3

ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ ΤΩΝ ΣΩΜΑΤΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ

ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ ΤΩΝ ΣΩΜΑΤΩΝ

Κίνηση όταν F = 0

ΔΥΝΑΜΕΙΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΚΙΝΗΣΗΣ

Μονάδες

Διαστάσεις

ΚΙΝΗΣΗ ΣΩΜΑΤΙΔΙΟΎ ΣΕ ΟΜΟΓΈΝΕΣ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

ΠΑΡΑΔΕΙΓΜΑ: Μέγιστο βεληνεκές

Ο ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ

ΠΑΡΑΔΕΙΓΜΑ: Δορυφόρος σε κυκλική τροχιά

ΗΛΕΚΤΡΙΚΕΣ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΣΕ ΦΟΡΤΙΣΜΕΝΟ ΣΩΜΑΤΙΔΙΟ – ΜΟΝΑΔΕΣ

Το ηλεκτρικό πεδίο

Το μαγνητικό πεδίο και η δύναμη Lorentz

Κίνηση φορτισμένου σωματιδίου σε σταθερό ομογενές ηλεκτρικό πεδίο

ΠΑΡΑΔΕΙΓΜΑ: Επιτάχυνση πρωτονίου

ΠΑΡΑΔΕΙΓΜΑ: Επιτάχυνση ηλεκτρονίου

ΠΑΡΑΔΕΙΓΜΑ: Εγκάρσια επιτάχυνση ηλεκτρονίου

Κίνηση φορτισμένου σωματιδίου σε σταθερό ομογενές μαγνητικό πεδίο

ΠΑΡΑΔΕΙΓΜΑ: Κυκλοτρονική συχνότητα

ΠΑΡΑΔΕΙΓΜΑ: Κυκλοτρονική ακτίνα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

Απόδειξη με εφαρμογή του δεύτερου και του τρίτου νόμου του Νεύτωνα

ΠΑΡΑΔΕΙΓΜΑ: Ελαστική κρούση δύο σωμάτων με ίσες μάζες, από τα οποία το ένα είναι αρχικά ακίνητο

ΔΥΝΑΜΕΙΣ ΕΠΑΦΗΣ: ΤΡΙΒΗ

ΠΑΡΑΔΕΙΓΜΑ: Μέτρηση του μ

ΠΑΡΑΔΕΙΓΜΑ: Ολίσθηση σώματος όταν πάνω σε αυτό δρα μια εφαπτομενική δύναμη με μεταβλητή διεύθυνση

ΠΑΡΑΔΕΙΓΜΑ: Οριζόντια κίνηση με σταθερή δύναμη τριβής

ΠΡΟΒΛΗΜΑΤΑ

ΘΕΜΑ ΠΡΟΧΩΡΗΜΕΝΟΥ ΕΠΙΠΕΔΟΥ

Φορτισμένο σωματίδιο σε ομογενές εναλλασσόμενο ηλεκτρικό πεδίο

ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ

Διαφορικές εξισώσεις

ΙΣΤΟΡΙΚΗ ΣΗΜΕΙΩΣΗ: Η ανακάλυψη του κύκλοτρου

ΒΟΗΘΗΜΑΤΑ ΓΙΑ ΕΚΤΕΝΕΣΤΕΡΗ ΜΕΛΕΤΗ

OI NOMOI TOY NEYT Ω NA FIA THN KINH Σ H T Ω N $\Sigma\Omega$ MAT Ω N

Το κεφάλαιο αυτό αναφέρεται κυρίως στους νόμους του Νεύτωνα για την κίνηση των σωμάτων. Πρώτα εξηγούμε τους νόμους και τους διατυπώνουμε με τους συνηθισμένους μαθηματικούς τύπους. Μετά δίνουμε μερικές εφαρμογές, για να βοηθήσουμε τον σπουδαστή να αποκτήσει αυτοπεποίθηση κατά τη χρησιμοποίηση των νόμων.

Στο Κεφ. 4 εξετάζουμε ορισμένα προβλήματα που σχετίζονται με την επιλογη του συστήματος αναφοράς και τον μετασχηματισμό του Γαλιλαίου. Μολονότι η ύλη του Κεφ. 4 μπορούσε να μελετηθεί πριν από την ύλη αυτού του κεφαλαίου, μια κάποια εμπειρία από την άμεση εφαρμογή των νόμων θα διευκολύνει την κατανόηση των απόψεων που εξετάζονται στο Κεφ. 4.

Ποώτος νόμος του Νεύτωνα. Ένα σώμα παραμένει στην κατάσταση της ηρεμίας ή της κίνησης με σταθερή ταχύτητα (μηδέν επιτάχυνση), αν δεν ασκείται πάνω σε αυτό καμιά εξωτερική δύναμη. Δηλαδή, η επιτάχυνσή του είναι

$$\mathbf{a} = 0$$
 όταν $\mathbf{F} = 0$

(Φιλοσοφικές απόψεις για το περιεχόμενο του πρώτου νόμου, όπως π.χ. η ερώτηση αν ο νόμος αυτός περιέχεται ολόκληρος στο δεύτερο νόμο, δεν εξετάζονται εδώ).

Δεύτερος νόμος του Νεύτωνα. Ο ουθμός μεταβολής της ορμής ενός σώματος είναι ανάλογος προς τη δύναμη που δρα πάνω στο σώμα. Η ορμή ορίζεται ως το γινόμενο $M\mathbf{v}$, όπου M είναι η μάζα και \mathbf{v} το διάνυσμα της ταχύτητας του σώματος. Έχουμε δηλαδή:

$$\mathbf{F} = K \frac{d}{dt} (M\mathbf{v}) = KM \frac{d\mathbf{v}}{dt} = KM\mathbf{a}$$

όπου στο τοίτο και το τέταοτο μέλος υποτίθεται ότι η μάζα M είναι σταθερή. Επιλέγουμε τις μονάδες έτσι, ώστε K=1. Στο S.I. (διεθνές σύστημα μονάδων), ή μάζα M μετριέται σε χιλιόγομμα (kg), η επιτάχυνση \mathbf{a} σε μέτρα ανά (δευτερόλεπτο)², (m/s²), και η δύναμη \mathbf{F} σε νιούτον (newton, N). Ένα νιούτον είναι η δύναμη που προσδίδει σε μια μάζα ενός χιλιογράμμου,

επιτάχυνση ενός μέτρου ανά δευτερόλεπτο ανά δευτερόλεπτο. Στο σύστημα C.G.S., η μάζα M μετριέται σε γραμμάρια (g), η επιτάχυνση \mathbf{a} σε εκατοστόμετρα ανά (δευτερόλεπτο)², (cm/s²), και η δύναμη \mathbf{F} σε δύνες (dyn). Η δύνη είναι η δύναμη που προσδίδει σε μια μάζα ενός γραμμαρίου επιτάχυνση ενός εκατοστομέτρου ανά δευτερόλεπτο ανά δευτερόλεπτο. Είναι

$$1 \text{ N} = 1 \text{ kg} \times 1 \text{ m/s}^2 = 10^3 \text{ g} \times 100 \text{ cm/s}^2 = 10^5 \text{ dyn}$$

Μπορούμε να γράψουμε

$$\mathbf{F} = \frac{d}{dt} (M\mathbf{v}) \tag{3.1}$$

μαι, αν dM/dt = 0,

$$\mathbf{F} = M\mathbf{a} \tag{3.2}$$

Η υπόθεση ότι η μάζα M είναι σταθερή, αυτόματα μας περιορίζει σε προβλήματα στα οποία δεν υπεισέρχεται η Θεωρία της Σχετικότητας, όπου δηλαδή v << c (όπου c η ταχύτητα του φωτός στο κενό). Την Ειδική Θεωρία της Σχετικότητας τη μελετούμε στα Κεφ. 10 ως 14 και, πιο συγκεκριμένα, τη μεταβολή της μάζας με την ταχύτητα την εξετάζουμε στο Κεφ. 12. Η υπόθεση της σταθερότητας της μάζας περιορίζει τη μελέτη και ως προς μερικά άλλα ενδιαφέροντα προβλήματα, όπως π.χ. σχετικά με τα προβλήματα των πυραύλων (μελετούμε ορισμένα από αυτά τα θέματα στο Κεφ. 6). Υπάρχει ωστόσο μια πλούσια ποικιλία από σημαντικά προβλήματα για σταθερή μάζα.

Toίtos nómos ton Neútwna. Όταν δύο σώματα αλληλεπιδρούν, η δύναμη \mathbf{F}_{21} που το σώμα 1 ασχεί στο σώμα $2^{(1)}$, είναι ίση και αντίθετη με τη δύναμη \mathbf{F}_{12} που το σώμα 2 ασχεί στο σώμα 1:

$$\mathbf{F}_{12} = -\mathbf{F}_{21} \tag{3.3}$$

Θα δούμε ότι ο νόμος αυτός αποτελεί μια βάση για τη διατήφηση της οφμής. Η πεπερασμένη ταχύτητα διάδοσης των δυνάμεων (ειδική σχετικότητα) εισάγει δυσκολίες στην εφαρμογή

¹ Χρησιμοποιούμε εδώ τη σύμβαση ότι \mathbf{F}_{ij} είναι η δύναμη που ασκείται στο σώμα i και προέρχεται από το σώμα j.

αυτού του νόμου. Θα επισημάνουμε αυτές τις δυσχολίες στο Κεφ. 4.

Ένα σημείο που αξίζει να τονιστεί εδώ, είναι ότι οι δύο δυνάμεις \mathbf{F}_{12} και \mathbf{F}_{21} δοουν πάνω σε διαφορετικά σώματα και ότι, για τη εφαρμογή του δεύτερου νόμου του Νεύτωνα σε ένα συγκεκριμένο σώμα, πρέπει να ληφθεί υπόψη μόνο η δύναμη που δρα πάνω σε αυτό το σώμα. Η ίση και αντίθετη δύναμη επηρεάζει μόνο την κίνηση του άλλου σώματος (βλ. πρόβλ. 1 στο τέλος του κεφαλαίου).

Τώρα δίνουμε ορισμένα παραδείγματα εφαρμογής των νόμων του Νεύτωνα. Όσοι δεν γνωρίζουν να λύνουν διαφορικές εξισώσεις, πρέπει να διαβάσουν στο τέλος του κεφαλαίου τα μαθηματικά συμπληρώματα σε συνδυασμό με τα παραδείγματα που ακολουθούν.

Κίνηση όταν F = 0

Η απλή αυτή περίπτωση αποτελεί ακριβώς το αντικείμενο του πρώτου νόμου του Νεύτωνα. Γράφοντας

$$M\frac{d\mathbf{v}}{dt} = \mathbf{F} = 0 \tag{3.4}$$

μποφούμε αμέσως να δούμε ότι η ταχύτητα \mathbf{v} οφείλει να είναι σταθεφή. Εδώ ο διανυσματιχός χαφαχτήφας της ταχύτητας είναι βασιχός, γιατί τόσο η κατεύθυνση όσο και το μέτφο της ταχύτητας πφέπει να μένουν σταθεφά. Παφάδειγμα: Μια μάζα που κινείται με σταθεφή κατά μέτφο ταχύτητα πάνω σε πεφιφέφεια χύκλου, έχει ταχύτητα με διαφχώς μεταβαλλόμενη κατεύθυνση. Άφα μια τέτοια χίνηση δεν μποφεί να πφαγματοποιηθεί με $\mathbf{F}=0$.

Όταν η σταθερή ταχύτητα **v** είναι μηδέν, ή μάζα *M* παραμένει σε ηρεμία. Αν η ταχύτητα δεν είναι μηδέν, αλλά

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \mathbf{v}_0 \tag{3.5}$$

τότε μποςούμε να ολοκληςώσουμε την εξίσωση αυτή και να βςούμε ότι

$$\mathbf{r} = \mathbf{v}_0 t + \mathbf{r}_0 \tag{3.6}$$

όπου ${\bf r}_0$ είναι το διάνυσμα θέσης ${\bf r}$ τη στιγμή t=0. Αυτές τις εξισώσεις μπορούμε φυσικά να τις γράψουμε και σε καρτεσιά-

νες συντεταγμένες.

[Για κάθε μια από τις προηγούμενες εξισώσεις θα έχουμε τότε τρεις εξισώσεις, μια για κάθε συντεταγμένη x, y, z. Μια διανυσματική εξίσωση είναι ένας περιεκτικός τρόπος γραφής αυτών των εξισώσεων. Για παράδειγμα, η Εξ. (3.1) είναι ισοδύναμη με τις εξισώσεις

$$F_x = \frac{d}{dt} (M v_x)$$
 $F_y = \frac{d}{dt} (M v_y)$ $F_z = \frac{d}{dt} (M v_z)$

η (3.5) με τις

$$v_x = \frac{dx}{dt} = v_{0x}$$
 $v_y = \frac{dy}{dt} = v_{0y}$ $v_z = \frac{dz}{dt} = v_{0z}$

όπου

$$\mathbf{v}_0 = v_{0x}\hat{\mathbf{x}} + v_{0y}\hat{\mathbf{y}} + v_{0z}\hat{\mathbf{z}}$$

και η (3.6) με τις:

$$x = v_{0x} t + x_0$$
 $y = v_{0y} t + y_0$ $z = v_{0z} t + z_0$

όπου

$$\mathbf{r}_{0} = x_{0} \hat{\mathbf{x}} + y_{0} \hat{\mathbf{y}} + z_{0} \hat{\mathbf{z}}$$
 (\(\Sigma. \tau. \tau. \text{\$\emptyset}.\$

ΔΥΝΑΜΕΙΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΚΙΝΗΣΗΣ

Πολύ πιο σημαντιχές είναι οι περιπτώσεις στις οποίες η δύναμη \mathbf{F} είναι διάφορη του μηδενός. Υπό την επίδραση μιας δύναμης \mathbf{F} , ένα σωματίδιο με σταθερή μάζα επιταχύνεται, και, σύμφωνα με τον δεύτερο νόμο του Νεύτωνα, έχουμε:

$$\mathbf{F} = M\mathbf{a} = M \frac{d^2\mathbf{r}}{dt^2} \tag{3.7}$$

Η μαθηματική αυτή έκφοαση είναι μια εξίσωση της κίνησης. Εννοούμε με αυτό ότι, μετά από διαδοχικές ολοκληφώσεις αυτής της διαφοφικής εξίσωσης, μποφούμε να εκφράσουμε την ταχύτητα και τη θέση του σωματιδίου σαν συναφτήσεις του χρόνου.

Για να λύσουμε μια τέτοια εξίσωση, χοειάζεται να γνωρίζουμε τη δύναμη **F**. Να γνωρίζουμε δηλαδή την εξάρτηση της δύναμης από τη θέση και την ταχύτητα του σωματιδίου, καθώς και την εξάρτησή της από το χρόνο, αν η χρονική εξάρτηση εκφράζεται σαν χωριστή συνάρτηση του χρόνου. Η λύση μιας εξίσωσης της κίνησης μπορεί να είναι δύσκολο πρόβλημα όταν

η δύναμη είναι πολύπλονη συνάςτηση αυτών των μεταβλητών ευτυχώς όμως, πολλές σπουδαίες και διδακτικές πεςιπτώσεις ανάγονται σε δυνάμεις σταθεςές ως προς το χρόνο και μάλιστα ανεξάςτητες από την ταχύτητα.

Υπάρχουν μερικά σημαντικά είδη δυνάμεων που είναι γνωστά στη Φυσική για παράδειγμα, η δύναμη της βαρύτητας, η ηλεκτροστατική δύναμη, η μαγνητική δύναμη, καθώς και άλλες δυνάμεις, όπως οι ισχυρές αλλά με μικρή εμβέλεια πυρηνικές δυνάμεις. Τα σωματίδια μπορούν να αλληλεπιδρούν μεταξύ τους με τέτοιες δυνάμεις, ακόμα και αν βρίσκονται στον κενό χώρο, μακριά το ένα από το άλλο. Αν ένα σωματίδιο υφίσταται μια συνισταμένη δύναμη που οφείλεται σε βαρυτικές αλληλεπιδράσεις με άλλα σωματίδια ή σώματα, μπορούμε να πούμε ότι το σωματίδιο βρίσκεται σε ένα πεδίο βαρύτητας που παράγεται από εκείνα τα σώματα. Όταν ένα ηλεκτρικά φορτισμένο σωματίδιο υφίσταται μια δύναμη που οφείλεται σε ηλεκτρικά φορτία κατανεμημένα σε άλλα γειτονικά σωματίδια ή σώματα, λέμε ότι το φορτισμένο σωματίδιο βρίσκεται μέσα σε ένα ηλεκτρικό πεδίο.

Σε πολλά ποοβλήματα εφαομογών στη Μηχανιχή, μιλάμε για δυνάμεις εξ επαφής, όπως π.χ. η τάση ενός νήματος που συγκοατεί τη μάζα ενός εκκοεμούς ή η δύναμη που ασκεί ένα επίπεδο σε ένα αντικείμενο που ηφεμεί πάνω σε αυτό.

Συχνά οι δυνάμεις πεδίου και οι δυνάμεις εξ επαφής συνυπάρχουν, όπως π.χ. στην ταλάντωση του εκκυεμούς μέσα στο πεδίο της βαρύτητας, όπου η μάζα του εκκυεμούς συγκρατείται από την τάση του νήματος. Σε τελευταία ανάλυση, όλες οι δυνάμεις εξ επαφής είναι δυνάμεις πεδίου, αφού τελικά προξοχονται από ηλεκτυρμαγνητικές αλληλεπιδράσεις μεταξύ ατόμων. Προς το παρόν, ωστόσο, είναι για το σκοπό μας πιο βολικό να θεωρήσουμε ότι έχουμε να κάνουμε με δυνάμεις εξ επαφής ή απλώς με δυνάμεις. Στη μελέτη της Μηχανικής των ατομικών συστημάτων, μιλάμε προφανώς μόνο για δυνάμεις πεδίου, αφού άλλωστε στο ατομικό επίπεδο δεν μπορεί να νοηθεί επαφή με τη συνήθη απλή της έννοια.

Μονάδες

Σε αυτή την παράγραφο ξεκινάμε από τους νόμους του Νεύτωνα, για να αρχίσουμε να συζητάμε το θέμα των μονάδων. Αργότερα σε αυτό το κεφάλαιο, θα εισαγάγουμε τις ηλεκτρικές και μαγνητικές δυνάμεις και θα εξετάσουμε το σύστημα των μονάδων που πρέπει να χρησιμοποιηθούν για το ηλεκτρικό

φορτίο και για το ηλεκτρικό και το μαγνητικό πεδίο. Εδώ ασχολούμαστε μόνο με τις μονάδες της Μηχανικής.

Για να μεταδώσουμε πληροφορίες σχετικές με την κίνηση, είναι ασφαλώς απαραίτητο να έχουμε καθορίσει συγκεκριμένα πρότυπα για τη μέτρηση του μήχους και του χρόνου. Ευτυχώς υπάρχει διεθνής συμφωνία για το πρότυπο του χρόνου: το δευτερόλεπτο (s). Αρχικά, το δευτερόλεπτο είχε οριστεί σαν ένα καθορισμένο κλάσμα του έτους, ενώ το έτος είχε οριστεί με αστρονομικές παρατηρήσεις. Υπήρχαν όμως πρακτικές δυσκολίες στη χρήση αυτού του ορισμού. Έτσι, το δευτερόλεπτο ορίζεται σήμερα με βάση τη συχνότητα που χαραχτηρίζει μια από τις ενεργειαπές μεταπτώσεις ενός ορισμένου ατομιπού συστήματος και ειδικότερα μια συγκεκριμένη μετάπτωση του ατόμου του καισίου. Ο ακριβής ορισμός είναι: το δευτερόλεπτο είναι χρονική διάρκεια ίση με 9 192 631 770 περιόδους της ακτινοβολίας που αντιστοιχεί σε μια καθορισμένη μετάπτωση του ατόμου του καισίου 133 (133Cs). Αν αγνοήσουμε το γεγονός ότι ο ορισμός στηρίζεται σε φασματοσχοπική πειοαματική μέθοδο, θα μποςούσαμε να κάνουμε έναν παςαλληλισμό με το παλιό εππρεμές παι να πούμε ότι το δευτερόλεπτο είναι ο χρόνος για τόσες πλήρεις αιωρήσεις κάποιου εκκρεμούς.

Για τη μονάδα μήχους υπάρχει διεθνής συμφωνία αλλά μεεξικές αγγλόφωνες χώρες εξακολουθούν να χρησιμοποιούν το δικό τους ιδιόμορφο σύστημα. Οι επιστήμονες έχουν βρει το δεκαδικό σύστημα μονάδων απλούστερο και ευκολότερο στη χρήση από το βρετανικό σύστημα, και το έχουν υιοθετήσει. Ελπίζεται ότι και οι αγγλόφωνες χώρες θα δεχτούν πολύ σύντομα να εφαρμόσουν το δεκαδικό σύστημα. Στο σύστημα αυτό, μονάδα μήκους είναι το μέτρο, από το οποίο προκύπτουν δεκαδικά υποπολλαπλάσια και πολλαπλάσια. Το αρχικό πρότυπο μέτρο ήταν μια ειδική ράβδος, που υπάρχει ακόμα και φυλάγεται στις Sevres, κοντά στο Παρίσι. Η ράβδος φέρει προς τα άκρα της δύο χαραγές και το μέτρο έχει οριστεί ίσο με την απόσταση ανάμεσα σε αυτές τις χαραγές. Υπάρχουν πρακτικές δυσκολίες στη χρησιμοποίηση αυτού του προτύπου, όπως π.χ. το πάχος των χαραγών.

Έτσι, σήμερα χοησιμοποιούμε ένα άλλο, καλύτερο, πρότυπο, που βασίζεται στο μήκος κύματος στο κενό μιας ορισμένης κόκκινης γραμμής του φάσματος του ⁸⁶Kr (κρυπτόν 86): Ένα μέτρο (m) είναι ίσο με 1 650 763,73 τέτοια μήκη κύματος. Η ερώτηση αν το μέτρο ή το εκατοστόμετρο είναι το "θεμελιώδες" μήκος, δεν έχει προφανώς νόημα, αφού άλλωστε ο παράγοντας μετατροπής είναι ακριβώς 100. [Από το 1983, το μέτρο ορίζεται ως η απόσταση που διανύει το φως στο κενό σε χρόνο ίσο

με 1/299792458 του δευτεφολέπτου. Αυτό έχει ως αποτέλεσμα να οφίζεται η ταχύτητα του φωτός στο κενό ως ακφιβώς ίση με 299792458 m/s (Σ.τ.ε.).]

Σε αυτό το βιβλίο θα χρησιμοποιήσουμε το μέτρο σαν βασική μονάδα μήκους. Οι δυσκολίες με το βρετανικό σύστημα προέρχονται από το γεγονός ότι το σύστημα αυτό περιλαμβάνει διάφορες μονάδες μήκους, οι οποίες μάλιστα δεν συνδέονται απλά η μια με τη άλλη: π.χ. το πόδι (foot) ισούται με δώδεκα ίντσες (inches), η γιάρδα (yard) ισούται με τρία πόδια και το μίλι (mile) ισούται με 1760 γιάρδες.

Ο δεύτερος νόμος του Νεύτωνα περιλαμβάνει δύο αχόμα μεγέθη: τη μάζα και τη δύναμη. Χρειαζόμαστε πρότυπα και για τα δύο αυτά μεγέθη; Η απάντηση είναι όχι. Αρχεί να καθορίσουμε ένα πρότυπο για το ένα από αυτά και να χρησιμοποιήσουμε το δεύτερο νόμο του Νεύτωνα για να ορίσουμε τη μονάδα του άλλου. Ιστορικά, πρώτα ορίστηκε η μονάδα της μάζας και από εκεί προέχυψε η μονάδα της δύναμης. Για τη μάζα, μονάδα είναι το χιλιόγραμμο (1 kg), που ισούται αχριβώς με 1000 γραμμάρια (g). Το πρότυπο χιλιόγραμμο φυλάγεται επίσης στο Παρίσι. Η σύγκριση μαζών είναι σχετικά εύκολη διαδικάσια και δεν υπήρξε προς το παρόν ανάγκη να θεσπίσουμε σαν πρότυπο μάζας τη μάζα ενός ορισμένου είδους ατόμου στη μαχροσκοπική, καθημερινή, κλίμακα.

Έτσι, θα αποδεχτούμε το μέτοο, το δευτερόλεπτο και το χιλιόγοαμμο ως θεμελιώδεις μονάδες του μήκους, του χρόνου και της μάζας, αντίστοιχα, και θα χρησιμοποιήσουμε παράγωγες μονάδες για τη δύναμη, την ορμή, την ενέργεια, την ισχύ, κλπ. Αυτό το σύστημα μονάδων είναι σήμερα γνωστό ως σύστημα μονάδων S.I. (διεθνές σύστημα), ενώ λίγα χρόνια πριν ονομαζόταν σύστημα Μ.Κ.S. Στο παλιότερο σύστημα C.G.S., χρησιμοποιούνται το εκατοστόμετρο αντί το μέτρο και το γραμμάριο αντί το χιλιόγραμμο.

Η μελέτη του ηλεκτρισμού και του μαγνητισμού θέτει νέα ζητήματα για τις μονάδες, που θα τα εξετάσουμε στη συνέχεια αυτού του κεφαλαίου και ακόμη περισσότερο στον τόμο 2.

Διαστάσεις

Όταν κάνουμε έναν πολύπλοκο υπολογισμό, είναι πολύ σημαντικό να ελέγχουμε και να βεβαιωνόμαστε ότι οι μονάδες στη μια πλευρά της κάθε εξίσωσης είναι οι ίδιες με εκείνες της άλλης πλευράς. Για παράδειγμα, όταν υπολογίζουμε το διάστημα που διανύει ένα σώμα, πρέπει να ξέρουμε ότι κάποιο λάθος

έγινε, αν η τελική απάντηση δίνεται σε χιλιόγοαμμα. Ένας έλεγχος αυτού του είδους λέγεται συνήθως διαστατική ανάλυση. Δεν χοειάζεται να επικαλεστούμε συγκεκοιμένες μονάδες, αρκεί να χοησιμοποιήσουμε τις φυσικές διαστάσεις της μάζας, του μήκους και του χρόνου, όπως θα φανεί ακοιβέστερα πιο κάτω.

Ποιες είναι οι διαστάσεις της δύναμης; Χρησιμοποιούμε την Εξ. (3.7) και βλέπουμε ότι η δύναμη είναι μάζα επί επιτάχυνση. Αλλά η επιτάχυνση είναι ταχύτητα διά χρόνο και η ταχύτητα είναι διάστημα διά χρόνο. Έτσι, χρησιμοποιώντας τα σύμβολά M, L και T για τη μάζα, το μήκος και το χρόνο, θα έχουμε:

Σαν ένα παφάδειγμα εφαρμογής της διαστατικής ανάλυσης, ας υποθέσουμε ότι, λύνοντας ένα πρόβλημα, καταλήξαμε στην εξίσωση: Δύναμη = $\frac{3}{5}$ ρ v^2 όπου ρ παριστάνει την πυκνότητα (μάζα ανά μονάδα όγκου) και v την ταχύτητα. Η ανάλυση διαστάσεων δε θα μας πει ποτέ αν ο συντελεστής 3/5 είναι σωστός, αφού ένας αριθμητικός συντελεστής δεν έχει φυσικές διαστάσεις. Μπορούμε όμως να ελέγξουμε το γινόμενο ρ v^2 . Έχουμε:

$$[\rho] = [M][L]^{-3} \qquad [\upsilon^2] = [L]^2[T]^{-2}$$
$$[\rho\upsilon^2] = [M][L]^{-3}[L]^2[T]^{-2} = [M][L]^{-1}[T]^{-2}$$

ενώ η δύναμη, όπως είδαμε, έχει διαστάσεις $[M][L][T]^{-2}$. Βλέπουμε έτσι ότι έχουμε χάνει ασφαλώς χάποιο λάθος, για να φτάσουμε στην πιο πάνω εξίσωση. Από όσα μάλιστα γνωρίζουμε για την πίεση (δύναμη ανά μονάδα επιφάνειας), μποφούμε να χαταλάβουμε ότι το γινόμενο ρv^2 ενδεχομένως να παριστάνει μια πίεση.

ΚΙΝΗΣΗ ΣΩΜΑΤΙΔΙΟΎ ΣΕ ΟΜΟΓΈΝΕΣ ΠΕΔΙΟ ΒΑΡΥΤΉΤΑΣ

Τώρα προχωρούμε σε μερικές εφαρμογές του δεύτερου νόμου του Νεύτωνα. Αν περιορίσουμε τη μελέτη μας στο χώρο του εργαστηρίου, του οποίου η έκταση είναι πολύ μικρή σε σύγκριση με το μέγεθος της Γης, τότε μπορούμε με καλή προσέγγιση να θεωρήσουμε ότι η δύναμη βαρύτητας που ασκείται σε ένα σωματίδιο τοποθετημένο σε οποιοδήποτε σημείο, είναι παντού κατακόρυφη προς τα κάτω και σταθερή. Η προς τα κάτω επιτάχυνση, που οφείλεται σε αυτή τη δύναμη, δίνεται από την τοπική τιμή της επιτάχυνσης της βαρύτητας $\mathbf{g}^{(1)}$, κι έτσι το μέτρο της δύναμης που ασκείται στο σωματίδιο είναι \mathbf{mg} . Η δύναμη σαν διάνυσμα μπορεί να γραφεί $\mathbf{F} = -\mathbf{mg}\mathbf{\hat{y}}$, όπου έχουν επιλεγεί άξονες συντεταγμένων \mathbf{x} και \mathbf{y} με τους προσανατολισμούς που δείχνει το $\mathbf{Σ}$ χ. 3.1.

Αν μπορούσαμε να παραλείψουμε τις άλλες δυνάμεις, όπως π.χ. την τριβή, η εξίσωση της χίνησης, σύμφωνα με το δεύτερο νόμο του Νεύτωνα, Εξ.(3.7), θα ήταν:

$$m\left[\frac{d^2x}{dt^2}\,\hat{\mathbf{x}} + \frac{d^2y}{dt^2}\,\hat{\mathbf{y}}\right] = -\,mg\hat{\mathbf{y}}$$

Αφού οι άξονες των συντεταγμένων είναι ορθογώνιοι, αναλύουμε τη διανυσματική αυτή εξίσωση σε δύο εξισώσεις κατά τους άξονες και γ και τότε δεν κρειάζεται πλέον να διατηρήσουμε τα μοναδιαία διανύσματα. Έτσι παίονουμε

$$\frac{d^2x}{dt^2} = 0, \qquad \frac{d^2y}{dt^2} = -g \tag{3.8}$$

Η ολοκλήφωση αυτών των εξισώσεων, που καταλήγει σε εκφράσεις του x και του y σαν συναρτήσεις του t, αναπτύσσεται στο Μαθηματικό Συμπλήφωμα, στο τέλος του κεφαλαίου. Λαμβάνοντας υπόψη τις αρχικές συνθήκες (βλ. Σχ. 3.1), κατά τις οποίες η αρχική θέση του σωματιδίου είναι (x_0, y_0) και οι αρχικές συνιστώσες της ταχύτητάς του στις κατευθύνσεις των αξόνων x και y είναι v_0 $\cos\theta$ και v_0 $\sin\theta$ αντίστοιχα, βρίσκουμε τις λύσεις:

$$x = x_0 + (v_0 \cos \theta) t$$

$$y = y_0 + (v_0 \sin \theta) t - \frac{1}{2} g t^2$$
(3.9)

Σχ. 3.1 Πλάγια ρίψη σωματιδίου από τη θέση (x_0, y_0) με αρχική ταχύτητα v_0 , υπό γωνία θ , στο κατακόρυφο επίπεδο xy. Το σωματίδιο υπόκειται στην επίδραση ομογενούς πεδίου βαρύτητας. Το διάνυσμα θέσης του σωματιδίου, σε κάποια χρονική στιγμή t, είναι $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}}$. Το διάνυσμα της επιτάχυνσης είναι

$$d^2\mathbf{r}/dt^2 = (d^2x/dt^2)\,\hat{\mathbf{x}} + (d^2y/dt^2)\,\hat{\mathbf{y}} = -g\hat{\mathbf{y}}$$

¹ Το g συνήθως λαμβάνεται ίσο με 9,80 m/s². Ένας κατάλογος τιμών του g σε διάφορα σημεία της επιφάνειας της Γης δίνεται στον Πίνακα 4.1.

Ποικίλες ειδικές πεφιπτώσεις, όπως η πτώση σωματιδίου που ξεκινά από την ηφεμία και από αφχικό ύψος h, μποφούν να διεφευνηθούν, διαλέγοντας κάθε φοφά κατάλληλα τις αφχικές συνθήκες σχετικά με τη θέση και την ταχύτητα. Η διεφεύνηση οδηγεί σε διάφοφα γνωστά αποτελέσματα. Οφισμένες περιπτώσεις περιλαμβάνονται στα προβλήματα 2 ως 4.

Ένας σπουδαστής εξοιχιωμένος με την αναλυτιχή γεωμετοία, θα αναγνωρίσει ότι οι Εξ. (3.9) είναι παραμετριχές εξισώσεις παραβολής με παράμετρο το t. Αυτό γίνεται φανερό αν απαλείψουμε το t μεταξύ των δύο εξισώσεων, οπότε βρίσχουμε:

$$y - \left(y_{0} + \frac{v_{0}^{2} \sin^{2} \theta}{2g}\right) = -\frac{g}{2v_{0}^{2} \cos^{2} \theta} \left[x - \left(x_{0} + \frac{v_{0}^{2} \sin \theta \cos \theta}{g}\right)\right]^{2}$$

Αυτή είναι η εξίσωση παραβολής με πορυφή το σημείο:

$$x_1 = x_0 + \frac{v_0^2 \sin\theta \cos\theta}{g}$$

$$y_1 = y_0 + \frac{v_0^2 \sin^2 \theta}{2g}$$

Η παφαβολή αυτή ανοίγει πφος τα κάτω και έχει ένα κατακόφυφο άξονα συμμετφίας. Αν η αντίσταση του αέφα ήταν αμελητέα, η πφοηγούμενη ανάλυση θα πεφιέγφαφε σωστά την κίνηση του βλήματος. Η λύση που βφήκαμε αποτελεί πάντως μια καλή πφοσέγγιση για σώματα με σημαντική μάζα, τα οποία κινούνται σε τφοχιές με πεφιοφισμένη έκταση και με σχετικά μικρές ταχύτητες (βλ. πφόβλ. 20).

Η παραβολική τροχιά με κορυφή το σημείο (x_1, y_1) , όπως προσδιορίστηκε πιο πάνω, δείχνει ότι το μέγιστο ύψος στο οποίο φτάνει το βλήμα πάνω από το σημείο εκτόξευσής του είναι:

$$h = y_1 - y_0 = \frac{v_0^2 \sin^2 \theta}{2g}$$

Το βεληνεχές, δηλαδη η οφιζόντια απόσταση που διατφέχει το βλήμα ωσότου επιστφέψει στο οφιζόντιο επίπεδο εχτόξευσης, δίνεται από τη σχέση

$$R = 2(x_1 - x_0) = \frac{2v_0^2 \sin\theta \cos\theta}{g} = \frac{v_0^2 \sin2\theta}{g}$$
 (3.10)

■ ΠΑΡΑΔΕΙΓΜΑ

Μέγιστο βεληνεκές

Υπό ποία γωνία πρέπει να εκτοξευθεί ένα βλήμα, για να γίνει μέγιστο το βεληνεκές του;

Ποιν κάνουμε τον υπολογισμό, μπορούμε εύκολα να δούμε ότι υπάρχει ένα μέγιστο για την απόσταση $R(\theta)$: Αν το θ είναι πολύ μικρό, το βλήμα δεν παραμένει σε πτήση για πολύ χρόνο, αρκετό για να πάει μακριά, ενώ, όταν το θ είναι πολύ μεγάλο, το βλήμα κινείται προς τα πάνω και έπειτα προς τα κάτω καλύπτοντας μικρή οριζόντια απόσταση. Για να λύσουμε το πρόβλη-

μα αναλυτικά, μποφούμε να χφησιμοποιήσουμε το γεγονός ότι, για να γίνει μέγιστο το βεληνεκές R, πφέπει να έχουμε $dR/d\theta=0$. Ξεκινώντας από την Εξ. (3.10) βφίσκουμε:

$$\frac{dR}{d\theta} = \frac{v_0^2}{g} 2\cos 2\theta = 0$$

$$2\theta = \frac{\pi}{2}$$

$$\theta = \frac{\pi}{4} = 45^{\circ}$$

Ο ΝΌΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ

Στην πορηγούμενη παράγραφο μελετήσαμε την περίπτωση ενός ομογενούς πεδίου βαρύτητας. Τι θα συμβεί αν η απόσταση μετάξυ σωμάτων που αλληλεπιδρούν με δυνάμεις βαρύτητας είναι μεγάλη σε σύγχριση με το μέγεθός τους; Ο νόμος του Νεύτωνα για την παγχόσμια έλξη λέει:

Ένα σώμα με μάζα M_1 έλκει ένα άλλο σώμα με μάζα M_2 , οπουδήποτε μέσα στο σύμπαν, με δύναμη

$$\mathbf{F} = -G \frac{M_1 M_2}{r^2} \hat{\mathbf{f}}$$
 (3.11)

όπου $\hat{\mathbf{r}}$ το μοναδιαίο διάνυσμα από το M_1 προς το M_2 και G μια σταθερά που η αριθμητική της τιμή προσδιορίζεται από το πείραμα και είναι:

$$G = 6.67 \times 10^{-11} \text{ N m}^2 / \text{kg}^2$$
, $(\dot{\eta} = 6.67 \times 10^{-8} \text{ dyn cm}^2 / \text{g}^2)$.

Ας σημειωθεί ότι η Εξ. (3.11) εκφράζει τη δύναμη που ασκείται στο σώμα M_2 . Το αρνητικό πρόσημο δείχνει ότι η δύναμη είναι ελκτική.

Η δύναμη της βαούτητας είναι μια κεντοική δύναμη. Αυτό σημαίνει ότι η δύναμη της βαούτητας ασκείται κατά την ευθεία του συνδέει τις δύο μάζες, τις οποίες θεωφούμε σημειακές, και το μέτρο της εξαρτάται μόνο από την απόσταση των δύο μασών. Ο προσδιορισμός της τιμής του G περιγράφεται συνήθως στα βιβλία του Λυκείου. Το κλασικό πείραμα είναι αυτό του Cavendish (Κάβεντις). Θα δούμε αργότερα (Κεφ. 9) ότι, επειδή

η δύναμη εξαρτάται από το αντίστροφο του τετραγώνου της απόστασης, ένα σώμα με σφαιρική συμμετρία δρα σαν να ήταν ένα σημειακό σωματίδιο στο κέντρο της σφαίρας, με ολόκηρη τη μάζα του σφαιρικού σώματος συγκεντρωμένη εκεί.

Ο Νεύτωνας δεν γνώφιζε την τιμή της σταθεφάς *G*. Απέδειξε όμως ότι ο νόμος της δύναμης είναι ένας νόμος εξάφτησης από το αντίστφοφο του τεφαγώνου της απόστασης και ότι στην επιφάνεια της Γης ισχύει η σχέση (αφού η Γη είναι σφαιφική):

$$mg = \frac{GmM_{\Gamma}}{R_{\Gamma}^2} \tag{3.12}$$

όπου M_Γ η μάζα της Γης και R_Γ η ακτίνα της. Έτσι, ο Νεύτωνας μποφούσε να βφει το GM_Γ καθώς και τη δύναμη που ασκείται σε ένα σώμα που βρίσκεται σε απόσταση r από το κέντρο της Γης. Η δύναμη αυτή είναι $(r \ge R_\Gamma)$:

$$F = \frac{GmM_{\Gamma}}{r^2} = \frac{GmM_{\Gamma}}{R_{\Gamma}^2} \frac{R_{\Gamma}^2}{r^2} = mg \left(\frac{R_{\Gamma}}{r}\right)^2$$

Επίσης, είναι πειφαματικά διαπιστωμένο με μεγάλο βαθμό ακρίβειας, ότι η μάζα βαρύτητας και η μάζα αδράνειας ενός σώματος είναι ίσες (θα επανέλθουμε σε αυτό στο Κεφ. 14). Αυτό σημαίνει ότι η τιμή της μάζας m που πρέπει να χρησιμοποιηθεί στην πιο πάνω εξίσωση για τη δύναμη της βαρύτητας είναι ίση με την τιμή της μάζας του ίδιου σώματος η οποία χρησιμοποιείται στο δεύτερο νόμο του Νεύτωνα $\mathbf{F}=m\mathbf{a}$. Η μάζα που παίρνει μέρος στο νόμο της βαρύτητας λέγεται βαρυτική μάζα, ενώ η μάζα που αναφαίνεται στο δεύτερο νόμο του Νεύτωνα λέγεται αδρανειακή μάζα.

Τα κλασικά πειφάματα για την απόδειξη της ισότητας των δύο αυτών μαζών πραγματοποιήθηκαν από τον Εϋτνϋς (Έτβες), ενώ πρόσφατα και πολύ ακριβέστερα πειράματα έγιναν από τους R. H. Dicke, και P. G. Roll, R. Krotkov και R. H. Dicke (Ντίκι, Ρολ, Κρότκοβ). Το πείραμα του Εϋτνϋς περιγράφεται στο Κεφ. 14. Στην Εξ. (3.12) έχει ήδη γίνει δεκτή η ισότητα των δύο μαζών.

■ ΠΑΡΑΔΕΙΓΜΑ

Δορυφόρος σε κυκλική τροχιά

Ας θεωρήσουμε ένα δορυφόρο σε κυκλική τροχιά με κέντρο το κέντρο της Γης και με επίπεδο τροχιάς το επίπεδο του ισημερινού. Για ποια ακτίνα r της τροχιάς, ο δορυφόρος θα φαίνεται να παραμένει ακίνητος όταν παρατηρείται από παρατηρητή που βρίσκεται στη Γη; Προφανώς η κατεύθυνση περιφοράς του δο-

ουφόρου θα είναι η ίδια με τη φορά περιστροφής της Γης.

Σε χυχλιχή τροχιά, ή έλξη της βαρύτητας είναι ίση με τη μάζα πολλαπλασιασμένη με την χεντρομόλο επιτάχυνση:

$$\frac{GM_{\Gamma}M_{\Delta}}{r^2} = M_{\Delta} \,\omega^2 r \tag{3.13}$$

όπου M_Δ η μάζα του δοουφό
οου. Γράφουμε την εξίσωση αυτή με τη μορφή

$$r^{3} = \frac{GM_{\Gamma}}{\omega^{2}} = \frac{GM_{\Gamma}T^{2}}{(2\pi)^{2}}$$
 (3.14)

όπου T η περίοδος περιφοράς του δορυφόρου. Θέλουμε η κυκλική συχνότητα ω του δορυφόρου να είναι ίση με την κυκλική συχνότητα ω_Γ της περιστροφής της Γης γύρω από τον άξονά της, έτσι ώστε ο δορυφόρος να φαίνεται ακίνητος. Η κυκλική συχνότητα ω_Γ της Γης είναι:

$$\omega_{\Gamma} = \frac{2\pi \text{ rad}}{1 \text{ } \eta \mu \acute{e} \varrho \alpha} = \frac{2\pi \text{ rad}}{8.64 \times 10^4 \text{ s}} = 7.3 \times 10^{-5} \text{ rad/s}$$

οπότε, με $\omega = \omega_{\Gamma}$, η Εξ. (3.14) γράφεται:

$$r^3 = \frac{\left(6,67 \times 10^{-11}\right)\left(5,98 \times 10^{24}\right)}{\left(7,3 \times 10^{-5}\right)^2} \approx 7,5 \times 10^{22} \,\mathrm{m}^3$$

άρα
$$r \approx 4.2 \times 10^{7} \text{m} = 42\,000 \text{ km}$$

Η απτίνα της Γης είναι 6.38×10^6 m (6380 km). Η απόσταση r του δορυφόρου είναι λοιπόν 6.6 φορές η απτίνα της Γης ή το 1/10 περίπου της απόστασης Γης- Σελήνης.

ΗΛΕΚΤΡΙΚΕΣ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΣΕ ΦΟΡΙΣΜΕΝΟ ΣΩΜΑΤΙΔΙΟ - ΜΟΝΑΔΕΣ

Σε αυτή την παράγραφο θα εξετάσουμε προβλήματα που αφορούν ηλεκτρικές και μαγνητικές δυνάμεις, οι οποίες ασκούνται πάνω σε φορτισμένα σωματίδια. Στις εργαστηριακές ασκήσεις, οι σπουδαστές μπορούν να παρατηρήσουν και να μετρήσουν τα αποτελέσματα τέτοιων δυνάμεων στις κινήσεις σωματιδίων. Το όλο θέμα θα εξεταστεί λεπτομερειακά στον τόμο 2. Προς το παρόν, θα ορίσουμε με συντομία τις μονάδες ορισμένων ηλεκτρικών και μαγνητικών μεγεθών, έτσι ώστε να μπορέσουμε να ασχοληθούμε με τις δυνάμεις που υπεισέρχονται σε αυτόν τον σημαντικό κλάδο της Μηχανικής.

Υπενθυμίζουμε ότι τα ομώνυμα ηλεκτοικά φορτία απωθούνται με δυνάμεις που ασκούνται κατά την ευθεία που τα ενώνει. Η δύναμη άπωσης είναι αντιστρόφως ανάλογη προς το τετράγωνο της απόστασης ανάμεσα στα φορτία και ανάλογη προς το γινόμενο των φορτίων. Αυτός είναι ο νόμος του Coulomb, που εκφράζεται από τη σχέση:

$$\mathbf{F} = \frac{q_1 \, q_2}{r^2} \, \hat{\mathbf{r}} = \frac{q_1 \, q_2}{r^3} \, \mathbf{r}$$
 (3.15 α)

όπου ${\bf r}$ είναι το διάνυσμα με αρχή το φορτίο q_1 και τέλος το φορτίο q_2 (τα φορτία υποτίθενται σημειακά, βλ. Σχ. 3.2). Η δύναμη ${\bf F}$ ασκείται πάνω στο φορτίο q_2 . Η δύναμη αυτή προέρχεται από το άλλο φορτίο q_1 . Το μοναδιαίο διάνυσμα ${\bf r}$ είναι ίσο με ${\bf r}/r$. Όταν στο φορτίο q_2 δρα μια δύναμη ${\bf F}$, τότε στο q_1 δρα δύναμη ${\bf -F}$.

Η Εξ. (3.15α) εχφράζει το νόμο του Coulomb στο παλιό σύστημα μονάδων του Gauss. Σε αυτό το σύστημα, η μονάδα φορ-

Σχ. 3.2 Σχετικά με το νόμο του Coulomb.

τίου ορίζεται ως εξής: Ένα φορτίο ισούται με τη μονάδα φορτίου, όταν, τοποθετημένο σε απόσταση 1 cm από ένα άλλο ίσο φορτίο, ασκεί πάνω σε αυτό δύναμη μιας δύνης. Η ποσότητα αυτή ηλεκτρικού φορτίου είναι η ηλεκτροστατική μονάδα φορτίου (1 esu φορτίου ή ΗΣΜ φορτίου). Οι διαστάσεις του ηλεκτρικού φορτίου προκύπτουν από την Εξ. (3.15α) και είναι:

$$\left[q \right] = \left[\delta \acute{\text{unam}} \right]^{1/2} \left[\alpha \pi \acute{\text{ostasm}} \right] = M^{1/2} \ L^{3/2} \ T^{-1}$$

Έτσι, αν χοησιμοποιήσουμε μονάδες του συστήματος C.G.S., οι μονάδες του φορτίου στο ηλεκτροστατικό σύστημα του Gauss θα είναι:

$$[q] = g^{1/2} \text{ cm}^{3/2} \text{ s}^{-1}$$

Είναι βέβαια ευχολότερο να χρησιμοποιήσουμε την έχφραση esu ή *statcoulomb* από το να γράφουμε τον πιο πάνω συνδυασμό των θεμελιωδών μονάδων.

Ωστόσο, όπως το έχουμε πει από την αρχή, εμείς θα χρησιμοποιήσουμε το διεθνές σύστημα μονάδων (S.I.). Στο σύστημα αυτό, μονάδα μήχους είναι το μέτρο (m) και μονάδα δύναμης το newton (N). Στο S.I., η μονάδα ηλεκτρικού φορτίου δεν ορίζεται από το νόμο του Coulomb, αλλά βγαίνει από τη μονάδα της έντασης του ηλεκτρικού ρεύματος. Η ένταση του ηλεκτρικού ρεύματος μετριέται σε ampère (A) και το ηλεκτρικό φορτίο σε coulomb (C), όπου 1 C = 1 ampère × 1 second = 1A s. Έτσι, στο S.I. ο νόμος του Coulomb γράφεται:

$$F = k \frac{q_1 q_2}{r^2}$$
, $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}$ (3.15)

όπου η σταθεφά k έχει διαστάσεις: [δύναμη] [μήχος]² [φοςτίο] $^{-2}$ και η σταθεφά ϵ_0 (η επιτφεπτότητα του κενού) έχει αντίστροφες διαστάσεις από αυτές του k. Στην ηλεκτροστατική, υπάφχουν πολλές πεφιπτώσεις στις οποίες εμφανίζεται ο παφάγοντας 4π . Για να αποφύγουμε την εμφάνιση αυτού του παφάγοντα σε τύπους του Ηλεκτρισμού τους οποίους χρησιμοποιούμε πιο συχνά από το νόμο του Coulomb, προτιμούμε να εισαγάγουμε το 4π στο νόμο αυτό, οπότε η σταθεφα k γράφεται με τη μοφή $1/4\pi\epsilon_0$ (αυτή τη διαδικάσια την ονομάζουμε ορθολογισμό του συστήματος μονάδων). Η τιμή της σταθεφάς k είναι:

$$k = \frac{1}{4\pi\epsilon_0} = 8,988 \times 10^9 \text{ N m}^2/\text{C}^2$$

Το φοςτίο q_p του πρωτονίου είναι το θεμελιώδες φοςτίο και συμβολίζεται διεθνώς με το σύμβολο e. Η τιμή του στο σύστημα C.G.S. είναι:

$$e = +4,8022 \times 10^{-10} \text{ esu}$$
 (HSM coortion)

Στο διεθνές σύστημα μονάδων S.I., έχουμε:

$$e = +1,60210 \times 10^{-19} \text{ C}$$

οπότε είναι εύχολο να βοούμε ότι:

$$1 \text{ C} = 2,9979 \times 10^{+9} \cdot \text{esu}$$

Το φορτίο του ηλεκτρονίου είναι ίσο με -e. Η απωστική δύναμη μεταξύ δύο πρωτονίων που απέχουν 10^{-12} cm το ένα από το άλλο, είναι, στο σύστημα του Gauss:

$$F = \frac{e^2}{r^2} \approx \frac{(4.8 \times 10^{-10})^2}{(10^{-12})^2} \approx 2.3 \times 10^5 \text{ dyn}$$

ενώ ο υπολογισμός στο S.I. δίνει:

$$F = k \frac{e^2}{r^2} \approx 9.0 \times 10^9 \frac{\left(1.6 \times 10^{-19}\right)^2}{\left(10^{-14}\right)^2} \approx 2.3 \text{ N}$$

Η δύναμη μεταξύ πρωτονίου και ηλεκτρονίου είναι ελκτική, γιατί τα φορτία είναι ετερώνυμα.

Το ηλεκτρικό πεδίο

Οταν σε ένα φοςτισμένο σωματίδιο ασκείται μια ηλεκτοική δύναμη, λέμε ότι το σωματίδιο βρίσκεται μέσα σε ένα ηλεκτοικό πεδίο. Το πεδίο, καθώς και οι δυνάμεις σε φοςτισμένα σωματίδια, με τις οποίες το πεδίο εκδηλώνεται, προέρχονται από ένα άλλο φοςτίο ή από μια κατανομή φοςτίων σε όχι μεγάλες αποστάσεις. Η ένταση ${\bf E}$ του ηλεκτοικού πεδίου ορίζεται από τη σχέση:

$$\mathbf{F} = q\mathbf{E} \tag{3.16}$$

όπου q είναι ένα "δοκιμαστικό φορτίο", πάνω στο οποίο παφατηφείται η δύναμη **F**. Έτσι, το διάνυσμα της έντασης **E** του

Σχ. 3.3 Για τον ορισμό της έντασης του ηλεκτρικού πεδίου **Ε:** $\mathbf{E} = (kq_1/r^2) \ \hat{\mathbf{r}}, \ \mathbf{F} = q_2 \ \mathbf{E} = (kq_1q_2/r^2) \ \hat{\mathbf{r}}.$

ηλεκτοικού πεδίου σε κάποιο σημείο, είναι το διάνυσμα της δύναμης πάνω σε μονάδα θετικού ηλεκτοικού φορτίου που τοποθετείται στο σημείο αυτό.

Το Σχ. 3.3 είναι μια επανάληψη του Σχ. 3.2 με τη διαφοφά ότι τώρα δεχόμαστε ότι η δύναμη ${\bf F}$ στο q_2 οφείλεται στην ένταση ${\bf E}$ του πεδίου, που παράγεται από το φορτίο q_1 . Το διάνυσμα ${\bf E}$ σε αυτή την περίπτωση δίνεται (στο S.I.) από την έχφαση:

$$\mathbf{E} = k \, \frac{q_1}{r^2} \, \hat{\mathbf{r}} \tag{3.17}$$

και η δύναμη $\mathbf{F}=q_2\mathbf{E}$ είναι ακριβώς αυτή που δίνεται από τη σχέση (3.15). Η σπουδαιότητα της αντιμετώπισης προβλημάτων με τη χρήση της έννοιας του πεδίου φαίνεται στη μελέτη του Ηλεκτρισμού. Η έννοια του πεδίου είναι ιδιαίτερα χρήσιμη όταν έχουμε να ασχοληθούμε π.χ. με ηλεκτρικές δυνάμεις που προέρχονται από κατανεμημένα φορτία, όπως από μια φορτισμένη σφαίρα ή από ένα φορτισμένο επίπεδο, καθώς επίσης όταν μελετούμε (βλ. τόμο 2) μαγνητικά πεδία που μεταβάλλονται με το χρόνο.

Οι διαστάσεις της έντασης του ηλεκτοικού πεδίου είναι δύναμη ανά ηλεκτοικό φορτίο. Έτσι, η μονάδα της έντασης είναι το newton/coulomb. Για λόγους που θα εξηγήσουμε αργότερα, μπορούμε επίσης να εκφράσουμε την ένταση του ηλεκτοικού πεδίου σε volt/m. Οι δύο εκφράσεις σημαίνουν ακριβώς το ίδιο πράγμα:

1 newton/coulomb = 1 volt/m

Η δεύτερη έχφραση δίνει έμφαση στο έργο που παράγεται ή καταναλώνεται όταν το μοναδιαίο φορτίο μετακινείται κατά μια μονάδα μήχους μέσα στο πεδίο, ενώ η πρώτη έχφραση αναδεικνύει τη δύναμη που ασκείται στη μονάδα του φορτίου $^{\rm I}$.

$$\mathbf{E} = \frac{q_1}{r^2} \,\hat{\mathbf{r}} \tag{3.17a}$$

Η σχέση μετατροπής από statvolt/cm σε volt/m είναι:

1 statvolt/cm = $2,9979 \times 10^4 \text{V/m}$

$$1 \text{ V/m} = \frac{1}{2,9979 \times 10^4} \approx \frac{1}{3 \times 10^4} \text{ statvolt/cm}$$

¹ Στο σύστημα μονάδων του Gauss (μονάδες C.G.S.) η Εξ. (3.16) εξακολουθεί να είναι η εξίσωση ορισμού της έντασης ${\bf E}$ του ηλεκτρικού πεδίου. Το μέτρο ${\bf E}$ μετριέται σε dyn/esu-φορτίου, ή επίσης σε statvolt/cm. Για την ένταση του πεδίου που οφείλεται σε ένα φορτίο ${\bf q}_1$, η Εξ (3.17) γράφεται στο σύστημα του Gauss:

Το μαγνητικό πεδίο και η δύναμη Lorentz

Ως εδώ θεωρήσαμε μόνο τη στατική κατάσταση, όπου τα φορτισμένα σωματίδια δεν κινούνται το ένα ως προς το άλλο, ή σχετικά με τον παρατηρητή, και εκφράσαμε την ηλεκτροστατική δύναμη πάνω σε ένα φορτισμένο σωματίδιο με τη σχέση $\mathbf{F}_{\eta\lambda} = q\mathbf{E}$. Αν το φορτίο q κινείται ως προς τον παρατηρητή, το πείραμα βεβαιώνει ότι μια πρόσθετη δύναμη μπορεί να εμφανιστεί, με διεύθυνση κάθετη προς την ταχύτητα του σωματιδίου. Η δύναμη αυτή είναι η μαγνητική δύναμη.

Σε μια πειοχή στην οποία μποφούν να αναπτύσσονται τέτοιες δυνάμεις, που εξαφτώνται από την ταχύτητα των φοφτίων, λέμε ότι υπάφχει ένα μαγνητικό πεδίο. Από τα πειφαματικά αποτελέσματα γνωφίζουμε ότι το διάνυσμα ${\bf B}$ της έντασης του μαγνητικού πεδίου μποφεί να συνδεθεί με τη μαγνητική δύναμη ${\bf F}$ μέσω της σχέσης (στο S.I.) :

$$\mathbf{F}_{\mu\alpha\gamma\mathbf{v}} = q \mathbf{v} \times \mathbf{B} \tag{3.18}$$

όπου q το φοςτίο (σε coulomb), ${\bf v}$ η ταχύτητα του κινούμενου σωματιδίου (σε m/s) και ${\bf F}_{\mu\alpha\gamma\nu}$ η δύναμη (σε newton). Το διανυσματικό γινόμενο δίνει τη δύναμη ${\bf F}_{\mu\alpha\gamma\nu}$ κάθετη προς την ταχύτητα ${\bf v}$ και προς το διάνυσμα ${\bf B}$. Στο Σχ. 3.4 φαίνονται αυτές οι καθετότητες για την ειδική περίπτωση, που τα διανύσματα ${\bf v}$ και ${\bf B}$ είναι κι αυτά κάθετα μεταξύ τους.

Αν αντί για φοςτισμένο σωματίδιο με ταχύτητα **v**, έχουμε σευματοφόςο αγωγό με σεύμα πφος την κατεύθυνση της ταχύ τητας **v**, τότε η μαγνητική δύναμη που ασκείται στον αγωγό έχει την ίδια κατεύθυνση με εκείνην που φαίνεται στο Σχ. 3.4.

Από την Εξ. (3.18) προχύπτει ότι οι διαστάσεις του B είναι $[N][C]^{-1}[m]^{-1}[s]$. Τα τελευταία χρόνια δόθηκε στη μονάδα αυτή της έντασης του μαγνητικού πεδίου το όνομα tesla (T), ενώ προηγουμένως ονομάζόταν weber ανά m^2 (Wb/ m^2).

Ας πάρουμε σαν παράδειγμα εφαρμογής ένα ηλεκτρόνιο που κινείται με ταχύτητα $v=3\times 10^7$ m/s (το 1/10 της ταχύτητας c του φωτός στο κενό) σε διεύθυνση κάθετη προς ένα μαγνητικό πεδίο με ένταση B=1 T. Η εγκάρσια δύναμη που ασκείται στο ηλεκτρόνιο από το μαγνητικό πεδίο είναι¹:

$$F = (1.6 \times 10^{-19})(3 \times 10^{7})(1.0) = 4.8 \times 10^{-12} \text{ N}$$

Η ολιχή δύναμη που ασχείται σε χινούμενο φορτισμένο

¹ Στο σύστημα μονάδων του Gauss, η μαγνητική δύναμη δίνεται από τη σχέση:
(Συνέχεια στην επόμενη σελίδα)

Σχ 3.4 Η μαγνητική δύναμη $\mathbf{F}_{\text{μαγν}} = q\mathbf{v} \times \mathbf{B}$

σωματίδιο, είναι το διανυσματικό άθοοισμα της ηλεκτοικής και της μαγνητικής δύναμης. Η συνισταμένη αυτή δύναμη ονομάζεται δύναμη Lorentz (Λορέντζ) (η ονομασία αυτή χρησιμοποιείται συχνά μόνο για τη μαγνητική δύναμη). Από τις Εξ. (3.16) και (3.18) έχουμε για τη δύναμη Lorentz!:

$$\mathbf{F} = a\mathbf{E} + a\mathbf{v} \times \mathbf{B} \tag{3.19}$$

Σημαντικό μέφος της Φυσικής σχετίζεται με το δεύτεφο νόμο του Νεύτωνα, $\mathbf{F} = m \ \mathbf{a}$, και με την Εξ. (3.19). Φυσικά, ανάλογα σημαντικό μέφος της ιστοφίας της Φυσικής αναφέφεται στις προσπάθειες για τη διατύπωση αυτών των εξισώσεων. [Γράφοντας εδώ την Εξ. (3.19) σαν πειραματικό αποτέλεσμα, δεν απαλλασσόμαστε από την υποχρέωση να τη διεφευνήσουμε σε βάθος στον Ηλεκτρομαγνητισμό].

Στο κεφάλαιο αυτό θα χοειαστούμε τις ακόλουθες αοιθμητικές τιμές:

Ταχύτητα του φωτός στο κενό: $c = 2,9979 \times 10^8$ m/s

Μάζα του ηλεκτοονίου: $m = 0.9108 \times 10^{-30} \text{ kg}$

Μάζα του πρωτονίου: $M_p = 1,6724 \times 10^{-27} \text{ kg}$

Υπενθυμίζουμε ότι στο S.I. χρησιμοποιούμε την Εξ. (3.19) και εκφράζουμε τη δύναμη F σε newton, την ένταση E σε V/m, την ταχύτητα v σε m/s, την ένταση του μαγνητικού πεδίου B σε tesla και το φορτίο q σε coulomb⁽²⁾.

(Συνέχεια από την προηγούμενη σελίδα)

$$\mathbf{F} = \frac{q}{c} \mathbf{v} \times \mathbf{B}$$

Οι διαστάσεις του B στο σύστημα του Gauss είναι οι ίδιες με τις διαστάσεις του E, γιατί ο λόγος u/c είναι καθαρός αριθμός. Η αντίστοιχη μονάδα του B, που ονομάζεται gauss (G), είναι η μονάδα που προκύπτει όταν η δύναμη μετριέται σε dyn και το φορτίο q σε esu. Με τις μονάδες αυτές, το προηγούμενο πρόβλημα λύνεται ως εξής:

$$F = (4.8 \times 10^{-10} \text{ esu}) \frac{1}{10} (10^4 \text{ G}) = 4.8 \times 10^{-7} \text{ dyn}$$

επειδή 1 Τ αντιστοιχεί σε 10⁴ G (αποφεύγουμε να γράψουμε την αντιστοιχία αυτή σαν ισότητα, γιατι το tesla και το gauss δεν έχουν τις ίδιες διαστάσεις).

$$\mathbf{F} = q\mathbf{E} + \frac{q}{c}\mathbf{v} \times \mathbf{B} \tag{3.19a}$$

¹ Στο σύστημα C.G.S., η δύναμη Lorentz δίνεται από τη σχέση:

² Βλ. υποσημείωση στην επόμενη σελίδα.

Κίνηση φορτισμένου σωματιδίου σε σταθερό ομογενές ηλεκτρικό πεδίο

Η εξίσωση για τη δύναμη που ασκείται σε φορτισμένο σωματίδιο με φορτίο q και μάζα M, όταν το σωματίδιο βρίσκεται μέσα σε σταθερό ομογενές ηλεκτρικό πεδίο, σταθερό ως προς το χρόνο, γράφεται [Εξ. (3.16)]:

$$\mathbf{F} = M \mathbf{a} = q \mathbf{E} \tag{3.20}$$

Επομένως, η εξίσωση για την επιτάχυνση του σωματιδίου είναι:

$$\mathbf{a} = \frac{d^2\mathbf{r}}{dt^2} = \frac{q}{M} \mathbf{E}$$

Το αποτέλεσμα αυτό είναι εντελώς όμοιο με εχείνο για την χίνηση ενός σώματος μέσα σε ομογενές πεδίο βαφύτητας ${\bf F}=-Mg{\bf \hat y}$, όταν το σώμα βρίσχεται χοντά στην επιφάνεια της Γης (το ${\bf \hat y}$ παριστάνει το μοναδιαίο διάνυσμα με φορά από την επιφάνεια της Γης προς τα πάνω). Στο πρόβλημα της βαρύτητας, η εξίσωση της χίνησης είναι

$$M\mathbf{a} = -Mg\hat{\mathbf{y}}$$
, $\hat{\mathbf{y}}$ a = $-g\hat{\mathbf{y}}$

Αποδειχνύεται, με δοχιμαστιχή ή με άμεση ολοχλήρωση, ότι η Εξ. (3.20) έχει τη γενιχή λύση:

$$\mathbf{r}(t) = \frac{q \mathbf{E}}{2M} t^2 + \mathbf{v}_0 t + \mathbf{r}_0$$
 (3.21)

όπου ${\bf r}_0$ το διάνυσμα θέσης του σωματιδίου κατά τη στιγμή t=0 και ${\bf v}_0$ το διάνυσμα της ταχύτητάς του την ίδια χοονική στιγμή.

Η παραγώγιση της Εξ. (3.21) δίνει την έκφραση της ταχύτητας σαν συνάρτηση του χρόνου:

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \frac{q \mathbf{E}}{M} t + \mathbf{v}_0$$
 (3.22)

από όπου επαληθεύουμε ότι η αρχική ταχύτητα (για t=0) είναι πράγματι \mathbf{v}_0 .

$$I V/m = \frac{1}{3.0 \times 10^4}$$
 statvolt/cm

 $1 \text{ C} = 3.0 \times 10^9 \text{ stateoulomb ($\acute{\eta}$ esu)}$

$$1 \text{ T} \leftrightarrow 1 \times 10^4 \text{ G}$$

² Οι σχέσεις μετατροπής των μονάδων που δόθηκαν πιο πάνω συνοψίζονται ως εξής (με προσέγγιση, στη δεύτερη και τρίτη σχέση, αρκετά υψηλή για τα συνηθισμένα προβλήματα):

 $^{1 \}text{ m/s} = 100 \text{ cm/s}$

Παραγωγίζοντας την ταχύτητα στην Εξ. (3.22) ως προς το χρόνο, επιστρέφουμε στην επιτάχυνση όπως αυτή δίνεται από την Εξ. (3.20), επαληθεύοντας έτσι ότι η γενιχή λύση που δίνεται από την Εξ. (3.21) είναι οοθή.

■ ΠΑΡΑΔΕΙΓΜΑ

Επιτάχυνση πρωτονίου

Ένα πρωτόνιο, ξεκινώντας από την ηρεμία, επιταχύνεται με τη βοήθεια ενός ηλεκτρικού πεδίου που έχει ένταση $E_x=30\,000\,$ V/m. Αν η επιτάχυνση διαρκεί ένα νανοδευτερόλεπτο (= $10^{-9}\,$ s), πόση είναι η τελική ταχύτητα του πρωτονίου; (βλ. Σχ. 3.5).

Η ταχύτητα δίνεται από την Εξ. (3.22):

$$\frac{d\mathbf{r}}{dt} = \frac{e}{M} \mathbf{E}t + \mathbf{v}_0$$

Στο παράδειγμά μας 1 η σχέση αυτή δίνει

$$v_x(t) = \frac{e}{M} E_x t$$
, $v_y = v_z = 0$

αφού έχουμε υποθέσει ότι $\mathbf{v} = 0$ για t = 0. Έτσι, η τελική ταχύτητα κατά τη στιγμή $t = 1 \times 10^{-9} \mathrm{s}$ είναι περίπου:

$$v_x = \frac{(1.6 \times 10^{-19} \text{ C})(3.0 \times 10^4 \text{ V/m})(1 \times 10^{-9} \text{ s})}{2 \times 10^{-27} \text{ kg}} \approx 2.4 \times 10^3 \text{ m/s}$$

όπου χοησιμοποιήσαμε για τη μάζα του πρωτονίου την προσεγγιστική τιμή $2\times 10^{-27}\,\mathrm{kg}.$

Σχ. 3.5 Επιτάχυνση πρωτονίου σε ηλεκτρικό πεδίο ανάμεσα σε φορτισμένες μεταλλικές πλακές.

¹ Η εξίσωση είναι διανυσματική με $\mathbf{E}=(E_x,\,0,\,0)$ και $\mathbf{v}_0=0$, και ισοδυναμεί με τρεις εξισώσεις κατά τους άξονες $x,\,y,\,z$:

$$\frac{dx}{dt} = \frac{e}{M} E_x t$$
, $\frac{dy}{dt} = 0$, $\frac{dz}{dt} = 0$

■ ΠΑΡΑΔΕΙΓΜΑ _

Επιτάχυνση ηλεκτρονίου

Ένα ηλεκτρόνιο ξεκινά από την ηρεμία και επιταχύνεται από ηλεκτρικό πεδίο $30\,000\,\text{V/m}$ σε μια ευθύγραμμη διαδρομή με μήκος $0.01\,\text{m}$. Η κίνηση γίνεται προς την αρνητική κατεύθυνση του άξονα των x. Πόση είναι η τελική ταχύτητα του ηλεκτρονίου;

Από τις Εξ. (3.22) και (3.21) έχουμε, σημειώνοντας με -e το φορτίο και με m τη μάζα του ηλεκτρονίου:

$$v_x(t) = -\frac{e}{m} E_x t$$
, $x(t) = -\frac{e}{2m} E_x t^2$

Θέλουμε να απαλείψουμε το χοόνο ι και να βρούμε την ταχύτητα v_{x} σαν συνάρτηση του x. Μπορούμε γι' αυτό το σκοπό να βρούμε πρώτα το v_{x}^{2} , οπότε:

$$v_x^2 = \left(\frac{e}{m} E_x t\right)^2 = \left(\frac{2e}{m} E_x\right) \left(\frac{e}{2m} E_x t^2\right) = -\frac{2e}{m} E_x x$$

Άφα:

$$v_x^2 \simeq \frac{2 \times 1.6 \times 10^{-19}}{10^{-30}} 3.0 \times 10^4 \times 0.01 \approx 10^{14} \text{ m}^2/\text{s}^2$$

Έτσι, η τελική ταχύτητα είναι περίπου

$$|v_x| \approx 10^7 \,\mathrm{m/s}$$

Η ταχύτητα αυτή είναι το 1/30 της ταχύτητας του φωτός στο κενό. Είναι δηλαδή αφκετά μικοή ώστε να μη χοειάζεται να λάβουμε εδώ υπόψη τη θεωρία της Σχετικότητας (με ακρίβεια 0.1%).

■ ΠΑΡΑΔΕΙΓΜΑ _

Εγκάρσια επιτάχυνση ηλεκτρονίου

Συνεχίζουμε το προηγούμενο παράδειγμα. Υποθέτουμε ότι έχουμε μια ηλεκτρονική δέσμη, η οποία, μετά την επιτάχυνσή της από το πεδίο E_x , εισέρχεται σε μια περιοχή με μήκος L=0.01 m όπου υπάρχει ένα εγκάρσιο ηλεκτρικό πεδίο $E_y=-3000$ V/m. Το πεδίο αυτό επιβάλλει στα ηλεκτρικό μια εγκάρσια απόκλιση, όπως φαίνεται στο Σχ. 3.6. Πόση είναι η γωνία που σχηματίζει η ηλεκτρονική δέσμη με τον άξονα των x, όταν η δέσμη βγαίνει από το πεδίο; Ας σημειωθεί ότι το πρόβλημα αυτό είναι ακριβώς όμοιο με το πρόβλημα της οριζόντιας βολής μέσα στο πεδίο βαρύτητας της Γης.

Επειδή τώρα η συνιστώσα E_x του πεδίου είναι μηδέν, η συνιστώσα v_x της ταχύτητας θα μένει σταθερή. Ο χρόνος τ που χρειάζεται το ηλεκτρόνιο για να περάσει μέσα από τις πλάκες δίνεται επομένως από τη σχέση:

$$v_{\tau} \tau = L$$

και, αν $v_x = 10^7$ m/s, βρίσκουμε:

$$\tau = \frac{L}{v_x} = \frac{0.01}{10^7} = 10^{-9} \text{ s}$$

Η κάθετη συνιστώσα της ταχύτητας, που τα ηλεκτρόνια αποκτούν κατά τη διάρκεια αυτού του χρόνου, δίνεται από τη σχέση:

$$v_y = -\frac{e}{m} E_y \tau \approx \frac{-1.6 \times 10^{-19}}{10^{-30}} (-3000) \times 10^{-9} \approx 5 \times 10^5 \text{ m/s}$$

Η γωνία θ , που το διάνυσμα της τελικής ταχύτητας σχηματίζει με τον άξονα των x, προσδιορίζεται από τη σχέση $\tan\theta=\upsilon_v/\upsilon_r$ επομένως

$$\theta = \tan^{-1} \frac{v_y}{v_x} \approx \tan^{-1} \frac{5 \times 10^5}{10^7} = \tan^{-1} 0.05$$

Για μικρές γωνίες, μπορούμε να δεχθούμε την προσέγγιση

$$\theta \approx \tan^{-1} \theta$$

Σχ. 3.6 Εκτροπή δέσμης ηλεκτρονίων, που προκαλείται από εγκάρσιο ηλεκτρικό πεδίο. Η γωνία θ έχει σχεδιαστεί πολύ μεγαλύτερη από εκείνην που βρίσκουμε στο παράδειγμα του κειμένου.

για θ σε ακτίνια. Έτσι βρίσκουμε $\theta \approx 0.05$ rad, δηλαδή περίπου 3° .

Για να ελέγξουμε το σφάλμα στο θ που ποοχύπτει από την πιο πάνω ποοσέγγιση, αναπτύσσουμε τη συνάοτηση $\tan^{-1} \theta$ σε σειρά και συγκρίνουμε το δεύτερο με τον πρώτο όρο αυτής της σειράς. Μαθηματικοί πίνακες δίνουν τις σειρές στις οποίες αναπτύσσονται οι τριγωνομετρικές συναρτήσεις. Στη συγκεκριμένη περίπτωση έχουμε:

$$\tan^{-1}\theta = \theta - \frac{\theta^3}{3} + \frac{\theta^5}{5} - \frac{\theta^7}{7} + \cdots + (-1 < \theta < 1)$$

Ο δεύτερος όρος $\theta^3/3$, για $\theta=0.05$, είναι μικρότερος από τον κύριο όρο θ κατά τον παράγοντα $\theta^2/3=(0.05)^2/3\approx 10^{-3}$, δηλαδή ο δεύτερος όρος είναι το 0,1% του πρώτου όρου. Η παράλειψη του δεύτερου όρου αποτελεί σφάλμα που μπορεί να αμεληθεί, αφού ένα τέτοιο σφάλμα είναι μικρότερο από εκείνο που συνήθως κάνουμε κατά τη μέτρηση της γωνίας θ . Για μικρές γωνίες, επιτρέπεται επίσης να παίρνουμε $\sin\theta\approx\theta$ και $\cos\theta\approx 1-\theta^2/2$.

Κίνηση φορτισμένου σωματιδίου σε σταθερό ομογενές μαγνητικό πεδίο

Η εξίσωση της χίνησης φορτισμένου σωματιδίου με μάζα M και με φορτίο q, μέσα σε σταθερό μαγνητικό πεδίο \mathbf{B} , γράφεται [βλ. Εξ. (3.18)]:

$$M\frac{d^2\mathbf{r}}{dt^2} = M\frac{d\mathbf{v}}{dt} = q\mathbf{v} \times \mathbf{B}$$
 (3.23)

Έστω ότι το μαγνητικό πεδίο κατευθύνεται κατά τον άξονα των z:

$$\mathbf{B} = B \hat{\mathbf{z}}$$

Σύμφωνα με τους κανόνες του διανυσματικού γινομένου, έχουμε

$$[\mathbf{v} \times \mathbf{B}]_{x} = v_{y} B$$
, $[\mathbf{v} \times \mathbf{B}]_{y} = -v_{x} B$, $[\mathbf{v} \times \mathbf{B}]_{z} = 0$

Έτσι, από την Εξ. (3.23) παίονουμε¹

$$\dot{v}_x = \frac{q}{M} v_y B, \qquad \dot{v}_y = -\frac{q}{M} v_x B, \qquad \dot{v}_z = 0 \qquad (3.24)$$

Βλέπουμε ότι η συνιστώσα της ταχύτητας κατά την κατεύθυνση του μαγνητικού πεδίου (τον άξονα z) είναι σταθερή.

Μποφούμε ακόμα να δούμε από τώφα ένα άλλο χαφακτηφιστικό της κίνησης: Η κινητική ενέργεια

$$K = \frac{1}{2} M v^2 = \frac{1}{2} M \mathbf{v} \cdot \mathbf{v}$$

είναι σταθερή, επειδή

$$\frac{dK}{dt} = \frac{1}{2} M \left(\dot{\mathbf{v}} \cdot \mathbf{v} + \mathbf{v} \cdot \dot{\mathbf{v}} \right) = M \mathbf{v} \cdot \dot{\mathbf{v}} =$$

$$= M \mathbf{v} \cdot \left(\frac{q}{M} \mathbf{v} \times \mathbf{B} \right) \equiv 0 \tag{3.25}$$

γιατί το διάνυσμα $\mathbf{v} \times \mathbf{B}$ είναι χάθετο στο \mathbf{v} . Άρα, το μαγνητικό πεδίο δεν αλλάζει την κινητική ενέργεια ενός σωματιδίου που κινείται ελεύθερα μέσα στο πεδίο.

Ας δοχιμάσουμε να ιχανοποιήσουμε τις εξισώσεις της χίνησης με λύσεις της μορφής 2

¹ Χρησιμοποιούμε εδώ μια αρκετά συνηθισμένη σύμβαση για το συμβολισμό: Η τελεία πάνω από ένα γράμμα σημαίνει παραγώγιση ως προς το χρόνο. Ετσι $\dot{r}=dr/dt$, $\dot{\bf A}=d{\bf A}/dt$. Επίσης $\ddot{r}=d^2r/dt^2$, $\ddot{\bf A}=d^2{\bf A}/dt^2$.

 $^{^2}$ Η Εξ. (3.25) μας λέει ότι η κινητική ενέργεια K είναι σταθερή. Πρέπει να συμπεράνουμε ότι το μέτρο $|\mathbf{v}|$ της ταχύτητας είναι επίσης σταθερό. Αυτό το αποτέλεσμα μας οδηγεί να αναζητήσουμε μια λύση που να εκφράζει μια ομαλή κυκλική κίνηση στο επίπεδο xy και, ειδικότερα, μια κίνηση στην οποία οι συνιστώσες v_x και v_y της ταχύτητας να είναι ημιτονικές με διαφορά φάσης $\pi/2$. Το κλάσμα qB/M μπορούμε να το θεωρήσουμε σαν μια απλή σταθερά με διαστάσεις το αντίστροφο του χρόνου. Οι διαστάσεις βγαίνουν εύκολα από την Εξ. (3.24). Περιμένουμε λοιπόν να βρούμε μια λύση που να περιλαμβάνει μια κυκλική κίνηση, στην οποία η σταθερά qB/M να συνδέτται με την κυκλική συχνότητα ω .

$$v_x(t) = v_1 \sin \omega t$$
, $v_y(t) = v_1 \cos \omega t$, $v_z = \sigma \tau \alpha \theta$. (3.26)

Η ποοβολή της τοοχιάς μιας τέτοιας κίνησης στο επίπεδο xy είναι κύκλος, του οποίου η ακτίνα καθορίζεται πιο κάτω. Παραγωγίζοντας τις συνιστώσες v_x και v_y [Εξ. (3.26)] παίρνουμε:

$$\frac{dv_x}{dt} = \omega v_1 \cos \omega t , \qquad \frac{dv_y}{dt} = -\omega v_1 \sin \omega t$$

Έτσι, οι Εξ. (3.24) γράφονται:

$$\omega v_1 \cos \omega t = \frac{qB}{M} v_1 \cos \omega t$$
$$-\omega v_1 \sin \omega t = -\frac{qB}{M} v_1 \sin \omega t$$

και

Οι εξισώσεις αυτές ικανοποιούνται, αν

$$\omega = \frac{q B}{M} \equiv \omega_c \tag{3.27}$$

Αυτή η σχέση ορίζει την κυκλοτρονική κυκλική συχνότητα (ή κυκλική γυροσυχνότητα) $ω_c$ σαν την κυκλική συχνότητα της κίνησης φορτισμένου σωματιδίου μέσα σε μαγνητικό πεδίο. Σχετικά με την τιμή του v_1 , οποιαδήποτε τιμή ικανοποιεί τις εξισώσεις της κίνησης. Εδώ η v_1 έχει ήδη επιλεγεί ως η τιμή v_y (0), και καθορίζει την ακτίνα της προβολής της τροχιάς στο επίπεδο xy.

Η κυκλοτονική κυκλική συχνότητα μπορεί να υπολογιστεί και με έναν άλλο απλό τρόπο. Η μαγνητική δύναμη qv_1B , με κατεύθυνση προς το εσωτερικό της τροχιάς, προκάλει την κεντρομόλο επιτάχυνση που απαιτείται για την κυκλική κίνηση του σωματιδίου. Η κεντρομόλος αυτή επιτάχυνση ισούται με v_1^2/r ή $\omega_c^2 r$, αφού $\omega_c r = v_1$. Άρα

$$qBv_1 = M\omega_c^2 r = M\omega_c v_1$$

και $\omega_c = qB/M$, οπότε η ακτίνα του κύκλου είναι $r = Mv_1/qB$. (βλ. Σχ. 3.7)

Ποια είναι η πλήφης τροχιά στο χώρο; Είδαμε ότι η προβολή της τροχιάς στο επίπεδο xy είναι χύχλος. Κατά τον άξονα z όμως, το σωματίδιο θα προχωρεί ομαλά με σταθερή ταχύτητα v_z (που μπορεί να είναι χαι μηδέν), αφού η δύναμη δεν έχει συνιστώσα χατά τον άξονα z. Ολοχληρώνοντας τις σχέσεις (3.26) χαι αντιχαθιστώντας το ω με ω_c , βρίσχουμε τις αναλυτιχές εξισώσεις της τροχιάς:

$$x = x_0 + \frac{v_1}{\omega_c} - \frac{v_1}{\omega_c} \cos \omega_c t$$

Σχ. 3.7 Θετικό φορτίο q, με αρχική ταχύτητα \mathbf{v} κάθετη προς το ομογενές πεδίο \mathbf{B} , διαγράφει ένα κύκλο με σταθερή κατά μέτρο ταχύτητα \mathbf{v} και με ακτίνα $\mathbf{r} = M\mathbf{v}/q\mathbf{B}$.

Σχ. 3.8 Η τροχιά ενός θετικού φορτίου q είναι μια έλικα με σταθερό βήμα, όταν το φορτίο κινείται μέσα σε ομογενές μαγνητικό πεδίο **B**. Η συνιστώσα της ταχύτητας v_{\parallel} , παράλληλη προς το **B**, είναι σταθερή. Αν $\mathbf{B} = B_z \hat{\mathbf{z}}$ τότε $v_{\parallel} = v_z$.

$$y = y_0 + \frac{v_1}{\omega_c} \sin \omega_c t \tag{3.28}$$

$$z = z_0 + v_{\tau} t$$

Opou $x_0 + (v_1/\omega_c)$, y_0 hai z_0 eínai oi stabeqés ths olonlhquishs stis antístoices exisóweis.

Από τις Εξ. (3.28), βρίσκουμε ότι

$$\left[x - \left(x_0 + \frac{v_1}{\omega_c}\right)\right]^2 + \left(y - y_0\right)^2 = \left(\frac{v_1}{\omega_c}\right)^2$$

Επομένως, οι Εξ. (3.28) πεοιγράφουν τη θέση του σωματιδίου, του οποίου η προβολή στο επίπεδο xy κινείται σε κυκλική τροχιά με ακτίνα

$$r_c = \frac{v_1}{\omega_c} = \frac{M v_1}{qB} \tag{3.29}$$

και με κέντοο το σημείο $[x_0+(v_1/\omega_c),y_0]$. Η ομοιόμουφη αυτή κυκλική κίνηση συνδυάζεται με μια ολίσθηση κατά τη διεύθυνση z με σταθεφή ταχύτητα v_z . Έχουμε $z=z_0$ όταν t=0. Έτσι, η τυοχιά της κίνησης στο χώρο είναι στο σύνολο της μια έλικα με άξονα παφάλληλο πφος το διάνυσμα ${\bf B}$ του μαγνητικού πεδίου, που στην πεφίπτωση αυτή (Σχ. 3.8) κατευθύνεται κατά τον άξονα z. Η ακτίνα z_c ονομάζεται συνήθως γυροακτίνα ή κυκλοτφονική ακτίνα.

Το γινόμενο της έντασης του μαγνητικού πεδίου επί την ακτίνα της έλικας εκφράζεται από την ενδιαφέρουσα σχέση:

$$Br_c = \frac{Mv_1}{q} \tag{3.30}$$

Θα δούμε σε άλλο κεφάλαιο ότι η σχέση αυτή ισχύει και στη σχετικιστική μηχανική, αν η ορμή, που εκφράζεται εδώ από το γινόμενο Mv_1 , αντικατασταθεί με τη σχετικιστική της έκφραση. Η σχέση (3.30) χρησιμοποιείται για τον προσδιορισμό της ορμής φορτισμένων σωματιδίων, είτε σε χαμηλές είτε σε υψηλές ταχύτητες (βλ. Σχ. 3.9).

Έλεγχος διαστάσεων. Είναι πάντοτε χοήσιμο να ελέγχουμε αν οι διαστάσεις στα δύο μέλη μιας τελικής εξίσωσης είναι ίδιες. Έτσι βοίσκουμε εύκολα τα ενδεχόμενα λάθη. Για το δεξιό μέλος της Εξ. (3.30) έχουμε (στο S.I.):

$$\left[\frac{Mv_1}{q}\right] = \left[M\right] \left[\frac{L}{T}\right] \left[\frac{1}{q}\right] = \left[M\right] \left[L\right] \left[T\right]^{-1} \left[q\right]^{-1}$$
(3.31)

Για το αφιστεφό μέλος της ίδιας εξίσωσης έχουμε:

Σχ. 3.9 Φωτογραφία της τροχιάς που ακολουθεί ένα ταχύ ηλεκτρόνιο μέσα σε μαγνητικό πεδιο. Πάρθηκε σε θάλαμο φυσαλίδων με υγρό υδρογόνο. Το ηλεκτρόνιο εισέρχεται από κάτω δεξιά, όπως δείχνει η φωτογραφία, και καθώς προχωρεί προς τα πάνω, χάνει ενέργεια εξαιτίας του ιονισμού μορίων υδρογόνου. Συγχρόνως, όσο το ηλεκτρόνιο προχωρεί, τόσο η ακτίνα καμπυλότητας της τροχιάς μέσα στο μαγνητικό πεδίο ελαττώνεται. Έτσι, η τροχιά είναι μια σπείρα.

$$[Br_c] = \left[\frac{F}{qv}\right][L] = [M][L][T]^{-2}[q]^{-1}[L]^{-1}[T][L] =$$

$$= [M][L][T]^{-1}[g]^{-1}$$
 (3.32)

γιατί, σύμφωνα με την Εξ. (3.18) για τη δύναμη Lorentz, οι διαστάσεις του B στο σύστημα μονάδων S.I. είναι διαστάσεις δύναμης ανά φορτίο και ανά ταχύτητα. Από τις Εξ. (3.31) και (3.32) βλέπουμε ότι πράγματι τα δύο μέλη της Εξ. (3.30) έχουν τις ίδιες διαστάσεις.

■ ΠΑΡΑΔΕΙΓΜΑ

Κυκλοτρονική συχνότητα

Ποια είναι η κυκλοτρονική συχνότητα ηλεκτρονίου μέσα σε ένα μαγνητικό πεδίο 1 tesla; (Τιμές 1.0-1.5 Τ είναι τυπικές για συνηθισμένους εργαστηριακούς ηλεκτρομαγνήτες με σιδηροπυρήνα).

Από την Εξ. (3.27) έχουμε για την κυκλική συχνότητα (σε μονάδες S.I.):

$$\omega_c = \frac{eB}{m} \approx \frac{(1.6 \times 10^{-19})(1.0)}{10^{-30}} \approx 1.6 \times 10^{11} \text{ rad/s}$$

Η αντίστοιχη συχνότητα ν. είναι:

$$v_c = \frac{\omega_c}{2\pi} \approx 3 \times 10^{10} \text{ Hz}$$

Η συχνότητα αυτή αντιστοιχεί σε μήκος κύματος ηλεκτφομαγνητικού κύματος, στο κενό, ίσο με

$$\lambda_c = \frac{c}{v_c} \approx \frac{3 \times 10^8}{3 \times 10^{10}} \approx 0.01 \text{ m}$$

Η χυχλοτοονική χυχλική συχνότητα $\omega_{c(\rho)}$ ενός ποωτονίου, συγχοινόμενη με εκείνην του ηλεκτοονίου μέσα στο ίδιο μαγνητικό πεδίο, είναι μικρότερη κατά τον συντελεστή 1/1836, δηλαδή κατά το λόγο της μάζας του ηλεκτοονίου προς τη μάζα του πρωτονίου. Για ένα πρωτόνιο μέσα σε μαγνητικό πεδίο 1 tesla, έχουμε:

$$\omega_{c(p)} = \frac{m}{M_p} \omega_{c(e)} \approx \frac{1.6 \times 10^{11}}{1836} \approx 10^8 \text{ rad/s}$$

Η φορά περιστροφής του πρωτονίου είναι αντίθετη από τη φορά του ηλεκτρονίου μέσα στο μαγνητικό πεδίο, γιατί το φορτίο του είναι αντίθετο από αυτό του ηλεκτρονίου.

ΠΑΡΑΔΕΙΓΜΑ _

Κυκλοτρονική ακτίνα

Ποια είναι η κυκλοτρονική ακτίνα ηλεκτρονίου που κινείται μέσα σε μαγνητικό πεδίο 1 tesla, με ταχύτητα 10^6 m/s κάθετη προς το πεδίο;

Από την Εξ. (3.29) παίονουμε:

$$r_c = \frac{v_1}{\omega_c} \approx \frac{10^6}{1.6 \times 10^{11}} \approx 6 \times 10^{-6} \text{ m}$$

Η αυαλοτοονική ακτίνα για ένα πρωτόνιο με την ίδια ταχύτητα, είναι μεγαλύτερη κατά το λόγο M/m.

$$r_c \approx (6 \times 10^{-6}) (1836) \approx 0.01 \text{ m}$$

Μαγνητική εστίαση 180° . Δέσμη φοςτισμένων σωματιδίων, με διαφοςετικές μάζες και ταχύτητες, μπαίνει σε πεςιοχή όπου υπάςχει ομογενές μαγνητικό πεδίο $\mathbf B$ κάθετο στη δέσμη. Κάθε σωματίδιο αποκλίνει από την αςχική του κατεύθυνση και η ακτίνα καμπυλότητας της τροχιάς, ρ , δίνεται από τη σχέση: $B\rho = Mv_{\kappa}/q$, όπου v_{κ} η συνιστώσα της ταχύτητας του σωματιδίου η κάθετη προς το $\mathbf B$. Αν εξετάσουμε τη δέσμη μετά από αλλαγή κατεύθυνσης 180° , θα δούμε ότι έχει απλωθεί μέσα στο

επίπεδο της κίνησης. Αυτό οφείλεται στο γεγονός ότι οι τφοχιές σωματιδίων με διαφοφετικές μάζες και ταχύτητες έχουν διαφοφετικές ακτίνες καμπυλότητας (Σχ. 3.10). Αν υπάφχει μια λεπτή σχισμή εξόδου της δέσμης, η διάταξη μποφεί να χφησιμοποιήθει σαν επιλογέας οφμής, δηλαδη σαν όφγανο ικανό να δίνει στην έξοδο μια δέσμη με σωματίδια της ίδιας σχεδόν οφμής, υποθέτοντας ότι όλα τα σωματίδια έχουν το ίδιο φοφτίο q. Όταν πρόκειται για σωματίδια με την ίδια οφμή, που όμως μπαίνουν στην πεφιοχή του πεδίου με λίγο διαφοφετικές γωνίες, τότε, ύστεφα από αλλαγή κατεύθυνσης κατά 180°, τα σωματίδια εστιάζονται στο ίδιο περίπου σημείο.

Η ακρίβεια της εστίασης είναι καθαρά γεωμετρικό πρόβλημα, όπως το καταλαβαίνει κανείς από τα $\Sigma \chi$. 3.11 α και β. Θεωρούμε μια τροχιά και την ερμηνεύουμε σαν αποτέλεσμα βολής, που γίνεται με αρχική γωνία θ . Το βεληνεκές της τροχιάς δίνεται από τη χορδή C του αντίστοιχου κύκλου που έχει ακτίνα ρ . Η διαφορά μήκους της διαμέτρου του κύκλου και τη χορδής είναι:

$$2\rho - C = 2\rho (1 - \cos \theta) \approx \rho \theta^2$$

όπου υποθέσαμε ότι η γωνία θ είναι αφχετά μιχοή, ώστε να μποφούμε να πεφιοφιστούμε στους δύο πρώτους όφους της σειράς στην οποία αναπτύσσεται το $\cos \theta$:

$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots$$

Σχ. 3.11 (α) Εστίαση 180° μέσα σε μαγνητικό πεδίο. Ιόντα της ίδιας ορμής αλλά διαφορετικών διευθύνσεων, εστιάζονται σχεδόν στο ίδιο σημείο.

Σχ. 3.10 Το μαγνητικό πεδίο ως επιλογέας ορμής (p). Μια δέσμη ιόντων περνά από μια περιοχή με μηδενικό μαγνητικό πεδίο σε μια άλλη περιοχή με ομοιόμορφο μαγνητικό πεδίο **B** κάθετο στο επίπεδο της σελίδας.

(β) Διάγραμμα που δείχνει λεπτομερώς την εστίαση 180°. Φαίνονται οι τροχιές σωματιδίων που μπαίνουν στο χώρο του μαγνητικού πεδίου με γωνίες θ = 0 ή θ ≠ 0.

Σχ. 3.12 Σχεδιάγραμμα ενός τυπικού κύκλοτρου χαμηλής ενέργειας. Το όργανο αποτελείται από πηγή ιόντων S, ηλεκτρόδια επιτάχυνσης τοποθετημένα στο κενό (που ονομάζονται D_1 και D_2 λόγω του σχήματός τους) και ένα σύστημα εκτροπής της δέσμης. Ολόκληρη η συσκευή βρίσκεται μέσα σε ένα ομογενές κατακόρυφο μαγνητικό πεδίο B. Το επίπεδο της τροχιάς κάθε σωματιδίου είναι οριζόντιο. Το εναλλασσόμενο ηλεκτρικό πεδίο, που επιταχύνει τα σωματίδια, εντοπίζεται στο διάκενο ανάμεσα στα δύο ηλεκτρόδια.

Η ισχύς της γωνιαχής εστίασης μποφεί να μετφηθεί από το λόγο:

$$\frac{2\rho - C}{2\rho} \approx \frac{1}{2} \theta^2$$

οπότε, για $\theta = 0.1$ rad βρίσχουμε την τιμή

$$\frac{2\rho - C}{2\rho} \approx 5 \times 10^{-3}$$

Αυτό δείχνει την ικανότητα εστίασης.

Αρχή του επιταχυντή "χύκλοτρο". Σε ένα τυπικό χύκλοτρο, φορτισμενα σωματίδια κινούνται μέσα σε σταθερό μαγνητικό πεδίο και διαγράφουν τροχιές που έχουν περίπου μορφή σπείρας, όπως φαίνεται στο Σχ. 3.12. Τα σωματίδια επιταχύνονται κάθε μισό χύκλο (π rad) από ένα εναλλασσόμενο ηλεκτρικό πεδίο. Για να μπορεί να γίνει περιοδική επιτάχυνση, η συχνότητα του ηλεκτρικού πεδίου πρέπει να είναι ίση με την κυκλοτρονική συχνότητα των σωματιδίων.

Η κυκλοτοονική κυκλική συχνότητα για πρωτόνια μέσα σε μαγνητικό πεδίο 1 tesla ισούται, όπως είδαμε πιο πάνω, με 10^8 rad/s, οπότε η αντίστοιχη συχνότητα είναι:

$$v_c = \frac{\omega_c}{2\pi} \approx 10^7 \text{ Hz} \approx 10 \text{ MHz}$$

Η συχνότητα είναι ανεξάφτητη από την ενέφγεια του σωματιδίου, όσο η ταχύτητά του δεν είναι σχετικιστική. Το $\Sigma \chi$. 3.13 δείχνει με ποιο τφόπο το μήκος κύματος c/v, που αντιστοιχεί στο εναλλασσόμενο ηλεκτφικό πεδίο, εξαφτάται από το μαγνητικό πεδίο B.

Σε κάθε κυκλική διαδοομή, το σωματίδιο παίονει ενέργεια από το εναλλασσόμενο ηλεκτοικό πεδίο. Αυτό έχει ως αποτέλεσμα να αυξάνει η ακτίνα της τροχιάς, καθώς η κινητική ενέργεια του σωματιδίου αυξάνει. Έχουμε:

$$r_c = \frac{v}{\omega_c} = \frac{\sqrt{2E/M_p}}{\omega_c}$$

όπου Ε συμβολίζει τώρα την κινητική ενέργεια.

Η ενέργεια για ένα μη σχετικιστικό σωματίδιο που κινείται μέσα σε σταθερό μαγνητικό πεδίο, καθορίζεται από την εξωτερική ακτίνα του κυκλότρου. Για πρωτόνιο, και $\omega_c=10^8$ rad/s και $r_c=0.5$ m, έχουμε $\upsilon=\omega_c r_c\approx 5\times 10^7$ m/s, άρα

$$E = \frac{1}{2} M_p v^2 \approx 10^{-27} (5 \times 10^7)^2 \approx 2,5 \times 10^{-12} \text{ joule} \approx 15 \text{ MeV}$$

Στην ποάξη, η πιο πάνω ταχύτητα είναι, με αφχετά καλή ποοσέγγιση, μη σχετικιστική και αντιστοιχεί σε ένα τυπικό κύκλοτοο.

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

Η αρχή διατήρησης της ορμής είναι γνωστή στους οπουδαστές από τη Φυσική του Λυκείου. Η σημασία αυτής της αρχής φαίνεται κυρίως σε προβλήματα κρούσης. Το θέμα εξετάζεται εδώ σε συσχετισμό με τον τρίτο νόμο του Νέυτωνα, ενώ στο Κεφ. 4 γίνεται διερεύνηση από μια άλλη άποψη. Η αρχή διατυπώνεται ως εξής:

Σε ένα απομονωμένο σύστημα, στο οποίο δοουν μόνο εσωτερικές δυνάμεις (δυνάμεις μεταξύ των συστατικών στοιχείων του συστήματος), η ολική ορμή διατηρείται σταθερή, δηλαδή δεν μεταβάλλεται με το χρόνο.

Η εφαφμογή της αρχής αυτής στην περίπτωση της αρούσης ούο σωματιδίων οδηγεί στην ακόλουθη πρόταση: Η ολική οριή μετά την αρούση είναι ίση με την ολική ορμή πριν από αυτήν, με την προϋπόθεση ότι η αρούση γίνεται χωρίς να παρεμβαίνουν εξωτερικές δυνάμεις. Τότε

$$\mathbf{p}_{1}(\pi \mathbf{p}_{1} \mathbf{v}) + \mathbf{p}_{2}(\pi \mathbf{p}_{1} \mathbf{v}) = \mathbf{p}'_{1}(\mu \mathbf{e}_{1} \mathbf{t} \dot{\alpha}) + \mathbf{p}'_{2}(\mu \mathbf{e}_{1} \dot{\alpha})$$
(3.33)

ύπου η ορμή **p** ορίζεται από τη σχέση:

$$\mathbf{p} = M \mathbf{v} \tag{3.34}$$

Σχ. 3.14 (a) Πριν από την κρούση, τα διανύσματα των ορμών \mathbf{p}_1 και \mathbf{p}_2 έχουν άθροισμα το διάνυσμα \mathbf{P} της συνολικής ορμής.

Σχ. 3.13 Συνθήκη συντονισμού στο πρώτο κύκλοτρο που κατασκευάστηκε, που είχε διάμετρο 0,27 m. Ο κατακόρυφος άξονας είναι βαθμολογημένος σε μήκη κύματος στο κενό, και αφορά το εναλλασσόμενο ηλεκτρικό πεδίο (με ραδιοφωνική συχνότητα) που εφαρμόζεται στα ηλεκτρόδια επιτάχυνσης. Στον οριζόντιο άξονα αναγράφονται οι τιμές του μαγνητικού πεδίου B.

(β) Μετά την κρούση, τα διανύσματα των ορμών p'₁ και p'₂έχουν ως άθροισμα το ίδιο με πριν διάνυσμα P.

Σχ. 3.15 Αν δύο κινούμενα σημειακά φορτία q_1 και q_2 περάσουν πολύ κοντά το ένα από το άλλο, οι τροχιές τους αποκλίνουν από τις αρχικές κατευθύνσεις.

Στα Σχ. 3.14 α και β απεικονίζονται τα διανύσματα της ορμής και στο Σχ. 3.15 οι τροχιές δύο συγκρουομένων σωματιδίων.

Η αρούση μπορεί να είναι ελαστική ή μη ελαστική. Στην ελαστική αρούση, η ολική κινητική ενέργεια των σωματιδίων διατηρείται μετά την αρούση ως κινητική ενέργεια, συνήθως όμως μοιράζεται διαφορετικά μεταξύ των σωματιδίων. Στη μη ελαστική αρούση, μέρος της κινητικής ενέργειας των σωματιδίων εμφανίζεται μετά την αρούση ως εσωτερική ενέργεια (π.χ. ως θερμότητα) σε ένα ή περισσότερα από τα σωματίδια. Πρέπει να τονίσουμε ότι η διατήρηση της ορμής ισχύει ακόμη και στις μη ελαστικές αρούσεις, κατά τις οποίες η κινητική ενέργεια δεν διατηρείται.

Απόδειξη με την εφαρμογή του δεύτερου και του τρίτου νόμου του Νεύτωνα

Κατά την κοούση δύο σωμάτων 1 και 2, τα σώματα ασκούν το ένα στο άλλο δυνάμεις \mathbf{F}_{12} και \mathbf{F}_{21} . Σύμφωνα με το δεύτερο νόμο του Νεύτωνα, η δύναμη στο σώμα 1 είναι:

$$\mathbf{F}_{12} = \frac{d\mathbf{p}_{1}}{dt} = \frac{d}{dt} (M_{1}\mathbf{v}_{1}) \tag{3.35}$$

και στο σώμα 2:

$$\mathbf{F}_{21} = \frac{d\mathbf{p}_2}{dt} = \frac{d}{dt} \left(M_2 \mathbf{v}_2 \right) \tag{3.36}$$

Εφαφμόζοντας τον τρίτο νόμο του Νεύτωνα (\mathbf{F}_{21} = - \mathbf{F}_{12}) έχουμε:

$$\mathbf{F}_{12} + \mathbf{F}_{21} = 0$$

και

$$\frac{d\mathbf{p}_1}{dt} + \frac{d\mathbf{p}_2}{dt} = \frac{d}{dt} (\mathbf{p}_1 + \mathbf{p}_2) = \frac{d}{dt} (M_1 \mathbf{v}_1 + M_2 \mathbf{v}_2) = 0$$

Επομένως:

$$\mathbf{p}_{1} + \mathbf{p}_{2} = M_{1}\mathbf{v}_{1} + M_{2}\mathbf{v}_{2} = \sigma\tau\alpha\theta. =$$

$$= \mathbf{p'}_{1} + \mathbf{p'}_{2} = M_{1}\mathbf{v'}_{1} + M_{2}\mathbf{v'}_{2}$$
(3.37)

Ετσι, η αρχή διατήρησης της ορμής εμφανίζεται ως συνέπεια του δεύτερου και του τρίτου νόμου του Νεύτωνα.

Αν υπάσχουν περισσότερα από δύο σώματα, ο ίδιος τρόπος συλλογισμού μπορεί να επαναληφθεί, με το ίδιο αποτέλεσμα, οποιοσδήποτε και αν είναι ο αριθμός σωμάτων στο απο-

μονωμένο σύστημα.

Με τα παραδείγματα που αχολουθούν, δίνουμε ορισμένες εφαρμογές της αρχής της διατήρησης της ορμής. Δύο σημεία πρέπει να τονιστούν:

- 1. Ποόχειται για μια διανυσματική αρχή.
- Εφαρμόζοντας την αρχή της διατήρησης της ορμής και μόνο, δεν μπορούμε να λύσουμε μονοσήμαντα ένα πρόβλημα κρούσης.

Σαν παράδειγμα σχετικό με τη δεύτερη παρατήρηση, ας θεωρήσουμε το πρόβλημα της κρούσης δύο σωματιδίων με ίσες μάζες, από τα οποία το ένα είναι αρχικά ακίνητο. Χρειαζόμαστε και άλλες πληροφορίες, για να αντιμετωπίσουμε το πρόβλημα αυτό, όπως φαίνεται από τις ακόλουθες δύο περιπτώσεις:

(α) Υποθέτουμε ότι, μετά την κρούση, οι δύο ίσες μάζες ενώνονται σε ένα σώμα. Ποιο είναι το διάνυσμα της ταχύτητας αυτού του σώματος;

Έστω ότι το αρχικό διάνυσμα της ταχύτητας της κινούμενης μάζας βρίσκεται πάνω στον άξονα x. Τότε

$$\mathbf{p}_1 = M_1 \upsilon_1 \hat{\mathbf{x}} , \qquad \mathbf{p}_2 = 0$$

$$(\mathbf{p'}_1 + \mathbf{p'}_2) = (M_1 + M_2) \mathbf{v'} = 2M_1 \mathbf{v'} = \mathbf{p}_1 = M_1 \upsilon_1 \hat{\mathbf{x}}$$

$$\mathbf{v'} = \frac{\upsilon_1}{2} \hat{\mathbf{x}}$$

(β) Υποθέτουμε ότι, μετά την αφούση, το πρώτο σωματίδιο μένει ακίνητο. Ποιο είναι το διάνυσμα της ταχύτητας του δεύτεφου;

$$\mathbf{p'}_1 + \mathbf{p'}_2 = 0 + M_2 \mathbf{v'}_2 = M_1 v_1 \hat{\mathbf{x}}$$
$$\mathbf{v'}_2 = v_1 \hat{\mathbf{x}}$$

Για να λύσουμε λοιπόν ένα πρόβλημα προύσης, χρειαζόμαστε, επτός από την αρχή διατήρησης της ορμής, παι άλλες πληροφορίες, όπως π.χ. αυτές που υποθέσαμε στα παραδείγματα (α) και (β). Άλλες πληροφορίες μπορούμε να πάρουμε, για παράδειγμα, και από την ιδιότητα της προύσης να είναι μη ελαστική.

■ ΠΑΡΑΔΕΙΓΜΑ

Ελαστική κρούση δύο σωμάτων με ίσες μάζες, από τα οποία το ένα είναι αρχικά ακίνητο

Θέλουμε να αποδείξουμε ότι, στην περίπτωση αυτή, η γωνία μεταξύ των διανυσμάτων των δύο ορμών ή των δύο ταχυτήτων, μετά την χρούση, είναι 90°.

Έχουμε (αφού η μάζα M_2 είναι αρχικά ακίνητη):

$$\mathbf{p}_{1} + \mathbf{p}_{2} = M_{1} \mathbf{v}_{1} + 0 = M_{1} \mathbf{v}_{1}' + M_{2} \mathbf{v}_{2}'$$

Άρα, με $M_1 = M_2$,

$$\mathbf{v}_1 = \mathbf{v}_1' + \mathbf{v}_2'$$

Αφού η αφούση υποτίθεται ελάστική, η ολική κινητική ενέφγεια διατηφείται σταθεφή. Επομένως

$$\frac{1}{2} M_1 v_1^2 = \frac{1}{2} M_1 v_1'^2 + \frac{1}{2} M_2 v_2'^2$$

από όπου ποοκύπτει ότι:

$$v_1^2 = v_1^{\prime 2} + v_2^{\prime 2} \tag{3.38}$$

Σχ. 3.16 Ελαστική κρούση ίσων μαζών

Η εξίσωση (3.38) μας θυμίζει το πυθαγόφειο θεώφημα και, όπως φαίνεται από το διανυσματικό διάγφαμμα του Σχ. 3.16, η ταχύτητα \mathbf{v}_1 πρέπει να είναι η υποτείνουσα ενός ορθογώνιου τριγώνου, του οποίου οι κάθετες πλευρές αποτελούνται από τα διανύσματα \mathbf{v}_1' και \mathbf{v}_2' .

Πεοισσότερα παραδείγματα δίνονται σαν προβλήματα (16 –18). Θα μελετήσουμε λεπτομερέστερα τις προύσεις στο πεφάλαιο 6.

Η μηχανή του Atwood. Ο δεύτεφος και ο τφίτος νόμος του Νεύτωνα, χφησιμοποιούνται για την εξήγηση της λειτουφγίας της γνωστής μηχανής του Atwood, τμήμα της οποίας εικονίζεται στο Σχ. 3.17. Δύο άνισες μάζες πφοσδένονται στα άκφα νήματος που πεφνάει από μια τφοχαλία. Υποθέτουμε ότι η τφοχαλία έχει αμελητέα μάζα και αμελητέες τφίβες.

Έστω ότι η μάζα m_2 είναι μεγαλύτεςη από την m_1 . Τότε, η επιτάχυνση θα έχει, για κάθε μάζα, τη φοςά που φαίνεται στο σχήμα, ενώ το μέτςο της επιτάχυνσης θα είναι το ίδιο και για τις δύο μάζες, επειδή το νήμα υποτίθεται ότι είναι συνεχές και δεν μποςεί να τεντωθεί. Πρώτα θα υπολογίσουμε το μέτςο της επιτάχυνσης.

Σε κάθε μάζα ασκούνται δύο δυνάμεις: η τάση του νήματος και η δύναμη της βαρύτητας. Ο τρίτος νόμος του Νεύτωνα μας βεβαιώνει ότι η τάση του νήματος έχει την ίδια τιμή για καθένα από τα δύο σώματα. Ο δεύτερος νόμος του Νεύτωνα μας επιτρέπει να γράψουμε:

Σχ. 3.17 Η μηχανή του Atwood.

Για την κίνηση της μάζας m_1 : $T - m_1 g = m_1 a$ Για την κίνηση της μάζας m_2 : $T - m_2 g = -m_2 a$ (3.39)

Αφαιρώντας τις δύο εξισώσεις κατά μέλη, έχουμε:

$$(m_2 - m_1) g = (m_1 + m_2) a$$
 $\dot{\eta}$ $a = \frac{m_2 - m_1}{m_2 + m_1} g$ (3.40)

Μπορούμε να υπολογίσουμε την τάση T, αν εισαγάγουμε την έμφραση (3.40) σε μια από τις Εξ. (3.39). Βρίσκουμε:

$$T = \frac{2 \, m_1 m_2}{m_1 + m_2} \, g$$

Πόσο γεφό πφέπει να είναι το νήμα; Πφέπει να είναι αφχετά γεφό για να μη σπάσει κάτω από την επίδφαση της τάσης. Αυτό σημαίνει ότι, όταν το νήμα είναι ακίνητο, πφέπει να αντέχει να κφατήσει μια μάζα m για την οποία ισχύει:

$$mg = T$$
, δηλαδή μια μάζα $m = \frac{2 m_1 m_2}{m_1 + m_2}$

όπου $m_1 < m < m_2$.

ΔΥΝΑΜΕΙΣ ΕΠΑΦΗΣ: ΤΡΙΒΗ

Από την πείφα μας γνωφίζουμε ότι τα σώματα υπόκεινται συχνά σε δυνάμεις που πφοέφχονται από τις μεταξύ τους αλληλεπιδφάσεις, π.χ. από πιέσεις ή τάσεις που δφουν στις επιφάνειες επαφής. Έχουμε ήδη αναφέφει δυνάμεις τέτοιου είδους, π.χ. την τάση του νήματος της μηχανής του Atwood και, ακόμα πιο πφιν, τις δυνάμεις που αναπτύσσονται εξ επαφής κατά τη σύντομη διάφκεια της κφούσης των σωμάτων.

Μια άλλη δύναμη εξ επαφής, πολύ ενδιαφέρουσα στην πράξη, είναι η τριβή (βλ. ειδικότερα την αποσβενόμενη κίνηση ενός ταλαντωτή στο Κεφ. 7). Η δύναμη της τριβής εξαρτάται κατά πολύ πολύπλοκο τρόπο από την ταχύτητα του σώματος. Εδώ θα εξετάσουμε την απλούστατη περίπτωση, κατά την οποία η δύναμη τριβής θεωρείται σταθερή όταν το σώμα κινείται, ενώ όταν το σώμα μένει ακίνητο, η δύναμη τριβής είναι τόση, όση χρειάζεται για να διατηρηθεί η ισορροπία, όταν αυτή είναι δυνατή.

Η δύναμη τοιβής είναι παράλληλη ποος την επιφάνεια επαφής δύο σωμάτων. Το ένα από τα δύο σώματα μπορεί να είναι μια στερεή επειφάνεια, οπότε η δύναμη τοιβής εξαρτάται από

Σχ 3.18 Ένα σώμα βρίσκεται πάνω σε οριζόντια επιφάνεια. Στο σώμα δρουν: το βάρος του $M\mathbf{g}$, μια κάθετη δύναμη \mathbf{N} , μια εξωτερική οριζόντια δύναμη \mathbf{F} και η δύναμη τριβής $-\mathbf{F}$.

Σχ. 3.19 (a) Το σώμα M δεν ολισθαίνει, γιατί το βάρος της m είναι μικρό.

 (β) Το σώμα M μόλις αρχίζει να ολισθαίνει.

Πίνακας 3.1 Συντελεστές στατικής τριβής μ

Υλικά	μ
Γυαλί σε γυαλί	0,9-1,0
Γυαλί σε μέταλλο	0,5-0,7
Γραφίτης σε γραφίτη	0,1
Λάστιχο σε στερεό σώμα	1-4
Υλικό φρένων σε χυτοσίδηρο	0,4
Πάγος σε πάγο	0,05-0,15
Σκι σε ξηφό πάγο	0,04
Χαλκός σε χαλκό	1,6
Ατσάλι σε ατσάλι	0,58

μια άλλη δύναμη εξ επαφής, την κάθετη δύναμη που η στερεή επιφάνεια ασκεί στο ακίνητο σώμα που είναι τοποθετημένο πάνω της.

Το Σχ. 3.18 δείχνει ένα σώμα πάνω σε μια επίπεδη οφιζόντια επιφάνεια. Είναι φανεφό ότι η δύναμη της βαφύτητας Mg δφα κατακόφυφα, πφος τα κάτω. Αφού το σώμα είναι ακίνητο, ο πφώτος νόμος του Νεύτωνα λέει ότι πφέπει να δφα πάνω σ' αυτό μια δύναμη πφος τα πάνω, με μέτφο ίσο με Mg. Μια τέτοια δύναμη, που είναι κάθετη στην επιφάνεια και εμποδίζει το σώμα να πέσει μέσα από την επιφάνεια, συμβολίζεται συνήθως με N, όπως στο Σχ. 3.18. Η δύναμη η οποία σπφώχνει το σώμα πφος την επιφάνεια είναι, στην πεφίπτωση του σχήματος, η βαφύτητα, μποφεί όμως να είναι μια συνιστώσα της δύναμης της βαφύτητας ή κάποια άλλη δύναμη. Αυτό εξαφτάται από τις ιδιαίτεσες συνθήκες κάθε φορά.

Υποθέτουμε τώρα ότι στο σώμα M ασχείται μια δύναμη \mathbf{F} παράλληλη προς την επιφάνεια (έστω ότι δένουμε στο σώμα ένα νήμα χαι στο άλλο άχρο του νήματος χρεμάμε ένα βάρος, όπως φαίνεται στο $\Sigma \chi$. 3.19), αλλά όχι αρχετά μεγάλη ώστε να αναγχάσει το σώμα να ολισθήσει. Σύμφωνα πάλι με τον πρώτο νόμο του Νεύτωνα, η επιφάνεια πρέπει να ασχεί στο σώμα μια ίση χαι αντίθετη δύναμη $-\mathbf{F}$. Η δύναμη αυτή ονομάζεται δύναμης τριβής. Η δύναμη τριβής είναι μηδέν μέχρι τη στιγμή που η δύναμη \mathbf{F} θα εφαρμοστεί στο σώμα.

Πόσο μεγάλη μποςεί να είναι η δύναμη της τςιβής; Μποςούμε πάντοτε (εκτός από την πεςίπτωση ενός "αμετακίνητου αντικειμένου") να εξασκήσουμε μια αςκετά μεγάλη δύναμη \mathbf{F} , ικάνη να πςοκαλέσει την ολίσθηση του σώματος. Σύμφωνα με τα πειςαματικά δεδομένα, η μέγιστη τιμή της δύναμης της τςιβής δίνεται από τη σχέση:

$$F_{\text{max}} = \mu N \tag{3.41}$$

όπου μ μια σταθεφά, που ονομάζεται συντελεστής στατικής τοιβής, χαφακτηφιστική των εφεπτομένων επιφανειών. Στον Πίνακα 3.1 δίνονται διάφοφες τιμές της σταθεφάς μ . Υπενθυμίζουμε ότι η δύναμη στατικής τοιβής μποφεί να πάφει οποιάδηποτε τιμή ως την τιμή μ N. Η τιμή της κάθε φοφά εξαφτάται από την εξωτεφική δύναμη που ασκείται στο σώμα. Αυτό φαίνεται στο Σ χ. 3.19.

■ ΠΑΡΑΔΕΙΓΜΑ

Μέτρηση του μ

Η τιμή του μ μπορεί να υπολογιστεί από τη γωνία θ του κεκλιμένου επιπέδου με το οριζόντιο επίπεδο, για την οποία το σώμα αρχίζει να ολισθαίνει.

Αναφερόμενοι στο Σχ. 3.20 και υποθέτοντας ότι το σώμα είναι έτοιμο να ολισθήσει, διαπιστώνουμε ότι η συνισταμένη των τοιών δυνάμεων Mg, N, και $F_{\tau \varrho}$ πρέπει να είναι μηδέν. Αν πάσουμε τις συνιστώσες τις κάθετες και τις παράλληλες προς την επιφάνεια του κεκλιμένου επιπέδου, θα έχουμε, αντίστοιχα:

$$N = Mg \cos \theta$$
, $F_{\text{to}} = Mg \sin \theta$ (3.42)

Επειδή, επιπλέον, η δύναμη τοιβής έχει τη μέγιστη τιμή της, είναι $F_{\text{TO}} = \mu N$, και βοίσκουμε:

$$\mu = \frac{F_{\tau_0}}{N} = \frac{Mg\sin\theta}{Mg\cos\theta} = \tan\theta \tag{3.43}$$

Σχ. 3.20 Σώμα έτοιμο να ολισθήσει προς τα κάτω σε ένα κεκλιμένο επίπεδο.

ΠΑΡΑΔΕΙΓΜΑ _

Ολίσθηση σώματος όταν πάνω σε αυτό δρα μια εφαπτομενική δύναμη με μεταβλητή διεύθυνση

Ενα σώμα με μάζα M ηφεμεί πάνω σε ένα χεχλιμένο επίπεδο με συντελεστή τριβής $\mu > \tan\theta$. Προσδιορίστε το μέτρο F μιας δύναμης που είναι παράλληλη προς το επίπεδο, σχηματίζει γωνία α με το χαταχόρυφο επίπεδο που είναι χάθετο στο χεχλιμένο επίπεδο, χαι είναι μόλις ιχανή να προχαλέσει την ολίοθηση του σώματος (βλ. Σχ. 3.21).

Μια παραλλαγή του προβλήματος είναι: Αν μια δύναμη παραλληλη προς το κεκλιμένο επίπεδο, όχι αναγκαστικά προς τα πάνω ή προς τα κάτω, μόλις αναγκάζει το σώμα να ολισθήσει, προσδιορίστε τη διεύθυνση προς την οποία θα αρχίσει να κινείται το σώμα, σαν συνάρτηση της διεύθυνσης της δύναμης.

Το Σχ. 3.21 δείχνει τις παφάλληλες προς το επίπεδο δυνάμεις, που είναι υπεύθυνες για την ισορροπία. Βλέπουμε ότι οι δυνάμεις $\mathbf{F}_{\tau\varrho}$, $Mgsin\theta \hat{\mathbf{x}}$ και \mathbf{F} (εξωτερική δύναμη) πρέπει να δίνουν άθροισμα μηδέν. Μόλις το σώμα αρχίσει να ολισθαίνει, θα ετουμε, σύμφωνα με το προηγούμενο παράδειγμα

$$F_{\tau_0} = \mu M g \cos \theta$$

Αν πάρουμε τις συνιστώσες τις παράλληλες προς τη δύναμη $Mg \sin \theta$, θα έχουμε:

$$F \cos \alpha + F_{ro} \cos \beta - Mg \sin \theta = 0$$

Σχ. 3.21 Σώμα έτοιμο να ολισθήσει πάνω σε ένα μη λείο κεκλιμένο επίπεδο, υπό την επίδραση μιας πλάγιας εξωτερικής δύναμης F.

$$ή F cos α + μ Mg cos θ cos β = Mg sin θ$$

Οι συνιστώσες οι κάθετες στην παραπάνω διεύθυνση δίνουν:

$$F_{\tau_0} \sin \beta - F \sin \alpha = 0$$
, $\dot{\eta} F \sin \alpha = \mu Mg \cos \theta \sin \beta$

Απαλείφοντας το β από αυτές τις σχέσεις, βοίσκουμε:

$$\frac{F}{Mg} = \cos\alpha \sin\theta \pm \sqrt{\cos^2\alpha \sin^2\theta + \mu^2 \cos^2\theta - \sin^2\theta}$$
 (3.44)

Ποια είναι η σημασία του αρνητιχού προσήμου στη σχέση (3.44); Για να απαντήσουμε, παρατηρούμε ότι $\mu^2 \cos^2 \theta > \sin^2 \theta$, αφού υποθέσαμε ότι $\mu > \tan \theta$. Άρα ο όρος με την τετραγωνιχή ρίζα είναι μεγαλύτερος από τον όρο $\cos \alpha \sin \theta$. Αν χρησιμοποιούσαμε το αρνητιχό πρόσημο, το F θα ήταν μια αρνητιχή ποσότητα. Αυτό όμως είναι μια σαφώς μη αποδεχτή λύση, μια χαι έχουμε υποθέσει ότι το F παριστάνει το μέτρο μιας δύναμης (F > 0). Άρα πρέπει να χρησιμοποιήσουμε το θετιχό πρόσημο. Έχουμε τις σχέσεις:

$$F = Mg \sin \theta + \mu Mg \cos \theta$$
, ótav $\alpha = 0$, $F = -Mg \sin \theta + \mu Mg \cos \theta$, ótav $\alpha = \pi$

που θα μπορούσαμε να τις βρούμε και απευθείας, σαν ειδικές

πεοιπτώσεις. Μπορούμε επίσης να επαληθεύσουμε ότι, αν $\mu = \tan \theta$ και $\alpha = \pi$, τότε F = 0, όπως και αναμένεται.

Όταν η δύναμη F είναι μόλις μεγαλύτεση από την τιμή που δίνει η σχέση (3.44), το σώμα θα ολισθήσει με κατεύθυνση αντίθετη προς εκείνη της $\mathbf{F}_{\tau 0}$. Από τις παραπάνω οχέσεις, η τιμή του $\boldsymbol{\beta}$ μπορεί να υπολογιστεί, και βρίσκουμε:

$$\sin \beta = \frac{\sin \alpha}{\mu} \left(\cos \alpha \tan \theta + \sqrt{\mu^2 - \tan^2 \theta} \overline{\sin^2 \alpha} \right)$$

Μπορούμε να ελέγξουμε αυτή τη σχέση, θέτοντας $\beta = \pi/2$. Στην περίπτωση αυτή οι τρεις δυνάμεις, \mathbf{F} , $Mg\sin\theta \hat{\mathbf{x}}$ και $\mathbf{F}_{\tau\varrho}$, σχηματίζουν ένα ορθογώνιο τρίγωνο.

ΠΑΡΑΔΕΙΓΜΑ _

Οριζόντια κίνηση με σταθερή δύναμη τριβής

Υποθέτουμε ότι ο συντελεστής τοιβής μεταξύ μιας οφιζόντιας επιφάνειας και ενός κινούμενου σώματος είναι σταθεφός και ίσος με μ . Με ποια ταχύτητα πφέπει να εκτοξεύσουμε το σώμα παφάλληλα πφος την επιφάνεια, έτσι ώστε το σώμα να διανύσει μια απόσταση D ποιν σταματήσει;

Εδώ έχουμε ένα μονοδιάστατο πρόβλημα, με σταθερή δύναμη:

$$M \frac{d^2x}{dt^2} = -\mu Mg$$
, $\alpha Q\alpha$ $\frac{d^2x}{dt^2} = -\mu g$

Έχουμε ήδη επεξεργαστεί μια λύση σε παρόμοιο πρόβλημα

στο κεφάλαιο της βαρύτητας [βλ. Εξ. (3.8) και (3.9)]. Από την πιο πάνω εξίσωση προκύπτει:

$$v_x = -\mu gt + v_0$$
 $\kappa \alpha 1 x = -\frac{1}{2} \mu gt^2 + v_0 t$,

όπου υποθέσαμε ότι x_0 (δηλ. η τιμή του x για t=0) είναι μηδέν. Η αρχική ταχύτητα είναι v_0 . Όταν το σώμα σταματήσει, θα είναι $v_x=0$ και $t=v_0/\mu g$. Αντικαθιστώντας αυτή την τιμή στην εξίσωση του x και θέτοντας x=D, βρίσκουμε:

$$D = -\frac{1}{2} \mu g \left(\frac{v_0}{\mu g} \right)^2 + v_0 \frac{v_0}{\mu g} = \frac{v_0^2}{2\mu g}$$

Επομένως:

$$v_0 = \sqrt{2D\mu g}$$

ПРОВЛНМАТА

(Σημείωση: Όταν δίνετε ένα αριθμητικό αποτέλεσμα, πρέπει πάντοτε να σημειώνετε τις μονάδες. Χωρίς μονάδες, ένα αριθμητικό αποτέλεσμα δεν σημαίνει τίποτα).

1. Ο τρίτος νόμος του Νεύτωνα. Ένας μαθητής, που έχει μάθει στοιχειώδη Φυσική, βρίσκεται στο μέσο μιας μεγάλης πίστας πάγου. Μεταξύ των ποδιών του και του πάγου υπάρχει ένας μικρός μεν, αλλά καθορισμένος συντελεστής τριβής. Ο μαθητής αυτός έχει διδαχθεί τον τρίτο νόμο του Νεύτωνα. Μια και ο νόμος λέει ότι σε κάθε δράση υπάρχει μια ίση και αντίθετη αντίδραση, ο μαθητής σκέφτεται ότι η συνισταμένη όλων των δυνάμεων που τον αφορούν, πρέπει να είναι μηδέν. Έτσι λοιπόν υποθέτει ότι δεν θα υπάρχει δύναμη ικάνη να τον επι-

ταχύνει προς την περιφέρεια της πίστας και επομένως θα παραμείνει στο κέντρο της.

- (α) Τι πρέπει να του πείτε να κάνει, για να προχωρήσει προς την περιφέρεια;
- (β) Όταν φτάσει στην περιφέρεια, τι θα πρέπει να του πείτε για τον δεύτερο και τον τρίτο νόμο του Νεύτωνα;
- 2. Ο πίθηκος και ο κυνηγός. Μια συνηθισμένη επίδειξη σε μαθήματα Φυσικής είναι το πείραμα που εικονίζεται στο Σχ. 3.22. Ένα βλήμα εκτοξεύται από ένα όπλο στη θέση O, προς ένα κινητό στόχο που βρίσκεται αρχικά στη θέση P. Ο κινητός στόχος αφήνεται ελεύθερος την ίδια στιγμή που το βλήμα εκτοξεύεται. Το βλήμα κτυπά τον κινητό στόχο κατά τη διάρκεια της πτώσης του, όπως φαίνεται στο σχήμα. Δείξετε ότι η σύγκρουση πραγματοποιείται ανεξάρτητα από την ταχύτητα

Σχ. 3.22 Ένα πείραμα. Πρόβλημα 2.

του βλήματος.

3. Απαιτούμενο ύψος οροφής για ένα παιγνίδι πετόσφαιρας. Δύο παιδιά παίζουν πετόσφαιρα με μια μπάλα σε ένα μαχρύ διάδρομο. Το ύψος οροφής είναι H. Τα παιδιά πετούν και αρπάζουν τη μπάλα στο ύψος των ώμων τους, έστω h. Αν τα παιδιά είναι ικανά να πετάνε την μπάλα με μια ταχύτητα v_0 , πόση είναι η μέγιστη απόσταση μεταξύ τους στην οποία μπορούν να παίζουν; $A\pi: R = 4\sqrt{(H-h)[v_0^2/2g - (H-h)]}$

Deixete óti, an $H-h>\upsilon_0^2/4g$, tóte $R=\upsilon_0^2/g$. Exhyhote th ausuná shmasía th
s sunθήμης $H-h>\upsilon_0^2/4g$.

- 4. Πυοοβολισμοί προς τα πάνω. Η ταχύτητα που έχει ένα βλήμα, βγαίνοντας από ένα όπλο, είναι 30 m/s. Ένας άνθρωπος πυοοβολεί στον αέρα με συχνότητα έναν πυροβολισμό ανά δευτερόλεπτο, σε κατακόρυφη κατεύθυνση. Οι τριβές στον αέρα αμελούνται.
- (α) Πόσες σφαίφες θα βρίσχονται στον αέφα σε μια οποιαδήποτε χρονική στιγμή;
- (β) Σε ποια ύψη πάνω από το έδαφος θα προσπερνούν η μια την άλλη;
- 5. Τοιβή πάνω σε δύο χεκλιμένα επίπεδα. Και τα δύο επίπεδα 1 και 2 στο Σχ. 3.23 έχουν μη λείες επιφάνειες με συντελεστές τοιβής μ_1 και μ_2 για τα σώματα M_1 και M_2 αντίστοιχα. Βρείτε τη σχέση μεταξύ των M_1 , M_2 , θ_1 , θ_2 , μ_1 και μ_2 , έτσι ώστε:
- (α) η μάζα M_1 μόλις να αρχίσει να ολισθαίνει προς τα χάτω στο επίπεδο 1

Σχ. 3.23 Διπλό κεκλιμένο επίπεδο. Πρόβλημα 5.

- (β) η μάζα M_2 μόλις να αρχίσει να ολισθαίνει προς τα κάτω στο επίπεδο 2.
- 6. Τοιβή που δεν είναι ίση με μ Mg. Το Σχ. 3.24 δείχνει μια δύναμη \mathbf{F} που δοα σε ένα σώμα με μάζα M. Το σώμα βοίσκεται πάνω σε μια μη λεία οριζόντια επιφάνεια, η οποία έχει με το σώμα συντελεστή τοιβής μ .
- (α) Υποθέτοντας ότι F >> Mg, βοείτε τη μέγιστη γωνία θ για την οποία η δύναμη F δεν μπορεί να κάνει το σώμα να ολισθήσει, όσο μεγάλη κι αν είναι.
- (β) Βρείτε το λόγο F/Mg, σαν συνάρτηση των θ και μ , για τον οποίο το σώμα μόλις αρχίζει να ολισθαίνει. Δείξετε ότι, στο όριο F>>Mg, η απάντηση ανάγεται στο αποτέλεσμα της περίπτωσης (α).

Σχ. 3.24 Πρόβλημα τριβής. Πρόβλημα 6.

- 7. Η μηχανή του Atwood. Στη μηχανή του Atwood (Σχ.3.17), βρείτε την τάση του νήματος OA που συγκρατεί την τροχαλία. Δείξετε ότι το διανυσματικό άθροισμα των τριών δυνάμεων : m_1g , m_2g και της παραπάνω τάσης, ισούται με το ρυθμό της μεταβολής της ορμής κατά την κατακόρυση διεύθυνση.
- 8. Δορυφόρος και Σελήνη. Ποιο σώμα τρέχει ταχύτερα; η Σελήνη, ή ένας δορυφόρος που ταξιδεύει γύρω από τη Γη με ακτίνα μόλις μεγαλύτερη από την ακτίνα της Γης; Ποιος είναι ο λόγος των ταχυτήτων συναρτήσει του λόγου των ακτίνων των τροχιών; Ποιος είναι ο λόγος των περιόδων; Ξέροντας ότι η Σελήνη έχει περίοδο 27 ημερών και ακτίνα τροχιάς 384 000 km και ότι η ακτίνα τη Γης είναι 6400 km, βρείτε την περίοδο του δοουφόρου.
- 9. Ηλεκτροστατική δύναμη. Δύο ίσες μικοές αγώγιμες σφαίσες μάζας m, κρέμονται από το σημείο P με νήματα ίσου μήκους l. Αρχικά οι σφαίσες βοίσκονται σε επαφή μεταξύ τους: $\theta \approx 0$. Στη συνέχεια οι σφαίσες φορτίζονται με ίσα ηλεκτοικά φορτία q, και τότε απωθούνται και ισοφοπούν στις θέσεις που δείχνει το Σχ. 3.25. Βρείτε μια έκφραση που να συνδέει το φορτίο q με τα μεγέθη m, g, l και θ . (Θεωρήστε τις μικοές σφαίσες σαν σημειακά φορτία).
- 10. Ποωτόνιο μέσα σε ηλεχτοιχό πεδίο.
- (α) Ποια δύναμη (σε Ν) δρα πάνω σε ένα πρωτόνιο που βρίσκεται μέσα σε ένα ηλεκτρικό πεδίο έντασης 3 × 10⁴ V/m;
- (β) Αν αφήσουμε ένα πρωτόνιο, με αρχική ταχύτητα μηδέν, μέσα σε ένα ομογενές ηλεκτρικό πεδίο με την παραπάνω ένταση, ποια θα είναι η ταχύτητα του πρωτονίου μετά από

Σχ. 3.25 Ηλεκτροστατική δύναμη. Πρόβλημα 9.

- (γ) Πόσο μαχοιά θα βοεθεί από τη θέση που το αφήσαμε μετά από χρόνο 10^{-8} s;
- 11. $\Pi \varrho \omega \tau \delta v i \omega \ \mu \acute{e}\sigma \alpha \ \sigma \epsilon \ \mu \alpha \gamma v \eta \tau i z \delta \ \pi \epsilon \delta i o$. Ena prostónio ($e=1.6\times 10^{-19}\, C$) eptoxenétai me taxúthta ${\bf v}=2\times 10^6\, {\bf \hat x}$ m/s se mia perioxý ópou upárzei éna omogenés magnitud pedío ${\bf B}=0.1\, {\bf \hat z}$ T.
- (α) Υπολογίστε τη δύναμη (κατά μέτοο και κατεύθυνση) που δοα πάνω στο ποωτόνιο αμέσως μετά την εκτόξευσή του.
- (β) Ποια είναι η ακτίνα καμπυλότητας της τροχιάς που ακολουθεί το ποωτόνιο;
- (γ) Προσδιορίστε τη θέση του κέντρου της κυκλικής τροχιάς,αν το σημείο εκτόξευσης είναι η αρχή των συντεταγμένων.
- 12. Λόγος ηλεκτρικών δυνάμεων και δυνάμεων βαρύτητας μεταξύ δύο ηλεκτρονίων. Το μέτρο της ηλεκτροστατικής δύναμης ανάμεσα σε δύο ηλεκτρόνια είναι

$$\frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$$
, όπου $\frac{1}{4\pi\epsilon_0} = 8.988 \times 10^9 \text{ N m}^2/\text{ C}^2$

Το μέτοο της δύναμης της βαούτητας είναι

$$G \frac{m^2}{r^2}$$
, ó π ov $G = 6.67 \times 10^{-11} \text{ N m}^2 / \text{kg}^2$

Ποια είναι η τάξη μεγέθους του λόγου της ηλεκτοροτατικής δύναμης προς τη δύναμη της βαρύτητας ανάμεσα σε δύο ηλεκτρόνια; $A\pi.: 10^{42}.$

- 13. Κάθετα ηλεκτοικά και μαγνητικά πεδία. Ένα φορτισμένο σωματίδιο κινείται κατά τη διεύθυνση x σε μια περιοχή όπου υπάρχει ένα ηλεκτρικό πεδίο E_y και ένα κάθετο προς αυτό μαγνητικό πεδίο B_z . Ποια είναι η αναγκαία συνθήκη, ώστε η συνισταμένη δύναμη που ασκείται στο σωματίδιο να είναι ίση με μηδέν; Σχεδιάστε τα διανύσματα ${\bf v}$, ${\bf E}$ και ${\bf B}$ σε ένα διάγραμμα. Καθορίστε την παραπάνω συνθήκη για το v_x , όταν $E_y=3\times 10^5$ V/m, και $B_z=3\times 10^{-2}$ T. $A\pi$.: $v_x=10^7$ m/s
- 14. Επτροπή σωματιδίου μέσα στο πεδίο επίπεδου πυκνωτή. Ένα σωματίδιο με φορτίο q και μάζα M έχει αρχική ταχύτητα v_0 \$, όταν εισέχεται σε ηλεκτρικό πεδίο -E\$ (βλ. Σχ. 3.26). Υποθέτουμε ότι το πεδίο είναι ομογενές, δηλ. ότι η έντασή του E είναι σταθερή σε όλα τα σημεία της περιοχής μεταξύ των πλακών του πυκνωτή (εκτός από μικρές μεταβολές κοντά στα άκρα των πλακών, που θα τις αγνοήσουμε). Οι πλάκες έχουν

Σχ. 3.26 Εκτροπή σωματιδίου. Πρόβλημα 14.

μήκος L.

- (a) Poiez dunámeiz energyoún katá tiz dieuqúngeiz x kai y antístoica; $A\pi.: F_x = 0, \quad F_y = -Eq\hat{y}$
- (β) Μποφεί μια δύναμη με διεύθυνση y να επηφεάσει τη συνιστώσα x της ταχύτητας;
- (γ) Υπολογίστε τις συνιστώσες v_x και v_y ως συναφτήσεις του χρόνου, και γράψετε την πλήφη διανυσματική έκφραση της ταχύτητας $\mathbf{v}(t)$. $A\pi.: v_0 \hat{\mathbf{x}} (qE/M)t \, \hat{\mathbf{y}}.$
- (δ) Επιλέξετε σαν αρχή το σημείο εισόδου και γράψετε την πλήρη διανυσματική εξίσωση που εκφράζει τη θέση του σωματιδίου σαν συνάρτηση του χρόνου, για το χρονικό διάστημα που το σωματίδιο βρίσκεται ανάμεσα στις πλάκες του πυκνωτή.
- 15. Συνέχεια του προηγουμένου προβλήματος. Υποθέτουμε ότι το σωματίδιο του προβλήματος 14 είναι ένα ηλεκτρόνιο με αρχική κινητική ενέργεια $\frac{1}{2}$ $mv_0^2=10^{-17}$ joule, ότι η ένταση του ηλεκτρικού πεδίου είναι 300 V/m και ότι L=0.02 m. Ζητούνται:
- (α) Η διανυσματική ταχύτητα τη στιγμή που το ηλεκτρόνιο εγκαταλείπει την περιοχή μεταξύ των πλακών του πυκνωτή.
- (b) H gwnia $(\mathbf{v}, \hat{\mathbf{x}})$ όταν το σωματίδιο εγκαταλείπει τις πλάκες του πυκνωτή. $A\pi.: 2.7^{\circ}.$
- (γ) Το σημείο τομής του άξονα των x με την ευθεία κατά την οποία το σωματίδιο εγκαταλείπει το πεδίο. $A\pi$.: 0,01 m.
- 16. Τροχιές σύγκρουσης. Δύο σωματίδια (1 και 2) βρίσκονται αρχικά στις θέσεις $x_1 = 5$ m, $y_1 = 0$ και $x_2 = 0$ και $y_2 = 10$ m, με $\mathbf{v}_1 = -4\hat{\mathbf{x}}$ m/s και \mathbf{v}_2 κατά μήκος του άξονα $-\hat{\mathbf{y}}$, όπως στο Σχ.

Σχ. 3.27 Κρούση σωματιδίων. Πρόβλημα 16.

3.27.

- (a) Ποια είναι η ταχύτητα \mathbf{v}_2 , αν τα σωματίδια πρόκειται να συγκρουσθούν; $A\pi.: -8\hat{\mathbf{y}} \text{ m/s}.$
- (b) Proof einal h timh the scettiche tacúthtae \mathbf{v}_r tou swhatishou 1 we proof to 2; $A\pi$: $8\hat{\mathbf{y}} 4\hat{\mathbf{x}}$ m/s.
- (γ) Διατυπώστε ένα γενικό κοιτήριο για την αναγνώριση μιας τροχιάς σύγκρουσης δύο σωμάτων, όταν δίνονται οι θέσεις τους \mathbf{r}_1 , \mathbf{r}_2 και οι ταχύτητές τους \mathbf{v}_1 , \mathbf{v}_2 .
- 17. Κινηματική κρούσεων. Δύο μάζες, αναγκασμένες να κινούνται σε ένα οφιζόντιο επίπεδο, συγκρούονται μεταξύ τους. Δίνονται οι μάζες $M_1=0.85$ kg, $M_2=2$ kg και οι αφχικές ταχύτητες ${\bf v}_1=6.4\hat{\bf x}$ m/s και ${\bf v}_2=-6.7\hat{\bf x}-2\hat{\bf y}$ m/s.
- (α) Βοείτε την ολική οομή των δύο μαζών

 $A\pi .: -7.96\hat{x} - 4\hat{y}$ m/s.

(b) An metá thn provish eínai $|\mathbf{w}_1| = 9.2$ m/s hai $\mathbf{w}_2 = -4.4\hat{\mathbf{x}} + 1.9\hat{\mathbf{y}}$ m/s, hoia ha eínai h dieúhunsh tou \mathbf{w}_1 ; (gia tiς tacúthtec metá thn provish consumble to súmbolo \mathbf{w}).

 $A\pi.:$ – 84° ως προς τον άξονα x.

(γ) Ποια είναι η σχετική ταχύτητα $\mathbf{w}_r = \mathbf{w}_1 - \mathbf{w}_2$;

 $A\pi$.: 5,4 \hat{x} -11 \hat{y} m/s.

- (δ) Πόση είναι η αρχική και πόση η τελική ολική κινητική ενέργεια; Η κρούση είναι ελαστική ή μη ελαστική;
- 18. Μη ελαστική κρούση. Δύο σώματα (M_1 = 2 kg, M_2 = 5 kg) έχουν ταχύτητες \mathbf{v}_1 = 10 $\hat{\mathbf{x}}$ m/s και \mathbf{v}_2 = 3 $\hat{\mathbf{x}}$ +5 $\hat{\mathbf{y}}$ m/s λίγο ποιν συγκρουσθούν, ενώ μετά την κρούση ενώνονται και αποτελούν ένα σώμα.
- (α) Ποια είναι η τελιχή τους ταχύτητα;
- (β) Ποιο κλάσμα της αρχικής κινητικής ενέργειας χάνεται κα-

τά την κοούση;

19. Τροχιά δορυφόρου. Θεωρήστε ότι η τροχιά ενός δορυφόρου βρίσκεται λίγο πιο έξω από τον ισημερινό ενός ομογενούς σφαιρικού πλανήτη με πυκνότητα ρ . Δείξετε ότι η περίοδος T της κίνησης σε μια τέτοια τροχιά εξαρτάται μόνο από την πυκνότητα του πλανήτη. Δώστε την εξίσωση για το T.

20. Βεληνεκές οβίδων όλμου. Τα παρακάτω είναι πειραματικά δεδομένα σχετικά με το βεληνεκές και την ταχύτητα οβίδων όλμου, που βάλλονται υπό γωνία 45° ως προς το οριζόντιο

επίπεδο. Στον ίδιο πίνακα πεφιλαμβάνεται ο χφόνος πτήσης των οβίδων. Συγκφίνετε αυτά τα δεδομένα με την απλή θεωφία της βολής. Βλέπετε καμιά κανονικότητα;

Ταχύτητα εκτόξευσης (m/s)	Βεληνεκές (m)	<i>Χ</i> οόνος (s)
112	1159	15,7
122	1349	17,0
131	1539	18,2

ΘΕΜΑ ΠΡΟΧΩΡΗΜΕΝΟΥ ΕΠΙΠΕΔΟΥ

Φορτισμένο σωματίδιο σε ομογενές εναλλασσόμενο ηλεκτρικό πεδίο

Θεωφούμε το ηλεκτφικό πεδίο

$$\mathbf{E} = E_{\mathbf{x}} \,\hat{\mathbf{x}} = E_{\mathbf{x}}^{0} \sin \omega t \,\hat{\mathbf{x}}$$

όπου $\omega=2\pi f$ είναι η κυκλική συχνότητα και E_x^0 το πλάτος της έντασης του ηλεκτοικού πεδίου. Συχνά ο δείκτης μηδέν (0) δίπλα στο E παφαλείπεται, αν η παφάλειψη δεν δημιουργεί αβεβαιότητα. Η εξίσωση της κίνησης είναι, σύμφωνα με την Εξ. (3.20):

$$\frac{d^2x}{dt^2} = \frac{q}{M} E_x = \frac{q}{M} E_x^0 \sin \omega t \tag{3.45}$$

Για τη λύση διαφορικών εξισώσεων, χρησιμοποιούμε συχνά την πολύ καλή μέθοδο της δοκιμής και πλάνης, οδηγούμενοι από τη φυσική μας διαίσθηση. Ψάχνουμε για μια λύση της μορφής:

$$x(t) = x_1 \sin \omega t + v_0 t + x_0$$
 (3.46)

Οι παράγωγοι του ημιτόνου και του συνημιτόνου δίνονται από τις σχέσεις:

$$\frac{d}{d\theta} \sin \theta = \cos \theta$$
, $\frac{d^2}{d\theta^2} \sin \theta = -\sin \theta$

$$\frac{d}{d\theta}\cos\theta = -\sin\theta$$
, $\frac{d^2}{d\theta^2}\cos\theta = -\cos\theta$

Παραγωγίζοντας την Εξ. (3.46), βρίσχουμε

$$\frac{d^2x}{dt^2} = -\omega^2 x_1 \sin \omega t$$

Έτσι, η Εξ. (3.46) είναι μια λύση της εξίσωσης κίνησης [Εξ. (3.45)], αρκεί να εξασφαλίσουμε ότι:

$$-\omega^2 x_1 \sin \omega t = -\frac{q}{M} E_x^0 \sin \omega t \qquad (3.47)$$

ποάγμα που απαιτεί:

$$x_1 = -\frac{q E_x^0}{M \omega^2}$$
 (3.48)

Συνδυάζοντας τις Εξ. (3.48) και (3.46) βοίσκουμε:

$$x(t) = -\frac{qE_x^0}{M\omega^2} \sin \omega t + v_0 t + x_0$$

Η ταχύτητα είναι

$$v_x(t) = \frac{dx}{dt} = -\frac{qE_x^0}{M\omega}\cos\omega t + v_0$$

οπότε, για t = 0:

$$v_{x}(0) = -\frac{qE_{x}^{0}}{M\omega} + v_{0}$$

Μη μπερδέψετε το $v_x(0)$, που είναι η ταχύτητα τη στιγμή t=0, με το v_0 που είναι μια σταθερά ολοκλήρωσης, τέτοια, ώστε το $v_x(0)$ να έχει την τιμή που θέλουμε. Αν θέλουμε η αρχική ταχύτητα να είναι ίση με μηδέν, τότε πρέπει να θέσουμε:

$$v_0 = \frac{qE_x^0}{M\omega}$$

Anticarriantac to v_0 sth scésh pou mas dénei to x(t), écoume

Για ένα φορτίο q μέσα σε πεδίο $\mathbf{E}=E_x^{~0}{\sin \,\omega t}\,\hat{\mathbf{x}},$ έχουμε $a_x=\frac{q}{M}\,E_x^{~0}{\sin \,\omega t}$

και

$$v_x(t) = \int a_x dt = -\frac{q E_x^0}{M \omega} \cos \omega t + v_0$$

Aν $v_r(0) = 0$, τότε

$$v_0 = \frac{q E_x^0}{M \omega}$$

και

$$v_x(t) = \frac{q E_x^0}{M \omega} \left(I - \cos \omega t \right)$$

Εξάλλου $x(t) = \int v_x(t) dt$

$$= \frac{q E_x^0}{M\omega} \left(t - \frac{1}{\omega} \sin \omega t \right) + x (0)$$

Aν x(0) = 0, τότε

$$x(t) = \frac{qE_x^0}{M\omega} t - \frac{qE_x^0}{M\omega^2} \sin \omega t$$

Σχ. 3.28 Επιτάχυνση, ταχύτητα και μετατόπιση ως συναρτήσεις του $\omega\iota$.

$$x(t) = \frac{qE_x^0}{M\omega}t - \frac{qE_x^0}{M\omega^2}\sin \omega t + x_0$$

Αυτό είναι ένα κάπως αποοσδόκητο αποτέλεσμα. Με την οριακή συνθήκη $v_x=0$ στη χρονική στιγμή t=0, η κίνηση αποτελείται από μια ταλάντωση η οποία προστίθεται σε μια ολίσθηση με σταθερή ταχύτητα ίση με $qE^0_{\ x}/M\omega$. Αυτό συμβαίνει γιατί το σωματίδιο ποτέ δεν αναστρέφει την ταχύτητά του στο ειδικό αυτό πρόβλημα. Το σωματίδιο προχωρεί συνεχώς προς την ίδια πλευρά. Σημειώστε ότι το v_0 είναι διαφορετικό από το $v_x(t=0)$ σε αυτό το πρόβλημα, αλλά το x_0 ισούται με x(t=0).

Η επιτάχυνση, η ταχύτητα και η απόσταση, παριστάνονται σαν συναρτήσεις του χρόνου στο Σχ. 3.28.

ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ

Διαφορικές εξισώσεις

Έχουμε δει ότι η επιτάχυνση σε καφτεσιανές συντεταγμένες είναι

 $\frac{d^2x}{dt^2}\,\hat{\mathbf{x}} + \frac{d^2y}{dt^2}\,\hat{\mathbf{y}} + \frac{d^2z}{dt^2}\,\hat{\mathbf{z}}$

Σε άλλες συντεταγμένες, η επιτάχυνση θα περιλαμβάνει δεύτερες και πιθανώς πρώτες παραγώγους ως προς το χρόνο. Αν περιοριστούμε σε μια διάσταση, ο δεύτερος νόμος του Νεύτωνα (η εξίσωση κίνησης) γράφεται:

$$M\frac{d^2x}{dt^2} = F_x \tag{3.49}$$

Η πρόθεσή μας, γράφοντας αυτή τη σχέση, είναι να βρούμε το x σαν συνάφτηση του t, δηλαδή να λύσουμε ως προς x. Η λύση αυτής της εξίσωσης, που ονομάζεται διαφορική εξίσωση, θα είναι η συνάφτηση x(t). Πώς μπορούμε να βρούμε μια τέτοια λύση; Οι μαθηματικοί έχουν διατυπώσει κανονικές διαδικασίες γι' αυτό το σκοπό, οι Φυσικοί όμως πολύ συχνά μαντεύουν μια λύση και δοκιμάζουν αν η λύση ικανοποιεί την Εξ. (3.49). Υπάρχει ένας αριθμός από συνηθισμένες μορφές διαφορικών εξισώσεων, που παρουσιάζονται πολύ συχνά στη Φυσική και που είναι χρήσιμο να θυμόμαστε τις λύσεις τους. Εξετάζουμε πιο κάτω δύο από αυτές τις εξισώσεις, ενώ περισσότερες άλλες περιπτώσεις διερευνώνται στο τέλος των επόμενων κεφαλαίων.

Η πιο απλή περίπτωση αντιστοιχεί σε F=0. Ήδη ξέρουμε την απάντηση από τον πρώτο νόμο του Νεύτωνα, αλλά ας την ξαναβρούμε λύνοντας την εξίσωση

$$\frac{d^2x}{dt^2} = \frac{dv_x}{dt} = 0 ag{3.50}$$

Ξέρουμε ότι η παράγωγος μιας σταθεράς είναι μηδέν, άρα η σχέση

$$v_x = \sigma \tau \alpha \theta$$
. = v_0

πρέπει να εκφράζει μια λύση. Η ίδια σχέση γράφεται:

$$\frac{dx}{dt} = v_0 \tag{3.51}$$

Δοκιμάζουμε σαν λύση την έκφραση:

$$x = v_0 t + x_0 (3.52)$$

Όταν παραγωγίσουμε μια φορά, βρίσκουμε την Εξ. (3.51) και όταν παραγωγίσουμε δύο φορές, βρίσκουμε την Εξ. (3.50). Λέμε λοιπόν ότι η εξίσωση λύθηκε και μπορούμε να αποδείξουμε ότι η λύση που βρήκαμε είναι μοναδική.

Τι παριστάνουν τα v_0 και x_0 ; Προφανώς είναι σταθερές, αλλά από πού προέρχονται; Η σημασία τους καθορίζεται από το συγκεκριμένο πρόβλημα που θεωρούμε. Ας υποθέσουμε π.χ. ότι έχουμε ένα σωματίδιο σε ηρεμία στη θέση x=0 και ότι πάνω στο σωματίδιο δεν δρα καμιά δύναμη. Τότε $v_0=0$, $x_0=0$ και η λύση γράφεται x=0. Με άλλα λόγια, το σωματίδιο παραμένει στη θέση x=0 για πάντα ή ωσότου δράσει πάνω του κάποια δύναμη. Ας υποθέσουμε τώρα ότι θεωρούμε ένα σωματίδιο, πάνω στο οποίο δεν ενεργούν δυνάμεις, αλλά που τη χρονική στιγμή t=0 βρίσκεται στη θέση x=+50 και κινείται προς την αρνητική κατεύθυνση του άξονα των x με ταχύτητα 25 (παραλείπουμε τις μονάδες). Τότε $x_0=+50$ και $v_0=-25$. Επομένως

$$x = -25 t + 50$$

και η σχέση αυτή δίνει το x για όλες τις τιμές του χοόνου t, με $t \ge 0$. Αν ξέρουμε ότι και για t < 0 δεν δρουν στο σωματίδιο δυνάμεις, τότε το ίδιο αποτέλεσμα δίνει το x και για όλες τις αρνητικές τιμές του t. Οι δύο σταθερές, x_0 και v_0 , ονομάζονται συνήθως σταθερές ολοκλήρωσης και πρέπει να καθορίζονται από τις συνθήκες του προβλήματος, που συνήθως ονομάζονται αρχικές συνθήκες. Οι διαφορικές εξισώσεις δεύτερης τάξης έχουν πάντα δύο αυθαίρετες σταθερές, ενώ οι διαφορικές εξισώσεις πρώτης τάξης έχουν μόνο μ ία.

Η επόμενη απλή περίπτωση είναι όταν έχουμε F_x = σταθ.= F_0 . Γράφουμε παρακάτω y στη θέση του x, για να δώσουμε στο σπουδαστή τη δυνατότητα να συσχετίσει τις λύσεις με το παράδειγμα που δώσαμε στην αρχή του κεφαλαίου. Η εξίσωση γράφεται:

$$\frac{d^2y}{dt^2} = \frac{F_0}{M} = a {(3.53)}$$

όπου α η σταθερή επιτάχυνση. Ας δοκιμάσουμε τη λύση:

$$y = \frac{1}{2}at^2 + v_0 t + y_0 \tag{3.54}$$

Παραγωγίζοντας δύο φορές παίρνουμε την Εξ. (3.53) και έτσι επαληθεύουμε ότι έχουμε πραγματικά μια λύση. Τα v_0 και y_0 είναι πάλι οι αυθαίρετες σταθερές ή σταθερές ολοκλήρωσης, που πρέπει να τις καθορίσουμε από το πρόβλημα που εξετάζουμε. Από τη Φυσική του Λυκείου ξέρουμε ότι η Εξ. (3.54) είναι η εξίσωση που περιγράφει την κίνηση ενός σωματιδίου υπό την επίδραση της βαρύτητας. Αν θεωρήσουμε το y θετικό προς τα πάνω, τότε πρέπει να γράψουμε a=-g, όπου g είναι η επιτάχυνση της βαρύτητας, ίση με y0,8 m/sy0. Δίνουμε παρακάτω μερικά παραδείγματα.

 Για ένα σώμα που πέφτει με αρχική ταχύτητα μηδέν από ύψος 100 m, έχουμε:

$$v_0 = 0$$
 , $y_0 = 100 \text{ m}$

άρα

$$y = -4.9 t^2 + 100 ag{3.55}$$

 $\sigma \epsilon$ m, όταν το t είναι $\sigma \epsilon$ s.

2. Για ένα σώμα που φίχνεται προς τα πάνω με $v_0 = 9.8 \text{ m/s}$ έχουμε:

$$y_0 = 0$$
, $v_0 = 9.8$ m/s
 $y = -4.9 t^2 + 9.8 t$ (3.56)

σε m, όταν το t είναι σε s.

Από τις σχέσεις αυτές μποφούμε να βφούμε τις τιμές του *y* σε κάθε στιγμή *t*. Για παφάδειγμα, ποιο είναι το μέγιστο ύψος στο οποίο φτάνει το σώμα στο δεύτεφο παφάδειγμα; Θέτουμε:

$$\frac{dy}{dt} = 0 = -9.8t + 9.8$$

άρα

$$t = 1 \text{ s}$$

 $\kappa\alpha\iota$

$$y = -4.9 \cdot 1^2 + 9.8 \cdot 1 = 4.9 \text{ m}$$

Η συνθήκη dy/dt = 0 σημαίνει $v_y = 0$, και εκφράζει το γεγονός ότι το σώμα φτάνει στο μέγιστο ύψος.

Από μαθηματική άποψη, οι αρχικές συνθήκες μπορούν να εννοηθούν ως οι τιμές των y και dy/dt σε μια ορισμένη στιγμή, που στις παραπάνω περιπτώσεις είναι η στιγμή t=0. Η διαφορική εξίσωση δευτέρας τάξης δίνει την καμπυλότητα της καμπύλης (y,t), αλλά δεν δίνει την κλίση ούτε την τιμή του y. Έτσι, για να βρούμε την καμπύλη κατά τρόπο μονοσήμαντο, είναι απαραίτητο να προσδιορίσουμε την κλίση και την τιμή σε ένα όρισμένο σημείο. Ο σπουδαστής μπορεί να συγκρίνει τις γραφικές παραστάσεις των Εξ. (3.55) και (3.56).

ΙΣΤΟΡΙΚΗ ΣΗΜΕΙΩΣΗ

Η ανακάλυψη του κύκλοτρου

Οι πεοισσότεφοι από τους σύγχρονους επιταχυντές σωματιδίων υψηλών ενεργειών κατάγονται από το πρώτο κύκλοτρο πρωτονίων του 1 MeV, που κατασκευάστηκε από τους Ε. Ο. Lawrence και Μ. S. Livingston (Λόσενς και Λίβινγκστον) στο LeConte Hall του Berkeley. Η ιδέα του κύκλοτρου οφείλεται στον Lawrence και δημοσιοποιήθηκε για πρώτη φορά από τους Lawrence και Edlefsen σε μια ομιλία, της οποίας περίληψη δημοσιεύθηκε στο περιοδικό Science, 72:376, 377 (1930). Το 1932 δημοσιεύθηχαν τα πρώτα αποτελέσματα σε ένα ωραίο άρθρο στο Physical Review, το κύριο περιοδικό Φυσικής της American Physical Society. Μολονότι το περιοδικό απαιτεί όλα τα άρθρα να συνοδεύονται από ενημερωτικές περιλήψεις, λίγες από αυτές είναι τόσο σαφείς και ενημερωτικές όσο αυτή που αναπαράγεται στις επόμενες σελίδες, από το κλασικό πια άρθρο των Lawrence και Livingston. Αναπαράγονται επίσης και δύο σχήματα από το άρθρο. Ο καθηγητής Livingston είναι στο ΜΙΤ. Ο καθηγητής Lawrence πέθανε το 1958.

Ο αρχικός μαγνήτης των 11 ιντσών ξεπεράστηκε σχεδόν αμέσως σε επιταχυντές· κατασκευάστηκε, και χρησιμοποιείται ακόμη σε μια ποικιλία ερευνητικών προγραμμάτων, στο LeConte Hall. Τα πρώτα επιτυχή πειράματα κυκλοτρονικού συντονισμού φορέων φορτίου σε κρυστάλλους έγιναν με αυτόν τον μαγνήτη.

Για μια ενδιαφέφουσα περιγραφή της πρώιμης ιστορίας του κύκλοτρου, βλέπε Ε. Ο. Lawrence, "The Evolution of the Cyclotron", *Les Prix Nobel en 1951*, σελ. 127–140, Imprimerie Royale, Stockholm, 1952.

Ένα από τα πρώτα κύκλοτρα που κατασκευάστηκαν.

VOLUME 40

THE PRODUCTION OF HIGH SPEED LIGHT IONS WITHOUT THE USE OF HIGH VOLTAGES

By Ernest O. Lawrence and M. Stanley Livingston
University of California
(Received February 20, 1932)

ABSTRACT

The study of the nucleus would be greatly facilitated by the development of sources of high speed ions, particularly protons and helium ions, having kinetic energies in excess of 1,000,000 volt-electrons; for it appears that such swiftly moving particles are best suited to the task of nuclear excitation. The straightforward method of accelerating ions through the requisite differences of potential presents great experimental difficulties associated with the high electric fields necessarily involved. The present paper reports the development of a method that avoids these difficulties by means of the multiple acceleration of ions to high speeds without the use of high voltages. The method is as follows: Semi-circular hollow plates, not unlike duants of an electrometer, are mounted with their diametral edges adjacent, in a vacuum and in a uniform magnetic field that is normal to the plane of the plates. High frequency oscillations are applied to the plate electrodes producing an oscillating electric field over the diametral region between them. As a result during one half cycle the electric field accelerates ions, formed in the diametral region, into the interior of one of the electrodes, where they are bent around on circular paths by the magnetic field and eventually emerge again into the region between the electrodes. The magnetic field is adjusted so that the time required for traversal of a semi-circular path within the electrodes equals a half period of the oscillations. In consequence, when the ions return to the region between the electrodes, the electric field will have reversed direction, and the ions thus receive second increments of velocity on passing into the other electrode. Because the path radii within the electrodes are proportional to the velocities of the ions, the time required for a traversal of a semi-circular path is independent of their velocities. Hence if the ions take exactly one half cycle on their first semi-circles, they do likewise on all succeeding ones and therefore spiral around in resonance with the oscillating field until they reach the periphery of the apparatus. Their final kinetic energies are as many times greater than that corresponding to the voltage applied to the electrodes as the number of times they have crossed from one electrode to the other. This method is primarily designed for the acceleration of light ions and in the present experiments particular attention has been given to the production of high speed protons because of their presumably unique utility for experimental investigations of the atomic nucleus. Using a magnet with pole faces 11 inches in diameter, a current of 10⁻⁹ ampere of 1,220,000 volt-protons has been produced in a tube to which the maximum applied voltage was only 4000 volts. There are two features of the developed experimental method which have contributed largely to its success. First there is the focussing action of the electric and magnetic fields which

prevents serious loss of ions as they are accelerated. In consequence of this, the magnitudes of the high speed ion currents obtainable in this indirect manner are comparable with those conceivably obtainable by direct high voltage methods. Moreover, the focussing action results in the generation of very narrow beams of ions-less than 1 mm cross-sectional diameter—which are ideal for experimental studies of collision processes. Of hardly less importance is the second feature of the method which is the simple and highly effective means for the correction of the magnetic field along the paths of the ions. This makes it possible, indeed easy, to operate the tube effectively with a very high amplification factor (i.e., ratio of final equivalent voltage of accelerated ions to applied voltage). In consequence, this method in its present stage of development constitutes a highly reliable and experimentally convenient source of high speed ions requiring relatively modest laboratory equipment. Moreover, the present experiments indicate that this indirect method of multiple acceleration now makes practicable the production in the laboratory of protons having kinetic energies in excess of 10,000,000 volt-electrons. With this in mind, a magnet having pole faces 114 cm in diameter is being installed in our laboratory.

Introduction

THE classical experiments of Rutherford and his associates¹ and Pose² on artificial disintegration, and of Bothe and Becker³ on excitation of nuclear radiation, substantiate the view that the nucleus is susceptible to the same general methods of investigation that have been so successful in revealing the extra-nuclear properties of the atom. Especially do the results of their work point to the great fruitfulness of studies of nuclear transitions excited artificially in the laboratory. The development of methods of nuclear excitation on an extensive scale is thus a problem of great interest; its solution is probably the key to a new world of phenomena, the world of the nucleus.

But it is as difficult as it is interesting, for the nucleus resists such experimental attacks with a formidable wall of high binding energies. Nuclear energy levels are widely separated and, in consequence, processes of nuclear excitation involve enormous amounts of energy—millions of volt-electrons.

It is therefore of interest to inquire as to the most promising modes of nuclear excitation. Two general methods present themselves; excitation by absorption of radiation (gamma radiation), and excitation by intimate nuclear collisions of high speed particles.

Of the first it may be said that recent experimental studies 4.5 of the absorption of gamma radiation in matter show, for the heavier elements, varia-

¹ See Chapter 10 of Radiations from Radioactive Substances by Rutherford, Chadwick and Ellis.

² H. Pose, Zeits. f. Physik 64, 1 (1930).

³ W. Bothe and H. Becker, Zeits. f. Physik 66, 1289 (1930).

⁴ G. Beck, Naturwiss. 18, 896 (1930).

⁵ C. Y. Chao, Phys. Rev. 36, 1519 (1930).

ΒΟΗΘΗΜΑΤΑ ΓΙΑ ΕΚΤΕΝΕΣΤΕΡΗ ΜΕΛΕΤΗ

PSSC, "Physics". (D. C. Heath and Company, Boston, 1956). Κεφ. 19–21, 28 (παφ. 1, 4, 6), 30 (παφ. 6–8).

HPP, "Project Physics Course". (Holt, Rinehart and Winston, Inc., New York, 1970). K $\epsilon \varphi$ 2–4, 9 ($\pi \alpha \varrho$. 2–7), 14 ($\pi \alpha \varrho$. 3, 4, 8, 13).

A. French, "Newtonian Mechanics". (W. W. Norton & Company, Inc., New York, 1971). Ένα πλήφες στη στάθμη του βιβλίο. Μέφος της σειφάς Φυσικής του ΜΙΤ.

Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of its Development". 6th ed. (The Open Court Publishing Company, La salle, Ill, 1960). Ke ϕ . 2 $\times \alpha t$ 3.

Μια αλασιαή έαθεση για τις έννοιες της Μηχανιαής ααι την εξέλιξή τους.

Herbert Butterfield, "The Origins of Modern Science, 1300–1800". (Free Press, The Macmillan Company, New York, 1965). [Έλληνική μετάφραση: "Η καταγωγή της σύγχρονης επιστήμης". (Μορφωτικό Ίδουμα Εθνικής Τραπέζης, Αθήνα, 1994). (Σ.τ.ε.)]. Το Κεφ. Ι περιλαμβάνει την ιστορική άποψη για τη σημασία της ορθής αντίληψης σχετικά με την κίνηση και την αδράνεια.

L. Hopf, "Introduction to the Differential Equations of Physics," translated by W. Nef. (Dover Publications, Inc., New York, 1948). Πλήφης και ευχάφιστη εισαγωγή στις διαφοφικές εξισώσεις, που απαιτεί λίγη μαθηματική πφοπαφασκευή και πφοσφέφεται για κατ' ιδίαν μελέτη.