```
from google.colab import files
uploaded = files.upload()
```


Choose Files train.csv

 train.csv(text/csv) - 61194 bytes, last modified: 12/11/2019 - 100% done Saving train.csv to train.csv

import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style('whitegrid') %matplotlib inline

RANDOM_SEED = 42 np.random.seed(RANDOM_SEED)

df = pd.read_csv('train.csv') df_original = df.copy() df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	Δ	1	1	Futrelle, Mrs. Jacques Heath (Lily	female	35 N	1	n	113803	53 1000	C123	S	

Next steps:

Generate code with df

New interactive sheet

print("Shape:", df.shape) df.info() df.describe(include='all').T

```
→ Shape: (891, 12)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
     # Column
                     Non-Null Count Dtype
     0
        PassengerId 891 non-null
                                     int64
         Survived
                     891 non-null
                                     int64
        Pclass
                     891 non-null
                                     int64
                     891 non-null
                                     object
        Name
                     891 non-null
     4
        Sex
                                     object
         Age
                     714 non-null
                                     float64
        SibSp
                     891 non-null
                                     int64
        Parch
                     891 non-null
                                     int64
        Ticket
                     891 non-null
                                     object
        Fare
                     891 non-null
                                     float64
     10 Cabin
                     204 non-null
                                     object
     11 Embarked
                     889 non-null
                                     object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 83.7+ KB
```

memor y asage												
	count	unique	top	freq	mean	std	min	25%	50%	75%	max	\blacksquare
Passengerld	891.0	NaN	NaN	NaN	446.0	257.353842	1.0	223.5	446.0	668.5	891.0	ılı
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0	1.0	1.0	
Pclass	891.0	NaN	NaN	NaN	2.308642	0.836071	1.0	2.0	3.0	3.0	3.0	
Name	891	891	Dooley, Mr. Patrick	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
Sex	891	2	male	577	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
Age	714.0	NaN	NaN	NaN	29.699118	14.526497	0.42	20.125	28.0	38.0	80.0	
SibSp	891.0	NaN	NaN	NaN	0.523008	1.102743	0.0	0.0	0.0	1.0	8.0	
Parch	891.0	NaN	NaN	NaN	0.381594	0.806057	0.0	0.0	0.0	0.0	6.0	
Ticket	891	681	347082	7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
Fare	891.0	NaN	NaN	NaN	32.204208	49.693429	0.0	7.9104	14.4542	31.0	512.3292	
Cabin	204	147	G6	4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
Embarked	889	3	S	644	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

```
missing = df.isnull().sum().sort_values(ascending=False)
print("Missing values:\n", missing)
print("\nDuplicate rows:", df.duplicated().sum())
→ Missing values:
      Cabin
                     687
     Age
                    177
     Embarked
                      2
     PassengerId
                      a
     Name
     Pclass
                      0
     Survived
                      0
     Sex
                      0
     Parch
                      0
     SibSp
                      0
     Fare
                      0
     Ticket
                      0
     dtype: int64
     Duplicate rows: 0
for col in ['Survived', 'Pclass', 'Sex', 'Embarked']:
    print(f"=== {col} ===")
    print(df[col].value_counts(dropna=False))
    print()
    === Survived ===
     Survived
     0 549
         342
     Name: count, dtype: int64
     === Pclass ===
     Pclass
```

```
3
          491
     1
          216
        184
     Name: count, dtype: int64
     === Sex ===
     Sex
     male
               577
     female
               314
     Name: count, dtype: int64
     === Embarked ===
     Embarked
            644
     S
            168
     C
     Q
             77
     Name: count, dtype: int64
# Fill missing Embarked with mode
df.loc[:, 'Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
# Fill missing Fare with median (if any)
if df['Fare'].isnull().sum() > 0:
    df.loc[:, 'Fare'] = df['Fare'].fillna(df['Fare'].median())
# Fill missing Age with median
df.loc[:, 'Age'] = df['Age'].fillna(df['Age'].median())
# Extract title from Name
\label{eq:dfcond} $$ df['Title'] = df['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) $$
# Group rare titles
rare_titles = ['Lady','Countess','Capt','Col','Don','Dr','Major','Rev','Sir','Jonkheer','Dona']
df['Title'] = df['Title'].replace(rare_titles, 'Rare')
df['Title'] = df['Title'].replace({'Mlle':'Miss','Ms':'Miss','Mme':'Mrs'})
# Family size & IsAlone
df['FamilySize'] = df['SibSp'] + df['Parch'] + 1
df['IsAlone'] = (df['FamilySize'] == 1).astype(int)
# Age bands
df['AgeBand'] = pd.cut(df['Age'], bins=[0,12,20,40,60,120], labels=['Child','Teen','Adult','MidAge','Senior'])
# Fare bands (quartiles)
df['FareBand'] = pd.qcut(df['Fare'], 4, labels=[1,2,3,4])
df.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title	FamilySize	IsAlone
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	Mr	2	C
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	Mrs	2	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	Miss	1	1
3	4	1	1	Futrelle, Mrs. Jacques	female	35 N	1	n	113803	53 1000	C123	S	Mrs	2	ſ

```
# Encode Sex to numeric
df['SexCode'] = df['Sex'].map({'male':0, 'female':1})
```

```
# One-hot encode Embarked
df = pd.get_dummies(df, columns=['Embarked'], prefix='Emb', drop_first=True)
# Title to numeric
\label{eq:dfprob} \begin{split} \mathsf{df}[\,'\mathsf{TitleCode'}\,] \, = \, \mathsf{df}[\,'\mathsf{Title'}\,].\,\mathsf{map}(\{\mathsf{t}\colon \mathsf{i} \,\,\mathsf{for}\,\,\mathsf{i},\mathsf{t} \,\,\mathsf{in}\,\,\mathsf{enumerate}(\mathsf{df}[\,'\mathsf{Title'}\,].\,\mathsf{unique}())\}) \end{split}
plt.figure(figsize=(6,4))
sns.countplot(x='Survived', data=df)
plt.title('Survival counts')
plt.show()
plt.figure(figsize=(8,4))
sns.countplot(x='Pclass', hue='Survived', data=df)
plt.title('Survival by Pclass')
plt.show()
plt.figure(figsize=(8,4))
sns.histplot(df['Age'], bins=20, kde=True)
plt.title('Age distribution')
plt.show()
plt.figure(figsize=(8,4))
sns.boxplot(x='Pclass', y='Fare', data=df)
plt.title('Fare distribution by Pclass')
plt.show()
```


₹

```
plt.figure(figsize=(7,4))
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title('Survival by Sex')
plt.show()
# Grouped survival rates
print("Survival \ rate \ by \ sex:\n", \ df.groupby('Sex')['Survived'].mean())
print("\nSurvival rate by Pclass:\n", df.groupby('Pclass')['Survived'].mean())
print("\nSurvival rate by AgeBand:\n", df.groupby('AgeBand')['Survived'].mean())
```



```
Survival rate by sex:
female
          0.742038
          0.188908
male
Name: Survived, dtype: float64
Survival rate by Pclass:
Pclass
    0.629630
    0.472826
    0.242363
Name: Survived, dtype: float64
Survival rate by AgeBand:
AgeBand
Child
          0.579710
          0.381818
Teen
          0.364769
```

0.390625 Senior 0.227273 Name: Survived, dtype: float64

Adult MidAge

/tmp/ipython-input-3120970124.py:9: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future v print("\nSurvival rate by AgeBand:\n", df.groupby('AgeBand')['Survived'].mean())

```
numeric_cols = ['Age','Fare','SibSp','Parch','FamilySize','SexCode','Pclass','Survived']
plt.figure(figsize=(10,8))
corr = df[numeric_cols].corr()
sns.heatmap(corr, annot=True, fmt='.2f', cmap='coolwarm')
plt.title('Correlation matrix')
plt.show()
```


from scipy.stats import chi2_contingency, ttest_ind

```
# Chi-square test: Sex vs Survived
ct = pd.crosstab(df['Sex'], df['Survived'])
chi2, p, dof, exp = chi2_contingency(ct)
print("Chi2 test (Sex vs Survived): chi2=%.3f p=%.5f" % (chi2, p))

# t-test: Age difference between survived & not
survived_age = df[df['Survived']==1]['Age']
dead_age = df[df['Survived']==0]['Age']
tstat, pval = ttest_ind(survived_age, dead_age, nan_policy='omit')
print("t-test Age: t=%.3f p=%.5f" % (tstat, pval))

The Chi2 test (Sex vs Survived): chi2=260.717 p=0.00000
t-test Age: t=-1.939 p=0.05276
```

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix