

ANÁLISIS EXPLORATORIO Y LIMPIEZA DE DATOS DE PACIENTES CON COVID-19: UN ENFOQUE EN CONDICIONES PREEXISTENTES Y RESULTADOS

CLÍNICOS

- PÉREZ MENDOZA LEISLY
- VALLE NÚÑEZ GABRIELA

RESUMEN DE CONTENIDOS

INTRODUCCIÓN

OBJETIVOS

PLANTEAMIENTO DEL PROBLEMA

DATASET

ANÁLISIS DE DATOS

CONCLUSIÓN

El COVID-19, originado por el SARS-CoV-2, causó una crisis global que desbordó sistemas de salud y aumentó desigualdades. Este proyecto analiza datos de más de un millón de pacientes en México diagnosticados en 2020, para identificar cómo factores demográficos y clínicos influyen en la gravedad de la enfermedad.

A través de la limpieza de datos y análisis exploratorios, se busca sentar las bases para investigaciones que ayuden a predecir riesgos y desenlaces clínicos.

INTRODUCCIÓN

OBJETIVOS

OBJETIVO GENERAL

El objetivo general de este proyecto es investigar cómo las condiciones de salud preexistentes influyen en la probabilidad de mortalidad y contagio en pacientes con COVID-19 y qué factores de riesgo están asociados a la hospitalización. Esto permitirá identificar patrones y factores críticos que pueden guiar las políticas de salud pública y las estrategias de intervención.

Evaluar la relación entre las comorbilidades y el desenlace del paciente (alta o defunción) para determinar si ciertas condiciones preexistentes influyen en los resultados de los pacientes con COVID-19.

Limpiar y organizar las columnas seleccionadas para garantizar que los datos estén listos para su análisis.

Investigar diferencias en la tasa de mortalidad entre diferentes grupos de edad y género.

PLANTEAMIENTO DEL PROBLEMA

El problema es la falta de comprensión sobre cómo comorbilidades como diabetes e hipertensión, además del sexo y la edad afectan el riesgo de complicaciones graves en pacientes con COVID-19 en México. Se requiere analizar estos datos para clasificar a los pacientes en grupos de riesgo y mejorar la atención médica y las estrategias preventivas.

DATASET

- En las características Booleanas:
 - ∘ 1 significa "sí".
 - 2 significa "no".
 - Los valores 97, 98 y 99
 representan datos faltantes.

sex	int64
patient_type	int64
date_died	object
intubed	int64
pneumonia	int64
age	int64
pregnant	int64
diabetes	int64
copd	int64
asthma	int64

inmsupr	int64
hipertension	int64
other_disease	int64
cardiovascular	int64
obesity	int64
renal_chronic	int64
tobacco	int64
clasiffication_final	int64
icu	int64

• El dataset tiene por nombre "COVID-19 Dataset", este fue recuperado de la plataforma de kaggle en el siguiente link:

<u>https://www.kaggle.com/datasets/meirnizri/covid19-dataset</u>

 El dataset fue proporcionado por el gobierno mexicano. Contiene una gran cantidad de información anonimizada sobre pacientes, incluyendo condiciones preexistentes. El dataset crudo consta de 21 características únicas y 1,048,575 pacientes únicos.

ANÁLISIS DE DATOS

Para la limpieza, resolución y análisis exploratorio de los datos decidimos hacer uso del archivo csv para trabajarlo dentro de Jupyter Notebook. Tal como vimos previamente el archivo cuenta con 21 columnas y 1,048,575. La lectura y carga de datos se hizo a través de un bloque Try-Exception para cubrir posibles errores.

```
1 try:
2  # Cargamos el archivo, para su principal lectura y procesamiento de datos.
3  df = pd.read_csv(dataset + 'Covid Data.csv')
4  display(df)
5 except Exception as e:
6  print("Algo ocurrio con la lectura del archivo verifica la ruta")
7  print(f'Error: {e}')
8 else:
9  print("Lectura finalizada")
```

	USMER	MEDICAL_UNIT	SE	X PATIENT_TYPE	DATE_DIED	INTUBED	PNEUMONIA	AGE	PREGNANT	DIABETES	 ASTHMA	INMSUPR	HIPERTENSION	OTHER_DISEASE	CARDIOVASCULAR	OBESITY	RENAL_CHRONIC	товассо	CLASIFFICATION_FINA	AL ICU
0	2	1		1 1	03/05/2020	97	1	65	2	2	 2	2	1	2	2 2	2	2	2 2		3 97
1	2	1		2 1	03/06/2020	97	1	72	97	2	 2	2	1	2	2 2	1		2		5 97
2	2	1		2 2	09/06/2020	1	2	55	97	1	 2	2	2	2	2 2	2	2	2 2		3 2
3	2	1		1 1	12/06/2020	97	2	53	2	2	 2	2	2	2	2 2	2	2	2 2		7 97
4	2	1		2 1	21/06/2020	97	2	68	97	1	 2	2	1	2	2 2	2	2	2 2		3 97
1048570	2	13	3	2 1	9999-99- 99	97	2	40	97	2	 2	2	2	2	2 2	2	2	2 2		7 97
1048571	1	13	3	2 2	9999-99- 99	2	2	51	97	2	 2	2	1	2	2 2	2	2	2 2		7 2
1048572	2	13	3	2 1	9999-99- 99	97	2	55	97	2	 2	2	2	2	2 2	2	2	2 2		7 97
1048573	2	13	}	2 1	9999-99- 99	97	2	28	97	2	 2	2	2	2	2 2	2	2	2 2		7 97
1048574	2	13	3	2 1	9999-99- 99	97	2	52	97	2	 2	2	2	2	2 2	2	2	2 2		7 97

1048575 rows × 21 columns Lectura finalizada

CARACTERISTICAS DE LOS DATOS

Debido a las características del dataset, en un principio no encontramos valores nulos ya que recibieron un tratamiento específico rellenandolos con valores específicos, en cuanto al tipo de datos la mayoria se maneja como int y solo tenemos un Object, pero para el analisis adecuado hicimos algunos cambios.

Tipos de datos por	columna:
USMER	int64
MEDICAL_UNIT	int64
SEX	int64
PATIENT_TYPE	int64
DATE_DIED	object
INTUBED	int64
PNEUMONIA	int64
AGE	int64
PREGNANT	int64
DIABETES	int64
COPD	int64
ASTHMA	int64
INMSUPR	int64
HIPERTENSION	int64
OTHER_DISEASE	int64
CARDIOVASCULAR	int64
OBESITY	int64
RENAL_CHRONIC	int64
TOBACCO	int64
CLASIFFICATION_FINA	
ICU	int64
dtype: object	

Cantidad de datos	nulos por	columna:	
	Nulos	Porcentaje	(%)
USMER	0		0.0
MEDICAL_UNIT	0		0.0
SEX	0		0.0
PATIENT_TYPE	0		0.0
DATE_DIED	0		0.0
INTUBED	0		0.0
PNEUMONIA	0		0.0
AGE	0		0.0
PREGNANT	0		0.0
DIABETES	0		0.0
COPD	0		0.0
ASTHMA	0		0.0
INMSUPR	0		0.0
HIPERTENSION	0		0.0
OTHER_DISEASE	0		0.0
CARDIOVASCULAR	0		0.0
OBESITY	0		0.0
RENAL_CHRONIC	0		0.0
TOBACCO	0		0.0
CLASIFFICATION_FIN	IAL 0		0.0
ICU	0		0.0

LIMPIEZA Y TRANSFORMACIÓN

Se cambio el nombre de las variables para seguir la nomenclatura snake_case

```
USMER MEDICAL_UNIT SEX PATIENT_TYPE DATE_DIED INTUBED PNEUMONIA AGE PREGNANT DIABETES ... ASTHMA INMSUPR HIPERTENSION OTHER_DISEASE CARDIOVASCULAR OBESITY RENAL_CHRONIC TOBACCO CLASIFFICATION_FINAL ICU

1 # Convertir nombres de columnas a snake_case
2 df_1.columns = df.columns.str.lower().str.replace(' ', '_')
3 df_1.head()
```

usmer medical_unit sex patient_type date_died intubed pneumonia age pregnant diabetes ... asthma inmsupr hipertension other_disease cardiovascular obesity renal_chronic tobacco clasiffication_final icu

```
1 # Reemplazar los valores 97,98 y 99 por NaN en todas las columnas
2 df_1.replace([97, 98, 99], np.nan, inplace=True)
3
4 # En el análisis 0 tiene sentido para los datos faltantes
5 df_1.fillna(0, inplace=True)
6
7 # Reemplazar '9999-99-99' con NaT antes de convertir
8 df_1['date_died'].replace('9999-99-99', np.nan, inplace=True)
9 #Validar que los datos manejados solo sean de tipo date
10 df_1['date_died'] = pd.to_datetime(df_1['date_died'], errors='coerce')
11
12 datos_nulos={
13 | 'date_died': pd.to_datetime(np.random.uniform(df_1['date_died'].min().value,
14 }
15
16 df_1 = df_1.astype(diccionario de_conversion)
17 df_1.fillna(datos_nulos,inplace=True)
18
19 #explorando el dataset
20 resumen_dataframe(df_1)
```

En cuanto a los valores como 97,98 y 99 se transformaron en NaN, para posteriormente transformarlos en 0 para tener un menor sesgo en el analisis posterior, para el caso de las fechas igualmente los valores pro default se pasaron a NaN, se transformaron en tipo date time y finalmente los valores nulos se rellenaron con fechas random.

LIMPIEZA Y TRANSFORMACIÓN

Pudimos notar que habian datos duplicados por lo que se hizo uso de el borrado de duplicados quedando unicamente 213,912 datos


```
1 # Detectar valores duplicados
2 df_1.drop_duplicates(inplace=True)
3 resumen_dataframe(df_1)

RESUMEN GENERAL DEL DATAFRAME

Dimensiones del DataFrame: 213912 filas y 21 columnas
```

Se eliminaron las variables usmr y medical_unit ya que dentro de nuestro enfoque no se encontro relevancia de mantener esta información.

```
[112] 1 #Eliminar columnas no necesarias del DataFrame y guardarlo en una nueva variable
2 df_1 = df_1.drop(columns=['usmer', 'medical_unit'])
3 df_1.head(10)
```

sex patient_type date_died intubed pneumonia age pregnant diabetes copd asthma inmsupr hipertension other_disease cardiovascular obesity renal_chronic tobacco clasiffication_final icu

La mayoria de las variables describian situaciones que podian ser mapeadas para una mejor comprensión y analisis, en el caso de la clasificación del diagnostico la variable se mapeo con valores como Positivo-leve, moderado y grave o desconocido segun el valor asociado. En cuanto al sexo se mapeo a femenino y masculino y el tipo de paciente a valores como alta y hospitalización.

```
1 # Mapear la variable clasificación
2 def map_classification(x):
3    if x >= 4:
4         return 'Negativo o Inconcluso'
5    elif x == 1:
6         return 'Positivo - Leve'
7    elif x == 2:
8         return 'Positivo - Moderado'
9    elif x == 3:
10         return 'Positivo - Grave' # No cambia el valor 3
11    return x
12
13 df_1['clasiffication_final'] = df_1['clasiffication_final'].apply(map_classification)
```

```
def mapear_variables(df):
    # Mapeo para la variable 'sex'
    if df['sex'].dtype == 'int64': # Verifica si los valores son numéricos
    | df['sex'] = df['sex'].map({1: 'Femenino', 2: 'Masculino'})

# Mapeo para la variable 'patient_type'
    if df['patient_type'].dtype == 'int64': # Verifica si los valores son numéricos
    | df['patient_type'] = df['patient_type'].map({1: 'Alta', 2: 'Hospitalizado'})

return df

# Aplicar la función al DataFrame solo una vez
df_1 = mapear_variables(df_1)
df_1.head()
```

LIMPIEZA Y TRANSFORMACIÓN

Finalmente las variables que solo representaban si padecia o no dicha condición se mapeo a si, no y desconocido si tenia un valor 0. De esta forma podemos interpretar y comprender mejor la información sin tener que consultar continuamente cadauna de las características y entender que representa cada número.


```
1 def mapeo int(df):
2 # Mapeo para las variables binarias (1 = Si, 2 = No)
    binarias = ['intubed', 'pneumonia', 'pregnant', 'diabetes', 'copd', 'asthma', 'inmsupr', 'hipertension',
                     'other_disease','cardiovascular','obesity','renal_chronic','tobacco']
    for col in binarias:
        df[col] = pd.to numeric(df[col], errors='coerce') # Convierte a numérico, reemplaza errores con NaN
        df[col] = df[col].fillna(0).astype(int) # Reemplaza NaN con 0 y convierte a int
        df[col] = df[col].map({0: 'Desconocido', 1: 'Sí', 2: 'No'})
10
    return df
    # Aplicar la función al DataFrame
13 df 1 = mapeo int(df 1)
14 df 1.head()
```


OBTENIENDO RESPUESTAS

Para poder entender los datos que limpiamos hicimos algunas preguntas que respondimos através de diversas exploraciones. Un factor interesante era poder comprender las edades de los pacientes que se encontraban en el dataset obtenido, pudimos notar que habia pacientes desde 0 años (niñ@s de meses) hasta una persona de 121 años.

Estadísticas de la columna age:
Media: 51.78696847301694
Desviación estándar: 19.63103931349849

Mínimo: 0 Máximo: 121

La media se concentro en los 51-52 años por lo que a partir de esto pudimos notar que este podria ser la parte de la población que podria sufrir más riesgo de contagio.

OBTENIENDO RESPUESTAS

Otro factor interesante era saber cuál era el porcentaje del sexo femenino y masculino que habia presente en los datos, para esto agrupamos los datos dependiendo el sexo y pudimos notar que el mayor porcentaje era masculino

	Sexo	Conteo	Proporción (%)
0	Femenino	99765	46.638337
1	Masculino	114147	53.361663

Dentro del datasdet habia diferentes grados de covid que iban desde leve hasta grave y descubrimos que la mayoria de pacientes tenia covid de forma grave

Diagnóstico Cantidad de Pacientes

0	Positivo - Leve	4672
1	Positivo - Moderado	1787
2	Positivo - Grave	89483

Tipo de Atención Clasificación de COVID Cantidad de Pacientes

0	Alta	Negativo o Inconcluso	62470
1	Alta	Positivo - Grave	32112
2	Alta	Positivo - Leve	2789
3	Alta	Positivo - Moderado	166
4	Hospitalizado	Negativo o Inconcluso	55500
5	Hospitalizado	Positivo - Grave	57371
6	Hospitalizado	Positivo - Leve	1883
7	Hospitalizado	Positivo - Moderado	1621

De esas personas con diferentes diagnosticos fueron o dadas de alta o hospitalizados segun su diagnóstico

Tipo de Atención Cantidad de Pacientes

0	Hospitalizado	116375
1	Alta	97537

OBTENIENDO RESPUESTAS

Un 50% de los contagiados ya tenian como padecimiento neumonia y solo el 1.45% de las mujeres estaba embarazada.


```
1 # Filtrar los pacientes diagnosticados con COVID (Positivo - Leve, Moderado, Grave)
2 covid_diagnosticados = df_1[df_1['clasiffication_final'].isin(['Positivo - Leve', 'Positivo - Moderado', 'Positivo - Grave'])]
3
4 # Calcular la cantidad de pacientes con neumonía dentro del grupo de diagnosticados con COVID
5 pacientes_con_neumonia = covid_diagnosticados[covid_diagnosticados['pneumonia'] == 'Sí'].shape[0]
6
7 # Calcular el total de pacientes diagnosticados con COVID
8 total_covid_diagnosticados = covid_diagnosticados.shape[0]
9
10 # Calcular el porcentaje
11 porcentaje_con_neumonia = (pacientes_con_neumonia / total_covid_diagnosticados) * 100
12
13 # Mostrar el resultado
14 print(f"Porcentaje de pacientes diagnosticados con COVID que ya tenían neumonía: {porcentaje_con_neumonia:.2f}%")
```

Porcentaje de pacientes diagnosticados con COVID que ya tenían neumonía: 50.43%

```
1 # Calcular el número total de pacientes en el dataset
2 total_pacientes = df_1.shape[0]
3
4 # Calcular el número de pacientes embarazadas (asumiendo que 'Sí' indica embarazo)
5 pacientes_embarazadas = df_1[df_1['pregnant'] == 'Sí'].shape[0]
6
7 # Calcular el porcentaje de pacientes embarazadas
8 porcentaje_embarazadas = (pacientes_embarazadas / total_pacientes) * 100
9
10 # Mostrar el resultado utilizando display() para una mejor visualización
11 print(f"Porcentaje de pacientes embarazadas en el dataset: {porcentaje_embarazadas:.2f}%")
12
```

Porcentaje de pacientes embarazadas en el dataset: 1.41%

CONCLUSIÓN

Analizar cómo las condiciones preexistentes influyen en la mortalidad y hospitalización por COVID-19 aportará información clave para mejorar la respuesta a la pandemia, proteger a las poblaciones vulnerables y optimizar la gestión de recursos.

