A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 2EC

Bookmark

Show all steps: ON

Problem

Give examples of divisors of zero, of degrees 0, 1, and 2, in $\mathbb{Z}_4[x]$.

Step-by-step solution

Step 1 of 1

Consider the ring $\mathbb{Z}_4[x]$. The set of elements of \mathbb{Z}_4 are $\{0,1,2,3\}$.

Theorem: A non zero element a in \mathbb{Z}_n is a zero divisor if and only if $\gcd(a,n) \neq 1$, and there is a

$$b = \frac{n}{\gcd(a, n)} \text{ such that } ab = 0$$

Apply the above theorem to find zero divisors of \mathbb{Z}_4 .

$$\gcd(1,4)=1$$

$$\gcd(2,4)=2$$

$$\gcd(3,4)=1$$

Hence zero divisor in \mathbb{Z}_4 is 2.

Now construct polynomials whose all coefficients are 2.

Example of zero divisor of zero degree polynomial in $\mathbb{Z}_4[x]$ is p(x) = 2.

Examples of zero divisors of first degree polynomial in $\mathbb{Z}_4[x]$ are following.

$$p(x) = 2x$$

$$p(x) = 2x + 2$$

Examples of zero divisors of second degree polynomial in $\mathbb{Z}_4[x]$ are following.

$$p(x) = 2x^{2}$$

$$q(x) = 2x^{2} + 2x$$

$$r(x) = 2x^{2} + 2$$

$$s(x) = 2x^{2} + 2x + 2$$

Comment