2 Modules

2.5 Tensor product and weak dimension

1. (1) Since $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ is exact,

$$I \otimes R/J \xrightarrow{f} R/J \Rightarrow R/I \otimes R/J \Rightarrow 0$$

is exact, where $Im(f) = \{\sum_i ar + J | a \in I, r \in R\} = (I+J)/J$, then $R/I \otimes R/J \cong R/J/(I+J/J) \cong R/(I+J)$.

- (2) $\mathbb{Z}_m \otimes \mathbb{Z}_n \cong \mathbb{Z}/(m\mathbb{Z} + n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$ where d = (m, n).
- 2. Suppose M is a F-vector space generated by $\{v_i|i\in I\}$. Define $\varphi:F\times V\to M,\ \varphi(a,v)=av$, then φ is a K-bilinear mapping. Let $\lambda:F\times V\to F\otimes V,\ \lambda(a,v)=a\otimes v$, then there is a unique F-vector space map Φ satisfied $\Phi\circ\lambda=\varphi$. Since ${}_FF_K$ is a bimodule, $F\otimes V$ is F vector space, for any $a,b_i\in F$ and any $v_i\in V,\ \Phi(a\sum b_i\otimes v_i)=\Phi(\sum ab_i\otimes v_i)=\sum \Phi(ab_i\otimes v_i)=\sum \varphi(ab_i,v_i)=\sum ab_iv_i=a\sum b_iv_i=a\sum \Phi(b_i\otimes v_i)=a\Phi(\sum b_i\otimes v_i),$ thus Φ is a F-linear mapping. Since $\{\Phi(1\otimes v_i)=v_i|i\in I\}$ is a basis of M over K, $\{1\otimes v_i|i\in I\}$ is linearly independent over K. It is obvious that $Span(\{1\otimes v_i|i\in I\})=F\otimes V.$ Hence $\{1\otimes v_i|i\in I\}$ is a basis of $F\otimes V$ as a vector space over F.
- 3. It is easy to testify that

$$\iota: M_1 \times \cdots \times M_n \to M_1 \underset{R_1}{\otimes} \cdots \underset{R_{n-1}}{\otimes} M_n,$$

 $\iota(m_1, \cdots, m_n) = m_1 \otimes \cdots \otimes m_n$, is a n-multiplicity middle linear mapping for $m_1 \otimes \cdots \otimes m_{i-1} \otimes (\lambda x_i + \mu y) \otimes m_{i+1} \otimes \cdots \otimes m_n = (\underline{m_1 \otimes \cdots \otimes m_{i-1}} \otimes (\lambda x_i + \mu y)) \otimes (m_{i+1} \otimes \cdots \otimes m_n)$. Let $L(M_1, M_2, \cdots, \overline{M_n}; G)$ is a set of all middle linear mapping from $M_1 \times \cdots \times M_n$ to abelian group G which constructs an abelian group.

$$\varphi_1: L(M_1, M_2, \cdots, M_n; G) \cong Hom_{R_{n-1}}(M_n, L(M_1, M_2, \cdots, M_{n-1}; G))$$

where $L(M_1, M_2, \dots, M_{n-1}; G)$ is a set of all middle linear mapping whose left R_{n-1} -module is defined as

$$(rf)(m_1,\cdots,m_{n-1}):=f(m_1,\cdots,m_{n-2},m_{n-1}r).$$

 $(\varphi_1(f)(m_n))(m_1,\dots,m_{n-1}):=f(m_1,\dots,m_{n-1},m_n)$. Then to proof the conclusion of this exercise is equivalent to proof

$$\iota^*: Hom(M_1 \underset{R_1}{\otimes} \cdots \underset{R_{n-1}}{\otimes} M_n; G) \to L(M_1, M_2, \cdots, M_n; G)$$

is isomorphic. By introduction on n, when n=2, the conclusion is true for Thm 2.5.1. Define

$$\varphi_2: Hom(M_1 \underset{R_1}{\otimes} \cdots \underset{R_{n-1}}{\otimes} M_n; G) \to Hom_{R_{n-1}}(M_n, Hom_{\mathbb{Z}}(M_1, \cdots, M_{n-1}; G)),$$

$$\varphi_2(f)(m_n)(m_1 \otimes \cdots \otimes m_{n-1}) = f(m_1 \otimes \cdots \otimes m_n).$$

$$\varphi_3: Hom_{R_{n-1}}(M_n, Hom_{\mathbb{Z}}(M_1, \cdots, M_{n-1}; G)) \to Hom_{R_{n-1}}(M_n, L(M_1, \cdots, M_{n-1}; G)),$$

 $\varphi_{3}(f)(m_{n})(m_{1},\cdots,m_{n-1})=f(m_{n})(m_{1}\otimes\cdots\otimes m_{n-1})=(\iota^{*})^{-1}(f(m_{n}))(m_{1}\otimes\cdots\otimes m_{n-1})$ is an isomorphism by introduction. Since φ_{1} is isomorphic, φ_{1}^{-1} is isomorphic. Then $\varphi_{2}^{-1}\circ\varphi_{3}^{-1}\circ\varphi_{1}:L(M_{1},M_{2},\cdots,M_{n};G)\to Hom(M_{1}\otimes\cdots\otimes M_{n};G), (\varphi_{2}^{-1}\circ\varphi_{3}^{-1}\circ\varphi_{1})(f)(a_{1}\otimes\cdots\otimes a_{n})=[(\varphi_{3}^{-1}\circ\varphi_{1})(f)(a_{1}\otimes\cdots\otimes a_{n})]=(f(g_{1},\cdots,g_{n})$ for any $f\in L(M_{1},M_{2},\cdots,M_{n};G)$ and any $g_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}$ for any $f\in L(M_{1},M_{2},\cdots,M_{n};G)$ and any $g_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}$ for any $f\in L(M_{1},M_{2},\cdots,M_{n};G)$ and $g_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}\in M_{1}\otimes\cdots\otimes g_{n}$ is isomorphic. Thus $(\varphi_{2}^{-1}\circ\varphi_{3}^{-1}\circ\varphi_{1})(f)\circ\iota=f$ and $(\varphi_{2}^{-1}\circ\varphi_{3}^{-1}\circ\varphi_{1})(f)$ is unique.

4. Suppose that e_{ij} be matrix identity of $M_s(K)$ and ε_{ij} be matrix identity of $M_t(K)$, then $\{e_{ij} \otimes \varepsilon_{pq} | 1 \leq i, j \leq s, 1 \leq p, q \leq t\}$ is a basis of $M_s(K) \underset{K}{\otimes} M_t(K)$. Define $\varphi: M_s(K) \underset{K}{\otimes} M_t(K) \to M_{st}(K)$, $\varphi(e_{ij} \otimes \varepsilon_{pq}) = g_{i+(p-1)s,j+(q-1)s}$ where g_{ij} is matrix identity of $M_{st(K)}$. Thus

$$(e_{ij} \otimes \varepsilon_{pq})(e_{i'j'} \otimes \varepsilon_{p'q'}) = e_{ij}e_{i'j'} \otimes \varepsilon_{pq}\varepsilon_{p'q'}$$
$$= \delta_{ji'}e_{ij} \otimes \delta_{qp'}\varepsilon_{pq} \mapsto \delta_{ji'}\delta_{qp'}g_{i+(p-1)s,j'+(q'-1)s}$$

and $g_{i+(p-1)s,j+(q-1)s}g_{i'+(p'-1)s,j'+(q'-1)s} = \delta_{j+(q-1)s,i'+(p'-1)s}g_{i+(p-1)s,j'+(q'-1)s}$. When j=i', p=q' $\delta_{j+(q-1)s,i'+(p'-1)s}=1$, inverse, if j+(q-1)s=i'+(p'-1)s, then i'-j=(q-p')s, thus j=i', p=q' for $1\leq i, j\leq s$. Hence φ is isomorphic.

5.

$$I \otimes L \xrightarrow{f_1} I \otimes M \xrightarrow{f_2} I \otimes N \longrightarrow 0$$

$$\varphi_1 \bigg| \qquad \qquad \varphi_2 \bigg| \qquad \qquad \bigg| \varphi_3 \qquad \qquad \bigg|$$

$$0 \longrightarrow IL \xrightarrow{g_1} IM \xrightarrow{g_2} IN \longrightarrow 0$$

Since L and N are flat, then φ_1 and φ_3 is injective. According to Snack Lemma, $Ker\varphi_1 \xrightarrow{f_1} Ker\varphi_2 \xrightarrow{f_2} Ker\varphi_3$, i.e. φ_2 is injective. According to Proposition 2.5.5, M is flat.

6.
$$\mathbb{C}[G] \cong M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C})$$
, then $T \cong \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_{n_i} \end{pmatrix} \middle| a_i \in \mathbb{C} \right\}$, thus the multiple of T in $\mathbb{C}[G]$ is $n_i = dim_{\mathbb{C}}T$.

7. For any finitely generated left ideal, consider

$$K \otimes I \xrightarrow{f} M \otimes I \xrightarrow{g} M/K \otimes I \longrightarrow 0.$$

$$\downarrow^{\varphi_3} \downarrow \qquad \qquad \downarrow^{\varphi_1} \qquad \qquad \downarrow^{\varphi_2} \downarrow$$

$$0 \longrightarrow KI \xrightarrow{f_1} MI \xrightarrow{g_1} MI \longrightarrow g_1/K)I(= MI/K) \longrightarrow 0$$

When $Kerg_1 = MI \cap K = KI = Imf_1$, for any $a \in Kerg_2$, there is $b \in M \otimes I$ such that g(b) = a, then $\varphi_2g(b) = \varphi_2(a) = g_1\varphi_1(b) = 0$, thus $\varphi_1(b) \in Kerg_1 = Imf_1$, therefore there is $c \in KI$ such that $f_1(c) = \varphi_1(b)$ and there is $d \in K \otimes I$ such that $\varphi_3(d) = c$, hence $f_1\varphi_3(d) = f_1(c) = \varphi_1(b) = \varphi_1f(d)$. Since φ_1 is isomorphic, b = f(d), then a = g(b) = gf(d) = 0, thus M/K is flat. Contrary, if φ_2 is isomorphic, then φ_1 and φ_2 is isomorphic, while $\varphi_2g = g_1\varphi_1$, thus $Kerg_1 \cong Kerg = Imf$. For any $x \in KI$, there is $y \in K \otimes I$ such that $\varphi_3(y) = x$, then $f_1\varphi_3(y) = f_1(x) = \varphi_1f(y)$, thus $f_1(x) \in Kerg_1$, therefore $Imf_1 \subseteq Kerg_1 = MI \cap K$. If $a \in Kerg_1$, there is $b \in M \otimes I$ such that $\varphi_1(b) = a$. Since $g_1\varphi_1(b) = g_1(a) = 0$, $\varphi_2g(b) = 0$, then g(b) = 0 for φ_2 is injective, thus there is $c \in K \otimes I$ such that b = f(c) and $\varphi_1f(c) = f_1\varphi_3(c) = \varphi_1(b) = a \in Imf_1$. Hence $Kerg_1 = Imf_1$. Therefore $KI = MI \cap K$.

- 8. If M is injective and $M \leq N$, then $N = M \oplus L$. Thus for any finitely generated right ideal I, there is IN = IM + IL, then $IN \cap M = (IM + IL) \cap M = IM + (IL \cap M) = IM$ for $IL \cap M \subseteq L \cap M = 0$.
- 9. If RM is flat and $\sum_{j=1}^{n} a_j v_j = 0$, let $I = \sum_{j=1}^{n} a_j R$ and F is free which basis is

 $\{x_1, \dots, x_n\}$. Consider the exact sequence $0 \longrightarrow K \xrightarrow{f} F \xrightarrow{g} I \longrightarrow 0$ where $g(\sum x_j r_j) = \sum a_j v_j$, f(a = a). Consider the exact sequence

$$0 \longrightarrow K \underset{R}{\otimes} M \xrightarrow{\otimes id_M} F \underset{R}{\otimes} M \xrightarrow{\otimes id_M} I \underset{R}{\otimes} M \longrightarrow 0 ,$$

since $\sum_{j=1}^{n} a_j v_j = 0$ and $I \otimes M \to IM$, $\sum r_j \otimes m_j \mapsto \sum r_j m_j$ is isomorphic, $k_i = \sum_{j=1}^{n} x_j c_{ij}$. Since $\sum_{j=1}^{n} a_j v_j = 0$, $\sum_{j=1}^{n} a_j \otimes v_j = 0$ where $a_j II$, then $(g \otimes id_M)(\sum_{j=1}^{n} x_j \otimes v_j) = \sum_{j=1}^{n} a_j \otimes v_j = 0$, thus $\sum_{j=1}^{n} x_j \otimes v_j \in Ker(g \otimes id_M) = Im(f \otimes id_M)$, then there is $\sum_{j=1}^{m} k_j \otimes m_j \in K \otimes M$ such that $\sum_{j=1}^{n} x_j \otimes v_j = \sum_{j=1}^{m} k_j \otimes m_j$. While $k_i \in K \subseteq F$, then $k_i = \sum_{j=1}^{n} x_j c_{ij}$, thus $\sum_{j=1}^{n} x_j \otimes v_j = \sum_{j=1}^{n} x_j \otimes \sum_{i=1}^{m} a_{ij} m_i$, while x_1, \dots, x_n is a basis, $v_j = \sum_{i=1}^{m} c_{ij} m_i (j = 1, \dots, n)$

and $\sum_{j=1}^{n} a_j c_{ij} = \sum_{j=1}^{n} f(x_j) c_{ij} = f(\sum x_j c_{ij} = f(k_i) = 0$. Contradiction, since $I \otimes M \to IM$, $\sum a_i \otimes m_i \mapsto \sum a_i m_i$, is injective for any finitely generated right ideal, RM is flat.

- 10. According to Exercise 2.3.13, $R^m \oplus K \cong R^n \oplus K'$, then $R^m \oplus K$ is finitely generated, thus $R^n \oplus K'$ is finitely generated. Let $\pi : R^n \oplus K' \to K'$ is a canonical projective map and x_1, \dots, x_p are generators of $R^n \oplus K'$, then $\pi(x_1), \dots, \pi(x_n)$ are generators of K'.
- 11. Suppose that $_RM$ is a finitely presented flat module, then there are m,n and module homomorphism f_0, f_1 such that $_RR^m \xrightarrow{f_1} _RR^n \xrightarrow{f_0} _RM \longrightarrow 0$ is exact for any finitely generated right ideal I. Consider commute diagram $I \otimes R^m \xrightarrow{id_I \otimes f_1} I \otimes R^n \xrightarrow{id_I \otimes f_0} I \otimes M \longrightarrow 0$, for any $a \in Ker\varphi_3$, there is $\varphi_1 \downarrow \qquad \qquad \varphi_2 \downarrow \qquad \qquad \downarrow \varphi_3 \downarrow \qquad \qquad \downarrow \varphi_$

 $b \in I \otimes R^n$ such that $a = (id_I \otimes f_0)(b)$, then $g_0\varphi_2(b) = \varphi_3(a) = 0$, thus $\varphi_2(b) \in Kerg_0 = Img_1$, there is $c \in I^m$ such that $g_1(c) = \varphi_2(b)$, therefore there is $d \in I \otimes R^m$ such that $\varphi_1(d) = c$. Hence $\varphi_2(id_I \otimes f_1)(d) = g_1\varphi_1(d) = g_1(c) = \varphi_2(b)$, since φ_2 is isomorphic, $(id_I \otimes f_1)(d) = b$, then $a = (id_I \otimes f_0)(b) = (id_I \otimes f_0)(id_I \otimes f_1)(b) = 0$. Hence φ_3 is isomorphism, then R^M is flat.

- 12. (1) \Rightarrow (2): Since R_R is flat, R_R^I is flat by (1).
 - (2) \Rightarrow (3):Suppose that $I \leq_R R$ and F is a free module with free basis x_1, \cdots, x_n that maps onto $_RI: F \xrightarrow{f} I \xrightarrow{} 0$. For each $j=1,\cdots,n$, let $a_j=f(x_j)$ and let K=Kerf, then $k=\sum\limits_{i=1}^n a_ix_i, a_i\in R$ for any $k\in Kerf$, thus $\varphi_i: K\to R$, $\varphi_i(\sum\limits_{i=1}^n a_ix_i)=a_i$ and $\varphi_i\in Hom_R(K,R), (i=1,\cdots,n)$. Consider R^K , according to Exercise 1.6.8, there is an isomorphism Ψ from $\prod\limits_{k\in K} R$ to $\{f|f:K\to R\}$. Let $v_i=\Psi^{-1}(\varphi_i), (i=1,\cdots,n)$, then $v_i\in R^K$ satisfies $k=\sum\limits_{i=1}^n a_ix_i=\sum\limits_{i=1}^n \varphi_i(k)x_i=\sum\limits_{i=1}^n \pi_k(v_i)x_i$ for any $k\in K$, thus $0=f(k)=\sum\limits_{i=1}^n \pi_k(v_i)f(x_i)=\sum\limits_{i=1}^n \pi_k(v_i)a_i=\pi_k(\sum\limits_{i=1}^n v_ia_i)$ for any $k\in K$, therefore $\sum\limits_{i=1}^n v_ia_i=0\in R^K$. Since R^K is flat, there are $u_1,\cdots,u_m\in R^K$ and $c_{ij}\in R$ such that $\sum\limits_{j=1}^n c_{ij}a_j=0$ and $v_j=\sum\limits_{i=1}^m u_ic_{ij}$. Let $k_i=\sum\limits_{j=1}^n c_{ij}x_j$, then $f(k_i)=\sum\limits_{j=1}^n a_jf(x_j)=\sum\limits_{j=1}^n c_{ij}a_j=0$, thus $k_1,\cdots,k_n\in K$, while k=1

 $\sum_{j=1}^{n} \pi_k(v_j) x_j = \sum_{j=1}^{n} \pi_k (\sum_{i=1}^{m} u_i c_{ij}) x_j = \sum_{i=1}^{m} \pi_k(u_i) \sum_{j=1}^{n} c_{ij} x_i \text{ for any } k \in K.$ Therefore $K = Rk_1 + \dots + Rk_n$ is finitely generated. (3) \Rightarrow (1):If $M_{\alpha}, \alpha \in A$ are flat right R-module, then there is B and surjective map $g_{\alpha} : R^{(B)} \to M_{\alpha}$, thus $0 \to K_{\alpha} \to R^{(B)} \to M_{\alpha} \to 0$, then $0 \to \prod_{\alpha \in A} K_{\alpha} \to \prod_{\alpha \in A} R^{(B)} \to \prod_{\alpha \in A} M_{\alpha} \to 0$. For any finitely generated left ideal I, $(\prod_{\alpha \in A} K_{\alpha})I = \prod_{\alpha \in A} K_{\alpha}I = \prod_{\alpha \in A} (K_{\alpha} \cap R^{(B)}I) = \prod_{\alpha \in A} K_{\alpha} \cap (\prod_{\alpha \in A} R^{(B)})I$, then $\prod_{\alpha \in A} K_{\alpha}$ is a pure submodule of $\prod_{\alpha \in A} R^{(B)}$. If $\prod_{\alpha \in A} R^{(B)}$ is flat, then $\prod_{\alpha \in A} M_{\alpha}$ is flat. If $v_j \in \prod_{\alpha \in A} R^{(B)}, a_j \in R$ such that $\sum_{j=1}^{n} v_j a_j = 0$. Let $f : R^n \to \sum_{j=1}^{n} Ra_j, (r_1, \dots, r_n) \mapsto \sum_{j=1}^{n} r_j a_j,$ then $Kerf = Rk_1 + \dots + Rk_m$ where $k_i = (c_{i_1}, \dots, c_{i_n}) \in Kerf$, thus $\sum_{j=1}^{n} c_{ij} a_j = f(k_i) = 0$. Let $v_j = (v_{j_{\alpha}})_{\alpha \in A}, v_{j_{\alpha}} \in R^{(B)}$ for any $\alpha \in A$. Therefore $\sum_{j=1}^{n} v_j a_j = \sum_{j=1}^{n} (v_{j_{\alpha}})_{\alpha \in A} a_j = 0$, then $\sum_{j=1}^{n} v_{j_{\alpha}} a_j = 0$ for any $\alpha \in A$, since $v_{1_{\alpha}}, \dots, v_{n_{\alpha}} \in R^{(B)}$, $v_{j_{\alpha}} = (0, \dots, 0, v_{j_{\alpha}\beta_1}, \dots, v_{j_{\alpha}\beta_s}, 0, \dots, 0)(j = 1, \dots, n)$, then $\sum_{j=1}^{n} v_{j_{\alpha}\beta_p} a_j = 0$ for all $1 \le p \le s$. Thus $(v_{1_{\alpha}\beta_p}, \dots, v_{n_{\alpha}\beta_p}) \in Kerf$, then $(v_{1_{\alpha}\beta_p}, \dots, v_{n_{\alpha}\beta_p}) = r_{\alpha}\beta_{p_1} k_1 + \dots + r_{\alpha}\beta_{p_n} k_n$. Let $u_i \ne (0, \dots, 0, r_{\alpha}\beta_{i_1}, \dots, r_{\alpha}\beta_{i_2}, 0, \dots, 0)$, then $v_j = \sum_{i=1}^{n} u_i c_{ij}$. Hence $\prod_{\alpha \in A} R^{(B)}$

13. If $\sum_{i \in I} \oplus M_i$ is a faithful flat module, then ${}_R M_i$ is flat for any $i \in I$. For exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$, there is

$$0 \longrightarrow A \otimes \sum \oplus M_i \longrightarrow B \otimes \sum \oplus M_i \longrightarrow C \otimes \sum \oplus M_i \longrightarrow 0.$$

On contrary, if

$$0 \longrightarrow A \otimes \sum \oplus M_i \longrightarrow B \otimes \sum \oplus M_i \longrightarrow C \otimes \sum \oplus M_i \longrightarrow 0$$

$$\cong \downarrow \qquad \qquad \cong \downarrow \qquad \qquad \cong \downarrow$$

$$0 \longrightarrow \sum \oplus A \otimes M_i \xrightarrow{(f_i)_{i \in I}} \sum \oplus B \otimes M_i \longrightarrow \sum \oplus C \otimes M_i \longrightarrow 0$$

where $f_i: A \otimes M_i \to B \otimes M_i$ and $\sum \bigoplus Ker f_i = Ker(f_i)_{i \in I}$, then

$$0 \longrightarrow A \otimes M_i \longrightarrow B \otimes M_i \longrightarrow C \otimes M_i \longrightarrow 0$$

is exact for any $i \in I$. Thus ${}_RM_i$ is faithful flat for any $i \in I$. If ${}_RM_i$ is faithful flat for any $i \in I$, then $\sum \oplus M_i$ is flat. If

$$0 \longrightarrow A \otimes \sum \oplus M_i \longrightarrow B \otimes \sum \oplus M_i \longrightarrow C \otimes \sum \oplus M_i \longrightarrow 0$$

is exact, then $0 \longrightarrow A \otimes M_i \longrightarrow B \otimes M_i \longrightarrow C \otimes M_i \longrightarrow 0$ is exact, thus $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact. Hence $\sum \oplus M_i$ is faithful flat.

14. (\Rightarrow): If $_RM$ is a injective cogenerator and $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact, then $0 \longrightarrow Hom_R(C,M) \xrightarrow{g^*} Hom_R(B,M) \xrightarrow{f^*} Hom_R(A,M) \longrightarrow 0$ is exact. On contrary, if

$$0 \longrightarrow Hom_R(C,M) \xrightarrow{g^*} Hom_R(B,M) \xrightarrow{f^*} Hom_R(A,M) \longrightarrow 0$$

is exact, if $0 \neq a \in Kerf$, then there is $\alpha \in Hom_R(A,M)$ such that $\alpha(a) \neq 0$, while f^* is surjective, there is $\beta \in Hom_R(B,M)$ such that $f^*(\beta) = \alpha$, i.e. $\alpha = \beta f$, then $\alpha(a) = \beta f(a) = 0$, it is contradiction. Hence Kerf = 0. If $g \circ f \neq 0$, there is $a \in A$ such that $gf(a) \neq 0$, there is $\alpha \in Hom_R(C,M)$ such that $0 \neq \alpha gf(a) = f^*g^*((\alpha))(a) = 0$, it is contradiction. Hence gf = 0, i.e. $Imf \subseteq Kerg$. Suppose $\pi : C \to C/Img$, $\pi(x) = x + Img$, then $\pi \circ g : B \to C/Img$ is a zero mapping. $\pi_* : Hom_R(C/Img,M) \to Hom_R(C,M)$ is injective, then $g^*\pi_* : Hom_R(C/Img,M) \to Hom_R(B,M)$ is injective. $g^*\pi_*(\alpha) = \alpha \circ \pi \circ g = 0$ for $\alpha \in Hom_R(C/Img,M)$, then $\alpha = 0$. Since M is a cogenerator, C/Img = 0, then g is surjective. Let $\varphi : Kerg \to Kerg/Imf$, $\varphi(a) = a + Imf$, then $\varphi \circ f = 0$, while $\varphi^* : Hom_R(Kerg/Imf,M) \to Hom_R(Kerg,M)$ is injective, $\varphi^*(\alpha) \in Hom_R(Kerg,M)$ for any $\alpha \in Hom_R(Kerg/Imf,M)$. Since $0 \to Kerg \to B \to B/Kerg \to 0$ is exact,

$$0 \longrightarrow Hom_R(B/Kerg, M) \longrightarrow Hom_R(B, M) \longrightarrow Hom_R(Kerg, M) \longrightarrow 0$$

is exact, then there is $\Psi \in Hom_R(B,M)$ such that $\Psi|_Kerg = \varphi^*(\alpha)$, thus $\varphi^*(\alpha)(a) = \alpha \varphi(a) = \Psi(a)$. Since $f^*(\Psi)(x) = \Psi(f(x)) = 0$ for any $x \in A$, $\Psi \in Kerf^* = Img^*$, then there is $\eta \in Hom_R(C,M)$ such that $g^*(\eta) = \eta g = \Psi$, thus $\varphi^*(\alpha)(a) = \alpha \varphi(a) = \Psi(a)\eta g(a) = 0$ for any $a \in Kerg$. Therefore $\varphi^*(\alpha) = 0$. Since φ^* is injective, $\alpha = 0$, then $Hom_R(Kerg/Imf,M) = 0$ for α is arbitrary. Since M is cogenerator, Kerg/Imf = 0, i.e. Kerg = Imf. This means that

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is exact.

 $(\Leftarrow):$ Consider $0\longrightarrow M\stackrel{f}{\longrightarrow} E\stackrel{g}{\longrightarrow} N\longrightarrow 0$ is exact where E is injective, then

$$0 \longrightarrow Hom_R(N,M) \xrightarrow{g^*} Hom_R(E,M) \xrightarrow{f^*} Hom_R(M,M) \longrightarrow 0$$

is exact, thus there is $k \in Hom_R(E,M)$ such that $f^*(k) = kf = id_M$, then $0 \longrightarrow M \xrightarrow{f} E \xrightarrow{g} N \longrightarrow 0$ is split, i.e. $E \cong M \oplus N$, then M is injective. For any $0 \neq a \in_R L$, $0 \longrightarrow Ra \xrightarrow{\lambda} L \xrightarrow{\pi} L/Ra \longrightarrow 0$ is exact, then $0 \longrightarrow Hom_R(L/Ra,M) \xrightarrow{\pi^*} Hom_R(L,M) \xrightarrow{\lambda^*} Hom_R(Ra,M) \longrightarrow 0$ is exact. If $Hom_R(Ra,M) = 0$, then

$$0 \longrightarrow Hom_R(L/Ra,M) \xrightarrow{\pi^*} Hom_R(L,M) \xrightarrow{\lambda^*} Hom_R(0,M) \longrightarrow 0$$

is exact, thus $0 \longrightarrow 0 \stackrel{\lambda}{\longrightarrow} L \stackrel{\pi}{\longrightarrow} L/Ra \longrightarrow 0$ is exact. Therefore π is isomorphic, then $Ker\pi = Ra = 0$, it is contradiction. Hence $Hom_R(Ra, M) \neq 0$, i.e. there is $f \in Hom_R(Ra, M)$ such that $f(a) \neq 0$, that is M is a cogenereator.

- 15. (\Rightarrow) : If ${}_{R}M$ is a projective generator and $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact, then $0 \longrightarrow Hom_R(M,A) \stackrel{f_*}{\longrightarrow} Hom_R(M,B) \stackrel{g_*}{\longrightarrow} Hom_R(M,C) \longrightarrow 0$ is exact. On contrary, if $Kerf \neq 0$, then there is $0 \neq \alpha \in Hom_R(M, Kerf)$, $0 \neq \lambda \alpha \in Hom_R(M, A)$ for $M \xrightarrow{\alpha} Kerf \xrightarrow{\lambda} A \longrightarrow 0$, $f_*(\lambda \alpha) = f\lambda \alpha = f(\lambda \alpha)$ 0, it is contradiction for f_* is injective. Hence f is injective. For any $c \in C$, there is $\varphi \in Hom_R(M,C)$ such that $\varphi(a) = c$ for $a \in M$. Since g_* is surjective, there is $\Psi \in Hom_R(M,B)$ such that $g_*\Psi = g\Psi = \varphi$, then $\varphi(a) = g\Psi(a) \in Img$. Hence g is surjective. If $gf \neq 0$, there is $a \in A$ such that $gf(a) \neq 0$, then there is $\varphi \in Hom_R(M,A)$ such that $\varphi(m) = a$ for some $m \in M$, thus $gf\varphi(m) \neq 0$, i.e. $(gf)_* \neq 0$, it is contradiction. Hence gf = 0. Since gf = 0, then $Imf \subseteq Kerg$. For $A \stackrel{f}{\longrightarrow} Kerg \stackrel{\pi}{\longrightarrow} Kerg/Imf \longrightarrow 0$, if $Kerg/Imf \neq 0$, there is $0 \neq \eta \in$ $Hom_R(M, Kerg/Imf)$, since M is projective, there is $\zeta: M \to Kerg \subseteq B$ such that $\pi \zeta = \eta$, then $g\zeta = 0 = g_*(\zeta)$, thus $\zeta \in Kerg_* = Imf_*$, therefore there is $\sigma \in Hom_R(M,A)$ such that $\zeta = f\sigma$, then $\pi\zeta = \eta = \pi f\sigma = 0$. It is contradiction for $\eta \neq 0$. Hence Kerg/Imf = 0, i.e. Kerg = Imf, then $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact.
 - (\Leftarrow) : Let $\varphi:_R F \to_R M$ is epimorphic and F is free, then

$$0 \longrightarrow Ker \varphi \longrightarrow F \stackrel{\varphi}{\longrightarrow} M \longrightarrow 0$$

is exact, thus

$$0 \longrightarrow Hom_R(M, Ker\varphi) \longrightarrow Hom_R(M, F) \stackrel{\varphi_*}{\longrightarrow} Hom_R(M, M) \longrightarrow 0$$

is exact. Then there is $h \in Hom_R(M, F)$ such that $\varphi_*(h) = \varphi h = id_M$, thus $0 \longrightarrow Ker \varphi \longrightarrow F \stackrel{\varphi}{\longrightarrow} M \longrightarrow 0$ is split, i.e. $F \cong M \oplus Ker \varphi$, then M

is projective. For any $_RN$ and any $0 \neq x \in_R N$,

$$0 \longrightarrow Rx \xrightarrow{\lambda} N \xrightarrow{\pi} N/Rx \longrightarrow 0$$

is exact, then

$$0 \longrightarrow Hom_R(M,Rx) \xrightarrow{\lambda_*} Hom_R(M,N) \xrightarrow{\pi_*} Hom_R(M,N/Rx) \longrightarrow 0$$

is exact. If there is not $f \in Hom_R(M, N)$ such that $x \in Imf$, then $Hom_R(M, Rx) = 0$,

$$0 \longrightarrow Hom_R(M,0) \stackrel{0_*}{\longrightarrow} Hom_R(M,N) \stackrel{\pi_*}{\longrightarrow} Hom_R(M,N/Rx) \longrightarrow 0$$

is exact, thus $0 \longrightarrow 0 \stackrel{0}{\longrightarrow} N \stackrel{\pi}{\longrightarrow} N/Rx \longrightarrow 0$ is exact. Therefore $Ker\pi = 0$, it is contradiction. Hence there is $f \in Hom_R(M,N)$ such that $x \in Imf$, then M is a generator.

- 16. Suppose that $R^F = R^{(I)}$ is free, then it is projective. For any $0 \neq x \in_R M$, $Hom_R(R^{(I)}, M) \cong \prod_I Hom_R(R, M)$, while there is a homomorphism $f:_R R \to_R M$ such that f(1) = x, then there is $\varpi \in Hom_R(R^{(I)}, M)$ such that $\varphi(a) = x$. Hence $R^F = R^{(I)}$ is a generator.
- 17. Since \mathbb{Q}/\mathbb{Z} is injective generator of \mathbb{Z} -module, then $_RM$ is flat if and only if $Hom_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$ is a injective right R-module.(cf. Proof of Projective 2.5.5)
- 18. For any $f \in Hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z})$ and any $n \neq 0$, $f_1(a) = f(\frac{1}{n}a)$ for any $a \in \mathbb{Q}$, then $f_1 \in Hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z})$ such that $nf_1 = f$, i.e. $nHom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) = Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$, Therefore $Hom_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z})$ is a divisible abelian group, hence $\mathbb{Z}\mathbb{Q}$ is flat.