- Measurement Invariance of the Dirty Dozen: Student and Working Adult Samples
- Yang Yang¹ & John Kulas²
- ¹ Roche
- ² Montclair State University

Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- Enter author note here.

5

- ⁹ Correspondence concerning this article should be addressed to Yang Yang, Shanghai,
- China. E-mail: yangyangsh@outlook.com

Abstract

Now we are evaluating the psychometric properties of the dirty dozen simplified Chinese

version by using samples in real settings: job applicants and incumbents (in addition to

students). We replicate a previous study using the student sample, then continue to evaluate

with organizational data. We find that the scales are non-invariant.

16 Keywords: keywords

Word count: X

- Measurement Invariance of the Dirty Dozen: Student and Working Adult Samples
- Initially we were interested in looking at reliance on student samples. Now we are
- evaluating the psychometric properties of the dirty dozen (DD) simplified Chinese version by
- using samples in real settings: job applicants and incumbents (in addition to students). We
- replicate a previous study using the student sample (Yang gonna send some articles), then
- continue to evaluate with organizational data. We find that the scales are non-invariant.
- SDSME another version (27 items).
- All studies investigating psychometric properties of these scales use University students.
- Some groups may be expected to exhibit different item-construct associations due to shifting motivational forces.
- ITC guidlines for translating and adapting tests recommends looking at possible differences across motives for example,

30 Methods

We report how we determined our sample size, all data exclusions (if any), all manipulations, and all measures in the study. We also look at intercorrelations among items within the samplings.

34 Participants

- In total 1106 individuals responded to the Dirty Dozen (as well as additional scales not
- the focus of the current presentation). This total was comprised of 208 working adults
- low-stakes, 527 working adults high-stakes, and 371 students low-stakes individuals. After
- screening for undifferentiated responses via the R package careless (Yentes & Wilhelm,
- ³⁹ 2021), we retained 1054 respondents who had no more than 6 sequentially identical responses
- 40 across the 12 total items.

41 Material

Procedure Procedure

- Decrease in $\Delta \chi^2$ across models indicates a lack of invariance (typically not considered a "good thing"). Multiple indices are consulted across models, including $\Delta \chi^2$, RMSEA, CFI, TLI, BIC, and AIC.
- Also want to look at correlations of the simplified Chinese version of the DD with the
 Honesty-Humility subscales (Sincerity, Fairness, Greed Avoidance, and Modesty).

48 Data analysis

We used R [Version 4.0.5; R Core Team (2021)] and the R-packages careless [Version 1.2.1; Yentes and Wilhelm (2021)], foreign [Version 0.8.81; R Core Team (2020)], lavaan [Version 0.6.8; Rosseel (2012)], papaja [Version 0.1.0.9997; Aust and Barth (2020)], and semTools [Version 0.5.5; Jorgensen, Pornprasertmanit, Schoemann, and Rosseel (2021)] for all our analyses.

54 Results

```
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.means
##
## Chi-Squared Difference Test
##
##
```

```
##
                                   BIC Chisq Chisq diff Df diff
                       Df
                            AIC
  ## fit.configural 153 37059 37640 1407.7
  ## fit.loadings
                      171 37135 37626 1518.9
                                                   111.25
                                                                18
67
  ## fit.intercepts 189 37230 37632 1650.5
                                                   131.54
                                                                18
68
  ## fit.means
                      195 37344 37716 1775.9
                                                   125.40
                                                                 6
69
  ##
                      Pr(>Chisq)
70
  ## fit.configural
71
  ## fit.loadings
                       1.837e-15 ***
  ## fit.intercepts < 2.2e-16 ***
73
  ## fit.means
                       < 2.2e-16 ***
  ## ---
75
  ## Signif. codes:
  ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  ##
  ##
  ## Fit measures:
  ##
                        cfi rmsea cfi.delta rmsea.delta
  ##
82
  ## fit.configural 0.641 0.153
                                                       NA
                                          NA
83
  ## fit.loadings
                      0.615 0.150
                                       0.027
                                                    0.003
84
  ## fit.intercepts 0.582 0.148
                                       0.032
                                                    0.001
85
  ## fit.means
                      0.548 0.152
                                       0.034
                                                    0.004
86
  ## lavaan 0.6-8 ended normally after 108 iterations
  ##
                                                             ML
  ##
        Estimator
  ##
        Optimization method
                                                         NLMINB
90
  ##
        Number of model parameters
                                                            117
91
```

92	##		
93	##	Number of observations per group:	
94	##	working adults low-stakes	191
95	##	working adults high-stakes	510
96	##	students low-stakes	351
97	##		
98	##	Model Test User Model:	
99	##		
100	##	Test statistic	1407.674
101	##	Degrees of freedom	153
102	##	P-value (Chi-square)	0.000
103	##	Test statistic for each group:	
104	##	working adults low-stakes	182.467
105	##	working adults high-stakes	523.812
106	##	students low-stakes	701.395
107	##		
108	##	Model Test Baseline Model:	
109	##		
110	##	Test statistic	3696.466
111	##	Degrees of freedom	198
112	##	P-value	0.000
113	##		
114	##	User Model versus Baseline Model:	
115	##		
116	##	Comparative Fit Index (CFI)	0.641
117	##	Tucker-Lewis Index (TLI)	0.536
118	##		

```
## Loglikelihood and Information Criteria:
   ##
120
   ##
         Loglikelihood user model (HO)
                                                        -18412.727
121
         Loglikelihood unrestricted model (H1)
   ##
                                                        -17708.890
122
   ##
123
         Akaike (AIC)
   ##
                                                         37059.454
124
         Bayesian (BIC)
   ##
                                                         37639.593
125
   ##
         Sample-size adjusted Bayesian (BIC)
                                                         37267.983
126
   ##
127
   ## Root Mean Square Error of Approximation:
   ##
129
   ##
         RMSEA
                                                             0.153
130
   ##
         90 Percent confidence interval - lower
                                                             0.146
131
         90 Percent confidence interval - upper
   ##
                                                             0.160
132
         P-value RMSEA <= 0.05
   ##
                                                             0.000
   ##
134
   ## Standardized Root Mean Square Residual:
   ##
136
   ##
         SRMR
                                                             0.110
137
   ##
138
   ## Parameter Estimates:
139
   ##
140
   ##
         Standard errors
                                                          Standard
141
   ##
         Information
                                                          Expected
142
                                                        Structured
         Information saturated (h1) model
   ##
143
   ##
   ##
145
```

146	##	Group 1	[working	adults low-	stakes]:		
147	##						
148	##	Latent V	/ariables	:			
149	##			Estimate	Std.Err	z-value	P(> z)
150	##	mach =	=~				
151	##	A30		1.000			
152	##	A31		0.392	0.095	4.111	0.000
153	##	A32		0.224	0.096	2.332	0.020
154	##	A33		0.538	0.063	8.507	0.000
155	##	narc =	=~				
156	##	A34		1.000			
157	##	A35		0.262	0.263	0.996	0.319
158	##	A36		1.982	0.367	5.394	0.000
159	##	A37		1.752	0.332	5.277	0.000
160	##	psyc =	=~				
161	##	A38		1.000			
162	##	A39		1.328	0.240	5.541	0.000
163	##	A40		0.820	0.195	4.196	0.000
164	##	A41		0.814	0.205	3.969	0.000
165	##						
166	##	Covarian	ices:				
167	##			Estimate	Std.Err	z-value	P(> z)
168	##	mach ~	~~				
169	##	narc		0.311	0.066	4.691	0.000
170	##	psyc		0.700	0.144	4.859	0.000
171	##	narc ~	~~				
172	##	psyc		0.251	0.065	3.863	0.000

173 ##

173	##					
174	##	Intercepts:				
175	##		Estimate	Std.Err	z-value	P(> z)
176	##	.A30	1.948	0.089	21.789	0.000
177	##	.A31	1.901	0.083	22.999	0.000
178	##	.A32	4.607	0.083	55.484	0.000
179	##	. A33	1.340	0.056	24.095	0.000
180	##	. A34	1.393	0.061	22.680	0.000
181	##	. A35	4.267	0.091	46.791	0.000
182	##	. A36	1.890	0.083	22.892	0.000
183	##	. A37	1.508	0.078	19.429	0.000
184	##	.A38	2.984	0.122	24.507	0.000
185	##	. A39	1.759	0.087	20.119	0.000
186	##	.A40	2.031	0.100	20.231	0.000
187	##	.A41	3.288	0.109	30.174	0.000
188	##	mach	0.000			
189	##	narc	0.000			
190	##	psyc	0.000			
191	##					
192	##	Variances:				
193	##		Estimate	Std.Err	z-value	P(> z)
194	##	.A30	0.678	0.099	6.865	0.000
195	##	.A31	1.174	0.122	9.608	0.000
196	##	.A32	1.274	0.131	9.725	0.000
197	##	.A33	0.345	0.041	8.401	0.000
198	##	. A34	0.562	0.063	8.951	0.000
199	##	. A35	1.578	0.162	9.753	0.000

200	##	. A36	0.682	0.099	6.890	0.000
201	##	. A37	0.666	0.088	7.523	0.000
202	##	. A38	2.350	0.247	9.509	0.000
203	##	. A39	0.610	0.098	6.251	0.000
204	##	. A4O	1.601	0.168	9.514	0.000
205	##	. A41	1.948	0.204	9.572	0.000
206	##	mach	0.848	0.157	5.419	0.000
207	##	narc	0.158	0.052	3.008	0.003
208	##	psyc	0.482	0.172	2.812	0.005
209	##					
210	##					
211	##	Group 2 [working a	dults high	-stakes]:		
212	##					
213	##	Latent Variables:				
214	##		Estimate	Std.Err	z-value	P(> z)
215	##	mach =~				
216	##	A30	1.000			
217	##	A31	0.495	0.059	8.361	0.000
218	##	A32	0.152	0.060	2.537	0.011
219	##	A33	0.398	0.031	12.716	0.000
220	##	narc =~				
221	##	A34	1.000			
222	##	A35	0.377	0.148	2.544	0.011
223	##	A36	1.683	0.188	8.946	0.000
224	##	A37	0.622	0.098	6.323	0.000
225	##	psyc =~				
		paye				

227	##	A39	1.148	0.139	8.287	0.000
228	##	A40	0.408	0.087	4.692	0.000
229	##	A41	0.864	0.142	6.100	0.000
230	##					
231	##	Covariances:				
232	##		Estimate	Std.Err	z-value	P(> z)
233	##	mach ~~				
234	##	narc	0.336	0.038	8.881	0.000
235	##	psyc	0.579	0.079	7.293	0.000
236	##	narc ~~				
237	##	psyc	0.251	0.039	6.388	0.000
238	##					
239	##	Intercepts:				
240	##		Estimate	Std.Err	z-value	P(> z)
241	##	. A30	1.761	0.050	34.986	0.000
242	##	. A31	1.727	0.047	36.930	0.000
243	##	. A32	4.788	0.047	101.300	0.000
244	##	. A33	1.204	0.025	48.421	0.000
245	##	. A34	1.224	0.033	36.737	0.000
246	##	. A35	4.422	0.050	87.885	0.000
247	##	. A36	1.825	0.050	36.532	0.000
248	##	. A37	1.198	0.030	39.522	0.000
249	##	. A38	3.076	0.075	40.922	0.000
250	##	. A39	1.539	0.044	35.365	0.000
251	##	.A40	1.557	0.048	32.693	0.000
252	##	. A41	2.800	0.069	40.364	0.000
253	##	mach	0.000			

```
##
                                0.000
           narc
254
   ##
                                0.000
           psyc
255
   ##
256
   ## Variances:
257
                                                            P(>|z|)
   ##
                             Estimate
                                        Std.Err
                                                   z-value
258
   ##
           .A30
                                0.564
                                           0.053
                                                    10.564
                                                                0.000
259
           .A31
                                0.938
                                           0.061
                                                    15.403
                                                                0.000
   ##
260
   ##
          .A32
                                1.123
                                           0.070
                                                    15.926
                                                                0.000
261
                                           0.014
                                                    14.029
                                                                0.000
   ##
          .A33
                                0.200
262
   ##
           .A34
                                0.434
                                           0.030
                                                    14.306
                                                                0.000
263
   ##
           . A35
                                1.272
                                           0.080
                                                    15.941
                                                                0.000
264
   ##
           .A36
                                0.902
                                           0.068
                                                    13.291
                                                                0.000
265
   ##
           .A37
                                0.418
                                           0.027
                                                    15.564
                                                                0.000
266
           .A38
                                2.415
                                                    15.304
                                                                0.000
   ##
                                           0.158
267
           .A39
                                           0.048
                                                     7.324
                                                                0.000
   ##
                                0.350
268
   ##
           .A40
                                1.079
                                           0.069
                                                    15.726
                                                                0.000
269
                                2.105
   ##
           .A41
                                           0.137
                                                    15.401
                                                                0.000
   ##
                                0.728
                                           0.083
                                                     8.767
                                                                0.000
           mach
271
   ##
                                0.131
                                           0.026
                                                     4.974
                                                                0.000
           narc
272
   ##
                                0.468
                                           0.108
                                                     4.315
                                                                0.000
           psyc
273
   ##
274
   ##
275
   ## Group 3 [students low-stakes]:
276
   ##
277
   ## Latent Variables:
278
                                        Std.Err z-value P(>|z|)
   ##
                             Estimate
279
   ##
         mach =~
280
```

281	##	A30	1.000			
282	##	A31	0.322	0.076	4.220	0.000
283	##	A32	0.424	0.063	6.764	0.000
284	##	A33	0.854	0.078	10.963	0.000
285	##	narc =~				
286	##	A34	1.000			
287	##	A35	1.286	0.240	5.359	0.000
288	##	A36	1.756	0.300	5.853	0.000
289	##	A37	1.486	0.276	5.387	0.000
290	##	psyc =~				
291	##	A38	1.000			
292	##	A39	1.430	0.150	9.551	0.000
293	##	A40	0.785	0.119	6.627	0.000
294	##	A41	1.130	0.140	8.083	0.000
295	##					
296	##	Covariances:				
297	##		Estimate	Std.Err	z-value	P(> z)
298	##	mach ~~				
299	##	narc	0.433	0.076	5.678	0.000
300	##	psyc	0.794	0.105	7.585	0.000
301	##	narc ~~				
302	##	psyc	0.326	0.060	5.403	0.000
303	##					
304	##	Intercepts:				
305	##		Estimate	Std.Err	z-value	P(> z)
306	##	. A30	2.627	0.082	31.924	0.000
307	##	.A31	2.316	0.072	32.342	0.000

308	##	.A32	4.826	0.057	84.238	0.000
309	##	. A33	1.801	0.066	27.348	0.000
310	##	. A34	1.638	0.063	26.055	0.000
311	##	. A35	4.490	0.063	70.785	0.000
312	##	. A36	2.083	0.067	30.984	0.000
313	##	. A37	1.892	0.072	26.127	0.000
314	##	.A38	3.903	0.073	53.138	0.000
315	##	. A39	2.205	0.074	29.698	0.000
316	##	.A40	1.829	0.072	25.382	0.000
317	##	. A41	3.903	0.078	49.869	0.000
318	##	mach	0.000			
319	##	narc	0.000			
320	##	psyc	0.000			
321	##					
322	##	Variances:				
323	##		Estimate	Std.Err	z-value	P(> z)
324	##	.A30	1.474	0.124	11.919	0.000
325	##	.A31	1.707	0.129	13.240	0.000
326	##	.A32	0.990	0.075	13.148	0.000
327	##	.A33	0.863	0.076	11.335	0.000
328	##	. A34	1.276	0.095	13.396	0.000
329	##	. A35	1.227	0.093	13.238	0.000
330	##	. A36	1.241	0.099	12.522	0.000
331	##	. A37	1.593	0.120	13.220	0.000
332	##	.A38	1.407	0.109	12.936	0.000
333	##	. A39	0.938	0.085	11.028	0.000
334	##	.A40	1.522	0.116	13.139	0.000

335	##	. A41	1.528	0.119	12.827	0.000
336	##	mach	0.903	0.151	5.989	0.000
337	##	narc	0.112	0.039	2.896	0.004
338	##	psyc	0.487	0.099	4.944	0.000

We looked at structural invariance as well as latent means (Meredith, 1993; Steinmetz, Schmidt, Tina-Booh, Wieczorek, & Schwartz, 2009).

Discussion

References 342 Aust, F., & Barth, M. (2020). papaja: Create APA manuscripts with R Markdown. 343 Retrieved from https://github.com/crsh/papaja 344 Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2021). 345 semTools: Useful tools for structural equation modeling. Retrieved from https://CRAN.R-project.org/package=semTools Meredith, W. (1993). Measurement invariance, factor analysis and factorial 348 invariance. Psychometrika, 58(4), 525-543. 349 R Core Team. (2020). Foreign: Read data stored by 'minitab', 's', 'SAS', 'SPSS', 350 'stata', 'systat', 'weka', 'dBase', ... Retrieved from 351 https://CRAN.R-project.org/package=foreign 352 R Core Team. (2021). R: A language and environment for statistical computing. 353 Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ 355 Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal 356 of Statistical Software, 48(2), 1–36. Retrieved from 357 https://www.jstatsoft.org/v48/i02/ 358 Steinmetz, H., Schmidt, P., Tina-Booh, A., Wieczorek, S., & Schwartz, S. H. (2009). 359 Testing measurement invariance using multigroup CFA: Differences between 360 educational groups in human values measurement. Quality & Quantity, 43(4), 361 599–616. 362 Yentes, R. D., & Wilhelm, F. (2021). Careless: Procedures for computing indices of 363 careless responding. 364

	Constrained parameters	Free parameters	comparison model
configural	FMean (=0)	fl+inter+res+var	
Weak/loading invariance	fl+Fmean (=0)	inter+res+var	configural
Strong/scalar invariance	fl+inter	res+var+Fmean*	Weak/loading invariance
strict invariance	fl+inter+res	Fmean*+var	Strong/scalar invariance

Note. fl= factor loadings, inter = item intercepts, res = item residual variances, Fmean = mean of latent variable, var = variance of latent variable

Figure 1. Steps for measurement invariance (taken from Xu, 2012).

^{*}Fmean is fixed to 0 in group 1 and estimated in the other group(s)