BIOLOGIA/BIOMEDICINA

BIOESTATÍSTICA

Prof^a. Letícia Raposo profleticiaraposo@gmail.com

OBJETIVOS DA AULA

- Compreender os principais conceitos de estatística descritiva bivariada;
- Escolher o(s) método(s) adequado(s), incluindo tabelas, gráficos e/ou medidas-resumo, para descrever o comportamento das variáveis;
- Estudar as associações entre duas variáveis qualitativas por meio de tabelas de contingência e medidas de associação;

OBJETIVOS DA AULA

- Estudar as correlações entre duas variáveis quantitativas por meio de tabelas de distribuição conjunta de frequências, gráficos e medidas de correlação;
- Gerar tabelas, gráficos e medidas-resumo por meio do R.

ESTATÍSTICA DESCRITIVA

ANÁLISE BIVARIADA

TABELAS DE DISTRIBUIÇÃO CONJUNTA DE FREQUÊNCIAS

Tabelas de contingência ou tabelas de dupla entrada

Dados			
Família	Nível de instrução Uso de programas		
1	Nenhum	Não 🔍	
2	Segundo grau	Não	
3	Primeiro grau	Sim	
4	Primeiro grau	Sim	
5	Segundo grau	Sim	
:	:	:	

Uso de	Nível de instrução			
programas	Nenhum	Primeiro grau	Segundo grau	
Sim	· · · · · · · · · · · · · · · · · · ·	<u> </u>	,	
-Não		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	·	

^{*} Programas alimentares

TABELAS DE DISTRIBUIÇÃO CONJUNTA DE FREQUÊNCIAS

Uso de	Nível de intrução do chefe da casa			Total
programas	Nenhum	Fundamental	Médio	Total
Sim	31	22	25	78
Não	7	16	19	42
Total	38	38	44	120

TABELAS DE DISTRIBUIÇÃO CONJUNTA DE FREQUÊNCIAS

Uso de	Nível de intrução do chefe da casa			Total
programas	nenhum	fundamental	médio	Total
Sim	31 (39,7)	22 (28,2)	25 (32,1)	78 (100,0)
Não	7 (16,7)	16 (38,1)	19 (45,2)	42 (100,0)
Total	38 (31,7)	38 (31,7)	44 (36,7)	120 (100,0)

PERFIL LINHA

Nota: os números entre parênteses são pordentagens em relação aos totais das linhas.

Uso de	Nível de intrução do chefe da casa			Total
programas	nenhum	fundamental	médio	Total
Sim	31 (81,6)	22 (57,9)	25 (56,8)	78 (65,0)
Não	7 (18,4)	16 (42,1)	19 (43,2)	42 (35,0)
Total	38 (100,0)	38 (100,0)	44 (100,0)	120 (100)

PERFIL COLUNA

Nota: os números entre parênteses são pordentagens em relação aos totais das colunas.

GRÁFICO DE BARRAS MÚLTIPLAS REPRESENTAÇÕES GRÁFICAS GRÁFICO DE BARRAS EMPILHADAS

GRAFICO DE BARRAS MULTIPLAS

<u>mais de uma distribuição de frequências,</u> ou Representam frequências <u>distribuições</u> conjuntas de duas variáveis

<u>qualitativas</u>.

ÚTIL PARA COMPARAR

GRAFICO DE BARRAS EMPILHADAS

ÚTIL PARA ESTUDAR A EVOLUÇÃO DOS SUBGRUPOS

ESTATÍSTICA QUI-QUADRADO

- Mede a <u>discrepância entre uma tabela de contingência</u> <u>observada e uma tabela de contingência esperada</u>, partindo da hipótese de que não há associação entre as variáveis estudadas.
- Se a distribuição de frequências observadas for exatamente igual à distribuição de frequências esperadas, o resultado da estatística qui-quadrado é zero.
- Um <u>valor baixo de χ^2 </u> indica <u>independência</u> entre as variáveis.

ESTATÍSTICA QUI-QUADRADO

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

- O_{ij} : quantidade de observações na i-ésima categoria da variável X e na j-ésima categoria da variável Y;
- E_{ij} : frequência esperada de observações na i-ésima categoria da variável X e na j-ésima categoria da variável Y;
- I: quantidade de categorias (linhas) da variável X;
- J: quantidade de categorias (colunas) da variável Y.

$$O_{ij} = 51$$

$$E_{ij} = \frac{56 \times 80}{100} = 44.8$$

Gênero X Acidente de carro

	Sem acidente Acidente		Total
Mulheres	51	5	56
Homens	29	15	44
Total	80	20	100

ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS QUANTITATIVAS

Avaliar se existe relação entre as variáveis quantitativas estudadas, além do grau de correlação entre elas.

<u>Tabela de distribuição conjunta de frequências</u>: mesmo procedimento das variáveis qualitativas.

- Variáveis discretas;
- Variáveis contínuas agrupadas em intervalos de classe.

- Representa os valores das variáveis X e Y em um plano cartesiano.
- Permite avaliar:
 - Se existe ou não alguma <u>relação entre as variáveis</u> em estudo;
 - O <u>tipo de relação</u> entre as duas variáveis, isto é, a direção em que a variável Y aumenta ou diminui em função da variável de X;
 - O grau de relação entre as variáveis;
 - A <u>natureza da relação</u> (linear, exponencial, etc).

Forte correlação positiva

Moderada correlação positiva

Nenhuma correlação

Moderada correlação negativa

Forte correlação negativa

Correlação curvilínea

Relação linear

Quadrática

Seno

https://www.data-to-viz.com/graph/scatter.html

Dicas:

Evite o overplotting;

- Reduza o tamanho dos pontos;
- Usar transparência;
- Densidade 2D;
- Amostrar apenas 5% dos dados;
- Destacar algum grupo;
- Colorir os grupos.

Dicas:

Não se esqueça de mostrar subgrupos se existirem. De fato, eles podem revelar padrões ocultos importantes em seus dados, como no caso do paradoxo de Simpson.

MEDIDAS DE CORRELAÇÃO

<u>Covariância:</u> mede a <u>variação conjunta</u> entre duas variáveis quantitativas X e Y.

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

 X_i : i-ésimo valor de X;

 Y_i : i-ésimo valor de Y;

 \overline{X} : média dos valores de X_i ;

 \overline{Y} : média dos valores de Y_i ;

n: tamanho da amostra.

A DEFICIÊNCIA DA COVARIÂNCIA É QUE SEU VALOR CALCULADO DEPENDE DIRETAMENTE DAS UNIDADES DE MEDIDA.

COEFICIENTE DE CORRELAÇÃO DE PEARSON

$$\rho = \frac{cov(X,Y)}{S_X S_Y} = \frac{\frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}}{S_X S_Y}$$

1 0 1

SEU VALOR É INDEPENDENTE DA UNIDADE MEDIDA.

Correlação <u>linear</u> negativa perfeita entre as variáveis X e Y Não existe correlação <u>linear</u> entre as variáveis X e Y

Correlação <u>linear</u> positiva perfeita entre as variáveis X e Y

COEFICIENTE DE CORRELAÇÃO DE POSTOS DE SPEARMAN

Indicado quando:

- Os dados <u>não formam uma nuvem comportada</u>, com alguns pontos bem distantes dos demais;
- Parece existir uma <u>relação crescente ou decrescente</u> num formato de curva;
- Existe uma <u>ordenação clara</u>, por exemplo, escores numa escala de 1 a 20.

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_1^2}{(n^3 - n)}$$

$$d_i = \text{(posto de } x_i \text{ dentre os valores de } x\text{)} - \text{(posto de } y_i \text{ nos valores de } y\text{)}$$

ASSOCIAÇÃO ENTRE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS

- É comum analisar o que acontece com a variável quantitativa dentro de cada categoria da variável qualitativa.
- As <u>medidas-resumo</u> podem ser calculadas para a variável <u>quantitativa</u> em cada <u>categoria</u> da variável <u>qualitativa</u>.

HISTOGRAMA

- O histograma permite comparar a distribuição de algumas variáveis.
- Não compare mais de 3 ou 4, isso tornaria a figura desordenada e ilegível. Essa comparação pode ser feita mostrando as duas variáveis no mesmo gráfico.

https://www.data-to-viz.com/graph/histogram.html

GRÁFICO DE DENSIDADES

https://www.data-to-viz.com/graph/density.html

BOXPLOT

Pode resumir a distribuição de uma variável numérica para vários grupos. O problema é que resumir também significa perder informação, e isso pode ser uma armadilha.

É fácil concluir que o grupo <u>C tem um valor maior que os outros</u>. No entanto, <u>não</u> podemos ver a <u>distribuição</u> <u>de pontos</u> em cada grupo ou seu <u>número de observações</u>.

BOXPLOT

Se a quantidade de dados com a qual você está trabalhando não for muito grande, a adição de tremulação ("jitter") em cima do boxplot poderá tornar o gráfico mais interessante.

O grupo C tem uma amostra pequena comparada aos outros grupos. Além disso, parece que o grupo B tem uma distribuição bimodal: os pontos são distribuídos em dois grupos: em torno de y = 18 e y = 13.

GRÁFICO DE VIOLINO

Quando a <u>amostra é grande</u>, usar o <u>"jitter" não</u> é mais uma opção, pois os pontos se sobrepõem, tornando a figura não-interpretável. Uma alternativa é o <u>gráfico do violino</u>, que descreve a distribuição

dos dados para cada grupo.

Maneira poderosa de exibir informações, porém são subutilizadas em comparação com os *boxplots*.

SITES LEGAIS PARA GRÁFICOS

https://www.r-graph-gallery.com/

https://www.data-to-viz.com/index.html

ARTE DO DIA FEITA EM R

https://www.r-graph-gallery.com/portfolio/data-art/

REFERÊNCIAS BIBLIOGRÁFICAS

- BARBETTA, Pedro Alberto. Estatística aplicada às ciências sociais. Ed. UFSC, 2008.
- DANCEY, Christine P.; REIDY, John G.; ROWE, Richard. Estatística Sem Matemática para as Ciências da Saúde. Penso Editora, 2017.
- MAGNUSSON, Willian E. Estatística [sem] matemática: a ligação entre as questões e a análise. Planta, 2003.

