Deep Learning

Practical: 09

Name of the student	Vishesh Gupta
Roll No.	J018
Class	B.Tech Data Science 3 rd Year

Aim:

Identify and download 10 types of images from imagenet and build a CNN model to classify them.

The CNN model includes filters as 32, kernel_size as (3,3) and activation function used in reLu.

The optimizer used in this model is adadelta and the loss function is binary_crossentropy.

Accuracy: 76.3%.

conv2d_1 {Conv2D)	(None 3Z, 32, 32)	896
maxpoolingZd_1(BaxPooling	g2 (None, 16, 16, 32)	0
conv2d_Z {Conv2D)	(None, 16, 16, 64)	18496
max oo1ing2d_2 laxPooli ng2	2 (None B 8, 64)	0
conv2d_3 (Conw2D)	(None B 8, 64-)	36928
maxpoolingZd_3 (HaxPooling	0	
conv2d_4 (Conw2D)	(None, 4, 4, dv)	36928
maxpooling2b_4(HaxPooling	g2 (None, 2, 2, d4)	0
flatten_1 (Flatten)	(None, 256)	0
dense_l (Dense)	(done, 128)	32896
dropout_1 (Dropout)	(done, 12B)	0
dense_2 (Dense)	(done, b4)	8256
dropout_2 (Dropout)	(None 64)	0
dense_3 (Dense)	(None, 32)	2888
dropout_3 (Dropout)	(None, 32)	0
dense_4 (Dense)	(None, 1)	33

Total params: 136, 513 Tra1nab1e params: 136, 513 Non-tra1nable params: 0

Cat/Dog Classifier gets an accuracy of 49.53% after using optimizer as adam and the loss function as binary_crossentropy.

For MNIST, Out of the 70,000 images provided in the dataset, 60,000 are given for training and 10,000 are given for testing.

conv2d_7_inpui: InpulLayer mput (Alone, 28, 28, 1) ouQuc: [None 2B, 2B, 1)

COTIV2d 7: Gonv2D input: (None, 2B, 2B, 1)
output (Nnne, 26, 26, 64)

coov2d_8: Conv2D mpuu (None 26, 26, 64)
oul@ub (NoOe, 24, 24, 32)

 Qatten_3: Flahm
 input: (None, 24, 24, 32)

 oupul: {None, 18432)

 dense 7: Dense
 input:
 (None, 18432)

 output:
 (None, 10)

model: "sequent1al_3" Layer (type) Output Sh ape Param # $c\ onv\ zd_7\ (\ Conv2D)$ (None, 26, 26, 6-4) 640 c onv zd_B (Conv2D) (None, 24-, 24, 32) 18464 -F1atten_3 (FI a tten) (Non e, 18432) dense_y (Dense) (None, le) 184330

Total pa raw s : 283, 434 Tra1nable p a rams: ze3, 434-Non -I r a1 nab 1e par ams : e

Accuracy: 98%

Code:

https://github.com/visheshtechie/DL/blob/master/Lab9_Keras_2DCNN.ipynb