รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและไมโครคอนโทรลเลอร์

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

- 1. การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ AT89C51ED2
 - 1.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ AT89C51ED2
 - 1.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ AT89C51ED2
- 2. การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ PIC16F887
 - 2.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ PIC16F887
 - 2.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ PIC16F887
- 3. การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ ATMEGA32
 - 3.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ ATMEGA323.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ ATMEGA32

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ AT89C51ED2

ไมโครคอนโทรลเลอร์ AT89C51ED2 ไม่มีไมดูล ADC ในตัว ถ้าต้องอ่าน ค่าสัญญาณอนาล็อกจะต้องทำการเชื่อมต่อกับไอชีวงจรรวมที่ทำหน้าที่ในการ แปลงสัญญาณอนาล็อกเป็นดิจิทัล เช่น ADC0804 เป็นตัน เช่นเดียวกันภายใน ไมโครคอนโทรลเลอร์ AT89C51ED2 ไม่มีโมดูลพิเศษ DAC บรรจุอยู่ภายใน แต่ สามารถสร้างโมดูล DAC เสมือนได้จากการใช้โมดูล PWM เพื่อสร้างแรงดัน เฉลี่ยที่ขาสัญญาณ PWM ด้วยการเปลี่ยนค่าดิวตี้ไซเกิล หรืออาจจะทำการ เชื่อมต่อกับไอชีวงจรรวมที่ทำหน้า DAC เช่น DAC0808 เป็นต้น

Digital And Microcontrolle

3

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

1.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ AT89C51ED2

รูปที่ 1.1 การแปลงสัญญาณ ADC ด้วย AT89C51ED2 ผ่านไอซี ADC0804

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

ไมโครคอนโทรลเลอร์ PIC16F887 มีโมดูลพิเศษ ADC อยู่ภายในตัวจำนวน 14 ช่อง สามารถแปลงค่า

แรงดันอนาล็อกเป็นข้อมูลทางดิจิทัลที่มีความละเอียดขนาด 10 บิต ส่วนโมดูล DAC ภายใน

ไมโครคอนโทรลเลอร์ PIC16F887 จะไม่มีโมดูลพิเศษนี้บรรจุอยู่ภายใน แต่สามารถสร้างโมดูล DAC เสมือนได้จากการใช้โมดูล PWM เพื่อสร้างแรงดันเฉลี่ยที่ขาสัญญาณ PWM ด้วยการเปลี่ยนคำดิวตี้ไซเกิล

Digital And Microcontroller

4

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

1.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ AT89C51ED2

Digital And Microcontrolle

การแปลงสัญญาณ DAC ของไมโครคอนโทรลเลอร์ AT89C51ED2 นั้นจะใช้วิธีการสร้างโมคูล DAC เสมือนจากการใช้งานโมคูล PWM เพื่อสร้างแรงดันเฉลี่ยที่ขาสัญญาณ PWM ด้วยการเปลี่ยนค่าดิวตี้ไขเกิล ซึ่งวิธีการสร้างสัญญาณ PWM

หรืออาจจะทำการเชื่อมต่อกับไอชีวงจรรวมที่ทำหน้า DAC เช่น DAC0808 เป็นต้น

2.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ PIC16F887 การแปลงสัญญาณ ADC ของไมโครคอนโทรลเลอร์ PIC16F887 มีจำนวนขาย่

2. การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ PIC16F887

การแปลงสัญญาณ ADC ของไมโครคอนโทรลเลอร์ PIC16F887 มีจำนวนขาสัญญาณให้เสือกใช้ งานจำนวน 14 ช่อง โดยแต่ละช่องสามารถกำหนดค่าแรงดันอนาล็อกที่สามารถรับได้ 2 รูปแบบ คือ +Vref ถึง -Vref หรือ Vdd ถึง Vss เมื่อทำการแปลงแรงดันอนาล็อกเป็นดิจิทัลแล้วข้อมูลจะมีความละเอียดขนาด 10 บิต หมายความว่าค่าแรงดันอนาล็อกที่ทำการแปลงข้อมูลดิจิทัลจะมีค่าอยู่ระหว่างข้อมูล 0 ถึง 1023

Digital And Microcontroller

โมดูลพิเศษ ADC ของไมโครคอนโทรลเลอร์ PIC16F887 มีรีจิสเตอร์ที่เกี่ยวข้องกับการทำงาน ของโมดูลนี้ ดังนี้

1. รีจิสเตอร์ ADCONO ทำหน้าที่ในการกำหนดแหล่งกำเนิดสัญญาณนาฬิกาให้แกโมดูล ADC โดยใช้บิต ADCS1:ADCS0 , เลือกขาสัญญาณ ADC โดยใช้บิต CHS3:CHS0 ,ให้เริ่มกระบวนการ แปลงสัญญาณ ADC โดยใช้บิต GO และใช้ในการปิดเปิดการทำงานของโมดูล ADC โดยใช้บิต

R/W-0	R/W-0						
ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

รูปแสดงตำแหน่งบิตต่าง ๆ ของรีจิสเตอร์ ADCON0

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ bit 5-2

รูปแสดงวิธีการกำหนดค่าให้แก่บิตต่าง ๆ ของรีจิสเตอร์ ADCON0

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

2. รีจิสเตอร์ ADCON1 ทำหน้าที่ในการกำหนดวิธีการเก็บค่าข้อมูลผลลัพธ์ของการแปลงสัญญาณ อนาล็อกเป็นดิจิทัลโดยใช้บิต ADFM และใช้กำหนดแรงดันอ้างอิงในการแปลงสัญญาณโดยใช้บิต VCFG1:VCFG0

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

3. รีจิสเตอร์ ADRESH และ รีจิสเตอร์ ADRESL คือรีจิสเตอร์ที่ทำหน้าที่ในการเก็บผลลัพธ์ของ การแปลงสัญญาณอนาล็อกเป็นดิจิทัล ถ้าบิต ADFM ของรีจิสเตอร์ ADCON1 มีค่าเท่ากับ '0' รีจิสเตอร์ ADRESH จะเก็บผลลัพธ์บิต 9 ถึง บิต 2 ส่วน ADRESL จะเก็บผลลัพธ์บิต 1 ถึง บิต 0 แต่ถ้า ถ้าบิต ADFM ของรีจิสเตอร์ ADCON1 มีค่าเท่ากับ '1' รีจิสเตอร์ ADRESH จะเก็บผลลัพธ์บิต 9 ถึง บิต 8 ส่วน ADRESL จะเก็บผลลัพธ์บิต 7 ถึง บิต 0

รูปที่แสดงการเก็บข้อมูลผลลัพธ์การแปลงสัญญาณอนาล็อกเป็นดิจิทัล ด้วยรีจิสเตอร์ ADRESH และ ADRESI

Digital And Microcontrolle

10

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

- 4. รีจิสเตอร์ ANSEL ทำหน้าที่ในการกำหนดหน้าที่ขาของสัญญาณ AN7 -ANO ให้ทำงานในโหมดอนาล็อกหรือดิจิทัล ซึ่งหลังจากการรีเซตรีจิสเตอร์นี้ทุกบิตจะถูก เขียนค่าด้วยลอจิก '1' หมายความว่าขาสัญญาณให้เริ่มต้นการทำงานด้วยหน้าที่ขา อนาล็อก แต่ถ้าต้องการให้ขาใดให้ทำงานในรูปแบบขาสัญญาณดิจิทัลจะต้องเขียนข้อมูล ที่ตรงกับบิตที่ต้องการลงที่รีจิสเตอร์ตัวนี้ด้วยลอจิก '0'
- 5. รีจิสเตอร์ ANSELH ทำหน้าที่ในการกำหนดหน้าที่ขาของสัญญาณ AN13 -AN8 ให้ทำงานในโหมดอนาล็อกหรือดิจิทัล ซึ่งหลังจากการรีเซตรีจิสเตอร์นี้ทุกบิตจะถูก เขียนค่าด้วยลอจิก '1' หมายความว่าขาสัญญาณให้เริ่มต้นการทำงานด้วยหน้าที่ขา อนาล็อก แต่ถ้าต้องการให้ขาใดให้ทำงานในรูปแบบขาสัญญาณดิจิทัลจะต้องเขียนข้อมูล ที่ตรงกับบิตที่ต้องการลงที่รีจิสเตอร์ตัวนี้ด้วยลอจิก '0'

Digital And Microcontroller

11

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ รปแสดงวงจรทดสอบการทำงานขาสัญญาณอนาล็อก ของไมโครคอนโทรลเลอร์ PIC16F887 Digital And Microcontroller 12

2.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ PIC16F887

การแปลงสัญญาณ DAC ของไมโครคอนโทรลเลอร์ PIC16F887 นั้นจะใช้วิธีการสร้างโมดูล DAC เสมือนจากการใช้งานโมดูล PWM เพื่อสร้างแรงดันเฉลี่ยที่ขาสัญญาณ PWM ด้วยการเปลี่ยน ค่าดิวตี้ไซเกิล

รปการแปลงสัญญาณ DAC ด้วยโมตล PWM ของ PIC16F887 13

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

3. การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ ATMEGA32

ไมโครคอนโทรลเลอร์ ATMEGA32 มีโมดูลพิเศษ ADC อยู่ภายในตัวจำนวน 8 ช่อง สามารถ แปลงค่าแรงดันอนาล็อกเป็นข้อมูลทางดิจิทัลที่มีความละเอียดขนาด 10 บิต ส่วนโมดูล DAC ภายใน ไมโครคอนโทรลเลอร์ ATMEGA32 จะไม่มีโมดูลพิเศษนี้บรรจุอยู่ภายใน แต่สามารถสร้างโมดูล DAC เสมือนได้จากการใช้โมดูล PWM เพื่อสร้างแรงดันเฉลี่ยที่ขาสัญญาณ PWM ด้วยการเปลี่ยนค่าดิวตี้ ไซเกิล หรืออาจจะทำการเชื่อมต่อกับไอชีวงจรรวมที่ทำหน้า DAC เช่น DAC0808 เป็นต้น

3.1 การแปลงสัญญาณ A/D ของไมโครคอนโทรลเลอร์ ATMEGA32

การแปลงสัญญาณ ADC ของไมโครคอนโทรลเลอร์ ATMEGA32 นั้นจะใช้โมดูลพิเศษ ADC ที่อยู่ภายในตัวของไมโครคอนโทรลเลอร์ ซึ่งมีจำนวนขาสัญญาณให้เลือกใช้งานจำนวน 8 ช่อง โดยแต่ละ ช่องสามารถกำหนดค่าแรงดันอนาล็อกที่สามารถรับได้ว่าจะอยู่ในช่วงของแรงดันเท่าไหร่ได้ 3 รูปแบบ คือ AREF ถึง GND หรือ AVCC ถึง GND หรือ Internal 2.56V เมื่อทำการแปลงแรงดันอนาล็อกเป็น ดิจิทัลแล้วข้อมูลจะมีความละเอียดขนาด 10 ปิต หมายความว่าค่าแรงดันอนาล็อกที่ทำการแปลงข้อมูล ดิจิทัลจะมีค่าอยู่ระหว่างข้อมูล 0 ถึง 1023

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

โมดูลพิเศษ ADC ของไมโครคอนโทรลเลอร์ ATMEGA32 มีรีจิสเตอร์ที่เกี่ยวข้องกับการ ทำงานของโมดูลนี้ ดังนี้

1. รีจิสเตอร์ ADMUX ทำหน้าที่ในการกำหนดแรงดันอ้างอิงให้แก่โมดูลพิเศษ ADC ด้วยบิต REFS1:REFS0 , กำหนดลักษณะการเก็บผลลัพธ์ของการแปลงสัญญาณอนาล็อกเป็นดิจิทัลลงในรีจิสเตอร์ ADCH และ ADCL ด้วยบิต ADLAR , กำหนดช่องสัญญาณที่ต้องการอ่านค่าอนาล็อกพร้อมอัตราการ ขยายสัญญาณด้วยบิต MUX4:MUX0

7	6	5	4	3	2	1	0	
REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
0	0	0	0	0	0	0	0	
REFS1	REFS0	Voltage Re	ference Se	election				
0	0	AREF, Inter	nal Vref tu	rned off				
0	- 1	AVCC with	external ca	nacitor at A	RFF nin			

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain	01000		
00000	ADC0				01001		
00001	ADC1				01010(1)		
00010	ADG2				01011(1)		
00011	ADC3	N/A			01100		
00100	ADC4				01101		
00101	ADC5				01110(1)		
00110	ADC6						
00111	ADC7				01111(1)		
					10000		
					10001		
				_	10010	N/A	
MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain	10010	N/A	
				Gain 1x	_	N/A	
MUX40 11101 11110		Input	Input		10011	N/A	

	01110(1)		ADC2	ADC2	200x
	01111(1)		ADC3	ADC2	200x
	10000		ADC0	ADC1	1x
	10001		ADC1	ADC1	1x
	10010	N/A	ADC2	ADC1	1x
	10011		ADC3	ADC1	1x
1	10100		ADC4	ADC1	1x
	10101		ADC5	ADC1	1x
	10110		ADC6	ADC1	1x
	10111		ADC7	ADC1	1x
	11000		ADC0	ADC2	1x
	11001		ADC1	ADC2	1x
	11010		ADC2	ADC2	1x
	11011		ADC3	ADC2	1x
	11100		ADC4	ADC2	1x

รูปการกำหนดค่าบิต MUX4:MUX0 ของรีจิสเตอร์ ADMUX เพื่อเลือกช่องสัญญาณ ADC

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

2. รีจิสเตอร์ ADCSRA ทำหน้าที่ในการปิดเปิดการทำงานของโมดูลพิเศษ ADC ด้วยบิต ADEN , กำหนดการเริ่มขบวนการแปลงสัญญาณด้วยบิต ADSC , กำหนดการทำงานของโมดูล ADC แบบ ออโต้ทริกเพื่อให้โมดูล ADC ทำงานด้วยบิต ADATE และบิตที่กำหนดค่าปรีสเกลเลอร์ของสัญญาณ นาฬิกาที่จ่ายให้แก่โมดูล ADC ได้แก่บิต ADPS2:ADPS0

	7	6	5		4	3		2	1	0	
	ADEN	ADSC	ADATE	ΑI	DIF	ADIE	7	ADPS2	ADPS1	ADPS0	ADCSRA
	R/W	R/W	R/W	R	w	R/W		R/W	R/W	R/W	
	0	0	0	-	0	0		0	0	0	
ADPS2		S2	ADPS1		-	ADPS0			Division Fa	actor	
	0		0			0	П		2		
	0		0			1			2		
	0		1			0			4		
	0		1			1			8		
	1		0		0			16			
	1		0			1			32		
	1		1			0	T		64		
	- 1		- 1			1			128		

รูปตารางการกำหนดค่าปรีสเกลเลอร์ของสัญญาณนาฬิกาที่จ่ายให้แก้โมดูล ADC

17

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์

3. รีจิสเตอร์ ADCH และ ADCL คือรีจิสเตอร์ที่ทำหน้าที่ในการเก็บผลลัพธ์ของ การแปลงสัญญาณอนาล็อกเป็นดิจิตอล โดยถ้าบิต ADLAR ของรีจิสเตอร์ ADMUX มีค่า เท่ากับ '0' รีจิสเตอร์ ADCH จะเก็บผลลัพธ์บิต 9 ถึง บิต 8 ส่วน ADCL จะเก็บผลลัพธ์ บิต 7 ถึง บิต 0 แต่ถ้าถ้าบิต ADLAR ของรีจิสเตอร์ ADMUX มีค่าเท่ากับ '1' รีจิสเตอร์ ADCH จะเก็บผลลัพธ์บิต 9 ถึง บิต 2 ส่วน ADCL จะเก็บผลลัพธ์บิต 1 ถึง บิต 0

รูปการเก็บค่าข้อมูลของรีจิสเตอร์ ADCH และ ADCL เมื่อบิต ADLAR เป็นลอจิก '0' หรือ '1'

Digital And Microcontroller

18

 จิจิสเตอร์ SFIOR ทำหน้าที่ในการกำหนดแหล่งสัญญาณออโตทริกให้แกโมดูลพิเศษ ADC โดยใช้บิด ADTS2:ADTS0

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

รูปแสดงการกำหนดบิต ADTS2:ADTS0 เพื่อเลือกแหล่งสัญญาณออโตทริก

Digital And Microcontroller

19

การแปลงสัญญาณ A/D และ D/A ของไมโครคอนโทรลเลอร์ 3.2 การแปลงสัญญาณ D/A ของไมโครคอนโทรลเลอร์ ATMEGA32 การแปลงสัญญาณ DAC ของไมโครคอนโทรลเลอร์ ATMEGA32 นั้นจะใช้วิธีการสร้างโมดูล DAC เสมือนจากการใช้งานโมดูล PWM เพื่อสร้างแรงคันเฉสียพีขาสัญญาณ PWM ด้วยการเปลี่ยน ค่าติวตี้ไขเกิล ซึ่งวิธีการสร้างสัญญาณ PWM

Digital And Microcontroller