

PLANO DE ENSINO DE DISCIPLINA

Campus: Luiz Meneghel	
Centro: Centro de Ciências Tecnológicas	
Curso: Ciência da Computação	Modalidade: Presencial

Carga Horária Semanal: 4		Carga Horária Total: 60	n
Carga Horaria Semanai: 4			•
Carga Horaria Semanai: 4		Teórica:30	Prática:30
	(X) Obrigatória	()Optativa	
Números de Alunos por Turma: 20			

Ementa:

Estudo da Cor. Transformações Geométricas 2D e 3D. Modelagem de objetos tridimensionais. Visualização. Iluminação

Colorização. Realidade. Rasterização. Recorte. Remoção de partes ocultas. Ferramentas e Ambientes de Software.

Conteúdo Programa:

- 1 Introduçãom à CG: origens; áreas e mercado; percepção tridimensional; representação de imagens.
- 2 Estudo da Cor: Sistema visual humano; Sistema de Cores Aditivas e Subtrativas; Modelos RGB, CMYK, HSL.

Conversão de espaços de Cor, Tons de cinza, Binarização.

3 - Processamento digital de imagens: aquisição; preprocessamento, filtros de realce e suavização, transformadas:

limiarização, histogramas, limiarização automática, multilimiarização.

- 4 Transformações Geométricas: Matrizes; sistemas de coordenadas; Transformações Geométricas.
- 5 Modelagem de objetos tridimensionais e Visualização: Pivô; Sólidos; Representação de objetos; Técnicas de modelagens geométricas; Modificadores; Sistemas de Partículas; Modelagem Geométrica.
- 6 Realidade e Rasterização: Rendering; Rasterização; Iluminação; Texturas; Realismo e iluminação.

Metodologia:

Aulas Expositivas em sala de aula, utilizando Quadro, Giz, Datashow;

Aulas Práticas nos Laboratórios de Informática disponíveis no Campus;

Atividades Complementares para serem desenvolvidas após aula;

Trabalhos Práticos para auxílio na compreensão do conteúdo.

Critérios de Avaliação de Aprendizagem:

3 Avaliações, compostas de trabalho prático com valor de 30% e Avaliação escrita com valor de 70% da Avaliação.

AvE = Avaliação Escrita

TP = Trabalho Prático

Media Final = [(AvE1*0,7+TP1*0,3)+(AvE2*0,7+TP2*0,3)+(AvE3*0,7+TP3*0,3)]/3

BIBLIOGRAFIA

Bibliografia Básica:

ANGEL, E. Interactive computer graphics: a top-down approach with openGL. 3ed 2003.

Bibliografia Complementar:

SHREINER, D., SELLERS, G., KESSENICH, J. LICEA-KANE, B. OpenGL Programming Guide. 8^a Edição. Addison Wesley, 2013.

AZEVEDO, E., CONCI A. Computação Gráfica: Teoria e Prática. Campus/Elsevier, 2003.

Bandeirantes, 22 de Fevereiro de 2019.

Aprovado pelo Colegiado do Curso no dia de	de 2019.
Coordenador de Colegiado	-
Homologado pelo Conselho de Centro no dia de	de
Diretor de Centro	-