# Divide and Conquer (Part 1)

Debarka Sengupta

# Divide and Conquer

- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
- Subproblems typically disjoint
- Often gives significant, usually polynomial, speedup
- Examples: Quick Sort, Mergesort, Binary Search, Strassen's Algorithm, Quicksort. FFT, etc.

# Steps involved

- Divide-and-conquer algorithm has three parts:
- Divide: the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer: the subproblems by solving them recursively. If they are small enough, solve the subproblems as base cases.
- Combine: the solutions to the subproblems into the solution for the original problem. Consequence:

### Benefit

- Brute force / naïve solution: N² (typically)
- Divide-and-conquer: N log N

# Algorithm sketch - two subproblems



# Algorithm sketch - more than two subproblems



# Finding word in dictionary

Suppose you want to find "janissary" in a dictionary:

- open the book near the middle
- the heading on the top left page is "kiwi",
- so move back a small number of pages
- here you find "hypotenuse", so move forward
- find "ichthyology", move forward again

The number of pages you move gets smaller (or at least adjusts in response to the words you find)

# Common D&C algorithms

#### Mathematics

- Polynomial & Matrix Multiplication
- Exponentiation
- Large Integer Manipulation
- o FFT

#### Geometry

- Convex Hull
- Closest Pair

#### Searching

Binary Search

#### Sorting

- Merge Sort
- Quick Sort

# Root finding - bisection

# Root finding problem

- Finding Zero of function f(x)
- This process involves finding a root, or solution, of an equation of the form f(x) = 0 for a given function f(x) = 0

#### Intermediate value theorem (IVT)

It simply states that for any value L between f(a) & f(b), there's a value c in [a,b] for which f(c)=L.



# Example

• Show that  $f(x) = x^3 + 4x^2 - 10 = 0$  has a root in [1, 2] and use the Bisection method to determine an approximation to the root that is accurate to at least within  $10^{-4}$ 

### Solution sketch

• Because f(1) = -5 and f(2) = 14 the IVT ensures that this continuous function has a root in [1, 2].

### Solution sketch continued ...

- For the first iteration of the Bisection method we use the fact that at the midpoint of [1, 2] we have f(1.5) = 2.375 > 0.
- This indicates that we should select the interval [1, 1.5] for our second iteration.
- Then we find that f(1.25) = -1.796875 so our new interval becomes [1.25, 1.5], whose midpoint is 1.375.
- Continuing in this manner gives the values shown in the following table

## Iterations

| Iter | an       | b <sub>n</sub> | p <sub>n</sub> | $f(a_n)$ | $f(p_n)$ | RelErr  |
|------|----------|----------------|----------------|----------|----------|---------|
| 1    | 1.000000 | 2.000000       | 1.500000       | -5.000   | 2.375    | 0.33333 |
| 2    | 1.000000 | 1.500000       | 1.250000       | -5.000   | -1.797   | 0.20000 |
| 3    | 1.250000 | 1.500000       | 1.375000       | -1.797   | 0.162    | 0.09091 |
| 4    | 1.250000 | 1.375000       | 1.312500       | -1.797   | -0.848   | 0.04762 |
| 5    | 1.312500 | 1.375000       | 1.343750       | -0.848   | -0.351   | 0.02326 |
| 6    | 1.343750 | 1.375000       | 1.359375       | -0.351   | -0.096   | 0.01149 |
| 7    | 1.359375 | 1.375000       | 1.367188       | -0.096   | 0.032    | 0.00571 |
| 8    | 1.359375 | 1.367188       | 1.363281       | -0.096   | -0.032   | 0.00287 |
| 9    | 1.363281 | 1.367188       | 1.365234       | -0.032   | 0.000    | 0.00143 |
| 10   | 1.363281 | 1.365234       | 1.364258       | -0.032   | -0.016   | 0.00072 |
| 11   | 1.364258 | 1.365234       | 1.364746       | -0.016   | -0.008   | 0.00036 |
| 12   | 1.364746 | 1.365234       | 1.364990       | -0.008   | -0.004   | 0.00018 |
| 13   | 1.364990 | 1.365234       | 1.365112       | -0.004   | -0.002   | 0.00009 |

### Precision

- The number of iterations depends on the precision being looked for
- if  $c_1 = (a+b)/2$  is the midpoint of the initial interval, and  $c_n$  is the midpoint of the interval in the  $n^{th}$  step, then the difference between  $c_n$  and a solution c is bounded by  $|c_n c| <= |b a|/2^n$
- One should be able to perform the back calculation

### Closest Pair

# Closest pair - problem statement

 Given a set of points {p<sub>1</sub>, . . . , p<sub>n</sub>} find the pair of points {p<sub>i</sub>, p<sub>j</sub>} that are closest



# Brute force vs. divide and conquer

- Brute force gives an O(n²) algorithm to just check ever pair of points.
- Can we do it faster? Seems like difficult without checking every pair.
- In fact, we can find the closest pair in O(n log n) time.

### Divide

- · Split the points with line L so that half the points are on each side.
- Recursively find the pair of points closest in each half.



# Merge

- Let  $d = min\{d_{left}, d_{right}\}$
- · d would be the answer, except maybe L split a close pair!



# Region near L

 If the closest pair exists across the L, it should contained within d margins on both sides



### A life saver observation

- Let S<sub>y</sub> be an array of the points in that region, sorted by decreasing ycoordinate value.
- S<sub>y</sub> might contain all the points, so we can't just check every pair inside it.

#### Theorem

Suppose  $S_y = p_1, \ldots, p_m$ . If  $dist(p_i, p_j) < d$  then  $j - i \le 15$ .

# Constant number of checks for each point is enough

- We can split the entire margin area into d/2 sided square boxes
- Each box can have max 1 point
- Suppose 2 points are separated by > 15 indices.
  - Then, at least 3 full rows separate them (the packing shown is the smallest possible).
  - But the height of 3 rows is > 3d/2, which is > d.
  - So the two points are further than d apart.



### Conclusion

- Starting from the bottom most point, for each point, it is enough to check next 15 data points up in the sequence of increasing value in S<sub>y</sub>
- Constant (15) time for each of the n points

# The algorithm

```
ClosestPair(Px, Py):
   if |Px| == 2: return dist(Px[1],Px[2])  // base

d1 = ClosestPair(FirstHalf(Px,Py))  // divide
   d2 = ClosestPair(SecondHalf(Px,Py))
   d = min(d1,d2)

Sy = points in Py within d of L  // merge
For i = 1,...,|Sy|:
      For j = 1,...,15:
        d = min( dist(Sy[i], Sy[j]), d )
Return d
```

# Running time

- Divide set of points in half each time: O(log n) depth recursion
- Merge takes O(n) time.
- Recurrence: T(n) = 2T(n/2) + cn
- Analysis is same as MergeSort ⇒ O(n log n) time

### Convex Hull

### Convex Hull

- Studied in the field of Computational Geometry.
- A convex hull, of a set of N points is the smallest perimeter fence enclosing all these points.
- Convex Hull Output Sequence of vertices in counterclockwise/ clockwise order.



# Motion planning

- Robot Motion Planning Find the shortest path in the plane from a starting point s to an ending point t, that avoids a polygonal obstacle.
- Here, we can see that the shortest path is either the straight line from s to t, or one of the two polygon chains of the convex hull.



# Mechanical algorithm

Hammer nails perpendicular to the plane and stretch elastic rubber band around these points.



### Brute force

- Create a list of all possible line segments
  - N choose 2 line segments for N points
- For each line segment check if both sides have points
  - If that's not the case, include the segment in the solution set
- Quadratic complexity algorithm

### Graham's scan

- Start at point guaranteed to be on the hull. (the point with the minimum y value)
- Sort remaining points by polar angles of vertices relative to the first point.
- Go through sorted points, keeping vertices of points that have left turns and dropping points that have right turns.

# Graham's scan example

# Graham's scan example



# Graham's scan example

























#### Runtime of Graham's can

Graham's scan is O(n log n) due to initial sort of angles.

# Quick Hull Algorithm





































#### Practice

• Write down the also pseudocode

#### Solution

Wiki: <a href="https://en.wikipedia.org/wiki/Quickhull">https://en.wikipedia.org/wiki/Quickhull</a>

# Runtime analysis

- $T(n) = T(n_1) + T(n_2) + O(n)$ 
  - Worst case  $n_1 = n k$  or  $n_2 = n k$ , where k is a small constant (e.g., k=1)
    - $\bullet T(n) = O(n^2)$
  - Average case,  $n_1 = \alpha n$  and  $n_2 = \beta n$ , where  $\alpha < 1$  and  $\beta < 1$ 
    - $\bullet T(n) = O(n \log n)$