Практическое занятие №33.

Промежутки возрастания и убывания, точки экстремума

Повторим все основные определения, которые изучили на предыдущих занятиях.

Способ представления функции			
Символический	Словесный	Графический	
y = f(x) Область определения: D = D(f) D(f) = [a; b]	Область определения функции— множество значений аргумента, при которых функция задана, определена. Геометрически— это проекция графика функции на ось х		
Нули функции: $f(x) = 0$ Множество нулей: $\{x_1, x_2, x_3\}$	Нули функции — точки, в которых функция обращается в нуль. Эти точки являются решениями уравнения $f(x) = 0$. Геометрически — это абсциссы точек пересечения графика функции с осью x	x_2 x_3 x_1 x_2 x_3	
Промежутки постоянного знака: $f(x) > 0 \text{ и } f(x) < 0$ $f(x) > 0 \text{ : } [a; x_1) \cup (x_2; x_3)$ $f(x) < 0 \text{ : } (x_1; x_2) \cup (x_3; b]$	Промежутки постоянного знака — множества решений неравенств $f(x) > 0$ и $f(x) < 0$. Геометрически — это интервалы оси x , соответствующие точкам графика, лежащим выше (или ниже) этой оси	x_2 x_3 x_4 x_5 x_5 x_5	
Промежутки постоянного знака: $f(x) > 0 \text{ и } f(x) < 0$ $f(x) > 0 \text{ : } [a; x_1) \cup (x_2; x_5)$ $f(x) < 0 \text{ : } (x_1; x_2) \cup (x_3; b]$	Промежутки постоянного знака — множества решений неравенств $f(x) > 0$ и $f(x) < 0$. Геометрически — это интервалы оси x , соответствующие точкам графика, лежащим выше (или ниже) этой оси	x_2 x_3 x_3 x_4 x_5 x_4 x_5 x_5	
Промежутки монотонности: $f(x) \uparrow $ или $f(x) \downarrow $ $f(x) \uparrow : [m_1; m_2] \cup [m_5; b]$ $f(x) \downarrow : [a; m_1] \cup [m_2; m_5]$	Промежутки монотонности — промежутки оси x , на которых функция возрастает (промежутки возрастания) или убывает (промежутки убывания). Геометрически — это интервалы оси x , где график функции идет вверх или вниз	m_1 m_3 m_3 m_4 m_5	
Точки экстремума: x_{\max} и x_{\min} x_{\max} : m_2 x_{\min} : m_1 , m_5	Точки экстремума — точки, лежащие внутри области определения, в которых функция принимает самое большое (максимум) или самое малое (минимум) значения по сравнению со значениями в близких точках. Геометрически — около точек экстремума график функции выгибается выпуклостью вверх или вниз. Обычно точки экстремума разделяют промежутки монотонности	x_{max} x_{max} x_{max} x_{max} x_{max} x_{min}	

Наибольшее и наименьшее значения: $y_{\text{наи6}} \text{ и } y_{\text{наим}}$ $y_{\text{наи6}} = M \text{ при } x = m_2$ $y_{\text{наим}} = m \text{ при } x = m_3$	Говорят, что в точке x_0 функция f принимает наибольшее (наименьшее) значение, если $f(x_0) \ge f(x)$ ($f(x_0) \le f(x)$) для любого значения x . Само число $f(x_0)$ и называется наибольшим (наименьшим) значением функции. Геометрически — это ординаты самой высокой (самой низкой) точки графика	m_2 m_3 x
Область значений: $E = E(f)$ $E(f) = [m; M]$	Область значений функции— множество чисел, состоящее из всех значений функции. Геометрически— это проекция графика функции на ось у	

Таким образом, при исследовании функции, необходимо пользоваться схемой исследования функции. Данная схема имеет рекомендательный характер, т.к. функции различны, но основные пункты здесь отражены.

Схема исследования функции:

- 1. Найти область определения функции D(f)
- 2. Найти область значений функции E(f)
- 3. Является ли функция четной (нечетной). Является ли функция периодической.
- 4. Найти нули функции
- 5. Найти промежутки знакопостоянства (график функции лежит над осью OX «+», график функции лежит под осью OX «-»). Внимание! В промежутках указываются открытые интервалы т.к. f(x) > 0 или f(x) < 0 строгое неравенство, если нет других ограничений!
- 6. Найти промежутки возрастания (убывания) функции. Внимание! Смотрите на интервалы т.к. $f(x) \ge 0$ или $f(x) \le 0$ нестрогое неравенство, если нет других ограничений!
- 7. Найти точки экстремума (точки максимума и точки минимума)
- 8. Найти наибольшее (наименьшее) значения функции.

Рассмотрим пример исследования функции по данной схеме.

- 1. D(f) [-6: 6]
- 2. E(f) [-2: 5]
- 3. четная f(-x) = f(x)
- 4. f(x)=0 (нули функции) x=-5; x=-3; x=0; x=3; x=5
- 5. промежутки знакопостоянства

$$f(x) \ge 0 (+) [-6; -5) \cup (-3; 0) \cup (0; 3) \cup (5; 6]$$

 $f(x) \le 0 (-) (-5; -3) \cup (3; 5)$

6. промежутки возрастания, убывания

7. точки экстремума

$$x max = -2$$
, $f(-2)=3$; $x max = 2$, $f(2)=3$
 $x min = -4$, $f(-4)=-2$; $x min = 0$, $f(0)=0$; $x min = 4$, $f(4)=-2$

Задачи для самостоятельного решения.

Проведите по общей схеме исследование функции, заданной графиком.

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://infourok.ru/videouroki
- 3. http://www.cleverstudents.ru/