In the claims: Amend the claims as follows.

- 1. (previously presented) A support element portion for mounting at least two wave-modifying elements (5, 5', 5") with supporting surfaces (2, 2', 2") which are arranged in mutually parallel relationship, characterised in that one of the supporting surfaces (2, 2', 2") has at least two openings and the other supporting surface (2, 2', 2") has at least one opening, wherein the openings are connected together by way of at least one through bore (3).
- 2. (original) A support portion (1) according to claim 1 characterised in that it is in one piece.
- 3. (currently amended) A support portion according to claim 1 or claim 2 characterised in that at least one and preferably a plurality of wave-modifying elements (5, 5') are disposed on a supporting surface (2, 2', 2") in such a way that an opening (3) is at least partially and preferably completely covered by a respective one or more wave-modifying elements.
- 4. (previously presented) A support portion according to one of claims 1 to 2 characterised in that at least one supporting surface (2, 2', 2") has an opening for coupling a light signal in and/or out.
- 5. (previously presented) A support portion according to one of claims 1 to 2 characterised in that the opening of the other supporting surface (2') is on the central perpendicular on the connecting line between the two openings of the first supporting surface (2).
- 6. (previously presented) A support portion according to one of claims 1 to 2 characterised in that the openings are formed by circular bores, slots or recesses.

- 7. (currently amended) A support portion according to one of claims 1 to 2 characterised in that the openings are formed by bores (3) which extend substantially perpendicularly to the supporting surfaces (2, 2', 2") and which extend into a channel (4) extending substantially parallel to the supporting surfaces, wherein the channel (4) is preferably in the form of a circular bore.
- 8. (currently amended) A support portion according to claim 3 characterised in that the wave-modifying element (5, 5') is fixed on the supporting surface (2, 2', 2") with a bonding agent , preferably adhesive.
- 9.(previously presented) A support portion according to one of claims 1 to 2 characterised in that it is made from ductile material.
- 10. (currently amended) A support portion according to one of claims 1 to 2 characterised in that it is made from one of the group of steel, iron, copper, nickel silver, silver, gold, brass, and plastic materials, preferably POM or PEEK.
- 11. (previously presented) A support portion according to one of claims 1 to 2 characterised in that at least one supporting surface (2) has a spacer element (6) on the side remote from another supporting surface (2').
- 12. (withdrawn) A support portion according to claim 11 characterised in that the spacer element (6) has two abutment surfaces which extend in mutually parallel relationship.
- 13. (withdrawn) A support portion according to claim 11 when appendant to claim 3 or a claim appendant thereto characterised in that the spacer element (6) has a through passage on the side towards the supporting surface (2, 2'), in which the wave-modifying element (5, 5') is arranged.

- 14. (withdrawn) A support portion according to claim 11 characterised in that the spacer element (6) comprises a precision film.
- 15. (withdrawn) A support portion according to claim 11 characterised in that the spacer element (6) comprises at least one pin which extends through both supporting surfaces (2, 2').
- 16. (withdrawn currently amended) A support portion according to claim 15 characterised in that the spacer element (6) is formed by at least two pins, wherein the pins are preferably of a different length and for comprise different material, wherein the difference in length and for the choice of material is so selected so that a relative movement of a coupling device fixed to the support portion with respect to the support portion as a consequence of a fluctuation in temperature is at least partially compensated.
- 17. (previously presented) A support portion according to claim 11 characterised in that the spacer element (6) and the support portion (2) are integral.
- 18. (previously presented) A support portion according to one of claims 1 to 2 characterised in that there are provided at least three mutually parallel supporting surfaces (2, 2', 2").
- 19. (previously presented) A support portion according to one of claims 1 to 2 characterised in that at least one wave-modifying element is a narrow-band mirror.
- 20. (previously presented) A multiplexer/demultiplexer having a support portion according to one of claims 1 to 2.

- 21. (previously presented) A beam splitter, branching device and/or coupler having a support portion according to one of claims 1 to 2.
- 22. (previously presented) A method of producing a support portion for mounting at least two wave-modifying elements, which comprises the following steps:

selecting a material block having a first and a second surface,

providing one or more through passages which open into at least one opening in the first surface of the material block and into at least two openings in the second surface of the material block, so that the through passages connect the first and second surfaces together, and

producing at least two supporting surfaces which extend in mutually parallel relationship,

wherein the one supporting surface is arranged on the first surface of the material block and the other supporting surface is arranged on the second surface of the material block.

- 23. (original) A method according to claim 22 characterised in that the supporting surfaces are produced after the through passages have been provided.
- 24. (currently amended) A method according to claim 22 or claim 23 characterised in that the supporting surfaces are produced with an averaged roughness depth Rz (in accordance with DIN 4768) of <u>a range of 20-100 nm</u> less than 100 nm, preferably less than 50 nm, and particularly preferably less than 20 nm.
- 25. (currently amended) A method according to one of claims 22 to 23 characterised in that the supporting surface is produced with a cutting method, preferably by ultra-precision machining, particularly preferably by diamond turning or diamond milling.

- 26. (original) A method according to claim 25 characterised in that the supporting surface is produced by a turning method, wherein the material block is clamped on the periphery of a rotating device in such a way that the supporting surfaces to be produced are oriented perpendicularly to the axis of rotation of the rotating device.
- 27. (original) A method according to claim 26 characterised in that all supporting surfaces are produced in one clamping procedure.
- 28. (currently amended) A method according to one of claims 22 to 23 characterised in that a channel which preferably extends approximately parallel to the supporting surfaces is provided, wherein the channel is preferably in the form of a circular bore.
- 29. (previously presented) A method according to one of claims 22 to 23 characterised in that at least one spacer element with at least one abutment surface is fitted.
- 30. (original) A method according to claim 29 characterised in that the abutment surface of the spacer element is produced in one clamping procedure together with the supporting surfaces.
- 31. (previously presented) A method of producing an optical modifier, which comprises the following steps:
 - producing a support portion with a method according to one of claims 22 to 23, placing at least one wave-modifying element on a supporting surface, and fixing the wave-modifying element on the supporting surface.
- 32. (currently amended) A method according to claim 31 characterised in that fixing is effected with a bonding agent , preferably adhesive.

- 33.(new) A support portion according to one of claims 1 to 2 characterized in that the supporting surfaces (2, 2', 2") is formed by one or more supporting elements (16) arranged next to the opening.
- 34.(new) A support portion according to one of claims 1 to 2 characterized in that the supporting surfaces (2, 2', 2") have an averaged roughness depth Rz of 20-100 nm.
- 35.(new) A support portion according to one of claims 1 to 2 characterized in that the supporting surfaces (2, 2', 2") have an averaged roughness depth Rz of less than 20 nm.
- 36.(new) A support portion according to one of claims 1 to 2 characterized in that the supporting surfaces (2, 2', 2") have a surface that has been produced by ultra-precision machining.
- 37.(new) A support portion according to one of claims 1 to 2 characterized in that the supporting surfaces (2, 2', 2") have a surface that has been produced by diamond turning or diamond milling.
- 38.(new) A method according to claim 22 or claim 23 characterised in that the supporting surfaces are produced with an averaged roughness depth Rz (in accordance with DIN 4768) of less than 20 nm.
- 39.(new) A method according to one of claims 22 to 23 characterised in that the supporting surface is produced by diamond turning or diamond milling.