OBJECTIFS 👌

- Connaître les notions de direction, sens et norme pour un vecteur.
- Représenter géométriquement des vecteurs.
- Savoir repérer deux vecteurs égaux ou colinéaires.
- Utiliser la relation de Chasles.
- Connaître les opérations sur les vecteurs et leur représentation géométrique.
- Caractériser alignement et parallélisme par la colinéarité de vecteurs.

Translations

À RETENIR 30

Définition

Lorsque l'on réalise une translation sur une figure, la direction, le sens et la longueur de celle-ci définissent le **vecteur** associé à cette translation. Un vecteur est donc un déplacement dans le plan : on le représente par une flèche. Le vecteur qui ne représente aucun déplacement est appelé **vecteur nul**.

EXEMPLE 🔋

À RETENIR 99

Propriété

Soient A, B, C et D quatre points. ABDC est un parallélogramme (éventuellement aplati) si et seulement si D est l'image de C par la translation de vecteur \overrightarrow{AB} (ie. $\overrightarrow{AB} = \overrightarrow{CD}$).

EXERCICE 1

Le quadrilatère \overrightarrow{ABDC} ci-contre est un parallélogramme. E est l'image de C par la translation de vecteur \overrightarrow{AC} .

- 1. Placer *F*, l'image de *E* par la translation de vecteur \overrightarrow{AB} .

√Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/vecteurs/#correction-1.

1. Caractéristiques

À RETENIR 99

Définitions

Soient A et B deux points. On appelle :

- **Direction** de \overrightarrow{AB} , la direction de la droite (AB).
- **Sens** de \overrightarrow{AB} , le sens de A vers B.
- **Norme** de \overrightarrow{AB} , notée $||\overrightarrow{AB}||$, la longueur du segment [AB] (qui correspond à AB).

Deux vecteurs ayant même direction, sens et norme sont dits égaux.

À RETENIR 99

Définition

Un vecteur \vec{u} est un déplacement : il n'est pas nécessairement attaché à un point particulier. On peut le placer n'importe où dans le plan. Chacun des vecteurs égaux à \vec{u} s'appelle un **représentant** de \vec{u} .

EXERCICE 2

ABCDEF est un hexagone régulier de centre O.

1. Citer un vecteur qui a la même direction que \overrightarrow{AB} , mais pas le même sens ni la même norme.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/vecteurs/#correction-2.

2. Somme

À RETENIR 99

Définition

La **somme** de deux vecteurs \vec{u} et \vec{v} , notée $\vec{u} + \vec{v}$, est le vecteur associé à la translation de vecteur \vec{u} suivie de la translation de vecteur \vec{v} .

À RETENIR 99

Propriété

Soient *A*, *B* et *C* trois points. On a la relation suivante :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Elle s'appelle relation de Chasles.

EXERCICE 3

On considère le carré ABCD ci-contre de centre O. Construire un représentant des vecteurs suivants.

1.
$$\overrightarrow{CD} + \overrightarrow{DO}$$
.

2.
$$\overrightarrow{AB} + \overrightarrow{OD}$$
.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/vecteurs/#correction=

3. Différence

À RETENIR 00

Définition

Le **vecteur opposé** d'un vecteur \vec{u} , noté $-\vec{u}$, est le vecteur qui possède la même direction, la même norme, mais un sens opposé.

À RETENIR 👀

Définition

La **différence** de deux vecteurs \vec{u} et \vec{v} , notée $\vec{u} - \vec{v}$, est le vecteur

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

ie. $\vec{u} - \vec{v}$ est la somme de \vec{u} avec l'opposé de \vec{v} . On a de plus la relation $\vec{u} - \vec{u} = \vec{0}$.

EXERCICE 4

Simplifier les écritures vectorielles suivantes en les écrivant sous la forme d'un seul vecteur.

- **2.** $\overrightarrow{AR} \overrightarrow{CR} = \dots$
- 3. $\overrightarrow{CD} + \overrightarrow{RC} = \dots$
- **4.** $\overrightarrow{AB} + \overrightarrow{CA} \overrightarrow{SB} = \dots$

4. Multiplication par un nombre

À RETENIR 99

Définition

Soient \vec{u} un vecteur et k un nombre réel non nul. On définit le vecteur $k\vec{u}$, le résultat de la **multiplication** entre k et \vec{u} , par :

- sa direction : la même que celle de \vec{u} ;
- son sens : le même que celui de \vec{u} si k > 0, le sens opposé sinon ;
- sa norme : $k \times \|\vec{u}\|$ si k > 0, $-k \times \|\vec{u}\|$ sinon.

EXERCICE 5

On considère le vecteur \vec{u} ci-contre. Construire chacun des vecteurs

- 1. $2\vec{u}$.
- **2.** $-3\vec{u}$.
- 3. $\frac{1}{2}\vec{u}$.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/vecteurs/#correction-5

À RETENIR 99

Remarque

Les opérations se font pareil que sur les nombres. Ainsi, pour tout nombres k, k' et vecteurs $\vec{u}, \vec{v}, \vec{w}$:

$$-\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$-\vec{u} + \vec{0} = \vec{u}$$

$$- (k+k')\vec{u} = k\vec{u} + k'\vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \qquad -k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

$$-k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$$

$$--(kk')\vec{u} = k(k'\vec{u})$$

Colinéarité

À RETENIR 👀

Définition

On dit que deux vecteurs \vec{u} et \vec{v} sont **colinéaires** s'il existe un nombre réel k tel que $\vec{v} = k\vec{u}$.

EXERCICE 6

Repasser de la même couleur les vecteurs colinéaires.

À RETENIR 99

Propriété

- Deux droites (AB) et (MN) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires.
- Trois points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

EXERCICE 7

Soient \overrightarrow{ABC} un triangle et P et R deux points tels que $\overrightarrow{AP} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$ et $\overrightarrow{AR} = 2\overrightarrow{AB} + 2\overrightarrow{AC}$.
1. Montrer que $3\overrightarrow{AP} = \overrightarrow{AR}$.
2. Que peut-on dire des points <i>A</i> , <i>R</i> et <i>P</i> ?

 $\ref{thm:converse} Voir la \ correction: \verb|https://mes-cours-de-maths.fr/cours/seconde/vecteurs/\#| correction-7.$