FURTHER MATHEMATICS HIGHER LEVEL

Tuesday 28 January 2020

1 hour 10 minutes

9806	
	Excellet.

Name in block letters

MAGGIE

INSTRUCTIONS TO CANDIDATES

- Do not open this test until instructed to do so.
- Answer all 10 questions.
- A graphic display calculator is required for this test.
- A clean copy of the formula booklet is required for this test.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.	Use L'Hôpital's rule to find $\lim_{x\to 0} (\csc x - \cot x)$.
	$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right)$
	Lim (1-cosx) = 0, so l'Hopital's rule applie
	So = lim (1-cosx)' x+0 (sinx)'
	= lim sinx x > 0 Cosx
	= tim a tanx
	= 0
	/
	()

5.

2.	The relation	R	is defined	on I	\mathbb{R} by	x R y	if	x +	y	=	x+y	1.

(a) Show that R is reflexive.

(b) Show that R is symmetric.

(c) Show by means of a counterexample that R is not transitive.

 $|x| + |ax| = \begin{cases} 2x & x > 0 \\ -2x & x < 0 \end{cases}$

 $|x+x|=|zx|=\begin{cases} 2X & , x>0 \\ -2X & , x<0 \end{cases}$

Therefore, |x|+|x|=|x+x|, and xRx &x ER.

(b) If |x|+|y| = |x+y|. xRy, x.yeR,

then |y|+|x| = |y+x|, xRy, therefore symmetric

(c) let x=2, y=0, z=-2, |x|+|y| = 2 = |x+y|., so xRy,

|4|+|z|=2=|3+z|., so yRz

flowever,

 $| \mathbf{w} \times | + | \mathbf{z} | = | \mathbf{z} | + | \mathbf{z} | = 4$

|X+2| = |2-2| = 0

So |x|+|z| + |x+z|. x RZ.

Therefore, not transitive.

3.	Consider the	differential	equation	dy/dx	$= y^{3}$	$-x^3$	with g	y = 1	when	x =	0.	Use	Euler's
	method in tab	ole form wit	th a step	length o	of 0.1	to app	oroxim	ate the	e value	$e ext{ of } y$	wh	en x	= 0.4.

dy	= 43.	,3				
d×	2.9	X				
	Ŋ	Χn	Yn	h	h×f(xn,yn)	
STATES OF STATES OF STATES OF STATES	0	0	9	01	4	
		0.1			0.133.	
	2	٥,2	1.233	ا . ن	0.186-65	
	3	0.3	1.41965	0.1	0.28342.	onto acuto acuto ac
		347	1.7031			
		x =0.4				
			(3 s.f.)			
	G					
****	OF EDFOR NOTES BORDS				W	
			4			******
	* * * * * * * * * * * *					
					2 2 2 4 4	
)

		A	15	(12	-	F	
4.	A	\int_{0}^{∞}	1	0	0	1	1	
	В	1	0	1	0	1	0	
	Consider the simple graph G with adjacency matrix	0	1	0	1	0	0	
	b	0	0	1	0	1	1	9.0
	E	E 1 1 0 1 0	0	0				
	F	$\backslash 1$	0	0	1	0	0/	

- (a) Draw G and its complement G'.
- (b) State whether or not G is planar giving a reason for your answer.
- (c) State whether or not G is bipartite giving a reason for your answer.

5. Consider the matrix
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.
$$\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \qquad \begin{pmatrix} -(a+d-1) \\ -(a+d-1) \end{pmatrix}$$

- (a) If a + b = c + d = 1 show that 1 is an eigenvalue of M.
- (b) Find the eigenvectors for M when a = 2, b = -1, c = 3 and d = -2.

(a)
$$\lambda^{2} - (a+d)\lambda + ad - bc = 0$$

(b) $b = 1-a$, $d = 1-c$. $c = 1-d$.

$$\lambda^{2} = (a+d)\lambda + ad - (1-a)(1-d) = 0$$

$$\lambda^{2} - (a+d)\lambda + \sqrt{a+d} - 1 - ad = 0$$

(b) $a = (a+d) + a+d - 1 = 0$

(c) $a = (a+d) + a+d - 1 = 0$

(d) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(e) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(f) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(g) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(g) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1) \cdot 1 \cdot (\lambda - 1) = 0$

(h) $a = (a+d-1)$

6.	Consider the permutation $p =$	(1	2	3	4	5	6)	
		$\sqrt{3}$	4	5	6	2	1)	

- (a) Find the order of p justifying your answer.
- (b) Find p^2 .
- (c) The permutation group G is generated by p. Find the element of G that is of order 2 giving your answer in cycle notation.

(a) $9 = (135)$	246) $P^{6} = e$, $ev is 6$.
so the ord	er is 6.
(b) p2 = (13	5246)(135246)
= (154)	A STATE OF THE PARTY OF THE PAR
c) Since Pri	order 2.
P3 = (15)	+)(326)(135246)
= (12)	(34)(56)

- 7. A linear transformation T from \mathbb{R}^3 to \mathbb{R}^4 is represented by the matrix $M = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 5 \\ -3 & 1 & 4 \\ 1 & 5 & 4 \end{pmatrix}$.
 - (a) Find the rank of M.
 - (b) Find a basis for the range of T.
 - (c) Find the kernel of T.
 - (a) $M \sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 3 \\ 0 & 7 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = R$

Therefore, there are 2 rows of leading 1;

(b) Frank Take the two columns with leading 1, In R, we find in M the basis

 $\begin{pmatrix} \frac{1}{2} \\ -\frac{3}{3} \end{pmatrix}, \begin{pmatrix} \frac{2}{7} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{2}{7} \\ \frac{1}{3} \end{pmatrix} \rangle$ Hence the range $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{7}{7} \\ \frac{1}{3} \end{pmatrix} \rangle$

(c) The kernel of T is the null space of M.

 $X_1 = S_1, \quad X_2 = -S_2$

so the kurnel of T is

- 8. Determine whether each of the following infinite series converges or diverges.
 - (a) $\sum_{n=1}^{\infty} \frac{3n}{2n^2 + 5}$
 - (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{5^n (n!)^2}$

(a) Diverges.

Viny $\frac{3n}{2n^2+3}$ Using the comparison test.

N=0 2n^2+3 Since $3n^2 > 2n^2+5 + n > 3$ Viny $\frac{3n}{2+3}$ $\frac{3n}{3n^2} < \frac{3n}{3n^2+5} + n > 3$

Since $\sum_{n=1}^{\infty} \frac{3n}{3n^2} = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges, it follows

that $\sum_{n=1}^{\infty} \frac{3n}{2n^2+5}$ diverges.

(b) Apply the ratio test.

lim. $\frac{(2n+2)!}{5^{n+1}[(n+1)!]^2}$ $\frac{5^{n}(n!)^2}{(2n)!}$

 $\frac{1}{1} = \frac{1}{1} \ln \frac{(2n+2)(2n+1)}{5(n+1)^2}$

 $=\frac{1}{N-10}\left|\frac{2}{5}\frac{2N+1}{N+1}\right|=\frac{4}{5}$

Therefore, it converges.

- 9. In $\triangle ABC$, the angles are $A = \frac{5\pi}{8}$, $B = \frac{\pi}{8}$ and $C = \frac{\pi}{4}$. Point P is the foot of the perpendicular from A to side [BC], point Q is the midpoint of side [AC], and point R is the intersection of the angle bisector of angle C with side [AB].
 - (a) Show $\frac{AR}{BR} = \tan \frac{\pi}{8}$.
 - (b) Show $\frac{BP}{CP} = \tan \frac{3\pi}{8}$.
 - (c) Hence show that the lines (AP), (BQ) and (CR) are concurrent.

(a) AR = AC = SINB SIND

 $=\frac{Sin\left(\frac{T}{8}\right)}{Sin\left(\frac{T}{8}\right)}=\frac{0.414 \left(3.5\right)}{5.5}$

 $=\frac{Sin\left(\frac{\pi}{8}\right)}{\cos\left(\frac{\pi}{8}\right)}=\tan\left(\frac{\pi}{8}\right)$

(b) BP = BP, since LACP = The CAPCE 90°.

 $\frac{BP}{AP} = \frac{\sin\left(\frac{3\pi}{8}\right)}{\sin\left(\frac{\pi}{8}\right)} = \frac{\sin\left(\frac{3\pi}{8}\right)}{\cos\left(\frac{3\pi}{8}\right)} = \tan\left(\frac{3\pi}{8}\right).$

(c) Since A CO = 1

 $\frac{AR}{RB} \frac{BP}{Pc} \cdot \frac{CQ}{QA} = \tan(\frac{\pi}{8}) \cdot \tan(\frac{3\pi}{8})$

Therefore according to Cova's theorem

Therefor, according to Cava's theorem,

(AP), (BQ), (IR) are concurrent.

- 10. The random variable $X \sim NB(r, p)$ has probability generating function $G_X(t) = \frac{p^r t^r}{(1 at)^r}$.
 - (a) Use this probability generating function to find E(X).

Consider another independent random variable $Y \sim NB(s, p)$ and let W = X + Y.

- i. Find the probability generating function for W.
 - ii. Hence identify the distribution that W follows and state its parameters.
 - iii. Given that r=2 and s=3, calculate $P(X=3 \mid W=7)$.

-= p't'.rg(1-gt)-r-1 + rprtr-1 (1-gt)-r.

E(x) = G(x(1))

= p' rg (1-g) -r-1 + rpr (1-g) -r

= pr. rqg. p-r-1 + rpr.p-r

 $= p^{-1}q_{0} + r$ $= r(p^{-1}q_{0} + 1) = \frac{r}{p}$

(b) (i) W = Gx(t) × Gy(t)

 $= \frac{p^r t^r}{(1-qt)^s} \frac{p^s t^s}{(1-qt)^s}$

= Pr+s tr+s (1-9,t)s+r.

(ii) So W~NB(S+r,p).

(iii) $P(X=3|W=7) = \frac{P(Y=4), P(X=3)}{P(W=7)}$

 $= \frac{\binom{3}{2} p^3 q_5^2}{\binom{6}{9} p^5 q_5^2} = \frac{3 p^3 q_5}{15 p^5 q_5^2}$

Turn over

* * * * * * * * * * *				**** *** **** **** *	

*** *** ***					

SER FOR EVEN K KKK	********	***		*** **** *** *** ****	
nera anera anera anera (**********			
SEC. C. C	*** *** *** *** *** *	*** **** **** **** * ******			 **** **** **** ****
*********				a lamana amana amana amana a	
		*****		• ***** ***** ***** ***** *	
			en energe energe energe energ		