Variables aléatoires réelles

Hypothèse. Soit une expérience aléatoire et Ω l'univers (l'ensemble des issues possibles).

Définition. Variable aléatoire réelle.

Une variable aléatoire réelle X est une fonction qui à chaque issue de Ω associe un nombre réel.

Définition. Variable discrète / continue.

Une variable aléatoire réelle *X* est dite **discrète** si elle ne peut prendre qu'un nombre fini ou dénombrable de valeurs. Elle est dite **continue** dans le cas contraire.

Hypothèse. Dans toute la suite, on considère *X* une variable aléatoire réelle discrète.

Notation. On note généralement $x_1, ..., x_n$ les valeurs que peut prendre X et $p_1, ..., p_n$ leurs probabilités respectives. On note aussi $P(X = x_i)$ la probabilité que X prenne la valeur x_i . (Donc $P(X = x_i) = p_i$)

Définition. Loi de probabilité d'une variable réelle discrète.

La loi de probabilité de X est la fonction qui à chaque valeur possible x_i associe sa probabilité p_i

Remarque. La loi de probabilité de *X* peut se présenter avec un tableau.

Remarque. La somme des probabilités de toutes les valeurs possibles est égale à 1. $p_1 + p_2 + \cdots + p_n = 1$.

Notation. $\{X = a\}$ désigne l'événement où X prend la valeur a.

Notation. $\{X \le a\}$ désigne l'événement où X prend une valeur $\le a$.

Par exemple si *X* prend les valeurs $\{1; 3; 5; 7; 9\}$, alors $\{X \le 4\} = \{X = 1\} \cup \{X = 3\}$ et $P(X \le 4) = p_1 + p_3$.

Définition. Espérance.

L'espérance de X est le réel E(X) défini par $E(X) = p_1x_1 + p_2x_2 + \cdots + p_nx_n$.

Interprétation de l'espérance : Si on répète un grand nombre de fois l'expérience aléatoire, la moyenne empirique des valeurs prises par X sera proche de son espérance théorique E(X).

Définition. Variance.

La variance de X est le réel défini par $V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$. Formule alternative plus pratique : $V(X) = p_1x_1^2 + p_2x_2^2 + \dots + p_nx_n^2 - E(X)^2$.

Définition. Ecart-type.

L'écart type de X est le réel $\sigma(X)$ défini par $\sigma(X) = \sqrt{V(X)}$.

Propriétés.

Pour tout réels a, b on a

$$E(aX + b) = aE(X) + b$$

$$V(aX + b) = a^{2}V(X)$$

$$\sigma(aX + b) = |a|\sigma(X)$$