Resampling Techniques and their Application

-Class 9-

Frank Konietschke

Institut für Biometrie und Klinische Epidemiologie Charité - Universitätsmedizin Berlin, Berlin frank.konietschke@charite.de

Paired Observations

- Before and after measures
- E.g. blood pressure before and after surgery
- Measurements on the same subject
- Advantages
 - Every subject (patient) is his/her own control
 - Reducation of subjects
 - Less costs (potentially)
- Measurements from the same subject are not necessarily independent

Example

- Drug absorbtion study: n=10 patients received brand and generic drug (after wash out period)
- Response: Absorption of the drug in the blood

• Aim: H_0 : $\mu_1 = \mu_2$ and confidence interval

Statistical Model

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_1, E(Y_k) = \mu_2; Var(X_k) = \Sigma$
 - What is Σ?
 - Σ is the covariance matrix

$$\mathbf{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma \ \sigma & \sigma_2^2 \end{array}
ight)$$

- σ : Covariance of X_k and Y_k
- $\sigma = E((X_k \mu_1)(Y_k \mu_2))$
- Measures the degree of the (linear) relationship between X_k and Y_k
- On average, $(\underbrace{(X_k \mu_1)}_{\leq 0} \underbrace{(Y_k \mu_2)}_{\leq 0}) \leq 0$

Paired t-Test

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
 - $E(X_k) = \mu_i, E(Y_k) = \mu_2; Var(\mathbf{X}_k) = \mathbf{\Sigma}$
- Aim: $H_0: \mu_1 = \mu_2 \Rightarrow t$ -test
 - $D_k = X_k Y_k$
 - \bullet \overline{D} . mean of the differences
 - $\hat{\sigma}_{D}^{2}$ empirical variance of the differences

$$T = \sqrt{n} \cdot \frac{\overline{D}}{\widehat{\sigma}_D}$$

- $T \stackrel{\mathcal{D}}{\rightarrow} N(0,1)$ or $T \approx T_{n-1}$ (under H_0)
- Reject H_0 , if $|T| \ge t_{1-\alpha/2}(n-1)$

Example Evaluation

```
brand=c(4108,2526,2779,3852,1833, 2463,2059,1709,1829,2594)
generic=c(1755,1138,1613,2254,1310,2120,1851,1878,1682,2613)
plot(brand, generic, pch=19, cex=1.3)
n=length(brand)
x=cbind(brand,generic)
var(x)
diff=brand-generic
mD=mean(diff)
vd=var(diff)
T=sqrt(n)*mD/sqrt(vd)
pvalue=2*min(pt(T,n-1), 1-pt(T,n-1))
```

t.test(brand,generic,paired=TRUE)

Paired *t*-Test- Properties

- Valid if differences D_k are normally distributed (small samples)
- Valid for large sample sizes
- Test is liberal/ conservative under non-normality
- Idea: Resample the distribution of T
- But how? Differences?

Resampling the *t*-Test

- Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n}^*)'$
 - $X_{11}^*, \dots, X_{1n}^*$: condition 1
 - $X_{21}^*, \dots, X_{2n}^*$: condition 2
 - $D_k^* = X_{1k}^* X_{2k}^*$; \overline{D}_{\cdot}^* : mean
 - $\hat{\sigma}_{D}^{2*}$ empirical variances

$$T^* = \sqrt{n} \cdot \frac{\overline{D}_{\cdot}^*}{\widehat{\sigma}_{P}^*}$$

- Repeat these steps n_{boot}-times
- Reject H_0 , if $T < c^*_{lpha/2}$ or $T > c^*_{1-lpha/2}$

Generation of Resampling Variables

- Observations on the same subject are not necessarily independent
- Can we resample despite the dependencies?
 - We will study methods that keep and ignore the dependencies
 - Resampling the differences
 - Resampling from all data and thus ignoring dependencies

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Drawing with Replacement:** randomly draw n observations D_k^* from **D** with replacement such that

$$P(D_1^*=D_1)=\frac{1}{n}$$

- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (2, 2, 4, 3, 2)$
 - $\mathbf{X}^* = (1, 1, 2, 3, 3)$
 - $\mathbf{X}^* = (2, 5, 5, 3, 3)$
 - ...
- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap

- Differences $D = (D_1, \dots, D_n)$ (fixed values)
- **Resampling** randomly draw n observations D_k^* from

$$N(0,\widehat{\sigma}^2)$$

- In R: rnorm(n, 0, sd(x))
- Also known as Parametric Bootstrap (Useful?)

- Differences $D = (D_1, \ldots, D_n)$ (fixed values)
- Generate random weights W_1, \ldots, W_n with $E(W_1) = 0$ and $Var(W_1) = 1$
 - Random signs $P(W_1 = 1) = P(W_1 = -1) = 1/2$
 - Asymmetric signs $P(W_1 = \frac{1+\sqrt{5}}{2}) = \frac{\sqrt{5}-1}{2\sqrt{5}}$ and $P(W_1 = \frac{1-\sqrt{5}}{2}) = \frac{\sqrt{5}+1}{2\sqrt{5}}$
- Wild-Bootstrap Method
- Note that centering is not necessary (why?)

- Data $X_k = (X_{1k}, X_{2k})'$ (fixed values)
- Randomly permute the data within each pair: $\mathbf{X}_{k}^{*}=(X_{1k}^{*},X_{2k}^{*})'$
- This method is equivalent to....

Resampling Using Original Data

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- **Permutation** randomly permute the 2n observations X_{ik}^* in **X**
- Example $\mathbf{X} = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- In R: sample(x)
- Ignoring the dependency

Resampling Using Original Data

- Data $X = (X_{11}, \dots, X_{2n})$ (fixed values)
- Nonparametric Bootstrap randomly draw with replacement 2n observations X_{ik}^* from X
- Example $X = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}^* = (2, 2, 4, 3, 2)$$

$$\mathbf{X}^* = (1, 1, 2, 3, 3)$$

$$\mathbf{X}^* = (2, 5, 5, 3, 3)$$

...

- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap II
- Ignoring the dependency

Permuting all variables despite dependencies

- Permuting (or drawing with replacement) all data is not intuitive
- Observations on same subject might be dependent
- Reason: The permutation distribution mimics the distribution of T
- Reference: Konietschke and Pauly (2015)

Illustration

```
x=brand
y=generic
plot(x,y,pch=19,cex=1.3)
n = 10
d=x-y
T=sqrt(n)*mean(d)/sd(d)
pvalue=2*min(pt(T,n-1),1-pt(T,n-1))
pvalue
Tstar=c()
xy=c(x,y)
for(i in 1:100000){
xstar=sample(xy) #permutation overall
dstar=xstar[1:n]-xstar[(n+1):(2*n)]
Tstar[i] = sqrt(n)*mean(dstar)/sd(dstar)
pstar= 2*min(mean(Tstar<=T),mean(Tstar>=T))
pstar
```


Data Generation

- Data generation
- Different methods are possible

$$\mathbf{X}_{k} = \mu + \mathbf{\Sigma}^{-1/2} \mathbf{Z}_{k} \; E(\mathbf{Z}_{k}) = \mathbf{0}, \; Var(\mathbf{Z}_{k}) = \mathbf{I} \; \text{or}$$
 $\mathbf{X}_{k} = (F_{1}^{-1}(\Phi(Z_{1k})), F_{2}^{-1}(\Phi(Z_{2k}))), \; \mathbf{Z}_{k} \sim N(\mu, \mathbf{\Sigma}) \; \text{(quantile method), or}$
 $X_{0k} \sim E(X_{0k}) = 0 \; \text{and} \; Var(X_{0k}) = 1$
 $X_{1k} \sim E(X_{1k}) = 0 \; \text{and} \; Var(X_{1k}) = 1$
 $X_{2k} = \rho X_{1k} + \sqrt{1 - \rho^{2}} X_{0k}$

- Elegant way: Copula (not covered in this class)
- Note: Most distributions cannot have a perfect correlation and most have bounded possible correlations within [-1, 1].
- Multivariate normal distribution in R: packages mvtnorm or multcomp
- $\Phi(x)$: CDF of N(0,1)

Project

• In a paired data setting, permuting data overall and thus ignoring the dependency is somewhat counter intuitive. Verify the validity of the method for the paired t-test in a simulation study at 5% level of significance. Use $n_{sim} = 10,000$ and $n_{perm} = 10,000$ permutation runs. Generate bivariate normal data with variance $\sigma_i^2 = 1$ and different covariances $\sigma \in \{-0.95, -0.5, 0, 0.5, 0.95\}$ and sample sizes $n \in 10,20$.