Checkbox für die Version vom 28. Januar 2023

Die gesamte Klausur beinhaltet aktuell in Summe 116 Fragen.

Davon sind **40** Multiple Choice Fragen sowie **76** Rechen- und Textaufgaben.

Frequently asked questions (FAQ)

Was ist das hier? Im Folgenden findet sich die Sammlung *aller* Klausurfragen der Bio Data Science über *alle* Veranstaltungen, die ich an der Fakultät für Agrarwissenschaften und Landschaftsarchitektur anbiete.

Sind aber ein bisschen viele Fragen... Ja, das stimmt. Die Überlegung welche Fragen zur Veranstaltung passen obliegt dem Studierenden. Gerne stehe ich für Rückfragen bereit. Teilweise sind Fragen auch ähnlich.

Sind die Fragen fix? Ein klares Jein. Die Zahlen und die *Reihenfolge* der Aufgaben - auch im Multiple Choice Teil - werden sich ändern, da die Klausurfragen zufällig erstellt werden. Die Aufgaben*fragen* hindoch werden die gleichen Fragen bleiben.

Okay, aber woher weiß ich jetzt welche Fragen zu meiner Veranstaltung gehören? Das ist der Trick. Durch das Durchlesen und das selbstständige Sortieren der Fragen merkt man ziemlich schnell, welche Inhalte zu der Veranstaltung gehören und welche nicht. Ist also alles Teil des Lernprozesses. *Und* wenn Unsicherheiten da sind, gerne in der Wiederholungsveranstaltung - letzte Vorlesung - einfach mich fragen.

Wie sieht denn die finale Klausur aus? Die Klausur hat am Ende 10 Multiple Choice Fragen mit jeweils 2 Punkten sowie Rechen- und Textaufgaben mit in Summe ca. 60 Punkten. Ich peile daher eine Klausur mit 80 Punkten an, wobei 40 Punkte zum Bestehen der Klausur notwendig sind. Bei geteilten Veranstaltungen mit mehr als einem Dozenten ändert sich die Zusammensetzung der endgültigen Punkteanzahl!

Sind aber mehr als zehn Multiple Choice Fragen... Ja, aber es werden in der finalen Klausur nur zehn Multiple Choice Fragen sein. Ich wähle die Fragen dann zufällig aus. Ich berücksichtige natürlich die Veranstaltung und das Lernniveau.

Solange kann ich nicht warten... Dann einfach eine Mail an mich schreiben: j.kruppa@hs-onsabrueck.de

Ich versuche dann die Frage kurzfristig zu beantworten oder aber in der Vorlesung nochmal (anonym) aufzugreifen.

Matrikelnummer:	Endnote:
Vorname:	
Name:	Nicht bestanden: □

Klausurfragen der Bio Data Science

Hochschule Osnabrück

Prüfer: Prof. Dr. Jochen Kruppa Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Version vom 28. Januar 2023

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

_____ von 64 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 84 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
80.5 - 84	1,0
76 - 80	1,3
72 - 75.5	1,7
67.5 - 71.5	2,0
63.5 - 67	2,3
59.5 - 63	2,7
55 - 59	3,0
51 - 54.5	3,3
46.5 - 50.5	3,7
42 - 46	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	E	✓
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	11	13	12	23	2	2	1

• Es sind ____ von 64 Punkten erreicht worden.

Multiple Choice Aufgaben

- Es wird nie mehr als vierzig Multiple Choice Fragen geben.
- Im Laufe der Zeit werden einzelne Fragen durch andere Fragen *ersetzt*, bitte beachten Sie diesen Sachstand, wenn Sie eine *Wiederholungsklausur* im nächsten Semester schreiben.

1 Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.001, 0.02, 0.01 und 0.21. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 3e-04, 0.005, 0.0025 und 0.0525. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.004, 0.08, 0.04 und 0.84. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.004, 0.08, 0.04 und 0.84. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.004, 0.08, 0.04 und 0.84. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 3e-04, 0.005, 0.0025 und 0.0525. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen.

2 Aufgabe (2 Punkte)

Der Datensatz PlantGrowth enthält das Gewicht von Pflanzen, die unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen erzielt wurden. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.29$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.
- **B** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **C** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **D** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Das η^2 ist damit mit dem R^2 aus der linearen Regression zu vergleichen.

3 Aufgabe (2 Punkte)

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Meerschweinchen. Der Versuch wurde an 60 Schweinen durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden mit Orangensaft (OJ) oder Ascorbinsäure (VC) erhielt.

Welche Aussage ist richtig im Bezug auf eine zweifaktorielle ANOVA?

- **A** ☐ Eine leichte Interaktion ist zu erwarten. Die Geraen schneiden sich noch nicht, aber die Abstände unterscheiden sich stark.
- **B** □ Keine Interaktion ist zu erwatzen. Die Geraden der Verabreichungsmethode laufen parallel und mit ähnlichen Abständen.
- **C** ☐ Eine starke Interaktion ist zu erwarten. Die Geraden schneiden sich und die Abstände sind nicht gleichbleibend.
- **D** ☐ Keine Interaktion liegt vor. Die Geraden scheiden sich und laufen nicht parallel.
- **E** □ Eine starke Interaktion liegt vor. Die Geraden laufen parallel und schneiden sich nicht.

4 Aufgabe (2 Punkte)

Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig?

- **A** □ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese abgelehnt werden.
- **B** □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **C** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
- D ☐ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **E** □ Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.

5 Aufgabe (2 Punkte) Sie haben das abstrakte Modell $Y \sim X$ mit X als Faktor mit zwei Leveln vorliegen. Welche Aussage

über $s_1^2 = s_2^2$ ist richtig?	
A □ Es handelt sich um abhängige Beobachtungen.	
B □ Es liegt Varianzhetrogenität vor.	
C □ Es handelt sich um ein unbalanciertes Design	
D ☐ Es liegt Varianzhomogenität vor.	
E □ Es handelt sich um ein balanciertes Design.	
6 Aufgabe (2 Punkte)
Die Mindestanzahl an Beobachtungen für eine Zelle der Vierfeldertafel bei der Nutzung eine Chi-Quadrat-Testes ist	S
A □ 1 Beobachtung	
B □ 2 Beobachtungen	
C □ 10 Beobachtungen	
D □ 5 Beobachtungen	
E □ 0 Beobachtungen	
7 Aufgabe (2 Punkte)
Welche Aussage über den Korrelationskoeffizienten nach Spearman ist richtig?	
▲ ☐ Der Korrelationskoeffizienten nach Spearman wird genutzt, wenn der Korrelationskoeffizier ten zwischen -1 und 1 liegt. Dann sind die Residuen normalverteilt.	1-
B □ Der Korrelationskoeffizienten nach Spearman wird genutzt, wenn das Outcome Y normalver teilt ist. Der Korrelationskoeffizienten liegt zwischen -1 und 1.	r-
${f C}$ Der Korrelationskoeffizienten nach Spearman wird genutzt, wenn das Outcome Y normalver teilt ist. Der Korrelationskoeffizienten liegt zwischen 0 und 1.	r-
D ☐ Der Korrelationskoeffizienten nach Spearman wird genutzt, wenn das Outcome Y nicht normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen -1 und 1.	r-
E □ Der Korrelationskoeffizienten nach Spearman wird genutzt, wenn das Outcome Y nicht normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen 0 und 1.	r-
8 Aufgabe (2 Punkte)
Berechnen Sie den Mittelwert und Standardabweichung von y mit 4, 10, 12, 14 und 4.	
A □ Es ergibt sich 7.8 +/- 10.6	
B □ Es ergibt sich 8.8 +/- 4.6	
C ☐ Es ergibt sich 9.8 +/- 2.3	
D ☐ Es ergibt sich 8.8 +/- 2.3	
E □ Es ergibt sich 8.8 +/- 21.2	

9 Aufgabe (2 Punkte) Berechnen Sie den Median, das 1st Quartile sowie das 3rd Quartile von y mit 15, 32, 17, 19, 10, 13, 17, 27, 18, 38 und 63. **A** □ Es ergibt sich 18 +/- 15 **B** □ Es ergibt sich 24 [16, 33] **C** □ Es ergibt sich 18 +/- 32 **D** ☐ Es ergibt sich 18 [15, 32] **E** □ Es ergibt sich 24 +/- 15 10 Aufgabe (2 Punkte) Welche Aussage über Cook's d und Cohen's d ist richtig? A Uir nutzen Cook's d um Outlier in den Daten zu finden und Cohen's d um einen standardisierten Effektschätzer für Gruppenvergeliche zu erhalten. **B** Wir nutzen Cook's d um Outlier in den Daten zu finden und Cohen's d um einen nicht standardisierten Effektschätzer für Gruppenvergeliche zu erhalten. C Wir nutzen Cook's d um Outlier in den Daten zu finden. Cohen's d findet auch Outlier, ist aber ein veraltetetes Konzept in der Statistik. **D** Wir nutzen Cohen's d um Outlier in den Daten zu finden und Cook's d um einen standardisierten Effektschätzer für Gruppenvergeliche zu erhalten. **E** ☐ Wir nutzen Cook's d um Outlier in den Daten zu finden und Cohen's d um standardisierte Outlier für Gruppenvergeliche zu erhalten. 11 Aufgabe (2 Punkte) Die empfohlene Mindestanzahl an Beobachtungen für ein Histogramm sind... **A** □ 1 Beobachtung. **B** \square 5 und mehr Beobachtungen. **C** □ 10 Beobachtungen. **D** 2-5 Beobachtungen. **E** □ mindestens 20 Beobachtungen. 12 Aufgabe (2 Punkte) Nachdem Sie in einem Experiment die Daten D erhoben haben, berechnen Sie den Mittelwert

Nachdem Sie in einem Experiment die Daten D erhoben haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden sich nicht. Welche Aussage ist richtig?

- ▲ ☐ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
- **B** Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich keine Outlier in den Daten vor. Wir verweden den Datensatz so wie er ist.

- **C** □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor.
- **D** □ Da sich der Mittelwert und der Median unterscheiden, ist der Datensatz nicht zu verwenden. Mittelwert und Median müssen gleich sein.
- **E** □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich keine Outlier in den Daten vor.

Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der CO_2 -Konzentration $[\mu g]$ im Wasser auf das Wachstum von Wasserlinsen [kg] erhalten Sie einen β_1 Koeffizienten von 0.00001 und einen hoch signifikanten p-Wert mit $2.3 \cdot 10^{-9}$. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz?

- **A** \square Die Fallzahl ist zu hoch angesetzt. Je höher die Fallzahl ist, desto kleiner ist die Teststatistik und damit ist dann auch der p-Wert sehr klein.
- **B** \square Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der p-Wert kleiner.
- **C** \square Das Gewicht und die CO_2 -Konzentration korrelieren sehr stark, deshalb wird der β_1 Koeffizient sehr klein.
- **D** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Die Erhöhung der CO_2 -Konzentration um 1 führt nur zu einem sehr winzigen Anstieg im Gewicht der Wasserlinsen. Die Einheit muss besser gewählt werden.
- **E** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der CO_2 -Konzentration hängen zusammen.

14 Aufgabe (2 Punkte)

In dem folgenden Histogramm von n = 200 Pflanzen ist welche Verteilung mit welchen korrekten Verteilungsparametern dargestellt?

- **A** □ Eine rechtsschiefe, multivariate Normalverteilung.
- **B** \square Es handelt sich um eine Normalverteilung mit N(15, 5).

c □	Es handelt sich um eine Poisson-Verteilung mit Pois(15).
D 🗆	Eine Standardnormalverteilung mit N(0,1).
	Es handelt sich um eine Binomial-Verteilung mit Binom(10).
15	Aufgabe (2 Punkte)
Poss	schätzen zwei lineare Regressionsmodelle zur Analyse von Zähldaten. Modell 1 mit einer ion Verteilung und Modell 2 mit einer Quasi-Poisson Verteilung. Welche Aussage zu einer hätzen Overdispersion von 3.17 ist richtig?
A 🗆	Bei einer geschätzen Overdispersion höher als 1.5 ist von Overdispersion in den Daten auszugehen. Daher wird die Varianz systematisch unterschätzt, was zu höheren p-Werten führt. Daher gibt es weniger signifikante Ergebnisse als es in Wirklichkeit gibt. Daher ist das Modell 1 die bessere Wahl.
В□	Bei einer geschätzen Overdispersion höher als 1.5 ist von Overdispersion in den Daten auszugehen. Daher wird die Varianz systematisch überschätzt, was zu höheren p-Werten führt. Daher gibt es mehr signifikante Ergebnisse als es in Wirklichkeit gibt. Daher ist das Modell 1 die bessere Wahl
c 🗆	Bei einer geschätzen Overdispersion höher als 1.5 ist von keiner Overdispersion in den Daten auszugehen. Dennoch sind die p-Werte zu klein, dass diese p-Werte natürlich entstanden sein könnten. Die p-Werte müssen adjustiert werden.
D 🗆	Das vergleichen von verschiedenen Modellen muss erst über ein AlC Kriterium erfolgen. Die Abschätzung über die Overdispersion ist nicht notwendig. Die Varianzen werden später in einer ANOVA adjustiert. Die Confounder Adjustierung.
E	Bei einer geschätzen Overdispersion höher als 1.5 ist von Overdispersion in den Daten auszugehen. Daher wird die Varianz systematisch unterschätzt, was zu kleineren p-Werten führt. Daher gibt es mehr signifikante Ergebnisse als es in Wirklichkeit gibt. Daher ist das Modell 2 die bessere Wahl.
16	Aufgabe (2 Punkte)
	nem Zuchtexperiment messen wir die Ferkel verschiedener Sauen. Die Ferkel einer Muttersau daher im statistischen Sinne
A 🗆	Untereinander unabhängig. Die Ferkel sind eigenständig und benötigen keine zusätzliche Behandlung.
В□	Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss modelliert werden.
c 🗆	Untereinander abhängig, wenn die Mütter ebenfalls miteinander verwandt sind. Erst die Abhängigkeit 2. Grades wird in der Statistik modelliert.
D 🗆	Untereinander stark korreliert. Die Ferkel sind von einer Mutter und sommit miteinander korreliert. Dies wird in der Statistik jedoch meist nicht modelliert.
E	Untereinander abhängig. Die Ferkel stammen von einem Muttertier und haben vermutliche eine ähnliche Varianzstruktur.

	haben das Modell $Y \sim X$ vorliegen und wollen nun ein prädiktives Modell rechnen. Welche age ist richtig?
A 🗆	Ein prädiktives Modell möchte die Zusammenhänge von X auf Y modellieren. Hierbei geht es um die Effekte von X auf Y. Man sagt, wenn X um 1 ansteigt ändert sich Y um einen Betrag β .
В□	Ein prädiktives Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.
C 🗆	Ein prädiktives Modell schliesst grundsätzlich lineare Modell aus. Es muss ein Graph gefunden werden, der alle Punkte beinhaltet. Erst dann kann das \mathbb{R}^2 berechnet werden.
D 🗆	Ein prädiktives Modell benötigt mindestens eine Fallzahl von über 100 Beobachtungen und darf keine fehlenden Werte beinhalten. Die Varianzkomponenten müssen homogen sein.
E	Ein prädiktives Modell wird auf einem Trainingsdatensatz trainiert und anschliessend über eine explorative Datenanalyse validiert. Signifikanzen über β_l können hier nicht festgestellt werden.
18	Aufgabe (2 Punkte)
finde	ühren ein Experiment zur Behandlung von Klaueninfektionen bei Kühen durch. Bei 4 Tieren en Sie eine Erkrankung der Klauen vor und 12 Tiere sind gesund. Welche Aussage über den s ratio Effektschätzer ist richtig?
A 🗆	Es ergibt sich ein Odds ratio von 3, da es sich um ein Anteil handelt.
В□	Es ergibt sich ein Odds ratio von 0.25, da es sich um ein Anteil handelt.
c □	Es ergibt sich ein Odds ratio von 0.33, da es sich um eine Chancenverhältnis handelt.
D□	Es ergibt sich ein Odds ratio von 0.33, da es sich um ein Anteil handelt.
E	Es ergibt sich ein Odds ratio von 0.25, da es sich um eine Chancenverhältnis handelt.
19	Aufgabe (2 Punkte)
Welc	he Aussage über die nicht-parametrische Statistik ist richtig?
A 🗆	Die nicht-parametrische Statistik basiert auf Rängen. Daher gibt es auch direkt zu interpretierenden Effektschätzer.
В□	Die nicht-parametrische Statistik basiert auf dem Schätzen von Parametern aus einer festgelegten Verteilung. Daher gibt es auch direkt zu interpretierenden Effektschätzer.
c 🗆	Die nicht-parametrische Statistik basiert auf Rängen. Daher wird jeder Zahl ein Rang zugeteilt. Nur auf den Rängen wird die Auswertung gerechnet. Daher gibt es auch keinen direkt zu interpretierenden Effektschätzer.
D 🗆	Die nicht-parametrische Statistik ist ein Vorgänger der parametrischen Statistik und wurde wegen dem Mangel an Effektschätzern nicht mehr ab 1960 genutzt.
E 🗆	Die nicht-parametrische Statistik basiert auf dem Schätzen von Parametern aus einer a priori festgelegten Verteilung. Daher gibt es auch direkt zu interpretierenden Effektschätzer.

	Randomisierung von Beobachtungen bzw. Samples zu den Versuchseinheiten ist bedeutend er Versuchsplanung. Welche der folgenden Aussagen ist richtig?
A 🗆	Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
В□	Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
C 🗆	Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte.
D 🗆	Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
E	Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich.
21	Aufgabe (2 Punkte)
sche	n Sie einen Datensatz erstellen, dann ist es ratsam die Spalten und die Einträge in englir Sprache zu verfassen, wenn Sie später die Daten in \mathbf{R} auswerten wollen. Welcher folgende id ist richtig?
A 🗆	Die Spracherkennung von $oldsymbol{\mathbb{Q}}$ ist nicht in der Lage Deutsch zu verstehen.
В□	Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
C 🗆	Im Allgemeinen haben Programmiersprachen Probleme mit Umlauten und Sonderzeichen, die in der deutschen Sprache vorkommen. Eine Nutzung der englischen Sprache umgeht dieses Problem auf einfache Art.
D 🗆	Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
E	Alle Funktionen und auch Anwendungen sind in \P in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
22	Aufgabe (2 Punkte)
	der explorativen Datenanalyse (EDA) in 😱 gibt es eine richtige Abfolge von Prozessschritten, i Circle of life genannt. Wie lautet die richtige Reihenfolge für die Erstellung einer EDA?
A 🗆	Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.
В□	Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. Über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse.
c □	Wir lesen die Daten über eine generische Funktion read () ein und müssen dann die Funktion ggplot () nur noch installieren. Dann haben wir die Abbildungen als $*$.png vorliegen.

D 🗆	Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
E	Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen.
23	Aufgabe (2 Punkte)
	ner linearen Regression werden die ϵ oder Residuen geschätzt. Welcher Verteilung folgen die duen bei einer optimalen Modellierung?
A 🗆	Die Residuen sind binomialverteilt.
В□	Die Residuen sind normalverteilt mit $\mathcal{N}(0,1)$.
c □	Die Residuen folgen einer Poissonverteilung mit Pois(0).
D 🗆	Die Residuen sind normalverteilt mit $\mathcal{N}(0, s^2)$.
E 🗆	Die Residuen sind normalverteilt mit $\mathcal{N}(\bar{y}, s^2)$.
24	Aufgabe (2 Punkte)
Welc	he Aussage über das generalisierte lineare Modell (GLM) ist richtig?
A 🗆	Das GLM erlaubt auch weitere Verteilungsfamilien für das Y bzw. das Outcome in einer linearen Regression zu wählen.
В□	Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
C 🗆	Das GLM ist eine Vereinfachung des LM in R. Mit dem GLM lassen polygonale Regressionen rechnen.
D 🗆	Das GLM ist ein faktisch maschineller Lernalgorithmus, der selstständig die Verteilungsfamilie für Y wählt.
E	Das GLM erlaubt auch nicht normalverteilte Residuen in der Schätzung der Regressionsgrade.
25	Aufgabe (2 Punkte)

Sie rechnen in eine linearen Regression und erhalten folgenden QQ Plot. Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden und Korrelation ist negativ.
- **B** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.
- **C** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- ${\bf D}$ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.
- **E** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.

Sie rechnen eine linearen Regression und erhalten folgenden Residual Plot. Welche Aussage ist richtig?

A⊔	Die Annahme der normalverteilten Residuen ist erfüllt. Kein Muster ist zu erkennen und keine Outlier zu beobachten.
В□	Die Annahme der normalverteilten Residuen ist nicht erfüllt. Vereinzelte Punkte liegen oberhalb bzw. unterhalb der Geraden um die 0 Linie weiter entfernt. Ein klares Muster ist zu erkennen.
c 🗆	Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Diagonalen.
D 🗆	Die Annahme der normalverteilten Residuen ist nicht erfüllt. Es ist kein Muster zu erkennen.
E□	Die Annahme der normalverteilten Residuen ist erfüllt. Es ist ein Muster zu erkennen.
27	Aufgabe (2 Punkte)
Weld	the Aussage zum mathematische Ausdruck $Pr(D H_0)$ ist richtig?
A 🗆	Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternative-hypothese überdeckt.
В□	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
c 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten wenn die Nullhypothese wahr ist.
D 🗆	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
Ε□	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
20	
28	Aufgabe (2 Punkte)
	Falsifikationsprinzip besagt (2 Punkte)
Das	
Das A 🗆	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissen-
Das A 🗆 B 🗖	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
Das A B C	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht dass Annahmen an statistische Modelle meist falsch sind.
Das A B C D D	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht dass Annahmen an statistische Modelle meist falsch sind dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.
Das A B C D D E	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht. dass Annahmen an statistische Modelle meist falsch sind. dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt. dass Modelle meist falsch sind und selten richtig.
Das A	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht. dass Annahmen an statistische Modelle meist falsch sind. dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt. dass Modelle meist falsch sind und selten richtig. dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
Das A B C D E D Der Grür	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht dass Annahmen an statistische Modelle meist falsch sind dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt dass Modelle meist falsch sind und selten richtig dass Fehlerterme in statistischen Modellen nicht verifiziert werden können. Aufgabe (2 Punkte) Fehler 1. Art oder auch Signifikanzniveau α genannt, liegt bei 5%. Welcher der folgenden
Das A B C D E D Der Grür A	Falsifikationsprinzip besagt dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht dass Annahmen an statistische Modelle meist falsch sind dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt dass Modelle meist falsch sind und selten richtig dass Fehlerterme in statistischen Modellen nicht verifiziert werden können. Aufgabe Fehler 1. Art oder auch Signifikanzniveau α genannt, liegt bei 5%. Welcher der folgenden nicht diese Festlegeung auf 5% ist richtig? Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet.

D Der Wert ergab sich aus einer Auswertung von 1042 wissenschaftlichen Veröffentlichungen zwischen 1914 und 1948. Der Wert 5% wurde in 28% der Veröffentlichungen genutzt. Daher legte man sich auf diese Zahl fest. **E** Auf einer Statistikkonferenz in Genf im Jahre 1942 wurde dieser Cut-Off nach langen Diskussionen festgelegt. Bis heute ist der Cut Off aber umstritten, da wegen dem 2. Weltkrieg viele Wissenschaftler nicht teilnehmen konnten. 30 Aufgabe (2 Punkte) Welche Aussage über die Power ist richtig? **A** \square Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht. **B** \square Die Power $1-\beta$ wird auf 80% gesetzt. Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% "bewiesen wird". **C** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%. **D** Die Power ist nicht in der aktuellen Testthorie mehr vertreten. Wir rechnen nur noch mit dem Fehler 1. Art. **E** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%. 31 Aufgabe (2 Punkte) Beim statistischen Testen wird signal mit noise zur Teststatistik T verrechnet. Welche der Formel berechnet korrekt die Teststatistik T? **A** \square Es gilt $T = signal \cdot noise$ **B** \square Es gilt $T = \frac{signal}{noise^2}$ **C** □ Es gilt $T = \frac{noise}{signal}$ **D** \square Es gilt $T = \frac{signal}{noise}$ **E** \square Es gilt $T = (signal \cdot noise)^2$ 32 Aufgabe (2 Punkte) In der Theorie zur statistischen Testentscheidung kann " H_0 beibehalten obwohl die H_0 falsch ist" in welche richtige Analogie gesetzt werden? **A** □ In die Analogie eines Feuerwehrautos: *Car without noise*. **B** In die Analogie eines brennenden Hauses ohne Rauchmelder: *House without noise*.

C \square In die Analogie eines Rauchmelders: *Fire without alarm*, dem β -Fehler.

E \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.

D ☐ In die Analogie eines Rauchmelders: *Alarm with fire*.

	echnen eine simple logistische Regression. Welche Aussage bestreffend der Konfidenzinter- sist für die logistische Regression richtig?
A 🗆	Wenn die ${\bf 1}$ im Konfidenzinterval enthalten ist, kann die Nullhypothese nicht abgelehnt werden.
В□	Wenn die 0 im Konfidenzinterval enthalten ist, kann die Nullhypothese nicht abgelehnt werden.
c □	Wenn die 0 im Konfidenzinterval enthalten ist, kann die Nullhypothese abgelehnt werden.
D□	Wenn die Relevanzschwelle mit enthalten ist, kann die Nullhypothese abgelehnt werden.
E	Wenn die Konfidenzintervalle den p-Wert der Regression enthalten, kann die Nullhypothese abgelehnt werden.
34	Aufgabe (2 Punkte)
nun	er Bio Data Science wird häufig mit sehr großen Datensätzen gerechnet. Historisch ergibt sich ein Problem bei der Auswertung der Daten und deren Bewertung hinsichtlich der Signifikanz. he Aussage ist richtig?
A 🗆	Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzen berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.
В□	Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
C 🗆	Aktuell werden immer grössere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.
D 🗆	Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
E	Aktuell werden immer grössere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
35	Aufgabe (2 Punkte)
	he statistische Masszahl erlaubt es <i>Relevanz</i> mit <i>Signifikanz</i> zuverbinden? Welche Aussage chtig?
A 🗆	Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
В□	Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
C 🗆	Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.
D 🗆	Das Konfidenzintervall. Durch die Visualizierung des Konfidenzintervals kann eine Relevanzschwelle vom Anwender definiert werden. Zusätzlich erlaubt das Konfidenzinterval auch eine Entscheidung über die Signifikanz.
Е□	Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.

36 Aufgabe (2 Punkte) Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig? **A** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt. **B** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt. **C** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt. D Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 . **E** ☐ Wir vergleichen die Effekte des p-Wertes mit den Effekten der Signifiaknzschwelle unter der Annahme der Nullhypothese. 37 Aufgabe (2 Punkte) Welche Aussage über den t-Test ist richtig? **A** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen. **B** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%. C Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern **D** Der t-Test vergleicht die Varianzen von mindestens zwei oder mehr Gruppen **E** ☐ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden. 38 Aufgabe (2 Punkte) Welche Aussage über den Welch t-Test ist richtig? **A** ☐ Der Welch t-Test ist die veraltete Form des Student t-Test und wird somit nicht mehr verwen-

- det.
- **B** Der Welch t-Test ist ein Post-hoc Test der ANOVA und basiert daher auf dem Vergleich der Varianz.
- **C** □ Der Welch t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität.
- **D** ☐ Der Welch t-Test vergleicht die Varianz von zwei Gruppen.
- E Der Welch t-Test wird angewendet, wenn Varianzheterogenität zwischen den beiden zu vergleichenden Gruppen vorliegt.

Nach einem Experiment mit fünf Weizensorten ergibt eine ANOVA (p=0.041) einen signifikanten Unterschied für den Ertrag. Sie führen anschließend die paarweisen t-Tests für alle Vergleiche der verschiedenen Weizensorten durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.053$. Welche Aussage ist richtig?

A 🗆	Die adjustierten p-Werte deuten in die richtige Richtung. Zusammen mit den nicht signifikanten rohen p-Werten ist von einem Fehler in der ANOVA auszugehen.
В□	Die ANOVA testet auf der gesamten Fallzahl. Die einzelnen t-Tests immer nur auf einer kleineren Subgruppe. Da mit weniger Fallzahl weniger signifikante Ergebnisse zu erwarten sind, kann eine Diskrepenz zwischen der ANOVA und den paarweisen t-Tests auftreten.
c □	Die ANOVA testet auf der gesamten Fallzahl. Es wäre besser die ANOVA auf der gleichen Fallzahl wie die einzelnen t-Tests zu rechnen.
D 🗆	Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
E 🗆	Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
40	Aufgabe (2 Punkte)
40	Aufgabe (2 Punkte)
	he Aussage über den gepaarten t-Test für verbundene Stichproben ist richtig?
Welc	
Welc	he Aussage über den gepaarten t-Test für verbundene Stichproben ist richtig? Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür
Weld	he Aussage über den gepaarten t-Test für verbundene Stichproben ist richtig? Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz d dient dann zur Differenzbildung. Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz
Weld A B C	he Aussage über den gepaarten t-Test für verbundene Stichproben ist richtig? Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz d dient dann zur Differenzbildung. Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz der Einzelbeobachtungen. Der gepaarte t-Test wird genutzt, wenn die Differenzen der Beobachtungen verbunden sind

Deskriptive Statistik & Explorative Datenanalyse

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 15 Deskriptive Statistik
- Kapitel 16 Visualisierung von Daten
- Kapitel 18 Verteilung von Daten

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Sie haben folgende Zahlenreihe y vorliegen $y = \{18, 8, 19, 13, 18, 15, 13\}$. Berechnen Sie folgende deskriptive Maßzahlen. Geben Sie Formeln und Rechenwege mit an!

- 1. Die Range oder Spannweite (2 Punkte)
- 2. Die Varianz (2 Punkte)
- 3. Den Interquartileabstand (2 Punkte)
- 4. Das 3rd Quartile (2 Punkte)
- 5. Den Mittelwert (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Sie haben folgende Zahlenreihe y vorliegen $y = \{25, 17, 22, 14, 14\}$.

- 1. Visualisieren Sie den Mittelwert von y in der untenstehenden Abbildung! (4 Punkte)
- 2. Beschriften Sie die Y und X-Achse entsprechend! (2 Punkte)
- 3. Für die Berechnung der Varianz wird der Abstand der einzelnen Werte y_i zum Mittelwert \bar{y} quadriert. Warum muss der Abstand, $y_i \bar{y}$, in der Varianzformel quadriert werden? Erklären Sie den Zusammenhang unter Berücksichtigung der Abbildung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Gewächshausexperiment mit drei Bewässerungstypen (low, mid und high) ergibt sich die folgende Datentabelle mit dem gemessenen Frischgewicht (freshmatter).

water_type	freshmatter
high	14
mid	22
mid	27
low	13
low	9
low	12
mid	14
high	9
high	9
mid	21
low	13
high	9

- 1. Zeichnen Sie in *einer* Abbildung die Barplots für die Bewässerungstypen! Beschriften Sie die Achsen entsprechend! **(4 Punkte)**
- 2. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Wenn Sie *keinen Effekt* zwischen der Bewässerungstypen erwarten würden, wie sehen dann die Barplots aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie in die unten stehenden, freien Abbildungen die Verteilungen, die sich nach der Abbildungsüberschrift ergeben! (4 Punkte)
- 2. Achten Sie auf die entsprechende Skalierung der beiden Verteilungen in der ersten Abbildung! (2 Punkte)

Pois(15)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie 3 Normalverteilungen in einer Abbildung mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3$ und $s_1 = s_2 = s_3$! (2 **Punkte**)
- 2. Beschriften Sie die Normalverteilungen mit den entsprechenden Parametern! (2 Punkte)
- 3. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Experiment zählen Sie folgende Anzahl an Läsionen auf den Blättern von Sonnenblumen nach einer durchgestandenen Infektion.

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualiseren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Experiment zählen Sie folgende Trockengewichte von Sonnenblumen nach einer durchgestandenen Infektion.

$$10.4, 14.2, 8.5, 12.7, 10.2, 7.8, 14.6, 11.5, 8, 8.1, 10.4, 14.2$$

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualiseren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Feldexperiment mit zwei Düngestufen (A und B) ergibt sich die folgende Datentabelle mit dem gemessenen Trockengewicht (*drymatter*).

trt	drymatter
В	14.6
Α	15.7
В	12.3
В	14.9
Α	3.0
В	18.9
Α	17.8
Α	6.9
Α	15.5
В	13.6
Α	23.0
В	11.1
В	17.0
В	12.3
В	15.4
В	11.6
В	13.7
Α	13.2

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Düngestufen A und B! Beschriften Sie die Achsen entsprechend! **(6 Punkte)**
- 2. Beschriften Sie *einen* der beiden Boxplots mit den gängigen statistischen Maßzahlen! **(2 Punkte)**
- 3. Wenn Sie *keinen Effekt* zwischen den Düngestufen erwarten würden, wie sehen dann die beiden Boxplots aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Feldexperiment mit mehreren Düngestufen stellt sich die Frage, ob die Düngestufe low im Bezug auf das Trockengewicht normalverteilt sei. Sie erhalten folgende Datentabelle.

fertilizer	drymatter
low	21
low	16
low	22
low	19
low	22
low	23
low	23
low	19
low	22
low	13
low	18

- 1. Zeichnen Sie eine passende Abbildung in der Sie visuell überprüfen können, ob eine Normalverteilung des Trockengewichts vorliegt! (4 Punkte)
- 2. Beschriften Sie die Achsen und ergänzen Sie die statistischen Maßzahlen. (3 Punkte)
- 3. Entscheiden Sie, ob eine Normalveteilung vorliegt. Begründen Sie Ihre Antwort. (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Zeichnen Sie über den untenstehenden Boxplot die entsprechende zugehörige Verteilung! (2 Punkte)
- 2. Zeichnen Sie unter den untenstehenden Boxplot die entsprechende zugehörige Beobachtungen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Experiment mit zwei Düngestufen für den Ertrag von Kichererbsen ergibt sich folgende Abbildung.

1. Tragen Sie in die untenstehende Tabelle die gängigen Maßzahlen des Boxplots und die abgeschätzen Werte aus den obigen Boxplots ein! (4 Punkte)

Statistische Maßzahl	Abgeschä low	tzter Wert high

- 2. Ergänzen Sie den Mittelwert für beide Level des Düngers in die Abbildung der Boxplots! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Ergänzen Sie in der untenstehenden Tabelle die p-Werte für den Shapiro-Wilk-Test auf Normalverteilung und den Levene-Test auf Varianzhomogenität. Beachten Sie die unterschiedliche, angenommene Fallzahl n_q der beiden Level des Düngers! (3 Punkte)

Fallzahl	Shapiro-Wilk-Test	Levene-Test
$n_g = 5$		
$n_g = 20$		
$n_g > 50$		

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einer Bonitur von Schnittlauch mit einer Kontrolle und drei Pestiziden (ctrl, pestKill, roundUp, zeroX) ergibt sich die folgende Datentabelle mit den Boniturnoten (*grade*).

pesticide	grade
roundUp	4
ctrl	6
zeroX	2
roundUp	4
roundUp	3
zeroX	1
pestKill	3
ctrl	6
zeroX	1
roundUp	4
zeroX	4
pestKill	2
pestKill	2
ctrl	7

- 1. Zeichnen Sie in *einer* Abbildung die Dotplots für die vier Pestizidlevel! Beschriften Sie die Achsen entsprechend! **(4 Punkte)**
- 2. Ergänzen Sie die Dotplots mit der gängigen statistischen Maßzahl. (1 Punkt)
- 3. Wenn Sie *keinen Effekt* zwischen den Pestizidlevel erwarten würden, wie sehen dann die Dotplots aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Feldexperiment mit zwei Pestiziden (*RoundUp* und *OutEx*) ergibt sich die folgende Datentabelle mit dem jeweiligen beobachteten Infektionsstatus.

pesticide	infected
OutEx	yes
RoundUp	yes
RoundUp	yes
OutEx	no
RoundUp	yes
RoundUp	yes
OutEx	no
OutEx	no
OutEx	no
RoundUp	no
RoundUp	yes
OutEx	yes
OutEx	no
RoundUp	yes
RoundUp	yes
OutEx	yes
RoundUp	yes
OutEx	no
RoundUp	yes
RoundUp	yes
OutEx	yes
OutEx	no

- 1. Stellen Sie in einer 2x2 Tafel den Zusammenhang zwischen dem Pesizid und dem Infektionsstatus dar! (4 Punkte)
- 2. Zeichnen Sie den zugehörigen Mosaic-Plot. Berechnen Sie das Verhältnis pro Spalte! (2 Punkte)
- 3. Wenn das Pesizid keine Auswirkung auf den Infektionsstatus hätte, wie sehe dann der Mosaic-Plot aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Feldexperiment für die Bodendurchlässigkeit wurde der Niederschlag pro Parzelle sowie der durchschnittliche Ertrag gemessen. Es ergibt sich folgende Datentabelle.

water	drymatter
26	13
26	29
28	21
25	15
29	20

- 1. Erstellen Sie den Scatter-Plot für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Zeichnen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn kein Effekt von dem Niederschlag auf das Trockengewicht vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? (2 Punkt)

Statistisches Testen

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 3 Falsifikationsprinzip
- Kapitel 19 Die Testentscheidung
- Kapitel 20 Die Testtheorie

1. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! (3 Punkte)

- 2. Was ist der Unterschied zwischen μ und σ und \bar{y} und s im Kontext der Stichprobe und Grundgesamtheit? (2 **Punkte**)
- 3. Warum müssen wir überhaupt zwischen einer Stichprobe und einer Grundgesamtheit unterscheiden? (1 Punkt)

Geben ist folgende 2x2 Kreuztabelle.

- 1. Tragen Sie folgende Fachbegriffe korrekt in die 2x2 Kreuztabelle ein! (4 Punkte)
 - (Unbekannte) Wahrheit
 - H₀ wahr
 - H₀ falsch
 - H₀ abgelehnt
 - H₀ beibehalten
 - Testentscheidung
 - α-Fehler
 - β-Fehler
 - Richtige Entscheidung
 - 5%
 - 20%
- 2. In der Analogie des Feuermelders, wie lauetet der α -Fehler? (1 Punkt)
- 3. In der Analogie des Feuermelders, wie lauetet der β -Fehler? (1 Punkt)
- 4. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Jahr Alarm schlagen? Begründen Sie Ihre Antwort! **(2 Punkte)**

Im folgenden ist eine t-Verteilung abgebildet. Ergänzen Sie die Abbildung wie folgt.

- 1. Zeichnen Sie das Signifikanzniveau α in die Abbildung! (2 Punkte)
- 2. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! (2 Punkte)
- 3. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 4. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 5. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 6. Zeichnen Sie $+T_{calc}$ in die Abbildung! (1 Punkt)

t Distribution

Sie rechnen einen t-Test für Gruppenvergleiche. Sie schätzen den Unterschied zwischen dem mittleren Trockengewicht nach Düngergabe.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine *in den Kontext passende* Relevanzschwelle! Begründen Sie Ihre Antwort! **(2 Punkte)**
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein 95%-Konfidenzintervall mit höherer Varianz s_p in der Stichprobe als der Rest der 95%-Konfidenzintervalle
 - (b) Ein 95%-Konfidenzintervall mit niedriger Varianz s_p in der Stichprobe als der Rest 95%-der Konfidenzintervalle
 - (c) Ein signifikantes, nicht relevantes 95%-Konfidenzintervall
 - (d) Ein nicht signifikantes, nicht relevantes 95%-Konfidenzintervall
 - (e) Ein signifikantes, relevantes 95%-Konfidenzintervall
 - (f) Ein signifikantes, relevantes 90%-Konfidenzintervall.

Gegeben ist die vereinfachte Formel für den Zweistichproben t-Test mit der gepoolten Standardabweichung s_p und gleicher Gruppengrösse n_g der beiden Sample.

$$T = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{\frac{2}{n_g}}}$$

Welche Auswirkung hat die Änderungen der jeweiligen statistischen Masszahl auf den T-Wert und damit auf die *vermutliche* Signifikanz? Füllen Sie hierzu die untenstehende Tabelle aus! **(6 Punkte)**

	T Statistik	$Pr(D H_0)$	$KI_{1-\alpha}$		T Statistik	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ↑				Δ↓			
<i>s</i> ↑				s ↓			
n †				n ↓			

Sie haben folgende Aussage gegeben.

Bin ich im Sommer?

- 1. Erklären Sie den Gedankengang der Testtheorie sowie des Falsifikationsprinzips an der Aussage! (4 Punkte)
- 2. Erklären Sie Ihre Entscheidung zu der Aussage! (3 Punkte)
- 3. Schätzen Sie den p-Wert zu der Aussage ab! (1 Punkt)

Der t-Test

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

• Kapitel 22 - Der t-Test

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Experiment mit zwei Pestiziden (*RoundUp* und *GoneEx*) ergibt sich die folgende Datentabelle mit dem gemessenen Trockengewicht (*drymatter*) von Weizen.

drymatter
16
13
15
21
22
11
16
14
18
19
16
10

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 3. Bestimmen Sie die Teststatistik T_{calc} eines Student t-Tests für den Vergleich der beiden Pestizide. Geben Sie den Rechenweg und die Formeln mit an! (5 **Punkte**)
- 4. Treffen Sie mit $T_{\alpha=5\%}=2.04$ und dem berechneten T_{calc} eine Aussage zur Nullhypothese! (2 Punkte)
- 5. Wenn Sie keinen Unterschied zwischen den beiden Pestiziden erwarten würden, wie große wäre dann die Teststatistik T_{calc} ? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Gewicht von Küken wurde vor der Behandlung mit STARTex und 1 Woche nach der Behandlung gemessen. Es ergibt sich die folgende Datentabelle.

animal_id	before	after
1	11	28
2	10	22
3	2	25
4	16	25
5	8	27
6	11	25
7	6	25
8	5	27
9	15	25

- 1. Formulieren Sie die Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 3. Bestimmen Sie die Teststatistik T_{calc} eines gepaarten t-Tests für den Vergleich der beiden Zeitpunkte. Geben Sie den Rechenweg und die Formeln mit an! (4 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=2.04$ und dem berechneten T_{calc} eine Aussage zur Nullhypothese! (2 Punkte)
- 5. Wenn Sie keinen Unterschied zwischen den beiden Zeitpunkten erwarten würden, wie große wäre dann die Teststatistik T_{calc} ? Begründen Sie Ihre Antwort! (2 **Punkte**)
- 6. Schätzen Sie $Pr(D|H_0)$ ab. Begründen Sie Ihre Antwort! (2 Punkte)


```
##
## Two Sample t-test
##
## data: freshmatter by N
## t = 0.10449, df = 12, p-value = 0.9185
## alternative hypothesis: true difference in means between group high and group low is no
## 95 percent confidence interval:
## -2.646808 2.913475
## sample estimates:
## mean in group high mean in group low
## 15.80000 15.66667
```

- 1. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie eine Abbildung in der Sie T_{calc} , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.18|$ einzeichnen! **(4 Punkte)**
- 4. Beschriften Sie die Abbildung entsprechend! (2 Punkte)


```
##
## Two Sample t-test
##
## data: drymatter by Fe
## t = -1.6003, df = 12, p-value = 0.1355
## alternative hypothesis: true difference in means between group high and group low is no
## 95 percent confidence interval:
## -4.2507385  0.6507385
## sample estimates:
## mean in group ctrl mean in group trt1
## 15.0  16.8
```

- 1. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 4. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)

- 1. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie die sich ergebenden Boxplots! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (4 Punkte)


```
##
## Paired t-test
##
## data: waterintake by infusion
## t = -3.1667, df = 4, p-value = 0.03397
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -7.1317341 -0.4682659
## sample estimates:
## mean difference
## -3.8
```

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizzieren Sie den sich ergebenden Datensatz mit n=4 Beobachtungen! Die Daten müssen nicht die Mittelwertsdifferenz d erfüllen! (2 Punkte)
- 4. Skizieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Die ANOVA

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

• Kapitel 23 - Die ANOVA

In einem Experiment wurde der Ertrag von Erbsen unter drei verschiedenen Pestizid-Dosen 0.5 g/l, 1.5 g/l und 2.5 g/l gemessen. Unten stehenden sehen Sie die Visualisierung des Datensatzes.

- 1. Zeichnen Sie folgende statistischen Masszahlen in die Abildung ein! Beschriften Sie die statistischen Maßzahlen! **(6 Punkte)**
 - Total (grand) mean: β_0
 - Mittelwerte der Dosen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$
 - Effekt der einzelnen Level der Dosen: $\beta_{0.5}$, $\beta_{1.5}$, und $\beta_{2.5}$
 - ullet Residuen oder Fehler: ϵ
- 2. Liegt ein *vermutlicher* signifikanter Unterschied zwischen den Dosisstufen vor? Begründen Sie Ihre Antwort! (2 Punkte)

Der Datensatz plant_growth_tbl enthält das Gewicht der Kohlköpfe (weight), die unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen erzielt wurden – dem Faktor group mit den Faktorstufen ctrl, trt1, trt2.

- 1. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus mit den gegebenen Informationen von Df und Sum Sq! (4 Punkte)
- 2. Schätzen Sie den p-Wert der Tabelle mit der Information von $F_{\alpha=5\%}=3.44$ ab. Begründen Sie Ihre Antwort! (2 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
group	2	151.26			
Residuals	22	30.98			

- 3. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA im Bezug auf die möglichen Unterschiede zwischen den Gruppen? Beziehen Sie sich auf den obigen Fragetext bei Ihrer Antwort! (2 Punkte)
- 4. Berechnen Sie einen Student t-Test mit für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 **Punkte**)

group	n	mean	sd
ctrl	9	14.22	1.09
trt1	9	19.00	0.87
trt2	7	19.71	1.60

5. Gegebenen der ANOVA Tabelle war das Ergebnis des t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Der Datensatz $crop_tbl$ enthält das Trockengewicht der Maispflanzen (drymatter), die unter drei verschiedenen Düngerbedingungen erzielt wurden. Die Düngerbedingungen sind in dem Faktor trt mit den Faktorstufen ctrl, mid und C codiert. Sie erhalten folgenden Output in \bigcirc R.

```
## Analysis of Variance Table
##
## Response: drymatter
## Df Sum Sq Mean Sq F value Pr(>F)
## trt 2 129.735 64.867 15.712 5.774e-05
## Residuals 22 90.825 4.128
```

- 1. Stellen Sie die statistische H_0 und H_A Hypothese für die obige einfaktorielle ANOVA auf! (2 **Punkte**)
- 2. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkt)
- 3. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 4. Skizieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Sie haben ein Experiment mit drei Behandlungen (A, B und C) und vier Blöcken (I, II, III und IV) durchgeführt. Insgesamt haben Sie die Wuchshöhe von zwölf Sonnenblumen bestimmt. Im Folgenden sehen Sie die Wuchshöhen in [cm] aus dem Experiment.

[1] 127 115 114 129 100 84 126 138 141 148 164 148

Erstellen Sie vier Zeichnungen des experimentellen Designs und beachten Sie folgende Angaben zu der Quelle der erklärten Varianz.

- 1. Ordnen Sie die Pflanzen so in den vier Blöcken und drei Behandlungen an,
 - (1) dass die Blöcke kaum Varianz erklären. (1 Punkt)
 - (2) dass die Blöcke viel Varianz erklären. (1 Punkt)
 - (3) dass die Behandlungen kaum Varianz erklären. (1 Punkt)
 - (4) dass die Behandlungen viel Varianz erklären. (1 Punkt)
- 2. Wenn Sie ein geplantes Experiment durchführen, wie viel Varianz soll dann von den Blöcken und den Behandlungen jeweils erklärt werden? Begründen Sie Ihre Antwort! (2 Punkte)

Der Datensatz tooth_tbl enthält Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Meerschweinchen. Der Versuch wurde an verschiedenen Schweinen durchgeführt, wobei jedes Tier eine von 5 Vitamin-C-Dosen dose über eine von 2 Verabreichungsmethoden supp erhielt. Die Zahnlänge wurde als normalverteiltes Outcome gemessen.

- 1. Füllen Sie die unterstehende zweifaktorielle ANOVA Ergebnistabelle aus mit den gegebenen Informationen von Df und Sum Sq! (4 Punkte)
- 2. Schätzen Sie den p-Wert der Tabelle mit der Information von den kritischen F-Werten mit $F_{supp} = 4.08$ und $F_{dose} = 2.61$ sowie $F_{supp:dose} = 2.61$ ab. Begründen Sie Ihre Antwort! (4 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
supp	1	28.7			
dose	4	188.57			
supp:dose	4	107.15			
Residuals	40	307.27			

- 3. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA im Bezug auf die möglichen Unterschiede zwischen den Gruppen? Beziehen Sie sich dabei einmal auf den Faktor *supp* und einmal auf den Faktor *dose*! (2 Punkte)
- 4. Was sagt der Term *supp:dose* aus? Interpretieren Sie das Ergebnis des abgeschätzten p-Wertes! (2 Punkte)

Der Datensatz <code>pig_gain_weight_tbl</code> enthält Daten aus einer Studie zur Bewertung der Wirkung vom Vitamin Selen auf das Wachstum bei Mastschweinen. Der Versuch wurde an 50 Mastschweinen durchgeführt, wobei jedes Tier eine von drei Selen-Dosen <code>dose</code> (0.5 ng/Tag, 1 ng/Tag und 5 ng/Tag) über eine von zwei Verabreichungsmethoden <code>form</code> erhielt (Wasser oder Festnahrung). Sie erhalten folgenden Output in \P .

- 1. Stellen Sie die statistische H_0 und H_A Hypothese für die obige zweifaktorielle ANOVA für den Faktor dose auf! (2 Punkte)
- 2. Interpretieren Sie das Ergebnis der zweifaktoriellen ANOVA. Gehen Sie im besonderen auf den Term dose: form ein! (2 Punkte)
- 3. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! (4 Punkte)

In der untenstehenden Tabelle ist die Formel für den F-Test aus der ANOVA und die Formel für den Student t-Test dargestellt. In der ANOVA berechnen Sie die F-Statistik F_{calc} und in dem Student t-Test die T-Statistik T_{calc} .

$$F_{calc} = rac{MS_{treatment}}{MS_{error}}$$
 $T_{calc} = rac{ar{y}_1 - ar{y}_2}{s_p \cdot \sqrt{2/n_g}}$

- 1. Erklären Sie den konzeptionellen Zusammenhang zwischen der F_{calc} Statistik und T_{calc} Statistik! (2 Punkte)
- 2. Visualisieren Sie eine nicht signifikante F_{calc} Statistik sowie eine signifikante F_{calc} Statistik anhand von $MS_{treatment}$ und MS_{error} ! Beschriften Sie die Abbildung! (2 Punkte)
- 3. Erklären Sie an der Formel des F-Tests sowie an der Abbildung warum das Minimum der F-Statistik 0 ist! (2 Punkte)
- 4. Wenn die F-Statistik 0 ist, spricht dies eher für oder gegen die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen eine zweifaktorielle ANOVA und erhalten einen signifikanten Interaktionseffekt zwischen den beiden Faktoren f_1 und f_2 . Der Faktor f_1 hat drei Level. Der Faktor f_2 hat dagegen nur zwei Level.

- 1. Visualisieren Sie in zwei getrennten Abbildungen eine starke und eine mittelere Interaktion zwischen den Faktoren f_1 und f_2 ! (2 Punkte)
- 2. Erklären Sie den Unterschied zwischen den beiden Stärken der Interaktion! (2 Punkte)
- 3. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen bei einem Posthoc-Test? (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA mit einem Faktor f_1 mit vier Leveln. Nachdem Sie die einfaktorielle ANOVA gerechnet haben, erhalten Sie einen p-Wert von 0.078 und eine F Statistik mit $F_{calc}=1.2$. Als Sie sich die Boxplots der Behandlungen anschauen, stellen Sie fest, dass es eigentlich einen Mittelwertsunterschied zwischen dem dritten und ersten Level geben müsste. Die IQR-Bereiche überlappen sich nicht und die Mediane liegen auch weit vom globalen Mittel entfernt.

- 1. Erklären Sie die Annahme der Normalverteilung und die Annahme der Varianzhomogenität für eine ANOVA an einer passenden Abbildung! (2 Punkte)
- 2. Visualisieren Sie die Berechnung von F_{calc} am obigen Beispiel! (2 Punkte)
- 3. Erklären Sie das Ergebnis der obigen einfaktoriellen ANOVA unter der Berücksichtigung der Annahmen an eine ANOVA! (3 Punkte)

Der \mathcal{X}^2 -Test & Der diagnostische Test

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 28 Der \mathcal{X}^2 -Test
- Kapitel 29 Der diagnostische Test

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Experiment ergibt sich die folgende 2x2 Datentabelle mit einem Pestizid (ja/nein), dargestellt in den Zeilen. Im Weiteren mit dem infizierten Pflanzenstatus (ja/nein) in den Spalten. Insgesamt wurden n=126 Pflanzen untersucht.

	Erkrankt (ja)	Erkrankt (nein)	
Pestizid (ja)	38	21	
Pestizid (nein)	23	44	

- 1. Ergänzen Sie die Tabelle um die Randsummen! (1 Punkt)
- 2. Formulieren Sie die Fragestellung! (1 Punkt)
- 3. Formulieren Sie das Hypothesenpaar! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test auf der 2x2 Tafel. Geben Sie Formeln und Rechenweg mit an! (4 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}^2_{\alpha=5\%}=3.841!$ (1 Punkt)
- 6. Skizzieren Sie eine 2x2 Tabelle mit n=30 Pflanzen in dem *vermutlich* die Nullhypothese nicht abgelehnt werden kann! **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Gegeben sind folgende Randsummen in einer 2x2 Kreuztabelle aus einem Experiment mit n=140 Sauen. In dem Experiment wurde gemessen, ob eine Sau nach einer Behandlung mit einem Medikament (ja/nein) mehr als 30 Ferkel pro Jahr bekommen konnte (ja/nein).

	>30 Ferkel (ja)	≤30 Ferkel (nein)	
Medikament (ja)			71
Medikament (nein)			69
	83	57	140

- 1. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle in dem Sinne, dass *kein* signifikanter Effekt zu erwarten wäre! (2 Punkte)
- 2. Erklären und Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests mit

$$\mathcal{X}^2 = \sum \frac{(O - E)^2}{E}.$$

Sie können dies an einem Beispiel erklären! (2 Punkte)

- 3. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des "normalen" Chi-Quadrat-Tests anwenden? (2 Punkte)
- 4. Warum hat die obige Vierfeldertafel einen Freiheitsgrad von df = 1? (1 Punkt)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 2% angenommen. In 85% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 8.5% der Fälle ist ein Test positiv, wenn das Wollschwein *nicht* erkrankt ist und somit gesund ist. Sie werten 2000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Beim diagnostischen Testen erhalten Sie *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)*. Erklären Sie den Zusammenhang wir folgt.

- 1. Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (2 Punkte)
- 2. Visualisieren Sie *TP*, *TN*, *FP* und *FN* in einer Abbildung. Beschriften Sie die Abbildung und die Achsen entsprechend! **(4 Punkte)**
- 3. Erklären Sie an einem numerischen Beispiel und der Abbildung die Berechnung der Prävalenz! (2 Punkte)
- 4. Erklären Sie an einem Schaubild den Unterschied zwischen Inzidenz und Prävalenz! (2 Punkte)

Simple lineare Regression

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 32 Simple lineare Regression
- Kapitel 33 Maßzahlen der Modelgüte
- Kapitel 34 Korrelation

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einer Studie zur "Arbeitssicherheit auf dem Feld" wurde gemessen wie viele Stunden auf einem Feld gefahren wurden und wie oft der Fahrer dabei drohte einzunicken. Es ergab sich folgende Abbildung.

- 1. Erstellen Sie die Regressionsgleichung aus der obigen Abbildung in der Form $y \sim \beta_0 + \beta_1 \cdot x!$ (2 Punkte)
- 2. Beschriften Sie die Gerade mit den Parametern der linearen Regressionsgleichung! (2 Punkte)
- 3. Liegt ein Zusammenhang zwischen der Anzahl an gefahrenen Runden und der Müdigkeit vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Gerade aussehen? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Stallexperiment mit n=60 Ferkeln wurde der Gewichtszuwachs unter bestimmten Lichtverhältnissen gemessen. Sie erhalten den Routput der Funktion tidy() einer simplen Gaussian linearen Regression sieben Wochen nach der ersten Messung.

term	estimate	std.error	t statistic	p-value
(Intercept)	26.28	1.43		
light	0.89	0.14		

- 1. Berechnen Sie die t Statistik für (Intercept) und light! (2 Punkte)
- 2. Schätzen Sie den p-Wert für (*Intercept*) und *light* mit $T_{\alpha=5\%}=1.96$ ab. Was sagt Ihnen der p-Wert aus? Begründen Sie Ihre Antwort! (**3 Punkte**)
- 3. Zeichnen Sie die Gerade aus der obigen Tabelle in ein Koordinatenkreuz! (1 Punkt)
- 4. Beschriften Sie die Abbildung und die Gerade mit den statistischen Kenngrößen! (2 Punkte)
- 5. Formulieren Sie die Regressionsgleichung! (2 Punkte)

Sie erhalten folgende R Ausgabe der Funktion Im() nach einem Experiment mit zwei Behandlungen (A und B) sowie dem Ertragsgewicht von Weizen.

```
##
## Call:
## lm(formula = weight ~ trt, data = data_tbl)
## Residuals:
               10 Median
                               30
      Min
                                      Max
## -4.1429 -1.2143 0.5714 1.1786
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.1429
                           0.7582 21.292 6.71e-11
## trtB
               10.5714
                           1.0722
                                   9.859 4.17e-07
## Residual standard error: 2.006 on 12 degrees of freedom
## Multiple R-squared: 0.8901, Adjusted R-squared: 0.881
## F-statistic: 97.21 on 1 and 12 DF, p-value: 4.173e-07
```

- 1. Ist die Annahme der Normalverteilung an das Outcome *rsp* erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 2. Wie groß ist der Effekt des *Trt*? Liegt ein signifikanter Effekt vor? Begründen Sie Ihre Antwort! **(2 Punkte)**
- 3. Schreiben Sie das Ergebnis der R Ausgabe in einen Satz nieder, der die Information zum Effekt und der Signifikanz enthält! (2 Punkte)

1. Skizieren Sie in die unten stehenden, freien Abbildungen ein kausales und ein prädiktives Modell mit n = 7 Beobachtungen! (4 Punkte)

- 2. Beachten Sie bei der Erstellung der Skizze, ob ein Effekt von X vorliegt oder nicht! (2 Punkte)
- 3. Beschriften Sie die Abbildung mit "Trainingsdaten" und "Testdaten"! (2 Punkte)

Causal model with effect of X

Predictive model with effect of X

Im folgenden sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 **Punkte**)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (3 **Punkte**)

Pearsons $\rho = 0$

Pearsons $\rho = -0.5$

$$R^2 = 0.5$$

Pearsons $\rho = -1$

$$R^2 = 0.75$$

Im folgenden sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die R^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die \mathbb{R}^2 -Werte über das jeweilige Modell? (1 Punkt)


```
##
## Spearman's correlation
##
## data: drymatter and water
## t = 5.8228, df = 8, p-value = 0.0003948
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6223171 0.9762352
## sample estimates:
## cor
## 0.8994963
```

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! Erklären Sie eine der Eigenschaften an einem Beispiel! (3 Punkte)
- 3. Sind die Variablen drymatter and water normalverteilt? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (3 Punkte)
- 5. Visualisieren Sie die Teststatistik und den p-Wert! Beschriften Sie die Abbildung! (3 Punkte)

1. Skizieren Sie in die unten stehenden, freien Abbildungen die Abbildung, die sich nach der Überschrift ergibt! **(4 Punkte)**

2. Beschriften Sie die Achsen entsprechend! (2 Punkte)

Residual plot with 2 outlier fullfilling the normality assumption.

Residual plot violating the normality assumption.

1. Skizieren Sie in die unten stehenden, freien Abbildungen die Abbildung, die sich nach der Überschrift ergibt! **(4 Punkte)**

2. Beschriften Sie die Achsen entsprechend! (3 Punkte)

QQ plot fullfiling the normality assumption.

QQ plot violating the normality assumption.

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m² (*drymatter*) und Wassergabe l/m² (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	29.6	10.6	25.4	
2	22.1	9.7	24.4	
3	22.4	8.1	22.2	
4	29.4	14.5	30.6	
5	24.0	9.1	23.5	
6	27.5	12.2	27.6	
7	25.2	11.4	26.5	
8	22.7	9.6	24.2	
9	30.3	13.2	28.8	

- 1. Ergänzen Sie die Werte in der Spalte . resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! (4 Punkte)
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

Multiple lineare Regression

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 35 Multiple lineare Regression
- Kapitel 40 Gaussian Regression
- Kapitel 41 Poisson Regression
- Kapitel 43 Logistische Regression
- Kapitel 44 Lineare gemischte Modelle

- 1. Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Binomialverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)
- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Ein Feldexperiment wurde mit n = 200 Pflanzen durchgeführt. Folgende Einflussvariablen (x) wurden erhoben: N, center und height. Als mögliche Outcomevariablen stehen Ihnen nun folgende gemessene Endpunkte zu Verfügung: drymatter, yield, count, quality_score und dead.

- 1. Wählen Sie ein Outcome was zu der Verteilungsfamilie Poisson gehört! (1 Punkt)
- 2. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} in der Funktion glm() üblich ist *ohne Interaktionsterm*! (3 Punkte)
- 3. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbf{Q} üblich ist und ergänzen Sie einen Interaktionsterm nach Wahl! (1 Punkt)
- 4. Zeichen Sie eine schwache Interaktion in die Abbildung unten für den Endpunkt yield. Ergänzen Sie eine aussagekräftige Legende. Wie erkennen Sie eine Interaktion? Begründen Sie Ihre Antwort! (4 Punkte)

Maispflanzen sollen auf die ertragssteigerende Wirkung von verschiedenen Einflussfaktoren untersucht werden. Gemessen wurde als Outcome die Trockenmasse in kg/m². Dafür wurde für jede Maispflanze gemessen wieviel Wasser (I/m²) die Pflanze erhalten hat oder ob die Pflanze ein neuartiges Lichtregime (0 =alt, 1 =neu) erhalten hatte. Zusätzlich wurde die Anzahl an Nematoden im Boden bestimmt sowie der Eisen- und Phosphorgehalt (μ g/kg) des Bodens. Es ergibt sich folgender Auszug aus den Daten.

water	light	Р	Fe	drymatter	nematodes
10.12	0	11.25	100.82	69.70	13
8.55	1	11.07	101.11	70.06	8
9.61	0	7.69	97.21	70.10	8
9.19	1	8.49	98.21	71.17	7

Sie rechnen nun eine Gaussian lineare Regression auf den Daten und erhalten folgenden 🗣 Output.

```
##
## Call:
## lm(formula = reformulate(response = "drymatter", termlabels = wanted_vec),
      data = data_tbl)
##
##
## Residuals:
##
     Min
               10 Median
                               30
                                      Max
## -4.4203 -1.4995 0.0425 1.3224 4.7180
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.56128
                          6.43753 1.796 0.07520
## P
              -0.61387
                          0.13048 -4.705 7.32e-06
## nematodes
              -0.17995
                          0.06026 -2.986 0.00347
## Fe
               0.66076
                          0.06374 10.367 < 2e-16
##
## Residual standard error: 2.077 on 112 degrees of freedom
## Multiple R-squared: 0.5535, Adjusted R-squared: 0.5415
## F-statistic: 46.27 on 3 and 112 DF, p-value: < 2.2e-16
```

- 1. Sind die Residuals approximativ Normalverteilt? Begründen Sie Ihre Antwort! (3 Punkte)
- 2. Welche der Einflussfaktoren sind signifikant? Begründen Sie Ihre Antwort! (3 Punkte)
- 3. Interpretieren Sie die Spalte *estimate* im Bezug auf den Ertrag in Trockenmasse der Maispflanzen! (3 Punkte)

In verschiedenen Flüßen (*stream*) wurde die Anzahl an Knochenhechten (*longnose*) gezählt. Daneben wurden noch andere Eigenschaften der entspechenden Flüsse gemessen. Es ergibt sich folgender Auszug aus den Daten.

stream	longnose	acerage	do2	so4	no3
CABIN_JOHN_CR	21	8612	8.2	16.09	1.57
LITTLE_ANTIETAM_CR	24	3488	9.3	13.37	2.11
MILL_CR	6	1097	8.3	15.77	1.71

Sie rechnen nun eine Poisson lineare Regression auf den Daten und erhalten folgenden 😱 Output.

```
##
## Call:
## glm(formula = reformulate(response = "longnose", termlabels = wanted_vec),
##
       family = quasipoisson, data = data_tbl)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -9.295 -4.239 -1.700 1.155 22.152
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.394e+00 1.291e+00 1.080 0.28548
               4.455e-05 1.282e-05
                                     3.476 0.00107
## acerage
              1.627e-01 1.390e-01 1.170 0.24755
## do2
## so4
              -3.415e-03 2.421e-02 -0.141 0.88841
## no3
              1.447e-01 6.980e-02 2.073 0.04350
## (Dispersion parameter for quasipoisson family taken to be 38.87773)
      Null deviance: 1991.2 on 53 degrees of freedom
## Residual deviance: 1357.8 on 49 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5
```

- 1. Erklären Sie warum eine Quasipoisson-Regression gerechnet wurde! (2 Punkte)
- 2. Erklären Sie den Effekt der alternativen Verwendung einer Poisson-Regression auf den obigen Qutput! (2 Punkte)
- 3. Können Sie die *Estimate* der einzelnen Einflussvariablen direkt interpretieren? Begründen Sie Ihre Antwort! **(2 Punkte)**
- 4. Interpretieren Sie den Effekt von *maxdepth* auf die Anzahl an Knochenhechten! Liegt ein signifikanter Effekt vor? Begründen Sie Ihre Antwort! **(4 Punkte)**

Auf einer Erdbeerplantage treten unerwartet häufig infizierte Erdbeerpflanzen auf. In einem Versuch sollen verschiedende Einflussfaktoren auf den Infektionsstatus betrachtet werden. Dafür wurde für jede Erdbeerpflanze gemessen, wieviel Wasser die Pflanze erhalten hat oder ob die Pflanze ein neuartiges Lichtregime erhalten hatte. Zusätzlich wurde die Anzahl an Nematoden im Boden bestimmt. Es ergibt sich folgender Auszug aus den Daten.

infected	water	light	nematodes
1	8.47	0	3
1	8.14	0	1
0	10.93	0	0
1	11.81	0	2

Sie rechnen nun eine logistische lineare Regression auf den Daten und erhalten folgenden 😱 Output.

- 1. Die Spalte *estimate* wurde gelöscht. Berechnen Sie die Werte der Spalte *estimate* aus den Qutput! (2 Punkte)
- 2. Welche Einflussfaktoren sind protektiv, welche ein Risiko? Berechnen Sie hierfür zunächst das OR aus der Spalte *estimate*! **(4 Punkte)**
- 3. Interpretieren Sie die Spalte *estimate* im Bezug auf den Infektionsstatus der Erdbeerpflanzen! (2 Punkte)
- 4. Was ist der Unterschied zwischen einem OR und einem RR? Geben Sie ein numerisches Beispiel! (2 Punkte)

In einem Experiment zur Steigerung der Milchleistung (gain) in dl/h von Kühen wurden zwei Arten von Musik in den Ställen gespielt. Zum einen ruhige Musik (calm) und eher flotte Musik (pop). Die Messungen wurden an jeder Kuh (subject) wiederholt durchgeführt. Darüber hinaus wurden verschiedene Ställe (barn) mit der Musik bespielt.

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: gain ~ attitude + (1 | subject) + (1 | barn)
      Data: data_tbl
##
## REML criterion at convergence: 792.8
##
## Scaled residuals:
      Min 10 Median
                                30
                                       Max
## -2.3493 -0.6752 -0.1065 0.5789 3.3476
## Random effects:
## Groups Name
                        Variance Std.Dev.
## barn
             (Intercept) 219.0
                                  14.80
## subject (Intercept) 4182.1
                                  64.67
## Residual
                          638.1
                                  25.26
## Number of obs: 83, groups: barn, 7; subject, 6
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept)
                             27.27
                 201.41
                                    7.387
                             5.55
## attitudepop
                 -17.01
                                   -3.065
##
## Correlation of Fixed Effects:
               (Intr)
## attitudepop -0.100
```

- 1. Ist die Annahme der Normalverteilung an das Outcome *gain* erfüllt? Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Wie groß ist der Effekt der Musikart attitude? Liegt ein signifikanter Effekt vor? Schätzen Sie den p-Wert mit einem kritischen t-Wert von $T_k = 1.96$ ab. Begründen und visualisieren Sie Ihre Antwort und Entscheidung! (3 Punkte)
- 3. Was ist der Unterschied zwischen einem "random" und "fixed" Effekt. Gehen Sie in der Begründung Ihrer Antwort auf dieses konkrete Beispiel ein! (3 Punkte)
- 4. Wie groß ist die Varianz, die durch die zufälligen Effekte erklärt wird? (1 Punkt)
- 5. Schreiben Sie das Ergebnis der R Ausgabe in einen Satz nieder, der die Information zum Effekt und der Signifikanz enthält! (2 Punkte)

Nicht parametrische Tests

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 25 Der Wilcoxon-Mann-Whitney-Test
- Kapitel 26 Der Kruskal-Wallis-Test

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Die Anzahl an Nematoden wurde vor und nach einer Behandlung mit einem bioaktiven Dünger gezählt. Es ergibt sich folgende Datentabelle.

Vorher	Nachher	Differenz	Vorzeichen	Rang	Positiv Rang	Negativ Rang
8	13					
10	12					
12	13					
8	9					
12	15					
11	14					
8	13					
10	15					
9	12					
8	12					
11	10					
12	15					
11	9					
11	13					
12	10					

- 1. Ergänzen Sie die obige Tabelle mit den notwendigen Informationen, die Sie benötigen um einen Wilcoxon-Vorzeichen-Rang-Test zu rechnen! (4 Punkte)
- 2. Bestimmen Sie die Teststatistik W mit $W = \min(T_-; T_+)$ und berechnen Sie den erwarteten

Wert
$$\mu_W = \frac{n_{!0} \cdot (n_{!0} + 1)}{4}!$$
 (2 Punkte)

- 3. Berechnen Sie anschließend den z-Wert mit $z = \frac{W \mu_W}{17.607}!$ (2 Punkte)
- 4. Liegt mit einer Signifikanzschwelle von $z_{\alpha=5\%}=1.96$ ein Unterschied zwischen den beiden Zeitpunkten vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie die Effektstärke mit $r=|\frac{z}{\sqrt{n}}|$ und interpretieren Sie die Effektstärke! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einer Behandlung mit RootsGoneX wurde die mittelere Anzahl an Wurzeln an der invasiven Lupine (*Lupinus polyphyllus*) gezählt. Es ergab sich folgender Datensatz an mittleren Wurzelanzahl.

Treatment	Count
RootsGoneX	11.7
Kontrolle	-0.1
RootsGoneX	12.3
Kontrolle	-0.8
RootsGoneX	12.3
Kontrolle	-0.2
Kontrolle	1.2
RootsGoneX	11.4
Kontrolle	1.3
RootsGoneX	12.4
Kontrolle	-2.7

Rechnen Sie einen Mann-Whitney-U-Test auf den obigen Daten.

1. Bestimmen Sie hierfür
$$U_c$$
 mit $U_c = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1!$ (4 Punkte)

2. Geben Sie eine Aussage über die Signifikanz von
$$U_c$$
 durch $z=\frac{U_c-\frac{n_1n_2}{2}}{\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}}$ und dem kritischen Wert von $z_{\alpha=5\%}=1.96$. Begründen Sie Ihre Antwort! **(2 Punkte)**

3. Berechnen Sie die Effektstärke mit $r=|\frac{z}{\sqrt{n}}|$ und interpretieren Sie die Effektstärke! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Die Anzahl an Blüten der Vanilleplanze pro Box wurde nach der Gabe von zusätzlichen Phosporlösung (Kontrolle, Dosis 20 und Dosis 40) bestimmt. Es ergeben sich folgende nach der Anzahl der Blüten geordnete Daten.

Treatment	Count	Rang Kontrolle	Rang Dosis 20	Rang Dosis 40
Kontrolle Dosis 20 Dosis 20 Kontrolle Dosis 40	7.4 13.9 11.4 6.6 12.3			
Kontrolle Dosis 40 Dosis 40 Dosis 20 Kontrolle	5.4 13.7 12.0 12.5 5.6			
Kontrolle Dosis 40 Kontrolle Kontrolle Dosis 20	6.7 13.5 5.4 6.7 12.0			
Dosis 40	8.3			

Rechnen Sie einen Kruskal-Wallis-Test auf den obigen Daten.

1. Bestimmen Sie hierfür
$$H_c$$
 mit $H_c = \frac{12}{n(n+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \frac{R_3^2}{n_3} \right) - 3(n+1)!$ (6 **Punkte**)

- 2. Geben Sie eine Aussage über die Signifikanz von H_c durch den kritischen Wert von $H_{\alpha=5\%} = 5.99!$ (1 **Punkt**)
- 3. Wie lautet die statistische Nullhypothese die Sie mit dem Kruskal-Wallis-Test überprüfen? (1 Punkt)
- 4. Was sagt ein signifikantes Ergebnis des Kruskal-Wallis-Test in Bezug auf die einzelnen Gruppenvergleiche aus? (1 Punkt)
- 5. Nennen Sie das statistische Verfahren, welches Sie als Posthoc Test nach einem signifikanten Kruskal-Wallis-Test durchführen würden! (1 Punkt)

Multiple Gruppenvergleiche

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

- Kapitel 20.3 Adjustierung für multiple Vergleiche
- Kapitel 31.7 Compact letter display

In einem Experiment zur Dosiswirkung wurden verschiedene Dosisstufen mit einer Kontrollgruppe vergleichen. Es wurden vier t-Test für den Mittelwertsvergleich gerechnet und es ergab sich folgende Tabelle mit den rohen p-Werten.

Vergleich	Raw p-val	Adjusted p-val	Reject H ₀
dose 10 - ctrl	0.760		
dose 15 - ctrl	0.030		
dose 20 - ctrl	0.020		
dose 40 - ctrl	0.060		

- 1. Füllen Sie die Spalte "adjustierte p-Werte" mit den adjustierten p-Werten nach Bonferoni aus! (4 Punkte)
- 2. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese weiter abglehnt werden kann. Tragen Sie Ihre Entscheidung in die obige Tabelle ein. Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Erklären Sie warum die p-Werte bei multiplen Vergleichen adjustiert werden müssen! (2 Punkte)

In einem Experiment mit vier Dosisstufen (ctrl, low, mid und high) erhalten Sie folgende Matrix als \mathbb{R} Ausgabe mit den rohen, unadjustierten p-Werten.

```
## ctrl high low mid

## ctrl 1.0000000 0.0491287 0.0000000 0.0000008

## high 0.0491287 1.0000000 0.0000002 0.0002787

## low 0.0000000 0.0000002 1.0000000 0.0173385

## mid 0.0000008 0.0002787 0.0173385 1.0000000
```

Im Weiteren erhalten Sie folgende Informationen über die Fallzahl n, den Mittelwert mean und die Standardabweichung sd in den jeweiligen Dosisstufen.

trt	n	mean	sd
ctrl	9	5.64	1.73
high	9	7.48	1.98
low	9	13.37	2.40
mid	9	11.13	1.33

- 1. Zeichnen Sie in eine Abbildung, die sich ergebenden Barplots! (2 Punkte)
- 2. Adjustieren Sie die rohen p-Werte nach Bonferroni. Begründen Sie Ihre Antwort! (3 Punkte)
- 3. Ergänzen Sie das Compact letter display (CLD) zu der Abbildung! (2 Punkte)
- 4. Interpretieren Sie das Compact letter display (CLD)! (2 Punkte)

In einem Experiment mit fünf Dosisstufen (A, B, C, D und E) erhalten Sie folgendes *Compact letter display (CLD)* als R Ausgabe aus den rohen, unadjustierten *p*-Werten.

- 1. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! **(3 Punkte)**
- 2. Zeichnen Sie eine Abbildung, der sich ergebenden Barplots! (2 Punkte)
- 3. Ergänzen Sie das Compact letter display (CLD) zu der Abbildung! (1 Punkt)
- 4. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)

R Programmierung

Mehr Informationen zu den Aufgaben in den folgenden Kapiteln aus dem Skript Bio Data Science.

• Kapitel 9ff. Programmieren in R

In der Klausur zu dem Modul **Mathematik & Statistik** wird *eine Aufgabe* aus den folgenden Aufgaben zur R Programmierung ausgewählt.

In der Klausur zu dem Modul **Statistik** wird *eine Aufgabe* aus den folgenden Aufgaben zur R Programmierung ausgewählt.

In der Klausur zu dem Modul **Angewandte Statistik für Bioverfahrenstechnik** wird *eine Aufgabe* aus den folgenden Aufgaben zur R Programmierung ausgewählt.

In der Klausur zu dem Modul **Angewandte Statistik und Versuchswesen** wird *eine Aufgabe* aus den folgenden Aufgaben zur R Programmierung ausgewählt.

In der Klausur zu dem Modul **Biostatistik** wird *eine Aufgabe* aus den folgenden Aufgaben zur R Programmierung ausgewählt.

Bearbeiten Sie folgenden Aufgaben mit Bezug zu 😱!

- 1. Erklären Sie den Pipe-Operator am Beispiel der Berechnung des Mittelwertes mit der Funktion mean und den Zahlen 17, 0, 6, 12 und 11! (2 Punkte)
- 2. Erklären Sie den Unterschied zwischen einer Funktion und einem Objekt in R an einem Beispiel! (2 Punkte)
- 3. Erklären Sie den Vorteil der Verwendung der Funktion p_load() an einem Beispiel. Was ist das alternative Vorgehen zu der Verwendung der Funktion? (2 Punkte)
- 4. Erklären Sie die Verwendung des Operators :: am Beispiel der Funktion select() und p_load()! (2 Punkte)

Bearbeiten Sie folgenden Aufgaben mit Bezug zu 😱!

- 1. Erklären Sie den Pfeil-Operator am Beispiel eines Zahlenvektors mit der Funktion c() und den Zahlen 8, 13, 8, 11 und 14! (2 Punkte)
- 2. Erklären Sie den Nutzen des R Paketes conflicted am Beispiel der Funktion select()! (2 Punkte)
- 3. Erklären Sie den Unterschied zwischen einer library und einem package in R an einem Beispiel! (2 Punkte)
- 4. Erklären Sie den Unterschied zwischen "mean", mean und mean()! (2 Punkte)

Sie wollen eine explorative Datenananalyse auf dem folgenden, in \mathbb{R} schon geladenen, Datensatz leaf_tbl durchführen.

```
leaf_tbl
## # A tibble: 10 x 3
## treatment block leaf
          <dbl> <int> <dbl>
## 1
              1
                    1
                         15
## 2
              1
                    2
                          7
##
                    3
   3
              1
                          8
##
   4
              1
                    4
                          8
   5
              1
                    5
                         9
##
              2
                    1
                         10
##
   6
##
   7
              2
                    2
                         10
## 8
              2
                    3
                          8
              2
                          9
## 9
                    4
              2
## 10
                    5
                         10
```

- 1. Welche R Pakete benötigen Sie für die explorative Datenanalyse? (2 Punkte)
- 2. Skizzieren Sie den R Code für die Erstellung eines Barplots unter der Verwendung des Pipe-Operators! (4 Punkte)
- 3. Nehmen Sie an, dass Sie die Funktion as_factor() verwenden. Wozu benötigen Sie die Funktion? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Erläutern Sie Ihr weiteres Vorgehen nachdem Sie eine explorative Datenanalyse durchgeführt haben! (2 Punkte)

Sie wollen einen multiplen, paarweisen Gruppenvergleich auf dem folgenden, in \mathbb{R} schon geladenen, Datensatz leaf_tbl durchführen.

```
leaf_tbl
## # A tibble: 25 x 3
     treatment block leaf
      <fct>
                <fct> <dbl>
   1 1
                1
                           9
## 2 1
                2
                          11
   3 1
                3
                          12
##
##
   4 1
                4
                          11
   5 1
                5
                          12
##
##
   6 2
                1
                           7
##
   7 2
                2
                          8
## 8 2
                3
                           9
                           9
## 9 2
                4
## 10 2
                5
                          10
## # ... with 15 more rows
```

- 1. Welche R Pakete benötigen Sie für den multipen Vergleich? (2 Punkte)
- 2. Skizzieren Sie den Rode für die Erstellung einer Berechnung eines multiplen Vergleiches unter der Verwendung des Pipe-Operators! Nutzen Sie hierfür folgende Funktionen in der passenden Reihenfolge: emmeans(), cld(), lm(), anova(), ggplot()! (4 Punkte)
- 3. Erklären Sie den Unterschied zwischen der Funktion contrast() und cld()! (2 Punkte)

Sie wollen einen Datensatz aus Excel in Raden. In Ihrem Experiment haben Sie die Sorten eins bis vier sowie die Blöcke I bis IV vorliegen. Sie messen die Outcomes Fe, P und leaf an vier verschiedenen Messterminen.

- 1. Welches R Paket benötigen Sie für das Einlesen einer Excel Datei? (1 Punkt)
- 2. Skizzieren Sie den sich ergebenden Datensatz als Datentabelle im Long-Format, so dass Sie die Daten erfolgreich Rladen können! (3 Punkte)
- 3. Skizzieren Sie den R Code, den Sie benötigen um die Daten aus Excel in R zu laden!
 Nutzen Sie hierfür die Funktion pivot_longer() aus dem R Paket tidyr! (3 Punkte)
- 4. Skizzieren Sie die Anwendung der Funktion mutate()! Begründen Sie die Anwendung! (2 Punkte)

Mathematik

Mehr Informationen zu den Aufgaben in den Skript Mathematik und den entsprechenden Kapiteln.

In der Klausur zu dem Modul **Mathematik & Statistik** werden *zwei bis drei Aufgaben* aus den folgenden Aufgaben zur Mathematik ausgewählt.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 1.1mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 12.5m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser der Eiche im Jahr 1815 als Herodot in der Eiche versteckt werden sollte? (3 Punkte)
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 180cm, eine Breite von 85cm sowie eine Länge von 240cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mühsam* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in cm! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! (3 Punkte)
- 5. Unter einer Dicke der Eichenwand von 10*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 120 Sonnenblumen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Sonnenblumen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Sonnenblumen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Radius von 4.5cm und eine Höhe von 8cm. Der Kubikmeterpreis für Torf liegt bei 310 EUR.

- 1. Skizzieren Sie den Versuchsplan auf einem Tisch im Gewächshaus! (2 Punkte)
- Berechnen Sie die benötigten Töpfe, wenn Sie Randpflanzen mit berücksichtigen wollen! (1
 Punkt)
- 3. Welche Fläche in m^2 gegeben der Anzahl an Töpfen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf und die Kosten für Ihre Pflanzung! Gehen Sie von einem Zylinder aus! (2 Punkte)
- 5. Nach dem Befüllen der Töpfe haben Sie noch Torf übrig. Erklären Sie den Sachstand! Wie gehen Sie zukünftig vor? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 45 Tagen die ersten Symptome ein; die ersten Toten sind nach 70 Tagen zu beklagen; nach 115 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 245 Mann.

- 1. Stellen Sie den Verlauf der Skorbuterkrankung auf einem Schiff der Flotte dar! Beschriften Sie die Achsen! (4 Punkte)
- Schätzen Sie die Überlebenswahrscheinlichkeit nach 100 Tagen aus Ihrer Abbildung ab! (1
 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $7000\mu g/100g$ Vitamin C. Der Bedarf liegt bei 110mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 20 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{28} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 5000m kollabiert, wird die Sonne 35% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{qrav} gegeben.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \quad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- *G*, gleich der Gravitationskonstante mit $6.674 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (2 Punkte)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (2 Punkte)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Die Lichtgeschwindigkeit ist mit 2.9e + 08m/s angegeben. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 Punkte)
- 6. Erklären Sie in diesem Zusammenhang den Begriff Singularität! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt zwei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.2587 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum zwei Sonden werden ausgesendet. Gehen Sie von 5.16 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 1.5×10^{11} Sterne in der Milchstraße. Die Lichtgeschwindigkeit beträgt 2.9e + 08m/s.

- 1. Skizzieren Sie in einer Abbildung die ersten drei Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer jedes Schrittes! (2 Punkte)
- 2. Berechnen Sie die Dauer, die eine außerirdische Zivilisation benötigt, um die ganze Milchstraße zu besuchen! (3 Punkte)
- 3. Bei einem vermutetet Alter der Erde von 4.1×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 9×10^7 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)
- 4. Mit welcher Wahrscheinlichkeit wurde die Menschheit schon von der Außerirdischen besucht, wenn wir von einem Zivilisationsbeginn der Menschheit von vor 1.1×10^4 Jahren ausgehen? (1 Punkt)
- 5. Skizzieren Sie in einer Abbildung den Zusammenhang zwischen Zeit t und Raum r. Ergänzen Sie den Geschwindigkeitsvektor \vec{v}_t und \vec{v}_r einer ruhenden Sonde, einer mit 50% Lichtgeschwindigkeit und mit 99% Lichtgeschwindigkeit fliegender Sonde! (1 Punkt)
- 6. Warum ist die Lichtgeschwindigkeit die maximale mögliche Geschwindigkeit? Begründen Sie Ihre Antwort anhand der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einem Ihrer Freunde einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 4 achtseitige Würfel (4d8) zum würfeln in der Hand. Wenn Sie eine 8 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 2 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei zwölfseitigen Würfeln (2d12) als Schaden oder das Schwert mit einem zwölfseitigen Würfel plus 3 (1d12+3) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.7, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.7. Sie haben mitgezählt und festgestellt, dass in 50 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 **Punkte**)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Hühnerstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Hühnerstall hat eine Höhe h_{ν} von 5m. Die hintere Seite des Hühnerstall hat eine Höhe h_b von 9m. Der Hühnerstall hat eine Tiefe t von 14m und eine Breite b von 40m.

- 1. Skizzieren Sie den Hühnerstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_{v} , h_{b} , die Tiefe t und die Breite b des Stalls! (2 **Punkte**)
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Hühnerstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 10t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 10% ein. In flüssiger Form hat Methan bei -80° C eine Dichte von $240kg/m^3$. Bei -100° C hat Methan eine Dichte von $280kg/m^3$. Sie betrieben Ihre Anlage bei -85° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 **Punkte**)
- 5. Berechnen Sie die maximale Höhe h_{max} für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Sie haben den Vektor $A = \{2, 14, -4\}$ und den Vektor $B = \{0, 3, 2\}$ gegeben.

- 1. Addieren Sie die Vektoren A und B! (1 Punkt)
- 2. Transponieren Sie den Vektor B! (1 Punkt)
- 3. Multiplizieren Sie den Vektor A mit 9! (1 Punkt)
- 4. Erstellen Sie eine Diagonalmatrix mit $m \times n$ Dimensionen! Legen Sie m und n vorher sinnvoll fest! (1 **Punkt**)
- 5. Übersetzen Sie folgendes linearen Gleichungssystem bestehend aus drei Gleichungen in die Matrixschreibweise! (2 Punkte)

```
## [1] "2x1 + 7x2 + 9x3 = 1"

## [1] "5x1 + 7x2 + 9x3 = 1"

## [1] "2x1 + 8x2 + 10x3 = 3"
```

6. Multiplizieren Sie folgende gegebene Matrix mit dem Vektor B! (2 Punkte)

```
## [,1] [,2] [,3]
## [1,] 6 4 4
## [2,] 6 3 3
## [3,] 5 6 5
## [4,] 4 6 8
```

7. Skizzieren Sie den entsprechenden 🕝 Code für die Matrixmultiplikation! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

1. Ergänzen Sie die logischen Operatoren in 😱 in die untenstehende Tabelle! (2 Punkte)

Ausdruck	Operator
UND	
GROESSER	
UNGLEICH	
KLEINER GLEICH	

- 2. Visualisieren Sie folgende logische Aussagen zu der Menge A und der Menge B als Mengendiagramme bzw. Venndiagramme! (2 Punkte)
 - Entweder A tritt ein oder B tritt ein oder keins von beiden
 - B ist Teilmenge von A
 - A tritt ein, aber B tritt nicht ein
 - A tritt nicht ein
- 3. Ergänzen Sie zu den Venndiagrammen die mathematische Notation! (2 Punkte)
- 4. Erstellen Sie die logical R Ausgabe für die Suche nach der Zeichenfolge CC in folgenden DNA Sequenzen! (2 Punkte)
 - AACCAACC
 - ATGTGTAT
 - TCTCTCTC
 - AAATTTAT
- 5. Geben ist das R Objekt A beinhaltend die Zahl 7. Erklären Sie den Unterschied zwischen dem Ausdruck A == 7 und dem Ausdruck A != 7 in R ! Wie lautet die Ausgabe von R in beiden Fällen? (2 Punkte)