Robot manipulateur à câbles

Projet universitaire

Master 1 Automatique, Robotique Parcours Systèmes Avancés et Robotiques

Introduction

Les chaines cinématique très particulières des robots parallèles en font une classe à part de la robotique parallèle traditionnelle, en effet, les robot manipulateurs parallèle présentés dans cette fiche ont les éléments mécanique qui reliant la plateforme mobile à la base fixe ne sont pas rigides, mais composés de cables flexibles enroulés pour transmettre un movement et une force.

Objectifs

- Proposition d'une modélisation géométrique, cinématique, statique et dynamique.
- → Proposition d'une simulation d'un robot manipulateur à cables (8 cables, 6 DDL).
- → Visualisation de l'évolution de movement de ces robots en fonction de ses paramètres articulaires et opérationnels.
- ⇒ Exposer l'évolution de ses variables sous forme des courbes en fonction du temps.
- Controle de la vitesse de la plateforme mobile.
- → Déduire la distribution des tensions dans les cables et proposition d'un algorithme d'optimisation.

Démarches

1) - Simulation sous Python pour visualiser un robot maniplulateur suspendu à 8 câbles.

- 2) Définition du modèle géométrique direct (MGD): $\mathbf{x} = \mathbf{f}^{-1}(\mathbf{l})$
 - → Trouver la position et l'orientation de la plateforme mobile connaissant la longueur des câbles.

- 3) Définition du modèle géométrique indirect (MGI) : l = f(x)
 - $|l_i| = ||\overrightarrow{A_i B_i}|| = ||(\mathbf{p} + \mathbf{Qb_i} \mathbf{a_i})||, i \in [1, 2, ..., m]|$
- 4) Contrôle du vitesse de la plateforme mobile (MCI) :
 - Paramétrage: x(t), y(t), z(t)
 - Dérivation :
 - #création de vecteur paramètres opérationnelles: x_dot = np.array([[x_point,y_point,z_point,phi_point,théta_point,psi_point]]) #trouver le vecteur des paramètre articulaire à partir du produit entre vecteur #paramètre opérationnels et la matrice Jacobienne inverse $\dot{l}_i = \mathbf{J}^{-1} \cdot \dot{x}$ l_dot = np.dot(J-1,x_dot.T)
- 5) Algorithme d'optimisation et minimisation de vecteur de tensions.
 - Solution optimale : (Scipy.optimize)

Résultats

⇒ Espace de travail (robot à 6 cables) < Espace de travail (robot à 8 cables) (Singularités !!)

Evolution des vitesses articulaires (enroulement / déroulement des câbles)

Distribution des tensions dans les câbles selon des contraintes.

Conclusion

- ★ Plus grand nombre de câbles :
 - augmenter le volume de l'espace de travail.
 - mieux répartir les tensions dans les câbles.
- Réunion des câbles aux points d'attache permet d'augmenter l'espace de travail et éviter qu'ils se croisent.
- Tobs problèmes mathématique se cachaient derrière cette simplicité.
- * N'existe pas encore une fonction explicite pour la détermination des tensions optimales dans les câbles.