Standard-State Thermodynamic Values at 298.15 K: Enthalpy of Formation (ΔH_f^o), Free Energy of Formation (ΔG_f^o), and Absolute Entropy (S o)

Substance	$\Delta H_f^o (kJ/mol_{rxn})$	$\Delta G_f^o (kJ/mol_{rxn})$	$S^{o}(J/mol_{rxn}\cdot K)$		
	Alu	minum			
Al (s)	0	0	28.33		
Al^{3+} (aq)	-531	-485	-321.7		
$Al_2O_3(s)$	-1675.7	-1582.3	50.92		
AlCl ₃ (s)	-704.2	-628.8	110.67		
	Ba	arium			
Ba (s)	0	0	62.8		
Ba^{2+} (aq)	-537.64	-560.77	9.6		
BaO (s)	-553.5	-525.1	70.42		
$Ba(OH)_2 \cdot 8H_2O(s)$	-3342.2	-810.4	123.68		
BaCl ₂ (s)	-871.95	-823.21	122.6		
BaSO ₄ (s)	-1473.2	-1362.2	132.2		
$Ba(NO_3)_2(s)$	-992.07	-769.59	213.8		
	Beryllium				
Be (s)	0	0	9.50		
Be^{2+} (aq)	-382.8	-379.73	-129.7		
BeO (s)	-609.6	-508.3	-129.7		
BeCl ₂ (s)	-490.4	-445.6	82.68		
	Bi	smuth			
Bi (s)	0	0	56.74		
$Bi_2O_3(s)$	-573.88	-493.7	151.5		
BiCl ₃ (s)	-379.1	-315.0	177.0		
	В	oron			
B (s)	0	0	5.86		
$B_2H_6(g)$	35.6	86.7	232.11		
Bromine					
Br ₂ (l)	0	0	152.231		
$Br_{2}(g)$	30.907	3.110	245.463		
Br ⁻ (aq)	-121.55	-103.96	82.4		
HBr (g)	-36.40	-53.45	198.695		
Calcium					
Ca (s)	0	0	41.42		
Ca^{2+} (aq)	-542.83	-553.58	-53.1		
CaO (s)	-653.09	-604.03	39.75		
$Ca(OH)_2$ (s)	0986.09	-898.49	83.39		
CaCl ₂ (aq)	-795.8	-748.1	104.6		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

CaSO ₄ (s)	-1434.11	-1321.79	106.7
CaSO ₄ ·2H ₂ O (s)	-2022.63	-1797.28	194.1
$Ca(NO_3)_2$ (s)	-938.39	-743.07	193.3
CaCO ₃ (s)	-1206.92	-1128.79	92.9
$Ca_{3}(PO_{4})_{2}$ (s)	-4120.8	-3884.7	236.0
	Ca	rbon	
C (s, graphite)	0	0	5.74
C (s, diamond)	1.895	2.900	2.377
CO (g)	-110.525	-137.168	197.764
$CO_2(g)$	-393.509	-394.359	213.74
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.81	-50.752	186.264
H ₂ CO ₃ (aq)	-699.65	-623.08	187.4
HCO ₃ - (aq)	-691.99	-586.77	91.2
CO ₃ ²⁻ (aq)	-677.14	-527.81	-56.9
CH ₃ COOH (aq)	-485.76	-396.46	178.7
CH ₃ COO ⁻ (aq)	-486.01	-369.31	86.6
	Chl	lorine	
$\operatorname{Cl}_{2}\left(\mathrm{g}\right)$	0	0	223.066
Cl ⁻ (aq)	-167.159	-131.228	56.5
		rmium	
Cr (s)	0	0	23.77
CrO ₄ ²⁻ (aq)	-881.15	-727.75	50.21
Cr ₂ O ₇ ²⁻ (aq)	-1490.3	-1301.1	261.9
•	Co	balt	
Co (s)	0	0	30.04
Co^{2+} (aq)	-58.2	-54.4	-113
Co ³⁺ (aq)	92	134	-305
$Co(NH_3)_6^{2+}$ (aq)	-584.9	-157.0	146
	Co	pper	
Cu (s)	0	0	33.150
Cu ⁺ (aq)	71.67	49.98	40.6
Cu^{2+} (aq)	64.77	65.49	-99.6
CuO (s)	-157.3	-129.7	42.63
CuS (s)	-53.1	-53.6	66.5
CuSO ₄ (s)	-771.36	-66.69	109
$\operatorname{Cu(NH_3)_4^{2+}}(\operatorname{aq})$	-384.5	-110.07	273.6
		orine	
$F_2(g)$	0	0	202.78
F (aq)	-332.63	-278.79	-13.8
HF (aq)	-320.08	-296.82	88.7

	Hyd	rogen	
$H_2(g)$	0	0	130.684
H ⁺ (aq)	0	0	0
OH ⁻ (aq)	-229.994	-157.244	-10.75
H ₂ O (l)	-285.830	-237.129	69.91
$H_2O(g)$	-241.818	-228.572	188.25
H_2O_2 (aq)	-191.17	-134.03	143.9
2 2	Ioc	line	
$I_{2}\left(s\right)$	0	0	116.135
	Ir	on	
Fe (s)	0	0	27.28
Fe ²⁺ (aq)	-89.1	-78.90	-137.7
Fe^{3+} (aq)	-48.5	-4.7	-315.9
Fe ₂ O ₃ (s)	-824.2	-742.2	87.40
Fe ₃ O ₄ (s)	-1118.4	-1015.4	146.4
$Fe(OH)_2(s)$	-569.0	-486.5	88
$Fe(OH)_3$ (s)	-823.0	-696.5	106.7
FeS ₂ (s)	-178.2	-166.9	52.93
	Le	ead	
Pb (s)	0	0	64.81
Pb ²⁺ (aq)	-1.7	-24.43	10.5
PbO (s)	-217.32	-187.89	68.7
$PbO_2(s)$	-277.4	-217.33	68.6
PbS (s)	-100.4	-98.7	91.2
PbSO ₄ (s)	-919.94	-813.14	148.57
		nium	,
Li (s)	0	0	29.12
Li ⁺ (aq)	-278.49	-293.31	13.4
7.5 ()		nesium	22.60
Mg (s)	0	0	32.68
Mg^{2+} (aq)	-466.85	-454.8	-138.1
$Mg(OH)_2$ (s)	-924.54	-833.58	63.18
MgCO ₃ (s)	-1095.8	-1012.1	65.7
MgSO ₄ (s)	-1284.9	-1170.6	91.6
		ganese	T
Mn (s)	0	0	32.01
Mn ²⁺ (aq)	-220.75	-228.1	-73.6
MnO_2 (s)	-520.03	-465.14	53.05
$KMnO_4(s)$	-837.2	-737.6	171.76
MnS (s)	-214.2	-218.4	78.2
	Mei	cury	

Hg (l)	0	0	76.02
Hg^{2+} (aq)	171.1	164.40	-32.2
HgO (s)	-90.83	-58.539	70.29
HgCl ₂ (s)	-224.3	-178.6	146.0
$Hg_2Cl_2(s)$	-265.22	-210.745	192.5
HgS (s)	-58.2	-50.6	82.4
	Nitr	rogen	
$N_2(g)$	0	0	191.61
NO ₃ (aq)	-205.0	-108.74	146.4
HNO ₂ (aq)	-119.2	-50.6	135.6
NH ₃ (aq)	-80.92	-26.50	111.3
NH ₄ ⁺ (aq)	-132.51	-79.31	113.4
NH ₄ NO ₃ (s)	-365.56	-183.87	151.08
NH ₄ Cl (s)	-314.43	-203.87	94.6
	Ox	ygen	
$O_2(g)$	0	0	205.138
	Phosp	horous	
P (s, white)	0	0	41.09
PO_4^{3-} (aq)	-1277.4	-1018.7	-222
	Pota	ssium	
K (s)	0	0	64.18
K^{+} (aq)	-252.38	-283.27	102.5
KOH (s)	-424.764	-379.08	78.9
KCl (s)	-436.747	-409.14	82.59
KNO_3 (s)	-494.63	-394.86	133.05
$K_2Cr_2O_7(s)$	-2061.5	-1881.8	291.2
	Sil	icon	,
Si (s)	0	0	18.83
$SiO_2(s)$	-910.94	-856.64	41.84
		ver	
Ag (s)	0	0	42.55
Ag ⁺ (aq)	105.579	77.107	72.68
$Ag(NH_3)_2^+$ (aq)	-111.29	-17.12	245.2
AgCl (s)	-127.068	-109.789	96.2
AgBr (s)	-100.37	-96.90	107.1
AgI (s)	-61.84	-66.19	-115.5
		lium	
Na (s)	0	0	51.21
Na ⁺ (aq)	-240.13	-261.905	59.0
NaOH (s)	-425.609	-379.494	64.555
NaCl (s)	-411.153	-384.138	72.13

NaNO ₃ (s)	-467.85	-367.00	116.52
Na ₃ PO ₄ (s)	-1917.40	-1788.80	173.80
Na ₂ SO ₄ (s)	-1387.08	-1270.16	149.58
Na ₂ CO ₃ (s)	-1130.68	-1044.44	134.98
NaHCO ₃ (s)	-950.81	-851.0	101.7
NaCH ₃ COO (s)	-708.81	-607.18	123.0
	Sı	ılfur	1
$S_8(s)$	0	0	31.80
S ²⁻ (aq)	33.1	85.8	-14.6
$SO_2(g)$	-296.830	-300.194	248.22
SO ₃ (g)	-395.72	-371.06	256.76
SO ₄ ²⁻ (aq)	-909.27	-744.53	20.1
SCN ⁻ (aq)	76.44	92.71	144.3
	r	Γin	_
Sn (s)	0	0	44.14
SnO(s)	-285.5	-256.9	56.5
$SnO_2(s)$	-580.7	-519.76	52.3
	7	Zinc	
Zn (s)	0	0	41.63
Zn^{2+} (aq)	-153.89	-147.06	-112.1
ZnO (s)	-348.28	-318.30	43.64
ZnCl ₂ (s)	-415.05	-369.39	111.46
ZnS (s)	-205.98	-201.29	57.7
$ZnSO_4(s)$	-982.8	-871.5	110.5