Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z Laboratorium 3

Dominik Jeżów

GR NR 4

Specyfikacje sprzętowe urządzenia:

• System: 80SM (LENOVO_MT_80SM_BU_idea_FM_Lenovo ideapad 310-15ISK)

• Procesor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• Pamięć RAM: 8GB

• Środowisko: Jupyther Notebook

Ćwiczenie zrealizowane w języku Julia 1.8.5, wraz z wykorzystaniem pakietu Plots oraz PrettyTables

0. Opis ćwiczenia

Ćwiczenie polegało na zaimplementowaniu funkcji generujące wielomiany interpolacyjne oraz zbadanie tych wielomianów. Zaimplementowałem dwie funkcje generujące - generującą wielomian za pomocą metody Hermiet'a.

1. Metoda tworzenia wielomianów

Implementacja interpolacji w zagadnieniu Hermiet'a była podobna kodu funkcji interpolacji w zagadnieniu Lagrange'a metodą Newtona.

Wygenerowana funkcja zwraca niedokładne wartości już dla niewielkiej liczby węzłów (12 w przypadku równych odstępów oraz zer Czebyszewa, dla epsilonu ustawionego na 5e-5 liczba węzłów)

2. Porównanie zagadnień interpolacji

Generowałem dla liczby naturalnej n wielomian interpolacyjny metodą Hermiet'a oraz metodą Lagrange'a, z n węzłami, z dwoma sposobami dobierania tych węzłów - równoodległe od siebie na osi x oraz węzły Czebyszewa (dalej nazywane zerami Czebyszewa). Warto zauważyć, że interpolując metodą Hermieta'a potrzebujemy dla każdego węzła informacji na temat pochodnej co sprawia, że obliczany układ równań ma 2n wierszy.

Równoodległe

Interpolując metodą Hermiet'a o wiele szybciej zauważamy efekt Groonga, boi już dla n=6. Ponadto odchylenia na krańcach są o wiele większe niż gdy stosujemy metodę Lagrange'a.

Rys.1 Porównanie funkcji i interpolacji Hermiet'a dla n=10

Rys.2 Porównanie funkcji i interpolacji Lagrange'a dla n=10

Rys.3 Porównanie funkcji i interpolacji Hermiet'a dla n=6

Rys.4 Porównanie funkcji i interpolacji Lagrange'a dla n=12

• Zera Czebyszewa

Dla węzłów Czebyszewa efekt Groonga zanika. O wiele szybciej pojawia się błąd maszynowy i dla odpowiadającej ilości wierszy w układzie równań wydaje się poważniejszy (rys 7 i 8).

Rys.5 Porównanie funkcji i interpolacji Hermiet'a dla n=10

Rys.6 Porównanie funkcji i interpolacji Lagrange'a dla n=20

Rys.7 Porównanie funkcji i interpolacji Hermiet'a dla n=20

Rys.8 Porównanie funkcji i interpolacji Lagrange'a dla n=40

Porównanie błędów interpolacji

Błędy liczyłem dla liczby punktów równej 5 tysięcy równo rozłożonych na osi x

	Lagrange	Lagrange		Hermiet	
n	zera Czebyszewa	Równe odstępy	zera Czebyszewa	Równe odstępy	
3	28.93	30.27	47.37	47.75	
4	16.39	15.94	52.16	51.43	
5	35.81	26.48	94.13	138.48	
6	16.20	25.31	48.94	156.35	
7	25.05	31.36	46.69	36.93	
8	23.78	16.98	63.80	49.60	
9	20.34	50.28	44.29	851.96	
10	16.94	33.13	54.42	233.08	
11	16.29	44.61	38.78	288.86	
12	12.96	19.80	34.18	5298.51	
15	14.39	925.81	24.92	99077.36	
20	10.93	26.85	36.18	24686006.56	
30	5.24	141508.84	8539440010.35	482763606947.72	

Tab.1 Maksymalna amplituda między funkcją a interpolacją

Z tabeli 1 wynika, że maksymalny błąd między funkcja a interpolacja jest zawsze większy używając interpolacji Hermieta'a. Wyższe stopnie wielomianu wogóle nie nadają się do analizy - najprawdopodobniej jest to spowodowane bledem maszyny.

	Lagrange		Hermiet	
n	zera Czebyszewa	Równe odstępy	zera Czebyszewa	Równe odstępy
3	48.40	48.63	26.33	27.09
4	48.72	47.71	16.58	16.74
5	50.17	46.45	53.62	63.98
6	48.84	55.73	16.06	65.30
7	60.17	62.50	18.59	20.34
8	64.89	49.60	22.44	16.98
9	45.57	139.63	18.91	251.45
10	50.04	84.29	16.17	61.90
11	35.69	147.54	13.20	78.55
12	42.45	43.96	11.58	1283.91
15	32.00	3738.10	9.08	20668.54
20	40.92	102.83	4.28	4305468.62
30	20.73	876354.13	293932971.70	65528802558.99

Tab.2 Średnia kwadratowa różnicy między funkcją a interpolacją

Z tabeli 2 wynika ze interpolacje poradziły sobie podobnie dobrze, z tym, że dla zer Czebyszewa lepsza okazała się metoda Hermiet'a, a równych odstępów lepiej radziła sobie metoda Lagrangea. Potwierdza się tu wcześniej zauważony błąd maszynowy dla wysokiej liczby węzłów (n > 20 dla zer Czebyszewa, n > 15 dla równych odstępów)

3. Wnioski

Podobnie jak w interpolacji w zagadnieniu Lagrangea, w metodzie Hermiet'a także ważny jest dobór węzłów

O wiele szybciej niż w interpolacji Lagrangea trafiamy na błąd maszynowy, bo już jest zauważalny na wykresach od wartości n około 20.

Zaskakujące jest to ze dla wyboru węzłów jako zer Czebyszewa błąd średniokwadratowy jest mniejszy dla interpolacji Hermiet'a.