Mobilkommunikation - Mobile Communications Lecture 4: Multiple Access

Prof. Dr.-Ing. Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

April 29, 2016

Previous lectures

Characteristics of the radio channel

- ▶ radio propagation
- ► channel capacity

Space division multiplexing

- ► cell geometry
- ► cochannel interference

Physical layer (layer 1)

- encoding and modulation
- multiplexing

The wireless medium is scarce and not trivial!

Outline

Challenges of wireless medium access

Duplexing

Multiple access
Reservation-based access
Random access

Data link layer

Data link layer (layer 2)

- medium access control (MAC)
 - radio channel is shared by an a priori unknown number of stations
 - target is to achieve
 - ► high throughput
 - ► fair resource allocation
 - difficulties due to different ranges
 - transmission range
 - detection range
 - interference range
- ▶ logical link control (LLC)
 - reliable service uses automatic repeat request
 - actual implementations may differ significantly

Solutions from the wired domain?

Why not use known MAC protocols from the wired domain?

Ethernet uses 1-persistent CSMA/CD

- carrier sense multiple access with collision detection
 - sense if the medium is free and start sending as soon as it becomes free
 - while sending listen to the medium to detect other senders
 - in case of a collision immediately stop sending and wait for a random amount of time

Difficulties in wireless networks

Difficulties in wireless networks

- ▶ inverse square law: signal strength drops with the square of the distance or even faster
- ▶ the sender can generally not detect a collision while sending; it would need a second antenna and moreover it would mainly hear its own signal
- even if the sender could detect a collision this does not imply that there is also a collision at the receiver
- ▶ similarly, a collision at the receiver does not imply a collision at other locations, e.g. at the sender

Hidden terminals

transmission and detection ranges

A is hidden from C and C is hidden from A

- ► A senses free medium and starts sending to B
- ► C cannot hear A
- ▶ C senses free medium and starts sending to B
- ► A cannot hear C

collision at B

Hidden terminals (2)

transmission and detection ranges

A is hidden from C and C is hidden from A

Solution

- ▶ once A starts transmitting, B (the receiver) sends a busy tone to notify stations that are possibly hidden from A
- ▶ C hears the busy tone and does not start sending
- ▶ need a separate channel for the busy tone

Exposed terminals

transmission and detection ranges

C is exposed to the transmission of B

- ▶ B senses free medium and starts sending to A
- ► C wants to transmit data to D
- ► C could transmit data to D without causing a collision
 - neither at receiver A nor at receiver D
 - but seemingly at sender B and sender C

C senses busy medium and does not start sending to D

Near and far terminals

transmission and detection ranges

- signal strength decreases with the square of the distance or even faster
- ► A can transmit to C, however, B's signal effectively drowns A's signal
- ► C would only see B but not A
- ▶ need power control

Outline

Challenges of wireless medium access

Duplexing

Multiple access
Reservation-based access
Random access

Duplexing

Usually two communicating parties, e.g. mobile and base station

- ▶ downlink aka forward channel from base to mobile station
- uplink aka reverse channel from mobile to base station

Sharing the medium

- ► simplex: one way communication from sender to receiver
- duplex: two way communication between two parties
 - frequency division duplex (FDD)
 combination of two simplex channels with different carrier
 frequencies
 - time division duplex (TDD)
 time sharing of a single channel achieves quasi-simultaneous duplex transmission

Frequency division duplex (FDD)

FDD duplex channel: two simplex channels in different freq. bands

- ▶ the frequency separation is important to avoid interference
- ightharpoonup example: GSM where $f_{\text{downlink}} = f_{\text{uplink}} + 45 \text{ MHz}$

Time division duplex (TDD)

TDD duplex channel: deterministic time sharing of a freq. band

- time is slotted and certain slots are assigned to uplink and downlink only
- ▶ example: DECT

Comparison FDD vs. TDD

FDD

- requires individual, separated radio frequencies
- channels are allocated to base stations statically
- mobile stations are allocated channels dynamically
- frequently used for wide area cellular systems

TDD

- requires precise timing and synchronization
- large propagation delays require a separation of uplink and downlink in time
- ► can adapt uplink and downlink bandwidth dynamically
- ► frequently used for local area communication

Outline

Challenges of wireless medium access

Duplexing

Multiple access Reservation-based access Random access

Multiple access

Characteristics

- ▶ shared medium: all stations share the communication channel
- broadcast medium: all stations within transmission range of a sender receive the signal

Challenge

- ▶ often no centralized control and uncoordinated channel access
- ▶ a sender cannot block access to the channel by others
- if several stations transmit collisions may occur

Need: medium access control (MAC) protocols

- centralized vs. distributed
- deterministic vs. stochastic
- difficulty: coordination among stations has to use the same communication channel

Multiple access (2)

Static allocation of sub-channels

- ▶ the capacity of the channel is divided among the stations
- each station's share (time and frequency) is reserved
- no further control of channel access is needed
- allows providing well-defined quality of service

Dynamic assignment of the channel

- no a priori allocation; before sending stations have to obtain permission to send
- access procedure can have centralized control or it can be decentralized

Random access

- ▶ no a priori allocation; no coordination of/among stations
- ► collisions are inevitable; have to be detected and fixed

Classification of wireless MAC protocols

- reservation-based: static allocation or dynamic assignment of resources to terminals
- ► random access: no collision free allocation; terminals compete for the channel using randomized procedures
- ► random with reservation: terminals compete using random access to obtain a dynamic assignment of resources

Frequency division multiple access (FDMA)

Frequency division multiple access (FDMA)

- each sender and receiver pair is assigned a unique frequency band for transmission
- ► fixed frequency allocation
 - permanent, e.g. radio broadcast
 - ▶ frequency hopping, e.g. GSM, Bluetooth frequency hopping spread spectrum
- usually used in narrowband systems
- need guard bands between individual frequency bands
- receiver has to have a precise bandpass filter

Time division multiple access (TDMA)

Time division multiple access (TDMA)

- several senders share a frequency band
- ► time is divided into repetitive frames
- ► frames are divided into time slots
- each sender is allocated a certain time slot
- often combined with FDMA, e.g. GSM
- need guard times between time-slots (different terminals have different distance (propagation delay) from the base station)
- receiver has to synchronize precisely

Dynamic assignment of the channel

TDMA systems can easily assign the channel dynamically: polling

- centralized control
- stations need to obtain permission to send
- ▶ the base station gives permission to send to a station
- base station is a single point of failure
- ▶ used e.g. in the GPRS uplink

Remark: in wired (ring) networks token passing implements a similar scheme, however, with decentralized control

- ▶ a single token circulates in the ring
- ▶ the token is the permission to send
- ▶ after sending a station passes the token to the next station

Code division multiple access (CDMA)

Code division multiple access (CDMA)

- all terminals may transmit at the same time in the same frequency band
- ► each sender has a unique code
 - direct sequence spread spectrum
 - frequency hopping spread spectrum
- signal appears as noise for terminals
- receiver has to tune into the signal
- typically used in wideband systems
- huge code space
- ▶ need efficient power control; target: all signals have the same strength at the receiver/base station

Code division multiple access (CDMA) (2)

Pairs of sender and receiver use the same code, e.g.

- ► code of sender and receiver A: 010011
- ► code of sender and receiver B: 110101

Coding 1 as +1 and 0 as -1: multiplication is used for spreading

- ► code A: -+--++
- ► code B: ++-+-+

Example

Autocorrelation

The receiver has to decode the pseudo noise sequence

- ▶ it has to know the code
- ▶ it has to be synchronized

Good codes have an autocorrelation function with a peak at lag k=0 and small values for any other lag $k\neq 0$.

The discrete autocorrelation at lag k is defined in signal processing

$$R_{xx}(k) = \sum_{n} x(n)x(n+k)$$

where x(n) is the chip sequence repeated periodically.

The peak of the autocorrelation function allows the receiver

- ▶ to synchronize and
- ▶ to decode the data

4 D > 4 A > 4 B > 4 B > B 9 9 0

Autocorrelation example

Code A:
$$-+--++$$
 i.e. $x = (-1, +1, -1, -1, +1, +1, -1, ...)$

► lag 0:
$$\sum_{n=1}^{6} x(n)x(n) = +6$$

▶ lag 1:
$$\sum_{n=1}^{6} x(n+1)x(n) = -2$$

▶ lag 2:
$$\sum_{n=1}^{6} x(n+2)x(n) = -2$$

▶ lag 3:
$$\sum_{n=1}^{6} x(n+3)x(n) = +2$$

▶ lag 4:
$$\sum_{n=1}^{6} x(n+4)x(n) = -2$$

▶ lag 5:
$$\sum_{n=1}^{6} x(n+5)x(n) = -2$$

► lag 6:
$$\sum_{n=1}^{6} x(n+6)x(n) = +6$$

▶ ...

$$R_{xx} = (+6, -2, -2, +2, -2, -2, +6, \dots)$$

Decoding example

Once synchronized the code -+--++ is used to decode data. The data is simply multiplied with the code.

$$+-++- -+--++$$
 $-+--++$ $+-++- -+--++$ $-+--++$
 -6 6 6 -6

The receiver assumes

- ► a 0 if the result is negative
- ► a 1 if the result is positive

i.e. the decoded bit stream is 0110

Decoding example: noise

Assume some chips are inverted due to noise on the channel

The receiver decodes 0111 instead of 0110

Cross-correlation

The receiver has to decode its pseudo noise sequence

▶ in the presence of other codes

Codes have to be orthogonal, i.e. good codes have to have small cross-correlation.

The discrete cross-correlation at lag \boldsymbol{k} is defined in signal processing

$$R_{ab}(k) = \sum_{n} a(n)b(n+k)$$

where a(n) and b(n) are the chip sequences of the codes that are repeated periodically.

The cross-correlation of the two codes A -+--++ and B ++-+-+ at lag k=0 is 0.

Decoding example: two senders

Senders A and B and sum of the two signals (3 values: +,0,-)

Receiver A

Receiver B

4□ > 4 回 > 4 豆 > 4 豆 > 9 Q (P)

Comparison F/T/CDMA

	FDMA	TDMA	CDMA
Idea	frequency is seg- mented into sub- bands	time is slotted; static or dynamic time slots allocation	spread spectrum with orthogonal codes
Terminals	each terminal has its own frequency band and is not inter- rupted	terminals are active for short disjoint pe- riods of time on the same frequency	all terminals can be active at the same time on the same fre- quency
Signal separation	bandpass filtering in frequency domain	synchronization in time domain	matched filter in code domain
Advanta- ges	simple, robust	flexible, can assign time slots on de- mand	flexible, other codes only add noise
Disadvan- tages	inflexible, frequency is scarce	synchronization is difficult, guard times needed	complex receivers, need sophisticated power control

Random access

So far multiple access is coordinated

- ► F/T/CDMA
- static allocation or dynamic assignment

However, wireless communication is often much more ad-hoc

- new terminals have to register with the network
- terminals request access to the medium spontaneously
- ▶ in many cases there is no central control

Need other access methods

- ▶ distributed
- non-arbitrated
- ⇒ random access

Literature

- ► Jochen Schiller, Mobile Communications, Second Edition, Addison-Wesley, 2003.
- ► Vijay Garg, Wireless Communications & Networking, Morgan Kaufmann, 2007.
- ► Matthias Hollick, Mobile Networking, TU Darmstadt, 2008.

