LAST NAME:			FIRST NAME:		CIRCLE:				
					Li 2:30pm	Li 5:30pm Z	Zweck 10am	Zweck 1pm	
1	/12 2	/12	3 /15	4 /12	5 /12	6 /12	2 T /7	75	

MATH 2415 (Fall 2017) Exam II, Nov 3rd

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points.

(1) [12 pts] Find the equation of the tangent plane to the surface $z = x^2 + xy + 3y^2$ at the point (1, 1, 5).

((2)	[12]	pts	Let	f	(x,y)	=	x^2y

(a) Find the maximum rate of change of the function f at the point (2,1).

(b) In which direction does this maximum rate of change occur?

(c) Find the directional derivative of f at the point (2,1) in the direction of the vector $\mathbf{i} + \mathbf{j}$.

(3) [15 pts] Suppose that z = f(x, y) is a function such that

(a,b)	f(a,b)	$\nabla f(a,b)$	$f_{xx}(a,b)$	$f_{xy}(a,b)$	$f_{yy}(a,b)$
(1,2)	0	(0,0)	5	3	1
(7, -2)	0	(0,1)	5	3	1
(3,4)	7	(0,0)	-5	-3	-2
(5, -3)	68	(0,0)	8	-4	2
(2,1)	35	(0,0)	5	3	2

Identify any local maxima, minima, and saddle points of f. Explain the reasons for your answers.

(4) [12 pts] Let D be the domain the the xy-plane that is bounded by the curves $y=x^2$ and y=2-x. Calculate $\iint_D x \, dA$.

(5) [12 pts] Use the method of Lagrange Multipliers to find the absolute maximum and absolute minimum of the function $f(x,y) = x^2 + (y-2)^2$ on the ellipse $x^2 + 2y^2 = 18$. [Hint: There are 4 critical points.]

(6) [12 pts] Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = (u \cos v, u \sin v, u)$$
 $u \ge 0, \quad 0 \le v \le 2\pi.$

(a) Find an equation of the form F(x, y, z) = 0 for this surface by eliminating u and v from the equations for x, y, and z above.

(b) Sketch the surface, together with the curve on the surface where u=2 and the curve where $v=\pi/4$.