Analisis de Algoritmos

Introduccion

Un algoritmo es un meotodo o conjunto de instruccione para resolver un problema computacional.

- Reciben INPUTS y entregan OUTPUTS
- Luego, el algoritmo es un metodo para convertir un INPUT valido en un OUTPUT.
- En este curso nos exigen:
 - Precicion: instrucciones no ambiguas.
 - Determinismo: instrucciones con comportamientos unicos.
 - Finitud: instrucciones finitas
- Estudiaremso cuando y porque los algoritmos son correctos y ademas la cantidad de recursos computacionales usados
- Entenderemos los algoritmos y como mejorarlos.
- Usaremos Pseudo-Codigo (IF, While, return, notación de conjuntos y otras)

Correccion de algoritmos

Definición 0.1. Un algoritmo es **correcto** si para todo INPUT valido, el algoritmos se detiene y produce un OUTPUT correcto.

Un algoritmo es **incorrecto** si no se detiene o produce un OUTPUT incorrecto.

Algoritmos Iterativos

- Se deben demostrar dos cosas:
 - 1. Correccion Parcial: si el algoritmos se detiene, se cumplen las post condiciones.
 - 2. Terminacion: El algoritmos se detiene.
- El enfoque principal es en los loops.
- lacktriangle Para demostrar correccion parcial, buscamos una invariante I(k) para los loops: encontrándolo demostramos la corrección del loop inductivamente:
 - Sea G condicion de el loop (While(G):),
 - **BI**: I(0) es verdadero
 - HI: $\forall k > 0, k \in \mathbb{N}$, si G y I(k) son verdaderos antes de la iteración, I(k+1) es verdadero despues de la iteración
 - Correcion Inmediatamente despues de terminado el loop (i.e. cuando G es falso), si k = N e I(N) es verdadero, entonces la postcondiciones se cumplen.

• Terminacion Debemos demostrar que $\exists k>0, k\in\mathbb{N}$ para el cual G es falso.

Ejemplo:

Multiplicar dos numeros naturales:

- Pre: $n, m \in \mathbb{N}$
- Post: p = n * m

Por demostrar que el algoritmos es correcto:

```
def Mult(n,m):
    p=0
    i=m
    while (i >0):
        p +=n
        i-=1
    return p
```

La invariante I(k) en la k iteración en este caso es:

$$I: p_k = n_k * (m_k - i_k)$$

En la m iteracion, i = 0:

$$p_m = n_m * m_m$$

Demostración. Demostracion por induccion:

BI: Tenemos por pre condicion que $n, m \in \mathbb{N}$. En la iteracion 0,

$$p = 0$$

$$n_0 = n$$

$$m_0 = m$$

$$i_0 = m$$

Por lo tanto I(0),

$$p_0 = n_0 * (m_0 - i_0)$$

$$0 = n * (m - m)$$
(1)

Lo que claramente se cumple.

HI: Suponemos que I(k) es cierto para iteración k.

TI: Por demostrar I(k+1) es cierto,

$$p_{k+1} = n_{k+1} * (m_{k+1} - i_{k+1}) \tag{2}$$

Donde estoy en la iteración k + 1? Tenemos por **HI**:

$$p_k = n_k (m_k - i_k)$$

Sumando n en cada lado y como n, m son constantes en todas las iteraciones,

$$p_k + n = n * (m - i_k) + n = n * (m - (i_k - 1))$$

Pero,

$$p_{k+1} = p_k + n$$
$$i_{k+1} = i_k - 1$$
$$m_{k+1} = m$$

$$n_{k+1} = n$$

Reemplazando llegamos a (2) que era lo que queriamos demostar:

$$p_{k+1} = n_{k+1} * (m_{k+1} - i_{k+1}) \tag{3}$$

Terminacion: El loop tiene terminacion porque i se hace 0 en alguna iteracion y el valor de G es falso. (While(G) = While(i > 0))

Algoritmos Recursivos

A diferencia de los algoritmos iterativos, solo es necesario demostrar la correccion deseada.

Ejemplo:

Encontrar el maximo elemento de un arreglo

- Pre: un arreglo $A = [a_1, a_2, ..., a_n]$, y un natural n (largo de el arreglo). $n \in \mathbb{N} \{0\}$
- Post: m = max(A)

```
\begin{array}{lll} & \text{def } \max(A,n): \\ & \text{if } n\!=\!1: \\ & \text{return } A[-1] \\ & \text{else}: \\ & \text{k}\!=\!\!\max(A[:-1],n\!-\!1) \\ & \text{if } A[-1] >\! k: \\ & \text{return } A[-1] \\ & \text{else}: \\ & \text{return } k \end{array}
```

Demostración. Por demostrar que el algoritmo es correcto.

BI: El arreglo de largo 1, tiene un unico elemento que trivialmente es el maximo y el algoritmo retorna este unico elemento y por lo tanto es correcto.

 ${\bf HI:}$ Supondremos que el algoritmo es correcto para un arreglo A de largo n

TI: Por demostrar que dado un arreglo de largo n+1 el algoritmo retorna el maximo (es correcto).

La primera condicion claramente no se cumple, por lo que debemos enfocarnos desde la linea 4 en adelante. En la linea 5, dado que tenemos un arreglo de largo n+1 entonces:

```
k=\max(A[:-1],n)
```

Por lo que sabemos que k es el máximo de el arreglo de largo n por **HI**. Ahora tenemos dos casos:

■ <u>Caso 1</u>: Se cumple el primer if,

$$A[-1] > k$$

Implica que el ultimo elemento de el arreglo de largo n+1 es mayor a el máximo de el arreglo de largo n. Entonces efectivamente este es el nuevo maximo.

• Caso 2: Si la condicion no se cumple, es claro que el maximo de el arreglo de largo n+1 sigue siendo k. Por lo que es correcto retornar este mismo valor.

Complejidad de Algoritmos

- Comparar tiempo de ejecucion de algoritmos
- Comportamiento conforme crece al tamaño del input
- Independiente del lenguaje, hardware, etc ...

Definición 0.2.

$$f: \mathbb{N} \to \mathbb{R}^+$$
$$O(f) = \{g: \mathbb{N} \to \mathbb{R}^+ | (\exists c \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) (g(n) \le c * f(n)) \}$$

Desde n_0 , la funcion g(n) es por debajo de la funcion f(n) * c.

Se dice que $g(n) \in O(f)$; g(n) es O de f; g(n) es a lo misma de orden que f(n).

Definición 0.3.

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}^+ | (\exists c \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) (g(n) \ge c * f(n)) \}$$

Una funcion g(n) esta acotada por abajo por f(n) * c. Se dice que $g(n) \in \Omega(f)$.

Definición 0.4.

$$\Theta(f) = O(f) \cap \Omega(f)$$

 $g \in \Theta$ es exactamente de orden f

Ejemplo:

Demuestre que $g \in \Theta(f)$ si y solo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que,

$$\forall n \ge n_0 . [c * f(n) \le g(n) \le d * f(n)]$$

Demostración. Sabemos que $g(n) \in \Theta(f)$,

$$g(n) \in \Theta(f) \to g(n) \in \Omega(f) \land g(n) \in O(f)$$

Por definicion de los conjuntos, tenemoes que:

Para O(f):

$$(\exists c \in \mathbb{R}^+)(\exists n_1 \in \mathbb{N})(\forall n \ge n_1)[g(n) \le c * f(n)]$$

Para $\Omega(f)$:

$$(\exists d \in \mathbb{R}^+)(\exists n_2 \in \mathbb{N})(\forall n \ge n_2)[d * f(n) \le g(n)]$$

Si tomamos un $n_0 = Max\{n_1, n_2\}$, entonces se debe cumplir que:

$$\forall n \ge n_0. \left[c * f(n) \le g(n) \le d * f(n) \right]$$

Nota: Esto se puede afirmar ya que el maximo entre n_1 y n_2 seria el primer $n \in \mathbb{N}$ que cumple estar acotado por los dos conjuntos. Antes de n_0 , puede pasar cualquier cosa con g(n) por lo que queremos tomar en cuenta solo a partir de n_0 .

Ejemplo:

 $\overline{60n^2 \in \Theta}(n^2)$

$$60n^2 \in \Theta(n^2) \leftrightarrow 60n^2 \in O(n^2) \land 60n^2 \in \Omega(n^2)$$

$$n_0 = 0, c = 60 \to \forall n \ge 0. [60n^2 \le 60n^2] \to 60n^2 \in O(n^2)$$

 $n_0 = 0, c = 1 \to \forall n \ge 0. [60n^2 \ge n^2] \to 60n^2 \in \Omega(n^2)$

Por lo tanto,

$$60n^2 \in \Theta(n^2)$$

Nota: Esto implica que las constantes no influyen en la complejidad de una funcion **Ejemplo**:

$$60n^2 + 5n + 1 \in \Theta(n^2)$$

 $n_0 = 1, c = 66 \rightarrow \forall n \ge 1. [60n^2 + 5n + 1 \le 60n^2 + 5n + n^2 \le 66n^2]$

Por lo tanto,

$$60n^{2} + 5n + 1 \in O(n^{2})$$

$$n_{0} = 0, c = 60 \rightarrow \forall n \ge 0. \lceil 60n^{2} + 5n1 \ge 60n^{2} \rceil$$

Por lo tanto,

$$60n^2 + 5n + 1 \in \Omega(n^2)$$

Podemos concluir que:

$$60n^2 + 5n + 1 \in \Theta(n^2)$$

Nota: Esto implica que el mayor exponente de un polinomio es el que determina la complejidad **Ejemplo**:

$$log_2(n) \in \Theta(log_3(n))$$

$$x = log_2(n) \to 2^x = n$$

$$y = log_3(n) \to 3^y = n$$

$$3^y = 2^x$$

Aplicando log_2

$$x = log_2(3^y)$$
$$x = y * log_2(3)$$

Reemplazando $x \in y$ originales,

$$log_2(n) = log_2(3) * log_3(n)$$

Entonces,

$$c = log_2(3), n_0 = 1 \to \forall n \ge 1. [log_2(n) \le log_2(3) * log_3(n)] \to log_2(n) \in O(log_3(n))$$
$$c = log_2(3), n_0 = 1 \to \forall n \ge 1. [log_2(n) \ge log_2(3) * log_3(n)] \to log_2(n) \in \Omega(log_3(n))$$

Por lo tanto,

$$log_2(n) \in \Theta(n)$$

Nota: Esto significa que nos podemos independizar de las bases.

Teorema 0.1. Si $f: \mathbb{N} \to \mathbb{R}^+$ es tal que,

$$f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \dots + a_2 \cdot n^2 + a_1 \cdot n + a_0, \ (a_i \in \mathbb{R}^+) \land (a_k > 0)$$

Entonces,

$$f(n) \in \Theta(n^k)$$

Demostración. Por demostrar que $f(n) \in \Theta(n^k)$,

Primero que $f(n) \in O(n^k)$,

$$\exists c \in \mathbb{R}^+ . \forall n \ge n_0 . [f(n) \le c \cdot n^k]$$

Si tomamos $c = \sum_{i=0}^{k} a_i$ y $n_0 = 1$,

$$f(n) \le c \cdot n^k$$

$$a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \dots + a_2 \cdot n^2 + a_1 \cdot n + a_0 \le \sum_{i=0}^k a_i \cdot n^k$$

$$\sum_{i=0}^{k} a_i \cdot n^i \le \sum_{i=0}^{k} a_i \cdot n^k$$

Expandiendo la sumatoria,

$$a_i \cdot n^i \le a_i \cdot n^k, \ \forall i \in \{0, 1, ..., k\}$$

Lo que efectivamente es verdadero ya que,

$$a_0 \le a_0 \cdot n^k$$

$$a_1 \cdot n < a_1 \cdot n^k$$

.

$$a_{k-1} \cdot n^{k-1} \le a_{k-1} \cdot n^k$$

$$a_k \cdot n^k \le a_k \cdot n^k$$

Ahora que $f(n) \in \Omega(n^k)$,

$$\exists c \in \mathbb{R}^+. \forall n \ge n_0. [f(n) \ge c \cdot n^k]$$

Si elegimos $c = a_k$ y $n_0 = 0$,

$$f(n) > c \cdot n^k$$

$$a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \dots + a_2 \cdot n^2 + a_1 \cdot n + a_0 \ge a_k \cdot n^k$$

Claramente la desigualdad se cumple porque dada la definición de f(n) $(f:\mathbb{N}\to\mathbb{R}^+)$,

$$a_{k-1} \cdot n^{k-1} + \dots + a_2 \cdot n^2 + a_1 \cdot n + a_0 \ge 0$$

Entonces,

$$f(n) \in \Theta(n^k)$$

Teorema 0.2. $Si \ f : \mathbb{N} \to \mathbb{R}^+ \ es \ tal \ que,$

$$f(n) = log_a(n), a > 1$$

Entonces,

$$\forall b > 1. [f(n) \in \Theta(log_b(n))]$$

Demostraci'on.

$$x = log_a(n) \to a^x = n$$
$$y = log_b(n) \to b^y = n$$
$$b^y = a^x$$

Aplicando $log_2()$

$$x = log_a(b^y)$$
$$x = y * log_a(b)$$

Reemplazando los valores originales de x e y,

$$log_a(n) = log_a(b) * log_b(n)$$

Entonces,

$$\forall n \ge 1. \lceil log_a(n) \le log_a(b) * log_b(n) \rceil \rightarrow log_a(n) \in O(log_b(n))$$

De la misma manera,

$$\forall n \geq 1. \lceil log_a(n) \geq log_a(b) * log_b(n) \rceil \rightarrow log_a(n) \in \Omega(log_b(n))$$

Entonces podemos conlcuir,

$$log_a(n) \in \Theta(log_b(n))$$

Tabla de notaciones (en orden)

Notación	Nombre
$\Theta(1)$	Constante
$\Theta(\log n)$	Logarítmico
$\Theta(n)$	Lineal
$\Theta(n \log n)$	$n \log n$
$\Theta(n^2)$	Cuadrático
$\Theta(n^3)$	Cúbico
$\Theta(n^k)$	Polinomial
$\Theta(m^n)$	Exponencial
$\Theta(n!)$	Factorial

$$\text{con } k \geq 0, m \geq 2.$$

Nota: Hasta el orden polinomial, se dicen que son eficientes

Definición 0.5. Funcion T(n):

- \blacksquare Queremos encontrar una función T(n) que modele el tiempo de ejecuccion de un algoritmo.
- ullet Donde n es el tamaño del input. Queremos determinar el orden de T(n).
- lacktriangle Si no podemos encontrar el Θ estamos satisfechos con el O porque nos acota por arriba.

Ejemplo:

```
1     n=int(input())
2     x=0
3     for i in range(1,n):
4         for j in range(1,i):
5         x +=1
```

Fijarse en el paso 4.

$$n=1\rightarrow 1$$

$$n=2\rightarrow 1+2$$

$$\vdots$$

$$\vdots$$

$$\rightarrow 1+2+\ldots+n=\frac{n(n+1)}{2}$$

Entonces,

$$T(n) = \frac{1}{2}n^2 + \frac{1}{2} = \Theta(n^2)$$

Como en los ejemplos pasados, el orden mayor es el que acota la funcion.

Ejemplo:

Input n

```
j=n
x=0
while j >= 1:
for i in range(1,j):
x = x + 1
j = \left| \frac{j}{2} \right|
```

Suponiendo que el loop se ejecuta k veces, $k \ge 1$

$$n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2^{k-1}} = n \cdot \sum_{i=0}^{k-1} \left(\frac{1}{2}\right)^i = n \frac{1 - \frac{1}{2}^k}{1 - \frac{1}{2}} = 2n(1 - \frac{1}{2}^k)$$

Lo ultimo es ≥ 0 , y

$$\in \Theta(n)$$

Deducción serie geométrica:

Sea S el valor de la suma,

$$S=n+\frac{n}{2}+\frac{n}{2^2}\cdot n+\ldots++\frac{n}{2^{k-1}}$$

Multiplicando por $\frac{1}{2}$,

$$\frac{S}{2} = \frac{n}{2} + \frac{n}{2^2} \cdot n + \ldots + \frac{n}{2^k}$$

Entonces,

$$S - \frac{S}{2} = n - \frac{n}{2^k}$$

Ordenando,

$$S = n \frac{1 - \frac{1}{2^k}}{1 - \frac{1}{2}}$$

Ejemplo Busqueda:

```
A: Arreglo [a_0, ..., a_{n-1}]

n: Natural \geq 1

k: Entero

\frac{\text{def Busqueda}(A, n, k):}{\text{for i in range}(0, n-1):}
\text{if } A[i] = k:
\text{return i}
\text{return } -1
```

- En este ejemplo se cuenta el IF, ya que es el unico que ser repite.
- \blacksquare n es el largo de el arreglo , queremos T(n)
- ullet Buscamos el tiempo de ejecutarse el algoritmo en un largo n
- En el **mejor caso**, $k = a_0$ entonces $T(n) = 1 \in \Theta(1)$.
- Ahora, en el **peor caso** $k = a_{n-1}$ entonces $T(n) = n \in \Theta(n)$.

En resumen:

$$T(n) = \begin{cases} \Theta(1) & k = a_0 \\ \Theta(n) & k = a_{n-1} \lor k \notin A \end{cases}$$

Ejemplo Insert-Sort:

```
for i=2 to n:
t=a_{-}i
j=i-1
while <math>a_{-}j > t and j
```

• Mejor caso: arreglo ya esta ordenado, entonces el loop en linea 5 no se ejecuta nunca.

$$T(n) = n - 1 \in \Theta(n)$$

 \blacksquare Peor Caso: arreglo esta ordenado al revez. El loop en la instrucción 4, se ejcuta hasta que j=0 .Entonces i-1 veces entre 2 y n

$$T(n) = 1 + 2 + \dots + n - 1 = \frac{(n-1)n}{2} \in \Theta(n^2)$$
$$T(n) = \begin{cases} \Theta(n) \\ \Theta(n^2) \end{cases}$$

 Nota: El enfoque esta en la comparación porque en general lo demas es constante y no cuenta en la complejidad

Algoritmos Recursivos

EjemplO Busqueda Binaria:

```
BinarySearch(a, A, i, j)
_2 if i > j then
     return -1
  return i
          return -1
      end if
9
10 else
  p = \left| \frac{i+j}{2} \right|
  if A[p] < a then
         return BinarySearch(a, A, p + 1, j)
13
      else if A[p] > a then
14
         return BinarySearch (a, A, i, p -1)
15
16
         return p
17
      end if
18
19 end if
```

$$T(n) = \begin{cases} 3 & n = 1\\ 4 + T(\lfloor \frac{n}{2} \rfloor) & n > 1 \end{cases}$$

Como se resuelven estas equaciones? Con sustituciones Sea $n=2^k$,

$$T(2^{k}) = 3, k = 0$$

$$T(2^{k}) = 4 + T(2^{k-1}), k > 0$$

$$T(2^{k}) = T(2^{k-1}) + 4$$

$$T(2^{k}) = (T(2^{k-2}) + 4) + 4$$

$$\vdots$$

$$\vdots$$

Tomo un i tal que $k-1 \geq 0$:

$$T(2^k) = T(2^{k-i}) + 4 * i$$

Cuando k = i:

$$T(2^k) = T(1) + 4k = 3 + 4k$$

Sustituendo de vuelta:

$$T(n) = 3 + 4 * log_2(n)$$

Nota: Con n potencia de 2.

Definición 0.6. Notacion Asintotica Condicional: Sea $P \subseteq \mathbb{N}$,

$$O(f|P) = \{g : \mathbb{N} \to \mathbb{R}^+ | (\exists c \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) (n \in P \to g(n) \le c * f(n)) \}$$

$$\Omega(f|P) = \{g : \mathbb{N} \to \mathbb{R}^+ | (\exists d \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(n \in P \to g(n) \ge d * f(n)) \}$$

$$\Theta(f|P) = O(f|P) \cap \Omega(f|P)$$

Definición 0.7. Conjunto $POTENCIA_2$

$$POTENCIA_2 = \{2^i | i \in \mathbb{N}\}$$

Ejemplo Busqueda Binaria (cont.):

Concluimos que,

$$T(n) = 3 + 4 * log_2(n)$$

Pero esto solo para n que pertenecen a el conjunto potencia de 2. Por lo tanto,

$$T(n) \in \Theta(log_2(n)|POTENCIA_2)$$

Demostración. Queremos demostrar que,

$$T(n) \in \Theta(log_2(n)|POTENCIA_2) \to T(n) \in \Theta(log_2(n))$$

Por lo menos, que:

$$T(n) \in O(log_2(n))$$

Por definicion de $O(log_2(n)|POTENCIA_2)$:

$$(\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(T(n) \le c * log_2(n))$$

$$T(1) = 3$$

$$T(2) = 4 + T(1) = 7$$

$$T(3) = 4 + T(2) = 11$$

Por lo tanto, nos srive $n_0 = 2$ y c = 7.

Demostración. Por induccion fuerte

$$\forall n \geq 2. [T(n) \leq 7 * log_2(n)]$$

BI:

$$T(2) = 7 = 7 * log_2(2)$$

$$T(3) = 7 \le 7 * log_2(3)$$

HI:

Sup que con $n \geq 4, \, \forall k \in \{2,...,n-1\}$ se cumple que $T(k) \leq 7 * log_2(k)$

TI:

Por Demostrar que:

$$T(n) \le 7 * log_2(n)$$

Como n > 1:

$$T(n) = T(\left|\frac{n}{2}\right|) + 4$$

Por HI,

$$T(n) \le 7 * log_2(\left\lfloor \frac{n}{2} \right\rfloor) + 4$$

Como el log es creciente y monotono,

$$T(n) \le 7 * log_2(\frac{n}{2}) + 4$$

$$= 7 * log_2(n) - 7 + 4$$

$$= 7 * log_2(n) - 3$$

$$\le 7 * log_2(n)$$

Por lo tanto,

$$T(n) = O(log_2(n))$$

Definición 0.8. Una funcion $f: \mathbb{N} \to \mathbb{R}^+$ es asintoticamente no decreciente o creciente si:

$$(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(f(n) \le f(n+1))$$

Ejemplos:

Las siguientes son asintoticamente no decrecientes:

$$log_2(n), n, n^k, 2^n$$

Definición 0.9. Dado un natural b>0, una funcion $f:\mathbb{N}\to\mathbb{R}^+$, **b-armonica** si $f(b\cdot n)\in O(f)$. Formalmente:

$$(\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)[f(b \cdot n) \le c * f(n)]$$

Ejemplos:

Las siguientes son b-armonicas para cualquier b.

$$log_2(n), n, n^k$$

Notar que 2^n no es b-armonica ya que $2^{2n} \notin O(2^n)$

Teorema 0.3. Si f, g son as intoticamente no decrecientes, g es b-armonica y $f \in O(g|POTENCIA_b)$ entonces $f \in O(g)$.

Demostraci'on. Como f es asintoticamente no decreciente:

$$(\exists n \in \mathbb{N})(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(f(n) \le f(n+1)) \tag{4}$$

Como g es asintoticamente no decreciente:

$$(\exists n \in \mathbb{N})(\exists n_0 \in \mathbb{N})(\forall n \ge n_1)(g(n) \le g(n+1)) \tag{5}$$

Como $f \in O(g|Potenica_b)$:

$$(\exists c \in \mathbb{R}^+)(\exists n_2 \in \mathbb{N})(\forall n \ge n_2)(n \in POTENCIA_b \to f(n) \le c \cdot g(n)) \tag{6}$$

Como g es b-armonica: $g(b*n) \in O(g)$:

$$(\exists d \in \mathbb{R}^+)(\exists n_3 \in \mathbb{N})(\forall n \ge n_3)(g(b*n) \le d \cdot g(n)) \tag{7}$$

Sea:

$$n_4 = Max\{n_0, n_1, n_2, n_3, 1\}$$

Nota: El 1 es para poder hacer el siguiente paso:

Suponemos $n \geq n_4$:

Como $n \ge 1$, existe $k \ge 0$ tal que

$$b^k \le n < b^{k+1} \tag{8}$$

De (4) y (8):

$$f(n) \le f(b^{k+1}) \tag{9}$$

Como $n \ge n_2$ se cumple (6) y entonces:

$$f(b^{k+1}) \le c \cdot g(b^{k+1}) \tag{10}$$

De (8) multiplicando por b:

$$b^{k+1} \le b \cdot n \tag{11}$$

Ahora como $n \geq n_1$, se cumple (5):

$$g(b^{k+1}) \le g(b \cdot n) \tag{12}$$

Como $n \ge n_3$ y q es b-armonica (7):

$$g(b*n) \le d \cdot g(n) \tag{13}$$

Juntando todo:

$$f(n) \leq f(b^{k1}) \leq c \cdot g(b^{k+1}) \leq c \cdot g(b \cdot n) \leq c \dot{d} \cdot g(n)$$

Entonces,

$$\forall n \ge n_4, f(n) \le e \cdot g(n), \ e = c \cdot d \in \mathbb{R}^+$$

Podemos concluir que $f \in O(g)$

Teorema Maestro

Grafos

Definiciones basicas

Definición 0.10. Grafo Un **grafo** se denota como G = (V, E), V es el conjunto de **nodos** y E es la relación entre ellos $(E \subseteq V \times V)$ denominado **aristas**.

Definición 0.11. Rulo o Loop Es una arista $(x,y) \in E$ tal que x=y. El conjunto de todos los rulos seria:

$$C_r = \{(x, y) \in E | x = y\}$$

Donde $C_r \subseteq E$.

Definición 0.12. Aristas Paralelas Dos aristas $(x,y) \in E$ y $(z,w) \in E$ son paralelas si x=w e y=z. Es decir, si conectan a los mismos vértices. Denominado por " $\|$ "

$$(x,y) \parallel (z,w) \leftrightarrow x = w \land y = z$$

Definición 0.13. Grafo no dirigido Un grafo G = (V, E) es **no dirigido**, toda arista tiene una arista paralela.

$$\forall x, y \in V. [\exists (z, w) \in E \text{ tal que } (x, y) \parallel (z, w)]$$

O de una manera alternativa, el conjunto E debe ser <u>simétrico</u> (existen direcciones en ambos lados).

$$\forall x, y \in V. [(x, y) \in E \to (y, x) \in E]$$

Definición 0.14. Grafo Simple Un grafo es **simple**, si no tiene rulos. Alternativamente, se puede decir simple si es E es irrefleja:

$$\forall x \in V. [(x, x) \notin E]$$

Definición 0.15. Grafo General:

Se usaran grafos G = (V, E):

- Simples (E Irrefleja)
- No dirigidos (E Simetrica)
- No vacios
- Finitos

Es decir:

$$|V| = n, \ n \in \mathbb{N} - \{0\}$$

Definición 0.16. Adyacentes Dado un grafo G = (V, E), dos vertices $x, y \in V$ son **adyacentes** o **vecinos** si $(x, y) \in E$

Definición 0.17. Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son **isomorfos** si existe una funcion biyectiva $f: V_1 \to V_2$ tal que:

$$(x,y) \in E_1 \leftrightarrow (f(x),f(y)) \in E_2$$

Se dice que f es un isomorfismo entre G_1 y G_2 .

Notacion: $G_1 \cong G_2$

Teorema 0.4. \cong es una relacion de equivalencia

Demostración. Sean $G_0 = (V_0, E_0), G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ grafos arbitrarios pertenecientes a un conjunto A.

Refleja:

Sea G = (V, E), Queremos demostrar que:

$$\forall G_0 [G_0 \cong G_0]$$

Por definición se isomorfismo, debemos demostrar que existe una funcion biyectiva. Es claro que la función identidad nos sirve para esta vaso ya que es $f: V_0 \to V_0$ biyectiva.

Simetrica:

Queremos demostrar que:

$$\forall G_1, G_2. [G_1 \cong G_2 \rightarrow G_2 \cong G_1]$$

Sabemos que $G_1 \cong G_2$, por lo tanto existe una función $f: V_1 \to V_2$ biyectiva. Sabemos que las funciones biyectivas son invertibles y su inversa tambien es biyectiva. Por lo tanto encontramos una funcion $f^{-1}: V_2 \to V_1$ biyectiva, por lo tanto $G_2 \cong G_1$.

Transitiva:

Queremos demostrar que:

$$\forall G_0, G_1, G_2. [G_0 \cong G_1 \land G_1 \cong G_2 \to G_0 \cong G_2]$$

Sabemos que existen $f_0: V_0 \to V_1$ y $f_1: V_1 \to V_2$ funciones biyectivas.

Definimos $h: V_0 \to V_2$ como,

$$h = (f_0 \circ f_1)$$

Sabemos que composicion de funciones biyectiva es biyectiva, por lo tanto $G_0 \cong G_2$. Podemos concluir que \cong es una relacion de equivalencia.

Clases de grafos

Ahora sabemos que \cong es una relacion de equivalencia, por lo que podemos construir tomar las clases de equivalencia de la relación \cong .

Recordatorio: Clases de equivalencia:

Sea \sim relacion sobre un conjunto A:

$$[x]_{\sim} = \{ y \in A | x \sim y \}$$

Para este caso,

$$[G]_{\cong} = \{G_1 \in A | G \cong G_1\}$$

Donde G_1 es un grafo cualquiera $\in A$

Definición 0.18. Camino (Path):

Informal: Un camino es un grafo cuyos vértices pueden dibujarse en una línea tal que dos vértices son adyacentes si y sólo si aparecen consecutivos en la línea.

Formal: Considere un grafo
$$G_n^P=(V_n^P,E_n^P)$$
 donde $V_n^P=\{v_1,...,v_n\}$ y $E_n^P=\{(v_i,v_j)|i\in\{1,...,n-1\}\land j=i+1\}$ Un **camino** de n vertices es un grafo isomorfo a G_n^P

Definición 0.19. Conjunto de caminos con n vertices

$$P_n: [G_n^P]_{\cong}$$

Definición 0.20. Ciclo:

Informal: Un ciclo es un grafo cuyos vértices pueden dibujarse en un círculo tal que dos vértices son advacentes si y sólo si aparecen consecutivos en él.

Formal: Considere un grafo
$$G_n^C = (V_n^C, E_n^C)$$
 donde $V_n^C = \{v_1, ..., v_n\}$ y $E_n^C = \{(v_i, v_j) | i \in \{1, ..., n-1\} \land j = i+1\} \cup \{(v_n, v_1)\}$ Un **camino** de n vertices es un grafo isomorfo a G_n^C

Definición 0.21. Conjunto de ciclos con n vertices

$$C_n: [G_n^C]_{\cong}$$

Definición 0.22. Grafo Completo:

Un grafo completo es un grafo en el que todos los pares de vértices son adyacentes.

Considere un grafo
$$G_n^K = (V_n^K, E_n^K)$$
 donde $V_n^K = \{v_1, ... v_n\}$ y $E_n^K = \{(v_i, v_j) | i \neq j \land i \in \{1, ..., n\}\}.$ Un grafo **completo** de n vertices es un grafo isomorfo a G_n^K

Definición 0.23. Conjunto de grafos completos con n vertices

$$K_n: [G_n^K]_{\cong}$$

Definición 0.24. Grafo bipartito: Un grafo G = (V, E) se dice **bipartito** si V se puede particionar en dos conjuntos no vacíos $\overline{V_1}$ y $\overline{V_2}$ tales que:

$$\forall (x,y) \in E. \big[(x \in V_1 \land y \in V_2) \lor (x \in V_2 \land y \in V_1) \big]$$

Es decir:

- $V = V_1 \cup V_2$
- $V_1 \cap V_2 = \emptyset$
- Cada arista une a dos vértices en conjuntos distintos de la partición.

Definición 0.25. Grafo bipartito completo:

Un grafo bipartito completo es un grafo bipartito en que cada vértice es adyacente a <u>todos</u> los de la otra partición.

A la clase de equivalencia de los grafos bipartitos completos la llamaremos $K_{n,m}$, donde n y m son los tamaños de las particiones.

Mas clases

Dado un grafo $G = (V_G, E_G)$,

Definición 0.26. Subgrafo:

Un grafo $H = (V_H, E_H)$ es un **subgrafo** de G ($H \subseteq G$) si $V_H \subseteq V_G$, $E_H \subseteq E_G$ y E_H solo contiene aristas entre vértices de V_H .

Definición 0.27. Clique:

Un clique es un subgrafo completo de G.

Es decir, un clique en G es un conjunto de vertices $K \subseteq V_G$ tal que:

$$\forall u, v \in K. [(u, v) \in E_G]$$

Definición 0.28. Conjunto Independiente:

Un conjunto independiente en G es un conjunto de vértices $K \subseteq V_G$ tal que:

$$\forall u, v \in K. [(u, v) \notin E_q]$$

Definición 0.29. Grafo complemento:

El **complemento** de G es el grafo $\overline{G} = (V_G, \overline{E_G})$ si,

$$\forall u, v \in V_G. [(u, v) \in E_G \leftrightarrow (u, v) \notin \overline{E_G}]$$

Definición 0.30. Grafo autocomplementario:

Un grafo se dice autocomplementario si $G \cong \overline{G}$

Teorema 0.5. Dado un grafo G = (V, E), un conjunto $V' \subseteq V$ es un clique en G si y sólo si es un conjunto independiente en \overline{G} .

Demostración. :

 (\Rightarrow)

Supondremos que V' es un clique en G, por definicion de clique (tomando u, v arbitrarios):

$$\forall u, v \in V. [(u, v) \in E]$$

Luego por complemento se debe cumplir:

$$(u,v) \in E \leftrightarrow (u,v) \notin \overline{E}$$

Ya que tomamos u, v arbitrarios, podemos generalizar que:

$$\forall u, v \in V. [(u, v) \notin \overline{E}]$$

Que es por definicion un conjunto independiente en \overline{G} .

(⇐) Analoga.

Definicion Matriz de Adyacencia

Definicion Matriz de Incidencia

Dado un Grafo G y un vértice v,

Definición 0.31. Grado de un vértice:

El **grado** de un vertice v es la cantidad de aristas que inciden en v. Denotado como $\delta_G(v)$

Definición 0.32. Vecindad de un vértice:

La **vecindad** de un vertice v es el conjunto de vecinos de v.

$$N_G(v) = \{u | (v, u) \in E\}$$

En un grafo simple, $\delta_G(v) = |N_G(v)|$

Teorema 0.6. Handshaking lemma:

Si G = (V, E) es un grafo sin rulos, entonces:

$$\sum_{v \in V} \delta_G(v) = 2|E|$$

Demostración. Por inducción en la cantidad de aristas,

BI:

Si |E|=0, entonces el grado de cada vertice es 0.

$$\sum_{v \in V} \delta_G(v) = 2|E| = 2|0| = 0$$

HI:

Suponemos que se cumple para un grafo con n aristas que:

$$\sum_{v \in V} \delta_G(v) = 2 \cdot |E| = 2 \cdot n$$

TI:

Por demostrar que se cumple para n+1 aristas, Sean $u,v\in V$ vertices arbitrarios, si se agrega una arista e entre los 2 (es claro que como no tiene rulos, $u\neq v$). Al agregar una arista, se aumenta el grado de cada vértice en 1.

Por lo tanto, al agregar la arista

$$\sum_{v \in V} \delta_G(v) + 2$$

Sea $E' = E \cup \{e\}$, podemos ver que:

$$|E'| = |E| + 1$$

Por lo tanto tenemos que,

$$\sum_{v \in V} \delta_G(v) + 2 = 2 \cdot |E'| = 2 \cdot (|E| + 1)$$

Por lo que,

$$\sum_{v \in V} \delta_G(v) = 2|E'|$$

Por lo tanto, si retiro la arista que agrege volvería a la HI.

Corolario: En un grafo sin rulos siempre hay una cantidad par de vértices de grado impar.

Demostración. Sea,

$$P = \sum_{u \in V \mid \delta(u) \in \mathbb{P}} \delta(u)$$

$$I = \sum_{v \in V \mid \delta(v) \in \mathbb{I}} \delta(v)$$

Es claro que P es par.

Por "Handshake Lemma", la suma de los grados de los vertices es 2 veces las cantidad de aristas. Por lo tanto I + P es necesariamente par. Con esto, se debe cumplir que I es par (suma de par y impar es impar).

Definición 0.33. Caminata y Caminata Cerrada:

Una caminata C en un grafo G es una secuencia de vértices y aristas:

$$C = (v_0, e_1, v_1, e_2, v_2, ..., e_k v_k)$$

tal que la arista ei conecta a los vértices $v_i - 1$ y v_i , con i entre 1 y k.

Una caminata cerrada C' en un grafo es una caminata que empieza y termina en el mismo vértice: $v_0 = v_k = v$

$$C' = (v, e_1, v_1, e_2, v_2, ..., e_k, v)$$

Nota: En una caminata se pueden repetir aristas

Definición 0.34. Camino y Ciclo:

Un camino en un grafo es una caminata en la que no se repiten aristas.

Un ciclo en un grafo es una caminata cerrada en la que no se repiten aristas.

Definición 0.35. El largo de una caminata, camino o ciclo es la cantidad de aristas que lo componen. Si está compuesto por un único vértice (sin aristas), diremos que tiene largo 0

Definición 0.36. Conectados:

Dos vértices x e y se dicen **conectados** si existe un camino en G que empieza en x y termina en y

Ejemplo:

Muestre que "estar conectados" es una relación de equivalencia (")

$$x - y \leftrightarrow x$$
 esta conectado con y

Demostración. • Refleja: Sea $v \in V$, basta consideras v - v de largo 0

- Simetrica: Supongamos que existe x y, luego es trivial que existe y x, pues G es no dirigido.
- Transitiva: Supongamos x y, y z. Por demostra que x z. Sea,

$$x - y = x, a_1, ..., a_n, y$$

$$y - z = y, b_1, ..., b_n, z$$

Luego:

$$x - z = x, a_1, ..., a_n, y, b_1, ..., b_n, z$$

Pero como es un camino se puede repetir aristas. Pero sin embargo, basta con tomar un camino C intermedio tal que se cruzen los camino x - y e y - z y tomo:

$$x - z = x, a_1, ..., C, ..., b_n, z$$

Definición 0.37. Componente Conexa:

Dado un vértice v de un grafo G, su clase de equivalencia bajo la relación "estar conectados" es una componente conexa de G.

En general, diremos que la componente conexa también contiene a las aristas entre los vértices de ella.

Definición 0.38. Grafo Conexo:

Un grafo G se dice **conexo** si todo par de vértices $x, y \in V$ está conectado. En otro caso, G es **disconexo**. Es decir, G tiene sólo **una** componente conexa.

Teorema 0.7. Un grafo G con n vértices y k aristas tiene al menos n-k componentes conexas.

Demostración. Un grafo G con n vertices puede tener como maximo n componentes conexas, cuando no tiene ninguna arista, cada nueva arista que se le agregue puede reducir la cantidad de componentes a lo mas en 1, por lo que luego de agregar k aristas la cantidad de componentes se ha reducido como minimo a n-k, por lo que la cantidad de componentes siempre se mantiene mayor o igual a n-k

Nota: El anterior teorema implica que si se quiere un grafo conexo de n vertices, entonces al menos n-1 aristas son necesarias.

Definición 0.39. Arista de corte:

Una arista de corte en un grafo G es una arista tal que al eliminarla aumenta la cantidad de componentes conexas de G.

Definición 0.40. Vertice de corte:

Un **vértice de corte** en un grafo G es una arista tal que al eliminarlo (junto con todas sus aristas incidentes) aumenta la cantidad de componentes conexas de G.

Teorema 0.8. Una arista en un grafo G es de corte si y sólo si no pertenece a ningún ciclo en G.