20240110_analyse-varicelle

January 10, 2024

1 Analyse de la Varicelle

```
[1]: %matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import isoweek
```

Les données de la varicelle sont disponibles du site Web du Réseau Sentinelles. Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1991 et se termine avec une semaine récente. La base de données a ete telechargee a cette adresse https://www.sentiweb.fr/datasets/incidence-PAY-7.csv?v=ater7.

```
[2]: import os
    os.chdir(os.getcwd())
    data_url = "../Source/20240110_incidence-PAY-7.csv"
```

Voici l'explication des colonnes données sur le site d'origine:

Nom de colonne	Libellé de colonne
week	Semaine calendaire (ISO 8601)
indicator	Code de l'indicateur de surveillance
inc	Estimation de l'incidence de consultations en nombre de cas
inc_low	Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation
inc_up	Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation
inc100	Estimation du taux d'incidence du nombre de cas de consultation (en cas pour
	100,000 habitants)
$inc100_low$	Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas
	de consultation (en cas pour 100,000 habitants)
$inc100$ _up	Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas
_	de consultation (en cas pour 100,000 habitants)
geo_insee	Code de la zone géographique concernée (Code INSEE)
	http://www.insee.fr/fr/methodes/nomenclatures/cog/
geo_name	Libellé de la zone géographique (ce libellé peut être modifié sans préavis)

La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant skiprows=1.

```
[3]: raw_data = pd.read_csv(data_url, skiprows=1)
raw_data
```

[3]:	week	indicator	inc	inc_low	inc_up	inc100	inc100_low	\
0	202352	7	13369	8309	18429	20	12	
1	202351	7	6940	4244	9636	10	6	
2	202350	7	8799	6215	11383	13	9	
3	202349	7	7817	5362	10272	12	8	
4	202348	7	7351	4749	9953	11	7	
•••	•••		•••	•••	•••	•••		
1721	199101	7	15565	10271	20859	27	18	
1722	199052	7	19375	13295	25455	34	23	
1723	199051	7	19080	13807	24353	34	25	
1724	199050	7	11079	6660	15498	20	12	
1725	199049	7	1143	0	2610	2	0	

	inc100_up	geo_insee	geo_name
0	28	FR	France
1	14	FR	France
2	17	FR	France
3	16	FR	France
4	15	FR	France
•••	•••		••
1721	36	FR	France
1722	45	FR	France
1723	43	FR	France
1724	28	FR	France
1725	5	FR	France

[1726 rows x 10 columns]

Y a-t-il des points manquants dans ce jeux de données? Non aucune

```
[4]: raw_data[raw_data.isnull().any(axis=1)]
```

[4]: Empty DataFrame

Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]

Index: []

Nos données utilisent une convention inhabituelle: le numéro de semaine est collé à l'année, donnant l'impression qu'il s'agit de nombre entier. C'est comme ça que Pandas les interprète.

Un deuxième problème est que Pandas ne comprend pas les numéros de semaine. Il faut lui fournir les dates de début et de fin de semaine. Nous utilisons pour cela la bibliothèque isoweek.

Comme la conversion des semaines est devenu assez complexe, nous écrivons une petite fonction Python pour cela. Ensuite, nous l'appliquons à tous les points de nos donnés. Les résultats vont dans une nouvelle colonne 'period'.

```
[6]: def convert_week(year_and_week_int):
    year_and_week_str = str(year_and_week_int)
    year = int(year_and_week_str[:4])
    week = int(year_and_week_str[4:])
    w = isoweek.Week(year, week)
    return pd.Period(w.day(0), 'W')

data['period'] = [convert_week(yw) for yw in data['week']]
```

Il restent deux petites modifications à faire.

Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. Ceci en fait une suite chronologique, ce qui sera pratique par la suite.

Deuxièmement, nous trions les points par période, dans le sens chronologique.

```
[7]: sorted_data = data.set_index('period').sort_index() sorted_data
```

[7]:		week	indicato	r	inc	inc_low	inc_up	inc100	\
	period								
	1990-12-03/1990-12-09	199049	•	7	1143	0	2610	2	
	1990-12-10/1990-12-16	199050	•	7	11079	6660	15498	20	
	1990-12-17/1990-12-23	199051	•	7	19080	13807	24353	34	
	1990-12-24/1990-12-30	199052	•	7	19375	13295	25455	34	
	1990-12-31/1991-01-06	199101	•	7	15565	10271	20859	27	
		•••			•••				
	2023-11-27/2023-12-03	202348	•	7	7351	4749	9953	11	
	2023-12-04/2023-12-10	202349	•	7	7817	5362	10272	12	
	2023-12-11/2023-12-17	202350	•	7	8799	6215	11383	13	
	2023-12-18/2023-12-24	202351	•	7	6940	4244	9636	10	
	2023-12-25/2023-12-31	202352	•	7	13369	8309	18429	20	
		inc100_	low inc10	00_1	up geo	_insee g	eo_name		
	period								
	1990-12-03/1990-12-09		0		5	FR	France		
	1990-12-10/1990-12-16		12	:	28	FR	France		
	1990-12-17/1990-12-23		25		43	FR	France		
	1990-12-24/1990-12-30		23		45	FR	France		
	1990-12-31/1991-01-06		18	;	36	FR	France		
		•••	•••		•••	•••			
	2023-11-27/2023-12-03		7		15	FR	France		
	2023-12-04/2023-12-10		8		16	FR	France		
	2023-12-11/2023-12-17		9		17	FR	France		
	2023-12-18/2023-12-24		6		14	FR	France		
	2023-12-25/2023-12-31		12	:	28	FR	France		

[1726 rows x 10 columns]

Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. Nous laissons une "marge d'erreur" d'une seconde.

Ceci s'avère tout à fait juste.

```
[8]: periods = sorted_data.index
for p1, p2 in zip(periods[:-1], periods[1:]):
    delta = p2.to_timestamp() - p1.end_time
    if delta > pd.Timedelta('1s'):
        print(p1, p2)
```

Un premier regard sur les données!

```
[9]: plt.plot(sorted_data['week'],sorted_data['inc'])
   plt.show()
   sorted_data['inc'].plot()
```


[9]: <Axes: xlabel='period'>

Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été.

```
[11]: sorted_data['inc'][-200:].plot()
```

[11]: <Axes: xlabel='period'>

1.1 Etude du Nombre de Cas par Annee

Etant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de nombre de cas, du 1er août de l'année N au 1er août de l'année N+1.

Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er août de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er septembre.

Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions.

Encore un petit détail: les données commencent en decembre 1991, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1992.

```
[19]: first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W') for y in range(1992, sorted_data.index[-1].year)]
```

En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons

les sommes des incidences hebdomadaires pour toutes ces périodes.

Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code.

Voici les incidences annuelles.

```
[22]: yearly_incidence.plot(style='*')
```

[22]: <Axes: >

Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin).

```
[23]: yearly_incidence.sort_values()
```

```
[23]: 2020
               221186
      2021
               376290
      2002
               516689
      2018
               542312
      2017
               551041
      1996
               564901
      2019
               584066
      2015
               604382
      2000
               617597
      2001
               619041
      2012
               624573
      2005
               628464
      2006
               632833
      2022
               641397
      2011
               642368
      1993
               643387
      1995
               652478
      1994
               661409
      1998
               677775
      1997
               683434
      2014
               685769
      2013
               698332
      2007
               717352
      2008
               749478
      1999
               756456
      2003
               758363
      2004
               777388
      2016
               782114
      2010
               829911
      2009
               842373
      dtype: int64
```

Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population française, sont assez rares: il y en eu trois au cours des 35 dernières années.

```
[24]: yearly_incidence.hist(xrot=20)
```

[24]: <Axes: >

[]:[