Raport z projektu "Kółko i krzyżyk"

Celem projektu jest sprawdzenie skuteczności różnych klasyfikatorów za pomocą gry "Kółko i krzyżyk". Rozważamy wszystkie możliwe zakończenia gry. Celem klasyfikatorów będzie stwierdzenie, czy przy danym ustawieniu na planszy gracz grający "x" wygrał czy nie. Wprowadzamy następujące założenia:

- Gracz grający "x" zaczyna
- Gra się kończy w momencie, gdy jeden z graczy wygra -> mogą być puste pola
- Są dwie klasy gracz grający "x" wygrywa, bądź nie
- 958 możliwych gier
- b puste pole
- positive gracz grający "x" wygrał
- negative gracz grający "x" nie wygrał

Przykładowy fragment danych:

Fig. 1

Wiersz oznaczony strzałką odpowiada ułożeniu z prawej strony.

Używano następujących klasyfikatorów:

- Liniowa analiza dyskryminacji (LDA)
 - dla PU = 75%, 50% oraz 25% wszystkich danych
- Kwadratowa analiza dyskryminacji (QDA)
 - dla PU = 75%, 50% oraz 25% wszystkich danych
- Naiwny Bayes (GNB)
 - dla PU = 75%, 50% oraz 25% wszystkich danych
- Drzewo klasyfikujące
 - dla PU = 75%, 50% oraz 25% wszystkich danych
- Metoda najbliższych sąsiadów (K-NN)
 - dla k = 1, 5, 10, przy PU = 50% wszystkich danych
- Maszyny wektorów podpierających (SVM)
 - dla c = 1, 5, 10, przy PU = 50% wszystkich danych

Zatem w sumie sprawdzano 18 różnych metod.

Wyniki dla testu "accuracy" z Pythona na Próbie Testowej, uśrednione po N=10000 razy:

```
Score
        Name
    SVM c=10 0.960798
     SVM c=5 0.954485
Drzewo 75% PU 0.933659
Drzewo 50% PU 0.911226
     SVM c=1 0.871417
Drzewo 25% PU 0.857047
    K-NN k=5 0.832306
    K-NN k=1 0.75476
  QDA 50% PU 0.725651
  QDA 75% PU 0.724595
  LDA 75% PU 0.717252
  GNB 75% PU 0.716005
  ODA 25% PU 0.714721
   K-NN k=10 0.713108
  LDA 50% PU 0.712204
  GNB 50% PU 0.704668
  LDA 25% PU 0.699382
  GNB 25% PU 0.689756
```


Fig. 3

Można wywnioskować, że najlepszą dokładność ma SVM (w szczególności dla c=10 oraz c=5). Im większy parametr kosztu, tym lepszy wynik.

Drzewa uczące są również bardzo dobre, im więcej danych przekażemy na PU, tym lepiej.

Na trzecim miejscu jest K-NN, ale tutaj już nie ma zależności między liczbą sąsiadów, a skutecznością.

LDA, QDA i naiwny Bayes są bardzo zbliżone i nie ma zbytniej różnicy między wielkością PU i PT.

Wyniki dla testu "accuracy" z Pythona na Próbie Testowej wraz z kroswalidacją dla Próby Uczącej, uśrednione po N=1000 razy:

Name	Accuracy	Crossvalidation
SVM c=10	0.96091	0.941483
SVM c=5	0.95441	0.935841
Drzewo 75% PU	0.934117	0.922059
Drzewo 50% PU	0.912669	0.898988
SVM c=1	0.871674	0.836192
Drzewo 25% PU	0.857517	0.832559
K-NN k=5	0.83299	0.78469
K-NN k=1	0.755918	0.756278
QDA 50% PU	0.725623	0.72476
QDA 75% PU	0.725372	0.725926
LDA 75% PU	0.717351	0.716266
GNB 75% PU	0.715172	0.710316
QDA 25% PU	0.714927	0.710704
K-NN k=10	0.713366	0.69821
LDA 50% PU	0.712611	0.710585
GNB 50% PU	0.703847	0.700866
LDA 25% PU	0.699209	0.698641
GNB 25% PU	0.689533	0.688596

Fig. 4

Fig. 5

Dla klasyfikatorów z lepszą skutecznością, kroswalidacja jest nieco mniejsza, co teoretycznie wskazuje na to, że mimo wszystko są one niedouczone. Dla reszty kroswalidacja pokrywa się ze skutecznością.

Podsumowanie:

Generalnie dla problemu 2-klasowego skuteczność jest stosunkowo wysoka. Liczności klas są różne, więc może mieć to wpływ na dokładność dopasowania. Dla tego typu problemów najlepszymi klasyfikatorami są SVM oraz drzewa uczące.