SI231 Matrix Analysis and Computations Positive Semidefinite Matrices

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Positive Semidefinite Matrices

- positive semidefinite (PSD) matrices
- properties of PSD matrices
- PSD matrix inequalities
- Schur complement
- application: factor models
- application: graph matrices
- application: log-determinant function
- application: subspace method for super-resolution spectral analysis
- application: Euclidean distance matrices

Hightlights

ullet a matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be positive semidefinite (PSD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$;

and positive definite (PD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$

- in this case, we are interested in symmetric positive semidefinite matrices
- ullet a matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD (resp. PD)
 - if and only if its eigenvalues are all non-negative (resp. positive);
 - if and only if it can be factored as $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{m \times n}$
- there are more general definitions of definiteness, including real non-symmetric matrices, or non-Hermitian ones
- in this lecture, we will deal with the real symmetric matrices—the Hermitian case follows along the same lines

Quadratic Form

Let $\mathbf{A} \in \mathbb{S}^n$. For $\mathbf{x} \in \mathbb{R}^n$, the matrix product

$$\mathbf{x}^T \mathbf{A} \mathbf{x}$$

is called a quadratic form.

• some basic facts (try to verify):

$$- \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{i=1}^{n-1} \sum_{j=i+1}^n 2a_{ij} x_i x_j$$

- $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{i=1}^{n-1} \sum_{j=i+1}^n (a_{ij} + a_{ji}) x_i x_j$ for general $\mathbf{A} \in \mathbb{R}^{n \times n}$, there may exist \mathbf{A}_1 and \mathbf{A}_2 s.t. $\mathbf{x}^T \mathbf{A}_1 \mathbf{x} = \mathbf{x}^T \mathbf{A}_2 \mathbf{x}$
 - * it suffices to consider unique symmetric **A** for general $\mathbf{A} \in \mathbb{R}^{n \times n}$ since

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \left[\frac{1}{2} (\mathbf{A} + \mathbf{A}^T) \right] \mathbf{x}$$

- complex case:
 - * the (complex) quadratic form is defined as $\mathbf{x}^H \mathbf{A} \mathbf{x}$, where $\mathbf{x} \in \mathbb{C}^n$
 - * for $\mathbf{A} \in \mathbb{H}^n$, $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is real for any $\mathbf{x} \in \mathbb{C}^n$

Positive Semidefinite Matrices

A matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be

- positive semidefinite (PSD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$ (not very often called nonnegative definite)
- positive definite (PD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$
- indefinite if both A and -A are not PSD

Notation:

- $\mathbf{A} \succeq \mathbf{0}$ means that \mathbf{A} is PSD
- $A \succ 0$ means that A is PD
- ullet $\mathbf{A} \not\succeq \mathbf{0}$ means that \mathbf{A} is indefinite
- if A is PD, then it is also PSD
- ullet a quadratic form is called PSD (resp. PD) if old A is PSD (resp. PD)
- Concepts negative semidefinite (NSD) and negative definite (ND) may be defined by reversing the inequalities or, equivalently, by saying $-\mathbf{A}$ is PSD or PD, resp.
- Positive (semi)definite and negative (semi)definite matrices together are called definite matrices.

Example: Covariance Matrices

- let $\mathbf{y}_0, \mathbf{y}_2, \dots \mathbf{y}_{T-1} \in \mathbb{R}^n$ be a sequence of multi-dimensional data samples
 - examples: multivariate features in machine learning, patches in image processing, multi-channel signals in signal processing, history of returns of assets in finance [Brodie-Daubechies-et al.'09], ...
- sample mean: $\hat{\boldsymbol{\mu}} = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{y}_t$
- sample covariance: $\hat{\Sigma} = \frac{1}{T} \sum_{t=0}^{T-1} (\mathbf{y}_t \hat{\boldsymbol{\mu}}) (\mathbf{y}_t \hat{\boldsymbol{\mu}})^T$
- a sample covariance is PSD: $\mathbf{x}^T \hat{\mathbf{\Sigma}} \mathbf{x} = \frac{1}{T} \sum_{t=0}^{T-1} |(\mathbf{y}_t \hat{\boldsymbol{\mu}})^T \mathbf{x}|^2 \ge 0$
- ullet the (statistical) covariance matrix (or variance-covariance mat.) of \mathbf{y}_t is also PSD
 - to put into context, assume that \mathbf{y}_t is a wide-sense (or weakly) stationary random process
 - the covariance, defined as $\mathbf{\Sigma} = \mathrm{E}[(\mathbf{y}_t \boldsymbol{\mu})(\mathbf{y}_t \boldsymbol{\mu})^T]$ where the mean $\boldsymbol{\mu} = \mathrm{E}[\mathbf{y}_t]$, is PSD: $\mathbf{x}^T \mathbf{\Sigma} \mathbf{x} = \mathbf{x}^T \mathrm{E}[(\mathbf{y}_t \boldsymbol{\mu})(\mathbf{y}_t \boldsymbol{\mu})^T] \mathbf{x} = \mathrm{E}[(|\mathbf{y}_t \boldsymbol{\mu})^T \mathbf{x}|^2] \geq 0$

Example: Covariance Matrices

- define $\mathbf{Y} = [\mathbf{y}_0 \ \mathbf{y}_1 \ \dots \ \mathbf{y}_{T-1}] \in \mathbb{R}^{n \times T}$
- ullet the sample mean: $\hat{oldsymbol{\mu}} = rac{1}{T} \mathbf{Y} \mathbf{1}$
- ullet subtracting $\hat{oldsymbol{\mu}}$ from each column gives the row-centered data matrix

$$\mathbf{Y}_c = \mathbf{Y} - \hat{\boldsymbol{\mu}} \mathbf{1}^T = \mathbf{Y} - \frac{1}{T} \mathbf{Y} \mathbf{1} \mathbf{1}^T = \mathbf{Y} (\mathbf{I} - \frac{1}{T} \mathbf{1} \mathbf{1}^T) = \mathbf{Y} \mathbf{C}$$

where $\mathbf{C} = \mathbf{I} - \frac{1}{T}\mathbf{1}\mathbf{1}^T$ is called the centering matrix

- a symmetric, PSD, and idempotent matrix, and $rank(\mathbf{C}) = T 1$
- singular and has the eigenvalue 1 of multiplicity n-1 and eig. 0 of multip. 1
- has a nullspace of dimension 1, along the vector $\bf 1$
- an orthogonal projection matrix (projection to a subspace of all n-dim. vectors whose components sum to zero)
- left-multiplying it with a vector has the same effect as subtracting the mean of the components of the vector from every component of that vector
- ullet the sample covariance matrix based on \mathbf{Y}_c (a Gram matrix) is

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{T} \mathbf{Y}_c \mathbf{Y}_c^T = \frac{1}{T} \mathbf{Y} \mathbf{C} \mathbf{C}^T \mathbf{Y}^T = \frac{1}{T} \mathbf{Y} \mathbf{C}^2 \mathbf{Y}^T = \frac{1}{T} \mathbf{Y} \mathbf{C} \mathbf{Y}^T = \frac{1}{T} \mathbf{Y} \mathbf{Y}^T - \hat{\boldsymbol{\mu}} \hat{\boldsymbol{\mu}}^T$$

Properties of PSD Matrices

results that immediately follow from the definition: let $A, B, C \in \mathbb{S}^n$.

- $\mathbf{A} \succeq \mathbf{0}, \alpha \geq 0$ (resp. $\mathbf{A} \succ \mathbf{0}, \alpha > 0$) $\Longrightarrow \alpha \mathbf{A} \succeq \mathbf{0}$ (resp. $\alpha \mathbf{A} \succ \mathbf{0}$)
- ullet $A,B\succeq 0$ (resp. $A\succeq 0,B\succ 0)\Longrightarrow A+B\succeq 0$ (resp. $A+B\succ 0$)
- $A \succ 0, B \succeq 0 \Longrightarrow A + B \succeq 0$
- $\mathbf{A} \succ \mathbf{0} \iff \mathbf{A}^{-1} \succ \mathbf{0}$
- $\mathbf{A} \succeq \mathbf{0}$ (resp. $\mathbf{A} \succ \mathbf{0}$) $\Longrightarrow \operatorname{tr}(\mathbf{A}) \ge 0$ and $\det(\mathbf{A}) \ge 0$ (resp. $\operatorname{tr}(\mathbf{A}) > 0$ and $\det(\mathbf{A}) > 0$)
- The set of PSD matrices is convex. (the basis of semidefinite programming (SDP), a subfield of convex optimization in matrix variables)

• ...

Properties of PSD Matrices: Eigenvalues

Theorem 1. Let $\mathbf{A} \in \mathbb{S}^n$, and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of \mathbf{A} . We have

- 1. $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i \geq 0 \text{ for } i = 1, \dots, n$
- 2. $\mathbf{A} \succ \mathbf{0} \iff \lambda_i > 0 \text{ for } i = 1, \dots, n$
- 3. $\mathbf{A} \not\succeq \mathbf{0} \Longleftrightarrow \lambda_i > 0$ for some i and $\lambda_i < 0$ for some i
- proof: let $A = V\Lambda V^T$ be the eigendecomposition of A.

$$\mathbf{A} \succeq \mathbf{0} \iff \mathbf{x}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{x} \ge 0, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n$$

$$\iff \mathbf{z}^T \mathbf{\Lambda} \mathbf{z} \ge 0, \quad \text{for all } \mathbf{z} \in \mathcal{R}(\mathbf{V}^T) = \mathbb{R}^n$$

$$\iff \sum_{i=1}^n \lambda_i |z_i|^2 \ge 0, \quad \text{for all } \mathbf{z} \in \mathbb{R}^n$$

$$\iff \lambda_i \ge 0 \text{ for all } i$$

The PD and indefinite cases are proven by the same manner.

Example: Hessian

- let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function
- the Hessian of f, denoted by $\nabla^2 f(\mathbf{x}) \in \mathbb{S}^n$, is a matrix whose (i,j)th entry is given by

$$\left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

- Fact: f is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all \mathbf{x} in the problem domain
- ullet example: consider the quadratic function with $\mathbf{R} \in \mathbb{S}^n$

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{R} \mathbf{x} + \mathbf{q}^T \mathbf{x} + c$$

It can be verified that $\nabla^2 f(\mathbf{x}) = \mathbf{R}$. Thus, f is convex (resp. strictly convex) if and only if $\mathbf{R} \succeq \mathbf{0}$ (resp. $\succ \mathbf{0}$)

Illustration of Quadratic Functions

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

Example: Ellipsoid

ullet an ellipsoid of \mathbb{R}^n centered at $oldsymbol{0}$ is defined as

$$\mathcal{E}(\mathbf{P}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{P}^{-1} \mathbf{x} \le 1 \},$$

for some PD $\mathbf{P} \in \mathbb{S}^n$

let $\mathbf{P} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ be the eigendecomposition

- V determines the directions of the semi-axes
- $-\lambda_1,\ldots,\lambda_n$ determine the lengths of the semi-axes
- $-\ell_i = \lambda_i^{\frac{1}{2}} \mathbf{v}_i$

• note:

- in direction \mathbf{v}_1 , $\mathbf{x}^T\mathbf{P}^{-1}\mathbf{x}$ is large, hence ellipsoid is fat in direction \mathbf{v}_1
- in direction \mathbf{v}_n , $\mathbf{x}^T \mathbf{P}^{-1} \mathbf{x}$ is small, hence ellipsoid is thin in direction \mathbf{v}_n
- $\sqrt{\lambda_1/\lambda_n}$ gives maximum eccentricity

Example: Multivariate Gaussian Distribution

• probability density function for a Gaussian-distributed vector $\mathbf{x} \in \mathbb{R}^n$:

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det(\boldsymbol{\Sigma}))^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

where μ and Σ are the mean and covariance matrix of x, resp.

- $-\Sigma$ is PD
- $-\Sigma$ determines how x is spread, by the same way as in ellipsoid

Example: Multivariate Gaussian Distribution

(a)
$$oldsymbol{\mu} = \mathbf{0}$$
, $oldsymbol{\Sigma} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$.

(b)
$$oldsymbol{\mu}=0$$
, $oldsymbol{\Sigma}=egin{bmatrix}1&0.8\0.8&1\end{bmatrix}$.

Example: Multivariate Generalized Gaussian Distribution

• probability density function for a generalized Gaussian-distributed vector $\mathbf{x} \in \mathbb{R}^n$:

$$p(\mathbf{x}; \mathbf{m}, \mathbf{C}, \nu) = \frac{\frac{\nu}{2} \Gamma(\frac{n}{2})}{(2^{\frac{2}{\nu}}\pi)^{\frac{n}{2}} \Gamma(\frac{n}{\nu}) (\det(\mathbf{C}))^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \left((\mathbf{x} - \mathbf{m})^T \mathbf{C}^{-1} (\mathbf{x} - \mathbf{m}) \right)^{\frac{\nu}{2}} \right)$$

where m and C are the location and scatter matrix (a.k.a. scale matrix) of x, resp., and ν is the shape parameter (a.k.a. form parameter)

- \mathbf{C} is PD and determines how \mathbf{x} is spread
- ν affect the shape of the distribution
 - * it becomes the multivariate Gaussian distribution when when $\nu=2$
 - * more peaky with heavy tails if $\nu < 2$ (it becomes a multivariate Laplacian distribution when $\nu = 1$)
 - * less peaky with light tails if $\nu>2$ (it tends to converge to a multivariate uniform distribution when $\nu\to\infty$)
- For Gaussian distribution, the location and scatter parameters correspond to the mean and covariance, resp. But this is not necessarily true for other distributions.

Example: Multivariate Generalized Gaussian Distribution

$$\mathbf{m} = \mathbf{0}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(a)
$$\nu = 1$$
.

(b)
$$\nu = 2$$
.

(c)
$$\nu = 30$$
.

Properties of PSD Matrices

- it can be directly seen from the definition that
 - $\mathbf{A} \succ \mathbf{0} \Longrightarrow a_{ii} > 0$ for all i
 - $\mathbf{A} \succ \mathbf{0} \Longrightarrow a_{ii} > 0$ for all i
- extension (also direct): partition A as

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}.$$

Then, $\mathbf{A}\succeq\mathbf{0}\Longrightarrow\mathbf{A}_{11}\succeq\mathbf{0},\mathbf{A}_{22}\succeq\mathbf{0}$. Also, $\mathbf{A}\succ\mathbf{0}\Longrightarrow\mathbf{A}_{11}\succ\mathbf{0},\mathbf{A}_{22}\succ\mathbf{0}$

- further extension:
 - a principal submatrix of \mathbf{A} , denoted by $\mathbf{A}_{\mathcal{I}}$, where $\mathcal{I} = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$, m < n, is a submatrix obtained by keeping only the rows and columns indicated by \mathcal{I} ; i.e., $[\mathbf{A}_{\mathcal{I}}]_{jk} = a_{i_j,i_k}$ for all $j,k \in \{1,\ldots,m\}$
 - if A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD), and then any principal minor of A is nonnegative (resp. positive)

Properties of PSD Matrix

- (Sylvester's criterion). Let $\mathbf{A} \in \mathbb{S}^n$.
 - \mathbf{A} is PD \iff all its leading (resp., trailing) principal minors are positive (for $\mathbf{A} \in \mathbb{S}^n$, the positivity of the leading principal minors implies the positivity of all its principal minors)
 - A is PSD \iff all its principal minors are nonnegative
 - If the first n-1 leading principal minors (resp., the last n-1 trailing principal minors) of \mathbf{A} are positive and det $\det(\mathbf{A}) \geq 0$, then \mathbf{A} is PSD.
- ullet A is ND \Longleftrightarrow its odd leading principal minors are negative and even are positive
- ullet A is NSD \Longleftrightarrow its odd principal minors are nonpositive and even are nonnegative
- ullet A is indefinite \Longleftrightarrow there are two of its odd leading principal minors that have different signs or there is one of its even leading principal minors that is negative

Properties of PSD Matrix

- To obtain conditions for a matrix to be PD or ND, we need to examine the leading principal minors.
- To obtain conditions for a matrix to be PSD or NSD, we need to examine all the principal minors.
- Procedures for checking the definiteness of a matrix
 - find the leading principal minors and check if the conditions for positive or negative definiteness are satisfied; if they are, the the matrix is PD or ND
 - if the conditions are not satisfied, check if they are strictly violated; if they are,
 then the matrix is indefinite
 - if the conditions are not strictly violated, find all its principal minors and check
 if the conditions for positive or negative semidefiniteness are satisfied

Properties of PSD Matrix

- A is PSD, $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0 \iff \mathbf{A} \mathbf{x} = \mathbf{0}$ for an \mathbf{x} . (how to prove it?)
 - proved by eigenvalue properties of PSD matrices
 - alternative proof: the "if" part is easy; the "only if" part: constructing

$$p(\lambda) = (\mathbf{x} + \lambda \mathbf{y})^T \mathbf{A} (\mathbf{x} + \lambda \mathbf{y}) = \lambda^2 \mathbf{y}^T \mathbf{A} \mathbf{y} + 2\lambda \mathbf{y}^T \mathbf{A} \mathbf{x} + \mathbf{x}^T \mathbf{A} \mathbf{x}.$$

Since for all \mathbf{x} , λ , and \mathbf{y} , $p(\lambda) \geq 0$, we have the discriminant for $p(\lambda)$ should be nonpositive, i.e.,

$$4(\mathbf{y}^T \mathbf{A} \mathbf{x})^2 - 4(\mathbf{y}^T \mathbf{A} \mathbf{y})(\mathbf{x}^T \mathbf{A} \mathbf{x}) \le 0$$

If $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$, the discriminant is nonpositive only if $\mathbf{y}^T \mathbf{A} \mathbf{x} = 0$ for all \mathbf{y} or, equivalently, if $\mathbf{A} \mathbf{x} = \mathbf{0}$.

- ullet A is PSD and nonsingular \Longleftrightarrow A is PD
- ullet for a PSD f A, it is PD \Longleftrightarrow f A is nonsingular
- $\mathbf{A} \succ \mathbf{0} \iff \mathbf{A}^{-1} \succ \mathbf{0}$