

8286/8287 **OCTAL BUS TRANSCEIVER**

- Data Bus Buffer Driver for iAPX 86,88, MCS-80TM, MCS-85TM, and MCS-48TM **Families**
- High Output Drive Capability for **Driving System Data Bus**
- Fully Parallel 8-Bit Transceivers

- **3-State Outputs**
- 20-Pin Package with 0.3" Center
- No Output Low Noise when Entering or Leaving High Impedance State

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

Figure 1. Logic Diagrams

Figure 2. Pin Configurations

□ vcc

⊢η **Β**δι

T 187

B₂

__ B₃

B₄

B₅

Table 1. Pin Description

Symbol	Туре	Name and Function			
T	I	Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH, it configures the transceiver's B_0 – B_7 as outputs with A_0 – A_7 as inputs. T LOW configures A_0 – A_7 as the outputs with B_0 – B_7 serving as the inputs.			
ŌĒ		Output Enable: OE is an input control signal used to enable the appropriate output driver (as selected by T) onto its respective bus. This signal is active LOW.			
A ₀ -A ₇	I/O	Local Bus Data Pins: These pins serve to either present data to or accept data from the processor's local bus depending upon the state of the T pin.			
B ₀ -B ₇ (8286) B ₀ -B ₇ (8287)	1/0	System Bus Data Pins: These pins serve to either present data to or accept data from the system bus depending upon the state of the T pin.			

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with high impedance outputs. With T active HIGH and \overrightarrow{OE} active LOW, data at the A_0-A_7 pins is driven onto the B_0-B_7 pins. With T inactive LOW and \overrightarrow{OE} active LOW, data at the

 $\rm B_0-B_7$ pins is driven onto the $\rm A_0-A_7$ pins. No output low glitching will occur whenever the transceivers are entering or leaving the high impedance state.

TEST LOAD CIRCUITS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	
All Output and Supply Voltages	
All Input Voltages	1.0V to + 5.5V
Power Dissipation	

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS ($V_{CC} = +5V \pm 10\%$, $T_A = 0$ °C to 70°C)

Symbol	Parameter	Min	Max	Units	Test Conditions
V _C	Input Clamp Voltage		-1	٧	I _C = -5 mA
Icc	Power Supply Current—8287 —8286		130 160	mA mA	
l _F	Forward Input Current		-0.2	mA	V _F = 0.45V
IR	Reverse Input Current		50	μΑ	V _R = 5.25V
V _{OL}	Output Low Voltage —B Outputs —A Outputs		.45 .45	V	I _{OL} = 32 mA I _{OL} = 16 mA
V _{OH}	Output High Voltage —B Outputs —A Outputs	2.4 2.4		V V	I _{OH} = -5 mA I _{OH} = -1 mA
I _{OFF}	Output Off Current Output Off Current		I _F		V _{OFF} = 0.45V V _{OFF} = 5.25V
V _{IL}	Input Low Voltage —A Side —B Side		0.8 0.9	V V	V _{CC} = 5.0V, See Note 1 V _{CC} = 5.0V, See Note 1
V _{IH}	Input High Voltage	2.0		V	V _{CC} = 5.0V, See Note 1
C _{IN}	Input Capacitance		12	pF	F = 1 MHz V _{BIAS} = 2.5V, V _{CC} = 5V T _A = 25°C

NOTE:

A.C. CHARACTERISTICS ($V_{CC} = +5V \pm 10\%$, $T_A = 0$ °C to 70°C)

Loading: B Outputs— I_{OL} = 32 mA, I_{OH} = -5 mA, C_L = 300 pF A Outputs— I_{OL} = 16 mA, I_{OH} = -1 mA, C_L = 100 pF

Symbol	Parameter	Min	Max	Units	Test Conditions
TIVOV	Input to Output Delay				
	Inverting	5	22	ns	(See Note 1)
	Non-Inverting	5	30	ns	
TEHTV	Transmit/Receive Hold Time	5		ns	
TTVEL	Transmit/Receive Setup	10		ns	_
TEHOZ	Output Disable Time	5	18	ns	
TELOV	Output Enable Time	10	30	ns	
TILIH, TOLOH	Input, Output Rise Time		20	ns	From 0.8 V to 2.0V
TIHIL, TOHOL	Input, Output Fall Time		12	ns	From 2.0V to 8.0V

NOTE

7-101 AFN-01506B

^{1.} B Outputs— I_{OL} = 32 mA, I_{OH} = -5 mA, C_L = 300 pF; A Outputs— I_{OL} = 16 mA, I_{OH} = -1 mA, C_L = 100 pF.

See waveforms and test load circuit on following page.

WAVEFORMS

NOTE:

1. All timing measurements are made at 1.5V unless otherwise noted.

Output Delay versus Capacitance