xercic

Proposer un modèle de connaissance et de comportement

1	Proposer un modèle de connaissance et de compor- tement 2
1.1	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique
1.2	Modéliser la cinématique d'un ensemble de solides 5
1.3	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique
1.4	Modéliser la cinématique d'un ensemble de solides 13
2	Mettre en œuvre une démarche de résolution analy- tique
2.1	Déterminer les relations entre les grandeurs géométriques ou cinématiques
2.2	Déterminer les relations entre les grandeurs géométriques ou cinématiques
3	Mettre en œuvre une démarche de résolution analy- tique 22
3.1	Déterminer les relations entre les grandeurs géométriques ou cinématiques
3.2	Déterminer les relations entre les grandeurs géométriques

1 Proposer un modèle de connaissance et de comportement

1.1 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 1 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = -20 \, \text{mm}$.

Corrigé voir 43.

Exercice 2 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \pi$ rad.

Corrigé voir 44.

Exercice 3 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = 0 \, \text{mm}$ et $\mu = 20 \, \text{mm}$.

Corrigé voir 45.

Exercice 4 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Corrigé voir 46.

Exercice 5 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 47.

Exercice 6 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 48.

Exercice 7 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Corrigé voir 49.

Exercice 8 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Corrigé voir 50.

Exercice 9 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Corrigé voir 51.

Exercice 10 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 52.

Exercice 11 - Pompe à pistons radiaux ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 53.

Exercice 12 - Système bielle manivelle ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 54.

Exercice 13 – Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 30 mm et H = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 5 En déduire la course de la pièce 3.

Corrigé voir 55.

Exercice 14 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, H = 120 mm et R = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir 82.

Exercice 15 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad.$

Corrigé voir 82.

Exercice 16 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$. De plus, $H = 120 \,\text{mm}, L = 40 \,\text{mm}.$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4} rad$.

Corrigé voir 58.

Exercice 17 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

• $\overrightarrow{OA} = a \overrightarrow{x_1} - f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;

- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et e =160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2} rad.$

Question 4 En déduire la course angulaire (θ_4) de la pièce 3.

Corrigé voir 59.

Exercice 18 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 4 *En déduire la course de* λ .

Corrigé voir 60.

Modéliser la cinématique d'un ensemble de so-

Exercice 19 - Mouvement T - *

C2-05

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 61.

Exercice 20 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 *Quel est le mouvement de* 1 *par rapport* à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 70.

Exercice 21 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 *Quel est le mouvement de* **2** *par rapport* à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir 63.

Exercice 22 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 64.

Exercice 23 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 65.

Exercice 24 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 66.

Exercice 25 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \,\mathrm{mm}$ et $r = 10 \,\mathrm{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 67.

Exercice 26 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 76.

Exercice 27 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 69.

Exercice 28 - Mouvement R *

B2-13

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Déterminer $\overline{V(B \in 1/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 70.

Exercice 29 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 71.

Exercice 30 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 72.

Exercice 31 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C* .

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Corrigé voir 73.

Exercice 32 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C* .

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 74.

Exercice 33 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \sqrt[4]{(2/0)} \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 67.

Exercice 34 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 76.

Exercice 35 - Mouvement RT - RSG ** B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir 55.

Exercice 36 – Pompe à palettes * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 106).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir 78.

Exercice 37 – Pompe à pistons radiaux * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 107).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir 79.

Exercice 38 - Système bielle manivelle * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, R = 10 mm et L = 20 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 108).

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 2 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 80.

Exercice 39 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 109).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Corrigé voir 81.

Exercice 40 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 110).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(3/2) \}$ au point B.

Corrigé voir 82.

Exe<u>rcice 4</u>1 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec a = 355 mm et f = 13 mm;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 113). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G \in 1/0)$.

Corrigé voir 83.

Exercice 42 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},$ $d=80\,\mathrm{mm}.$ Le pas de la vis est de $4\,\mathrm{mm}.$

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 114).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(4/0) \}$ au point G.

Question 2 Déterminer $\Gamma(G \in 4/0)$.

Corrigé voir 84.

1.3 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 43 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Retracer le schéma cinématique pour* $\lambda = 10$ mm.

Question 3 *Retracer le schéma cinématique pour* $\lambda = -20 \, \text{mm}$.

Exercice 44 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \pi$ rad.

Exercice 45 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Retracer le schéma cinématique pour* $\lambda = 10 \,\mathrm{mm}$ *et* $\mu = 10 \,\mathrm{mm}$.

Question 3 *Retracer le schéma cinématique pour* $\lambda = 0$ mm *et* $\mu = 20$ mm.

Exercice 46 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Exercice 47 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{1}{4}\pi$ rad et $\lambda(t) = -20$ mm.

Exercice 48 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 49 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Exercice 50 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Exercice 51 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre $\bf 0$ et $\bf 1$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t) de 0 \dot{a} \frac{\pi}{2}$.

Exercice 52 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Exercice 53 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Exercice 54 - Système bielle manivelle **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Exercice 55 - Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \vec{0}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Exercice 56 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 57 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad. Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 58 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4}$ rad.

Exercice 59 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce 3

Exercice 60 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 *En déduire la course de* λ .

1.4 Modéliser la cinématique d'un ensemble de solides

Exercice 61 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 1 par rapport à 0.

Exercice 62 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 1 par rapport à 0.

Exercice 63 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Quel est le mouvement de 2 par rapport à 0.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Exercice 64 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Exercice 65 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 66 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 67 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.


```
Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par
rapport à 0.
Exercice 68 - Mouvement RR 3D **
     C2-05
              Pas de corrigé pour cet exercice.
     B2-13
   Question 1 Donner l'ensemble des positions accessibles par le point B.
   Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par
rapport à 0.
Exercice 69 - Mouvement T - *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Donner le torseur cinématique \{\mathcal{V}(1/0)\} au point B.
   Question 2 Déterminer \Gamma(B \in 1/0).
Exercice 70 - Mouvement R *
     B2-13
   Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(B \in 1/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(1/0) \} au point B.
   Question 3 Déterminer \Gamma(B \in 1/0).
Exercice 71 - Mouvement TT - *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 72 - Mouvement RR *
    B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 73 - Mouvement RT *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer \overline{V(C \in 2/0)} par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 74 - Mouvement RT *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer \overline{V(C \in 2/0)} par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 75 - Mouvement RR 3D *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 76 - Mouvement RR 3D *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 77 - Mouvement RT - RSG **
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(B \in 2/0).
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point B.
   Question 3 Déterminer \Gamma(B \in 2/0).
Exercice 78 - Pompe à palettes *
     B2-13 Pas de corrigé pour cet exercice.
```

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 106).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 2/0)$.

Exercice 79 - Pompe à pistons radiaux *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 107).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 2/0)$.

Exercice 80 - Système bielle manivelle *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 108).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(C \in 2/0)$.

Exercice 81 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 109).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Exercice 82 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 110).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(3/2)\}$ au point B.

Exercice 83 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 113). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point G.

Question 2 Déterminer $\Gamma(G \in 1/0)$.

Exercice 84 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107,1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 114).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(4/0) \}$ au point G.

Question 2 *Déterminer* $\Gamma(G \in 4/0)$.

Mettre en œuvre une démarche de résolution analytique

Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 85 - Pompe à palettes * C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} =$

 $\lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre 0 et 2 en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour e = $10 \,\mathrm{mm} \, et \, e = 15 \,\mathrm{mm}.$

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour e = 10 mmpour une pompe à 5 pistons (5 branches 1+2). On prendra une section de piston 2 de 1 cm² et une fréquence de rotation de $\dot{\theta}(t) = 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Corrigé voir 106.

Exercice 86 - Pompe à pistons radiaux * C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 1 Tracer le graphe des liaisons. **Question 2** *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$. **Question 3** Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instan $tané de la pompe pour un tour de pompe pour <math>e = 10 \, \text{mm}$ $et R = 10 \,\mathrm{mm}$ ainsi que pour $e = 20 \,\mathrm{mm}$ et $R = 5 \,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du $piston \ est = S = 1 \ cm^2$.

Corrigé voir 107.

Exercice 87 - Système bielle manivelle **

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \text{rad} \, \text{s}^{-1}$, on prendra $R = 10 \, \text{mm}$ et $L = 10 \, \text{mm}$, puis $L = 20 \,\mathrm{mm}$ et $L = 30 \,\mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Corrigé voir 108.

Exercice 88 - Pompe oscillante *

C2-06

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} =$ $\overrightarrow{H_{j_0}}$. De plus, $R=10\,\mathrm{mm}$ et $H=60\,\mathrm{mm}$. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t)\overrightarrow{i_2}$

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\lambda(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre D = 10 mm.

Corrigé voir 109.

Exercice 89 - Barrière Sympact *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 110.

Exercice 90 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 111.

Exercice 91 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, H = 120 mm, L = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 112.

Exercice 92 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

On a

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 113.

Exercice 93 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},$ $d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 Exprimer $\dot{\theta}(t)$ en fonction de $\dot{\lambda}(t)$.

Question 4 Exprimer $\theta(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir 114.

Exercice 94 - Variateur de Graham 1 * * *

D'après ressources de Michel Huguet.

B2-13 C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

On note
$$\overrightarrow{AJ} = -L \overrightarrow{i_0} + \frac{d_3}{2} \overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell \overrightarrow{i_2} + \frac{d_2}{2} \overrightarrow{j_2}$.

Soit $\mathcal{R} = (A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$ un repère lié au bâti $\mathbf{0}$ du variateur. L'arbre moteur $\mathbf{1}$ et l'arbre récepteur $\mathbf{3}$ ont une liaison pivot d'axe $(A, \overrightarrow{i_0})$ avec le bâti $\mathbf{0}$. On pose $\Omega(1/0) = \omega_1 \overrightarrow{i_0}$ et $\Omega(3/0) = \omega_3 \overrightarrow{i_0}$.

Soit $\mathcal{R}_1 = \left(A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$ et $\mathcal{R}_2 = \left(B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1}\right)$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = \left(\overrightarrow{i_1}, \overrightarrow{i_2}\right)$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ avec **1**. **2** est un tronc de cône de révolution d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ de demi angle au sommet α . On pose $\Omega(S_2/S_1) = \omega \overrightarrow{i_2}$.

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe $(O, \overrightarrow{i_0})$

2 roule sans glisser au point I, sur une couronne **4**, immobile par rapport à **0** pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant **4** suivant l'axe $(O, \overrightarrow{i_0})$.

Soit K le centre de la section droite du tronc de cône passant par I. On pose $\overrightarrow{BI} = \lambda j_2$. À l'extrémité de $\mathbf{2}$ est fixée une roue dentée de n dents, d'axe $\left(B, \overrightarrow{i_2}\right)$, qui engrène avec une couronne dentée intérieure d'axe $\left(A, \overrightarrow{i_0}\right)$, de n_2 dents, liée à $\mathbf{3}$.

Question 1 Tracer le graphe des liaisons.

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en J).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

^{1.} Les éventuelles erreur de texte font partie intégrante de la difficulté :).

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{\overline{d_1}}{\overline{d_3}}$, $d = 55 \,\mathrm{mm}$ et que λ varie entre $\lambda_{mini} = 12 \,\text{mm}$ et la valeur $\lambda_{maxi} = 23 \,\text{mm}$.

Corrigé voir 116.

Exercice 95 - Variateur à billes *****

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Question 1 Tracer le graphe des liaisons. **Question 2** Déterminer la loi entrée – sortie.

Corrigé voir 116.

Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 96 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Question 3 Donner une relation géométrique entre Z_1 , Z_2 et Z_3 permettant de garantir le fonctionnement du train d'engrenages.

Corrigé voir 117.

Exercice 97 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons. **Question 2** Déterminer $\frac{\omega_{4/0}}{\cdots}$ en fonction du nombre

de dents des roues dentées.

Question 3 Donner une relation géométrique entre Z_1 , Z_{21} , Z_{22} et Z_4 permettant de garantir le fonctionnement du train d'engrenages.

Corrigé voir 118.

Exercice 98 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Corrigé voir 119.

Exercice 99 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Corrigé voir 120.

Exercice 100 - Cheville robot NAO*

A3-05

C2-06

On s'intéresse ici à la cheville NAO. On cherche à savoir si, à partir du moteur retenu par le constructeur, la chaîne de transmission de puissance permet de vérifier les exigences suivantes :

- exigence 1.1.1.1 : la vitesse de roulis doit être inférieure à 42 tr/min;
- exigence 1.1.1.2 : la vitesse de tangage doit être inférieure à 60 tr/min.

La fréquence de rotation des moteurs permettant chacun des deux mouvements est de $8300\,\mathrm{tr/min}$.

Pour la chaîne de transmission de tangage on donne le nombre de dents et le module de chaque roue dentée :

- pignon moteur : $Z_m = 20$, $M_m = 0,3$;
- grand pignon 1 : $Z_1 = 80$, $M_1 = 0,3$;
- petit pignon 1 : $Z'_1 = 25$, $M'_1 = 0,4$;
- grand pignon 2 : $Z_2 = 47$, $M_2 = 0, 4$;
- petit pignon 2 : $Z'_2 = 12$, $M'_2 = 0,4$;
- grand pignon 3 : $\tilde{Z}_3 = 58$, $\tilde{M}_3 = 0, 4$;
- petit pignon 3 : $Z_3' = 10$, $M_3' = 0,7$;
- roue de sortie : $Z_T = 36$, $M_T = 0, 7$.

Pour la chaîne de transmission du roulis on donne le nombre de dents et le module de chaque roue dentée :

- pignon moteur : $Z_m = 13$, $M_m = 0,3$;
- grand pignon 1 : $Z_1 = 80$, $M_1 = 0,3$;
- petit pignon 1 : $Z'_1 = 25$, $M'_1 = 0,4$;
- grand pignon 2 : $Z_2 = 47$, $M_2 = 0, 4$;
- petit pignon 2 : $Z'_2 = 12$, $M'_2 = 0, 4$;
- grand pignon 3 : $Z_3 = 58$, $M_3 = 0, 4$;
- petit pignon 3 : $Z_3' = 10$, $M_3' = 0.7$;
- roue de sortie 3 : $Z_R = 36$, $M_R = 0, 7$.

Question 1 Quels doivent être les rapports de réductions des transmissions par engrenage afin de respecter les exigences 1.1.1.1 et 1.1.1.2?

Question 2 Dans le cas de l'axe de tangage, remplir le tableau suivant :

Question 3 Dans le cas de l'axe de tangage, déterminer le diamètre de chaque roue dentée.

Question 4 Dans le cas de l'axe de tangage, réaliser le schéma cinématique minimal.

Question 5 Calculer le rapport de transmission de la chaîne de transmission de l'axe de tangage? L'exigence 1.1.1.2 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Question 6 Calculer le rapport de transmission de la chaîne de transmission de l'axe de roulis? L'exigence 1.1.1.1 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Corrigé voir 121.

Exercice 101 - Train simple *

D'après Florestan Mathurin.

A3-05

C2-06

On s'intéresse au réducteur équipant la roue arrière motrice et directionnelle d'un chariot élévateur de manutention automoteur à conducteur non porté.

Données : $z_{27} = 16$ dents, $z_{35} = 84$ dents, $z_5 = 14$ dents, $z_{11} = 56$ dents, $z_{16} = 75$ dents.

Question 1 Identifier les classes d'équivalence cinématique sur le dessin d'ensemble.

Question 2 Construire le schéma cinématique du réducteur dans le même plan que le dessin.

Question 3 Compléter le tableau donnant les caractéristiques des roues et pignons.

Repère de la roue	Module m (mm)	Nombre de dents Z	Diamètre primitif D (mm)
27			
35	1,5		
5			
11	1,5		
16			

Question 4 Après avoir proposé un paramétrage, indiquer dans quel sens tourne la roue si le moteur 28 (31) tourne dans le sens positif.

Question 5 *Pour une vitesse de* 1500 tr/min *en sortie* de moteur, déterminer la vitesse de rotation de la roue. Le diamètre de la roue est de 150 mm. Quelle est la vitesse du véhicule?

Corrigé voir 122.

Exercice 102 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Corrigé voir 123.

Exercice 103 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} . **Question 3** On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{}$

Corrigé voir 124.

Exercice 104 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} . **Question 3** On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir 125.

Exercice 105 - Train simple * A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} . **Question 3** On suppose que ω_{40} est bloqué. Exprimer

Corrigé voir 126.

Mettre en œuvre une démarche de résolution analytique

3.1 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 106 – Pompe à palettes *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 *Exprimer* $\dot{\lambda}(t)$ *en fonction de* $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $e=15\,\mathrm{mm}$.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ pour une pompe à 5 pistons (5 branches **1+2**). On prendra une section de piston **2** de $1 \,\mathrm{cm}^2$ et une fréquence de rotation de $\dot{\theta}(t) = 100 \,\mathrm{rad} \,\mathrm{s}^{-1}$.

Exercice 107 - Pompe à pistons radiaux *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 *On note S la section du piston 2. Exprimer le débit instantané de la pompe.*

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ et $R = 10 \,\mathrm{mm}$ ainsi que pour $e = 20 \,\mathrm{mm}$ et $R = 5 \,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad} \,\mathrm{s}^{-1}$, la section du piston est $e^{-1} = 10 \,\mathrm{mm}$.

Exercice 108 - Système bielle manivelle **

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on prendra $R = 10 \, \mathrm{mm}$ et $L = 10 \, \mathrm{mm}$, puis $L = 20 \, \mathrm{mm}$ et $L = 30 \, \mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Exercice 109 - Pompe oscillante *

C2-06

Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre $D = 10 \, \text{mm}$.

Exercice 110 - Barrière Sympact *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 111 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 112 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 113 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 114 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 *Exprimer* $\dot{\theta}(t)$ *en fonction de* $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Exercice 115 - Variateur de Graham***

D'après ressources de Michel Huguet.

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en J).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant

 $que \frac{n}{n_3} = \frac{d_1}{d_3}$, d = 55 mm et que λ varie entre $\lambda_{mini} = 12$ mm et la valeur $\lambda_{maxi} = 23$ mm.

Exercice 116 - Variateur à billes ****

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Déterminer la loi entrée – sortie.

3.2 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 117 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

On a
$$\frac{\omega_{3/0}}{\omega_{1/0}} = -\frac{Z_1}{Z_3}$$
.

Question 3 Donner une relation géométrique entre Z_1 , Z_2 et Z_3 permettant de garantir le fonctionnement du train d'engrenages.

On a $Z_3 = 2Z_2 + Z_1$.

Exercice 118 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

On a
$$\frac{\omega_{4/0}}{\omega_{1/0}} = -\frac{Z_1 Z_{22}}{Z_4 Z_{21}}$$

Question 3 Donner une relation géométrique entre Z_1 , Z_{21} , Z_{22} et Z_4 permettant de garantir le fonctionnement du train d'engrenages.

On a
$$Z_1 + Z_{21} + Z_{22} = Z_4$$
.

Exercice 119 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

On a
$$\frac{\omega_{4/0}}{\omega_{1/0}} = \frac{Z_1 Z_{22}}{Z_4 Z_{21}}$$
.

Exercice 120 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

On a
$$\frac{\omega_{4/0}}{\omega_{1/0}}=\frac{Z_1Z_{22}}{Z_4Z_{21}}$$
. Exercice 121 – Cheville robot NAO*

A3-05

C2-06

Question 1 Quels doivent être les rapports de réductions des transmissions par engrenage afin de respecter les exigences 1.1.1.1 et 1.1.1.2?

D'après le diagramme de définition des blocs et le diagramme des exigences, les rapports de transmission doivent

• pour l'axe de tangage : $\frac{N_{\text{moteur}}}{N_{\text{Tangage}}} = 138,33 \text{ au minimum};$ • pour l'axe de roulis : $\frac{N_{\text{moteur}}}{N_{\text{Roulis}}} = 197,61 \text{ au minimum}.$ Ouestion 3. Dans le sea de l'aye de tangage proportir le table.

Question 2 Dans le cas de l'axe de tangage, remplir le tableau suivant :

Roue den-	Module	Nb dents	Diamètre
tée			(mm)
Pignon 03	0,3	20	6
20			
Mobile Inf1	0,3	80	24
Roue			
Mobile Inf1	0,4	25	10
Pignon			
Mobile Inf2	0,4	47	18,8
Roue			
Mobile Inf2	0,4	12	4,8
Pignon			
Mobile Inf4	0,4	58	23,2
Roue			
Mobile Inf4	0,7	10	7
Pignon			
Roue de	0,7	36	25,2
sortie			

Question 3 Dans le cas de l'axe de tangage, déterminer le diamètre de chaque roue dentée.

Question 4 Dans le cas de l'axe de tangage, réaliser le schéma cinématique minimal.

Question 5 Calculer le rapport de transmission de la chaîne de transmission de l'axe de tangage? L'exigence 1.1.1.2 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

$$R_T = (-1)^n \frac{80 \cdot 47 \cdot 58 \cdot 36}{20 \cdot 25 \cdot 12 \cdot 10} = 130,85$$

Ceci est inférieur à ce qui est préconisé par le cahier des charges.

Pour respecter le cahier des charges, on peut :

- choisir un autre moteur;
- changer le nombre de dents d'une des roues. Il suffirait pour cela que, par exemple, la roue de sortie comporte 39 dents.

Question 6 Calculer le rapport de transmission de la chaîne de transmission de l'axe de roulis? L'exigence 1.1.1.1 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer? Le rapport de transmission du second train est de 201,3 ce qui est compatible avec le cahier des charges.

Exercice 122 - Train simple *

D'après Florestan Mathurin.

A3-05

C2-06

Question 1 Identifier les classes d'équivalence cinématique sur le dessin d'ensemble.

Question 2 Construire le schéma cinématique du réducteur dans le même plan que le dessin.

Question 3 Compléter le tableau donnant les caractéristiques des roues et pignons.

Repère de la roue	Module m (mm)	Nombre de dents Z	Diamètre primitif D (mm)
27	1,5	16	24
35	1,5	84	126
5	1,5	14	21
11	1,5	56	84
16	1,5	75	112,5

Question 4 Après avoir proposé un paramétrage, indiquer dans quel sens tourne la roue si le moteur 28 (31) tourne dans le sens positif.

Voir figure précédente. Si le moteur tourne dans le sens positif, la roue tourne dans le sens négatif.

Question 5 Pour une vitesse de 1500 tr/min en sortie de moteur, déterminer la vitesse de rotation de la roue. Le diamètre de la roue est de 150 mm. Quelle est la vitesse du véhicule?

diamètre de la roue est de 150 mm. Quelle est la vitesse du véhicule? Le rapport de réduction de la transmission est le suivant : $k = \frac{Z_{27}Z_5Z_{11}}{Z_{35}Z_{11}Z_{16}} = \frac{16\cdot 14}{84\cdot 75} = 0,0355$

La vitesse de rotation de la roue est donc de $53,33 \, \mathrm{tr} \, \mathrm{min}^{-1} \, \mathrm{soit} \, 5,59 \, \mathrm{rad} \, \mathrm{s}^{-1}$. On en déduit la vitesse du véhicule : $5,59 \times 0,15 = 0,84 \, \mathrm{m} \, \mathrm{s}^{-1} \simeq 3 \, \mathrm{km} \, \mathrm{h}^{-1}$.

Exercice 123 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

En bloquant le porte satellite, on a : $\frac{\omega_{03}}{\omega_{13}} = -\frac{Z_1}{Z_0}$. On a donc, $\frac{\omega_{03}}{\omega_{10} + \omega_{03}} = -\frac{Z_1}{Z_0}$

$$\Leftrightarrow \frac{\omega_{30}}{\omega_{30}-\omega_{10}} = -\frac{Z_1}{Z_0} \Leftrightarrow \omega_{30} = -\frac{Z_1}{Z_0}\omega_{30} + \frac{Z_1}{Z_0}\omega_{10} \Leftrightarrow \omega_{30} \left(1+\frac{Z_1}{Z_0}\right) = \frac{Z_1}{Z_0}\omega_{10} \Leftrightarrow \omega_{30} = \frac{Z_1}{Z_0+Z_1}\omega_{10}.$$
 Exercice 124 – Train simple *

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

$$\begin{aligned} &\text{En bloquant le porte satellite, on a:} \ \frac{\omega_{43}}{\omega_{13}} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4}. \ \text{On a donc,} \ \frac{\omega_{40} + \omega_{03}}{\omega_{10} + \omega_{03}} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} \Leftrightarrow \omega_{40} + \omega_{03} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03}) \\ &\Leftrightarrow \omega_{40} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03}) - \omega_{03} \Leftrightarrow \omega_{40} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03}) + \omega_{30} \Leftrightarrow \omega_{40} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \omega_{30} \left(1 + \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right). \end{aligned}$$

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{40}}$

$$\begin{split} 0 = & -\frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \omega_{30} \left(1 + \frac{Z_1 Z_{22}}{Z_{21} Z_4} \right) \\ \Leftrightarrow & \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} = \omega_{30} \left(1 + \frac{Z_1 Z_{22}}{Z_{21} Z_4} \right) \\ \Leftrightarrow & \frac{\omega_{30}}{\omega_{10}} = \frac{\frac{Z_1 Z_{22}}{Z_{21} Z_4}}{1 + \frac{Z_1 Z_{22}}{Z_{21} Z_4}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4 + Z_1 Z_{22}}. \end{split}$$
 Exercise 125 - Train simple *

Exercice 125 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer
$$\omega_{40}$$
 en fonction de ω_{30} et ω_{10} .

En bloquant le porte satellite, on a : $\frac{\omega_{43}}{\omega_{13}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$. On a donc, $\frac{\omega_{40} + \omega_{03}}{\omega_{10} + \omega_{03}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \Leftrightarrow \omega_{40} + \omega_{03} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03})$

$$\Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} - \omega_{30}) + \omega_{30} \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30}.$$

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$

$$\Leftrightarrow 0 = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} = -\left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{\omega_{30}}{\omega_{10}} = \frac{\frac{Z_1 Z_{22}}{Z_{21} Z_4}}{\frac{Z_1 Z_{22}}{Z_{21} Z_4} - 1} = \frac{Z_1 Z_{22}}{Z_1 Z_{22} - Z_{21} Z_4}.$$

Exercice 126 - Train simple *

A3-05

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer
$$\omega_{40}$$
 en fonction de ω_{30} et ω_{10} .

En bloquant le porte satellite, on a : $\frac{\omega_{43}}{\omega_{13}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$. On a donc, $\frac{\omega_{40} + \omega_{03}}{\omega_{10} + \omega_{03}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \Leftrightarrow \omega_{40} + \omega_{03} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03})$

$$\Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} - \omega_{30}) + \omega_{30} \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30}.$$

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$

$$\Leftrightarrow 0 = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \\ \Leftrightarrow \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} = -\left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \\ \Leftrightarrow \frac{\omega_{30}}{\omega_{10}} = \frac{\frac{Z_1 Z_{22}}{Z_{21} Z_4}}{\frac{Z_1 Z_{22}}{Z_{21} Z_4} - 1} \\ = \frac{Z_1 Z_{22}}{Z_1 Z_2 - Z_{21} Z_4}.$$