EE214: Implementation to Finite State Machines

Madhav Desai

March 15, 2019

A sequential system

- ► Sequences: $\{x(k)\}$, $\{y(k)\}$ for k = 0, 1, 2, ...
- Sequential system: a map from sequences to sequences.

$$y(k+1) = y(k) \oplus x(k), k \ge 0, y(0) = y_0.$$

- ▶ Causal sequential system: a map $F: X \to Y$ such that is $\mathbf{x} = \{x(k)\} \in X$, and $\{y(k)\} = F(\mathbf{x})$, then y(k) is determined only by $x(0), x(1), \dots x(k)$.
- Finite memory sequential system.

A Mealy machine

$$M = (\Sigma, \Lambda, Q, \delta, \lambda)$$

where

- $ightharpoonup \Sigma$ is a finite set of input symbols.
- $ightharpoonup \Lambda$ is a finite set of output symbols.
- Q is a finite set of states.
- ▶ $\delta : \Sigma \times Q \rightarrow Q$ is a next-state function.
- ▶ $\lambda : \Sigma \times Q \rightarrow \Lambda$ is the outptut function.

A Mealy machine: relations

$$q(k+1) = \delta(x(k), q(k))$$

$$y(k) = \lambda(x(k), q(k))$$

A Mealy machine: an example

The Mealy machine: implementation

We need to define the instants k = 0, 1, 2,. Use a periodic square wave.

Figure: Clock

The Mealy machine: implementation

Symbols mapped to Boolean variables (encoding).

```
Input variables r u
Input coding RST -> 1_, Up -> 01, Down -> 00
State variables q1 q0
State coding A -> 00, B -> 01, C -> 10
Output variables y
Output coding YES -> 1, NO -> 0
```

The Mealy machine: implementation

Figure: FSM Implementation

Vhdl Description of the FSM

- Minimize the next state and output functions and implement using logic gates. Connect up everything (using flip-flops).
- Implement using variables (FsmWithVars.vhdl).
- Implement using symbols (FsmWithSymbols.vhdl).

Timing Diagram

Trace file construction

inputs		outputs
clock=0	x(0)	y(0)
clock=1	x(0)	ignore
clock=0	x(1)	y(1)
clock=1	x(1)	ignore
clock=0	x(2)	y(2)
clock=1	x(2)	ignore
0+0		

From specification to implementation

- ▶ Input-symbols are (RST, a, b).
- ▶ Output-symbols are (*match*, *nomatch*).
- ▶ The output sequence y(k) = match if and only if the sequence x(k-3)x(k-2)x(k-1)x(k) is either abab or baba.

How to go about it?

- ▶ Identify the set of states.
- Build the state transition graph of the FSM.
- Implement the FSM using VHDL.
- ▶ Write a test trace file which ensures that every arc in the state transition graph is taken.