IP协议之报文档式

IP数据报格式

4	4	8	16b			
Version	H.len	Diff. service	Total length			
	Identif	ication	Flags	Flags Fragment offset		
Time	to live	Protocol	Header checksum			
Source IP address						
Destination IP address						
IP options (可有可无) Padding						
Payload (TCP, UDP, ICMP, IGMP, OSPF)						

- Time to live(TTL): IP包的生存期
- · Protocol: 指明了IP服务使用者,即上层用户
- Header checksum: 校验IP包的头

- · Version: 版本号,目前是v4和v6并存
- H.len: IP包头的长度,以字(32位)计数
- Diff service: 用于服务质量和拥塞控制
- · Total length:整个IP包的总长度
- Identification, Flags, Fragment offset: 与分段重组有关

- Source IP addr./ Destination IP addr:
 IP包的源端和目标端地址
- IP option: 选项, IP的增值服务
- · Padding:包头以字计数,必须32位整数
- Payload: 携带上层数据或本层控制消息

IP协议的差错校验

● IP校验和

Header checksum

计算方法:

- ① 按16位相加
- ② 结果取反
- RFC791
- RFC1071
- RFC1700

为确保IP包传递到正确 地址,必须对地址字段 进行再次校验。

IP进行软件 校验和计算

IP头

有效载荷

链路层进行硬件 CRC校验和计算

802.3/802.11帧头

有效载荷

IP协议的服务质量

● 服务类别

RFC1340

Precedence	D	Т	R	С	0
优 先 级	时 延	吞 吐 量	可靠性	成本	

● 区分服务

RFC1349

服务类别	拥塞通知
Type of Service	Notify

应用程序	D	Т	R	С
telnet/rlogin	1	0	0	0
ftp/control	1	0	0	0
ftp/data	0	1	0	0
snmp	0	0	1	0
nntp	0	0	0	1
smtp/command	1	0	0	0
Smtp/date	0	1	0	0

IP协议的包生存期和包的用户

● 生存期 (TTL)

Time to live

- · IP包在网络中的生存期限
- 路由器在存储-转发包时将该字段减1
- 一个生存期为0的包将被路由器丢弃

● 协议

RFC 1700

Protocol

接收端的网络层把包的有效载荷上 交给协议字段标识的上层协议实体

编号	协议名	协议说明
0		Reserved
1	ICMP	Internet Control Message
2	IGMP	Internet Group Management
3	GGP	Gateway-to-Gateway
4	IP	IP in IP (encapsulation)
6	TCP	Transmission Control
8	EGP	Exterior Gateway Protocol
17	UDP	User Datagram
29	ISO-TP4	ISO Transport Protocol Class 4
55-60	ISO-IP	ISO Internet Protocol
80	MTP	Multicast Transport Protocol

IP协议的财加功能

● IP选项(可有可无)

IP options

1B 1B
Option code Option length data

1b 2b 5b

copy class number

copy指示位

• 0:该选项应被拷贝到所有段中

• 1: 该选项仅被拷贝到第一段中

Class类别

• 0:数据报/网络控制

• 1: 保留

· 2: 纠错和度量

・ 3: 保留

IP包在传递过程中,可以执行某种特殊功能。具体操作由选项码定义。

IP包选项类别

IP选项码

сору

class

number

可能的IP选项

class	number	length	描述
0	0	_	选项表结束
0	1	-	无操作
0	2	11	安全和处理限制
0	3	var	松散源路由(指定数据报的路由)
0	7	var	记录路由(用来跟踪路由)
0	8	4	流标识符
0	9	var	严格源路由(指定数据报的路由)
2	4	var	Internet时间戳(记录路由时间)

注:表格中浅色字体表示将要介绍的IP额外功能

IP协议的记录路由功能

● 选项中包含一个地址空表

- 由所有处理过该数据报的路由器把 自己IP地址填入表中
- 路由器在指针所指的位置插入自己的IP地址

IP头前20个字节

(0, 7) length Pointer

First hop IP address(空)

Second hop IP address(空)

......

包的目标主机从收到的包中获得该包经过的一条路径: $1\rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 7$

IP协议的源路由功能

● 源路由选项

包含一个IP地址序列来指定一条路由

- 严格源路由—两个相邻地址必须处在 同一物理网络上
- 松散源路由一允许相邻两个地址之间 跳过多个网络

IP头前20个字节							
(0,3)/(0,9) length Pointer							
R1 address							
R2 address							
R4 address							

① 严格源路径: 1→2→4→6→7

② 松散源路径: 2→4

IP协议的时间戳功能

选项包含一个记录时间空表

途径的每个路由器均在表中填入时间

IP头前20个字节								
(2,4) length Pointer oflow flag								
First IP address(空)								
First timestamp(空)								
Second IP address(空)								
Second timestamp(空)								

可用来发现路径上发生拥塞的区域.

注意:每一跳的时间是根据时间戳计算得出的。

IP数据报——分段时选项的处理

分段时对选项的处理

- 针对选项功能作不同的处理
- 记录路由选项只拷贝到其中一个段中
- 源路由选项必须拷贝到所有段中

