

Description

Features

- 20V, 6.8A
 - $R_{DS(ON)}$ < 21m Ω @ V_{GS} =4.5V
 - $R_{DS(ON)}$ < 30m Ω @ V_{GS} =2.5V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM2312A-S2	VSM2312A	TAPING	SOT-23-3	7inch	3000	180000

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise specified)

Symbol	Parameter	Max.	Units	
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±10	V
I _D	Continuous Dunin Comment	T _A = 25℃	6.8	Α
	Continuous Drain Current	T _A = 100℃	4.4	Α
I_{DM}	Pulsed Drain Current note1		27.2	Α
P _D	Power Dissipation	T _A = 25°C	1.6	W
$R_{\theta JA}$	Thermal Resistance, Junction to Case		78	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$ C

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Characteristic							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250µA	20	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} = 0V,	-	-	1.0	μA	
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA	
On Charac	cteristics						
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250μA	0.5	0.7	1.0	V	
Б	Static Drain-Source on-Resistance	V _{GS} =4.5V, I _D =4A	-	16	21	mΩ	
$R_{DS(on)}$	note2	V _{GS} =2.5V, I _D =3A	-	20	30		
Dynamic (Characteristics		•	•	•		
C _{iss}	Input Capacitance	V _{DS} =10V, V _{GS} =0V, f = 1.0MHz	-	780	_	pF	
Coss	Output Capacitance		-	140	-	pF	
Crss	Reverse Transfer Capacitance		-	80	-	pF	
Qg	Total Gate Charge	101/1 0.54	-	11	-	nC	
Q _{gs}	Gate-Source Charge	$V_{DS} = 10V, I_D = 3.5A,$	-	2.3	-	nC	
Q_{gd}	Gate-Drain("Miller") Charge	V _{GS} =4.5V	-	2.9	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	9	-	ns	
t _r	Turn-on Rise Time	V _{DS} =10V,	-	30	-	ns	
t _{d(off)}	Turn-off Delay Time	$I_D=3.5A$, $R_{GEN}=3\Omega$,	-	35	-	ns	
t _f	Turn-off Fall Time	V _{GS} =4.5V	-	10	-	ns	
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings					
Is	Maximum Continuous Drain to Source Diode Forward Current				6.8	Α	
IS			_	-	0.0	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	27.2	Α	
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S =6.8A	-	-	1.2	٧	

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms