PACF, in depth

Jared Fisher

Lecture 8a

Announcements

- ▶ Project Checkpoint 3 is due tomorrow, Wednesday March 31, by 11:50pm MDT
- Homework 5 will be posted today and is due Wednesday April 7
- Midterm 2 will be held on April 15

Transition

- ▶ We have been discussing the theory of ARMA: given $\phi(B)$, $\theta(B)$, what is X_t ?
- We will now embark on the methodology/application: given X_t , what $\phi(B)$, $\theta(B)$ make sense?

Big Picture

$$f(Y_t) = m_t + s_t + X_t$$

- ▶ Pursue stationarity: model trend and seasonality, stabilize variance
- ightharpoonup Model stationary $\{X_t\}$ (e.g. ARMA model)
- ▶ What empirical tools have we discussed for doing this?

Empirical Tools

- Pursuing stationarity
 - ► Model trend: parametric, smoothing, etc.
 - Model seasonality: sinusoids, indicators, etc.
 - Remove trend/seasonality: differencing
 - Variance stabilization: log(), sqrt()
- ▶ Stationary process modeling: lots of theory! but short on empirical tools
 - ► Sample autocovariance, sample autocorrelation
 - Sample autocorrelation plot: correlogram from acf()

One Approach to Empirical Modeling

- ► Address trend/seasonality/variance to obtain a stationary process (i.e. residuals)
- Analyze stationary residuals to determine values of p and q to be used in ARMA(p,q) model.
- lacktriangle Once p and q are chosen, we can estimate the values of the $\phi, heta$ parameters.

Sample ACF Plot

▶ Before last lecture, we had essentially only one tool for analyzing a stationary time series: the sample ACF plot/correlogram from R's acf(). Recall what it can/cannot show us:

Y_t	Stationary?	Time series plot	Sample ACF
White Noise	Yes	"stable"	Zero's
Trend	No	Clearly not stable	Slow decay
Seasonality	No	Probably not stable	Periodic
MA(q)	Yes	"stable"	Zero's for $ h > q$
AR(p)	Yes	"stable"	Usually exponential decay
ARMA(p,q)	Yes	"stable"	Exponential decay, and more

White noise

Trend

AR(1), $\phi = 0.9$

Seasonality

Note: next week we'll see Seasonal ARMA processes that have similar ACFs

MA(3)

MA(3) increase sample size from n=100 to n=1000

Series MAq1000

q=3 is visible!

AR(3)

AR(3), n=1000

Series ARp1000

p=???

ARMA(3,3)

ARMA(3,3), n=1000

Series ARMA1000

What's up with Autoregressive ACF's? ▶ Let p=1, such that: $X_t = \phi X_{t-1} + W_t$

$$\gamma(1) = cov(X_t, \dots, x_t)$$

$$\gamma(1) = cov(X_t, = cov(\phi X_t))$$

 $\gamma(0) = var(X_t)$

$$= cov(\phi X_t)$$
$$= \phi \gamma(0)$$

$$egin{aligned} \gamma(1) &= \mathit{cov}(X_t, X_{t-1}) \ &= \mathit{cov}(\phi X_{t-1} + W_t, X_{t-1}) \end{aligned}$$

 $\gamma(2) = cov(X_t, X_{t-2})$

 $=\phi^2\gamma(0)$

All are non-zero correlations, but p shouldn't be infinite...

Such that $\rho(1) = \phi$, $\rho(2) = \phi^2$, ... $\rho(i) = \phi^i$ (as we divide $\gamma(i)$ by

$$\gamma(1) = cov(X_t, X_{t-1})$$

 $= cov(\phi X_{t-1} + W_t, X_{t-2})$

 $= cov(\phi^2 X_{t-2} + \phi W_{t-1} + W_t, X_{t-2})$

What's up with Autoregressive ACF's?

▶ But! Note that X_t and X_{t-2} are only connected through their mutual relationship with X_{t-1} :

$$X_{t} = \phi X_{t-1} + W_{t}$$
$$X_{t-1} = \phi X_{t-2} + W_{t-1}$$

▶ What if we could measure the correlation between X_t and X_{t-2} while accounting for X_{t-1} ?

How to diagnose p for AR's?

- ▶ We'll need a new tool to diagnose p
- ► For this tool we'll need to review prediction

Recap: Prediction

Theorem - Best Prediction

Let Y, W_1, \ldots, W_n be random variables. Then for the best **mean squared error** prediction $f^*(W_1, \ldots, W_n)$ of Y, that is

$$E(Y - f^*(W_1, ..., W_n))^2 = \min_{f} E(Y - f(W_1, ..., W_n))^2,$$

it holds that

$$f^*(W_1,...,W_n) := E(Y|W_1,...,W_n).$$

Best (Linear?) Prediction

- ▶ Problem: in general, we'd need to know the entire joint distribution of Y, W_1, \ldots, W_n in order to compute it.
- ightharpoonup On the other hand, it is much easier to compute the best **linear** prediction of Y in terms of W_1, \ldots, W_n .
- ightharpoonup Assume that W_i and Y all have finite second moments
- Let Δ denote the covariance matrix of $W = (W_1, \dots, W_n)$
- Assume Δ invertible (this just excludes the situation that a linear combination of the W_i 's has variance zero), that is

$$\Delta_{ij} = cov(W_i, W_j)$$
 and $\zeta_i = cov(Y, W_i)$.

Thoerem: Best Linear Prediction ("BLP")

Let Y, W_1, \ldots, W_n be zero mean random variables with finite second moments. Then for the best mean squared error linear prediction $a_1W_1 + \ldots + a_nW_n$ of Y, that is

$$E(Y - (a_1^*W_1 + \ldots + a_n^*W_n))^2 = \min_{a} E(Y - (a_1W_1 + \ldots + a_nW_n))^2,$$

it holds that

$$(a_1^{\star},\ldots,a_n^{\star})^{\top}=\Delta^{-1}\zeta.$$

Theorem: Characterization of the Best Linear Prediction (CBLP)

The best linear predictor $(a_1^{\star}, \dots, a_n^{\star})^{\top}$ in the BLP Theorem is uniquely characterized by the property that

$$cov(Y - a_1W_1 - \cdots - a_nW_n, W_i) = 0$$
 for all $i = 1, ..., n$.

PACF : Partial Autocorrelation Function

Definition

Let $\{X_t\}$ be a mean zero stationary process. The **Partial Autocorrelation** at lag h, denoted by pacf(h) is defined as the coefficient of X_{t-h} in the best linear predictor for X_t in terms of X_{t-1}, \ldots, X_{t-h} .

h=1

▶ If h=1:

$$pacf(1) = \Delta^{-1}\zeta$$

= $cov(X_{t-1}, X_{t-1})^{-1}cov(X_t, X_{t-1})$
= $\gamma(0)^{-1}\gamma(1)$
= $\rho(1)$

▶ But pacf(h) for h > 1 can be quite different from $\rho(h)$.

AR

Recall that for an AR(p) model we have $X_t - \phi_1 X_{t-1} - \cdots - \phi_p X_{t-p} = W_t$ and hence by Theorem CBLP we immediately get the following theorem:

For the partial autocorrelation function of a causal AR(p) model $\phi(B)X_t = W_t$ it holds that $pacf(p) = \phi_p$ and pacf(h) = 0 for h > p.

Best Linear Prediction

- ► From the definition, it is not quite clear why this is called a correlation. We make this more clear in the following.
- ▶ pacf(h) is the correlation between X_t and X_{t-h} "with the linear effect of everything 'in the middle' removed" (TSA4e)
- ightharpoonup corr $(X_t \hat{X}_t$, $X_{t-h} \hat{X}_{t-h})$, where \hat{X} 's are the best linear predictor of $X_{t-1}, \ldots, X_{t-h+1}$.

Best Linear Prediction

- Let $a_1X_{t-1} + \cdots + a_{h-1}X_{t-h+1}$ denote the best linear predictor of X_t in terms of $X_{t-1}, \ldots, X_{t-h+1}$.
- By stationarity, the two sequences

$$X_t, X_{t-1}, \ldots, X_{t-h+1}$$

and

$$X_{t-h}, X_{t-h+1}, \dots, X_{t-1}$$

have the same covariance matrix.

Therefore, the best linear prediction of X_{t-h} in terms of $X_{t-h+1}, \ldots, X_{t-1}$ equals $a_1X_{t-h+1} + \cdots + a_{h-1}X_{t-1}$.

In Other Words

$$pacf(h) = corr(X_t - a_1 X_{t-1} - \dots - a_{h-1} X_{t-h+1}, X_{t-h} - a_1 X_{t-h+1} - \dots - a_{h-1} X_{t-1}).$$

- ▶ pacf(h) is the correlation between the errors in the best linear predictions of X_t and X_{t-h} in terms of the intervening variables $X_{t-1}, \ldots, X_{t-h+1}$.
- ▶ That is, the correlation between X_t and X_{t-h} with the effect of the intervening variables $X_{t-1}, X_{t-2}, \dots, X_{t-h+1}$ removed.

h>p?

- ightharpoonup pacf (h) equals zero for lags h > p for an AR(p) model
- Note that for h > p, the best linear predictor for X_t in terms of $X_{t-1}, \ldots, X_{t-h+1}$ equals $\phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p}$.
- ▶ In other words, $a_1 = \phi_1, \dots, a_p = \phi_p$ and $a_i = 0$ for i > p.
- ▶ Therefore for h > p, we have by causality

$$pacf(h) = corr(X_{t} - \phi_{1}X_{t-1} - \dots - \phi_{p}X_{t-p}, X_{t-h} - \phi_{1}X_{t-h+1} - \dots - \phi_{p}X_{t-h+p})$$

$$= corr(W_{t}, X_{t-h} - \phi_{1}X_{t-h+1} - \dots - \phi_{p}X_{t-h+p})$$

$$= 0.$$

So does it work???

- Recall $\rho(2) = \phi^2$ for AR(1).
- \blacktriangleright We previously showed that pacf(2) = 0 for AR(1), (this is recap :)

Estimating the PACF with data

- lacktriangle Estimate the entries in Δ and ζ by the respective sample autocorrelations
- ► To choose p for AR(p), a natural approach is to plot the sample pacf.
- As the true pacf for an AR(p) model is zero for lags larger than p, the sample pacf should be close to zero for lags larger than p.
- Just as with Bartlett's Theorem for the autocorrelation function, one can quantify the variability of the pacf function precisely, as the following theorem shows

PACF Approximate Distribution

- ▶ Theorem: Let $\{X_t\}$ a causal AR(p) process with i.i.d. noise $\{W_t\}$. Let p_k denote the sample pacf at lag k defined above. Then for k > p we have that the p_k 's are approximately independent normally distributed with mean zero and variance 1/n.
- ▶ Thus for h > p, the pacf() plot bands at $\pm 1.96 n^{-1/2}$ can be used for checking if an AR(p) model is appropriate.

MA(3)

```
MAq = arima.sim(n=100,model=list(ma=c(.9,0,-.2)))
plot.ts(MAq)
```


MA(3), using acf2()

MA(3), n=1000

AR(p)

```
ARp = arima.sim(n=100,model=list(ar=c(.9,0,-.2)))
plot.ts(ARp)
```


AR(p)

AR(p), n=1000

ARMA(p,q)

ARMA(p,q), n=1000

Conclusion

- ightharpoonup For an MA(q) model,
 - ▶ The autocorrelation function $\rho_X(h)$ equals zero for h > q.
 - Also for h>q, the sample autocorrelation functions r_h are approximately normal with mean 0 and variance w_{hh}/n where $w_{hh}:=1+2\rho^2(1)+\cdots+2\rho^2(q)$ by Bartlett's Theorem.
- ightharpoonup For an AR(p) model,
 - ▶ The partial autocorrelation function pacf(h) equals zero for h > p
 - For h > p, the sample partial autocorrelations are approximately normal with mean 0 and variance 1/n.

Conclusion

- If the sample ACF for a data set cuts off at some lag, we use an MA model (i.e. p=0). If the sample PACF cuts off at some lag, we use an AR model (i.e. q=0).
- ▶ In other words, if the sample ACF has no reasonable cutoff, then we have evidence that p>0 is reasonable.
- ▶ If the sample PACF has no reasonable cutoff, then we have evidence that q>0 is plausible.
- What if neither has a reasonable cutoff? Then we probably have p>0 and q>0, and in principle this is a model selection problem! To be continued.
- ► To the code!

Prediction

- \triangleright We've discussed prediction in general and prediction of a stationary process (X_t) .
- ▶ However, you likely want to predict time series data (Y_t) . Let's talk about that.
- Consider a smoother/filter estimate of the signal model, such that

$$Y_t = \left(\sum_{j=1}^b a_j Y_{t-j}\right) + X_t$$

▶ How can we forecast Y_{n+2} and Y_{n+1} given $Y_1, ..., Y_n$? We'll see that it's easiest to start with Y_{n+1} .

Prediction of Y_t

▶ Allowing for some shorter notation in the conditional:

$$E(Y_{n+1}|Y_{1,...,n}) = \left(\sum_{j=1}^{b} a_j E(Y_{n-j}|Y_{1,...,n})\right) + E(X_{n+1}|Y_{1,...,n})$$
$$= \sum_{j=1}^{b} a_j Y_{n-j} + E(X_{n+1}|Y_{1,...,n})$$