

Section 9: Fate and behaviour in the environment

According to the guidance document, SANCO 10181/2013, for preparing dessiers for the approval of a chemical active substance

2014-06-20

15 update: 2015-02-27

2nd update: 2015-04-23

OWNERSHIP STATEMENT

No part of the document or any information contained therein may be disclosed to any to party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are 1.2.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the received the basis of the summaries and evaluations authorities should not grant among the discovered to any third proprietary data submitted for the purpose of the assessment undertaken by the received the basis of the summaries and evaluation document unless the summaries and evaluations. The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amenda, operancy a registration on the basis of the summaries and evaluation of empublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:

* From Bayer CropScience; or

* From other applicants once the period of data protection has expired. proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or fenewa registration the basis of the summaries and evaluation of annublished the document unless they have ce the period of da

Version history

Date	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
Feb. 2015	Document update in response to ANSES request for additional information, received via email Lea RIFFAUT(Anses) to Geraldine Thevenon-Emeric (BCS) of 15 th December 2014 (17:48). Document modifications are marked vellow.	Document identific and Sversion number
April 2015	Document update in response to ANSES request for additional information, received via email Lea RAFAUT (ANSES) to Geraldine Thevering-Emeric (BCS) of 14 April 2015 (18:41). Document modifications are marked green. that applicants adopt a similar approach to showing revisions and 2013 Chapter 4 How to revise an Assessment Report.	
	Document modifications are marked green.	
It is suggested	that applicants adopt a similar approach is showing revisions and	version history as outlined in
SANCO/10180/2	2013 Chapter 4 How to revise of Assessment Report	
		@
		J
*		
, Q		
4		
, &	J'ANT	
₩ <u></u>		
વ		
Ő		
	5 <u>5</u> 5	
Ç _o		
)		

Table of Contents

		, ige
IIIA 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT	igu⊚ &6
IIIA 9.1	Rate of Degradation in Soil) ? ?
IIIA 9.1.1	Aerobic degradation of the preparation in soil	. 9
IIIA 9.1.2	Anaerobic degradation of the preparation in soil	13
IIIA 9.2	Field Studies	4
IIIA 9.2.1	Soil dissipation testing on a range of representative soils	14.
IIIA 9.2.2	Soil residue testing	14
IIIA 9.2.3	Soil accumulation testing	1 /4
IIIA 9.2.4	Aquatic (sediment) field dissipation	15
IIIA 9.2.5	Forestry field dissipation	15
IIIA 9.3	Mobility of the Plant Protection Product in Soil	₫ŝ
IIIA 9.3.1	Column leaching.	″17
IIIA 9.3.2	Lysimeter studies Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	17
IIIA 9.3.3		18
IIIA 9.3.4	Volatility - laboratory study	18
IIIA 9.3.5	Volatility – field study	18
IIIA 9.4	Predicted Engronmental Concentrations in Son (PECs) for the Active	
		19
IIIA 9.4.1	Initial PECs values & & & & & & & & & & & & & & & & & & &	21
IIIA 9.4.2		23
IIIA 9.4.3	Long term PECs values (from \$100 days after last application)	23
IIIA 9.5	Predicted Environmental Concentrations of Soil (PECs) for Relevant	
,	Wicial Office Same and the same	24
IIIA 9.5.1	Anitial PEC values	28
IIIA 9.5.2	Short-term PECs values (1-4 days after last application).	33
IIIA 9.5.3	Long-term PECs values (from 7-100 days after ast application)	
IIIA 9	Predicted Environmental Concontrations in Ground Water (PECgw)	
IIIA 9.6.1	Active substance	
IIIA 9.6.2 IIIA 9.6.3	Refevant metalsolites	
IIIA 9.6.3	Information on impact on water treatment procedures	
IIIA 9.0.4 V	Predicted Environmental Concentrations in Surface Water (PECsw) for the	50
111A 9.1	Predicted Environmental Concentrations in Surface Water (PECsw) for the Active Substance Initial PECsw value for static water bodies	56
IIIA 9.7.1	Initial DECsy valve for static water hodies	63
IIIA 9.7.2	Initial PICsw value for slow moving water bodies	67
IIIA 9.7.3	Short-term PECsw @alues for static water bodies (1-4 days after last	07
4	Short-term PECsw calues for static water bodies (1-4 days after last application)	67
IIIA 9.7.4	Skort-term PECsw values for slow moving water bodies (1-4 days after last	0,
	application)	67
IIIA 9.7.5	Long term PECsw values for static water bodies (7-42 days after last	
IIIA 9.7.6	application)	67
IIIA 9.7.6	Long-term PECsw values for slow moving water bodies (7-42 days after last	
	application)	
IIIA 9.8	Predicted Environmental Concentrations in Surface Water (PECsw) for	
	Metabolites	68

IIIA 9.8.1	Initial PECsw value for static water bodies
IIIA 9.8.2	Initial PECsw value for slow moving water bodies
IIIA 9.8.3	Short-term PECsw values for static water bodies 1-4 days after last application)
IIIA 9.8.4	Short-term PECsw values for slow moving water bodies 4-4 days after last
	application)
IIIA 9.8.5	Long-term PECsw values for static water bodies 7-42 days after last application)
IIIA 9.8.6	Long-term PECsw values for slow moving water bodies 7-42 days after last
	application)
IIIA 9.8.7	Additional field testing
IIIA 9.9	Fate and Behaviour in Air
IIIA 9.9.1	Spray droplet size spectrum laboratory studies
IIIA 9.9.2	
IIIA 9.10	Other/Special Studies A A A A A A A A A A A A A A A A A A A
IIIA 9.10.1	Laboratory studies 2 2 2 2 2 3 73
IIIA 9.10.2	Field studies 73
	Drift – field evaluation
Covers the po	int required in SANCO 10181 0013 format shows below
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT
CP 9.1	Fate and behavious in soil & V O V
CP 9.1.1	Rate of degradation in soil
CP 9.1.1.1	Caboratory studies
CP 9.1.1.2 %	Fate and behaviour in soil Rate of degradation in soil Laboratory studies Soil dissipation studies Mobility in the soil Laboratory studies Lysimeter studies
CP 9.1.1.2.1	Soil dissipation studies Soil dissipation studies
CP 9.1.1,2.2	Soil acermulation studies
CP 9.1	Mobility in the soil Laboratory studies Laboratory studies
CP 9.1.2.1	Laboratory studies of the studies of
CP 9.1.2.2	lavoumetter studies ♥ ✓ ✓ ;
CP 9.1.2.3	Field Baching studies
CP 9.1.3	ESTIMATION OF CONCENTRATIONS IN SOIL
CP 9.2	Fate and behaviour in water and sediment
CP 9.2.	Fate and behaviour in water and sediment Aerobic mineralisation in surface water
CP 9.2.2	Water/sediment study
CP 9.2.3	Irradiated water sediment study
CP 9.2.4	Estimation of concentrations in groundwater
1	Calculation of concentrations in groundwater
CP 9.2.4.2	Additional field tests

Estimation of concentrations in surface water and sediment

Route and rate of degradation in air and transport via air Estimation of concentrations for other routes of exposure

Fate and behaviour in air

In agreement with the Rapporteur Member State, the product dossier is submitted following the dRR format. All points required under the SANCO 10181/2013 are covered, although their naming might differ slightly.

IIIA 9 FATE AND BEHAVIOUR IN THE ENVIRONMEN

This document reviews predicted environmental concentrations for the plant protection product IMS MSM + MPR OD 42 which contains the active substance iodosulfuror methyl-sodium (IMS) and mesosulfuron-methyl (MSM), and the crop safener metenpyr-diethyl MPR).

This product is the representative formulation for the renewal of approval of mesosulthron-methyl of European level. In its function as Document MCP for the EU to view process the assessment will focus only on the active substance mesosulfuron-methyl. A complete assessment to cover all active substances of the formulation will be provided at a later stage, as part of the post-AIR process for renewal of authorisations at member state tevel once mesosulfuron-methyl is re-approved under Regulation (EU) 1107/2009.

In general, formulants (inactive ingredients) present in a product do not influence to a relevant extent the behaviour of the active substances in the environment. An exemption is for slow release formulations but this is not the case for the present product. Therefore, data derived from tests with the individual active substances are considered representative for the behaviour of these substances in product IMS+MSM+MPR OD 42. Detailed information on these active substance studies is found reported in Document MCA, only brief overview summaries on fundamental results are given in the present document.

Intended application pattern

The formulation is intended for use as a post-emergent herbicide to control weeds in winter and spring cereals. The critical use pattern for this formulation is summarised as follows. A detailed use pattern can be found in Appendix 2 of this document.

Table 9-1: Intended application pattern for the representative uses of mesosulfuron-methyl in product IMS MSM-MPR OD 42

Crop	application and	mber of blications	Application on terral [days]	Maximum label rate [L/ha]	Maximum ap individual [g a.s	treatment
		y S			iodosulfuron- methyl-sodium	mesosulfuron- methyl
Winter wheat	BBCH 26 \$2		,	1.5	3	15
Winterse	BBCH 2032 The of winter, beginning of yegetatian	1	-	0.6	1.2	6

Compound / Codes	Active substance and metabolites addressed in Chemical Structure	Explanation for Consideration	Ž	Considered for
Mesosulfuron -methyl / AE F130060	H ₃ C SÓ ₂ SÓ ₂ N OCH OCH	active substance		PECoil PECow PECsw PEC
AE F154851	H ₃ C Số ₂ Số ₂ N N OCH ₃ OCH ₃	aerobic soil: anaerobic soil: soil photolysis water sediment: horolysis;	>10%\ < 5%\ n.d <5%\ <5%\ n.d	PEC _{sw} PEC _{sw} PEC _{sw} PEC _{sw}
AE F160459	H ₃ C Số ₂ N N OCH	aerobic soil; agaerobic soil: goil photolysis: water sediment: hydrolysis: aqu. photolysis:	\$5% >10% n.d. \$10% n.d. \$0 n.d.	PEC _{swil} PEC _{sw} PEC _{sw} & PEC _{sed}
AE F099095	H ₂ N N OCH ₃ N OCH		5% n.d. <5% n.d. n.d.	PEC _{soil} PEC _{gw} PEC _{sw} & PEC _{sed}
AE F092974	HANT OCH, TO CHANT OCH, TO CHA	aerobic soil: anaerobic soil: son photolysis: water/sediment: hydrolysis: aqu. photolysis:	>10% <5% n.d. <5% >10% n.d.	PEC _{soil} PEC _{gw} PEC _{sw} & PEC _{sed}
AE F160460	H ₃ C SO ₂ N OCH ₃	anaerobic soil: soil photolysis: water/sediment:	>5% >5% n.d. >5% n.d. n.d.	PEC _{soil} PEC _{gw} PEC _{sw} & PEC _{sed}
AE F140584	COOCH ₃ H ₃ C SO NH ₂ SO NH ₂	anaerobic soil: soil photolysis:	>5% <5% n.d.	PEC _{soil} PEC _{gw} PEC _{sw} & PEC _{sed}
		water/sediment: hydrolysis: aqu. photolysis:	<5% >10% n.d.	

Compound / Codes	Chemical Structure	Explanation for Consideration	Considered for .
AE F147447	H ₃ C NH SO ₂	aerobic soil: >5% anaerobic soil: >6% soil photolysis: 7.d. water/sediment: >10% hydrolysis: 10% aqu. photolysis: n.d.	PEC _{soil} PEC _{gw} PEC _{sw} PEC _{sw}
	Chemical Structure H ₃ C Sto Sto Structure H ₃ C Sto Structure H ₃ C St		

IIIA 9.1 Rate of Degradation in Soil

IIIA 9.1.1 Aerobic degradation of the preparation in soil

Aerobic soil metabolism: In laboratory studies using ¹⁴C-radiolabels positioned in the pyrimidal and phenyl moieties, two initial degradation routes were observed for mesosulfuron-methyl in aerobic soil: Cleavage of the methyl ester at the phenyl ring to result in AE F154851, and ether demethylation at the pyrimidine ring to yield AE F160459. As common successor product of both intermediates, AE F160460 may be formed via metabolic loss of the respective second methyl group. Moreover, breakdown of the molecule backbone occurs via chemically or microbially induced cleavage of die sulfonylurea bridge, which leads to the fragments AE F099095 and AE F092944 derived from the pyrimidine moiety, and AE F140584 and AE F140447 derived from the phenyl moiety. Of all above soil metabolites, however, only AE F154851 (max. 162°%), AE F099095 (max. 22.2°%), and AE F092944 (max. 10.1 %) reached major abundances in some, but not all, soils Terminal bioconversion of the residues led to formation of significant amounts of ¹⁴C-ourbon droxides max. 49 % or 18 % for pyrimidyl- and phenyl label, respectively, and non-extractable soil-bound residues (max. 64 % or 58 % for pyrimidyl- and phenyl-label, respectively) by the end of the incubation period.

Indirect photolysis on soil surface: Mesosulfuron-mothyl is not photodegraded to significant extent at wavelengths >290 nm on soil surfaces. Soil photolysis will therefore no contribute notably to elimination from the terresonal enormment, and will not lead to the generation of plevant degradates.

The proposed biotrans formation pathway for mesosulfuron-methyl in aerobic soil is shown in Figure 9.1.1-1. The identical scheme is proposed to apply as well for the degradation of mesosulfuron-methyl in aerobic water (sediment systems).

Figure 9.1.1-1: Proposed transformation scheme for mesosulfuron-methyl in the environment (soil and water/sediment)

To enable a kinetic description suitable for environmental exposure simulation purposes, an optimized compartmental model representation of the transformation scheme was developed, shown in Figure 9.1.1-2. The evaluation was based on experimental data from a total of 11 tests on 8 soils for the parent active substance, and an additional 8 tests on 4 soils dosed directly with two of the metabolites. A numeric summary of the resulting half-life information suitable for exposure simulations of the components plevant for assessment is given in Table 9.1.1-1.

Figure 9.1.1-2: Compartmental model for evaluation of the degradation of mesosulfuron-methyl in soil under aerobic conditions; the numbers attached to the arrows are the formation fractions for the respective metabolite Mesosulfuron-methyl 9.4% 17.9% 7.6% AE F099095 AE F160459 AE F154851 100% 100% AE F160460 Non extractable residues (NET) and O Non-extractable residues and CO2 Mesosulfuron-methy 17.2% AF 7099095 AE F092944

Table 9.1.1-1: Normalised DT50 values for mesosulfuron-methyl and its metabolites in aerobic soil. Values obtained from the same batches of soil LS2.2 were averaged before calculating mean values.

Soil				Д	T50 [da	vel	Ď	(W)	y v i
Son				<u>D</u>	150 [44]	<mark>, 5]</mark>	0970911 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~	
	f thyl	thy.					%		, S
	Model used for Mesosulfuron methyl	Mesosulfuron methyl	<mark>851</mark>	<mark>65</mark> €	<u>\$60</u>		9 <mark>460</mark>		
	Luse	in the second se	1 51	× × × × × × × × × × × × × × × × × × ×	<mark>660</mark> ე	8 <mark>76</mark>			* <mark>4</mark> 0
	lode Seulf	Huse Huse	<u>AE F154851</u>		Ş.				
	<mark>∦est</mark>	Mes	Q.				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
									<i>」</i> " —— <mark>——</mark> ——
SLI SLV	SFO	12.2 54.3 109.7-1)	13.6 30.1 %	K <mark>53.9</mark> (76.4 76.4 76.4 77.4 77.4 77.4 77.4 77.4	1 2	(4 7.5	n.d.	n .d.
SLV CHL	SFO DFOP	54.3 109.7. ¹¹ 7.7.	√ <mark>30.1</mark> % √ 2 √ √	n.d.		20 &	or n.g.	Mand a	n.d.
SLS	SFO	109.7 Q	Ŭ <u>~~</u> ~	**************************************	~~ ~ ~~ 47.6 ~) zze (2 _2 0	nd	n-d-
SCL	SFO							∑ <mark>h.∕d.</mark>	n.d.
FF	SFO	33.4 15.4	§ 64 4	130	234 A		2 <mark>3-6</mark>	n.d.	n.d.
CLF	SFO 4	15.4°	<u>11 Q</u>	<mark>\$7.3</mark> ?	√ 77.4 ℃	69.4		∜ <mark>n.d.</mark>	n.d.
LS 2.2 (pyr. label 20°C)	DFOP	<u>1</u>	\$\frac{\frac{\partial}{\partial}}{\partial}\tilde{0}}	¥ <u>-</u> 20°	79.5		44.263 2	n.d.	n.d.
LS 2.2 (pyr. label, 10°C)	SFØ	99.92						n.d.	n.d.
Geom. LS 2.2 pyrimidyl	W <mark>-</mark>	99.00		723		& <mark>-</mark> O <mark>n.d.</mark> '	• • • • • • • • • • • • • • • • • • •		<mark>-</mark> 647
LS 2.2 (ph. label 20°C)	SECTION SECTION	**************************************	√ <mark>32>></mark>	300	g <mark>n.d.</mark>	nd	∜ 16.9 <mark>–</mark> ²	<mark>–²</mark> 5.9	647 <mark>176</mark>
Geom. LS 2.2 pheny		37 3	72.9	\$53.0	n.d.		<u>-</u>		337
-AIIIa			4.7 4.7		O É		<u>-</u>	4.0	60.6
(metabolite appl.)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		"		ř ·	<u> </u>	'1.∀	
(metabolite appl.)	~ -	Š, F	<u></u>		,	-	-	7.1	<mark>78.5</mark>
(Control of the control of the contr	**** ********************************			Ÿ	<u> </u>	 <mark>-</mark>	<u> </u>	2.4	75.3
4a (metabolite appl.)	<u> </u>				À .				, J.J
(metabolite appl.)		9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	3743	0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>-</u>	_	·	1.5	73.7 ¹⁾
Geometric Mean		31.9	3700°	70.1	<mark>87.9</mark>	60.4 ⁻⁴	25.6	<mark>3.6</mark>	97.7
1 / W	((6)		- 7/	<u></u>					

¹⁾DT50 calculated slow degradation rate of DFOP podel.

error too large) and not considered for calculation of mean.

¹⁻DT50 calcuted slow degradation tate of DFOP model.
2-1-Value statistically not acceptable (p(t test) or Clay error to
3-1-Derived from decline fit.
4-1-Maximum of two values used instead of geometric mean.
n.d. = not determined

Soil				DT	50 [day		*		
	Model used for test substance	Mesosulfuron-methyl	AE F154851	AE F60459	402-AE F09095	AE F09294	20 AE F160460	CZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	CONTROLL STATES
SLI	SFO	10.3	11.5	. 79.3 n. 1) <mark>64.9</mark> ^	n.a	14	n.⁄€₽	n.d.
SLV	SFO	39.8	22.	n d		F	7. n.d. (2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	n.d.	n.d.
CHL	DFOP	80(5 1		Ø.d.	Q-2	21.9 20	n.d.	n.d.	n.d
SLS	SFO	<mark>6.7</mark>	y - 2	/ [*] <mark>- 2</mark>	7 43.4 7	- 20	_ _	n.d.	nA.
SCL	SFO	Û <mark>57.%</mark> ~	· - 25	<u>-2</u>				on.d.	On.d.
FF	SFO	22,5	° <mark>57</mark> 7.4	106.3	234	🍣 <mark>− ²</mark> 🎺	\$ 29.1	n.d.	n.d.
CLF	STO	<u>≈</u> 11.9	34.6	× 28.8	234 59.80	467	<u>-</u> &	n.d.	n.d.
LS 2.2 pyrimidyl	ODFOP	رِّ <mark>155 اُلَّ 155 اِلْمَا الْمَا الْمِينِي الْمَا الْمَا</mark>	646	TO THE	804		2	& <mark>n.d.</mark>	n.d.
LS 2.2 phenyl	FQMC	30 8 1	2 9.8	61.9	<mark>80,4</mark> ∠ <mark>n.d.</mark> _{>} ,	n.d.	14.1	_ ²	_ 2
AIIIa (metabolite appl.)	<mark>\$OFÖ/</mark> <u> </u>		♥ <mark>-</mark> ↓ •	- -	<u>-</u> \$\$) <u>14.1</u>	4.0	82.7 1
AXXa (matabalita anni)				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŏ <mark>-</mark>	\$ <mark>-</mark> }	,	<mark>7.0</mark>	111.4 ¹
420	W HS					\$ 7	-	2.4	203.0 1
(metabolite appl.)	SF <mark>O</mark> / DFOP ⁵	\$\frac{\partial}{2}	31,5	\$ <mark>-</mark> (5 <mark>-</mark> 0		<mark>-</mark>	1.5	73.3 1
Geometric Mean	- 2	30.3 [©]	31.5	63	7191	46.7 ⁴	18.3	3.2	108.2

1) DT5 Calculated slow degradation rate of DFOP or HS model or from DT90 value of FOMC model.

3) Derived from decline At

5) SFO for APF140584; bis Pasic for AE F147447

IIIA 9.1.2 Anaerobic degradation of the preparation in soil

Mesosulfuron-methyl was found descadable in flooded anaerobic soil, with a half-life comparable to that observed inder aerobic conditions (geometric mean $DT_{50}=30.3$ days at 20 °C). The biotransformation led to the same components as observed in aeobic soils, except for the only negligible formation of CO_2 (CO_2) AR), inherent to anaerobic condition. The proposed metabolic route therefore is equivalent to that proposed for aerobic conditions (see Figure 9.1.1-1).

²⁾ Value statistically not acceptable (b/t-test) or Chi²-error too large) and not considered for calculation of mean.

⁴⁾ Maximum o@wo va@es used instead of geometric Gean.

Table 9.1.2-1: DT₅₀ values of mesosulfuron-methyl in anaerobic soil.

Soil	Model used for Mesosulfuron- methyl	Mesosulfuron-methyl DT50 [days]
SLI	SFO	30.1
SLV	SFO	30,5
Geometric mean	-	30.3

IIIA 9.2

IIIA 9.2.1

Soil dissipation testing on a range of representative soils of mesosulfuron-methylafter a single, exaggerated rate application of the continuous forms of the methods of cultivation of the studies focused on the parent lata was kinetically evaluated conditions to the parent lata was kinetically evaluated to the parent lata was The degradation of mesosulfuron-methyl after a single, exaggerated rate application of 105% ha was investigated in Northern Europe (Germany, France, Great Britain) on two phots per trial, for spring or autumn use on bare soil, and in Southon Europe (France and Spairs) on one plot or trial, for a spring application situation. The regions and the methods of cultivation were typical for cereal crops. Analytical monitoring in the studies focused on the papent substance degradates were not traced.

The experimental data was kinetically evaluated according to FQCUS guidance, including a referencing to standard conditions for soil temperature (20°C) and soil moisture (field capacity) via the time-step normalisation approach. For the temperature normalisation a Q₁₀ value of 2.58 was used.

Normalised single first order T₅₀ values for mesoculfuron-metbyl ranged from 16.1 to 54.0 days, the overall geometric mean value was 34.6 days, including both the spring and the autumn applied studies. This data is consistent with the degradation behaviour observed for mesosulfuron-methyl in the set of laboratory studies, considering experimental variation in biological systems and the by factor 7× exaggerated use rate tested in field. As a Tier 1 approach all environmental exposure simulations for the present product will therefore be based solely on the broad and representative set of laboratory half-life information, being founded on a kinetic model description of the entire metabolic pathway scheme

No significant downward movement of mesos affuron-method in the soil profile was observed, for both application timings and all locations tested. The active substance was only sporadically detected in soil layers deeper than 10cm, and residites were low despite of the exaggerated application rate.

Soil residue testing

Soil residues relevant for succeeding cross can be predicted from soil dissipation data provided in IIIA 9.1.1 and 9.2.1 (see also IIIA 9.4). Therefore no further soil residue testing with the preparation is required.

oil accumulation testing

No addition studies have been performed. Concluded from PECplateau calculation presented in IIIA 9.65 mesosalfuron-methyl would not be expected to have relevant accumulation potential in soil.

IIIA 9.2.4 Aquatic (sediment) field dissipation

The mobility in soil of mesosulfuron-methyl and its metabolites relevant for assessment was studied by batch equilibrium tests on a variety of different soils. An overview of the data is presented in the tables below. These data did not indicate a correlation of soil adsorption with soil pN for any component.

For the only transient and short-lived degradate AFF140384 no experimental study was never worst-case default parameterisation for adsorption (Koc = 0) and concentration will therefore be used in exposure simulations for this component

I degradate A in for adsorption is e simulations for the For the only transient and short-lived degradate APF140884 no experimental study was performed a worst-case default parameterisation for adsorption (New = 0) and concentration dependency (1/m = 1) will therefore be used in exposure simulations for this component.

Table 9.3-1: Soil adsorption data of mesosulfuron-methyl and its metabolites relevant for assessment

Common		Kf	Koc	Kom	Freundlich
Compor	nent / Soil	[mL/g]	[mL/g]	[mL/g]	Freundsch exponent 1/n Ø
Mesosulfuron-me	ethyl			Q Q	
	•	1.69	345	200.1 79.5 21.5 18.0 49.9	0.85 0.95 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
		3.71	137	79.5	
		0.41	₾37	§ 21.5	J ~0.93 S
		0.71	₹ 31	18.0	$\mathfrak{P}^{0.91}$
		2.28	₹ 86 Ç	49.9	0.91 0.90 0.92 0.93 0.90 0.93
		0.24	337 31 86 26	• 15.14 © 20.9	, ' © 2 , © '
		0.60	36 🥎	0 15.14 0 20.9	0.93 0 0.93 0 0.90 0.93
		1.22		9.3	0.90
		0.56	26 Q 36 36 36 36 36 36 36 36 36 36 36 36 36 3	27.8	0.93
	Median		A8.0 A9.0 A	27.8 C	93 9.92 0.91
	Arithmetic mean		92.5	\$7.6 \$37.1 \$7	Δ ×9
	Geometric mean		92.3	37.1	
AE F154851	Geometric mean	54 Ki	\$ \$5\$ O	\$6.8 \$35.4 \$35.4	Ų" , Q
A – USA	Q, Y	3.1	' > 985' 0	\$6.8 \$35.4 \$26.8	√ 0.92
B – Germany	<i>O</i> 1	√ 1° U. 17(m)	7 9857 5 446 8	35.40	© 0.94
C - Germany		/w/ II / >	10 & ALA @.\	35.40	0.93
	Arithmetic mean		65.0	26.74 3 9.6 37.7 4	0.94
	Geometric mean		65.0	37.7 5	0.94
AE F160459					
		0/2/978	y 11.2 °	\$ 16/5	0.93
		3797	15%	9.1	0.94
II		0.7630	₩ 106.2	9.1 9.4 12.2	0.93
8		0.7590	3 44.0 S	12.2	0.98
			് എവര ത്ര	25.9	0.93
	Arithmetic mean Geometriconean		19.3 1	12.6 11.2	0.94 0.94
AE F099095	A rithm Gran And And And And And And And And And An	42.80 2.94 2.33		11.2	0.51
A – USA		× 42.8	1360	788.9	0.83
B – Germany		2 94	\$\tag{226}	131.1	0.84
B – Germany C - Germany		2 94 2 33 ×	141	81.8	0.86
.4	Arithmetic mean	<u> </u>	. 576	334	0.84
\$\bar{\pi}\$	Geognetric mean	72.80 2.94 2.33	351	204	0.84
AE F092944	Arithmetic mean Geometric mean Geometric mean Geometric mean)*		
S 2.1 ×		Q2.47	211	122.4	0.69
LS 2.2		W 2.59	89	51.6	0.86
SL 2.3		8.25	625	362.5	0.65
Arizona A		8.23 4.05 a)	663 a)	384.6 a)	0.52 a)
Arizona B		1.82 a)	696 a)	403.7 a)	0.63 a)
SL V		4.11	395	229.1	0.78
SL 2		81.3 b)	11289 b)	6548.1 b)	0.58 b)
Kanada 💍		16.5	917	531.9	0.62
	Arithmetic mean		447	260	0.72
	Geometric mean		336	195	0.71

Component / Soil	Kf [mL/g]	Koc [mL/g]	Kom [mL/g]	Freundlich。 exponent In
AE F160460				Š, O
	0.2069	11.5	6,7\$ 505	Ø.9745 D
	0.2258	9.4	<i>9</i> 05	0.8692
II	0.3488	7.6	4.4	0.8692 0.8567 0.9524 0.86280
	0.0743	10.6	£ 6.1	0.9524
	0.5329	31.3	© 18.2	9.8628°
Arithmetic mean		4.1	4.4 6.1 18.2 8.2	~~° 0.9 0 ° ~ ~ (
Geometric mean		12.2 S	7.1.♥	\$ \$\text{\$\ext{\$\text{\$\exiting{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\exitit{\$\text{\$\texititt{\$\text{\$\exitit{\$\text{\$\text{\$\text{\$\ti
AE F140584				
generic worst case parameters	0 📞			° 1.000
AE F147447	A û			
AXXa	19. 097 ×	4.6 38 6.6 7.0	2.2 3.2 02.4 02.4	- Z
	0.096 0.086 0.096		7 2.2 7 3 8	
AIIa	\$\ 0. 08 \	7.0	3.8	<i>Õ</i>
		7.0		
II	♥ Ø0.181 Ø			
Arithmetic me	an 🎺 💮	\$\frac{4\text{5}}{\text{5}} \frac{\text{5}}{\text{5}}	3.0	1.00
Geometrie	ean, S	″5.1 "	~ 2 9	1.00

- a) value excluded, not considered in the evaluation (EUDAR 2003, addendured
- b) variation not understood, not considered in the evaluation, (EU-DAR 2003, addendum);

IIIA 9.3.1 Column leaching

The potential mobility of mesosulfuron-methyl and its metabolites can be characterised based the adsorption/desorption/studies described under point 9.3 and environmental modelling simulations based hereon. No column leaching studies were therefore performed.

IIIA 9.3.2 Lyameter studies

The fate and mobility of [2-14] Spyringdyl]-labelled mesosoffuron-methyl was investigated outdoors under actual use conditions in two lysimeter studies with undisturbed monoliths of sandy soils (depth 1.0 m, surface area 0.5 m.) Applications were made to winter wheat at a rate of 15 g/ha, twice in consecutive years. The treatment was fined either in spring (first study) or in autumn (second study).

Both studies confirmed that mesosylfurors methyl is short-lived and not mobile to relevant extent in field soils; neither the active substance for any metabolite identified in the route of degradation studies leached at concentrations reaching or exceeding 0.1 µg/L in annual average.

Polar material detected in feachate samples in slight excess of the trigger level could not be identified with the technology available at the time of lysimeter study conduct. A bioassay revealed no growth inhibition potential to the most sensitive aquatic plant species, *Lemna gibba*. Only later, a dedicated supportive experiment allowed via state-of-the art spectroscopy a retrospective assignment of the chemical structure of BCS-CV14885. The component was synthesized and assessed for groundwater relevance according SANCO 221/2000 guidance. In these tests, BCS-CV14885 was found cleary non-relevant, i.e. devoid of herbicidal activity, and of no genotoxic potential.

Compound / Codes	Chemical Structure	Explanation for Consideration	Considered for
BCS-CV14885		Detect in lysimeter leachate.	specific risk-envelopes assessment for ground- and surface water, cf. Document MCA

Owing to the fact that BCS-CV14885 was not formed at quantities triggering identification in any of the standard soil metabolism studies and could only be addressed via special test design, the component could not be included in the regular environmental modelling pathway scheme for standard exposure assessments for products. Specific simulations to extrapolate the experimental findings of the lysimeter tests to other representative regions of European agriculture were made in Document MCA, estimating worst case PECgw and PECsw of BCS-CV14885 for spring and autumn uses of mesosulfuron-methyl in cereals at its maximum rate of 150g a.s./Ra once per seaon. The subsequent risk assessments for ground and surface water allowed for the conclusion of Safe use for a risk envelope covering all anticipated uses a mesosulfuron-methyl withon products; degradate BCS CV14885 was therefore considered not to qualify for regular assessment at product level, and in consequence was not included in the residue definition.

Field leaching studies IIIA 9.3.3

...ory study

...ation have been performed. De, ...on 1. The variour pressure are also

...dity — field study

... ficient information can

No volatility studies on the preparation have been performed. Details of the volatility of the active substance(s) are given in Section 1. The varour pressures are also reported in Section 9.9.

IIIA 9.4 Predicted Environmental Concentrations in Soil (PECs) for the Active Substance

Endpoints for PECsoil

Table 9.4-1: Comparison of EU endpoints and modelling input parameters for mesosulfur on-methyl

End-Point	Active substance: me	esosulfuron-methyl	
	Proposed EU endpoints [Document N2]	Value used fo	modelling
DT [dova]		1300	7 0 8
DT ₅₀ [days]	109.7		

PECsoil modelling approach

Calculations were based on a simple first tier approach (Nicrosoft[®] Excel spreadsheet) considering even distribution of the compound in upper 0-5 cm soil layer. A standard soil density of 1.5 pcm³ was assumed. Crop interception will reduce the amount of a compound reaching the soil and is taken into account depending on the growth stage at application. The interception rates follow the recommendations for cereals given in the FQCUS groundwater guidance paper FOCUS 2002).

Metabolites were addressed via a model approach equivalent to that of parent substance, assuming virtual application of the metabolite at a rate derived from its maximum abundance observed in soil, and corrected for molecular weight difference to parent.

If not specified otherwise, the time-course of EC_{soil} and subsequently TWA_{soil} was derived based on simple first order kineties, using worst case soil half-life as the injut parameter.

Report:	β; 2014;M=981618301
Title:	Mesosulfuron-methyl (MSM) and metabolites (ECsoil EUR - Use in winter cereals
	Can ranope 0 % - % 0 2 %
Report No:	EnSa-4-0226
Document No:	Mc481618-01-1 0 0 0
Guidelines:	not applicable not applicable
GLP/GEP:	no in

Methods and Materials

The predicted environmental concentrations in soil (PEC_{soil}) of mesosulfuron-methyl were estimated based on a first tier approach using a Microsoft Excel spreadsheet. A bulk density of 1.5 kg/L and a soil mixing depth of 5 cm were used as recommended by FOCUS (1997) and EU Commission (1995, 2000). From interception was taken into account according to the BBCH growth stage, as recommended by FOCUS (2002). Detailed application data used for simulation of PEC_{soil} were compiled in Table 9.4-2.

Application pattern used for PECsoil calculations of mesosulfuron-methyl **Table 9.4-2:**

			Amount reaching			
Individual crop	FOCUS crop used for interception	Rate per season [g a.s./ha]	Interval [days]	Plant interception [%]	BBCH Stage	soil per season application [g a.s./hat
Winter wheat GAP & Simulation	winter cereals	1 × 15	- &a	50	20-32	1 × 75
Winter rye GAP & Simulation	winter cereals	1 × 6	- 🔻	50	20-32	3.0

Substance Specific Parameters:

PEC_{soil} calculations were based on the maximum DT₅₀ of laboratory studies (109 7 days) at standard temperature and moisture, according to FOCIS (2000). Further compound specific input parameters are summarized below.

Input parameters of mesosulfuron-methyl for PECsoil (from Table CA).1.2, [Y-1) **Table 9.4-3:**

Compound	Days	Max occur	Molar mass [g/mol]
mesosulfuron-methyl *	\$ °>√ 109.7		503.5

Findings:

The maximum PECs values for nesoculturors methyl are summarised in the Table 9.4- 4. The maximum, short-term and long-term PEC soil values and the time weighted average values (TWAC soil) are provided thereafter (Table \$4-5).

Maximum PEC soil of mesosulfur of methol for the uses assessed

~		70
Use partern	Winter cervals	Winter cereals
« 🦤	1/3 15 g & ./ha, 50% interception	1×6 g a.s./ha, 50% interception
	Winter cereals Winter certains 15 g s. //ha, 50% interception //www.frage.com/	[mg/kg]
mesosulfuron-methy	× .×0.010 ,	0.004
mesosulfuron-metary		

Table 9.4- 5: PEC_{soil} (actual) and TWAC_{soil} of mesosulfuron-methyl

		Mesosulfuron-methyl					
	Time	Winter	cereals	Winter cereals			
	[days]	1×15 g a.s./ha,	50% interception	ion 1 × 6 g a.s@na, 50% interce			
		PECsoil	TWACsoil	PEC	TWACsod		
		[mg/kg]	[mg/kg]	[mg/kg]			
Initial	0	0.010	-	£0 7 0 704			
	1	0.010	0.000	0.004	√ 2,004 √ √ √ √ √ √ √ √ √ √ √ √ √		
Short term	2	0.010	0.010	0.004	9 0.004~		
	4	0.010	\$0.010	0.004 ×	0.004		
	7	0.010	<u>3</u> 0.010	0.004	. 0. 00 4 C		
	14	0.009	0.010 ×	0.004	Ø.004 👸		
	21	0.009	0,009	~ 0.004 ~	. ₹ 0.00 4 ©		
Long term	28	0.008	(20.009 T	0.903	[∞] 0.004		
	42	0.008	0.009	8 .003 0	√ 0÷ 0 04 °		
	50	0.007	Q Q Q Q Q	∢ 0.00€>	©.003 ©		
	100	0.006	√	\$\tag{\pi} 0.0\text{0}2 \times	0.003		

Potential accumulation in soil:

The accumulation potential after long term use for measulfus n-methyl was also assessed. The results for a standard mixing depth of Jem are presented in Table 9.4-6.2

Table 9.4- 6: PEC_{soil} of mesosulfuron-methyl for the uses assessed, taking the effect of accumulation into account (standard mixing depth of 5 cm)

Use Partern	Mesosulfuron-methyl
	BEC _{soil} [mg/kg]
Winter cerears	platean 0.001
1 × 15 g a. Tha, 50% interception	
Winter cereals.	V Mateau C 0.001
1 × 6 🗞 a.s./ha, 50% interception 🔍	%total*♥ 0.004

^{*} total = plateau (backgroun Concentration after multi-year use) + max PEC_{soji} (see Table 9.4-4)

Alternative PECsoil simulation using RMS requested modelling parameters:

Report:	ÿ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	Mesosulforon-methyl (MSM) and metabolites: PECsoil EUR - Use in winter cereals
Title.	Ling Europe
Report No:	EnSa415-0310
Document No:	M-57/446-01-1 Q S
Guidelines:	not applicable; pot applicable
GLP/GEP:	<mark>no</mark> Ø S Q

The document reports an alternative calculation of predicted environmental concentrations in soil, following the methodology presented under KIIIA 9.4/01, but based on a set of kinetic input parameters selected by the RMS.

Methods and Materials: reference is made to KIIIA 9.4/01, see summary before.

Table 9.4-7: Application pattern used for PEC_{soil} calculations of mesosulfuron-methyl

			Applic	<mark>ation</mark>		Amount reaching	
Individual	FOCUS crop	Rate	Interval	Plant	BBCH	soil per season	
crop	used for	per season		interception	Stage	application (
	interception	[g a.s. /ha]	[days]	[%]	Stage	g a.s./hat	
Winter wheat GAP & Simulation	winter cereals	1 × 15	-	20	20-32	. 1200 x	
Winter rye GAP & Simulation	winter cereals	1 × 6		20	20-32 _@	4.8	
				Q o.			
Substance Specific		4 .	, co				
Table 9.4-8: Input parameters of mesosulfuron-methyl for PECsoil							
Compound Dates Max. occur. in soil Molar mass							

Substance Specific Parameters:

Table 9.4-8: Input parameters of mesosulfuron-methyl for PECs

	*	0 20		
Compound	DA ₅₀	Max. veci	ır. in soil	Molar mass (
				y Jg/moll
mesosulfuron-methyl	6 155 × 5			© 503.5

Findings:

Table 9.4- 9: Maximum PECsoil of mesosuffuron methyl for the uses assessed

Use pattern	Winter ceres	Wife Wife	ter cereals a, 20% interception
	y (mg/kg)		mg/kg]
mesosulfuron-meth	0,016		0.006

Table 9.4- 10: PEC (actual) and PWAC of mesosulfuron-methyl

	<i>(</i> 0° × × × × × × × × × × × × × × × × × × ×	<u> </u>	Megosulfu	4 i	
	<u>~</u>	Winter 1 × 15 g a Cha,	, Mesosulfu		
	Time	🖇 💸 Winter	cereals	Winter	cereals
⟨ ♥′	days]	¹ 1 ≯ 15 g a √ ha,	cereals 20% interception	1×6 g a.s./ha, 20	0% interception
		PEC.		PECsoil	TWAC soil
	Tirûe karysi		mg/kat	[mg/kg]	[mg/kg]
Initial @		1 × 15 g a × 7ha, PE € 4 g g g g g g g g g g g g g g g g g g		0.006	_
Initial Q		~~ <mark>0.016</mark> ~	0.016	0.006	0.006
Short term 3			0.016 0.016	0.006	0.006
	4 €0	0016	0.016	0.006	0.006
	~ 7	[♥] ~ 0.016 €	0.016	0.006	0.006
4	√14 Å	、% ['] 0.01 % '	0.016	0.006	0.006
~		0.010	0.015	0.006	0.006
Long term	28 28	6014	0.015	0.006	0.006
		0.013	0.015	0.005	0.006
	50	0.01	0.014	0.005	0.006
	28 28 242 2 50 3 108	©10.0 ©	0.013	0.004	0.005
Long term	7 50 5 108 T				
	"O"				
, O.	•				
Ö					

Potential accumulation in soil:

Table 9.4-11: PEC_{soil} of mesosulfuron-methyl for the uses assessed, taking the effect of accumulation into account (standard mixing depth of 5 cm)

Use Pattern	PECsoil	Mesosuffuron-methyl (*)
Winter cereals	plateau	<u>, </u>
1 × 15 g a.s./ha, 20% interception	total* 🚕	0.020
Winter cereals	plateau 😴	0.002
1 × 6 g a.s./ha, 20% interception	total* *	0.00% 3 2 2

anitial PECs values

...ase refer to point IIIA 9.4.

IIIA 9.4.2 Short-term PECs values if -4 days after last application

Please refer to point IIIA 9.4.

IIIA 9.4.3 Long-term PECs values (from \$\pi\$-100 days after last application)

Please refer to point IIIA 9.4.

IIIA 9.5 Predicted Environmental Concentrations in Soil (PECs) for Relevant Metabolites

Endpoints for PEC_{soil}

Table 9.5-1: Comparison of EU proposed endpoints and modelling input parameters for mesosulturonmethyl metabolites

End-Point	Active substance: presosulfuron-methyl
2	Proposed EU endpoints Value used for modelling
	Proposed EU endpoints Value used for modelling [Document N2]
AE F154851	64.3
DT ₅₀ soil [days]*	64.3
Maximum occurrence in soil [%]**	% 16@ 5 16.2 V
AE F160459	(4.5 (4.5 (4.5 (4.5 (4.5 (4.5 (4.5 (4.5
DT ₅₀ soil [days]*	\$64.3 \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Maximum occurrence in soil [%]**	
AE F099095	
DT ₅₀ soil [days]*	
Maximum occurrence in soil [%]**	29.2
AE F092944 Q'	
DT ₅₀ soil [days]*	60,4 70.1 V 0 0 60,4
Maximum occurrence in son [%].	¥ _{≈0} , 190.1 ⁴ √ ₂₀ , ⁴ √ 100.1
AE F160460	44.2 44.2 44.2 8.6
DT ₅₀ soil [days]*	44.2
Maximum occurrence in soil [%]**	* \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Maximum occurrence in soil [%]* AE F140584	
$D1_{50}$ Soll $ aavs ^*$	Ø \$ 7.12 0 7.1
Maximum occurrer in sof √[%]***	
AE F147447	337 6.5 6.5 6.5
DT ₅₀ soil [days P	337
Maximum occurrence in soik[%]**	6.5 6.5

^{*} Table CA₈7 © 2.1.1-1

According to the definition of residue relevant for soil risk assessment, the following degradates were considered for PECsoil calculation: AE F154851, AE F160459, AE F099095, AE F092944, AE F160460, AE F140584 and AE F144472

Report:	©;;;;20,140,M-481618-01
Title; 🗸 🗸	Messalfuron-methy (MSA) and metabolites: PECsoil EUR - Use in winter cereals
	in Original in Ori
Report No:	EnSa-14-0226
Document No:	M-480518-018-1
Guidelines:	not applicable;not applicable
GLP/GEP	nò S

Methods and Materials: PEC_{soil} for the metabolites were calculated using the approach, scenarios and application rates described for the calculations for the parent compound in Point 9.4. Compound specific parameters are summarised in Table 9.5-2.

^{**} Table 7.1.1.1-1

Table 9.5-2: Input parameters for PEC_{soil} for metabolites of mesosulfuron-methyl

Compound	DT 50	Max. occur. in soil*	Molar mass	Molar mass correction	Amount read season ap	ching soil per j oplication 0
	[days]	[%]	[g/mol]	factor	15@a.s./ha	6 g/a.s./ha
AE F154851	64.3	16.2	489.5	0.9722	1.18	♥ 0.47♥
AE F160459	130	8.9	489.5	0.9722	0.65	C 0.28 2
AE F099095	234	29.2	198.2	0.3936	0.86	Q 34 V
AE F092944	60.4	10.1	155.2 🖔	0.3082	0.23 👟	~~~0.09 °~
AE F160460	44.2	8.6	475.5	0.9445	0.6	\$\text{0.24}
AE F140584	7.1	7.1	32 2 A	0.6403	0:34	934 (
AE F147447	337	6.5	2 90.3	Q 5 ,766	£0.28 g	Ø.11 "©"

Findings: The maximum PEC_{soil} values for mesosulfuron-methyl metabolites are summarised in Table 9.5-3. The maximum, short-term and long-term PEC_{soil} values and the time weighted average values (TWAC_{soil}) are provided thereafter.

Table 9.5-3: Maximum PECsoil of metabolites of mesosulfuron-metayl for the uses assessed

Use pattern	Winter cereals Winter cereals 1 × 1 to a.s./ha, 50% interception 1 × 6 g g/s/ha, 50% interception
	1 × 150 a.s./ha, 50% interception 4 6 g a s./ha, 50% interception
	mg/kg/ A P [mg/kg],
AE F154851	
AE F160459	
AE F099095	
AE F092944	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
AE F160460	<0.001
AE F140584	
AE F147447	0.001

Table 9.5-4: PEC (actual) and TWAC soil of mesosulfuron-methyl metabolite AE F154851

<u> </u>					
		Winter	AE FL	5 4851	
		Winter 🔍	codeals 🎺 👢 🔘		cereals
		1 1 1 € 15 g a⊙/ha, 5	coeals V O	1×6 g a.s./ha, 5	0% interception
	Time (days)	PEC%il O	TWAGsoil	PEC soil	TWACsoil
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Initial @	(O) (C)	√ %.002 © ° .	©, <i>©</i> ,	< 0.001	-
		~ 0 00a × a	% .002	< 0.001	< 0.001
Short term	2.	\$ 0,002 \$	2 0.002	< 0.001	< 0.001
Short term	s.4Q 4	Q 0.002 S	> 0.002	< 0.001	< 0.001
, W		0.001 % 0.000 %	0.002	< 0.001	< 0.001
	14 21	0.000 🛇	0.001	< 0.001	< 0.001
•	21"0"	0,001 L	0.001	< 0.001	< 0.001
Long term	28 Q	. [™] ≈ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.001	< 0.001	< 0.001
Q ^v	42	0.00	0.001	< 0.001	< 0.001
L.	S 50,0°	<0.991	0.001	< 0.001	< 0.001
	42 50 100	<0.001	< 0.001	< 0.001	< 0.001
Long term		ÿ			

Table 9.5-5: PEC_{soil} (actual) and TWAC_{soil} of of mesosulfuron-methyl metabolite AE F160459

			AE F1	60459	
		Winte	r cereals		cereals 🏈 🔗
		1×15 g a.s./ha,	50% interception	1 × 6 g a.s@na, 5	0% interception
	Time	PECsoil	TWACsoil	PEC	TWACsoil
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/kg)
Initial	0	< 0.001	-	Ø .001	
	1	< 0.001	<0.001	≈ 0.001	
Short term	2	< 0.001	<0.001	<0.001	\$\text{90.00} \text{1}
	4	< 0.001	№ 0.001		~<0.0¢% (
	7	< 0.001	△0.001	<0.001	~<0@01 _@"
	14	< 0.001	© ^y <0.001		S0.001 €
	21	< 0.001	< 0.001	<0.001	√×0.00 1 √
Long term	28	<0.001	20.001	€ 20 .001 €	[∞] <0.001
	42	<0.001	« < 0.0 0 1	≈ 0.001 ©	< 0 €001 °
	50	<0.001	© <0.901 °	4 0.000	Ø.001 Ø
	100	<0.001	% 0.001, O	<0.001 &	<0.000

Table 9.5-6: PECsoil (actual) and TWAC for of mesosulfuron-methyl metabolice AE 1099095

Initial	Time [dayš]	OIECON	cercolls 50% interception TWACsoil	Winter 1 6 g ass./ha, 5 PECkoil [ang/kg]	cereals % interception TWAC _{soil}
Tuitial	[dav&kař	OIECON	50% interception TWACsoil	1 6 g as /ha, 5	0% interception
Luizial	[dav&kař	OIECON	TWACsoil	PECsoil Q	TWACsoil
Taitial	[dav&kař	r 60 1 🛝			- 5011
Luitial	1 0 10	[mg/kg]			[mg/kg]
initiai	2 4	(*) 0 (20001 (*)	₩	(<0.001 [©])	-
		0.001	\$ 0.0 01	0.00	< 0.001
Short term	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, Ø 0.0 0 ₽	0.001 0.001 0.001	< 0,001	< 0.001
	4	0.001	*\sqrt{0.001}\sqrt{\qquad}	9.001	< 0.001
<u>_</u> C		0 .001, %	0.001	0.001	< 0.001
	∂ 14 ✓	0.001	© 0,5001 O	<0.001<0.001<0.001	< 0.001
, Q	21	0.001	(0.001 ₀	© <0.001	< 0.001
Long term	28	© 0.001	0.001	<0.001	< 0.001
	\$42	0.001	0.001	< 0.001	< 0.001
	50 4	<u>~~~0.00</u> ₩ ×	y' *0 .001 ≥	< 0.001	< 0.001
	100	<0.001	≪0.00 %	< 0.001	< 0.001
		0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001			

Table 9.5-7: PEC_{soil} (actual) and TWAC_{soil} of of mesosulfuron-methyl metabolite AE F092944

		AE F092944				
		Winter	r cereals		cereals	
		1×15 g a.s./ha,	50% interception	1 × 6 g a.s@na, 5	0% interception	
	Time	PECsoil	TWACsoil	PEC	TWACsod	
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/kg)	
Initial	0	< 0.001	-	© .001		
	1	< 0.001	<0.001	≈ 0.001		
Short term	2	< 0.001	<0.001	<0.001	₹ %0.001£j [.	
	4	< 0.001	\$ 0.001	[O [▼] <0.001 👟	~<0.0 % (
	7	< 0.001	<u></u>	> <0.001 _€	~<0@01 _@*	
	14	< 0.001	<0.001 _∞	$\mathcal{Q} < 0.00 \mathbb{Q}^{7}$	S0.001 €	
	21	< 0.001	< 0.001	<0.001	. ≪₹0.00 1 €	
Long term	28	< 0.001	©0.001	₹ \$ 9 ,001 ₹	[∞] <0.001	
	42	<0.001	« < 0.001	≈ 0.001 °	<0.001 °	
	50	<0.001	<i>\$</i> 0.901 ₹	4	Ø.001 Ø	
	100	<0.001	% 0.001,0	<0.001 &	<0.000	

Table 9.5-8: PEC_{soil} (actual) and TWAC of of mesosulfuron-methyl-metabolic AE 1960460

Initial Short term Long term	Time (days)	[mg/kg]		[mg/kg]	rereals 'miterception TWACsoil [mg/kg] <0.001 <0.001
Initial Short term Long term	[days]/y	[mg/kg]	mg/kg	[mg/kg]	b% interception TWAC _{soil} [mg/kg] - <0.001
Initial Short term Long term	[days]/y	[mg/kg]	mg/kg	[mg/kg]	[mg/kg] - <0.001
Initial Short term Long term	[days]/y			1,08 81	<0.001
Initial Short term Long term	2 4 4 2 21 4 21 4 4 4 4 4 4 4 4 4 4 4 4		\$\\ \frac{\cdot 0.001}{\cdot 0.001}\\ \cdot \cdot \cdot 0.001\\ \cdot \cdot \cdot \cdot 0.001\\ \cdot		
Short term Long term	2 4 5 2 5 4 5 7 4 5 7 4 5 7 4 5 7 5 7 5 7 5 7 5	\$0.00\(\begin{array}{c} \cdot	\$\frac{\cdot 0.001}{\cdot 0.001}\$\tag{\cdot 0.001}\$	<0.001	
Short term Long term	2 4 4 2 1 21	<0.001 <0.001	\$0.001, © \$<0.001	< 0.001	<0.001
Long term	74 2 21	<0.001 × (0.001 × (0.001)	*\foots\(\sigma\) \(\sigma\) \(\sigma\)	W 80 001	
Long term	74 V	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.0.001	y √ 9.001	< 0.001
Long term	21		% <0.001 %.	0.001	< 0.001
Long term	21.	<0.001%	© 2001 0°	© <0.001	< 0.001
Long term	21/	<0.001	(@0.00 <u>1</u>	<0.001	< 0.001
	28	> < 6. 9001	<0.001	< 0.001	< 0.001
**	\$42 \$\frac{1}{2}	<0.001	<0.001	< 0.001	< 0.001
_	50 4	~<0.00Ψ ×	j. \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	< 0.001	< 0.001
	100	© <0.0001 <u>"</u>	≪0.00 %	< 0.001	< 0.001
			0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000		

Table 9.5-9: PEC_{soil} (actual) and TWAC_{soil} of of mesosulfuron-methyl metabolite AE F140584

			AE F1	40584	
		Winter	cereals		cereals
		1×15 g a.s./ha, $\frac{4}{5}$	50% interception	1 × 6 g a.s@na, 5	0% interception
	Time	PECsoil	TWACsoil	PEC	TWACsod
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	/mg/kg
Initial	0	< 0.001	-	₹ 0.001	
	1	< 0.001	<0.001	≈ 40.001	
Short term	2	< 0.001	< 0.001	<0.001	Ø0.001
	4	< 0.001	\$ 0.001	[O [▼] <0.001 👟	~~<0.0 %
	7	< 0.001	<u></u>	> <0.001 €	~<0@01 _@"
	14	< 0.001	∞ ^y <0.001 ~	$\mathcal{Q} < 0.00 \mathbb{Q}$	50.001 €
	21	< 0.001	<0.001	<0.001	××0.0040
Long term	28	<0.001	©0.001	₹ \$ 9 .001 €	°> <0.001
	42	<0.001	« √ < 0.0 0 /1	% 0.001 %	<0.001 °
	50	<0.001	Q.901 Q	<0.000b	Ø.001 Ø
	100	<0.0000	√ % 001,©	<0.001 &	<0.00

Table 9.5-10: PECsoil (actual) and TWACso of of mesosulfuron methyl metabolite AE 1947447

			ASE F1	A7447	<i>"</i>
	,	Winter Winter		D' Waston	cereals
	≪	√ 1 × 15 g a.s. ma, :	50% interception	1 6 g æs./ha, 5	0% interception
	Time [day§]√	OPEC.	TWACsoil	PECsoil S	TWACsoil
	[days̃] _≫ "	[mg/kg]	/mg/kg	[ang/kg]	[mg/kg]
Initial	W	© 0001 ©		<0.001 [©]	-
		(\$0.00 kg)	\$ <0.001	© < 0.0 Q 1	< 0.001
Short term	2 &	~ (0. 00	0.001. ©	<0.001	< 0.001
	4	<0.001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 .001	< 0.001
		\$9 .001, %	<0.001	0.001	< 0.001
	₩4 V	~100.0° × ×	© 20±001 ©	<0.001	< 0.001
Long term	21,	2 < 0.0 0 1		< 0.001	< 0.001
Long term	28	© < 6 001	<0.00 \\ \frac{1}{2} \qq	< 0.001	< 0.001
	~ \$\frac{42}{2} \times	∅<0.001 _© °	<0.001	< 0.001	< 0.001
	\$50		√ 💹 .001 🕮 🗀 💮	< 0.001	< 0.001
	100	2 <0.001	0.00	< 0.001	< 0.001

Potential accomulation in soil:

The accumulation potential after long form use was also assessed for mesosulfuron-methyl metabolites having the longest maximum DT₅₀, AE F-00459 AE F099095 and AE F147447. The results for a standard mixing depth of 5cm are presented in Table 9.5-11.

Table 9.5-11: PEC of of me osulfuron-methyl metabolites for the uses assessed, taking the effect of account at a mixing depth of 5 cm)

Use Pattern	PECsoil	AE F160459	AE F099095	AE F147447
Use rattern	FEC soil	[mg/kg]	[mg/kg]	[mg/kg]
Wigner cereals . V	plateau	< 0.001	< 0.001	< 0.001
1 x \$15 g a.s ha, 50% interseption	total*	0.001	0.002	0.001
Winter cereals	plateau	< 0.001	< 0.001	< 0.001
1 × 6@a.s./ha, 50% interception	total*	< 0.001	< 0.001	< 0.001

^{*} total = plateau (background concentration after multi-year use) + max. PEC_{soil} (see Table 9.5-3)

Alternative PECsoil simulation using RMS requested modelling parameters:

Report:		15;M-517446-01		¥	
Title:	Mesosulfuron-methyl (MSM) a	nd metabolites:	PECsoil EUR 🖓	Jse in winter	rcereals
	in Europe			\sim	
Report No:	EnSa-15-0310				
Document No:	M-517446-01-1	ĈA		4 1	
Guidelines:	not applicable; not applicable		W'	ک م	
GLP/GEP:	no no		ő	400	

The document reports an alternative calculation of predicted environmental concentrations in soil, following the methodology presented under KIII 9.5/01 before but applying a set of modelling. following the methodology presented under KIIIA 9.5/01 before, but applying a set of modelling pre to the second secon parameters requested by the RMS.

Methods and Materials: reference is made to M

Substance Specific Parameters

Input parameters for REC soil for metabolites of mesosplfuron-metho **Table 9.5- 12:**

Compound	DT ₅₀	Max. occur.	Molar mass	Molar mass		ching soil per
	[days]	1%	[g@mol]	factor &	15 % a.s./ha	6 g a.s./ha
AE F154851	207.4	₹16.2	¥89.5, ×	0 .972 2 √	°≥ 1.89	0.76
AE F160459	2144.8	8.9	\$\$ <mark>489.5</mark> ₹	a, 0.9722	1.04	0.42
AE F099095	\$\$ <mark>2,6}\$</mark> ₹ ?	😽 29 2 ~	× × × × × × ×		1.38	0.55
AE F092944	ÿ <mark>82.7</mark> ∜	′	₹ 5.2 ≈	3082	0.37	0.15
AE F160460	44.2	© 8.6 & 0	475.50°	3 0.9444	0.97	0.39
AE F140584	© 15.1 V	& 7.1 &	% 32 2 ₹	0.6403	0.55	0.22
AE F147477	833/1	e i <mark>gojo</mark> r i	^{290.3} ©	2 Q. \$7 66	0.45	0.18

Findings:

Table 9.5-13: Maximum PEC Fof metabolites of mesosulfuron-methyl for the uses assessed

Use pattern Winter cereals Vive a.s. Adv. 20% interception	Winter cereals 1×6 g a.s./ha, 20% interception
A Ping/kg C	[mg/kg]
	0.001
AE F154\$51 AE F160459 AE F160459 AE F160459 AE F160459	<0.001
AE F160459 AE F099095 AE F092944 AE F160460 AE F140584 AE F14744 AE F14744 AE F14744 AE F160460 AE F14744 AE F1474 AE F1474	<0.001
AE F092944	<0.001
AE F160460	<0.001
AE F1405840	<0.001
AE F14744 ⁸	<0.001
AE F1403840	

Table 9.5-14: PECsoil (actual) and TWACsoil of mesosulfuron-methyl metabolite AE F154851

			AE F1	154851	
		Winte	r cereals	Winte	er cereals
		1×15 g a.s./ha,	20% interception	1 × 6 g a.s@na,	20% interception
	Time	PEC soil	TWAC soil	PEC	TWACsoa
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/kg
Initial	0	0.003		×0.001	
	1	0.003	0.003	0.001	X 4001 \$
Short term	<mark>2</mark>	0.003	0.003	0.001	y <mark>90.001</mark> %
	<mark>4</mark>	0.002	√ 0.003	(0.001 ×	0.000
	<mark>7</mark>	0.002	<u>J</u> 0.002	∑ <u><0.001</u>	< 00001 © "
	<mark>14</mark>	0.002	0.002	<i>@</i>	€ 0.001
	<mark>21</mark>	0.002	0.002	~ <0,001 ~	
Long term	<mark>28</mark>	0.002	20.002	€ <mark>\$9.001</mark>	< 0.001 × < 0.001
	<mark>42</mark>	0.002	%\1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.001	< 0. 001 °
	<mark>50</mark>	0.002	, © 002 ° °	4 0.000	©.001 © Y
	100	0.002	9 .002	<0.901 <	√ < 0.0 0

Table 9.5-15: PECsoil (actual) and TWAC of of incresosulturon-methylanetabolite AE 1060459

Time				Q		2-			<u>~~</u> _	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				7,			<u> </u>	60459		,
					Winter	cer@als			Konter c	e y eals
				୬ <mark>1 %</mark> 15	g a.s./ha,	20% into	ercéption 🤎	1	s./ha, 20⁴	% interception
0.001	0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001		Time 🉈	\bigcirc 11	EC _{soil}	V TV	AC _{soil}	PE Csoi	, Ò	
0.001	0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001		days	. [m	g/kgl &	An An	ng/k g ∮∞	W Img/kg		
0.001	0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001	Initial	. <mark>0</mark> .		801 O			-0.001		
0.001	0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001	- IIIIII			001	(A)	γ <mark>οδ1</mark> Ο ^ν	<0.001		< 0.001
0.001	0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001	Short term	2 2 x	A 50	<u>001</u> (//)		7001 @n			
Complete	14 0.00 0.00	Short term	1 O		00 V		0.001	2001		
Long term, 28 0.001 0.00	Long term ()			\(\frac{1}{8}\)	001		001	0.001		
Long term 1	Long term 21				2001		001	0.001		
Long term 28	28, C 9601 C 0.001 C 0		21		.001 V		001	<0.001		
Section Sect	Comparison Com		21		OUL P	, "4	0.001	<0.001		
		Long term	28, a	Ç V	(901 °			<0.001		
		Ky'	,42	/) 0	.001 🔊 "		0.001	< 0.001		
			<u>≈</u> 0 50 √ °	0	3 QQD.	y' s	k.001 △	< 0.001		
			2 100 100 100 100 100 100 100 100 100 10	<i>©</i> ' <(1 <u>0</u> 01 20	ř V	0.002	< 0.001		< 0.001
							·			

Table 9.5-16: PECsoil (actual) and TWACsoil of of mesosulfuron-methyl metabolite AE F099095

			AE F099095						
		Winte	r cereals	Winte	r cereals				
			20% interception	1 × 6 g a.s@na,	20% interception				
	Time	PEC soil	TWAC soil	PEC	TWACsort				
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	/mg/kg				
Initial	0	0.002		40. 001					
	1	0.002	0.002	≈ 0.001	₹0,001 \$				
Short term	<mark>2</mark>	0.002	0.002		,				
	<mark>4</mark>	0.002	№ 0.002	_O [▼] <0.001 <					
	<mark>7</mark>	0.002	<u> 3</u> 0.002	√ < 0.001 √					
	<mark>14</mark>	0.002	0.002	⊘ ,≪0.00₽″,	Ø ≥ 0.001				
	<mark>21</mark>	0.002	1 · 0,002 .40%	<u></u>	<u></u>				
Long term	<mark>28</mark>	0.002			<0.001				
	<mark>42</mark>	0.002	% U.U@		< 0.001 °				
	<mark>50</mark>	0.002 🐴	© 002 Q	. 1	9.001 °				
	100	0.001	√	Q 901 %	₹0.000°				

Table 9.5-17: PECsoil (actual) and TWAC for of mesosulfuron-methylanetabolite AE 1992944

ı	1	Q '		- 			~		<i>-</i>
	<u>_</u>		Vinter cere		E FO	92944	» <u>"</u>) (
	4	V 1 × 15 g a.	Vinter cer	oals 🎺		Š Č	Won	ter cereal	s terception
	<u> </u>	″ <mark>1 ≽ 15 g a.</mark>	s∦ha, 20%	intercep	tion	. 30	varione /ha	i, 20% int	terception
	Time [day͡ɤ] √	⊘PEC ∞		TWAC _s	oil		EC%oil	. [P] T	WACsoil
	[days]	(mg/kg		/mg/kg)		Ecsoil ng/kgl	,*	mg/kg]
Initial	days _y	© 0.001 0.001 0.001 0.001 0.001		intercep TWAC, mg/kg	%		0.001		-
		₹0.001		≪© √001	0		0.001		< 0.001
Short term	2 4	~ (0. 96)	, 1	₹ 0.001	@	ي. <	2 ,001		< 0.001
)	<0.001	7	0.001 <0.00			0.001		< 0.001
<u> </u>	2 4 4 2	₩.00 ¥	, O' J	< 0.001			0.001		< 0.001
O*	14	100.00	Y , Q	£0 .001	O [*]	_@ <	0.001		< 0.001
, Q	<u> </u>	<0.001		©0.001		જેઁ ≦	0.001		< 0.001
Long term	28 ×	₹ 0001		> <0. 00 1		ĩ <	0.001		< 0.001
	×42 × 1	× <0.001		<0.001		<	0.001		< 0.001
,	50 5 0	< 0.004		<0.001 <0.001 <0.001 <0.001		<u><</u>	0.001		< 0.001
	7 100	6.0001	4.0°	₹0.00	۶	<	0.001		< 0.001
Long term	21 28 32 30 50 7 100 7 7 7 7 7 7 7 7 7 7 7 7 7								
				ð					
	»-			S					
				,					
4 n	7 A								
		Y Q							
@ . \	· · · · · A	,U (4						
	1 ° 2	y ZŽ	Q,						
Q°		. ~ @	,						
F. Ö		*							
		\sim							
Y S	A 29								
Ü Ğ	450								
Č,									

Table 9.5-18: PEC_{soil} (actual) and TWAC_{soil} of of mesosulfuron-methyl metabolite AE F160460

			AE F160460						
		Winte	r cereals		r cereals				
		1×15 g a.s./ha,	20% interception	1 × 6 g a.s@na, 2	20% interception				
	Time	PEC soil	TWAC soil	PEC	TWACson				
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/kg				
Initial	0	0.001		₹ 0.001					
	1	0.001	0.001	≈ ∞0.001	<u>√</u> 0001 √				
Short term	<mark>2</mark>	0.001	0.001	<0.001 g	¥ % <mark>90.001</mark> k				
	<mark>4</mark>	0.001	√ 0.001	_O [▼] <0.001 ✓	0.00				
	<mark>7</mark>	0.001	<u> 3</u> 0.001 4	5 ≤ 0.001 1 1 1 1 1 1 1 1 1 1	<0001 © ^v				
	<mark>14</mark>	0.001	0.001	@ <mark><0.00₽</mark>	© 0.001 g				
	21	<u>\0.001</u>	0,001 102	~ <0,001 ~	√ ₹0.00				
Long term	<mark>28</mark>	<0.001	8 0.00 1 -		<0.001				
	<mark>42</mark>	<0.001	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		< 0. 001 °				
	50	<0.001	√0,601 °	. 1	9.001 °				
	100	<0.001	30.001		<0.000				

Table 9.5- 19: PEC_{soil} (actual) and TWAC of of mesosulfuron-methylanetabolic AE F 40584

		- ²	S. Wind		ØE F	140584		**
	,) 1 <u>* 1</u>			\$	140584	Winter c	ereals 6 interception
	<u></u>	🥒 <mark>1 🍇 1</mark>	5 g a. s.∜h a.	, 20% inte	rception/	. 1 % 6 a a	s./ha, 20 ^t	% interception
	Time () [days]		PEC soil	, 20% inte	ACsoil	PEC%		TWAC _{soil}
T	[days]	4 1	mg/kg] (y Am	g/kg)	1-08 8		[mg/kg]
Initial		√ ¥	©.001 ©		7 01			- -0.001
Short term	71 °		<0.001 _€ /		001 @/	() -0.0 dy		<0.001 <0.001
Short term	2 4 2 4 3 4	(Y	0.001 0.001		.001 © .001 © .001 ©	2 × × × × × × × × × × × × × × × × × × ×		<0.001
		~~	Ø.001 0	J 4 < 0	.001	0.001		< 0.001
8	14 \$	9	100.0		.001	© <0.001		< 0.001
, <i>Q</i>)	<u> </u>	4 Q	<0.0401 %	2 0	.001	<pre>< 0.001</pre> <pre>< 0.001</pre> <pre>< 0.001</pre> <pre>< 0.001</pre>		< 0.001
Long term	28)	S.	£ 901	_	.001	< 0.001		< 0.001
Long term	2 2	7)	<0.001 _€ ,	, O. <0	. 0 01	< 0.001		< 0.001
	₹ 50 ₹	Q ·	<0.00 ⁽¹⁾	\$\tau' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.001	< 0.001		< 0.001
	100		0.001	9 <0	.00	< 0.001		< 0.001
Q))" (. 0	Ĩ.			
~9~								
	Ö	,\$9`						
		Q .						
4 n								
			Q ^	Ş'				
C.	7,1		0 4	<i>y</i>				
Z,			* Q					
		J.						
F.			. 4					
. 2		0						
		,						
* O								
Long term	21 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20							

Table 9.5-20: PEC_{soil} (actual) and TWAC_{soil} of of mesosulfuron-methyl metabolite AE F147447

			<mark>∧ 17 - 17</mark> 1	147447	r cereals
		** 7*			r careals
			r cereals		r cereals
			20% interception		20% interception
	Time	PEC soil	TWAC soil	PEC	TWACsof
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/kg)
Initial	0	< 0.001		₹ 0.001	
	1	< 0.001	<0.001	≈ ∞0.001	₹0,001 \$\text{\$\sqrt{\cong}\$}
Short term	<mark>2</mark>	< 0.001	< 0.001	© <0.001	
	4	< 0.001	≈ \$0.001	ູດ [▼] <0.001 ≪ັ	(0.0 €
	<mark>7</mark>	< 0.001	<u> 3[©]<0.001</u>	√ < 0.001,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	<mark>14</mark>	< 0.001	© * <0.001	% 0.00₽	6 0.001 €
	21	< 0.001	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ <0,001 ~	√ × × × 0.00 × × × × × × × × × × × × × ×
Long term	<mark>28</mark>	<0.001	0.001	£° ≤0001 €	<0.00¶
	42	<0.001	« <0.001		< 0.001 ° °
	50	<0.001	. Ø <mark><0.901</mark> ♀		9.001 °
	100	<0.001	√″ % .001 ©	\bigcirc	<0.000

Potential accumulation in soil:

Triggered by the RMS selection of kinetic input data to PECsol calculation the potential for accumulation in soil is assessed for components AFF154851 ₹ F169459, 🗱 F0999095, and AE F147447.

Table 9.5- 21: PECsoil of mesosulfuron-methyl metabolites for the uses assessed, taking the effect of accumulation into account (standard mixing depth of 5 cm)

Use Pattern	PEC _{soil}	AE F154851	AE F 600459	^ AE_F099095	AE F147447
ese l'accella		mg/kg a		[mg/kg]	[mg/kg]
Winter cereals 🔊	Blatean	Q001	S<0.00	<mark>0.001</mark>	0.002
	C rocar.	· 8 — (b)	0.002	0.003	0.002
Winter cereals 1 × 6 gas./ha.	plateau 🖗	<u> </u>	<0.001	< 0.001	< 0.001
20% interception	total	Q.001 S	<0.001 √0.001	0.001	< 0.001

Short-tecm IIIA 9.5.2

See under IIIA

days after last application)

ong-term PECs values (from 7-100 days after last application)

Predicted Environmental Concentrations in Ground Water (PECgw) **IIIA 9.6** EU endpoints for PECgw

IIIA 9.6 Predicted Environmental Concentrations in Ground Water (PECgw)		
EU endpoints for PECgw		
Le chapoints for I Legw		
Table 9.6-1: Comparison of propo	sed EU endpoints and modelling input p	arameters for mesosylfuron
Table 9.6-1: Comparison of proposed EU endpoints and modelling input parameters for mesosylfuron methyl and its metabolites		
End-point	Active substance: mes	swilfuron-methyl S
	Proposed EU endpoints	Value used for prodelling
	[Document N2]	
Mesosulfuron-methyl		
Aqueous solubility [mg/L]	¥83 Q 2	° 4 (483 ° (°
Vapour pressure [Pa]	Ø5 × 10 ⁻¹²	\$\sqrt{30.50} \times \text{10}\sqrt{12} \times\$
DT ₅₀ soil [days] (geomean, lab)	31.9	31 9
K _{oc} / K _{om} [L/kg] (median)	48/27.8 2	48/27.8
1/n (arith. mean)	20 .910 0 0	Ø.910 \$\tag{\circ}\$
Plant uptake factor		
AE F154851		
Aqueous solubility [mg/L]	200000	√ ② 200000 ○
Vapour pressure [Pa]	0 4 10 × 10 V	Ø × 10€8
DT ₅₀ soil [days] (geomean, lab)	37.1	\$\int 37.4\int
K _{oc} / K _{om} [L/kg] (arith. mean)	© 68.3 © 9.6 ©	68.3 739.6
1/n (arith. mean)	940	9 2940
Plant uptake factor		0
Formation fraction (arith. mean)	0.179	<i>□</i>
AE F160459		
Aqueous solubility [mg/L]	© 0° 25000° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	10000
Vapour pressure [Pa]	\$\frac{1}{2}\tag{8.8}\times \frac{10^{-8}}{2}\tag{9.8}	6.8×10^{-8}
DT ₅₀ soil [days] (geomean, tab)	700	70.1
$K_{oc} / K_{om} [L/kg]$ (a) th. mean $1/n$ (arith mean)	21.8712.6.2	21.8 / 12.6
1/11 (dittil. illedity)	9.940	0.940
Plant uptake factor C		0
Formation fraction (arith. mean) 0.094 0.094		
AE F099095 Aqueon Solubility [mg/]	190 %	190
V	\$1.0 · · · 10-5	1.9 × 10 ⁻⁵
Vapour pressure [Pa] DT ₅₀ soil [days] (geomean, lab) K _{oc} / K _{om} [L/kg] (arith, mean)	1.9 × 10 · 2 · 3 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	87.9
$K_{oc} / K_{om} [L/kg]$ (with mean)	576/334	576 / 334
1/n (arith. mean)		0.840
Plant uptake actor	0 0.8400 7	0.840
Formation fraction (arith. mean)	0.8400	0.076
AE F092044		0.070
Aqueous solubility [ng/L]	5200	5200
Vapour pressure [Pal	2.6×10^{-2}	2.6 × 10 ⁻²
DT soil [days] (geomean ah)	60.4	60.4
K _{oc} / K _{om} [L/kg] (geometry tab)	447 / 260	447 / 260
1/n (arith. mean)	0.72	0.72
Plant uptake actor	0	0
Formation Fraction (arith mean)	0.172	0.172
AE F1:00460		
Aqueous solubility [mg/L]	100000	100000
Vapour pressure [PD]	5.6×10^{-7}	5.6×10^{-7}
DI ₅₀ soil days] (geomean, lab)	25.6	25.6
K _{oc} / K _{opn} [L/kg] (arith. mean)	14.1 / 8.2	14.1 / 8.2
1/n (arith. mean)	0.900	0.900
Plant uptake factor	0	0

End-point	Active substance: mesosulfuron-methyl	
-	Proposed EU endpoints	Value used for modelling
	[Document N2]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Formation fraction (arith. mean)	1.000 (from AE F154851)	1.000 (from AE F13,4851) 10
	1.000 (from AE F160459)	1000 (from AE 1460459)
AE F140584		<i>O'</i> , , , , , , , , , , , , , , , , , , ,
Aqueous solubility [mg/L]	100	A 190 S S
Vapour pressure [Pa]	1.3×10^{-6}	1,3 × 10 ×
DT ₅₀ soil [days] (geomean, lab)	3.6	3.6
K _{oc} / K _{om} [L/kg] (default value)	0.0 / 0.0	0.0 0.0
1/n (default value)	1,000	1:000
Plant uptake factor		
Formation fraction (maximum)	Ø .704	°0.70 ₽ ©
AE F147447		
Aqueous solubility [mg/L]	150000 🗸	\$ 150000
Vapour pressure [Pa]	10×10-0	" 10 × 10 * °
DT ₅₀ soil [days] (geomean, lab)	97.7	97.28
K _{oc} / K _{om} [L/kg] (arith. mean)	5.278.0	5.2/3.0
1/n (default value)	1000 N 1000	Ç
Plant uptake factor		
Formation fraction (maximum)	0.097 (from AE F140584)	© 0.097 From AF F140584)

PECgw modelling approach - FQCUSgw scenario simulation

The predicted environmental concentrations in groundwater (PEC_{gw}) for the active substances were calculated using the simulation models PEABL and PELMO following the recommendations of the FOCUS working group on groundwater scenarios

The leaching calculations were run over 26 years, as proposed for pesticides which may be applied every year. The first six years are a warm up' penod; only the last 20 years were considered for the assessment of the leaching potential. The 80th percentile of the average annual groundwater concentrations in the percolate at 1 moreth under a treated plantation were evaluated and were taken as the relevant PEC values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to FOCUS, the calculations were conducted based on geomean soil half-lives, referenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the FOCUS recommendations.

IIIA 9.6.1 Active substance

For the implementation of the complex soil degradation pathway of mesosulfuron-methyl in the groundwater exposure model PEARL and PELMO, a set of separate simulation runs had to be performed in order to overcome technical limitations of the models¹. The overall groundwater assessment consists of the following three calculations, which are reported in separate documents:

Kinetic evaluation of the soil degradation of mesosulfuron-methyl leads to situation where the sum of formation fractions of all metabolites formed directly from parent is larger than one. This is typical for degradation studies with substances

- 1. FOCUS PEARL with parent and all metabolites, corresponding calculations are presented in KIIIA 9.6.1/01.
- 2. FOCUS PELMO (pathway 1) with parent and metabolites AE F154831, AE F160639. F099095, AE F092944, and AE F160460 (in order to keep sum of formation fractions for metabolites generated from the parent below 1), corresponding calculations are presented KIIIA 9.6.1/02.
- 3. FOCUS PELMO (pathway 2) with parent and metabolites DE F140584 and AE order to address the remaining part of the soil degradation pathway), corres calculations are presented in KIIIA 9.6.1/09.

Report:	3; ;2004;M-48/1632-01
Title:	Mesosulfuron-methyl (MSM) and metabolites PECgwFOCUS PEARL EUR
	(combination) - Use in winter cereals in Europe
Report No:	EnSa-14-0363
Document No:	M-481632-01-1
Guidelines:	not applicable of applicable of a policies o
GLP/GEP:	

undergoing cleavage since the (A) distribution of the applied radio Whow of molar equivalents) in time and not the mass flow is observed and kinetically evaluated.

In PELMO, reaction-specific DT5 Pi.e., for the respective parent-metabolite pair) are calculated based on the DT50 of the

parent and formation fraction of the respective metabolite. The process is as follows

- calculate parent rate constant from k(par) = ln(2) / DT50(par)

- calculate pathway rate constant with the formation of the respective metabolite from k(par-met) = k(par) * ff(met)

repeat previous

It is apparent that if sum of all formation fractions is (let's denote it +x) then the sum of parent rate constants k(sum) (k(par_met)) + k(par_met) + ... (par) (ff(met)) + ff(met2) + ...) = k(par) * (1+x)

This leads to the situation where the rate constant of the parent k (cum) as defined in the simulation is larger than the rate constant of the parent which was obtained from the kuntuic evaluations. As a consequence, since k = ln(2)/DT50, the DT50 of the parent substance will be shorter than intended

In order to overcome this problem, we splitted the calculation so that the sum of the formation fractions in the individual run does not exceed 1. The remaining flow is directed into the sink compartment in order to ensure the correct parent DT50. As a result, there are 2 PELMO PECgw cylculations concerning parent (concentrations of parent are the same in both simulations which serves as Consistency check) and individual parts of the degradation scheme which are calculated using correct and consistent degradation parameters

In PEARL this effect is accounted to automatically by the model and therefore, all metabolites can be addressed in a single model row. In case that the sum of the formation fractions is greater than 1, the model just warns the user that "this seldom occurs. This does not influence the calculations in any way and leads to correct and consistent results for all of the substances.

For technical reasons, the results are split into 3 separate reports which are to be seen as individual building blocks of the overall PECgw assessment.

Report:	°; ;; ;2014;M-48	1633-01	
Title:	Mesosulfuron-methyl (MSM) and metabolites: PEO		MO EUR
	(pathway 1, combination) - Use in winter cereals in	n Europe	
Report No:	EnSa-14-0364	~	
Document No:	M-481633-01-1	Ž,	
Guidelines:	not applicable;not applicable	©'	
GLP/GEP:	no	4	

Report:	4; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, Ĉ
Title:	Mesosulfuron-methyl (MSM) and metabolites: PECSW FOCUS PECMO FOR	
	(pathway 2) - Use in winter cereals in Europe	
Report No:	EnSa-14-0229	
Document No:	M-481624-01-1	, Ø'
Guidelines:	not applicable; not applicable of the state	J
GLP/GEP:	no o o o o o o o	1

Materials and Methods:

The predicted environmental concentrations in groundwater (PEQw) for mesocal furon-method were calculated using the simulation model FOCUS PEARL (version 4.4.4) and FOCUS PELMO (version 5.5.3). Detailed application data used for simulation of PEC $_{\rm gw}$ were compiled in Table 9.6 $^{\circ}$ 1.

Table 9.6.1-1: Application partern used for PECgy calculations

Individual crop	FOČVS crap Queed for Surferception	۵a.Q	Applic Interval		BBCH Stage	Amount reaching soil per season application [g a.s./ha]
Winter wheat GAP & Simulation	winter cereals	1 × 15.0	,		20-32	1 × 7.5
Winter ry GAP & Simulation	Winter cereals	1 × 6.0		500	20-32	1 × 3.0

Application timing: The spring application in whiter cereals according to GAP is done at the end of winter, at the beginning of the vegetation period (i.e. when the temperature is high enough to expect crop and weed growth) anto well-developed crop. No pre-defined event dates are implemented in the FOCUS model that would directly translate this cropping ituation into discrete calendar dates for each groundwater scenario setting. Therefore, the following approach was used to define suitable scenario-adapted application dates: the simulated treatment was referenced relative to the tabulated crop emergence date of the carliest emerging spring crop (i.e. not necessarily cereals) that was defined by FOCUS for the respective cenario. An application day 14 days before that date was then selected, which is considered an adequate representation for the start of the vegetation period in the respective scenario environment. An overview of the date selections is found compiled in the table below.

Table 9.6.1-2: Application dates per scenario as used for the simulation runs

Scenario	Kejerence aate:	Winter cereals, spring application at the end of winter, at the beginning of the vegetation period	
A 22	scenario	Application date selected	Julian day
	spring cereals: 10 Mar	24 Feb	55
	carrots: 10 Mar	24 Feb	55
	spring cereals: 18 May	04 May	124

Scenario	Reference date: FOCUS listed emergence of earliest spring crop per	Winter cereals, spring application at the end of winter, at the beginning of the vegetation period			
	scenario	Application date selected	Julian day 🖔 🥤		
	carrots: 10 Mar	24 Feb	55 4 9		
	field beans: 15 Mar	01 Mar	60		
	sugar beet: 20 Mar	06 Mar			
	carrots: 28 Feb	∦A Feb 🎝	45 7 2		
	cabbage: 01 Mar	₹5 Feb	0 46 0 × v		
	potatoes: 01 Mar	15 Feb	467 4		

Substance specific and model related input parameters for the different PEC calculations are summarised in the following tables.

- 1. Calculation 1: FOCUS PEARL with parent and all metabolites (Table 9.6.1-3).
- 2. Calculation 2: FOCUS PELMO with parent and metabolites AE \$154857, AE \$160459, AE F099095, AE F092944, and AE F160460
- 3. Table 9.6.1-4).
- 4. Calculation 3: FOCUS PELMO with parent and metabolites AE F190584 and AE F147447 (
- 5. Table 9.6.1-5).

Soil degradation of mesosulfuron-methyl and its metabolites was based on geometric mean DT_{50} as derived from laboratory studies, normalized to 20°C and 100% field capacity according to FOCUS (2000). The modelled degradation pathway scheme was identical to that of the underlying kinetic evaluation; arithmetic mean or maximum formations fractions were considered for the metabolites. Soil adsorption was described by median Koc / Kom for the parent active substance, or arithmetic mean values for all other components with experimental data from batch equilibirum studies available. For metabolite AE F140584, a worst case default value of zero soil adsorption was used in the absence of experimental data. For concentration dependency, arithmetic mean Freundlich exponents were used, or a default value of 10° 0 in the absence of experimental information.

Ignoring the systemic action of mesosulfuron-methyl, a worst case default for plant uptake (PUF = 0) was assumed for parent active substance and all metabolites in this first tier calculation.

² As supportive information for comparison purposes requested by RMS France (ANSES), a second set of simulation runs was made based on alternative formation fractions. These were derived strictly formally, considering in the averaged results only formation fractions where they are associated with a statistically significant DT₅₀ value of the next generation metabolite. This will reduce the number of individual values contributing to metabolites AE F154851, AE F099095, and AE F092944; rejecting total of 5 values.

In effect, this would lead to only mall changes as dollows:

 Notifier recommended approach
 Strictly formal approach

 parent → AE F09095
 0.179 (n=8)
 0.203 (n=7)

 parent → AE F092944
 0.076 (n=8)
 0.092 (n=5)

 parent → AE F092944
 0.172 (n=3)
 0.238 (n=2)

The results of these supportive calculations are provided in the Appendices sections to reports KIIIA 9.6.1/01 and KIIIA 9.6.1/02. (not applicable for report KIIIA 9.6.1/03 due to the selection of metabolites covered herein)

Table 9.6.1- 3: Substance specific and model related input parameter for <u>PEARL PEC_{gw} calculation</u> of mesosulfuron-methyl and its metabolites (model parameters not listed are kept as default) – Calculation 1

	ı				\
Parameter	Unit	Mesosulfuron- methyl	AE F154851	AE F160,459	AE F 999095
Molar Mass	[g/mol]	503.5	489.5	489.5	198.2
Solubility (20 °C)	[mg/L]	483	200000	√1 0000	196
Vapour Pressure (20 °C)	[Pa]	3.50E-12	1270E-08	6.80E-08	1,9 0E -05
Freundlich Exponent		0.910	7 0.940	Ø 0.940 C	840, ©
Plant Uptake Factor		0.0	0.0	0.0	
Walker Exponent		0.7	0.7 √ 0.7	0.940 0.0 0.7	
PEARL Parameters		<u></u>	P	M459	
Substance Code		MSM 🗞	M851 .	M459 (♥1095,©°
DT_{50}	[days]	31.9	6° 37,40° ×	7 0.1 0	87.90
Molar Activ. Energy	[kJ/mol]	65.40	Ø 65.4 %	65.4	65.4
K _{om}	[mL/g]	27.8	\$9.6 D	12.6	3√ 3√ 3 √ 3 √ 3 √ 3 √ 3 √ 3 √
Parameter	Unit	AE F092944/	AE F160460	△ AE E 40584	AE F1474
Molar Mass	[g/mol]	155.2	4759 100000 4 500E-070	322.4	
Solubility (20 °C)	[mg/L]	52,000	100000 🗸	100	\$\frac{29025}{50000}\$\frac{150000}{5000}\$
Vapour Pressure (20 °C)	[Pa]	2.60 × 02 × \$	\$.\$0E-Q70°	2 1.30 € 06 &	1. Ø 0E-08
Freundlich Exponent		0.720	0000	1.30 \$06	\$ 1 000
Plant Uptake Factor	**	, © 0.0 ©		90.0	0.0
Walker Exponent		0.7	0.906	0.7	9 0.7
PEARL Parameters					D' 0.7
Substance Code		M 1944 	" M460	M584 🔎	M447
DT_{50}	days	© 60.45°	L 25√6 €	3.6	97.7
Molar Activ. Energy	[kJ/mor	© 65€ %	© . 65.4 %	65.40	65.4
K _{om}	[m20/g]	✓ 260.0 . ×	√×8.2 ©″	0.0%	3.0
	1. O	0.1 70 MSM → N	M8.0	· • · · · · · · · · · · · · · · · · · ·	
Š,		0.694 MSM -> N	Ú		
	, ~	© 0,076 MSM -> 4	4095 ×	J ⁱ	
Degradation fraction from	' → t©	©0.172∕MSM 🙈 🕅	19440° (3 ³ °	Ø n	
(FOCUS PEARL) ³		0.704 MSM> N	∕ 15 8 4	V J	
		1/4851 - M460			
		€M459 ₅ > M46			
		, 0.09 7 № 1584 🥱 N	л4 4 7		
(FOCUS PEARL) ³	Y S				
	A &				
	\				
			~		
. 4					
- T			Ű		
S S			7		
. L.	A 6				
Y		Q			
3 Alternative set formation		9 Q	M460 25.6 65.4 78.2 1850 1940 1940 1950 1944 1950 1950 1944 1950 1950 1950 1950 1950 1950 1950 1950	Erongo (ANCEC)	1 0
A Hornotivo cottot tormotian	trodtwone tor	warman autoria and and atra	va waarraatad bri DMC		raa alaa faatmata 2.

³ Alternative set of formation fractions, for supportive calculation requested by RMS France (ANSES) – see also footnote 2:

Degradation fraction from to	0.203 MSM -> M851
(FOCUS CEARL)	0.094 MSM -> M459
	0.092 MSM -> M095
	0.238 MSM -> M944
	0.704 MSM -> M584
, SO	1 M851 -> M460
	1 M459 -> M460
	0.097 M584 -> M447

Other model input parameters used for the ANSES calculations are summarized in Table 9.6.1-3.

Table 9.6.1- 4: Substance specific and model related input parameter for <u>PELMO (pathway 1) PEC_{gw}</u> calculation of mesosulfuron-methyl and its metabolites (model parameters not listed are kept as default) – Calculation 2

Parameter	Unit	Mesosulfuron-methyl	AE F154851	AE F160459 489.5 489.5 0.940 0.00989 2.58 21.8
Molar Mass	[g/mol]	503.5	489.5	AE F1007859
Solubility (20 °C)	[mg/L]	483	"(489,5 - 0.940 0.7 0.00989 21.8 21.8
Vapour Pressure (20 °C)	[Pa]	3.50E-12	0.940	
Freundlich Exponent		0.910	0.940	0.940 L
Plant Uptake Factor		0.0	Q.Øv"	
Walker Exponent		0.7	8 77	Z
PELMO Parameters		a C	0.940° 0.97 0.97	
Substance Code		AS	Q Alo	B1 4
Rate Constant	[1/day]	0.02573		~~ 0.0 6 0989 €
Q_{10}		€ 2.58 €°	0.0 \$68 2.58 68.3	2.58
K_{oc}	[mL/g]	2.58 ° 48.0 ° ×	68.3	21.8
Parameter	Unit	48.0	68.3 66.3 66.5 66.5 66.5 66.5 66.5 66.5 66	XE F169460 &
Molar Mass	[g/mol]	AE F099095 1982 	1,55.2	0.990 0.70 0.70 0.70 0.70
Solubility (20 °C)	[mg/L]		L & - '>	
Vapour Pressure (20 °C)	[Pa]			Ø Q - O
Freundlich Exponent	0	0.840	0,729	S 0.9990
Plant Uptake Factor		0.0	() () () () () () () () () ()	0.7
Walker Exponent	9	Q	0.7	, 0.7
PELMO Parameters		0.0 0.7 0.7	0.001148 × 2.58	45.5 - 0.990 0.7 B2
Substance Code		C1 0.00789	DP D	B2
Rate Constant	∑[1/day] y	0.00789 °°	0.01148	0.02708
Q_{10}			(N) 2.30 ₁ , N	2.38
K _{oc}	[matag] 👌	576.9 C	[™] 📞 447.0 °	14.1
Degradation fraction from (FOCUS PELMO) ⁴	[mat]	0.0038900 AS -> AT	447.0	(S) 14.1
		0.0020400 AS - B1 0.0016500 AS - C1 0.0037400 AS - D1 0.0104100 AS - BB		/
<i>,</i>	(O' , *Y'	Ø.0016500 A\$\$ C1.		
	, ~ &	0.0037400 AS' -> D1''		
Degradation fraction from		0.00104100 AS -> ©BF	R/COZ O	
(FOCUS PELMO) ⁴ "O"		0.0016500 AS B1 0.0016500 AS C1 0.0037400 AS -> D1 0.00704100 AS -> BF 0.0186800 A1 B2 0.0078900 B1 -> B2 0.0078900 G1 -> SBF 0.0270800 B2 SBF		
		0.0098900 B1 -> B2		
200				
		0.0414800 D1 -> <bf< td=""><td>₹/Ç0⁄2</td><td></td></bf<>	₹/ Ç 0⁄2	
3		∞0.0270 80 0 B2	R/CO ₂	
Q j) *	
Degradation fraction from (FOCUS PELMO) ⁴	\$ <u>`</u> ```````````````````````````````````	0.00 (8900 B1 -> SIN 0.0114800 D1 -> <bf 0.0270800 B2 >> <br< td=""><td></td><td></td></br<></bf 		
4	o' ş			
Ø, íd		y Ži Ž		
	, a ~			

⁴ Alternative set of formation fractions. For supportive calculation requested by RMS France (ANSES) – see also footnote 2:.

Degradation fraction from → to	₽0044100 AS -> A1
(FOCUS PELMO)	, 0.0020400 AS -> B1
	0.0020000 AS -> C1
	0.0051700 AS -> D1
	$0.0081000 \text{ AS} -> < BR/CO_2$
	0.0186800 A1 -> B2
	0.0098900 B1 -> B2
	0.0078900 C1 -> 2
, Ö	$0.0114800 \text{ D1} \rightarrow \text{SBR/CO}_2$
C T	0.0270800 B2 -> 2

Other model input parameters used for the ANSES calculations are summarized in Table 9.6.1- 4.

Table 9.6.1- 5: Substance specific and model related input parameter for <u>PELMO (pathway 2) PEC_{gw}</u> calculation of mesosulfuron-methyl and its metabolites (model parameters not listed are kept as default) – Calculation 3

Parameter	Unit	Mesosulfuron-methyl	AE F140584	AE F147447
Molar Mass	[g/mol]	503.5	322.4	296,3
Solubility (20 °C)	[mg/L]	483	- , °O	~- ×
Vapour Pressure (20 °C)	[Pa]	3.50E-12	- 🔑	.0" - 6
Freundlich Exponent		0.910 冷	1.000	1.000
Plant Uptake Factor		0.0	Q © '	
Walker Exponent		0.7	
PELMO Parameters		, O		
Substance Code		AS	[™] Al‰° √	$A2^{\circ}$ $A2^{\circ}$
Rate Constant	[1/day]	0.02573	90.19 2 54	0.00709
Q_{10}		€2.58 °	2.58 °	(D) ×2.58 × (J)
Koc	[mL/g]	©48.0 © ×		5.24
		0.0153000 $3 -> A$		
Degradation fraction from	\rightarrow to	0.0064300 AS ->>BF	VCO_2^{\vee} A	
(FOCUS PELMO)	710	0.0186800 A1 A2		
(FOCOS I ELMO)	d	0.1738600 AAJ-> <br< td=""><td>¥CO₂√ × "Q</td><td></td></br<>	¥CO₂√ × "Q	
		[™] 0.0070900 A2 -> ≨BA	VCO2 CO STORY CO	

Findings:

PEC $_{gw}$ were evaluated as the 80^{th} percentile of the mean annual leadbate concentration at 1 m soil depth. All PEC $_{gw}$ values (Calculations 1-3) for mesosulfaron-methyl are given in Table 9.6.1- 6.

Table 9.6.1- 6: PECgy PEAR & PELMO) of mesos diffuron-methyl in winter cereals

		Mesosulf	on-methyl 🥷	
	Winter	cereals 😽 🧳		cereals
, 0	1 × 15 g a.s√ha , 50	% interception	√ 1 × 6 √g a.s./ha, 5	0% interception
		Ø ELMO (P EARL	PELMO
l &	Calculation 1 [*]	Galculation 2&3*	Calculation 1*	Calculation 2&3*
FOCUS Scenario	PEC _{gw}	PEC _{gw}	PEC _{gw}	PECgw
		, Qug/L] 🗸 ,	© [μg/L]	[µg/L]
	0.002	√ 0.002 _√ △	<0.001	0.001
	<u>a</u> 0,023 &	0.023	0.007	0.007
	Q .007 007	¥ 0.008 \$	0.002	0.003
	0.015	~ 0.018	0.004	0.005
	~ 0.038 <u>~</u>	0.052°	0.009	0.010
	Ø ₽ 009 €	\$ \ 0 , 0 11	0.003	0.003
	Ø.011 🛴 🏅	[∞] ~©0.017	0.003	0.005
	<0.000r	<0.001	< 0.001	< 0.001
	© <00001	<0.001	< 0.001	< 0.001

^{*}Calculation 1, 2 and 3 - for compound specuric input parameters see Table 9.6.1-3,

Table 9.6.1- 4

Table 9.6.1-

Conclusion:

PECgw does not reach or exceed the parametric limit value of $0.1~\mu g/L$ in any of the simulation scenario. There are no concerns for groundwater from the use of mesosulfuron-methyl in accordance with the use pattern for the representative formulation.

Document MCP: Section 9 Fate and behaviour in the environment Iodosulfuron-methyl-sodium + Mesosulfuron-methyl +Mefenpyr-diethyl OD 42 (2+10+30 g/L)

Alternative PECgw simulation using RMS requested modelling parameters:

Report:	u; ;2	2015;M-517436-01		
Title:	Mesosulfuron-methyl (MSM) an EUR(combination) - Use in wint		Z.	
Report No:	EnSa-15-0312		<i>10</i> 7	
Document No:	M-517436-01-1		4 . Č	
Guidelines:	not applicable; not applicable	ČA Š.		
GLP/GEP:	no			~O' , O'

Report:	1; ;20,5,M-517440-0,	
Title:	Mesosulfuron-methyl (MSM) and metabolites: PECgwFOCUSP	ELMO EUR 🎺
	(pathway 1, combination) - Use in winter cereals in Farope	
Report No:	EnSa-15-0313 & ذ ذ V	
Document No:	M-517440-01-1 O' O' N N N N	·
Guidelines:	not applicable; not applicable Q	
GLP/GEP:		

Report:	12015;M.\$17442.91
Title:	Mesosulfuron methyl MSM) and metabolites, PECgov FOCOS PELMO ELIC
	(pathway 2) Use in winter cereal in Europe O
Report No:	EnSa-15-0814 V V V V V V
Document No:	M-517\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Guidelines:	not applicable, not applicable or visit in the control of the cont
GLP/GEP:	

The documents report an alternative calculation of predicted environmental concentrations in groundwater, following the methodology presented under KIIIA 9.6.1/01 to /03 before, but applying a set of modelling parameters requested by the RMS.

Materials and Methods: reference is made to KallA 9.6.1/01 65/03, & summary before.

Table 961-7: Application partern used for RECgy calculations

Individual 🗳	FOCUS crop	Rate ?	Applic Interval		BBCH	Amount reaching soil per season
crop	Paterception >	≽Ber season	5 5	interception [%]	Stage	application [g a.s./ha]
Winter wheat GAP & Sunulation	winter cereals			20	20-32	1 × 12.0
Winter rye GAP & Simulation	winter ecreals	1 6.0		20	20-32	1×4.8

Application timing: reference is made to KIIA 9.6.1/01 to /03, see summary before.

Substance specific and model related input parameters for the different PEC_{gw} calculations are summarised in the following coles.

- Calculation 1: FOCUS PEARL with parent and all metabolites (Table 9.6.1-8).
- 2. <u>Calculation 2:</u> FOCUS PELMO with parent and metabolites AE F154851, AE F160459, AE F099095, AE F092944, and AE F160460 (Table 9.6.1-9).
- 3. <u>Calculation 3:</u> FOCUS PELMO with parent and metabolites AE F140584 and AE F147447 (Table 9.6.1-10).

Soil degradation of mesosulfuron-methyl and its metabolites is described based on a set of knietic parameters requested by the RMS. The degradation pathway scheme used for modelling is hown below, including the formations fractions considered for the metabolites.

As requested, soil adsorption was described by the geometric mean Koc Kom values for all components, except metabolite ARF140584, for which a worst case default value of zero was used in the absence of experimental data. For concentration dependency, arithmetic mean Freundlich exponents were used, or a default value of 1 A in the absence of experimental information.

Ignoring the systemic action of mesosultimon-methyl worst case default for plant uptake (PUF = 0) was assumed for parent active substance and all metabolites in this first tier calculation.

Table 9.6.1- 8: Substance specific and model related input parameter for <u>PEARL PECgw calculation</u> of mesosulfuron-methyl and its metabolites (model parameters not listed are kept as default) – Calculation 1

ueraun) – Caiculatio	<u>n 1</u>			
Parameter	Unit	Mesosulfuron- methyl	AE F154851	AE F160,459	AE F699095
Molar Mass	[g/mol]	503.5	489.5	489.5	198.2 7 198.2 7
Solubility (20 °C)	[mg/L]	483	200000	20000	, O ^v 1967
Vapour Pressure (20 °C)	[Pa]	3.50E-12	1.70E-08	5.80E-08 0.940	1.90½-05 0.840 0.00
Freundlich Exponent		0.910	70.940	0.940	9 .840
Plant Uptake Factor Walker Exponent		0.0 0.7	0.0 0.7		0.00
PEARL Parameters		<mark>0.7</mark>	0.0		
Substance Code		MSM 🔊	N 105 f	$ \mathscr{Q}' _{M459} = \mathbb{Q}$	0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
$\overline{\mathrm{DT}_{50}}$	[days]	42.4 C	~° 52,€° ≪	84.9 65.4	104x6
Molar Activ. Energy	[kJ/mol]	65.4	52.8 × 52.8 × 65.4 × 77.7	65.4	65.4
K _{om}	[mL/g]	37.1	37.7	0 11.2	204.0
Parameter Mass	Unit	AE (F) 92944	AF F160460	AE F140584	AE F 1474 y 7
Molar Mass Solubility (20 °C)	[g/mol] [mg/L]	\$133.4 5300		3/22.4 S	∠ 290.3° √ 150900
Vapour Pressure (20 °C)	[Pa]	2.601/-02 ×	5 60F-070	130km6	1.00E-08
Freundlich Exponent		0.720	0.906	1.301306 1.000 0.0	. 1.000
Plant Uptake Factor		0.0		90.0 0 1	, 1.000 , 0.0
Walker Exponent		% 0.7 · · ·	0.906/ 0.007 24	322.4 100 Ø 1.301 06 1.000 Ø 0.7	√ 0.7
PEARL Parameters	V		5 00E-07 0.996 0.70 0.70 0.70		
Substance Code DT ₅₀		* 1944 @	M460 20 3	M584 ©	M447 162.8
MATA CE	'≫[days] ⟨, [kJ/m͡o]']	~ 65@		65.40	65.4
K ~	[man] [man]	Ø 65⊕ ? ♥ 1950 Ø	©		2.9
Q [*]	4 8	0.196 MSM >> 1	M850		
		0. ¥0 0́ MSM -> 1	M8507		
)	90,169 MSM ->4	V1095	∜ v	
Degradation traction traction		0.36 MSM & 1	M9440' 0 1		
(FOCUS FEARL)		0.137 MSM -> 1	M447 & 0		
		€M851 <> M46			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1 M459 -> M46			
. 3					
			7 Q		
)		v		
			7		
	o				
**		I M459 -> M446			
	· *				
		j. _W			
		~Q			
Degradation fraction from from (FOCUS PEARL)					
	~				
Ö					

Table 9.6.1- 9: Substance specific and model related input parameter for PELMO (pathway 1) PECgw calculation of mesosulfuron-methyl and its metabolites (model parameters not listed are kept as default) – Calculation 2

Dangmatar	I It4	Magagulfuran mathal	AT D154051	AE F169,459
Parameter Molar Mass	Unit [g/mol]	Mesosulfuron-methyl 503.5	AE F154851 489.5	(S O O O O O O O O O
Solubility (20 °C)	[mg/L]	483	467.J	48925 0.9407 0.9407 0.00816
Vapour Pressure (20 °C)	[Pa]	3.50E-12	4	0.940 0.940 0.940 0.960 0.96816
Freundlich Exponent	[14]		0.940	0.940
Plant Uptake Factor			0.0	
Walker Exponent		0.0	87	
PELMO Parameters		0.7 AS 0.04653	Albo	
Substance Code		AS	Albo°	A BI W
Rate Constant	[1/day]	0.042633	0.01913	B1 0,00816 0 2/.58
Q ₁₀		<u></u> <u>√2.58</u> °	2.58	2.58
K _{oc}	[mL/g]	\$2.58 \(\infty \) 64.0 \(\infty \) \$\\ \infty \\ \inft	€ 65.0 65.0	19.3
Parameter	Unit	AE F099095	0.0 (§ 13 § 258 65.0 (§ 65.0	XE F169460 \$
Molar Mass	[g/mol]	1982	1,35.2	48.5 6 4 5 6
Solubility (20 °C)	[mg/L]			
Vapour Pressure (20 °C)	[Pa]	1982 0.846 0.0 0.0		
Freundlich Exponent Plant Uptake Factor		0.840 V		9.990
Walker Exponent	Q.			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
PELMO Parameters		1982 1982		473.5 0.990 0.7 0.7
Substance Code		0.00789 2.58	TO DO	O' B2
Rate Constant	1/day	0.00789	0.0148 ×	B2 0.02366 2.58 0 12.2
Q_{10}		Q 2.58 Ly	0.01/148 × 2.58	2.58
K _{oc}		351 Ç	× 336 × .	12.2
Q		0.0032000 Active Sul	ostanee -> A	
		Active Sul	ostance -> B1	
Į į		0.0027600 Active Sul 0.0059000 Active Sul	Stance C1	
	to o	0.0059000 Active Sut	stance >-> DK	1
Degradation rate from	to O	0.9002840@ Active Stut	ostatie -> &BR/CO2	
(FOCUS PELMO)		0.0131280 A1 B2		
Degradation rate from (FOCUS PELMO)		0.0081640 B1 -> B2		
		∛ 0.0078900 €¥ -> <bf 0,£1480€£D1 -≥ <bf< td=""><td></td><td></td></bf<></bf 		
(FOCUS PELMO)		>0.0236570 B2 S < BR		
	4 0,000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 CO2 →	

Table 9.6.1- 10 Substance specific and model related input parameter for PELMO (pathway 2) PECgw calculation of mesosulfuron-metryl and its metabolites (model parameters not listed are kept as default). Calculation of mesosulfuron-metryl and its metabolites (model parameters not listed are

Parameter ~	y <u>4 Unit</u>	Mesosulfuron-methyl	AE F140584	AE F147447
Molar Mass S	g/mal	Q 2003.5	322.4	290.3
Solubility (20 °C)		7, * (483		<u> </u>
Vapour Pressur		2.3.50E-12		<mark></mark> _
Freundlich Exponent		0.910	1.000	1.00 <mark>0</mark>
Plant Uptake Pactor V		0.0	<mark>0.0</mark>	<mark>0.0</mark>
Walker Exponent		0.7	<mark>0.7</mark>	0.7
PELMO Paramoters			<u></u>	
Substance Code	· 8 %	AS	A1	A2
Truye Constant	🏂 [1/day]	0.01635	0.16045	0.00426
Q ₁₀		<mark>2.58</mark>	<mark>2.58</mark>	<mark>2.58</mark>
K _{oc} &	[mL/g]	64.0	0.0	5.1
Degradation rate from -	to	0.0032200 Active Subs		
(FOCUS PELMO)		0.0012100 Active Subs		
(1 CCCS 1 ELIVIO)		0.0119200 Active Subs	stance -> <td></td>	

0.1604510 A1 -> <th>_</th> <th>1</th>	_	1
0.0042590 A2 -> <th></th> <th></th>		
		Ξ,

Findings:

Table 9.6.1- 11: PECgw (PEARL & PELMO) of mesosulfuron-methyl in winter €cereals

Findings: Table 9.6.1-11: PEC _{gw} (PEARL & PELMO) of mesosulfuron-methyl in winter cereals Winter cerea		0.	1604510 A1 -> <th><mark>02</mark></th> <th></th>	<mark>02</mark>	
Winter cereals Winter cereals 1 × 15 g a.s./ha, 20% interception PEARL PELMO PEARL PELMO PEARL PELMO PEARL PELMO PECgw PECg					<i>©</i> ° %
Vinter cereals Winter cereals I × 15 g a.s./ha, 20% interception D 6 g a.s./ha, 20% interception				<u></u>	
Vinter cereals Winter cereals I × 15 g a.s./ha, 20% interception D 6 g a.s./ha, 20% interception	idings:			T	4 .4
Vinter cereals Winter cereals I×15 g a.s./ha, 20% interception D×6 g a.s./ha, 20% interception	ble 9.6.1- 11: PEC _{gw} (PEARL & PELMO) of mesosulfuron-met	hyl in winter cereals	
I × 15 g a.s./ha, 20% interception D 6 g a.s./ha, 20% interception					Colonia Coloni
PEARL PEMIO PEARL PELMO			Cereais		
Calculation 1* Calculation 2&3* Calculation 2					10% interception ()
PEC _{gw}			. 11		PELMO O
		Calculation 1*		Calculation D	Calculation 28/3/
0.006 Q 004 Q 0.015 Q 0.001 Q 0.001 Q 0.005 Q 0.015 Q 0.005 Q 0.015 Q 0.005 Q	CUS Scenario		PECgw	Z PEC _{gy}	PEC _{gw}
0.049				μg/k)	^γ 'γ <mark>μg/L</mark> γ
0.015			A M 052 0		- Y
0.033		- %		* () 0040 S	0.005
0.057		- A/	**************************************	0.004	0.0033/2
		0.033	A * W	0.090 O	0.010
0.025		0.037	0.003 × y	W 007 &:	100g20
		0.020	0.02	7 0.0070	~, · · · · · · · · · · · · · · · · · · ·
20001 %		0.022	0.054 0.001	0.000 Q <0.001	
			0.001	0.001 € 1.001 ×	0.001

* Calculation 1, 2 and 3 - for compound specific input parameters see Table 9.6.1-8. Table 9.6.1-9 and Table 9.6.1-10

Conclusion:

PECgw does not reach or exceed the parametric limit value of 0.1 µg/L in any of the simulation scenarios. There are no concerns for groundwater from the use of mesosoffuron-methyl in accordance with the use pattern for the representative formulation.

Relevant merabolites

PECgw for mesosulfuron-methy metabolites?

According to the definition of residues plevant for groundwater risk assessment, the following degradates were considered for PECgw calculation. AE F154851, AE F160459, AE F099095, AE F092944, AE F160460, AE \$140584 and & F1,40447.

Report:	5; ;2014;M-481632-01
Title:	Mesosulfuron-methyl (MSM) and metabolites: PECgw FOCUS PEARL EUR
() () () () () () () () () ()	(combination) Use in Winter cereals in Europe
	EnSa 4-0369
Document %: &	M_881632€01-1 ©
Guidelines:	not applicable;not applicable
CT DIOTE	Ano 🌣

Report:	h; ;2014;M-4	81633-01	
Title:	Mesosulfuron-methyl (MSM) and metabolites: F	PECgw FOCUS PELMO	O EUR
	(pathway 1, combination) - Use in winter cereals	s in Europe	O EUR
Report No:	EnSa-14-0364	*	
Document No:	M-481633-01-1	Z.	
Guidelines:	not applicable; not applicable	O'	
GLP/GEP:	no	4	

Report:		Ũ
Title:	Mesosulfuron-methyl (MSM) and metabolites: PEGW FOCUS PECMO FOR)
	(pathway 2) - Use in winter cereals in Europe	~ @
Report No:	EnSa-14-0229	1
Document No:	M-481624-01-1	Ų"
Guidelines:	not applicable; not applicable	
GLP/GEP:	no O O S S S S	

Materials and Methods: The PEC_{gw} for mesos affuron method metabolites were calculated using the approach, scenarios and application rates described for the parent active substance in section 9.6.1. Compound specific input data are summarized in Table 9.6.1-3 (Calculation 1.4EARL), in

Table 9.6.1-4 (Calculation 2, PELMO – pathway 1), and in

Table 9.6.1-5 (Calculation 3, PLLMO pathway 2)

Findings: The 80th percentile PEC values for the metabolites are given in the following tables for the use in winter cereals.

Table 9.6.2-1: PECA (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F154851

		AF 15	548 5 1 ⁸ , S	
	D' Winter of	reals 🛴 🔪	Winter Winter	cereals
	15 g a.s./ha, 5	0% interception		0% interception
, Ø	PEARL A	PELMO 0,	PEARL	PELMO
FOCUS Scenario	Calculation	Calculation Q	Čalculation 1	Calculation 2
FOCUS Scenario	PEC _{gy}	PEC _{gw}	PEC _{gw}	PECgw
~	$^{\circ}$ $^{\prime}$ [μ g/ $^{\circ}$] $^{\circ}$	√ [μg/ ½ } Δ	μg/L]	[µg/L]
	∆ 0,003 √	0.002	< 0.001	0.001
<i>O</i> n	© .015 °	≫ № 016 🔊	0.005	0.005
	0.006	0.007	0.002	0.002
	0.001	0.052	0.004	0.004
y	Ø A 017 ©	Ø, Ø 18	0.006	0.006
Ø. ~	Ø.007 _~	° ,≈©0.009	0.003	0.003
4	0.000	0.010	0.002	0.004
	© <0.001 ¥	© <0.001	< 0.001	< 0.001
w `	9.001	< 0.001	< 0.001	< 0.001

⁵ Results of supportive calculations using alternative set of formation fractions, as requested by RMS France (ANSES): Only small (max. $\Delta > 0.009$ ug/L) to negligible numeric differences in PECgw for the concerned metabolites and successor component of F160460; changes remain without impact of on regulatory conclusions.

AE F154851: max. 0.019 μg/L (PEARL) / 0.021 μg/L (PELMO)

AE F160460: max. 0.107 μg/L (PEARL) / 0.112 μg/L (PELMO)

AE F099095: max. <0.001 μg/L (PEARL) / <0.001 μg/L (PELMO)

AE F092944: max. $<0.001 \mu g/L (PEARL) / <0.001 \mu g/L (PELMO)$

Table 9.6.2- 2: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F160459

		AE F10	60459	
	Winter		Winter	cereals
	1×15 g a.s./ha, 5	0% interception	1 × 6 g a.s./h@; 5	0% intercoption 🚕
	PEARL	PELMO	PEARL	PEEMQ 🔊
	Calculation 1	Calculation 2	Calculation 1	Calculation 2
FOCUS Scenario	PECgw	PECgw	PEC	PECO
	[µg/L]	[μg/L] 🖔	[µg/L]	[μg/]L]
	0.046	0.044 💖	0.017	2017 V
	0.085	0.086	0.032	0.033
	0.079	0.082	Q 0,029 K	0.000
	0.056	Ø.066	≫ ©.021 °	© (%) 025 (%)
	0.058	& 0.061° S	(J) 0.0220 C	0.024
	0.039	0 0.050	~ 0.005 ~	0.019
	0.037	3 .040 0	Q 0.014	0 0015
	0.010	0.014	y 2 9.0030 √	0.005
	0.034	0.023	Ö [™] 0.013	≈ 0.00 9

Table 9.6.2-3: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F099095

		Vinter cereals Tha, 50% interception PELMO Calculation 2
FOCUS Scenario		ha, 50% interception PELMO Calculation 2
FOCUS Scenario		PELMO n 10 Calculation 2
FOCUS Scenario		PELMO n 10 Calculation 2
FOCUS Scenario		n 10 Calculation 2
	C N N N	
μg μg μg	Cgw Y O PECgw (PECgw
	Cgw O PECgw [µg/L]	β [μg/L]
(0.001) (0.001	001 . Q ~Y < 0. ABY	< 0.001
0.001	001 001	< 0.001
	001 <0.001 001	< 0.001
© \$0.001 © 0.001	001	< 0.001
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	001 < < 0.001	< 0.001
	001 <0.001 <0.001	< 0.001
<0.0 0 01	< 0.001	< 0.001
	001 0 <0.001	< 0.001
0.001 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	001 <0.001	< 0.001

Table 9.6.2-4: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F092944

		AE F09)2944 ⁴	
	Winter			cereals 7
	1 × 15 g a.s./ha, 5	0% interception		0% intercontion
	PEARL	PELMO	PEARL	PEEMQ 🔊
	Calculation 1	Calculation 2	Calculation 1	Calculation 2
FOCUS Scenario	PEC_{gw}	PECgw	PEC	PEC
	[µg/L]	[μg/L] 💍	[kg/L]	W [mg/L] S
	< 0.001	<0.001	© 0.001	9 .001
	< 0.001	<0.001	©<0.001 ×	.0.00 . \$
	< 0.001	< <u>0</u> ,001	Q <0.001 L	(0.00°) (0.00°) (0.00°)
	< 0.001	20 0.001	Ø:001 Q	© <9,001 ° €
	< 0.001	<0.001	r √×0.0046 ?	0.001°
	< 0.001	<0 0 001 × 5	\$ <0.001	<0.001
	< 0.001	% .001	<00001	<0 000 01 √°
	<0.001	> > 0.001 >	₹ 0.001	©.001 ©
	<0.001	<0.007	~ <0.0 %	<0.001

Table 9.6.2- 5: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite XE F160460.

***) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Q X	AEG 10	60460 Winter 1 % g a,s ha, 5	&,
Win	0	ceceals	
$1 \times 15 \text{ g a.s./h}$			9% interception
PEARL	PELMO N	ÉPEARTE &	ř PELMO
FOCUS Scenario PECgw Jug/D	Calculation 2	Calculation 1	Calculation 2
FOCUS Scenario		KEC _{gw}	PECgw
	المالماللات الا	Wug/Ll'y	[µg/L]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	103 PECgw 7 103	0.018	0.015
© \ 0.098 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L 103	0.016 0.036 0.030	0.037
0.098	0.089	@0.030	0.031
0.062	0.073	₩ 0.022	0.025
E 2069 2	0.070 0.073 0.053	0.022	0.027
© .043	Q.053 V	0.016	0.019
0.040	0.048/		0.018
	7 0.0P1 S	0.003	0.004
Q \$.026 C	©019 S	0.009	0.007
0.084 0.069 0.040 0.040 0.026 0.026 0.026 0.026 0.026			

Table 9.6.2- 6: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F140584

				a. Š
		AE F14	40584	
	Winter	cereals	Winter	cereals
	1×15 g a.s./ha, 50	0% interception	1 × 6 g a.s./ha/ 5	0% intercontion 🚕 🛚
	PEARL	PELMO	PEARL	PELMO 🏈
	Calculation 1	Calculation 3	Calculation 1	Calculation 3
FOCUS Scenario	PECgw	PECgw	PECgw	PECO
	[µg/L]	[μg/L] 💍	[µg/L]	[Mg/L] S
	0.001	0.001	0.001	9.001 J
•	0.014	0.045	0.005	0.006 %
	0.027	02041	Q 0,010 K	0.0 © 6
	0.004	Ø.006	≫ . Ø .001 ~ ₩	© @ 002
	0.008	(0.012°	() (0.003° ()	0.004
	0.003	0° 9. 0 05	<0.0001	0.002
	0.005	Ø.012 Ø	0.002	0 0004
	<0.001	0.00i > 8	× 10.0010 ×	, <0.001, °
	<0.001	(%) 0.0 0 /1	0.00Y	<0.00

Table 9.6.2-7: PECgw (PEARL & PELMO) of mesosulfacon-methyl metabolite AE F147447

	_ , , , ,			<u> </u>		
		ALTI4/44/				
	Winter	Freals	Winter Winter	cereals		
	1 × 15 g a.s./ha, 5	0% interception		% interception		
	🎤 PEARL 🝳	PELMO 🔊	PLANAL ~	PELMO		
	√, Calculation 3	Calculation 3	Calculation 10	Calculation 3		
FOCUS Scenario	OPEC _S	₽ECgv (O PEC _{gw}	PECgw		
FOCUS Scenario	(μg/ b)	[~] [μg/ L)	μg/L] ["]	[µg/L]		
	0,085	0,073	0.03A	0.029		
	0.106	© * 091	0.042	0.036		
	0.163	\$\times 0.124\$\times 0	©0.065	0.049		
	0.059	0.0 %	0.024	0.028		
	0,059	Q 056	0.023	0.022		
× %	∫ ~\0.05 4 , ~\	0.069	9 0.021	0.027		
		0.048	0.020	0.019		
	A 0033	0.032	0.013	0.013		
Q ₁	Q 20.077 C	3 .051	0.030	0.020		

Conclusion: For the product use in winter rye of g a G/ha), PEC $_{gw}$ does not reach or exceed the trigger value of G. I $\mu g/L$ for any of the metabolites in any of the FOCUS groundwater scenarios; thus the risk is acceptable for groundwater with no further assessment required.

For the productose in winter wheat (\$\mathbb{G}\$ g as \$\sqrt{ha}\$), PEC_{gw} of metabolites AE F160460 and AE F147447 was predicted to reach or exceed the trigger of 0.1 \mug/L for 1/9 or 2/9 of the FOCUS groundwater scenarios, respectively. The maximum predicted concentrations in groundwater recharge were 0.103 \mug/L for AE F160460 and 0.163 \mug/L for AE F147447.

An assessment of the potential relevance in groundwater for these components is therefore made following the guidance given in SANCO 221/2000. Details hereon are found in Document N4, only a brief summary is provided below:

Screening for herbicidal activity:

Both components were assayed for herbicidal activity in greenhouse tests (see KCA 3.6/03), and were found not to retain comparable target activity as the parent active substance.

Screening for genotoxicity:

Both components were assayed in a standard battery of genotoxicity and motagenicity tests in vero (see KCA 5.8.1/01 to /06) and were found clearly devoid of mutagenic potential.

Screening for toxicity:

The active substance mesosulfuron-methyl has not been classified as being toxic of very foxic reproductive toxic or carcinogenic; there is no indication that the metabolites would bear any specific risks for toxicity. No further toxicity assessment is therefore triggered to metabolites.

Metabolites AE F160460 and AE F147447 milfil the criteria for being considered 'non-relevant for groundwater' at Step 4 of the guidance. For simulated PEC_{gw} below the trigger level of 0.75 μg/L no quantitative consumer risk assessment is deemed necessary.

In overall conclusion, there are no concepts for groundwater with regard to metabolites from the intended use of mesosulfuron-metable in the present formulation.

Alternative PECgw simulation using RMS requested modelling parameters:

Report:	us 2915;M-917436401 ()
Title:	Mesosuffuron-methyl (MSM) and metabolites. PECe FOCUS PEARL
	EUR(combination) Use in winter sereals in Europe
Report No:	
Document No:	№ 1-517436-01-19
Guidelines:	not applicable; not applicable
GLP/GEP	

L

Reports	$\sqrt{\frac{9015;M=5174400-01}{120000000000000000000000000000000000$
Title:	Mesosulfuron-meth (MSM) and metabolities: PECgw FOCUS PELMO EUR
	(pathway Combination) Use in winter cereals in Europe
Report No:	1
Document No.	M-517440-01-0 0 0
Guidelines:	notapplicable;notapplicable
GLP/GEP:	

Report:	φ ,
Titley	Mesosulfuron-methyl (MSM) and metabolites: PECgw FOCUS PELMO EUR
	(pathway 2) - Use in winter cereals in Europe
Report No:	[®] BnSa-1Ø-0314♥
	M-56442-01-1 @
Guidelines	ngCapplicable;novapplicable
GLP/GLP:	

The documents report an alternative calculation of predicted environmental concentrations in groundwater, following the methodology presented under KIIIA 9.6.2/01 to /03 before, but applying a set of modelling parameters requested by the RMS.

Materials and Methods: reference is made to KIIIA 9.6.2/01 to /03, see summary before.

Findings:

Table 9.6.2- 8: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite Ap F154851

Winter cereals			AE F1	54851	
PEARL PELMO PEARL PELMO Calculation 1 Calculation 2 Calculation 1 Calculation 2 PECgw		Winter	cereals	Wint	((▼)) ⊗_V ≤1
PEARL PELMO PEARL PELMO Calculation 1 Calculation 2 Calculation 1 Calculation 2 PECgw		1×15 g a.s./ha, 2	0% interception	1 × 6 g a.s./ha	, 20% interception S
PECgw PECg		PEARL	PELMO		PQMO
		Calculation 1	Calculation 2	Calculation 1	Calculation 2
0.019	FOCUS Scenario		PK egw	PECgw	PECM
0.062		μg/L	Org/L	i jig/L Q	O ^V Ug/L
0.062 0.065 0.023 0.023 0.033 0.033 0.001 0.0023 0.0023 0.0023 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001		0.019	0.015	<mark>∕√0.006</mark> ~	0.005
0.044		0.062	0.965	0.022	Ψ <mark>0.023</mark>
0.044		0.033	1 1 1 1 1 1 1 1 1 1		
0.032		0.044	0.052		
0.030 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001		0.060 🔊	0.064 C	0.024	
0.001 0.001 0.001 0.001		0.032	(%) 0x038 %	0.0 <u>M</u>) 0.019
		0.030	9.036	© 00010 S	06913
0.010° , 9 9 0.065° , 9 4 0.065° , 0 0.002		<0.000			№ . № 0.001
			0.005	0.09	

Table 9.6.2-9: PECgw (PEARL & PELMO) of mesosulfuron-methyl metobolite AE F160459

					J
			AFFI	50459 V S	
	/ S' y	nter cereals ha, 20% into		Winter	· cereals
	1×15 gas.	/ha ///0/_ int?	rception	1 ⊗ 6 g a.s√ha, 2	20% interception
	PEARL	S P	ELMO &	PEARL	PELMO
	Calculation	1 Cal	culation 2	Calculation 1	Calculation 2
FOCUS Scenario	Calculation PECgw [µg/L]	Y Q	ELOTO cultition 2) BEC grown [µg/kg)	1 ⊗6 g a.s /ha, 2 PEARL Calculation 1 PECgw μg/L	PEC _{gw} [μg/L]
Q	« 04 3 2		0.197 @1	∞ 0.046	0.044
	203 k				0.079
	0.128 0.128 0.128 0.094 0.094		0.201	0.080	0.076
	0.128		0.105	0.049	0.059
	27 27		6 129	0.049	0.050
	Ö<u>0.094</u>		90.123 ¹⁰	0.036	0.047
	0.09		0.00	0.035	0.035
	0.040		0<048	0.015	0.018
	% 115		0 ⁄.074	0.043	0.028
	0.128 0.128 0.094 0.093 0.093 0.093 0.115				

Table 9.6.2-10: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F099095

		AE FO	99095	
	Winter	cereals	Winter	cereals
	1×15 g a.s./ha, 2	20% interception	1 × 6 g a.s./ha; 2	0% intercotion
	PEARL	PELMO	PEARL	PEMO 🏈
	Calculation 1	Calculation 2	Calculation 1	Calculation 2
FOCUS Scenario	$\mathbf{PEC_{gw}}$	$\mathbf{PEC_{gw}}$	PECgw	PECO
	[µg/L]	<mark>[μg/L]</mark> 🖔	[µg/L]	Market Control of the
	< 0.001	<0.001	0.001	9.001 × ×
	< 0.001	0.06	<u>√</u> 0< <u>₹0.001</u> ×	J 20.00€
	< 0.001	< 0.001	Q <0.001 X	<0.001 C
	< 0.001	©.001	₩ 20 .001 %	O' <0,001
	< 0.001	0.001°		>
	< 0.001	0.001	<0.001	<0.001
	< 0.001	30.001	<0.001	° <02901 √
	<0.001 ×	√° ××0.001 × ∞	√ <u>4€0.001</u>	, <u>\$7.001</u>
	<0.001 [*]	<0.001	1 6 < 0.00 3	₹ ≪<0.004 ₽*

Table 9.6.2-11: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F092944

	Y	, Ø	Q	_O'	6-7-1-O-2	<u> </u>	**
	O		<i>®</i>	AFØF (92944	Winter	&
	I × 15 g a PEARL Calculatio	Winter∞	ce reals	~ ~	92944	y Inter	CECAIS
	1×15 g as	s./ha, 🏖	0% inter	ception	1.86	g a,s,/ha, 2£	% interception
	» PEART	, B	₽E PE	LMO 🧠	A PE	AND V	PELMO
	Calculatio	n_1	Calcu	LMO Mation 2	& Calcu	lation 18	Calculation 2
FOCUS Scenario	PÉC _{gw}	J.		EC _{gw}	O	ZCgw 🌂 🌷	PEC _{gw}
Q	PĚCgw μg/ []		برا 💸	ECgy Y	4.	ZCgw y g/L]	[µg/L]
	○ <0.001	L 18	^ _/	0.001 . ©	ĺ 🎺 <mark><0</mark>).Q 9 1	< 0.001
FOCUS Scenario	<0.001 <0.001 <0.001	Q .		001		10 01	< 0.001
	Ø 0.001 Ø 0.001) <u> </u>		0.004	\$ 050	0.001	< 0.001
*0	<0,001	4		0.001	V <0	0.001	< 0.001
	6.001		<u> </u>	0.001 0.001 0.001	\$ 000 000 000 000 000 000 000 000 000 0	0.001	< 0.001
,	© <u>20.001</u>	~ <	» » <u>9</u>	0.001	*	0.001	< 0.001
<u></u>	<0.001	~~ <u>~</u>	₹ √ <().00¥ ====	<0	0.001	< 0.001
	<u> </u>	W	40° <(0.001	<0	0.001	< 0.001
@n	₽″ 3 9.001			7.001 🔊	<0	0.001	< 0.001
	\$\frac{\sqrt{\sq}}}}}\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sq}\sq}}\sqrt{\sint\signgt{\sqrt{\sqrt{\sq}}}}}\sqrt{\sint}\sint\sign{						

Table 9.6.2- 12: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F160460

	Winter	AE F1 cereals	Winter	cereals
	1×15 g a.s./ha, 2	0% interception	1 × 6 g a.s./ha/ 2	0% intercotion
	PEARL	PELMO	PEARL	PE MQ
	Calculation 1	Calculation 2	Calculation 1	Catculation 2
FOCUS Scenario	$\mathbf{PEC_{gw}}$	$\mathbf{PEC_{gw}}$	PECEN	PEC® Z
	[µg/L]	<mark>[μg/L]</mark> 🖔	[µg/L]	LY [Mg/L] S
	0.130	0.124°V	0.047	2 2045 V V
	0.248	0.266	0.092	20.099 3 4
	0.241	Q 2 255	Q 0,085 X	0.0 92
	0.150	QQ.174	6 057 4	O' 00065 O'
	0.159	0.164°	7 <mark>0.060</mark> 7 2	0.062
	0.109	0.043	\$ 0.00 \$	0.053
	0.109	M21 0	0040	0 000 A
	0.032 ×	0.044 ×	√ △ <mark>0.012</mark> √ √	, 40015 V
	0.098	0.067	0.035	0.024 V

Table 9.6.2- 13: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F140584

Winter cereals Winter cereals Winter cereals X 15 g & s. /ha, 20% interception X 6 g a, 3/ha, 20% interception PELMO PELMO PELMO PELMO PELMO PELMO PELMO PELMO PELMO PECgw PECgw PECgw PECgw PECgw PECgw Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L Pug/L
1 × 15 g & s./ha 20% inferception 1 × 6 g asha, 29% interception PELMO PECgw PECgw PECgw PECgw PECgw PECgw Pug/L Pug
PEARL PELMO PEARL PELMO Calculation 1
Calculation 1 Calculation 3 Calculation 3 Calculation 3 PECgm PEC
0.001
0.001
0.001
0.020 0.028 0.008 0.016 0.003
0.028
0.002
30.001 30.001 30.001 30.001 30.001
~

Table 9.6.2- 14: PECgw (PEARL & PELMO) of mesosulfuron-methyl metabolite AE F147447

		AE F1	47447	
	Winte	er cereals	Winter	r cereals
	1×15 g a.s./ha	, 20% interception	1×6 g a.s./ha/ 2	20% intercotion
	PEARL	PELMO	PEARL	PELMQ 🏈
	Calculation 1	Calculation 3	Calculation 1	Calculation 3
FOCUS Scenario	$\mathbf{PEC_{gw}}$	$\overline{\mathrm{PEC}_{\mathrm{gw}}}$	PECgw	PEC® Z
	[µg/L]	<mark>[μg/L]</mark> 🖔	[rg/L]	W [Mg/L] S
	0.224	0.207	0.089	Q082 V
	0.217	0.186	0.087	0.074
	0.337	0.242	Q 0,135	0.0 0
	0.119	0°.141	9,048 Q	6 056 6 07
	0.114	0.113	7 0.046 7 6	0.045
	0.130	0.202	0.052	0.064
	0.111	2 .108	0044	$ \bigcirc^{y} 0_{A} A^{z} $
	0.116	√√ °>√0.098> >	△ 0.046	0.039
	0.239	7 0.163 L	0.095	0.06 5

Conclusion: The maximum predicted concentrations in groundwater recharge of metabolites. AE F160459, AE F160460 and AE F14744% reach or exceed the parameteric togger value of 0.1 μg/L for some use and FOCUS groundwater scenario combinations. The overall maximum PEC_{gw} values were 0.216 μg/L for AE F160459, 0.266 μg/L for AE F160460, and 0.337 μg/L for AE F147447.

An assessment of the potential relevance is groundwater for these components is therefore made following the guidance given in SANCO 221/2009. Details hereon are found in Document N4, only a brief summary is provided below.

Screening for berbicider activity:

All three components were assayed for herbicidal activity in greenhouse tests (see KCA 3.6/03), and were found not to retain comparable target activity as the patient active substance.

Screening for genotexicity,

AE F160460 and AE F147447 were assayed in a standard battery of genotoxicity and mutagenicity tests in-vitro (see KCAS.8.1/6) to /96), and were found clearly devoid of mutagenic potential.

AE F160459 is characterised by a close chemical similarity with the parent compound mesosulfuron-methyl, and with metabolite AE F160460, the only structural difference between the molecules being the presence or absence of methyl substituents. As all the in vitro genotoxicity studies with mesosulfuron-methyl, as well as with metabolite AE F160460, were clearly negative when tested both with and without the metabolic activation mix 89, it can be concluded that also AE F160459 is devoid of mutagenic potential. Moreover, AE F160459 is a rat metabolite of mesosulfuron-methyl, and as such has been indirectly tested in the in vitro genotoxicity studies in presence of metabolic activation mix 89, which is added in vitro to mimic the metabolism of test substance that would occur in vivo in mammals. AE F60459 was also present in all apical rat studies, including the chronic toxicity and carcinogenicity and reproduction toxicity studies on mesosulfuron-methyl.

Screening for toxicity:

The active substance mesosulfuron-methyl has not been classified as being toxic or very toxic. reproductive toxic or carcinogenic; there is no indication that the metabolites would bear any specific risks for toxicity. No further toxicity assessment is therefore triggered for metabolites.

Metabolites AE F160459, AE F160460, and AE F147447 fulfil the criterial for being considered. relevant for groundwater' at Step 4 of the guidance. For simulated PEC below the prigger leve 0.75 µg/L, no quantitative consumer risk assessment is deemed necessary.

In overall conclusion, there are no concerns for groundwater with regard to metabolites from the intended use of mesosulfuron-methyl in the present formulation.

Ŏ

IIIA 9.6.3 Additional field testing

No additional field testing was required.

IIIA 9.6.4 Information on impact on water treatment procedures

No impact of mesosulfuron-methyl on sewage treatment processes was concluded based on results of an inhibitor test of activated sludge restriction.

Pseudomonas putida, a representative based.

The possibility of impact of mesosul foron-mothyl conducts on drinking water treatment was analysed in a statement summarised below:

					(U)	
Report:		° .	;20¥5;N	<mark>1-5)</mark> 0337 -0 1		
Title:	O Conce	ntrations of mes	wulfuren-meth	yl and its meta	abolites in drinki	ng water -
ď	Staten		4 . Q . Z		U	
Report No:🛇	M ₂ 510	0337-61-1			,	
Document No:	MJ-510	03307-01-1	S.			
Guidelines:	% not sp	ecified; not spe	cified 💭 🔒 . `			
GLP/GEP:	∾ ″ <mark>n.a.</mark> √	/ N		2	•	

Z Based on the predicted environmental concentrations for representative uses of mesosulfuron-methyl, an estimate was made for the concentrations of parent active substance and metabolites to be expected at ground- and surface water abstraction points for the production of drinking water.

From this assessment it was concluded that the substance concentrations potentially entering processes for driviking water the atment would only be min wal, i.e. by far less than 0.1 μg/L, and would therefore be highly unikely to result in the formation of gignificant levels of by-products that would require human or animal health risk assessment.

Therefore was concluded that further information on the effect of water treatment processes on the nature of cesidue present in surface water and groundwater are not required.

IIIA 9.7 Predicted Environmental Concentrations in Surface Water (PECsw) for the Active Substance

Summary of fate and behaviour of mesosulfuron-methyl in water

Abiotic hydrolysis: Mesosulfuron-methyl is only slowly hydrolysed in steril buffer solutions at at pH 4, 25 °C). The hydrorytic pathway involves environment) or AE F147447 (neutral and alkaline environment). As a minor pathway under alkaline conditions, additionally hydrolysis of the methyl ester function may occur, to result in small and of AE F154851. neutral to alkaline pH (DT₅₀ = 253 d at pH 7, 25 °C, and 318 d at pH 9, 25 °C), but degrades more

Aqueous photolysis: Mesosulfuron-methyl is not phonodegraded to significant extent at wavelengths >290 nm in sterile buffer solution. Direct photolysis will therefore not contribute notably to elimination from the aquatic environment, and will not lead to the generation of relevant degradates?

Water/sediment: Mesosulfuron-methy was found in crobially degraded to two fested acrobic sediment/water systems. The proposed route of degradation is consistent with the route of degradation in aerobic soil, all components shown in Figure 9.1.1-1 were also identified in the water / sediment study. The products of predominant abundance were AE F160459, AE F147447, and AE F160460, which reached maximum abundances of 21.6% AR . 20.9% AR, and 8.4.% AR in the total systems, Terminal bioconversion leginto the formation of non-extractable residues, and ¹⁴C Sarbon dioxic.

The study was kinetically evaluated according FOCUS (2006), an overview of this information provided in the table below: respectively (Table CA 7.2-1). All further degradates remained below 5, %AR ampling day 140. Terminal bioconversion lection of non-extractable residues, and 14C-carbon dioxide.

Table 9.7-1: Total system DT₅₀ values and maximum abundances of mesosulfuron-methyl and its metabolites in aerobic water/sediment

Max. abundance [%AR]	(100)	4.9	216	Ø.9 &	3.2	8 4	%1.9	10.9
Endpoint a)	45.8	38%	₹/.5	(1000)	25 .9	_ۣ ڳُ38.3 ِ	(1000)	205
(pyrimidyl label)	23.3	Ø8.2 (\$\)	16,8	nfi⁄d.	On.d	16.2 16.3 238.3 238.3	ja.d.	O - p)
(phenyl label)	33.1	10.8		n.d.	.√ b)	~ 16.2	o n.d	ngd.
(pyrimidyl label)	70.3	98.5	64.8	n.d.	Z 25.9	250	n.d.	1 .
(phenyl label)	81.2	255	1 4	n.d.		\$7.1	O n.d	205 V _{b)}
	(days)	(days)	(day®)	(days)	∜(days)	(d a 0s)	(days)	Qdays)
	Mesosi	AEF	AE FI	AE FO	ONE FIC	AE FI	(()/L_	Odays)
	Mesosulfuron- methyl	F154851	AE F160459	F099095	F092944	ر مالا AE F160460	140584	N 24-1
Test system								

a) geomean for more than 1 value worst case default of 1000 days where no reliable DT50 derived becomponed not traced by radioabel position

nd.: no reliable value determinable

Endpoints for PEC

Table 9.7- 2: Comparison of proposed EU indpoints and modelling input parameters for mesosulfuronmethy.

End-point		osulfuron-methyl
Eug-boint	Proposed EU endpoints Document N2	Value used for modelling
Mesosulfuron-method &		
Aqueous solubility mg/L	\$\tag{\pi} 483 \times	483
Vapour pressure [Pa]	35×10-15 31.9	3.5×10^{-12}
DT ₅₀ soil [days] (geomean, lab)	31.9	31.9
Aqueous solubility mg/L Vapour pressure [Pa] DT ₅₀ soil [day (geomean, lab) K _{oc} [L/kg] (median) K _{om} [L/kg1 (median)	48° 27.8	48
	27.8	27.8
1/n (arith mean)	27.8 20.910	0.910
Plant uptake factor		0
DT water/sed. total system days	Q \$ 45.8	45.8
DT ₅₀ water [days] \	45.8	45.8
DT ₅₀ sediment (rays)	45. (Step 1&2) / 1000 (Step 3)	45.8 (Step 1&2) / 1000 (Step 3)

PECsw prodelling approach: FOCUSsw Scenario Calculation

The calculation according FOCUS methodology is a tiered approach with up to four steps. Generally, different potential entry routes of a substance into surface water like spray drift, run-off, erosion and drainage are considered, and in each step PEC values in water and in sediment are calculated.

Step 1: In this, the most conservative step, all inputs are considered as a single generic loading to a static worst case water body, distributed between water and sediment within 1 day, and a worst-case PEC_{sw} and PEC_{sed} is calculated.

Step 2: A refinement is made to the Step 1 approach, whereby individual loadings into the water book from different entry routes are considered. Two scenarios are introduced to represent Northern and Southern Europe, but no specific crop scenarios are defined.

Step 1 & Step 2 simulations are run with the FOCUS Steps 1-2 Calculator tool.

Step 3: A more detailed exposure assessment based of 0 realistic worst-case scenarios ionade. The scenarios are divided into six scenarios where drainage is the relevant entry route and four where runoff is relevant; spray drift is considered for all sceparios. Three water bodies of differing size and hydrology have been defined, stream, pond and ditch. The scenario settings are each representative of certain agricultural conditions in Europe with respect to weather, wil, cross and water bodies, so that, o an appropriate subset of scenarios relevant to a specific country and crop can be defined.

The simulations are done using the models PRZM (for entries due to run-off and prosion) MAGRO (for inputs due to drainage) and TOX5WA (for simplation of the behaviour in the water body). The FOCUS SWASH tool is a utility which enables an automatic input of relevant data into the three simulation models.

Step 4: A higher-tier refinement to the Step 3 PE results is made on a case-by-case basis, e.g. via considering specific mitigation measures or interesting certain scenario modifications specifically applicable to the respective product use.

PEC_{sw} calculations for mesosultor on-methyl

Report:	3; ; ; ; ; ; 2014; ; 2481626-01
Title:	Mesosulfuron-methyl (MSM) and metabolites: PECsw, sed FOCUS EUR - Use in winter gereals in Furone
, Q	I in winter releasing the arobe
Report No:	E6Sa-14-0230 &
Document No:	M-48) 626-01-1 S S
Guidelines:	not applicable;not applicable 🍼 🛴
GLP/GEP:	ng S

Materials and Methods:

Predicted environmental concentrations in surface water and sediment (PEC_{sw} and PEC_{sed}) of Detailed application data used for simulation of PEC_{sw} were compiled in Table 9.7Table 9.7-. mesosultaron-methyl have been calculated for the use in winter cereals in Europe, via the tiered

Table 9.7-3: Application pattern used for PEC_{sw,sed} calculations (FOCUS Step 1&2)

	70 CT1C		Applic	ation		Amount reaching
Individual crop	FOCUS crop used for interception	Rate per season [g a.s. /ha]	Interval [days]	Plant interception [%]	BBCH Stage	soil per season application [g a.s./ha]
Winter wheat GAP & Simulation	cereals, winter (arable crops)	1 × 15	>.	average crop acover (50%)	20-32	
Winter rye GAP & Simulation	cereals, winter (arable crops)	1 × 6	- 🔻	average crop cover (50%)	20-32 _@	3.0

Application timing: The spring application in winter cereals according to GAP is done at the end of winter, at the beginning of the vegetation period i.e. when the temperature is high enough to expect crop and weed growth), onto well-developed grop.

At FOCUS Step 2 the application period in the model was set to "October to February", which will also represent the worst case of the available tiping periods.

At FOCUS Step 3 actual application dates are generally determined by the PAT (pesticide application timer) included within SWASH, which selects an appropriate actual application date to ensure at least 10 mm of rainfall in the first 10 days after application, and at the time less than 2 mm of rain per day in a five day period around the date of application. However, no predefined event dates are implemented in the FOCUS model that yould directly translate the above described cropping situation into discrete PAT windows for each surface water scenario setting. Therefore, the following approach was used to define suitable scenario adapted application dates: the simplated treatment was referenced relative to the tabulated crop emorgence date of the earliest energing spring crop (i.e. not necessarily cereals) that was defined by FQCUS for the respective scenario. Start of the PAT window was then set to 14 days before that date, which is considered an adequate representation for the start of the vegetation period in the respective scenario environment. An overview of the resulting date selections used in Step 3 is found compiled in the tables below

Table 9.7-4: Spring emergence trates of earliest crops in the FOCUSsw scenarios

Scenario	Location S	Crop C	Emergence date	Julian date
D1 @		© Spring@ereals®	05-May	21-Apr
D2 ~		spring cereals ^{a)}	15-Mar a)	01-Mar a)
D3 🚄		spring cereals	01-Apr	18-Mar
D4		Tield beans	15-Apr	01-Apr
D5		spring@ereals	15-Mar	01-Mar
₹1216		root vegetables	25-Feb	11-Feb
R1		Seld beans	10-Apr	27-Mar
R2		bulb vegetables	28-Feb	14-Feb
R3		root vegetables	26-Feb	12-Feb
R3 O		root vegetables	26-Feb	12-Feb

a) no crop with emagence in spring defined; D5 data used instead

Table 9.7-5: Application dates of mesosulfuron-methyl for the FOCUS Step 3 calculations

Parameter	Winter cereals (1	1 × 15 g a.s./ha)	Winter cereals (1 × 6 g a.s./ha
PAT start date				~ · · · · · · · · · · · · · · · · · · ·
rel./absolute	Abso	lute	Absol	lute 💇 💍
Appl. method	ground	spray	Found	spray 👸 🔊
(appl. type)	(CAM	1(2)	(CAN	12) 🛇
No of appl.	1		1	
PAT window		Ö		
range	30)	36	lute spray 12) \$\frac{1}{2}\$
Appl. interval	1	4		
Application	PAT Start Date	Appl. Date	PAT Start Date	Appl. Date
Details	(Julian Day)	ppi. Date	(Julian Dag)	Appl. Date of
D1	21-Apr	25-Apr 25-Mar 17 Mar	21-Apr	Q3-Apr
	(111)			
D2	01-Mar	2-Mar	Mar o	12-Mar
7.0	(60)		(60)	O TO
D3	18-Mar 🧳 "	Mar S	18-Mar &	I'/-MaxCy
D4	$(77) \mathcal{O}^{v} \mathcal{O}^{v}$			17-Mac 18-Apr 77-Mar 27-Feb
D4	01-Apr	rs-Apr	(0)-Apr (91)- 01-Mar	18-Apr
D5		07Mor \$	(91) N	7 7√07-Mar
D3	0QMar	07 Mar	0 01-1691 C	/ -iviai
D6		27-Feb√	Al-Feb	27-Feb
D0	(42)	l e a	Ø₁-1 CU ∞² (42) Ø	27-100
R1 s		26-Apr	27-Mar 2	26-Apr
*	② 29-Mar _Q ✓ (86) 4	20-Api	186)	20 1101
R3 👟	(86) 12-Feb	1 9-Feb	412-Feb	19-Feb
			0 (43)	
R4 &	√ . Ø Feb	0.25 Mar 20	12-Feb	02-Mar
	(43)	V Waviar V	12- y eb	

Application type: For both uses application type CAN 2 was selected: crop canopy, default soil incorporation depth DEPU for non foliage intercepted chemical is 4 cm; distribution: linearly decreasing with death.

Substance specific input parameters for the FOCOS Step 1-3 calculations are listed in Table 9.7-.

Soil degradation of mesoculfuror-methor and its metabolites was based on geometric mean DT_{50} as derived from laborators studies, normalized to 20°C and 100 % field capacity according to FOCUS (2000).

Soil adsorption was described by median Kor. Kom for the parent active substance, or arithmetic mean values for all other components with experimental data from batch equilibirum studies available. For metabolite AE FM0584 worst case default value of zero soil adsorption was used in the absence of experimental data. For concentration dependency, arithmetic mean Freundlich coefficients were used, or a default value of 1.0 in the absence of experimental information.

For description of substance degradation in the water/sediment, according to FOCUS (2003) the total system degradation DT₅₀ is used for Step 1-2 calculations. In Step 3 calculations, total system degradation DT₅₀ is used for the water phase and default DT₅₀ of 1000 days for the sediment phase. A default half-life of 1000 days is assumed as well for components where the experimental data did not allow for the derivation statistically reliable kinetic parameters.

Ignoring the systemic action of mesosulfuron-methyl, a worst case default for plant uptake (PUF) was assumed for parent active substance and all metabolites in this first tier calculation.

Table 9.7- 6: Substance parameters used for mesosulfuron-methyl at FOCUS Steps 1-3

Parameter	Unit 🙈	Mesosulfuron-methyl V
General	Unit	Mesosulfuron-methyl 5
Molar Mass	g/mol , , ,	503,5
Water Solubility (pH 7, 20 °C)	mg/L _a	483 4 0
Vapour Pressure (20 °C)	Pa	483 35E-12 0.0
Plant Uptake Factor	2 0	
Wash-Off Factor PRZM	€1/cm °	
Wash-Off Factor MACRO		
Sorption		35E-12 4 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5
Koc	ml/g ~	48
Freundlich Exponent		
Freundlich Exponent Degradation Soil Total System Water	of days days	48 0.9 31.9 45.8 45.8 45.8 (Step 182) / 1006 (Step 3) 0.7
Soil	days y	~ \$1.9 £ 6
Total System	days	45.85
Water	Q Qays Q	
	days J	5.8 (Step 1&2) / 1006/(Step 3)
		0.7
Max Occurrence		
Water / Sediment		
Soil Effect of Temperature	J/mol 5	1 4 6 5 5 5 5 5 5 5 5 5 5
Effect of Temperature		
Activation Energy	J/mol 5	© *65400
Soil Effect of Temperature Activation Energy Exponent Q ₁₀	1/K	♥
Q_{10}		2.58

Findings: Ø

tues for mesosulfuron-methyl at Steps 1 and 2 are Steps 1 and 2: The max given in Table 9.7

and PECsec values for mesosulfuron-methyl at Steps 1&2 **Table 9.7-7:**

		v 0°	
		Mesosulfur	on-methyl
Use pattern	FQGUS scenario	PEC _{sw}	PEC _{sed}
		© [μg/L]	[µg/kg]
	Step L 2 20	4.837	2.256
Winter cereals XX × 15 g a.s./ha	Step 2 V		
X × 15 g a.s./ha	N EW Single	1.202	0.567
	S-EU Si@gle	0.986	0.465
& A \ a	Step 1 ~	1.935	0.902
Winter cereals	Step 2		
Winter cereals 1 × 6 s.a.s./ha	NEU Single	0.481	0.227
	S-EU Single	0.395	0.186

maximom PEC_{sw} and PEC_{sed} values for relevant FOCUS Step 3 scenarios are given in

Table 9.7- 8: Maximum PEC_{sw} and PEC_{sed} of mesosulfuron-methyl for all scenarios at Step 3 after application to winter cereals

Use pattern	Mesosulfuron-methyl					
	Winter	Winter cereals, 1 × 15 g		Winter	cer@ls, 1 × 6 g	g a.s@ha 🚕
FOCUS scenario	Entry	PECsw	PECsed	Entry	PECsw	₹PEÇ
	route*	[µg/L]	[µg/kg]	route* 🧳	『[μg/L]	μg/kg]
D1 (ditch)	S	0.161	0.261	S	0.063	. ØØ106 ≪J
D1 (stream)	S	0.118	0.153 🕭	S	0.047; </td <td>~~0.062°</td>	~~0.062°
D2 (ditch)	D	1.601	0.9047	D	0.57	© 0.363
D2 (stream)	D	1.010	0.522	ID	0:366	° 0,2070 «€
D3 (ditch)	S	0.096	Ø919	s .	0.038	Ø 008 Ø
D4 (pond)	D	0.024	70 .058	D Q	©0.008°	0.022
D4 (stream)	S	0.079	© 0.024	S S	[™] 0.Q3√	, 0. 009
D5 (pond)	S	0.011 🐇	0. 0 324 .<	D S	0,004	0.040
D5 (stream)	S	0.078	√\$010 ×	S S	Ø.031 €	2 0.004 。
D6 (ditch)	S	0.1024	~0.025©	Q S	0.0410	Ø0.01 0 %
R1 (pond)	R	0.066	~ \(0.00\)	R →	0.002	0.004
R1 (stream)	R	0 70 ×	> 0@016 √		0043	<i>0</i> © 07
R3 (stream)	R	Q,325 ₆ \(\sigma^2\)	046	≪ĭR Ö	Ø.130 %	0.019
R4 (stream)	R	0.246	× 0.046	R	\$\infty 0.10@	, © 0.020

^{*} Entry route: letters S, D, and R correspond to the dominant entry path - spory drift arainage, and rupoff

Report:	d;
Title:	Mesosulturon-methyl (NSM) Graphical outputs of prediced environmental
	Concembrations in surface water - Use in Winter Greats in Europe
	EnSa-15-0033
Document No:	M-508737-01-1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Guidelines:	not applicable not applicable > 5
GLP/GEP:	no V

Predicted environmental concentrations of the active substance mesosulfuron-methyl and its metabolites for the use in winter cereals in Europe were calculated and reported in the document EnSa-14-0230 (BCB document number M-48/026-010), KHIA 9.7/01).

The present report supplements the original document and provides graphical presentation of time resolution of PECsw concentration scalculated according to the FOCUS Surface Water (SW) approach (FOCUS 2003) at Step3 level. For each of the scenarios, 2 graphic files are provided. The overall time evolution of the respective concentration over the whole course of the TOXSWA simulation and a detailed view at the period around the observed maximum (1 week before the maximum and 8 weeks after the maximum) are shown. These information may support ecotoxicologal risk assessments, where timecourse information is considered of importance in addition to the maximum concentrations listed above.

Alternative PECsw simulation using RMS requested modelling parameters:

Report:	4; ;2015;M-517481-0	<mark>)1</mark>	
Title:	Mesosulfuron-methyl (MSM) and meta- - Use in winter cereals in Europe	abolites: PECs 💸 se	ed FOCUS EUR
Report No:	EnSa-15-0311	29	
Document No:	M-517481-01-1	\$\tag{\psi}	
Guidelines:	not applicable; not applicable	W .	
GLP/GEP:	no	O X	

The document reports an alternative calculation of predicted environmental concentrations in surface water, following the methodology presented under KLRA 9.701 and 02 before, but applying a set of modelling parameters requested by the RMS.

Materials and Methods: reference is made to MIIA 9.7./01. See summary before

Table 9.7-9: Application pattern bsed for PECsw,sed calculations (FOCOS Step) &2

Individual crop	FOCUS crop used for interception	Ig ops. / nag y	Interval (days)	arion S O BBEH interception Stage	
Winter wheat GAP & Simulation				average crop cover (20%)	1 × 12.0
Winter rye GAP & Simulation	ereals winters (araloe crops)	1 ×6		over 20% 20-32	1 × 4.8

Application timing

For FOCUS Step 2, reference is made to KIIIA 9.7/01, see summary before

For FOCUS Step 3, the procedure used was identical to that of the previous simulation KIIIA 9.7./01, nevertheless more extensive description is provided here below for better clarity:

Agronomically and in-line with the GoP, the spring application in winter cereals is done at the end of winter, at the beginning of the vegetation period (e. when the temperature is high enough to expect crop and weed growth), onto well-developed crop. However, in the FOCUS model no pre-defined event dates are implemented for winter cereals that would directly translate the above described cropping situation into discrete PAT windows for each surface water scenario setting. Therefore, the following approach was used to define seenario adapted application dates: the simulated treatment was referenced relative to the tabulated crop emergence date of the earliest emerging spring crop that is defined by FOCUS for the respective scenario. Start of the PAT window was then set to 14 days before that FOCUS event date date, which is considered an adequate representation for the start of the vegetation period in the respective scenario environment.

For technical reason, this relative timing can only be implemented in the model in form of manually entered 'absolute' PAT start dates, since the used auxiliary for referencing ('earliest emerging spring crop') is not indentical to the simulated crop winter cereals, and also may vary between scenarios.

An overview of the date selections resulting is found compiled in the tables below:

Table 9.7- 10: Spring emergence dates of earliest crops per sceanrio used as reference for application timing definition in the FOCUSsw scenarios

Scenario	Location	Crop	Emergence date	Julian date
D1		spring cereals	05-May	21 - % pr
D2		spring cereals a)	15-Mar	01 -M ar ^{a)} 🍣
D3		spring cereals	01-Apr	48-Mar
D4		field beans	15 _z Apor	, 0 <mark>01-A6</mark>
D5		spring cereals	15-Mar	01-Mar
$\overline{D6}$		root vegetable	25-Feb	
R1		field beans,	10-Apr	27-Mac √
R2		bulb vege t® les	28-Feb O	[™] 14- F • • • • • • • • • • • • • • • • • • •
R3		root vegetables	26-Feb 5	12-Feb
R4		root vegetables	26-Feb	O' JP-Feb
	rganas in apring defined:	Tool vegetables		

Table 9.7-11: Application dates of mesosylfuron-methyl derived for rise in FOCUS Step 3 calculations

			<i>V</i>		
Parameter	Winter e re		z/a.s./ha)	Winter ce	ays to emergence date of ing crop per sceanario, a Cabsolute' dates cennical peason)
PAT start date	relative: £14 da	ysto emerge	ence date of	relative: -14-d	ays to mergence date of
rel./absolute	earliest sprin	ig crop∂per s	ceapario, 🍣	Carliest Spri	ing crop per sceanario,
	@(entered	as 'aboolute'	Gates ((ercered	as Dabsolute' dates
	g for∕ted	chnical reas	n)	for te	echnical (eason)
			~	for te)
Appl. method		ound spray	J		round spray
(appl. type)		(CAM ² 2)		c V	CAM 2)
No of appl.		9			
PAT window		eund saray (CAMP2) P		0' 4	
Appl. interval	FAT SUM DA	7 30 1 7 3	Ÿ \$		30 1
No of appl. PAT window range Appl. interval Application Details	ATT Spart Du	teo A	opl. Date 250 Apr	PAT Start D	
D2 D3 D3	(Julian Day) 21-App (11) (11) (11) (10) (17) (17) (17) (14) (17) (14) (17) (14) (17) (14) (17) (14) (17) (17) (14) (17) (14) (17) (14) (17) (14) (17) (14) (17) (14) (17) (14) (17) (14) (17) (1		250Åpr	21-Apr	25-Apr
No Political Pol	01-Mar		12-Mar &	01-Mar	12-Mar
	(f) (780) (g)		& A'	(60)	
D3 S	Ø/8-Mar			18-Mar	17-Mar
			7 (F)	(77)	10 A
D4 O	O O O - PADI		18-Apr	01-Apr (91)	18-Apr
	01-Mar 660) 78-Mag (776) 04-Apr 04-Apr 01-Mar		Mar.	(91) 01-Mar	07-Mar
D6 P1	2 (60)		y-iviai	(60)	07-iviai
D6 27	11 Feb		27-Feb	11-Feb	27-Feb
	\$\square \qquare \qqqq \qqq \qqqq	V LY		(42)	
R1 , Õ	11 Feb (42) 27-Mar	"	26-Apr	27-Mar	26-Apr
	(86)	0 Y	-	(86)	•
RZ ~ ^ `	12Feb		19-Feb	12-Feb	19-Feb
	(43)			(43)	
RI RA RA	(42) (27-Mar (86) (12-Feb (43) (43)		02-Mar	12-Feb	02-Mar
	(43)			(43)	

In a pre-submission meeting between experts BAYER-ANSES of Jan. 30th, 2014, that approach for application timing definition in the FOCUS models environment was presented and extensively discussed between modelling experts. The proposed scenario-specific application dates for the AIR process were set to 2 weeks before the emergence of the first crop at end-of winter in the respective scenario.

Table 9.7- 14: Maximum PEC_{sw} and PEC_{sed} of mesosulfuron-methyl for all scenarios at Step 3 after application to winter cereals

Use pattern	Mesosulfuron-methyl Y							
	Winter	Winter cereals, 1 × 15 g a.s./ha			Winter cer@ls, 1 × 6 g a.so			
FOCUS scenario	Entry	PEC _{sw}	PEC _{sed}	Entry	PECsw	PECSO		
	route*	[µg/L]	$[\mu g/kg]$	route*	" ຶ <mark>[μg/L]</mark>	[µg/kg]		
D1 (ditch)	D	0.187	0.407	D &	0.075	9 , 021 65		
D1 (stream)	D	0.132	0.237 🖒	D V	0.053×√²	0.096°		
D2 (ditch)	D	1.328	0.98 0 %	D _O	0.51	20.387 A		
D2 (stream)	D	0.837	0.568		0:322	0,225 (4)		
D3 (ditch)	<mark>S</mark>	0.096	, © 22	S	0.038	8 009		
D4 (pond)	D	0.035	0.096		0.013	0.036		
D4 (stream)	<mark>S</mark>	0.080	© 0.039	S	0.032	0.014		
D5 (pond)	<mark>S</mark>	0.016	0.039 0.042 0.019 0.0300		0,0 06	°≥√ 0:947		
D5 (stream)	<mark>S</mark>	0.081	[₄ 6019 %	i ä <mark>s</mark>	0 .032 ₁	20.008 。		
D6 (ditch)	<mark>S</mark>	0.10 <mark>2</mark> 4	0.030°	l Q S	0.0410	⊘ 0.01 2 √		
R1 (pond)	<mark>R</mark>	0.06	9 0.Q1)	r <mark>r</mark> → `	0.0410	0.005		
R1 (stream)	R	0 √11 ~	⁸ 000 18 ° √			2 0€008		
R3 (stream)	R	Q 327	052		130	0.021		
R4 (stream)	R	0.266	% 0.05€ V	R	0.108	é <mark>0.024</mark>		

^{*} Entry route: letters S, D, and R correspond to the dominant entry path – spony drift Mainag and runoff

Graphical outputs of predicted environmental concentrations in surface water:

The model report provides in its Appendix 9.4 graphical presentations of the concentration timecourses of PECsw, calculated according to the FOCUS surface Water procedure at Step 3 level. For each of the scenarios, two graphic files are provided: The overall time evolution of the whole TOXSWA simulation, and a detailed view at the period around the observed maximum (ca. 1 week before the maximum) to 8 weeks after the maximum) are shown. These information may support ecotoxicologal risk assessments, where time course information is considered of importance in addition to the maximum concentrations listed above. Diagrams of interest for risk assessment will be shown in the ecotoxicological section.

IIIA 9.7.1 Initial PECsw value for static water bothes

See comment under Point 9.7.

IIIA 9.7.2 🌄 Initial PLCswyalue for slow moving water bodies

See compart under Point 9.7

Short-term PE@sw values for static water bodies (1-4 days after last application).

See comment under Point 9

IIIA 9.7.4 Short-term PECsw values for slow moving water bodies (1-4 days after ast application)

See comment under Point 9.7.

IIIA 9.7.5 Long-term PECsw values for static water bodies (7-42 days after last application)

See comment under Point 9.7.

Long-term PECsw values for slow moving water bodies (7-42 days after ... IIIA 9.7.6 last application)

IIIA 9.8

Table 9.8-1:

Please refer to	point IIIA 9.7.		
			ace Water (PECsw) for ameters for mesoscillurous sosulfuron-methyl value used for modelling
IIIA 9.8	Prodicted Environ	amontal Concontrations in Surf	ado Wator (PKF sw) For
111A 9.0	Metabolites		ate water (1 Deswitter
	Wictabolites		
		. *	
Endpoints fo	r PEC _{sw}	407	
Table 9.8- 1:	Comparison of propos	sed endpoints and modelling input para	ameters for mesosulfuron
	methyl metabolites		
End-point		Active substance: me	Soculfuron-methyl &
Ena-point		Proposed El Pendroints	Value used for modeling
		Document N2	
AE F154851			
Aqueous solu	bility [mg/L]	2000@7 ~ ~	Z 20000@
Vapour pressu		1.7%10-8	1.7 % 10-8
	ys] (geomean, lab)	Z	37.1
	g] (arith. mean)	683/396	683/39.6
1/n (arith. mea		0.940	0.940
Plant uptake f			0
	ed. total system [days]		38.6
(geomean)	ays] (geomean)		38.6
	t [days (geomean)	366	38.6
	nce in water sed. [%]	249 3 01 ×	4.9
Max. occurre		16.2	16.2
AE F160459			
Aqueous soon	bility [mg/L]	100000	10000
Vapour pressi		68 × 10° Y	6.8×10^{-8}
	/s] (geomean, lab	70.1	70.1
	g] (arith. mean)	21.8412.6	21.8 / 12.6
1/n (arith. mea		0.940	0.940
Plant uptake f		7 0 7	47.3
(geomean)	Ptotal System [Cays]	47.3	47.3
	ays] (geomean)	47.3° 47.3° 47.3°	47.3
DT co sed men	t [days] kgenmear®	¥ 47.3	47.3
Max.,occurrer	nce in water / sed. [%]	21.6	21.6
Max occurren	nce in soil [%	Q \$\frac{1}{2} \tag{8.9}	8.9
AE F099095			
Aqueous solu		y Q 190	190
Vapour press	Dre [Pa]	1.9 × 10 ⁻⁵ 87.9	1.9 × 10 ⁻⁵
DT ₅₀ soil day	ys] (geomean Tab) 🗸	87.9	87.9
	g] arith. mean)	576 / 334	576 / 334
1/n (arith. mea		0.840	0.840
	ed. total system [days]	1000	1000
(default value		1000	1000
	ays] (default value)	1000	1000
	t [days] (default value)	1000	1000
	nce in water / sed. [%]	0.9	0.9
	<u> </u>	•	

End-point	Active substance: mes	sosulfuron-methyl		
_	Proposed EU endpoints	Value used for modelling		
	[Document N2]			
Max. occurrence in soil [%]	29.2	29.2		
AE F092944				
Aqueous solubility [mg/L]	5200	5200		
Vapour pressure [Pa]	2.6×10^{-2}	2.6 × 10 ⁻² × 6		
DT ₅₀ soil [days] (geomean, lab)	60.4	V		
K _{oc} / K _{om} [L/kg] (arith. mean)	447 / 250 0	447/26V O		
1/n (arith. mean)	0,72*	25.9 25.9		
Plant uptake factor				
DT ₅₀ water/sed. total system [days]	25.9 Q 0	° 25.9 ° 25.9		
(max. value)	25.9 Q Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	25.9		
DT ₅₀ water [days] (max. value)	25.9	25.9		
DT ₅₀ sediment [days] (max. value)	25.9 3	1 ³ ♥ 35 ⁴ 0		
Max. occurrence in water / sed. [%]	3.2 0	25.9 3.2 10.4		
Max. occurrence in soil [%]	3.2			
AE F160460		10.4000		
Aqueous solubility [mg/L]	\$00000 \$\frac{1}{2} \tag{0}	10.2 10.00000		
Vapour pressure [Pa]	25.6 25.6 2000 25.6 25.6	6 × 167 25% 14.1 7 8.2		
DT ₅₀ soil [days] (geomean, lab)	25.6	\$\tilde{\pi} 25.\tilde{\pi}		
K _{oc} / K _{om} [L/kg] (arith. mean)	2 14 (7 8.2 b) 14 (7 900 s) 2 c)	14.178.2		
1/n (arith. mean)	3 .900 3	% % 9 9 9 9 9 9 9 9 9 9		
riani uptake factor		0		
DT ₅₀ water/sed. total system [days]	38.9	38.3		
(geomean)	\$ \$38.3 \$\tau\$			
DT ₅₀ water [days] (geomean)	\$ 0° \$\frac{3}{3}8.3.0° \(\lambda \) \(\lambda \)	38.3		
DT ₅₀ sediment [days] (geomean)	3827	38.3		
Max. occurrence in water / sed. [%]		8.4		
Max. occurrence in soil [%]	\$.6 \$ \$	8.6		
AE F140584		<u></u>		
Aqueous solubity [mg/L]	1.32 10-6	100		
Vapour pressure [Pa]	1.30 10-6	1.3×10^{-6}		
Vapour pressure [Pa] DT ₅₀ soil (days] (geomean lab) K _{oc} / K _{om} L/kg] (defaut value)	3.6	3.6		
K _{oc} / K _{wy} [L/kg] (default value)		0.0 / 0.0		
	1 69 49 1000 49	1.000		
Plant uptake factor	1000			
DT ₅₀ water/sed. the last system [date]	10 2	1000		
(default value)				
	1900	1000		
DT ₅₀ sediment [days] (default value)	2000 2000 21.9	1000		
	Ü 1.9	1.9		
Max. occurrence in sol [%]		7.1		
AE, F¥47447	150000			
Agueous solubility [mg/L/p	150000	150000		
Vapour pressur@Pa]	1.0×10^{-8}	1.0×10^{-8}		
DT ₅₀ soil [days] (geomean, lab)	97.7	97.7		
K _{oc} / K _{om} [Lorg] (arith. mean)	3.2 / 3.0	/ 3.0		
1/n (default value)	1.000	1.000		
Plant uptake factor	0	0		
DT ₅₀ water/sea total system [days]	205	205		
(mast. value)		_		
DF ₅₀ water [days] (max. value)	205	205		
DT ₅₀ sediment [days] (max. value)	205	205		
Max. occurrence in water / sed. [%]	10.9	10.9		
Max. occurrence in soil [%]	6.5	6.5		

PEC_{sw} for mesosulfuron-methyl metabolites

According to the definition of residues relevant for surface water risk assessment, the following degradates were considered for PECgw calculation: AE F154851, AE F160459, AE F099095, F092944, AE F160460, AE F140584, and AE F147447.

Report:	t; ;	;2014;M-481626;	
Title:	Mesosulfuron-methyl (MSM) a	nd metabolites: PECs	w,sed FOCUS EUR Use
	in winter cereals in Europe		
Report No:	EnSa-14-0230	~ ,O*	
Document No:	M-481626-01-1	V	
Guidelines:	not applicable; not applicable		
GLP/GEP:	no		

Materials and Methods: PEC_{sw} and PEC_{sed} for the metabolites of mesosulfuron-metabolites calculated using the approach, scenarios and application parent compound in Point 9.7.

Substance specific parameters for the mesosulfuron-meth 9.8-2.

Substance parameters used for mesosulfution-methyl metabolities at Steps 1&2 level **Table 9.8-2:**

Parameter	Unit	AE - \$15485\$	AF F160459	AE F099095	× AE F09 2 944&	√AE F160 46 0	AE F140584	AE F147447
Molar Mass	g/mol	48993	J 489.5 Š	198,2	155.2 [©]	475%5	322.4	290.3
Water Solubility	mgÆ	200000 🛭	10000	<u></u> \$\$\$\$\$0 ₽\$\$\$	© 520 0 ,	100000	100	150000
K _{oc}	m\ /g	&68.3 _€	21,8	₹576 Þ	. 4 <i>1</i> 07	14.1	0	5.2
Degradation Q			W. S.			•		
Soil	∛days∜	37.1	70.1	8759	060.4 P	25.6	3.6	97.7
Total System	days	38.6 å	³ √ 47.8√	1900 @	278	38.3	1000	205
Water	Cays	\$\$38.6 £	47.3	\$1000\T	25.9	38.3	1000	205
Sediment	¶days ‰	38,6	Ø√7.3 ×	1000	°25.9	38.3	1000	205
Max Occurrence)		,0' , <i>\</i> '	4	1			
Max Occurrence Water / Sediment	%	J4 .9 🗸	21,60	V 0.9 🖔	3.2	8.4	1.9	10.9
Soil		\$16.2 _{\textstyle{\pi}}	89	S 29.2S	10.1	8.6	7.1	6.5

Steps 1&2: PEC_{sw} and PEC_{sed} values of me sosulto on-methyl metabolites at FOCUS Steps 1&2 for the use in winter cereals are summarised in Table 9.8-3 (PEC_{sw}) and Table 9.8-4 (PEC_{sed}).

Table 9.8-3: Maximum PEC_{sw} of mesosulfuron-methyl metabolites at Steps 1&2

		AE	AE	AE	AE	AE	AE	A	
Cron	Caanaria	F154851	F160459	F099095	F092944	F160460	F140584	F147447	Ü
Crop	Scenario	PECsw	PECsw	PECsw	PECsw	PEC	PECsw	PECsw	
		[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L] /	y [μg/ J	
	Step 1	0.728	0.449	0.326	0.099	0.410	0.229	0,195	ş
Winter cereals	Step 2						, O'		0
1 × 15 g a.s./ha	N-EU Single	0.173	0.128	0.039	0.024	0.100	0.028	0 .054	,
	S-EU Single	0.140	0.108	0.063	0.020	0.082	Ø.023≪	0.04	
	Step 1	0.291	0.180	£0.130	0.040	0.164 🐇	0.092	0.078	,
Winter cereals	Step 2		40	D ^v		٥			1
1 × 6 g a.s./ha	N-EU Single	0.069	0.051	0.032	0.010	0.046	0 911	0.022	
	S-EU Single	0.056	0.043	0.025	₹0.008	0.033	0.009	0.04	

Table 9.8-4: Maximum PEC_{sed} of mesosulfuron-nethyl metabolites at Steps 1&2

Crop	C	AE F154851	AF F160459	~, AE	F092944	QE . F }6046€	⊘ AE *F140 \$ 84	AQ F147447
	Scenario	PEC _{sed}	PECsed	PEC sed	PEC _{sed}	PEC	PECsed	PECsed
		∦ug/kg]@	/ [μg/k⁄g/]	[µˈg/kg]	õg/k g	[µg/Þg]	[g/kg]	P[μg/kg]
	Step 1	₽0.49 &	0@92	∂ 1.872 	0.4306	056		0.010
Winter cereals	Step 2	45°	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\$,\(\vec{v}\)			&	
1 × 15 g a.s./ha	N-EU Single		♥ 0.02/	0.43/5	20.107	0.014	< © 001	0.003
	S-EU Single	&0.094 <u></u>	0.02/3	® 364	~~0.08 6 ~	0.691	<i>©</i> ≤0.001	0.002
	Step 1	0.193	0.037	۵.749 م	0.174	№ 023 ≪	J<0.001	0.004
Winter cereals	Sten 2 *	*	00.01		4 .			
1×6 g a.s./ha	N-EU Single	0,047	0.01	0.482	©.043&	0.006	< 0.001	0.001
	Sold Single	ÇÖ.038.	0.00	0.146	0.03P	0.005	< 0.001	< 0.001

Step 3: No calculations at Step 3 were made for the metabolites of mesosulfuron-methyl, since no refinement was required to pass acotoxicological risk assessments.

Alternative PECs simulation using RMS reguested modelling parameters:

Report: One of the control of the co
Title: A. Mesosulfgron-methyl MSM and metabolites: PECsw sed FOCUS EUR
and the state of t
se in winter cereas in Europe
Report No: EnSa-15-02-1
Document No: M-21748 201-1 0
Guidelines: O not applicable; not applicable
GLP/GEP: O no

The document reports an alternative calculation of predicted environmental concentrations in surface water following the methodology presented under KIIIA 9.7/01 before, but applying a set of modelling parameters requested by the RMS.

Materials and Methods: reference is made to KIIIA 9.7./02.

Substance specific parameters:

Table 9.8- 5: Substance parameters used for mesosulfuron-methyl metabolites at Steps 1&2 level

Parameter	Unit	AE F154851	AE F160459	AE F099095	AE F092944	AE F160460	AE F140584	E147447
Molar Mass	g/mol	489.5	489.5	198.2	155.2	475. 5 ©	322.4	© 290.25
Water Solubility	mg/L	200000	10000	190	5200	100000	100	150000
Koc	mL/g	<mark>65</mark>	19.3	351	336	12.2	0	5.1
Degradation							~~	
Soil	days	52.8	84.9	104.Co	39.8	29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3	4.3	162.8
Total System	days	56.4	87.9	1000	1000	325.9	9000 S	1000 K
Water	days	56.4	87.9	1000	1000 [©]	325.9	√ 1000	4000 (C)
Sediment	days	56.4	87.9	_4 4 000	1000	325.9 C	1900	<mark>_ උ1000</mark> ල්
Max Occurrence					*			
Water / Sediment	<mark>%</mark>	<mark>4.9</mark>	21.0	0.9 0.9	3.2	84	1.9	10%
Soil	<mark>%</mark>	16.2	<mark>8.9</mark> ‰	29 .2	ૐ <mark>10.</mark> ൂ%′	₹8.6	7.f ≫	5.8

Findings:

Table 9.8- 6:

Findings:						S.		
Table 9.8- 6:	Maximum PEC _{sw} o	of mesosulfui	ron-methy	l metabolij	tës at St ep	os 1 & 2		
Crop	Scenario S	AE© F154851 F	160459 F	AE (5) 7099095 I PECsw (4)	AE 5002944	AE F160469 PECsw	AE THE CSW	AE F147447 PEC _{sw}
		μg/L	1 E C.w. [μ g]Σ]	[Ag/L]	μg/b		Ç[μg/L]	rec _{sw} [μg/L]
Winter cereals	Step 1 Step 2	0.73¶	451	0.392	0.169 L	0.411	0.229	0.175
1 × 15 g a.s./ha	NÆU Single	9.281 0.22 0.22	0.190	0.1/53 0.122 @	0.041	0.156 0.127	0.049 0.040	0.074 0.061
Winter cereals 1 × 6 g a.s./ha	Step I O Y Step Sin Qe	<u> </u>	0.076	0.15	9 017	0.164	0.092	0.070
1 × 6 g a.s./na	SEU Single		Q:963 6	0.049	0.043	0.063	0.020	0.030

Maximum Paced of mesosulfuront-methyl metabolites at Steps 1&2

,		ĄĖ	Æ E	O'AE	AE	AE	AE	AE
	Scenario S	F154851	F160459		F092944	F160460	F140584	F147447
Crop ©	Scenatio 3	₽EC sed ℂ	PECQ	PEC sed	PEC sed	PEC sed	PEC sed	PEC sed
~Q	0 0 2	yμg/kg	[µ g /kg]	Mug/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]
4	Step 1	0.4	2081 V	1.374	0.361	0.049	< 0.001	0.009
Winter cereals	Step 20	4		,				
1×15 g a.s./ha	NeEU Single	30.181). 0. 03 9	0.536	0.138	0.019	< 0.001	0.004
	SEU Single		QCQ30	0.429	0.111	0.016	< 0.001	0.003
//	Step 1 0 C	0.188	9.033	0.550	0.145	0.020	< 0.001	0.003
1×6 g a.s./ha	N= U Single	40.073	[♥] 0.015	0.215	0.055	0.008	< 0.001	0.002
	S-EU Saigle	0.058	0.012	0.172	0.044	0.006	< 0.001	0.001

Step 3: No calculations at Step 3 were made for the metabolites of mesosulfuron-methyl, since no refinement was required to pass ecotoxicological risk assessments.

IIIA 9.8.1 Initial PECsw value for static water bodies

See comment under Point 9.7.

IIIA 9.8.2 Initial PECsw value for slow moving water bodies

See comment under Point 9.7.

IIIA 9.8.3 Short-term PECsw values for static vater bodies 1-4 days after last application)

See comment under Point 9.7.

Short-term PECsw values for slow moving water bodies 1-4 days after last application)

See comment under Point 9.7.

IIIA 9.8.5 Long-term PECsw values for static water bodies 7-42 days after last application)

See comment under Point 9.7.

IIIA 9.8.6 Long-term PECsw values for slow moving water bodies 7-42 days after last application of the state of the state

See comment under Point 9.7

IIIA 9.8.7 Additional field testing

No additional field studies on the formulation have been performed or are required

IIIA 9.9 Fate and Behaviour in Air.

Based on the very low vapour pressure (3.5 10⁻¹² Pa, 20 °C) mesosulfuron-methyl is virtually non-volatile and would not be expected to volatilise Any mesosulfuron-methyl that might nevertheless reach the atmosphere would be steadily degraded, e.g. by hydroxyl radical reaction. According to the methodology developed by Atkinson, a gas phase atmospheric half-life of 1.8 hours was calculated for a typical OH radical concentration of 0.5 × 10° radicals/cm?

IIIA 9.9.1. Spray droplet size spectrum – laboratory studies

This is not an EC data requirement / not required by Directive 91/414/EEC.

III A. 9.9.2 Drift – field evaluation

This is not an E@ data requirement / Not required by Directive 91/414/EEC.

IIIA 9.10 SOUTHER Special Studies

IIIA 9:90.1 Laboratory studies

This is not an EC data requirement / not required by Directive 91/414/EEC.

IIIA 9:10.2 Field studies

This is not an EC data requirement / not required by Directive 91/414/EEC.