CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 21 MAGGIO 2018

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di dominio di integrità e di campo. Inoltre,

- (i) Determinare gli interi n compresi tra 7 e 10 (inclusi) per i quali gli elementi invertibili dell'anello \mathbb{Z}_n siano esattamente 6.
- (ii) Per ciascuno degli anelli \mathbb{Z}_n così individuati, si specifichi la struttura di \mathbb{Z}_n (se è un campo e se è un dominio di integrità), e si dica se $\mathbb{Z}_n \setminus \{\bar{0}\}$ è chiuso rispetto a + e/o rispetto a ·.
- (iii) Dire poi in quali di questi anelli la classe $[3]_n$ è invertibile e determinarne la classe inversa, facendo uso di un'opportuna equazione congruenziale.

Esercizio 2. Sia $A = \{1, 2, 3, 4, 5, 6, 7\}$ e sia F l'insieme delle applicazioni $f: A \to A$ tali che $f(1) = f(2) \neq f(3)$.

- (i) Scrivere (senza calcolare) |F|;
- (ii) Quante delle applicazioni appartenenti ad F sono iniettive? E quante suriettive?

Esercizio 3. Siano $A = \{n \in \mathbb{N} \mid n < 100\} \text{ e } f : n \in A \mapsto \operatorname{rest}(n^2, 5) \in \{0, 1, 2, 3, 4\}.$

- (i) Vero o falso?:
 - (a) per ogni $n \in \mathbb{Z}$, $\operatorname{rest}(n^2, 5) = (\operatorname{rest}(n, 5))^2$;
 - (b) per ogni $n \in \mathbb{Z}$, $[\text{rest}(n^2, 5)]_5 = ([\text{rest}(n, 5)]_5)^2$.
- (ii) f è iniettiva? f è suriettiva?
- (iii) Detto \sim il nucleo di equivalenza di f, si calcolino $|A/\sim|$ e $|[12]_{\sim}|$.

Esercizio 4. In $S = \mathbb{Z}_{15} \times \mathbb{Z}_{15}$ si definisca l'operazione binaria * ponendo, per ogni $(a, b), (c, d) \in S$, (a, b) * (c, d) = (acd, bd).

- (i) Decidere se * è commutativa e se è associativa, se ammette elementi neutri destra, a sinistra, neutri e, nel caso in cui la domanda abbia senso, quali elementi di S sono simmetrizzabili rispetto a *.
- (ii) Posto $X = \{\bar{0}, \bar{1}, \bar{6}\} \subseteq \mathbb{Z}_{15}$, dopo aver verificato che ogni elemento di X è idempotente in (\mathbb{Z}_{15}, \cdot) , decidere se $T := \mathbb{Z}_{15} \times X$ è una parte chiusa in (S, *). Nel caso lo sia, rispondere per (T, *) alle stesse domande poste sopra per (S, *) e dire che tipo di struttura è (T, *).

Esercizio 5. Sia σ la relazione binaria definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \sigma b \iff ((a|b \land 2a < b) \lor a = b).$$

 σ è una relazione d'ordine? Se lo è rispondere alle domande che seguono.

- (i) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (\mathbb{N}, σ) . (\mathbb{N}, σ) è un reticolo? Nel caso, decidere se è complementato, distributivo, booleano.
- (ii) Posto $X = \{2^n \mid n \in \{0, 2, 3, 4, 5, 7\}\}$, si disegni il diagramma di Hasse di (X, σ) . (X, σ) è un reticolo? Nel caso, decidere se è complementato, distributivo, booleano.

Esercizio 6. In $\mathbb{Z}_{13}[x]$ si considerino i polinomi $f = \bar{3}x^5 + x^4 + \bar{8}x^3 + \bar{6}, \ g = x^3 + \bar{6}x + \bar{6}$ e $d = x^2 + x + \bar{7}$.

(i) Determinare l'associato monico di f.

Sapendo che d divide in $\mathbb{Z}_{13}[x]$ sia f che g,

- (ii) è vero che ogni radice di d è radice sia di f che di g?
- (iii) Decomporre g in prodotto di polinomi irriducibili.