ТЕСТ ПО МАТЕМАТИКА - 30 март 2024 г. ВАРИАНТ ВТОРИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например: 🚫

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

1. Ако <i>a</i> :	$=\sqrt[3]{2}$ и $b=\sqrt{2}$, то сто	ойността на израза	$\frac{(a^2 - ab + b^2) b^{-2}}{[(a+b)(b-1)]^{-1}}$	e:
a) 1,	б) $\sqrt{2} + 1$,	B) $\frac{1}{2}$,	Γ) $\sqrt{2}-1$,	д) 2.

2. Ако сумата на 20% от a и 40% от b е равна на 1 и ако 20% от сумата на a^2 и b^2 е равна също на 1, то стойностите на a и b са:

а)
$$a = 2$$
; $b = 1$, 6) $a = -1$; $b = 2$, $a = 1$; $b = 2$, $a = 1$; $b = -2$, $a = 2$; $b = 2$.

3. Ако правоъгълен паралелепипед има дължина 75 cm, широчина 0, 2 m и височина 40 mm, то обемът му в кубични дециметри е:

а) 3, б) 0, 6, в) 6, г) 1, 5, д) 60.

4. Ако x_1 и x_2 са корените на уравнението $\sqrt{2}x^2 - \sqrt{3}x - 3 = 0$, а y_1 и y_2 са корените на уравнението $\sqrt{3}y^2 + 3y + 1 = 0$, то стойността на сумата $x_1 + y_1 + x_2 + y_2 + x_1y_1x_2y_2$ е:

а) 2, б)
$$-\sqrt{3}$$
, в) $-\frac{2\sqrt{3}}{3}$, г) $-\frac{\sqrt{6}}{2}$, д) $-\sqrt{2}$.

5. Коренът на уравнението $(x-1)(x^2-9)=(x^2-1)(x^2-9)(1+\sqrt{x-2})$ е:

а) 1, \qquad б) -1, \qquad в) 3, \qquad \qquad г) -3, \qquad д) 2.

7. Решениет	о на неравенств	вото $\frac{x}{x+1} > 1$ e:		
a) $x \in (-\infty;$		б) $x \in (-\infty; 0)$),	$\mathbf{B}) x \in (1; \infty),$
$\Gamma) x \in (-1; 1)$	1),	д) $x \in (-\infty; -1]$	1].	
8. Решениет	о на уравнение	$\operatorname{ro} 2^{\log_4(x^2+x)} = x - 1$	e:	
а) няма реш	ение, б) <i>x</i> =	$=\sqrt{2},$ B) $x = 1,$	$\Gamma) x = \frac{1}{3},$	д) $x = 2$.
9. Коренът 1	на уравнението	$2\sin\frac{x}{2}\cos x = \sin$	2x, който прин	адлежи на ин-
тервала $\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$		2		
a) $\frac{3\pi}{4}$,	$6) \frac{2\pi}{3},$	$\mathrm{B)}\frac{5\pi}{6},$	Γ) $\frac{3\pi}{2}$,	д) π.
•	ата на аритмети а членовете на	чна прогресия е 27 прогресията е:	', първият член е	е 2 и разликата
a) 8,	б) 7,	в) 4,	г) 5,	д) 6.
	то на първите че	първите 2 члена на етири члена е 4, то		
a) $\frac{1}{2}$,	б) 2,	в) 3,	r) -2,	\mathfrak{A}) $\frac{3}{2}$.
₹	на най-малката - 2 <i>х</i> ² в интервал	и най-голямата сто па [–2; 1] е:	ойност на функц	ията
a) 5,	б) 3,	в) 1,	Γ) -2 ,	д) -5.
13. Да се на	мери границата	$\lim_{n \to \infty} \frac{(1 - \sqrt{2} n^2) (n^2)}{(\sqrt{5} n - 3) (n^2)}$	$\frac{(n+5)}{^2+2n)}.$	
a) $-\frac{\sqrt{10}}{5}$,	$6) - \frac{\sqrt{2}}{5},$	B) $\sqrt{\frac{2}{5}}$,	Γ) $-\frac{5}{2}$,	$_{\rm II}$) $-\sqrt{2}$.

6. Положителният корен на уравнението $x^2 + k = k |x + 1|$, където k > 0, е:

б) k + 3, в) k + 2, г) k + 1, д) k.

a) $k^2 + 4$,

		нмата и малката ос голямата основа е	-	
a) $\frac{a}{2b}(a^2 - b)$	$(b^2),$	$6) \frac{a-b}{2} \sqrt{a^2 + b^2},$	в)	$\frac{\sqrt{3}b}{a}(a^2+b^2),$
$\Gamma) \frac{\sqrt{3}}{4} (a^2 - a^2)$	b^2),	$д) \frac{2(a-b)}{a+b} \sqrt{a^2 + b^2}$	$\overline{b^2}$.	
		а повърхнина на пр на височината на к		
a) $\frac{4\sqrt{2}}{3}\pi m^3$, 6) 24 <i>m</i> ³ ,	B) $\frac{16}{3}\pi m^3$,	Γ) $2\pi m^3$,	д) $\frac{8}{3}\pi m^3$.
18. Ако къл обема на куба		в куб, то отношени	ето на обема н	а кълбото към
a) $\frac{\pi}{4}$,	6) $\frac{\pi}{6}$,	B) $\frac{2\pi}{9}$,	Γ) $\frac{1}{2}$,	д) $\frac{\sqrt{2}\pi}{9}$.
*		иомичета и 5 момче изпитани студенти		
a) $\frac{3}{5}$,	6) $\frac{7}{12}$,	B) $\frac{5}{36}$,	Γ) $\frac{7}{44}$,	д) $\frac{7}{32}$.
20. Ако мо, средната им с		ите данни {-1, 2,	3, 2, x, 3, x, 0,	4, 3} е 2, то
a) $\frac{9}{5}$,	6) 3,	B) $\frac{8}{5}$,	Γ) $\frac{3}{2}$,	д) 2.
		2		

14. Дефиниционното множество D на функцията

a) D = (-3; 0), 6) D = (-2; 3], B) $D = (-2; 0) \cup (0; 3],$

15. Ако ъгълът при върха A на триъгълника ABC е 60° , а радиусът на описаната окръжност е 4 cm, то разстоянието от центъра на тази окръжност до

а) $\frac{\sqrt{3}}{2}$ cm, б) $2\sqrt{3}$ cm, в) $2\sqrt{2}$ cm, г) 2 cm, д) 4 cm.

 $f(x) = \sqrt{(3-x)(x+2)} + \log_{(x+3)} |x|$ e:

страната ВС е:

г) $D = (-3; 0) \cup (0; 2]$, д) D = (0; 3].

ВТОРА ЧАСТ

Следващите 10 задачи са без избираем отговор. Върху талона за отговорите от теста (последната страница) в празното поле за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован отговор получавате по 2 точки. За грешен отговор или за непопълнен отговор точки не се дават и не се отнемат.

- **21.** Нека x_1 и x_2 са реални корени на уравнението $x^2 + kx + 1 = 0$. Да се намерят стойностите на параметъра k, за които е валидно неравенството $\frac{x_1}{x_2} + \frac{x_2}{x_1} \le 2$.
 - **22.** Да се реши уравнението: $2(\log_x 2)^2 + 1 = \log_x 8$.
 - **23.** Да се реши неравенството: $\sqrt{16 x^2} > \sqrt{3} x$.
- **24.** Да се намерят всички стойности на a, за които системата $\begin{vmatrix} x + ay = 2a \\ x^2 + y = 1 \end{vmatrix}$ притежава единствено решение.
- **25.** Да се намери сумата от най-малката и най-голямата стойност на функцията $f(x) = x^2 2px$ в интервала [0; 3p], където p > 0.
- **26.** В правоъгълен триъгълник ABC ъглополовящата през върха A пресича катета BC в точка L. Отсечките BL и CL са съответно с дължини 2 cm и 1 cm. Да се намери дължината на катета AC.
- **27.** Да се намери лицето на ромба ABCD, ако ъгълът при върха B е 120° , а радиусът на вписаната в триъгълника ABD окръжност е $1\ cm$.
- **28.** Дадена е правилна триъгълна призма $ABCA_1B_1C_1$ с основа ABC и околни ръбове AA_1 , BB_1 и CC_1 . Всички ръбове на призмата са равни помежду си. Да се намери $\cos \alpha$, където α е ъгълът между равнината на основата и равнината, минаваща през върховете A_1 , B и C.
- **29.** Основата на пирамида е правоъгълник с лице $\sqrt{3}$ m^2 . Две от околните стени на пирамидата са перпендикулярни на основата, а другите две сключват с основата ъгли съответно с големини 45° и 30° . Да се намери височината на пирамидата.
- 30. Нека M е множеството от всички едноцифрени, двуцифрени и трицифрени числа, образувани с помощта на цифрите 1, 2 и 3 без повторение на една и съща цифра. По случаен начин от M е избрано едно число. Да се намери вероятността това число да се дели на 3.

ОТГОВОРИ

Тест по математика - 30 март 2024 г. Вариант (КД)

ПЪРВА ЧАСТ

1 a	2 в	3 в	4 б	5 в	6 д	7 a	8 a	96	10 д
11 б	12 г	13 a	14 в	15 г	16 г	17 д	18 б	19 г	20 д

ВТОРА ЧАСТ

21. $k = \pm 2$.

22. $x_1 = 2$; $x_2 = 4$.

23. $x \in [-4; 2)$.

24. $a \in \left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$.

25. $2p^2$.

26. $\sqrt{3}$ *cm*.

27. $6\sqrt{3} \ cm^2$.

28. $\cos \alpha = \frac{\sqrt{21}}{7}$.

29. 1 *m*.

30. $\frac{3}{5}$.