Series.

Contents

1.	Basic definitions and results about series.	1
2.	Series with positive terms.	4
3.	Tests for the convergence of series with monotone terms.	5
4.	Comparison tests.	8
5.	The root and ratio tests	10
6.	Absolutely and conditional convergent series.	13
7.	Power series.	15

The material here corresponds to parts of Chaper VII Rosenlicht.

1. Basic definitions and results about series.

We now wish to make sense out of infinite sums

$$\sum_{k=1}^{\infty} = a_1 + a_2 + a_3 + \cdots$$

Definition 1. Let $\langle a_k \rangle_{k=n_0}^{\infty}$ be a sequence of real numbers. The corresponding *infinite series* is (or just *series*) is the sum

$$\sum_{k=k_0}^{\infty} a_k = a_{k_0} + a_{k_0+1} + a_{k_0+2} + \cdots$$

The n-th partial sum of the series is

$$A_n = a_{n_0} + a_{n_0+1} + a_{n_0+2} + \dots + a_{n-1} + a_n = \sum_{k=n_0}^{n} a_k.$$

We say the series converges and has sum A iff

$$\lim_{n\to\infty} A_n = A.$$

If $\sum_{k=1}^{\infty} a_k$ does not converge, it **diverges**.

To make notation easier, when proving results about series we will usually let $n_0 = 0$ or $n_0 = 1$.

Here is a result that follows at once from the facts about limits of sequences.

Theorem 2. If $\sum_{n=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then for any constants c_1 and c_2 the series $\sum_{k=1}^{\infty} (c_1 a a_k + c_2 b_k)$ also converges and

$$\sum_{k=1}^{\infty} (c_1 a a_k + c_2 b_k) = c_1 \sum_{n=1}^{\infty} a_k + c_2 \sum_{n=1}^{\infty} b_k$$

Proof. Let

$$A_n = (a_1 + \dots + a_n)$$

$$B_n = (b_1 + \dots + b_n)$$

$$C_n = ((c_1 a_1 + c_2 b_1) + \dots + (c_1 a_n + c_2 a_n))$$

be the partial sums of the series. We are given that

$$\lim_{n \to \infty} A_n = A, \qquad \lim_{n \to \infty} B_n = B$$

exist and want to show $\lim_{n\to\infty} C_n = c_1 A + c_2 B$. Note

$$C_n = ((c_1a_1 + c_2b_1) + \dots + (c_1a_n + c_2a_n))$$

= $c_1(a_1 + \dots + a_n) + c_2(b_1 + \dots + b_n)$
= $c_1A_n + c_2B_n$

and therefore

$$\lim_{n \to \infty} C_n = \lim_{n \to \infty} \left(c_1 A_n + c_2 B_n \right) = c_1 A + c_2 B$$

as required.

Before going on we note that for any series $\sum_{k=1}^{\infty} a_k$ with partial sums $A_n = \sum_{k=1}^n$ we have the elementary relation

$$A_n = A_{n-1} + a_n,$$

or equivalently

$$a_n = A_n - A_{n-1}.$$

This will come up several times in what follows starting with the following:

Theorem 3. If the series $\sum_{k=1}^{n} a_k$ converges, then

$$\lim_{n\to\infty} a_n = 0.$$

Proof. If $A_n = \sum_{k=1}^n a_k$ then $\lim_{n\to\infty} A_n = A$ exists as the series converges. But then also $\lim_{n\to\infty} A_{n-1} = A$ and so

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (A_n - A_{n-1}) = A - A = 0.$$

Remark 4. Often the previous theorem is used in its contrapositive form: If $\lim_{k\to\infty} a_k \neq 0$, then $\sum_{k=1}^{\infty} a_k$ diverges. From this it is not hard to give lots of examples of series that do not converge. For example none of the following converge

$$\sum_{k=1}^{\infty} (-1)^k, \qquad \sum_{k=1}^{\infty} \sin(k), \qquad \sum_{n=1}^{\infty} \frac{n^2 - 2}{2n^2 + 5}.$$

Proposition 5. The series $\sum_{k=1}^{\infty} a_k$ converges if and only if for all $\varepsilon > 0$ there is a N such that

$$N \le m < n \implies |a_{m+1} + a_{m+2} \cdots + a_n| < \varepsilon.$$

Problem 1. Prove this. *Hint:* What is the Cauchy condition for the sequence $\langle A_n \rangle_{n=1}^{\infty}$ of partial sums?

Proposition 6. Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series such that $a_k = b_k$ except for a finite number of values k. Then either they both converge or both diverge. (An informal way so state this is that changing a finite number of terms of a series does not effect whether it converges or diverges.)

Proof. By the hypothesis there is an n_0 such that such that

$$a_k = b_k$$
 for all $k \ge n_0$.

If $n \geq n_0$ then

$$B_n = B_{n_0} + \sum_{k=n_0+1}^n b_k$$

$$= B_{n_0} + \sum_{k=n_0+1}^n a_k \qquad \text{(as } a_k = b_k \text{ when } k \ge n_0\text{)}$$

$$= B_{n_0} - A_{n_0} + A_{n_0} + \sum_{k=n_0+1}^n a_k$$

$$= (B_{n_0} - A_{n_0}) + A_n.$$

Letting $c = B_{n_0} - A_{n_0}$, which is a constant, we have that $B_n = A_n + c$ for $n \ge n_0$. Thus the sequences $\langle A_n \rangle_{n=1}^{\infty}$ and $\langle B_n \rangle_{n=1}^{\infty}$ either both converge or both diverge.

Lemma 7. If $|r| \neq 1$ then

$$a + ar + ar^{2} + \dots + ar^{n} = \sum_{k=0}^{n} ar^{k} = \frac{a - ar^{n-1}}{1 - r}.$$

Proof. Let $S_n = a + ar + ar^2 + \cdots + ar^n$. Then

$$(1-r)S_n = a + ar + ar^2 + \dots + ar^n - r(a + ar + ar^2 + \dots + ar^n)$$

= $a + ar + ar^2 + \dots + ar^n - ar - ar^2 - \dots - ar^n - ar^{n+1}$
= $a - ar^{n+1}$.

As $r \neq 1$ we can divide by (1-r) to get the desired result.

Lemma 8. If |r| < 1 then

$$\lim_{n \to \infty} |r|^n = 0.$$

Proof. Let $\varepsilon > 0$ and set $N = \ln(\varepsilon)/\ln(|r|)$. Then if n > N it is not hard to check $||r|^n - 0| = |r|^n < \varepsilon$.

Here one of the most basic examples of series. Many results about series involve comparison to a geometric series.

Theorem 9 (Infinite Geometric Series). Let a, r be real numbers with $a \neq 0$. Then the series

$$a + ar + ar^2 + \dots = \sum_{k=0}^{\infty} ar^k$$

converges if and only if |r| < 1 in which case its sum is

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}.$$

Proof. If $|r| \ge 1$ then the *n*-th term ar^n satisfies $|ar^n| \ge |a| > 0$ and so $\lim_{n\to\infty} ar^n \ne 0$ and thus the series diverges.

Now assume |r| < 1. We have seem in Lemma 7 that the nth partial sum is

$$S_n = \frac{a - ar^{n+1}}{1 - r}.$$

Now by the last lemma,

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - ar^{n+1}}{1 - r} = \frac{a - a \cdot 0}{1 - r} = \frac{a}{1 - r}$$

as required.

2. Series with positive terms.

Theorem 10. Let $\sum_{k=1}^{\infty} a_k$ be a series with $a_k \geq 0$ for all k. Then $\sum_{k=1}^{\infty} a_k$ converges if and only if the sequence, $\langle A_n \rangle_{n=1}^{\infty}$ (with $A_n = a_1 + \cdots + a_n$) of partial sums is bounded.

Proof. If $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{n\to\infty} A_n = A$ exists by definition. But a convergent sequence is bounded. If $\langle A_n \rangle_{n=1}^{\infty}$ is bounded, then $A_{n+1} = A_n + a_{n+1} \geq A_n$ so the series is monotone increasing. But a bounded monotone sequence is convergent.

Remark 11. When talking about series, $\sum_{k=1}^{\infty} a_k$, of non-negative terms we will use the following suggestive notation.

$$\sum_{k=1}^{\infty} a_k < \infty \iff \text{The series converges}$$

$$\sum_{k=1}^{\infty} a_k = \infty \iff \text{The series series diverges.}$$

This notation is not appropriate when talking about series with terms of mixed signs. For example the series $\sum_{k=1}^{\infty} (-1)^{k+1}$ has bounded partial sums, but is not convergent.

3. Tests for the convergence of series with monotone terms.

In general it is easier to understand the convergence of series with monotone decreasing terms. As a first example.

Theorem 12 (Cauchy Condensation Test). If $\langle a_k \rangle_{k=1}^{\infty}$ is a sequence of non-negative numbers that are monotone decreasing, then

$$\sum_{k=1}^{\infty} a_k < \infty$$

if and only if

$$\sum_{k=0}^{\infty} 2^k a_{2^k} < \infty.$$

Proof. Let the partial sums of the two series be

$$A_n = \sum_{k=1}^n a_k, \qquad B_n = \sum_{k=0}^n 2^k a_{2^k}.$$

We will show

$$(1) A_{2^{n+1}-1} \le B_n$$

$$(2) B_n \le 2A_{2^n}.$$

If these hold the result is easy. If $\sum_{k=0}^{\infty} 2^k a_{2^k} < \infty$ then for any positive integer m choose n such that $m \leq 2^{n+1} - 1$. By (1),

$$A_m \le A_{2^{n+1}-1} \le B_n \le \sum_{k=0}^{\infty} 2^k a_{2^k} < \infty$$

and therefore the partial sums of $\sum_{k=1}^{\infty} a_k$ are bounded above and thus $\sum_{k=0}^{\infty} a_k < \infty$.

Conversely if $\sum_{k=1}^{\infty} a_k < \infty$ then for any positive integer n we use (2) to get

$$B_n \le 2A_{2^n} \le 2\sum_{k=1}^{\infty} a_k < \infty$$

which shows the partial sums of $\sum_{k=0}^{\infty} 2^k a_{2^k}$ are bounded above and thus $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.

We now prove (1). Using that the terms are monotone decreasing,

$$A_{2^{n+1}-1} = a_1 + \underbrace{(a_2 + a_3)}_{2^1 \text{ terms}} + \underbrace{(a_4 + \dots + a_7)}_{2^2 \text{ terms}} + \dots + \underbrace{(a_{2^n} + \dots + a_{2^{n+1}-1})}_{2^n \text{ terms}}$$

$$\leq a_1 + \underbrace{(a_2 + a_2)}_{2^1 \text{ terms}} + \underbrace{(a_4 + \dots + a_4)}_{2^2 \text{ terms}} + \dots + \underbrace{(a_{2^n} + \dots + a_{2^n})}_{2^n \text{ terms}}$$

$$= a_1 + 2^2 a_{2^2} + 2^3 a_{2^3} + \dots + 2^n a_{2^n}$$

$$= B_n.$$

The proof (2) is similar

$$A_{2^{n}} = a_{1} + a_{2} + \underbrace{(a_{3} + a_{4})}_{2^{1} \text{ terms}} + \underbrace{(a_{5} + \cdots a_{8})}_{2^{2} \text{ terms}} + \cdots + \underbrace{(a_{2^{n-1}+1} + \cdots + a_{2^{n}})}_{2^{n-1} \text{ terms}}$$

$$\geq a_{1} + a_{2} + \underbrace{(a_{4} + a_{4})}_{2^{1} \text{ terms}} + \underbrace{(a_{8} + \cdots a_{8})}_{2^{2} \text{ terms}} + \cdots + \underbrace{(a_{2^{n}} + \cdots + a_{2^{n}})}_{2^{n-1} \text{ terms}}$$

$$= a_{1} + a_{2} + 2^{1}a_{2^{2}} + 2^{2}a_{2^{3}} + \cdots + 2^{n-1}a_{2^{n}}$$

$$= 2^{-1}a_{1} + 2^{-1}a_{1} + a_{2} + 2^{1}a_{2^{2}} + 2^{2}a_{2^{3}} + \cdots + 2^{n-1}a_{2^{n}}$$

$$= 2^{-1}a_{1} + 2^{-1}\left(2^{0}a_{1} + 2^{1}a_{2} + 2^{2}a_{2^{2}} + 2^{3}a_{2^{3}} + \cdots + 2^{n}a_{2^{n}}\right)$$

$$= 2^{-1}a_{1} + 2^{-1}B_{n}$$

$$\geq \frac{1}{2}B_{n}.$$

Multiplication by 2 completes the proof.

Theorem 13. For any real number p > 0 the series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges if and only if p > 1.

Proof. We use the Cauchy-Condensation Test, which applies as the terms of the series are decreasing. The given series converges if and only if

$$\sum_{k=1}^{\infty} 2^k \frac{1}{(2^k)^p} = \sum_{k=1}^{\infty} \left(\frac{2}{2^p}\right)^k$$

converges. This is a geometric series with ratio

$$r = \frac{2}{2^p}.$$

Therefore the series converges if and only if $r = 2/2^p < 1$, that is if and only if p > 1.

Anther method of dealing with series with monotone terms is by comparison with an integral. Let us start with an example. Let f(x) be monotone decreasing on the interval [0,6] and let

$$a_k = f(k)$$
 for $1 \le k \le 6$

and

$$A_n = a_1 + \dots + a_n = f(1) + \dots + f(n).$$

Then, see Figure 1, we can compare the integral $\int_1^6 f(x) dx$ with some of the Riemann sums for the partition $\mathcal{P} = \{1, 2, 3, 4, 5, 6\}$ to get

$$\int_{1}^{6} f(x) \, dx \le A_5 \le A_6 \le f(1) + \int_{1}^{6} f(x) \, dx.$$

FIGURE 1. The area under the tall (with red tops) rectangles is $A_5 = f(1) + f(2) + f(3) + f(4) + f(5)$. The area under the short (with green tops) rectangles is $A_6 - f(1) = f(2) + f(3) + f(4) + f(5) + f(6)$. The area of the integral is clearly in between these two areas and therefore

$$A_6 - f(1) \le \int_1^6 f(x) \, dx \le A_5.$$

This can be rearranged to give

$$\int_{1}^{6} f(x) \, dx \le A_5 \le A_6 \le f(1) + \int_{1}^{6} f(x) \, dx = a_1 + \int_{1}^{6} f(x) \, dx$$

which is a bit more aesthetic.

We could, and since this is a mathematics class, should be a bit more formal. Note that on any interval [k,k+1] we have, because f is decreasing, that

$$f(k) \ge f(x) \ge f(k+1).$$

Then integration over [k, k+1] and using that $\int_k^{k+1} f(k) dx = f(k)$ and $\int_k^{k+1} f(k+1) dx = f(k+1)$

$$f(k) \ge \int_{k}^{k+1} f(x) \, dx \ge f(k+1).$$

This can be summed it two ways to get

$$\int_{1}^{6} f(x) dx = \sum_{k=1}^{5} \int_{k}^{k+1} f(x) dx \le \sum_{k=1}^{5} f(k) = A_{5}$$

and

$$A_6 - a_1 = \sum_{k=2}^{6} f(k) \le \sum_{k=1}^{5} \int_{k}^{k+1} f(x) dx = \int_{1}^{6} f(x) dx.$$

Of course there is nothing special about n = 6 in this argument.

Proposition 14. Let $f: [1, \infty) \to [0, \infty)$ be a monotone decreasing nonnegative function. Let $a_k = f(k)$ and let

$$A_n = \sum_{k=1}^n a_k$$

be the n-th partial sum of the series $\sum_{k=1}^{\infty} a_k$. Then

$$\int_{1}^{n} f(x) \, dx \le A_n \le f(1) + \int_{1}^{n} f(x) \, dx.$$

Problem 2. Use a variation of the argument given for n=6 to prove this.

Theorem 15 (The Integral Test). Let $f: [1, \infty) \to [0, \infty)$ be a monotone decreasing non-negative function. Let $a_k = f(k)$ and let

$$A_n = \sum_{k=1}^n a_k$$

be the n-th partial sum of the series $\sum_{k=1}^{\infty} a_k$. Then

$$\sum_{k=1}^{\infty} a_k < \infty \qquad \iff \qquad \lim_{n \to \infty} \int_1^n f(x) \, dx \quad \text{exists and is finite.}$$

(Note that $\left\langle \int_{1}^{n} f(x) dx \right\rangle_{n=1}^{\infty}$ is a monotone increasing sequence, thus the limit exists, but might be $+\infty$.)

Problem 3. Prove this.

Problem 4. Use the Integral Test to give anther proof of Theorem 13.

Problem 5. Use the Integral Test to show

$$\sum_{k=2}^{\infty} \frac{1}{n(\ln(n))^p}$$

converges if and only if p > 1.

4. Comparison tests.

Proposition 16. Let $Let \sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series of non-negative terms. Assume there is a constant C > 0 such that

$$a_k \leq Cb_k$$

for all k. Then

(a) If
$$\sum_{k=1}^{\infty} b_k$$
 converges, so does $\sum_{k=1}^{\infty} a_k$.

(b) If
$$\sum_{k=1}^{\infty} a_k$$
 diverges, so does $\sum_{k=1}^{\infty} b_k$.

Problem 6. Prove this. *Hint:* Consider partial sums.

Theorem 17 (Limit Comparison Test). Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series of positive terms. Assume that

$$L = \lim_{k \to \infty} \frac{a_k}{b_k}$$

exists. Then

(a)
$$\sum_{k=1}^{\infty} b_k < \infty$$
 implies $\sum_{k=1}^{\infty} a_k < \infty$

(b) If
$$L \neq 0$$
 and $\sum_{k=1}^{\infty} a_k = \infty$, then $\sum_{k=1}^{\infty} b_k = \infty$.

Often the following special case is enough.

Corollary 18. Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series of positive terms. Assume that

$$L = \lim_{k \to \infty} \frac{a_k}{b_k}$$

exists and $L \neq 0$. Then $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} b_k$ converges. \square

Problem 7. Prove Theorem 17. *Hint:* Recall that a convergent sequence is bounded. Thus $\langle a_k/b_k\rangle_{k=1}^{\infty}$ is bounded and therefore there is a constant C such that $a_k/b_k \leq C$. Thus Proposition 16 applies.

Here some applications of these results.

Example 19. Does the series $\sum_{k=1}^{\infty} \frac{k^3 + 2k^2 + 7}{3k^5 + 2}$ converge? Let this series be $\sum_{k=1}^{\infty} a_k$ and let $\sum_{k=1}^{\infty} b_n$ be the *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Then it is not hard to check that

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \frac{1}{3}.$$

Therefore, by Corollary 18, $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} b_k$ converges. But $\sum_{k=1}^{\infty} b_k$ is a p series with p=2>1 and so both series converge.

Example 20. Does the series $\sum_{k=1}^{\infty} = \sum_{k=1}^{\infty} (\sqrt[3]{n+5} - \sqrt[3]{n-2})$ converge? Let $f(x) = \sqrt[3]{x} = x^{1/3}$. Then for n > 2 by the mean value theorem there is a ξ_n between -2 and 5 such that

$$a_n = f(n+5) - f(n-2) = f'(n+\xi_n)((n+5) - (n-2)) = \frac{1}{3}(n+\xi_n)^{-2/3}7.$$

Therefore if $\sum_{k=1}^{\infty} b_k$ is the divergent p-series $\sum_{k=1}^{\infty} 1/n^{2/3}$ we have

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \frac{7}{3}.$$

So $\sum_{k=1}^{\infty} a_k$ diverges by limit comparison to $\sum_{k=1}^{\infty} b_k$.

Problem 8. For practice in these ideas do Problems 10 and 11 on Page 161 of the text. *Hint:* For Problem 11 it might help to notice that

$$\frac{1}{n} - \frac{1}{n+x} = \frac{x}{n(n+x)}$$
 and $\lim_{n \to \infty} \frac{1/n^2}{1/(n(n+x))} = 1.$

5. The root and ratio tests

These are basically just limit comparisons with a geometric series. To get started here is a version of the comparison were we only worry about the comparison for large values.

Lemma 21. Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be series of positive terms. Assume there is an N such that

$$a_k \le b_k$$
 for all $k > N$

and that $\sum_{k=1}^{\infty} b_k < \infty$. Then $\sum_{k=1}^{\infty} a_k < \infty$.

Proof. Let A_n and B_n be the partial sums of these series. Let

$$C_1 = \max\{A_n : 1 \le n \le N\}.$$

If n > N then

$$A_{n} = (a_{1} + \cdots + a_{N}) + (a_{N+1} + \cdots + a_{n})$$

$$\leq (a_{1} + \cdots + a_{N}) + (b_{N+1} + \cdots + b_{n})$$

$$= (a_{1} + \cdots + a_{N}) - (b_{1} + \cdots + b_{N}) + (b_{1} + \cdots + b_{N} + b_{N+1} + \cdots + b_{n})$$

$$= A_{N} - B_{N} + B_{n}$$

$$\leq A_{N} - B_{N} + \sum_{k=1}^{\infty} b_{k} < \infty.$$

Therefore if

$$C = \max \left\{ C_1, A_N - B_N + \sum_{k=1}^{\infty} b_k \right\}$$

we have

$$A_n \leq C$$

for all n. Thus the partial sums of $\sum_{k=1}^{\infty} a_k$ are bounded which implies that it is convergent.

The following is a dressed up version of doing a comparison with a geometric series.

Theorem 22 (Root Test). Let $\sum_{k=1}^{\infty} a_k$ be a series of positive terms and assume the limit

$$\rho := \lim_{k \to \infty} (a_k)^{1/k}.$$

exists.

- (a) If $\rho < 1$ then the series converges.
- (b) If $\rho > 1$ then the series diverges.

Problem 9. Prove this. *Hint:* For (a) let r be any number such that $\rho < r < 1$. Then $\rho = \lim_{k \to \infty} (a_k)^{1/k} < r$ implies there is a N such that

$$k > N \qquad \Longrightarrow \qquad (a_k)^{1/k} < r.$$

Then

$$a_k < r^k$$
 for all $k > N$.

Now consider Lemma 21 and Theorem 9.

For (b) show that if
$$\rho > 1$$
 then $\lim_{k \to \infty} a_k \neq 0$.

Here is anther dressed up version of comparison with a geometric series.

Theorem 23 (Ratio Test). Let $\sum_{k=1}^{\infty} a_k$ be a series of positive terms assume the limit

$$\rho := \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$$

exists.

- (a) If $\rho < 1$, then the series converges.
- (b) If $\rho > 1$, then the series diverges.

Problem 10. Prove this. *Hint:* For (a) let r be a number such that $\rho < r < 1$. Then, by the definition of lim, there is a N such that

$$k > N \qquad \Longrightarrow \qquad \frac{a_{k+1}}{a_k} < r.$$

Thus for k > N we have

$$a_k = a_{N+1} \frac{a_{N+2}}{a_{N+1}} \frac{a_{N+3}}{a_{N+2}} \cdots \frac{a_{k-1}}{a_{k-2}} \frac{a_k}{a_{k-1}} = (a_{N+1}) \prod_{j=N+1}^{k-1} \frac{a_{j+1}}{a_j} < a_{N+1} r^{k-N-1}.$$

The series

$$\sum_{k=1}^{\infty} (a_{N+1})r^{k-N-1} = \sum_{k=1}^{\infty} (a_{N+1}r^{-N-1}) r^k = \sum_{k=1}^{\infty} Cr^k$$

(where $C = (a_{N+1}r^{-N-1})$) is a convergent geometric series. You should now be able to do a comparison by use of Lemma 21.

For (b) show
$$\rho > 1$$
 implies $\lim_{k \to \infty} a_k \neq 0$.

The following shows that if the ratio test works, then the root test will also work.

Proposition 24. Let $\langle a_n \rangle_{n=1}^{\infty}$ be a sequence of positive real numbers such that

$$\lim_{n \to \infty} \frac{a_n + 1}{a_n} = r$$

exists. Then also

$$\lim_{n \to \infty} a_n^{1/n} = r.$$

Problem 11. Prove this by filling in the details of the following outline of a proof. Let $\varepsilon > 0$. We start by using the same idea as the proof of 23. We choose an N such that

$$n \ge N$$
 implies $\left| \frac{a_{n+1}}{a_n} - r \right| < \frac{\varepsilon}{2},$

which implies

$$r - \frac{\varepsilon}{2} < \frac{a_{n+1}}{a_n} < r + \frac{\varepsilon}{2}.$$

Show for n > N

$$a_n = a_N \left(\frac{a_{N+1}}{a_N}\right) \left(\frac{a_{N+2}}{a_{N+1}}\right) \left(\frac{a_{N+3}}{a_{N+2}}\right) \cdots \left(\frac{a_{n-1}}{a_{n-2}}\right) \left(\frac{a_n}{a_{n-1}}\right)$$

and therefore

$$a_N \left(r - \frac{\varepsilon}{2}\right)^{n-N} < a_n < a_N \left(r + \frac{\varepsilon}{2}\right)^{n-N}$$

Taking n-th roots

$$a_N^{1/n} \left(r - \frac{\varepsilon}{2} \right)^{1 - N/n} < a^{1/n} < a_N^{1/n} \left(r + \frac{\varepsilon}{2} \right)^{1 - N/n}.$$

But

$$\lim_{n\to\infty} a_N^{1/n} \left(r-\frac{\varepsilon}{2}\right)^{1-N/n} = a_N^0 \left(r-\frac{\varepsilon}{2}\right)^{1-0} = \left(r-\frac{\varepsilon}{2}\right).$$

This implies there is $N_1 > N$ such that

$$n \ge N_1$$
 implies $\left| a_N^{1/n} \left(r - \frac{\varepsilon}{2} \right)^{1 - N/n} - \left(r - \frac{\varepsilon}{2} \right) \right|$

which in turn implies

$$r-\varepsilon < a_N^{1/n} \left(r-\frac{\varepsilon}{2}\right)^{1-N/n}.$$

Do a similar argument to show there is a $N_2 > N$ such that

$$n \ge N_2$$
 implies $a_N^{1/n} \left(r + \frac{\varepsilon}{2} \right)^{1-N/n} < r + \varepsilon.$

Set $N_3 = \max\{N_1, N_2\}$ and put the inequalities above together to get

$$n \ge N_3$$
 implies $\left| a_n^{1/n} - r \right| < \varepsilon$

which finishes the proof.

Problem 12. Here are a couple of applications of Proposition 24.

(a) For n a positive integer let

$$a_n = \frac{n!}{n^n}.$$

Show

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{e}.$$

Use this and Proposition 24 to show

$$\lim_{n \to \infty} \frac{(n!)^{1/n}}{n} = \frac{1}{e}.$$

(b) Let

$$b_n = \binom{2n}{n} = \frac{(2n)!}{n! \, n!}.$$

Show

$$\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = 4$$

and use this to show

$$\lim_{n \to \infty} \binom{2n}{n}^{1/n} = 4.$$

6. Absolutely and conditional convergent series.

Definition 25. The series $\sum_{k=1}^{\infty} a_k$ is **absolutely convergent** iff the series of absolute values $\sum_{k=1}^{\infty} |a_k|$ is convergent.

Theorem 26. If $\sum_{k=1}^{\infty} a_k$ is absolutely convergent, then it is convergent and

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|.$$

Problem 13. Prove this. *Hint:* Proposition 5 and the triangle inequality applied to partial sums. \Box

This, together with Proposition 16 implies

Proposition 27. Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be series with $|a_k| \leq Cb_k$ for some positive constant C. Assume $\sum_{k=1}^{\infty} b_k$ converges. Then $\sum_{k=1}^{\infty} a_k$ converges absolutely.

Example 28. The last proposition implies all the following

$$\sum_{k=1}^{\infty} \frac{\cos(k)}{k^2}, \qquad \sum_{k=1}^{\infty} \frac{(-1)^k}{n2^n}, \qquad \sum_{k=1}^{\infty} \frac{3 + (-1)^k}{(k+1)\ln^2(k+1)}.$$

converge absolutely.

Definition 29. The series $\sum_{k=1}^{\infty} a_k$ is **conditional convergent** iff $\sum_{k=1}^{\infty} a_k$ converges, but $\sum_{k=1}^{\infty} |a_k| = \infty$.

The following gives one of the main methods of producing conditional convergent series.

Theorem 30. Let $\langle a_k \rangle_{k=1}^{\infty}$ be a sequence of real numbers with

- (a) $a_k \ge a_{k+1}$ (that is it is monotone decreasing),
- (b) $\lim_{k\to\infty} a_k = 0$.

Then

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges. If $A = \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ is the sum and $A_n = \sum_{k=1}^n a_k$ is the n-th partial sum then

$$|A - A_n| \le a_{n+1}.$$

That is the error at stopping at the n-th term is at most the (n+1)-st term.

Problem 14. Prove this. *Hint:* Note

$$A_3 = A_1 - a_2 + a_3 = A_1 - (a_2 - a_3) \le A_1$$

as $a_2 \geq a_3$. Likewise

$$A_5 = A_3 - a_4 + a_5 = A_3 - (a_4 - a_5) \le A_3$$

as $a_4 \ge a_5$. In general

$$A_{2m+3} = A_{2m+1} - (a_{2m} - a_{2m+1}) \le A_{2m+1}$$

Give an analogous argument to show

$$A_{2m+2} = A_{2m} + (a_{2m+1} - a_{2m+2}) \ge A_{2m}$$
.

Now use this to show that if $\ell \geq n$ then for n odd

$$A_{n+1} < A_{\ell} < A_n$$

and for n even

$$A_n \leq A_\ell \leq A_{n+1}$$
.

Therefore if $\ell \geq n$ the partial sum A_{ℓ} is between A_n and A_{n+1} . Also show $|A_{n+1} - A_n| = a_{n+1}$. It should not be hard to finish from here.

Problem 15. Show that if 0 that the series

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}$$

is conditional convergent.

Therefore when $0 (which implies <math>\sum_{k=1}^{\infty} \frac{1}{k^p}$ diverges) the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}$ is conditionally convergent.

7. Power series.

Theorem 31. Let a_0, a_1, a_2, \ldots be a sequence of numbers and let f(x) be defined on \mathbf{R} by

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

for all x where this converges. If the series converges for $x = x_0$, then it converges absolutely for all x with $|x| < |x_0|$.

Problem 16. Prove this. *Hint:* As

$$f(x_0) = \sum_{k=0}^{\infty} a_k(x_0)^k$$

converges we have $\lim_{k\to\infty} a_k(x_0)^k = 0$ by Theorem 3. This implies that $\langle a_k(x_0)^k \rangle_{k=0}^{\infty}$ is bounded. So there is a constant C with

$$|a_k(x_0)^k| = |a_k||x_0|^k \le C.$$

Then for $|x| < |x_0|$ we have

$$|a_k x^k| = |a_k||x|^k = |a_k||x_0|^k \left(\frac{|x|}{|x_0|}\right)^k \le C \left(\frac{|x|}{|x_0|}\right)^k = Cr^k$$

where

$$r = \frac{|x|}{|x_0|} < 1.$$

Lemma 32. Let f(x) be as in the last theorem. If the series for f(x) converges at $x = x_0$, then the series

$$f^*(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$$

converges absolutely for all x with $|x| < |x_0|$. We call f^* the **formal derivative** of f as it is what the derivative would be if we knew that we could take it term at a time. (Shortly we will show that this the actual derivative.)

Problem 17. Prove this. *Hint:* With notation as in Problem 16 show

$$|ka_k x^{k-1}| \le kCr^{k-1}$$

and then show $\sum_{k=1}^{\infty} kCr^{k-1}$ converges by either the root or ratio test. \Box

Corollary 33. With the same hypothesis as in the last lemma for $|x| < |x_0|$ the series

$$f^{**}(x) = \sum_{k=2}^{\infty} k(k-1)a_k x^{k-2}$$

converges absolutely. (This is the **formal second derivative**.)

Proof. As $|x| < |x_0|$ there is a number r_0 such that $|x| < r_0 < |x_0|$. By the lemma the series $f^*(r_0)$ converges absolutely. But (with what I hope is not confusing notation) $(f^*)^*(x) = f^{**}(x)$ so this corollary follows by applying Lemma 32 to f^* (with r_0 replacing x_0).

Lemma 34. Let k be a positive integer and x, x_1, r_0 real numbers with $|x|, |x_0| < r_0$. Then

$$\left| \frac{x^k - x_1^k}{x - x_1} - kx_1^{k-1} \right| \le \frac{k(k-1)}{2} r_0^{k-2} |x - x_0|.$$

Problem 18. Prove this. *Hint:* This is yet anther opportunity to use Taylor's theorem. Let p(x) be any two times differentiable function. By Taylor's theorem

$$p(x) = p(x_1) + p'(x_1)(x - x_1) + \frac{p''(\xi)}{2}(x - x_1)^2$$

where ξ is between x and x_1 . This can be rearranged as

$$\frac{p(x) - p(x_1)}{x - x_1} - p'(x_1) = \frac{p''(\xi)}{2}(x - x_1)$$

and so

$$\left| \frac{p(x) - p(x_1)}{x - x_1} - p'(x_1) \right| = \frac{|p''(\xi)|}{2} |x - x_1|.$$

Now consider the special case where $p(x) = x^k$. Then $|p''(\xi)| = k(k-1)|\xi|^{k-2} < k(k-1)r_0^{k-2}$ as ξ is between x and x_1 and $|x|, |x_1| < r_0$.

Theorem 35. Let $a_0, a_1, a_2, ...$ be a sequence of numbers and let f(x) be defined on \mathbf{R} by

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

for all x where this converges. If the series converges for $x = x_0$, then the function f(x) exists and is differentiable for all x with $|x| < |x_0|$ and the derivative is given by the formal derivative

$$f'(x) = f^*(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}.$$

Problem 19. Prove this. *Hint:* That f(x) exists for $|x| < |x_0|$ follows from Theorem 31. We need so show that if $|x_1| < |x_0|$ that f is differentiable at x_1 and the derivative is $f^*(x_1)$. Choose a number r_0 such that $|x_1| < r_0 < |x_0|$. Let x be such that $|x| < r_0$. Explain why the following hold.

(a) The series for the following all converge absolutely.

$$f(x), f(x_1), f^*(x_1), f^{**}(r_0).$$

(b) We have

$$\frac{f(x) - f(x_1)}{x - x_1} - f^*(x_1) = \sum_{k=1}^{\infty} a_k \left(\frac{x^k - x_1^k}{x - x_1} - kx_1^{k-1} \right)$$

(c) The inequality

$$\left| \frac{f(x) - f(x_1)}{x - x_1} - f^*(x_1) \right| \le C|x - x_1|$$

holds, where

$$C = \frac{1}{2} \sum_{k=2}^{\infty} k(k-1)|a_k| r_0^{k-1} < \infty$$

holds. (Part of the problem is explaining why $C < \infty$. The hint here is that the series for $f^{**}(r_0)$ converges absolutely.)

(d) To finish show

$$f'(x_1) = \lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1} = f^*(x_1).$$

Now that we have differentiated we wish to integrate. Note that by Theorem 35 if the series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ converges for $x = x_0$, then it is differentiable on the interval $(-|x_0|, ||x_0|)$ and therefore also continuous on this interval. Thus if $|x| < |x_0|$ this implies $\int_0^x f(t) dt$ is the integral of a continuous function and thus it exists.

Theorem 36. Let a_0, a_1, a_2, \ldots be a sequence of numbers and let f(x) be defined on \mathbf{R} by

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

for all x where this converges. If the series converges for $x = x_0$, then for any x with $|x| < |x_0|$

$$\int_0^x f(t) dt = \sum_{k=0}^\infty \frac{a_k}{k+1} x^{k+1} = \sum_{k=1}^\infty \frac{a_{k-1}}{k} x^k.$$

That is we can integrate the series for f(x) term at a time.

Problem 20. Prove this. *Hint*: Let F(x) be defined to be the **formal** integral of f(x). That is

$$F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} x^{k+1}.$$

Choose r_0 with $|x| < r_0 < |x_0|$. Then as the series for f(x) is convergent, its terms are bounded. That is there is a constant C such that

$$|a_k x_0^k| \le C.$$

Then

$$\left| \frac{a_k}{k+1} r_0^{k+1} \right| = \frac{r_0 |a_k x_0^k|}{k+1} \left| \frac{r_0}{x_0} \right|^k \le \frac{r_0 C}{k+1} \left| \frac{r_0}{x_0} \right|^k = \frac{C_1}{k+1} r^k \le C_1 r^k$$

where

$$C_1 = r_0 C$$
 and $r = \left| \frac{r_0}{x_0} \right| < 1$.

Now

- (a) Explain why the series for $F(r_0)$ converges absolutely. *Hint:* Compare the geometric series $\sum_{k=0}^{\infty} C_1 r^k$.
- (b) Explain why F(x) is differentiable on the interval $(-r_0, r_0)$. Hint: Theorem 35 with x_0 replaced by r_0 .
- (c) The derivative of F(x) on $(-r_0, r_0)$ is f(x) Hint: Theorem 35 again.
- (d) Finish the proof. *Hint:* Fundamental Theorem of Calculus.

Now that we know that we can integrate and differentiate power series we can find new series form old ones.

Example 37. Find the series for $(1+x)^{-2}$ on the integral (-1,1). We know

$$(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - \dots$$

This can be differentiated term at a time to get

$$-(1+x)^{-2} = 0 - 1 + 2x - 3x^2 + 4x^3 - 5x^4 + 6x^5 - \dots$$

so that

$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + 5x^4 - 6x^5 - \dots = \sum_{k=0}^{\infty} (-1)^k (k+1)x^k$$
.

Similar examples can be done by integrating term at a time. Here are some for you to try.

Problem 21. (a) Find a series for ln(1+x) valid on (-1,1). *Hint:*

$$\ln(1+x) = \int_0^x \frac{dt}{1+t}$$

and you know how to expand 1/(1+t) in a series.

- (b) For any positive integer n find the series for $(1+x)^{-n}$ valid on (-1,1).
- (c) On (-1,1) we have the convergent geometric series:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - x^{10} + \cdots$$

Use this to find a power series for arctan(x) valid on (-1,1).