Rachunek prawdopodobieństwa 2R 2023 lista 5: Twierdzenie o zatrzymaniu

1. Uzasadnij, że jeżeli $\{X_n\}_{n\in\mathbb{N}}$ są niezależnymi całkowalnymi zmiennymi losowymi o tym samym rozkładzie, a T jest czasem zatrzymania względem filtracji $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, takim, że $\mathbb{E}[T] < \infty$, to

$$\mathbb{E}\left[S_T\right] = \mathbb{E}[T] \cdot \mathbb{E}[X_1],$$

gdzie $S_n = X_1 + \cdots + X_n$.

- 2. Rzucamy kostką tak długo, aż pięciokrotnie wyrzucimy szóstkę. Znajdź średnią wartość sumy wyrzuconych oczek.
- 3. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie niesymetrycznym spacerem losowym na \mathbb{Z} (tzn. $X_n = \sum_{k=1}^n \xi_k$, gdzie ξ_k są iid takie, że $\mathbb{P}[\xi_k = 1] = 1 \mathbb{P}[\xi_k = -1] = p \neq 1/2$) i niech $T = \min\{n : X_n = -j \text{ lub } X_n = k\}$ dla ustalonych k, j > 0.
 - (a) Pokaż, że $M_n = X_n + n(1 2p)$ jest martyngałem.
 - (b) Wykorzystując twierdzenie Dooba oblicz $\mathbb{E}[T]$.
- 4. Niech $\{M_n\}_{n\in\mathbb{N}}$ będzie nieujemnym martyngałem. Pokaż, że dla m>n, $\{M_n=0\}\subseteq\{M_m=0\}$ p.w.
- 5. Niech $\mathbb{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ będzie filtracją.
 - (a) Pokaż, że dla każdych $m, n \in \mathbb{N}$, m < n i zdarzenia $A \in \mathcal{F}_m$ zmienna losowa

$$\tau = m + (n - m) \mathbb{1}_A$$

jest F-czasem zatrzymania.

(b) Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie \mathbb{F} -adaptowalnym ciągiem całkowalnych zmiennych losowych takim, że

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$$

dla każdego skończonego czasu zatrzymania τ . Pokaż, że $\{X_n\}_{n\in\mathbb{N}}$ jest \mathbb{F} -martyngałem.

6. Niech $\{M_n\}_{n\in\mathbb{N}}$ będzie nieujemnym martyngałem o wartościach całkowitych takim, że $M_0=m\geq 1$, $M_n-M_{n-1}\leq 1$ oraz $M_n\to 0$ p.w. Pokaż, że dla $k\geq m$,

$$\mathbb{P}\left[\sup_{n\in\mathbb{N}}M_n\geq k\right]=\frac{m}{k}.$$

7. Niech Y_k będą iid takie, że $\mathbb{P}[Y_k \in \{-1,0,1\}] = 1$ oraz $\mathbb{E}[Y_k] = 0$. Niech $S_0 = 0$, $S_n = Y_1 + \ldots + Y_n$. Dla $k \in \mathbb{N}$ rozważmy moment zatrzymania

$$\tau_{-k}=\inf\{n\,:\,S_n=-k\}.$$

Znajdź rozkład zmiennej losowej

$$\sup_{n\leq\tau_{-k}}S_n.$$