	age	sex	bmi	children	smoker	region	charges	1
0	19	female	27.900	0	yes	southwest	16884.92400	
1	18	male	33.770	1	no	southeast	1725.55230	
2	28	male	33.000	3	no	southeast	4449.46200	
3	33	male	22.705	0	no	northwest	21984.47061	
4	32	male	28.880	0	no	northwest	3866.85520	
1333	50	male	30.970	3	no	northwest	10600.54830	
1334	18	female	31.920	0	no	northeast	2205.98080	
1335	18	female	36.850	0	no	southeast	1629.83350	
1336	21	female	25.800	0	no	southwest	2007.94500	
1337	61	female	29.070	0	yes	northwest	29141.36030	

```
df.loc[df["sex"]=="female", "sex"] = 1
df.loc[df["sex"]=="male", "sex"] = 0
df.loc[df["smoker"]=="yes", "smoker"] = 1
df.loc[df["smoker"]=="no", "smoker"] = 0
df.loc[df["region"]=="southwest", "region"] = 0
df.loc[df["region"]=="southeast", "region"] = 1
df.loc[df["region"]=="northwest", "region"] = 2
df.loc[df["region"]=="northeast", "region"] = 3
df.head(5)
```

1338 rows × 7 columns

	age	sex	bmi	children	smoker	region	charges	1
0	19	1	27.900	0	1	0	16884.92400	
1	18	0	33.770	1	0	1	1725.55230	
2	28	0	33.000	3	0	1	4449.46200	
3	33	0	22.705	0	0	2	21984.47061	
4	32	0	28.880	0	0	2	3866.85520	

```
#Split the data
```

```
data = np.array(df.iloc[:,:-1])
target=np.array(df.iloc[:,-1])

cut = int((len(data) *.8) // 1)

in_data=data[:cut]
out_data=data[cut:]

in_target=target[:cut]
out_target=target[cut:]
```

#Normalize the data

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(in_data)
in_data_scale = scaler.transform(in_data)
out_data_scale = scaler.transform(out_data)
#Get lambda from lasso cross validation
from sklearn.linear_model import LassoCV
modCV = LassoCV().fit(in_data_scale,in_target)
a=modCV.alpha_
#run a regression with lambda
from sklearn.linear_model import Lasso
mod1 = Lasso(alpha = 1.0).fit(in_data_scale,in_target)
#Visualize
import matplotlib.pyplot as plt
df1 = pd.DataFrame(zip(df.columns[:-1], mod1.coef_))
plt.figure(figsize=(6,6))
plt.bar(df1[0],df1[1],color = 'lightblue')
plt.axhline(0,color='red')
plt.xlabel('Betas')
plt.ylabel('The Magnitude')
plt.title('Coefficients of Linear Regression')
```

Text(0.5, 1.0, 'Coefficients of Linear Regression')

#Compare MSE

#from here, MSE for out sampling is lower and MSE for in sampling is higher

✓ 0s completed at 1:12 AM

• ×