Graphentheorie

Graph: G = (V, E)Baum: |E| = |V| - 1

Spannbaum von G: Teilgraph von G und Baum der alle Knoten von G entällt, not unique. Bipartit: $G = (V_1 \cup V_2, E)$, G ist bipartit \Leftrightarrow G enthällt keinen Kreis gerader länge

Flussnetze:

 $N = (D, \kappa, s, q)$, D Digraph, $\kappa : E \to \mathbb{R}_0^+$ Kostenfunktion

Schnitt eines Flussnetzes:

Teilmenge S, die die Quelle aber nicht die Senke entällt.

Kapazität eines Schnittes: $\kappa(S) =$ Kapazität der Endknoten des Schnittes. Minimaler Schnitt S = $\forall S' \ \kappa(S) \leq \kappa(S')$ maximaler Fluss == min Schnitt

Planarität

für ebene Darstellungen gelten: n-m+f=2,n=Knoten, m=Kanten, f=Flächen if $n\geq 3$ 3n-6 Kanten höchsten if $n\geq 3$ hat höchstens $g\geq 3$, g= Umfang des Graphen???? $max\{g(n-2)/(g-2)mn-1\}Kanten$ ein Graph ist planar \Leftrightarrow kein subgraph von G ist homöomorph zu k_5 , $k_{3,3}$

Datenstrukturen

Adjazenzmatrix

 $n \cdot n$, immer symetrisch $a_{ij} = 1$ falls $v_i v_j \in E$, 0 sonst

Inzidenzmatrix

 $n \cdot m$, $e_{ij} = 1$ wenn v_i mit e_j inzidiert, 0 sonst spaltensume immer 2, reihensumme = Grad des Knoten

Netzwerke

Floyd-Warshal (S.288)

Kürzeste Abstände für alle Knoten $O(|V|^3)$ siehe auch Dijkstra (S.289)

for k=1 to n do: $d(u, w) = min(d^{k-1}(u, w), d^{k-1}(u, v_k) + d^{k-1}(v_k, w))$ Mit jeder Iteration gucken ob es einen kürzeren Weg über den Knoten v_k gibt

Kurskal (S.291)

min. Spannbäume

Ford-Fulkerson (S.293)

bestimmet maximalen Fluss in N $\,$ erst alle Knoten markieren, dann Fluss vergrössern und erneut markieren.