

Аскиня 10. Производная функции

Пусть функция y=f(x) определена на интервале (a;b) и $x\in (a;b)$. Пусть Δx произвольное число такое, что $x+\Delta x\in (a;b)$. Число $\Delta y=f(x+\Delta x)-f(x)$ называется приращением функции y=f(x) в точке x.

Определение. Если существует предел $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, то он называется **производной** функции y = f(x) в точке x и обозначается f'(x) или y'.

Определение. Если существует предел $\lim_{\Delta x \to +0} \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x}$, то он называется правой **производной** функции y = f(x) в точке x и обозначается f'(x + 0).

Определение. Если существует предел $\lim_{\Delta x \to -0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, то он называется левой **производной** функции y = f(x) в точке x и обозначается f'(x - 0).

По свойству пределов, производная в точке существует тогда и только тогда, когда в этой точке существуют правая и левая производные и они равны.

Определение. Функция y = f(x) называется дифференцируемой в точке x, если ее приращение в этой точке можно представить в виде $\Delta y = A \cdot \Delta x + \alpha \left(\Delta x \right) \cdot \Delta x$, где $\lim_{\Delta x \to 0} \alpha \left(\Delta x \right) = 0$, A не зависит от Δx .

По опрделению о-малое, получаем $\Delta y = A \cdot \Delta x + o(\Delta x), \ \Delta x \to 0$. В самой точке $\Delta x = 0$ функция $\alpha\left(\Delta x\right)$ может быть и не определена. Ей можно приписать любое значение. Для дальнейшего удобно считать, что $\alpha\left(0\right) = 0$. При такой договоренности эта функция будет непрерывной в точке 0.

Теорема. Если функция дифференцируема в точке x_0 , то она непрерывна в этой точке.

🦣 **Доказательство**. Имеем

$$f(x) - f(x_0) = f(x_0 + (x - x_0)) - f(x_0) = A \cdot (x - x_0) + \alpha((x - x_0)) \cdot (x - x_0).$$

Так как $\lim_{x\to x_0} \alpha(x-x_0)=0$, то $\lim_{x\to x_0} f(x)=f(x_0)$. **Теорема доказана**. \P

Теорема. Для того чтобы функция y = f(x) была дифференцируемой в точке x, необходимо и достаточно, чтобы она имела в этой точке производную.

 $^{\textcircled{\$}}$ **Доказательство**. Пусть функция дифференцируема, тогда $\Delta y = A \cdot \Delta x + lpha \left(\Delta x
ight) \cdot \Delta x$. Отсюда

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} (A + \alpha (\Delta x)) = A.$$

Следовательно, производная в точке x существует и равна A. Обратно, пусть существует производная в точке x. Тогда $\exists \lim_{\Delta x \to 0} \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} = f'(x)$. Следовательно, если обозначить

$$\alpha\left(\Delta x\right) = \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} - f'\left(x\right)$$
 , то $\lim_{\Delta x \to 0} \alpha\left(\Delta x\right) = 0$ и $\Delta y = f'\left(x\right) \cdot \Delta x + \alpha\left(\Delta x\right) \cdot \Delta x$. **Теорема** доказана.

Пусть функция y = f(x) дифференцируема в точке x. Тогда, по доказанной теореме, имеем $\Delta y = f'(x)\Delta x + o(\Delta x)$, $\Delta x \to 0$. Следовательно, линейная функция $f'(x)\Delta x$ переменной Δx является главной частью приражения функции y = f(x) в точке x. Эта линейная функция называется **дифференциалом** функции y = f(x) в точке x и обозначается $dy = f'(x)\Delta x$. Обозначим Δx как dx и назовем **дифференциалом независимой переменной**.

Теорема. Если каждая из функций f(x) и g(x) дифференцируемы в точке x, то сумма, разность, произведение и частное (при условии $g(x) \neq 0$) также дифференцируемы в точке x, причем имеют место формулы

1.
$$(f \pm g)'(x) = f'(x) \pm g'(x)$$
;

2.
$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$
;

3.
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}.$$

🖀 Доказательство. Докажем для частного. Имеем

$$\frac{1}{\Delta x} \left(\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} \right) = \frac{1}{\Delta x} \left(\frac{\Delta f + f(x)}{\Delta g + g(x)} - \frac{f(x)}{g(x)} \right) = \frac{1}{\Delta x} \left(\frac{\Delta f g(x) - \Delta g f(x)}{g(x + \Delta x)g(x)} \right) = \frac{\frac{\Delta f}{\Delta x} g(x) - \frac{\Delta g}{\Delta x} f(x)}{g(x + \Delta x)g(x)} = \frac{\frac{\Delta f}{\Delta x} g(x) - \frac{\Delta g}{\Delta x} f(x)}{g(x + \Delta x)g(x)}$$

Отсюда получаем утверждение теоремы. Теорема доказана.

Следствие. Если функции f(x) и g(x) удовлетворяют условиям предыдущей теоремы, то

$$d(f \pm g) = df \pm dg;$$

$$d(f \cdot g) = g \cdot df + f \cdot dg;$$

$$d\left(\frac{f}{g}\right) = \frac{g \cdot df - f \cdot dg}{g^{2}}.$$

Теорема. Пусть функция $x = \varphi(t)$ дифференцируема в точке t_0 , а функция y = f(x) дифференцируема в точке $x_0 = \varphi(t_0)$. Тогда композиция $f \circ \varphi$ определена в некотрой окрестности точки t_0 , дифференцируема в точке t_0 и имеет место формула

$$(f\circ\varphi)(t_0)=f'(x_0)\varphi'(t_0).$$

Точке t_0 , следовательно, она непрерывна в этой точке. Поэтому $\exists U(t_0)$: $\varphi(U(t_0)) \subset W(x_0)$.