Kapitel 4

Nichtsinguläre Kurven

Sei k algebraisch abgeschlossener Körper. C sei irreduzible projektive Varietät der Dimension 1 über k.

C nicht singulär \Leftrightarrow jedes $x \in C$ nichtsingulär $\Leftrightarrow \mathcal{O}_{C,x}$ regulärer lokaler Ring für jedes $x \in C$

§ 20 Diskrete Bewertungsringe

Proposition 20.1

Sei (R, m) ein nullteilerfreier lokaler noetherscher Ring der Dimension 1. Dann sind äquivalent:

- i) R ist regulär (das heißt $\dim_k(m/m^2) = 1, k = R/m$)
- ii) m ist Hauptideal
- iii) Es gibt $t \in m$, sodass jedes $x \in R \{0\}$ eine eindeutige Darstellung $x = u \cdot t^n$ hat mit $n \in \mathbb{N}, u \in R^{\times}$
- iv) R ist Hauptidealring

Beweis

- (i)⇒(ii): ✓
- (ii)⇒(iii): ✓
- (iii) \Rightarrow (iv): Sei (0) $\neq I \subset R$ Ideal, n minimal, sodass es ein $x = u \cdot t^n \in I$ gibt.

$$\Rightarrow t^n \in I \Rightarrow m^n \subseteq I$$

$$I \subseteq m^n \text{ nach Wahl von } n$$
 \rightarrow I = m^n = (t^n)

(iv) \Rightarrow (i): R Hauptidealring $\Rightarrow m=(t)$ für ein $t\in m. \Rightarrow m/m^2$ wird von \bar{t} erzeugt $\Rightarrow \dim_k(m/m^2) \leq 1$.

Andererseits: $\dim(m/m^2) \ge \dim R = 1$

Bemerkung 20.2

Sei (R, m) regulärer lokaler Ring der Dimension 1, K = Quot(R). Dann gilt:

- a) Jedes $x \in K^{\times}$ hat eindeutige Darstellung $x = ut^n$ mit $u \in R^{\times}, n \in \mathbb{Z}$
- b) Die Abbildung $v: K^{\times} \to \mathbb{Z}, ut^n \mapsto n$ erfüllt:
 - i) $v(x \cdot y) = v(x) + v(y)$
 - ii) $v(x+y) \ge \min(v(x), v(y))$ für $x+y \ne 0$

Definition + Bemerkung 20.3

Sei K ein Körper

- a) Eine surjektive Abbildung $v: K^{\times} \to \mathbb{Z}$ mit i) und ii) heißt **diskrete Bewertung** auf K.
- b) Ist v diskrete Bewertung auf K, so ist $\mathcal{O}_v := \{x \in K : x = 0 \text{ oder } v(x) \geq 0\}$ lokaler Ring mit maximalem Ideal $m_v = \{x \in K : x = 0 \text{ oder } v(x) > 0\}$.
- c) Ein nullteilerfreier Ring R heißt **diskreter Bewertungsring**, wenn es eine diskrete Bewertung v auf $K := \operatorname{Quot}(R)$ gibt mit $R = \mathcal{O}_v$.
- d) Jeder reguläre lokale Ring der Dimension 1 ist diskreter Bewertungsring.

Beweis

b)
$$\mathcal{O}_v \ Ring: \ v(x) = v(1 \cdot x) = v(1) + v(x) \Rightarrow v(1) = 0$$

$$0 = v(1) = v((-1) \cdot (-1)) = v(-1) + v(-1)$$

$$\Rightarrow v(-x) = v(x) \forall x \in K \Rightarrow \mathcal{O}_v \text{ ist Ring}$$

$$\mathcal{O}_v \ lokal: \ \text{Sei} \ x \in \mathcal{O}_v - m_v, \ \text{also} \ v(x) = 0$$

$$\Rightarrow v(x) + v(\frac{1}{x}) = v(x \cdot \frac{1}{x}) = v(1) = 0$$

$$\Rightarrow v(\frac{1}{x}) = -v(x) = 0 \Rightarrow \frac{1}{x} \in \mathcal{O}_v \Rightarrow x \in \mathcal{O}_v$$

d) folgt aus 20.2

Proposition 20.4

Jeder diskrete Bewertungsring ist regulärer Ring der Dimension 1.

Beweis

Es genügt zu zeigen, dass m_v Hauptideal ist (wegen 20.1!!). Sei dazu $t \in m_v$ mit v(t) = 1. Sei $x \in m_v \setminus \{0\}, \ y := \frac{x}{t^{v(x)}} \in K^{\times}$.

$$v(y) = v(x) - v(t^{v(x)}) = 0 \Rightarrow y \in \mathcal{O}_v^{\times}$$

$$\Rightarrow x = y \cdot t^{v(x)} \in (t)$$

Beispiel

- 1) Sei k ein Körper, $a \in k$. Für $f \in k(X)^{\times}$ sei $\operatorname{ord}_{a}(f)$ die Null-, beziehungsweise Polstellenordnung von f in a. Das heißt für $f \in k[X]$ ist $\operatorname{ord}_{a}(f) = n$, wenn $f = (X - a)^{n} \cdot g$ mit $g(a) \neq 0$. Für $f = \frac{g}{h}, g, h \in k[X] \setminus \{0\}$, ist $\operatorname{ord}_{a}(f) = \operatorname{ord}_{a}(g) - \operatorname{ord}_{a}(h)$. $\Rightarrow \operatorname{ord}_{a} : k(X)^{\times} \to \mathbb{Z}$ ist diskrete Bewertung. Der zugehörige Bewertungsring ist $k[X]_{(X-a)} = \mathcal{O}_{\mathbb{A}^{1}(k),a}$
- 2) Für $f = \frac{g}{h} \in k(X)^{\times}$, $g, h \in k[X] \setminus \{0\}$, sei $\operatorname{ord}(f) := \operatorname{deg}(h) \operatorname{deg}(g)$. ord ist diskrete Bewertung auf k(X): $\operatorname{ord}(\frac{g_1}{h_1} + \frac{g_2}{h_2}) = \operatorname{ord}(\frac{g_1h_2 + g_2h_1}{h_1h_2}) = \operatorname{deg}(h_1) + \operatorname{deg}(h_2) - \operatorname{deg}(g_1h_2 + g_2h_1)$ $\geq \min(\operatorname{deg}(h_1) + \operatorname{deg}(h_2) - \operatorname{deg}(g_1h_2), \operatorname{deg}(h_1) + \operatorname{deg}(h_2) - \operatorname{deg}(g_2h_1)) = \min(\operatorname{ord}(\frac{g_1}{h_1}), \operatorname{ord}(\frac{g_2}{h_2}))$ Anmerkung: ord "=" ord_∞ wie in Beispiel 1.

Bemerkung 20.5

Ist k algebraisch abgeschlossen, so ist jede diskrete Bewertung auf k(X) von der Form ord_a für ein $a \in k \cup \{\infty\}$.

Beweis

Übung oder Vorlesung

Beispiel

3) $K = \mathbb{Q}, p \in \mathbb{Z}$ Primzahl. Schreibe $a \in \mathbb{Q}^{\times}$ in der Form $a = p^n \cdot \frac{b}{c}, b, c \in \mathbb{Z} \setminus \{0\}, p \nmid bc$. Setze $v_p(a) := n$.

 $v_p:\mathbb{Q}^\times\to\mathbb{Z}$ ist diskrete Bewertung ("p-adische Bewertung").

$$\mathcal{O}_{v_p} = \mathbb{Z}_{(p)} = \{ \frac{a}{b} \in \mathbb{Q} \mid p \nmid b \}$$

Bemerkung 20.6

Sei $v: K^{\times} \to \mathbb{Z}$ diskrete Bewertung auf Körper K. Sei $0 < \varrho < 1$. Setzte:

$$|x|_v := \begin{cases} \varrho^{v(x)} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Dann erfüllt $|\cdot|_v:K\to\mathbb{R}$:

- $|xy|_v = \varrho^{v(xy)} = \varrho^{v(x)+v(y)} = \varrho^{v(x)} \cdot \varrho^{v(y)} = |x|_v \cdot |y|_v$
- $|x+y|_v = \varrho^{v(x+y)} \le \max(\varrho^{v(x)}, \varrho^{v(y)}) \le \max(|x|_v, |y|_v) \ (\le |x|_v + |y|_v)$

Definition 20.7

Sei C nichtsinguläre Kurve, $P \in C$. Dann ist $\mathcal{O}_{C,P}$ diskreter Bewertungsring. Die zugehörige diskrete Bewertung auf $k(C) = \operatorname{Quot}(\mathcal{O}_{C,P})$ heißt ord $_P$. ord $_P$ heißt die **Ordnung** von f in P.

Bemerkung 20.8

Sie C nichtsinguläre Kurve, $f \in k(C)^{\times}$. Dann gibt es nur endlich viele $P \in C$ mit $\operatorname{ord}_{P}(f) \neq 0$.

Beweis

Es ist
$$\operatorname{ord}_P(f) > 0 \Leftrightarrow f \in m_P \Leftrightarrow f(P) = 0$$

$$\operatorname{ord}_P(f) < 0 \Leftrightarrow \frac{1}{f} \in m_P \Leftrightarrow \frac{1}{f}(P) = 0$$

$$\Rightarrow \{P \in C : \operatorname{ord}_P(f) \neq 0\} = V(f) \cup V(\frac{1}{f})$$

V(f) und $V(\frac{1}{f})$ sind echte abgeschlossene Teilmengen von C.

$$\dim C = 1 \Rightarrow V(f), V(\frac{1}{f}) \text{ sind endlich.}$$

Proposition 20.9

Sei C nichtsinguläre Kurve, $\emptyset \neq U \subseteq C$ offen, V projektive Varietät, $f: U \to V$ Morphismus. Dann gibt es genau einen Morphismus $\overline{f}: C \to V$ mit $\overline{f}|_U = f$.

Beweis

Eindeutigkeit: Seien $g, h: C \to V$ Morphismen mit $g|_U = h|_U = f$.

$$\{x \in C : g(x) = h(x)\}$$
 ist abgeschlossen.

$$\Rightarrow g|_{\overline{U}}=h|_{\overline{U}}.$$
 Da $\overline{U}=C,$ folgt $g=h.$

Existenz: Œ $U = C \setminus \{P\}$ für ein $P \in C$. Sei $V \subseteq \mathbb{P}^n(k)$, also Œ $V = \mathbb{P}^n(k)$.

Œ
$$f(U) \not\subset V(X_i)$$
 für ein $i \in \{0, ..., n\}$ (sonst $V = \mathbb{P}^{n-1}(k)$).

$$\Rightarrow W := f^{-1}(\bigcap_{i=0}^n U_i) \neq \emptyset$$

 $\Rightarrow W$ ist dicht in U.

Sei
$$h_{ij} := \frac{X_i}{X_j} \circ f$$
, $i, j = 0, \dots, n$

 h_{ij} ist reguläre Funktion auf W und damit Element von $k(C)^{\times}$.

Sei
$$r_i := \text{ord}_P(h_{i0}), i = 0, \dots, n$$

Sei k so gewählt, dass $r_k \leq r_j$ für alle $j \neq k$

$$\Rightarrow \operatorname{ord}_{P}(h_{ik}) = \operatorname{ord}_{P}(\frac{h_{i0}}{h_{k0}}) = r_{i} - r_{k} \ge 0 \ \forall \ i$$

$$\Rightarrow h_{ik} \in \mathcal{O}_{C,P}, i = 0, \dots, n$$

 $\Rightarrow \exists$ Umgebung \tilde{U} von P in C, sodass $h_{ik} \in \mathcal{O}_{C,P}(\tilde{U}), i = 0, \ldots, n$.

Setze
$$\overline{f}(x) = \begin{cases} f(x) & : x \neq P \\ \underbrace{(h_{0k}(x) : \dots : h_{nk}(x))}_{\in \mathbb{P}^n(k), \text{ da } h_{kk} = 1} & : x = P \end{cases}$$

Für $x \in \overline{U} \setminus \{P\}$ gilt:

$$\overline{f}(x) = f(x) = \left(\left(\frac{X_0}{X_k} \circ f \right)(x) : \left(\frac{X_1}{X_k} \circ f \right)(x) : \dots : \left(\frac{X_n}{X_k} \circ f \right)(x) \right)$$
$$= (h_{0k}(x) : \dots : h_{nk}(x))$$

 $\Rightarrow \overline{f}$ ist Morphismus.

§ 21 Divisoren

Sei C nichtsinguläre Kurve (also projektiv, irreduzibel, über algebraisch abgeschlossenem k).

Definition 21.1

- a) Ein **Divisor** auf C ist eine formale Summe $D = \sum_{i=1}^{n} n_i P_i$ mit $n \in \mathbb{N}$, $n_i \in \mathbb{Z}$, $P_i \in C$.
- b) $\operatorname{Div}(C) = \{D = \sum_{i=1}^{n} n_i P_i \mid D \text{ ist Divisor auf } C\}$ mit der formalen Addition heißt **Divisorengruppe** von C.
- c) Für $D = \sum_{i=1}^{n} n_i P_i$ heißt $\deg(D) := \sum_{i=1}^{n} n_i \operatorname{der} \operatorname{\mathbf{Grad}} \operatorname{von} D$.
- d) $D = \sum_{i=1}^{n} n_i P_i$ heißt **effektiv**, wenn alle $n_i \geq 0$ sind.

Definition + Bemerkung 21.2

Schreibweise: $D \ge 0$

- a) Für $f \in k(C)^{\times}$ heißt $\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_{P}(f)_{P}$ der **Divisor von f**
- b) $\operatorname{div}(f)$ ist Divisor (wegen Bemerkung 20.8)
- c) $D \in \text{Div}(C)$ heißt **Hauptdivisor**, wenn es ein $f \in k(C)^{\times}$ gibt mit D = div(f).
- d) div : $k(C)^{\times} \to \text{Div}(C)$, $f \mapsto \text{div}(f)$ ist Gruppenhomomorphismus. Bild(div) = $\text{Div}_H(C)$ sind die Hauptdivisoren.
- e) $Cl(C) := Div(C)/Div_H(C)$ heißt **Divisorenklassengruppe** von C.
- f) $D, D' \in \text{Div}(C)$ heißen \pmb{linear} $\pmb{\ddot{a}quivalent}$, wenn D-D' Hauptdivisor ist. Schreibweise: $D \equiv D'$

Beispiel 21.3

$$C=\mathbb{P}^1(k)$$

Jedes $f \in k(C)^{\times} = k(X)^{\times}$ lässt sich eindeutig schreiben in der Form $f = \frac{\prod\limits_{i=1}^{n}(X-a_i)}{\prod\limits_{i=1}^{m}(X-b_j)}$ mit $a_i \neq b_j$

für alle $i, j \ (a_i, b_j \in k)$.

Dann ist $\operatorname{ord}_a(f) = \#\{i: a_i = a\} - \#\{j: b_j = a\}$ für $a \in k$

$$\operatorname{ord}_{\infty}(f) = m - n$$

$$\Rightarrow \operatorname{div}(f) = \sum_{i=1}^{n} a_i - \sum_{j=1}^{m} b_j + (m-n) \cdot \infty \Rightarrow \operatorname{deg}(\operatorname{div}(f)) = 0$$

Umgekehrt : Sei $D \in \operatorname{Div}(\mathbb{P}^1(k)), \, \deg(D) = 0$

Schreibe
$$D = \sum_{i=1}^{n} P_i - \sum_{j=1}^{n} Q_j$$

Sei zum Beispiel $P_1 = \ldots = P_d = \infty, P_i \neq \infty$ für ein i > d

$$\Rightarrow \text{ für } f = \frac{\prod\limits_{i=d+1}^{n}(X-P_i)}{\prod\limits_{j=1}^{n}(X-Q_j)} \text{ gilt: } \operatorname{div}(f) = D \Rightarrow \operatorname{Cl}(\mathbb{P}^1(k)) \cong \mathbb{Z}, [D] \mapsto \operatorname{deg}(D)$$

Ziel

 $\deg(\operatorname{div}(f)) = 0 \text{ für jedes } f \in k(C)^\times$

Beobachtung

f induziert Morphismus $f: C \to \mathbb{P}^1(k)$ (Proposition 20.9)

Strategie

- i) $\operatorname{div}(f) = f^*((0) (\infty))$
- ii) $\deg(f^*(D)) = \deg(f) \deg(D)$

Definition + Bemerkung 21.4

Sei $f: C_1 \to C_2$ surjektiver Morphismus von nichtsingulären Kurven C_1, C_2 .

- a) Sei $Q \in C_2$, $P \in f^{-1}(Q)$, $t \in m_Q$ Uniformierende (das heißt $m_Q = (t)$). Dann heißt $e_P = e_P(f) := \operatorname{ord}_P(t \circ f)$ Verzweigungsordnung von f in P.
- b) Definiere Gruppenhomomorphismus

$$f^*: \operatorname{Div}(C_2) \to \operatorname{Div}(C_1)$$

durch
$$f^*(Q) = \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

c) Für $g \in k(C_2)^{\times}$ gilt:

$$f^*(\operatorname{div}(g)) = \operatorname{div}(g \circ f)$$

d) f^* induziert Gruppenhomomorphismus:

$$f^*: \mathrm{Cl}(C_2) \to \mathrm{Cl}(C_1)$$

Beweis

- a) $zu\ zeigen:\ e_P(f)$ hängt nicht von der Wahl von t ab. Ist t' weitere Uniformierende, so ist $t'=u\cdot t$ für ein $u\in\mathcal{O}_{C_2,Q}^{\times}$ $\Rightarrow \operatorname{ord}_P(t'\circ f)=\operatorname{ord}_P(u\cdot t\circ f)=\operatorname{ord}_P((u\circ f)\cdot (t\circ f))=\underbrace{\operatorname{ord}_P(u\circ f)}_{=0}+\operatorname{ord}_P(t\circ f)$
- b) zu zeigen: $\#\{D \in C_1 : f(P) = Q\}$ ist endlich. Denn $\underbrace{f^{-1}(\{Q\})}_{\neq C_1, \text{ da } f \text{ surj.}}$ ist abgeschlossen $\Rightarrow f^{-1}(\{Q\})$ endlich
- c) Es ist

$$f^*(\operatorname{div} g) = \sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot f^*Q = \sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

und

$$\operatorname{div}(g \circ f) = \sum_{P \in G} \operatorname{ord}_P(g \circ f) P = \sum_{Q \in C_2} \sum_{P \in f^{-1}(Q)} \operatorname{ord}_P(g \circ f) \cdot P$$

Zu zeigen ist also:

$$\underbrace{\operatorname{ord}_{P}(g \circ f)}_{=:s} = \underbrace{\operatorname{ord}_{Q}(g)}_{=:r} \cdot e_{P}(f) \text{ für alle } P \in C_{1}$$

Seien t_P und t_Q Uniformisierende in P beziehungsweise Q = f(P). Dann gibt es Einheiten $u, u' \in \mathcal{O}_{C_1,P}$ und $v \in \mathcal{O}_{C_2,Q}$ mit $g \circ f = u \cdot t_P^s$, $g = v \cdot t_Q^r$, $t_Q \circ f = u' t_P^{e_P(f)}$

$$\Rightarrow u \cdot t_P^s = g \circ f = (v \cdot t_Q^r) \circ f = (v \circ f) \cdot (t_Q \circ f)^r = \underbrace{(v \circ f)}_{\in \mathcal{O}_{C_1,P}} \cdot u'^r t_P^{r \cdot e_P(f)} \Rightarrow s = r \cdot e_P(f)$$

d) folgt aus b)
$$\Box$$

Folgerung 21.5

Sei C nichtsinguläre Kurve, $f \in k(C)^{\times}$. Dann definiert f einen Morphismus $f: C \to \mathbb{P}^{1}(k)$ und es gilt:

$$\operatorname{div}(f) = f^*((0) - (\infty))$$

Beweis

Der erste Teil folgt aus 20.9. Für P mit f(P) = 0 ist $e_P(f) = \operatorname{ord}_P(X \circ f) = \operatorname{ord}_P(f)$; ist $f(P) = \infty$, so ist $\frac{1}{f}(P) = 0$ und $\operatorname{ord}_P(f) = -\operatorname{ord}_P(\frac{1}{f})$.

Bemerkung + Definition 21.6

Sei $f: C_1 \to C_2$ surjektiver Morphismus nichtsingulärerer Kurven. Dann induziert f Körperhomomorphismus $f^{\#}: k(C_2) \to k(C_1)$. $f^{\#}$ macht $k(C_1)$ zu einer endlichen Körpererweiterung von $k(C_2)$.

 $\deg(f) := [k(C_1) : k(C_2)]$ heißt **Grad** von f.

Beweis

Die Existens von $f^{\#}$ steht in 13.7. Da dim $C_1 = \dim C_2 = 1$, ist $\operatorname{trdeg}(k(C_1)) = \operatorname{trdeg}(k(C_2)) = 1$ (Folgerung 19.8), also $k(C_1)|k(C_2)$ algebraisch. Außerdem ist $k(C_1)|k(C_2)$ endlich erzeugt, weil $k(C_1)$ schon über k endlich erzeugt ist.

Satz 11

- a) Sei C eine nichtsinguläre Kurve. Dann hat jeder Hauptdivisor auf C Grad 0.
- b) Sei $f:C_1\to C_2$ surjektiver Morphismus von nichtsingulären Kurven. Dann gilt für jeden Divisor D auf C_2 :

$$\deg(f^*(D)) = \deg(f) \cdot \deg D$$

c) Sei f wie in b). Dann gilt für jedes $Q \in C_2$:

$$\deg(f^*(Q)) = \sum_{P \in f^{-1}(Q)} e_P = \deg f =: n$$

Beweis

- b) folgt offensichtlich aus c).
- a) folgt aus b) mit 21.5.
- c) Beweis nur im folgenden affinen Beispiel (die Aussage ist lokal, daher ist affines Beispiel sinnvoll): $\hfill\Box$

Beispiel

 $C_2 = \mathbb{A}^1(k), C_1 = V(h) \subset \mathbb{A}^2(k), h(X,Y) = Y^n + a_{n-1}(X)Y^{n-1} + \ldots + a_1(X)Y + a_0(X) \in k[X,Y]$ irreduzibel, $f: C_2 \to C_1, (x,y) \mapsto x$

Es ist $k(C_1) = k(X)[Y]/(h)$ und $f^{\#}: k(X) \hookrightarrow k(X)[Y]/(h)$ die natürliche Einbettung.

Also: deg(f) = n

Für $x_0 \in k = \mathbb{A}^1(k)$ ist $f^{-1}(x_0) = \{(x_0, y) \in k^2 : h(x_0, y) = 0\}.$

 $h(x_0, y) = 0$ ist ein Polynom vom Grad n in y mit Koeffizienten in k, hat also, mit Vielfachkeit gezählt, n Nullstellen. Zu zeigen ist also:

Behauptung: Ist $y_0 \in k$ e-fache Nullstelle von $h(x_0, y)$, so gilt für den Punkt $P = (x_0, y_0) \in C_1$:

$$e_P(f) = e$$

```
Beweis: \times (x_0, y_0) = (0, 0)
         Dann ist h(0,y) = y^e \cdot \tilde{g}(y) (*) mit \tilde{g}(0) \neq 0 (e \geq 1)
        Es ist \tilde{g}(y) = g(0, y), wobei g(x, y) = y^{n-e} + a_{n-1}(x)y^{n-e-1} + \dots + a_{e+1}(x)y + a_e(x)
        Aus \tilde{g}(0) \neq 0 folgt g(0,0) \neq 0, also g \in \mathcal{O}_{C_1,P}^{\times}
        Weiter folgt aus (*): a_0(0) = \ldots = a_{e-1}(0) = 0
         \Rightarrow a_i(x) = x \cdot \tilde{a}_i(x), i = 0, \dots, e - 1 \ (\tilde{a}_i \in k[X])
        \Rightarrow 0 = h(x,y) = y^e g(x,y) + x \cdot b(x,y) (**) mit b(x,y) = \tilde{a}_{e-1}(x)y^{e-1} + \ldots + \tilde{a}_1(x)y + \tilde{a}_0(x)
        Gesucht ist e_P(f) = \operatorname{ord}_P(t \circ f) = \operatorname{ord}_P(f^{\#}(t)) für einen Erzeuger von m_{C_2, f(t)}.
        Da C_2 = \mathbb{A}^1(k) und f(P) = 0, ist t = x eine mögliche Wahl \Rightarrow e_P(f) = \operatorname{ord}_P(x)
        Dazu muss x in der Form u \cdot s^d geschrieben werden für einen Erzeuger s von m_{C_1,P} und
         ein u \in \mathcal{O}_{C_1,P}.
         1. Fall: e = 1
                 Dann folgt aus (**): y = -x \cdot b(x, y) \cdot g(x, y)^{-1} \in (x)
                 \Rightarrow x \text{ erzeugt } m_P \Rightarrow \text{ord}_P(x) = 1 = e
         2. Fall: e > 1
                Behauptung: In diesem Fan ist a_{0}(\circ)_{7} \circ
Dann ist b(0,0) \neq 0, also b \in \mathcal{O}_{C_{1},P}^{\times} und damit x = y^{e} \cdot \underbrace{g \cdot b^{-1}}_{=u \in \mathcal{O}_{C_{1},P}^{\times}}
                 \Rightarrow m_P wird von y erzeugt und \operatorname{ord}_P(x) = e.
```

hier fehlen ein paar Sachen (sicher?)

§ 22 Der Satz von Riemann-Roch

Sei weiterhin C nichtsinguläre Kurve.

Definition + Bemerkung 22.1

Sei
$$D = \sum_{P \in C} n_P \cdot P \in \text{Div}(C)$$

- a) $L(D) := \{ f \in k(C)^{\times} \mid D + \operatorname{div}(f) \geq 0 \} \cup \{ 0 \}$ ist k-Vektorraum, der **Riemann-Roch-Raum** zu D.
- b) $l(D) := \dim L(D)$
- c) L(0) = k
- d) Ist deg(D) < 0, so ist L(D) = 0
- e) Ist $D' \equiv D$ für ein $D' \in \text{Div}(C)$, so ist l(D') = l(D)

Beweis

- a) $\operatorname{div}(f) \ge -D \Leftrightarrow \operatorname{ord}_P(f) \ge -n_P \ \forall P$ $\operatorname{ord}_P(f+g) \ge \min\{\operatorname{ord}_P(f), \operatorname{ord}_P(g)\}$
- e) Sei $D' = D + \operatorname{div}(g)$ für ein $g \in k(C)^{\times}$. Dann ist $L(D') \to L(D)$; $f \mapsto f \cdot g$ ein Isomorphismus von k-Vektorräumen.

Denn:
$$D + \operatorname{div}(fg) = \underbrace{D + \operatorname{div}(g)}_{=D'} + \operatorname{div}(f) \ge 0$$

$$(h \cdot \frac{1}{q} \longleftrightarrow h)$$

Proposition 22.2

Sei $D \in \text{Div}(C)$

- a) $l(D+P) \le l(D)+1$
- b) $l(D) \le \deg(D) + 1$ (falls $\deg(D) \ge 1$)

Insbesondere ist L(D) endlich dimensionaler Vektorraum

Beweis

a) Es ist $L(D) \subseteq L(D+P)$. Ist $f \in L(D+P) - L(D)$, dann ist $\operatorname{ord}_P(f) = -(n_P+1)$. Ist $L(D+P) \neq L(D)$, so wähle $f \in L(D+P) - L(D)$.

Behauptung: L(D+P) wird erzeugt von L(D) und f.

Denn: Sei
$$g \in L(D+P) - L(D)$$

 $\Rightarrow \operatorname{ord}_{P}(g) = -n_{P} - 1$
 $\Rightarrow f = ut^{-n_{P}-1}, g = u't^{-n_{P}-1} \text{ für ein } t \in m_{P} \text{ mit } m_{P} = (t) \ (u, u' \in \mathcal{O}_{P}^{\times})$
Sei $h := u(P)g - u'(P)f \in L(D+P)$
 $= (u(P) \cdot u' - u'(P) \cdot u)t^{-n_{P}-1}$
 $\Rightarrow \operatorname{ord}_{P}(h) \geq -(n_{P}+1) + 1 \Rightarrow h \in L(D)$
 $\Rightarrow g = \frac{1}{u(P)} \cdot (h - u'(P)f) \in L(D) + (f)$

b) Induktion über $d = \deg(D)$

$$\begin{aligned} d &= -1 \colon \ L(D) = 0 \\ d &\geq 0 \colon \text{ Sei } P \in C, \, D' = D - P \\ &\stackrel{\text{I. V.}}{\Longrightarrow} l(D') \leq \deg(D') + 1 = d \\ &\stackrel{\text{a)}}{\Longrightarrow} l(D) = l(D' + P) \leq d + 1 \end{aligned}$$

Satz + Definition 12 (Riemann-Roch)

a) Es gibt ein $\gamma \in \mathbb{N}$, sodass für alle $D \in \text{Div}(C)$ gilt:

$$l(D) \ge \deg(D) + 1 - \gamma$$

- b) Das kleinste γ , für das a) erfüllt ist, heißt **Geschlecht** von C (g(C) = g).
- c) Es gibt einen Divisor $K \in \text{Div}(C)$ ("kanonischer Divisor"), sodass für jedes $D \in \text{Div}(C)$ gilt:

$$l(D) - l(K - D) = \deg(D) + 1 - g$$

Dabei ist $K = \operatorname{div} \omega$ für ein (beliebiges) Differential $\omega \in \Omega(C)$. Zum Beispiel $\omega = \operatorname{d} f$ für ein $f \in k(C)^{\times}$; $\operatorname{ord}_{P}(\omega) = \operatorname{ord}_{P}(\frac{\operatorname{d} f}{\operatorname{d} t_{P}})$, t_{P} Uniformisierende in P.

Beispiel

1) $C = \mathbb{P}^1(k)$, $\omega = dx$, $\operatorname{div} \omega = ?$

Für $a \in k$ ist $t_a := x - a$ Uniformisierende, $\frac{d x}{d(x-a)} = 1$

In ∞ ist $\frac{1}{x}$ Uniformisierende.

$$\frac{\mathrm{d}x}{\mathrm{d}(\frac{1}{x})} = (-\frac{1}{x})^{-2} \Rightarrow \mathrm{ord}_{\infty}(\mathrm{d}x) = -2$$

 $\Rightarrow K = -2 \cdot \infty$ ist kanonischer Divisor auf $\mathbb{P}^1(k)$.

2)
$$C = \overline{V(Y^2 - X^3 + X)}$$
, $\omega = \frac{\mathrm{d}\,y}{x} \Rightarrow \mathrm{div}\,\omega = 0$ (Rechnung selber)

Folgerung 22.3

a) l(K) = g

(setze
$$D = 0$$
 in Satz 12 c) ein: $\underbrace{l(0)}_{=1} - l(K) = \underbrace{\deg 0}_{=0} + 1 - g$)

b) $\deg K = 2g - 2$

(setze
$$K$$
 in Satz 12 c) ein: $\underbrace{l(K)}_{=g} - \underbrace{l(0)}_{=1} = \deg K + 1 - g$)

Beweis (von Satz 12)

a) Setze $s(D) := \deg D + 1 - l(D)$

Es gilt:

- s(D) = s(D') falls $D' \equiv D$
- $\bullet \ D' \leq D \Rightarrow s(D') \leq s(D)$

Sei nun $f \in k(C)^{\times}$ und $N := f^*(0)$ der Nullstellendivisor.

Behauptung 1: Für jedes $D \in \text{Div}(C)$ gibt es D' mit $D' \equiv D$, sodass $D' \leq m \cdot N$ für ein $m \geq 1$.

Behauptung 2: Es gibt $\gamma \geq 0$ mit $s(m \cdot N) \leq \gamma \ \forall m \geq 1$.

Aus Behauptung 1 und Behauptung 2 folgt 12 a).

Beweis 1: Sei $D = \sum_{P \in C} n_P P$

Gesucht:
$$h \in k(C)^{\times}$$
 mit $n_P + \operatorname{ord}_P h \le \begin{cases} m \cdot \operatorname{ord}_P(f) &: \operatorname{ord}_P(f) > 0 \\ 0 &: \operatorname{ord}_P(f) \le 0 \end{cases}$

Ersetze dann D durch $D' = D + \operatorname{div}(h)$.

Seien $P_1, \ldots, P_r \in C$ die Punkte mit $\operatorname{ord}_P(f) \leq 0$ und $n_P > 0$.

$$h_i := \frac{1}{f} - \frac{1}{f}(P_i) \in m_{P_i}$$

$$h := \prod_{i=1}^{r} h_i^{-n_{P_i}}$$
 tut's

 $\begin{array}{ll} \textit{Beweis 2:} & [k(C):k(f)] = \deg(f) =: r \\ & \text{Sei } g_1, \ldots, g_r \text{ Vektorraum-Basis von } k(C) \text{ ""iber } k(f). \text{ OE jede Polstelle von } g_i \text{ ist auch Polstelle von } f. \Rightarrow \frac{g_i}{f^j} \in L(mN) \text{ mit } i = 1, \ldots, r, \ j = 0, \ldots, m \Rightarrow \ldots \Rightarrow \\ & l(mN) \geq mr - r(\gamma_0 - 1) \end{array}$