

Machine Learning Principles

Regularization

Instructor: Tugce Gurbuz

Nov 4th, 2022

Complex Models Need Regularization

In ML, we use highly complex models with many adjustable parameters.

Learning the noise in data?

Too simple -> "underfits"

Too complex -> "overfits"

Bias vs Variance Tradeoff

Bias: The simple models often give systematically too small weights.

Bias vs Variance Tradeoff

- Bias: The simple models often give systematically too small weights.
- Variance: The complex model capture the variance too much that leads to poor generalization

How to pick right model complexity?

The magic!

Deep learning on images (Zhang, Bengio, Hardt, Recht, and Vinyalsn 2017)

- gives 0 training error -- and small test error
- gives 0 training error with randomized labels

The magic!

Deep learning on images (Zhang, Bengio, Hardt, Recht, and Vinyalsn 2017)

- gives 0 training error -- and small test error
- gives 0 training error with randomized labels

Large language models memorize a lot

- GPT-3 (175B params trained on 500B words) seems to memorize a lot
 - Q. What do you call a droid that takes the long way around?

The magic!

Deep learning on images (Zhang, Bengio, Hardt, Recht, and Vinyalsn 2017)

- gives 0 training error -- and small test error
- gives 0 training error with randomized labels

Large language models memorize a lot

- GPT-3 (175B params trained on 500B words) seems to memorize a lot
 - Q. What do you call a droid that takes the long way around? R2 detour.

Characteristics of Regularized Models

The more regularized models give us:

- Smaller weights (less fitting to noise)
- Smoother models
- Models with lower capacity

L1 and L2 penalties:

- Train to minimize normal loss + c * L1(weights)
 - L1: Lasso regression
 - Drives some weights to 0

L1 and L2 penalties:

- Train to minimize normal loss + c * L1(weights)
 - L1: Lasso regression
 - Drives some weights to 0
- Train to minimize normal loss + c * L2(weights)
 - L2: ridge regression
 - Makes biggest weights smaller.

L1 and L2 penalties:

- Train to minimize normal loss + c * L1(weights)
 - L1: Lasso regression
 - Drives some weights to 0
- Train to minimize normal loss + c * L2(weights)
 - L2: ridge regression
 - Makes biggest weights smaller.

L1 and L2 penalties:

- Train to minimize normal loss + c * L1(weights)
 - L1: Lasso regression
 - Drives some weights to 0
- Train to minimize normal loss + c * L2(weights)
 - L2: ridge regression
 - Makes biggest weights smaller.

L-infinity penalty:

Train to minimize normal loss - but don't let the weights get too big

Drop-out

(a) Standard Neural Net

(b) After applying dropout.

Early stopping -> Avoid overfitting by stopping your training at the right time

Data Augmentation

Image Augmentation Sample. Image by https://github.com/aleju/imgaug

Stochastic Gradient Descent (SGD)

- Initialize with small random weights
- Weights get bigger as one iterates
- Use early stopping to avoid overfitting

Stochastic Gradient Descent (SGD)

- Initialize with small random weights
- Weights get bigger as one iterates
- Use early stopping to avoid overfitting

Learning rates and regularization

Small learning rates are more likely to find a deep minimum -> might be good or bad

Learning rates and regularization

- Small learning rates are more likely to find a deep minimum -> might be good or bad
- Large learning rates misses deep minimas, finds broader and flatter minimas that may be more robust.

Conclusion on regularization techniques: Use all!

Hyperparameter tuning is a search:

- **Grid Search:** Try all possible combinations of hyperparameters
- Random Search: Randomly try different combinations of hyperparameters
- **Coordinate-wise Gradient Descent:** Start at one set of hyperparameters and try changing one at a time, accept any changes that reduce your validation error
- Bayesian Optimization / Auto ML: Start from a set of hyperparameters that have worked well on a similar problem, and then do some sort of local exploration (e.g., gradient descent) from there.

