

1 Principal Schematic for HTPA32x32d:

2 Pin Assignment-Bottom View:

Figure 1: pin-allocation

Pin	Symbol	Description
1	SCL	Digital I/O, Open Drain, 100k PU, Serial Clock
2	VDD	Positive supply voltage
3	VSS	Negative supply voltage / Ground (0V) (connected to housing)
4	SDA	Digital I/O, Open Drain, 100k PU, Serial Data

Thermopile Array With Lens Optics Rev.19: 2018.01.10 Schnorr/Lupp

Optical Orientation:

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

4 Order Code Example

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

5 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 4 blocks. The readout order is shown below for the different blocks.

Block	0 (top)
Block	1 (top)
Block	2 (top)
Block	3 (top)
Block 3	(bottom)
Block 2	(bottom)
Block 1	(bottom)
Block 0	(bottom)

Whenever a conversion is started the Block x of the top and bottom half are measured at the same time. Each block consists of 128 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

The electrical offsets are sampled in parallel for the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by sending the command for the BLIND bit during the start command, see 8.3.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Datasheet HTPA32x32dR1L3.6/0.9HiC[Si] Page 5 of 22

HTPA32x32dR1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

Characteristics:

6.1 Common Specifications:

Technology n-poly/p-poly Si **Element Resistance** approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant Digital Interface I²C **Analog Output** No

selectable Clock 1 to 13 MHz **EEPROM** size 64 kBit

Pitch 90 µm 44 µm Absorber size Max. Framerate 60 Hz

(complete frame with maximum I2C and sensor clock speed and reduced ADC resolution)

1024 sensitive elements

6.2 Optical characteristics:

Focal length: 3.6 mm ("L" equals the focal length of the lens)

F-Number:

Field of view: 43 x 43 deg

Lens coating: AR-Coating; average reflectance per surface

< 3% for $8\mu m < \lambda < 11.5 \mu m$

Environment acc. for MIL-C-48497

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.19: 2018.01.10 Schnorr/Lupp

6.3 Electric Specifications:

Absolute Maximum Ratings:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.3		3.6	V
Voltage at All inputs and outputs	$V_{\rm IO}$		-0.3		V _{DD} +0.3	V
Storage Temperature	T _{STG}		-40		85	Deg. C

Operating Conditions:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		5.0	5.5	6.4	mA
Supply Current (sensor in idle state)	I_{DD}		tbd	5.2	tbd	mA
Standby Current (sensor in sleep state)	I_{SBY}		2.0	2.1	2.5	μΑ
Operation Temperature	T_A		-20		65	Deg. C
ESD-Protection		Human body model	2.0			kV
		100pF + 1k5Ohm	2.0			K v

Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input	•	•	•	•	•	
Internal Clock frequency	F _{CLK}		1	5	13	MHz
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm
Bias current	I _{BIAS}		1	3	13	μΑ
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ
Input voltage high	V_{IH}		$0.7 \mathrm{xV}_{\mathrm{DD}}$			V
Input voltage low	V_{IL}				$0.3xV_{DD}$	V
PTAT	•				•	•
Temperature range			TBD		TBD	Deg. C
PTAT gradient			170	174	178	K/V

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F _{CHP}			20		kHz
Preamplifier Noise	N_{PA}	at 20 kHz		72		nV/HZ ^{1/2}
Frame rate (Full Array)	FR1		2	9	60	Hz
Frame rate (Quarter Array)	FR4		8	36	240	HZ
ADC pos. Reference	V_{REFP}	REF_CAL 00		1.529		
		REF_CAL 01		1.442		V
		REF_CAL 10		1.355		'
		REF_CAL 11		1.268		
ADC neg. Reference	V_{REFN}	REF_CAL 00		0.850		
		REF_CAL 01		0.901		V
		REF_CAL 10		0.968		ľ
		REF_CAL 11]	1.056		
ADC resolution	ADC _{LSB}	at 16 Bit	6.5		20.7	μV

7 I²C Timings HTPA32x32d:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
I ² C clock frequency	F _{CLK}			400	1000	kHz
low pulse duration	T _{CLK,lo}		0.50			μs
high pulse duration	T _{CLK,hi}		0.26			μs
data set up time	T _{SU,data}		0.05			μs
data hold time	T _{hd,data}		0.00			μs
start setup time	T _{SU,start}		0.26			μs
start hold time	T _{hd,start}		0.26			μs
stop setup time	$T_{SU,stop}$		0.26			μs
stop hold time	T _{hd,stop}		0.26			μs
time between	T _{buf}		0.50			μs
STOP / START						

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

I²C Communication:

The chip uses the 7-bit I²C address 0x1A for configuration and sensor data and the 7-bit I²C address 0x50 to access the internal EEPROM. The address byte is followed by a W/R bit and an 8-bit command.

8.1 Write Command:

In case of a write access to an internal register the command is followed by the data byte. The chip acknowledges each byte with a low active ACK bit.

8.2 Read Command:

To read data from the chip first the address and command must be sent. After the last ACK a new start-bit (repeated start) and the address with a set read-flag initiates the read sequence. There can be bytes read as many as required. The last byte must be denoted by a notacknowledge. The shown example below can be used e.g. to get the status register.

8.3 Sensor Commands:

The sensor has several registers that can be written and read, they are listed below.

Configuration register (write only)

Addr / CMD	0x1A (7 Bit!) / 0x01								
Config Reg	7	6	5	4	3	2	1	0	
Name	RFU		BLOCK		START	VDD_MEAS	BLIND	WAKEUP	
Default	0	0	0	0	0	0	0	0	

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD_MEAS bit is set the VDD voltage is measured instead of the PTAT value. RFU means reserved for future use and can be subject to change.

Ctatus Danistan (mand andri)

Status Register (read omy)											
Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x02									
Status Reg	7	6	5	4	3	2	1	0			
Name	RI	FU	BLC	OCK	RFU	VDD_MEAS	BLIND	EOC			
Default	0	0	0	0	0	0	0	0			

If the EOC flag is set a previous started conversion has been finished.

HEIMANN Sensor GmbH Contact / Customer Support Internet Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

Trim Register 1 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)3					
Trim Reg 1	7	6	5	4	3	2	1	0
Name	RI	FU	REF_	CAL	MBIT TRIM			
Default	0	0	1	0	1	1	0	0

REF_CAL: selectable amplification, see 6.3 for more detail

MBIT TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution (Default: m=12)

Trim Register 2 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x04							
Trim Reg 2	7	6	5	4	3	2	1	0	
Name		RFU		BIAS TRIM TOP					
Default	0	0	0	0	0	1	0	1	

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 3 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x05							
Trim Reg 3	7	6	5	4	3	2	1	0	
Name	RFU			BIAS TRIM BOT					
Default	0	0	0	0	0	1	0	1	

BIAS_TRIM_BOT: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 4 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)6					
Trim Reg 4	7	6	5	4	3	2	1	0
Name	RF	U			CLK '	TRIM		
Default	0	0	0	1	0	1	0	1

CLK_TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

(Default: 5MHz)

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{GLV}} \approx 27 ms @ 5MHz$$

Trim Register 5 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	7					
Trim Reg 5	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM T	OP	
Default	0	0	0	0	1	1	0	0

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Datasheet HTPA32x32dR1L3.6/0.9HiC[Si] Page 10 of 22

HTPA32x32dR1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

Trim Register 6 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)8					
Trim Reg 6	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM E	BOT	,
Default	0	0	0	0	1	1	0	0

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Trim Register 7 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)9					
Trim Reg 7	7	6	5	4	3	2	1	0
Name		PU SDA TRIM PU SCL TRIM						
Default	1	0	0	0	1	0	0	0

PU_SDA_TRIM: select internal pull up resistor on SDA (Default: 100kOhm)
PU_SCL_TRIM: select internal pull up resistor on SCL (Default: 100kOhm)

Read Data 1 Command (Top Half of Array)

	(- 1	F ===== ==============================							
Addr / CMD	0x1A (7 H	0x1A (7 Bit!) / 0x0A							
Read Data	7	6	5	4	3	2	1	0	
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB							
3. Byte / 4. Byte		Pixel (0+BLOCK*128) MSB / LSB							
5. Byte / 6. Byte		Pixel (1+BLOCK*128) MSB / LSB							
257. Byte / 258. Byte			Pixel (12'	7+BLOCK	*128) M	SB / LSB			

Read Data 2 Command (Bottom Half of Array)

Addr / CMD	0x1A (7 F	3it!) / 0x()B							
Read Data	7	6	5	4	3	2	1	0		
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB								
3. Byte / 4. Byte		Pixel (992-BLOCK*128) MSB / LSB								
5. Byte / 6. Byte		Pixel (993-BLOCK*128) MSB / LSB								
•••										
65. Byte / 66. Byte		Pixel (1023-BLOCK*128) MSB / LSB								
67. Byte / 68. Byte		Pixel (960-BLOCK*128) MSB / LSB								
69. Byte / 70. Byte			Pixel (96	1-BLOCK	*128) M	SB / LSB				
•••										
129. Byte / 130. Byte			Pixel (99	1-BLOCK	*128) M	SB / LSB				
131. Byte / 132. Byte		Pixel (928-BLOCK*128) MSB / LSB								
•••										
257. Byte / 258. Byte			Pixel (92	7-BLOCK	*128) M	SB / LSB				

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

[&]quot;1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Datasheet HTPA32x32dR1L3.6/0.9HiC[Si] Page 11 of 22

HTPA32x32dR1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Read Data electrical offsets (Top Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0A								
Read Data	7	6	5	4	3	2	1	0		
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB								
3. Byte / 4. Byte		electrical offset (0) MSB / LSB								
5. Byte / 6. Byte		electrical offset (1) MSB / LSB								
257. Byte / 258. Byte		electrical offset (127) MSB / LSB								

Read Data electrical offsets (Bottom Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0B	• ,						
Read Data	7	6	5	4	3	2	1		0
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB							
3. Byte / 4. Byte		electrical offset (224) MSB / LSB							
5. Byte / 6. Byte		electrical offset (225) MSB / LSB							
				• •					
65. Byte / 66. Byte			electr	ical offset (255) MSB	/ LSB			
67. Byte / 68. Byte			electr	ical offset (192) MSB	/ LSB			
257. Byte / 258. Byte		electrical offset (159) MSB / LSB							

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

Depending on the setting of VDD_MEAS the PTAT or the VDD is transmitted.

8.4 EEPROM communication

The built-in EEPROM (24AA64 from Microchip) consists of 8 blocks of 1K x 8-bit. The chip select of the EEPROM is set to 000 (A2 to A0). For further information please see the corresponding datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/21189f.pdf

Datasheet HTPA32x32dR1L3.6/0.9HiC[Si] Page 12 of 22

HTPA32x32dR1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

8.5 I²C Example Sequences – Init and Read Thermopile Array

(There should be a delay of at least 5 ms between the write of each Configuration Register)

	ADDR	W/R	CONFIG_REG	WAKEUP	
S	0x1A	0	0x01	0x01	P

	ADDR	W/R	TRIM_REG1	MBIT_TRIM	
S	0x1A	0	0x03	0x0C	P

	ADDR	W/R	TRIM_REG2	BIAS_TRIML	
S	0x1A	0	0x04	0x0C	P

	ADDR	W/R	TRIM_REG3	BIAS_TRIMR	
S	0x1A	0	0x05	0x0C	P

	ADDR	W/R	TRIM_REG4	CLK_TRIM	
S	0x1A	0	0x06	0x14	P

	ADDR	W/R	TRIM_REG5	BPA_TRIML	
S	0x1A	0	0x07	0x0C	P

	ADDR	W/R	TRIM_REG6	BPA_TRIMR	
S	0x1A	0	0x08	0x0C	P

	ADDR	W/R	TRIM_REG7	PU_TRIM	
S	0x1A	0	0x09	0x88	P

	ADDR	W/R	CONFIG_REG	START WAKEUP	
S	0x1A	0	0x01	0x09	P

I		ADDR	W/R	STATUS_REG		ADDR	W/R	STATUS	
	S	0x1A	0	0x02	Sr	0x1A	1	??	P
7	Wait 3	30 ms							

TT art s	50 III5							
	ADDR	W/R	STATUS_REG		ADDR	W/R	STATUS	
S	0x1A	0	0x02	Sr	0x1A	1	??	P

	ADDR	W/R	READ_DATA 1		ADDR	W/R	PTAT1 MSB	PTAT1 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB	
S	0x1A	0	0x0A	Sr	0x1A	1	??	??	??	??	 ??	??	P
	ADDR	W/R	READ_DATA 2		ADDR	W/R	PTAT2 MSB	PTAT2 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB	
S	0x1A	0	0x0B	Sr	0x1A	1	??	??	??	??	 ??	??	P

		ADDR	W/R	CONFIG_REG	SLEEP	
ſ	S	0x1A	0	0x01	0x00	Р

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

9 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

32x32d	0x00	0x01	0x02	0x03	0x04		0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x0000	OX OC	-	in [float]	олоз	ONO 1	-	ax [float]	олот	gradScale	UNUS	UNO/ t	-	it unsigned	epsilon	ONOL	O/O/
0x0010									0		MBIT(calib	BIAS(calib)			PU(calib)	
0x0020			Arraytype				Vdd	Calib			i i	<u> </u>				
0x0030						PTAT-gra	dient (float)			PTAT-off	set (float)					
0x0040															VddScGrad	VddScOff
0x0050					GlobalOff	Glob	alGain									
0x0060	MBIT(user)	BIAS(user)	CLK(user)	BPA(user)	PU(user)											
0x0070		DeviceID													NrOfDefPix	
0x0080																
0x0090							DeadPi	xAdr as 16	bit unsigne	ed values						
0x00A0								D 10								
0x00B0				Decilo	Contract.			DeadP	'IXMask							
0x00C0 0x00D0				DeadP	ixMask							tree	to use			
UXUUDU								free t	0.1100							
 0x0330								1166 1	.o use							
0x0330																
						V	ddCompG	radii stored	as 16 bit	signed valu	ies					
0x0530								,								
0x0540																
						\	/ddComp(Offij stored a	as 16 bit si	gned value	es					
0x0730										•						
0x0740																
							ThGradij	stored as 1	16 bit sign	ed values						
0x0F30																
0x0F40																
		ThOffsetij stored as 16 bit signed values														
0x1730																
0x1740										t t						
							Pij stor	ed as 16 b	it unsigned	values						
0x1F30																

All values are stored as unsigned 8 bit values unless they are specified otherwise. The little endian format is used for larger values. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 8.3 on how to set them).

MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user. The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code. GlobalOff is stored as an 8 bit signed value, GlobalGain and VddCalib are both stored as 16 bit unsigned.

VddCalib is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

top half

ThGrad_{0,0} \rightarrow Pixel 0 ThGrad_{0,1} \rightarrow Pixel 1 ... ThGrad_{0,31} \rightarrow Pixel 31 ThGrad₁₀ \rightarrow Pixel 32 ThGrad₁₁ \rightarrow Pixel 33 ... ThGrad₁₃₁ \rightarrow Pixel 63

ThGrad_{15,0} \rightarrow Pixel 480 ThGrad_{15,1} \rightarrow Pixel 481 ThGrad₁5,31→Pixel 511 ThGrad_{16,0} → Pixel 992 ThGrad_{16,1} → Pixel 993 ThGrad_{16,3} → Pixel 102 ThGrad_{17.0} → Pixel 960 ThGrad_{17.1} → Pixel 961 ThGrad_{17.31}→Pixel 991

ThGrad_{31,0} \rightarrow Pixel 512 ThGrad_{31,1} \rightarrow Pixel 513. ThGrad₃₁,₃1→Pixel 543

The order of $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ is similar to the electrical Offsets and have to be used block by block.

VddCompGrad_{0,0} → Pixel 0 VddCompGrad₀,1 → Pixel 1 VddCompGrad₀,31 → Pixel 31 VddCompGrad₁0 → Pixel 32 VddCompGrad₁₁ → Pixel 33 VddCompGrad₁,31 → Pixel 63 VddCompGrad_{2,0} → Pixel 64 VddCompGrad_{2,1} → Pixel 65 VddCompGrad₂,₃1 → Pixel 95 VddCompGrad_{3,0} → Pixel 96 VddCompGrad_{0,0} → Pixel 128 VddCompGrad₃,1 → Pixel 97 VddCompGrad₀,1 → Pixel 129 VddCompGrad_{3,31} → Pixel 127 VddCompGrad_{0,31} → Pixel 159

ValdCompCrod > D: 1 100	VddCompCrod > D: -1 404	VddCompCrod Did 544	
VddCompGrad₃,0 → Pixel 480	VddCompGrad₃,1 → Pixel 481	VddCompGrad₃,₃1 → Pixel 511	
VddCompGrad₄,₀ → Pixel 992	VddCompGrad₄,₁ → Pixel 993	VddCompGrad₄,₃1 → Pixel 1023	
VddCompGrad₅, → Pixel 960	VddCompGrad₅,1 → Pixel 961	VddCompGrad₅,31 → Pixel 991	
VddCompGrad _{6,0} → Pixel 928	VddCompGrad _{6,1} → Pixel 929	VddCompGrad _{6,31} → Pixel 959	half
VddCompGrad _{7,0} → Pixel 896	VddCompGrad _{7,1} → Pixel 897	VddCompGrad _{7,31} → Pixel 927	
VddCompGrad₄,0 → Pixel 864	VddCompGrad₄,₁ → Pixel 865	VddCompGrad₄,31 → Pixel 895	bottom
			Ħ
			ă

9.1 Ambient Temperature:

VddCompGrad_{4,0} → Pixel 512 VddCompGrad_{4,1} → Pixel 513

The ambient temperature (Ta) is calculated from the average measured PTAT value, the PTAT_{gradient} and the PTAT_{offset}.

(Value is given back in dK) $Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$

where:

PTAT_{gradient} is the gradient of the PTAT stored in the EEPROM as a float value is the offset of the PTAT stored in the EEPROM as a float value $PTAT_{offset}$

is the average measured PTAT value

9.2 Thermal Offset:

The thermal offset of the sensor needs to be substracted for each pixel to compensate for any thermal drifts.

HEIMANN Sensor GmbH Contact / Customer Support Internet Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 www.heimannsensor.com D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row (i) and column (j) of the pixel

 V_{ii_Comp} is the thermal offset compensated voltage

 V_{ii} is the raw pixel data (digital), readout from the RAM

ThGrad_{ij} is the thermal gradient, stored in the EEPROM from 0x740 to 0xF3FThOffset_{ij} is the realism and finite the result of the EEPROM from 0xF40 to 0x173F

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

9.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a substraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ij_Comp} *= V_{ij_Comp} - elOffset[(j+i\cdot32):128]$$

and the bottom half analogue with this formula:

$$V_{ij_Comp} *= V_{ij_Comp} - elOffset[(j+i\cdot32):128+128]$$

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 V_{ii_Comp} * is the thermal and electrical offset compensated voltage

 V_{ij_Comp} is the thermal offset compensated voltage elOffset [ij] is the electrical offset belonging to Pixel ij

i:128 is the rest of the integer division of i by 128 (e.g. 130:128=2)

Please see chapter 5 for the serial order.

9.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like $PTAT_{av}$).

The compensation for the top half is done by using the following formula:

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \underbrace{\left(\frac{VddCompGrad[(j+i\cdot32):128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot32):128] \right) \cdot \left(Vdd - VddCalib \right)}_{2^{VddScOff}}$$

and the bottom half analogue with this formula:

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.19: 2018.01.10 Schnorr/Lupp

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \underbrace{\left(\frac{VddCompGrad[(j+i\cdot32):128+128]\cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot32):128+128]\right)\cdot \left(Vdd - VddCalib\right)}_{2^{VddScOff}}$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ij_VDDComp}$ is the Vdd compensated voltage

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij VddCompOff[ij] is the VddComp offset belonging to Pixel ij

i:128 is the rest of the integer division of i by 128 (e.g. 130:128=2) *Vdd* is the average measured supply voltage of the sensor in Digits

VddCalib is the supply voltage during calibration stored in the EEPROM 0x26 & 0x27

VddScGrad is a scaling coefficient and stored in the EEPROM VddScOff is a scaling coefficient and stored in the EEPROM

9.5 Object Temperature:

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ij} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot \text{PCSCALEVAL}}{PixC_{ij}}$$

where:

 V_{ij_PixC} is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to $1 \cdot 10^8$

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 <u>www.heimannsensor.com</u> D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 <u>www.heimannsensor.com</u> mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.13: 2017.01.04 Schnorr

9.6 Example calculation:

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8} = 38152 Digits$$

$$PTAT_{gradient} = 0.0211 \, dK / Digit$$

$$PTAT_{offset} = 2195.0 dK$$

$$V_{00} = 34435 \ Digits$$

$$elOffset[0] = 34240$$

$$gradScale = 24$$

$$ThGrad_{00} = 11137$$

$$\xrightarrow{\text{sign check}} 11137$$

$$ThOffset_{00} = 65506$$

$$\xrightarrow{signcheck}$$
 -30

$$Vdd = 35000$$

$$VddCalib = 33942$$

$$VddCompGrad[0] = 10356$$
 -

$$\xrightarrow{ign\,ch\,eck}$$
 10356

$$VddCompOff[0] = 51390$$

$$\xrightarrow{eck}$$
 -14146

$$VddScGrad = 16$$

$$VddScOff = 23$$

$$PixC_{00} = 1.1 \cdot 10^8$$

$$PCSCALEVAL = 1.10^{8}$$

Calculation of ambient temperature:

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset} = 38152 \cdot 0.0211 + 2195.0 \ dK = 3000 \ dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{00} = 34435 - \frac{11137 \cdot 38152}{2^{15}} - (-30) = 34439$$

Compensation of electrical offset:

$$V_{00_Comp}$$
* = V_{00_Comp} - $elOffset[0]$ = 34439 - 34240 = 199

Compensation of supply voltage:

$$V_{ij_VDDComp} = V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right) \cdot \left(Vdd - VddCalib\right)}{2^{VddScOff}}$$

$$=199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942\right)}{2^{23}} = 199 - (-1) = 200$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Datasheet HTPA32x32dR1L3.6/0.9 Page 18 of 22

HTPA32x32d1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics

Rev.13: 2017.01.04 Schnorr

Example look-up table:

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{200 \cdot 1 \cdot 10^8}{1.1 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of 3941 dK = 120.9 °C.

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

Thermopile Array With Lens Optics

Rev.13: 2017.01.04 Schnorr

9.7 Pixel Masking

A maximum of 5 defect Pixels are allowed on the complete array, this means that at least 99.5 % of the Pixels are working correctly. The amount of defect Pixels is given in the EEPROM at address 0x007F and is named NrOfDefPix. DeadPixAdr is the address of the defect Pixels and *DeadPixMask* determines the neighbours that should be used for masking the pixel. A simple averaging of all selected nearest neighbours is done to overwrite the temperature value of these Pixel.

The order of the top and bottom half is the same as the readout order that is stated in 5. The neighbours to use is given in a binary format and the order is shown in the overview below in decimal and binary values for the top and bottom half.

top half

128	1	2
64	DeadPix	4
32	16	8

0b1000 0000	0b0000 0001	0b0000 0010		
0b0100 0000	DeadPix	0b0000 0100		
0b0010 0000	0b0001 0000	0b0000 1000		

bottom half

32	16	8
64	DeadPix	4
128	1	2

0b0010 0000	0b0001 0000	0b0000 1000 0b0000 0100	
0b0100 0000	DeadPix		
0b1000 0000	0b0000 0001	0b0000 0010	

Example values for the masking:

$$NrOfDefPix = 0x03$$

 $DeadPixAdr[0] = 0x000F \rightarrow Pixel 15$

 $DeadPixAdr[1] = 0x012C \rightarrow Pixel 300$

 $DeadPixAdr[2] = 0x0295 \rightarrow Pixel 661$

 $DeadPixMask[0] = 0x7C \rightarrow 0b01111100 \text{ (top)}$

 $DeadPixMask[1] = 0x8F \rightarrow 0b10001111 (top)$

 $DeadPixMask[2] = 0xFE \rightarrow 0b111111110 (bot)$

According to the sample values 3 Pixels are defect and need to be interpolated. 2 Pixels are on the top and 1 Pixel on the bottom half. Assuming that the neighbouring Pixels are having the temperature data stated below and the green marked cells are used for averaging (according to DeadPixMask) then the interpolated temperature will be the following:

Pixel
$$15 = \frac{3007 + 3008 + 3008 + 3011 + 3009}{5} dK = \frac{15043}{5} dK \approx 3009 dK$$

Pixel $300 = \frac{3010 + 3012 + 3005 + 3008 + 3009}{5} dK = \frac{15044}{5} dK \approx 3009 dK$
Pixel $661 = \frac{3010 + 3012 + 3005 + 3007 + 3008 + 3008 + 3009}{7} dK = \frac{21059}{7} dK \approx 3008 dK$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Datasheet HTPA32x32dR1L3.6/0.9 Page 20 of 22

HTPA32x32d1L3.6/0.9HiC[Si]

Thermopile Array With Lens Optics Rev.13: 2017.01.04 Schnorr

All values are given in dK

Pixel 15	3008
3011	3009
	Pixel 15 3011

3010	3012	3005
3007	Pixel 300	3008
3008	3011	3009

3010	3012	3005	
3007	Pixel 661	3008	
3008	3011	3009	

Pixel 14	Pixel 15	Pixel 16
Pixel 46	Pixel 47	Pixel 48

Pixel 267	Pixel 268	Pixel 269	
Pixel 299	Pixel 300	Pixel 301	
Pixel 331	Pixel 332	Pixel 333	

Pixel 628	Pixel 629	Pixel 630	
Pixel 660	Pixel 661	Pixel 662	
Pixel 692	Pixel 693	Pixel 694	

Thermopile Array With Lens Optics Rev.13: 2017.01.04 Schnorr

9.8 Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an exemplary data for one optics.

Ta[dK]	2782	2882	2982	3082	ptics.	3282	3382
-512	_			1295	1742	2005	2202
-448 -384	\perp Tc	in d	K	1848 2156	2094 2340	2284 2496	2442 2634
-320				2381	2534	2671	2797
-256 -192	2042 2287	2244 2445	2414 2587	2562 2717	2697 2839	2822 2954	2938 3065
-128	2481	2612	2735	2852	2964	3073	3180
-64 0	2642 2782	2755 2882	2865 2982	2972 3082	3078 3182	3182 3282	3285 3382
64	2906	2996	3089	3183	3278	3375	3473
128 192	3019 3121	3101 3197	3187 3278	3276 3363	3368 3452	3462 3544	3558 3638
256	3216	3286	3363	3445	3531	3621	3715
320 384	3305 3387	3370 3449	3443 3519	3522 3595	3606 3677	3695 3764	3787
448	3465	3524	3590	3664	3745	3831	3922
512 576	3539 3609	3595 3662	3659 3724	3731 3794	3810 3872	3895 3957	3986 4047
640	3676	3727	3787	3855	3932	4016	4106
704 768	3740 3802	3788 3848	3847 3904	3914 3971	3990 4046	4073 4128	4163 4218
832 896	3861 3918	3905 3960	3960 4014	4025 4078	4100 4152	4182 4233	4271
960	3918	4014	4066	4129	4152	4233 4284	4322
1024 1088	4026 4077	4065 4115	4117 4166	4179 4227	4251 4299	4332 4380	4421
1152	4127	4164	4213	4227	4299	4426	4515
1216 1280	4175 4222	4211	4260 4305	4320	4391 4435	4471 4515	4560 4604
1344	4268	4257 4302	4349	4364 4408	4435	4515	4647
1408 1472	4312	4345 4388	4391	4450 4491	4520	4600 4641	4689
1536	4355 4398	4429	4433 4474	4532	4561 4601	4681	4730 4770
1600 1664	4439 4480	4470 4509	4514 4553	4571 4610	4640 4679	4720 4758	4809 4848
1728	4519	4548	4591	4648	4716	4796	4885
1792 1856	4558 4595	4586 4623	4629 4666	4685 4721	4753 4790	4833 4869	4922 4959
1920	4633	4660	4702	4757	4825	4905	4995
1984 2048	4669 4705	4696 4731	4737 4772	4792 4826	4860 4894	4940 4974	5030 5064
2112	4740	4765	4806	4860	4928	5008	5098
2176 2240	4774 4808	4799 4832	4839 4872	4894 4926	4961 4994	5041 5074	5131 5164
2304	4841	4865	4904	4958	5026	5106	5197
2368 2432	4873 4906	4897 4929	4936 4968	4990 5021	5058 5089	5137 5169	5228 5260
2496	4937	4960	4998	5052	5119	5199	5291
2560 2624	4968 4999	4991 5021	5029 5059	5082 5112	5149 5179	5230 5259	5321 5351
2688	5029	5050	5088	5141	5208	5289	5381
2752 2816	5059 5088	5080 5109	5117 5146	5170 5199	5237 5266	5318 5346	5410 5439
2880	5117	5137	5174	5227	5294	5375	5467
2944 3008	5145 5173	5165 5193	5202 5230	5255 5282	5322 5349	5402 5430	5495 5523
3072	5201	5220	5257	5309	5376	5457	5550
3136 3200	5228 5255	5247 5274	5284 5310	5336 5362	5403 5429	5484 5510	5577 5604
3264	5282	5300	5336	5388	5455	5537	5630
3328 3392	5308 5334	5326 5352	5362 5388	5414 5439	5481 5507	5563 5588	5656 5682
3456	5360	5377	5413	5465	5532	5613	5708
3520 3584	5385 5410	5403 5427	5438 5462	5489 5514	5557 5581	5638 5663	5733 5758
3648	5435	5452	5487	5538	5606	5688	5783
3712 3776	5459 5483	5476 5500	5511 5535	5562 5586	5630 5654	5712 5736	5807 5831
3840	5507	5524	5558	5610	5677	5760	5855
3904 3968	5531 5554	5547 5571	5582 5605	5633 5656	5701 5724	5783 5806	5879 5902
4032	5578	5594	5628	5679	5747	5829	5925
4096 4160	5601 5623	5616 5639	5650 5673	5702 5724	5769 5792	5852 5875	5948 5971
4224	5646	5661	5695	5746	5814	5897 5919	5994
4288 4352	5668 5690	5683 5705	5717 5739	5768 5790	5836 5858	5919 5941	6038
4416	5712	5727	5760	5811	5879	5963	6060
4480 4544	5734 5755	5748 5770	5782 5803	5833 5854	5901 5922	5984 6006	6082
4608	5776	5791	5824	5875	5943	6027	6125
4672 4736	5797 5818	5811 5832	5844 5865	5896 5916	5964 5984	6048 6069	6146 6167
4800 4864	5839	5853	5886	5937	6005	6089	6188
4928	5859 5880	5873 5893	5906 5926	5957 5977	6025 6045	6110 6130	6229
4992 5056	5900	5913	5946	5997 6017	6065	6150	6249
5120	5920 5940	5933 5953	5965 5985	6036	6085 6105	6170 6190	6269 6289
5184 5248	5959	5972	6005	6056	6124	6209 6229	6309
5312	5979 5998	5991 6011	6024 6043	6075 6094	6144 6163	6248	6329 6348
5376 5440	6017 6036	6030 6049	6062 6081	6113 6132	6182 6201	6267 6286	6368
5504	6055	6067	6099	6150	6220	6305	6406
5568 5632	6074 6092	6086 6104	6118 6136	6169 6187	6238 6257	6324 6343	6425 6444
5696	6111	6123	6155	6206	6275	6361	6462
5760 5824	6129 6147	6141 6159	6173 6191	6224	6293	6379	648°
5888	6165	6177	6209	6242 6260	6311 6329	6398 6416	6517
5952	6183	6195	6226	6277	6347	6434	6536
6016 6080	6201 6219	6212 6230	6244 6261	6295 6313	6365 6382	6451 6469	6554 6571
6144	6236	6247 6264	6279	6330	6400	6487 6504	6589
6208 6272	6253 6271	6282	6296 6313	6347 6364	6417 6434	6504 6522	6607
6336	6288	6299	6330 6347	6381	6451	6539	6642
6400 6464	6305 6322	6316 6332	6347 6364	6398 6415	6468 6485	6556 6573	6659 6676
6528	6339	6349	6380	6432	6502	6590	6693
6592 6656	6355 6372	6366 6382	6397 6413	6448 6465	6519 6535	6607 6623	6710
6720	6388	6399	6430	6481	6552	6640	6744
					6569		

6848	6421	6431	6462	6514	6584	6673	6777
6912	6437	6447	6478	6530	6600	6689	6794
6976	6453	6463	6494	6546	6616	6705	6810
7040	6469	6479	6510	6562	6632	6721	6826
7104	6485	6495	6526	6577	6648	6737	6842
7168	6501	6511	6542	6593	6664	6753	6858
7232	6517	6526	6557	6609	6680	6769	6874
7296	6532	6542	6573	6624	6695	6785	6890
7360	6548	6557	6588	6640	6711	6800	6906
7424	6563	6572	6603	6655	6726	6816	6922
7488	6578	6588	6618	6670	6742	6831	6937
7552	6594	6603	6634	6685	6757	6847	6953
7616	6609	6618	6649	6700	6772	6862	6968
7680	6624	6633	6664	6715	6787	6877	6984
7744	6639	6648	6678	6730	6802	6892	6999
7808	6654	6663 6677	6693	6745 6760	6817	6907	7014 7029
7872 7936	6669 6683	6692	6708 6723	6774	6832 6846	6922 6937	7029
8000	6698	6707	6737	6789	6861	6952	7059
8064	6712	6721	6752	6803	6876	6966	7074
8128 8192	6727	6735	6766	6818 6832	6890	6981 6996	7089
8256	6741 6756	6750 6764	6780 6795	6847	6905 6919	7010	7104 7118
8320	6770	6778	6809	6861	6933	7024	7133
8384	6784	6792	6823	6875	6947	7039	7147
8448 8512	6798	6806	6837	6889	6961	7053	7162
8576	6812	6820	6851	6903	6976	7067	7176
	6826	6834	6865	6917	6990	7081	7190
8640	6840	6848	6878	6931	7003	7095	7205
8704	6854	6862	6892	6944	7017	7109	7219
8768	6868	6875	6906	6958	7031	7123	7233
8832	6881	6889	6919	6972	7045	7137	7247
8896	6895	6903	6933	6985	7058	7151	7261
8960	6908	6916	6946	6999	7072	7164	7275
9024	6922	6930	6960	7012	7086	7178	7288
9088	6935	6943	6973	7026	7099	7192	7302
9152	6949	6956	6987	7039	7112	7205	7316
9216	6962	6969	7000	7052	7126	7219	7329
9280	6975	6983	7013	7065	7139	7232	7343
9344	6988	6996	7026	7079	7152	7245	7356
9408	7001	7009	7039	7092	7165	7259	7370
9472	7015	7022	7052	7105	7178	7272	7383
9536	7028	7035	7065	7118	7191	7285	7396
9600	7040	7048	7078	7130	7204	7298	7410
9664	7053	7060	7091	7143	7217	7311	7423
9728	7066	7073	7103	7156	7230	7324	7436 7449
9792	7079	7086	7116	7169	7243	7337	7449
9856	7092	7098	7129	7181	7256	7350	
9920	7104	7111	7141	7194	7268	7363	7475
9984	7117	7123	7154	7207	7281	7375	7488
10048	7129	7136	7166	7219	7294	7388	7501
10112	7142	7148	7179	7231	7306	7401	7513
10176	7154	7161	7191	7244	7318	7413	7526
10240	7166	7173	7203	7256	7331	7426	7539
10304	7179	7185	7215	7268	7343	7438	7551
10368	7191	7197	7228	7281	7356	7451	7564
10432	7203	7210	7240	7293	7368	7463	7576
10496	7215	7222	7252	7305	7380	7475	7589
10560	7227	7234	7264	7317	7392	7488	7601
10624	7239	7246	7276	7329	7404	7500	7614
10688	7251	7258	7288	7341	7416	7512	7626
10752	7263	7270	7300	7353	7428	7524	7638
10816	7275	7281	7312	7365	7440	7536	7651
10880	7287	7293	7323	7377	7452	7548	7663
10944	7299	7305	7335	7389	7464	7560	7675
11008	7311	7317	7347	7400	7476	7572	7687
11072	7322	7328	7358	7412	7488	7584	7699
11136	7334	7340	7370	7424	7499	7596	7711
11200	7346	7352	7382	7435	7511	7608	7723
11264	7357	7363	7393	7447	7523	7619	7735
11328	7369	7375	7405	7458	7534	7631	7747
11392	7380	7386	7416	7470	7546	7643	7758
11456	7392	7300	7416	7481	7557	7654	7770
11520	7403	7409	7439	7493	7569	7666	7782
11584	7414	7420	7450	7504	7580	7677	7793
11648	7426	7431	7461	7515	7592 7603	7689	7805 7817
11712 11776	7437 7448	7443 7454	7473 7484	7526 7538	7614	7700 7712	7828
11840	7459	7465	7495	7549	7625	7723	7840
11904	7471	7476	7506	7560	7637	7734	7851
11968	7482	7487	7517	7571	7648	7746	7862
12032	7493	7498	7528	7582	7659	7757	7874
12096	7504	7509	7539	7593	7670	7768	7885
12160	7515	7520	7550	7604	7681	7779	7896
12224	7526	7531	7561	7615	7692	7790	7908
12288	7536	7542	7572	7626	7703	7801	7919
12352	7547	7552	7583	7637	7714	7812	7930
12416	7558	7563	7593	7648	7725	7823	7941
12480	7569	7574	7604	7658	7736	7834	7952
12544	7580	7585	7615	7669	7746	7845	7963
12608	7590	7595	7625	7680	7757	7856	7974
12672	7601	7606	7636	7690	7768	7867	7985
12736	7612	7617	7647	7701	7779	7878	7996
12800	7622	7627	7657	7712	7789	7888	8007
12864	7633	7638	7668	7722	7800	7899	8018
12928	7643	7648	7678	7733	7810	7910	8029
12992	7654	7659	7689	7743	7821	7920	8040
13056	7664	7669	7699	7754	7832	7931	8050
13120	7675	7679	7709	7764	7842	7942	8061
13184	7685	7690	7720	7774	7852	7952	8072
13248	7695	7700	7730	7785	7863	7963	8082
13312	7706	7710	7740	7795	7873	7973	8093
13376	7716	7720	7751	7805	7884	7984	8104
13440	7726	7731	7761	7816	7894	7994	8114
13504	7736	7741	7771	7826	7904	8004	8125
13568	7746	7751	7781	7836	7914	8015	8135
13632	7757	7761	7791	7846	7925	8025	8145
13696	7767	7771	7801	7856	7935	8035	8156
13760	7777	7781	7811	7866	7945	8046	8166
13824	7787	7791	7821	7876	7955	8056	8177
13888	7797	7801	7831	7886	7965	8066	8187
13952	7807	7811	7841	7896	7975	8076	8197
14016	7817	7821	7851	7906	7985	8086	8207
14080	7827	7831	7861	7916	7995	8096	8218
14144	7836	7841	7871	7926	8005	8106	8228
14208	7846	7851	7881	7936	8015	8116	8238

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

10 Outer Dimensions:

 HEIMANN Sensor GmbH
 Contact / Customer Support

 Maria-Reiche-Str. 1
 Phone 49 (0) 6123 60 50 30

 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet