```
In [1]: # Import required libraries
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.datasets import load_iris
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score, classification_report, confusion_mat
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
In [2]: iris = load_iris()
        df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
        df['species'] = iris.target
        df['species'] = df['species'].apply(lambda x: iris.target_names[x])
        print("First 5 rows of the dataset:")
        print(df.head())
       First 5 rows of the dataset:
          sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
                       5.1
                                        3.5
                                                           1.4
                                                                             0.2
      1
                       4.9
                                        3.0
                                                           1.4
                                                                             0.2
       2
                       4.7
                                        3.2
                                                          1.3
                                                                             0.2
                                        3.1
                                                                             0.2
       3
                       4.6
                                                          1.5
                                        3.6
                      5.0
                                                           1.4
                                                                             0.2
        species
       0 setosa
      1 setosa
       2 setosa
       3 setosa
      4 setosa
In [3]: # Plot feature distributions
        sns.pairplot(df, hue='species')
        plt.suptitle('Feature Distributions by Species', y=1.02)
        plt.show()
```



```
In [4]: # 2. Train a Machine Learning Classifier
X = df[iris.feature_names]
y = df['species']

# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Split into train/test
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3,
```

```
In [5]: # Train Random Forest Classifier
  clf = RandomForestClassifier(n_estimators=100, random_state=42)
  clf.fit(X_train, y_train)
  y_pred = clf.predict(X_test)
```

```
In [6]: # 3. Evaluate the classifier
    print("Accuracy Score:", accuracy_score(y_test, y_pred))
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))
    print("\nConfusion Matrix:")
    sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', xticklabels=i
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title("Confusion Matrix")
    plt.show()
```

Accuracy Score: 1.0

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	19
versicolor	1.00	1.00	1.00	13
virginica	1.00	1.00	1.00	13
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

Confusion Matrix:

setosa


```
In [7]: # 4. Dimensionality Reduction and Visualization using PCA only
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X_scaled)
    plt.figure(figsize=(8,6))
    sns.scatterplot(x=X_pca[:,0], y=X_pca[:,1], hue=y, palette="deep", s=100)
    plt.title("PCA - Species Pattern Visualization")
    plt.xlabel("Principal Component 1")
    plt.ylabel("Principal Component 2")
    plt.grid(True)
    plt.show()
```

versicolor

Predicted

- 0.0

virginica

In []: