Computer Organization Review

Chapter 1

2 1. Components of a computer

(1) 2. Moore's Law

The number of transistors that can be integrated would double every 18 to 24 months.

(3) 3. CPU clocking

Operation of digital hardware governed by a constant rate clock.

 $CPU\ Time = No.\ of\ Clock\ Cycles\ imes\ Clock\ Period$

CPU Time = No. of Clock Cycles /Clock Rate

(3) 4. Instruction Count and CPI

Instruction count for a program is determined by program, ISA and compiler.

Average cycles per instruction is determined by CPU hardware.

 $Clock\ Cycles = Instruction\ Count\ imes Cycles\ per\ Instruction$

$$CPU\ Time = \frac{Instruction\ Count\ \times CPI}{Clock\ Rate}$$

If different instruction classes take different numbers of cycles:

$$Clock\ Cycles = \sum_{i=1}^{n} (CPI_i \times Instruction\ Count_i)$$

Weighted average CPI:

$$CPI = \frac{Clock \ Cycles}{Instruction \ Count} = \sum_{i=1}^{n} (CPI_i \times \frac{Instruction \ Count_i}{Instruction \ Count})$$

Performance Summary:

$$CPU \ time = \frac{Instructions}{Program} \times \frac{Clock \ Cycles}{Instruction} \times \frac{Seconds}{Clock \ Cycle}$$

Performance depends on: Algorithm, Programming language, Complier and Instruction set architecture.

Speedup of complier A versus Complier B:

$$Speed Up = \frac{Clock \ Rate_A}{Clock \ Rate_B}$$

5. Dynamic Power

static in dynamic 是独立的两种功率

$$Power = \frac{1}{2} \times Capacitive\ load \times Voltage^2 \times Frequency$$

6. Multiprocessors

More than one processor per chip; Requires parallel programming;

(1) 7. Amdahl's Law

Performance improvements through an enhancement is limited by the fraction of time the enhancement comes into play.

当提升系统的一部分性能时,对整个系统性能的影响取决于:1、这一部分有

多重要 2、这一部分性能提升了多少。

题型:

- 1. 概念题
- 2. 计算题

Chapter 2

- 1. MIPS design principle
 - a. Simplicity favors regularity
 - b. Smaller is faster
 - c. Make the common case fast
 - d. Good design demands good compromises

2. Register

32 register;

Each register is 32-bit wide (or 64-bit wide registers in modern 64-bit architecture); 32-bit entity (4 bytes) \rightarrow a word

(2) 3. Memory operands

 Values must be fetched from memory before (add and sub) instructions can operate on them

a constant that is added to the register in brackets

4. Numeric Representations

• Decimal 35₁₀

- 10

• Binary 00100011₂

• Hexadecimal (compact representation) $0x\ 23 \quad \text{or} \quad 23_{\text{hex}}$

0-15 (decimal) → 0-9, a-f (hex)

无符号数

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

Range: 0 to +2n-1

有符号数 负数: 取反+1

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

Range: -2^{n-1} to $+2^{n-1} - 1$

Sign Extension:

正数前补0 负数前补1 Complement and add 1

• Complement means $1 \rightarrow 0$, $0 \rightarrow 1$

$$x + \overline{x} = 1111...111_2 = -1$$

Overflow is usually when the sign of the result doesn't make sense compared to the operands.

5. Instruction Formats

opcode

The field that denotes the operation and format of an instruction.

rs

The first register source operand.

rt

The second register source operand.

rd

The register destination operand. It gets the result of the operation.

shamt

Shif amount.

funct

Function. This feld, ofen called the function code, selects the specifc variant of the operation in the op field.

Instruction Type: R\I\J

6. Control Instructions

Instruction	Effect			
beq Rs, Rt, label	if (Rs == Rt) PC ← label			
bne Rs, Rt, label	if (Rs != Rt) PC ← label			
bltz Rs, label	if (Rs < 0) PC ← label			
blez Rs, label	if (Rs <= 0) PC ← label			
bgtz Rs, label	if (Rs > 0) PC ← label			
bgez Rs, label	if (Rs >= 0) PC \leftarrow label			
j jlabel	PC ← jlabel			
jr Rs	PC ← Rs			
jal jlabel	\$ra ← PC+4, PC ← jlabel			
jalr Rs	\$ra ← PC+4, PC ← Rs			

7. Stack

8. Memory Layout

9. Procedure call

Leaf procedure

Non-leaf procedure

Caller saved: Temp registers \$t0-\$t9, \$ra, \$a0-\$a3

Callee saved: \$s0-\$s7

For nested call, caller needs to save on the stack:

- (1) Its return address;
- (2) Any arguments and temporaries needed after the call.

Restore from the stack after the call.

10. MIPS addressing mode

Immediate addressing	Example: addi \$s0, \$s1, 2	ор	rs	rt	immediate
illillediate addressing	Example, addi 450, 451, 2	6 bits	5 bits	5 bits	16 bits
Register addressing	Example: add \$s0, \$s1, \$s2	ор	rs rt	rd	shampt funct
register addressing	Example. add \$50, \$51, \$52		bits 5 bits	5 bits	5 bits 6 bits
Base/Displacement	Example: lw \$s0, 0(s1)	ор	rs	rt	immediate
addressing		6 bits	5 bits	5 bits	16 bits
Branch addressing	Example: bne \$s0, \$s1, EXIT	ор	rs		constant or address
(PC-relative addressing)	Example. Bite 430, 431, Extr	6 bits	5 bits	bits	16 bits
Jump addressing	Example: jal FACT	ор			Iress
(Pseudo-direct addressing)	Entarriprot jui 17101	6 bits		26	bits

$\{i\}$

11. Assembler and Linker

Role of assembler:

- (1) Convert pseudo-instruction into actual hardware instructions
- (2) Convert assembly instructions into machine instructions

Role of linker:

- (1) Place code and data modules symbolically in memory.
- (2) Determine the addresses of data and instruction labels.
- (3) Patch both the internal and external references.

题型:

- 1. MIPS 与 C 的相互转化
- 2. MIPS 与机器码的相互转化
- 3. 执行一段 MIPS 以后寄存器的值是多少? (结合条件、循环、程序调用)
- 4. 一段 MIPS 代码被执行后运行了多少条指令? (通常结合循环与程序调用)
- 5. 数组的寻址(栈、1w\sw的用法、地址与数值的区别)
- 6. 有符号数、无符号数的操作,是否 overflow 的判断

Chapter 3

7. Addition and Subtraction

Subtraction: Add negation of second operand

Example: 7 - 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111 -6: 1111 1111 ... 1111 1010 +1: 0000 0000 ... 0000 0001

Overflow if result out of range:

- 1. Addition
- (1) Adding +ve and -ve operands, no overflow
- (2) Adding two +ve operands: Overflow if result sign is 1
- (3) Adding two -ve operands: Overflow if result sign is 0
- 2. Subtraction
- (4) Subtracting two +ve or two -ve operands, no overflow
- (5) Subtracting +ve from -ve operand: Overflow if result sign is 0
- (6) Subtracting -ve from +ve operand: Overflow if result sign is 1

Dealing with overflow:

- Add (add), add immediate (addi), and subtract (Sub) cause exceptions on overflow.
- Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned (Subu) do not cause exceptions on overflow.

Note: addiu: "u" means it doesn't generate overflow exception, but the immediate can be a signed number

(2)

8. Saturation arithmetic

Saturation arithmetic is a version of arithmetic in which all operations such as addition and multiplication are limited to a fixed range between a minimum and maximum value.

For example, if the valid range of values is from 0 to 100, the following operations produce the following values:

$$60 + 30 = 90$$

$$60 + 43 = 100$$

$$(60 + 43) - (75 + 75) = 0$$

$$10 \times 11 = 100$$

$$99 \times 99 = 100$$

$$30 \times (5 - 1) = 100$$

9. Multiplication

In every step:

- ✓ multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

Iteration number = n

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

10. Division

Iteration number = n+1

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	1111 0111
2	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

11. Represent Floating Point

$\pm 1.xxxxxxx_2 \times 2^{yyyy}$

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S | Exponent (yyyy+Bias)

Fraction (xxxx)

$$x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

Normalize significant: 1.0 ≤ |significant| < 2.0

Single precision (32-bit)

Double precision (64-bit)

Single: Bias = 127; Double: Bias = 1023

Example:

$$-0.875$$

$$0.875 \times 2 = 1.75$$
 1

$$0.75 \times 2 = 1.5$$
 1

$$0.5 \times 2 = 1$$

$$-0.111 \times 2^0 = -1.11 \times 2^{-1}$$

$$-0.875 = (-1)^1 \times 1.11_2 \times 2^{-1}$$

S=1

Fraction = $1100 ... 00_2$

Exponent = -1 + Bias

• Single: $-1 + 127 = 126 = 011111110_2$

■ Double: -1 + 1023 = 1022 = 011111111110₂

Single: 1011111101100...00

Double: 10111111111101100...00

12. Floating Point Range

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 127 = -126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

13. Floating Point Precision

- Relative precision
 - all fraction bits are significant
 - $\Delta A/|A|=2^{-23}\times 2^{\text{exponent}}/|1\times 2^{\text{exponent}}|=2^{-23}$
 - ◆ Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - ◆ Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

14. Rounding

Guard bit: 1st bit, Round bit: 2nd bit, Sticky bit: OR of remaining bits

Round condition

IEEE 754 has four rounding modes: always round up (toward $+\infty$), always round down (toward $-\infty$), truncate, and round to nearest even.

The final mode determines what to do if the number is exactly halfway in between.

e.g.

Directed roundings [edit]

- Round toward 0 directed rounding towards zero (also known as truncation).
- Round toward +∞ directed rounding towards positive infinity (also known as rounding up or ceiling).
- Round toward -∞ directed rounding towards negative infinity (also known as *rounding down* or *floor*).

Example of rounding to integers using the IEEE 754 rules

Mode	Example value					
iviode	+11.5	+12.5	-11.5	-12.5		
to nearest, ties to even	+12.0	+12.0	-12.0	-12.0		
to nearest, ties away from zero	+12.0	+13.0	-12.0	-13.0		
toward 0	+11.0	+12.0	-11.0	-12.0		
toward +∞	+12.0	+13.0	-11.0	-12.0		
toward -∞	+11.0	+12.0	-12.0	-13.0		

题型:

- 1. 加减法 overflow 判断
- 2. 乘法器计算步骤(2种)
- 3. 除法器计算步骤(2种)
- 4. 浮点数表示法、范围、精度与加减运算