1.5 Resumen

- NumPy es una librería especializada para el calculo numérico.
- Utiliza los array como estructura de datos.
- Solo permite datos de un mismo tipo. Ya sea: Bool, Int, Float, str ...
- Puede tener múltiples dimensiones:
 - o 1D
 - o 2D
 - 3D
 - o N-D
- Podemos crear arrays utilizando listas.
- Para operar entre arrays necesitamos que ambos contengan los mismos tipos de datos.
 - En sumas y restas han de tener las mismas dimensiones
 - En multiplicación y division se debe cumplir la regla de multiplicación de matrices.
- Podemos realizar operaciones entre arrays y escalares (siendo un escalar un número)
- Creación de *arrays*:
 - Podemos tener *arrays* de diferentes dimensiones:

```
- Una dimensión : np.array(lista)
```

- Dos dimensiones: np.array(lista1, lista)
- Tres dimensiones: np.array(lista1(lista), lista2(lista))
- Métodos de arrays:
 - .shape : Nos devuelve la forma del *array*.
 - En un *array* bidimensional nos devuelve: numero filas X numero de columnas
 - En un *array* multidimensionales: numero de matrices X numero de filas X numero de columnas
 - .size: Nos devuelve el tamaño del *array*, que es el número de elementos.
 - .ndim: Nos devuelve el número de dimensiones del array.

- o .dtype: Nos devuelve el tipo de dato que contiene nuestro array.
- Métodos de creación de arrays:
 - np.random.randint(): nos genera un array de X dimensiones con números aleatorios ENTEROS

```
np.random.randint(1, 20, (2,3,4))
```

 np.random.rand(): nos genera un array de X dimensiones con números aleatorios entre 0-1. PARA ESPECIFICAR LA FORMA Y DIMENSIONES LO PONEMOS SIN PARENTESIS

```
array2 = np.random.rand(2,4)
```

 np.random.random_sample(): nos genera un array de X dimensiones con números aleatorios entre 0-1. PARA ESPECIFICAR LA FORMA Y DIMENSIONES LO PONEMOS CON PARENTESIS

```
array = np.random.random_sample((3,4,5))
```

o np.ones(): nos genera un array solo de 1.

```
unos = np.ones((2,3), dtype = int)
# el parametro dtype nos permite "castear" el tipo de dato a int
```

np.zeros(): nos genera un array solo de 0.

```
ceros = np.zeros((2,3,4), dtype = int)
```

o np.empty(): nos genera un array vacío con la forma del array que le pasemos.

```
vacio = np.empty((2,3))
```

- o np.array(): nos genera arrays a partir de una lista, o de una lista de listas.
- np.arange(): SOLO CREA ARRAYS UNIDIMENSIONAL.
- Podemos hacer operaciones en NumPy:
 - Podemos sumar con: + o np.add()
 - Restar con: , np.subtract()
 - Multiplicar con: * , np.multiply()
 - o Dividir con: / , np.divide()
 - Podemos hacer todas las operaciones que queramos!!!!
 - Podemos hacer operaciones con escalares, números enteros o decimales.

- La Indexación en arrays es como en listas, siempre empieza en cero y siempre debe de ir entre corchetes.
- Indexación en función de las dimensiones
 - Unidimensional: array[i], donde [i] = columna
 - Bidimensional: array [i,j] = array[i][j], donde [i] = fila, [j] = columna
 - Multimensional: array[i,j,k] = array[i][j][k], donce [i] = array, [j] = fila,
 [k] = columna
- Indexación basado en rangos:
 - Unidimensional: array[inicio:fin:salto]
 - Bidimensional:

```
array[inicio:fin:salto,inicio:fin:salto] = array[inicio:fin:salto]
[inicio:fin:salto]
```

Multimensional:

```
array[inicio:fin:salto,inicio:fin:salto] =
array[inicio:fin:salto][inicio:fin:salto]
```

- Podemos filtrar aplicando operadores < , > , >= , <= , == .
 - o array[array (operador) condicion]
 - :Eg array[array > condicion]
 - Si queremos meter más de una condición: & o
 - array[array (operador) condicion1 anidamiento array (operador)
 condicion2]
 - : Eg array[(array < 2) | (array > 5)]
- Métodos:
 - o np.transpose(): invierte los ejes de nuestra matriz o si se le especifica el orden, nos permuta los ejes de la matriz.
 - o np.swapaxes(): intercambia dos ejes de la matriz, indicando sobre que ejes queremos realizar la operación
 - o np.reshape(): cambia la forma de la matriz a la forma especificada.
 - o np.copy(): realiza una copia completa de un array NumPy, incluyendo sus datos y su estructura.
 - o np.flatten(): se utiliza para convertir un array multidimensional en un array unidimensional, es decir, aplana el array.

2.5 Resumen

1. Introducción a pandas:

Importación de la biblioteca pandas :

```
import pandas as pd
```

Importa pandas, proporcionando acceso a sus funciones y estructuras de datos bajo el alias pd.

- Creación de objetos Series en pandas :
 - Serie vacía:

```
serie_vacia = pd.Series()
```

Crea una serie sin elementos, útil como punto de partida para operaciones que acumulan datos dinámicamente.

Serie a partir de una lista:

```
lista = [23, 45, 17, 83, 67]
serie_lista1 = pd.Series(lista)
```

Convierte una lista de valores en una serie con índices numéricos automáticos desde cero.

Serie con índices personalizados:

```
serie_lista3 = pd.Series(lista, index=["Lunes", "Martes", "Miércoles
```

Asigna cada número de la lista a un día específico, facilitando la referencia por etiqueta.

2. Selección de Datos en DataFrames:

- Uso de los métodos loc y iloc :
 - o loc:

```
valor = df.loc["Martes", "Humedad"]
```

Selecciona datos por nombre de fila y columna, ideal para dataframes con índices o columnas etiquetados.

o iloc:

```
valor = df.iloc[1, 2]
```

Selecciona datos por posición numérica, similar a la indexación en matrices o arrays.

- Diferencias entre loc e iloc :
 - loc incluye el extremo final en rangos, mientras que iloc no:

```
df.loc[0:2] # Incluye las filas 0, 1, y 2
df.iloc[0:2] # Incluye las filas 0 y 1, pero no la 2
```

3. Manipulación de DataFrames:

Creación de nuevas columnas:

```
df['nueva_columna'] = df['columna_existente'] * 2
```

Genera una nueva columna calculando valores a partir de los datos existentes, duplicando, por ejemplo, el valor de una columna existente.

Uso de condiciones para filtrar datos:

```
df_filtrado = df[(df['precio'] > 10) & (df['ventas'] > 5000)]
```

Extrae un subconjunto del DataFrame original, seleccionando filas que cumplen con condiciones específicas de precio y volumen de ventas.

3.4 Resumen

Tomando a "data" como el nombre de nuestro DataFrame tendremos los siguientes metodos.

Método	Descripción	Ejemplo
pd.read_csv()	Cargar datos desde un archivo CSV en un DataFrame.	<pre>import pandas as pd data = pd.read_csv('archivo.csv')</pre>
.head()	Muestra las primeras filas de un DataFrame.	data.head()
.tail()	Muestra las últimas filas de un DataFrame.	data.tail()
.sample()	Devuelve filas aleatorias de un DataFrame.	data.sample(3)
.shape	Devuelve el número de filas y columnas.	data.shape
.columns	Muestra los nombres de las columnas.	data.columns
unique()	Devuelve valores únicos en una columna.	<pre>data['columna'].unique()</pre>
value_counts()	Cuenta la frecuencia de valores únicos en una columna.	<pre>data['columna'].value_counts ()</pre>
select_dtypes()	Selecciona columnas por tipo de datos.	<pre>data.select_dtypes(include= ['int'])</pre>
drop()	Elimina filas o columnas de un DataFrame.	<pre>data.drop(columns= ['columna_a_eliminar'], inplace=True)</pre>
.info()	Muestra información sobre el DataFrame.	data.info()

Método	Descripción	Ejemplo
.isnull().sum()	Calcula la cantidad de valores nulos en cada columna.	<pre>data.isnull().sum()</pre>
<pre>.notnull().sum()</pre>	Calcula la cantidad de valores no nulos en cada columna.	<pre>data.notnull().sum()</pre>
<pre>.duplicated().s um()</pre>	Calcula la cantidad de filas duplicadas en el DataFrame.	<pre>data.duplicated().sum()</pre>
describe()	Proporciona estadísticas descriptivas del DataFrame.	<pre>data.describe() 0 df.describe(include = "object")</pre>

Ejercicios

- 1- Abrid el fichero de rating-and-performance con el método que sea más correcto (este archivo deberias haberlo descargado en el tema anterior).
- 2- Mostrad las 10 últimas filas.
- 3- Mostrad 5 filas aleatorias del DataFrame.
- 4- ¿Cuántas filas y columnas tenemos en el DataFrame?
- 5- ¿Cuáles son los nombres de las columnas del DataFrame?
- 6- Seleccionad solo las columnas de tipo categórico del DataFrame. Después, mostrad los valores únicos y sus frecuencias para cada una de las columnas seleccionadas.
- 7- En el DataFrame tenemos dos columnas que parece que nos dan la misma información "title" y "title_orig". Eliminad "title".
- 8- ¿En que columnas tenemos valores nulos? Utilizad el método que más os guste.
- 9- ¿Tenemos valores duplicados en el DataFrame?

4.4 Resumen

Resumen de los métodos aprendidos.

Método	Descripción	Ejemplo en Python
concat	Combina DataFrames a lo largo de un eje específico.	<pre>result = pd.concat([df1, df2])</pre>
merge	Combina DataFrames utilizando columnas comunes.	<pre>result = pd.merge(df1, df2, on='clave')</pre>
join	Combina DataFrames utilizando índices o columnas.	<pre>result = df1.join(df2, on='clave')</pre>
rename	Cambia los nombres de columnas o índices.	<pre>df.rename(columns= {'anterior': 'nuevo'}, inplace=True)</pre>
set_index	Establece una columna como índice del DataFrame.	<pre>df.set_index('columna')</pre>
drop	Elimina filas o columnas del DataFrame.	<pre>df.drop(columns= ['columna'], inplace=True)</pre>
str.lower	Convierte el contenido de una columna a minúsculas.	<pre>df['columna'].str.lower()</pre>
str.split	Divide una cadena en columnas separadas.	<pre>df['columna'].str.split(',')</pre>
str.replace	Reemplaza una cadena o patrón en una columna.	<pre>df['columna'].str.replace('vi ejo', 'nuevo')</pre>
isin	Comprueba si los elementos están en una lista.	<pre>df['columna'].isin(['valor1', 'valor2'])</pre>
between	Filtra filas basadas en valores en un rango.	<pre>df[df['columna'].between(5, 10)]</pre>
str.contains	Comprueba si una columna contiene un patrón.	<pre>df['columna'].str.contains('p atrón')</pre>

Unión de Datos

- Para unir todo en un único csv podemos usar
 - pd.concat(): es el más fácil, los nombres de las columnas se tienen que llamar igual. Los ejes:
 - axis = 0 filas DEBAJO
 - axis = 1 filas a la DERECHA
 - pd.merge(): es el más el común para añadir nuevas columnas. Podemos incluir:
 - how: especificamos como unimos los dataframes, puede ser inner, right, left...
 - on y right_on/left_on:
 - on: si los nombres de las columnas por las que queremos unir son iguales
 - right_on/left_on: si los nombres de las columnas por las que queremos unir son distintas
 - pd.join(): es como un merge, peeero UNA DE LAS COLUMNAS POR LAS QUE
 QUEREMOS UNIR TIENE QUE SER UN ÍNDICE.
 - rsuffix y Isuffix: cuando tenemos columnas que se llaman igual, pero no son las columnas que usaremos para unir los dataframes, podemos usar estos parámetros para especificar el nombre "nuevo".
 - reset_index(): cuando unimos tablas que tienen los mismos índices es aconsejable hacer un reset_index() para que nuestros vayan del 0-n sin que se repita ninguno.
- ★ NOTA Para el concat y el axis = 1, cuidado que une con índices.

Filtrado de datos

- Formas de filtrar datos
 - Filtrar por condición
 - df["Column"] == "Nevada" : una serie de True y False

```
- df[df["Column"] == "Nevada" : filtro mi DataFrame por las filas que sean
True
```

Combinar condiciones con & (and), | (or), ~ (not)

```
- (df["Provincia"] == "Madrid") | (df["Provincia"] == "Barcelona") :
Una Serie de True y False
```

```
df[ (df["Provincia"] == "Madrid") | (df["Provincia"] ==
"Barcelona") ]
```

: un DataFrame filtrado

```
df[ ~((df["Provincia"] == "Madrid") | (df["Provincia"] ==
   "Barcelona")) ]
```

: filtrado al revés

Podemos guardar en variables los filtros:

```
filtro =
  (df["Provincia"] == "Madrid") |(df["Provincia"] == "Barcelona")

filtro_inverso = df[~filtro]

df["Column"].isin(values)

df["Provincia"].isin(["Madrid", "Barcelona"])

str.contains(): filtrar con un patron de regex
```

Guardar el dataset filtrado

Tenemos que hacer la asignación de variable a un nuevo DataFrame

```
df_nevada = df2[ df2["Column"] == "Nevada" ]
```

5.4 Resumen

Resumen de lo aprendido en el groupby

Método groupby	Descripción	Ejemplo en Python
.groupby()	Agrupa un DataFrame por columnas específicas.	<pre>grupos = df.groupby('columna')</pre>
.agg()	Realiza agregaciones en grupos.	<pre>resultados = grupos['columna_agregada'].agg(['sum', 'mean'])</pre>
.count()	Cuenta los elementos en cada grupo.	<pre>conteo = grupos['columna'].count()</pre>
.sum()	Calcula la suma de valores en grupos.	<pre>suma = grupos['columna'].sum()</pre>
.mean()	Calcula el promedio en grupos.	<pre>promedio = grupos['columna'].mean()</pre>
.max()	Encuentra el valor máximo en grupos.	<pre>maximo = grupos['columna'].max()</pre>
.min()	Encuentra el valor mínimo en grupos.	<pre>minimo = grupos['columna'].min()</pre>
.std()	Calcula la desviación estándar en grupos.	<pre>desviacion = grupos['columna'].std()</pre>
.median()	Calcula la mediana en grupos.	<pre>mediana = grupos['columna'].median()</pre>
.ngroups	Devuelve el número de grupos creados.	<pre>num_grupos = grupos.ngroups</pre>

Usos:

o Analiza datos de algunas categorías

- Divide, aplica (un estadístico) y agrupa (en función de la columna o columnas que especifiquemos)
- Si no le pasamos un estadístico nos devuelve un objeto de tipo groupby
- Filtra los datos
- Para convertir el resultado del groupby a un DataFrame:
 - EL_RESULTADO_DEL_GROUPBY.reset_index()
 - pd.DataFrame(EL_RESULTADO_DEL_GROUPBY)
- Estadísticos:
 - Se puede sacar un estadístico para todas las columnas o para una sola columna:

```
# PARA TODAS LAS COLUMNAS
df.groupby("gender").count()

# PARA UNA COLUMNA
df.groupby("gender")["num_polices"].count()
```

• También podemos incluir múltiples condiciones

```
# ESTAMOS HACIENDO UNA AGRUPACIÓN POR GÉNERO Y TAMAÑO DE VEHÍCULO
df.groupby(["gender", "vehicule_size"])["num_polices"].count()
```

Si quiero calcular más de un estadístico ==

```
.agg(TIENE QUE IR EN FORMATO LISTA)

df.groupby("gender")["col1"].agg(["mean", "std"])
```

- Nulos:
 - Tenemos el parámetro dropna.
 - El groupby por defecto **LOS IGNORA**, es decir, dropna = True.
 - En caso de que queramos que **nos incluya** los nulos tendremos que establecer dropna = False.

Apply

• Utilizamos el metodo .apply() para aplicar una misma función a las filas o columnas de un objeto DataFrame de Pandas.

- Sintaxis general: df['nombre_columna'].apply(funcion_a_aplicar)
- Utilizamos el metodo apply con lambdas, cuando queremos aplicar la misma funcion a varias columnas o utilizar funciones con más de un argumento.
 - Sintaxis general:

```
df.apply(lambda x:funcion_a_aplicar(argumento1,argumento2))
```

- Si no tenemos una funcion definida previamente podemos aplicarlo directamente. Eg: df.apply(lambda x:df[columna_1]/df[columna_2])
- Funcion que recibe un parametro: SOLO APPLY

```
df[col].apply(mifuncion)
```

 OJO!!! QUE SI MI FUNCIÓN RECIBE UN PARAMETRO PERO EN EL RETURN TENEMOS MAS DE UN VALOR ENTONCES APPLY + LAMBDA

```
df.apply(lambda lola: mifuncion(lola[col1]), axis = 1, result_type =
```

Funcion que recibe mas de un parametro: APPLY + LAMBDA

```
df.apply(lambda lolo: mifuncion(lolo[col1], lolo[col2]), axis = 1)
```

Repaso de lo aprendido en el apply y métodos de limpieza

Método	Descripción	Ejemplo en Python
max	Encuentra el valor máximo en una serie o DataFrame.	<pre>df['columna'].max()</pre>
min	Encuentra el valor mínimo en una serie o DataFrame.	<pre>df['columna'].min()</pre>
dtypes	Devuelve los tipos de datos de las columnas.	df.dtypes
apply	Aplica una función a lo largo de una serie o DataFrame.	<pre>df['columna'].apply(funcion)</pre>
map	Reemplaza los valores en una serie utilizando un mapeo.	df['columna'].map(mapeo)
replace	Reemplaza valores específicos en una serie o DataFrame.	<pre>df['columna'].replace({valor</pre>

6.3 Resumen

Instalación de Librerías

Instalar las siguientes librerías:

- scikit-learn
- seaborn
- matplotlib

Importación de Librerías

Se importan pandas, numpy, y las herramientas de sklearn para imputación de nulos, junto con seaborn y matplotlib para visualización.

Estrategias para la Imputación de Nulos

La imputación se diferencia de inventar datos ya que utiliza criterios basados en los datos vecinos.

Métodos Comunes de Imputación

- 1. **Imputación Simple** usando la media, mediana o moda.
- 2. Imputación Iterativa utilizando modelos predictivos.
- 3. KNN Imputation utilizando los k vecinos más cercanos.

Visualización de Datos

Métodos de Gestión de Valores Nulos

Métodos	Pros	Contras
drop()	Fácil de usar y entender.Elimina filas o columnas completas con valores nulos.	 Puede resultar en la pérdida de información si se eliminan muchas filas o columnas. Puede afectar la representatividad de la muestra si se eliminan muchas filas.
dropna()	 Permite eliminar filas o columnas con valores nulos de manera flexible. Permite especificar condiciones adicionales para la eliminación. 	 Puede resultar en la pérdida de información si se eliminan muchas filas o columnas. Puede afectar la representatividad de la muestra si se eliminan muchas filas.
fillna()	 Permite reemplazar los valores nulos con valores específicos, como la media, mediana o moda. Permite personalizar el valor de reemplazo según las necesidades. 	 - La elección del valor de reemplazo puede afectar los resultados del análisis. - No tiene en cuenta las relaciones entre variables.
SimpleImputer	 Permite imputar un mismo valor a todos los registros nulos de una columna. Puede utilizar estadísticos como la media, mediana o moda como valor de imputación. 	 No tiene en cuenta las relaciones entre variables. No es adecuado para datos categóricos o variables con distribuciones no normales.
KNNImputer	- Utiliza el algoritmo de los k-vecinos más cercanos para imputar valores nulos basándose en los valores de los vecinos más cercanos.	 Requiere un tamaño de muestra suficientemente grande para obtener estimaciones precisas. Puede ser

Métodos	Pros	Contras
	- Puede capturar relaciones no lineales entre variables.	computacionalmente costoso para conjuntos de datos grandes.
IterativeImputer	 Utiliza un enfoque iterativo para imputar valores nulos basado en modelos de aprendizaje automático. Puede capturar relaciones complejas y no lineales entre variables. 	 Requiere un tamaño de muestra suficientemente grande para obtener estimaciones precisas. Puede ser computacionalmente costoso para conjuntos de datos grandes.

Conclusiones

- La imputación es crucial para el análisis de datos.
- Diferentes métodos deben ser utilizados según el tipo de variable.
- La visualización es esencial para validar la imputación.

7.3 Resumen

Resumen

En esta lección, aprendiste a utilizar diversas herramientas y técnicas para la visualización de datos en Python, específicamente con la librería Seaborn.

Conceptos Clave

- 1. **Violin Plot**: Combina características de boxplot y KDE plot para mostrar la distribución de datos.
 - Sintaxis básica:

```
sns.violinplot(x, y, data, color, palette, linewidth)
```

- Parámetros importantes:
 - x : Variable categórica.
 - y : Variable numérica.
 - data: DataFrame con los datos.
 - color: Color para una sola variable.
 - o palette: Paleta de colores para variables categóricas.
 - linewidth: Grosor de las líneas.

2. Interpretación del Violin Plot:

- La forma del violín muestra la distribución.
- Los picos indican densidad alta de datos.
- La línea central puede representar la mediana o la media.
- 3. **Boxplot**: Visualiza la distribución de datos a través de sus cuartiles y valores atípicos.
 - Sintaxis básica:

```
sns.boxplot(x, y, data, hue, palette)
```

- Parámetros:
 - hue : Agrupación adicional.

4. Subplots y Facets:

- Utilización de plt.subplots y sns.FacetGrid para crear múltiples gráficos en una sola figura.
- 5. **Heatmaps**: Representan datos matriciales mediante colores.
 - Sintaxis básica:

```
sns.heatmap(data, annot, cmap)
```

- Parámetros:
 - annot : Anotaciones en cada celda.
 - cmap : Mapa de colores.

Notas

- Todas las gráficas deben tener título.
- Etiquetas de los ejes deben estar en español.
- Se anima a personalizar las gráficas para practicar.

Métodos para modificar las gráficas:

Modificación	Método sin subplot	Método con subplot
Añadir titulo	plt.title()	axes[n].set_title()
Cambiar nombre del eje x	plt.xlabel()	axes[n].set_xlabel()
Cambiar nombre del eje x	plt.ylabel()	axes[n].set_ylabel()
Quitar linea de la derecha	plt.gca().spines['right'].se t_visible(False)	axes[n].spines['right'].set _visible(False)
Limitar el eje x	plt.xlim()	axes[n].set_xlim()
Limitar el eje y	plt.ylim()	axes[n].set_ylim()

Cambiar las propiedades de las etiquetas del eje x	plt.xticks()	axes[n].set_xticks()
Cambiar las propiedades de las etiquetas del eje y	plt.yticks()	axes[n].set_yticks()

8.6 Resumen

¿Qué es la estadística descriptiva?

La estadística descriptiva es una rama de la estadística que se encarga de recolectar, analizar y caracterizar un conjunto de datos con el objetivo de describir las características de dicho conjunto.

Tipos de medidas en estadística descriptiva

- Medidas de centralización: Indicadores que muestran el centro de una distribución de datos.
- Medidas de dispersión: Indicadores que muestran la variabilidad de los datos.
- Medidas de correlación: Indicadores que muestran la relación entre dos variables.

Medidas de centralización

- Media: La media aritmética es el promedio de un conjunto de datos, calculado sumando todos los valores y dividiendo por el número total de datos.
- Mediana: La mediana es el valor que separa la mitad superior de la mitad inferior de un conjunto de datos ordenados.
- Moda: La moda es el valor que aparece con mayor frecuencia en un conjunto de datos.

Medidas de dispersión

- Rango: El rango es la diferencia entre el valor máximo y el valor mínimo de un conjunto de datos.
- Varianza: La varianza mide la dispersión de los datos con respecto a la media. Se calcula como el promedio de las diferencias al cuadrado entre cada valor y la media.
- Desviación estándar: La desviación estándar es la raíz cuadrada de la varianza y proporciona una medida de la dispersión de los datos en las mismas unidades

que los datos originales.

Medidas de correlación

- Covarianza: La covarianza indica la dirección de la relación lineal entre dos variables.
- Coeficiente de correlación: El coeficiente de correlación mide la fuerza y la dirección de la relación lineal entre dos variables, con valores que van desde -1 hasta 1.

Conclusión

La estadística descriptiva es una herramienta fundamental para el análisis y la comprensión de datos. A través de sus diferentes medidas, es posible obtener una visión clara y concisa de las características principales de un conjunto de datos.

9.7 Resumen

La estadística inferencial permite hacer generalizaciones sobre una población basándose en los datos obtenidos de una muestra. A diferencia de la estadística descriptiva, que se enfoca en describir los datos, la inferencial se centra en hacer predicciones y pruebas de hipótesis.

¿Qué diferencia hay entre estadística descriptiva y estadística inferencial?

- Estadística descriptiva: Se utiliza para describir y resumir los datos de una muestra mediante gráficos, tablas y medidas de resumen como la media, mediana y desviación estándar.
- **Estadística inferencial**: Se utiliza para hacer inferencias sobre una población a partir de una muestra, utilizando métodos como intervalos de confianza y pruebas de hipótesis.

Conceptos de Población y Muestra

Población

Es el conjunto completo de todos los elementos que estamos interesados en estudiar.

Muestra

Es un subconjunto de la población que se selecciona para el estudio. Debe ser representativa para que las conclusiones sean válidas.

Diferencia entre Población y Muestra

La población incluye todos los elementos posibles de estudio, mientras que la muestra es solo una parte seleccionada de la población.

Distribución de la muestra

La distribución de la muestra describe cómo se distribuyen los valores de la muestra y se utiliza para hacer inferencias sobre la población.

Hipótesis nula vs Hipótesis alternativa

- Hipótesis nula (HO): Es una afirmación general o defecto que no hay efecto o diferencia.
- **Hipótesis alternativa (H1)**: Es lo opuesto a la hipótesis nula, indicando que hay un efecto o una diferencia significativa.

Pasos en la prueba de hipótesis

- 1. Plantear las hipótesis nula y alternativa.
- 2. Seleccionar un nivel de significancia.
- 3. Recopilar y analizar los datos de la muestra.
- 4. Tomar una decisión basada en los resultados.

Intervalos de confianza

Un intervalo de confianza proporciona un rango de valores, derivado de los datos de la muestra, que probablemente contiene el valor verdadero del parámetro de la población.

Error Tipo I y Tipo II

- Error Tipo I: Rechazar la hipótesis nula cuando es verdadera.
- Error Tipo II: No rechazar la hipótesis nula cuando es falsa.

Distribución muestral de la media

La distribución de la media muestral se utiliza para entender cómo varía la media de la muestra y se aproxima a la distribución normal según el Teorema Central del Límite.

Pruebas de hipótesis

Las pruebas de hipótesis son procedimientos que permiten decidir si los datos de la muestra proporcionan suficiente evidencia para rechazar la hipótesis nula.

Tipos de pruebas

- Prueba t de Student
- Prueba Z
- Pruebas no paramétricas

Conclusión

La estadística inferencial es una herramienta poderosa que permite tomar decisiones informadas y hacer predicciones basadas en datos muestrales. Es fundamental comprender los conceptos de hipótesis, intervalos de confianza y errores para interpretar correctamente los resultados.

10.2 Resumen

El A/B testing es una técnica utilizada en marketing y la investigación de usuarios para comparar dos versiones de un elemento con el fin de determinar cuál es más efectiva para lograr un objetivo específico, usualmente relacionado con la conversión.

Importancia para los Analistas de Datos

- 1. Optimización de Decisiones
- 2. Mejora de Experiencia de Usuario
- 3. Evidencia Empírica

Flujo de Trabajo en A/B Testing

- 1. Definir Objetivos
- 2. Formular Hipótesis
- 3. Seleccionar Métricas
- 4. Dividir la Audiencia
- 5. Implementar Variaciones
- 6. Recoger Datos
- 7. Analizar Datos
- 8. Pruebas Estadísticas
- 9. Interpretar Resultados

Conclusiones

- El A/B Testing es crucial para la optimización continua.
- Permite decisiones informadas basadas en datos.
- Requiere planificación y análisis rigurosos.