Uncertainty quantification in Bayesian Neural Networks using cubature rules

Qazi Zarif UI Islam

April 26

Contents

- Bayesian neural networks
- Uncertainty quantification
- Applications
- supplementary

Bayesian Neural Networks

What is a Bayesian Neural Network?

A Bayesian Neural Network is a neural networks where the learnable parameters θ_i are probability distributions instead of scalars.

e.g. the weights could be Normal distributed like so,

$$w_i = \mathcal{N}(\mu_i, \sigma_i^2) \tag{1}$$

- The activation functions could be stochastic too!
- **Ensemble learning** takes place in a BNN by letting the model train with multiple distributions of the learnable parameters θ

How does it work?

- Choose a **Stochastic model** i.e. prior distributions for $p(\theta)$ and $p(y|x,\theta)$
- Obtain the posterior probability

$$p(\theta|D) = \frac{p(D_y|D_x,\theta)p(\theta)}{\int_{\theta} p(D_y|D_x,\theta')p(\theta')d\theta'}$$
(2)

where,

 $D_{\rm v}={\sf Data\ labels}$

 $D_x = Data inputs$

- Computing the integral, $\int_{\theta} p(D_y|D_x, \theta')p(\theta')d\theta'$ is very difficult.
- To address this, two broad approaches are followed:
 - MCMC (Markov chain monte carlo)
 - Variational inference

Bayesian Neural Networks

Motivation

The main goal is to get a better idea about the **uncertainty**. For example, if all the results of the models are vastly different, there's more uncertainty thereby providing a way to *preemptively* assess **generalizability**.

Uncertainty quantification

Some techniques:

- Particle filtering
- Variational inference
- Cubature rules*
- and so on...

Neural Gas

Probability theory

- Part 1: Dealing with the of **Stochastic elements of Neural Gas**?
 - Input sampling
 - Control elements: Decay rate, learning rate
- Part 2: Extending Probability theory to Neural Gas for other purposes
 - Estimating Population distribution