Introduction to Mathematical Programming (Mixed Integer Linear Programming)

Algorithmics, 186.814, VU 4.0

Daniel Obszelka

Algorithms and Complexity Group Institute of Logic and Computation TU Wien

WS 2019/20

Topics of this part

- Model-based Algorithms
- Linear Programming
 - Introduction
 - Geometry
 - Algorithms
 - Duality Theory
- (Mixed) Integer Linear Programming
 - Formulations
 - Relaxations/Bounds
 - Branch-and-Bound

(MIXED) INTEGER LINEAR PROGRAMMING

Motivation

- model and solve real-world optimization problems
- generally applicable for a wide variety of problems
- (mostly) no specialized algorithms necessary
- here we concentrate on applying the tool of integer linear programming

(detailed proofs of underlying theorems ⇒ literature)

Literature

Main resource:

■ Laurence A. Wolsey, *Integer Programming*, 1998, Wiley Further literature:

- Alexander Schrijver, Theory of Linear and Integer Programming, 1998, Wiley
- George L. Nemhauser, Laurence A. Wolsey, Integer and Combinatorial Optimization, 1999, Wiley

(Mixed) Integer Linear Programming FORMULATIONS

Real-World Problems

```
scheduling (trains, airline crews, timetables, ...)
```

- planning (production, electricity generation, ...)
- telecommunications (network design, routing, ...)
- transportation (dial-a-ride, vehicle routing, ...)
- cutting and packing
-

Linear Program (LP)

$$egin{array}{ll} \max & oldsymbol{cx} & oldsymbol{cx} & oldsymbol{Ax} \leq oldsymbol{b} & & & & & \\ & oldsymbol{x} \geq oldsymbol{0}. & & & & & & \\ & oldsymbol{x} \geq oldsymbol{0}. & & & & & & \\ & & oldsymbol{c} & & & & & & \\ & & oldsymbol{x} \geq oldsymbol{0}. & & & & & \\ & & & oldsymbol{c} & & & & \\ & & & & oldsymbol{c} & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

 $oldsymbol{c}$. . . n-dimensional row vector

 $oldsymbol{x}$... n-dimensional column vector

 $m{A}$... $m \times n$ matrix

 $oldsymbol{b}$. . . m-dimensional column vector

Mixed Integer (Linear) Program (MI(L)P)

$$egin{array}{ll} \max & c_1x_1+c_2x_2 \ & A_1x_1+A_2x_2 \leq b \ & x_1 \geq 0 \ & x_2 \geq 0 ext{ and integer.} \end{array}$$

```
c_1 \ldots n-dimensional row vector x_1 \ldots n-dimensional column vector c_2 \ldots p-dimensional row vector x_2 \ldots p-dimensional column vector A_1 \ldots m \times n matrix A_2 \ldots m \times p matrix b \ldots m-dimensional column vector
```

Integer Program (IP)

 $oldsymbol{c}$. . . n-dimensional row vector

 $oldsymbol{x}$... n-dimensional column vector

 $m{A}$... $m \times n$ matrix

 $oldsymbol{b}$. . . m-dimensional column vector

Binary Integer Program (BIP)

$$\max \quad cx$$

$$Ax \le b$$

$$x \in \{0,1\}^n.$$

 $c \dots n$ -dimensional row vector

 $oldsymbol{x}$... n-dimensional column vector

 $m{A}$... $m \times n$ matrix

 $oldsymbol{b}$. . . m-dimensional column vector

Combinatorial Optimization Problem (COP)

Given:

- lacksquare a finite set $N = \{1, \dots, n\}$
- weights $c_j, \forall j \in N$
- lacksquare a set $\mathcal F$ of feasible subsets of N

The problem of finding a minimum weight feasible subset

$$\underset{S \in \mathcal{F}}{\operatorname{arg\,min}} \left\{ \sum_{j \in S} c_j \right\}$$

is a combinatorial optimization problem.

Many COPs can be formulated as (B)IPs.

How to solve IPs?

Figure: Rounding optimal LP solution? ⇒ Does not work!

Formulating (B)IPs

- 1. define necessary (and maybe additional) variables
- 2. define a set of constraints using the variables: feasible points ⇔ feasible solutions of the problem
- 3. define objective function using the variables

Example

Variables for a COP can be defined as the n-dimensional incidence vector $\mathbf{x}^S \in \{0,1\}^n$ of subset $S \subseteq N$:

- $\mathbf{x}_{j}^{S} = 1 \text{ if } j \in S$
- $x_j^S = 0 \text{ if } j \notin S$

The Assignment Problem

Definition

Given:

- \blacksquare n jobs, n persons
- cost c_{ij} for assigning person i to job j (suitability of persons for jobs)

The goal is to find an assignment with minimum cost.

The Assignment Problem - BIP

- 1. Variables: $x_{ij} \in \{0,1\}, \ \forall i,j \in \{1,\ldots,n\}$ $x_{ij} = 1$ if person i is assigned to job j, $x_{ij} = 0$ otherwise
- 2. Constraints:
 - Each person i is assigned exactly one job:

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad \forall i \in \{1, \dots, n\}$$

- Each job *j* is done by exactly one person:

$$\sum_{i=1}^{n} x_{ij} = 1, \qquad \forall j \in \{1, \dots, n\}$$

3. Objective function: minimize the total assignment costs

$$\min \quad \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}.$$

The 0-1 Knapsack Problem

Definition

Given:

- \blacksquare *n* possible projects
- lacksquare cost a_j for project j
- lacksquare estimated profit c_j for selecting project j
- available budget B

The goal is to find a subset of projects that maximizes the total profit while not exceeding the budget.

The 0-1 Knapsack Problem - BIP

- 1. Variables: $x_j \in \{0, 1\}, \ \forall j \in \{1, \dots, n\},\ x_j = 1 \text{ if project } j \text{ is selected, } x_j = 0 \text{ otherwise}$
- 2. Constraint: the budget must not be exceeded

$$\sum_{j=1}^{n} a_j x_j \le B$$

3. Objective function: maximize the total profit

$$\max \quad \sum_{j=1}^{n} c_j x_j$$

The Set Covering Problem

Definition

Given:

- lacktriangleright n potential locations for fire stations
- $lue{}$ cost c_j for building a fire station at location j
- lacktriangleright m regions that have to be serviced in case of fire
- sets S_j of regions that can be serviced within 5 minutes by a fire station at location j

The goal is to find a set of locations for fire stations with minimal total building costs. Each region has to be reachable by at least one fire station within 5 minutes.

The Set Covering Problem - BIP

- 1. Variables: $x_j \in \{0,1\}, \ \forall j \in \{1,\dots,n\}$ $x_j = 1$ if fire station is built at location $j, \ x_j = 0$ otherwise
- 2. Constraint: each region has to be reachable within 5 minutes by at least one fire station

$$\sum_{j=1}^{n} a_{ij} x_j \ge 1, \qquad \forall i \in \{1, \dots, m\}$$

$$(a_{ij} = 1 \text{ if } i \in S_j \text{ and } a_{ij} = 0 \text{ if } i \notin S_j)$$

3. Objective function: minimize the total building costs

$$\min \quad \sum_{j=1}^{n} c_j x_j$$

The Combinatorial Explosion

We can solve combinatorial optimization problems by simple enumeration

- ⇒ number of possible (feasible and infeasible) solutions:
 - assignment problem: n! (permutations)
 - knapsack problem: 2^n (power set)
 - set covering problem: 2^n (power set)
- ⇒ we need a more intelligent algorithm!

MIPs - Modeling of Fixed Costs

Non-linear fixed charge cost function:

$$h(x) = \begin{cases} 0 & \text{if } x = 0, \\ f + px & \text{if } 0 < x \le C, \ f > 0, \ p > 0. \end{cases}$$

Question: How can we model such functions?

- 1. Additional variable $y \in \{0, 1\}$:
 - y = 0 if x = 0
 - y = 1 if x > 0
- 2. Additional constraint: $x \leq Cy$
- 3. Objective function: min fy + px

Note: x=0,y=1 is feasible in model but infeasible for h(x). Nevertheless, this case cannot occur in an optimal solution.

Uncapacitated Facility Location (UFL)

Definition

Given:

- set $N = \{1, \dots, n\}$ of potential depots
- fixed cost f_j for opening depot j
- set $M = \{1, \dots, m\}$ of clients
- transportation cost c_{ij} for delivering the total demand of client i from depot j

The problem is to decide which depots to open and which depots serve each client. The sum of fixed depot opening and transportation costs should be minimized.

Uncapacitated Facility Location - MIP

1. Variables:

- $x_{ij} \ge 0$, $\forall i \in M, j \in N$: fraction of demand of client i satisfied by depot j
- $y_j \in \{0,1\}, \ \forall j \in N \colon y_j = 1 \text{ if depot } j \text{ is opened, else } y_j = 0$

2. Constraints:

- The demand of client *i* has to be satisfied:

$$\sum_{i \in N} x_{ij} = 1, \qquad \forall i \in M$$

- Linking x and y variables (m is an upper bound):

$$\sum_{i \in M} x_{ij} \le m y_j, \qquad \forall j \in N$$

3. Objective function: minimize the sum of all costs

$$\min \quad \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$$

Uncapacitated Lot Sizing (ULS)

Definition

Given:

- lacktriangle fixed cost f_t for producing in period t
- lacktriangle unit production cost p_t in period t
- lacktriangle unit storage cost h_t in period t
- lacktriangle demand d_t in period t

The goal is to find a production plan for a single product for the next n time periods. The sum of fixed, production, and storage costs should be minimized.

Uncapacitated Lot Sizing - MIP

1. (Obvious) variables:

- $x_t \ge 0, \ \forall t \in \{1, \dots, n\}$: amount produced in period t
- $s_t \ge 0$, $\forall t \in \{0, \dots, n\}$: stock at the end of period t $(s_0 = s_n = 0)$
- $y_t \in \{0,1\}, \ \forall t \in \{1,\dots,n\}$: $y_t = 1$ if production occurs in period t, else $y_t = 0$
- Objective function: minimize the sum of production, storage, and fixed costs

$$\min \quad \sum_{t=1}^{n} p_t x_t + \sum_{t=1}^{n} h_t s_t + \sum_{t=1}^{n} f_t y_t$$

Uncapacitated Lot Sizing - MIP

3. Constraints:

- Flow conservation in each period t:

$$s_{t-1} + x_t - d_t = s_t, \quad \forall t \in \{1, \dots, n\}$$

Note: $s_t = \sum_{i=1}^t x_i - \sum_{i=1}^t d_i$

- Linking x and y variables:

$$x_t \le M_t y_t, \quad \forall t \in \{1, \dots, n\}$$

Question: How large must M_t be? Is there an upper bound on x_t ?

$$x_t \le \left(\sum_{i=t}^n d_i\right) y_t, \quad \forall t \in \{1, \dots, n\}$$

Discrete Alternatives or Disjunctions

How can we model disjunctions? (e.g., in scheduling problems)

- $x \in \mathbb{R}^n$, $0 \le x \le u$
- Either $a^1x \le b_1$ or $a^2x \le b_2$

For instance that way:

- 1. Binary variables $y_1, y_2 \in \{0, 1\}$
- 2. Constraints:

$$a^{i}x - b_{i} \le M(1 - y_{i}),$$
 $i \in \{1, 2\}$
 $y_{1} + y_{2} = 1$

$$M \ge \max_{i \in \{1,2\}} \{ \boldsymbol{a}^{i} \boldsymbol{x} - b_i \mid \mathbf{0} \le \boldsymbol{x} \le \boldsymbol{u} \}$$

Formulation

Definition

A subset of \mathbb{R}^n described by a finite set of linear constraints $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is a *polyhedron*.

Definition

A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$.

Are there more equivalent formulations for set X?

Figure: Dots denote integer values. Big dots denote set \boldsymbol{X} of feasible solutions.

Equivalent Formulation for UFL

- Variables stay the same:
 - $x_{ij} \ge 0$, $\forall i \in M, j \in N$: fraction of demand of client i satisfied by depot j
 - $y_j \in \{0,1\}, \ \forall j \in N \colon y_j = 1 \ \text{if depot} \ j \ \text{is opened, else} \ y_j = 0$
- Constraints

$$\sum_{i \in M} x_{ij} \le m y_j, \qquad \forall j \in N$$

are replaced by

$$x_{ij} \le y_j, \qquad \forall i \in M, j \in N$$

Question: Is this equivalent formulation better or worse?

Extended Formulation for ULS

1. Variables:

- $w_{it} \ge 0, \ \forall i, t \in \{1, \dots, n\}, i \le t$: amount produced in period i to satisfy demand in period t
- $y_t \in \{0,1\}, \ \forall t \in \{1,\ldots,n\}$: $y_t = 1$ if production occurs in period t, else $y_t = 0$

2. Constraints:

- Demand satisfaction in period t:

$$\sum_{i=1}^{t} w_{it} = d_t, \qquad \forall t \in \{1, \dots, n\}$$

- Variable upper bounds by linking w and y variables:

$$w_{it} < d_t y_i, \qquad \forall i, t \in \{1, \dots, n\}, i < t$$

Extended Formulation for ULS

3. Objective function is modified for simplicity (no storage costs)

$$\min \quad \sum_{t=1}^{n} p_t x_t + \sum_{t=1}^{n} f_t y_t$$

 \Rightarrow variables x_t are expressed by w_{it} :

$$x_t = \sum_{i=t}^n w_{ti}$$

Comparing Formulations

Figure: All formulations are feasible for set X but which is the "best"?

Ideal Formulation

Definition

A formulation P for a set $X \subseteq \mathbb{R}^n$ is *ideal* iff $P = \operatorname{conv}(X)$.

Consequence:

IP: $\{\max cx \mid x \in X\}$ can be replaced by

 $\mathsf{LP} \colon \{ \max \boldsymbol{c} \boldsymbol{x} \mid \boldsymbol{x} \in \mathrm{conv}(X) \}$

- \Rightarrow optimal solution is extreme point of conv(X)
- \Rightarrow IP can be solved in polynomial time.

Question: Does the last statement have a hook?

Problem:

In general $\operatorname{conv}(X)$ has no simple characterization and exponentially many constraints.

Good Formulations

 $X \subseteq \operatorname{conv}(X) \subseteq P$, for all formulations P, suggests:

Definition

Given a set $X\subseteq \mathbb{R}^n$ and formulations P_1 and P_2 for X, P_1 is a better formulation than P_2 if $P_1\subset P_2$.

Four different cases:

- 1. $P_1 = P_2 : \boldsymbol{x} \in P_1 \Leftrightarrow \boldsymbol{x} \in P_2$
- 2. $P_1 \subset P_2 : (\boldsymbol{x} \in P_1 \Rightarrow \boldsymbol{x} \in P_2) \land (\exists \boldsymbol{x} \in P_2 : \boldsymbol{x} \notin P_1)$
- 3. $P_1 \supset P_2 : (\boldsymbol{x} \in P_2 \Rightarrow \boldsymbol{x} \in P_1) \land (\exists \boldsymbol{x} \in P_1 : \boldsymbol{x} \notin P_2)$
- **4.** $P_1 \neq P_2 : (\exists x \in P_1 : x \notin P_2) \land (\exists x \in P_2 : x \notin P_1)$

Comparing Formulations for UFL

Let P_1 be the formulation with constraints

$$\sum_{i \in M} x_{ij} \le m y_j, \qquad \forall j \in N, \tag{1}$$

and P_2 the one with

$$x_{ij} \le y_j, \qquad \forall i \in M, j \in N.$$
 (2)

If $(x, y) \in P_2$ then by summing constraints (2) over $i \in M$ we see that $(x, y) \in P_1 \Rightarrow P_2 \subseteq P_1$.

Suppose, m=n and each depot serves exactly one client: $x_{ij}=1$ if i=j, and $x_{ij}=0$ otherwise, $y_j=1/m$, lies in $P_1\setminus P_2$. $\Rightarrow P_2\subset P_1$ $\Rightarrow P_2$ is better than P_1 .

Remark: y_j need not be integers here because P_1 and P_2 are polyhedra.

Projections

The two formulations for ULS use different sets of variables. How can we compare them?

Let $P \subseteq \mathbb{R}^n$ be a formulation for integer set $X \subseteq \mathbb{Z}^n$

$$\min\{\boldsymbol{c}'\boldsymbol{x}\mid\boldsymbol{x}\in P\cap\mathbb{Z}^n\}$$

and a second extended formulation $Q \subseteq \mathbb{R}^n \times \mathbb{R}^p$

$$\min\{\boldsymbol{c}'\boldsymbol{x}\mid (\boldsymbol{x},\boldsymbol{w})\in Q\cap (\mathbb{Z}^n\times\mathbb{R}^p)\}.$$

Definition

The *projection* of polyhedron $Q \subseteq \mathbb{R}^n \times \mathbb{R}^p$ onto the subspace $P \subseteq \mathbb{R}^n$, denoted $\operatorname{proj}_x Q$, is defined as:

$$\operatorname{proj}_{\boldsymbol{x}} Q = \{ \boldsymbol{x} \in \mathbb{R}^n \mid (\boldsymbol{x}, \boldsymbol{w}) \in Q \text{ for some } \boldsymbol{w} \in \mathbb{R}^p \}.$$

Comparing Formulations for ULS

Let P_1 be the formulation with constraints

$$s_{t-1} + x_t - d_t = s_t,$$
 $\forall t \in \{1, \dots, n\},$
 $x_t \leq M_t y_t,$ $\forall t \in \{1, \dots, n\},$

and $P_2 = \operatorname{proj}_{x,s,y} Q_2$, where Q_2 is defined by

$$\sum_{i=1}^{t} w_{it} = d_t, \qquad \forall t \in \{1, \dots, n\},$$

$$w_{it} \leq d_t y_i, \qquad \forall i, t \in \{1, \dots, n\}, \ i \leq t,$$

$$x_t = \sum_{i=1}^{n} w_{ti}, \qquad \forall t \in \{1, \dots, n\}.$$

Comparing Formulations for ULS

- It can be shown that P_2 is an ideal formulation. ⇒ ULS can be solved in polynomial time by solving the LP of P_2 .
- From above, $P_2 \subseteq P_1$. To show $P_2 \subset P_1$: E.g., the point $x_t = d_t, \ s_t = 0, \ y_t = d_t/M, \ \forall t \in \{1, \dots, n\}$ lies in $P_1 \setminus P_2$.
- $\Rightarrow P_2$ is better than P_1 (and even ideal).

The Traveling Salesman Problem (TSP)

Definition

Given:

- set $N = \{1, \dots, n\}$ of cities
- lacktriangle cost c_{ij} for traveling from city i to city j

The goal is to find a tour with minimum traveling cost. Each city has to be visited exactly once and the salesman has to return to his starting city at the end.

The Traveling Salesman Problem - BIP

- 1. Variables: $x_{ij} \in \{0,1\}, \ \forall i,j \in N, \ i \neq j$ $x_{ij} = \begin{cases} 1 & \text{if the salesman travels directly from city } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$
- 2. Constraints:
 - The salesman leaves each city i exactly once:

$$\sum_{j \in N, j \neq i} x_{ij} = 1, \qquad \forall i \in N$$

- The salesman arrives at each city j exactly once:

$$\sum_{i \in N, i \neq j} x_{ij} = 1, \qquad \forall j \in N$$

3. Objective function: minimize the total traveling costs

$$\min \quad \sum_{i \in N} \sum_{j \in N, j \neq i} c_{ij} x_{ij}$$

The Traveling Salesman Problem - BIP

- Problem: subtours are allowed!
- Additional constraints to eliminate these subtours are required!

Sequential Formulation

- introduced by Miller, Tucker and Zemlin (1960)
- lacktriangleright additional (continuous) variables u_i , are used to indicate the order in which the cities are visited
- additional constraints:

$$u_i + x_{ij} \le u_j + M \cdot (1 - x_{ij}), \quad \forall i, j \in N \setminus \{1\}, \ i \ne j,$$

 $1 \le u_i \le n - 1, \quad \forall i \in N \setminus \{1\}$

■ M has to inactivate a constraint if $x_{ij} = 0 \Rightarrow M = n-2$

Single-Commodity Flow Formulation

- introduced by Gavish and Graves (1978)
- lacksquare additional (continuous) variables f_{ij} represent the amount of "flow" on arc (i,j)
- lacksquare additional constraints: node 1 sends out n-1 "goods" and any other node consumes exactly one

$$\sum_{\substack{j,j\neq 1}} f_{1j} = n - 1$$

$$\sum_{\substack{i,i\neq j}} f_{ij} - \sum_{\substack{k,k\neq j}} f_{jk} = 1, \qquad \forall j \in N \setminus \{1\},$$

$$0 \le f_{ij} \le (n - 1) \cdot x_{ij}, \qquad \forall i, j \in N, \ i \ne j$$

Multi-Commodity Flow Formulation

- introduced by Wong (1980)
- \blacksquare additional (continuous) variables f_{ij}^k represent the amount of "flow" on arc (i,j) for commodity k
- lacktriangle additional constraints: node 1 sends out n-1 different commodities, each one dedicated to a specific node

$$\begin{split} \sum_{j,j\neq 1} f_{1j}^k - \sum_{j,j\neq 1} f_{j1}^k &= 1, & \forall k \in N \setminus \{1\}, \\ \sum_{i,i\neq k} f_{ik}^k &= 1, & \forall k \in N \setminus \{1\}, \\ \sum_{i,i\neq j} f_{ij}^k - \sum_{i,i\neq j} f_{ji}^k &= 0, & \forall j,k \in N \setminus \{1\}, \ j \neq k, \\ 0 &\leq f_{ij}^k \leq x_{ij}, & \forall i,j \in N, \ i \neq j, \ \forall k \in N \setminus \{1\} \end{split}$$

TSP Formulations

Let P_{MTZ} , P_{SCF} , and P_{MCF} be the polyhedra of the Miller-Tucker-Zemlin formulation, the single-commodity flow formulation, and the multi-commodity flow formulation, respectively. Then:

$$P_{\text{MCF}} \subset P_{\text{SCF}} \subset P_{\text{MTZ}}$$
.

So MCF is the strongest formulation. Unfortunately, the size of MCF is significantly larger than that of the other two formulations:

Formulation	#variables	#constraints
MTZ SCF MCF	n(n-1) + (n-1) n(n-1) + n(n-1) $n(n-1) + n(n-1)^2$	$n^2 + 1$ $n^2 + 2n$ $n^3 - n^2 + 2n$

(Mixed) Integer Linear Programming Relaxations and Bounds

Optimality Condition

Given IP or COP

$$\max\{c(\boldsymbol{x}) \mid \boldsymbol{x} \in X \subseteq \mathbb{Z}^n\}$$

Definition

A solution x^* with $z^*=c(x^*)$ is optimal if there is a lower bound $\underline{z}\leq z^*$ and an upper bound $\overline{z}\geq z^*$, such that $\underline{z}=z^*=\overline{z}$.

An algorithm tries to find an increasing sequence of lower bounds and a decreasing sequence of upper bounds

$$\underline{z_1} < \underline{z_2} < \dots < \underline{z_l} \le z^* \le \overline{z_u} < \dots < \overline{z_2} < \overline{z_1}$$

and can stop when

$$\overline{z_u} - \underline{z_l} \le \epsilon \ (\ge 0).$$

But how can we derive lower and upper bounds?

Primal Bounds

Definition

Lower bounds in maximization problems and upper bounds in minimization problems are called primal bounds.

Every feasible solution $x \in X$ is a primal (in our case lower) bound $z = c(x) \le z^*$.

 \Rightarrow Use (meta-)heuristics to derive feasible solutions and (hopefully) good primal bounds.

(see lecture Heuristic Optimization Techniques in winter term)

Dual Bounds

Definition

Upper bounds in maximization problems and lower bounds in minimization problems are called dual bounds.

In most cases dual bounds are obtained by relaxations: a difficult (maximization) IP is replaced by a simpler optimization problem with an optimal value at least as large as z^* , e.g., by removing some constraints.

Relaxations

Definition

A problem RP $z^R = \max\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in Y \subseteq \mathbb{R}^n\}$ is a relaxation of IP $z^* = \max\{c(\boldsymbol{x}) \mid \boldsymbol{x} \in X \subseteq \mathbb{R}^n\}$ if:

- 1. $X \subseteq Y$, and
- 2. $f(\mathbf{x}) \ge c(\mathbf{x}), \ \forall \mathbf{x} \in X$.

Theorem

If RP is a relaxation of IP, then $z^R \ge z^*$.

Proof.

If ${m x}^*$ is an optimal solution of IP, ${m x}^* \in X \subseteq Y$, and $z^* = c({m x}^*) \le f({m x}^*)$. As ${m x}^* \in Y, f({m x}^*)$ is a lower bound on z^R , and so $z^* \le f({m x}^*) \le z^R$.

Linear Programming Relaxations

Definition

Given an IP $\max\{cx\mid x\in P\cap\mathbb{Z}^n\}$ with formulation P, the LP relaxation is the LP $z^{LP}=\max\{cx\mid x\in P\}$.

Since $P \cap \mathbb{Z}^n \subseteq P$ and the objective function is not changed, the LP relaxation is a relaxation.

Better formulations give tighter (dual) bounds:

Theorem

Let P_1 and P_2 be two formulations for IP $\max\{\boldsymbol{cx}\mid \boldsymbol{x}\in X\subseteq\mathbb{Z}^n\}$, and P_1 is better than P_2 , i.e. $P_1\subset P_2$. If $z_i^{LP}=\max\{\boldsymbol{cx}\mid \boldsymbol{x}\in P_i\},\ i\in\{1,2\}$, then $z_1^{LP}\leq z_2^{LP},\ \forall \boldsymbol{c}\in\mathbb{R}^n$.

Optimality by Relaxations

In some cases relaxations can prove optimality:

Theorem

- 1. If relaxation RP is infeasible, the original IP is infeasible.
- 2. Let x^* be an optimal solution to RP. If $x^* \in X$ and $f(x^*) = c(x^*)$, then x^* is optimal for IP.

Proof.

- 1. As RP is infeasible, $Y = \emptyset$. Since $X \subseteq Y$ holds for a relaxation, $X = \emptyset$.
- 2. As $x^* \in X$, $z^* \ge c(x^*) = f(x^*) = z^R$. Since $z^* \le z^R$, we get $c(x^*) = z^* = z^R$.

Combinatorial Relaxations

Definition

If the relaxation is a COP, we speak of a combinatorial relaxation.

Preferably, these COPs are easy problems which can be solved efficiently, e.g.:

When considering the TSP on a digraph D=(V,A), feasible tours T correspond to assignments containing no subtours \Rightarrow

$$z^{TSP} = \min_{T \subseteq A} \left\{ \sum_{(i,j) \in T} c_{ij} \mid T \text{ is a tour} \right\} \ge$$

$$z^{ASS} = \min_{T \subseteq A} \left\{ \sum_{(i,j) \in T} c_{ij} \mid T \text{ is an assignment} \right\}$$

Combinatorial Relaxation for Symmetric TSP

Given an undirected graph G = (V, E) with edge costs c_e , $\forall e \in E$, we search for an undirected tour with minimum costs.

- Every tour consists of two edges incident to node 1, and a path through nodes $\{2, \ldots, n\}$.
- A path is a special case of a tree.

Definition

A 1-tree is a subgraph containing two edges adjacent to node 1, and the edges of a tree on nodes $\{2,\ldots,n\}$.

Every tour is a 1-tree \Rightarrow

$$z^{STSP} = \min_{T \subseteq E} \left\{ \sum_{e \in T} c_e \mid T \text{ is a tour} \right\} \ge$$

$$z^{1-tree} = \min_{T \subseteq E} \left\{ \sum_{e \in T} c_e \mid T \text{ is a 1-tree} \right\}$$

Combinatorial Relaxation for the Knapsack Problem

Given the set

$$X = \{ \boldsymbol{x} \in \mathbb{Z}_+^n : \sum_{j=1}^n a_j x_j \le B \}$$

a relaxation of set X is

$$X' = \{ \boldsymbol{x} \in \mathbb{Z}_+^n : \sum_{j=1}^n \lfloor a_j \rfloor x_j \le \lfloor B \rfloor \}.$$

Question: Why is this relaxation easier to solve?

There are efficient pseudo-polynomial dynamic programming algorithms for instances with integer weights.

Duality

- LP duality provides a standard way to obtain dual bounds.
- Note: Any dual feasible solution provides a dual bound, but a relaxation must be solved to optimality to get a dual bound.

Theorem

Given the IP $z^* = \max\{cx \mid Ax \leq b, x \in \mathbb{Z}_+^n\}$ and the associated dual problem DIP $w^* = \min\{ub \mid uA \geq c, u \in \mathbb{Z}_+^n\}$. Let LP and DLP be the according linear programming relaxations, respectively. Then, IP and DP form a weak dual pair. Strong duality does not hold in general.

Proof.

Since LP and DLP are relaxations, $z^* \leq z^{LP}$ and $w^{DLP} \leq w^*$. Because of strong LP duality, $z^{LP} = w^{DLP}$ holds. Thus, $z^* < z^{LP} = w^{DLP} < w^*$.

Optimality by Duality

Similar to relaxations, dual problems can sometimes prove optimality:

Theorem

Let $IP \max\{c(x) \mid x \in X\}$ and $DIP \min\{\omega(u) \mid u \in U\}$ be a weak dual pair.

- 1. If DIP is unbounded, IP is infeasible.
- 2. If $x^* \in X$ and $u^* \in U$ satisfy $c(x^*) = \omega(u^*)$, then x^* is optimal for IP and u^* is optimal for DIP.

(Mixed) Integer Linear Programming BRANCH-AND-BOUND

Divide and Conquer

Given a problem $z = \max\{cx \mid x \in S\}$. Use divide and conquer approach:

- 1. break the problem into smaller and easier problems
- 2. solve all smaller problems
- 3. put information together to solve original problem

Theorem

Let $S = S_1 \cup \cdots \cup S_K$ be a decomposition of S into smaller sets, and let $z^k = \max\{cx \mid x \in S_k\}, \ \forall k \in \{1, \ldots, K\}.$ Then $z = \max_k z^k$.

A divide and conquer approach can be represented by an enumeration tree.

Binary Branching

E.g. $S \subseteq \{0,1\}^3$:

A leaf $S_{i_1i_2i_3}$ is non-empty if and only if $x = (i_1, i_2, i_3) \in S$. The leaves directly correspond to points in $\{0, 1\}^3$.

Multiway Branching

E.g., asymmetric TSP with n=4:

Leaves correspond to the (n-1)! feasible tours. Here we used problem-specific branching.

Implicit Enumeration

Complete enumeration is computationally impossible for |x|>20 for many problems. \Rightarrow

- How can we benefit from bound information to prune complete subtrees without explicitely enumerating them?
- How can we put together bound information?

$\mathsf{Theorem}$

Let $S = S_1 \cup \cdots \cup S_K$ be a decomposition of S into smaller sets, and let $z^k = \max\{cx \mid x \in S_k\}, \ \forall k \in \{1, \ldots, K\}, \ \overline{z}^k$ be an upper bound and \underline{z}^k be a lower bound on z^k . Then $\overline{z} = \max_k \overline{z}^k$ is an upper bound and $\underline{z} = \max_k \underline{z}^k$ a lower bound on z.

Note: For minimization problems $\overline{z} = \min_k \overline{z}^k$ and $\underline{z} = \min_k \underline{z}^k$.

Prune by Optimality

Given a maximization problem and a decomposition of S into two sets $S_1,\ S_2$, and lower and upper bounds on these problems:

- $\overline{z} = \max_k \overline{z}^k = \max\{20, 25\} = 25$ and $\underline{z} = \max_k \underline{z}^k = \max\{20, 15\} = 20$
- $\overline{z}^1 = \underline{z}^1 = z^1 \Rightarrow \text{problem } z^1 \text{ is solved.}$

In general, if $z^t = \max\{cx \mid x \in S_t\}$ is solved, branch S_t can be pruned.

Prune by Bound

- $\overline{z} = \max_k \overline{z}^k = \max\{20, 26\} = 26 \text{ and}$ $\underline{z} = \max_k \underline{z}^k = \max\{18, 21\} = 21$
- $\underline{z} = 21$ and $\overline{z}^1 = 20 \Rightarrow$ no optimal solution can lie in S_1 .

In general, if $\overline{z}^t \leq \underline{z}$, branch S_t can be pruned.

Prune by Infeasibility

- $\overline{z} = \max_k \overline{z}^k = \max\{26\} = 26 \text{ and }$ $\underline{z} = \max_k \underline{z}^k = \max\{21\} = 21$
- $S_1 = \emptyset \Rightarrow z^1$ is infeasible.

In general, if $S_t = \emptyset$, branch S_t can be pruned.

No Pruning Possible

$$\overline{z} = \max_k \overline{z}^k = \max\{24, 37\} = 37 \text{ and }$$
$$\underline{z} = \max_k \underline{z}^k = \max\{13\} = 13$$

Here, no pruning is possible \Rightarrow both subproblems have to be examined further.

Open Questions

The implementation of an implicit enumeration algorithm seems quite easy, but:

- What relaxation or dual problem should be used to provide dual bounds?
 - Should we use a weak bound which can be calculated quickly or a stronger bound which takes more time to obtain?
- How should we separate a set *S* into smaller sets?

 Should we use binary or multiway branching? Should the separation rule be fixed or obtained dynamically depending on bounds and solutions?
- In what order should we examine the open subproblems? FIFO, LIFO, or something else?

LP-based Branch-and-Bound

- Most common way to solve (M)IPs
- LP relaxation used as dual (upper) bound
- Binary branching by splitting set S on fractional variables: if x_j is integer and $\overline{x}_j = x_j^{LP} \notin \mathbb{Z}$ then

$$S_1 = S \cap \{x \mid x_j \le \lfloor \overline{x}_j \rfloor \},$$

$$S_2 = S \cap \{x \mid x_j \ge \lceil \overline{x}_j \rceil \},$$

- $\Rightarrow S_1 \cup S_2 = S, \ S_1 \cap S_2 = \emptyset, \ \boldsymbol{x}^{LP} \notin LP(S_1), \ \boldsymbol{x}^{LP} \notin LP(S_2)$ $\Rightarrow \max\{\overline{z}^1, \overline{z}^2\} \leq \overline{z} \Rightarrow \text{ the upper bound monotonically decreases.}$
- Updating the incumbent solution (best primal bound): if $x^{t,LP} \in S$ (feasible for original problem) $\Rightarrow \underline{z} = \max\{\underline{z}, z^t\} \Rightarrow \text{prune branch } S_t \text{ by optimality}$

Algorithm 1: LP-based Branch-and-Bound

```
1 problem list L : \max\{cx \mid x \in S\}
 2 z=-\infty, incumbent x^*=NULL
 3 while L \neq \emptyset do
        choose set S_i and remove it from L
        solve \overline{z}^i = LP(S_i)
 5
        oldsymbol{x}^{i,LP} = \mathsf{optimal} \; \mathsf{LP} \; \mathsf{solution}
 6
        if S_i = \emptyset then prune S_i by infeasibility
        else if \overline{z}^i < z then prune S_i by bound
 8
        else if x^{i,LP} \in S then
                                                               /* \overline{z}^i = z^i = z^i */
 9
             if z^i > z then
10
                   update primal bound z = z^i
11
                  update incumbent oldsymbol{x}^* = oldsymbol{x}^{i,LP}
12
              prune S_i by optimality
13
        else L = L \cup \{S_{i,1}, S_{i,2}\}
14
```

How to Choose a Branching Variable

Typically, there is a set C of integer variables that are fractional in the current LP solution. Which one should be chosen to branch on?

- \blacksquare Random variable x_i
- Most fractional variable x_i :

$$i = \underset{j \in C}{\operatorname{arg\,max\,min}} \{f_j, 1 - f_j\} \quad \text{ with } f_j = x_j^{LP} - \lfloor x_j^{LP} \rfloor$$

- Strong branching: spend more time on the decision
 - 1. try each $x_j \in C$ as branching variable, branch up (U) and down (D) and resolve all LPs $\Rightarrow z_i^U, z_i^D, \ \forall x_j \in C$
 - 2. choose actual branching variable x_i with largest decrease of dual bound

$$i = \operatorname*{arg\,min}_{j \in C} \max\{z_j^U, z_j^D\}$$

How to Choose a Subproblem

- Random choice
- Depth-First-Search strategy at first goes down the enumeration tree to quickly find primal bounds ⇒
 - mostly, pruning is only possible with a strong primal bound
 - the LP relaxation is easier to resolve by just adding one simple constraint (beneficial when using simplex algorithms)
- Best-Node-First strategy chooses problem i with best dual (largest upper) bound $\overline{z}^i = \max_t \overline{z}^t \Rightarrow$
 - the total number of examined problems is minimized
 - a problem with $\overline{z}^t < z$ is never separated (which would be pruned later)

In practice, a combination of the last two strategies is used.

Additional Features in Practice

Commercial branch-and-bound systems (e.g., IBM ILOG CPLEX, Gurobi) often include:

- a preprocessor to simplify the formulations by reducing the number of constraints and variables
- different simplex variants and interior point methods chosen automatically or by hand
- various branching and problem selection options
- user-defined priorities on integer variables to control branching
- various primal heuristics based on LP solutions to obtain good primal bounds
- user-defined cutoff values

If All Else Fails

If the problem is too hard, such that

- no feasible solution has been found, or
- the gap between upper and lower bound is very large, or
- the system runs out of memory due to a very large list of not yet examined problems,

then

- find better primal bounds by external (meta-)heuristics, or
- find better dual bounds by improving (tightening) the formulation for the problem, or use other dual bounds, e.g., Lagrangian relaxation.

(Mixed) Integer Linear Programming Outlook

Advanced Topics

- dealing with exponentially many constraints
- dealing with exponentially many variables
- decomposition approaches
- special problem classes
- (strong) valid inequalities
-
- ⇒ VU Mathematical Programming