# Graphs in ML Project Defence Recommender system with serendipity

Clémence Réda

École Normale Supérieure Paris-Saclay

January 17th, 2019





This might be a useful recommender system!

Comic from artist Piccolo





This might be a <u>useless</u> recommender system!

(Adapted) comic from artist Piccolo



### **Outlines**

- Introduction
  - Field of research
  - Goal
- Problem of Serendipity
  - State-of-the-art
  - Formalization of the problem
  - Method
- Results
  - Datasets
  - Setting
  - Quantitative Results
  - Qualitative Results
- Conclusion



- Introduction
  - Field of research
  - Goal
- Problem of Serendipity
  - State-of-the-art
  - Formalization of the problem
  - Method
- Results
  - Datasets
  - Setting
  - Quantitative Results
  - Qualitative Results
- 4 Conclusion



### **Accuracy** ≠ **Usefulness!**

[Abbassi et al., 2009, Kunaver and Požrl, 2017], ...

### Regular recommender problem

### Input:

- A user u
- A set of objects V in which the recommended item must belong
- Access to the histories of the user(s):  $\{(object_k, reward_k)\}_k$

#### Goal:

Return a recommended item that maximizes the reward for the seller (price, probability of buying, ...)



### **Accuracy** ≠ **Usefulness!**

[Abbassi et al., 2009, Kunaver and Požrl, 2017], ...

### Recommender problem with serendipity

### Input:

- A user u
- A set of objects V in which the recommended item must belong
- Access to the histories of the user(s): {(object<sub>k</sub>, reward<sub>k</sub>)}<sub>k</sub>

#### Goal:

Return a recommended item that maximizes both the reward and the novelness.



- ~ diversity-accuracy dilemma [Zhou et al., 2010]
   → exploration-exploitation dilemma in bandits
- Bandits are popular tools to tackle the recommender problem [Koutrika, 2018, Mary et al., 2015, Guillou et al., 2016].

#### Multi-Armed Bandit

- 1: Initialize scores associated with each action (eg movie)
- 2: Repeat
  - 3: Compute the score of each action
  - 4: Select the arm/action which maximizes the score
  - 5: Receive the reward and improve the computation of the score
- 6: return the arm associated with the highest score



# **Introduction** Objectives of this project

#### Goals

Formalize the problem of recommendation with serendipity



# **Introduction** Objectives of this project

#### Goals

- Formalize the problem of recommendation with serendipity
- Find a method to tackle this problem

# **Introduction** Objectives of this project

#### Goals

- Formalize the problem of recommendation with serendipity
- Find a method to tackle this problem
- Compare it with other bandit methods

- Introduction
  - Field of research
  - Goal
- Problem of Serendipity
  - State-of-the-art
  - Formalization of the problem
  - Method
- Results
  - Datasets
  - Setting
  - Quantitative Results
  - Qualitative Results
- 4 Conclusion



### State-of-the-art

### Several definitions of serendipity

[Abbassi et al., 2009, Murakami et al., 2007, Iaquinta et al., 2008, Kotkov et al., 2016]

### State-of-the-art

### Several definitions of serendipity

[Abbassi et al., 2009, Murakami et al., 2007, Iaquinta et al., 2008, Kotkov et al., 2016]

#### What one would need:

- A flexible definition
- Easy to understand and grasp
- Should fit as much as possible the concept of serendipity

### **Formalization**

- G(V, E) unweighted, undirected object similarity graph
- Histories of the user  $\{(\mathsf{object}_k, \mathsf{reward}_k)\}_k$

 $f_u^{(k)} = \text{explored objects up to time } k$   $r_u^{(k)} = \text{associated reward received up to time } k$  (random variables)

### Serendipity value

**serendipity value** of an unexplored object v (of *normalized* reward variable  $\tilde{r}_{v,u}^{(k)}$ ) at time k>0 with respect to user u

$$s(v,u,k) = \mathbb{E}_{(f_u^{(k)},\tilde{r}_u^{(k)})}[\tilde{r}_{v,u}^{(k)} \times d_e(v, \text{explored}) | (f_u^{(t)},\tilde{r}_u^{(t)})_{t < k}]$$

### **Formalization**

### Serendipity value

**serendipity value** of an unexplored object v (of *normalized* reward variable  $\tilde{r}_{v,u}^{(k)}$ ) at time k>0 with respect to user u

$$s(v,u,k) = \mathbb{E}_{(f_u^{(k)},\tilde{r}_u^{(k)})}[\tilde{r}_{v,u}^{(k)} \times d_e(v, \text{explored}) | (f_u^{(t)},\tilde{r}_u^{(t)})_{t < k}]$$

Thus the set of potential serendipities at time k>0 for user u is denoted  $S_u$ 

### Potential Serendipities

$$S_u = \arg\max\{v \text{ unexplored} : s(v, u, k)\}$$



# **Method** Adapting from Influence Maximization



To whom should products be given in order to become viral?

richardkim.me/
influencemaximization



# **Method** Adapting from Influence Maximization



To whom should products be given in order to become viral?

Online: Learning while running the marketing campaign

richardkim.me/
influencemaximization



# **Method** Adapting from Influence Maximization



richardkim.me/
influencemaximization

To whom should products be given in order to become viral?

Online: Learning while running the marketing campaign

**Persistent:** Once a node is explored, it does not yield a reward anymore



# Method Algorithm from [Lagrée et al., 2017]

#### Score:

$$b_k(t) = \hat{R}_k(t) + (1 + \sqrt{2}) \sqrt{\frac{\hat{\lambda}_k(t)\log(4t)}{n_k(t)}} + \frac{\log(4t)}{3n_k(t)}$$

**Require:** Set of candidates [K], time budget N

- 1: **Initialization:** play each candidate  $k \in [K]$  once, observe the spread  $S_{k,1}$ , set  $n_k = 1$
- 2: For each  $k \in [K]$ : update the reward  $W = W \cup S_{k,1}$
- 3: **for** t = K + 1, ..., N **do**
- 4: Compute  $b_k(t)$  for every candidate k
- 5: Choose  $k(t) = \arg \max_{k \in [K]} b_k(t)$
- 6: Play candidate k(t) and observe spread S(t)
- 7: Update cumulative reward:  $W = W \cup S(t)$
- 8: Update statistics of candidate k(t):  $n_{k(t)}(t+1) = n_{k(t)}(t) + 1$  and  $S_{k,n_k(t)} = S(t)$ .
- 9: end for
- 10: return W



# Method Adapted algorithm

Apply the serendipity constraint on the set of candidates (and their supports) selected in [Lagrée et al., 2017]'s algorithm, parametrized by value s.

```
\text{1: } S \leftarrow \mathsf{Supp}(f_u^{(t)}) \cap \{c \in V: \exists i, 1 \leq i \leq s, W^i[c, \mathsf{Supp}(f_u^{(t)})] \mathbf{1} > 0\}
```

2: centroids  $\leftarrow$  Kmeans(data = F[S,:], nclusters = K)

3: candidates  $\leftarrow \emptyset$ 

4: **for**  $c \in$  centroids **do** 

5: Append  $\arg\min_{v \in S} ||F[v,:] - F[c,:]||_2^2$  to candidates

6: end for

7: supports  $\leftarrow \emptyset$ 

8: for  $v \in \text{candidates do}$ 

9: Append  $\{v' \in S : W[v, v'] > 0\}$  to supports

10: end for

11: return candidates, supports

- Introduction
  - Field of research
  - Goal
- Problem of Serendipity
  - State-of-the-art
  - Formalization of the problem
  - Method
- Results
  - Datasets
  - Setting
  - Quantitative Results
  - Qualitative Results
- 4 Conclusion



### MovieLens

Movie recommendation! data on users, movies, and ratings

(GroupLens Research: movielens.org)



M. Valko's slides for Lecture 7

# MovieLens (ml-1m, ml-20m)



MovieLens 1M Dataset (ml-1m)

| #movies | #users | average #ratings/user |
|---------|--------|-----------------------|
| 4,000   | 6,000  | 165                   |

MovieLens 20M Dataset (ml-20m)

| #movies | #users  | average #ratings/user |
|---------|---------|-----------------------|
| 27,000  | 138,000 | 144                   |



**Evaluation** on 100 iterations and at horizon 100

### Cumulative regret

 $a^{(t)}$  is the recommended item at time t:

$$R_T = \sum_{t \le T} \max\{a^* \text{explored} : r(a^*) - r(a^{(t)})\}$$

**Evaluation** on 100 iterations and at horizon 100

### Cumulative regret

 $a^{(t)}$  is the recommended item at time t:

$$R_T = \sum_{t \le T} \max\{a^* \text{explored} : r(a^*) - r(a^{(t)})\}$$

### Diversity measure ([Vie, 2016])

t is the number of rounds,  $V^{(t)}$  is the feature matrix of explored objects up to time t

$$D(V^{(t)}) = \sqrt{|V^{(t)}.t(V^{(t)})|}$$



### **Algorithms**

#### Tested bandit methods

Random strategy

### **Algorithms**

#### Tested bandit methods

- Random strategy
- $\bullet$ -greedy strategy (w.r.t. diversity measure)

### **Algorithms**

#### Tested bandit methods

- Random strategy
- $\bullet$ -greedy strategy (w.r.t. diversity measure)
- LinUCB (described in [Chu et al., 2011])

### **Algorithms**

#### Tested bandit methods

- Random strategy
- $\bullet$ -greedy strategy (w.r.t. diversity measure)
- LinUCB (described in [Chu et al., 2011])
- The adapted method from [Lagrée et al., 2017]

# Results Regret, diversity, serendipity curves

### **ml-20m** dataset, random (*top*) and $\epsilon$ -greedy methods



# Results Regret, diversity, serendipity curves

### ml-20m dataset, adapted method (top) and LinUCB methods



# **Results** Variation of parameter s



#### Remarks:

 When s increases (up to some point), diversity increases and regret decreases



# **Results** Variation of parameter s



#### Remarks:

- When s increases (up to some point), diversity increases and regret decreases
- From some value of s, regret increases again



# **Results** Variation of parameter s



#### Remarks:

- When s increases (up to some point), diversity increases and regret decreases
- From some value of s, regret increases again
- Little influence of s on the (cumulative) serendipity value...



- Introduction
  - Field of research
  - Goal
- Problem of Serendipity
  - State-of-the-art
  - Formalization of the problem
  - Method
- Results
  - Datasets
  - Setting
  - Quantitative Results
  - Qualitative Results
- 4 Conclusion



A measure for serendipity

- A measure for serendipity
- A method that tackles the problem of recommendation with serendipity

- A measure for serendipity
- A method that tackles the problem of recommendation with serendipity
- Benchmark with classic/naive methods of recommendation

- A measure for serendipity
- A method that tackles the problem of recommendation with serendipity
- Benchmark with classic/naive methods of recommendation

#### What remains to be done

 Testing with methods that might be more relevant: Rotting Bandits [Seznec et al., 2018], Outside-The-Box recommendation [Abbassi et al., 2009]

- A measure for serendipity
- A method that tackles the problem of recommendation with serendipity
- Benchmark with classic/naive methods of recommendation

#### What remains to be done

- Testing with methods that might be more relevant: Rotting Bandits [Seznec et al., 2018], Outside-The-Box recommendation [Abbassi et al., 2009]
- User similarity has been ignored here



- A measure for serendipity
- A method that tackles the problem of recommendation with serendipity
- Benchmark with classic/naive methods of recommendation

#### What remains to be done

- Testing with methods that might be more relevant: Rotting Bandits [Seznec et al., 2018], Outside-The-Box recommendation [Abbassi et al., 2009]
- User similarity has been ignored here
- The parametrization with the serendipity threshold s has an influence on regret and diversity, but not so much on the serendipity measure!!



### References I



Abbassi, Z., Amer-Yahia, S., Lakshmanan, L. V., Vassilvitskii, S., and Yu, C. (2009).

Getting recommender systems to think outside the box. In *Proceedings of the third ACM conference on Recommender systems*, pages 285–288. ACM.

Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011).
Contextual bandits with linear payoff functions.
In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pages 208–214.

Guillou, F., Gaudel, R., and Preux, P. (2016).
Large-scale bandit recommender system.
In International Workshop on Machine Learning, Optimization and Big Data, pages 204–215. Springer.

### References II



Iaquinta, L., De Gemmis, M., Lops, P., Semeraro, G., Filannino, M., and Molino, P. (2008).

Introducing serendipity in a content-based recommender system.

In Hybrid Intelligent Systems, 2008. HIS'08. Eighth International Conference on, pages 168–173. IEEE.



Kotkov, D., Wang, S., and Veijalainen, J. (2016).

A survey of serendipity in recommender systems.

Knowledge-Based Systems, 111:180–192.



Koutrika, G. (2018).

Recent advances in recommender systems: Matrices, bandits, and blenders.

### References III

- Kunaver, M. and Požrl, T. (2017).
  Diversity in recommender systems—a survey.

  Knowledge-Based Systems, 123:154—162.
- Lagrée, P., Cappé, O., Cautis, B., and Maniu, S. (2017). Effective large-scale online influence maximization. In *Data Mining (ICDM), 2017 IEEE International Conference on*, pages 937–942. IEEE.
- Mary, J., Gaudel, R., and Preux, P. (2015).
  Bandits and recommender systems.
  In International Workshop on Machine Learning, Optimization and Big Data, pages 325–336. Springer.

### References IV



Murakami, T., Mori, K., and Orihara, R. (2007). Metrics for evaluating the serendipity of recommendation lists. In *Annual conference of the Japanese society for artificial intelligence*, pages 40–46. Springer.



Seznec, J., Locatelli, A., Carpentier, A., Lazaric, A., and Valko, M. (2018).

Rotting bandits are no harder than stochastic ones. *arXiv preprint arXiv:1811.11043*.



Vie, J.-J. (2016).

Modèles de tests adaptatifs pour le diagnostic de connaissances dans un cadre d'apprentissage à grande échelle.

PhD thesis, Université Paris-Saclay.



### References V



Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., and Zhang, Y.-C. (2010).

Solving the apparent diversity-accuracy dilemma of recommender systems.

Proceedings of the National Academy of Sciences, 107(10):4511–4515.