EECE 2150 Final Exam Notesheet December 10, 2024

Fundamentals

KCL:
$$\sum i_{in} = 0$$
, KVL: $\sum v_n = 0$
Ohm's Law: $V = iR$
Resistances: $\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$ (parallel), $R_{eq} = \sum R_i$ (series)

Power: $P = i V = i^2 R = \frac{V^2}{R}$

Thevenin/Norton Equivalent

 $V_{Th} = open circuit voltage$

$$R_{Th} = V_{th}/i_{sc}$$

 R_{Th} is also the equivalent resistance seen between the terminals when all independent sources are set to zero

Norton's Equivalent circuit can be obtained from Thevenin's equivalent circuit using source

transformation

Voltage and Current Decision

Voltage Division:

$$v_x = v_s \frac{R_x}{R_1 + R_2 + \dots + R_n}$$

Distributes voltage across resistors in series proportionally to their resistance.

Current Division:

$$i_x = i_s \frac{R_{eq}}{R_x}$$

where $R_{e,q} = R_1 || R_2 || \cdots || R_n$.

Current through a branch:

$$i_x = i_s \, \frac{R_{total}}{R_x + R_{total}}$$

If resistances are combined in parallel and a current source is applied. These principles aid in determining how voltage or current is shared across circuit components.

Capacitor and Inductor

Example 2 Separation
$$i = C \frac{dv}{dt} \qquad v = \frac{1}{C} \int_{t=t_0}^{t} i(t) dt + v(t_0)$$

$$P = iv \quad w = \frac{1}{2} C v^2$$

Transient analysis for first order RC, general solution

$$v(t) = V_F + (V_0 - V_F)e^{-\frac{t}{\tau}} \qquad t \ge 0$$

$$i(t) = I_0 e^{-\frac{t}{\tau}} \qquad t \ge 0^+$$

$$\tau = RC$$

$$\Rightarrow v(\mathbf{0}^-) = v(\mathbf{0}) = v(\mathbf{0}^+) = V_0$$

Sinusoidal Steady State Analysis

$$= Z\tilde{I} \qquad Z = \frac{1}{j\omega C}$$

 $i(t) = I_m \cos(\omega t + 90^\circ)$ $v(t) = V_m \cos(\omega t),$

Current leads voltage by 90°

Capacitors in parallel $C_{eq} = \Sigma C_i$

Capacitor in series
$$\frac{1}{C_{eq}} = \Sigma \frac{1}{C_i}$$

Inductor
$$v = L \frac{di}{dt} \qquad i = \frac{1}{L} \int_{t=t_0}^{t} v(t) dt + i(t_0)$$

$$P = iv \quad w = \frac{1}{2}Li^2$$

Transient analysis for first order RL circuits, general solution

$$v(t) = V_0 e^{-\frac{t}{\tau}}$$

$$t \ge 0^+$$

$$i(t) = I_F + (I_0 - I_F)e^{-\frac{t}{\tau}}$$

$$t \ge 0$$

$$\tau = \frac{L}{R}$$

$$i(0^-) = i(0) = i(0^+) = I_0$$

Sinusoidal Steady State Analysis
$$\tilde{V}=Z\tilde{I}$$
 $Z=i\omega L$

$$i(t) = I_m \cos(\omega t) \qquad v(t) = V_m \cos(\omega t + 90^\circ)$$

Current lags voltage by 90° Inductors in parallel $\frac{1}{L_{eq}} = \sum_{l} \frac{1}{L_{l}}$

Inductors in series $L_{eq} = \Sigma L$

Phasor Transform

$$v(t) = V_m \cos(\omega t + \theta_v) \rightarrow \tilde{V} = V_m \angle \theta_v = V_m e^{j\theta_v}$$

Source Transformation

Sampling and Quantization

Sampling rate $f_{\mathcal{S}} \geq 2f_{max}$, minimum sampling rate is called the Nyquist rate

 $N = number\ of\ bits,\ L = number\ of\ quantization\ Levels$

 $\Delta = quantization step, q_e = quantization error$

 $V_{FS} = full \ scale \ range \ of \ the \ analog \ to \ digital \ converter, A/D$

For a digital system of N bits, the number of discrete levels $L=2^N$

Quantization step $\Delta = \frac{V_{FS}}{I} = \frac{V_{FS}}{2^N}$

 V_{FS} is the full scale range of A/D $V_{FS} = V_{max} - V_{min}$ V_{max} is the maximum allowed input level for A/D

 V_{min} is the minimum allowed input level for A/D

Quantization error $q_e \leq \frac{\Delta}{2}$ if signal is within A/D range

If the signal exceeds the A/D full scale range, the error will be given by

$$q_e = \left(V_{min} + \frac{\Delta}{2}\right) - V_{signal}$$
 for $V_{signal} < V_{min}$

Ideal Op-Amps

- $i_n = 0, i_p = 0$ $v_n = v_p$
- Infinite resistance looking into the inverting or non-inverting terminal
- Infinite bandwidth
- For linear mode of operation $V_{cc}^- \leq v_0 \leq V_{cc}^+$

Transfer Functions and the frequency response of linear systems

$$H(j\omega) = \frac{V_o}{V_{in}}$$

$$v(t) = V_m \cos(\omega t + \theta_v) \rightarrow \tilde{V} = V_m \angle \theta_v = V_m e^{j\theta_v} \qquad v_{in}(t) = \underbrace{A\cos(\omega_0 t)}_{H(j\omega_0)} \underbrace{v_o(t) = A|H(j\omega_0)|\cos(\omega_0 t + \phi)}_{H(j\omega_0) = |H(j\omega_0)| < \phi(\omega_0)}$$