

Institute for the Wireless Internet of Things at Northeastern University

RF and Traffic Scenarios Overview

Leonardo Bonati

Overview

Colosseum scenarios

Why are they important?

- Scenario components
 - RF scenarios
 - Traffic scenarios
- Examples

Scenarios in Colosseum

- Colosseum allows emulation at scale:
 - 256 RF transceivers
 - >65K RF channels
 - Diverse wireless conditions
 - Fading
 - Mobility
 - Topologies
 - Data traffic
 - Downlink/Uplink
 - Bandwidth
 - Bitrate
 - UDP/TCP

RF Scenarios

Traffic Scenarios

Scenarios – The Colosseum Way

- RF / traffic scenarios are deterministic: Experiments w/ same scenario execute the same way
- Will be extended w/ stochastic distributions in the filter taps

- Colosseum enables:
 - Full control over the wireless channel
 - non stationarity in the distribution
 - only keep desired channel effects
 - Reproducibility / repeatability
 - Easy comparison between algorithms

Is the performance drop due to the channel or bad algorithm design?

An example: performance drop

High-level Overview

- Three main components:
 - Standard Radio Nodes (SRN)
 - Operates as a radio front-end
 - Massive Channel EMulator (MCHEM)
 - Emulates channel conditions
 - Traffic GENerator (TGEN)

Logic representation

Generate traffic for each node

Colosseum implementation

High-level Overview, Cont'd

- All signals are summed at the receiver
- Each node can experience interference from all the other 255 transceivers

RF Scenarios – Wireless Channel Modeling

Wireless channel:

- Modeled as a Finite Impulse response (FIR)
- 512 complex-valued FIR taps
 - 512 delays (or paths) for the same signal
- Stored in the Scenario Server

The channel is emulated by MCHEM

- 1. SRNs generate signals
- MCHEM applies the taps to SRNs' signals
 - FPGA-based FIR filtering
- 3. Signals are forwarded to SRNs

Why FIR Filters?

The received signal is the convolution in time of the transmitted signal and the

channel impulse response

Ways to Generate Filter Taps

- **Mathematical model**
 - Deterministic/added randomness, no ground truth

- **On-site measurements**
 - Realistic but site/time specific

- Software-based (ray tracer)
 - Accurate but complex

at Northeastern

Complexity vs. Accuracy

- FIR taps:
 - 512 complex-valued FIR taps
 - Sparse filter: only 4 are non-zero
- · Why?
 - Colosseum has 1 ms channel resolution
 - Scenarios are VERY complex
 - Example:
 - single-tap
 - 50 nodes
 - 10 minutes duration
 - > 100 GB storage needed (FIR taps only!!)
 - > 2 hours to generate taps on servers w/ 24 CPUs and 96 GB of RAM → don't try this at home!
- 4 taps are a good trade-off between complexity and accuracy

RF Scenarios in Practice

RF Scenarios – Front-end Details

- RF scenarios also specify:
 - Bandwidth
 - SNR
 - Frequency
 - Number of nodes

Example

Stage	Duration	Link SNR	Offered Traffic / Flow
0	15 sec	20 dB	NaN
1	120 sec	20 dB	1.25 Mbps
2	120 sec	15 dB	1.25 Mbps
3	120 sec	10 dB	1.25 Mbps
4	120 sec	5 dB	1.25 Mbps
5	120 sec	20 dB	1.25 Mbps
6	15 sec	20 dB	NaN

Label	Value
Version	Practice
RF ID	9988
RF Description	Single tap; large scale
Scenario BW (MHz)	10
Traffic ID	99880
Traine is	99000
Traffic Description	Streaming UDP
Traffic Description	Streaming UDP

Traffic Scenarios - TGEN

- Scenarios include pre-defined traffic through TGEN
- TGEN is based on Multi-GENerator (MGEN)
 - https://github.com/USNavalResearchLaboratory/mgen
 - Tool to generate TCP/UDP traffic
 - Open-source
 - Specify:
 - Duration
 - Type of traffic
 - Bitrate
 - Etc.

Example

Stage	Duration	Link SNR	Offered Traffic / Flow
0	15 sec	20 dB	NaN
1	120 sec	20 dB	1.25 Mbps
2	120 sec	15 dB	1.25 Mbps
3	120 sec	10 dB	1.25 Mbps
4	120 sec	5 dB	1.25 Mbps
5	120 sec	20 dB	1.25 Mbps
6	15 sec	20 dB	NaN

Label	Value
Version	Practice
RF ID	9988
RF Description	Single tap; large scale
Scenario BW (MHz)	10
Traffic ID	99880
Traffic Description	Streaming UDP
Center Frequency	1000.0 MHz
Number of Incumbent Nodes	0
Number of Competitor Nodes	10

Traffic Scenarios - Customization

Users can use custom traffic generators

- Examples:
 - iPerf2
 - iPerf3
 - Netperf
 - MTR
- TGEN gets bypassed

Sample Scenario: Alleys of Austin

A platoon from the Texas Army National Guard at Camp Mabry is practicing urban maneuvers and communications in Austin.

The platoon is split into five squads consisting of 9 squad members and one UAV.

The squads move through the Heritage neighborhood in the following three stages:

- Stage 1: The squads progress from five starting locations and establish basic voice communications.
- Stage 2: The squads begin to also exchange video and images.
- Stage 3: The squads significantly increase their traffic.

Pathloss Example

5 teams / networks

10 nodes per team

- 1 leader with the gateway radio
- 8 ground soldiers following
- 1 UAV circling overhead

930 seconds scenario

- 15 seconds scenario startup
- 3x5 minutes of traffic
- 15 seconds scenario teardown

RF Traffic

- Stage 1 (15-315 s)
 - Basic voice communications
- Stage 2 (315-615 s)
 - Also exchange video and images
- Stage 3 (615-915 s)
 - Significant traffic increase

at Northeastern

From Ray Tracers to Colosseum Scenario

- Model a high-resolution 3D scenario through ray-tracing software
- Outdoor environment, *Krentzman Quadrant at Northeastern University*
- Applied material properties at desired carrier frequencies obtained from ITU model
- Get channel taps from ray tracing software and feed them to Colosseum

Colosseum 5G Scenario Example

- Cellular network w/ 6 interfering base stations & 24 users
- Downlink video streaming
- Pedestrian user mobility
- Real-world scenario with base station locations in the Boston Public Garden

Chambes St.

Chamb

Base station locations

Institute for the Wireless

Internet of Things

at Northeastern

Institute for the Wireless Internet of Things at Northeastern University

Thank You! (Questions?)

