## Лабораторна робота №4 Метод потенційних функцій

Мета: розпізнавання образів за допомогою методу потенційних функцій.

## Короткі теоретичні положення

Назва метода в певній мірі пов'язана з такою аналогією. Будемо вважати, що розпізнається два образа. Уявімо, що об'єкти є точками  $\overline{x}_j$ , деякого простору  $\boldsymbol{X}$ . У ці точки будемо розміщувати заряди  $\boldsymbol{+q_i}$ , якщо об'єкт належить образу  $\boldsymbol{S_1}$ , і  $\boldsymbol{-q_i}$ , якщо об'єкт належить образу  $\boldsymbol{S_2}$  (рис. 4.1).



Рис. 4.1 – Синтез потенційної функції в процесі навчання:

Тут \_\_\_\_\_ – потенційна функція, що формується одиночним об'єктом; \_\_\_\_ – сумарна потенційна функція, що формується навчальною послідовністю.

Функцію, що описує розподіл електростатичного потенціалу в такому полі, можна використовувати як вирішальне правило (або для його побудови). Якщо потенціал точки  $\overline{x}$ , що створюється одиничним зарядом, який знаходиться у  $\overline{x}_j$ , дорівнює  $K(\overline{x},\overline{x}_j)$ , то загальний потенціал в  $\overline{x}$ , що створюється n зарядами, дорівнює

$$g(\overline{x}) = \sum_{j=1}^{n} q_{j} K(\overline{x}, \overline{x_{j}}),$$

де  $K(\overline{x}, \overline{x}_j)$  – потенційна функція. Вона, як і у фізиці, спадає при збільшенні евклідової відстані між  $\overline{x}$  та  $\overline{x}_j$ . Часто як потенційна використовується функція, що має максимум при  $\overline{x} = \overline{x}_j$  і монотонно спадає до нуля при  $\|\overline{x} - \overline{x_j}\| \to \infty$ .

Розпізнавання може виконуватися в такий спосіб. В точці  $\overline{x}$ , де знаходиться об'єкт, що розпізнається, обчислюється потенціал  $g(\overline{x})$ . Якщо він виявляється додатнім, то об'єкт відносять до образу  $S_1$ . Якщо від'ємним — до образу  $S_2$ .

При значному обсязі навчальної вибірки ці обчислення є достатньо громіздкими, і ефективніше не обчислювати  $g(\overline{x})$ , а оцінювати роздільну межу класів (образів), або апроксимувати потенційне поле.

## Порядок виконання роботи

- 1. Реалізувати метод потенційних функцій для варіанту, коли потенційна функція спадає в значній мірі в залежності від відстані та коли вона є менш крутою.
- 2. За допомогою реалізованого класифікатора розв'язати задачу. Для цього необхідно випадковим чином сформувати навчальну та тестову вибірки (у співвідношенні 4:1).
  - 3. Перевірити роботу методу потенційних функцій на тестових даних.
- 4. Результати роботи оформити звітом, який має містити: постановку задачі, навчальну вибірку даних та їх представлення у графічному виді на  $R^2$ , результати роботи на тестовій множині даних, параметри вирішального правила, вихідний код програми.