a disease that can be treated by antagonizing GR transactivation. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, and AIDS, the condition of wound healing, prostate cancer, breast cancer, and primary or secondary andrenocortical insufficiency.

Machine -Readable Data Storage Media, and Computer Systems

We have identified a second binding site in the ligand binding domain of NHRs, termed Site II, and provide herein the structure coordinates of Site II. The structure coordinates may be used in the design and identification of ligands of Site II and modulators of NHRs. In order to so-use structure coordinates, it may be necessary to convert them into a three-dimensional shape. This is achieved through the use of commercially available software that, in conjunction with a computer, is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structure coordinates provided on a machine-readable data storage medium.

5

10

15

20

25

30

Therefore, the invention provides a machine-readable data storage medium comprising a data storage material encoded with machine-readable data comprising all or any part of structure coordinates of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.

The invention also provides a machine-readable data storage medium comprising a data storage material encoded with machine readable data consisting of all or any part of structure coordinates of a Site II.

As is illustrated in Figure 3, the cavity circumscribed by Site II and the cavity circumscribed by Site I share a common wall section. That is, some amino acids are common to both Site II and Site I. However the cavity circumscribed by Site II is distinct from the cavity circumscribed by Site I, as the two cavities are on opposite sides of the common wall. We manually docked dexamethasone into GR Site I (see Example 10) and determined that the following amino acid residues are in contact distance, i.e. within 2-3 Angstroms, of dexamethasone and thus make up GR Site I: M560, L563, N564, L566, G567, Q570, M601, M604, A605, L608, R611, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748. The following amino acid residues are common to both GR Site I and Site II: L566, G567, Q570, M601, M604,

A605 and R611. The following amino acid residues are unique to GR Site II, i.e. they are not part of GR Site I: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667. The following amino acid residues are unique to GR Site I, i.e. they are not part of GR Site II: M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748. The amino acids in other NHRs and non-human GR corresponding to the above-recited GR amino acids can be seen in Figures 2 and 6 respectively. Site II and its function were newly identified by us, who were the first to identify Site II in NHRs as a binding site whose ligands modulate NHRs.

5

10

15

20

25

30

Thus the invention also provides a machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data; (a) comprises all or any part of the structure coordinates of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and (b) does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of one or more of amino acids M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748 according to Table I. Preferably, said data does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of all of amino acids M560, L563, N564, L608, F623, M639, O642, M646, L732, Y735, C736, T739 and E748 according to Table I. Preferably, the root mean square deviation of part (b) is less than 1.9, 1.8, 1.7, 1.6 or 1.5 Å, more preferably of less than 1.4, 1.3, 1.2, 1.1, 1.03, 1.02, or 1.0 Å, yet more preferably of less than 0.93, 0,92, 0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 1.02, 0.92 or 0.0 Å.

The machine-readable data storage media of the present invention are used in a computer. The computer is capable of producing a three-dimensional representation

5

10

15

20

25

30

of Site II, and comprises various components, including the machine-readable storage medium, used to produce the three-dimensional representation.

Thus, the invention further provides a computer system capable of producing a three-dimensional representation of all or any part of a Site II, wherein said computer system comprises: (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data comprising all or any part of structure coordinates of Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; (b) a working memory for storing instructions for processing said machine-readable data; (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

The invention also provides a computer system as described above wherein the machine-readable data consists of all or any part of the structure coordinates of Site Π .

The invention also provides a computer system capable of producing a three-dimensional representation of all or any part of Site II, wherein said computer system comprises: (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data: (i) comprises all or any part of the structure coordinates of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and (ii) does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms

described by the structure coordinates of one or more of amino acids M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748 according to Table I; (b) a working memory for storing instructions for processing said machine-readable data; (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and (d) a display coupled to said central-processing unit for displaying said three-dimensional representation. Preferably, said data does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of all of amino acids M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748 according to Table I.

5

10

15

20

25

30

For all of the present invention, preferably said structure coordinates are Cartesian coordinates, polar coordinates, or internal coordinates. Most preferably said structure coordinates are Cartesian coordinates.

For all of the present invention, preferably said structure coordinates are of at least four amino acids, more preferably of at least five amino acids, more preferably of at least fifteen amino acids, more preferably of at least twenty amino acids, more preferably at least twenty-five amino acids, most preferably at least thirty amino acids.

For all of the present invention, said structure coordinates may be those determined for a Site II to which a ligand is bound or to which no ligand is bound. Said structure coordinates may be those determined for a Site II of an NHR that is in monomer, dimer, or other form.

One of ordinary skill in the art will recognize that there can be various embodiments of the components of the computer system. One embodiment of a computer system utilizes System 10 as disclosed in WO 98/11134, the disclosure of which is incorporated herein by reference in its entirety. Briefly, one version of the computer system comprises a central processing unit ("CPU"), a working memory which may be, e.g, RAM (random-access memory) or "core" memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more cathoderay tube ("CRT") display terminals, one or more keyboards, one or more input lines,

and one or more output lines, all of which are interconnected by a conventional bidirectional system bus.

Input hardware, coupled to the computer by input lines, may be implemented in a variety of ways. Machine-readable data of this invention may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line. Alternatively or additionally, the input hardware may comprise CD-ROM drives or disk drives. In conjunction with a display terminal, keyboard may also be used as an input device.

5

10

15

20

25

30

Output hardware, coupled to the computer by output lines, may similarly be implemented by conventional devices. By way of example, output hardware may include a CRT display terminal for displaying a graphical representation of a region or domain of the present invention using a program such as QUANTA as described herein. Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.

In operation, the CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage, and accesses to and from the working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of this invention. Such programs are discussed in reference to the computational methods of drug discovery as described herein. Specific references to components of the hardware system are included as appropriate throughout the following description of the data storage medium.

For the purpose of the present invention, any magnetic data storage medium which can be encoded with machine-readable data would be sufficient for carrying out the storage requirements of the system. The medium could be a conventional floppy diskette or hard disk, having a suitable substrate, which may be conventional, and a suitable coating, which may be conventional, on one or both sides, containing magnetic domains whose polarity or orientation could be altered magnetically, for example. The medium may also have an opening for receiving the spindle of a disk drive or other data storage device.

The magnetic domains of the coating of a medium may be polarized or oriented so as to encode in a manner which may be conventional, machine readable

44

5

10

15

20

25

30

data such as that described herein, for execution by a system such as the system described herein.

Another example of a suitable storage medium which could also be encoded with such machine-readable data, or set of instructions, which could be carried out by a system such as the system described herein, could be an optically-readable data storage medium. The medium could be a conventional compact disk read only memory (CD-ROM) or a rewritable medium such as a magneto-optical disk which is optically readable and magneto-optically writable. The medium preferably has a suitable substrate, which may be conventional, and a suitable coating, which may be conventional, usually of one side of substrate.

In the case of a CD-ROM, as is well known, the coating is reflective and is impressed with a plurality of pits to encode the machine-readable data. The arrangement of pits is read by reflecting laser light off the surface of the coating. A protective coating, which preferably is substantially transparent, is provided on top of the reflective coating.

In the case of a magneto-optical disk, as is well known, the coating has no pits, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser. The orientation of the domains can be read by measuring the polarization of laser light reflected from the coating. The arrangement of the domains encodes the data as described above.

Methods of Designing and Identifying Ligands of Site II and Modulators of NHRs

The present invention permits the use of structure-based or rational drug design and virtual screening to design or identify potential ligands and modulators of Site Π .

The identity of Site II as disclosed herein permits the practice of the following techniques commonly practiced in structure-based design and virtual screening.

Using a three-dimensional model of all or any part of Site II, a test molecule, i.e. potential ligand or potential modulator, can be docked into the cavity circumscribed by Site II, i.e. a fitting operation can be performed between a test molecule and Site II. After docking, the test molecule may be analyzed for structural and chemical feature complementarity with all or any part of Site II. Structural and

chemical features include, but are not limited to, any one of the following: van der Waals interactions, hydrogen bonding interactions, charge interaction, hydrophobic interactions, and dipole interactions.

5

10

15

20

25

30

Therefore, the invention provides a method of docking a test molecule comprising docking the test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. The method may further comprise analyzing structural and chemical feature complementarity of the test molecule with all or any part of said Site II.

A three-dimensional model can be created using methods known in the art, including, but not limited to, using software such as InsightII (Accelrys, Inc., San Diego, CA), SYBYL (Tripos Associates, St. Louis, MO), and Flo (Colin McMartin, Thistlesoft, Colebrook, CT). Docking can be performed manually or using a variety of software, including but not limited to, DOCK (Kuntz et. al. 1982), GOLD (Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, UK), or Flo (Thistlesoft, High Meadow, 603 Colebrook Raod, Colebrook, CT). Analyzing structural and chemical feature complementarity includes any process of a) quantifying features of atomic components found within a ligand molecule and protein molecule (eg, charge, size, shape, polarizability, hyprophobicity, etc), and b) quantifying interactions between such features in the ligand molecule, the protein molecule and the protein/ligand complex, as determined using any number of approaches known in the art (eg. molecular mechanics force fields and/or quantum mechanics). Analyzing sturctural and chemical feature complementarity can, for example, be ascertained visually or by scoring functions based on computed ligandsite interactions as implemented in DOCK, GOLD or Flo.

A three dimensional model of Site II can be used to identify structural and chemical features that may be involved in binding of ligands to Site II. Identified structural or chemical features can then be employed to design ligands or modulators of Site II or identify test molecules as ligands or modulators of Site II.

Therefore, the invention provides a method of identifying structural and chemical features comprising identifying structural and chemical features of all or any part of a Site II using a three-dimensional model of all or any part of said Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. Identification of structural and chemical features may be performed by means known in the art, such as through use of DOCK, GOLD or Flo.

5

10

15

20

25

30

Structure-based design often involves modeling. Modeling is the development of a mathematical construct designed to mimic real molecular geometry and behavior in proteins and small molecules. These mathematical constructs include, but are not limited to: energy calculations for a given geometry of a molecule utilizing forcefields or ab initio methods known in the art; energy minimization using gradients of the energy calculated as atoms are shifted so as to produce a lower energy; conformational searching, ie, locating local energy minima; molecular dynamics wherein a molecular system (single molecule or ligand/protein complex) is propagated forward through increments of time according to Newtonian mechanics using techniques known to the art; calculations of molecular properties such as electrostatic fields, hydrophobicity and lipophilicity; calculation of solvent-accessible or other molecular surfaces and rendition of the molecular properties on those surfaces; comparison of molecules using either atom-atom correspondences or other criteria such as surfaces and properties; quantitiative structure-activity relationships in which molecular features or properties dependent upon them are correlated with activity or bio-assay data. A number of computer modeling systems are available in which a sequence and structure (i.e., structure coordinates) of a protein or portion of a protein can be input. Examples of such computer modeling systems include, but are not limited to, Insight II (Accelrys, Inc., San Diego, CA), SYBYL (Tripos Associates, St. Louis, MO), and Flo (Colin McMartin, Thistlesoft, Colebrook, CT). The computer system then generates the structural details of one or more regions in which a potential ligand binds so that complementary structural and chemical features of the

potential ligands can be determined. Design in these modeling systems is generally based upon the compound being capable of structurally and chemically associating with the protein, i.e. have structural and chemical feature complementarity. In addition, the compound must be able to assume a conformation that allows it to associate with the protein. Some modeling and design systems estimate the potential inhibitory or binding effect of a potential modulator prior to actual synthesis and testing. Using modeling, compounds may be designed *de novo* using an empty binding site. Alternatively, compounds may be designed including some portion of a known ligand, i.e. grown in place. The known ligand may have been determined through virtual screening. Programs for design include, but are not limited to LUDI (Bohm 1992), LeapFrog (Tripos Associates, St. Louis MO) and DOCK (Kuntz et. al., 1982).

5

10

15

20

25

30

Therefore, the invention provides a method of designing a ligand of Site Π comprising: (a) modeling all or any part of a Site II; and (b) based on said modeling, designing a chemical entity that has structural and chemical feature complementarity with all or any part of said Site II; wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I. The chemical entity is designed to fit spatially into all or any part of the cavity circumscribed by Site II. The chemical entity may be designed manually without the aid of computer software, either de novo or including some portion of a known ligand. The chemical entity may be designed by computer either de novo or including some portion of a known ligand. Design by computer may employ a database from which chemical entities are chosen based on the model. The method may further comprise: (c) docking the chemical entity into all or any part of the cavity circumscribed by said Site II; and (d) analyzing structural and chemical feature complementarity of the chemical entity with all or any part of said Site Π . The method may further comprise analyzing structural and chemical feature complementarity of a second chemical entity with all or any part of said Site II, such as when the modeling operation grows a ligand in place.

5

10

15

20

25

30

The invention also provides a method of designing a modulator of an NHR comprising: (a) modeling all or any part of a Site II; and (b) based on said modeling, designing a chemical entity that has structural and chemical feature complementarity with all or any part of said Site II; wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, O615, P625, Y663, L664 and K667 according to Table I. The chemical entity is designed to fit spatially into all or any part of the cavity circumscribed by said Site II. The chemical entity may be designed manually without the aid of computer software, either de novo or including some portion of a known ligand. The chemical entity may be designed by computer either de novo or including some portion of a known ligand. Design by computer may employ a database from which chemical entities are chosen based on the model. The method may further comprise: (c) docking the chemical entity into all or any part of the cavity circumscribed by said Site II; and (d) analyzing structural and chemical feature complementarity of the chemical entity with all or any part of said Site II. The method may further comprise analyzing structural and chemical feature complementarity of a second chemical entity with all or any part of said Site II, such as when the modeling operation grows a ligand in place.

Virtual screening methods, i.e. methods of evaluating the potential of chemical entities to bind to a given protein or portion of a protein, are well known in the art. These methods often utilize databases as sources of the chemical entities and often are employed in designing ligands. Often these methods begin by visual inspection of the binding site on the computer screen. Selected chemical entities can then be placed, i.e. docked, in one or more positions and orientations within the binding site and chemical and structural feature complementarity can be analyzed.

In virtual screening, molecular docking can be accomplished using software such as InsightII, ICM (Molsoft LLC, La Jolla, CA), and SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields such as CHARMM and MMFF. Examples of computer programs which assist in the selection of chemical entities useful in the present invention include, but are not

limited to, GRID (Goodford, 1985), AUTODOCK (Goodsell, 1990), and DOCK (Kuntz et. al. 1982). Databases of chemical entities that may be used include, but are not limited to, ACD (Molecular Designs Limited), Aldrich (Aldrich Chemical Company), NCI (National Cancer Institute), Maybridge(Maybridge Chemical Company Ltd), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service) and Derwent (Derwent Information Limited).

5

10

15

20

25

30

For example, programs such as DOCK (Kuntz et. al. 1982) can be used with the structure coordinates of Site II to identify chemical entities from databases or virtual databases of small molecules. These molecules may therefore be suitable candidates for synthesis and testing. Such a virtual screening approach may include, but is not limited to, the following steps:

- positioning the chemical entity from a database or elsewhere and positioning the chemical entity in one or more orientations within all or any part of the cavity circumscribed by Site II, wherein Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.
- 2) Characterization of the structural and chemical features of the chemical entity and binding site, such as van der Waals interactions, hydrogen bonding interactions, charge interaction, hydrophobic bonding interaction, and dipole interactions
- 3) Optionally, selection from a database or elsewhere of a chemical entity which can be joined to or replace the docked chemical entity and fit spatially into all or any part of the cavity circumscribed by Site II
- 4) Evaluation of the docked chemical entity using a combination of scoring schemes which account for van der Waals interactions, hydrogen bonding interactions, charge interaction and hydrophobic

interactions, i.e. evaluation of structural and chemical feature complementarity.

Upon selection of preferred chemical entities, their relationship to each other and Site II can be visualized and then assembled into a single potential ligand. Programs useful in assembling the individual chemical entities include, but are not limited to, SYBYL and LeapFrog (Tripos Associates, St. Louis MO), LUDI (Bohm 1992) and 3D Database systems (Martin 1992).

10

15

20

25

30

Thus the invention provides a method for evaluating the potential of a chemical entity to bind to all or any part of Site II comprising: a) docking a chemical entity into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and b) analyzing structural and chemical feature complementarity between the chemical entity and all or any part of said Site II. The chemical entity may be selected from a database. The method may further comprise a step in which a second chemical entity is joined to the first chemical entity that was docked and analyzed, and the resultant chemical entity is docked and analyzed.

Ligands designed or identified using the methods described herein can then be synthesized and screened in an NHR Site II binding assay (such as is described in Examples 15 and 18), or in an assay designed to test functional activity (such as the cellular transcriptional assay described in Example 3 and the cellular transcriptional assay described in Example 4, and the competition assays described in Examples 11 and 12). Examples of assays useful in screening of potential ligands or modulators include, but are not limited to, screening in silico, *in vitro* assays and high throughput assays.

Similarly and further to the method for evaluating the potential of a chemical entity to bind Site II, test molecules may be screened, using computational means and biological assays, to identify ligands of Site II and modulators of NHRs.

5

10

15

20

25

30

Thus, the invention provides a method for identifying a modulator of an NHR. The method comprises the following steps, which are preferably, but not necessarily, performed in the order given: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in a biological assay of modulation of an NHR. A test molecule is identified as a modulator of an NHR if the structural and chemical feature complementarity and/or the modulation exceed a desired level. A compound which stimulates or inhibits a measured activity in a cellular assay by greater than 10% is a preferred modulator. The method may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes binding to a Site II; and e) screening the test molecule in an assay that characterizes binding to Site I.

A biological assay of modulation of an NHR includes, but is not limited to: a transrepression assay, such as described in Example 3; a transactivation assay, such as described in Example 4; a transrepression competition assay, such as described in Example 11; and a transactivation competition assay, such as described in Example 12. An assay that characterizes binding to Site II includes, but is not limited to, any of the assays described in Examples 15 and 18.

The invention provides a method for identifying a ligand of Site II. The method comprises the following steps, which are preferably, but not necessarily, performed in the order given: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing structural and chemical feature complementarity

5

10

15

20

25

30

between the test molecule and all or any part said Site II; and c) screening the test molecule in an assay that characterizes binding to a Site II. A test molecule that binds to Site II is identified as a ligand of Site II. The method may further comprise one or more of the following steps: d) screening the test molecule in a biological assay of modulation of an NHR; and e) screening the test molecule in an assay that characterizes binding to Site I.

In the above-described method of identifying a modulator of an NHR and method of identifying a ligand of Site II, the structure coordinates of a Site II of a first NHR may be used, while the biological assays (i.e. biological assay of modulation of an NHR, or assay that characterizes binding to Site II, or assay that characterizes binding to Site I) may be performed using a second NHR. Preferably, the structure coordinates of a Site II are of the same NHR as the NHR used in the biological assays.

In the present methods, a modulator of an NHR can induce one or more of the following four activities in the NHR. This list is not meant to be inclusive. (1) A modulator of an NHR can induce transrepression. (2) A modulator of an NHR can induce transactivation. (3) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transrepression. (4) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transactivation.

Preferably said modulator of an NHR is a modulator of an SHR, more preferably a modulator of GR.

A modulator of an NHR, SHR or GR that induces transrepression includes, but is not limited to, a dissociated compound.

Preferably said modulator of an NHR induces transrepression. More preferably said modulator of an NHR is a dissociated compound. More preferably said modulator of an NHR is an SHR dissociated compound. Most preferably said modulator of an NHR is a GR dissociated compound.

"All or any part of the cavity circumscribed by Site II" preferably relates to enough of the cavity so as to be useful in docking or modeling a ligand into the cavity. Preferably, all or any part of the cavity is circumscribed by one or more of the following residues: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667. These are the residues of Site II

5

10

15

20

25

30

that are not also part of Site I. Preferably, all or any part of the cavity is circumscribed by at least four amino acid residues, more preferably at least five amino acids, more preferably at least eight amino acid residues, more preferably at least fifteen amino acid residues, more preferably at least twenty amino acid residues, more preferably at least twenty-five amino acid residues, most preferably at least thirty amino acid residues.

The structure coordinates of Site II of a first NHR may be used in the above methods when one is interested in a second NHR. For instance, one may use the structure coordinates of GR Site II in a method when the end goal is to evaluate the potential of a chemical entity to bind to Site II of another NHR, for instance, androgen receptor. This is because, based on the structural similarity amongst various NHRs, it is possible that a modulator of GR Site II, or structural variants of a modulator of GR Site II, could bind to Site II in other NHRs. It is known in the art that a single steroid can bind to multiple NHRs. For example, cortisol can bind not only to GR but to the mineralocorticoid receptor as well. It is thought that this binding of cortisol occurs via Site I.

Ligands of Site II, and Modulators of NHRs

We have identified Site II in NHRs and identified ligands of Site II as modulators of NHRs and thus drug candidates.

Therefore, the invention provides a ligand of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.

A ligand can be identified by any art-recognized assay for binding to Site Π , such as the assays described in Examples 15 and 18.

Preferred ligands have been identified according to a method of the invention described herein. That is, preferred ligands were identified by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe

conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in an assay that characterizes binding to a Site II. A test molecule that binds to Site II is identified as a ligand of Site II. The method may further comprise one or more of the following steps: d) screening the test molecule in a biological assay of modulation of an NHR; and e) screening the test molecule in an assay that characterizes binding to Site I.

5

10

15

20

25

30

Preferred ligands are ligands of an NHR Site II, more preferably of an SHR Site II, most preferably of a GR Site II.

The invention also provides a modulator of an NHR identified according to a method of the invention described herein. That is, the invention provides a modulator of an NHR, wherein said modulator has been identified by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site Π is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in a biological assay of modulation of an NHR. A test molecule is identified as a modulator of an NHR if the structural and chemical feature complementarity and the modulation exceed a desired level. The method may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes binding to a Site II; and e) screening the test molecule in an assay that characterizes binding to Site I.

Preferably said modulator of an NHR is a ligand of Site II. Preferred modulators are modulators of an NHR, more preferably of an SHR, most preferably of a GR.

The invention also provides a modulator of an NHR that is a ligand of a Site II. A modulator of an NHR that is a ligand of Site II is part of the invention regardless of how the modulator was identified.

5

10

15

20

25

30

As previously stated, the term "modulator," as used herein, refers to a molecule whose presence induces an activity in the molecule that it modulates. The following information on modulators applies to all of the present inventions.

A modulator can bind to the molecule that it modulates, i.e. be a ligand of the molecule it modulates. A preferred modulator is a ligand of the molecule that it modulates. In the present inventions, a preferred modulator is a ligand of Site II. Modulators include, but are not limited to, small organic molecules, chemical compounds, peptides, peptidomimetics (eg., cyclic peptides, peptide analogs, or constrained peptides) and nucleic acids. Modulators can be natural or synthetic. Preferred modulators are small organic molecules.

A modulator of an NHR can induce one or more of the following four activities in the NHR. This list is not meant to be inclusive. (1) A modulator of an NHR can induce transrepression. (2) A modulator of an NHR can induce transactivation. (3) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transrepression. (4) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transactivation.

One type of modulator of an NHR is one that induces transrepression. Examples of this type of modulator are steroids (such as glucocorticoids and dexamethasone) and dissociated compounds, both of which are discussed further below. Several such modulators are described in the Examples. Such a modulator is useful in treating inflammatory and immune associated diseases and disorders. A modulator that induces transrepression and synergizes (i.e. has an additive effect) with another modulator that induces transrepression, such as described in Examples 11 and 17, is included in the definition of a modulator that induces transrepression.

Another type of modulator is a dissociated compound. A dissociated compound is a modulator that induces transrepression while inducing none or

5

10

15

20

25

30

minimal transactivation. That is, a dissociated compound induces activity (1) above but induces no or little activity (2) above. Several such modulators are described in the Examples. A dissociated compound also may inhibit or antagonize the ability of another modulator from causing transactivation, i.e. a dissociated compound may cause activity (4) above, such as the compound described in Examples 11 and 12, Dissociated compounds that induce AP-1 and NF-kB inhibitory activity without causing DNA-binding activity are useful in treating inflammatory and immune associated diseases and disorders, such as in immunosuppressive therapy. AP-1 and NF-kB are transcription factors which regulate the expression of a large number of genes involved in immune and inflammatory responses. These genes include TNFalpha, IL-2, IL-5, E-selectin, Eoxtaxin, Rantes, Cox-2, among others. By way of example, glucocorticoids, which inhibit the activity of both AP-1 and NF-κB are one of the most potent anti-inflammatory drugs known to date. Glucocorticoids are used to treat more than 50 diseases, however, their use in patients is often limited by the side effects of osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, and others. It is thought that a compound which inhibits NF-κB and AP-1 without inducing DNA binding (i.e. without causing transactivation) would possess most of the anti-inflammatory effects of glucocorticoids without the side effects.

Another type of modulator of is one that induces transactivation without inducing transrepression. In the case of GR, such a modulator that induces DNA binding and transcription may be useful in treating Addison's disease or other metabolic disorders where circulating glucocorticoid levels are lower than normal and where causing transrepression is not desireable.

Another type of modulator is one that induces both transrepression and transactivation. Examples of this type of modulator are steroids such as glucocorticoids and dexamethasone. Such a modulator is useful in treating inflammatory and immune associated diseases and disorders.

Another type of modulator is one that antagonizes a modulator that induces transactivation. These modulators inhibit transcription. Such a modulator is described in Example 12. These modulators may also induce transrepression. In the case of GR, a modulator that antagonizes a modulator that induces transactivation

may be useful in treating metabolic diseases such as diabetes, hypertension, obesity, glaucoma, depression, and AIDS, and in wound healing. It is believed that some of these diseases are, at least in part, caused by higher than normal circulating levels of glucocorticoids. Inhibiting the transactivation or DNA binding induced by the increased circulating glucocorticoids may ameliorate or attenuate some or all of these diseases. Preferably, the GR modulator that antagonizes a modulator that induces transactivation does not also induce transrepression.

5

10

15

20

25

30

All modulators of NHRs and ligands of Site II may be useful in elucidating the mechanism of transcriptional regulation mediated by NHRs. These modulators and ligands could be used in cellular and animal studies to determine the requirement for NHRs in the induction or inhibition of gene expression, the association of coactivators and corepressors with NHRs, and the role of chaperones in regulating NHR activity, among other experiments.

Modulators of NHRs may be found by performing any art-recognized transrepression assay, transactivation assay, transrepression competition assay, or transactivation competition assay. Such assays include, but are not limited to, the assays described in Examples 3, 4, 11 and 12.

For a modulator of an NHR that induces transrepression, such as and including a dissociated compound, a preferred modulator induces transrepression at an IC50 of between 0.1 nM and 10 μ M, more preferably between 0.1 nm and 1 μ M (such as between 33 nM and 275 nM, or between 15 nm and 275 nm), more preferably between 0.1 nM and 100 nM, most preferably between 0.1 nM and 10 nM. Transrepression may be measured by any art-recognized method, such as the cellular transrepressional assays described in Example 3. An IC50 is the modulator concentration which causes a 50% repression of transcription.

For a modulator of an NHR that induces none to minimal transactivation, such as and including a dissociated compound, a preferred modulator induces transactivation at an EC50 of greater than 1nM, preferably at greater than 100nM, more preferably at greater than 1 μ M, and most preferably at greater than 40 μ M. Transactivation may be measured by any method known in the art, such as the cellular transcriptional assays described in Example 4. An EC50 is modulator concentration required to cause a 50% stimulation of transcription.

For a dissociated compound, a preferred dissociated compound has a dissociation constant of greater than 0.1, more preferably greater than 10, more preferably greater than 100 (such as between 167 and 1000, or between 137 and 1000), most preferably greater than 1000. The dissociation constant is calculated by dividing the EC50 for transactivation by the IC50 for transrepression.

5

10

15

20

25

30

For a modulator of an NHR that antagonizes a modulator that induces transactivation, a preferred modulator antagonizes at an IC50 of between 0.1 nM and 10 μ M, more preferably between 0.1 nM and 1 μ M, more preferably between 0.1 nM and 10 nM.

For a modulator of an NHR that induces transactivation, a preferred modulator induces transactivation at an IC50 of between 0.1 nM and 10 μ M, more preferably between 0.1 nM and 1 μ M, more preferably between 0.1 nM and 100 nM, most preferably between 0.1 nM and 10 nM.

Methods of Modulating a Nuclear Hormone Receptor

The modulators of the present invention may be used to modulate an NHR.

Thus, the invention provides a method of modulating an NHR comprising administering a modulator of an NHR in an amount sufficient to modulate the NHR, wherein said modulator of an NHR is a ligand of a Site II or was identified by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in a biological assay of modulation of an NHR. A test molecule is identified as a modulator of an NHR if the structural and chemical feature complementarity and the modulation exceed a desired level. The method may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes

binding to a Site II; and e) screening the test molecule in an assay that characterizes binding to Site I.

The invention provides a method of inducing transrepression comprising administering a modulator of an NHR in an amount sufficient to cause transrepression, wherein said modulator on an NHR is a ligand of Site II or was identified by the method described above.

5

10

15

The invention provides a method of inhibiting AP-1-dependent gene expression comprising administering a modulator of an NHR in an amount sufficient to inhibit AP-1-dependent gene expression, wherein said modulator on an NHR is a ligand of Site II or was identified by the method described above.

The invention provides a method of inhibiting NF-κB-dependent gene expression comprising administering a modulator of an NHR in an amount sufficient to inhibit NF-κB -dependent gene expression, wherein said modulator on an NHR is a ligand of Site II or was identified by the method described above.

The invention provides a method of antagonizing transactivation comprising administering a modulator of an NHR in an amount sufficient to antagonize transactivation, wherein said modulator on an NHR is a ligand of Site II or was identified by the method described above.

Preferred ligands used in the methods of the present invention were identified 20 by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, O570-25 W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in an assay that characterizes binding to a Site II. A test molecule that binds to Site II is identified as a ligand of Site II. The method may 30 further comprise one or more of the following steps: d) screening the test molecule in a biological assay of modulation of an NHR; and e) screening the test molecule in an assay that characterizes binding to Site I.

The methods may be practiced *in vitro* or *in vivo*. When practiced in vitro, the method may employ any number of art-recognized *in vitro* systems, including the assays described in Examples 3 and 4. *In vivo* methods include, but are not limited to, any of the ways described in the section below on methods of treatment.

5

10

15

20

25

30

Pharmaceutical Compositions

The invention provides a pharmaceutical composition comprising: (a) a modulator of an NHR that was identified by a method comprising: (i) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; (ii) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and (iii) screening the test molecule in a biological assay of modulation of an NHR; and (b) a pharmaceutically acceptable carrier, adjuvant, excipient or vehicle. A test molecule is identified as a modulator of an NHR if the structural and chemical feature complementarity and the modulation exceed a desired level. The method used to identify a modulator of Site II may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes binding to a Site II; and e) screening the test molecule in an assay that characterizes binding to Site I.

The invention provides a pharmaceutical composition comprising a modulator of an NHR that is a ligand of Site II and a pharmaceutically acceptable carrier, adjuvant, excipient or vehicle. Preferred ligands of Site II were identified by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-

W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in an assay that characterizes binding to a Site II. A test molecule that binds to Site II is identified as a ligand of Site II. The method may further comprise one or more of the following steps: d) screening the test molecule in a biological assay of modulation of an NHR; and e) screening the test molecule in an assay that characterizes binding to Site I.

5

15

20

25

30

In the present pharmaceutical compositions, a modulator of an NHR can induce one or more of the following four activities in the NHR. This list is not meant to be inclusive. (1) A modulator of an NHR can induce transrepression. (2) A modulator of an NHR can induce transactivation. (3) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transrepression. (4) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transactivation.

Preferably said modulator of an NHR is a modulator of an SHR, more preferably a modulator of GR.

A modulator of an NHR, SHR or GR that induces transrepression includes, but is not limited to, a dissociated compound.

Preferably said modulator of an NHR induces transrepression. More preferably said modulator of an NHR is a dissociated compound. More preferably said modulator of an NHR is an SHR dissociated compound. Most preferably said modulator of an NHR is a GR dissociated compound.

The pharmaceutical composition may further comprise at least one additional therapeutic agent. "Additional therapeutic agents" encompasses, but is not limited to, an agent or agents selected from the group consisting of an immunosuppressant, an anti-cancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an anti-biotic, an anti-vascular hyperproliferation compound, an anti-diabetic agent, or an anti-depressant agent.

The term "pharmaceutically acceptable carrier, adjuvant or vehicle" refers to a carrier, adjuvant or vehicle that may be administered to a subject, together with a modulator of the present invention, and which does not destroy the pharmacological

5

10

15

20

25

30

activity thereof. Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of the present invention include, but are not limited to, the following: ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems ("SEDDS") such as d(-tocopherol polyethyleneglycol 1000 succinate), surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α -, β - and γ -cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-βcyclodextrins, or other solubilized derivatives may also be used to enhance delivery of the modulators of the present invention.

The compositions of the present invention may contain other therapeutic agent(s) as described below, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.

The modulators may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents. The present modulators may, for example, be administered in a form suitable for immediate release or extended release. Immediate release or

5

10

15

20

25

30

extended release may be achieved by the use of suitable pharmaceutical compositions comprising the present modulators, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps. The present modulators may also be administered liposomally.

Exemplary compositions for oral administration include suspensions which may contain, for example, microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners or flavoring agents such as those known in the art; and immediate release tablets which may contain, for example, microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and/or lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants such as those known in the art. The present modulators may also be delivered through the oral cavity by sublingual and/or buccal administration. Molded tablets, compressed tablets or freeze-dried tablets are exemplary forms which may be used. Exemplary compositions include those formulating the present modulator(s) with fast dissolving diluents such as mannitol, lactose, sucrose and/or cyclodextrins. Also included in such formulations may be high molecular weight excipients such as celluloses (avicel) or polyethylene glycols (PEG). Such formulations may also include an excipient to aid mucosal adhesion such as hydroxy propyl cellulose (HPC), hydroxy propyl methyl cellulose (HPMC), sodium carboxy methyl cellulose (SCMC), maleic anhydride copolymer (e.g., Gantrez), and agents to control release such as polyacrylic copolymer (e.g., Carbopol 934). Lubricants, glidants, flavors, coloring agents and stabilizers may also be added for ease of fabrication and use.

Exemplary compositions for nasal aerosol or inhalation administration include solutions in saline which may contain, for example, benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, and/or other solubilizing or dispersing agents such as those known in the art.

Exemplary compositions for parenteral administration include injectable solutions or suspensions which may contain, for example, suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water, Ringer's solution, an isotonic sodium chloride solution, or other suitable dispersing or wetting and suspending agents, including synthetic mono- or diglycerides, and fatty

5

10

15

20

25

30

acids, including oleic acid. The term "parenteral" as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

Exemplary compositions for rectal administration include suppositories which may contain, for example, a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquify and/or dissolve in the rectal cavity to release the drug.

Exemplary compositions for topical administration include a topical carrier such as Plastibase (mineral oil gelled with polyethylene).

The effective amount of a modulator of the present invention may be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 0.1 to 500 mg/kg of body weight of active modulator per day, which may be administered in a single dose or in the form of individual divided doses, such as from 1 to 5 times per day. It will be understood that the specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors including the activity of the specific modulator employed, the metabolic stability and length of action of that modulator, the species, age, body weight, general health, sex and diet of the subject, the mode and time of administration, rate of excretion, drug combination, and severity of the particular condition. Preferred subjects for treatment include animals, most preferably mammalian species such as humans, and domestic animals such as dogs, cats and the like, subject to NHR-associated diseases.

The modulators of the present invention may be employed alone or in combination with each other and/or other suitable therapeutic agent(s) useful in the treatment of NHR-associated diseases, such as immunosuppressants, anti-cancer agents, anti-viral agents, anti-inflammatory agents, anti-fungal agents, antibiotics, anti-vascular hyperproliferation agents, anti-diabetic agents, or anti-depressant agents. Such other therapeutic agent(s) may be administered prior to, simultaneously with or following the administration of the compound(s) of the present invention.

Exemplary such other therapeutic agents include the following: cyclosporins (e.g., cyclosporin A), CTLA4-Ig, antibodies such as anti-TNF- α (such as Remicade),

5

10

15

25

30

anti-ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, monoclonal antibody OKT3, agents blocking the interaction between CD40 and CD154 (a.k.a. "gp39"), such as antibodies specific for CD40 and/or CD154, fusion proteins constructed from CD40 and/or CD154/gp39 (e.g., CD40Ig and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-κB function, such as deoxyspergualin (DSG), non-steroidal antiinflammatory drugs (NSAIDs) such as ibuprofen, celecoxib, rofecoxib, cox-2 inhibitors, and aspirin, antibiotics such as penicillin, and tetracycline, steroids such as prednisone or dexamethasone, gold compounds, antiviral agents such as abacavir, antiproliferative agents such as mycophenolate, 5-fluorouracil, cisplatin, methotrexate, leflunomide, FK506 (tacrolimus, Prograf), cytotoxic drugs such as azathiprine and cyclophosphamide, TNF-α inhibitors such as tenidap, anti-TNF antibodies (such as Remicade) or soluble TNF receptor (such as Enbrel), and rapamycin (sirolimus or Rapamune) or derivatives thereof. The above other therapeutic agents, when employed in combination with the modulators of the present invention, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.

Methods of Treatment

The modulators of the present invention may be used to treat diseases.

The present invention provides a method of treating an NHR-associated disease comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR, wherein said modulator of an NHR was identified by the method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in a biological assay of modulation of an NHR. A test

molecule is identified as a modulator of an NHR if the structural and/or chemical feature complementarity and the modulation exceed a desired level. The method may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes binding to a Site II; and e) screening the test molecule in an assay that characterizes binding to Site I.

5

10

15

20

25

30

The present invention provides a method of treating an NHR-associated disease comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that is a ligand of a Site II.

Preferably said NHR-associated disease is an SHR-associated disease and said modulator of an NHR is a modulator of an SHR. Most preferably said NHR-associated disease is a GR-associated disease and said modulator of an NHR is a modulator of GR.

The present invention provides a method of treating a disease associated with NHR transactivation comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR, wherein said modulator of an NHR was identified by the method described above.

The present invention provides a method of treating a disease associated with NHR transactivation comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that is a ligand of a Site Π .

The present invention provides a method of treating a disease associated with NHR transrepression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR, wherein said modulator of an NHR was identified by the method described above.

The present invention provides a method of treating a disease associated with NHR transrepression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that is a ligand of a Site.

The invention provides a method of treating a disease associated with AP-1-dependent gene expression or NF-kB-dependent gene expression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR, wherein said modulator of an NHR was identified by the method described above.

The invention provides a method of treating a disease associated with AP-1-dependent gene expression or NF-kB-dependent gene expression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that is a ligand of a Site II.

The invention provides a method of treating an inflammatory or immune associated disease or disorder comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR, wherein said modulator of an NHR was identified by the method described above.

5

10

15

20

25

30

The invention provides a method of treating an inflammatory or immune disease or disorder comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that is a ligand of a Site II.

Preferably said methods of treating an inflammatory or immune disease or disorder comprise inhibiting AP-1-dependent gene expression or NF-κB-dependent gene expression by administering said modulator of an NHR in an amount effective to inhibit AP-1-dependent gene expression or NF-κB-dependent gene expression.

The present invention provides a method of treating a disease treatable by inducing NHR transrepression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that induces transrepression, wherein said modulator of an NHR was identified by the method described above.

The present invention provides a method of treating a disease treatable by inducing NHR transrepression comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that induces transrepression, wherein said modulator of an NHR is a ligand of a Site II.

The present invention provides a method of treating a disease treatable by antagonizing NHR transactivation comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR that antagonizes transactivation, wherein said modulator of an NHR was identified by the method described above.

The present invention provides a method of treating a disease treatable by antagonizing NHR transactivation comprising administering to a subject in need

5

10

15

30

thereof, in an amount effective therefore, at least one modulator of an NHR that antagonizes transactivation, wherein said modulator of an NHR is a ligand of a Site II.

Preferred ligands of Site II used in the present methods of treatment were identified by a method comprising: a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; b) analyzing the structural and chemical feature complementarity between the test molecule and all or any part said Site II; and c) screening the test molecule in an assay that characterizes binding to a Site II. A test molecule that binds to Site II is identified as a ligand of Site II. The method may further comprise one or more of the following steps: d) screening the test molecule in an assay that characterizes binding to Site II.

A preferred ligand of Site II was identified by screening a test molecule in an assay that characterizes binding to Site II.

Preferably said NHR is an SHR, more preferably a GR.

In the present methods of treatment, a modulator of an NHR can induce one or more of the following four activities in the NHR. This list is not meant to be inclusive. (1) A modulator of an NHR can induce transrepression. (2) A modulator of an NHR can induce transactivation. (3) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transrepression. (4) A modulator of an NHR can inhibit or antagonize the ability of another modulator from inducing transactivation.

Preferably said modulator of an NHR is a modulator of an SHR, more preferably a modulator of GR.

A modulator of an NHR, SHR or GR that induces transrepression includes, but is not limited to, a dissociated compound.

Preferably said modulator of an NHR induces transrepression. More preferably said modulator of an NHR is a dissociated compound. More preferably

said modulator of an NHR is an SHR dissociated compound. Most preferably said modulator of an NHR is a GR dissociated compound.

Preferably said subject is a mammal, most preferably a human.

Other therapeutic agent(s), such as those described above in the section on pharmaceutical compositions, may be employed with the modulators in the present methods. In the methods of the present invention, such other therapeutic agent(s) may be administered prior to, simultaneously with or following the administration of the compound(s) of the present invention.

Modes of administration useful in the present invention are described above in the section of pharmaceutical compositions.

In a particular embodiment, the modulators of the present invention are useful for the treatment of the aforementioned exemplary disorders irrespective of their etiology, for example, for the treatment of transplant rejection, rheumatoid arthritis, inflammatory bowel disease, and viral infections.

15

10

5

Methods of Designing Mutants

We have identified Site II in NHRs as a binding site whose ligands modulate NHRs. Now that Site II is known to be a region of interest, mutants of NHRs, and mutants of portions of NHRs, in which Site II is mutated may be made.

20

25

30

Thus, the invention provides a method of designing a mutant comprising making one or more amino acid mutations in a Site II. The mutant so designed may be an NHR or a portion of an NHR, such as the LBD.

Preferably the mutation(s) is a deletion or substitution of one or more of the amino acids of said Site II. When the mutation(s) is an amino acid insertion, preferably the amino acid(s) inserted are inserted next to an amino acid of said Site II.

Preferably a mutation involves one or more of the following amino acids in human GR: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667, or one or more of the corresponding amino acids in another NHR or non-human GR as can be seen in Figures 2 and 6 respectively. Preferably a mutation involves one or more of the following amino acids in human GR: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Y663, L664 and K667, or one or more of the corresponding amino acids

5

10

15

20

25

30

in another NHR or non-human GR as can be seen in Figures 2 and 6 respectively. Preferably the deletion or substitution is of one or more of the aforementioned amino acids or corresponding amino acids, and preferably the insertion is next to one or more the aforementioned amino acids or corresponding amino acids.

The method may further comprise using all or part of a model of a Site II to visualize all or part of Site II in its mutated or native form. Preferably said model is a three-dimensional model.

Mutation includes one or more amino acid deletions, insertions, inversions, repeats, or substitutions as compared to the native protein. Various methods of making mutations are known to one of ordinary skill in the art. A mutant may have the same, similar, or altered activity as compared to the native protein. Activity refers to transrepression, transactivation, and ligand binding. Preferred mutants have at least 25% sequence identity, more preferably 50% sequence identity, more preferably 75% sequence identity, and most preferably 95% sequence identity to the native protein.

A mutant designed by the method of the invention that has the same or similar biological activity as the native NHR or native portion of NHR may be useful for any purpose for which the native is useful. A mutant designed by the method of the invention that has altered biological activity as the native may be useful in binding assays to test the ability of a potential ligand to bind to or associate with Site II. A mutant designed by the method of the invention that has the altered biological activity from the native may be useful in further elucidating the biological role of Site II.

Example 16 illustrates designing mutants comprising making one or more amino acid mutations in Site II.

Mutants of Site II

The invention provides a mutant NHR, or a mutant portion of an NHR, comprising one or more amino acid mutations in Site II.

Said mutant portion of an NHR preferably comprises a mutant LBD of the NHR, more preferably consists of a mutant LBD of the NHR.

Preferably the mutation(s) is a deletion or substitution of one or more of the amino acids of Site II. When the mutation(s) is an amino acid insertion, preferably the amino acid(s) inserted are inserted next to an amino acid of Site II.

Preferably a mutation involves one or more of the following amino acids in human GR: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Q615, P625, Y663, L664 and K667, or one or more of the corresponding amino acids in another NHR or non-human GR as can be seen in Figures 2 and 6 respectively. Preferably a mutation involves one or more of the following amino acids in human GR: E537-V543, V571-W577, S599-W600, F602-L603, F606-A607, W610, R614, Y663, L664 and K667, or one or more of the corresponding amino acids in another NHR or non-human GR as can be seen in Figures 2 and 6 respectively. Preferably the deletion or substitution is of one or more of the aforementioned amino acids or corresponding amino acids, and preferably the insertion is next to one or more the aforementioned amino acids or corresponding amino acids.

5

10

15

20

25

30

Mutation includes one or more amino acid deletions, insertions, inversions, repeats, or substitutions as compared to the native protein. Various methods of making mutations are known to one of ordinary skill in the art. A mutant may have the same, similar, or altered activity as compared to the native protein. Activity refers to transrepression, transactivation, and ligand binding. Preferred mutants have at least 25% sequence identity, more preferably 50% sequence identity, more preferably 75% sequence identity, and most preferably 95% sequence identity to the native protein.

A mutant of the present invention that has the same or similar biological activity as the native NHR, or native portion of NHR, may be useful for any purpose for which the native is useful. A mutant of the present invention that has altered biological activity as the native may be useful in binding assays to test the ability of a potential ligand to bind to or associate with Site II. A mutant of the present invention that has the altered biological activity from the native may be useful in further elucidating the biological role of Site II.

In preferred mutants, the mutation consists of five or fewer substitutions, more preferably four or fewer substitutions, more preferably three or fewer substitutions, more preferably two or fewer substitutions, most preferably one substitution. A substitution is preferably a conservative amino acid substitution.

In preferred mutants, the mutation consists of three or fewer deletions, more preferably two or fewer deletions, most preferably one deletion.

In preferred mutants, the mutation consists of two or fewer substitutions and two or fewer deletions.

Example 16 illustrates mutants comprising making one or more amino acid mutations in Site II.

5

10

15

20

25

30

Site II Binding Assay

The invention provides a method of measuring the binding of a test molecule to Site II comprising: (a) incubating an NHR with a ligand of Site II and said test molecule; and (b) measuring the ability of said test molecule to compete for binding to said Site II with said ligand; wherein said ability to compete is the measure of binding of said test molecule to Site II. The method may further comprise comparing the ability of said test molecule to modulate a native NHR and to modulate an NHR mutated in Site II.

The ligand of Site II may be identified by any art-recognized method, such as those described in Examples 15 and 16.

The NHR may be in a purified form, in a partially purified form, or in a cell lysate.

In order to measure the ability of said test molecule to compete for binding to Site II with said ligand, the ligand can be labeled, such as radiolabeled or fluorescently labeled. Binding can be measured using any art-recognized technique, such as fluorescence quenching, fluorescence polarization, filter binding, scintillation proximity assay, among others. The ability to compete is determined by comparing the measured value with the labeled compound alone to the measured value in the presence of the unlabeled test molecule. A decrease in the measured signal indicates binding of the test molecule.

The ability of said test molecule to modulate a native NHR and to modulate an NHR mutated in Site II can be determined by measuring transrepression and transactivation using methods such as described in Examples 3 and 4.

One such Site II binding assay is described in Example 18. Example 18 provides a method of measuring the binding of a test molecule to Site II by: incubating said test molecule with an NHR, a Site I ligand (such as FITC-dexamethasone), and a known Site II ligand that inhibits the binding of the Site I

ligand to Site I. A test molecule that does not inhibit the binding of the Site I ligand to Site I and does bind to Site II will displace the known Site II ligand, thus allowing the Site I ligand to bind to Site I. The binding of the Site I ligand to Site I can be measured. The comparison of the Site I ligand binding to Site I in the presence of the Site II ligand with and without the test molecule provides a measurement of relative binding of the test molecule to Site II. In order to measure the ability of said Site I ligand to bind to Site I, the Site I ligand can be labeled, such as radiolabeled or fluorescently labeled. Binding can be measured using any art-recognized technique, such as fluorescence quenching, fluorescence polarization, filter binding, scintillation proximity assay, among others.

5

10

15

20

25

30

Models of Site II

We have identified Site II in NHRs as a binding site whose ligands modulate NHRs. We have focused on Site II as a region of interest in NHRs. Now that Site II is known to be a region of interest, models of Site II, such as three-dimensional models, useful in drug design may be made.

Thus, the invention provides a model comprising all or any part of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.

In a preferred embodiment the model consists of all or any part of Site II.

In another preferred embodiment the model: (a) comprises all or any part of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and (b) does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of one or more of

amino acids M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748 according to Table I. Preferably, said data does not comprise structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of all of amino acids M560, L563, N564, L608, F623, M639, Q642, M646, L732, Y735, C736, T739 and E748 according to Table I. Preferably, the root mean square deviation of part (b) is less than 1.5 Å, more preferably less that 1.0 Å, yet more preferably less than 0.9, 0.8, 0.7, 0.6 0.5, 0.4, 0.3, 0.2, or 0.1 Å, most preferably 0.0 Å.

5

15

20

30

A model of a Site II of the present invention may be any type of artrecognized model, including but not limited to: three-dimensional models; and steric/electrostatic field definition models that can be used to study/compute the putative interactions ligands might undergo. A three-dimensional model may be produced through use of structure coordinates, such as are ribbon diagrams.

A three-dimensional model of a Site II of the present invention is useful for designing and identifying ligands and modulators of NHRs.

It should be understood that one skilled in the field is able to make various modifications to the compositions and methods described above, applying the ordinary level of skill in the field, without departing from the spirit or scope of the invention. All such modifications are intended to be included within the invention as defined in the appended claims.

EXAMPLES

The examples below are provided to illustrate the subject invention and are not intended to limit the invention.

Example 1

Compound Synthesis

The fifty-one compounds used in the following examples were synthesized as follows. These compounds and their synthesis are described in the co-pending provisional application entitled "Modulators of the Glucocorticoid Receptor and Method," attorney docket number QA266PSP, U.S. Application No. 60/396,877, filed on July 18, 2002, and in co-pending utility application entitled "Modulators of the

Glucocorticoid Receptor and Method," attorney docket number QA266NP, U.S. Application No.______, filed concurrently herewith. The contents of U.S. Application No. 60/396,877 and QA266NP are incorporated herein by reference in their entirety.

5 Preparations

The preparations set out below are for the synthesis of reagents that were not obtained from commercial sources and were employed for the preparation of compounds. All chemical structures in the tables and schemes are racemic unless specified otherwise.

10

15

25

<u>Preparation 1</u> 4-[1-(4-Fluoro)naphthyl]aminothiazole 1a

Step 1 Step 2
$$NH_2$$
 Br_2
 $HOAc$
 F
 $EtOH$
 F

1a

Step 1

To a solution of 4'-fluoro-1'-acetonaphthone (28.69 mmol, 5.4 g) in 1,4-dioxane (18.0 mL) at 0° C was added bromine (35.13 mmol, 5.61 g). After 3 hours at room temperature the reaction mixture was concentrated in vacuo to give 7.66 g (Y: 100%) of the product of step 1.

20 Step 2

To a solution of the product of step 1 (28.69 mmol, 7.66 g) in ethyl alcohol (20 mL) at room temperature was added thiourea (36.13 mmol, 2.75 g). After 1 hour at room temperature a precipitate formed. To the reaction mixture was added water (100 mL) and the solid was collected by vacuum filtration. The solid was then washed with water (3 x 100 mL) and dichloromethane (3 x 100 mL). The solid was then dried in vacuo to give 5.5 g (Y: 75%) of the title compound 1a. MS (E+) m/z: 245 (MH⁺).

In a similar manner the following compounds were prepared from the corresponding ketone.

Preparation	Structure
1b	H ₂ N OMe
1 q	s s
1r	H ₂ N N
1t	H ₂ N N H ₃ CO
	H ₂ N Br
1 w	S N CH ₃

5

<u>Preparation 2</u> 4-[1-(4-Fluoro)naphthyl]aminoimidazole 2a

Step 1

To a solution of the product of preparation 1a, step 1 (18.73 mmol, 5.0 g) in DMF (15 mL) at room temperature was added 1-acetylguanidine (57.43 mmol, 5.80 g). After 5 hours at room temperature, the reaction mixture was diluted with water (100 mL) and extracted with ethyl acetate (3 x 100 mL). The organic phases were concentrated in vacuo and the residue chromatographed on silica gel (eluted with 5% methanol in dichloromethane) to give 2.0 g (Y: 39%) of the product of step 1. MS (E+) m/z: 270 (MH⁺).

Step 2

To a solution of the product of step 1 (7.43 mmol, 2.0 g) in methanol (17 mL) was added water (8.5 mL) and 12 N HCl (12.0 mL). After 1 hour at reflux the reaction mixture was concentrated in vacuo to approximately 15 mL. The resulting solution was then purified and neutralized by cation exchange SPE to give 1.66 g (Y: 99%) of the title compound 2a. MS (E+) m/z: 228 (MH⁺).

15

10

5

In a similar manner the following compounds were prepared from the corresponding ketones.

Preparation	Structure
2b	N N N
2e	N N N

20

Preparation 3
4-(1-naphthyl)aminooxazole 3a

Step 1

To a solution of 1-acetonaphthone (29.38 mmol, 5.0 g) in glacial acetic acid (10.0 mL) at RT was added bromine (30.06 mmol, 4.80 g) in glacial acetic acid (5.0 mL). After 5 minutes the reaction mixture was poured onto crushed ice and extracted with dichloromethane to give 7.31 g (Y: 100%) of the product of step 1. MS (E+) m/z: 250 (MH⁺).

Step 2

To a solution of the product of step 1 (5.50 mmol, 1.37 g) in ethyl alcohol (10 mL) was added urea (27.50 mmol, 1.65 g). After 2 hours at reflux the reaction mixture was concentrated in vacuo and the residue chromatographed on silica gel (eluted with 30% ethyl acetate in hexane) to give 100 mg (Y: 9%) of the title compound 3a. MS (E+) m/z: 211 (MH⁺).

15

10

5

Preparation 6

4-[1-(6-Methoxy)naphthyl]-3-aminothiazole 6a

Step 1

To a solution of 6-methoxy-1-naphthoic acid (0.5 g, 2.47 mmol, 1.0 equi.) in dichloromethane (10 mL) at room temperature was added a solution of oxalyl chloride (2M in dichloromethane, 2.5 mL, 5.0 mmol, 2 equi.). The solution was stirred at room temperature for 2 hours, and the excess oxalyl chloride removed *in vacuo*. The residue was dissolved in methanol and stirred at room temperature for 18 hours. The solvent was removed *in vacuo*, yielding 0.45 g (84%) of the product of step 1: LC/MS (m/z 217, (M-H)⁺); ¹H NMR (CDCl₃) δ 8.82 (d, 1H), 8.03 (dd, 1H), 7.90 (d, 1H), 7.44 (t, 1H), 7.26 (dd, 1H), 7.16 (s, 1H), 4.02 (s, 3H), 3.95 (s, 3H).

10

15

20

25

30

5

Step 2

Reference: P. Chen, P.T. Cheng, S.H. Spergel, R. Zahler, X. Wang, J. Thottathil, J.C. Barrish, R.P. Polniaszek, *Tetrahedron Letters*, **38**, 3175 (1997).

To a solution of the product of step 1 (0.238 g, 1.1 mmol, 1.0 equi.) and chloroiodomethane (0.32 mL, 4.4 mmol, 4 equi.) in THF (5 mL) was added a solution of LDA (2M, 2.2 mL, 4.0 equi.) in THF (10 mL) dropwise in 30 minutes, while keeping the solution temperature at -78°C. The reaction solution was stirred at -78°C for 10 minutes. A solution of acetic acid (1.5 mL) in THF (10 mL) was added in dropwise in 10 minutes. After stirring for an additional 10 minutes at -78°C, the solution was quenched with ethyl acetate and saturated sodium chloride solution. The organic phase was washed with saturated sodium bisulfite, saturated sodium chloride, dried with sodium sulfate and concentrated *in vacuo*. The residue was purified by flash chromatography (10% ethyl acetate in hexane) to yield the 0.23 g (90%) of the product of step 2: LC/MS (m/z 235, (M+H)⁺); ¹H NMR (CDCl₃) δ 8.82 (d, 1H), 8.03 (dd, 1H), 7.90 (d, 1H), 7.44 (t, 1H), 7.26 (dd, 1H), 7.16 (s, 1H), 4.80 (s, 2H), 3.95 (s, 3H).

Step 3

To a solution of the product of step 2 (0.23 g, 1.0 mm0l, 1.0 equi.) in ethanol (5mL) at room temperature was added thiourea (90 mg, 1.2 mmol, 1.2 equi.). The reaction solution was stirred at room temperature for 2 hours, after which a yellow precipitate was formed. The reaction was quenched by addition of water and ethyl

acetate. The aqueous phase was extracted with ethyl acetate (3x). The combined organic phases were dried with sodium sulfate and concentrated *in vacuo* to yield 200 mg (78%) of the title compound **6a**: LC/MS (m/z 235, (M+H)⁺); 1 H NMR (CDCl₃) δ 8.1 (d, 1H), 7.9 (m, 1H), 7.43 (m, 2H), 7.25 (m, 1H), 7.10 (dd, 1H), 6.65 (s, 1H), 3.95 (s, 3H).

<u>Preparation 7</u> 4-[1-(6-Methoxy)naphthyl]-3-aminoimidazole 7a

Step 1

5

10

15

20

25

To a solution of the product of preparation 6, step 2 (0.5 g, 2.14 mmol, 1.0 equi.), in ethanol (5 mL) at room temperature was added 1-acetylguanidine (650 mg, 6.42 mmol, 3.0 equi.). The reaction solution was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and ethyl acetate. The aqueous phase was extracted with ethyl acetate (3x). The combined organic phases were dried with sodium sulfate and concentrated *in vacuo* to yield 0.2 g (35%) of the product of step 1: LC/MS (m/z 282, (M+H)⁺).

Step 2

To a solution of the product of step 1 (0.2 g, 0.7 mmol, 1.0 equi.) in methanol (5 mL) was added water (1.0 mL) and hydrochloric acid (12N, 1.0 mL). The reaction solution was heated to reflux for 1 hour, after which the solvent was removed *in vacuo*. The crude mixture was purified by cation exchange SPE to give 0.12 g (70%) of the title compound **7a**: LC/MS (m/z 240, (M+H)⁺).

Preparation 14

Step 1 Ref: B. Bacle and G. Levesque, *Polymer Communications*, 28, 36 (1987).

A 1L flask was charged with anthracene (14g, 0.078 mol, 1.0 equi.), hydroquinone (0.8g, 0.008 mol, 0.1 equi.), methacrylic acid (14 mL, 0.156 mol, 2.0 equi.) and xylene (500 mL). The solution was heated to reflux for 1 day. The solution was cooled and concentrated *in vacuo*. The residue was dissolved in ethyl acetate and extracted with 1N NaOH (3x). The aqueous phase was acidified with 1N HCl, and the product was extracted with ethyl acetate (3x). The combined organic phases were concentrated *in vacuo* to give the crude product mixture. Recrystallization with hexane and ethyl acetate to yield 8g (40%) of step 1, 14:LC/MS (m/z 263 (M-H)⁺); ¹H NMR (CDCl₃) δ 7.08-7.25 (m, 8H), 4.37 (s, 1H), 4.25(t, 1H), 2.61 (dd, 1H), 1.39 (dd, 1H), 1.07 (s, 3H).

15

20

10

5

Step 2

The product of step 1, 14 was resolved into its corresponding enantiomers, 14(R) and 14(S) by chiral preparative HPLC with the following conditions, Column: Chiracel®-OJ, 5 X 50 cm, Mobile phase: trifluroacetic acid/acetonitrile: 1/1000 (vol/vol), Temperature: ambient, Flowrate: 70 mL/min, Injection: 1.5 grams in 50 mL solvent, Detection: UV (250 nm). Retention times for R-enantiomer, 30 min, S-enantiomer, 52 min. Analytical HPLC conditions, Column: Chiracel®-OJ, 4.6 X 250 cm, Mobile phase: trifluroacetic acid/acetonitrile: 1/1000 (vol/vol), Temperature:

ambient, Flowrate: 1.5 mL/min, Detection: UV (250 nm). Retention times: Renantiomer, 6.5 min, S-enantiomer, 15 min.

In a similar manner the following compounds were prepared from the corresponding 9-nitroanthracene and 9-anthracenecarbonitrile (Reference: P.V.

5 Alston, R.M. Ottenbrite, J. Newby, J. Org. Chem. *J. Org. Chem. 44*, 4939 (1979)) and were resolved to the enantiomers according to the procedure of Step 2.

Preparation 14	Structure
14b	ОН
	O ₂ N
14c	ОН
	NC NC

10

Examples

Example 1 (compound 1)

15

To a solution of the product of Preparation 14, step 1 (20 mg, 0.075 mmol, 1.0 equi.) in acetonitrile (2 mL) was added 1-[3-(dimethylamino) propyl]-3-

ethylcarbodiimide hydrochloride (DEC) (17 mg, 0.09 mmol, 1.2 equi.), 1-hydroxy-7azabenzotriazole (HOAt) (12 mg. 0.09 mmol, 1.2 equi.), triethyl amine (0.025 mL, 0.18 mmol, 2.5 equi.), and 2-amino-4,5-dimethylthiazole hydrochloride salt (14.8 mg, 0.09 mmol, 1.2 equi.). The reaction solution was heated to 80°C for 18 hours. The reaction was then concentrated in vacuo. The product mixture was purified by flash chromatography (20% ethyl acetate in hexane) to yield 19.8 mg (70%) of Example 1. LC/MS (m/z 375, (M+H)+.

5

15

In a similar manner Examples 2-51 were prepared from the coupling of the 10 appropriate acids (14, 14R, 14S, 14a, 14aR, 14aS, 14b, 14bR, 14bS)) prepared as described in Preparation 14 and the appropriate amines. Preparations of amines not commercially available are described in the preceding preparations section of this document. All examples in the tables are racemic unless specified otherwise. Examples in the table where one enantiomer predominates or is the sole component, are designated as either R or S.

Example	Compound	Chiral		MS: (M+H =
Number	Number	Compounds	Structure	MW shown
				+1)
2	2		H ₃ C N S	
3	3	Chiral (R)	H ₃ C N S	
4	4	Chiral (S)	H ₃ C N S	

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12	12		H ₃ C CH ₃	402.6
13	13		F N N N OHS	458.5
14	14		H ₃ C	436.6
15	15		S N CH S	472.6
16	16		S N OH3	450.6
17	17	Chiral (R)		472.61
18	18	Chiral (S)		472.61
19	19		S N CHa	472.6

20	20	S N CH ₃	422.55
21	21	H ₃ C N	456.55
22	22	H ₃ C N	478.64
23	23	S N CH ₃	386.5
24	24	N CHa	432.57
25	25		391.5

27 27

390.5

28 28

486.64

29 29

455.56

30 30

452.58

31 31

502.64

32 32 Chiral (R)

33	33	Chiral (S)	H ₃ C N	486.64
34	34	Chiral (R)	H ₃ C N	490.6
35	35	Chiral (S)	H ₃ C N N N F	490.6
36	36	Chiral · (S)	H ₃ C N H ₄ C	502.64
37	37	Chiral (R)	H ₃ C N N N N N N N N N N N N N N N N N N N	502.64
38	38	Chiral (S)	H ₃ C N	455.56
39	39	Chiral (R)	H ₃ C N	455.56

40	40	Chiral (S)	H ₃ C N	469.59	-
41	41	Chiral (R)	H ₃ C N	469.59	
42	42	Chiral (S)	H ₃ C N N N	485.59	
43	43	Chiral (R)	H ₃ C H ₃ C H ₃ C	485.59	
44	44	Chiral (S)	H ₃ C P	473.55	
45	45	Chiral (R)	H ₃ C N N N F	473.55	
46	46	Chiral (R)	H ₃ C N Br	551.51	
47	47	Chiral (S)	H ₃ C N Br	551.51	

48	48	Chiral (R)	O ₂ N S N	532.29
49	49	Chiral (S)	O ₂ N O ₂ N O ₃ N O ₄ N O ₅ N	532.29
50	50	Chiral (R)	NC CH ₃ N	512.27
51	51	Chiral (S)	NC CH ₃ N	512.24

Example 2

Site I Binding Assay

5

10

15

20

In order to measure the binding of compounds to Site I on the glucocorticoid receptor a commercially available kit was used (Glucocorticoid receptor competitor assay kit, Panvera Co., Madison, WI). Briefly, a cell lysate containing recombinantly expressed human full-length glucocorticoid receptor was mixed with a fluorescently labeled glucocorticoid (4nM FITC-dexamethasone) plus or minus test molecule. After one hour at room temperature, the fluorescence polarization (FP) of the samples were measured. The FP of a mixture of receptor, fluorescent probe (i.e. FITC-dexamethasone) and 1mM dexamethasone represented background fluorescence or 100% inhibition, whereas, the FP of the mixture without dexamethasone was taken to be 100% binding. The percentage inhibition of test molecules were then compared to the sample with 1mM dexamethasone and expressed as % relative binding activity with dexamethasone being 100% and no inhibition is 0%. Test molecules were analyzed in the concentration range from 0.1nM to 40 μ M.

Site I binding assays for any NHR are conducted similarly to the above. An appropriate cell lysate or purified NHR is used as the source of the NHR. The

fluorescent probe and unlabeled competitor are appropriate for the specific NHR, i.e. are ligands for the specific NHR.

Example 3

5

10

15

20

25

30

Cellular Transrepressional Assay

To measure the ability of test molecules to inhibit AP-1 induced transcriptional activity we utilized an A549 cell which was stably transfected with a plasmid containing 7x AP-1 DNA binding sites (pAP-1-Luc plasmid , Stratagene Co. La Jolla, CA) followed by the gene for luciferase. Cells were activated with 10ng/ml of phorbol myristic acid (PMA) plus or minus test molecules for 7 hours. After 7 hours a luciferase reagent was added to measure luciferase enzymatic activity in the cell. After a 10 minute incubation of luciferase reagent with cells, luminescence was measured in a TopCount luminescence counter. Repression of AP-1 activity was calculated as the percentage decrease in the signal induced by PMA alone. Test molecules were analyzed in the concentration range from 0.1nM to 40 μ M. IC50s were determined by using standard curve fitting methods such as Excel fit (Microsoft Co.). An IC50 is the test molecule concentration which causes a 50% repression of transcription, i.e. a 50% reduction of AP-1 activity.

Other reporters and cell lines also may be used in a cellular transrepressional assay. A similar assay is performed in which NF-κB activity is measured. A plasmid containing NF-κB DNA binding sites is used, such as pNF-kB-Luc, (Stratagene, LaJolla CA), and PMA or another stimulus, such as TNF-α or lipopolysaccharide, is used to activate the NF-κB pathway. NF-κB assays similar to that described in Yamamoto K., et al., J Biol Chem 1995 Dec 29;270(52):31315-20 may be used.

The cellular transrepressional assays described above may be used to measure transrepression by any NHR. One of skill in the art will understand that assays may require the addition of components, such as a stimulus (eg. PMA, lipopolysaccharide, TNF-α, etc) which will induce transcription mediated by AP-1 or NF-κB. Additionally, AR mediated transrepression may be measured by the assay described in Palvimo JJ, et al. J Biol Chem 1996 Sep 27;271(39):24151-6, and PR mediated transrepression may be measured by the assay described in Kalkhoven E., et al. J Biol

Chem 1996 Mar 15;271(11):6217-24.

5

10

15

20

25

30

Example 4

Cellular Transcriptional Assay

In order to measure the ability of compounds to induce DNA binding and transcriptional activation in cells the following assay was performed. A HeLa cell line was stably transfected with a gene expressing a fusion protein consisting of the GAL4 DNA binding domain linked to the ligand binding domain of GR. Also transfected into these cells was a DNA binding site for GAL4 (5 repetitions of a 17mer GAL4 binding site) linked to the beta-globin reporter in front of the luciferase gene. See Eisenmann, G., Cheynel, and Gronemeyer, H. (1995), Quand les cellules scintillent, Biofutur (Le Technoscope), 151:8. Cells were incubated for 20 hours with either dexamethasone or test molecule. After 20 hours the level of luciferase activity was measured using a Steady Glo Luciferase assay system (Promega Co., Madison, WI). Induction of luciferase activity with 100nM dexamethasone was considered 100% activation. The activity of test molecules was measured as a percentage of dexamethasone induced DNA binding (transactivation). EC50s were calculated by using standard curve fitting methods such as Excel Fit (Microsoft Co., Redmond, WA). An EC50 is the test molecule concentration required to cause a 50% stimulation of transcription.

A second assay which measures the ability of compounds to induce the expression of tyrosine amino transferase mRNA in liver cells was also utilized to determine the ability of compounds to induce DNA binding. In these experiments, an HTC cell line was treated with dexamethasone or test molecules for 20 hours followed by mRNA extraction and analysis by RT-PCR. Again, dexamethasone induction (100 nM) was considered 100% activation. Test molecules were analyzed in the concentration range from 0.1 nM to 40 μ M.

Cellular transcription transactivated by any NHR may be measured using an assay similar to the one described above for GR. That is, the NHR (either full length or the ligand binding domain) of interest is overexpressed in a suitable cell line such as COS. A plasmid which contains the DNA binding element specific for the NHR attached to a promoter and linked upstream of a reporter gene (e.g. luciferase), is cotransfected with the NHR. A chimeric NHR- ligand binding domain fused to GAL4,

or other transcription factor, could also be used to measure transactivation mediated by ligand binding to the NHR. In this case, the DNA binding element would be specific for the NHR fusion partner. An appropriate nuclear hormone is used for comparison to the test molecule. The cell line is treated with test molecule and reporter gene activity measured.

Example 5

GR Binding Activity, AP-1 Inhibitory Activity, and Transactivational Activity of Racemic Mixtures

Each of the twenty-seven racemic mixtures described in Example 1 was tested in the GR Site I binding assay, the cellular transrepressional assay, and the cellular transcriptional assay. The results are given in Table II below, in Example 10. GR Site I binding of the compounds ranged from 20.0 – 99.1 % inhibition at 10 μM concentration. AP-1 inhibition in the cellular transrepressional assay ranged from 0.8 – 82.9 % at 10 μM concentration. EC50s for DNA binding in the cellular transcriptional were determined for some of the compounds and were greater than 40 μM for all but one.

The EC50 for dexamethasone induction of tyrosine amino transferase mRNA in the HTC cell line is approximately 50nM. Two racemic mixtures of Example 1 were analyzed in the tyrosine amino transferase mRNA assay and had EC50s of greater than 40 μ M.

Example 6

Enantiomeric Separation of Twelve Racemates

Twelve compounds which were originally synthesized as racemic mixtures were separated into enantiomeric pairs, and the enantiomeric identity of each member of the pair was determined using standard techniques known in the art. These twenty-four enantiomers are among the compounds of Example 1.

 $\underline{\text{Example 7}}$

5

20

25

GR Binding Activity, AP-1 Inhibitory Activity, and Transactivational Activity of

Twenty-four Enantiomers

5

10

15

20

25

30

Each of the twenty-four enantiomers was tested in the cellular transcriptional assay. All but one of the twenty-four enantiomers were tested in the cellular transrepressional assay. Most of the twenty-four enantiomers were tested in the GR Site I binding assay. Two enantiomers (one pair) were tested in the tyrosine amino transferase mRNA assay.

EC50s for DNA binding in the cellular transcriptional assay were greater than 40 µM for all but three of the twelve S enantiomers and for all but two of the twelve R enantiomers. For ten of the S enantiomers, EC50s for DNA binding in the cellular transcriptional assay were greater than 40 µM for all but one. For ten of the R enantiomers, EC50s for DNA binding in the cellular transcriptional assay were greater than 40 µM for all. IC50s for AP-1 inhibition in the cellular transrepressional assay ranged from 15 nM to 11 μM for the twelve S enantiomers, with the range for eleven of the S enantiomers being 15 nM to 275 nM. IC50s for AP-1 inhibition in the cellular transrepressional assay ranged from 33 nM to 11 µM for ten of the S enantiomers, with the range for nine of those S enatiomers being 33 nM to 275 nM. IC50s for AP-1 inhibition in the cellular transrepressional assay ranged from 222 nM to 40 µM for the twelve R enantiomers, with the range for ten of the R enantiomers being 650 nM to 40 μ M. GR Site I binding inhibition at 10 μ M ranged from 6.1% to 41% for the S enantiomers, and from 51.8% to 99% for the R enantiomers, with the range being 51.8% to 97.9% for ten of the R enantiomers. Both enantiomers of the pair tested had EC50s of greater than 40 µM in the tyrosine amino transferase mRNA assay.

This data clearly shows that the S enantiomers were more potent inhibitors of AP-1 activity relative to the R enantiomers. In contrast, the R enantiomers were more potent inhibitors of dexamethsone binding to GR compared to the S enantiomers.

Example 8

Dissociation of Twenty-four Enantiomers Compounds

The dissociation of the twenty-four enantiomers was calculated by dividing the EC50 from the cellular transcriptional assay by the IC50 from the cellular transrepressional assay. The dissociation constant for the R enantiomers ranged from 62.5 to 1.0. The dissociation value for the S enantiomers ranged from 1000 to 0.91,

with the dissociation value for eleven of the S enantiomers ranging from 1000 to 137, and the dissociation value for some of the S enantiomers ranging from 1000 to 167.

Example 9

5

10

GR Homology Model

The GR homology model of the ligand binding domain (LBD) was constructed using known methodology. Specifically, the human sequence (QRHUGA obtained from the International Protein Sequence Database, pir.georgetown.edu/pirwww), residues 523-777 (SEQ ID NO:1), comprising the LBD was aligned to the human PR sequence (LBD residues 682-932) (SEQ ID NO:2) available as a xray-structure (1A28.pdb obtained from the RCSB, the Research Collaboratory for Structural Bioinformatics, www.rcsb.org/pdb) using the modeler module within InsightII (Version 2000, MSI/Accelrys).

GR: 523 ATLPQLTPTLVSLLEVIEPEVLYAGYDSSVPDSTWRIMTTLNMLGGRQVI 572

1A28: 682 QLIPPLINLLMSIEPDVIYAGHDNTKPDTSSSLLTSLNQLGERQLL 727

GR: 573 AAVKWAKAIPGFRNLHLDDQMTLLQYSWMFLMAFALGWRSYRQSSANLLC 622 1A28: 728 SVVKWSKSLPGFRNLHIDDQITLIQYSWMSLMVFGLGWRSYKHVSGQMLY 777

20

25

GR: 623 FAPDLIINEQRMTLPCMYDQCKHMLYVSSELHRLQVSYEEYLCMKTLLLL 672 1A28: 778 FAPDLILNEQRMKESSFYSLCLTMWQIPQEFVKLQVSQEEFLCMKVLLLL 827

GR: 673 SSVPKDGLKSQELFDEIRMTYIKELGKAIVKRE-GN-SSQNWQRFYQLTK 720

1A28: 828 NTIPLEGLRSQTQFEEMRSSYIRELIKAIGLRQKGVVSSS--QRFYQLTK 875

GR: 721 LLDSMHEVVENLLNYCFQTFLDKTM-SIEFPEMLAEIITNQIPKYSNGNI 769 1A28: 876 LLDNLHDLVKQLHLYCLNTFIQSRALSVEFPEMMSEVIAAQLPKILAGMV 925

The resulting GR LBD homology model coordinates are provided in Table I, which for convenience is located at the end of this specification under the heading Example 35 21.

Example 10

Identification of Site II

The classical ligand binding site, i.e. Site I, is defined by the immediate space surrounding progesterone in 1A28.pdb, can be further defined by the amino acid 5 residues in contact with progesterone, and are well known in the art. The analogous GR site I residues were identified as those proximate to a modeled version of dexamethasone in the GR homology model. GR Site I residues in contact with dexamethasone (as found in the GR homology model) are M560, L563, N564, L566, G567, Q570, M601, M604, A605, L608, R611, F623, M639, Q642, M646, L732, 10 Y735, C736, T739 and E748. The present invention is based on the discovery of an alternate binding site, herein known as Site II, present in a number of NHRs (nuclear hormone receptors), in particular in GR, which interacts with small molecule modulators. In the case of GR, a ligand binding to Site II results in a transrepression signaling within cells (inhibition of AP-1 or NF-κB). The location of Site II is 15 defined herein for a number of related NHRs and specifically for GR in Figure 2. GR Site II residues include the following (using GR numbering): E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667.

The identification of Site II is supported by the three-dimensional complementarity of shape and functional features between the site and ligands having in vivo transrepression activity. An example of such complementarity is shown in Figure 3, wherein the S-enantiomer of Compound 15 was manually docked into the GR homology model of Site II.

20

25

30

Site I and Site II residues were defined as those capable of van der Waal's contact with a ligand contained by those residues. Using dexamethasone for Site I (bound in a similar manner as that reported for progesterone in PR Site I) and Compound 15 for Site II (manually docked as shown in Figure 3), all residues capable of vander Waal's contact were listed as site residues. Included as well were those residues not in immediate contact with either ligand, but capable of such contact if the space between ligand and residue was occupied by a small molecule fragment.

In addition, computations of binding energetics for a series of twenty-seven related Site II ligands, which are among the compounds described in Example 1, was

found to correlate with the observed in vivo transrepression activities, providing further evidence of the critical role of Site II binding in producing an in vivo transrepression effect. Correlation data are shown in Table II (below) and Figure 5, and structures are shown in Figure 4. Although the data reflect the activities of racemates, each individual molecule was modeled as the S-enantiomer for purposes of consistency. These twenty-seven compounds showed % inhibition at 10 μ M in the cellular transcriptional assay ranging from 0.8 to 82.9. The EC50 in the cellular transcriptional assay was greater than 40 μ M for twenty-six of the compounds, and was greater than 10 μ M for the remaining compound.

5

10

15

20

25

Binding energetics were calculated using Flo (Colin McMartin, Thistlesoft, High Meadow, 603 Colebrook Road, Colebrook, CT 06021), molecular modeling software which utilizes the Amber molecular mechanics force field to achieve a best fit between ligand and protein binding site. Both the ligand and Site II residues in contact with the ligand are allowed to undergo energy minimization and geometry optimization. The result of these operations provides an optimum ligand binding orientation and a series of calculated energies of interaction. The correlation between observed AP-1 inhibition (percent at 10 uM) and binding energetics is based on the calculated non-bonded contact interactions between ligand and protein residues. This type of calculation generally reflects the degree to which a ligand conforms to the shape of the binding site.

Table II, below, gives correlation data calculated for the analogues of Compound 15 using Flo Contact Energy Scores (Ecnt) after manually docking each analogue into GR Site II (Flo modeling software, Colin McMartin, ThistleSoft). %AP-1 values were determined at an inhibitor concentration of 10 μM. GR binding assay was performed as described in Example 2. DNA binding assay was performed as described in Example 4. AP-1 inhibition assay was performed as described in Example 3.

Table Π

		1 4010 11		
Compound	GR Binding	DNA Binding	AP-1	Ecnt
	(% @ 10 uM)	NP-1 IC50 (uM)	(%inh @ 10 uM)	(KJ/mol)
	92.1		30.3	-18.7
	99.1		24.5	-15.6
	97.6		0.8	-17
	85.1	> 10	29.5	-16.9
	92.8	>40	8.7	-15.1
	96.0		36.1	-22.5
	91.0		15.2	-19.2
	84.9	>40	58.6	-19.4
	92.3		25.1	-13.3
	93.2		41.3	-22.9
	88.1	>40	61.8	-28.9
	88.3		22.5	-20.2
	92.2		29.3	-15.2
	93.5		33.6	-18.4
	65.7		61.8	-26.3
	93.8		26.4	-27.6
	94.1		23.4	-16.3
	94.4		47	-18.9
	76.8		7	-21.9
	20.0		13.6	-27.8
	64.5	•	32.7	-18.9
	45.3		8.6	-23.3
	31.9		18.9	-21.5
	90.4	>40	82.9	-29.6
	56.3	>40	64.2	-21.2
	88.7		38.5	-23.7
	91.7		43.8	-25

There are a number of published examples wherein the energetics of interaction of docked structures correlated with observed activity; one such example was in the use of AutoDock (Sybyl, Tripos, St. Louis, MO) in evaluating 27 HIV-1 Protease inhibitors (Huang, et. al., J. Med. Chem. 45, 333, 2002). Energies of interaction between the HIV-1 protease active site and a series of ligands were calculated using an MM2X force field and found to correlate with observed activities (Holloway and Wai in Computer-Aided Molecular Design, ACS Symposium Series 589, ACS, Washington, DC 1995). The solvation contribution to the binding energetics of docked structures was accounted for and provided the means to more accurately predict biological activities (Takamatsu and Itai, Proteins: Structure, Function, and Genetics, 33:62-73, 1998).

5

10

15

20 -

25

30

Correlating structure with activity is a fundamental criterion in pointing out those aspects of the structure most relevant to activity. When the correlation is carried out with ligands alone, it can demonstrate which properties/features of the ligands are important for activity. When done with a protein binding site acting as a constraint, the correlation provides evidence that certain three-dimensional binding site features are important. Thus, when a correlation exists between AP-1 inhibition data and the calculated binding energetics for a series of molecules, this provides a reasonable certainty that the binding site model is consistent with the observed inhibition data. Therefore, the design of molecules having features complementary to those of the binding site should lead to the effective structure-based design of novel ligands having desired biological activity, in this case, AP-1 inhibition.

A recent publication (Bledsoe, et. al., Cell, online publication by Cell Press, July 1, 2002; DOI: 10.1016/S0092867402008176) describes the successful crystallization and xray structural elucidation of the glucocorticoid receptor LBD as the dimer. Disruption of the dimeric structure was found to occur upon mutation of selected residues at the dimerization interface. These mutants lacked transactivation activity and retained transrepression activity. Interestingly, the dimerization interface and the opening of Site II share the same outer surface (two residues located at the rim of Site II, namely, Q615 and P625, are among several identified by the authors as critical to dimer formation). This observation is consistent with the proposed importance of Site II in modulating dissociated steroid activity.

5

10

15

20

30

Example 11

Cellular Transrepressional Assay with Both A Site II Dissociated Compound and Dexamethasone

The cellular transrepressional assay was performed by determining the IC50 for transrepression for dexamethasone in the presence or absence of one of the compounds (an S enantiomer) of Example 1. This S enantiomer is hereinafter referred to as Compound A. In the absence of Compound A dexamethasone yielded an IC50 of 3.4 nM with a maximum percent inhibition of 75%, whereas, in the presence of 800nM of the compound the IC50 decreased to 1.2 nM with 100% inhibition. This showed that there is an additive effect of adding the compound with dexamethasone.

Example 12

Cellular Transcriptional Assay with Both A Site II Dissociated Compound and Dexamethasone

For transactivation, the compound used in Example 11, Compound A, was an antagonist of dexamethasone activity. Here, an EC50 was determined in the cellular transcriptional assay for dexamethasone in the presence or absence of the compound. In the absence, the EC50 was 3.4nM with 100% stimulation, whereas, in the presence of the compound the EC50 shifted to 8.5nM with 47% stimulation.

Example 13

Overlay of Site II from Various NHRs and Calculation of rms

25 Consensus alignments were carried out using ICM (Molsoft LLC, La Jolla, CA) between human GR LBD and other human NHR LBDs. Figure 2 shows the alignment, indicating by shading the residues of Site II in each NHR, i.e. residues corresponding to residues of GR Site II. Dots are spaceholders and do not represent amino acids. Numbers refer to the first residue in each line, are specific for each NHR and are based on the full-length NHR. For the NHRs listed below, with the exception of GR and MR, structural data was obtained from the RCSB references listed below, and the numbering system in the RCSB references was used. For GR

and MR, structural data was obtained by homology modeling using the literature references below, and the numbering system in those literature references was used. The RCSB references (in parentheses) and literature references for the various NHRs are as follows:

- 5 RXRalpha (1lbd) Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., Moras, D. Nature 375 pp. 377 (1995); PPAR-gamma (2prg) Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., Milburn, M. V. Nature 395 pp. 137 (1998); RARgamma (2lbd) Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., Moras, D.
- Nature 378 pp. 681 (1995); PR (1a28) Williams, S. P., Sigler, P. B. Nature 393 pp.
 392 (1998); VitDR (1db1) Rochel, N., Wurtz, J. M., Mitschler, A., Klaholz, B.,
 Moras, D. Mol. Cell 5 pp. 173 (2000); AR (1e3g) Matias, P. M., Donner, P., Coelho,
 R., Thomaz, M., Peixoto, C., Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A.,
 Basler, S., Schafer, M., Egner, U., Carrondo, M. A. J.Biol.Chem. 275 pp. 26164
- (2000); ERalpha (1a52) Tanenbaum, D. M., Wang, Y., Williams, S. P., Sigler, P. B.
 Proc Natl Acad Sci U S A 95 pp. 5998 (1998); ERbeta (112j) Shiau, A. K., Barstad,
 D., Radek, J. T., Meyers, M. J., Nettles, K. W., Katzenellenbogen, B. S.,
 Katzenellenbogen, J. A., Agard, D. A., Greene, G. L. Nat.Struct.Biol. 9 pp. 359
 (2002); TRbeta (1bsx) Wagner, R. L., Darimont, B. D., Apriletti, J. W., Stallcup, M.
- 20 R., Kushner, P. J., Baxter, J. D., Fletterick, R. J., Yamamoto, K. R. Genes Dev. 12 pp. 3343 (1998). MR and GR structural data were obtained by homology modeling to PR using the sequences from the following references: GR, PIR Accession Number QRHUGA, Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G.,Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M., Nature (1985) 318: 635-641;
- MR, PIR Accession Number A29613, Arriza, J.L.; Weinberger, C., Cerelli, G., Glaser, T.M., Handelin, B.L., Housman, D.E., Evans, R.M., Science (1987) 237: 268-275.

It is understood that Figure 2 is merely illustrative of the invention and is not intended to be limiting in any manner. Accordingly, it is understood that

corresponding amino acid residues of other nuclear receptors such as other estrogen receptors, thyroid receptors, retinoid receptors, glucocorticoid receptors, progestin

receptors, mineralocorticoid receptors, androgen receptors, peroxisome receptors and vitamin D receptors may also be used in the methods of the invention.

The structure coordinates of Site II in the NHRs of Figure 2 are given in Table III, located under the heading for Example 22.

Using structural data described above for several NHR LBDs, rigid fitting operations were conducted between the GR LBD homology model and the following closely-related NHRs: progesterone receptor LBD, androgen receptor LBD, estrogen receptor alpha LBD and estrogen receptor beta LBD. The fitting operation yielded Site II rms deviations in backbone atom comparisons of 0.57-0.71 Å. The fitting operations were carried out using the Match option within InsightII. Backbone atoms of GR Site II were compared to those of the following four NHRs: progesterone receptor (rms = 0.57 Å), androgen receptor (rms = 0.71 Å), estrogen receptor alpha (rms = 0.69 Å), and estrogen receptor beta (rms = 0.52 Å).

15

5

10

20

25

30

Example 14

Sequence Alignment of GR Site II from Various Species

Sequence alignments were prepared of the human GR and the GR from various non-human species. The sequence alignments were conducted using the program LOOK (Version 3.5.2 Molecular Applications Group, Palo Alto, CA). The alignment is shown in Figure 6. The sequence for each GR starts at residue 1. Alignments were made based on pair-wise sequence identity. Site II residues are shaded. GR sequences were obtained from the following sources: Squirrel (Saimiri boliviensis boliviensis) (GenBank U87951) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Pig GR (GenBank AF141371) Gutscher, M., Eder, S., Mueller, M. and Claus, R. Submitted to GenBank (08-APR-1999) Institut fuer Tierhaltung und Tierzuechtung (470), FG Tierhaltung und Leistungsphysiologie, Universitaet Hohenheim, Garbenstr. 17, Stuttgart 70599, Germany; Guinea Pig (GenBank L13196) Keightley, M.C. and Fuller, P.J. Mol. Endocrinol. 8 (4), 431-439 (1994); Marmoset (GenBank U87953) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); Ma'z Monkey (GenBank U87952) Reynolds, P.D., Pittler, S.J. and Scammell, J.G. J. Clin. Endocrinol. Metab. 82 (2), 465-472 (1997); rat (GenBank M14053)

Miesfeld,R., Rusconi,S., Godowski,P.J., Maler,B.A., Okret,S., Wikstrom,A.C., Gustafsson,J.A. and Yamamoto,K.R. Cell 46 (3), 389-399 (1986); mouse (GenBank X04435) Danielsen,M., Northrop,J.P. and Ringold,G.M. EMBO J. 5 (10), 2513-2522 (1986); Human (Protein Information Resource QRHUGA) Hollenberg, S.M., Weinberger, C., Ong, E.S., Cerelli, G., Oro, A., Leba, R., Thompson, E.B., Rosenfeld, M.G., Evans, R.M., Nature (1985) 318: 635-641.

5

15

20

25

30

Example 15

Site II Binding Assay

In order to measure binding of a test molecule (i.e. a potential ligand) to Site II on GR, a labeled, such as radiolabeled or fluorescently labeled, known ligand of Site II is prepared. Several approaches can be utilized to identify a ligand of Site II that can be used as the labeled known ligand of Site II. All involve analyzing a modulator of GR to determine if it is a ligand of Site II. Three such approaches follow.

The first approach involves making mutations in GR in site II. These Site II mutants are expressed in the transactivation and/or transrepression assays to determine if there is any alteration of the modulator's activity. It would be predicted that those amino acids which are in proximity to the compound, if mutated, should decrease the activity of the modulator in the transrepression assay, whereas, there should be no effect on the activity of dexamethsone mediated tranactivation and/or transrepression. This approach is used in Example 16.

A second approach is to prepare a modulator with a moiety that can be crosslinked to GR, such as dexamethasone mesylate. After crosslinking, the GR is digested with proteases and analyzed by mass spectrometry. The peptide(s) with a covalently attached modulator are identified.

A third approach is to crystallize the GR with the modulator. The structure of the co-crystal complex definitively shows the mode in which the modulator is binding to GR.

Once a ligand is identified, it is labeled and is used in the assay to measure binding of a test molecule to Site II. The test molecule and the labeled ligand are incubated with a cell lysate or purified complex containing GR. The binding of compounds to GR are measured using techniques which are standard in the art such as

fluorescence quenching, fluorescence polarization, filter binding, scintillation proximity assay, among others. The readout, such as fluorescence polarization, of a mixture of receptor, labeled ligand and 1mM unlabeled ligand represents 100% competition, whereas, the readout of the mixture without unlabeled ligand is taken to be 100% binding. The percentage competition of test molecules are then compared to the sample with 1mM unlabeled ligand and expressed as % relative binding activity with unlabeled ligand being 100% and no competition being 0%. Test molecules are analyzed in the concentration range from 0.1nM to 40 μ M.

5

10

15

20

25

30

To confirm binding of a test molecule to Site II, a GR that has mutations in Site II may be used. It would be expected that a GR with mutations in Site II would have a diminished ability to be modulated by a ligand of Site II. Modulation by the test molecule, i.e. transrepression and transactivation, is compared between the native GR and the mutant GR.

Site II binding may also be confirmed by demonstrating that a steroid known to bind to Site I, such as dexamethasone, does not compete for the binding of the test molecule to Site II.

To determine an IC50, a fixed concentration of labeled ligand is used and a titration with unlabeled test molecule is performed. Test molecules are analyzed in the concentration range from 0.1 nM to 40 μ M.

A Site II binding assay may be prepared using any NHR in place of GR as described above. Cross-linking agents and ligands appropriate for the specific NHR are used.

Example 16

Transactivation Studies on GR Site-Directed Mutants

Several mutations in Site II of the human glucocorticoid receptor were made. Two mutations of Alanine 607 to either a valine or phenylalanine were made which were predicted to block the entrance of Site II ligands into the Site II pocket. Valine 543, which is on the interior of the Site II pocket, was mutated to phenylalanine, and this mutation was predicted to disrupt binding of compounds to Site II. A double mutant A607V/V543L was also made. These mutations were made using a

commercially available kit, Stratagene Quick Change XL Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA).

COS cells were transfected with expression vectors for either the wild type or the various mutants. Cells were also transfected with a highly sensitive, artificial reporter consisting of two glucocorticoid response elements upstream of the gene for luciferase, the GRE2LUC reporter. (PROMEGA steady glo luciferase assay system, Promega, Madison, WI). After 24 hours the cells were then treated for an additional 24 hours with either dexamethasone (Dex), or Site II ligands. At the end of the incubation period, luciferase levels were measured using the PROMEGA steady glo luciferase assay system (Promega, Madison, WI).

5

10

15

20

25

The data is shown in Figure 8, in which RLU means relative light units.

Figure 8 shows that in the wild type GR, both dexamethasone and Compound A can induce transactivation via the GRE2LUC reporter. However, in the A607F, A607V and V543F mutants, whereas dexamethsone induced transactivation of the reporter, Compound A did not. Compound A is indicated by the left, darker, solid bar in each pair of bars. Dexamethasone is indicated by the right, lighter, hatched bar in each pair of bars. The control is cells transfected with DNA vector alone (no GR) plus the GRE2LUC reporter. These data suggest that either Compound A interacts with amino acids V543 and A607 in Site II or the mutations prevent the interaction of Compound A with GR.

Glucocorticoid receptor transactivation activity is very sensitive to mutations which may alter the conformation of the receptor. As seen in Figure 8, some point mutations enhance the ability of dexamethasone to induce transactivation. This may occur due to, among other explanations, an increase in the ability of dexamethasone to bind to GR or increased ability to recruit co-activators. The double mutant caused a decrease in the ability of dexamethasone to induce transactivation perhaps due to a more dramatic effect on the conformation of GR and a decreased ability to bind to dexamethasone or recruit co-activators.

5

10

15

20

25

30

Example 17

Effect of Combining BMS Site II Compounds with Dexamethasone or RU486 on AP-1 MediatedTranscription

A549 cells stably transfected with an AP-1 reporter with a luciferase readout, as described in Example 3, were treated with various concentrations of compounds. As shown in Figure 9, a titration of dexamethasone was performed in the presence or absence of Compound A (an S enantiomer) or Compound B (the R enantiomer of Compound A). As seen in Figure 9, these compounds increase the percentage of inhibition of AP-1 relative to dexamethasone alone, suggesting there is an additive effect between these Site II compounds and dexamethasone. In contrast, RU486 (Hofmann TG, Hehner SP, Bacher S, Droge W, Schmitz ML. FEBS Lett. 1998 Dec 28;441(3):441-6), which is an antagonist of Site I, which is the dexamethasone binding site, inhibits the ability of dexamethasone to repress AP-1 activity. The data taken together demonstrates that Compound A and Compound B act in an additive fashion with compounds which interact with Site I, suggesting they act at an alternative Site II.

Example 18

An Assay to Indirectly Measure the Interaction of Site II Ligands with GR

In order to measure the binding of putative Site II compounds to GR we utilized the Glucocorticoid receptor competitor assay kit (Panvera Co., Madison, WI) in a modified version of the FITC-dexamethasone fluorescence polarization assay described in Example 2. In this assay, Compound D was added at a concentration of 200 nM, which yields approximately 50% inhibition of FITC-dexamethasone binding. Compound D (an R enantiomer) is Compound 50 of Example 1. Compound D is a ligand of Site II that inhibits via Site II FITC-dexamethasone binding to GR. To the mixture of cell lysate containing the glucocorticoid receptor, Compound D, and FITC-dexamethasone, various competitor Site II ligands which do not inhibit dexamethasone binding were added and the change in FITC-dexamethasone binding was measured. These competitor Site II ligands, all compounds of Example 1 and all S enantiomers, were: Compound A; Compound C, which is the S enantiomer of Compound D; and Compound E, yet another S enantiomer of Example 1. If the

competitor compound binds to Site II and displaces Compound D, then FITCdexamethasone should rebind to GR. As shown in Figure 10, the competitor compounds are effective at displacing Compound D and allowing FITCdexamethasone to rebind to GR. This assay can therefore measure the relative binding of compounds to the Site II on GR.

Example 19

Site II ligands act in a GR dependent fashion to repress AP-1 driven transcription

In order to determine whether the Site II ligands act via GR, COS cells, which 10 do not express GR, were transfected with an AP-1 luciferase reporter (pAP-1-Luc plasmid, Stratagene, La Jolla, CA) plus or minus an expression construct for full length human GR. AP-1 activity was measured via luciferase reporter activity as described in Example 3. When GR was not present, neither 1 micromolar dexamethasone nor 40 micromolar Compound A significantly inhibited AP-1 activity. However, when GR was transfected into the cell, both dexamethasone and Compound A suppressed AP-1 activity. These results are shown in Figures 11a and 11b, in which the Y axis is relative light units (RLU). These data show that both of these ligands act in a GR dependent fashion.

20 Example 20

5

15

25

30

Provision of GR Site II X-ray Structure Coordinates and Calculations of rms

The GR Site II x-ray structure coordinates were discerned from the disclosure in WO 03/015692 A2, February 27, 2003, Apolito, et. al. and are provided in Table IV under the heading for Example 23. Apolito discloses x-ray structure coordinates of GR LBD, but does not disclose the existence or identity of Site II.

The GR Site II x-ray structure coordinates were discerned from the disclosure in Kauppi et. al., in the Journal of Biological Chemistry Online, JBC Papers In Press as DOI:10.1074/jbc.M212711200, April 9, 2003, RCSB file: 1nhz.pdb (GR LBD bound to an antagonist, RU 486) and are provided in Table V under the heading for Example 24. Kauppi discloses x-ray structure coordinates of GR LBD, but does not disclose the existence or identity of Site II.

5

10

15

20

25

The homology model GR Site II coordinates of Table I were compared to the Site II coordinates available from the disclosures in WO 03/015692 A2, February 27, 2003 Apolito, et. al. and those published by Kauppi et. al., in the Journal of Biological Chemistry Online, JBC Papers In Press as DOI:10.1074/jbc.M212711200, April 9, 2003, RCSB file: 1nhz.pdb (GR LBD bound to an antagonist, RU 486). When the backbone atoms of the homology model Site II residues, ie, E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, O615, P625, Y663, L664 and K667 according to Table I were compared, root mean square deviations (rmsds) of 0.92 and 1.02 Å were obtained between the homology model of Table I Site II residues and the Apolito Site II residues, and between the homology model of Table I Site II residues and the Kauppi Site II residues, respectively. In both instances the Site II residues were first overlaid using the structure overlay option within the ICM (Version 3.0.017, Molsoft. LLC) modeling software. Using the rmslig program within the Flo (Colin McMartin, Thistlesoft) molecular modeling program afforded backbone rmsd calculations. These observations underscore the similarity of the Site II homology model structure to actual crystal structures.

Example 21

Structure Coordinates of GR LBD, Table I

Below is Table I, which gives the three-dimensional structure coordinates of the GR LBD homology model. The format used is based on that commonly used in the RCSB (Research Collaboratory for Structural Bioinformatics, pdb file format), and the fields listed from left to right are defined as follows: record name, atom serial number, atom name, residue name, chain identifier, residue sequence number, orthogonal coordinate for x in Ångstroms, orthogonal coordinate for y in Ångstroms, orthogonal coordinate for z in Ångstroms, occupancy, and temperature factor.

Table I. GR Homology Model Coordinates

30										
	ATOM	1.	N	ALA A	523	29.896	-1.364	107.714	1.00	0.00
	ATOM	5	CA	ALA A	523	30.095	-0.736	106.398	1.00	0.00
	MOTA	6	CB	ALA A	523	31.574	-0.448	106.160	1.00	0.00
	MOTA	7	С	ALA A	523	29.565	-1.627	105.280	1.00	0.00

	ATOM	8	0	ALA A	. 523	29.626	-2.860	105.361	1.00	0.00
	ATOM	9	N	THR A	524	29.027	-0.987	104.257	1.00	0.00
	ATOM	11	CA	THR A	524	28.493	-1.717	103.105	1.00	0.00
	ATOM	12	CB	THR A	524	27.666	-0.754	102.257	1.00	0.00
5	ATOM	13	OG1	THR A	524	27.383	-1.389	101.016	1.00	0.00
	ATOM	14	CG2	THR F	524	28.428	0.532	101.951	1.00	0.00
	ATOM	15	C	THR F	524	29.607	-2.329	102.263	1.00	0.00
	ATOM	16	0	THR A	524	30.663	-1.720	102.058	1.00	0.00
	ATOM	17	N	LEU F	525	29.370	-3.559	101.836	1.00	0.00
10	ATOM	19	CA	LEU A	525	30.275	-4.243	100.909	1.00	0.00
	ATOM	20	CB	LEU A	525	29.686	-5.626	100.629	1.00	0.00
	ATOM	21	CG	LEU A	525	30.626	-6.524	99.829	1.00	0.00
	ATOM	22	CD1	LEU A	525	31.867	-6.870	100.645	1.00	0.00
	ATOM	23	CD2	LEU P	525	29.912	-7.799	99.399	1.00	0.00
15	ATOM	24	С	LEU A	525	30.360	-3.442	99.612	1.00	0.00
	MOTA	25	0	LEU A	525	29.329	-3.065	99.040	1.00	0.00
	ATOM	26	N	PRO F	526	31.578	-3.090	99.231	1.00	0.00
	ATOM	27	CA	PRO A	526	31.804	-2.331	98.002	1.00	0.00
	ATOM	28	CB	PRO P	526	33.272	-2.040	97.977	1.00	0.00
20	MOTA	29	CG	PRO P	526	33.936	-2.705	99.171	1.00	0.00
	MOTA	30	CD	PRO A	526	32.819	-3.379	99.951	1.00	0.00
	MOTA	31	С	PRO A	526	31.377	-3.118	96.771	1.00	0.00
	MOTA	32	0	PRO A	526	31.487	-4.348	96.713	1.00	0.00
	ATOM	33	И	GLN A	527	30.814	-2.387	95.828	1.00	0.00
25	ATOM	35	CA	GLN A	527	30.403	-2.963	94.547	1.00	0.00
	ATOM	36	CB	GLN A	527	29.511	-1.931	93.859	1.00	0.00
	ATOM	37	CG	GLN A	527	28.265	-2.549	93.224	1.00	0.00
	MOTA	38	CD	GLN A	527	28.482	-2.831	91.742	1.00	0.00
	ATOM	39	OE1	GLN A	527	29.078	-3.849	91.362	1.00	0.00
30	ATOM	40	NE2	GLN A	527	28.005	-1.911	90.924	1.00	0.00
	ATOM	43	С	GLN A	527	31.655	-3.268	93.726	1.00	0.00
	ATOM	44	0	GLN A	527	32.671	-2.574	93.856	1.00	0.00
	ATOM	45	N	LEU A		31.578	-4.294	92.894	1.00	0.00
0.7	ATOM	47	CA	LEU A		32.746	-4.723	92.118	1.00	0.00
35	ATOM	48	CB	LEU A		32.560	-6.180	91.716	1.00	0.00
	ATOM	49	CG	LEU A		32.452	-7.090	92.933	1.00	0.00
	ATOM	50		LEU A		32.112	-8.515	92.513	1.00	0.00
	MOTA	51		LEU A		33.737	-7.059	93.757	1.00	0.00
40	ATOM	52	C	LEU A		32.898	-3.866	90.870	1.00	0.00
40	ATOM	53	0	LEU A		33.997	-3.721	90.325	1.00	0.00
	MOTA	54	N	THR A		31.794	-3.278	90.447	1.00	0.00
	MOTA	56	CA.	THR A		31.839	-2.254	89.408	1.00	0.00
	ATOM	57	CB	THR A		30.592	-2.393	88.540	1.00	0.00
	MOTA	58	OG1	THR A	529	30.607	-3.688	87.958	1.00	0.00

	MOTA	59	CG2	THR .	A 529	30.539	-1.366	87.417	1.00	0.00
	MOTA	60	C	THR	A 529	31.883	-0.884	90.076	1.00	0.00
	MOTA	61	0	THR I	A 529	30.909	-0.470	90.718	1.00	0.00
	MOTA	62	N	PRO I	A 530	32.993	-0.185	89.887	1.00	0.00
5	ATOM	63	CA	PRO 1	A 530	33.234	1.104	90.544	1.00	0.00
	MOTA	64	CB	PRO Z	A 530	34.571	1.567	90.055	1.00	0.00
	MOTA	65	CG	PRO 2	A 530	35.165	0.505	89.148	1.00	0.00
	MOTA	66	CD	PRO 2	A 530	34.140	-0.613	89.089	1.00	.0.00
	ATOM	67	C	PRO A	A 530	32.150	2.125	90.236	1.00	0.00
10	MOTA	68	0	PRO A	A 530	31.449	2.042	89.216	1.00	0.00
	ATOM	69	N	THR A	A 531	32.129	3.169	91.045	1.00	0.00
	MOTA	71	CA	THR A	3 531	31.052	4.162	90.968	1.00	0.00
	MOTA	72	CB	THR A	3 531	31.140	5.085	92.180	1.00	0.00
	ATOM	73	OG1	THR A	4 531	32.362	5.809	92.114	1.00	0.00
15	ATOM	74	CG2	THR A	4 531	31.111	4.300	93.487	1.00	0.00
	ATOM	75	C	THR A	4 531	31.073	5.007	89.695	1.00	0.00
	MOTA	76	0	THR A	531	29.993	5.350	89.210	1.00	0.00
	MOTA	77	N	LEU A	532	32.208	5.125	89.025	1.00	0.00
• •	MOTA	79	CA	LEU A	532	32.214	5.894	87.780	1.00	0.00
20	MOTA	80	CB	LEU A	532	33.573	6.565	87.618	1.00	0.00
	MOTA	81	CG	LEU A	532	33.609	7.529	86.435	1.00	0.00
	ATOM	82	CD1	LEU A	532	32.501	8.573	86.536	1.00	0.00
	ATOM	83	CD2	LEU A	532	34.970	8.206	86.334	1.00	0.00
	MOTA	84	С	LEU A	532	31.877	5.010	86.577	1.00	0.00
25	ATOM	85	0	LEU A	532	31.237	5.497	85.639	1.00	0.00
	ATOM	86	N	VAL A	533	32.020	3.701	86.726	1.00	0.00
	ATOM	88	CA	VAL A	533	31.635	2.801	85.633	1.00	0.00
	ATOM	89	CB	VAL A	533	32.392	1.482	85.741	1.00	0.00
20	ATOM	90	CG1	VAL A	. 533	31.996	0.549	84.604	1.00	0.00
30	MOTA	91	CG2	VAL A	533	33.898	1.695	85.730	1.00	0.00
	ATOM	92	C	VAL A	533	30.137	2.530	85.710	1.00	0.00
	MOTA	93	0	VAL A	533	29.442	2.546	84.686	1.00	0.00
	MOTA	94	N	SER A	534	29.623	2.561	86.929	1.00	0.00
25	MOTA	96	CA	SER A	534	28.178	2.440	87.121	1.00	0.00
35	MOTA	97	CB	SER A	534	27.893	1.973	88.547	1.00	0.00
	ATOM	98	OG	SER A	534	28.439	2.917	89.458	1.00	0.00
	ATOM	99	C	SER A	534	27.479	3.769	86.836	1.00	0.00
	ATOM	100	0	SER A	534	26.379	3.756	86.274	1.00	0.00
40	ATOM	101	N	LEU A	535	28.220	4.863	86.926	1.00	0.00
40	ATOM	103	CA	LEU A	535	27.688	6.171	86.543	1.00	0.00
	ATOM	104		LEU A		28.623	7.247	87.101	1.00	0.00
	MOTA	105		LEU A		28.050	8.665	87.076	1.00	0.00
	MOTA	106	CD1	LEU A	535	28.691	9.518	88.164	1.00	0.00
	MOTA	107	CD2	LEU A	535	28.186	9.346	85.717	1.00	0.00

	ATOM	108	С	LEU	A	535	27.595	6.254	85.025	1.00	0.00
	ATOM	109	0	LEU	A	535	26.532	6.638	84.525	1.00	0.00
	ATOM	110	N	LEU	A	536	28.530	5.617	84.333	1.00	0.00
	MOTA	112	CA	LEU	A	536	28.472	5.531	82.867	1.00	0.00
5	ATOM	113	СВ	LEU	Α	536	29.718	4.810	82.361	1.00	0.00
	MOTA	114	CG	LEU	A	536	30.987	5.631	82.524	1.00	0.00
	ATOM	115	CD1	LEU	A	536	32.223	4.782	82.252	1.00	0.00
	MOTA	116	CD2	LEU	Α	536	30.958	6.847	81.611	1.00	0.00
	MOTA	117	C	LEU	A	536	27.259	4.736	82.399	1.00	0.00
10	MOTA	118	0	LEU	A	536	26.520	5.207	81.527	1.00	0.00
	MOTA	119	N	GLU	A	537	26.914	3.696	83.143	1.00	0.00
	ATOM	121	CA	GLU	A	537	25.777	2.858	82.762	1.00	0.00
	ATOM	122	CB	GLU	A	537	25.977	1.487	83.413	1.00	0.00
	ATOM	123	CG	GLU	A	537	24.963	0.430	82.969	1.00	0.00
15	ATOM	124	CD	GLU	A	537	23.742	0.407	83.887	1.00	0.00
	MOTA	125	OE1	GLU	A	537	23.842	1.014	84.946	1.00	0.00
	ATOM	126	OE2	GLU	A	537	22.874	-0.419	83.642	1.00	0.00
	MOTA	127	С	GLU	A	537	24.435	3.482	83.158	1.00	0.00
	MOTA	128	0	GLU	A	537	23.419	3.143	82.541	1.00	0.00
20	MOTA	129	N	VAL	A	538	24.441	4.447	84.063	1.00	0.00
	ATOM	131	CA	VAL	A	538	23.200	5.129	84.441	1.00	0.00
	MOTA	132	CB	VAL	A	538	23.276	5.436	85.937	1.00	0.00
	ATOM	133	CG1	VAL	A	538	22.137	6.333	86.412	1.00	0.00
	MOTA	134	CG2	VAL	A	538	23.303	4.148	86.754	1.00	0.00
25	MOTA	135	С	VAL	A	538	22.971	6.409	83.627	1.00	0.00
	MOTA	136	0	VAL	A	538	21.821	6.826	83.441	1.00	0.00
	ATOM	137	N	ILE	A	539	24.032	6.969	83.066	1.00	0.00
	MOTA	139	CA	ILE	A	539	23.872	8.155	82.212	1.00	0.00
	ATOM	140	CB	ILE	A	539	24.957	9.187	82.534	1.00	0.00
30	MOTA	141	CG2	ILE	A	539	24.796	9.679	83.968	1.00	0.00
	MOTA	142	CG1	ILE	A	539	26.386	8.700	82.303	1.00	0.00
	MOTA	143	CD1	ILE	A	539	26.921	9.060	80.923	1.00	0.00
	ATOM	144	С			539	23.823	7.782	80.730	1.00	0.00
2 =	ATOM	145	0	ILE	A	539	23.623	8.644	79.864	1.00	0.00
35	ATOM	146	N	GLU	A	540	24.011	6.501	80.459	1.00	0.00
	ATOM	148	CA			540	23.833	5.941	79.118	1.00	0.00
	ATOM	149	CB	GLU	A	540	24.149	4.449	79.241	1.00	0.00
	ATOM	150	CG	GLU			24.286	3.751	77.894	1.00	0.00
40	ATOM	151	CD	GLU	A	540	25.492	4.312	77.147	1.00	0.00
40	MOTA	152		GLU			26.468	4.639	77.809	1.00	0.00
	MOTA	153		GLU			25.402	4.442	75.935	1.00	0.00
	MOTA	154	С	GLU	A	540	22.386	6.135	78.651	1.00	0.00
	MOTA	155	0	GLU	A	540	21.446	5.834	79.392	1.00	0.00
	MOTA	156	N	PRO	A	541	22.224	6.667	77.448	1.00	0.00

	MOTA	157	CA	PRO 2	A 541	20.897	6.933	76.878	1.00	0.00
	MOTA	158	CB	PRO Z	A 541	21.149	7.770	75.662	1.00	0.00
	MOTA	159	CG	PRO 2	A 541	22.646	7.839	75.408	1.00	0.00
	MOTA	160	CD	PRO Z	A 541	23.303	7.091	76.556	1.00	0.00
5	ATOM	161	С	PRO I	A 541	20.126	5.663	76.507	1.00	0.00
	ATOM	162	0	PRO I	A 541	20.275	4.595	77.113	1.00	0.00
	MOTA	163	N	GLU A	A 542	19.264	5.827	75.519	1.00	0.00
	MOTA	165	CA	GLU A	A 542	18.347	4.761	75.107	1.00	0.00
	ATOM	166	CB	GLU 2	A 542	16.936	5.359	75.169	1.00	0.00
10	ATOM	167	CG	GLU Z	A 542	15.810	4.352	74.940	1.00	0.00
	ATOM	168	CD	GLU A	A 542	15.851	3.251	75.999	1.00	0.00
	MOTA	169	OE1	GLU A	A 542	15.282	3.461	77.059	1.00	0.00
	MOTA	170	OE2	GLU A	A 542	16.528	2.260	75.754	1.00	0.00
	MOTA	171	С	GLU A	A 542	18.670	4.273	73.692	1.00	0.00
15	MOTA	172	0	GLU A	A 542	19.133	5.060	72.858	1.00	0.00
	MOTA	173	N	VAL A	A 543	18.490	2.980	73.457	1.00	0.00
	ATOM	175	CA	VAL A	A 543	18.560	2.443	72.092	1.00	0.00
	MOTA	176	CB	VAL A	A 543	18.459	0.915	72.140	1.00	0.00
	ATOM	177	CG1	VAL A	A 543	17.202	0.440	72.862	1.00	0.00
20	MOTA	178	CG2	VAL A	4 543	18.554	0.286	70.753	1.00	0.00
	MOTA	179	C	VAL A	A 543	17.420	3.067	71.284	1.00	0.00
	MOTA	180	0	VAL A	A 543	16.281	3.174	71.755	1.00	0.00
	MOTA	181	N	LEU A	A 544	17.781	3.629	70.145	1.00	0.00
	MOTA	183	CA	LEU A	A 544	16.825	4.430	69.382	1.00	0.00
25	MOTA	184	CB	LEU A	A 544	17.562	5.656	68.864	1.00	0.00
	ATOM	185	CG	LEU A	A 544	18.042	6.512	70.029	1.00	0.00
	ATOM	186	CD1	LEU A	A 544	19.047	7.556	69.573	1.00	0.00
	ATOM	187	CD2	LEU A	544	16.872	7.155	70.766	1.00	0.00
	MOTA	188	С	LEU A	544	16.180	3.683	68.227	1.00	0.00
30	MOTA	189	0	LEU A	544	16.693	2.676	67.728	1.00	0.00
	MOTA	190	N	TYR A	545	14.965	4.108	67.936	1.00	0.00
	ATOM	192	´ CA	TYR A	545	14.260	3.652	66.740	1.00	0.00
	MOTA	193	CB	TYR A	545	12.757	3.789	66.965	1.00	0.00
	ATOM	194	CG	TYR A	545	12.247	3.056	68.206	1.00	0.00
35	MOTA	195	CD1	TYR A	545	11.731	3.778	69.276	1.00	0.00
	ATOM	196	CE1	TYR A	. 545	11.275	3.116	70.408	1.00	0.00
	ATOM	197	CZ	TYR A	. 545	11.333	1.730	70.467	1.00	0.00
	ATOM	198	OH	TYR A	. 545	10.913	1.073	71.603	1.00	0.00
	MOTA	199	CE2	TYR A	. 545	11.838	1.004	69.396	1.00	0.00
40	MOTA	200	CD2	TYR A	. 545	12.294	1.668	68.264	1.00	0.00
	MOTA	201	C	TYR A	. 545	14.710	4.509	65.561	1.00	0.00
	MOTA	202	0	TYR A	545	14.930	5.715	65.709	1.00	0.00
	MOTA	203	N	ALA A	546	14.804	3.894	64.394	1.00	0.00
	MOTA	205	CA	ALA A	546	15.305	4.594	63.202	1.00	0.00

	ATOM	206	CB	ALA A	4 546	15.917	3.562	62.265	1.00	0.00
	ATOM	207	С	ALA A	A 546	14.225	5.362	62.447	1.00	0.00
	ATOM	208	0	ALA A	A 546	14.527	6.166	61.557	1.00	0.00
	MOTA	209	N	GLY A	A 547	12.977	5.107	62.802	1.00	0.00
5	MOTA	211	CA	GLY A	A 547	11.850	5.753	62.127	1.00	0.00
	ATOM	212	C	GLY A	4 547	11.509	4.995	60.851	1.00	0.00
	ATOM	213	0	GLY A	4 547	11.063	5.577	59.856	1.00	0.00
	MOTA	214	N	TYR A	4 548	11.748	3.695	60.882	1.00	0.00
	MOTA	216	CA	TYR A	4 548	11.488	2.869	59.708	1.00	0.00
10	ATOM	217	CB	TYR A	4 548	12.402	1.648	59.769	1.00	0.00
	MOTA	218	CG	TYR A	4 548	12.421	0.853	58.473	1.00	0.00
	ATOM	219	CD1	TYR A	548	12.358	1.532	57.263	1.00	0.00
	MOTA	220	CE1	TYR A	548	12.351	0.827	56.071	1.00	0.00
	ATOM	221	CZ	TYR A	548	12.421	-0.558	56.092	1.00	0.00
15	MOTA	222	OH	TYR A	548	12.386	-1.249	54.905	1.00	0.00
	ATOM	223	CE2	TYR A	548	12.507	-1.242	57.298	1.00	0.00
	MOTA	224	CD2	TYR A	548	12.509	-0.533	58.493	1.00	0.00
	MOTA	225	С	TYR A	548	10.018	2.457	59.680	1.00	0.00
	ATOM	226	0	TYR A	548	9.464	2.010	60.690	1.00	0.00
20	ATOM	227	N	ASP A	549	9.403	2.586	58.512	1.00	0.00
	ATOM	229	CA	ASP A	549	7.982	2.238	58.349	1.00	0.00
	ATOM	230	CB	ASP A	549	7.420	2.999	57.152	1.00	0.00
	ATOM	231	CG	ASP A	549	7.556	4.508	57.353	1.00	0.00
	ATOM	232	OD1	ASP A	. 549	6.803	5.048	58.149	1.00	0.00
25	MOTA	233	OD2	ASP A	. 549	8.414	5.085	56.700	1.00	0.00
	MOTA	234	C	ASP A	549	7.753	0.735	58.152	1.00	0.00
	MOTA	235	0	ASP A	549	6.596	0.294	58.159	1.00	0.00
	ATOM	236	N	SER A	550	8.824	0.003	57.862	1.00	0.00
•	MOTA	238	CA	SER A	550	8.898	-1.480	57.888	1.00	0.00
30	MOTA	239	CB	SER A	550	8.434	-1.940	59.266	1.00	0.00
	ATOM	240	OG	SER A	550	8.472	-3.360	59.288	1.00	0.00
	ATOM	241	C	SER A	550	8.143	-2.292	56.818	1.00	0.00
	ATOM	242	0	SER A	550	8.621	-3.367	56.439	1.00	0.00
~ ~	ATOM	243	N	SER A	551	7.012	-1.814	56.330	1.00	0.00
35	MOTA	245	CA	SER A	551	6.255	-2.568	55.326	1.00	0.00
	MOTA	246	CB	SER A	551	4.779	-2.238	55.500	1.00	0.00
	MOTA	247	OG	SER A	551	4.424	-2.568	56.836	1.00	0.00
	MOTA	248	С	SER A	551	6.695	-2.216	53.912	1.00	0.00
	MOTA	249	0	SER A	551	6.514	-3.002	52.976	1.00	0.00
40	MOTA	250	N	VAL A	552	7.313	-1.057	53.778	1.00	0.00
	MOTA	252	CA	VAL A	552	7.876	-0.656	52.491	1.00	0.00
	MOTA	253	CB	VAL A	552	7.800	0.869	52.387	1.00	0.00
	ATOM	254	CGl	VAL A	552	8.416	1.566	53.596	1.00	0.00
	ATOM	255	CG2	VAL A	552	8.402	1.388	51.086	1.00	0.00

	ATOM	256	С	VAL	Δ	552	9.313	-1.167	52.375	1.00	0.00
	ATOM	257	0	VAL			10.136	-0.946	53.272	1.00	0.00
	ATOM	258	N	PRO			9.580	-1.907	51.310	1.00	0.00
	ATOM	259	CA	PRO			10.933	-2.405	51.049	1.00	0.00
5	ATOM	260	CB	PRO			10.815	-3.246	49.816	1.00	0.00
_	ATOM	261	CG	PRO			9.387	-3.180	49.297	1.00	0.00
	ATOM	262	CD	PRO			8.625	-2.294	50.269	1.00	0.00
	ATOM	263	C	PRO			11.909	-1.251	50.850	1.00	0.00
	ATOM	264	0	PRO			11.602	-0.258	50.179	1.00	0.00
10	ATOM	265	N	ASP			13.067	-1.376	51.474	1.00	0.00
	ATOM	267	CA	ASP			14.087	-0.329	51.374	1.00	0.00
	ATOM	268	СВ	ASP			15.171	-0.550	52.421	1.00	0.00
	MOTA	269	CG	ASP			14.847	0.260	53.667	1.00	0.00
	ATOM	270		ASP			14.195	1.281	53.512	1.00	0.00
15	ATOM	271		ASP			15.249	-0.162	54.740	1.00	0.00
	MOTA	272	C	ASP			14.761	-0.252	50.016	1.00	0.00
	MOTA	273	0	ASP			15.494	-1.154	49.596	1.00	0.00
	MOTA	274	N	SER			14.485	0.844	49.334	1.00	0.00
	MOTA	276	CA	SER			15.327	1.251	48.211	1.00	0.00
20	ATOM	277	CB	SER			14.626	2.330	47.398	1.00	0.00
	ATOM	278	OG	SER	A	555	14.660	3.522	48.172	1.00	0.00
	ATOM	279	C	SER			16.577	1.853	48.831	1.00	0.00
	ATOM	280	0	SER	Α	555	16.568	2.154	50.032	1.00	0.00
	ATOM	281	N	THR	A	556	17.572	2.174	48.023	1.00	0.00
25	ATOM	283	CA	THR	A	556	18.768	2.801	48.593	1.00	0.00
	ATOM	284	CB	THR	A	556	19.911	2.769	47.583	1.00	0.00
	ATOM	285	OG1	THR	A	556	20.919	3.637	48.084	1.00	0.00
	ATOM	286	CG2	THR	A	556	19.499	3.272	46.202	1.00	0.00
	ATOM	287	C	THR	A	556	18.499	4.234	49.061	1.00	0.00
30	ATOM	288	0	THR	A	556	18.986	4.614	50.132	1.00	0.00
	ATOM	289	N	TRP	A	557	17.501	4.873	48.472	1.00	0.00
	ATOM	291	CA	TRP .	Α	557	17.101	6.209	48.911	1.00	0.00
	MOTA	292	CB	TRP .	A	557	16.147	6.804	47.878	1.00	0.00
	ATOM	293	CG	TRP .	Α	557	16.685	6.926	46.461	1.00	0.00
35	MOTA	294	CD1	TRP .	A	557	18.000	6.960	46.052	1.00	0.00
	MOTA	295	NE1	TRP .	A	557	18.034	7.100	44.704	1.00	0.00
	ATOM	297	CE2	TRP .	A	557	16.792	7.152	44.193	1.00	0.00
	ATOM	298	CZ2	TRP .	Α	557	16.313	7.298	42.899	1.00	0.00
	MOTA	299	CH2	TRP .	A	557	14.940	7.321	42.671	1.00	0.00
40	ATOM	300	CZ3	TRP	A	557	14.050	7.198	43.732	1.00	0.00
	MOTA	301	CE3	TRP 3	A	557	14.521	7.054	45.031	1.00	0.00
	MOTA	302	CD2	TRP 2	A	557	15.887	7.032	45.261	1.00	0.00
	ATOM	303	C	TRP 2	A	557	16.387	6.134	50.259	1.00	0.00
	ATOM	304	0	TRP 2	Ą	557	16.803	6.803	51.212	1.00	0.00

	ATOM	305	N	ARG A	558	15.517	5.145	50.411	1.00	0.00
	MOTA	307	CA	ARG A	. 558	14.791	4.994	51.677	1.00	0.00
	ATOM	308	CB	ARG A	. 558	13.663	3.993	51.479	1.00	0.00
	ATOM	309	CG	ARG A	. 558	12.693	4.469	50.410	1.00	0.00
5	ATOM	310	CD	ARG A	. 558	11.557	3.471	50.217	1.00	0.00
	MOTA	311	NE	ARG A	. 558	10.668	3.894	49.123	1.00	0.00
	MOTA	312	CZ	ARG A	. 558	9.544	4.594	49.306	1.00	0.00
	ATOM	313	NH1	ARG A	. 558	9.164	4.950	50.538	1.00	0.00
	ATOM	314	NH2	ARG A	. 558	8.795	4.935	48.255	1.00	0.00
10	ATOM	315	C	ARG A	. 558	15.668	4.520	52.832	1.00	0.00
	MOTA	316	0	ARG A	. 558	15.528	5.062	53.936	1.00	0.00
	MOTA	317	N	ILE A	559	16.703	3.742	52.556	1.00	0.00
	ATOM	319	CA	ILE A	559	17.563	3.325	53.663	1.00	0.00
	MOTA	320	CB	ILE A	559	18.271	2.004	53.340	1.00	0.00
15	MOTA	321	CG2	ILE A	559	19.157	2.093	52.105	1.00	0.00
	ATOM	322	CG1	ILE A	559	19.092	1.516	54.529	1.00	0.00
	MOTA	323	CD1	ILE A	559	18.210	1.234	55.740	1.00	0.00
	ATOM	324	C	ILE A	559	18.542	4.439	54.047	1.00	0.00
	MOTA	325	0	ILE A	559	18.731	4.655	55.250	1.00	0.00
20	MOTA	326	N	MET A	560	18.863	5.331	53.121	1.00	0.00
	ATOM	328	CA	MET A	560	19.720	6.457	53.488	1.00	0.00
	MOTA	329	CB	MET A	560	20.376	7.042	52.243	1.00	0.00
	MOTA	330	CG	MET A	560	21.336	6.047	51.603	1.00	0.00
	ATOM	331	SD	MET A	560	22.247	6.663	50.168	1.00	0.00
25	MOTA	332	CE	MET A	560	20.856	7.241	49.168	1.00	0.00
	MOTA	333	С	MET A	560	18.926	7.539	54.207	1.00	0.00
	ATOM	334	0	MET A	560	19.406	8.049	55.224	1.00	0.00
	ATOM	335	N	THR A	561	17.649	7.665	53.885	1.00	0.00
00	MOTA	337	CA	THR A	561	16.813	8.653	54.580	1.00	0.00
30	ATOM	338	CB	THR A		15.599	9.005	53.725	1.00	0.00
	ATOM	339		THR A		14.891	7.812	53.416	1.00	0.00
	ATOM	340		THR A	•	16.008	9.669	52.418	1.00	0.00
	MOTA	341	C	THR A		16.358	8.187	55.966	1.00	0.00
25	ATOM	342	0	THR A		16.308	9.019	56.881	1.00	0.00
35	MOTA	343	N	THR A		16.273	6.886	56.203	1.00	0.00
	ATOM	345	CA	THR A		15.961	6.459	57.573	1.00	0.00
	ATOM	346	CB	THR A		15.204	5.130	57.599	1.00	0.00
	ATOM	347	OG1			14.894	4.838	58.957	1.00	0.00
40	ATOM	348		THR A		16.002	3.962	57.033	1.00	0.00
40	ATOM	349	C	THR A		17.230	6.403	58.422	1.00	0.00
	ATOM	350	0	THR A		17.162	6.627	59.636	1.00	0.00
	ATOM	351	N	LEU A		18.384	6.388	57.770	1.00	0.00
	ATOM	353	CA	LEU A		19.644	6.547	58.498	1.00	0.00
	MOTA	354	CB	LEU A	563	20.762	5.840	57.741	1.00	0.00

	MOTA	355	CG	LEU	A	563	20.561	4.329	57.757	1.00	0.00
	MOTA	356	CD1	LEU	A	563	21.617	3.623	56.914	1.00	0.00
	MOTA	357	CD2	LEU	Α	563	20.559	3.794	59.184	1.00	0.00
	MOTA	358	C	LEU	A	563	19.986	8.023	58.694	1.00	0.00
5	MOTA	359	0	LEU	A	563	20.776	8.359	59.581	1.00	0.00
	MOTA	360	N	ASN	A	564	19.291	8.899	57.987	1.00	0.00
	MOTA	362	CA	ASN	A	564	19.408	10.340	58.231	1.00	0.00
	MOTA	363	CB	ASN	Α	564	18.891	11.101	57.012	1.00	0.00
	MOTA	364	CG	ASN	A	564	19.845	11.032	55.820	1.00	0.00
10	MOTA	365	OD1	ASN	A	564	19.410	11.086	54.658	1.00	0.00
	ATOM	366	ND2	ASN	A	564	21.132	11.072	56.120	1.00	0.00
	MOTA	369	C	ASN	A	564	18.562	10.738	59.432	1.00	0.00
	MOTA	370	0	ASN	A	564	19.003	11.535	60.274	1.00	0.00
	ATOM	371	N	MET	Α	565	17.446	10.045	59.595	1.00	0.00
15	MOTA	373	CA	MET	A	565	16.570	10.286	60.742	1.00	0.00
	MOTA	374	CB	MET	A	565	15.213	9.662	60.441	1.00	0.00
	MOTA	375	CG	MET	A	565	14.193	10.003	61.520	1.00	0.00
	MOTA	376	SD	MET	A	565	13.873	11.769	61.731	1.00	0.00
	ATOM	377	CE	MET	A	565	13.319	12.168	60.056	1.00	0.00
20	MOTA	378	С	MET	A	565	17.158	9.662	62.003	1.00	0.00
	MOTA	379	0	MET	A	565	17.307	10.352	63.021	1.00	0.00
	MOTA	380	N	LEU	A	566	17.734	8.481	61.847	1.00	0.00
	MOTA	382	CA	LEU	A	566	18.408	7.825	62.971	1.00	0.00
	MOTA	383	CB	LEU	A	566	18.670	6.378	62.581	1.00	0.00
25	MOTA	384	CG	LEU	A	566	19.330	5.598	63.709	1.00	0.00
	MOTA	385	CD1	LEU	A	566	18.467	5.589	64.967	1.00	0.00
	MOTA	386	CD2	LEU	A	566	19.635	4.179	63.257	1.00	0.00
	ATOM	387	С	LEU	A	566	19.727	8.514	63.320	1.00	0.00
20	ATOM	388	0	LEU			20.020	8.674	64.510	1.00	0.00
30	MOTA	389	N	GLY	A	567	20.361	9.125	62.332	1.00	0.00
	ATOM	391	CA	GLY	A	567	21.553	9.948	62.554	1.00	0.00
	ATOM	392	С	GLY			21.234	11.124	63.467	1.00	0.00
	ATOM	393	0	GLY			21.854	11.263	64.527	1.00	0.00
25	ATOM	394	N	GLY			20.165	11.840	63.150	1.00	0.00
35	ATOM	396	CA	GLY			19.707	12.956	63.986	1.00	0.00
	ATOM	397	C	GLY			19.314	12.517	65.396	1.00	0.00
	ATOM	398	0	GLY			19.749	13.140	66.375	1.00	0.00
	ATOM	399	N	ARG			18.646	11.378	65.501	1.00	0.00
40	ATOM	401	CA	ARG			18.287	10.823	66.814	1.00	0.00
40	ATOM	402	CB	ARG			17.431	9.576	66.607	1.00	0.00
	ATOM	403	CG	ARG			16.096	9.914	65.955	1.00	0.00
	MOTA	404	CD	ARG			15.301	10.883	66.824	1.00	0.00
	MOTA	405	NE	ARG			14.045	11.279	66.170	1.00	0.00
	MOTA	406	CZ	ARG	A	569	13.861	12.476	65.610	1.00	0.00

	ATOM	407	NH1	ARG	A	569	14.862	13.359	65.576	1.00	0.00
	ATOM	408	NH2	ARG	A	569	12.686	12.778	65.055	1.00	0.00
	MOTA	409	C	ARG	A	569	19.514	10.442	67.645	1.00	0.00
	MOTA	410	0	ARG	A	569	19.581	10.806	68.826	1.00	0.00
5	MOTA	411	N	GLN	Α	570	20.552	9.933	67.003	1.00	0.00
	MOTA	413	CA	GLN	A	570	21.776	9.590	67.729	1.00	0.00
	MOTA	414	СВ	GLN	A	570	22.581	8.600	66.900	1.00	0.00
	MOTA	415	CG	GLN	Α	570	21.822	7.289	66.733	1.00	0.00
	MOTA	416	CD	GLN	Α	570	22.624	6.329	65.864	1.00	0.00
10	MOTA	417	OE1	GLN	A	570	22.360	6.182	64.665	1.00	0.00
	ATOM	418	NE2	GLN	A	570	23.624	5.716	66.473	1.00	0.00
	ATOM	421	С	$\operatorname{GL} N$	Α	570	22.630	10.813	68.041	1.00	0.00
	MOTA	422	0	GLN	Α	570	23.319	10.806	69.065	1.00	0.00
	ATOM	423	N	VAL	A	571	22.418	11.909	67.331	1.00	0.00
15	ATOM	425	CA	VAL	A	571	23.112	13.154	67.664	1.00	0.00
	MOTA	426	CB	VAL	A	571	23.083	14.085	66.455	1.00	0.00
	MOTA	427	CG1	VAL	A	571	23.572	15.482	66.818	1.00	0.00
	ATOM	428	CG2	VAL	A	571	23.896	13.518	65.298	1.00	0.00
	ATOM	429	С	VAL	A	571	22.462	13.844	68.858	1.00	0.00
20	MOTA	430	0	VAL	A	571	23.181	14.252	69.780	1.00	0.00
	ATOM	431	N	ILE	A	572	21.149	13.728	68.986	1.00	0.00
	MOTA	433	CA	ILE	A	572	20.496	14.356	70.137	1.00	0.00
	ATOM	434	CB	ILE	A	572	19.057	14.749	69.756	1.00	0.00
25	ATOM	435	CG2	ILE	A	572	18.171	13.538	69.493	1.00	0.00
25	ATOM	436	CG1	ILE	A	572	18.387	15.664	70.784	1.00	0.00
	ATOM	437	CD1	ILE	A	572	17.740	14.905	71.940	1.00	0.00
	ATOM	438	С	ILE			20.613	13.460	71.378	1.00	0.00
	ATOM	439	0	ILE .			20.808	13.986	72.481	1.00	0.00
20	ATOM	440	N	ALA			20.826	12.169	71.170	1.00	0.00
30	ATOM	442	CA	ALA			21.104	11.288	72.304	1.00	0.00
	ATOM	443	CB	ALA .			20.788	9.851	71.907	1.00	0.00
	ATOM	444	C	ALA .			22.564	11.389	72.735	1.00	0.00
	ATOM	445	0	ALA .			22.844	11.360	73.939	1.00	0.00
35	ATOM	446	N	ALA .			23.431	11.768	71.809	1.00	0.00
33	ATOM	448	CA	ALA			24.844	11.946	72.137	1.00	0.00
	ATOM	449	CB	ALA .			25.679	11.832	70.868	1.00	0.00
	ATOM ATOM	450	C	ALA .			25.115	13.288	72.800	1.00	0.00
		451	O				25.967	13.344	73.691	1.00	0.00
40	ATOM	452	N	VAL			24.280	14.287	72.556	1.00	0.00
40	ATOM	454	CA.	VAL			24.466	15.544	73.284	1.00	0.00
	ATOM	455	CB CC1	VAL			23.973	16.736	72.457	1.00	0.00
	ATOM	456		VAL			22.492	16.662	72.109	1.00	0.00
	ATOM	457		VAL A			24.283	18.056	73.154	1.00	0.00
	ATOM	458	С	VAL A	4	575	23.794	15.479	74.657	1.00	0.00

	ATOM	459	0	VAL	A	575	24.335	16.042	75.617	1.00	0.00
	ATOM	460	N	LYS	A	576	22.851	14.561	74.817	1.00	0.00
	ATOM	462	CA	LYS	A	576	22.260	14.340	76.136	1.00	0.00
	ATOM	463	СВ	LYS	A	576	20.923	13.631	75.954	1.00	0.00
5	ATOM	464	CG	LYS	A	576	20.179	13.495	77.277	1.00	0.00
	ATOM	465	CD	LYS	A	576	19.845	14.863	77.866	1.00	0.00
	MOTA	466	CE	LYS	A	576	18.933	15.661	76.940	1.00	0.00
	ATOM	467	NZ	LYS	A	576	18.649	16.992	77.502	1.00	0.00
	ATOM	468	С	LYS	A	576	23.192	13.489	76.996	1.00	0.00
10	ATOM	469	0	LYS	A	576	23.433	13.827	78.161	1.00	0.00
	ATOM	470	N	TRP	A	577	23.921	12.600	76.341	1.00	0.00
	ATOM	472	CA	TRP	A	577	24.933	11.783	77.016	1.00	0.00
	ATOM	473	CB	TRP	Α	577	25.275	10.636	76.070	1.00	0.00
	ATOM	474	CG	TRP	A	577	26.408	9.734	76.514	1.00	0.00
15	MOTA	475	CD1	TRP	A	577	26.335	8.699	77.416	1.00	0.00
	ATOM	476	NE1	TRP	A	577	27.566	8.143	77.534	1.00	0.00
	ATOM	478	CE2	TRP	Α	577	28.459	8.765	76.744	1.00	0.00
	MOTA	479	CZ2	TRP	A	577	29.818	8.580	76.527	1.00	0.00
	MOTA	480	CH2	TRP	A	577	30.489	9.395	75.623	1.00	0.00
20	MOTA	481	CZ3	TRP	A	577	29.809	10.396	74.939	1.00	0.00
	MOTA	482	CE3	TRP	A	577	28.451	10.596	75.156	1.00	0.00
	ATOM	483	CD2	TRP	A	577	27.778	9.786	76.059	1.00	0.00
	MOTA	484	C	TRP	A	577	26.189	12.595	77.335	1.00	0.00
	MOTA	485	0	TRP	A	577	26.751	12.448	78.427	1.00	0.00
25	ATOM	486	N	ALA	A	578	26.443	13.617	76.534	1.00	0.00
	ATOM	488	CA	ALA	A	578	27.569	14.521	76.777	1.00	0.00
	MOTA	489	CB	ALA	A	578	27.869	15.253	75.477	1.00	0.00
	ATOM	490	С	ALA	A	578	27.265	15.526	77.887	1.00	0.00
	MOTA	491	0	ALA	A	578	28.163	15.909	78.642	1.00	0.00
30	MOTA	492	N	LYS	A	579	25.986	15.774	78.112	1.00	0.00
	MOTA	494	CA	LYS	A	579	25.557	16.603	79.243	1.00	0.00
	MOTA	495	CB	·LYS	A	579	24.318	17.406	78.849	1.00	0.00
	MOTA	496	CG	LYS	A	579	24.591	18.882	78.523	1.00	0.00
	ATOM	497	CD	LYS	A	579	25.272	19.154	77.177	1.00	0.00
35	MOTA	498	CE	LYS	Α	579	26.797	19.067	77.221	1.00	0.00
	ATOM	499	NZ	LYS	Α	579	27.364	20.023	78.184	1.00	0.00
	ATOM	500	C	LYS	A	579	25.264	15.765	80.489	1.00	0.00
	ATOM	501	0	LYS	Α	579	24.777	16.293	81.496	1.00	0.00
	MOTA	502	N	ALA	A	580	25.488	14.466	80.394	1.00	0.00
40	MOTA	504	CA	ALA	A	580	25.344	13.584	81.548	1.00	0.00
	MOTA	505	CB	ALA	A	580	24.418	12.440	81.155	1.00	0.00
	ATOM	506	С	ALA	A	580	26.699	13.040	81.996	1.00	0.00
	ATOM	507	0	ALA	A	580	26.812	12.466	83.087	1.00	0.00
	MOTA	508	N	ILE	A	581	27.712	13.222	81.164	1.00	0.00

	MOTA	510	CA	ILE	A	581	29.05	7	12.754	81.513	1.00	0.00
	MOTA	511	CB	ILE	A	581	29.73	3	12.233	80.235	1.00	0.00
	ATOM	512	CG2	ILE	A	581	29.87	6	13.305	79.168	1.00	0.00
	MOTA	513	CG1	ILE	A	581	31.08	5	11.594	80.507	1.00	0.00
5	MOTA	514	CD1	ILE	A	581	30.91	4	10.291	81.274	1.00	0.00
	MOTA	515	C	ILE	A	581	29.87	2	13.854	82.211	1.00	0.00
	MOTA	516	0	ILE	Α	581	30.13	1	14.936	81.664	1.00	0.00
	MOTA	517	N	PRO	A	582	30.28	2	13.547	83.432	1.00	0.00
	MOTA	518	CA	PRO	A	582	31.17	6	14.428	84.187	1.00	0.00
10	MOTA	519	СВ	PRO	A	582	31.40	9	13.739	85.496	1.00	0.00
	MOTA	520	CG	PRO	Α	582	30.68	6	12.401	85.493	1.00	0.00
	MOTA	521	CD	PRO	A	582	29.98	o	12.307	84.151	1.00	0.00
	ATOM	522	C	PRO	A	582	32.48	1	14.642	83.430	1.00	0.00
	MOTA	523	0	PRO	Α	582	32.87	9	13.809	82.607	1.00	0.00
15	MOTA	524	N	GLY	Α	583	33.03	6	15.832	83.566	1.00	0.00
	ATOM	526	CA	GLY	A	583	34.26	0	16.168	82.837	1.00	0.00
	MOTA	527	С	GLY	A	583	33.95	8	16.979	81.579	1.00	0.00
	MOTA	528	0	GLY	A	583	34.49	9	18.078	81.396	1.00	0.00
	MOTA	529	N	PHE	A	584	33.01	1	16.502	80.783	1.00	0.00
20	MOTA	531	CA	PHE	A	584	32.70	4	17.165	79.513	1.00	0.00
	MOTA	532	CB	PHE	Α	584	31.83	6	16.235	78.682	1.00	0.00
	MOTA	533	CG	PHE	A	584	31.54	4	16.728	77.270	1.00	0.00
	ATOM	534	CD1	PHE	A	584	32.45	6	16.481	76.254	1.00	0.00
	ATOM	535	CE1	PHE	A	584	32.18	7	16.910	74.962	1.00	0.00
25	ATOM	536	CZ	PHE	A	584	31.013	1	17.593	74.688	1.00	0.00
	MOTA	537	CE2	PHE	A	584	30.109	9	17.860	75.708	1.00	0.00
	ATOM	538	CD2	PHE	A	584	30.37	7	17.430	77.001	1.00	0.00
	ATOM	539	C	PHE	A	584	31.97	5	18.478	79.752	1.00	0.00
20	ATOM	540	0	PHE	A	584	32.399		19.506	79.207	1.00	0.00
30	MOTA	541	N	ARG	A	585	31.186	5	18.502	80.814	1.00	0.00
	MOTA	543	CA	ARG	A	585	30.507	7	19.733	81.240	1.00	0.00
	ATOM	544	CB	ARG			29.345	5	19.333	82.131	1.00	0.00
	ATOM	545	CG	ARG			28.432		18.343	81.426	1.00	0.00
25	ATOM	546	CD	ARG			27.286		17.947	82.343	1.00	0.00
35	ATOM	547	NE	ARG .			27.795		17.323	83.574	1.00	0.00
	ATOM	548	CZ	ARG .			27.390		17.697	84.789	1.00	0.00
	ATOM	549		ARG .			26.498		18.681	84.920	1.00	0.00
	ATOM	550		ARG .			27.886		17.096	85.873	1.00	0.00
40	ATOM	551	C	ARG .			31.414		20.686	82.026	1.00	0.00
40	ATOM	552	0	ARG .			30.976		21.769	82.426	1.00	0.00
	ATOM	553	N	ASN .			32.657		20.285	82.241	1.00	0.00
	ATOM	555	CA	ASN .			33.616		21.107	82.973	1.00	0.00
	ATOM	556	CB	ASN .			34.311		20.210	83.992	1.00	0.00
	MOTA	557	CG	ASN .	A	586	33.266	5	19.620	84.938	1.00	0.00

	ATOM	558	OD1	ASN	A	586	32.806	18.480	84.772	1.00	0.00
	ATOM	559	ND2	ASN	A	586	32.846	20.442	85.882	1.00	0.00
	ATOM	562	С	ASN	A	586	34.619	21.717	81.997	1.00	0.00
	MOTA	563	0	ASN	A	586	35.348	22.658	82.337	1.00	0.00
5	MOTA	564	N	LEU	A	587	34.618	21.187	80.783	1.00	0.00
	MOTA	566	CA	LEU	A	587	35.398	21.759	79.679	1.00	0.00
	ATOM	567	СВ	LEU	Α	587	35.372	20.789	78.503	1.00	0.00
	ATOM	568	CG	LEU	A	587	36.045	19.467	78.838	1.00	0.00
	ATOM	569	CD1	LEU	A	587	35.842	18.453	77.720	1.00	0.00
10	ATOM	570	CD2	LEU	A	587	37.526	19.678	79.110	1.00	0.00
	MOTA	571	С	LEU	A	587	34.792	23.075	79.216	1.00	0.00
	MOTA	572	0	LEU	A	587	33.635	23.381	79.521	1.00	0.00
	ATOM	573	N	HIS	A	588	35.584	23.846	78.490	1.00	0.00
	MOTA	575	CA	HIS	A	588	35.078	25.082	77.877	1.00	0.00
15	MOTA	576	CB	HIS	A	588	36.258	25.795	77.222	1.00	0.00
	ATOM	577	CG	HIS	A	588	35.913	27.059	76.463	1.00	0.00
	ATOM	578	ND1	HIS	A	588	36.161	27.298	75.163	1.00	0.00
	ATOM	580	CE1	HIS	A	588	35.694	28.526	74.849	1.00	0.00
	MOTA	581	NE2	HIS	A	588	35.158	29.064	75.965	1.00	0.00
20	MOTA	582	CD2	HIS	A	588	35.292	28.175	76.973	1.00	0.00
	MOTA	583	C	HIS	A	588	33.995	24.730	76.853	1.00	0.00
	MOTA	584	0	HIS	A	588	34.136	23.734	76.133	1.00	0.00
	MOTA	585	N	LEU	A	589	32.998	25.592	76.706	1.00	0.00
	ATOM	587	CA	LEU	A	589	31.819	25.293	75.877	1.00	0.00
25	ATOM	588	CB	LEU	A	589	30.798	26.405	76.119	1.00	0.00
	MOTA	589	CG	LEU	A	589	29.468	26.173	75.404	1.00	0.00
	ATOM	590	CD1	LEU	A	589	28.292	26.500	76.318	1.00	0.00
	ATOM	591	CD2	LEU	A	589	29.373	26.957	74.097	1.00	0.00
	ATOM	592	С	LEU	A	589	32.119	25.144	74.382	1.00	0.00
30	ATOM	593	0	LEU	A	589	31.635	24.185	73.770	1.00	0.00
	ATOM	594	N	ASP	Α	590	33.128	25.841	73.881	1.00	0.00
	MOTA	596	CA	ASP	A	590	33.489	25.662	72.466	1.00	0.00
	ATOM	597	CB	ASP	A	590	34.272	26.871	71.966	1.00	0.00
	ATOM	598	CG	ASP	A	590	33.418	28.137	72.020	1.00	0.00
35	MOTA	599	OD1	ASP	A	590	32.206	28.017	71.906	1.00	0.00
	ATOM	600	OD2	ASP	A	590	33.989	29.191	72.256	1.00	0.00
	MOTA	601	С	ASP	A	590	34.313	24.390	72.254	1.00	0.00
	ATOM	602	0	ASP	A	590	34.208	23.760	71.194	1.00	0.00
	ATOM	603	N	ASP	A	591	34.855	23.863	73.341	1.00	0.00
40	MOTA	605	CA	ASP	A	591	35.599	22.607	73.273	1.00	0.00
	MOTA	606	CB	ASP	A	591	36.581	22.508	74.432	1.00	0.00
	MOTA	607	CG	ASP	A	591	37.570	23.665	74.440	1.00	0.00
	MOTA	608	OD1	ASP	A	591	37.852	24.229	73.392	1.00	0.00
	ATOM	609	OD2	ASP	A	591	38.072	23.970	75.512	1.00	0.00

	ATOM	610	C	ASP .	A	591	34.624	21.448	73.385	1.00	0.00
	MOTA	611	0	ASP .	A	591	34.844	20.408	72.759	1.00	0.00
	MOTA	612	N	GLN .	A	592	33.473	21.710	73.984	1.00	0.00
	ATOM	614	CA	GLN .	A	592	32.406	20.714	74.060	1.00	0.00
5	ATOM	615	CB	GLN .	A	592	31.336	21.222	75.015	1.00	0.00
	ATOM	616	CG	GLN .	A	592	31.875	21.427	76.421	1.00	0.00
	ATOM	617	CD	GLN .	A	592	30.825	22.143	77.264	1.00	0.00
	ATOM	618	OE1	GLN .	A	592	29.914	22.790	76.735	1.00	0.00
	ATOM	619	NE2	GLN .	A	592	30.989	22.043	78.568	1.00	0.00
10	MOTA	622	C	GLN .	A	592	31.776	20.539	72.690	1.00	0.00
	ATOM	623	0	GLN .	A	592	31.686	19.408	72.189	1.00	0.00
	ATOM	624	N	MET .	A	593	31.592	21.662	72.013	1.00	0.00
	ATOM	626	CA	MET .	A	593	31.067	21.654	70.647	1.00	0.00
	ATOM	627	СВ	MET .	A	593	30.972	23.090	70.151	1.00	0.00
15	MOTA	628	CG	MET .	Α	593	29.986	23.908	70.975	1.00	0.00
	ATOM	629	SD	MET .	A	593	29.862	25.647	70.499	1.00	0.00
	ATOM	630	CE	MET .	Α	593	29.469	25.427	68.748	1.00	0.00
	MOTA	631	С	MET .	A	593	31.986	20.873	69.722	1.00	0.00
	MOTA	632	0	MET .	A	593	31.611	19.767	69.308	1.00	0.00
20	ATOM	633	N	THR .	A	594	33.252	21.260	69.701	1.00	0.00
	ATOM	635	CA	THR .	A	594	34.221	20.615	68.803	1.00	0.00
	ATOM	636	CB	THR .	A	594	35.519	21.417	68.818	1.00	0.00
	ATOM	637	OG1	THR .	A	594	35.986	21.505	70.160	1.00	0.00
	ATOM	638	CG2	THR .	A	594	35.308	22.832	68.291	1.00	0.00
25	MOTA	639	С	THR .	A	594	34.532	19.161	69.161	1.00	0.00
	ATOM	640	0	THR .	A	594	34.664	18.345	68.243	1.00	0.00
	MOTA	641	N	LEU .	A	595	34.388	18.783	70.419	1.00	0.00
	MOTA	643	CA	LEU .	Α	595	34.655	17.401	70.820	1.00	0.00
	MOTA	644	CB	LEU .	A	595	34.707	17.349	72.337	1.00	0.00
30	MOTA	645	CG	LEU .	A	595	36.035	16.810	72.841	1.00	0.00
	MOTA	646	CD1	LEU .	A	595	37.207	17.620	72.297	1.00	0.00
	ATOM	647	CD2	LEU .	A	595	36.047	16.782	74.363	1.00	0.00
	ATOM	648	С	LEU .	A	595	33.548	16.476	70.345	1.00	0.00
	MOTA	649	0	LEU .	A	595	33.821	15.528	69.594	1.00	0.00
35	ATOM	650	N	LEU .	A	596	32.317	16.934	70.504	1.00	0.00
	ATOM	652	CA	LEU	A	596	31.168	16.125	70.099	1.00	0.00
	ATOM	653	CB	LEU .	A	596	29.917	16.724	70.731	1.00	0.00
	ATOM	654	CG	LEU .	A	596	28.678	15.888	70.432	1.00	0.00
	ATOM	655	CD1	LEU .	A	596	28.811	14.485	71.015	1.00	0.00
40	ATOM	656	CD2	LEU .	A	596	27.427	16.570	70.970	1.00	0.00
	ATOM	657	С	LEU .	Α	596	31.020	16.111	68.582	1.00	0.00
	MOTA	658	0	LEU .	A	596	30.764	15.046	68.007	1.00	0.00
	MOTA	659	N	GLN .	Α	597	31.458	17.181	67.940	1.00	0.00
	ATOM	661	CA	GLN .	A	597	31.401	17.246	66.482	1.00	0.00

	ATOM	662	СВ	GLN	Α	597	31.509	18.709	66.071	1.00	0.00
	MOTA	663	CG	GLN	A	597	30.300	19.504	66.547	1.00	0.00
	ATOM	664	CD	GLN	A	597	30.469	20.978	66.197	1.00	0.00
	MOTA	665	OE1	GLN	A	597	31.241	21.709	66.833	1.00	0.00
5	ATOM	666	NE2	GLN	A	597	29.741	21.399	65.177	1.00	0.00
	ATOM	669	С	GLN	A	597	32.514	16.446	65.808	1.00	0.00
	MOTA	670	0	GLN	Α	597	32.279	15.884	64.735	1.00	0.00
	ATOM	671	N	TYR	A	598	33.628	16.229	66.483	1.00	0.00
	ATOM	673	CA	TYR	A	598	34.695	15.440	65.861	1.00	0.00
10	MOTA	674	CB	TYR	A	598	36.050	15.808	66.465	1.00	0.00
	ATOM	675	CG	TYR	A	598	36.616	17.205	66.194	1.00	0.00
	ATOM	676	CD1	TYR	A	598	35.993	18.095	65.326	1.00	0.00
	MOTA	677	CE1	TYR	A	598	36.538	19.353	65.107	1.00	0.00
	ATOM	678	CZ	TYR	A	598	37.709	19.718	65.755	1.00	0.00
15	ATOM	679	ОН	TYR	A	598	38.266	20.957	65.529	1.00	0.00
	MOTA	680	CE2	TYR	A	598	38.333	18.834	66.622	1.00	0.00
	MOTA	681	CD2	TYR	A	598	37.786	17.578	66.841	1.00	0.00
	MOTA	682	C	TYR	A	598	34.467	13.954	66.103	1.00	0.00
	MOTA	683	0	TYR	A	598	34.723	13.121	65.224	1.00	0.00
20	ATOM	684	N	SER	A	599	33.841	13.653	67.227	1.00	0.00
	ATOM	686	CA	SER	A	599	33.624	12.259	67.620	1.00	0.00
	ATOM	687	CB	SER	A	599	33.723	12.174	69.136	1.00	0.00
	ATOM	688	OG	SER	A	599	32.627	12.901	69.675	1.00	0.00
	ATOM	689	C	SER	A	599	32.271	11.690	67.204	1.00	0.00
25	MOTA	690	0	SER	A	599	32.081	10.475	67.351	1.00	0.00
	MOTA	691	N	TRP	A	600	31.435	12.468	66.531	1.00	0.00
	MOTA	693	CA	TRP	Α	600	30.040	12.049	66.305	1.00	0.00
	MOTA	694	CB	TRP	A	600	29.232	13.214	65.714	1.00	0.00
	MOTA	695	CG	TRP	A	600	29.398	13.482	64.224	1.00	0.00
30	ATOM	696	CD1	TRP	A	600	30.539	13.900	63.574	1.00	0.00
	MOTA	697	NE1	TRP	A	600	30.273	14.004	62.250	1.00	0.00
	ATOM	699	CE2	TRP	A	600	28.996	13.673	61.983	1.00	0.00
	ATOM	700	CZ2	TRP	A	600	28.262	13.629	60.808	1.00	0.00
	ATOM	701	CH2	TRP	A	600	26.927	13.240	60.843	1.00	0.00
35	MOTA	702	CZ3	TRP	A	600	26.327	12.899	62.052	1.00	0.00
	ATOM	703	CE3	TRP	A	600	27.054	12.944	63.234	1.00	0.00
	MOTA	704	CD2	TRP	A	600	28.386	13.332	63.204	1.00	0.00
	MOTA	705	С	TRP	A	600	29.909	10.820	65.402	1.00	0.00
	MOTA	706	0	TRP	A	600	29.151	9.910	65.763	1.00	0.00
40	ATOM	707	N	MET	A	601	30.850	10.632	64.487	1.00	0.00
	ATOM	709	CA	MET	A	601	30.744	9.511	63.559	1.00	0.00
	ATOM	710	CB	MET	Α	601	31.575	9.809	62.319	1.00	0.00
	ATOM	711	CG	MET	Α	601	30.690	9.840	61.079	1.00	0.00
	ATOM	712	SD	MET	A	601	29.759	8.325	60.753	1.00	0.00

	ATOM	713	CE	MET	A	601	28.886	8.842	59.258	1.00	0.00
	ATOM	714	С	MET	A	601	31.206	8.206	64.187	1.00	0.00
	ATOM	715	0	MET	A	601	30.581	7.168	63.946	1.00	0.00
	ATOM	716	N	PHE	A	602	32.096	8.276	65.162	1.00	0.00
5	ATOM	718	CA	PHE	A	602	32.505	7.022	65.779	1.00	0.00
	ATOM	719	CB	PHE	A	602	33.998	6.996	66.065	1.00	0.00
	ATOM	720	CG	PHE	A	602	34.476	5.568	66.316	1.00	0.00
	ATOM	721	CD1	PHE	A	602	33.801	4.508	65.720	1.00	0.00
	ATOM	722	CE1	PHE	A	602	34.205	3.202	65.957	1.00	0.00
10	MOTA	723	CZ	PHE	Α	602	35.293	2.956	66.780	1.00	0.00
	ATOM	724	CE2	PHE	A	602	35.988	4.014	67.350	1.00	0.00
	MOTA	725	CD2	PHE	Α	602	35.583	5.322	67.114	1.00	0.00
	ATOM	726	С	PHE	Α	602	31.693	6.751	67.040	1.00	0.00
	ATOM	727	0	PHE	A	602	31.553	5.587	67.425	1.00	0.00
15	ATOM	728	N	LEU	A	603	30.974	7.744	67.531	1.00	0.00
	MOTA	730	CA	LEU	A	603	30.038	7.458	68.617	1.00	0.00
	MOTA	731	CB	LEU	A	603	29.579	8.757	69.271	1.00	0.00
	MOTA	732	CG	LEU	Α	603	30.709	9.450	70.024	1.00	0.00
	ATOM	733	CD1	LEU	A	603	30.235	10.779	70.601	1.00	0.00
20	ATOM	734	CD2	LEU	A	603	31.272	8.559	71.126	1.00	0.00
	ATOM	735	С	LEU	A	603	28.837	6.696	68.069	1.00	0.00
	ATOM	736	0	LEU	A	603	28.516	5.617	68.589	1.00	0.00
	MOTA	737	N	MET	Α	604	28.399	7.068	66.876	1.00	0.00
	MOTA	739	CA	MET	A	604	27.269	6.355	66.278	1.00	0.00
25	MOTA	740	CB	MET	A	604	26.546	7.278	65.295	1.00	0.00
	MOTA	741	CG	MET	A	604	27.430	7.788	64.164	1.00	0.00
	MOTA	742	SD	MET	A	604	26.649	8.960	63.033	1.00	0.00
	MOTA	743	CE	MET	Α	604	25.297	7.919	62.439	1.00	0.00
	MOTA	744	С	MET	A	604	27.687	5.039	65.612	1.00	0.00
30	ATOM	745	0	MET	Α	604	26.922	4.069	65.699	1.00	0.00
	ATOM.	746	N	ALA	A	605	28.948	4.916	65.223	1.00	0.00
	ATOM	748	CA	ALA	A	605	29.417	3.659	64.631	1.00	0.00
	MOTA	749	CB	ALA	A	605	30.571	3.954	63.682	1.00	0.00
	ATOM	750	С	ALA	A	605	29.864	2.639	65.675	1.00	0.00
35	ATOM	751	0	ALA		1	29.707	1.434	65.448	1.00	0.00
	ATOM	752	N	PHE	A	606	30.208	3.099	66.867	1.00	0.00
	ATOM	754	CA	PHE	A	606	30.563	2.168	67.938	1.00	0.00
	ATOM	755	CB	PHE	A	606	31.488	2.877	68.920	1.00	0.00
	ATOM	756	CG	PHE	A	606	32.423	1.957	69.697	1.00	0.00
40	ATOM	757	CD1	PHE .	A	606	32.882	0.782	69.115	1.00	0.00
	MOTA	758	CE1	PHE	A	606	33.747	-0.048	69.816	1.00	0.00
	ATOM	759	CZ	PHE .	A	606	34.155	0.297	71.098	1.00	0.00
	ATOM	760		PHE .			33.697	1.472	71.680	1.00	0.00
	MOTA	761	CD2	PHE .	A	606	32.830	2.300	70.980	1.00	0.00

	MOTA	762	C	PHE	A	606	29.292	1.717	68.645	1.00	0.00
	MOTA	763	0	PHE	Α	606	29.201	0.564	69.090	1.00	0.00
	MOTA	764	N	ALA	A	607	28.256	2.536	68.531	1.00	0.00
	MOTA	766	CA	ALA	A	607	26.931	2.134	68.999	1.00	0.00
5	ATOM	767	CB	ALA	A	607	26.015	3.353	69.019	1.00	0.00
	MOTA	768	C	ALA	Α	607	26.358	1.075	68.068	1.00	0.00
	MOTA	769	0	ALA	Α	607	25.956	0.011	68.549	1.00	0.00
	ATOM	770	N	LEU	A	608	26.588	1.243	66.774	1.00	0.00
	MOTA	772	CA	LEU	A	608	26.178	0.243	65.778	1.00	0.00
10	ATOM	773	CB	LEU	A	608	26.480	0.825	64.402	1.00	0.00
	ATOM	774	CG	LEU	Α	608	26.293	-0.194	63.284	1.00	0.00
	MOTA	775	CD1	LEU	A	608	24.846	-0.648	63.180	1.00	0.00
	MOTA	776	CD2	LEU	A	608	26.758	0.383	61.957	1.00	0.00
	MOTA	777	С	LEU	A	608	26.943	-1.067	65.949	1.00	0.00
15	ATOM	778	0	LEU	A	608	26.328	-2.141	65.989	1.00	0.00
	ATOM	779	N	GLY	A	609	28.229	-0.952	66.243	1.00	0.00
	MOTA	781	CA	GLY	A	609	29.068	-2.113	66.542	1.00	0.00
	ATOM	782	С	GLY	A	609	28.504	-2.934	67.694	1.00	0.00
	MOTA	783	0	GLY	A	609	28.122	-4.094	67.488	1.00	0.00
20	MOTA	784	N	TRP	A	610	28.237	-2.271	68.808	1.00	0.00
	MOTA	786	CA	TRP	A	610	27.778	-2.964	70.012	1.00	0.00
	MOTA	787	СВ	TRP	A	610	27.928	-1.998	71.173	1.00	0.00
	MOTA	788	CG	TRP	A	610	27.755	-2.641	72.528	1.00	0.00
	ATOM	789	CD1	TRP	A	610	26.658	-2.568	73.358	1.00	0.00
25	ATOM	790	NE1	TRP	A	610	26.925	-3.278	74.483	1.00	0.00
	ATOM	792	CE2	TRP	A	610	28.158	-3.820	74.436	1.00	0.00
	ATOM	793	CZ2	TRP	A	610	28.880	-4.593	75.328	1.00	0.00
	MOTA	794	CH2	TRP	A	610	30.164	-5.012	74.995	1.00	0.00
	MOTA	795	CZ3	TRP	A	610	30.726	-4.656	73.774	1.00	0.00
30	MOTA	796	CE3	TRP	A	610	30.011	-3.878	72.876	1.00	0.00
	ATOM	797	CD2	TRP	A	610	28.730	-3.457	73.206	1.00	0.00
	ATOM	798	C	TRP	Α	610	26.323	-3.424	69.949	1.00	0.00
	MOTA	799	0	TRP	A	610	26.014	-4.495	70.485	1.00	0.00
	MOTA	800	N	ARG	A	611	25.492	-2.762	69.162	1.00	0.00
35	MOTA	802	CA	ARG	A	611	24.107	-3.219	69.027	1.00	0.00
	ATOM	803	СВ	ARG	A	611	23.235	-2.083	68.512	1.00	0.00
	ATOM	804	CG	ARG	A	611	23.117	-0.950	69.523	1.00	0.00
	ATOM	805	CD	ARG	A	611	22.226	0.158	68.981	1.00	0.00
	ATOM	806	NE	ARG	A	611	22.725	0.624	67.678	1.00	0.00
40	ATOM	807	CZ	ARG	A	611	22.559	1.868	67.227	1.00	0.00
	ATOM	808	NH1	ARG	A	611	21.888	2.760	67.961	1.00	0.00
	ATOM	809	NH2	ARG	A	611	23.050	2.216	66.036	1.00	0.00
	ATOM	810	С	ARG	A	611	24.014	-4.402	68.074	1.00	0.00
	ATOM	811	0	ARG	A	611	23.218	-5.317	68.315	1.00	0.00

	MOTA	812	N	SER	A	612	24.963	-4.499	67.159	1.00	0.00
	MOTA	814	CA	SER	A	612	25.031	-5.671	66.291	1.00	0.00
	MOTA	815	CB	SER	A	612	25.949	-5.357	65.123	1.00	0.00
	MOTA	816	OG	SER	Α	612	25.359	-4.282	64.414	1.00	0.00
5	ATOM	817	С	SER	A	612	25.595	-6.845	67.066	1.00	0.00
	ATOM	818	0	SER	A	612	24.998	-7.932	67.061	1.00	0.00
	ATOM	819	N	TYR	Α	613	26.556	-6.544	67.924	1.00	0.00
	ATOM	821	CA	TYR	A	613	27.149	-7.554	68.799	1.00	0.00
	ATOM	822	CB	TYR	A	613	28.266	-6.892	69.600	1.00	0.00
10	ATOM	823	CG	TYR	A	613	29.046	-7.820	70.528	1.00	0.00
	ATOM	824	CD1	TYR	A	613	29.154	-9.176	70.243	1.00	0.00
	ATOM	825	CE1	TYR	A	613	29.872	-10.007	71.092	1.00	0.00
	MOTA	826	CZ	TYR	A	613	30.487	-9.480	72.219	1.00	0.00
	ATOM	827	ОН	TYR	A	613	31.350	-10.262	72.951	1.00	0.00
15	MOTA	828	CE2	TYR	A	613	30.369	-8.129	72.513	1.00	0.00
	ATOM	829	CD2	TYR	A	613	29.646	-7.300	71.667	1.00	0.00
	ATOM	830	С	TYR	A	613	26.098	-8.149	69.732	1.00	0.00
	ATOM	831	Ο,	TYR	A	613	25.861	-9.360	69.661	1.00	0.00
	ATOM	832	N	ARG	A	614	25.301	-7.297	70.352	1.00	0.00
20	ATOM	834	CA	ARG	A	614	24.261	-7.779	71.260	1.00	0.00
	MOTA	835	CB	ARG	A	614	23.755	-6.602	72.083	1.00	0.00
	MOTA	836	CG	ARG	A	614	24.793	-6.158	73.104	1.00	0.00
	MOTA	837	CD	ARG	A	614	25.104	-7.292	74.075	1.00	0.00
	MOTA	838	NE	ARG	A	614	26.038	-6.865	75.129	1.00	0.00
25	MOTA	839	CZ	ARG	A	614	25.667	-6.698	76.401	1.00	0.00
	MOTA	840	NH1	ARG	A	614	24.396	-6.898	76.758	1.00	0.00
	ATOM	841	NH2	ARG	A	614	26.563	-6.319	77.315	1.00	0.00
	ATOM	842	С	ARG	A	614	23.083	-8.445	70.553	1.00	0.00
	ATOM	843	0	ARG	A	614	22.912	-9.662	70.685	1.00	0.00
30	MOTA	844	N	GLN	A	615	22.409	-7.721	69.674	1.00	0.00
	MOTA	846	CA	GLN	A	615	21.115	-8.198	69.168	1.00	0.00
	MOTA	847	CB	GLN	A	615	20.284	-6.973	68.777	1.00	0.00
	MOTA	848	CG	GLN	A	615	18.816	-7.326	68.538	1.00	0.00
	MOTA	849	CD	GLN	A	615	17.992	-6.089	68.185	1.00	0.00
35	ATOM	850	OE1	GLN	A	615	18.283	-4.972	68.631	1.00	0.00
	MOTA	851	NE2	GLN	A	615	16.941	-6.320	67.419	1.00	0.00
	MOTA	854	С	GLN	A	615	21.214	-9.180	67.993	1.00	0.00
	MOTA	855	0	GLN	A	615	20.241	-9.893	67.722	1.00	0.00
	ATOM	856	N	SER	A	616	22.363	-9.283	67.345	1.00	0.00
40	ATOM	858	CA	SER	A	616	22.472	-10.273	66.267	1.00	0.00
	MOTA	859	СВ	SER	A	616	22.640	-9.570	64.925	1.00	0.00
	MOTA	860	OG	SER	A	616	24.018	-9.260	64.758	1.00	0.00
	MOTA	861	C	SER	A	616	23.648	-11.225	66.457	1.00	0.00
	MOTA	862	0	SER	A	616	23.869	-12.079	65.593	1.00	0.00

	ATOM	863	N	SER A	A	617	24.401	-11.069	67.537	1.00	0.00
	ATOM	865	CA	SER A	A	617	25.662	-11.813	67.737	1.00	0.00
	ATOM	866	CB	SER A	A	617	25.405	-13.317	67.801	1.00	0.00
	ATOM	867	OG	SER Z	A	617	26.636	-13.965	68.091	1.00	0.00
5	ATOM	868	С	SER A	A	617	26.655	-11.458	66.629	1.00	0.00
	ATOM	869	0	SER 2	A	617	27.124	-12.313	65.866	1.00	0.00
	MOTA	870	N	ALA Z	Α	618	26.799	-10.151	66.470	1.00	0.00
	ATOM	872	CA	ALA Z	A	618	27.716	-9.457	65.542	1.00	0.00
	ATOM	873	CB	ALA Z	A	618	29.126	-9.555	66.103	1.00	0.00
10	MOTA	874	C	ALA Z	A	618	27.743	-9.869	64.067	1.00	0.00
	ATOM	875	0	ALA Z	A	618	28.769	-9.651	63.412	1.00	0.00
	ATOM	876	N	ASN 2	A	619	26.663	-10.413	63.531	1.00	0.00
	ATOM	878	CA	ASN A	Α	619	26.655	-10.707	62.098	1.00	0.00
	ATOM	879	CB	ASN Z	A	619	26.274	-12.171	61.876	1.00	0.00
15	MOTA	880	CG	ASN Z	A	619	25.046	-12.570	62.689	1.00	0.00
	MOTA	881	OD1	ASN A	A	619	23.958	-12.001	62.539	1.00	0.00
	MOTA	882	ND2	ASN A	Ą	619	25.238	-13.565	63.536	1.00	0.00
	MOTA	885	C	ASN A	Α	619	25.759	-9.779	61.276	1.00	0.00
	ATOM	886	0	ASN A	A	619	25.995	-9.640	60.070	1.00	0.00
20	MOTA	887	N	LEU A	A	620	24.789	-9.111	61.885	1.00	0.00
	MOTA	889	CA	LEU A	A	620	23.941	-8.201	61.109	1.00	0.00
	MOTA	890	CB	LEU A	A	620	22.482	-8.648	61.178	1.00	0.00
	MOTA	891	CG	LEU A	A	620	22.267	-10.064	60.651	1.00	0.00
	ATOM	892	CD1	LEU A	A	620	20.812	-10.490	60.813	1.00	0.00
25	ATOM	893	CD2	LEU A	A	620	22.709	-10.203	59.198	1.00	0.00
	ATOM	894	С	LEU A	A	620	24.061	-6.803	61.686	1.00	0.00
	ATOM	895	0	LEU 2	A	620	24.332	-6.640	62.882	1.00	0.00
	MOTA	896	N	LEU A	A	621	23.840	-5.806	60.848	1.00	0.00
	ATOM	898	CA	LEU A	A	621	23.954	-4.420	61.305	1.00	0.00
30	MOTA	899	CB	LEU A	A	621	24.308	-3.512	60.139	1.00	0.00
	MOTA	900	CG	LEU A	Ą	621	25.760	-3.705	59.726	1.00	0.00
	MOTA	901		LEU A			26.101	-2.813	58.543	1.00	0.00
	MOTA	902	CD2	LEU A	A	621	26.699	-3.420	60.895	1.00	0.00
	ATOM	903	С	LEU A	A	621	22.681	-3.941	61.984	1.00	0.00
35	ATOM	904	0	LEU A	A	621	21.679	-3.588	61.349	1.00	0.00
	ATOM	905	N	CYS Z	A	622	22.786	-3.844	63.293	1.00	0.00
	MOTA	907	CA	CYS A	A	622	21.660	-3.399	64.108	1.00	0.00
	ATOM	908	CB	CYS A	A	622	21.679	-4.108	65.452	1.00	0.00
	ATOM	909	SG	CYS I	A	622	20.424	-3.549	66.627	1.00	0.00
40	ATOM	910	С	CYS Z	Ą	622	21.738	-1.900	64.321	1.00	0.00
	MOTA	911	0	CYS Z	A	622	22.496	-1.408	65.164	1.00	0.00
	MOTA	912	N .	PHE A	Ą	623	20.958	-1.181	63.533	1.00	0.00
	MOTA	914	CA	PHE 2	A	623	20.917	0.275	63.655	1.00	0.00
	MOTA	915	CB	PHE A	Ą	623	20.624	0.882	62.287	1.00	0.00

	MOTA	916	CG	PHE	A	623	21.739	0.764	61.252	1.00	0.00
	ATOM	917	CD1	PHE	Α	623	22.768	1.697	61.241	1.00	0.00
	MOTA	918	CE1	PHE	A	623	23.780	1.604	60.295	1.00	0.00
	MOTA	919	CZ	PHE	Α	623	23.763	0.580	59.357	1.00	0.00
5	MOTA	920	CE2	PHE	A	623	22.733	-0.350	59.366	1.00	0.00
	MOTA	921	CD2	PHE	Α	623	21.720	-0.257	60.311	1.00	0.00
	ATOM	922	C	PHE	Α	623	19.809	0.658	64.622	1.00	0.00
	ATOM	923	0	PHE	A	623	19.852	1.699	65.286	1.00	0.00
	MOTA	924	N	ALA	A	624	18.868	-0.256	64.749	1.00	0.00
10	ATOM	926	CA	ALA	A	624	17.746	-0.077	65.665	1.00	0.00
	MOTA	927	СВ	ALA	A	624	16.787	0.909	65.009	1.00	0.00
	ATOM	928	C	ALA	A	624	17.065	-1.423	65.853	1.00	0.00
	ATOM	929	0	ALA	A	624	17.204	-2.292	64.984	1.00	0.00
	ATOM .	930	N	PRO	A	625	16.223	-1.562	66.867	1.00	0.00
15	MOTA	931	CA	PRO	A	625	15.400	-2.777	66.970	1.00	0.00
	ATOM	932	CB	PRO	A	625	14.682	-2.644	68.279	1.00	0.00
	MOTA	933	CG	PRO	A	625	14.985	-1.282	68.887	1.00	0.00
	MOTA	934	CD	PRO	A	625	15.945	-0.593	67.932	1.00	0.00
	MOTA	935	С	PRO	A	625	14.407	-2.928	65.803	1.00	0.00
20	MOTA	936	0	PRO	A	625	14.127	-4.055	65.379	1.00	0.00
	MOTA	937	N	ASP	A	626	14.030	-1.813	65.189	1.00	0.00
	ATOM	939	CA	ASP	A	626	13.174	-1.813	63.994	1.00	0.00
	ATOM	940	CB	ASP	A	626	12.237	-0.598	64.034	1.00	0.00
	ATOM	941	CG	ASP	A	626	12.982	0.736	63.929	1.00	0.00
25	ATOM	942	OD1	ASP	A	626	13.627	1.110	64.901	1.00	0.00
	MOTA	943	OD2	ASP	A	626	12.763	1.458	62.963	1.00	0.00
	ATOM	944	C	ASP	A	626	13.974	-1.790	62.686	1.00	0.00
	MOTA	945	0	ASP	A	626	13.374	-1.775	61.605	1.00	0.00
	MOTA	946	N	LEU	A	627	15.297	-1.811	62.774	1.00	0.00
30	MOTA	948	CA	LEU	A	627	16.135	-1.725	61.571	1.00	0.00
	MOTA	949	CB	LEU	A	627	16.541	-0.272	61.354	1.00	0.00
	MOTA	950	CG	LEU	A	627	17.229	-0.082	60.006	1.00	0.00
	MOTA	951	CD1	LEU	A	627	16.321	-0.525	58.863	1.00	0.00
	MOTA	952	CD2	LEU	A	627	17.659	1.367	59.815	1.00	0.00
35	MOTA	953	C	LEU	A	627	17.379	-2.609	61.697	1.00	0.00
	MOTA	954	0	LEU	A	627	18.441	-2.175	62.175	1.00	0.00
	MOTA	955	N	ILE	A	628	17.212	-3.854	61.282	1.00	0.00
	MOTA	957	CA	ILE	A	628	18.310	-4.831	61.278	1.00	0.00
	MOTA	958	CB	ILE	A	628	17.836	-6.121	61.943	1.00	0.00
40	MOTA	959	CG2	ILE	A	628	18.979	-7.131	62.016	1.00	0.00
	ATOM	960	CG1	ILE	A	628	17.292	-5.862	63.342	1.00	0.00
	ATOM	961	CD1	ILE	A	628	18.399	-5.394	64.274	1.00	0.00
	MOTA	962	C	ILE	A	628	18.721	-5.133	59.841	1.00	0.00
	MOTA	963	0	ILE	A	628	18.089	-5.945	59.150	1.00	0.00

	MOTA	964	N	ILE	A	629		19.800	-4.504	59.417	1.00	0.00
	ATOM	966	CA	ILE	A	629		20.255	-4.648	58.035	1.00	0.00
	ATOM	967	СВ	ILE	Α	629		21.033	-3.398	57.642	1.00	0.00
	MOTA	968	CG2	ILE	A	629		21.708	-3.589	56.288	1.00	0.00
5	ATOM	969	CG1	ILE	A	629		20.113	-2.184	57.608	1.00	0.00
	ATOM	970	CD1	ILE	A	629		19.048	-2.326	56.527	1.00	0.00
	MOTA	971	С	ILE	A	629		21.113	-5.891	57.843	1.00	0.00
	MOTA	972	0	ILE	A	629		22.222	-6.019	58.379	1.00	0.00
	MOTA	973	N	ASN	A	630		20.530	-6.847	57.143	1.00	0.00
10	MOTA	975	CA	ASN	A	630		21.286	-8.016	56.703	1.00	0.00
	ATOM	976	CB	ASN	A	630		20.371	-9.236	56.584	1.00	0.00
	ATOM	977	CG	ASN	Α	630		19.231	-9.020	55.595	1.00	0.00
	MOTA	978	OD1	ASN	A	630		19.454	-8.971	54.379	1.00	0.00
	ATOM	979	ND2	ASN	A	630		18.016	-9.001	56.117	1.00	0.00
15	MOTA	982	С	ASN	A	630		21.984	-7.690	55.387	1.00	0.00
	MOTA	983	0	ASN	A	630		21.666	-6.685	54.735	1.00	0.00
	MOTA	984	N	GLU	A	631		22.800	-8.618	54.919	1.00	0.00
	MOTA	986	CA	GLU	A	631		23.664	-8.354	53.757	1.00	0.00
	MOTA	987	CB	GLU	A	631		24.838	-9.345	53.721	1.00	0.00
20	MOTA	988	CG	GLU	A	631	•	24.486	-10.782	53.317	1.00	0.00
	ATOM	989	CD	GLU	A	631		24.159	-11.676	54.514	1.00	0.00
	MOTA	990	OE1	GLU	A	631		25.048	-12.398	54.937	1.00	0.00
	MOTA	991	OE2	GLU	A	631		23.111	-11.453	55.121	1.00	0.00
	ATOM	992	C	GLU	A	631		22.919	-8.369	52.414	1.00	0.00
25	ATOM	993	0	GLU	A	631		23.433	-7.814	51.438	1.00	0.00
	MOTA	994	N	GLN	A	632		21.658	-8.773	52.419	1.00	0.00
	ATOM	996	CA	GLN	A	632		20.849	-8.769	51.199	1.00	0.00
	ATOM	997	CB	GLN	A	632		19.841	-9.923	51.219	1.00	0.00
• •	ATOM	998	CG	GLN	A	632		20.456	-11.308	50.997	1.00	0.00
30	MOTA	999	CD	GLN	A	632		20.990	-11.938	52.284	1.00	0.00
	MOTA	1000	OE1	GLN	A	632		22.124	-12.427	52.327	1.00	0.00
	MOTA	1001	NE2	GLN	A	632		20.203	-11.842	53.342	1.00	0.00
	MOTA	1004	С	GLN				20.083	-7.455	51.042	1.00	0.00
25	MOTA	1005	0	GLN				19.446	-7.237	50.005	1.00	0.00
35	MOTA	1006	N	ARG				20.146	-6.586	52.041	1.00	0.00
	MOTA	1008	CA	ARG				19.444	-5.304	51.928	1.00	0.00
	ATOM	1009	CB	ARG				18.962	-4.865	53.303	1.00	0.00
	MOTA	1010	CG	ARG				18.282	-6.014	54.029	1.00	0.00
40	ATOM	1011	CD	ARG				17.471	-5.518	55.213	1.00	0.00
40	MOTA	1012	NE	ARG				16.273	-4.832	54.715	1.00	0.00
	MOTA	1013	CZ	ARG				15.417	-4.165	55.490	1.00	0.00
	ATOM	1014		ARG				15.680	-3.992	56.788	1.00	0.00
	MOTA	1015		ARG				14.332	-3.614	54.946	1.00	0.00
	MOTA	1016	C	ARG	Α	633		20.350	-4.223	51.358	1.00	0.00

	MOTA	1017	0	ARG	A	633	19.866	-3.225	50.808	1.00	0.00
	ATOM	1018	N	MET	A	634	21.649	-4.463	51.388	1.00	0.00
	MOTA	1020	CA	MET	A	634	22.582	-3.481	50.832	1.00	0.00
	MOTA	1021	CB	MET	A	634	23.781	-3.338	51.755	1.00	0.00
5	ATOM	1022	CG	MET	A	634	23.365	-2.639	53.042	1.00	0.00
	MOTA	1023	SD	MET	A	634	22.588	-1.024	52.799	1.00	0.00
	MOTA	1024	CE	MET	A	634	22.391	-0.515	54.522	1.00	0.00
	MOTA	1025	C	MET	A	634	23.013	-3.864	49.424	1.00	0.00
	ATOM	1026	0	MET	A	634	24.138	-4.318	49.189	1.00	0.00
10	MOTA	1027	N	THR	A	635	22.134	-3.554	48.485	1.00	0.00
	ATOM	1029	CA	THR	A	635	22.369	-3.888	47.078	1.00	0.00
	ATOM	1030	СВ	THR	A	635	21.008	-4.091	46.411	1.00	0.00
	ATOM	1031	OG1	THR	A	635	21.211	-4.321	45.024	1.00	0.00
	ATOM	1032	CG2	THR	A	635	20.096	-2.877	46.566	1.00	0.00
15	MOTA	1033	С	THR	A	635	23.194	-2.824	46.345	1.00	0.00
	MOTA	1034	0	THR	A	635	23.726	-3.090	45.261	1.00	0.00
	MOTA	1035	N	LEU	A	636	23.365	-1.664	46.958	1.00	0.00
	MOTA	1037	CA	LEU	А	636	24.251	-0.649	46.383	1.00	0.00
	ATOM	1038	CB	LEU	A	636	23.785	0.731	46.860	1.00	0.00
20	ATOM	1039	CG	LEU	А	636	24.373	1.897	46.057	1.00	0.00
	ATOM	1040	CD1	LEU	A	636	23.423	3.086	46.029	1.00	0.00
	ATOM	1041	CD2	LEU	A	636	25.753	2.332	46.541	1.00	0.00
	MOTA	1042	C	LEU	A	636	25.670	-0.967	46.844	1.00	0.00
	MOTA	1043	0	LEU	A	636	25.964	-0.877	48.042	1.00	0.00
25	MOTA	1044	N	PRO	A	637	26.561	-1.189	45.889	1.00	0.00
	MOTA	1045	CA	PRO	A	637	27.835	-1.858	46.181	1.00	0.00
	MOTA	1046	CB	PRO	A	637	28.485	-2.063	44.846	1.00	0.00
	MOTA	1047	CG	PRO	A	637	27.568	-1.545	43.748	1.00	0.00
	MOTA	1048	CD	PRO	A	637	26.323	-1.032	44.450	1.00	0.00
30	MOTA	1049	С	PRO	A	637	28.749	-1.069	47.119	1.00	0.00
	MOTA	1050	0	PRO	A	637	29.155	-1.622	48.146	1.00	0.00
	ATOM	1051	N	CYS	A	638	28.778	0.247	46.973	1.00	0.00
	MOTA	1053	CA	CYS	A	638	29.640	1.074	47.829	1.00	0.00
	MOTA	1054	CB	CYS	A	638	29.791	2.441	47.175	1.00	0.00
35	ATOM	1055	SG	CYS	A	638	30.496	2.427	45.511	1.00	0.00
	MOTA	1056	С	CYS	A	638	29.076	1.242	49.241	1.00	0.00
	ATOM	1057	0	CYS	A	638	29.847	1.199	50.209	1.00	0.00
	ATOM	1058	N	MET	A	639	27.769	1.080	49.370	1.00	0.00
	ATOM	1060	CA	MET	A	639	27.129	1.175	50.677	1.00	0.00
40	ATOM	1061	CB	MET	A	639	25.646	1.457	50.467	1.00	0.00
	MOTA	1062	CG	MET	A	639	24.918	1.641	51.792	1.00	0.00
	MOTA	1063	SD	MET	A	639	25.516	2.998	52.822	1.00	0.00
	MOTA	1064	CE	MET	A	639	24.392	2.809	54.225	1.00	0.00
	ATOM	1065	C	MET	A	639	27.313	-0.136	51.428	1.00	0.00

	ATOM	1066	0	MET	A	639	27.702	-0.104	52.601	1.00	0.00
	ATOM	1067	N	TYR	Α	640	27.376	-1.226	50.678	1.00	0.00
	MOTA	1069	CA	TYR	A	640	27.632	-2.544	51.264	1.00	0.00
	ATOM	1070	CB	TYR	A	640	27.194	-3.604	50.263	1.00	0.00
5	ATOM	1071	CG	TYR	Α	640	27.344	-5.031	50.776	1.00	0.00
	ATOM	1072	CD1	TYR	A	640	26.853	-5.370	52.031	1.00	0.00
	MOTA	1073	CE1	TYR	A	640	26.992	-6.668	52.503	1.00	0.00
	MOTA	1074	CZ	TYR	A	640	27.620	-7.624	51.716	1.00	0.00
	ATOM	1075	ОН	TYR	Α	640	27.774	-8.907	52.191	1.00	0.00
10	MOTA	1076	CE2	TYR	A	640	28.107	-7.290	50.460	1.00	0.00
	MOTA	1077	CD2	TYR	A	640	27.968	-5.991	49.989	1.00	0.00
	MOTA	1078	С	TYR	A	640	29.114	-2.737	51.587	1.00	0.00
	MOTA	1079	0	TYR	А	640	29.441	-3.369	52.598	1.00	0.00
	MOTA	1080	N	ASP	A	641	29.970	-1.993	50.906	1.00	0.00
15	MOTA	1082	CA	ASP	A	641	31.403	-2.022	51.212	1.00	0.00
	MOTA	1083	CB	ASP	A	641	32.174	-1.359	50.073	1.00	0.00
	MOTA	1084	CG	ASP	A	641	31.985	-2.107	48.754	1.00	0.00
	MOTA	1085	OD1	ASP	A	641	31.899	-3.328	48.792	1.00	0.00
	MOTA	1086	OD2	ASP	Α	641	32.034	-1.450	47.721	1.00	0.00
20	ATOM	1087	C	ASP	A	641	31.680	-1.266	52.507	1.00	0.00
	MOTA	1088	0	ASP	A	641	32.427	-1.759	53.361	1.00	0.00
	ATOM	1089	N	GLN	A	642	30.885	-0.239	52.763	1.00	0.00
	ATOM	1091	CA	GLN	A	642	30.995	0.486	54.028	1.00	0.00
	ATOM	1092	CB	GLN	A	642	30.375	1.863	53.850	1.00	0.00
25	MOTA	1093	CG	GLN	A	642	30.481	2.664	55.138	1.00	0.00
	ATOM	1094	CD	GLN	A	642	29.900	4.054	54.938	1.00	0.00
	MOTA	1095	OE1	GLN	A	642	30.613	5.055	55.070	1.00	0.00
	MOTA	1096	NE2	GLN	A	642	28.615	4.098	54.636	1.00	0.00
	MOTA	1099	С	GLN	A	642	30.292	-0.260	55.162	1.00	0.00
30	ATOM	1100	0	GLN	A	642	30.757	-0.219	56.308	1.00	0.00
	MOTA	1101	N	CYS	A	643	29.367	-1.135	54.805	1.00	0.00
	MOTA	1103	CA	CYS	A	643	28.738	-2.009	55.795	1.00	0.00
	MOTA	1104	CB	CYS	A	643	27.440	-2.559	55.219	1.00	0.00
~ ~	MOTA	1105	SG	CYS	A	643	26.127	-1.339	54.997	1.00	0.00
35	MOTA	1106	С	CYS	A	643	29.655	-3.156	56.201	1.00	0.00
	MOTA	1107	0	CYS	A	643	29.618	-3.566	57.365	1.00	0.00
	ATOM	1108	N	LYS	A	644	30.634	-3.471	55.367	1.00	0.00
	MOTA	1110	CA	LYS	A	644	31.654	-4.447	55.759	1.00	0.00
	MOTA	1111	CB	LYS	A	644	32.305	-5.027	54.507	1.00	0.00
40	ATOM	1112	CG	LYS	A	644	31.338	-5.789	53.595	1.00	0.00
	MOTA	1113	CD	LYS	A	644	30.873	-7.138	54.153	1.00	0.00
	ATOM	1114	CE	LYS	A	644	29.694	-7.035	55.121	1.00	0.00
	ATOM	1115	NZ	LYS	A	644	29.317	-8.358	55.640	1.00	0.00
	ATOM	1116	C	LYS	A	644	32.715	-3.800	56.645	1.00	0.00

	MOTA	1117	0	LYS	A	644	33.216	-4.451	57.568	1.00	0.00
	ATOM	1118	N	HIS	A	645	32.825	-2.484	56.555	1.00	0.00
	MOTA	1120	CA	HIS	A	645	33.718	-1.738	57.445	1.00	0.00
	ATOM	1121	CB	HIS	Α	645	33.965	-0.352	56.860	1.00	0.00
5	MOTA	1122	CG	HIS	Α	645	35.017	-0.284	55.773	1.00	0.00
	MOTA	1123	ND1	HIS	A	645	34.846	-0.527	54.460	1.00	0.00
	MOTA	1125	CE1	HIS	A	645	36.020	-0.349	53.819	1.00	0.00
	MOTA	1126	NE2	HIS	Α	645	36.942	0.002	54.743	1.00	0.00
	MOTA	1127	CD2	HIS	A	645	36.341	0.042	55.952	1.00	0.00
10	ATOM	1128	С	HIS	A	645	33.109	-1.592	58.835	1.00	0.00
	ATOM	1129	0	HIS	A	645	33.808	-1.785	59.837	1.00	0.00
	ATOM	1130	N	MET	A	646	31.790	-1.510	58.889	1.00	0.00
	ATOM	1132	CA	MET	A	646	31.101	-1.452	60.182	1.00	0.00
	ATOM	1133	CB	MET	Α	646	29.788	-0.706	59.981	1.00	0.00
15	MOTA	1134	CG	MET	Α	646	30.071	0.699	59.456	1.00	0.00
	MOTA	1135	SD	MET	A	646	28.641	1.774	59.196	1.00	0.00
	MOTA	1136	CE	MET	A	646	27.754	0.800	57.960	1.00	0.00
	MOTA	1137	C	MET	A	646	30.871	-2.850	60.763	1.00	0.00
	MOTA	1138	0	MET	A	646	30.815	-3.016	61.990	1.00	0.00
20	ATOM	1139	N	LEU	A	647	31.021	-3.852	59.910	1.00	0.00
	ATOM	1141	CA	LEU	A	647	31.002	-5.246	60.351	1.00	0.00
	MOTA	1142	CB	LEU	A	647	30.748	-6.136	59.136	1.00	0.00
	MOTA	1143	CG	LEU	A	647	29.661	-7.185	59.372	1.00	0.00
	MOTA	1144	CD1	LEU	A	647	30.022	-8.157	60.490	1.00	0.00
25	MOTA	1145	CD2	LEU	A	647	28.310	-6.535	59.645	1.00	0.00
	MOTA	1146	С	LEU	A	647	32.347	-5.613	60.976	1.00	0.00
	MOTA	1147	0	LEU	A	647	32.373	-6.428	61.904	1.00	0.00
	MOTA	1148	N	TYR	A	648	33.385	-4.847	60.671	1.00	0.00
20	MOTA	1150	CA	TYR			34.680	-5.063	61.324	1.00	0.00
30	MOTA	1151	CB	TYR	A	648	35.785	-4.317	60.579	1.00	0.00
	ATOM	1152	CG	TYR	A	648	36.029	-4.744	59.134	1.00	0.00
	ATOM	1153		TYR			36.440	-3.796	58.205	1.00	0.00
	MOTA	1154		TYR			36.659	-4.164	56.884	1.00	0.00
2.5	ATOM	1155	CZ	TYR			36.475	-5.484	56.499	1.00	0.00
35	ATOM	1156	OH	TYR			36.636	-5.838	55.177	1.00	0.00
	MOTA	1157	CE2	TYR			36.086	-6.440	57.428	1.00	0.00
	ATOM	1158	CD2	TYR			35.868	-6.070	58.749	1.00	0.00
	MOTA	1159	C	TYR			34.644	-4.554	62.760	1.00	0.00
40	ATOM	1160	0	TYR			35.165	-5.231	63.652	1.00	0.00
40	ATOM	1161	N	VAL			33.814	-3.556	63.019	1.00	0.00
	ATOM	1163	CA	VAL			33.677	-3.041	64.383	1.00	0.00
	ATOM	1164	CB	VAL			32.892	-1.733	64.329	1.00	0.00
	MOTA	1165		VAL			32.756	-1.115	65.717	1.00	0.00
	ATOM	1166	CG2	VAL	A	649	33.541	-0.745	63.366	1.00	0.00

	ATOM	1167	С	VAL	A	649	32.930	-4.047	65.254	1.00	0.00
	ATOM	1168	0	VAL	Α	649	33.470	-4.481	66.282	1.00	0.00
	MOTA	1169	N	SER	A	650	31.895	-4.640	64.676	1.00	0.00
	MOTA	1171	CA	SER	A	650	31.086	-5.614	65.412	1.00	0.00
5	ATOM	1172	CB	SER	A	650	29.793	-5.857	64.640	1.00	0.00
	ATOM	1173	OG	SER	A	650	29.095	-4.622	64.547	1.00	0.00
	ATOM	1174	С	SER	A	650	31.823	-6.938	65.594	1.00	0.00
	ATOM	1175	0	SER	A	650	31.846	-7.458	66.716	1.00	0.00
	ATOM	1176	N	SER	A	651	32.650	-7.298	64.625	1.00	0.00
10	MOTA	1178	CA	SER	A	651	33.413	-8.544	64.722	1.00	0.00
	MOTA	1179	CB	SER	A	651	33.898	-8.952	63.334	1.00	0.00
	MOTA	1180	OG	SER	A	651	34.821	-7.972	62.876	1.00	0.00
	MOTA	1181	С	SER	A	651	34.616	-8.432	65.654	1.00	0.00
	ATOM	1182	0	SER	A	651	34.940	-9.426	66.312	1.00	0.00
15	MOTA	1183	N	GLU	A	652	35.105	-7.229	65.915	1.00	0.00
	ATOM	1185	CA	GLU	A	652	36.214	-7.121	66.865	1.00	0.00
	MOTA	1186	CB	GLU	A	652	37.029	-5.854	66.628	1.00	0.00
	MOTA	1187	CG	GLU	A	652	37.621	-5.783	65.223	1.00	0.00
	MOTA	1188	CD	GLU	A	652	38.337	-7.074	64.835	1.00	0.00
20	MOTA	1189	OE1	GLU	A	652	39.488	-7.223	65.220	1.00	0.00
	MOTA	1190	OE2	GLU	A	652	37.768	-7.812	64.039	1.00	0.00
	MOTA	1191	С	GLU	A	652	35.681	-7.130	68.289	1.00	0.00
	ATOM	1192	0	GLU	A	652	36.244	-7.836	69.133	1.00	0.00
	MOTA	1193	N	LEU	A	653	34.457	-6.653	68.455	1.00	0.00
25	MOTA	1195	CA	LEU	A	653	33.820	-6.700	69.773	1.00	0.00
	MOTA	1196	CB	LEU	Α.	653	32.614	-5.767	69.769	1.00	0.00
	ATOM	1197	CG	LEU	A	653	33.009	-4.322	69.486	1.00	0.00
	ATOM	1198	CD1	LEU	A	653	31.778	-3.450	69.281	1.00	0.00
20	ATOM	1199	CD2	LEU	A	653	33.893	-3.754	70.591	1.00	0.00
30	ATOM	1200	С	LEU	A	653	33.358	-8.119	70.093	1.00	0.00
	ATOM	1201	0	LEU	A	653	33.492	-8.571	71.239	1.00	0.00
	ATOM	1202	N	HIS			33.064	-8.866	69.042	1.00	0.00
	MOTA	1204	CA	HIS				-10.264	69.169	1.00	0.00
25	ATOM	1205	СВ	HIS				-10.685	67.835	1.00	0.00
35	ATOM	1206	CG	HIS				-12.066	67.819	1.00	0.00
	MOTA	1207		HIS				-13.208	67.394	1.00	0.00
	MOTA	1209		HIS				-14.224	67.531	1.00	0.00
	ATOM	1210		HIS				-13.716	68.046	1.00	0.00
40	ATOM	1211		HIS				-12.386	68.227	1.00	0.00
40	ATOM	1212	C	HIS				-11.173	69.496	1.00	0.00
	MOTA	1213	0	HIS				-11.838	70.538	1.00	0.00
	ATOM	1214	N	ARG				-11.030	68.754	1.00	0.00
	ATOM	1216	CA	ARG				-11.938	68.910	1.00	0.00
	MOTA	1217	CB	ARG	Α	655	36.914	-11.868	67.647	1.00	0.00

	MOTA	1218	CG	ARG	A	655	36.146	-12.351	66.425	1.00	0.00
	MOTA	1219	CD	ARG	A	655	37.008	-12.253	65.172	1.00	0.00
	MOTA	1220	NE	ARG	A	655	38.220	-13.079	65.312	1.00	0.00
	MOTA	1221	CZ	ARG	A	655	39.459	-12.590	65.223	1.00	0.00
5	MOTA	1222	NH1	ARG	A	655	39.649	-11.286	65.012	1.00	0.00
	MOTA	1223	NH2	ARG	A	655	40.509	-13.403	65.365	1.00	0.00
	MOTA	1224	C	ARG	A	655	36.955	-11.605	70.105	1.00	0.00
	MOTA	1225	0	ARG	Α	655	37.716	-12.464	70.563	1.00	0.00
	MOTA	1226	N	LEU	A	656	36.832	-10.398	70.628	1.00	0.00
10	MOTA	1228	CA	LEU	A	656	37.541	-10.057	71.861	1.00	0.00
	MOTA	1229	СВ	LEU	A	656	38.003	-8.609	71.766	1.00	0.00
	MOTA	1230	CG	LEU	A	656	38.995	-8.397	70.626	1.00	0.00
	MOTA	1231	CD1	LEU	A	656	39.336	-6.918	70.473	1.00	0.00
	MOTA	1232	CD2	LEU	A	656	40.259	-9.226	70.826	1.00	0.00
15	MOTA	1233	С	LEU	Α	656	36.642	-10.241	73.084	1.00	0.00
	MOTA	1234	0	LEU	A	656	37.136	-10.227	74.220	1.00	0.00
	ATOM	1235	N	GLN	A	657	35.374	-10.533	72.827	1.00	0.00
	MOTA	1237	CA	GLN	A	657	34.333	-10.652	73.855	1.00	0.00
	ATOM	1238	СВ	GLN	A	657	34.489	-11.972	74.598	1.00	0.00
20	ATOM	1239	CG	GLN	A	657	34.336	-13.153	73.649	1.00	0.00
	MOTA	1240	CD	GLN	A	657	34.338	-14.447	74.451	1.00	0.00
	ATOM	1241	OE1	GLN	A	657	34.424	-15.547	73.892	1.00	0.00
	MOTA	1242	NE2	GLN	A	657	34.208	-14.295	75.758	1.00	0.00
	MOTA	1245	C	GLN	A	657	34.383	-9.490	74.831	1.00	0.00
25	ATOM	1246	0	GLN	A	657	34.536	-9.690	76.041	1.00	0.00
	MOTA	1247	N	VAL	A	658	34.190	-8.295	74.298	1.00	0.00
	ATOM	1249	CA	VAL	A	658	34.338	-7.073	75.095	1.00	0.00
	ATOM	1250	CB	VAL	A	658	34.309	-5.890	74.127	1.00	0.00
	ATOM	1251	CG1	VAL	A	658	34.573	-4.560	74.828	1.00	0.00
30	MOTA	1252	CG2	VAL	A	658	35.324	-6.094	73.011	1.00	0.00
	MOTA	1253	C	VAL	A	658	33.219	-6.953	76.125	1.00	0.00
	ATOM	1254	0	VAL	A	658	32.049	-7.210	75.818	1.00	0.00
	MOTA	1255	N	SER	A	659	33.592	-6.660	77.360	1.00	0.00
	MOTA	1257	CA	SER	A	659	32.586	-6.398	78.394	1.00	0.00
35	MOTA	1258	CB	SER	A	659	33.231	-6.381	79.775	1.00	0.00
	MOTA	1259	OG	SER	A	659	33.860	-5.116	79.950	1.00	0.00
	MOTA	1260	C	SER	A	659	31.954	-5.036	78.149	1.00	0.00
	MOTA	1261	0	SER	A	659	32.594	-4.138	77.585	1.00	0.00
	MOTA	1262	N	TYR	A	660	30.798	-4.820	78.754	1.00	0.00
40	MOTA	1264	CA	TYR	A	660	30.094	-3.536	78.604	1.00	0.00
	MOTA	1265	CB	TYR	A	660	28.631	-3.697	79.031	1.00	0.00
	ATOM	1266	CG	TYR	A	660	28.387	-4.075	80.495	1.00	0.00
	ATOM	1267	CD1	TYR	A	660	28.328	-5.412	80.874	1.00	0.00
	ATOM	1268	CE1	TYR	A	660	28.124	-5.750	82.205	1.00	0.00

	MOTA	1269	CZ	TYR A	660	27.962	-4.749	83.154	1.00	0.00
	MOTA	1270	ОН	TYR A	660	27.954	-5.075	84.492	1.00	0.00
	ATOM	1271	CE2	TYR A	660	27.981	-3.414	82.774	1.00	0.00
	MOTA	1272	CD2	TYR A	660	28.186	-3.078	81.443	1.00	0.00
5	ATOM	1273	C	TYR A	660	30.769	-2.427	79.414	1.00	0.00
	ATOM	1274	0	TYR A	660	30.727	-1.258	79.014	1.00	0.00
	ATOM	1275	N	GLU A	661	31.580	-2.821	80.382	1.00	0.00
	ATOM	1277	CA	GLU A	661	32.356	-1.863	81.164	1.00	0.00
	ATOM	1278	CB	GLU A	661	32.890	-2.538	82.428	1.00	0.00
10	ATOM	1279	CG	GLU A	661	31.786	-2.930	83.412	1.00	0.00
	MOTA	1280	CD	GLU A	661	31.495	-4.430	83.375	1.00	0.00
	MOTA	1281	OE1	GLU A	661	31.605	-5.001	82.294	1.00	0.00
	ATOM	1282	OE2	GLU A	661	31.047	-4.947	84.388	1.00	0.00
	ATOM	1283	C	GLU A	661	33.516	-1.338	80.328	1.00	0.00
15	ATOM	1284	0	GLU A	661	33.669	-0.116	80.202	1.00	0.00
	MOTA	1285	N	GLU A	662	34.168	-2.226	79.589	1.00	0.00
	MOTA	1287	CA	GLU A	662	35.237	-1.783	78.694	1.00	0.00
	MOTA	1288	CB	GLU A	662	35.978	-3.010	78.183	1.00	0.00
	MOTA	1289	CG	GLU A	662	36.714	-3.716	79.313	1.00	0.00
20	MOTA	1290	CD	GLU A	662	37.161	-5.095	78.849	1.00	0.00
	ATOM	1291	OE1	GLU A	662	36.307	-5.800	78.324	1.00	0.00
	ATOM	1292	OE2	GLU A	662	38.346	-5.380	78.933	1.00	0.00
	MOTA	1293	С	GLU A	662	34.684	-0.993	77.516	1.00	0.00
	MOTA	1294	0	GLU A	662	35.196	0.101	77.254	1.00	0.00
25	MOTA	1295	N	TYR A	663	33.509	-1.369	77.035	1.00	0.00
	ATOM	1297	CA	TYR A	663	32.888	-0.642	75.925	1.00	0.00
	MOTA	1298	CB	TYR A	663	31.658	-1.414	75.460	1.00	0.00
	MOTA	1299	CG	TYR A	663	30.799	-0.633	74.468	1.00	0.00
	MOTA	1300	CD1	TYR A	663	31.220	-0.482	73.154	1.00	0.00
30	MOTA	1301	CE1	TYR A	663	30.448	0.246	72.259	1.00	0.00
	MOTA	1302	CZ	TYR A	663	29.258	0.822	72.680	1.00	0.00
	MOTA	1303	OH	TYR A	663	28.502	1.554	71.793	1.00	0.00
	MOTA	1304	CE2	TYR A	663	28.828	0.664	73.990	1.00	0.00
0.7	MOTA	1305	CD2	TYR A	663	29.599	-0.067	74.883	1.00	0.00
35	MOTA	1306	С	TYR A	663	32.464	0.772	76.312	1.00	0.00
	ATOM	1307	0	TYR A	663	32.767	1.712	75.568	1.00	0.00
	MOTA	1308	N	LEU A	664	32.006	0.957	77.539	1.00	0.00
	MOTA	1310	CA	LEU A	664	31.543	2.281	77.966	1.00	0.00
4.0	ATOM	1311	CB	LEU A	664	30.705	2.125	79.234	1.00	0.00
40	ATOM	1312	CG	LEU A		29.195	2.219	78.995	1.00	0.00
	ATOM	1313	CD1	LEU A	664	28.682	1.260	77.927	1.00	0.00
	MOTA	1314	CD2	LEU A	664	28.439	1.986	80.294	1.00	0.00
	MOTA	1315	С	LEU A	664	32.712	3.222	78.235	1.00	0.00
	MOTA	1316	0	LEU A	664	32.674	4.380	77.794	1.00	0.00

	MOTA	1317	N	CYS 3	A	665	33.828	2.665	78.677	1.00	0.00
	MOTA	1319	CA	CYS 3	A	665	35.008	3.493	78.920	1.00	0.00
	ATOM	1320	CB	CYS 2	A	665	35.919	2.760	79.890	1.00	0.00
	ATOM	1321	SG	CYS 3	A	665	35.186	2.404	81.503	1.00	0.00
5	ATOM	1322	C	CYS .	A	665	35.751	3.812	77.623	1.00	0.00
	ATOM	1323	0	CYS 2	A	665	36.166	4.962	77.434	1.00	0.00
	ATOM	1324	N	MET .	Α	666	35.649	2.927	76.644	1.00	0.00
	ATOM	1326	CA	MET .	A	666	36.238	3.199	75.329	1.00	0.00
	MOTA	1327	CB	MET .	A	666	36.305	1.897	74.543	1.00	0.00
10	MOTA	1328	CG	MET .	A	666	37.277	0.904	75.160	1.00	0.00
	MOTA	1329	SD	MET .	Α	666	37.151	-0.776	74.512	1.00	0.00
	ATOM	1330	CE	MET .	A	666	37.494	-0.446	72.770	1.00	0.00
	ATOM	1331	С	MET	Α	666	35.396	4.188	74.536	1.00	0.00
	MOTA	1332	0	MET	A	666	35.958	5.085	73.902	1.00	0.00
15	ATOM	1333	N	LYS	A	667	34.097	4.188	74.779	1.00	0.00
	ATOM	1335	CA	LYS	A	667	33.199	5.094	74.067	1.00	0.00
	MOTA	1336	СВ	LYS	A	667	31.787	4.547	74.215	1.00	0.00
	MOTA	1337	CG	LYS	A	667	30.755	5.383	73.466	1.00	0.00
	MOTA	1338	CD	LYS	Α	667	29.323	4.883	73.671	1.00	0.00
20	MOTA	1339	CE	LYS	Α	667	28.649	5.412	74.942	1.00	0.00
	ATOM	1340	NZ	LYS	Α	667	29.218	4.876	76.192	1.00	0.00
	ATOM	1341	С	LYS	A	667	33.283	6.519	74.609	1.00	0.00
	MOTA	1342	0	LYS	A	667	33.311	7.464	73.811	1.00	0.00
	MOTA	1343	N	THR	A	668	33.599	6.665	75.888	1.00	0.00
25	MOTA	1345	CA	THR	A	668	33.818	8.020	76.403	1.00	0.00
	ATOM	1346	CB	THR	A	668	33.497	8.105	77.895	1.00	0.00
	ATOM	1347	OG1	THR	A	668	33.777	9.433	78.313	1.00	0.00
	MOTA	1348	CG2	THR	A	668	34.321	7.157	78.755	1.00	0.00
	MOTA	1349	С	THR	A	668	35.238	8.501	76.095	1.00	0.00
30	ATOM	1350	0	THR	A	668	35.429	9.701	75.866	1.00	0.00
	ATOM	1351	N	LEU	A	669	36.125	7.567	75.784	1.00	0.00
	ATOM	1353	CA	LEU	A	669	37.451	7.923	75.277	1.00	0.00
	MOTA	1354	CB	LEU	A	669	38.407	6.756	75.489	1.00	0.00
	MOTA	1355	CG	LEU	A	669	38.838	6.653	76.945	1.00	0.00
35	MOTA	1356	CD1	LEU	A	669	39.642	5.381	77.188	1.00	0.00
	MOTA	1357	CD2	LEU	A	669	39.635	7.888	77.348	1.00	0.00
	MOTA	1358	С	LEU	A	669	37.419	8.286	73.796	1.00	0.00
	MOTA	1359	0	LEU	A	669	38.247	9.098	73.378	1.00	0.00
	MOTA	1360	N	LEU	Α	670	36.348	7.935	73.096	1.00	0.00
40	ATOM	1362	CA	LEU	A	670	36.198	8.327	71.687	1.00	0.00
	MOTA	1363	CB	LEU	A	670	35.195	7.409	71.015	1.00	0.00
	MOTA	1364	CG	LEU	A	670	35.713	5.986	71.005	1.00	0.00
	MOTA	1365	CD1	LEU	A	670	34.660	5.048	70.441	1.00	0.00
	MOTA	1366	CD2	LEU	A	670	37.025	5.893	70.234	1.00	0.00

	ATOM	1367	С	LEU A	A 670	35.704	9.756	71.560	1.00	0.00
	ATOM	1368	0	LEU A	A 670	36.144	10.482	70.659	1.00	0.00
	ATOM	1369	N	LEU A	A 671	35.085	10.230	72.629	1.00	0.00
	MOTA	1371	CA	LEU A	A 671	34.688	11.635	72.724	1.00	0.00
5	ATOM	1372	CB	LEU A	A 671	33.669	11.721	73.857	1.00	0.00
	ATOM	1373	CG	LEU A	A 671	33.128	13.127	74.083	1.00	0.00
	ATOM	1374	CD1	LEU A	A 671	32.411	13.648	72.844	1.00	0.00
	ATOM	1375	CD2	LEU A	4 671	32.189	13.138	75.283	1.00	0.00
	ATOM	1376	C	LEU A	A 671	35.912	12.500	73.040	1.00	0.00
10	ATOM	1377	0	LEU A	A 671	35.968	13.679	72.676	1.00	0.00
	ATOM	1378	N	LEU A	4 672	36.949	11.845	73.534	1.00	0.00
	ATOM	1380	CA	LEU A	4 672	38.228	12.482	73.844	1.00	0.00
	ATOM	1381	CB	LEU A	4 672	38.642	11.993	75.228	1.00	0.00
	MOTA	1382	CG	LEU A	4 672	37.539	12.238	76.254	1.00	0.00
15	MOTA	1383	CD1	LEU A	A 672	37.761	11.428	77.524	1.00	0.00
	MOTA	1384	CD2	LEU A	4 672	37.371	13.720	76.568	1.00	0.00
	ATOM	1385	С	LEU A	A 672	39.321	12.121	72.826	1.00	0.00
	ATOM	1386	0	LEU A	A 672	40.502	12.367	73.092	1.00	0.00
	ATOM	1387	N	SER A	A 673	38.950	11.557	71.684	1.00	0.00
20	ATOM	1389	CA	SER A	A 673	39.957	11.067	70.725	1.00	0.00
	ATOM	1390	СВ	SER A	673	39.403	9.861	69.974	1.00	0.00
	ATOM	1391	OG	SER A	673	39.316	8.768	70.872	1.00	0.00
	ATOM	1392	С	SER A	673	40.419	12.074	69.675	1.00	0.00
	ATOM	1393	0	SER A	673	41.293	11.728	68.869	1.00	0.00
25	ATOM	1394	N	SER A	674	39.854	13.269	69.632	1.00	0.00
	ATOM	1396	CA	SER A	674	40.263	14.210	68.577	1.00	0.00
	MOTA	1397	CB	SER A	674	39.311	14.072	67.394	1.00	0.00
	MOTA	1398	OG	SER A	674	39.394	12.744	66.897	1.00	0.00
	ATOM	1399	C	SER A	674	40.258	15.664	69.030	1.00	0.00
30	ATOM	1400	0	SER A	674	39.212	16.210	69.399	1.00	0.00
	MOTA	1401	N	VAL A	675	41.422	16.286	68.964	1.00	0.00
	MOTA	1403	CA	VAL A	675	41.522	17.728	69.218	1.00	0.00
	MOTA	1404	CB	VAL A	675	42.703	17.996	70.152	1.00	0.00
	MOTA	1405	CG1	VAL A	675	42.400	17.553	71.576	1.00	0.00
35	MOTA	1406	CG2	VAL A	675	43.990	17.360	69.644	1.00	0.00
	MOTA	1407	C	VAL A	675	41.698	18.466	67.892	1.00	0.00
	MOTA	1408	0	VAL A	675	41.985	17.835	66.870	1.00	0.00
	MOTA	1409	N	PRO A	676	41.413	19.756	67.863	1.00	0.00
	MOTA	1410	CA	PRO A	676	41.889	20.576	66.750	1.00	0.00
40	MOTA	1411	CB	PRO A	676	41.325	21.942	66.995	1.00	0.00
	MOTA	1412	CG	PRO A	676	40.664	21.967	68.366	1.00	0.00
	ATOM	1413	CD	PRO A	676	40.797	20.558	68.922	1.00	0.00
	MOTA	1414	C	PRO A	676	43.411	20.598	66.756	1.00	0.00
	MOTA	1415	0	PRO A	676	44.029	20.390	67.807	1.00	0.00

	MOTA	1416	N	LYS	A	677	44.010	20.965	65.635	1.00	0.00
	MOTA	1418	CA	LYS	A	677	45.478	21.035	65.565	1.00	0.00
	MOTA	1419	CB	LYS	A	677	45.874	21.122	64.094	1.00	0.00
	MOTA	1420	CG	LYS	A	677	47.359	20.847	63.896	1.00	0.00
5	MOTA	1421	CD	LYS	A	677	47.714	19.452	64.398	1.00	0.00
	MOTA	1422	CE	LYS	A	677	49.199	19.161	64.234	1.00	0.00
	MOTA	1423	NZ	LYS	A	677	49.523	17.811	64.721	1.00	0.00
	MOTA	1424	C	LYS	A	677	46.051	22.238	66.336	1.00	0.00
	MOTA	1425	0	LYS	A	677	47.238	22.253	66.680	1.00	0.00
10	MOTA	1426	N	ASP	A	678	45.185	23.159	66.730	1.00	0.00
	MOTA	1428	CA	ASP	A	678	45.584	24.288	67.577	1.00	0.00
	ATOM	1429	CB	ASP	A	678	44.738	25.503	67.209	1.00	0.00
	ATOM	1430	CG	ASP	A	678	44.931	25.879	65.742	1.00	0.00
	ATOM	1431	OD1	ASP	A	678	44.166	25.385	64.922	1.00	0.00
15	ATOM	1432	OD2	ASP	A	678	45.846	26.640	65.465	1.00	0.00
	ATOM	1433	С	ASP	A	678	45.381	23.999	69.069	1.00	0.00
	ATOM	1434	0	ASP	A	678	45.724	24.842	69.905	1.00	0.00
	ATOM	1435	N	GLY	A	679	44.829	22.840	69.400	1.00	0.00
	MOTA	1437	CA	GLY	A	679	44.537	22.520	70.801	1.00	0.00
20	MOTA	1438	С	GLY	A	679	43.230	23.158	71.271	1.00	0.00
	MOTA	1439	0	GLY	A	679	42.640	24.000	70.582	1.00	0.00
	ATOM	1440	N	LEU	A	680	42.752	22.677	72.406	1.00	0.00
	MOTA	1442	CA	LEU	A	680	41.547	23.224	73.039	1.00	0.00
	ATOM	1443	CB	LEU	A	680	40.853	22.116	73.820	1.00	0.00
25	MOTA	1444	CG	LEU	A	680	40.336	21.013	72.907	1.00	0.00
	MOTA	1445	CD1	LEU	A	680	39.795	19.854	73.729	1.00	0.00
	MOTA	1446	CD2	LEU	A	680	39.263	21.541	71.961	1.00	0.00
	MOTA	1447	С	LEU	A	680	41.896	24.355	73.999	1.00	0.00
	ATOM	1448	0	LEU	A	680	43.008	24.412	74.539	1.00	0.00
30	MOTA	1449	N	LYS	A	681	40.907	25.182	74.296	1.00	0.00
	MOTA	1451	CA	LYS	A	681	41.126	26.285	75.241	1.00	0.00
	MOTA	1452	СВ	LYS	A	681	39.953	27.253	75.161	1.00	0.00
	MOTA	1453	CG	LYS	A	681	40.145	28.427	76.116	1.00	0.00
~ "	ATOM	1454	CD	LYS	A	681	39.004	29.427	75.994	1.00	0.00
35	ATOM	1455	CE	LYS	A	681	39.141	30.567	76.995	1.00	0.00
	MOTA	1456	NZ	LYS	A	681	38.007	31.499	76.875	1.00	0.00
	ATOM	1457	С	LYS	A	681	41.271	25.748	76.663	1.00	0.00
	ATOM	1458	0	LYS	A	681	42.271	26.031	77.333	1.00	0.00
	MOTA	1459	N	SER	A	682	40.419	24.800	77.017	1.00	0.00
40	MOTA	1461	CA	SER	Α	682	40.578	24.096	78.295	1.00	0.00
	ATOM	1462	CB	SER	A	682	39.226	23.905	78.985	1.00	0.00
	MOTA	1463	OG	SER	A	682	38.369	23.114	78.171	1.00	0.00
	ATOM	1464	С	SER	A	682	41.279	22.758	78.070	1.00	0.00
	MOTA	1465	0	SER	A	682	40.849	21.718	78.590	1.00	0.00

	MOTA	1466	N	GLN A	683	42.462	22.836	77.476	1.00	0.00
	MOTA	1468	CA	GLN A	683	43.238	21.646	77.107	1.00	0.00
	MOTA	1469	CB	GLN A	683	44.399	22.101	76.227	1.00	0.00
	MOTA	1470	CG	GLN A	683	45.280	20.941	75.774	1.00	0.00
5	MOTA	1471	CD	GLN A	683	44.511	20.017	74.835	1.00	0.00
	MOTA	1472	OE1	GLN A	683	43.908	20.471	73.854	1.00	0.00
	MOTA	1473	NE2	GLN A	683 .	44.543	18.734	75.143	1.00	0.00
	MOTA	1476	С	GLN A	683	43.800	20.911	78.320	1.00	0.00
	MOTA	1477	0	GLN A	683	43.781	19.675	78.332	1.00	0.00
10	MOTA	1478	N	GLU A	684	43.994	21.625	79.418	1.00	0.00
	MOTA	1480	CA	GLU A	684	44.466	20.976	80.645	1.00	0.00
	MOTA	1481	CB	GLU A	684	44.894	22.049	81.636	1.00	0.00
	ATOM	1482	CG	GLU A	684	45.348	21.434	82.957	1.00	0.00
	ATOM	1483	CD	GLU A	684	45.646	22.541	83.962	1.00	0.00
15	ATOM	1484	OE1	GLU A	684	45.187	23.649	83.718	1.00	0.00
	ATOM	1485	OE2	GLU A	684	46.415	22.292	84.879	1.00	0.00
	MOTA	1486	C	GLU A	684	43.365	20.129	81.277	1.00	0.00
	ATOM	1487	0	GLU A	684	43.616	18.957	81.592	1.00	0.00
	ATOM	1488	N	LEU A	685	42.130	20.576	81.116	1.00	0.00
20	MOTA	1490	CA	LEU A	685	40.990	19.852	81.678	1.00	0.00
	ATOM	1491	CB	LEU A	685	39.778	20.773	81.840	1.00	0.00
	MOTA	1492	CG	LEU A	685	39.888	21.764	83.001	1.00	0.00
	ATOM	1493	CD1	LEU A	685	40.555	23.076	82.590	1.00	0.00
	ATOM	1494	CD2	LEU A	685	38.498	22.074	83.546	1.00	0.00
25	MOTA	1495	С	LEU A	685	40.624	18.688	80.771	1.00	0.00
	MOTA	1496	0	LEU A	685	40.301	17.605	81.275	1.00	0.00
	ATOM	1497	N	PHE A	686	40.980	18.815	79.503	1.00	0.00
	ATOM	1499	CA	PHE A	686	40.797	17.720	78.552	1.00	0.00
	MOTA	1500	CB	PHE A	686	40.929	18.281	77.144	1.00	0.00
30	MOTA	1501	CG	PHE A	686	40.810	17.222	76.056	1.00	0.00
	MOTA	1502	CD1	PHE A	686	39.556	16.827	75.612	1.00	0.00
	ATOM	1503	CE1	PHE A	686	39.448	15.864	74.617	1.00	0.00
	ATOM	1504	CZ	PHE A	686	40.590	15.293	74.075	1.00	0.00
	ATOM	1505	CE2	PHE A	686	41.842	15.681	74.528	1.00	0.00
35	MOTA	1506	CD2	PHE A	686	41.951	16.644	75.518	1.00	0.00
	MOTA	1507	С	PHE A	686	41.834	16.622	78.764	1.00	0.00
	MOTA	1508	0	PHE A	686	41.484	15.435	78.734	1.00	0.00
	MOTA	1509	N	ASP A	687	43.009	17.009	79.235	1.00	0.00
	MOTA	1511	CA	ASP A	687	44.052	16.032	79.554	1.00	0.00
40	MOTA	1512	СВ	ASP A	687	45.367	16.760	79.832	1.00	0.00
	MOTA	1513	CG	ASP A	687	45.820	17.617	78.652	1.00	0.00
	MOTA	1514	OD1	ASP A	687	45.576	17.223	77.517	1.00	0.00
	MOTA	1515	OD2	ASP A	687	46.465	18.627	78.900	1.00	0.00
	MOTA	1516	С	ASP A	687	43.666	15.261	80.809	1.00	0.00

	MOTA	1517	0	ASP	A	687	43.729	14.025	80.821	1.00	0.00
	ATOM	1518	N	GLU	A	688	43.004	15.955	81.719	1.00	0.00
	MOTA	1520	CA	GLU	A	688	42.563	15.337	82.968	1.00	0.00
	ATOM	1521	СВ	GLU	A	688	42.176	16.455	83.929	1.00	0.00
5	ATOM	1522	CG	GLU	Α	688	43.381	17.329	84.258	1.00	0.00
	ATOM	1523	CD	GLU	A	688	42.945	18.576	85.021	1.00	0.00
	MOTA	1524	OE1	GLU	A	688	42.967	19.647	84.424	1.00	0.00
	MOTA	1525	OE2	GLU	A	688	42.663	18.453	86.203	1.00	0.00
	MOTA	1526	С	GLU	A	688	41.374	14.400	82.764	1.00	0.00
10	ATOM	1527	0	GLU	A	688	41.423	13.265	83.256	1.00	0.00
	ATOM	1528	N	ILE	A	689	40.464	14.748	81.867	1.00	0.00
	MOTA	1530	CA	ILE	A	689	39.301	13.881	81.659	1.00	0.00
	MOTA	1531	CB	ILE	A	689	38.126	14.675	81.078	1.00	0.00
	MOTA	1532	CG2	ILE	Ά	689	38.474	15.414	79.794	1.00	0.00
15	MOTA	1533	CG1	ILE	A	689	36.936	13.762	80.833	1.00	0.00
	ATOM	1534	CD1	ILE	A	689	35.876	14.443	79.978	1.00	0.00
	ATOM	1535	С	ILE	A	689	39.631	12.667	80.789	1.00	0.00
	MOTA	1536	0	ILE	A	689	39.161	11.566	81.112	1.00	0.00
	MOTA	1537	N	ARG	A	690	40.623	12.770	79.917	1.00	0.00
20	ATOM	1539	CA	ARG	A	690	40.971	11.579	79.148	1.00	0.00
	ATOM	1540	CB	ARG	A	690	41.551	11.949	77.783	1.00	0.00
	MOTA	1541	CG	ARG	A	690	42.895	12.665	77.836	1.00	0.00
	ATOM	1542	CD	ARG	A	690	43.397	12.919	76.422	1.00	0.00
	ATOM	1543	NE	ARG	A	690	43.374	11.661	75.656	1.00	0.00
25	ATOM	1544	CZ	ARG	A	690	44.370	11.256	74.865	1.00	0.00
	ATOM	1545	NH1	ARG	A	690	45.445	12.029	74.694	1.00	0.00
	MOTA	1546	NH2	ARG	A	690	44.276	10.090	74.220	1.00	0.00
	ATOM	1547	С	ARG	A	690	41.909	10.679	79.944	1.00	0.00
20	ATOM	1548	0	ARG			41.750	9.456	79.873	1.00	0.00
30	ATOM	1549	N	MET	A	691	42.589	11.250	80.927	1.00	0.00
	ATOM	1551	CA	MET			43.444	10.447	81.793	1.00	0.00
	ATOM	1552	CB	MET			44.382	11.378	82.550	1.00	0.00
	ATOM	1553	CG	MET			45.336	10.604	83.450	1.00	0.00
25	MOTA	1554	SD	MET			46.473	11.625	84.412	1.00	0.00
35	ATOM	1555	CE	MET			47.263	12.517	83.052	1.00	0.00
	ATOM	1556	C	MET			42.608	9.650	82.784	1.00	0.00
	MOTA	1557	0	MET			42.790	8.429	82.870	1.00	0.00
	MOTA	1558	N	THR			41.532	10.242	83.281	1.00	0.00
40	ATOM	1560	CA	THR			40.697	9.504	84.231	1.00	0.00
40	ATOM	1561	CB	THR			39.910	10.464	85.122	1.00	0.00
	ATOM	1562		THR			39.130	9.675	86.010	1.00	0.00
	ATOM	1563		THR			38.960	11.372	84.350	1.00	0.00
	ATOM	1564	C	THR			39.759	8.512	83.544	1.00	0.00
	ATOM	1565	0	THR	A	692	39.461	7.473	84.142	1.00	0.00

	ATOM	1566	N	TYR	A	693	39.505	8.671	82.254	1.00	0.00
	MOTA	1568	CA	TYR	A	693	38.719	7.647	81.564	1.00	0.00
	MOTA	1569	CB	TYR	A	693	37.835	8.284	80.503	1.00	0.00
	MOTA	1570	CG	TYR	A	693	36.652	9.014	81.130	1.00	0.00
5	ATOM	1571	CD1	TYR	A	693	36.047	8.482	82.262	1.00	0.00
	ATOM	1572	CE1	TYR	A	693	34.978	9.139	82.855	1.00	0.00
	ATOM	1573	CZ	TYR	A	693	34.511	10.325	82.309	1.00	0.00
	ATOM	1574	ОН	TYR	A	693	33.531	11.038	82.965	1.00	0.00
	ATOM	1575	CE2	TYR	Α	693	35.096	10.847	81.164	1.00	0.00
10	ATOM	1576	CD2	TYR	Α	693	36.167	10.189	80.572	1.00	0.00
	MOTA	1577	С	TYR	Α	693	39.602	6.536	81.004	1.00	0.00
	MOTA	1578	0	TYR	A	693	39.139	5.395	80.894	1.00	0.00
	ATOM	1579	N	ILE	A	694	40.900	6.789	80.936	1.00	0.00
	ATOM	1581	CA	ILE	Α	694	41.857	5.715	80.653	1.00	0.00
15	MOTA	1582	СВ	ILE	Α	694	43.156	6.329	80.133	1.00	0.00
	MOTA	1583	CG2	ILE	A	694	44.301	5.323	80.167	1.00	0.00
	ATOM	1584	CG1	ILE	Α	694	42.973	6.874	78.722	1.00	0.00
	MOTA	1585	CD1	ILE	Α	694	44.247	7.534	78.205	1.00	0.00
	MOTA	1586	С	ILE	Α	694	42.122	4.900	81.918	1.00	0.00
20	ATOM	1587	0	ILE	A	694	42.183	3.666	81.846	1.00	0.00
	MOTA	1588	N	LYS	A	695	41.981	5.540	83.070	1.00	0.00
	MOTA	1590	CA	LYS	A	695	42.095	4.818	84.344	1.00	0.00
	MOTA	1591	CB	LYS	A	695	42.345	5.819	85.467	1.00	0.00
	ATOM	1592	CG	LYS	A	695	43.629	6.610	85.248	1.00	0.00
25	MOTA	1593	CD	LYS	A	695	44.860	5.711	85.232	1.00	0.00
	MOTA	1594	CE	LYS	A	695	46.114	6.518	84.918	1.00	0.00
	MOTA	1595	NZ	LYS	A	695	46.295	7.604	85.894	1.00	0.00
	MOTA	1596	C	LYS	A	695	40.816	4.045	84.646	1.00	0.00
	MOTA	1597	0	LYS	A	695	40.882	2.914	85.143	1.00	0.00
30	MOTA	1598	N	GLU .	A	696	39.703	4.536	84.126	1.00	0.00
	MOTA	1600	CA	GLU .	A	696	38.431	3.831	84.276	1.00	0.00
	MOTA	1601	CB	GLU .	A	696	37.310	4.828	84.007	1.00	0.00
	ATOM	1602	CG	GLU .	A	696	36.035	4.466	84.758	1.00	0.00
	MOTA	1603	CD	GLU .	A	696	36.250	4.648	86.260	1.00	0.00
35	ATOM	1604	OE1	GLU .	A	696	37.071	5.483	86.614	1.00	0.00
	ATOM	1605	OE2	GLU .	A	696	35.496	4.061	87.028	1.00	0.00
	MOTA	1606	C	GLU .	A	696	38.336	2.661	83.296	1.00	0.00
	MOTA	1607	0	GLU .	A	696	37.782	1.615	83.655	1.00	0.00
	ATOM	1608	N	LEU .	A	697	39.057	2.754	82.188	1.00	0.00
40	ATOM	1610	CA	LEU .	A	697	39.173	1.624	81.262	1.00	0.00
	ATOM	1611	CB	LEU 2	A	697	39.714	2.132	79.929	1.00	0.00
	ATOM	1612	CG	LEU .	A	697	39.845	1.007	78.906	1.00	0.00
	ATOM	1613	CD1	LEU 2	A	697	38.505	0.324	78.662	1.00	0.00
	ATOM	1614	CD2	LEU .	A	697	40.432	1.521	77.596	1.00	0.00

	MOTA	1615	С	LEU 2	A	697	40.118	0.578	81.843	1.00	0.00
	ATOM	1616	0	LEU ;	A	697	39.818	-0.618	81.777	1.00	0.00
	ATOM	1617	N	GLY Z	Α	698	41.099	1.042	82.599	1.00	0.00
	ATOM	1619	CA	GLY A	A	698	41.971	0.162	83.383	1.00	0.00
5	MOTA	1620	С	GLY 2	Α	698	41.155	-0.699	84.343	1.00	0.00
	ATOM	1621	0	GLY Z	Ą	698	41.166	~1.928	84.213	1.00	0.00
	ATOM	1622	N	LYS A	Ą	699	40.282	-0.063	85.112	1.00	0.00
	MOTA	1624	CA	LYS A	A	699	39.420	-0.783	86.065	1.00	0.00
	MOTA	1625	СВ	LYS A	Α	699	38.610	0.252	86.837	1.00	0.00
10	MOTA	1626	CG	LYS A	Ą	699	39.505	1.316	87.455	1.00	0.00
	MOTA	1627	CD	LYS A	Α	699	38.683	2.417	88.113	1.00	0.00
	MOTA	1628	CE	LYS A	Ą	699	39.575	3.563	88.575	1.00	0.00
	MOTA	1629	NZ	LYS A	A	699	40.615	3.081	89.497	1.00	0.00
	ATOM	1630	C	LYS A	A	699	38.433	-1.730	85.378	1.00	0.00
15	ATOM	1631	0	LYS A	4	699	38.276	-2.873	85.826	1.00	0.00
	ATOM	1632	N	ALA A	A	700	37.986	-1.357	84.188	1.00	0.00
	ATOM	1634	CA	ALA A	A	700	37.053	-2.183	83.417	1.00	0.00
	ATOM	1635	СВ	ALA A	4	700	36.418	-1.286	82.365	1.00	0.00
	ATOM	1636	C	ALA A	4	700	37.713	-3.382	82.735	1.00	0.00
20	ATOM	1637	0	ALA A	7	700	37.030	-4.363	82.412	1.00	0.00
	MOTA	1638	N	ILE A	7	701	39.028	-3.347	82.617	1.00	0.00
	ATOM	1640	CA	ILE A	7	701	39.787	-4.479	82.091	1.00	0.00
	MOTA	1641	СВ	ILE A	7	701	40.988	-3.906	81.354	1.00	0.00
	MOTA	1642	CG2	ILE A	7	701	41.973	-4.994	80.961	1.00	0.00
25	MOTA	1643	CG1	ILE A	7	701	40.524	-3.137	80.126	1.00	0.00
	MOTA	1644	CD1	ILE A	7	701	41.686	-2.439	79.438	1.00	0.00
	MOTA	1645	С	ILE A	7	701	40.232	-5.396	83.224	1.00	0.00
	MOTA	1646	0	ILE A	7	701	40.054	-6.618	83.111	1.00	0.00
	MOTA	1647	N	VAL A	7	702	40.413	-4.802	84.395	1.00	0.00
30	ATOM	1649	CA	VAL A	7	702	40.795	-5.550	85.605	1.00	0.00
	MOTA	1650	CB	VAL A	7	702	41.270	-4.545	86.659	1.00	0.00
	MOTA	1651	CG1	VAL A	Ā	702	41.485	-5.186	88.025	1.00	0.00
	MOTA	1652	CG2	VAL A	7	702	42.541	-3.832	86.217	1.00	0.00
	MOTA	1653	C	VAL A	7	702	39.641	-6.385	86.170	1.00	0.00
35	MOTA	1654	0	VAL A	7	702	39.893	-7.418	86.804	1.00	0.00
	ATOM	1655	N	LYS A	7	703	38.422	-6.100	85.736	1.00	0.00
	MOTA	1657	CA	LYS A	7	703	37.280	-6.927	86.141	1.00	0.00
	MOTA	1658	CB	LYS A	1	703	35.990	-6.279	85.657	1.00	0.00
	MOTA	1659	CG	LYS A	7	703	35.699	-4.935	86.305	1.00	0.00
40	ATOM	1660	CD	LYS A	7	703	34.310	-4.472	85.883	1.00	0.00
	ATOM	1661	CE	LYS A	L	703	33.924	-3.141	86.508	1.00	0.00
	MOTA	1662	NZ	LYS A	_	703	34.768	-2.050	86.006	1.00	0.00
	MOTA	1663	C	LYS A	L	703	37.316	-8.335	85.543	1.00	0.00
	MOTA	1664	0	LYS A		703	36.806	-9.271	86.170	1.00	0.00

	MOTA	1665	N	ARG	A	704	37.927	-8.503	84.380	1.00	0.00
	MOTA	1667	CA	ARG	A	704	37.996	-9.844	83.793	1.00	0.00
	MOTA	1668	CB	ARG	A	704	37.374	-9.815	82.402	1.00	0.00
	MOTA	1669	CG	ARG	A	704	35.948	-9.277	82.435	1.00	0.00
5	MOTA	1670	CD	ARG	A	704	35.251	-9.473	81.093	1.00	0.00
	ATOM	1671	NE	ARG	A	704	36.041	-8.896	79.994	1.00	0.00
	MOTA	1672	CZ	ARG	А	704	36.356	-9.590	78.899	1.00	0.00
	ATOM	1673	NH1	ARG	A	704	35.981	-10.866	78.786	1.00	0.00
	ATOM	1674	NH2	ARG	A	704	37.070	-9.018	77.929	1.00	0.00
10	MOTA	1675	C	ARG	A	704	39.432	-10.344	83.692	1.00	0.00
	MOTA	1676	0	ARG	A	704	39.682	-11.556	83.660	1.00	0.00
	MOTA	1677	N	GLU	Α	705	40.375	-9.420	83.679	1.00	0.00
	ATOM	1679	CA	GLU	А	705	41.780	-9.806	83.537	1.00	0.00
	MOTA	1680	CB	GLU	A	705	42.485	-8.792	82.649	1.00	0.00
15	MOTA	1681	CG	GLU	A	705	41.793	-8.633	81.298	1.00	0.00
	ATOM	1682	CD	GLU	A	705	41.769	-9.943	80.515	1.00	0.00
	MOTA	1683	OE1	GLU	A	705	42.762	-10.659	80.548	1.00	0.00
	MOTA	1684	OE2	GLU	А	705	40.754	-10.202	79.886	1.00	0.00
	MOTA	1685	C	GLU	A	705	42.469	-9.883	84.892	1.00	0.00
20	MOTA	1686	0	GLU	A	705	43.165	-8.952	85.313	1.00	0.00
	MOTA	1687	N	GLY	A	706	42.318	-11.041	85.516	1.00	0.00
	ATOM	1689	CA	GLY	A	706	42.921	-11.312	86.826	1.00	0.00
	ATOM	1690	С	GLY	A	706	44.444	-11.303	86.755	1.00	0.00
	MOTA	1691	0	GLY	A	706	45.105	-10.616	87.544	1.00	0.00
25	MOTA	1692	N	ASN	A	707	44.985	-12.073	85.825	1.00	0.00
	MOTA	1694	CA	ASN	A	707	46.434	-12.072	85.604	1.00	0.00
	MOTA	1695	СВ	ASN	A	707	46.780	-13.096	84.526	1.00	0.00
	MOTA	1696	CG	ASN	A	707	46.228	-14.477	84.870	1.00	0.00
	MOTA	1697	OD1	ASN	A	707	46.198	-14.886	86.036	1.00	0.00
30	MOTA	1698	ND2	ASN	A	707	45.814	-15.189	83.836	1.00	0.00
	MOTA	1701	C	ASN	A	707	46.866	-10.691	85.129	1.00	0.00
	ATOM	1702	0	ASN	A	707	46.345	-10.190	84.126	1.00	0.00
	MOTA	1703	N	SER	A	708	47.929	-10.173	85.722	1.00	0.00
	ATOM	1705	CA	SER	A	708	48.365	-8.802	85.408	1.00	0.00
35	MOTA	1706	CB	SER	A	708	49.375	-8.343	86.456	1.00	0.00
	MOTA	1707	OG	SER	A	708	50.518	-9.187	86.383	1.00	0.00
	ATOM	1708	С	SER	A	708	48.977	-8.664	84.014	1.00	0.00
	ATOM	1709	0	SER	Α	708	48.712	-7.657	83.348	1.00	0.00
	ATOM	1710	N	SER	A	709	49.487	-9.759	83.468	1.00	0.00
40	ATOM	1712	CA	SER	A	709	50.000	-9.724	82.096	1.00	0.00
	ATOM	1713	CB	SER	A	709	50.898	-10.929	81.864	1.00	0.00
	ATOM	1714	OG	SER	A	709	51.288	-10.898	80.498	1.00	0.00
	MOTA	1715	С	SER	A	709	48.860	-9.753	81.087	1.00	0.00
	MOTA	1716	0	SER	A	709	48.912	-9.013	80.099	1.00	0.00

	ATOM	1717	N	GLN	Α	710	47.734	-10.302	81.514	1.00	0.00
	ATOM	1719	CA	GLN	A	710	46.533	-10.337	80.686	1.00	0.00
	MOTA	1720	СВ	$_{ m GLN}$	Α	710	45.613	-11.429	81.217	1.00	0.00
	ATOM	1721	CG	$_{ m GLN}$	A	710	46.048	-12.826	80.804	1.00	0.00
5	ATOM	1722	CD	GLN	Α	710	45.774	-13.048	79.319	1.00	0.00
	ATOM	1723	OE1	GLN	A	710	46.534	-13.753	78.645	1.00	0.00
	ATOM	1724	NE2	GLN	A	710	44.669	-12.497	78.843	1.00	0.00
	MOTA	1727	С	GLN	A	710	45.794	-9.011	80.750	1.00	0.00
	ATOM	1728	0	GLN	A	710	45.195	-8.591	79.753	1.00	0.00
10	ATOM	1729	N	ASN	A	711	46.017	-8.276	81.826	1.00	0.00
	ATOM	1731	CA	ASN	A	711	45.452	-6.938	81.954	1.00	0.00
	ATOM	1732	CB	ASN	A	711	45.583	-6.508	83.411	1.00	0.00
	MOTA	1733	CG	ASN	A	711	45.045	-5.095	83.598	1.00	0.00
	MOTA	1734	OD1	ASN	A	711	43.838	-4.853	83.497	1.00	0.00
15	ATOM	1735	ND2	ASN	A	711	45.952	-4.167	83.859	1.00	0.00
	ATOM	1738	С	ASN	A	711	46.196	-5.965	81.050	1.00	0.00
	ATOM	1739	0	ASN	A	711	45.553	-5.246	80.273	1.00	0.00
	ATOM	1740	N	TRP	A	712	47.503	-6.147	80.941	1.00	0.00
	ATOM	1742	CA	TRP	A	712	48.293	-5.279	80.063	1.00	0.00
20	ATOM	1743	CB	TRP	A	712	49.760	-5.349	80.469	1.00	0.00
	MOTA	1744	CG	TRP	A	712	50.062	-4.651	81.780	1.00	0.00
	ATOM	1745	CD1	TRP	A	712	50.445	-5.237	82.965	1.00	0.00
	ATOM	1746	NE1	TRP	A	712	50.616	-4.263	83.892	1.00	0.00
	MOTA	1748	CE2	TRP	A	712	50.371	-3.047	83.372	1.00	0.00
25	ATOM	1749	CZ2	TRP	A	712	50.416	-1.767	83.905	1.00	0.00
	MOTA	1750	CH2	TRP	A	712	50.108	-0.674	83.103	1.00	0.00
	ATOM	1751	CZ3	TRP .	A	712	49.757	-0.857	81.769	1.00	0.00
	MOTA	1752	CE3	TRP .	A	712	49.710	-2.135	81.226	1.00	0.00
	MOTA	1753	CD2	TRP .	A	712	50.016	-3.228	82.022	1.00	0.00
30	MOTA	1754	C	TRP .	Α	712	48.150	-5.650	78.591	1.00	0.00
	MOTA	1755	0	TRP .	A	712	48.091	-4.747	77.745	1.00	0.00
	MOTA	1756	N	GLN .	Α	713	47.865	-6.913	78.312	1.00	0.00
	MOTA	1758	CA	GLN .	A	713	47.625	-7.321	76.926	1.00	0.00
	MOTA	1759	CB	GLN .	A	713	47.658	-8.842	76.819	1.00	0.00
35	ATOM	1760	CG	GLN .	A	713	49.051	-9.411	77.069	1.00	0.00
	MOTA	1761	CD	GLN	A	713	50.036	-8.933	76.005	1.00	0.00
	ATOM	1762	OE1	GLN .	A	713	49.954	-9.335	74.839	1.00	0.00
	MOTA	1763	NE2	GLN .	A	713	50.996	-8.130	76.433	1.00	0.00
	MOTA	1766	C	GLN 2	A	713	46.275	-6.813	76.456	1.00	0.00
40	ATOM	1767	0	GLN .	A	713	46.233	-6.074	75.466	1.00	0.00
	ATOM	1768	N	ARG 2	Ą	714	45.304	-6.867	77.352	1.00	0.00
	ATOM	1770	CA	ARG 2	A	714	43.946	-6.435	77.035	1.00	0.00
	ATOM	1771	CB	ARG 2	A	714	43.065	-6.919	78.173	1.00	0.00
	MOTA	1772	CG	ARG 2	A	714	41.592	-6.780	77.843	1.00	0.00

	MOTA	1773	CD	ARG	Α	714	41.216	-7.730	76.722	1.00	0.00
	ATOM	1774	NE	ARG	A	714	39.804	-7.551	76.386	1.00	0.00
	ATOM	1775	CZ	ARG	Α	714	39.396	-7.227	75.162	1.00	0.00
	ATOM	1776	NH1	ARG	A	714	40.287	-7.095	74.177	1.00	0.00
5	MOTA	1777	NH2	ARG	Α	714	38.096	-7.050	74.925	1.00	0.00
	MOTA	1778	С	ARG	A	714	43.837	-4.916	76.921	1.00	0.00
	MOTA	1779	0	ARG	Α	714	43.162	-4.416	76.011	1.00	0.00
	MOTA	1780	N	PHE	A	715	44.666	-4.204	77.668	1.00	0.00
	ATOM	1782	CA	PHE	A	715	44.694	-2.744	77.557	1.00	0.00
10	ATOM	1783	CB	PHE	A	715	45.456	-2.173	78.747	1.00	0.00
	MOTA	1784	CG	PHE	A	715	45.507	-0.648	78.774	1.00	0.00
	ATOM	1785	CD1	PHE	A	715	44.386	0.074	79.162	1.00	0.00
	MOTA	1786	CE1	PHE	A	715	44.426	1.462	79.184	1.00	0.00
	MOTA	1787	CZ	PHE	A	715	45.589	2.127	78.817	1.00	0.00
15	MOTA	1788	CE2	PHE	Α	715	46.710	1.406	78.429	1.00	0.00
	MOTA	1789	CD2	PHE	A	715	46.669	0.018	78.407	1.00	0.00
	ATOM	1790	С	PHE	Α	715	45.358	-2.305	76.257	1.00	0.00
	ATOM	1791	0	PHE	A	715	44.796	-1.461	75.544	1.00	0.00
	MOTA	1792	N	TYR	A	716	46.358	-3.055	75.824	1.00	0.00
20	MOTA	1794	CA	TYR	A	716	47.011	-2.746	74.553	1.00	0.00
	MOTA	1795	CB	TYR	A	716	48.307	-3.542	74.446	1.00	0.00
	MOTA	1796	CG	TYR	A	716	49.046	-3.324	73.128	1.00	0.00
	MOTA	1797	CD1	TYR	A	716	49.801	-2.173	72.944	1.00	0.00
	MOTA	1798	CE1	TYR	A	716	50.465	-1.963	71.743	1.00	0.00
25	MOTA	1799	CZ	TYR	A	716	50.370	-2.905	70.728	1.00	0.00
	MOTA	1800	OH	TYR	A	716	50.984	-2.671	69.518	1.00	0.00
	MOTA	1801	CE2	TYR	A	716	49.621	-4.060	70.910	1.00	0.00
	MOTA	1802	CD2	TYR	A	716	48.959	-4.270	72.112	1.00	0.00
	MOTA	1803	С	TYR	A	716	46.101	-3.094	73.381	1.00	0.00
30	MOTA	1804	0	TYR	A	716	45.947	-2.262	72.480	1.00	0.00
	MOTA	1805	N	GLN	A	717	45.312	-4.145	73.533	1.00	0.00
	MOTA	1807	CA	GLN	A	717	44.381	-4.561	72.482	1.00	0.00
	ATOM	1808	CB	GLN	A	717	43.806	-5.917	72.864	1.00	0.00
	ATOM	1809	CG	GLN	A	717	44.881	-6.993	72.925	1.00	0.00
35	MOTA	1810	CD	GLN	A	717	44.287	-8.261	73.526	1.00	0.00
	MOTA	1811	OE1	GLN	A	717	44.686	-8.711	74.609	1.00	0.00
	ATOM	1812	NE2	GLN	A	717	43.299	-8.796	72.832	1.00	0.00
	MOTA	1815	C	GLN	A	717	43.227	-3.581	72.311	1.00	0.00
	ATOM	1816	0	GLN	A	717	42.932	-3.196	71.174	1.00	0.00
40	ATOM	1817	N	LEU	A	718	42.745	-3.011	73.402	1.00	0.00
	ATOM	1819	CA	LEU	A	718	41.625	-2.072	73.293	1.00	0.00
	MOTA	1820	CB	LEU	A	718	40.925	-1.980	74.640	1.00	0.00
	ATOM	1821	CG	LEU	A	718	40.260	-3.307	74.984	1.00	0.00
	ATOM	1822	CD1	LEU	A	718	39.617	-3.258	76.364	1.00	0.00

	ATOM	1823	CD2	LEU A	7	718	39.239	-3.689	73.919	1.00	0.00
	ATOM	1824	C	LEU A	Ŧ	718	42.065	-0.690	72.834	1.00	0.00
	ATOM	1825	0	LEU Z	4	718	41.383	-0.090	71.994	1.00	0.00
	ATOM	1826	N	THR A	Α	719	43.294	-0.319	73.150	1.00	0.00
5	ATOM	1828	CA	THR A	4	719	43.803	0.973	72.678	1.00	0.00
	MOTA	1829	CB	THR A	A	719	44.932	1.455	73.583	1.00	0.00
	ATOM	1830	OG1	THR A	A	719	45.962	0.476	73.610	1.00	0.00
	MOTA	1831	CG2	THR A	Ą	719	44.443	1.695	75.006	1.00	0.00
	ATOM	1832	С	THR A	Ą	719	44.285	0.896	71.231	1.00	0.00
10	ATOM	1833	0	THR A	A	719	44.076	1.847	70.466	1.00	0.00
	MOTA	1834	N	LYS A	Ą	720	44.662	-0.295	70.796	1.00	0.00
	ATOM	1836	CA	LYS A	A.	720	45.050	-0.483	69.400	1.00	0.00
	MOTA	1837	CB	LYS A	A	720	45.947	-1.711	69.304	1.00	0.00
	MOTA	1838	CG	LYS A	Α	720	46.557	-1.838	67.917	1.00	0.00
15	ATOM	1839	CD	LYS A	Ą	720	47.389	-0.605	67.580	1.00	0.00
	MOTA	1840	CE	LYS A	Ą	720	47.988	-0.717	66.186	1.00	0.00
	ATOM	1841	NZ	LYS A	Ą	720	48.859	-1.900	66.083	1.00	0.00
	ATOM	1842	С	LYS 2	A	720	43.814	-0.663	68.524	1.00	0.00
	MOTA	1843	0	LYS A	Α	720	43.795	-0.186	67.381	1.00	0.00
20	ATOM	1844	N	LEU A	A	721	42.727	-1.092	69.143	1.00	0.00
	ATOM	1846	CA	LEU Z	A	721	41.447	-1.157	68.445	1.00	0.00
	ATOM	1847	CB	LEU A	A	721	40.451	-1.930	69.304	1.00	0.00
	ATOM	1848	CG	LEU A	A	721	39.100	-2.072	68.610	1.00	0.00
	ATOM	1849	CD1	LEU A	Ą	721	39.251	-2.767	67.260	1.00	0.00
25	MOTA	1850	CD2	LEU A	A	721	38.111	-2.824	69.493	1.00	0.00
	MOTA	1851	C	LEU Z	A	721	40.925	0.250	68.195	1.00	0.00
	MOTA	1852	0	LEU Z	A	721	40.699	0.591	67.029	1.00	0.00
	MOTA	1853	N	LEU A	A	722	41.072	1.123	69.181	1.00	0.00
	MOTA	1855	CA	LEU 2	A	722	40.635	2.514	69.010	1.00	0.00
30	MOTA	1856	CB	LEU 2	A	722	40.666	3.213	70.366	1.00	0.00
	MOTA	1857	CG	LEU A	A	722	39.721	2.552	71.362	1.00	0.00
	MOTA	1858	CD1	LEU 2	A	722	39.850	3.185	72.743	1.00	0.00
	MOTA	1859	CD2	LEU J	A	722	38.276	2.602	70.876	1.00	0.00
	MOTA	1860	С	LEU Z	Α	722	41.535	3.267	68.033	1.00	0.00
35	MOTA	1861	0	LEU 2	A	722	41.022	3.962	67.146	1.00	0.00
	MOTA	1862	N	ASP 2	A	723	42.808	2.903	68.008	1.00	0.00
	MOTA	1864	CA	ASP I	A	723	43.753	3.502	67.059	1.00	0.00
	ATOM	1865	CB	ASP 2	A	723	45.157	3.007	67.384	1.00	0.00
	ATOM	1866	CG	ASP 2	A	723	45.766	3.774	68.552	1.00	0.00
40	MOTA	1867	OD1	ASP 2	A	723	45.032	4.465	69.245	1.00	0.00
	MOTA	1868	OD2	ASP 2	A	723	46.979	3.922	68.525	1.00	0.00
	MOTA	1869	C	ASP 3	A	723	43.437	3.124	65.616	1.00	0.00
	MOTA	1870	0	ASP 3	A	723	43.224	4.020	64.786	1.00	0.00
	MOTA	1871	N	SER I	A	724	43.128	1.855	65.402	1.00	0.00

	MOTA	1873	CA	SER	A	724	42.847	1.355	64.051	1.00	0.00
	ATOM	1874	CB	SER	A	724	43.057	-0.155	64.032	1.00	0.00
	ATOM	1875	OG	SER	Α	724	42.110	-0.747	64.913	1.00	0.00
	ATOM	1876	C	SER	Α	724	41.427	1.668	63.583	1.00	0.00
5	ATOM	1877	0	SER	Α	724	41.164	1.639	62.375	1.00	0.00
	MOTA	1878	N	MET	Α	725	40.578	2.143	64.478	1.00	0.00
	MOTA	1880	CA	MET	Α	725	39.226	2.522	64.079	1.00	0.00
	MOTA	1881	CB	MET	A	725	38.302	2.427	65.279	1.00	0.00
	MOTA	1882	CG	MET	Α	725	38.024	0.986	65.707	1.00	0.00
10	MOTA	1883	SD	MET	A	725	37.134	-0.071	64.538	1.00	0.00
	MOTA	1884	CE	MET	A	725	38.513	-0.893	63.704	1.00	0.00
	ATOM	1885	С	MET	Α	725	39.156	3.918	63.468	1.00	0.00
	ATOM	1886	0	MET	Α	725	38.213	4.182	62.711	1.00	0.00
	ATOM	1887	N	HIS	Α	726	40.243	4.672	63.521	1.00	0.00
15	MOTA	1889	CA	HIS	Α	726	40.255	5.971	62.835	1.00	0.00
	MOTA	1890	CB	HIS	A	726	41.453	6.792	63.301	1.00	0.00
	ATOM	1891	CG	HIS.	Α	726	41.413	7.237	64.751	1.00	0.00
	ATOM	1892	ND1	HIS	A	726	42.077	6.678	65.778	1.00	0.00
	ATOM	1894	CE1	HIS .	A	726	41.801	7.352	66.912	1.00	0.00
20	ATOM	1895	NE2	HIS	A	726	40.951	8.354	66.594	1.00	0.00
	MOTA	1896	CD2	HIS .	A	726	40.703	8.296	65.265	1.00	0.00
	ATOM	1897	С	HIS .	A	726	40.328	5.806	61.313	1.00	0.00
	ATOM	1898	0	HIS .	A	726	39.691	6.590	60.596	1.00	0.00
	MOTA	1899	N	GLU .	A	727	40.784	4.645	60.861	1.00	0.00
25	MOTA	1901	CA	GLU .	A	727	40.862	4.406	59.420	1.00	0.00
	ATOM	1902	CB	GLU .	A	727	41.940	3.360	59.128	1.00	0.00
	ATOM	1903	CG	GLU .	A	727	41.508	1.935	59.457	1.00	0.00
	MOTA	1904	CD	GLU	A	727	42.735	1.062	59.699	1.00	0.00
	MOTA	1905	OE1	GLU I	A	727	43.667	1.562	60.314	1.00	0.00
30	MOTA	1906	OE2	GLU	A	727	42.694	-0.104	59.329	1.00	0.00
	MOTA	1907	С	GLU 2	A	727	39.510	3.996	58.827	1.00	0.00
	MOTA	1908	0	GLU A	A	727	39.299	4.245	57.637	1.00	0.00
	MOTA	1909	N	VAL Z	A	728	38.551	3.604	59.657	1.00	0.00
	ATOM	1911	CA	VAL Z	A	728	37.213	3.338	59.131	1.00	0.00
35	MOTA	1912	CB	VAL Z	Ą	728	36.630	2.052	59.725	1.00	0.00
	ATOM	1913	CG1	VAL A	Ą	728	36.806	1.943	61.232	1.00	0.00
	MOTA	1914	CG2	VAL A	A	728	35.167	1.866	59.344	1.00	0.00
	MOTA	1915	С	VAL A	A	728	36.312	4.549	59.359	1.00	0.00
	MOTA	1916	0	VAL A	A.	728	35.470	4.864	58.506	1.00	0.00
40	MOTA	1917	N	VAL A	A	729	36.704	5.392	60.302	1.00	0.00
	MOTA	1919	CA	VAL A	Ą	729	35.952	6.625	60.544	1.00	0.00
	MOTA	1920	CB	VAL A	Ą	729	36.318	7.170	61.921	1.00	0.00
	MOTA	1921	CG1	VAL A	A	729	35.681	8.532	62.178	1.00	0.00
	ATOM	1922	CG2	VAL A	Ā	729	35.909	6.187	63.006	1.00	0.00

	MOTA	1923	С	VAL	A	729	36.	240	7.665	59.467	1.00	0.00
	MOTA	1924	0	VAL	A	729	35.	314	8.371	59.048	1.00	0.00
	MOTA	1925	N	GLU	A	730	37.	387	7.547	58.817	1.00	0.00
	MOTA	1927	CA	GLU	A	730	37.	669	8.451	57.702	1.00	0.00
5	ATOM	1928	СВ	GLU	A	730	39.	179	8.568	57.497	1.00	0.00
	MOTA	1929	CG	GLU	Α	730	39.	825	7.247	57.100	1.00	0.00
	MOTA	1930	CD	GLU	A	730	41.	345	7.378	57.066	1.00	0.00
	ATOM	1931	OE1	GLU	A	730	41.	868	7.723	56.017	1.00	0.00
	ATOM	1932	OE2	GLU	Ą	730	41.	955	7.126	58.097	1.00	0.00
10	MOTA	1933	С	GLU	A	730	36.	962	8.028	56.408	1.00	0.00
	ATOM	1934	0	GLU	A	730	36.	682	8.908	55.584	1.00	0.00
	ATOM	1935	N	ASN	A	731	36.	484	6.794	56.300	1.00	0.00
	ATOM	1937	CA	ASN	A	731	35.	678	6.471	55.120	1.00	0.00
	MOTA	1938	СВ	ASN	A	731	35.	961	5.068	54.567	1.00	0.00
15	ATOM	1939	CG	ASN	A	731	35.	700	3.917	55.540	1.00	0.00
	ATOM	1940	OD1	ASN	A	731	36.	640	3.383	56.136	1.00	0.00
	ATOM	1941	ND2	ASN	A	731	34.4	461	3.453	55.575	1.00	0.00
	ATOM	1944	С	ASN	A	731	34.2	201	6.685	55.429	1.00	0.00
	ATOM	1945	0	ASN	A	731	33.4	451	7.073	54.525	1.00	0.00
20	MOTA	1946	N	LEU	A	732	33.8	871	6.721	56.712	1.00	0.00
	MOTA	1948	CA	LEU	A	732	32.5	508	7.055	57.132	1.00	0.00
	ATOM	1949	CB	LEU	A	732	32.3	348	6.743	58.617	1.00	0.00
	ATOM	1950	CG	LEU	A	732	32.4	443	5.254	58.924	1.00	0.00
	MOTA	1951	CD1	LEU	A	732	32.4	176	5.011	60.429	1.00	0.00
25	MOTA	1952	CD2	LEU	A	732	31.3	300	4.481	58.283	1.00	0.00
	MOTA	1953	C	LEU	A	732	32.2	250	8.539	56.917	1.00	0.00
	ATOM	1954	0	LEU	A	732	31.2	232	8.906	56.320	1.00	0.00
	MOTA	1955	N	LEU	A	733	33.2	270	9.346	57.162	1.00	0.00
	MOTA	1957	CA	LEU	A	733	33.1	L58	10.786	56.917	1.00	0.00
30	MOTA	1958	CB	LEU	A	733	34.2	283	11.487	57.664	1.00	0.00
	MOTA	1959	CG	LEU	A	733	34.0	13	11.480	59.164	1.00	0.00
	MOTA	1960	CD1	LEU	A	733	35.2	251	11.870	59.959	1.00	0.00
	MOTA	1961	CD2	LEU	A	733	32.8	337	12.389	59.502	1.00	0.00
	ATOM	1962	C	LEU	Α	733	33.2	222	11.133	55.433	1.00	0.00
35	ATOM	1963	0	LEU	A	733	32.4	41	11.983	54.989	1.00	0.00
	ATOM	1964	N	ASN	A	734	33.9	921	10.327	54.649	1.00	0.00
	ATOM	1966	CA	ASN	A	734	33.9	948	10.554	53.202	1.00	0.00
	MOTA	1967	CB	ASN	A	734	35.0	56	9.724	52.564	1.00	0.00
	ATOM	1968	CG	ASN	A	734	36.2	277	10.603	52.322	1.00	0.00
40	MOTA	1969	OD1	ASN	A	734	36.3	16	11.379	51.356	1.00	0.00
	MOTA	1970	ND2	ASN	A	734	37.2	239	10.513	53.222	1.00	0.00
	ATOM	1973	C	ASN	A	734	32.6	21	10.201	52.550	1.00	0.00
	ATOM	1974	0	ASN	A	734	32.0	24	11.078	51.910	1.00	0.00
	MOTA	1975	N	TYR	A	735	32.0	33	9.089	52.962	1.00	0.00

	ATOM	1977	CA	TYR	A	735	30.776	8.654	52.354	1.00	0.00
	ATOM	1978	СВ	TYR	A	735	30.563	7.180	52.673	1.00	0.00
	ATOM	1979	CG	TYR	A	735	29.561	6.466	51.767	1.00	0.00
	ATOM	1980	CD1	TYR	A	735	30.027	5.739	50.680	1.00	0.00
5	ATOM	1981	CE1	TYR	A	735	29.133	5.077	49.850	1.00	0.00
	ATOM	1982	CZ	TYR	A	735	27.772	5.144	50.110	1.00	0.00
	ATOM	1983	ОН	TYR	A	735	26.888	4.463	49.302	1.00	0.00
	MOTA	1984	CE2	TYR	Α	735	27.300	5.869	51.196	1.00	0.00
	MOTA	1985	CD2	TYR	A	735	28.197	6.530	52.027	1.00	0.00
10	MOTA	1986	С	TYR	A	735	29.597	9.475	52.867	1.00	0.00
	MOTA	1987	0	TYR	A	735	28.729	9.847	52.067	1.00	0.00
	MOTA	1988	N	CYS	A	736	29.696	9.977	54.086	1.00	0.00
	MOTA	1990	CA	CYS	A	736	28.640	10.843	54.608	1.00	0.00
	MOTA	1991	CB	CYS	Α	736	28.826	11.008	56.111	1.00	0.00
15	ATOM	1992	SG	CYS	A	736	27.633	12.095	56.926	1.00	0.00
	ATOM	1993	С	CYS	A	736	28.678	12.217	53.952	1.00	0.00
	MOTA	1994	0	CYS	A	736	27.638	12.677	53.463	1.00	0.00
	MOTA	1995	N	PHE	Α	737	29.874	12.713	53.681	1.00	0.00
	MOTA	1997	CA	PHE	Α	737	30.000	14.042	53.085	1.00	0.00
20	MOTA	1998	CB	PHE	Α	737	31.431	14.524	53.302	1.00	0.00
	MOTA	1999	CG	PHE	Α	737	31.671	15.997	52.981	1.00	0.00
	MOTA	2000	CD1	PHE	A	737	32.188	16.373	51.749	1.00	0.00
	MOTA	2001	CE1	PHE	Α	737	32.408	17.715	51.468	1.00	0.00
	MOTA	2002	CZ	PHE	A	737	32.115	18.681	52.422	1.00	0.00
25	MOTA	2003	CE2	PHE	Α	737	31.605	18.305	53.658	1.00	0.00
	MOTA	2004	CD2	PHE	A	737	31.385	16.963	53.938	1.00	0.00
	MOTA	2005	С	PHE	A	737	29.667	14.017	51.595	1.00	0.00
	MOTA	2006	0	PHE	A	737	28.942	14.905	51.128	1.00	0.00
20	MOTA	2007	N	GLN .	A	738	29.943	12.909	50.926	1.00	0.00
30	ATOM	2009	CA	GLN .	A	738	29.590	12.836	49.508	1.00	0.00
	ATOM	2010	CB	GLN .	A	738	30.484	11.829	48.788	1.00	0.00
	MOTA	2011	CG	GLN .	A	738	30.307	10.413	49.320	1.00	0.00
	ATOM	2012	CD	GLN .	A	738	31.187	9.439	48.556	1.00	0.00
0.5	MOTA	2013	OE1	GLN :	A	738	32.012	8.728	49.143	1.00	0.00
35	MOTA	2014	NE2	GLN :	A	738	30.969	9.395	47.253	1.00	0.00
	MOTA	2017	С	GLN Z	A	738	28.117	12.485	49.304	1.00	0.00
	MOTA	2018	0	GLN I	Ą	738	27.521	13.009	48.357	1.00	0.00
	MOTA	2019	N	THR Z	Ą	739	27.470	11.882	50.290	1.00	0.00
	MOTA	2021	CA	THR Z	A	739	26.043	11.590	50.149	1.00	0.00
40	MOTA	2022	CB	THR A	Ą	739	25.707	10.354	50.976	1.00	0.00
	ATOM	2023	OG1	THR A	A	739	26.490	9.280	50.474	1.00	0.00
	MOTA	2024	CG2	THR A	A	739	24.244	9.956	50.836	1.00	0.00
	MOTA	2025	С	THR A	4	739	25.210	12.791	50.584	1.00	0.00
	ATOM	2026	0	THR A	Ą	739	24.126	13.016	50.036	1.00	0.00

	MOTA	2027	N	PHE	A	740	25.831	13.668	51.357	1.00	0.00
	ATOM	2029	CA	PHE	A	740	25.223	14.951	51.711	1.00	0.00
	ATOM	2030	CB	PHE	Α	740	25.918	15.449	52.977	1.00	0.00
	ATOM	2031	CG	PHE	A	740	25.552	16.861	53.426	1.00	0.00
5	ATOM	2032	CD1	PHE	A	740	24.342	17.098	54.065	1.00	0.00
	ATOM	2033	CE1	PHE	A	740	24.014	18.385	54.476	1.00	0.00
	MOTA	2034	CZ	PHE	A	740	24.897	19.433	54.249	1.00	0.00
	ATOM	2035	CE2	PHE	A	740	26.108	19.195	53.613	1.00	.0.00
	ATOM	2036	CD2	PHE	A	740	26.435	17.910	53.202	1.00	0.00
10	MOTA	2037	С	PHE	A	740	25.395	15.974	50.589	1.00	0.00
	MOTA	2038	0	PHE	A	740	24.533	16.840	50.406	1.00	0.00
	ATOM	2039	N	LEU	A	741	26.410	15.794	49.761	1.00	0.00
	MOTA	2041	CA	LEU	A	741	26.590	16.683	48.610	1.00	0.00
	MOTA	2042	CB	LEU	A	741	28.076	16.651	48.237	1.00	0.00
15	MOTA	2043	CG	LEU	A	741	28.511	17.759	47.275	1.00	0.00
	MOTA	2044	CD1	LEU	A	741	28.244	17.441	45.806	1.00	0.00
	MOTA	2045	CD2	LEU	A	741	27.939	19.115	47.679	1.00	0.00
	MOTA	2046	С	LEU	A	741	25.716	16.199	47.454	1.00	0.00
	ATOM	2047	0	LEU	A	741	24.995	16.990	46.834	1.00	0.00
20	MOTA	2048	N	ASP	Α	742	25.600	14.886	47.350	1.00	0.00
	ATOM	2050	CA	ASP	A	742	24.803	14.248	46.298	1.00	0.00
	ATOM	2051	CB	ASP	A	742	25.404	12.878	45.973	1.00	0.00
	MOTA	2052	CG	ASP	A	742	26.853	12.975	45.486	1.00	0.00
	ATOM	2053	OD1	ASP	A	742	27.193	13.990	44.894	1.00	0.00
25	ATOM	2054	OD2	ASP	A	742	27.564	11.985	45.621	1.00	0.00
	ATOM	2055	С	ASP	A	742	23.342	14.041	46.697	1.00	0.00
	MOTA	2056	0	ASP	A	742	22.604	13.408	45.930	1.00	0.00
	MOTA	2057	N	LYS	A	743	22.876	14.718	47.737	1.00	0.00
20	MOTA	2059	CA	LYS			21.573	14.391	48.333	1.00	0.00
30	MOTA	2060	CB	LYS			21.478	15.004	49.738	1.00	0.00
	MOTA	2061	CG	LYS			20.899	16.419	49.850	1.00	0.00
	ATOM	2062	CD	LYS			21.811	17.518	49.317	1.00	0.00
	ATOM	2063	CE	LYS			21.271	18.900	49.659	1.00	0.00
25	ATOM	2064	NΖ	LYS			21.189	19.068	51.120	1.00	0.00
35	ATOM	2065	C	LYS			20.366	14.786	47.477	1.00	0.00
	ATOM	2066	0	LYS			19.344	14.092	47.546	1.00	0.00
	MOTA	2067	N	THR			20.570	15.639	46.484	1.00	0.00
	ATOM	2069	CA	THR			19.469	15.997	45.582	1.00	0.00
40	ATOM	2070	CB	THR			19.745	17.370	44.978	1.00	0.00
40	ATOM	2071		THR			20.919	17.288	44.180	1.00	0.00
	ATOM	2072		THR			19.958	18.433	46.048	1.00	0.00
	ATOM	2073	C	THR			19.299	14.988	44.445	1.00	0.00
	ATOM	2074	0	THR			18.212	14.896	43.869	1.00	0.00
	MOTA	2075	N	MET	A	745	20.311	14.168	44.209	1.00	0.00

	ATOM	2077	CA	MET	A	745	20.236	13.170	43.139	1.00	0.00
	MOTA	2078	CB	MET	A	745	21.533	13.239	42.344	1.00	0.00
	MOTA	2079	CG	MET	A	745	21.761	14.636	41.776	1.00	0.00
	MOTA	2080	SD	MET	A	745	23.344	14.883	40.942	1.00	0.00
5	MOTA	2081	CE	MET	A	745	24.446	14.543	42.335	1.00	0.00
	ATOM	2082	С	MET	Α	745	20.077	11.775	43.729	1.00	0.00
	ATOM	2083	0	MET	A	745	19.551	10.856	43.091	1.00	0.00
	MOTA	2084	N	SER	A	746	20.503	11.654	44.975	1.00	0.00
	MOTA	2086	CA	SER	A	746	20.402	10.392	45.711	1.00	0.00
10	MOTA	2087	CB	SER	A	746	21.629	10.242	46.602	1.00	0.00
	MOTA	2088	OG	SER	A	746	21.556	11.239	47.615	1.00	0.00
	ATOM	2089	С	SER	Α	746	19.158	10.337	46.590	1.00	0.00
	MOTA	2090	0	SER	Α	746	19.008	9.374	47.348	1.00	0.00
	MOTA	2091	N	ILE	A	747	18.336	11.377	46.524	1.00	0.00
15	MOTA	2093	CA	ILE	Α	747	17.112	11.507	47.332	1.00	0.00
	MOTA	2094	СВ	ILE	Α	747	16.026	10.602	46.752	1.00	0.00
	MOTA	2095	CG2	ILE	Α	747	14.708	10.772	47.504	1.00	0.00
	ATOM	2096	CG1	ILE	A	747	15.805	10.913	45.273	1.00	0.00
	ATOM	2097	CD1	ILE	A	747	15.255	12.322	45.067	1.00	0.00
20	ATOM	2098	C	ILE	A	747	17.419	11.188	48.795	1.00	0.00
	ATOM	2099	0	ILE	A	747	17.033	10.149	49.343	1.00	0.00
	ATOM	2100	N	GLU	Α	748	18.256	12.039	49.358	1.00	0.00
	ATOM	2102	CA	GLU	A	748	18.735	11.844	50.721	1.00	0.00
	ATOM	2103	CB	GLU	A	748	20.233	11.562	50.637	1.00	0.00
25	MOTA	2104	CG	GLU	A	748	20.802	10.962	51.916	1.00	0.00
	ATOM	2105	CD	GLU	A	748	21.747	11.941	52.609	1.00	0.00
	MOTA	2106	OE1	GLU	A	748	21.634	13.127	52.348	1.00	0.00
	MOTA	2107	OE2	GLU	A	748	22.562	11.485	53.405	1.00	0.00
	ATOM	2108	С	GLU	A	748	18.430	13.109	51.510	1.00	0.00
30	MOTA	2109	0	GLU	A	748	18.682	14.219	51.032	1.00	0.00
	ATOM	2110	N	PHE	A	749	17.851	12.949	52.686	1.00	0.00
	ATOM	2112	CA	PHE	A	749	17.424	14.129	53.448	1.00	0.00
	MOTA	2113	CB	PHE	A	749	15.901	14.222	53.402	1.00	0.00
	MOTA	2114	CG	PHE	A	749	15.320	14.358	51.997	1.00	0.00
35	MOTA	2115	CD1	PHE	A	749	14.561	13.327	51.454	1.00	0.00
	MOTA	2116	CE1	PHE	A	749	14.039	13.450	50.173	1.00	0.00
	MOTA	2117	CZ	PHE	A	749	14.272	14.603	49.436	1.00	0.00
	MOTA	2118	CE2	PHE	A	749	15.024	15.635	49.982	1.00	0.00
	MOTA	2119	CD2	PHE	A	749	15.546	15.514	51.262	1.00	0.00
40	MOTA	2120	С	PHE	A	749	17.880	14.066	54.900	1.00	0.00
	MOTA	2121	0	PHE	A	749	17.137	13.594	55.768	1.00	0.00
	ATOM	2122	N	PRO .	A	750	19.079	14.561	55.161	1.00	0.00
	ATOM	2123	CA	PRO .	A	750	19.544	14.689	56.537	1.00	0.00
	MOTA	2124	CB	PRO .	A	750	21.007	14.988	56.426	1.00	0.00

	MOTA	2125	CG	PRO A	750	21.327	15.328	54.979	1.00	0.00
	MOTA	2126	CD	PRO A	750	20.030	15.135	54.206	1.00	0.00
	MOTA	2127	C	PRO A	750	18.805	15.823	57.230	1.00	0.00
	MOTA	2128	0	PRO A	750	18.674	16.918	56.677	1.00	0.00
5	MOTA	2129	N	GLU A	751	18.336	15.561	58.436	1.00	0.00
	MOTA	2131	CA	GLU A	751	17.700	16.620	59.228	1.00	0.00
	MOTA	2132	СВ	GLU A	751	17.037	16.006	60.451	1.00	0.00
	MOTA	2133	CG	GLU A	751	18.001	15.153	61.262	1.00	0.00
	MOTA	2134	CD	GLU A	751	17.227	14.486	62.389	1.00	0.00
10	ATOM	2135	OE1	GLU A	751	16.771	13.371	62.177	1.00	0.00
	ATOM	2136	OE2	GLU A	751	17.033	15.143	63.401	1.00	0.00
	MOTA	2137	C	GLU A	751	18.728	17.681	59.613	1.00	0.00
	MOTA	2138	0	GLU A	751	19.938	17.437	59.505	1.00	0.00
	MOTA	2139	N	MET A	752	18.259	18.788	60.168	1.00	0.00
15	MOTA	2141	CA	MET A	752	19.114	19.968	60.399	1.00	0.00
	MOTA	2142	CB	MET A	752	18.222	21.088	60.916	1.00	0.00
	MOTA	2143	CG	MET A	752	17.132	21.422	59.904	1.00	0.00
	MOTA	2144	SD	MET A	752	15.961	22.698	60.419	1.00	0.00
	MOTA	2145	CE	MET A	752	15.283	21.876	61.879	1.00	0.00
20	MOTA	2146	С	MET A	752	20.269	19.758	61.379	1.00	0.00
	ATOM	2147	0	MET A	752	21.357	20.290	61.125	1.00	0.00
	ATOM	2148	N	LEU A	753	20.133	18.792	62.277	1.00	0.00
	MOTA	2150	CA	LEU A	753	21.222	18.440	63.198	1.00	0.00
~ ~	ATOM	2151	CB	LEU A	753	20.765	17.356	64.185	1.00	0.00
25	MOTA	2152	CG	LEU A		19.913	17.851	65.360	1.00	0.00
	MOTA	2153		LEU A		18.445	18.058	64.991	1.00	0.00
	ATOM	2154		LEU A		19.987	16.848	66.506	1.00	0.00
	MOTA	2155	С	LEU A		22.425	17.898	62.427	1.00	0.00
20	ATOM	2156	0	LEU A		23.505	18.500	62.473	1.00	0.00
30	MOTA	2157	N	ALA A		22.143	17.013	61.485	1.00	0.00
	ATOM	2159	CA	ALA A		23.213	16.380	60.719	1.00	0.00
	ATOM	2160	CB	ALA A		22.696	15.058	60.163	1.00	0.00
	ATOM	2161	C	ALA A		23.677	17.276	59.578	1.00	0.00
25	ATOM	2162	0	ALA A		24.878	17.302	59.286	1.00	0.00
35	ATOM	2163	N	GLU A		22.814	18.182 19.116	59.145	1.00	0.00
	ATOM	2165	CA	GLU A		23.193		58.085 57.575	1.00	0.00
	ATOM	2166	CB	GLU A			19.852 18.913	56.829	1.00	0.00
	MOTA	2167	CG	GLU A		21.023		56.332	1.00	0.00
40	ATOM	2168	CD	GLU A		19.798	19.674		1.00	0.00
+∪	ATOM	2169		GLU A		18.961 19.799	20.000	57.165 55.169	1.00	0.00
	ATOM	2170		GLU A		24.214	20.033	58.576	1.00	0.00
	ATOM	2171	C					57.973	1.00	0.00
	ATOM	2172	0	GLU A		25.291	20.222		1.00	0.00
	MOTA	2173	И	ILE A	150	24.028	20.653	59.779	T.00	5.00

	ATOM	2175	CA	ILE	Α	756	24.983	21.654	60.260	1.00	0.00
	ATOM	2176	CB	ILE	A	756	24.322	22.545	61.318	1.00	0.00
	ATOM	2177	CG2	ILE	A	756	23.817	21.752	62.519	1.00	0.00
	MOTA	2178	CG1	ILE	A	756	25.268	23.650	61.779	1.00	0.00
5	MOTA	2179	CD1	ILE	A	756	25.661	24.571	60.627	1.00	0.00
	ATOM	2180	C	ILE	A	756	26.272	21.011	60.780	1.00	0.00
	ATOM	2181	0	ILE	A	756	27.349	21.570	60.541	1.00	0.00
	ATOM	2182	N	ILE	Α	757	26.217	19.749	61.176	1.00	0.00
	ATOM	2184	CA	ILE	Α	757	27.444	19.091	61.625	1.00	0.00
10	ATOM	2185	CB	ILE	A	757	27.065	17.921	62.521	1.00	0.00
	MOTA	2186	CG2	ILE	A	757	28.286	17.096	62.897	1.00	0.00
	MOTA	2187	CG1	ILE	A	757	26.378	18.436	63.778	1.00	0.00
	MOTA	2188	CD1	ILE	A	757	25.992	17.291	64.706	1.00	0.00
	MOTA	2189	С	ILE	A	757	28.295	18.633	60.441	1.00	0.00
15	MOTA	2190	0	ILE	Α	757	29.513	18.862	60.459	1.00	0.00
	ATOM	2191	N	THR	A	758	27.641	18.331	59.328	1.00	0.00
	ATOM	2193	CA	THR	A	758	28.359	17.931	58.112	1.00	0.00
	MOTA	2194	CB	THR	A	758	27.449	17.028	57.282	1.00	0.00
	MOTA	2195	OG1	THR	A	758	27.057	15.934	58.101	1.00	0.00
20	ATOM	2196	CG2	THR	A	758	28.160	16.456	56.060	1.00	0.00
	MOTA	2197	C	THR	A	758	28.812	19.148	57.299	1.00	0.00
	MOTA	2198	0	THR	A	758	29.766	19.061	56.517	1.00	0.00
	MOTA	2199	N	ASN	A	759	28.256	20.302	57.631	1.00	0.00
	ATOM	2201	CA	ASN	A	759	28.694	21.564	57.032	1.00	0.00
25	MOTA	2202	CB	ASN	A	759	27.521	22.538	57.142	1.00	0.00
	MOTA	2203	CG	ASN	A	759	27.446	23.525	55.975	1.00	0.00
	ATOM	2204	OD1	ASN	A	759	26.357	23.772	55.443	1.00	0.00
	MOTA	2205		ASN	A	759	28.582	24.076	55.582	1.00	0.00
20	ATOM	2208	С	ASN			29.900	22.120	57.796	1.00	0.00
30	ATOM	2209	0	ASN			30.681	22.906	57.241	1.00	0.00
	ATOM	2210	N	GLN			30.106	21.637	59.008	1.00	0.00
	ATOM	2212	CA	GLN			31.236	22.099	59.810	1.00	0.00
	ATOM	2213	CB	GLN			30.869	22.018	61.291	1.00	0.00
35	ATOM	2214	CG	GLN			29.783	23.005	61.703	1.00	0.00
33	ATOM	2215	CD	GLN			30.279	24.443	61.609	1.00	0.00
	MOTA	2216		GLN			29.595	25.307	61.051	1.00	0.00
	MOTA	2217		GLN			31.420	24.701	62.228	1.00	0.00
	ATOM	2220	C	GLN			32.486	21.256	59.594	1.00	0.00
40	ATOM	2221	0	GLN			33.313	21.514	58.711	1.00	0.00
40	ATOM	2222	N	ILE			32.583	20.215	60.399	1.00	0.00
	ATOM	2224	CA	ILE .			33.856	19.496	60.557	1.00	0.00
	ATOM	2225	CB	ILE .			33.966	18.975	61.994	1.00	0.00
	ATOM	2226		ILE .			33.612	20.082	62.981	1.00	0.00
	ATOM	2227	CG1	ILE .	A	761	33.122	17.730	62.279	1.00	0.00

	MOTA	2228	CD1	ILE A	761	31.655	18.019	62.571	1.00	0.00
	MOTA	2229	С	ILE A	761	34.255	18.353	59.592	1.00	0.00
	ATOM	2230	0	ILE A	761	35.470	18.128	59.556	1.00	0.00
	ATOM	2231	N	PRO A	762	33.423	17.684	58.786	1.00	0.00
5	ATOM	2232	CA	PRO A	762	33.990	16.587	57.981	1.00	0.00
	ATOM	2233	СВ	PRO A	762	32.826	15.811	57.454	1.00	0.00
	ATOM	2234	CG	PRO A	762	31.549	16.541	57.811	1.00	0.00
	ATOM	2235	CD	PRO A	762	31.969	17.768	58.599	1.00 -	0.00
	ATOM	2236	С	PRO A	762	34.895	17.045	56.832	1.00	0.00
10	MOTA	2237	0	PRO A	762	35.794	16.284	56.452	1.00	0.00
	MOTA	2238	N	LYS A	763	34.858	18.322	56.481	1.00	0.00
	MOTA	2240	CA	LYS A	763	35.800	18.836	55.488	1.00	0.00
	ATOM	2241	CB	LYS A	763	35.284	20.178	54.987	1.00	0.00
	ATOM	2242	CG	LYS A	763	36.216	20.769	53.937	1.00	0.00
15	ATOM	2243	CD	LYS A	763	35.715	22.129	53.471	1.00	0.00
	MOTA	2244	CE	LYS A	763	35.608	23.099	54.641	1.00	0.00
	MOTA	2245	NZ	LYS A	763	35.122	24.413	54.193	1.00	0.00
	MOTA	2246	C	LYS A	763	37.186	19.017	56.108	1.00	0.00
	MOTA	2247	0	LYS A	763	38.180	18.599	55.500	1.00	0.00
20	MOTA	2248	N	TYR A	764	37.208	19.290	57.403	1.00	0.00
	MOTA	2250	CA	TYR A	764	38.473	19.445	58.126	1.00	0.00
	MOTA	2251	CB	TYR A	764	38.246	20.377	59.309	1.00	0.00
	ATOM	2252	CG	TYR A	764	37.765	21.762	58.892	1.00	0.00
	ATOM	2253	CD1	TYR A	764	38.571	22.563	58.091	1.00	0.00
25	ATOM	2254	CE1	TYR A	764	38.132	23.822	57.703	1.00	0.00
	ATOM	2255	CZ	TYR A	764	36.887	24.275	58.118	1.00	0.00
	ATOM	2256	OH	TYR A	764	36.439	25.514	57.714	1.00	0.00
	MOTA	2257	CE2	TYR A	764	36.081	23.479	58.921	1.00	0.00
	MOTA	2258	CD2	TYR A	764	36.521	22.221	59.308	1.00	0.00
30	ATOM	2259	C	TYR A	764	39.005	18.100	58.610	1.00	0.00
	ATOM	2260	0	TYR A	764	40.201	17.963	58.894	1.00	0.00
	MOTA	2261	N	SER A	765	38.160	17.085	58.583	1.00	0.00
	MOTA	2263	CA	SER A	765	38.642	15.731	58.841	1.00	0.00
	ATOM	2264	CB	SER A	765	37.476	14.854	59.262	1.00	0.00
35	ATOM	2265	OG	SER A	765	37.996	13.542	59.423	1.00	0.00
	ATOM	2266	С	SER A	765	39.243	15.129	57.583	1.00	0.00
	MOTA	2267	0	SER A	765	40.322	14.528	57.647	1.00	0.00
	MOTA	2268	N	ASN A	766	38.692	15.522	56.446	1.00	0.00
	ATOM	2270	CA	ASN A	766	39.144	15.001	55.156	1.00	0.00
40	ATOM	2271	CB	ASN A	766	37.997	15.175	54.170	1.00	0.00
	ATOM	2272	CG	ASN A	766	37.991	14.009	53.192	1.00	0.00
	ATOM	2273	OD1	ASN A	766	38.705	13.017	53.392	1.00	0.00
	ATOM	2274	ND2	ASN A	766	37.139	14.107	52.187	1.00	0.00
	ATOM	2277	С	ASN A	766	40.386	15.734	54.649	1.00	0.00

	MOTA	2278	0	ASN	A	766	41.107	15.219	53.788	1.00	0.00
	ATOM	2279	N	GLY	A	767	40.683	16.872	55.256	1.00	0.00
	MOTA	2281	CA	GLY	Α	767	41.940	17.575	54.985	1.00	0.00
	MOTA	2282	С	GLY	A	767	42.836	17.626	56.225	1.00	0.00
5	MOTA	2283	0	GLY	A	767	43.666	18.537	56.347	1.00	0.00
	MOTA	2284	N	ASN	A	768	42.705	16.611	57.075	1.00	0.00
	MOTA	2286	CA	ASN	A	768	43.451	16.447	58.347	1.00	0.00
	MOTA	2287	CB	ASN	A	768	44.624	15.474	58.159	1.00	0.00
	MOTA	2288	CG	ASN	A	768	45.422	15.672	56.865	1.00	0.00
10	ATOM	2289	OD1	ASN	A	768	45.237	14.929	55.895	1.00	0.00
	ATOM	2290	ND2	ASN	Α	768	46.277	16.679	56.856	1.00	0.00
	MOTA	2293	C	ASN	A	768	43.890	17.736	59.057	1.00	0.00
	ATOM	2294	0	ASN	A	768	45.074	18.098	59.107	1.00	0.00
	ATOM	2295	N	ILE	A	769	42.901	18.422	59.604	1.00	0.00
15	ATOM	2297	CA	ILE	A	769	43.129	19.606	60.441	1.00	0.00
	ATOM	2298	CB	ILE	A	769	42.150	20.697	59.998	1.00	0.00
	ATOM	2299	CG2	ILE	A	769	42.373	21.997	60.764	1.00	0.00
	ATOM	2300	CG1	ILE	A	769	42.273	20.969	58.501	1.00	0.00
	MOTA	2301	CD1	ILE	A	769	43.632	21.569	58.146	1.00	0.00
20	MOTA	2302	C	ILE	A	769	42.904	19.214	61.905	1.00	0.00
	ATOM	2303	0	ILE	A	769	43.157	19.978	62.848	1.00	0.00
	MOTA	2304	N	LYS	A	770	42.384	18.009	62.067	1.00	0.00
	ATOM	2306	CA	LYS	Α	770	42.197	17.426	63.396	1.00	0.00
	MOTA	2307	CB	LYS	Α	770	40.980	16.514	63.367	1.00	0.00
25	ATOM	2308	CG	LYS	A	770	39.732	17.226	62.870	1.00	0.00
	MOTA	2309	CD	LYS	A	770	38.559	16.256	62.860	1.00	0.00
	MOTA	2310	CE	LYS	A	770	37.295	16.905	62.317	1.00	0.00
	MOTA	2311	NZ	LYS	A	770	36.176	15.951	62.360	1.00	0.00
•	MOTA	2312	С	LYS	A	770	43.402	16.583	63.790	1.00	0.00
30	ATOM	2313	0	LYS	A	770	43.904	15.779	62.995	1.00	0.00
	MOTA	2314	N	LYS	A	771	43.789	16.704	65.044	1.00	0.00
	ATOM	2316	CA	LYS	A	771	44.871	15.890	65.589	1.00	0.00
	ATOM	2317	CB	LYS	A	771	45.718	16.747	66.522	1.00	0.00
2 ~	MOTA	2318	CG	LYS	A	771	46.919	15.970	67.046	1.00	0.00
35	ATOM	2319	CD	LYS	A	771	47.746	16.808	68.012	1.00	0.00
	ATOM	2320	CE	LYS	A	771	48.978	16.044	68.482	1.00	0.00
	ATOM	2321	NZ	LYS	A	771	48.595	14.773	69.117	1.00	0.00
	ATOM	2322	С	LYS	A	771	44.279	14.701	66.341	1.00	0.00
	MOTA	2323	0	LYS	A	771	43.718	14.839	67.439	1.00	0.00
40	MOTA	2324	N	LEU	A	772	44.328	13.556	65.681	1.00	0.00
	MOTA	2326	CA	LEU	A	772	43.820	12.312	66.269	1.00	0.00
	MOTA	2327	CB	LEU	Α	772	43.750	11.239	65.190	1.00	0.00
	ATOM	2328	CG	LEU	A	772	42.857	11.660	64.027	1.00	0.00
	ATOM	2329	CD1	LEU	A	772	42.936	10.647	62.891	1.00	0.00

	MOTA	2330	CD2	LEU A	. 7'	72	41.412	11.858	64.474	1.00	0.00
	MOTA	2331	С	LEU A	7'	72	44.735	11.847	67.392	1.00	0.00
	ATOM	2332	0	LEU A	7'	72	45.962	11.777	67.243	1.00	0.00
	ATOM	2333	N	LEU A	7'	73	44.121	11.518	68.511	1.00	0.00
5	ATOM	2335	CA	LEU A	7	73	44.879	11.136	69.702	1.00	0.00
	ATOM	2336	CB	LEU A	7	73	44.153	11.686	70.918	1.00	0.00
	ATOM	2337	CG	LEU P	7	73	44.107	13.209	70.874	1.00	0.00
	ATOM	2338	CD1	LEU A	7	73	43.185	13.758	71.949	1.00	0.00
	MOTA	2339	CD2	LEU A	7	73	45.502	13.813	71.000	1.00	0.00
10	MOTA	2340	С	LEU A	4 7	73	45.049	9.627	69.811	1.00	0.00
	ATOM	2341	0	LEU Z	A 7	73	44.270	8.925	70.468	1.00	0.00
	ATOM	2342	N	PHE A	A 7	74	46.102	9.152	69.171	1.00	0.00
	ATOM	2344	CA	PHE A	A 7	74	46.446	7.730	69.206	1.00	0.00
	ATOM	2345	CB	PHE Z	A 7	74	47.402	7.415	68.061	1.00	0.00
15	ATOM	2346	CG	PHE A	A 7	74	46.818	7.588	66.661	1.00	0.00
	ATOM	2347	CD1	PHE 2	A 7	74	46.000	6.601	66.129	1.00	0.00
	ATOM	2348	CE1	PHE A	A 7	774	45.469	6.750	64.855	1.00	0.00
	MOTA	2349	CZ	PHE A	A 7	74	45.756	7.886	64.111	1.00	0.00
	MOTA	2350	CE2	PHE 2	A 7	774	46.580	8.872	64.639	1.00	0.00
20	MOTA	2351	CD2	PHE 2	A 7	774	47.113	8.722	65.913	1.00	0.00
	ATOM	2352	С	PHE 2	A 7	774	47.098	7.359	70.533	1.00	0.00
	ATOM	2353	0	PHE .	A 7	774	47.703	8.196	71.214	1.00	0.00
	ATOM	2354	N	HIS .	A 7	775	46.872	6.123	70.935	1.00	0.00
	ATOM	2356	CA	HIS.	A 7	775	47.477	5.606	72.164	1.00	0.00
25	ATOM	2357	СВ	HIS.	A 7	775	46.495	4.641	72.813	1.00	0.00
	MOTA	2358	CG	HIS .	A 7	775	45.110	5.223	73.015	1.00	0.00
	MOTA	2359	ND1	HIS	A 7	775	44.779	6.249	73.822	1.00	0.00
	MOTA	2361	CE1	HIS	A 7	775	43.452	6.474	73.733	1.00	0.00
	MOTA	2362	NE2	HIS	A 7	775	42.943	5.584	72.852	1.00	0.00
30	ATOM	2363	CD2	HIS	A 7	775	43.953	4.808	72.399	1.00	0.00
	MOTA	2364	С	HIS	A 7	775	48.783	4.881	71.850	1.00	0.00
	MOTA	2365	0	HIS	A 7	775	49.606	4.626	72.738	1.00	0.00
	MOTA	2366	N	GLN	A 7	776	48.938	4.524	70.587	1.00	0.00
	MOTA	2368	CA	GLN	A 7	776	50.184	3.948	70.082	1.00	0.00
35	MOTA	2369	CB	GLN	A 7	776	49,907	2.620	69.368	1.00	0.00
	MOTA	2370	CG	GLN	A	776	49.722	1.423	70.301	1.00	0.00
	MOTA	2371	CD	GLN	Α .	776	48.349	1.388	70.971	1.00	0.00
	MOTA	2372	OE1	GLN	A	776	47.317	1.635	70.338	1.00	0.00
	ATOM	2373	NE2	GLN	A 7	776	48.366	1.169	72.273	1.00	0.00
40	MOTA	2376	C	GLN	Α :	776	50.844	4.920	69.109	1.00	0.00
	MOTA	2377	0	${\tt GLN}$	A '	776	50.191	5.805	68.543	1.00	0.00
	ATOM	2378	N	LYS	Α,	777	52.144	4.759	68.938	1.00	0.00
	MOTA	2380	CA	LYS	A	777	52.889	5.591	67.988	1.00	0.00
	ATOM	2381	CB	LYS	Α '	777	54.380	5.448	68.265	1.00	0.00

	MOTA	2382	CG	LYS A	777	55.198	6.329	67.324	1.00	0.00
	ATOM	2383	CD	LYS A	777	56.692	6.164	67.572	1.00	0.00
	MOTA	2384	CE	LYS A	777	57.512	7.038	66.629	1.00	0.00
	ATOM	2385	NZ	LYS A	777	58.955	6.873	66.868	1.00	0.00
5	ATOM	2386	C	LYS A	777	52.585	5.164	66.560	1.00	0.00
	ATOM	2387	0	LYS A	777	51.832	5.875	65.904	1.00	0.00
	MOTA	2388	OXT	LYS A	777	53.080	4.119	66.149	1.00	0.00

Example 22

10 <u>Structure Coordinates of Site II in Various NHRs, Table III</u>

Below is Table III, which gives the structure coordinates for Site II in various NHRs based on the consensus alignments in Figure 2. The format used is based on that commonly used in the RCSB (Research Collaboratory for Structural Bioinformatics, pdb file format), and the fields listed from left to right are defined as follows: record name, atom serial number, atom name, residue name, chain identifier, residue sequence number, orthogonal coordinate for x in Ångstroms, orthogonal coordinate for y in Ångstroms, orthogonal coordinate for z in Ångstroms, occupancy, and temperature factor.

20 Table III

15

AR Site II Residues (ref. 1E3G.pdb)

	MOTA	73	N	GLU A	678	9.927	12.170	14.764	1.00 34.27
25	ATOM	74	CA	GLU A	678	9.788	11.576	13.433	1.00 33.68
	ATOM	75	C.	GLU A	678	8.502	10.791	13.361	1.00 31.24
	MOTA	76	0	GLU A	678	7.837	10.730	12.318	1.00 29.04
	ATOM	77	CB	GLU A	678	10.972	10.692	13.139	1.00 41.54
	ATOM	78	CG	GLU A	678	12.250	11.475	13.231	1.00 62.50
30	ATOM	79	CD	GLU A	678	13.492	10.632	13.140	1.00 75.90
	ATOM	80	OE1	GLU A	678	13.382	9.393	13.275	1.00 81.73
	ATOM	81	OE2	GLU A	678	14.581	11.222	12.946	1.00 77.79
	ATOM	82	N	ALA A	679	8.118	10.229	14.496	1.00 27.29
	ATOM	83	CA	ALA A	679	6.878	9.486	14.561	1.00 31.51
35	ATOM	84	C	ALA A	679	5.658	10.400	14.416	1.00 37.88
	ATOM	85	0	ALA A	679	4.657	10.013	13.784	1.00 39.80
	ATOM	86	CB	ALA A	679	6.807	8.699	15.862	1.00 32.16

	ATOM	87	N	ILE	A	680	5.748	11.621	14.958	1.00	36.75
	ATOM	88	CA	ILE	A	680	4.623	12.567	14.893	1.00	33.51
	MOTA	89	C	ILE	A	680	4.603	13.553	13.732	1.00	29.78
	MOTA	90	0	ILE	A	680	3.560	14.137	13.425	1.00	35.01
5	MOTA	91	CB	ILE	A	680	4.445	13.322	16.204	1.00	36.86
	ATOM	92	CG1	ILE	A	680	5.672	14.178	16.493	1.00	39.01
	ATOM	93	CG2	ILE	A	680	4.222	12.324	17.343	1.00	34.87
	ATOM	94	CD1	ILE .	A	680	5.503	15.046	17.719	1.00	38.54
	MOTA	95	N	GLU	A	681	5.732	13.677	13.044	1.00	31.29
10	MOTA	96	CA	GLU .	A	681	5.833	14.570	11.904	1.00	36.50
	MOTA	97	C	GLU .	A	681	4.638	14.373	11.013	1.00	38.74
	ATOM	98	0	GLU .	A	681	4.348	13.251	10.596	1.00	46.06
	ATOM	99	CB	GLU .	A	681	7.101	14.285	11.106	1.00	33.49
	MOTA	100	CG	GLU .	A	681	7.361	15.322	10.028	1.00	41.42
15	ATOM	101	CD	GLU .	A	681	7.500	16.742	10.581	1.00	49.46
	ATOM	102	OE1	GLU .	A	681	7.569	16.924	11.824	1.00	44.22
	MOTA	103	OE2	GLU .	A	681	7.527	17.687	9.759	1.00	52.12
	MOTA	104	N	PRO .	A	682	3.892	15.446	10.751	1.00	41.06
	MOTA	105	CA	PRO .	A	682	2.695	15.422	9.904	1.00	41.12
20	MOTA	106	С	PRO .	A	682	2.968	14.980	8.444	1.00	44.28
	MOTA	107	0	PRO 1	A	682	4.076	15.133	7.920	1.00	36.92
	ATOM	108	CB	PRO .	A	682	2.214	16.870	9.965	1.00	43.30
	MOTA	109	CG	PRO 2	A	682	2.800	17.399	11.250	1.00	38.89
	ATOM	110	CD	PRO 2	A	682	4.159	16.800	11.261	1.00	39.59
25	MOTA	111	N	GLY I	A	683	1.943	14.446	7.788	1.00	48.21
	MOTA	112	CA	GLY I	A	683	2.103	13.990	6.416	1.00	51.13
	ATOM	113	С	GLY I	A	683	1.905	15.043	5.334	1.00	54.68
	ATOM	114	0	GLY A	A	683	1.817	16.226	5.629	1.00	63.53
••	ATOM	115	N	VAL Z	Ą	684	1.729	14.601	4.089	1:00	57.20
30	MOTA	116	CA	VAL 2			1.544	15.505	2.959	1.00	54.91
	MOTA	117	С	VAL 2			0.123	16.048	2.952	1.00	54.45
	ATOM	118	0	VAL A	A	684	-0.828	15.287	2.775	1.00	57.51
	MOTA	119	CB	VAL A			1.805	14.792	1.625		51.72
2.7	MOTA	120	CG1	VAL A	Ą	684	1.618	15.769	0.487	1.00	53.17
35	MOTA	121	CG2	VAL A			3.222	14.212	1.591	1.00	53.92
	ATOM	282	N	LEU 2			-5.307	26.167	2.636	1.00	38.31
	MOTA	283	CA	LEU 2			-4.152	25.342	2.982		37.96
	MOTA	284	С	LEU A			-3.767	25.654	4.431		44.27
40	ATOM	285	0	LEU A			-3.464	24.747	5.211		51.41
40	MOTA	286	CB	LEU A	4	707	-2.958	25.608	2.046	1.00	35.41

	ATOM	287	CG	LEU	A	707	-1.651	24.872	2.392	1.00	35.71
	ATOM	288	CD1	LEU	A	707	-1.895	23.385	2.326	1.00	38.82
	ATOM	289	CD2	LEU	A	707	-0.518	25.239	1.459	1.00	33.25
	MOTA	290	N	GLY	A	708	-3.782	26.938	4.787	1.00	45.88
5	MOTA	291	CA	GLY	A	708	-3.463	27.344	6.144	1.00	40.92
	ATOM	292	С	GLY	A	708	-4.386	26.618	7.096	1.00	39.05
	ATOM	293	0	GLY	A	708	-3.937	25.851	7.924	1.00	45.81
	MOTA	314	N	GLN	A	711	-3.596	22.939	7.556	1.00	40.11
	MOTA	315	CA	GLN	A	711	-2.310	22.685	8.189	1.00	34.69
10	ATOM	316	С	GLN	A	711	-2.355	23.007	9.653	1.00	36.60
	ATOM	317	0	GLN	A	711	-1.501	22.557	10.408	1.00	40.79
	ATOM	318	СВ	GLN	A	711	-1.194	23.478	7.542	1.00	42.15
	ATOM	319	CG	GLN	A	711	-0.753	22.877	6.244	1.00	43.03
	MOTA	320	CD	GLN	A	711	0.553	23.442	5.779	1.00	44.24
15	MOTA	321	OE1	GLN	A	711	1.321	23.988	6.567	1.00	54.32
	ATOM	322	NE2	GLN	A	711	0.828	23.305	4.496	1.00	52.33
	MOTA	323	N	LEU	A	712	-3.361	23.778	10.054	1.00	41.25
	ATOM	324	CA	LEU	A	712	-3.561	24.163	11.457	1.00	43.47
	MOTA	325	C	LEU	A	712	-4.061	22.938	12.222	1.00	45.20
20	ATOM	326	0	LEU	A	712	-3.595	22.628	13.320	1.00	46.51
	ATOM	327	CB	LEU	A	712	-4.585	25.295	11.550	1.00	42.08
	MOTA	328	CG	LEU	A	712	-4.829	25.943	12.905	1.00	45.04
	ATOM	329	CD1	LEU	A	712	-3.489	26.199	13.594	1.00	48.18
	MOTA	330	CD2	LEU	A	712	-5.610	27.248	12.711	1.00	44.32
25	MOTA	331	N	VAL	A	713	-5.014	22.240	11.623	1.00	42.76
	MOTA	332	CA	VAL	A	713	-5.555	21.026	12.198	1.00	41.99
	ATOM	333	С	VAL	A	713	-4.383	20.100	12.562	1.00	45.10
	ATOM	334	0	VAL	A	713	-4.275	19.646	13.703	1.00	45.64
	ATOM	335	CB	VAL	A	713	-6.480	20.348	11.170	1.00	43.85
30	ATOM	336	CG1	VAL	A	713	-6.887	18.953	11.628	1.00	52.59
	MOTA	337	CG2	VAL	A	713	-7.708	21.203	10.966	1.00	42.38
	MOTA	338	N	HIS	A	714	-3.471	19.905	11.604	1.00	46.35
	ATOM	339	CA	HIS	A	714	-2.286	19.044	11.767	1.00	45.95
	ATOM	340	С	HIS	A	714	-1.379	19.495	12.857	1.00	43.82
35	MOTA	341	0	HIS	A	714	-0.798	18.674	13.571	1.00	48.61
	ATOM	342	CB	HIS	A	714	-1.458	18.971	10.487	1.00	49.61
	ATOM	343	CG	HIS			-1.950	17.947	9.519	1.00	62.09
	ATOM	344		HIS			-3.157	18.058	8.873		63.02
40	ATOM	345		HIS			-1.404	16.778	9.108		64.82
40	MOTA	346	CE1	HIS	A	714	-3.340	17.005	8.100	1.00	70.96

	ATOM	347	NE2	HIS .	A	714	-2.291	16.211	8.219	1.00	70.54
	ATOM	348	N	VAL .	A	715	-1.172	20.803	12.898	1.00	40.29
	ATOM	349	CA	VAL .	A	715	-0.326	21.415	13.908	1.00	39.63
	ATOM	350	С	VAL .	A	715	-0.962	21.201	15.273	1.00	36.62
5	ATOM	351	0	VAL .	A	715	-0.266	20.874	16.244	1.00	30.18
	ATOM	352	CB	VAL .	A	715	-0.101	22.918	13.620	1.00	38.77
	ATOM	353	CG1	VAL .	A	715	0.500	23.617	14.820	1.00	30.17
	MOTA	354	CG2	VAL .	A	715	0.857	23.048	12.463	1.00	40.69
	MOTA	355	N	VAL .	A	716	-2.286	21.329	15.331	1.00	28.64
10	MOTA	356	CA	VAL .	A	716	-2.994	21.113	16.570	1.00	28.84
	ATOM	357	С	VAL .	A	716	-2.687	19.683	17.037	1.00	36.83
	MOTA	358	0	VAL .	A	716	-2.078	19.485	18.092	1.00	36.70
	ATOM	359	CB	VAL .	A	716	-4.508	21.331	16.403	1.00	34.61
	MOTA	360	CG1	VAL .	A	716	-5.239	20.839	17.647	1.00	29.84
15	ATOM	361	CG2	VAL .	A	716	-4.805	22.811	16.185	1.00	32.32
	ATOM	362	N	LYS	A	717	-2.972	18.709	16.179	1.00	38.71
	ATOM	363	CA	LYS .	A	717	-2.737	17.313	16.505	1.00	32.14
	MOTA	364	C	LYS .	A	717	-1.263	16.990	16.699	1.00	32.82
	MOTA	365	0	LYS	A	717	-0.920	16.262	17.631	1.00	34.86
20	ATOM	366	CB	LYS .	A	717	-3.370	16.410	15.450	1.00	32.30
	MOTA	367	CG	LYS .	A	717	-4.890	16.352	15.569	1.00	38.88
	MOTA	368	CD	LYS .	A	717	-5.538	15.584	14.436	0.00	36.05
	MOTA	369	CE	LYS .	A	717	-7.009	15.353	14.736	0.00	36.14
	ATOM	370	NZ	LYS .	A	717	-7.739	14.704	13.619	0.00	35.32
25	ATOM	371	N	TRP .	A	718	-0.383	17.589	15.893	1.00	31.69
	ATOM	372	CA	TRP .	A	718	1.058	17.319	16.010	1.00	34.84
	ATOM	373	С	TRP .	A	718	1.604	17.753	17.367	1.00	44.15
	MOTA	374	0	TRP .	A	718	2.347	17.014	18.020	1.00	48.94
	MOTA	375	CB	TRP .	A	718	1.850	17.995	14.883	1.00	25.87
30	MOTA	376	CG	TRP .	A	718	3.343	18.092	15.136	1.00	25.59
	MOTA	377	CD1	TRP .	A	718	4.279	17.133	14.909	1.00	35.87
	MOTA	378	CD2	TRP .	A	718	4.055	19.232	15.641	1.00	30.45
	MOTA	379		TRP .			5.533	17.598	15.237	1.00	32.13
	MOTA	380	CE2	TRP .	A	718	5.419	18.889	15.689	1.00	30.51
35	MOTA	381	CE3	TRP .	A	718	3.672	20.519	16.046	1.00	32.20
	MOTA	382	CZ2	TRP .	A	718	6.403	19.782	16.119	1.00	32.90
	MOTA	383	CZ3	TRP .	A	718	4.650	21.408	16.468		25.41
	MOTA	384	CH2	TRP .	A	718	5.997	21.036	16.503	1.00	28.69
	MOTA	552	N	SER .	A	740	2.351	30.606	17.674	1.00	36.52
40	MOTA	553	CA	SER .	A	740	3.459	30.114	16.875	1.00	38.17

	ATOM	554	С	SER	A	740	3.129	29.453	15.535	1.00	38.14
	ATOM	555	0	SER	A	740	4.024	29.259	14.706	1.00	41.67
	ATOM	556	CB	SER	A	740	4.390	29.231	17.727	1.00	42.37
	ATOM	557	OG	SER	A	740	3.756	28.053	18.200	1.00	39.05
5	ATOM	558	N	TRP	A	741	1.851	29.268	15.236	1.00	32.00
	ATOM	559	CA	TRP	A	741	1.482	28.588	14.004	1.00	32.79
	ATOM	560	С	TRP	A	741	2.099	29.060	12.681	1.00	34.24
	ATOM	561	0	TRP	A	741	2.578	28.250	11.891	1.00	34.43
	MOTA	562	CB	TRP	A	741	-0.034	28.446	13.918	1.00	44.21
10	MOTA	563	CG	TRP	A	741	-0.733	29.487	13.136	1.00	58.12
	ATOM	564	CD1	TRP	A	741	-0.889	30.806	13.458	1.00	64.16
	ATOM	565	CD2	TRP	A	741	-1.365	29.303	11.870	1.00	63.13
	ATOM	566	NE1	TRP	A	741	-1.574	31.462	12.462	1.00	67.31
	MOTA	567	CE2	TRP	A	741	-1.882	30.562	11.473	1.00	67.95
15	MOTA	568	CE3	TRP	A	741	-1.558	28.194	11.031	1.00	57.71
	MOTA	569	CZ2	TRP	A	741	-2.561	30.747	10.260	1.00	70.02
	MOTA	570	CZ3	TRP	A	741	-2.232	28.373	9.831	1.00	59.16
	ATOM	571	CH2	TRP	A	741	-2.731	29.642	9.458	1.00	65.30
	ATOM	572	N	MET	A	742	2.184	30.370	12.489	1.00	41.58
20	ATOM /	573	CA	MET	A	742	2.749	30.945	11.265	1.00	39.13
	ATOM	574	C	MET	A	742	4.193	30.537	11.090	1.00	30.85
	MOTA	575	0	MET	A	742	4.602	30.115	10.017	1.00	34.78
	MOTA	576	СВ	MET	A	742	2.689	32.476	11.309	1.00	42.39
	MOTA	577	CG	MET	A	742	3.147	33.177	10.032	1.00	43.70
25	MOTA	578	SD	MET	A	742	1.988	32.993	8.658	1.00	45.17
	ATOM	579	CE	MET	A	742	0.678	34.132	9.133	1.00	22.14
	ATOM	580	N	GLY	A	743	4.954	30.648	12.165	1.00	24.94
	MOTA	581	CA	GLY			6.367	30.312	12.117	1.00	27.24
	MOTA	582	С	GLY	A	743	6.630	28.836	11.886		27.21
30	MOTA	583	0	GLY	A	743	7.660	28.461	11.322		27.69
	MOTA	584	N	LEU			5.734	27.983	12.372		25.91
	MOTA	585	CA	LEU			5.895	26.550	12.172		26.90
	MOTA	586	С	LEU			5.632	26.287	10.708		27.04
0.5	ATOM	587	0	LEU			6.375	25.574	10.048		31.01
35	ATOM	588	СВ	LEU			4.899	25.755	13.018		25.72
	MOTA	589	CG	LEU			5.234	25.626	14.514		29.11
	MOTA	590		LEU			4.063	25.022	15.275		23.25
	ATOM	591		LEU			6.484	24.771	14.689		24.15
10	ATOM	592	N	MET			4.566	26.886	10.200		25.67
40	MOTA	593	CA	MET	A	745	4.188	26.725	8.803	1.00	23.96

	MOTA	594	С	MET	A	745	5.254	27.179	7.822	1.00	29.61
	MOTA	595	0	MET	A	745	5.550	26.480	6.857	1.00	34.60
	MOTA	596	СВ	MET	A	745	2.895	27.454	8.534	1.00	20.46
	MOTA	597	CG	MET	A	745	1.730	26.888	9.310	1.00	19.98
5	MOTA	598	SD	MET	A	745	0.297	27.272	8.341	1.00	43.15
	MOTA	599	CE	MET	A	745	0.642	29.041	8.042	1.00	44.27
	MOTA	600	N	VAL	A	746	5.830	28.341	8.095	1.00	27.98
	MOTA	601	CA	VAL	A	746	6.876	28.924	7.288	1.00	24.84
	ATOM	602	С	VAL	A	746	8.107	28.051	7.345	1.00	28.42
10	ATOM	603	0	VAL	A	746	8.749	27.786	6.333	1.00	37.05
	MOTA	604	СВ	VAL	A	746	7.248	30.304	7.835	1.00	31.98
	MOTA	605	CG1	VAL	A	746	8.423	30.888	7.073	1.00	29.03
	ATOM	606	CG2	VAL	A	746	6.066	31.196	7.737	1.00	32.19
	ATOM	607	N	PHE	A	747	8.439	27.607	8.541	1.00	31.29
15	ATOM	608	CA	PHE	A	747	9.605	26.765	8.736	1.00	32.19
	MOTA	609	C	PHE	A	747	9.468	25.401	8.030	1.00	35.99
	ATOM	610	0	PHE	A	747	10.398	24.916	7.384	1.00	34.95
	ATOM	611	CB	PHE	A	747	9.820	26.536	10.224	1.00	27.90
	ATOM	612	CG	PHE	A	747	11.209	26.082	10.573	1.00	26.00
20	ATOM	613	CD1	PHE	A	747	12.293	26.915	10.343	1.00	24.54
	ATOM	614	CD2	PHE	A	747	11.428	24.846	11.166	1.00	27.23
	MOTA	615	CE1	PHE	A	747	13.571	26.532	10.699	1.00	25.88
	MOTA	616	CE2	PHE	A	747	12.711	24.451	11.528	1.00	25.61
	MOTA	617	CZ	PHE	A	747	13.785	25.297	11.293	1.00	28.75
25	MOTA	618	N	ALA	A	748	8.309	24.774	8.171	1.00	35.11
	ATOM	619	CA	ALA	A	748	8.096	23.483	7.561	1.00	34.00
	ATOM	620	С	ALA	A	748	8.114	23.683	6.054	1.00	37.26
	MOTA	621	0	ALA	Α	748	8.831	22.973	5.344	1.00	35.87
	MOTA	622	СВ	ALA	A	748	6.773	22.896	8.022	1.00	29.48
30	MOTA	635	N	TRP	A	751	11.304	23.876	4.581	1.00	45.43
	ATOM	636	CA	TRP	A	751	11.976	22.588	4.528	1.00	42.53
	MOTA	637	C	TRP	A	751	11.519	21.806	3.294	1.00	43.17
	MOTA	638	0	TRP	A	751	12.336	21.207	2.596	1.00	40.24
	MOTA	639	CB	TRP	A	751	11.717	21.776	5.787	1.00	39.21
35	MOTA	640	CG	TRP	A	751	12.359	20.401	5.737	1.00	41.85
	MOTA	641	CD1	TRP	A	751	11.736	19.213	5.461	1.00	39.44
	MOTA	642	CD2	TRP	A	751	13.743	20.085	5.968	1.00	37.37
	MOTA	643	NE1	TRP	A	751	12.645	18.186	5.516	1.00	42.23
	MOTA	644	CE2	TRP	A	751	13.878	18.692	5.821	1.00	41.26
40	MOTA	645	CE3	TRP	A	751	14.877	20.841	6.275	1.00	41.35

	ATOM	646	CZ2	TRP A	751	15.110	18.046	5.978	1.00	48.39
	MOTA	647	$\mathbb{C}Z3$	TRP A	751	16.104	20.195	6.431	1.00	39.62
	ATOM	648	CH2	TRP A	751	16.208	18.817	6.280	1.00	43.38
	ATOM	649	N	ARG A	752	10.214	21.792	3.037	1.00	42.27
5	ATOM	650	CA	ARG A	752	9.683	21.100	1.862	1.00	41.53
	ATOM	651	C	ARG A	752	10.257	21.740	0.602	1.00	44.18
	ATOM	652	0	ARG A	752	10.522	21.048	-0.380	1.00	43.20
	MOTA	653	СВ	ARG A	752	8.163	21.186	1.800	1.00	42.14
	ATOM	654	CG	ARG A	752	7.441	20.465	2.920	1.00	49.76
10	ATOM	655	CD	ARG A	752	5.938	20.434	2.649	1.00	48.23
	ATOM	656	NE	ARG A	752	5.382	21.773	2.483	1.00	45.23
	MOTA	657	CZ	ARG A	752	5.013	22.572	3.490	1.00	52.17
	ATOM	658	NH1	ARG A	752	5.131	22.175	4.764	1.00	33.80
	MOTA	659	NH2	ARG A	752	4.536	23.785	3.223	1.00	49.84
15	MOTA	677	N	THR A	755	13.948	20.208	0.225	1.00	53.24
	MOTA	678	CA	THR A	755	14.053	18.818	-0.197	1.00	53.33
•	MOTA	679	C	THR A	755	13.287	18.474	-1.478	1.00	54.87
	MOTA	680	0	THR A	755	13.554	17.431	-2.068	1.00	57.41
	MOTA	681	СВ	THR A	755	13.596	17.830	0.934	1.00	45.98
20	MOTA	682	OG1	THR A	755	12.221	18.055	1.245	1.00	49.35
	MOTA	683	CG2	THR A	755	14.405	18.033	2.190	1.00	40.03
	MOTA	684	N	ASN A	756	12.360	19.336	-1.911	1.00	52.97
	MOTA	685	CA	ASN A	756	11.539	19.044	-3.097	1.00	56.15
	MOTA	686	С	ASN A	756	11.821	19.826	-4.394	1.00	55.33
25	MOTA	687	0	ASN A	756	11.705	19.257	-5.481	1.00	54.81
	MOTA	688	CB	ASN A	756	10.019	19.124	-2.769	1.00	60.43
	MOTA	689	CG	ASN A	756	9.504	17.959	-1.869	1.00	57.82
	MOTA	690	OD1	ASN A	756	10.123	16.909	-1.763	1.00	55.71
	MOTA	691	ND2	ASN A	756	8.354	18.169	-1.234	1.00	56.46
30	MOTA	768	N	PRO A	766	1.766	20.021	-2.533	1.00	52.86
	ATOM	769	CA	PRO A	766	2.120	19.407	-3.813	1.00	50.96
	ATOM	770	С	PRO A	766	1.359	20.040	-4.970	1.00	48.25
	ATOM	771	0	PRO A	766	1.893	20.144	-6.082	1.00	44.31
	ATOM	772	CB	PRO A	766	1.721	17.949	-3.604	1.00	57.00
35	MOTA	773	CG	PRO A	766	1.899	17.761	-2.133	1.00	58.08
	MOTA	774	CD	PRO A		1.237	19.002	-1.617	1.00	57.23
	MOTA	1099	N	PHE A	804	16.541	19.584	11.932	1.00	32.10
	MOTA	1100	CA	PHE A		15.286	20.166	11.519	1.00	26.58
	MOTA	1101	C	PHE A	804	14.157	19.876	12.497	1.00	29.08
40	ATOM	1102	0	PHE A	804	13.528	20.793	13.024	1.00	38.23

	MOTA	1103	CB	PHE 2	A	804	14.872	19.663	10.142	1.00	24.46
	ATOM	1104	CG	PHE 2	A	804	13.445	20.032	9.767	1.00	35.13
	ATOM	1105	CD1	PHE 2	A	804	13.091	21.361	9.540	1.00	36:25
	MOTA	1106	CD2	PHE 2	A	804	12.468	19.048	9.617	1.00	38.14
5	ATOM	1107	CE1	PHE	A	804	11.795	21.712	9.164	1.00	27.83
	MOTA	1108	CE2	PHE 2	A	804	11.163	19.385	9.238	1.00	39.32
	ATOM	1109	CZ	PHE 2	A	804	10.826	20.723	9.011	1.00	38.61
	MOTA	1110	N	LEU 2	Ą	805	13.887	18.600	12.728	1.00	30.73
	MOTA	1111	CA	LEU 2	A	805	12.784	18.215	13.586	1.00	28.43
10	MOTA	1112	С	LEU 2	A	805	12.880	18.799	14.946	1.00	26.10
	MOTA	1113	0	LEU Z	A	805	11.881	19.243	15.493	1.00	34.14
	MOTA	1114	CB	LEU 2	A	805	12.648	16.702	13.661	1.00	34.10
	MOTA	1115	CG	LEU Z	Ą	805	12.000	16.079	12.423	1.00	43.20
	MOTA	1116	CD1	LEU Z	Ą	805	12.046	14.617	12.600	1.00	36.94
15	MOTA	1117	CD2	LEU Z	A	805	10.549	16.523	12.252	1.00	44.97
	MOTA	1132	N	LYS A	A	808	12.006	22.545	14.617	1.00	27.59
	MOTA	1133	CA	LYS 2	À	808	10.597	22.787	14.378	1.00	27.15
	MOTA	1134	С	LYS 2	Ą	808	9.841	22.681	15.686	1.00	29.83
	MOTA	1135	0	LYS 2	A	808	8.954	23.486	15.952	1.00	35.67
20	MOTA	1136	CB	LYS 2	Ą	808	10.029	21.837	13.313	1.00	24.49
	MOTA	1137	CG	LYS A	Ą	808	8.598	22.158	12.811	1.00	23.62
	MOTA	1138	CD	LYS 2	Ą	808	8.148	21.143	11.740	1.00	24.64
	MOTA	1139	CE	LYS 2	A	808	7.157	20.101	12.280	1.00	29.39
	MOTA	1140	NZ	LYS 2	A.	808	5.683	20.529	12.198	1.00	36.92
25											

ERalpha Site II Residues (ref. 1A52.pdb)

	ATOM	99	N	LEU .	A	320	99.203	35.236	105.992	1.00	52.59
30	MOTA	100	CA	LEU .	A	320	100.556	35.138	106.514	1.00	52.15
	ATOM	101	C	LEU .	A	320	100.597	34.433	107.854	1.00	52.92
	ATOM	102	0	LEU .	A	320	101.488	33.625	108.100	1.00	53.52
	ATOM	103	СВ	LEU .	A	320	101.202	36.518	106.612	1.00	51.20
	ATOM	104	CG	LEU .	A	320	101.704	37.051	105.270	1.00	50.53
35	ATOM	105	CD1	LEU .	A	320	102.077	38.500	105.353	1.00	50.26
	MOTA	106	CD2	LEU .	A	320	102.898	36.232	104.860	1.00	51.08
	ATOM	107	N	ASP .	A	321	99.629	34.697	108.718	1.00	53.43
	ATOM	108	CA	ASP :	A	321	99.645	34.048	110.015	1.00	54.53
	ATOM	109	C	ASP .	A	321	99.250	32.587	109.939	1.00	54.61
40	ATOM	110	0	ASP I	A	321	99.661	31.777	110.769	1.00	54.98

	ATOM	111	СВ	ASP	A	321	98.731	34.785	110.993	1.00	56.68
	ATOM	112	CG	ASP	A	321	99.259	36.183	111.361	1.00	57.98
	ATOM	113	OD1	ASP	A	321	100.332	36.589	110.852	1.00	58.21
	ATOM	114	OD2	ASP	Α	321	98.594	36.878	112.165	1.00	59.27
5	ATOM	115	N	ALA	A	322	98.460	32.240	108.936	1.00	54.13
	ATOM	116	CA	ALA	A	322	98.014	30.865	108.787	1.00	53.35
	MOTA	117	С	ALA	A	322	99.151	29.943	108.300	1.00	52.94
	MOTA	118	0	ALA	A	322	99.020	28.702	108.340	1.00	52.54
	MOTA	119	СВ	ALA	A	322	96.825	30.821	107.812	1.00	54.16
10	MOTA	120	N	GLU	A	323	100.259	30.544	107.850	1.00	52.13
	MOTA	121	CA	GLU	A	323	101.393	29.774	107.338	1.00	51.75
	ATOM	122	С	GLU	A	323	101.839	28.683	108.270	1.00	52.28
	ATOM	123	0	GLU	A	323	102.104	28.912	109.443	1.00	51.95
	MOTA	124	CB	GLU	A	323	102.551	30.690	107.007	1.00	51.77
15	MOTA	125	CG	GLU	A	323	102.353	31.385	105.703	1.00	52.53
	MOTA	126	CD	GLU	A	323	102.333	30.394	104.540	1.00	53.56
	MOTA	127	OE1	GLU	A	323	103.433	29.960	104.114	1.00	54.59
	MOTA	128	OE2	GLU	A	323	101.227	30.031	104.065	1.00	52.74
	MOTA	129	N	PRO	A	324	101.964	27.468	107.743	1.00	53.31
20	ATOM	130	CA	PRO	A	324	102.372	26.301	108.525	1.00	54.25
	ATOM	131	С	PRO	A	324	103.845	26.353	108.943	1.00	54.72
	MOTA	132	0	PRO	A	324	104.663	27.053	108.319	1.00	54.54
	MOTA	133	CB	PRO	A	324	102.068	25.147	107.565	1.00	53.80
	ATOM	134	CG	PRO	A	324	102.536	25.776	106.251	1.00	52.98
25	MOTA	135	CD	PRO	A	324	101.762	27.082	106.335	1.00	53.61
	MOTA	136	N	PRO	A	325	104.208	25.577	109.983	1.00	55.14
	ATOM	137	CA	PRO	A	325	105.593	25.547	110.469	1.00	54.70
	ATOM	138	C	PRO .	Α	325	106.379	24.848	109.385	1.00	54.48
	MOTA	139	0	PRO .	Α	325	105.787	24.056	108.642	1.00	55.54
30	MOTA	140	CB	PRO .	A	325	105.498	24.655	111.705	1.00	54.34
	MOTA	141	CG	PRO .	A	325	104.000	24.741	112.096	1.00	55.28
	MOTA	142	CD	PRO .	A	325	103.384	24.614	110.742	1.00	55.43
	ATOM	143	N	ILE .	A	326	107.669	25.137	109.238	1.00	53.52
	ATOM	144	CA	ILE .	A	326	108.431	24.363	108.257	1.00	53.10
35	ATOM	145	С	ILE .	A	326	108.947	23.151	109.046	1.00	53.30
	ATOM	146	0	ILE .	A	326	109.625	23.300	110.060	1.00	53.12
	ATOM	147	CB	ILE A	A	326	109.607	25.120	107.663	1.00	52.50
	ATOM	148	CG1	ILE A	Ą	326	109.084	26.335	106.902	1.00	52.50
	ATOM	149	CG2	ILE A	Ą	326	110.397	24.196	106.754	1.00	50.93
40	ATOM	150	CD1	ILE 2	Ą	326	110.123	27.100	106.106	1.00	52.06

	MOTA	335	N	LEU	A	349	107.683	12.917	105.119	1.00	58.44
	MOTA	336	CA	LEU	A	349	107.691	14.379	105.202	1.00	56.38
	MOTA	337	С	LEU	A	349	106.356	14.884	104.687	1.00	56.04
	ATOM	338	0	LEU	A	349	105.738	15.751	105.278	1.00	56.02
5	MOTA	339	CB	LEU	A	349	108.809	14.943	104.334	1.00	55.75
	ATOM	340	CG	LEU .	A	349	108.897	16.461	104.251	1.00	55.07
	MOTA	341	CD1	LEU	A	349	109.007	16.966	105.652	1.00	55.38
	MOTA	342	CD2	LEU	A	349	110.093	16.927	103.420	1.00	54.73
	ATOM	343	N	ALA	A	350	105.905	14.318	103.577	1.00	55.56
10	ATOM	344	CA	ALA	A	350	104.634	14.712	103.008	1.00	55.49
	ATOM	345	С	ALA	Α	350	103.449	14.347	103.908	1.00	56.16
	ATOM	346	0	ALA	A	350	102.596	15.203	104.190	1.00	56.22
	ATOM	347	СВ	ALA	A	350	104.464	14.076	101.649	1.00	55.28
	MOTA	367	N	GLU	A	353	103.417	16.944	106.610	1.00	56.06
15	ATOM	368	CA	GLU .	A	353	103.047	18.295	106.162	1.00	54.56
	ATOM	369	С	GLU .	A	353	101.569	18.318	105.901	1.00	54.44
	MOTA	370	0	GLU .	A	353	100.910	19.359	106.000	1.00	53.15
	ATOM	371	СВ	GLU .	A	353	103.727	18.642	104.868	1.00	53.28
	MOTA	372	CG	GLU .	A	353	105.109	19.058	105.045	1.00	53.60
20	MOTA	373	CD	GLU .	A	353	105.702	19.417	103.747	1.00	54.14
	MOTA	374	OE1	GLU .	A	353	105.891	18.500	102.923	1.00	53.79
	MOTA	375	OE2	GLU .	A	353	105.955	20.618	103.544	1.00	55.37
	MOTA	376	N	LEU .	A	354	101.068	17.136	105.553	1.00	54.59
	MOTA	377	CA	LEU .	A	354	99.684	16.970	105.247	1.00	55.05
25	MOTA	378	С	LEU .	A	354	98.899	17.390	106.452	1.00	55.83
	MOTA	379	0	LEU .	A	354	98.064	18.289	106.369	1.00	56.40
	MOTA	380	СВ	LEU .	A	354	99.415	15.525	104.904	1.00	55.25
	MOTA	381	CG	LEU .	A	354	98.027	15.235	104.327	1.00	55.93
	ATOM	382	CD1	LEU .	A	354	97.723	16.127	103.112	1.00	55.51
30	MOTA	383	CD2	LEU .	A	354	98.005	13.772	103.920	1.00	56.20
	MOTA	384	N	VAL .	A	355	99.198	16.758	107.584	1.00	56.64
	MOTA	385	CA	VAL .	A	355	98.517	17.047	108.854	1.00	56.37
	MOTA	386	С	VAL .	A	355	98.478	18.566	109.086	1.00	56.20
	MOTA	387	0	VAL .	A	355	97.429	19.123	109.399	1.00	55.29
35	MOTA	388	CB	VAL .	A	355	99.243	16.309	110.047	1.00	56.40
	MOTA	389	CG1	VAL .	A	355	98.476	16.491	111.354	1.00	55.19
	MOTA	390	CG2	VAL .	A	355	99.383	14.813	109.719	1.00	55.99
	ATOM	391	N	HIS .	A	356	99.616	19.234	108.914	1.00	56.56
	MOTA	392	CA	HIS	A	356	99.668	20.689	109.087	1.00	57.22
40	MOTA	393	С	HIS 2	A	356	98.862	21.449	108.039	1.00	57.46

	ATOM	394	0	HIS	A	356	98.374	22.554	108.309	1.00	57.24
	ATOM	395	СВ	HIS	A	356	101.119	21.167	109.071	1.00	57.78
	ATOM	396	CG	HIS	A	356	101.864	20.809	110.316	1.00	58.97
	ATOM	397	ND1	HIS	A	356	101.689	21.487	111.507	1.00	57.69
5	ATOM	398	CD2	HIS	A	356	102.697	19.774	110.586	1.00	59.14
	ATOM	399	CE1	HIS	A	356	102.381	20.882	112.454	1.00	58.77
	MOTA	400	NE2	HIS	A	356	103.001	19.841	111.922	1.00	59.96
	MOTA	401	N	MET	A	357	98.730	20.853	106.846	1.00	57.44
	MOTA	402	CA	MET	A	357	97.969	21.458	105.766	1.00	56.62
10	ATOM	403	С	MET	A	357	96.513	21.540	106.169	1.00	57.20
	ATOM	404	0	MET	A	357	95.855	22.535	105.872	1.00	57.88
	ATOM	405	CB	MET	A	357	98.074	20.644	104.497	1.00	56.36
	MOTA	406	CG	MET	A	357	97.404	21.316	103.317	1.00	55.15
	MOTA	407	SD	MET	A	357	97.619	20.356	101.830	1.00	54.74
15	MOTA	408	CE	MET	A	357	99.420	20.228	101.751	1.00	52.92
	MOTA	409	N	ILE	A	358	95.995	20.505	106.827	1.00	56.60
	MOTA	410	CA	ILE	A	358	94.614	20.556	107.282	1.00	56.75
	MOTA	411	С	ILE	A	358	94.424	21.724	108.270	1.00	57.56
	ATOM	412	0	ILE	A	358	93.376	22.355	108.292	1.00	57.84
20	MOTA	413	CB	ILE	A	358	94.217	19.299	108.025	1.00	56.52
	MOTA	414	CG1	ILE	A	358	94.325	18.071	107.119	1.00	56.72
	ATOM	415	CG2	ILE	A	358	92.819	19.475	108.563	1.00	55.68
	MOTA	416	CD1	ILE	A	358	93.270	17.991	106.063	1.00	57.04
	MOTA	417	N	ASN	A	359	95.428	22.001	109.102	1.00	58.53
25	MOTA	418	CA	ASN	A	359	95.328	23.101	110.087	1.00	59.39
	MOTA	419	С	ASN	A	359	95.343	24.434	109.366	1.00	59.28
	MOTA	420	0	ASN	A	359	94.671	25.393	109.757	1.00	59.79
	MOTA	421	CB	ASN	A	359	96.503	23.094	111.093	1.00	59.23
	MOTA	422	CG	ASN	A	359	96.406	21.977	112.137	1.00	58.85
30	MOTA	423	OD1	ASN	A	359	97.357	21.766	112.883	1.00	58.21
	MOTA	424	ND2	ASN	A	359	95.259	21.280	112.207	1.00	58.60
	ATOM	425	N	TRP	A	360	96.143	24.485	108.316	1.00	59.09
	MOTA	426	CA	TRP	A	360	96.273	25.691	107.511	1.00	58.86
	MOTA	427	С	TRP	A	360	94.979	25.972	106.752	1.00	59.22
35	MOTA	428	0	TRP	A	360	94.404	27.049	106.907	1.00	59.55
	ATOM	429	CB	TRP	A	360	97.433	25.524	106.539	1.00	57.75
	MOTA	430	CG	TRP	A	360	97.432	26.496	105.428	1.00	55.96
	MOTA	431	CD1	TRP	A	360	97.898	27.775	105.448	1.00	55.46
	MOTA	432	CD2	TRP	A	360	96.932	26.269	104.117		54.62
40	MOTA	433	NE1	TRP	A	360	97.723	28.360	104.223	1.00	53.87

	ATOM	434	CE2	TRP A	360	97.128		103.387	1.00	
	MOTA	435	CE3	TRP A	360	96.336		103.486	1.00	54.51
	MOTA	436	CZ2	TRP A	360	96.751	27.583	102.062	1.00	54.47
	MOTA	437	CZ3	TRP A	360	95.956	25.293	102.159	1.00	54.55
5	ATOM	438	CH2	TRP A	360	96.164	26.491	101.461	1.00	55.14
	ATOM	606	N	ALA A	382	93.720	19.091	95.631	1.00	48.18
	MOTA	607	CA	ALA A	382	94.850	20.021	95.659	1.00	46.44
	MOTA	608	C	ALA A	382	96.066	19.788	96.546	1.00	45.10
	ATOM	609	0	ALA A	382	97.059	20.502	96.421	1.00	44.69
10	ATOM	610	CB	ALA A	382	94.313	21.418	95.944	1.00	46.52
	ATOM	611	N	TRP A	383	96.023	18.796	97.417	1.00	43.80
	MOTA	612	CA	TRP A	383	97.132	18.602	98.333	1.00	42.62
	MOTA	613	C	TRP A	383	98.512	18.580	97.713	1.00	42.80
	MOTA	614	0	TRP A	383	99.418	19.269	98.192	1.00	42.64
15	ATOM	615	СВ	TRP A	383	96.935	17.356	99.180	1.00	41.81
	MOTA	616	CG	TRP A	383	97.078	16.095	98.441	1.00	42.13
	MOTA	617	CD1	TRP A	383	96.121	15.443	97.699	1.00	41.98
	MOTA	618	CD2	TRP A	383	98.280	15.329	98.310	1.00	42.10
	MOTA	619	NE1	TRP A	383	96.664	14.313	97.114	1.00	41.37
20	MOTA	620	CE2	TRP A	383	97.984	14.219	97.472	1.00	41.64
	MOTA	621	CE3	TRP A	383	99.582	15.472	98.815	1.00	41.02
	MOTA	622	CZ2	TRP A	383	98.942	13.264	97.132	1.00	41.39
	MOTA	623	CZ3	TRP A	383	100.529	14.525	98.475	1.00	40.98
	MOTA	624	CH2	TRP A	383	100.205	13.430	97.639	1.00	41.01
25	MOTA	625	N	LEU A	384	98.700	17.823	96.644	1.00	42.54
	MOTA	626	CA	LEU A	384	100.031	17.787	96.049	1.00	42.84
	MOTA	627	С	LEU A	384	100.438	19.088	95.346	1.00	43.49
	MOTA	628	0	LEU A	384	101.630	19.377	95.233	1.00	44.08
	ATOM	629	СВ	LEU A	384	100.172	16.594	95.094	1.00	41.56
30	MOTA	630	CG	LEU A	384	101.523	16.480	94.387	1.00	41.31
	ATOM	631	CD1	LEU A	384	102.679	16.449	95.405	1.00	41.62
	MOTA	632	CD2	LEU A	384	101.520	15.229	93.530	1.00	40.95
	ATOM	633	N	GLU A	385	99.476	19.869	94.842	1.00	44.36
	ATOM	634	CA	GLU A	385	99.859	21.138	94.202	1.00	44.04
35	ATOM	635	С	GLU A	385	100.354	21.981	95.349	1.00	43.68
	ATOM	636	0	GLU A		101.436	22.569	95.280	1.00	44.08
	MOTA	637	СВ	GLU A		98.682	21.871	93.532	1.00	44.27
	ATOM	638	CG	GLU A		98.129	21.194	92.295	1.00	45.37
	MOTA	639	CD	GLU A		97.018	21.989	91.622		45.49
40	ATOM	640		GLU A		97.298	23.003	90.937	1.00	
• •		0 - 0								

	ATOM	641	OE2	GLU A	385	95.852	21.600	91.785	1.00 45.12
	ATOM	642	N	ILE A	386	99.566	22.011	96.423	1.00 42.40
	ATOM	643	CA	ILE A	386	99.931	22.805	97.584	1.00 41.27
	ATOM	644	C	ILE A	386	101.317	22.465	98.129	1.00 41.05
5	ATOM	645	0	ILE A	386	102.083	23.374	98.426	1.00 41.04
	ATOM	646	CB	ILE A	386	98.857	22.694	98.682	1.00 41.25
	ATOM	647	CG1	ILE A	386	97.560	23.323	98.161	1.00 41.02
	MOTA	648	CG2	ILE A	386	99.318	23.391	99.969	1.00 40.11
	MOTA	649	CD1	ILE A	386	96.406	23.327	99.158	1.00 41.13
10	ATOM	650	N	LEU A	387	101.667	21.179	98.251	1.00 40.50
	ATOM	651	CA	LEU A	387	103.012	20.854	98.734	1.00 38.67
	ATOM	652	C	LEU A	387	104.012	21.352	97.729	1.00 37.88
	MOTA	653	0	LEU A	387	104.989	21.978	98.081	1.00 38.53
	ATOM	654	CB	LEU A	387	103.241	19.361	98.888	1.00 38.37
15	MOTA	655	CG	LEU A	387	102.483	18.607	99.963	1.00 38.32
	ATOM	656	CD1	LEU A	387	102.980	17.207	99.926	1.00 38.21
	MOTA	657	CD2	LEU P	387	102.688	19.217	101.331	1.00 38.68
	MOTA	658	N	MET A	388	103.767	21.085	96.464	1.00 36.94
	ATOM	659	CA	MET A	388	104.704	21.522	95.468	1.00 37.35
20	ATOM	660	С	MET A	388	105.013	23.017	95.449	1.00 37.65
	ATOM	661	0	MET A	388	106.181	23.403	95.272	1.00 37.12
	ATOM	662	CB	MET A	388	104.247	21.039	94.100	1.00 38.12
	MOTA	663	CG	MET A	388	104.336	19.543	94.010	1.00 39.96
	MOTA	664	SD	MET A	388	104.131	18.976	92.374	1.00 43.43
25	MOTA	665	CE	MET A	388	104.602	17.301	92.499	1.00 42.19
	MOTA	666	N	ILE A	389	104.000	23.864	95.652	1.00 37.61
	ATOM	667	CA	ILE A	389	104.260	25.297	95.592	1.00 37.05
	MOTA	668	C	ILE A	389	105.089	25.716	96.800	1.00 37.88
	ATOM	669	0	ILE A	389	105.971	26.595	96.702	1.00 36.98
30	MOTA	670	СВ	ILE A	389	102.953	26.125	95.495	1.00 35.49
	MOTA	671	CG1	ILE A	389	103.300	27.514	94.961	1.00 34.22
	MOTA	672	CG2	ILE A	389	102.285	26.217	96.822	1.00 33.85
	ATOM	673	CD1	ILE A	389	102.156	28.318	94.504	1.00 33.77
	ATOM	674	N	GLY A	390	104.823	25.059	97.933	1.00 38.26
35	MOTA	675	CA	GLY A	390	105.579	25.348	99.144	1.00 39.15
	MOTA	676	С	GLY A	390	107.045	24.961	98.905	1.00 39.94
	MOTA	677	0	GLY A	390	107.952	25.778	99.094	1.00 39.41
	ATOM	693	N	TRP A	393	108.644	27.458	96.768	1.00 46.72
	MOTA	694	CA	TRP A	393	108.925	28.703	97.470	1.00 48.60
40	ATOM	695	C	TRP A	. 393	110.211	28.586	98.301	1.00 49.48

	MOTA	696	0	TRP	A	393		111.101	2	9.434	98.214	1.00	49.93
	ATOM	697	CB	TRP	A	393		107.737	2	9.024	98.368	1.00	48.90
	ATOM	698	CG	TRP	A	393		107.887	3	0.184	99.292	1.00	48.84
	ATOM	699	CD1	TRP	Α	393		107.712	3	0.170	100.653	1.00	49.55
5	MOTA	700	CD2	TRP	A	393		108.060	3	1.550	98.930	1.00	49.05
	MOTA	701	NE1	TRP	A	393		107.755	3	1.455	101.162	1.00	49.29
	ATOM	702	CE2	TRP	A	393		107.965	3	2.321	100.124	1.00	48.99
	MOTA	703	CE3	TRP	A	393		108.278	3	2.208	97.712	1.00	50.02
	MOTA	704	CZ2	TRP	A	393		108.082	3	3.712	100.134	1.00	49.14
10	MOTA	705	CZ3	TRP	A	393		108.393	3	3.614	97.718	1.00	50.46
	MOTA	706	CH2	TRP	A	393		108.293	3	4.344	98.927	1.00	49.90
	MOTA	707	N	ARG	A	394		110.295	2	7.531	99.105	1.00	50.21
	ATOM	708	CA	ARG .	A	394		111.461	2	7.274	99.960	1.00	50.94
	MOTA	709	С	ARG .	A	394		112.756	2	7.068	99.155	1.00	52.04
15	ATOM	710	0	ARG .	A	394		113.844	2	7.404	99.643	1.00	52.38
	ATOM	711	СВ	ARG .	A	394		111.262	2	6.006	100.809	1.00	50.31
	MOTA	712	CG	ARG .	A	394		110.034	2	5.974	101.674	1.00	50.30
	MOTA	713	CD	ARG .	A	394	•	110.153	2	4.878	102.698	1.00	49.88
	MOTA	714	NE	ARG .	A	394		109.924	2	3.537	102.187	1.00	49.74
20	MOTA	715	CZ	ARG .	A	394		108.716	2	3.038	101.973	1.00	50.74
	MOTA	716	NH1	ARG .	A	394		107.641	2	3.780	102.224	1.00	51.52
	ATOM	717	NH2	ARG .	A	394		108.572	2	1.792	101.552	1.00	50.41
	MOTA	732	N	GLU .	A	397		115.749	3	0.358	97.413	1.00	59.67
	MOTA	733	CA	GLU .	A	397		117.049	3	0.786	97.986	1.00	60.86
25	MOTA	734	С	GLU .	A	397		118.156	2	9.784	97.665	1.00	60.54
	MOTA	735	0	GLU	A	397		119.328	3 (0.062	97.922	1.00	61.19
	ATOM	736	СВ	GLU I	A	397		116.974	3 (0.899	99.534	1.00	62.68
	ATOM	737	CG	GLU 3	A	397		116.006	3:	1.953	100.067	1.00	65.83
	MOTA	738	CD	GLU 2	A	397		116.522	33	3.384	99.863	1.00	67.85
30	ATOM	739	OE1	GLU 2	A	397		117.298	33	3.861	100.728	1.00	68.99
	ATOM	740	OE2	GLU Z	Ą	397		116.177	34	1.021	98.830	1.00	68.91
	MOTA	803	N	PRO Z	Ą	406		114.567	23	L.882	106.062	1.00	52.84
	ATOM	804	CA	PRO Z	Ą	406		115.835	22	2.473	106.457	1.00	53.87
	ATOM	805	C	PRO Z	A	406		116.961	2:	1.462	106.436	1.00	55.27
35	ATOM	806	0	PRO Z	A	406		118.046	21	L.757	105.935	1.00	55.84
	ATOM	807	CB	PRO A	Ą	406		115.533	22	2.985	107.848	1.00	53.50
	MOTA	808	CG	PRO 2	Ą	406		114.115	23	3.420	107.694	1.00	53.44
	MOTA	809	CD	PRO A	Ą	406		113.558	22	2.158	107.092	1.00	52.74
	ATOM	1112	N	PHE A	A	445		102.932	34	.883	97.394	1.00	40.62
40	MOTA	1113	CA	PHE A	A	445		102.968	33	3.433	97.569	1.00	39.52

	MOTA	1114	С	PHE A	445	101.768	32.864	98.288	1.00	39.48
	MOTA	1115	0	PHE A	445	101.164	31.903	97.814	1.00	40.17
	MOTA	1116	CB	PHE A	445	104.236	33.044	98.341	1.00	38.13
	MOTA	1117	CG	PHE A	445	104.251	31.623	98.840	1.00	36.69
5	MOTA	1118	CD1	PHE A	445	104.293	30.555	97.960	1.00	35.89
	ATOM	1119	CD2	PHE A	445	104.261	31.360	100.212	1.00	36.19
	ATOM	1120	CE1	PHE A	445	104.350	29.242	98.442	1.00	35.78
	MOTA	1121	CE2	PHE A	445	104.319	30.065	100.693	1.00	35.05
	MOTA	1122	CZ	PHE A	445	104.364	29.003	99.808	1.00	35.27
10	ATOM	1123	N	VAL A	446	101.418	33.438	99.430	1.00	39.54
	MOTA	1124	CA	VAL A	446	100.298	32.912	100.190	1.00	40.25
	ATOM	1125	С	VAL A	446	98.963	33.084	99.460	1.00	41.56
	ATOM	1126	0	VAL A	446	98.039	32.272	99.652	1.00	42.13
	MOTA	1127	CB	VAL A	446	100.236	33.551	101.578	1.00	39.66
15	MOTA	1128	CG1	VAL A	446	101.518	33.255	102.312	1.00	39.41
	MOTA	1129	CG2	VAL A	446	100.035	35.041	101.452	1.00	39.84
	MOTA	1144	N	LYS A	449	98.826	30.117	97.098	1.00	40.49
	ATOM	1145	CA	LYS A	449	98.582	28.832	97.766	1.00	40.08
	MOTA	1146	C	LYS A	449	97.065	28.707	98.033	1.00	39.21
20	MOTA	1147	0	LYS A	449	96.463	27.681	97.721	1.00	38.04
	MOTA	1148	CB	LYS A	449	99.418	28.783	99.070	1.00	42.46
	MOTA	1149	CG	LYS A	449	99.578	27.462	99.940	1.00	42.75
	ATOM	1150	CD	LYS A	449	100.593	27.825	101.073	1.00	43.32
	MOTA	1151	CE	LYS A	449	100.997	26.726	102.078	1.00	45.38
25	ATOM	1152	NZ	LYS A	449	100.059	26.334	103.235	1.00	45.31

ERbeta Site II Residues (ref. 1L2J.pdb)

30	MOTA	84	N	LEU A	273	25.561	69.746	8.280	1.00 29.28
	ATOM	85	CA	LEU A	273	24.842	68.816	7.428	1.00 30.73
	MOTA	86	C	LEU A	273	23.457	69.322	7.107	1.00 32.14
	MOTA	87	0	LEU A	273	23.002	69.256	5.967	1.00 31.30
	ATOM	88	CB	LEU A	273	24.733	67.449	8.102	1.00 30.00
35	ATOM	89	CG	LEU A	273	25.927	66.508	7.951	1.00 31.09
	ATOM	90	CD1	LEU A	273	25.722	65.262	8.804	1.00 29.29
	ATOM	91	CD2	LEU A	273	26.090	66.130	6.472	1.00 33.12
	ATOM	92	N	GLU A	274	22.799	69.848	8.130	1.00 34.03
	ATOM	93	CA	GLU A	274	21.446	70.334	7.965	1.00 37.36
40	ATOM	94	С	GLU A	274	21.402	71.743	7.419	1.00 37.99

	ATOM	95	0	GLU	A	274	20.411	72.152	6.825	1.00	38.85
	ATOM	96	CB	GLU	A	274	20.712	70.268	9.297	1.00	38.49
	MOTA	97	N	ALA	Α	275	22.490	72.475	7.606	1.00	38.21
	ATOM	98	CA	ALA	A	275	22.562	73.860	7.168	1.00	37.18
5	MOTA	99	С	ALA	A	275	22.827	73.954	5.675	1.00	36.12
	MOTA	100	0	ALA	A	275	22.533	74.959	5.038	1.00	36.11
	MOTA	101	CB	ALA	A	275	23.645	74.578	7.943	1.00	35.11
	MOTA	102	N	GLU	A	276	23.338	72.873	5.115	1.00	37.82
	MOTA	103	CA	GLU	A	276	23.639	72.836	3.691	1.00	40.70
10	ATOM	104	С	GLU	A	276	22.412	73.106	2.854	1.00	41.89
	ATOM	105	0	GLU	A	276	21.405	72.425	2.974	1.00	44.28
	MOTA	106	СВ	GLU	A	276	24.204	71.470	3.289	1.00	40.51
	ATOM	107	CG	GLU	A	276	25.707	71.443	3.107	1.00	41.75
	ATOM	108	CD	GLU	A	276	26.158	72.093	1.824	1.00	41.08
15	ATOM	109	OE1	GLU	A	276	25.914	71.528	0.732	1.00	42.10
	MOTA	110	OE2	GLU	A	276	26.762	73.175	1.913	1.00	41.89
	ATOM	111	N	PRO	A	277	22.477	74.110	1.991	1.00	43.10
	ATOM	112	CA	PRO	Α	277	21.323	74.417	1.139	1.00	45.04
	ATOM	113	C	PRO	Α	277	21.232	73.506	-0.074	1.00	47.07
20	ATOM	114	0	PRO	A	277	22.234	72.937	-0.494	1.00	48.36
	ATOM	115	СВ	PRO	A	277	21.573	75.861	0.745	1.00	45.33
	ATOM	116	CG	PRO	Α	277	23.045	75.885	0.600	1.00	44.31
	MOTA	117	CD	PRO	A	277	23.528	75.128	1.822	1.00	43.44
	ATOM	118	N	PRO	A	278	20.028	73.356	-0.657	1.00	49.65
25	ATOM	119	CA	PRO	A	278	19.860	72.488	-1.833	1.00	50.10
	ATOM	120	С	PRO	A	278	20.412	73.155	-3.085	1.00	49.50
	MOTA	121	0	PRO	A	278	20.314	74.367	-3.246	1.00	49.29
	ATOM	122	CB	PRO	A	278	18.346	72.282	-1.908	1.00	51.43
	MOTA	123	CG	PRO	A	278	17.870	72.581	-0.487	1.00	51.67
30	MOTA	124	CD	PRO	A	278	18.715	73.778	-0.141	1.00	50.69
	ATOM	125	N	HIS	A	279	20.988	72.360	-3.972	1.00	49.61
	MOTA	126	CA	HIS	A	279	21.572	72.901	-5.187	1.00	49.19
	MOTA	127	C	HIS	A	279	20.548	73.722	-5.941	1.00	47.98
	ATOM	128	0	HIS	A	279	19.384	73.357	-6.022	1.00	46.87
35	MOTA	129	CB	HIS	A	279	22.109	71.769	-6.070	1.00	48.45
	MOTA	235	N	LEU	A	301	23.142	82.321	-11.653	1.00	39.42
	MOTA	236	CA	LEU	A	301	23.297	81.248	-10.678	1.00	38.51
	ATOM	237	С	LEU	A	301	24.074	81.762	-9.477	1.00	36.22
	MOTA	238	0	LEU	A	301	23.680	81.564	-8.335	1.00	35.05
40	ATOM	239	СВ	LEU	A	301	24.040	80.071	-11.309	1.00	41.75

	ATOM	240	CG	LEU A 301	24.287	78.874	-10.391	1.00 43.32
	ATOM	241	CD1	LEU A 301	22.964	78.215	-10.003	1.00 43.90
	MOTA	242	CD2	LEU A 301	25.196	77.887	-11.100	1.00 44.77
	ATOM	243	N	ALA A 302	25.181	82.433	-9.756	1.00 35.01
5	ATOM	244	CA	ALA A 302	26.024	82.999	-8.719	1.00 37.36
	ATOM	245	C	ALA A 302	25.196	83.771	-7.705	1.00 38.89
	ATOM	246	0	ALA A 302	25.316	83.560	-6.498	1.00 39.07
	ATOM	247	СВ	ALA A 302	27.061	83.915	-9.345	1.00 36.91
	MOTA	265	N	GLU A 305	23.169	81.589	-5.589	1.00 42.82
10	MOTA	266	CA	GLU A 305	23.951	80.823	-4.627	1.00 42.67
	MOTA	267	C	GLU A 305	24.482	81.691	-3.495	1.00 41.23
	MOTA	268	0	GLU A 305	24.567	81.235	-2.351	1.00 40.16
	ATOM	269	СВ	GLU A 305	25.106	80.126	-5.330	1.00 44.09
	ATOM	270	CG	GLU A 305	24.645	78.970	-6.160	1.00 44.66
15	ATOM	271	CD	GLU A 305	25.782	78.274	-6.843	1.00 45.46
	ATOM	272	OE1	GLU A 305	26.524	78.938	-7.599	1.00 43.22
	MOTA	273	OE2	GLU A 305	25.931	77.056	-6.623	1.00 49.46
	ATOM	274	N	LEU A 306	24.840	82.935	-3.816	1.00 38.20
	MOTA	275	CA	LEU A 306	25.341	83.853	-2.810	1.00 36.32
20	MOTA	276	C	LEU A 306	24.295	84.071	-1.710	1.00 36.84
	ATOM	277	0	LEU A 306	24.637	84.147	-0.527	1.00 39.11
	MOTA	278	СВ	LEU A 306	25.746	85.173	-3.460	1.00 30.89
	MOTA	279	CG	LEU A 306	27.024	85.078	-4.296	1.00 29.12
	ATOM	280	CD1	LEU A 306	27.244	86.344	-5.055	1.00 28.99
25	MOTA	281	CD2	LEU A 306	28.213	84.831	-3.411	1.00 31.75
	MOTA	282	N	VAL A 307	23.024	84.144	-2.093	1.00 35.35
	ATOM	283	CA	VAL A 307	21.943	84.325	-1.121	1.00 35.56
	ATOM	284	C	VAL A 307	21.963	83.154	-0.143	1.00 35.53
	ATOM	285	0	VAL A 307	21.982	83.334	1.078	1.00 36.47
30	ATOM	286	CB	VAL A 307	20.561	84.367	-1.821	1.00 35.38
	ATOM	287	CG1	VAL A 307	19.464	84.541	-0.812	1.00 35.78
	ATOM	288	CG2	VAL A 307	20.516	85.504	-2.806	1.00 37.25
	MOTA	289	N	HIS A 308	21.954	81.949	-0.699	1.00 35.96
	MOTA	290	CA	HIS A 308	21.996	80.722	0.085	1.00 35.90
35	MOTA	291	С	HIS A 308	23.221	80.708	0.983	1.00 32.55
	MOTA	292	0	HIS A 308	23.175	80.248	2.122	1.00 30.70
	MOTA	293	CB	HIS A 308	22.065	79.517	-0.850	1.00 42.30
	MOTA	294	CG	HIS A 308	20.738	79.096	-1.395	1.00 50.05
	MOTA	295	ND1	HIS A 308	19.727	78.607	-0.593	1.00 55.44
40	MOTA	296	CD2	HIS A 308	20.253	79.087	-2.659	1.00 52.89

	MOTA	297	CE1	HIS A	308	18.678	78.315	-1.340	1.00	56.67
	MOTA	298	NE2	HIS A	308	18.970	78.597	-2.598	1.00	56.96
	ATOM	299	N	MET A	309	24.323	81.214	0.448	1.00	28.95
	MOTA	300	CA	MET A	309	25.571	81.247	1.178	1.00	27.16
5	MOTA	301	С	MET A	309	25.441	82.032	2.469	1.00	24.47
	MOTA	302	0	MET A	309	25.939	81.613	3.503	1.00	24.53
	ATOM	303	CB	MET A	309	26.669	81.852	0.313	1.00	25.50
	ATOM	304	CG	MET A	. 309	28.026	81.510	0.830	1.00	26.26
	MOTA	305	SD	MET A	. 309	29.265	82.251	-0.145	1.00	30.35
10	ATOM	306	CE	MET A	. 309	29.366	83.764	0.675	1.00	29.47
	ATOM	307	N	ILE A	. 310	24.767	83.171	2.404	1.00	19.70
	ATOM	308	CA	ILE A	. 310	24.577	83.993	3.576	1.00	19.52
	ATOM	309	С	ILE A	310	23.701	83.289	4.623	1.00	21.07
	MOTA	310	0	ILE A	310	23.959	83.390	5.818	1.00	21.03
15	ATOM	311	СВ	ILE A	310	23.972	85.345	3.169	1.00	18.29
	ATOM	312	CG1	ILE A	310	24.925	86.021	2.176	1.00	16.69
	MOTA	313	CG2	ILE A	310	23.728	86.209	4.403	1.00	16.22
	MOTA	314	CD1	ILE P	310	24.556	87.408	1.758	1.00	17.44
	MOTA	315	N	SER A	311	22.673	82.572	4.176	1.00	21.38
20	MOTA	316	CA	SER A	311	21.814	81.838	5.091	1.00	21.32
	MOTA	317	C	SER A	311	22.670	80.769	5.732	1.00	22.38
	MOTA	318	0	SER A	311	22.623	80.552	6.940	1.00	27.93
	MOTA	319	СВ	SER A	311	20.668	81.173	4.344	1.00	19.97
	ATOM	320	OG	SER A	311	19.790	82.141	3.825	1.00	29.81
25	MOTA	321	N	TRP A	312	23.451	80.103	4.893	1.00	18.68
	MOTA	322	CA	TRP P	312	24.347	79.055	5.328	1.00	16.46
	MOTA	323	С	TRP A	312	25.280	79.582	6.420	1.00	17.03
	MOTA	324	0	TRP A	312	25.408	78.979	7.485		18.99
	ATOM	325	CB	TRP A	312	25.147	78.551	4.120		14.40
30	MOTA	326	CG	TRP A	A 312	26.278	77.658	4.485		12.23
	MOTA	327	CD1	TRP A	312	26.195	76.379	4.934		11.53
	ATOM	328	CD2	TRP A	312	27.673	77.999	4.478		12.83
	MOTA	329	NE1	TRP A	312	27.456	75.894	5.222		15.57
	ATOM	330	CE2	TRP A	312	28.379	76.869	4.955		13.92
35	MOTA	331	CE3	TRP 2	312	28.391	79.150	4.137		11.91
	ATOM	332	CZ2	TRP A	1 312	29.775	76.856	5.075		13.72
	ATOM	333	CZ3	TRP 2	A 312	29.790	79.142	4.261		11.65
	ATOM	334	CH2	TRP A	A 312	30.460	78.006	4.736		15.65
	MOTA	498	N	CYS A	A 334	35.346	85.584	1.011		10.61
40	ATOM	499	CA	CYS 2	A 334	35.360	84.154	0.704	1.00	8.93

	ATOM	500	С	CYS	A	334	34.348	83.651	-0.307	1.00	10.23
	MOTA	501	0	CYS	A	334	34.330	82.462	-0.629	1.00	6.33
	ATOM	502	CB	CYS	A	334	35.138	83.351	1.984	1.00	13.63
	MOTA	503	SG	CYS	A	334	33.388	83.352	2.564	1.00	15.47
5	MOTA	504	N	TRP	A	335	33.494	84.530	-0.802	1.00	11.06
	ATOM	505	CA	TRP	A	335	32.467	84.074	-1.718	1.00	15.96
	ATOM	506	C	TRP	A	335	33.009	83.334	-2.963	1.00	18.59
	MOTA	507	0	TRP	A	335	32.468	82.297	-3.360	1.00	20.05
	ATOM	508	СВ	TRP	A	335	31.554	85.252	-2.108	1.00	15.63
10	MOTA	509	CG	TRP	A	335	32.165	86.212	-3.056	1.00	13.54
	MOTA	510	CD1	TRP	A	335	32.908	87.306	-2.753	1.00	11.75
	MOTA	511	CD2	TRP	A	335	32.175	86.098	-4.486	1.00	15.51
	MOTA	512	NE1	TRP	A	335	33.389	87.876	-3.900	1.00	13.51
	ATOM	513	CE2	TRP	A	335	32.953	87.147	-4.983	1.00	16.55
15	ATOM	514	CE3	TRP	A	335	31.592	85.196	-5.395	1.00	15.54
	ATOM	515	CZ2	TRP	A	335	33.184	87.330	-6.357	1.00	16.36
	MOTA	516	CZ3	TRP	A	335	31.817	85.376	-6.758	1.00	13.43
	ATOM	517	CH2	TRP	A	335	32.604	86.433	-7.222	1.00	15.29
	ATOM	518	N	MET	A	336	34.084	83.850	-3.564	1.00	19.76
20	MOTA	519	CA	MET	A	336	34.680	83.226	-4.746	1.00	18.53
	ATOM	520	С	MET	A	336	35.102	81.806	-4.427	1.00	16.57
	ATOM	521	0	MET	A	336	34.711	80.840	-5.084	1.00	13.78
	ATOM	522	CB	MET	A	336	35.898	84.018	-5.183	1.00	25.38
	MOTA	523	CG	MET	A	336	36.622	83.455	-6.405	1.00	32.05
25	MOTA	524	SD	MET	A	336	35.649	83.602	-7.882	1.00	40.49
	MOTA	525	CE	MET	A	336	36.142	85.307	-8.404	1.00	37.86
	MOTA	526	N	GLU	A	337	35.915	81.695	-3.390	1.00	14.84
	MOTA	527	CA	GLU	A	337	36.403	80.413	-2.964	1.00	12.50
	ATOM	528	С	GLU	A	337	35.278	79.455	-2.578	1.00	12.56
30	ATOM	529	0	GLU	A	337	35.328	78.295	-2.922	1.00	13.22
	ATOM	530	CB	GLU	A	337	37.372	80.604	-1.810	1.00	8.55
	MOTA	531	CG	GLU	A	337	38.383	79.505	-1.706	1.00	14.40
	ATOM	532	CD	GLU	A	337	39.372	79.719	-0.553	1.00	18.30
	MOTA	533	OE1	GLU	A	337	39.685	80.890	-0.242	1.00	18.01
35	ATOM	534	OE2	GLU	A	337	39.845	78.720	0.038	1.00	15.07
	MOTA	535	N	VAL	A	338	34.256	79.935	-1.877	1.00	12.46
	ATOM	536	CA	VAL	A	338	33.161	79.069	-1.464	1.00	11.85
	MOTA	537	С	VAL	Α	338	32.382	78.626	-2.699	1.00	13.28
	ATOM	538	0	VAL	A	338	31.961	77.470	-2.799	1.00	10.19
40	ATOM	539	CB	VAL	A	338	32.254	79.802	-0.408	1.00	15.77

	MOTA	540	CG1	VAL 2	A	338	30.938	79.099	-0.206	1.00	16.03
	ATOM	541	CG2	VAL 2	A	338	32.973	79.849	0.922	1.00	15.48
	ATOM	542	Ŋ	LEU 2	A	339	32.211	79.522	-3.669	1.00	15.67
	ATOM	543	CA	LEU 2	A	339	31.494	79.131	-4.876	1.00	17.55
5	ATOM	544	C	LEU 2	A	339	32.298	78.064	-5.590	1.00	18.67
	ATOM	545	0	LEU 2	A	339	31.751	77.065	-6.047	1.00	18.92
	ATOM	546	СВ	LEU 2	A	339	31.275	80.324	-5.809	1.00	20.11
	ATOM	547	CG	LEU 2	A	339	30.055	81.239	-5.647	1.00	19.03
	ATOM	548	CD1	LEU Z	A	339	30.110	82.244	-6.767	1.00	19.53
10	ATOM	549	CD2	LEU Z	A	339	28.753	80.479	-5.709	1.00	17.35
	ATOM	550	N	MET J	Ą	340	33.607	78.276	-5.679	1.00	17.94
	ATOM	551	CA	MET 2	A	340	34.473	77.305	-6.328	1.00	20.80
	ATOM	552	C	MET 2	A	340	34.399	75.930	-5.664	1.00	22.16
	MOTA	553	0	MET 2	Ą	340	34.195	74.927	-6.343	1.00	25.64
15	MOTA	554	CB	MET 2	A	340	35.907	77.825	-6.350	1.00	21.88
	MOTA	555	CG	MET A	A	340	36.054	79.100	-7.160	1.00	22.21
	MOTA	556	SD	MET 2	Ā	340	37.744	79.436	-7.509	1.00	22.03
	ATOM	557	CE	MET Z	A	340	37.603	80.420	-8.952	1.00	22.39
	MOTA	558	N	MET A	A	341	34.554	75.883	-4.345	1.00	21.23
20	MOTA	559	CA	MET A	Ą	341	34.469	74.623	-3.609	1.00	22.72
	MOTA	560	C	MET A	Ą	341	33.159	73.900	-3.928	1.00	25.03
	MOTA	561	0	MET A	A	341	33.131	72.683	-4.124	1.00	26.27
	MOTA	562	CB	MET A	A	341	34.524	74.870	-2.104	1.00	20.25
	ATOM	563	CG	MET A	Ā	341	35.901	75.000	-1.516	1.00	20.06
25	MOTA	564	SD	MET A	A	341	36.855	73.482	-1.656	1.00	27.93
	ATOM	565	CE	MET A	Ą	341	35.893	72.410	-0.741	1.00	20.39
	MOTA	566	N	GLY A	4	342	32.069	74.655	-3.974	1.00	26.08
	MOTA	567	CA	GLY A	4	342	30.776	74.061	-4.252	1.00	25.83
• •	MOTA	568	С	GLY A	4	342	30.671	73.519	-5.663	1.00	25.47
30	MOTA	569	0	GLY A	4	342	30.003	72.519	-5.907	1.00	24.31
	MOTA	586	N	TRP A			32.604	70.110	-5.820	1.00	31.56
	MOTA	587	CA	TRP A			31.935	68.990	-5.176		31.51
	ATOM	588	С	TRP A			30.811	68.380	-6.031		34.86
o =	ATOM	589	0	TRP A			30.627	67.151	-6.056		34.73
35	ATOM	590	CB	TRP A	7	345	31.419	69.408	-3.800	1.00	24.78
	ATOM	591	CG	TRP A			30.665	68.349	-3.123		21.06
	ATOM	592		TRP A			29.319	68.289	-2.975		21.80
	MOTA	593		TRP A			31.191	67.164	-2.503	1.00	22.45
4.0	ATOM	594		TRP A			28.964	67.138	-2.297		23.41
40	MOTA	595	CE2	TRP P	7	345	30.099	66.429	-1.997	1.00	22.74

	ATOM	596	CE3	TRP	A	345	32.478	66.645	-2.328	1.00	23.11
	ATOM	597	CZ2	TRP	A	345	30.254	65.205	-1.329	1.00	21.55
	ATOM	598	CZ3	TRP	A	345	32.629	65.422	-1.663	1.00	22.09
	MOTA	599	CH2	TRP	A	345	31.520	64.722	-1.175	1.00	21.02
5	ATOM	600	N	ARG	A	346	30.075	69.235	-6.741	1.00	36.80
	ATOM	601	CA	ARG	A	346	28.987	68.780	-7.601	1.00	37.33
	ATOM	602	С	ARG	A	346	29.578	68.037	-8.797	1.00	39.47
	ATOM	603	0	ARG	A	346	29.037	67.033	-9.270	1.00	39.87
	ATOM	604	CB	ARG	A	346	28.168	69.979	-8.100	1.00	35.61
10	ATOM	605	CG	ARG	A	346	27.515	70.790	-6.996	1.00	35.27
	MOTA	606	CD	ARG	A	346	26.483	71.733	-7.560	1.00	32.82
	ATOM	607	NE	ARG	A	346	27.065	72.830	-8.323	1.00	29.79
	ATOM	608	CZ	ARG	A	346	27.472	73.975	-7.788	1.00	27.93
	MOTA	609	NH1	ARG	A	346	27.362	74.176	-6.487	1.00	26.25
15	ATOM	610	NH2	ARG	A	346	27.974	74.924	-8.558	1.00	27.25
	ATOM	625	N	ASP	A	349	32.433	63.755	-9.263	1.00	48.72
	ATOM	626	CA	ASP	A	349	32.284	62.462	-9.916	1.00	49.63
	ATOM	627	C	ASP	A	349	32.051	62.517	-11.430	1.00	50.48
	ATOM	628	0	ASP	A	349	31.770	61.496	-12.047	1.00	52.40
20	MOTA	629	CB	ASP	A	349	31.145	61.681	-9.247	1.00	50.96
	ATOM	630	CG	ASP	A	349	31.397	61.433	-7.762	1.00	54.14
	ATOM	631	OD1	ASP	A	349	32.563	61.178	-7.397	1.00	57.25
	MOTA	632	OD2	ASP	A	349	30.437	61.476	-6.960	1.00	54.83
	ATOM	695	N	PRO	A	358	22.357	71.048	-12.407	1.00	51.18
25	ATOM	696	CA	PRO	A	358	21.930	69.832	-13.105	1.00	52.77
	ATOM	697	С	PRO	A	358	21.782	70.051	-14.600	1.00	54.38
	MOTA	698	0	PRO	A	358	22.245	69.241	-15.402	1.00	56.29
	MOTA	699	CB	PRO	A	358	20.612	69.487	-12.420		51.61
	MOTA	700	CG	PRO	A	358	20.875	69.898	-11.008	1.00	51.81
30	ATOM	701	CD	PRO	A	358	21.546	71.259	-11.195	1.00	52.76
	ATOM	996	N	TYR	A	397	34.120	67.559	3.349		24.82
	MOTA	997	CA	TYR	A	397	33.800	68.689	2.487	1.00	23.38
	ATOM	998	С	TYR	A	397	33.126	69.782	3.289		22.45
	ATOM	999	0	TYR			33.530	70.937	3.245		23.10
35	MOTA	1000	CB	TYR	A	397	32.879	68.208	1.359		25.09
	MOTA	1001	CG	TYR	A	397	32.138	69.291	0.571	1.00	25.87
		1002		TYR			32.822	70.219	-0.213		24.58
		1003		TYR			30.744	69.374	0.609		24.99
4.5		1004		TYR			32.136	71.204	-0.939		24.05
40	MOTA	1005	CE2	TYR	A	397	30.050	70.349	-0.109	1.00	24.00

	MOTA	1006	CZ	TYR A	397	30.746	71.261	-0.878	1.00	26.24
	ATOM	1007	ОН	TYR A	397	30.034	72.230	-1.569	1.00	29.36
	MOTA	1008	N	LEU P	398	32.110	69.411	4.049	1.00	22.21
	ATOM	1009	CA	LEU A	398	31.397	70.397	4.835	1.00	22.58
5	MOTA	1010	C	LEU A	398	32.272	71.129	5.849	1.00	22.08
	ATOM	1011	0	LEU A	398	32.127	72.339	6.027	1.00	22.04
	MOTA	1012	CB	LEU A	398	30.195	69.757	5.539	1.00	23.08
	MOTA	1013	CG	LEU A	398	29.100	69.090	4.679	1.00	24.43
	MOTA	1014	CD1	LEU A	398	27.860	68.904	5.536	1.00	23.58
10	MOTA	1015	CD2	LEU A	398	28.740	69.931	3.465	1.00	23.50
	MOTA	1029	N	LYS A	401	34.605	73.520	4.066	1.00	17.69
	MOTA	1030	CA	LYS A	401	33.897	74.681	3.542	1.00	17.79
	MOTA	1031	С	LYS A	401	33.763	75.765	4.575	1.00	17.99
	MOTA	1032	0	LYS A	401	34.004	76.930	4.301	1.00	19.98
15	MOTA	1033	СВ	LYS A	401	32.510	74.284	3.068	1.00	19.62
	MOTA	1034	CG	LYS A	401	31.907	75.273	2.112	1.00	22.29
	MOTA	1035	CD	LYS A	401	30.912	74.581	1.156	1.00	24.70
	MOTA	1036	CE	LYS A	. 401	29.552	74.361	1.798	1.00	24.63
	ATOM	1037	NZ	LYS A	401	28.970	75.682	2.242	1.00	28.13
20										

GR Homology Model Site II Residues (ref. GR_icm_aligned.pdb)

	ATOM	103	N	GLU A	537	-11.080	4.969	-10.004	1.00	20.00
25	MOTA	104	CA	GLU A	537	-10.913	3.599	-10.490	1.00	20.00
	MOTA	105	C	GLU A	537	-10.384	3.551	-11.927	1.00	20.00
	ATOM	106	0	GLU A	537	-9.790	2.536	-12.306	1.00	20.00
	ATOM	107	CB	GLU A	537	-12.267	2.897	-10.362	1.00	20.00
	ATOM	108	CG	GLU A	537	-12.225	1.397	-10.662	1.00	20.00
30	ATOM	109	CD	GLU A	537	-12.502	1.114	-12.138	1.00	20.00
	ATOM	110	OE1	GLU A	537	-12.954	2.042	-12.797	1.00	20.00
	MOTA	111	OE2	GLU A	537	-12.518	-0.057	-12.489	1.00	20.00
	ATOM	112	N	VAL A	538	-10.481	4.647	-12.662	1.00	20.00
	ATOM	113	CA	VAL A	538	-9.938	4.688	-14.022	1.00	20.00
35	MOTA	114	С	VAL A	538	-8.508	5.243	-14.060	1.00	20.00
	MOTA	115	0	VAL A	538	-7.739	4.908	-14.969	1.00	20.00
	ATOM	116	CB	VAL A	538	-10.880	5.542	-14.872	1.00	20.00
	ATOM	117	CG1	VAL A	538	-10.316	5.838	-16.259	1.00	20.00
	ATOM	118	CG2	VAL A	538	-12.249	4.880	-14.995	1.00	20.00
40	ATOM	119	N	ILE A	539	-8.123	5.996	-13.041	1.00	20.00

	ATOM	120	CA	ILE	A	539	-6.742	6.497	-12.978	1.00	20.00
	ATOM	121	C	ILE	A	539	-5.858	5.612	-12.099	1.00	20.00
	ATOM	122	0	ILE	А	539	-4.647	5.839	-11.983	1.00	20.00
	MOTA	123	СВ	ILE	A	539	-6.734	7.967	-12.548	1.00	20.00
5	ATOM	124	CG1	ILE	A	539	-7.332	8.228	-11.167	1.00	20.00
	MOTA	125	CG2	ILE,	A	539	-7.441	8.818	-13.596	1.00	20.00
	MOTA	126	CD1	ILE	A	539	-6.287	8.243	-10.060	1.00	20.00
	MOTA	127	N	GLU	A	540	-6.479	4.616	-11.488	1.00	20.00
	ATOM	128	CA	GLU	A	540	-5.766	3.576	-10.744	1.00	20.00
10	MOTA	129	C	GLU	A	540	-4.822	2.810	-11.678	1.00	20.00
	MOTA	130	0	GLU	A	540	-5.227	2.388	-12.765	1.00	20.00
	MOTA	131	CB	GLU	A	540	-6.843	2.636	-10.200	1.00	20.00
	MOTA	132	CG	GLU	A	540	-6.313	1.647	-9.170	1.00	20.00
	ATOM	133	CD	GLU	A	540	-5.839	2.402	-7.932	1.00	20.00
15	MOTA	134	OE1	GLU	A	540	-6.459	3.406	-7.607	1.00	20.00
	ATOM	135	OE2	GLU	A	540	-4.842	1.988	-7.358	1.00	20.00
	ATOM	136	N	PRO	A	541	-3.571	2.672	-11.264	1.00	20.00
	ATOM	137	CA	PRO	A	541	-2.549	1.983	-12.062	1.00	20.00
	ATOM	138	C	PRO	A	541	-2.768	0.470	-12.159	1.00	20.00
20	ATOM	139	0	PRO	A	541	-3.893	-0.042	-12.120	1.00	20.00
	MOTA	140	CB	PRO	A	541	-1.247	2.285	-11.386	1.00	20.00
	MOTA	141	CG	PRO	A	541	-1.524	3.000	-10.074	1.00	20.00
	ATOM	142	CD	PRO	A	541	-3.028	3.202	-10.012	1.00	20.00
	ATOM	143	N	GLU	A	542	-1.656	-0.223	-12.330	1.00	20.00
25	MOTA	144	CA	GLU	A	542	-1.675	-1.669	-12.569	1.00	20.00
	MOTA	145	С	GLU	A	542	-1.033	-2.428	-11.404	1.00	20.00
	MOTA	146	0	GLU	A	542	-0.112	-1.909	-10.762	1.00	20.00
	MOTA	147	CB	GLU	A	542	-0.893	-1.901	-13.868	1.00	20.00
	MOTA	148	CG	GLU	A	542	-0.941	-3.337	-14.389	1.00	20.00
30	ATOM	149	CD	GLU	A	542	-2.382	-3.754	-14.681	1.00	20.00
	ATOM	150	OE1	GLU	A	542	-2.844	-3.471	-15.775	1.00	20.00
	ATOM	151	OE2	GLU	A	542	-3.015	-4.268	-13.766	1.00	20.00
	ATOM	152	N	VAL	A	543	-1.564		-11.102	1.00	20.00
	ATOM	153	CA	VAL	A	543	-0.902		-10.154	1.00	20.00
35	MOTA	154	С	VAL	A	543	0.442	-4.922	-10.758	1.00	20.00
	ATOM	155	0	VAL	A	543	0.543	-5.236	-11.950	1.00	20.00
	MOTA	156	CB	VAL	A	543	-1.806	-5.720	-9.890	1.00	20.00
	ATOM	157	CG1	VAL	A	543	-2.193	-6.445	-11.175	1.00	20.00
	MOTA	158	CG2	VAL	A	543	-1.191	-6.692	-8.887	1.00	20.00
40	ATOM	334	N	LEU	A	566	10.458	-4.244	-6.551	1.00	20.00

	MOTA	335	CA	LEU A	566	9.019	-3.973	-6.485	1.00	20.00
	ATOM	336	С	LEU A	566	8.726	-2.637	-5.801	1.00	20.00
	ATOM	337	0	LEU A	566	7.849	-1.905	-6.272	1.00	20.00
	ATOM	338	CB	LEU A	566	8.363	-5.104	-5.708	1.00	20.00
5	ATOM	339	CG	LEU A	566	6.853	-4.933	-5.626	1.00	20.00
	MOTA	340	CD1	LEU A	566	6.214	-4.892	-7.011	1.00	20.00
	MOTA	341	CD2	LEU A	566	6.244	-6.046	-4.787	1.00	20.00
	ATOM	361	N	GLN A	570	6.584	0.298	-7.548	1.00	20.00
	MOTA	362	CA	GLN A	570	5.437	0.936	-6.899	1.00	20.00
10	ATOM	363	С	GLN A	570	5.643	2.432	-6.693	1.00	20.00
	ATOM	364	0	GLN A	570	4.656	3.173	-6.717	1.00	20.00
	ATOM	365	СВ	GLN A	570	5.191	0.262	-5.558	1.00	20.00
	ATOM	366	CG	GLN A	570	4.794	-1.197	-5.748	1.00	20.00
	ATOM	367	CD	GLN A	570	4.596	-1.865	-4.394	1.00	20.00
15	ATOM	368	OE1	GLN A	570	5.477	-2.575	-3.898	1.00	20.00
	MOTA	369	NE2	GLN A	570	3.451	-1.593	-3.792	1.00	20.00
	ATOM	370	N	VAL A	571	6.883	2.894	-6.730	1.00	20.00
	ATOM	371	CA	VAL A	571	7.140	4.333	-6.668	1.00	20.00
	ATOM	372	C	VAL A	571	6.890	4.996	-8.018	1.00	20.00
20	ATOM	373	0	VAL A	571	6.212	6.032	-8.062	1.00	20.00
	ATOM	374	CB	VAL A	571	8.587	4.568	-6.242	1.00	20.00
	ATOM	375	CG1	VAL A	571	8.981	6.032	-6.395	1.00	20.00
	ATOM	376	CG2	VAL A	571	8.828	4.097	-4.813	1.00	20.00
	ATOM	377	N	ILE A	572	7.169	4.290	-9.103	1.00	20.00
25	MOTA	378	CA	ILE A	572	6.914	4.887	-10.416	1.00	20.00
	MOTA	379	C	ILE A	572	5.436	4.736	-10.799	1.00	20.00
	ATOM	380	0	ILE A	572	4.871	5.667	-11.388	1.00	20.00
	MOTA	381	CB	ILE A	572	7.910	4.311	-11.440	1.00	20.00
	MOTA	382.	CG1	ILE A	572	7.921	5.073	-12.768	1.00	20.00
30	MOTA	383	CG2	ILE A	572	7.686	2.827	-11.702	1.00	20.00
	MOTA	384	CD1	ILE A	572	6.842	4.607	-13.742	1.00	20.00
	ATOM	385	N	ALA A	573	4.754	3.770	-10.201	1.00	20.00
	MOTA	386	CA	ALA A	573	3.309	3.672	-10.400	1.00	20.00
	MOTA	387	С	ALA A	573	2.561	4.657	-9.507	1.00	20.00
35	MOTA	388	0	ALA A	573	1.566	5.243	-9.950	1.00	20.00
	MOTA	389	CB	ALA A	573	2.858	2.251	-10.080	1.00	20.00
	ATOM	390	N	ALA A	574	3.173	5.031	-8.394	1.00	20.00
	MOTA	391	CA	ALA A	574	2.562	6.013	-7.500	1.00	20.00
	ATOM	392	С	ALA A	574	2.777	7.440	-7.981	1.00	20.00
40	ATOM	393	0	ALA A	574	1.870	8.260	-7.816	1.00	20.00

	MOTA	394	CB	ALA	A	574	3.146	5.858	-6.101	1.00	20.00
	ATOM	395	N	VAL	A	575	3.827	7.690	-8.749	1.00	20.00
	ATOM	396	CA	VAL	A	575	3.972	9.034	-9.313	1.00	20.00
	ATOM	397	С	VAL	A	575	3.152	9.174	-10.597	1.00	20.00
5	ATOM	398	0	VAL	A	575	2.598	10.253	-10.841	1.00	20.00
	MOTA	399	СВ	VAL	A	575	5.448	9.381	-9.531	1.00	20.00
	ATOM	400	CG1	VAL	A	575	6.158	8.438	-10.494	1.00	20.00
	MOTA	401	CG2	VAL	A	575	5.612	10.825	-9.995	1.00	20.00
	MOTA	402	N	LYS	A	576	2.810	8.050	-11.212	1.00	20.00
10	ATOM	403	CA	LYS	A	576	1.910	8.090	-12.364	1.00	20.00
	ATOM	404	C	LYS	A	576	0.463	8.241	-11.898	1.00	20.00
	MOTA	405	0	LYS	A	576	-0.273	9.074	-12.440	1.00	20.00
	ATOM	406	CB	LYS	A	576	2.074	6.795	-13.151	1.00	20.00
	MOTA	407	CG	LYS	A	576	1.273	6.824	-14.447	1.00	20.00
15	MOTA	408	CD	LYS	A	576	1.761	7.935	-15.372	1.00	20.00
	MOTA	409	CE	LYS	A	576	3.218	7.728	-15.772	1.00	20.00
	MOTA	410	NZ	LYS	A	576	3.687	8.826	-16.634	1.00	20.00
	MOTA	411	N	TRP	A	577	0.174	7.673	-10.739	1.00	20.00
	MOTA	412	CA	TRP	A	577	-1.144	7.819	-10.115	1.00	20.00
20	MOTA	413	Ć	TRP	A	577	-1.321	9.205	-9.494	1.00	20.00
	MOTA	414	0	TRP	A	577	-2.398	9.800	-9.622	1.00	20.00
	MOTA	415	CB	TRP	A	577	-1.242	6.744	-9.037	1.00	20.00
	MOTA	416	CG	TRP	A	577	-2.481	6.797	-8.167	1.00	20.00
	ATOM	417	CD1	TRP	A	577	-3.729	6.312	-8.478	1.00	20.00
25	MOTA	418	CD2	TRP	A	577	-2.577	7.356	-6.839	1.00	20.00
	ATOM	419	NE1	TRP	A	577	-4.558	6.554	-7.433	1.00	20.00
	MOTA	420	CE2	TRP	A	577	-3.911	7.181	-6.434	1.00	20.00
	ATOM	421	CE3	TRP	A	577	-1.662	7.973	-5.997	1.00	20.00
	ATOM	422	CZ2	TRP	A	577	-4.318	7.645	-5.190	1.00	20.00
30	MOTA	423	CZ3	TRP	A	577	-2.078	8.424	-4.751	1.00	20.00
	ATOM	424	CH2	TRP	A	577	-3.399	8.263	-4.350	1.00	20.00
	ATOM	596	N	SER	A	599	4.149	9.996	1.965	1.00	20.00
	ATOM	597	CA	SER			3.110	8.965	1.912	1.00	20.00
	ATOM	598	С	SER	A	599	3.534	7.679	1.209	1.00	20.00
35	ATOM	599	0	SER			2.773	6.704	1.271	1.00	20.00
	ATOM	600	CB	SER	A	599	1.914	9.536	1.164	1.00	20.00
	MOTA	601	OG	SER			2.316	9.748	-0.183	1.00	20.00
	ATOM	602	N	TRP			4.769	7.593	0.733		20.00
4.5	ATOM	603	CA	TRP			5.156	6.475	-0.146	1.00	20.00
40	ATOM	604	С	TRP	A	600	5.137	5.113	0.553	1.00	20.00

	ATOM	605	0	TRP	A	600	4.590	4.167	-0.029	1.00	20.00
	ATOM	606	CB	TRP	A	600	6.549	6.733	-0.739	1.00	20.00
	ATOM	607	CG	TRP	A	600	7.745	6.447	0.160	1.00	20.00
	ATOM	608	CD1	TRP	A	600	8.085	7.097	1.327	1.00	20.00
5	ATOM	609	CD2	TRP .	A	600	8.745	5.424	-0.037	1.00	20.00
	ATOM	610	NE1	TRP	A	600	9.207	6.530	1.830	1.00	20.00
	MOTA	611	CE2	TRP	A	600	9.637	5.524	1.046	1.00	20.00
	ATOM	612	CE3	TRP .	A	600	8.942	4.460	-1.016	1.00	20.00
	ATOM	613	CZ2	TRP .	A	600	10.720	4.663	1.131	1.00	20.00
10	ATOM	614	CZ3	TRP .	A	600	10.027	3.599	-0.921	1.00	20.00
	MOTA	615	CH2	TRP .	A	600	10.914	3.699	0.147	1.00	20.00
	MOTA	616	N	MET .	A	601	5.381	5.092	1.856	1.00	20.00
	ATOM	617	CA	MET .	A	601	5.436	3.817	2.562	1.00	20.00
	MOTA	618	С	MET .	A	601	4.049	3.290	2.895	1.00	20.00
15	ATOM	619	0	MET .	A	601	3.823	2.080	2.785	1.00	20.00
	ATOM	620	CB	MET .	A	601	6.242	3.989	3.842	1.00	20.00
	MOTA	621	CG	MET .	A	601	7.468	3.084	3.825	1.00	20.00
	MOTA	622	SD	MET 2	A	601	7.126	1.318	3.636	1.00	20.00
	MOTA	623	CE	MET .	A	601	8.822	0.695	3.653	1.00	20.00
20	MOTA	624	N	PHE 2	A	602	3.076	4.172	3.039	1.00	20.00
	MOTA	625	CA	PHE 2	A	602	1.745	3.653	3.323	1.00	20.00
	MOTA	626	C	PHE 2	A	602	0.933	3.520	2.040	1.00	20.00
	MOTA	627	0	PHE 2	A	602	0.010	2.702	1.997	1.00	20.00
	MOTA	628	CB	PHE 2	A	602	1.018	4.502	4.354	1.00	20.00
25	ATOM	629	CG	PHE Z	A	602	-0.170	3.743	4.939	1.00	20.00
	ATOM	630	CD1	PHE 2	Ą	602	-0.131	2.353	4.994	1.00	20.00
	ATOM	631	CD2	PHE Z	A	602	-1.273	4.424	5.431	1.00	20.00
	MOTA	632	CE1	PHE A	A	602	-1.212	1.645	5.499	1.00	20.00
	ATOM	633	CE2	PHE A	A	602	-2.354	3.714	5.938	1.00	20.00
30	ATOM	634	CZ	PHE Z	A	602	-2.327	2.326	5.962	1.00	20.00
	MOTA	635	N	LEU A			1.401	4.109	0.955	1.00	20.00
	ATOM	636	CA	LEU A			0.750	3.834	-0.325	1.00	20.00
	ATOM	637	С	LEU A	Ą	603	1.106	2.426	-0.787	1.00	20.00
o #	MOTA	638	0	LEU A			0.195	1.633	-1.070	1.00	20.00
35	ATOM	639	CB	LEU 2			1.191	4.854	-1.369	1.00	20.00
	ATOM	640	CG	LEU A			0.668	6.252	-1.062	1.00	20.00
	MOTA	641		LEU 2			1.188	7.258	-2.083		20.00
	MOTA	642	CD2	LEU A			-0.856	6.278	-1.015	1.00	20.00
40	MOTA	643	N	MET A			2.348	2.028	-0.558	1.00	20.00
40	ATOM	644	CA	MET A	Ā	604	2.746	0.674	-0.947	1.00	20.00

	MOTA	645	C	MET	A	604	2.317	-0.384	0.076	1.00 20.00
	MOTA	646	0	MET	A	604	1.938	-1.486	-0.344	1.00 20.00
	ATOM	647	CB	MET	A	604	4.255	0.637	-1.195	1.00 20.00
	ATOM	648	CG	MET	A	604	5.089	1.042	0.014	1.00 20.00
5	ATOM	649	SD	MET	A	604	6.873	1.110	-0.258	1.00 20.00
	MOTA	650	CE	MET	A	604	7.149	-0.608	-0.746	1.00 20.00
	MOTA	651	N	ALA	A	605	2.106	0.011	1.323	1.00 20.00
	ATOM	652	CA	ALA	A	605	1.640	-0.947	2.331	1.00 20.00
	ATOM	653	C	ALA	A	605	0.122	-1.102	2.349	1.00 20.00
10	ATOM	654	0	ALA	A	605	-0.370	-2.197	2.644	1.00 20.00
	ATOM	655	CB	ALA	A	605	2.123	-0.501	3.704	1.00 20.00
	ATOM	656	N	PHE	A	606	-0.597	-0.112	1.845	1.00 20.00
	MOTA	657	CA	PHE	A	606	-2.052	-0.234	1.754	1.00 20.00
	ATOM	658	С	PHE	A	606	-2.409	-0.954	0.461	1.00 20.00
15	ATOM	659	0	PHE	A	606	-3.386	-1.715	0.419	1.00 20.00
	ATOM	660	СВ	PHE	A	606	-2.665	1.161	1.767	1.00 20.00
	ATOM	661	CG	PHE	A	606	-4.092	1.228	2.298	1.00 20.00
	MOTA	662	CD1	PHE	A	606	-4.513	0.331	3.272	1.00 20.00
	MOTA	663	CD2	PHE	A	606	-4.968	2.195	1.821	1.00 20.00
20	MOTA	664	CE1	PHE	A	606	-5.808	0.403	3.768	1.00 20.00
	ATOM	665	CE2	PHE	A	606	-6.262	2.268	2.319	1.00 20.00
	MOTA	666	CZ	PHE	A	606	-6.683	1.371	3.292	1.00 20.00
	MOTA	667	N	ALA	A	607	-1.494	-0.893	-0.496	1.00 20.00
	ATOM	668	CA	ALA	A	607	-1.629	-1.694	-1.711	1.00 20.00
25	MOTA	669	C	ALA	A	607	-1.379	-3.161	-1.389	1.00 20.00
	MOTA	670	0	ALA	A	607	-2.225	-3.998	-1.718	1.00 20.00
	ATOM	671	CB	ALA	A	607	-0.616	-1.213	-2.745	1.00 20.00
	MOTA	684	N	TRP	A	610	-4.529	-4.496	0.500	1.00 20.00
	ATOM	685	CA	TRP	A	610	-5.667	-4.797	-0.368	1.00 20.00
30	MOTA	686	С	TRP	A	610	-5.403	-5.914	-1.376	1.00 20.00
	MOTA	687	0	TRP	A	610	-6.325	-6.688	-1.660	1.00 20.00
	MOTA	688	CB	TRP	A	610	-5.999	-3.528	-1.132	1.00 20.00
	ATOM	689	CG	TRP	A	610	-7.315	-3.587	-1.870	1.00 20.00
	ATOM	690	CD1	TRP	A	610	-7.512	-3.767	-3.222	1.00 20.00
35	ATOM	691	CD2	TRP	A	610	-8.622	-3.458	-1.278	1.00 20.00
	ATOM	692	NE1	TRP	A	610	-8.847	-3.743	-3.466	1.00 20.00
	ATOM	693	CE2	TRP	A	610	-9.547	-3.552	-2.330	1.00 20.00
	MOTA	694	CE3	TRP	A	610	-9.059	-3.259	0.025	1.00 20.00
	MOTA	695	CZ2	TRP	A	610	-10.900	-3.436	-2.068	1.00 20.00
40	MOTA	696	CZ3	TRP	A	610	-10.418	-3.148	0.279	1.00 20.00

	MOTA	697	CH2	TRP	A	610	-11.335	-3.235	-0.762	1.00	20.00
	MOTA	698	N	ARG	A	611	-4.156	-6.131	-1.756	1.00	20.00
	ATOM	699	CA	ARG	A	611	-3.861	-7.238	-2.668	1.00	20.00
	MOTA	700	C	ARG	A	611	-3.829	-8.565	-1.923	1.00	20.00
5	ATOM	701	0	ARG	A	611	-4.278	-9.580	-2.467	1.00	20.00
	MOTA	702	СВ	ARG	A	611	-2.519	-7.006	-3.348	1.00	20.00
	ATOM	703	CG	ARG	A	611	-2.552	-5.803	-4.281	1.00	20.00
	ATOM	704	CD	ARG	A	611	-1.201	-5.612	-4.954	1.00	20.00
	ATOM	705	NE	ARG	A	611	-0.138	-5.503	-3.943	1.00	20.00
10	ATOM	706	CZ	ARG	A	611	0.984	-4.805	-4.125	1.00	20.00
	MOTA	707	NH1	ARG	A	611	1.197	-4.175	-5.283	1.00	20.00
	ATOM	708	NH2	ARG	A	611	1.898	-4.748	-3.154	1.00	20.00
	MOTA	727	N	ARG	A	614	-7.642	-9.259	-1.472	1.00	20.00
	MOTA	728	CA	ARG	A	614	-8.243	-9.807	-2.687	1.00	20.00
15	MOTA	729	C	ARG	A	614	-7.722	-11.191	-3.065	1.00	20.00
	ATOM	730	0	ARG	A	614	-8.480	-12.164	-2.979	1.00	20.00
	MOTA	731	СВ	ARG	A	614	-7.982	-8.840	-3.834	1.00	20.00
	MOTA	732	CG	ARG	A	614	-8.818	-7.576	-3.688	1.00	20.00
	ATOM	733	CD	ARG	A	614	-10.305	-7.915	-3.709	1.00	20.00
20	ATOM	734	NE	ARG	A	614	-11.140	-6.705	-3.660	1.00	20.00
	ATOM	735	CZ	ARG	A	614	-11.850	-6.273	-4.706	1.00	20.00
	MOTA	736	NH1	ARG	A	614	-11.803	-6.934	-5.865	1.00	20.00
	MOTA	737	NH2	ARG	A	614	-12.598	-5.173	-4.597	1.00	20.00
	MOTA	738	N	GLN	A	615	-6.423	-11.316	-3.284	1.00	20.00
25	MOTA	739	CA	GLN	A	615	-5.898	-12.536	-3.912	1.00	20.00
	MOTA	740	С	GLN	A	615	-5.649	-13.696	-2.939	1.00	20.00
	MOTA	741	0	GLN	A	615	-5.544	-14.844	-3.387	1.00	20.00
	MOTA	742	СВ	GLN	A	615	-4.608	-12.166	-4.650	1.00	20.00
	MOTA	743	CG	GLN	A	615	-4.148	-13.276	-5.595	1.00	20.00
30	MOTA	744	CD	GLN	A	615	-2.882	-12.878	-6.352	1.00	20.00
	MOTA	745	OE1	GLN	A	615	-2.647	-11.698	-6.641	1.00	20.00
	ATOM	746	NE2	GLN	A	615	-2.103	-13.886	-6.702	1.00	20.00
	ATOM	810	N	PRO	A	625	1.353	-10.802	-8.117	1.00	20.00
	ATOM	811	CA	PRO	A	625	0.837	-12.115	-8.533	1.00	20.00
35	ATOM	812	С	PRO	A	625	1.938	-13.187	-8.632	1.00	20.00
	MOTA	813	0	PRO	A	625	1.677	-14.360	-8.344	1.00	20.00
	MOTA	814	СВ	PRO	A	625	0.196	-11.871	-9.866	1.00	20.00
	ATOM	815	CG	PRO	A	625	0.452	-10.433	-10.295	1.00	20.00
	ATOM	816	CD	PRO	A	625	1.237	-9.785	-9.168	1.00	20.00
40	MOTA	1129	N	TYR	A	663	-11.805	2.057	-0.132	1.00	20.00

ATOM 1130 CA TYR A 663 -10.353 1.872 -0.181 1.00 20.00

	ATOM	1131	C	TYR	A	663	-9.660	2.895	-1.077	1.00	20.00
	ATOM	1132	0	TYR	A	663	-8.661	3.484	-0.649	1.00	20.00
	ATOM	1133	CB	TYR	A	663	-10.054	0.473	-0.710	1.00	20.00
5	ATOM	1134	CG	TYR	A	663	-8.576	0.255	-1.027	1.00	20.00
	ATOM	1135	CD1	TYR	A	663	-7,.664	0.076	0.005	1.00	20.00
	ATOM	1136	CD2	TYR	A	663	-8.143	0.241	-2.348	1.00	20.00
	MOTA	1137	CE1	TYR	A	663	-6.318	-0.101	-0.284	1.00	20.00
	ATOM	1138	CE2	TYR	A	663	-6.797	0.067	-2.638	1.00	20.00
10	ATOM	1139	CZ	TYR	A	663	-5.887	-0.099	-1.603	1.00	20.00
	ATOM	1140	OH	TYR	A	663	-4.550	-0.263	-1.885	1.00	20.00
	MOTA	1141	N	LEU	A	664	-10.297	3.279	-2.170	1.00	20.00
	ATOM	1142	CA	LEU	A	664	-9.673	4.228	-3.097	1.00	20.00
	ATOM	1143	C	LEU	A	664	-9.708	5.650	-2.549	1.00	20.00
15	MOTA	1144	0	LEU	A	664	-8.688	6.352	-2.613	1.00	20.00
	MOTA	1145	CB	LEU	A	664	-10.414	4.173	-4.432	1.00	20.00
•	ATOM	1146	CG	LEU	A	664	-9.675	3.386	-5.519	1.00	20.00
	ATOM	1147	CD1	LEU	A	664	-9.285	1.975	-5.097	1.00	20.00
	ATOM	1148	CD2	LEU	A	664	-10.512	3.325	-6.788	1.00	20.00
20	MOTA	1163	N	LYS	A	667	-7.067	5.761	0.246	1.00	20.00
	MOTA	1164	CA	LYS	A	667	-5.708	5.727	-0.288	1.00	20.00
	MOTA	1165	С	LYS	A	667	-5.292	7.076	-0.870	1.00	20.00
	MOTA	1166	0	LYS	A	667	-4.158	7.509	-0.631	1.00	20.00
	MOTA	1167	CB	LYS	A	667	-5.665	4.646	-1.358	1.00	20.00
25	ATOM	1168	CG	LYS	A	667	-4.275	4.476	-1.961	1.00	20.00
	MOTA	1169	CD	LYS	A	667	-4.239	3.443	-3.090	1.00	20.00
	MOTA	1170	CE	LYS	A	667	-4.633	4.000	-4.463	1.00	20.00
	MOTA	1171	NZ	LYS	A	667	-6.057	4.359	-4.580	1.00	20.00
30											
	MR Home	ology	Model	l Sit	:e	II R	esidues (ref	. MR_hom	o.pdb)		
	ATOM	88	N	GLU		13	50.931	27.871	20.999	1.00	0.00
	ATOM	89	CA	GLU		13	50.817	29.290	20.819	1.00	0.00
35	MOTA	90	CB	GLU		13	52.092	29.933	20.251	1.00	0.00
	ATOM	91	CG	GLU		13	52.003	31.458	20.153	1.00	0.00
	ATOM	92	CD	GLU		13	53.314	31.973	19.577	1.00	0.00
	ATOM	93	OE1	GLU		13	54.151	31.126	19.165	1.00	0.00
	MOTA	94	OE2	GLU		13	53.496	33.219	19.541	1.00	0.00
_											

ATOM 95 C GLU 13 49.713 29.586 19.852 1.00 0.00

40

	MOTA	96	0	GLU	13	48.968	30.550	20.026	1.00	0.00
	ATOM	97	N	ASN	14	49.577	28.760	18.799	1.00	0.00
	ATOM	98	CA	ASN	14	48.615	29.036	17.770	1.00	0.00
	ATOM	99	СВ	ASN	14	48.697	28.039	16.602	1.00	0.00
5	MOTA	100	CG	ASN	14	47.913	28.622	15.435	1.00	0.00
	MOTA	101	OD1	ASN	14	47.172	29.591	15.587	1.00	0.00
	MOTA	102	ND2	ASN	14	48.079	28.011	14.231	1.00	0.00
	MOTA	103	C	ASN	14	47.213	28.992	18.312	1.00	0.00
	ATOM	104	0	ASN	14	46.392	29.849	17.996	1.00	0.00
10	MOTA	105	N -	ILE	15	46.916	27.976	19.141	1.00	0.00
	MOTA	106	CA	ILE	15	45.633	27.682	19.725	1.00	0.00
	ATOM	107	CB	ILE	15	45.577	26.305	20.331	1.00	0.00
	ATOM	108	CG2	ILE	15	45.787	25.295	19.190	1.00	0.00
	ATOM	109	CG1	ILE	15	46.580	26.147	21.485	1.00	0.00
15	ATOM	110	CD1	ILE	15	46.397	24.849	22.273	1.00	0.00
	ATOM	111	C	ILE	15	45.189	28.695	20.741	1.00	0.00
	MOTA	112	0	ILE	15	43.985	28.817	20.968	1.00	0.00
	ATOM	113	N	GLU	16	46.132	29.383	21.429	1.00	0.00
	ATOM	114	CA	GLU	16	45.791	30.312	22.480	1.00	0.00
20	MOTA	115	СВ	GLU	16	46.950	31.203	22.966	1.00	0.00
	MOTA	116	CG	GLU	16	47.969	30.501	23.864	1.00	0.00
	ATOM	117	CD	GLU	16	47.425	30.438	25.288	1.00	0.00
	MOTA	118	OE1	GLU	16	47.568	31.446	26.032	1.00	0.00
	MOTA	119	OE2	GLU	16	46.859	29.373	25.652	1.00	0.00
25	ATOM	120	С	GLU	16	44.714	31.238	22.012	1.00	0.00
	MOTA	121	0	GLU	16	44.677	31.697	20.871	1.00	0.00
	ATOM	122	N	PRO	17	43.806	31.494	22.913	1.00	0.00
	MOTA	123	CA	PRO	17	42.694	32.337	22.590	1.00	0.00
	MOTA	124	CD	PRO	17	43.472	30.530	23.945	1.00	0.00
30	MOTA	125	CB	PRO	17	41.611	32.034	23.608	1.00	0.00
	MOTA	126	CG	PRO	17	42.309	31.194	24.693	1.00	0.00
	MOTA	127	С	PRO	17	43.075	33.773	22.516	1.00	0.00
	MOTA	128	0	PRO	17	44.063	34.167	23.133	1.00	0.00
	MOTA	129	N	GLU	18	42.299	34.566	21.753	1.00	0.00
35	MOTA	130	CA	GLU	18	42.588	35.960	21.624	1.00	0.00
	ATOM	131	CB	GLU	18	42.033	36.612	20.340	1.00	0.00
	MOTA	132	CG	GLU	18	40.509	36.606	20.224	1.00	0.00
	MOTA	133	CD	GLU	18	40.113	37.261	18.904	1.00	0.00
	ATOM	134	OE1	GLU	18	40.910	38.078	18.369	1.00	0.00
40	ATOM	135	OE2	GLU	18	38.998	36.945	18.411	1.00	0.00

	ATOM	136	C	GLU	18	42.029	36.646	22.830	1.00	0.00
	ATOM	137	0	GLU	18	41.272	36.057	23.599	1.00	0.00
	ATOM	138	N	ILE	19	42.420	37.916	23.039	1.00	0.00
	MOTA	139	CA	ILE	19	41.997	38.627	24.209	1.00	0.00
5	MOTA	140	СВ	ILE	19	42.419	40.062	24.273	1.00	0.00
	ATOM	141	CG2	ILE	19	41.512	40.845	23.311	1.00	0.00
	ATOM	142	CG1	ILE	19	42.331	40.567	25.722	1.00	0.00
	ATOM	143	CD1	ILE	19	43.339	39.889	26.650	1.00	0.00
	ATOM	144	C	ILE	19	40.510	38.630	24.271	1.00	0.00
10	ATOM	145	0	ILE	19	39.822	38.676	23.253	1.00	0.00
	ATOM	315	N	LEU	42	33.148	37.906	32.521	1.00	0.00
	MOTA	316	CA	LEU	42	34.407	37.687	31.875	1.00	0.00
	MOTA	317	CB	LEU	42	35.532	38.502	32.546	1.00	0.00
	ATOM	318	CG	LEU	42	36.931	38.342	31.921	1.00	0.00
15	ATOM	319	CD2	LEU	42	38.021	38.928	32.836	1.00	0.00
	ATOM	320	CD1	LEU	42	36.974	38.932	30.502	1.00	0.00
	ATOM	321	C	LEU	42	34.735	36.234	32.024	1.00	0.00
	ATOM	322	0	LEU	42	35.168	35.574	31.081	1.00	0.00
	MOTA	323	N	ALA	43	34.488	35.691	33.229	1.00	0.00
20	MOTA	324	CA	ALA	43	34.795	34.322	33.518	1.00	0.00
	MOTA	325	CB	ALA	43	34.435	33.917	34.957	1.00	0.00
	MOTA	326	C	ALA	43	34.012	33.442	32.593	1.00	0.00
	ATOM	327	0	ALA	43	34.530	32.444	32.096	1.00	0.00
	MOTA	341	N	GLN	46	35.564	33.506	29.250	1.00	0.00
25	ATOM	342	CA	GLN	46	36.820	32.822	29.264	1.00	0.00
	MOTA	343	CB	GLN	46	37.738	33.286	30.411	1.00	0.00
	ATOM	344	CG	GLN	46	38.134	34.757	30.230	1.00	0.00
	MOTA	345	CD	GLN	46	39.055	35.221	31.353	1.00	0.00
20	ATOM	346	OE1		46	38.899	34.870	32.521	1.00	0.00
30	MOTA	347	NE2		46	40.057	36.060	30.978	1.00	0.00
	ATOM	348	С	GLN	46	36.587	31.343	29.341	1.00	0.00
	ATOM	349	0	GLN	46	37.340	30.564	28.760	1.00	0.00
	ATOM	350	N	MET	47	35.544	30.909	30.075	1.00	0.00
25	ATOM	351	CA	MET	47	35.276	29.502	30.196	1.00	0.00
35	MOTA	352	CB	MET	47	34.190	29.155	31.227	1.00	0.00
	ATOM	353	CG	MET	47	34.688	29.305	32.667	1.00	0.00
	ATOM	354	SD	MET	47	33.526	28.732	33.942	1.00	0.00
	ATOM	355	CE	MET	47	32.462	30.200	33.859	1.00	0.00
40	ATOM	356	C	MET	47	34.895	28.928	28.863	1.00	0.00
40	MOTA	357	0	MET	47	35.288	27.809	28.537	1.00	0.00

	MOTA	358	N	ILE	48	34.124	29.669	28.045	1.00	0.00
	MOTA	359	CA	ILE	48	33.739	29.134	26.768	1.00	0.00
	ATOM	360	СВ	ILE	48	32.787	30.022	25.996	1.00	0.00
	ATOM	361	CG2	ILE	48	33.553	31.222	25.419	1.00	0.00
5	ATOM	362	CG1	ILE	48	32.045	29.216	24.915	1.00	0.00
	ATOM	363	CD1	ILE	48	32.950	28.621	23.839	1.00	0.00
	ATOM	364	С	ILE	48	35.001	28.931	25.985	1.00	0.00
	MOTA	365	0	ILE	48	35.171	27.932	25.288	1.00	0.00
	ATOM	366	N	GLN	49	35.934	29.887	26.124	1.00	0.00
10	ATOM	367	CA	GLN	49	37.205	29.941	25.465	1.00	0.00
	MOTA	368	CB	GLN	49	37.951	31.181	25.969	1.00	0.00
	MOTA	369	CG	GLN	49	39.382	31.319	25.491	1.00	0.00
	ATOM	370	CD	GLN	49	39.948	32.566	26.158	1.00	0.00
	MOTA	371	OE1	GLN	49	40.213	33.581	25.516	1.00	0.00
15	MOTA	372	NE2	GLN	49	40.130	32.488	27.504	1.00	0.00
	MOTA	373	С	GLN	49	38.023	28.742	25.840	1.00	0.00
	MOTA	374	0	GLN	49	38.668	28.133	24.987	1.00	0.00
	MOTA	375	N	VAL	50	38.021	28.376	27.136	1.00	0.00
	MOTA	376	CA	VAL	50	38.816	27.273	27.593	1.00	0.00
20	MOTA	377	CB	VAL	50	38.842	27.108	29.089	1.00	0.00
	MOTA	378	CG1	VAL	50	37.495	26.564	29.581	1.00	0.00
	MOTA	379	CG2	VAL	50	40.035	26.208	29.442	1.00	0.00
	MOTA	380	С	VAL	50	38.308	26.008	26.980	1.00	0.00
	ATOM	381	0	VAL	50	39.088	25.128	26.622	1.00	0.00
25	MOTA	382	N	VAL	51	36.976	25.875	26.849	1.00	0.00
	MOTA	383	CA	VAL	51	36.414	24.678	26.294	1.00	0.00
	MOTA	384	CB	VAL	51	34.912	24.692	26.305	1.00	0.00
	MOTA	385	CG1	VAL	51	34.404	23.377	25.692	1.00	0.00
	ATOM	386	CG2	VAL	51	34.430	24.941	27.746	1.00	0.00
30	MOTA	387	С	VAL	51	36.876	24.541	24.873	1.00	0.00
	MOTA	388	0	VAL	51	37.293	23.464	24.449	1.00	0.00
	ATOM	389	N	LYS	52	36.835	25.647	24.103	1.00	0.00
	ATOM	390	CA	LYS	52	37.212	25.627	22.715	1.00	0.00
	ATOM	391	CB	LYS	52	37.071	27.003	22.044	1.00	0.00
35	MOTA	392	CG	LYS	52	35.621	27.463	21.919	1.00	0.00
	ATOM	393	CD	LYS	52	34.766	26.499	21.096	1.00	0.00
	ATOM	394	CE	LYS	52	33.303	26.924	20.964	1.00	0.00
	MOTA	395	NZ	LYS	52	32.566	25.933	20.150	1.00	0.00
	ATOM	396	C	LYS	52	38.653	25.243	22.614	1.00	0.00
40	MOTA	397	0	LYS	52	39.040	24.430	21.776	1.00	0.00

	ATOM	398	N	TRP	53	39.475	25.822	23.501	1.00	0.00
	ATOM	399	CA	TRP	53	40.895	25.630	23.554	1.00	0.00
	MOTA	400	СВ	TRP	53	41.475	26.501	24.686	1.00	0.00
	MOTA	401	CG	TRP	53	42.945	26.376	25.000	1.00	0.00
5	ATOM	402	CD2	TRP	53	43.439	25.944	26.277	1.00	0.00
	MOTA	403	CD1	TRP	53	44.038	26.694	24.249	1.00	0.00
	MOTA	404	NE1	TRP	53	45.184	26.480	24.978	1.00	0.00
	MOTA	405	CE2	TRP	53	44.830	26.022	26.229	1.00	0.00
	ATOM	406	CE3	TRP	53	42.784	25.529	27.401	1.00	0.00
10	MOTA	407	CZ2	TRP	53	45.593	25.682	27.310	1.00	0.00
	MOTA	408	CZ3	TRP	53	43.556	25.176	28.485	1.00	0.00
	ATOM	409	CH2	TRP	53	44.934	25.251	28.440	1.00	0.00
	MOTA	410	С	TRP	53	41.189	24.182	23.822	1.00	0.00
	ATOM	411	0	TRP	53	42.059	23.580	23.197	1.00	0.00
15	ATOM	581	N	SER	75	39.887	22.457	37.038	1.00	0.00
	ATOM	582	CA	SER	75	40.947	23.398	36.753	1.00	0.00
	ATOM	583	CB	SER	75	41.896	22.887	35.651	1.00	0.00
	MOTA	584	OG	SER	75	41.214	22.807	34.408	1.00	0.00
	ATOM	585	С	SER	75	40.579	24.808	36.360	1.00	0.00
20	MOTA	586	0	SER	75	41.475	25.646	36.275	1.00	0.00
	MOTA	587	N	TRP	76	39.302	25.147	36.119	1.00	0.00
	MOTA	588	CA	TRP	76	39.003	26.424	35.509	1.00	0.00
	MOTA	589	CB	TRP	76	37.491	26.643	35.310	1.00	0.00
	ATOM	590	CG	TRP	76	36.673	26.648	36.581	1.00	0.00
25	ATOM	591	CD2	TRP	76	36.356	27.830	37.333	1.00	0.00
	MOTA	592	CD1	TRP	76	36.081	25.605	37.232	1.00	0.00
	ATOM	593	NE1	TRP	76	35.419	26.063	38.347	1.00	0.00
	ATOM	594	CE2	TRP	76	35.579	27.431	38.420	1.00	0.00
	ATOM	595	CE3	TRP	76	36.683	29.140	37.132	1.00	0.00
30	MOTA	596		TRP	76	35.116	28.340	39.328	1.00	0.00
	ATOM	597		TRP	76	36.216	30.055	38.051	1.00	0.00
	MOTA	598		TRP	76	35.448	29.662	39.127	1.00	0.00
	MOTA	599	С	TRP	76	39.550	27.596	36.285	1.00	0.00
o #	MOTA	600	0	TRP	76	40.098	28.524	35.690	1.00	0.00
35	MOTA	601	N	MET	77	39.427	27.603	37.623	1.00	0.00
	ATOM	602	CA	MET	77	39.884	28.723	38.406	1.00	0.00
	MOTA	603	CB	MET	77	39.653	28.497	39.912	1.00	0.00
	ATOM	604	CG	MET	77	39.840	29.734	40.795	1.00	0.00
40	MOTA	605	SD	MET	77	38.411	30.858	40.857	1.00	0.00
40	ATOM	606	CE	MET	77	38.558	31.470	39.157	1.00	0.00

	MOTA	607	С	MET	77	41.366	28.887	38.235	1.00	0.00
	MOTA	608	0	MET	77	41.867	30.002	38.088	1.00	0.00
	MOTA	609	N	CYS	78	42.110	27.767	38.260	1.00	0.00
	MOTA	610	CA	CYS	78	43.542	27.811	38.167	1.00	0.00
5	MOTA	611	CB	CYS	78	44.185	26.422	38.317	1.00	0.00
	ATOM	612	SG	CYS	78	43.910	25.711	39.967	1.00	0.00
	MOTA	613	С	CYS	78	43.946	28.365	36.836	1.00	0.00
	MOTA	614	0	CYS	78	44.834	29.211	36.751	1.00	0.00
	ATOM	615	N	LEU	79	43.293	27.914	35.752	1.00	0.00
10	ATOM	616	CA	LEU	79	43.663	28.371	34.443	1.00	0.00
	ATOM	617	СВ	LEU	79	42.854	27.695	33.325	1.00	0.00
	ATOM	618	CG	LEU	79	43.171	26.200	33.156	1.00	0.00
	MOTA	619	CD2	LEU	79	44.680	25.969	32.963	1.00	0.00
	ATOM	620	CD1	LEU	79	42.332	25.587	32.025	1.00	0.00
15	ATOM	621	C	LEU	79	43.427	29.848	34.334	1.00	0.00
	ATOM	622	0	LEU	79	44.252	30.571	33.778	1.00	0.00
	MOTA	623	N	SER	80	42.289	30.340	34.856	1.00	0.00
	MOTA	624	CA	SER	80	41.946	31.730	34.721	1.00	0.00
	MOTA	625	CB	SER	80	40.522	32.041	35.214	1.00	0.00
20	MOTA	626	OG	SER	80	39.568	31.365	34.408	1.00	0.00
	MOTA	627	С	SER	80	42.881	32.614	35.489	1.00	0.00
	MOTA	628	0	SER	80	43.304	33.653	34.986	1.00	0.00
	ATOM	629	N	SER	81	43.217	32.241	36.737	1.00	0.00
	ATOM	630	CA	SER	81	44.062	33.086	37.536	1.00	0.00
25	MOTA	631	CB	SER	81	44.198	32.596	38.989	1.00	0.00
	MOTA	632	OG	SER	81	45.043	33.471	39.720	1.00	0.00
	MOTA	633	С	SER	81	45.428	33.117	36.926	1.00	0.00
	MOTA	634	0	SER	81	46.124	34.129	36.980	1.00	0.00
	ATOM	635	N	PHE	82	45.847	31.986	36.334	1.00	0.00
30	ATOM	636	CA	PHE	82	47.141	31.861	35.731	1.00	0.00
	MOTA	637	CB	PHE	82	47.375	30.406	35.273	1.00	0.00
	ATOM	638	CG	PHE	82	48.827	30.155	35.056	1.00	0.00
	MOTA	639	CD1	PHE	82	49.665	29.989	36.135	1.00	0.00
	MOTA	640	CD2	PHE	82	49.346	30.051	33.788	1.00	0.00
35	ATOM	641	CE1	PHE	82	51.006	29.745	35.955	1.00	0.00
	ATOM	642	CE2	PHE	82	50.686	29.807	33.601	1.00	0.00
	ATOM	643	CZ	PHE	82	51.518	29.656	34.684	1.00	0.00
	MOTA	644	С	PHE	82	47.185	32.781	34.545	1.00	0.00
4 =	MOTA	645	0	PHE	82	48.177	33.473	34.316	1.00	0.00
40	MOTA	646	N	ALA	83	46.092	32.801	33.755	1.00	0.00

	ATOM	647	CA	ALA	83	45.988	33.623	32.580	1.00	0.00
	ATOM	648	СВ	ALA	83	44.678	33.392	31.807	1.00	0.00
	ATOM	649	С	ALA	83	46.026	35.065	32.978	1.00	0.00
	ATOM	650	0	ALA	83	46.677	35.883	32.329	1.00	0.00
5	ATOM	665	N	TRP	86	49.445	36.147	33.580	1.00	0.00
	MOTA	666	CA	TRP	86	50.241	36.360	32.408	1.00	0.00
	ATOM	667	СВ	TRP	86	50.115	35.246	31.363	1.00	0.00
	ATOM	668	CG	TRP	86	51.048	35.483	30.206	1.00	0.00
	MOTA	669	CD2	TRP	86	52.475	35.422	30.336	1.00	0.00
10	ATOM	670	CD1	TRP	86	50.790	35.860	28.920	1.00	0.00
	ATOM	671	NE1	TRP	86	51.972	36.024	28.236	1.00	0.00
	MOTA	672	CE2	TRP	86	53.017	35.763	29.098	1.00	0.00
	MOTA	673	CE3	TRP	86	53.268	35.120	31.407	1.00	0.00
	ATOM	674	CZ2	TRP	86	54.369	35.806	28.910	1.00	0.00
15	ATOM	675	CZ3	TRP	86	54.629	35.153	31.211	1.00	0.00
	MOTA	676	CH2	TRP	86	55.169	35.489	29.986	1.00	0.00
	ATOM	677	C	TRP	86	49.916	37.667	31.747	1.00	0.00
	ATOM	678	0	TRP	86	50.815	38.401	31.343	1.00	0.00
	ATOM	679	N	ARG	87	48.619	37.999	31.615	1.00	0.00
20	ATOM	680	CA	ARG	87	48.224	39.208	30.946	1.00	0.00
	MOTA	681	СВ	ARG	87	46.697	39.320	30.782	1.00	0.00
	ATOM	682	CG	ARG	87	46.177	38.518	29.583	1.00	0.00
	MOTA	683	CD	ARG	87	44.654	38.499	29.424	1.00	0.00
	ATOM	684	NE	ARG	87	44.130	37.261	30.072	1.00	0.00
25	MOTA	685	CZ	ARG	87	43.828	37.222	31.403	1.00	0.00
	MOTA	686	NH1	ARG	87	44.048	38.310	32.193	1.00	0.00
	MOTA	687	NH2	ARG	87	43.301	36.089	31.951	1.00	0.00
	MOTA	688	C	ARG	87	48.734	40.396	31.700	1.00	0.00
	MOTA	689	0	ARG	87	49.153	41.387	31.106	1.00	0.00
30	MOTA	708	N	LYS	90	52.507	40.704	31.086	1.00	0.00
	ATOM	709	CA	LYS	90	52.874	41.161	29.777	1.00	0.00
	MOTA	710	CB	LYS	90	52.219	40.305	28.682	1.00	0.00
	ATOM	711	CG	LYS	90	52.843	40.475	27.298	1.00	0.00
	MOTA	712	CD	LYS	90	52.458	39.344	26.345	1.00	0.00
35	ATOM	713	CE	LYS	90	53.062	39.476	24.949	1.00	0.00
	MOTA	714	NZ	LYS	90	52.710	38.287	24.142	1.00	0.00
	ATOM	715	С	LYS	90	52.528	42.598	29.508	1.00	0.00
	MOTA	716	0	LYS	90	53.366	43.358	29.023	1.00	0.00
	ATOM	717	N	HIS	91	51.258	42.989	29.744	1.00	0.00
40	MOTA	718	CA	HIS	91	50.834	44.320	29.395	1.00	0.00

	MOTA	719	ND1	HIS	91	49.206	43.769	26.718	1.00	0.00
	MOTA	720	CG	HIS	91	48.929	43.494	28.039	1.00	0.00
	MOTA	721	NE2	HIS	91	48.198	41.788	26.757	1.00	0.00
	ATOM	722	CD2	HIS	91	48.311	42.282	28.045	1.00	0.00
5	ATOM	723	CE1	HIS	91	48.749	42.716	25.996	1.00	0.00
	ATOM	724	СВ	HIS	91	49.316	44.393	29.172	1.00	0.00
	ATOM	725	С	HIS	91	51.233	45.390	30.369	1.00	0.00
	MOTA	726	0	HIS	91	51.759	46.435	29.998	1.00	0.00
	ATOM	804	N	PRO	101	41.024	44.104	28.674	1.00	0.00
10	ATOM	805	CA	PRO	101	41.382	45.430	28.240	1.00	0.00
	ATOM	806	CD	PRO	101	40.297	43.370	27.648	1.00	0.00
	MOTA	807	СВ	PRO	101	41.182	45.423	26.725	1.00	0.00
	ATOM	808	CG	PRO	101	40.064	44.385	26.520	1.00	0.00
	ATOM	809	С	PRO	101	40.491	46.456	28.882	1.00	0.00
15	MOTA	810	0	PRO	101	40.960	47.552	29.183	1.00	0.00
	MOTA	1122	N	TYR	139	55.206	29.212	29.912	1.00	0.00
	MOTA	1123	CA	TYR	139	53.880	29.563	30.334	1.00	0.00
	MOTA	1124	CB	TYR	139	53.601	31.034	29.953	1.00	0.00
	MOTA	1125	CG	TYR	139	52.188	31.433	30.200	1.00	0.00
20	ATOM	1126	CD1	TYR	139	51.726	31.666	31.474	1.00	0.00
	MOTA	1127	CD2	TYR	139	51.332	31.609	29.138	1.00	0.00
	ATOM	1128	CE1	TYR	139	50.420	32.046	31.682	1.00	0.00
	MOTA	1129	CE2	TYR	139	50.027	31.990	29.338	1.00	0.00
	MOTA	1130	CZ	TYR	139	49.569	32.207	30.614	1.00	0.00
25	ATOM	1131	ОН	TYR	139	48.230	32.597	30.829	1.00	0.00
	ATOM	1132	С	TYR	139	52.877	28.666	29.665	1.00	0.00
	MOTA	1133	0	TYR	139	51.978	28.133	30.316	1.00	0.00
	MOTA	1134	N	THR	140	53.023	28.451	28.344	1.00	0.00
	ATOM	1135	CA	THR	140	52.065	27.679	27.603	1.00	0.00
30	ATOM	1136	CB	THR	140	52.355	27.654	26.126	1.00	0.00
	MOTA	1137	OG1	THR	140	51.289	27.029	25.427	1.00	0.00
	MOTA	1138	CG2	THR	140	53.675	26.906	25.874	1.00	0.00
	MOTA	1139	C	THR	140	52.015	26.271	28.099	1.00	0.00
	MOTA	1140	0	THR	140	50.942	25.684	28.227	1.00	0.00
35	MOTA	1157	N	LYS	143	50.485	26.019	31.567	1.00	0.00
	MOTA	1158	CA	LYS	143	49.063	26.209	31.513	1.00	0.00
	MOTA	1159	CB	LYS	143	48.652	27.022	30.271	1.00	0.00
	MOTA	1160	CG	LYS	143	48.857	28.531	30.349	1.00	0.00
	MOTA	1161	CD	LYS	143	47.776	29.256	31.147	1.00	0.00
40	MOTA	1162	CE	LYS	143	46.693	29.859	30.247	1.00	0.00

MOTA	1163	NZ	LYS	143	46.140	28.822	29.343	1.00	0.00	
MOTA	1164	С	LYS	143	48.410	24.876	31.309	1.00	0.00	
ATOM	1165	0	LYS	143	47.403	24.565	31.944	1.00	0.00	

5

PPARgamma Site II Residues (ref. 2PRG.pdb)

	ATOM	93	N	TYR A	A	219	49.317	-20.485	0.542	1.00	26.16
	MOTA	94	CA	TYR A	A	219	48.188	-21.396	0.545	1.00	27.09
10	MOTA	95	C	TYR A	A	219	48.474	-22.592	-0.357	1.00	28.21
	ATOM	96	0	TYR Z	A	219	48.164	-23.724	0.008	1.00	27.53
	ATOM	97	CB	TYR A	A	219	46.909	-20.661	0.113	1.00	31.07
	ATOM	98	CG	TYR A	A	219	45.667	-21.528	0.102	1.00	34.26
	MOTA	99	CD1	TYR 2	A	219	45.415	-22.424	1.135	1.00	30.92
15	MOTA	100	CD2	TYR A	A	219	44.724	-21.417	-0.912	1.00	37.77
	MOTA	101	CE1	TYR A	A	219	44.256	-23.191	1.161	1.00	35.65
	ATOM	102	CE2	TYR A	A	219	43.550	-22.181	-0.898	1.00	41.57
	MOTA	103	CZ	TYR A	A	219	43.328	-23.066	0.144	1.00	38.33
	MOTA	104	OH	TYR A	A	219	42.188	-23.837	0.171	1.00	42.57
20	ATOM	105	N	ASP 2	A	220	49.086	-22.357	-1.519	1.00	30.62
	ATOM	106	CA	ASP A	A	220	49.409	-23.473	-2.412	1.00	32.11
	ATOM	107	C	ASP A	A	220	50.414	-24.436	-1.797	1.00	28.77
	MOTA	108	0	ASP A	A	220	50.240	-25.652	-1.888	1.00	30.81
	ATOM	109	CB	ASP A	A	220	49.983	-23.010	-3.758	1.00	31.77
25	ATOM	110	CG	ASP A	A	220	48.984	-22.238	-4.593	1.00	33.82
	ATOM	111	OD1	ASP A	A	220	47.784	-22.586	-4.572	1.00	33.95
	MOTA	112	OD2	ASP 2	A	220	49.409	-21.301	-5.293	1.00	39.99
	ATOM	113	N	SER A	A	221	51.466	-23.911	-1.175	1.00	29.83
	ATOM	114	CA	SER A	A	221	52.467	-24.800	-0.597	1.00	32.70
30	MOTA	115	C	SER A	A	221	51.877	-25.501	0.616	1.00	28.79
	MOTA	116	0	SER A	A	221	52.251	-26.623	0.938	1.00	31.65
	ATOM	117	CB	SER A	A	221	53.743	-24.033	-0.231	1.00	33.22
	ATOM	118	OG	SER A	A	221	53.502	-23.093	0.784	1.00	42.80
	ATOM	119	N	TYR Z	A	222	50.936	-24.834	1.275	1.00	32.44
35	ATOM	120	CA	TYR I	A	222	50.259	-25.415	2.424	1.00	29.27
	MOTA	121	C	TYR Z	A	222	49.438	-26.592	1.910	1.00	31.32
	MOTA	122	0	TYR Z	A	222	49.440	-27.661	2.517	1.00	33.08
	MOTA	123	CB	TYR A	A	222	49.383	-24.347	3.091	1.00	29.11
	MOTA	124	CG	TYR I	A	222	48.384	-24.814	4.128	1.00	23.58
40	MOTA	125	CD1	TYR A	A	222	47.233	-25.521	3.754	1.00	25.68

	ATOM	126	CD2	TYR	A	222	48.526	-24.449	5.471	1.00	27.50
	MOTA	127	CE1	TYR	A	222	46.240	-25.839	4.690	1.00	31.92
	ATOM	128	CE2	TYR	A	222	47.536	-24.762	6.422	1.00	24.65
	ATOM	129	CZ	TYR	A	222	46.394	-25.452	6.022	1.00	30.90
5	ATOM	130	OH	TYR	A	222	45.392	-25.716	6.937	1.00	31.36
	MOTA	131	N	ILE	A	223	48.751	-26.409	0.781	1.00	34.58
	ATOM	132	CA	ILE	A	223	47.963	-27.502	0.208	1.00	34.35
	ATOM	133	С	ILE	A	223	48.866	-28.678	-0.144	1.00	35.22
	ATOM	134	0	ILE	A	223	48.477	-29.832	0.005	1.00	36.41
10	MOTA	135	CB	ILE	A	223	47.216	-27.088	-1.085	1.00	34.59
	ATOM	136	CG1	ILE	A	223	46.071	-26.134	-0.754	1.00	35.22
	ATOM	137	CG2	ILE	A	223	46.683	-28.340	-1.803	1.00	32.70
	ATOM	138	CD1	ILE	A	223	45.010	-26.742	0.136	1.00	39.33
	ATOM	139	N	LYS	A	224	50.073	-28.380	-0.619	1.00	36.65
15	MOTA	140	CA	LYS	A	224	51.011	-29.434	-0.989	1.00	38.16
	ATOM	141	С	LYS	A	224	51.738	-30.133	0.144	1.00	34.79
	ATOM	142	0	LYS	A	224	52.132	-31.284	-0.013	1.00	35.05
	ATOM	143	CB	LYS	A	224	52.058	-28.914	-1.974	1.00	40.32
	MOTA	144	CG	LYS	A	224	51.555	-28.828	-3.407	1.00	50.64
20	ATOM	145	CD	LYS	A	224	52.713	-28.647	-4.382	1.00	58.74
	ATOM	146	CE	LYS	A	224	52.248	-28.792	-5.826	1.00	58.38
	ATOM	147	NZ	LYS	A	224	53.382	-28.721	-6.790	1.00	62.48
	MOTA	148	N	SER	A	225	51.893	-29.457	1.281	1.00	32.90
	MOTA	149	CA	SER	A	225	52.631	-30.012	2.416	1.00	32.12
25	MOTA	150	C	SER	A	225	51.796	-30.776	3.433	1.00	33.07
	ATOM	151	0	SER	A	225	52.283	-31.713	4.066	1.00	34.52
	MOTA	152	CB	SER	A	225	53.380	-28.888	3.153	1.00	29.50
	MOTA	153	OG	SER	A	225	54.250	-28.179	2.287	1.00	36.10
	MOTA	154	N	PHE	A	226	50.540	-30.375	3.589	1.00	32.08
30	ATOM	155	CA	PHE .	A	226	49.664	-30.994	4.565	1.00	34.40
	ATOM	156	С	PHE	A	226	48.522	-31.784	3.935	1.00	39.63
	MOTA	157	0	PHE	A	226	47.620	-31.215	3.326	1.00	41.93
	MOTA	158	CB	PHE .	A	226	49.106	-29.911	5.482	1.00	30.58
	ATOM	159	CG	PHE .	A	226	50.167	-29.043	6.108	1.00	30.45
35	ATOM	160	CD1	PHE .	A	226	51.124	-29.591	6.958	1.00	26.08
	MOTA	161	CD2	PHE .	A	226	50.211	-27.674	5.844	1.00	32.25
	MOTA	162	CE1	PHE .	A	226	52.110	-28.790	7.535	1.00	26.05
	MOTA	163	CE2	PHE .	A	226	51.190	-26.864	6.415	1.00	31.29
	ATOM	164	CZ	PHE .	A	226	52.141	-27.423	7.261	1.00	33.33
40	MOTA	165	N	PRO .	A	227	48.535	-33.113	4.107	1.00	44.70

	ATOM	166	CA	PRO	A	227	47.529	-34.040	3.578	1.00	46.95
	MOTA	167	С	PRO	A	227	46.124	-33.753	4.093	1.00	45.50
	ATOM	168	0	PRO	A	227	45.189	-33.532	3.315	1.00	45.30
	ATOM	169	CB	PRO	A	227	48.041	-35.398	4.062	1.00	46.06
5	ATOM	170	CG	PRO	A	227	49.531	-35.177	4.132	1.00	50.39
	MOTA	171	CD	PRO	A	227	49.535	-33.868	4.879	1.00	47.37
	MOTA	650	N	ARG	A	288	53.071	-39.607	15.013	1.00	47.42
	ATOM	651	CA	ARG	A	288	52.383	-38.698	14.108	1.00	46.07
	MOTA	652	C	ARG	A	288	53.036	-37.325	14.091	1.00	41.26
10	MOTA	653	0	ARG	A	288	52.933	-36.595	13.111	1.00	39.85
	ATOM	654	CB	ARG	A	288	50.905	-38.573	14.496	1.00	50.86
	MOTA	655	CG	ARG	A	288	50.176	-37.445	13.773	1.00	59.11
	MOTA	656	CD	ARG	A	288	50.362	-37.533	12.261	1.00	65.80
	ATOM	657	NE	ARG	A	288	50.009	-36.275	11.608	1.00	71.79
15	MOTA	658	CZ	ARG	A	288	50.278	-35.987	10.339	1.00	72.53
	ATOM	659	NH1	ARG	A	288	50.905	-36.867	9.575	1.00	72.45
	ATOM	660	NH2	ARG	A	288	49.931	-34.811	9.835	1.00	76.74
	ATOM	661	N	SER	A	289	53.717	-36.986	15.180	1.00	41.14
	MOTA	662	CA	SER	A	289	54.394	-35.702	15.296	1.00	38.47
20	ATOM	663	C	SER	A	289	55.675	-35.710	14.463	1.00	38.98
	ATOM	664	0	SER	A	289	56.054	-34.694	13.884	1.00	38.45
	ATOM	665	CB	SER	A	289	54.713	-35.416	16.764	1.00	39.42
	ATOM	666	OG	SER	A	289	55.352	-34.163	16.909	1.00	46.15
	MOTA	683	N	ALA	A	292	54.638	-34.991	11.179	1.00	42.33
25	ATOM	684	CA	ALA	A	292	54.244	-33.586	11.135	1.00	37.96
	ATOM	685	С	ALA	A	292	55.461	-32.669	10.999	1.00	36.30
	ATOM	686	0	ALA	A	292	55.425	-31.684	10.265	1.00	37.45
	MOTA	687	CB	ALA	A	292	53.444	-33.229	12.386	1.00	31.14
	MOTA	688	N	VAL			56.541	-32.993	11.703	1.00	37.86
30	MOTA	689	CA	VAL	A	293		-32.189	11.631		35.96
	ATOM	690	C	VAL			58.276	-32.092	10.193		37.16
	MOTA	691	0	VAL			58.750	-31.044	9.753		39.01
	ATOM	692	CB	VAL	A	293		-32.795	12.503		32.38
a =	ATOM	693		VAL				-32.003	12.320		30.77
35	ATOM	694	CG2	VAL				-32.798	13.951		32.30
	MOTA	695	N	GLN	A	294		-33.198	9.467		36.25
	MOTA	696	CA	GLN				-33.264	8.092		32.53
	MOTA	697	C	GLN				-32.457	7.133		29.89
40	ATOM	698	0	GLN				-31.799	6.226		28.01
40	MOTA	699	CB	GLN	A	294	58.721	-34.730	7.673	1.00	36.86

	ATOM	700	CG	GLN A	. 294	59.677	-35.533	8.566	1.00	41.69
	MOTA	701	CD	GLN A	294	59.618	-37.028	8.318	1.00	49.48
	ATOM	702	OE1	GLN A	294	59.878	-37.503	7.210	1.00	52.48
	ATOM	703	NE2	GLN A	294	59.276	-37.781	9.355	1.00	51.85
5	MOTA	704	N	GLU A	295	56.473	-32.495	7.342	1.00	26.58
	ATOM	705	CA	GLU A	295	55.545	-31.756	6.498	1.00	29.65
	ATOM	706	C	GLU A	295	55.713	-30.266	6.765	1.00	27.31
	MOTA	707	0	GLU A	295	55.750	-29.461	5.834	1.00	28.65
	MOTA	708	CB	GLU A	295	54.105	-32.164	6.816	1.00	31.76
10	MOTA	709	CG	GLU A	295	53.894	-33.662	6.874	1.00	41.29
	MOTĄ	710	CD	GLU A	295	52.489	-34.037	7.311	1.00	43.08
	ATOM	711	OE1	GLU A	295	51.992	-33.456	8.296	1.00	49.49
	MOTA	712	OE2	GLU A	295	51.888	-34.931	6.685	1.00	52.62
	MOTA	713	N	ILE A	296	55.815	-29.917	8.050	1.00	28.18
15	MOTA	714	CA	ILE A	296	55.973	-28.532	8.492	1.00	29.14
	MOTA	715	C	ILE A	296	57.293	-27.927	8.036	1.00	30.82
	MOTA	716	0	ILE A	296	57.362	-26.746	7.683	1.00	30.56
	MOTA	717	CB	ILE A	296	55.890	-28.429	10.037	1.00	31.25
	MOTA	718	CG1	ILE A	296	54.514	-28.906	10.508	1.00	33.48
20	MOTA	719	CG2	ILE A	296	56.121	-26.985	10.493	1.00	24.18
	MOTA	720	CD1	ILE A	296	54.348	-28.908	12.015	1.00	34.47
	MOTA	721	N	THR A	297	58.347	-28.731	8.056	1.00	32.77
	MOTA	722	CA	THR A	297	59.648	-28.249	7.625	1.00	29.52
	MOTA	723	C	THR A	297	59.612	-27.944	6.136	1.00	29.40
25	MOTA	724	0	THR A	297	60.193	-26.961	5.679	1.00	27.20
	MOTA	725	CB	THR A	297	60.743	-29.282	7.902	1.00	30.55
	MOTA	726	OG1	THR A	297	60.900	-29.435	9.321	1.00	31.64
	MOTA	727	CG2	THR A	297		-28.841	7.261		29.15
	MOTA	728	N	GLU P	A 298	58.926	-28.792	5.381		31.50
30	MOTA	729	CA	GLU A	298		-28.571	3.950		34.95
	ATOM	730	С	GLU A	298		-27.268	3.735		32.29
	MOTA	731	0	GLU A	298	58.417	-26.426	2.927		33.09
	ATOM	732	CB	GLU A	298		-29.735	3.287		37.99
	MOTA	733	CG	GLU A	A 298	58.301	-29.782	1.791		53.91
35	MOTA	734	CD	GLU A	298		-29.915	1.438		58.00
	MOTA	735	OE1	GLU A	A 298		-30.919	1.837		66.07
	MOTA	736	OE2	GLU A	298		-29.006	0.766		65.07
	MOTA	737	N	TYR A			-27.095	4.468		31.49
	MOTA	738	CA	TYR A	299		-25.872	4.346		26.31
40	MOTA	739	С	TYR A	1 299	57.009	-24.654	4.704	1.00	27.39

	MOTA	740	0	TYR A	. 299	56.949	-23.632	4.029	1.00 26.41
	ATOM	741	СВ	TYR A	. 299	54.961	-25.895	5.276	1.00 25.28
	MOTA	742	CG	TYR A	. 299	54.183	-24.609	5.242	1.00 23.43
	ATOM	743	CD1	TYR A	. 299	53.431	-24.262	4.117	1.00 24.14
5	MOTA	744	CD2	TYR A	. 299	54.232	-23.716	6.311	1.00 23.27
	MOTA	745	CE1	TYR A	. 299	52.741	-23.054	4.052	1.00 24.89
	MOTA	746	CE2	TYR A	. 299	53.548	-22.503	6.261	1.00 25.45
	MOTA	747	CZ	TYR A	. 299	52.806	-22.183	5.126	1.00 25.47
	MOTA	748	OH	TYR A	. 299	52.139	-20.991	5.058	1.00 29.93
10	MOTA	914	N	GLY A	321	58.998	-23.431	16.750	1.00 35.39
	MOTA	915	CA	GLY A	. 321	57.701	-23.228	16.129	1.00 35.61
	MOTA	916	C	GLY P	. 321	56.938	-24.471	15.728	1.00 33.20
	MOTA	917	0	GLY A	321	55.727	-24.409	15.520	1.00 36.84
	MOTA	918	N	VAL P	322	57.620	-25.604	15.623	1.00 32.05
15	ATOM	919	CA	VAL P	322	56.942	-26.823	15.208	1.00 32.49
	MOTA	920	C	VAL A	322	55.750	-27.232	16.070	1.00 31.08
	MOTA	921	0	VAL P	322	54.695	-27.574	15.536	1.00 36.08
	MOTA	922	CB	VAL A	322	57.929	-28.011	15.101	1.00 37.63
	MOTA	923	CG1	VAL A	322	57.163	-29.314	14.889	1.00 42.68
20	MOTA	924	CG2	VAL A	322	58.851	-27.796	13.912	1.00 38.13
	MOTA	925	N	HIS A	323	55.891	-27.207	17.389	1.00 30.11
	MOTA	926	CA	HIS P	323	54.754	-27.604	18.207	1.00 31.92
	MOTA	927	С	HIS P	323	53.594	-26.624	18.194	1.00 29.54
	ATOM	928	0	HIS P	323	52.441	-27.041	18.240	1.00 27.50
25	MOTA	929	CB	HIS A	323	55.172	-27.914	19.647	1.00 30.61
	MOTA	930	CG	HIS P	323	55.918	-29.203	19.778	1.00 34.26
	MOTA	931	ND1	HIS A	323	57.291	-29.267	19.870	1.00 37.08
	MOTA	932	CD2	HIS A	323	55.481	-30.487	19.767	1.00 36.78
	MOTA	933	CE1	HIS A	323	57.669	-30.533	19.909	1.00 37.36
30	MOTA	934	NE2	HIS A	323	56.590	-31.293	19.847	1.00 34.75
	MOTA	935	N	GLU A	324	53.888	-25.329	18.119	1.00 30.21
	MOTA	936	CA	GLU P	324		-24.340	18.084	1.00 27.19
	MOTA	937	С	GLU A	324	51.993	-24.567	16.818	1.00 28.15
	MOTA	938	0	GLU A	324	50.788	-24.324	16.797	1.00 28.90
35	MOTA	939	CB	GLU A	324		-22.923	18.099	1.00 24.17
	MOTA	940	CG	GLU A	324		-22.559	19.399	1.00 26.67
	MOTA	941	CD	GLU A	324		-21.166	19.374	1.00 29.48
	MOTA	942	OE1	GLU A	324		-20.423	18.386	1.00 32.08
	MOTA	943	OE2	GLU A	324		-20.808	20.353	1.00 29.74
40	ATOM	944	N	ILE P	325	52.650	-25.040	15.764	1.00 29.34

	MOTA	945	CA	ILE A	325	51.969 -25.	.305	14.505	1.00	27.95
	MOTA	946	Ċ	ILE A	325	51.235 -26	.637	14.552	1.00	27.21
	ATOM	947	0	ILE A	325	50.156 -26.	.777	13.980	1.00	26.67
	MOTA	948	СВ	ILE A	325	52.963 -25	.308	13.319	1.00	29.47
5	ATOM	949	CG1	ILE A	325	53.570 -23.	.910	13.169	1.00	31.96
	ATOM	950	CG2	ILE A	325	52.259 -25	.746	12.023	1.00	26.17
	ATOM	951	CD1	ILE A	325	54.519 -23	.798	12.016	1.00	36.43
	ATOM	952	N	ILE A	326	51.814 -27	.620	15.236	1.00	26.54
	ATOM	953	CA	ILE A	326	51.157 -28	.914	15.339	1.00	28.11
10	MOTA	954	C	ILE A	326	49.825 -28	.743	16.057	1.00	29.17
	MOTA	955	0	ILE A	326	48.798 -29	.274	15.626	1.00	29.80
	ATOM	956	CB	ILE A	326	52.015 -29	.929	16.118	1.00	33.05
	MOTA	957	CG1	ILE A	326	53.267 -30	.281	15.306	1.00	31.62
	MOTA	958	CG2	ILE A	326	51.185 -31	.184	16.445	1.00	27.50
15	MOTA	959	CD1	ILE A	326	54.192 -31	.278	15.993	1.00	29.00
	MOTA	960	N	TYR A	327	49.836 -27	.981	17.145	1.00	29.50
	MOTA	961	CA	TYR A	327	48.620 -27	.779	17.918	1.00	30.34
	MOTA	962	С	TYR A	327	47.612 -26	.890	17.221	1.00	32.40
	MOTA	963	0	TYR A	327	46.413 -26	.984	17.487	1.00	32.56
20	MOTA	964	CB	TYR A	327	48.967 -27	.246	19.310	1.00	29.71
	ATOM	965	CG	TYR A	327	49.845 -28	.208	20.082	1.00	27.91
	MOTA	966	CD1	TYR A	327	49.495 -29	.554	20.202	1.00	36.87
	MOTA	967	CD2	TYR A	327	51.028 -27	.786	20.673	1.00	34.57
	ATOM	968	CE1	TYR A	327	50.312 -30	.457	20.896	1.00	39.01
25	MOTA	969	CE2	TYR A	327	51.850 -28	.677	21.369	1.00	35.00
	MOTA	970	CZ	TYR A	327	51.488 -30	.007	21.476	1.00	37.53
	MOTA	971	OH	TYR A	327	52.289 -30	.885	22.176	1.00	43.90
	MOTA	972	N	THR A	328	48.097 -26	.033	16.321	1.00	33.44
	MOTA	973	CA	THR A	328	47.217 -25	.159	15.556	1.00	27.97
30	MOTA	974	C	THR A	328	46.500 -26	.030	14.526	1.00	28.13
	MOTA	975	0	THR A	328	45.289 -25	.925	14.341	1.00	28.36
	MOTA	976	CB	THR A	328	48.015 -24	.062	14.803	1.00	31.65
	MOTA	977	OG1	THR A	328	48.614 -23	.166	15.749	1.00	34.24
	MOTA	978	CG2	THR A	328	47.100 -23	.279	13.857	1.00	28.42
35	ATOM	979	N	MET A	329	47.268 -26	.894	13.866		26.24
	MOTA	980	CA	MET A	329	46.740 -27	.792	12.841	1.00	28.47
	MOTA	981	C	MET A	329	45.831 -28	.853	13.461	1.00	30.21
	MOTA	982	0	MET A	329	44.822 -29	.251	12.867	1.00	29.30
	MOTA	983	CB	MET A	329	47.893 -28	.484	12.097	1.00	31.16
40	ATOM	984	CG	MET A	329	48.870 -27	.530	11.390	1.00	40.71

	ATOM	985	SD	MET A	329	48.138	-26.605	10.026	1.00	47.88
	ATOM	986	CE	MET A	329	47.820	-27.914	8.823	1.00	46.75
	ATOM	1000	N	SER A	332	42.137	-28.210	13.823	1.00	33.69
	ATOM	1001	CA	SER A	332	41.327	-28.455	12.634	1.00	31.46
5	ATOM	1002	С	SER A	332	40.688	-29.850	12.678	1.00	34.05
	ATOM	1003	0	SER A	332	39.633	-30.071	12.093	1.00	36.02
	ATOM	1004	CB	SER A	332	42.180	-28.342	11.355	1.00	32.80
	ATOM	1005	OG	SER A	332	42.678	-27.026	11.143	1.00	34.02
	MOTA	1006	N	LEU A	333	41.326	-30.786	13.375	1.00	31.60
10	ATOM	1007	CA	LEU A	333	40.827	-32.157	13.445	1.00	35.66
	MOTA	1008	С	LEU A	333	39.978	-32.399	14.688	1.00	33.42
	ATOM	1009	0	LEU A	333	39.483	-33.504	14.909	1.00	38.08
	MOTA	1010	CB	LEU A	333	42.009	-33.136	13.436	1.00	33.49
	MOTA	1011	CG	LEU A	333	43.111	-32.826	12.407	1.00	39.04
15	MOTA	1012	CD1	LEU A	333	44.221	-33.875	12.471	1.00	30.81
	MOTA	1013	CD2	LEU A	333	42.513	-32.777	11.024	1.00	34.79
	MOTA	1022	N	ASN A	335	36.759	-31.278	17.509	1.00	37.06
	MOTA	1023	CA	ASN A	335	35.499	-30.613	17.799	1.00	34.66
	MOTA	1024	C	ASN A	335	35.479	-30.749	19.317	1.00	37.43
20	MOTA	1025	0	ASN A	335	36.424	-31.309	19.896	1.00	36.55
	MOTA	1026	CB	ASN A	335	34.268	-31.269	17.141	1.00	36.33
	MOTA	1027	CG	ASN A	335	34.033	-32.694	17.578	1.00	33.81
	MOTA	1028	OD1	ASN A	335	34.175	-33.041	18.750	1.00	39.06
	MOTA	1029	ND2	ASN A	335	33.625	-33.526	16.635	1.00	41.11
25	MOTA	1030	N	LYS A	336	34.438	-30.251	19.973	1.00	40.23
	MOTA	1031	CA	LYS A	336	34.385	-30.315	21.431	1.00	43.15
	MOTA	1032	C	LYS A	336	34.401	-31.726	22.021	1.00	43.02
	ATOM	1033	0	LYS A	336	34.794	-31.908	23.177		44.52
	MOTA	1034	CB	LYS A	336		-29.579	21.951		49.47
30	MOTA	1035	CG	LYS A	336	31.832	-30.233	21.565		56.12
	MOTA	1036	CD	LYS A	336	30.654	-29.497	22.174		63.31
	MOTA	1037	CE	LYS A	336	29.347	-30.208	21.859		68.69
	MOTA	1038	NZ	LYS A	336	28.183	-29.551	22.517	1.00	72.75
	MOTA	1080	И	GLU A	343	44.675	-40.220	9.810	1.00	50.51
35	ATOM	1081	CA	GLU A	343	44.295	-39.491	8.604	1.00	51.89
	MOTA	1082	C	GLU A	343	42.791	-39.468	8.328	1.00	50.95
	MOTA	1083	0	GLU A	343		-39.622	7.184		50.39
	MOTA	1084	CB	GLU A	343		-40.082	7.397		59.73
	MOTA	1085	CG	GLU A	343	46.541	-40.019	7.508		68.39
40	MOTA	1086	CD	GLU A	343	47.240	-40.616	6.302	1.00	76.46

	ATOM	1087	OE1	GLU A 34	3 47.070	-41.832	6.049	1.00 7	8.36
	MOTA	1088	OE2	GLU A 34	3 47.959	-39.865	5.605	1.00 7	79.29
	MOTA	1419	N	LEU A 38	44.818	-20.042	7.630	1.00 2	7.46
	ATOM	1420	CA	LEU A 38	45.776	-20.800	8.417	1.00 2	27.85
5	ATOM	1421	С	LEU A 38	47.169	-20.825	7.787	1.00 2	8.31
	MOTA	1422	0	LEU A 38	48.173	-20.663	8.478	1.00 2	7.17
	MOTA	1423	CB	LEU A 38	45.259	-22.228	8.617	1.00 2	5.10
	ATOM	1424	CG	LEU A 38	43.996	-22.358	9.483	1.00 2	8.35
	ATOM	1425	CD1	LEU A 38	43.482	-23.776	9.427	1.00 2	5.74
10	MOTA	1426	CD2	LEU A 38	44.306	-21.947	10.934	1.00 2	4.70
	MOTA	1427	N	ALA A 38	5 47.237	-21.012	6.474	1.00 2	8.77
	MOTA	1428	CA	ALA A 38	48.541	-21.054	5.815	1.00 2	8.21
	ATOM	1429	C	ALA A 38	49.392	-19.832	6.154	1.00 2	3.50
	ATOM	1430	0	ALA A 385	50.584	-19.968	6.393	1.00 2	8.41
15	MOTA	1431	CB	ALA A 385	48.373	-21.184	4.316	1.00 2	2.62
	ATOM	1451	N	ILE A 388	50.323	-19.739	10.091	1.00 2	5.45
	MOTA	1452	CA	ILE A 388	51.389	-20.683	10.388	1.00 2	5.58
	ATOM	1453	C	ILE A 388	52.741	-20.079	10.026	1.00 2	3.26
	MOTA	1454	0	ILE A 388	53.724	-20.295	10.720	1.00 3	0.01
20	MOTA	1455	CB	ILE A 388	51.169	-22.004	9.601	1.00 2	9.97
	MOTA	1456	CG1	ILE A 388	49.853	-22.647	10.042	1.00 3	8.36
	MOTA	1457	CG2	ILE A 388	52.316	-22.947	9.804	1.00 3	6.50
	ATOM	1458	CD1	ILE A 388	49.736	-22.823	11.518	1.00 3	1.88

25

PR Site II Residues (ref. 1A28.pdb)

	MOTA	76	N	MET A	692	27.562	5.259	83.253	1.00	24.62
	MOTA	77	CA	MET A	692	26.351	4.476	83.019	1.00	27.60
30	MOTA	78	C	MET A	692	25.156	5.337	83.440	1.00	27.94
	MOTA	79	0	MET A	692	24.145	5.416	82.745	1.00	25.86
	MOTA	80	CB	MET A	692	26.385	3.195	83.860	1.00	27.45
	MOTA	81	CG	MET A	692	25.197	2.289	83.686	1.00	39.52
	ATOM	82	SD	MET A	692	25.017	1.642	82.004	1.00	51.06
35	ATOM	83	CE	MET A	692	24.268	3.029	81.134	1.00	52.36
	MOTA	84	N	SER A	693	25.296	6.010	84.574	1.00	25.24
	MOTA	85	CA	SER A	693	24.216	6.835	85.083	1.00	31.97
	MOTA	86	С	SER A	693	23.878	8.044	84.219	1.00	29.88
	ATOM	87	0	SER A	693	22.719	8.455	84.157	1.00	28.14
40	ATOM	88	CB	SER A	693	24.531	7.313	86.508	1.00	38.05

	ATOM	89	OG	SER	A	693	25.623	8.222	86.526	1.00	43.01
	ATOM	90	N	ILE			24.865	8.625	83.547	1.00	25.23
	ATOM	91	CA	ILE			24.553	9.808	82.741	1.00	26.22
	ATOM	92	С	ILE	A	694	24.257	9.520	81.279	1.00	23.06
5	ATOM	93	0	ILE			24.031	10.442	80.504	1.00	24.41
	ATOM	94	СВ	ILE	A	694	25.669	10.875	82.813	1.00	22.83
	MOTA	95	CG1	ILE	A	694	26.984	10.307	82.265	1.00	22.20
	ATOM	96	CG2	ILE	Α	694	25.849	11.338	84.270	1.00	28.20
	ATOM	97	CD1	ILE	A	694	28.060	11.373	82.014	1.00	22.62
10	ATOM	98	N	GLU	A	695	24.257	8.242	80.899	1.00	26.89
	MOTA	99	CA	GLU	A	695	23.969	7.876	79.517	1.00	21.93
	ATOM	100	C	GLU	A	695	22.511	8.296	79.289	1.00	28.96
	MOTA	101	0	GLU	A	695	21.632	7.992	80.087	1.00	29.21
	MOTA	102	CB	GLU	A	695	24.150	6.362	79.338	1.00	34.17
15	MOTA	103	CG	GLU	Α	695	24.063	5.848	77.911	1.00	34.86
	MOTA	104	CD	GLU	A	695	25.240	6.232	77.021	1.00	45.46
	MOTA	105	OE1	GLU	A	695	26.126	7.019	77.436	1.00	31.19
	MOTA	106	OE2	GLU	A	695	25.275	5.730	75.873	1.00	49.30
	MOTA	107	N	PRO	A	696	22.242	9.037	78.215	1.00	32.33
20	MOTA	108	CA	PRO	Α	696	20.865	9.469	77.961	1.00	34.70
	MOTA	109	C	PRO	A	696	19.862	8.330	77.764		30.39
	MOTA	110	0	PRO	A	696	20.232	7.235	77.371	1.00	27.63
	MOTA	111	CB	PRO	Α	696	21.020	10.333	76.710	1.00	38.27
	MOTA	112	CG	PRO	A	696	22.198	9.652	75.997	1.00	40.07
25	MOTA	113	CD	PRO	A	696	23.141	9.561	77.173		34.72
	MOTA	114	N	ASP	A	697	18.588	8.613	78.037	1.00	38.27
	MOTA	115	CA	ASP	A	697	17.516	7.632	77.863		35.46
	MOTA	116	С	ASP	A	697	17.341	7.513	76.340		35.96
	MOTA	117	0	ASP	A	697	17.600	8.468	75.620		30.43
30	MOTA	118	CB	ASP	A	697	16.238	8.147	78.523		44.25
	MOTA	119	CG	ASP	A	697	15.176	7.069	78.683		53.62
	MOTA	120	OD1	ASP	A	697	15.420	5.901	78.302		57.04
	MOTA	121	OD2	ASP	Α	697	14.085	7.398	79.203		61.97
	MOTA	122	N	VAL	Α	698	16.909	6.359	75.841		32.80
35	ATOM	123	CA	VAL	A	698	16.766	6.195	74.393		34.66
	MOTA	124	С	VAL	A	698	15.941	7.312	73.736		28.44
	ATOM	125	0	VAL	A	698	14.937	7.775	74.266		30.11
	ATOM	126	CB			698	16.153	4.813	74.026		41.68
	MOTA	127	CG1	VAL	A	698	14.649	4.830	74.237		38.06
40	ATOM	128	CG2	VAL	Ą	698	16.517	4.451	72.586	1.00	45.80

	ATOM	282	N	LEU 2	A	721	16.006	12.741	63.995	1.00	19.58
	MOTA	283	CA	LEU A	A	721	16.568	11.942	65.084	1.00	17.13
	MOTA	284	С	LEU Z	A	721	17.924	12.545	65.476	1.00	16.29
	ATOM	285	0	LEU A	A	721	18.228	12.690	66.662	1.00	19.55
5	MOTA	286	CB	LEU Z	A	721	16.742	10.479	64.638	1.00	17.00
	MOTA	287	CG	LEU A	A	721	17.378	9.549	65.673	1.00	19.10
	MOTA	288	CD1	LEU 2	A	721	16.508	9.497	66.942	1.00	18.65
	MOTA	289	CD2	LEU A	A	721	17.536	8.145	65.037	1.00	17.08
	MOTA	290	N	GLY 2	A	722	18.724	12.896	64.476	1.00	16.83
10	MOTA	291	CA	GLY Z	A	722	20.036	13.486	64.710	1.00	17.42
	ATOM	292	С	GLY A	A	722	19.929	14.774	65.516	1.00	24.76
	MOTA	293	0	GLY A	A	722	20.749	15.038	66.402	1.00	19.56
	MOTA	314	N	GLN A	Ą	725	19.296	13.770	69.009	1.00	19.77
	ATOM	315	CA	GLN A	A	725	20.474	13.188	69.634	1.00	19.30
15	MOTA	316	C	GLN A	A	725	21.545	14.239	69.906	1.00	21.49
	MOTA	317	0	GLN A	A	725	22.309	14.113	70.855	1.00	21.43
	ATOM	318	СВ	GLN A	A	725	21.055	12.063	68.771	1.00	19.47
	ATOM	319	CG	GLN A	Ą	725	20.135	10.843	68.774	1.00	22.41
	ATOM	320	CD	GLN A	A	725	20.746	9.633	68.092	1.00	30.53
20	MOTA	321	OE1	GLN A	A.	725	20.104	8.578	67.970	1.00	32.93
	ATOM	322	NE2	GLN A	A	725	21.987	9.770	67.647	1.00	27.09
	ATOM	323	N	LEU A	Ą '	726	21.592	15.284	69.085	1.00	21.82
	MOTA	324	CA	LEU A	Α.	726	22.573	16.347	69.288	1.00	22.79
	ATOM	325	С	LEU A	Α.	726	22.284	17.027	70.624	1.00	21.40
25	MOTA	326	0	LEU A	A.	726	23.207	17.293	71.406	1.00	23.41
	ATOM	327	CB	LEU A	<i>A</i> ,	726	22.526	17.367	68.135	1.00	19.53
	ATOM	328	CG	LEU P	Α.	726	23.533	18.531	68.138	1.00	24.90
	MOTA	329	CD1	LEU P	Α,	726	24.948	18.005	68.300	1.00	22.88
	MOTA	330	CD2	LEU A	<i>4</i> .	726	23.421	19.325	66.812	1.00	20.28
30	MOTA	331	N	LEU A	Æ.	727	21.007	17.301	70.890	1.00	18.00
	MOTA	332	CA	LEU A	. F	727	20.623	17.906	72.156	1.00	19.91
	ATOM	333	C	LEU A	4 .	727	21.078	16.978	73.281	1.00	24.23
	MOTA	334	0	LEU A	A .	727	21.678	17.402	74.274	1.00	19.07
	MOTA	335	CB	LEU A	A .	727	19.105	18.065	72.247	1.00	21.64
35	MOTA	336	CG	LEU A	<i>Y</i> .	727	18.591	18.563	73.594	1.00	21.40
	MOTA	337	CD1	LEU A	Ā .	727	19.256	19.906	73.912	1.00	26.36
	MOTA	338	CD2	LEU A	<i>y</i> 7	727	17.082	18.699	73.546	1.00	28.00
	MOTA	339	N	SER A	7 7	728	20.783	15.695	73.106	1.00	21.94
	ATOM	340	CA	SER A	7	728	21.131	14.690	74.097	1.00	21.38
40	ATOM	341	C	SER A	¥ 7	728	22.637	14.682	74.355	1.00	20.10

	ATOM	342	0	SER.	A	728	23.066	14.611	75.512	1.00	22.32
	ATOM	343	CB	SER	A	728	20.645	13.310	73.630	1.00	24.08
	MOTA	344	OG	SER	A	728	20.719	12.380	74.689	1.00	30.43
	MOTA	345	N	VAL .	Ą	729	23.433	14.741	73.297	1.00	18.72
5	ATOM	346	CA	VAL .	A	729	24.891	14.781	73.415	1.00	20.27
	ATOM	347	C	VAL .	Ą	729	25.388	15.988	74.203	1.00	18.31
	MOTA	348	0	VAL .	A	729	26.274	15.860	75.049	1.00	19.16
	MOTA	349	CB	VAL .	A	729	25.574	14.796	72.034	1.00	17.15
	MOTA	350	CG1	VAL .	A	729	27.060	15.147	72.164	1.00	20.31
10	ATOM	351	CG2	VAL .	A	729	25.453	13.395	71.407	1.00	21.83
	ATOM	352	N	VAL .	A	730	24.830	17.159	73.937	1.00	17.43
	MOTA	353	CA	VAL 2	A	730	25.282	18.333	74.660	1.00	21.44
	MOTA	354	С	VAL A	Ą	730	24.888	18.225	76.132	1.00	19.86
	ATOM	355	0	VAL 2	Α	730	25.678	18.584	76.993	1.00	21.47
15	ATOM	356	CB	VAL I	Ą	730	24.725	19.630	74.038	1.00	20.22
	MOTA	357	CG1	VAL A	Ą	730	25.210	20.849	74.834	1.00	21.24
	ATOM	358	CG2	VAL Z	Ą	730	25.178	19.734	72.596	1.00	19.32
	ATOM	359	N	LYS A	Ą	731	23.686	17.727	76.427	1.00	17.73
	ATOM	360	CA	LYS A	A	731	23.275	17.552	77.817	1.00	22.58
20	MOTA	361	С	LYS A	4	731	24.186	16.546	78.517	1.00	23.23
	MOTA	362	0	LYS A	4	731	24.613	16.757	79.659	1.00	20.64
	MOTA	363	CB	LYS A	4	731	21.808	17.121	77.911	1.00	23.07
	MOTA	364	CG	LYS A	7	731	20.850	18.296	77.646	1.00	25.92
	ATOM	365	CD	LYS I	7	731	19.388	18.009	78.016	1.00	37.08
25	MOTA	366	CE	LYS A	7	731	18.717	17.034	77.063	1.00	48.50
	MOTA	367	NZ	LYS A	7	731	17.247	16.901	77.346	1.00	49.18
	MOTA	368	N	TRP A	7	732	24.486	15.452	77.828	1.00	18.73
	ATOM	369	CA	TRP A	7	732	25.383	14.437	78.364	1.00	21.37
20	MOTA	370	С	TRP I	7	732	26.743	15.038	78.703	1.00	22.20
30	MOTA	371	0	TRP F	7	732	27.293	14.772	79.770	1.00	23.93
	MOTA	372	CB	TRP P	7	732	25.552	13.321	77.334	1.00	21.47
	ATOM	373	CG	TRP P			26.674	12.347	77.582	1.00	17.78
	ATOM	374		TRP A			26.728	11.348	78.528	1.00	20.71
25	MOTA	375	CD2	TRP A	7	732	27.861	12.225	76.806	1.00	17.23
35	MOTA	376		TRP A			27.879	10.613	78.370	1.00	19.88
	MOTA	377		TRP A			28.593	11.130	77.318	1.00	19.41
	MOTA	378		TRP A			28.383	12.938	75.713	1.00	19.83
	MOTA	379	CZ2				29.824	10.726	76.771	1.00	18.15
40	ATOM	380	CZ3	TRP A			29.612	12.533	75.165	1.00	20.23
40	MOTA	381	CH2	TRP A	. '	732	30.314	11.435	75.701	1.00	22.27

	ATOM	382	N	SER A	A 733	27.274	15.872	77.811	1.00 20.68
	MOTA	555	N	SER A	754	33.038	15.988	66.904	1.00 19.69
	ATOM	556	CA	SER A	754	32.699	14.594	67.147	1.00 21.05
	MOTA	557	C	SER A	754	31.265	14.109	67.119	1.00 20.67
5	ATOM	558	0	SER A	754	31.042	12.893	67.259	1.00 17.40
	ATOM	559	CB	SER A	754	33.288	14.196	68.498	1.00 24.21
	ATOM	560	OG	SER A	754	32.556	14.827	69.535	1.00 27.35
	MOTA	561	N	TRP A	755	30.300	14.998	66.911	1.00 17.55
	ATOM	562	CA	TRP A	755	28.912	14.547	66.960	1.00 21.93
10	ATOM	563	С	TRP A	755	28.620	13.345	66.055	1.00 18.91
	ATOM	564	0	TRP P	755	27.956	12.409	66.486	1.00 20.07
	MOTA	565	CB	TRP A	755	27.925	15.684	66.647	1.00 22.52
	MOTA	566	CG	TRP A	755	28.003	16.222	65.257	1.00 23.08
	ATOM	567	CD1	TRP A	755	28.859	17.175	64.791	1.00 28.21
15	ATOM	568	CD2	TRP A	755	27.217	15.803	64.141	1.00 24.51
	MOTA	569	NE1	TRP A	755	28.655	17.379	63.445	1.00 25.19
	MOTA	570	CE2	TRP A	755	27.651	16.548	63.022	1.00 26.64
	ATOM	571	CE3	TRP A	. 755	26.189	14.869	63.979	1.00 25.75
	ATOM	572	CZ2	TRP A	755	27.089	16.388	61.743	1.00 29.86
20	MOTA	573	CZ3	TRP A	755	25.630	14.707	62.707	1.00 32.59
	MOTA	574	CH2	TRP A	755	26.083	15.465	61.608	1.00 30.85
	MOTA	575	N	MET A	756	29.114	13.357	64.820	1.00 21.38
	ATOM	576	CA	MET A	756	28.848	12.243	63.896	1.00 18.69
	ATOM	577	С	MET A	756	29.439	10.939	64.415	1.00 23.20
25	MOTA	578	0	MET A	756	28.794	9.878	64.350	1.00 21.19
	ATOM	579	CB	MET A	756	29.432	12.529	62.511	1.00 21.49
	MOTA	580	CG	MET A	756	29.112	11.430	61.496	1.00 22.22
	MOTA	581	SD	MET A	756	27.367	11.449	60.920	1.00 27.03
	MOTA	582	CE	MET A	756	27.451	12.902	59.772	1.00 26.64
30	MOTA	583	N	SER A	757	30.675	11.013	64.899	1.00 19.23
	ATOM	584	CA	SER A	757	31.344	9.845	65.451	1.00 22.32
	ATOM	585	С	SER A	757	30.575	9.283	66.631	1.00 20.68
	MOTA	586	0	SER A	757	30.376	8.078	66.718	1.00 21.09
	MOTA	587	CB	SER A	757	32.759	10.190	65.911	1.00 23.54
35	MOTA	588	OG	SER A	757	33.562	10.611	64.826	1.00 31.88
	MOTA	589	N	LEU A	758	30.150	10.149	67.548	1.00 20.06
	MOTA	590	CA	LEU A	758	29.430	9.698	68.735	1.00 16.39
	MOTA	591	С	LEU A	758	28.105	9.061	68.355	1.00 18.68
	ATOM	592	0	LEU A	758	27.709	8.038	68.918	1.00 18.94
40	ATOM	593	CB	LEU A	758	29.147	10.880	69.675	1.00 14.15

	ATOM	594	CG	LEU	A	758	30.373	11.599	70.232	1.00	20.53
	ATOM	595	CD1	LEU	A	758	29.919	12.855	70.981	1.00	20.07
	ATOM	596	CD2	LEU	A	758	31.121	10.656	71.186	1.00	24.11
	ATOM	597	N	MET	A	759	27.410	9.674	67.404	1.00	18.42
5	ATOM	598	CA	MET	A	759	26.125	9.149	67.001	1.00	19.21
	ATOM	599	C	MET	A	759	26.209	7.828	66.242	1.00	19.93
	ATOM	600	0	MET	A	759	25.363	6.949	66.456	1.00	23.09
	ATOM	601	CB	MET	A	759	25.364	10.197	66.193	1.00	21.20
	MOTA	602	CG	MET	A	759	24.937	11.397	67.065	1.00	21.45
10	ATOM	603	SD	MET	A	759	23.950	12.587	66.168	1.00	25.97
	ATOM	604	CE	MET	A	759	23.941	13.961	67.348	1.00	26.52
	ATOM	605	N	VAL	A	760	27.193	7.673	65.365	1.00	18.66
	ATOM	606	CA	VAL	A	760	27.300	6.397	64.638	1.00	19.71
	MOTA	607	C	VAL	A	760	27.779	5.292	65.596	1.00	22.38
15	ATOM	608	0	VAL	A	760	27.409	4.127	65.448	1.00	18.63
	MOTA	609	CB	VAL	A	760	28.262	6.492	63.417	1.00	20.60
	ATOM	610	CG1	VAL	A	760	29.708	6.659	63.860	1.00	22.90
	MOTA	611	CG2	VAL	A	760	28.129	5.226	62.559	1.00	22.05
	MOTA	612	N	PHE	A	761	28.597	5.672	66.572	1.00	18.16
20	ATOM	613	CA	PHE	A	761	29.107	4.729	67.579	1.00	20.65
	MOTA	614	C	PHE	A	761	27.907	4.256	68.419	1.00	21.25
	MOTA	615	0	PHE	A	761	27.773	3.058	68.717	1.00	23.39
	MOTA	616	СВ	PHE	A	761	30.166	5.441	68.447	1.00	19.84
	MOTA	617	CG	PHE	A	761	31.100	4.502	69.206	1.00	22.22
25	MOTA	618	CD1	PHE	A	761	31.944	3.631	68.520	1.00	22.72
	ATOM	619	CD2	PHE	A	761	31.158	4.529	70.597	1.00	23.08
	MOTA	620	CE1	PHE	A	761	32.834	2.802	69.200	1.00	23.74
	MOTA	621	CE2	PHE	A	761	32.044	3.706	71.297	1.00	24.95
	MOTA	622	CZ	PHE	A	761	32.880	2.842	70.602	1.00	22.67
30	MOTA	623	N	GLY	A	762	27.041	5.196	68.803	1.00	18.00
	ATOM	624	CA	$\mathtt{G}\mathtt{L}\mathtt{Y}$	A	762	25.851	4.861	69.564	1.00	19.15
	MOTA	625	C	GLY	A	762	24.928	3.957	68.761	1.00	19.60
	MOTA	626	0	GLY	A	762	24.304	3.038	69.306	1.00	17.94
	MOTA	639	N	TRP	Α	765	26.279	0.520	68.998	1.00	18.65
35	MOTA	640	CA	TRP	A	765	25.954	-0.118	70.265	1.00	21.70
	MOTA	641	C	TRP	A	765	24.485	-0.582	70.330	1.00	20.69
	MOTA	642	0	TRP	A	765	24.202	-1.710	70.730	1.00	20.73
	ATOM	643	СВ	TRP	Α	765	26.275	0.832	71.426	1.00	19.80
	MOTA	644	CG	TRP	A	765	25.985	0.232	72.766	1.00	20.60
40	MOTA	645	CD1	TRP	A	765	24.895	0.450	73.543	1.00	26.35

	ATOM	646	CD2	TRP A	765	26.765	-0.770	73.435	1.00 22.75
	ATOM	647	NE1	TRP A	765	24.936	-0.354	74.660	1.00 25.80
	ATOM	648	CE2	TRP A	765	26.076	-1.114	74.618	1.00 27.72
	ATOM	649	CE3	TRP A	765	27.974	-1.408	73.145	1.00 24.76
5	ATOM	650	CZ2	TRP A	765	26.558	-2.080	75.522	1.00 28.33
	MOTA	651	CZ3	TRP A	765	28.461	-2.372	74.045	1.00 25.79
	ATOM	652	CH2	TRP A	765	27.747	-2.692	75.217	1.00 23.99
	MOTA	653	N	ARG A	766	23.544	0.273	69.936	1.00 20.81
	ATOM	654	CA	ARG A	. 766	22.136	-0.116	69.987	1.00 18.86
10	MOTA	655	С	ARG A	. 766	21.844	-1.288	69.048	1.00 18.44
	MOTA	656	0	ARG A	. 766	21.066	-2.185	69.381	1.00 20.30
	MOTA	657	CB	ARG A	766	21.223	1.061	69.624	1.00 18.28
	ATOM	658	CG	ARG A	766	21.246	2.229	70.632	1.00 20.05
	MOTA	659	CD	ARG A	766	20.179	3.260	70.256	1.00 25.08
15	MOTA	660	NE	ARG A	766	20.413	3.889	68.956	1.00 20.13
	MOTA	661	CZ	ARG A	766	21.239	4.908	68.742	1.00 22.33
	MOTA	662	NH1	ARG A	766	21.909	5.442	69.754	1.00 22.73
	ATOM	663	NH2	ARG A	766	21.380	5.412	67.519	1.00 19.31
	MOTA	682	N	LYS A	769	23.313	-4.427	70.751	1.00 19.61
20	ATOM	683	CA	LYS F	769	22.500	-4.833	71.899	1.00 20.88
	MOTA	684	C	LYS A	769	21.090	-5.323	71.636	1.00 25.83
	ATOM	685	0	LYS A	769	20.661	-6.320	72.222	1.00 23.20
	MOTA	686	CB	LYS P	769	22.402	-3.682	72.904	1.00 26.26
	MOTA	687	CG	LYS A	A 769	23.682	-3.356	73.623	1.00 29.74
25	MOTA	688	CD	LYS A	A 769	23.998	-4.345	74.756	1.00 34.33
	MOTA	689	CE	LYS A	A 769	23.010	-4.251	75.914	1.00 31.35
	MOTA	690	NZ	LYS A	A 769	23.424	-5.118	77.078	1.00 27.64
	MOTA	691	N	HIS A	770	20.372	-4.627	70.762	1.00 20.34
	ATOM	692	CA	HIS A	770	18.968	-4.935	70.496	1.00 25.32
30	MOTA	693	С	HIS A	770	18.652	-5.887	69.353	1.00 24.30
	MOTA	694	0	HIS A	1 770	17.631	-6.572	69.382	1.00 23.64
	MOTA	695	CB		1 770	18.204	-3.622	70.246	1.00 25.43
	MOTA	696	CG	HIS A	¥ 770	18.239	-2.672	71.397	1.00 32.32
	MOTA	697	ND1	HIS A	1 770	17.517	-2.879	72.554	1.00 34.84
35	MOTA	698		HIS A		18.920	-1.516	71.581	1.00 28.95
	MOTA	699	CE1	HIS A	4 770	17.751	-1.889	73.398	1.00 36.65
	ATOM	700	NE2	HIS A	A 770	18.598	-1.049	72.833	1.00 35.04
	ATOM	771	N	PRO Z	A 780	14.074		68.501	1.00 24.08
	ATOM	772	CA	PRO Z	A 780	13.061	2.176	68.645	1.00 22.75
40	MOTA	773	С	PRO 2	A 780	11.985	2.260	67.551	1.00 31.17

MOTA	774	0	PRO .	A	780	11.405	1.242	67.163	1.00	27.19
ATOM	775	CB	PRO .	A	780	12.506	2.451	70.039	1.00	23.42
ATOM	776	CG	PRO .	A	780	13.723	3.011	70.760	1.00	29.68
ATOM	777	CD	PRO .	A	780	14.122	4.036	69.731	1.00	19.66
MOTA	1091	N	PHE .	A	818	32.469	0.119	76.224	1.00	21.31
ATOM	1092	CA	PHE .	A	818	31.805	1.043	75.304	1.00	22.08
ATOM	1093	С	PHE .	A	818	31.696	2.467	75.884	1.00	21.29
MOTA	1094	0	PHE I	A	818	31.920	3.460	75.180	1.00	20.03
MOTA	1095	CB	PHE 2	A	818	30.406	0.528	75.002	1.00	23.06
MOTA	1096	CG	PHE 2	A	818	29.513	1.549	74.373	1.00	22.01
MOTA	1097	CD1	PHE 2	A	818	29.678	1.914	73.040	1.00	22.32
MOTA	1098	CD2	PHE 2	A	818	28.514	2.156	75.124	1.00	23.62
MOTA	1099	CE1	PHE A	A	818	28.852	2.869	72.467	1.00	27.65
MOTA	1100	CE2	PHE A	A	818	27.681	3.116	74.558	1.00	28.88
MOTA	1101	CZ	PHE 2	A	818	27.852	3.471	73.231	1.00	22.16
MOTA	1102	N	LEU 2	Ą	819	31.323	2.556	77.154	1.00	21.31
MOTA	1103	CA	LEU 2	Ą	819	31.164	3.857	77.812	1.00	23.49
MOTA	1104	C	LEU Z	A	819	32.445	4.699	77.808	1.00	26.91
MOTA	1105	0	LEU 2	A	819	32.394	5.907	77.557	1.00	20.81
ATOM	1106	CB	LEU 2	Ą	819	30.640	3.655	79.238	1.00	24.50
ATOM	1107	CG	LEU A	Ą	819	29.199	3.116	79.294	1.00	23.57
ATOM	1108	CD1	LEU A	A	819	28.780	2.812	80.728	1.00	22.54
MOTA	1109	CD2	LEU A	A	819	28.256	4.174	78.693	1.00	27.51
ATOM	1124	N	LYS A	Ā	822	33.403	5.748	74.210	1.00	22.26
MOTA	1125	CA	LYS A	Ą	822	32.595	6.856	73.684	1.00	21.99
ATOM	1126	С	LYS A	4	822	33.157	8.208	74.120	1.00	23.71
MOTA	1127	0	LYS A	7	822	33.125	9.182	73.359	1.00	20.06
MOTA	1128	CB	LYS A	4	822	31.123	6.713	74.115	1.00	24.02
MOTA	1129	CG	LYS A	Ā	822	30.164	7.608	73.337	1.00	31.07
MOTA	1130	CD	LYS A	7	822	28.727	7.077	73.410	1.00	38.28
MOTA	1131	CE	LYS A	7	822	28.155	7.091	74.822	1.00	39.48
MOTA	1132	NZ	LYS A	7	822	27.958	8.479	75.331	1.00	42.42
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 775 ATOM 776 ATOM 777 ATOM 1091 ATOM 1092 ATOM 1093 ATOM 1094 ATOM 1095 ATOM 1096 ATOM 1097 ATOM 1098 ATOM 1099 ATOM 1100 ATOM 1101 ATOM 1102 ATOM 1103 ATOM 1104 ATOM 1105 ATOM 1106 ATOM 1107 ATOM 1108 ATOM 1108 ATOM 1124 ATOM 1125 ATOM 1125 ATOM 1126 ATOM 1127 ATOM 1128 ATOM 1128 ATOM 1129 ATOM 1129 ATOM 1130	ATOM 775 CB ATOM 776 CG ATOM 777 CD ATOM 1091 N ATOM 1092 CA ATOM 1093 C ATOM 1094 O ATOM 1095 CB ATOM 1096 CG ATOM 1097 CD1 ATOM 1098 CD2 ATOM 1099 CE1 ATOM 1100 CE2 ATOM 1101 CZ ATOM 1101 CZ ATOM 1102 N ATOM 1103 CA ATOM 1104 C ATOM 1105 O ATOM 1106 CB ATOM 1107 CG ATOM 1107 CG ATOM 1108 CD1 ATOM 1109 CD2 ATOM 1109 CD2 ATOM 1124 N ATOM 1125 CA ATOM 1126 C ATOM 1126 C ATOM 1128 CB ATOM 1128 CB ATOM 1129 CG ATOM 1130 CD ATOM 1130 CD	ATOM 775 CB PRO ATOM 776 CG PRO ATOM 777 CD PRO ATOM 1091 N PHE ATOM 1092 CA PHE ATOM 1093 C PHE ATOM 1095 CB PHE ATOM 1095 CB PHE ATOM 1096 CG PHE ATOM 1097 CD1 PHE ATOM 1099 CE1 PHE ATOM 1099 CE1 PHE ATOM 1100 CE2 PHE ATOM 1101 CZ PHE ATOM 1101 CZ PHE ATOM 1103 CA LEU ATOM 1104 C LEU ATOM 1105 O LEU ATOM 1106 CB LEU ATOM 1107 CG LEU ATOM 1108 CD1 LEU ATOM 1109 CD2 LEU ATOM 1109 CD2 LEU ATOM 1109 CD2 LEU ATOM 1109 CD2 LEU ATOM 1124 N LYS ATOM 1125 CA LYS ATOM 1126 C LYS ATOM 1127 O LYS ATOM 1128 CB LYS ATOM 1129 CG LYS ATOM 1129 CG LYS ATOM 1130 CD LYS ATOM 1131 CE LYS ATOM 11	ATOM 775 CB PRO A ATOM 776 CG PRO A ATOM 777 CD PRO A ATOM 1091 N PHE A ATOM 1092 CA PHE A ATOM 1093 C PHE A ATOM 1094 O PHE A ATOM 1095 CB PHE A ATOM 1096 CG PHE A ATOM 1097 CD1 PHE A ATOM 1099 CE1 PHE A ATOM 1100 CE2 PHE A ATOM 1101 CZ PHE A ATOM 1102 N LEU A ATOM 1103 CA LEU A ATOM 1104 C LEU A ATOM 1105 O LEU A ATOM 1106 CB LEU A ATOM 1107 CG LEU A ATOM	ATOM 776 CB PRO A 780 ATOM 776 CG PRO A 780 ATOM 777 CD PRO A 780 ATOM 1091 N PHE A 818 ATOM 1092 CA PHE A 818 ATOM 1093 C PHE A 818 ATOM 1094 O PHE A 818 ATOM 1095 CB PHE A 818 ATOM 1096 CG PHE A 818 ATOM 1097 CD1 PHE A 818 ATOM 1099 CE1 PHE A 818 ATOM 1099 CE1 PHE A 818 ATOM 1100 CE2 PHE A 818 ATOM 1101 CZ PHE A 818 ATOM 1101 CZ PHE A 818 ATOM 1102 N LEU A 819 ATOM 1103 CA LEU A 819 ATOM 1104 C LEU A 819 ATOM 1106 CB LEU A 819 ATOM 1107 CG LEU A 819 ATOM 1108 CD1 LEU A 819 ATOM 1109 CD2 LEU A 819 ATOM 1108 CD1 LEU A 819 ATOM 1109 CD2 LEU A 822 ATOM 1126 C LYS A 822 ATOM 1127 O LYS A 822 ATOM 1128 CB LYS A 822 ATOM 1129 CG LYS A 822 ATOM 1129 CG LYS A 822 ATOM 1130 CD LYS A 822 ATOM 1130 CD LYS A 822	ATOM 775 CB PRO A 780 12.506 ATOM 776 CG PRO A 780 13.723 ATOM 777 CD PRO A 780 14.122 ATOM 1091 N PHE A 818 32.469 ATOM 1092 CA PHE A 818 31.805 ATOM 1093 C PHE A 818 31.696 ATOM 1094 O PHE A 818 31.920 ATOM 1095 CB PHE A 818 30.406 ATOM 1096 CG PHE A 818 29.513 ATOM 1097 CD1 PHE A 818 29.678 ATOM 1099 CE1 PHE A 818 28.852 ATOM 1009 CE2 PHE A 818 28.852 ATOM 1100 CE2 PHE A 818 27.681 ATOM 1101 CZ PHE A 818 27.681 ATOM 1102 N LEU A 819 31.323 ATOM 1103 CA LEU A 819 32.445 ATOM 1104 C LEU A 819 32.394 ATOM 1105 O LEU A 819 30.640 ATOM 1106 CB LEU A 819 29.199 ATOM 1107 CG LEU A 819 29.199 ATOM 1108 CD1 LEU A 819 28.780 ATOM 1109 CD2 LEU A 819 28.780 ATOM 1108 CD1 LEU A 819 28.780 ATOM 1109 CD2 LEU A 819 28.780 ATOM 1108 CD1 LEU A 819 28.780 ATOM 1124 N LYS A 822 33.157 ATOM 1126 C LYS A 822 33.125 ATOM 1128 CB LYS A 822 30.164 ATOM 1129 CG LYS A 822 30.164 ATOM 1129 CG LYS A 822 30.164 ATOM 1129 CG LYS A 822 30.164	ATOM 775 CB PRO A 780 12.506 2.451 ATOM 776 CG PRO A 780 13.723 3.011 ATOM 777 CD PRO A 780 14.122 4.036 ATOM 1091 N PHE A 818 32.469 0.119 ATOM 1092 CA PHE A 818 31.805 1.043 ATOM 1093 C PHE A 818 31.696 2.467 ATOM 1094 O PHE A 818 31.920 3.460 ATOM 1095 CB PHE A 818 30.406 0.528 ATOM 1096 CG PHE A 818 29.513 1.549 ATOM 1097 CD1 PHE A 818 29.678 1.914 ATOM 1099 CE1 PHE A 818 28.514 2.156 ATOM 1099 CE1 PHE A 818 28.514 2.156 ATOM 1100 CE2 PHE A 818 27.681 3.116 ATOM 1101 CZ PHE A 818 27.852 3.471 ATOM 1102 N LEU A 819 31.323 2.556 ATOM 1103 CA LEU A 819 31.164 3.857 ATOM 1104 C LEU A 819 32.445 4.699 ATOM 1105 O LEU A 819 32.394 5.907 ATOM 1106 CB LEU A 819 30.640 3.655 ATOM 1107 CG LEU A 819 29.199 3.116 ATOM 1108 CD1 LEU A 819 29.199 3.116 ATOM 1109 CD2 LEU A 819 28.780 2.812 ATOM 1109 CD2 LEU A 819 28.780 2.812 ATOM 1124 N LYS A 822 33.403 5.748 ATOM 1125 CA LYS A 822 33.157 8.208 ATOM 1126 C LYS A 822 33.157 8.208 ATOM 1127 O LYS A 822 33.157 8.208 ATOM 1128 CB LYS A 822 33.125 9.182 ATOM 1129 CG LYS A 822 33.125 9.182 ATOM 1120 CD LYS A 822 33.125 7.097	ATOM 775 CB PRO A 780 12.506 2.451 70.039 ATOM 776 CG PRO A 780 13.723 3.011 70.760 ATOM 777 CD PRO A 780 14.122 4.036 69.731 ATOM 1091 N PHE A 818 32.469 0.119 76.224 ATOM 1092 CA PHE A 818 31.805 1.043 75.304 ATOM 1093 C PHE A 818 31.696 2.467 75.884 ATOM 1094 O PHE A 818 31.696 2.467 75.884 ATOM 1095 CB PHE A 818 30.406 0.528 75.002 ATOM 1096 CG PHE A 818 29.513 1.549 74.373 ATOM 1097 CD1 PHE A 818 29.678 1.914 73.040 ATOM 1099 CE1 PHE A 818 28.514 2.156 75.124 ATOM 1099 CE1 PHE A 818 28.852 2.869 72.467 ATOM 1100 CE2 PHE A 818 27.681 3.116 74.558 ATOM 1101 CZ PHE A 818 27.852 3.471 73.231 ATOM 1102 N LEU A 819 31.323 2.556 77.154 ATOM 1103 CA LEU A 819 31.164 3.857 77.812 ATOM 1104 C LEU A 819 32.445 4.699 77.808 ATOM 1105 O LEU A 819 32.394 5.907 77.557 ATOM 1106 CB LEU A 819 32.394 5.907 77.557 ATOM 1107 CG LEU A 819 29.199 3.116 79.294 ATOM 1108 CD1 LEU A 819 29.199 3.116 79.294 ATOM 1109 CD2 LEU A 819 28.780 2.812 80.728 ATOM 1101 CZ LYS A 822 33.403 5.748 74.210 ATOM 1125 CA LYS A 822 33.403 5.748 74.210 ATOM 1126 C LYS A 822 33.157 8.208 74.120 ATOM 1127 O LYS A 822 33.157 8.208 74.120 ATOM 1128 CB LYS A 822 33.125 9.182 73.359 ATOM 1129 CG LYS A 822 33.125 9.182 73.359 ATOM 1129 CG LYS A 822 33.125 9.182 73.359 ATOM 1129 CG LYS A 822 33.125 9.182 73.359 ATOM 1129 CG LYS A 822 33.164 7.608 73.337 ATOM 1129 CG LYS A 822 33.164 7.608 73.337	ATOM 775 CB PRO A 780

RARgamma Site II Residues (ref. 2LBD.pdb)

	ATOM	110	N	SER	194	33.462	12.139	105.047	1.00	21.53
	MOTA	111	CA	SER	194	32.239	12.265	104.247	1.00	21.04
	MOTA	112	С	SER	194	31.924	13.712	103.899	1.00	21.80
40	ATOM	113	0	SER	194	31.727	14.047	102.732	1.00	21.17

	MOTA	114	CB	SER	194	31.059	11.646 104.989	1.00 19.63
	ATOM	115	OG	SER	194	29.904	11.654 104.183	1.00 19.69
	ATOM	116	H	SER	194	33.433	11.608 105.870	1.00 13.44
	ATOM	117	$^{\mathrm{HG}}$	SER	194	29.696	12.575 103.994	1.00 16.06
5	MOTA	118	N	LYS	195	31.894	14.557 104.925	1.00 22.99
	ATOM	119	CA	LYS	195	31.614	15.981 104.797	1.00 22.87
	ATOM	120	С	LYS	195	32.642	16.707 103.958	1.00 22.28
	ATOM	121	0	LYS	195	32.278	17.511 103.124	1.00 23.38
	MOTA	122	CB	LYS	195	31.496	16.626 106.180	1.00 23.64
10	ATOM	123	CG	LYS	195	30.078	16.572 106.747	1.00 28.29
	ATOM	124	CD	LYS	195	29.209	15.582 105.952	1.00 30.25
	MOTA	125	CE	LYS	195	27.736	15.623 106.362	1.00 32.32
	ATOM	126	NZ	LYS	195	27.053	16.905 105.983	1.00 33.22
	ATOM	127	H	LYS	195	32.099	14.210 105.821	1.00 12.80
15	ATOM	128	1HZ	LYS	195	27.088	17.060 104.958	1.00 15.82
	ATOM	129	2HZ	LYS	195	26.063	16.878 106.305	1.00 15.26
	ATOM	130	3HZ	LYS	195	27.530	17.695 106.469	1.00 11.80
	MOTA	131	N	ALA	196	33.923	16.430 104.165	1.00 21.84
	ATOM	132	CA	ALA	196	34.952	17.086 103.377	1.00 21.79
20	MOTA	133	C	ALA	196	34.725	16.717 101.913	1.00 21.34
	MOTA	134	0	ALA	196	34.829	17.563 101.024	1.00 23.62
	MOTA	135	CB	ALA	196	36.347	16.659 103.841	1.00 20.88
	MOTA	136	H	ALA	196	34.178	15.781 104.855	1.00 21.01
	MOTA	137	N	HIS	197	34.378	15.465 101.645	1.00 20.81
25	MOTA	138	CA	HIS	197	34.128	15.073 100.265	1.00 20.38
	MOTA	139	C	HIS	197	32.896	15.796 99.701	1.00 21.21
	MOTA	140	0	HIS	197	32.952	16.388 98.621	1.00 22.59
	MOTA	141	CB	HIS	197	33.968	13.568 100.113	1.00 18.26
	MOTA	142	CG	HIS	197	33.600	13.156 98.727	1.00 19.16
30	ATOM	143	ND1	HIS	197	34.524	13.060 97.706	1.00 19.65
	ATOM	144	CD2	HIS	197	32.406	12.825 98.183	1.00 17.84
	ATOM	145	CE1	HIS	197	33.917	12.682 96.598	1.00 18.43
	MOTA	146	NE2	HIS	197	32.633	12.531 96.862	1.00 20.25
	ATOM	147	H	HIS	197	34.300	14.821 102.382	1.00 16.92
35	ATOM	148	HD1	HIS	197	35.497	13.235 97.727	1.00 15.58
	ATOM	149	HE2	HIS	197	31.936	12.266 96.223	1.00 12.28
	ATOM	150	N	GLN	198	31.791	15.775 100.427	1.00 21.25
	MOTA	151	CA	GLN	198	30.600	16.434 99.941	1.00 23.59
	MOTA	152	С	GLN	198	30.828	17.916 99.658	1.00 24.07
40	MOTA	153	0	GLN	198	30.421	18.441 98.617	1.00 25.03

	ATOM	154	СВ	GLN	198	29.500	16.304	100.961	1.00 26.42
	MOTA	155	CG	GLN	198	28.782	14.985	100.984	1.00 29.27
	ATOM	156	CD	GLN	198	27.891	14.931	102.190	1.00 30.05
	MOTA	157	OE1	GLN	198	27.411	15.972	102.653	1.00 31.98
5	ATOM	158	NE2	GLN	198	27.736	13.745	102.771	1.00 31.27
	ATOM	159	H	GLN	198	31.789	15.330	101.298	1.00 16.00
	ATOM	160	1HE2	GLN	198	27.144	13.729	103.551	1.00 15.85
	ATOM	161	2HE2	GLN	198	28.203	12.971	102.398	1.00 16.16
	ATOM	162	N	GLU	199	31.470	18.584	100.606	1.00 25.01
10	MOTA	163	CA	GLU	199	31.773	20.002	100.512	1.00 24.53
	MOTA	164	С	GLU	199	32.720	20.377	99.400	1.00 23.37
	MOTA	165	0	GLU	199	32.675	21.495	98.934	1.00 24.39
	ATOM	166	CB	GLU	199	32.301	20.506	101.837	1.00 24.38
	MOTA	167	CG	GLU	199	31,213	20.542	102.874	1.00 27.91
15	ATOM	168	CD	GLU	199	31.673	21.119	104.186	1.00 29.06
	MOTA	169	OE1	GLU	199	32.496	22.065	104.169	1.00 30.26
	ATOM	170	OE2	GLU	199	31.194	20.639	105.238	1.00 32.53
	MOTA	171	H	GLU	199	31.753	18.106	101.411	1.00 12.27
	MOTA	172	N	THR	200	33.561	19.449	98.960	1.00 21.99
20	MOTA	173	CA	THR	200	34,505	19.726	97.877	1.00 20.58
	MOTA	174	С	THR	200	34.103	19.054	96.553	1.00 19.62
	ATOM	175	0,	THR	200	34.807	19.163	95.548	1.00 17.71
	MOTA	176	CB	THR	200	35.934	19.275	98.260	1.00 20.42
	ATOM	177	OG1	THR	200	36.007	17.835	98.247	1.00 17.20
25	MOTA	178	CG2	THR	200	36.299	19.831	99.658	1.00 18.24
	ATOM	179	H	THR	200	33.574	18.555	99.363	1.00 15.26
	MOTA	180	HG1	THR	200	35.526	17.536	99.027	1.00 18.31
	MOTA	181	N	PHE	201	32.993	18.328	96.561	1.00 20.00
	ATOM	182	CA	PHE	201	32.535	17.665	95.354	1.00 21.05
30	ATOM	183	С	PHE	201	31.047	17.393	95.340	1.00 21.47
	MOTA	184	0	PHE	201	30.604	16.377	95.848	1.00 22.07
	MOTA	185	CB	PHE	201	33.245	16.338	95.183	1.00 22.20
	MOTA	186	CG	PHE	201	33.122	15.769	93.814	1.00 21.15
	MOTA	187	CD1	PHE	201	33.696	16.424	92.727	1.00 24.07
35	ATOM	188	CD2	PHE	201	32.499	14.558	93.610	1.00 23.24
	MOTA	189	CE1	PHE	201	33.660	15.871	91.458	1.00 23.53
	MOTA	190	CE2	PHE	201	32.454	13.993	92.347	1.00 21.82
	MOTA	191	CZ	PHE	201	33.041	14.655	91.268	1.00 22.68
	MOTA	192	H	PHE	201	32.482	18.197	97.386	1.00 15.60
40	MOTA	193	N	PRO	202	30.269	18.256	94.680	1.00 23.56

	ATOM	194	CA	PRO	202	28.812	18.163	94.548	1.00	23.81
	ATOM	195	С	PRO	202	28.400	16.880	93.861	1.00	24.15
	ATOM	196	0	PRO	202	29.039	16.462	92.888	1.00	23.02
	MOTA	197	СВ	PRO	202	28.485	19.348	93.655	1.00	23.88
5	MOTA	198	CG	PRO	202	29.475	20.339	94.055	1.00	25.50
	ATOM	199	CD	PRO	202	30.750	19.528	94.119	1.00	24.92
	ATOM	496	N	LEU	233	38.159	23.558	84.412	1.00	13.93
	MOTA	497	CA	LEU	233	37.402	22.729	85.345	1.00	13.81
	ATOM	498	С	LEU	233	38.315	21.721	86.032	1.00	13.48
10	ATOM	499	0	LEU	233	38.108	21.387	87.192	1.00	15.95
	ATOM	500	СВ	LEU	233	36.250	22.001	84.634	1.00	12.25
	MOTA	501	CG	LEU	233	35.083	22.858	84.105	1.00	12.32
	MOTA	502	CD1	LEU	233	34.147	21.981	83.337	1.00	12.38
	ATOM	503	CD2	LEU	233	34.336	23.557	85.223	1.00	13.65
15	ATOM	504	H	LEU	233	37.941	23.494	83.454	1.00	14.66
	ATOM	505	N	ALA	234	39.324	21.233	85.327	1.00	12.52
	ATOM	506	CA	ALA	234	40.243	20.291	85.935	1.00	14.87
	ATOM	507	C	ALA	234	41.085	21.048	86.995	1.00	16.06
	ATOM	508	0	ALA	234	41.209	20.596	88.141	1.00	15.82
20	MOTA	509	CB	ALA	234	41.133	19.635	84.876	1.00	13.08
	MOTA	510	H	ALA	234	39.421	21.484	84.388	1.00	18.02
	ATOM	546	N	CYS	237	39.285	21.662	90.004	1.00	14.60
	ATOM	547	CA	CYS	237	39.063	20.411	90.679	1.00	16.39
	MOTA	548	C	CYS	237	40.287	20.070	91.534	1.00	16.47
25	ATOM	549	0	CYS	237	40.160	19.703	92.703	1.00	17.24
	MOTA	550	CB	CYS	237	38.720	19.278	89.708	1.00	14.97
	ATOM	551	SG	CYS	237	37.905	17.917	90.622	1.00	17.49
	MOTA	552	H	CYS	237	39.424	21.679	89.042	1.00	13.36
	MOTA	553	N	ILE	238	41.477	20.237	90.969	1.00	15.33
30	ATOM	554	CA	ILE	238	42.705	19.945	91.699	1.00	13.85
	ATOM	555	С	ILE	238	42.774	20.741	93.007	1.00	14.22
	ATOM	556	0	ILE	238	43.224	20.252	94.044	1.00	14.79
	ATOM	557	CB	ILE	238	43.889	20.245	90.810	1.00	13.01
	MOTA	558	CG1	ILE	238	43.899	19.259	89.634	1.00	12.70
35	ATOM	559	CG2	ILE	238	45.188	20.219	91.616	1.00	14.88
	ATOM	560	CD1	ILE	238	44.860	19.636	88.559	1.00	10.75
	MOTA	561	Н	ILE	238	41.538	20.554	90.045	1.00	16.76
	ATOM	562	N	ILE	239	42.358	21.990	92.940	1.00	14.17
	ATOM	563	CA	ILE	239	42.329	22.858	94.107	1.00	14.19
40	ATOM	564	C	ILE	239	41.325	22.268	95.102	1.00	14.54

	ATOM	565	0	ILE	239	41.582	22.238	96.299	1.00	14.16
	ATOM	566	CB	ILE	239	41.910	24.293	93.703	1.00	14.59
	ATOM	567	CG1	ILE	239	43.095	25.050	93.099	1.00	13.80
	ATOM	568	CG2	ILE	239	41.339	25.024	94.871	1.00	15.96
5	ATOM	569	CD1	ILE	239	42.680	26.334	92.386	1.00	13.34
	ATOM	570	H	ILE	239	42.056	22.353	92.079	1.00	18.53
	ATOM	571	N	LYS	240	40.201	21.764	94.615	1.00	15.39
	MOTA	572	CA	LYS	240	39.220	21.175	95.515	1.00	15.53
	MOTA	573	С	LYS	240	39.718	19.879	96.140	1.00	15.65
10	ATOM	574	0	LYS	240	39.295	19.531	97.244	1.00	13.48
	ATOM	575	CB	LYS	240	37.885	20.951	94.810	1.00	18.27
	MOTA	576	CG	LYS	240	37.099	22.226	94.594	1.00	21.05
	MOTA	577	CD	LYS	240	36.331	22.615	95.838	1.00	23.72
	MOTA	578	CE	LYS	240	36.215	24.137	96.000	1.00	27.33
15	MOTA	579	NZ	LYS	240	37.448	24.762	96.648	1.00	30.09
	MOTA	580	H	LYS	240	39.995	21.825	93.653	1.00	14.20
	MOTA	581	1HZ	LYS	240	37.590	24.341	97.587	1.00	18.02
	MOTA	582	2HZ	LYS	240	38.287	24.568	96.066	1.00	14.97
	MOTA	583	3HZ	LYS	240	37.322	25.789	96.751	1.00	16.98
20	MOTA	584	N	ILE	241	40.619	19.179	95.447	1.00	14.37
	MOTA	585	CA	ILE	241	41.183	17.934	95.962	1.00	15.71
	ATOM	586	С	ILE	241	42.175	18.268	97.083	1.00	16.21
	MOTA	587	0	ILE	241	42.213	17.598	98.123	1.00	15.85
	ATOM	588	CB	ILE	241	41.852	17.092	94.849	1.00	15.46
25	MOTA	589	CG1	ILE	241	40.770	16.452	93.981	1.00	16.06
	MOTA	590	CG2	ILE	241	42.699	15.981	95.448	1.00	17.68
	MOTA	591	CD1	ILE	241	41.249	15.771	92.705	1.00	17.03
	MOTA	592	H	ILE	241	40.882	19.507	94.561	1.00	16.01
•	MOTA	593	N	VAL	242	42.955	19.330	96.874	1.00	17.19
30	MOTA	594	CA	VAL	242	43.919	19.797	97.869	1.00	16.87
	MOTA	595	С	VAL	242	43.155	20.219	99.116	1.00	16.56
	MOTA	596	0	VAL	242	43.539	19.863	100.225	1.00	16.69
	ATOM	597	CB	VAL	242	44.756	20.963	97.348		15.52
o #	MOTA	598	CG1		242	45.481	21,614	98.481	1.00	15.69
35	MOTA	599	CG2		242	45.739	20.461	96.299	1.00	16.20
	MOTA	600	H	VAL	242	42.885	19.801	96.014	1.00	17.48
	MOTA	601	N	GLU	243	42.046	20.930	98.929	1.00	16.45
	MOTA	602	CA	GLU	243	41.213		100.062		19.31
4.0	ATOM	603	С	GLU	243	40.680		100.818	1.00	17.64
40	MOTA	604	0	GLU	243	40.579	20.125	102.024	1.00	14.49

	MOTA	605	CB	GLU	243	40.013	22.160	99.601	1.00 22.56
	ATOM	606	CG	GLU	243	39.152	22.517	100.780	1.00 27.44
	ATOM	607	CD	GLU	243	37.781	23.001	100.416	1.00 31.18
	MOTA	608	OE1	GLU	243	37.679	23.810	99.463	1.00 33.07
5	ATOM	609	OE2	GLU	243	36.810	22.586	101.109	1.00 33.67
	MOTA	610	Н	GLU	243	41.792	21.201	98.022	1.00 15.45
	MOTA	611	N	PHE	244	40.256	19.100	100.064	1.00 18.29
	MOTA	612	CA	PHE	244	39.743	17.837	100.600	1.00 16.37
	ATOM	613	C	PHE	244	40.842	17.147	101.406	1.00 15.24
10	ATOM	614	0	PHE	244	40.595	16.721	102.531	1.00 15.07
	ATOM	615	CB	PHE	244	39.277	16.927	99.452	1.00 17.51
	ATOM	616	CG	PHE	244	38.981	15.503	99.858	1.00 14.72
	MOTA	617	CD1	PHE	244	37.831	15.187	100.549	1.00 15.04
	ATOM	618	CD2	PHE	244	39.845	14.479	99.500	1.00 15.96
15	MOTA	619	CE1	PHE	244	37.540	13.862	100.880	1.00 16.72
	MOTA	620	CE2	PHE	244	39.565	13.154	99.823	1.00 16.27
	MOTA	621	CZ	PHE	244	38.405	12.845	100.518	1.00 14.78
	MOTA	622	Н	PHE	244	40.258	19.205	99.089	1.00 13.23
	MOTA	814	N	ALA	266	48.576	10.971	93.812	1.00 15.90
20	MOTA	815	CA	ALA	266	47.182	10.496	93.792	1.00 17.39
	ATOM	816	C	ALA	266	46.167	11.428	93.127	1.00 17.22
	ATOM	817	0	ALA	266	45.012	11.043	92.903	1.00 16.41
	ATOM	818	CB	ALA	266	46.722	10.185	95.222	1.00 16.38
	MOTA	819	H	ALA	266	48.811	11.745	94.370	1.00 15.48
25	ATOM	820	N	CYS	267	46.597	12.643	92.802	1.00 15.91
	MOTA	821	CA	CYS	267	45.700	13.622	92.214	1.00 17.69
	MOTA	822	C	CYS	267	44.940	13,171	90.958	1.00 16.15
	MOTA	823	0	CYS	267	43.718	13.343	90.888	1.00 14.43
	MOTA	824	CB	CYS	267	46.438	14.920	91.951	1.00 18.90
30	MOTA	825	SG	CYS	267	45.310	16.241	91.678	1.00 23.66
	MOTA	826	H	CYS	267	47.530	12.902	92.957	1.00 11.70
	ATOM	827	N	LEU	268	45.650	12.573	89.999	1.00 14.38
	MOTA	828	CA	LEU	268	45.009	12.091	88.787	1.00 15.09
	MOTA	829	С	LEU	268	44.049	10.961	89.129	1.00 15.22
35	ATOM	830	0	LEU	268	42.932	10.926	88.602	1.00 15.41
	ATOM	831	CB	LEU	268	46.037	11.609	87.758	1.00 14.82
	ATOM	832	CG	LEU	268	45.922	12.104	86.291	1.00 16.13
	ATOM	833	CD1	LEU	268	46.809	11.216	85.363	1.00 13.28
	ATOM	834	CD2	LEU	268	44.465	12.106	85.808	1.00 13.62
40	ATOM	835	H	LEU	268	46.624	12.472	90.107	1.00 11.61

	ATOM	836	N	ASP	269	44.475	10.032	89.989	1.00	14.39
	ATOM	837	CA	ASP	269	43.610	8.927	90.390	1.00	14.73
	ATOM	838	C	ASP	269	42.264	9.494	90.826	1.00	16.42
	ATOM	839	0	ASP	269	41.214	9.159	90.250	1.00	17.01
5	MOTA	840	СВ	ASP	269	44.193	8.164	91.583	1.00	16.26
	MOTA	841	CG	ASP	269	45.461	7.396	91.251	1.00	16.52
	MOTA	842	OD1	. ASP	269	46.050	7.627	90.207	1.00	18.78
	MOTA	843	OD2	2 ASP	269	45.887	6.548	92.057	1.00	19.84
	ATOM	844	H	ASP	269	45.390	10.079	90.347	1.00	13.22
10	MOTA	845	N	ILE	270	42.299	10.400	91.809	1.00	16.86
	ATOM	846	CA	ILE	270	41.069	10.996	92.356	1.00	16.75
	MOTA	847	C	ILE	270	40.260	11.805	91.336	1.00	15.88
	MOTA	848	0	ILE	270	39.035	11.758	91.345	1.00	16.48
	MOTA	849	CB	ILE	270	41.351	11.838	93.625	1.00	16.55
15	MOTA	850	CG1	ILE	270	42.034	10.972	94.680	1.00	15.45
	ATOM	851	CG2	ILE	270	40.046	12.388	94.221	1.00	16.85
	MOTA	852	CD1	ILE	270	42.364	11.741	95.933	1.00	18.34
	MOTA	853	H	ILE	270	43.171	10.675	92.167	1.00	13.31
	ATOM	854	N	LEU	271	40.932	12.535	90.458	1.00	15.65
20	MOTA	855	CA	LEU	271	40.246	13.308	89.430	1.00	16.49
	MOTA	856	С	LEU	271	39.456	12.294	88.580	1.00	16.41
	MOTA	857	0	LEU	271	38.294	12.530	88.244	1.00	17.42
	MOTA	858	СВ	LEU	271	41.297	14.038	88.597	1.00	16.24
	ATOM	859	CG	LEU	271	41.309	15.557	88.415	1.00	17.43
25	ATOM	860	CD1	LEU	271	40.654	16.308	89.533	1.00	14.58
	ATOM	861	CD2	LEU	271	42.735	16.005	88.203	1.00	16.24
	ATOM	862	H	LEU	271	41.910	12.566	90.512	1.00	15.08
	ATOM	863	N	MET	272	40.060	11.131	88.316	1.00	16.60
20	ATOM	864	CA	MET	272	39.418	10.073	87.528	1.00	16.79
30	ATOM	865	С	MET	272	38.250	9.441	88.300	1.00	17.44
	ATOM	866	0	MET	272	37.176	9.161	87.733	1.00	19.90
	ATOM	867	CB	MET	272	40.420	8.978	87.127	1.00	17.65
	ATOM	868	CG	MET	272	41.448	9.392	86.102	1.00	18.79
0.7	ATOM	869	SD	MET	272	40.799	9.486	84.419	1.00	22.97
35	ATOM	870	CE	MET	272	42.292	9.289	83.461	1.00	19.64
	ATOM	871	H	MET	272	40.964	10.976	88.662	1.00	18.75
	MOTA	872	N	LEU	273	38.441	9.179	89.581	1.00	14.90
	ATOM	873	CA	LEU	273	37.356	8.606	90.339	1.00	14.87
4.5	ATOM	874	С	LEU	273	36.185	9.588	90.339	1.00	15.34
40	MOTA	875	0	LEU	273	35.037	9.194	90.129	1.00	15.36

	MOTA	876	СВ	LEU	273	37.809	8.343	91.761	1.00 15.48
	ATOM	877	CG	LEU	273	36.730	7.760	92.651	1.00 16.54
	MOTA	878	CD1	. LEU	273	36.312	6.404	92.086	1.00 17.29
	ATOM	879	CD2	LEU	273	37.282	7.620	94.064	1.00 15.37
5	MOTA	880	H	LEU	273	39.308	9.367	89.992	1.00 16.64
	MOTA	881	N	ARG	274	36.494	10.873	90.528	1.00 15.34
	MOTA	882	CA	ARG	274	35.486	11.919	90.572	1.00 15.78
	ATOM	883	С	ARG	274	34.629	12.006	89.328	1.00 17.06
	MOTA	884	0	ARG	274	33.434	11.812	89.437	1.00 18.66
10	ATOM	885	CB	ARG	274	36.095	13.267	90.936	1.00 16.75
	MOTA	886	CG	ARG	274	36.461	13.333	92.429	1.00 17.30
	ATOM	887	CD	ARG	274	36.835	14.716	92.892	1.00 17.86
	MOTA	888	NE	ARG	274	36.951	14.740	94.351	1.00 21.93
	ATOM	889	CZ	ARG	274	37.027	15.844	95.093	1.00 22.23
15	MOTA	890	NH1	ARG	274	36.998	17.045	94.520	1.00 21.99
	MOTA	891	NH2	ARG	274	37.115	15.745	96.413	1.00 20.01
	ATOM	892	H	ARG	274	37.434	11.117	.90.631	1.00 16.07
	MOTA	893	HE	ARG	274	36.978	13.875	94.802	1.00 14.88
	MOTA	894	1HH1	ARG	274	36.923	17.134	93.527	1.00 14.06
20	ATOM	895	2HH1	ARG	274	37.061	17.866	95.089	1.00 14.03
	MOTA	896	1HH2	ARG	274	37.122	14.847	96.850	1.00 17.31
	ATOM	897	2HH2	ARG	274	37.173	16.572	96.971	1.00 14.92
	MOTA	914	N	THR	277	32.271	9.023	88.779	1.00 13.95
	ATOM	915	CA	THR	277	31.115	8.905	89.661	1.00 15.92
25	ATOM	916	С	THR	277	30.004	9.856	89.186	1.00 17.31
	ATOM	917	0	THR	277	28.859	9.761	89.626	1.00 19.20
	MOTA	918	CB	THR	277	31.471	9.205	91.138	1.00 18.17
	ATOM	919	OG1	THR	277	31.879	10.567	91.267	1.00 20.50
20	MOTA	920	CG2	THR	277	32.613	8.315	91.605	1.00 19.00
30	ATOM	921	H	THR	277	33.002	9.624	89.038	1.00 16.11
	ATOM	922	HG1	THR	277	32.699	10.722	90.788	1.00 14.03
	ATOM	923	N	ARG	278	30.352	10.756	88.266	1.00 17.51
	ATOM	924	CA	ARG	278	29.428	11.741	87.669	1.00 17.48
0.5	ATOM	925	С	ARG	278	28.907	11.260	86.280	1.00 16.92
35	ATOM	926	0	ARG	278	28.552	12.046	85.396	1.00 16.64
	ATOM	927	CB	ARG	278	30.176	13.060	87.508	1.00 17.18
	ATOM	928	CG	ARG	278	30.446	13.774	88.808	1.00 16.64
	MOTA	929	CD	ARG	278	29.338	14.762	89.057	1.00 17.73
40	ATOM	930	NE	ARG	278	29.640	15.725	90.108	1.00 17.21
40	ATOM	931	CZ	ARG	278	30.658	16.570	90.085	1.00 19.13

	ATOM	932	NH1	ARG	278	31.499	16.576	89.060	1.00	20.62
	ATOM	933	NH2	ARG	278	30.816	17.433	91.081	1.00	20.16
	ATOM	934	H	ARG	278	31.277	10.787	87.949	1.00	13.43
	ATOM	935	HE	ARG	278	29.047	15.731	90.894	1.00	15.33
5	ATOM	936	1HH1	ARG	278	31.378	15.948	88.280	1.00	16.80
	ATOM	937	2HH1	ARG	278	32.325	17.162	89.023	1.00	14.95
	ATOM	938	1HH2	ARG	278	30.169	17.426	91.850	1.00	14.24
	ATOM	939	2HH2	ARG	278	31.583	18.098	91.094	1.00	15.16
	MOTA	954	N	THR	280	26.282	9.265	83.776	1.00	17.68
10	MOTA	955	CA	THR	280	24.869	8.925	83.581	1.00	18.60
	ATOM	956	С	THR	280	24.815	7.906	82.476	1.00	18.63
	ATOM	957	0	THR	280	25.028	8.237	81.316	1.00	19.24
	MOTA	958	СВ	THR	280	24.038	10.130	83.148	1.00	18.35
	MOTA	959	OG1	THR	280	24.226	11.205	84.076	1.00	19.23
15	MOTA	960	CG2	THR	280	22.590	9.770	83.156	1.00	19.36
	MOTA	961	H	THR	280	26.736	9.748	83.057	1.00	16.32
	MOTA	962	HG1	THR	280	25.144	11.476	84.000	1.00	9.92
	MOTA	963	N	PRO	281	24.538	6.648	82.822	1.00	19.26
	MOTA	964	CA	PRO	281	24.470	5.596	81.828	1.00	23.13
20	MOTA	965	C	PRO	281	23.422	5.934	80.771	1.00	27.05
	MOTA	966	0	PRO	281	23.723	5.886	79.589	1.00	29.83
	MOTA	967	CB	PRO	281	24.055	4.378	82.659	1.00	21.19
	MOTA	968	CG	PRO	281	24.526	4.683	83.975	1.00	19.03
	MOTA	969	CD	PRO	281	24.140	6.111	84.126	1.00	19.67
25	MOTA	970	N	GLU	282	22.225	6.347	81.201	1.00	29.52
	MOTA	971	CA	GLU	282	21.114	6.686	80.289	1.00	30.92
	MOTA	972	С	GLU	282	21.496	7.566	79.079	1.00	29.16
	MOTA	973	0	GLU	282	21.189	7.244	77.923	1.00	29.44
	MOTA	974	CB	GLU	282	19.949	7.342	81.083	1.00	34.18
30	MOTA	975	CG	GLU	282	18.596	6.561	81.059	1.00	37.63
	MOTA	976	CD	GLU	282	17.598	7.038	79.975	1.00	39.35
	MOTA	977	OE1	GLÜ	282	17.763	6.709	78.769	1.00	39.81
	MOTA	978	OE2	GLU	282	16.628	7.737	80.345	1.00	40.91
	MOTA	979	H	GLU	282	22.043	6.390	82.163		14.17
35	MOTA	1048	N	ASP	290	30.544	22.243	87.680	1.00	18.56
	MOTA	1049	CA	ASP	290	29.751	23.433	87.443	1.00	16.64
	MOTA	1050	С	ASP	290	28.396	23.055	86.781	1.00	16.67
	MOTA	1051	0	ASP	290	27.492	23.889	86.648	1.00	16.11
	MOTA	1052	CB	ASP	290	30.547	24.465	86.627	1.00	19.14
40	MOTA	1053	CG	ASP	290	30.679	24.105	85.162	1.00	17.90

	MOTA	1054	OD1	ASP	290	30.715	22.918	84.812	1.00	19.78
	ATOM	1055	OD2	ASP	290	30.765	25.038	84.360	1.00	17.99
	MOTA	1056	Н	ASP	290	31.098	21.861	86.974	1.00	13.42
	ATOM	1393	N	THR	328	32.657	6.889	98.484	1.00	12.39
5	ATOM	1394	CA	THR	328	33.499	7.531	97.480	1.00	14.32
	ATOM	1395	С	THR	328	34.507	8.459	98.191	1.00	13.38
	ATOM	1396	0	THR	328	35.684	8.521	97.820	1.00	12.40
	MOTA	1397	СВ	THR	328	32.650	8.351	96.491	1.00	12.84
	ATOM	1398	OG1	THR	328	31.708	7.492	95.841	1.00	14.19
10	MOTA	1399	CG2	THR	328	33.517	8.994	95.486	1.00	12.73
	ATOM	1400	H	THR	328	31.697	7.093	98.476	1.00	17.66
	MOTA	1401	HG1	THR	328	32.184	6.794	95.373	1.00	15.73
	MOTA	1402	N	GLY	329	34.037	9.169	99.218	1.00	14.14
	MOTA	1403	CA	GLY	329	34.898	10.063	99.963	1.00	10.87
15	MOTA	1404	C	GLY	329	35.973	9.248	100.634	1.00	11.08
	ATOM	1405	0	GLY	329	37.146	9.586	100.525	1.00	11.93
	MOTA	1406	H	GLY	329	33.106	9.075	99.503	1.00	18.91
	MOTA	1425	N	SER	332	38.488	7.748	98.210	1.00	12.43
	MOTA	1426	CA	SER	332	39.440	8.792	97.800	1.00	12.96
20	ATOM	1427	C	SER	332	40.505	9.050	98.856	1.00	12.57
	ATOM	1428	0	SER	332	41.677	9.204	98.527	1.00	11.85
	MOTA	1429	СВ	SER	332	38.720	10.109	97.515	1.00	12.28
	ATOM	1430	OG	SER	332	37.815	9.953	96.454	1.00	15.83
	ATOM	1431	Н	SER	332	37.552	7.988	98.365	1.00	18.36
25	MOTA	1432	HG	SER	332	37.203	9.240	96.682	1.00	17.36

RXRalpha Site II Residues (ref. 1LBD.pdb)

30	ATOM	87	N	LEU	236	30.657	84.317	63.377	1.00 35.43
	ATOM	88	CA	LEU	236	29.844	85.467	63.046	1.00 35.76
	ATOM	89	С	LEU	236	29.344	85.142	61.634	1.00 36.91
	ATOM	90	0	LEU	236	28.157	85.245	61.327	1.00 37.85
	ATOM	91	CB	LEU	236	30.713	86.718	62.998	1.00 34.14
35	ATOM	92	CG	LEU	236	30.091	88.105	63.184	1.00 35.41
	ATOM	93	CD1	LEU	236	31.028	89.058	62.487	1.00 38.27
	ATOM	94	CD2	LEU	236	28.654	88.262	62.637	1.00 36.08
	MOTA	95	N	GLU	237	30.280	84.697	60.804	1.00 37.85
	ATOM	96	CA	GLÜ	237	30.055	84.311	59.414	1.00 37.03
40	ATOM	97	С	GLU	237	28.875	83.317	59.253	1.00 36.46

	ATOM	98	0	GLU	237	27.977	83.527	58.431	1.00 33.55
	ATOM	99	СВ	GLU	237	31.365	83.701	58.898	1.00 39.91
	ATOM	100	CG	GLU	237	31.585	83.796	57.431	1.00 42.42
	MOTA	101	CD	GLU	237	30.519	83.050	56.702	1.00 49.05
5	ATOM	102	OE1	GLU	237	30.598	81.800	56.680	1.00 52.01
	ATOM	103	OE2	GLU	237	29.567	83.707	56.208	1.00 53.07
	MOTA	104	N	ALA	238	28.854	82.285	60.096	1.00 39.98
	ATOM	105	CA	ALA	238	27.821	81.232	60.093	1.00 37.99
	MOTA	106	C	ALA	238	26.415	81.715	60.408	1.00 35.29
10	ATOM	107	0	ALA	238	25.458	81.248	59.801	1.00 34.55
	ATOM	108	СВ	ALA	238	28.221	80.063	61.066	1.00 33.06
	MOTA	109	N	GLU	239	26.286	82.615	61.380	1.00 35.97
	MOTA	110	CA	GLU	239	24.967	83.135	61.755	1.00 38.46
	MOTA	111	C	GLU	239	24.490	83.961	60.599	1.00 39.38
15	MOTA	112	0	GLU	239	23.401	83.752	60.096	1.00 42.38
	ATOM	113	СВ	GLU	239	25.002	84.017	63.031	1.00 38.94
	ATOM	114	CG	GLU	239	25.017	83.277	64.403	1.00 37.77
	ATOM	115	CD	GLU	239	23.716	82.538	64.709	1.00 34.29
	ATOM	116	OE1	GLU	239	22.637	83.173	64.751	1.00 34.87
20	ATOM	117	OE2	GLU	239	23.777	81.307	64.903	1.00 28.74
	MOTA	118	N	LEU	240	25.342	84.884	60.164	1.00 40.88
	MOTA	119	CA	LEU	240	25.042	85.771	59.043	1.00 36.87
	MOTA	120	С	LEU	240	24.747	84.943	57.829	1.00 35.24
	MOTA	121	0	LEU	240	23.789	85.202	57.109	1.00 34.29
25	MOTA	122	CB	LEU	240	26.201	86.733	58.777	1.00 34.15
	MOTA	123	CG	LEU	240	26.032	87.969	59.663	1.00 36.58
	ATOM	124	CD1	LEU	240	27.280	88.842	59.591	1.00 40.07
	MOTA	125	CD2	LEU	240	24.745	88.728	59.280	1.00 32.86
	MOTA	126	N	ALA	241	25.492	83.868	57.668	1.00 33.12
30	MOTA	127	CA	ALA	241	25.266	82.987	56.544	1.00 32.07
	MOTA	128	С	ALA	241	23.882	82.367	56.562	1.00 28.57
	ATOM	129	0	ALA	241	23.554	81.610	55.664	1.00 30.72
	ATOM	130	CB	ALA	241	26.291	81.900	56.537	1.00 34.96
	ATOM	131	N	VAL	242	23.051	82.725	57.533	1.00 28.22
35	ATOM	132	CA	VAL	242	21.738	82.120	57.636	1.00 25.21
	ATOM	133	С	VAL	242	20.623	83.069	58.183	1.00 25.77
	MOTA	134	0	VAL	242	19.550	82.653	58.631	1.00 23.41
	ATOM	135	CB	VAL	242	21.899	80.842	58.444	1.00 22.99
	ATOM	136	CG1	VAL	242	21.975	81.138	59.916	1.00 21.73
40	MOTA	137	CG2	VAL	242	20.846	79.898	58.098	1.00 23.34

	MOTA	138	N	GLU	243	20.873	84.366	58.050	1.00 29.04
	ATOM	139	CA	GLU	243	19.955	85.420	58.485	1.00 31.55
	MOTA	140	С	GLU	243	18.790	85.495	57.515	1.00 32.99
	ATOM	141	0	GLU	243	19.016	85.500	56.315	1.00 36.40
5	ATOM	142	СВ	GLU	243	20.697	86.738	58.401	1.00 33.53
	ATOM	143	CG	GLU	243	19.950	87.907	58.936	1.00 38.25
	ATOM	144	CD	GLU	243	20.565	88.357	60.224	1.00 42.27
	ATOM	145	OE1	GLU	243	21.818	88.544	60.242	1.00 36.36
	ATOM	146	OE2	GLU	243	19.800	88.483	61.221	1.00 49.21
10	MOTA	147	N	PRO	244	17.555	85.687	58.001	1.00 33.30
	MOTA	148	CA	PRO	244	16.452	85.759	57.055	1.00 36.93
	MOTA	149	С	PRO	244	16.587	87.115	56.376	1.00 42.25
	MOTA	150	0	PRO	244	16.983	88.088	57.009	1.00 44.70
	ATOM	151	СВ	PRO	244	15.215	85.718	57.947	1.00 39.57
15	ATOM	152	CG	PRO	244	15.726	85.581	59.340	1.00 35.65
	MOTA	153	CD	PRO	244	17.100	86.165	59.302	1.00 36.07
	ATOM	349	N	ALA	271	7.191	76.115	57.199	1.00 29.50
	MOTA	350	CA	ALA	271	7.966	76.681	58.300	1.00 27.28
	ATOM	351	C	ALA	271	8.794	75.692	59.151	1.00 26.76
20	MOTA	352	0	ALA	271	9.872	76.064	59.652	1.00 27.26
	MOTA	353	CB	ALA	271	7.083	77.497	59.168	1.00 23.29
	MOTA	354	N	ALA	272	8.287	74.476	59.382	1.00 27.64
	MOTA	355	CA	ALA	272	9.036	73.462	60.144	1.00 26.95
	MOTA	356	С	ALA	272	10.327	73.296	59.374	1.00 29.21
25	MOTA	357	0	ALA	272	11.440	73.568	59.824	1.00 30.82
	MOTA	358	СВ	ALA	272	8.287	72.166	60.096	1.00 24.06
	ATOM	376	N	GLN	275	12.864	76.169	59.278	1.00 28.33
	ATOM	377	CA	GLN	275	13.609	76.269	60.539	1.00 26.75
20	MOTA	378	С	$_{ m GLN}$	275	14.692	75.203	60.489	1.00 29.14
30	ATOM	379	0	GLN	275	15.879	75.506	60.635	1.00 30.79
	MOTA	380	CB	GLN	275	12.723	76.046	61.766	1.00 20.91
	ATOM	381	CG	GLN	275	11.564	76.979	61.849	1.00 21.96
	ATOM	382	CD	GLN	275	10.817	76.871	63.163	1.00 22.43
0.7	ATOM	383		GLN	275	10.539	75.781	63.664	1.00 24.91
35	ATOM	384	NE2	GLN	275	10.445	78.011	63.705	1.00 20.62
	MOTA	385	N	LEU	276	14.304	73.979	60.158	1.00 28.84
	MOTA	386	CA	LEU	276	15.288	72.913	60.115	1.00 32.72
	ATOM	387	С	LEU	276	16.523	73.357	59.349	1.00 33.75
40	MOTA	388	0	LEU	276	17.640	73.252	59.856	1.00 33.64
40	MOTA	389	CB	LEU	276	14.702	71.633	59.489	1.00 33.19

	ATOM	390	CG	LEU	276	15.702	70.508	59.214	1.00 32.49
	ATOM	391	CD1	LEU	276	16.333	70.081	60.488	1.00 30.89
	MOTA	392	CD2	LEU	276	15.037	69.353	58.554	1.00 33.68
	MOTA	393	N	PHE	277	16.320	73.920	58.158	1.00 32.96
5	ATOM	394	CA	PHE	277	17.466	74.336	57.359	1.00 33.52
	ATOM	395	C	PHE	277	18.235	75.463	57.943	1.00 32.72
	ATOM	396	0	PHE	277	19.473	75.425	57.951	1.00 34.61
	ATOM	397	СВ	PHE	277	17.148	74.608	55.892	1.00 38.91
	ATOM	398	CG	PHE	277	17.934	73.734	54.955	1.00 46.04
10	ATOM	399	CD1	PHE	277	18.866	72.821	55.465	1.00 49.86
	ATOM	400	CD2	PHE	277	17.733	73.786	53.588	1.00 46.15
	ATOM	401	CE1	PHE	277	19.584	71.970	54.633	1.00 48.96
	ATOM	402	CE2	PHE	277	18.450	72.931	52.738	1.00 51.33
	ATOM	403	CZ	PHE	277	19.383	72.017	53.277	1.00 51.91
15	ATOM	404	N	THR	278	17.537	76.410	58.546	1.00 30.83
	MOTA	405	CA	THR	278	18.263	77.507	59.141	1.00 29.49
	MOTA	406	С	THR	278	19.159	76.951	60.228	1.00 30.33
	MOTA	407	0	THR	278	20.045	77.647	60.721	1.00 32.94
	MOTA	408	СВ	THR	278	17.315	78.536	59.675	1.00 27.12
20	ATOM	409	OG1	THR	278	16.012	78.272	59.136	1.00 30.31
	MOTA	410	CG2	THR	278	17.732	79.913	59.181	1.00 25.40
	MOTA	411	N	LEU	279	18.987	75.647	60.491	1.00 29.99
	MOTA	412	CA	LEU	279	19.702	74.886	61.510	1.00 31.31
	MOTA	413	C	LEU	279	20.905	74.100	61.030	1.00 33.54
25	MOTA	414	0	LEU	279	22.025	74.363	61.505	1.00 38.01
	ATOM	415	CB	LEU	279	18.734	73.930	62.206	1.00 33.42
	MOTA	416	CG	LEU	279	18.683	73.794	63.722	1.00 28.79
	MOTA	417	CD1	LEU	279	18.067	75.049	64.376	1.00 23.73
	MOTA	418	CD2	LEU	279	17.859	72.574	63.990	1.00 27.75
30	ATOM	419	N	VAL	280	20.720	73.111	60.146	1.00 32.77
	MOTA	420	CA	VAL	280	21.916	72.371	59.693	1.00 34.18
	ATOM	421	С	VAL	280	22.902	73.298	58.968	1.00 34.17
	ATOM	422	0	VAL	280	24.092	73.324	59.278	1.00 33.48
	ATOM	423	CB	VAL	280	21.627	71.065	58.868	1.00 30.97
35	ATOM	424	CG1	VAL	280	20.352	70.358	59.369	1.00 31.67
	ATOM	425	CG2	VAL	280	21.619	71.325	57.402	1.00 33.04
	MOTA	426	N	GLU	281	22.383	74.162	58.109	1.00 31.06
	ATOM	427	CA	GLU	281	23.273	75.071	57.406	1.00 31.66
	MOTA	428	С	GLU	281	24.099	75.925	58.364	1.00 30.93
40	ATOM	429	0	GLU	281	25.203	76.339	58.016	1.00 31.16

	ATOM	430	СВ	GLU	281	22.536	75.961	56.385	1.00 3	35.28
	ATOM	431	CG	GLU	281	21.923	75.246	55.168	1.00 3	
	ATOM	432	CD	GLU	281	22.864	74.267	54.486	1.00 3	32.73
	ATOM	433	OE1		281	24.087	74.529	54.427	1.00	19.72
5	ATOM	434	OE2	GLU	281	22.351	73.222	54.004	1.00 3	32.69
	ATOM	435	N	TRP	282	23.577	76.199	59.553	1.00 2	28.28
	ATOM	436	CA	TRP	282	24.341	77.002	60.510	1.00	30.40
	ATOM	437	С	TRP	282	25.429	76.091	61.158	1.00	35.40
	ATOM	438	0	TRP	282	26.597	76.495	61.323	1.00	36.16
10	ATOM	439	CB	TRP	282	23.394	77.659	61.559	1.00 2	24.73
	ATOM	440	CG	TRP	282	24.075	78.176	62.841	1.00 2	20.02
	MOTA	441	CD1	TRP	282	24.751	79.359	63.006	1.00	19.84
	ATOM	442	CD2	TRP	282	24.284	77.437	64.046	1.00	23.23
	ATOM	443	NE1	TRP	282	25.410	79.380	64.213	1.00	16.40
15	MOTA	444	CE2	TRP	282	25.144	78.213	64.873	1.00	21.68
	MOTA	445	CE3	TRP	282	23.843	76.185	64.507	1.00	20.19
	ATOM	446	CZ2	TRP	282	25.579	77.772	66.120	1.00	19.31
	MOTA	447	CZ3	TRP	282	24.275	75.748	65.747	1.00	22.95
	MOTA	448	CH2	TRP	282	25.136	76.536	66.541	1.00	20.41
20	ATOM	620	N	GLY	304	20.287	69.044	70.953	1.00	29.43
	MOTA	621	CA	GLY	304	20.094	70.450	71.256	1.00	29.15
	ATOM	622	С	GLY	304	19.355	71.333	70.270	1.00	25.88
	MOTA	623	0	GLY	304	19.573	72.527	70.332	1.00	29.72
	MOTA	624	N	TRP	305	18.476	70.792	69.417	1.00	25.81
25	MOTA	625	CA	TRP	305	17.688	71.571	68.426		28.27
	MOTA	626	С	TRP	305	16.862	72.793	68.914	1.00	31.21
	ATOM	627	0	TRP	305	16.762	73.828	68.242	1.00	30.23
	MOTA	628	CB	TRP	305	16.704	70.630	67.708	1.00	
	MOTA	629	CG	TRP	305	15.237	71.110	67.705	1.00	
30	MOTA	630	CD1	TRP	305	14.740	72.346	67.290		36.35
	MOTA	631	CD2	TRP	305	14.116	70.409	68.228		34.91
	ATOM	632	NE1	TRP	305	13.396	72.446	67.562		32.18
	MOTA	633	CE2	TRP	305	12.985	71.278	68.123	1.00	
	MOTA	634	CE3	TRP	305	13.960	69.140	68.776	1.00	
35	MOTA	635	CZ2	TRP	305	11.732	70.909	68.545		33.45
	MOTA	636	CZ3	TRP	305	12.711	68.776	69.195		42.77
	ATOM	637	CH2		305	11.603	69.659	69.078		43.63
	ATOM	638	N	ASN	306	16.035	72.530	69.918		33.01
	ATOM	639	CA	ASN	306	15.130	73.503	70.502		33.62
40	ATOM	640	C	ASN	306	15.843	74.691	71.167	1.00	34.24

	MOTA	641	0	ASN	306	15.381	75.822	71.143	1.00 35.65
	MOTA	642	CB	ASN	306	14.244	72.755	71.505	1.00 35.17
	MOTA	643	CG	ASN	306	15.028	72.250	72.740	1.00 39.33
	MOTA	644	OD1	ASN	306	16.144	71.695	72.626	1.00 33.48
5	MOTA	645	ND2	ASN	306	14.441	72.464	73.939	1.00 39.83
	ATOM	646	N	GLU	307	16.957	74.436	71.809	1.00 28.91
	MOTA	647	CA	GLU	307	17.662	75.516	72.434	1.00 24.93
	MOTA	648	C	GLU	307	18.318	76.379	71.384	1.00 22.24
	ATOM	649	0	GLU	307	18.376	77.581	71.551	1.00 19.58
10	MOTA	650	СВ	GLU	307	18.696	74.946	73.399	1.00 30.44
	MOTA	651	CG	GLU	307	18.149	74.781	74.809	1.00 29.85
	MOTA	652	CD	GLU	307	19.079	74.010	75.689	1.00 28.89
	MOTA	653	OE1	GLU	307	19.983	74.601	76.331	1.00 28.55
	ATOM	654	OE2	GLU	307	18.876	72.790	75.745	1.00 35.64
15	MOTA	655	N	LEU	308	18.814	75.758	70.306	1.00 24.10
	MOTA	656	CA	LEU	308	19.482	76.450	69.185	1.00 23.45
	MOTA	657	C	LEU	308	18.415	77.274	68.460	1.00 22.44
	MOTA	658	0	LEU	308	18.652	78.424	68.085	1.00 24.47
	MOTA	659	СВ	LEU	308	20.165	75.436	68.228	1.00 19.67
20	MOTA	660	CG	LEU	308	21.367	74.560	68.688	1.00 19.56
	MOTA	661	CD1	LEU	308	21.596	73.356	67.810	1.00 9.80
	MOTA	662	CD2	LEU	308	22.642	75.355	68.781	1.00 18.92
	MOTA	663	N	LEU	309	17.217	76.702	68.360	1.00 23.04
	MOTA	664	CA	LEU	309	16.031	77.317	67.740	1.00 22.80
25	MOTA	665	С	LEU	309	15.537	78.579	68.499	1.00 28.05
	MOTA	666	0	LEU	309	15.164	79.590	67.894	1.00 28.58
	ATOM	667	CB	LEU	309	14.937	76.271	67.725	1.00 22.01
	ATOM	668	CG	LEU	309	14.086	76.188	66.490	1.00 23.94
	ATOM	669	CD1	LEU	309	13.043	77.266	66.523	1.00 27.11
30	ATOM	670	CD2	LEU	309	14.986	76.295	65.297	1.00 30.77
	ATOM	671	N	ILE	310	15.543	78.503	69.833	1.00 32.40
	ATOM	672	CA	ILE	310	15.141	79.589	70.745	1.00 28.14
	ATOM	673	С	ILE	310	16.216	80.687	70.789	1.00 26.11
	ATOM	674	0	ILE	310	15.914	81.862	70.668	1.00 23.24
35	ATOM	675	СВ	ILE	310	14.926	79.021	72.201	1.00 31.03
	ATOM	676	CG1	ILE	310	13.656	78.177	72.263	1.00 26.74
	ATOM	677	CG2	ILE	310	14.828	80.140	73.253	1.00 34.33
	ATOM	678	CD1	ILE	310	13.456	77.576	73.588	1.00 25.96
	ATOM	679	N	ALA	311	17.474	80.291	70.942	1.00 27.15
40	ATOM	680	CA	ALA	311	18.563	81.255	71.023	1.00 28.97

	ATOM	681	С	ALA	311	18.447	82.140	69.833	1.00	30.48
	MOTA	682	0	ALA	311	18.723	83.330	69.917	1.00	36.17
	ATOM	683	СВ	ALA	311	19.899	80.565	71.033	1.00	29.09
	MOTA	684	N	SER	312	17.968	81.554	68.736	1.00	30.86
5	MOTA	685	CA	SER	312	17.777	82.279	67.494	1.00	29.77
	MOTA	686	С	SER	312	16.489	83.060	67.431	1.00	28.46
	MOTA	687	0	SER	312	16.566	84.285	67.376	1.00	26.28
	MOTA	688	СВ	SER	312	17.900	81.363	66.288	1.00	32.52
	MOTA	689	OG	SER	312	18.879	81.890	65.410	1.00	38.04
10	MOTA	707	N	HIS	315	16.912	86.232	69.632	1.00	31.29
	ATOM	708	CA	HIS	315	17.794	87.294	69.157	1.00	29.26
	ATOM	709	C	HIS	315	17.124	88.248	68.188	1.00	28.74
	ATOM	710	0	HIS	315	16.855	89.395	68.551	1.00	27.46
	ATOM	711	CB	HIS	315	19.072	86.763	68.525	1.00	31.22
15	ATOM	712	CG	HIS	315	20.217	87.709	68.665	1.00	31.31
	ATOM	713	ND1	HIS	315	20.069	88.950	69.246	1.00	32.38
	MOTA	714	CD2	HIS	315	21.536	87.565	68.422	1.00	32.42
	ATOM	715	CE1	HIS	315	21.252	89.524	69.371	1.00	30.07
	ATOM	716	NE2	HIS	315	22.161	88.704	68.878	1.00	33.09
20	ATOM	717	N	ARG	316	16.783	87.749	67.000	1.00	27.07
	MOTA	718	CA	ARG	316	16.130	88.551	65.979	1.00	29.67
	MOTA	719	С	ARG	316	14.912	89.275	66.509	1.00	29.29
	MOTA	720	0	ARG	316	14.552	90.351	66.018	1.00	34.98
	MOTA	721	CB	ARG	316	15.779	87.678	64.783	1.00	31.58
25	MOTA	722	CG	ARG	316	14.818	88.255	63.768	1.00	39.55
	MOTA	723	CD	ARG	316	15.004	89.756	63.448	1.00	48.73
	ATOM	724	NE	ARG	316	16.369	90.243	63.586	1.00	52.32
	ATOM	725	CZ	ARG	316	16.998	90.978	62.676	1.00	54.42
	ATOM	726	NH1	ARG	316	16.394	91.330	61.541	1.00	50.05
30	ATOM	727	NH2	ARG	316	18.259	91.322	62.894	1.00	58.94
	ATOM	742	N	ALA	319	14.883	93.183	67.782	1.00	38.65
	ATOM	743	CA	ALA	319	14.456	94.164	66.784	1.00	37.22
	MOTA	744	С	ALA	319	13.032	94.659	67.106	1.00	39.05
•	ATOM	745	0	ALA	319	12.794	95.870	67.190	1.00	39.00
35	MOTA	746	CB	ALA	319	14.501	93.511	65.386	1.00	32.02
	MOTA	747	N	VAL	320	12.136	93.697	67.349	1.00	38.72
	ATOM	748	CA	VAL	320	10.729	93.930	67.668	1.00	36.93
	MOTA	749	С	VAL	320	10.454	94.147	69.180	1.00	35.57
4.5	MOTA	750	0	VAL	320	11.296	93.850	70.048	1.00	34.97
40	MOTA	751	CB	VAL	320	9.889	92.710	67.153	1.00	36.85

	ATOM	752	CG1	VAL	320	8.391	92.969	67.218	1.00	36.58
	MOTA	753	CG2	VAL	320	10.290	92.405	65.769	1.00	30.70
	MOTA	804	N	THR	328	10.898	82.215	58.897	1.00	32.35
	MOTA	805	CA	THR	328	9.845	82.464	57.948	1.00	31.40
5	MOTA	806	С	THR	328	9.676	84.002	57.703	1.00	33.59
	MOTA	807	0	THR	328	9.033	84.413	56.733	1.00	35.22
	MOTA	808	CB	THR	328	8.589	81.753	58.558	1.00	32.98
	MOTA	809	OG1	THR	328	8.351	80.528	57.867	1.00	36.33
	MOTA	810	CG2	THR	328	7.338	82.602	58.627	1.00	25.48
10	MOTA	1105	N	LEU	367	26.072	85.794	70.190	1.00	29.24
	ATOM	1106	CA	LEU	367	24.948	84.884	69.994	1.00	25.60
	MOTA	1107	C	LEU	367	25.327	83.579	69.317	1.00	25.61
	MOTA	1108	0	LEU	367	24.886	82.513	69.740	1.00	28.03
	MOTA	1109	CB	LEU	367	23.859	85.522	69.186	1.00	20.56
15	MOTA	1110	CG	LEU	367	22.788	84.450	69.066	1.00	23.00
	MOTA	1111	CD1	LEU	367	21.733	84.549	70.133	1.00	15.44
	MOTA	1112	CD2	LEU	367	22.171	84.596	67.721	1.00	30.25
	MOTA	1113	N	GLY	368	26.089	83.666	68.236	1.00	22.75
	MOTA	1114	CA	GLY	368	26.500	82.469	67.527	1.00	22.27
20	MOTA	1115	С	GLY	368	27.456	81.654	68.379	1.00	25.34
	MOTA	1116	0	\mathtt{GLY}	368	27.631	80.443	68.181	1.00	24.00
	MOTA	1131	N	ARG	371	25.241	79.722	71.035	1.00	29.43
	ATOM	1132	CA	ARG	371	24.712	78.642	70.217	1.00	26.92
	MOTA	1133	С	ARG	371	25.781	77.585	69.780	1.00	26.81
25	ATOM	1134	0	ARG	371	25.428	76.471	69.408	1.00	30.58
	MOTA	1135	CB	ARG	371	24.030	79.225	68.995	1.00	26.56
	ATOM	1136	CG	ARG	371	22.802	80.020	69.279	1.00	22.05
	MOTA	1137	CD	ARG	371	22.202	80.545	67.941	1.00	26.82
	ATOM	1138	NE	ARG	371	21.109	79.777	67.318	1.00	24.69
30	MOTA	1139	CZ	ARG	371	21.216	79.073	66.183	1.00	26.53
	MOTA	1140	NH1	ARG	371	22.380	78.996	65.522	1.00	18.75
	ATOM	1141	NH2	ARG	371	20.123	78.507	65.645	1.00	23.91
35	TRbeta	Site	II Re	esidue	es (ref.	1BSX.pdb)				
	ATOM	120	N	THR F	A 226	30.851	22.267	38.045	1.00	49.68
	ATOM	121	CA	THR F	A 226	30.531	21.932	36.661	1.00	49.68
	ATOM	122	С	THR A		29.159	21.297	36.533		49.68

28.301 21.819 35.826 1.00 49.68

40

ATOM 123 O THR A 226

	ATOM	124	СВ	THR A	226	31.553	20.961	36.055	1.00 41.41
	ATOM	125	OG1	THR A	226	32.808	21.630	35.883	1.00 41.41
	ATOM	126	CG2	THR A	226	31.059	20.454	34.711	1.00 41.41
	ATOM	127	N	GLU A	227	28.955	20.163	37.198	1.00 52.18
5	ATOM	128	CA	GLU A	227	27.657	19.492	37.138	1.00 52.18
	MOTA	129	С	GLU A	227	26.572	20.555	37.274	1.00 52.18
	ATOM	130	0	GLU A	227	25.504	20.453	36.666	1.00 52.18
	ATOM	131	СВ	GLU A	227	27.531	18.460	38.266	1.00 51.55
	ATOM	132	N	ALA A	228	26.867	21.584	38.065	1.00 48.32
10	MOTA	133	CA	ALA A	228	25.931	22.674	38.278	1.00 48.32
	MOTA	134	С	ALA A	228	25.789	23.508	37.019	1.00 48.32
	MOTA	135	0	ALA A	228	24.795	23.399	36.306	1.00 48.32
	ATOM	136	CB	ALA A	228	26.399	23.543	39.421	1.00 41.74
	ATOM	137	N	HIS A	229	26.788	24.332	36.732	1.00 50.10
15	ATOM	138	CA	HIS A	229	26.723	25.177	35.548	1.00 50.10
	MOTA	139	C	HIS A	229	26.203	24.491	34.305	1.00 50.10
	MOTA	140	0	HIS A	229	25.567	25.131	33.479	1.00 50.10
	ATOM	141	CB	HIS A	229	28.087	25.785	35.210	1.00 43.42
	MOTA	142	CG	HIS A	229	28.138	26.393	33.838	1.00 43.42
20	ATOM	143	ND1	HIS A	229	27.215	27.315	33.403	1.00 43.42
	ATOM	144	CD2	HIS A	229	28.981	26.180	32.800	1.00 43.42
	MOTA	145	CE1	HIS A	. 229	27.485	27.645	32.150	1.00 43.42
	ATOM	146	NE2	HIS A	. 229	28.551	26.971	31.762	1.00 43.42
	ATOM	147	N	VAL A	. 230	26.475	23.201	34.162	1.00 55.78
25	MOTA	148	CA	VAL A	. 230	26.036	22.498	32.969	1.00 55.78
	ATOM	149	С	VAL A		24.555	22.163	32.958	1.00 55.78
	MOTA	150	0	VAL A		23.905	22.238	31.914	1.00 55.78
	ATOM	151	CB	VAL A		26.812	21.196	32.761	1.00 55.57
20	ATOM	152		VAL A		26.472	20.625	31.395	1.00 55.57
30	ATOM	153		VAL A		28.295	21.453	32.874	1.00 55.57
	ATOM	154	N	ALA A		24.023	21.785	34.112	1.00 61.34 1.00 61.34
	ATOM	155	CA	ALA A		22.614	21.450	34.198 34.312	1.00 61.34
	MOTA	156	C	ALA A		21.787	22.725 22.675	34.312	1.00 61.34
35	ATOM	157	O	ALA A		20.560	20.557	35.394	1.00 58.57
33	MOTA	158	CB	ALA A		22.368	23.866	34.408	1.00 57.34
	ATOM	159	N			21.773	25.145	34.532	1.00 57.34
	ATOM	160	CA C	THR A		22.150	26.114	33.426	1.00 57.34
	ATOM	161	0	THR A		21.941	27.315	33.561	1.00 57.34
40	ATOM	162				22.099	25.859	35.854	1.00 57.34
40	ATOM	163	CB	THR A	. 494	△	27.033	JJ.UJ#	JuJ

	ATOM	164	OG1	THR Z	A	232	23.454	26.318	35.822		50.43
	ATOM	165	CG2	THR I	A	232	21.927	24.918	37.026		50.43
	MOTA	166	N	ASN Z			22.727	25.604	32.347		73.93
	ATOM	167	CA	ASN 3	A	233	23.115	26.458	31.234	1.00	73.93
5	MOTA	168	C	ASN A	A	233	22.217	26.033	30.085	1.00	73.93
	MOTA	169	0	ASN 2	A	233	22.240	24.876	29.673	1.00	73.93
	MOTA	170	CB	ASN .	A	233	24.593	26.254	30.897	1.00	81.13
	MOTA	171	CG	ASN 2	A	233	25.110	27.263	29.895	1.00	81.13
	MOTA	172	OD1	ASN 3	A	233	24.893	28.463	30.034	1.00	81.13
10	ATOM	173	ND2	ASN 3	A	233	25.822	26.779	28.888	1.00	81.13
	ATOM	174	N	ALA	A	234	21.423	26.971	29.584	1.00	85.48
	MOTA	175	CA	ALA .	A	234	20.464	26.693	28.526	1.00	85.48
	MOTA	176	C	ALA 2	A	234	20.981	26.046	27.264	1.00	85.48
	MOTA	177	0	ALA .	A	234	21.988	26.456	26.703	1.00	85.48
15	MOTA	178	СВ	ALA .	A	234	19.718	27.958	28.161	1.00	84.92
	MOTA	179	N	GLN .	A	235	20.249	25.029	26.827	1.00	89.64
	MOTA	180	CA	GLN .	A	235	20.566	24.303	25.612	1.00	89.64
	ATOM	181	C	GLN .	A	235	21.961	23.679	25.535	1.00	89.64
	ATOM	182	0	GLN .	A	235	22.338	23.154	24.489	1.00	89.64
20	MOTA	183	CB	GLN .	A	235	20.336	25.224	24.399	1.00	92.63
	MOTA	184	CG	GLN .	A	235	18.884	25.361	23.918	1.00	92.63
	MOTA	185	CD	GLN .	A	235	17.879	25.531	25.043	1.00	92.63
	ATOM	186	OE1	GLN .	A	235	17.649	24.611	25.825	1.00	92.63
	ATOM	187	NE2	GLN .	A	235	17.274	26.712	25.128	1.00	92.63
25	MOTA	429	N	ILE .	A	275	11.867	37.044	28.524	1.00	66.16
	ATOM	430	CA	ILE .	A	275	12.617	35.819	28.794	1.00	66.16
	ATOM	431	C	ILE .	A	275	13.556	35.932	29.996	1.00	66.16
	ATOM	432	0	ILE .	A	275	14.025	34.929	30.527	1.00	66.16
	ATOM	433	СВ	ILE .	A	275	13.441	35.398	27.562	1.00	58.27
30	ATOM	434	CG1	ILE .	A	275	14.324	36.551	27.107	1.00	58.27
	MOTA	435	CG2	ILE .	A	275	12.519	34.972	26.444	1.00	58.27
	ATOM	436	CD1	ILE .	A	275	15.091	36.244	25.857	1.00	58.27
	MOTA	437	N	ILE .	A	276	13.815	37.158	30.429	1.00	66.14
	ATOM	438	CA	ILE .	A	276	14.706	37.417	31.553	1.00	66.14
35	MOTA	439	C	ILE	A	276	14.296	36.685	32.827	1.00	66.14
	ATOM	440	0	ILE .	A	276	15.089	36.539	33.750	1.00	66.14
	MOTA	441	СВ	ILE .	A	276	14.737	38.915	31.859	1.00	69.98
	MOTA	442	CG1	ILE .	A	276	15.765	39.220	32.948	1.00	69.98
	MOTA	443	CG2	ILE .	A	276	13.369	39.364	32.318	1.00	69.98
40	ATOM	444	CD1	ILE :	A	276	17.177	38.987	32.517	1.00	69.98

	ATOM	459	N	ALA	A	279	15.631	33.064	33.124	1.00	47.85
	ATOM	460	CA	ALA	A	279	17.065	33.172	33.057	1.00	47.85
	ATOM	461	С	ALA	A	279	17.588	33.271	34.468	1.00	47.85
	MOTA	462	0	ALA	A	279	18.519	32.561	34.851	1.00	47.85
5	MOTA	463	СВ	ALA	A	279	17.440	34.378	32.279	1.00	44.05
	ATOM	464	N	ILE	A	280	16.968	34.144	35.251	1.00	44.23
	ATOM	465	CA	ILE	A	280	17.392	34.322	36.623	1.00	44.23
	MOTA	466	С	ILE	A	280	17.201	33.025	37.392	1.00	44.23
	MOTA	467	0	ILE	A	280	18.088	32.606	38.133	1.00	44.23
10	ATOM	468	СВ	ILE	A	280	16.616	35.455	37.297	1.00	39.34
	ATOM	469	CG1	ILE	A	280	16.852	36.757	36.541	1.00	39.34
	MOTA	470	CG2	ILE	A	280	17.062	35.605	38.721	1.00	39.34
	ATOM	471	CD1	ILE	A	280	16.284	37.966	37.238	1.00	39.34
	ATOM	472	N	THR	A	281	16.059	32.375	37.189	1.00	43.46
15	MOTA	473	CA	THR	A	281	15.792	31.119	37.879	1.00	43.46
	ATOM	474	С	THR	A	281	16.976	30.173	37.710	1.00	43.46
	MOTA	475	0	THR	A	281	17.415	29.548	38.680	1.00	43.46
	ATOM	476	CB	THR	A	281	14.519	30.404	37.347	1.00	52.33
	ATOM	477	OG1	THR	A	281	14.671	30.149	35.948	1.00	52.33
20	MOTA	478	CG2	THR	A	281	13.280	31.252	37.562	1.00	52.33
	MOTA	479	N	ARG	A	282	17.495	30.071	36.486	1.00	47.94
	ATOM	480	CA	ARG	A	282	18.634	29.199	36.202	1.00	47.94
	ATOM	481	С	ARG	A	282	19.775	29.579	37.128	1.00	47.94
	ATOM	482	0	ARG			20.358	28.732	37.806	1.00	47.94
25	MOTA	483	CB	ARG	A	282	19.099	29.381	34.765	1.00	74.21
	ATOM	484	CG	ARG			19.187	28.100	33.973		74.21
	ATOM	485	CD	ARG			18.007	27.962	33.025		74.21
	MOTA	486	NE	ARG			17.893	29.117	32.136	1.00	74.21
20	ATOM	487	CZ	ARG			18.885	29.602	31.390		74.21
30	ATOM	488		ARG			20.093	29.045	31.411		74.21
	ATOM	489		ARG			18.675	30.670	30.633		74.21
	ATOM	490	N	VAL			20.092	30.868	37.138		45.45
	ATOM	491	CA	VAL			21.142	31.375	37.990		45.45
25	MOTA	492	C	VAL			20.852	30.908	39.405		45.45
35	ATOM	493	0	VAL			21.743	30.458	40.112		45.45
	MOTA	494	CB	VAL			21.170	32.895	37.957		42.13
	ATOM	495		VAL			22.286	33.411	38.849		42.13
	ATOM	496		VAL			21.361	33.358	36.533		42.13
40	ATOM	497	N	VAL			19.597	31.008	39.822		42.56
40	ATOM	498	CA	VAL	A	284	19.247	30.549	41.157	1.00	42.56

	MOTA	499	С	VAL	Α	284	19.516	29.042	41.234	1.00	42.56
	ATOM	500	0	VAL	A	284	20.202	28.575	42.140	1.00	42.56
	ATOM	501	СВ	VAL	A	284	17.762	30.790	41.492	1.00	42.15
	ATOM	502	CG1	VAL	Α	284	17.499	30.381	42.909	1.00	42.15
5	MOTA	503	CG2	VAL	A	284	17.416	32.242	41.313	1.00	42.15
	MOTA	504	N	ASP	A	285	18.987	28.283	40.277	1.00	48.17
	MOTA	505	CA	ASP	Α	285	19.197	26.843	40.267	1.00	48.17
	ATOM	506	С	ASP	A	285	20.676	26.473	40.291	1.00	48.17
	ATOM	507	0	ASP	A	285	21.044	25.441	40.846	1.00	48.17
10	ATOM	508	CB	ASP	A	285	18.522	26.204	39.051	1.00	48.63
	MOTA	509	CG	ASP	Α	285	17.005	26.271	39.122	1.00	48.63
	ATOM	510	OD1	ASP	Α	285	16.432	25.721	40.086	1.00	48.63
	MOTA	511	OD2	ASP	A	285	16.381	26.865	38.212	1.00	48.63
	MOTA	512	N	PHE	A	286	21.522	27.308	39.694	1.00	49.87
15	ATOM	513	CA	PHE	A	286	22.954	27.030	39.687	1.00	49.87
	MOTA	514	С	PHE	A	286	23.543	27.124	41.087	1.00	49.87
	MOTA	515	0	PHE	Α	286	24.226	26.213	41.538	1.00	49.87
	ATOM	516	СВ	PHE	A	286	23.687	27.997	38.760	1.00	50.22
	MOTA	517	CG	PHE	A	286	25.176	28.000	38.940	1.00	50.22
20	ATOM	518	CD1	PHE	A	286	25.906	26.828	38.855	1.00	50.22
	ATOM	519	CD2	PHE	Α	286	25.843	29.186	39.197	1.00	50.22
	ATOM	520	CE1	PHE	A	286	27.283	26.841	39.025	1.00	50.22
	ATOM	521	CE2	PHE	A	286	27.214	29.210	39.367	1.00	50.22
	ATOM	522	CZ	PHE	A	286	27.937	28.038	39.284	1.00	50.22
25	MOTA	687	N	CYS	A	308	25.191	39.069	42.212	1.00	44.63
	MOTA	688	CA	CYS	A	308	25.837	38.359	41.123	1.00	44.63
	MOTA	689	С	CYS	A	308	24.900	37.906	40.016	1.00	44.63
	MOTA	690	0	CYS	A	308	25.366	37.375	39.015	1.00	44.63
	MOTA	691	CB	CYS	A	308	26.554	37.125	41.658	1.00	42.54
30	MOTA	692	SG	CYS	A	308	25.409	35.829	42.131	1.00	42.54
	ATOM	693	N	CYS	A	309	23.595	38.101	40.167	1.00	41.98
	ATOM	694	CA	CYS	A	309	22.708	37.618	39.121	1.00	41.98
	ATOM	695	C	CYS	Α	309	23.019	38.142	37.746		41.98
	ATOM	696	0	CYS	A	309	23.149	37.369	36.805	1.00	41.98
35	MOTA	697	CB	CYS	Α	309	21.257	37.924	39.404	1.00	47.81
	MOTA	698	SG	CYS	A	309	20.268	37.272	38.051	1.00	47.81
	MOTA	699	N	MET	A	310	23.111	39.456	37.611		40.05
	ATOM	700	CA	MET	A	310	23.419	40.020	36.308		40.05
	ATOM	701	С	MET	Α	310	24.800	39.539	35.896		40.05
40	ATOM	702	0	MET	A	310	24.988	39.040	34.788	1.00	40.05

	ATOM	703	СВ	MET	A	310	23.387	41.553	36.357	1.00	39.89
	ATOM	704	CG	MET	A	310	23.777	42.209	35.045	1.00	39.89
	MOTA	705	SD	MET	A	310	22.737	41.646	33.699	1.00	39.89
	MOTA	706	CE	MET	A	310	23.594	42.336	32.298	1.00	39.89
5	MOTA	707	N	GLU	Α	311	25.756	39.668	36.814	1.00	40.89
	MOTA	708	CA	GLU	A	311	27.134	39.274	36.565	1.00	40.89
	MOTA	709	С	GLU	Α	311	27.213	37.868	35.958	1.00	40.89
	MOTA	710	0	GLU	A	311	27.864	37.673	34.929	1.00	40.89
	ATOM	711	СВ	GLU	A	311	27.940	39.357	37.866	1.00	37.60
10	MOTA	712	CG	GLU	A	311	27.708	40.646	38.645	1.00	37.60
	ATOM	713	CD	GLU	A	311	28.590	40.779	39.885	1.00	37.60
	MOTA	714	OE1	GLU	A	311	28.752	39.789	40.629	1.00	37.60
	ATOM	715	OE2	GLU	Α	311	29.112	41.888	40.139	1.00	37.60
	ATOM	716	N	ILE	A	312	26.536	36.896	36.566	1.00	40.84
15	ATOM	717	CA	ILE	A	312	26.569	35.533	36.035	1.00	40.84
	MOTA	718	С	ILE	A	312	25.827	35.408	34.707	1.00	40.84
	MOTA	719	0	ILE	A	312	26.255	34.664	33.825	1.00	40.84
	MOTA	720	CB	ILE	A	312	25.983	34.485	37.033	1.00	34.15
•	ATOM	721	CG1	ILE	A	312	26.836	34.423	38.306	1.00	34.15
20	MOTA	722	CG2	ILE	A	312	25.970	33.106	36.388	1.00	34.15
	MOTA	723	CD1	ILE	A	312	26.350	33.418	39.331	1.00	34.15
	ATOM	724	N	MET	A	313	24.718	36.131	34.558	1.00	41.96
	ATOM	725	CA	MET	A	313	23.961	36.071	33.312	1.00	41.96
	ATOM	726	С	MET	A	313	24.773	36.591	32.138	1.00	41.96
25	MOTA	727	0	MET	A	313	25.071	35.834	31.216	1.00	41.96
	ATOM	728	CB	MET	A	313	22.635	36.843	33.423	1.00	52.96
	ATOM	729	CG	MET	A	313	21.562	36.115	34.245	1.00	52.96
	ATOM	730	SD	MET	A	313	19.862	36.769	34.098	1.00	52.96
	MOTA	731	CE	MET	A	313	20.065	38.413	34.741	1.00	52.96
30	ATOM	732	N	SER	A	314	25.141	37.872	32.175	1.00	38.33
	ATOM	733	CA	SER	A	314	25.928	38.462	31.094	1.00	38.33
	MOTA	734	С	SER	A	314	27.198	37.658	30.774	1.00	38.33
	ATOM	735	0	SER	A	314	27.604	37.587	29.616	1.00	38.33
	ATOM	736	CB	SER	A	314	26.266	39.927	31.408	1.00	50.03
35	ATOM	737	OG	SER			26.887	40.065	32.665	1.00	50.03
	ATOM	738	N	LEU .	A	315	27.832	37.056	31.781	1.00	38.47
	ATOM	739	CA	LEU .			29.017	36.237	31.501	1.00	38.47
	ATOM	740	С	LEU .			28.558	35.167	30.527	1.00	38.47
4.0	ATOM	741	0	LEU .	A	315	29.058	35.052	29.406	1.00	38.47
40	MOTA	742	CB	LEU .	A	315	29.557	35.548	32.769	1.00	31.33

	MOTA	743	CG	LEU A	315	30.628	34.464	32.514	1.00	31.33
	MOTA	744	CD1	LEU A	315	31.827	35.048	31.781	1.00	31.33
	MOTA	745	CD2	LEU A	315	31.073	33.845	33.830	1.00	31.33
	ATOM	746	N	ARG A	316	27.572	34.405	30.981	1.00	42.55
5	MOTA	747	CA	ARG A	316	26.994	33.320	30.217	1.00	42.55
	MOTA	748	C	ARG A	316	26.637	33.669	28.803	1.00	42.55
	MOTA	749	0	ARG A	316	26.555	32.788	27.963	1.00	42.55
	ATOM	750	СВ	ARG A	316	25.752	32.799	30.916	1.00	40.97
	MOTA	751	CG	ARG A	316	26.060	32.162	32.237	1.00	40.97
10	MOTA	752	CD	ARG A	316	24.851	31.475	32.762	1.00	40.97
	MOTA	753	NE	ARG A	316	25.222	30.313	33.542	1.00	40.97
	MOTA	754	CZ	ARG A	316	24.347	29.411	33.946	1.00	40.97
	ATOM	755	NH1	ARG A	316	23.068	29.558	33.631	1.00	40.97
	MOTA	756	NH2	ARG A	316	24.750	28.354	34.634	1.00	40.97
15	MOTA	767	N	VAL A	319	30.221	34.487	26.650	1.00	50.27
	MOTA	768	CA	VAL A	319	30.869	33.230	26.290	1.00	50.27
	MOTA	769	C	VAL A	319	30.179	32.610	25.100	1.00	50.27
	ATOM	770	0	VAL A	319	30.602	31.575	24.606	1.00	50.27
	MOTA	771	CB	VAL A	319	30.823	32.209	27.430	1.00	43.16
20	MOTA	772	CG1	VAL A	319	31.272	32.861	28.722	1.00	43.16
	MOTA	773	CG2	VAL A	319	29.432	31.637	27.550	1.00	43.16
	MOTA	774	N	ARG A	320	29.110	33.252	24.652	1.00	54.91
	MOTA	775	CA	ARG A	320	28.355	32.781	23.510	1.00	54.91
	ATOM	776	С	ARG A	320	28.265	33.790	22.377	1.00	54.91
25	ATOM	777	0	ARG A	320	27.257	33.876	21.680	1.00	54.91
	MOTA	778	CB	ARG A	320	26.968	32.356	23.958	1.00	63.84
	MOTA	779	CG	ARG A	320	26.891	30.895	24.301	1.00	63.84
	MOTA	780	CD	ARG A	320	25.569	30.557	24.916	1.00	63.84
	MOTA	781	NE	ARG A	320	25.330	29.123	24.908	1.00	63.84
30	ATOM	782	CZ	ARG A	320	24.358	28.541	25.594	1.00	63.84
	ATOM	783	NH1	ARG A	320	23.552	29.283	26.341	1.00	63.84
	MOTA	784	NH2	ARG A	320	24.177	27.230	25.517	1.00	63.84
	ATOM	797	N	ASP A	322	29.281	34.908	18.810		58.89
_	ATOM	798	CA	ASP A	322	29.780	34.397	17.537	1.00	58.89
35	ATOM	799	С	ASP A	322	30.428	35.585	16.827	1.00	58.89
	ATOM	800	0	ASP A	322	29.729	36.503	16.396		58.89
	ATOM	801	CB	ASP A	322	28.614	33.892	16.678	1.00	55.15
	ATOM	802	CG	ASP A	322	29.068	33.304	15.347	1.00	55.15
	ATOM	803	OD1	ASP A	322	30.036	33.842	14.755	1.00	55.15
40	ATOM	804	OD2	ASP A	322	28.439	32.323	14.884	1.00	55.15

	MOTA	805	N	PRO 2	A	323	31.770	35.612	16.709	1.00	61.57
	ATOM	806	CA	PRO J	A	323	32.317	36.775	16.017	1.00	61.57
	ATOM	807	С	PRO .	A	323	31.913	36.892	14.533	1.00	61.57
	MOTA	808	0	PRO .	Α	323	31.828	38.003	14.009	1.00	61.57
5	ATOM	809	CB	PRO .	A	323	33.815	36.566	16.199	1.00	58.50
	MOTA	810	CG	PRO .	A	323	33.915	35.076	16.059	1.00	58.50
	ATOM	811	CD	PRO .	A	323	32.892	34.762	17.138	1.00	58.50
	ATOM	812	N	GLU .	A	324	31.698	35.772	13.842	1.00	69.24
	ATOM	813	CA	GLU .	A	324	31.296	35.868	12.438	1.00	69.24
10	ATOM	814	С	GLU .	A	324	30.010	36.700	12.397	1.00	69.24
	ATOM	815	0	GLU .	A	324	30.041	37.868	12.016	1.00	69.24
	MOTA	816	СВ	GLU	A	324	31.039	34.482	11.809	1.00	56.60
	MOTA	817	CG	GLU	A	324	32.215	33.479	11.837	1.00	56.60
	MOTA	818	CD	GLU	A	324	33.545	34.037	11.313	1.00	56.60
15	MOTA	819	OE1	GLU	A	324	33.521	34.931	10.433	1.00	56.60
	MOTA	820	OE2	GLU	A	324	34.620	33.556	11.761	1.00	56.60
	MOTA	874	N	\mathtt{GLY}	A	332	20.090	31.110	25.121	1.00	73.02
	MOTA	875	CA	GLY	A	332	20.316	30.023	24.190	1.00	73.02
	ATOM	876	С	GLY	A	332	19.274	29.921	23.092	1.00	73.02
20	MOTA	877	0	GLY	A	332	19.303	28.984	22.297	1.00	73.02
	MOTA	1148	И	VAL	A	370	34.003	28.455	32.872	1.00	40.00
	MOTA	1149	CA	VAL	A	370	32.879	29.368	32.981	1.00	40.00
	ATOM	1150	C	VAL	A	370	32.280	29.144	34.357	1.00	40.00
	MOTA	1151	Ο,	VAL	Α	370	32.101	30.082	35.129		40.00
25	MOTA	1152	CB	VAL	A	370	31.778	29.065	31.943	1.00	37.32
	MOTA	1153	CG1	VAL	Α	370	30.607	29.997	32.157	1.00	37.32
	ATOM	1154	CG2	VAL	Α	370	32.327	29.220	30.542		37.32
	MOTA	1155	N	ALA	Α	371	31.993	27.882	34.655		37.67
	MOTA	1156	CA	ALA	A	371	31.407	27.503	35.927		37.67
30	MOTA	1157	С	ALA	A	371	32.165	28.154	37.072		37.67
	MOTA	1158	0	ALA	A	371	31.621	28.990	37.784		37.67
	MOTA	1159	СВ	ALA			31.418	25.989	36.075		32.11
	MOTA	1176	N	GLN			31.828	31.691	37.341		36.73
	MOTA	1177	CA	GLN			30.505	32.029	37.866		36.73
35	MOTA	1178	С	GLN			30.426	31.946	39.387		36.73
	MOTA	1179	0	GLN			29.713	32.733	40.017		36.73
	ATOM	1180	CB	GLN			29.428	31.110	37.293		37.11
	ATOM	1181	CG	GLN			29.254	31.181	35.797		37.11
	MOTA	1182	CD	GLN			28.133	30.278	35.318		37.11
40	ATOM	1183	OE1	GLN	A	374	27.860	30.179	34.121	1.00	37.11

ATOM 1184 NE2 GLN A 374 27.476 29.614 36.257 1.00 37.11

VitDR Site II Residues (ref. 1DB1.pdb)

5								
	MOTA	134	N	LEU A 136	20.223	7.725	47.913	1.00 22.40
	MOTA	135	CA	LEU A 136	20.991	7.675	46.669	1.00 23.29
	ATOM	136	С	LEU A 136	20.302	6.721	45.705	1.00 23.50
	MOTA	137	0	LEU A 136	20.191	6.996	44.512	1.00 23.31
10	MOTA	138	CB	LEU A 136	22.424	7.194	46.920	1.00 24.60
	MOTA	139	CG	LEU A 136	23.395	8.196	47.549	1.00 25.56
	MOTA	140	CD1	LEU A 136	24.740	7.518	47.798	1.00 26.67
	MOTA	141	CD2	LEU A 136	23.555	9.398	46.628	1.00 26.04
	MOTA	142	N	ASP A 137	19.845	5.591	46.232	1.00 23.87
15	MOTA	143	CA	ASP A 137	19.156	4.589	45.427	1.00 23.95
	MOTA	144	С	ASP A 137	17.844	5.152	44.870	1.00 23.67
	ATOM	145	0	ASP A 137	17.513	4.943	43.697	1.00 22.79
	ATOM	146	CB	ASP A 137	18.886	3.348	46.282	1.00 26.93
	MOTA	147	CG	ASP A 137	18.158	2.266	45.524	1.00 31.10
20	ATOM	148	OD1	ASP A 137	17.010	1.947	45.900	1.00 34.78
	MOTA	149	OD2	ASP A 137	18.730	1.734	44.552	1.00 34.13
	MOTA	150	N	ALA A 138	17.105	5.867	45.714	1.00 22.31
	MOTA	151	CA	ALA A 138	15.836	6.472	45.312	1.00 22.31
	MOTA	152	С	ALA A 138	16.063	7.435	44.157	1.00 21.39
25	MOTA	153	0	ALA A 138	15.310	7.445	43.183	1.00 20.83
	MOTA	154	CB	ALA A 138	15.213	7.219	46.487	1.00 23.04
	MOTA	155	N	HIS A 139	17.107	8.249	44.263	1.00 21.06
	MOTA	156	CA	HIS A 139	17.408	9.202	43.208	1.00 21.28
	MOTA	157	С	HIS A 139	17.814	8.511	41.905	1.00 21.64
30	MOTA	158	0	HIS A 139	17.385	8.913	40.824	1.00 21.17
	MOTA	159	CB	HIS A 139	18.528	10.152	43.631	1.00 21.21
	MOTA	160	CG	HIS A 139	18.730	11.288	42.680	1.00 22.53
	MOTA	161	ND1	HIS A 139	19.955	11.593	42.126	1.00 25.49
	MOTA	162	CD2	HIS A 139	17.850	12.173	42.157	1.00 19.49
35	MOTA	163	CE1	HIS A 139	19.820	12.615	41.300	1.00 20.82
	MOTA	164	NE2	HIS A 139	18.552	12.986	41.301	1.00 23.99
	MOTA	165	N	HIS A 140	18.650	7.479	42.005	1.00 21.50
	MOTA	166	CA	HIS A 140	19.099	6.760	40.819	1.00 22.20
	MOTA	167	С	HIS A 140	17.947	6.088	40.082	1.00 21.95
40	ATOM	168	0	HIS A 140	17.997	5.911	38.861	1.00 21.87

	MOTA	169	СВ	HIS A	140	20.153	5.710	41.193	1.00	23.76
	ATOM	170		HIS A		21.398	6.291	41.787	1.00	25.80
	ATOM	171	ND1	HIS A	140	21.803	7.585	41.546	1.00	27.26
	ATOM	172	CD2	HIS A	140	22.341	5.745	42.591	1.00	26.22
5	ATOM	173	CE1	HIS A	140	22.942	7.814	42.176	1.00	26.08
	ATOM	174	NE2	HIS A	140	23.291	6.714	42.817	1.00	27.71
	ATOM	175	N	LYS A	141	16.908	5.719	40.821	1.00	20.41
	ATOM	176	CA	LYS A	141	15.745	5.071	40.225	1.00	21.89
	ATOM	177	С	LYS A	141	14.746	6.078	39.665	1.00	21.31
10	ATOM	178	0	LYS A	141	13.916	5.730	38.832	1.00	22.47
	ATOM	179	CB	LYS A	141	15.031	4.203	41.265	1.00	23.28
	MOTA	180	CG	LYS A	141	15.804	2.960	41.668	1.00	26.83
	ATOM	181	CD	LYS A	141	15.080	2.209	42.771	1.00	30.63
	ATOM	182	CE	LYS A	141	15.781	0.902	43.093	1.00	33.64
15	MOTA	183	NZ	LYS A	141	15.122	0.206	44.231	1.00	36.58
	MOTA	184	N	THR A	142	14.840	7.325	40.107	1.00	20.65
	MOTA	185	CA	THR A	142	13.893	8.348	39.664	1.00	20.68
	MOTA	186	С	THR A	142	14.440	9.502	38.833	1.00	20.45
	MOTA	187	0	THR A	142	13.682	10.375	38.420	1.00	20.32
20	ATOM	188	СВ	THR A	142	13.142	8.935	40.865	1.00	20.48
	MOTA	189	OG1	THR A	142	14.081	9.474	41.805	1.00	18.91
	MOTA	190	CG2	THR A	142	12.326	7.850	41.546	1.00	19.94
	MOTA	191	N	TYR A	143	15.747	9.520	38.595	1.00	20.03
	MOTA	192	CA	TYR A	143	16.342	10.566	37.768	1.00	20.44
25	ATOM	193	C	TYR A	143	17.207	9.895	36.706	1.00	20.75
	ATOM	194	0	TYR A	143	18.248	9.323	37.013	1.00	21.56
	MOTA	195	СВ	TYR A	143	17.198	11.529	38.610	1.00	20.88
	MOTA	196	CG	TYR A	143	17.673	12.742	37.835	1.00	20.90
	MOTA	197	CD1	TYR A	143	18.721	12.650	36.915	1.00	21.44
30	MOTA	198	CD2	TYR A	143	17.048	13.980	37.994		21.13
	ATOM	199	CE1	TYR A	. 143	19.132	13.762	36.170	1.00	21.80
	MOTA	200	CE2	TYR A	. 143	17.449	15.090	37.253	1.00	20.26
	ATOM	201	CZ	TYR A	. 143	18.487	14.978	36.347	1.00	22.15
	ATOM	202	OH	TYR A	. 143	18.868	16.077	35.612		21.28
35	ATOM	203	N	ASP A	144	16.750	9.959	35.461	1.00	20.48
	ATOM	204	CA	ASP A	144	17.449	9.365	34.326	1.00	21.36
	MOTA	205	С	ASP A	144	18.428	10.387	33.751		22.06
	ATOM	206	0	ASP A	144	18.016	11.348	33.102		21.75
	MOTA	207	CB	ASP A	144	16.412	8.955	33.274		21.65
40	MOTA	208	CG	ASP A	144	17.032	8.481	31.976	1.00	22.22

	MOTA	209	OD1	ASP A	144	18.261	8.286	31.921	1.00 22.12
	ATOM	210	OD2	ASP A	144	16.266	8.294	31.007	1.00 23.20
	ATOM	494	N	LEU A	233	7.228	18.018	30.549	1.00 21.20
	ATOM	495	CA	LEU A	233	8.483	17.785	31.278	1.00 20.50
5	ATOM	496	С	LEU A	233	8.267	17.940	32.785	1.00 20.58
	ATOM	497	0	LEU A	233	8.755	17.139	33.587	1.00 18.39
	ATOM	498	CB	LEU A	233	9.565	18.770	30.811	1.00 20.92
	MOTA	499	CG	LEU A	233	10.826	18.839	31.684	1.00 20.96
	ATOM	500	CD1	LEU A	233	11.554	17.502	31.652	1.00 22.15
10	MOTA	501	CD2	LEU A	233	11.737	19.969	31.190	1.00 22.47
	MOTA	502	N	VAL A	234	7.539	18.981	33.172	1.00 20.09
	MOTA	503	CA	VAL A	234	7.263	19.217	34.583	1.00 20.15
	MOTA	504	C	VAL A	234	6.320	18.152	35.146	1.00 19.97
	MOTA	505	0	VAL A	234	6.500	17.691	36.268	1.00 19.99
15	ATOM	506	CB	VAL A	234	6.665	20.630	34.796	1.00 21.02
	ATOM	507	CG1	VAL A	234	6.104	20.778	36.209	1.00 23.20
	MOTA	508	CG2	VAL A	234	7.754	21.679	34.566	1.00 21.83
	ATOM	527	N	SER A	237	8.241	15.105	35.711	1.00 17.93
	MOTA	528	CA	SER A	237	9.106	15.312	36.868	1.00 18.19
20	MOTA	529	С	SER A	237	8.373	15.218	38.199	1.00 18.73
	MOTA	530	0	SER A	237	8.929	14.737	39.184	1.00 19.34
	MOTA	531	CB	SER A	237	9.830	16.654	36.730	1.00 18.72
	ATOM	532	OG	SER A	237	10.648	16.628	35.573	1.00 19.76
	ATOM	533	N	ILE A	238	7.128	15.680	38.237	1.00 18.89
25	MOTA	534	CA	ILE A		6.343	15.597	39.460	1.00 20.25
	MOTA	535	С	ILE A		6.101	14.119	39.759	1.00 20.17
	MOTA	536	0	ILE A		6.129	13.705	40.914	1.00 20.62
	MOTA	537	СВ	ILE A		4.984	16.337	39.317	1.00 21.21
20	MOTA	538		ILE A		5.226	17.847	39.236	1.00 23.61
30	MOTA	539		ILE A		4.068	16.001	40.502	1.00 23.76
	MOTA	540		ILE A		3.972	18.668	38.937	1.00 24.70 1.00 20.04
	ATOM	541	N	GLN A		5.868	13.315	38.719 38.936	1.00 20.04
	ATOM	542	CA	GLN A		5.657	11.890	39.531	1.00 19.72
25	MOTA	543	C	GLN A		6.911	11.261	40.437	1.00 19.92
35	ATOM	544	O	GLN A		6.823	10.433	37.628	1.00 21.35
	ATOM	545	CB	GLN A		5.288	11.178	37.026	1.00 21.33
	ATOM	546	CG	GLN A		3.920	11.576 10.707	35.922	1.00 23.58
	ATOM	547	CD	GLN A		3.487	9.556	36.105	1.00 25.30
40	ATOM	548		GLN A		3.092		34.720	1.00 20.39
40	MOTA	549	NE2	GLN A	239	3.568	11.249	34./40	1.00 ∠∠.31

	ATOM	550	N	LYS A	240	8.080	11.661	39.037	1.00 19	.37
	ATOM	551	CA	LYS A	240	9.336	11.116	39.557	·1.00 19	.49
	ATOM	552	С	LYS A	240	9.575	11.583	40.994	1.00 20	.03
	MOTA	553	0	LYS A	240	10.086	10.826	41.826	1.00 20	.81
5	ATOM	554	СВ	LYS A	240	10.509	11.525	38.658	1.00 19	.27
	ATOM	555	CG	LYS A	240	10.385	11.015	37.216	1.00 19	.70
	ATOM	556	CD	LYS A	240	10.174	9.491	37.165	1.00 20	.85
	ATOM	557	CE	LYS A	240	10.201	8.986	35.734	1.00 20	.78
	ATOM	558	NZ	LYS A	240	9.919	7.527	35.631	1.00 21	.79
10	MOTA	559	N	VAL A	241	9.203	12.827	41.284	1.00 19	. 95
	ATOM	560	CA	VAL A	241	9.355	13.380	42.630	1.00 21	.18
	ATOM	561	C	VAL A	241	8.466	12.633	43.621	1.00 22	.58
	ATOM	562	0	VAL A	241	8.845	12.418	44.769	1.00 22	.01
	ATOM	563	CB	VAL A	241	9.006	14.890	42.658	1.00 22	.53
15	ATOM	564	CG1	VAL A	241	8.893	15.392	44.104	1.00 23	.49
	MOTA	565	CG2	VAL A	241	10.092	15.671	41.929	1.00 22	.43
	ATOM	566	N	ILE A	242	7.277	12.237	43.178	1.00 22	.44
	ATOM	567	CA	ILE A	. 242	6.375	11.492	44.052	1.00 23	.64
	MOTA	568	С	ILE A	. 242	7.027	10.157	44.416	1.00 23	.45
20	MOTA	569	0	ILE A	242	6.987	9.726	45.573	1.00 25	.50
	MOTA	570	CB	ILE A	242	5.012	11.255	43.360	1.00 24	.32
	MOTA	571	CG1	ILE A	. 242	4.235	12.575	43.303	1.00 25	.64
	MOTA	572	CG2	ILE A	242	4.214	10.186	44.104	1.00 24	. 95
	MOTA	573	CD1	ILE A	242	3.012	12.540	42.401	1.00 25	.41
25	ATOM	574	N	GLY A	243	7.652	9.521	43.431	1.00 22	.76
	MOTA	575	CA	GLY A	243	8.310	8.246	43.665	1.00 23	. 14
	MOTA	576	С	GLY A	243	9.491	8.385	44.604	1.00 23	.29
	MOTA	577	0	GLY A	243	9.719	7.525	45.454	1.00 24	. 26
	MOTA	578	N	PHE A	244	10.244	9.471	44.443	1.00 22	.21
30	MOTA	579	CA	PHE A	244	11.406	9.754	45.287	1.00 23	. 08
	MOTA	580	С	PHE A	244	10.962	9.960	46.734	1.00 23	. 33
	MOTA	581	0	PHE A	244	11.509	9.359	47.665	1.00 22	. 96
	MOTA	582	СВ	PHE A	244	12.110	11.023	44.799	1.00 21	. 55
	MOTA	583	CG	PHE A	244	13.264	11.454	45.663	1.00 23	.20
35	ATOM	584	CD1	PHE A	244	14.474	10.764	45.632	1.00 25	04
	MOTA	585	CD2	PHE A	244	13.140	12.548	46.516	1.00 24.	. 78
	MOTA	586	CE1	PHE A	244	15.542	11.157	46.437	1.00 25.	46
	MOTA	587	CE2	PHE A	244	14.205	12.950	47.327	1.00 24.	71
	MOTA	588	CZ	PHE A	244	15.407	12.254	47.286	1.00 24.	22
40	MOTA	753	N	SER A	266	5.847	21.434	47.757	1.00 25.	17

	MOTA	754	: CA	SER A 266	7.277	21.412	47.449	1.00 23.91
	MOTA	755	C	SER A 266	7.609	21.035	46.011	1.00 23.51
	MOTA	756	0	SER A 266	8.749	21.206	45.572	1.00 23.30
	ATOM	757	CB	SER A 266	8.001	20.445	48.385	1.00 24.45
5	MOTA	758	OG	SER A 266	7.656	19.101	48.094	1.00 24.60
	MOTA	759	N	ALA A 267	6.619	20.519	45.285	1.00 22.67
	MOTA	760	CA	ALA A 267	6.801	20.089	43.898	1.00 23.39
	ATOM	761	C	ALA A 267	7.698	20.979	43.040	1.00 23.51
	ATOM	762	0	ALA A 267	8.716	20.517	42.515	1.00 23.55
10	MOTA	763	CB	ALA A 267	5.436	19.938	43.217	1.00 24.51
	MOTA	764	N	ILE A 268	7.330	22.247	42.883	1.00 22.01
	ATOM	765	CA	ILE A 268	8.132	23.135	42.041	1.00 22.23
	ATOM	766	C	ILE A 268	9.539	23.374	42.592	1.00 22.05
	MOTA	767	0	ILE A 268	10.494	23.558	41.828	1.00 20.90
15	MOTA	768	СВ	ILE A 268	7.426	24.496	41.811	1.00 23.63
	MOTA	769	CG1	L ILE A 268	8.097	25.232	40.645	1.00 24.85
	ATOM	770	CG2	2 ILE A 268	7.484	25.354	43.068	1.00 25.18
	ATOM	771	CD1	ILE A 268	7.933	24.549	39.303	1.00 25.69
	ATOM	772	N	GLU A 269	9.674	23.352	43.911	1.00 20.40
20	MOTA	773	CA	GLU A 269	10.979	23.561	44.529	1.00 20.63
	ATOM	774	C	GLU A 269	11.933	22.402	44.268	1.00 21.33
	MOTA	775	0	GLU A 269	13.109	22.620	43.976	1.00 20.99
	MOTA	776	CB	GLU A 269	10.823	23.770	46.030	1.00 20.38
	MOTA	777	CG	GLU A 269	10.206	25.110	46.396	1.00 22.10
25	ATOM	778	CD	GLU A 269	10.009	25.261	47.892	1.00 23.72
	MOTA	779	OE1	GLU A 269	10.803	24.670	48.656	1.00 22.73
	MOTA	780	OE2	GLU A 269	9.067	25.974	48.301	1.00 24.58
	ATOM	781	N	VAL A 270	11.434	21.172	44.375	1.00 20.39
•	MOTA	782	CA	VAL A 270	12.279	20.006	44.143	1.00 20.83
30	ATOM	783	С	VAL A 270	12.644	19.911	42.670	1.00 20.52
	MOTA	784	0	VAL A 270	13.734	19.458	42.318	1.00 20.87
	MOTA	785	CB	VAL A 270	11.582	18.709	44.597	1.00 21.55
	ATOM	786	CG1	VAL A 270	12.481	17.512	44.318	1.00 21.95
0.7	ATOM	787	CG2	VAL A 270	11.268	18.790	46.086	1.00 23.25
35	MOTA	788	N	ILE A 271	11.731	20.337	41.804	1.00 20.29
	ATOM	789	CA	ILE A 271	12.010	20.318	40.376	1.00 20.71
	MOTA	790	С	ILE A 271	13.145	21.300	40.099	1.00 20.86
	ATOM	791	0	ILE A 271	14.083	20.990	39.361	1.00 20.78
4.5	ATOM	792	CB	ILE A 271	10.755	20.684	39.563	1.00 21.89
40	ATOM	793	CG1	ILE A 271	9.842	19.450	39.483	1.00 24.21

	ATOM	794	cco	ILE A	271	11.149	21.173	38.170	1.00 23.03
	ATOM	795		ILE A		8.489	19.711	38.852	1.00 27.85
	ATOM	796	N	MET A		13.076	22.481	40.701	1.00 21.17
	ATOM	797	CA	MET A		14.147	23.446	40.500	1.00 21.57
5	ATOM	798	C	MET A		15.474	22.888	41.020	1.00 20.82
J	ATOM	799	0	MET A		16.513	23.064	40.384	1.00 22.20
	ATOM	800	CB	MET A		13.800	24.770	41.183	1.00 22.31
	ATOM	801	CG	MET A		12.595	25.441	40.549	1.00 24.16
	ATOM	802	SD	MET A		12.222	27.036	41.296	1.00 26.22
10	ATOM	803	CE	MET A		11.003	27.687	40.134	1.00 26.38
~ 0	ATOM	804	N	LEU A		15.442	22.204	42.163	1.00 21.17
	ATOM	805	CA	LEU A		16.661	21.606	42.717	1.00 21.28
	ATOM	806	С	LEU A	273	17.226	20.486	41.842	1.00 20.96
	ATOM	807	0	LEU A	273	18.408	20.494	41.487	1.00 20.75
15	ATOM	808	СВ	LEU A	273	16.405	21.026	44.116	1.00 22.98
	ATOM	809	CG	LEU A	273	16.367	21.940	45.337	1.00 25.62
	ATOM	810	CD1	LEU A	273	15.959	21.129	46.572	1.00 25.83
	ATOM	811	CD2	LEU A	273	17.736	22.571	45.543	1.00 26.65
	ATOM	812	N	ARG A	274	16.385	19.517	41.494	1.00 19.69
20	ATOM	813	CA	ARG A	274	16.852	18.384	40.702	1.00 19.52
	ATOM	814	C	ARG A	274	17.317	18.787	39.309	1.00 19.10
	ATOM	815	0	ARG A	274	18.159	18.117	38.715	1.00 19.83
	ATOM	816	СВ	ARG A	274	15.759	17.299	40.610	1.00 19.75
*	ATOM	817	CG	ARG A	274	14.652	17.566	39.601	1.00 19.52
25	ATOM	818	CD	ARG A	274	13.381	16.792	39.969	1.00 19.72
	ATOM	819	NE	ARG A	274	13.599	15.356	40.153	1.00 18.11
	ATOM	820	CZ	ARG A	274	13.580	14.453	39.175	1.00 19.01
	ATOM	821	NH1	ARG A	274	13.357	14.824	37.919	1.00 18.53
	ATOM	822	NH2	ARG A	274	13.759	13.168	39.458	1.00 19.51
30	ATOM	837	N	GLU A	277	21.096	19.280	38.000	1.00 20.52
	ATOM	838	CA	GLU A	277	21.925	18.226	37.425	1.00 21.75
	MOTA	839	С	GLU A	277	22.103	18.370	35.908	1.00 21.79
	MOTA	840	0	GLU A	277	23.105	17.910	35.351	1.00 22.41
	MOTA	841	CB	GLU A	277	21.331	16.852	37.785	1.00 22.91
35	MOTA	842	CG	GLU A	277	22.199	15.659	37.413	1.00 26.24
	MOTA	843	CD	GLU A	277	21.904	14.418	38.261	1.00 28.07
	MOTA	844	OE1	GLU A	277	22.359	13.319	37.875	1.00 30.43
	MOTA	845	OE2	GLU A	277	21.233	14.532	39.317	1.00 26.56
	MOTA	846	N	SER A	278	21.152	19.011	35.234	1.00 19.68
40	MOTA	847	CA	SER A	278	21.266	19.194	33.789	1.00 20.64

	MOTA	848	С	SER .	A	278	21.712	20.607	33.448	1.00	21.58
	ATOM	849	0	SER .	A	278	22.008	20.910	32.292	1.00	22.05
	MOTA	850	CB	SER .	A	278	19.934	18.910	33.092	1.00	20.93
	MOTA	851	OG	SER .	A	278	18.941	19.829	33.497	1.00	22.00
5	MOTA	863	N	THR .	A	280	24.077	23.728	33.010	1.00	24.73
	MOTA	864	CA	THR .	A	280	25.496	23.872	32.728	1.00	26.87
	ATOM	865	С	THR .	A	280	25.884	25.343	32.672	1.00	27.44
	ATOM	866	0	THR	A	280	25.186	26.162	32.070	1.00	26.28
	MOTA	867	СВ	THR	A	280	25.897	23.198	31.399	1.00	27.76
10	ATOM	868	OG1	THR	A	280	27.298	23.408	31.173	1.00	31.72
	ATOM	869	CG2	THR	A	280	25.107	23.768	30.236	1.00	27.79
	MOTA	870	N	MET	A	281	26.991	25.676	33.326	1.00	28.33
	ATOM	871	CA	MET .	A	281	27.469	27.049	33.340	1.00	31.03
	ATOM	872	С	MET	A	281	28.275	27.390	32.095	1.00	31.28
15	ATOM	873	0	MET	A	281	28.812	28.490	31.980	1.00	30.87
	MOTA	874	СВ	MET	A	281	28.298	27.306	34.596	1.00	33.43
	ATOM	875	CG	MET	A	281	27.448	27.518	35.835	1.00	36.11
	ATOM	876	SD	MET	A	281	28.429	27.829	37.295	1.00	39.85
	ATOM	877	CE	MET	A	281	28.995	29.495	36.967	1.00	40.40
20	ATOM	878	N	ASP	A	282	28.364	26.448	31.159	1.00	31.72
	MOTA	879	CA	ASP	A	282	29.097	26.709	29.925	1.00	32.91
	ATOM	880	С	ASP	Α	282	28.366	27.818	29.175	1.00	32.02
	MOTA	881	0	ASP	A	282	28.989	28.764	28.683	1.00	31.15
	MOTA	882	CB	ASP	A	282	29.172	25.455	29.050	1.00	35.93
25	MOTA	883	CG	ASP	A	282	29.947	24.328	29.708	1.00	39.91
	MOTA	884	OD1	ASP	A	282	30.940	24.619	30.412	1.00	42.35
	MOTA	885	OD2	ASP	A	282	29.573	23.150	29.508	1.00	42.45
	ATOM	935	N	GLY	A	289	20.675	16.498	26.466	1.00	37.69
	MOTA	936	CA	GLY	A	289	20.897	15.682	25.286	1.00	41.85
30	ATOM	937	C	GLY	A	289	21.072	16.536	24.044	1.00	44.11
	MOTA	938	0	GLY	A	289	21.842	17.497	24.051	1.00	45.10
	MOTA	1269	N	HIS	A	330	23.291	16.450	47.721	1.00	22.72
	MOTA	1270	CA	HIS	A	330	22.225	16.836	46.803	1.00	22.97
	MOTA	1271	С	HIS	A	330	20.908	16.139	47.150	1.00	23.43
35	MOTA	1272	0	HIS	A	330	19.863	16.790	47.257	1.00	22.10
	ATOM	1273	CB	HIS	A	330	22.638	16.494	45.364	1.00	24.13
	MOTA	1274	CG	HIS	A	330	21.648	16.916	44.321	1.00	25.22
	MOTA	1275	ND1	HIS	A	330	21.357	18.237	44.060	1.00	25.99
	MOTA	1276	CD2	HIS	A	330	20.913	16.190	43.444	1.00	25.76
40	MOTA	1277	CE1	HIS	A	330	20.489	18.307	43.065	1.00	26.73

	MOTA	1278	NE2	HIS A	330	20.203	17.078	42.674	1.00	25.08
	ATOM	1279	N	VAL A	331	20.955	14.823	47.334	1.00	22.22
	ATOM	1280	CA	VAL A	331	19.739	14.072	47.642	1.00	23.00
	ATOM	1281	C	VAL A	331	19.185	14.382	49.024	1.00	22.12
5	ATOM	1282	0	VAL A	331	17.968	14.393	49.218	1.00	21.17
	ATOM	1283	СВ	VAL A	331	19.952	12.544	47.490	1.00	22.74
	ATOM	1284	CG1	VAL A	331	20.363	12.233	46.053	1.00	25.60
	ATOM	1285	CG2	VAL A	331	21.008	12.045	48.466	1.00	25.97
	ATOM	1302	N	MET A	334	17.198	17.654	48.776	1.00	21.27
10	ATOM	1303	CA	MET A	334	15.878	17.513	48.163	1.00	20.93
	ATOM	1304	С	MET A	334	14.928	16.881	49.171	1.00	21.48
	ATOM	1305	0	MET A	334	13.769	17.263	49.256	1.00	21.52
	MOTA	1306	СВ	MET A	334	15.939	16.648	46.896	1.00	21.53
	ATOM	1307	CG	MET A	334	16.631	17.318	45.719	1.00	22.31
15	MOTA	1308	SD	MET A	334	16.442	16.343	44.219	1.00	24.84
	MOTA	1309	CE	MET A	334	17.484	14.909	44.612	1.00	24.19

Example 23

X-ray Structure Coordinates of GR Site II, Table IV

20

25

Below is Table IV, which gives the x-ray structure coordinates for GR Site II discerned from the disclosure in WO 03/015692 A2, February 27, 2003, Apolito, et. al,. The format used is based on that commonly used in the RCSB (Research Collaboratory for Structural Bioinformatics, pdb file format), and the fields listed from left to right are defined as follows: record name, atom serial number, atom name, residue name, chain identifier, residue sequence number, orthogonal coordinate for x in Ångstroms, orthogonal coordinate for y in Ångstroms, orthogonal coordinate for z in Ångstroms, occupancy, and temperature factor.

						Table IV			
30									
	ATOM	1	N	GLU	537	49.171	2.415	43.840	1.00 59.21
	ATOM	2	CA	GLU	537	48.231	3.343	43.210	1.00 59.76
	ATOM	3	С	GLU	537	47.139	2.698	42.370	1.00 61.66
	ATOM	4	0	GLU	537	45.973	3.101	42.430	1.00 60.28
35	ATOM	5	CB	GLU	537	48.984	4.292	42.300	1.00 59.81
	ATOM	6	CG	GLU	537	48.816	5.744	42.620	1.00 60.10
	ATOM	7	CD	GLU	537	48.907	6.616	41.380	1.00 64.34

	ATOM	8	OE1	GLU	537	47.868	6.813	40.700	1.00 57.41
	ATOM	9	OE2	GLU	537	50.024	7.091	41.080	1.00 62.84
	ATOM	10	N	VAL	538	47.536	1.717	41.560	1.00 60.48
	ATOM	11	CA	VAL	538	46.606	1.045	40.670	1.00 63.41
5	ATOM	12	С	VAL	538	45.768	-0.046	41.310	1.00 57.99
	ATOM	13	0	VAL	538	44.828	-0.530	40.680	1.00 58.71
	ATOM	14	CB	VAL	538	47.325	0.448	39.440	1.00 64.15
	ATOM	15	CG2	VAL	538	47.973	-0.883	39.790	1.00 63.88
	ATOM	1.6	CG	VAL	538	48.334	1.444	38.900	1.00 60.29
10	ATOM	17	N	ILK	539	46.094	-0.454	42.530	1.00 61.14
	ATOM	18	CA	ILK	539	45.282	-1.484	43.180	1.00 60.23
	MOTA	19	C	ILK	539	44.259	-0.811	44.090	1.00 61.40
	MOTA	20	0	ILK	539	43.321	-1.447	44.570	1.00 63.49
	ATOM	21	CB	ILK	539	46.141	-2.499	44.010	1.00 65.32
15	MOTA	22	CG2	ILK	539	47.243	-3.066	43.140	1.00 61.32
	MOTA	23	CG	ILK	539	46.775	-1.833	45.220	1.00 63.80
	MOTA	24	CD1	ILK	539	47.356	-2.833	46.200	1.00 60.85
	MOTA	25	N	GLU	540	44.451	0.489	44.310	1.00 61.12
	MOTA	26	CA	GLU	540	43.584	1.307	45.153	1.00 60.76
20	ATOM	27	C	GLU	540	42.169	1.264	44.585	1.00 61.78
	ATOM	28	0	GLU	540	41.928	1.709	43.459	1.00 61.36
	ATOM	29	CB	GLU	540	44.109	2.753	45.173	1.00 58.26
	MOTA	30	CG	GLU	540	43.466	3.684	46.191	1.00 61.15
	MOTA	31	CD	GLU	540	43.598	3.183	47.619	1.00 61.95
25	MOTA	32	OE1	GLU	540	44.656	2.591	47.950	1.00 59.71
	MOTA	33	OE2	GLU	540	42.649	3.397	48.410	1.00 62.96
	MOTA	34	N	PRO	541	41.214	0.713	45.352	1.00 63.77
	MOTA	35	CA	PRO	541	39.830	0.632	44.876	1.00 60.14
	ATOM	36	С	PRO	541	39.180	1.991	44.592	1.00 62.36
30	ATOM	37	0	PRO	541	39.455	2.982	45.283	1.00 59.45
	MOTA	38	CB	PRO	541	39.131	-0.149	45.988	1.00 59.62
	MOTA	39	CG	PRO	541	39.978	0.122	47.195	1.00 60.56
	MOTA	40	CD	PRO	541	41.365	0.053	46.659	1.00 58.98
	MOTA	41	N	GLU	542	38.332	2.039	43.563	1.00 60.43
35	ATOM	42	CA	GLU	542	37.653	3.279	43.198	1.00 62.04
	ATOM	43	С	GLU	542	36.548	3.515	44.208	1.00 63.11
	MOTA	44	0	GLU	542	35.941	2.564	44.697	1.00 59.70
	MOTA	45	CB	GLU	542	37.091	3.201	41.770	1.00 62.84
	MOTA	46	CG	GLU	542	36.130	2.050	41.511	1.00 63.24
40	MOTA	47	CD	GLU	542	35.745	1.911	40.031	1.00 63.39

	ATOM	48	OE2	GLU	542	34.568	1.599	39.743	1.00	59.31
	MOTA	49	OE	GLU	542	36.622	2.095	39.153	1.00	60.50
	ATOM	50	N	VAL	543	36.304	4.783	44.528	1.00	61.53
	ATOM	51	CA	VAL	543	35.299	5.148	45.518	1.00	63.47
5	ATOM	52	C	VAL	543	33.886	4.748	45.126	1.00	61.39
	ATOM	53	0	VAL	543	33.495	4.877	43.965	1.00	60.79
	ATOM	54	СВ	VAL	543	35.334	6.661	45.801	1.00	62.60
	ATOM	55	CG1	VAL	543	34.467	6.984	46.987	1.00	60.93
	ATOM	56	CG2	VAL	543	36.762	7.103	46.064	1.00	59.59
10	TER	57		VAL	543					
	ATOM	58	N	LEU	566	27.382	0.590	53.462	1.00	62.25
	ATOM	59	CA	LEU	566	28.495	1.064	52.656	1.00	60.20
	MOTA	60	С	LEU	566	29.756	0.424	53.218	1.00	62.85
	MOTA	61	0	LEU	566	30.576	-0.116	52.474	1.00	60.20
15	MOTA	62	CB	LEU	566	28.596	2.594	52.741	1.00	59.50
	MOTA	63	CG	LEU	566	29.801	3.267	52.076	1.00	64.18
	ATOM	64	CD1	LEÜ	566	29.685	3.195	50.565	1.00	61.46
	MOTA	65	CD2	LEU	566	29.869	4.700	52.516	1.00	62.10
	ATOM	66	N	GLY	567	29.886	0.477	54.542	1.00	59.45
20	MOTA	67	CA	GLY	567	31.040	-0.095	55.207	1.00	59.94
	MOTA	68	С	GLY	567	31.316	-1.516	54.768	1.00	60.71
	MOTA	69	0	GLY	567	32.461	-1.890	54.520	1.00	59.79
	TER	70		GLY	567					
	MOTA	71	N	GLN	570	32.788	-1.713	51.295	1.00	60.73
25	MOTA	72	CA	GLN	570	34.123	-1.132	51.300	1.00	62.31
	MOTA	73	C	GLN	570	35.144	-2.093	51.882	1.00	61.15
	MOTA	74	0	GLN	570	36.293	-2.134	51.441	1.00	60.50
	MOTA	75	CB	GLN	570	34.143	0.150	52.120	1.00	59.04
	ATOM	76	CG	GLN	570	33.608	1.361	51.417	1.00	62.03
30	MOTA	77	CD	GLN	570	33.782	2.606	52.247	1.00	56.35
	MOTA	78	OE1	GLN	570	33.460	3.698	51.801	1.00	62.86
	MOTA	79	NE2	GLN	570	34.295	2.449	53.467	1.00	63.17
	MOTA	80	N	VAL	571	34.732	-2.837	52.903	1.00	60.99
	ATOM	81	CA	VAL	571	35.615	-3.792	53.554	1.00	61.91
35	MOTA	82	С	VAL	571	35.805	-5.007	52.665	1.00	62.66
	MOTA	83	0	VAL	571	36.698	-5.820	52.885	1.00	58.99
	ATOM	84	CB	VAL	571	35.054	-4.200	54.930	1.00	58.42
	MOTA	85	CG1	VAL	571	35.822	-5.393	55.485	1.00	61.27
	MOTA	86	CG2	VAL	571	35.160	-3.007	55.891	1.00	60.58
40	MOTA	87	N	ILK	572	34.958	-5.116	51.652	1.00	63.61

	MOTA	88	CA	ILK	572	35.042	-6.206	50.695	1.00 63.76
	MOTA	89	C	ILK	572	35.999	-5.772	49.589	1.00 60.35
	ATOM	90	0	ILK	572	36.733	-6.587	49.042	1.00 62.13
	MOTA	91	CB	ILK	572	33.649	-6.539	50.103	1.00 60.98
5	ATOM	92	CG2	ILK	572	33.794	-7.443	48.883	1.00 63.63
	MOTA	93	CG1	ILK	572	32.782	-7.192	51.183	1.00 61.03
	ATOM	94	CD1	ILK	572	31.346	-7.366	50.801	1.00 62.17
	ATOM	95	N	ALA	573	35.984	-4.481	49.265	1.00 62.76
	ATOM	96	CA	ALA	573	36.879	-3.936	48.251	1.00 58.47
10	ATOM	97	C	ALA	573	38.271	-3.997	48.872	1.00 61.14
	ATOM	98	0	ALA	573	39.294	-4.088	48.180	1.00 60.46
	MOTA	99	CB	ALA	573	36.502	-2.496	47.940	1.00 61.48
	MOTA	100	N	ALA	574	38.273	-3.964	50.200	1.00 60.84
	MOTA	101	CA	ALA	574	39.477	-4.008	51.003	1.00 61.42
15	ATOM	102	С	ALA	574	40.294	-5.282	50.771	1.00 58.96
	ATOM	103	0	ALA	574	41.506	-5.217	50.518	1.00 61.38
	ATOM	104	CB	ALA	574	39.098	-3.888	52.465	1.00 60.18
	ATOM	105	N	VAL	575	39.631	-6.435	50.861	1.00 59.99
	MOTA	106	CA	VAL	575	40.296	-7.720	50.664	1.00 59.60
20	MOTA	107	C	VAL	575	41.009	-7.779	49.318	1.00 60.96
	MOTA	108	0	VAL	575	42.222	-7.981	49.264	1.00 62.47
	ATOM	109	CB	VAL	575	39.309	-8.898	50.732	1.00 56.06
	ATOM	110	CG2	VAL	575	38.547	-8.880	52.057	1.00 63.34
	MOTA	111	CG	VAL	575	40.070	-10.197	50.570	1.00 62.55
25	MOTA	112	N	LYS	576	40.265	-7.584	48.236	1.00 59.97
	MOTA	113	CA	LYS	576	40.851	-7.628	46.901	1.00 62.25
	ATOM	114	C	LYS	576	41.957	-6.593	46.742	1.00 63.69
	MOTA	115	0	LYS	576	42.673	-6.573	45.742	1.00 59.32
	ATOM	116	CB	LYS	576	39.770	-7.391	45.860	1.00 60.99
30	MOTA	117	CG	LYS	576	40.115	-7.866	44.462	1.00 61.35
	ATOM	118	CD	LYS	576	38.905	-7.708	43.568	1.00 63.13
	ATOM	119	CE	LYS	576	37.667	-8.234	44.276	1.00 62.07
	MOTA	120	NZ	LYS	576	36.420	-7.912	43.531	1.00 59.76
	MOTA	121	N	TRP	577	42.074	-5.723	47.734	1.00 62.59
35	ATOM	122	CA	TRP	577	43.091	-4.694	47.734	1.00 62.15
	ATOM	123	С	TRP	577	44.263	-5.272	48.509	1.00 64.09
	MOTA	124	0	TRP	577	45.403	-5.238	48.055	1.00 61.89
	MOTA	125	СВ	TRP	577	42.556	-3.432	48.424	1.00 60.50
	MOTA	126	CG	TRP	577	43.620	-2.458	48.780	1.00 63.03
40	ATOM	127	CD1	TRP	577	44.346	-1.698	47.924	1.00 62.09

	ATOM	128	CD2	TRP	577	44.140	-2.200	50.090	1.00	58.79
	ATOM	129	NE1	TRP	577	45.293	-0.983	48.611	1.00	61.93
	ATOM	130	CE2	TRP	577	45.189	-1.272	49.945	1.00	64.04
	ATOM	131	CE3	TRP	577	43.824	-2.668	51.372	1.00	60.56
5	MOTA	132	CZ2	TRP	577	45.930	-0.798	51.032	1.00	61.40
	ATOM	133	CZ3	TRP	577	44.566	-2.197	52.458	1.00	59.59
	ATOM	134	CH2	TRP	577	45.607	-1.271	52.277	1.00	61.92
	TER	135		TRP	577					
	ATOM	136	N	SER	599	42.278	-4.312	61.305	1.00	58.28
10	ATOM	137	CA	SER	599	42.491	-2.988	60.774	1.00	62.69
	ATOM	138	С	SER	599	41.365	-2.525	59.867	1.00	64.40
	ATOM	139	0	SER	599	41.398	-1.405	59.367	1.00	62.40
	ATOM	140	CB	SER	599	43.837	-2.949	60.046	1.00	62.55
	ATOM	141	OG	SER	599	44.008	-4.083	59.216	1.00	62.72
15	ATOM	142	N	TRP	600	40.358	-3.375	59.677	1.00	59.48
	ATOM	143	CA	TRP	600	39.245	-3.026	58.807	1.00	62.88
	ATOM	144	C	TRP	600	38.789	-1.630	59.169	1.00	62.61
	ATOM	145	0	TRP	600	38.533	-0.805	58.308	1.00	62.45
	ATOM	146	СВ	TRP	600	38.073	-4.031	58.932	1.00	64.17
20	ATOM	147	CG	TRP	600	37.282	-3.951	60.198	1.00	62.02
	ATOM	148	CD1	TRP	600	37.583	-4.533	61.395	1.00	58.92
	ATOM	149	CD2	TRP	600	36.105	-3.166	60.420	1.00	58.67
	MOTA	150	NE1	TRP	600	36.672	-4.151	62.355	1.00	64.28
	ATOM	151	CE2	TRP	600	35.754	-3.311	61.781	1.00	61.68
25	ATOM	152	CE3	TRP	600	35.314	-2.350	59.603	1.00	62.68
	MOTA	153	CZ2	TRP	600	34.648	-2.666	62.342	1.00	61.17
	ATOM	154	CZ3	TRP	600	34.217	-1.711	60.159	1.00	58.94
	ATOM	155	CH2	TRP	600	33.894	-1.871	61.516	1.00	61.08
	ATOM	156	N	MET	601	38.744	-1.344	60.458	1.00	63.90
30	ATOM	157	CA	MET	601	38.298	-0.049	60.884	1.00	60.96
	ATOM	158	С	MET	601	39.225	1.129	60.577	1.00	61.08
	ATOM	159	0	MET	601	38.758	2.167	60.114	1.00	60.27
	ATOM	160	CB	MET	601	37.968	-0.064	62.351	1.00	60.46
	ATOM	161	CG	MET	601	37.139	1.112	62.702		61.28
35	MOTA	162	SD	MET	601	35.774	1.420	61.631	1.00	59.33
	ATOM	163	CE	MET	601	34.684	1.638	62.889	1.00	64.63
	ATOM	164	N	SER	602	40.521	0.979	60.854		61.23
	ATOM	165	CA	SER	602	41.488	2.035	60.581		59.98
	MOTA	166	С	SER	602	41.536	2.214	59.079	1.00	60.99
40	ATOM	167	0	SER	602	41.609	3.327	58.581	1.00	64.11

	ATOM	168	CB	SER	602	42.872	1.647	61.083	1.00	60.99
	ATOM	169	OG	SER	602	42.783	1.022	62.350	1.00	66.17
	MOTA	170	N	LEU	603	41.494	1.108	58.351	1.00	59.44
	ATOM	171	CA	LEU	603	41.522	1.185	56.901	1.00	61.46
5	ATOM	172	C	LEU	603	40.386	2.061	56.408	1.00	60.47
	ATOM	173	0	LEU	603	40.599	3.062	55.731	1.00	63.39
	ATOM	174	СВ	LEU	603	41.402	-0.212	56.280	1.00	59.31
	MOTA	175	CG	LEU	603	42.646	-1.097	56.346	1.00	61.54
	MOTA	176	CD1	LEU	603	42.415	-2.362	55.549	1.00	63.99
10	MOTA	177	CD2	LEU	603	43.828	-0.346	55.787	1.00	63.36
	MOTA	178	N	MET	604	39.173	1.688	56.784	1.00	63.54
	MOTA	179	CA	MET	604	38.000	2.417	56.365	1.00	62.81
	MOTA	180	С	MET	604	37.898	3.832	56.856	1.00	60.43
	MOTA	181	0	MET	604	37.397	4.695	56.132	1.00	62.37
15	MOTA	182	CB	MET	604	36.770	1.623	56.723	1.00	58.90
	MOTA	183	CG	MET	604	36.632	0.429	55.842	1.00	59.86
	MOTA	184	SD	MET	604	37.633	0.438	54.374	1.00	62.53
	MOTA	185	CE	MET	604	36.663	-0.510	53.559	1.00	60.72
	ATOM	186	N	ALA	605	38.375	4.076	58.072	1.00	59.95
20	MOTA	187	CA	ALA	605	38.357	5.409	58.664	1.00	60.49
	MOTA	188	C	ALA	605	39.381	6.309	57.985	1.00	61.50
	MOTA	189	0	ALA	605	39.071	7.427	57.583	1.00	59.82
	MOTA	190	CB	ALA	605	38.667	5.317	60.132	1.00	59.15
	MOTA	191	N	PHE	606	40.608	5.810	57.870	1.00	63.59
25	MOTA	192	CA	PHE	606	41.700	6.554	57.258	1.00	60.15
	MOTA	193	С	PHE	606	41.362	6.933	55.825	1.00	61.96
	MOTA	194	0	PHE	606	41.751	7.991	55.356	1.00	60.07
	ATOM	195	CB	PHE	606	42.981	5.713	57.285	1.00	63.75
	MOTA	196	CG	PHE	606	44.237	6.490	56.999	1.00	64.30
30	ATOM	197	CD1	PHE	606	44.723	7.424	57.913	1.00	61.77
	ATOM	198	CD2	PHE	606	44.957	6.265	55.829	1.00	60.74
	ATOM	199	CE1	PHE	606	45.910	8.118	57.665	1.00	64.00
	ATOM	200	CE2	PHE	606	46.145	6.955	55.575	1.00	62.47
	MOTA	201	CZ	PHE	606	46.620	7.879	56.496	1.00	63.95
35	MOTA	202	N	ALA	607	40.644	6.063	55.126	1.00	62.00
	MOTA	203	CA	ALA	607	40.264	6.338	53.745	1.00	57.50
	MOTA	204	С	ALA	607	39.105	7.324	53.684		64.88
	ATOM	205	0	ALA	607	38.931	8.030	52.703		59.60
	MOTA	206	CB	ALA	607	39.888	5.051	53.039	1.00	59.69
40	TER	207		ALA	607					

	MOTA	208	N	TRP	610	40.835	10.650	54.039	1.00	62.47
	MOTA	209	CA	TRP	610	41.488	11.102	52.823	1.00	61.40
	ATOM	210	С	TRP	610	40.517	11.797	51.874	1.00	60.80
	MOTA	211	0	TRP	610	40.797	12.866	51.358	1.00	60.72
5	ATOM	212	СВ	TRP	610	42.141	9.917	52.123	1.00	62.68
	ATOM	213	CG	TRP	610	42.744	10.264	50.817	1.00	62.61
	ATOM	214	CD1	TRP	610	42.254	9.965	49.582	1.00	58.08
	ATOM	215	CD2	TRP	610	43.955	10.991	50.604	1.00	61.10
	MOTA	216	NE1	TRP	610	43.086	10.459	48.608	1.00	62.17
10	ATOM	217	CE2	TRP	610	44.139	11.095	49.209	1.00	62.45
	ATOM	218	CE3	TRP	610	44.906	11.565	51.457	1.00	63.78
	ATOM	219	CZ2	TRP	610	45.238	11.751	48.646	1.00	60.53
	ATOM	220	CZ3	TRP	610	46.001	12.219	50.896	1.00	62.27
	MOTA	221	CH2	TRP	610	46.156	12.305	49.505	1.00	60.31
15	MOTA	222	N	ARG	611	39.368	11.191	51.639	1.00	61.36
	MOTA	223	CA	ARG	611	38.412	11.790	50.738	1.00	58.33
	MOTA	224	С	ARG	611	37.898	13.128	51.277	1.00	62.93
	MOTA	225	0	ARG	611	37.610	14.051	50.502	1.00	61.13
	MOTA	226	CB	ARG	611	37.254	10.817	50.486	1.00	62.33
20	ATOM	227	CG	ARG	611	37.684	9.490	49.873	1.00	60.18
	ATOM	228	CD	ARG	611	36.476	8.686	49.426	1.00	59.83
	MOTA	229	NE	ARG	611	35.604	8.333	50.544	1.00	61.17
	MOTA	230	CZ	ARG	611	35.817	7.308	51.366	1.00	59.54
	MOTA	231	NH1	ARG	611	36.875	6.528	51.187		61.47
25	MOTA	232	NH2	ARG	611	34.988	7.072	52.376	1.00	62.25
	TER	233		ARG	611					
	MOTA	234	N	ARG	614	40.511	15.896	50.745		61.73
	MOTA	235	CA	ARG	614	40.623	16.190	49.328		61.64
	MOTA	236	C	ARG	614	39.440	16.960	48.776		58.09
30	MOTA	237	0	ARG	614	39.613	17.922	48.041		63.07
	MOTA	238	CB	ARG	614	40.835	14.880	48.545		62.80
	MOTA	239	CG	ARG	614	42.274	14.328	48.621		58.30
	MOTA	240	CD	ARG	614	42.908	14.348	47.242		60.57
	MOTA	241	NE	ARG	614	44.369	14.448	47.262		61.63
35	MOTA	242	CZ	ARG	614	45.056	15.421	47.868		63.66
	MOTA	243	NH1	ARG	614	44.414	16.386	48.521		61.59
	MOTA	244	NH2	ARG	614	46.389	15.451	47.797		64.70
	MOTA	245	N	GLN	615	38.239	16.538	49.137		64.09
	MOTA	246	CA	GLN	615	37.033	17.192	48.660		61.67
40	ATOM	247	C	GLN	615	36.677	18.478	49.396	1.00	59.82

	ATOM	248	0	GLN	615	36.200	19.441	48.784	1.00	60.64
	MOTA	249	CB	GLN	615	35.840	16.259	48.801	1.00	62.84
	ATOM	250	CG	GLN	615	35.738	15.162	47.795	1.00	62.14
	ATOM	251	CD	GLN	615	34.290	14.775	47.573	1.00	58.76
5	ATOM	252	OE1	GLN	615	33.532	14.598	48.525	1.00	62.70
	ATOM	253	NE2	GLN	615	33.897	14.651	46.314	1.00	61.03
	TER	254		GLN	615					
	MOTA	255	N	PRO	625	30.130	9.828	47.355	1.00	62.43
	ATOM	256	CA	PRO	625	29.795	11.035	46.593	1.00	59.45
10	MOTA	257	С	PRO	625	28.366	11.397	46.928	1.00	62.94
	MOTA	258	0	PRO	625	28.111	12.382	47.622	1.00	59.36
	MOTA	259	СВ	PRO	625	29.949	10.582	45.146	1.00	62.18
	MOTA	260	CG	PRO	625	31.089	9.653	45.245	1.00	59.91
	ATOM	261	CD	PRO	625	30.706	8.811	46.459	1.00	62.52
15	TER	262		PRO	625					
	ATOM	263	N	TYR	663	50.007	8.771	51.436	1.00	61.62
	MOTA	264	CA	TYR	663	48.716	8.186	51.812	1.00	62.54
	ATOM	265	C	TYR	663	48.565	6.680	51.537	1.00	59.94
	ATOM	266	0	TYR	663	48.090	5.918	52.389	1.00	60.92
20	MOTA	267	CB	TYR	663	47.601	8.921	51.068	1.00	63.89
	ATOM	268	CG	TYR	663	46.266	8.230	51.167	1.00	61.84
	ATOM	269	CD1	TYR	663	45.619	8.109	52.392	1.00	59.60
	MOTA	270	CD2	TYR	663	45.659	7.676	50.043	1.00	58.65
	ATOM	271	CE1	TYR	663	44.407	7.458	52.498	1.00	58.52
25	ATOM	272	CE2	TYR	663	44.441	7.019	50.138	1.00	60.83
	MOTA	273	CZ	TYR	663	43.820	6.916	51.368	1.00	62.58
	MOTA	274	OH	TYR	663	42.601	6.287	51.477	1.00	61.21
	MOTA	275	N	LEU	664	48.930	6.274	50.325	1.00	60.84
	MOTA	276	CA	LEU	664	48.846	4.881	49.908	1.00	61.56
30	MOTA	277	С	LEU	664	49.744	4.001	50.777	1.00	60.21
	MOTA	278	0	LEU	664	49.369	2.889	51.161	1.00	61.89
	MOTA	279	CB	LEU	664	49.261	4.757	48.438	1.00	60.37
	ATOM	280	CG	LEU	664	48.363	5.402	47.382	1.00	64.33
	MOTA	281	CD1	LEU	664	49.036	5.350	46.023	1.00	64.49
35	MOTA	282	CD2	LEU	664	47.032	4.687	47.351	1.00	59.02
	TER	283		LEU	664					
	ATOM	284	N	LYS	667	48.446	3.950	54.421	1.00	58.08
	MOTA	285	CA	LYS	667	47.241	3.129	54.482	1.00	61.17
	MOTA	286	С	LYS	667	47.592	1.658	54.468	1.00	63.84
40	MOTA	287	0	LYS	667	46.867	0.838	55.011	1.00	61.95

	ATOM	288	CB	LYS	667	46.318	3.429	53.305	1.00	66.33
	ATOM	289	CG	LYS	667	45.013	2.663	53.338	1.00	59.73
	ATOM	290	CD	LYS	667	43.951	3.382	52.532	1.00	60.07
	ATOM	291	CE	LYS	667	44.313	3.462	51.063	1.00	62.82
5	ATOM	292	NZ	LYS	667	44.134	2.158	50.390	1.00	62.44
	TER	293		LYS	667					

Example 24

X-ray Structure Coordinates of GR Site II, Table V

Below is Table V, which gives the x-ray structure coordinates for GR Site II discerned from the disclosure in Kauppi et. al., in the Journal of Biological Chemistry Online, JBC Papers In Press as doi:10.1074/jbc.M212711200, April 9, 2003, RCSB file: 1nhz.pdb (GR LBD bound to an antagonist, RU 486). The format used is based on that commonly used in the RCSB (Research Collaboratory for Structural Bioinformatics, pdb file format), and the fields listed from left to right are defined as follows: record name, atom serial number, atom name, residue name, chain identifier, residue sequence number, orthogonal coordinate for x in Ångstroms, orthogonal coordinate for y in Ångstroms, orthogonal coordinate for z in Ångstroms, occupancy, and temperature factor.

20

10

15

Table V

	ATOM	1	N	GLU	537	26.949	4.045	83.095	1.00	0.00
25	ATOM	2	CA	GLU	537	25.828	3.147	82.817	1.00	0.00
	ATOM	3	С	GLU	537	24.510	3.903	82.903	1.00	0.00
	ATOM	4	0	GLU	537	23.672	3.737	82.043	1.00	0.00
	ATOM	5	CB	GLU	537	25.781	1.935	83.756	1.00	0.00
	ATOM	6	CG	GLU	537	24.445	1.183	83.643	1.00	0.00
30	ATOM	7	CD	GLU	537	24.470	-0.233	84.168	1.00	0.00
	ATOM	8	OE1	GLU	537	25.374	-0.538	84.996	1.00	0.00
	ATOM	9	OE2	GLU	537	23.565	-1.032	83.762	1.00	0.00
	ATOM	10	N	VAL	538	24.336	4.753	83.907	1.00	0.00
	ATOM	11	CA	VAL	538	23.045	5.402	84.089	1.00	0.00
35	ATOM	12	С	VAL	538	22.743	6.413	82.968	1.00	0.00
	ATOM	13	0	VAL	538	21.598	6.534	82.552	1.00	0.00

	MOTA	14	СВ	VAL	538	22.824	6.035	85.527	1.00	0.00
	MOTA	15	CG1	VAL	538	23.344	5.107	86.654	1.00	0.00
	MOTA	16	CG2	VAL	538	23.413	7.415	85.654	1.00	0.00
	MOTA	17	N	ILE	539	23.742	7.119	82.470	1.00	0.00
5	MOTA	18	CA	ILE	539	23.496	8.120	81.427	1.00	0.00
	ATOM	19	C	ILE	539	23.537	7.549	79.994	1.00	0.00
	MOTA	20	0	ILE	539	23.320	8.285	79.043	1.00	0.00
	ATOM	21	CB	ILE	539	24.471	9.322	81.550	1.00	0.00
	ATOM	22	CG1	ILE	539	25.908	8.862	81.348	1.00	0.00
10	ATOM	23	CG2	ILE	539	24.329	10.017	82.914	1.00	0.00
	ATOM	24	CD1	ILE	539	26.805	9.907	80.746	1.00	0.00
	MOTA	25	N	GLU	540	23.820	6.263	79.846	1.00	0.00
	MOTA	26	CA	GLU	540	23.875	5.614	78.522	1.00	0.00
	MOTA	27	С	GLU	540	22.497	5.764	77.805	1.00	0.00
15	MOTA	28	0	GLU	540	21.463	5.478	78.377	1.00	0.00
	MOTA	29	CB	GLU	540	24.313	4.129	78.698	1.00	0.00
	ATOM	30	CG	GLU	540	24.605	3.310	77.424	1.00	0.00
	MOTA	31	CD	GLU	540	25.530	3.964	76.393	1.00	0.00
	MOTA	32	OE1	GLU	540	25.387	3.568	75.196	1.00	0.00
20	MOTA	33	OE2	GLU	540	26.383	4.837	76.748	1.00	0.00
	ATOM	34	N	PRO	541	22.480	6.288	76.578	1.00	0.00
	ATOM	35	CA	PRO	541	21.219	6.557	75.887	1.00	0.00
	ATOM	36	C	PRO	541	20.356	5.307	75.680	1.00	0.00
	ATOM	37	0	PRO	541	20.873	4.266	75.401	1.00	0.00
25	ATOM	38	CB	PRO	541	21.683	7.067	74.527	1.00	0.00
	ATOM	39	CG	PRO	541	23.067	7.581	74.749	1.00	0.00
	ATOM	40	CD	PRO	541	23.639	6.678	75.759	1.00	0.00
	ATOM	41	N	GLU	542	19.049	5.419	75.801	1.00	0.00
	MOTA	42	CA	GLU	542	18.163	4.373	75.290	1.00	0.00
30	ATOM	43	C	GLU	542	18.327	4.201	73.782	1.00	0.00
	ATOM	44	0	GLU	542	18.747	5.141	73.056	1.00	0.00
	MOTA	45	CB	GLU	542	16.706	4.701	75.586	1.00	0.00
	ATOM	46	CG	GLU	542	16.392	4.783	77.062	1.00	0.00
	ATOM	47	CD	GLU	542	14.923	5.041	77.333	1.00	0.00
35	ATOM	48	OE1	GLU	542	14.131	5.127	76.358	1.00	0.00
	ATOM	49	OE2	GLU	542	14.565	5.168	78.522	1.00	0.00
	ATOM	50	N	VAL	543	18.014	2.994	73.322	1.00	0.00
	ATOM	51	CA	VAL	543	18.041	2.659	71.904	1.00	0.00
	ATOM	52	С	VAL	543	16.769	3.187	71.221	1.00	0.00
40	MOTA	53	0	VAL	543	15.652	2.913	71.645	1.00	0.00

	MOTA	54	СВ	VAL	543	18.231	1.127	71.699	1.00	0.00
	ATOM	55	CG1	VAL	543	17.014	0.387	72.184	1.00	0.00
	MOTA	56	CG2	VAL	543	18.414	0.803	70.241	1.00	0.00
	TER	57		VAL	543					
5	MOTA	58	N	LEU	566	17.090	9.013	61.502	1.00	0.00
	MOTA	59	CA	LEU	566	17.579	8.376	62.706	1.00	0.00
	MOTA	60	С	LEU	566	18.952	8.946	63.111	1.00	0.00
	ATOM	61	0	LEU	566	19.208	9.149	64.289	1.00	0.00
	MOTA	62	CB	LEU	566	17.630	6.849	62.519	1.00	0.00
10	ATOM	63	CG	LEU	566	18.276	6.057	63.667	1.00	0.00
	ATOM	64	CD1	LEU	566	17.436	6.181	64.939	1.00	0.00
	MOTA	65	CD2	LEU	566	18.455	4.644	63.275	1.00	0.00
	MOTA	66	N	GLY	567	19.844	9.183	62.155	1.00	0.00
	MOTA	67	CA	GLY	567	21.173	9.724	62.456	1.00	0.00
15	MOTA	68	С	GLY	567	21.184	11.113	63.098	1.00	0.00
	MOTA	69	0	GLY	567	21.956	11.389	64.033	1.00	0.00
	TER	70		GLY	567					
	MOTA	71	N	GLN	570	20.184	10.552	66.664	1.00	0.00
	MOTA	72	CA	GLN	570	21.237	9.937	67.467	1.00	0.00
20	MOTA	73	С	GLN	570	22.303	10.951	67.864	1.00	0.00
	ATOM	74	0	GLN	570	22.800	10.900	68.978	1.00	0.00
	MOTA	75	CB	GLN	570	21.888	8.769	66.721	1.00	0.00
	ATOM	76	CG	GLN	570	21.014	7.523	66.606	1.00	0.00
	MOTA	77	CD	GLN	570	21.775	6.239	66.219	1.00	0.00
25	MOTA	78	OE1	GLN	570	21.183	5.150	66.188	1.00	0.00
	MOTA	79	NE2	GLN	570	23.046	6.353	65.935	1.00	0.00
	MOTA	80	N	VAL	571	22.632	11.873	66.948	1.00	0.00
	MOTA	81	CA	VAL	571	23.474	13.031	67.233	1.00	0.00
	MÒTA	82	C	VAL	571	22.909	13.850	68.390	1.00	0.00
30	ATOM	83	0	VAL	571	23.632	14.163	69.310	1.00	0.00
	MOTA	84	СВ	VAL	571	23.685	13.922	65.994	1.00	0.00
	MOTA	85	CG1	VAL	571	24.439	15.225	66.326	1.00	0.00
	MOTA	86	CG2	VAL	571	24.492	13.214	64.979	1.00	0.00
	MOTA	87	N	ILE	572	21.622	14.175	68.366	1.00	0.00
35	MOTA	88	CA	ILE	572	21.011	14.888	69.472	1.00	0.00
	MOTA	89	С	ILE	572	21.175	14.114	70.772	1.00	0.00
	MOTA	90	0	ILE	572	21.438	14.708	71.803	1.00	0.00
	MOTA	91	CB	ILE	572	19.511	15.163	69.238	1.00	0.00
	MOTA	92	CG1	ILE	572	19.267	16.067	68.031	1.00	0.00
40	MOTA	93	CG2	ILE	572	18.825	15.804	70.530	1.00	0.00

	ATOM	94	CD1	ILE	572	20.291	17.128	67.843	1.00	0.00
	ATOM	95	N	ALA	573	21.006	12.800	70.727	1.00	0.00
	ATOM	96	CA	ALA	573	21.188	11.972	71.920	1.00	0.00
	ATOM	97	С	ALA	573	22.683	11.844	72.355	1.00	0.00
5	ATOM	98	0	ALA	573	22.946	11.714	73.538	1.00	0.00
	ATOM	99	СВ	ALA	573	20.555	10.598	71.713	1.00	0.00
	ATOM	100	N	ALA	574	23.629	11.873	71.416	1.00	0.00
	ATOM	101	CA	ALA	574	25.057	11.920	71.732	1.00	0.00
	ATOM	102	C	ALA	574	25.470	13.202	72.483	1.00	0.00
10	ATOM	103	0	ALA	574	26.280	13.158	73.394	1.00	0.00
	ATOM	104	СВ	ALA	574	25.887	11.795	70.468	1.00	0.00
	ATOM	105	N	VAL	575	24.897	14.339	72.085	1.00	0.00
	ATOM	106	CA	VAL	575	25.196	15.612	72.722	1.00	0.00
	MOTA	107	С	VAL	575	24.679	15.597	74.137	1.00	0.00
15	MOTA	108	0	VAL	575	25.403	15.925	75.107	1.00	0.00
	MOTA	109	CB	VAL	575	24.568	16.781	71.924	1.00	0.00
	ATOM	110	CG1	VAL	575	24.768	18.084	72.645	1.00	0.00
	ATOM	111	CG2	VAL	575	25.179	16.813	70.517	1.00	0.00
	ATOM	112	N	LYS	576	23.443	15.142	74.281	1.00	0.00
20	MOTA	113	CA	LYS	576	22.833	15.038	75.596	1.00	0.00
	ATOM	114	C	LYS	576	23.602	14.088	76.541	1.00	0.00
	MOTA	115	0	LYS	576	23.770	14.370	77.733	1.00	0.00
	MOTA	116	CB	LYS	576	21.339	14.722	75.422	1.00	0.00
	MOTA	117	CG	LYS	576	20.637	13.971	76.547	1.00	0.00
25	MOTA	118	CD	LYS	576	20.466	14.768	77.796	1.00	0.00
	MOTA	119	CE	LYS	576	19.157	14.388	78.557	1.00	0.00
	MOTA	120	NZ	LYS	576	18.232	13.432	77.808	1.00	0.00
	ATOM	121	N	TRP	577	24.091	12.987	76.012	1.00	0.00
	MOTA	122	CA	TRP	577	24.939	12.051	76.760	1.00	0.00
30	MOTA	123	С	TRP	577	26.259	12.737	77.181	1.00	0.00
	ATOM	124	0	TRP	577	26.604	12.777	78.340	1.00	0.00
	MOTA	125	СВ	TRP	577	25.224	10.833	75.872	1.00	0.00
	ATOM	126	CG	TRP	577	26.324	9.975	76.319	1.00	0.00
	MOTA	127	CD1	TRP	577	26.276	9.030	77.295	1.00	0.00
35	MOTA	128	CD2	TRP	577	27.639	9.915	75.762	1.00	0.00
	MOTA	129	NE1	TRP	577	27.494	8.424	77.423	1.00	0.00
	MOTA	130		TRP	577	28.351	8.943	76.481	1.00	0.00
	MOTA	131	CE3		577	28.297	10.604	74.730	1.00	0.00
	MOTA	132	CZ2		577	29.683	8.650	76.217	1.00	0.00
40	MOTA	133	CZ3	TRP	577	29.600	10.333	74.488	1.00	0.00

	MOTA	134	CH2	2 TRP	577	30.285	9.354	75.207	1.00	0.00
	TER	135		TRP	577					
	MOTA	136	N	SER	599	33.944	13.837	67.076	1.00	0.00
	MOTA	137	CA	SER	599	33.791	12.478	67.530	1.00	0.00
5	ATOM	138	С	SER	599	32.416	11.902	67.351	1.00	0.00
	MOTA	139	0	SER	599	32.274	10.694	67.529	1.00	0.00
	ATOM	140	CB	SER	599	34.200	12.381	69.007	1.00	0.00
	MOTA	141	OG	SER	599	33.158	12.943	69.797	1.00	0.00
	MOTA	142	N	TRP	600	31.417	12.686	66.954	1.00	0.00
10	MOTA	143	CA	TRP	600	30.053	12.122	66.862	1.00	0.00
	ATOM	144	С	TRP	600	29.906	10.885	65.951	1.00	0.00
	ATOM	145	0	TRP	600	29.176	9.955	66.262	1.00	0.00
	ATOM	146	CB	TRP	600	28.985	13.176	66.533	1.00	0.00
	ATOM	147	CG	TRP	600	29.029	13.741	65.176	1.00	0.00
15	MOTA	148	CD1	TRP	600	29.530	14.957	64.832	1.00	0.00
	MOTA	149	CD2	TRP	600	28.521	13.159	63.961	1.00	0.00
	MOTA	150	NE1	TRP	600	29.378	15.168	63.488	1.00	0.00
	MOTA	151	CE2	TRP	600	28.761	14.084	62.923	1.00	0.00
	MOTA	152	CE3	TRP	600	27.875	11.962	63.644	1.00	0.00
20	ATOM	153	CZ2	TRP	600	28.389	13.842	61.584	1.00	0.00
	MOTA	154	CZ3	TRP	600	27.507	11.713	62.310	1.00	0.00
	MOTA	155	CH2	TRP	600	27.748	12.648	61.307	1.00	0.00
	ATOM	156	N	MET	601	30.634	10.843	64.848	1.00	0.00
	MOTA	157	CA	MET	601	30.494	9.691	63.964	1.00	0.00
25	ATOM	158	C	MET	601	31.122	8.461	64.655	1.00	0.00
	MOTA	159	0	MET	601	30.582	7.387	64.607	1.00	0.00
	MOTA	160	CB	MET	601	31.142	9.953	62.620	1.00	0.00
	MOTA	161	CG	MET	601	31.047	8.813	61.588	1.00	0.00
	MOTA	162	SD	MET	601	29.324	8.553	60.991	1.00	0.00
30	MOTA	163	CE	MET	601	29.347	9.653	59.543	1.00	0.00
	MOTA	164	N	SER	602	32.284	8.637	65.271	1.00	0.00
	MOTA	165	CA	SER	602	32.954	7.575	65.985	1.00	0.00
	MOTA	166	С	SER	602	32.055	6.975	67.064	1.00	0.00
	MOTA	167	0	SER	602	31.966	5.774	67.198	1.00	0.00
35	MOTA	168	СВ	SER	602	34.224	8.119	66.622	1.00	0.00
	ATOM	169	OG	SER	602	35.066	7.041	66.994	1.00	0.00
	MOTA	170	N	LEU	603	31.383	7.822	67.825	1.00	0.00
	ATOM	171	CA	LEU	603	30.530	7.383	68.933	1.00	0.00
	MOTA	172	С	LEU	603	29.331	6.614	68.450	1.00	0.00
40	MOTA	173	0	LEU	603	28.976	5.602	69.021	1.00	0.00

	ATOM	174	СВ	LEU	603	30.008	8.560	69.746	1.00	0.00
	ATOM	175	CG	LEU	603	31.053	9.411	70.448	1.00	0.00
	ATOM	176		LEU	603	30.409	10.692	70.907	1.00	0.00
	ATOM	177		LEU	603	31.573	8.704	71.615	1.00	0.00
5	ATOM	178	N	MET	604	28.716	7.098	67.385	1.00	0.00
	ATOM	179	CA	MET	604	27.565	6.405	66.803	1.00	0.00
	ATOM	180	С	MET	604	27.914	5.076	66.137	1.00	0.00
	ATOM	181	0	MET	604	27.150	4.114	66.248	1.00	0.00
	ATOM	182	СВ	MET	604	26.834	7.333	65.826	1.00	0.00
10	ATOM	183	CG	MET	604	26.029	8.373	66.615	1.00	0.00
	ATOM	184	SD	MET	604	25.459	9.825	65.626	1.00	0.00
	ATOM	185	CE	MET	604	24.810	8.937	64.246	1.00	0.00
	ATOM	186	N	ALA	605	29.062	5.018	65.465	1.00	0.00
	ATOM	187	CA	ALA	605	29.507	3.760	64.823	1.00	0.00
15	MOTA	188	C	ALA	605	29.891	2.728	65.897	1.00	0.00
	ATOM	189	0	ALA	605	29.656	1.535	65.720	1.00	0.00
	ATOM	190	CB	ALA	605	30.712	4.035	63.882	1.00	0.00
	ATOM	191	N	PHE	606	30.454	3.204	67.028	1.00	0.00
	ATOM	192	CA	PHE	606	30.868	2.345	68.135	1.00	0.00
20	ATOM	193	C	PHE	606	29.663	1.746	68.854	1.00	0.00
	MOTA	194	0	PHE	606	29.642	0.569	69.130	1.00	0.00
	MOTA	195	CB	PHE	606	31.741	3.102	69.128	1.00	0.00
	MOTA	196	CG	PHE	606	32.577	2.209	69.997	1.00	0.00
	MOTA	197	CD1	PHE	606	33.528	1.379	69.442	1.00	0.00
25	ATOM	198	CD2	PHE	606	32.423	2.207	71.378	1.00	0.00
	MOTA	199	CE1	PHE	606	34.303	0.556	70.248	1.00	0.00
	MOTA	200	CE2	PHE	606	33.195	1.399	72.194	1.00	0.00
	MOTA	201	CZ	PHE	606	34.132	0.569	71.648	1.00	0.00
_	MOTA	202	N	ALA	607	28.655	2.552	69.116	1.00	0.00
30	ATOM	203	CA	ALA	607	27.432	2.068	69.751	1.00	0.00
	ATOM	204	С	ALA	607	26.656	1.180	68.791	1.00	0.00
	MOTA	205	0	ALA	607	26.075	0.162	69.213	1.00	0.00
	ATOM	206	CB	ALA	607	26.606	3.233	70.199	1.00	0.00
	TER	207		ALA	607					
35	ATOM	208	N	TRP	610	28.346	-2.104	69.065	1.00	0.00
	ATOM	209	CA	TRP	610	27.953	-2.735	70.319	1.00	0.00
	ATOM	210	C	TRP	610	26.577	-3.372	70.237	1.00	0.00
	MOTA	211	0	TRP	610	26.421	-4.534	70.610	1.00	0.00
40	MOTA	212	CB	TRP	610	28.040	-1.731	71.469	1.00	0.00
40	MOTA	213	CG	TRP	610	27.584	-2.314	72.758	1.00	0.00

ATOM	214	CD1	TRP	610	26.347	-2.161	73.356	1.00	0.00
ATOM	215	CD2	TRP	610	28.334	-3.183	73.609	1.00	0.00
ATOM	216	NE1	TRP	610	26.310	-2.864	74.532	1.00	0.00
ATOM	217	CE2	TRP	610	27.507	-3.517	74.704	1.00	0.00
ATOM	218	CE3	TRP	610	29.630	-3.712	73.564	1.00	0.00
MOTA	219	CZ2	TRP	610	27.935	-4.341	75.732	1.00	0.00
ATOM	220	CZ3	TRP	610	30.040	-4.541	74.584	1.00	0.00
ATOM	221	CH2	TRP	610	29.202	-4.842	75.652	1.00	0.00
MOTA	222	N	ARG	611	25.611	-2.643	69.698	1.00	0.00
ATOM	223	CA	ARG	611	24.296	-3.167	69.471	1.00	0.00
MOTA	224	C	ARG	611	24.337	-4.398	68.582	1.00	0.00
MOTA	225	0	ARG	611	23.635	-5.363	68.865	1.00	0.00
MOTA	226	CB	ARG	611	23.350	-2.102	68.853	1.00	0.00
MOTA	227	CG	ARG	611	22.907	-1.050	69.843	1.00	0.00
MOTA	228	CD	ARG	611	21.755	-0.166	69.401	1.00	0.00
MOTA	229	NE	ARG	611	21.899	0.318	68.043	1.00	0.00
ATOM	230	CZ	ARG	611	22.496	1.444	67.662	1.00	0.00
MOTA	231	NH1	ARG	611	23.083	2.262	68.503	1.00	0.00
MOTA	232	NH2	ARG	611	22.551	1.737	66.376	1.00	0.00
TER	233		ARG	611					
MOTA	234	N	ARG	614	25.776	-7.384	70.378	1.00	0.00
MOTA	235	CA	ARG	614	24.958	-7.840	71.479	1.00	0.00
MOTA	236	С	ARG	614	23.643	-8.468	71.041	1.00	0.00
MOTA	237	0	ARG	614	23.239	-9.504	71.557	1.00	0.00
MOTA	238	CB	ARG	614	24.681	-6.657	72.407	1.00	0.00
MOTA	239	CG	ARG	614	24.963	-6.918	73.839	1.00	0.00
MOTA	240	CD	ARG	614	26.436	-7.104	74.156	1.00	0.00
ATOM	241	NE	ARG	614	26.731	-8.517	74.370	1.00	0.00
ATOM	242	CZ	ARG	614	27.372	-9.045	75.417	1.00	0.00
ATOM	243	*****	7 D.Cl	C1 4					0.00
	243	NHT	ARG	614	27.791	-8.303	76.446	1.00	0.00
MOTA	244		ARG	614		-8.303 -10.351	76.446 75.425	1.00	0.00
ATOM ATOM									
	244	NH2	ARG	614	27.608	-10.351	75.425	1.00	0.00
MOTA	244 245	NH2	ARG GLN	614 615	27.608 22.973	-10.351 -7.828	75.425 70.100	1.00	0.00
ATOM ATOM	244 245 246	NH2 N CA	ARG GLN GLN	614 615 615	27.608 22.973 21.685 21.782	-10.351 -7.828 -8.299	75.425 70.100 69.591	1.00 1.00 1.00	0.00
ATOM ATOM ATOM	244245246247	NH2 N CA C	ARG GLN GLN GLN	614 615 615	27.608 22.973 21.685 21.782	-10.351 -7.828 -8.299 -9.480	75.425 70.100 69.591 68.626	1.00 1.00 1.00	0.00 0.00 0.00 0.00
ATOM ATOM ATOM	244245246247248	NH2 N CA C	ARG GLN GLN GLN GLN	614 615 615 615	27.608 22.973 21.685 21.782 20.869	-10.351 -7.828 -8.299 -9.480 -10.301	75.425 70.100 69.591 68.626 68.601	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00
ATOM ATOM ATOM ATOM	244245246247248249	NH2 N CA C O CB	ARG GLN GLN GLN GLN	614 615 615 615 615	27.608 22.973 21.685 21.782 20.869 20.942	-10.351 -7.828 -8.299 -9.480 -10.301 -7.142	75.425 70.100 69.591 68.626 68.601 68.923	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00
ATOM ATOM ATOM ATOM ATOM ATOM	244 245 246 247 248 249 250	NH2 CA C O CB CG CD	ARG GLN GLN GLN GLN GLN GLN	614 615 615 615 615 615	27.608 22.973 21.685 21.782 20.869 20.942 20.559	-10.351 -7.828 -8.299 -9.480 -10.301 -7.142 -6.039	75.425 70.100 69.591 68.626 68.601 68.923 69.902	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 215 ATOM 216 ATOM 217 ATOM 218 ATOM 219 ATOM 220 ATOM 221 ATOM 221 ATOM 222 ATOM 223 ATOM 224 ATOM 225 ATOM 225 ATOM 226 ATOM 227 ATOM 228 ATOM 229 ATOM 231 ATOM 231 ATOM 231 ATOM 231 ATOM 232 TER 233 ATOM 234 ATOM 235 ATOM 236 ATOM 237 ATOM 238 ATOM 237 ATOM 238 ATOM 239 ATOM 239 ATOM 239 ATOM 240 ATOM 241 ATOM 242	ATOM 215 CD2 ATOM 216 NE1 ATOM 217 CE2 ATOM 218 CE3 ATOM 219 CZ2 ATOM 220 CZ3 ATOM 221 CH2 ATOM 222 N ATOM 223 CA ATOM 224 C ATOM 225 O ATOM 226 CB ATOM 227 CG ATOM 227 CG ATOM 228 CD ATOM 230 CZ ATOM 230 CZ ATOM 231 NH1 ATOM 231 NH1 ATOM 232 NH2 TER 233 ATOM 234 N ATOM 235 CA ATOM 236 C ATOM 236 C ATOM 237 O ATOM 238 CB ATOM 239 CG ATOM 239 CG ATOM 239 CG ATOM 240 CD ATOM 241 NE	ATOM 215 CD2 TRP ATOM 216 NE1 TRP ATOM 217 CE2 TRP ATOM 218 CE3 TRP ATOM 219 CZ2 TRP ATOM 220 CZ3 TRP ATOM 221 CH2 TRP ATOM 222 N ARG ATOM 223 CA ARG ATOM 224 C ARG ATOM 225 O ARG ATOM 226 CB ARG ATOM 227 CG ARG ATOM 228 CD ARG ATOM 230 CZ ARG ATOM 231 NH1 ARG ATOM 232 NH2 ARG ATOM 234 N ARG ATOM 235 CA ARG ATOM 236 C ARG ATOM 237 O ARG ATOM <	ATOM 215 CD2 TRP 610 ATOM 216 NE1 TRP 610 ATOM 217 CE2 TRP 610 ATOM 218 CE3 TRP 610 ATOM 219 CZ2 TRP 610 ATOM 220 CZ3 TRP 610 ATOM 221 CH2 TRP 610 ATOM 221 CH2 TRP 610 ATOM 222 N ARG 611 ATOM 223 CA ARG 611 ATOM 224 C ARG 611 ATOM 225 O ARG 611 ATOM 226 CB ARG 611 ATOM 227 CG ARG 611 ATOM 228 CD ARG 611 ATOM 229 NE ARG 611 ATOM 230 CZ ARG 611 ATOM 231 NH1 ARG 611 ATOM 231 NH1 ARG 611 ATOM 232 NH2 ARG 611 ATOM 234 N ARG 611 ATOM 235 CA ARG 611 ATOM 236 C ARG 614 ATOM 237 O ARG 614 ATOM 238 CB ARG 614 ATOM 239 CG ARG 614 ATOM 240 CD ARG 614 ATOM 241 NE ARG 614	ATOM 215 CD2 TRP 610 28.334 ATOM 216 NEI TRP 610 26.310 ATOM 217 CE2 TRP 610 27.507 ATOM 218 CE3 TRP 610 29.630 ATOM 219 CZ2 TRP 610 27.935 ATOM 220 CZ3 TRP 610 30.040 ATOM 221 CH2 TRP 610 29.202 ATOM 222 N ARG 611 25.611 ATOM 223 CA ARG 611 24.337 ATOM 225 O ARG 611 23.635 ATOM 226 CB ARG 611 23.350 ATOM 227 CG ARG 611 22.907 ATOM 228 CD ARG 611 21.755 ATOM 229 NE ARG 611 21.755 ATOM 229 NE ARG 611 22.496 ATOM 230 CZ ARG 611 22.496 ATOM 231 NH1 ARG 611 23.083 ATOM 232 NH2 ARG 611 ATOM 233 ARG 611 ATOM 234 N ARG 611 ATOM 235 CA ARG 611 ATOM 236 C ARG 611 ATOM 237 O ARG 614 ATOM 238 CB ARG 614 ATOM 237 O ARG 614 ATOM 238 CB ARG 614 ATOM 237 O ARG 614 ATOM 238 CB ARG 614 ATOM 238 CB ARG 614 ATOM 239 CG ARG 614 ATOM 240 CD ARG 614 ATOM 241 NE ARG 614	ATOM 216 NE1 TRP 610 26.310 -2.864 ATOM 217 CE2 TRP 610 27.507 -3.517 ATOM 218 CE3 TRP 610 29.630 -3.712 ATOM 219 CZ2 TRP 610 27.935 -4.341 ATOM 220 CZ3 TRP 610 30.040 -4.541 ATOM 221 CH2 TRP 610 29.202 -4.842 ATOM 222 N ARG 611 25.611 -2.643 ATOM 223 CA ARG 611 24.296 -3.167 ATOM 224 C ARG 611 23.635 -5.363 ATOM 225 O ARG 611 23.635 -5.363 ATOM 226 CB ARG 611 23.350 -2.102 ATOM 227 CG ARG 611 21.755 -0.166 ATOM 228 CD ARG 611 21.755 -0.166 ATOM 229 NE ARG 611 21.899 0.318 ATOM 230 CZ ARG 611 22.496 1.444 ATOM 231 NH1 ARG 611 22.496 1.444 ATOM 232 NH2 ARG 611 22.551 1.737 TER 233 ARG 611 ATOM 234 N ARG 614 22.551 1.737 TER 235 CA ARG 614 24.958 -7.840 ATOM 236 C ARG 614 23.633 -8.468 ATOM 237 O ARG 614 23.239 -9.504 ATOM 238 CB ARG 614 24.963 -6.918 ATOM 239 CG ARG 614 24.963 -6.918 ATOM 240 CD ARG 614 24.963 -6.918 ATOM 241 NE ARG 614 24.963 -6.918	ATOM 215 CD2 TRP 610 28.334 -3.183 73.609 ATOM 216 NE1 TRP 610 26.310 -2.864 74.532 ATOM 217 CE2 TRP 610 27.507 -3.517 74.704 ATOM 218 CE3 TRP 610 29.630 -3.712 73.564 ATOM 219 CZ2 TRP 610 27.935 -4.341 75.732 ATOM 220 CZ3 TRP 610 30.040 -4.541 74.584 ATOM 221 CH2 TRP 610 29.202 -4.842 75.652 ATOM 222 N ARG 611 25.611 -2.643 69.698 ATOM 223 CA ARG 611 24.296 -3.167 69.471 ATOM 224 C ARG 611 24.337 -4.398 68.582 ATOM 225 O ARG 611 23.635 -5.363 68.865 ATOM 226 CB ARG 611 23.350 -2.102 68.853 ATOM 227 CG ARG 611 22.907 -1.050 69.843 ATOM 228 CD ARG 611 21.755 -0.166 69.401 ATOM 229 NE ARG 611 21.755 -0.166 69.401 ATOM 230 CZ ARG 611 22.997 -1.050 69.843 ATOM 231 NH1 ARG 611 22.997 0.318 68.043 ATOM 232 NH2 ARG 611 22.551 1.737 66.376 TER 233 ARG 611 22.551 1.737 66.376 TER 233 ARG 611 22.551 1.737 66.376 TER 233 ARG 611 22.551 1.737 66.376 ATOM 234 N ARG 614 22.551 1.737 66.376 ATOM 235 CA ARG 614 24.958 -7.840 71.479 ATOM 236 C ARG 614 23.239 -9.504 71.557 ATOM 237 O ARG 614 23.239 -9.504 71.557 ATOM 238 CB ARG 614 24.968 -6.657 72.407 ATOM 239 CG ARG 614 24.963 -6.918 73.839 ATOM 240 CD ARG 614 26.436 -7.104 74.156 ATOM 241 NE ARG 614 26.436 -7.104 74.156 ATOM 241 NE ARG 614 26.731 -8.517 74.370	ATOM 215 CD2 TRP 610 28.334 -3.183 73.609 1.00 ATOM 216 NEI TRP 610 26.310 -2.864 74.532 1.00 ATOM 217 CE2 TRP 610 27.507 -3.517 74.704 1.00 ATOM 218 CE3 TRP 610 29.630 -3.712 73.564 1.00 ATOM 219 CZ2 TRP 610 27.935 -4.341 75.732 1.00 ATOM 220 CZ3 TRP 610 30.040 -4.541 74.584 1.00 ATOM 221 CH2 TRP 610 29.202 -4.842 75.652 1.00 ATOM 222 N ARG 611 25.611 -2.643 69.698 1.00 ATOM 223 CA ARG 611 24.296 -3.167 69.471 1.00 ATOM 224 C ARG 611 24.337 -4.398 68.582 1.00 ATOM 225 O ARG 611 23.635 -5.363 68.665 1.00 ATOM 226 CB ARG 611 22.907 -1.050 69.843 1.00 ATOM 227 CG ARG 611 22.907 -1.050 69.843 1.00 ATOM 228 CD ARG 611 21.755 -0.166 69.401 1.00 ATOM 229 NE ARG 611 21.899 0.318 68.043 1.00 ATOM 230 CZ ARG 611 22.496 1.444 67.662 1.00 ATOM 231 NH1 ARG 611 23.083 2.262 68.503 1.00 ATOM 232 NH2 ARG 611 22.551 1.737 66.376 1.00 ATOM 233 ARG 611 ATOM 234 N ARG 614 25.776 -7.384 70.378 1.00 ATOM 235 CA ARG 614 24.958 -7.840 71.479 1.00 ATOM 236 C ARG 614 24.958 -7.840 71.479 1.00 ATOM 237 O ARG 614 23.239 -9.504 71.557 1.00 ATOM 238 CB ARG 614 24.963 -6.918 73.839 1.00 ATOM 239 CG ARG 614 24.963 -6.918 73.839 1.00 ATOM 239 CG ARG 614 24.963 -6.918 73.839 1.00 ATOM 240 CD ARG 614 26.731 -8.517 74.370 1.00 ATOM 241 NE ARG 614 26.731 -8.517 74.370 1.00

	TER	254	:	GLN	615					
	ATOM	255	N	PRO	625	16.074	-1.390	66.522	1.00	0.00
	ATOM	256	CA	PRO	625	15.326	-2.645	66.670	1.00	0.00
	ATOM	257	С	PRO	625	14.446	-2.972	65.466	1.00	0.00
5	ATOM	258	0	PRO	625	14.219	-4.123	65.155	1.00	0.00
	ATOM	259	СВ	PRO	625	14.451	-2.387	67.917	1.00	0.00
	MOTA	260	CG	PRO	625	15.230	-1.373	68.700	1.00	0.00
	ATOM	261	CD	PRO	625	15.816	-0.460	67.630	1.00	0.00
	TER	262		PRO	625					
10	ATOM	263	N	TYR	663	33.300	-1.331	77.384	1.00	0.00
	ATOM	264	CA	TYR	663	32.605	-0.587	76.345	1.00	0.00
	ATOM	265	C	TYR	663	32.220	0.825	76.775	1.00	0.00
	MOTA	266	0	TYR	663	32.422	1.772	76.039	1.00	0.00
	ATOM	267	СВ	TYR	663	31.366	-1.372	75.911	1.00	0.00
15	MOTA	268	CG	TYR	663	30.348	-0.537	75.200	1.00	0.00
	MOTA	269	CDI	L TYR	663	30.558	-0.163	73.888	1.00	0.00
	MOTA	270	CD2	TYR	663	29.164	-0.139	75.821	1.00	0.00
	MOTA	271	CE1	TYR	663	29.632	0.607	73.206	1.00	0.00
	MOTA	272	CE2	TYR	663	28.221	0.647	75.125	1.00	0.00
20	MOTA	273	CZ	TYR	663	28.493	1.012	73.822	1.00	0.00
	ATOM	274	OH	TYR	663	27.616	1.758	73.058	1.00	0.00
	MOTA	275	N	LEU	664	31.685	0.992	77.971	1.00	0.00
	ATOM	276	CA	LEU	664	31.341	2.335	78.447	1.00	0.00
	MOTA	277	С	LEU	664	32.559	3.273	78.520	1.00	0.00
25	ATOM	278	0	LEU	664	32.478	4.449	78.147	1.00	0.00
	MOTA	279	CB	LEU	664	30.682	2.262	79.818	1.00	0.00
	MOTA	280	CG	LEU	664	29.314	1.540	79.897	1.00	0.00
	MOTA	281	CD1	LEU	664	28.821	1.419	81.337	1.00	0.00
	ATOM	282	CD2	LEU	664	28.309	2.263	79.064	1.00	0.00
30	TER	283		LEU	664					
	ATOM	284	N	LYS	667	33.939	4.070	75.029	1.00	0.00
	MOTA	285	CA	LYS	667	33.100	5.011	74.302	1.00	0.00
	ATOM	286	С	LYS	667	33.330	6.463	74.740	1.00	0.00
	MOTA	287	0	LYS	667	33.376	7.376	73.914	1.00	0.00
35	MOTA	288	CB	LYS	667	31.622	4.597	74.408	1.00	0.00
	MOTA	289	CG	LYS	667	30.709	5.423	73.574	1.00	0.00
	MOTA	290	CD	LYS	667	29.419	4.683	73.210	1.00	0.00
	ATOM	291	CE	LYS	667	28.426	4.543	74.330	1.00	0.00
	ATOM	292	NZ	LYS	667	28.369	5.641	75.303	1.00	0.00
40	TER	293		LYS	667			•		

What is claimed is:

10

20

30

A method for evaluating the potential of a chemical entity to bind to all or any part
 of Site II comprising:

- (a) docking a chemical entity into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and
- (b) analyzing structural and chemical feature complementarity between said chemical entity and all or any part of said Site II.
- 15 2. The method of claim 1, wherein the Site II is an NHR Site II.
 - 3. The method of claim 1, wherein the Site II is an SHR Site II.
 - 4. The method of claim 1, wherein the Site II is a GR Site II.
 - 5. A method of designing a ligand of Site II comprising:
 - (a) modeling all or any part of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I; and
- 25 (b) based on said modeling, designing a chemical entity that has structural and chemical feature complementarity with all or any part of said Site II.
 - 6. A method for identifying a modulator of an NHR comprising:
 - (a) docking a test molecule into all or any part of the cavity circumscribed by a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566,

- G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I;
- (b) analyzing structural and chemical feature complementarity between the test molecule and all or any part said Site II; and
- 5 (c) screening the test molecule in a biological assay of modulation of an NHR.
 - 7. The method of claim 6 further comprising one or more of the following:
 - (d) screening the test molecule in an assay that characterizes binding to a Site Π ; and
 - (e) screening the test molecule in an assay that characterizes binding to Site I.
- 10 8. The method of claim 6, wherein the modulator of an NHR induces transrepression.
 - 9. The method of claim 6, wherein the modulator of an NHR is a dissociated compound.
- 10. The method of claim 6, wherein the modulator of an NHR antagonizes a modulator that induces transactivation.
 - 11. The method of claim 9, wherein the dissociated compound is an SHR dissociated compound.
 - 12. The method of claim 11, wherein the SHR dissociated compound is a GR dissociated compound.
- 20 13. The method of claim 6, wherein the Site II is an NHR Site II selected from the Site IIs of the group consisting of: RXR-alpha; RXR-beta; progesterone receptor (PR); androgen receptor (AR); estrogen receptor-alpha (ER-alpha); ER-beta; vitamin D receptor (VitDR); peroxisome proliferator activated receptor-gamma (PPAR-gamma); thyroid receptor-alpha (TR-alpha); TR-beta; mineralocorticoid receptor (MR); and glucocorticoid receptor (GR).
 - 14. The method of claim 13, wherein the NHR Site II is an SHR Site II selected from the Site IIs of the group consisting of: PR; AR; ER-alpha; ER-beta; MR; and GR.
 - 15. The method of claim 14, wherein said SHR Site II is a GR Site II.
- 16. The method of claim 15, wherein the GR Site II is selected from the Site IIs of the group consisting of: human GR; rat GR; mouse GR; sheep GR; marmoset GR; squirrel GR; pig GR; guinea pig GR; and m'az monkey GR.

17. The method of claim 13, wherein the NHR Site II is a RXR-alpha Site II composed of amino acids L236-P244, A272-A273, Q276-W283, G305-S313, H316-R317, A320-V321, T329, L368-G369, and R372 according to Figure 2.

18. The method of claim 13, wherein the NHR Site II is a RAR-gamma Site II composed of amino acids S194-P202, L233-A234, C237-F244, A266-R274, T277-R278, T280-E282, D290, T328-G329 and S332 according to Figure 2.

5

15

30

- 19. The method of claim 13, wherein the NHR Site II is a PR Site II composed of amino acids M692-V698, L721-G722, Q725-W732, S754-G762, W765-R766, K769-H770, P780, F818-L819 and K822 according to Figure 2.
- 20. The method of claim 13, wherein the NHR Site II is a AR Site II composed of amino acids E678-V684, L708-G709, Q712-W719, S741-A749, W752-R753, T756-N757, P767, F805-L806 and K809 according to Figure 2.
 - 21. The method of claim 13, wherein the NHR Site II is a ER-alpha Site II composed of amino acids L320-I326, L348-A349, E352-W359, A381, W382-G389, W392-R393, E396, P405, F444-V445 and K448 according to Figure 2.
 - 22. The method of claim 13, wherein the NHR Site II is a ER-beta Site II composed of amino acids L273-H279, L297-A298, E301-W308, C330-G338, W341-R342, D345, P354, Y393-L394 and K397 according to Figure 2.
- 23. The method of claim 13, wherein the NHR Site II is a VitDR Site II composed of amino acids L136-D144, L182-V183, S186-F193, S215-R223, E226-S227, T229-D231, G238, H279-V280 and M283 according to Figure 2.
 - 24. The method of claim 13, wherein the NHR Site II is a PPAR-gamma Site II composed of amino acids Y219-P227, R288-S289, A292-Y299, G321-M329, S332-L333, N335-K336, E343, L384-A385 and I388 according to Figure 2.
- 25 25. The method of claim 13, wherein the NHR Site II is a MR Site II composed of amino acids E743-I749, L772-A773, Q776-W783, S805-A813, W816-R817, K820-H821, P831, Y869-T870 and K873 according to Figure 2.
 - 26. The method of claim 13, wherein the NHR Site II is a TR-beta Site II composed of amino acids T226-Q235, I267-I268, A271-F278, C300-R308, V311-R312, D314-E316, G324, V362-A363 and Q366 according to Figure 2.

27. The method of claim 13, wherein the NHR Site II is a GR Site II composed of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Figure 2.

- 28. The method of claim 27, wherein the structure coordinates of the GR Site II define the structure of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I, Table III, Table IV, or Table V.
- 29. A method for identifying a ligand of Site II comprising:

5

30

- (a) docking a test molecule into all or any part of the cavity circumscribed by a

 Site II, wherein said Site II is a structure defined by structure coordinates that
 describe conserved residue backbone atoms having a root mean square
 deviation of not more than 2.0 Å from the conserved residue backbone atoms
 described by the structure coordinates of amino acids E537-V543, L566,
 G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663,
 L664 and K667 according to Table I;
 - (b) analyzing structural and chemical feature complementarity between the test molecule and all or any part said Site II; and
 - (c) screening the test molecule in an assay that characterizes binding to a Site II.
- 30. A ligand of a Site II, wherein said Site II is a structure defined by structure coordinates that describe conserved residue backbone atoms having a root mean square deviation of not more than 2.0 Å from the conserved residue backbone atoms described by the structure coordinates of amino acids E537-V543, L566, G567, Q570-W577, S599-A607, W610, R611, R614, Q615, P625, Y663, L664 and K667 according to Table I.
- 25 31. A modulator of an NHR, wherein said modulator has been identified by the method of claim 6.
 - 32. A modulator of an NHR that is a ligand of claim 30.
 - 33. A method of modulating an NHR comprising administering a modulator of an NHR in an amount sufficient to modulate the NHR, wherein said modulator of an NHR is a modulator of claim 31.

34. A method of modulating an NHR comprising administering a modulator of an NHR in an amount sufficient to modulate the NHR, wherein said modulator of an NHR is a modulator of claim 32.

35. A method of treating an NHR-associated disease comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR of claim 31.

5

15

- 36. A method of treating an NHR-associated disease comprising administering to a subject in need thereof, in an amount effective therefore, at least one modulator of an NHR of claim 32.
- 37. A mutant NHR, or a mutant portion of an NHR, comprising one or more amino acid mutations in Site II.
 - 38. A method of measuring the binding of a test molecule to Site II comprising:
 - (a) incubating an NHR with a ligand of Site II and said test molecule; and
 - (b) measuring the ability of said test molecule to compete for binding to said Site II with said ligand, wherein said ability to compete is the measure of binding of said test molecule to Site II.
- 39. The method of claim 38, wherein step (a) further comprises a Site I ligand, wherein the ligand of Site II inhibits the binding of the Site I ligand to Site I, wherein the test molecule does not inhibit the binding of the Site I ligand to Site I, and wherein the measurement of the ability of said test molecule to compete for binding to said Site II is a measurement of the Site I ligand binding to Site I.

FIGURE 1

<u>Dissociated Steroid: Transrepression > Transactivation</u>

FIGURE 2

RXRalpha	225	S	ANEDM			PVE.RILEAE	LAVE.PKTET
RARgamma	182	L	SPQLEE			LIT.KVSKAH	QETF.P
PR	682		0 .	LI.	P	PLINLLMSIE	PD.V
AR	669				OP	IFLNVLEAIE	PG.V
ERalpha	305				SLALSLTAD	QMVSALLDAE	PP.I
ERbeta	261				DALSPE	QLVLTLLEAE	PP.H
VitDR	120		SEEQQR				
		.LIKEKD	CAD T.DA			LAK.HLYDSY	
PPARgamma		E	DADLAA	ייי. עכר	p	SPVMVLENTE	PRIT
MR.	731			каы.		LIK. TVŢEAH	XXX 19XX A
TRbeta	211	KPEP	TDE. EWE	AMT DOT M		TLVSLLEVIE	DE W
GR	523		• • • • • • • • • • •	ATHPQLT.		rnaonnëå ræ	Same and the Man of the same
RXRalpha	249	YVEANMGLNP	SSPNDPVTN.		IC.		
RARgamma	203	1 4 111 1111 1111			s	LCQL.GKYTT	N
PR	699		Т	VACHDNTKPD	TSSSLLTS		
	685						
AR			т.	ACEADDMEDE	SEASMMGI.		
ERalpha	327		V	I TOD	TEN CMMMC		
ERbeta	281		V	DTDK	TEMMINGAET		
VitDR	145						
PPARgamma							
MR	750	• • • • • • • • •	V	YAGYDSSKPD	TAENLLST		
TRbeta	236			• • • • • • • • •		SHWKQKRKFL	Р
GR	544		L	YAGYDSSVPD	STWRIMTT		• • • • • • • • •
DVDalaba							
RXRalpha	214						
RARgamma	214	SSADHRVO	L				
RARgamma PR	214	SSADHRVQ	L				
RARgamma PR AR	214	SSADHRVQ	L				
RARgamma PR AR ERalpha	214	SSADHRVQ	L				
RARgamma PR AR ERalpha ERbeta		SSADHRVQ	L				
RARgamma PR AR ERalpha ERbeta VitDR	155	SSADHRVQ	L	ELS			
RARgamma PR AR ERalpha ERbeta	155	SSADHRVQ	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR	155	SSADHRVQ	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma	155	SSADHRVQ	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR	155 228	SSADHRVQ	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR	155 228 248	PPVRV	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha	155 228 248	PPVRV	L	ELSLTKAKAR	AILTGKTTDK	SPFVIYDMNS	LMMGEDKIKF
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma	155 228 248 271 223	PPVRV	L	ELSLTKAKAR	ALLTGKTTDK QLETLVEWAK CTIKIVEFAK	SPFVIYDMNS	LMMGEDKIKF DDQVILLRAG ADQITLLKAR
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha	155 228 248 271 223 718	PPVRV	L	ELSLTKAKARQAADK FSE.LATKLNQLGER	AILTGKTTDK QLETLVEWAK CIIKIVEFAK QLLSVVKWSK	SPFVIYDMNS	LMMGEDKIKF DDQVILLRAG ADQITLLKAM DDQITLIQYS
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma	155 228 248 271 223 718 705	PPVRV	L	ELSLTKAKARQAADK FSE.LATKLNQLGERLNELGER	AILTGKTTDK QLETLVEWAK QLLSVVKWSK QLLSVVKWSK	SPFVIYDMNS RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV	LMMGEDKIKF DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR	155 228 248 271 223 718	PPVRV	L	ELSLTKAKARQAADK FSELATKLNQLGERLNELGERLTNLADR	AILTGKTTDK QLETLVEWAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK	RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL	LMMGEDKIKF DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR	155 228 248 271 223 718 705	PPVRV	L	ELSLTKAKARQAADK FSELATKLNQLGERLNELGERLTNLADRLTKLADK	AILTGKTTDK QLETDVEWAK CIIKIVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK	SPFVIYDMNS RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL	LMMGEDKIKF DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR ERalpha	155 228 248 271 223 718 705 345	PPVRV	L	ELSLTKAKARQAADK FSELATKLNQLGERLNELGERLTNLADRLTKLADK LADLVSY	ALLTGKTTDK QLFTLVEWAK CIIKIVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK SIQKVIGFAK	SPFVIYDMNS RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL MIPGFRDLTS	DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC EDQIVLLKSS
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR ERalpha ERalpha ERbeta	155 228 248 271 223 718 705 345 294 172	SSADHRVQ	L	ELSLTKAKARQAADK FSE.LATKLNQLGERLNLGERLTNLADRLTKLADK LADLVSY CQFRSVE	ALLTGKTTDK QLFTLVEWAK CTIKTVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK SIQKVIGFAK AVQEITEYAK	RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL MIPGFRDLTS SIPGFVNLDL	DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC EDQIVLLKSS NDQVTLLKYG
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR ERalpha ERalpha ERbeta VitDR	155 228 248 271 223 718 705 345 294 172	SSADHRVQ	L	ELSLTKAKARQAADK FSE.LATKLNQLGERLNLGERLTNLADRLTKLADK LADLVSY CQFRSVE	ALLTGKTTDK QLFTLVEWAK CTIKTVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK SIQKVIGFAK AVQEITEYAK	SPFVIYDMNS RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL MIPGFRDLTS	DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC EDQIVLLKSS NDQVTLLKYG
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR	155 228 248 271 223 718 705 345 294 172 265	SSADHRVQ	. DLGLWDK . QLSMLPH KEVAIRIFQG	ELSLTKAKAR .Q. AADK FSE. LATK .LNQLGER .LNELGER .LTNLADR .LTKLADK LAD. LVSY CQF. RSVE	QLETLVEWAK CIIKIVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK SIQKVIGFAK AVQEITEYAK QMIQVVKWAK	RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL MIPGFRDLTS SIPGFVNLDL	LMMGEDKIKF DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC EDQIVLLKSS NDQVTLLKYG EDQITLIQYS
RARgamma PR AR ERalpha ERbeta VitDR PPARgamma MR TRbeta GR RXRalpha RARgamma PR AR ERalpha ERbeta VitDR PPARgamma	155 228 248 271 223 718 705 345 294 172 265 769	PPVRV EDIGQAPK	. DLGLWDK . QLSMLPH KEVAIRIFQG	ELSLTKAKARQAADK FSELATKLNQLGERLNELGERLTNLADRLTKLADK LADLVSY CQFRSVELNRLAGK FTKIITP	AILTGKTTDK QLETLVEWAK CIIKIVEFAK QLLSVVKWSK QLVHVVKWAK ELVHMINWAK ELVHMISWAK SIQKVIGFAK AVQEITEYAK QMIQVVKWAK AITRVVDFAK	SPFVIYDMNS RIPHFSELPL RLPGFTGLSI SLPGFRNLHI ALPGFRNLHV RVPGFVDLTL KIPGFVELSL MIPGFRDLTS SIPGFVNLDL VLPGFKNLPL	DDQVILLRAG ADQITLLKAA DDQITLIQYS DDQMAVIQYS HDQVHLLECA FDQVRLLESC EDQIVLLKSS NDQVTLLKYG EDQITLIQYS EDQITLIQYS

FIGURE 2 (continued)

RXRalpha	306	WNELLIASFS	HRSIAV	KDGILLAT	GLHVHRN	sAHSAG	VG
RARgamma	267	CLDILMLRIC	TRYTPE.	QDTMTFSD	GLTLNRT	QMH	NAGF
PR	755	WMSLMVFGLG	WRSYKH	VSGQMLYFAP	DLILNEQ	RMKESS	FY
AR	742			VNSRMLYFAP			
ERalpha	382			.HPGKLLFAP			
ERbeta	331			.HPGKLIFAP			
VitDR	216			DMSWTCG			
PPARgamma		VHEIIYTMLA	SLMNK	DGVLISE	GQGFMTR	E.FLK	SLRK
MR	806	WMCLSSFALS	WRSYKH	TNSQFLYFAP	DLVFNEE	.KMHQSAM	YE
TRbeta	301	CMEIMSLRAA	VRYDPE.	SETLTLNG	EMAVTRG	QLK	NGGL
GR	600	WMFLMAFALG	WRSYRQ	SSANLLCFAP	DLIINEQ	.RMTLPC	MY
RXRalpha	345	A.IF.DR	VLTELVSKMR	DMQMDKTELG	CLEATVI. FN	PDSKGIS	
RARgamma	305	GP.LT.DL	VFAFAGOLL.	PLEMDDTETG	LLSAICL IC	GDRMD LE	
PR	796	S.LC.LT	MWOIPOEFV.	KLQVSQEEFL	CMKVLLL LN	TIP.LEGLR	
AR	783		MRHLSOEFG.			.IIP.VDGLK	
ERalpha	422	E.IF.DM	LLATSSRFR.		* .		YTF.LSSTLK
ERbeta	371	E.IF.DM	LLATTSRFR.				LVTAT.Q
VitDR	255	SLELI.EP	LIKFQVGLK.	KLNLHEEEHV	LLMAICI.VS	PDRPGVO	
PPARgamma	359			ALELDDSDLA			
MR	848			RLQLTFEEYT			
TRbeta	339	GV.VS.DĄ	IFDLGMSLS.	SFNLDDTEVA	LLQAVLL.MS	SDRPGLA	
GR	641	DQCKH	MLYVSSELH.	RLQVSYEEYL	CMKTLLL.LS	.SVP.KDGLK	
RXRalpha	386			AYCKHKYP			
RARgamma	336			LYARRRRP			
PR	837			KAIGLRQ			
AR	824			RIIACKR			
ERalpha	467	SLEEKDHIHR	VLDKITDTLI	HLMAKAG	LTLQQ	QHERLAQLLL	ILSHIRHMSN
ERbeta	411	DADSSRKLAH	LLNAVTDALV	WVIAKSG	ISSQQ	QSMRLANLLM	LLSHVRHASN
VitDR	297	DAALIEA	IQDRLSNTLQ	TYIRCRHP	PP.L	LYAKMIQ	KLADLRSLNE
PPARgamma		NVKPIED	IQDNLLQALE	LQLKLNHP	ESSQ	LFAKLLQ	KMTDLRQIVT
MR	888	SQAAFEE	MRTNYIKELR	KMVT.KCPNN	SQ	SWQRFYQLTK	LLDSMHDLVS
TRbeta	380	CVERIEK	YQDSFLLAFE	HYINYRKH	HVTH	FWPKLLM	KVTDLRMIGA
GR	681	SQELFDE	IRMTYIKELG	KAIVKRE	GNSSQ	NWQRFYQLTK	LLDSMHEVVE
RXRalpha	432	KCLEHLFFFK	LIGDTPIDTF	LMEMLEAPHQ	MT		
RARgamma	382	KGAERA			ITLKMEI	PGPMPP	LIREMLENP
PR	886	QLHLYC					
AR	873	ELHOFT					<u>ਜ</u>
ERalpha	519	KGMEHL					
ERbeta	463	KGMEHL					T,
VitDR	342	EHSKOY			RCLSFOP	ECSMK LTP	LVILEVEC
PPARgamma	448	EHVQLL			.OVIKKTET	DMS. THP	I'I'UELAKDI'
MR	937	DLLEFC					T T T T T T T T T T T T T T T T T T T
TRbeta	426	CHASRF			LHMKVEC	PT ET.FPP	LEUEVEE
GR	730	NLLNYC					F
Cit							

FIGURE 2 (continued)

893	.NTFIQSRAL	SVEFPEMMSE	VIAAQLPKIL	AGMVKPLLFH	K	
880	.DLLIKSHMV	SVDFPEMMAE	IISVQVPKIL	SGKVKPIYFH	T	
526	.SMKCKNV				.VPLYDLLLE	ML
470	NMKC					KNVVPVYD
944	.YTFRESHAL	KVEFPAMLVE	IISDQLPKVE	SGNAKPLYFH	R	
737	.QTFLDKTMS	IEFPEMLAEI	ITNQIPKYSN	GNIKKLLFHQ	K	
						*
	• • • • • • • • • •					
	• • • • • • • • • •					
			,	•		•
	• • • • • • • • • •	• • • • •	\			
482	LLLEMLNAHV	LR				
		• • • •				
477		Y				
984		K.				
453		D				
,						
	944 737 482 477 984	893 .NTFIQSRAL 880 .DLLIKSHMV 526 .SMKCKNV 470 NMKC 944 .YTFRESHAL 737 .QTFLDKTMS 482 LLLEMLNAHV 477 984	893 .NTFIQSRAL SVEFPEMMSE 880 .DLLIKSHMV SVDFPEMMAE 526 .SMKCKNV	893 .NTFIQSRAL SVEFPEMMSE VIAAQLPKIL 880 .DLLIKSHMV SVDFPEMMAE IISVQVPKIL 526 .SMKCKNV. 470 NMKC	893 NTFIQSRAL SVEFPEMMSE VIAAQLPKIL AGMVKPLLFH 880 DLLIKSHMV SVDFPEMMAE IISVQVPKIL SGKVKPIYFH 526 SMKCKNV. 470 NMKC. 944 YTFRESHAL KVEFPAMLVE IISDQLPKVE SGNAKPLYFH 737 QTFLDKTMS IEFPEMLAEI ITNQIPKYSN GNIKKLLFHQ 482 LLLEMLNAHV LR 477 984K.	880 .DLLIKSHMV SVDFPEMMAE IISVQVPKIL SGKVKPIYFH T

FIGURE 3

FIGURE 4

			OR		
	R		R	-	R
1	HN-S		N	25	HN-N-N
6	HN	19	HN S		HN-N S
7	HN—S	20	HN	26	HN
8	HN-N H		N.	27	HN—N
9	HN-N	21	HNOS		
10	HN CI	22	HN S	28	HN-S
11	HN	2	HN-S	29	HN-N
12	HN S	23	HN-S		H OCH ₃
13	HN S	24	N-	30	HN—S
14	HN		NH ₂	≎ 31	H ₃ CO
15	HN-S	 5	N		77 S
16	HN-S				

FIGURE 5

FIGURE 6

u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	MDLKESVTSS MDSKESLTP. MDSKESLTP. MDSKESLTP. MDSKESLAPP		GSERRNVIDF TQERGNVMDF TQERGNVMDF AQERGDVMDF GQGRGSVMDF	CKILRGGATL YKTVRGGATV CKILRGGATL SKILRGGATL YKTLRGGATV YKSLRGGATV YKSLRGGATV	KVSASSPSLA KVSVSSTSLA KVSVSSTSLA KVSASSPSLA KVSASSPSVA
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	AAAQSDSKQR AASQSDSKQQ AASQSDSKQQ VASQSDSKQR AASQADSKQQ	.VSASSPSLA RLLVDFPKGS RLLVDFPKGS RLLVDFPKGS RLLVDFPKGS RILLDFSKGS	AVSQPDSKQQ GSNAQQ VSNAQQ VSNAQQ VSNAQQ TSNVQQRQQQ	RLAVDFPKGS	GSNAQQPDLSPDLSPDLSPDLS QQQQQQPGLS
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	KAVSLSMGLY KAVSLSMGLY KAVSLSMGLY KAVSLSMGLY KAVSLSMGLY KAVSLSMGLY	MGETETKVMG MGETETKVMG MGETETKVMG MGETETKVMG MGETETKVMG	SDLGFPQQGQ NDLGFPQQGQ NDLGFPQQGQ NDLGFPQQGQ	ISLSSGETDL ISLSSGETDL LGLSSGETDF	RLLEESIANL RLLEESIANL QLLEESIANL QLLEESIANL KLLEESIANL RLLEESIANL
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	SRSTSVPENP SRSTSVPENP NRSTSVPENP NRSTSVPENP NRSTSVPENP	KSSASAAGPA KNSASA.VSG KSSASSSVSA KSSASSSVSA KSSASTAVSA KSSTSATGCA	APAEKAFPKT TPTE.EFPKT APKEKEFPKT APKEKEFPKT APTEKEFPKT TPTEKEFPKT	HSDVSSEQQN HSDGAPEQPN QSDLSSEQEN HSDVSSEQQN HSDVSSEQQN HSDVSSEQQH HSDASSEQQN HSDASSEQQN	VKGQTGTNGG . LKSQAGTNGG LKGQTGTNGG LKGQTGTNGG LKGQTGTNGG RKSQTGTNGG
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	NVKLFTTDQS NVK.FPPDQS NAKLCTADQS NVKLYTADQS NVKLYTTDQS SVKLYPTDQS	TFDIWRKKLQ TFDILQ TFDILQ TFDILQ TFDILQ	DLELPSGSPG DLEFSSGSPG DLEFSSGSPG DLEFSSGSPG DLEFSSGSPG DLEFSAGSPS	KERSESPWRP KETNQSPWRS KETNQSPWRS KETNESPWRS KDTNESPWRS	DLLIDENCLL DLLIDENCLL DLLIDENCLL DLLIDENCLL DLLIDENCLL DLLIDEN.LL DLLIDEN.LL

FIGURE 6 (Continued)

u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	SPLAGEEDPF SPLAGEEDSF SPLAGEEDSF SPLAGEEDSF SPLAGEDDPF	LLEGSSTEDC LLEGNSNEDC LLEGNSNEDC LLEGNSNEDC LLEGNSNEDC LLEGNTNEDC	KPLVLPDTKP KPLILPDTKP KPLILPDTKP KPLILPDTKP KPLILPDTKP KPLILPDTKP	KIKDNGDLVL KVKDNGELIL KIKDNGDGIL KIKDNGDLVL KIKDNGDLVL KIKDNGDLVL KIKDTGDTIL KIQDTGDTIL	PSPNSVPLPQ SSSNSVPQPQ SSSSNVTLPQ SSSSNVTLPQ SSPSNVTLPQ SSPSSVALPQ
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	VKTEKEDFIE VKIGKEDFIE VKTEKEDFIE VKTEKEDFIE VKTEKEDFIE VKTEKDDFIE	LCTPGVIKQE LCTPGVIKQE LCTPGVIKQE LCTPGVIKQE LCTPGVIKQE	KLGPAYCQAS KLGPVYCQAS KLSTVYCQAS KLGTVYCQAS KLGPVYCQAS	FPGANIIGNK FSGANIIGK FSGANIIGNK FPGANIIGNK FPGANVIGNK FPGANIIGNK FSGTNIIGNK FSGTNIIGNK	MSAISVHGVS MSAISVHGVS MSAISIHGVS MSAISIHGVS MSAISVHGVS
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	TSGGQLYHYD TSGGQMYHYD TSGGQMYHYD TSGGQMYHYD TSGGQMYHYD TSGGOMYHYD	MNTAASLSKQ MNTA.SLSQQ MNTA.SLSQQ MNTA.SLSQQ MNTA.SLSQQ MNTA.SLSQQ	QEQKPLFNVI QDQKPIFNVI QDQKPIFNVI QDQKPIFNVI QDQKPIFNVI QDQKPVFNVI	PPIPVGSENW PPIPVGSENW PPIPVGSENW PPIPVGSENW PPIPVGSENW PPIPVGSENW PPIPVGSENW	NRCQGSGDDN NRCQGSGEDN NRCQGSGDDN NRCQGSGDDN NRCQGSGDDN NRCQGSGEDS
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	LTSLGTLNFS LTSLGTVNFP LTSLGTLNFP LTSLGTLNFP LTSLGTLNFP LTSLGALNFP	GRSVFSNGYS GRSVFSNGYS GRTVFSNGYS GRTVFSNGYS GRSVFSNGYS	SPGMRPDVSS SPGLRPDVSS SPSMRPDVSS SPSMRPDVSS SPSMRPDVSS SPGMRPDVSS	PPSSSSTATT PPSSSST.TT PPSSSSTATT PPSSSSTATT PPSSSSTATT PPSSSSTATT PPSSSSAAT. PPSSSSTAT.	GPPPKLCLVC GPPPKLCLVC GPPPKLCLVC GPPPKLCLVC GPPPKLCLVC
u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	SDEASGCHYG SDELSGCHYG SDEASGCHYG SDEASGCHYG SDEASGCHYG SDEASGCHYG	VLTCGSCKVF VLTCGSCKVF VLTCGSCKVF VLTCGSCKVF VLTCGSCKVF	FKRAVEGQHN FKRAVEGQHN FKRAVEGQHN FKRAVEGQHN FKRAVEGQHN FKRAVEGQHN	YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI YLCAGRNDCI	IDKIRRKNCP IDKIRRKNCP IDKIRRKNCP IDKIRRKNCP IDKIRRKNCP IDKIRRKNCP

FIGURE 6 (Continued)

u87951 Squirrel AF141371 Pig 113196 Guinea Pig u87953 Marmoset u87952 Ma'z Monkey Human m14053 rat x04435 mouse	ACRYRKCLQ. ACRYRKCLQ. ACRYRKCLQ. ACRYRKCLQ. ACRYRKCLQ. ACRYRKCLQ.	A GMNLEARKTK	KKIKGIQQAT KKIKGIQQAT KKIKGIQQAT KKIKGIQQAT KKIKGIQQAT KKIKGIQQAT	TGVSQETSEN TGVSQNTSEN TGVSQETSEN TGVSQETSEN TGVSQETSEN	SANKTIVPAT P.NKTIVPAT PANKTIVPAT PANKTIVPAT PGNKTIVPAT P.NKTIVPAA
u87951 Squirrel	525 LPQLTPTLV 489 LPQLTPTLV				
AF141371 Pig	519 LPQLTPTLV				
113196 Guinea Pig					
u87953 Marmoset	525 LPQLTPTLV				MLGGRQVIAA
u87952 Ma'z Monkey	525 LPQLTPTLV				MIGGROVIAA
Human	525 LPQLTPTLV				MLGGRQVIAA
m14053 rat	543 LPQLTPTLV				MLGGRQVIAA
x04435 mouse	531 LPQLTPTLV	S LLEVIEPEVL	YAGYDSSVPD	SAWRIMITLN	MLGGRQVIAA
u87951 Squirrel	575 VKŴAKAIPG	F RNLHLDDOMT	LLOYSWMFLM	AFALGWRSYR	OASSNLLCFA
AF141371 Pig	539 VKWAKAIPG				
113196 Guinea Pig	569 VKWAKAIPG				
u87953 Marmoset	575 VKWAKAIPG				
u87952 Ma'z Monkey	575 VKWAKAIPG				
Human	575 VKWAKAIPG				
m14053 rat	593 VKWAKAILG				
x04435 mouse	581 VKWAKAIPG				
X04433 Modse	20T MIGMINGILLO	14/111111111111111111111111111111111111		The state of the s	
u87951 Squirrel	625 POLIINEQR				
AF141371 Pig	589 PDLVINEQR				
113196 Guinea Pig	619 PDLIINEQR				CMKTLLLLSS
u87953 Marmoset	625 PDLIINEQR				
u87952 Ma'z Monkey	625 PDLIINEQR				CMKTLLLLSS
Human	625 PDLIINEQR				
m14053 rat	643 PDLIINEQR				CMKTLLLLSS
x04435 mouse	631 PDLIINEQR	M TLPCMYDQCK	HMLFISTELQ	RLQVSYEEYL	CMKTLLLLSS
00051 000-100-3	MUNDOT KOO	E LFDEIRMTYI	wwi awa timo	ECNECONIAOD	EVOI MVI.I DC
u87951 Squirrel		E LFDEIRMTYI			
AF141371 Pig					
113196 Guinea Pig		E LEDEIRMTYI			
u87953 Marmoset		E LEDEIRMTYI			
u87952 Ma'z Monkey		E LEDEIRMTYI			
Human		E LEDEIRMTYI			
m14053 rat		E LFDEIRMTYI			
x04435 mouse		E LFDEIRMTYI	KELGKAIVKK	номоромира	t iörlkppds
	675				

FIGURE 6 (Continued)

u87951 Squirrel	MHEVVENLLN	YCFQTFLDKT	MSIEFPEMLA	EIITNQLPKY	SNGNIKKLLF
AF141371 Pig	MHDVVENLLN	YCFQT			
113196 Guinea Pig	LHEIVGNLLN	ICFKTFLDKT	MNIEFPEMLA	EIITNQLPKY	SNGDIKKLLF
u87953 Marmoset	MHEVVENLLN	YCFQTFLDKT	MSIEFPEMLA	EIITNQLPKY	SNGNIRKLLF
u87952 Ma'z Monkey			MSIEFPEMLA		
Human			MSIEFPEMLA		
m14053 rat	MHEVVENLLT	YCFQTFLDKT	MSIEFPEMLA	EIITNQIPKY	SNGNIKKLLF
x04435 mouse	MHDVVENLLS	YCFQTFLDKS	MSIEFPEMLA	EIITNQIPKY	SNGNIKKLLF
				·	
u87951 Squirrel	HQK				
AF141371 Pig					
113196 Guinea Pig	HQK				
u87953 Marmoset	HQK				
u87952 Ma'z Monkey	HQK				
Human	HQK				
m14053 rat	HQK				
x04435 mouse	HQK				

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11a

FIGURE 11b

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 January 2004 (29.01.2004)

PCT

(10) International Publication Number WO 2004/009016 A3

(51) International Patent Classification⁷: G06F 19/00

(21) International Application Number:
PCT/US2003/022299

(22) International Filing Date: 17 July 2003 (17.07.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/396,907 18 July 2002 (18.07.2002) US

(71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Route 206 and Provinceline Road, Princeton, NJ 08543-4000 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DOWEYKO, Arthur [US/US]; 9 Highland Avenue, Long Valley, NJ 07853 (US). NADLER, Steven, G. [US/US]; 164 Neil Court, Princeton, NJ 08540 (US).
- (74) Agents: SHER, Audrey et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543-4000 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 6 October 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS INVOLVING NUCLEAR HORMONE RECEPTOR SITE II

(57) Abstract: A binding site in nuclear hormone receptors is described and its structural coordinates are provided. The invention provides machine-readable data storage media comprising structure coordinates of Site II and computer systems comprising the machine-readable data storage media. The invention provides methods used in the design and identification of ligands of Site II and of modulators of nuclear hormone receptors. The invention provides ligands of Site II, modulators of NHRs, pharmaceutical compositions comprising modulators of NHRs, methods of modulating NHRs, and methods of treating diseases by administering modulators of an NHR. Also provided are methods of designing mutants, mutant NHRs, Site II binding assays, and models of Site II.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/22299

•	SSIFICATION OF SUBJECT MATTER							
IPC(7) US CL	: G06F 19/00 : 702/27							
	international Patent Classification (IPC) or to both national cla	ssification and IPC						
	LDS SEARCHED							
Minimum d U.S. : 7	ocumentation searched (classification system followed by classif 02/27, 530/350, 358, 412, 418	fication symbols)						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic d WEST: USF	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WEST: USP, PGPub, EUPA, JAPA, and WPID; STN:Medline, CaPlus, Scisearch, Lifesci, Bioses, and Embase.							
C. DO	CUMENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriat		Relevant to claim No.					
Y	BLEDSOE et al. Crystal structure of the glucocorticoid recept reveals a novel mode of receptor dimerization and coactivator 2002, Vol. 110, pages 93-105, see abstract.	tor ligand binding domain rrecognition. Cell. 12 July	1-29					
Y,P	KAUPPI et al. The three-dimensional structure of antagonisti glucocorticoid receptor ligand-binding domain: RU-486 indu leads to active antagonism. J. Biol. Chem. 20 June 2003, Vo 22754, see abstract.	1-29						
Y	DEY et al. Homology modelling of the ligand-binding domain binding site interactions with cortisol and corticosterone. Pro 14, No. 8, pages 565-571, see abstract.		1-29					
Α	AGIUS et al. Identification of glucocorticoid receptor in the h		1-29					
Y	J. Lab. Clin. Med. August 1982, Vol. 100, No. 2, pages 178-HOLLENBERG et al. Primary structure and expression of fu	nctional human glucocorticoid	1-29					
Y	receptor cDNA. Nature. 26 December 1985, Vol. 318, pages US 5,759,785 A (TSAI et al.) 02 June 1998, see abstract.	3 053-041, see austract.	1-29					
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.						
	Special categories of cited documents: "T" at defining the general state of the art which is not considered to be of	later document published after the inters and not in conflict with the application be principle or theory underlying the invent	out cited to understand the					
-	r relevance "X" pplication or patent published on or after the international filing date	document of particular relevance; the cla considered novel or cannot be considered						
"L" docume establish specifie	nt which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as "Y" d)	when the document is taken alone document of particular relevance; the cla considered to involve an inventive step with one or more other such documents,	when the document is combined					
"O" docume	nt referring to an oral disclosure, use, exhibition or other means	to a person skilled in the art	such combination boning covious					
	nt published prior to the international filing date but later than the "&" date clairned	document member of the same patent fa	mily					
	110	f mailing of the international sear	ch report					
	25 (23.06.2005) Author	ized officer	$\frac{1}{1}$					
Ma Cor P.0	Mail Stop PCT, Attn: ISA/US Commissioner of Patents P.O. Box 1450 Nasheat T. Nashed, Ph. D.							
		one No. 571-272-1600	()					
	(o. (703) 305-3230							

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US03/22299

INTERNATIONAL SEARCH REPORT

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

evant to claim No	
1-29	
1-29	
1-29	
1-29	
1-29	
1-29	
1-29	
1-29	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/22299

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: 30-36 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically. Please See Continuation Sheet
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
A. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-29 Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

PCT/US03/22299

INTERNATIONAL SEARCH REPORT

Continuation of Box I Reason 2:

The claims are directed to any chemical compound which can binds to NHR site II and their use in modulating NHR activity and any treating diseases. The claim does not define any structural element which would allow a proper search for the claims.

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-29, drawn to a method of evaluating chemical entity to bind nuclear hormone receptor (NHR) site II.

Group II, claim(s) 37, drawn to a mutant of NHR comprising one or more amino acid mutation in site II.

Group III, claim(s) 38 and 39, drawn to a method of measuring the binding of a test compound to NHR site II.

The inventions listed as Groups I-III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature for the invention of Group I is the algorithm that allow identification of compound that binds or interact with NHR site II, whereas the special technical feature for the invention of Group II is the algorithm that is capable of identifying mutants NHR. The special technical feature of the invention of Group III is the NHR, which differs from those of Groups I and II. Thus, the claimed inventions lack special technical feature. Claims 30-36 are unsearchable because they are directed to any chemical compound which binds to NHR site II. The claims do not define a structural element by which the claim can be searched.