

Assignment 2

Deadline: 8th April 2019, 23:59h

Exercise - Robust Optimization 2

Assume the following program (1a) - (1f) based on a version of the production example from the exercise on Robust Optimization (19-03-2019). The nomenclature can be found in Table 1.

The goal is to find the capacity setting with minimum cost while fulfilling the demand d_p of each product p. Therefore, we have to decide how many machines of each machine type m, we are going to to install (y_m) . However, the production time $t_{p,m}$ of product p on machine type m is uncertain.

$$\min \sum_{m \in M} \left[c_m^M y_m + \sum_{p \in P} c_p^P x_{p,m} \right] \tag{1a}$$

$$s.t. \sum_{m \in M} x_{p,m} \ge d_p \qquad \forall p \in P$$
 (1b)

$$\sum_{p \in P} \tilde{t}_{p,m} x_{p,m} \le T_m y_m \qquad \forall m \in M, \tilde{t}_{p,m} \in [\bar{t}_{p,m} - t_{p,m}, \bar{t}_{p,m} + t_{p,m}]$$
 (1c)

$$x_{p,m} \le Big M_{m,p} a_{p,m} y_m \qquad \forall m \in M, p \in P$$
(1d)

$$y_m \ge 0$$
 and integer $\forall m \in M$ (1e)

$$x_{p,m} \ge 0 \qquad \forall m \in M, p \in P \tag{1f}$$

where $\tilde{t}_{p,m}$ represents the uncertain production time and $BigM_{m,p}$ a large enough constant (here: $\frac{T_m}{\bar{t}_{p,m}-t_{p,m}}$). The objective function (1a) minimizes the cost for installing machines and the expected production cost.

The task is to introduce an artificial full recourse in the form of a Linear Decision Rule (LDR) to the robust optimization problem (1a) - (1f). Solve the model for different values of the penalty term J=20, J=100, J=150, J=200, J=300, J=500 and J=1000.

Solve your robust model with GAMS using the file robust model .gms which already has some data input.

Sets		
\mathcal{M}	Machine types $m \in \mathcal{M}$	
\mathcal{P}	Product types $p \in \mathcal{P}$	
${\mathcal S}$	Scenarios $s \in \mathcal{S}$	
Parameters		
π_s	Probability of scenario $s \in \mathcal{S}$	
C_m^{Mach}	Cost for one machine of type $m \in \mathcal{M}$	
C_m^{Mach} C_p^{Prod} D_p \overline{M}	Production cost for product type $p \in \mathcal{P}$	
D_p^r	Demand of product $p \in \mathcal{P}$	
\overrightarrow{M}	Maximum number of machines in factory	
T_m	Production time available one machine of type $m \in \mathcal{M}$	
$A_{p,m}$	Binary parameter, $1=$ product $p\in\mathcal{P}$ can be produced on machine type $m\in\mathcal{M}$, $0=$ otherwise	
$t_{p,m}$	Production time for one unit of product type $p \in \mathcal{P}$ on machine type t	
Variab	Variables	
y_m	Number of machines of type $m \in \mathcal{M}$	
$x_{p,m}$	Production amount of product $p \in \mathcal{P}$ on machine type $m \in \mathcal{M}$	

Table 1: Nomenclature for Task 1