# Toddler Linear Algebra

# Jes Modian

# May 13, 2024

#### Abstract

Linear Algebra is the study of linear maps on finite dimensional vector spaces. It involves stuff like matrices and vectors, and helps us solve systems of linear equations, find equilibrium probability in a Markov chain, and much more. Linear Algebra is said to be the most important subject in undergraduate mathematics, as it appears everywhere. However, when I am learning it, things like  $\det(AB) = \det(A) \det(B)$  often appear out of nowhere and I am just told to accept it. So I am going to figure them out in this note.

# Contents

| 0 | Pre  | liminaries                                            | 2 |
|---|------|-------------------------------------------------------|---|
|   | 0.1  | Properties of equality                                | 2 |
|   | 0.2  | Summation notation                                    | 2 |
| 1 | Intr | roduction                                             | 3 |
|   | 1.1  | Complex numbers                                       | ô |
|   | 1.2  | Scalars and vectors                                   | 3 |
|   | 1.3  | Vector operations                                     | 9 |
|   | 1.4  | Matrices                                              | 1 |
|   |      | 1.4.1 Basics                                          | 1 |
|   |      | 1.4.2 Matrix multiplication                           | 2 |
|   |      | 1.4.3 Transpose                                       | 3 |
|   |      | 1.4.4 Inverse matrix                                  | 9 |
|   | 1.5  | Elementary row operations                             | 1 |
|   |      | 1.5.1 Definition                                      | 1 |
|   |      | 1.5.2 Elementary matrix                               | 2 |
|   |      | 1.5.3 Row echelon form                                | 4 |
|   | 1.6  | System of linear equations                            | 7 |
|   |      | 1.6.1 Elementary operations                           | 8 |
|   |      | 1.6.2 Augmented matrix                                | 9 |
|   |      | 1.6.3 Solving a linear system by Gaussian elimination |   |
|   |      | 1.6.4 Matrix vector equation                          |   |
|   |      | 1.6.5 Homogeneous equations                           |   |
|   | 1.7  | Invertible matrix theorem                             |   |
|   | 1.0  | D-tiit                                                |   |

# 0 Preliminaries

# 0.1 Properties of equality

Properties of equality (used for solving systems of equation):

- 1. a = a for any object a (Reflexive property)
- 2. If a = b and c = d, then a + c = b + d. (Addition of two equations / Additive property)
- 3. If a = b and c = d, then a c = b d. (Subtraction of two equations / Subtractive property)
- 4. If a = b and c = d, then ac = bd. (Multiplication of two equations / Multiplicative property)
- 5. If a = b and  $c = d \neq 0$ , then  $\frac{a}{c} = \frac{b}{d}$ . (Division of two equations / Divisive property)
- 6. If a = b, then f(a) = f(b) (Taking function of both sides of an equation)

From (4) we can multiply an equation by any constant, say multiply a = b by c to get ac = bc.

- (4) becomes if a = b and c = c, then ac = bc. a = b is true by assumption and c = c by reflexive property, so ac = bc must be true.
- (5) can be inferred from (4) since  $\frac{a}{c}$  is just  $a(\frac{1}{c})$ . Thus we can also divide an equation by a non-zero constant.
- (6) We can take function of both sides of an equation since by definition, function can only have one output for the same input.

Some more properties:

7. If ca = cb and  $c \neq 0$ , then a = b

*Proof.* Divide both sides by c to get 
$$\frac{ca}{c} = \frac{cb}{c}$$
, thus  $a = b$ .

8. If  $a \neq b$  and  $c \neq 0$ , then  $ca \neq cb$ .

*Proof.* The contrapositive is if ca = cb and  $c \neq 0$ , then a = b, which is property (7).

#### 0.2 Summation notation

The summation notation (sigma notation) is used to write sums concisely.

### Definition

For a sequence  $a_m, a_{m+1}, \ldots, a_n$ , the summation of all terms is defined as:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \ldots + a_{n-1} + a_n$$

Here, i (called index) is a dummy variable and can be replaced by any other variable that is not m or n (to avoid conflict).

m and n must be integers because they are term-numbers. If m > n, then there are zero terms to sum up so the summation is zero.

2

#### Example

$$\sum_{i=3}^{6} i^2 = 3^2 + 4^2 + 5^2 + 6^2 = 86$$

$$\sum_{i=3}^{6} 5 = 5 + 5 + 5 + 5 = 20$$

$$\sum_{i=5}^{5} i(i+1) = 5(5+1) = 30$$

$$\sum_{i=8}^{7} i = 0$$

#### Double summation

Let  $a_{i,j}$  be a "2D sequence" term that depends on two variables: i and j. The summation of all terms for  $m \le i \le n$  and  $p_i \le j \le q_i$  is defined as:

$$\sum_{i=m}^{n} \sum_{j=p_i}^{q_i} a_{i,j} = \sum_{j=p_m}^{q_m} a_{m,j} + \sum_{j=p_{m+1}}^{q_{m+1}} a_{m+1,j} + \dots + \sum_{j=p_n}^{q_n} a_{n,j}$$

where  $p_i$  and  $q_i$  may be constants or expressions in terms of i.

Example:

$$\sum_{i=1}^{3} \sum_{j=1}^{2} ij = 1(1) + 1(2) + 2(1) + 2(2) + 3(1) + 3(2) = 18$$

$$\sum_{i=1}^{2} \sum_{i=3i}^{3i+2} \frac{i}{i+j} = \left(\frac{1}{1+3} + \frac{1}{1+4} + \frac{1}{1+5}\right) + \left(\frac{2}{2+6} + \frac{2}{2+7} + \frac{2}{2+8}\right) = \frac{37}{60} + \frac{121}{180} = \frac{58}{45}$$

#### Properties

Let c be a constant.

1. 
$$\sum_{i=1}^{n} c = cn$$
 (constant summation)

Proof. 
$$\sum_{i=1}^{n} c = \underbrace{c + c + \ldots + c}_{n \text{ times}} = cn$$

2. 
$$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$$
 (constant rule)

Proof. 
$$\sum_{i=m}^{n} ca_i = ca_m + ca_{m+1} + \ldots + ca_{n-1} + ca_n = c(a_m + a_{m+1} + \ldots + a_{n-1} + a_n) = c\sum_{i=m}^{n} a_i$$

3. 
$$\sum_{i=m}^{n} a_i \pm \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i \pm b_i)$$
 (distributive property)

Proof.

$$\sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i = (a_m + a_{m+1} \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$= (a_m + b_m) + (a_{m+1} + b_{m+1}) \dots + (a_n + b_n)$$

$$= \sum_{i=m}^{n} (a_i + b_i)$$

Difference of two summations is done similarly:

$$\sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i = (a_m + a_{m+1} \dots + a_n) - (b_m + b_{m+1} + \dots + b_n)$$

$$= (a_m - b_m) + (a_{m+1} - b_{m+1}) \dots + (a_n - b_n)$$

$$= \sum_{i=m}^{n} (a_i - b_i)$$

**4.** 
$$\sum_{i=m}^{n} a_i = \sum_{i=m}^{k} a_i + \sum_{i=k+1}^{n} a_i$$
 (splitting summation)

Proof. 
$$\sum_{i=m}^{n} a_i = a_m + \ldots + a_k + a_{k+1} + \ldots + a_n = (a_m + \ldots + a_k) + (a_{k+1} + \ldots + a_n) = \sum_{i=m}^{k} a_i + \sum_{i=k+1}^{n} a_i \quad \Box$$

5. 
$$\sum_{i=m}^{n} a_i = \sum_{i=1}^{n} a_i - \sum_{i=1}^{m-1} a_i$$
 (variant of splitting summation)

*Proof.* By property of splitting summation, 
$$\sum_{i=k}^{m-1} a_i + \sum_{i=m}^n a_i = \sum_{i=k}^n a_i \implies \sum_{i=m}^n a_i = \sum_{i=k}^n a_i - \sum_{i=k}^{m-1} a_i$$

**6.** 
$$\sum_{i=m}^{n} a_i = \sum_{i=m+k}^{n+k} a_{i-k}$$
 (index shift)

Proof. 
$$\sum_{i=m+k}^{n+k} a_{i-k} = a_{(m+k)-k} + \dots + a_{(n+k)-k} = a_m + \dots + a_n = \sum_{i=m}^{n} a_i$$

7. 
$$\sum_{i=m}^{n} a_i = \sum_{i=0}^{n-m} a_{n-i}$$
 (reverse order of summation)

Proof.

$$\sum_{i=0}^{n-m} a_{n-i} = a_{n-0} + a_{n-1} + \dots + a_{n-(n-m-1)} + a_{n-(n-m)}$$

$$= a_n + a_{n-1} + \dots + a_{m+1} + a_m$$

$$= a_m + a_{m+1} + \dots + a_{n-1} + a_n$$

8.  $\sum_{i=0}^{n} a_i = \sum_{i=0}^{n} a_{n-i}$  (A particular case of above by putting m = 0)

**9.** 
$$\left(\sum_{i=m}^{n} a_i\right) \left(\sum_{j=p}^{q} b_j\right) = \sum_{i=m}^{n} \sum_{j=p}^{q} a_i b_j$$
 (product of summation is double summation of products)

Proof.

$$\left(\sum_{i=m}^{n} a_i\right) \left(\sum_{j=p}^{q} b_j\right) = \left(\sum_{i=m}^{n} a_i\right) (b_p + b_{p+1} + \dots + p_q)$$

$$= \sum_{i=m}^{n} a_i (b_p + b_{p+1} + \dots + p_q) \quad \text{(constant rule)}$$

$$= \sum_{i=m}^{n} (a_i b_p + a_i b_{p+1} + \dots + a_i p_q)$$

$$= \sum_{i=m}^{n} \left(\sum_{j=p}^{q} a_i b_j\right)$$

$$= \sum_{i=m}^{n} \sum_{j=p}^{q} a_i b_j \quad \text{(brackets can be dropped for double summation)}$$

**10.**  $\sum_{i=n}^{n} \sum_{j=n}^{q} a_i b_j = \sum_{i=n}^{q} \sum_{j=n}^{n} a_i b_j$  (interchange of independent double summation)

Proof.

$$\sum_{i=m}^{n} \sum_{j=p}^{q} a_i b_j = \left(\sum_{i=m}^{n} a_i\right) \left(\sum_{j=p}^{q} b_j\right)$$
 (product of double summation)
$$= (a_m + a_{m+1} + \dots + a_n) \left(\sum_{j=p}^{q} b_j\right)$$

$$= \sum_{j=p}^{q} b_j (a_m + a_{m+1} + \dots + a_n)$$
 (constant rule)
$$= \sum_{j=p}^{q} (a_m b_j + a_{m+1} b_j + \dots + a_n b_j)$$

$$= \sum_{j=p}^{q} \sum_{i=m}^{n} a_i b_j$$

11.  $\sum_{i=m}^{n} \sum_{j=p}^{q} a_{i,j} = \sum_{j=p}^{q} \sum_{i=m}^{n} a_{i,j}$  (interchange of double summation with independent bounds)

Proof.

$$\sum_{i=m}^{n} \sum_{j=p}^{q} a_{i,j} = \sum_{j=p}^{q} a_{m,j} + \sum_{j=p}^{q} a_{m+1,j} + \dots + \sum_{j=p}^{q} a_{n,j}$$

$$= a_{m,p} + a_{m,p+1} + \dots + a_{m,q}$$

$$+ a_{m+1,p} + a_{m+1,p+1} + \dots + a_{m+1,q}$$

$$+ \dots$$

$$+ a_{n,p} + a_{n,p+1} + \dots + a_{n,q}$$

$$= \sum_{i=m}^{n} a_{i,p} + \sum_{i=m}^{n} a_{i,p+1} + \dots + \sum_{i=m}^{n} a_{i,q}$$

$$= \sum_{j=p}^{q} \sum_{i=m}^{n} a_{i,j}$$

This is a stronger version of the previous property.

### Conditional summation notation

In conditional summation notatation, all the terms  $a_i$  where the term number i satisfies a certain condition p(i) are summed up. The upper bound is no longer written above, and the lower bound in the bottom in normal summation is replaced by the condition p(i).

Evample

$$\sum_{1 \le k \le 100} k^2 = \sum_{k=1}^{100} k^2 = 1^2 + 2^2 + \dots + 100^2$$
Let  $S = \{2, 3, 5, 7\}$ .
$$\sum_{i \in S} i = 2 + 3 + 5 + 7 = 17$$

$$\sum_{i \in \mathbb{Z}^+} \frac{1}{2^i} = \sum_{i=1}^{\infty} \frac{1}{2^i} = 2$$

# 1 Introduction

Note: I am going to copy stuff from the book *Linear Algebra Done Right* [1] and *Linear Algebra and Its Applications* [2] and my university lecture slides.

Warning: This is a note where exposition is removed to save space and definitions come out of nowhere, unlike the textbooks that actually explain the motivation behind the concepts.

## 1.1 Complex numbers

**Definition 1.1.** A **complex number** is an ordered pair (a,b), where  $a,b \in \mathbb{R}$ , written as a+bi. a is called the **real part** and b is called the **imaginary part**.

• The set of all complex numbers is denoted by  $\mathbb{C}$ :

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

ullet Addition and multiplication on  $\mathbb C$  are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

for  $a, b, c, d \in \mathbb{R}$ .

The definition is motivated by treating i as a variable with the special property that  $i^2 = -1$ , and applying the usual rules of arithmetic.

Example:

$$(2+3i)(4+5i) = (2)(4) + (2)(5i) + (3i)(4) + (3i)(5i)$$
$$= 8+15(-1)+10i+12i$$
$$= -7+22i$$

Two complex numbers are equal if and only if the real part is equal to the imaginary part, namely, if a + bi = c + di, then a = c and b = d.

Note that  $\mathbb{R}$  is a subset of  $\mathbb{C}$ , meaning every real number is a complex number. But the vice versa is not true. 1+i is complex but not real.

**Theorem 1.1** (Properties of complex arithmetic). For all  $\alpha, \beta, \lambda$  in  $\mathbb{C}$ ,

(i) commutativity

$$\alpha + \beta = \beta + \alpha$$
 and  $\alpha\beta = \beta\alpha$ 

(ii) associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and  $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ 

(iii) identities

$$\lambda + 0 = \lambda$$
 and  $\lambda 1 = \lambda$ 

(iv) additive inverse

For every  $\alpha \in \mathbb{C}$ , there exists a unique  $\beta \in \mathbb{C}$  such that  $\alpha + \beta = 0$ .

(v) multiplicative inverse

For every  $\alpha \in \mathbb{C}$  with  $\alpha \neq 0$ , there exists a unique  $\beta \in \mathbb{C}$  such that  $\alpha\beta = 1$ .

(vi) distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$

Note: These are also the properties of real numbers if we replace  $\mathbb{C}$  with  $\mathbb{R}$ .

*Proof.* Let  $\alpha = a + bi$ ,  $\beta = c + di$ ,  $\lambda = e + fi$ .

(i) 
$$\alpha + \beta = (a+bi) + (c+di) = (a+c) + (b+d)i$$
  
 $\beta + \alpha = (c+di) + (a+bi) = (c+a) + (d+b)i = (a+c) + (b+d)i = \alpha + \beta$ 

$$\alpha\beta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i$$
  
$$\beta\alpha = (c+di)(a+bi) = (ca-db) + (cb+da)i = \alpha\beta$$

(ii) 
$$(\alpha + \beta) + \lambda = (a + bi + c + di) + e + fi = ((a + c) + (b + d)i) + e + fi = (a + c + e) + (b + d + f)i$$
  
 $\alpha + (\beta + \lambda) = a + bi + (c + di + e + fi) = a + bi + ((c + e) + (d + f)i) = (a + c + e) + (b + d + f)i$   
 $(\alpha\beta)\lambda = ((ac - bd) + (ad + bc)i)(e + fi) = (ac - bd)e - (ad + bc)f + ((ac - bd)f + (ad + bc)e)$   
 $\alpha(\beta\lambda) = (a + bi)((ce - df) + (cf + de)i)$   
 $= a(ce - df) - b(cf + de) + (a(cf + de) + b(ce - df))i$ 

$$= ace - adf - bcf - bde + (acf + ade + bce - bdf)i$$

$$= (ac - bd)e - (ad + bc)f + ((ac - bd)f + (ad + bc)e)i$$

(iii) Here, 0 means 0 + 0i and 1 means 1 + 0i.

$$\lambda + 0 = e + fi + 0 + 0i = e + fi$$
  
$$(e + fi)(1 + 0i) = (1e - 0f) + (0e + 1f)i = e + fi$$

- (iv) For  $\alpha = a + bi$ , there is only one  $\beta = -a bi$  that will make  $\alpha + \beta = 0 + 0i$ .
- (v) For  $\alpha = a + bi \neq 0$ , let  $\beta = c + di$  such that  $\alpha\beta = (ac bd) + (ad + bc)i = 1 + 0i$ . Then we have a system of equations in which we want to solve for c and d:

$$\begin{cases} ac - bd = 1 & \dots (1) \\ ad + bc = 0 & \dots (2) \end{cases}$$

 $(1) \times -b$ :

$$-abc + b^2d = -b \qquad \dots (3)$$

 $(2) \times a$ :

$$a^2d + abc = 0 \qquad \dots (4)$$

(3) + (4):

$$a^{2}d + b^{2}d = -b$$

$$d(a^{2} + b^{2}) = -b$$

$$d = -\frac{b}{a^{2} + b^{2}}$$

Note that we are allowed to make  $a^2 + b^2$  to be denominator since a and b are not both zero, so  $a^2 + b^2$  must be greater than 0.

Similarly, to solve for c:

 $(1) \times a$ :

$$a^2c - abd = a \qquad \dots (5)$$

 $(2) \times b$ :

$$abd + b^2c = 0 \qquad \dots (6)$$

(5) + (6):

$$a^{2}c + b^{2}c = a$$
$$c(a^{2} + b^{2}) = a$$
$$c = \frac{a}{a^{2} + b^{2}}$$

Thus, for  $\alpha = a + bi \neq 0$ , there is a unique multiplicative inverse  $\beta = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$  such that  $\alpha\beta = 1$ . We can verify that  $\alpha\beta$  indeed gives 1:

$$\begin{split} \alpha\beta &= (a+bi)(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i) \\ &= \frac{a^2}{a^2+b^2} - \frac{b^2}{a^2+b^2} + (\frac{-ab}{a^2+b^2} + \frac{ab}{a^2+b^2})i \\ &= 1+0i = 1 \end{split}$$

(vi) 
$$\lambda(\alpha+\beta) = (e+fi)(a+bi+c+di) = (e+fi)((a+c)+(b+d)i) = e(a+c)-f(b+d)+(e(b+d)+f(a+c))i$$
  
 $\lambda\alpha + \lambda\beta = (e+fi)(a+bi)+(e+fi)(c+di)$   
 $= ae-bf+(be+af)i+ec-df+(de+cf)i$   
 $= ae-bf+ec-df+(be+af+de+cf)i$   
 $= e(a+c)-f(b+d)+(e(b+d)+f(a+c))i$   
 $= \lambda(\alpha+\beta)$ 

A set equipped with addition and multiplication satisfying the above six properties is called a **field**. Thus  $\mathbb{C}$  and  $\mathbb{R}$  are both fields, and share the properties that a field has. In this note, we use  $\mathbb{F}$  to denote  $\mathbb{C}$  or  $\mathbb{R}$ , whichever suit our taste (since linear algebra can be more insightful when complex numbers are also considered). When we see a statement involving  $\mathbb{F}$ , we can replace  $\mathbb{F}$  with  $\mathbb{C}$  or  $\mathbb{R}$ , and the statement will be true.

#### 1.2 Scalars and vectors

#### **Definition 1.2.** A scalar is an element of $\mathbb{F}$ .

The term scalar is used to emphasize that it is a number, as opposed to a vector. It can be a complex number or real number, but more often refers to a real number. A scalar can be used to scale a vector.

**Definition 1.3.** A list of length n is an ordered collection of n elements (where n is non-negative integer).

• Two lists are equal if and only if they have the same length and the same elements in the same order.

A list is typically written using round brackets or square brackets, with each element separated by commas (which is sometimes omitted). eg. (1,2,3) or [1,2,3]. Note that a list must have a finite length.

Example: 
$$(2,5,6) = (2,5,6)$$
,  $(1,2,3) \neq (1,3,2)$ ,  $(0,0,0) \neq (0,0)$   
If  $(a,b,c) = (d,e,f)$ , then  $a=d,b=e$  and  $c=f$ .

**Definition 1.4.**  $\mathbb{F}^n$  is the set of all lists of length n of elements of  $\mathbb{F}$ :

$$\mathbb{F}^n = \{(x_1, \dots, x_n) : x_k \in \mathbb{F} \text{ for } k = 1, \dots, n\}$$

Geometrically, the 2D plane is represented by  $\mathbb{R}^2$  and the 3D space is represented by  $\mathbb{R}^3$ . An element in  $\mathbb{R}^2$  (or  $\mathbb{R}^3$ ) is called a **point**, and the list written out in the form  $(x_1, x_2)$  is called the **coordinate** or **position** of that point.

**Definition 1.5.** A vector of dimension n is a list of length n with the following property: it can be added to by another vector and can be multiplied by a scalar.

A vector of dimension n is called n-dimensional vector.

The difference between lists and vectors is that addition and scalar multiplication is well-defined for vectors but need not be defined for a general list.

Right now, the vectors we are interested in are elements of  $\mathbb{F}^n$ , but when we get to the topic of vector spaces, vector need not be an element of  $\mathbb{F}^n$ , and can refer to elements of other stuff.

Geometrically, a 2D or 3D vector is represented by an arrow with a **direction** and **magnitude** (physical length of vector):



(Some 2D vectors of different directions and magnitudes)

A vector is written using square brackets instead of round bracket to distinguish it from a position in space. eg. [1,2,3]. Each element of the vector is called an **entry**. Geometrically, a vector represents how your position changes when you go from the tail to the tip of the vector.

Vectors can be written in two ways: horizontally and vertically.

A vector written horizontally is called a **row vector**. Usually, commas are written between entries when the vector is seen geometrically as an arrow, and commas are omitted when the vector is seen as a  $1 \times n$  matrix. eg. [1, 2, 3] and  $[1 \ 2 \ 3]$  are the same thing.

A vector written vertically is called a **column vector**. No commas are used for column vectors. eg.

An *n*-dimensional column vector is a  $n \times 1$  matrix.

Note that row vectors and column vectors with the same entries are not equal.

To denote a vector as a variable, we typically use boldface:  $\mathbf{a}$  , or add an overline arrow:  $\vec{a}$  , in order to distinguish it from scalars.

A vector with all entries zero, eg. [0,0,0], is denoted **0** or  $\vec{0}$ .

A general vector **x** with n entries is written as  $[x_1, ..., x_n]$ . Since I'm lazy, I'll shorten this to  $[x_j]$  (lazy notation).  $[0_j]$  denotes a zero vector with an unspecified number of entries.

### 1.3 Vector operations

**Definition 1.6** (Vector addition). Addition of vectors in  $\mathbb{F}^n$  is defined by adding their corresponding entries:

$$[x_1, \ldots, x_n] + [y_1, \ldots, y_n] = [x_1 + y_1, \ldots, x_n + y_n]$$

Addition of vectors of different dimensions are undefined.

Example: [1,2] + [3,4] = [1+2,3+4] = [3,7]

**Definition 1.7** (Additive inverse). For  $\mathbf{x} \in \mathbb{F}^n$ , the additive inverse of  $\mathbf{x}$ , denoted by  $-\mathbf{x}$ , is the vector  $-\mathbf{x} \in \mathbb{F}^n$  such that

$$\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

Thus if  $\mathbf{x} = [x_1, ..., x_n]$ , then  $-\mathbf{x} = [-x_1, ..., -x_n]$ 

Then we can use  $\mathbf{x} - \mathbf{y}$  to denote  $\mathbf{x} + (-\mathbf{y})$ .

Geometrically, the additive inverse of a vector is a vector with reverse direction:



**Definition 1.8** (Scalar multiplication). The product of a number  $\lambda \in \mathbb{F}$  and a vector in  $\mathbb{F}^n$  is computed by multiplying each entry of the vector by  $\lambda$ :

$$\lambda[x_1, \dots x_n] = [\lambda x_1, \dots, \lambda x_n]$$

Geometrically, multiplying a vector by  $\lambda$  scales (stretch or squish) the vector by a factor of  $\lambda$ . In order words, the magnitude of vector is multiplied by  $\lambda$ .



**Theorem 1.2** (Algebraic properties of vectors and scalars). For all  $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}^n$  and all scalars c and d:

(i) 
$$x + y = y + x$$

(ii) 
$$(x + y) + z = x + (y + z)$$

(iii) 
$$x + 0 = 0 + x = x$$

(iv) 
$$x + (-x) = -x + x = 0$$

(v) 
$$c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$$

(vi) 
$$(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$$

(vii) 
$$c(d\mathbf{x}) = (cd)\mathbf{x}$$

(viii) 
$$1\mathbf{x} = \mathbf{x}$$

*Proof.* Let  $\mathbf{x} = [x_j]$ ,  $\mathbf{y} = [y_j]$ ,  $\mathbf{z} = [z_j]$ .

(i) 
$$\mathbf{x} + \mathbf{y} = [x_i] + [y_i] = [x_i + y_i] = [y_i + x_i] = [y_i] + [x_i] = \mathbf{y} + \mathbf{x}$$

(ii) 
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = ([x_j] + [y_j]) + [z_j] = [x_j + y_j] + [z_j] = [x_j + y_j + z_j]$$
  
 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = [x_j] + ([y_j] + [z_j]) = [x_j] + [y_j + z_j] = [x_j + y_j + z_j]$ 

(iii) 
$$\mathbf{x} + \mathbf{0} = [x_j] + [0_j] = [x_j + 0] = [x_j] = \mathbf{x}$$
  
 $\mathbf{0} + \mathbf{x} = [0_i] + [x_j] = [0 + x_j] = [x_j] = \mathbf{x}$ 

(iv) 
$$\mathbf{x} + (-\mathbf{x}) = [x_j] + [-x_j] = [x_j - x_j] = [0_j] = \mathbf{0}$$
  
 $-\mathbf{x} + \mathbf{x} = [-x_j] + [x_j] = [-x_j + x_j] = [0_j] = \mathbf{0}$ 

(v) 
$$c(\mathbf{x} + \mathbf{y}) = c([x_j] + [y_j]) = c[x_j + y_j] = [c(x_j + y_j)] = [cx_j + cy_j]$$
  
 $c\mathbf{x} + c\mathbf{y} = c[x_j] + c[y_j] = [cx_j] + [cy_j] = [cx_j + cy_j] = c(\mathbf{x} + \mathbf{y})$ 

(vi) 
$$(c+d)\mathbf{x} = (c+d)[x_j] = [(c+d)x_j] = [cx_j + dx_j]$$
  
 $c\mathbf{x} + d\mathbf{x} = c[x_j] + d[x_j] = [cx_j] + [dx_j] = [cx_j + dx_j] = (c+d)\mathbf{x}$ 

(vii) 
$$c(d\mathbf{x}) = c[dx_j] = [cdx_j] = (cd)[x_j] = (cd)\mathbf{x}$$

(viii) 
$$1\mathbf{x} = 1[x_i] = [1x_i] = [x_i] = \mathbf{x}$$

**Definition 1.9** (Magnitude). The **magnitude** (/norm/length) of a vector  $\mathbf{x} = [x_1, \dots x_n]$  is

$$|\mathbf{x}| = \sqrt{x_1^2 + \dots + x_n^2}$$

This definition comes from the Pythagoras Theorem (applied n-1 times).

**Definition 1.10** (Dot product). The **dot product** of x and y, denoted  $x \cdot y$ , is defined by

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

where  $\mathbf{x} = [x_1, ... x_n]$  and  $\mathbf{y} = [y_1, ... y_n]$ .

### 1.4 Matrices

#### 1.4.1 Basics

**Definition 1.11.** Let m and n be positive integers. An  $m \times n$  matrix A is a rectangular array of elements of  $\mathbb{F}$  with m rows and n columns:

$$A = \begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$$

The notation  $a_{i,j}$  denotes the entry in row i, column j of A.

When i and j are both single digit numbers or both variables, the comma between i, j can be omitted to make it more concise, so it becomes

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

A matrix is typically denoted by a capital letter A, M or others. We can also denote a matrix by its entries, eg.  $A = [a_{ij}]$ .

To refer to a single entry instead of an entire matrix, we can denote the entry in row m, column n of matrix A by  $A_{mn}$  or  $a_{mn}$ . (The latter is more often used to emphasize that it is an element, not a matrix.) To indicate a matrix  $A = [a_{ij}]$  has size  $m \times n$ , we can write  $A_{m \times n}$  or  $[a]_{m \times n}$  or  $[a]_{mn}$ .

**Definition 1.12.** The size of a matrix with m rows and n columns is  $m \times n$ .

Two matrices are equal if and only if they have the same size and the corresponding entries are equal.

Note: The  $\times$  is a symbolic times, so the size of a  $3 \times 5$  matrix is not 15.

Example: If 
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and  $B = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$ , then  $a_{11} = 3$ ,  $a_{12} = 4$ ,  $a_{21} = 5$ ,  $a_{22} = 6$ .

Example:  $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$  is a  $3 \times 2$  matrix. The number of rows goes first and column after.

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \neq \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$  since they have different sizes (first is  $3 \times 2$  but second is  $2 \times 3$ ).

**Definition 1.13.** An  $n \times n$  matrix is called a **square matrix** of size n.

Example: Square matrices of different sizes:

Size 1: 
$$\begin{bmatrix} 69 \end{bmatrix}$$
, Size 2:  $\begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}$ , Size 3:  $\begin{bmatrix} 3 & 9 & 4 \\ 0 & 5 & 2 \\ 7 & 8 & 6 \end{bmatrix}$ 

**Definition 1.14** (Matrix addition). The sum of two matrices of the same size is the matrix obtained by adding corresponding entries in the matrices:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

11

Addition for matrices of different sizes is undefined.

Example: 
$$\begin{bmatrix} 8 & 9 \\ 6 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 1 & 9 \end{bmatrix} = \begin{bmatrix} 8+2 & 9+0 \\ 6+1 & 4+9 \end{bmatrix} = \begin{bmatrix} 10 & 9 \\ 7 & 13 \end{bmatrix}$$

**Definition 1.15.** The product of a scalar and a matrix is the matrix obtained by multiplying each entry in the matrix by the scalar:

$$\lambda \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{bmatrix}$$

The set of all  $m \times n$  matrices with entries in  $\mathbb{F}$  is denoted by  $\mathbb{F}^{m \times n}$ . A matrix with all entries zero is called **zero matrix**, denoted by **0**.

**Theorem 1.3** (Matrix addition and scalar multiplication). For all A, B, C in  $\mathbb{F}^{m \times n}$  and all scalars c and d:

- (i) A + B = B + A
- (ii) (A+B)+C=A+(B+C)
- (iii) A + 0 = 0 + A = A
- (iv)  $A + (-A) = -A + A = \mathbf{0}$
- (v) c(A+B) = cA + cB
- (vi) (c+d)A = cA + dA
- (vii) c(dA) = (cd)A
- (viii) 1A = A

The proof is similar to Theorem 1.2 (algebraic properties of vectors and scalars).

### 1.4.2 Matrix multiplication

**Definition 1.16** (Matrix multiplication). Suppose  $A = [a_{ij}]$  is an  $m \times n$  matrix and  $B = [b_{ij}]$  is an  $r \times p$  matrix. Then AB is defined, if and only if n = r, to be the  $m \times p$  matrix whose entry in row i, column j, is given by the equation

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Example: Multiplication of two  $3 \times 3$  matrices:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{bmatrix} = \begin{bmatrix} 1(11) + 2(21) + 3(31) & 1(12) + 2(22) + 3(32) & 1(13) + 2(23) + 3(33) \\ 4(11) + 5(21) + 6(31) & 4(12) + 5(22) + 6(32) & 4(13) + 5(23) + 6(23) \\ 7(11) + 8(21) + 9(31) & 7(12) + 8(22) + 9(32) & 7(13) + 8(23) + 9(33) \end{bmatrix}$$

$$= \begin{bmatrix} 146 & 152 & 158 \\ 335 & 350 & 365 \\ 524 & 548 & 572 \end{bmatrix}$$

Example: A  $3 \times 3$  matrix multiplied by a  $3 \times 1$  matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 10 \\ 11 \\ 12 \end{bmatrix} = \begin{bmatrix} 1(10) + 2(11) + 3(12) \\ 4(10) + 5(11) + 6(12) \\ 7(10) + 8(11) + 9(12) \end{bmatrix} = \begin{bmatrix} 68 \\ 167 \\ 266 \end{bmatrix}$$

Example: A  $3 \times 2$  matrix multiplied by a  $2 \times 4$  matrix is a  $3 \times 4$  matrix:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 6 & 5 & 4 & 3 \\ 2 & 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 42 & 31 & 20 & 9 \end{bmatrix}$$

Note that matrix multiplication is non-commutative, meaning  $AB \neq BA$  in general (but AB = BA is sometimes true).

Example:

$$\begin{bmatrix} 1 & 1 \\ 100 & 100 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 100 & 100 \end{bmatrix} = \begin{bmatrix} 99 & 99 \\ -99 & 99 \end{bmatrix}$$

**Definition 1.17.** The **main diagonal** of a matrix A is the list of entries  $a_{ij}$  where i = j. The entries in the main diagonal are called **diagonal entries**.

Example: Main diagonal of  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$  is (1, 5, 9).

**Definition 1.18.** A **diagonal matrix** is a square matrix in which all entries outside of the main diagonal is zero.

i.e.  $A_{n\times n}$  is diagonal if  $a_{ij}=0$  for all  $i\neq j$ 

The entries in the main diagonal can be zero or non-zero.

Examples of diagonal matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

**Definition 1.19.** An **identity matrix** is a square diagonal matrix with all entries in the main diagonal equal to 1.

i.e. A is identity matrix if  $a_{ij} = 0$  for all  $i \neq j$  and  $a_{ij} = 1$  for all i = j.

An identity matrix of size n is denoted  $I_n$  or simply I.

 $\quad \ Example:$ 

$$I_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

**Theorem 1.4** (Matrix multiplication properties). Let A be an  $m \times n$  matrix, and let B and C have sizes for which the indicated sums and products are defined.

- (i). (AB)C = A(BC) (associative law of multiplication)
- (ii). A(B+C) = AB + AC (left distributive law)
- (iii). (B+C)A = BA + CA (right distributive law)
- (iv).  $\lambda(AB) = (\lambda A)B = A(\lambda B)$  for any scalar  $\lambda$  (associative law of scalar multiplication)

13

(v).  $I_m A = A I_n = A$  (identity for matrix multiplication)

*Proof.* (i) Associative law: [3] Let  $A = [a]_{mn}$ ,  $B = [b]_{np}$ ,  $C = [c]_{pq}$ .

Consider (AB)C.

Let 
$$AB = [r]_{mp}$$
, and  $(AB)C = [s]_{mq}$ 

By definition, 
$$r_{ik} = (AB)_{ik} = \sum_{l=1}^{n} a_{il}b_{lk}$$
.

Also by definition, 
$$s_{ij} = ((AB)C)_{ij} = \sum_{k=1}^{p} r_{ik}c_{kj}$$
.

Thus, putting first equation into second equation,

$$s_{ij} = \sum_{k=1}^{p} \left( \sum_{l=1}^{n} a_{il} b_{lk} \right) c_{kj}$$

$$= \sum_{k=1}^{p} \left( a_{i1} b_{1k} + a_{i2} b_{2k} + \dots + a_{in} b_{nk} \right) c_{kj} \qquad \text{(Expand for better visualization)}$$

$$= \sum_{k=1}^{p} \left( a_{i1} b_{1k} c_{kj} + a_{i2} b_{2k} c_{kj} + \dots + a_{in} b_{nk} c_{kj} \right)$$

$$= \sum_{k=1}^{p} \left( \sum_{l=1}^{n} a_{il} b_{lk} c_{kj} \right)$$

Now consider A(BC).

Re-let  $BC = [r]_{nq}$ ,  $A(BC) = [s]_{mq}$ .

By definition, 
$$r_{ij} = (BC)_{ij} = \sum_{k=1}^{p} b_{ik} c_{kj}$$

Also by definition, 
$$s_{ij} = (A(BC))_{ij} = \sum_{l=1}^{n} a_{il} r_{lj}$$
.

Thus, putting first equation into second equation,

$$\begin{aligned} s_{ij} &= \sum_{l=1}^n a_{il} \left( \sum_{k=1}^p b_{lk} c_{kj} \right) \\ &= \sum_{l=1}^n a_{il} \left( b_{l1} c_{1j} + b_{l2} c_{2j} + \ldots + b_{lp} c_{pj} \right) \\ &= \sum_{l=1}^n \left( a_{il} b_{l1} c_{1j} + a_{il} b_{l2} c_{2j} + \ldots + a_{il} b_{lp} c_{pj} \right) \\ &= \sum_{l=1}^n \left( \sum_{k=1}^p a_{il} b_{lk} c_{kj} \right) \\ &= \sum_{k=1}^p \left( \sum_{l=1}^n a_{il} b_{lk} b_{kj} \right) \qquad \text{(interchange of double summation with independent bounds)} \end{aligned}$$

Since the entries of (AB)C and A(BC) are equal, we conclude that (AB)C = A(BC).

#### (ii) Left distributive law:

$$(A(B+C))_{ij} = \sum_{k=1}^{n} A_{ik}(B+C)_{kj}$$

$$= \sum_{k=1}^{n} A_{ik}(B_{kj} + C_{kj})$$

$$= \sum_{k=1}^{n} A_{ik}B_{kj} + \sum_{k=1}^{n} A_{ik}C_{kj}$$

$$= (AB)_{ij} + (AC)_{ij}$$

$$= (AB + AC)_{ij}$$

#### (iii) Right distributive law:

$$((B+C)A)_{ij} = \sum_{k=1}^{n} (B+C)_{ik} A_{kj}$$

$$= \sum_{k=1}^{n} (B_{ik} + C_{ik}) A_{kj}$$

$$= \sum_{k=1}^{n} B_{ik} A_{kj} + \sum_{k=1}^{n} C_{ik} A_{kj}$$

$$= (BA)_{ij} + (CA)_{ij}$$

$$= (BA + CA)_{ij}$$

(iv) Associative law of scalar multiplication:

$$(\lambda(AB))_{ij} = \lambda(AB)_{ij} = \lambda \sum_{k=1}^{n} A_{ik} B_{kj} = \sum_{k=1}^{n} \lambda A_{ik} B_{kj}$$
$$((\lambda A)B)_{ij} = \sum_{k=1}^{n} (\lambda A)_{ik} B_{kj} = \sum_{k=1}^{n} \lambda A_{ik} B_{kj}$$
$$(A(\lambda B))_{ij} = \sum_{k=1}^{n} A_{ik} (\lambda B)_{kj} = \sum_{k=1}^{n} \lambda A_{ik} B_{kj}$$

(v) Identity for matrix multiplication:

Let  $I_m = [u]_m$  ,  $A = [a]_{mn}$ . Note that  $u_{ij} = 1$  if i = j, else  $u_{ij} = 0$ .

$$(I_m A)_{ij} = \sum_{k=1}^m u_{ik} a_{kj} = 0 + \dots + u_{ii} a_{ij} + \dots + 0 = a_{ij}$$
$$(AI_n)_{ij} = \sum_{k=1}^n a_{ik} u_{kj} = 0 + \dots + a_{ij} u_{jj} + \dots + 0 = a_{ij}$$

Note that  $I_m A$  and  $AI_n$  have the same size  $m \times n$  and have the same entries as A. Thus  $I_m A = AI_n = A$ .

#### Notation:

Let's introduce the column vector notation for matrix. A matrix A with columns  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  can be denoted by

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$$

Example: 
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
,  $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix}$ ,  $\mathbf{a}_3 = \begin{bmatrix} 5 \\ 9 \\ 7 \end{bmatrix}$ . Then  $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 9 \\ 3 & 8 & 7 \end{bmatrix}$ 

Similarly, a matrix A with rows  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  can be denoted by

$$A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{bmatrix}$$

Instead of bold vectors, we can also use  $row_i(A)$  to denote the *i* th row of *A*, and  $col_j(A)$  to denote the *j* th column of *A*.

For identity matrix  $I_m$ , we commonly use  $\mathbf{e}_i$  to denote the i th column or i th row. (Bold i is reserved for other meanings.)

**Theorem 1.5** (Columns of matrix product). Let B be a matrix with columns  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p$ , and A be a matrix of appropriate size. Then the product AB has the columns  $A\mathbf{b}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p$ . That is,

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Alternatively, we have

$$col_i(AB) = A \ col_i(B)$$

*Proof.* Let 
$$A = [a_{ij}]$$
 be  $m \times n$  and  $B = [b_{ij}] = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p]$  be  $n \times p$ .

Note that each  $A\mathbf{b}_j$  is a  $m \times 1$  column vector (because  $m \times n$  times  $n \times 1$ ). Also note that the *i*-th element of  $\mathbf{b}_j$ , denoted  $(\mathbf{b}_j)_i$  or  $(\mathbf{b}_j)_{i1}$ , is simply  $b_{ij}$ .

By definition, 
$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 and  $(A\mathbf{b}_{j})_{i1} = \sum_{k=1}^{n} a_{ik} (\mathbf{b}_{j})_{k1} = \sum_{k=1}^{n} a_{ik} b_{kj} = (AB)_{ij}$ .

In other words, the *i*-th element of  $A\mathbf{b}_j$  is exactly the (i, j)-th entry of AB. Hence, each  $A\mathbf{b}_j$  is the *j*-th column of AB, and we have

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Example: Let 
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$ .  
Then  $A\mathbf{b}_1 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ -1 \end{bmatrix}$ ,  $A\mathbf{b}_2 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 13 \end{bmatrix}$ ,  $A\mathbf{b}_3 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$   
So  $AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & A\mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$ 

**Theorem 1.6** (Rows of matrix product). Let A be a matrix with rows  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ , and B be a matrix of appropriate size. Then the product of AB has the rows  $\mathbf{a}_1B, \mathbf{a}_2B, \dots, \mathbf{a}_m$ . That is,

$$AB = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1 B \\ \mathbf{a}_2 B \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$$

Alternatively, we have

$$row_i(AB) = row_i(A)B$$

*Proof.* Note that each  $\mathbf{a}_i B$  is a  $1 \times p$  row vector. The j th element of  $\mathbf{a}_i$ , denoted  $(\mathbf{a}_i)_j$  or  $(\mathbf{a}_i)_{1j}$ , is simply  $a_{ij}$ .

By definition,  $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$  and  $(\mathbf{a}_{i}B)_{1j} = \sum_{k=1}^{n} (\mathbf{a}_{i})_{1k} b_{kj} = \sum_{k=1}^{n} a_{ik} b_{kj}$ . The j th entry of  $\mathbf{a}_{i}B$  is exactly the (i,j) th entry of AB. Hence, each  $\mathbf{a}_{i}B$  is the i th row of AB, and we have

$$AB = \begin{bmatrix} \mathbf{a}_1 B \\ \mathbf{a}_2 B \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$$

**Theorem 1.7** (Multiplying matrix by row/column of identity matrix). Let A be an  $m \times n$  matrix, and let  $\mathbf{e}_j$  be the j th column of  $I_n$ , and  $\mathbf{r}_i$  be the i th row of  $I_m$ . Then

$$A\mathbf{e}_j = \operatorname{col}_j(A)$$
 and  $\mathbf{r}_i A = \operatorname{row}_i(A)$ 

*Proof.* Note that  $AI_n = A$ . Also by the above theorems,  $AI_n = \begin{bmatrix} A\mathbf{e}_1 & A\mathbf{e}_2 \dots & A\mathbf{e}_n \end{bmatrix}$ .

Thus  $A = \begin{bmatrix} A\mathbf{e}_1 & A\mathbf{e}_2 & \dots & A\mathbf{e}_n \end{bmatrix}$ , which means each column j of A is equal to  $A\mathbf{e}_j$ .

Similarly, note that  $I_m A = A$ . Also by the above theorems,  $I_m A = \begin{bmatrix} \mathbf{r}_1 A \\ \mathbf{r}_2 A \\ \vdots \\ \mathbf{r}_m A \end{bmatrix}$ .

Thus 
$$A = \begin{bmatrix} \mathbf{r}_1 A \\ \mathbf{r}_2 A \\ \vdots \\ \mathbf{r}_m A \end{bmatrix}$$
, which means each row  $i$  of  $A$  is equal to  $\mathbf{r}_i A$ 

**Theorem 1.8** (Linear combinations of columns). Let  $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$  be a  $m \times n$  matrix and

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \text{ be an } n \times 1 \text{ matrix. Then } A\mathbf{b} \text{ is a linear combination of columns of } A \text{ with the scalars from }$$

the entries of **b**:

$$A\mathbf{b} = b_1\mathbf{a}_1 + b_2\mathbf{a}_2 + \ldots + b_n\mathbf{a}_n$$

*Proof.* By definition of matrix multiplication, the *i*-th entry of  $A\mathbf{b}$  is  $(A\mathbf{b})_i = \sum a_{ik}b_k$  .

Also, note that the *i*-th entry of each  $\mathbf{a}_i$  is  $a_{ij}$ .

Thus, the *i*-th entry of the sum  $b_1\mathbf{a}_1 + b_2\mathbf{a}_2 + \ldots + b_n\mathbf{a}_n$  is:

$$b_1 a_{i1} + b_1 a_{i2} + \dots b_1 a_{in} = \sum_{k=1}^n a_{ik} b_k$$

Since the corresponding entries are equal,  $A\mathbf{b} = b_1\mathbf{a}_1 + b_2\mathbf{a}_2 + \ldots + b_n\mathbf{a}_n$ 

Example:  $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 19 \\ 31 \end{bmatrix}$ 

**Theorem 1.9** (Multiplying by zero). Let A be a matrix, **0** be the zero matrix and  $\lambda$  be a scalar.

- (i).  $\mathbf{0}A = A \mathbf{0} = 0$
- (ii). 0A = 0
- (iii). If  $\lambda A = \mathbf{0}$  and  $A \neq \mathbf{0}$ , then  $\lambda = 0$ .

*Proof.* Let A be  $m \times n$ .

(i) 
$$(\mathbf{0}A)_{ij} = \sum_{i=1}^{m} \mathbf{0}_{ik} a_{kj} = \sum_{i=1}^{m} 0 a_{kj} = 0$$
. Similarly,  $(A \mathbf{0})_{ij} = \sum_{i=0}^{n} a_{ik} \mathbf{0}_{kj} = \sum_{i=0}^{n} a_{ik} 0 = 0$ 

- (ii)  $(0A)_{ij} = 0a_{ij} = 0$
- (iii) Since  $A \neq 0$ , there is at least one non-zero entry in A. Let  $a_{ij}$  be a non-zero entry in A. Then since

$$(\lambda A)_{ij} = \lambda a_{ij} = \mathbf{0}_{ij} = 0$$
 and  $a_{ij} \neq 0$ , we must have  $\lambda = 0$ .

Note: AB = 0 does not necessarily mean A = 0 or B = 0.

**Definition 1.20** (Triangular matrix). A square matrix is **triangular** if it is either upper triangular or lower triangular (or both).

A matrix is **upper triangular** if all the entries below main diagonal is zero.

i.e.  $a_{ij} = 0$  if i > j.

A matrix is **lower triangular** if all the entries above main diagonal is zero.

i.e.  $a_{ij} = 0$  if i < j.

Example:

Upper triangular:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 6 & 8 & 9 \\ 0 & 0 & 12 & 13 \\ 0 & 0 & 0 & 18 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Lower triangular:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 6 & 0 & 0 \\ 9 & 10 & 12 & 0 \\ 14 & 16 & 17 & 18 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

**Definition 1.21** (Powers of matrix). Let k be a non-negative integer. Then the k-th power of A is the product of k copies of A:

$$A^k = \underbrace{A \dots A}_{k \text{ times}}$$

If k = 0, the  $A^0$  is defined as identity matrix:

$$A^0 = I$$

### Matrix algebra

Since matrices are non-commutative, normal algebraic identities like  $(a+b)^2 = a^2 + 2ab + b^2$  are no longer true when  $ab \neq ba$ , but it's still true when ab = ba.

Let's discover some identities.

$$(A+B)^2 = (A+B)(A+B) = A(A+B) + B(A+B) = A^2 + AB + BA + B^2$$

$$A(B+C)D = A(BD+CD) = ABD + ACD$$

$$(A+I)^2 = A^2 + AI + IA + I^2 = A^2 + 2A + I$$

$$(A-I)^2 = A^2 - AI - IA + I^2 = A^2 - 2A + I$$

$$(A+I)(A-I) = A(A-I) + I(A-I) = A^2 - AI + IA - I^2 = A^2 - I$$

$$(A+I)(A^2 - A+I) = A(A^2 - A+I) + I(A^2 - A+I) = A^3 - A^2 + A + A^2 - A + I = A^3 - I$$

$$(A-I)(A^2 + A+I) = A(A^2 + A+I) - I(A^2 + A+I) = A^3 + A^2 + A + A^2 - A - I = A^3 + I$$

$$(A-2I)(3A+I) = 3A^2 - 5A - 2I$$

The normal identities can be used when one variable is A and another is I.

When we do matrix factorization, we use I in place of 1.

#### 1.4.3 Transpose

**Definition 1.22.** Given an  $m \times n$  matrix A, the **transpose** of A is the  $n \times m$  matrix, denoted by  $A^{T}$ , whose columns are formed from the corresponding rows of A.

i.e. If 
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
, then  $A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$ 

Example: 
$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example: 
$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Note: The transpose of a column vector is the corresponding row vector, and vice versa: If  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ , then  $\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$  and  $(\mathbf{x}^T)^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ .

**Theorem 1.10** (Transpose means swapping indices).  $A_{ij} = (A^T)_{ji}$  and  $(A^T)_{ij} = A_{ji}$ .

*Proof.* Let's unpack what transpose means: each i-th row of A becomes the i-th column of  $A^T$ . Thus, the j-th element of i-th row of A, which is  $A_{ij}$ , becomes the j-th element of i-th column of  $A^T$ , which is  $(A^T)_{ji}$ . Similarly, we have  $(A^T)_{ij} = A_{ji}$ .

Thus, the transpose of a square matrix is just reflecting the entries along the main diagonal (while main diagonal entries stays fixed):  $a_{12} \leftrightarrow a_{21}$ ,  $a_{13} \leftrightarrow a_{31}$ ,  $a_{23} \leftrightarrow a_{32}$ , and so on.

**Theorem 1.11** (Transpose properties). Let A and B denote matrices with appropriate sizes.

(i). 
$$(A^T)^T = A$$

(ii). 
$$(A+B)^T = A^T + B^T$$

(iii). 
$$(\lambda A)^T = \lambda A^T$$
 for any scalar  $\lambda$ 

(iv). 
$$(AB)^T = B^T A^T$$

(v). 
$$I^T = I$$

*Proof.* Let  $A = [a_{ij}]$  and  $B = [b_{ij}]$ .

(i) 
$$((A^T)^T)_{ij} = (A^T)_{ji} = A_{ij}$$

(ii) 
$$(A^T + B^T)_{ij} = (A^T)_{ij} + (B^T)_{ij} = A_{ji} + B_{ji}$$
  
 $((A+B)^T)_{ij} = (A+B)_{ji} = A_{ji} + B_{ji}$ 

(iii) 
$$((\lambda A)^T)_{ij} = \lambda A_{ji} = (\lambda A^T)_{ij}$$

(iv) 
$$((AB)^T)_{ij} = (AB)_{ji} = \sum_{k=1}^n A_{jk} B_{ki}$$

$$(B^T A^T)_{ij} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj} = \sum_{k=1}^n B_{ki} A_{jk} = \sum_{k=1}^n A_{jk} B_{ki}$$

(v) Note that  $I_{ij} = 1$  if i = j, else  $I_{ij} = 0$ .

 $(I^T)_{ij}=I_{ji}$ . If  $i\neq j$ , then  $I_{ji}=0$ . Else,  $I_{ji}=I_{ii}=1$ . Since all the entries remain unchanged,  $I^T=I$ .

**Definition 1.23.** A symmetric matrix is a square matrix that is equal to its transpose: i.e. A is symmetric if  $A^T = A$ .

A **skew-symmetric** matrix is a square matrix whose transpose is equal to the negative of itself. i.e. A is skew-symmetric if  $A^T = -A$ .

#### 1.4.4 Inverse matrix

**Definition 1.24.** An  $n \times n$  matrix is **invertible** (/non-singular) if there exists an  $n \times n$  matrix C such that

$$AC = CA = I$$

where  $I = I_n$ . C is called the **inverse** of A.

Note that only square matrix can have an inverse. If A were  $m \times n$  where  $m \neq n$ , and C is  $n \times n$ , then AC is  $m \times n$  which is not  $n \times n$ , so AC could not be identity matrix  $I_n$ .

Not all square matrices have inverse. A square matrix that has no inverse is called **singular** (/non-invertible) matrix.

Example: 
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ 8 & 9 & 12 \end{bmatrix}$$
 has the inverse 
$$\begin{bmatrix} -3 & 3 & -1 \\ 8 & -12 & 5 \\ -4 & 7 & -3 \end{bmatrix}$$
 since 
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ 8 & 9 & 12 \end{bmatrix} \begin{bmatrix} -3 & 3 & -1 \\ 8 & -12 & 5 \\ -4 & 7 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: We only check one side since if A and C are square matrices and AC = I, then it must be true that CA = I. But we will prove this later (it seems quite difficult).

**Theorem 1.12.** The inverse of an invertible matrix is unique.

*Proof.* Suppose B and C are inverses of A. Then AC = I and BA = I by definition, and we have

$$B = BI = B(AC) = (BA)C = IC = C$$

. So B and C are actually equal.

Since inverse of a matrix A is unique, we can unambiguously denote it by  $A^{-1}$ .

### Theorem 1.13 (Some properties of inverse). .

- (i). I is invertible and  $I^{-1} = I$ .
- (ii). If A is invertible, then so is  $A^{-1}$ , and

$$(A^{-1})^{-1} = A$$

(iii). If A and B are invertible, then so is AB, and

$$(AB)^{-1} = B^{-1}A^{-1}$$

(iv). If A is invertible, then so is  $A^T$ , and

$$(A^T)^{-1} = (A^{-1})^T$$

(v). Let n be a non-negative integer. If A is invertible, then so is  $A^n$ , and

$$(A^n)^{-1} = (A^{-1})^n$$

(vi). If A is invertible, then so is  $\lambda A$  for scalar  $\lambda \neq 0$ , and

$$(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$$

*Proof.* (i) Note that II = I, so I is the inverse of I itself.

- (ii) By definition of inverse,  $AA^{-1} = I$  and  $A^{-1}A = I$ . Hence A is the inverse of  $A^{-1}$ .
- (iii) Note that  $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$

Similarly, 
$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$
. Thus,  $(AB)^{-1} = B^{-1}A^{-1}$ .

(iv) Use the property  $(AB)^T = B^T A^T$  for the following:

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

Similarly, 
$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$
. Thus,  $(A^{T})^{-1} = (A^{-1})^{T}$ .

(v) 
$$(A^n)(A^{-1})^n = \underbrace{(A \dots A)}_{n \text{ times}} \underbrace{(A^{-1} \dots A^{-1})}_{n \text{ times}} = \underbrace{A \dots (A A^{-1}) \dots A^{-1}}_{n \text{ times}} = A \dots I \dots A^{-1} = \dots = I$$
  
Similarly,  $(A^{-1})^n (A^n) = \underbrace{(A^{-1} \dots A^{-1})}_{n \text{ times}} \underbrace{(A \dots A)}_{n \text{ times}} = I$ .

Similarly, 
$$(A^{-1})^n(A^n) = (\underline{A^{-1} \dots A^{-1}})(\underline{A \dots A}) = I$$
.

Hence, 
$$(A^n)^{-1} = (A^{-1})^n$$
.

(vi) 
$$(\lambda A)(\frac{1}{\lambda}A^{-1}) = \lambda(\frac{1}{\lambda})(AA^{-1}) = 1I = I$$

Similarly, 
$$(\frac{1}{\lambda}A^{-1})(\lambda A) = (\frac{1}{\lambda})\lambda(A^{-1}A) = 1I = I$$
. Thus,  $(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}$ .

Since  $(A^n)^{-1} = (A^{-1})^n$ , we can unambiguously denote both by  $A^{-n}$  (but this is non-standard notation for some reason).

### Corollary 1.14. A is invertible if and only if $A^T$ is invertible.

*Proof.* By (iv) of previous theorem, if A is invertible, then  $A^T$  is invertible.

If  $A^T$  is invertible, then there exists B such that  $A^TB = BA^T = I$ . Taking transpose of both sides, we have

$$(A^TB)^T = I^T$$
 and  $(BA^T)^T = I^T$  
$$B^T(A^T)^T = I$$
 
$$(A^T)^TB^T = I$$
 
$$AB^T = I$$

Thus,  $B^T$  is the inverse of A, meaning A is invertible. (And so  $A^{-1} = ((A^T)^{-1})^T$ .)

Theorem 1.15 (Generalized reversed product rule).

$$(A_1 A_2 \dots A_{k-1} A_k)^T = A_k^T A_{k-1}^T \dots A_1^T$$

If  $A_1, \ldots, A_k$  are all invertible, then so is their product  $A_1 A_2 \ldots A_{k-1} A_k$ , and we also have

$$(A_1 A_2 \dots A_{k-1} A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \dots A_1^{-1}$$

*Proof.* From the rule  $(AB)^T = B^T A^T$ , let "A" =  $A_1 \dots A_{k-1}$ , "B" =  $A_k$ . Apply this rule repeatedly.

$$(A_1 A_2 \dots A_{k-1} A_k)^T = A_k^T (A_1 \dots A_{k-2} A_{k-1})^T$$

$$= A_k^T A_{k-1}^T (A_1 \dots A_{k-2})^T$$

$$= \dots$$

$$= A_k^T A_{k-1}^T \dots A_2^T A_1^T$$

Inverse of product is done similarly. First we show that  $(A_1A_2...A_{k-1}A_k)^{-1}$  exists.

$$(A_1 A_2 \dots A_{k-1} A_k) (A_k^{-1} A_{k-1}^{-1} \dots A_1^{-1}) = A_1 A_2 \dots A_{k-1} (A_k A_k^{-1}) A_{k-1}^{-1} \dots A_1^{-1}$$

$$= A_1 A_2 \dots A_{k-1} I A_{k-1}^{-1} \dots A_1^{-1}$$

$$= A_1 A_2 \dots A_{k-2} (A_{k-1} A_{k-1}^{-1}) A_{k-2}^{-1} \dots A_1^{-1}$$

$$= \dots$$

$$= A_1 A_1^{-1} = I$$

Similarly,  $(A_k^{-1}A_{k-1}^{-1}\dots A_1^{-1})(A_1A_2\dots A_{k-1}A_k) = I$ . Thus,  $(A_k^{-1}A_{k-1}^{-1}\dots A_1^{-1})$  and  $(A_1A_2\dots A_{k-1}A_k)$  are inverses of each other.

**Theorem 1.16** (Cancellation law for invertibles). Let A be an invertible matrix and B, C be other matrices.

- (i). If AB = AC, then B = C.
- (ii). If AB = 0, then B = 0

*Proof.* (i) If AB = AC and  $A^{-1}$  exists, multiply both sides by  $A^{-1}$  at the left to get  $A^{-1}AB = A^{-1}AC$   $\Rightarrow IB = IC \Rightarrow B = C$ 

(ii) If 
$$AB = 0$$
 and  $A^{-1}$  exists, then  $A^{-1}AB = A^{-1}0 \implies B = 0$ 

### 1.5 Elementary row operations

#### 1.5.1 Definition

**Definition 1.25.** Three types of **elementary row operations** can be performed to modify a matrix:

- 1. (Scaling) Multiply all entries in a row by a **non-zero** constant.
- 2. (Interchange) Interchange two rows.
- 3. (Replacement) Replace one row by the sum of itself and a multiple of another row.

(This is related to how we can add equations and multiply equation by constant in a system of equation. More on that later.) Let  $R_p$  denote the p th row.

Example:

1. 
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & -3 & 4 \\ 4 & 5 & -1 \end{bmatrix} \xrightarrow{R_3 \to 3R_3} \begin{bmatrix} 1 & 4 & 5 \\ 2 & -3 & 4 \\ 12 & 15 & -3 \end{bmatrix}$$

**2.** 
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & -3 & 4 \\ 4 & 5 & -1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 2 & -3 & 4 \\ 1 & 4 & 5 \\ 4 & 5 & -1 \end{bmatrix}$$

3. 
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & -3 & 4 \\ 4 & 5 & -1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 4 & 5 \\ 2 - 2(1) & -3 - 2(4) & 4 - 2(5) \\ 4 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 0 & -11 & -6 \\ 4 & 5 & -1 \end{bmatrix}$$

**Definition 1.26.** Two matrices are **row equivalent** if there is a sequence of elementary row operations that transforms one matrix into another.

We write  $A \sim B$  or  $B \sim A$  to denote A is row equivalent to B.

Note that row equivalence is an equivalence relation.

### 1.5.2 Elementary matrix

**Definition 1.27.** An **elementary matrix** is a matrix obtained by performing a single elementary row operation on an identity matrix.

It is typically denoted by E, and the three types of elementary row operations available give three types elementary matrix: type I (scaling), type II (interchange), type III (replacement).

Example:

1. 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \to 5R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\mathbf{2.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \stackrel{R_1 \leftrightarrow R_2}{\longrightarrow} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3. 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 4R_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

Notation: Let  $\mathcal{E}(A)$  non-standardly denote the matrix obtained by performing the elementary row operation  $\mathcal{E}$  on A.

**Theorem 1.17** (Elementary matrix theorem). If an elementary row operation is performed on an  $m \times n$  matrix A, the result is EA where E is the elementary matrix obtained by performing the same row operation on  $I_m$ .

i.e. 
$$\mathcal{E}(A) = \mathcal{E}(I_m)A$$

Example: Let 
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
,  $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ,  $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ ,  $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ . Then  $E_1A = \begin{bmatrix} a & b & c \\ d & e & f \\ a - 4a & h - 4b & i - 4c \end{bmatrix}$ ,  $E_2A = \begin{bmatrix} d & e & f \\ a & b & c \\ a & h & i \end{bmatrix}$ ,  $E_3A = \begin{bmatrix} a & b & c \\ d & e & f \\ 5a & 5h & 5i \end{bmatrix}$ 

*Proof.* Let  $\mathbf{e}_i$  denote the *i* th row of  $I_m$ . Let  $A = [a_{ij}]$ .

Note that each row in A that remain unchanged after an elementary row operation is equal to the corresponding row in EA, because for i =unchanged row,  $(EA)_{ij} = \sum_{k=1}^{n} (\mathbf{e}_i)_k a_{kj} = 0 + \mathbf{e}_{ii} a_{ij} + 0 = a_{ij}$ , which is entry of A. So let's focus on the rows that get changed.

Note that each row of EA is equal to the corresponding row of E, times A. i.e.  $row_i(EA) = row_i(E) A$ . Let's consider each elementary row operation.

### 1. Scaling operation:

Suppose row m is scaled by k. That is,  $R_m \to kR_m$ .

Then  $row_m(E) = k\mathbf{e}_m$ , and

$$\operatorname{row}_m(EA) = \operatorname{row}_m(E)A = k\mathbf{e}_mA = k \cdot \operatorname{row}_m(A).$$

Thus, EA is the result of multiplying row m by k, as required.

#### 2. Interchange operation:

Suppose row r and row m are interchanged (swapped). That is,  $R_r \leftrightarrow R_m$ .

Then  $row_r(E) = \mathbf{e}_m$  and  $row_m(E) = \mathbf{e}_r$ , so

$$row_r(EA) = row_r(E)A = \mathbf{e}_m A = row_m(A)$$

$$\operatorname{row}_m(EA) = \operatorname{row}_m(E)A = \mathbf{e}_r A = \operatorname{row}_r(A).$$

Thus, EA is the result of interchanging row r and row m of A, as required.

### 3. Replacement operation:[4]

Suppose the operation adds k times row m to row  $r \neq m$ . That is,  $R_r \to R_r + kR_m$ .

Then  $row_r(E) = \mathbf{e}_r + k\mathbf{e}_m$ , and

$$row_r(EA) = (\mathbf{e}_r + k\mathbf{e}_m)A = \mathbf{e}_rA + k(\mathbf{e}_mA) = row_r(A) + k \cdot row_m(A).$$

Thus, EA is the result of adding k times row m of A to row r, as required.

The inverse of an elementary row operation is one that undoes the elementary row operation.

Inverse of  $R_1 \to R_1 + kR_2$  is  $R_1 \to R_1 - kR_2$ .

Inverse of  $R_1 \leftrightarrow R_2$  is  $R_1 \leftrightarrow R_2$ .

Inverse of  $R_1 \to kR_1$  is  $R_1 \to \frac{1}{k}R_1$ .

**Theorem 1.18.** Every elementary matrix E is invertible, and the inverse of E is an elementary matrix that corresponds to the inverse of the elementary row operation that produces E.

*Proof.* Let F be the matrix that corresponds to the inverse of elementary row operation that produces E. Then F is an elementary matrix since inverse of each elementary row operation is also a single elementary row operation.

Since performing the inverse elementary row operation on E produces I, by the previous theorem we have FE = I. Note that performing the original elementary row operation on F also produces I, so we also have EF = I.

Thus, F is the inverse of E.

A corollary of the elementary matrix theorem is:

Corollary 1.19. A and B are row equivalent if and only if there is a sequence of elementary matrices  $E_1, E_2, \ldots, E_k$  such that  $B = E_k E_{k-1} \ldots E_1 A$ .

*Proof.* If A and B are row equivalent then there exists a sequence of elementary row operations that transforms A to B. Let  $\mathcal{E}_i(A)$  be the matrix after i th elementary row operation in the sequence and  $E_1, E_2, \ldots, E_k$  be the elementary matrices that corresponds to these elementary row operations.

By elementary matrix theorem we have  $\mathcal{E}_1(A) = E_1 A$ ,  $\mathcal{E}_2(A) = E_2(E_1 A)$ , ...,  $\mathcal{E}_k(A) = E_k E_{k-1} \dots E_1 A = B$ .

Conversely, if  $B=E_kE_{k-1}\dots E_1A$ , then by the theorem,  $A\sim E_1A\sim E_2E_1A\sim \dots \sim E_nE_{n-1}\dots E_1A=B$ 

#### 1.5.3 Row echelon form

A zero row refers to a row that has all entries zero. A non-zero row refers to a row that has at least one non-zero entry.

A leading entry of a non-zero row refers to the leftmost non-zero entry in the row.

**Definition 1.28.** A matrix is in **row echelon form** (and called a row-echelon matrix) if it has the following three properties:

- 1. All non-zero rows are above any rows of all zeros.
- 2. Each leading entry is to the right of the leading entry of the row above it.

A matrix is in **reduced row echelon form** (/reduced echelon form / RREF) if it has the additional property:

- **3**. The leading entry in each non-zero row is 1.
- **4**. Each leading 1 is the only non-zero entry in its column.

A zero matrix is defined to be in reduced row echelon form.

The leading 1s are also called **pivots**.

Examples of row echelon matrices:

$$\begin{bmatrix} 3 & 4 & -5 & 2 \\ 0 & 5 & 3 & 4 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 3 & 5 \\ 0 & 2 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Not row echelon matrices:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

Reduced row echelon matrices:

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Every matrix can be transformed into row echelon form and reduced row echelon form using elementary row operations (we'll prove this later). This process is called **row reduction**. There is an algorithm we can use to transform a matrix into row echelon form reliably, called **Gaussian algorithm**.

#### Process 1.29. Gaussian algorithm proceeds iteratively as follows:

- 1. Find any leftmost non-zero entry a in the matrix, and move the row containing a to the top position (via row interchange).
- 2. Multiply the new top row by 1/a to create a leading 1.
- 3. Use row replacement to make each entry below the leading 1 zero. (e.g. To make  $a_{p1}$  zero, we can use  $R_p \to R_p a_{p1}R_1$ .)
- 4. This completes the top row, and all further row operations are performed on the remaining rows.
- 5. Repeat steps 1-4. Stop when no more rows remain or the remaining rows consist entirely of zeros.

Notation: Sometimes I can combine two elementary operations, eg.  $R_1 \to kR_1 - mR_2$  represents  $R_1 \to kR_1$  followed by  $R_1 \to R_1 - mR_2$ ) Combined elementary row operations are simply called row operations (so the word "elementary" actually matters). When elementary row operation is used, we can omit the arrow and just write  $R_1 - mR_2$  instead of  $R_1 \to R_1 - mR_2$  to save space.

Let's illustrate this with an example:

$$A = \begin{bmatrix} 0 & 5 & -2 & 4 \\ 6 & -3 & 4 & 12 \\ 4 & 12 & -3 & 19 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 6 & -3 & 4 & 12 \\ 0 & 5 & -2 & 4 \\ 4 & 12 & -3 & 19 \end{bmatrix} \xrightarrow{R_1 \to \frac{1}{6}R_1} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{2}{3} & 2 \\ 0 & 5 & -2 & 4 \\ 4 & 12 & -3 & 19 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 4R_1} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{2}{3} & 2 \\ 0 & 1 & -\frac{1}{2} & \frac{2}{3} & 2 \\ 0 & 1 & -\frac{2}{5} & \frac{4}{5} \\ 0 & 14 & -3 & 19 \end{bmatrix} \xrightarrow{R_3 \to 14R_2} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{2}{3} & 2 \\ 0 & 1 & -\frac{2}{5} & \frac{4}{5} \\ 0 & 0 & \frac{13}{5} & \frac{39}{5} \end{bmatrix} \xrightarrow{R_3 \to \frac{5}{13}R_3} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{2}{3} & 2 \\ 0 & 1 & -\frac{2}{5} & \frac{4}{5} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

For hand computation in practice, we often don't make each row have leading 1s so as to avoid messy fractions and save time:

$$A = \begin{bmatrix} 2 & 5 & -2 & 6 \\ 6 & -3 & 0 & 0 \\ 4 & 12 & -3 & 19 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & 5 & -2 & 6 \\ 0 & 18 & -6 & 18 \\ 0 & 2 & 1 & 7 \end{bmatrix} \qquad (R_2 \to 3R_1 - R_2)$$

$$\sim \begin{bmatrix} 2 & 5 & -2 & 6 \\ 0 & 18 & -6 & 18 \\ 0 & 0 & 15 & 45 \end{bmatrix} \qquad (R_3 \to 9R_3 - R_2)$$

After making row echelon form, we can further perform row reduce to make reduced row echelon form. I'll called it extended Gaussian algorithm.

**Process 1.30.** To transform a row echelon matrix into reduced row echelon form, begin with the rightmost leading entry of the matrix. Make the leading entry 1 by scaling operation if it is not already, and then create zeros above it. Repeat the process by working to the left on each of the leading entries.

Let's use the example again:

$$\begin{bmatrix} 1 & -\frac{1}{2} & \frac{2}{3} & 2\\ 0 & 1 & -\frac{2}{5} & \frac{4}{5}\\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 + \frac{2}{5}R_3} \begin{bmatrix} 1 & -\frac{1}{2} & 0 & 0\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{R_1 + \frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & 3 \end{bmatrix}$$

As we can see, the final matrix is in reduced row echelon form.

**Theorem 1.20** (Existence of reduced echelon form). Each matrix is row equivalent to a row echelon matrix.

In other words, each matrix can be row reduced into one reduced echelon form only.

Proof. (Let's copy from [5] since I'm tired of making up my own words.)

#### Existence:

Let's first prove existence of reduced echelon form (RREF) for every matrix. Let A be an  $m \times n$  matrix. We prove this by mathematical induction on the number of columns of A. When A has one column, either A is the zero vector which is already in RREF, or it has a non-zero entry a. Move a to the top row by interchanging rows and multiply the top row by 1/a. For each of the entry  $a_{i1}$  where  $2 \le i \le m$ , use the elementary row operation  $R_i \to R_i - a_{i1}R_1$  to turn it into zero (since  $a_{i1} - a_{i1}(1) = 0$ ). The result is the vector with 1 at top and zeros elsewhere, which is in RREF.

For the inductive step, assume A is  $m \times n$  and the statement is true for all matrices with n-1 columns. We then know that there is a series of row operations we can do to A that result in a matrix X whose first n-1 columns form a RREF matrix. Suppose the matrix formed by these n-1 columns has k rows of zeros at the bottom.

If the final column has zeros in all of its bottom k entries, the matrix is in reduced echelon form. If not, swap a non-zero entry to the top of these k rows (say it's row p), multiply that row so that the entry becomes 1, and use it as a pivot to eliminate all other non-zero entries in the final column. The result is in RREF.

(To elaborate, use  $R_i \to R_i - a_{in}R_p$  on other entries in final column. This leaves the first n-1 columns unchanged since first n-1 entries of  $R_p$  are all zero.)

By mathematical induction, for A with any column number, A can be row reduced into reduced echelon form.





A non-zero vector cannot be row equivalent to the zero vector, since if it were, then the zero vector is also row equivalent to the non-zero vector, meaning there is a sequence of elementary row operations that transforms the zero vector into the non-zero vector, which is impossible (since k0 = 0,  $0 \leftrightarrow 0$  does nothing, 0 + k0 = 0).

Thus, a zero vector is row equivalent to itself only.  $\Box$ 

**Theorem 1.22** (Uniqueness of reduced echelon form). Each matrix is row equivalent to only one row echelon matrix.

# *Proof.* I give up.

### Uniqueness:

Let A be an  $m \times n$  matrix. Let's use mathematical induction on n. If n=1, then the only possible reduced echelon matrix is  $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$ . The former is row equivalent to A=0 only. For non-zero  $A=\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}$ , first interchange rows so that new  $a_{11} \neq 0$ . Then each  $a_{i1}$  where  $2 \leq i \leq m$  can be turned into zero by the elementary row operation  $R_i \to R_i - \frac{a_{i1}}{a_{11}}R_1$  since  $a_{i1} - \frac{a_{i1}}{a_{11}}a_{11} = 0$ . Thus,  $A \neq 0$  is and only is row equivalent to the reduced echelon matrix  $\begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$ . Thus the statement is true for n=1.

Assume the statement is true for  $m \times (n-1)$  matrices. Let A be an  $m \times n$  matrix.

### 1.6 System of linear equations

**Definition 1.31.** A linear equation in n variables is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

where  $x_1, \ldots, x_n$  are variables, and b and the **coefficients**  $a_1, \ldots a_n$  are scalars in  $\mathbb{F}$ .

For now, let the constants and coefficients be all in  $\mathbb{R}$ .

**Definition 1.32.** A system of linear equations (/linear system) is a collection of one or more linear equations involving the same variables  $x_1, \ldots, x_n$ . A linear system of m equations in n variables can be written as:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

A **solution** of the system is a list  $(s_1, s_2, \ldots, s_n)$  of numbers that makes each equation a true statement when the values  $s_1, \ldots, s_n$  are substituted for  $x_1, \ldots, x_n$  respectively.

Example: Linear system in 2 equations, 2 unknowns:

$$3x - 5y = 1$$
$$2x + y = 5$$

Then (x,y) = (2,1) is a solution since substituting values make both equation true: 3(2) - 5(1) = 1 and 2(2) + 1 = 5.

Linear system in 3 equations, 3 unknowns:

$$3x - 5y + 2z = 4$$
$$-2x + 6y - 5z = 7$$
$$x - 4y + 4z = 3$$

Then (x, y, z) = (139, 115, 81) is a solution since 3(139) - 5(115) + 2(81) = 4, -2(139) + 6(115) - 5(81) = 7, 139 - 4(115) + 4(81) = 3.

A linear system can have infinite solutions. The system

$$x + y = 1$$
$$2x + 2y = 2$$

have infinite solutions since (x,y)=(t,1-t) makes both equations true for all  $t\in\mathbb{R}$ . t is called a **free** variable.

**Definition 1.33.** The **solution set** of a system of equation is the set of all solutions of the system. Two systems of equations are **equivalent** if they have the same solution set.

The solution set of the above system can be written as  $\{(t, 1-t) : t \in \mathbb{R}\}.$ 

Let me use  $\cap$  between two equations to denote they belong to the same linear system.

So the system  $x+y=1 \cap 2x+2y=2$  is equivalent to the system  $5x+5y=5 \cap 7x+7y=7$ .

#### 1.6.1 Elementary operations

**Theorem 1.23.** The following operations, called **elementary operations**, can be performed on system of linear equations to produce equivalent systems that have the same solution set:

- 1. Interchange two equations.
- 2. Multiply one equation by a non-zero number.
- 3. Add a multiple of one equation to another equation.

These are analogous to the elementary row operations mentioned before.

*Proof.* Note that equation interchange has no effect since it just changes the order we write the equations.

Suppose a system of linear equation is linear equations is transformed into a new system by an elementary operation. Then every solution of the original system is automatically a solution of the new system because adding equations or multiplying an equation by a non-zero number always results in a valid equation.

(To elaborate, suppose  $(s_1, \ldots, s_n)$  is a solution to the original system. If an equation of the system  $a_1x_1 + \ldots + a_nx_n = b$  get multiplied k to produce the new system with the corresponding equation being  $ka_1x_1 + \ldots + ka_nx_n = kb$ . Then since  $a_1s_1 + \ldots + a_ns_n = b$  is true,  $ka_1s_1 + \ldots + ka_ns_n = kb$  is also true by multiplicative property of equality, so  $(s_1, \ldots, s_n)$  is also a solution of the new system.

If a multiple of equation, say  $kc_1x_1 + \ldots + kc_nx_n = kd$  is added to  $a_1x_1 + \ldots + a_nx_n = b$  to produce  $a_1x_1 + \ldots + a_nx_n + (kc_1x_1 + \ldots + kc_nx_n) = b + kd$ , then note that  $a_1s_1 + \ldots + a_ns_n + (kc_1s_1 + \ldots + kc_ns_n) = b + kd$  is still true because both sides get added by equal stuff, since  $kc_1s_1 + \ldots + kc_ns_n = kd$  is true because it's within the original system. So  $(s_1, \ldots, s_n)$  is also a solution of the new system.)

In the same way, each solution of the new system must be a solution to the original system because the original system can be obtained from the new one by the inverse of the original elementary operation (which is also an elementary operation).

Thus, the original and new systems have the same solution set.

**Theorem 1.24.** A linear system has either no solution, exactly one solution, or infinitely many solutions.

*Proof.* Suppose a linear system has two distinct solutions  $(s_1, \ldots, s_n)$  and  $(t_1, \ldots, t_n)$ . Let  $a_{i1}x_1 + \ldots + a_{in}x_n = b_i$  be the i th equation of the system. Then

$$a_{i1}s_1 + \ldots + a_{in}s_n = b_i$$
 (by definition)  
 $(a_{i1}s_1 + \ldots + a_{in}s_n) - (a_{i1}t_1 + \ldots + a_{in}t_n) = b_i - b_i$  (since  $a_{i1}t_1 + \ldots + a_{in}t_n = b_i$ )  
 $a_{i1}(s_1 - t_1) + \ldots + a_{in}(s_n - t_n) = 0$  (multiply both sides by  $k \in \mathbb{R}$ )

Then for any  $k \in \mathbb{R}$ ,  $(s_1 + k(s_1 - t_1), \dots, s_n + k(s_n - t_n))$  is also a solution since substituting it into the equation gives

$$a_{i1}(s_1 + k(s_1 - t_1)) + \dots + a_{in}(s_n + k(s_n - t_n)) = b_i$$

$$(a_{i1}s_1 + \dots + a_{in}s_n) + (ka_{i1}(s_1 - t_1) \dots + ka_{in}(s_n - t_n)) = b_i$$

$$a_{i1}s_1 + \dots + a_{in}s_n + 0 = b_i$$

$$b_i = b_i$$

Since  $(s_1, \ldots, s_n)$  and  $(t_1, \ldots, t_n)$  are distinct solutions, there exists j where  $1 \le j \le n$  such that  $s_j \ne t_j$ . This means  $s_j - t_j \ne 0$ .

Then for scalars  $k_1 \neq k_2$ , we have  $k_1(s_j - t_j) \neq k_2(s_j - t_j)$  and thus  $s_j + k_1(s_j - t_j) \neq s_j + k_2(s_j - t_j)$ , meaning the solution is different, i.e.  $(s_1 + k_1(s_1 - t_1), \ldots, s_n + k_1(s_n - t_n)) \neq (s_1 + k_2(s_1 - t_1), \ldots, s_n + k_2(s_n - t_n))$ . Thus there are infinitely many solutions corresponding to infinitely many k.

**Definition 1.34.** A linear system is called **consistent** if it has at least one solution, and **inconsistent** if it has no solution.

Example of inconsistent system:  $x+y=1 \ \cap \ x+y=2$  . We get the false equation "1 = 0" if we subtract one equation from another.

**Theorem 1.25.** If a sequence of elementary operations on a linear system produces a false equation that does not depend on any variables, then the system is inconsistent.

*Proof.* Suppose the original system has a solution. Then the new system containing the false equation also has the same solution (by previous theorem), meaning there is a way of substituting values to make all the equations in the system true, including the false equation, which is a contradiction. Thus the original system cannot have a solution.  $\Box$ 

### 1.6.2 Augmented matrix

Given a linear system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 3x_3 = -6$$
$$-3x_1 + 4x_3 = 10$$

with the variables aligned in columns, we can record the coefficients in a matrix to form a **coefficient matrix**, with the "missing variables" seen as having a coefficient of 0:

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -3 \\ -3 & 0 & 4 \end{bmatrix}$$

We can also include the constants in the right hand side of equation to form an augmented matrix.

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -3 & -6 \\ -3 & 0 & 4 & 10 \end{bmatrix}$$

Note: The vertical line is for visual purpose only. An augmented matrix has no fundamental difference from a normal matrix.

**Definition 1.35.** Given a linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

, the  ${f coefficient\ matrix}$  of the system is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_{2n} \\ \vdots \\ a_{m1} & a_{m2} & \dots & b_{mn} \end{bmatrix}$$

and the augmented matrix of the system is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

# 1.6.3 Solving a linear system by Gaussian elimination

To solve a linear system, we can perform elementary row operations on the corresponding augmented matrix to produce equivalent linear systems. In particular, we can transform the augmented matrix into row-echelon form using Gaussian algorithm and then solve the linear system easily. This process is called **Gaussian elimination**.

**Process 1.36.** To solve a linear system with Gaussian elimination, proceed as follows:

- 1. Transform the augmented matrix of the system to row-echelon form using Gaussian algorithm.
- 2. If a row  $\begin{bmatrix} 0 & 0 & \dots & 0 & b \end{bmatrix}$  appears where  $b \neq 0$ , the system is inconsistent and there are no solutions.
- 3. Otherwise, assign the non-leading variables\* (if any) as parameters, and use the equations corresponding to the reduced row-echelon matrix to solve for the leading variables in terms of the parameters.
- \*A non-leading variable is a variable that corresponds to a non-leading entry.

Example:

No solution: Given the linear system:

$$3x + y - 4z = -1$$
$$x + 10z = 5$$
$$4x + y + 6z = 1$$

Row reduce the corresponding augmented matrix:

$$\begin{bmatrix} 3 & 1 & -4 & | & -1 \\ 1 & 0 & 10 & | & 5 \\ 4 & 1 & 6 & | & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 0 & 10 & | & 5 \\ 3 & 1 & -4 & | & -1 \\ 4 & 1 & 6 & | & 1 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 0 & 10 & | & 5 \\ 0 & 1 & -34 & | & -16 \\ 0 & 1 & -34 & | & -19 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 10 & | & 5 \\ 0 & 1 & -34 & | & -16 \\ 0 & 0 & 0 & | & -3 \end{bmatrix}$$

The bottom row gives 0 = -3 which is false, so the system has no solution.

Unique solution: Given the linear system:

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 3x_3 = -6$$
$$-3x_1 + 4x_3 = 10$$

Row reduce the corresponding augmented matrix:

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -3 & -6 \\ -3 & 0 & 4 & 10 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -3 & -6 \\ 0 & -6 & 7 & 10 \end{bmatrix} \xrightarrow{R_3 + 3R_2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -3 & -6 \\ 0 & 0 & -2 & -8 \end{bmatrix}$$

The last augmented matrix corresponds to

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 3x_3 = -6$$
$$-2x_3 = -8$$

And thus  $x_3 = 4$ . Now we do **backward substitution**. Substitute value of  $x_3$  into second equation to get

$$2x_3 - 3(4) = -6$$
$$x_3 = 3$$

Now substitute value of  $x_2$  and  $x_3$  into first equation to get

$$x_1 - 2(3) + 4 = 0$$
$$x_1 = 2$$

Thus,  $(x_1, x_2, x_3) = (2, 3, 4)$  is the solution to the linear system.

Infinite solutions: Given the linear system:

$$x_1 - 2x_2 - x_3 + 3x_4 = 1$$
  

$$2x_1 - 4x_2 + x_3 = 5$$
  

$$x_1 - 2x_2 + 2x_3 - 3x_4 = 4$$

Row reduce the corresponding augmented matrix:

$$\begin{bmatrix} 1 & -2 & -1 & 3 & 1 \\ 2 & -4 & 1 & 0 & 5 \\ 1 & -2 & 2 & -3 & 4 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & -2 & -1 & 3 & 1 \\ 0 & 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -6 & 3 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & -2 & -1 & 3 & 1 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The last augmented matrix corresponds to

$$x_1 - 2x_2 + x_4 = 2$$
  
 $x_3 - 2x_4 = 1$   
 $0 = 0$ 

Use the non-leading variables  $x_2$  and  $x_4$  as free variables:  $x_2 = s$ ,  $x_4 = t$ , and solve for  $x_3$  and  $x_1$  in terms of s and t:

$$x_3 = 1 + 2t$$
 and  $x_1 = 2 + 2s - t$ 

The solution is

$$\begin{cases} x_1 &= 2 + 2s - t \\ x_2 &= s \\ x_3 &= 1 + 2t \\ x_4 &= t \end{cases}$$

or we can write the solution set:  $\{(2+2s-t, s, 1+2t, t): s, t \in \mathbb{R}\}$ 

**Theorem 1.26.** Suppose a system of m equations in n variables is consistent, and the row echelon form of its corresponding augmented matrix has r non-zero rows. Then

- (i). r < n
- (ii). If r = n, then the system has a unique solution.
- (iii). If r < n, then the system has infinitely many solution.

*Proof.* (i) (First ignore the assumption that the system is consistent.) Note that the augmented matrix is  $m \times (n+1)$ , where the last column entries are constants on RHS of the equations. The rowe chelon matrix has r non-zero rows, which means it has r leading entries, and each leading entry in the row echelon matrix occupies a distinct column. Thus the row echelon augmented matrix of any linear system has at most n+1 leading entries.

If r = n + 1, the row echelon augmented matrix (where each leading entry is scaled to 1) must be in the form (\* means any number)

$$\begin{bmatrix} 1 & * & * & \dots & * & * \\ 0 & 1 & * & \dots & * & * \\ 0 & 0 & 1 & \dots & * & * \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & 1 & * \\ 0 & 0 & 0 & \dots & 0 & 1 \\ \vdots & (0 \text{ rows if any}) \end{bmatrix}$$

The last non-zero row corresponds to the equation 0 = 1, which means the system is inconsistent (i.e. has no solutions).

Thus, if a system is consistent, it must be that  $r \leq n$ .

(ii) Suppose the system is consistent and r=n. Then the row-echelon matrix is in the form

$$\begin{bmatrix} 1 & * & * & \dots & * & | & * \\ 0 & 1 & * & \dots & * & | & * \\ 0 & 0 & 1 & \dots & * & | & * \\ \vdots & & \ddots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & | & * \\ \vdots & & & & & \vdots & \\ \vdots & & & & & & \vdots & \end{bmatrix}$$

Let's use mathematical induction on n to show that the system has a unique solution. Let the row echelon augmented matrix be  $[r_{ij}]$ . If n = 1, then the row-echelon matrix is  $[1 \mid r_{12}]$  which corresponds to  $x_1 = r_{12}$ , a unique solution.

Assume that any consistent system of n-1 variables with n-1 non-zero rows in the augmented row echelon matrix has a unique solution. When a consistent system has n variables and r=n, we have  $x_n=r_{n,n+1}$ , and we can substitute  $r_{n,n+1}$  into  $x_n$  in all of the remaining n-1 equations to obtain

$$x_1 + r_{12}x_2 + \ldots + r_{1n}(r_{n,n+1}) = r_{1,n+1}$$

$$x_2 + \ldots + r_{2n}(r_{n,n+1}) = r_{2,n+1}$$

$$\vdots$$

$$x_{n-1} + r_{n-1,n}(r_{n,n+1}) = r_{n-1,n}$$

Put all the constants into right hand side to obtain a system of n equations:

$$x_1 + r_{12}x_2 + \dots = r_{1,n+1} - r_{1n}(r_{n,n+1})$$

$$x_2 + \dots = r_{2,n+1} - r_{2n}(r_{n,n+1})$$

$$\vdots$$

$$x_{n-1} = r_{n-1,n} - r_{n-1,n}(r_{n,n+1})$$

This system corresponds to a new row echelon augmented matrix with n-1 variables and n-1 non-zero rows. By induction assumption, this system of n-1 equations has a unique solution. Since  $x_n = r_{n,n+1}$  is the only possible solution to the n th equation, the system of n equation also has a unique solution.

By mathematical induction, if r = n, then the system has a unique solution.

(iii) Start from the n th equation. If it has non-leading variables, use them as free variables (say,  $t_1, \ldots, t_k$ ), and express the leading variable  $x_{n-k}$  in terms of them. Substitute  $x_{n-k}, t_1, \ldots, t_n$  into  $x_{n-k}, \ldots, x_n$  of the equation one row above (n-1) th equation. If there are more non-leading variables, assign them as new free variables  $t_{k+1}, \ldots$  or something. Repeat this process until every  $x_i$  is expressed in terms of free variables.

Note that there is at least one free variable since the row echelon augmented matrix has at least one non-leading entries (as r < n). Since free variable can be any real number, there are infinite many choices and thus infinitely many solution.

**Theorem 1.27.** If the row echelon augmented matrix of a linear system does not contain a row where all except the last entries are zero, then the system is consistent.

*Proof.* Let r be number of non-zero rows and n be number of variables. Note that  $r \leq n$ . If r = n, the system must have a unique solution by previous theorem. If r < n, repeating the process of the previous proof (iii) must give a solution since there is at least one free variable, and at least one more variable is involved for each substitution of rows, so there is no room for contradiction. (I can't think of a better reasoning now.)

**Theorem 1.28.** If a linear system has more variables than equations, then it either has no solution or infinite solution.

*Proof.* If a linear system has more variables than equations, elementary operations may still lead to false equation. Example: x+y+z=1  $\cap$  x+y+z=2, which is two equations in three variables. Subtracting one from other gives 0=1.

Let the linear system have m equations and n variables where m < n. If the row echelon augmented matrix does not contain a row of  $\begin{bmatrix} 0 & 0 & \dots & 0 & b \end{bmatrix}$   $(b \neq 0)$ , then it is consistent. Moreover, the number of leading entries r is at most m, i.e.  $r \leq m$  since the augmented matrix has only m rows, and each leading entry occupies a distinct row. Thus  $r \leq m < n$  which means r < n, so the system has infinite solution.  $\square$ 

Note: However, when a linear system has more or equal equations than variables, it may still have no solutions, one solution or infinitely many solutions.

To summarize the conditions for number of solutions of a linear system:

1. If the row echelon augmented matrix contains a row of  $\begin{bmatrix} 0 & 0 & \dots & 0 & b \end{bmatrix}$  (where  $b \neq 0$ ), then the system is inconsistent (the system has no solutions).

- 2. Otherwise, the system is consistent.
  - (a) If the number of leading entries is same as the number of variables, then the system has a unique solution.
  - (b) Otherwise, the number of leading entries is less than the number of variables, so the system has infinitely many solution.

#### 1.6.4 Matrix vector equation

Sometimes it is convenient for us to view a system of linear equation as a product of matrix and vector.

### Definition 1.37. A matrix vector equation is of the form

$$A\mathbf{x} = \mathbf{h}$$

where A is an  $m \times n$  coefficient matrix, **x** is the  $n \times 1$  variable vector, and **b** is a  $m \times 1$  constant vector.

#### **Theorem 1.29.** Every linear system in the simultaneous equation form

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n$$

is equivalent to the matrix vector equation

$$A\mathbf{x} = \mathbf{h}$$

where 
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 is the coefficient matrix,  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$  and  $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ .

In other words, the simultaneous equation form and the matrix vector equation form have the same solutions.

*Proof.* Since A is  $m \times n$  and **x** is  $n \times 1$ , **b** is  $m \times 1$ . By definition of matrix product,

$$(A\mathbf{x})_i = \sum_{k=1}^n a_{ik} x_k = a_{i1} x_1 + a_{i2} x_2 + \ldots + a_{in} x_n$$

. Writing this out as column vector, we have

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Two vectors are equal if and only if all of their entries are equal. Thus, we get a system of m equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

**Theorem 1.30.** Let a linear system of n equations in n variables be in the form

$$A\mathbf{x} = \mathbf{b}$$

If the coefficient matrix A is invertible, then the system has the unique solution

$$\mathbf{x} = A^{-1}\mathbf{b}$$

*Proof.* Let  $\mathbf{u}$  be a solution to the linear system.

Since  $A^{-1}$  exists, we can multiply both sides of the equation by  $A^{-1}$  at the left to get

$$A^{-1}A\mathbf{u} = A^{-1}\mathbf{b}$$
$$I\mathbf{u} = A^{-1}\mathbf{b}$$
$$\mathbf{u} = A^{-1}\mathbf{b}$$

Thus, if **x** is any solution, it must be in the form of  $A^{-1}\mathbf{b}$ . Since the inverse of A is unique, the solution vector  $\mathbf{x} = A^{-1}\mathbf{b}$  is necessarily unique as well.

#### 1.6.5 Homogeneous equations

**Definition 1.38.** A linear system is called **homogeneous** if all of its constant terms are zero:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

Written as matrix vector equation:

$$A\mathbf{x} = \mathbf{0}$$

**Definition 1.39.** A trivial solution to a homogeneous linear system is  $x_1 = 0$ ,  $x_2 = 0$ , ...,  $x_n = 0$ . A non-trivial solution is a solution in which at least one variable has a non-zero value.

We can check that the trivial solution is indeed a solution:

$$a_{11}0 + a_{12}0 + \ldots + a_{1n}0 = 0$$

$$a_{21}0 + a_{22}0 + \ldots + a_{2n}0 = 0$$

$$\vdots$$

$$a_{m1}0 + a_{m2}x_2 + \ldots + a_{mn}0 = 0$$

**Theorem 1.31.** Every homogeneous linear system is consistent. If a homogeneous system has a unique solution, then it must be the trivial solution.

*Proof.* Note that  $x_1 = \ldots = x_n = 0$  is always a solution to any homogeneous linear system. If a homogeneous system has a unique solution, then it cannot have any other solution except the trivial solution.

**Theorem 1.32.** If a homogeneous linear system has more variables than equations, then it has infinitely many non-trivial solution.

*Proof.* First, note that for a homogeneous linear system, the entries in the rightmost column of the augmented matrix are all zero after any elementary row operations (since 0 + k0 = 0,  $0 \leftrightarrow 0$  is still 0, and k0 = 0).

By Theorem 1.28, a linear system with more variables than equations has either no solution or infinitely many solution. But a homogeneous linear system cannot have no solutions since the row echelon augmented matrix cannot contain a row of  $\begin{bmatrix} 0 & 0 & \dots & 0 & b \end{bmatrix}$   $(b \neq 0)$ . Thus, it must have infinitely many solution.  $\Box$ 

### 1.7 Invertible matrix theorem

**Block Notation:** Similar to column vector notation, let  $\begin{bmatrix} A & B \end{bmatrix}$  denote the matrix formed by joining A and B side by side.

eg. If 
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and  $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ , then  $\begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \end{bmatrix}$ 

Similarly, we also use  $\begin{bmatrix} A \\ B \end{bmatrix}$  to denote the matrix formed by joining A on top of B.

Similarly, we can use  $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$  to denote the matrix formed by joining A,B,C,D in that position.

**Theorem 1.33** (Invertible Matrix Theorem part I). The following conditions are equivalent for an  $n \times n$  matrix A:

- 1. A is invertible.
- 2. The homogeneous system  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution  $\mathbf{x} = \mathbf{0}$ .
- 3. A is row equivalent to the identity matrix  $I_n$ .
- 4. The system  $A\mathbf{x} = \mathbf{b}$  has at least one solution  $\mathbf{b}$  for every choice of column  $\mathbf{b}$ .
- 5. There exists an  $n \times n$  matrix C such that  $AC = I_n$ .

*Proof.* (Copied from [6])

We show that each of these conditions implies the next, and that (5) implies (1).

- (1)  $\Rightarrow$  (2): If  $A^{-1}$  exists, then  $A\mathbf{x} = \mathbf{0}$  gives  $\mathbf{x} = A^{-1}\mathbf{0} = \mathbf{0}$ .
- $(2) \Rightarrow (3)$ : Assume (2) is true. Let R be the reduced echelon form of A. It suffices to show that  $R = I_n$ . Suppose this is not the case. Then R has a row of zero (since R is square matrix). Now consider the augmented matrix  $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$  of the system  $A\mathbf{x} = \mathbf{0}$ . Then  $\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \longrightarrow \begin{bmatrix} R & \mathbf{0} \end{bmatrix}$  is the reduced form, and  $\begin{bmatrix} R & \mathbf{0} \end{bmatrix}$  also has a row of zeros. Since R is square there must be at least one non-leading variable, and hence at least one parameter. Thus the system  $A\mathbf{x} = \mathbf{0}$  has infinitely many solutions, contrary to (2). So  $R = I_n$  must be true.
- (3)  $\Rightarrow$  (4): Consider the augmented matrix  $\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix}$  of the system  $A\mathbf{x} = \mathbf{b}$ . Using (3), let  $A \longrightarrow I_n$  by a sequence of elementary row operations. Then these same operations bring  $\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} \longrightarrow \begin{bmatrix} I_n \mid \mathbf{b} \end{bmatrix}$  for some column  $\mathbf{c}$ . Hence the system  $A\mathbf{x} = \mathbf{b}$  has a solution (in fact unique) by Gaussian elimination. This proves (4).
- (4)  $\Rightarrow$  (5): Write  $I_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix}$  where  $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$  are the columns of  $I_n$ . For each  $j = 1, 2, \dots, n$ , the system  $A\mathbf{x} = \mathbf{e}_j$  has a solution  $\mathbf{c}_j$  by (4), so  $A\mathbf{c}_j = \mathbf{e}_j$ . Now let  $C = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}$  be the  $n \times n$  matrix with these  $\mathbf{c}_j$  as its columns. Then Theorem 1.5 (column of matrix product) gives (5):

$$AC = A \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{c}_1 & A\mathbf{c}_2 & \dots & A\mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} = I_n$$

(5)  $\Rightarrow$  (1): Assume that (5) is true so that  $AC = I_n$  for some matrix C. Then the system  $C\mathbf{x} = \mathbf{0}$  only has the solution  $\mathbf{x} = 0$  (because  $\mathbf{x} = I_n\mathbf{x} = AC\mathbf{x} = A\mathbf{0} = \mathbf{0}$ ). Thus condition (2) holds for the matrix C rather than A. Hence the argument above that (2)  $\Rightarrow$  (3)  $\Rightarrow$  (4)  $\Rightarrow$  (5) shows that a matrix C' exists such that  $CC' = I_n$ . But then

$$A = AI_n = A(CC') = (AC)C' = I_nC' = C'$$

Thus  $CA = CC' = I_n$  which, together with  $AC = I_n$ , shows that C is the inverse of A. This proves (1).  $\square$ 

(5)  $\Rightarrow$  (1) shows that left/right inverse is equivalent to 'full inverse'. Thus, when we want to check if C is the inverse of A, we only need to check either AC = I or CA = I, and the other will be automatically true.

Corollary 1.34 (left/right inverse implies inverse). If A and C are square matrices such that AC = I, then CA = I, and A, C are inverses of each other. i.e.  $A^{-1} = C$  and  $C^{-1} = A$ .

### 1.8 Determinant

The determinant is a useful function that takes in a matrix and outputs a number. It can be used to determine whether a matrix has inverse, and much more other stuff.

#### Notation:

Let A be a matrix. Let  $A_{(ij)}$  denote the submatrix obtained by deleting the i th row and j th column of A. (This notation with mini bracket is non-standard, as other sources often just omit the mini bracket, but it will be confused with the (i, j) th entry of A, so I add mini bracket.)

Example: Let 
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Then 
$$A_{(32)} = \begin{bmatrix} a_{11} & d_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{23} & a_{24} \\ a_{41} & a_{43} & a_{44} \end{bmatrix}$$

**Definition 1.40.** The **determinant** of an  $n \times n$  matrix  $A = [a_{ij}]$  is a scalar denoted by det A (or |A|), defined recursively as:

$$\det A = \begin{cases} a_{11} & \text{if } n = 1\\ \sum_{i=1}^{n} (-1)^{1+i} a_{i1} \det A_{(i1)} & \text{if } n \ge 2 \end{cases}$$

This definition is called **cofactor expansion** along the first column.

Determinants are only defined for square matrix, and every square matrix has a determinant.

We use vertical bar instead of square bracket to denote determinant of a matrix with written out entries:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

**Theorem 1.35.** The determinant of a  $2 \times 2$  matrix  $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$  is

$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

The determinant of a  $3 \times 3$  matrix  $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$  is

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

*Proof.* For  $2 \times 2$  matrix  $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ , let's unpack the definition:

$$\det A = \sum_{i=1}^{2} (-1)^{1+i} a_{i1} \det A_{(i1)}$$

$$= (-1)^{2} a_{11} \det A_{(11)} + (-1)^{3} a_{21} \det A_{(21)}$$

$$= a_{11} \det[a_{22}] - a_{21} \det[a_{12}]$$

$$= a_{11} a_{22} - a_{12} a_{21} \qquad (\text{determinant of } 1 \times 1 \text{ matrix is the entry itself})$$

For 
$$3 \times 3$$
 matrix  $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ , let's unpack the definition again:

$$\det A = \sum_{i=1}^{3} (-1)^{1+i} a_{i1} \det A_{(i1)}$$

$$= (-1)^{2} a_{11} \det A_{(11)} + (-1)^{3} a_{21} \det A_{(21)} + (-1)^{4} a_{31} \det A_{(31)}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{21} (a_{12} a_{33} - a_{13} a_{32}) + a_{31} (a_{12} a_{23} - a_{13} a_{22})$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}$$

There are two ways to memorize the  $3 \times 3$  determinant:

### 1. Rule of Sarrus:

Write the first and second column to the right of the matrix. Sum up the products along the blue lines, and subtract the products along the red line to get the determinant.

#### 2. Cofactor expansion

Expand the determinant into  $2 \times 2$  determinants along first row or first column like in the proof above. The two ways of cofactor expansion lead to the same determinant (which we will eventual show for  $n \times n$  matrix). I expand along first row because it's slightly easier.

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

Example: 
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ 8 & 9 & 15 \end{vmatrix} = 1 \begin{vmatrix} 5 & 7 \\ 9 & 15 \end{vmatrix} - 2 \begin{vmatrix} 4 & 7 \\ 8 & 15 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 8 & 9 \end{vmatrix}$$
$$= 5(15) - 7(9) - 2(4(15) - 7(8)) + 3(4(9) - 5(8)) = -8$$

For  $4 \times 4$  determinant or larger, rule of Sarrus no longer works so we have to use cofactor expansion.

**Definition 1.41.** The (i, j)-minor of matrix A is

$$M_{ij} = \det A_{(ij)}$$

The (i, j)-cofactor of matrix A is

$$C_{ij} = (-1)^{i+j} \det A_{(ij)}$$

They can also be called the minor/cofactor of entry  $a_{ij}$ .

Note: The context should make it clear that  $M_{ij}$  and  $C_{ij}$  refers to minor and cofactor instead of (i, j) th entry of matrix named C or M. To specify it is the minor/cofactor of matrix A, we can write  $M_{Aij}$  and  $C_{Aij}$ .

The signs of  $C_{ij}$  form a checkerboard pattern in the matrix positions:

The definition of determinant (for  $n \geq 2$ ) rewritten using minor or cofactor is

$$\det A = \sum_{i=1}^{n} (-1)^{1+i} a_{i1} M_{i1} \quad \text{or} \quad \det A = \sum_{i=1}^{n} a_{i1} C_{i1}$$

**Theorem 1.36** (Effect of elementary row operations on determinant). For an  $n \times n$  matrix,

- (i). Multiplying one row by k multiplies the determinant by k.
- (ii). Interchanging two rows multiplies the determinant by -1 (for  $n \ge 2$ ).
- (iii). Adding the multiple of one row to another row does not change the determinant.

*Proof.* (i) [7] Let  $B = [b_{ij}]$  be the matrix obtained by multiplying row p of A by k. We want to show that  $\det B = k \det A$  for all matrix sizes n.

We use mathematical induction on n. The statement is trivially true for n

For 
$$n=2$$
, let  $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and  $B=\begin{bmatrix} ka & kb \\ c & d \end{bmatrix}$ . Then  $\det A=ad-bc$  and  $\det B=(ka)d-(kb)c=k(ad-bc)=k\det A$ . If  $B=\begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$  instead, then  $\det B=a(kd)-b(kc)=k(ad-bc)=k\det A$ . Thus, the statement is true for  $n=2$ . (It is actually not necessarily to check for  $n=2$  since  $n=1$  is a valid base case. I just check it to gain some intuition.)

Assume the statement is true when the matrix size is n-1. When the matrix size is n, by definition,

$$\det A = \sum_{i=1}^{n} a_{i1} (-1)^{i+1} \det A_{(i1)}$$
$$\det B = \sum_{i=1}^{n} b_{i1} (-1)^{i+1} \det B_{(i1)}$$

Let's compare each i th term of both summations.

When  $i \neq p$ , then  $b_{i1} = a_{i1}$ . Note that  $A_{(i1)}$  and  $B_{(i1)}$  are matrices of sizes (n-1), and  $B_{(i1)}$  contains row pwhich is the row that got multiplied by k, so we can use induction assumption to have  $\det B_{(i1)} = k \det A_{(i1)}$ . Thus,  $b_{i1}(-1)^{i+1} \det B_{(i1)} = a_{i1}(-1)^{i+1} k \det A_{(i1)}$ .

When i = p, then  $b_{i1} = ka_{i1}$  since  $b_{p1}$  is in row p, the row that got multiplied by k. Note that  $A_{(i1)} = B_{(i1)}$ since the p th row of A and B gets deleted to form these matrices, and other rows remain unchanged. Thus,  $b_{i1}(-1)^{i+1} \det B_{(i1)} = ka_{i1}(-1)^{i+1} \det A_{(i1)}.$ 

Since each term in the summation of  $\det B$  is k times the corresponding term in the summation of  $\det A$ , we conclude  $\det B = k \det A$  when the matrix size is n.

By mathematical induction,  $\det B = k \det A$  is true for all matrix sizes n.

(ii) [8] First, let's consider interchanging adjacent rows because it's easier. Let  $B = [b_{ij}]$  be the matrix obtained by interchanging row p and row p+1 of A (where  $1 \leq p \leq n-1$ ). We want to show that  $\det B = -\det A.$ 

We use mathematical induction again. For n=2, let  $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ . Then  $\det A=\begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc$  and  $\det B=\begin{vmatrix} c & d \\ a & b \end{vmatrix}=bc-ad=-(ad-bc)=-\det A$ . So the statement is true for n=2.

Assume the statement is true for matrix size n-1. Compare each i th term of summations of det A and  $\det B$  again.

When  $i \in \{1, ..., n\} \setminus \{p, p+1\}$  (namely,  $i \neq p$  and  $i \neq p+1$ ), then  $a_{i1} = b_{i1}$ , and note that  $A_{(i1)}$  and  $B_{(i1)}$  contain both interchanged rows, so by induction assumption,  $\det B_{(i1)} = -\det A_{(i1)}$ . Thus,  $b_{i1}(-1)^{i+1} \det B_{(i1)} = a_{i1}(-1)^{i+1}(-\det A_{(i1)}).$ 

When  $i \in \{p, p+1\}$ , then  $a_{p1} = b_{p+1,1}$  and  $a_{p+1,1} = b_{p1}$  since row p, p+1 are rows that get interchanged, so we compare the p th term of det A with p+1 th term of det B, and p+1 th term of det A with p th term of  $\det B$ . Let's visualize the matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pn} \\ a_{p+1,1} & a_{p+1,2} & \dots & a_{p+1,n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \qquad B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p+1,1} & a_{p+1,2} & \dots & a_{p+1,n} \\ a_{p1} & a_{p2} & \dots & a_{pn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p+1,1} & a_{p+1,2} & \dots & a_{p+1,n} \\ a_{p1} & a_{p2} & \dots & a_{pn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

The shaded area is the entries involved in the p th term of det A and p+1 term of det B. We see that  $a_{p1} = b_{p+1,1}$ , and also  $A_{(p1)} = B_{(p+1,1)}$ , since  $A_{(p1)}$  is formed by deleting p th row of A which is the row with entries  $a_{pj}$ , and  $B_{(p+1,1)}$  is formed by deleting p+1 th row of B, which is also the row with entries  $a_{pj}$  because  $b_{p+1,j} = a_{pj}$  after row interchange. Thus, the only difference between the p th term of det A and A and A and A th term of det A is in the power of negative one, in particular, A is in the power of negative one, in particular, A is an A in A and A is in the power of negative one, in particular, A is an A in A in A and A in A is an A in A in

By similar reasoning, we note that the p th term of det B is -1 times the p+1 th term of det A.

Since each term in the summation of  $\det B$  is -1 times some corresponding term in the summation of  $\det A$ , we conclude that  $\det B = -\det A$  when the matrix size is n and adjacent rows are interchanged.

Now let's consider the general case of interchanging rows. Let row p and row q be interchanged in A, where p < q. We can do that by interchanging two adjacent rows 2(q-p)-1 times: First swap row i and i+1, then row i+1 and i+2, and so on. After swapping row q-1 and q (now we have swapped q-p times so far), we have original p th row in position of q th and original p th row in position of  $p+1 \le l \le q$ . Then proceed backwards swapping adjacent rows for q-p-1 until every row except row p and q is in original place.

Let's illustrate this with an example. To interchange 2nd and 5th row, we swap  $(2,3) \rightarrow (3,4) \rightarrow (4,5) \rightarrow (3,4) \rightarrow (2,3)$ :

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \\ 5 \\ 6 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_4} \begin{bmatrix} 1 \\ 3 \\ 4 \\ 2 \\ 5 \\ 6 \end{bmatrix} \xrightarrow{R_4 \leftrightarrow R_5} \begin{bmatrix} 1 \\ 3 \\ 4 \\ 5 \\ 2 \\ 6 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_4} \begin{bmatrix} 1 \\ 3 \\ 5 \\ 4 \\ 2 \\ 2 \\ 6 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 \\ 5 \\ 3 \\ 4 \\ 2 \\ 2 \\ 6 \end{bmatrix}$$

Since 2(q-p)-1 is an odd number, interchanging adjacent rows for 2(q-p)-1 times will multiply the determinant by  $(-1)^{2(q-p)-1}=-1$ , and we have  $\det B=-\det A$  when any two rows p and q are interchanged.

(iii) [7] Let's first prove a lemma:

**Lemma 1.37.** Let A, B and C be  $n \times n$  matrices that are identical except that each entry in the p th row of A is the sum of the corresponding entries in p th rows of B and C. i.e.  $\operatorname{row}_p(A) = \operatorname{row}_p(B) + \operatorname{row}_p(C)$ . Then

$$\det A = \det B + \det C$$

#### Proof of lemma: [7]

We use mathematical induction on n. The statement is trivially true for n = 1. Assume the statement is true for matrix size n - 1. When the matrix size is n, consider  $a_{i1}$  and  $A_{(i1)}$ :

Case 1: If 
$$i \neq p$$
,

$$a_{i1} = b_{i1} = c_{i1}$$
 and  $\det A_{(i1)} = \det B_{(i1)} + \det C_{(i1)}$ 

, the latter by induction assumption because  $A_{(i1)}, B_{(i1)}, C_{(i1)}$  are identical except that one row of  $A_{(i1)}$  is the sum of the corresponding rows of  $B_{(i1)}$  and  $C_{(i1)}$ .

Case 2: If i = p,

$$a_{p1} = b_{p1} + c_{p1}$$
 and  $A_{(p1)} = B_{(p1)} = C_{(p1)}$ 

, the latter being true since the row p in A, B, C is deleted to form  $A_{(i1)}, B_{(i1)}, C_{(i1)}$ , and other rows remain unchanged. This means  $\det A_{(p1)} = \det B_{(p1)} = \det C_{(p1)}$ .

Now write out the defining sums for  $\det A$ , splitting off the p th term for special attention.

$$\det A = \left(\sum_{i \neq p} a_{i1}(-1)^{i+1} \det A_{(i1)}\right) + a_{p1}(-1)^{p+1} \det A_{(p1)}$$

$$= \sum_{i \neq p} a_{i1}(-1)^{i+1} \left(\det B_{(i1)} + \det C_{(i1)}\right) + (b_{p1} + c_{p1})(-1)^{p+1} \det A_{(p1)} \qquad \text{(by Case 1 and Case 2)}$$

$$= \sum_{i \neq p} a_{i1}(-1)^{i+1} \det B_{(i1)} + \sum_{i \neq p} a_{i1}(-1)^{i+1} \det C_{(i1)} + b_{p1}(-1)^{p+1} \det A_{(p1)} + c_{p1}(-1)^{p+1} \det A_{(p1)}$$

$$= \sum_{i \neq p} b_{i1}(-1)^{i+1} \det B_{(i1)} + \sum_{i \neq p} c_{i1}(-1)^{i+1} \det C_{(i1)} + b_{p1}(-1)^{p+1} \det B_{(p1)} + c_{p1}(-1)^{p+1} \det C_{(p1)}$$

$$\text{(since } a_{i1} = b_{i1} = c_{i1} \text{ for } i \neq p \text{)} \qquad \text{(since } \det A_{(p1)} = \det B_{(p1)} = \det C_{(p1)} \text{)}$$

$$= \left(\sum_{i \neq p} b_{i1}(-1)^{i+1} \det B_{(i1)} + b_{p1}(-1)^{p+1} \det B_{(p1)}\right) + \left(\sum_{i \neq p} c_{i1}(-1)^{i+1} \det C_{(i1)} + c_{p1}(-1)^{p+1} \det C_{(p1)}\right)$$

$$= \det B + \det C$$

By mathematical induction,  $\det A = \det B + \det C$  for all matrix sizes n.

We also need another lemma:

**Lemma 1.38.** If A contains two identical rows, then  $\det A = 0$ .

*Proof.* If rows p and q of A are identical, let B be obtained from A by interchanging these rows. Then B = A so  $\det A = \det B$ . But  $\det B = -\det A$  by property (ii) of Theorem 1.36, so  $\det A = -\det A$ . This implies  $\det A = 0$ 

**Lemma 1.39.** If A contains a row that is a non-zero scalar multiple of another row, then  $\det A = 0$ .

*Proof.* Let A have another row p that is k times row q. Let B be the matrix obtained from A by multiplying row q by k.

Note that row p and row q of B are identical, so  $\det B = 0$ . By property (i),  $\det B = k \det A$ , so  $\det A = \frac{1}{k}(0) = 0$ .

Now we prove property (iii). Let B be the matrix obtained by adding k times row q of A to row p of A, and we want to show that  $\det B = \det A$ .

Let C be the matrix obtained from A by replacing row p with k times row q. Then since

$$row_p(B) = row_p(A) + k \cdot row_q(A) = row_p(A) + row_p(C)$$

, Lemma 1.37 applies to B to show that  $\det B = \det A + \det C$ . Since one row of C is a scalar multiple of another,  $\det C = 0$  by the previous Lemma. Thus,  $\det A = \det B$ , as desired.

**Theorem 1.40** (Conditions of zero determinant). For an  $n \times n$  matrix,

- (i). A matrix with a row of zeros has zero determinant.
- (ii). A matrix with a row that is a non-zero scalar multiple of another row has zero determinant.
- (iii). A zero matrix has zero determinant.

*Proof.* (i) Let A be any square matrix. Let B be the matrix obtained by multiplying a row of A by 0. Then by property (i) of previous theorem,  $\det B = 0 \det A = 0$ .

(Note: Even though multiplying a row by 0 is not an elementary row operation, there is nothing in the proof of property (i) that stops us from substituting 0 for k. Thus the formula  $\det B = k \det A$  still works for 0.)

- (ii) This is just Lemma 1.39 restated.
- (iii) A zero matrix contains at least a row of zeros, so by (ii),  $\det \mathbf{0} = 0$ .

Theorem 1.41 (Determinant of identity matrix). .

(i).  $\det I = 1$ 

*Proof.* (i) Let  $I = [e_{ij}]$ . Note that  $I_1 = 1$ . Assume  $I_{n-1} = 1$  for matrix size n-1. Note that  $e_{i1} = 1$  if i = 1, else  $e_{i1} = 0$ . So

$$\det I = \sum_{i=1}^{n} e_{i1} (-1)^{i+1} \det I_{(i1)}$$

$$= e_{11} (-1)^{1+1} \det I_{(11)} + e_{21} (-1)^{2+1} \det I_{(21)} + \dots + e_{n1} (-1)^{n+1} \det I_{(n1)}$$

$$= 1 \det I_{n-1} + 0 + \dots + 0$$

$$= 1(1) = 1$$

**Lemma 1.42** (Product rule for elementary matrices). If A is a square matrix and E is an elementary matrix, then

$$\det(EA) = \det E \det A$$

Thus, if  $E_1, E_2, \ldots, E_k$  are all elementary matrices, then

$$\det(E_k \dots E_2 E_1 A) = \det E_k \dots \det E_2 \det E_1 \det A$$

*Proof.* Recall that by elementary matrix theorem (Theorem 1.17), if E is an elementary matrix obtained by doing one elementary row operation to  $I_n$ , then doing that operation to A results in EA.

By Theorem 1.36 (effect of row operation on det), the elementary row operation multiplies the determinant of the matrix operated on by either k, -1, or 1, let's say it is  $\lambda$ .

Then the matrix obtained after the elementary row operation on A, namely EA, has determinant  $\lambda \det A$ . Similarly, the matrix obtained after the elementary row operation on I, namely E, has determinant  $\lambda(1)$ .

Thus,  $\det(EA) = \lambda \det A = \det E \det A$ , and by applying this repeatedly we also have,

$$\det(E_k \dots E_2 E_1 A) = \det(E_k \dots E_2 E_1) \det A$$

$$= \det(E_k \dots E_2) \det E_1 \det A$$

$$= \dots$$

$$= \det E_k \dots \det E_2 \det E_1 \det A$$

**Theorem 1.43** (Determinant determines invertibility). Matrix A is invertible if and only if det  $A \neq 0$ .

*Proof.* Let's break it down into two statements:

- (i) If A is invertible, then  $\det A \neq 0$ .
- (ii) If A is non-invertible, then  $\det A = 0$ .

#### Proof of (i):

If A is invertible, then A is row equivalent to I by item (3) of Invertible Matrix Theorem (Theorem 1.33). By elementary matrix theorem (Theorem 1.17), there is a sequence of elementary matrices  $E_1, E_2, \ldots, E_k$  such that  $E_k \ldots E_2 E_1 A = I$ . Taking determinant on both sides, we have

$$\det(E_k \dots E_2 E_1 A) = \det I$$

By previous lemma (1.42), we can apply determinant product rule on elementary matrices, so

$$\det E_k \dots \det E_2 \det E_1 \det A = 1$$

Since the right hand side is 1, any factor on the left hand side cannot be 0, meaning det  $A \neq 0$ .

### Proof of (ii):

Let  $A \longrightarrow R$  where R is reduced row echelon form. Then by elementary matrix theorem there is a sequence of elementary matrix  $E_1, E_2, \ldots, E_k$  such that  $E_k \ldots E_2 E_1 A = R$ . By previous lemma (1.42), we have

$$\det E_k \dots \det E_2 \det E_1 \det A = \det R$$

If A is non-invertible, then R must have a row of zeros, because otherwise, we must have R = I which means A would be row equivalent to I, and by Invertible Matrix Theorem this would mean A is invertible, contradicting the initial assumption that A is non-invertible. Since R has a row of zeros,  $\det R = 0$  by Theorem 1.40 (conditions of zero determinant). So the equation above becomes

$$\det E_k \dots \det E_2 \det E_1 \det A = 0$$

Since right hand side is 0, at least one factor in left hand side is 0. However, note that the determinant of an elementary matrix cannot be zero, since elementary row operation either multiply determinant of I by non-zero k, -1 or 1. Thus, det A = 0, and our statement is proven.

**Theorem 1.44** (Product rule of determinants). If A and B are  $n \times n$  matrices, then

$$\det(AB) = \det A \det B$$

*Proof.* Let's consider two cases.

Case 1: A has no inverse.

Then AB also has no inverse (otherwise  $A(B(AB)^{-1}) = I$  which means A is invertible by Corollary 1.34). Hence the above theorem (determinant determines invertibility) gives

$$det(AB) = 0$$
 and  $det A = 0$ 

which means det(AB) = 0 det B = det A det B. So the property is satisfied.

Case 2: A has an inverse.

Then A is a product of elementary matrices by Invertible Matrix Theorem and elementary matrix theorem, say  $A = E_1 E_2 \dots E_k$ . Then product rule for elementary matrices (substituting "A" with I in equation of Lemma 1.42) gives

$$\det A = \det(E_1 E_2 \dots E_k) = \det E_1 \det E_2 \dots \det E_k$$

But then substituting "A" with B in Lemma 1.42 gives

$$\det(AB) = \det((E_1 E_2 \dots E_k)B) = \det E_1 \det E_2 \dots \det E_k \det B = \det A \det B$$

So the property also holds in this case.

Thus, by applying the product rule repeatedly, we also have

$$\det(A_1 A_2 \dots A_k) = \det A_1 \det A_2 \dots \det A_k$$

for square matrices  $A_1, A_2, \ldots, A_k$ .

**Lemma 1.45.** If E is an elementary matrix, then  $\det E^T = \det E$ 

Proof. Let  $E = [e_{ij}]$  and  $I = [u_{ij}]$ . If E is obtained by scaling or interchanging rows of I, then  $E^T = E$ , since scaling only changes an entry on the main diagonal, so E is still symmetric. For interchanging rows, suppose row p and q are interchanged to give E. Then  $e_{qp} = u_{pp} = 1$  and  $e_{pq} = u_{qq} = 1$ , which means  $e_{pq} = e_{qp}$ . All other entries outside main diagonal remain zero. Thus E is symmetric and  $E^T = E$ .

If E is obtained by adding a multiple of a row to another row of I (type III elementary matrix), then determinant remains unchanged by Theorem 1.36 so  $\det E = \det I = 1$ . Note that  $E^T$  is also of type III elementary matrix, since E differs from I by only one nonzero entry outside main diagonal, and  $E^T$  only flips this entry to the other side of main diagonal, which mean  $E^T$  can also be obtained by a single type III elementary row operation. So  $\det E^T = \det E$ .

Hence,  $\det E^T = \det E$  for every elementary matrix E.

**Theorem 1.46.** If A is a square matrix, then  $\det A^T = \det A$ .

*Proof.* Let A be a square matrix. If A is not invertible, then neither is  $A^T$  (by Corollary 1.14), so det  $A^T = \det A = 0$  by Theorem 1.43.

On the other hand, if A is invertible, then  $A = E_k \dots E_2 E_1$ , where the  $E_i$  are elementary matrices (Theorem 1.33, 1.17). Hence,  $A^T = (E_k \dots E_2 E_1)^T = E_1^T E_2^T \dots E_k^T$  so the product rule gives

$$\det A^T = \det(E_1^T E_2^T \dots E_k^T)$$

$$= \det E_1^T \det E_2^T \dots \det E_k^T \quad \text{(product rule)}$$

$$= \det E_1 \det E_2 \dots \det E_k \quad \text{(since } \det E^T = \det E)$$

$$= \det E_k \dots \det E_2 \det E_1 \quad \text{(rearrange)}$$

$$= \det(E_k \dots E_2 E_1) \quad \text{(product rule again)}$$

$$= \det A$$

**Theorem 1.47.** If A is a triangular matrix, then det A is the product of entries on the main diagonal of A.

*Proof.* There are two cases: upper triangular and lower triangular. Let A be an  $n \times n$  triangular matrix. Upper triangular:

Let's use induction on the matrix size n. When n = 1, det  $A = a_{11}$ , so the statement is trivially true.

Assume that the determinant is product of main diagonal when matrix size is n-1. When matrix size

is 
$$n$$
, the matrix has the form 
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$
. Note that  $a_{i1} = 0$  for  $i \ge 2$ . So

$$\det A = \sum_{i=1}^{n} a_{i1} (-1)^{i+1} \det A_{(i1)}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ 0 & a_{33} & \dots & a_{3n} \\ 0 \vdots & 0 \vdots & \ddots & \vdots \\ 0 & 0 & 0 \dots & a_{nn} \end{vmatrix} - 0 + \dots + 0$$

Note that the determinant above has size (n-1) and is upper triangular. By induction assumption, it evaluates to  $a_{22}a_{33}...a_{nn}$ . Thus, det  $A=a_{11}a_{22}...a_{nn}$ , which is the product of entries on the main diagonal.

#### Lower triangular:

Let's use induction on the matrix size n. When n = 1, the statement is trivially true.

Assume that the determinant is product of main diagonal when matrix size is n-1. When matrix size

is 
$$n$$
, the matrix has the form 
$$\begin{bmatrix} a_{11} & 0 & 0 \dots & 0 \\ a_{21} & a_{22} & 0 \dots & 0 \\ \vdots & \vdots & \ddots & 0 \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
, and

$$\det A = \sum_{i=1}^{n} a_{i1} (-1)^{i+1} \det A_{(i1)}$$

$$= a_{11} \begin{vmatrix} a_{22} & 0 & 0 & \dots & 0 \\ a_{32} & a_{33} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} - a_{12} \begin{vmatrix} 0 & 0 & 0 & \dots & 0 \\ a_{32} & a_{33} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} + a_{13} \begin{vmatrix} 0 & 0 & 0 & \dots & 0 \\ a_{22} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} + \text{rest of the terms}$$

Note that for terms of  $i \geq 2$ , each determinant has the top row being all zero since it consists of  $a_{12}, a_{13}, \ldots, a_{1n}$ . Thus, by Theorem 1.40, they all evaluate to zero.

Apply induction assumption on the determinant next to  $a_{11}$ , and we get  $\det A = a_{11}a_{22}\dots a_{nn}$ .

Now here comes the almighty Cofactor Expansion Theorem which states that the determinant is the same by cofactor expansion along any rows or columns.

**Theorem 1.48** (Cofactor expansion theorem). If  $A = [a_{ij}]$  is an  $n \times n$  matrix, then

1. det 
$$A = \sum_{i=1}^{n} a_{ij} \det A_{ij}$$

**Theorem 1.49** (Determinant properties). Let A be an  $n \times n$  matrix. Then

- (i).  $\det A^T = \det A$
- (ii). det(AB) = (det A)(det B)
- (iii).  $det(kA) = k^n det A$

*Proof.* (i) We use mathematical induction. When n = 1,  $\det A^T = \det A = a_{11}$ . Suppose  $\det A^T = \det A$  is true for n = k. When n = k + 1,

By mathe

# References

- [1] Sheldon Axler, "Linear algebra done right." [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-031-41026-0.pdf
- [2] David C. Lay, "Linear algebra and its applications." [Online]. Available: https://home.cs.colorado.edu/~alko5368/lecturesCSCI2820/mathbook.pdf
- [3] Proof Wiki, "Matrix multiplication is associative." [Online]. Available: https://proofwiki.org/wiki/Matrix\_Multiplication\_is\_Associative
- [4] W. Keith Nicholson, "Linear algebra with applications ch.2.5." [Online]. Available: https://math.emory.edu/~lchen41/teaching/2020\_Fall/Section\_2-5.pdf
- [5] Matthew Towers, "Math0005 algebra 1: 3.10 rref existence and uniqueness." [Online]. Available: https://www.ucl.ac.uk/~ucahmto/0005\_2021/Ch3.S10.html
- [6] W. Keith Nicholson, "Linear algebra with applications ch.2.4." [Online]. Available: https://math.emory.edu/~lchen41/teaching/2020\_Fall/Section\_2-4.pdf
- [7] —, "Linear algebra with applications ch.3.6." [Online]. Available: https://math.emory.edu/~lchen41/teaching/2020\_Fall/Section\_3-6.pdf
- [8] Ken Kuttler, "3.2: Properties of determinants." [Online]. Available: https://math.libretexts.org/Bookshelves/Linear\_Algebra/A\_First\_Course\_in\_Linear\_Algebra\_(Kuttler)/03%3A\_Determinants/3.02%3A\_Properties\_of\_Determinants