Лабораторная работа №3

Важные детали

24 марта 2022 г.

1 Первое задание

Пример 18. Вычислить интеграл

$$\int_{-1}^{2} \frac{1+x^2}{1+x^4} \, dx. \tag{11}$$

 \blacktriangle Сделав при $x \neq 0$ замену переменного t = x - 1/x в соответствующем неопределенном интеграле, получим

$$\int \frac{1+x^2}{1+x^4} dx = \int \frac{d(x-1/x)}{2+(x-1/x)^2} = \frac{1}{\sqrt{2}} \arctan \frac{x^2-1}{x\sqrt{2}} + C$$

и, следовательно,

$$\left(\frac{1}{\sqrt{2}} \operatorname{arctg} \frac{x^2 - 1}{x\sqrt{2}}\right)' = \frac{1 + x^2}{1 + x^4}, \quad x \neq 0.$$
 (12)

Поскольку

$$\lim_{x \to +0} \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} = -\frac{\pi}{2\sqrt{2}} \quad \lim_{x \to -0} \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} = \frac{\pi}{2\sqrt{2}},$$

то функция

$$F(x) = \begin{cases} \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} - \frac{\pi}{2\sqrt{2}}, & \text{если} \quad x > 0, \\ 0, & \text{если} \quad x = 0. \\ \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + \frac{\pi}{2\sqrt{2}}, & \text{если} \quad x < 0. \end{cases}$$
(13)

будет непрерывной на всей числовой оси, а так как согласно (12)

$$F'(x) = \frac{1+x^2}{1+x^4}, \quad x \neq 0, \tag{14}$$

то в силу непрерывности функции $(1+x^2)(1+x^4)$ равенство (14) верно и при x=0. Таким образом, функция (13) является первообразной для подынтегральной функции интеграла (11). Поэтому

$$\int_{-1}^{2} \frac{1+x^2}{1+x^4} dx = F(2) - F(-1) = \frac{1}{\sqrt{2}} \left(\arctan \frac{3\sqrt{2}}{4} + \pi \right). \blacktriangle$$

2 Второе задание. Малые таблицы. 1

3 Третье задание

4 Четвертое задание. Нумерация и системы. 5 Пятое задание. Нумерация и системы. 2

6 Вопросы.