МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

ИССЛЕДОВАНИЕ ИНДЕКСА ДРУЖБЫ УЗЛОВ РАСТУЩИХ СЕТЕЙ ПОСТРОЕННЫХ ПО МОДЕЛЯМ С ПРЕДПОЧТИТЕЛЬНЫМ ПРИСОЕДИНЕНИЕМ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы	
направления 02.03.02 — Фундаментальная информатика и	информационные
технологии	
факультета КНиИТ	
Козырева Юрия Дмитриевича	
Научный руководитель	
зав. каф., к. фм. н., доцент	С. В. Миронов
зав. каф., к. фм. п., доцент	С. В. Миронов
Заведующий кафедрой	
к. фм. н., доцент	С. В. Миронов

СОДЕРЖАНИЕ

BE	веде	ние	3
1	Teop	ретические сведения	4
	1.1	Модель Барабаши—Альберт	4
	1.2	Модель триадного замыкания	4
	1.3	Индекс дружбы	5
2	Реал	изация моделей	5
3	Ана.	лиз ′	7
	3.1	Анализ распределения и динамики индекса дружбы в построен-	
		ных графах	7
	3.2	Анализ распределения и динамики индекса дружбы в сети цити-	
		рования статей в сфере феноменологии физики высоких энергий	3
	3.3	Анализ распределения и динамики индекса дружбы в сети фору-	
		ма Reddit)
	3.4	Анализ распределения и динамики индекса дружбы в системе	
		вопросов и ответов AskUbuntu10)
	3.5	Анализ распределения и динамики индекса дружбы в системе	
		вопросов и ответов SuperUser	2
3A	КЛЮ	РИЕНИЕ	5

ВВЕДЕНИЕ

В повседневной жизни для решения многих задач часто используются случайные графы. Случайные графы нашли практическое применение во всех областях, где нужно смоделировать сложные сети: при моделировании и анализе биологических и социальных систем, сетей, а также при решении многих задач класса NP.

Случайный граф — общий термин для обозначения вероятностного распределения графов. Их можно описать просто распределением вероятности или случайным процессом, создающим эти графы.

В дипломной работе рассматриваются одни из активно используемых и хорошо изученных моделей: модель Барабаши-Альберта и модель триадного замыкания.

Для изучения и анализа моделей случайных графов, анализе социальных явлений и сетей, сообществ и их взаимодействий широко применяется индекс дружбы. Индекс дружбы — один из показателей, используемых в социологии, определяется как отношение средней степени соседей к степени самого объекта.

Целью настоящей работы является анализ индекса дружбы сетей, построенных по модели Барабаши—Альберт. Для достижения этой цели необходимо решить следующие задачи:

- рассмотреть алгоритмы Барабаши—Альберт и триадного замыкания для построения случайного графа;
- реализовать классический алгоритм Барабаши—Альберт, и его модификацию, в которой начальная степень каждого нового узла определяется как случайная величина, заданная пуассоновским распределением;
- реализовать алгоритм триадного замыкания;
- рассмотреть возможность параллельной реализации процесса получения случайного графа и вычисления индекса дружбы;
- организовать серии экспериментов, в которых строятся случайные графы по реализованным моделям;
- провести анализ распределения индекса дружбы построенных графов.

1 Теоретические сведения

1.1 Модель Барабаши—Альберт

Модель Барабаши—Альберт является одной из первых моделей веб-графов. Веб-граф представляет собой ориентированный мульти-граф, вершинами в котором являются какие-либо конкретные структурные единицы в Интернете: речь может идти о страницах, сайтах, хостах, владельцах и пр. Для определенности будем считать, что вершинами веб-графа служат именно сайты. А рёбрами соединяются вершины, между которыми имеются ссылки.

В своей модели А.-Л. Барабаши и Р. Альберт предложили стратегию предпочтительного присоединения. Её основная идея заключается в том, что вероятность присоединения конкретной вершины ребром к новой вершине пропорциональна степени данной вершины. Здесь и далее степенью вершины $v_i \in V$ графа G = (V, E) называется количество вершин, напрямую связанных с данной, т.е. $deg(v_i) = |\{v \in V : (v, v_i) \in E\}|$.

Алгоритм формирования сети по модели Барабаши—Альберт заключается в следующем.

- 1. Первоначально берется полный граф из m вершин, где m параметр модели.
- 2. На каждой итерации роста сети добавляется одна новая вершина, которая соединяется m ребрами с уже имеющимися в соответствии с принципом предпочтительного присоединения.

1.2 Модель триадного замыкания

Помимо стратегии предпочтительного присоединения, модель триадного замыкания использует стратегию формирования триад. Триадное замыкание — свойство социальных систем заключающееся в том, что если между вершинами (A, B) и (A, C), в некоторой социальной сети существует взаимосвязь, то велика вероятность формирования триады из этих трёх вершин, т.е., велика вероятность связи (B, C). В модели триадного замыкания рост сети происходит следующим образом.

- 1. Первоначально берется полный граф из m вершин, где m параметр модели.
- 2. На каждой итерации роста сети добавляется одна новая вершина, которая соединяется m ребрами с уже имеющимися по следующим правилам:

- в соответствии с принципом предпочтительного присоединения выбирается вершина, к которой проводится первое ребро;
- с вероятностью p, где p параметр модели, выбирается стратегия формирования триады с произвольным соседом вершины, присоединенной первым ребром, или, с вероятностью (1-p), стратегия предпочтительного присоединения к произвольной вершине графа.

1.3 Индекс дружбы

В социальных сетях часто можно встретить явление именуемое парадоксом дружбы: в среднем друзья любого человека имеют больше друзей, чем он сам. Оно было обнаружено в 1991 году социологом из государственного университета Нью-Йорка Скоттом Фельдом.

Для изучения парадокса дружбы следует ввести несколько обозначений. В момент времени t для вершины v_i в графе G(t)=(V(t),E(t)) сумма степеней всех соседей v_i равна: $s_i(t)=\sum_{j:(v_i,v_j)\in E(t)}deg_j(t)$, средняя степень соседей вершины v_i : $\alpha_i(t)=\frac{s_i(t)}{deg_i(t)}$, а индекс дружбы $\beta_i(t)$ определяется как отношение средней степени соседей v_i к степени самой v_i : $\beta_i(t)=\frac{\alpha_i(t)}{deg_i(t)}$.

Таким образом, если средняя степень соседей больше степени v_i и парадокс дружбы выполняется, то $\beta_i(t)>1$.

2 Реализация моделей

В ходе выполнения дипломной работы были реализованы: стандартная модель Барабаши—Альберт, модель Барабаши—Альберт с пуассоновским распределением начальных степеней и модель триадного замыкания. Все расчёты производились на компьютере с процессором Intel core i5-8265U и 16 ГБ оперативной памяти. Модель реализована на Python 3.9.1. При реализации использовались библиотеки json, multiprocessing, random и numpy.random.

Все три реализованные модели представляют собой модели растущего случайного графа с использованием механизма предпочтительного присоединения. В реализованных модификациях на каждом шаге добавляется одна вершина и некоторое количество m рёбер, при этом параметр m и процесс выбора соседей новой вершины зависят от используемой модели. В модели триадного замыкания используется дополнительный параметр p.

В экспериментах перебираются различные модели и различные значения параметров. В каждом эксперименте строится граф из 100000 вершин. Так как получаемые графы случайны, то в ходе эксперимента граф строится десять раз, после чего строится усреднённая гистограмма по диапазонам значений индекса дружбы и график динамики изменений среднего индекса дружбы графа.

В реализации моделей граф описывается парой массивов degrees и neibours, хранящие соответственно степень и список номеров соседних вершин для каждой вершины графа. Каждая модель реализована в форме функции model_name(n, args, funcs, dts), где параметр n задаёт размер конечного графа, массив args содержит аргументы модели, funcs является массивом метрик, которые нужно применить к графу, а dts — периодичность применения метрик.

Метрики также представлены функциями вида metric_name(degrees, neibours), в которых degrees представляет собой массив степеней вершин графа, а neibours — массив массивов соседних вершин. В ходе работы были использованы четыре метрики:

s(degrees, neibours) — возвращает массив сумм степеней соседей для вершин графа; alfa(degrees, neibours) — возвращает массив средних степеней соседей для вершин графа; beta(degrees, neibours) — возвращает массив индексов дружбы для вершин графа; mean_beta(degrees, neibours) — возвращает средний индекс дружбы всего графа

3 Анализ

Для того чтобы проверить, что реализованные модели могут выступать в качестве моделей социальных процессов в окружающем мире, нужно показать, что сгенерированные графы обладают некоторыми свойствами реальных сетей. В качестве характеристики для анализа был выбран индекс дружбы $\beta_i(t) = \frac{\alpha_i(t)}{deg_i(t)}$. В работе рассматривались распределение индекса дружбы и динамика его среднего значения.

3.1 Анализ распределения и динамики индекса дружбы в построенных графах

На графике, представленном на Рис. 1, изображено распределение индекса дружбы в графе построенном в соответствии с стандартной моделью Барабаши— Альберт с параметром m=3, по этому графику можно сделать вывод о том, что для большинства вершин графа значение индекса дружбы больше единицы. Следовательно в данной модели наблюдается парадокс дружбы.

Рисунок 1 — Распределение индекса дружбы в стандартной модели Барабаши— Альберт при m=3

На Рис. 2 выведены те же значения, но в логарифмической шкале. В соответствии с графиком, можно выдвинуть гипотезу, что распределение значений индекса дружбы происходит в соответствии со степенной функцией $y = (\alpha \cdot x)^{\gamma}$.

Рисунок 3 содержит график в логарифмической шкале динамики среднего индекса дружбы в модели Барабаши— Альберт при m=3 в сравнении с графиком степенной функции $y=(10000\cdot x)^{0.12}$. На основании данного графика можно сделать предположение, что среднее значение индекса дружбы в рассматриваемых моделях растёт в соответствии со степенной функцией.

Рисунок 2 — Распределение индекса дружбы в стандартной модели Барабаши— Альберт при m=3, в логарифмической шкале

Рисунок 3 — Динамика среднего значения индекса дружбы в стандартной модели Барабаши— Альберт при m=3, в логарифмической шкале

В ходе работы были рассмотрены графы следующих сетей из реального мира: LiveJournal, Twitter, Reddit, Google+, askubuntu, mathoverflow, superuser, сеть цитирования статей в сфере феноменология физики высоких энергий, внутренняя социальная сеть Калифорнийского университета в Ирвайне.

3.2 Анализ распределения и динамики индекса дружбы в сети цитирования статей в сфере феноменологии физики высоких энергий

Набор данных содержит информацию о $34\,546$ статьях на тему физики высоких энергий, опубликованных с января 1993 по апрель 2003 на arXiv.org. Граф содержит $421\,578$ рёбер. Датасет был представлен в работе .

На Рис. 4 изображено распределение индекса дружбы в данной сети. Из этого графика можно сделать предположение о том, что индекс дружбы в сети цитирования, как и индекс дружбы рассмотренных случайных графах, распределён по степенному закону $y=(0.0055\cdot x)^{-2}$.

График динамики индекса дружбы в данной сети представлен на Рис. 5.

Рисунок 4 – Распределение индекса дружбы в сети цитирования в логарифмической шкале

Можно выдвинуть гипотезу, что среднее значение индекса дружбы в графе растет в соответствии со степенной функцией $y=(11000\cdot x)^{0.12}$. Это, в части данного предположения, соответствует росту индекса дружбы в сетях моделей Барабаши— Альберта и триадного замыкания.

Рисунок 5 – Динамика индекса дружбы в сети цитирования в логарифмической шкале

3.3 Анализ распределения и динамики индекса дружбы в сети форума Reddit

В данном случае рассматривается сеть гиперссылок между субредитами (сообществами на «Reddit») данные собирались на протяжении двух с половиной лет: с января 2014 по апрель 2017. Граф состоит из $55\,863$ узлов, соединённых $858\,490$ рёбрами. Данные были представлены в .

На Рис. 6 представлен график распределения индекса дружбы в графе гиперссылок между субредитами. По графику можно сделать предположение, что распределение индекса дружбы в данной сети также соответствует степен-

ной функции, которая в данном случае выглядит следующим образом: $y=(2e^{-6}\cdot x)^{-1}.$

Рисунок 6 – Распределение индекса дружбы в сети форума Reddit в логарифмической шкале

Рис. 7 указывает на сходство графика динамики индекса дружбы на форуме Reddit, с графиком степенной функции $y = (0.03 \cdot x)^{0.8}$.

Рисунок 7 – Динамика индекса дружбы в сети форума Reddit в логарифмической шкале

3.4 Анализ распределения и динамики индекса дружбы в системе вопросов и ответов AskUbuntu

Были рассмотрены 4 датасета:

- граф ответов на вопросы, который состоит из 137,517 вершин, представляющих пользователей, и $280\,102$ связей между ними, связь между пользователями A и B заключается в том, что пользователь A ответил на вопрос пользователя B;
- граф цитирования вопросов, содержащий 79 155 узлов и 327 513 рёбер, где направленное ребро проводится между пользователем и автором вопроса, который он процитировал;

- граф цитирования ответов из 75 555 и 356 822 вершин и рёбер, соответственно, ребро проводится от пользователя сославшегося на ответ к пользователю его написавшему;
- и общий граф содержащий всех пользователей и все рёбра всех предыдущих графов, в нём 159 316 узлов и 964, 437 связей.

Данные для этих графов собирались на протяжении более чем семи лет.

Свойства данной сети не полностью соответствуют поведению, изучаемых в дипломной работе моделей: на Рис. 8 можно увидеть, что распределение индекса дружбы плохо соответствует степенной функции и, следовательно, не соответствует построенным моделям.

Рисунок 8 – Распределение индекса дружбы в сети AskUbuntu в логарифмической шкале

Однако, среднее значение индекса дружбы, как и в моделях случайных графов, растёт скорее по степенному закону $y=(0.8\cdot x)^{0.5},$ что показано на графике 9.

Рисунок 9 – Динамика индекса дружбы в сети askubuntu в логарифмической шкале

Наиболее ярко данные закономерности проявляются в графе сети ответов

на вопросы, графики распределения и динамики индекса дружбы в которой изображены на Рис. 10 и 11, соответственно.

Рисунок 10 – Распределение индекса дружбы в сети ответов на вопросы на AskUbuntu в логарифмической шкале

Рисунок 11 – Динамика индекса дружбы в сети ответов на вопросы на AskUbuntu в логарифмической шкале

3.5 Анализ распределения и динамики индекса дружбы в системе вопросов и ответов SuperUser

Для этой сети были выделены также три подсети: сеть ответов на вопросы, сеть цитирования вопросов, сеть цитирования ответов.

Сеть платформы SuperUser не подчиняется закономерностям выявленным в случайных графах в ходе данной работы. На Рис. 12 можно увидеть, что график распределения индекса дружбы скорее плохо совпадает со степенной функцией, также как и график динамики индекса дружбы представленный на Рис. 13.

В сети цитирования вопросов это отклонение только усиливается, что можно наблюдать на графиках 14 и 15.

Рисунок 12 – Распределение индекса дружбы в сети SuperUser в логарифмической шкале

Рисунок 13 – Динамика индекса дружбы в сети SuperUser в логарифмической шкале

Рисунок 14 – Распределение индекса дружбы в сети цитирования вопросов на SuperUser в логарифмической шкале

В то же время, в подсети ответов на вопросы динамика индекса дружбы всё же, вероятно, подчиняется степенному закону, что можно наблюдать на Рис. 16. В таблице1 представлен сравнительный анализ всех рассмотренных сетей.

Рисунок 15 – Динамика индекса дружбы в сети цитирования вопросов на SuperUser в логарифмической шкале

Рисунок 16 – Динамика индекса дружбы в сети ответов на вопросы на SuperUser в логарифмической шкале

Таблица 1 – Сводная таблица результатов экспериментов

	1			
Сеть	Функция распределения индекса дружбы	γ_{dist}	Функция динамики индекса дружбы	γ_{dyn}
Модель Барабаши— Альберт при $m=3$	степенная	-0.7	степенная	0.15
Модель Барабаши— Альберт при $m=3$	степенная	-0.7	степенная	0.15
Модель Барабаши— Альберт с пуассоновским распределением начальных степеней при $m=4$	степенная	-0.5	степенная	0.15
Модель Барабаши— Альберт с пуассоновским распределением начальных степеней при $m=5$	степенная	-0.5	степенная	0.15
Модель Барабаши— Альберт с пуассоновским распределением начальных степеней при $m=6$	степенная	-0.45	степенная	0.15
Модель триадного замыкания при $m=3$ и $p=0.25$	степенная	-0.7	степенная	0.15
Модель триадного замыкания при $m=3$ и $p=0.5$	степенная	-0.7	степенная	0.15
Модель триадного замыкания при $m=3$ и $p=0.75$	степенная	-0.4	степенная	0.12
Модель триадного замыкания при $m=5$ и $p=0.25$	степенная	-0.6	степенная	0.13
Модель триадного замыкания при $m=5$ и $p=0.5$	степенная	-0.6	степенная	0.13
Модель триадного замыкания при $m=5$ и $p=0.75$	степенная	-0.55	степенная	0.12
Twitter	неизвестная функция	N/A	N/A	N/A
Google+	степенная	-1.7	N/A	N/A
Reddit	степенная	-1.2	степенная	0.8
AskUbuntu	неизвестная функция	N/A	степенная	0.5
MathOverflow	степенная	-1.2	степенная	0.45
SuperUser	неизвестная функция	N/A	экспонен- циальная	N/A
Сеть цитирования	степенная	-2	степенная	0.12
LiveJournal	степенная	-2.5	N/A	N/A
Сеть студенческих сообщений	степенная	-0.9	степенная	0.5

ЗАКЛЮЧЕНИЕ

В ходе выполнения дипломной работы были изучены различные модели генерации растущих сетей. Были реализованы модели построения случайных графов:

- стандартная модель Барабаши—Альберт;
- модель Барабаши—Альберт с пуассоновским распределением начальных степеней узлов;
- модель триадного замыкания.

В соответствии с реализованными моделями проведена серия экспериментов в которых строились случайные графы и исследовались динамика среднего значения индекса дружбы в сети и распределение значений индекса дружбы в итоговом графе. В соответствии полученными результатами выдвинута гипотеза, что распределение индекса дружбы вершин итогового графа и рост среднего значения индекса дружбы в ходе формирования сети происходит по степенному закону.

Были исследованы значения распределения индекса дружбы и динамики роста среднего значения индекса дружбы в ряде реальных сетей. Сделан вывод, что для большинства сетей поведение индекса дружбы схоже с его поведением в сетях растущих по исследуемым моделям.

Реализация моделей и эксперименты проводились на языке python с использованием библиотек json, multiprocessing, pyplot, numpy, random.