Transformée de Hough

Basile Graf, Christophe Espic

Prof. Jean-Philippe Thiran

Introduction

- La transformée de Hough, utilisée en segmentation d'images, permet de détecter des objets bien précis dans une image.
- · Bonne insensibilité au bruit
- Elle permet de détecter des objets partiellement recouverts

Méthode Détection de droites (3)

- 1. Appliquer une détection de contours
- 2. Discrétiser le plan des paramètres (a,b)
- 3. Initialiser un accumulateur
- 4. Pour chaque point sur un contour :
 - 1. Déterminer sa droite image dans l'espace des paramètres
 - 2. Incrémenter l'accumulateur sur les points de cette droite
- 5. Recherche de maxima paramètres

Exemple Détection de droites

Détection de contours (MATLAB: edge)

Transformée de Hough Recherche de maximum

Le max correspond aux paramètres (a,b) de la droite

Défauts

Paramétrisation

- L'espace des paramètres doit être borné et discrétisé dans une implémentation réelle
- => Une droite verticale ne peut pas être représentée (a=∞)
- => Autre paramétrisation que y=ax+b

Détection de cercles de rayon R

La paramétrisation d'un cercle de centre (a,b) et de rayon R peut être donnée par

$$(x-a)^2 + (y-b)^2 - R^2 = 0$$

Détection de bords

Transformée de Hough (a,b) Maxima locaux

Cercle correspondant

Généralisation Détection d'autres types de courbes

Paramétrisation: $f(\mathbf{x}, \mathbf{a}) = 0 \quad \forall \mathbf{x} \in \mathbf{G}$ la courbe

La dimension de l'accumulateur (espace des paramètres) est $\dim(\mathbf{a})$

Algorithme

- Détection de bords
- Pour chaque point appartenant à un bord, calculer f(x_i,a) et incrémenter l'accumulateur en a_i lorsque |f(x_i,a_i)| < ε
- Recherche des maxima locaux de l'accumulateur

=> Paramétrisation des courbes recherchées

Inconvénients

La dimension du domaine transformé est égal aux nombres de paramètres nécessaires pour décrire la courbe

=> Le temps de calcul et la mémoire utilisée deviennent vite conséquents

<u>Exemple:</u> Cercles de rayons différents

$$f(\mathbf{x},\mathbf{a}) = (x-a)^2 + (y-b)^2 - r^2$$

$$x = (x,y)$$
 $a = (a,b,r)$

Conclusion

- La transformée de Hough est utile pour la détection de contours descriptibles par peu de paramètres (2, voire 3)
- Elle est robuste (bruit, occlusions)
- On peut envisager des algorithmes plus efficaces (multirésolution dans l'espace des paramètres)