HOCHSCHULE ALBSTADT-SIGMARINGEN

STUDIENGANG TECHNISCHE INFORMATIK

Praktikum Elektrotechnik

Versuch 3

Grundlagen Messtechnik

Inhaltsverzeichnis

1	Ohmsches Gesetz								
	1.1	Bestätigen Sie den	Zusammenhang $R = U/I$ (Ohmsche Gesetz)	3					
		1.1.1 Messaufgab	en	3					
		1.1.2 Auswertung	g	4					
2	Eige	enschaften von Mes	sgeräten	5					
	2.1	Rechenaufgaben un	nd Erklärungen	5					
		2.1.1 Spannungsn	nesser	5					
		2.1.2 Strommesse	er (Amperemeter)	6					
		2.1.3 Spannungsri	ichtige Messung	6					
		2.1.4 Aufgabe: .		7					
		2.1.5 Stromrichtig	ge Messung	7					
	2.2	Spannungsrichtiges	Messen bei Strom- Spannungs- Messung	7					
		2.2.1 Messaufgab	en	8					
		2.2.2 Auswertung	5	8					
	2.3	Stromrichtiges Mes	ssen bei gleichzeitiger Strom- Spannungs- Messung	9					
		2.3.1 Messaufgab	en	9					
		2.3.2 Auswertung	g	10					
	2.4	Einfluss des Messge	eräteinnenwiederstandes auf die Messgenauigkeit	10					
		2.4.1 Messaufgab	en	11					
		2.4.2 Auswertung	5	11					
	2.5	Kurvenformfehler b	oei Messgeräten	12					
		2.5.1 Messaufgab	en	12					
		2.5.2 Auswertung	g	13					
3	Ken	nwerte harmonische	er Wechselgrößen	14					
	3.1	Rechenaufgaben .	- 	14					
		3.1.1 Aufgabe 1:		14					
	3.2			14					
		3.2.1 Messaufgab	en	15					
		3.2.2 Auswertung	g	15					
	3.3	Speisung eines kapa	azitiven Verbrauchers mit einer Sinusspannung	16					
		3.3.1 Messaufgab	en	16					
		3.3.2 Auswertung	g	17					
	3.4	Bestimmen der Grö	öße eines Kondensators anhand der Auf- bzw. Entladekurve	17					
		3.4.1 Messaufgab	en	18					
		3.4.2 Auswertung	r	18					

1 Ohmsches Gesetz

1.1 Bestätigen Sie den Zusammenhang R = U/I (Ohmsche Gesetz)

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R = 47 \Omega$
- 1 Multimeter Typ M2-H
- 1 Multimeter Typ B1020

1.1.1 Messaufgaben

Messaufgabe M1

Aufgabe: Nehmen Sie zwei Messreihen für $R=47\,\Omega$ und $R=1\,\mathrm{k}\Omega$ zur Bestimmung des Zusammenhanges $R=\frac{U}{I}$ mit dem Messgerät M2-H auf.

Durchführung: Schaltung aufbauen. Die Spannung U durch Einstellung der Versorgungsspannung U_V in Schritten von z.B. 1 V erhöhen und die Messwerte U und I protokollieren.

Ergebnisse:

Tabelle 1.1: Messwertetabelle zur Messaufgabe 1.1.M1

	47Ω			$1\mathrm{k}\Omega$	
<i>U</i> [V]	<i>I</i> [mA]	$\frac{U}{I}$ $\left[\frac{V}{A}\right]$	U [V]	<i>I</i> [mA]	$\frac{U}{I}$ $\left[\frac{V}{A}\right]$

1.1.2 Auswertung

Aufgabe 1:

Stellen Sie die Messreihen für I = f(U) und R = konstant aus Messaufgabe 1 graphisch dar. Ermitteln Sie daraus für jeweils 2 Kurvenpunkte den Proportionalitätsfaktor m. Geben Sie die Funktionsverläufe in der Form von $I = m \cdot U$ an.

Aufgabe 2:

Wie ist der Proportionalitätsfaktor zu interpretieren?

2 Eigenschaften von Messgeräten

2.1 Rechenaufgaben und Erklärungen

2.1.1 Spannungsmesser

Mit einem **Multimeter**, einem der einfachsten elektrischen Messgeräte, können i.d.R. mehrere elektrische Größen gemessen werden. Gleichspannung (DC), Gleichstrom, Wechselspannung (AC), Wechselstrom und Widerstand.

ldealer Spannungsmesser Ein idealer Spannungsmesser zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist unendlich hoch. Dadurch: $I_V = 0$

Realer Spannungsmesser Ein realer Spannungsmesser zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist R_{iV} .

Aufgabe: Wie groß ist der Innenwiderstand eines Voltmeters, wenn in das Voltmeter ein Strom von $I_V = 1 \,\mu\text{A}$ fließt und ein Wert von 1 V angezeigt wird?

2.1.2 Strommesser (Amperemeter)

ldealer Strommesser Ein Idealer Strommesser zeigt genau den Wert I_A an. Der Innenwiderstand des Messgerätes ist null.

Realer Strommesser Ein realer Strommesser zeigt genau den Wert I_A an. Der Innenwiderstand des Messgeräts ist R_{iA} .

Aufgabe: Wie groß ist der Innenwiderstand eines Amperemeters, wenn über dem Amperemeter eine Spannung von $U_A = 100 \,\text{mV}$ abfällt und ein Wert von 50 mA angezeigt wird?

2.1.3 Spannungsrichtige Messung

!!!! Zeichnung !!!!

Messfehler Die Spannung U_L an der Last wird mit dem Spannungsmesser korrekt gemessen und angezeigt. Dagegen zeigt der Strommesser nicht den Strom I_L in die Last an, sondern

$$I_A = I_L + I_V$$

Der zusätzliche Strom IV kann aus dem angezeigten Wert U_L und aus R_{iV} bestimmt werden, womit auf den eigentlich interessierenden Strom I_L zurückgerechnet werden kann.

2.1.4 Aufgabe:

Das Netzteil hat einen Innenwiderstand $R_i=1\,\Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA}=100\,\Omega$ und $R_{iV}=1\,\mathrm{M}\Omega$. Die angezeigten Messwerte sind $U_L=4,95\,\mathrm{V}$ und $I_A=500\,\mathrm{\mu}A$. Berechnen Sie I_L , R_L und U_0 .

2.1.5 Stromrichtige Messung

!!!! Zeichnung !!!!

Messfehler Der Strom I_L durch die Last wird mit dem Strommesser korrekt gemessen und angezeigt. Dagegen zeigt der Spannungsmesser nicht die korrekte Spannung U_L an der Last an, sondern

$$U_V = U_L + U_A$$

Die zusätzliche Spannung U_A kann aus dem angezeigten Wert I_L und aus R_{iA} bestimmt werden, womit die eigentlich interessierende Spannung U_L berechnet werden kann.

Aufgabe: Das Netzteil hat einen Innenwiderstand $R_i = 1 \Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA} = 1 \Omega$ und $R_{iV} = 1 M\Omega$. Die angezeigten Messwerte sind $U_L = 4.8 \text{ V}$ und $I_L = 100 \,\mu\text{A}$. Berechnen Sie U_L , R_L und U_0 .

2.2 Spannungsrichtiges Messen bei Strom- Spannungs- Messung

Messaufbau:

- 1 Widerstand $R_1 = 47 \Omega$
- 1 Widerstand $R_2 = 100 \,\Omega$
- 1 Multimeter Typ M2-H
- 1 Multimeter Typ B1020

2.2.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen und protokollieren Sie die Spannungswerte U_{X1} und U_{X2} , sowie die Stromwerte I_{X1} und I_{X2} bei Spannungsmessung an den Messpunkten X1 und X2.

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen.

Ergebnisse:

Tabelle 2.1: Messwertetabelle zur Messaufgabe 2.2.M1

$U_{X1}[V]$	
$U_{X2}[{ m V}]$	
$I_{X1}[\mathrm{mA}]$	
$I_{X2}[\mathrm{mA}]$	

2.2.2 Auswertung

Aufgabe 1:

An welchem Messpunkt wird bezogen auf den Widerstand R_2 spannungsrichtig gemessen?

Aufgabe 2:

Berechnen Sie den Innenwiderstand R_I des Multimeters M2-H im Strommessbereich 60 mA anhand der Messwerte.

!!!! Zeichnung !!!!

2.3 Stromrichtiges Messen bei gleichzeitiger Strom- Spannungs-Messung

Messaufbau:

- 1 Widerstand $R_1 = 10 \,\mathrm{k}\Omega$
- 1 Widerstand $R_2 = 33 \,\mathrm{k}\Omega$
- 1 Spannungsmessgerät Typ M2-H
- 1 Strommessgerät Typ B1020

2.3.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen und protokollieren Sie die Spannungswerte U_{X1} und U_{X2} , sowie die Stromwerte I_{X1} und I_{X2} bei Spannungsmessung an den Messpunkten X1 und X2.

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen

Ergebnisse:

Tabelle 2.2: Messwertetabelle zur Messaufgabe 2.3.M1

$U_{X1}[V]$	
$U_{X2}[{ m V}]$	
$I_{X1}[\mathrm{mA}]$	
$I_{X2}[\mathrm{mA}]$	

2.3.2 Auswertung

Aufgabe 1:

An welchem Messpunkt wird bezogen auf den Widerstand R_2 stromrichtig gemessen?

Aufgabe 2:

Berechnen Sie den Innenwiderstand \mathcal{R}_{UI} des Multimeters M2-H anhand der Messwerte.

$$U_X = I_{X1} = I_{X2} =$$
!!!! Zeichnung !!!!

2.4 Einfluss des Messgeräteinnenwiederstandes auf die Messgenauigkeit

Messaufbau:

- 1 Widerstand $R_1 = 100 \,\mathrm{k}\Omega$
- 1 Widerstand $R_2 = 100 \,\mathrm{k}\Omega$
- 1 Messgerät Typ M2-H

2.4.1 Messaufgaben

2 Eigenschaften von Messgeräten

Messaufgabe M1

Aufgabe: Zeichnen Sie eine Messschaltung nach obiger Schaltung zur Spannungsmessung an R_2 . Stellen Sie den Spannungsmesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.3 für das Messgerät M2- H. Messen Sie die Spannung an R_2

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen

Ergebnisse:

 $U_2 =$

2.4.2 Auswertung

Aufgabe 1:

Erläutern Sie die Ergebnisse aus Messaufgabe 1. Berechnen Sie daraus den Innenwiderstand des Multimeters M2-H im verwendeten Messbereich.

Aufgabe 2:

Wie beeinflusst der Innenwiderstand des Spannung- Messgerätes das Messergebnis?

Aufgabe 3:

Zeichnen Sie eine Messschaltung zur Strommessung des Stromes durch R_2 (ohne Spannungsmessung). Stellen Sie den Strommesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.3. für das Messgerät M2-H.

Aufgabe 4:

Wie beeinflusst der Innenwiderstand des Strom- Messgerätes die Messung?

2.5 Kurvenformfehler bei Messgeräten

Messaufbau:

- 1 Widerstand $R = 1 \,\mathrm{k}\Omega$
- 1 Spannungsmessgerät Typ M2-H
- 1 Spannungsmessgerät Typ B1020
- 1 Oszillograph
- 1 Frequenzgenerator

2.5.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie die unten angegebenen Spannungssignale U(t) mit einem analogen und digitalen Messgerät jeweils im Gleich- und Wechselspannungsmessbereich.

Durchführung: Messchaltung aufbauen. Versorgungsspannung U(t) mit dem Netzteil (Kurve 1) bzw. dem Frequenzgenerator (Kurve 2 bis 4) einstellen. Messwerte in Tabelle eintragen.

Beachte: Nur immer mit einem Messgerät gleichzeitig messen.

Kurvenformen für U(t):

Tabelle 2.3: Spannungskurven für Messaufgabe 2.5 M1

Kurvenformen für U(t)

Kurvenform	U_{SS}	T
Gleichspannung: (vom Netzteil neh	men) U =	= Umax = 6V
Sinuswechselspannung	8V	$5 \mathrm{ms}$
Dreieckwechselspannung, symm.	8V	$5 \mathrm{ms}$
${\bf Rechteck we chsels pannung, symm.}$	8V	$5 \mathrm{ms}$

 $(U_{ss}, U_{pp} = U \text{ Spitze/Spitze oder } 2 * \hat{U})$

Ergebnisse:

Tabelle 2.4: Messwertetabelle zur Messaufgabe 2.3.M1

Messgerät	Messprinzip	Messbereich	Gleichspannung	Sinuskurve	Dreieck	Rechteck
М2-Н	Drehspul	6 V				
M2-H	Drehspul	$6\mathrm{V}{\sim}$				
B1020	Digital	6 V				
B1020	Digital	6 V∼				

2.5.2 Auswertung

Aufgabe 1:

Wie kommt der Formfaktor F für Sinusgrößen zustande (math. Herleitung)

Aufgabe 2:

Was messen Sie mit den Multimetern im Gleichspannungsbereich, was im Wechselspannungsbereich? Warum?

Aufgabe 3:

Wie kommen die Anzeigewerte für Dreieck- und Rechteckspannung zustande? (Rechnung)

Aufgabe 4:

Berechnen Sie aus den Anzeigewerten die tatsächlichen Effektivwerte für die obige Dreieckund Rechteckspannung. Geben Sie die Umrechnungsfaktoren an.

3 Kennwerte harmonischer Wechselgrößen

3.1 Rechenaufgaben

3.1.1 Aufgabe 1:

Eine sinusförmige Spannung U(t) mit $f_1 = 50\,\mathrm{Hz}$ hat den Scheitelwert $\hat{U} = 10\,\mathrm{V}$

- a) Beschreiben Sie die Funktion U(t)
- b) Wie groß ist U(t) bei $t_1 = 2 \,\text{ms}$ nach dem Nulldurchgang?
- c) Skizzieren Sie das einseitige Spektrum U(f)
- d) Wie groß wäre die Phase φ , wenn der Nulldurchgang bei $t_2=5\,\mathrm{ms}$ ist, wie lautet dann U(t)?

3.2 Speisung eines ohmschen Verbrauchers mit einer Sinusspannung

Messaufbau:

- 1 Widerstand $R_1 = 1 \,\mathrm{k}\Omega$
- 1 Widerstand $R_m = 100 \,\Omega$

3 Kennwerte harmonischer Wechselgrößen

3.2.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie mit dem Multimeter:

U =I =

 $U_m =$

Messen Sie mit dem Oszillograph den Phasenwinkel $\varphi(u, I)$ für 10 Augenblickwerte für U(t) und $I(t) = \frac{U_m(t)}{R}$

Durchführung: Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: Spannung $U_{SS} = 8 \text{ V}$, Periodendauer T = 10 ms

Ergebnisse:

Tabelle 3.1: Messwertetabelle zur Messaufgabe 3.2.M1

t	[ms]	U(t)	[V]	U_m	[mV]	$I(t) = \frac{U_m}{R_m}$	[mA]	P(t)	[mW]

3.2.2 Auswertung

Aufgabe 1:

Berechnen Sie zu den einzelnen Punkten die momentane Leistung $P(t) = U(t) \cdot I(t)$

Aufgabe 2:

Stellen Sie U(t), I(t) und P(t) graphisch dar. (In einer Zeichnung, verschieden farbig)

Aufgabe 3:

Was messen Sie mit den Strom- und Spannungsmessern im Wechselstrombereich? Welche Leistung können Sie daraus berechnen. (Multimeter benutzen)

Aufgabe 4:

Erläutern Sie die Begriffe Schein-, Blind- und Wirkleistung. P=?; Q=?; S=?

3.3 Speisung eines kapazitiven Verbrauchers mit einer Sinusspannung

Messaufbau:

- 1 Kondensator $C = 0.1 \,\mu\text{F}, 40 \,\text{V}$
- 1 Widerstand $R_M = 100 \,\Omega$

3.3.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie mit dem Multimeter:

U =

I =

 $U_m =$

Messen Sie mit dem Oszillograph den Phasenwinkel $\varphi(u, I)$ für 10 Augenblickwerte für U(t) und $I(t) = \frac{U_m(t)}{R}$

Durchführung: Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: Spannung $U_{SS} = 8 \text{ V}$, Periodendauer T = 10 ms

3 Kennwerte harmonischer Wechselgrößen

Ergebnisse:

Tabelle 3.2: Messwertetabelle zur Messaufgabe 3.3.M1

t[ms]	$oxed{U(t)[ext{V}]}$	$U_m[mV]$	$I(t) = \frac{U_m}{R_m} [\mathrm{mA}]$	ϕ [$^{\circ}$]	P(t)[mW]

3.3.2 Auswertung

Aufgabe 1:

Berechnen Sie zu den einzelnen Punkten die momentane Leistung $P(t) = U(t) \cdot I(t)$

Aufgabe 2:

Stellen Sie U(t), I(t) und P(t) graphisch dar. (In einer Zeichnung, verschieden farbig)

3.4 Bestimmen der Größe eines Kondensators anhand der Aufbzw. Entladekurve

Messaufbau:

- 1 Kondensator C = ?
- 1 Widerstand $R = 10 \,\mathrm{k}\Omega$

3.4.1 Messaufgaben

Messaufgabe M1

Durchführung: Schaltung aufbauen. Die Speisespannung u(t) am Frequenzgenerator einstellen:

 U_{ss} (Spitze/Spitze) = 4 V Periodendauer T = ?

Aufgabe: Bestimmen Sie die Ihrer Meinung nach beste Art (Sinus, Dreieck, Rechteck) und Größe der Frequenz (Hz, kHz, MHz), um eine gut sichtbare Auf- bzw. Entladekurve darzustellen und somit die Größe des Kondensators berechnen zu können. Geben Sie die gewählte Art an.

Ergebnisse:

Tabelle 3.3: Messwertetabelle zur Messaufgabe 3.4.M1

Art	f	t Aufladung	t Entladung

3.4.2 Auswertung

Aufgabe 1: Auf- und Entladekurve graphisch darstellen. Berechnen Sie aus den Messwerten die Größe des Kondensators. Mathematische Darstellung der Berechnung.