Tema 1 - Trabajando con R

Juan Gabriel Gomila & María Santos

Conociendo R

¿Qué es R?

- Entorno de programación para el análisis estadístico y gráfico de datos
- Software libre
- Sintaxis sencilla e intuitiva
- Enorme comunidad de usuarios (Comprehensive R Archive Network, CRAN)
- > ¿ Aún tenéis dudas de por qué usarlo? Haz click aquí

¿Qué es RStudio?

En este curso usaremos RStudio como interfaz gráfica de usuario de R para todos los sistemas operativos

Es un entorno integrado para utilizar y programar con R

Cómo instalar R

Si sois de Windows o Mac

- 1. Id a CRAN
- Pulsad sobre el enlace correspondiente a vuestro sistema operativo
- 3. Seguid las instrucciones de instalación correspondientes

Si trabajáis con Ubuntu o Debian

- 1. Abrid la terminal, estando conectados a internet
- 2. Introducid lo siguiente: sudo aptitude install r-base

Cómo instalar RStudio

- 1. Obtener RStudio
- Solo si utilizáis Linux, ejecutad en una terminal la siguiente instrucción para completar la instalación: sudo dpkg -i rstudio-<version>-i386.deb, donde version refiere a la versión concreta que se haya descargado

Trabajando con RStudio

Cómo pedir ayuda

- ▶ help(): obtener ayuda por consola
- ??...: obtener ayuda por consola
- Pestaña Help de Rstudio
- ► Cheat Sheet de RStudio
- Buscar en San Google (stackoverflow, R project...)
- Foro del curso

Paquetes: cómo instalarlos y cargarlos

Paquete. Librería con funciones y datos que no necesariamente vienen instaladas de serie

- install.packages("nombre_paquete", dep = TRUE):
 instala o actualiza un paquete de R
- library(nombre_del_paquete): carga un paquete ya instalado

Utilizando R como calculadora

Calculadora básica - Operaciones

Código	Operación
+	Suma
-	Resta
*	Multiplicación
/	División
^	Potencia
%/%	Cociente entero
%%	Resto de división entera

Calculadora básica - Operaciones

•	Código	Significado
NaN Indeterminación (Not a Number	pi	π
•	Inf	∞
NA Valor desconocido (Not Availabl	NaN	Indeterminación (Not a Number)
	NA	Valor desconocido (Not Available)

Calculadora básica - Operaciones

```
2+2
[1] 4
77%/%5
[1] 15
77%%5
[1] 2
```

Calculadora básica - Funciones

Código	Función
sqrt(x)	\sqrt{x}
exp(x)	e^{x}
log(x)	ln(x)
log10(x)	$\log_{10}(x)$
log(x,a)	$\log_a(x)$
abs(x)	x

Calculadora básica - Funciones

```
sqrt(9)
[1] 3
log(exp(1))
[1] 1
log(1000, 10)
[1] 3
log10(1000)
[1] 3
```

Código	Operación
factorial(x)	x!
choose(n,m)	$\binom{n}{m}$
	•

- Número factorial. Se define como número factorial de un número entero positivo n como $n! = n \cdot (n-1) \cdots 2 \cdot 1$
- Coeficiente binomial. Se define el coeficiente binomial de n sobre m como

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Triángulo de Pascal.

mathdots yhmath mathdots MnSymbol

que se corresponde con . . .


```
factorial(5)
[1] 120
choose(4,2)
[1] 6
factorial(6)
[1] 720
factorial(5)*6
[1] 720
```

Trigonometría en radianes

Código	Función
sin(x)	sin(x)
cos(x)	cos(x)
tan(x)	tan(x)
asin(x)	arcsin(x)
acos(x)	arccos(x)
atan(x)	arctan(x)

Trigonometría en radianes

```
sin(pi/2)
[1] 1
cos(pi)
[1] -1
tan(0)
[1] 0
```

Trigonometría en radianes

Un pequeño adelanto

x = seq(0,2*pi,0.1)

Números en coma flotante

Código	Función
print(x,n)	Muestra las <i>n</i> cifras significativa del número <i>x</i>
round(x,n)	Redondea a n cifras significativas un resultado o vector numérico x
floor(x)	$\lfloor x \rfloor$, parte entera por defecto de x
ceiling(x)	[x], parte entera por exceso de x
trunc(x)	Parte entera de x , eliminando la parte decimal

Números en coma flotante

```
print(pi,5)
[1] 3.1416
round(pi,5)
[1] 3.14159
floor(pi)
[1] 3
ceiling(pi)
[1] 4
```

Variables y funciones

- nombre_variable = valor: define una variable con dicho valor
- nombre_función = function(variable){función}:
 define una función

```
miVariable = 4
doble = function(x){2*x}
doble(miVariable)
```

```
[1] 8
cuadrado = function(x){x^2}
cuadrado(miVariable)
```

[1] 16

Código	Función
a+bi	Número complejo
complex(real=,imaginary=.Nú)mero complejo en forma	
binómica	
$\verb complex(modulus=, \verb argument \verb Mume o complejo en forma polar $	

Código	Función
sqrt(as.complex(-x))	$\sqrt{-x}$
Re(x)	Parte real de x
Im(x)	Parte imaginaria de x
Mod(x)	Módulo de x
Arg(x)	Argumento de x
Conj(x)	Conjugado de x

```
z = 2+3i
z2 = complex(real = 2, imaginary = -3)
Re(z)
[1] 2
Im(z)
[1] 3
Conj(z2)
[1] 2+3i
```

