Week5 monday

Term	Typical symbol	Definition
Context-free grammar	G	$G = (V, \Sigma, R, S)$
(CFG)		
Variables	V	Finite set of symbols that represent phases in production pattern
Terminals	Σ	Alphabet of symbols of strings generated by CFG $V \cap \Sigma = \emptyset$
Rules	R	Each rule is $A \to u$ with $A \in V$ and $u \in (V \cup \Sigma)^*$
Start variable	S	Usually on LHS of first / topmost rule
Derivation		Sequence of substitutions in a CFG
	$S \implies \cdots \implies w$	Start with start variable, apply one rule to one occurrence
		of a variable at a time
Language generated by the	L(G)	$\{w \in \Sigma^* \mid \text{ there is derivation in } G \text{ that ends in } w\} =$
CFG G		$\{w \in \Sigma^* \mid S \implies {}^*w\}$
Context-free language		A language that is the language generated by some CFG
Sipser pages 102-103		

Examples of context-free grammars, derivations in those grammars, and the languages generated by those grammars

$$G_1 = (\{S\}, \{0\}, R, S)$$
 with rules

$$S \to 0S$$
$$S \to 0$$

In
$$L(G_1)$$
 ...

Not in $L(G_1)$...

 $S \to 0S \mid 1S \mid \varepsilon$

In $L(G_2)$...

Not in $L(G_2)$...

 $(\{S, T\}, \{0, 1\}, R, S)$ with rules

$$\begin{split} S &\to T1T1T1T \\ T &\to 0T \mid 1T \mid \varepsilon \end{split}$$

In $L(G_3)$...

Not in $L(G_3)$...

 $G_4 = (\{A, B\}, \{0, 1\}, R, A)$ with rules

$$A \rightarrow 0A0 \mid 0A1 \mid 1A0 \mid 1A1 \mid 1$$

In $L(G_4)$...

Not in $L(G_4)$...

Extra practice: Is there a CFG G with $L(G) = \emptyset$?

Three different CFGs that each generate the language $\{abba\}$

$$(\{S,T,V,W\},\{a,b\},\{S\rightarrow aT,T\rightarrow bV,V\rightarrow bW,W\rightarrow a\},S)$$

$$(\{Q\},\{a,b\},\{Q\rightarrow abba\},Q)$$

$$(\{X,Y\},\{a,b\},\{X\rightarrow aYa,Y\rightarrow bb\},X)$$

Design a CFG to generate the language $\{a^nb^n\mid n\geq 0\}$

Sample derivation:
Design a CFG to generate the language $\{a^ib^j\mid j\geq i\geq 0\}$
Sample derivation:

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by some push-down automaton.

Definition: a language is called **context-free** if it is the language generated by a context-free grammar. The class of all context-free language over a given alphabet Σ is called **CFL**.

Consequences:

- Quick proof that every regular language is context free
- To prove closure of the class of context-free languages under a given operation, we can choose either of two modes of proof (via CFGs or PDAs) depending on which is easier
- To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet, stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of how its computations would process input strings; the reader should be able to reconstruct the state diagram or formal definition precisely from such a descripton. The informal description of a PDA can refer to some common modules or subroutines that are computable by PDAs:
 - PDAs can "test for emptiness of stack" without providing details. *How?* We can always push a special end-of-stack symbol, \$, at the start, before processing any input, and then use this symbol as a flag.
 - PDAs can "test for end of input" without providing details. *How?* We can transform a PDA to one where accepting states are only those reachable when there are no more input symbols.

Over $\Sigma = \{a, b\}$, let $L = \{a^n b^m \mid n \neq m\}$. Goal: Prove L is context-free.

Suppose L_1 and L_2 are context-free languages over Σ . Goal: $L_1 \cup L_2$ is also context-free.

Approach 1: with PDAs

Let $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ be PDAs with $L(M_1) = L_1$ and $L(M_2) = L_2$.

Define M =

 $Approach\ 2:\ with\ CFGs$

Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$.

Define G =

Suppose L_1 and L_2 are context-free languages over Σ . Goal: $L_1 \circ L_2$ is also context-free.

Approach 1: with PDAs

Let $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ be PDAs with $L(M_1) = L_1$ and $L(M_2) = L_2$.

Define M =

 $Approach\ 2:\ with\ CFGs$

Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$.

Define G =

Summary

Over a fixed alphabet Σ , a language L is **regular**

iff it is described by some regular expression iff it is recognized by some DFA iff it is recognized by some NFA

Over a fixed alphabet Σ , a language L is **context-free**

iff it is generated by some CFG iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are **not** context-free!

Examples of non-context-free languages

$$\begin{aligned} &\{a^nb^nc^n\mid 0\leq n, n\in\mathbb{Z}\}\\ &\{a^ib^jc^k\mid 0\leq i\leq j\leq k, i\in\mathbb{Z}, j\in\mathbb{Z}, k\in\mathbb{Z}\}\\ &\{ww\mid w\in\{0,1\}^*\} \end{aligned}$$

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A is a context-free language, there there is a number p where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz where (1) for each $i \geq 0$, $uv^ixy^iz \in A$, (2) |uv| > 0, (3) $|vxy| \leq p$. We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Week5 wednesday

A set X is said to be **closed** under an operation OP if, for any elements in X, applying OP to them gives an element in X.

True/False	Closure claim
True	The set of integers is closed under multiplication.
	$\forall x \forall y ((x \in \mathbb{Z} \land y \in \mathbb{Z}) \to xy \in \mathbb{Z})$
True	For each set A , the power set of A is closed under intersection.
	$\forall A_1 \forall A_2 ((A_1 \in \mathcal{P}(A) \land A_2 \in \mathcal{P}(A) \in \mathbb{Z}) \to A_1 \cap A_2 \in \mathcal{P}(A))$
	The class of regular languages over Σ is closed under complementation.
	The class of regular languages over Σ is closed under union.
	The class of regular languages over Σ is closed under intersection.
	The class of regular languages over Σ is closed under concatenation.
	The class of regular languages over Σ is closed under Kleene star.
	The class of context-free languages over Σ is closed under complementation.
	The class of context-free languages over Σ is closed under union.
	The class of context-free languages over Σ is closed under intersection.
	The class of context-free languages over Σ is closed under concatenation.
	The class of context-free languages over Σ is closed under Kleene star.

Assume $\Sigma = \{0, 1, \#\}$

Turing machines: unlimited read + write memory, unlimited time (computation can proceed without "consuming" input and can re-read symbols of input)

- Division between program (CPU, state diagram) and data
- Unbounded memory gives theoretical limit to what modern computation (including PCs, supercomputers, quantum computers) can achieve
- State diagram formulation is simple enough to reason about (and diagonalize against) while expressive enough to capture modern computation

For Turing machine $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$ the **computation** of M on a string w over Σ is:

- Read/write head starts at leftmost position on tape.
- Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol. **Tape alphabet** is Γ with $\bot \in \Gamma$ and $\Sigma \subseteq \Gamma$. The blank symbol $\bot \notin \Sigma$.
- Given current state of machine and current symbol being read at the tape head, the machine transitions to next state, writes a symbol to the current position of the tape head (overwriting existing symbol), and moves the tape head L or R (if possible). Formally, **transition function** is

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

• Computation ends if and when machine enters either the accept or the reject state. This is called halting. Note: $q_{accept} \neq q_{reject}$.

The language recognized by the Turing machine M, is

 $\{w \in \Sigma^* \mid \text{computation of } M \text{ on } w \text{ halts after entering the accept state}\} = \{w \in \Sigma^* \mid w \text{ is accepted by } M\}$

An example Turing machine: $\Sigma =$

$$,\Gamma =$$

$$\delta((q0,0)) =$$

Formal definition:

Sample computation:

$q0\downarrow$								
0	0	0	J	J	J	J		
		•			•			

The language recognized by this machine is . . .

Extra practice:

Formal definition:

Sample computation:

Week4 wednesday

Regular sets are not the end of the story

- Many nice / simple / important sets are not regular
- Limitation of the finite-state automaton model: Can't "count", Can only remember finitely far into the past, Can't backtrack, Must make decisions in "real-time"
- We know actual computers are more powerful than this model...

The **next** model of computation. Idea: allow some memory of unbounded size. How?

- To generalize regular expressions: **context-free grammars**
- To generalize NFA: **Pushdown automata**, which is like an NFA with access to a stack: Number of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to (or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language $\{0^n1^n \mid n \geq 0\}$?

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject the input.

Trace the computation of this PDA on the input string 01.

Trace the computation of this PDA on the input string 011.

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left to read, read that 1 and accept the input. If the stack becomes empty and there are either zero or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

Definition A **pushdown automaton** (PDA) is specified by a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q is the finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$$

is the transition function, $q_0 \in Q$ is the start state, $F \subseteq Q$ is the set of accept states.

Week4 friday

Draw the state diagram and give the formal definition of a PDA with $\Sigma = \Gamma$.

Draw the state diagram and give the formal definition of a PDA with $\Sigma \cap \Gamma = \emptyset$.

For the PDA state diagrams below, $\Sigma = \{0, 1\}$.

Mathematical description of language

State diagram of PDA recognizing language

$$\Gamma = \{\$, \#\}$$

$$\Gamma = \{@, 1\}$$

$$\{0^i 1^j 0^k \mid i, j, k \ge 0\}$$

Note: alternate notation is to replace; with \rightarrow

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language described by a regular expression is built up recursively according to the expression's syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle, beginning, or end of the final string as the derivation proceeds.

Week10 friday

Model of Computation	Class of Languages
Deterministic finite automata: formal definition, how to design for a given language, how to describe language of a machine? Nondeterministic finite automata: formal definition, how to design for a given language, how to describe language of a machine? Regular expressions: formal definition, how to design for a given language, how to describe language of expression? Also: converting between different models.	Class of regular languages: what are the closure properties of this class? which languages are not in the class? using pumping lemma to prove nonregularity.
Push-down automata: formal definition, how to design for a given language, how to describe language of a machine? Context-free grammars: formal definition, how to design for a given language, how to describe language of a grammar?	Class of context-free languages: what are the closure properties of this class? which languages are not in the class?
Turing machines that always halt in polynomial time	P
Nondeterministic Turing machines that always halt in polynomial time	NP
Deciders (Turing machines that always halt): formal definition, how to design for a given language, how to describe language of a machine?	Class of decidable languages: what are the closure properties of this class? which languages are not in the class? using diagonalization and mapping reduction to show undecidability
Turing machines formal definition, how to design for a given language, how to describe language of a machine?	Class of recognizable languages: what are the closure properties of this class? which languages are not in the class? using closure and mapping reduction to show unrecognizability

Given	a	language,	prove	it	ic	regui	ar
Given	а	language,	prove	ւլ	\mathbf{IS}	regu	aı

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

"Prove it works" means . . .

Example: $L = \{w \in \{0,1\}^* \mid w \text{ has odd number of 1s or starts with 0}\}$

Using NFA

Using regular expressions

Example: Select all and only the options that result in a true statement: "To show a language A is not regular, we can..."

- a. Show A is finite
- b. Show there is a CFG generating A
- c. Show A has no pumping length
- d. Show A is undecidable

Example: What is the language generated by the CFG with rules

$$S \rightarrow aSb \mid bY \mid Ya$$

$$Y \rightarrow bY \mid Ya \mid \varepsilon$$

Example:	Prove t	that th	e class o	of decidal	ble langı	ages is o	closed un	der conc	atenation	