El problema de los 2 cuerpos y el caós en sistemas de 3 o más cuerpos

Proyecto del curso CA0305 - Herramientas de Ciencia de Datos II

Jose Andrey Prado Rojas C36174*1, Debbie Con Ortega C32250*2, Aarón Jesús Retana Castro C26400*3

*Estudiantes de Ciencias Actuariales Pura, Escuela de Matemática, Universidad de Costa Rica. San José, Costa Rica. Junio, 2025

¹ joseandrey.prado@ucr.ac.cr, ² debbie.con@ucr.ac.cr, ³ jesus.retana@ucr.ac.cr

Introducción

El movimiento de los cuerpos celestes ha despertado un profundo interés durante siglos, tanto para la comunidad física como matemática. De hecho, ha sido impulsor de revoluciones científicas y filosóficas a lo largo de la historia. En sus inicios, los grandes pensadores centraban sus ideas en el movimiento de los cuerpos del sistema solar.

A lo largo del tiempo la discusión sobre el movimiento de los cuerpos celestes ha persistido, dando lugar a una variedad de teorías que en ocasiones se han mezclado y coexistido entre ellas. Desde la Teoría Geocéntrica formulada por Aristóteles y desarrollada por Ptolomeo, hasta la Teoría Heliocentrista propuesta por Nicolás Copérnico en el siglo XVI y posteriormente confirmada por Galileo Galilei. Finalmente, la comunidad científica acepta el modelo Kepleriano que agrupa el heliocentrismo, las leyes de Kepler y las leyes de la mecánica establecidas por Newton (Ponce, s.f).

El problema de los dos cuerpos; es decir, el movimiento de dos masas que interactúan por la aceleración gravitacional puede ser descrita como una función de tiempo y es analiticamente soluble. Gracias a la mecánica clásica Newtoniana es posible describir el movimiento del sistema como una ecuación diferencial por tanto el problema se reduce a calcular las funciones que satisfacen estas ecuaciones (Pérez et al., s.f).

Este problema es de gran importancia en astronomía, mecánica orbital, dinámica galáctica, formación estelar, así como en la determinación de trayectorias óptimas para misiones de naves espaciales (Perezagua, 2022).

Sin embargo, un sistema mayor a dos cuerpos no es analiticamente soluble por tanto no existe una solución explícita del sistema de ecuaciones. En el presente trabajo, se resolverá y simulará la trayectoria en dos cuerpos. Y además, en el caso tres cuerpos se realizará una aproximación con el método de Runge Kutta. \end