Họ và tên: Mã SV: Lớp: Số ĐT:

ĐÈ 1 (Viết kết quả)-(Thời gian làm bài: 45 phút)

Câu 1: Các đạo hàm riêng cấp một của hàm số $z=2x^2y^3-3xy^2$ là

$$\frac{\partial z}{\partial x} = 4xy^3 - 3y^2$$

$$\frac{\partial z}{\partial y} = 6x^2y^2 - 6xy$$

Câu 2: Cho hàm ẩn y = f(x) xác định bởi phương trình $x^4y^5 - 7(x^2 + y^3) + 13 = 0$.

Ta có:
$$f'(x) = \frac{14x - 4x^3y^5}{5x^4y^4 - 21y^2}$$

Câu 3: Cho hàm số $f(x,y)=x^3\arccos y$, tính $\frac{\partial f}{\partial x}(1,0)$ và $\frac{\partial f}{\partial y}(1,0)$. Ta có:

$$\frac{\partial f}{\partial x}(1,0) = \frac{3\pi}{2}$$

$$\frac{\partial f}{\partial y}(1,0) = -1$$

Câu 4: Cho $f(x,y,z) = x^3y - 2xy^2 + z$ và $\vec{l} = (0,3,4), M_0(1,1,1)$. Có: $\frac{\partial f}{\partial \vec{l}}(M_0) = -1$

Câu 5: Cho hàm số $f(x,y) = x^7 y - x^{12} y^{13}$. Ta có $f^{(13)}_{x^{12} y}(x,y) = -13! \, y^{12}$

Câu 6: Cho hàm số $f(x,y)=\frac{x+3y}{2x-y}$ và điểm $\mathrm{M}_0(1,1)$. Khi đó $df(M_0)=7(dy-dx)$.

Câu 7: Cho z=z(x,y) là hàm số ẩn xác định từ PT $3e^{xy}-y^3z^5-2=0$. Có

$$dz(0,1) = \frac{3}{5}(dx - dy)$$

Câu 8: Cho
$$I = \iint_D x^2 y dx dy, D = (x, y) \in \mathbb{R}^2 / 0 \le x \le 1, 0 \le y \le 2$$
. Có $I = \frac{2}{3}$

Câu 9: Cho $I=\iint_D f(x,y)dxdy$, với $D=\ (x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 4,\,x\leq 0,\,y\leq 0$. Xác định cận của

r và φ khi thực hiện phép đổi biến sang hệ tọa độ cực. Ta có $0 \le r \le 2$, $\pi \le \varphi \le \frac{3\pi}{2}$

Câu 10: Đổi thứ tự lấy TP trong TP sau:
$$I=\int\limits_0^2 dy \int\limits_{3y}^6 f(x,y) dx$$
. Có $I=\int\limits_0^6 dx \int\limits_0^{\frac{x}{3}} f(x,y) dy$

Câu 11: Tính thể tích V của vật thể giới hạn bởi các mặt: x=0,y=0,z=0,x+y=1,x+y-z=-2

Ta có
$$V = \frac{4}{3}$$
 (đvtt)

Câu 12: Tính tích phân $I=\int_D (y-2x)^2 dx dy$, D là hình phẳng giới hạn bởi các đường thẳng y=x,y=x+1,y=2x-1,y=2x+2. Ta có I=3

Câu 13: Cho V là miền giới hạn bởi các mặt $z=x^2+y^2$, $x^2+y^2=4$ và z=0. Tính $I=\iiint zdxdydz. \text{ Ta có } I=\frac{32\pi}{3}$

Câu 14: Tính
$$I=\iiint\limits_V x dx dy dz$$
 , $V=\ (x,y,z)\in\mathbb{R}^3 \mid x\geq 0, y\geq 0, x^2+y^2\leq z\leq 1$. Có $I=\frac{2}{15}$

Câu 15: Tính
$$I=\iiint\limits_V z dx dy dz, \quad V=\ (x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2\leq 2y$$
 . Có $I=0$

Câu 16: Tính
$$I = \oint_C (2-3y)dx + (2x+7)dy$$
, C là đường tròn $x^2 + y^2 = 4$. Có $I = 20\pi$

Câu 17: Cho C là đoạn thẳng nối hai điểm A(0,0) và B(1,-1). Tính $I=\int\limits_C (x^3+5y)ds$. Có

$$I = -\frac{9\sqrt{2}}{4}$$

Câu 18: Cho $I=\iint_S z^2 dS$, S là phần mặt phẳng z=3 với $x^2+y^2\leq 9$. Có $I=81\pi$

Câu 19: Tính $I=\int\limits_{AB}x^2(3\sin y-5y)dx+x(x^2\cos y+5y^2)dy$ với cung AB là nửa trên đường tròn

$$x^2+y^2=1$$
 từ điểm $A(1,0)$ đến điểm $B(-1,0)$. Ta có $I=\frac{5\pi}{4}$

Câu 20: Tính $I = \oint_L (e^{3x} \sin x^2 + 2x^2 y) dx + (e^{-4y} + \cos^3 y - 2xy^2) dy, \ L$ là đường tròn $x^2 + y^2 = 2y$. Có $I = -3\pi$

Câu 21: Cho
$$I = \int_{AB} (\sin y + 2y^2 + 2x^3) dx + (x \cos y + y^5) dy$$
, AB có phương trình $y = \sqrt{4 - x^2}$,

$$A(2,0)$$
 , $B(-2,0)$. Ta có $I=-rac{64}{3}$

Câu 22 : Cho $D=\ (x,y)\in\mathbb{R}^2\ |\ x^2+y^2\geq 1,\ x^2+y^2\leq 2x,\ x\geq 0,\ y\geq 0\$. Tính diện tích S của miền

D. Ta có
$$S = \frac{\sqrt{3}}{4} + \frac{\pi}{6}$$

Câu 23: Cho $I=\int\limits_{AB}ydx-(x+1)dy+z^3dz$, cung AB có phương trình $\begin{cases} x^2+y^2=1\\z=3\end{cases}$,

$$A(1,0,3)$$
, $B(0,1,3)$. Ta có $I = -\frac{\pi}{2} - 1$

Câu 24: Tính $I=\int_S (1+4x^2+4z^2)dS$ với S là phần mặt paraboloid $y=1-x^2-z^2$ thỏa mãn $y\geq 0$

Ta có
$$I = \frac{\pi}{10} (25\sqrt{5} - 1)$$

Câu 25: Tìm cực trị của hàm số $f(x, y) = e^{2y}(x^2 + y^2 - 2)$. Ta thấy hàm số đạt giá trị cực tiểu.........

là
$$-e^2$$
 tại điểm... $(0,1)$