CONVEX FUNCTIONS

Definition

Convex function

A function $f: \mathbf{R}^n \to \mathbf{R}$ is *convex* if $\operatorname{\mathbf{dom}} f$ is a convex set and if for all x, $y \in \operatorname{\mathbf{dom}} f$, and θ with $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Definition

Strictly convex function

f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Concave function

f is concave if -f is convex

affine: ax + b on **R**, for any $a, b \in \mathbf{R}$

convex

concave

exponential: e^{ax} , for any $a \in \mathbf{R}$

convex

powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$

convex

powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$

concave

negative entropy: $x \log x$ on \mathbf{R}_{++}

convex

logarithm: $\log x$ on \mathbf{R}_{++}

concave

examples on R^n

- affine function $f(x) = a^T x + b$
- norms

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p} \text{ for } p \ge 1;$$

 $||x||_{\infty} = \max_k |x_k|$

examples on $R^{m \times n}$

- affine function $f(X) = \operatorname{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{m} A_{ij} X_{ij} + b$
- spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

First-order condition

Proof: page 70

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

A global under-estimator

from local information about a convex function derive global information

First-order condition

For example

if $\nabla f(x) = 0$, then for all $y \in \operatorname{dom} f$, $f(y) \geq f(x)$, i.e., x is a global minimizer

Strict convexity

$$f(y) > f(x) + \nabla f(x)^T (y - x).$$

concave

$$f(y) \le f(x) + \nabla f(x)^T (y - x)$$

Second-order conditions

f is **twice differentiable** if the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{dom} f$

Strictly convex

f is convex if and only if $\operatorname{dom} f$ is convex and its Hessian is positive semidefinite:

$$\nabla^2 f(x) \succeq 0.$$

graph of the function have positive curvature

$$\nabla^2 f(x) \preceq 0$$
 concave

Examples

quadratic function

$$f(x) = (1/2)x^T P x + q^T x + r$$

 $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, and $r \in \mathbf{R}$

$$\nabla f(x) = Px + q$$
 $\nabla^2 f(x) = P$

convex if $P \succeq 0$

Examples

least-squares objective

$$f(x) = ||Ax - b||_2^2$$

$$\nabla f(x) = 2A^{T}(Ax - b) \qquad \qquad \nabla^{2}f(x) = 2A^{T}A$$

convex (for any A)

examples

quadratic-over-linear

$$f(x,y) = x^2/y$$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[\begin{array}{cc} y^2 & -xy \\ -xy & x^2 \end{array} \right] \ = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0.$$

(for y > 0)

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave

example

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_k x_l} \quad \text{for } k \neq l, \qquad \frac{\partial^2 f(x)}{\partial x_k^2} = -(n-1) \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_k^2}
q_i = 1/x_i \qquad \nabla^2 f(x) = -\frac{\prod_{i=1}^n x_i^{1/n}}{n^2} \left(n \operatorname{\mathbf{diag}}(1/x_1^2, \dots, 1/x_n^2) - q q^T \right)
v^T \nabla^2 f(x) v \qquad = -\frac{\prod_{i=1}^n x_i^{1/n}}{n^2} \left(n \sum_{i=1}^n v_i^2 / x_i^2 - \left(\sum_{i=1}^n v_i / x_i\right)^2 \right) \leq 0$$

 $|x^T y| \le ||x||_2 ||y||_2 \text{ for any } x, y \in \mathbf{R}^n$

Sublevel sets and epigraphs

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

Inverse is not true

sublevel sets of convex functions are convex

The graph of a function $f: \mathbf{R}^n \to \mathbf{R}$ is defined as

$$\{(x, f(x)) \mid x \in \mathbf{dom}\, f\},\$$

which is a subset of \mathbb{R}^{n+1}

The epigraph of a function $f: \mathbf{R}^n \to \mathbf{R}$ is defined as

epi
$$f = \{(x, t) \mid x \in \text{dom } f, \ f(x) \le t\}$$

which is a subset of \mathbf{R}^{n+1} .

Sublevel sets and epigraphs

- √ The link between convex sets and convex functions is via the epigraph
- ✓ A function is convex if and only if its epigraph is a convex set.

Establishing convexity

for twice differentiable functions,

show PS of Hessian

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

nonnegative weighted sum of convex functions:

$$f = w_1 f_1 + \dots + w_m f_m$$

composition with affine function: f(Ax + b) is convex if f is convex

Examples:

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

piecewise-linear function

the maximum of all possible sums of r different components of x.

$$f(x) = \max\{a_1^T x + b_1, \dots, a_L^T x + b_L\}$$

sum of r largest components of $x \in \mathbf{R}^n$ $x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$ $f(x) = \sum_{i=1}^n x_{[i]},$

$$f(x) = \sum_{i=1}^{r} x_{[i]} = \max\{x_{i_1} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\},$$

If for each $y \in \mathcal{A}$, f(x,y) is convex in x, then the function g, defined as

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x.

examples

distance to farthest point in a set C

The distance (in any norm) to the farthest point of C $f(x) = \sup_{y \in C} ||x - y||$, is convex.

maximum eigenvalue of symmetric matrix

for
$$X \in \mathbf{S}^n$$
,

linear functions of X

$$f(X) = \sup\{y^T X y \mid ||y||_2 = 1\} = \sup_{||y||_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

 $\begin{array}{ll} f \text{ is convex if} & g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

```
f is convex if \begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}
```

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

Quasiconvex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *quasiconvex* (or *unimodal*) if its domain and all its sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \},$$

for $\alpha \in \mathbf{R}$, are convex.

• f is quasiconcave if -f is quasiconvex

ullet f is quasilinear if it is quasiconvex and quasiconcave

Quasiconvex functions

examples

- $\sqrt{|x|}$ is quasiconvex on ${\bf R}$
- $\log x$ is quasilinear on \mathbf{R}_{++}

Quasiconvex functions

Consider $f: \mathbf{R}^2 \to \mathbf{R}$, with $\operatorname{dom} f = \mathbf{R}_+^2$ and $f(x_1, x_2) = x_1 x_2$.

$$\nabla^2 f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

This function is neither convex nor concave the superlevel sets

$$\{x \in \mathbf{R}_+^2 \mid x_1 x_2 \ge \alpha\}$$

are convex sets

The function f is quasiconcave

