HASH TABLES

1. Introduction

2. DICTIONARY DATA TYPE

Definition 2.1. Let \mathcal{X} be a set of *items* and let \mathcal{U} be a set of *keys*. Consider an abstract data type D which dynamically stores a collection of pairs (k, x) where $k \in \mathcal{U}$ and $x \in \mathcal{X}$ in such a way that D does not store two pairs having the same key at the same time. Moreover, we assume that D supports the following operations.

INSERT(D,(k,x))

Adds pair (k, x) into D if there is no other pair stored in D with k as a first entry.

DELETE(D,k)

Removes a pair with *k* as a first entry from *D* if such pair is stored in *D*.

SEARCH(D,k)

Returns x if a pair (k, x) is stored in D. Otherwise returns nil.

An abstract data type with these properties and interface is called *an associative array* or *a dictionary*.

Definition 2.2. Let \mathcal{X} and \mathcal{U} be sets. *Dictionary problem for* \mathcal{X} *and* \mathcal{U} is the task of designing a dictionary with \mathcal{X} as the set of items and \mathcal{U} as the set of keys.

3. HASH FUNCTIONS

In this section we introduce the important notion of a hash function and we discuss some probabilistic properties of such functions.

Definition 3.1. Let \mathcal{U} be a set. A hash function is a mapping $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ where $m \in \mathbb{N}_+$.

Definition 3.2. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a hash function. *A collision* is a pair of keys $k_1, k_2 \in \mathcal{U}$ such that $k(k_1) = h(k_2)$.

Definition 3.3. Let *X* be a set and let $n \in \mathbb{N}_+$. Then a set

$$X^{\wedge n} = \left\{ (x_1, ..., x_n) \in X^n \mid \forall_{1 \le i < j \le n} \, x_i \ne x_j \right\}$$

is called the antisymmetric cartesian power of X.

Definition 3.4. Let \mathcal{U} be a measurable space. We consider $\mathcal{U}^{\wedge n}$ as the measurable subspace of the product space \mathcal{U}^n . Suppose that P is a probability distribution on $\mathcal{U}^{\wedge n}$. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a measurable hash function for some $m \in \mathbb{N}_+$. Assume that that

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l) = \frac{1}{m}$$

for every element $i \in \{1, ..., n\}$ and every $l \in \{0, 1, ..., m-1\}$. Then h is a simple uniform hashing with respect to P.

Example 3.5. Let $\mathcal{U} = [0, m]$ for some $m \in \mathbb{N}_+$. Then \mathcal{U} is a measurable space with respect to Borel algebra $\mathcal{B}([0, m])$. We define a hash function $h : \mathcal{U} \to \{0, 1, ..., m - 1\}$ by formula

$$h(x) = \lfloor x \rfloor$$

2 HASH TABLES

Then h is a simple uniform hashing with respect to the normalization of n-dimensional Lebesgue measure on $[0, m]^{\wedge n}$.

Example 3.6. Let $\mathcal{U} = \{0, 1, ..., m^2 - 1\}$ for some $m \in \mathbb{N}_+$. Then \mathcal{U} is a measurable space with respect to the power algebra $\mathcal{P}(\{0, 1, ..., m^2 - 1\})$. Consider $\mathcal{U}^{\wedge n}$ as a probability space with respect to the uniform distribution P. We define a hash function $h: \mathcal{U} \to \{0, 1, ..., m - 1\}$ by formula

$$h(x) = x \mod m$$

For $i \in \{1, ..., n\}$ and $l \in \{0, 1, ..., m-1\}$ we have

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l) = \frac{m \cdot (m^2 - 1) \cdot (m^2 - 2) \cdot ... \cdot (m^2 - n + 1)}{m^2 \cdot (m^2 - 1) \cdot ... \cdot (m^2 - n + 1)} = \frac{1}{m}$$

Thus h is a simple uniform hashing with respect to P.

4. HASH TABLES WITH CHAINING

In this section we present the solution to the dictionary problem and discuss its efficiency.

Definition 4.1. Let \mathcal{U} and \mathcal{X} be sets. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a hash function for some $m \in \mathbb{N}_+$. We consider an m-element array D_h such that $D_h[I]$ is a linked list storing values from $\mathcal{U} \times \mathcal{X}$ for every $I \in \{0, 1, ..., m-1\}$. We describe dictionary operations.

INSERT $(D_h, (k, x))$

Inserts pair (k, x) to the linked list $D_h[h(k)]$ as its new head.

DELETE (D_h, k)

Deletes a pair with first entry k from the linked list $D_h[h(k)]$.

 $SEARCH(D_h, k)$

Searches for the pair with the first entry k in the list $D_h[h(k)]$. If such pair is found, then returns its second entry. Otherwise returns nil.

Then D_h together with these operations is a solution of dictionary problem for \mathcal{U} and \mathcal{X} . We call it the hash table with collisions resolved by chaining for h.

Suppose that \mathcal{U} and \mathcal{X} are sets. Let $h: \mathcal{U} \to \{0,1,...,m-1\}$ be a hash function. Consider the hash table D_h . Fix $l \in \{0,1,...,m-1\}$ and $n \in \mathbb{N}_+$. Suppose that pairs $(k_1,x_1),...,(k_n,x_n)$ for $(k_1,...,k_n) \in \mathcal{U}^{\wedge n}$ and $x_1,...,x_n \in \mathcal{X}$ are consecutively inserted to initially empty D_h . After these sequence of insertions is performed the length of the linked list stored in $D_h[l]$ is equal to the cardinality of the set $\{i \in \{1,...,n\} \mid h(k_i) = l\}$. We denote the function

$$\mathcal{U}^{\wedge n}\ni\left(k_{1},...,k_{n}\right)\mapsto\left|\left\{i\in\left\{ 1,...,n\right\} \left|\,h(k_{i})=l\right.\right\}\right|\in\mathbb{N}$$

by coll₁.

Theorem 4.2. Let \mathcal{U} be a measurable space and let \mathcal{X} be a set. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a measurable hash function and fix $n \in \mathbb{N}_+$. Then the following assertions hold.

- **(1)** The function coll₁ is measurable for every $l \in \{0, 1, ..., m-1\}$.
- (2) If h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E}\operatorname{coll}_{l} = \int_{\mathcal{U}^{\wedge n}} \operatorname{coll}_{l} dP = \frac{n}{m}$$

for every l ∈ $\{0, 1, ..., m-1\}$.

Proof. Suppose that X_i is the indicator function of the measurable set

$$\left\{ \left(k_{1},...,k_{n}\right)\in\mathcal{U}^{\wedge n}\left|h(k_{i})=l\right.\right\}$$

HASH TABLES 3

Then

$$coll_l = \sum_{i=1}^n X_i$$

and this proves that coll_l is measurable. If in addition h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E} \operatorname{coll}_{l} = \mathbb{E} \left(\sum_{i=1}^{n} X_{i} \right) = \sum_{i=1}^{n} \mathbb{E} X_{i} = \sum_{i=1}^{n} P((k_{1}, ..., k_{n}) \in \mathcal{U}^{\wedge n} \mid h(k_{i}) = l) = \frac{n}{m}$$

Corollary 4.3. Let \mathcal{U} be a measurable space and let \mathcal{X} be a set. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a measurable hash function and fix $n \in \mathbb{N}_+$. Suppose that the following assertions hold.

- (1) h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$.
- (2) D_h is filled by sequence $(k_1, x_1), ..., (k_n, x_n)$ such that $(k_1, ..., k_n) \in \mathcal{U}^{\wedge n}$ is drawn with respect to P and $x_1, ..., x_n \in \mathcal{X}$.
- (3) Numbers n and m are proportional i.e. $\frac{n}{m} \in \frac{\mathcal{O}(m)}{m} \subseteq \mathcal{O}(1)$.

Then the expected time of all three dictionary operations for D_h is $\mathcal{O}(1)$.

Proof. Pick a key $k \in \mathcal{U}$. Then the operation SEARCH (D_h, k) takes at most $\operatorname{coll}_{h(k)}$ plus 1 elementary operations. According to Theorem 4.2 we derive that

$$1 + \mathbb{E}\operatorname{coll}_{h(k)} = 1 + \frac{n}{m} \in \mathcal{O}(1)$$

Thus the expected time of SEARCH(D_h , k) is $\mathcal{O}(1)$.