PAPER C395

INTRODUCTION TO MACHINE LEARNING

Tuesday 17 March 2020, 10:00 Duration: 90 minutes Post-processing time: 30 minutes Answer TWO questions

- 1a You are given three different problems below. For each problem, classify it as either *supervised learning*, *unsupervised learning*, or *reinforcement learning*. Also justify (**in one sentence**) why you classified each problem as such.
 - i) A book distributor has a collection of books, which it has classified into different categories, e.g. "Young adults", "Science fiction", "Biography", and "Horror". It wants to use this information to build a system to classify its new products automatically.
 - ii) A supermarket has a database of its customers, and wants to automatically discover and group its customers into different market segments to target them separately.
 - iii) A group of aviation companies wants to develop a machine learning algorithm which can predict the (x, y) coordinates pinpointing the location of a plane that has crashed. To develop this, the companies have collected historical plane crash data, which include the coordinates of the planes' crash sites.
 - b You are given the dataset below. Each row is a sample email annotated as spam (or not), given whether or not a word appears in the email (0 indicates that the word does not appear in the email, 1 indicates that it does).

#	cash	win	debt	home	Spam?
1	0	1	0	0	no
2	1	1	1	0	yes
3	1	0	0	0	no
4	0	0	1	0	no
5	1	1	0	1	yes
6	1	1	1	1	yes
7	0	1	1	0	yes
8	1	0	1	1	no
9	0	0	0	0	no
10	1	1	0	0	yes

- Using the *Information Gain* metric, which attribute will be selected as the *root* node of a decision tree classifier? Please show all calculations (including the Information Gain of all candidate nodes) to justify your answer.
- ii) Give one reason why one would need to prune a decision tree. Also describe (in one or two sentences) how a validation set can be useful in performing pruning.

c Consider the training dataset below for a single-variable *regression* problem.

i	$x^{(i)}$	$y^{(i)}$	$d(x^{(q)}, x^{(i)})$	$w_q^{(i)}$
1	1.5	3.16	???	???
2	2.3	1.45	???	???
3	3.0	1.07	???	???
4	3.8	2.01	???	???
5	4.9	4.51	???	???

- i) At test time, you are given a query $x^{(q)}=4.2$. Given $d(x^{(q)},x^{(i)})=|x^{(q)}-x^{(i)}|$ and $w_q^{(i)}=\frac{1}{d(x^{(q)},x^{(i)})}$, where |x| indicates the absolute value of x, please complete the table above.
- ii) Predict the output $y^{(q)}$ for $x^{(q)} = 4.2$ using the k-nearest neighbours regression algorithm with $d(x^{(q)}, x^{(i)})$ as its distance measure, and assuming k = 3. Show your calculation.
- iii) Now predict the output $y^{(q)}$ for $x^{(q)}=4.2$ using the *locally weighted k*-nearest neighbours regression algorithm. Use k=3, the distance measure $d(x^{(q)},x^{(i)})$, and the weights $w_q^{(i)}$. Show your calculation.

The three parts carry, respectively, 30%, 40%, and 30% of the marks.

- 2a Consider a fully-connected feedforward neural network for regression with 1 hidden layer and a single output neuron. Both the hidden and the output layers use sigmoid activation. Mean squared error is used as the loss function for optimisation.
 - Write out the necessary calculations for updating both the connection weights and bias weights in the last layer using gradient descent. You are given the matrix of input features X with N datapoints, output values \hat{Y} from the network, the desired targets (labels) Y, and the current network weights.
 - b Explain the concept of overfitting. Name 3 methods you can use to deal with overfitting and explain how each of them helps.
 - c A bank has developed a machine learning model for automatically identifying fraudulent card transactions, which will then be manually reviewed. You run some examples through the model and get the following results:

Example nr	True label	Predicted label
1	fraud	real
2	real	real
3	real	fraud
4	real	real
5	fraud	real
6	real	real
7	real	real
8	fraud	fraud
9	real	real
10	real	real
11	real	real
12	fraud	real
13	fraud	fraud
14	real	real

- i) Construct the confusion matrix for this output.
- ii) Calculate the classification accuracy, along with precision, recall and F1 for both classes.
- iii) Analyse the results. Are there any issues? If so, which metrics identify them?

The three parts carry, respectively, 40%, 30%, and 30% of the marks.

- Suppose at an update step, the K-means algorithm computes 3 cluster centroids: $\mu_1 = \langle -3, -1 \rangle$, $\mu_2 = \langle 1, 2 \rangle$, and $\mu_3 = \langle -4, 1 \rangle$. It then executes a cluster assignment step. Assume that the algorithm uses a Euclidean distance measure. To which cluster will the training example $x^{(i)} = \langle -2, 0 \rangle$ be assigned after the cluster assignment step? Justify your answer by showing your calculations.
- b Consider below the parameters $\theta = \{\pi_k, \mu_k, \sigma_k^2 : k = 1, 2, 3\}$ of a univariate Gaussian Mixture Model with 3 components that has been fitted to a set of training examples, where π_k is the mixing proportion of component k, μ_k the mean of component k, and σ_k^2 the variance for component k:

\overline{k}	π_k	μ_k	σ_k^2
1			<u>κ</u> 1
	0.5	-2 1	1
2	0.3	1	4
3	0.2	4	0.25

Suppose you are given an example $x^{(i)} = 0$ at test time. Compute the probability density for $p(x^{(i)}|\theta)$ given the parameters of the Gaussian Mixture Model above. Show your calculations.

Hint: the Gaussian distribution is defined as: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- c When developing a neural network, which activation function and loss function would you use in the output layer for the following applications? Justify your decisions.
 - i) Predicting the temperature for tomorrow, based on the weather today.
 - ii) Generating text by predicting the next word in the sequence based on the previous words.
 - iii) Detecting whether the camera image from a self-driving car contains a stop sign.
- d Hyperparameters are something that we need to deal with when designing machine learning models.
 - i) Explain what hyperparameters are and give 2 examples.
 - ii) Given a dataset of 10,000 datapoints, how would you use it to find good hyperparameters?

The four parts carry, respectively, 20%, 30%, 30%, and 20% of the marks.