

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 July 2001 (05.07.2001)

PCT

(10) International Publication Number
WO 01/48192 A1

(51) International Patent Classification⁷: **C12N 15/11** (74) Agents: HAWKINS, Michael, Howard et al.; Baldwin Shelston Waters, P.O. Box 852, Wellington (NZ).

(21) International Application Number: PCT/NZ00/00256

(81) Designated States (*national*): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date:
21 December 2000 (21.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/171,678 23 December 1999 (23.12.1999) US
09/724,864 28 November 2000 (28.11.2000) US

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): GENESIS RESEARCH & DEVELOPMENT CORPORATION LIMITED [NZ/NZ]; 1 Fox Street, Parnell, Auckland (NZ).

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): WATSON, James, D. [NZ/NZ]; 769 Riddell Road, St Heliers, Auckland (NZ). MURISON, James, Greg [NZ/NZ]; 24 Calgary Street, Sandringham, Auckland (NZ).

WO 01/48192 A1

(54) Title: POLYNUCLEOTIDES, POLYPEPTIDES EXPRESSED BY THE POLYNUCLEOTIDES AND METHODS FOR THEIR USE

(57) Abstract: Novel polynucleotides including partial and extended sequences, and open reading frames, are provided, together with probes and primers, DNA constructs comprising the polynucleotides, biological materials and organisms incorporating the polynucleotides, polypeptides expressed by the polynucleotides, and methods for using the polynucleotides and polypeptides.

**POLYNUCLEOTIDES, POLYPEPTIDES EXPRESSED BY THE
POLYNUCLEOTIDES AND METHODS FOR THEIR USE**

5 Technical Field of the Invention

This invention relates to polynucleotides believed to be novel, including partial, extended and full length sequences, as well as probes and primers, genetic constructs comprising the polynucleotides, biological materials incorporating the polynucleotides, polypeptides expressed by the polynucleotides, and methods for 10 using the polynucleotides and polypeptides.

Background of the Invention

Sequencing of the genomes, or portions of the genomes, of numerous 15 biological materials, including humans, animals, microorganisms and various plant varieties, has been and is being carried out on a large scale. Polynucleotides identified using sequencing techniques may be partial or full-length genes, and may contain open reading frames, or portions of open reading frames, that encode 20 polypeptides. Putative polypeptides may be determined based on polynucleotide sequences. The sequencing data relating to polynucleotides thus represents valuable and useful information.

Polynucleotides may be analyzed for various degrees of novelty by comparing identified sequences to sequences published in various public domain databases, such as EMBL. Newly identified polynucleotides and putative 25 polypeptides may also be compared to polynucleotides and polypeptides contained in public domain information to ascertain homology to known polynucleotides and polypeptides. In this way, the degree of similarity, identity or homology of polynucleotides and polypeptides of unknown function may be determined relative to polynucleotides and polypeptides having known functions.

Information relating to the sequences of isolated polynucleotides may be 30 used in a variety of ways. Specified polynucleotides having a particular sequence may be isolated, or synthesized, for use in *in vivo* or *in vitro* experimentation as

probes or primers. Alternatively, collections of sequences of isolated polynucleotides may be stored using magnetic or optical storage medium, and analyzed or manipulated using computer hardware and software, as well as other types of tools.

5

Summary of the Invention

The present invention relates to polynucleotide sequences identified in the attached Sequence Listing as SEQ ID NOS: 1-35, variants of those sequences, extended sequences comprising the sequences set out in SEQ ID NOS: 1-35 and 10 their variants, probes and primers corresponding to the sequences set out in SEQ ID NOS: 1-35 and their variants, polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NOS: 1-35 (x -mers), and extended sequences comprising portions of the sequences set out in SEQ ID NOS: 1-35, all of which are referred to herein, 15 collectively, as "polynucleotides of the present invention."

The polynucleotide sequences identified as SEQ ID NOS: 1-35 were derived from mammalian sources, namely, from mouse airways induced eosinophilia, rat dermal papilla and mouse stromal cells. Some of the polynucleotides of the present invention are "partial" sequences, in that they do 20 not represent a full-length gene encoding a full-length polypeptide. Such partial sequences may be extended by further analyzing and sequencing the EST clones from which the sequences were obtained, or by analyzing and sequencing various DNA libraries (e.g. cDNA or genomic) using primers and/or probes and well known hybridization and/or PCR techniques. The partial sequences identified as 25 SEQ ID NOS: 1-35 may thus be extended until an open reading frame encoding a polypeptide, a full-length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion of the genome is identified. Such extended sequences, including full-length polynucleotides and genes, are described as "corresponding to" a sequence identified as one of the sequences of SEQ ID NOS: 30 1-35 or a variant thereof, or a portion of one of the sequences of SEQ ID NOS: 1-35 or a variant thereof, when the extended polynucleotide comprises an identified

sequence or its variant, or an identified contiguous portion (x-mer) of one of the sequences of SEQ ID NOS: 1-35 or a variant thereof.

The polynucleotides identified as SEQ ID NOS: 1-35 were isolated from mouse and rat cDNA clones and represent sequences that are expressed in the tissue from which the cDNA was prepared. The sequence information may be used to isolate or synthesize expressible DNA molecules, such as open reading frames or full-length genes, that can then be used as expressible or otherwise functional DNA in transgenic mammals and other organisms. Similarly, RNA sequences, reverse sequences, complementary sequences, anti-sense sequences and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NOS: 1-35.

In a first aspect, the present invention provides isolated polynucleotide sequences comprising a polynucleotide selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-35; (b) complements of the sequences recited in SEQ ID NO: 1-35; (c) reverse complements of the sequences recited in SEQ ID NO: 1-35; (d) reverse sequences of the sequences recited in SEQ ID NO: 1-35; (e) sequences having either 40%, 60%, 75% or 90% identical nucleotides, as defined herein, to a sequence of (a) – (d); probes and primers corresponding to the sequences set out in SEQ ID NO: 1-35; polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NO: 1-35; and extended sequences comprising portions of the sequences set out in SEQ ID NO: 1-35; all of which are referred to herein as "polynucleotides of the present invention". The present invention also provides isolated polypeptide sequences identified in the attached Sequence Listing as SEQ ID NO: 36-65; polypeptide variants of those sequences; and polypeptides comprising the isolated polypeptide sequences and variants of those sequences.

In another aspect, the present invention provides genetic constructs comprising a polynucleotide of the present invention, either alone, or in combination with one or more additional polynucleotides of the present invention,

or in combination with one or more known polynucleotides, together with cells and target organisms comprising such constructs.

The polynucleotides identified as SEQ ID NOS: 1-35 may contain open reading frames ("ORFs") or partial open reading frames encoding polypeptides.

5 Additionally, open reading frames encoding polypeptides may be identified in extended or full-length sequences corresponding to the sequences set out as SEQ ID NOS: 1-35. Open reading frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame identification

10 based on codon frequencies, etc. Suitable tools and software for ORF analysis are available, for example, on the Internet at <http://www.ncbi.nlm.nih.gov/gorf/gorf.html>. Open reading frames and portions of open reading frames may be identified in the polynucleotides of the present invention. Once a partial open reading frame is identified, the polynucleotide may

15 be extended in the area of the partial open reading frame using techniques that are well known in the art until the polynucleotide for the full open reading frame is identified. Thus, polynucleotides and open reading frames encoding polypeptides may be identified using the polynucleotides of the present invention.

Once open reading frames are identified in the polynucleotides of the present invention, the open reading frames may be isolated and/or synthesized.

20 Expressible DNA constructs may then be constructed that comprise the open reading frames and suitable promoters, initiators, terminators, etc., which are well known in the art. Such DNA constructs may be introduced into a host cell to express the polypeptide encoded by the open reading frame. Suitable host cells

25 may include various prokaryotic and eukaryotic cells.

Polypeptides encoded by the polynucleotides of the present invention may be expressed and used in various assays to determine their biological activity.

Such polypeptides may be used to raise antibodies, to isolate corresponding interacting proteins or other compounds, and to quantitatively determine levels of

30 interacting proteins or other compounds.

In another aspect, the present invention provides isolated polypeptides encoded, or partially encoded, by the above polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full-length proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide that comprises an isolated polynucleotide sequence or variant provided herein. Polypeptides of the present invention may be naturally purified products, or may be produced partially or wholly using recombinant techniques. Such polypeptides may be glycosylated with bacterial, fungal, mammalian or other eukaryotic carbohydrates or may be non-glycosylated. In specific embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 36-65.

Polypeptides of the present invention may be produced recombinantly by inserting a polynucleotide sequence that encodes the polypeptide into a genetic construct and expressing the polypeptide in an appropriate host. Any of a variety of genetic constructs known to those of ordinary skill in the art may be employed. Expression may be achieved in any appropriate host cell that has been transformed or transfected with a genetic construct containing a polynucleotide that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and higher eukaryotic cells. Preferably, the host cells employed are *Escherichia coli*, insect, yeast, or a mammalian cell line such as COS or CHO. The polynucleotide sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In a related aspect, polypeptides are provided that comprise at least a functional portion of a polypeptide having an amino acid sequence encoded by a polynucleotide of the present invention. As used herein, the "functional portion" of a polypeptide is that portion which contains the active site essential for affecting the function of the polypeptide, for example, the portion of the molecule that is capable of binding one or more reactants. The active site may be made up

of separate portions present on one or more polypeptide chains and will generally exhibit high binding affinity.

Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the 5 polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using, for example, the representative assays provided below.

10 Portions and other variants of the inventive polypeptides may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the 15 commercially available solid-phase techniques, such as the Merrifield solid-phase, synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2154, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems, Inc. (Foster City, California), and may 20 be operated according to the manufacturer's instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed, site-specific mutagenesis (Kunkel, *Proc. Natl. Acad. Sci. USA* 82:488-492, 1985). Sections of polynucleotide sequence may also be removed using standard techniques to permit preparation of truncated 25 polypeptides.

In general, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure. In certain embodiments, described in detail below, the isolated polypeptides 30 are incorporated into pharmaceutical compositions or vaccines.

The present invention also contemplates methods for modulating the polynucleotide and/or polypeptide content and composition of an organism, such methods involving stably incorporating into the genome of the organism a construct containing DNA of the present invention. In one embodiment, the target 5 organism is a mammal, preferably a human, for example for human gene therapy. In a related aspect, a method for producing an organism having an altered genotype or phenotype is provided, the method comprising transforming a cell with a DNA construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and 10 mature organism growth.

The isolated polynucleotides of the present invention have utility in genome mapping, in physical mapping, and in positional cloning of genes. Additionally, the polynucleotide sequences identified as SEQ ID NOS: 1-35 and their variants may be used to design oligonucleotide probes and primers. 15 Oligonucleotide probes and primers have sequences that are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. Oligonucleotide probes designed using the polynucleotides of the present invention may be used to detect the presence and examine the expression patterns of genes in any organism having sufficiently similar DNA and RNA 20 sequences in their cells using techniques that are well known in the art, such as slot blot DNA hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention may be used for PCR amplifications. Oligonucleotide probes and primers designed using the polynucleotides of the present invention may also be used in connection with various microarray 25 technologies, including the microarray technology of Affymetrix (Santa Clara, CA).

The polynucleotides of the present invention may also be used to tag or identify an organism or reproductive material therefrom. Such tagging may be accomplished, for example, by stably introducing a non-disruptive non-functional 30 heterologous polynucleotide identifier into an organism, the polynucleotide comprising one of the polynucleotides of the present invention.

Detailed Description

Polynucleotides were isolated by high throughput sequencing of cDNA libraries prepared from mouse airway-induced eosinophilia, rat dermal papilla and mouse stromal cells as described below, in Example 1. Isolated polynucleotides of the present invention include the polynucleotides identified as SEQ ID NOS: 1-35; isolated polynucleotides comprising a polynucleotide sequence selected from the group consisting of SEQ ID NOS: 1-35; isolated polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NOS: 1-35; polynucleotides complementary to any of the above polynucleotides; anti-sense sequences corresponding to any of the above polynucleotides; and variants of any of the above polynucleotides, as that term is described in this specification. The present invention also provides isolated polypeptide sequences identified in the attached Sequence Listing as SEQ ID NO: 36-65; polypeptide variants of those sequences; and polypeptides comprising the isolated polypeptide sequences and variants of those sequences.

The correspondence of isolated polynucleotides encoding isolated polypeptides of the present invention, and the functionality of the polypeptides, are shown, below, in Table 1.

20

Table 1

SEQ ID NO Poly-nucleotides	SEQ ID NO Poly-peptides	Activity Category	Functionality
1	36	Secretory molecule	Hypothetical 131.1 kDa protein
2	37	Secretory molecule/cytokine/cell signaling	ZCYTO7 belongs to a family of IL-17-related cytokines differing in patterns of expression and proinflammatory responses that may be transduced through a cognate set of cell surface receptors. IL-17 is a T cell-derived cytokine that may play an important role in the initiation or maintenance of the proinflammatory response. Whereas expression of IL-17 is restricted to activated T cells, the IL-17 receptor is found to be

			widely expressed, a finding consistent with the pleiotropic activities of IL-17.
3	38	Secretory molecule	Novel
4	39	Receptor/cytokine/ cell signaling	Tumor endothelial marker 1 precursor
5	40	Secretory molecule	ERO1-L (ERO1-like protein) is involved in oxidative endoplasmic reticulum (ER) protein folding in mammalian cells. Oxidizing conditions must be maintained in the ER to allow the formation of disulfide bonds in secretory proteins. A family of conserved genes, termed ERO for ER oxidoreductins, plays a key role in this process. ERO1-L is a type II integral membrane protein.
6	41	Secretory molecule	Novel
7	42	Receptor/transcriptio n factor	EMR2 is an EGF-like module that is part of the epidermal growth factor (EGF)-TM7 proteins, which also include EMR1, (EGF-like molecule containing mucin-like hormone receptor 1) F4/80, and CD97. These proteins constitute a recently defined class B GPCR subfamily and are predominantly expressed on leukocytes. These molecules possess N-terminal EGF-like domains coupled to a seven-span transmembrane (7TM) moiety via a mucin-like spacer domain. EMR2 contains a total of five tandem EGF-like domains and expresses similar protein isoforms consisting of various numbers of EGF-like domains as a result of alternative RNA splicing. EMR2 share many characteristics with CD97, including highly homologous EGF-like domains and identical gene organization, indicating that both genes are the products of a recent gene duplication event. Both EMR2 and CD97 are highly expressed in immune tissues; however, unlike

			CD97, which is ubiquitously expressed in most cell types, EMR2 expression is restricted to monocytes, macrophages
8	43	Secretory molecule/ cell structure/motility, extracellular matrix	Bone/cartilage proteoglycan I (BGN) is also known as biglycan or PG-S1. BGN is found in the extracellular matrices of several connective tissues, especially in articular cartilages. The two glycosaminoglycan chains attached to BGN can be either chondroitin sulfate or dermatan sulfate. BGN belongs to the small interstitial proteoglycans family. BGN is a small leucine-rich proteoglycan and is a nonfibrillar extracellular matrix component with functions that include the positive regulation of bone formation. It is synthesized as a precursor with an NH(2)-terminal propeptide that is cleaved to yield the mature form found in vertebrate tissues. Bone morphogenetic protein-1 (BMP-1) cleaves proBGN at a single site, removing the propeptide and producing BGN. Soluble BGN purified from rat thymic myoid cells had hemopoietic activity capable of inducing preferential growth and differentiation of monocytic lineage cells from various hemopoietic sources, including brain microglial cells. The haemopoietic BGN plays an important role in generating brain-specific circumstances for development of microglial/monocytic cells
9	44	Secretory molecule	Tubulointerstitial nephritis antigen (TIN-ag) is a basement membrane glycoprotein reactive with autoantibodies in some forms of immunologically mediated human tubulointerstitial nephritis. TIN1 and TIN2 are alternatively spliced products of the TIN-Ag gene. The

			open reading frames of TIN1 and TIN2 indicates the presence of a signal peptide and putative pre-propeptide and both forms contain putative calcium-binding sites. TIN1 additionally contains a characteristic laminin-like epidermal growth factor (EGF) motif and significant homology within the carboxy terminus with the cysteine proteinase family of enzymes. The EGF motif bears important similarities in the positions of cysteines with two motifs in the propeptide of von Willebrand factor. The EGF motif and part of the region that is homologous with the cysteine proteinase family are removed from the TIN2 cDNA. The rest of the TIN1 and TIN2 sequences are identical. TIN-ag is expressed mainly in the kidney and in the intestinal epithelium.
10		Receptor-like molecule	Novel
11	45	Secretory molecule/gene/protein expression, RNA synthesis, transcription factors	Toso is a cell surface, specific regulator of Fas-induced apoptosis in T cells. Fas is a surface receptor that can transmit signals for apoptosis. Toso is expressed in lymphoid cells and expression is enhanced after cell-specific activation processes in T cells. Toso appeared limited to inhibition of apoptosis mediated by members of the TNF receptor family and was capable of inhibiting T cell self-killing induced by TCR activation processes that up-regulate Fas ligand. Toso inhibits caspase-8 processing, the most upstream caspase activity in Fas-mediated signaling, potentially through activation of cFLIP. Toso therefore serves as a novel regulator of Fas-mediated apoptosis and may act as a regulator of cell fate in T cells and

			other hematopoietic lineages.
12	46	Secretory molecule/gene/protein expression, RNA synthesis, transcription factors	<p>Surface glycoprotein CD59 is a phosphatidyl-inositol-glycan-anchored glycoprotein involved in T-cell activation and restriction of complement-mediated lysis. It is also known as protectin, and is ubiquitously expressed on benign and malignant cells. CD59 inhibits complement (C)-mediated lysis of target cells by preventing the formation of the membrane attack complex, in the terminal step of C-activation. Recent experimental evidence demonstrates that CD59 is the main restriction factor of C-mediated lysis of malignant cells of different histotypes. Additionally, a soluble form of CD59, that retains its anchoring ability and functional properties, has been identified in body fluids and in culture supernatants of different malignant cells. CD59 may protect neoplastic cells from C-mediated lysis, contributing to their escape from innate C-control and to tumor progression. The expression of CD59 by neoplastic cells may contribute to impair the therapeutic efficacy of C-activating monoclonal antibodies (mAb) directed to tumor-associated antigens. CD59 can be utilized to improve the therapeutic efficacy of clinical approaches of humoral immunotherapy with C-activating mAb in human malignancies.</p>
13	47	Secretory molecules/cell or organism defense, homeostasis, detoxification	Cytochrome B561 (cyb561) is a secretory vesicle-specific electron transport protein unique to neuroendocrine secretory vesicles. It binds two heme groups non-covalently and is an integral membrane protein. It acts as an electron channel and mediates

			equilibration of ascorbate-semidehydroascorbate inside the secretory vesicle with the ascorbate redox pair in the cytoplasm. The role for this function is to regenerate ascorbate inside the secretory vesicle for use by monooxygenases. The secretory vesicles contain catecholamines and amidated peptides. Cyb561 belongs to the eukaryotic b561 family.
14	48	Secretory molecule	Novel
15	49	Receptor-like molecule/ gene or protein expression, RNA synthesis, transcription factor	High affinity immunoglobulin epsilon receptor beta-subunit (FCER1) is also known as IgE Fc receptor, beta-subunit, FCER1b or FCE1b. FCER1 binds to the Fc region of immunoglobulins epsilon and is a high affinity receptor. FCER1 plays a role in initiating the allergic response where binding of allergen to receptor-bound IgE leads to cell activation and the release of mediators, such as histamine. FCER1 is responsible for the manifestations of allergy and induces the secretion of important lymphokines. It functions as a tetramer consisting of an alpha chain, a beta chain, and two disulfide-linked gamma chains and is an integral membrane protein. Variants of the FCER1B gene have been identified, which are associated with an increased risk of developing atopy and bronchial asthma. Atopic dermatitis is a common skin disease frequently associated with allergic disorders such as allergic rhinitis and asthma.
16	50	Receptor-like molecule	Hypothetical 10.3 kDa protein
17	51	Secretory molecule/antigen processing	Lysosomal thiol reductase IP30 catalyzes disulfide bond reduction both <i>in vitro</i> and <i>in vivo</i> and is optimally active at acidic pH. IP30

			is important in disulfide bond reduction of proteins delivered to MHC class II-containing compartments and consequently in antigen processing. IP30 can be mediated by multiple lysosomal proteases. Proteins internalized into the endocytic pathway are usually degraded. Efficient proteolysis requires denaturation, induced by acidic conditions within lysosomes, and reduction of inter- and intrachain disulfide bonds. The active site, determined by mutagenesis, consists of a pair of cysteine residues separated by two amino acids, similar to other enzymes of the thioredoxin family.
18		Receptor-like molecule	RNA binding protein.
19	52	Secretory molecule/cellular	Notch4-like protein (ZNEU1) is part of the NOTCH4 family that encodes receptors responsible for cell fate decisions during development. These Notch receptors and their ligands, Delta and Jagged, have been implicated in several diseases. When truncated, constitutively active mutant forms of the Notch receptor appear to be involved in T-cell leukemia, mammary carcinomas and a tumorous germline phenotype. Notch4 genes are expressed specifically in endothelial cells.
20	53	Secretory molecule	Novel
21	54	Secretory molecule/transporter	Serotransferrin (siderophilin) (Tf) or beta-1-metal binding globulin is part of the transferrin family. Transferrins are iron binding transport proteins which can bind two atoms of ferric iron in association with the binding of an anion, usually bicarbonate. Tf is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and

			utilization. Serum transferrin also has a further role in stimulating cell proliferation. Tf gene expression is modulated by vitamin A, testosterone, and peptide hormones.
22	55	Secretory molecule/gene or protein expression, RNA synthesis, transcription factor	Insulin-like growth factor binding protein 5 protease (IGFBP-5) modulates the effects of insulin growth factors (IGFs) on cells. IGFBP-5 is synthesized by smooth muscle cells and binds to the extracellular matrix. It is also secreted into conditioned medium of cultured cells and is cleaved into fragments by a concomitantly produced protease. These fragments have reduced affinity for the IGFs. IGFBP-5 protease belongs to a family of serine-metallo proteases.
23	56	Secretory molecule/cellular development	Major epididymis-specific protein E4 is also known as epididymal protein BE-20. It belongs to WAP-type 'four-disulfide core' family and plays a role in the maturation of spermatozoa during its movement through the epididymis and the capacity of sperm to fertilize ova. Expression of E4 was located to the epithelial cells of the cauda epididymis and proximal segment of the ductus deferens by <i>in situ</i> hybridization. No expression was found in sections of the corpus and caput epididymis, testis, and liver.
24		Secretory molecule/cell signaling	TNFR-related death receptor-6 DR6 contains an extracellular region containing varying numbers of cysteine-rich domains and an intracellular region that contains the death domain. Death receptors are activated in a ligand-dependent or independent manner and transduce apoptotic signals via their respective intracellular death domains.
25	57	Receptor-like molecule	Novel

26	58	Secretory molecule/regulation	Channel inducing factor precursor (CHIF) or corticosteroid-induced protein induces a potassium channel when expressed in <i>Xenopus</i> oocytes and activates endogenous oocyte transport proteins. It is a type I membrane protein selectively present in the distal parts of the nephron (medullary and papillary collecting ducts and end portions of cortical collecting tubule) and in the epithelial cells of the distal colon. No expression is found in renal proximal tubule, loop of Henle and distal tubule, proximal colon, small intestine, lung, choroid plexus, salivary glands, or brain. CHIF belongs to the ATP1G1 /PLM / Mat-8 family and exhibits significant homologies with proteins that are putatively regulatory (phospholemman, gamma-subunit of Na(+)-K(+)-ATPase, Mat-8).
27	59	Secretory molecule	Hepatocellular carcinoma-associated antigen 112.
28	60	Receptor-like molecule/homeostasis	Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is a major receptor for hyaluronan (HA) on the lymph vessel wall molecule that binds both soluble and immobilized HA. LYVE-1 plays a role in the control of the HA pathway. The extracellular matrix glycosaminoglycan hyaluronan (HA) is an abundant component of skin and mesenchymal tissues where it facilitates cell migration during wound healing, inflammation, and embryonic morphogenesis. Both during normal tissue homeostasis and particularly after tissue injury, HA is mobilized from these sites through lymphatic vessels to the lymph nodes where it is degraded before entering the circulation for rapid uptake by the liver. LYVE-1 is similar to the

			CD44 HA receptor, but in contrast to CD44, LYVE-1 colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels.
29	61	Receptor-like molecule/cell signaling	G protein-coupled receptor GPR35 is an integral membrane protein that belongs to family 1 of G-protein coupled receptors (GPCR). The GPCR family shares a structural motif of seven transmembrane segments with large numbers of conserved residues in those regions.
30	62	Receptor-like molecule	Tumor-associated glycoprotein E4 is also known as Taa1 or Tage4 and belongs to the immunoglobulin superfamily. This family contains cell adhesion molecules which have wide-ranging functions and mediate a variety of homotypic and heterotypic cellular interactions playing a general role in cell surface recognition. The Tage4 gene product is closely related to the hepatocellular carcinoma antigen TuAg.1. Tage4 is a glycoprotein expressed at the surface of colon carcinoma cell lines, but at a very low level in normal adult colon and lung tissue and not in normal tissues tested.
31	63	Secretory molecule	Hypothetical 28.6 kDa protein is also known as plunc, for palate, lung, and nasal epithelium clone. Expression of plunc is associated with the palate, nasal septum, and nasal conchae. It is also expressed strongly in the trachea and bronchi of the adult lung. No significant homologies with known genes were observed at the nucleotide level and limited amino acid homology with two salivary gland-specific proteins was noted. The amino acid sequence revealed consensus sequences for N-glycosylation, protein kinase C and

			casein kinase phosphorylation, as well as a leucine zipper. In addition, an unique amino acid sequence repeat sequence is located near the amino-terminal portion of the protein.
32	64	Secretory molecule	Claudin-18 (Cldn18) is a component of tight junction (TJ) strands and belongs to the claudin family. Claudins are integral membrane protein component of tight junctions, a structure controlling cell-to-cell adhesion and, consequently, regulating paracellular and transcellular transport of solutes across epithelia and endothelia. The claudin family also includes occludin and 17 other distinct claudins. Claudin family members are tetraspan transmembrane proteins that are localized in cell-specific TJs. In multicellular organisms, various compositionally distinct fluid compartments are established by epithelial and endothelial cellular sheets. For these cells to function as barriers, TJs are considered to create a primary barrier for the diffusion of solutes through the paracellular pathway. Claudins are therefore responsible for TJ-specific obliteration of the intercellular space.
33		Secretory molecule	Glutamine repeat protein 1 (GRP-1) contains simple tandem repeats of the trinucleotide sequence CAG that encode homopolymeric stretches of glutamine. Although polyglutamine has been identified in diverse proteins, it is present predominantly in transcription factors. Greater than two-thirds of GRP-1 are only two amino acids, namely glutamine (50%) and histidine (18%). There are four polyglutamine motifs interspersed with histidine-rich regions. There is also a putative

			nuclear localization signal flanked by sites for possible serine phosphorylation. GRP-1 mRNA was expressed constitutively in some macrophage cell lines and B and T cell lines. Interferon-gamma or lipopolysaccharide augmented GRP-1 mRNA expression in the mouse macrophage cell line ANA-1. Because polyglutamine motifs can cause protein oligomerization and can function as transcriptional activation domains, GRP-1 is a transcription factor associated with interferon-gamma- or lipopolysaccharide-induced activation of macrophages.
34		Secretory molecule	Alpha-1 collagen
35	65	Receptor-like molecule/Cell signaling	Gdnf family receptor alpha 4, transmembrane isoform (Gfra4) is a members of the Gdnf protein family that signal through receptors consisting of a GPI-linked GFRalpha subunit and the transmembrane tyrosine kinase Ret. Gfra4 is expressed in many tissues, including nervous system, in which intron retention leads to a putative intracellular or secreted GFRalpha4 protein. Efficient splicing occurs only in thyroid, parathyroid, and pituitary and less in adrenal glands. A splice form that leads to a GPI-linked GFRalpha4 receptor is expressed in juvenile thyroid and parathyroid glands. In newborn and mature thyroid as well as in parathyroid and pituitary glands major transcripts encode for a putative transmembrane isoform of GFRalpha4. GFRalpha4 expression may restrict the inherited cancer syndrome multiple endocrine neoplasia type 2, associated with mutations in RET, to these cells.

The word "polynucleotide(s)," as used herein, means a polymeric collection of nucleotides and includes DNA and corresponding RNA molecules and both single and double stranded molecules, including HnRNA and mRNA molecules, sense and anti-sense strands of DNA and RNA molecules, and 5 comprehends cDNA, genomic DNA, and wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and "corresponds to" a DNA molecule in a generally one-to-one manner. An mRNA molecule "corresponds to" an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide of the present invention may be an entire gene, or 10 any portion thereof. A gene is a DNA sequence which codes for a functional protein or RNA molecule. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well 15 known in the art and are described, for example, in Robinson-Benion *et al.*, *Methods in Enzymol.* 254(23): 363-375, 1995 and Kawasaki *et al.*, *Artific. Organs* 20 (8): 836-848, 1996.

Identification of genomic DNA and heterologous species DNA can be accomplished by standard DNA/DNA hybridization techniques, under 20 appropriately stringent conditions, using all or part of a cDNA sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on known genomic DNA, cDNA and/or protein sequences can be used to amplify and identify genomic and cDNA sequences. Synthetic DNA corresponding to the identified sequences and variants 25 may be produced by conventional synthesis methods. All of the polynucleotides described herein are isolated and purified, as those terms are commonly used in the art.

As used herein, the term "oligonucleotide" refers to a relatively short segment of a polynucleotide sequence, generally comprising between 6 and 60 30 nucleotides, and comprehends both probes for use in hybridization assays and primers for use in the amplification of DNA by polymerase chain reaction.

As used herein, the term “*x*-mer,” with reference to a specific value of “*x*,” refers to a polynucleotide comprising at least a specified number (“*x*”) of contiguous residues of any of the polynucleotides identified as SEQ ID NOS: 1-35. The value of *x* may be from about 20 to about 600, depending upon the 5 specific sequence.

As used herein, the term “polypeptide” encompasses amino acid chains of any length, including full-length proteins, wherein amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be naturally purified products, or may be produced partially or wholly using 10 recombinant techniques. Such polypeptides may be glycosylated with mammalian or other eukaryotic carbohydrates or may be non-glycosylated.

According to one embodiment, “variants” of the polynucleotides of the present invention, including the polynucleotides set forth as SEQ ID NOS: 1-35, as that term is used herein, comprehends polynucleotides producing an “E” value 15 of 0.01 or less, as described below, or having at least a specified percentage identity to a polynucleotide of the present invention, as described below. Polynucleotide variants of the present invention may be naturally occurring allelic variants, or non-naturally occurring variants.

Polynucleotide and polypeptide sequences may be aligned, and 20 percentages of identical residues in a specified region may be determined against another polynucleotide or polypeptide, using computer algorithms that are publicly available. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. Polynucleotides may also be analyzed using the BLASTX algorithm, which 25 compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. The percentage identity of polypeptide sequences may be examined using the BLASTP algorithm. The BLASTN, BLASTP and BLASTX algorithms are available on the NCBI anonymous FTP server (<ftp://ncbi.nlm.nih.gov>) under /blast/executables/ and are 30 available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, MD 20894,

USA. The BLASTN algorithm Version 2.0.11 [Jan-20-2000], set to the parameters described below, is preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm, set to the parameters described below, is preferred for use in the 5 determination of polypeptide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP and BLASTX, is described at NCBI's website at URL <http://www.ncbi.nlm.nih.gov/BLAST/newblast.html> and in the publication of Altschul, *et al.*, *Nucleic Acids Res.* 25: 3389-3402, 1997.

10 The FASTA and FASTX algorithms are available on the Internet at the ftp site <ftp://ftp.virginia.edu/pub/>, and from the University of Virginia by contacting David Hudson, Vice Provost for Research, University of Virginia, P.O. Box 9025, Charlottesville, VA 22906-9025, USA. The FASTA algorithm, set to the default parameters described in the documentation and distributed with the algorithm, 15 may be used in the determination of polynucleotide variants. The readme files for FASTA and FASTX Version 1.0x that are distributed with the algorithms describe the use of the algorithms and describe the default parameters. The use of the FASTA and FASTX algorithms is described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444-2448, 1988; and Pearson, *Methods in Enzymol.* 20 183:63-98, 1990. The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity: Unix running command with default parameter values thus: blastall -p blastn -d embldb -e 10 -G 0 -E 0 -r 1 -v 30 -b 30 -i queryseq -o results; the Parameters are : -p Program Name [String]; -d Database 25 [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (BLASTN only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; -o BLAST report Output File [File 30 Out] Optional.

The "hits" to one or more database sequences by a queried sequence produced by BLASTN or FASTA or a similar algorithm align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally 5 represent an overlap over only a fraction of the sequence length of the queried sequence.

The BLASTN and FASTA algorithms produce "Expect" values for alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a 10 database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database, such as the preferred EMBL database, indicates true similarity. For example, an E value of 0.1 assigned to a hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a 15 similar score simply by chance. The aligned and matched portions of the sequences, then, have a probability of 90% of being the same by this criterion. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN or FASTA algorithm.

According to one embodiment, "variant" polynucleotides, with reference to each of the polynucleotides of the present invention, preferably comprise sequences having the same number or fewer nucleic acids than each of the polynucleotides of the present invention and producing an E value of 0.01 or less 20 when compared to the polynucleotide of the present invention. That is, a variant. 25 polynucleotide is any sequence that has at least a 99% probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or FASTA algorithms set at the default parameters. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of 30 the present invention that has at least a 99% probability of being the same as the

polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or FASTA algorithms set at the default parameters.

Alternatively, variant polynucleotides of the present invention may comprise a sequence exhibiting at least about 40%, more preferably at least about 5 60%, more preferably yet at least about 75%, and most preferably at least about 90% similarity to a polynucleotide of the present invention, determined as described below. The percentage similarity is determined by aligning sequences using one of the BLASTN or FASTA algorithms, set at default parameters, and identifying the number of identical nucleic acids over the best aligned portion; 10 dividing the number of identical nucleic acids by the total number of nucleic acids of the polynucleotide of the present invention; and then multiplying by 100 to determine the percentage similarity. For example, a polynucleotide of the present invention having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 nucleic acids over a stretch of 23 nucleotides in the 15 alignment produced by the BLASTN algorithm using the default parameters. The 23 nucleotide hit includes 21 identical nucleotides, one gap and one different nucleotide. The percentage similarity of the polynucleotide of the present invention to the hit in the EMBL library is thus 21/220 times 100, or 9.5%. The polynucleotide sequence in the EMBL database is thus not a variant of a 20 polynucleotide of the present invention.

Alternatively, variant polynucleotides of the present invention hybridize to a polynucleotide of the present invention under stringent hybridization conditions. As used herein, "stringent conditions" mean prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two 25 washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65°C.

The present invention also encompasses allelic variants of the disclosed sequences, together with DNA sequences that differ from the disclosed sequences but which, due to the degeneracy of the genetic code, encode a polypeptide which 30 is the same as that encoded by a DNA sequence disclosed herein. Thus, polynucleotides comprising sequences that differ from the polynucleotide

sequences recited in SEQ ID NOS: 1-35, or complements, reverse sequences, or reverse complements of those sequences as a result of conservative substitutions are contemplated by and encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the polynucleotide 5 sequences recited in SEQ ID NOS: 1-35, or complements, reverse complements, or reverse sequences as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention.

The polynucleotides of the present invention may be isolated from various 10 DNA libraries, or may be synthesized using techniques that are well known in the art. The polynucleotides may be synthesized, for example, using automated oligonucleotide synthesizers (e.g. Beckman Oligo 1000M DNA Synthesizer) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known in the art of molecular biology. One conventional and exemplary polynucleotide synthesis technique involves synthesis of a single stranded polynucleotide segment having, for example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5-nucleotide overhang. The next segment may 15 then be synthesized in a similar fashion, with a 5-nucleotide overhang on the opposite strand. The "sticky" ends ensure proper ligation when the two portions are hybridized. In this way, a complete polynucleotide of the present invention 20 may be synthesized entirely *in vitro*.

SEQ ID NOS: 2, 3, 5, 7-9, 11, 12, 14, 15, 17, 19-21, 23, 26, 28 and 30-32 25 are full-length sequences. The remaining polynucleotides are referred to as "partial" sequences, in that they may not represent the full coding portion of a gene encoding a naturally occurring polypeptide. The partial polynucleotide sequences disclosed herein may be employed to obtain the corresponding full-length genes for various species and organisms by, for example, screening DNA 30 expression libraries using hybridization probes based on the polynucleotides of the present invention, or using PCR amplification with primers based upon the

polynucleotides of the present invention. In this way one can, using methods well known in the art, extend a polynucleotide of the present invention upstream and downstream of the corresponding mRNA, as well as identify the corresponding genomic DNA, including the promoter and enhancer regions, of the complete gene. The present invention thus comprehends isolated polynucleotides comprising a sequence identified in SEQ ID NOS: 1-35, or a variant of one of the specified sequences, that encode a functional polypeptide, including full-length genes. Such extended polynucleotides may have a length of from about 50 to about 4,000 nucleic acids or base pairs, and preferably have a length of less than about 4,000 nucleic acids or base pairs, more preferably yet a length of less than about 3,000 nucleic acids or base pairs, more preferably yet a length of less than about 2,000 nucleic acids or base pairs. Under some circumstances, extended polynucleotides of the present invention may have a length of less than about 1,800 nucleic acids or base pairs, preferably less than about 1,600 nucleic acids or base pairs, more preferably less than about 1,400 nucleic acids or base pairs, more preferably yet less than about 1,200 nucleic acids or base pairs, and most preferably less than about 1,000 nucleic acids or base pairs.

Polynucleotides of the present invention comprehend polynucleotides comprising at least a specified number of contiguous residues (x -mers) of any of the polynucleotides identified as SEQ ID NOS: 1-35 or their variants. According to preferred embodiments, the value of x is preferably at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, polynucleotides of the present invention include polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer a 250-mer, or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide identified as SEQ ID NOS: 1-35 or a variant of one of the polynucleotides identified as SEQ ID NOS: 1-35.

Polynucleotide probes and primers complementary to and/or corresponding to SEQ ID NOS: 1-35, and variants of those sequences, are also comprehended by the present invention. Such oligonucleotide probes and primers are substantially complementary to the polynucleotide of interest. An

oligonucleotide probe or primer is described as "corresponding to" a polynucleotide of the present invention, including one of the sequences set out as SEQ ID NOS: 1-35 or a variant, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NOS: 1-35 or a variant of one of the specified sequences.

Two single stranded sequences are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared using, for example, the BLAST algorithm as described above, with the appropriate nucleotide insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95%, and more preferably at least 98% to 100%, of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a second DNA strand under stringent hybridization conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM and preferably less than about 200 mM. Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C and most preferably greater than about 37°C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. The DNA from plants or samples or products containing plant material can be either genomic DNA or DNA derived by preparing cDNA from the RNA present in the sample.

In addition to DNA-DNA hybridization, DNA-RNA or RNA-RNA hybridization assays are also possible. In the case of DNA-RNA hybridization, the mRNA from expressed genes would then be detected instead of genomic DNA or cDNA derived from mRNA of the sample. In the case of RNA-RNA hybridization, RNA probes could be used. In addition, artificial analogs of DNA hybridizing specifically to target sequences could also be employed.

In specific embodiments, the oligonucleotide probes and/or primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and most preferably at least about 20 contiguous residues complementary to a polynucleotide sequence of the present invention. Probes and 5 primers of the present invention may be from about 8 to 100 base pairs in length or, preferably from about 10 to 50 base pairs in length or, more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA-DNA hybridization stringencies, annealing and melting temperatures, potential for formation of loops 10 and other factors, which are well known in the art. Tools and software suitable for designing probes, and especially suitable for designing PCR primers, are available on the Internet, for example, URL <http://www.horizonpress.com/pcr/>. Preferred techniques for designing PCR primers are also disclosed in Dieffenbach and Dyksler, *PCR primer: a laboratory manual*. Cold Spring Harbor Laboratory 15 Press, Cold Spring Harbor, NY, 1995.

A plurality of oligonucleotide probes or primers corresponding to a polynucleotide of the present invention may be provided in a kit form. Such kits generally comprise multiple DNA or oligonucleotide probes, each probe being specific for a polynucleotide sequence. Kits of the present invention may 20 comprise one or more probes or primers corresponding to a polynucleotide of the present invention, including a polynucleotide sequence identified in SEQ ID NOS: 1-35.

In one embodiment useful for high-throughput assays, the oligonucleotide probe kits of the present invention comprise multiple probes in an array format, 25 wherein each probe is immobilized in a predefined, spatially addressable location on the surface of a solid substrate. Array formats which may be usefully employed in the present invention are disclosed, for example, in U.S. Patents No. 5,412,087, 5,545,531, and PCT Publication No. WO 95/00530, the disclosures of which are hereby incorporated by reference.

30 Oligonucleotide probes for use in the present invention may be constructed synthetically prior to immobilization on an array, using techniques well known in

the art (see, for example, *Oligonucleotide Synthesis: A Practical Approach*, Gait, ed., IRL Press, Oxford, 1984). Automated equipment for the synthesis of oligonucleotides is available commercially from such companies as Perkin Elmer/Applied Biosystems Division (Foster City, CA) and may be operated 5 according to the manufacturer's instructions. Alternatively, the probes may be constructed directly on the surface of the array using techniques taught, for example, in PCT Publication No. WO 95/00530.

The solid substrate and the surface thereof preferably form a rigid support and are generally formed from the same material. Examples of materials from 10 which the solid substrate may be constructed include polymers, plastics, resins, membranes, polysaccharides, silica or silica-based materials, carbon, metals and inorganic glasses. Synthetically prepared probes may be immobilized on the surface of the solid substrate using techniques well known in the art, such as those disclosed in U.S. Patent No. 5,412,087.

15 In one such technique, compounds having protected functional groups, such as thiols protected with photochemically removable protecting groups, are attached to the surface of the substrate. Selected regions of the surface are then irradiated with a light source, preferably a laser, to provide reactive thiol groups. This irradiation step is generally performed using a mask having apertures at 20 predefined locations using photolithographic techniques well known in the art of semiconductors. The reactive thiol groups are then incubated with the oligonucleotide probe to be immobilized. The precise conditions for incubation, such as temperature, time and pH, depend on the specific probe and can be easily determined by one of skill in the art. The surface of the substrate is washed free of 25 unbound probe and the irradiation step is repeated using a second mask having a different pattern of apertures. The surface is subsequently incubated with a second, different, probe. Each oligonucleotide probe is typically immobilized in a discrete area of less than about 1 mm². Preferably each discrete area is less than about 10,000 mm², more preferably less than about 100 mm². In this manner, a 30 multitude of oligonucleotide probes may be immobilized at predefined locations on the array.

The resulting array may be employed to screen for differences in organisms or samples or products containing genetic material as follows. Genomic or cDNA libraries are prepared using techniques well known in the art. The resulting target DNA is then labeled with a suitable marker, such as a 5 radiolabel, chromophore, fluorophore or chemiluminescent agent, using protocols well known for those skilled in the art. A solution of the labeled target DNA is contacted with the surface of the array and incubated for a suitable period of time.

The surface of the array is then washed free of unbound target DNA and the probes to which the target DNA hybridized are determined by identifying 10 those regions of the array to which the markers are attached. When the marker is a radiolabel, such as ^{32}P , autoradiography is employed as the detection method. In one embodiment, the marker is a fluorophore, such as fluorescein, and the location of bound target DNA is determined by means of fluorescence spectroscopy. Automated equipment for use in fluorescence scanning of oligonucleotide probe 15 arrays is available from Affymetrix, Inc. (Santa Clara, CA) and may be operated according to the manufacturer's instructions. Such equipment may be employed to determine the intensity of fluorescence at each predefined location on the array, thereby providing a measure of the amount of target DNA bound at each location. Such an assay would be able to indicate not only the absence and presence of the 20 marker probe in the target, but also the quantitative amount as well.

In this manner, oligonucleotide probe kits of the present invention may be employed to examine the presence/absence (or relative amounts in case of mixtures) of polynucleotides in different samples or products containing different materials rapidly and in a cost-effective manner.

25 Another aspect of the present invention involves collections of a plurality of polynucleotides of the present invention. A collection of a plurality of the polynucleotides of the present invention, particularly the polynucleotides identified as SEQ ID NOS: 1-35, may be recorded and/or stored on a storage medium and subsequently accessed for purposes of analysis, comparison, etc.

30 One utility for such sets of sequences is the analysis of the set, either alone or together with other sequences sets, for single nucleotide polymorphisms (SNPs)

between sequences from different tissues and/or individuals for genetic studies, mapping and fingerprinting purposes. Suitable storage media include magnetic media such as magnetic diskettes, magnetic tapes, CD-ROM storage media, optical storage media, and the like. Suitable storage media and methods for recording and storing information, as well as accessing information such as polynucleotide sequences recorded on such media, are well known in the art. The polynucleotide information stored on the storage medium is preferably computer-readable and may be used for analysis and comparison of the polynucleotide information.

Another aspect of the present invention thus involves storage medium on which are recorded a collection of the polynucleotides of the present invention, particularly a collection of the polynucleotides identified as SEQ ID NOS: 1-35. According to one embodiment, the storage medium includes a collection of at least 20, preferably at least 50, more preferably at least 100, and most preferably at least 200 of the polynucleotides of the present invention, preferably the polynucleotides identified as SEQ ID NOS: 1-35, or variants of those polynucleotides.

Another aspect of the present invention involves a combination of polynucleotides, the combination containing at least 5, preferably at least 10, more preferably at least 20, and most preferably at least 50 different polynucleotides of the present invention, including polynucleotides selected from SEQ ID NOS: 1-35, or variants of these polynucleotides.

In another aspect, the present invention provides DNA constructs comprising, in the 5'-3' direction, a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide encoded by a polynucleotide of the present invention; and a gene termination sequence. The open reading frame may be orientated in either a sense or antisense direction. DNA constructs comprising a non-coding region of a gene coding for an enzyme encoded by the above DNA sequences or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. Preferably, the gene promoter and

termination sequences are functional in a host cell. More preferably, the gene promoter and termination sequences are common to those of the polynucleotide being introduced. Other promoter and termination sequences generally used in the art, such as the Cauliflower Mosaic Virus (CMV) promoter, with or without 5 enhancers, such as the Kozak sequence or Omega enhancer, and *Agrobacterium tumefaciens* nopaline synthase terminator may be usefully employed in the present invention. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues. The DNA construct may further include a marker for the identification of transformed cells.

10 Techniques for operatively linking the components of the DNA constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook *et al.*, *Molecular Cloning: a laboratory manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. The DNA constructs of the present invention 15 may be linked to a vector having at least one replication system, for example, *Escherichia coli*, whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined.

Transgenic cells comprising the DNA constructs of the present invention are provided, together with organisms comprising such transgenic cells.
20 Techniques for stably incorporating DNA constructs into the genome of target organisms, such as mammals, are well known in the art and include electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target organism to be transformed. In 25 one embodiment, naked DNA is injected or delivered orally. Once the cells are transformed, cells having the DNA construct incorporated in their genome are selected. Transgenic cells may then be cultured in an appropriate medium, using techniques well known in the art.

In yet a further aspect, the present invention provides methods for 30 modifying the level (concentration) or activity of a polypeptide in a host organism, comprising stably incorporating into the genome of the organism a

DNA construct of the present invention. The DNA constructs of the present invention may be used to transform a variety of organisms, including mammals, for example to make experimental gene knock out or transgenic animals.

Further, the polynucleotides of the present invention have particular application for use as non-disruptive tags for marking organisms, including commercially valuable animals, fish, bacteria and yeasts. DNA constructs comprising polynucleotides of the present invention may be stably introduced into an organism as heterologous, non-functional, non-disruptive tags. It is then possible to identify the origin or source of the organism at a later date by determining the presence or absence of the tag(s) in a sample of material.

Detection of the tag(s) may be accomplished using a variety of conventional techniques, and will generally involve the use of nucleic acid probes. Sensitivity in assaying the presence of probe can be usefully increased by using branched oligonucleotides, as described by Horn *et al.*, *Nucleic Acids Res.* 15 25(23):4842-4849, 1997, enabling to detect as few as 50 DNA molecules in the sample.

In particular, the polynucleotides of the present invention encode polypeptides that have important roles in processes such as induction of growth, differentiation of tissue-specific cells, cell migration, cell proliferation, and cell-cell interaction. These polypeptides are important in the maintenance of tissue integrity, and thus are important in processes such as wound healing. Some of these polypeptides act as modulators of immune responses, such as immunologically active polypeptides for the benefit of offspring. In addition, many polypeptides are immunologically active, making them important therapeutic targets in a whole range of disease states. Antibodies to the polypeptides of the present invention and small molecule inhibitors related to the polypeptides of the present invention may also be used for modulating immune responses and for treatment of diseases according to the present invention.

SEQ ID NOS: 1; 2; 4; 5; 6; 8; 9; 11; 12; 14; 17; 19-24; 26; 27; 31-34
30 encode secreted polypeptides. SEQ ID NOS: 10; 15; 16; 18; 25; 28; 30; and 35
encode polypeptides acting as receptors. SEQ ID NOS: 2; 4; 24; 29 and 35

encode polypeptides with cell signaling activity, which may be either intracellular or extracellular. Kinase genes, for example, encode polypeptides that phosphorylate specific substrates during cell-to-cell signaling. While some kinases are involved in normal metabolism and nucleotide production, others are significant for altering the activity of many cellular processes through the phosphorylation of specific proteins. Polypeptides encoded by these genes are important in the transmission of intracellular signals resulting from the binding of extracellular ligands such as hormones, growth factors or cytokines to membrane-bound receptors. The utility of polynucleotides encoding kinases resides in the manipulation of their signaling activities and downstream effects for the diagnosis and treatment of mammalian diseases that may be a consequence of inappropriate expression of these kinase genes.

SEQ ID NOS: 2 and 4 encode polypeptides with cytokine activity. Cytokine or growth factor polynucleotides encode polypeptides involved in intercellular signaling and represent another important class of molecules. Polynucleotides encoding such genes have utility in the diagnosis and treatment of disease.

SEQ ID NOS: 7; 11; 12; 15 and 22 encode polypeptides with transcription factor activity. These polynucleotides encode polypeptides required for the control of synthesis of proteins in tissue specific manner and have utility for the modification of protein synthesis for the control of disease.

SEQ ID NOS: 8 encode polypeptides acting in the extracellular matrix.

SEQ ID NOS: 11; 12; 15 and 22 encode polypeptides with RNA synthesis activities.

SEQ ID NO: 12 encodes a polypeptide having CD antigen activity. Such polynucleotides have utility as modulators of the composition, expression level and class of CD antigen expressed, which influence immune responses to self-antigens, neo-antigens and infectious agents.

Further exemplary specific utilities, for exemplary polynucleotides of the present invention, are specified in the Table below.

SEQ ID NO:	UTILITY
2	Promoting immune response as part of a vaccine or anti-cancer treatment. Inhibitors of this molecule can be useful as anti-inflammatory treatment, e.g. for autoimmune diseases or allergies.
11; 19	Utility as a target for cancer treatment and as an immunoregulatory and anti-inflammatory molecule
12	Diagnostic for specific types of cancer and for development of an anti-cancer treatment.
15	As a target for antagonists in the treatment of diseases such as asthma and allergy.
22	Useful to inhibit or enhance the activity of the soluble molecule that binds this protein.
28	Useful to promote or block cell trafficking and therefore in the treatment as anti-inflammatory and/or vaccine adjuvant where it can promoter inflammation.
35	Useful for tissue and neural regeneration.

The following examples are offered by way of illustration and not by way of limitation.

5

Example 1

ISOLATION OF cDNA SEQUENCES FROM MAMMALIAN EXPRESSION LIBRARIES

The cDNA sequences of the present invention were obtained by high-throughput sequencing of cDNA expression libraries constructed mouse airways-induced eosinophilia, rat dermal papilla and mouse stromal cells. The cDNA libraries were prepared as follows.

cDNA Library from Dermal Papilla (DEPA)

Dermal papilla cells from rat hair vibrissae (whiskers) were grown in culture and the total RNA extracted from these cells using established protocols. Total RNA, isolated using TRIzol Reagent (BRL Life Technologies, Gaithersburg, MD), was used to obtain mRNA using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, CA), according to the manufacturer's

specifications. A cDNA expression library was then prepared from the mRNA by reverse transcriptase synthesis using a Lambda ZAP cDNA library synthesis kit (Stratagene).

5 *cDNA library from mouse airway-induced eosinophilia (MALA)*

Airway eosinophilia were induced in BALB/cByJ mice by administering 2 µg ovalbumin in 2 mg alum adjuvant intraperitoneally on day 0 and day 14, and subsequently 100 µg ovalbumin in 50 µl phosphate buffered saline (PBS) intranasally route on day 28. The accumulated eosinophils in the lungs were 10 detected by washing the airways of the anesthetized mice with saline, collecting the washings (bronchoolar lavage or BAL), and counting the numbers of eosinophils. The mice were sacrificed and total RNA was isolated from whole lung tissue using TRIzol Reagent (BRL Life Technologies). mRNA was isolated by using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, CA), 15 according to the manufacturer's specifications. A cDNA expression library was then prepared from the mRNA by reverse transcriptase synthesis using a Lambda ZAP cDNA library synthesis kit (Stratagene).

20 *cDNA Expression Library from Peripheral Lymph Node Stromal Cells (MLSA)*

The peripheral axillary and brachial lymph nodes of BALB/cByJ mice with the flaky skin (*fsn*) mutation (Jackson Laboratories, Bar Harbour, MN) were dissected out. Single cell suspensions were obtained from the lymph nodes and cultured in tissue culture flasks at 10^7 cells /ml in 20% fetal calf serum and Dulbecco's Minimum Essential Medium. After 2 days the non-adherent cells were 25 removed. The adherent cells were cultured for a further 2 days and then treated with 0.25 g/100ml Trypsin (ICN, Aurora, OH) and re-cultured. After a further 4 days, non-adherent cells were discarded and adherent cells removed by trypsinization. Remaining adherent cells were physically removed by scraping with a rubber policeman. All adherent stromal cells were pooled.

cDNA Expression Library from Flaky skin lymph node stromal cells in pBK-CMV (MLSA)

Stromal cells from Flaky skin mice lymph nodes were grown in culture and the total RNA extracted from these cells using established protocols. Total 5 RNA, isolated using TRIzol Reagent (BRL Life Technologies, Gaithersburg, MD), was used to obtain mRNA using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, CA), according to the manufacturer's specifications. A cDNA expression library was then prepared from the mRNA by reverse transcriptase synthesis using a Lambda ZAP cDNA library synthesis kit 10 (Stratagene).

cDNA sequences were obtained by high-throughput sequencing of the cDNA libraries described above using a Prism 377 sequencer (Perkin Elmer/Applied Biosystems Division, Foster City CA), and are provided in SEQ ID NO: 1-35, with corresponding polypeptide sequences in SEQ ID NOS: 36-65.

15

EXAMPLE 2

Analysis of cDNA sequences using BLAST algorithms

BLASTN Polynucleotide analysis

20 The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithm BLASTN. Comparisons of DNA sequences provided in SEQ ID NOS: 1-35, to sequences in the EMBL DNA database (using BLASTN) were made as of November, 2000, using Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall -p 25 blastn -d embldb -e 10 -G0 -E0 -r 1 -v 30 -b 30 -i queryseq -o.

The sequences of SEQ ID NOS: 1, 3, 4, 6-11, 13, 18, 21, 22, 24, 25, 28-30, 33 and 34 were determined to have less than 50% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The sequences of SEQ ID NOS: 2, 12, 30 14-16, 20 and 35 were determined to have less than 75% identity, determined as described above, to sequences in the EMBL database using the computer

algorithm BLASTN, as described above. The sequences of SEQ ID NOS: 17, 19, 23 and 27 were determined to have less than 90% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. Finally, the sequences of SEQ ID NOS: 5, 26 and 32 were determined to have less than 98% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above.

BLASTP Polypeptide analysis

10 The sequences of SEQ ID NOS: 37, 41, 42, 44, 46-50, 55, 56 and 59 were determined to have less than 50% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NOS: 36, 38, 43, 45 and 60 were determined to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. 15 The sequences of SEQ ID NOS: 39, 54 and 58 were determined to have less than 90% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. Finally, the sequences of SEQ ID NOS: 53, 57, 62 and 65 were determined to 20 have less than 98% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above.

BLASTX Polynucleotide Analysis

25 The sequences of SEQ ID NOS: 2-4, 6-16, 18, 22-24, 26-30 and 33-35 were determined to have less than 50% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTX, as described above. The sequences of SEQ ID NOS: 1, 19, 20, 25 and 32 were determined to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTX, as 30 described above. Finally, the sequences of SEQ ID NOS: 5, 17, 21 and 31 were determined to have less than 90% identity, determined as described above, to

sequences in the SwissProt database using the computer algorithm BLASTX, as described above.

5

Example 2

ISOLATION AND CHARACTERIZATION OF THE HUMAN HOMOLOG OF muKS1

This example demonstrates that an isolated cDNA may be used to isolate its homologue from a different species, the corresponding polypeptide may be expressed and the function of the polypeptide can be determined, starting the whole process from an isolated cDNA obtained as described above.

Analysis of RNA transcripts by Northern Blotting

Northern analysis to determine the size and distribution of mRNA for the clone muKS1 (SEQ ID NO: 66; isolated from a mouse keratinocyte stem cell cDNA library using high-throughput sequencing as described above) was performed by probing murine tissue mRNA blots with a probe consisting of nucleotides 268-499 of muKS1, radioactively labeled with $[\alpha^{32}\text{P}]\text{-dCTP}$. Prehybridization, hybridization, washing and probe labeling were performed as described in Sambrook *et al.*, *Ibid.* mRNA for muKS1 was 1.6 kb in size and was observed to be most abundant in brain, lung, muscle and heart. Expression could also be detected in lower intestine, skin and kidney. No detectable signal was found in testis, spleen, liver, thymus and stomach.

25 *Human homologue of muKS1*

MuKS1 (SEQ ID NO: 66) was used to search the EMBL database (Release 50 plus updates to June, 1998) to identify human EST homologues. The top three homologies were to the following ESTs: accession numbers AA643952, HS1301003 and AA865643. These showed 92.63% identity over 285 nucleotides, 93.64% over 283 nucleotides and 94.035% over 285 nucleotides, respectively. Frame shifts were identified in AA643952 and HS1301003 when

translated. Combination of all three ESTs identified the human homologue huKS1 (SEQ ID NO: 67) and translated polypeptide SEQ ID NO: 67. Alignment of muKS1 and huKS1 polypeptides indicated 95% identity over 96 amino acids.

5 *Bacterial expression and purification of muKS1 and huKS1*

Polynucleotides 269-502 of muKS1 (SEQ ID NO: 69), encoding amino acids 23-99 of polypeptide muKS1 (SEQ ID NO: 70), and polynucleotides 55-288 of huKS1 (SEQ ID NO: 71), encoding amino acids 19-95 of polypeptide huKS1 (SEQ ID NO: 72), were cloned into the bacterial expression vector pET-16b 10 (Novagen, Madison, WI), which contains a bacterial leader sequence and N-terminal 6xHistidine tag. These constructs were transformed into competent *E. coli* BL21(DE3) (Novagen) as described in Sambrook *et al.*, *Ibid.*

Starter cultures of recombinant *E. coli* BL21(DE3) (Novagen) transformed with bacterial expression vector pET16b containing SEQ ID NO: 69 (muKS1a) 15 and SEQ ID NO: 71 (huKS1a) were grown in NZY broth containing 100 µg/ml ampicillin (Gibco-BRL Life Technologies) at 37°C. Cultures were spun down and used to inoculate 800 ml of NZY broth and 100 µg/ml ampicillin. Cultures were grown until the OD₅₉₅ of the cells was between 0.4 and 0.8. Bacterial expression was induced for 3 hours with 1 mM IPTG. Bacterial expression produced an 20 induced band of approximately 15 kDa for muKS1a and huKS1a.

MuKS1a and huKS1a were expressed in insoluble inclusion bodies. In order to purify the polypeptides, bacterial cell pellets were re-suspended in lysis buffer (20 mM Tris-HCl pH 8.0, 10 mM β-Mercaptoethanol, 1 mM PMSF). To the lysed cells, 1% NP-40 was added and the mix incubated on ice for 10 minutes. 25 Lysates were further disrupted by sonication on ice at 95 W for 4 x 15 seconds and then centrifuged for 10 minutes at 18,000 rpm to pellet the inclusion bodies.

The pellet containing the inclusion bodies was re-suspended in lysis buffer containing 0.5% w/v CHAPS and sonicated for 5-10 seconds. This mix was stored on ice for 1 hour, centrifuged at 14,000 rpm for 15 minutes at 4°C and the 30 supernatant discarded. The pellet was once more re-suspended in lysis buffer

containing 0.5% w/v CHAPS, sonicated, centrifuged and the supernatant removed as before. The pellet was re-suspended in solubilizing buffer (6 M guanidine HCl, 0.5 M NaCl, 20 mM Tris-HCl pH 8.0), sonicated at 95 W for 4 x 15 sec and centrifuged for 10 minutes at 18,000 rpm and 4°C to remove debris. The 5 supernatant was stored at 4°C. MuKS1a and huKS1a were purified by virtue of the N-terminal 6x histidine tag contained within the bacterial leader sequence, using a Nickel-Chelating sepharose column (Amersham Pharmacia, Uppsala, Sweden) and following the manufacturer's protocol. Proteins were purified twice over the column to reduce endotoxin contamination. In order to re-fold the 10 proteins once purified, the protein solution was dialysed in a 4 M-2 M urea gradient in 20 mM Tris-HCl pH 7.5 containing 10% glycerol overnight at 4°C. The protein was then further dialysed 2x against 2 litres of 20 mM Tris-HCl pH 7.5 containing 10% glycerol.

15 *Injection of bacterially expressed muKS1a into nude mice*

Two nude mice were anaesthetised intraperitoneally with 75 µl of 1/10 dilution of Hypnorm (Janssen Pharmaceuticals, Buckinghamshire, England) in phosphate buffered saline. 20 µg of bacterially expressed muKS1a (SEQ ID NO: 20 70) was injected subcutaneously in the left hind foot, ear and left hand side of the back. The same volume of phosphate buffered saline was injected in the same sites but on the right hand side of the same animal. Mice were left for 18 hours and then examined for inflammation. Both mice showed a red swelling in the ear and foot sites injected with the bacterially expressed protein. No obvious 25 inflammation could be identified in either back site. Mice were culled and biopsies taken from the ear, back and foot sites and fixed in 3.7% formol saline. Biopsies were embedded, sectioned and stained with Haemotoxylin and eosin. Sites injected with muKS1a had a marked increase in polymorphonuclear 30 granulocytes, whereas sites injected with phosphate buffered saline had a low background infiltrate of polymorphonuclear granulocytes.

Chemokines are a large superfamily of highly basic secreted proteins with a broad number of functions (Baggiolini *et al.*, *Annu. Rev. Immunol.* 15:675-705, 1997; Ward *et al.*, *Immunity* 9:1-11, 1998; Horuk, *Nature* 393:524-525, 1998). The polypeptide sequences of muKS1 and huKS1 have similarity to CXC chemokines, suggesting that this protein will act like other CXC chemokines. The *in vivo* data from nude mice supports this hypothesis. This chemokine-like protein may therefore be expected to stimulate leukocyte, epithelial, stromal and neuronal cell migration, promote angiogenesis and vascular development, promote neuronal patterning, hematopoietic stem cell mobilization, keratinocyte and epithelial stem cell patterning and development, activation and proliferation of leukocytes, and promotion of migration in wound healing events. It has recently been shown that receptors to chemokines act as co-receptors for HIV-1 infection of CD4+ cells (Cairns *et al.*, *Nature Medicine* 4:563-568, 1998) and that high circulating levels of chemokines can render a degree of immunity to those exposed to the HIV virus (Zagury *et al.*, *Proc. Natl. Acad. Sci. USA* 95:3857-3861, 1998). This novel gene and its encoded protein may thus be usefully employed as regulators of epithelial, lymphoid, myeloid, stromal and neuronal cells migration and cancers; as agents for the treatment of cancers, neuro-degenerative diseases, inflammatory autoimmune diseases such as psoriasis, asthma and Crohns disease; for use in wound healing; and as agents for the prevention of HIV-1 binding and infection of leukocytes.

SEQ ID NOS: 1-72 are set out in the attached Sequence Listing. The codes for nucleotide sequences used in the attached Sequence Listing, including the symbol "n," conform to WIPO Standard ST.25 (1998), Appendix 2, Table 1.

All references cited herein, including patent references and non-patent publications, are hereby incorporated by reference in their entireties.

While in the foregoing specification this invention has been described in relation to certain preferred embodiments, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details

described herein may be varied considerably without departing from the basic principles of the invention.

We claim:

1. An isolated polynucleotide comprising a sequence selected from the group consisting of: (1) sequences recited in SEQ ID NOS: 1-35; (2) complements of the sequences recited in SEQ ID NOS: 1-35; (3) reverse complements of the sequences recited in SEQ ID NOS: 1-35; (4) reverse sequences of the sequences recited in SEQ ID NOS: 1-35 (5) sequences having at least a 99% probability of being the same as a sequence recited in (1) – (4) above as determined using computer algorithm BLASTN; (6) sequences having at least 50% identity to a nucleotide sequence recited in (1) – (4) above determined using computer algorithm BLASTN; (7) sequences having at least 75% identity to a nucleotide sequence recited in (1) – (4) above determined using computer algorithm BLASTN; (8) sequences having at least 90% identity to a nucleotide sequence recited in (1) – (4) above determined using computer algorithm BLASTN; (9) sequences having at least 95% identity to a nucleotide sequence recited in (1) – (4) above determined using computer algorithm BLASTN; (10) nucleotide sequences that hybridize to a sequence recited in (1) – (4) above under stringent hybridization conditions; (11) nucleotide sequences that are 200-mers of a sequence recited in (1) – (4) above; (12) nucleotide sequences that are 100-mers of a sequence recited in (1) – (4) above; (13) nucleotide sequences that are 40-mers of a sequence recited in (1) – (4) above; (14) nucleotide sequences that are 20-mers of a sequence recited in (1) – (4) above; and (15) nucleotide sequences that are degeneratively equivalent to a sequence recited in (1) – (4) above.

2. An oligonucleotide comprising at least 10 contiguous residues complementary to 10 contiguous residues of a nucleotide sequence recited in claim 1.

3. A genetic construct comprising an isolated polynucleotide of claim 1.

4. A host cell transformed with a genetic construct of claim 3.
5. An isolated polypeptide encoded by a polynucleotide of claim 1.

5 6. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NOS: 36-65; (b) sequences having at least a 99% probability of being the same as a sequence of SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (c) sequences having at least 50% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (d) sequences having at least 75% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (e) sequences having at least 90% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; and (f) sequences having at least 95% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP.

7. An isolated polynucleotide encoding a polypeptide of claim 6.

20 8. An isolated polypeptide comprising at least a functional portion of a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NOS: 36-65; (b) sequences having at least a 99% probability of being the same as a sequence of SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (c) sequences having at least 50% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (d) sequences having at least 75% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP; (e) sequences having at least 90% identity to a sequence provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP and (f) sequences having at least 95% identity to a sequence

provided in SEQ ID NOS: 36-65, as determined using the computer algorithm BLASTP.

9. A composition comprising a polypeptide according to any one of
5 claims 6 and 8 and at least one component selected from the group consisting of:
physiologically acceptable carriers and immunostimulants.

10. A composition comprising a polynucleotide according to claim 1
and at least one component selected from the group consisting of
10 pharmaceutically acceptable carriers and immunostimulants.

11. A method for treating a disorder in a mammal comprising
administering a composition according to claim 9.

15 12. A method for treating a disorder in a mammal comprising
administering a composition according to claim 10.

13. A diagnostic kit comprising at least one oligonucleotide according
to claim 2.

20

14. An organism comprising a host cell according to claim 4.

SEQUENCE LISTING

<110> Watson, James D
Murison, James G

<120> Polynucleotides, polypeptides expressed
by the polynucleotides and methods for their use.

<130> 1050U1PCT

<160> 74

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2401
<212> DNA
<213> Rat

<400> 1

gaggccacag ttatcaccac ggagaagaga gagaggccag	cgccccctag agagctcctg	60
gtaccccagg cagaagtgc acgacgtac ctccggctcc	agtgggtccc tggcagcgat	120
ggggcctccc cgatccggta ctttaccgtg caggtgcgag	agctgccggg tggagaatgg	180
cagacctact cctcgcttat cagccacgag gccacactct	gtgctgttga aaggctgagg	240
cctttcacct cctacaagct ggccttgaag gccaccaacg	acattgggga cagtgacttc	300
agtgcagaaa cagaggctgt gaccacactg caagatgttc	caggagagcc accaggatct	360
gtctcagcca caccgcacac cacgtcctca gttctgatcc	agtggcagcc tccccgggat	420
gagagcttga atggccttct gcaaggctac aggatctact	accgtgagct ggagtccgag	480
acaggcctga gccctgaacc caagacactc aagagccct	ctgccttacg tgctgaactc	540
acggctcaaa gcagctcaa gaccgtgaac agcagctcca	cattaacgac ctatgaatta	600
acacatctga agaagtaccg gcgctatgaa gtcatcatga	ctgcctataa catcattgg	660
gagagcccaag ccagtgtacc agtggaggc ttcgttggt	aggctgcccc agcaatggcc	720
ccacagaaca tccaggtgac cccactcaca gccagccagc	tggaggtcac atgggacccg	780
ccaccccccag agagccagaa tgggaacatc caaggttaca	aggtttacta ctgggaggca	840
gacagtcgta atgagacgga gaaaatgaag gtcctcttc	tccctgagcc tgggttaaag	900
attaaggatc tcaccagcca cacaaagtac ctggtcagca	tctcagcctt caacgctgct	960
ggtagcgggc ccagaagtga cccatgccag ggacgcacac	accaggcagc tccagggccc	1020
ccaaagcttct tggaaattctc agaaataaca tctaccacac	tcaacgtatc ctggggggag	1080
ccatccggcag ccaacggcat cctacagggc tatcgagtgg	tccctgagcc tttagcacca	1140
gtgcaaggcg tgagcaaggt ggtgaccgtg gatgtgaaag	tgtatgaacc acggctggctg	1200
aagggtcgccg acctcaccaa gggagtgacc tatttctcc	ggactggca acggctggctg	1260
gcctacgggc cagaactcca agccaatgtc actgcagggc	accaggcagc tccagggccc	1320
tctccaagaa atgtccttgt caccaaattct gcctctgagc	tcaacgtatc ctggggggag	1380
gggaacacacg ggaacacacc cactacaggc tacgtcatag	tccctgagcc tttagcacca	1440
ggcttatggg acatgttgc aaaggacatt cccaggagtg	tctcagcctt caacgctgct	1500
ctggacaaggc tgccgcaagg ggtgacctac gagttccggg	tctcagcctt caacgctgct	1560
ggctttgggg aacccagccg cccttcatt gcagtgtcag	tccctgagcc tttagcacca	1620
tatgaggagt ggtggccct gctgggtata gcgcctcctca	gcctcctcct cgtcctcctg	1680
gtgggtcttcg tgctggccct gcatggcaa agcaagaagt	gcctcctcct cgtcctcctg	1740
aagggcattct ccaacatgga ggagacagtg accctggata	tccctgagcc tttagcacca	1800
gaactcaaca gtcgtcacct caatgtcaag agcacctct	gcctcctcct cgtcctcctg	1860
tccccacccc gaccaagccc cggaggctcg cactactcg	gcctcctcct cgtcctcctg	1920
tacaacgggtg cggtgctgac agagagtgtg aacctcaagg	gcctcctcct cgtcctcctg	1980
gaatcgaggc ttctgtacte agactacgag gaagccctgc	gcctcctcct cgtcctcctg	2040
caactacatga gcgacccac ctactacaac ttttggaaagc	gcctcctcct cgtcctcctg	2100

ccgcacaggt acgaggcggt ggcaggggcc gaagtggcc cgcacctgca cacagtcatc	2160
accacacaga gcgcggcggt agtttacaca ccagctggcc ccggagcccg ggccccccctc	2220
accggcttct ctccttcgt gtgacgtcac gcctccatca gggtagacgg gtgcagaact	2280
tctggagtct atttttgtta agacaatcaa ctccgataac tgagctgaat ttttttgtt	2340
taaaaaaaaata ataataattt tgataagcga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	2400
a	2401

<210> 2
<211> 1258
<212> DNA
<213> Mouse

<400> 2	
cacacgcccc gcgtgtgcgg agcctttatt tacttcgcag aagagcccttc agacccccc	60
ctaacaagtg tggaaagcat cacggcgacg cgatgttgg gacactggtc tggatgctcg	120
cggtcggctt cctgctggca ctggcgccgg gccggcgccgc gggcgcgtg aggacccggga	180
ggccgcggcgc gccggccggc gactgcgcgg accggccgg a gagctcctg ggcagctgt	240
acggggcggt ggcggccggc gtgctcagcg ctttccacca cacgctgcag ctccggccgc	300
gcgagcaggc ggcgaatgcg agctgcccgg ccggggcag ggccgcgcac cgcgcgttcc	360
ggccacccac caacctgcgc agcgtgtcgc cctggcgta caggattcc tacgaccctg	420
ctcgcttcc gaggtacctg cccgaagct actgcctgtg ccgaggctgc ctgaccgggc	480
tctacgggga ggaggacttc cgctttcgca gcacacccgt ctctctcca gccgtggtgc	540
tgcggcgcac agcggcctgc gcggggcgcc gctctgtgt tacatcacca	600
tcccggtggg ctgcacccgc gtgcccggc cggacaagtc cgccggacagt gcaactcca	660
gcatggacaa gctgctgctg gggcccgccg acaggcctgc gggcgcgtga tgccggggac	720
tgcggccat ggcggcgtt cctgcacca tcagttcccc tggccctgac aaaacccacc	780
ccatgatccc tggccgctgc ctaattttc caaaaggaca gctacataag cttaaatat	840
attttcaaa gtagacacta catactaca actatttga atagtggcag aaactat	900
catattagta atttagagca agcatgttg tttaaactt ctttgatata caagcacatc	960
acacacatcc cgtttcctc tagtaggatt cttgagtgc taattgttagt gctcagatga	1020
acttccttct gctgcactgt gccctgtccc tgagtcctc ctgtggccca agcttactaa	1080
ggtgataatg agtgcctccgg atctgggcac ctaaggctc caggtccctg gagagggagg	1140
gatgtggggg ggcttaggaac caagcgcucc tttgttctt agcttatgga tggcttaac	1200
tttataaaga taaaagttt tgggttatt cttcaaaaa aaaaaaaaaa aaaaaaaaaa	1258

<210> 3
<211> 3043
<212> DNA
<213> Mouse

<400> 3	
cgcgtctccc gccgcaccca cccgtcgctg tatcaagcaa aagcgaaagg aagccgagcg	60
gtcccgctg gctgtgcgtg ggcggggagg tggctgcgc ctctagctcc gccggaccag	120
gctgcgcgtt tgtacttca cccgttgc aacaagccag gaccgcgc gccccaccca	180
cccggtgtcc cgtccccc cccgcctcg gtctctgagc gttccctcc ctccggggct	240
ggccgtgtcc cggccgtccc ggagtctctg tcccgccgc ccgttagctg tctgtgtctt	300
ggccacccgc tccaggcagt ccgcagcaag ccagcttctt ggtccgacga gtcagcgcc	360
ctctcaccgc gatgtgtgc ttccctcaggaa gaatggcttt cttcccttc ctccgtgtga	420
cttggctgtc cgcagcttc atcatctct acgtggcgc ggtgtctct ggcacgtca	480
accctttct cccctatatac agtgcacacag gaacaactcc tccagagagt ggtat	540
gattcatgat aaacttctct gcatcttgc ggcagctac gatgtacaca agatacaaga	600
tagtggagaa gcagaatgag acctgtact tcagcactcc gtttttaac ttgggtgcct	660
tggcgcttgg attggggaa tgcacggaa tggcatcgat agccaacttc caggagttag	720
ccgtgcgtt ggtccatgat ggcggtgcgc ttctggctt cgtctgcggg gtgggttaca	780
cgcctctgca atcgatcatc tcctacaaat cctgtccca gtggaaacagt ctcaccacgt	840
gcacatgtcag gatggccatc tccgtgttt cgtgcgcagc tgcgtcccc atgattgcct	900
tggttcaact catttctata accaagctgg aatggaatcc aaaagaaaag gattatata	960

atcacgtgg	gagcgccatc	tgtgagtgg	ccgtggctt	tggtttatt	ttctat	ttcc	1020
taacattcat	ccaagatttc	cagagtgtca	ctctaaggat	atccacagaa	atcaatgacg		1080
actttgaaa	gatcgagaat	cctgtctcat	tcagggagtg	tcgcagacag	ttcttggaa	g	1140
tggacagagg	acggacgggc	ttggatgtca	ccctgtatgg	gactttatct	gtggcacatc		1200
cgggacttga	atttcattaa	gagttcctag	tagttcaatt	tacaaaggta	tgttccctg		1260
gaggatggat	agcaccaacg	acactgtgc	aatatttttta	tattttctaa	aacaatctt		1320
tatgaacaaa	ttcatatgca	aagaagacga	ggcattgcag	aaaggggagg	attattcttg		1380
tatagattct	tttagacttt	tatgtataaa	tgatttatga	aaatacacta	agagaaaaaa		1440
atgttaagtt	tagtactttt	tattaaagaa	gccaaatcag	ggcatattca	ctttaaaatt		1500
tcattttta	aatacagtga	cctgcataca	tttcatcac	aagagcactt	atacaattca		1560
attcatagtg	attatatacc	ctaattgtat	agatttaggt	aataaacaa	cactttaaag		1620
cactctgaat	ttcagtgc	ttaaacaaat	gctttatag	tgaaggactc	aaaaccattt		1680
acagtgcaca	ttaaccagcg	aatgtggaa	acctcggttc	gaaaatttag	ccccctcatt		1740
tacttctcca	agggacccac	agctttactg	ccgctgttaa	tggtggggcc	gggaaactaat		1800
tccaggtagg	atgggctcat	caggccagct	tagaaatgtat	caaactgccc	ttctctgtga		1860
ccggcagca	caagttcaat	tcacttctca	gtttccctgt	aagccaaaga	gaatgcagat		1920
ccaagtccagg	gagaaaggag	agcgctcata	gaaacttcca	gatgtgggct	gctgcctatc		1980
tgctcctatc	aatgcctgt	ggccactata	agggagtcag	gccctttccg	aagcaaggcc		2040
tggagactct	acctttcatg	cagttcacca	atggcaaaga	aacgcccagct	gttgtggagg		2100
aagaagtgg	taacaagacc	ccccagtc	ggccagtagg	agctgcccc	agggcacgtt		2160
ccaaggacag	agaccattt	gacagcctt	gtgaaagggt	acctggcgat	gaaggggcac		2220
acagcagtgc	ctcccttggc	tgctaagtga	agggtgctgc	tcagcagca	cttctgccc		2280
gacatcctgt	gtcttcttcc	tcagtggtca	gtggtggcaa	ccaacgtcca	tttctgagtc		2340
ccctgttaact	ttcacagta	ccgaacatgc	ccattgttaac	actggAACAG	aaagacagt		2400
gctgtcattc	tgatgagtga	gagaggagtc	gatacatttc	ctgtggaa	ggc	2460	
tgaatgcatg	ctgttcttgc	cttgagcgg	gagcttgg	tgatgccttc	ccagaatgca		2520
cttggctctc	ttcgcttcca	ctggagaccc	gaccacgtgc	cttaccat	agtggAACAC		2580
agtgccttgt	ggcatgcaat	aggtgc	taaatactca	ttgaatgtat	gcacgcataa		2640
atggatgaac	aagtaacgc	tagggatgtt	tgaggtgc	agggttttt	ttactcttagt		2700
tcacgggtat	tctaagggtca	acagcttagt	tgtgcaatt	agtaatgtt	tctgttttgc		2760
tttgtgaact	atttcgttt	ccacctgttc	cagctgtgt	agtttcatga	tttgtgtaca		2820
actctctcct	ggacagatag	cacagaaatt	gttacatgg	ctaaacgt	cttggcaaaac		2880
cgaggaggcc	cccaaatac	actctgcaga	ttccatgcga	cttctagtt	tatccctgtt		2940
ttggtgttat	tttaattt	tacaaatatg	tatttcctt	gactttgtac	ccgagaaagt		3000
aaaataaaat	atttctt	ttaaaaaaaaaa	aaaaaaaaaa	aaa			3043

<210> 4
<211> 2515
<212> DNA
<213> Mouse

<400> 4							
gctgcgcctg	ctgctggcct	gggtggccgc	ggtgcccga	ctggccagg	tcccctggac		60
gccggagcct	cgagccgcgt	gcggccccag	cagctgtac	gctgcctt	cccgccgc		120
cacattctcg	gaagcttggc	ggcgtgc	cgaattgggg	ggcaacctgg	ccacaccgc		180
gaccccagag	gaggcccagc	gtgtggacag	cctgggg	gtcgcccgg	ccaaacgggc		240
gctatggatt	gggttgcagc	gcaatgc	ccgaggt	ccgcagcgc	cactgcggg		300
cttcataatgg	accacgggag	accaggacac	cgcottcacc	aactggccc	agccggctac		360
ggaaggaccc	tgcccagccc	agcgctgtc	agcccttgc	gcaagcggag	agcatcgctg		420
gctcgaaggc	tcgtgcacac	tggctgtc	cggcac	tgccagttt	gttttggagg		480
tgctgcct	gccttgcgc	ttgaggtgg	tcaggccgt	cccgctgt	acaccacacc		540
cttcaacctg	gtttccagcg	agttcgaat	gctgcctt	ggctccgt	cagctgtc		600
gtgccaagct	ggcaggggag	tttctctgt	tgcggtaaa	cagccttgc	gtggcgtgg		660
ctggtcccag	actggcccgc	tgtgcccagg	gactggctgt	ggtcctgaca	atgggggtt		720
cgaacatgag	tgtgtggaa	aggtggacgg	tgctgtgt	tgccgcgt	gtgaaggctt		780
cgcgttagca	gcagatgggc	acagttgt	agacccctgt	gcccaggccc	cctgtgagca		840
gcagtgtgaa	cctggagg	ccacaaggct	tagtgc	tgtcgcctt	gcttccggcc		900

agctgaggat gatccacacc	gctgcgtgga	cacggatgag	tgccagattg	ctggtgtgtg	960
ccagcagatg	tgtgtcaact	atgttggtgg	ctttgagtgt	tactgcagcg	1020
gcttgaggca	gatggtatca	gctgttagccc	tgcaaggagcc	atgggtgccc	1080
ggatctcaga	gatgagttgc	tggatgtatgg	agaagaagggg	gaggatgaag	1140
ggaggacttt	gatggcacct	ggacagagaga	acaggggatc	aggagccctg	1200
tccacctgac	tttggcctgc	cctataaggcc	caacttcccc	ctatggctgg	1260
attgcacctg	gagcctacct	ggccacccccc	acttaaggcc	caggatggag	1320
cccaaggggg	gccgcacaaa	cgcccaagggg	gaaccccgcc	cccaacaacc	1380
ctgcccacaa	gacctctgtt	atttcagcta	cacgcccacc	aacctaaccc	1440
ctgccccatggc	ccctgcccaca	cctccagctg	tgttctctga	gtccacccac	1500
aggccaatta	tccagacctg	ccttttggcc	acaaggctgg	cccaaaaatca	1560
cagcacggcc	tcctccgtac	cagcccccca	ttatctcaac	caactatccc	1620
ctccccacca	ggccctatg	tctccagata	cccacactat	caactatccc	1680
cccctcacct	tgatcttggg	gataccactt	ctaaagccca	caactatccc	1740
atgtccagg	tatcagaacc	caggcccccc	agctttctgt	ctcagctctc	1800
ttcctaccaa	ctccaggtct	tctgtccatg	aaactcctgt	ccctgctgcc	1860
cagcctcc	ttcttctccc	ctccccccctc	agaggcccac	aaccagccccc	1920
gccctacaca	ttcctattcc	agagccccctc	tagtcccaag	ttgctccag	1980
aatcagtgcc	acagctgcc	tcgggtccct	ccacagcagc	cccaacagcc	2040
caggtcttgc	aggccaaagc	caaagggatg	accgctggct	ctcctgggtgc	2100
caacatgtgt	cttcttgggt	gtgctgctg	ccctggcat	actcgctgtg	2160
gctcccacgc	acccaacaag	cgatcacgg	actgtatcg	ctgggtcaca	2220
acaagagctc	aacagaaccc	atgcccccc	gaggcagct	catgctggga	2280
gaaccagtgt	gtgatgggt	gcagatgccc	cttggggaa	ttggggaa	2340
tggacacatg	gctgagacca	caccaaggac	ttatggggc	ttggggaa	2400
ttctgttctt	tgagccagc	atccatggca	aaggacacac	ttggggaa	2460
gggtgggtgc	tggatcttc	tccaataaaat	gggggccc	ttggggaa	2515

<210> 5
<211> 1587
<212> DNA
<213> Mouse

<400> 5					
gccccgcggg	tagagggcgg	tggcgccgca	gcggcgatgg	gccgcgcctg	60
gttggactcc	tggcgctcg	gtggctgctg	cgcttggcc	acggcgagga	120
gagacagcgg	cacagcgctg	cttctgcccag	gttagtggtt	acctggacga	180
gatgtcgaga	ccatcgataa	gtttaataac	tacagacttt	tcccaagact	240
cttggaaagtg	actactttag	atattacaag	gtgaacttga	acaaggcttg	300
aatgacatca	accagtgtgg	aagaagagac	tgtgccgtca	tcttcttgaa	360
gttcctgtatg	gaattaagtc	tgcgagctac	aagtattctg	ccgcattgaa	420
gaatgtgagc	aagctgagcg	acttggagcc	gtggatgagt	tttttttttt	480
aaagctgtac	ttcagtggac	caagcatgtat	gattcgtag	tttttttttt	540
gatatacagt	cccccgatgc	tgagtatgtg	gacttactcc	tttttttttt	600
ggctacaagg	ggccagacgc	ttggaggata	tggatgtca	tttttttttt	660
aagccacaga	caattcaaag	gcctttggct	tctggggcag	tttttttttt	720
ttttacaact	ggctagaagg	cctctgtgt	gaaaaagat	tttttttttt	780
ggcctgcacg	caagcattaa	tgtgcatttg	atgtcaagg	tttttttttt	840
ctggaaaaga	aatgggtca	caatgtcaca	gagttccagc	tttttttttt	900
actgaaggag	aaggcccacg	aaggctgagg	aacttgtact	tttttttttt	960
agggctctct	ccaaagtgt	tccatfffff	gagcgtccag	tttttttttt	1020
aataaaatgc	aggatgcaga	aaacaaagcg	ttacttctgg	tttttttttt	1080
tcatttcctt	tgcacttcga	tgagaattct	tttttttttt	tttttttttt	1140
aaactaaagg	aggacttccg	gctacactt	aggaacattt	tttttttttt	1200
ggctgcttca	agtgcgcct	gtggggcaag	cttcagacgc	tttttttttt	1260
aagatcttgt	tttccggaaa	actgatcgca	aatatggccgg	tttttttttt	1320
ttccagctaa	ccagacaaga	aatagtatca	ctgtttatg	tttttttttt	1380

agtgtgagag aactagagaa cttcaggcac ttgttacaga atgttcactg aggaggacgg	1440
ttgaatgtg cctgttctg cacagggaa ttgaagggc aaaatctctt ttagccccat	1500
ggttgcaatg tactgtccta agcccaacgt ttatataaac ctgctttgt taaagaaaaa	1560
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1587

<210> 6
<211> 2494
<212> DNA
<213> Rat

<400> 6	
acttgaactg gcagataaaa aagtatgaca ccaaggcagc ttactgcag agcaagttgg	60
ctgttgcct cttcaccaag gagctgagtc gcccgcgtca aggcaactgg gtgactgtca	120
atgcgctgca ccctggcggt gccaggacgg agctggggcg acatacaggc atgcacacaact	180
ctgcgttctc tggcttcatg cttggccct tcttctggct gctgttcaag agtccccagc	240
tggcgccca gcccagcaca tacctggctg tggcagagga actggagagt gtctctggga	300
agtactttga tggactcaga gagaaggctc catctccgt ggcgttcaag gagaagtag	360
cccgaggct ttggactgaa agtgcattt tggggcgtt ggacatggct catgggtcct	420
ctgggagagg acattccatc tccagataac ttccatcattt ccagatggag cctcatcatc	480
ctctaggggc agtgttggta ttgttagaat ctcaagactg tggatgttgg ctggcatgac	540
cctcatcatc ctctaggagc agtgttgtac tactcaact gaagactgtg gatgtggct	600
gccatcctct ggggtggctgt ttgggtccta gcattattgt tagctggctg cttgggttq	660
gaccacggga tggcaggcac atgtactt tgggttactg gggagatgt ccattgggtgc	720
ctcctacagg aatctaaaag cggggaaagt gatggaggag tcagtcactc tagttatggg	780
cagtgtccaa agacagtggc caccaaagact gcagtagtgg actgattgtt ccactgtgaa	840
agagcaagta atcagacaaa tatggctgtc gagctttgtg ggcccttgc catgtctgcc	900
tcctctctga cttggctgtt gttcttagtt gttctctgtt gctgtgataa ataccatgac	960
caaaaatcaac ttggggagga aaaggccta tttaacttac aggttatagt ttaccatgg	1020
agagggaaac cagggaaagga actcaggaca agaacttggc gcagatacca gatacaacgg	1080
aggtttgctc ccaggcatac atcagatacc tttatattt ttttattattt gttattttt	1140
tataagagagg gtctcacttt gtaaccctgg cttccctgg acttgctatg tagatcaggc	1200
tggcctcaaa ctcacagaga cttgccttct gggattaaag gcttgaatta ttaggcttgg	1260
cccaggtacc agtgcagcct acctgcccag ggtggcacc atctgcagtg ggggtctacc	1320
tcccatatca actagcaatc aagaaaatgc tccacaaaca ttccctcagg gcagtcgtgt	1380
ctaaggcagtt cttcaggcga gggctgtct gttctatctt taggtatgcc aggttgaccaa	1440
acaaaatgaac cagacggctc ttgattgcaaa actgcaaaagg gttctgtca cctcaggat	1500
ggtgtggcc tgaagctt ccccaactca gtaaaggcga gctgtggaca cttgtgtact	1560
ggacactggc tgagggctg gatccagtg gaaaccctgg ctttggtag ccctgaagta	1620
atcaggacag aatggagtga aagctgtca gttgtgtct cagaaaatga gtgtgacctg	1680
ggatcacgat ctctccagtt cttgtgtat tttaaccta gcctctcaag catgttgg	1740
gattataata acaagctaga tagaggtgtt ggcacacttc agtagctcca gcacttaaga	1800
gggagaggca ggatgtcaa aagtccaaagg tcatccgagg ccagcctgg ctatatgaga	1860
ttctggcggaa acaaagcaaa acggtgagat ctccaaatgg ctgattcata gatttaaat	1920
aaagacatac atttagtgtg cgagtgtgt tactatgtgt gtgtatgtt acgggtatgt	1980
gcacgtgccc ttgtatgtgc attacatgtt ggaggtcaga ggacaacctg tggaaatcag	2040
ttctctcttc gtgaatcccc aggttccaa tcagttgtc aggcttggc gcaagggcct	2100
tcacctctga accatagtgc cagccctgag tcataagggtt ttttttatac ctttctgtat	2160
gggattttt ccacatacaa ttattcttt atcccttta agaaactaag acattcaatt	2220
gttgacaaga caatgatccc ccaacaactc cctcgatattt ctcatctatc ctgttctgtct	2280
taaatttaggc tagatcaact tcccccttcc cccctttctt tttttggaga cagagttca	2340
ctctatagat caggctaaac ttgggctctc aggtccttg tctaaagcctc tggagtccag	2400
agatgacggg tctgcccacac cctgcgttta caatcgtgt ttacaatcaa ataaatggaa	2460
ataaacattt ctatcaaaaa aaaaaaaaaa aaaa	2494

<210> 7
<211> 1859
<212> DNA

<213> Mouse

<400> 7

gctcaaagt gccaactaca	gcaactcagg	cagattcaag	aagagggtca	tgtatcctgt	60	
aggatatggg	tttcctgctt	ttattgttgc	tgcacgtgc	aatagctggc	cacaagaatt	120
atgaaacaca	caaccactgc	tggctcagcc	ttcatcgagg	attcatctgg	agcttcttgg	180
ggccagcggc	agccattatac	ttgataaaacc	tggtgttcta	ctttctaata	atatggattt	240
tgagaagcaa	actttcttct	ctcaataaaag	aagtttctac	acttcaagac	acaaagggtta	300
tgacatttaa	agccattgtc	cagttatttt	tggtgggatg	ttcttgggc	attggcttgt	360
ttattttcat	tgaagttggg	aagacagtga	gactgatcgt	tgcctatctg	ttcaccatca	420
tcaatgtcct	gcagggtgtt	ttgatattta	tggtacattt	tctgcttaat	cgcagggtgc	480
ggatggaata	taagaagtgg	tttcatagac	tgcgaaagga	agttgaagt	gaaagcactg	540
aagtgtctca	ttctactact	cacacaaaaa	tgggtcttcc	tctgaacctg	gaaaatttct	600
gccaacagg	aaacctccat	gatccttctg	actccatcct	tccaagtact	gaagtagcag	660
gtgtatatct	aagcacaccc	aggtctcaca	tgggtgctga	ggatgtgaac	tcaaggactc	720
acgcttactg	gagcagaact	attagtgatt	gaatcagctc	cttccccaa	gcctttaaca	780
gtacatttt	acttgtactg	tgccatgcac	atgaagctat	aattgtctgt	ctggtaaaac	840
aactgttgca	tattccatga	tcatttcatt	ttatctctac	ttgaaaagt	tagctttctt	900
tttatatcat	tttattttct	ctttcttttg	tttatataaa	gcttcagttt	agtgggtttc	960
tagcttaat	gttctagatc	actatttctt	tttcagttaa	cttttatgg	tatttagttc	1020
ctgtgtatg	tataccactg	gaatattttt	atttctttaa	ttttgaggtt	aaaatatagt	1080
taatcatcattt	ttcctttttt	tcttcccac	aatctcctg	tatactttt	ccctgggtgc	1140
tattttattt	tttctacatg	catatatattt	ttatgcaaaa	catatatatg	tataaaatata	1200
aatatatattt	cttatatgc	tgaaaaccat	ctacttcattc	caaataatgt	tccttctatg	1260
tatgttttca	ggacaggggac	aacaatagct	atggtagcat	ggcaggggaa	agcccacagg	1320
acctcagcct	tatacaaaga	atcagaggca	actgaggagt	gctgagttga	aggaattgtc	1380
ttacccaggg	gagggcacat	taatttggta	tctaatacaa	aatgttcagc	cccaaaaactg	1440
ttaagataaaa	agcctatatg	catcttaga	agtatctacc	ttgatacacc	tttattggaa	1500
tatcatccac	atgtttattt	tgtgttctga	agagggcttg	ttgaatttct	aagggttgat	1560
cagtttaatt	gtgccatttt	atattcaggg	tggttggctt	tgttgtatg	aataatgcta	1620
tatccctgt	tatgtgtcat	cttgcactgt	tatttttcc	tggcaatact	ttattcaaca	1680
agaacctaga	gccttggttt	attactttt	cttccataga	aaaactattt	gtcttccagg	1740
attagatatg	atcaatattt	cttataatgc	tgtatcaaata	atcatgtatg	aatatattac	1800
tgtgtataat	taataactgg	caataaaagtc	caagggaaaa	ggaaaaaaaaa	aaaaaaaaaa	1859

<210> 8

<211> 2305

<212> DNA

<213> Mouse

<400> 8

gaatctgtgg	aagcagttta	ttccagtatac	accaggagc	agccacacag	aggctggtag	60
gagggctgga	ttttgttct	ctttttttct	tttctttaaa	tgtaacactt	ctttatTTT	120
tcttcttggaa	gagtcttgg	gatacttaca	ttcagttaa	gtagtacagg	gtggataaaat	180
tctactttga	agaaaacttc	tctcctctga	caaggttgg	cttgcacaca	ggccagcatg	240
aaggagttat	tgtatgtact	gtttttggct	gtgtgtctgt	ccaaaccctt	ctttagccct	300
tcccacacag	cactgaagaa	tatgtatgtt	aaggatatgg	aagacacaga	tgtatgacgt	360
aacgatgtat	acgacaactc	tcttttcca	acgaaaagac	cagtgaaccc	tttttccct	420
ttcgattttt	ttccaacatg	tccatttggg	tgccaatgtt	actctcgagt	tgttcaactgc	480
tctgtatctag	gtctgacatc	gtttccaaac	aacattccat	ttgataactcg	aatgggttgc	540
cttcaaaata	ataaaatcaa	ggaaattaaa	gaaaatgact	ttaaaggact	cacttcactt	600
tatgtctgt	ttctgaacaa	caacaagcta	acaaagattc	acccaaaaac	ctttctaacc	660
acaaagaaat	tgagaaggct	atatttatacc	cacaaccaac	taagtgaat	tccacttaat	720
cttcccaaat	cattagcaga	actcagaatt	catgataata	aagttagaa	gataaaaaag	780
gacacgttca	agggaatgaa	tgctttacat	gttttggaaa	tgagtgcaaa	cccttcttgc	840
aacaacggga	tagaaccagg	ggcatttgaa	gggggtgacag	tattccatat	caggatcgct	900
gaagcaaaac	taacctcaat	tccaaaaggc	ctaccacaa	ctttgctgga	gcttcattta	960

cagggctggcg	gaagccccca	gatatcacag	ccggaactgg	gaaggcccct	gttggaaac	1680.
tgcagggagt	atacacat	tcaggccc	tggtcagcca	ggccaaagacc	acaggagcta	1740
agacacccca	acctcatcac	cctcctaccc	accctctc	tcatcttctt	tttgatgaat	1800
tctgtccatc	tcccttagcct	ccattttggt	tgtaccttcc	cattctcagt	actgctttct	1860
tattcttaa	agatatttat	tttcttttc	attaaaataa	aaccaaagta	ttgataaaaaa	1920
aaaaaaaaaa						1930

<210> 10
<211> 2617
<212> DNA
<213> Mouse

<400> 10						
ggccggcggga	agatgcgggtt	ggggctccta	gctggggcg	cggccgtgct	gctgggtccg	60
gccccggaaag	tctgtgggtgc	tctcaatgtc	acgggtgtccc	caggacctgt	ggtggactac	120
ttgaaagggg	aaaatgccac	cctcctctgc	cacgtctccc	agaagagacg	gaaggacagc	180
tgctggccgt	gcgctgggtc	ttcgcccctg	acggctccca	ggaggccctt	atggtaaga	240
tgacgaagct	ccggataatt	cagtactatg	ggaacttcag	ccggactgtcc	aaccagcaga	300
ggctacgcct	gctcgaggag	cgtcgagggg	tgctgtacag	gctgtctgtc	ctgacgctcc	360
ggcccacaga	tcaagggcag	tatgtctgca	aagtgcaga	aatcaga	caccgcacaca	420
agtggacagc	ctggccaat	ggctcctcgg	cgacggaaat	gagagtgate	tcctctaaag	480
ctggcgaaga	ttcatcattt	gagaaaaaaga	aggtgacttg	ggcattttt	gaagatctct	540
atgtgtacgc	tgtccttgc	tgctgcgtgg	ggatcctcag	tgttctgtc	ttcacccctgg	600
tcattgcctg	cagtctgtgt	ttcacaagag	gaaatcaaga	gtgagacatt	atttggtgaa	660
gtgcccctcag	aacagctcag	gggagactgt	caccagtgt	accagcttgg	ccccactgca	720
gccacagaag	ggtaaagagc	agaagaagaa	ggttagatgtt	ccacctgcag	tcctctgcca	780
agcgcgcata	gccaccactt	tccacaaacc	aaagctgtc	aaaccacaga	gaaaagtgc	840
cctgccaag	atcaccgagg	aaaacttgc	ctatggcag	ctggagctga	tcaaaccaca	900
cagggctgcc	aaaggcgtcc	ccaccagcac	cgtgtatgca	cagatccct	tcgaggagaa	960
ccagctgtag	cgatacctcc	tctctggctg	tcatgtgtt	tcccagttgt	ttatgacact	1020
cagaaacaaa	ctccctagtt	ttgttattttc	accctgtcct	tcagtgtat	ggggagccccc	1080
ttcccacagc	gttctgatgt	tttctaagag	gtacacactt	cccagaagag	aagggaccag	1140
ctcttggcca	tgcctccaa	gataagaggc	ccctggctg	attctgagca	caaggactct	1200
gcttctgaga	gcattgctga	gccaaccgt	ccaacttctc	cttttcttaa	gccttaaag	1260
tttgagggaa	aatcaaatac	ttaattttaa	tcagcccccc	ttgttctgt	taacaagcat	1320
ccagtttata	gccacaggaa	atgctgtaaa	ggtoacagag	agaaatggga	tatatggact	1380
gacaagttct	ctaagctct	gggacaccca	ggacagagca	aacccttgg	ggtgggtggca	1440
ggagccactt	atgatgacat	ccattgttt	taatagatgc	tctgaaactg	gcacatgtgag	1500
ggcagagatg	ctgatggttg	aaagccggag	atctggctca	gaaaattctg	gtcttatgtc	1560
tttagagcca	tacttcacca	gggctgtaga	tctacaagaa	cacccttga	aagtgtttgt	1620
ccccctttag	cagaatggac	ctagagagac	atattgtct	ctcttttcca	aagacttgag	1680
tatggctcca	gtgggtacat	cggttaagt	agcaaagcat	gcaagctc	tcaactccat	1740
tcaagataga	gtggagcctt	tcaccattcc	ctcagcagag	aatgaaagc	acaaggcatg	1800
ccggaaact	atgtccagga	ggactcaacc	cttggcaagt	gcttgcacc	tctcaatctt	1860
ggatgagaac	catgattgcc	ttgggtggat	gtcaggggac	catggacat	aagtccgtgg	1920
ggaagtgact	ctgtggacct	aaacaatgt	aaaaaatgtc	agacttaatg	gaagtaagag	1980
agtcacccctg	atttccgcag	tgcttattgt	gcttctgtat	gtataactctg	gtggccactt	2040
actgcacattt	ataaacattt	tctggcttt	taattttaca	atgtatatat	gataaatttat	2100
ctattttaaa	cacagctagg	gtgtcattt	tgccctctgt	ctcaactgt	gacttgagtt	2160
tttatttacc	ttaacttgg	tcacagctac	acaagttgt	ggaatgggg	aacccactga	2220
acattgcctt	ttaatgggaa	atagaaggct	cacagcatcc	ctgcccagct	tgtctctctg	2280
acttttcaa	aggaaaccg	cagcagcacc	ctcagagcag	ggacaatgag	cagtttgtac	2340
ctgggtctt	tttgaagtaa	catattttgg	ggttcttgc	cagaaaatgt	gtcttagtcgc	2400
tcttccttta	ccacatagac	caactaccgt	gaattgacat	ttctgaagct	aagtggaggag	2460
aagcatccat	catctggaaa	gtgcaaagg	ttcttcttgc	gacaaggcat	caataggagc	2520
ggtgatgtaa	tcactgagta	gttcccaaaa	tggacagctg	ttccagttgt	tccatgcaat	2580
taaagcaagc	atgacctcaa	aaaaagaaaa	aaaaaaa			2617

gattttata	aaatttcaac	ggtggaaactt	gaagatctta	aacggtagc	ggactgc	1020
aggctgggtc	ttggaaacaa	cagaatcaca	gatattgaaa	atggacttt	tgctaata	1080
ccacgtgtga	gagagataca	cttggAACAC	aataaactaa	aaaaaatccc	ttcaggatta	1140
caggagttga	aatacctcca	gataatcttc	cttcattata	attcaattgc	aaaagtggga	1200
gtgaatgact	tctgtccaaac	agtgcAAAG	atgaagaaat	ctttatacag	tgcaataagt	1260
ttattcaaca	acccaatgaa	gtactggaa	atacaacctg	caacatttcg	ttgtgttctt	1320
ggcagaatga	gtgttcagct	tggaaatgtt	ggaaaataat	tcatgacatc	cattaaatat	1380
aaaattccaa	aatgtataca	tttggaaatac	tttggactgtc	ctagtaatgg	tagtattata	1440
cacataagca	aaattctatt	ctatatggtc	aatgacaaaa	aatttcaaca	gaattttgcc	1500
taattattga	tgctcagaat	aaatttctat	tgcagtgtcc	ttctgcacat	gaatgattct	1560
tgcgttaatc	ttttgtttga	acattcttt	tttggcAAA	aaaagatatt	tagtattaa	1620
cccttcattt	tcaagtca	caaacagaat	tgtactgtt	acagaatgt	tgacttagt	1680
acatttgtt	catatcttt	ctgttagaaa	aacaaaactg	gcaagaacag	cattttgaag	1740
agtacatata	tttttagtag	ttttttaaaa	aaaacttgg	cagtaactgt	atgtttccaa	1800
taatgttga	atacatata	tttgacagaa	tcaaaattct	caactcataa	taaagcttca	1860
agtattcaca	gataatattc	atcagagtt	gtttgggctt	taacacatga	atatctttt	1920
taaatttata	actggctata	aaattgtaaa	aatataatga	ctgctaata	aaaatctata	1980
atgtgcattt	tatgatcagt	tatataagct	ttgaagaaca	cagtaactgt	taggttacat	2040
agtgttatta	cttcaactag	gaatatttca	ggatattcct	ttggAACAGT	atggacgcca	2100
atcaatttta	tatcaactta	tctcttcaaa	tatgcacatt	gggttaatgcc	tggaaacata	2160
gctaagggtga	caaaaactga	aaactgaaca	aaacttaata	gtactttcat	gtgtttttt	2220
taaactgtata	ttcatttatga	attaagtaaa	aagtgacaat	aaggaaaaca	ttaaatactg	2280
gttttcaata	aaaaaaaaaa	aaaaaa				2305

<210> 9
<211> 1930
<212> DNA
<213> Mouse

<400> 9	
gcggaggcgc gcagggcagc ctgggtccag cccacacccc tcaccaggag gcaccatgtg	60
gggatgttgg ctggggctgc tcttgctgct gctggctggc caggctgcc cttggagggcccg	120
gcggagtcgt tgccgcaggg agctggcgcc aggctgcac ctgcggggca tccgggacgc	180
cggtgtccaga tactgccaag agcaggacat gtgctgtcga ggcgcgtgctg acgagtgtgc	240
cctgccttac ctgggagcca cctgttactg tgaccttctt tgcaaccgc cccgtctctga	300
ctgctgcccc gacttctggg acttotgcct cgggatttca ccccccattcc ctcccgtcca	360
agggtgcattt catgggggccc ggatotaccc agtcttcgga acctactggg acaactgcaa	420
tgcgtgcacc tgccatgagg gagggcattt ggagtgcgac caggagccgt gtcttagtgga	480
cccaagacatg attaaagccca tcaaccgggg caactacggg tggcaggctg ggaaccacag	540
tgccttctgg ggcattgaccc tggatgaggg cattcgctac cgcctgggca caatccgccc	600
atccctccact gtcattgtata tgaatgagat ttatacggtg ctgggccaag gggaaagtgt	660
acccactgccc ttgttaagctt cagagaagtg gcccaacctg atccacgagc cattggacca	720
gggcaattgt gcagggttccct gggctttctc cacagcagct gtcgcattctg atcgcgtctc	780
tatccattct ttgggacaca tgacacccat cctatcaccg caaaacctgc tgcctgtga	840
tacccaccac cagcagggtt gcccgggtgg gctgttttat ggcgttggt ggttcctgcg	900
gcgcgcgggg gtgggtgtctg acaactgtta cccattctcc ggcgcgtgagc agaacgaggc	960
cagccccact cctcggttata tgatgcacag ccgcgcctat gggggggca agcgcctaagc	1020
cacttccgcg tgccccaatg gtcagggtga ttccaaacgac atctaccagg tcacgcctgc	1080
ctaccgcctg ggctctgtat agaaggagat catgaaggag ctaatggaaa acggccctgt	1140
tcaagcactc atggtttttttt acggggactt cttttttttt cagcgtggca tctacagcca	1200
cacacctgtt agccaggggg ggcgggagca gtaccgcaga catgggactc actcagtc当地	1260
gatcaactggg tggggagaaag agacgctgcc agacggaaagg accattaagt actggactgc	1320
tgccaaactcg tggggcccat ggtgggggtga aaggggccac ttccggatcg tgcgtggcac	1380
caacgagtgc gacatcgaga ctttcgtgtt gggcgcttgg ggtcgcttgg gaatggagga	1440
catggggcac cactgagtct cagccactag gcgagggtgg atccacagcc acagaagagg	1500
ccttggggcc catgcccgtt gaaggcttgc tgcacttcg ggaccagggtg ctaatctcta	1560
caqactcaga tccgcgcgtt cgcgcttaagg cagaatccca cctaggagac aaagatgcac	1620

<210> 11
<211> 1480
<212> DNA
<213> Mouse

<400> 11

gggctccag	gtgatcggtg	tgtgtcagcc	tcactccagg	gcctccaggg	aaccatggac	60
tttggctt	ggttacttta	cttcctgcca	gtgtctgggg	ccctgagagt	cctcccagaa	120
gtacagctga	atgttagagtg	gggtggatcc	attatcatcg	aatgcccact	ccctcaacta	180
cacgtaaagga	tgtatctgtg	tcggcagatg	gccaaacctg	ggatatgtctc	cactgtggtg	240
tccaaacacct	ttgtcaagaa	ggaatatgaa	aggcgagtca	ccctgacgcc	atgtttggat	300
aagaagctat	tcctagtgg	gatgacacag	ctgacggaaa	atgacgtatgg	aatctatgcc	360
tgtggtgtgg	gcatgaagac	agacaaaggc	aagacccaga	aatatcacct	gaatgtccat	420
aatgaatacc	cagaaccatt	ctgggaagat	gaatggacct	ctgagcggcc	aagatggttg	480
cacagatttc	tgcagcacca	gatgccctgg	ctccacggga	gtgaacatcc	cagctttct	540
ggagtcatag	ccaaagttac	cacgcccagt	tcaaagactg	aggcccccc	ggttcaccag	600
ccctccagca	tcacttcagt	aacccaacat	cccagagttt	acagagcatt	ttctgtgtca	660
gctaccaagt	ccccagcgt	cctgcccagca	accacagcct	caaagacttc	cactcagcaa	720
gcaatcaggc	ccctagaggc	cagctacagc	caccacacca	gacttcatga	gcaaaggaca	780
cgcaccatg	gcccacacta	tgggagagaa	gaccgaggc	ttcacatccc	catcccagaa	840
tttcacatcc	tgattccgac	cttcctggc	tttctctgc	tggttcttt	gggactggtg	900
gtaaaaaagag	ccattcaaag	gaggagagcc	tcctccagac	gtgcggggcg	actggcgatg	960
aggaggcgag	gccgggggc	ttcccggcc	ttccccacac	agcgccggga	tgccccgcag	1020
aggccgcgt	cgcagaacaa	cgtctacagc	gcctgcccc	ggcgccacg	gggaccagac	1080
agcttgggtc	cagcggaggc	tccgtcctc	aacgccccag	cctcagcgtc	ccccgcttct	1140
ccgcaggta	ttgaagctcc	ttggcccccac	accccatctc	tgaagatgag	ctgtgaatac	1200
gtgagcttgg	gctaccagcc	tgctgtcaac	ctggaagacc	ctgattcaga	tgattacatc	1260
aatattcctg	accatctca	tctccctagc	tatgccccag	ggcccagatc	ttcatgccaa	1320
ttagttctgc	ctgtttgctg	atgtctagca	cgtttcctt	ataggatccc	tgtcatggcg	1380
tatgtcctat	accctaagtc	gactctcacc	tgactatctg	aatgccttga	aatgtatcaa	1440
ttacaggcta	atttttacc	ccaaaaaaaaaa	aaaaaaaaaa			1480

<210> 12
<211> 802
<212> DNA
<213> Mouse

<400> 12

gctgagccag	gatgaaggct	ctcagggctg	tcctccgtat	cttgctacta	agtggacagc	60
cagggagtgg	ctgggcacaa	gaagatggtg	atgcggaccc	ggagccagag	aactacaact	120
acgatgtga	cgtatgtgaa	gaggaagagg	aggagacca	catgatccct	ggaagcaggg	180
acagagcacc	tctacaatgc	tacttctgtc	aagtgtctca	cagcggggag	agctgcaatc	240
agacacagag	ctgctccagc	agcaaaccct	tctgcatcac	gctcgtctcc	cacagcggaa	300
ccgacaaagg	ttacctgact	acctactcca	tgtgggtac	tgataacctgc	cagcccatca	360
tcaagacagt	gggagcacc	cagatgactc	agacctgtt	ccagtcacca	ctgtgaata	420
ttccaccctg	gcagaacccc	caagttccaga	accctctgg	tggccggca	gacagcccc	480
tggaaagtgg	gactagacat	cctcagggtg	gcaagtttag	ccacccccc	ggtgtcaagg	540
ctgctcatcc	tcagagcgt	ggggctaaact	tgccttaagag	tggcaaggct	aaccagcccc	600
aggaagtgg	ggcaggatac	cttcaggtct	ggaccaaatt	tggtaatata	gccctcctgc	660
tcaagttctt	cacttgtctg	tgggcgtca	gggcctgaag	acccttctc	ctccaaaccag	720
gacgcctgg	cctcccttc	ctgacaacca	gcttcagaga	ataaaacttga	atgtcgtttg	780
ccatctaaaa	aaaaaaaaaa	aa				802

<210> 13
<211> 2112
<212> DNA

<213> Mouse

<400> 13

gggtgcttag	acggtgaaaa	tcaagatca	ggccacctt	ctgtgaggct	tcagctgagt	60
ctaaagggt	tattgtatcg	aatggcttca	ggatggttt	acctgtcctg	catggtgctg	120
ggatcgctgg	gatcgatgt	catcctctt	actgcctact	ggatgcagta	ctggcgcgg	180
ggcttgcct	ggatggcac	ggtgcctatg	tttaactggc	accaggct	catggttgcc	240
ggcatggtgg	tgctctatgg	agctgcctca	ctgggttacc	gcctgcctt	atcggtgggt	300
ggggccaggc	tgccctggaa	agttctccat	gcagcactgc	acctgtcggc	cttcacactc	360
actgtggtgg	ggctgattgc	cgtcttcgg	tttacaacc	actcgagaat	cgcacaccc	420
tactccctgc	acagctggct	gggtatcacc	actgttagtcc	tcttcgcctg	ccagtgggtc	480
ctgggctttg	ctgtcttcct	cctgcctgg	gcattcccagt	ggctgcgaag	cctcctgaaa	540
cctctgcatg	tattcttgg	agcctgcattc	ctttccctgt	ccatcacatc	tgttatttcc	600
ggcatcaatg	agaagcttt	cittgtttt	aaaaatgcca	ccaaggcccta	ctccagcctg	660
cctggtgagg	ctgtcttgc	caacagcaca	gggctcttgg	tggtggctt	tggcttgctg	720
gttctctatg	ttcttcgttgc	ttcatcatgg	aagcgccag	atccaggagc	tctgactgat	780
agacagcccc	tgttgatga	cagggatga	agcgggcagg	ggctcctggg	aacggtcagc	840
gatcggtct	ctgctccctc	agaagttctg	ctgtactggg	gctcctgct	ggtttcagca	900
acagacttct	cttgggcccag	agacccaacc	ttgctactcc	agttgcagggc	tctcgctgtc	960
cagccactag	ctgttcctct	gttttcttgc	tggctttggc	ttattgcgt	ttttttctgg	1020
tcctccatttgc	gcacaaagac	cttcttgctt	tggtcacaca	tgtctcttct	gctggctgtc	1080
agatttggc	tgctttcctt	accactccta	gggatgtggg	agaagccaaa	gctgggggttc	1140
aaatgcagtc	tacacgttga	aaatacacaag	tctgtctct	gtgggagcat	ttgtcttagt	1200
taggtatgct	tccccctctg	ctctgtccttgc	gatgtgtatt	tgggtggcga	gttgcattga	1260
ggggtcatttgc	atgggacagt	gcacggccga	gaaggctctg	ctgtaaagtc	aggtgcccag	1320
tactctgtct	ttttcaacttgc	gatgtgtctgt	attgtgttgg	tgtgacatttgc	gtgattcccc	1380
ctcttcttagc	tgctgttccca	gctgttccct	ggatcccggc	ctttccctgt	gacttacatg	1440
cctgttcccc	tcaggttagca	tgacgagccg	ttaaacagtt	ctcccaagaa	cacatgtcct	1500
gtcccttagag	tccctcccttgc	tgtgatgttgc	gaggtttcttgc	tggccttcttgc	ttctgtccct	1560
ttgtgggtat	gggctttcccttgc	gcctccttca	gttatgttgc	cccctgacag	ggcccccagcc	1620
cactatgaaa	ttgaaaccag	cattatgaa	caatttgcgt	ggagccatttgc	actgtctgt	1680
ccttcagaga	ttgttcttag	ttagttagtgg	gtgtttctgt	tccccaagaa	gtcactcagc	1740
taccctctat	gctataaccag	aatgtgatgt	ttgttcttct	aatagaaaaac	tgggttagaga	1800
gggaggagtc	ttgccccact	cctttgttgc	agccctgcca	ggcccttcaa	caggcaggca	1860
ggcaggcaag	caggcagaca	ggcaggcaga	gttgggttcc	tgaacttcttgc	cgagacagtgc	1920
gccaggctgc	cagacgttgg	gaggagggttgc	ggcatggatt	tgctgactaa	atgaaaggcct	1980
gaacacatag	cgatgactcttgc	ttggcaccac	atgaacatcttgc	tcctggttca	ctcatgagtg	2040
ggtattttac	ttcatgaatc	ttattttat	taaatatgtt	tttaaacatc	agaaaaaaaaaa	2100
aaaaaaaaaa	aa					2112

<210> 14

<211> 915

<212> DNA

<213> Mouse

<400> 14

ggaagtaagt	tcagaggcca	ttagactgccc	tctgccacttgc	ttgttacttgt	tccgggtgcag	60
ggctatcctg	gggagcgccg	gggataggg	ttccctctcg	gttcggctc	ccacacttgc	120
tgtatgaagag	aagtacttgc	ctcatatgc	ggctcacctg	cgctgcgt	cctgcccgg	180
tgtggccttc	cagatggggc	aacgtcttgc	gaaagcagag	gttaaatctc	acactccaga	240
cggcaggatgg	ttgcaggagc	ttagtgaatc	cacgtacaca	gatgttcttgc	accagacact	300
ctctcagaac	tggcagtcct	atggagttca	tgaagtgaac	cagatgaagc	gtctcacgg	360
cccaaggactt	agcaaggggc	cagagccaa	aatcagctgt	atgatttcttgc	ggggctccctg	420
gcctaaatagg	ctctccaaga	cgtgtttccat	ctacctgggt	gatgttggag	aggaccagat	480
ctatgaagcc	taccgccaag	gccaaggc	tctggaggcg	ctgttctgt	ggggcacc	540
tggcccttgc	tcacaggaga	tcctggccca	gagagaagag	tttagtcca	acctgtgc	600
cttctggatc	ttctctaattt	ttattattat	taatggctga	tttagaggc	gtctctatca	660

tgtaggccag gctggcctta aacttgtcat cctgctcagc ctcgaaagtg ctgcatttaa	720
gtcctgagcc tttttgtgt tgaccctccat atataatittt ttcaactgtg gtgtgggaa	780
ggggacaggg aagcctgact ctagctgtca atcttctccc tccacctctc gatggggta	840
tggacttag gctgccttcc tactttcaaa taaagctttg aaagacaaaa aaaaaaaaaaa	900
aaaaaaaaaaa aaaaa	915

<210> 15
<211> 1308
<212> DNA
<213> Mouse

<400> 15	
gtgagagctc agctggaagt gactgggtga caaggcgac aggctcagcc gtggaaagctc	60
catcatgatt ccacaagtag tgaccagtga gactgtcaca gtgatttcac caaatggaaat	120
cagtttccc caaacagaca aaccccgacc ttcccaccag agccaagaca gactgaagaa	180
acatctaaag gctgagatca aagtgtatggc ggcaatccag atcatgtgtg ctgtgtatgg	240
gttgagtctg ggaatcattt tggcatctgt tccctccat ctacacttta cctcagtgtt	300
ttccatcctg ttagaatctg gctaccattt tgttaggagct ttgttttttgc ccatctctgg	360
aattctgtct attgtcacag agaaaaagat gactaaggct ttggttcaca gcagcctagc	420
cctgagcatac ctgagtgatcc tctctgtct tacagggcatc gctattctct ctgtcagttt	480
ggctgcttta gaggcctgcct tgcagcaatg taagctggct ttcacacaaac tagacacaac	540
ccaagacgct tatcatttctt ttagccctga gccattaaac agctgctcg tggccaaagc	600
tgtctgtact ggagtctttt cactgtatgtc aatcagcgt gtgttgagc ttggcctggc	660
tgtccctact gccacactgt ggtggaaaca gagctcctct gctttctctg ggaatgtgat	720
tttcctgtct cagaactcaa agaataaaatc cagtgtatct tcagagtcac tttgtAACCC	780
tacatatgaa aacatattga cttcataaga attaagtaga ggttatatac cagaaaaatc	840
tgtctttaaac atgattttaga aaagccattt actgtgtgac aacaatgttt aatatcttaa	900
tatcttaatg tgtgtattgg ttaatcagca accatggaaa acatactaacc tggctgggtt	960
cagtagcact ctcttgatatt ggcgtcagtc aaaacacaga cctgtaaattt ccaattttatg	1020
tagtggtaaa agagccccaa ttatttctc aaaaaactgg aagaatgttt cataggatca	1080
tggtggagcc aatggcaac agttcttctt atccttgc tttggctgca ggaggtactg	1140
actagggcct gagatcatat tctgtgtgc tggcatggac ttcatggcat ctatTTTATT	1200
cataaggcaca tggaaacaag tcatactctta tgaagtctca aagagcataa aaaagtttagc	1260
ctccaaataaa agtctttatg taatccaaa aaaaaaaaaa aaaaaaaaa	1308

<210> 16
<211> 1288
<212> DNA
<213> Mouse

<400> 16	
gctccagctc ctccatcctg tagttacag ggtgtaccct atgtcggac caatgtgacc	60
ctgaactgca agtccccaaag gagtaaacct actgtctagt accagtggga gaggctggcc	120
ccatcctccc aggtcttctt tggaccagcc ttagatgtg ttcgtggatc tttaagctc	180
actaacctt ccattgccat gtctggatc tatgtctgc aggtcaaaa cagagtgggc	240
tttggcaagt gcaacgtgac cttggacgtg atgacaggct agtaaggggg tccaaggctg	300
cagtggatc tggagcgtt gtggcactt ttgttgggtt ggtgctgata gctggctgg	360
tccctgtgtt ccagccccgg agcaagaccc tggaaagagct ggccaatgtat atcaagggaa	420
atgcatttgc tccccggacc ttgccttggc ccaaaggctc agacacaatc tccaagaatg	480
ggacactttc ttggatcacc tcagcacggc ctctgccc acccaaggct gctcctccaa	540
gacctggcac atttactccc acacccagtg tctctagcca ggcccgttcc tcaccaagac	600
tggccagggt agatgaaccc ccacccatcagg cagtgtccct gacccagggt ggggtttctt	660
cttctgtctt gggccatc ggtgtgtgc ctgtgtatggt gcctgcacag agtcaggctg	720
ggctctttgt gtgatagccc aggactcat tagctacatc tggtatctga cttttctgtt	780
aaggctctct tggccacag aggactcaat cttgggagga tgcccacatt cttagaccc	840
atgcctttgc ttctacccctt ttctattgtt ggaatactgg gcctcagtaa gactaaaatc	900
tgggtcaaaag gacaaaagga gggaaatggac ctgaggtagg ggggttggag tgaggaggct	960

tcacttcctc	cctgcttctc	cctgaagcca	gatgaatgt	gcggaaagatc	ggctaccctc	1020
caagggtctc	ggaggagact	gccagtca	gatgcccctg	gctctgtat	ctgtacaaca	1080
cccttatcta	atgctgtct	ttgcccgtcg	ctccatctcc	ctgtattat	ataacctgtc	1140
ctgctggctt	ggctgggtt	tgttgttagca	ggggatagg	aaagacattt	taaaatctga	1200
cttgaatttgc	atgttttgc	ttttatatttgc	caaattccaa	taaagataca	tcgcatttgc	1260
atggccaaaa	aaaaaaaaaa	aaaaaaaaaa				1288

<210> 17
<211> 999
<212> DNA
<213> Mouse

<400> 17						
gccagctttt	tcctccgcag	ccatgtccctg	gtctccgatc	ctaccat	ttt tgcgttctc	60
gtttctgt	ttcccactcg	aggttcccag	agcagccact	gcgtccctt	cgcaagcatc	120
ctccgaaggc	acaaccacct	gcaagggtcca	cgatgtgtgc	ctcttggggc	cacgcccatt	180
gcccccttca	ccacctgtca	gagttagct	gtattatgag	tccctgtgt	gagcttgatcg	240
ctacttcctc	gtccggatt	tgttcccaac	ctggctgtat	gtgatggaaa	tcatgaacat	300
caccctggtg	ccctacggga	atgcacagga	gagaatgtc	agcgttacgt	gggagttcac	360
gtgccagcac	ggggagctgg	agtgttagact	gaacatggtg	gaggcctgtc	tgcgtggataa	420
gctggaaaag	gaggcagcgt	tcctaaccat	cgtctgtat	gaggagatgg	atgatatgg	480
gaagaaaactg	ggaccgtgcc	tgcaggtgt	tgctccgtag	gtgtcaccag	agagtatcat	540
ggagtgcgcc	acaggaaaac	ggggcacaca	gctcatgtat	gagaatgccc	agctcacaga	600
tgccctacac	ccacccacg	agtatgtgcc	ctgggtgt	gtcaatgaga	aaccttigaa	660
ggaccccacg	gagctctgt	gcatagtctg	tcaatggac	caggaaacgg	agaagccaga	720
catctgtcc	tccattgtcc	actccccag	gaaggctgtc	tataagtaaa	ggcataacat	780
caaactcgtc	ccagaaaact	gcccagcttc	ttcaattgtc	caacctgcaa	gagctgtgc	840
ctcgctatga	aaaccttgca	catgtcccac	aaagcccaga	ctccagactt	ctcagagaca	900
aggatcttgc	tttatttca	aatggtgct	aattttaaatt	catagaataa	atcatctata	960
ctcctgtat	tccttttcc	taaaaaaaaaaa	aaaaaaaaaa			999

<210> 18
<211> 2123
<212> DNA
<213> Mouse

<400> 18						
gctgtcccg	gtcctgtgt	ggaaactgt	gtttttcag	agctctgcag	tccgtccctc	60
aggccttca	gggaccgcag	cagccagca	ctctctggtg	tctgagatctg	tgtgtgagtt	120
ggcagccgga	acccaggctg	tgctacgt	ccagagcccc	cgcattgtgt	ggacccaaga	180
ccggctgtat	gatcgccagc	gcgtggtca	ctgggaccc	agcggggacc	cggcagcc	240
acggcgccga	cttggata	tgtattcg	gggtgaacag	cgcgttacg	agccgcgcga	300
tcgcaccgc	ctcctgtgt	cgccctctc	tttccacgc	ggcaacttct	cgcgtctat	360
tcgcgtgt	gagagaggcg	atgaagggt	gtacacctgc	aacctgcacc	atcaactactg	420
ccacctcgat	gagacctgg	ctgtgcgc	cgaggttaca	gacgatcccc	tattaagtctg	480
cgcatactgg	gacggtgaga	aggaagtgtt	gggtggggcc	catggcgcgc	cggcactgtat	540
gacctgcata	aaccgtgcgc	acgtgtggac	tgaccgc	ttagaggagg	cgcagcagg	600
ggtccattgg	gaccgacagc	tacctggat	gtcacacgc	cgcgcgcacc	gcgtgttgc	660
cctgtatgca	tctggcgagc	gccgcgc	tggccgc	ttcctgtgt	atcgctgtc	720
atgaaacacc	aacgcttttgc	cacgcgggt	cttccctca	cgcattgtat	agctggagcg	780
agctgtatgt	ggcatttatt	cctgcac	gcaccatcac	tactgtggcc	tccacgagcg	840
ccgagtcttc	cacctacagg	tcacagagcc	tgccttgc	ccaccatgc	gtgttctcc	900
tggcaatggg	tctggtcaca	gcagtgtcc	tagccat	cccaccat	cccgaggcc	960
cagcatcata	aatgtcatttgc	tcccagagga	ccacacat	ttcttccagc	aactgggct	1020
cgtgttggcc	acgctgtgc	tcttcatttgc	gctgtat	actgtatcc	tggctacac	1080
acatgtcata	agcggaggat	gcaagacgtc	ggacaaaaaa	gctggaaat	caaagggaa	1140
ggatgtgaac	atggtgagat	ttgctgtat	cacaaggat	caggccat	ataggactga	1200

ggacatccag	ctagattaca	aaaacaacat	cctgaaggag	agggctgagc	tggcccatag	1260
tcctctgcct	gccaggatg	tggatctgga	taaagagttc	aggaaggagt	actgcaaata	1320
aatggaccct	gagcttctgg	ctggccagc	agctctgtat	caaaggacat	ctccctgacc	1380
ctcctgcgg	attcctggct	cttctcagcg	gctggtccga	cttacctaga	aacttggcct	1440
aaacttggca	gagcagctgc	ctgtactttt	cccttccctag	aatcgccacc	cctcatcttg	1500
gtgagcaact	gtgggttccc	tagagactct	ggtatagttac	gattgtctcc	cttcagtcac	1560
ctgtgcccac	tgtatggtcgg	acccccaaact	taaacacaac	aaagatccct	tgttaatatac	1620
caccaaata	aaagtccctc	gtggcctctt	actgttaggg	tcaggaagac	actaaaaaat	1680
tccaggtaaa	actcccttagc	caccagttaa	acacattagc	cattgtcttg	ggggggggggg	1740
ggtcttcctg	agctgcattcg	tgcctgtgtc	ctgctcagag	ccctgtcttt	ataagggttgt	1800
actcatgggc	ccgccttgct	gctttgggca	acttgaggct	agcccaggc	cctttctctg	1860
cttctgattc	ctttctgccc	aatgcctccc	aagagctaca	ccagcagttt	ctgggtaccg	1920
tatgaccctt	ggccttgaca	tccctcccta	ggctggagtc	tgggggttggg	gccccatttg	1980
tcctctgttt	tggctgaaga	tggggtgaag	atttggctga	.gtggcctatg	ctgtcacatc	2040
aaacagctat	catttactcc	tacttggaaa	gttgcattgt	gacaataaaa	gatacatttg	2100
acttttaaaa	aaaaaaaaaa	aaa				2123

<210> 19

<211> 1391

<212> DNA

<213> Mouse

<400> 19						
gctggcaggc	tgctgtgcag	tccacgagga	aggcttcgg	cgacaggaca	ggcgtgcaga	60
cttcaggagg	gaccctgggc	agcagacatt	cccttggagg	gcaggttgc	ttgcattggtt	120
ggctcatgga	ggcagcagag	gtggcctcag	ccaggcctgg	gcagcatcag	ccccccggcag	180
cagcaagacg	ctggctgttc	cacctgcca	caagaacacg	caccaccagt	acccagggg	240
tgactagcgg	ccggaccaca	ggccacaaaaa	agaagaaggc	taccccaatt	acagatgcag	300
accatgtggg	gctccggaga	actgtttgt	gcatgtttc	tagtgtttgc	agcagatgg	360
actactgagc	atgtctacag	acccagccgt	agagtgtta	ctgtggggat	ttccggaggt	420
tccatctcgg	agaccttgt	gcagcgtgt	taccaggctt	acctcaccac	ttgcgacgg	480
cacagagcct	gcagcaccta	ccgaaccatc	tacccgactg	cctatcgccg	tagccctggg	540
gtgactcccg	caaggcctcg	ctatgttgc	tgcctctgg	ggaagaggac	cagtgggctc	600
cctggggctt	gtggagcagc	aatatgcca	cctccatgt	ggaatggagg	gagttgcac	660
cgcccaggac	actgcccgt	ccctgtggg	tggcagggag	atacttgcca	gacagatgtt	720
gatgaatgca	gtacaggaga	ggccagttgt	ccccagcgt	gtgtcaatac	tgtggaaagt	780
tactggtgcc	aggatggg	gggacaaagc	ccatctgcag	atgggacgc	ctgcctgtct	840
aaggagggc	cctcccccgt	ggccccaaac	cccacagcag	gagtggacag	catggcgaga	900
gaggaggtgt	acaggtgc	ggctcggtt	gatgtgttag	aacagaaaact	gcagttgg	960
ctggcccccac	tgcacacgct	ggcctctcg	tccacagac	atgggctaca	agatcctgg	1020
agcctgtgg	cccatccctt	ccagcagctg	gaccgaattt	attcaacttag	tgacgagg	1080
tccttcttgg	aggaacatct	ggggctctgc	tcctgc	aaa	aagatctgt	1140
accacccagg	ctggatagag	cagtcatccc	tagatccctt	gtagccagag	ttcaggcg	1200
gtctgggtgt	gcctatgagc	agaaggccct	gcctcattgt	ccctctttct	taggagg	1260
ctaggactt	ggcatggg	gtggggctt	gtgtgactct	tcagtggggc	tccctgtcta	1320
agtggtaagg	tggggattgt	ctccatctt	gtcataataa	agctgagact	tgaaaaaaa	1380
aaaaaaaaaa	a					1391

<210> 20

<211> 1864

<212> DNA

<213> Mouse

<400> 20						
ggcacccgcgc	gggcggctat	ggagcgagcc	tgaggccgc	caggatatga	atggctccc	60
tctgaccgc	atttcagtgc	ttgttaagtgt	gaggcagca	actgcagcct	acagattgt	120
aactgtcgaa	cccctggaa	tgtggaggca	ctgcagtgaa	gaaatatgt	atcatggaa	180

ctccttgcta atcgtcacca cctgttccct gtgataagcc agccaggacg tggctgagg	240
agaaggaaaa gaggccacca tgaagctgaa gcagcgagtt gtgctgttag caatactcct	300
cgtcattttt atcttcacca aagttttccct gatagacaat ttagatacat cagctgccaa	360
ccgagaggac cagagggctt ttaccgaat gatgactggc ttgcgggtgg agctggtgcc	420
caagttggac cataccctgc agtctccctt ggagattgca gcccagtggg tgggccccgg	480
ggaagtgtat cctgaagaga caccagagct gggagcaatc atgcattgcca tggccactaa	540
gaaaatcatt aaagctgacg tgggttataaa agggacacag ctaaaagctt tactgattct	600
tgaaggagga cagaaatgtt tcttaagcc taagcggtagt acgagagact atgtggtaga	660
aggggagcca tacgctgggtt atgacagaca caatgcagag gtggcggctt tccatttgg	720
cagattctg ggttccgccc gagctccctt ggtggggc agatatgtt atctgcgaac	780
agaagttaag cctgttgcca cggagcagct gctgagcacc ttccataactg taggaaacaa	840
tacttgttcc tatgggaagt gctactactg ccgagaaaca gagccagcat gtgtgacgg	900
tgacatgtatg gagggtctgt tcacactttt gcttccagat gtgtggcctc tgcaaaaaaca	960
tcgacatccc tggggcagga cctaccgaga aggcaaactg gccagggtggg aatatgtga	1020
gagctactgc gatgctgtga agaaaacatc ccccttatgac tcaggccgc gtctccttgg	1080
catcatttgc acggctgtct ttgatttactt gatggcaat gctgatcgcc atcaactacga	1140
gagcttcaaa gatgatgaag gcgcgagcat gcttattctt cttgataatg caaaagctt	1200
tggaaacccc tcgctggatg agagaagcat tcttgcctt ctctatcatgt gttgcatcat	1260
tcgggtttca acctggataa gactgaatta tctaaagaat ggagtaactaa agtctgcctt	1320
aaaatctgcc atggcccacg accccatctc ccctgtgtc tccgatccac actggacac	1380
tgtggaccag cggcttctga atgtcttgc caccatcaag cagtgtactg accagtttgg	1440
gacggatact gtgctgggtt aagacaggat gccactctcc cacttgaat tctcaatgog	1500
aaacaagtgg aactgatttt acaaagatag agaaacagca caatcaattc cgaatggcat	1560
gcgatggctc gcagggtggcc acagtgggtt ctggggcag aagacgggtt cggcccttggg	1620
agtgtcggt gtttctgca gtgcaagctt cggaccacag ttcaagcttcc tcacctctca	1680
ggctgccagc agcagctctg ctcaacttattccacac cagagggcga gcagggtgtga	1740
cataggctaa ggaagtgttt ccagagtgta cgtctcggtt gacccttgcgt gtctttctc	1800
tacacccatg gattctctga aaacactttt cagttccttgc tgccttaaaa aaaaaaaaaa	1860
aaaa	1864

<210> 21
<211> 2324
<212> DNA
<213> Mouse

<400> 21	
gggtctgtac tccccgttcc tcgcccacaca cacaccgaga ggatgaggct caccgtgggt	60
gccctgttgg cctgcgcgc cctggggctg tgtctggctg tccccgacaa aacggtcaaa	120
tggtgcgcag tgtcagagca cgagaataacc aaatgtcatca gttccgttgc ccacatgaag	180
accgtcttc cgcctgtatgg ccccccggctt gcctgtgtga agaaaacatc ctatccggat	240
tgcattcaagg ccatttctgc aagtgaagcc gatgtatga cttggatgg gggttgggtt	300
tacgtgtcc gcctgactcc gaacaacctt aagccgtgg cggcggagtt ttatggatca	360
gtggaacatc cacagaccta ctactacgtt gtggctgtgg taaagaaggg aacagacttc	420
cagctgaacc agctcgaaagg caagaagtcc tgccacacag gcctggaaag gtctgcaggc	480
tgggtcatcc ccatttgcctt gctttctgtt aagctgtcg agccccggcag tcctcttgag	540
aaagctgtgt ccagttctt ctcggggcaatgtgtccctt gtgcagatcc agtggcccttc	600
cccaaactgt gtcaactgtt cccaggctgtt ggctgtcttcc ctactcaacc gttctttggc	660
tacgttaggcg cattcaagtgc tctgaaagat ggcgggtggg atgtggcctt tgcctaaagc	720
acaaccatat ttgaggtctt gccggagaag gctgacaggg accaatatga actgtcttgc	780
cttgacaata cccgcaagcc agtggatcag tatgaggatt gctacctggc tcggatccct	840
tctcatgttgc tttgtggctcg aaaaaacaat ggcaaggaag acttgatctg ggagattctc	900
aaagtggcac aggaacactt tggcaaaaggc aaatcaaaaacttccaaactt gttcagctct	960
cctcttggga aagacactgtt gtttaaagat tctgccttgc ggctgttaag ggtcccccca	1020
aggatggact acaggctgtt cttggccat aactatgtca ctgcatttcg gaatcagcag	1080
gaaggcgtgt gcccggaggc ctgcgtcgac aactcgccag tgaagtgggtg tgactgtgat	1140
cacctggaga gaaccaagtgc tgacgagtttgc agcatcatca gtgaggaaa gatagagttgt	1200
gagtcagcagc agaccactgtt ggcatttgcattt gaaaagattt gtaacggaga agcggacgccc	1260

atgactttgg atggaggaca tgcctacatt gcagggcagt	gtggtctagt gcctgtcatg	1320
gcagagact acgagagctc taattgtgcc atcccatcac	aacaaggat ctttcctaaa	1380
gggtattatg ccgtggctgt ggtgaaggca tcggacacta	gcatcacctg gaacaacctg	1440
aaaggcaaga agtcctgcca cactgggta gacagaaccg	ctgggttgaa catccctatg	1500
ggcatgttgt acaacaggat caaccactgc aaattcgatg	aatttttcag tcaaggctgc	1560
gctcccggtt atgagaagaa ttccacccctc tgtgacctgt	gtattggccc actcaaatgt	1620
gctccgaaca acaaagagga atataatgt tacacagggg	cttcaggtg tctcggttag	1680
aaaggagatg tagccttgc gaaacaccag actgtcctgg	ataacaccga agggaaagaac	1740
cctgccaat gggctaagaa tctgaagcag gaagacttcg	agttgctctg ccctgatggc	1800
accaggaagc ctgtgaaaga ttttgccagc tgccacctgg	cccaagctcc aaaccatgtt	1860
gtgtctcac gaaaagagaa ggcagcccg gttaaggctg	tactgactag ccaggagact	1920
ttatggggg gaagtgactg caccggcaat ttctgttgt	tcaagtctac caccaaggac	1980
cttctgttca gggatgacac caaatgttc gttaaacttc	cagagggtac cacacctgaa	2040
aaataacttag gagcggagta catgaatct gtcgtaaca	tgaggaagtg ctcacaccta	2100
cgaactcctgg aagcctgcac ttccacaaa cattaaaatc	caagaggtgg gttgccactg	2160
tggggagac agatgtccc tcccgtggcc catgggcttc	tcttggtctt catgccctga	2220
gggggtgggg ctaactggtg tagtcttcgc tgctgtgcct	taccacatac acagagcaca	2280
aaataaaaaac gactgtgac ttaaaaaaaaaaaaaaa aaaa		2324

<210> 22

<211> 1859

<212> DNA

<213> Mouse

<400> 22

ggcgcaccta ccccagccta tgtgcgtcc gcaaggagaa	ccgagccgct cgccagcggg	60
gcfgcgtccc ggctgtgcc a gtgcagaagg gtgcgtcgca	ggaaggcagg accacaagag	120
cagggcggct ccggagaaag tacaacttca	tcgccccagt ggtggagaag gtggcgccgt	180
ctgtggtcca cttgcagctg ttccgcagat	gacagacaca caggttccca cactgatcta	240
aaggaggaga caccatcctg gacccagatc	tcagttgtgt tcagaaaaaga tggccaggac	300
gagttcagg cagctcacaa agcacatgga	agtggatcac ctctcaccaa ccagggaaatc	360
ccttccttca gcccgtctgg gttcatatgt	tctgaggatg ggctcattgtt caccaatgcc	420
cacgtccctca ccaaccagca	gaagatccag gtagagctcc agagcggggc ccggtatgaa	480
gccaccgtca aagacatcga ccataaaactg	gaccttgcac tgattaagat cgagccagat	540
actgagcttc cagtactgtc	gctggccgat tcctctgacc tccggctgg agagttgtg	600
gtagcttgg gcagccatt ttctctgcag	aacaccgtga ctgcaggat tgcagcacc	660
acacagagag gccccagaga gctgggactg	aagaattcag acatagacta tatccagacg	720
gatgccatca ttaaccatgg aaattctggg	ggtccgtctgg tgaacttgg tggcgcacgtg	780
attggtataa acactctgaa ggtgactgca	ggatcttctt ttgcgatccc ctctgatcgg	840
atcagacagt tcctgaaaga ctatcatgag	cgccaggatg aaggcaaggc cccttgcag	900
aagaaatacc tgggtcttcg aatgctgcct	ctcactctga acctccttca gggaaatgaa	960
aggcaagatc cagaggcccc tgatgtgagt	tctggagtt ttgttatatga agtgattcag	1020
ggatcggtc ctgcaagctc ggggttgaga	gaccatgtg taattgtcag cataaacggg	1080
caacgttca ccaccacaa tgatgtcatt	gaagctgtt aggacaatga ctttctctcc	1140
atcattgtgc ttgcaggaag tcaaaccttg	tttctgcacatg tcacacccatg aataatcaat	1200
taagtatctt actttgagaa actgccttagc	aaaaccagtt atattacctg gttttgtatc	1260
gaagagggtgc cagagatggc	ggagatcaag aaaaatggat gctttaatag	1320
cagaaggatca tgggggtgtc	catacatcaa cacacacaca cactcatgga	1380
tcctgagggtt gagagtgc	ttctgcccga aaaccttctt aactcaaatg gaaacagctt	1440
tgggtatctg ataaaacttg	atgacagtaa gaactggaaa gcaggcaatt cctaactaaa	1500
tcttgatagg aaactttatg	tacctcctat acagccacaa actggatgtt cacgcacatg	1560
tacacataat tacctacaa	atattaagaa cctgaatctg gagtaaagag gtaatcacat	1620
tttaaataat acccccttgc	atactgaatt tcccaggtt tatccactct gggccagggt	1680
ttgtggatag aaaggatc	acctataaga catcttggag ctgatgacat catactacca	1740
cacaggatgt	tgatcatttt ggaggtagaa acaatttcgg accttttagag tttctgagaa	1800
tgtcttctat ttcttataaa	ataattttc gaaccgttaa aaaaaaaaaaaa aaaaaaaaaa	1859

<210> 23
<211> 724
<212> DNA
<213> Mouse

<400> 23

atgcctgcct	gtcgccctcg	cttgctggcc	gctggcctcc	tactagggtt	gctactgttc	60
accccatct	cagccacagg	caccatgca	gagaaccgg	gcgagtggcc	ccagctcgaa	120
ccaattacgg	actgtgtgtt	ggagtgact	ttggacaagg	actgtgcgg	caaccgcaag	180
tgctgccagg	cgggctgcag	ctctgtctgc	tccaaggcta	atggaccgg	cgaaggagag	240
ctctcaggga	cagatactaa	actctcagag	actggacta	ctactcaatc	agcgggcctt	300
gaccacacta	ctaaaccacc	gggaggtcaa	gtctccacga	agccaccggc	tgtgaccagg	360
gaaggcttag	gtgtccgaga	aaagcagggc	acctgcccc	gcgtggacat	acccaagctc	420
ggcctctgtg	aggaccagtg	tcaaggtggac	agccagtgtt	ctggcaacat	gaaatgtgc	480
cgcaatggat	gtggaaagat	gcccgtcacc	acacccaaat	tctgagcttc	agcctccagc	540
agcctgagga	acggagagag	gttggttctg	ccggactgtg	catctggagt	cgttccctgt	600
gcctcctttc	tctctggct	ttgcatttct	tcctggccg	acgaaaagcat	ctccttttc	660
taaccaataa	agtatcggtt	ttcagcaatg	gagaagctat	aaaaaaaaaa	aaaaaaaaaa	720
						724
aaaa						

<210> 24
<211> 2395
<212> DNA
<213> Mouse

<400> 24

gaaagaatag	agacagagaa	ggagtttctg	cattttggg	atcacaaacc	agaccatgaa	60
agctggcatt	cagaatgcct	gcctaccaaa	agtctcagca	aggcccacgca	agctccacag	120
gatgctttc	aagggtggct	ctgtgggtgt	ggtaaggcc	aagggtggga	aagccagtct	180
ttgggagcag	actctttgtt	ggagtctgca	cttccctt	cccctgccc	ctccactctg	240
acagccacag	gtggaatgat	gagggccaa	atgtggaca	tctatgtca	gatattaaac	300
ctaagctcac	gtaagaagtg	ggcaaaagact	ggccctgggt	tgtctgtaa	agacccagag	360
tttcccaacc	cccctgccc	gagcttaggtc	atcacactaa	tttgtttagt	tttgctcctg	420
tttgccttaa	ggataagtgac	ccttgcctga	cgcagatgtc	atgttttaggc	attaagtgtc	480
cataggtcat	tccgttagggc	atctagtaca	cgtcggtca	caaatactact	tccaagaccc	540
tcagaatcct	tcattaaagg	gctggccctg	ggtgtctgaa	tttctgtatg	gctccctgca	600
atatggtaa	atgcactata	actggaggtc	agaccccttag	aaccgggggg	agcagagcc	660
ccttgtaaat	gttattcaggc	taatcacaat	gagatggcc	cactgtctagc	tacgtctcag	720
cctccatca	ctcttgcgtc	ctcttccaca	gctgcttaca	tctggacac	ttgtgcccc	780
ttcccaggcc	atacaaggct	ggaagggtgg	ctggacagcc	tcctccctga	cctacatggg	840
aaggctctc	cttttcttcc	cgccctttt	tctaatgtgg	atgtttccat	taatcctctg	900
tttctggagc	tttggaaat	ctgttccca	ttcattcata	cacccatcca	tcattcaaca	960
tgaatgggtc	atgtcacgt	ttgggtgca	gggatactct	ttcaaaacaa	tccctcacga	1020
gactcacagt	ctagtgaaga	gcacacgca	gaaaccaatt	agagaagcta	ccaaaccacga	1080
tggaacatca	gggattcaaa	acctcggtt	gagagggagc	ctacttctc	tgtgttcttc	1140
taagagccct	gatggctctc	gattgtctg	aacagaggc	cacttggtcc	atgtctatca	1200
tgggtagtgc	ccacgagggt	tccccagaga	atactactgt	agagcattct	atactcccc	1260
cagggagaca	ggaaaggatt	cccagagcc	tggctttaa	gatggctctc	gaaggaaaaat	1320
ccagtcattt	ccaagtggc	cctgaaccct	gaggctatgg	ggaggtcttc	agaagtcctg	1380
gaagagtgac	aacacccgag	tcccaggagc	tctgtatgg	caaccttctc	ccttgaacac	1440
ccttttccat	ttttgagcat	cgagttggag	aggtgattct	gggacagggt	gtgtatattt	1500
gtgttgttta	aacacattca	catgtaaat	gcctgagggg	agggatgtt	tgcctctagc	1560
tcagtcctt	tggagctgg	gggatgtat	gtctgagtgg	ttttagggcc	atcattgaca	1620
ccacctcagt	acaaacggac	tcccctcc	tcctccctct	tttctatcc	ccttcccttc	1680
cttccctttag	caggcgtc	aagggtat	gggacagcg	caggcataac	gatcacctgt	1740
tgccttaatg	aacttccac	agctcactgc	tggtaggtc	gtagagttt	tcctgttctt	1800
gtgaggccca	aggaaggagg	ccaatctaaa	gtgtccctca	taccttcccc	ttgggggctt	1860

ttctgttaata	cttggttaaa	aattgttctg	atgatcatga	tggaaacaga	cagaccaccc	1920
tagaaccaga	ggcctgaaag	cctgacactg	ccagcacaga	ttcccacttc	agaaccccg	1980
ggctatggaa	gtgccttgc	ccaacgctat	gggaatagtc	ctgtgggtt	tctctgttg	2040
ccactgtggc	cagcatcca	gtgcctacag	ccacctgtgc	ctacagccac	ctgtgccatg	2100
agaagtgcct	ctccctgtct	atgcctgca	tttgggatgc	taagaagagg	tgagggtgt	2160
agcgagaaca	gatccaccc	tctccttaggt	aggatcagct	ctcaatttgt	gcttatcact	2220
agttatcaa	gaacagcaga	gacagctg	ttatccaaga	agcaagtatt	aggacaaaaa	2280
cctgttactg	tattnaagg	aacttttagt	tgcttatctt	acattttat	aaagtactgt	2340
aattcagggg	gtgggtatg	caacagagac	agactaacc	atgtttgtca	tttgc	2395

<210> 25

<211> 881

<212> DNA

<213> Mouse

<400> 25

gtgaggaatg	gcgacccccc	ttttaaaaag	gtgcaggctg	aggatggggg	tgtgtatacc	60
tgttacgcca	tgggggagac	tttcaacgag	acactgtctg	tggagttgaa	agtgtataac	120
ttcacccitgc	acggacacca	tgacaccctc	aacacagcct	acactaccct	ggtgggctgt	180
atccctcagtg	tggttctgg	cctcatatac	ttgtaccta	ccccctggcg	ctgtgtgt	240
cgggggtgtgg	agaaaaccc	cagccaccaa	ggagatagcc	ttagcttcc	tatgctcagt	300
accacacccca	accacgaccc	tatggctgtt	ggggacaaag	atgatggttt	tgaccggcgg	360
gtggccttcc	tggAACCTGC	tggacccggg	cagggtaaa	atggcaaaact	caagccaggc	420
aacactctgc	cgggtccccga	agctacagggc	aaggccaaac	ggaggatgtc	cgatccagag	480
tcggtcagct	cggtctttc	tgatacaccc	attgtgggt	gagcagcgt	ggctgtatggg	540
gaggttctgc	cccaggagag	gtacccctga	gggatatgac	agggtggaaag	agagggtctgg	600
atgccaagg	gagtgggtt	ctccctgacca	ccagggaaatc	gtcacaggc	gcccggaggag	660
gcaagacccc	agtgggggt	tggatgctgc	gagtttacc	tatggatatc	ctcaggcaga	720
tgccacaccc	ctacccaaag	ccttggctat	tctcgtgt	ggggaggggg	acaggaacga	780
ggaaaggccg	gaggggagga	gcaaattccc	taaactttt	tgaggtcatc	cctagctcct	840
taaagagaaaa	ccatttggaaa	aacaaaaaaaaa	aaaaaaaaaa	a		881

<210> 26

<211> 556

<212> DNA

<213> Mouse

<400> 26

gcaccactcc	cctggctcga	gtcatctccc	gggacactga	aacacagaga	tattacctgc	60
taagtccacac	acctgcctgc	agtctcaccc	tgggtcctga	tatggagggaa	atcacctgt	120
cctttctcct	gctgctagca	ggtctgccc	ccttggaaagc	cagtgaccca	gttgataaaag	180
acagtccctt	ctactatgac	tgggagagcc	tgcagctgg	aggattgatt	tttggagggc	240
tcctgtgcat	cgtctgaatt	gccatggccc	tgagtggcaa	gtgcaaatgt	aggcgtaccc	300
ataagccca	ttccttaccc	gaaaaagcc	ctccactcat	cattccaggc	tctgccaata	360
cctgctgaac	tgaacacagg	accaagttt	gaggcagg	tttgacaact	ttctgcccgt	420
cttctccct	ggagaccc	ctctccagga	tggcttccct	agaacatact	gttaagtctt	480
cattgacagg	aaagggtgt	gcaaagctga	ttttatatta	aactggtctt	gctgctaaa	540
aaaaaaaaaa	aaaaaaa					556

<210> 27

<211> 750

<212> DNA

<213> Mouse

<400> 27

gctgagtg	gttctgggt	gaaccctcta	cataggccat	tattnagcca	tgtattccga	60
agcgccccc	ttctggactg	ggatcgtggc	tatgctggct	ggagctgtt	ccttccttca	120

caagaaaacgg	ggtgttacct	gtggggccct	gatgaggacc	cttcttgc	tggcaagttt	180
ctgcaccgct	gtggctgcca	tgttattgg	gtctcgtgag	ttgaattatt	actggatattt	240
tctcgagat	gatgtctgtc	aaagagactc	ttcatatgga	tggccacca	tgcctagaac	300
cactccagtt	cccgaaagaag	ctgataggat	tgccttgc	atatactaca	caagcatgt	360
aaagaccctg	ctcatgagcc	tccaagctat	gctcttgggt	atctgggtgc	tgctgctct	420
ggcttccttc	acccctgtat	gtgtctacat	ctggaaaaga	tttttcacaa	aggcgaaac	480
agaggagaag	aaactgttgg	gtgcagctgt	gatctagcct	ttccttgc	tccggcgtc	540
cctcctactg	aaggctgaaa	gaagaatca	gcaggactaa	gaagaccctc	ccccactagc	600
aggccatgg	ccactgcctg	gttctgccc	gcaccacagc	agctctcagc	agcaacttgct	660
tgtctctcca	tccttcaccc	tccttatatcc	ctcctcaggc	agcaacttga	taataaactc	720
tcctgttatt	gctggcaaaaa	aaaaaaaaaa				750

<210> 28
<211> 1896
<212> DNA
<213> Mouse

<400> 28						
gtgaacatct	gtctccctta	ctgcgggtgg	ccagccacag	tgccccggag	ggatctgcac	60
aatgtccag	cacactagcc	tgggttact	cctgcctct	atttggacca	ctaggcaccc	120
agtccaaagg	gccgacctcg	tgcaagaccc	ttccatttct	acatgcagaa	tcatggcggt	180
tgcccttgc	ggcagaaaaca	aaaacccaca	gatgaatttc	acagaagcc	acgaggcctg	240
taagatgctg	ggactgactc	tggccagcag	ggaccaggta	gagtcagcgc	agaaatctgg	300
ctttgagact	tgcagctatg	gatgggttgg	agaacagttc	tctgtcatcc	ctoggatttt	360
ctcaaacc	aggtgtggga	agaatggcaa	aggtgtctg	atttggaaatg	ctccctccag	420
ccaaaagtcc	aaaggctatt	gccacaactc	atccgacacc	tgggttaact	cctgcattcc	480
agaaaatcg	accacat	ttt accccgtt	ggacactcaa	acacccgca	cagagttttc	540
tgtcagcagc	agcgcctact	tggcttcatc	ccctgactcc	acaacaccc	tttctgcccac	600
cacccgggct	ccaccttga	cctccatg	acggaaagaca	aaaaagattt	gtatcacgg	660
agtttataca	gaacctatca	ccatggctac	agaaacagaa	gcatttgg	caagtggagc	720
agcattcaag	aacgaagcag	ctgggtttgg	aggtgtcccc	accgcctgc	tggctgtggc	780
tctctcttc	tttgggtctg	ccgctgtgt	ggctgtttgc	tacgtaaaa	ggtatgtgaa	840
ggccttcct	ttcacaacca	agaatcaaca	gaagaaatg	atcgaaacca	aggtgtaaa	900
ggaagagaag	gctgatgacg	tcaacgctaa	tgaagaatca	aagaaaaacca	ttaaaaaccc	960
agaggaggcc	aagagtccac	ccaaaactac	ggtgcgatgc	ttagaagctg	aagttagat	1020
gcaagagagt	ggagaagggt	cacacgaggc	aagtttcatg	ccccggaaac	caaagaagca	1080
agccactgtc	agttctgc	aaaaaagact	gcagagttca	ccagaaggag	ccctctcctt	1140
actgcagtct	tctctggact	ctaccctctg	gcctccaacc	ttcccacagc	ctccctaacc	1200
cttctgtggc	tcacagcaga	ccagagaga	gaggagtt	tcaaagtacc	aggtcctaaa	1260
acagctctca	agctcacact	cagagacagg	cttcagg	gcctgacccc	catgaaaggc	1320
cagagtcct	gagacatggc	cagccccata	gttcaaaatc	ttcccacagg	gaaatacacc	1380
acctggccgt	gctcttgg	accaggcaca	tgtaaaataa	ggaaaggaaa	acaacagaag	1440
gtcatggaga	gcctgggtga	cttgagactt	aatctctgga	aagccaaaat	aaacagagca	1500
ttagatggg	gctggggcca	cagatagcag	ccttggc	tgagactgta	aatacaggct	1560
ggggctgaga	agcctctcg	ttaattgtatc	tgcagcacgt	agacagactt	tctttcttt	1620
ttactgttgc	tgggtttctc	tagagacaaa	tacacgtt	taagaaaacct	aaaagcagga	1680
gagcccagga	gctgactcag	tggtaaagca	cttggccggc	atgtacaaac	aaggcttcca	1740
gtccaaatccc	cagaatccac	tgacccacca	cacacaaaga	aacaaacaca	agtatgcatt	1800
tccat	ttt acttgaatta	caggaccat	ggctgagaaa	ataactgtgt	taaaaggtt	1860
	aaaaaaagga	aaaaagtaca	aaaaaaaaaa	aaaaaa		1896

<210> 29
<211> 1854
<212> DNA
<213> Mouse

<400> 29

gcccacatgg	tctggccaa	cttggctgtg	tttgtcatct	gcttcctgcc	cttgcatgtg	60
gtcctgaccg	tgcaggctc	cctgaacctc	aatacctgtg	ctgcccggaga	cacccatcg	120
cgtccccgt	ccatcacagg	taaactctca	gacaccaact	gctgcctgga	tgccatctgt	180
tactactaca	tggccagaga	gttccaggaa	gcgtccaagg	cagccacgtc	ttccaacaca	240
ccccacaaga	gccaagattc	ccagatcctg	agcctcacct	agaagaagtg	aacacatgcc	300
aaggccaga	ggaacctgtg	atgtgagcaa	ggagccctgg	atcagcctga	acccctgtg	360
gggtctgagc	actctaggag	acccagttgg	actagagagg	ctgcacatgc	tcccctgaaa	420
ggaccagagg	actcaggctc	taacgtccga	cctggagggac	ccttggaaaca	gaccacatat	480
ctccattcc	agatctagaa	accctggca	ccagaatggg	gccttgatgg	ctagccactg	540
agtttaggat	acaccctcc	ccagagttgg	tcctggcaag	gtcctctgtc	acctagatgc	600
aagtgtatgag	agataaagga	cagacatacg	gctcagagaa	ccaggagaca	tcttccaga	660
ggaccctcaa	atggcttctt	ccttttagga	cctttaaact	tcatgccaca	tgttagggtt	720
ggcaaaagg	cagcagctgt	ggtctggcag	gctgcctcc	aaggcccatg	actgtcactg	780
ttgctccagc	tctgtattat	gagggttcca	gctcaggaga	cccagtggtc	ataacatcat	840
gtttagaata	cggacctgag	cctcttctgg	ttatccat	tctatagttg	gactgttgat	900
tcctgaggac	agtggctatg	gttagaggtct	ctggagttt	ttgtgagaa	gattgtgtt	960
tgttattcat	gctctctgag	gatgtggccc	caggcttcga	ggatctctgg	agtaaaggat	1020
gagccacaaa	gccagcttg	agttagggagc	acatttggag	atgtggtagc	cctggcttc	1080
ccctctaattg	ctttgattt	tgtctggtc	caaatgtac	agctgtaccc	agagccagag	1140
ccctccagc	tcaggggagg	ggggtaactgg	ctctccctac	tctctacccc	tacttcatcc	1200
aaggctact	gcctaactga	ccccttttt	tgtatgacct	tttctacaaa	aaccaaaaat	1260
ctgttcatcc	ttcagacacc	agagaaagga	ttccactcaa	gtataaattt	gtgaactgat	1320
ttcctggagt	tacttacaaa	agcacggta	ctctgggtt	ctcagtcact	gaaaagcctc	1380
actcagcata	gataacaatc	cccaaactgc	accgctagat	taccaatccc	cactaaactt	1440
ccacactaca	cacacacttgc	gacacctgac	ctgctccaga	aaaaaatgtg	cctagggtgt	1500
gaggaagctg	tggctgcac	ccaagggtgt	ctgaccctct	tcgctctgcc	aaggactact	1560
aacagcttca	tgatcatcag	cctattcggcc	acagccgtat	ttgtcttggt	tcactggcat	1620
gactgttagc	cgagctgttc	tgtggatcag	agcagcgtt	ttcctgttca	ctgctgtatga	1680
tcatcctaag	ccagagaaat	ggcttctctg	ccacactggc	ccactctccc	tccagttctc	1740
acatcccctc	caccctctgt	tctgcagttat	tatctaaacc	ttcaccttgg	aaggaaggga	1800
tgggttatct	atataatatc	aaagatataagg	atccacaaaaa	aaaaaaaaaa	aaaa	1854

<210> 30
<211> 2866
<212> DNA
<213> Mouse

<400> 30						
ggtttcggag	agataaggcg	cttggccgtt	actaactgga	ctacaaagag	ctggatcgga	60
ccggaaccac	atggctcaac	tcgcccggagc	caccctgtcc	ccgctgtcat	ggctgctgct	120
gctgttctgc	tatgcactcc	gaaaagcggg	tggggatata	cgtgtgttgg	tgccctacaa	180
ttcogacaggc	gtcttggag	gtcgcaccac	cttgcactgt	agtctgtactt	ctaattgagaa	240
tgtgactatc	actcaaataa	cctggatgaa	gaaggattca	ggtggatccc	acgctcttgc	300
ggctgtcttc	caccccaaga	agggggcccaa	catcaaagag	ccagagaggg	tgaaatttctt	360
ggctgccccaa	caggatctga	gaaacgcattc	tctggccatc	tcgaacttaa	gtgtagaaga	420
cgaaggcatc	tatgaatgtc	agattgccac	attccccaga	ggcagtagaa	gcaccaatgc	480
ctggctgaag	gtgcaagccc	gacctaagaa	cactgcagag	gccctggagc	cctctcccac	540
cttgatactg	caggatgtgg	ctaaatgcatt	ctctgccaat	ggtcaccctc	ctggacgaaat	600
ctttggccc	tcgaatgtga	atggaagtca	ccgtgaaatg	aaggaaccag	ggtcccagcc	660
gggcaccacc	acagttacca	gctacctctc	catggtacct	tctcgccagg	cagacggcaa	720
gaacatcacc	tgcacggtgg	agcatgaaag	cttacaggag	ctggaccagc	tgctgggtac	780
ccttcccaa	ccctatccac	ctgaaaacgt	gtccatctct	ggctatgacg	gcaactggta	840
tgttggctc	actaacttga	ccctgacctg	tgaagctcac	agcaaaccag	cgccctgacat	900
ggctggatat	aactggagca	cgAACACGGG	tgactttccc	aactctgttta	agcggccagg	960
caatatgttt	ctaatctcca	ccgttagagga	tggtctcaat	aacacggtca	ttgtgtgcga	1020
agtccaccaat	gccctagggt	ctggggcaggg	ccaagtgcac	atcattgttta	aagagaaacc	1080
tgagaatatg	cagcaaataa	caagattaca	cctaggctac	atctttctta	tcgtctttgt	1140

cctcgctgtatgcatcatca	tcgcagcactata	atacactata	cgaagatgca	ggcatggcgtgc	1200
tgcctgtcaggccatccct	cagagaggaa	gaacgtccag	tattcatctg	tgaacggcga	1260
ctgttagactgaaacatggagc	caaacagcac	aaggtgacgg	tgctgggtag	acagaactaa	1320
ggaactgaaaggcatagcaa	ctggAACCT	actctcataa	atgaagaagc	ctccagagag	1380
actggctgctcagtgtgatg	agcatagcaa	gtttgggggg	tctcccagga	tgctgccgaa	1440
ttccacatgttcaaaaaggac	ccatggaggc	cagtgtgttgc	gctactctt	gacatctcg	1500
caagctgggggggggggggg	gagcataaag	caaggtttag	tctagcttgg	gctatagagc	1560
aaagccctgtccatcacaa	acaagctaag	gggcTTTgag	acggtcagaa	actgaagtct	1620
tgctttgggtaaaggtaaattc	ctctaccgca	tgtatgtgct	agacttgaaa	gacttccaca	1680
cagacccctttataagttgatc	ctccatgggg	gtatccccct	cctctcttgg	caaggctct	1740
gtatgttagccaaaggcttaggc	tcaaactcac	agagatatgt	ctgtttctac	ctccccagtg	1800
cttagagttgaagtttatgttgc	ccactgcac	ttttcttaggt	cttctttttaa	tgaagtaaag	1860
tatataattatataaaaaagcta	tttagttata	tatatatata	tttttgagac	tatttcatag	1920
agcccaagctaacctcaaac	ttactatgt	gccaagagtg	atgttaaact	aatttatttt	1980
aatttatttgcttcaattttaa	accatcac	ccaaccctcg	ctcccttcca	tatcttcttt	2040
caatccatttattgtcttttt	ttcttcccag	acactatttct	gacttacgtc	tccattacaa	2100
acatttttttaaactacata	aaaatgtgt	aaccacaaaa	aaaaaatgt	tttgtcaaaa	2160
ttgttagttgtttttcttgagg	ctgacctgag	ttctctgata	ccattctctc	cagttgtatc	2220
cagtttccgttaaacaatgt	gactttgttt	ttctcagtag	ctaaaacatc	ccaattatgt	2280
gagtgacacttttttacttatt	cattcctctg	tgccacca	gctgggttgg	ttccatatct	2340
gagctattgtgtatggaaatt	gtctctgtgg	tgggttttagt	aaactcccgag	gaatgcctgt	2400
acatgtttgtttagggccaga	agaaggcaca	aatctttag	ccaggcttac	atgcacttgt	2460
gagtagccccatcataggatgc	taagaaccca	gttcaggtcc	tctgctgtgg	gatggggc	2520
tgtgcacacaaaggctggtc	ccggctctagc	aaaggtctgg	aactccggag	ccgggtggct	2580
gtgatttacaatggaggatggac	atggaaaggag	ttggacctcg	cctcctgggc	acctggctcc	2640
tgtcacatagctacagccct	ccacagcccc	cctataggg	ggtatgcagc	atcaatcaca	2700
tagtagctgcactaaggccct	cccacatgca	aataagggtt	ccccaaactc	tcagtccaag	2760
ccaatgaaaaatgacatgtgt	tcaaaacccta	aatcatcccc	aaaactctgt	aagtccatc	2820
aggaaataaaatgtgtgtgaa	aaactaaaaaa	aaaaaaaaaa	aaaaaaa		2866

<210> 31
<211> 1093
<212> DNA
<213> Mouse

```

<400> 31
gcgaccactg agacacctttag actcagacac caagagagat gtttcttagtt gggagccctcg 60
ttgtccctctg tgggctgtctg gcccacagca cagcacagct ggcaggcttg ccattggccc 120
tgggccaggc tcaccacccttg ccactgaacc agggccccc gttgccactg aaccaggccc 180
agctgtgcc cctggcttag ggtctgcctt tggctgttaag cccagcaactg ccttcaaaatc 240
ccacagatct tcttgcgttggaa aaattccacag atgcctcttag cggtggcctg ctgtctgggg 300
ggctgctggg cattttggaa aatattccac tcctggatgt tataaagtct ggaggaggca 360
attctaattgg ctttgcgttggg ggcctgcctgg gaaaactgac gtcatcgtt cctctccctga 420
acaacatcct cgacataaaaa atcactgtatc cgccagctgtc agaacttggg ctgtgcaga 480
gtcctgtatgg ccatcgcttc tatgtcacca tccctctggg cttgacactc aacgtaaata 540
tgccccgtatgt tggaaagtctt ttgcattttgg ctgtgaagct gaacattact gcagaagtct 600
tagccgtgaa agacaatcag gggaggattc atctggttct tggtgactgc accccactccc 660
ctggcagcct gaaaatcagg ttgctcaatg gagtcactcc tggttcaaagc ttttttagaca 720
acctcacagg gatattgact aaaggcccttc ctgagctgtat ccagggcaag gtatgtccctc 780
tggtcaatgg gattctcagc ggtttggatg tcaccctgtt gcacaacatt gctgaattac 840
tgatccatgg actacagttt gtcatcaaag tttaggcattt ccaggaagga aggctatctt 900
ggctgagctg aatcattttct tgctgctcag tctccctgcct cttggccagttt ccccatggc 960
tcacagaaaag gggcccccacat cctggaaaat tatgtcttcc ttctccctcac ggagccgtat 1020
ctcttcccat caggcacatc taatcctgtg atcctcacta aataaaatag ctcttcatct 1080
gaaaaaaaaaaa aaa 1093

```

<210> 32

<211> 1353
<212> DNA
<213> Mouse

<400> 32

gaaacagtat	gagcaaacac	ttagctgagg	ggagcttctg	attaagagcg	ctccccagcg	60
aggcccggagg	ccgtgaacct	tcccagcaag	agggtggtgg	ttgctcctgg	aagcctgcgc	120
ccacgcagctg	aagccatggc	caccaccacg	tgccaggtgg	tagggcttct	cctgtccctc	180
ctgggtctgg	ccggctgcat	agccgccact	ggatggaca	tgtggagcac	tcaagacctg	240
tatgacaacc	cagtcaccgc	cgttccag	catgaaggc	tctggaggag	ttgcgtgcaa	300
cagagctcgg	ggttccacca	gtgccggcca	tacttcacca	tcctggccct	tccagccatg	360
ctgcaagctg	tacgagccct	gatgatcgtg	ggcattgttc	tgggggtcat	cggatccctc	420
gtgtccatct	tcgcccgtaa	gtgcattcgc	attgttagca	tggatgactc	tgccaaggcc	480
aagatgactc	tgacttctgg	gatcttgtc	atcatctccg	gcatctgtgc	aatcatgtgt	540
gtgtctgtgt	ttgccaacat	gctggtgacc	aacttctgga	tgtccacagc	taacatgtac	600
agcggcatgg	gccccatggg	tggcatggg	cagaccgttc	agaccaggt	caccccggt	660
gcagctctgt	tcgtggctg	gttgcgtgaa	ggcctcaccc	tgattggggg	agtgtatgt	720
tgcacatcgct	gccgtggcct	gacaccagat	gacagcaact	tcaaagctgt	gtcttaccat	780
gcctctggcc	aaaatgttgc	ctacaggcct	ggagcttta	aggccagcac	tggcttggg	840
tccaaacacca	gaaacaagaa	gatctacgat	gggggtgccc	gcacagaaga	cgatgaacag	900
tctcatccata	ccaagatgaa	ctatgtgtag	tgctctaaga	cccgccaaacc	tgtgtgcagg	960
aggaaccctt	ccccaaagaag	agctcacccc	aaagcaacgg	gagtctacct	tgttcccttg	1020
ttgatttcaa	ctgacatctg	aaagttggta	aagcctgatt	ttcatccata	gggaggctag	1080
acagtcttgg	ccacatgtgt	ctgcctctaa	atatccatc	acaaaacagc	ttagttatcg	1140
tttatgagtt	agagggcata	acactcactt	tagcccaacc	ctctgctttt	taccgttagac	1200
tttctttca	tctggtgatg	gaatggaaatt	tgactcacag	actaataactt	taatggttta	1260
gagaaacttt	ccttcctcgt	acttaataag	cctgctgatg	gtcgattttc	cagcttgacc	1320
accaaggaa	atttaaaaaa	aaaaaaaaaa	aaa			1353

<210> 33
<211> 1046
<212> DNA
<213> Mouse

<400> 33

gcctcagtcc	acagctgtct	ccccagctgc	ttccagtgaa	caccccgca	gtctaggctc	60
ccacagcaat	gagttggtgg	agggacaact	tctggatcat	cttagctatg	tccatcatct	120
tcatctccct	ggtcctgggt	ctcatcctgt	actgtgtctg	caggtggcag	cttagacaag	180
gcaggaactg	ggaaattgt	aagccctcaa	aacaggatgg	aagagatgaa	gaaaagatgt	240
atgagaatgt	tcttaattct	tcaccaggcc	agttacctgc	tctgcccaccc	aggggttac	300
ctttccagg	agacctagcc	ccacaggaag	ctccaaagaca	accctcaget	tgttactcat	360
cagtgaagaa	agtttaggaac	aagaaggct	ttgctatctc	gggctccacc	gagccagaaa	420
atgattatga	tgatgttgag	attccagcaa	ccaccgaaac	ccagcactct	aaaaccacac	480
cttttggca	agctgaagtg	gttttacaca	gctcggttta	gaataactcta	gaatagccgg	540
attataacac	aagcacttcc	taatccccag	aggaagccac	ctcagccatg	tgaagctac	600
agcagaagac	aggacagctt	gatgtcccg	aggctccaga	tgttctgtt	gctccagatg	660
tttctgctgc	tccagatgtt	tctgttgctc	caaataatttc	tgctgctcca	gatgtttctg	720
ttgctccaga	tgtttctgtt	gctccagatg	ctcctgttgc	tccagatgt	cctgtatgtt	780
ctgacactgc	agaagctct	ccccaaagatt	ctgaggatgt	ggccttggca	cctttgtgga	840
ggaagttcc	ttagtgcaga	ccactggccc	tgtgagaact	gactcatttc	tcaacatttt	900
cttcgttcc	ctgggtgaat	gtagctgtaa	ggcagtgact	ctcaaccctc	ctaattgcagg	960
gatcctcaa	tacaattcct	tatgtgtgt	gatcctcaac	cataaaattt	ttttgttgc	1020
acttcaaaaa	aaaaaaaaaa	aaaaaaa				1046

<210> 34
<211> 1261
<212> DNA

<213> Mouse

<400> 34

gcacagacgg	gtaaaaccgt	tgggaacctc	gaggaaaaag	aggctacgaa	aaccttttcc	60
taaggagcta	caaatttgg	agcagggaaa	acccagacat	gagatgttt	tagtttattt	120
ctccagaagg	gggcactgta	tcaattatgt	gaagggacat	gcagacagcc	tagctccatg	180
gtgctgtggg	gttaggactga	ggagccctct	ggccagaccc	cagcacggcc	atgtctctcc	240
caaggatcat	gttcctggag	gtcacgcccc	tggccttct	cataagtggc	tgtcacagc	300
agctctctgg	agttatttgg	aacattctgc	tgtcacacat	gggactgctc	ttctctgaagc	360
ccacgctgtt	cgtggaaac	atggaaagaa	aggaagacgt	gttgtgtgc	gctcagtaga	420
cttcccacaa	gccacctctc	tcttctgaaa	cgtcactgaa	tggactggag	aggactgcgg	480
gttataaaa	ctgctttta	tctgagaaca	atgggttgg	aaactagtc	ctttttttcc	540
cacttttaca	gagcttctca	aatcattcct	ccagggcctg	acttggacag	gtaggggggc	600
agaccctggg	tcccaagggt	cactgtccag	gcacactgcc	cacattgcta	agagaagagg	660
ccctgctgcc	agtggaccct	tcacccacca	cgagacaccc	gtcttgccct	taggacaccc	720
tcctctagag	agtgggttg	gaaggagggg	acctatgtaa	ggagttgggg	caggcatgaa	780
tctgccaaat	actggatatg	gatccaaggc	tggcccaggc	acctgcacct	ccagtgagtg	840
gtcagcaggt	ggcgctgctg	cccgccaggc	ttcacagagt	cccttttaggg	agtcgtctcc	900
cagatccctt	ctggtgacaca	tttactggat	gtcactgcaa	gctctaccct	ctgagcaggt	960
gttgcaccac	agtggcgctg	accctggccc	cgcaacggca	actgctgaag	gcaagccattg	1020
cctcagccat	tctcaagacc	tttcaatttt	taaaagcagt	tcgatttgc	aatattttatt	1080
tttctttttt	aggatgttc	gttgcggccgc	agactgactg	cagtgtgcac	cattgcata	1140
gcctgcctc	agtgcctgt	ggctccctgg	gcactgctgc	ccctctgtct	aaagctgact	1200
gtggcagcac	tgcccaacaa	taaagctgac	ctaaaagctg	aaaaaaaaaa	aaaaaaaaaa	1260
a						1261

<210> 35

<211> 995

<212> DNA

<213> Mouse

<400> 35

gctcaccgc	gtccgggcgc	gchgaggccc	cgtctccttg	cttccaggc	ctcatgcgc	60
cccgccctg	gtccccgcga	ccgctgccc	gaggaggggg	gcccgcgttg	tctgcgcgtc	120
taegcaggcc	tcataggcac	cgtggtcacc	cccaactacc	tggacaacgt	gagcgcgcgc	180
gttgcgcct	ggtgccgtg	tgcggccagt	ggaaacggc	gcgaagaatg	cgaagccttc	240
cgcaagctt	ttacaaggaa	ccctgtctg	gatggtgcca	tacaaggctt	tgacagcttg	300
cagccatca	ttctgcagga	ccagactgt	gggtgtgtt	tcccgcgggt	gtcctggctg	360
tatgcactca	ctgcccggc	tctccaggcc	ctgctctgtat	taggaacatg	aaccgtggac	420
gacacagctg	actgccatgt	ctcccgtat	ctgctcactg	agctgaaact	cccttgcct	480
caggtctgt	gcccttgca	ggcctggacc	tttgtgtgc	tgtcctctgg	attgggggct	540
ggaggctagg	gtctgactga	aaaggctgtg	ttccctgtc	agtaggcac	ttgtccgttt	600
tcttcccat	cctagagctg	agcaccata	gatgaggct	cattgggtcc	cctgggctta	660
cagagcagga	cagagactag	cccccgctcc	tagaattcgg	aaactgtcctt	ttccaagatg	720
acaaggcact	aaggagatca	tatgaacagg	ctgacagaca	aggctgccta	aataccctcc	780
cagttagcca	ttattccacca	ttaagcttac	ccgtgtcaca	gcactgacgt	ggcttgcac	840
ctatgacaca	gtgttagac	attaaggaga	gactgaggtc	cctcctgctc	agcacccccc	900
tggcttccca	ggcttccct	gccatggttt	ccccagcacc	tgcagggct	caataaacc	960
atgtgcactg	aaaaaaaaaa	aaaaaaaaaa	aaaaaa			995

<210> 36

<211> 747

<212> PRT

<213> Rat

<400> 36

Glu Ala Thr Val Ile Thr Thr Glu Lys Arg Glu Arg Pro Ala Pro Pro

1	5	10	15												
Arg	Glu	Leu	Leu	Val	Pro	Gln	Ala	Glu	Val	Thr	Ala	Arg	Ser	Leu	Arg
20								25				30			
Leu	Gln	Trp	Val	Pro	Gly	Ser	Asp	Gly	Ala	Ser	Pro	Ile	Arg	Tyr	Phe
35							40				45				
Thr	Val	Gln	Val	Arg	Glu	Leu	Pro	Gly	Gly	Glu	Trp	Gln	Thr	Tyr	Ser
50						55				60					
Ser	Ser	Ile	Ser	His	Glu	Ala	Thr	Leu	Cys	Ala	Val	Glu	Arg	Leu	Arg
65					70				75			80			
Pro	Phe	Thr	Ser	Tyr	Lys	Leu	Arg	Leu	Lys	Ala	Thr	Asn	Asp	Ile	Gly
85						90					95				
Asp	Ser	Asp	Phe	Ser	Ala	Glu	Thr	Glu	Ala	Val	Thr	Thr	Leu	Gln	Asp
100						105					110				
Val	Pro	Gly	Glu	Pro	Pro	Gly	Ser	Val	Ser	Ala	Thr	Pro	His	Thr	Thr
115						120					125				
Ser	Ser	Val	Leu	Ile	Gln	Trp	Gln	Pro	Pro	Arg	Asp	Glu	Ser	Leu	Asn
130						135				140					
Gly	Leu	Leu	Gln	Gly	Tyr	Arg	Ile	Tyr	Tyr	Arg	Glu	Leu	Glu	Ser	Glu
145						150				155			160		
Thr	Gly	Leu	Ser	Pro	Glu	Pro	Lys	Thr	Leu	Lys	Ser	Pro	Ser	Ala	Leu
165							170					175			
Arg	Ala	Glu	Leu	Thr	Ala	Gln	Ser	Ser	Phe	Lys	Thr	Val	Asn	Ser	Ser
180							185				190				
Ser	Thr	Leu	Thr	Thr	Tyr	Glu	Leu	Thr	His	Leu	Lys	Lys	Tyr	Arg	Arg
195							200				205				
Tyr	Glu	Val	Ile	Met	Thr	Ala	Tyr	Asn	Ile	Ile	Gly	Glu	Ser	Pro	Ala
210							215				220				
Ser	Val	Pro	Val	Glu	Val	Phe	Val	Gly	Glu	Ala	Ala	Pro	Ala	Met	Ala
225							230			235			240		
Pro	Gln	Asn	Ile	Gln	Val	Thr	Pro	Leu	Thr	Ala	Ser	Gln	Leu	Glu	Val
245								250				255			
Thr	Trp	Asp	Pro	Pro	Pro	Glu	Ser	Gln	Asn	Gly	Asn	Ile	Gln	Gly	
260							265				270				
Tyr	Lys	Val	Tyr	Tyr	Trp	Glu	Ala	Asp	Ser	Arg	Asn	Glu	Thr	Glu	Lys
275							280				285				
Met	Lys	Val	Leu	Phe	Leu	Pro	Glu	Pro	Val	Val	Lys	Ile	Lys	Asp	Leu
290							295				300				
Thr	Ser	His	Thr	Lys	Tyr	Leu	Val	Ser	Ile	Ser	Ala	Phe	Asn	Ala	Ala
305							310			315			320		
Gly	Asp	Gly	Pro	Arg	Ser	Asp	Pro	Cys	Gln	Gly	Arg	Thr	His	Gln	Ala
325								330				335			
Ala	Pro	Gly	Pro	Pro	Ser	Phe	Leu	Glu	Phe	Ser	Glu	Ile	Thr	Ser	Thr
340								345				350			
Thr	Leu	Asn	Val	Ser	Trp	Gly	Glu	Pro	Ser	Ala	Ala	Asn	Gly	Ile	Leu
355								360				365			
Gln	Gly	Tyr	Arg	Val	Val	Tyr	Glu	Pro	Leu	Ala	Pro	Val	Gln	Gly	Val
370								375				380			
Ser	Lys	Val	Val	Thr	Val	Asp	Val	Lys	Gly	Asn	Trp	Gln	Arg	Trp	Leu
385								390			395			400	
Lys	Val	Arg	Asp	Leu	Thr	Lys	Gly	Val	Thr	Tyr	Phe	Phe	Arg	Val	Gln
405									410				415		
Ala	Arg	Thr	Ile	Ala	Tyr	Gly	Pro	Glu	Leu	Gln	Ala	Asn	Val	Thr	Ala
420									425			430			
Gly	Pro	Ala	Glu	Gly	Ser	Pro	Gly	Ser	Pro	Arg	Asn	Val	Leu	Val	Thr
435									440			445			
Lys	Ser	Ala	Ser	Glu	Leu	Thr	Leu	Gln	Trp	Thr	Glu	Gly	Asn	Thr	Gly
450								455			460				

Asn Thr Pro Thr Thr Gly Tyr Val Ile Glu Ala Arg Pro Ser Asp Glu
 465 470 475 480
 Gly Leu Trp Asp Met Phe Ala Lys Asp Ile Pro Arg Ser Ala Thr Ser
 485 490 495
 Tyr Thr Val Gly Leu Asp Lys Leu Arg Gln Gly Val Thr Tyr Glu Phe
 500 505 510
 Arg Val Val Ala Val Asn Lys Ala Gly Phe Gly Glu Pro Ser Arg Pro
 515 520 525
 Ser Ile Ala Val Ser Ala Gln Ala Glu Ala Pro Phe Tyr Glu Glu Trp
 530 535 540
 Trp Phe Leu Leu Val Ile Ala Leu Ser Ser Leu Leu Leu Val Leu Leu
 545 550 555 560
 Val Val Phe Val Leu Val Leu His Gly Gln Ser Lys Lys Tyr Lys Asn
 565 570 575
 Cys Gly Ser Gly Lys Gly Ile Ser Asn Met Glu Glu Thr Val Thr Leu
 580 585 590
 Asp Asn Gly Gly Phe Ala Ala Leu Glu Leu Asn Ser Arg His Leu Asn
 595 600 605
 Val Lys Ser Thr Phe Ser Lys Lys Asn Gly Thr Arg Ser Pro Pro Arg
 610 615 620
 Pro Ser Pro Gly Gly Leu His Tyr Ser Asp Glu Asp Ile Cys Asn Lys
 625 630 635 640
 Tyr Asn Gly Ala Val Leu Thr Glu Ser Val Asn Leu Lys Glu Lys Ser
 645 650 655
 Val Asp Gly Ser Glu Ser Glu Ala Ser Asp Ser Asp Tyr Glu Glu Ala
 660 665 670
 Leu Pro Lys His Ser Phe Val Asn His Tyr Met Ser Asp Pro Thr Tyr
 675 680 685
 Tyr Asn Phe Trp Lys Arg Arg Pro Pro Ala Ala Ala Pro His Arg Tyr
 690 695 700
 Glu Ala Val Ala Gly Ala Glu Ala Gly Pro His Leu His Thr Val Ile
 705 710 715 720
 Thr Thr Gln Ser Ala Gly Gly Val Tyr Thr Pro Ala Gly Pro Gly Ala
 725 730 735
 Arg Ala Pro Leu Thr Gly Phe Ser Ser Phe Val
 740 745

<210> 37
 <211> 205
 <212> PRT
 <213> Mouse

<400> 37

Met	Leu	Gly	Thr	Leu	Val	Trp	Met	Leu	Ala	Val	Gly	Phe	Leu	Leu	Ala
1				5				10						15	
Leu	Ala	Pro	Gly	Arg	Ala	Ala	Gly	Ala	Leu	Arg	Thr	Gly	Arg	Arg	Pro
				20				25						30	
Ala	Arg	Pro	Arg	Asp	Cys	Ala	Asp	Arg	Pro	Glu	Glu	Leu	Leu	Glu	Gln
				35				40						45	
Leu	Tyr	Gly	Arg	Leu	Ala	Ala	Gly	Val	Leu	Ser	Ala	Phe	His	His	Thr
	50				55							60			
Leu	Gln	Leu	Gly	Pro	Arg	Glu	Gln	Ala	Arg	Asn	Ala	Ser	Cys	Pro	Ala
	65				70				75					80	
Gly	Gly	Arg	Ala	Ala	Asp	Arg	Arg	Phe	Arg	Pro	Pro	Thr	Asn	Leu	Arg
					85				90					95	
Ser	Val	Ser	Pro	Trp	Ala	Tyr	Arg	Ile	Ser	Tyr	Asp	Pro	Ala	Arg	Phe
					100				105					110	

Pro Arg Tyr Leu Pro Glu Ala Tyr Cys Leu Cys Arg Gly Cys Leu Thr
115 120 125
Gly Leu Tyr Gly Glu Glu Asp Phe Arg Phe Arg Ser Thr Pro Val Phe
130 135 140
Ser Pro Ala Val Val Leu Arg Arg Thr Ala Ala Cys Ala Gly Gly Arg
145 150 155 160
Ser Val Tyr Ala Glu His Tyr Ile Thr Ile Pro Val Gly Cys Thr Cys
165 170 175
Val Pro Glu Pro Asp Lys Ser Ala Asp Ser Ala Asn Ser Ser Met Asp
180 185 190
Lys Leu Leu Leu Gly Pro Ala Asp Arg Pro Ala Gly Arg
195 200 205

<210> 38
<211> 238
<212> PRT
<213> Mouse

<400> 38
Met Leu Cys Phe Leu Arg Gly Met Ala Phe Val Pro Phe Leu Leu Val
1 5 10 15
Thr Trp Ser Ser Ala Ala Phe Ile Ile Ser Tyr Val Val Ala Val Leu
20 25 30
Ser Gly His Val Asn Pro Phe Leu Pro Tyr Ile Ser Asp Thr Gly Thr
35 40 45
Thr Pro Pro Glu Ser Gly Ile Phe Gly Phe Met Ile Asn Phe Ser Ala
50 55 60
Phe Leu Gly Ala Ala Thr Met Tyr Thr Arg Tyr Lys Ile Val Glu Lys
65 70 75 80
Gln Asn Glu Thr Cys Tyr Phe Ser Thr Pro Val Phe Asn Leu Val Ser
85 90 95
Leu Ala Leu Gly Leu Val Gly Cys Ile Gly Met Gly Ile Val Ala Asn
100 105 110
Phe Gln Glu Leu Ala Val Pro Val Val His Asp Gly Gly Ala Leu Leu
115 120 125
Ala Phe Val Cys Gly Val Val Tyr Thr Leu Leu Gln Ser Ile Ile Ser
130 135 140
Tyr Lys Ser Cys Pro Gln Trp Asn Ser Leu Thr Thr Cys His Val Arg
145 150 155 160
Met Ala Ile Ser Ala Val Ser Cys Ala Ala Val Val Pro Met Ile Ala
165 170 175
Cys Ala Ser Leu Ile Ser Ile Thr Lys Leu Glu Trp Asn Pro Lys Glu
180 185 190
Lys Asp Tyr Ile Tyr His Val Val Ser Ala Ile Cys Glu Trp Thr Val
195 200 205
Ala Phe Gly Phe Ile Phe Tyr Phe Leu Thr Phe Ile Gln Asp Phe Gln
210 215 220
Ser Val Thr Leu Arg Ile Ser Thr Glu Ile Asn Asp Asp Phe
225 230 235

<210> 39
<211> 492
<212> PRT
<213> Mouse

<400> 39
Leu Arg Leu Leu Leu Ala Trp Val Ala Ala Val Pro Ala Leu Gly Gln

1	5	10	15
Val Pro Trp Thr Pro Glu Pro Arg Ala Ala Cys Gly Pro Ser Ser Cys			
20	25	30	
Tyr Ala Leu Phe Pro Arg Arg Arg Thr Phe Leu Glu Ala Trp Arg Ala			
35	40	45	
Cys Arg Glu Leu Gly Gly Asn Leu Ala Thr Pro Arg Thr Pro Glu Glu			
50	55	60	
Ala Gln Arg Val Asp Ser Leu Val Gly Val Gly Pro Ala Asn Gly Leu			
65	70	75	80
Leu Trp Ile Gly Leu Gln Arg Gln Ala Arg Gln Cys Gln Pro Gln Arg			
85	90	95	
Pro Leu Arg Gly Phe Ile Trp Thr Thr Gly Asp Gln Asp Thr Ala Phe			
100	105	110	
Thr Asn Trp Ala Gln Pro Ala Thr Glu Gly Pro Cys Pro Ala Gln Arg			
115	120	125	
Cys Ala Ala Leu Glu Ala Ser Gly Glu His Arg Trp Leu Glu Gly Ser			
130	135	140	
Cys Thr Leu Ala Val Asp Gly Tyr Leu Cys Gln Phe Gly Phe Glu Gly			
145	150	155	160
Ala Cys Pro Ala Leu Pro Leu Glu Val Gly Gln Ala Gly Pro Ala Val			
165	170	175	
Tyr Thr Thr Pro Phe Asn Leu Val Ser Ser Glu Phe Glu Trp Leu Pro			
180	185	190	
Phe Gly Ser Val Ala Ala Val Gln Cys Gln Ala Gly Arg Gly Ala Ser			
195	200	205	
Leu Leu Cys Val Lys Gln Pro Ser Gly Gly Val Gly Trp Ser Gln Thr			
210	215	220	
Gly Pro Leu Cys Pro Gly Thr Gly Cys Gly Pro Asp Asn Gly Gly Cys			
225	230	235	240
Glu His Glu Cys Val Glu Glu Val Asp Gly Ala Val Ser Cys Arg Cys			
245	250	255	
Ser Glu Gly Phe Arg Leu Ala Ala Asp Gly His Ser Cys Glu Asp Pro			
260	265	270	
Cys Ala Gln Ala Pro Cys Glu Gln Gln Cys Glu Pro Gly Gly Pro Gln			
275	280	285	
Gly Tyr Ser Cys His Cys Arg Leu Gly Phe Arg Pro Ala Glu Asp Asp			
290	295	300	
Pro His Arg Cys Val Asp Thr Asp Glu Cys Gln Ile Ala Gly Val Cys			
305	310	315	320
Gln Gln Met Cys Val Asn Tyr Val Gly Gly Phe Glu Cys Tyr Cys Ser			
325	330	335	
Glu Gly His Glu Leu Glu Ala Asp Gly Ile Ser Cys Ser Pro Ala Gly			
340	345	350	
Ala Met Gly Ala Gln Ala Ser Gln Asp Leu Arg Asp Glu Leu Leu Asp			
355	360	365	
Asp Gly Glu Glu Gly Glu Asp Glu Glu Glu Pro Trp Glu Asp Phe Asp			
370	375	380	
Gly Thr Trp Thr Glu Glu Gln Gly Ile Leu Trp Leu Ala Pro Thr His			
385	390	395	400
Pro Pro Asp Phe Gly Leu Pro Tyr Arg Pro Asn Phe Pro Gln Asp Gly			
405	410	415	
Glu Pro Gln Arg Leu His Leu Glu Pro Thr Trp Pro Pro Pro Leu Lys			
420	425	430	
Ala Pro Lys Gly Pro Gln Gln Pro Pro Arg Gly Ala Ala Lys Thr Pro			
435	440	445	
Lys Gly Asn Pro Ala Asn Pro Thr His Thr Thr Phe Cys Pro Gln Asp			
450	455	460	

Leu Cys Tyr Phe Ser Tyr Thr Pro Thr Pro Glu Pro Cys Pro Pro Thr
465 470 475 480
Cys His Gly Pro Cys His Thr Ser Ser Cys Val Leu
485 490

<210> 40
<211> 464
<212> PRT
<213> Mouse

<400> 40
Met Gly Arg Ala Trp Gly Leu Leu Val Gly Leu Leu Gly Val Val Trp
1 5 10 15
Leu Leu Arg Leu Gly His Gly Glu Glu Arg Arg Pro Glu Thr Ala Ala
20 25 30
Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp Cys Thr Cys
35 40 45
Asp Val Glu Thr Ile Asp Lys Phe Asn Asn Tyr Arg Leu Phe Pro Arg
50 55 60
Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg Tyr Tyr Lys Val Asn
65 70 75 80
Leu Lys Lys Pro Cys Pro Phe Trp Asn Asp Ile Asn Gln Cys Gly Arg
85 90 95
Arg Asp Cys Ala Val Lys Pro Cys His Ser Asp Glu Val Pro Asp Gly
100 105 110
Ile Lys Ser Ala Ser Tyr Lys Tyr Ser Glu Glu Ala Asn Arg Ile Glu
115 120 125
Glu Cys Glu Gln Ala Glu Arg Leu Gly Ala Val Asp Glu Ser Leu Ser
130 135 140
Glu Glu Thr Gln Lys Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser
145 150 155 160
Ser Asp Ser Phe Cys Glu Ile Asp Asp Ile Gln Ser Pro Asp Ala Glu
165 170 175
Tyr Val Asp Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly
180 185 190
Pro Asp Ala Trp Arg Ile Trp Ser Val Ile Tyr Glu Glu Asn Cys Phe
195 200 205
Lys Pro Gln Thr Ile Gln Arg Pro Leu Ala Ser Gly Arg Gly Lys Ser
210 215 220
Lys Glu Asn Thr Phe Tyr Asn Trp Leu Glu Gly Leu Cys Val Glu Lys
225 230 235 240
Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His Ala Ser Ile Asn Val
245 250 255
His Leu Ser Ala Arg Tyr Leu Leu Gln Asp Thr Trp Leu Glu Lys Lys
260 265 270
Trp Gly His Asn Val Thr Glu Phe Gln Gln Arg Phe Asp Gly Ile Leu
275 280 285
Thr Glu Gly Glu Gly Pro Arg Arg Leu Arg Asn Leu Tyr Phe Leu Tyr
290 295 300
Leu Ile Glu Leu Arg Ala Leu Ser Lys Val Leu Pro Phe Phe Glu Arg
305 310 315 320
Pro Asp Phe Gln Leu Phe Thr Gly Asn Lys Val Gln Asp Ala Glu Asn
325 330 335
Lys Ala Leu Leu Leu Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu
340 345 350
His Phe Asp Glu Asn Ser Phe Phe Ala Gly Asp Lys Asn Glu Ala His
355 360 365

Lys	Leu	Lys	Glu	Asp	Phe	Arg	Leu	His	Phe	Arg	Asn	Ile	Ser	Arg	Ile
370					375					380					
Met	Asp	Cys	Val	Gly	Cys	Phe	Lys	Cys	Arg	Leu	Trp	Gly	Lys	Leu	Gln
385					390					395					400
Thr	Gln	Gly	Leu	Gly	Thr	Ala	Leu	Lys	Ile	Leu	Phe	Ser	Glu	Lys	Leu
					405				410					415	
Ile	Ala	Asn	Met	Pro	Glu	Ser	Gly	Pro	Ser	Tyr	Glu	Phe	Gln	Leu	Thr
					420				425					430	
Arg	Gln	Glu	Ile	Val	Ser	Leu	Phe	Asn	Ala	Phe	Gly	Arg	Ile	Ser	Thr
					435				440					445	
Ser	Val	Arg	Glu	Leu	Glu	Asn	Phe	Arg	His	Leu	Leu	Gln	Asn	Val	His
					450				455					460	

<210> 41
<211> 148
<212> PRT
<213> Rat

<400> 41															
Leu	Asn	Trp	Gln	Ile	Lys	Lys	Tyr	Asp	Thr	Lys	Ala	Ala	Tyr	Cys	Gln
1					5				10					15	
Ser	Lys	Leu	Ala	Val	Val	Leu	Phe	Thr	Lys	Glu	Leu	Ser	Arg	Arg	Leu
					20				25					30	
Gln	Gly	Thr	Gly	Val	Thr	Val	Asn	Ala	Leu	His	Pro	Gly	Val	Ala	Arg
					35				40					45	
Thr	Glu	Leu	Gly	Arg	His	Thr	Gly	Met	His	Asn	Ser	Ala	Phe	Ser	Gly
					50				55					60	
Phe	Met	Leu	Gly	Pro	Phe	Phe	Trp	Leu	Leu	Phe	Lys	Ser	Pro	Gln	Leu
					65				70					80	
Ala	Ala	Gln	Pro	Ser	Thr	Tyr	Leu	Ala	Val	Ala	Glu	Glu	Leu	Glu	Ser
									85					95	
Val	Ser	Gly	Lys	Tyr	Phe	Asp	Gly	Leu	Arg	Glu	Lys	Ala	Pro	Ser	Pro
					100				105					110	
Glu	Ala	Glu	Asp	Glu	Glu	Val	Ala	Arg	Arg	Leu	Trp	Thr	Glu	Ser	Ala
					115				120					125	
His	Leu	Val	Gly	Leu	Asp	Met	Ala	His	Gly	Ser	Ser	Gly	Arg	Gly	His
					130				135					140	
Ser	Ile	Ser	Arg												
															145

<210> 42
<211> 228
<212> PRT
<213> Mouse

<400> 42															
Met	Gly	Phe	Leu	Leu	Leu	Leu	Leu	Leu	His	Ala	Ala	Ile	Ala	Gly	His
1									10					15	
Lys	Asn	Tyr	Gly	Thr	His	Asn	His	Cys	Trp	Leu	Ser	Leu	His	Arg	Gly
									20					30	
Phe	Ile	Trp	Ser	Phe	Leu	Gly	Pro	Ala	Ala	Ile	Ile	Leu	Ile	Asn	
									35					45	
Leu	Val	Phe	Tyr	Phe	Leu	Ile	Ile	Trp	Ile	Leu	Arg	Ser	Lys	Leu	Ser
									50					60	
Ser	Leu	Asn	Lys	Glu	Val	Ser	Thr	Leu	Gln	Asp	Thr	Lys	Val	Met	Thr
									65					80	
Phe	Lys	Ala	Ile	Val	Gln	Leu	Phe	Val	Leu	Gly	Cys	Ser	Trp	Gly	Ile

85	90	95
Gly Leu Phe Ile Phe Ile Glu Val Gly Lys Thr Val Arg	Leu Ile Val	
100	105	110
Ala Tyr Leu Phe Thr Ile Ile Asn Val Leu Gln Gly Val	Leu Ile Phe	
115	120	125
Met Val His Cys Leu Leu Asn Arg Gln Val Arg Met	Glu Tyr Lys Lys	
130	135	140
Trp Phe His Arg Leu Arg Lys Glu Val Glu Ser	Glu Ser Thr Glu Val	
145	150	155
Ser His Ser Thr His Thr Lys Met	Gly Leu Ser Leu Asn	Leu Glu
165	170	175
Asn Phe Cys Pro Thr Gly Asn Leu His Asp Pro Ser Asp	Ser Ile Leu	
180	185	190
Pro Ser Thr Glu Val Ala Gly Val Tyr Leu Ser Thr	Pro Arg Ser His	
195	200	205
Met Gly Ala Glu Asp Val Asn Ser Gly Thr His Ala	Tyr Trp Ser Arg	
210	215	220
Thr Ile Ser Asp		
225		

<210> 43

<211> 373

<212> PRT

<213> Mouse

<400> 43

Met Lys Glu Tyr Val Met Leu Leu Leu Ala Val Cys Ser Ala Lys		
1	5	10
Pro Phe Phe Ser Pro Ser His Thr Ala Leu Lys Asn Met	Met Leu Lys	
20	25	30
Asp Met Glu Asp Thr Asp Asp Asp Asn Asp Asp Asp Asn Ser		
35	40	45
Leu Phe Pro Thr Lys Glu Pro Val Asn Pro Phe Phe Pro Phe Asp Leu		
50	55	60
Phe Pro Thr Cys Pro Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His		
65	70	75
Cys Ser Asp Leu Gly Leu Thr Ser Val Pro Asn Asn Ile Pro Phe Asp		
85	90	95
Thr Arg Met Val Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu		
100	105	110
Asn Asp Phe Lys Gly Leu Thr Ser Leu Tyr Ala Leu Ile Leu Asn Asn		
115	120	125
Asn Lys Leu Thr Lys Ile His Pro Lys Thr Phe Leu Thr Thr Lys Lys		
130	135	140
Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro Leu		
145	150	155
Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Asp Asn Lys Val		
165	170	175
Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala Leu His Val		
180	185	190
Leu Glu Met Ser Ala Asn Pro Leu Glu Asn Asn Gly Ile Glu Pro Gly		
195	200	205
Ala Phe Glu Gly Val Thr Val Phe His Ile Arg Ile Ala Glu Ala Lys		
210	215	220
Leu Thr Ser Ile Pro Lys Gly Leu Pro Pro Thr Leu Leu Glu Leu His		
225	230	235
Leu Asp Phe Asn Lys Ile Ser Thr Val Glu Leu Glu Asp Leu Lys Arg		240

	245	250	255
Tyr Arg Glu Leu Gln Arg Leu Gly	Leu Gly Asn Asn Arg	Ile Thr Asp	
260	265	270	
Ile Glu Asn Gly Thr Phe Ala Asn	Ile Pro Arg Val Arg	Glu Ile His	
275	280	285	
Leu Glu His Asn Lys Leu Lys	Ile Pro Ser Gly	Leu Gln Glu Leu	
290	295	300	
Lys Tyr Leu Gln Ile Ile Phe Leu His	Tyr Asn Ser Ile Ala Lys	Val	
305	310	315	320
Gly Val Asn Asp Phe Cys Pro Thr Val	Pro Lys Met Lys Lys	Ser Leu	
325	330	335	
Tyr Ser Ala Ile Ser Leu Phe Asn Asn	Pro Met Lys Tyr Trp Glu Ile		
340	345	350	
Gln Pro Ala Thr Phe Arg Cys Val	Leu Gly Arg Met Ser Val Gln Leu		
355	360	365	
Gly Asn Val Gly Lys			
370			

<210> 44

<211> 466

<212> PRT

<213> Mouse

<400> 44

Met Trp Gly Cys Trp Leu Gly	Leu Leu Leu Leu Ala Gly Gln		
1	5	10	15
Ala Ala Leu Glu Ala Arg Arg	Ser Arg Trp Arg Arg	Glu Leu Ala Pro	
20	25	30	
Gly Leu His Leu Arg Gly Ile Arg	Asp Ala Gly Gly Arg	Tyr Cys Gln	
35	40	45	
Glu Gln Asp Met Cys Cys Arg	Gly Arg Ala Asp Glu Cys	Ala Leu Pro	
50	55	60	
Tyr Leu Gly Ala Thr Cys Tyr	Cys Asp Leu Phe Cys Asn Arg	Thr Val	
65	70	75	80
Ser Asp Cys Cys Pro Asp Phe	Trp Asp Phe Cys Leu Gly Ile Pro	Pro	
85	90	95	
Pro Phe Pro Pro Val Gln Gly	Cys Met His Gly Gly Arg	Ile Tyr Pro	
100	105	110	
Val Phe Gly Thr Tyr Trp Asp	Asn Cys Asn Arg Cys Thr	Cys His Glu	
115	120	125	
Gly His Trp Glu Cys Asp	Gln Glu Pro Cys Leu Val Asp	Pro Asp	
130	135	140	
Met Ile Lys Ala Ile Asn Arg	Gly Asn Tyr Gly Trp Gln Ala Gly	Asn	
145	150	155	160
His Ser Ala Phe Trp Gly	Met Thr Leu Asp Glu Gly Ile Arg	Tyr Arg	
165	170	175	
Leu Gly Thr Ile Arg Pro Ser	Ser Thr Val Met Asn Met Asn	Glu Ile	
180	185	190	
Tyr Thr Val Leu Gly Gln Gly	Glu Val Leu Pro Thr Ala Phe	Glu Ala	
195	200	205	
Ser Glu Lys Trp Pro Asn Leu	Ile His Glu Pro Leu Asp Gln Gly	Asn	
210	215	220	
Cys Ala Gly Ser Trp Ala Phe	Ser Thr Ala Ala Val Ala Ser Asp	Arg	
225	230	235	240
Val Ser Ile His Ser Leu Gly	His Met Thr Pro Ile Leu Ser Pro	Gln	
245	250	255	
Asn Leu Leu Ser Cys Asp	Thr His His Gln Gln Gly Cys	Arg Gly Gly	

260	265	270
Arg Leu Asp Gly Ala Trp Trp Phe	Leu Arg Arg Arg	Gly Val Val Ser
275	280	285
Asp Asn Cys Tyr Pro Phe Ser Gly Arg Glu Gln Asn	Glu Ala Ser Pro	
290	295	300
Thr Pro Arg Cys Met Met His Ser Arg Ala Met	Gly Arg Gly Lys	Arg
305	310	315
Gln Ala Thr Ser Arg Cys Pro Asn Gly Gln Val Asp	Ser Asn Asp Ile	
325	330	335
Tyr Gln Val Thr Pro Ala Tyr Arg Leu Gly Ser Asp	Glu Lys Glu Ile	
340	345	350
Met Lys Glu Leu Met Glu Asn Gly Pro Val Gln Ala	Leu Met Glu Val	
355	360	365
His Glu Asp Phe Phe Leu Tyr Gln Arg Gly Ile	Tyr Ser His Thr Pro	
370	375	380
Val Ser Gln Gly Arg Pro Glu Gln Tyr Arg Arg	His Gly Thr His Ser	
385	390	395
Val Lys Ile Thr Gly Trp Gly Glu Glu Thr Leu	Pro Asp Gly Arg Thr	
405	410	415
Ile Lys Tyr Trp Thr Ala Ala Asn Ser Trp Gly Pro	Trp Trp Gly Glu	
420	425	430
Arg Gly His Phe Arg Ile Val Arg Gly Thr Asn Glu	Cys Asp Ile Glu	
435	440	445
Thr Phe Val Leu Gly Val Trp Gly Arg Val Gly Met	Glu Asp Met Gly	
450	455	460
His His		
465		

<210> 45

<211> 422

<212> PRT

<213> Mouse

<400> 45

Met Asp Phe Trp Leu Trp Leu Leu Tyr	Phe Leu Pro Val Ser	Gly Ala
1	5	10
Leu Arg Val Leu Pro Glu Val Gln	Leu Asn Val Glu Trp Gly	Gly Ser
20	25	30
Ile Ile Ile Glu Cys Pro Leu Pro Gln	Leu His Val Arg Met	Tyr Leu
35	40	45
Cys Arg Gln Met Ala Lys Pro Gly Ile	Cys Ser Thr Val Val	Ser Asn
50	55	60
Thr Phe Val Lys Lys Glu Tyr Glu Arg Arg	Val Thr Leu Thr Pro	Cys
65	70	75
Leu Asp Lys Lys Leu Phe Leu Val Glu Met	Thr Gln Leu Thr	Glu Asn
85	90	95
Asp Asp Gly Ile Tyr Ala Cys Gly Val Gly	Met Lys Thr Asp Lys	Gly
100	105	110
Lys Thr Gln Lys Ile Thr Leu Asn Val His	Asn Glu Tyr Pro Glu	Pro
115	120	125
Phe Trp Glu Asp Glu Trp Thr Ser	Glu Arg Pro Arg	Trp Leu His Arg
130	135	140
Phe Leu Gln His Gln Met Pro Trp Leu His	Gly Ser Glu His Pro	Ser
145	150	155
Ser Ser Gly Val Ile Ala Lys Val Thr Thr	Pro Ala Ser Lys Thr	Glu
165	170	175
Ala Pro Pro Val His Gln Pro Ser Ser	Ile Thr Ser Val Thr	Gln His

180	185	190
Pro Arg Val Tyr Arg Ala Phe Ser	Val Ser Ala Thr	Lys Ser Pro Ala
195	200	205
Leu Leu Pro Ala Thr Thr Ala Ser Lys	Thr Ser Thr Gln	Gln Ala Ile
210	215	220
Arg Pro Leu Glu Ala Ser Tyr Ser His His	Thr Arg Leu His	Glu Gln
225	230	235
Arg Thr Arg His His Gly Pro His Tyr	Gly Arg Glu Asp	Arg Gly Leu
245	250	255
His Ile Pro Ile Pro Glu Phe His	Ile Leu Ile Pro Thr	Phe Leu Gly
260	265	270
Phe Leu Leu Leu Val Leu Gly	Leu Val Val Lys	Arg Ala Ile Gln
275	280	285
Arg Arg Arg Ala Ser Ser Arg Arg Ala	Gly Arg Leu Ala	Met Arg Arg
290	295	300
Arg Gly Arg Gly Ala Ser Arg Pro Phe Pro	Thr Gln Arg Arg	Asp Ala
305	310	315
Pro Gln Arg Pro Arg Ser Gln Asn Asn	Val Tyr Ser Ala Cys	Pro Arg
325	330	335
Arg Ala Arg Gly Pro Asp Ser Leu Gly	Pro Ala Glu Ala	Pro Leu Leu
340	345	350
Asn Ala Pro Ala Ser Ala Ser	Pro Ala Ser Pro Gln	Val Leu Glu Ala
355	360	365
Pro Trp Pro His Thr Pro Ser Leu Lys Met	Ser Cys Glu Tyr	Val Ser
370	375	380
Leu Gly Tyr Gln Pro Ala Val Asn Leu Glu	Asp Pro Asp Ser Asp	Asp
385	390	395
Tyr Ile Asn Ile Pro Asp Pro Ser His	Leu Pro Ser Tyr Ala	Pro Gly
405	410	415
Pro Arg Ser Ser Cys Gln		
420		

<210> 46

<211> 228

<212> PRT

<213> Mouse

<400> 46

Met Lys Ala Leu Arg Ala Val	Leu Ile Leu Leu Ser	Gly Gln
1	5	10
Pro Gly Ser Gly Trp Ala Gln	Glu Asp Gly Asp Ala	Asp Pro Glu Pro
20	25	30
Glu Asn Tyr Asn Tyr Asp Asp Asp Asp	Glu Glu Glu Glu	Glu Glu Glu
35	40	45
Thr Asn Met Ile Pro Gly Ser Arg Asp	Arg Ala Pro Leu Gln	Cys Tyr
50	55	60
Phe Cys Gln Val Leu His Ser Gly	Glu Ser Cys Asn Gln	Thr Gln Ser
65	70	75
Cys Ser Ser Ser Lys Pro Phe Cys Ile	Thr Leu Val Ser His	Ser Gly
85	90	95
Thr Asp Lys Gly Tyr Leu Thr Tyr	Ser Met Trp Cys	Thr Asp Thr
100	105	110
Cys Gln Pro Ile Ile Lys Thr Val	Gly Gly Thr Gln	Met Thr Gln Thr
115	120	125
Cys Cys Gln Ser Thr Leu Cys Asn Ile	Pro Pro Trp Gln	Asn Pro Gln
130	135	140
Val Gln Asn Pro Leu Gly	Gly Arg Ala Asp Ser	Pro Leu Glu Ser Gly

145	150	155	160
Thr Arg His Pro Gln Gly Gly Lys Phe Ser His Pro Gln Val Val Lys			
165	170	175	
Ala Ala His Pro Gln Ser Asp Gly Ala Asn Leu Pro Lys Ser Gly Lys			
180	185	190	
Ala Asn Gln Pro Gln Gly Ser Gly Ala Gly Tyr Pro Ser Gly Trp Thr			
195	200	205	
Lys Phe Gly Asn Ile Ala Leu Leu Leu Ser Phe Phe Thr Cys Leu Trp			
210	215	220	
Ala Ser Gly Ala			
225			

<210> 47

<211> 269

<212> PRT

<213> Mouse

<400> 47

Gly Cys Ser Asp Gly Glu Asn Gln Arg Ser Gly His Leu Ser Val Ser			
1	5	10	15
Leu Gln Leu Ser Leu Lys Val Leu Leu Ile Arg Met Ala Ser Gly Trp			
20	25	30	
Phe Tyr Leu Ser Cys Met Val Leu Gly Ser Leu Gly Ser Met Cys Ile			
35	40	45	
Leu Phe Thr Ala Tyr Trp Met Gln Tyr Trp Arg Gly Gly Phe Ala Trp			
50	55	60	
Asp Gly Thr Val Leu Met Phe Asn Trp His Pro Val Leu Met Val Ala			
65	70	75	80
Gly Met Val Val Leu Tyr Gly Ala Ala Ser Leu Val Tyr Arg Leu Pro			
85	90	95	
Ser Ser Trp Val Gly Pro Arg Leu Pro Trp Lys Val Leu His Ala Ala			
100	105	110	
Leu His Leu Leu Ala Phe Thr Cys Thr Val Val Gly Leu Ile Ala Val			
115	120	125	
Phe Arg Phe His Asn His Ser Arg Ile Ala His Leu Tyr Ser Leu His			
130	135	140	
Ser Trp Leu Gly Ile Thr Thr Val Val Leu Phe Ala Cys Gln Trp Phe			
145	150	155	160
Leu Gly Phe Ala Val Phe Leu Leu Pro Trp Ala Ser Gln Trp Leu Arg			
165	170	175	
Ser Leu Leu Lys Pro Leu His Val Phe Phe Gly Ala Cys Ile Leu Ser			
180	185	190	
Leu Ser Ile Thr Ser Val Ile Ser Gly Ile Asn Glu Lys Leu Phe Phe			
195	200	205	
Val Leu Lys Asn Ala Thr Lys Pro Tyr Ser Ser Leu Pro Gly Glu Ala			
210	215	220	
Val Phe Ala Asn Ser Thr Gly Leu Leu Val Val Ala Phe Gly Leu Leu			
225	230	235	240
Val Leu Tyr Val Leu Leu Ala Ser Ser Trp Lys Arg Pro Asp Pro Gly			
245	250	255	
Ala Leu Thr Asp Arg Gln Pro Leu Leu His Asp Arg Glu			
260	265		

<210> 48

<211> 188

<212> PRT

<213> Mouse

```

<400> 48
Met Arg Leu Pro Leu Pro Leu Leu Leu Phe Gly Cys Arg Ala Ile
      1           5           10          15
Leu Gly Ser Ala Gly Asp Arg Val Ser Leu Ser Ala Ser Ala Pro Thr
      20          25          30
Leu Asp Asp Glu Glu Lys Tyr Ser Ala His Met Pro Ala His Leu Arg
      35          40          45
Cys Asp Ala Cys Arg Ala Val Ala Phe Gln Met Gly Gln Arg Leu Ala
      50          55          60
Lys Ala Glu Ala Lys Ser His Thr Pro Asp Ala Ser Gly Leu Gln Glu
      65          70          75          80
Leu Ser Glu Ser Thr Tyr Thr Asp Val Leu Asp Gln Thr Cys Ser Gln
      85          90          95
Asn Trp Gln Ser Tyr Gly Val His Glu Val Asn Gln Met Lys Arg Leu
      100         105         110
Thr Gly Pro Gly Leu Ser Lys Gly Pro Glu Pro Arg Ile Ser Val Met
      115         120         125
Ile Ser Gly Gly Pro Trp Pro Asn Arg Leu Ser Lys Thr Cys Phe His
      130         135         140
Tyr Leu Gly Glu Phe Gly Glu Asp Gln Ile Tyr Glu Ala Tyr Arg Gln
      145         150         155         160
Gly Gln Ala Asn Leu Glu Ala Leu Leu Cys Gly Gly Thr His Gly Pro
      165         170         175
Cys Ser Gln Glu Ile Leu Ala Gln Arg Glu Glu Leu
      180         185

```

<210> 49
<211> 247
<212> PRT
<213> Mouse

```

<400> 49
Met Ile Pro Gln Val Val Thr Ser Glu Thr Val Thr Val Ile Ser Pro
      1          5          10          15
Asn Gly Ile Ser Phe Pro Gln Thr Asp Lys Pro Gln Pro Ser His Gln
      20          25          30
Ser Gln Asp Arg Leu Lys Lys His Leu Lys Ala Glu Ile Lys Val Met
      35          40          45
Ala Ala Ile Gln Ile Met Cys Ala Val Met Val Leu Ser Leu Gly Ile
      50          55          60
Ile Leu Ala Ser Val Pro Ser Asn Leu His Phe Thr Ser Val Phe Ser
      65          70          75          80
Ile Leu Leu Glu Ser Gly Tyr Pro Phe Val Gly Ala Leu Phe Phe Ala
      85          90          95
Ile Ser Gly Ile Leu Ser Ile Val Thr Glu Lys Lys Met Thr Lys Pro
      100         105         110
Leu Val His Ser Ser Leu Ala Leu Ser Ile Leu Ser Val Leu Ser Ala
      115         120         125
Leu Thr Gly Ile Ala Ile Leu Ser Val Ser Leu Ala Ala Leu Glu Pro
      130         135         140
Ala Leu Gln Gln Cys Lys Leu Ala Phe Thr Gln Leu Asp Thr Thr Gln
      145         150         155         160
Asp Ala Tyr His Phe Phe Ser Pro Glu Pro Leu Asn Ser Cys Phe Val
      165         170         175
Ala Lys Ala Ala Leu Thr Gly Val Phe Ser Leu Met Leu Ile Ser Ser
      180         185         190

```

Val Leu Glu Leu Gly Leu Ala Val Leu Thr Ala Thr Leu Trp Trp Lys
195 200 205
Gln Ser Ser Ser Ala Phe Ser Gly Asn Val Ile Phe Leu Ser Gln Asn
210 215 220
Ser Lys Asn Lys Ser Ser Val Ser Ser Glu Ser Leu Cys Asn Pro Thr
225 230 235 240
Tyr Glu Asn Ile Leu Thr Ser
245

<210> 50

<211> 182

<212> PRT

<213> Mouse

<400> 50

Pro Phe His Cys His Val Trp Ser Leu Cys Leu Gln Gly Ser Lys Gln
1 5 10 15
Ser Gly Leu Cys Gln Val Gln Arg Asp Leu Gly Arg Asp Asp Arg Ser
20 25 30
Val Arg Gly Ser Lys Ala Ala Val Val Ala Gly Ala Val Val Gly Thr
35 40 45
Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu Leu Tyr Gln Arg
50 55 60
Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile Lys Glu Asp Ala
65 70 75 80
Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser Asp Thr Ile Ser
85 90 95
Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg Pro
100 105 110
Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr Pro Thr Pro Ser
115 120 125
Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro Arg Val Asp Glu
130 135 140
Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly Val Ser Ser Ser
145 150 155 160
Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
165 170 175
Gln Ala Gly Ser Leu Val
180

<210> 51

<211> 248

<212> PRT

<213> Mouse

<400> 51

Met Ser Trp Ser Pro Ile Leu Pro Phe Leu Ser Leu Leu Leu Leu
1 5 10 15
Phe Pro Leu Glu Val Pro Arg Ala Ala Thr Ala Ser Leu Ser Gln Ala
20 25 30
Ser Ser Glu Gly Thr Thr Cys Lys Val His Asp Val Cys Leu Leu
35 40 45
Gly Pro Arg Pro Leu Pro Pro Ser Pro Pro Val Arg Val Ser Leu Tyr
50 55 60
Tyr Glu Ser Leu Cys Gly Ala Cys Arg Tyr Phe Leu Val Arg Asp Leu
65 70 75 80
Phe Pro Thr Trp Leu Met Val Met Glu Ile Met Asn Ile Thr Leu Val

85	90	95
Pro Tyr Gly Asn Ala Gln Glu Arg Asn Val Ser Gly Thr Trp	Glu Phe	
100	105	110
Thr Cys Gln His Gly Glu Leu Glu Cys Arg Leu Asn Met Val	Glu Ala	
115	120	125
Cys Leu Leu Asp Lys Leu Glu Lys Glu Ala Ala Phe Leu Thr	Ile Val	
130	135	140
Cys Met Glu Glu Met Asp Asp Met Glu Lys Lys Leu Gly Pro	Cys Leu	
145	150	155
Gln Val Tyr Ala Pro Glu Val Ser Pro Glu Ser Ile Met Glu	Cys Ala	
165	170	175
Thr Gly Lys Arg Gly Thr Gln Leu Met His Glu Asn Ala Gln	Leu Thr	
180	185	190
Asp Ala Leu His Pro Pro His Glu Tyr Val Pro Trp Val	Leu Val Asn	
195	200	205
Glu Lys Pro Leu Lys Asp Pro Ser Glu Leu Leu Ser Ile Val	Cys Gln	
210	215	220
Leu Asp Gln Gly Thr Glu Lys Pro Asp Ile Cys Ser Ser Ile	Ala Asp	
225	230	235
Ser Pro Arg Lys Val Cys Tyr Lys		240
	245	

<210> 52

<211> 278

<212> PRT

<213> Mouse

<400> 52

Met Gln Thr Met Trp Gly Ser Gly Glu Leu Leu Val Ala Trp	Phe Leu		
1	5	10	15
Val Leu Ala Ala Asp Gly Thr Thr Glu His Val Tyr Arg	Pro Ser Arg		
20	25	30	
Arg Val Cys Thr Val Gly Ile Ser Gly Gly Ser Ile Ser	Glu Thr Phe		
35	40	45	
Val Gln Arg Val Tyr Gln Pro Tyr Leu Thr Thr Cys Asp	Gly His Arg		
50	55	60	
Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg	Arg Ser		
65	70	75	80
Pro Gly Val Thr Pro Ala Arg Pro Arg Tyr Ala Cys Cys	Pro Trp		
85	90	95	
Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala	Ile Cys Gln		
100	105	110	
Pro Pro Cys Gly Asn Gly Gly Ser Cys Ile Arg Pro Gly	His Cys Arg		
115	120	125	
Cys Pro Val Gly Trp Gln Gly Asp Thr Cys Gln Thr Asp	Val Asp Glu		
130	135	140	
Cys Ser Thr Gly Glu Ala Ser Cys Pro Gln Arg Cys Val	Asn Thr Val		
145	150	155	160
Gly Ser Tyr Trp Cys Gln Gly Trp Glu Gly Gln Ser Pro	Ser Ala Asp		
165	170	175	
Gly Thr Arg Cys Leu Ser Lys Glu Gly Pro Ser Pro Val	Ala Pro Asn		
180	185	190	
Pro Thr Ala Gly Val Asp Ser Met Ala Arg Glu Glu Val	Tyr Arg Leu		
195	200	205	
Gln Ala Arg Val Asp Val Leu Glu Gln Lys Leu Gln	Leu Val Leu Ala		
210	215	220	
Pro Leu His Ser Leu Ala Ser Arg Ser Thr Glu His Gly	Leu Gln Asp		

225	230	235	240												
Pro	Gly	Ser	Leu	Leu	Ala	His	Ser	Phe	Gln	Gln	Leu	Asp	Arg	Ile	Asp
			245					250				255			
Ser	Leu	Ser	Glu	Gln	Val	Ser	Phe	Leu	Glu	Glu	His	Leu	Gly	Ser	Cys
			260					265			270				
Ser	Cys	Lys	Lys	Asp	Leu										
			275												

<210> 53

<211> 409

<212> PRT

<213> Mouse

<400> 53

Met	Lys	Leu	Lys	Gln	Arg	Val	Val	Leu	Leu	Ala	Ile	Leu	Leu	Val	Ile
1				5				10				15			
Phe	Ile	Phe	Thr	Lys	Val	Phe	Leu	Ile	Asp	Asn	Leu	Asp	Thr	Ser	Ala
				20				25				30			
Ala	Asn	Arg	Glu	Asp	Gln	Arg	Ala	Phe	His	Arg	Met	Met	Thr	Gly	Leu
				35				40			45				
Arg	·Val	Glu	Leu	Val	Pro	Lys	Leu	Asp	His	Thr	Leu	Gln	Ser	Pro	Trp
				50				55			60				
Glu	Ile	Ala	Ala	Gln	Trp	Val	Val	Pro	Arg	Glu	Val	Tyr	Pro	Glu	Glu
				65				70			75			80	
Thr	Pro	Glu	Leu	Gly	Ala	Ile	Met	His	Ala	Met	Ala	Thr	Lys	Ile	
				85				90				95			
Ile	Lys	Ala	Asp	Val	Gly	Tyr	Lys	Gly	Thr	Gln	Leu	Lys	Ala	Leu	Leu
				100				105			110				
Ile	Leu	Glu	Gly	Gly	Gln	Lys	Val	Val	Phe	Lys	Pro	Lys	Arg	Tyr	Ser
				115				120			125				
Arg	Asp	Tyr	Val	Val	Glu	Gly	Glu	Pro	Tyr	Ala	Gly	Tyr	Asp	Arg	His
				130				135			140				
Asn	Ala	Glu	Val	Ala	Ala	Phe	His	Leu	Asp	Arg	Ile	Leu	Gly	Phe	Arg
				145				150			155			160	
Arg	Ala	Pro	Leu	Val	Val	Gly	Arg	Tyr	Val	Asn	Leu	Arg	Thr	Glu	Val
				165				170			175				
Lys	Pro	Val	Ala	Thr	Glu	Gln	Leu	Leu	Ser	Thr	Phe	Leu	Thr	Val	Gly
				180				185			190				
Asn	Asn	Thr	Cys	Phe	Tyr	Gly	Lys	Cys	Tyr	Tyr	Cys	Arg	Glu	Thr	Glu
				195				200			205				
Pro	Ala	Cys	Ala	Asp	Gly	Asp	Met	Met	Glu	Gly	Ser	Val	Thr	Leu	Trp
				210				215			220				
Leu	Pro	Asp	Val	Trp	Pro	Leu	Gln	Lys	His	Arg	His	Pro	Trp	Gly	Arg
				225				230			235			240	
Thr	Tyr	Arg	Glu	Gly	Lys	Leu	Ala	Arg	Trp	Glu	Tyr	Asp	Glu	Ser	Tyr
				245				250			255				
Cys	Asp	Ala	Val	Lys	Lys	Thr	Ser	Pro	Tyr	Asp	Ser	Gly	Pro	Arg	Leu
				260				265			270				
Leu	Asp	Ile	Ile	Asp	Thr	Ala	Val	Phe	Asp	Tyr	Leu	Ile	Gly	Asn	Ala
				275				280			285				
Asp	Arg	His	His	Tyr	Glu	Ser	Phe	Gln	Asp	Asp	Glu	Gly	Ala	Ser	Met
				290				295			300				
Leu	Ile	Leu	Leu	Asp	Asn	Ala	Lys	Ser	Phe	Gly	Asn	Pro	Ser	Leu	Asp
				305				310			315			320	
Glu	Arg	Ser	Ile	Leu	Ala	Pro	Leu	Tyr	Gln	Cys	Cys	Ile	Ile	Arg	Val
				325				330			335				
Ser	Thr	Trp	Asn	Arg	Leu	Asn	Tyr	Leu	Lys	Asn	Gly	Val	Leu	Lys	Ser

340	345	350
Ala Leu Lys Ser Ala Met Ala His Asp Pro Ile Ser Pro Val Leu Ser		
355	360	365
Asp Pro His Leu Asp Thr Val Asp Gln Arg Leu Leu Asn Val Leu Ala		
370	375	380
Thr Ile Lys Gln Cys Thr Asp Gln Phe Gly Thr Asp Thr Val Leu Val		
385	390	395
Glu Asp Arg Met Pro Leu Ser His Leu		
405		

<210> 54
<211> 697
<212> PRT
<213> Mouse

<400> 54			
Met Arg Leu Thr Val Gly Ala Leu Leu Ala Cys Ala Ala Leu Gly Leu			
1	5	10	15
Cys Leu Ala Val Pro Asp Lys Thr Val Lys Trp Cys Ala Val Ser Glu			
20	25	30	
His Glu Asn Thr Lys Cys Ile Ser Phe Arg Asp His Met Lys Thr Val			
35	40	45	
Leu Pro Pro Asp Gly Pro Arg Leu Ala Cys Val Lys Lys Thr Ser Tyr			
50	55	60	
Pro Asp Cys Ile Lys Ala Ile Ser Ala Ser Glu Ala Asp Ala Met Thr			
65	70	75	80
Leu Asp Gly Gly Trp Val Tyr Asp Ala Gly Leu Thr Pro Asn Asn Leu			
85	90	95	
Lys Pro Val Ala Ala Glu Phe Tyr Gly Ser Val Glu His Pro Gln Thr			
100	105	110	
Tyr Tyr Tyr Ala Val Ala Val Val Lys Lys Gly Thr Asp Phe Gln Leu			
115	120	125	
Asn Gln Leu Glu Gly Lys Lys Ser Cys His Thr Gly Leu Gly Arg Ser			
130	135	140	
Ala Gly Trp Val Ile Pro Ile Gly Leu Leu Phe Cys Lys Leu Ser Glu			
145	150	155	160
Pro Arg Ser Pro Leu Glu Lys Ala Val Ser Ser Phe Phe Ser Gly Ser			
165	170	175	
Cys Val Pro Cys Ala Asp Pro Val Ala Phe Pro Lys Leu Cys Gln Leu			
180	185	190	
Cys Pro Gly Cys Gly Cys Ser Ser Thr Gln Pro Phe Phe Gly Tyr Val			
195	200	205	
Gly Ala Phe Lys Cys Leu Lys Asp Gly Gly Gly Asp Val Ala Phe Val			
210	215	220	
Lys His Thr Thr Ile Phe Glu Val Leu Pro Glu Lys Ala Asp Arg Asp			
225	230	235	240
Gln Tyr Glu Leu Leu Cys Leu Asp Asn Thr Arg Lys Pro Val Asp Gln			
245	250	255	
Tyr Glu Asp Cys Tyr Leu Ala Arg Ile Pro Ser His Ala Val Val Ala			
260	265	270	
Arg Lys Asn Asn Gly Lys Glu Asp Leu Ile Trp Glu Ile Leu Lys Val			
275	280	285	
Ala Gln Glu His Phe Gly Lys Gly Lys Ser Lys Asp Phe Gln Leu Phe			
290	295	300	
Ser Ser Pro Leu Gly Lys Asp Leu Leu Phe Lys Asp Ser Ala Phe Gly			
305	310	315	320
Leu Leu Arg Val Pro Pro Arg Met Asp Tyr Arg Leu Tyr Leu Gly His			

	325	330	335
Asn Tyr Val Thr Ala Ile Arg Asn Gln	Gln Glu Gly Val Cys Pro Glu		
340	345	350	
Gly Ser Ile Asp Asn Ser Pro Val Lys Trp Cys Ala Leu Ser His Leu			
355	360	365	
Glu Arg Thr Lys Cys Asp Glu Trp Ser Ile Ile Ser Glu Gly Lys Ile			
370	375	380	
Glu Cys Glu Ser Ala Glu Thr Thr Glu Asp Cys Ile Glu Lys Ile Val			
385	390	395	400
Asn Gly Glu Ala Asp Ala Met Thr Leu Asp Gly Gly His Ala Tyr Ile			
405	410	415	
Ala Gly Gln Cys Gly Leu Val Pro Val Met Ala Glu Tyr Tyr Glu Ser			
420	425	430	
Ser Asn Cys Ala Ile Pro Ser Gln Gln Gly Ile Phe Pro Lys Gly Tyr			
435	440	445	
Tyr Ala Val Ala Val Val Lys Ala Ser Asp Thr Ser Ile Thr Trp Asn			
450	455	460	
Asn Leu Lys Gly Lys Lys Ser Cys His Thr Gly Val Asp Arg Thr Ala			
465	470	475	480
Gly Trp Asn Ile Pro Met Gly Met Leu Tyr Asn Arg Ile Asn His Cys			
485	490	495	
Lys Phe Asp Glu Phe Phe Ser Gln Gly Cys Ala Pro Gly Tyr Glu Lys			
500	505	510	
Asn Ser Thr Leu Cys Asp Leu Cys Ile Gly Pro Leu Lys Cys Ala Pro			
515	520	525	
Asn Asn Lys Glu Glu Tyr Asn Gly Tyr Thr Gly Ala Phe Arg Cys Leu			
530	535	540	
Val Glu Lys Gly Asp Val Ala Phe Val Lys His Gln Thr Val Leu Asp			
545	550	555	560
Asn Thr Glu Gly Lys Asn Pro Ala Glu Trp Ala Lys Asn Leu Lys Gln			
565	570	575	
Glu Asp Phe Glu Leu Leu Cys Pro Asp Gly Thr Arg Lys Pro Val Lys			
580	585	590	
Asp Phe Ala Ser Cys His Leu Ala Gln Ala Pro Asn His Val Val Val			
595	600	605	
Ser Arg Lys Glu Lys Ala Ala Arg Val Lys Ala Val Leu Thr Ser Gln			
610	615	620	
Glu Thr Leu Phe Gly Gly Ser Asp Cys Thr Gly Asn Phe Cys Leu Phe			
625	630	635	640
Lys Ser Thr Thr Lys Asp Leu Leu Phe Arg Asp Asp Thr Lys Cys Phe			
645	650	655	
Val Lys Leu Pro Glu Gly Thr Thr Pro Glu Lys Tyr Leu Gly Ala Glu			
660	665	670	
Tyr Met Gln Ser Val Gly Asn Met Arg Lys Cys Ser Thr Ser Arg Leu			
675	680	685	
Leu Glu Ala Cys Thr Phe His Lys His			
690	695		

<210> 55

<211> 400

<212> PRT

<213> Mouse

<400> 55

Gly Ala Pro Thr Pro Ala Tyr Val Arg Ser Ala Arg Arg Thr Glu Pro
1 5 10 15

Leu Ala Ser Gly Ala Arg Ser Arg Leu Cys Gln Cys Arg Arg Val Pro

20	25	30
Ala Arg Lys Gln Gly Pro Gln Glu Gln Gly Gly Ser Gly	Glu Ser Thr	
35	40	45
Thr Ser Ser Pro Gln Trp Trp Arg Arg Trp Arg Arg	Leu Trp Ser Thr	
50	55	60
Cys Ser Cys Ser Ala Asp Asp Arg His Thr Gly Ser His	Thr Asp Leu	
65	70	75
Lys Glu Glu Thr Pro Ser Trp Thr Gln Ile Ser Val Val	Phe Arg Lys	
85	90	95
Asp Gly Gln Asp Glu Leu Gln Ala Ala His Lys Ala His	Gly Ser Gly	
100	105	110
Ser Pro Leu Thr Asn Gln Glu Ile Pro Ser Ser Ser	Gly Ser Gly Phe	
115	120	125
Ile Val Ser Glu Asp Gly Leu Ile Val Thr Asn Ala His	Val Leu Thr	
130	135	140
Asn Gln Gln Lys Ile Gln Val Glu Leu Gln Ser Gly Ala	Arg Tyr Glu	
145	150	155
Ala Thr Val Lys Asp Ile Asp His Lys Leu Asp Leu Ala	Leu Ile Lys	
165	170	175
Ile Glu Pro Asp Thr Glu Leu Pro Val Leu Leu Leu	Gly Arg Ser Ser	
180	185	190
Asp Leu Arg Ala Gly Glu Phe Val Val Ala Leu Gly	Ser Pro Phe Ser	
195	200	205
Leu Gln Asn Thr Val Thr Ala Gly Ile Val Ser Thr Thr	Gln Arg Gly	
210	215	220
Gly Arg Glu Leu Gly Leu Lys Asn Ser Asp Ile Asp Tyr	Ile Gln Thr	
225	230	235
Asp Ala Ile Ile Asn His Gly Asn Ser Gly Gly Pro Leu	Val Asn Leu	
245	250	255
Asp Gly Asp Val Ile Gly Ile Asn Thr Leu Lys Val Thr	Ala Gly Ile	
260	265	270
Ser Phe Ala Ile Pro Ser Asp Arg Ile Arg Gln Phe Leu	Glu Asp Tyr	
275	280	285
His Glu Arg Gln Leu Lys Gly Lys Ala Pro Leu Gln Lys	Lys Tyr Leu	
290	295	300
Gly Leu Arg Met Leu Pro Leu Thr Leu Asn Leu Leu Gln	Glu Met Lys	
305	310	315
Arg Gln Asp Pro Glu Phe Pro Asp Val Ser Ser Gly Val	Phe Val Tyr	
325	330	335
Glu Val Ile Gln Gly Ser Ala Ala Ala Ser Ser Gly Leu	Arg Asp His	
340	345	350
Asp Val Ile Val Ser Ile Asn Gly Gln Pro Val Thr Thr	Thr Asp	
355	360	365
Val Ile Glu Ala Val Lys Asp Asn Asp Phe Leu Ser Ile	Ile Val Leu	
370	375	380
Arg Gly Ser Gln Thr Leu Phe Leu Thr Val Thr Pro Glu	Ile Ile Asn	
385	390	395
		400

<210> 56

<211> 174

<212> PRT

<213> Mouse

<400> 56

Met Pro Ala Cys Arg Leu Cys Leu Leu Ala Ala Gly	Leu Leu Leu Gly		
1	5	10	15
Leu Leu Leu Phe Thr Pro Ile Ser Ala Thr Gly Thr Asp	Ala Glu Lys		

20	25	30
Pro	Gly	Glu
Cys	Pro	Gln
Leu	Glu	Pro
Thr	Ile	Thr
Asp	Cys	Asp
5	40	45
Cys	Thr	Leu
Asp	Lys	Asp
Cys	Ala	Asp
50	55	60
Gly	Cys	Ser
Ser	Val	Cys
65	70	75
Leu	Ser	Gly
Gly	Thr	Asp
85	90	95
Ser	Ala	Gly
Leu	Asp	His
100	105	110
Thr	Lys	Pro
Pro	Pro	Pro
Ala	Val	Thr
115	120	125
Gln	Gly	Thr
Cys	Pro	Ser
130	135	140
Asp	Gln	Cys
Gln	Cys	Val
145	150	155
Arg	Asn	Gly
Gly	Cys	Gly
165	170	160
Lys	Met	Ala
Cys	Thr	Thr
170	170	160
Thr	Pro	Lys
Phe		

<210> 57
<211> 173
<212> PRT
<213> Mouse

1	5	10	15
Gly	Val	Tyr	Thr
Cys	Tyr	Ala	Met
20	25	30	
Ser	Val	Glu	Leu
Lys	Val	Tyr	Asn
35	40	45	
Thr	Leu	Asn	Thr
Ala	Tyr	Thr	Thr
50	55	60	
Val	Leu	Val	Ile
65	70	75	80
Arg	Gly	Val	Glu
Lys	Pro	Ser	Ser
85	90	95	
Ser	Met	Leu	Ser
Thr	Thr	Pro	Asn
His	Asp	Pro	Pro
100	105	110	
Lys	Asp	Asp	Gly
Phe	Asp	Arg	Arg
115	120	125	
Pro	Gly	Gln	Gly
Gln	Asn	Gly	Lys
130	135	140	
Val	Pro	Glu	Ala
145	150	155	160
Ser	Val	Ser	Ser
Val	Phe	Ser	Asp
165	170	170	
Thr	Pro	Ile	Val
Pro			

<210> 58
<211> 88
<212> PRT
<213> Mouse

1	5	10	15
Met	Glu	Glu	Ile
Thr	Cys	Ala	Phe
Leu	Leu	Leu	Leu
Leu	Leu	Leu	Ala
Gly	Leu	Asp	Pro

Ala Leu Glu Ala Ser Asp Pro Val Asp Lys Asp Ser Pro Phe Tyr Tyr
 20 25 30
 Asp Trp Glu Ser Leu Gln Leu Gly Gly Leu Ile Phe Gly Gly Leu Leu
 35 40 45
 Cys Ile Ala Gly Ile Ala Met Ala Leu Ser Gly Lys Cys Lys Cys Arg
 50 55 60
 Arg Thr His Lys Pro Ser Ser Leu Pro Gly Lys Ala Thr Pro Leu Ile
 65 70 75 80
 Ile Pro Gly Ser Ala Asn Thr Cys
 85

<210> 59

<211> 171

<212> PRT

<213> Mouse

<400> 59

Leu Ser Val Val Leu Gly Gly Thr Leu Tyr Ile Gly His Tyr Leu Ala
 1 5 10 15
 Met Tyr Ser Glu Gly Ala Pro Phe Trp Thr Gly Ile Val Ala Met Leu
 20 25 30
 Ala Gly Ala Val Ala Phe Leu His Lys Lys Arg Gly Gly Thr Cys Trp
 35 40 45
 Ala Leu Met Arg Thr Leu Leu Val Leu Ala Ser Phe Cys Thr Ala Val
 50 55 60
 Ala Ala Ile Val Ile Gly Ser Arg Glu Leu Asn Tyr Tyr Trp Tyr Phe
 65 70 75 80
 Leu Gly Asp Asp Val Cys Gln Arg Asp Ser Ser Tyr Gly Trp Ser Thr
 85 90 95
 Met Pro Arg Thr Thr Pro Val Pro Glu Glu Ala Asp Arg Ile Ala Leu
 100 105 110
 Cys Ile Tyr Tyr Thr Ser Met Leu Lys Thr Leu Leu Met Ser Leu Gln
 115 120 125
 Ala Met Leu Leu Gly Ile Trp Val Leu Leu Leu Leu Ala Ser Leu Thr
 130 135 140
 Pro Val Cys Val Tyr Ile Trp Lys Arg Phe Phe Thr Lys Ala Glu Thr
 145 150 155 160
 Glu Glu Lys Lys Leu Leu Gly Ala Ala Val Ile
 165 170

<210> 60

<211> 318

<212> PRT

<213> Mouse

<400> 60

Met Leu Gln His Thr Ser Leu Val Leu Leu Ala Ser Ile Trp Thr
 1 5 10 15
 Thr Arg His Pro Val Gln Gly Ala Asp Leu Val Gln Asp Leu Ser Ile
 20 25 30
 Ser Thr Cys Arg Ile Met Gly Val Ala Leu Val Gly Arg Asn Lys Asn
 35 40 45
 Pro Gln Met Asn Phe Thr Glu Ala Asn Glu Ala Cys Lys Met Leu Gly
 50 55 60
 Leu Thr Leu Ala Ser Arg Asp Gln Val Glu Ser Ala Gln Lys Ser Gly
 65 70 75 80
 Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Glu Gln Phe Ser Val Ile

	85	90	95												
Pro	Arg	Ile	Phe	Ser	Asn	Pro	Arg	Cys	Gly	Lys	Asn	Gly	Lys	Gly	Val
			100					105					110		
Leu	Ile	Trp	Asn	Ala	Pro	Ser	Ser	Gln	Lys	Phe	Lys	Ala	Tyr	Cys	His
			115					120					125		
Asn	Ser	Ser	Asp	Thr	Trp	Val	Asn	Ser	Cys	Ile	Pro	Glu	Ile	Val	Thr
	130					135					140				
Thr	Phe	Tyr	Pro	Val	Leu	Asp	Thr	Gln	Thr	Pro	Ala	Thr	Glu	Phe	Ser
145						150				155			160		
Val	Ser	Ser	Ser	Ala	Tyr	Leu	Ala	Ser	Ser	Pro	Asp	Ser	Thr	Thr	Pro
						165				170			175		
Val	Ser	Ala	Thr	Thr	Arg	Ala	Pro	Pro	Leu	Thr	Ser	Met	Ala	Arg	Lys
						180			185			190			
Thr	Lys	Lys	Ile	Cys	Ile	Thr	Glu	Val	Tyr	Thr	Glu	Pro	Ile	Thr	Met
	195						200				205				
Ala	Thr	Glu	Thr	Glu	Ala	Phe	Val	Ala	Ser	Gly	Ala	Ala	Phe	Lys	Asn
	210					215				220					
Glu	Ala	Ala	Gly	Phe	Gly	Gly	Val	Pro	Thr	Ala	Leu	Leu	Val	Leu	Ala
225						230				235			240		
Leu	Leu	Phe	Phe	Gly	Ala	Ala	Ala	Val	Leu	Ala	Val	Cys	Tyr	Val	Lys
						245			250			255			
Arg	Tyr	Val	Lys	Ala	Phe	Pro	Phe	Thr	Thr	Lys	Asn	Gln	Gln	Lys	Glu
						260			265			270			
Met	Ile	Glu	Thr	Lys	Val	Val	Lys	Glu	Glu	Lys	Ala	Asp	Asp	Val	Asn
						275			280			285			
Ala	Asn	Glu	Glu	Ser	Lys	Lys	Thr	Ile	Lys	Asn	Pro	Glu	Glu	Ala	Lys
	290					295					300				
Ser	Pro	Pro	Lys	Thr	Thr	Val	Arg	Cys	Leu	Glu	Ala	Glu	Val		
305						310				315					

<210> 61

<211> 93

<212> PRT

<213> Mouse

<400> 61

Ala	His	Met	Val	Trp	Ala	Asn	Leu	Ala	Val	Phe	Val	Ile	Cys	Phe	Leu
						5			10			15			
1															
Pro	Leu	His	Val	Val	Leu	Thr	Val	Gln	Val	Ser	Leu	Asn	Leu	Asn	Thr
						20			25			30			
Cys	Ala	Ala	Arg	Asp	Thr	Phe	Ser	Arg	Ala	Leu	Ser	Ile	Thr	Gly	Lys
						35			40			45			
Leu	Ser	Asp	Thr	Asn	Cys	Cys	Leu	Asp	Ala	Ile	Cys	Tyr	Tyr	Tyr	Met
						50			55			60			
Ala	Arg	Glu	Phe	Gln	Glu	Ala	Ser	Lys	Pro	Ala	Thr	Ser	Ser	Asn	Thr
	65					70				75			80		
Pro	His	Lys	Ser	Gln	Asp	Ser	Gln	Ile	Leu	Ser	Leu	Thr			
						85			90						

<210> 62

<211> 408

<212> PRT

<213> Mouse

<400> 62

Met	Ala	Gln	Leu	Ala	Arg	Ala	Thr	Arg	Ser	Pro	Leu	Ser	Trp	Leu	Leu
1							5			10			15		

Leu Leu Phe Cys Tyr Ala Leu Arg Lys Ala Gly Gly Asp Ile Arg Val
20 25 30
Leu Val Pro Tyr Asn Ser Thr Gly Val Leu Gly Gly Ser Thr Thr Leu
35 40 45
His Cys Ser Leu Thr Ser Asn Glu Asn Val Thr Ile Thr Gln Ile Thr
50 55 60
Trp Met Lys Lys Asp Ser Gly Gly Ser His Ala Leu Val Ala Val Phe
65 70 75 80
His Pro Lys Lys Gly Pro Asn Ile Lys Glu Pro Glu Arg Val Lys Phe
85 90 95
Leu Ala Ala Gln Gln Asp Leu Arg Asn Ala Ser Leu Ala Ile Ser Asn
100 105 110
Leu Ser Val Glu Asp Glu Gly Ile Tyr Glu Cys Gln Ile Ala Thr Phe
115 120 125
Pro Arg Gly Ser Arg Ser Thr Asn Ala Trp Leu Lys Val Gln Ala Arg
130 135 140
Pro Lys Asn Thr Ala Glu Ala Leu Glu Pro Ser Pro Thr Leu Ile Leu
145 150 155 160
Gln Asp Val Ala Lys Cys Ile Ser Ala Asn Gly His Pro Pro Gly Arg
165 170 175
Ile Ser Trp Pro Ser Asn Val Asn Gly Ser His Arg Glu Met Lys Glu
180 185 190
Pro Gly Ser Gln Pro Gly Thr Thr Val Thr Ser Tyr Leu Ser Met
195 200 205
Val Pro Ser Arg Gln Ala Asp Gly Lys Asn Ile Thr Cys Thr Val Glu
210 215 220
His Glu Ser Leu Gln Glu Leu Asp Gln Leu Leu Val Thr Leu Ser Gln
225 230 235 240
Pro Tyr Pro Pro Glu Asn Val Ser Ile Ser Gly Tyr Asp Gly Asn Trp
245 250 255
Tyr Val Gly Leu Thr Asn Leu Thr Leu Thr Cys Glu Ala His Ser Lys
260 265 270
Pro Ala Pro Asp Met Ala Gly Tyr Asn Trp Ser Thr Asn Thr Gly Asp
275 280 285
Phe Pro Asn Ser Val Lys Arg Gln Gly Asn Met Leu Leu Ile Ser Thr
290 295 300
Val Glu Asp Gly Leu Asn Asn Thr Val Ile Val Cys Glu Val Thr Asn
305 310 315 320
Ala Leu Gly Ser Gly Gln Gly Val His Ile Ile Val Lys Glu Lys
325 330 335
Pro Glu Asn Met Gln Gln Asn Thr Arg Leu His Leu Gly Tyr Ile Phe
340 345 350
Leu Ile Val Phe Val Leu Ala Val Val Ile Ile Ile Ala Ala Leu Tyr
355 360 365
Thr Ile Arg Arg Cys Arg His Gly Arg Ala Leu Gln Ser Asn Pro Ser
370 375 380
Glu Arg Glu Asn Val Gln Tyr Ser Ser Val Asn Gly Asp Cys Arg Leu
385 390 395 400
Asn Met Glu Pro Asn Ser Thr Arg
405

<210> 63

<211> 278

<212> PRT

<213> Mouse

<400> 63

Met Phe Leu Val Gly Ser Leu Val Val Leu Cys Gly Leu Leu Ala His
 1 5 10 15
 Ser Thr Ala Gln Leu Ala Gly Leu Pro Leu Pro Leu Gly Gln Gly Pro
 20 25 30
 Pro Leu Pro Leu Asn Gln Gly Pro Pro Leu Pro Leu Asn Gln Gly Gln
 35 40 45
 Leu Leu Pro Leu Ala Gln Gly Leu Pro Leu Ala Val Ser Pro Ala Leu
 50 55 60
 Pro Ser Asn Pro Thr Asp Leu Leu Ala Gly Lys Phe Thr Asp Ala Leu
 65 70 75 80
 Ser Gly Gly Leu Leu Ser Gly Gly Leu Leu Gly Ile Leu Glu Asn Ile
 85 90 95
 Pro Leu Leu Asp Val Ile Lys Ser Gly Gly Asn Ser Asn Gly Leu
 100 105 110
 Val Gly Gly Leu Leu Gly Lys Leu Thr Ser Ser Val Pro Leu Leu Asn
 115 120 125
 Asn Ile Leu Asp Ile Lys Ile Thr Asp Pro Gln Leu Leu Glu Leu Gly
 130 135 140
 Leu Val Gln Ser Pro Asp Gly His Arg Leu Tyr Val Thr Ile Pro Leu
 145 150 155 160
 Gly Leu Thr Leu Asn Val Asn Met Pro Val Val Gly Ser Leu Leu Gln
 165 170 175
 Leu Ala Val Lys Leu Asn Ile Thr Ala Glu Val Leu Ala Val Lys Asp
 180 185 190
 Asn Gln Gly Arg Ile His Leu Val Leu Gly Asp Cys Thr His Ser Pro
 195 200 205
 Gly Ser Leu Lys Ile Ser Leu Leu Asn Gly Val Thr Pro Val Gln Ser
 210 215 220
 Phe Leu Asp Asn Leu Thr Gly Ile Leu Thr Lys Val Leu Pro Glu Leu
 225 230 235 240
 Ile Gln Gly Lys Val Cys Pro Leu Val Asn Gly Ile Leu Ser Gly Leu
 245 250 255
 Asp Val Thr Leu Val His Asn Ile Ala Glu Leu Leu Ile His Gly Leu
 260 265 270
 Gln Phe Val Ile Lys Val
 275

<210> 64
 <211> 264
 <212> PRT
 <213> Mouse

<400> 64

Met Ala Thr Thr Cys Gln Val Val Gly Leu Leu Leu Ser Leu Leu
 1 5 10 15
 Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp Ser Thr
 20 25 30
 Gin Asp Leu Tyr Asp Asn Pro Val Thr Ala Val Phe Gln His Glu Gly
 35 40 45
 Leu Trp Arg Ser Cys Val Gln Gln Ser Ser Gly Phe Thr Glu Cys Arg
 50 55 60
 Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met Leu Gln Ala Val Arg
 65 70 75 80
 Ala Leu Met Ile Val Gly Ile Val Leu Gly Val Ile Gly Ile Leu Val
 85 90 95
 Ser Ile Phe Ala Leu Lys Cys Ile Arg Ile Gly Ser Met Asp Asp Ser
 100 105 110

Ala Lys Ala Lys Met Thr Leu Thr Ser Gly Ile Leu Phe Ile Ile Ser
 115 120 125
 Gly Ile Cys Ala Ile Ile Gly Val Ser Val Phe Ala Asn Met Leu Val
 130 135 140
 Thr Asn Phe Trp Met Ser Thr Ala Asn Met Tyr Ser Gly Met Gly Gly
 145 150 155 160
 Met Gly Gly Met Val Gln Thr Val Gln Thr Arg Tyr Thr Phe Gly Ala
 165 170 175
 Ala Leu Phe Val Gly Trp Val Ala Gly Gly Leu Thr Leu Ile Gly Gly
 180 185 190
 Val Met Met Cys Ile Ala Cys Arg Gly Leu Thr Pro Asp Asp Ser Asn
 195 200 205
 Phe Lys Ala Val Ser Tyr His Ala Ser Gly Gln Asn Val Ala Tyr Arg
 210 215 220
 Pro Gly Gly Phe Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Arg Asn
 225 230 235 240
 Lys Lys Ile Tyr Asp Gly Gly Ala Arg Thr Glu Asp Asp Glu Gln Ser
 245 250 255
 His Pro Thr Lys Tyr Asp Tyr Val
 260

<210> 65
 <211> 132
 <212> PRT
 <213> Mouse

<400> 65
 Ala His Pro Arg Pro Gly Ala Arg Arg Pro Arg Leu Leu Ala Phe Gln
 1 5 10 15
 Ala Ser Cys Ala Pro Ala Pro Gly Ser Arg Asp Arg Cys Pro Glu Glu
 20 25 30
 Gly Gly Pro Arg Cys Leu Arg Val Tyr Ala Gly Leu Ile Gly Thr Val
 35 40 45
 Val Thr Pro Asn Tyr Leu Asp Asn Val Ser Ala Arg Val Ala Pro Trp
 50 55 60
 Cys Gly Cys Ala Ala Ser Gly Asn Arg Arg Glu Glu Cys Glu Ala Phe
 65 70 75 80
 Arg Lys Leu Phe Thr Arg Asn Pro Cys Leu Asp Gly Ala Ile Gln Ala
 85 90 95
 Phe Asp Ser Leu Gln Pro Ser Val Leu Gln Asp Gln Thr Ala Gly Cys
 100 105 110
 Cys Phe Pro Arg Val Ser Trp Leu Tyr Ala Leu Thr Ala Leu Ala Leu
 115 120 125
 Gln Ala Leu Leu
 130

<210> 66
 <211> 764
 <212> DNA
 <213> Mouse

<400> 66
 gcagcaccca gcgccaagcg caccaggcac cgcgacagac ggcaggagca cccatcgacg 60
 ggcgtactgg agcgagccga gcagagcaga gagaggcgtg cttgaaaccg agaaccaagc 120
 cggcgccat cccccggccg ccgcacgcac aggccggcgc cctccttgcc tccctgctcc 180
 ccaccgcgcc cctccggcca gcatgaggct cctggcggcc gcgctgctcc tgctgctcct 240
 ggcgctgtgc gcctcgccgc tggacgggtc caagttaag tggcccgaa agggcccaa 300

gatccgctac	agcgacgtga	agaagctgga	aatgaagcca	aagtaccac	actgcgagga	360
gaagatggtt	atcgtcacca	ccaagagcat	gtccaggta	cggggccagg	agcactgcct	420
gcaccctaag	ctgcagagca	ccaaacgc	tttcaagtgg	tacaatgcct	ggaacgagaa	480
gcccgggtc	tacgaagaat	agggtggacg	atcatggaaa	aaaaaaactcc	aggccagttg	540
agagacttca	gcagaggact	ttgcagat	aaataaaagc	cctttcttcc	tcacaagcat	600
aagacaaatt	atatatgtct	atgaagctct	tcttaccagg	gtcagttttt	acatttata	660
gctgtgtgt	aaaggcttcc	agatgtgaga	tccagctcgc	ctgcgcacca	gacttcatta	720
caagtggctt	tttgctgggc	ggttggcggg	gggcgggggg	acct		764

<210> 67

<211> 288

<212> DNA

<213> Human

<400> 67

gcggccgcgc	tgctcctgct	gctgctggcg	ctgtacaccg	cgcgtgtgga	cgggtccaaa	60
tgcaagtgt	cccgaaagg	acccaagatc	cgctacagcg	acgtgaagaa	gctggaaatg	120
aagccaaagt	acccgcactg	cgaggagaag	atggttatca	tcaccaccaa	gagcgtgtcc	180
aggtaaccgag	gtcaggagca	ctgcctgcac	ccaaagctgc	agagcaccaa	gcgttcatc	240
aagtggtaca	acgcctggaa	cgagaagcgc	agggtctacg	aagaatag		288

<210> 68

<211> 95

<212> PRT

<213> Human

<400> 68

Ala	Ala	Ala	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Tyr	Thr	Ala	Arg	Val	
1			5			10				15					
Asp	Gly	Ser	Lys	Cys	Lys	Cys	Ser	Arg	Lys	Gly	Pro	Lys	Ile	Arg	Tyr
			20			25				30					
Ser	Asp	Val	Lys	Lys	Leu	Glu	Met	Lys	Pro	Lys	Tyr	Pro	His	Cys	Glu
			35			40				45					
Glu	Lys	Met	Val	Ile	Ile	Thr	Thr	Lys	Ser	Val	Ser	Arg	Tyr	Arg	Gly
			50			55				60					
Gln	Glu	His	Cys	Leu	His	Pro	Lys	Leu	Gln	Ser	Thr	Lys	Arg	Phe	Ile
			65			70				75				80	
Lys	Trp	Tyr	Asn	Ala	Trp	Asn	Glu	Lys	Arg	Arg	Val	Tyr	Glu	Glu	
			85			90				95					

<210> 69

<211> 234

<212> DNA

<213> Mouse

<400> 69

tccaaatgt	agtgttcccc	gaaggggccc	aagatccgt	acagcgacgt	gaagaagctg	60
gaaatgaagc	caaagtaccc	acactgcgag	gagaagatgg	ttatcgta	caccaagagc	120
atgtccaggt	accggggcca	ggagcactgc	ctgcacccta	agctgcagag	caccaaacgc	180
ttcatcaagt	ggtacaatgc	ctggaacgag	aagcgcaggg	tctacgaaga	atag	234

<210> 70

<211> 77

<212> PRT

<213> Mouse

<400> 70

Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys Ile Arg Tyr Ser Asp
 1 5 10 15
 Val Lys Lys Leu Glu Met Lys Pro Lys Tyr Pro His Cys Glu Glu Lys
 20 25 30
 Met Val Ile Val Thr Thr Lys Ser Met Ser Arg Tyr Arg Gly Gln Glu
 35 40 45
 His Cys Leu His Pro Lys Leu Gln Ser Thr Lys Arg Phe Ile Lys Trp
 50 55 60
 Tyr Asn Ala Trp Asn Glu Lys Arg Arg Val Tyr Glu Glu
 65 70 75

<210> 71

<211> 234

<212> DNA

<213> Human

<400> 71

tccaaatgca agtgctcccc gaaggaccc aagatccgct acagcgacgt	gaagaagctg	60
gaaatgaagc caaatgtaccc gcactgcgag gagaagatgg ttatcatcac	caccaagagc	120
gtgtccaggt accgaggtca ggagcactgc ctgcacccca agctgcagag	caccaagcgc	180
ttcatcaagt ggtacaacgc ctggAACGAG aagcgcaggg tctacgaaga	ata	234

<210> 72

<211> 77

<212> PRT

<213> Human

<400> 72

Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys Ile Arg Tyr Ser Asp
 1 5 10 15
 Val Lys Lys Leu Glu Met Lys Pro Lys Tyr Pro His Cys Glu Glu Lys
 20 25 30
 Met Val Ile Ile Thr Thr Lys Ser Val Ser Arg Tyr Arg Gly Gln Glu
 35 40 45
 His Cys Leu His Pro Lys Leu Gln Ser Thr Lys Arg Phe Ile Lys Trp
 50 55 60
 Tyr Asn Ala Trp Asn Glu Lys Arg Arg Val Tyr Glu Glu
 65 70 75

<210> 73

<211> 1460

<212> DNA

<213> Pinus radiata

<400> 73

aaaacgtcca tagtttcattt gccaactgca agcaatacag tacaagagcc agacgatcga	60
atcctgtgaa gtgggtctga agtgatggg agcttggat ctgaaaaaac tggtaacaggaa	120
tatgcagctc gggactccag tggccacttg tccccttaca cttacaatct cagaaagaaa	180
ggacctgagg atgtaattgt aaaggtcatt tactgcggaa tctgccactc tgatttagtt	240
caaatgcgtat atgaaatgga catgtctcat taccatatgg tccctggca tgaagtgggt	300
gggattgtaa cagagattgg cagcgaggtg aagaaattca aagtgggaga gcatgttaggg	360
gttggttgca ttgttgggtc ctgtcgcaat tgcgtaatt gcaatcagag catgaaacaa	420
tactgcagca agaggatttg gacctacaat gatgtgaacc atgacggcac acctactca	480
ggcgaggattt caagcagtat ggtgggtat cagatgttt tggttcgaat cccggagaat	540
cttcctctgg aacaagcggc ccctctgtta tgtgcagggg ttacagttt cagcccaatg	600
aagcatttcg ccatgacaga gcccgggaag aaatgtggga ttttgggttt aggaggcgtg	660
gggcacatgg gtgtcaagat tgccaaagcc tttggactcc acgtgacggt tatcagttcg	720

tctgataaaa	agaaaagaaga	agccatggaa	gtcctcgccg	ccgatgccta	tcttgttagc	780
aaggatactg	aaaagatgtat	ggaaggcagca	gagagcctag	attacataat	ggacaccatt	840
ccagttgttc	atcctcttgg	accatatctt	gcccttctga	agacaatgg	aaagctatgt	900
atgtctggcg	ttgttccaga	gccgttgac	ttcgtgactc	ctctcttaat	acttgggaga	960
aggagcatag	cttggaaagt	tttattggcagc	atggaggaaa	cacaggaaac	tctagatttc	1020
tgtgcagaga	agaaggat	atcgatgatt	gagggtgtgg	gcctggacta	catcaacacg	1080
gccatggaaa	gggtggagaa	gaacgatgtc	cgttacagat	ttgtgggtgg	tgttgctaga	1140
agcaagttgg	ataattatgc	tgcaatcaat	caatcagatc	aatgcctgca	tgcagatga	1200
atagatctgg	actatgtat	taacatgaaa	gggaaattaa	atttttat	aggaactcga	1260
tactggttt	tgttacttta	gtttagctt	tgtgaggtt	aaacaatca	gatgtttttt	1320
taacctgtat	atgtaaagat	caatttctcg	tgacagtaaa	taataatcca	atgtcttctg	1380
ccaaatataat	atatgtattc	gtatTTTtat	atgaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1440
aaaaaaaaaa	aaaaaaaaaa					1460

<210> 74

<211> 363

<212> DNA

<213> Eucalyptus grandis

<400> 74

aaagcaacac	attgaactct	ctctctctct	ctctctctct	ccccccacccc	60
cccttccaa	ccccacccac	atacagacaa	gtagatacgc	gcacacagaa	120
tgggggtttc	aatgcagtca	atcgactag	cgacgggtct	ggccgtccta	180
cgtggagggc	ggtgaactgg	gtgtggctga	ggccgaagag	gctcgagagg	240
agoaagggtct	ctccggcaag	tcctacacct	tcctggtcgg	cgacctcaag	300
ggatgctcaa	ggaagccaag	tccaagccca	tcgcgtctc	cgatgacatc	360
tct					363

INTERNATIONAL SEARCH REPORT

International application No.
PCT/NZ00/00256

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. ⁷: C12N 15/11

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

SEE ELECTRONIC DATA BASES

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
SEE ELECTRONIC DATA BASES

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EMBL, GenBank, PIR, GenePept: Sequence IDs 1, 36, 2, 37, 3, 38, 4, 39, 5, 40

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GenBank Accession No. AL034558 28 July 1999 Whole Sequence w.r.t. Sequence ID 3	1 - 14
X	GenPept Accession No. CAA29045 21 March 1995 Whole Seqence Frame +2 w.r.t. Sequence ID 4	1 - 14
X	GenBank Accession No. AR018857 5 December 1998 & US 5783182 Whole Sequence w.r.t. Seqence ID 5	1 - 14

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
28 March 2001

Date of mailing of the international search report
29.03.2001

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaaustralia.gov.au
Facsimile No. (02) 6285 3929

Authorized officer
CRAIG ALLATT
Telephone No : (02) 6283 2414

INTERNATIONAL SEARCH REPORT

International application No.
PCT/NZ00/00256

<u>C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT</u>		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GenPept Accession No. CAB4Q181 14 December 1999 Whole Sequence w.r.t. Sequence ID 40	1 - 14

INTERNATIONAL SEARCH REPORT

International application No.
PCT/NZ00/00256

Box I

Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos :
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos :
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos :
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Claims 1 - 14 partially.(See Supplemental Box)

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NZ00/00256

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: II

In the present application, the feature that all sequences come from "mammalian sources" does not provide a special technical feature. Genes and their expressed proteins from "mammalian sources" have been sequenced. Cells from "mammalian sources" comprise a variety of different animals and cell types. Moreover the applicant has provided no evidence that the nucleotide sequences of the present application, and the peptides they express, form a unique group of protein types. On the contrary, putative peptides derived from the nucleotide sequences of the application have functions assigned on the basis of their similarity to known proteins expressed by a variety of cell types.

The applicant has grouped the polynucleotides of the application into activity categories according to putative functions of the proteins they encode. However, most of the applicants' groupings do not form a homogenous set of proteins either in structure or function. Moreover, it is noted that most of the peptides encoded by the polynucleotides are assigned to more than one activity category.

The ISA considers that each nucleotide/peptide sequence pair (defined in Table 1 pages 8 - 19) comprises one invention and that there are 35 different inventions (the inventions being numbered sequentially).

However, as a service to the applicants, the ISA will search the first five inventions without inviting additional search fees.

Therefore the ISA has searched SEQ IDs 1, 36, 2, 37, 3, 38, 4, 39, 5, and 40.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/NZ00/00256

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report			Patent Family Member				
US	5783182	AU	11609/97	CA	2237929	EP	870057
		WO	9718454				