Fundamentals of Information Theory

Homework 4

Problem 1 (10 points)

Draw the channel diagram of the following discrete channels. Their channel matrix are shown as follows.

(a) A Z channel

$X \setminus Y$	0	1
0	1	0
1	s	1-s

(b) A binary erasure channel

$X \setminus Y$	0	E	1
0	$1 - s_1 - s_2$	s_1	s_2
1	$ s_2 $	s_1	$1 - s_1 - s_2$

(c) A non-symmetric channel

$X \backslash Y$	0	1
0	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{4}$	$\frac{\overline{2}}{3}$

(d) A semi-symmetric channel

$X \backslash Y$	0	1	2	3
0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$
1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$

Problem 2 (10 points) Find the channel capacity of the following discrete memoryless channel, where $Pr\{Z=0\} = Pr\{Z=a\} = \frac{1}{2}$. The alphabet for x is $X=\{0,1\}$. Assume that Z is independent of X. Observe that the channel capacity depends on the value of a.

Figure 1: An additive noise channel in Problem 7.2.

Problem 3 (10 points) **Erasures and errors in a binary channel.** Consider a channel with binary inputs that has both erasures and errors. Let the probability of error be ϵ and the probability of erasure be α , so that the channel is illustrated as below:

- (a) Find the capacity of this channel.
- (b) Specialize to the case of the binary symmetric channel ($\alpha = 0$).
- (c) Specialize to the case of the binary erasure channel ($\epsilon = 0$).

Figure 2: A binary channel with erasures and errors.