$$Sinh(x) = \frac{1}{2}(e^{x} - e^{x})$$

$$\ell^{ix} = \cos(x) + i\sin(x)$$

Math 381 - Fall 2022 $\tan(z) = \frac{\sin(z)}{\cos(z)}$

Jay Newby

$$f^{(\alpha)}(x, x, y)$$

University of Alberta

Week 7

 $||f^{(\alpha)}(x, y)||_{L^{\infty}(x, y)}$
 $||f^{(\alpha)}(x, y)||_{L^{\infty}(x, y)}$
 $||f^{(\alpha)}(x, y)||_{L^{\infty}(x, y)}$
 $||f^{(\alpha)}(x, y)||_{L^{\infty}(x, y)}$

Last Week

• We had our midterm exam

This Week

• Review of linear algebra

Matrices

Matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,m} \end{bmatrix}$$

Transpose

Matrix transpose

Given a real matrix $A \in \mathbb{R}^{n \times m}$, its transpose $A^T \in \mathbb{R}^{m \times n}$ has elements

$$A^{T} = \begin{bmatrix} a_{1,1} & a_{2,1} & \cdots & a_{n,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{n,2} \\ \vdots & \vdots & & \vdots \\ a_{1,m} & a_{2,m} & \cdots & a_{n,m} \end{bmatrix}$$

Rule

Given two matricies $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times q}$,

$$(AB)^T = B^T A^T$$
.

Given three matrices

$$(ABC)^T = C^T B^T A^T$$
.

Symmetric matrix

Symmetric matrix

$$A = A^T$$
 or $a_{ij} = a_{ji}$.

Diagonal matrices

Diagonal Matrix

$$A = \begin{bmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix}$$

Diagonal matrices

We will omit the zeros when writing matrices in the future.

Diagonal Matrix

Tridiagonal matrices

Tridiagonal Matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & \cdots & & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & \cdots & & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n-1,n-2} & a_{n-1,n-1} & a_{n-1,n} \\ 0 & \cdots & 0 & a_{n,n-1} & a_{n,n} \end{bmatrix}$$

Tridiagonal matrices

We will omit the zeros when writing matrices in the future.

Tridiagonal Matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ & a_{3,2} & a_{3,3} & a_{3,4} \\ & & \ddots & \ddots & \ddots \\ & & & & a_{n-1,n} \\ & & & & a_{n,n-1} & a_{n,n} \end{bmatrix}$$

Triangular matrices

Upper Triangular Matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix}$$

Triangular matrices

We will omit the zeros when writing matrices in the future.

Upper Triangular Matrix

Symmetric positive definite matrices

Symmetric positive definite matrix

A matrix $A \in \mathbb{R}^{n \times n}$ is Symmetric positive definite if and only if $A = A^T$ and

$$x^T A x > 0$$
, $\forall x \neq 0$.

Orthogonal matrices

(Unitary Matrix)

Orthogonal matrix

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if and only if

$$Q^TQ = I$$

2-norm

$$||x||_2 = \sqrt{\sum_{j=1}^n x_j^2}$$

1-norm

$$||x||_1 = \sum_{j=1}^n |x_j|.$$

∞ -norm

$$||x||_{\infty} = \max_{1 \le j \le n} |x_j|.$$

p-norm

$$||x||_p = \left(\sum_{j=1}^n x_j^p\right)^{1/p}$$

Definition of a norm

A norm satisfies three requirements

- **1** $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0.
- $\|x+y\| \leq \|x\| + \|y\|, \ \forall x,y \in \mathbb{R}^n \quad \text{Triangle inequality}$

Matrix norms

Induced matrix norm

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

Submultiplicative property

$$||AB|| \le ||A|| ||B||$$

Spectral Radius

Spectral radius

Let $A \in \mathbb{R}^{n \times n}$ and let Ω be the set of eigenvalues of A. The spectral radius is defined as

$$\rho(A) = \max\{|\lambda|; \lambda \in \Omega\}$$

Eigenvalues and eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, an eigenvector $v \in \mathbb{C}^n$ and eigenvalue $\lambda \in \mathbb{C}$ satisfy

$$Av = \lambda v$$
.

Diagonalizable matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it can be decomposed with

$$A = V \Lambda V^{-1}$$
,

where $V \in \mathbb{C}^{n \times n}$ is the matrix formed with columns given by the eigenvectors and $\Lambda \in \mathbb{C}^n$ is a diagonal matrix with diagonal elements given by the eigenvalues.