1

AI1103 Assignment-8

SRIVATSAN T - CS20BTECH11062

Download all python codes from

https://github.com/CS20BTECH11062/AI1103/tree/main/Assignment-8/codes

and latex-tikz codes from

https://github.com/CS20BTECH11062/AI1103/tree/main/Assignment-8/Assignment-8.tex

QUESTION

(UGC MATH (MATHA) JUNE 2017 Q.52)

X and Y are independent random variables each having the density

$$f(t) = \frac{1}{\pi} \frac{1}{1 + t^2} - \infty < t < +\infty \tag{0.0.1}$$

Then the density function of $\frac{X+Y}{3}$ for $-\infty < t < +\infty$ is

1)
$$\frac{6}{\pi} \frac{1}{4 + 9t^2}$$

$$2) \ \frac{6}{\pi} \frac{1}{9 + 4t^2}$$

3)
$$\frac{3}{\pi} \frac{1}{1 + 9t^2}$$

4)
$$\frac{3}{\pi} \frac{1}{9+t^2}$$

SOLUTION

Let us consider the random variables X and Y. The Characteristic function of the probability density f(t) is

$$g(w) = \int_{-\infty}^{\infty} f(t)e^{iwt}dt \qquad (0.0.2)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{1+t^2} e^{iwt} dt \qquad (0.0.3)$$

$$= e^{-|w|}, -\infty < w < \infty$$
 (0.0.4)

The product of the Characteristic function of probability density of X and Y is

$$h(w) = g_1(w) \times g_2(w) = e^{-2|w|}$$
 (0.0.5)

To get the probability density of X+Y, we find the inverse characteristic function of h(w). But since there is a one to one correspondence between a function and its fourier transform and h(w) = g(2w)

$$F_{X+Y}(t) = \frac{1}{2}f\left(\frac{t}{2}\right) \tag{0.0.6}$$

$$= \frac{1}{2\pi} \frac{4}{4+t^2} , -\infty < t < \infty$$
 (0.0.7)

We know that if a random variable M has a probability density $f_M(x)$, then the probability density of random variable kM is

$$f_{kM}(x) = \frac{1}{|k|} f_M\left(\frac{x}{|k|}\right)$$
 (0.0.8)

Probability density of $Z = \frac{X+Y}{3}$ given $F_{X+Y}(t)$ is

$$F_Z(t) = 3 \times f_{X+Y}(3t)$$
 (0.0.9)

$$=\frac{6}{\pi}\frac{1}{4+9t^2}\tag{0.0.10}$$

Correct Option: 1

Fig. 4: Graph showing X,Y and $\frac{X+Y}{3}$ probability densities. Area under both the curves = 1