

THLR Contrôle (35 questions), Septembre 2016

		n et prénom, lisibles : Identifiant (de haut en bas) :
	Bil	10 01 102 03 04 05 06 07 08 09
	0	
2/2	répon restric de co pénal	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs ises justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus ctive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible rriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes isent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +36/1/xx+···+36/5/xx+.
	Q.2	Que vaut $L \cup L$?
2/2		$lackbox{10}{m} \ L \qquad \Box arepsilon \qquad \Box \{arepsilon\} \qquad \Box \emptyset$
	Q.3	Que vaut $L \cdot \{\varepsilon\}$?
2/2		\square 0 iii L \square $\{arepsilon\}$ \square $arepsilon$
	Q.4	Soit le langage $L = \{a, b\}^*$.
	2.1	
2/2		Suff(L) = Pref(L) \square Suff(L) \subseteq Pref(L) \square Suff(L) \cap Pref(L) = \emptyset \square Suff(L) \cup Pref(L) = \emptyset
	Q.5	Que vaut $Suff(\{ab,c\})$:
2/2		
	Q.6	Que vaut $\overline{\{a\}\{b\}^{\star}} \cap \{a\}^{\star}$
	Q.0	
-1/2		
	Q.7	Pour toute expression rationnelle e , on a $e^* \equiv (e^*)^*$.
2/2		vrai 🗆 faux
,	0.0	
0.10	Q.8	À quoi est équivalent Ø*?
2/2		\square 0 $arepsilon$ $arepsilon$ \square \square \square \square
	Q.9	Pour toutes expressions rationnelles e , f , simplifier $e^*(e+f)^*f^*$.
2/2		
	Q.10	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \implies L_1 = L_2$.
2/2		🎒 faux 🔲 vrai
	Q.11	
2/2	×.11	
212		(20+3)*3'
_		

	Q.17 Le	langage { Ctrl n [Alt n [Del n $\forall n \in \mathbb{N} : n < 242^{51} - 1$ } est	
2/2] non reconnaissable par automate fini 🏻 🏗 fini 🗀 rationnel 🗀 vide	
	Q.18 Qu	els langages ne vérifient pas le lemme de pompage?	
-1/2		Tous les langages non reconnus par DFA Certains langages reconnus par DFA Certains langages reconnus par DFA Certains langages non reconnus par DFA	
	Q.19 Si i	$L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :	
2/2	\Box L_1, L_2 sont rationnels \Box L_1 est rationnel \Box L_2 est rationnel \Box L_1, L_2 sont rationnels et $L_2 \subseteq L_1$		
		mbien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ eme lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):	
0/2		\boxtimes 2 ⁿ \Box $\frac{n(n+1)(n+2)(n+3)}{4}$ \Box 4 ⁿ \Box Il n'existe pas.	
	Q.21 Dé	terminiser cet automate: $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$	
2/2		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Q.22 & (Quelle(s) opération(s) préserve(nt) la rationnalité?	
2/2		Transpose Fact Sous – mot Pref Suff Aucune de ces réponses n'est correcte.	
	Q.23 & (Quelle(s) opération(s) préserve(nt) la rationnalité?	
0/2		 ☑ Union ☑ Différence symétrique ☑ Intersection ☑ Différence ☑ Complémentaire ☑ Aucune de ces réponses n'est correcte. 	
		t Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables sions rationnelles.	
2/2		Rec = Rat \square Rec $\not\subseteq$ Rat \square Rec \supseteq Rat \square Rec \subseteq Rat	
	Q.25 On	peut tester si un automate déterministe reconnaît un langage non vide.	
0/2	☐ Cet	te question n'a pas de sens Seulement si le langage n'est pas rationnel Non Oui	
		soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais arder la structure (test boîte noire), on peut savoir s'il	
0/2		accepte un langage infini ☐ a des transitions spontanées ☐ est déterministe ☐ accepte le mot vide	
	Q.27 On	peut tester si un automate nondéterministe reconnaît un langage non vide.	
0/2			

Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$? 2/2 **2** ☐ Il en existe plusieurs! □ 3 O.29 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$? -1/2☐ Il en existe plusieurs! **X** 2 26 52 Q.30 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage. □ vrai en temps constant ☐ faux en temps fini ☐ faux en temps infini 0/2vrai en temps fini Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$ \square P ne vérifie pas le lemme de pompage \square Il existe un DFA qui reconnaisse \mathcal{P} 0/2 \square Il existe un NFA qui reconnaisse \mathcal{P} \square Il existe un ε -NFA qui reconnaisse \mathcal{P} Quels états peuvent être fusionnés sans changer le langage reconnu. 1 avec 2 □ 0 avec 1 et avec 2 ☐ 2 avec 4 2/2 ☐ 1 avec 3 🧱 3 avec 4 ☐ Aucune de ces réponses n'est correcte. O.33 Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à : -1/2☐ (abc)* \Box $(a+b+c)^*$ O.34 Quel est le résultat de l'application de BMC en éliminant 1 1, puis 2, puis 3 et enfin 0? $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$ 0/2 $\Box (ab^* + (a+b)^*)(a+b)^+$ Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de _ 2/2

+36/5/34+

2/2

2/2

Q.36 Sur $\{a, b\}$, quel est le complémentaire de

Fin de l'épreuve.

57

+36/6/33+