

FACULTY OF COMPUTING

SEMESTER 1

2023/2024

SECI 1013 - DISCRETE STRUCTURE

ASSIGNMENT 1 (CHAPTER 1)

SECTION 02

LECTURER: DR NOORFA HASZLINNA BINTI MUSTAFFA

NAME	MATRIC NUMBER
HARINI A/P SANGARAN	A23CS0081
NAWWARAH AUNI BINTI NAZRUDIN	A23CS0143
NABIL AFLAH BOO BINTI MOHD YOSUF BOO YONG CHONG	A23CS0252

							,	
a)	~(Pv q) v (~P∧q) = ~P							
	P	1 9	~ρ	PV9	~ (P V 9)	~ P N Q	~ (PVQ) V (~ PAQ)	
	т	7	F	Т	F	F	F	
		F	F	Т	F	F	F	
7	F	Т	T	Т	F	7	7	
	F	F	Т	F	Т	F	т	
10	~ (P	۷ a.٦ ١	, (~P	Λq,) Ξ	(~P ^ ~P)	v (~P N Q)	De Morgan's laws	
1								
	= ~P A T						Negation laws	
	= ~P (proven)						ldentity INWS	
-15							THE PROPERTY HERE WAS ASSESSED.	
-								
		P V (1						
20	n) (~ r V r	- 9)-	→ ~ P				
	Citt	~p →	~ (r	V %)				
	m)	~P ->	, ~(r	V %)				
	m)	~P ->	, ~(r	V %)				
	m)	~p →	· ~(r	V %)				
	m)	~P →	· ~(r	V %)				
25	hı)	~p →	· ~(r	V %)				
25	m)	~p →	~ (r	V %)				
25	m)	~p →	~ (r	V %)				
25	m)	~P ->	· ~ (r	V %)				
25	m)	~p →	· ~ (r	V %)				
25	(un	~p →	· ~ (r	V %)				
25	(un)	~P ->	· ~ (r	V %)				
25	m)	~P ->	· ~ (r	V %)				

٦. ح)	Negation of $\forall x(x^2+2x-3=0) = \neg \forall x(x^2+2x-3=0)$
	$= \exists x - (x^2 + 2x - 3 = 0)$
	Let x = 2
	$x^{2}+2x-3=2^{2}+2(2)-3$
	= 5
	≠ ○
]x - (x2+2x-3=0) is TRUE
4)	Let R(x) be "x can speak Russian" Let C(x) be "x knows C++"
	Let C(x) be "x knows Ctt"
M1-1	
(;	Ju R(n) 1 - C(n)
";)	Yn R(x) V C(x)
- iii)	- Vx R(x) V C(x)
(3·a)	$P(x): a^2-3b$ is even
	Q(x): a and b are even
	$P(x) \rightarrow O(x) = \neg Q(x) \rightarrow \neg P(x)$
	TR(x): a and b are odd
	7 P(x): a2-3b is odd
	a=2n+1
	b=2m+1
	$a^2-3b=(2n+1)^2-3(2m+1)$
	$=4n^2+4n+1-6m-3$

$$a^{2}-3b=4n^{2}+4n-6m-2$$

$$=2(2n^{2}+2n-3m-1)$$

$$=2t(where t=2n^{2}+2n-3m-1)$$

