

Text Technologies for Data Science INFR11145

IR Evaluation (2)

Instructor: Walid Magdy

Assignment Project Exam Help

21-Oct-2020

https://powcoder.com

Lecture de le Chat powcoder

- Learn about how to evaluate IR
 - · How to create a test collection?
 - Topic vs. query
 - Relevance judgements
 - Pooling

THE UNIVERSITY of EDINBURGH

https://powcoder.com

Reusadd We Chat powcoder

- Collection of Documents
 - Should be "representative" to a given IR task
 - Things to consider: size, sources, genre, topics, ...
- Sample of information need
 - Should be "randomized" and "representative"
 - Usually formalized **topic** statements (query + description)
- Known relevance judgments
 - · Assessed by humans, for each topic-document pair
 - Binary/Graded
- Evaluation measure

THE UNIVERSITY

Where Do Test Collections Come From?

- For web search, companies apply their own studies to assess the performance of their search engine.
- Web-search performance is monitored by:
 - Traffic
 - User clicks and session logs
 - Labelling results for selected users' queries
- For other search tasks:
 - Someone goes out and builds them (expensive)
 - As the by-product of large scale evaluations
- IR Evaluation Campaigns are created for this reason

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

https://powcoder.com

IR Evaldd We Chat powcoder

- IR test collections are provided for scientific communities to develop best IR methods
- Collections and queries are provided, relevance judgements are built during the campaign
- TREC = Text REtrieval Conferences
 - Main IR eval campaign. Sponsored by NIST (US gov)
 - Series of annual evaluations, started in 1992
 - Organized into "tracks"
- Other evaluation campaigns
 - CLEF: European version (since 2000)
 - NTCIR: Asian version (since 1999)
 - FIRE: Indian version (since 2008)

TREC Task

- It is a task for search a set of documents of given genre and domain.
- TREC (or other IR eval campaigns) are formed of a set of tracks, each track has a set of search tasks.
- Example
 - TREC Medical track
 - TREC Legal track → CLEF-IP track → NTCIR patent mining track
 - TREC Microblog track
 - Different CLIR tracks in all campaigns

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

https://powcoder.com

TREC Add We Chat powcoder

- 100's of collections were released in the different evaluation campaigns covering most of the domains in life
- A set of hundreds of thousands of docs
 - 1B in case of web search (TREC ClueWeb09)
- The typical format:

<DOC>
<DOCNO> 1234 </DOCNO>
<TEXT>
Multilines of plain text of the document
</TEXT>
</DOC>

TREC Topic

- Query sets are provided for each collection.
 Generated by experts and is associated with additional details. It is called **Topics**, and contains:
 - Query: the query text
 - Description: description of what is meant by the query
 - Narrative: what should be considered relevant

<num>189</num>

<title>Health and Computer Terminals</title>

<desc>ls it hazardous to the health of individuals to work with computer
terminals on a daily basis?</desc>

<narr>Relevant documents would contain any information that expands on any physical disorder/problems that may be associated with the daily working with computer terminals. Such things as carpel tunnel, cataracts, and fatigue have

A been said to be associated, furthow widespread are these or other problems. A anownatistic being tone to alleviate any health problems. As a second of the problems are the second of the problems are the second of the problems.

Walid Magdy, TTDS 2020/2021

https://powcoder.com

Relevandd We Chat powcoder

- For each topic, set of relevant docs is required to be known for an effective evaluation!
- Exhaustive assessment is usually impractical
 - TREC usually has 50 topics
 - Collection usually has >1 million documents
- Random sampling won't work
 - If relevant docs are rare, none may be found!
- IR systems can help focus the sample (Pooling)
 - Each system finds some relevant documents
 - <u>Different</u> systems find different relevant documents
 - Together, <u>enough</u> systems will find most of them
 - Leverages cooperative evaluations

Pooling

- 1. Systems submit top **1000** documents per topic
- 2. Top **100** documents from each are judged
 - Single pool, duplicates removed, random ranking
 - Judged by the person who developed the topic
- Treat unevaluated documents as irrelevant
- 4. Compute MAP (or others) down to **1000** documents
- To make pooling work:
 - Large number of reasonable systems participating
 - Systems must not all "do the same thing"

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

11

https://powcoder.com

Pooling dde We Chat powcoder

- Judgments can't possibly be exhaustive!
 It doesn't matter: relative rankings of different systems remain the same!
 Chris Buckley and Ellen M. Voorhees. (2004) Retrieval Evaluation with Incomplete Information. SIGIR 2004.
- This is only one person's opinion about relevance It doesn't matter: relative rankings remain the same!

 Ellen Voorhees. (1998) Variations in Relevance Judgments and the Measurement of Retrieval Effectiveness. SIGIR 1998.
- What about hits 101 to 1000?
 It doesn't matter: relative rankings remain the same!
- We can't possibly use judgments to evaluate a system that didn't participate in the evaluation!

Actually, we can!

Justin Zobel. (1998) How Reliable Are the Results of Large-Scale Information Retrieval Experiments? SIGIR 1998.

Who decides a doc is relevant or not?

- The same doc can be seen relevant by me, but not you
- Sometimes, it would be useful to have multiple judgements on relevance on the same document
- How to measure agreement among different assessors?
- Cohen's kappa

$$\varkappa = \frac{P(A) - P(E)}{1 - P(E)}$$

Walid Magdy, TTDS 2020/2021

13

https://powcoder.com

coher Add We Chat powcoder

- Two judges $(J_1 \& J_2)$ annotating 50 docs for relevance
- $P(A) = \frac{20+15}{50} = 0.7$
- $P(E) = P(J_1, J_2|rel) + P(J_1, J_2|irrel)$
 - $P(rel) = P(J_1|rel) \cdot P(J_2|rel) = \frac{20+10}{50} \cdot \frac{20+5}{50} = 0.6 \times 0.5 = 0.3$
 - $P(irrel) = P(J_1|irrel) \cdot P(J_2|irrel) = \frac{20}{50} \cdot \frac{25}{50} = 0.4 \times 0.5 = 0.2$

•
$$\mu = \frac{P(A) - P(E)}{1 - P(E)}$$

• $=\frac{0.7-0.5}{1-0.5}=\frac{0.2}{0.5}=0.4$

		J ₁			
		Relevant	Irrelevant		
J ₂	Relevant	20	5		
	Irrelevant	10	15		
	417-				

Cohen's kappa - meaning

- Kappa = 0, for chance agreement,
 - = 1, for total agreement.
 - < 0, for worse than random!
- Kappa > 0.8 → good agreement
- 0.67 < Kappa < 0.8 → "fair" agreement
- Kappa < 0.67 →
 seen as data providing a suspicious basis for an

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

15

https://powcoder.com

web sadd Wechatypowcoder

- Search engines have test collections of queries and hand-ranked results
- Recall is difficult to measure on the web why?
- Search engines often use
 - precision at top k, e.g., k = 10
 - measures that reward you more for getting rank 1 right than for getting rank 10 right (nDCG)
 - non-relevance-based measures:
 - Clickthrough on first result not very reliable if you look at a single clickthrough ... but pretty reliable in the aggregate.
 - Studies of user behaviour in the lab
 - A/B testing

Web Search Engines: A/B testing

- Purpose: Test a single innovation
- Prerequisite: You have a large search engine up & running.
- Have most users use old system
- Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation
- Evaluate with an "automatic" measure like clickthrough on first result
- Now we can directly see if the innovation does improve user satisfaction.

Probably the evaluation methodology that large search Solvenine at Project Exam Help

Walid Magdy, TTDS 2020/2021

17

https://powcoder.com

Is systade Wachat now goder

Given the results from a number of queries, <u>B achieved</u> better score than A. How can we conclude that ranking algorithm B is really better than algorithm A?

Experiment 1				Experiment 2			
Query S	ystem A	System B	Que	ery S	System A	System B	
1	0.20	0.40	1		0.02	0.76	
2	0.21	0.41	2		0.39	0.07	
3	0.22	0.42	3	}	0.16	0.37	
4	0.19	0.39	4	Ļ	0.58	0.21	
5	0.17	0.37	5	,	0.04	0.02	
6	0.20	0.40	6	,	0.09	0.91	
7	0.21	0.41	7	,	0.12	0.46	
Average	0.20	0.40	Avei	rage	0.20	0.40	
Magdy, TTDS 2020/2021 THE UNIVERSITY of EDINBURGH							

Significance Test

Null Hypothesis:

No relationship between two observed phenomena

- · Rejecting null hypothesis: observation has a meaning
- A significance test enables the <u>rejection</u> of <u>null</u> hypothesis (no difference) in favor of the <u>alternative</u> hypothesis (B is better than A).
- The power of a test is the probability that the test will reject the *null hypothesis* correctly.
 - increasing the number of queries in the experiment increases the power of test.

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

19

https://powcoder.com

significade WeChatspowcoder

- Compute the effectiveness measure for every query for both retrieval systems (note: AP not MAP).
- Compute a test statistic based on a comparison of the effectiveness measures for each query.
 - depends on the significance test
- Test statistic is used to compute a *p-value*: reflects the probability that the *null hypothesis* is true.
 - Small p-values suggest that the null hypothesis may be false.
- The null hypothesis (no difference) is rejected in favor of the alternate hypothesis (B is more effective than A) if p-value ≤ α, where α is the significance level.
 - Values for α are small, typically **0.05** or less, to reduce the chance of incorrect rejection.

One-sided Test Static

 Distribution for the possible values of a test statistic assuming the null hypothesis

https://powcoder.com

t-test Add WeChat powcoder

 Assumption is that the difference between the effectiveness values is a sample from a normal distribution

Query

Null hypothesis is that the mean of the distribution of differences is zero

Test statistic

$$t = \frac{\overline{B-A}}{\sigma_{B-A}}.\sqrt{N}$$

 t-value to p-value http://www.socscistatistics.com/pvalues/tdistribution.aspx

000	ici j			D 11
	1	25	35	10
	2	43	84	41
	3	39	15	-24
	4	75	75	0
	5	43	68	25
	6	15	85	70
	7	20	80	60
	8	52	50	-2
	9	49	58	9
	10	50	75	25

$$\overline{B-A} = 21.4$$
, $\sigma_{B-A} = 29.1$, $t = 2.33$, p-value=.02

Significance Test

- It is not enough to show that system B achieves better score than system A
 - Significance test is essential
- Two-tailed t-test is highly accepted, with α =0.05
 - Sometimes it is required to use others Wilcoxon test: does not assume normal distribution
- Meaning of significance test for IR system
 - When a user uses system B that is significantly better than system A, he/she will feel the difference in performance
 - If system B is better than A but not significantly, the user

signingentiferopeet texament eld

Walid Magdy, TTDS 2020/2021

23

https://powcoder.com

Now, iAddteWeChat pawcoder

Experiment 1			E	Experiment 2			
Query S	ystem A	System B	Query S	System A	System B		
1	0.20	0.40	1	0.02	0.76		
2	0.21	0.41	2	0.39	0.07		
3	0.22	0.42	3	0.16	0.37		
4	0.19	0.39	4	0.58	0.21		
5	0.17	0.37	5	0.04	0.02		
6	0.20	0.40	6	0.09	0.91		
7	0.21	0.41	7	0.12	0.46		
Average	0.20	0.40	Average	0.20	0.40		
t-test n-value - 0			t-toet	t-test n-value = 0.306			

t-test p-value = 0

B is statistically significantly better than A

Walid Magdy, TTDS 2020/2021

t-test p-value = 0.306

B and A are statistically indistinguishable

THE UNIVERSITY of EDINBURGH

Summary

- IR test-collection for automatic evaluation
 - Collection of documents
 - Set of topics
 - Topic = query + details on what is meant and what is relevant
 - Recommended minimum number of 25 topics
 - Relevance judgements
 - Pooling is the most common approach for creating judgements
 - Large number of diverse systems are required
 - Evaluation measure
 - Select the proper measure according to the IR task
 - Significance test is essential to confirm that improvement has real meaning
- Web-search uses different evaluation methods that Assignmente ietojectick want date p

Walid Magdy, TTDS 2020/2021

25

https://powcoder.com

Resourced WeChat powcoder

- Text book 1: Intro to IR, Chapter 8
- Text book 2: IR in Practice, Chapter 8
- Pooling:

Chris Buckley and Ellen M. Voorhees. (2004) Retrieval Evaluation with Incomplete Information. SIGIR 2004

THE UNIVERSITY of EDINBURGH