Aula 4

Coordenadas polares

Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados, há curvas no plano cuja equação toma um aspecto muito simples em relação a um referencial não-cartesiano.

Definição 1

Um sistema de coordenadas polares $O \rho \theta$ no plano consiste de um ponto O, denominado pólo ou origem, de uma semi-reta OA, com origem em O, denominada eixo-polar, e de uma unidade de comprimento utilizada para medir a distância de O a um ponto qualquer do plano.

Dado um ponto P do plano, suas coordenadas nesse sistema são dois valores ρ e θ , sendo ρ a distância de P a O e θ a medida do ângulo do eixo-polar para a semi-reta OP. Escrevemos então (Figura 1):

$$P = (\,\rho\,,\,\theta\,)$$

Fig. 1: Coordenadas polares.

Convencionamos que a medida do ângulo tomada de OA para OP no sentido anti-horário é positiva, e negativa no sentido horário.

Observação 1

- I. A primeira coordenada polar ρ , de um ponto distinto do pólo, é sempre maior que zero, pois representa a distância do ponto ao pólo. Mas podemos tomar também valores negativos para ρ , convencionando-se, neste caso, marcar a distância $|\rho|$ na semireta oposta, ou seja, o ponto $P=(\rho,\theta)$, com $\rho<0$, corresponde ao ponto $P=(-\rho,\theta+\pi)$.
- II. Se a primeira coordenada polar de um ponto é zero então esse ponto é o pólo. O ângulo do pólo não está definido.
- III. Podemos também usar a medida radianos para os ângulos. Por exemplo, o ponto $P = (2, 30^{\circ})$ pode ser escrito $P = (2, \pi/6)$.

Fig. 2: $(\rho, \theta) = (-\rho, \theta + \pi)$

IV. O par (ρ,θ) determina, de maneira única, um ponto do plano. No entanto, um ponto no plano pode ser determinado por meio de várias coordenadas polares distintas, pois, de acordo com a construção acima, as medidas θ e $\theta+2\pi k$, onde $k\in\mathbb{Z}$, estão associadas ao mesmo ângulo e, portanto, (ρ,θ) e $(\rho,\theta+2\pi k)$ representam o mesmo ponto do plano. Além disto, pela observação (I), como $(\rho,\theta)=(-\rho,\theta+\pi)$ se $\rho<0$, então $(-\rho,\theta+\pi)=(\rho,\theta+2\pi)=(\rho,\theta)$ se $\rho>0$.

Assim, $(\rho, \theta) = (-\rho, \theta + (2k+1)\pi)$ quaisquer que sejam $k \in \mathbb{Z}$ e $\rho \in \mathbb{R}$.

Exemplo 1

No sistema de coordenadas polares Ορθ mostrado abaixo,

Fig. 3: Sistema Ορθ

localize os seguintes pontos e determine outras coordenadas polares que os representem:

(a). $P_1 = (1, 0^{\circ}).$

Fig. 4: Ponto P₁ no sistema Ορθ

Representamos também P_1 das seguintes maneiras: $P_1 = (-1, 180^{\circ}) = (1, 360^{\circ} \, k), k \in \mathbb{Z}$.

(b). $P_2 = (4, -\pi/4)$.

Fig. 5: Ponto P_2 no sistema $O\rho\theta$

Outras maneiras de representar o ponto P_1 são, por exemplo, $P_1=(-4,-\pi/4+\pi)=(4,-\pi/4+2\pi k)$, $k\in\mathbb{Z}$.

(c). $P_3 = (-1, 0^{\circ})$.

Fig. 6: Ponto P₃ no sistema Oρθ

Neste caso, como $\rho=-1$, temos que: $P_3=(1,0^{\rm o}+180^{\rm o})=(1,180^{\rm o})=(1,\pi)=(1,\pi+2\pi k)$, $k\in\mathbb{Z}.$

(d). $P_4 = (-2, \pi/3)$.

Fig. 7: Ponto P₄ no sistema Oρθ

Sendo $\rho < 0$, temos que: $P_3 = (2, \pi/3 + \pi) = (2, 4\pi/3 + 2\pi k)$, $k \in \mathbb{Z}$.

Exemplo 2

Seja $O\rho\theta$ um sistema de coordenadas polares no plano. Determine os pontos $P=(\rho,\theta)$ do plano que satisfazem a equação $\rho=3$.

Solução.

Como na equação só figura a variável ρ , a outra, θ , é arbitrária.

Isto significa que a equação só estabelece condição sobre a distância do ponto ao eixo-polar, não importando a medida do ângulo.

Portanto, os pontos do plano que satisfazem a equação são aqueles cuja distância ao pólo O é igual a 3.

O conjunto solução é o círculo de centro O e raio 3 (Figura 8).

Fig. 8: Pontos com $\rho = 3$.

Observação 2

Pela Observação 1.I, $\rho=-3$ também é uma equação polar do círculo acima. Em geral, $\rho=\alpha$ é a equação polar de um círculo de raio $|\alpha|$ centrado na origem.

Equação polar de uma reta

Exemplo 3

Seja $O \rho \theta$ um sistema de coordenadas polares no plano. Determinemos o conjunto r dos pontos $P=(\rho,\theta)$ do plano que satisfazem a equação $\theta=\frac{\pi}{4}$.

Solução.

Novamente, como na equação só figura uma variável, a outra é arbitrária.

Logo,

$$r = \{(\rho,\theta) \, | \, \theta = \frac{\pi}{4} \quad \text{e} \quad \rho \in \mathbb{R} \} \, ,$$

ou seja, r é a reta que passa pelo pólo O e tem inclinação $\theta_0 = \frac{\pi}{4}$ com respeito à semi-reta OA (Figura 9).

Fig. 9: Pontos P_1, \ldots, P_4 na reta r.

Observação 3

Qualquer reta que passa pelo pólo O tem equação polar da forma $\theta=\theta_0$, onde θ_0 é uma constante. Além disso, $\theta=\theta_0+2\pi k,\,k\in\mathbb{Z}$, representa a mesma reta no plano.

Vejamos como obter a equação polar de uma reta r que não passa pelo pólo.

Proposição 1

Seja $O \rho \theta$ um sistema de coordenadas polares no plano. Sejam r uma reta que não passa pelo pólo O, λ a distância de r ao pólo e α o ângulo que o eixo-polar forma com a semi-reta de origem no pólo que é perpendicular a r (Figura 10). Então um ponto P de coordenadas polares (ρ, θ) pertence a r se, e somente se:

Prova.

Seja Q o ponto de interseção de r com a perpendicular a r contendo o pólo. Sabemos que: $P = (\rho, \theta)$ pertence a reta r se, e somente se, a projeção ortogonal do vetor \overrightarrow{OP} sobre o vetor \overrightarrow{OQ} , coincide com \overrightarrow{OQ} , isto é:

$$P \in r \Longleftrightarrow pr_{\overrightarrow{OO}}\overrightarrow{OP} = \overrightarrow{OQ}.$$

Seja $\beta = \widehat{POQ}$. Note que $\beta = \theta - \alpha$ independente da posição do ponto P (Figuras 12).

Fig. 12: Nas figuras acima, a medida do ângulo β é tomada de OQ para OP, a medida do ângulo α é tomada de OA para OP, no sentido anti-horário.

Como

$$|\overrightarrow{OP}| = \rho$$
, $\cos \beta = \cos(\theta - \alpha)$,

e:

$$\text{pr}_{\overrightarrow{OQ}}\overrightarrow{OP} = \frac{\left\langle \overrightarrow{OP}, \overrightarrow{OQ} \right\rangle}{\|\overrightarrow{OQ}\|^2} \overrightarrow{OQ} = \frac{\|\overrightarrow{OP}\| \|\overrightarrow{OQ}\| \cos \beta}{\|\overrightarrow{OQ}\|^2} \overrightarrow{OQ} = \frac{1}{\lambda} \|\overrightarrow{OP}\| (\cos \beta) \overrightarrow{OQ},$$

concluímos:

$$pr_{\overrightarrow{OQ}} \overrightarrow{OP} = \overrightarrow{OQ} \iff \frac{1}{\lambda} \| \overrightarrow{OP} \| \cos \beta \overrightarrow{OQ} = \overrightarrow{OQ} \iff \frac{1}{\lambda} \| \overrightarrow{OP} \| \cos \beta = 1$$

$$\iff |\overrightarrow{OP}| \cos \beta = \lambda \iff \rho \cos(\theta - \alpha) = \lambda ,$$

como queríamos.

Exemplo 4

Seja $O_p\theta$ um sistema de coordenadas polares no plano. A equação polar da reta r cuja distância ao pólo é igual a 2 e tal que o ângulo que a semi-reta perpendicular a r, com origem no pólo, forma com o eixo-polar tem medida $\frac{\pi}{3}$, é:

$$r: \rho \cos\left(\theta - \frac{\pi}{3}\right) = 2.$$

Observação 4

Note que a equação polar de uma reta no plano depende da escolha do sistema polar (pólo e eixo-polar). Isto é, a equação (1) representa retas distintas com respeito a sistemas polares diferentes.

Relações entre coordenadas polares e coordenadas cartesianas.

Seja $O\rho\theta$ um sistema de coordenadas polares no plano. Consideremos o sistema cartesiano ortogonal OXY, tal que o eixo-polar seja o semi-eixo positivo OX e o eixo-OY seja obtido rotacionando o eixo-OX de 90° no sentido anti-horário. Admitamos a mesma unidade de medida nos dois sistemas (Figura 13).

Seja $P \neq O$ um ponto no plano com coordenadas ρ e θ no sistema $O\rho\theta$, e coordenadas χ e ψ no sistema OXY. As relações entre essas coordenadas são assim obtidas:

Traçamos por P as retas r e s perpendiculares aos eixos coordenados OX e OY, respectivamente. Sejam $P_1 = (x,0)$ o ponto onde r intersecta OX, e seja P_2 o ponto onde s intersecta OY. Então, no triângulo retângulo OP_1P , a medida $|OP_1| = |x|$ é o comprimento do lado adjacente ao ângulo θ e $|OP_2| = |y| = |PP_1|$ é o comprimento do lado oposto ao ângulo θ . Segundo a Trigonometria, para qualquer quadrante em que esteja o ponto P, temos:

Fig. 13: Sistemas polar $O\rho\theta$ e cartesiano OXY.

$$x = \rho \cos \theta$$
 e $y = \rho \sin \theta$ (2)

Dessas relações, obtemos:

$$x^2 = \rho^2 \cos^2 \theta$$
, $y^2 = \rho^2 \sin^2 \theta$, $\cos \theta = \frac{x}{\rho}$, $\sin \theta = \frac{y}{\rho}$ e $\frac{y}{x} = \frac{\sin \theta}{\cos \theta} = \operatorname{tg} \theta$,

de onde concluímos:

$$\rho = \sqrt{x^2 + y^2}, \quad \cos \theta = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} \quad \text{e} \quad \text{tg } \theta = \frac{y}{x}$$
 (3)

De fato, para obter a primeira relação basta observar que:

$$x^2 + y^2 = \rho^2(\cos^2\theta + \sin^2\theta) = \rho^2,$$

o que implica $\rho=|\rho|=\sqrt{x^2+y^2}$, pois $\rho\geq 0$. As duas relações seguintes são substituições diretas da expressão de ρ .

Pela observação 1, podemos tomar $\rho < 0$. Neste caso, teremos $\rho' = -\sqrt{x^2 + y^2}$ e, portanto, devemos considerar o ângulo θ' tal que $\cos \theta' = -\frac{x}{\sqrt{x^2 + y^2}}$ e $\sin \theta' = -\frac{y}{\sqrt{x^2 + y^2}}$ para continuarem válidas as igualdades $x = \rho' \cos \theta'$ e $y = \rho' \sin \theta'$.

Como $\cos\theta'=-\cos\theta$ e $\sin\theta'=-\sin\theta$, vemos que $\theta'=\theta+\pi$, o que justifica a convenção feita anteriormente que (ρ,θ) e $(-\rho,\theta+\pi)$ representam o mesmo ponto em coordenadas polares.

Convenção: Daqui em diante, sempre que fizermos referência a um sistema polar Ορθ e a um sistema cartesiano ΟΧΥ, no mesmo contexto, admitiremos que o semi-eixo ΟΧ positivo é o eixo-polar, caso este último não tenha sido definido explicitamente.

Exemplo 5

Determine as coordenadas cartesianas ou polares dos seguintes pontos:

(a)
$$P = (\rho, \theta) = (2, \pi/2)$$
.

Solução.

Como $\rho = 2$ e $\theta = \pi/2$, temos que

$$x = \rho \cos \theta = 2 \cos \pi/2 = 0$$

$$y = \rho \operatorname{sen} \theta = 2 \operatorname{sen} \pi/2 = 2$$

são as coordenadas cartesianas de P. \square

Fig. 14: $P=(2,\pi/2)$ em coordenadas polares e P=(0,2) em coordenadas cartesianas

(b)
$$P = (x, y) = (1, 1)$$
.

Solução.

Sendo x=1 e y=1, temos que $\rho=\sqrt{x^2+y^2}=\sqrt{1^2+1^2}=\sqrt{2},$ $\cos\theta=\frac{1}{\sqrt{2}}$ e $\sin\theta=\frac{1}{\sqrt{2}}$ e, portanto, $\theta=\pi/4$ ou $\theta=\pi/4+2\pi k,$ $k\in\mathbb{Z}.$ Então,

$$P=(\rho,\theta)=(\sqrt{2},\pi/4)=(\sqrt{2},\pi/4+2\pi k)$$

Fig. 15: P=(1,1) em coordenadas cartesianas e $P=(\sqrt{2},\pi/4)$ em coordenadas polares

é o ponto P dado em coordenadas polares.

Também $(-\sqrt{2},\pi/4+\pi)$ é outra representação de P em coordenadas polares. \Box

(c)
$$P = (\rho, \theta) = (-3, \pi/2)$$
.

Solução.

Como P = $(-3, \pi/2) = (3, \pi/2 + \pi) = (3, 3\pi/2)$, vemos que:

$$x = \rho \cos \theta = -3 \cos \frac{\pi}{2} = 3 \cos \frac{3\pi}{2} = 0$$

$$y = \rho \operatorname{sen} \theta = -3 \operatorname{sen} \frac{\pi}{2} = 3 \operatorname{sen} \frac{3\pi}{2} = -3$$

são as coordenadas cartesianas de P.

Fig. 16: $P=(-3,\pi/2)$ em coordenadas polares e P=(0,-3) em coordenadas cartesianas

(d)
$$P = (\rho, \theta) = (-\sqrt{2}, 5\pi/4)$$
.

Solução.

Sendo P = $(-\sqrt{2}, 5\pi/4) = (\sqrt{2}, 5\pi/4 + \pi) = (\sqrt{2}, 9\pi/4) = (\sqrt{2}, \pi/4),$ temos que

$$x = -\sqrt{2}\cos 5\pi/4 = \sqrt{2}\cos \pi/4 = 1$$

$$y = -\sqrt{2} \sin 5\pi/4 = \sqrt{2} \sin \pi/4 = 1$$

são as coordenadas cartesianas do ponto P. \square

(e)
$$P = (x, y) = (4, 5)$$
.

Solução.

Como
$$x = 4$$
 e $y = 5$, $\rho = \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41}$, $\cos \theta_0 = \frac{4}{\sqrt{41}}$ e $\sin \theta_0 = \frac{5}{\sqrt{41}}$.

Portanto.

$$(\rho, \theta) = (\sqrt{41}, \theta_0) = (-\sqrt{41}, \theta_0 + \pi)$$

é o ponto P dado em coordenadas polares.

(f)
$$P = (x, y) = (0, -4)$$
.

Solução.

Como x = 0 e y = -4, temos que:

$$\rho = \sqrt{0^2 + (-4)^2} = \sqrt{16} = 4$$
, $\cos \theta = \frac{0}{4} = 0$ e sen $\theta = \frac{-4}{4} = -1$.

Logo,

$$(\rho,\theta)=(4,3\pi/2)=(-4,3\pi/2+\pi)=(-4,5\pi/2)=(-4,\pi/2)$$

é o ponto P dado em coordenadas polares. 🗆

Fig. 17: Ponto $P = (-\sqrt{2}, 5\pi/4)$ em coordenadas polares e P = (1, 1) em coordenadas cartesianas

Fig. 18: P = (4,5) em coordenadas cartesianas e P = $(\sqrt{41},\theta_0)$ em coordenadas polares

Fig. 19: P=(0,-4) em coordenadas cartesianas e $P=(-4,\pi/2)$ em coordenadas polares

Exemplo 6

Determine a equação, no sistema ortogonal de coordenadas cartesianas OXY, do lugar geométrico definido pela equação polar $\rho=3$.

Solução.

Substituindo a relação $\rho = \sqrt{x^2 + y^2}$, temos:

$$\rho = 3 \iff \sqrt{x^2 + y^2} = 3 \iff x^2 + y^2 = 9$$
.

Fig. 20: Círculo $\rho=3$.

Portanto, a equação $\rho=3$ corresponde à equação cartesiana do círculo centrado na origem e de raio 3 (Figura 20). \Box

Exemplo 7

Determine a equação, no sistema ortogonal de coordenadas cartesianas OXY, do lugar geométrico definido pela equação polar $\theta=\frac{3\pi}{4}$.

Solução.

Substituindo a relação $\frac{y}{x}=tg\,\theta$ na equação dada, obtemos:

$$\theta = \frac{3\pi}{4} \Longleftrightarrow \frac{y}{x} = \operatorname{tg} \frac{3\pi}{4} = \frac{\operatorname{sen}((3\pi)/4)}{\operatorname{cos}((3\pi)/4)} = \frac{\sqrt{2}/2}{-\sqrt{2}/2} = -1.$$

Portanto, a equação correspondente no sistema cartesiano de coordenadas é $\frac{y}{x}=-1$.

Isto é, y=-x (Figura 21), que é a equação da reta bissetriz do segundo e quarto quadrantes. \Box

Fig. 21: Reta $\theta = \frac{3\pi}{4}$.

Exemplo 8

Seja r a reta de equação polar $\rho \cos(\theta - \pi/3) = 2$.

Determine a equação correspondente no sistema cartesiano OXY.

Solução.

Usando a identidade $cos(\alpha-b)=cos\,\alpha\,cos\,b+sen\,\alpha\,sen\,b$, temos:

$$\rho\,\cos\left(\theta-\frac{\pi}{3}\right)=2\Longleftrightarrow\rho\,\cos\theta\,\cos\left(\frac{\pi}{3}\right)+\rho\,\sin\theta\,\sin\left(\frac{\pi}{3}\right)=2\,.$$

Das relações:

$$\begin{split} & \chi = \rho \, \cos \theta \,, \qquad y = \rho \, \sin \theta \,, \\ & \cos \left(\frac{\pi}{3} \right) = \frac{1}{2} \,, \qquad \sin \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \,, \end{split}$$

Fig. 22: Reta $\mathbf{r}: \rho\cos(\theta-\pi/3)=2$, ou seja, $\mathbf{r}: \mathbf{x}+\mathbf{y}\sqrt{3}-4=0$.

obtemos:

$$x\left(\frac{1}{2}\right) + y\left(\frac{\sqrt{3}}{2}\right) = 2,$$

ou seja (Figura 22):

$$x + y\sqrt{3} - 4 = 0.$$

Exemplo 9

Seja $\alpha > 0$. Determine os pontos do plano que satisfazem a equação $\rho = 2 \alpha \cos \theta$.

K. Frensel - J. Delgado

Solução.

Utilizando as relações (3) para obter a equação correspondente no sistema cartesiano, temos (Figura 23):

$$\rho = 2 a \cos \theta \iff \pm \sqrt{x^2 + y^2} = 2a \frac{\pm x}{\sqrt{x^2 + y^2}}$$
$$\iff x^2 + y^2 = 2ax.$$

Completando os quadrados na última equação, obtemos:

$$(x-a)^2 + y^2 = a^2,$$

que é a equação do círculo de centro (a, 0) e raio a.

Fig. 23: $\rho = 2 \alpha \cos \theta$.

O círculo em coordenadas polares.

Em geral, o círculo no plano é caracterizado em termos de coordenadas polares, de acordo com a seguinte proposição.

Proposição 2

Sejam $O\rho\theta$ um sistema de coordenadas polares no plano, $P_0=(\rho_0,\theta_0)_{O\rho\theta}$ um ponto desse plano e r um número real positivo.

Então o conjunto dos pontos $P = (\rho, \theta)_{O\rho\theta}$ que pertencem ao círculo de centro P_0 e raio r satisfazem a seguinte equação em coordenadas polares:

$$\rho^2 + \rho_0^2 - 2 \, \rho_0 \, \rho \, \cos(\theta - \theta_0) = r^2$$

Demonstração. Consideremos o sistema de coordenadas cartesianas OXY, tal que o semi-eixo OX positivo coincida com o eixo-polar e o eixo-OY seja obtido rotacionando o eixo-OX de 90° no sentido anti-horário.

No sistema OXY, temos:

$$P_0 = (\rho_0 \cos\theta_0, \rho_0 \, \text{sen} \, \theta_0)_{OXY} \ \ \text{e} \ \ P = (\rho \cos\theta, \rho \, \text{sen} \, \theta)_{OXY}.$$

Sabemos que o círculo de centro P_0 e raio r é o conjunto que consiste dos pontos do plano cuja distância a P_0 é igual a r. Então:

$$\begin{split} d(\textbf{P},\textbf{P}_0) &= \textbf{r} \iff \sqrt{(\rho\cos\theta - \rho_0\cos\theta_0)^2 + (\rho\sin\theta - \rho_0\sin\theta_0)^2} = \textbf{r} \\ &\iff \rho^2\cos^2\theta + \rho_0^2\cos^2\theta_0 - 2\rho_0\,\rho\cos\theta_0\cos\theta + \rho^2\sin^2\theta \\ &\quad + \rho_0^2\sin^2\theta_0 - 2\rho_0\,\rho\sin\theta_0\sin\theta = \textbf{r}^2 \\ &\iff \rho^2\left(\cos^2\theta + \sin^2\theta\right) + \rho_0^2\left(\cos^2\theta_0 + \sin^2\theta_0\right) \\ &\quad - 2\,\rho_0\,\rho\left(\cos\theta_0\cos\theta + \sin\theta_0\sin\theta\right) = \textbf{r}^2 \\ &\iff \rho^2 + \rho_0^2 - 2\,\rho_0\,\rho\cos(\theta - \theta_0) = \textbf{r}^2 \,. \end{split}$$

Note que...

No desenvolvimento acima, calculamos a expressão da distância entre dois pontos em termos de coordenadas polares. Isto é, se $P_0 = (\rho_0, \theta_0)$ e $P_1 = (\rho_1, \theta_1)$, então:

$$d(P_0,P_1) = \sqrt{\rho_0^2 + \rho_1^2 - 2\rho_0\rho_1\cos(\theta_0 - \theta_1)}$$

Exemplo 10

Considere o círculo abaixo:

$$C: (x-2)^2 + y^2 = 2$$
.

Determine a equação polar do arco C_1 do círculo C contido no semi-plano $x \le 1$ e a equação polar do arco $C - C_1 = C_2$.

Solução.

Substituindo as relações $\rho^2=x^2+y^2$, $x=\rho\cos\theta$ e $y=\rho\sin\theta$ na equação cartesiana do círculo:

$$(x-2)^2 + y^2 = 2 \iff x^2 + y^2 - 4x + 2 = 0$$

obtemos que:

$$\rho^2 - 4\rho\cos\theta + 2 = 0\tag{4}$$

é a equação que relaciona as coordenadas polares de um ponto de \mathcal{C} . Nesse círculo, $(\rho_0, \theta_0) = (2,0)$ é o centro dado em coordenadas polares.

Logo,

$$\rho = \frac{4\cos\theta \pm \sqrt{16\cos^2\theta - 8}}{2} \iff \rho = \frac{4\cos\theta \pm \sqrt{-16\sin^2\theta + 16 - 8}}{2} \\ \iff \rho = 2\cos\theta \pm \sqrt{2 - 4\sin^2\theta} \,.$$

Observe que o discriminante da equação (4) é zero se, e só se,

$$\operatorname{sen}^2\theta = \frac{1}{2} \Longleftrightarrow \operatorname{sen}\theta = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \Longleftrightarrow \theta = \pm \frac{\pi}{4}$$
,

e que a equação (4) tem duas soluções se, e só se,

$$2-4\,\text{sen}^2\,\theta>0\Longleftrightarrow\text{sen}^2\,\theta<\frac{1}{2}\Longleftrightarrow|\,\text{sen}\,\theta|<\frac{\sqrt{2}}{2}\Longleftrightarrow\theta\in\left(-\frac{\pi}{4},\frac{\pi}{4}\right)\;.$$

Note também que as retas $r_1: y=x$ e $r_2: y=-x$, que passam pela origem e fazem um ângulo $\frac{\pi}{4}$ e $-\frac{\pi}{4}$, respectivamente, com o semi-eixo positivo OX, são tangentes ao círculo \mathcal{C} nos pontos $P_1=(1,1)$ e $P_2=(1,-1)$, pois:

$$\begin{split} (x,y) &\in \mathcal{C} \cap r_1 &\iff x = y \text{ e } (x-2)^2 + x^2 = 2 \Longleftrightarrow x = y \text{ e } 2x^2 - 4x + 2 = 0 \\ &\iff x = y \text{ e } (x-1)^2 = 0 \Longleftrightarrow x = 1 \text{ e } y = 1 \Longleftrightarrow (x,y) = (1,1) = P_1 \,. \\ (x,y) &\in \mathcal{C} \cap r_2 &\iff x = -y \text{ e } (x-2)^2 + (-x)^2 = 2 \Longleftrightarrow x = -y \text{ e } (x-1)^2 = 0 \\ &\iff x = 1 \text{ e } y = -1 \Longleftrightarrow (x,y) = (1,-1) = P_2 \,. \end{split}$$

Fig. 24: Círculo C e arcos C_1 e C_2

 $\begin{aligned} & \text{Assim, } \rho = 2\cos\theta - \sqrt{2 - 4 \, \text{sen}^2\,\theta} \,,\, \theta \in \left[-\frac{\pi}{4},\frac{\pi}{4} \right] \text{, \'e a equação polar do arco \mathcal{C}_1, } e \, \rho = 2\cos\theta + \\ & \sqrt{2 - 4 \, \text{sen}^2\,\theta},\, \theta \in \left(-\frac{\pi}{4},\frac{\pi}{4} \right) \text{, \'e a equação polar de $\mathcal{C}_2 = \mathcal{C} - \mathcal{C}_1$} \, \right] \end{aligned}$

Equação polar das cônicas.

Para determinar as equações polares das cônicas, lembre-se que:

Uma seção cônica é o lugar geométrico dos pontos que se movimentam no plano de forma que a sua distância a um ponto dado (chamado foco) é um múltiplo positivo fixo da sua distância a uma reta dada (denominada diretriz associada ao foco). Isto é, um ponto F, uma reta ℓ e uma constante e>0 (denominada excentricidade) determinam a cônica:

$$C = \{ P \mid d(P, F) = e \cdot d(P, \ell) \}$$

Segundo a excentricidade e, a cônica C \acute{e} :

- uma parábola \iff e = 1;
- uma elipse \iff e < 1;
- uma hipérbole \iff e > 1.

Seja \mathcal{C} uma cônica de excentricidade e>0. Consideremos um sistema de coordenadas polares em que um foco F da cônica é a origem O e o eixo-polar é paralelo à reta-focal da cônica, como vemos nas figuras acima.

Designamos por ℓ a diretriz associada ao foco F e seja $h = d(F, \ell)$.

Segundo a caracterização de C dada acima, temos:

$$P = (\rho, \theta) \in \mathcal{C} \iff d(P, F) = e d(P, \ell) \iff \rho = e d(P, \ell).$$

Das figuras acima, você pode ver que temos dois casos a considerar:

Caso A. Se ℓ não intersecta o eixo-polar, então $d(P, \ell) = h + \rho \cos \theta$.

Neste caso, temos que $P = (\rho, \theta) \in \mathcal{C}$ se, e somente se:

$$\rho = e(h + \rho \cos \theta)$$
, isto é, $\rho = \frac{eh}{1 - e \cos \theta}$.

Caso B. Se ℓ intersecta o eixo-polar, então $d(P, \ell) = h - \rho \cos \theta$.

Neste caso, temos que $P=(\rho,\theta)\in\mathcal{C}$ se, e somente se:

$$ho = e(h - \rho \cos \theta)$$
 , isto é: $ho = \frac{eh}{1 + e \cos \theta}$.

Nessas equações vemos que, se $\theta=\frac{\pi}{2}$ ou $\theta=-\frac{\pi}{2}$, então $\rho=eh$. Esse valor de ρ é a metade do comprimento da corda da cônica que é paralela à diretriz e contém o foco F. Tal corda é chamada *latus rectum* da cônica. Conseqüentemente, o valor eh que aparece nas equações anteriores corresponde à metade do comprimento do latus rectum da cônica, isto é, ao comprimento do *semi-latus rectum*.

Resumindo as conclusões anteriores, temos:

Equação polar das cônicas.

Seja $\mathcal C$ uma cônica com excentricidade e>0, um foco no ponto F e semi-latus rectum de comprimento λ . Com respeito ao sistema polar de coordenadas $O\rho\theta$ com o eixo-polar contido na reta-focal de $\mathcal C$ e O=F, a equação de $\mathcal C$ é:

$$C: \rho = \frac{\lambda}{1 \pm e \cos \theta} \tag{5}$$

A distância do foco F à sua diretriz associada ℓ é $\frac{\lambda}{e}$ (Figura 28).

No denominador da equação polar (5), tomamos o sinal positivo (+) se a diretriz ℓ intersecta o eixo-polar, e o sinal negativo (-) se ℓ não intersecta o eixo-polar.

Fig. 28: $C: \rho = \frac{\lambda}{1 - e \cdot \cos \theta}$.

Note que se o eixo-polar for escolhido de modo a estar paralelo à diretriz, ou seja, quando o eixo-polar tem origem em F e é perpendicular à reta-focal, então a equação polar da cônica é dada por:

Fig. 29: Eixo-polar OA paralelo à diretriz ℓ

Exemplo 11

Identificar a cônica C de equação polar $\rho = \frac{2}{3 - \cos \theta}$.

Determinar também as coordenadas polares do centro e dos vértices, assim como os comprimentos dos eixos e do latus rectum.

Solução.

Começamos por escrever a equação de \mathcal{C} na forma (5), multiplicando o numerador e o denominador da equação polar por $\frac{1}{3}$:

$$C: \rho = \frac{\frac{2}{3}}{1 - \frac{1}{3}\cos\theta}.$$

A partir dessa equação, obtemos que o comprimento do semi-latus rectum é $\lambda=\frac{2}{3}$ e que a excentricidade de \mathcal{C} é $e=\frac{1}{3}$. Como e<1, \mathcal{C} é uma elipse.

Em particular, o comprimento do latus rectum é $2\lambda = 2 \cdot \frac{2}{3} = \frac{4}{3}$.

Como o eixo-polar está sobre a reta-focal, vamos determinar os vértices, o centro e o outro foco de \mathcal{C} (lembre que um foco é a origem do sistema de coordenadas polares). Como o sinal que aparece no denominador da equação é negativo, a diretriz correspondente ao foco O (origem do sistema polar $O\rho\theta$) não intersecta o eixo-polar. Portanto, estamos na situação da Figura 30.

Fig. 30: Posição dos focos, latus rectum e diretriz na cônica $C: \frac{2}{3-2\cos\theta}$.

Fazendo $\theta=0$ na equação de \mathcal{C} , obtemos $\rho=1$. Logo, segundo o esquema ilustrado na Figura 30, o ponto $V_2=(1,0)_{O\rho\theta}$ é um vértice da elipse.

Para obter o outro vértice, fazemos $\theta = \pi$ na equação de \mathcal{C} e obtemos $\rho = \frac{1}{2}$.

Assim, $V_1=(\frac{1}{2},\pi)_{O\rho\theta}$ é outro vértice de $\mathcal{C}.$

Agora podemos calcular a distância entre os vértices: $2a = d(V_1, V_2) = 1 + \frac{1}{2} = \frac{3}{2}$, de onde concluímos que $a = \frac{3}{4}$ é a medida do semi-eixo maior da elipse.

Como
$$e = \frac{c}{a}$$
, obtemos $c = e$ $a = \frac{1}{3} \cdot \frac{3}{4} = \frac{1}{4}$.

Portanto, o centro C da elipse \mathcal{C} tem coordenadas polares $C = (c,0)_{O\rho\theta} = (\frac{1}{4},0)_{O\rho\theta}$.

Conhecendo o centro C e a distância do centro aos focos $d(C, F_2) = d(C, F_1) = d(C, O) = \frac{1}{4}$, obtemos as coordenadas polares do outro foco:

$$F_2 = (\frac{1}{4} + \frac{1}{4}, 0)_{O\rho\theta} = (\frac{1}{2}, 0)_{O\rho\theta}$$
.

Finalmente, conhecendo a medida do semi-eixo maior $\alpha = \frac{3}{4}$ e a distância do centro aos focos $c=\frac{1}{4}$, calculamos a medida do semi-eixo menor b, usando a relação $b^2=\alpha^2-c^2$: $b=\sqrt{\alpha^2-c^2}=\sqrt{(\frac{3}{4})^2-(\frac{1}{4})^2}=\sqrt{\frac{8}{16}}=\frac{\sqrt{2}}{2}\,.$

$$b = \sqrt{a^2 - c^2} = \sqrt{(\frac{3}{4})^2 - (\frac{1}{4})^2} = \sqrt{\frac{8}{16}} = \frac{\sqrt{2}}{2}.$$

Logo, a medida do eixo-menor da elipse é $2b = \sqrt{2}$.

Consideremos agora o sistema ortogonal de coordenadas cartesianas OXY, onde O é a origem do sistema polar Oρθ, o semi-eixo positivo OX coincide com o eixo-polar e o semieixo positivo OY é obtido girando de 90°, no sentido anti-horário, o semi-eixo positivo OX.

Fig. 31: Elipse C no sistema $O\rho\theta$.

Sendo $C = \left(\frac{1}{4}, 0\right)_{COO} = \left(\frac{1}{4}, 0\right)_{COXY}$ o centro de \mathcal{C} nas coordenadas x e y, $\alpha = \frac{3}{4}$ e $b = \frac{\sqrt{2}}{2}$ as medidas dos semi-eixos, obtemos a equação de C com no sistema OXY:

$$C: \frac{\left(x - \frac{1}{4}\right)^2}{\left(\frac{3}{4}\right)^2} + \frac{y^2}{\left(\frac{\sqrt{2}}{2}\right)^2} = 1$$

e as coordenadas cartesianas e polares dos vértices sobre a reta não-focal:

$$B_1 = (1/4, \sqrt{2}/2)_{OXY} = (3/4, \theta_0)_{O\rho\theta} \ \ \textbf{e} \ \ B_2 = (1/4, -\sqrt{2}/2)_{OXY} = (3/4, -\theta_0)_{O\rho\theta} \, ,$$

onde tg
$$\theta_0 = 2\sqrt{2}$$
 e $\theta_0 \in \left(0, \frac{\pi}{2}\right)$. \square

Iremos obter agora as equações polares de algumas curvas planas dadas geometricamente para depois esbocá-las e determinar suas equações cartesianas.

Exemplo 12

Considere o círculo da Figura 32. Sejam OA o diâmetro sobre o eixo—OX, AB um segmento tangente ao círculo em A e C o ponto em que o segmento OB intersecta o círculo.

Seja P o ponto sobre o segmento OB tal que |OP| = |CB|. O lugar geométrico descrito por tais pontos P é denominado Cissóide de Diocles.

Determine a equação da Cissóide em coordenadas polares e em coordenadas cartesianas.

Fig. 32: Ponto P descrevendo a Cissóide de Diocles

Solução.

Seja θ o ângulo que o segmento OB faz com o eixo-OX. Como $AB=2\,\alpha$ tg θ e $\rho=OP=CB=AB$ sen θ , temos que:

$$\rho = AB \operatorname{sen} \theta = 2a \operatorname{tg} \theta \operatorname{sen} \theta$$
, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

é a equação polar da curva.

Substituindo

$$\rho = \sqrt{x^2 + y^2} \,, \ \mbox{tg} \, \theta = y/x \quad \mbox{e} \quad \mbox{sen} \, \theta = y/\sqrt{x^2 + y^2} \,$$

na equação acima, obtemos que:

$$\sqrt{x^2 + y^2} = 2\alpha \frac{y}{x} \frac{y}{\sqrt{x^2 + y^2}} \iff x^2 + y^2 = \frac{2\alpha y^2}{x}$$

$$\iff x^3 + y^2 x = 2\alpha y^2$$

$$\iff x^3 = y^2 (2\alpha - x)$$

é a equação cartesiana da Cissóide de Diocles.

A curva é, portanto, simétrica em relação ao eixo-OX, e sendo

$$y=\pm\sqrt{\frac{x^3}{2\alpha-x}}\text{, }x\in[0,2\alpha)\text{, temos que }\lim_{x\to2\alpha^-}y=\pm\infty.$$

Ou seja, $x=2\alpha$ é uma assíntota vertical da curva e o seu esboço é mostrado na figura 33.

Fig. 33: Cissóide de Diocles

Observe que, sendo

$$y'(x) = \pm \frac{1}{2} \frac{x^{1/2}}{(2\alpha - x)^{3/2}} (6\alpha - 2x),$$

então y'(0) = 0, ou seja, y = 0 é a reta tangente à curva no ponto (0,0).

Exemplo 13

Na aula 3, vimos que as equações paramétricas da cardióide, ou seja, da epiciclóide obtida com dois círculos de raios iguais a a, são:

$$\left\{ \begin{array}{ll} x & = & 2\alpha\cos t - \alpha\cos 2t \\ y & = & 2\alpha \mathop{\mathsf{sen}} t - \alpha\mathop{\mathsf{sen}} 2t \end{array} \right. ; \quad t \in \mathbb{R} \, .$$

Deduzir a equação da cardióide em coordenadas polares e em coordenadas cartesianas.

Solução.

Para obter uma expressão mais simples, transladamos a origem α unidades para a direita ao longo do eixo-OX

Neste sistema, as equações paramétricas da cardióide são:

$$\left\{ \begin{array}{ll} x &=& 2a\cos t - a\cos 2t - a \\ y &=& 2a\operatorname{sen} t - a\operatorname{sen} 2t \end{array} \right.; \quad t \in \mathbb{R} \,.$$

onde t é o ângulo entre o segmento O_1O_2 e o eixo-OX que, neste caso, é igual ao ângulo entre os segmentos O_1O_2 e O_2P , onde O_1 e O_2 são, respectivamente, os centros do círculo fixo e do círculo móvel.

Além disso, como $|O_1O| = |PO_2| = \alpha$, temos que o ângulo entre o segmento OP e o eixo-OX é igual a t, ou seja, o ângulo t é igual ao ângulo polar θ . Logo, em função do ângulo polar θ , as equações paramétricas da cardióide são:

Fig. 34: Cardióide

$$\begin{cases} x = 2a\cos\theta - a\cos 2\theta - a \\ y = 2a\sin\theta - a\sin 2\theta \end{cases}; \quad \theta \in \mathbb{R}.$$
 (6)

Utilizando as identidades trigonométricas,

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \cos^2 \theta - (1 - \cos^2 \theta) = 2\cos^2 \theta - 1$$

 $\sin 2\theta = 2\sin \theta \cos \theta$.

podemos transformar as equações (6) em:

$$\left\{ \begin{array}{lcl} x & = & 2\alpha\cos\theta - \alpha(2\cos^2\theta - 1 + 1) = 2\alpha\cos\theta(1 - \cos\theta) \\ y & = & 2\alpha\sin\theta(1 - \cos\theta) \end{array} \right. ; \quad \theta \in \mathbb{R} \, .$$

Elevando estas equações ao quadrado, obtemos:

$$\left\{ \begin{array}{ll} x^2 &=& 4\alpha^2\cos^2\theta(1-\cos\theta)^2 \\ y^2 &=& 4\alpha^2\sin^2\theta(1-\cos\theta)^2 \end{array} \right. ; \quad \theta \in \mathbb{R} \, .$$

que somadas dão:

$$x^2 + y^2 = 4\alpha^2(1 - \cos\theta)^2.$$

Como $\rho^2 = x^2 + y^2$, temos que:

K. Frensel - J. Delgado

$$\rho^2 = 4\alpha^2(1-\cos\theta)^2,$$

ou melhor,

$$\rho = 2\alpha(1 - \cos\theta) \tag{7}$$

é a equação polar da cardióide.

Substituindo $\rho=\sqrt{x^2+y^2}$ e $\cos\theta=\frac{x}{\sqrt{x^2+y^2}}$ na equação (7), obtemos:

$$\sqrt{x^2 + y^2} = 2a\left(1 - \frac{x}{\sqrt{x^2 + y^2}}\right) \iff x^2 + y^2 = 2a(\sqrt{x^2 + y^2} - x)$$

a equação cartesiana da cardióide \sqcap

Exemplo 14

Determine as equações cartesianas das curvas abaixo dadas em coordenadas polares e faça um esboço

(a)
$$C : \rho \cos \theta = 3$$
.

Solução.

Como $x = \rho \cos \theta$, temos que C : x = 3 é a reta vertical que intersecta o eixo-OX no ponto (3,0).

Fig. 35: Curva $C : \rho \cos \theta = 3$

(b)
$$C: \rho = 2b \operatorname{sen} \theta$$
, $b > 0$.

Solução.

Sendo $\rho=\pm\sqrt{x^2+y^2}$ e sen $\theta=\pm\frac{y}{\sqrt{x^2+y^2}},$ obtemos:

$$\pm \sqrt{x^2 + y^2} = \pm \frac{2by}{\sqrt{x^2 + y^2}} \iff x^2 + y^2 = 2by$$

$$\iff x^2 + y^2 - 2by = 0$$

$$\iff x^2 + (y - b)^2 = b^2,$$

Fig. 36: Curva $C: \rho = 2b \operatorname{sen} \theta, b > 0$.

a equação cartesiana da curva \mathcal{C} , que representa um círculo de raio b e centro (0,b). \square

(c)
$$C: \rho = 2 - \cos \theta$$
.

Solução.

Observe que, para esta curva, a variável ρ é sempre positiva, pois $\cos\theta \in [-1,1]$ para todo $\theta \in \mathbb{R}$.

Assim, $\rho=\sqrt{x^2+y^2}$ e $\cos\theta=\frac{x}{\sqrt{x^2+y^2}}$. Substituindo ρ e θ na equação polar acima, obtemos:

$$\sqrt{x^2 + y^2} = 2 - \frac{x}{\sqrt{x^2 + y^2}} \iff x^2 + y^2 = 2\sqrt{x^2 + y^2} - x$$

$$\iff x^2 + y^2 + x = 2\sqrt{x^2 + y^2}$$
(8)

a equação cartesiana da curva.

Uma curva \mathcal{C} é *simétrica em relação ao eixo*-OX quando $(x,y) \in \mathcal{C}$ se, e só se, $(x,-y) \in \mathcal{C}$ (verifique!).

Fig. 37: Simetria em relação ao eixo-OX.

Fig. 38: Simetria em relação ao eixo-OY.

Analogamente, uma curva C é *simétrica em relação ao eixo*—OY quando $(x,y) \in C$ se, e só se, $(-x,y) \in C$ (verifique!).

Pela equação (8), é fácil ver que esta curva é simétrica em relação ao eixo-OX, mas não é simétrica em relação ao eixo-OY.

Então, para esboçá-la, vamos variar o ângulo θ apenas no intervalo $[0, \pi]$.

Primeiro observe que não existe θ tal que $\rho = 0$, pois, neste caso, teríamos cos $\theta = 2$, o que é uma contradição.

Observe que como cos θ decresce no intervalo $[0, \pi]$, ρ cresce neste intervalo.

Tomando os pontos em coordenadas polares $P_1=(1,0),\ P_2=\left(2-\frac{\sqrt{2}}{2},\frac{\pi}{4}\right),\ P_3=\left(2,\frac{\pi}{2}\right),$

 $P_4 = \left(2 + \frac{\sqrt{2}}{2}, \frac{\pi}{2} + \frac{\pi}{4}\right)$ e $P_5 = (3, \pi)$ pertencentes à curva, podemos esboçar seu traço situado no semi-plano $y \ge 0$.

Usando a simetria da curva em relação ao eixo-OX, podemos finalmente obter seu traço (ver Fig. 40). \Box

(d) $C : \rho = 1 + 2 \cos \theta$.

Solução.

Neste exemplo, ρ pode assumir valores negativos e positivos.

Logo $\, \rho = \pm \sqrt{x^2 + y^2} \,$ e $\, \cos \theta = \frac{\pm x}{\sqrt{x^2 + y^2}} \,$. Substituindo ρ e θ na equação dada, obtemos que:

$$\pm \sqrt{x^2 + y^2} = 1 \pm \frac{2x}{\sqrt{x^2 + y^2}} \iff x^2 + y^2 = \pm \sqrt{x^2 + y^2} + 2x$$
$$\iff (x^2 + y^2 - 2x)^2 = x^2 + y^2,$$

é a equação cartesiana da curva.

É fácil verificar que esta curva é simétrica em relação ao eixo-OX, mas não é simétrica em relação ao eixo-OY.

Portanto, para esboçá-la, basta variar o parâmetro θ no intervalo $[0, \pi]$.

Temos, para $\theta \in [0, \pi]$, que:

- $\rho=1+2\cos\theta=0$ se, e só se, $\cos\theta=-\frac{1}{2}$, ou seja, $\rho=0$ se, e só se, $\theta_0=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$;
- $\rho > 0$ se, e só se, $-\frac{1}{2} < \cos \theta \le 1$, ou seja, se, e só se, $0 \le \theta < \frac{2\pi}{3}$;
- $\rho < 0$ se, e só se, $-1 \le \cos \theta < -\frac{1}{2}$, ou seja, se, e só se, $\frac{2\pi}{3} < \theta \le \pi$.

Tomando os pontos em coordenadas polares $P_1=(3,0), P_2=(2,\pi/3), P_3=(1,\pi/2), P_4=(0,2\pi/3)$ e $P_5=(-1,\pi)$ da curva, podemos esboçar a parte da curva correspondente ao intervalo $[0,\pi]$ (ver Fig. 41).

Fig. 41: Curva $\mathcal C$ descrita variando θ em $[0,\pi]$

Fig. 42: Curva ${\cal C}$

Sendo a curva simétrica em relação ao eixo-OX, obtemos o esboço completo da curva $\mathcal C$ (ver Fig. 42). \square

(e)
$$C: \rho^2 = \cos \theta$$
.

Solução.

Sendo $\rho=\pm\sqrt{x^2+y^2}$ e $\cos\theta=\frac{\pm x}{\sqrt{x^2+y^2}},$ obtemos a equação cartesiana da curva:

$$x^2 + y^2 = \frac{\pm x}{\sqrt{x^2 + y^2}} \iff (x^2 + y^2)^{3/2} = \pm x \iff (x^2 + y^2)^3 = x^2.$$

Como esta curva é simétrica em relação aos eixos OX e OY, basta analizá-la no intervalo $\left[0,\frac{\pi}{2}\right]$.

Temos que $\rho=0$ se, e só se, $\cos\theta=0$, ou seja, $\rho=0$ se, e só se, $\theta=\frac{\pi}{2}$, para $\theta\in\left[0,\frac{\pi}{2}\right]$.

Considerando os pontos da curva em coordenadas polares $P_1=(1,0), P_2=\left(\frac{1}{2^{1/4}},\frac{\pi}{4}\right)$ e $P_3=\left(0,\frac{\pi}{2}\right)$, podemos esboçar seu traço situado no primeiro quadrante (ver Fig. 43).

Fig. 43: Curva $\mathcal C$ no primeiro quadrante

Fig. 44: Curva $\mathcal C$

Usando as simetrias em relação aos eixos OX e OY, podemos esboçar a curva \mathcal{C} (ver Fig. 44).

(f)
$$C: \rho = 2 \operatorname{sen}^2 \frac{\theta}{2}$$
.

Solução.

Usando a relação trigonométrica:

$$2 \, \text{sen}^2 \, rac{ heta}{2} = 1 - \cos heta$$
 ,

obtemos que:

$$\rho = 1 - \cos \theta$$
.

Logo, pelo exemplo 13, a curva é a cardióide, cuja equação cartesiana é

$$x^2 + y^2 + x = \sqrt{x^2 + y^2}.$$

Fig. 45: Curva C, a cardióide

(g)
$$C : \rho \operatorname{tg} \theta = 1$$
.

Solução.

Sendo $\rho = \pm \sqrt{x^2 + y^2}$ e tg $\theta = \frac{y}{x}$, obtemos que:

$$\pm \sqrt{x^2 + y^2} \frac{y}{x} = 1 \iff \pm y \sqrt{x^2 + y^2} = x$$

$$\iff y^2 (x^2 + y^2)^2 = x^2,$$
(9)

é a equação cartesiana da curva.

K. Frensel - J. Delgado

Como, pela equação (9), a curva é simétrica com respeito aos eixos OX e OY, basta analizá-la para θ no intervalo $\left[0, \frac{\pi}{2}\right]$.

Temos:

•
$$\rho = \frac{\cos \theta}{\sin \theta} = 0$$
 se, e só se, $\theta = \frac{\pi}{2}$, para $\theta \in \left[0, \frac{\pi}{2}\right]$;

•
$$\rho = 1$$
 para $\theta = \frac{\pi}{4}$;

•
$$\lim_{\theta \to 0^+} \rho(\theta) = \lim_{\theta \to 0^+} \frac{\cos \theta}{\sin \theta} = +\infty$$
;

$$\bullet \lim_{\theta \to 0^+} x(\theta) = \lim_{\theta \to 0^+} \rho(\theta) \cos \theta = \lim_{\theta \to 0^+} \frac{\cos^2 \theta}{\sin \theta} = +\infty \quad ;$$

$$\bullet \lim_{\theta \to 0^+} y(\theta) = \lim_{\theta \to 0^+} \rho(\theta) \, \text{sen} \, \theta = \lim_{\theta \to 0^+} \frac{\cos \theta}{\text{sen} \, \theta} \, \text{sen} \, \theta = \lim_{\theta \to 0^+} \cos \theta = 1.$$

Pelo obtido acima, vemos que:

Fig. 46: Curva C no primeiro quadrante

é o esboço do traço da curva que se situa no primeiro quadrante.

Então, pela simetria da curva em relação aos eixos OX e OY, temos que o traço da curva é o mostrado abaixo.

(h)
$$C: \rho = \cos 2\theta$$
.

Solução.

Como $\rho=\pm\sqrt{x^2+y^2}$ e $\cos 2\theta=\cos^2\theta-\sin^2\theta=\frac{x^2-y^2}{x^2+y^2}$, obtemos que:

$$\pm \sqrt{x^2 + y^2} = \frac{x^2 - y^2}{x^2 + y^2} \iff \pm (x^2 + y^2)^{3/2} = x^2 - y^2$$
$$\iff (x^2 + y^2)^3 = (x^2 - y^2)^2,$$

é a equação cartesiana da curva, que é simétrica em relação aos eixos OX e OY e às retas

$$y = x e y = -x$$
.

Então basta analisar a curva no intervalo $\left[0, \frac{\pi}{4}\right]$.

Temos que:

•
$$\rho > 0$$
 para $\theta \in \left[0, \frac{\pi}{4}\right)$;

•
$$\rho = \cos 2\theta = \cos \frac{\pi}{2} = 0$$
 para $\theta = \frac{\pi}{4}$;

•
$$\rho = \cos 2\theta = \cos 0 = 1$$
 para $\theta = 0$.

Logo,

Fig. 48: Curva \mathcal{C} variando θ no intervalo $\left[0,\frac{\pi}{4}\right]$

é um esboço da curva para θ variando no intervalo $\left[0, \frac{\pi}{4}\right]$.

Usando as simetrias em relação aos eixos OX e OY e em relação à reta y = x, obtemos o esboço completo da curva (figura abaixo).

(i)
$$C: \rho = \frac{\cos 2\theta}{\cos \theta}$$
.

Solução.

Sendo $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$, obtemos, substituindo $\rho = \pm \sqrt{x^2 + y^2}$, $\cos \theta = \frac{\pm x}{\sqrt{x^2 + y^2}}$ e $\sin \theta = \frac{\pm y}{\sqrt{x^2 + y^2}}$ na equação polar $\rho \cos \theta = \cos 2\theta = \cos^2 \theta - \sin^2 \theta$, que:

K. Frensel - J. Delgado

$$x = \frac{x^2 - y^2}{x^2 + y^2} \iff x(x^2 + y^2) = x^2 - y^2$$

é a equação cartesiana da curva.

Logo, como a curva é simétrica em relação ao eixo-OX, basta analisar a curva em coordenadas polares $\rho = \frac{\cos 2\theta}{\cos \theta}$ no intervalo $[0,\pi]$

Temos:

•
$$\rho = 1$$
 para $\theta = 0$;

•
$$\rho = 0$$
 para $\theta = \frac{\pi}{4}$;

•
$$\rho > 0$$
 para $\theta \in \left[0, \frac{\pi}{4}\right)$;

•
$$\rho < 0$$
 para $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$;

•
$$\lim_{\theta \to \frac{\pi}{2}^-} \rho(\theta) = -\infty;$$

$$\bullet \lim_{\theta \to \frac{\pi}{2}^-} x(\theta) = \lim_{\theta \to \frac{\pi}{2}^-} \rho \cos \theta = \lim_{\theta \to \frac{\pi}{2}^-} \cos 2\theta = -1;$$

$$\bullet \lim_{\theta \to \frac{\pi}{2}^-} y(\theta) = \lim_{\theta \to \frac{\pi}{2}^-} \rho \, \text{sen} \, \theta = \lim_{\theta \to \frac{\pi}{2}^-} \frac{\text{sen} \, \theta}{\text{cos} \, \theta} \, \text{cos} \, 2\theta = -\infty;$$

•
$$x(\theta) > y(\theta)$$
 para $\theta \in \left[0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$;

•
$$\rho > 0$$
 para $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$;

•
$$\rho = 0$$
 para $\theta = \frac{3\pi}{4}$;

$$\bullet \lim_{\theta \to \frac{\pi}{2}^+} \rho(\theta) = +\infty;$$

$$\bullet \lim_{\theta \to \frac{\pi}{2}^+} x(\theta) = \lim_{\theta \to \frac{\pi}{2}^+} \cos 2\theta = -1;$$

$$\bullet \lim_{\theta \to \frac{\pi}{2}^+} y(\theta) = \lim_{\theta \to \frac{\pi}{2}^+} \frac{\sin \theta}{\cos \theta} \, \cos 2\theta = +\infty;$$

•
$$\rho < 0$$
 para $\theta \in \left(\frac{3\pi}{4}, \pi\right)$;

•
$$-x(\theta) < y(\theta)$$
 para $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\frac{3\pi}{4}, \pi\right]$.

Na figura 50 mostramos o esboço da curva no intervalo $[0, \pi]$.

Como o esboço já é simétrico com respeito ao eixo-OX, este é o traço da curva completa. \Box

Fig. 50: Curva $\mathcal C$ no intervalo $[0,\pi]$

(i)
$$C : \rho = 1 + \sin 2\theta$$
.

Solução.

Pela relação trigonométrica,

$$sen 2\theta = 2 sen \theta cos \theta$$
,

obtemos que

$$\rho = 1 + 2 \operatorname{sen} \theta \cos \theta$$
.

Além disso, como $\rho \geq 0$ para todo $\theta \in \mathbb{R}$, temos que

$$\sqrt{x^2 + y^2} = 1 + \frac{2xy}{x^2 + y^2} \Longleftrightarrow (x^2 + y^2)^{3/2} = x^2 + y^2 + 2xy = (x + y)^2$$
 (10)

é a equação cartesiana da curva.

Por (10), é fácil verificar que a curva $\mathcal C$ é simétrica em relação à reta y=x (isto é, $(x,y)\in\mathcal C\Longleftrightarrow (y,x)\in\mathcal C$) e à reta y=-x (isto é, $(x,y)\in\mathcal C\Longleftrightarrow (-y,-x)\in\mathcal C$) Logo, basta analisar a curva $\rho=1+\text{sen}\,2\theta$ para θ no intervalo $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$.

Temos: $\rho=0$ para $\theta=-\frac{\pi}{4}$; $\rho=1$ para $\theta=0$; $\rho=2$ para $\theta=\frac{\pi}{4}$, e $\rho>0$ para $\theta\in\left(-\frac{\pi}{4},\frac{\pi}{4}\right]$.

Fig. 51: Curva \mathcal{C} no intervalo $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

Na figura 51 mostramos o esboço da curva no intervalo $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$.

Pelas simetrias da curva, é fácil ver que o esboço de \mathcal{C} é o mostrado na figura 52.

(k)
$$C: \rho = \operatorname{sen} \frac{\theta}{2}$$
.

Solução.

Sendo $2 \, \text{sen}^2 \, \frac{\theta}{2} = 1 - \cos \theta$, temos que $2 \rho^2 = 1 - \cos \theta$.

Substituindo $\rho^2=x^2+y^2$ e $\cos\theta=\frac{\pm x}{\sqrt{x^2+y^2}}$ nessa equação, obtemos que:

$$2(x^{2} + y^{2}) = 1 \mp \frac{x}{\sqrt{x^{2} + y^{2}}} \iff 2(x^{2} + y^{2})^{3/2} = \sqrt{x^{2} + y^{2}} \mp x$$

$$\iff (2(x^{2} + y^{2})^{3/2} - (x^{2} + y^{2})^{1/2})^{2} = x^{2}$$
(11)

é a equação cartesiana da curva.

Logo a curva é simétrica em relação aos eixos OX e OY.

Mas, como a função $\theta \longmapsto \operatorname{sen} \frac{\theta}{2}$ é periódica de período 4π , devemos analisar a curva $\rho = \operatorname{sen} \frac{\theta}{2}$ no intervalo $[0,\pi]$.

Temos: $\rho=0$ para $\theta=0$; $\rho>0$ em $(0,\pi]$; $\rho=\frac{\sqrt{2}}{2}$ para $\theta=\frac{\pi}{2}$; $\rho=1$ para $\theta=\pi$.

Fig. 53: Curva $\mathcal C$ no intervalo $[0,\pi]$

Na figura 53 mostramos o esboço da curva no intervalo $[0, \pi]$.

Usando as simetrias, obtemos o traço da curva, mostrado na figura abaixo.

(I) $C: \rho = \operatorname{sen} 3\theta$.

Solução.

Sendo

$$\begin{array}{rcl} \operatorname{sen} 3\theta &=& \operatorname{sen} (\theta + 2\theta) = \operatorname{sen} \theta \cos 2\theta + \cos \theta \operatorname{sen} 2\theta \\ &=& \operatorname{sen} \theta (\cos^2 \theta - \operatorname{sen}^2 \theta) + 2 \operatorname{sen} \theta \cos^2 \theta = 3 \operatorname{sen} \theta \cos^2 \theta - \operatorname{sen}^3 \theta \\ &=& \operatorname{sen} \theta (3 \cos^2 \theta - \operatorname{sen}^2 \theta), \end{array}$$

obtemos que:

$$\pm \sqrt{x^2 + y^2} = \frac{\pm y}{\sqrt{x^2 + y^2}} \left(\frac{3x^2 - y^2}{x^2 + y^2} \right) \Longleftrightarrow (x^2 + y^2)^2 = y(3x^2 - y^2)$$

é a equação cartesiana da curva.

Portanto, ela é simétrica em relação ao eixo-OY, mas não é simétrica em relação ao eixo-OX. Em vez de usar as simetrias da curva, vamos analisá-la num ciclo completo, isto é, variando θ no intervalo $[0, 2\pi]$.

•
$$\rho = 0 \iff \operatorname{sen} 3\theta = 0 \iff 3\theta = 0, \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi \iff \theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi;$$

•
$$\rho = 1 \iff \operatorname{sen} 3\theta = 1 \iff 3\theta = \frac{\pi}{2}, 2\pi + \frac{\pi}{2}, 4\pi + \frac{\pi}{2} \iff \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{9\pi}{6};$$

$$\bullet \ \rho = -1 \Longleftrightarrow \text{sen} \ 3\theta = -1 \Longleftrightarrow 3\theta = \frac{3\pi}{2}, 2\pi + \frac{3\pi}{2}, 4\pi + \frac{3\pi}{2} \Longleftrightarrow \theta = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6};$$

•
$$\rho > 0$$
 em $\left(0, \frac{\pi}{3}\right) \cup \left(\frac{2\pi}{3}, \pi\right) \cup \left(\frac{4\pi}{3}, \frac{5\pi}{3}\right)$;

$$\bullet \ \rho < 0 \ \text{em} \ \left(\frac{\pi}{3}, \frac{2\pi}{3}\right) \cup \left(\pi, \frac{4\pi}{3}\right) \cup \left(\frac{5\pi}{3}, 2\pi\right).$$

Usando as informações acima, vemos que o traço da curva é o mostrado na figura 55. \Box

Agora, vamos apresentar alguns exemplos que nos mostram como podemos determinar regiões do plano usando coordenadas polares, considerando sempre $\rho \geq 0$.

Exemplo 15

Faça um esboço da região $\mathcal R$ do plano dada pelos seguintes sistemas de desigualdades:

$$\mathcal{R}_1: \begin{cases} 0 \leq \rho \leq \frac{2}{\cos \theta} \\ -\frac{\pi}{4} \leq \theta \leq 0 \end{cases} \qquad e \qquad \mathcal{R}_2: \begin{cases} 2 sen \, \theta \leq \rho \leq \frac{2}{\cos \theta} \\ -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \end{cases} ,$$

onde (ρ, θ) são as coordenadas polares de um ponto da região \mathcal{R} .

Solução.

Primeiro analisaremos as curvas que delimitam a região:

(I)
$$\rho = \frac{2}{\cos \theta} \iff \rho \cos \theta = 2 \iff x = 2$$
, que é uma reta vertical.

(II) $\rho=2 \operatorname{sen} \theta \Longleftrightarrow \pm \sqrt{x^2+y^2}=\frac{\pm 2y}{\sqrt{x^2+y^2}} \Longleftrightarrow x^2+y^2=2y \Longleftrightarrow x^2+(y-1)^2=1,$ que é o círculo de centro (0,1) e raio 1.

(III) $\theta = \frac{\pi}{4} \Longleftrightarrow \frac{y}{x} = \text{tg } \theta = 1 \Longleftrightarrow y = x$, que é a bissetriz dos primeiro e terceiro quadrantes.

(IV) $\theta = -\frac{\pi}{4} \Longleftrightarrow \frac{y}{x} = \text{tg }\theta = -1 \Longleftrightarrow y = -x$, que é a bissetriz dos segundo e quarto quadrantes.

Então

Fig. 56: \mathcal{R} é a região sombreada

é o esboço da região no sistema de eixos OXY e

$$\mathcal{R}: \left\{ \begin{array}{l} x^2 + y^2 - 2y \ge 0 \\ x \le 2 \\ x - y \ge 0 \\ x + y \ge 0 \end{array} \right.$$

é a região dada em coordenadas cartesianas.

Como a interseção do círculo $x^2+y^2=2y$ com a reta y=x consiste dos pontos (0,0) e (1,1), e na equação $x^2+y^2=2y$, com $y\in[0,1]$, temos $y=1-\sqrt{1-x^2}$, $x\in[0,1]$, a região $\mathcal R$ pode ser descrita também na forma $\mathcal R_1\cup\mathcal R_2$, onde:

$$\mathcal{R}_1: \begin{cases} -x \leq y \leq 1 - \sqrt{1 - x^2} \\ 0 \leq x \leq 1 \end{cases} \qquad \text{e} \qquad \mathcal{R}_2: \begin{cases} -x \leq y \leq x \\ 1 \leq x \leq 2. \end{cases} \square$$

Exemplo 16

Descreva as regiões esboçadas abaixo por meio de um sistema de desigualdades da forma

$$\left\{ \begin{array}{l} \rho_1(\theta) \leq \rho \leq \rho_2(\theta) \\ \theta_1 \leq \theta \leq \theta_2 \end{array} \right..$$

(a)

Fig. 57: Região R

Solução.

Primeiro vamos determinar as equações polares das curvas $C_1:(x-2)^2+y^2=4$, $C_2:y=1$, $C_3:x-y=0$ e $C_4:y=0$ que delimitam a região \mathcal{R} .

(I)
$$(x-2)^2+y^2=4 \iff x^2-4x+4+y^2=4 \iff x^2+y^2=4x \iff \rho^2=4\rho \cos\theta \iff \rho=4\cos\theta$$
.

(II)
$$y = 1 \iff \rho \operatorname{sen} \theta = 1 \iff \rho = \frac{1}{\operatorname{sen} \theta}$$
.

(III)
$$x - y = 0 \iff x = y \iff tg \theta = 1 \iff \theta = \frac{\pi}{4}$$
.

(IV)
$$y = 0 \iff \rho \operatorname{sen} \theta = 0 \iff \operatorname{sen} \theta = 0 \iff \theta = 0$$
.

Por um cálculo simples, obtemos que $\mathcal{C}_2 \cap \mathcal{C}_3 = \{(1,1)\}; \ \mathcal{C}_1 \cap \mathcal{C}_2 = \{(2-\sqrt{3},1), (2+\sqrt{3},1)\}; \ y = \pm \sqrt{4x-x^2} \ \text{ou} \ x = 2 \pm \sqrt{4-y^2} \ \text{para} \ (x,y) \in \mathcal{C}_1.$

Logo,

$$\mathcal{R}: \begin{cases} 0 \leq \rho \leq 4 \cos \theta \\ 0 \leq \theta \leq \theta_0 \end{cases} \quad \bigcup \quad \begin{cases} 0 \leq \rho \leq 1/\text{sen}\,\theta \\ \theta_0 \leq \theta \leq \pi/4 \end{cases}$$

é a região dada em coordenadas polares, onde tg $\theta_0=\frac{1}{2+\sqrt{3}}=2-\sqrt{3},\,\theta_0\in\left(0,\frac{\pi}{2}\right)$, e

$$\mathcal{R}: \begin{cases} 0 \leq y \leq x \\ 0 \leq x \leq 1 \end{cases} \quad \bigcup \quad \begin{cases} 0 \leq y \leq 1 \\ 1 \leq x \leq 2 + \sqrt{3} \end{cases} \quad \bigcup \quad \begin{cases} 0 \leq y \leq \sqrt{4x - x^2} \\ 2 + \sqrt{3} \leq x \leq 4 \end{cases}$$

ou, simplesmente,

$$\mathcal{R}: \begin{cases} y \le x \le 2 + \sqrt{4 - y^2} \\ 0 \le y \le 1 \end{cases}$$

é a região dada em coordenadas cartesianas.

(b)

Solução.

As curvas que delimitam a região são $\mathcal{C}_1: x^2+y^2=2$ e $\mathcal{C}_2: y=x^2$, que em coordenadas polares são dadas por: $\mathcal{C}_1: \rho=\sqrt{2}$ e $\mathcal{C}_2: \rho$ sen $\theta=\rho^2\cos^2\theta$, ou seja, $\mathcal{C}_2: \rho=tg\,\theta$ sec θ .

Como $\mathcal{C}_1 \cap \mathcal{C}_2 = \{(1,1), (-1,1)\}$, temos que o ângulo polar θ varia no intervalo $\left[-\pi - \frac{\pi}{4}, \frac{\pi}{4}\right] = \left[-\frac{5\pi}{4}, \frac{\pi}{4}\right]$.

Logo,

$$\mathcal{R}: \begin{cases} \operatorname{tg} \theta \, \sec \theta \leq \rho \leq \sqrt{2} \\ -\frac{5\pi}{4} \leq \theta \leq -\pi \end{cases} \quad \bigcup \quad \begin{cases} 0 \leq \rho \leq \sqrt{2} \\ -\pi \leq \theta \leq 0 \end{cases} \quad \bigcup \quad \begin{cases} \operatorname{tg} \theta \, \sec \theta \leq \rho \leq \sqrt{2} \\ 0 \leq \theta \leq \frac{\pi}{4} \end{cases}$$

é a região dada em coordenadas polares, e

$$\mathcal{R}: \begin{cases} -\sqrt{2-x^2} \leq y \leq x^2 \\ -1 \leq x \leq 1 \end{cases} \quad \bigcup \quad \begin{cases} -\sqrt{2-x^2} \leq y \leq \sqrt{2-x^2} \\ -\sqrt{2} \leq x \leq -1 \end{cases} \quad \bigcup \quad \begin{cases} -\sqrt{2-x^2} \leq y \leq \sqrt{2-x^2} \\ 1 \leq x \leq \sqrt{2} \end{cases}$$

é a região dada em coordenadas cartesianas. 🖂

Exemplo 17

Descreva a região $\mathcal R$ do plano interior a ambas as curvas: $\mathcal C_1: \rho=4\sqrt{3}\cos\theta$ e $\mathcal C_2: \rho=4\sin\theta$.

Solução.

As curvas em coordenadas cartesianas são dadas por:

$$\bullet \ \mathcal{C}_1: \rho = 4\sqrt{3} \cos \theta \Longleftrightarrow \pm \sqrt{x^2 + y^2} = 4\sqrt{3} \left(\frac{\pm x}{\sqrt{x^2 + y^2}}\right) \Longleftrightarrow x^2 + y^2 = 4\sqrt{3} \, x \Longleftrightarrow (x - 2\sqrt{3})^2 + y^2 = 12 \, , \text{ que \'e o c\'rculo de centro } (2\sqrt{3}, 0) \text{ e raio } 2\sqrt{3}.$$

$$\bullet \; \mathcal{C}_2 : \rho = 4 \, \text{sen} \, \theta \Longleftrightarrow \pm \sqrt{x^2 + y^2} = 4 \left(\frac{\pm y}{\sqrt{x^2 + y^2}} \right) \Longleftrightarrow x^2 + y^2 = 4y \Longleftrightarrow x^2 + (y - 2)^2 = 4 \, , \, \text{que} \, = 4 \,$$

é o círculo de centro (0,2) e raio 2.

Assim,

Fig. 59: Região ${\cal R}$

é um esboço da região no sistema de coordenadas OXY.

Temos que

$$\begin{split} (x,y) &\in \mathcal{C}_1 \cap \mathcal{C}_2 &\iff x^2 + y^2 = 4\sqrt{3}\,x \quad \text{e} \quad x^2 + y^2 = 4y \\ &\iff y = \sqrt{3}x \quad \text{e} \quad x^2 + y^2 = 4y \\ &\iff y = \sqrt{3}x \quad \text{e} \quad x^2 + 3x^2 = 4\sqrt{3}x \\ &\iff y = \sqrt{3}x \quad \text{e} \quad 4x^2 = 4\sqrt{3}\,x \\ &\iff x = 0 \quad \text{e} \quad y = 0 \quad \text{ou} \quad x = \sqrt{3} \quad \text{e} \quad y = 3\,. \end{split}$$

Ou seja, $C_1 \cap C_2 = \{(0,0), (\sqrt{3},3)\}.$

Como o ângulo θ_0 que o segmento OP_0 , $P_0=\left(\sqrt{3},3\right)$, faz com o eixo-OX é $\frac{\pi}{3}$, pois tg $\theta_0=\frac{y}{x}=\sqrt{3}$, temos que a região em coordenadas polares é $\mathcal{R}=\mathcal{R}_1\cup\mathcal{R}_2$, onde:

$$\mathcal{R}_1: \begin{cases} 0 \leq \rho \leq 4 \, \text{sen} \, \theta \\ 0 \leq \theta \leq \frac{\pi}{3} \end{cases} \qquad \quad \text{e} \qquad \quad \mathcal{R}_2: \begin{cases} 0 \leq \rho \leq 4 \sqrt{3} \, \cos \theta \\ \frac{\pi}{3} \leq \theta \leq \frac{\pi}{2} \, , \end{cases}$$

e, em coordenadas cartesianas,

$$\mathcal{R}: \left\{ \begin{array}{cccc} 2\sqrt{3} - \sqrt{12 - y^2} & \leq & x & \leq & \sqrt{4 - (y - 2)^2} \\ 0 & \leq & y & \leq & 3 \, . \end{array} \right.$$

Exemplo 18

Considere a região $\mathcal R$ do plano dada pelo sistema de inequações:

$$\mathcal{R}: \left\{ \begin{array}{lcl} \frac{x^2}{12} & \leq & y & \leq & \frac{1}{2}\sqrt{16-x^2} \\ 0 & \leq & x & \leq & 2\sqrt{3} \, . \end{array} \right.$$

K. Frensel - J. Delgado

- (a) Faça um esboço detalhado da região R.
- (b) Descreva a região por meio de um sistema de inequações da forma:

$$\mathcal{R}: \left\{ \begin{array}{cccc} \rho_1(\theta) & \leq & \rho & \leq & \rho_2(\theta) \\ \theta_1 & \leq & \theta & \leq & \theta_2 \,, \end{array} \right.$$

onde (ρ, θ) são as coordenadas polares de um ponto do plano.

Solução.

- (a) As curvas que delimitam a região \mathcal{R} são:
- as retas verticais x = 0 e $x = 2\sqrt{3}$;
- a parábola C_1 : $x^2 = 12y$ de vértice na origem e reta-focal igual ao eixo-OY, voltada para cima;
- a parte C_2 , situada no semi-plano $y \ge 0$, da elipse:

$$C_2: 2y = \sqrt{16 - x^2} \implies 4y^2 = 16 - x^2 \implies x^2 + 4y^2 = 16 \implies \frac{x^2}{16} + \frac{y^2}{4} = 1$$

com centro C = (0,0), vértices (4,0), (-4,0), (0,2) e (0,-2) e reta-focal igual ao eixo-OX.

Observe que $\left(2\sqrt{3},1\right)\in\mathcal{C}_1\cap\mathcal{C}_2$. Portanto, o esboço da região \mathcal{R} é:

Fig. 60: Região ${\cal R}$

- (b) As curvas C_1 e C_2 em coordenadas polares são dadas por
- $12y = x^2 \iff 12\rho \operatorname{sen} \theta = \rho^2 \cos^2 \theta \iff \rho = 12 \frac{\operatorname{sen} \theta}{\cos^2 \theta} = 12 \operatorname{tg} \theta \operatorname{sec} \theta$;
- $\begin{array}{lll} \bullet \ x^2 + 4y^2 = 16 & \iff & \rho^2(\cos^2\theta + 4 \, \text{sen}^2\,\theta) = 16 & \iff & \rho^2(1 \text{sen}^2\,\theta + 4 \, \text{sen}^2\,\theta) = 16 & \iff \\ \rho = \frac{4}{\sqrt{1 + 3 \, \text{sen}^2\,\theta}} \ ; \end{array}$

Seja
$$\theta_0 \in \left(0, \frac{\pi}{2}\right)$$
 tal que tg $\theta_0 = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}$.

Então $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, onde:

$$\mathcal{R}_1: \left\{ \begin{array}{l} 0 \leq \rho \leq 12 \, \text{tg} \, \theta \, \, \text{sec} \, \theta \\ \\ 0 \leq \theta \leq \theta_0 \end{array} \right. \qquad \text{e} \qquad \mathcal{R}_2: \left\{ \begin{array}{l} 0 \leq \rho \leq \frac{4}{\sqrt{1+3 \, \text{sen}^2 \, \theta}} \\ \\ \theta_0 \leq \theta \leq \frac{\pi}{2} \, . \end{array} \right.$$

Exemplo 19

Considere a região R dada pelo sistema de inequações:

$$\mathcal{R}: \begin{cases} (x-2)^2 + (y-2)^2 \le 4 \\ x - y \ge 0 \\ y \le 2 \end{cases}.$$

Faça um esboço da região e descreva-a nas seguintes formas:

$$\mathcal{R}: \begin{cases} y_1(x) \leq y \leq y_2(x) \\ x_1 \leq x \leq x_2 \end{cases},$$

onde x e y são as coordenadas cartesianas de um ponto de \mathcal{R} , e

$$\mathcal{R}: \begin{cases} \rho_1(\theta) \leq \rho \leq \rho_2(\theta) \\ \theta_1 \leq \theta \leq \theta_2 \end{cases},$$

Fig. 61: Região ${\cal R}$

Solução.

É fácil ver que o esboço da região é o mostrado na figura 61.

A região é delimitada pelas retas $r_1: y=x, r_2: y=2$, e pelo círculo $\mathcal{C}: (x-2)^2+(y-2)^2=4$ de centro (2,2) e raio 2.

Sendo

$$y = 2 - \sqrt{4 - (x - 2)^2} = 2 - \sqrt{4x - x^2}$$

 $\text{para todo }(x,y)\in\mathcal{C}\cap\mathcal{R}\,,\text{ e }r_1\cap\mathcal{C}=\left\{(2-\sqrt{2},2-\sqrt{2}),(2+\sqrt{2},2+\sqrt{2})\right\}\text{, pois:}$

$$(x,y) \in r \cap C \iff y = x$$
 e $(x-2)^2 + (y-2)^2 = 4$
 $\iff y = x$ e $(x-2)^2 + (x-2)^2 = 4$
 $\iff y = x$ e $(x-2)^2 = 2$
 $\iff y = x$ e $x = 2 \pm \sqrt{2}$,

vemos que a região pode ser descrita na forma $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, onde:

$$\mathcal{R}_1: \begin{cases} 2-\sqrt{4x-x^2} \leq y \leq x \\ 2-\sqrt{2} \leq x \leq 2 \end{cases} \qquad \text{e} \qquad \mathcal{R}_2: \begin{cases} 2-\sqrt{4x-x^2} \leq y \leq 2 \\ 2 \leq x \leq 4 \end{cases}$$

As curvas C, r_1 e r_2 são dadas, em coordenadas polares, por:

•
$$r_1: y = x \iff r_1: \rho \operatorname{sen} \theta = \rho \cos \theta \iff r_1: \frac{\operatorname{sen} \theta}{\cos \theta} = 1 \iff r_1: \theta = \frac{\pi}{4};$$

•
$$r_1: y = 2 \iff r_2: \rho = \frac{2}{\operatorname{sen} \theta} = 2 \operatorname{cossec} \theta;$$

•
$$\mathcal{C}: x^2 + y^2 - 4x - 4y + 4 = 0 \iff \mathcal{C}: \rho^2 - 4\rho(\cos\theta + \sin\theta) + 4 = 0$$
 $\iff \mathcal{C}: \rho^2 - 4\sqrt{2} \, \rho \left(\frac{\cos\theta}{\sqrt{2}} + \frac{\sin\theta}{\sqrt{2}}\right) + 4 = 0$
 $\iff \mathcal{C}: \rho^2 - 4\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \, \rho + 4 = 0$
 $\iff \mathcal{C}: \rho = \frac{1}{2} \left(4\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \pm \sqrt{32 \, \cos^2\left(\theta - \frac{\pi}{4}\right) - 16}\right)$
 $\iff \mathcal{C}: \rho = 2\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \pm \sqrt{8 \, \left(1 - \sin^2\left(\theta - \frac{\pi}{4}\right)\right) - 4}$
 $\iff \mathcal{C}: \rho = 2\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \pm \sqrt{4 - 8 \, \sin^2\left(\theta - \frac{\pi}{4}\right)}$
 $\iff \mathcal{C}: \rho = 2\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \pm 2\sqrt{1 - 2 \, \sin^2\left(\theta - \frac{\pi}{4}\right)}$
 $\iff \mathcal{C}: \rho = 2\sqrt{2} \, \cos\left(\theta - \frac{\pi}{4}\right) \pm 2\sqrt{1 - 2 \, \sin^2\left(\theta - \frac{\pi}{4}\right)}$

Da equação acima, que relaciona as coordenadas polares ρ e θ de um ponto de \mathcal{C} , obtemos que:

•
$$1-2 \operatorname{sen}^2\left(\theta-\frac{\pi}{4}\right)=0 \iff \operatorname{sen}\left(\theta-\frac{\pi}{4}\right)=\pm\frac{\sqrt{2}}{2} \iff \theta-\frac{\pi}{4}=\pm\frac{\pi}{4}$$

$$\iff \theta=0 \quad \text{ou} \quad \theta=\frac{\pi}{2},$$
• $1-2 \operatorname{sen}^2\left(\theta-\frac{\pi}{4}\right)>0 \iff \left|\operatorname{sen}\left(\theta-\frac{\pi}{4}\right)\right|<\frac{\sqrt{2}}{2} \iff \theta-\frac{\pi}{4}\in\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$

$$\iff \theta\in\left(0,\frac{\pi}{2}\right).$$

Observe que as retas $\theta = 0$ (\iff y = 0) e $\theta = \frac{\pi}{2}$ (\iff x = 0) tangenciam o círculo \mathcal{C} nos pontos $(2,0)_{\text{OXY}}$ e $(0,2)_{\text{OXY}}$, respectivamente.

Logo, a equação polar do arco C_1 de C, que liga os pontos (0,2) e (2,0) e contém o ponto $(2-\sqrt{2},2-\sqrt{2})$, é dada por:

$$\mathcal{C}_1: \rho_1(\theta) = 2\sqrt{2}\,\cos\left(\theta - \frac{\pi}{4}\right) - 2\sqrt{1 - 2\,\text{sen}^2\left(\theta - \frac{\pi}{4}\right)}\,, \quad \theta \in \left[0, \frac{\pi}{2}\right],$$

e a equação polar do arco C_2 de C, que liga os pontos (0,2) e (2,0) e não contém o ponto $(2-\sqrt{2},2-\sqrt{2})$, é dada por:

$$\mathcal{C}_2: \rho_2(\theta) = 2\sqrt{2}\,\cos\left(\theta - \frac{\pi}{4}\right) + 2\sqrt{1 - 2\,\text{sen}^2\left(\theta - \frac{\pi}{4}\right)}\,, \quad \theta \in \left[0, \frac{\pi}{2}\right].$$

Assim, em coordenadas polares, a região \mathcal{R} é a união das regiões \mathcal{R}_1 e \mathcal{R}_2 ,

$$\mathcal{R}_1: \begin{cases} \rho_1(\theta) \leq \rho \leq \rho_2(\theta) \\ 0 \leq \theta \leq \theta_0 \end{cases} , \qquad \mathcal{R}_2: \begin{cases} \rho_1(\theta) \leq \rho \leq 2 \, \text{cossec} \, \theta \\ \theta_0 \leq \theta \leq \frac{\pi}{4} \end{cases}$$

Fig. 62: Região ${\cal R}$

onde tg
$$\theta_0 = \frac{2}{4} = \frac{1}{2}$$
, $\theta_0 \in \left(0, \frac{\pi}{2}\right)$.