

计算机组成原理

授课老师: 吴炜滨

大纲

- ▶定点运算
 - 乘法运算

乘法运算

- 计算机中怎么做二进制的乘法运算?
 - 可以分析一下笔算乘法是怎么做的
 - 把笔算乘法做一定的改进, 然后将其用计算机硬件去实现

大纲

- > 定点运算
 - 乘法运算
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算

笔算乘法的分析

$$A = -0.1101$$
 $B = 0.1011$

$$\begin{array}{c} 0.11101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ 1101 \\ \hline \end{array}$$

 $A \times B = -0.10001111$

■ 乘积的符号心算求得

- 符号位单独处理
- 乘积的数值部分用乘法规则计算
 - 乘数的某一位决定是否加被乘数
 - 4个位积一起相加
 - 乘积的位数扩大一倍

笔算乘法的分析

$$A = -0.1101$$
 $B = 0.1011$

$$0.1101 \times 0.1011$$
 $\times 0.101$
 1101
 1101
 0000
 1101

$$A \times B = -0.10001111$$

■ 计算机中如何模拟?

- 符号位单独处理
 - 异或电路
- 乘数的某一位决定是否加被乘数
 - 乘数放移位寄存器, 每判断完一次最低位, 右移一次
- 4个位积一起相加
 - 多次累加
 - 位积每次累加前,已有累加结果右移一位
- 乘积的位数扩大一倍
 - 两个寄存器保存乘积

笔算乘法的改进

$$A = -0.1101$$
 $B = 0.1011$

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{1 \cdot A + 2^{-1}[0 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 0))]\}$$

笔算乘法的改进

$$A \bullet B = A \bullet 0.1011$$

$$= 2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot A + 2^{-1} (1 \cdot A + 0))] \}$$

第一步 被乘数A + 0

第二步 右移一位,得新的部分积

第三步 部分积 + 被乘数

1

2

(3)

•

第八步 右移 一位,得结果

8

改进后的笔算乘法过程(竖式)

A = -0.1101	部分积	乘 数	说明
B = 0.1011	0.0000	1011	初态,部分积 = 0
	+ 0.1101	II	乘数为1,加被乘数
	0.1101		
	0.0110	1101	→1,形成新的部分积
	+ 0.1101	=	乘数为 1,加被乘数
	1.0011	1	
	0.1001	1110	→1,形成新的部分积
	+0.0000	II	乘数为 0, 加 0
	0.1001	1 1	
	0.0100	111 <mark>1</mark>	→1,形成新的部分积
	+ 0.1101	=	乘数为 1, 加被乘数
	1.0001	111	
	0.1000	1111	→ 1 ,得结果

小结

■ 乘法运算

- 符号位由异或电路来获得
- 数值部分可用加和移位实现
 - 数据数值部分位数为 $n \to \ln n$ 次,移 n 次
- 由乘数的末位决定被乘数是否与原部分积相加
 - 末位为1,加被乘数,否则加0
 - 然后 \rightarrow 1 位形成新的部分积,同时 乘数 \rightarrow 1位(末位移丢),空出高位存放部分积的低位。
 - 被乘数只与部分积的高位相加

■ 硬件

• 3个寄存器(X:被乘数,ACC:乘积高位,MQ:乘积低位、乘数),其中2个具有移位功能(ACC,MQ); $1 \cap n + 1$ 位全加器

大纲

- > 定点运算
 - 乘法运算
 - 原码的乘法运算
 - 运算规则
 - 硬件配置
 - 控制流程

原码一位乘运算规则

■ 以小数为例

• 整数乘法过程相同,将小数点改为逗号即可

设
$$[x]_{原} = x_0.x_1x_2 \cdots x_n$$
 $[y]_{\varOmega} = y_0.y_1y_2 \cdots y_n$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0.x_1x_2 \cdots x_n)(0.y_1y_2 \cdots y_n)$$
$$= (x_0 \oplus y_0).x^*y^*$$

式中
$$x^* = 0.x_1x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0.y_1y_2 \cdots y_n$ 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$

数值部分为绝对值相乘 x* • y*

原码一位乘运算规则

■原码一位乘递推公式

$$x^* \bullet y^* = x^*(0.y_1y_2 \cdots y_n)$$

$$= x^*(y_12^{-1} + y_22^{-2} + \cdots + y_n2^{-n})$$

$$= 2^{-1}(y_1x^* + 2^{-1}(y_2x^* + \cdots + y_n2^{-1}(y_nx^* + 0)\cdots))$$

原码一位乘运算规则

- 原码一位乘递推公式
 - 加法和移位实现乘法

$$x^* \bullet y^* = x^*(0.y_1y_2 \dots y_n)$$

$$= 2^{-1}(y_1x^* + 2^{-1}(y_2x^* + \dots 2^{-1}(y_nx^* + 0)\dots))$$

$$\vdots$$

$$z_0 = 0$$

$$z_n$$

$$z_0 = 0 Z_1$$

$$z_1 = 2^{-1}(y_n x^* + z_0)$$
 由 y_n 决定是否加上被乘数的数值部分,然后右移一位

$$z_2 = 2^{-1}(y_{n-1}x^* + z_1)$$

$$z_n = 2^{-1}(y_1 x^* + z_{n-1})$$
 共n次加法, n次移位

原码一位乘

■ 已知机器字长为5位(含1位符号位), x = -0.1110, y = 0.1101, 求 $[x \bullet y]_{\bar{p}}$

解:
$$[x]_{\bar{\mathbb{R}}} = 1.1110$$

$$[y]_{\mathbb{R}} = 0.1101$$

■ 已知机器字长为5位(含1位符号位), x = -0.1110, y = 0.1101, 求 $[x \cdot y]_{\bar{g}}$

解:数值部分

			•	
	部分积	乘数	说 明	
	0.0000	1101	部分积 初态 $z_0 = 0$	$[x]_{\bar{\mathbb{R}}} = 1.1110$
	+ 0.1110		$+x^*$	_
逻辑右科	夕 0.1110			$[y]_{\text{\tiny \Bar{B}}} = 0.1101$
12+4111	0.0111	0 1 1 0	→1 ,得 z ₁	
	+ 0.0000	_	+ 0	_
逻辑右科	夕 0.0111	0		
12+4111	0.0011	1 0 1 <u>1</u>	→1 ,得 z ₂	
	+ 0.1110	_	$+x^*$	_
逻辑右和	2 1.0001	1 0		
12/41/1	0.1000	1 1 0 <u>1</u>	→1 ,得 z ₃	
	+ 0.1110		$+x^*$	_
逻辑右科	1.0110	1 1 0	χ^*	• y*
12-7-1-11:	0.1011	0 1 1 0	$\longrightarrow 1$, 得 $z_4 \longrightarrow z_4$	0.10110110

原码一位乘

■ 已知机器字长为5位(含1位符号位), x = -0.1110, y = 0.1101, $\bar{x}[x \cdot y]_{\bar{y}}$

$$[x]_{\text{\tiny \mathbb{R}}} = 1.1110 \qquad [y]_{\text{\tiny \mathbb{R}}} = 0.1101$$

• 乘积的符号位

$$x_0 \oplus y_0 = 1 \oplus 0 = 1$$

• 乘积的数值部分由两数绝对值相乘而得

$$x^* \bullet y^* = 0.10110110$$
 $y = 1.10110110$

原码一位乘

- ■原码一位乘的特点
 - 绝对值参与运算
 - 逻辑移位
 - "符号位"上的数字不代表符号,是低位数值部分相加以后向高位的进位
 - 用移位的次数判断乘法是否结束
 - 如果操作数的数值部分位数为n,则移位n次

原码一位乘的硬件配置

- 寄存器A、X、Q、加法器均 n+1 位, 计算过程中:
 - A: 部分积的高位, 最高位非符号位, 而是低位数值部分相加后向高位的进位
 - X:被乘数的原码
 - Q (MQ): 乘数的原码、部分积的低位
- 计数器C
 - 计数器值=移位次数=数值部分位数=n
 - 每移位一次,计数器值减1
- S: 乘积符号
 - 值=被乘数和乘数的符号位进行异或
- **■** G_M: 乘法标志

原码一位乘的硬件配置

- 移位和加受末位乘数控制
 - 末位乘数为1,控制门打开,将被 乘数送至加法器和部分积进行累加, 然后A、Q右移一位
 - 末位乘数为0,控制门关闭,不送 被乘数, A、Q直接右移一位
 - 用移位次数来控制乘法的结束, 而不用加法次数

原码一位乘控制流程

- 准备:被乘数原码 \rightarrow X,乘数原码 \rightarrow Q, $n \rightarrow$ C, A清零作为初始部分积
- 求积符: X₀ ⊕ Q₀ → S
- 取绝对值: $0 \rightarrow X_0$, $0 \rightarrow Q_0$
- $Q_n = 1?$
 - Y: $[A] + [X] \rightarrow A$
- A、Q同时逻辑右移一位
- **■** [C] 1 → C
- C = 0?
 - Y: 结束
 - N: 回到判断Q_n=1?

谢谢!