Competitive Mirror Descent

Competitive mirror descent

Florian Schäfer, Anima Anandkumar, and Houman Owhadi arXiv preprint https://arxiv.org/abs/2006.10179

The Problem:

Constrained Competitive Optimization:

$$\min_{x \in \mathcal{C}} f(x, y) \quad \min_{y \in \mathcal{K}} g(x, y)$$

Convex problems: Find Nash equilibrium

$$(\bar{x}, \bar{y}) \in \mathcal{C} \times \mathcal{H}$$
: $\bar{x} = \operatorname{argmin}_{x \in \mathcal{C}} f(x, \bar{y}),$ $\bar{y} = \operatorname{argmin}_{y \in \mathcal{H}} g(\bar{x}, y)$

Non-convex problems: More complicated ...

Example: Lagrangian Duality

Rewrite constraint as maximum:

$$\min_{\substack{x \in \mathbb{R}^m \\ h(x) \le 0}} f(x) \Leftrightarrow \min_{\substack{x \in \mathbb{R}^m \\ \lambda \ge 0}} \max_{\substack{\lambda \ge 0}} f(x) + \lambda h(x)$$

Replace by competitive problem

$$\min_{x \in \mathbb{R}^m} f(x) + \lambda h(x), \qquad \min_{\lambda \ge 0} \lambda h(x)$$

Generalization to general conic constraints

Example: Adversarial Learning

In GAN: G and D compete

$$\min_{\mathcal{G}} f(\mathcal{G}, \mathcal{D}), \min_{\mathcal{D}} -f(\mathcal{G}, \mathcal{D})$$

Originally, loss f defined as

Produced by StyleGan2 on https://thispersondoesnotexist.com/

$$\mathbb{E}_{x \sim P_{\text{data}}} \left[\log (\mathcal{D}(x)) \right] + \mathbb{E}_{z \sim \mathcal{N}} \left[\log \left(1 - \mathcal{D}(\mathcal{G}(z)) \right) \right]$$

Constrained Competitive Optimization

	Single agent	Competitive
Unconstrained	Gradient Descent	???
Constrained	???	???

Constrained Competitive Optimization

	Single agent	Competitive
Unconstrained	Gradient Descent	Competitive gradient descent
Constrained	???	???

Competitive Gradient Descent

Unconstrained competitive optimization

$$\min_{x} f(x,y)$$
, $\min_{y} g(x,y)$

Gradient descent solves linear approximation

$$x_k - \eta \nabla f(x_k) = \operatorname{argmin}_x \left[Df(x_k) \right] (x - x_k) + \frac{||x - x_k||^2}{2\eta}$$

Competitive Gradient Descent

Naïve: Simultaneous Gradient Descent

$$x_{k+1} = x_k - \eta \nabla_x f(x_k, y_k)$$

$$y_{k+1} = y_k - \eta \nabla_y g(x_k, y_k)$$

• Fails even on bilinear f(x,y) = xy = -g(x,y) ``Rock Paper Scissor..."

Competitive Gradient Descent

• Idea: Nash equilibrium of bilinear approximation:

[Schaefer and Anandkumar, 2019]

$$x_{k+1} = \min_{x} [D_{x}f](x - x_{k}) + (x^{\mathsf{T}} - x_{k}^{\mathsf{T}})[D_{xy}^{2}f](y - y_{k}) + [D_{y}f](y - y_{k}) + \frac{||x - x_{k}||^{2}}{2\eta}$$

$$y_{k+1} = \min_{y} [D_{x}g](x - x_{k}) + (x^{\mathsf{T}} - x_{k}^{\mathsf{T}})[D_{xy}^{2}g](y - y_{k}) + [D_{y}g](y - y_{k}) + \frac{||y - y_{k}||^{2}}{2\eta}$$

Has closed form solution

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} - \eta \begin{pmatrix} \text{Id} & \eta D_{xy}^2 f \\ \eta D_{yx}^2 g & \text{Id} \end{pmatrix}^{-1} \begin{pmatrix} \nabla_x f \\ \nabla_y g \end{pmatrix}$$

Constrained Competitive Optimization

	Single agent	Competitive
Unconstrained	Gradient Descent	Competitive Gradient Descent
Constrained	Mirror Descent	Competitive Mirror Descent

