CS3110 Formal Language and Automata

Tingting Chen
Computer Science
Cal Poly Pomona

Context-Free Grammar

Pushdown Automata

Context-free Grammars

Definition:

A grammar G = (V, T, S, P) is said to be contextfree if all production rules in P have the form

$$A \rightarrow x$$

where $A \in V$ and $x \in (V \cup T)^*$

A language is said to be context-free iff there is a context free grammar G such that L = L(G).

Context-free Grammars

Some grammars are not context-free grammars. For example:

 $1Z1 \rightarrow 101$

In this production rule, the variable Z goes to 0 only in the *context* of a 1 on its left and a 1 to the right. This is a *context-sensitive* rule.

Example of Context-free Grammars

Given the grammar G = ({S}, {a, b}, S, P), with production rules:

 $S \rightarrow aSa \mid bSb \mid \lambda$ It is a context-free grammar.

Is it a regular grammar?

The language it generates is not regular.

Example of Context-free Grammars

Given the grammar G = ({S}, {a, b}, S, P), with production rules:

$$S \rightarrow aSa \mid bSb \mid \lambda$$

a typical derivation in this grammar might be:

 $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa$

The language generated by this grammar is:

$$L(G) = \{ww^{R} : w \in \{a,b\}^{*}\}$$

Derivation

Given the grammar,

$$S \rightarrow aaSB \mid \lambda$$

B \rightarrow bB \rightarrow b

the string aab can be derived in different ways.

$$S \Rightarrow aaSB \Rightarrow aaB \Rightarrow aab$$

$$S \Rightarrow aaSB \Rightarrow aaSb \Rightarrow aab$$

Parse tree

Both derivations on the previous slide correspond to the following parse (or derivation) tree.

- Each internal node of the tree corresponds to a nonterminal, and the leaves of the derivation tree represent the string of terminals.
- The tree structure shows the rule that is applied to each nonterminal, without showing the order of rule applications.

Leftmost/Rightmost Derivation

In the derivation

 $S \Rightarrow aaSB \Rightarrow aaB \Rightarrow aab$

From aaSB, we replace S with λ , and then to replace B with b.

We moved from left to right, replacing the leftmost variable at each step. This is called a leftmost derivation.

Similarly, the derivation

 $S \Rightarrow aaSB \Rightarrow aaSb \Rightarrow aab$

is called a rightmost derivation.

For a single derivation tree, there is a single leftmost derivation. For a string, there may be more than one leftmost derivation.

Example

Production Rules:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

What is the derivation tree for string a + a * a?

Left-most derivation:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$
$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Example

Production Rules:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

What is the derivation tree for string a + a * a?

Left-most derivation:

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Ambiguity

A grammar G is ambiguous if there is a string $w \in L(G)$ has two or more possible derivation trees.

In other words, A grammar G is ambiguous if there is a string $w \in L(G)$ has two or more possible leftmost (or rightmost) derivations.

Why care about Ambiguity

a + a * a

Take a = 2

Why care about Ambiguity

Equivalent grammars

To make parsing easier, we prefer grammars that are not ambiguous.

Here is a non-ambiguous grammar that generates the same language.

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid a$

Two grammars that generate the same language are said to be equivalent.

Equivalent grammars

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

Ambiguous grammars & equivalent grammars

- There is no general algorithm for determining whether a given CFG is ambiguous.
- There is no general algorithm for determining whether a given CFG is equivalent to another CFG.

Inherent Ambiguity

- Some context free languages have only ambiguous grammars.
- If every grammar that generates L is ambiguous, then the language is called *inherently ambiguous*.

• Example: L={aⁿbⁿc^m}
$$\cup$$
 {aⁿb^mc^m}
S \rightarrow S₁|S₂ S1 \rightarrow S1c|A S2 \rightarrow aS2|B
A \rightarrow aAb| λ B \rightarrow bBc| λ

Inherent Ambiguity

• Example: L= $\{a^nb^nc^m\} \cup \{a^nb^mc^m\}$

The string aⁿbⁿcⁿ has two derivation tree.

Exercise

Show that the following grammar is ambiguous.

$$S \rightarrow AB \mid aaB$$

 $A \rightarrow a \mid Aa$
 $B \rightarrow b$

Construct an equivalent grammar that is unambiguous.