Introduction to Bayesian inference

End of course data analysis project

The Center for Disease Control (CDC) reports the vaccination coverage of Varicella among young children. Varicella, commonly known as chicken- pox, is a highly contagious viral infection caused by the varicella-zoster virus (VZV). Vaccination against chickenpox has been highly effective in reducing the incidence and severity of the disease. In the United States, vaccination against varicella has been part of the routine childhood immunization sched- ule since the mid-1990s. Since the vaccine's introduction, there has been a dramatic decline in the number of chickenpox cases, hospitalizations, and deaths associated with the disease. The target for vaccination coverage of varicella (chickenpox) in the United States, as set by the Centers for Dis- ease Control and Prevention (CDC), is typically around 90% or higher for children. This high coverage rate is aimed at achieving herd immunity and preventing outbreaks of chickenpox within communities.

Project 1: Insurance

The next table summarizes, based on a survey, the number of children in the birth cohort 2014-2017 that had at least one dose of the Varicella vaccine. It gives the number of vaccinated children (Vaccinated) amongst the number of children in the survey (Sample Size). The information is provided for 5 regions of the US, and split according to insurance status (private insurance, uninsured or any Medicaid).

Geography	Insurance	Vaccinated	Sample Size
North Carolina	Any Medicaid	380	419
North Carolina	Private Insurance Only	632	673
North Carolina	Uninsured	28	34
Georgia	Any Medicaid	363	396
Georgia	Private Insurance Only	527	576
Georgia	Uninsured	36	50
Wisconsin	Any Medicaid	282	332
Wisconsin	Private Insurance Only	514	548
Wisconsin	Uninsured	16	34
Florida	Any Medicaid	446	490
Florida	Private Insurance Only	588	628
Florida	Uninsured	28	39
Mississippi	Private Insurance Only	400	441
Mississippi	Uninsured	27	32

Question 1

Derive analytically the posterior of the vaccination coverage per ge- ography and insurance group. Use a conjugate prior that (1) reflects no knowledge on the vaccination coverage, and (2) reflects that vac- cination coverage is typically around 90% or higher. Give posterior summary measures of the vaccination coverage per geography and in- surance group. Is the choice of the prior impacting your results?

Theoretical considerations

The outcome Vaccinated/Not Vaccinated follows a Bernouilli distribution with parameter p:

$V: Vaccination status V \in \{0,1\} \ V \sim \mathcal{B}ern(p)$

It is known from theory that the sum of n i.i.d Bernoulli random variables follows a Binomial distribution. This will be used to model the sample outcome: the number of vaccinated people V_s in a random sample of size n:

$$V_s = \sum_{i}^{n} V_i \sim \mathcal{B}inom(n, \theta)$$

where θ is the parameter of interest - the vaccine coverage.

In the course, we saw that the Beta distribution is the conjugate prior for binomially distributed data:

Distribution	Formula
Prior	$p(\theta) = \mathcal{B}eta(\alpha, \beta)$
Likelihood	$p(y \mid \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n - k}$
Posterior	$p(\theta \mid y) = \mathcal{B}eta(\alpha + k, \beta + n - k)$

The summary measures for the Beta distribution are defined as follows:

Summary Measure	Formula
Mean Median Mode	$\begin{array}{l} \frac{\alpha}{\alpha+\beta} \\ \text{See Note} \\ \frac{\alpha-1}{\alpha+\beta-2} \text{ for } \alpha, \beta > 1 \end{array}$

Note: The median of the Beta distribution does not have a simple closed form expression. It can be approximated numerically or using statistical software.

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 14 Unobserved stochastic nodes: 3

Total graph size: 86

Initializing model

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 14

Unobserved stochastic nodes: 7

Total graph size: 222

Initializing model

- [1] "FL_Medicaid"
- [1] "FL_Private"
- [1] "FL_Uninsured"
- [1] "MS_Private"
- [1] "MS_Uninsured"
- [1] "GA_Medicaid"
- [1] "GA_Private"
- [1] "GA_Uninsured"
- [1] "WI_Medicaid"
- [1] "WI_Private"
- [1] "WI Uninsured"
- [1] "chain"

Choice of prior distributions

(1) No prior knowledge

In order to reflect no prior knowledge on the vaccine coverage, the weakly-informative prior Beta(1,1) will be used, which is equivalent to the uniform distribution over [0,1].

(2) Vaccine coverage >90%

For modeling prior knowledge that vaccine coverage is about 90%, we chose the Beta(150, 7) distribution.

Comparison of priors

Results

4

Table 4: Posterior distribution parameters and summary measures per geography for the two different Beta priors

			Posterior parameters and summary measures												
			Beta(1,1) prior							Beta(150,7) prior					
Geography	Insurance	alpha	beta	mean	mode	var	HPD LL	HPD UL	alpha	beta	mean	mode	var	HPD LL	HPD UL
NC	Medicaid	381	40	0.905	0.907	0.014	0.875	0.931	530	46	0.920	0.922	0.011	0.897	0.941
NC	Private	633	42	0.938	0.939	0.009	0.918	0.955	782	48	0.942	0.943	0.008	0.925	0.957
NC	Uninsured	29	7	0.806	0.824	0.065	0.664	0.916	178	13	0.932	0.937	0.018	0.892	0.963
GA	Medicaid	364	34	0.915	0.917	0.014	0.885	0.940	513	40	0.928	0.929	0.011	0.905	0.948
GA	Private	528	50	0.913	0.915	0.012	0.889	0.935	677	56	0.924	0.925	0.010	0.903	0.942
GA	Uninsured	37	15	0.712	0.720	0.062	0.583	0.825	186	21	0.899	0.902	0.021	0.854	0.936
WI	Medicaid	283	51	0.847	0.849	0.020	0.807	0.884	432	57	0.883	0.885	0.014	0.854	0.910
WI	Private	515	35	0.936	0.938	0.010	0.915	0.955	664	41	0.942	0.943	0.009	0.923	0.958
WI	Uninsured	17	19	0.472	0.471	0.082	0.314	0.634	166	25	0.869	0.873	0.024	0.818	0.913
FL	Medicaid	447	45	0.909	0.910	0.013	0.882	0.932	596	51	0.921	0.922	0.011	0.899	0.941
FL	Private	589	41	0.935	0.936	0.010	0.914	0.953	738	47	0.940	0.941	0.008	0.923	0.956
FL	Uninsured	29	12	0.707	0.718	0.070	0.561	0.834	178	18	0.908	0.912	0.021	0.864	0.944
MS	Private	401	42	0.905	0.907	0.014	0.876	0.931	550	48	0.920	0.921	0.011	0.897	0.940
MS	Uninsured	28	6	0.824	0.844	0.064	0.681	0.930	177	12	0.937	0.941	0.018	0.898	0.967

nvestigate whether the vaccination coverage is associated with the insurance status using a logistic regression model Yij Binom(ij ,Nij) with logit(ij) = 0 + 1IAnyMedicaid,ij + 2IUninsured,ij where i is the location, j is the insurance status, ij is the vaccination coverage and I. are dummy variables. Assume non-informative priors for the parameters to be estimated. Write and explain the code in BUGS language

```
model
   {
2
      for (t in 1:T) {
        # Likelihood
        y[t] ~ dbin(p[t], K[t])
5
        # conditional mean model using link function
6
        logit(p[t]) \leftarrow alpha_0 + ins_1 * x_1[t] + ins_2 * x_2[t]
     }
      # Priors
10
      alpha_0 ~ dnorm(0.0,0.01)
      ins_1 \sim dnorm(0.0, 0.01)
12
      ins_2 \sim dnorm(0.0, 0.01)
13
14
      # Vaccine coverage per Insurance group
16
      pi_private <- exp(alpha_0)/(1+exp(alpha_0))</pre>
17
      pi_medicaid <- exp(alpha_0 + ins_1)/(1+exp(alpha_0 + ins_1))</pre>
      pi_uninsured <- exp(alpha_0 + ins_2)/(1+exp(alpha_0 + ins_2))</pre>
20
      # Difference between vaccine coverage per insurance group
21
      diff_priv_medicaid <- pi_private - pi_medicaid
22
      diff_priv_uninsured <- pi_private - pi_uninsured
23
24
```

Likelihood function and model specification

For each row t in the dataset, the outcome y[t] (number of vaccinated children in the sample) is specified as drawn from a Binomial distribution with parameters p[t] and sample size K[t]. We also specify the conditional mean model for this likelihood function using the logit link function.

Prior distribution

As prior distribution for all parameters (intercept and indicator variables for the insurance group), a vague prior is chosen : $\mathcal{N}(\mu = 0, \tau = 0.01)$.

Quantities of interest During each MCMC run, the vaccine coverage per insurance group is calculated using the inverse logit transformation, this will give access to the posterior distribution of vaccine coverage per insurance group. Furthermore, the differences between vaccine coverages are calculated which will be needed to answer Question 6.

Question 3

Run the MCMC method and check convergence of the MCMC chains. Give the details on how you checked convergence.

MCMC run summary

```
alpha_0
                       2.568
                               0.072 2.429
                                               2.519
                                                       2.566
                                                                2.615
                                                                        2.712
                                             -0.458
                                                      -0.383
alpha_1
                      -0.383
                               0.110 -0.598
                                                               -0.309
                                                                       -0.166
alpha 2
                      -1.647
                               0.177 - 1.991
                                              -1.767
                                                      -1.648
                                                               -1.527
                                                                       -1.299
{\tt diff\_priv\_medicaid}
                       0.030
                               0.009 0.013
                                                                0.036
                                               0.024
                                                       0.030
                                                                        0.048
                       0.215
                               0.033 0.152
                                               0.192
                                                       0.214
                                                                0.237
                                                                        0.282
diff_priv_uninsured
pi_medicaid
                       0.899
                               0.007
                                      0.883
                                               0.894
                                                       0.899
                                                                0.904
                                                                        0.913
                       0.929
                               0.005
                                      0.919
                                               0.925
                                                       0.929
                                                                0.932
                                                                        0.938
pi_private
                       0.714
                               0.033 0.647
                                               0.692
                                                       0.715
                                                                0.737
                                                                        0.776
pi_uninsured
deviance
                     102.273
                               2.443 99.490 100.499 101.634 103.370 108.654
                      Rhat n.eff
alpha_0
                     1.002 1700
                     1.002 2300
alpha_1
alpha_2
                     1.001 38000
diff_priv_medicaid 1.002 2800
diff_priv_uninsured 1.001 11000
pi_medicaid
                     1.001 20000
pi_private
                     1.002
                            1700
                     1.001
                           5200
pi_uninsured
                     1.001 38000
deviance
```

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

```
DIC info (using the rule: pV = var(deviance)/2) pV = 3.0 and DIC = 105.3 DIC is an estimate of expected predictive error (lower deviance is better).
```

Convergence checks

Traceplots

Density plots per chain

Posterior Density by Parameter and Chain

Autocorrelation plot

\hat{R} Potential scale reduction factors:

	Point	est.	Upper	C.I.
alpha_0		1		1.01
alpha_1		1		1.01
alpha_2		1		1.00

Multivariate psrf

1

Geweke diagnostics

[[1]]

```
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
alpha_0 alpha_1 alpha_2
-1.6747 0.7104 0.6236
```

[[2]]

```
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
alpha_0 alpha_1 alpha_2
0.9378 -0.5204 -0.4942
```

Question 4

Make a plot of the posterior of the model parameters and give posterior summary measures. Interpret the results.

Posterior Density by Parameter

Figure 1

Table 5

Parameter	Sumi	mary meas	95% HPI	D interval	
	Mean	Median	SD	LL	UL
alpha_0	2.568	2.566	0.072	2.424	2.706
$alpha_1$	-0.383	-0.383	0.110	-0.595	-0.163
alpha_2	-1.647	-1.648	0.177	-1.990	-1.299

Plots of posterior densities and summary measures of the model parameters are given in Figure 1 and Table 5, respectively.

With Private Insurance Only as reference category the interpretation of the parameters is as follows:

- α_0 gives the log(odds) of Vaccinated vs. Non-Vaccinated in the private insurance group
- α_1 gives the change in log(odds) in the Medicaid group vs. the private Insurance group, the log(odds) in the Medicaid group are given by $\alpha_0 + \alpha_1$

• α_2 gives the change in log(odds) in the Uninsured group vs. the private Insurance group, the log(odds) in the Uninsured group are given by $\alpha_0 + \alpha_2$

Numerically, the posterior mean of α_0 is estimated at 2.568 and with a posterior probability of 95% α_0 lies in [2.424, 2.706]. The posterior estimates for α_1 and α_2 can be read in the same manner from Table 5.

Question 5

Give the posterior estimate of the vaccination coverage per region and insurance status. Compare with the analytical results you obtained in Question 1.

The vaccine coverage in a given group can be obtained from the log(odds) (see model code Question 3):

$$\pi = \frac{\exp(log(odds))}{1 + \exp(log(odds))}$$

Posterior estimates for the mean vaccine coverage per region and insurance status are given in Table 6 and Figure 2.

Table 6: Posterior estimates of mean vaccine coverages from the logistic regression model vs. estimates from conjugate pair modeling. Subscripts indicate whether the esimates was obtained from logistic regression or the chosen prior distribution, respectively. $\Delta_{Beta(\alpha,\beta)}$ gives the difference between posterior estimates from the logistic regression model and conjugate pair modeling. Vaccine coverage for MS/Medicaid can only be obtained from the logistic regression model.

Geo.	Ins. k	n	$\bar{\pi}_{logreg}$	$\bar{\pi}_{Beta(1,1)}$	$\bar{\pi}_{Beta(150,7)}$	$\Delta_{Beta(1,1)}$	$\Delta_{Beta(150,7)}$
FL	Medicaid446	490	0.899	0.909	0.921	-0.010	-0.022
FL	Private 588	628	0.929	0.935	0.940	-0.006	-0.011
FL	Uninsure28	39	0.714	0.707	0.908	0.007	-0.194
GA	Medicaid863	396	0.899	0.915	0.928	-0.016	-0.029
GA	Private 527	576	0.929	0.913	0.924	0.016	0.005
GA	Uninsure 36	50	0.714	0.712	0.899	0.002	-0.185
MS	Private 400	441	0.929	0.905	0.920	0.024	0.009
MS	Uninsure27	32	0.714	0.824	0.937	-0.110	-0.223
MS	MedicaidNA	NA	0.899	NA	NA	NA	NA
NC	Medicaid880	419	0.899	0.905	0.920	-0.006	-0.021
NC	Private 632	673	0.929	0.938	0.942	-0.009	-0.013
NC	Uninsure28	34	0.714	0.806	0.932	-0.092	-0.218
WI	Medicaid282	332	0.899	0.847	0.883	0.052	0.016
WI	Private 514	548	0.929	0.936	0.942	-0.007	-0.013
WI	Uninsure l 6	34	0.714	0.472	0.869	0.242	-0.155

Question 6

Based on the logistic regression model, what is the probability (a posteriori) that coverage amongst children that have private insurance is higher than amongst children that have any medicaid? And compared to children with no insurance?

To answer this question, the differences $\pi_{private} - \pi_{medicaid}$ and $\pi_{private} - \pi_{uninsured}$ were incorporated and observed during the MCMC run of the model specified in Question 3. Posterior densities and empirical CDF are shown in Figure 3.

The probabilities of interest defined below and can be approximated by using the posterior samples from the MCMC runs :

Figure 2: Differences between posterior means of vaccine coverage per region and insurance status obtained from logistic regression and conjugate pair modeling. Differences are most pronounced for the Uninsured group in MS, NC, WC when using a Beta(1,1)prior and all states when using a Beta(150,7) prior.

Figure 3

```
 \begin{array}{l} 1. \ \ P(\pi_{priv}>\pi_{medicaid}) = P(\pi_{priv}-\pi_{medicaid}>0) = 0.99979 \\ 2. \ \ P(\pi_{priv}>\pi_{uninsured}) = P(\pi_{priv}-\pi_{uninsured}>0) = 1 \end{array}
```

Secondly, investigate whether the vaccination coverages are distinct at the different locations by adding a location-specific intercept.

$$logit(\pi_{ij}) = \alpha_{0i} + \alpha_1 I_{AnyMedicaid} + \alpha_2 I_{Uninsured}$$

Assume non-informative priors for the parameters to be estimated. Write the code in BUGS language. Give a brief summary of the convergence checks you performed. Compare posteriors of vaccination coverages with results from Question 1.

```
model
  # Likelihood
  for (t in 1:T) {
    y[t] ~ dbin(p[t], K[t])
    logit(p[t]) <- inprod(beta, X[t,])</pre>
 }
  # Priors
  for (i in 1:7){
    beta[i] ~ dnorm(0.0,0.01)
  # Vaccine coverage
  for (t in 1:T){
    #logodds
    lo[t] <- inprod(beta, X[t,])</pre>
    #convert to probability / vaccine coverage
    coverage[t] \leftarrow exp(lo[t]) / (1 + exp(lo[t]))
  }
}
```

Convergence was checked in a similar way as for the model defined in Question 3. In brief, trace plots showed the expected caterpillar pattern, posterior densities per parameter and chain showed superposed well and autocorrelation plots revealed decreasing autocorrelation with increasing lag number - all indicating convergence.

Table 7: Posterior estimates of mean vaccine coverages from the logistic regression model including a region specific intercept vs. estimates from conjugate pair modeling. Subscripts indicate whether the esimates was obtained from logistic regression or the chosen prior distribution, respectively. $\Delta_{Beta(\alpha,\beta)}$ gives the difference between posterior estimates from the logistic regression model and conjugate pair modeling. Vaccine coverage for MS/Medicaid can only be obtained from the logistic regression model.

Geo.	Ins. k	n	$\bar{\pi}_{logreg}$	$\bar{\pi}_{Beta(1,1)}$	$\bar{\pi}_{Beta(150,7)}$	$\Delta_{Beta(1,1)}$	$\Delta_{Beta(150,7)}$
$\overline{\mathrm{FL}}$	Medicaid446	490	0.907	0.909	0.921	-0.001	-0.014
FL	Private 588	628	0.937	0.935	0.940	0.002	-0.003
FL	Uninsure28	39	0.741	0.707	0.908	0.034	-0.167
GA	Medicaid863	396	0.896	0.915	0.928	-0.018	-0.031
GA	Private 527	576	0.929	0.913	0.924	0.016	0.006
GA	Uninsure 36	50	0.718	0.712	0.899	0.006	-0.181
MS	Private 400	441	0.918	0.905	0.920	0.013	-0.002
MS	Uninsure217	32	0.685	0.824	0.937	-0.138	-0.251
MS	MedicaidNA	NA	0.880	NA	NA	NA	NA
NC	Medicaid880	419	0.911	0.905	0.920	0.006	-0.009

Geo.	Ins. k	n	$\bar{\pi}_{logreg}$	$\bar{\pi}_{Beta(1,1)}$	$\bar{\pi}_{Beta(150,7)}$	$\Delta_{Beta(1,1)}$	$\Delta_{Beta(150,7)}$
$\overline{\mathrm{NC}}$	Private 632	673	0.940	0.938	0.942	0.002	-0.002
NC	Uninsure28	34	0.751	0.806	0.932	-0.054	-0.181
WI	Medicaid282	332	0.872	0.847	0.883	0.025	-0.011
WI	Private 514	548	0.912	0.936	0.942	-0.024	-0.030
WI	Uninsure k 6	34	0.667	0.472	0.869	0.195	-0.202

Figure 4

Compare the vaccination coverage in each of the location with the vaccination coverage in North Carolina:

$$\theta_{ij} = \frac{\pi_{ij}}{\pi_{\text{North Carolina}, i}}$$

Interpret the results.

	lower	upper
FL_Medicaid	0.9683710	1.0229661
FL_Private	0.9782497	1.0153829
FL_Uninsured	0.9100095	1.0625293
MS_Private	0.9488678	1.0058223
MS_Uninsured	0.8054099	1.0174217
GA_Medicaid	0.9549517	1.0128663
GA_Private	0.9693647	1.0091692
GA_Uninsured	0.8742395	1.0320794
WI_Medicaid	0.9246291	0.9892471
WI_Private	0.9480345	0.9927000
$\underline{\text{WI_Uninsured}}$	0.8041088	0.9690978

Make a caterpillar plot of the estimated coverage (per location and insurance status). Include also the observed vaccination proportion in the plot.

Question 10

No data is given for children insured by Any medicaid in Mississippi. Predict the number of vaccinated individuals in Mississippi among 519 children with any medicaid