O que é a I.A. ?

"The exciting new effort to make computers think <i>machines with minds</i> , in the full and literal sense" (Haugeland, 1985)	"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)
"The automation of activities that we associate with human thinking, activities such as decision-making, problem solving, learning," (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)
"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)	"A field of study that seeks to explain and emulate intelligent behaviour in terms of computational processes" (Schalkoff, 1990)
"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)	"The branch of computer science that is concerned with the automation of intelligent behaviour" (Luger and Stubblefield, 1993)

Sistemas que pensam como humanos	Sistemas que pensam racionalmente
Sistemas que agem como humanos	Sistemas que agem racionalmente

O que é a l.A. ? (cont.)

Agindo como humanos

- Teste de Turing (1950): um humano a conversar com um interlocutor não visível, não consegue distinguir se este é uma pessoa ou um computador
- Envolve as principais áreas da I.A.: conhecimento, raciocínio, interpretação de linguagem natural, aprendizagem

Pensando como humanos

- Anos 60: revolução cognitiva
- Tenta descrever o funcionamento interno do cérebro humano
- Não basta resolver o problema, interessa fazê-lo como os humanos
- Neste momento é considerada uma disciplina distinta da I.A.

IA 02

2

O que é a l.A. ? (cont.)

Pensando racionalmente

- A lógica e as leis do pensamento os silogismos.
- Mas... nem todo o comportamento inteligente resulta de uma decisão lógica

Agindo racionalmente

- Comportamento racional: fazer o que é mais correto
- Fazer o que é mais correto significa agir de forma a maximizar o sucesso pretendido, a partir da informação disponível.
- Nem sempre implica pensamento, raciocínio. Mas o raciocínio deve estar ao serviço do comportamento racional.

Agentes

- Um *agente* é algo que tem perceções e atua.
- Neste curso vamos estudar agentes racionais.
- De forma abstrata, um agente é uma função de sequências de perceções em ações:

- Para cada classe de ambientes e tarefas, procuramos o agente (ou classe de agentes) com melhor comportamento
- Problema: limitações computacionais tornam a racionalidade perfeita inatingível
 - ==> construir o melhor programa possível, dados os recursos disponíveis

IA 02

Inteligência Artificial

12

13

A perceção é afetada pelo contexto (1)

Um pouco de história

- 1943 Mc Culloch e Pitts trabalho teórico sobre neurónios artificiais
- 1950 Turing: "Computing Machinery and Intelligence"
- 1952 IBM 701, primeiro computador comercial
- 1950s Newel e Simon (Logic Theorist), Rochester Geometry Theorem Prover, Samuel (jogo de damas)
- 1956 Primeira linguagem de "alto" nível FORTRAN
- 1956 Encontro de Dartmouth: adoção de "Inteligência Artificial"
- 1958 McCarthy (LISP), Friedberg (algoritmos genéticos)
- 1965 Robinson: primeiro algoritmo completo para raciocínio lógico
- 1966 a 1974 IA descobre a complexidade computacional. Redes neuronais quase desaparecem
- 1969 a 1979 primeiros programas baseados em conhecimento
- 1980 a 1988 Adoção generalizada dos sistemas periciais
- 1988 DuPont —100 sistemas periciais em uso, 500 em desenvolvimento

IA 02

- 1985 a 1995 redes neuronais recuperam popularidade
- 1997 IBM: Deep Blue

Inteligência Artificial

- 2004/2005 corrida de veículos autónomos no deserto (DARPA)
- 1995 em diante agentes, agentes, agentes,...

Estado actual

O que é viável hoje?

- Guiar numa estrada montanhosa
- Guiar no centro do Cairo (ou do Porto...)
- Fazer as compras do mês no hipermercado
- Fazer as compras do mês na internet
- Jogar um jogo decente de bridge
- Descobrir e demonstrar um novo teorema matemático
- Escrever intencionalmente uma história divertida
- Fazer consultoria numa área especializada do Direito
- Fazer tradução em tempo real
- Realizar uma operação cirúrgica (algum voluntário?...)

Estado actual

Aplicações

- Softbots (pesquisadores na internet)
- Filtros avançados de correio eletrónico
- Negociação eletrónica (mercado bolsista, compras, leilões)
- Sistemas distribuídos (redes de energia, mercado de energia)
- Logística
- Robótica inteligente
- Sistemas de gestão de produção
- e-Learning avançado

Agentes e ambientes

- Agentes incluem humanos, robôs, softbots, termostatos, etc.
- A função agente faz a aplicação de perceções em ações

f : P* → A

 Um programa agente é executado numa plataforma de hardware para implementar a função agente f

O mundo do aspirador

- Perceções
 - Localização e estado; por exemplo [A, Sujo]
- Ações
 - Esquerda, Direita, Aspira, Nada

Um agente aspirador

Sequência de Perceções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspira
[B, Limpo]	Esquerda
[B, Sujo]	Aspira
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspira

função ASPIRADOR_REFLEXO([Local, Estado]) retorna Ação se estado = Sujo então retorna Aspira senão se Local = A então retorna Direita senão se Local = B então retorna Esquerda

- Qual é a função correta?
- Pode ser implementada por um pequeno agente inteligente?

Racionalidade

- Uma medida fixa da eficiência avalia a sequência ambiental
 - um ponto por cada casa limpa num tempo T?
 - um ponto por cada casa limpa por intervalo de tempo, menos um ponto por cada movimento?
 - penalização se número de casas sujas > k?
- Agente racional ideal
 - Para cada sequência possível de perceções, escolhe a ação que maximiza o valor esperado da sua medida de eficiência, com base na sequência de perceções até ao momento.
 - racional ≠ omnisciente
 - omnisciente : conhece o efeito das suas ações
 - racional ≠ clarividente
 - racional ≠ bem sucedido
 - Racional ==> exploração, aprendizagem, autonomia

IA 02

Inteligência Artificial

Racionalidade (cont.)

- O que é racional num dado momento depende de quatro coisas:
 - A medida de eficiência que define o grau de sucesso
 - A sequência de perceções tudo que ele percebeu até ao momento
 - O que o agente sabe acerca do ambiente
 - As ações que pode executar
- **Exemplo:**

Inteligência Artificial

- Não gosto de me molhar, por isso hoje trago guarda-chuva. Isto é um comportamento racional?
- Depende da previsão meteorológica, e se a ouvi...
- Se a previsão é de chuva, e eu tenho conhecimento desse facto, então trazer guarda-chuva é racional.

IA 02

Um agente condutor de táxi

- Exemplo: um agente condutor de táxi
 - Performance measure (medida de eficiência)??
 - segurança, destino, lucro, cumprimento da lei, conforto, ...
 - Environment (ambiente)??
 - ruas e estradas, tráfego, peões, condições atmosféricas, ...
 - Actions (ações)??
 - volante, acelerador, travão, pisca, painel, microfone, ...
 - Sensors (sensores)??
 - vídeo, acelerómetros, GPS, teclado, informações de trânsito, ...

Um agente de compras na internet

- Exemplo: um agente de compras na internet
 - Performance measure (medida de eficiência)??
 - Environment (ambiente)??
 - Actions (ações)??
 - Sensors (sensores)??

Tipos de ambientes

Acessível vs. inacessível

- Um ambiente é efetivamente acessível se os sensores detetam todos os aspetos relevantes para a seleção da ação mais apropriada.
- Determinístico vs. não determinístico (estocástico)
 - Um ambiente é determinístico se o estado seguinte é completamente determinado pelo estado atual e pelas ações executadas pelo agente.
- Episódico vs. não episódico (sequencial)
 - Num ambiente episódico a experiência do agente está dividida em episódios independentes; a qualidade das ações depende só do episódio corrente.
- Estático vs. dinâmico
 - Um ambiente é dinâmico se o mundo pode mudar enquanto o agente está a deliberar. Se o ambiente não muda, mas muda a medida de eficiência do agente, diz-se semi-dinâmico.
- Discreto vs. contínuo
 - Um ambiente é discreto se há um número limitado de perceções e ações distintas.

IA 02

17

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?				
Determinístico ?				
Episódico ?				
Estático ?				
Discreto ?				
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?				
Episódico ?				
Estático ?				
Discreto ?				
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?	Sim	Não	Em parte	Não
Episódico ?				
Estático ?				
Discreto ?				
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?	Sim	Não	Em parte	Não
Episódico ?	Não	Não	Não	Não
Estático ?				
Discreto ?				
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?	Sim	Não	Em parte	Não
Episódico ?	Não	Não	Não	Não
Estático ?	Sim	Semi	Semi	Não
Discreto ?				
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?	Sim	Não	Em parte	Não
Episódico ?	Não	Não	Não	Não
Estático ?	Sim	Semi	Semi	Não
Discreto ?	Sim	Sim	Sim	Não
Mono-Agente ?				

	Solitário	Gamão	Compras na internet	Condutor de táxi
Acessível ?	Sim	Sim	Não	Não
Determinístico ?	Sim	Não	Em parte	Não
Episódico ?	Não	Não	Não	Não
Estático ?	Sim	Semi	Semi	Não
Discreto ?	Sim	Sim	Sim	Não
Mono-Agente ?	Sim	Não	Sim exceto leilões	Não

- O tipo de ambiente condiciona fortemente a construção do agente
- O mundo real é complicado:
 - parcialmente acessível
 - estocástico (não determinístico)
 - sequencial (não episódico)
 - dinâmico
 - contínuo
 - multi-agente

Tipos de agentes

- Vamos estudar quatro tipos de agentes
 - Agentes reflexos simples
 - Agentes reflexos com estado interno
 - Agentes baseados no objetivo
 - Agentes baseados na utilidade
- Qualquer destes tipos pode evoluir para um agente com capacidade de aprendizagem

Agentes reflexos simples (cont.)

 Considere um agente que caracteriza um sistema de ar condicionado. Este agente recebe uma perceção, que é uma estrutura cujos campos são temp_desejada e temp_ambiente.

```
função agente_ar_condicionado( perc)
se ( perc.temp_desejada < perc.temp_ambiente) então
retorna arrefecer
senão
retorna aquecer
fim se
fim função
```

Agentes reflexos simples

Agentes reflexos com estado interno

- Considere um agente que é um vendedor de bilhetes para um dado espetáculo com uma determinada lotação.
- Este agente pode vender bilhetes para crianças (VENDER-BILHETE-C) e adultos (VENDER-BILHETE-A), pelos preços de 5€ e 10€, respetivamente, desde que a lotação não esteja esgotada.
- Quando a lotação esgotar e alguém quiser comprar bilhetes o agente limita-se a dizer que a lotação está esgotada (LOTAÇÃO-ESGOTADA).
- Quando o agente recebe um telefonema do proprietário a ação do agente consiste em devolver um número inteiro correspondendo ao dinheiro que está em caixa.

Agentes reflexos com estado interno (cont.)

- Considere um agente que faz a gestão de um parque de estacionamento, sabendo inicialmente a sua capacidade.
- A perceção recebida pelo agente permite-lhe saber se um automóvel vai entrar ou sair do parque.
- As ações possíveis são LEVANTAR-CANCELA-ENTRADA e LEVANTAR-CANCELA-SAIDA, para possibilitar a entrada e saída de automóveis, respetivamente, e ESPERAR, caso esteja um automóvel para entrar quando o parque está completo.
- Um automóvel que fique à espera vai tentar entrar novamente mais tarde.

Agentes reflexos com estado interno (cont.)

- Agentes que acompanham a evolução do mundo
 - Os sensores não dão uma imagem completa do estado do mundo.
 O agente tem que manter informação interna de estado para distinguir entre estados diferentes que geram a mesma informação nos sensores.
 - É necessária informação sobre como as ações do agente afetam o mundo.

Agentes reflexos com estado interno (cont.)

Agentes baseados no objetivo

- Só se pode mover um bloco de cada vez
- Só se pode mover um bloco que não tenha outro por cima

Agentes baseados no objetivo (cont.)

- O agente tem necessidade de saber quais são os seus objetivos, quais são as situações desejáveis, para poder escolher as ações que permitem atingir o objetivo.
 - Um condutor de táxi que não faz sempre o mesmo percurso. A ação a executar no cruzamento (virar à esquerda ou à direita) depende do objetivo atual
- Nota importante o mecanismo de tomada de decisão é fundamentalmente diferente do anterior, porque envolve considerações sobre o futuro:
 - o que acontece se eu fizer isto?
 - isso permite-me atingir o meu objetivo?

Agentes baseados no objetivo (cont.)

Agentes baseados na utilidade

- Se um estado do mundo é preferível a outro, então tem utilidade mais elevada para o agente.
- A utilidade é uma aplicação de cada estado num número real, que descreve a satisfação associada a esse estado.
- Vantagens:

Inteligência Artificial

- quando há objetivos contraditórios, dos quais só alguns podem ser atingidos, a função utilidade concretiza os compromissos apropriados
- quando há vários objetivos que o agente pode ambicionar, nenhum dos quais pode ser atingido de certeza, a utilidade permite pesar a probabilidade de sucesso contra a importância dos objetivos

IA 02

Agentes baseados na utilidade (cont.)

Agentes com capacidade de aprendizagem

- O elemento de aprendizagem recebe do crítico um "feedback" acerca do seu próprio comportamento.
- O padrão de eficiência é EXTERIOR ao agente.
- O gerador de problemas sugere ações que permitam aumentar o conhecimento sobre o mundo -- APRENDER
- Autonomia

Inteligência Artificial

 Um agente é autónomo na medida em que o seu comportamento depende fundamentalmente da sua experiência, e não do conhecimento que foi incorporado de origem

IA 02

O agente aprende com a experiência

Agentes com capacidade de aprendizagem (cont.)

