

FCC REPORT

(Bluetooth)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: InVision 4K Media Player

Model No.: DTIV4K-G2

FCC ID: 2AB6ZDTIV4K-G2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Jan., 2017

Date of Test: 16 Jan., to 28 Feb., 2017

Date of report issued: 01 Mar., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Mar., 2017	Original

Tested by: 01 Mar., 2017

Tool Franciscou

Reviewed by: 01 Mar., 2017

Project Engineer

3 Contents

		F	Page
1	С	OVER PAGE	1
2	V	/ERSION	2
3	С	CONTENTS	3
	_	EST SUMMARY	
4	ı	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	17
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		5.9.1 Conducted Emission Method	
	_	5.9.2 Radiated Emission Method	
	6.10	SPURIOUS EMISSION	
	•	5.10.1 Conducted Emission Method	
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS	64

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCISE170102201

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED		
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong		
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD		
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China		

5.2 General Description of E.U.T.

Product Name:	InVision 4K Media Player
Model No.:	DTIV4K-G2
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	External Antenna
Antenna gain:	2 dBi
AC adapter:	Model: PS12F120K1000UD
	Input: AC100-240V 50/60Hz 0.35A
	Output: DC 12.0V, 1000mA

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GESK (1 Mbns) is the worst case mode

Report No: CCISE170102201

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE170102201

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc. PAP-1G18 C		CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	de & Schwarz		04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017	
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017	
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 2 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for d	letails					
Test mode:	Bluetooth (Continuous tr	ansmitting) mode					
Test results:	Pass						

Measurement Data:

Line:

Trace: 21

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition : InVision 4K Media Player : DTIV4K-G2 EUT

Model Test Mode : BT Mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

Re

(emark	:								
	-	Read	LISN	Cable		Limit	Over	D 1	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBu∀	d₿	₫B	dBu∀	dBu₹	d₿		-
1	0.154	44.15	0.14	10.78	55.07	65.78	-10.71	QP	
2	0.154	18.51	0.14	10.78	29.43	55.78	-26.35	Average	
3	0.174	41.96	0.15	10.77	52.88	64.77	-11.89	QP	
4	0.174	16.54	0.15	10.77	27.46	54.77	-27.31	Average	
5	0.437	34.31	0.24	10.74	45.29	57.11	-11.82	QP	
2 3 4 5 6 7	0.459	19.59	0.24	10.75	30.58	46.71	-16.13	Average	
7	0.731	12.94	0.31	10.78	24.03	46.00	-21.97	Average	
8	1.005	30.90	0.26	10.87	42.03	56.00	-13.97	QP	
9	1.276	30.46	0.28	10.90	41.64	56.00	-14.36	QP	
10	1.527	11.14	0.30	10.93	22.37	46.00	-23.63	Average	
11	11.621	34.66	0.28	10.92	45.86	60.00	-14.14	QP	
12	11.621	17.07	0.28	10.92	28.27	50.00	-21.73	Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition EUT : InVision 4K Media Player

: DTIV4K-G2 Model Model : D11v4K-G2
Test Mode : BT Mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

emark	•	D J	LICH	C-11-		TULUL	0		
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark	
	MHz	dBu₹	<u>d</u> B	₫B	dBu₹	dBu₹	<u>dB</u>		_
1	0.150	20.37	0.12	10.78	31.27	56.00	-24.73	Average	
1 2 3	0.170	43.79	0.13	10.77	54.69	64.94	-10.25	QP	
3	0.449	22.75	0.24	10.74	33.73	46.89	-13.16	Average	
4	0.454	38.76	0.24	10.74	49.74	56.80	-7.06	QP	
5	0.518	30.80	0.25	10.76	41.81	56.00	-14.19	QP	
4 5 6 7 8	0.994	15.56	0.26	10.87	26.69	46.00	-19.31	Average	
7	1.216	16.56	0.26	10.90	27.72	46.00	-18.28	Average	
8	1.276	29.45	0.26	10.90	40.61	56.00	-15.39	QP	
9	8.192	18.12	0.29	10.86	29.27	50.00	-20.73	Average	
10	8.412	32.77	0.28	10.87	43.92	60.00	-16.08	QP	
11	11.377	36.97	0.25	10.93	48.15	60.00	-11.85	QP	
12	11.683	19.80	0.25	10.92	30.97	50.00	-19.03	Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup: RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz a 3MHz)			
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

	GFSK mode					
Test channel	channel Peak Output Power (dBm)		Result			
Lowest	4.90	21.00	Pass			
Middle	4.42	21.00	Pass			
Highest	3.98	21.00	Pass			
-	π/4-DQPSK	mode				
Test channel	Test channel Peak Output Power (dBm) Limit (dB		Result			
Lowest	2.17	21.00	Pass			
Middle	Middle 1.65		Pass			
Highest	Highest 0.64 21.00 Pa		Pass			
	8DPSK mo	ode				
Test channel	Test channel Peak Output Power (dBm) Limit (dBm)					
Lowest	2.14	21.00	Pass			
Middle	1.65	21.00	Pass			
Highest	Highest 0.67 21.00 Pass					

Test plot as follows:

Date: 15.FEB.2017 16:31:33

Lowest channel

Date: 15.FEB.2017 16:31:58

Middle channel

Date: 15.FEB.2017 16:32:20

Highest channel

Date: 15.FEB.2017 16:00:57

Lowest channel

Date: 15.FEB.2017 16:00:20

Middle channel

Date: 15.FEB.2017 15:59:45

Highest channel

Date: 15.FEB.2017 16:01:57

Lowest channel

Date: 15.FEB.2017 16:02:49

Middle channel

Date: 15.FEB.2017 16:03:24

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	832	1156	1164	
Middle	840	1152	1160	
Highest	836	1156	1168	

Test plot as follows:

Date: 15.FEB.2017 16:37:34

Lowest channel

Date: 15.FEB.2017 16:35:50

Middle channel

Date: 15.FEB.2017 16:34:21

Highest channel

Date: 15.FEB.2017 16:14:42

Lowest channel

Date: 15.FEB.2017 16:16:14

Middle channel

Date: 15.FEB.2017 16:17:30

Highest channel

Date: 15.FEB.2017 16:05:03

Lowest channel

Date: 15.FEB.2017 16:06:14

Middle channel

Date: 15.FEB.2017 16:07:07

Highest channel

6.5 Carrier Frequencies Separation

• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 and DA00-705			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak			
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

GFSK mode				
Test channel Carrier Frequencies Separation (kHz) Limit (kHz)		Limit (kHz)	Result	
Lowest	1004	560.00	Pass	
Middle	1004	560.00	Pass	
Highest	1004	560.00	Pass	
	π/4-DQPSK mo	de		
Test channel	Carrier Frequencies Separation (kHz)	DIN Limit (kHz) Result		
Lowest	1000	770.67 Pass		
Middle	1000	770.67 Pass		
Highest	1004	770.67 Pass		
	8DPSK mode			
Test channel Carrier Frequencies Separation (kHz) Limit (kHz) Resu		Result		
Lowest	1004	778.67 Pass		
Middle	1004	778.67	Pass	
Highest 1000 778.67 Pass		Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	840 560.00	
π/4-DQPSK	1156	770.67
8DPSK	1168	778.67

Test plot as follows:

Date: 15.FEB.2017 16:39:18

Lowest channel

Date: 15.FEB.2017 16:40:14

Middle channel

Date: 15.FEB.2017 16:41:13

Highest channel

Date: 15.FEB.2017 16:46:33

Lowest channel

Date: 15.FEB.2017 16:45:21

Middle channel

Date: 15.FEB.2017 16:44:11

Highest channel

Date: 15.FEB.2017 16:49:42

Lowest channel

Date: 15.FEB.2017 16:50:48

Middle channel

Date: 15.FEB.2017 16:51:45

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results: Pass			

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 15.FEB.2017 16:53:46

Date: 15.FEB.2017 16:55:35

Date: 15.FEB.2017 16:57:04

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13824		
GFSK	DH3	0.27552	0.4	Pass
	DH5	0.31744		
π/4-DQPSK	2-DH1	0.14144		
	2-DH3	0.27552	0.4	Pass
	2-DH5	0.31851		
	3-DH1	0.14144		
8DPSK	3-DH3	0.27360	0.4	Pass
	3-DH5	0.31808		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.432*(1600/(2*79))*31.6=138.24ms DH3 time slot=1.722*(1600/(4*79))*31.6=275.52ms DH5 time slot=2.976*(1600/(6*79))*31.6=317.44ms

2-DH1 time slot=0.442*(1600/ (2*79))*31.6=141.44ms

2-DH3 time slot=1.722*(1600/ (4*79))*31.6=275.52ms

2-DH5 time slot=2.986*(1600/ (6*79))*31.6=318.51ms

3-DH1 time slot=0.442*(1600/ (2*79))*31.6=141.44ms

3-DH3 time slot=1.710*(1600/ (4*79))*31.6=273.60ms

3-DH5 time slot=2.982*(1600/ (6*79))*31.6=318.08ms

Test plot as follows:

Date: 15.FEB.2017 16:59:46

DH1

Date: 15.FEB.2017 17:02:03

DH3

Date: 15.FEB.2017 17:03:03

DH5

Date: 15.FEB.2017 17:03:57

2-DH1

Date: 15.FEB.2017 17:04:49

2-DH3

Date: 15.FEB.2017 17:05:45

2-DH5

Date: 15.FEB.2017 17:06:41

3-DH1

Date: 15.FEB.2017 17:07:33

3-DH3

Date: 15.FEB.2017 17:08:29

3-DH5

Report No: CCISE170102201

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

Date: 15.FEB.2017 17:10:38

Date: 15.FEB.2017 17:19:43

No-hopping mode

Hopping mode

Highest Channel

Date: 15.FEB.2017 17:29:18

Date: 15.FEB.2017 18:36:48

No-hopping mode

Hopping mode

π/4-DQPSK

Lowest Channel

Date: 15.FEB.2017 17:11:55

No-hopping mode

Hopping mode

Highest Channel

Date: 15.FEB.2017 17:31:51

Date: 15.FEB.2017 17:23:49

Date: 15.FEB.2017 17:17:39

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 15.FEB.2017 17:13:30

Date: 15.FEB.2017 17:15:33

No-hopping mode

Hopping mode

Highest Channel

Date: 15.FEB.2017 17:33:45

Date: 15.FEB.2017 17:25:33

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
Test Method:	ANSI C63.10: 2	2013			
Test Frequency Range:	2.3GHz to 2.50	GHz			
Test site:	Measurement	Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	AL 4011	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Frequen		nit (dBuV/m @:		Remark
			54.00		Average Value
	Above 10	SHZ	74.00		Peak Value
	WWWWWW 1849	(Turntable)	Ground Reference Plane	n Antenna To	ower
Test Procedure:	ground at a determine the second at a determine the second antenna, who tower. 3. The antennation ground to de horizontal at measureme 4. For each surand then the second and the rotal maximum results. The test-recults Specified Bases. If the emission limit specified EUT would a 10dB marginist.	3 meter camber of the position was mounted as the position of	er. The table wante highest radial away from the ed on the top of the ed from one meaximum value of the ed from 0 degras set to Peak Maximum Hold EUT in peak mould be stoppetherwise the enter the ed from the ed	as rotated 36 ation. interference of a variable-leter to four most the field stantenna are as arranged as from 1 meters to 360 d Detect Fundamental Detect Fundament	e-receiving height antenna seters above the crength. Both e set to make the to its worst case ter to 4 meters egrees to find the etion and dB lower than the beak values of the did not have ak, quasi-peak or
Test Instruments:	Refer to sectio				
Test mode:	Non-hopping m				
Test results:	Passed				
Pomark:					

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

InVision 4K Media Player

: InVision 4K Media Pla

Model : DTIV4K-G2
Test mode : DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK

EMARI	. :	D 1		011					
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>db</u>	
1	2321.150	24.59	23.67	6.48	0.00	54.74	74.00	-19.26	Peak
2	2321.150	15.64	23.67	6.48	0.00	45.79	54.00	-8.21	Average
3	2390.000	17.74	23.68	6.63	0.00	48.05	74.00	-25.95	Peak
4	2390.000	7.53	23.68	6.63	0.00	37.84	54.00	-16.16	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : InVision 4K Media Player Condition EUT

Model : InVision 4K Media Pla

Model : DTIV4K-G2
Test mode : DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
_	MHz	dBu∜	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
2		19.85 9.87 15.70 7.51	23.68 23.68	6.62 6.62 6.63 6.63	0.00 0.00	46.01	54.00 74.00	-13.83 -27.99	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Invision 4K Media Player Condition EUT

Model : DTIV4K-G2 Test mode : DH1-H Mode Power Rating : AC 120V/60Hz

Test Engineer: MT
REMARK:

EWWI	,				_				
	Freq		Antenna Factor				Limit Line		Remark
	MHz	—dBu∀	— <u>d</u> B/m	dB	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>dB</u>	
1	2483.500	20.30	23.70	6.85	0.00	50.85	74.00	-23.15	Peak
2	2483.500	7.77	23.70	6.85	0.00	38.32	54.00	-15.68	Average
3	2494.989	20.74	23.70	6.86	0.00	51.30	74.00	-22.70	Peak
4	2494, 989	10, 73	23, 70	6, 86	0.00	41.29	54,00	-12.71	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : InVision 4K Media Player : DTIV4K-G2 Condition

EUT

: DTIV4K-G2
Test mode : DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor						Remark
-	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4	2483.500 2483.500 2490.450 2490.450	7.78 19.84	23.70 23.70	6.86	0.00 0.00	50.40	54.00 74.00	-15.67 -23.60	Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player Condition

EUT

Model : DTIV4K-G2
Test mode : 2DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		ReadAntenna Cable Level Factor Loss						Remark
2	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2 3 4	2334.749 2334.749 2390.000 2390.000	11.74 16.29	23.67 23.68	6.63	0.00 0.00	46.60	54.00 74.00	-12.08 -27.40	Average

EMAKE	. :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
2	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2337.239	20.88	23.67	6.53	0.00	51.08	74.00	-22.92	Peak
2	2337.239	10.86	23.67	6.53	0.00	41.06	54.00	-12.94	Average
3	2390.000	15.28	23.68	6.63	0.00	45.59	74.00	-28.41	Peak
4	2390.000	7.52	23.68	6.63	0.00	37.83	54.00	-16.17	Average

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player : DTIV4K-G2 : 2DH1-H Mode Condition

EUT

Model Test mode

Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK:

			Antenna Factor						Remark
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2 3 4	2483,500 2483,500 2499,094 2499,094	7.58 21.92	23.70 23.70	6.85 6.85 6.88 6.88	0.00 0.00	38.13 52.50	54.00 74.00	-21.50	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: InVision 4K Media Player : DTIV4K-G2 EUT

10.81 23.70

Model Test mode : 2DH1-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

2484.492

ReadAntenna Cable Preamp Limit Over Line Limit Remark Freq Level Factor Loss Factor Level MHz dBuV dB/m ďΒ dB dBuV/m dBuV/m dB 23.70 23.70 6.85 0.00 74.00 -23.43 Peak 54.00 -15.73 Average 74.00 -22.61 Peak 2483.500 1 2 20.02 50.57 2483.500 7.72 6.85 0.00 38.27 3 2484.492 20.84 23.70 6.85 0.00 51.39

0.00

41.36

54.00 -12.64 Average

6.85

8DPSK mode

Test channel: Lowest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player : DIIV4K-G2

EUT

Model Test mode : 3DH1-L Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Liluna		D 1	A	C 11	D		T	^	
	Freq		Antenna Factor				Limit Line		Remark
2	MHz	dBu∀		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2329.962	20.25	23.67	6.51	0.00	50.43	74.00	-23.57	Peak
	2329.962	10.21	23.67	6.51	0.00	40.39	54.00	-13.61	Average
3	2390.000	15.30	23.68	6.63	0.00	45.61	74.00	-28.39	Peak
4	2390.000	7.53	23.68	6.63	0.00	37.84	54.00	-16.16	Average

Site Condition EUT

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : InVision 4K Media Player

Model : DTIV4K-G2
Test mode : 3DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
	2337.054	21.07	23.67	6.53	0.00	51.27	74.00	-22.73	Peak
	2337.054	11.03	23.67	6.53	0.00	41.23	54.00	-12.77	Average
3	2390,000	15.33	23.68	6.63	0.00	45.64	74.00	-28.36	Peak
4	2390.000	7.59	23.68	6.63	0.00	37.90	54.00	-16.10	Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player Condition

model : InVision 4K Media Pla

Model : DTIV4K-G2
Test mode : 3DHI-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∀	$-\overline{dB}/\overline{m}$	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2 3 4	2490.494	18.91 7.81 20.62 10.67	23.70 23.70 23.70 23.70	6.85 6.85 6.86 6.86	0.00 0.00	51.18	54.00 74.00	-15.64 -22.82	Average

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : InVision 4K Media Player
Model : DTIV4K-G2
Test mode : 3DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

REMARK

			Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	₫₿uѶ	dB/m	₫B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2 3 4	2483.500 2483.500 2494.526 2494.526	7.50 20.48	23.70 23.70	6.85 6.85 6.86 6.86	0.00 0.00	38.05 51.04	54.00 74.00	-22.96	Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Test plot as follows:

Date: 15.FEB.2017 17:35:21

30MHz~25GHz

Date: 15.FEB.2017 17:36:55

30MHz~25GHz

Date: 15.FEB.2017 17:38:22

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 15.FEB.2017 17:42:46

30MHz~25GHz

Date: 15.FEB.2017 17:41:14

30MHz~25GHz

Date: 15.FEB.2017 17:39:50

30MHz~25GHz

Date: 15.FEB.2017 17:44:11

30MHz~25GHz

Date: 15.FEB.2017 17:45:04

30MHz~25GHz

Date: 15.FEB.2017 17:46:30

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission W							1	
Test Requirement:	FCC Part 15 C Section 15.209							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	9 kHz to 25 GH:	Z						
Test site:	Measurement D	istance: 3r	m					
Receiver setup:	Frequency	Detecto	or	RBW	VBV	٧	Remark	
	30MHz-1GHz	Quasi-pe	eak 120kHz 300k		120kHz 300kH		Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MH	3MHz Peak Val		
	Above 1G112	RMS		1MHz	3MH	lz	Average Value	
Limit:	Frequency Limit (dBuV/m @3m			23m)		Remark		
	30MHz-88N	30MHz-88MHz 40.0					Quasi-peak Value	
	88MHz-216	MHz		43.5			Quasi-peak Value	
	216MHz-960	MHz		46.0			Quasi-peak Value	
	960MHz-10	SHz		54.0			Quasi-peak Value	
	Above 1CI			Average Value				
	Above 1GI	12		74.0			Peak Value	
Test setup:	Above 1(iHz						Search Antenna F Test ceiver	

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.7 for details Test mode: Non-hopping mode Test results: Pass

Report No: CCISE170102201

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : InVision 4K Media Player : DTIV4K-G2 Condition

EUT

Model Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Freq								Remark
MHz	dBu∜	dB/m		дв	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
49.881	47.70	15.30	1.26	29.82	34.44	40.00	-5.56	QP
114.917	48.20	11.09	2.11	29.42	31.98	43.50	-11.52	QP
158.668	45.61	9.96	2.57	29.14	29.00	43.50	-14.50	QP
576.644	38.54	18.31	3.92	29.01	31.76	46.00	-14.24	QP
625.078	40.76	18.64	3.90	28.86	34.44	46.00	-11.56	QP
675.208	40.42	19.00	4.02	28.72	34.72	46.00	-11.28	QP
	MHz 49. 881 114. 917 158. 668 576. 644 625. 078	Freq Level MHz dBuV 49.881 47.70 114.917 48.20 158.668 45.61 576.644 38.54 625.078 40.76	### Hevel Factor MHz dBuV dB/m 49.881 47.70 15.30 114.917 48.20 11.09 158.668 45.61 9.96 576.644 38.54 18.31 625.078 40.76 18.64	Freq Level Factor Loss MHz dBuV dB/m dB 49.881 47.70 15.30 1.26 114.917 48.20 11.09 2.11 158.668 45.61 9.96 2.57 576.644 38.54 18.31 3.92 625.078 40.76 18.64 3.90	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 49.881 47.70 15.30 1.26 29.82 114.917 48.20 11.09 2.11 29.42 158.668 45.61 9.96 2.57 29.14 576.644 38.54 18.31 3.92 29.01 625.078 40.76 18.64 3.90 28.86	MHz dBuV dB/m dB dB dBuV/m 49.881 47.70 15.30 1.26 29.82 34.44 114.917 48.20 11.09 2.11 29.42 31.98 158.668 45.61 9.96 2.57 29.14 29.00 576.644 38.54 18.31 3.92 29.01 31.76 625.078 40.76 18.64 3.90 28.86 34.44	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 49.881 47.70 15.30 1.26 29.82 34.44 40.00 114.917 48.20 11.09 2.11 29.42 31.98 43.50 158.668 45.61 9.96 2.57 29.14 29.00 43.50 576.644 38.54 18.31 3.92 29.01 31.76 46.00 625.078 40.76 18.64 3.90 28.86 34.44 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 49.881 47.70 15.30 1.26 29.82 34.44 40.00 -5.56 114.917 48.20 11.09 2.11 29.42 31.98 43.50 -11.52 158.668 45.61 9.96 2.57 29.14 29.00 43.50 -14.50 576.644 38.54 18.31 3.92 29.01 31.76 46.00 -14.24 625.078 40.76 18.64 3.90 28.86 34.44 46.00 -11.56

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

: InVision 4K Media Player : DTIV4K-G2 EUT

Model Test mode : BT Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: MT REMARK :

William Ar		D 1		011	-		* * * * * * * * * * * * * * * * * * * *	^	
			Ant enna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∇	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	49.881	41.59	15.30	1.26	29.82	28.33	40.00	-11.67	QP
2	114.114	49.62	10.93	2.10	29.43	33.22	43.50	-10.28	QP
2	191.745	50.84	9.79	2.81	28.89	34.55	43.50	-8.95	QP
4 5 6	475.499	37.27	16.51	3.41	28.91	28.28	46.00	-17.72	QP
5	530.101	40.30	17.60	3.78	29.04	32.64	46.00	-13.36	QP
6	661.151	39.55	18.90	3.93	28.75	33.63	46.00	-12.37	QP

Above 1GHz:

Test channel:			Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	50.86	35.99	6.80	41.81	51.84	74.00	-22.16	Vertical	
4804.00	49.14	35.99	6.80	41.81	50.12	74.00	-23.88	Horizontal	
Te	Test channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	41.25	35.99	6.80	41.81	42.23	54.00	-11.77	Vertical	
4804.00	40.04	35.99	6.80	41.81	41.02	54.00	-12.98	Horizontal	

Test channel:			Middle		Lev	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	49.27	36.38	6.86	41.84	50.67	74.00	-23.33	Vertical	
4882.00	48.12	36.38	6.86	41.84	49.52	74.00	-24.48	Horizontal	
Te	st channel:		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	38.13	36.38	6.86	41.84	39.53	54.00	-14.47	Vertical	
4882.00	39.46	36.38	6.86	41.84	40.86	54.00	-13.14	Horizontal	

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	47.25	36.71	6.91	41.87	49.00	74.00	-25.00	Vertical	
4960.00	47.82	36.71	6.91	41.87	49.57	74.00	-24.43	Horizontal	
Te	st channel:	•	Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	38.01	36.71	6.91	41.87	39.76	54.00	-14.24	Vertical	
4960.00	37.46	36.71	6.91	41.87	39.21	54.00	-14.79	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.