1. Теория вероятностей

Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью $p \in (0,1)$, а неудача — с вероятностью q=1-p.

Формула Бернулли вероятность того, что событие наступит ровно k раз при n испытаниях

$$P_{k,n} = C_n^k \cdot p^k \cdot q^{n-k}$$

1.1. Локальная теорема Муавра — Лапласа

Если в схеме Бернулли n стремится к бесконечности, то

$$P(a \le \frac{\mu - np}{\sqrt{npq}} \le b) \approx \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \Phi(b) - \Phi(a)$$

где μ — количество успехов, \int_a^b -интеграл Лапласа. Рекомендуется использовать при n>100 и $\mu>20$.

На заметку (для схемы Б.):

- $-M[\mu]=np$ математическое ожидание
- $D[\mu] = npq$ дисперсия
- $\sigma = \sqrt{D[\mu]} = \sqrt{npq}$ среднеквадратичное отклонение

И факты про интеграл Лапласа:

- 1. $\Phi(-x) = -\Phi(x)$ важно!
- 2. $\Phi(x) \approx 0.5$, если x > 5

1.2. Центральная предельная теорема

Утверждает о том, что сумма одинаково распределённых случайных и независимых случайных велечин, имеет распределение, близкое к нормальному.

Пусть $\xi_1 \dots \xi_n$ - последовательность случайных величин, $S_n = \sum_{i=1}^n \xi_i$, тогда:

$$\frac{S_n - nM[\xi_k]}{\sqrt{nD[\xi_k]}} \to N(0.1)$$

Следствие:

$$P(a \le \frac{S_n - nM[\xi_k]}{\sqrt{nD[\xi_k]}} \le b) \approx \Phi(b) - \Phi(a)$$

1.3. Неравенства Чебышева

1.
$$P(|\xi| \ge \varepsilon) \le \frac{M[\xi]}{\varepsilon}$$

2.
$$P(|\xi - M[\xi]| \ge \varepsilon) \le \frac{D[\xi]}{\varepsilon^2}$$

3.
$$P(|\xi - M[\xi]| < \varepsilon) \ge 1 - \frac{D[\xi]}{\varepsilon^2}$$

1.4. Локальные предельные теоремы

— Пуассона:
$$P(\mu=k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$
, где $\lambda=np$. Использовать, когда $np \leq 10$

– Муавра-Лапласа:
$$P(\mu = k) \approx \frac{\Phi(x)}{\sigma}$$
, где $x = \frac{k - np}{\sigma}$

- 2. Дискретная математика
- 3. C++
- 4. Алгебра и геометрия