Universal Blind Quantum Computing

Elham Kashefi

Laboratoire d'Informatique de Grenoble

Joint work with

Anne Broadbent

Montreal

Joe Fitzsimons

Oxford

Classical Blind Computing

Fundamentally asymmetric unlike the secure two-party communication

- Client-Server relation with mistrusted server
- Testing Procedures
- Hiding Data

Classical Blind Computing

Feigenbaum

Computing with encrypted date for some function f

Abadi, Feigenbaum and Kilian

→ No NP-hard function has an efficient blind computing protocol

Quantum Blind Computing

- Andrew Childs Secure assisted QC
 - → Alice needs quantum memory, state preparation and Pauli gates
 - → The unitary function is public
 - Dishonest Bob cannot be detected

- Arrighi and Salvail- Blind QC for a restricted set of classical functions
 - → Alice needs quantum memory, state preparation and measurement
 - The classical function is public
 - Polynomial security against individual attacks

Our Result

- → Minimal Resources: Alice needs only single qubit state preparation
- → Pure Blindness: Bob will never learn either the data or the program
- Universality: Works for all classical and quantum functions
- **Security:** Against any individual or coherent attacks
- **Efficiency:** Polynomial in the size of the circuit implementing *U* or *f*
- → Detection: Exponentially small probability of not detecting a deceptive Bob

One-time pad

$$message = data \oplus key$$

Quantum one-time pad

$$\frac{1}{4} \sum_{j,k=0}^{1} Z^k X^j |\psi\rangle\langle\psi| X^j Z^k = \frac{I}{2}$$

Quantum one-time pad is secure against any general attacks

One-qubit Teleportation

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha)$$
 $-$

$$\begin{array}{rcl} M^{\alpha}|\phi\rangle & = & M^{\alpha} & Z(-\theta)Z(\theta) & |\phi\rangle \\ & = & M^{\alpha-\theta}(Z(\theta)|\phi\rangle) \\ & = & M^{\beta}|\psi\rangle \end{array}$$

Observation. One-time pad of the quantum state leads to one-time pad of the angle

Several one-qubit Teleportations

Observation. Classical one-time pad of the angles leads to quantum one-time pad of the states without requiring quantum memory

Universality

Universality

Observation. The true entangled structure is hidden to Bob

Alice Preparation Step

 $heta_{x,y}$ chosen at random

Repeat for $N = n \times d$ times for $1 \le x \le n$ and $1 \le y \le d$, where n is an upper bound of number of logical qubits and d of computation depth

Bob Preparation Step

Angles one-time pad

For all the left most qubits

$$\delta_{x,y} = \phi_{x,y} - \theta_{x,y} + \frac{\pi}{2} r_{x,y}$$

 $\phi_{x,y}$ real angle including the Pauli corrections

 $r_{x,y}$ chosen at random

Bob Measurement

Classical Function

Repeat until all qubits are measured

$$R_x = s_{x,d} - r_{x,d-1} - b_{x,d}$$

Quantum Input and Output

Repeat until all non-output qubits are measured

$$|\psi_O\rangle = \prod_{x,d} Z_{x,d} (s_{x,d}, r_{x,d-1}, b_{x,d}, \theta_{x,y})$$

Correctness

Theorem. Assume Bob follows the protocol honestly, then the outcome is correct.

Proof. Bob is simply implementing a measurement pattern

Universality of MBQC

Rewrite rules of Measurement Calculus

Privacy of Computation

Theorem. No matter what Bob does he will never learn Alice's data or program.

Proof. In *preparation* stage the quantum one-time pad of the qubits conceals the preparation angles (Q1time-pad)

In *computation* stage the classical one-time pad of each measurements angles conceals the quantum data (C1time-pad) ——— Q1time-pad)

Detection

Alice adds traps (easily verifiable functions) to her real computation

Alice detects a cheating Bob with probability of $\ 1/Poly(N)$

Detection via Quantum Authentication

Taking advantage of PURE blindness of Bob!

Bob

A random error-correcting codes

Encoding N logical qubits with N+K qubits

Can not guess an undetectable error

Computation on the encoded qubits

Theorem. The probability of not detecting deceptive Bob decreases exponentially in the size of the encoding

Future Work

- The proper security definition for quantum blind computing
- Connection to the complexity hierarchy
- Other applications of distributive structures of MBQC