Package 'DEG.comparison'

June 10, 2015

Type Package
Title DEG.comparison: A comparison of methods for DEG analysis of RNA-seq data
Version 1.0
Date 2015-06-05
Author Daniela Cassol
Maintainer Daniela Cassol <danicassol@gmail.com></danicassol@gmail.com>
Description A comparison of methods for DEG analysis of RNA-seq data
Depends NBPSeq, baySeq, systemPipeR, ggplot2, ROCR, ape
Imports NBPSeq, baySeq, systemPipeR, ggplot2, ROCR, ape
<pre>URL https://github.com/dcassol/DEG.comparison</pre>
License What license is it under?
Execuse 17 had needs to it dider.
R topics documented:
filterDEGnew
filterDEG_FDR
filterDEG_logFC
olBarplot
overLapper
panel.cor
run_BaySeq
run_NBPSeq_glm
run_NBPSeq_nbp
run_RPKM
run_TSPM
TSPM
vennPlot
Index 1

2 filterDEGnew

Description

Function adapted from systemPipeR. Filters and plots DEG results for a given set of sample comparisons. The gene idenifiers of all (i) Up_or_Down, (ii) Up and (iii) Down regulated genes are stored as separate list components and the corresponding summary statistics, stored in a fourth list component, is plotted in form of a stacked bar plot.

Usage

```
filterDEGnew(degDF, filter, plot = TRUE, method)
```

Arguments

degDF	data.frame generated by run_edgeR
filter	Named vector with filter cutoffs of format c(Fold=2, FDR=1) where Fold refers to the fold change cutoff (unlogged) and FDR to the p-value cutoff.
plot	Allows to turn plotting behavior on and off with default set to TRUE.
method	Defines the method name in the plot.

Value

Returns list with four components

UporDown List of up or down regulated gene/transcript indentifiers meeting the chosen filter

settings for all comparisons defined in data frames pval and log2FC.

Up Same as above but only for up regulated genes/transcript.

Down Same as above but only for down regulated genes/transcript.

Author(s)

Daniela Cassol

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

See Also

```
run_edgeR, run_DESeq2, run_NBPSeq_glm, run_NBPSeq_nbp, run_TSPM
```

filterDEG_FDR 3

Examples

```
targetspath <- system.file("extdata", "targets.txt", package="DEG.comparison")
targets <- read.delim(targetspath, comment="#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countDFeByg <- system.file("extdata", "countDFeByg.xls", package="DEG.comparison")
countDFeByg <- read.delim(countDFeByg, row.names=1)
Comp3 <- list(AP1.4_AP1.67=c("AP1.4A","AP1.4B", "AP1.67A", "AP1.67B"), AP3.4_AP3.67=c("AP3.4A","AP3.4B", "AP3.6
edgeDF <- run_edgeR(countDFecountDFeByg, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")
DEG_list_edgeR <- filterDEGnew(degDF=edgeDF, filter=c(Fold=2, FDR=1), method="edgeR")
DEG_list_edgeR$Summary[1:4,]</pre>
```

filterDEG_FDR

Filter FDR and plot DEG results

Description

Function adapted from systemPipeR. Filters and plots DEG results for a given set of sample comparisons. The gene idenifiers of all (i) Up_or_Down regulated genes are stored as separate list components and the corresponding summary statistics, stored in a one list component, is plotted in form of a stacked bar plot.

Usage

```
filterDEG_FDR(degDF, filter, plot = TRUE, method)
```

Arguments

filter Named vector with filter cutoffs of format c(FDR=1) where FDR to the p-value

cutoff.

plot Allows to turn plotting behavior on and off with default set to TRUE.

method Defines the method name in the plot.

Value

Returns list with one components

UporDown List of up or down regulated gene/transcript indentifiers meeting the chosen filter

settings for all comparisons defined in data frames pval.

Author(s)

Daniela Cassol

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

4 filterDEG_logFC

See Also

run_BaySeq

filterDEG_logFC Filter logFC and plot DEG results

Description

Function adapted from systemPipeR. Filters and plots DEG results for a given set of sample comparisons. The gene idenifiers of all (i) Up_or_Down, (ii) Up and (iii) Down regulated genes are stored as separate list components and the corresponding summary statistics, stored in a fourth list component, is plotted in form of a stacked bar plot.

Usage

```
filterDEG_logFC(degDF, filter, plot = TRUE, method)
```

Arguments

degDF data.frame generated by run_RPKM

filter Named vector with filter cutoffs of format c(Fold=2) where Fold refers to the

fold change cutoff (unlogged).

plot Allows to turn plotting behavior on and off with default set to TRUE.

method Defines the method name in the plot.

Value

Returns list with four components

UporDown List of up or down regulated gene/transcript indentifiers meeting the chosen filter

settings for all comparisons defined in data frames log2FC.

Up Same as above but only for up regulated genes/transcript.

Down Same as above but only for down regulated genes/transcript.

Author(s)

Daniela Cassol

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

See Also

run_RPKM

olBarplot 5

Examples

```
targetspath <- system.file("extdata", "targets.txt", package="DEG.comparison")</pre>
targets <- read.delim(targetspath, comment="#")</pre>
cmp <- readComp(file=targetspath, format="matrix", delim="-")</pre>
rpkmDFeByg <- system.file("extdata", "rpkmDFeByg.xls", package="DEG.comparison")</pre>
rpkmDFeByg <- read.delim(rpkmDFeByg, row.names=1)</pre>
#Settings
Comp1 <- list(Factor=(Reduce(union, targets$Factor)), Sample=c(colnames(rpkmDFeByg)),</pre>
              group=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8))
Comp2 <- list(AP1.4_AP1.67=c("AP1.4", "AP1.67"), AP3.4_AP3.67=c("AP3.4", "AP3.67"),</pre>
              AG.4_AG.67=c("AG.4", "AG.67"), AP1.4_AP3.4=c("AP1.4", "AP3.4"),
              AP1.4_AG.4=c("AP1.4", "AG.4"), AP3.4_AG.4=c("AP3.4", "AG.4"),
              AP1.67_AP3.67=c("AP1.67", "AP3.67"), AP1.67_AG.67=c("AP1.67", "AG.67"),
              AP3.67_AG.67=c("AP3.67", "AG.67"))
##Compute mean values for replicates and logFC for comparisons
RPKM_FC <- run_RPKM (rpkmDFeByg, Comp1, Comp2)</pre>
DEG_list_RPKM <- filterDEG_logFC(degDF=RPKM_FC, filter=c(Fold=2), method="RPKM")
DEG_list_RPKM$Summary[1:4,]
```

olBarplot

olBarplot - Define Bar Plot Function

Description

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/

Usage

```
olBarplot(OLlist = OLlist, mycol = "default", margins = c(6, 10, 3, 2), mincount = 0, mysub = "default
```

Details

Utilities: (1) Venn Intersects Computation of Venn intersects among 2-20 or more sample sets using the typical 'only in' intersect logic of Venn comparisons, such as: objects present only in set A, objects present only in the intersect of A & B, etc. Due to this restrictive intersect logic, the combined Venn sets contain no duplicates. (2) Regular Intersects Computation of regular intersects among 2-20 or more sample sets using the following intersect logic: objects present in the intersect of A & B, objects present in the intersect of A & B & C, etc. The approach results usually in many duplications of objects among the intersect sets. (3) Graphical Utilities - Venn diagrams of 2-5 sample sets. - Bar plots for the results of Venn intersect and all intersect approaches derived from many samples sets.

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/ Revision history: March 24, 2012: fixed substring problem in plotVenn function

Author(s)

Thomas Girke

6 overLapper

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

See Also

vennPlot, overLapper

overLapper

overLapper - Define Generic Intersect Function

Description

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/

Usage

```
overLapper(setlist = setlist, complexity = 1:length(setlist), sep = "-", cleanup = FALSE, keepdups = F
```

Details

Utilities: (1) Venn Intersects Computation of Venn intersects among 2-20 or more sample sets using the typical 'only in' intersect logic of Venn comparisons, such as: objects present only in set A, objects present only in the intersect of A & B, etc. Due to this restrictive intersect logic, the combined Venn sets contain no duplicates. (2) Regular Intersects Computation of regular intersects among 2-20 or more sample sets using the following intersect logic: objects present in the intersect of A & B, objects present in the intersect of A & B & C, etc. The approach results usually in many duplications of objects among the intersect sets. (3) Graphical Utilities - Venn diagrams of 2-5 sample sets. - Bar plots for the results of Venn intersect and all intersect approaches derived from many samples sets.

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/Revision history: March 24, 2012: fixed substring problem in plotVenn function

Author(s)

Thomas Girke

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

See Also

olBarplot, vennPlot

panel.cor 7

panel.cor

panel.cor - Scatterplot

Description

panel.cor puts correlation in upper panels, size proportional to correlation.

Usage

```
panel.cor(x, y, digits = 2, prefix = "", cex.cor, ...)
```

Value

Returns plot with scatterplot matrix.

Author(s)

Daniela Cassol

References

http://www.gettinggeneticsdone.com/2011/07/scatterplot-matrices-in-r.html

See Also

pairs

run_BaySeq

run_BaySeq - empirical Bayesian methods.

Description

BaySeq package identifies differential expression in high-throughput 'count' data, such as that derived from next-generation sequencing machines, calculating estimated posterior likelihoods of differential expression (or more complex hypotheses) via empirical Bayesian methods.

Usage

```
run_BaySeq(counts, mycomp3, number)
```

Arguments

counts date.frame containing raw read counts.

mycomp3 list where comparisons are defined in a list.

number number the rows in the counts. ex: dim(counts).

8 run_NBPSeq_glm

Value

data.frame containing baySeq results from all comparisons. Comparison labels are appended to column titles for tracking.

Author(s)

Daniela Cassol

References

Hardcastle, T.J. & Kelly, K.A., 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC bioinformatics, 11, p.422.

See Also

filterDEG_FDR

run_NBPSeq_glm

run_NBPSeq_glm - Negative Binomial (NB) models for two-group comparisons and regression inferences from RNA-Sequencing Data.

Description

For each row of the input data matrix, nb.glm.test fits an NB log-linear regression model and performs large-sample tests for a one-dimensional regression coefficient.

Usage

```
run_NBPSeq_glm(counts, mycomp3)
```

Arguments

counts date.frame containing raw read counts.

mycomp3 list where comparisons are defined in a list.

Value

data.frame containing NBPSeq_glm results from all comparisons. Comparison labels are appended to column titles for tracking.

Author(s)

Daniela Cassol

References

Di, Y. et al., The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq. Statistical applications in genetics and molecular biology, 10(1), pp.1???28.

run_NBPSeq_nbp 9

See Also

run_NBPSeq_nbp and NBPSeq vignette

Examples

```
targetspath <- system.file("extdata", "targets.txt", package="DEG.comparison")
targets <- read.delim(targetspath, comment="#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countDFeByg <- system.file("extdata", "countDFeByg.xls", package="DEG.comparison")
countDFeByg <- read.delim(countDFeByg, row.names=1)
Comp3 <- list(AP1.4_AP1.67=c("AP1.4A","AP1.4B", "AP1.67A", "AP1.67B"), AP3.4_AP3.67=c("AP3.4A","AP3.4B", "AP3.6
NBPSeq.glmDF <- run_NBPSeq_glm (countDFeByg, Comp3)
DEG_list_NBPSeq.glmDF <- filterDEGnew(degDF=NBPSeq.glmDF, filter=c(Fold=2, FDR=1), method="NBPSeq.glm")
DEG_list_NBPSeq.glmDF$Summary[1:4,]</pre>
```

run_NBPSeq_nbp

run_NBPSeq_nbp - Negative Binomial (NB) models for two-group comparisons and regression inferences from RNA-Sequencing Data.

Description

nbp.test fits an NBP model to the RNA-Seq counts and performs Robinson and Smyth's exact NB test on each gene to assess differential gene expression between two groups.

Usage

```
run_NBPSeq_nbp(counts, mycomp3)
```

Arguments

counts date.frame containing raw read counts.

mycomp3 list where comparisons are defined in a list.

Value

data.frame containing NBPSeq_nbp results from all comparisons. Comparison labels are appended to column titles for tracking.

Author(s)

Daniela Cassol

References

Di, Y. et al., The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq. Statistical applications in genetics and molecular biology, 10(1), pp.1????28.

10 run_RPKM

See Also

run_NBPSeq_glm and NBPSeq vignette

Examples

```
targetspath <- system.file("extdata", "targets.txt", package="DEG.comparison")
targets <- read.delim(targetspath, comment="#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countDFeByg <- system.file("extdata", "countDFeByg.xls", package="DEG.comparison")
countDFeByg <- read.delim(countDFeByg, row.names=1)
Comp3 <- list(AP1.4_AP1.67=c("AP1.4A","AP1.4B", "AP1.67A", "AP1.67B"), AP3.4_AP3.67=c("AP3.4A","AP3.4B", "AP3.6
NBPSeq.nbpDF <- run_NBPSeq_nbp (countDFeByg, Comp3)
DEG_list_NBPSeq.nbpDF <- filterDEGnew(degDF=NBPSeq.nbpDF, filter=c(Fold=2, FDR=1), method="NBPSeq.nbp")
DEG_list_NBPSeq.nbpDF$Summary[1:4,]</pre>
```

run_RPKM

run_RPKM

Description

Simple Fold Change Method - RPKM

Usage

```
run_RPKM(counts, mycomp1, mycomp2)
```

Arguments

counts date.frame containing raw read counts.

mycomp1 codelist where Factor, Names and groups are defined in a list.

mycomp2 list where comparisons are defined in a list.

Value

data.frame containing RPKM results from all comparisons. Comparison labels are appended to column titles for tracking.

Author(s)

Daniela Cassol

References

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by rna-seq. Nat Methods, 5(7):621-628.

run_TSPM 11

See Also

```
filterDEG_logFC
```

Examples

run_TSPM

run_TSPM - "A Two-Stage Poisson Model for Testing RNA-Seq Data"

Description

Simple and powerful statistical approach, based on a two-stage Poisson model, for modeling RNA sequencing data and testing for biologically important changes in gene expression. Users are strongly encouraged to consult the Auer and Doerge (2011) for more detailed information on this topic and how to properly run TSPM on data sets with more complex experimental designs.

Usage

```
run_TSPM(counts, mycomp3)
```

Arguments

counts date.frame containing raw read counts.

mycomp3 list where comparisons are defined in a list.

Value

data.frame containing TSPM results from all comparisons. Comparison labels are appended to column titles for tracking.

Author(s)

Daniela Cassol

12 TSPM

References

Paul L. Auer, Rebecca W Doerge: A Two-Stage Poisson Model for Testing RNA-Seq Data. Statistical Applications in Genetics and Molecular Biology 2011, 10(1):26.

See Also

TSPM

Examples

```
targetspath <- system.file("extdata", "targets.txt", package="DEG.comparison")
targets <- read.delim(targetspath, comment="#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countDFeByg <- system.file("extdata", "countDFeByg.xls", package="DEG.comparison")
countDFeByg <- read.delim(countDFeByg, row.names=1)
Comp3 <- list(AP1.4_AP1.67=c("AP1.4A","AP1.4B", "AP1.67A", "AP1.67B"), AP3.4_AP3.67=c("AP3.4A","AP3.4B", "AP3.6
TSPMDF <- run_TSPM(countDFeByg, Comp3)
DEG_list_TSPM <- filterDEGnew(degDF=TSPMDF, filter=c(Fold=2, FDR=1), method="TSPM")
DEG_list_TSPM$Summary[1:4,]</pre>
```

TSPM

TSPM - "A Two-Stage Poisson Model for Testing RNA-Seq Data"

Description

Simple and powerful statistical approach, based on a two-stage Poisson model, for modeling RNA sequencing data and testing for biologically important changes in gene expression. Users are strongly encouraged to consult the Auer and Doerge (2011) for more detailed information on this topic and how to properly run TSPM on data sets with more complex experimental designs.

Usage

```
TSPM(counts, x1, x0, lib.size, alpha.wh = 0.05)
```

Arguments

counts	date.frame containing raw read counts
x1	x1a vector of treatment group factors (under the alternative hypothesis)
x0	x0 a vector of treatment group factors (under the null hypothesis)
lib.size	lib.size a vector of RNA-Seq library sizes. This could simply be obtained by specifying lib.size <- apply(counts,2,sum). It may also be any other appropriate scaling factor.
alpha.wh	alpha. wh the significance threshold to use for deciding whether a gene is overdispersed. Defaults to 0.05.

vennPlot 13

Value

Returns list with five components

log.fold.change

List of a vector containing the estimated log fold changes for each gene.

pvalues A vector containing the raw p-values testing differential expression for each

gene.

index.over.disp

a vector of integer values containing the indices of the over-dispersed genes.

index.not.over.dis

A vector of integer values containing the indices of the non-over-dispersed genes.

padj A vector containing the p-values after adjusting for multiple testing using the

method of Benjamini-Hochberg.

Author(s)

Paul Auer (plivermo@fhcrc.org) and R.W. Doerge (doerge@purdue.edu)

References

Paul L. Auer, Rebecca W Doerge: A Two-Stage Poisson Model for Testing RNA-Seq Data. Statistical Applications in Genetics and Molecular Biology 2011, 10(1):26.

See Also

run_TSPM

vennPlot

vennPlot - Define Venn Diagram Plotting Function

Description

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/

Details

Utilities: (1) Venn Intersects Computation of Venn intersects among 2-20 or more sample sets using the typical 'only in' intersect logic of Venn comparisons, such as: objects present only in set A, objects present only in the intersect of A & B, etc. Due to this restrictive intersect logic, the combined Venn sets contain no duplicates. (2) Regular Intersects Computation of regular intersects among 2-20 or more sample sets using the following intersect logic: objects present in the intersect of A & B, objects present in the intersect of A & B & C, etc. The approach results usually in many duplications of objects among the intersect sets. (3) Graphical Utilities - Venn diagrams of 2-5 sample sets. - Bar plots for the results of Venn intersect and all intersect approaches derived from many samples sets.

Detailed instructions for using the functions of this script are available on this page: http://faculty.ucr.edu/~tgirke/Documents/Revision history: March 24, 2012: fixed substring problem in plotVenn function

14 vennPlot

Author(s)

Thomas Girke

References

Thomas Girke (2015). systemPipeR: systemPipeR: NGS workflow and report generation environment. R package version 1.0.12. https://github.com/tgirke/systemPipeR

See Also

olBarplot, overLapper

Index

```
*Topic TSPM
    TSPM, 12
*Topic panel.cor
    panel.cor, 7
*Topic runDEGs
    \texttt{run\_RPKM},\, \textcolor{red}{10}
    run_TSPM, 11
*Topic run_DEGs
    filterDEG_FDR, 3
    filterDEG_logFC, 4
    filterDEGnew, 2
    run_BaySeq, 7
    run_NBPSeq_glm, 8
    run_NBPSeq_nbp, 9
filterDEG_FDR, 3
filterDEG_logFC, 4
filterDEGnew, 2
olBarplot, 5
overLapper, 6
panel.cor, 7
run_BaySeq, 7
run_NBPSeq_glm, 8
run_NBPSeq_nbp, 9
run_RPKM, 10
run_TSPM, 11
TSPM, 12
vennPlot, 13
```