Big Data Übungsblatt 05

Anton Bulat, Josephine Geiger, Julia Siekiera

November 17, 2017

Aufgabe 1: Monoide

a)

Handelt es sich im Folgenden um Monoide? Ein Monoid ist eine Halbgruppe mit Einselement, also ein Tripel (G, \circ, e) aus:

- Menge G
- assoziativer Verknüpfung $\circ: G \times G \to G$
- Einselement $e \in G$

i)

Das Kreuzprodukt von Vektoren aus \mathbb{R}^3 ist kein Monoid, da die Verknüpfung des Kreuzproduktes nicht assoziativ ist.

Gegenbeispiel: Sei e_i der i-te Einheitsvektor.

$$(e_1 \times e_1) \times e_2 = 0, \qquad e_1 \times (e_1 \times e_2) = -e_2.$$

ii)

Die Addition von Matrizen aus $\mathbb{R}^{m \times n}$ mit $m \neq n$ ist ein Monoid mit dem Tripel $(\mathbb{R}^{m \times n}, +, 0_{mn})$, wobei + die elementweise Addition ist und damit assoziativ und 0_{mn} die Nullmatrix ist. Addiert man zwei Elemente aus $\mathbb{R}^{m \times n}$, so ergibt sich ein Element, das ebenfalls in $\mathbb{R}^{m \times n}$ liegt.

iii)

Die Bestimmung des größten gemeinsamen Teilers ganzer Zahlen ist ein Monoid mit dem Tripel ($\mathbb{Z}, ggT, 0$), wobei die Verknüpfung ggT die Bestimmung des größten gemeinsamen Teilers sein soll mit dem geltenden Assoziativgesetz:

$$ggT(a, b, c) = ggT(ggT(a, b), c) = ggT(a, ggT(b, c)).$$

Die 0 ist hier das Einselement, da der $ggT(a,0) = a \quad \forall a \in \mathbb{Z}.$

iv)

Die binäre XOR-Verknüpfung Boolscher Werte ist ein Monoid mit dem Tripel ($\{False, True\}, XOR, False$), wobei die XOR-Verknüpfung assoziativ ist wie in der Tabelle gezeigt (mit False $\hat{=}$ 0, True $\hat{=}$ 1):

A	В	\mathbf{C}	(A XOR B) XOR C	A XOR (B XOR C)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Eine äquivalente, mathematischere Formulierung für die XOR-Verknüpfung ist das Tripel ($\mathbb{Z}/2\mathbb{Z}, +, 0$), wobei $\mathbb{Z}/2\mathbb{Z}$ isomorph ist zu der Menge {True, False}. Die Verknüpfung + entspricht der Addition auf $\mathbb{Z}/2\mathbb{Z}$ und liefert dadurch auch die Assoziativität, und das Einselement ist hier die $0 \in \mathbb{Z}/2\mathbb{Z}$.

$\mathbf{v})$

Die Vereinigung von Mengen ist ein Monoid mit dem Tripel $(\mathcal{P}(X), \cup, \emptyset)$, wobei $\mathcal{P}(X)$ die Potenzmenge einer Menge X ist und \cup die Vereinigungsverknüpfung darstellt, die nach Definition assoziativ ist. Das Einselement ist hier die leere Menge, da $A \cup \emptyset = A \quad \forall A \subseteq X$. Vereinigt man zwei Elemente aus $\mathcal{P}(X)$, so ergibt sich ein Element, das ebenfalls in $\mathcal{P}(X)$ liegt.

b)

i)

Welche Form haben die Eingaben der Map- und Reduceschritte?

Die Eingabe des Mappers ist (k, v)-Tupel mit k als String und v als Integer. Sie bildet ein Monoid bezüglich der Konkatenation.

Die Eingabe des Reducers ist von der Form $(k, l = [v_1, \ldots, v_n])$, also vom Typ Map < String, List < Integer >> und ist ebenfalls ein Monoid bezüglich der Konkatenation mit dem Tripel $(Map < String, List < Integer >>, \otimes, \epsilon)$.

Welche Form hat die Ausgabe?

Die Ausgabe ist vom Typ Map < String, Integer > und hat die Monoidstruktur mit dem Tripel $(Map < String, Integer >, \otimes, \epsilon)$.

ii)

Reduce ist ein Monoid-Homomorphismus und kann also als Combiner verwendet werden.

Denn: Die Eingabe für den Reducer sind (k,l)-Paare. Reduce summiert alle l-Werte für alle Schlüssel auf.

Bei einer Aufteilung der Reduce-Eingabe in zwei Stücke $((k, l_{first})$ - und (k, l_{second}) -Paare, $l = l_{first} + l_{second})$ summiert Reduce l_{first} und l_{second} einzeln und erhält l, da die Summe der beiden Teilsummen die ganze Summe ergeben.