

Pen & Paper Exercise 5

Social Networks

1 Evaluating the Quality of a Partition

Consider the directed graph that is presented in the following diagram:

The graph is split into the two communities that are indicated by the blue and red nodes.

- a) Considering the given communities, compute the internal and external degrees of each given node!
- b) Using your results from a), determine whether both communities are weak communities. Are they also strong communities?

2 Modularity of a Partition

Compute the modularity of the partition of the graph from task 1.

3 The Resolution Limit of Modularity

Consider a ring of communities, in which an even number n_c of node communities with l edges each are arranged in a ring, and from each community there are only two outgoing links, namely one to each of the neighbor communities. In this ring, we to want merge pairs of neighboring communities into a single community, as illustrated by the dotted lines in the following picture:

- a) Compute the modularity M_s of the ring before merging the pairs!
- b) Compute the modularity M_r of the ring after merging the pairs!
- c) Show that there is a resolution limit to the modularity function by showing that for some values $l \geq 3$ and $n_c \geq 4$, the modularity M_p of the graph after pairing the communities is bigger than the modularity M_s before pairing. You may do this by either solving the corresponding inequality, or by directly giving an example graph.