Surrogate Modeling Using SU2

POINTWISE® AND SU2 JOINT WORKSHOP SEPT 29-30, 2014

Trent Lukaczyk
Aeronautics & Astronautics Department (Stanford University)

- I) PROBLEM SETUP
- II) DESIGN OF EXPERIMENTS
- III) DATA PROCESSING
- IV) OPTIMIZATION

A Simple Script

This script runs a simple drag polar

```
import SU2

# load config
config = SU2.io.Config('naca0012.cfg')

# set file state
state = SU2.io.State()
state.find_files(config)

# lists for drag polar
angles = [-4.,-2.,0.,2.,4.]
drags, lifts = [], []
```


A Simple Script

This script runs a simple drag polar

```
# iterate angles
for angle in angles:
    # local config and state
    konfig = copy.deepcopy(config)
    ztate = copy.deepcopy(state)
    # set angle of attack
    konfig.AoA = angle
    # run su2
    drag = SU2.eval.func('DRAG', konfig, ztate)
    lift = SU2.eval.func('LIFT', konfig, ztate)
    # update data lists
    drags.append(drag)
    lifts.append(lift)
```


A Simple Script

The resulting drag polar plot

NACA 0012 Optimization Problem

Ma=0.8, AoA=1.25° Euler second order Surface based continuous adjoint formulation Hicks-Henne bump function design variables

Problem Setup

Minimize drag while maintaining a minimum lift

Vary the airfoil's shape with one Hicks Henne Bump Function

Min. $C_D(X1)$

s.t. $C_1(X1) > 0.3200$

SU2 Project Setup

SU2 has a python object that can manage design evaluations – SU2.opt.Project(). Here's how to set it up.

```
# load config
config = SU2.io.Config('config naca0012.cfg')
# modify config
## writes iteration history to log files
config.CONSOLE
                   = 'CONCISE'
## number of processors for parallel solves
config.NUMBER PART = 4
# set file state
state = SU2.io.State()
state.find files (config)
# start project
project = SU2.opt.Project( config, state ,
                           folder=project folder)
```


Saving and Loading Projects

Projects save themselves with each call to a major component, like deformations, direct solutions, or adjoint solutions.

```
# try to load project
if os.path.exists('Project_Folder/project.pkl'):
    project = SU2.io.load_data('Project_Folder/project.pkl')
```

Loading them can save you the time of re-evaluating solutions.

To start over, delete the project.pkl file, or move it to an archive directory.

Design of Experiments

To generate a surrogate model, we need to take a random sampling of the design space. This sampling we choose by a design of experiments. In this case we'll use Latin Hypercube Sampling.

```
# number of random samples
NS = 4

# bounds
XB = np.array([[-0.01,0.01]]*1)

# initial sample
X0 = np.zeros([1,1])

# generate sample locations with latin hypercube
XS = VyPy.sampling.lhc uniform(XB, NS, X0)
```


Running the Experiments

This loop evaluates SU2 at each design sample.

```
for i,x in enumerate(XS):
    # unpack design into a config
   print 'X FFD:' , x
    konfig, = project.unpack dvs(x)
    # Run SU2
   print 'EVALUATE SU2 DIRECT'
    f drag = project.func('DRAG', konfig)
    f lift = project.func('LIFT', konfig)
   print 'EVALUATE SU2 DRAG ADJOINT'
    df drag = project.grad('DRAG','ADJOINT',konfig)
   print 'EVALUATE SU2 LIFT ADJOINT'
    df lift = project.grad('LIFT', 'ADJOINT', konfig)
```


Checking the Logs

While SU2 is Running, you can check the log files to make sure it's doing what you expected.

```
trent@ubuntu:NACA Case$ cd projects/Test Project/
trent@ubuntu:Test_Project$ cd DESIGNS/DSN_001/
trent@ubuntu:DSN_001$ cd DIRECT/
trent@ubuntu:DIRECT$ tail log Direct.out
Iter
     Time(s) Res[Rho] Res[RhoE]
                                    Clift
                                               Cdrag
 20
     0.085426 - 1.331934  4.097121
                                   0.331850
                                               0.018830
 2.1
     0.085269 - 1.364276 4.062276
                                   0.329838
                                               0.019734
 22
     0.085333 -1.399437 4.026648
                                   0.327799
                                               0.020649
 23
     0.085257 -1.434665 3.991820
                                    0.326023
                                               0.021490
 2.4
     0.085094 - 1.467139 3.958620
                                    0.324635
                                               0.022197
 25
     0.084995 - 1.497680 3.924778
                                   0.323653
                                               0.022728
```

trent@ubuntu:DIRECT\$

Data Exploration

You can also interact with the project through the python interpreter.

```
trent@ubuntu: NACA Case$ cd projects/Test Project/
trent@ubuntu:Test Project$
trent@ubuntu:Test Project$ python
Python 2.7.7 | Anaconda 2.0.1 (64-bit)
>>> import SU2
>>>
>>> project = SU2.io.load data('project.pkl')
>>>
>>> project.results.keys()
['FUNCTIONS', 'GRADIENTS', 'VARIABLES', 'HISTORY']
>>>
>>> project.results.FUNCTIONS.keys()
['LIFT', 'DRAG', 'SIDEFORCE', 'MOMENT_X', 'MOMENT_Y',
'MOMENT Z', 'FORCE X', 'FORCE Y', 'FORCE Z', 'EFFICIENCY']
```


Data Exploration

```
>>> print project.results.FUNCTIONS.LIFT
[0.3269416468, 0.2703001641, 0.3528436174, 0.3799183762,
  0.3040688057, 0.3269073365, 0.3203853104]
>>> print project.results.VARIABLES
[[0.0], [0.0089448155956601046],
[-0.0042716224182653443], [-0.0089275210543810577],
[0.0036615329193177178], [6.0326879239180899e-06],
[0.0011200741319185093]]
>>>
>>> project.results.HISTORY.DIRECT.keys()
['ITERATION', 'LIFT', 'DRAG', 'SIDEFORCE', 'MOMENT X',
'MOMENT Y', 'MOMENT Z', 'FORCE X', 'FORCE Y', 'FORCE Z',
'EFFICIENCY', 'Res_Flow[0]', 'Res_Flow[1]', 'Res_Flow[2]',
'Res Flow[3]', 'Res Flow[4]', 'Linear Solver Iterations',
'TIME']
```


Surrogate Modeling

With this data we'll build a surrogate model.

Surrogate Modeling Tools

VyPy

github.com/aerialhedgehog/VyPy Google search: VyPy

VyPy is a toolbox for optimization and surrogate modeling

Learning the Surrogate

These GPR surrogate models are trained on the sampled data locations, functions, and gradients.

```
drag model = VyPy.regression.gpr.library.Gaussian (
    XS
    F drags
    DF drags
    XB
    sig ny = -4.0 , # noise guess of the objectives
    sig ndy = -2.0 , # noise guess of the gradients
lift model = VyPy.regression.gpr.library.Gaussian(
    XS
    F lifts
    DF lifts
    XB
    sig ny = -4.0,
    sig ndy = -2.0,
```


Visualizing the Surrogate Model

In this 1D case we can plot the surrogate model

Surrogate Based Optimization

We can now interrogate the surrogate model, for example to estimate an optimum design. Your favorite optimization wrappers can work here. This is an example with VyPy's wrappers.

Problem Setup

```
# the problem
problem = VyPy.optimize.Problem()

# variables
var = VyPy.optimize.Variable()
var.tag = 'bump'
var.initial = np.array([[0.0] * ND])
var.bounds = XB.T
var.scale = 'bounds'
problem.variables.append(var)
```


Objective and Constraint

```
# evaluator wrappers, VyPy passes dictionaries in and out
eval drag = lambda (variables): \
    ('drag': surrogates.drag.predict YI( variables['bump'] ) }
eval lift = lambda (variables): \
    {'lift' : surrogates.lift.predict YI( variables['bump'] ) }
# the objective, drag
obj = VyPy.optimize.Objective()
obj.evaluator = eval drag
obj.tag = 'drag'
obj.scale = 0.01
problem.objectives.append(obj)
# the constraint, lift > 0.3200
con = VyPy.optimize.Constraint()
con.evaluator = eval lift
con.tag = 'lift'
con.edge = 0.3200
con.sense = '>'
con.scale = 1.0
problem.constraints.append(con)
```


Optimization Wrapper

```
print "Local Optimization (SLSQP)"
driver = VyPy.optimize.drivers.scipy.SLSQP()
driver.verbose = False
result = driver.run(problem)
```

Results

Surrogate Optimum Prediction

Drag Coefficient 0.0211

Lift Coefficient 0.3200

SU2 Evaluation Check, of the predicted design

Drag Coefficient 0.0211

Lift Coefficient 0.3204

Optimization Results

Topics Covered

- Scripting SU2
- Saving and loading data
- Interacting with the python interpreter
- Running a sample of experiments
- Surrogate based optimization

