

Functions Ex 2.1 Q1(i)

Example of a function which is one-one but not only.

let
$$f: N \to N$$
 given by $f(x) = x^2$

Check for injectivity:

let $x, y \in N$ such that

$$f(x) = f(y)$$

$$\Rightarrow$$
 $x^2 = y^2$

$$\Rightarrow \quad \left(x-y\right)\left(x+y\right)=0 \qquad \left[\because x,y\in N \Rightarrow x+y>0\right]$$

$$[\because x, y \in N \Rightarrow x + y > 0]$$

$$\Rightarrow$$
 $x - y = 0$

$$\Rightarrow$$
 $x = y$

f is one-one

Surjectivity: let $y \in N$ be arbitrary, then

$$f(x) = y$$

$$\Rightarrow$$
 $x^2 = y$

$$\Rightarrow$$
 $x = \sqrt{y} \notin N$ for non-perfect square value of y.

- \odot No non-perfect square value of y has a pre image in domain N.
- $f: N \to N$ given by $f(x) = x^2$ is one-one but not onto.

Functions Ex 2.1 Q1(ii)

Example of a function which is onto but not one-one.

let $f: R \to R$ defined by $f(x) = x^3 - x$

Check for injectivity:

let $x, y \in R$ such that

$$f(x) = f(y)$$

$$\Rightarrow$$
 $x^3 - x = y^3 - y$

$$\Rightarrow x^3 - y^3 - (x - y) = 0$$

$$\Rightarrow \qquad \left(x-y\right)\left(x^2+xy+y^2-1\right)=0$$

$$y = x^2 + xy + y^2 \ge 0 \implies x^2 + xy + y^2 - 1 \ge -1$$

$$x \neq y$$
 for some $x, y \in R$

f is not one-one.

Surjectivity: let $y \in R$ be arbitrary

then,
$$f(x) = y$$

$$\Rightarrow x^3 - x = y$$

$$\Rightarrow x^3 - x - y = 0$$

we know that a degree 3 equation has a real root.

let
$$x = \alpha$$
 be that root

$$\therefore \quad \alpha^3 - \alpha = y$$

$$\Rightarrow$$
 $f(\alpha) = y$

Thus for clearly $y \in R$, there exist $\alpha \in R$ such that f(x) = y

f is onto

:. Hence $f: R \to R$ defined by $f(x) = x^3 - x$ is not one-one but onto.

Functions Ex 2.1 Q1(iii)

Example of a function which is neither one-one nor onto.

let
$$f: R \to R$$
 defined by $f(x) = 2$

We know that a constant function in neither one-one nor onto Here f(x) = 2 is a constant function

 $f: R \to R \text{ defined by } f(x) = 2 \text{ is neither one-one nor onto.}$

Functions Ex 2.1 Q2

$$f_1 = \{(1,3), (2,5), (3,7)\}$$

 $A = \{1,2,3\}, B = \{3,5,7\}$

We can early observe that in f_1 every element of A has different image from B.

 f_1 in one-one

also, each element of ${\cal B}$ is the image of some element of ${\cal A}.$

 f_1 in onto.

ii)
$$f_2 = \{(2, a), (3, b), (4, c)\}$$
$$A = \{2, 3, 4\} \quad B = \{a, b, c\}$$

It in clear that different elements of A have different images in B

 f_2 in one-one

Again, each element of B is the image of some element of A.

 f_2 in onto

$$\begin{aligned} f_3 &= \left\{ \left(a, x\right), \left(b, x\right), \left(c, z\right) \left(d, z\right) \right\} \\ A &= \left\{a, b, c, d\right\} \quad B &= \left\{x, y, z\right\} \end{aligned}$$

Since,
$$f_3(a) = x = f_3(b)$$
 and $f_3(c) = z = f_3(d)$

 f_3 in not one-one

Again, $y \in B$ in not the image of any of the element of A

 f_3 in not onto

Functions Ex 2.1 Q3

We have, $f: N \to N$ defined by $f(x) = x^2 + x + 1$

Check for injectivity:

Let $x, y \in N$ such that

$$f(x) = f(y)$$

$$\Rightarrow x^{2} + x + 1 = y^{2} + y + 1$$

$$\Rightarrow x^{2} - y^{2} + x - y = 0$$

$$\Rightarrow (x - y)(x + y + 1) = 0$$

$$\Rightarrow x - y = 0 \quad [\because x, y \in \mathbb{N} \Rightarrow x + y + 1 > 0]$$

$$\Rightarrow x = y$$

 \therefore f is one-one.

Surjectivity:

Let $y \in N$, then

$$f(x) = y$$

$$\Rightarrow x^2 + x + 1 - y = 0$$

$$\Rightarrow \qquad x = \frac{-1 \pm \sqrt{1 - 4 \left(1 - y\right)}}{2} \notin N \text{ for } y > 1$$

 \therefore for y > 1, we do not have any pre-image in domain N.

 \therefore f is not onto.

Functions Ex 2.1 Q4.

We have, $A = \{-1, 0, 1\}$ and $f: A \rightarrow A$

defined by
$$f = \{(x, x^2) : x \in A\}$$

clearly
$$f(1) = 1$$
 and $f(-1) = 1$

$$f(1) = f(-1)$$

 \therefore f is not one-one

Again $y = -1 \in A$ in the co-domain does not have any pre image in domain A.

z = f is not onto.

********** END ********