Introduction to Computer Graphics

1. Graphics Systems

I-Chen Lin
National Chiao Tung University

Computer Graphics

Computer graphics deals with all aspects of creating images with a computer.

► Hardware

Software

Applications

Example

- ▶ Where did this image come from?
- ► What hardware/software did we need to produce it?

Preliminary Answer

- ➤ **Application**: The object is an artist's rendition of the sun for an animation to be shown in a domed environment (planetarium)
- ▶ Software: Maya for modeling and rendering but Maya is built on top of OpenGL
- Hardware: PC with graphics card for modeling and rendering

Basic Graphics System

Computer Graphics: 1950-1960

- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters
 - Simple displays using A/D converters to go from computer to calligraphic CRT
- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Computer Graphics: 1960-1970

- Wireframe graphics
 - Draw only lines
- Sketchpad
- Display Processors
- Storage tube

wireframe representation of sun object

Sketchpad

- Ivan Sutherland's PhD thesis at MIT
 - Recognized the potential of man-machine interaction.
 - Sutherland also created many of the now common algorithms for computer graphics

Ivan Sutherland,

Turing Award winner, 1988

The console of the TX-2, Sketchpad Project

Display Processor

Rather than have the host computer try to refresh display, use a special purpose computer called a display processor (DPU)

- Graphics stored in display list (display file) on display processor
- Host compiles display list and sends to DPU

Computer Graphics: 1970-1980

- Raster Graphics
 - ► Image produced as an array (the *raster*) of picture elements (*pixels*) in the *frame buffer*
 - Allows us to go from lines and wire frame images to filled polygons

Computer Graphics: 1980-1990

Realism comes to computer graphics

smooth shading

environment mapping

bump mapping

Computer Graphics: 1980-1990

- Special purpose hardware
 - Silicon Graphics geometry engine
 - ► VLSI implementation of graphics pipeline
- Industry-based standards
 - PHIGS
 - Programmer's Hierarchical Interactive Graphics System
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

OpenGL API

Completely computer-generated feature-length movies (Toy Story) are successful.

- New hardware capabilities
 - Texture mapping
 - Blending
 - Stencil buffers, ...

Computer Graphics: 2000-

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI (-> AMD)
 - GPU (Graphics processing unit)
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave.
- Programmable pipelines

Image Formation

- Fundamental imaging notions
- Physical basis for image formation
 - Light
 - ► Color
 - Perception
- Synthetic camera model
- Other models

Elements of Image Formation

- Objects
- Viewer
- Light source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, the viewer, and the light source(s)

Light

- Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems
- Generally these are wavelengths in the range of about 350-750 nm (nanometers)

Ray Tracing and Geometric Optics

One way to form an image is to follow rays of light from a point source finding which rays enter the lens of the camera.

However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity.

Luminance and Color Images

- Luminance Image
 - Monochromatic
 - Values are gray levels
 - Analogous to working with black and white film or television
- Color Image
 - ► Has perceptional attributes of hue, saturation, and lightness
 - Do we have to match every frequency in visible spectrum?

Three-Color Theory

- Human visual system has two types of sensors
 - ► Rods: monochromatic, night vision
 - Cones
 - Color sensitive
 - ► Three types of cones
 - Only three values (the tristimulus values) are sent to the brain

- Need only match these three values
 - ► Need only three *primary* colors

Additive and Subtractive Color

- Additive color
 - Form a color by adding amounts of three primaries
 - ► CRTs, LCD, projection systems, positive film
 - Primaries: Red (R), Green (G), Blue (B)

- Subtractive color
- Form a color by filtering white light with:
 - ► Cyan (C), Magenta (M), and Yellow (Y) filters
 - ► Printing, Negative film

Basic 3D Graphics

What's "3D"?

► How about these pictures?

JoJo's Bizarre Adventure, PS3

Vanish point

One Point Perspective (z-axis vanishing point)

Two Point Perspective z, and x-axis vanishing points

Three Point Perspective (z, x, and y-axis vanishing points)

Perspective projection

► Taking photographing as an example.

Synthetic Camera Model

Pinhole Camera

Use trigonometry to find projection of point at (x,y,z)

$$x_p = -x/(z/d)$$
 $y_p = -y/(z/d)$ $z_p = d$

These are equations of simple perspective

Perspective projection (cont.)

Projection

Using similar triangles gives:

Perspective projection (cont.)

Let pupils as the pinhole and a screen as the film.

Generating perspective views

- From the continuous world to a digital one.
- Representing by surfaces?

Represented by primitives

Curves and surfaces are inefficient to render directly.

Represented by primitives (cont.)

We use primitives such as polygons instead.

Represented by primitives

Polygons

Represented by primitives

Digital Michelangelo Project, Stanford University

Represented by primitives (cont.)

- A triangle is usually the most basic primitive.
- Polygons -> triangles.

Projection of triangles

Visibility

- If we draw triangles directly, our screen will be a "mess".
- ► Remove hidden surfaces.

Global vs Local Lighting

- Cannot compute color or shade of each object independently
 - ► Some objects are blocked from light
 - ► Light can reflect from object to object
 - Some objects might be translucent

A realistic 3D view

- Delicate 3D models.
- Perspective.
- Hidden surface removal.
- Shading (lighting & reflection).
- ► Shadow.
- Detailed textures and normals

Pixar corp.

B. Martin, U. Utah

Appendix: What's a "3D" movie?

Movies that can provide binocular cues.

Stereoscopic viewing

- Temporal multiplexing
- Spectral multiplexing
- Polarization multiplexing

mars.jpl.nasa.gov/MPF/mpf/anaglyph-arc.htm

http://www.stereographics.com

Two 3D optimized LCD projectors

Passive pair of glasses

http://www.barco.com

Autostereoscopic viewing

- Spatial multiplexing
 - Parallax barrier methods
 - Lenticular approach
 - Etc...

