Package 'MPV'

August 17, 2024
Title Data Sets from Montgomery, Peck and Vining
Version 1.64
Description Most of this package consists of data sets from the textbook Introduction to Linear Regression Analysis, by Montgomery, Peck
and Vining. All data sets from the 3rd edition are included and many from the 6th edition are also included. The package also contains some additional data sets and functions.
LazyLoad true
LazyData true
Depends R (>= 3.5.0), lattice, KernSmooth, randomForest
ZipData no
License Unlimited
NeedsCompilation no
Repository CRAN
Author W.J. Braun [aut, cre], S. MacQueen [aut]
Maintainer W.J. Braun < john.braun@ubc.ca>
Date/Publication 2024-08-17 05:50:09 UTC
Contents
BCCIPlot
BCLPBias
Bias Var Plot
bp
cement
cigbutts
earthquake
fires
GANOVA

2 Contents

gasdata	11
1	12
GRegplot	13
Juliet	15
	16
lesions	17
	18
	18
	19
	20
	21
1	22
	22
1	
1	23
1	24
1	25
1	25
1	26
1	27
p13.20	27
p13.3	28
p13.4	29
p13.5	29
•	30
•	31
•	32
•	32
1	33
•	34
	34
1	35
1	36
1	37
1	38
1	39
1	39
1	40
1	41
p4.18	42
p4.19	43
p4.20	44
p5.1	45
p5.10	45
p5.11	46
	47
•	48
•	49
•	49
Po.21	17

Contents 3

p5.22	50
p5.23	51
p5.24	51
p5.3	52
p5.4	53
p5.5	54
p7.1	54
p7.11	
p7.13	
p7.15	
	57
•	
p7.17	
p7.18	
p7.19	59
p7.2	60
p7.20	61
p7.4	61
p7.6	62
p8.11	63
p8.16	63
p8.3	64
p9.10	65
pathoeg	66
PRESS	66
qqANOVA	67
quadline	68
Qyplot	69
radon	
rectangles	
rftest	=-
solar	
stain	
table.b1	
table.b10	
table.b11	
table.b12	
table.b13	
table.b14	
table.b15	
table.b16	81
table.b17	81
table.b18	82
table.b19	83
table.b2	
table.b20	
table.b22	

BCCIPlot

	table.b23	6
	table.b24	7
	table.b25	7
	table.b3	8
	table.b4	9
	table.b5	0
	table.b6	1
	table.b7	2
	table.b8	13
	table.b9	14
	table5.2	15
	table 5.5	5
	table5.9	6
	tarimage	7
	plot	7
	tree.sample	8
	Uplot	19
	widths	0
	windWin80	0
	Wpgtemp	1
	wxNWO	1
Index	10	13

BCCIPlot

Confidence Intervals for Bias Corrected Local Regression

Description

Graphs of confidence interval estimates for bias and standard deviation of in bias-corrected local polynomial regression curve estimates.

Usage

```
BCCIPlot(data, k1=1, k2=2, h, h2, output, g, layout, incl.biasplot, plotdata)
```

Arguments

data	A data frame, whose first column must be the explanatory variable and whose second column must be the response variable.
k1	degree of local polynomial used in curve estimator.
k2	degree of local polynomial used in bias estimator.
h	bandwidth for regression estimator.
h2	bandwidth for bias estimator.
output	if TRUE, numeric output is printed to the console window.
g	the target function, if known (for use in simulations).

BCLPBias 5

layout if TRUE, a 2x1 layout of plots is sent to the graphics device.

incl.biasplot if TRUE, the confidence intervals for the bias of the uncorrected estimate are

plotted.

plotdata if TRUE, the data points are plotted as a scatter plot.

Value

A list containing the confidence interval limits, pointwise estimates of bias, standard deviation of bias, curve estimate, standard deviation of curve estimate, and approximate confidence limits for curve estimates. Graphs of the curve estimate confidence limits and the bias confidence limits.

Author(s)

W. John Braun and Wenkai Ma

BCLPBias	Bias for Bias-Corrected Local Polynomial Regression	

Description

Confidence interval estimates for bias in local polynomial regression.

Usage

```
BCLPBias(xy,k1,k2,h,h2,numgrid=401,alpha=.95)
```

Arguments

ху	A data frame, whose first column must be the explanatory variable and whose second column must be the response variable.
k1	degree of local polynomial used in curve estimator.
k2	degree of local polynomial used in bias estimator.
h	bandwidth for regression estimator.
h2	bandwidth for bias estimator.
numgrid	number of gridpoints used in the curve estimator.
alpha	nominal confidence level.

Value

A list containing the confidence interval limits, pointwise estimates of bias, standard deviation of bias, curve estimate, standard deviation of curve estimate, and approximate confidence limits for curve estimates and corresponding bias-corrected estimates.

Author(s)

W. John Braun and Wenkai Ma

6 Bias Var Plot

BiasVarPlot Local Polynomial Bias and Variability

Description

Graphs of confidence interval estimates for bias and standard deviation of in local polynomial regression curve estimates.

Usage

```
BiasVarPlot(data, k1=1, k2=2, h, h2, output=FALSE, g, layout=TRUE)
```

Arguments

data	A data frame, whose first column must be the explanatory variable and whose second column must be the response variable.
k1	degree of local polynomial used in curve estimator.
k2	degree of local polynomial used in bias estimator.
h	bandwidth for regression estimator.
h2	bandwidth for bias estimator.
output	if true, numeric output is printed to the console window.
g	the target function, if known (for use in simulations).
layout	if true, a 2x1 layout of plots is sent to the graphics device.

Value

A list containing the confidence interval limits, pointwise estimates of bias, standard deviation of bias, curve estimate, standard deviation of curve estimate, and approximate confidence limits for curve estimates. Graphs of the curve estimate confidence limits and the bias confidence limits.

Author(s)

W. John Braun and Wenkai Ma

BioOxyDemand 7

BioOxyDemand

Biochemical Oxygen Demand

Description

The BioOxyDemand data frame has 14 rows and 2 columns.

Usage

```
data(BioOxyDemand)
```

Format

This data frame contains the following columns:

```
x a numeric vector
```

y a numeric vector

Source

Devore, J. L. (2000) Probability and Statistics for Engineering and the Sciences (5th ed), Duxbury

Examples

```
plot(BioOxyDemand)
summary(lm(y ~ x, data = BioOxyDemand))
```

bp

Blood Pressure Measurements on a Single Adult Male

Description

Systolic and diastolic blood pressure measurement readings were taken on a 56-year-old male over a 39 day period, sometimes in the mornings (AM) and sometimes in the evening (PM). Varying number of replicate measurements were taken at each time point.

Usage

bp

Format

A data frame with 121 observations on the following 4 variables.

TimeofDay factor with levels AM and PM
Date numeric
Systolic numeric
Diastolic numeric

8 cement

Examples

```
require(lattice)
xyplot(Date ~ Diastolic|TimeofDay, groups=cut(Systolic, c(0, 130, 140,
   200)), data = bp, col=c(3, 1, 2), pch=16)
matplot(bp[, c(3, 4)], type="1", lwd=2, ylab="Pressure")
n <- nrow(bp)</pre>
abline(v=(1:n)[bp[,1]=="PM"]-.5, col="grey")
abline(v=(1:n)[bp[,1]=="PM"], col="grey")
abline(v=(1:n)[bp[,1]=="PM"]+.5, col="grey")
bp.stk <- stack(bp, c("Systolic", "Diastolic"))</pre>
bp.tmp <- rbind(bp[,1:2], bp[,1:2])</pre>
bp.stk <- cbind(bp.tmp, bp.stk)</pre>
names(bp.stk) <- c("TimeofDay", "Date", "Pressure", "Type")</pre>
reps <- NULL
for (j in rle(paste(bp.stk$Date, bp.stk$TimeofDay))$lengths) reps <- c(reps, (1:j))</pre>
bp.stk$Rep <- reps</pre>
xyplot(Pressure ~ I(Date+Rep/24)|TimeofDay, groups=Type, data = bp.stk, xlab="Date", pch=16)
```

cement

Table B21 - Cement Data

Description

The cement data frame has 13 rows and 5 columns.

Usage

```
data(cement)
```

Format

This data frame contains the following columns:

- y a numeric vector
- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- x4 a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(cement)
pairs(cement)
```

cigbutts 9

cigbutts

Cigarette Butts

Description

On a university campus there are a number of areas designated for smoking. Outside of those areas, smoking is not permitted. One of the smoking areas is towards the north end of the campus near some parking lots and a large walkway towards one of the residences. Along the walkway, cigarette butts are visible in the nearby grass. Numbers of cigarette butts were counted at various distances from the smoking area in 200x80 square-cm quadrats located just west of the walkway.

Usage

```
data("cigbutts")
```

Format

A data frame with 15 observations on the following 2 variables.

distance distance from gazebo count observed number of butts

earthquake

Earthquakes Data

Description

The earthquake data frame contains measurements of latitude, longitude, focal depth and magnitude for all earthquakes having magnitude greater than 5.8 between 1964 and 1985.

Usage

earthquake

Format

This data frame contains 2178 observations on the following columns:

depth numeric vector of focal depths.

latitude latitudinal coordinate.

longitude longitudinal coordinate.

magnitude numeric vector of magnitudes.

Source

Jeffrey S. Simonoff (1996), Smoothing Methods in Statistics, Springer-Verlag, New York.

10 fires

Examples

summary(earthquake)

fires

Micro-fires recorded in a lab setting

Description

Rate of spread measurements (inches/s) in each direction: East, West, North and South for each of 31 experimental runs at given slopes, measured over the given time period of each (measured in seconds).

Usage

fires

Format

A data frame with 31 observations on the following 7 variables.

Run numeric

Slope numeric: vertical rise divided by horizontal run, inclined from East to West

ROS_E numeric: rate of spread measured in easterly direction

ROS_W numeric: rate of spread measured in westerly direction

ROS_S numeric: rate of spread measured in southerly direction

ROS_N numeric: rate of spread measured in northerly direction

Time numeric

Source

Braun, W.J. and Woolford, D.G. (2013) Assessing a stochastic fire spread simulator. Journal of Environmental Informatics. 22:1-12.

GANOVA 11

GANOVA	Graphical ANOVA Plot	

Description

Graphical analysis of one-way ANOVA data. It allows visualization of the usual F-test.

Usage

```
GANOVA(dataset, var.equal=TRUE, type="QQ", center=TRUE, shift=0)
```

Arguments

dataset A data frame, whose first column must be the factor variable and whose second

column must be the response variable.

var.equal Logical: if TRUE, within-sample variances are assumed to be equal

type "QQ" or "hist"

center if TRUE, center and scale the means to match the scale of the errors

shift on the histogram, lift the points representing the means above the horizontal axis

by this amount.

Value

A QQ-plot or a histogram and rugplot

Author(s)

W. John Braun and Sarah MacQueen

Source

Braun, W.J. 2013. Naive Analysis of Variance. Journal of Statistics Education.

gasdata	Natural Gas Consumption in a Single-Family Residence	
---------	--	--

Description

This data frame contains the average monthly volume of natural gas used in the furnace of a 1600 square foot house located in London, Ontario, for each month from 2006 until 2011. It also contains the average temperature for each month, and a measure of degree days. Insulation was added to the roof on one occasions, the walls were insulated on a second occasion, and the mid-efficiency furnace was replaced with a high-efficiency furnace on a third occasion.

12 GFplot

Usage

```
data("gasdata")
```

Format

A data frame with 70 observations on the following 9 variables.

month numeric 1=January, 12=December

degreedays numeric, Celsius

cubicmetres total volume of gas used in a month

dailyusage average amount of gas used per day

temp average temperature in Celsius

year numeric

- I1 indicator that roof insulation is present
- I2 indicator that wasll insulation is present
- 13 indicator that high efficiency furnace is present

GFplot

Graphical F Plot for Significance in Regression

Description

This function analyzes regression data graphically. It allows visualization of the usual F-test for significance of regression.

Usage

```
GFplot(X, y, plotIt=TRUE, sortTrt=FALSE, type="hist", includeIntercept=TRUE, labels=FALSE)
```

Arguments

X The design matrix.

y A numeric vector containing the response.

plotIt Logical: if TRUE, a graph is drawn.

sortTrt Logical: if TRUE, an attempt is made at sorting the predictor effects in descend-

ing order.

type "QQ" or "hist"

includeIntercept

Logical: if TRUE, the intercept effect is plotted; otherwise, it is omitted from

the plot.

labels logical: if TRUE, names of predictor variables are used as labels; otherwise, the

design matrix column numbers are used as labels

GRegplot 13

Value

A QQ-plot or a histogram and rugplot, or a list if plotIt=FALSE

Author(s)

W. John Braun

Source

Braun, W.J. 2013. Regression Analysis and the QR Decomposition. Preprint.

Examples

```
# Example 1
X < -p4.18[,-4]
y < -p4.18[,4]
GFplot(X, y, type="hist", includeIntercept=FALSE)
title("Evidence of Regression in the Jojoba Oil Data")
# Example 2
set.seed(4571)
Z <- matrix(rnorm(400), ncol=10)</pre>
A <- matrix(rnorm(81), ncol=9)
simdata <- data.frame(Z[,1], crossprod(t(Z[,-1]),A))</pre>
names(simdata) \leftarrow c("y", paste("x", 1:9, sep=""))
GFplot(simdata[,-1], simdata[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in Simulated Data Set")
# Example 3
GFplot(table.b1[,-1], table.b1[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in NFL Data Set")
# An example where stepwise AIC selects the complement
# of the set of variables that are actually in the true model:
X <- pathoeg[,-10]</pre>
y <- pathoeg[,10]
par(mfrow=c(2,2))
GFplot(X, y)
GFplot(X, y, sortTrt=TRUE)
GFplot(X, y, type="QQ")
GFplot(X, y, sortTrt=TRUE, type="QQ")
X \leftarrow table.b1[,-1] \# NFL data
y <- table.b1[,1]</pre>
GFplot(X, y)
```

GRegplot

Graphical Regression Plot

Description

This function analyzes regression data graphically. It allows visualization of the usual F-test for significance of regression.

14 GRegplot

Usage

```
GRegplot(X, y, sortTrt=FALSE, includeIntercept=TRUE, type="hist")
```

Arguments

X The design matrix.

y A numeric vector containing the response.

sortTrt Logical: if TRUE, an attempt is made at sorting the predictor effects in descend-

ing order.

includeIntercept

Logical: if TRUE, the intercept effect is plotted; otherwise, it is omitted from

the plot.

type Character: hist, for histogram; dot, for stripchart

Value

A histogram or dotplot and rugplot

Author(s)

W. John Braun

Source

Braun, W.J. 2014. Visualization of Evidence in Regression Analysis with the QR Decomposition. Preprint.

```
# Example 1
X < -p4.18[,-4]
y < -p4.18[,4]
GRegplot(X, y, includeIntercept=FALSE)
title("Evidence of Regression in the Jojoba Oil Data")
# Example 2
set.seed(4571)
Z <- matrix(rnorm(400), ncol=10)</pre>
A <- matrix(rnorm(81), ncol=9)
simdata \leftarrow data.frame(Z[,1], crossprod(t(Z[,-1]),A))
names(simdata) \leftarrow c("y", paste("x", 1:9, sep=""))
GRegplot(simdata[,-1], simdata[,1], includeIntercept=FALSE)
title("Evidence of Regression in Simulated Data Set")
# Example 3
GRegplot(table.b1[,-1], table.b1[,1], includeIntercept=FALSE)
title("Evidence of Regression in NFL Data Set")
# An example where stepwise AIC selects the complement
# of the set of variables that are actually in the true model:
X <- pathoeg[,-10]</pre>
y <- pathoeg[,10]
par(mfrow=c(2,1))
```

Juliet 15

```
GRegplot(X, y)
GRegplot(X, y, sortTrt=TRUE)
X <- table.b1[,-1] # NFL data
y <- table.b1[,1]
GRegplot(X, y)</pre>
```

Juliet

Juliet

Description

Juliet has 28 rows and 9 columns. The data is of the input and output of the Spirit Still "Juliet" from Endless Summer Distillery. It is suggested to split the data by the Batch factor for ease of use.

Usage

Juliet

Format

The data frame contains the following 9 columns.

Batch a Factor determing how many times the volume has been through the still.

Vol1 Volume in litres, initial

P1 Percent alcohol present, initial

LAA1 Litres Absolute Alcohol initial, Vol1*P1

Vol2 Volume in litres, final

P2 Percent alcohol present, final

LAA2 Litres Absolute Alcohol final, Vol2*P2

Yield Percent yield obtained, LAA2/LAA1

Date Character, Date of run

Details

The purpose of this information is to determine the optimal initial volume and percentage. The information is broken down by Batch. A batch factor 1 means that it is the first time the liquid has gone through the spirit still. The first run through the still should have the most loss due to the "heads" and "tails". Literature states that the first run through a spirit still should yield 70 percent. A batch factor 2 means that it is the second time the liquid has gone through the spirit still. A batch factor 3 means that it is the third time or more that the liquid has gone through the spirit still. Each subsequent distillation should result in a higher yield, never to exceed 95 percent.

Source

Charisse Woods, Endless Summer Distillery, (2015).

16 lengthguesses

Examples

```
summary(Juliet)

#Split apart the Batch factor for easier use.
juliet<-split(Juliet, Juliet$Batch)
juliet1<-juliet$'1'
juliet2<-juliet$'2'
juliet3<-juliet$'3'

plot(LAA1~LAA2, data=Juliet)
plot(LAA1~LAA2, data=juliet1)</pre>
```

lengthguesses

Length Guesses Data

Description

The lengthguesses list consists of 2 numeric vectors, one giving the metric-converted length guesses (in feet) of an auditorium whose actual length (in meters) was 13.1m, and the other containing the length guesses of 69 others (in meters).

Usage

```
data(lengthguesses)
```

Format

This list contains the following columns:

imperial a numeric vector of 69 student guesses as to the length of an auditorium using the imperial system, converted to meters.

metric a numeric vector of 44 student guesses as to the length of an auditorium using the metric system.

Source

Hills, M. and the M345 Course Team (1986) M345 Statistical Methods, Unit 1: Data, distributions and uncertainty, Milton Keynes: The Open University. Tables 2.1 and 2.4.

References

Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J. and Ostrowski, E. (1994) A Handbook of Small Data Sets. Boca Raton: Chapman & Hall/CRC.

```
with(lengthguesses, t.test(imperial, metric))
```

lesions 17

lesions

Lesions in Rat Colons

Description

Numbers of aberrant crypt foci (ACF) in each of six cross-sectional regions of the colons of 66 rats subjected to varying doses of the carcinogen azoxymethane (AOM), sacrificed at 3 different times.

Usage

lesions

Format

This data frame contains the following columns:

T Incubation time factor, levels: 6, 12 and 18 weeks

INJ Number of injections

SECT Section of colon, a factor with levels 1 through 6, where 1 denotes the proximal end of the colon and 6 denotes the distal end

RAT Label for animal within a particular T-INJ factor level combination

ACF.Total Total number of ACF lesions in a section of a rat's colon

ACF.total.mult Sum of ACF multiplicities for a section of a rat's colon

id Identifier for each of the 66 rats.

Source

Ranjana P. Bird, University of Northern British Columbia, Prince George, Canada.

References

E.A. McLellan, A. Medline and R.P. Bird. Dose response and proliferative characteristics of aberrant crypt foci: putative preneoplastic lesions in rat colon. Carcinogenesis, 12(11): 2093-2098, 1991.

```
summary(lesions)
ACF.All <- aggregate(ACF.Total ~ id + INJ + T, FUN=sum, data = lesions)
lesions.glm <- glm(ACF.Total ~ INJ * T, data = ACF.All, family=poisson)
summary(lesions.glm)
lesions.qp <- glm(ACF.Total ~ INJ * T, data = ACF.All, family=quasipoisson)
summary(lesions.qp)
lesions.noInt <- glm(ACF.Total ~ INJ + T, data = ACF.All, family=quasipoisson)
summary(lesions.noInt)</pre>
```

18 motor

LPBias	Local Polynomial Bias	
	•	

Description

Confidence interval estimates for bias in local polynomial regression.

Usage

```
LPBias(xy,k1,k2,h,h2,numgrid=401,alpha=.95)
```

Arguments

ху	A data frame, whose first column must be the explanatory variable and whose second column must be the response variable.
k1	degree of local polynomial used in curve estimator.
k2	degree of local polynomial used in bias estimator.
h	bandwidth for regression estimator.
h2	bandwidth for bias estimator.
numgrid	number of gridpoints used in the curve estimator.
alpha	nominal confidence level.

Value

A list containing the confidence interval limits, pointwise estimates of bias, standard deviation of bias, curve estimate, standard deviation of curve estimate, and approximate confidence limits for curve estimates.

Author(s)

W. John Braun and Wenkai Ma

Description

Noise measurements for 5 samples of motors, each sample based on a different brand of bearing.

Usage

```
data("motor")
```

noisyimage 19

Format

A data frame with 5 columns.

Brand 1 A numeric vector length 6

Brand 2 A numeric vector length 6

Brand 3 A numeric vector length 6

Brand 4 A numeric vector length 6

Brand 5 A numeric vector length 6

Source

Devore, J. and N. Farnum (2005) Applied Statistics for Engineers and Scientists. Thomson.

noisyimage

noisy image

Description

The noisyimage is a list. The third component is noisy version of the third component of tarimage.

Usage

```
data(noisyimage)
```

Format

This list contains the following elements:

x a numeric vector having 101 elements.

y a numeric vector having 101 elements.

xy a numeric matrix having 101 rows and columns

```
with(noisyimage, image(x, y, xy))
```

20 oldwash

oldwash oldwash

Description

The oldwash dataframe has 49 rows and 8 columns. The data are from the start up of a wash still considering the amount of time it takes to heat up to a specified temperature and possible influencing factors.

Usage

```
data("oldwash")
```

Format

A data frame with 49 observations on the following 8 variables.

Date character, the date of the run startT degrees Celsius, numeric, initial temperature endT degrees Celsius, numeric, final temperature time in minutes, numeric, amount of time to reach final temperature Vol in litres, numeric, amount of liquid in the tank (max 2000L) alc numeric, the percentage of alcohol present in the liquid who character, relates to the person who ran the still batch factor with levels 1 = first time through, 2 = second time through

Details

The purpose of the wash still is to increase the percentage of alcohol and strip out unwanted particulate. It can take a long time to heat up and this can lead to problems in meeting production time limits.

Source

Charisse Woods, Endless Summer Distillery (2014)

```
oldwash.lm<-lm(log(time)~startT+endT+Vol+alc+who+batch,data=oldwash)
summary(oldwash.lm)
par(mfrow=c(2,2))
plot(oldwash.lm)

data2<-subset(oldwash,batch==2)
hist(data2$time)
data1<-subset(oldwash,batch==1)
hist(data1$time)</pre>
```

p11.12

```
oldwash.lmc<-lm(time~startT+endT+Vol+alc+who+batch,data=data1)
summary(oldwash.lmc)
plot(oldwash.lmc)
oldwash.lmd<-lm(time~startT+endT+Vol+alc+who+batch,data=data2)
summary(oldwash.lmd)
plot(oldwash.lmd)</pre>
```

p11.12

Data For Problem 11-12

Description

The p11.12 data frame has 19 observations on satellite cost.

Usage

```
data(p11.12)
```

Format

This data frame contains the following columns:

cost first-unit satellite cost

x weight of the electronics suite

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Simpson and Montgomery (1998)

```
data(p11.12)
attach(p11.12)
plot(cost~x)
detach(p11.12)
```

p11.15

Data set for Problem 11-15

Description

The p11.15 data frame has 9 rows and 2 columns.

Usage

```
data(p11.15)
```

Format

This data frame contains the following columns:

```
x a numeric vector
```

y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

```
Ryan (1997), Stefanski (1991)
```

Examples

```
data(p11.15)
plot(p11.15)
attach(p11.15)
lines(lowess(x,y))
detach(p11.15)
```

p12.11

Data Set for Problem 12-11

Description

The p12.11 data frame has 44 observations on the fraction of active chlorine in a chemical product as a function of time after manufacturing.

Usage

```
data(p12.11)
```

Format

This data frame contains the following columns:

```
xi time
```

yi available chlorine

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p12.11)
plot(p12.11)
lines(lowess(p12.11))
```

p12.12

Data Set for Problem 12-12

Description

The p12.12 data frame has 18 observations on an chemical experiment. A nonlinear model relating concentration to reaction time and temperature with an additive error is proposed to fit these data.

Usage

```
data(p12.12)
```

Format

This data frame contains the following columns:

```
x1 reaction time (in minutes)
```

x2 temperature (in degrees Celsius)

y concentration (in grams/liter)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p12.12)
attach(p12.12)
# fitting the linearized model
logy.lm <- lm(I(log(y))~I(log(x1))+I(log(x2)))
summary(logy.lm)
plot(logy.lm, which=1) # checking the residuals
# fitting the nonlinear model
y.nls <- nls(y ~ theta1*I(x1^theta2)*I(x2^theta3), start=list(theta1=.95,
theta2=.76, theta3=.21))
summary(y.nls)
plot(resid(y.nls)~fitted(y.nls)) # checking the residuals</pre>
```

p12.16

Data Set for Problem 12-16

Description

The p12.16 data frame has 26 observations on 5 variables.

Usage

```
data(p12.16)
```

Format

This data frame contains the following columns:

Mixture numeric

- x1 numeric
- x2 numeric
- x3 numeric
- y numeric

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

Myers, R. Technometrics, vol. 6, no. 4, 343-356, 1964.

p12.8

Data Set for Problem 12-8

Description

The p12.8 data frame has 14 rows and 2 columns.

Usage

```
data(p12.8)
```

Format

This data frame contains the following columns:

- x a numeric vector
- y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p12.8)
```

p13.1

Data Set for Problem 13-1

Description

The p13.1 data frame has 25 observation on the test-firing results for surface-to-air missiles.

Usage

```
data(p13.1)
```

Format

This data frame contains the following columns:

- x target speed (in Knots)
- **y** hit (=1) or miss (=0)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p13.1)
```

p13.16

Data Set for Problem 13-16

Description

The p13.16 data frame has 16 rows and 5 columns.

Usage

```
data(p13.16)
```

Format

This data frame contains the following columns:

- X1 a numeric vector
- X2 a numeric vector
- X3 a numeric vector
- X4 a numeric vector
- Y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p13.16)
```

p13.2

Data Set for Problem 13-2

Description

The p13.2 data frame has 20 observations on home ownership.

Usage

```
data(p13.2)
```

Format

This data frame contains the following columns:

```
x family income
```

```
y home ownership (1 = yes, 0 = no)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p13.2)
```

p13.20

Data Set for Problem 13-20

Description

The p13.20 data frame has 30 rows and 2 columns.

Usage

```
data(p13.20)
```

Format

This data frame contains the following columns:

```
yhat a numeric vector
```

resdev a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p13.20)
```

p13.3

Data Set for Problem 13-3

Description

The p13.3 data frame has 10 observations on the compressive strength of an alloy fastener used in aircraft construction.

Usage

```
data(p13.3)
```

Format

This data frame contains the following columns:

- x load (in psi)
- n sample size
- r number failing

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p13.3)
```

p13.4

Data Set for Problem 13-4

Description

The p13.4 data frame has 11 observations on the effectiveness of a price discount coupon on the purchase of a two-litre beverage.

Usage

```
data(p13.4)
```

Format

This data frame contains the following columns:

- x discount
- n sample size
- r number redeemed

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p13.4)
```

p13.5

Data Set for Problem 13-5

Description

The p13.5 data frame has 20 observations on new automobile purchases.

Usage

```
data(p13.5)
```

Format

This data frame contains the following columns:

- x1 income
- **x2** age of oldest vehicle
- y new purchase less than 6 months later (1=yes, 0=no)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p13.5)
```

p13.6

Data Set for Problem 13-6

Description

The p13.6 data frame has 15 observations on the number of failures of a particular type of valve in a processing unit.

Usage

```
data(p13.6)
```

Format

This data frame contains the following columns:

```
valve type of valve
```

numfail number of failures

months months

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p13.6)
```

p13.7

Data Set for Problem 13-7

Description

The p13.7 data frame has 44 observations on the coal mines of the Appalachian region of western Virginia.

Usage

```
data(p13.7)
```

Format

This data frame contains the following columns:

- y number of fractures in upper seams of coal mines
- x1 inner burden thickness (in feet), shortest distance between seam floor and the lower seam
- x2 percent extraction of the lower previously mined seam
- x3 lower seam height (in feet)
- **x4** time that the mine has been in operation (in years)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

```
Myers (1990)
```

```
data(p13.7)
```

p14.2

p14.1

Data Set for Problem 14-1

Description

The p14.1 data frame has 15 rows and 3 columns.

Usage

```
data(p14.1)
```

Format

This data frame contains the following columns:

x a numeric vector

y a numeric vector

time a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p14.1)
```

p14.2

Data Set for Problem 14-2

Description

The p14.2 data frame has 18 rows and 3 columns.

Usage

```
data(p14.2)
```

Format

This data frame contains the following columns:

t a numeric vector

xt a numeric vector

yt a numeric vector

p15.4

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p14.2)
```

p15.4

Data Set for Problem 15-4

Description

The p15.4 data frame has 40 rows and 4 columns.

Usage

```
data(p15.4)
```

Format

This data frame contains the following columns:

x1 a numeric vector

x2 a numeric vector

y a numeric vector

set a factor with levels e and p

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p15.4)
```

p2.12

p2.10

Data Set for Problem 2-10

Description

The p2.10 data frame has 26 observations on weight and systolic blood pressure for randomly selected males in the 25-30 age group.

Usage

```
data(p2.10)
```

Format

This data frame contains the following columns:

```
weight in poundssysbp systolic blood pressure
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

p2.12

Data Set for Problem 2-12

Description

The p2.12 data frame has 12 observations on the number of pounds of steam used per month at a plant and the average monthly ambient temperature.

Usage

```
data(p2.12)
```

p2.13

Format

This data frame contains the following columns:

```
temp ambient temperature (in degrees F) usage usage (in thousands of pounds)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p2.12)
attach(p2.12)
usage.lm <- lm(usage ~ temp)
summary(usage.lm)
predict(usage.lm, newdata=data.frame(temp=58), interval="prediction")
detach(p2.12)</pre>
```

p2.13

Data Set for Problem 2-13

Description

The p2.13 data frame has 16 observations on the number of days the ozone levels exceeded 0.2 ppm in the South Coast Air Basin of California for the years 1976 through 1991. It is believed that these levels are related to temperature.

Usage

```
data(p2.13)
```

Format

This data frame contains the following columns:

days number of days ozone levels exceeded 0.2 ppm

index a seasonal meteorological index giving the seasonal average 850 millibar temperature.

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Davidson, A. (1993) Update on Ozone Trends in California's South Coast Air Basin. *Air Waste*, 43, 226-227.

36 p2.14

Examples

```
data(p2.13)
attach(p2.13)
plot(days~index, ylim=c(-20,130))
ozone.lm <- lm(days ~ index)
summary(ozone.lm)
# plots of confidence and prediction intervals:
ozone.conf <- predict(ozone.lm, interval="confidence")
lines(sort(index), ozone.conf[order(index),2], col="red")
lines(sort(index), ozone.conf[order(index),3], col="red")
ozone.pred <- predict(ozone.lm, interval="prediction")
lines(sort(index), ozone.pred[order(index),2], col="blue")
lines(sort(index), ozone.pred[order(index),3], col="blue")
detach(p2.13)</pre>
```

p2.14

Data Set for Problem 2-14

Description

The p2.14 data frame has 8 observations on the molar ratio of sebacic acid and the intrinsic viscosity of copolyesters. One is interested in predicting viscosity from the sebacic acid ratio.

Usage

```
data(p2.14)
```

Format

This data frame contains the following columns:

```
ratio molar ratiovisc viscosity
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Hsuie, Ma, and Tsai (1995) Separation and Characterizations of Thermotropic Copolyesters of p-Hydroxybenzoic Acid, Sebacic Acid and Hydroquinone. Journal of Applied Polymer Science, 56, 471-476.

Examples

```
data(p2.14)
attach(p2.14)
plot(p2.14, pch=16, ylim=c(0,1))
visc.lm <- lm(visc ~ ratio)
summary(visc.lm)
visc.conf <- predict(visc.lm, interval="confidence")
lines(ratio, visc.conf[,2], col="red")
lines(ratio, visc.conf[,3], col="red")
visc.pred <- predict(visc.lm, interval="prediction")
lines(ratio, visc.pred[,2], col="blue")
lines(ratio, visc.pred[,3], col="blue")
detach(p2.14)</pre>
```

p2.15

Data Set for Problem 2-15

Description

The p2.15 data frame has 8 observations on the impact of temperature on the viscosity of toluene-tetralin blends. This particular data set deals with blends with a 0.4 molar fraction of toluene.

Usage

```
data(p2.15)
```

Format

This data frame contains the following columns:

```
temp temperature (in degrees Celsius)
visc viscosity (mPa s)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Byers and Williams (1987) Viscosities of Binary and Ternary Mixtures of Polynomatic Hydrocarbons. Journal of Chemical and Engineering Data, 32, 349-354.

23.16 p2.16

Examples

```
data(p2.15)
attach(p2.15)
plot(visc ~ temp, pch=16)
visc.lm <- lm(visc ~ temp)
plot(visc.lm, which=1)
detach(p2.15)</pre>
```

p2.16

Data Set for Problem 2-16

Description

The p2.16 data frame has 33 observations on the pressure in a tank the volume of liquid.

Usage

```
data(p2.16)
```

Format

This data frame contains the following columns:

```
volume volume of liquidpressure pressure in the tank
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Carroll and Spiegelman (1986) The Effects of Ignoring Small Measurement Errors in Precision Instrument Calibration. Journal of Quality Technology, 18, 170-173.

```
data(p2.16)
attach(p2.16)
plot(pressure ~ volume, pch=16)
pressure.lm <- lm(pressure ~ volume)
plot(pressure.lm, which=1)
summary(pressure.lm)
detach(p2.16)</pre>
```

p2.17

Data Set for Problem 2-17

Description

The p2.17 data frame has 17 observations on the boiling point of water (in Fahrenheit degrees) for various barometric pressures (in inches of mercury).

Usage

```
data(p2.17)
```

Format

This data frame contains the following columns:

BoilingPoint numeric vector

BarometricPressure numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

Atkinson, A.C. (1985) Plots, Transformations and Regression, Clarendon Press, Oxford.

Examples

```
data(p2.17)
attach(p2.17)
plot(BoilingPoint ~ BarometricPressure, pch=16)
detach(p2.17)
```

p2.18

Data Set for Problem 2-18

Description

The p2.18 data frame has 21 observations on the advertising expenses (in millions of US dollars) and retain impressions (in millions per week) for various companies.

Usage

```
data(p2.18)
```

Format

This data frame contains the following columns:

Firm character vector

Amount.Spent numeric vector

Returned.Impressions numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
data(p2.18)
attach(p2.18)
plot(Returned.Impressions ~ Amount.Spent, pch=16)
detach(p2.18)
```

p2.7

Data Set for Problem 2-7

Description

The p2.7 data frame has 20 observations on the purity of oxygen produced by a fractionation process. It is thought that oxygen purity is related to the percentage of hydrocarbons in the main condensor of the processing unit.

Usage

```
data(p2.7)
```

Format

This data frame contains the following columns:

```
purity oxygen purity (percentage)hydro hydrocarbon (percentage)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p2.7)
attach(p2.7)
purity.lm <- lm(purity ~ hydro)
summary(purity.lm)
# confidence interval for mean purity at 1% hydrocarbon:
predict(purity.lm, newdata=data.frame(hydro = 1.00),interval="confidence")
detach(p2.7)</pre>
```

p2.9

Data Set for Problem 2-9

Description

The p2.9 data frame has 25 rows and 2 columns. See help on softdrink for details.

Usage

```
data(p2.9)
```

Format

This data frame contains the following columns:

```
\mathbf{y} a numeric vector: time
```

x a numeric vector: cases stocked

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p2.9)
```

*p*4.18

p4.18

Data Set for Problem 4-18

Description

The p4.18 data frame has 13 observations on an experiment to produce a synthetic analogue to jojoba oil.

Usage

```
data(p4.18)
```

Format

This data frame contains the following columns:

- **x1** reaction temperature
- x2 initial amount of catalyst
- x3 pressure
- y yield

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Coteron, Sanchez, Matinez, and Aracil (1993) Optimization of the Synthesis of an Analogue of Jojoba Oil Using a Fully Central Composite Design. Canadian Journal of Chemical Engineering.

```
data(p4.18)

y.lm \leftarrow lm(y \sim x1 + x2 + x3, data=p4.18)

summary(y.lm)

y.lm \leftarrow lm(y \sim x1, data=p4.18)
```

p4.19

p4.19

Data Set for Problem 4-19

Description

The p4.19 data frame has 14 observations on a designed experiment studying the relationship between abrasion index for a tire tread compound and three factors.

Usage

```
data(p4.19)
```

Format

This data frame contains the following columns:

- x1 hydrated silica level
- x2 silane coupling agent level
- x3 sulfur level
- y abrasion index for a tire tread compound

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Derringer and Suich (1980) Simultaneous Optimization of Several Response Variables. Journal of Quality Technology.

```
data(p4.19)
attach(p4.19)
y.lm <- lm(y ~ x1 + x2 + x3)
summary(y.lm)
plot(y.lm, which=1)
y.lm <- lm(y ~ x1)
detach(p4.19)</pre>
```

p4.20

p4.20

Data Set for Problem 4-20

Description

The p4.20 data frame has 26 observations on a designed experiment to determine the influence of five factors on the whiteness of rayon.

Usage

```
data(p4.20)
```

Format

This data frame contains the following columns:

```
acidtemp acid bath temperature
acidconc cascade acid concentration
watertemp water temperature
sulfconc sulfide concentration
amtbl amount of chlorine bleach
y a measure of the whiteness of rayon
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Myers and Montgomery (1995) Response Surface Methodology, pp. 267-268.

```
data(p4.20)
y.lm <- lm(y ~ acidtemp, data=p4.20)
summary(y.lm)</pre>
```

p5.1 45

p5.1

Data Set for Problem 5-1

Description

The p5.1 data frame has 8 observations on the impact of temperature on the viscosity of toluene-tetralin blends.

Usage

```
data(p5.1)
```

Format

This data frame contains the following columns:

```
temp temperature
visc viscosity
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Byers and Williams (1987) Viscosities of Binary and Ternary Mixtures of Polyaromatic Hydrocarbons. Journal of Chemical and Engineering Data, 32, 349-354.

Examples

```
data(p5.1)
plot(p5.1)
```

p5.10

Data Set for Problem 5-10

Description

The p5.10 data frame has 27 observations on the effect of three factors on a printing machine's ability to apply coloring inks on package labels.

Usage

```
data(p5.10)
```

Format

This data frame contains the following columns:

```
x1 speed
x2 pressure
x3 distance
yi1 response 1
yi2 response 2
yi3 response 3
ybar.i average response
si standard deviation of the 3 responses
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p5.10)
attach(p5.10)
y.lm <- lm(ybar.i ~ x1 + x2 + x3)
plot(y.lm, which=1)
detach(p5.10)</pre>
```

p5.11

Data Set for Problem 5-11 of the Third Edition of MPV

Description

The p5.11 data frame has 8 observations on an experiment with a catapult. This data set is used in Exercise 5.13 of the 6th edition of MPV.

Usage

```
data(p5.11)
```

Format

This data frame contains the following columns:

```
x1 hook
```

x2 arm length

x3 start angle

x4 stop angle

yi1 response 1

yi2 response 2

yi3 response 3

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

See Also

```
p5.13
```

Examples

```
attach(p5.11)
ybar.i <- apply(p5.11[,5:7], 1, mean)
sd.i <- apply(p5.11[,5:7], 1, sd)
y.lm <- lm(ybar.i ~ x1 + x2 + x3 + x4)
plot(y.lm, which=1)
detach(p5.11)</pre>
```

p5.12

Data Set for Problem 5-12

Description

The p5.12 data frame has 27 observations on 3 variables, with responses replicated 3 times. Averages and standard deviations are calculated for each level of the experimental design.

Usage

```
data(p5.12)
```

Format

This data frame contains the following columns:

```
i numeric, experimental run number
```

xi numeric

x2 numeric

x3 numeric

yi1 response 1

yi2 response 2

yi3 response 3

ybari average of 3 responses at ith level

si standard deviation of 3 responses at ith level

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

Vining, G. and Myers, R. (1990) "Combining Taguchi and Response Surface Philosophies: A Dual Response Approach," Journal of Quality Technology, 22, 15-22.

Examples

```
y.lm \leftarrow lm(ybari \sim xi + x2 + x3, data = p5.12)
plot(y.lm, which=1)
```

p5.13

Data Set for Problem 5-13

Description

The p5.13 data frame has 8 observations on 4 variables, with responses replicated 3 times.

Usage

```
data(p5.13)
```

Format

This data frame contains the following columns:

- x1 numeric
- x2 numeric
- x3 numeric
- x4 numeric
- y.1 response 1
- y.2 response 2
- y.3 response 3

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

Schubert, K., M. W., Kerber, S. R., Schmidt, and Jones, S.E. (1992) "The catapult problem; enhanced engineering modeling using experimental design," Quality Engineering, 4, 463-473.

```
y.lm <- lm(I((y.1+y.2+y.3)/3) \sim x1 + x2 + x3 + x4, data = p5.13)
plot(y.lm, which=1)
```

p5.2

Data Set for Problem 5-2

Description

The p5.2 data frame has 11 observations on the vapor pressure of water for various temperatures.

Usage

```
data(p5.2)
```

Format

This data frame contains the following columns:

```
temp temperature (K) vapor vapor pressure (mm Hg)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p5.2)
plot(p5.2)
```

p5.21

Data Set for Problem 5-21

Description

The p5.21 data frame has 4 observations on 2 variables (replicated 4 times).

Usage

```
data(p5.21)
```

Format

This data frame contains the following columns:

```
Mix.Rate a numeric vector
```

```
y1 a numeric vector
```

y2 a numeric vector

y3 a numeric vector

y4 a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
cementStrength <- reshape(p5.21, idvar = "Mix.Rate", varying=list(2:5),
    direction="long", v.names=c("TensileStrength"))
rownames(cementStrength) <- NULL
anova(lm(TensileStrength ~ Mix.Rate*time, data = cementStrength))</pre>
```

p5.22

Data Set for Problem 5-22

Description

The p5.22 data frame has 18 observations on 2 variables.

Usage

```
data(p5.22)
```

Format

This data frame contains the following columns:

Temp a numeric vector

Density a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

```
anova(lm(Density \sim Temp, data = p5.22))
```

p5.23

Data Set for Problem 5-23

Description

The p5.23 data frame has 18 observations on 3 variables.

Usage

```
data(p5.23)
```

Format

This data frame contains the following columns:

Batch a character vector

Pressure a numeric vector

Strength a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
anova(lm(Strength ~ Pressure*Batch, data = p5.23))
```

p5.24

Data Set for Problem 5-24

Description

The p5.24 data frame has 13 observations on 7 variables.

Usage

```
data(p5.24)
```

Format

This data frame contains the following columns:

Location a character vector

- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- x4 a numeric vector
- x5 a numeric vector
- y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

French, R.J. and Schultz, J.E. "Water Use Efficiency of Wheat in a Mediterranean-type Environment, I The Relation between Yield, Water Use, and Climate," Australian Journal of Agricultural Research, 35, 743-764, 1984.

Examples

```
lm(y \sim x1 + x2 + x3 + x4 + x5, data = p5.24)
```

p5.3

Data Set for Problem 5-3

Description

The p5.3 data frame has 12 observations on the number of bacteria surviving in a canned food product and the number of minutes of exposure to 300 degree Fahrenheit heat.

Usage

```
data(p5.3)
```

Format

This data frame contains the following columns:

bact number of surviving bacteria

min number of minutes of exposure

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p5.3)
plot(bact~min, data=p5.3)
```

p5.4

Data Set for Problem 5-4

Description

The p5.4 data frame has 8 observations on 2 variables.

Usage

```
data(p5.4)
```

Format

This data frame contains the following columns:

- x a numeric vector
- y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p5.4)
plot(y ~ x, data=p5.4)
```

p5.5

Data Set for Problem 5-5

Description

The p5.5 data frame has 14 observations on the average number of defects per 10000 bottles due to stones in the bottle wall and the number of weeks since the last furnace overhaul.

Usage

```
data(p5.5)
```

Format

This data frame contains the following columns:

```
defects a numeric vector weeks a numeric vector
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p5.5)
defects.lm <- lm(defects~weeks, data=p5.5)
plot(defects.lm, which=1)</pre>
```

p7.1

Data Set for Problem 7-1

Description

The p7.1 data frame has 10 observations on a predictor variable.

Usage

```
data(p7.1)
```

Format

This data frame contains the following columns:

```
x a numeric vector
```

p7.11 55

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p7.1)
attach(p7.1)
x2 <- x^2
detach(p7.1)</pre>
```

p7.11

Data Set for Problem 7-11

Description

The p7.11 data frame has 11 observations on production cost versus production lot size.

Usage

```
data(p7.11)
```

Format

This data frame contains the following columns:

- x production lot size
- y average production cost per unit

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p7.11)
plot(y ~ x, data=p7.11)
```

p7.13

Data Set for Problem 7-13

Description

The p7.13 data frame has 11 observations on production cost versus production lot size. (This data set was for problem 7-11 in the third edition of MPV).

Usage

```
data(p7.13)
```

Format

This data frame contains the following columns:

- x production lot size
- y average production cost per unit

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
plot(y \sim x, data=p7.13)
```

p7.15

Data Set for Problem 7-15

Description

The p7.15 data frame has 6 observations on vapor pressure of water at various temperatures.

Usage

```
data(p7.15)
```

Format

This data frame contains the following columns:

- y vapor pressure (mm Hg)
- x temperature (degrees Celsius)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p7.15)
y.lm <- lm(y ~ x, data=p7.15)
plot(y ~ x, data=p7.15)
abline(coef(y.lm))
plot(y.lm, which=1)</pre>
```

p7.16

Data Set for Problem 7-16

Description

The p7.16 data frame has 26 observations on the observed mole fraction solubility of a solute at a constant temperature.

Usage

```
data(p7.16)
```

Format

This data frame contains the following columns:

- y negative logarithm of the mole fraction solubility
- x1 dispersion partial solubility
- x2 dipolar partial solubility
- x3 hydrogen bonding Hansen partial solubility

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

(1991) Journal of Pharmaceutical Sciences 80, 971-977.

```
data(p7.16)
pairs(p7.16)
```

p7.17

Data Set for Problem 7-17

Description

The p7.17 data frame has 6 observations on vapor pressure of water at various temperatures. This data set is the same as p7.15 which was used for exercise 7-15 in the third edition of MPV.

Usage

```
data(p7.17)
```

Format

This data frame contains the following columns:

- y vapor pressure (mm Hg)
- x temperature (degrees Celsius)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
y.lm <- lm(y \sim x, data=p7.17)

plot(y \sim x, data=p7.17)

abline(coef(y.lm))

plot(y.lm, which=1)
```

p7.18

Data Set for Problem 7-18

Description

The p7.18 data frame has 26 observations on the observed mole fraction solubility of a solute at a constant temperature. This data set is the same as p7.16 which was for problem 7-16 in the third edition of MPV.

Usage

```
data(p7.18)
```

Format

This data frame contains the following columns:

- y negative logarithm of the mole fraction solubility
- x1 dispersion partial solubility
- x2 dipolar partial solubility
- x3 hydrogen bonding Hansen partial solubility

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

(1991) Journal of Pharmaceutical Sciences 80, 971-977.

Examples

```
pairs(p7.18)
```

p7.19

Data Set for Problem 7-19

Description

The p7.19 data frame has 10 observations on the concentration of green liquor and paper machine speed from a kraft paper machine.

Usage

```
data(p7.19)
```

Format

This data frame contains the following columns:

- y green liquor (g/l)
- x paper machine speed (ft/min)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

(1986) Tappi Journal.

Examples

```
data(p7.19)
y.lm <- lm(y \sim x + I(x^2), data=p7.19)
summary(y.lm)
```

p7.2

Data Set for Problem 7-2

Description

The p7.2 data frame has 10 observations on solid-fuel rocket propellant weight loss.

Usage

```
data(p7.2)
```

Format

This data frame contains the following columns:

- x months since production
- y weight loss (kg)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
 \begin{array}{l} \text{data}(\text{p7.2}) \\ \text{y.lm} \leftarrow \text{lm}(\text{y} \sim \text{x} + \text{I}(\text{x}^2), \text{data=p7.2}) \\ \text{summary}(\text{y.lm}) \\ \text{plot}(\text{y} \sim \text{x}, \text{data=p7.2}) \\ \end{array}
```

p7.20

Data Set for Problem 7-20

Description

The p7.20 data frame has 10 observations on the concentration of green liquor and paper machine speed from a kraft paper machine. This data set is the same as p7.19 which was used in problem 7.19 of the third edition of MPV.

Usage

```
data(p7.20)
```

Format

This data frame contains the following columns:

```
y green liquor (g/l)x paper machine speed (ft/min)
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

```
(1986) Tappi Journal.
```

Examples

```
data(p7.20)
y.lm <- lm(y \sim x + I(x^2), data=p7.20)
summary(y.lm)
```

p7.4

Data Set for Problem 7-4

Description

The p7.4 data frame has 12 observations on two variables.

Usage

```
data(p7.4)
```

Format

This data frame contains the following columns:

```
x a numeric vector
```

y a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(p7.4)
y.lm <- lm(y \sim x + I(x^2), data = p7.4)
summary(y.lm)
```

p7.6

Data Set for Problem 7-6

Description

The p7.6 data frame has 12 observations on softdrink carbonation.

Usage

```
data(p7.6)
```

Format

This data frame contains the following columns:

- y carbonation
- x1 temperature
- x2 pressure

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p7.6)
y.lm <- lm(y \sim x1 + I(x1^{\circ}2) + x2 + I(x2^{\circ}2) + I(x1^{\circ}x2), data=p7.6)
summary(y.lm)
```

p8.11

p8.11

Data Set for Problem 8-11

Description

The p8.11 data frame has 25 observations on the tensile strength of synthetic fibre used for men's shirts.

Usage

```
data(p8.11)
```

Format

This data frame contains the following columns:

```
y tensile strength
```

percent percentage of cotton

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Montgomery (2001)

Examples

```
data(p8.11)
y.lm <- lm(y ~ percent, data=p8.11)
model.matrix(y.lm)</pre>
```

p8.16

Data Set for Problem 8-16

Description

The p8.16 data frame has 17 observations on 4 variables.

Usage

```
data(p8.16)
```

p8.3

Format

This data frame contains the following columns:

Location numeric

INHIBIT numeric

UVB numeric

SURFACE character

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

Smith, R. C. et al., "Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antartic waters," Science, 255, 952-957, 1992.

p8.3

Data Set for Problem 8-3

Description

The p8.3 data frame has 25 observations on delivery times taken by a vending machine route driver.

Usage

```
data(p8.3)
```

Format

This data frame contains the following columns:

- y delivery time (in minutes)
- x1 number of cases of product stocked
- x2 distance walked by route driver

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(p8.3)
pairs(p8.3)
```

*p*9.10

p9.10

Data Set for Problem 9-10

Description

The p9.10 data frame has 31 observations on the rut depth of asphalt pavements prepared under different conditions.

Usage

```
data(p9.10)
```

Format

This data frame contains the following columns:

- y change in rut depth/million wheel passes (log scale)
- **x1** viscosity (log scale)
- x2 percentage of asphalt in surface course
- x3 percentage of asphalt in base course
- x4 indicator
- x5 percentage of fines in surface course
- x6 percentage of voids in surface course

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Gorman and Toman (1966)

```
data(p9.10)
pairs(p9.10)
```

66 PRESS

pathoeg

Pathological Example

Description

Artificial regression data which causes stepwise regression with AIC to produce a highly non-parsimonious model. The true model used to simulate the data has only one real predictor (x8).

Usage

pathoeg

Format

This data frame contains the following columns:

- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- x4 a numeric vector
- x5 a numeric vector
- x6 a numeric vector
- x7 a numeric vector
- x8 a numeric vector
- x9 a numeric vector

y a numeric vector

PRESS

PRESS statistic

Description

Computation of Allen's PRESS statistic for an lm object.

Usage

PRESS(x)

Arguments

Χ

An 1m object

qqANOVA 67

Value

Allen's PRESS statistic.

Author(s)

W.J. Braun

See Also

1m

Examples

```
data(p4.18)
attach(p4.18)
y.lm <- lm(y ~ x1 + I(x1^2))
PRESS(y.lm)
detach(p4.18)</pre>
```

qqANOVA

QQ Plot for Analysis of Variance

Description

This function is used to display the weight of the evidence against null main effects in data coming from a 1 factor design, using a QQ plot. In practice this method is often called via the function GANOVA.

Usage

```
qqANOVA(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
   ylab = deparse(substitute(y)), ...)
```

Arguments

```
    x numeric vector of errors
    y numeric vector of scaled responses
    plot.it logical vector indicating whether to plot or not
    xlab character, x-axis label
    ylab character, y-axis label
    any other arguments for the plot function
```

Value

A QQ plot is drawn.

Author(s)

W. John Braun

68 quadline

quadline

Quadratic Overlay

Description

Overlays a quadratic curve to a fitted quadratic model.

Usage

```
quadline(lm.obj, ...)
```

Arguments

```
lm.objA lm object (a quadratic fit)...Other arguments to the lines function; e.g. col
```

Value

The function superimposes a quadratic curve onto an existing scatterplot.

Author(s)

W.J. Braun

See Also

1m

```
data(p4.18)
attach(p4.18)
y.lm <- lm(y ~ x1 + I(x1^2))
plot(x1, y)
quadline(y.lm)
detach(p4.18)</pre>
```

Qyplot 69

Qyplot Analysis of Variance Plot for Regression

Description

This function analyzes regression data graphically. It allows visualization of the usual F-test for significance of regression.

Usage

```
Qyplot(X, y, plotIt=TRUE, sortTrt=FALSE, type="hist", includeIntercept=TRUE, labels=FALSE)
```

Arguments

X The design matrix.

y A numeric vector containing the response.

plotIt Logical: if TRUE, a graph is drawn.

sortTrt Logical: if TRUE, an attempt is made at sorting the predictor effects in descend-

ing order.

type "QQ" or "hist"

includeIntercept

Logical: if TRUE, the intercept effect is plotted; otherwise, it is omitted from

the plot.

labels logical: if TRUE, names of predictor variables are used as labels; otherwise, the

design matrix column numbers are used as labels

Value

A QQ-plot or a histogram and rugplot, or a list if plotIt=FALSE

Author(s)

W. John Braun

Source

Braun, W.J. 2013. Regression Analysis and the QR Decomposition. Preprint.

```
# Example 1
X <- p4.18[,-4]
y <- p4.18[,4]
Qyplot(X, y, type="hist", includeIntercept=FALSE)
title("Evidence of Regression in the Jojoba Oil Data")
# Example 2
set.seed(4571)</pre>
```

70 radon

```
Z <- matrix(rnorm(400), ncol=10)</pre>
A <- matrix(rnorm(81), ncol=9)
simdata \leftarrow data.frame(Z[,1], crossprod(t(Z[,-1]),A))
names(simdata) \leftarrow c("y", paste("x", 1:9, sep=""))
Qyplot(simdata[,-1], simdata[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in Simulated Data Set")
# Example 3
Qyplot(table.b1[,-1], table.b1[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in NFL Data Set")
# An example where stepwise AIC selects the complement
# of the set of variables that are actually in the true model:
X \leftarrow pathoeg[,-10]
y <- pathoeg[,10]
par(mfrow=c(2,2))
Qyplot(X, y)
Qyplot(X, y, sortTrt=TRUE)
Qyplot(X, y, type="QQ")
Qyplot(X, y, sortTrt=TRUE, type="QQ")
X \leftarrow table.b1[,-1] # NFL data
y <- table.b1[,1]</pre>
Qyplot(X, y)
```

radon

Radon Release

Description

Percentage of radon from water released in showers with orifices of various diameters. Four replicates were obtained, but it should be noted that the temperatures for the replicates (in degrees Celsius) are 21, 30, 38, and 46, respectively. This information should really be accounted for in any serious analysis of the data.

Usage

```
data("radon")
```

Format

A data frame with 15 observations on the following 2 variables.

diameter shower orifice diameter in mm

rep 1 percentage radon released in first run

rep 2 percentage radon released in second run

rep 3 percentage radon released in third run

rep 4 percentage radon released in fourth run

rectangles 71

Source

Hazin, C.A. and Eichholz, G.G. (1992) Influence of Water Temperature and Shower Head Orifice Size on the Release of Radon During Showering, Environment International, 18, 363-369.

rectangles

Length Measurements on Rectangular Objects

Description

Observations of heights, widths and diagonal lengths of several rectangular objects, such as books, photographs, and so on were measured. Only the data in MPV versions 1.62 and later can be trusted; there were errors in the third column in previous versions.

Usage

rectangles

Format

A data frame with 51 observations on the following 4 variables.

h numeric, heights in centimeters

w numeric, widths in centimeters

d numeric, diagonal lengths in centimeters

index numeric, sum of squares of heights and widths

```
x <- sqrt(rectangles$index)
y <- rectangles$d
y.lp <- locpoly(x, y, bandwidth=dpill(x,y), degree=1)
plot(y ~ x)
lines(y.lp, col=2, lty=2)
abline(0,1) # y = x + measurement error
plot(y.lp$y - y.lp$x, type="l", col=2)</pre>
```

72 seismictimings

rftest

Pseudorandom Number Testing via Random Forest

Description

Given a sequence of pseudorandom numbers, this function constructs a random forest prediction model for successive values, based on previous values up to a given lag. The ability of the random forest model to predict future values is inversely related to the quality of the sequence as an approximation to locally random numbers.

Usage

```
rftest(u, m=5)
```

Arguments

u numeric, a vector of pseudorandom numbers to test

m numeric, number of lags to test

Value

Side effect is a two way layout of graphs showing effectiveness of prediction on a training and a testing subset of data. Good predictions indicate a poor quality sequence.

Author(s)

W. John Braun

Examples

```
x <- runif(200)
rftest(x, m = 4)</pre>
```

seismictimings

Seismic Timing Data

Description

The seismictimings data frame has 504 rows and 3 columns. Thickness of a layer of Alberta substratum as measured by several transects of geophones.

Usage

seismictimings

softdrink 73

Format

This data frame contains the following columns:

- x longitudinal coordinate of geophone.
- y latitudinal coordinate of geophone.
- **z** time for signal to pass through substratum.

Examples

```
plot(y ~ x, data = seismictimings)
```

softdrink

Softdrink Data

Description

The softdrink data frame has 25 rows and 3 columns.

Usage

```
data(softdrink)
```

Format

This data frame contains the following columns:

- y a numeric vector
- x1 a numeric vector
- x2 a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(softdrink)
```

74 stain

solar

Solar Data

Description

The solar data frame has 29 rows and 6 columns.

Usage

```
data(solar)
```

Format

This data frame contains the following columns:

```
total.heat.flux a numeric vector insolation a numeric vector focal.pt.east a numeric vector focal.pt.south a numeric vector focal.pt.north a numeric vector time.of.day a numeric vector
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(solar)
```

stain

Stain Removal Data

Description

Data on an experiment to remove ketchup stains from white cotton fabric by soaking the stained fabric in one of five substrates for one hour. Remaining stains were scored visually and subjectively according to a 6-point scale (0 = completely clean, 5 = no change) The stain data frame has 15 rows and 2 columns.

Usage

```
data(stain)
```

Format

This data frame contains the following columns:

treatment a factor
response a numeric vector

Examples

data(stain)

table.b1

Table B1

Description

The table.b1 data frame has 28 observations on National Football League 1976 Team Performance.

Usage

```
data(table.b1)
```

Format

This data frame contains the following columns:

- y Games won in a 14 game season
- x1 Rushing yards
- x2 Passing yards
- x3 Punting average (yards/punt)
- x4 Field Goal Percentage (FGs made/FGs attempted)
- x5 Turnover differential (turnovers acquired turnovers lost)
- x6 Penalty yards
- x7 Percent rushing (rushing plays/total plays)
- x8 Opponents' rushing yards
- x9 Opponents' passing yards

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(table.b1)
attach(table.b1)
y.lm <- lm(y ~ x2 + x7 + x8)
summary(y.lm)
# over-all F-test:
y.null <- lm(y ~ 1)
anova(y.null, y.lm)
# partial F-test for x7:
y7.lm <- lm(y ~ x2 + x8)
anova(y7.lm, y.lm)
detach(table.b1)</pre>
```

table.b10

Table B10

Description

The table .b10 data frame has 40 observations on kinematic viscosity of a certain solvent system.

Usage

```
data(table.b10)
```

Format

This data frame contains the following columns:

- **x1** Ratio of 2-methoxyethanol to 1,2-dimethoxyethane
- x2 Temperature (in degrees Celsius)
- y Kinematic viscosity (.000001 m2/s

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Viscosimetric Studies on 2-Methoxyethanol + 1, 2-Dimethoxyethane Binary Mixtures from -10 to 80C. Canadian Journal of Chemical Engineering, 75, 494-501.

```
data(table.b10)
attach(table.b10)
y.lm <- lm(y ~ x1 + x2)
summary(y.lm)
detach(table.b10)</pre>
```

table.b11 77

table.b11

Table B11

Description

The table.b11 data frame has 38 observations on the quality of Pinot Noir wine.

Usage

```
data(table.b11)
```

Format

This data frame contains the following columns:

Clarity a numeric vector

Aroma a numeric vector

Body a numeric vector

Flavor a numeric vector

Oakiness a numeric vector

Quality a numeric vector

Region a numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
data(table.b11)
attach(table.b11)
Quality.lm <- lm(Quality ~ Clarity + Aroma + Body + Flavor + Oakiness +
factor(Region))
summary(Quality.lm)
detach(table.b11)</pre>
```

table.b12

Table B12

Description

The table.b12 data frame has 32 rows and 6 columns.

Usage

```
data(table.b12)
```

Format

This data frame contains the following columns:

```
temp a numeric vector
soaktime a numeric vector
soakpct a numeric vector
difftime a numeric vector
diffpct a numeric vector
pitch a numeric vector
```

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(table.b12)
```

table.b13

Table B13

Description

The table . b13 data frame has 40 observations on 7 variables concerning jet turbine engine thrust.

Usage

```
data(table.b13)
```

table.b14 79

Format

This data frame contains the following columns:

- y a numeric vector representing thrust
- x1 a numeric vector representing primary speed of rotation
- x2 a numeric vector representing secondary speed of rotation
- x3 a numeric vector representing fuel flow rate
- x4 a numeric vector representing pressure
- x5 a numeric vector representing exhaust temperature
- x6 a numeric vector representing ambient temperature at time of test

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

data(table.b13)

table.b14

Table B14

Description

The table.b14 data frame has 25 observations on the transient points of an electronic inverter.

Usage

```
data(table.b14)
```

Format

This data frame contains the following columns:

- x1 width of the NMOS Device
- x2 length of the NMOS Device
- x3 width of the PMOS Device
- x4 length of the PMOS Device
- x5 a numeric vector
- y transient point of PMOS-NMOS Inverters

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(table.b14)

y.lm \leftarrow lm(y \sim x1 + x2 + x3 + x4, data=table.b14)

plot(y.lm, which=1)
```

table.b15

Table B15 - Air Pollution and Mortality Data

Description

The table.b15 data frame has 60 observations on the mortality, environment, and demographic variables for a sample of American cities.

Usage

```
data(table.b15)
```

Format

This data frame contains the following columns:

City character vector

Mort numeric vector, age-adjusted mortality from all causes per 100000

Precip numeric vector, precipitation in inches

Educ numeric vector, median number of school years completed

Nonwhite numeric vector, percentage of 1960 population that is nonwhite

Nox numeric vector, relative pollution potential of nitrous oxides

SO2 numeric vector, relative pollution potential of sulfur dioxide

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

References

McDonald, G. C. and Ayers, J.A. [1978], "Some applications of Chernuff faces: A technique for graphically representing multivariate data", in Graphical Representation of Multivariate Data, Academic Press, New York.

```
data(table.b15)
pairs(table.b15[,-1])
```

table.b16

Table B16 Data Set

Description

The table. b16 data frame has 38 observations on 6 variables.

Usage

```
data(table.b16)
```

Format

This data frame contains the following columns:

Country character

LifeExp numeric

People.per.TV numeric

People.per.Dr numeric

LifeExpMale numeric

LifeExpFemale numeric

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

table.b17

Table B17

Description

The table.b17 data frame has 25 observations on 5 variables.

Usage

```
data(table.b17)
```

Format

This data frame contains the following columns:

Satisfaction numeric vector

Age numeric vector

Severity numeric vector

Surgical.Medical numeric vector

Anxiety numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
pairs(table.b17)
```

table.b18

Table B18

Description

The table. b18 data frame has 16 observations on 9 variables.

Usage

```
data(table.b18)
```

Format

This data frame contains the following columns:

- y numeric vector
- x1 numeric vector
- x2 numeric vector
- x3 numeric vector
- x4 numeric vector
- x5 numeric vector
- x6 numeric vector
- x7 numeric vector
- x8 numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

```
pairs(table.b18)
```

table.b19 83

table.b19

Table B19

Description

The table.b19 data frame has 32 observations on 11 variables.

Usage

```
data(table.b19)
```

Format

This data frame contains the following columns:

- y numeric vector
- x1 numeric vector
- x2 numeric vector
- x3 numeric vector
- x4 numeric vector
- x5 numeric vector
- x6 numeric vector
- x7 numeric vector
- x8 numeric vector
- x9 numeric vector
- x10 numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

```
pairs(table.b19)
```

table.b2

Table B2

Description

The table.b2 data frame contains 29 observations on 6 variables related to a solar thermal energy test.

Usage

```
data(table.b2)
```

Format

This data frame contains the following columns:

- y a numeric vector measuring total heat flux (kwatts)
- x1 a numeric vector measuring insulation (watts/m^2)
- x2 a numeric vector measuring position of focal point in east direction (inches)
- x3 a numeric vector measuring position of focal point in south direction (inches)
- x4 a numeric vector measuring position of focal point in north direction (inches)
- x5 a numeric vector representing time of day

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
data(table.b2)
pairs(table.b2)
```

table.b20

Table B20

Description

The table.b20 data frame has 18 observations on 6 variables.

Usage

```
data(table.b20)
```

Format

This data frame contains the following columns:

- x1 numeric vector
- x2 numeric vector
- x3 numeric vector
- x4 numeric vector
- x5 numeric vector
- y numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
pairs(table.b20)
```

table.b22

Table B22 - Baseball Data

Description

The table.b22 data frame has 30 observations on 12 variables.

Usage

data(table.b22)

Format

This data frame contains the following columns:

Team character vector

Wins numeric vector

Batter.Age numeric vector

Runs numeric vector

HRs numeric vector

SLG numeric vector

Pitcher.Age numeric vector

ERA numeric vector

SO numeric vector

HRA numeric vector

RA.G numeric vector

Errors numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
pairs(table.b22[,-1])
```

table.b23

Table B23

Description

The table. b23 data frame has 59 observations on 8 variables.

Usage

```
data(table.b23)
```

Format

This data frame contains the following columns:

Player character vector

Per numeric vector

Lane.Agility.Time..Seconds. numeric vector

Shuttle.Run..Seconds. numeric vector

Three.Quarter.Sprint..Seconds. numeric vector

Standing. Vertical. Leap.. Inches. numeric vector

Max. Vertical. Leap.. Inches. numeric vector

Position character vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

```
pairs(table.b23[,-c(1, 8)])
```

table.b24 87

table.b24

Table B24 - Rental Data

Description

The table.b24 data frame has 51 observations on 6 variables.

Usage

```
data(table.b24)
```

Format

This data frame contains the following columns:

City character vector

Population numeric vector

X95th.Percentile.Income numeric vector

Median.Sale.Price numeric vector

Median.Price.sqft numeric vector

Rental.Price numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
pairs(table.b24[,-1])
```

table.b25

Table B25 Golf Data

Description

The table. b25 data frame has 50 observations on 6 variables.

Usage

```
data(table.b25)
```

Format

This data frame contains the following columns:

Player character vector

Average.Score numeric vector

SG..Off.the.Tee numeric vector

SG..Approach.to.Green numeric vector

SG..Around.the.Green numeric vector

SG..Putting numeric vector

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2021) Introduction to Linear Regression Analysis. 6th Edition, John Wiley and Sons.

Examples

```
pairs(table.b25[,-1])
```

table.b3

Table B3

Description

The table.b3 data frame has observations on gasoline mileage performance for 32 different automobiles.

Usage

```
data(table.b3)
```

Format

This data frame contains the following columns:

- y Miles/gallon
- x1 Displacement (cubic in)
- x2 Horsepower (ft-lb)
- x3 Torque (ft-lb)
- x4 Compression ratio
- x5 Rear axle ratio
- **x6** Carburetor (barrels)
- x7 No. of transmission speeds
- x8 Overall length (in)
- x9 Width (in)
- x10 Weight (lb)
- **x11** Type of transmission (1=automatic, 0=manual)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Motor Trend, 1975

Examples

```
data(table.b3) attach(table.b3) y.lm <- lm(y \sim x1 + x6) summary(y.lm) # testing for the significance of the regression: y.null <- lm(y \sim 1) anova(y.null, y.lm) # 95% CI for mean gas mileage: predict(y.lm, newdata=data.frame(x1=275, x6=2), interval="confidence") # 95% PI for gas mileage: predict(y.lm, newdata=data.frame(x1=275, x6=2), interval="prediction") detach(table.b3)
```

table.b4

Table B4

Description

The table.b4 data frame has 24 observations on property valuation.

Usage

```
data(table.b4)
```

Format

This data frame contains the following columns:

- y sale price of the house (in thousands of dollars)
- **x1** taxes (in thousands of dollars)
- x2 number of baths
- x3 lot size (in thousands of square feet)
- x4 living space (in thousands of square feet)
- x5 number of garage stalls
- x6 number of rooms
- x7 number of bedrooms
- x8 age of the home (in years)
- x9 number of fireplaces

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Narula, S.C. and Wellington (1980) Prediction, Linear Regression and Minimum Sum of Relative Errors. Technometrics, 19, 1977.

Examples

```
data(table.b4)
attach(table.b4)
y.lm <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)
summary(y.lm)
detach(table.b4)</pre>
```

table.b5

Data Set for Table B5

Description

The table. b5 data frame has 27 observations on liquefaction.

Usage

```
data(table.b5)
```

Format

This data frame contains the following columns:

- y CO2
- x1 Space time (in min)
- x2 Temperature (in degrees Celsius)
- x3 Percent solvation
- x4 Oil yield (g/100g MAF)
- x5 Coal total
- x6 Solvent total
- x7 Hydrogen consumption

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

91 girls 4 girls 4 girls 4 girls 5 girls 5 girls 6 gir

References

(1978) Belle Ayr Liquefaction Runs with Solvent. Industrial Chemical Process Design Development, 17, 3.

Examples

```
data(table.b5)
attach(table.b5)
y.lm <- lm(y ~ x6 + x7)
summary(y.lm)
detach(table.b5)</pre>
```

table.b6

Data Set for Table B6

Description

The table. b6 data frame has 28 observations on a tube-flow reactor.

Usage

```
data(table.b6)
```

Format

This data frame contains the following columns:

- y Nb0Cl3 concentration (g-mol/l)
- x1 COCl2 concentration (g-mol/l)
- x2 Space time (s)
- x3 Molar density (g-mol/l)
- x4 Mole fraction CO2

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

(1972) Kinetics of Chlorination of Niobium oxychloride by Phosgene in a Tube-Flow Reactor. Industrial and Engineering Chemistry, Process Design Development, 11(2).

Examples

```
data(table.b6)
# Partial Solution to Problem 3.9
attach(table.b6)
y.lm <- lm(y ~ x1 + x4)
summary(y.lm)
detach(table.b6)</pre>
```

table.b7

Data Set for Table B7

Description

The table.b7 data frame has 16 observations on oil extraction from peanuts.

Usage

```
data(table.b7)
```

Format

This data frame contains the following columns:

```
x1 CO2 pressure (bar)
```

x2 CO2 temperature (in degrees Celsius)

x3 peanut moisture (percent by weight)

x4 CO2 flow rate (L/min)

x5 peanut particle size (mm)

y total oil yield

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Kilgo, M.B. An Application of Fractional Experimental Designs. Quality Engineering, 1, 19-23.

```
data(table.b7)
attach(table.b7)
# partial solution to Problem 3.11:
peanuts.lm <- lm(y ~ x1 + x2 + x3 + x4 + x5)
summary(peanuts.lm)
detach(table.b7)</pre>
```

table.b8

Table B8

Description

The table.b8 data frame has 36 observations on Clathrate formation.

Usage

```
data(table.b8)
```

Format

This data frame contains the following columns:

- **x1** Amount of surfactant (mass percentage)
- x2 Time (min)
- y Clathrate formation (mass percentage)

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Tanii, T., Minemoto, M., Nakazawa, K., and Ando, Y. Study on a Cool Storage System Using HCFC-14 lb Clathrate. Canadian Journal of Chemical Engineering, 75, 353-360.

```
data(table.b8)
attach(table.b8)
clathrate.lm <- lm(y ~ x1 + x2)
summary(clathrate.lm)
detach(table.b8)</pre>
```

table.b9

Data Set for Table B9

Description

The table. b9 data frame has 62 observations on an experimental pressure drop.

Usage

```
data(table.b9)
```

Format

This data frame contains the following columns:

- x1 Superficial fluid velocity of the gas (cm/s)
- x2 Kinematic viscosity
- x3 Mesh opening (cm)
- **x4** Dimensionless number relating superficial fluid velocity of the gas to the superficial fluid velocity of the liquid
- y Dimensionless factor for the pressure drop through a bubble cap

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

References

Liu, C.H., Kan, M., and Chen, B.H. A Correlation of Two-Phase Pressure Drops in Screen-Plate Bubble Column. Canadian Journal of Chemical Engineering, 71, 460-463.

```
data(table.b9)
attach(table.b9)
# Partial Solution to Problem 3.13:
y.lm <- lm(y ~ x1 + x2 + x3 + x4)
summary(y.lm)
detach(table.b9)</pre>
```

table 5.2 95

table5.2

Table 5.2

Description

The table5.2 data frame has 53 observations on energy usage (KWH) and corresponding demand (KW) at a sample of residences. This is the Electric Utility Data of Example 5.1.

Usage

```
data(table5.2)
```

Format

This data frame contains the following columns:

Customer a numeric vector of customer IDs

- x a numeric vector of energy usage values
- y a numeric vector of demand values

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
plot(y \sim x, xlab = "Usage", ylab = "Demand", data = table5.2)
anova(lm(y \sim x, data = table5.2)) # Note the typo in Table 5.3 for SS Regression
```

table5.5

Table 5.5

Description

The table5.5 data frame has 25 observations on wind velocity (mph) and corresponding DC output from a windmill turbine. This is the Windmill Data of Example 5.2.

Usage

```
data(table5.5)
```

Format

This data frame contains the following columns:

v numeric vector of velocities

DC numeric vector of DC output values

96 table 5.9

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

Examples

```
plot(DC \sim v, data = table5.5)
```

table5.9

Table 5.9

Description

The table 5.9 data frame has 30 observations on wind income (dollars) and corresponding advertising expense. This is the Restaurant Food Sales Data of Example 5.5.

Usage

```
data(table5.9)
```

Format

This data frame contains the following columns:

- y numeric vector of incomes
- x numeric vector of advertising expenses

Source

Montgomery, D.C., Peck, E.A., and Vining, C.G. (2001) Introduction to Linear Regression Analysis. 3rd Edition, John Wiley and Sons.

```
plot(y ~ x, xlab = "expense", ylab = "income", data = table5.9)
# carrying out the calculations in the example to obtain the regression
# weights:
indices <- rep(1:10, c(3, 2, 1, 5, 5, 1, 6, 2, 1, 4))
xbar <- sapply(split(table5.9$x, indices), mean)
yvarhat <- sapply(split(table5.9$y, indices), var)
xbar <- xbar[!is.na(yvarhat)]
yvarhat <- yvarhat[!is.na(yvarhat)]
eg55.lm <- lm(yvarhat ~ xbar)
wts <- 1/predict(eg55.lm, newdata = data.frame(xbar = table5.9$x))
# the values are different from those of the textbook; there seems
# to be some problem with either the calculations or the recorded values</pre>
```

tarimage 97

tarimage target image

Description

The tarimage is a list. Most of the values are 0, but there are small regions of 1's.

Usage

```
data(tarimage)
```

Format

This list contains the following elements:

x a numeric vector having 101 elements.

y a numeric vector having 101 elements.

xy a numeric matrix having 101 rows and columns

Examples

```
with(tarimage, image(x, y, xy))
```

tplot

Graphical t Test for Regression

Description

This function analyzes regression data graphically. It allows visualization of the usual t-tests for individual regression coefficients.

Usage

```
tplot(X, y, plotIt=TRUE, type="hist", includeIntercept=TRUE)
```

Arguments

X The design matrix.

y A numeric vector containing the response.

plotIt Logical: if TRUE, a graph is drawn.

type "QQ" or "hist"

includeIntercept

Logical: if TRUE, the intercept effect is plotted; otherwise, it is omitted from

the plot.

98 tree.sample

Value

A QQ-plot or a histogram and rugplot, or a list if plotIt=FALSE

Author(s)

W. John Braun

Examples

```
# Jojoba oil data set
X \leftarrow p4.18[,-4]
y \leftarrow p4.18[,4]
tplot(X, y, type="hist", includeIntercept=FALSE)
title("Tests for Individual Coefficients in the Jojoba Oil Regression")
# Simulated data set where none of the predictors are in the true model:
set.seed(4571)
Z <- matrix(rnorm(400), ncol=10)</pre>
A <- matrix(rnorm(81), ncol=9)
simdata <- data.frame(Z[,1], crossprod(t(Z[,-1]),A))</pre>
names(simdata) \leftarrow c("y", paste("x", 1:9, sep=""))
X <- simdata[,-1]</pre>
y <- simdata[,1]</pre>
tplot(X, y, type="hist", includeIntercept=FALSE)
title("Tests for Individual Coefficients for the Simulated Data Set")
# NFL Data set:
X \leftarrow table.b1[,-1]
y <- table.b1[,1]</pre>
tplot(X, y, type="hist", includeIntercept=FALSE)
title("Tests for Individual Coefficients for the NFL Data Set")
# Simulated Data set where x8 is the only predictor in the true model:
X \leftarrow pathoeg[,-10]
y <- pathoeg[,10]
par(mfrow=c(2,2))
tplot(X, y)
tplot(X, y, type="QQ")
```

tree.sample

Sample of Loblolly Pine Data

Description

A random sample of observations taken from the 'Loblolly' data frame, one per Seed.

Usage

```
data("tree.sample")
```

Uplot 99

Format

A data frame with 12 observations on the following 2 variables.

```
height tree heights (ft) age tree ages (yr)
```

Uplot

Plot of Multipliers in Regression ANOVA Plot

Description

This function graphically displays the coefficient multipliers used in the Regression Plot for the given predictor.

Usage

```
Uplot(X.qr, Xcolumn = 1, ...)
```

Arguments

X.qr The design matrix or the QR decomposition of the design matrix.

Xcolumn The column(s) of the design matrix under study; this can be either integer valued

or a character string.

... Additional arguments to barchart.

Value

A bar plot is displayed.

Author(s)

W. John Braun

```
# Jojoba oil data set
X <- p4.18[,-4]
Uplot(X, 1:4)
# NFL data set; see GFplot result first
X <- table.b1[,-1]
Uplot(X, c(2,3,9))
# In this example, x8 is the only predictor in
# the true model:
X <- pathoeg[,-10]
y <- pathoeg[,10]
pathoeg.F <- GFplot(X, y, plotIt=FALSE)
Uplot(X, "x8")
Uplot(X, 9) # same as above</pre>
```

100 windWin80

```
Uplot(pathoeg.F$QR, 9) # same as above
X <- table.b1[,-1]
Uplot(X, c("x2", "x3", "x9"))</pre>
```

widths

Measurements of the Widths of Book Covers

Description

Measurements in centimeters of the widths of a random collection of books.

Usage

widths

Format

A numeric vector of length 24.

windWin80

Winnipeg Wind Speed

Description

The windWin80 data frame has 366 observations on midnight and noon windspeed at the Winnipeg International Airport for the year 1980.

Usage

```
data(windWin80)
```

Format

This data frame contains the following columns:

h0 a numeric vector containing the wind speeds at midnight.

h12 a numeric vector containing the wind spees at the following noon.

```
data(windWin80)
ts.plot(windWin80$h12^2)
```

Wpgtemp 101

Wpgtemp

Winnipeg Maximum Temperatures

Description

The Wpgtemp data frame has 7671 observations on daily maximum temperatures at the Winnipeg International Airport for the years 1960 through 1980.

Usage

```
data(Wpgtemp)
```

Format

This data frame contains the following columns:

temperature A numeric vector containing the temperatures in degrees Celsius

day A numeric vector denoting the observation date in numbers of days after December 31, 1959

Source

Environment Canada

Examples

summary(Wpgtemp)

wxNWO

Weather Observations for Three Stations in Northwestern Ontario

Description

Daily observations taken from 2012 through 2021 on temperature, rain, snow and wind for Fort Frances, Kenora and Dryden, Ontario.

Usage

wxNWO

102 wxNWO

Format

A data frame with 10959 observations on the following 31 variables.

Longitude numeric

Latitude numeric

Station.Name character

Climate.ID numeric

Date.Time numeric

Year numeric

Month numeric

Day numeric

Data.Quality numeric

Max.Temp numeric

Max.Temp.Flag numeric

Min.Temp numeric

Min.Temp.Flag numeric

Mean.Temp numeric

Mean.Temp.Flag numeric

Heat.Deg.Days numeric

Heat.Deg.Days.Flag numeric

Cool.Deg.Days numeric

Cool.Deg.Days.Flag numeric

Total.Rain numeric

Total.Rain.Flag numeric

Total.Snow numeric

Total.Snow.Flag numeric

Total.Precip numeric

Total.Precip.Flag numeric

Snow.on.Ground numeric

Snow.on.Ground.Flag numeric

Dir.of.Max.Gust numeric

Dir.of.Max.Gust.Flag numeric

Speed.of.Max.Gust numeric

Speed.of.Max.Gust.Flag numeric

Source

Environment Canada

Index

* datasets		p2.18, 39
BioOxyDemand	, 7	p2.7, 40
bp, 7		p2.9,41
cement, 8		p4.18, 42
cigbutts, 9		p4.19, 43
earthquake, 9		p4.20,44
fires, 10		p5.1,45
gasdata, 11		p5.10,45
Juliet, 15		p5.11,46
lengthguesse	s, 16	p5.12, 47
lesions, 17		p5.13,48
motor, 18		p5.2,49
noisyimage, 1	9	p5.21, 49
oldwash, 20		p5.22, 50
p11.12, 21		p5.23, 51
p11.15, 22		p5.24, <u>51</u>
p12.11, 22		p5.3, 52
p12.12, 23		p5.4, 53
p12.16, 24		p5.5, 5 4
p12.8, 25		p7.1, 54
p13.1, 25		p7.11, 55
p13.16, 26		p7.13, 56
p13.2, 27		p7.15, 5 6
p13.20, 27		p7.16, 57
p13.3, 28		p7.17, 58
p13.4, 29		p7.18, 58
p13.5, 29		p7.19, 5 9
p13.6, 30		p7.2,60
p13.7, 31		p7.20,61
p14.1, 32		p7.4,61
p14.2, 32		p7.6, 62
p15.4, 33		p8.11, 63
p2.10, 34		p8.16, 63
p2.12, 34		p8.3,64
p2.13, 35		p9.10,65
p2.14, 36		pathoeg, 66
p2.15, 37		radon, 70
p2.16, 38		rectangles, 71
p2.17, 39		seismictimings, 72

INDEX

softdrink, 73 solar, 74 stain, 74 table.b1, 75	BCLPBias, 5 LPBias, 18 PRESS, 66 quadline, 68
table.b10,76 table.b11,77 table.b12,78 table.b13,78	BCCIPlot, 4 BCLPBias, 5 BiasVarPlot, 6
table.b14,79 table.b15,80	BioOxyDemand, 7 bp, 7
table.b16,81 table.b17,81 table.b18,82	cement, 8 cigbutts, 9
table.b19, 83 table.b2, 84	earthquake, 9 eg2.9 (p2.9), 41
table.b20,84 table.b22,85	fires, 10
table.b23,86 table.b24,87 table.b25,87	GANOVA, 11 gasdata, 11
table.b3, 88 table.b4, 89	GFplot, 12 GRegplot, 13
table.b5, 90 table.b6, 91 table.b7, 92	Juliet, 15
table.b7, 92 table.b8, 93 table.b9, 94	lengthguesses, 16 lesions, 17 LPBias, 18
table5.2,95 table5.5,95	motor, 18
table5.9,96 tarimage,97 tree.sample,98	noisyimage, 19
widths, 100 windWin80, 100	oldwash, 20 p11.12, 21
Wpgtemp, 101 wxNWO, 101	p11.15, 22 p12.11, 22
* graphics BCCIPlot, 4 BiasVarPlot, 6	p12.12, 23 p12.16, 24 p12.8, 25
GANOVA, 11 GFplot, 12	p13.1, 25 p13.16, 26
GRegplot, 13 qqANOVA, 67 Qyplot, 69	p13.2, 27 p13.20, 27
rftest, 72 tplot, 97	p13.3, 28 p13.4, 29 p13.5, 29
Uplot, 99 * models	p13.6, 30 p13.7, 31

INDEX 105

p14.1, 32 p14.2, 32	quadline, 68 Qyplot, 69
p15.4, 33	
p2.10,34	radon, 70
p2.12,34	rectangles, 71
p2.13,35	rftest, 72
p2.14,36	
p2.15,37	seismictimings, 72
p2.16,38	softdrink, 73
p2.17,39	solar, 74
p2.18,39	stain, 74
p2.7, 40	table b1 75
p2.9,41	table.b1, 75
p4.18,42	table.b10,76
p4.19,43	table.b11,77
p4.20,44	table.b12,78
p5.1,45	table.b13,78
p5.10,45	table.b14,79
p5.11,46	table.b15,80
p5.12,47	table.b16,81
p5.13, 47, 48	table.b17,81
p5.2,49	table.b18,82
p5.21,49	table.b19,83
p5.22,50	table.b2,84
p5.23,51	table.b20,84
p5.24,51	table.b21 (cement), 8
p5.3, 52	table.b22,85
p5.4, 53	table.b23,86
p5.5, 54	table.b24,87
p7.1,54	table.b25,87
p7.11,55	table.b3,88
p7.13,56	table.b4,89
p7.15,56	table.b5, 90
p7.16,57	table.b6,91
p7.17,58	table.b7, 92
p7.18,58	table.b8,93
p7.19,59	table.b9,94
p7.2,60	table2.11 (p2.9), 41
p7.20,61	table5.2,95
p7.4,61	table5.5,95
p7.6, 62	table5.9,96
p8.11, 63	tarimage, <i>19</i> , 97
p8.16, 63	tplot, 97
p8.3, 64	tree.sample,98
p9.10, 65	Unlot 00
pathoeg, 66	Uplot, 99
PRESS, 66	v6p2.7 (p2.7), 40
, ••	· · · · · · · · · · · · · · · · · · ·
agANOVA, 67	widths, 100

106 INDEX

 $\begin{array}{l} \text{windWin80, } 100 \\ \text{Wpgtemp, } 101 \\ \text{wxNWO, } 101 \end{array}$