Real Analysis Qual Prep Week 1: Preliminaries

D. Zack Garza

Table of Contents

Contents

Ta	Table of Contents		
1	Wee	ek 1: Preliminaries	3
	1.1	Topics	3
	1.2	Warmup	3
	1.3	Exercises	4
	1.4	Qual Questions	6

Table of Contents

1 Week 1: Preliminaries

1.1 Topics

- The Cauchy criterion
- Uniform convergence

$$\Diamond M$$
-Test

- F_{σ} and G_{δ} sets,
- Pathological functions and continuity
- Nowhere density,
- Baire category theorem,
- Heine-Borel
- Normed spaces
- Series and sequences,
 - Convergence
 - Small tails,
 - limsup and liminf,
 - Cauchy criteria for sums and integrals
- Basic inequalities (triangle, Cauchy-Schwarz)
- Tools from Calculus: MVT, Taylor's theorem & remainder
- Weierstrass approximation

1.2 Warmup

- Define what it means for a sequence of functions to converge **pointwise** and to converge **uniformly**.
- Give two different definitions for compactness in a metric space.
- Find an example of a metric space with a closed and bounded subspace that is not compact.
 - How can this be modified to obtain a necessary and sufficient condition?
- Show that if $\sum_{n\in\mathbb{N}} a_n < \infty$ converges, then

$$a_n \stackrel{n \to \infty}{\longrightarrow} 0$$

and the tail is small in the following sense:

$$\sum_{n>N} a_n \stackrel{N\to\infty}{\longrightarrow} 0$$

Week 1: Preliminaries 3

- Is it possible for a function $f: \mathbb{R} \to \mathbb{R}$ to be discontinuous precisely on the rationals \mathbb{Q} ? If so, produce such a function, if not, why?
 - Can the set of discontinuities be precisely the irrationals $\mathbb{R} \setminus \mathbb{Q}$?
- Find a sequence of continuous functions that does *not* converge uniformly, but still has a pointwise limit that is continuous.

1.3 Exercises

- Prove the uniform limit theorem: a uniform limit of continuous function is continuous.
- Show that the uniform limit of bounded functions is uniformly bounded.
- Construct sequences of functions $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ which converge uniformly on some set E, and yet their product sequence $\{h_n\}_{n\in\mathbb{N}}$ with $h_n \coloneqq f_n g_n$ does not converge uniformly.
 - Show that if f_n, g_n are additionally bounded, then h_n does converge uniformly.
- Show that if $f_n:[a,b]\to\mathbb{R}$ are continuously differentiable with derivatives f'_n , the sequence of derivatives f'_n converges uniformly to some function g, and there exists at least one point x_0 such that $\lim_n f_n(x_0)$ exists, then $f_n\to f$ uniformly to some differentiable f, and f'=g.
 - Find a sequence of functions such that

$$\frac{d}{dx}\lim_{n\to\infty} f_n(x) \neq \lim_{n\to\infty} \frac{d}{dx} f_n(x)$$

- Find a uniform limit of differentiable functions that is not differentiable.

2.4 Spring 2017 # 4 🦙

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

2.5 Spring 2015 # 1 😽

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and $x_0 \in X$.

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \to f(x_0)$ for every sequence $\{x_n\} \to x_0$ in X.

1.3 Exercises 4

2.1 Fall 2018 # 1 😽

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

Lei

$$f_n(x) = \left\{egin{array}{ll} rac{1}{n} & x \in (rac{1}{2^{n+1}},rac{1}{2^n}] \ 0 & ext{otherwise}. \end{array}
ight.$$

Show that $\sum_{n=1}^{\infty} f_n$ does not satisfy the Weierstrass M-test but that it nevertheless converges uniformly on \mathbb{R} .

4. Let $f_n:[0,1)\to\mathbb{R}$ be the function defined by

$$f_n(x) := \sum_{k=1}^n \frac{x^k}{1 + x^k}.$$

- **1.** Prove that f_n converges to a function $f:[0,1)\to\mathbb{R}$.
- **2.** Prove that for every 0 < a < 1 the convergence is uniform on [0, a].
- **3.** Prove that f is differentiable on (0, 1).

3. (a) Let $\{r_n\}_{n=1}^{\infty}$ be any enumeration of all the rationals in [0,1] and define $f:[0,1]\to\mathbb{R}$ by setting

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}.$$

Prove that $\lim_{x\to c} f(x) = 0$ for every $c \in [0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.

6. Let

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{1 + n^2 x}.$$

(a) Show that the series defining g does not converge uniformly on $(0, \infty)$, but none the less still defines a continuous function on $(0, \infty)$.

Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_n(x)$ converges uniformly on a set X, then the sequence of functions $\{g_n\}$ must converge uniformly to 0 on X.

(b) Is g differentiable on $(0, \infty)$? If so, is the derivative function g' continuous on $(0, \infty)$?

7. Let
$$h_n(x) = \frac{x}{(1+x)^{n+1}}$$
.

- (a) Prove that h_n converges uniformly to 0 on $[0, \infty)$.
- (b) i. Verify that

$$\sum_{n=0}^{\infty} h_n(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x = 0 \end{cases}$$

ii. Does $\sum_{n=0}^{\infty} h_n$ converge uniformly on $[0,\infty)$? (c) Prove that $\sum_{n=0}^{\infty} h_n$ converges uniformly on $[a,\infty)$ for any a>0.

1.4 Qual Questions

3.1 Spring 2020 # 1 🦙

Prove that if $f:[0,1]\to\mathbb{R}$ is continuous then

$$\lim_{k\to\infty}\int_0^1 kx^{k-1}f(x)\,dx=f(1).$$

3.4 Fall 2017 # 4 🦙

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

- a. Show that $f_n \to 0$ pointwise but not uniformly on [0,1].
- b. Show that

$$\lim_{n \to \infty} \int_0^1 n(1-x)^n \sin x \, dx = 0$$

Hint for (a): Consider the maximum of f_n .

3.11 Fall 2020 # 1

$$\lim_{n \to \infty} nx_n = 0.$$

1.4 Qual Questions