# Algorithm Project CPSC 335 October 8th, 2022

Ву

Luis Alvarado - Luisalvarado@csu.fullerton.edu

Marco Gabriel - Marcog10@csu.fullerton.edu

# **Table Of Contents:**

| Algorithm Design                                       | 2 |
|--------------------------------------------------------|---|
| Alternate Algorithm                                    | 2 |
| Pseudocode                                             | 2 |
| Lawnmower Algorithm                                    | 3 |
| Pseudocode                                             | 3 |
| Mathematical Analysis                                  | 4 |
| Alternative Algorithm                                  | 4 |
| Step-Count, Limits Theorem, and Proof by Contradiction | 4 |
| Lawnmower Algorithm                                    | 5 |
| Step-Count, Limits Theorem, and Proof by Contradiction | 6 |
| Screenshots                                            | 7 |

# Algorithm Design

Input: a positive integer n and a list of 2n disks of alternating colors light-dark, starting with light0 = Light1 = Dark

#### Ex. 0101010101

**Output:** a list of 2n disks, the first n disks are light, the next n disks are dark, and an integer m representing the number of swaps to move the dark ones after the light ones.

Result Ex. 0 0 0 0 1 1 1 1

# **Alternate Algorithm**

## **Pseudocode**

# **Lawnmower Algorithm**

## **Pseudocode**

```
sorted_disks sort_lawnmower(const disk_state& before) {
       initialize numOfSwap to zero
       initialize a variable from disk_state to before
       //left to right method
       for each element in ligh_count() do
              for each element in total count() - 1 do
                      if get(j) is greater than get(j + 1) then
                             swap(j)
                             Increment numOfSwap
                      endif
              endfor
       //right to left method
       For each element in total_count() - 1; decrement by 1
              If get(k) is less than get(k-1) do
                      swap(k-1)
                      Increment numOfSwap
              endif
       endfor
endfor
       return the sorted_disks()
}
```

# Mathematical Analysis

# **Alternative Algorithm**

## Step-Count, Limits Theorem, and Proof by Contradiction

Step count: 
$$5:0:a+5:CA \Rightarrow 3\frac{n^2}{2} + 3\frac{n}{2} + 2$$
  $\frac{limits theorom}{sCA = n+1 (SCB)} \Rightarrow 3\frac{n^2}{2} + 3\frac{n}{2} + 2$   $\frac{lim}{400} \Rightarrow \frac{3h^2}{a} + \frac{3n}{2} + 2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + \frac{3n}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + 2 + 2 + n^2$   $\frac{3n^2}{2} + 2 + n^2$   $\frac{3n^2}{2}$ 

## **Lawnmower Algorithm**

```
sorted_disks sort_lawnmower(const disk_state &before) {
       int numOfSwap = 0;
                                                                                                                                                                                                                                                                          50
       disk_state step = before;
              for(int i = 0; i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i = 0); i < step.light_count(); i \leftrightarrow 1) { (int i < step.light_count()); i \leftrightarrow 1 (int i < step.light_count()) { (int i < step.li
                      // n - 1 + 1 -> n times unit
                                                                                                                                                                                                                                                                                                                  // 2 time unit
                                            step.swap(j);
                                            numOfSwap++;
                                                                                                                                        SCIF
                     // else it is odd
                //right to left - compares every two adjacent disks and swaps if necessary
                      for (size_t k = step.total_count() - 1; k > 0; k--) {
                                                                                                                                                                                                                                                                                                                 // n - 1 + 1 -> n time unit
                                      if (step.get(k) < step.get(k - 1)) {
                                                                                                                                                                                                                                                                                                                 // 2 times unit
                                            step.swap(k - 1);
                                                                                                                                                                                                                                                                                                                 // 2 times unit
                                                                                                                                                                                                                                                                                                                  // 1 times unit
                                            numOfSwap++;
                                                                                                                                            SLIF
         return sorted_disks(disk_state(step), numOfSwap);
```

# Step-Count, Limits Theorem, and Proof by Contradiction

```
Step count:
                                                         limits theorem:
                                                                                                Proof by contradiction
 SC = 2 + SCA \Rightarrow 6n^2 + 6n+2 \Rightarrow 3n^2 + 2n+2

SCA = (n+1)(SCB)(SCD) \Rightarrow (n+1)(3n)(4n) \Rightarrow 12n
                                                          Fin toln2)
                                                                                                 3 n^2 t 3 n t 2 \leq n^2
                                                                                                \sim \sim \sim
                                                          \frac{1}{100} \frac{3h^2 + 3h + 2}{(h^2)}
                                                                                                 fond gon)
 SCB = n-1+1 > n(SCFF) -> 3n -> (n+1)(12n)
                                                         lt
N-900 6N + 3+0
                                                                                                C=3+3+2-08, n,=1
SCIF = 2+ max(1,1) -> 3
                                                                                                3n2+3n+2 < 8n2
                                                                  ZN
                                                         lt
                                                                                                3(1)+3(1)+2 (8(1)
SCD = n (SCFA) => 4n
                                                        n700 6+0+0 > 3 > 0
                                                                                                  3+3+2 68
SLIF = 2+ max (d, 1)
                                 -> 6n2-6
                                                                                                  8 ≤ 8
                                                        by limits theorem, we can conclude that
      =2+2
                                                        3n2+3n+2 6 0(n2)
                                                                                              True, by definition, 3n2+3n+2 t OCn2)
       - 4
```

# Screenshots

#### **README.MD**



#### **IS SORTED FUNCTION:**

#### SORT\_ALTERNATE FUNCTION

## SORT\_LAWNMOWER FUNCTION

#### **TESTS**

