²The Chinese University of Hong Kong

¹National Taiwan University

Introduction

Audio-Visual Active Speaker Detection (AVASD)

Languages of the world 1-1-18-MMP

- Goal: Determine if visible person in the video is speaking.
- TalkNet [5]: One of SOTA models for AVASD, which is shown in Figure 1 (a).
- Applications: An indispensable front-end for several applications, such as user authentication.
- Challenges: The adversarial robustness of AVASD models hasn't been investigated.

Takeaways

- We first expose that AVASD models are highly susceptible to multi-modal adversarial attacks.
- We propose the audio-visual interaction loss (AVIL) to enlarge the inter-class difference and intra-class similarity, resulting in more robust AVASD models.
- The AVIL outperforms the adversarial training by 33.14% mAP (%) under multi-modal attacks.

Multi-Modal Adversarial Attacks

Figure 1. The multi-modal adversarial attack framework.

Multi-Modal Adversarial Attacks Objective Function

- Goal: Generate some imperceptible perturbation to fool model into making wrong predictions.
- Perturbation: maximize cross entropy loss $\mathcal{L}_{CE_{all}}$ difference between y and \tilde{y} via function: $\arg\max_{\delta} \mathcal{L}_{CE_{all}}(\tilde{x}_a, \tilde{x}_v, y), s.t. ||\delta_a||_p \le \epsilon_a, ||\delta_v||_p \le \epsilon_v,$

Notations

- $\mathcal{L}_{CE_{all}}$ contains \mathcal{L}_{CE_a} , \mathcal{L}_{CE_v} , $\mathcal{L}_{CE_{av}}$, which corresponding to different prediction classifiers.
- x_a and x_v are the audio and visual samples, y is ground-truth for the input $\{x_a, x_v\}$.
- δ_a and δ_v are the adversarial perturbations for x_a and x_v ; $||\cdot||_p$ is the p-norm.
- ϵ_{av} , ϵ_a , ϵ_v are attack budget: $\epsilon_a = \epsilon_{av} \times 10^{-4}$ and $\epsilon_v = \epsilon_{av} \times 10^{-1}$.
- \tilde{y} is the prediction for the adversarial samples $\{\tilde{x}_a, \tilde{x}_v\}$.

Attacks Defense by Audio-Visual Interaction Loss (AVIL)

(a) Intra-modality inter-class dispersion

(b) Intra-modality intra-class dissimilarity

- (c) Inter-modality intra-class dissimilarity
- (d) Inter-modality intra-class distance
- Visual Speech Wisual Non-speech ○ × ○ × Centers of Different Embedding → Maximize > < Minimize

Figure 2. The Audio-Visual Interaction Loss.

Training Objective Function

• Summing cross entropy loss $\mathcal{L}_{CE_{all}}$ (i.e., \mathcal{L}_{CE_a} , \mathcal{L}_{CE_v} , $\mathcal{L}_{CE_{av}}$) and AVILs during training

Rationale of AVILs

- \bullet Minimizing \mathcal{L}_1 will equip the model with better discrimination capacity between speech and non-speech embeddings, resulting in higher inter-class differences.
- Maximizing \mathcal{L}_2 , \mathcal{L}_3 and minimizing \mathcal{L}_4 will force the model to render compact intra-class features.
- Incorporating \mathcal{L}_1 - \mathcal{L}_4 in the training process, we can simultaneously urge the model to learn both discriminative inter-class features, and compact intra-class features, leading the model less susceptible to adversarial attacks.

Experimental Setup

- Dataset: AVA-ActiveSpeaker [4]; Evaluation Metric: Mean average precision (mAP (%)).
- Black-box attacker: specTalkNet, ncTalkNet; White-box attacker: TalkNet.

Experiment

(a) Black-box attacker V.S. White-box attacker

(b) Single-modal attack V.S. Multi-modal attack

Figure 3. Adversarial attack performance of AVASD models under PGD [3] method.

	Model	Adversarial training [2]	Clean mAP (%)	MIM [1] mAP (%)	PGD [3] mAP (%)
(A)	$\mathcal{L}_{CE_{all}}$	×	92.58	49.30	47.79
(B1)	$\mathcal{L}_{CE_{all}}$	MIM	91.34	52.18	54.23
(B2)	$\mathcal{L}_{CE_{all}}$	PGD	91.68	58.3	56.06
(D1)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_2$	X	92.46	67.89	64.11
(D2)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_3$	×	92.20	47.92	49.27
(D3)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	X	91.81	93.34	93.15
(D4)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_2 + \mathcal{L}_3$	×	92.27	63.36	61.54
(D5)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_2 + \mathcal{L}_4$	×	91.93	66.28	67.75
(D6)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_3 + \mathcal{L}_4$	×	91.70	92.48	91.01
(E1)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	MIM	91.70	99.98	99.97
(E2)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	PGD	91.88	97.47	98.67

Table 1. AVASD mAP(%) of different models under MIM and PGD attack algorithms. We get the data with correct prediction for model (A)-(E2) and do intersection to get the testing data.

Attacker Perspective

- Figure 3 (a): TalkNet is vulnerable to white-box attacks but robust to black-box attacks.
- Figure 3 (b): TalkNet is vulnerable to multi-modal and visual attacks but robust to audio attacks.

Defense Perspective

• Table 1: Combining AVIL with adversarial training can leverage their complementary to reach the best adversarial robustness.

References

- [1] Yinpeng Dong et al. Boosting adversarial attacks with momentum. arxiv preprint. arXiv preprint arXiv: 1710.06081, 2017.
- [2] Ian J Goodfellow et al. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.
- [3] Aleksander Madry et al. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.
- [4] Joseph Roth et al. Ava active speaker: An audio-visual dataset for active speaker detection. In ICASSP.
- [5] Ruijie Tao et al. Is someone speaking? exploring long-term temporal features for audio-visual active speaker detection. In Proceedings of the 29th ACM International Conference on Multimedia, pages 3927–3935, 2021.