LAB EXPERIMENTS

PART A: SQL PROGRAMMING

A. Consider the following schema for a Library Database:

BOOK (Book_id, Title, Publisher_Name, Pub_Year)

BOOK_AUTHORS (Book_id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES (<u>Book_id</u>, <u>Branch_id</u>, No-of_Copies)

BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date)

LIBRARY_BRANCH (Branch_id, Branch_Name, Address)

Write SQL queries to

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each branch, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun2017
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 5. Create a view of all books and its number of copies that are currently available in the Library.

Solution:

Entity-Relationship Diagram

Schema Diagram

Book

Table Creation

CREATE TABLE PUBLISHER (NAME VARCHAR2 (20) PRIMARY KEY, PHONE INTEGER, ADDRESS VARCHAR2 (20));

CREATE TABLE BOOK
(BOOK_ID INTEGER PRIMARY KEY,
TITLE VARCHAR2 (20),
PUB_YEAR VARCHAR2 (20),
PUBLISHER_NAME REFERENCES PUBLISHER (NAME) ON DELETE CASCADE);

CREATE TABLE BOOK_AUTHORS
(AUTHOR_NAME VARCHAR2 (20),
BOOK_ID REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,
PRIMARY KEY (BOOK_ID, AUTHOR_NAME));

CREATE TABLE LIBRARY_BRANCH (BRANCH_ID INTEGER PRIMARY KEY, BRANCH_NAME VARCHAR2 (50), ADDRESS VARCHAR2 (50));

CREATE TABLE BOOK COPIES

(NO_OF_COPIES INTEGER,

BOOK_ID REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,

BRANCH_ID REFERENCES LIBRARY_BRANCH (BRANCH_ID) ON DELETE CASCADE,

PRIMARY KEY (BOOK_ID, BRANCH_ID));

CREATE TABLE BOOK_LENDING

(DATE_OUT DATE,

DUE DATE DATE,

CARD_NO VARCHAR(10),

BOOK_ID REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,

BRANCH_ID REFERENCES LIBRARY_BRANCH (BRANCH_ID) ON DELETE CASCADE,

PRIMARY KEY (BOOK_ID, BRANCH_ID));

Table Descriptions

DESC PUBLISHER;

SQL> desc publisher;

 NAME
 NOT NULL VARCHAR2(20)

 PHONE
 NUMBER(38)

 ADDRESS
 VARCHAR2(20)

DESC BOOK;

SQL> DESC BOOK; Name Nu11? Type BOOK ID NOT NULL NUMBER(38) TITLE VARCHAR2(20) VARCHAR2(20) PUB_YEAR PUBLISHER_NAME VARCHAR2(20) DESC BOOK_AUTHORS; SQL> DESC BOOK_AUTHORS; Name Nu11? Type NOT NULL VARCHAR2(20) **AUTHOR NAME** BOOK_ID NOT NULL NUMBER(38) DESC LIBRARY_BRANCH; SQL> DESC LIBRARY_BRANCH; Name Nu11? Type BRANCH ID NOT NULL NUMBER(38) BRANCH NAME VARCHAR2(50) ADDRESS VARCHAR2(50) DESC BOOK_COPIES; SQL> DESC BOOK_COPIES; Name Nu11? Type NO_OF_COPIES NUMBER(38) BOOK_ID NOT NULL NUMBER(38) BRANCH_ID NOT NULL NUMBER(38) DESC CARD; SQL> DESC CARD; Name Nu11? Type CARD NO NOT NULL NUMBER(38) DESC BOOK_LENDING; SQL> desc book_lending; Name DATE_OUT DUE_DATE BOOK_ID BRANCH ID CARD_NO

Insertion of Values to Tables

```
INSERT INTO PUBLISHER VALUES ('MCGRAW-HILL', 9989076587, 'BANGALORE');
INSERT INTO PUBLISHER VALUES ('PEARSON', 9889076565, 'NEWDELHI');
INSERT INTO PUBLISHER VALUES ('RANDOM HOUSE', 7455679345, 'HYDRABAD');
INSERT INTO PUBLISHER VALUES ('HACHETTE LIVRE', 8970862340, 'CHENAI');
INSERT INTO PUBLISHER VALUES ('GRUPO PLANETA', 7756120238, 'BANGALORE');
INSERT INTO BOOK VALUES (1,'DBMS','JAN-2017', 'MCGRAW-HILL');
INSERT INTO BOOK VALUES (2,'ADBMS','JUN-2016', 'MCGRAW-HILL');
INSERT INTO BOOK VALUES (3, 'CN', 'SEP-2016', 'PEARSON');
INSERT INTO BOOK VALUES (4,'CG', 'SEP-2015', 'GRUPO PLANETA');
INSERT INTO BOOK VALUES (5,'OS','MAY-2016', 'PEARSON');
INSERT INTO BOOK AUTHORS VALUES ('NAVATHE', 1);
INSERT INTO BOOK AUTHORS VALUES ('NAVATHE', 2);
INSERT INTO BOOK AUTHORS VALUES ('TANENBAUM', 3);
INSERT INTO BOOK AUTHORS VALUES ('EDWARD ANGEL', 4);
INSERT INTO BOOK AUTHORS VALUES ('GALVIN', 5);
INSERT INTO LIBRARY BRANCH VALUES (10, 'RR NAGAR', 'BANGALORE');
INSERT INTO LIBRARY BRANCH VALUES (11, 'RNSIT', 'BANGALORE');
INSERT INTO LIBRARY BRANCH VALUES (12, 'RAJAJI NAGAR', 'BANGALORE');
INSERT INTO LIBRARY BRANCH VALUES (13, 'NITTE', 'MANGALORE');
INSERT INTO LIBRARY BRANCH VALUES (14, 'MANIPAL', 'UDUPI');
INSERT INTO BOOK_COPIES VALUES (10, 1, 10);
INSERT INTO BOOK COPIES VALUES (5, 1, 11);
INSERT INTO BOOK_COPIES VALUES (2, 2, 12);
INSERT INTO BOOK_COPIES VALUES (5, 2, 13);
INSERT INTO BOOK_COPIES VALUES (7, 3, 14);
INSERT INTO BOOK_COPIES VALUES (1, 5, 10);
INSERT INTO BOOK_COPIES VALUES (3, 4, 11);
INSERT INTO CARD VALUES (100);
INSERT INTO CARD VALUES (101);
INSERT INTO CARD VALUES (102);
INSERT INTO CARD VALUES (103);
INSERT INTO CARD VALUES (104);
```

INSERT INTO BOOK_LENDING VALUES ('01-JAN-17','01-JUN-17', 1, 10, 101); INSERT INTO BOOK_LENDING VALUES ('11-JAN-17','11-MAR-17', 3, 14, 101); INSERT INTO BOOK_LENDING VALUES ('21-FEB-17','21-APR-17', 2, 13, 101); INSERT INTO BOOK_LENDING VALUES ('15-MAR-17','15-JUL-17', 4, 11, 101); INSERT INTO BOOK_LENDING VALUES ('12-APR-17','12-MAY-17', 1, 11, 104); SELECT * FROM PUBLISHER;

SQL> select * from publisher;

NAME	PHONE	ADDRESS
MCGRAW-HILL	9989076587	BANGALORE
PEARSON	9889076565	NEWDELHI
RANDOM HOUSE	7455679345	HYDRABAD
HACHETTE LIVRE	8970862340	CHENAI
GRUPO PLANETA	7756120238	BANGALORE

SELECT * FROM BOOK;

SQL> SELECT * FROM BOOK;

BOOK_ID	TITLE	PUB_YEAR	PUBLISHER_NAME
-	DBMS	JAN-2017	MCGRAW-HILL
_	ADBMS CN	JUN-2016 SEP-2016	MCGRAW-HILL Pearson
_	CG OS	SEP-2015 MAY-2016	GRUPO PLANETA PEARSON

SELECT * FROM BOOK_AUTHORS;

SQL> SELECT * FROM BOOK_AUTHORS;

AUTHOR_NAME	BOOK_ID
NAVATHE	1
NAVATHE	2
TANENBAUM	3
EDWARD ANGEL	4
Galvin	5

SELECT * FROM LIBRARY_BRANCH;

SQL> SELECT * FROM LIBRARY_BRANCH;

BRANCH_ID	BRANCH_NAME	ADDRESS
10	RR NAGAR	BANGALORE
11	RNSIT	BANGALORE
12	RAJAJI NAGAR	BANGALORE
13	NITTE	MANGALORE
14	MANIPAL	UDUPI

SELECT * FROM BOOK_COPIES;

SQL> SELECT * FROM BOOK_COPIES;

NO_OF_COPIES	BOOK_ID	BRANCH_ID
10	1	10
5	1	11
2	2	12
5	2	13
7	3	14
1	5	10
3	4	11

SELECT * FROM CARD;

SQL> SELECT * FROM CARD;

_N0
100
101
102
103
104

SELECT * FROM BOOK_LENDING;

SQL> select * from book_lending;

DATE_OUT	DUE_DATE	BOOK_ID	BRANCH_ID	CARD_NO
81_ IAN_17	01-JUN-17	1	10	191
	11-MAR-17	3	14	101
21-FEB-17		2	13	101
15-MAR-17	15-JUL-17	4	11	101
12-APR-17	12-MAY-17	1	11	104

Oueries:

1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME, A.AUTHOR_NAME, C.NO_OF_COPIES,L.PROGRAMME_ID
FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES C,
LIBRARY_PROGRAMME L WHERE B.BOOK_ID=A.BOOK_ID
AND B.BOOK_ID=C.BOOK_ID
AND L.PROGRAMME_ID=C.PROGRAMME_ID;

BOOK_ID	TITLE	PUBLISHER_NAME	AUTHOR_NAME	NO_OF_COPIES	BRANCH_ID
1	DBMS	MCGRAW-HILL	NAVATHE	10	10
1	DBMS	MCGRAW-HILL	NAVATHE	5	11
2	ADBMS	MCGRAW-HILL	NAVATHE	2	12
2	ADBMS	MCGRAW-HILL	NAVATHE	5	13
3	CN	PEARSON	TANENBAUM	7	14
5	20	PEARSON	GALUIN	1	10
4	CG	GRUPO PLANETA	EDWARD ANGEL	3	11

2 Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.

SELECT CARD_NO
FROM BOOK_LENDING
WHERE DATE_OUT BETWEEN '01-JAN-2017' AND '01-JUL-2017'
GROUP BY CARD_NO
HAVING COUNT (*)>3;

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.

DELETE FROM BOOK
WHERE BOOK_ID=3;
sql> delete from book
2 where book_ID=3;

1 row deleted.

SQL> SELECT * FROM BOOK;

BOOK_ID	TITLE	PUB_YEAR	PUBLISHER_NAME
2 4	DBMS ADBMS CG OS	JAN-2017 JUN-2016 SEP-2015 MAY-2016	MCGRAW-HILL MCGRAW-HILL GRUPO PLANETA PEARSON

4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

CREATE VIEW V_PUBLICATION AS SELECT PUB_YEAR FROM BOOK;

PUB_YEAR	
JAN-2017	
JUN-2016	
SEP-2016	
SEP-2015	
MAY-2016	

5. Create a view of all books and its number of copies that are currently available in the Library.

CREATE VIEW V_BOOKS AS
SELECT B.BOOK_ID, B.TITLE, C.NO_OF_COPIES
FROM BOOK B, BOOK_COPIES C, LIBRARY_BRANCH L
WHERE B.BOOK_ID=C.BOOK_ID
AND C.BRANCH_ID=L.BRANCH_ID;

TITLE	NO_OF_COPIES
DBMS	10
DBMS	5
ADBMS	2
ADBMS	5
CN	7
20	1
CG	3
	DBMS DBMS ADBMS ADBMS CN OS

B. Consider the following schema for Order Database:

SALESMAN (Salesman_id, Name, City, Commission)

CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)

ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries to

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesmen who had more than one customer.
- 3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

Solution:

Entity-Relationship Diagram

Schema Diagram

Salesman

Table Creation

CREATE TABLE SALESMAN
(SALESMAN_ID NUMBER (4),
NAME VARCHAR2 (20),
CITY VARCHAR2 (20),
COMMISSION VARCHAR2 (20),
PRIMARYKEY (SALESMAN_ID));

CREATE TABLE CUSTOMER1 (CUSTOMER_ID NUMBER (4), CUST_NAME VARCHAR2 (20), CITY VARCHAR2 (20), GRADE NUMBER (3),

PRIMARY KEY (CUSTOMER_ID),
SALESMAN_ID REFERENCES SALESMAN (SALESMAN_ID) ON DELETE SET NULL);

CREATE TABLE ORDERS (ORD_NO NUMBER (5), PURCHASE_AMT NUMBER (10, 2), ORD_DATE DATE, PRIMARY KEY (ORD_NO),

CUSTOMER_ID REFERENCES CUSTOMER1 (CUSTOMER_ID) ON DELETE CASCADE, SALESMAN_ID REFERENCES SALESMAN (SALESMAN_ID) ON DELETE CASCADE);

Table Descriptions

DESC SALESMAN;

Name	Null	?	Type
SALESMAN_ID NAME CITY COMMISSION	NOT		NUMBER(4) VARCHAR2(15) VARCHAR2(15) NUMBER(3,2)

DESC CUSTOMER1;

SQL> DESC CUSTOMER1;

	_
CUSTOMER_ID NOT NULL NUMBER(4) CUST_NAME	_

DESC ORDERS;

SQL> DESC ORDERS;

Name	Nu1	1?	Туре
ORD_NO	HOT	NULL	NUMBER(5)
PURCHASE_AMT			NUMBER(10,2)
ORD_DATE			DATE
CUSTOMER ID			NUMBER(4)
SALESMAN ID			NUMBER(4)

Insertion of Values to Tables

```
INSERT INTO SALESMAN VALUES (1000, 'JOHN', 'BANGALORE', '25 %');
INSERT INTO SALESMAN VALUES (2000, 'RAVI', 'BANGALORE', '20 %');
INSERT INTO SALESMAN VALUES (3000, 'KUMAR', 'MYSORE', '15 %');
INSERT INTO SALESMAN VALUES (4000, 'SMITH', 'DELHI', '30 %');
INSERT INTO SALESMAN VALUES (5000, 'HARSHA', 'HYDRABAD', '15%');
```

INSERT INTO CUSTOMER1 VALUES (10, 'PREETHI', 'BANGALORE', 100, 1000); INSERT INTO CUSTOMER1 VALUES (11, 'VIVEK', 'MANGALORE', 300, 1000); INSERT INTO CUSTOMER1 VALUES (12, 'BHASKAR', 'CHENNAI', 400, 2000); INSERT INTO CUSTOMER1 VALUES (13, 'CHETHAN', 'BANGALORE', 200, 2000); INSERT INTO CUSTOMER1 VALUES (14, 'MAMATHA', 'BANGALORE', 400, 3000);

INSERT INTO ORDERS VALUES (50, 5000, '04-MAY-17', 10, 1000); INSERT INTO ORDERS VALUES (51, 450, '20-JAN-17', 10, 2000);

INSERT INTO ORDERS VALUES (52, 1000, '24-FEB-17', 13, 2000); INSERT INTO ORDERS VALUES (53, 3500, '13-APR-17', 14, 3000); INSERT INTO ORDERS VALUES (54, 550, '09-MAR-17', 12, 2000);

SELECT * FROM SALESMAN;

SALESMAN_ID	NAME	CITY	COMMISSION
	JOHN	BANGALORE	25 %
	RAUI	BANGALORE	20 %
	KUMAR	MYSORE	15 %
	SMITH	DELHI	30 %
5000	HARSHA	HYDRABAD	15 %

SELECT * FROM CUSTOMER1;

CUSTOMER_ID	CUST_NAME	CITY	GRADE	SALESMAN_ID
10	PREETHI	BANGALORE	100	1000
11	UIUEK	MANGALORE	300	1000
12	BHASKAR	CHENNAI	400	2000
13	CHETHAN	BANGALORE	200	2000
14	MAMATHA	BANGALORE	400	3000

SELECT * FROM ORDERS;

ORD_NO	PURCHASE_AMT	ORD_DATE	CUSTOMER_ID	SALESMAN_ID
50	5000	04-MAY-17	10	1000
51	450	20-JAN-17	10	2000
52	1000	24-FEB-17	13	2000
53	3500	13-APR-17	14	3000
54	550	09-MAR-17	12	2000

Oueries:

1. Count the customers with grades above Bangalore's average.

SELECT GRADE, COUNT (DISTINCT CUSTOMER_ID)

FROMCUSTOMER1

GROUP BY GRADE

HAVING GRADE > (SELECT AVG(GRADE)

FROM CUSTOMER1

WHERE CITY='BANGALORE');

GRADE	COUNT(DISTINCTCUSTOMER_	ID)
300		1
400		2

2 Find the name and numbers of all salesmen who had more than one customer.

SELECT SALESMAN_ID, NAME
FROM SALESMAN A
WHERE 1 < (SELECT COUNT (*)
FROM CUSTOMER1
WHERE SALESMAN_ID=A.SALESMAN_ID);
SOLESMAN_ID_NAME

3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNIONoperation.)

SELECT SALESMAN.SALESMAN_ID, NAME, CUST_NAME, COMMISSION FROM SALESMAN, CUSTOMER1

WHERE SALESMAN.CITY = CUSTOMER1.CITY

UNION

SELECT SALESMAN_ID, NAME, 'NO MATCH', COMMISSION

FROM SALESMAN

WHERE NOT CITY = ANY

(SELECT CITY

FROM CUSTOMER1)

ORDER BY 2 DESC;

SALESMAN_ID	NAME	CUST_NAME	COMMISSION
4000	SMITH	NO MATCH	30 %
2000	RAUI	CHETHAN	20 %
2000	RAUI	MAMATHA	20 %
2000	RAUI	PREETHI	20 %
3000	KUMAR	NO MATCH	15 %
1000	JOHN	CHETHAN	25 %
1000	JOHN	MAMATHA	25 %
1000	JOHN	PREETHI	25 %
5000	HARSHA	NO MATCH	15 %

4. Create a view that finds the salesman who has the customer with the highest order of a day.

CREATE VIEW ELITSALESMAN AS SELECT B.ORD_DATE, A.SALESMAN_ID, A.NAME FROM SALESMAN A, ORDERS B

WHERE A.SALESMAN_ID = B.SALESMAN_ID AND B.PURCHASE_AMT=(SELECT MAX (PURCHASE_AMT) FROM ORDERS C WHERE C.ORD_DATE = B.ORD_DATE);

ORD_DATE	SALESMAN_ID	NAME
04-MAY-17	1000	JOHN
20-JAN-17	2000	RAVI
24-FEB-17	2000	RAVI
13-APR-17	3000	KUMAR
09-MAR-17	2000	RAVI

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also bedeleted.

Use ON DELETE CASCADE at the end of foreign key definitions while creating child table orders and then execute the following:

Use ON DELETE SET NULL at the end of foreign key definitions while creating child table customers and then executes the following:

DELETE FROM SALESMAN WHERE SALESMAN_ID=1000;

SQL> DELETE FROM SALESMAN
2 WHERE SALESMAN_ID=1000;

1 row deleted.

SQL> SELECT * FROM SALESMAN;

SALESMAN_ID	NAME	CITY	COMMISSION
2000	RAVI	BANGALORE	20 %
3000	KUMAR	MYSORE	15 %
4000	SMITH	DELHI	30 %
5000	HARSHA	HYDRABAD	15 %

C. Consider the schema for MovieDatabase:

ACTOR (Act_id, Act_Name, Act_Gender)

DIRECTOR (<u>Dir_id</u>, Dir_Name, Dir_Phone)

MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST (Act id, Mov id, Role)

RATING (Mov_id, Rev_Stars)

Write SQL queries to

- 1. List the titles of all movies directed by 'Hitchcock'.
- 2. Find the movie names where one or more actors acted in two or moremovies.
- 3. List all actors who acted in a movie before 2000 and also in a movieafter 2015 (use JOINoperation).
- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movietitle.
- 5. Update rating of all movies directed by 'Steven Spielberg' to5.

Solution:

Entity-Relationship Diagram

Schema Diagram

Table Creation

```
CREATE TABLE ACTOR (
ACT ID NUMBER (3),
ACT_NAME VARCHAR (20),
ACT_GENDER CHAR (1),
PRIMARY KEY (ACT_ID));
CREATE TABLE DIRECTOR (
DIR_ID NUMBER (3),
DIR_NAME VARCHAR (20),
DIR_PHONE NUMBER (10),
PRIMARY KEY (DIR_ID));
CREATE TABLE MOVIES (
MOV_ID NUMBER (4),
MOV_TITLE VARCHAR (25),
MOV_YEAR NUMBER (4),
MOV_LANG VARCHAR (12),
DIR_ID NUMBER (3),
PRIMARY KEY (MOV_ID),
FOREIGN KEY (DIR_ID) REFERENCES DIRECTOR (DIR_ID));
```

DIR ID

```
CREATE TABLE MOVIE_CAST (
ACT_ID NUMBER (3),
MOV_ID NUMBER (4),
ROLE VARCHAR (10),
PRIMARY KEY (ACT_ID, MOV_ID),
FOREIGN KEY (ACT_ID) REFERENCES ACTOR (ACT_ID),
FOREIGN KEY (MOV_ID) REFERENCES MOVIES (MOV_ID));
CREATE TABLE RATING (
MOV_ID NUMBER (4),
REV_STARS VARCHAR (25),
PRIMARY KEY (MOV_ID),
FOREIGN KEY (MOV ID) REFERENCES MOVIES (MOV ID));
Table Descriptions
DESC ACTOR;
SQL> DESC ACTOR;
 Name
                                         Nu11?
                                                 Type
 ACT ID
                                         NOT NULL NUMBER(3)
 ACT NAME
                                                 VARCHAR2(20)
 ACT GENDER
                                                 CHAR(1)
DESC DIRECTOR;
SQL> DESC DIRECTOR;
 Name
                                        Nu11?
                                                Type
 DIR ID
                                        NOT NULL NUMBER(3)
 DIR NAME
                                                VARCHAR2(20)
 DIR PHONE
                                                NUMBER (10)
DESC MOVIES;
SQL> DESC MOVIES;
 Name
                                    Nu11?
                                            Type
 MOV_ID
                                    NOT NULL NUMBER(4)
 MOV_TITLE
                                            VARCHAR2(25)
 MOV_YEAR
                                            NUMBER(4)
 MOV_LANG
                                            VARCHAR2(12)
```

CITECH, Bangalore Page 18

NUMBER(3)

DESC MOVIE_CAST;

```
SQL> DESC MOVIE_CAST;
                                             Nu11?
 Name
                                                       Type
 ACT_ID
                                             NOT NULL NUMBER(3)
 MOV_ID
                                             NOT NULL NUMBER(4)
 ROLE
                                                       VARCHAR2(10)
DESC RATING;
SQL> DESC RATING;
 Name
                                             Nu11?
                                                      Type
 MOV ID
                                             NOT NULL NUMBER(4)
 REU STARS
                                                      VARCHAR2(25)
```

Insertion of Values to Tables

```
INSERT INTO ACTOR VALUES (301,'ANUSHKA','F');
INSERT INTO ACTOR VALUES (302,'PRABHAS','M');
INSERT INTO ACTOR VALUES (303,'PUNITH','M');
INSERT INTO ACTOR VALUES (304,'JERMY','M');
INSERT INTO DIRECTOR VALUES (60,'RAJAMOULI', 8751611001);
```

INSERT INTO DIRECTOR VALUES (60, 'RAJAMOULI', 8/51611001); INSERT INTO DIRECTOR VALUES (61, 'HITCHCOCK', 7766138911); INSERT INTO DIRECTOR VALUES (62, 'FARAN', 9986776531); INSERT INTO DIRECTOR VALUES (63, 'STEVEN SPIELBERG', 8989776530);

INSERT INTO MOVIES VALUES (1001, 'BAHUBALI-2', 2017, 'TELAGU', 60); INSERT INTO MOVIES VALUES (1002, 'BAHUBALI-1', 2015, 'TELAGU', 60); INSERT INTO MOVIES VALUES (1003, 'AKASH', 2008, 'KANNADA', 61); INSERT INTO MOVIES VALUES (1004, 'WAR HORSE', 2011, 'ENGLISH', 63);

INSERT INTO MOVIE_CAST VALUES (301, 1002, 'HEROINE'); INSERT INTO MOVIE_CAST VALUES (301, 1001, 'HEROINE'); INSERT INTO MOVIE_CAST VALUES (303, 1003, 'HERO'); INSERT INTO MOVIE_CAST VALUES (303, 1002, 'GUEST'); INSERT INTO MOVIE_CAST VALUES (304, 1004, 'HERO');

INSERT INTO RATING VALUES (1001, 4); INSERT INTO RATING VALUES (1002, 2);

INSERT INTO RATING VALUES (1003, 5); INSERT INTO RATING VALUES (1004, 4);

SELECT * FROM ACTOR;

SQL> SELECT * FROM ACTOR;

ACT_ID	ACT_NAME	A
		-
301	ANUSHKA	F
302	PRABHAS	М
303	PUNITH	М
304	JERMY	М

SELECT * FROM DIRECTOR;

SQL> SELECT * FROM DIRECTOR;

DIR_ID	DIR_NAME	DIR_PHONE
60	RAJAMOULI	8751611001
61	HITCHCOCK	7766138911
62	FARAN	9986776531
63	STEVEN SPIELBERG	8989776530

SELECT * FROM MOVIES;

SQL> SELECT * FROM MOVIES;

MOV_ID	MOV_TITLE	MOV_YEAR	MOV_LANG	DIR_ID
1001	BAHUBAL I - 2	2017	TELAGU	60
1002	BAHUBALI-1	2015	TELAGU	60
1003	AKASH	2008	KANNADA	61
1004	WAR HORSE	2011	ENGLISH	63

SELECT * FROM MOVIE_CAST;

SQL> SELECT * FROM MOVIE_CAST;

ACT_ID	MOV_ID	ROLE
301 301		HEROINE HEROINE
3 03	1003	HERO
303 304	1002 1004	GUEST Hero

Oueries:

1. List the titles of all movies directed by 'Hitchcock'.

SELECT MOV_TITLE
FROM MOVIES
WHERE DIR_ID IN (SELECT DIR_ID
FROM DIRECTOR
WHERE DIR NAME = 'HITCHCOCK');

MOV_	TIT	LE			
AKAS	H				

2. Find the movie names where one or more actors acted in two or moremovies.

SELECT MOV_TITLE
FROM MOVIES M, MOVIE_CAST MV
WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN (SELECT ACT_ID
FROM MOVIE_CAST GROUP BY ACT_ID
HAVING COUNT (ACT_ID)>1)

GROUP BY MOV_TITLE HAVING COUNT (*)>1;

```
MOV_TITLE
-----BAHUBALI-1
```

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOINoperation).

SELECT ACT_NAME, MOV_TITLE, MOV_YEAR

FROM ACTOR A

JOIN MOVIE_CASTC

ON A.ACT_ID=C.ACT_ID

JOIN MOVIES M

ON C.MOV_ID=M.MOV_ID

WHERE M.MOV_YEAR NOT BETWEEN 2000 AND 2015;

OR

SELECT A.ACT_NAME, A.ACT_NAME, C.MOV_TITLE, C.MOV_YEAR FROM ACTOR A, MOVIE_CAST B, MOVIES C WHERE A.ACT_ID=B.ACT_ID AND B.MOV_ID=C.MOV_ID AND C.MOV_YEAR NOT BETWEEN 2000 AND 2015;

ACT_NAME	MOV_TITLE	MOV_YEAR
ANUSHKA	BAHUBALI-2	2017

4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movietitle.

SELECT MOV_TITLE, MAX (REV_STARS)
FROM MOVIES
INNER JOIN RATING USING (MOV_ID)
GROUP BY MOV_TITLE
HAVING MAX (REV_STARS)>0
ORDER BY MOV_TITLE;

MOV_TITLE	MAX(REU_STARS)
AKASH BAHUBALI-1 BAHUBALI-2 WAR HORSE	5 2 4

5. Update rating of all movies directed by 'Steven Spielberg' to 5 $\rm KL$

UPDATE RATING

SET REV_STARS=5

WHERE MOV_ID IN (SELECT MOV_ID FROM MOVIES

WHERE DIR_ID IN (SELECT DIR_ID

FROM DIRECTOR

WHERE DIR_NAME = 'STEVEN

SPIELBERG'));

SQL> SELECT * FROM RATING;

MOV_ID	REV_STARS
1001	4
1002	2
1003	5
1004	5

D. Consider the schema for CollegeDatabase:

STUDENT (<u>USN</u>, SName, Address, Phone, Gender)

SEMSEC (SSID, Sem, Sec)

CLASS (<u>USN</u>, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (<u>USN</u>, <u>Subcode</u>, <u>SSID</u>, Test1, Test2, Test3, FinalIA)

Write SQL queries to

- 1. List all the student details studying in fourth semester 'C'section.
- 2. Compute the total number of male and female students in each semester and in each section.
- 3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.
- 4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.
- 5. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

Solution:

Entity - Relationship Diagram

Schema Diagram

Table Creation

```
CREATE TABLE STUDENT (
USN VARCHAR (10) PRIMARY KEY,
SNAME VARCHAR (25),
ADDRESS VARCHAR (25),
PHONE NUMBER (10),
GENDER CHAR (1));
CREATE TABLE SEMSEC (
SSID VARCHAR (5) PRIMARY KEY,
SEM NUMBER (2),
SEC CHAR (1));
CREATE TABLE CLASS (
USN VARCHAR (10),
SSID VARCHAR (5),
PRIMARY KEY (USN, SSID),
FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));
```

SEM SEM

```
CREATE TABLE SUBJECT (
SUBCODE VARCHAR (8),
TITLE VARCHAR (20),
SEM NUMBER (2),
CREDITS NUMBER (2),
PRIMARY KEY (SUBCODE));
CREATE TABLE IAMARKS (
USN VARCHAR (10),
SUBCODE VARCHAR (8),
SSID VARCHAR (5),
TEST1 NUMBER (2),
TEST2 NUMBER (2),
TEST3 NUMBER (2),
FINALIA NUMBER (2),
PRIMARY KEY (USN, SUBCODE, SSID),
FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE),
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));
Table Descriptions
DESC STUDENT;
Name
USN
SNAME
ADDRESS
PHONE
GENDER
DESC SEMSEC;
SQL> DESC SEMSEC;
 Name
```

```
DESC CLASS;
SQL> DESC CLASS;
 Name
 NSU
 SSID
DESC SUBJECT;
SQL> DESC SUBJECT1;
 Name
 SUBCODE
 TITLE
 SEM
 CREDITS
DESC IAMARKS;
SQL> DESC IAMARKS;
 Name
 USN
 SUBCODE
 SSID
 TEST1
 TEST2
 TEST3
 FINALIA
```

Insertion of values to tables

INSERT INTO STUDENT VALUES ('1RN13CS020', 'AKSHAY', 'BELAGAVI', 8877881122, 'M');

INSERT INTO STUDENT VALUES ('1RN13CS062', 'SANDHYA', 'BENGALURU', 7722829912. F'):

INSERT INTO STUDENT VALUES ('1RN13CS091', 'TEESHA', 'BENGALURU', 7712312312,'F'):

INSERT INTO STUDENT VALUES ('1RN13CS066', 'SUPRIYA', 'MANGALURU', 8877881122, 'F');

INSERT INTO STUDENTVALUES ('1RN14CS010', 'ABHAY', 'BENGALURU', 9900211201, 'M');

INSERT INTO STUDENT VALUES ('1RN14CS032', 'BHASKAR', 'BENGALURU', 9923211099, 'M');

INSERT INTO STUDENTVALUES ('1RN14CS025', 'ASMI', 'BENGALURU', 7894737377, 'F'); INSERT INTO STUDENT VALUES ('1RN15CS011', 'AJAY', 'TUMKUR', 9845091341, 'M');

```
INSERT INTO STUDENT VALUES ('1RN15CS029','CHITRA','DAVANGERE',
7696772121,'F');
INSERT INTO STUDENT VALUES ('1RN15CS045', 'JEEVA', 'BELLARY', 9944850121, 'M');
INSERT INTO STUDENT VALUES ('1RN15CS091', 'SANTOSH', 'MANGALURU',
8812332201,'M');
INSERT INTO STUDENT VALUES ('1RN16CS045', 'ISMAIL', 'KALBURGI',
9900232201,'M');
INSERT INTO STUDENT VALUES ('1RN16CS088', 'SAMEERA', 'SHIMOGA',
9905542212,'F');
INSERT INTO STUDENT VALUES ('1RN16CS122', 'VINAYAKA', 'CHIKAMAGALUR',
8800880011.'M'):
INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A');
INSERT INTO SEMSEC VALUES ('CSE8B', 8,'B');
INSERT INTO SEMSEC VALUES ('CSE8C',8,'C');
INSERT INTO SEMSEC VALUES ('CSE7A', 7,'A');
INSERT INTO SEMSEC VALUES ('CSE7B',7,'B');
INSERT INTO SEMSEC VALUES ('CSE7C',7,'C');
INSERT INTO SEMSEC VALUES ('CSE6A', 6,'A');
INSERT INTO SEMSEC VALUES ('CSE6B', 6,'B');
INSERT INTO SEMSEC VALUES ('CSE6C', 6, 'C');
INSERT INTO SEMSEC VALUES ('CSE5A', 5,'A');
INSERT INTO SEMSEC VALUES ('CSE5B', 5,'B');
INSERT INTO SEMSEC VALUES ('CSE5C', 5,'C');
INSERT INTO SEMSEC VALUES ('CSE4A', 4,'A');
INSERT INTO SEMSEC VALUES ('CSE4B', 4,'B');
INSERT INTO SEMSEC VALUES ('CSE4C', 4,'C');
INSERT INTO SEMSEC VALUES ('CSE3A', 3,'A');
INSERT INTO SEMSEC VALUES ('CSE3B', 3,'B');
INSERT INTO SEMSEC VALUES ('CSE3C', 3,'C');
INSERT INTO SEMSEC VALUES ('CSE2A', 2, 'A');
INSERT INTO SEMSEC VALUES ('CSE2B', 2,'B');
INSERT INTO SEMSEC VALUES ('CSE2C', 2,'C');
INSERT INTO SEMSEC VALUES ('CSE1A', 1,'A');
```

```
INSERT INTO SEMSEC VALUES ('CSE1B', 1,'B');
INSERT INTO SEMSEC VALUES ('CSE1C', 1,'C');
INSERT INTO CLASS VALUES ('1RN13CS020','CSE8A');
INSERT INTO CLASS VALUES ('1RN13CS062', 'CSE8A');
INSERT INTO CLASS VALUES ('1RN13CS066', 'CSE8B');
INSERT INTO CLASS VALUES ('1RN13CS091','CSE8C');
INSERT INTO CLASS VALUES ('1RN14CS010', 'CSE7A');
INSERT INTO CLASS VALUES ('1RN14CS025', 'CSE7A');
INSERT INTO CLASS VALUES ('1RN14CS032', 'CSE7A');
INSERT INTO CLASS VALUES ('1RN15CS011', 'CSE4A');
INSERT INTO CLASS VALUES ('1RN15CS029','CSE4A');
INSERT INTO CLASS VALUES ('1RN15CS045', 'CSE4B');
INSERT INTO CLASS VALUES ('1RN15CS091', 'CSE4C');
INSERT INTO CLASS VALUES ('1RN16CS045', 'CSE3A');
INSERT INTO CLASS VALUES ('1RN16CS088', 'CSE3B');
INSERT INTO CLASS VALUES ('1RN16CS122', 'CSE3C');
INSERT INTO SUBJECT VALUES ('10CS81', 'ACA', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS82', 'SSM', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS83','NM', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS84', 'CC', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS85','PW', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS71','OOAD', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS72', 'ECS', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS73', 'PTW', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS74','DWDM', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS75','JAVA', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS76', 'SAN', 7, 4);
INSERT INTO SUBJECT VALUES ('15CS51', 'ME', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS52', 'CN', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS53', 'DBMS', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS54','ATC', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS55','JAVA', 5, 3);
INSERT INTO SUBJECT VALUES ('15CS56', 'AI', 5, 3);
```

```
INSERT INTO SUBJECT VALUES ('15CS41','M4', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS42','SE', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS43','DAA', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS44','MPMC', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS45','OOC', 4, 3);
INSERT INTO SUBJECT VALUES ('15CS46','DC', 4, 3);
```

INSERT INTO SUBJECT VALUES ('15CS31','M3', 3, 4); INSERT INTO SUBJECT VALUES ('15CS32','ADE', 3, 4); INSERT INTO SUBJECT VALUES ('15CS33','DSA', 3, 4); INSERT INTO SUBJECT VALUES ('15CS34','CO', 3, 4); INSERT INTO SUBJECT VALUES ('15CS35','USP', 3, 3); INSERT INTO SUBJECT VALUES ('15CS36','DMS', 3, 3);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1RN13CS091','10CS81','CSE8C', 15, 16, 18);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1RN13CS091','10CS82','CSE8C', 12, 19, 14);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1RN13CS091','10CS83','CSE8C', 19, 15, 20);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1RN13CS091','10CS84','CSE8C', 20, 16, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1RN13CS091','10CS85','CSE8C', 15, 15, 12);

SELECT * FROM STUDENT;

SQL> SELECT * FROM STUDENT1;

USN	SNAME	ADDRESS	PHONE	G
1RN13CS 02 0	AKSHAY	BELAGAVI	8877881122	М
1RN13CS 062	SANDHYA	BENGALURU	7722829912	F
1RN13CS091	TEESHA	BENGALURU	7712312312	F
1RN13CS066	SUPRIYA	MANGALURU	8877881122	F
1RN14CS010	ABHAY	BENGALURU	9900211201	М
1RN14CS032	BHASKAR	BENGALURU	9923211099	М
1RN15CS011	AJAY	TUMKUR	9845091341	М
1RN15CS029	CHITRA	DAVANGERE	7696772121	F
1RN15CS045	JEEVA	BELLARY	9944850121	М
1RN15CS091	H2OTHA2	MANGALURU	8812332201	М
1RN16CS045	ISMAIL	KALBURGI	9900232201	М
1RN16CS088	SAMEERA	SHIMOGA	9905542212	F
1RN16CS122	VINAYAKA	CHIKAMAGALUR	8800880011	М
1RN14CS 025	ASMI	BENGALURU	7894737377	F

SELECT * FROM SEMSEC;

SQL> SELECT * FROM SEMSEC;

SSID	SEM	S
		-
CSE8A	8	A
C2E8B	8	В
CSE8C	8	C
CSE7A	7	A
CSE7B	7	В
CSE7C	7	C
CSE6A	6	A
CSE6B	6	В
CSE6C	6	C
CSE5A	5	A
CSE5B	. 5	В
CSE5C	. 5	C
CSE4A	4	A
CSE4B	4	В
CSE4C	4	C
CSE3A	3	A
CSE3B	3	В
CSE3C	3	C
CSE2A	2	A
CSE2C	2	C
CSE2B	2	В
CSE1A	1	A
CSE1B	1	В
CSE1C	1	C
	-	_

SELECT * FROM CLASS;

SQL> SELECT * FROM CLASS;

NSN	SSID
1RN13CS020	CSE8A
1RN13CS062	CSE8A
1RN13CS066	CSE8B
1RN13CS091	C2E8C
1RN14CS010	CSE7A
1RN14CS 025	CSE7A
1RN14CS 032	CSE7A
1RN15CS011	CSE4A
1RN15CS029	CSE4A
1RN15CS 045	CSE4B
1RN15CS091	CSE4C
1RN16CS 045	CSE3A
1RN16CS088	C2E3B
1RN16CS122	C2E3C

14 rows selected.

SELECT * FROM SUBJECT;

SUBCODE	TITLE	SEM	CREDITS
100581	ACA	8	4
10CS82	MZZ	8	4
100583	NM	8	4
10CS84	CC	8	4
10CS85	₽₩	8	4
10CS71	OOAD	7	4
10CS72	ECS	7	4
10CS73	PTW	7	4
10CS74	DWDM	7	4
10CS75	JAVA	7	4
10CS76	SAN	7	4
15CS51	ME	5	4
15CS52	CN	5	4
150853	DBMS	5	4
15CS54	ATC	5	4
15CS55	JAVA	5	3
15CS56	AI	5	3
15CS41	М4	4	4
15CS42	SE	4	4
150543	DAA	4	4
15CS44	MPMC	4	4
15CS45	00C	4	3
15CS46	DC	4	3
150831	М3	3	4
15CS32	ADE	3	4
15CS33	DSA	3	4
15CS34	CO	3	4
15CS35	USP	3	3
15CS36	DMS	3	3
170300	DIIS	J	J

SELECT * FROM IAMARKS;

SQL> SELECT * FROM IAMARKS;

HZU	SUBCODE	DISS	TEST1	TEST2	TEST3	FINALIA
1RN13CS091	10CS81	C2E8C	15	16	18	
1RN13CS091	10CS82	CSE8C	12	19	14	
1RN13CS 091	100583	CSE8C	19	15	20	
1RN13CS 091	100584	CSE8C	20	16	19	
1RN13CS 091	10CS85	CSE8C	15	15	12	

Oueries:

1. List all the student details studying in fourth semester 'C'section.

SELECT S.*, SS.SEM, SS.SEC

FROM STUDENT S, SEMSEC SS, CLASS C

WHERE S.USN = C.USN AND

SS.SSID = C.SSID AND

SS.SEM = 4 AND

SS.SEc='C';

HZU	SNAME	ADDRESS	PHONE	G	SEM	S
				_		_
1RN15CS091	SANTOSH	MANGALURU	8812332201	М	4	C

2. Compute the total number of male and female students in each semester and ineach section.

SELECT SS.SEM, SS.SEC, S.GENDER, COUNT (S.GENDER) AS COUNT FROM STUDENT S, SEMSEC SS, CLASS C
WHERES.USN = C.USN AND
SS.SSID = C.SSID
GROUP BY SS.SEM, SS.SEC, S.GENDER
ORDER BY SEM;

SEM	S	G	COUNT
	-	-	
3	A	М	1
3	В	F	1
3	C	М	1
4	A	F	1
4	A	М	1
4	В	М	1
4	C	М	1
7	A	F	1
7	A	М	2
8	A	F	1
8	A	М	1
8	В	F	1
8	C	F	1

3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.

CREATE VIEW STU_TEST1_MARKS_VIEW

AS

SELECT TEST1, SUBCODE

FROM IAMARKS

WHERE USN = '1RN13CS091';

TEST1	SUBCODE
15	100381
12	10CS82
19	10CS83
20	10CS84
10	100025

4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.

```
CREATE OR REPLACE PROCEDURE AVGMARKS
 IS
 CURSOR C_IAMARKS IS
SELECT GREATEST(TEST1, TEST2) AS A, GREATEST(TEST1, TEST3) AS B,
GREATEST(TEST3,TEST2) AS C
FROM IAMARKS
WHERE FINALIA IS NULL
FOR UPDATE:
 C A NUMBER;
 C B NUMBER;
 C_C NUMBER;
 C_SM NUMBER;
 C_AV NUMBER;
BEGIN
 OPEN C IAMARKS;
 LOOP
 FETCH C IAMARKS INTO C A, C B, C C;
   EXIT WHEN C IAMARKS% NOTFOUND;
  DBMS_OUTPUT_LINE(C_A \parallel \cdot \cdot \parallel C_B \parallel \cdot \cdot \cdot \parallel C_C);
   IF (C_A != C_B) THEN
C_SM:=C_A+C_B;
   ELSE
C_SM:=C_A+C_C;
   END IF:
   C_AV:=C_SM/2;
   DBMS_OUTPUT_LINE('SUM = '||C_SM);
   DBMS_OUTPUT_LINE('AVERAGE = '||C_AV);
   UPDATE IAMARKS SET FINALIA=C_AV WHERE CURRENT OF C_IAMARKS;
 END LOOP;
 CLOSE C_IAMARKS;
END;
```

Note: Before execution of PL/SQL procedure, IAMARKS table contents are:

SELECT * FROM IAMARKS;

SQL> SELECT * FROM IAMARKS;

USN	SABCODE	SSID	TEST1	TEST2	TEST3	FINALIA
1RN13CS 091	10CS81	CSE8C	15	16	18	
1RN13CS091	100582	CSE8C	12	19	14	
1RN13CS091	100583	CSE8C	19	15	20	
1RN13CS091	10CS84	CSE8C	20	16	19	
1RN13CS091	100385	CSE8C	15	15	12	

Below SQL code is to invoke the PL/SQL stored procedure from the command line:

BEGIN

AVGMARKS;

END;

SQL> select * from IAMARks;

NSN	SUBCODE	SSID	TEST1	TEST2	TEST3	FINALIA
1RN13CS091	100581	CSE8C	15	16	18	17
1RN13CS091	100582	CSE8C	12	19	14	17
1RN13CS091	10CS83	CSE8C	19	15	20	20
1RN13CS091	100584	CSE8C	20	16	19	20
1RN13CS091	100385	C2E8C	15	15	12	15

5. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

SELECT S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,

(CASE

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN'OUTSTANDING' WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE' ELSE'WEAK'

END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB

WHERE S.USN = IA.USN AND

SS.SSID = IA.SSID AND

SUB.SUBCODE = IA.SUBCODE AND

SUB.SEM = 8;

NSN	SNAME	ADDRESS	PHONE	G CAT
1RN13CS091	TEESHA	BENGALURU	7712312312	F OutStanding
1RN13CS091	TEESHA	BENGALURU	7712312312	F OutStanding
1RN13CS091	TEESHA	BENGALURU	7712312312	F OutStanding
1RN13CS091	TEESHA	BENGALURU	7712312312	F OutStanding
1RN13CS091	TEESHA	BENGALURU	7712312312	F Average
1KN13C2091	LEE2HH	BENGHLUKU	7712312312	r nverage

E. Consider the schema for CompanyDatabase:

EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT (<u>DNo</u>, DName, MgrSSN, MgrStartDate)

DLOCATION (<u>DNo,DLoc</u>)

PROJECT (<u>PNo</u>, PName, PLocation, DNo)

WORKS_ON (SSN, PNo, Hours)

Write SQL queries to

- 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.
- 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percentraise.
- 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department
- 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs.6,00,000.

Entity-Relationship Diagram

Schema Diagram

Table Creation

CREATE TABLE DEPARTMENT (DNO VARCHAR2 (20) PRIMARY KEY, DNAME VARCHAR2 (20), MGRSTARTDATE DATE);

CREATE TABLE EMPLOYEE
(SSN VARCHAR2 (20) PRIMARY KEY,
FNAME VARCHAR2 (20),
LNAME VARCHAR2 (20),
ADDRESS VARCHAR2 (20),
SEX CHAR (1),
SALARY INTEGER,
SUPERSSN REFERENCES EMPLOYEE (SSN),
DNO REFERENCES DEPARTMENT (DNO));

NOTE: Once DEPARTMENT and EMPLOYEE tables are created we must alter department table to add foreign constraint MGRSSN using sql command

ALTER TABLE DEPARTMENT ADD MGRSSN REFERENCES EMPLOYEE (SSN);

CREATE TABLE DLOCATION
(DLOC VARCHAR2 (20),
DNO REFERENCES DEPARTMENT (DNO),
PRIMARY KEY (DNO, DLOC));

CREATE TABLE PROJECT
(PNO INTEGER PRIMARY KEY,
PNAME VARCHAR2(20),
PLOCATION VARCHAR2 (20),
DNO REFERENCES DEPARTMENT (DNO));

CREATE TABLE WORKS_ON (HOURS NUMBER (2), SSN REFERENCES EMPLOYEE (SSN), PNO REFERENCES PROJECT(PNO), PRIMARY KEY (SSN, PNO));

Table Descriptions

```
DESC DEPARTMENT;
SQL> DESC DEPARTMENT;
 Name
 DNO
 DNAME
 MGRSTARTDATE
 MGRSSN
DESC DLOCATION;
SQL> DESC DLOCATION;
 Name
 DLOC
 DHO
DESC PROJECT;
SQL> DESC PROJECT;
 Name
 PN0
 PNAME
 PLOCATION
 DHO
DESC WORKS_ON;
SQL> DESC WORKS ON;
 Name
 HOURS
 SSN
 P<sub>N</sub>0
```

Insertion of values to tables

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSECE01','JOHN','SCOTT','BANGALORE','M', 450000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE01','JAMES','SMITH','BANGALORE','M', 500000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE02','HEARN','BAKER','BANGALORE','M', 700000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE03', 'EDWARD', 'SCOTT', 'MYSORE', 'M', 500000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE04','PAVAN','HEGDE','MANGALORE','M', 650000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE05','GIRISH','MALYA','MYSORE','M', 450000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSCSE06','NEHA','SN','BANGALORE','F', 800000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSACC01', 'AHANA', 'K', 'MANGALORE', 'F', 350000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSACC02', 'SANTHOSH', 'KUMAR', 'MANGALORE', 'M', 300000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSISE01','VEENA','M','MYSORE','M', 600000);

INSERT INTO EMPLOYEE (SSN, FNAME, LNAME, ADDRESS, SEX, SALARY) VALUES ('RNSIT01','NAGESH','HR','BANGALORE','M', 500000);

INSERT INTO DEPARTMENT VALUES ('1','ACCOUNTS','01-JAN-01','RNSACC02'); INSERT INTO DEPARTMENT VALUES ('2','IT','01-AUG-16','RNSIT01'); INSERT INTO DEPARTMENT VALUES ('3','ECE','01-JUN-08','RNSECE01'); INSERT INTO DEPARTMENT VALUES ('4','ISE','01-AUG-15','RNSISE01'); INSERT INTO DEPARTMENT VALUES ('5','CSE','01-JUN-02','RNSCSE05');

Note: update entries of employee table to fill missing fields SUPERSSN and DNO

UPDATE EMPLOYEE SET SUPERSSN=NULL, DNO='3' WHERE SSN='RNSECE01';

UPDATE EMPLOYEE SET SUPERSSN='RNSCSE02', DNO='5' WHERE SSN='RNSCSE01';

UPDATE EMPLOYEE SET SUPERSSN='RNSCSE03', DNO='5' WHERE SSN='RNSCSE02';

UPDATE EMPLOYEE SET SUPERSSN='RNSCSE04', DNO='5' WHERE SSN='RNSCSE03';

UPDATE EMPLOYEE SET DNO='5', SUPERSSN='RNSCSE05' WHERE SSN='RNSCSE04';

```
UPDATE EMPLOYEE SET
DNO='5', SUPERSSN='RNSCSE06'
WHERE SSN='RNSCSE05';
UPDATE EMPLOYEE SET
DNO='5', SUPERSSN=NULL
WHERE SSN='RNSCSE06';
UPDATE EMPLOYEE SET
DNO='1', SUPERSSN='RNSACC02'
WHERESSN='RNSACC01';
UPDATE EMPLOYEE SET
DNO='1', SUPERSSN=NULL
WHERE SSN='RNSACC02';
UPDATE EMPLOYEE SET
DNO='4', SUPERSSN=NULL
WHERE SSN='RNSISE01';
UPDATE EMPLOYEE SET
DNO='2', SUPERSSN=NULL
WHERE SSN='RNSIT01';
INSERT INTO DLOCATION VALUES ('BANGALORE', '1');
INSERT INTO DLOCATION VALUES ('BANGALORE', '2');
INSERT INTO DLOCATION VALUES ('BANGALORE', '3');
INSERT INTO DLOCATION VALUES ('MANGALORE', '4');
INSERT INTO DLOCATION VALUES ('MANGALORE', '5');
INSERT INTO PROJECT VALUES (100, 'IOT', 'BANGALORE', '5');
INSERT INTO PROJECT VALUES (101, 'CLOUD', 'BANGALORE', '5');
INSERT INTO PROJECT VALUES (102, 'BIGDATA', 'BANGALORE', '5');
INSERT INTO PROJECT VALUES (103, 'SENSORS', 'BANGALORE', '3');
INSERT INTO PROJECT VALUES (104, 'BANK MANAGEMENT', 'BANGALORE', '1');
INSERT INTO PROJECT VALUES (105, 'SALARY MANAGEMENT', 'BANGALORE', '1');
INSERT INTO PROJECT VALUES (106, 'OPENSTACK', 'BANGALORE', '4');
```

CITECH, Bangalore Page 42

INSERT INTO PROJECT VALUES (107, 'SMART CITY', 'BANGALORE', '2');

INSERT INTO WORKS_ON VALUES (4, 'RNSCSE01', 100); INSERT INTO WORKS_ON VALUES (6, 'RNSCSE01', 101); INSERT INTO WORKS_ON VALUES (8, 'RNSCSE01', 102); INSERT INTO WORKS_ON VALUES (10, 'RNSCSE02', 100); INSERT INTO WORKS_ON VALUES (3, 'RNSCSE04', 100); INSERT INTO WORKS_ON VALUES (4, 'RNSCSE05', 101); INSERT INTO WORKS_ON VALUES (5, 'RNSCSE06', 102); INSERT INTO WORKS_ON VALUES (6, 'RNSCSE03', 102); INSERT INTO WORKS_ON VALUES (7, 'RNSECE01', 103); INSERT INTO WORKS_ON VALUES (5, 'RNSACC01', 104); INSERT INTO WORKS_ON VALUES (6, 'RNSACC01', 104); INSERT INTO WORKS_ON VALUES (4, 'RNSISE01', 106); INSERT INTO WORKS_ON VALUES (4, 'RNSISE01', 106); INSERT INTO WORKS_ON VALUES (10, 'RNSIT01', 107);

SELECT * FROM EMPLOYEE;

N22	FNAME	LNAME	ADDRESS	2	SALARY	SUPERSSN	DNO
RNSECE 01	JOHN	SCOTT	BANGALORE	М	450000		3
RNSCSE01	JAMES	SMITH	BANGALORE	М	500000	RNSCSE 02	5
RNSCSE 02	HEARN	BAKER	BANGALORE	М	700000	RNSCSE 03	5
RNSCSE 03	EDWARD	SCOTT	MYSORE	М	500000	RNSCSE 04	5
RNSCSE04	PAUAN	HEGDE	MANGALORE	М	650000	RNSCSE 05	5
RNSCSE 05	GIRISH	MALYA	MYSORE	М	450000	RNSCSE 06	5
RNSCSE 06	NEHA	SN	BANGALORE	F	800000		5
RNSACC01	AHANA	К	MANGALORE	F	350000	RNSACC02	1
RNSACC02	SANTHOSH	KUMAR	MANGALORE	М	300000		1
RNSISE01	VEENA	М	MYSORE	М	600000		4
RNSIT01	NAGESH	HR	BANGALORE	М	500000		2

SELECT * FROM DEPARTMENT;

SQL> SELECT * FROM DEPARTMENT;

DNO	DNAME	MGRSTARTD	MGRSSN
1	ACCOUNTS	01-JAN-01	RNSACC 02
2	IT	01-AUG-16	RNSIT01
3	ECE	01-JUN-08	RNSECE 01
4	ISE	01-AUG-15	RNSISE01
5	CSE	01-JUN-02	RNSCSE 05

SELECT * FROM DLOCATION;

DLOC	DNO
BANGALORE	1
BANGALORE	2
BANGALORE	3
MANGALORE	- I
	4
MANGALORE	5

SELECT * FROM PROJECT;

PN0	PNAME	PLOCATION	DNO
100	101	BANGALORE	5
101	CLOUD	BANGALORE	5
102	BIGDATA	BANGALORE	5
103	SENSORS	BANGALORE	3
104	BANK MANAGEMENT	BANGALORE	1
105	SALARY MANAGEMENT	BANGALORE	1
106	OPENSTACK	BANGALORE	4
107	SMART CITY	BANGALORE	2

SELECT * FROM WORKS_ON;

HOURS	SSN	PN0
4	RNSCSE 01	100
6	RNSCSE01	101
8	RNSCSE 01	102
10	RNSCSE 02	100
3	RNSCSE 04	100
4	RNSCSE 05	101
5	RNSCSE 06	102
6	RNSCSE 03	102
7	RNSECE 01	103
5	RNSACC01	104
6	RNSACC 02	105
4	RNSISE01	106
10	RNSIT01	107

Oueries:

1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.

(SELECT DISTINCT P.PNO

FROM PROJECT P, DEPARTMENT D, EMPLOYEE E

WHERE E.DNO=D.DNO

AND D.MGRSSN=E.SSN

AND E.LNAME='SCOTT')

UNION

(SELECT DISTINCT P1.PNO

FROM PROJECT P1, WORKS_ON W, EMPLOYEE E1

WHERE P1.PNO=W.PNO

AND E1.SSN=W.SSN

AND E1.LNAME='SCOTT');

2. Show the resulting salaries if every employee working on the 'IoT' project is given a10 percentraise.

SELECT E.FNAME, E.LNAME, 1.1*E.SALARY AS INCR_SAL FROM EMPLOYEE E, WORKS_ON W, PROJECT P WHERE E.SSN=W.SSN AND W.PNO=P.PNO AND P.PNAME='IOT';

FNAME	LNAME	INCR_SAL
JAMES	SMITH	550000
HEARN	BAKER	770000
PAVAN	HEGDE	715000

3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in thisdepartment

SELECT SUM (E.SALARY), MAX (E.SALARY), MIN (E.SALARY), AVG
(E.SALARY)
FROM EMPLOYEE E, DEPARTMENT D
WHERE E.DNO=D.DNO
AND D.DNAME='ACCOUNTS';
SUM(E.SALARY) MAX(E.SALARY) MIN(E.SALARY) AUG(E.SALARY)

650000 350000 300000 325000

4. Retrieve the name of each employee who works on all the projects Controlled by department number 5 (use NOT EXISTSoperator).

SELECT E.FNAME, E.LNAME FROM EMPLOYEE E WHERE NOT EXISTS((SELECT PNO FROM PROJECT

WHERE DNO='5')
MINUS (SELECT PNO
FROM WORKS_ON
WHERE E.SSN=SSN));

FNAME	LNAME
JAMES	SMITH

5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.

SELECT D.DNO, COUNT (*)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DNO=E.DNO
AND E.SALARY>600000
AND D.DNO IN (SELECT E1.DNO
FROM EMPLOYEE E1
GROUP BY E1.DNO
HAVING COUNT (*)>5)
GROUP BY D.DNO;

DNO	•	COUNI(*)
5		3

Content Beyond Syllabus

Question 1: INSURANCE DATABASE

```
Table creation:
```

```
SQL> create table PERSON (
      driver_idvarchar2(10) primary key,
      name varchar2(20),
      address varchar2(30)
SQL> create table CAR (
      regno varchar2(10) primary key,
      model varchar2(20),
      year number(4)
      );
SQL> create table ACCIDENT (
      report_no number(4) primary key,
      dt date,
      location varchar2(20)
      );
SQL> create table OWNS (
      driver_idreferences PERSON(driver_id),
      regnoreferences CAR(regno)
      );
SQL> create table PARTICIPATED (
      driver_idreferences PERSON(driver_id),
      regnoreferences CAR(regno),
      report_numberreferences ACCIDENT(report_no),
      damage_amount number(7,2)
```

Table description:

);

SQL>desc person;

Name	Null?	Туре	
driver_id	not null	varchar2(10)	
name		varchar2(20)	
address		varchar2(30)	

SQL>desc car;

Name	Null?	Type
regno model year	not null	varchar2(10) varchar2(20) number(4)

SQL>desc accident;

Name	Null?	Type
report_no	not null	number(4)
dt location		date varchar2(20)
iocanon		varchar 2(20)

SQL>desc owns;

Name	Null?	Type
driver_id		varchar2(10)
regno		varchar2(10)

SQL>desc participated;

Name	Null?	Type
driver_idvarchar2(10)		
regno		varchar2(10)
report_number		number(4)

Insert command: Table: PERSON

damage_amount

insert into PERSON values ('mca10','shivu','kottur');

Table: CAR

insert into CAR values ('ab10', 'maruti', 1995);

Table: ACCIDENT

insert into ACCIDENT values (1234,'11-MAR-96','bellary');

number(7,2)

Table: OWNS

insert into OWNS values ('mca10', 'ab10');

Table: PARTICIPATED

insert into PARTICIPATED values ('mca10', 'ab10', 1234, 10000);

Select command:

SQL> select * from person;

3	
	S

mca10shivukottur

mca15harshadurga

mca20anuragraipur

mca25sachinbelgaum

mca30shaahidassam

SQL> select * from accident;

REPORT_NO	DT	LOCATION
1234	11-MAR-96	bellary
1244	23-NOV-98	davangere
1245	21-JUN-99	tumkur
1377	17-JUL-02	hubli
1543	15-FEB-03	belgaum
1388	15-OCT-01	mysore

SQL> select * from car;

REGNO MODEL YEAR	REGNO	MODEL	YEAR
------------------	-------	-------	------

ab10maruti 1995

ab15honda 1998 ab20 ford 1999 ab25 lancer 2000 ab30honda 1996

SQL> select * from owns;

DRIVER_ID REGNO

mca10	ab10
mca15	ab15
mca20	ab20
mca25	ab25
mca30	ab30

SQL> select * from participated;

DRIVER_ID	REGNO	REPORT_NUMBER	DAMAGE_AMOUNT
mca10	ab10	1234	10000
mca15	ab15	1244	15000
mca20	ab20	1377	8000
mca25	ab25	1245	25000
mca30	ab30	1543	10000

QUERIES:

QUERY 1.1: Find the total number of people who owned car that were involved in accident in 2002.

SQL> select count(distinct p.driver_id) **from** participated p,accident a, owns o **where** p.regno=o.regno **and** a.report_no=p.report_number **and** dt **between** '01-jan-2002' **and** '31-dec-2002';

COUNT(DISTINCTP.DRIVER_ID)	

QUERY 1.2: Find the number of accidents in which car belonging to a specific model were involved.

SQL> select count(regno) **from** participated **where** regno **in** (**select** regno **From** car **where** model='honda');

COUNT(REGNO)

Question 2: DATABASE FOR BANKING ENTERPRISE

Table creation:

```
create table BRANCH (
branch_name varchar2(10) primary key,
branch_city varchar2(10),
assets number(10,2)
);
create table ACCOUNT (
accno number(8) primary key,
branch_name references BRANCH(branch_name),
balance number(10,3)
);
create table CUSTOMERB (
cust_name varchar2(15) primary key,
cust_street varchar2(10),
cust_city varchar2(10)
);
create table DEPOSITOR (
customer name references CUSTOMERB(cust name),
accno references ACCOUNT(accno) ON DELETE CASCADE
);
create table LOAN (
loan_no number(8) primary key,
branch_name references BRANCH(branch_name),
amount number (10,3)
);
create table BORROWER (
cust_name varchar2(15) references CUSTOMERB(cust_name),
loan_no number(8) references LOAN(loan_no)
);
```

Table description:

SQL> desc branch;

Name	Null?	Туре
branch_name branch_city	not null	varchar2(10) varchar2(10)
assets		number(10,2)

SQL> desc account;

Name	Null?	Type
accno branch_name balance	not null	number(8) varchar2(10) number(10,3)

SQL> desc depositor;

Name	Null?	Type	
customer_name		varchar2(15)	
accno		number(8)	

SQL> desc customerb;

Name	Null?	Type	
cust_name	not null	varchar2(15)	
cust_street		varchar2(10)	
cust_city		varchar2(10)	

SQL> desc loan;

Name	Null?	Type	
loan_no	not null	` '	
branch_name		varchar2(10)	
amount		number(10,3)

SQL> desc borrower;

Name	Null?	Type	
cust_name		varchar2(15)	
loan_no		number(8)	

Insert command:

Table: BRANCH

SQL> insert into BRANCH **values** ('main','belgaum',33000)

SQL> insert into BRANCH **values** ('sub1','tumkur',20000)

SQL> insert into BRANCH **values** ('sub2', 'tumkur', 50000)

SQL> insert into BRANCH **values** ('sub3','hubli',45000)

SQL> insert into BRANCH **values** ('sub4', 'dharwad', 60000)

```
Table: ACCOUNT
SQL> insert into ACCOUNT values (111, 'main', 12000)
SQL> insert into ACCOUNT values (222, 'sub1', 15000)
SQL> insert into ACCOUNT values (333, 'sub2', 10000)
SQL> insert into ACCOUNT values (444,'sub3',4500)
SQL> insert into ACCOUNT values (555, 'sub4', 9000)
SQL> insert into ACCOUNT values (666, 'main', 11000)
SQL> insert into ACCOUNT values(777,'sub2',11000)
Table: DEPOSITOR
SQL> insert into DEPOSITOR values ('john',111);
SQL> insert into DEPOSITOR values ('jack',444);
SQL> insert into DEPOSITOR values ('jill',555);
SQL> insert into DEPOSITOR values ('john',666);
SQL> insert into DEPOSITOR values ('john',777);
Table: CUSTOMERB
SQL> insert into CUSTOMERB values ('johny',10,'kottur');
SQL> insert into CUSTOMERB values ('dude',15,'durga');
SQL> insert into CUSTOMERB values ('john',20,'tumkur');
SQL> insert into CUSTOMERB values ('jack',25,'belgaum');
SQL> insert into CUSTOMERB values ('jill',30,'tumkur');
Table: LOAN
SQL> insert into LOAN values (1,'main',12000);
SQL> insert into LOAN values (2,'sub1',10000);
SOL> insert into LOAN values (3,'sub1',15000):
SQL> insert into LOAN values (4,'sub2',10000);
SQL> insert into LOAN values (5,'sub3',8000);
Table: BORROWER
SQL> insert into BORROWER values ('john',1);
SQL> insert into BORROWER values ('dude',2);
SQL> insert into BORROWER values ('dude',3);
SQL> insert into BORROWER values ('jill',4);
SQL> insert into BORROWER values ('jack',5);
Select command:
SQL> select * from branch;
```

BRANCH_NAME BRANCH_CITY ASSETS

main	belgaum	33000
sub1	tumkur	20000
sub2	tumkur	50000

sub3	hubli	45000
sub4	dharwad	60000

SQL> select * from account;

ACCNC	BRANCH_NAME	BALANCE
111	sub1	12000
222	sub1	15000
333	sub2	10000
444	sub3	4500
555	sub1	9000
666	main	11000
777	sub2	11000

SQL> select * from customerb;

CUST_NAME	CUST_STREET	CUST_CITY
johny	10	kottur
dude	15	durga
john	20	tumkur
jack	25	belgaum
jill	30	tumkur

SQL> select * from depositor;

CUSTOMER_NAME	ACCNO
john	111
jack	444
jill	555
john	666
john	777

SQL> select * from loan;

LOAN_NO	BRANCH_NAME	AMOUNT
1	main	12000
2	sub1	10000
3	sub1	15000
4	sub2	10000
5	sub3	8000

SQL> select * from borrower;

CUST_NAME	LOAN_NO
john	1
dude	2
dude	3
jill	4
jack	5
QUERIES:	

Query 1: Find all the customers who have at least two accounts at the Main branch.

Query 2: Demonstrate how you delete all account tuples at every branch located in a specific city.

Before the deletion:

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS

main	belgaum	33000
sub1	tumkur	20000
sub2	tumkur	50000
sub3	hubli	45000
sub4	dharwad	60000

SQL> select * from account;

ACCNO BRANCH_NAME BALANCE 111 sub1 12000 222 sub1 15000 333 sub2 10000 444 sub3 4500 555 9000 sub1 666 main 11000 777 sub2 11000

SQL> delete account **where** branch_name **in** (**select** branch_name **from** branch **where** branch_city='&branch_city');

1 row deleted.

SQL> select * from account;

ACCNO	BRANCH_NAME	BALANCE
111	sub1	12000
222	sub1	15000
333	sub2	10000
555	sub1	9000
666	main	11000
777	sub2	11000

