Allgemeines

Vektoren

Positivität:

Inneres Produkt / Skalarprodukt

$$\mathbb{R} \qquad \qquad <\vec{a}, \vec{b}> = \sum_{i=1}^{n} = a_i b_i$$

$$\mathbb{C}$$
 $\langle \vec{a}, \vec{b} \rangle = \sum_{i=1}^{n} = a_i b_i$

 $\langle \vec{a}, \vec{b} \rangle > 0$

a = 0 oder b = 0
$$\rightarrow$$
 $<\vec{a}, \vec{b}>$ = 0

Symmetrie:
$$<\vec{a},\vec{b}>=<\vec{b},\vec{a}>$$
 für $\mathbb R$

$$<\vec{a},\vec{b}>=<\overline{\vec{b},\vec{a}}>$$
 für $\mathbb C$

Linearität:
$$<\vec{a}, \vec{kb} + h\vec{c}> = k < \vec{a}, \vec{b}> + h < \vec{a}, \vec{c}$$

Normalisierung:
$$\langle \vec{a}, \vec{a} \rangle = ||\vec{a}||^2$$

Matrix
$$\mathbb{R}$$
 $\langle \vec{a}, A\vec{b} \rangle = \langle A^T \vec{a}, \vec{b} \rangle$

Matrix
$$\mathbb{C}$$
 $\langle \vec{a}, A\vec{b} \rangle = \langle \overline{A^T}\vec{a}, \vec{b} \rangle$

Orthogonalität:
$$\langle \vec{a}, \vec{b} \rangle = 0$$
 man schreibt $\vec{a} \perp \vec{b}$

Parallelität:
$$\vec{a} = k\vec{b} \text{ oder } \vec{b} = k\vec{a}$$

Winkel:
$$\langle \vec{a}, \vec{b} \rangle = ||\vec{a}|| ||\vec{b}|| \cos(\alpha)$$

$$cos(\alpha) = 0 \ \alpha = 90 \ für \ \vec{a} \perp \vec{b}$$

Pythagoras:
$$||\vec{a}||^2 + ||\vec{b}||^2 = ||\vec{a} + \vec{b}||^2 \text{ für } \vec{a} \perp \vec{b}$$

Zerlegung
$$ec{a} = ec{a}_{\perp} + ec{a}_{\parallel}$$

Einheitsvektor
$$\vec{a}$$

$$ec{a}_{\parallel} = ec{e}$$

$$\vec{a}_{\perp} = \vec{a} - \langle \vec{e}, \vec{a} \rangle \vec{e}$$

orthogonale Projektion
$$\vec{a}_{\parallel} = \vec{a}_{\vec{b}} = \frac{<\vec{a}, \vec{b}>}{||\vec{b}||^2} \vec{b}$$

Cauchy-Schwarz:
$$||\vec{a}||||\vec{b}|| \ge < \vec{a}, \vec{b} >$$

gleich wenn
$$\vec{a} \perp \vec{b}$$

Einheitsnormalvektor
$$ec{e} = rac{ec{u}}{||ec{u}||}$$

Normalvektor

$$\vec{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$
...Normalvektor, $a = (a_1, a_2)$...Punkt

$$n_1 x + n_2 y = c$$

 $c = a_1 n_1 + a_2 n_2$

Hsse'sche Normalform

Normalvektor zum Einheitsnormalvektor mit der Länge 1 gemacht wird, dann ist |c| der Anstand der Geraden vom Ursprung

Kreuzprodukt

Wenn \vec{a} und \vec{b} linear unabhaengig (nicht parallel) < $(\vec{a} \times \vec{b})$, $\vec{a} >= 0$ bzw. $(\vec{a} \times \vec{b}) \perp \vec{b}$ Wenn linear abhängig (parallel)

$$\vec{a} = k\vec{b}$$
 oder $\vec{b} = k\vec{a}$ $\vec{a} \times \vec{b} = 0$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Regeln für $ec{a}, ec{b} \in \mathbb{R}^3$ und $k,h \in \mathbb{R}$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$(k\vec{a}) \times \vec{b} = k(\vec{a} \times \vec{b})$$

$$(k\vec{a} + h\vec{b}) \times \vec{c} = k(\vec{a} \times \vec{c}) + h(\vec{b} \times \vec{c})$$

$$\vec{a} \times (k\vec{b} + h\vec{c}) = k(\vec{a} \times \vec{b}) + h(\vec{a} \times \vec{c})$$

$$||\vec{a} \times \vec{b}|| = ||\vec{a}||||\vec{b}|| \sin(\alpha)$$

wobei α der Winkel zwischen \vec{a} und \vec{b} ist

Orthonormalsystem

Orthogonalbasis

wenn \vec{u}_i linear unabhängig und $\vec{u}_i \perp \vec{u}_i$ für $i \neq j$

Orthonormalbasis

$$||\vec{u}_i|| = 1$$
 für $i = 1, 2, ..., n$

$$\vec{a} = \sum_{i=1}^n < \vec{a}, \vec{u}_i > \vec{u}_i$$

Orthogonale Transformationen

Matrix

Determinante

Regel von Sarrus

$$det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} =$$

$$= aei + bfg + cdh - ceg - bdi - afh \\$$

Matrix transformieren

$$A^{-1} = \frac{1}{\det(A)} \begin{vmatrix} a_{11} & a_{12} & . & a_{1n} \\ a_{21} & a_{22} & . & a_{2n} \\ . & . & . \\ a_{n1} & a_{n2} & . & a_{nn} \end{vmatrix}$$

Transponierte

$$A_{ij}^T = A_{ji}$$

symmetrisch - an der Hauptachse gespiegelt

$$A^{T} = A$$
$$(A^{T})^{T} = A$$

Orthogonale Matrix

Wenn Aeine quadratische Matrix ist, dann ist Aorthogonal, wenn $\boldsymbol{A}^T = \boldsymbol{A}^{-1}$

Rotationsmatrix im Uhrzeigersinn/gegen Uhrzeigersinn \mathbb{R}^2 im \mathbb{R}^3

$$\begin{split} R_x(\alpha) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \pm \sin(\alpha) \\ 0 & \mp \sin(\alpha) & \cos(\alpha) \end{pmatrix} \\ R_y(\alpha) &= \begin{pmatrix} \cos(\alpha) & 0 & \pm \sin(\alpha) \\ 0 & 1 & 0 \\ \mp \sin(\alpha) & 0 & \cos(\alpha) \end{pmatrix} \\ R_z(\alpha) &= \begin{pmatrix} \cos(\alpha) & \mp \sin(\alpha) & 0 \\ \pm \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Eigenwerte und Eigenvektoren Charakteristisches Polynom

$$\begin{split} \chi_A(\lambda) &= \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0 \\ \chi_A(\lambda) &= \pm (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) \end{split}$$

n...allgebraische Vielfachheit, + bei
n gerade, - bei n ungerade

Diagonalisierbarkeit

Wenn $\chi_A(\lambda) = 0$ dann ist A diagonalisierbar

Lineare Abbildungen von Matritzen

m x n - Matrix -
į m Zeilen n Spalten V,W... Vektorräume über $\mathbb R$ b
zw. $\mathbb C$ F:V \to W heißt linear, wenn

$$f(a\vec{v} + b\vec{u}) = af\vec{v} + bf(\vec{u}), \forall \vec{v}, \vec{u} \in V, \forall a, b \in \mathbb{R}$$

 $F:\mathbb{R}^n \to \mathbb{R}^m$ kann dargestellt werden in der Form:

$$f(\vec{x}) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$f(\vec{x}) = A\vec{x}$$

jede Abbildungen $\vec{x} \to A\vec{x}$ heißt lineare Abbildung

Einheitsmatrix

$$1 = E = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
$$1A = A1 = A$$
$$AA^{-1} = A^{-1}A = 1$$

Quadratische Gleichungen

$$ax^{2} + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{1,2} = -\frac{p}{2} \pm \frac{q}{2}$$

Hesse Matrix

Felix Erlacher, http://erlacher.org/

