Auxiliary Sections > Integral Transforms > Tables of Fourier Sine Transforms > Fourier Sine Transforms: Expressions with Trigonometric Functions

Fourier Sine Transforms: Expressions with Trigonometric Functions

No	Original function, $f(x)$	Sine transform, $\check{f}_{s}(u) = \int_{0}^{\infty} f(x) \sin(ux) dx$
1	$\frac{\sin(ax)}{x}, a > 0$	$\frac{1}{2}\ln\left \frac{u+a}{u-a}\right $
2	$x^{\nu-1}\sin(ax), a>0, \ -2<\nu<1$	$\pi \frac{ u-a ^{-\nu} - u+a ^{-\nu}}{4\Gamma(1-\nu)\sin\left(\frac{1}{2}\pi\nu\right)}, \nu \neq 0$
3	$\frac{\sin(ax)}{x^2 + b^2}, a, b > 0$	$ \begin{cases} \frac{1}{2}\pi b^{-1}e^{-ab}\sinh(bu) & \text{if } 0 < u < a, \\ \frac{1}{2}\pi b^{-1}e^{-bu}\sinh(ab) & \text{if } u > a \end{cases} $
4	$\frac{\sin(\pi x)}{1 - x^2}$	$\begin{cases} \sin u & \text{if } 0 < u < \pi, \\ 0 & \text{if } u > \pi \end{cases}$
5	$e^{-ax}\sin(bx), a>0$	$\frac{a}{2} \left[\frac{1}{a^2 + (b-u)^2} - \frac{1}{a^2 + (b+u)^2} \right]$
6	$x^{-1}e^{-ax}\sin(bx), a > 0$	$\frac{1}{4} \ln \frac{(u+b)^2 + a^2}{(u-b)^2 + a^2}$
7	$\exp(-ax^2)\sin(bx), a>0$	$\frac{1}{2}\sqrt{\frac{\pi}{a}}\exp\!\left(-\frac{u^2+b^2}{4a}\right)\sinh\!\left(\frac{bu}{2a}\right)$
8	$\sin\left(\frac{a}{x}\right), a > 0$	$\frac{\pi\sqrt{a}}{2\sqrt{u}}J_1(2\sqrt{au})$
9	$\frac{1}{\sqrt{x}}\sin\left(\frac{a}{x}\right), a > 0$	$\sqrt{\frac{\pi}{8u}} \left[\sin(2\sqrt{au}) - \cos(2\sqrt{au}) + \exp(-2\sqrt{au}) \right]$
10	$\exp(-a\sqrt{x})\sin(a\sqrt{x}), \ a>0$	$a\sqrt{\frac{\pi}{8}}u^{-3/2}\exp\left(-\frac{a^2}{2u}\right)$
11	$x^{\nu-1}\cos(ax), a > 0, \ \nu < 1$	$\frac{\pi(u+a)^{-\nu} - \operatorname{sign}(u-a) u-a ^{-\nu}}{4\Gamma(1-\nu)\cos\left(\frac{1}{2}\pi\nu\right)}$
12	$\frac{x\cos(ax)}{x^2+b^2}, a, b > 0$	$\begin{cases} -\frac{1}{2}\pi e^{-ab}\sinh(bu) & \text{if } u < a, \\ \frac{1}{2}\pi e^{-bu}\cosh(ab) & \text{if } u > a \end{cases}$
13	$\frac{1 - \cos(ax)}{x^2}, a > 0$	$\frac{u}{2}\ln\left \frac{u^2-a^2}{u^2}\right + \frac{a}{2}\ln\left \frac{u+a}{u-a}\right $
14	$\frac{1}{\sqrt{x}}\cos(a\sqrt{x})$	$\sqrt{\frac{\pi}{u}}\cos\!\left(\frac{a^2}{4u} + \frac{\pi}{4}\right)$

Notation: $J_1(z)$ is the Bessel function of the first kind, $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Fourier Sine Transforms: Expressions with Trigonometric Functions