Aluno(a): Matrícula:	
DISCIPLINA: Métodos Matemáticos I	2023.2
DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC	
CENTRO DE INFORMÁTICA - CI	
UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB	

Marque com um X a sua opção:

- o professor deve corrigir a prova de reposição valendo 10 pontos e desconsiderar as listas de exercícios entregues entre a realização da primeira e da segunda provas;
- () o professor deve corrigir a prova de reposição valendo 7 pontos e considerar as notas das listas de exercícios entregues entre a realização da primeira e da segunda provas.
- 01. Considere o espaço vetorial $\mathbb{V}=\mathbb{M}_{2\times 2}$ das matrizes reais 2×2 munido das operações usuais de adição e de multiplicação por escalar e também munido do produto interno $\langle M_1,M_2\rangle=tr(M_2^tM_1)$, em que M_2^t é a transposta da matriz M_2 e $tr(M_2^tM_1)$ é o traço da matriz produto $M_2^tM_1$.

Defina o conjunto \mathbb{W} de matrizes $M_{2\times 2}$ da seguinte forma:

$$M \in \mathbb{W} \iff M = \begin{bmatrix} a & b \\ 0 & a+b \end{bmatrix} \in \mathbb{W} \text{ com } a \in \mathbb{R} \text{ e } b \in \mathbb{R}.$$

- (a) Verifique que o subconjunto \mathbb{W} é um subespaço vetorial de \mathbb{V} .
- (b) Determine duas matrizes que formam uma base do subespaço W.
- (c) Verifique se as duas matrizes que formam a base determinada no item (b) são ortogonais entre si.
- 02. Seja a transformação linear $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}$ dada por T(x, y, z) = x + y.
 - (a) Determine o núcleo da transformação T.
 - (b) Determine a expressão da transformação linear $\mathbf{T}^*: \mathbb{R} \to \mathbb{R}^3$ adjunta de \mathbf{T} .
 - (c) Determine se o vetor $v = (1, 2, 3) \in \mathbb{R}^3$ pertence à imagem de T^* .

- 03. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dado por $T(x_1, x_2, x_3) = (2x_2 + 2x_3, x_2 + x_3, x_3)$.
 - (a) Determine os autovalores do operador T.
 - (b) Determine uma base de cada autoespaço (autovetores) associado a cada um dos autovalores de T.
 - (c) Determine uma base do \mathbb{R}^3 que contenha como seus primeiros elementos os autovetores que formam as bases dos autoespaccos do item (b).
- 04. Considere o espaço vetorial dos polinômios de grau no máximo $\mathbb{P}_2(\mathbb{R})$ munido das operações usuais de adição e de multiplicação por escalar. Defina a transformação linear $\mathbf{T}: \mathbb{P}_2(\mathbb{R}) \to \mathbb{R}^2$ por $T(a_0 + a_1x + a_2x^2) = (a_0 + a_1 + a_2, a_0 + a_1)$.
 - (a) Determine a dimensão do subespaço $Im(\mathbf{T})$, imagem da transformação \mathbf{T} .
 - (b) Baseando-se no item (a) determine a dimensão do subespaço $N(\mathbf{T})$, núcleo da transformação \mathbf{T} . Justifique a sua resposta.
 - (c) Diga se a transformação dada é injetiva e também se é sobrejetiva. Justifique as suas duas respostas.