# Введение в Машинное обучение

# Приложения на основе машинного обучения

**Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям то, что они Recommendation могут быть наиболее заинтересованы в Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection** 



**Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем Recommendation они могут быть наиболее заинтересованы Выяснение того, что что-то такое Classification Прогнозирование численного значения вещи Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection** 



## **Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем они могут быть наиболее заинтересованы Recommendation Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**



## **Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем они могут быть наиболее заинтересованы Recommendation Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**



## **Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем они могут быть наиболее заинтересованы Recommendation Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**



## **Business/ML Problem Description** Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям то, что они Recommendation могут быть наиболее заинтересованы в Выяснение того, что что-то такое Classification Прогнозирование численного значения вещи Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**



# Что такое машинное обучение?

## What is Data Science?

Wikipedia describes Data Science as:

"междисциплинарная область, которая использует научные методы, процессы, алгоритмы и системы для извлечения знаний и информации из структурированных и неструктурированных данных."



https://en.wikipedia.org/wiki/Data\_science

# What is Machine Learning?

Arthur Samuel (1959) – Computer Scientist

"Машинное обучение (ML) - это основная ветвь искусственного интеллекта, цель которой - дать компьютерам возможность учиться без явного программирования."



Data Rules

Classical Programming (Rules, if/else, etc.)

Data Answers

ML Algorithms

Trained ML Models (Rules)

Ответы

Новые аналогичные данные

# Why ML? Why now?

- Data
  - большие объемы данных, легко производить, собирать и хранить
- Compute
  - мощные вычислительные единицы, аппаратное ускорение, параллелизация вычислений
- Algorithms
  - Рамки ML, библиотеки, улучшенные и более эффективные методы



# **Machine Learning Lifecycle**



# Некоторые важные понятия ML

| ML                  | Statistics/Math/other                  | Simply Put                                                             |  |
|---------------------|----------------------------------------|------------------------------------------------------------------------|--|
| Label/Target/y      | Dependent/Response/Output Variable     | То, что вы пытаетесь предсказать                                       |  |
| Feature/x           | Independent/Explanatory/Input Variable | Данные, которые помогут вам делать<br>прогнозы                         |  |
| Feature Engineering | Transformation                         | Изменение данных, чтобы получить<br>больше значения                    |  |
| 1d, 2d, nd          | Dimensionality                         | Количество функций                                                     |  |
| Model Parameters    | Weights                                | Набор чисел, встроенных в модель,<br>который может предсказывать метки |  |
| Model Training      | Optimization                           | Поиск «лучшего» набора параметров<br>модели                            |  |

# Контролируемое и неконтролируемое обучение

# Supervised vs. Unsupervised Learning

| Business/ML Problem | Description                                                                   | _ |                          |                          |
|---------------------|-------------------------------------------------------------------------------|---|--------------------------|--------------------------|
| Ranking             | Помощь пользователям в поиске наиболее<br>релевантной вещи                    |   | Supervised               | Data is provided         |
| Recommendation      | Предоставление пользователям то, что они могут быть наиболее заинтересованы в |   | Learning                 | with the correct labels  |
| Classification      | Выяснение того, что что-то такое                                              |   |                          |                          |
| Regression          | Прогнозирование численного значения вещи                                      |   |                          |                          |
| Clustering          | Сложив подобные вещи вместе                                                   |   | Unsupervised<br>Learning | Data is provided without |
| Anomaly Detection   | Поиск необычных вещей                                                         |   |                          | labels                   |

# Supervised vs. Unsupervised Learning





# **Supervised Learning: Regression**





Label

|         | • '      |           | '   |
|---------|----------|-----------|-----|
| Price   | Bedrooms | SqFootage | Age |
| 280.000 | 3        | 3292      | 14  |
| 210.030 | 2        | 2465      | 6   |
|         |          | •••       | ••• |

Features

# **Supervised Learning: Classification**





Label

|      | '      |       | 1    |
|------|--------|-------|------|
| Star | Points | Edges | Size |
| 1    | 5      | 10<   | 750  |
| 0    | 0      | >9    | 150  |
|      |        | •••   | •••  |

Features

# **Unsupervised Learning: Clustering**



Features

Age Music Books

21 Classical Practical Magic

47 Jazz The Great Gatsby
... ...



# **Unsupervised Learning: Clustering**



Features

Age Music Books

21 Classical Practical Magic

47 Jazz The Great Gatsby
... ...



# Sample ML Problem

# **Food Delivery Problem**

- Джон любит заказывать еду онлайн для дома и работы.
- Он хочет предсказать, будет ли его заказ доставлен вовремя заранее.
- Он зарегистрировал свои предыдущие 45 заказов.

| BadWeather<br>Плохая<br>погода | RushHour<br>Час пик | MilesFromR<br>estaurant<br>Расстояние | UrbanAddress<br>Городской адрес | Late |
|--------------------------------|---------------------|---------------------------------------|---------------------------------|------|
| 10                             | 1                   | 5                                     | 1                               | 0    |
| 78                             | 0                   | 7                                     | 0                               | 1    |
| 14                             | 1                   | 2                                     | 1                               | 0    |
| 58                             | 1                   | 4.2                                   | 1                               | 1    |
| 82                             | 0                   | 7.8                                   | 0                               | 0    |
|                                |                     |                                       | •••                             |      |

Two classes: 1/late and 0/on time

# **Food Delivery Problem**

Метод К ближайших соседей (KNN) прогнозирует новые точки данных на основе К аналогичных примеров из набора данных (датасета).

К какому классу относятся? ?



**Bad Weather** 

# **Food Delivery Problem**

Выбрать К = 3

K Nearest Neighbors (KNN) predicts new data points based on K similar

records from a dataset.

К какому классу относятся?
Посмотрите на ближайшие К точки данных :

• Рассчитать расстояния от всех точек данных ?

- Найти ближайших соседей К
- Выберите класс большинства:



# **Food Delivery Problem Hands-on**

• Давайте использовать пример доставки еды Джона и обучить алгоритм К ближайших соседей для прогнозирования новой точки данных.



Плохая погода

# **Model Evaluation**

# **Regression Metrics**

| Metrics                           | Equations                                                                                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|
| Mean Squared Error<br>(MSE)       | $MSE = \frac{1}{n} \sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^2$                                            |
| Root Mean Squared<br>Error (RMSE) | $RMS = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$                                     |
| Mean Absolute Error<br>(MAE)      | $MAE = \frac{1}{n} \sum_{i=0}^{n}  y^{(i)} - \hat{y}^{(i)} $                                              |
| R Squared (R <sup>2</sup> )       | $R^{2} = 1 - \frac{\sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=0}^{n} (y^{(i)} - \bar{y})^{2}}$ |

 $y^{(i)}$ : Data values

$$\hat{y}^{(i)}$$
 : Predicted values  $\bar{y}$  : Mean value of data values,  $\bar{y} = \frac{1}{n} \sum_{i=0}^{n} y^{(i)}$  n : Number of data records



## **Classification Metrics**



# **Classification Metrics: Accuracy**



**Accuracy\***: Процент (коэффициент) случаев, классифицированных правильно

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Accuracy = \frac{18+15}{18+1+3+15} = 0.89$$

 $*(bad) 0 \le Accuracy \le 1 (good)$ 

# **Classification Metrics: Accuracy**



### Парадокс высокой точности:

Точность вводит в заблуждение при работе с несбалансированными набор данных - несколько True Positives, "редкий" класс, и многие True Negatives, "доминирующий" класс. Высокая точность даже тогда, когда мало истинных срабатываний.

$$Accuracy = \frac{2+88}{2+2+8+88} = 0.90$$

## **Classification Metrics: Precision**



Precision\*: Точность прогнозируемого положительного результата

$$Precision = \frac{TP}{TP + FP}$$

$$Precision = \frac{2}{2+2} = 0.50$$

 $*(bad) 0 \le Precision \le 1 (good)$ 

## **Classification Metrics: Recall**



Recall\*: Измеряет способность модели прогнозировать положительный результат

$$Recall = \frac{TP}{TP + FN}$$

$$Recall = \frac{2}{2+8} = 0.20$$

 $*(bad) 0 \le Recall \le 1 (good)$ 

## **Classification Metrics: F1 Score**



# Train – Validation – Test Datasets

# **Training – Validation – Test Sets**



Тестовый набор недоступен модели при обучении, он используется только обобщения (прогноза) модели на новых данных (данных, на которых она не обучалась)

## **Training – Validation – Test Sets**



|    | bad_weather | is_rush_hour | mile_distance | urban_address | iate |
|----|-------------|--------------|---------------|---------------|------|
| 0  | 0.0         | 1.0          | 5.00          | 1.0           | 0.0  |
| 1  | 1.0         | 0.0          | 7.00          | 0.0           | 1.0  |
| 2  | 0.0         | 1.0          | 2.00          | 1.0           | 0.0  |
| 3  | 1.0         | 1.0          | 4.20          | 1.0           | 0.0  |
| 4  | 0.0         | 0.0          | 7.80          | 0.0           | 1.0  |
| 5  | 1.0         | 0.0          | 3.90          | 1.0           | 0.0  |
| 6  | 0.0         | 1.0          | 4.00          | 1.0           | 0.0  |
| 7  | 1.0         | 1.0          | 2.00          | 0.0           | 0.0  |
| 8  | 0.0         | 0.0          | 3.50          | 0.0           | 1.0  |
| 9  | 1.0         | 0.0          | 2.60          | 1.0           | 0.0  |
| 10 | 0.0         | 0.0          | 4.10          | 0.0           | 1.0  |

Это хорошая практика, чтобы перетасовать набор данных до разделения, чтобы избежать смещения в результате наборов.

## K-fold Cross Validation (K = 5)



Average or combine validation performance metrics

K-fold Cross-Validation (CV) это метод проверки, чтобы увидеть, насколько хорошо обученная модель обобщается для независимого набора проверки.

Используйте К различные набора (фолда) для проверки модели, каждый раз обучая остальные примеры:

- Разделение датасета на независимые поднаборы (фолды) К.
- Повторите следующие действия К:
  - Зафиксируйте фолд К данных test set.
  - Тренируйте модель на других фолдах (поднаборах) train set.
  - Проверьте модель на validation set.
- Усредните (объедините) метрики качества модели.

# **Underfitting & Overfitting**

### **Model Evaluation: Underfitting**

**Underfitting**: Модель недостаточно хороша для описания взаимосвязи между входным данными  $(x_1, x_2)$  и выходом у: : {Class 1, Class 2}.



- Модель **слишком проста** для определения важных закономерностях в обучающих данных.
- Модель будет плохо работать на и на обучающих и на тестовых (новых) данных

### **Model Evaluation: Overfitting**

Overfitting: Модель запоминает или имитирует учебные данные и не может хорошо обобщить новые «невидимые» данные (тестовые данные).



- Модель **слишком сложна**.
- Модель запоминает шум (выбросы и аномалии) вместо лежащих в основе отношений (закономерностей).
- Модель будет хорошо работать на обучающих данных, и плохо на тестовых.

#### **Model Evaluation: Good Fit**

**Appropriate fitting**: Модель фиксирует общую взаимосвязь между входным данными  $(x_1, x_2)$  и выходом у: {Class 1, Class 2}.



- Модель не слишком простая, не слишком сложная.
- Модель находит основные закономерности в данных, а не шум.
- Модель будет достаточно хорошо работать и на обучающих и тестовых данных.

## **Overfitting Hands-on**

- Давайте еще раз возьмем пример доставки еды Джона.
- Мы обучаем модель К ближайших соседей и анализируем переобучение.



**Bad Weather** 

# **Exploratory Data Analysis (EDA)**

### **Exploratory Data Analysis**

• Exploratory Data Analysis (EDA) это подход к анализу набора данных и определении основных его характеристик.

- **Сбор (Collect)** или агрегирование данных
- Выполните первоначальные исследования, чтобы обнаружить закономерности, точечные аномалии, проверить гипотезу и проверить предположения
  - Краткая статистика
  - Graphical/visual представления (histograms, plots)
- Процесс данных для получения значимой информации

#### **Descriptive Statistics**

- Overall statis df.head(), df.shape, df.info()
  - Количество примеров (i.e. number of rows)
  - Количество функций (i.e. number of columns)
- Univariate statistics (single feature)
  - Статистика по численным характеристикам (mean, variance, histogram) -
  - Статистика по категоричным признакам (histograms, mode, most/least frequent values, percentage, number of unique values)
     df.describe(), hist(df[feature])
    - Histogram of value df[feature].value\_counts() or seaborn's distplot()
  - Target statistics
    - Class distributio df[target].value\_counts() or np.bincount(y)
- Multivariate statistics (more than one feature)
  - Correlation df.plot.scatter(feature1, feature2), df[[feature1, feature2]].corr()

### **Univariate Statistics: Histograms**

#### **Numerical** features:

```
import matplotlib.pyplot as plt

df[num_feature].plot.hist(bins = 7)
plt.show()
```



#### **Categorical** features:

import matplotlib.pyplot as plt

df[cat\_feature].value\_counts().plot.bar()
plt.show()



## **Correlations: Scatterplot**

• Correlations: Насколько сильно связаны пары функций.

df.plot.scatter(feature1,feature2)
plt.show()

Матрицы точечной диаграммы визуализируют взаимосвязь между признаками.





#### **Correlations: Correlation Matrix**

Correlations: How strongly pairs of features are related.

cols = [feature1, feature2]
df[cols].corr()

Матрицы корреляции измеряют **линейную** зависимость между признаками; легче читать; могут использовать тепловые карты.

|          | feature1  | feature2  |
|----------|-----------|-----------|
| feature1 | 1         | 0.0128493 |
| feature2 | 0.0128493 | 1         |

|          | feature1 | feature2 |  |
|----------|----------|----------|--|
| feature1 | 1        | 0.882106 |  |
| feature2 | 0.882106 | 1        |  |

Значения корреляции между -1 и 1: -1 означает идеальную отрицательную корреляцию, 1 означает идеальную положительную корреляцию, а 0 означает отсутствие связи между двумя переменными.

#### **Correlations**

- Высоко коррелированные (положительные или отрицательные) функции могут ухудшить производительность некоторых моделей ML, таких как линейные и логистические модели регрессии.
  - Выберите одну из коррелированных функций и отбросьте другую (ие).
  - Другие модели ML, такие как деревья решений, в основном невосприимчивы к этой проблеме.
- В то время как высоко target-correlated (положительные или отрицательные) функции могут повысить производительность линейных и логистических регрессионных моделей.

•

## **Imbalanced Datasets**

### Классовый дисбаланс



- Количество образцов в классе распределяется неравномерно.
- Модель ML может плохо работать для редких классов.
- Examples:
  - Обнаружение мошенничества
  - Обнаружение аномалий
  - Медицинская диагностика

Amazon review dataset: Количество 5 звездных отзывов почти равно сумме 4 других типов звездных отзывов вместе взятых.

#### Class Imbalance

• Как решить проблемы классового дисбаланса?

#### Down-sampling

Уменьшите размер доминирующего или частого класса

#### **Up-sampling**

Увеличьте размер редкого или малого класса

#### Data generation

Создавайте новые записи (примеры), похожие, но не идентичные.

#### Sample weights

Для модели, в которой используется функция стоимости (Loss), присвойте более высокие веса редким классам и более низкие веса доминирующим классам.

# **Missing Data**

### Обработка Missing Data

- Удалить (**Drop** ) строки и / или столбцы с пропущенными значениями: удалите эти строки и / или столбцы из набора данных.
  - Меньшее количество примеров обучающих данных и / или меньшее количество функций может привести к переобучению / недообучению
  - Внести (заполнить) недостающие значения:
  - **Среднее значение** отсутствующих числовых значений: замените средним значением в столбце df['col'].fillna((df['col'].mean())) df['col'].fillna((df['col'].mode()))
  - Расчет по общей точке для отсутствующих категориальных значений: замените наиболее распространенным значением для этого столбца
  - Placeholder: назначьте общее значение для местоположения отсутствующих данных
  - Advanced imputation: Прогнозируйте недостающие значения из полных выборок с помощью методов машинного обучения. Например, AWS Datawig использует нейронные сети для прогнозирования отсутствующих значений табличных данных https://github.com/awslabs/datawig

#### SimpleImputer in sklearn

• SimpleImputer: в sklearn для заполнения пропущенных значений-

.fit(), .transform()

- •SimpleImputer(missing\_values=nan, strategy='mean', fill\_value=None)
  - numerical data:
    - Strategy = "mean", заменить отсутствующие значения, используя среднее значение по каждому столбцу
    - Strategy = "median", заменить отсутствующие значения с помощью медианы по каждому столбцу
  - numerical or categorical data:
    - Strategy = "most\_frequent", заменить отсутствующее, используя наиболее частое значение в каждом столбце
    - Strategy = "constant", заменить отсутствующие значения на fill\_value

# **Feature Scaling**

## Feature Scaling

- Motivation: Многие алгоритмы чувствительны к функциям, находящимся в разных масштабах, например, алгоритмы на основе метрик (KNN, K Means) и алгоритмы на основе градиентного спуска (регрессия, нейронные сети).
- Примечание: древовидные алгоритмы (деревья решений, случайные леса) не имеют этой проблемы.
- Solution: Привести функции к одному масштабу
  - Общие варианты (оба линейные):
    - Mean/variance стандартизация
    - MinMax масштабирование

#### Standardization in sklearn

• StandardScaler: sklearn масштабирование, значения масштабирования должны быть сосредоточены вокруг среднего 0 со стандартным отклонением 1

Fransform: 
$$x_{scaled} = \frac{x - x_{mean}}{x_{std}}$$

.fit(), .transform()

```
from sklearn.preprocessing import StandardScaler stdsc = StandardScaler()

raw_data = np.array([[-3.4], [4.5], [50], [24], [3.4], [1.6]])

scaled_data = stdsc.fit_transform(raw_data)

print(scaled_data.reshape(1,-1))
```

### MinMax Scaling in sklearn

• MinMaxScaler: sklearn масштабирование, значения масштабирования должны быть сосредоточены вокруг среднего 0 со стандартным отклонением 1 -

.fit(), .transform()

```
Transform: x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}
```

```
from sklearn.preprocessing import MinMaxScaler
minmaxsc = MinMaxScaler()

raw_data = np.array([[-3.4], [4.5], [50], [24], [3.4], [1.6]])
scaled_data = minmaxsc.fit_transform(raw_data)
print(scaled_data.reshape(1,-1))
```

# Pipeline (sklearn)

## Pipeline in sklearn

• Pipeline: sklearn последовательные преобразования данных с окончательной оценкой (предотвращает утечку данных) --

Pipeline(steps, verbose=False)

```
pipeline = Pipeline([
    ('imputer', SimpleImputer(strategy='mean')),
    ('scaler', MinMaxScaler()),
    ('clf', KNeighborsClassifier(n_neighbors = 3))
    ])

pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
```

.fit(), .predict() y train X train X test pipeline.predict pipeline.fit **Pipeline** .fit transform .transform SimpleImputer .fit transform MinMaxScaler KNeighborsClassifier