

Classification using Weka & Scikit-learn

PROF. K. H. LIM

50.038 Computational Data Science

Load in datasets

- Weka already has some pre-installed datasets
 - Go to Tools → ArffViewer → File → Open
 - Then select dataset ./Weka-3-8/data/diabetes.arff

Attributes in diabetes.arff

- Preg: Number of times pregnant
- Plas: Plasma glucose concentration
- Pres: Diastolic blood pressure (mm Hg)
- Skin: Triceps skin fold thickness (mm)
- Insu: 2-Hour serum insulin (mu U/ml)
- Mass: Body mass index (weight in kg/(height in m)^2)
- Pedi: Diabetes pedigree function
- Age: Age (years)
- Class: Test results for diabetes

Weka Data Explorer

Study the diabetes.arff dataset using Weka Explorer

Training and Testing Classifiers

 Select from multiple classifiers (e.g., Naïve Bayes, Decision Trees, Random Forests, etc)

Training and Testing Classifiers

Various
 evaluation
 approach
 (e.g., using
 pre-fixed
 train/test sets,
 k-fold cross
 validation, etc)

Exercise

- Load in the diabetes arff dataset
- 2. How many features does this dataset have? What will you use as labels?
- 3. Use Weka explorer, find out: (i) what is the average "mass"; and (ii) what are the minimum and maximum "age"

 21

 81
- Run the "RandomTree" and "RandomForest" classifiers using a 10fold cross validation.
 - What do you observe in terms of their performance and running time?

Python Scikit-learn

- Machine learning library based on Python
- Contains functionalities for data pre-processing, classification, clustering, etc

Twitter Dataset

- Using a Twitter sentiment dataset
 - http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
 - https://docs.google.com/file/d/0B04GJPshIjmPRnZManQwWEdTZjg/edit
- This dataset comprises 1.6M tweets with various columns, we will make use of the first and last column (sentiment label and tweet text)
 - For sentiment, a value of 4 = positive and 0 = negative

Load Packages

Import relevant packages

```
# Load in required packages
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import FunctionTransformer
from sklearn import metrics
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
```

Load Dataset

- Does dataset contain headers?
- What type of encoding for text?

Sanity Check

Is the dataset how you expected it to be?

```
# check dimensions
In [3]:
            2 df train.shape
Out[3]: (1600000, 6)
In [4]:
               # check that training set is correct
            2 df train.head()
Out[4]:
              label
                             id
                                                      date
                                                                 query
                                                                                   user
                                                                                                                              text
                 0 1467810369 Mon Apr 06 22:19:45 PDT 2009 NO_QUERY _TheSpecialOne_
                                                                                           @switchfoot http://twitpic.com/2y1zl - Awww, t...
                 0 1467810672 Mon Apr 06 22:19:49 PDT 2009 NO QUERY
                                                                            scotthamilton
                                                                                           is upset that he can't update his Facebook by ...
           2
                 0 1467810917 Mon Apr 06 22:19:53 PDT 2009 NO_QUERY
                                                                                         @Kenichan I dived many times for the ball. Man...
                                                                                mattycus
           3
                 0 1467811184 Mon Apr 06 22:19:57 PDT 2009 NO QUERY
                                                                                ElleCTF
                                                                                              my whole body feels itchy and like its on fire
                 0 1467811193 Mon Apr 06 22:19:57 PDT 2009 NO QUERY
                                                                                            @nationwideclass no, it's not behaving at all....
                                                                                  Karoli
In [5]:
            1 # check the class distribution
              df train['label'].value counts()
Out[5]: 4
                800000
                800000
          Name: label, dtype: int64
```

Bag of Words (BoW)

- Need to count the frequency of each word
- Use the CountVectorizer() function

Training and Testing

- Convert test set to BoW representation
- Train our model by calling fit() on our training set and labels
- Test our model by calling predict()

```
# train and test our model
testBow = bowVect.transform(df_test.text) # not fit_transform()
mnbClf = MultinomialNB().fit(trainBow, train_labels)
predicted = mnbClf.predict(testBow)
```

Evaluation Scores

Look at Accuracy, Precision, Recall and F-measure

```
In [12]:
          1 | # evaluating our model
          print(metrics.classification_report(test_labels, predicted))
             print(accuracy score(test labels, predicted))
                     precision recall f1-score
                                                  support
                         0.79
                                   0.82
                                            0.81
                                                       177
                         0.82
                                   0.79
                                            0.81
                                                       182
        avg / total
                         0.81
                                   0.81
                                            0.81
                                                       359
```

0.807799442896936

Different Features and Models

- What happens if we need to evaluate different features or classifiers?
 - Instead of words (uni-grams), use bi-grams and tri-grams?
 - Instead of Naïve Bayes, use Decision Tree, Random Forest, SVM, etc?
- Can use Scikit-learn's Pipeline
 - It takes an input, does a series of pre-processing step before feeding it to a final classifier
 - More information at http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Exercise

- Load in Twitter dataset (both files) and count the frequency of each class
- Implement a simple pipeline with Naïve Bayes classifier with words (unigrams) as features
 - Using "training.1600000.processed.noemoticon.csv", evaluate your model with 80% training and 20% test
 - hint: look at the train_test_split() function
- Enhance the Naïve Bayes model by removing stop words, and experimenting with bi-grams and tri-grams
 - hint: look at the various parameters for CountVectorizer()