

# A Report On The Calculation Of The Excited States Of Pyridine At The PBE0/6-31G\*\* Level

osl - 24<sup>th</sup> June 2022



#### Abstract

The calculation of excited states for the system 'Pyridine' is presented, accompanied by automated analysis and image generation provided by the Silico software package. The calculation was performed using the Turbomole software package at the PBE0/6-31G\*\* level of theory. The total self-consistent field (SCF) energy of the system was found to be -6748.46 eV after 1 step. The highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) were calculated to be -7.17 and -0.47 eV respectively, corresponding to a HOMO-LUMO band gap of 6.71 eV. The permanent dipole moment (PDM) was calculated to be 2.20 D.

**Table 1:** Summary of overall calculation metadata. [a]: The date and time at which the calculation was completed. [b]: Total combined duration in real-time (wall-time) for all components of the calculation. [c]: Temperature used for thermochemistry analysis. [b]: Pressure used for thermochemistry analysis.

| Date <sup>[a]</sup>    | Duration <sup>[b]</sup> | Success<br>(Converged) | Computational package | Level of<br>theory | Calculations      | Wavefunction | Multiplicity | T <sup>[c]</sup><br>/ K | P <sup>[d]</sup><br>/ atm |
|------------------------|-------------------------|------------------------|-----------------------|--------------------|-------------------|--------------|--------------|-------------------------|---------------------------|
| 24/06/2022<br>12:28:25 | 10 s                    | True (N/A)             | Turbomole (7.5.0)     | PBE0/6-31G**       | Excited<br>States | restricted   | 1 (singlet)  | N/A                     | N/A                       |

## **Summary Of Results**

#### **Scf Energy**

| Table | 2. | Summar | , of | SCE | onoray | properties. |
|-------|----|--------|------|-----|--------|-------------|
| ıuvie | 2: | Summan | / UI | SCF | energy | properties. |

No. of steps

Final energy -6748.4564 eVFinal energy  $-651,127 \text{ kJ} \cdot \text{mol}^{-1}$ 

#### Geometry

Table 3: Summary of geometry properties.

| Formula          | $C_5NH_5$                   |
|------------------|-----------------------------|
| Molar mass       | 79.0999 g·mol <sup>-1</sup> |
| Alignment method | Minimal                     |
| X extension      | 4.31 Å                      |
| Y extension      | 3.88 Å                      |
| Z extension      | 0.00 Å                      |
| Linearity ratio  | 0.10                        |
| Planarity ratio  | 1.00                        |

## **Molecular Orbitals**

 $\textbf{\textit{Table 4:} Summary of HOMO \& LUMO properties.}$ 

 $\mathbf{E}_{\mathbf{HOMO},\mathbf{LUMO}}$  6.71 eV  $\mathbf{E}_{\mathbf{HOMO}}$  -7.17 eV  $\mathbf{E}_{\mathbf{LUMO}}$  -0.47 eV

## **Permanent Dipole Moment**

**Table 5:** Summary of the permanent dipole moment properties.

Total2.20 DX axis angle89.98 °XY plane angle0.01 °

## Methodology

#### Metadata

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **DFT** method with the **PBE0** functional and the **6-31G\*\*** basis set. It was completed on the **24<sup>th</sup> June 2022** after a total duration of **10 s** and **finished successfully**. The base multiplicity of the system under study was **1 (singlet)**. Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals. The full calculation metadata is tabulated in table 1.

#### **Analysis**

The report presented here was generated using the Silico software package. This toolset relies upon a number of third-party applications and libraries which should be cited appropriately in derivative works. In particular, the calculation results described within were parsed by the cclib library. Scientific constants which were used, among other things, for the interconversion of scientific units were provided by SciPy. Three-dimensional plots of atom positions and calculated densities, including molecular orbitals, were rendered using Visual Molecular Dynamics (VMD)<sup>3</sup> and the Tachyon ray-tracer. Finally, two-dimensional graphs were plotted using the MatPlotlib library, while this report itself was prepared using the Mako template library and the Weasyprint library, the latter of which was responsible for generation of the PDF file.

#### **Discussion**

# **Total SCF Energy**

The total energy of the system was calculated at the **self-consistent field (SCF)** level, corresponding to the energy calculated by the density-functional theory (DFT) method, with a value of -6748.46 eV, corresponding to -651,127 KJmol<sup>-1</sup>. A plot of the total SCF electron density is shown in figure 1.

Silico 1.0.0-pre.32 Page 1 of 4



**Figure 1:** Plot of the total SCF electron density, plotted with an isovalue of 0.0004. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

#### Geometry

The **empirical formula** of the studied system was  $C_5NH_5$ , corresponding to a **molecular mass** of 79.10 gmol<sup>-1</sup>. The molecular geometry was aligned to the cartesian (X, Y and Z) axes by the **Minimal (MIN)** method. Using this method, the **extent of the molecular system** in the X, Y and Z axes ( $L_X$ ,  $L_Y$  and  $L_Z$ , corresponding to the molecular width, length and height respectively) was determined to be 4.31, 3.88 and 0.00 Å respectively. These extensions give rise to a **molecular linearity ratio** (1-( $L_Y/L_X$ )) and **planarity ratio** (1-( $L_X/L_Y$ )) of 0.10 and 1.00 respectively.

# **Permanent Dipole Moment**

The calculated **permanent dipole moment** was 2.20 D, with a vector (x,y,z) of -0.00, -2.20, -0.00 D. The angle between the dipole moment vector and the x-axis was 89.98°, while the angle between the dipole moment and the xy-plane was 0.01°. A plot of the permanent dipole moment is shown in figure 2.

**Figure 2:** The permanent dipole moment (red arrow) plotted against the aligned molecular geometry with a scale of 1  $\text{\AA} = 1.0 \text{ D. A}$ : In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

# **Molecular Orbitals**

In total, 109 doubly occupied molecular orbitals were calculated, divided into 21 occupied orbitals and 88 unoccupied (or virtual) orbitals. The calculated energies of the **HOMO and LUMO** were -7.17 and -0.47 eV respectively, corresponding to a **HOMO-LUMO band gap** of 6.71 eV (figure 6). Plots of the orbital density for the HOMO and LUMO are shown in figures 3-4 respectively, while the orbital overlap between the HOMO and LUMO is shown in figure 5.



**Figure 6:** Graph of the calculated molecular orbital energies in close proximity to the HOMO-LUMO gap. Solid lines: occupied orbitals, dashed lines: virtual orbitals.

Silico 1.0.0-pre.32 Page 2 of 4



**Figure 3:** Orbital density plots of the HOMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D:  $45^{\circ}$  to the axes.

**Figure 5:** Orbital density plots of the HOMO (blue) and LUMO (red), plotted simultaneously with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D:  $45^{\circ}$  to the axes.



**Figure 4:** Orbital density plots of the LUMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D:  $45^{\circ}$  to the axes.

Silico 1.0.0-pre.32 Page 3 of 4

## **Tables Of Results**

#### **Atom Coordinates**

**Table 6:** Coordinates of the atoms of the system under study, as aligned to the cartesian axes by the Minimal method.

| Element | X Coord /Å | Y Coord /Å | Z Coord /Å |
|---------|------------|------------|------------|
| С       | -1.1374900 | 0.6846500  | -0.0000200 |
| С       | -1.1954400 | -0.7066400 | 0.0000700  |
| С       | -0.0004700 | -1.4179200 | 0.0000700  |
| С       | 1.1949700  | -0.7074400 | -0.0001500 |
| С       | 1.1379500  | 0.6838900  | 0.0000900  |
| N       | 0.0004600  | 1.3802200  | 0.0002000  |
| Н       | -2.0551200 | 1.2706900  | -0.0006000 |
| Н       | -2.1544700 | -1.2150500 | 0.0001500  |
| Н       | -0.0008300 | -2.5041600 | 0.0003500  |
| Н       | 2.1536600  | -1.2164900 | -0.0006400 |
| Н       | 2.0559700  | 1.2693200  | 0.0003000  |
|         |            |            |            |

# **Molecular Orbitals**

| Table 7 | <ul> <li>Fnornios</li> </ul> | of the | calculated | molecular | orhitals |
|---------|------------------------------|--------|------------|-----------|----------|

| Level | Label   | Symmetry | Energy /eV |
|-------|---------|----------|------------|
| 37    | LUMO+15 | A        | 15.0342    |
| 36    | LUMO+14 | A        | 14.5841    |
| 35    | LUMO+13 | A        | 12.7701    |
| 34    | LUMO+12 | A        | 12.6778    |
| 33    | LUMO+11 | A        | 9.0193     |

#### References

- N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839--845
- 2. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, Nature Methods, 2020, 17, 261--272

| 32 | LUMO+10 | Α | 8.9991    |
|----|---------|---|-----------|
| 31 | LUMO+9  | Α | 8.2736    |
| 30 | LUMO+8  | A | 6.8258    |
| 29 | LUMO+7  | A | 5.1992    |
| 28 | LUMO+6  | A | 5.1849    |
| 27 | LUMO+5  | A | 4.5869    |
| 26 | LUMO+4  | A | 4.2866    |
| 25 | LUMO+3  | A | 4.1186    |
| 24 | LUMO+2  | A | 2.8373    |
| 23 | LUMO+1  | A | -0.1197   |
| 22 | LUMO    | A | -0.4663   |
| 21 | номо    | A | -7.1728   |
| 20 | HOMO-1  | A | -7.4191   |
| 19 | HOMO-2  | A | -8.1231   |
| 18 | НОМО-3  | A | -10.1396  |
| 17 | HOMO-4  | A | -11.1929  |
| 16 | HOMO-5  | A | -11.2837  |
| 15 | HOMO-6  | A | -11.9543  |
| 14 | HOMO-7  | A | -13.1334  |
| 13 | HOMO-8  | A | -13.4086  |
| 12 | НОМО-9  | A | -14.7906  |
| 11 | HOMO-10 | A | -17.5660  |
| 10 | HOMO-11 | A | -17.6203  |
| 9  | HOMO-12 | A | -21.3179  |
| 8  | HOMO-13 | A | -22.5351  |
| 7  | HOMO-14 | A | -26.3511  |
| 6  | HOMO-15 | A | -278.7370 |
|    |         |   |           |

- 3. W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, **14**, 33-38
- J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- 7. K. Community, https://weasyprint.org, (accessed May 2020)

Silico 1.0.0-pre.32 Page 4 of 4