AKGEC/IQAC/QP/04

AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD Department of Applied Science & Humanities

Pre-University Test

Course: B. Tech.

Session: 2024-25

Subject: Engineering Mathematics - I Max Marks: 70

Semester: Ist

Section: (S1-S9&S11-S20)

Sub. Code: BAS103

Time: 3 hrs.

OBI	ER	em	ari	ks:

OBE Rem	arks:						111	T	To	1 10	111	112	12	14	15	16	17
O.No.	1	2	3	4	5	6	7	8.	9	10	11	12	13	14	10	10	2
	1	1	1 2	2	2	1	5	2	2	3	1	1	4	4	5	5	3
CO No.				2	3	4		1.7	15	L3	11	L4	12	1.5	L2	L5	L5
Bloom's Level	LI	L3	LI	LI	L4	L5	L4	L3	LS	13			L2	D3	ightag		

Weightage CO4: 16

Note: Answer all the sections.

A. Attempt all the parts.

$$(7 X.2 = 14)$$

- 1. If Vectors (0,1,a), (1,a,1) and (a,1,0) are Linear Dependent then find the value of a.
- 2. If A is a skew-Hermitian matrix then show that iA is Hermitian.
- 3. Find the possible percentage error in computing the Parallel resistance r of two resistances r_1 and r_2 , if it is given that error in r_1 and r_2 each is 2 %.

Section-A

4. Find asymptote in the given curve $x^2y + y = x^2$.

5. If
$$u = \left(\frac{x^2 y^2}{x + y}\right)$$
, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

6. Find
$$\Gamma\left(-\frac{3}{2}\right)$$
.

7. State Stokes's theorem.

Section-B

B. Attempt any three.

$$(3 X 7=21)$$

- 8. If $y = e^{m(\cos^{-1}x)}$ then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$ and hence evaluate $y_n(0)$.
- 9. Trace the Curve: $x^2y^2 = (a+y)^2(a^2-y^2)$
- 10. Expand $f(x, y) = e^x \cos y$ in powers of x and y up to third degree terms.
- 11. Find the value of λ for which the system of linear equations $(3\lambda 8)x + 3y + 3z = 0$, $3x + (3\lambda - 8)y + 3z = 0$ and $3x + 3y + (3\lambda - 8)z = 0$ has a non-trivial solution.
- 12. Find the characteristics equation of matrix A= 0 0 and hence compute A^{-1} . Also find the A^{8} –

$$5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$$
.

C.Attempt all the parts.

13. Attempt any one.

- (a) To Show that $\Gamma(m) \cdot \Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma(2m), m > 0$ and hence prove $\beta(m, m) = 2^{(1-2m)} \beta\left(m, \frac{1}{2}\right)$.
- (b) Change into polar coordinate and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy \ dx$. Hence so that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 14. Attempt any one. (a) Evaluate $\int_0^1 \int_{-L}^{2-y} v dx dy$ by changing order of integration.
- (b) Apply Dirchlet's integral to find volume and mass of solid generated by ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ in the first octane if density at any point is kxyz.

15. Attempt any one.

- (a) Verify Gauss divergence theorem for the function $\vec{\mathbf{F}} = (x^2 yz)\hat{\mathbf{i}} + (y^2 zx)\hat{\mathbf{j}} + (z^2 xy)\hat{\mathbf{k}}$ taken over the square $0 \le x \le 1$, $0 \le y \le 1$ and $0 \le z \le 1$.
- (b) Verify Green's theorem $\iint ((x-y)dx + (x+y)dy)$, where C is the boundary described counter clockwise of triangle with vertices (0,0), (1,0) and (1,1).

16. Attempt any one.

- (a) To show that $\frac{\mathbf{r}}{|\mathbf{r}|^3}$ is Solenoidal as well as irrotational. Also find scalar potential.
- (b) Find the directional derivative of \vec{V}^2 , where $\vec{V} = xy^2\hat{i} + y^2z\hat{j} + z^2x\hat{k}$ at point (2,0,3) in the direction of the outward normal to the surface $x^2 + y^2 + z^2 = 14$ at the point (3, 2, 1).

17. Attempt any one.

- (a) By using Lagrange's multipliers, find the maximum and minimum distance of the point (3,4,12) from the sphere whose center is origin and radius 1.
- (b) If $u^5 + v + w = x + y^2 + z^2$, $u + v^3 + w = x^2 + y + z^2$ and $u + v + w^3 = x^2 + y^2 + z$, then show that, $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \frac{1 - 4(xy + yz + zx) + 16xyz}{2 - 3(u^2 + v^2 + w^2) + 27u^2v^2w^2}.$

HoD Sign