

Improving CBCT image quality in adaptive radiation therapy using deep learning

MIDL 2021 Doctoral Symposium

PhD student: Yan-Chi Ivy Chan

Date: 02.07.2021

Introduction

CBCT-guided Online Adaptive Radiation Therapy

- Aim of Radiation Therapy: deliver prescribed ionizing radiation (proton/photon) dose to cancer cells without damaging organs—at-risk or adjacent healthy cells
- Online Adaptive Radiation Therapy: replan at each fraction based on in-room imaging, adapting the dose to the anatomy changes (weight-loss, tumor shrinkage, bowel movement) for accurate dose delivery

Project 1: Correct CBCT using ScatterNet Project Overview

Objective: To improve original CBCT image quality with the corrected images

Methods and Materials: U-net Paired Training; 42 prostate patient datasets(27 training, 7 validation, 8 testing)

Loss function: Mean Square Error

Landry et al. Phys. Med. Biol (2019)

Down block 256 Up block

Mix block

Down block

Plan 1: Correct CBCT using ScatterNet

Result: Test data and Analysis

The End Thank you for your attention!

E-Mail: Yanchi.Chan@med.uni-muenchen.de