

Общероссийский математический портал

В. А. Мерзляков, К упругопластическому деформированию оболочек вращения переменной в двух направлениях жесткости, Исслед. по теор. пластин и оболочек, 1992, выпуск 25, 81–86

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:17:01

В.А.Мераляков

К УПРУГОПЛАСТИЧЕСКОМУ ЛЕФОРМИРОВАНИЮ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ В ДВУХ НАПРАВЛЕНИЯХ ЖЕСТКОСТИ

В [I, 2] исследовано неосесимметричное упругопластическое напряженно-деформированное состояние оболочек вращения переменной жесткости в двух направлениях. Разрешающая система уравнений получена в этих работах на основе комбинации метода интегральных со отношений [3] и метода переменных параметров упругости. В отличие от [I, 2] будем использовать для линеаризации физических уравне ний метод упругих решений, который хоть и замедляет сходимость итерационного процесса, однако позволяет получить менее громозд кую систему дифференциальных уравнений, оператор которой не зависит от напряженно-деформированного состояния. Это дает возмож ность существенно сократить время решения упругопластических задач теории тонких оболочек на ЭВМ.

Рассмотрим упругопластическое напряженно-деформированное состояние оболочки со срединной поверхностью в виде поверхности вращения и переменной в двух координатных направлениях толщиной. Задача решается на основе гипотез Кирхгофа — Лява в геометрически линейной постановке. Предполагается, что в процессе нагружения элементы оболочки деформируются по траекториям, мало отличающимся от прямолинейных.

Положение точки срединной поверхности оболочки определим длиной дуги меридиана S и центральным углом θ в параллельном круге. Расстояние произвольной точки оболочки от срединной поверхности обозначим через ζ .

Связь между усилиями \mathcal{N}_s , $\mathcal{N}_ heta$, S, моментами \mathcal{M}_s , $\mathcal{M}_ heta$, \mathcal{H}

деформациями срединной поверхности запишем

$$N_{S} = D_{M}(\mathcal{E}_{S} + \mathcal{I}_{0}\mathcal{E}_{\theta} + \mathcal{P}_{S}), (S \neq \theta); S = \frac{1}{2}(1 - \mathcal{I}_{0})D_{M}(\mathcal{E}_{S\theta} + \mathcal{P});$$

$$M_{S} = D_{M}(\mathcal{X}_{S} + \mathcal{I}_{0}\mathcal{X}_{\theta} + \mathcal{I}_{S}), (S \neq \theta); H = (1 - \mathcal{I}_{0})D_{M}(\mathcal{X}_{S\theta} + \mathcal{I});$$

$$D_{M} = 2 G_{0}h/(1 - \mathcal{I}_{0}); D_{M} = G_{0}h^{3}/[G(1 - \mathcal{I}_{0})].$$
(1)

Здесь D_N , D_M — жесткости при растяжении (сжатии) и изгибе, G_0 , G_0 , G_0 — модуль сдвига и коэффициент Пуассона при температуре естественного ненапряженного состояния G_0 , G_0 , G_0 — толщина оболочки; G_0 , G_0

ки, учитывающие тепловые и пластические деформации, а также зависимость механических свойств материала от температуры [4, 5].

Для конкретизации интегральных характеристик используем со отношения теории малых упругопластических деформаций, линеаризи рованные методом упругих решений. В качестве разрешающих функций
выберем переменные [4]

$$N_r, N_z, \hat{S}, M_S, U_r, U_z, v, v_S$$
, (2)

где r — радиус параллельного круга; z — расстояние по оси вра — щения; N_r , N_z — радиальное и осевое усилия в сечении s = cottot; s — приведенное сдвигающее усилие; s — меридиональный изгибающий момент; s — радиальное и осевое перемещения; s — окружное перемещение; s — меридиональный угол поворота.

Использование линейных геометрических уравнений, уравнений равновесия в форме В.В.Новожилова и соотношений термопластичности (I) позволяет, следуя процедуре, подробно описанной в [3, 4], получить для выбранных разрешающих функций (2) систему дифференци альных уравнений в частных производных

$$\partial Y/\partial S = P(S,\theta)Y + F(S,\theta), \qquad (3)$$

где $Y(S,\theta) = \{y_i(S,\theta)\}$ — вектор разрешающих функций (2); $p(S,\theta) = \{p_{i,j}(S,\theta)\}$ — дифференциальный оператор; $F(S,\theta) = \{p_{i,j}(S,\theta)\}$ — вектор правых частей; $p_{i,j}(S,\theta)$ и $p_{i,j}(S,\theta)$ не приводятся ввиду их громоздкости.

Специфика системы (3) состоит в том, что дифференциальный оператор $p(s,\theta)$ не зависит от напряженно-деформированного состояния, а члени, учитывающие тепловые и пластические деформации, а также зависимость механических свойств материала от температуры, входят лишь в $F(s,\theta)$.

$$y_i(s,\theta) = \sum_{n=0}^{N} y_{in}(s) \cos n\theta, i = 1,2,4,5,6,8;$$
 (4)

$$y_i(s, \theta) = \sum_{n=0}^{N} y_{in}(s) \sin n\theta, i = 3.7$$

дает возможность, используя мето интегральных соотношений, полу - чить в каждом последовательном приближении систему обыкновенных дифференциальных уравнений

$$dZ/ds = A(s)Z + \Phi(s) , \qquad (5)$$

где
$$\mathcal{Z} = \{y_{in}\} = \{y_{10}, ..., y_{80}, y_{11}, ..., y_{81}, ..., y_{1N}, ..., y_{8N}\};$$

$$\mathbb{Q} = \{\{y_{in}\}\}; i = 1, 2, ..., 8, n = 0, 1, ..., N.$$

На торцах оболочки для амплитудных значений разрешающих функций или их линейных комбинаций должны выполняться граничные условия

$$D_1 \mathcal{Z} = \emptyset_1 \quad \text{на торие} \quad S = S_0 \quad , \tag{6}$$

$$\mathbb{D}_{2}\mathcal{Z} = \emptyset_{2} \quad \text{на торце} \quad S = S_{\mathbf{M}} \,, \tag{7}$$

где \mathbb{D}_{4} , \mathbb{D}_{2} — матрицы граничных условий на торцах оболочки; \mathfrak{b}_{4} , \mathfrak{b}_{2} — векторы амплитудных значений разрешающих функций на торцах. Системы (5), в отличие от получаемых в случае постоянных по окружности толщин [4, 5], не распадаются на ряд подсистем восьмо-

го порядка, а имеют размерность 8х (N+1). В каждом последова - тельном приолижении эти системы сводятся к ряду задач Коши, которые интегрируем методом Рунге - Кутта с дискретной ортогонализа - цией и нормализацией частных решений по С.К.Годунову. Решение краевой задачи (5) - (7) разыскивается в виде

$$\mathcal{Z} = \sum_{q=1}^{m} C_q \mathcal{Z}_{q} + \mathcal{Z}^* , \qquad (8)$$

где $\mathfrak{M}=4\times(\mathfrak{N}+1)$; $\mathfrak{Z}_{\hat{\mathfrak{q}}}$ — линейно независимые решения задач Коши для однородной системы уравнений (5) (\mathfrak{P} (\mathfrak{S}) = 0) с нача — льными условиями для заданных разрешающих функций на левом краю, равными нулю, а для остальных — поочередно равными столоцам еди — ничной матрицы; \mathfrak{Z}^* — решение задачи Коши для системы (5) с на — чальными условиями, совпадающими с заданными граничными условиями на левом торце, а для остальных — равными нулю; $\mathfrak{C}_{\mathfrak{q}}$ — постоянные интегрирования, определяемые из условия удовлетворения решения правым граничным условиям (7). При этом используется независи — мость оператора A от напряженно—деформированного состояния, что

позволяет вычислять этот оператор и $\mathcal{Z}^0 = \sum_{k=1}^m \mathbb{C}_k \mathcal{Z}_k$ лишь в первом приближении используемого метода упругих решений. Таким образом, в первом приближении необходимо интегрировать 4 (N+I) + I за дач Коши, а во всех последующих — лишь одну. Эти особенности позволяют существенно сократить время решения задачи на ЭЕМ.

На основе приведенной методики разработан пакет прикладных программ для ЕС ЭВМ. Для проверки правильности методики и пакета прикладных программ рассмотрим упругое состояние цилиндрической оболочки переменной по окружности толщини, для которой в монографии [3] приводится точное решение. Материал оболочки — сплав ЭИ—395 [4]; радиус R = 0.3 м; длина образующей $\ell = 0.6$ м; за — кон изменения толщини $\ell(\theta) = (I + 0.3 \, \text{COS} \, \theta) \, \text{IO}^{-2}$ м. Оболочка находится под действием нормальной поверхностной нагрузки $\ell_{\mathcal{C}} = 4 \cdot 10^6$ ($I + 0.5 \, \text{COS} \, \theta$) $SiN \mathcal{N}/\ell \, S$, на ее торцах выполняются граничные ус — ловия $\mathcal{N}_{\mathcal{C}} = \mathcal{N}_{\mathcal{C}} = \ell = 0$. Симметрия геометрии, нагрузки и ус — ловий закрепления позволяет рассматривать четверть оболочки. Ко — личество интервалов по толщине оболочки принималось равным $\ell_{\mathcal{C}} = 30$ по окружности $\ell_{\mathcal{C}} = 36$ ($0 \leq \theta \leq 36$) и вдоль образующей $\ell_{\mathcal{C}} = 30$ ($0 \leq S \leq \ell/2$). Искомые функции представлялись пятью первыми гармониками ($\ell_{\mathcal{C}} = 4$). Значения прогиба $\ell_{\mathcal{C}} = 4$ 0, и окружного усилия $\ell_{\mathcal{C}} = 4$ 1 меромониками ($\ell_{\mathcal{C}} = 4$ 1). Значения прогиба $\ell_{\mathcal{C}} = 4$ 2 при $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 при $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 при $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 при $\ell_{\mathcal{C}} = 6$ 3 при $\ell_{\mathcal{C}} = 6$ 3 м и окружного напражения на внешней поверхности $\ell_{\mathcal{C}} = 6$ 3 при $\ell_{\mathcal{C}} = 6$ 4 при $\ell_$

Таблица

Величина	Рещение по предло- женной методике	точное решение
W·10 ⁴ , M	5,474	5,558
AL (A=3 11 /	I 7 67	1798
. N _{θ+} 10 ⁻⁵ , Πα	I422	I408

Приведенные данные позволяют судить о достоверности полученных результатов.

Для оценки преимуществ, которые дает неизменность общего решения системы (5), сопоставим количество машинного времени, необ-ходимого для решения задачи по разработанной методике с использования ванием неизменности общего решения и без использования. Рассмот рим коническую оболочку с постоянной толщиной L = 0,001 м; дли -

ной образующей $\ell=0.2$ м и радиусами торцов $\ell_0=(0.1-0.05\sqrt{3})$ м и $\ell_N=(0.1+0.05\sqrt{3})$ м. Торцы оболочки шарнирно закреплены $M_S=M_{P}=M_Z=V=0$, материал тот же. Температура оболочки изменяется, согласно закону $T=(323+25\cos\theta)K$, $T_0=273K$. Параметры разбивки $K_Z=4$, $K_\theta=18$, $K_S=50$, N=1. Заданная максималь—ная относительная погрешность, с которой получено упругопластическое решение, $\tilde{D}=0.05$; при такой точности задача сходится за 14 приближений. Получение результатов с запомненным общим решением требует требует t=628 с и без запомненного общего решения t=1279 с машинного времени на t=1279 с машинного времени t=1279 с машинного времени на t=1279 с машинного времени еще существенное учело членов, разница в затратах машинного времени еще существенное.

Для проверки, как влияет более медленная, по сравнению с методом переменных параметров упругости, сходимость метода упругих решений на количество машинного времени, решим задачу с развитыми областями пластичности. Рассмотрим жестко защемленную по торцам цилиндрическую оболочку с радиусом R=0,3 м, толщиной t=0,0 м, длиной образующей t=1,2 м, изготовленную из того же материала. Предполагаем, что при температуре t=1,2 м оболочка находится в естественном ненапряженном состоянии, а затем подвергается пропорциональному нагружению внутренним давлением в условиях равно мерного нагрева. В конце нагружения и нагрева t=1,2,3 м (t=1,2,3) t=1,3,3 параметры разбивки: t=1,3,3 м (t=1,3,3) t=1,3,3 потребовало в этой задаче 22 приб лижений и t=1,3,3 потребовало в этой задаче 22 приб лижений и t=1,3,3 потремени, а при использовании основанной на методике [I] программы — По приближений и t=1,3,3,4 с машинного времени.

На основании проведенных расчетов можно заключить, что раз — работанная методика определения термоупругопластического напря — женно-деформированного состояния оболочек вращения переменной в двух направлениях жесткости позволяет эффективно решать задачи рассматриваемого класса.

Литература

- І. Белевцова Н.Л. Исследование влияния истории нагружения на напряженное состояние оболочек вращения переменной жесткости в двух направлениях // Прикл. механика. - 1986. -Т.22. - № 4. - С.109 - II2.
- 2. Берлянд В.И. К расчету упругопластических деформаций в оболочках вращения при неосесимметричном нагружении // Прикл. механика. 1978. Т.14. № 12. С.68 75.
- 3. Григоренко Я.М., Василенко А.Т. Теория оболочек переменной жесткости. Киев: Наукова думка, 1981. 544 с. (Методы расчета оболочек: В 5-ти т. Т.4).
- 4. Шевченко Ю.Н., Прохоренко И.В. Теория упругопластических оболочек при неизотермических процессах нагружения. Киев: Наукова думка, 1981. 296 с. (Методы расчета оболочек: В 5-ти т. Т.3).
- 5. Шевченко Ю.Н., Мерзляков В.А. Расчет термоупругопластического неосесимметричного деформирования оболочек вращения // Прикл. механика. 1988. Т.24. № 5. С.43—53.

О.Н.Попов, В.Н.Завыялов

РАСЧЕТ ФИЗИЧЕСКИ НЕЛИНЕЙНЫХ КОНСТРУКТИВНО—ОРТОТРОПНЫХ І ПІЛАСТИН И ПОЛОГИХ ОБОЛЮЧЕК С ОПОРНЫМИ РЕБРАМИ ПРИ СТАТИЧЕСКОМ И ИМПУЛЬСНОМ НАГРУЖЕНИИ

В данной работе рассматривается задача определения напряженно-деформированного состояния гибких конструктивно-ортотропных пластин и пологих оболочек с опорными ребрами с учетом физической нелинейности.

Постановка задачи. Рассматривается система прямоугольных пластин и пологих оболочек, подкрепленных в продольном направле — нии дискретно расположенными призматическими ребрами жесткости, с постоянным поперечным сечением $k_p \times k_p$, эксцентриситетом ℓ относительно срединной поверхности. Кроме того, панели могут быть подкреплены перекрестной системой второстепенных ребер. Толщина панелей ℓ может ступенчато меняться в поперечном направлении.