Trigonometrie

Kartesische Koordinaten: $(x-Koordinate|y-Koordinate) \rightarrow (x|y)$

Polarkoordinaten: $[Radius; Winkel] \rightarrow [r; \varphi]$

Einheitskreis: Kreis mit Mittelpunkt O(0|0) und Radius r=1

Kartesische Koordinaten des Punktes P hängen im Einheitskreis von ϕ ab.

 $\sin \varphi \rightarrow y$ -Koordinate von P \rightarrow Gegenkathete

 $\cos \varphi \rightarrow x$ -Koordinate von P \rightarrow Ankathete

 $\tan \varphi \rightarrow \frac{\sin \varphi}{\cos \varphi} \rightarrow \text{Steigung in P}$

Für jeden Winkel $\varphi \in [0^\circ; 360^\circ]$ gilt: $\sin^2 \varphi + \cos^2 \varphi = 1$

Im rechtwinkligen Dreieck:

$$\sin \varphi = \frac{Gegenkathete}{Hypotenuse}$$
 $\cos \varphi = \frac{Ankathete}{Hypotenuse}$ $\tan \varphi = \frac{Gegenkathete}{Ankathete}$

Vorzeichen der Winkelfunktionen im Einheitskreis:

Quadrant	sin	cos
I	+	+
II	+	-
III	-	-
IV	-	+