

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CE(ES)402 Introduction to Solid Mechanics

Time Allotted: 3 Hours Full Marks: 70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :			[1 x 10 = 10]	
	(1)	A frame which is composed of members just sufficient to keep it in equilibrium, such frame is		
	(11)	The maximum stresses occur at top most fibre of a simply supported beam.		
	(III)	What do you mean by lateral strain?		
	(IV)	Shear stress on principal plane is		
	(V)	How the elastic constants E and K are related?		
	(VI)	What is the bending moment at end supports of a simply supported beam?		
	(VII)	Which of the following is correct boundary condition for a beam supported by pin at both ends? a) Displacement at both ends is non-zero b) Displacement at one of the end is non-zero c) Displacement at both ends is zero d) Can't say		
	(VIII) (IX) (X)			
	(XI)	(XI) What is the product of force and radius?		
	What is the relation between angular deflections between two legs connected by a fixed-connected joint? a) They are unequal b) They are equal c) Can't say d) They don't show angular deflection			
		Group-B (Short Answer Type Question)		
		Answer any three of the following	$[5 \times 3 = 15]$	
2.		mply supported beam AB of span 4 m span is subjected to a clockwise moment of 20 Kn-m at its centre. Draw and BM diagrams.	w [5]	
3.		mply supported beam is subjected to a combination of loads as shown in figure. Sketch the shear force and ding moment diagrams and find the position and magnitude of maximum bending moment.	[5]	
		2kN/m 4kN 8kN		

4. A cantilever beam of length 2 m fails when a load of 2 KN is applied at the free end. If the section is 40 mm x 60 mm, find the stress at the failure.

2m

5. Derive the stress equation for Mohr's Circle.

2m ClmD

[5]

[5]

[5] Calculate the maximum stress induced in a cast iron pipe of external diameter 40 mm, internal diameter 20 mm and length 4 m when the pipe is supported at its ends and carries a point load of 80 N at its center.

Group-C (Long Answer Type Question)

	Answer any three of the following	$[15 \times 3 = 45]$
7.	(a) What are the assumptions made in the theory of pure bending?	[6]
	(b) The cross section of a joist in a T section 120 mm x 200 mm x 12 mm, with 120 mm side horizontal. S shear stress distribution and hence find the maximum shear stress, if it has to resist a shear force of kN.	
8.	(a) State the assumptions while deriving the general formula for shear stresses.	[5]
	(b) Define: Shear stress distribution	[5]
	(c) What do you understand by the term point of contraflexure?	[5]
9.	(a) Derive the relationship between shear force, bending moment and deflection.	[8]
	(b) A cantilever beam of span L, flexural rigidity EI is subjected to a hogging bending moment M at th end. Calculate the maximum deflection by direct integration method.	e free [7]
10.	(a) What is torsion in strength of material?	[5]
	(b) Where is the maximum shear stress in a circular shaft due to torsion?	[5]
	(c) What is difference between torque and torsion?	[5]
11.	For the simply supported truss shown in figure given below, find the nature and magnitude of forces i members.	in all the [15]

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने प्राने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से