المعادلات التفاضلية

<u>I- تقدیم</u>

1- تؤدي دراسة بعض الظواهر الفيزيائية و البيولوجية و الاقتصادية و غيرها إلى معادلات يكون فيها

المجهول دالة وتحتوي على مشتقة أو مشتقات هذه الدالة.

هذا النوع من المعادلات يسمى المعادلات التفاضلية.

يرمز عادة إلى الدالة المجهولة بالرمز y (وقد يرمز لها بأي حرف آخر مثل u , z , f) حل المعادلة التفاضلية يعني إيجاد جميع الدوال y التي تحقق هده المعادلة , و مجموعة هده الدوال تسمى الحل العام للمعادلة ، كل عنصر من هده المجموعة يسمى حلا خاصا للمعادلة , كل حل يسمى كذلك تكاملا.

2- أمثلة

أ) y' = 0 هي معادلة تفاضلية

الدالة y المعرفة على \mathbb{R} ب \mathbb{R} حل خاص للمعادلة

. y'=0 مجموعة الدوال الثابتة على $\mathbb R$ هي الحل العام للمعادلة

ب) $y'(x)=x^2-1$ هي معادلة تفاضلية ذات المجهول y (يمكن أن نكتب $y'=x^2-1$). \mathbb{R} على $x \to x^2-1$ على الدوال الأصلية للدالة المعادلة هي الدوال الأصلية للدالة $x \to x^2-1$

 $x o rac{1}{3} x^2 - x + k$ إي الحل العام لهذه المعادلة هي مجموعة الدوال المعرفة على $\mathbb R$ بما يلي

. حيث k عدد حقيقي اعتباطي

<u>y′=ay+b حل المعادلة التفاضلية H</u>

<u>1/ المعادلة التفاضلية y´=ay</u>

 \mathbb{R} اذا كان a=0 فان y'=0 أي أن الحل العام هو مجموعة الدوال الثابتة على *

 $a \neq 0$ اذا کان *

y'+ay=0 نعلم أن $x o e^{ax}$ ادن $\forall x \in \mathbb{R}$ ادن $\forall x \in \mathbb{R}$ نعلم أن

 $y(x) = z(x)e^{ax}$ نضع y' + ay = 0 ليكن y حلا اعتباطيا للمعادلة

 $y'(x) = z'(x)e^{ax} + az(x)e^{ax}$ ومنه

 $y'(x) - ay(x) = z'(x)e^{ax} = 0$ و بالتالي $y'(x) = z'(x)e^{ax} + ay(x)$

و منه z'(x)=0 و بالتالي $z(x)=\lambda$ حيث λ عدد حقيقي اعتباطي

اذن $y(x) = \lambda e^{ax}$ حيث $x \in \mathbb{R}$ اذن

. قالحالة الحالة a=0 هي ضمن الحالة العامة .

<u>خاصية</u>

 $x \to \lambda e^{ax}$ ب ي المعادلة التفاضلية y' = ay تقبل ما لانهاية من الحلول و هي الدوال المعرفة على y' = ay حيث λ عدد حقيقي اعتباطي.

<u>ىتىجە</u>

$$x o y_0 e^{a(x-x_0)}$$
 يوجد حل وحيد للمعادلة $y'=ay$ يحقق الشرط $y(x_0)=y_0$ و هي الدالة

الشرط البدئي $y(x_0) = y_0$ الشرط البدئي

<u>أمثلة</u>

y' = 2y نحل المعادلة التفاضلية -1

حلول المعادلة التفاضلية y'=2y هي الدوال المعرفة على \mathbb{R} بـ حيث $x \to \lambda e^{2x}$ عدد حقيقي اعتباطى.

$$y(1) = 2$$
 ; $y' = \frac{1}{3}y$ نحل المعادلة التفاضلية -2

 ${\color{red} {\bf y'=ay+b}} {\color{red} {\bf y'=ay+b}}$ حل المعادلة التفاضلية هي الدوال $f\left(x\right)=bx+c$ ومنه حلول المعادلة التفاضلية هي الدوال a=0 فان a=0

$$y' = ay + b \Leftrightarrow y' = a\left(y + \frac{b}{a}\right)$$
 فان $a \neq 0$ اذا کان

$$z' = y'$$
 نضع $z = y + \frac{b}{a}$ نضع

$$y' = ay + b \Leftrightarrow z' = az$$

$$\Leftrightarrow z(x) = \lambda e^{ax} \quad /\lambda \in \mathbb{R}$$

$$\Leftrightarrow y(x) + \frac{b}{a} = \lambda e^{ax}$$
 $\lambda \in \mathbb{R}$ وبالتالي

$$\Leftrightarrow y(x) = \lambda e^{ax} - \frac{b}{a} \quad / \lambda \in \mathbb{R}$$

a
eq 0 لیکن a
eq a عددین حقیقین حیث a
eq a

 $x o \lambda e^{ax} - \frac{b}{a}$ ب \mathbb{R} على \mathbb{R} ب y' = ay + b المعادلة التفاضلية y' = ay + b

حیث λ عدد حقیقی اعتباطی.

$$x o \left(y_0 + \frac{b}{a}\right)e^{a(x-x_0)} - \frac{b}{a}$$
 وهي الدالة $y(x_0) = y_0$ يوجد حل وحيد للمعادلة $y' = ay + b$ يحقق الشرط

الشرط البدئي
$$y(x_0) = y_0$$
 يسمى الشرط البدئي

$$y' = -3y + 2$$
 نحل المعادلة التفاضلية

حلول المعادلة التفاضلية y'=-3y+2 هي الدوال المعرفة على $\mathbb R$ بـ حيث $x o \lambda e^{-3x}+rac{2}{3}$ عدد حقيقي اعتباطي.

III- حل المعادلات التفاضلية v"+av'+bv=0

تسمى معادلات تفاضلية خطية من الرتبة $\mathbf{y"+ay'+by=0}$ تسمى معادلات تفاضلية خطية من الرتبة \mathbf{v} الثانية ذات المعاملات الثابتة

<u>2- بعض الحالات الخاصة</u>

$$y'' = 0$$
 فان $a = b = 0$ *- اذا کان -*

$$y'' = 0 \Leftrightarrow \exists k \in \mathbb{R}$$
 $y'(x) = k \Leftrightarrow \exists (k; k') \in \mathbb{R}^2$ $y(x) = kx + k'$

 $\left(k;k'
ight)\in\mathbb{R}^2$ بحيث x o kx+k' الحل العام للمعادلة y" = 0 هي مجموعة الدوال

$$y$$
"+ ay ' = 0 فان b = 0 -*

$$z'+az=0$$
 ومنه $y''+ay'=0 \Leftrightarrow (y')'+ay'=0$

و بالتالي
$$\lambda$$
 عدد حقیقي اعتباطي $y'(x) = \lambda e^{-ax}$

 $x \to \lambda e^{-ax}$ اذن الحل العام للمعادلة y "+ ay ' = 0 اذن

$$(\lambda;\mu) \in \mathbb{R}^2$$
 $x \to \frac{-\lambda}{a} e^{-ax} + \mu$ أي الدوال

$$(a;b) \neq (0;0)$$
 ; $E:y"+ay'+by=0$ حل المعادلة التفاضلية -3

R

I المجال ین معرفتین علی نفس المجال g دالتین معرفتین علی نفس المجال ا

 $\exists k \in \mathbb{R} \quad \forall x \in I \quad g(x) = kf(x)$ تکون f و g متناسبتین ادا و فقط ادا کان

E حلين للمعادلة E حلين للمعادلة E حلين للمعادلة و ليكن $(\alpha; \beta) \in \mathbb{R}^2$ حل للمعادلة (b

<u>خاصية</u>

 $lpha y_1 + eta y_2$ اذا كان $y_1 \in \mathbb{R}^2$ و كان $y_1 \in \mathbb{R}^2$ فان $y_2 = 0$ فان $y_1 \in \mathbb{R}^2$ اذا كان $y_2 \in \mathbb{R}^2$ و كان $y_1 \in \mathbb{R}^2$ فان $y_2 \in \mathbb{R}^2$

<u>خاصية</u>

E: y"+ ay'+ by=0 كل حل للمعادلة التفاضلية by=0 كل حل للمعادلة التفاضلية by=0

E: y"+ ay'+ by=0 ملاحظة اليجاد حل العام للمعادلة التفاضلية اللهامية E: y"+ by=0

$$(a;b) \in \mathbb{R}^2$$
 ; $E: y'' + ay' + by = 0$ حل المعادلة التفاضلية (d

$$r \in \mathbb{R}$$
; $y: x \to e^{rx}$ لنبحث عن حلول من نوع

$$r^2 + ar + b = 0 \Leftrightarrow r^2 e^x + ar e^x + b e^x = 0 \Leftrightarrow E$$
 حل للمعادلة y

E خل للمعادلة $x \rightarrow e^{rx}$ فان الدالة $r^2 + ar + b = 0$ حل للمعادلة r

خاصية

 $(a;b)\in\mathbb{R}^2$; E:y"+ ay '+ by=0 المعادلة التفاضلية المعادلة المعادلة المعادلة هو a^2-4b عميز هذه المعادلة هو

 r_2 و r_1 تقبل حلين مختلفين r_1 و $r_2 + ar + b = 0$ الحالة $r_2 + ar + b = 0$ و

E حلان خاصان للمعادلة التفاضلية $x \to e^{r_2 x}$; $x \to e^{r_1 x}$ الدالتان

نلاحظ أن $x \to e^{r_2 x}$; $x \to e^{r_1 x}$ نلاحظ

اذن حلول المعادلة E هي الدوال عباطيان. $x o lpha e^{r_1 x} + eta e^{r_2 x}$ اذن حلول المعادلة المعادلة الدوال

. r عقبل حل مزدوج $r^2 + ar + b = 0$ فان $a^2 - 4b = 0$ تقبل حل مزدوج

. E حل للمعادلة $x \to xe^{rx}$ نبين أن . E الدالة $x \to e^{rx}$

الدالتان $x \to x \frac{e^{rx}}{e^{rx}}$ غير متناسبتين لأن $x \to x e^{rx}$ غير ثابتة.

اذن حلول المعادلة E هي الدوال $x o (lpha + eta x) e^{rx}$ اذن حلول المعادلة الدوال

 $\left(q \neq 0\right)$ $r_{2} = p - iq$ و $r_{1} = p + iq$ و قان $r_{2} = ar + b = 0$ فان $a^{2} - 4b < 0$ و $a^{2} - 4b < 0$ الحالة 3 اذا كان $a^{2} - 4b < 0$ فان $a^{2} - 4b < 0$ تقبل جذرين مترافقين $e^{r_{1}x} = e^{px}\left(\cos qx + i\sin qx\right) = e^{px}\cos qx + ie^{px}\sin qx$

.E حلين للمعادلة $x \to e^{px} \cos x$; $x \to e^{px} \sin x$ نبين أن الدالتين

$$\left(p=-rac{a}{2} \;\;;\;\; q=rac{\sqrt{4b-a^2}}{2}
ight)$$
لاحظ

و بما أن الدالتين $x \to e^{px}\cos x$; $x \to e^{px}\sin x$ غير متناسبتين فان حلول المعادلة التفاضلية و بما أن الدالتين $x \to e^{px}\cos x$; $x \to e^{px}\sin x$ قمي الدوال $x \to e^{px}\cos x \to e^{px}\cos x$ حيث $x \to e^{px}\cos x \to e^{px}\cos x$ قمي الدوال

خاصىة

 $r^2+ar+b=0$ و لتكن (a;b) $\in \mathbb{R}^2$; E:y"+ ay '+ by=0 :E لتكن المعادلة التفاضلية المعادلة المميزة

 r_2 ; r_1 ناف المعادلة المميزة لها جدرين مختلفين $a^2-4b \succ 0$ ناخ -*

و حلول المعادلة E هي الدوال اعتباطيان lpha و lpha حيث lpha و عددان اعتباطيان

. r فان المعادلة المميزة تقبل حل مزدوج * فان المعادلة المميزة . $a^2-4b=0$

و حلول المعادلة E و عددان اعتباطيان $x o (lpha + eta x) e^{rx}$ و حلول المعادلة ع

 $r_2=p-iq$ و $r_1=p+iq$ و $r_1=p+iq$ و $r_1=p+iq$ و -*

و حلول المعادلة التفاضلية E هي الدوال $x o e^{px}\left(lpha\cos qx+eta sixqx
ight)$ و عددان E و عددان المعادلة التفاضلية

$$y'(x_0) = y'_0$$
 ; $y(x_0) = y_0$ الحل الذي يحقق

 $y'(x_0)=y'_0$; $y(x_0)=y_0$ نوجد حل وحيد للمعادلة التفاضلية E يحقق الشرطين $y'(x_0)=y'_0$; $y(x_0)=y_0$ الشرطان $y'(x_0)=y'_0$; $y(x_0)=y_0$

يمكن إعطاء شرطين بدئيين آخرين.

ملاحظة

 $\alpha\cos qx + \beta\sin qx = k\left(\frac{\alpha}{k}\cos qx + \frac{\beta}{k}\sin qx\right) = k\left(\cos \varphi\cos qx + \sin \varphi\sin qx\right) = k\cos(qx - \varphi)$ لدينا

$$\cos \varphi = \frac{\alpha}{k}$$
 ; $\sin \varphi = \frac{\beta}{k}$; $k = \sqrt{\alpha^2 + \beta^2}$ بوضع

تستنتج اذا کان $p = k - ke^{px} \cos(qx - \varphi)$ نان $a^2 - 4b < 0$ حیث $a = ke^{px} \cos(qx - \varphi)$

$$y_1'(0) = -1$$
 ; $y_1(0) = 1$ case y_1 case $y_1''(0) = -1$; $y_1'(0) = -1$ case $y_1''(0) = -1$ case $y_1''(0$

$$y''+4y'+4y=0$$
 حل المعادلة -2

$$y''+2y'+5y=0$$
 حل المعادلة -3

الجواب

$$y$$
"+ $2y$ '- $\frac{5}{4}y$ = 0 المعادلة المميزة للمعادلة $r^2 + 2r - \frac{5}{4} = 0$ -1

$$r_2 = \frac{-2-3}{2} = -\frac{5}{2}$$
 g $r_1 = \frac{-2+3}{2} = \frac{1}{2}$ gain $\Delta = 4+5=9$

ومنه حلول المعادلة هي الدوال $au = \frac{1}{2}x + \beta e^{-\frac{5}{2}x}$ عددان اعتباطيان lpha و منه حلول المعادلة هي الدوال (ع)

 $y_1'(0) = -1$; $y_1(0) = 1$ curve y_1 discrete like $y_1 = -\frac{5}{x}$

$$y'_{1}(x) = \frac{\alpha}{2}e^{\frac{1}{2}x} - \frac{5\beta}{2}e^{-\frac{5}{2}x} \text{ also } y_{1}(x) = \alpha e^{\frac{1}{2}x} + \beta e^{-\frac{5}{2}x}$$

$$\begin{cases} y_{1}(0) = 1 \\ y_{1}'(0) = -1 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta = 1 \\ \frac{\alpha}{2} - \frac{5\beta}{2} = -1 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta = 1 \\ \alpha - 5\beta = -2 \end{cases} \Leftrightarrow \begin{cases} \alpha = \frac{1}{2} \\ \beta = \frac{1}{2} \end{cases}$$

$$y_1(x) = \frac{1}{2} \left(e^{\frac{1}{2}x} + e^{-\frac{5}{2}x} \right)$$
 is

r=-2 مميز y''+4y'+4y=0 مليزة للمعادلة المميزة للمعادلة المميزة $x^2+4r+4=0$ مميز -2 مميز E هي الدوال المعادلة و حلول المعادلة عدان اعتباطيان

$$\Delta=4-20=-16=\left(4i
ight)^2$$
 هو y "+ $2y$ '+ $5y=0$ هميزة للمعادلة المميزة للمعادلة $r^2+2r+5=0$ هميز -3 ومنه $r_2=-1+2i$ و $r_1=-1-2i$

و حلول المعادلة E هي الدوال $lpha = e^{-x} \left(lpha \cos 2x + eta six 2x
ight)$ و حلول المعادلة و عددان اعتباطيان

حالات خاصة

بما \mathbb{R} بما المعرفة على y"+ ay=0 هي الدوال المعرفة على $a\succ 0$ اذا كان $a\succ 0$ اذا كان $x\rightarrow \alpha\cos\sqrt{a}x+\beta\sin\sqrt{a}x$ يلي $x\rightarrow \alpha\cos\sqrt{a}x+\beta\sin\sqrt{a}x$

بما $\mathbb R$ بما طول المعرفة على y"+ ay=0 المعادلة التفاضلية $a\prec 0$ المعرفة على $a\prec 0$ بما $(\alpha;\beta)\in\mathbb R^2$ عيث $x\to \alpha e^{\sqrt{-a}x}+\beta e^{-\sqrt{-a}x}$ يلي

R

y''-4y=0 ; y''+2y=0 مثاك حل المعادلتين

 $(\alpha;\beta)\in\mathbb{R}^2$ حيث $x o \alpha\cos\sqrt{2}x+\beta\sin\sqrt{2}x$ حيث y''+2y=0 حيث y''+2y=0 حلول المعادلة y''+2y=0 هي الدوال المعرفة بـ $x\to \alpha e^{2x}+\beta e^{-2x}$ حيث y''+2y=0 حيث y''+2y=0 حلول المعادلة y''+2y=0 حيث y''+2y=0 حيث y''+2y=0