§ 17. Прямая в пространстве

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Общие уравнения кривой (определение)

Этот параграф во многом схож с двумя предыдущими, но есть и существенные отличия.

Как и в случаях кривой на плоскости и поверхности, кривую в пространстве можно задавать либо общими, либо параметрическими уравнениями. Общие уравнения в данном случае возникают из следующего простого наблюдения: любую кривую в пространстве можно представить как пересечение двух поверхностей.

Определение

Будем считать, что в пространстве зафиксирована некоторая система координат. Пусть кривая ℓ является пересечением поверхностей σ_1 и σ_2 , поверхность σ_1 задана общим уравнением $F_1(x,y,z)=0$, а поверхность σ_2 — общим уравнением $F_2(x,y,z)=0$. Тогда уравнения

$$\begin{cases}
F_1(x, y, z) = 0, \\
F_2(x, y, z) = 0
\end{cases}$$
(1)

называются общими уравнениями кривой ℓ .

Из определения общего уравнения поверхности (см. § 16) вытекает, что точка лежит на кривой ℓ тогда и только тогда, когда координаты этой точки удовлетворяют системе уравнений (1).

Параметрические уравнения кривой (определение)

Параметрические уравнения кривой в пространстве определяются вполне аналогично одноименным уравнениям кривой на плоскости (см. § 15).

Определение

Уравнения вида

$$\begin{cases} x = f(t), \\ y = g(t), \\ z = h(t), \end{cases}$$
 (2)

где f(t), g(t) и h(t) — произвольные функции от одной переменной, называются параметрическими уравнениями кривой ℓ , если точка M с координатами (x_0, y_0, z_0) лежит на ℓ тогда и только тогда, когда существует число t_0 такое, что $x_0 = f(t_0)$, $y_0 = g(t_0)$ и $z_0 = h(t_0)$. Переменная t называется параметром.

Общие и параметрические уравнения кривой (пример)

В качестве примера составим общие и параметрические уравнения окружности радиуса 2 с центром в точке C(0,0,1), расположенной в плоскости, параллельной плоскости Oxy (см. рис. 1 на следующем слайде). Ясно, что эту окружность можно представить себе как пересечение плоскости, заданной уравнением z=1, и сферы радиуса 2 с центром в точке (0,0,1). Следовательно, в прямоугольной декартовой системе координат наша окружность задается общими уравнениями

$$\begin{cases} x^2 + y^2 + (z - 1)^2 = 4, \\ z = 1. \end{cases}$$

Перейдем к параметрическим уравнениям. Пусть M(x,y,z) — произвольная точка пространства. От точки C отложим ненулевой вектор \vec{a} , сонаправленный с положительным направлением оси Ox, и возьмем в качестве параметра t угол между векторами \overrightarrow{CM} и \vec{a} (см. рис. 1). Нетрудно понять, что наша окружность задается параметрическими уравнениями

$$\begin{cases} x = 2\cos t, \\ y = 2\sin t, \\ z = 1 \end{cases}$$

Общие и параметрические уравнения кривой (рисунок)

Рис. 1. Окружность в пространстве

Направляющий вектор прямой

Перейдем к основной теме этого параграфа — изучению прямых в пространстве.

Понятие направляющего вектора для прямой в пространстве вводится точно так же, как это было сделано в §15 для прямой на плоскости.

Определение

Любой ненулевой вектор, коллинеарный данной прямой, называется ее направляющим вектором.

Из этого определения видно, что

 направляющий вектор для данной прямой определен неоднозначно: прямая в пространстве имеет бесконечно много (коллинеарных друг другу) направляющих векторов.

Отметим еще, что

 для прямой в пространстве понятие нормального вектора не определено.

Формально можно было бы назвать нормальным вектором прямой в пространстве произвольный ортогональный ей ненулевой вектор, но никакой пользы для изучения прямой это понятие не дает, поскольку векторов с указанным свойством «слишком много» — они заполняют собой целую плоскость (перпендикулярную к данной прямой).

Параметрические уравнения прямой

Перейдем к рассмотрению видов уравнений прямой в пространстве. Мы рассмотрим четыре вида таких уравнений: параметрические, канонические, по двум точкам и общие. По сравнению с видами уравнений плоскости и прямой на плоскости (см. два предыдущих параграфа), здесь отсутствуют аналоги уравнений с угловым коэффициентом и в отрезках.

Предположим, что в пространстве зафиксирована система координат с началом в точке O. Пусть ℓ — прямая в пространстве, точка $M_0(x_0,y_0,z_0)$ принадлежит прямой ℓ , а вектор $\vec{a}=(q,r,s)$ является ее направляющим вектором. Дословно повторяя рассуждения, проведенные в § 15 при выводе параметрических уравнений прямой на плоскости, можно показать, что $M\in\ell$ тогда и только тогда, когда выполнены равенства

$$\begin{cases} x = x_0 + qt, \\ y = y_0 + rt, \\ z = z_0 + st \end{cases}$$
 (3)

для некоторого t. Уравнения (3) называются *параметрическими* уравнениями прямой в пространстве.

Понятие параметрических уравнений прямой в пространстве является частным случаем понятия параметрических уравнений кривой в пространстве, которое было введено в начале данного параграфа.

Канонические уравнения прямой. Уравнения прямой по двум точкам

Выражая параметр t из первого, второго и третьего уравнений системы (3) и приравнивая полученные выражения, мы получаем уравнения

$$\frac{x - x_0}{q} = \frac{y - y_0}{r} = \frac{z - z_0}{s} \,, \tag{4}$$

которые называются каноническими уравнениями прямой в пространстве.

Предположим теперь, что мы знаем координаты двух различных точек, принадлежащих прямой: $M_0(x_0,y_0,z_0)$ и $M_1(x_1,y_1,z_1)$. Тогда вектор $\overline{M_0M_1}=(x_1-x_0,y_1-y_0,z_1-z_0)$ коллинеарен прямой и отличен от нулевого вектора, т.е. является направляющим вектором прямой. Подставляя его координаты в канонические уравнения прямой, получаем следующие уравнения, которые называются уравнениями прямой в пространстве по двум точкам:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}.$$
 (5)

Два замечания

Из сказанного выше вытекают следующие два замечания.

1-е замечание о направляющем векторе прямой в пространстве

Если прямая в пространстве задана любым из уравнений (3) и (4), то вектор с координатами (q, r, s) является ее направляющим вектором.

Замечание о точке, лежащей на прямой в пространстве

Если прямая в пространстве задана любым из уравнений (3), (4) и (5) , то точка с координатами (x_0,y_0,z_0) принадлежит прямой.

Общие уравнения прямой (1)

Всякую прямую в пространстве можно рассматривать как пересечение двух плоскостей. Пусть ℓ — прямая, являющаяся пересечением плоскостей σ_1 и σ_2 , а $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$ — общие уравнения плоскостей σ_1 и σ_2 соответственно. Точка M(x,y,z) лежит на ℓ тогда и только тогда, когда ее координаты удовлетворяют уравнениям

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0, \end{cases}$$
 (6)

которые называются общими уравнениями прямой в пространстве. Из того, что плоскости σ_1 и σ_2 пересекаются, вытекает, что либо $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$, либо $\frac{B_1}{B_2} \neq \frac{C_1}{C_2}$ (см. теорему о взаимном расположении плоскостей в § 16). Теорема со следующего слайда показывает, что понятие общих уравнений прямой в пространстве является частным случаем понятия общих уравнений кривой в пространстве, которое было введено в начале данного параграфа.

Общие уравнения прямой (2)

Теорема об общем уравнении прямой в пространстве

Пусть в пространстве задана произвольная система координат. Тогда всякая прямая в пространстве может быть задана уравнениями вида (6), в которых либо $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$, либо $\frac{B_1}{B_2} \neq \frac{C_1}{C_2}$. Обратно, любые уравнения вида (6) с указанным ограничением на числа A_1 , A_2 , B_1 , B_2 , C_1 и C_2 определяют прямую.

Доказательство. Первое утверждение теоремы доказано выше. Докажем второе утверждение. Рассмотрим систему (6). Каждое из двух уравнений, входящих в эту систему, задает некоторую плоскость. Эти две плоскости пересекаются, поскольку коэффициенты при неизвестных в уравнениях системы (6) не пропорциональны (см. теорему о взаимном расположении плоскостей в § 16). Ясно, что прямая, по которой пересекаются эти плоскости, задается системой (6).

Нахождение направляющего вектора прямой, заданной общими уравнениями в произвольной системе координат (1)

2-е замечание о направляющем векторе прямой на плоскости из § 15 указывает простой способ нахождения направляющего вектора прямой на плоскости, заданной общим уравнением. Рассмотрим аналогичную задачу для прямой в пространстве. Пусть прямая ℓ задана общими уравнениями (6). Требуется найти координаты ее направляющего вектора. По условию либо $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$, либо $\frac{B_1}{B_2} \neq \frac{C_1}{C_2}$. Без ограничения общности будем считать, что $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$. Пусть (x_0, y_0, z_0) — координаты некоторой точки, принадлежащей прямой ℓ . Тогда справедливы равенства $A_1x_0 + B_1y_0 + C_1z_0 + D_1 = 0$ и $A_2x_0 + B_2y_0 + C_2z_0 + D_2 = 0$. Вычтем первое из этих равенств из первого уравнения системы (6), а второе — из второго уравнения этой системы. Получим систему уравнений, которую можно записать в виде

$$\begin{cases} A_1(x-x_0) + B_1(y-y_0) = -C_1(z-z_0), \\ A_2(x-x_0) + B_2(y-y_0) = -C_2(z-z_0). \end{cases}$$

Нахождение направляющего вектора прямой, заданной общими уравнениями в произвольной системе координат (2)

Будем смотреть на эту систему как на систему уравнений относительно $x-x_0$ и $y-y_0$. Поскольку $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$, определитель этой системы отличен от нуля. По теореме Крамера (см. $\S 9$), ее решение можно найти по следующим формулам:

$$x - x_0 = \frac{\begin{vmatrix} -C_1(z - z_0) & B_1 \\ -C_2(z - z_0) & B_2 \end{vmatrix}}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}, \quad y - y_0 = \frac{\begin{vmatrix} A_1 & -C_1(z - z_0) \\ A_2 & -C_2(z - z_0) \end{vmatrix}}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}.$$
 (7)

Используя 2-е и 4-е свойства определителей и принцип равноправия строк и столбцов (см. $\S 8$), получаем, что

$$\begin{vmatrix} -C_1(z-z_0) & B_1 \\ -C_2(z-z_0) & B_2 \end{vmatrix} = (z-z_0) \cdot \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix},$$

$$\begin{vmatrix} A_1 & -C_1(z-z_0) \\ A_2 & -C_2(z-z_0) \end{vmatrix} = -(z-z_0) \cdot \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}.$$

Нахождение направляющего вектора прямой, заданной общими уравнениями в произвольной системе координат (3)

Следовательно, равенства (7) можно записать в виде

$$\frac{x - x_0}{\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}, \quad \frac{y - y_0}{-\begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}$$

или в виде

$$\frac{x - x_0}{\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}} = \frac{y - y_0}{-\begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}.$$

С учетом 1-го замечания о направляющем векторе прямой в пространстве, из последних равенств вытекает

2-е замечание о направляющем векторе прямой в пространстве

Вектор

$$\vec{a} = \begin{pmatrix} \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, - \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}, \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \end{pmatrix}$$
(8)

является направляющим вектором прямой, заданной уравнениями (6).

Нахождение направляющего вектора прямой, заданной общими уравнениями в прямоугольной декартовой системе координат (1)

Мы вывели 2-е замечание о направляющем векторе прямой в пространстве в предположении, что система координат — произвольная. Формулы получились достаточно громоздкими и трудными для запоминания. Однако в случае, когда система координат — прямоугольная декартова, они имеют очень простую интерпретацию (и намного более простой вывод).

Итак, предположим, что прямая ℓ задана системой уравнений (6) в прямоугольной декартовой системе координат. Обозначим плоскости, задаваемые первым и вторым уравнением системы (6), через σ_1 и σ_2 соответственно. Векторы $\vec{n}_1=(A_1,B_1,C_1)$ и $\vec{n}_2=(A_2,B_2,C_2)$ являются теперь нормальными векторами плоскостей σ_1 и σ_2 соответственно (см. замечание о нормальном векторе плоскости в § 16). Положим $\vec{b}=\vec{n}_1\times\vec{n}_2$. Тогда $\vec{b}\perp\vec{n}_1$. Поскольку $\vec{n}_1\perp\sigma_1$, получаем, что $\vec{b}\parallel\sigma_1$. Аналогично проверяется, что $\vec{b}\parallel\sigma_2$. Но тогда \vec{b} коллинеарен прямой, по которой пересекаются плоскости σ_1 и σ_2 , т. е. прямой ℓ . Далее, из того, что $\sigma_1\not\parallel\sigma_2$, вытекает, что $\vec{n}_1\not\parallel\vec{n}_2$. В силу 2-го критерия коллинеарности векторов (см. § 12), $\vec{b}=\vec{n}_1\times\vec{n}_2\neq\vec{0}$. Таким образом, вектор \vec{b} является направляющим вектором прямой ℓ .

Нахождение направляющего вектора прямой, заданной общими уравнениями в прямоугольной декартовой системе координат (2)

Осталось заметить, что векторное произведение векторов \vec{n}_1 и \vec{n}_2 имеет в точности те координаты, которые указаны в правой части равенства (8) (см. формулу (3) в § 12). Итак, справедливо

3-е замечание о направляющем векторе прямой в пространстве

Если в прямоугольной декартовой системе координат прямая задана как пересечение двух плоскостей, то в качестве ее направляющего вектора можно взять векторное произведение нормальных векторов этих плоскостей.

Отметим еще, что

• направляющий вектор прямой ℓ , заданной уравнениями (6), можно найти не используя 2-го и 3-го замечаний о направляющем векторе прямой в пространстве.

В самом деле, найдем координаты двух различных точек M_1 и M_2 , принадлежащих ℓ (т. е. два различных решения (x_1,y_1,z_1) и (x_2,y_2,z_2) системы уравнений (6)). Тогда вектор $\overrightarrow{M_1M_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$, очевидно, будет направляющим вектором прямой ℓ .

Взаимное расположение прямой и плоскости (1)

Перейдем к вопросам о взаимном расположении прямой и плоскости и о взаимном расположении двух прямых.

Теорема о взаимном расположении прямой и плоскости

Пусть плоскость σ задана уравнением Ax + By + Cz + D = 0, а прямая ℓ — уравнениями (3). Тогда:

- 1) ℓ и σ пересекаются тогда и только тогда, когда $Aq+Br+Cs \neq 0$;
- 2) ℓ и σ параллельны тогда и только тогда, когда Aq+Br+Cs=0 и $Ax_0+By_0+Cz_0+D\neq 0;$
- 3) ℓ лежит в σ тогда и только тогда, когда Aq + Br + Cs = 0 и $Ax_0 + By_0 + Cz_0 + D = 0$.

Взаимное расположение прямой и плоскости (2)

Доказательство. Подставим правые части равенств (3) вместо x, y и z в уравнение плоскости. Получим уравнение

$$A(x_0 + qt) + B(y_0 + rt) + C(z_0 + st) + D = 0.$$
 (9)

Если точка M(x, y, z) принадлежит одновременно и ℓ , и σ , то, с одной стороны, существует такое значение параметра t, при котором x, y и zудовлетворяют равенствам (3), а с другой — x, y и z удовлетворяют уравнению плоскости. Но в таком случае значение параметра t, соответствующее точке M, является решением уравнения (9). Следовательно, ℓ и σ пересекаются тогда и только тогда, когда это уравнение имеет единственное решение; ℓ и σ параллельны тогда и только тогда, когда оно не имеет решений; наконец, ℓ лежит в σ тогда и только тогда, когда это уравнение имеет бесконечно много решений. Уравнение (9) можно переписать в виде

$$(Aq + Br + Cs)t + (Ax_0 + By_0 + Cz_0 + D) = 0.$$

Ясно, что оно имеет единственное решение тогда и только тогда, когда $Aq + Br + Cs \neq 0$, что доказывает утверждение 1); не имеет решений тогда и только тогда, когда Aq + Br + Cs = 0 и $Ax_0 + By_0 + Cz_0 + D \neq 0$, что доказывает утверждение 2); имеет бесконечно много решений тогда и только тогда, когда Aq + Br + Cs = 0 и $Ax_0 + By_0 + Cz_0 + D = 0$, что доказывает утверждение 3).

Взаимное расположение двух прямых (1)

Теорема о взаимном расположении прямых в пространстве

Пусть прямые ℓ_1 и ℓ_2 заданы уравнениями

$$\begin{cases} x = x_1 + q_1t, \\ y = y_1 + r_1t, \\ z = z_1 + s_1t \end{cases} u \begin{cases} x = x_2 + q_2t, \\ y = y_2 + r_2t, \\ z = z_2 + s_2t \end{cases}$$

соответственно. Положим

$$\Delta = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ q_1 & r_1 & s_1 \\ q_2 & r_2 & s_2 \end{vmatrix}.$$

- 1) ℓ_1 и ℓ_2 скрещиваются тогда и только тогда, когда $\Delta \neq 0$;
- 2) ℓ_1 и ℓ_2 пересекаются тогда и только тогда, когда $\Delta=0$ и либо $\frac{q_1}{q_2} \neq \frac{r_1}{r_2}$, либо $\frac{r_1}{r_2} \neq \frac{s_1}{s_2}$;
- 3) ℓ_1 и ℓ_2 параллельны тогда и только тогда, когда $\Delta=0$, $\frac{q_1}{q_2}=\frac{r_1}{r_2}=\frac{s_1}{s_2}$ и либо $\frac{x_2-x_1}{q_1}\neq\frac{y_2-y_1}{r_1}$, либо $\frac{y_2-y_1}{r_1}\neq\frac{z_2-z_1}{s_1}$;
- 4) ℓ_1 и ℓ_2 совпадают тогда и только тогда, когда $\Delta=0$, $\frac{q_1}{q_2}=\frac{r_1}{r_2}=\frac{s_1}{s_2}$ и $\frac{x_2-x_1}{q_1}=\frac{y_2-y_1}{r_1}=\frac{z_2-z_1}{s_1}$.

Взаимное расположение двух прямых (2)

Доказательство. Введем следующие обозначения: $\vec{a}_1=(q_1,r_1,s_1)$ — направляющий вектор прямой $\ell_1;\ \vec{a}_2=(q_2,r_2,s_2)$ — направляющий вектор прямой $\ell_2;\ M_1(x_1,y_1,z_1)$ — точка, принадлежащая прямой $\ell_1;\ M_2(x_2,y_2,z_2)$ — точка, принадлежащая прямой $\ell_2;\ \vec{c}=\overrightarrow{M_1M_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$. Ясно, что прямые ℓ_1 и ℓ_2 лежат в одной плоскости тогда и только тогда, когда векторы $\vec{c},\ \vec{a}_1$ и \vec{a}_2 компланарны. Утверждение 1) вытекает теперь из замечания о координатах компланарных векторов в § 13.

Предположим теперь, что прямые лежат в одной плоскости или, что эквивалентно, выполнено равенство $\Delta=0$. Ясно, что при выполнении этого условия прямые пересекаются тогда и только тогда, когда $\vec{a}_1 \not\parallel \vec{a}_2$. Учитывая критерий коллинеарности векторов (см. § 10), получаем утверждение 2).

Пусть, наконец, $\vec{a}_1 \parallel \vec{a}_2$. Ясно, что в этом случае прямые либо параллельны, либо совпадают. Чтобы разделить два этих случая, достаточно проверить, лежит ли точка M_2 на прямой ℓ_1 . Если ответ положителен, то прямые совпадают, в противном случае — параллельны. Учитывая, что канонические уравнения прямой ℓ_1 имеют вид $\frac{x-x_1}{q_1} = \frac{y-y_1}{r_1} = \frac{z-z_1}{s_1}$, получаем утверждения 3) и 4).

Расстояние от точки до прямой (1)

Наша ближайшая цель — вывести формулу для расстояния от точки до прямой в пространстве. Пусть прямая ℓ задана параметрическими уравнениями

$$\begin{cases} x = x_0 + qt, \\ y = y_0 + rt, \\ z = z_0 + st, \end{cases}$$

а $M(x_1,y_1,z_1)$ — произвольная точка пространства. Точку с координатами (x_0,y_0,z_0) , принадлежащую прямой ℓ , обозначим через M_0 , а вектор с координатами (q,r,s), являющийся направляющим вектором прямой ℓ , — через \vec{a} . Кроме того, положим $\vec{c} = \overrightarrow{M_0M} = (x_1-x_0,y_1-y_0,z_1-z_0)$. Дальнейшие рассуждения иллюстрирует рис. 2.

Рис. 2. Расстояние от точки до прямой

Расстояние от точки до прямой (2)

Обозначим расстояние от точки M до прямой ℓ через $d(M,\ell)$. Ясно, что $d(M,\ell)$ — высота параллелограмма, построенного на векторах \vec{a} и \vec{c} . Обозначим его площадь через S. Тогда $d(M,\ell)=\frac{S}{|\vec{a}|}$. Вспоминая геометрический смысл векторного произведения векторов (см. § 12), мы получаем, что

$$d(M,\ell) = \frac{|\vec{a} \times \vec{c}|}{|\vec{a}|}.$$

По существу, это и есть формула расстояния от точки до прямой в пространстве. Если система координат, заданная в пространстве, является прямоугольной декартовой, то, используя формулу (5) из § 12, можно в явном виде выразить $d(M,\ell)$ через координаты точек M_0 и M и вектора \vec{a} :

$$d(M,\ell) = \frac{\sqrt{\frac{\left(r(z_1-z_0)-s(y_1-y_0)\right)^2+\left(q(z_1-z_0)-s(x_1-x_0)\right)^2+}{+\left(q(y_1-y_0)-r(x_1-x_0)\right)^2}}}{\sqrt{q^2+r^2+s^2}}.$$

Общий перпендикуляр к скрещивающимся прямым (1)

Наща следующая цель — научиться находить расстояние между скрещивающимися прямыми. Прежде, чем выводить соответствующую формулу, надо сказать, что понимается под таким расстоянием. Для этого нам понадобится одно новое понятие.

Определение

Пусть ℓ_1 и ℓ_2 — скрещивающиеся прямые. Общим перпендикуляром к прямым ℓ_1 и ℓ_2 называется прямая, перпендикулярная к каждой из прямых ℓ_1 и ℓ_2 и пересекающая каждую из них.

Ни из каких априорных соображений не вытекает, что общий перпендикуляр к скрещивающимся прямым существует. Докажем, что это так.

Теорема об общем перпендикуляре

Для произвольных скрещивающихся прямых ℓ_1 и ℓ_2 существует общий перпендикуляр к этим прямым.

Доказательство. Дальнейшие рассуждения иллюстрирует рис. 3 (см. следующий слайд).

Общий перпендикуляр к скрещивающимся прямым (2)

Рис. 3. Общий перпендикуляр к скрещивающимся прямым

Общий перпендикуляр к скрещивающимся прямым (3)

Обозначим направляющие векторы прямых ℓ_1 и ℓ_2 через \vec{s}_1 и \vec{s}_2 соответственно и положим $\vec{w} = \vec{s}_1 \times \vec{s}_2$. Поскольку прямые ℓ_1 и ℓ_2 скрещиваются, $\vec{s}_1 \not\parallel \vec{s}_2$. В силу 2-го критерия коллинеарности векторов (см. § 12) $\vec{w} \neq \vec{0}$. Обозначим через α_1 плоскость, проходящую через прямую ℓ_1 и коллинеарную вектору \vec{w} , а через α_2 — плоскость, проходящую через прямую ℓ_2 и коллинеарную вектору \vec{w} . Если бы эти две плоскости были параллельными или совпадающими, то векторы \vec{s}_1 , \vec{s}_2 и \vec{w} были бы компланарными. Но это не так, поскольку \vec{w} — ненулевой вектор, ортогональный неколлинеарным векторам \vec{s}_1 и \vec{s}_2 . Следовательно, плоскости α_1 и α_2 пересекаются по некоторой прямой. Обозначим эту прямую через ℓ . Поскольку \vec{w} — ненулевой вектор, коллинеарный каждой из плоскостей α_1 и α_2 , он коллинеарен и прямой ℓ . Таким образом, \vec{w} направляющий вектор прямой ℓ . Из построения вектора \vec{w} теперь вытекает, что ℓ перпендикулярна каждой из прямых ℓ_1 и ℓ_2 .

Общий перпендикуляр к скрещивающимся прямым (4)

Осталось доказать, что ℓ пересекает и ℓ_1 , и ℓ_2 . Если бы прямая ℓ_1 была параллельна плоскости α_2 или лежала в этой плоскости, то векторы \vec{s}_1, \vec{s}_2 и \vec{w} были бы компланарными. Но это не так. Следовательно, ℓ_1 пересекает плоскость α_2 в некоторой точке. Обозначим эту точку через M_1 . Ясно, что $M_1 \in \alpha_1$ (так как $M_1 \in \ell_1$ и $\ell_1 \subseteq \alpha_1$) и $M_1 \in \alpha_2$. Следовательно, M_1 лежит на прямой, по которой пересекаются плоскости α_1 и α_2 , т. е. на прямой ℓ . Поскольку $M_1 \in \ell_1$, это означает что прямые ℓ и ℓ_1 пересекаются (в точке M_1). Аналогично проверяется, что прямая ℓ_2 пересекает плоскость α_1 в некоторой точке M_2 и эта точка является точкой пересечения прямых ℓ и ℓ_2 .

Расстояние между скрещивающимися прямыми (1)

Определение

Расстояние между точками, в которых общий перпендикуляр к скрещивающимся прямым ℓ_1 и ℓ_2 пересекает эти прямые, называется расстоянием между скрещивающимися прямыми ℓ_1 и ℓ_2 .

Такое определение расстояния между скрещивающимися прямыми естественно, поскольку, как несложно показать, расстояние между точками, в которых общий перпендикуляр к скрещивающимся прямым ℓ_1 и ℓ_2 пересекает эти прямые, равно минимуму из длин всех отрезков вида A_1A_2 , где $A_1 \in \ell_1$, а $A_2 \in \ell_2$.

Перейдем к вопросу о вычислении расстояния между скрещивающимися прямыми. Пусть даны уравнения скрещивающихся прямых

$$\ell_1 \colon \begin{cases} x = x_1 + a_1 t, \\ y = y_1 + b_1 t, \\ z = z_1 + c_1 t \end{cases} \quad \text{if} \quad \ell_2 \colon \begin{cases} x = x_2 + a_2 t, \\ y = y_2 + b_2 t, \\ z = z_2 + c_2 t. \end{cases}$$

В частности, $\vec{s}_1=(a_1,b_1,c_1)$ и $\vec{s}_2=(a_2,b_2,c_2)$ — направляющие векторы прямых ℓ_1 и ℓ_2 соответственно, точка $P_1(x_1,y_1,z_1)$ лежит на ℓ_1 , а точка $P_2(x_2,y_2,z_2)$ лежит на ℓ_2 . Дальнейшие построения иллюстрирует рис. 4 (см. следующий слайд).

Расстояние между скрещивающимися прямыми (2)

Рис. 4. Расстояние между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми (3)

Отложим векторы \vec{s}_1 и \vec{s}_2 от точки P_1 . Концы полученных направленных отрезков обозначим через Q и R соответственно. Построим параллелепипед на векторах $\overrightarrow{P_1Q}$, $\overrightarrow{P_1R}$ и $\overrightarrow{P_1P_2}$. Из вершины P_2 этого параллелепипеда опустим высоту на плоскость векторов $\overrightarrow{P_1Q}$ и $\overrightarrow{P_1R}$. Основание этой высоты обозначим через S. Прямая P_2S перпендикулярна к прямым ℓ_1 и ℓ_2 и потому параллельна общему перпендикуляру к этим прямым. Пусть точки M_1 и M_2 имеют тот же смысл, что и в доказательстве теоремы об общем перпендикуляре. Нетрудно проверить, что если отложить вектор $\overline{P_2S}$ от точки M_2 , то концом соответствующего направленного отрезка будет точка M_1 . Следовательно, расстояние между прямыми ℓ_1 и ℓ_2 равно длине высоты P_2S . Ясно, что эта длина равна частному от деления объема нашего параллелепипеда на площадь его основания, т. е. параллелограмма, построенного на векторах \vec{s}_1 и \vec{s}_2 . Положим $\vec{a} = P_1 P_2$. Обозначим расстояние между прямыми ℓ_1 и ℓ_2 через $d(\ell_1,\ell_2)$. Вспоминая геометрический смысл векторного и смешанного произведений векторов (см. § 12 и 13 соответственно), мы получаем, что

$$d(\ell_1,\ell_2) = \frac{\mid \vec{a}\vec{s}_1\vec{s}_2\mid}{\mid \vec{s}_1 \times \vec{s}_2\mid}.$$

По существу, это и есть формула расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми (4)

Если система координат, заданная в пространстве, является прямоугольной декартовой, то, используя формулу (5) из § 12 и формулу (4) из § 13, можно в явном виде выразить $d(\ell_1,\ell_2)$ через координаты точек P_1 и P_2 и векторов $\vec{s_1}$ и $\vec{s_2}$:

$$d(\ell_1, \ell_2) = \frac{ \left| \begin{array}{cccc} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right| }{\sqrt{(b_1c_2 - c_1b_2)^2 + (a_1c_2 - c_1a_2)^2 + (a_1b_2 - b_1a_2)^2}}$$

(символом mod здесь, как и в формуле (6) из $\S 12$, обозначен модуль определителя).