

EpiBio Research Day

Correlated Shared Frailty Model Incorporating Ascertainment Correction with Missing Covariates in Family-Based Studies

Jiaqi Bi

Apr. 9, 2024

Background

Breast Cancer

- There were estimated 25,200 new cases of breast cancer in Canada in 2015, and approximately 5,100 deaths, making it the second leading cause of cancer-related death among women [1].
- Hereditary breast-ovarian cancer (HBOC) is an autosomal dominant disease characterized by germline pathogenic mutations in the BRCA1/2 genes [2].
- Some genetic studies based on the family have been conducted to investigate the hereditary breast cancer and ovarian cancer due to the mutation genes of BRCA1/2 [3].
- Time-To-Cancer as an outcome, mutation gene status & PRS are predictors Problems: There are missing data!

Pedigree Tree

Background

Family-Clustered Frailty Model

- Many different frailty models have been proposed for the analysis of BRCA1/2 families by Choi et al. [4], Chen et al. [5]
- When the missing data occurs in the frailty model due to other mechanisms than the Missing Completely at Random (MCAR), one may use the Monte Carlo Maximization-Expectation (MCEM) [6, 7, 8, 9] or Multiple Imputation (MI) [10] methods to make the inference

Missing Data

- The issue of the missing data was firstly brought by Rubin [11] in 1976.
- Three missing mechanisms: MCAR, Missing At Random (MAR), Missing Not At Random (MNAR)

Missing Mechanisms

Denote Y as the complete data matrix, and M as the missing data indicator matrix. Define y_{ii} and m_{ii} as i-th row (observation) and i-th column (variable) for the matrix Y and M. The conditional distribution of the missingness for MCAR is said to be

$$f(m_j|y_{ij},\phi) = f(m_{ij}|\phi) \tag{1}$$

The MAR is defined as

$$f(m_{ij}|y_{ij},\phi) = f(m_{ij}|y_{i,obs},\phi)$$
 (2)

The MNAR is defined as

$$f(m_{ij}|y_{ij},\phi) = f(m_{ij}|y_{i,mis},y_{i,obs},\phi)$$
(3)

5 / 33

Parametric Survival Analysis

Without loss of generality, everything on the current research will be Weibull baseline hazard.

Weibull Parametric Survival Analysis

The hazard function is defined as

$$h_{ij}(t_{ij}|\mathbf{x}_{ij},z_j) = h_0(t_{ij})\exp(\beta \mathbf{x}_i)z_j \tag{4}$$

In our case, for the simplicity.

$$h_{ij}(t_{ij}|z_j) = h_0(t_{ij}) \exp(\beta_1 x_{1,ij} + \beta_2 x_{2,ij}) z_j$$
 (5)

In Weibull baseline hazard, λ is the shape parameter, α is the scale parameter

$$h_0(t_{ij}) = \alpha \lambda t_{ij}^{\lambda - 1} \tag{6}$$

Complete Likelihood

Models are meant to be evaluated on the optimized parameters!

Assuming missing data & frailties are observed

$$L(\boldsymbol{\theta}) = \prod_{j=1}^{J} \prod_{i=1}^{n_j} h(t_{ij}|\mathbf{x}_{ij}, z_j)^{\delta_{ij}} \exp(-H(t_{ij}|\mathbf{x}_{ij}, z_j))$$
(7)

Ascertainment Correction

In genetic epidemiology studies, families with multiple affected individuals are more likely to be studied than those with only one or no affected individuals. Consider A as the event of being ascertained, we then have $P(D,A|\theta)=P(A|D,\theta)P(D|\theta)$. Thus, we know A is included in D, from Baye's rule

$$P(D|\theta) = \frac{P(D, A|\theta)}{P(A|D, \theta)} \propto \frac{L(\theta|D)}{P(A|D, \theta)}$$
(8)

Complete Likelihood

Assuming missing data & frailties are observed

Denote $A(\theta)$ be the ascertainment, and p_j be the proband in family j, we have

$$A(\boldsymbol{\theta}) = 1 - S_{p_j}(a_{p_j}|\mathbf{x}_{p_j}) \tag{9}$$

Then the complete likelihood becomes

$$L_C(\theta) = \frac{L(\theta)}{A(\theta)} \tag{10}$$

Complete Log-Likelihood

Simply take the log

$$\ell_{C}(\boldsymbol{\theta}) = \sum_{j=1}^{J} \sum_{i=1}^{n_{j}} \delta_{ij} \log h(t_{ij}|\mathbf{x}_{ij}, z_{j}) - H(t_{ij}|\mathbf{x}_{ij}, z_{j})$$
(11)

$$-\sum_{j=1}^{J} \log(1 - S_{p_j}(a_{p_j}|\mathbf{x}_{p_j}, z_j))$$
 (12)

$$= \sum_{J} \sum_{n_{j}}^{n_{j}} \delta_{ij} \log h(t_{ij}|\mathbf{x}_{ij})z_{j} - H(t_{ij}|\mathbf{x}_{ij})z_{j}$$
(13)

$$-\sum_{i=1}^{n_j} \log(1 - \exp(z_j H_{p_j}(a_{p_j}|\mathbf{x}_{p_j})))$$
 (14)

Recap on $h(\cdot)$ and $H(\cdot)$

Denote $\xi_{ii} = \exp(\boldsymbol{\beta}^{\top} \mathbf{x}_{ii})$. Note that we can derive

$$h_{ij}(t_{ij}|\mathbf{x}_{ij},z_j) = \alpha \lambda t_{ij}^{\lambda-1} \xi_{ij} z_j = h(t_{ij}|\mathbf{x}_{ij}) z_j$$
(15)

With one function in the survival analysis, you can derive the rest! So,

$$H(t_{ij}|\mathbf{x}_{ij},z_{j}) = \int_{0}^{t} h_{ij}(u|\mathbf{x}_{ij},z_{j})du$$

$$= \alpha \xi_{ij}z_{j}\lambda \int_{0}^{t} u^{\lambda-1}du$$

$$= \alpha \xi_{ij}z_{j}\lambda \cdot \frac{1}{\lambda}t_{ij}^{\lambda} = \alpha \xi_{ij}z_{j}t_{ij}^{\lambda} = H(t_{ij}|\mathbf{x}_{ij})z_{j}$$

$$(16)$$

Frailty Term and Missing Data

MCAR

If, by any case, one can verify their missing data are MCAR. A complete case analysis (CCA) is enough by MCAR definition. Unfortunately, our data was not this case.

11 / 33

If we assume $z_j \sim \text{Gamma}(v,v)$, as shape and rate parameters. then the likelihood will look like these

If we assume $z_j \sim \text{Gamma}(v,v)$, as shape and rate parameters. then the likelihood will look like these

If we assume $z_j \sim \text{Gamma}(v,v)$, as shape and rate parameters. then the likelihood will look like these

If we assume $z_j \sim \log N(0, \upsilon^2)$, then the likelihood will look like these

15 / 33

16/33

frailty 3D 2.jpeg

Frailty Term and Missing Data

MAR

However, the MCAR is a very strong assumption, and usually not verified. By definition, we need to take the expectation with respect to the frailty term z_i and the missing data $\mathbf{x}_{ij.mis}$. Assume the frailty distribution is chosen to be $f(z_i|v)$, and one might take the missing PRS $x_{ii,1,mis} \sim N(\psi_0 + \psi_1 x_{ii,2,obs}, \tilde{\psi}^2)$ to sample from.

$$E(\ell_C(\boldsymbol{\theta})|\boldsymbol{\theta}^{(r)}) = \sum_{i=1}^J \sum_{j=1}^{n_j} \int_{\mathbf{x}_{mis}} \int_{z_j} \left(\delta_{ij} \log h(t_{ij}|\mathbf{x}_{ij}, z_j) - H(t_{ij}|\mathbf{x}_{ij}, z_j) \right)$$
(19)

$$\times f(\mathbf{x}_{ij,mis}|\mathbf{x}_{obs,ij},\psi^{(r)})f(z_j|v^{(r)})d\mathbf{x}_{ij,mis}dz_j$$
 (20)

$$-\sum_{i=1}^{J} \int_{\mathbf{X}_{min}} \int_{\mathcal{Z}_{i}} \log(1 - \exp(z_{j} H_{j_{p}}(a_{j_{p}} | \mathbf{x}_{j_{p}})))$$
 (21)

$$\times f(\mathbf{x}_{ij,mis}|\mathbf{x}_{obs,ij},\psi^{(r)})f(z_i|v^{(r)})d\mathbf{x}_{ij,mis}dz_j \tag{22}$$

Gamma Frailty Term and Missing Data

We can integrate z_i in Gamma frailty via Laplace transform, assuming $z_i \sim \text{Gamma}(k, k)$, which will yield a closed-form likelihood

$$\ell(\theta) = \sum_{j=1}^{J} \left[\sum_{i=1}^{n_j} (\delta_{ij} \log h(t_{ij} | \mathbf{x}_{ij})) + \log \left(\frac{(k+d_j-1)!}{k! k^{d_j-1}} (1 + \frac{\sum_{i=1}^{n_j} (H(t_{ij} | \mathbf{x}_{ij}))}{k})^{-k-d_j} \right) \right]$$
(23)

The ascertainment term

$$A_{j}(\theta) = 1 - S_{p_{j}}(a_{p_{j}}|\mathbf{x}_{p_{j}})$$

$$= 1 - \int_{0}^{\infty} S_{p_{j}}(a_{p_{j}}|\mathbf{x}_{p_{j}}, z_{j})f(z_{j})dz_{j}$$

$$= 1 - \int_{0}^{\infty} \exp(-z_{j} \cdot H_{p_{j}}(a_{p_{j}}|\mathbf{x}_{p_{j}}))f(z_{j})dz_{j}$$

$$= 1 - \left(1 + \frac{H_{p_{j}}(a_{p_{j}}|\mathbf{x}_{p_{j}})}{L}\right)^{-k}$$
(25)

Apr. 9, 2024

Log-Normal Frailty Term and Missing Data

We can integrate z_j in Log-Normal frailty via Gauss-Hermite Quadrature, which will yield a closed-form likelihood

Definition

In numerical analysis, the method can be applied in the following form:

$$\int_{-\infty}^{\infty} \exp(-x^2) f(x) dx \approx \sum_{i=1}^{n} \omega_i f(x_i)$$
 (28)

where n is number of sample points used, and x_i is the roots of Hermite polnomial $H_n(x)$ such that i = 1, ..., n, and the weights ω_i is

$$\omega_i = \frac{2^{n-1} n! \sqrt{n}}{n^2 [H_{n-1}(x_i)]^2} \tag{29}$$

Log-Normal Frailty Term and Missing Data

q denotes the q-th element of Gauss Hermite Quadrature, i.e., ω_q denotes the q-th weight, y_q denotes the q-th node, and N_q denotes the total number of quadratures. Thus, substituting into the log-likelihood:

$$\ell_{j}(\boldsymbol{\theta}) = \sum_{i=1}^{n_{j}} \delta_{ij} \log(h(t_{ij}|\mathbf{x}_{ij})) + \log\left(\frac{1}{\sqrt{\pi}} \sum_{q=1}^{N_{q}} \left[\omega_{q} \exp(\sqrt{2}\sigma y_{q})^{d_{j}} \exp\left(-\sum_{i=1}^{n_{j}} H(t_{ij}|\mathbf{x}_{ij}) \exp(\sqrt{2}\sigma y_{q})\right) \right]$$
(30)

Similarly, the ascertainment correction in the log-normal frailty can be written as

$$A_{j}(\boldsymbol{\theta}) = 1 - \int_{-\infty}^{\infty} \exp(-zH(a_{j_{p}}|\mathbf{x}_{j_{p}}))f(z)dz$$
(31)

$$=1-\sum_{j=1}^{N_q}\omega_q\exp\left(-\left(\sum_{i=1}^{n_j}H(a_{j_p}|\mathbf{x}_{j_p})\right)\exp(\sqrt{2}\sigma y_{q_p})\right)$$
(32)

Apr. 9, 2024

Frailty Term and Missing Data

$$\ell_{C_j} = \ell_j(\boldsymbol{\theta}) - \log A_j(\boldsymbol{\theta}) \tag{33}$$

Frailty Term and Missing Data - Monte Carlo Expectation Maximization (MCEM)

For efficient sampling on missing data,

$$f(z_j, \mathbf{x}_{mis,ij} | \mathbf{x}_{obs,ij}, \boldsymbol{\theta}^{(r)}) \propto f(t_{ij}, \delta_{ij} | \mathbf{x}_{mis,ij}, \mathbf{x}_{obs,ij}, z_j, a_{j_p}, \boldsymbol{\beta}^{(r)})$$
(34)

$$\times f(\mathbf{x}_{mis,ij}|\mathbf{x}_{obs,ij},\psi^{(r)})f(z_j|v^{(r)})$$
(35)

Clearly, we know $f(t_{ij}, \delta_{ij} | \mathbf{x}_{mis,ij}, \mathbf{x}_{obs,ij}, z_j, \boldsymbol{\beta}^{(r)})$ is the likelihood of one single observation j in family j, also we know the distribution of $f(\mathbf{x}_{ij} | \psi)$, as well as the frailty distribution $f(z_j | v)$. Therefore, in our case, we can write

$$f(z_j, \mathbf{x}_{mis,ij} | \mathbf{x}_{obs,ij}, \boldsymbol{\theta}^{(r)}) \propto f(z_j | v^{(r)}) \Big[\prod_{i=1}^{n_j} f(\mathbf{x}_{mis,ij} | \mathbf{x}_{obs,ij}, \psi^{(r)})$$
(36)

$$\times h^{(r)}(t_{ij}|\mathbf{x}_{ij},z_j)^{\delta_{ij}}\exp(-H^{(r)}(t_{ij}|\mathbf{x}_{ij},z_j))]$$
 (37)

Frailty Term and Missing Data - MCEM

In general, without the specification of the frailty distribution, the E-step in MCEM can be written as

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(r)}) = \sum_{j=1}^{J} \frac{1}{M_{j}} \sum_{m=1}^{M_{j}} \sum_{i=1}^{n_{j}} \left(\delta_{ij} \log h(t_{ij}|\mathbf{x}_{ij}^{(m)}, z_{j}^{(m)}) - H(t_{ij}|\mathbf{x}_{ij}^{(m)}, z_{j}^{(m)}) \right)$$

$$+ \sum_{j=1}^{J} \frac{1}{M_{j}} \sum_{m=1}^{M_{j}} \log(1 - \exp(z_{j}H_{j_{p}}(a_{j_{p}}|\mathbf{x}_{j_{p}})))$$

$$+ \sum_{j=1}^{J} \frac{1}{M_{j}} \sum_{m=1}^{M_{j}} \sum_{i=1}^{n_{j}} \log f(\mathbf{x}_{mis,ij}^{(m)}|\mathbf{x}_{obs,ij}, \psi) + \sum_{i=1}^{J} \frac{1}{M_{j}} \sum_{m=1}^{M_{j}} \sum_{i=1}^{n_{j}} \log f(z_{j}^{(m)}|v)$$

$$(39)$$

Note that we take M_i samples of the missing data and calculate the mean.

Kinship Matrix

Remember, we made an assumption of the distribution of the missing PRS:

$$x_{ij,1,mis} \sim N(\psi_0 + \psi_1 x_{ij,2,obs}, \tilde{\psi}^2)$$
(41)

Is this an adequate assumption?

Kinship Matrix

No! This is a family-wise genetic study! So within-family correlations need to be accounted for!

$$\mathbf{x}_{mis,j,1} \sim MVN(\boldsymbol{\mu}, \tilde{\psi}_g^2 K + \tilde{\psi}_e^2)$$
 (42)

such that K is the kinship correlation matrix with diagonal of 1, and $\hat{\mu} = \psi_0 + \psi_1 \mathbf{x}_{obs,j,2}$. $\tilde{\psi}_g$ accounts for the genetic standard errors, and $\tilde{\psi}_e$ accounts for the residual. The multivariate normal distribution is what we are sampling the missing PRS on family-wise.

Frailty Term and Missing Data - MCEM

M-Step

In the M-step, I will use Nelder-Mead method, because it is gradient free!

Convergence Rule

The convergence criterion is

$$(heta^{(r+20)} - heta^{(r)})^2 < 10^{-4}$$

Preliminary Analysis Results

Table: Parameter Estimates on BRCA1 Family (MCEM - Assumed MAR)

Parameters	Gamma (CCA)	Log-Normal (CCA)	Gamma (MCEM)	Log-Normal (MCEM)
α	-4.10	-10.91	-4.71	-19.05
λ	1.06	1.41	0.84	1.12
eta_{1}	1.26	-5.12	2.42	3.97
eta_2	0.23	6.62	0.34	0.42
v	4.35	2.73	3.71	2.89

The Log-normal distribution can introduce a wider range of heterogeneity due to its ability to model right-skewed distributions effectively. This wider range means that, once the Log-Normal frailty is accounted for, the remaining baseline hazard needs to adjust significantly to fit the data, hence the more negative scale parameter. A smaller (more negative) scale parameter indicates a more rapid initial occurrence of events, with the rate of increase over tine again depending on the shape parameter.

Next Step

- Due to the computational cost The MCEM runs 48+ hours, I have not obtained the preliminary result on the case of the MNAR, but I will.
- A simulation study based on the correlated family will be conducted.
- Stay tuned for the final thesis!

References I

- Canadian Cancer Statistics Advisory Committee. Canadian cancer statistics 2023, 2023. URL https://cancer.ca/en/research/cancer-statistics.
- [2] Colin C Pritchard. New name for breast-cancer syndrome could help to save lives. Nature, 571(7763):27-29, 2019.
- Yun-Hee Choi, Mary Beth Terry, Mary B Daly, Robert J MacInnis, John L Hopper, Sarah Colonna, Saundra S Buys, Irene L Andrulis, Esther M John, Allison W Kurian, et al. Association of risk-reducing salpingo-oophorectomy with breast cancer risk in women with brca1 and brca2 pathogenic variants. JAMA oncology, 7(4):585-592, 2021.
- [4] Yun-Hee Choi, Hae Jung, Saundra Buys, Mary Daly, Esther M John, John Hopper, Irene Andrulis, Mary Beth Terry, and Laurent Briollais. A competing risks model with binary time varying covariates for estimation of breast cancer risks in brca1 families. Statistical Methods in Medical Research, 30(9):2165-2183, 2021.

References II

- [5] Lu Chen, Li Hsu, and Kathleen Malone. A frailty-model-based approach to estimating the age-dependent penetrance function of candidate genes using population-based case-control study designs: an application to data on the brca1 gene. *Biometrics*, 65(4): 1105–1114, 2009.
- [6] Amy H Herring, Joseph G Ibrahim, and Stuart R Lipsitz. Frailty models with missing covariates. *Biometrics*, 58(1):98–109, 2002.
- [7] Amy H Herring and Joseph G Ibrahim. Maximum likelihood estimation in random effects cure rate models with nonignorable missing covariates. *Biostatistics*, 3(3):387–405, 2002.
- [8] Joseph G Ibrahim and Geert Molenberghs. Missing data methods in longitudinal studies: a review. *Test*, 18(1):1–43, 2009.
- [9] Samuli Ripatti, Klaus Larsen, and Juni Palmgren. Maximum likelihood inference for multivariate frailty models using an automated monte carlo em algorithm. *Lifetime Data Analysis*, 8:349–360, 2002.

References III

[10] Donald B Rubin. Multiple imputation. In *Flexible Imputation of Missing Data, Second Edition*, pages 29–62. Chapman and Hall/CRC, 2018.

[11] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.

Q&A

Question Time!

