\mathbf{F}	EUP - MIEIC	FÍSICA I - EIC0010 - 2008/2009
N	OME:	LOG-IN FEUP:
Εx	came final	30 de Junho de 2009
	Duração: Duas horas. Com consulta de formulário. Pod nunca como meio de cópia ou de consulta!	de usar calculadora, mas apenas para fazer contas e
1.	(3 valores). Uma escada (ver figura à direita) está apoiada ne numa parede vertical (ponto B). Entre a escada e a superfiestático é μ , enquanto que o atrito da escada com a parede que o centro de gravidade da escada se encontra a metade o mínimo de μ , para garantir que a escada permaneça em equ	ície horizontal o coeficiente de atrito e vertical é desprezável. Admitindo do seu comprimento, calcule o valor
2.	$(5~{\rm valores}).$ Uma partícula com massa igual a 1 kg desloca-se s ${\rm SI},$ a força tangencial sobre a partícula é dada pela expressã	
	(a) Determine os pontos de equilíbrio do sistema.	// 6 m
	(b) Encontre as expressões para a energia potencial e a ener \boldsymbol{x} e da velocidade $\boldsymbol{v}.$	rgia mecânica, em função da posição
	(c) Escreva as equações de evolução e calcule a matriz jacob	piana.
	(d) Caracterize cada um dos pontos de equilíbrio do sistema	<u>A</u>
	(e) Desenhe, no espaço de fase, um ciclo, uma órbita homoc existirem (se algumas das 3 não existirem, diga quais).	elínica e uma órbita heteroclínica, se $\begin{array}{c c} & & \\ \hline & & 2.5 \text{ m} \\ \hline \end{array}$
	PERGUNTAS . <i>Cotação</i> : Respostas certas, 0.8, erradas resposta. Serão avaliadas apenas as respostas que apareçan rascunho).	
3.	aceleração que aumenta em função do tempo: $a=7t$ (unidades SI). No instante $t=0$, a partícula encontra-se em repouso no ponto $x=4$ m. Calcule a posição da partícula	6. Um sistema dinâmico com duas variáveis de estado tem exactamente dois pontos de equilíbrio, P e Q. O ponto P é ponto de sela e o ponto Q é foco repulsivo. Qual das seguintes afirmações sobre o sistema é verdadeira?
	em $t=5$ s.	(A) Podem existir ciclos.
	(A) 149.8 m (C) 929.0 m (E) 449.5 m	(B) Pode existir uma órbita heteroclínica.
	(B) 74.9 m (D) 374.6 m	(C) O sistema pode ser linear.
	Resposta:	(D) O sistema pode estar em estado de equilíbrio estável.
4.	Uma partícula desloca-se numa dimensão, sob a acção de	(E) Pode existir uma órbita homoclínica.
	uma força conservativa e uma força de atrito suficiente- mente fraca. Desprezando a força de atrito, o sistema tem	Resposta:
		7. A equação de van der Pol: $\ddot{x} + 2\epsilon(x^2 - 1)\dot{x} + x = 0$, para qualquer valor do parâmetro positivo ϵ , tem sempre um
	(A) nó repulsivo	único ponto de equilíbrio em $x=\dot{x}=0$ e um ciclo limite
	(B) nó atractivo	atractivo. Designando o tipo de ponto de equilíbrio assim:
	(C) ponto de sela	1. foco atractivo. 4. nó repulsivo.
	(D) foco repulsivo	2. foco repulsivo. 5. ponto de sela.
	(E) foco atractivo	3. nó atractivo.
	Resposta:	
5 .	As equações de evolução de um sistema linear, de segunda	Que tipo de ponto de equilíbrio pode ter a equação de van der Pol?
	ordem, são: $\dot{x} = ax + by$ $\dot{y} = cx + dy$	
	onde a, b, c e d são parâmetros reais, todos positivos excepto b que é negativo. Assim, o ponto de equilíbrio é:	(A) 1 ou 2 (C) 3, 4 ou 5 (E) 1 ou 3 (B) 3 ou 4 (D) 2 ou 4
	(A) atractivo (D) nó	` ,
	(B) repulsivo (E) ponto de sela (C) foco	Resposta:

podem ser usadas para medir: (A) Presa-predador. (B) Aceleração. (C) Trabalho. (D) De duas espécies com competição. (D) De duas espécies com competição.	
(B) Aceleração. (C) Trabalho (C) Trabalho	
(C) De duas especies com cooperação.	
(C) Trabalho.	
(D) De duas especies com compenção.	
(D) Velocidade. (E) Linear.	
(E) Quantidade de movimento.	
Resposta:	
9. Um objecto desloca-se numa trajectória curva, mantendo o módulo da sua velocidade constante. Qual das seguintes afirmações é verdadeira? 15. O comando a:rk([f,g],[y,z],[0,1],[x,0,1,0.1]) do Maxima foi usado para resolver numerica tema de equações. Qual dos comandos seguintes de equações.	
(A) A aceleração é tangente à trajectória. uma lista com os valores de y?	
(B) O módulo da aceleração é constante. (A) makelist(a[2][i],i,1,11)	
(C) A aceleração é nula. (B) makelist(a[3][i],i,1,11)	
(D) A aceleração é constante. (C) makelist(a[i][3],i,1,11)	
(E) A aceleração é perpendicular à trajectória. (D) makelist(a[i][1],i,1,11)	
Resposta: (E) makelist(a[i][2],i,1,11)	
10. A força resultante sobre uma partícula que se desloca so-	
bre o eixo dos $y \in F = (y-3)(11-y)\vec{e}_y$. Em $t=0$ a partícula encontra-se em repouso no ponto $y=7$. Onde se 16. Um sistema dinâmico com duas variáveis o encontrará a partícula após um tempo muito elevado? uma curva de evolução com conjunto limite	
(A) Oscilando à volta de $y = 11$ ponto P. Em relação à lista seguinte:	
(B) Oscilando à volta de $y = 3$ 1. foco atractivo. 4. nó repulsiv	О.
(C) Muito afastada, em $y \to \infty$ 2. foco repulsivo. 5. centro.	
(D) Em $y = 11$ 3. nó atractivo.	
(E) $Em y = 3$	
Resposta: Que tipo de ponto de equilíbrio pode ser o p	ponto P?
11. Um sistema não linear com duas variáveis de estado tem um foco atractivo num ponto P. Quais poderão ser os dois (B) 3 ou 4 (D) 1 ou 2	5
valores proprios da matriz jacobiana no ponto P?	
valores próprios da matriz jacobiana no ponto P? Resposta:	
(A) 1 e 2 (C) 1 e -1 (E) 1+i e 1-i	
(A) 1 e 2 (C) 1 e -1 (E) 1+i e 1-i (B) -1+i e -1-i (D) -1 e -2 (E) 1+i e 1-i (D) -1 e -2 (D) -1 e -1 (D) -1 e -2 (D) -1 e -1 (D) -1 e -2 (D) -1 e -1 (D) -1	_
(A) 1 e 2 (C) 1 e -1 (E) 1+i e 1-i	ltura $y = 3 \text{ m}.$
(A) $1 e 2$ (C) $1 e -1$ (E) $1+i e 1-i$ (B) $-1+i e -1-i$ (D) $-1 e -2$ 17. Um bloco de massa $6 kg$ desce deslizando sob de um plano inclinado com base $x = 5$ m e a Admitindo que a aceleração da gravidade é calcule o módulo da reacção normal do plano em $t > 4$ s. Sabendo que a velocidade do objecto em $t = 0$ era $1 \vec{e}_x$ m/s, calcule a velocidade em $t = 6$ s.	ltura $y = 3 \text{ m.}$ $g = 9.8 \text{ m/s}^2,$
(A) $1 ext{ e } 2$ (C) $1 ext{ e } -1$ (E) $1 + i ext{ e } 1 - i$ (B) $-1 + i ext{ e } -1 - i$ (D) $-1 ext{ e } -2$ 17. Um bloco de massa 6 kg desce deslizando sob de um plano inclinado com base $x = 5 ext{ m e a}$ Admitindo que a aceleração da gravidade é calcule o módulo da reacção normal do plano em $t > 4 ext{ s. Sabendo que a velocidade do objecto em } t = 0$	ltura $y = 3 \text{ m.}$ $g = 9.8 \text{ m/s}^2,$
(A) $1 ext{ e } 2$ (C) $1 ext{ e } -1$ (E) $1 + i ext{ e } 1 - i$ (B) $-1 + i ext{ e } -1 - i$ (D) $-1 ext{ e } -2$ (E) $1 + i ext{ e } 1 - i$ (D) $-1 ext{ e } -2$ (E) $-1 ext{ e } -1 ext{ e } -1 $	ltura $y = 3 \text{ m.}$ $g = 9.8 \text{ m/s}^2,$
(A) $1 e 2$ (C) $1 e -1$ (E) $1+i e 1-i$ (B) $-1+i e -1-i$ (D) $-1 e -2$ (E) $1+i e 1-i$ (D) $-1+i e -1-i$ (D) $-1 e -2$ (D) $-1+i e -1-i$ (D) $-1 e -2$ (D	ltura $y = 3$ m. g = 9.8 m/s ² , sobre o bloco.
(A) $1 e 2$ (C) $1 e -1$ (E) $1+i e 1-i$ (B) $-1+i e -1-i$ (D) $-1 e -2$ (E) $1+i e 1-i$ (D) $-1+i e -1-i$ (D) $-1 e -2$ (D) $-1+i e -1-i$ (D) $-1 e -2$ (D	ltura $y = 3 \text{ m.}$ $g = 9.8 \text{ m/s}^2,$
Resposta: (A) $1 ext{ e } 2$ (C) $1 ext{ e } -1$ (E) $1 + i ext{ e } 1 - i$ (B) $-1 + i ext{ e } -1 - i$ (D) $-1 ext{ e } -2$ (E) $-1 ext{ e } -1 ext{ e } -1 - i$ (D) $-1 ext{ e } -2$ (E) $-1 ext{ e } -2$ (D) $-1 ext{ e } -2$ (D) $-1 ext{ e } -2$ (D) $-1 ext{ e } -2$ (E) $-1 ext{ e } -2$ (D) $-1 ext{ e } -2$ (E)	ltura $y = 3$ m. g = 9.8 m/s ² , sobre o bloco.
Resposta: (A) $1 e 2$ (C) $1 e - 1$ (E) $1 + i e 1 - i$ (B) $-1 + i e - 1 - i$ (D) $-1 e - 2$ Resposta: Resposta: 17. Um bloco de massa 6 kg desce deslizando sob de um plano inclinado com base $x = 5$ m e a Admitindo que a aceleração da gravidade é calcule o módulo da reacção normal do plano era $1 \vec{e}_x + 9t \vec{e}_y$ (SI) no intervalo $0 < t < 4$ s e nula em $t > 4$ s. Sabendo que a velocidade do objecto em $t = 0$ era $1 \vec{e}_x + 9t \vec{e}_y$ (D) $3.0 \vec{e}_x + 36.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (C) $3.0 \vec{e}_x + 18.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (C) $3.0 \vec{e}_x + 18.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (D) 50.42 N Resposta: (A) 58.80 N (C) 49.00 N (E) 60.42 N (B) 60.42 N (C) 60.42 N (E) 60.42 N (D) 60.42 N (E) 60.42 N (E) 60.42 N (E) 60.42 N (D) 60.42 N (E) 60.42 N (D) 60.42 N (E) 60.42 N (D) 60.42 N (D) 60.42 N (E) 60.42 N (D) 60.42 N (E) 60.42 N (D) 60.42 N (D) 60.42 N (E) 60.42 N (D) 60.42 N (D) 60.42 N (E) 60.42	ltura $y = 3$ m. g = 9.8 m/s ² , sobre o bloco.
Resposta: (A) $1 e 2$ (C) $1 e - 1$ (E) $1 + i e 1 - i$ (B) $-1 + i e - 1 - i$ (D) $-1 e - 2$ 17. Um bloco de massa 6 kg desce deslizando sob de um plano inclinado com base $x = 5$ m e a Admitindo que a aceleração da gravidade é calcule o módulo da reacção normal do plano era $1 \vec{e}_x + 9 t \vec{e}_y$ (SI) no intervalo $0 < t < 4$ s e nula em $t > 4$ s. Sabendo que a velocidade do objecto em $t = 0$ era $1 \vec{e}_x + 72.0 \vec{e}_y$ (D) $3.0 \vec{e}_x + 36.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (C) $3.0 \vec{e}_x + 18.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (C) $3.0 \vec{e}_x + 18.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (B) 25.21 N (C) 49.00 N (E) foi armazenada na variável J, no Maxima. O comando eigenvectors (J) produz: $[[[-1, -2], [1, 1]], [1, -1], [1, 1/3]]$ que tipo de ponto de equilíbrio é a origem? (A) ponto de sela. (D) foco atractivo.	ltura $y = 3$ m. g = 9.8 m/s ² , sobre o bloco.

Obscipting Fisica 1 Superpoting Fisica 1 Nume Jaime Villate Superpotential Fisica 1 Superpotential Fisica 1 PONTOS 1 e 4 Superpotential Fisica 1 PONTOS 1 e 4 Superpotential Fisica 1 PONTOS 1 e 4 Repurgação 1: $\frac{1}{2}$ Tai=0 \Rightarrow Repurgação 2: $\frac{1}{2}$ Tix=0 \Rightarrow Repurgação 3: $\frac{1}{2}$ Tix=0 \Rightarrow Repurgação 4: $\frac{1}{2}$ Tix=0 \Rightarrow Repu

|--|

	28	Speed 100's Bestelatio
pode ter postos de sela ou certos. Assimilação (2,0) e posto de sela (2,0) e von centro de sela (2,0) e vonto de sela (2,0) e posto	$42(-2)^{2} = -4 + 8 = 4$ $((2) = -\frac{2}{4} + 2 \cdot 2^{2} = 4$ $4e equi [lbrio instavel, Ué máximo te como X=0 é estável, Ué mínimo te como X=0 é estável ué mínimo te como = -\frac{2}{4} + 2 \cdot 2^{2} = 4$	heteralin's X
pade ter postas de sela ou cestras. Assimi. (-2,0) é posta de sela (0,0) é um centro de sela (2,0) é posta de sela	24 + 2-22 = 4 7 + 2-22 = 4 3 instavel, Uémá 5 éestável Uémá 6 osbita hetroclínica	122 2
1557 201-	4 7 2 6 6	
	= 1 /2 X X	or bita
28 8	$(-2)^2 = -4 + 8 = 4$ $((2) = -2 + 2.2^2$ $= equil(brio instave)$ $= como X = 0 e estave$ $= como X = 0 e estave$ $= como X = 0 e estave$	0,7
t se	$V(-2) = -(-2)^4 + 2(-2)^2 = -4 + 8 = 4$ $V(0) = 0$ $V(2) = -\frac{2}{4} + 2$ Seem poorbos de equilíbrio instant masse ponto: $C(2) = -\frac{2}{4} + 2$ al nesse ponto: $C(2) = -\frac{2}{4} + 2$ al nesse ponto: $C(2) = -\frac{2}{4} + 2$ $C(2) = -\frac{2}{4} + 2$	
20 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a	8 4 4 50 6 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
te ter portos de sela ou (2,0) é porto de sela (2,0) é um centro (2,0) é um centro te sela tragia petencial nos pon	10 20 X X X X X X X X X X X X X X X X X X	37
e ponto de se la ponto de se ponto de se la se l	2 (2)	
Sign of Sign o	7) 0 1 1	
ta 60 %		
6 6 6 8	8 + 3 0 4 - 2	
	7	1 25
(-2,0) (2,0) Energ	(1-2) = -(-2) $(10) = 0$ $(10) = 0$ $(10) = 0$ $(10) = 0$, cx
	$U(-2) = -\frac{1}{4}$ $U(0) = 0$ $por serem pontos$ $local em K = \pm 2$ $local nesse pom$	Wao existem orbitas
) por () () () () () () () () () (

Perguntas

3. A

6. E

9. E

12. D

15. E

4. E

7. D

10

10. A

13. C

16. C

5. B

8. B

11. B

14. D

17. D

NOME:	LOG-IN FEUP:

Exame de recurso Ponto 1 22 de Julho de 2009

Duração: Duas horas. Com consulta de formulário. Pode usar calculadora, mas apenas para fazer contas e nunca como meio de cópia ou de consulta!

- 1. (3 valores). Num tiro com arco (ver figura ao lado), a aceleração da flecha diminui linearmente em função da distância, s, desde um valor máximo inicial de 4800 m/s², na posição A, até zero, na posição B que se encontra 600 mm à direita de A. Calcule a velocidade com que sai disparada a flecha.
- 2. (5 valores). A equação de evolução dum sistema dinâmico de segunda ordem é: $\ddot{x} + \dot{x}^2 + 4x^2 = 4$.
 - (a) Escreva a equação de evolução na forma de um sistema autónomo com duas variáveis de estado.
 - (b) Encontre os pontos de equilíbrio do sistema.
 - (c) Determine a matriz jacobiana.
 - (d) Caracterize cada um dos pontos de equilíbrio.
 - (e) Se no instante t=0 o estado do sistema for $x_0=1, \dot{x}_0=1$, use o método de Euler para calcular o estado em t = 0.1, usando um incremento de tempo $\Delta t = 0.1$

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de Resposta (e não na folha de exame ou de rascunho).

3. O gráfico da figura representa a energia potencial U, em joules, em função da posição x, em metros, de uma partícula com massa igual a 4 kg; os valores no gráfico são $x_1 = 5$, $x_2 = 10$, $U_1 = 25$ e $U_2 = 100$. Se a partícula parte do repouso, na posição x_2 , com que velocidade chegará ao ponto x_1 ?

- (A) 3.06 m/s
- (C) 24.49 m/s
- (**E**) 12.25 m/s

- **(B)** 6.12 m/s
- (**D**) 7.96 m/s

Resposta:

4. A matriz jacobiana de um sistema dinâmico com variáveis de estado (x, y), é:

$$\left[\begin{array}{cc} y & x-1 \\ y+1 & x \end{array}\right]$$

Sabendo que (0, 0) é ponto de equilíbrio do sistema, determine que tipo de ponto é.

- (A) foco repulsivo
- (D) ponto de sela
- (B) nó atractivo
- (E) nó repulsivo
- (C) centro
- Resposta:
- 5. Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?

- **(D)** $\dot{y} = x + x y^2$
- (A) $\dot{y} = 2y 5y^2$ (B) $\dot{y} = 6y y^2$
 - **(E)** $\dot{y} = 2y^2 3y$
- (C) $\dot{y} = 2xy + 3y$

Resposta:

- 6. Qual das seguintes curvas de evolução é mais difícil de calcular em forma numérica?
 - (A) Uma órbita heteroclínica.
 - (B) Uma curva que entra num foco atractivo.
 - (C) Uma recta na direcção de um vector próprio.
 - (**D**) Uma curva que entra num nó atractivo.
 - (E) Um ciclo.

- 7. Uma bola, movendo-se com velocidade horizontal \vec{v} , choca com uma parede vertical. Imediatamente após o choque, a bola adquire a velocidade $-\vec{v}$. Relativamente à bola, verificou-se:
 - (A) Não conservação da energia cinética e conservação da componente vertical da quantidade de movimento.
 - (B) Não conservação da energia cinética e não conservação da quantidade de movimento.
 - (C) Não conservação da energia cinética e conservação da quantidade de movimento.
 - (D) Conservação da energia cinética e conservação da quantidade de movimento.
 - (E) Conservação da energia cinética e não conservação da quantidade de movimento.

1		
Resposta:		

8.	As equações de evolução de um sistema linear são: $\dot{x}=x+2y \qquad \dot{y}=x+y$ Que tipo de ponto de equilíbrio é a origem?	13.	De acordo com o critério de Bendixson, qual dos seguintes sistemas dinâmicos não pode ter nenhum ciclo, nem órbita homoclínica nem órbita heteroclínica?
	 (A) Foco atractivo. (B) Ponto de sela. (C) Nó repulsivo. (D) Foco repulsivo. (E) Centro. 		(A) $\dot{x} = 3xy$ $\dot{y} = 2xy$ (D) $\dot{x} = xy^2$ $\dot{y} = -x^2y$ (E) $\dot{x} = 2xy$ $\dot{y} = x^2y$ (C) $\dot{x} = xy$ $\dot{y} = x^3y$
	Resposta:		Resposta:
9.	Uma partícula desloca-se ao longo do eixo dos x de forma que a sua velocidade é dada pela expressão: $v(x) = b e^{-n x}$	14.	Considere um pêndulo ideal, sem forças de atrito. Qual das seguintes afirmações é verdadeira?
	onde b e n são duas constantes. Qual é a expressão para a aceleração da partícula em função da posição x ?		(\mathbf{A}) Os valores próprios da matriz jacobiana são sempre reais.
	(A) $n b^2 e^{-n x}$ (C) $-n b e^{-n x}$ (E) $-n b^2 e^{-n x}$ (B) $-n b^2 e^{-2 n x}$ (D) $-b e^{-(n+1)x}$		(B) Todos os pontos de equilíbrio são centros ou pontos de sela.
	Resposta:		(C) A variação do ângulo em função do tempo é uma função seno ou co-seno.
10.	As equações de um sistema de duas espécies com com-		(D) Todas as curvas de evolução são ciclos.
	petição são: $\dot{x} = x(2 - x - 0.5y), \ \dot{y} = y(2 - y - 0.5x)$		(E) É um sistema linear. Resposta:
	sabendo que as duas espécies coexistem em forma harmo-		
	niosa, calcule os valores de x e y após muito tempo.	15.	Na lista seguinte, qual pode ser o conjunto limite negativo de uma trajectória no espaço de fase?
	(A) 4/3 e 4/3 (C) 0 e 2 (E) 2 e 0 (B) 2/3 e 2/3 (D) 0 e 0		· · · · · · · · · · · · · · · · · · ·
			 (A) nó atractivo (B) centro (D) ciclo limite atractivo (E) ponto de sela
	Resposta:		(C) foco atractivo
11.	Um sistema dinâmico com duas variáveis de estado x e y tem um ponto de equilíbrio no ponto $x = 10, y = 5$. O gráfico mostra a evolução da variável x em função de tempo o continuado a explicação de estado x em função de tempo o continuado a explicação de estado x em função x em função de estado x em fu		Resposta: Um sistema diz-se autónomo se:
	tempo. Que tipo de ponto é esse ponto de equilíbrio?		(A) O seu estado não depende do tempo
	$\stackrel{x}{\uparrow}$		(B) Não depende de outros sistemas
	10		(C) A sua evolução a partir dum estado inicial é igual em diferentes instantes
	t		(D) Não tem nenhum ponto de equilíbrio instável
			(\mathbf{E}) Sobre ele não actua nenhuma força externa
	(\mathbf{A}) nó atractivo (\mathbf{D}) nó repulsivo		Resposta:
	(B) foco atractivo(C) centro(E) foco repulsivo	17.	Um automóvel desloca-se numa curva, com velocidade de módulo constante. A figura mostra o automóvel visto de
	Resposta:		cima e a força de resistência do ar, $\vec{F}_{\rm ar}$. Qual das cinco forças \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , \vec{F}_4 ou \vec{F}_5 representa melhor a força
12.	Um rapaz carrega uma mochila cheia de livros pendurada às costas. Considerando as forças seguintes:		exercida pelo chão sobre o automóvel?
	1. Peso da mochila e dos livros, na vertical.		$ \stackrel{F_1}{\uparrow} \stackrel{\vec{F_2}}{\nearrow} $
	Força de contacto entre a mochila e as costas do rapaz, na horizontal.		$\vec{F}_{ m ar} \longleftrightarrow \vec{F}_3$
	3. Tensão nas fitas da mochila, com componentes horizontal e vertical.		\vec{F}_5 \vec{F}_4
	Quais dessas forças actuam sobre o rapaz?		· · · · · · · · · · · · · · · · · · ·
	(A) 1 e 3 (D) 2 e 3		(A) \vec{F}_1 (C) \vec{F}_4 (E) \vec{F}_5 (B) \vec{F}_2 (D) \vec{F}_3
	(B) 1 e 2 (E) 1, 2 e 3		
	(C) unicamente 1		Resposta:
	Resposta:		

Exame de Recurso Resolução

22 de Julho de 2009 Jaime Villate

Problemas

1. No intervalo $0 \le s \le 0.6$ m, a equação da aceleração, em unidades SI, é:

$$a = 4800 - \frac{4800}{0.6}s = 4800\left(1 - \frac{s}{0.6}\right)$$

que pode ser substituída na equação

$$a = v \frac{\mathrm{d}v}{\mathrm{d}s}$$

para obter uma equação diferencial de variáveis separáveis:

$$4800 \left(1 - \frac{s}{0.6}\right) ds = v dv \qquad \Rightarrow \qquad 4800 \int_{0}^{0.6} \left(1 - \frac{s}{0.6}\right) ds = \int_{0}^{v} v dv$$

$$\Rightarrow \frac{v^{2}}{2} = 4800 \left(0.6 - \frac{0.6^{2}}{2 \times 0.6}\right) \qquad \Rightarrow \qquad v = \sqrt{4800 \times 0.6} = 53.7 \frac{m}{s}$$

2. (a) Define-se uma segunda variável de estado:

$$v = \dot{x}$$

e substitui-se na equação do sistema:

$$\dot{v} + v^2 + 4x^2 = 4$$

As duas equações de evolução, para as duas variáveis de estado, são:

$$\dot{x} = v \qquad \qquad \dot{v} = 4 - v^2 - 4x^2$$

(b) Para resolver esta alínea não é preciso ter resolvido a alínea anterior. Basta reparar que nos pontos de equilíbrio x permanece constante e, portanto, $\dot{x} = \ddot{x} = 0$. Substituindo na equação do sistema,

$$4x^2 = 4$$
 \Rightarrow $x = \pm 1$

(c) Usando as equações obtidas na alínea (a),

$$J = \begin{bmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial v} \\ \frac{\partial (4 - v^2 - 4x^2)}{\partial x} & \frac{\partial (4 - v^2 - 4x^2)}{\partial v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8x & -2v \end{bmatrix}$$

(d) Substituindo x = 1 e v = 0 na matriz jacobiana obtemos:

$$J = \left[\begin{array}{cc} 0 & 1 \\ -8 & 0 \end{array} \right]$$

Como o traço dessa matriz é nulo e o determinante é 8, os valores próprios serão imaginários. O ponto x = 1, v = 0 é um centro. Substituindo x = -1 e v = 0 na matriz jacobiana obtemos:

$$J = \left[\begin{array}{cc} 0 & 1 \\ 8 & 0 \end{array} \right]$$

Como o traço dessa matriz é nulo e o determinante é -8, os valores próprios são reais, com sinais opostos. O ponto x = -1, v = 0 é ponto de sela.

(e) Para resolver esta alínea não é preciso ter resolvido nenhuma das alíneas anteriores. Substituindo $x_0 = 1$ e $\dot{x}_0 = 1$ na equação do sistema, obtemos:

$$\ddot{x}_0 = 4 - 4 - 1 = -1$$

assim:

$$x_1 = x_0 + \Delta t \, \dot{x}_0 = 1 + 0.1 \times 1 = 1.1$$

 $\dot{x}_1 = \dot{x}_0 + \Delta t \, \ddot{x}_0 = 1 + 0.1 \times (-1) = 0.9$

Perguntas

3. B4. C

4. C **7.** E **5.** C **8.** B

6. A9. B7. E10. A8. B11. B

12. D 13. B 14. B

16. C 17. C

15. E

LOG-IN FEUP: NOME:

Exame final Ponto 1 29 de Junho de 2010

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não pode ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g = 9.8 \text{ m/s}^2$ para a aceleração da gravidade.

1. (4 valores). O reboque apresentado na figura, com massa total de 750 kg, está ligado no ponto P a uma trela que sai da parte posterior de um automóvel. O reboque tem dois pneus idênticos, que neste problema podem ser considerados como um só, com uma única reacção normal e força de atrito desprezável; a resistência do ar também será desprezada. (a) Calcule a reacção normal nos pneus e a força vertical no ponto P, quando a velocidade for constante. (b) Quando a velocidade estiver a mudar, a força em P terá uma componente horizontal, para além da componente vertical; escreva as equações que teria que resolver para determinar, em função da aceleração a, o valor da reacção normal nos pneus e ambas as componentes da força em P (não se pretende que resolva estas equações; apenas que as escreva).

2. (4 valores). As equações de evolução de um sistema dinâmico são:

$$\dot{x} = y^2 + 3y - 10$$
 $\dot{y} = xy + x + 12$

(a) Encontre os pontos de equilíbrio do sistema. (b) Determine a matriz jacobiana. (c) Calcule os valores próprios da matriz jacobiana em cada ponto de equilíbrio. (d) Diga que tipo de ponto é cada um dos pontos de equilíbrio.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de Resposta (e não na folha de exame ou de rascunho).

- 3. Na lista seguinte, qual pode ser o conjunto limite negativo de uma trajectória no espaço de fase?
 - (A) centro
 - (B) ponto de sela
 - (C) ciclo limite atractivo
 - (**D**) nó atractivo
 - (E) foco atractivo

Resposta:

- 4. Qual das seguintes é uma característica dos sistemas caóticos?
 - (A) Não é possível prever a trajectória exacta do sistema.
 - (B) Têm 3 ou mais pontos de equilíbrio.
 - (C) O sistema não é autónomo
 - (D) Pequenas variações nas condições iniciais produzem soluções muito diferentes.
 - (E) As equações do sistema são aleatórias.

Resposta:

5. Uma partícula desloca-se ao longo do eixo dos x de forma que a sua velocidade é dada pela expressão:

$$v(x) = b e^{-n x}$$

onde b e n são duas constantes. Qual é a expressão para a aceleração da partícula em função da posição x?

- (A) $-n b e^{-n x}$
- (C) $-b e^{-(n+1)x}$ (E) $n b^2 e^{-n x}$ (D) $-n b^2 e^{-2 n x}$

- **(B)** $-n b^2 e^{-n x}$

Resposta:

6. Um automóvel desloca-se numa curva, com velocidade de módulo constante. A figura mostra o automóvel visto de cima e a força de resistência do ar, $\vec{F}_{\rm ar}$. Qual das cinco forças \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , \vec{F}_4 ou \vec{F}_5 representa melhor a força exercida pelo chão sobre o automóvel?

- (A) \vec{F}_5 (B) \vec{F}_2
- (C) \vec{F}_1
- (E) \vec{F}_3

- (D) \vec{F}_{4}

Resposta:

- 7. Num sistema conservativo, com variáveis de estado (x, v), a velocidade de fase no ponto (8, 4) do espaço de fase tem componentes (4, 3). Indique as componentes da velocidade de fase no ponto (8, -4) do espaço de fase.
 - **(A)** (-4, 3)
- (C) (4, -3)
- (E) (4, 3)

- **(B)** (3, 4)
- **(D)** (-4, -3)

Resposta:

8. O sistema com equações de evolução:

 $\dot{x} = -y - y^2$ $\dot{y} = 0.5 \, x - 0.2 \, y + x \, y - 1.2 \, y^2$

tem unicamente dois pontos de equilíbrio: um foco atractivo em (0,0) e um foco repulsivo em (-2, -1). O sistema tem dois ciclos, representados pelas letras R e S na figura seguinte; qual das afirmações é correcta?

- (A) Nem R nem S podem ser ciclos limite.
- (B) R é ciclo limite atractivo e S é ciclo limite repulsivo.
- (C) R e S são ciclos limite atractivos.
- (E) R e S são ciclos limite repulsivos.

Resposta:

- 9. Um corpo de 12 kg desloca-se ao longo do eixo dos x. A força resultante sobre o corpo é conservativa, com energia potencial dada pela expressão $5 + 2x^2$ (SI). Se o corpo passa pela origem com velocidade $5 \, \vec{e}_x$, com que energia cinética chegará ao ponto x = 2 m?
 - (A) 355 J
- (C) 1207 J
- **(E)** 710 J

- **(B)** 42 J
- (**D**) 142 J

Resposta:

10. As equações de um sistema dinâmico com variáveis de estado (x, y) foram transformadas para coordenadas polares (r, θ) , obtendo-se as equações:

$$\dot{\theta} = -2 \qquad \dot{r} = 3 \, r - r^2$$

Qual das seguintes afirmações é verdadeira?

- (A) Existe um ciclo limite atractivo em r=3
- (B) Existe um ciclo limite repulsivo em r=2
- (C) Existe um ciclo limite atractivo em r=0
- (**D**) Existe um ciclo limite atractivo em r=2
- (E) Existe um ciclo limite repulsivo em r=3

Resposta:

11. As equações de evolução de um sistema linear são:

$$\dot{x} = x + 2y$$
 $\dot{y} = x + y$

Que tipo de ponto de equilíbrio é a origem?

- (A) Centro.
- (D) Nó repulsivo.
- (B) Foco atractivo.
- (E) Ponto de sela.
- (C) Foco repulsivo.

Resposta:

- 12. A matriz jacobiana de um sistema não linear, num ponto P do espaço de fase (x, y), foi armazenada na variável J, no Maxima. O comando eigenvectors(J) produz: [[[-1,1], [1,1]], [[[1,-1]], [[1,1/3]]]] que tipo de ponto de equilíbrio é o ponto P?
 - (A) centro.
- (**D**) foco atractivo.
- (B) ponto de sela.
- (E) nó atractivo.
- (C) foco repulsivo.

Resposta:

13. O bloco na figura, com massa igual a 3 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco actua uma força externa \vec{F} , horizontal e constante, com módulo igual a 24 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. Calcule o módulo da aceleração do bloco.

- (A) 10.45 m/s^2
- (C) 31.35 m/s^2
- (E) 8.00 m/s^2

- **(B)** 16.65 m/s^2
 - (**D**) 5.55 m/s^2

Resposta:

- (D) R é ciclo limite repulsivo e S é ciclo limite atractivo. 14. A força resultante sobre um objecto de massa 2 kg é $\vec{F} = 6 \vec{e}_x + 4 t \vec{e}_y$ (SI). Se a velocidade do objecto em t=0 for $6\vec{e}_x+7\vec{e}_y$ m/s, calcule a velocidade em t=2 s.
 - (A) $18.0\,\vec{e}_x + 15.0\,\vec{e}_y$
- **(B)** $12.0\,\vec{e}_x + 4.0\,\vec{e}_y$
- (**D**) $6.0 \, \vec{e}_x + 4.0 \, \vec{e}_y$ (**E**) $12.0 \, \vec{e}_x + 11.0 \, \vec{e}_y$

(C) $12.0\,\vec{e}_x + 11.0\,\vec{e}_y$

Resposta:

- 15. Se o conjunto limite positivo de uma trajectória A no espaço de fase for um ciclo limite C, qual das afirmações será correcta?
 - (A) A afasta-se de C.
 - (B) Todos os pontos de C também pertencem a A.
 - (C) A aproxima-se de C, sem nunca o tocar.
 - (**D**) A torna-se exactamente igual a C após algum tempo.
 - (E) A toca o ciclo C num ponto.

Resposta:

16. O comando

do Maxima foi usado para resolver numericamente um sistema de equações. Qual dos comandos seguintes produz uma lista com os valores de z?

- (A) makelist(a[1][i],i,1,11)
- (B) makelist(a[3][i],i,1,11)
- (C) makelist(a[i][2],i,1,11)
- (D) makelist(a[i][1],i,1,11)
- (E) makelist(a[i][3],i,1,11)

Resposta:

- 17. Um homem empurra um bloco de madeira sobre uma superfície horizontal. Sobre o bloco está pousado um livro. Considerando as forças seguintes:
 - 1. Força de contacto entre as mãos do homem e o bloco.
 - 2. Peso do livro.
 - 3. Força de atrito produzida pela superfície horizontal.

Quais dessas forças actuam sobre o bloco de madeira?

- (**A**) 1 e 2
- (C) 1 e 3
- **(E)** 1, 2 e 3

- **(B)** 1
- (**D**) 2 e 3

Exame Resolução

29 de Junho de 2010 Jaime Villate

Problemas

1. (a) Este problema é muito semelhante ao exemplo 4.1 resolvido no livro. O diagrama seguinte mostra as 3 forças externas que actuam sobre o reboque:

As duas equações que permitem calcular os módulos da reacção normal, R_n , e da força em P, F_y , são a soma das forças verticais e a soma dos momentos; ambas devem ser nulas, por não existir nem aceleração linear nem aceleração angular.

$$0.33 R_n - 0.95 F_y = 0 \qquad \Rightarrow \qquad R_n = \frac{95}{33} F_y$$

$$R_n + F_y - 750 \times 9.8 = 0 \qquad \Rightarrow \qquad F_y = \frac{750 \times 9.8}{1 + \frac{95}{33}} = 1895 \text{ N} \quad R_n = 5455 \text{ N}$$

Repare que os momentos foram calculados em relação ao centro de massa. Outra forma mais simples de resolver o problema é a seguinte: como o sistema está em equilíbrio, podemos calcular momentos em relação aos pontos P e a ponto de contacto do pneu, obtendo duas equações que permitem calcular F_v e R_n directamente:

$$1.28 R_n - 0.95 \times 750 \times 9.8 = 0$$
 \Rightarrow $R_n = 5455 \text{ N}$
 $1.28 F_y - 0.33 \times 750 \times 9.8 = 0$ \Rightarrow $F_y = 1895 \text{ N}$

(b) Este problema é muito semelhante ao exemplo 4.2 resolvido no livro. O diagrama seguinte mostra as 4 forças externas que actuam sobre o reboque:

Como a aceleração é na direcção *x* (horizontal) e o reboque não roda, a soma das componentes *x* das forças deve ser igual a *ma*, a soma das componentes *y* (verticais) deve ser nula e a soma dos momentos em relação ao centro de massa deverá ser nula:

$$F_x = 750a$$

$$R_n + F_y - 750 \times 9.8 = 0$$

$$0.33 R_n - 0.95 F_y - 0.4 F_x = 0$$

Essas 3 equações, com quatro variáveis, permitem calcular R_n , F_x e F_y em função de a.

2. Este problema é muito semelhante aos exemplos 7.1 e 7.2, que foram resolvidos no livro usando o Maxima. Os problemas no fim do capítulo também proponham problemas semelhantes para serem resolvidos com e sem o Maxima. Mostraremos aqui a resolução sem usar o Maxima.

(a) Nos pontos de equilíbrio, as duas componentes da velocidade de fase deverão ser nulas:

$$y^2 + 3y - 10 = 0$$
 \Rightarrow $(y+5)(y-2) = 0$
 $xy + x + 12 = 0$

A primeira equação tem duas soluções: y = -5 e y = 2. Substituindo y = -5 na segunda equação obtém-se x = 3 e substituindo y = 2 obtém-se x = -4. Consequentemente, existem unicamente dois pontos de equilíbrio:

$$P_1 = (3, -5)$$
 $P_2 = (-4, 2)$

(b) A matriz jacobiana do sistema é:

$$J = \begin{bmatrix} \frac{\partial(y^2 + 3y - 10)}{\partial x} & \frac{\partial(y^2 + 3y - 10)}{\partial y} \\ \frac{\partial(xy + x + 12)}{\partial x} & \frac{\partial(xy + x + 12)}{\partial y} \end{bmatrix} = \begin{bmatrix} 0 & 2y + 3 \\ y + 1 & x \end{bmatrix}$$

(c) Substituindo as coordenadas de P₁ na matriz jacobiana obtemos:

$$J = \left[\begin{array}{cc} 0 & -7 \\ -4 & 3 \end{array} \right]$$

Assim, a soma e o produto dos valores próprios nesse ponto são:

$$\lambda_1 + \lambda_2 = 0 + 3 = 3$$
 $\lambda_1 \lambda_2 = 0 \times 3 - (-7) \times (-4) = -28$

portanto, os valores próprios em P_1 são 7 e -4.

Substituindo as coordenadas de P₂ na matriz jacobiana obtemos:

$$J = \left[\begin{array}{cc} 0 & 7 \\ 3 & -4 \end{array} \right]$$

Assim, a soma e o produto dos valores próprios nesse ponto são:

$$\lambda_1 + \lambda_2 = 0 - 4 = -4$$
 $\lambda_1 \lambda_2 = 0 \times (-4) - 7 \times 3 = -21$

portanto, os valores próprios em P_2 são 3 e -7.

(d) Como nos dois pontos de equilíbrio os valores próprios são reais e com sinais opostos, os dois pontos são pontos de sela.

Perguntas

3. B

6. D

- **9.** D
- **12.** B
- 15. C

4. D

- **7.** A
- **10.** A
- **13.** A
- **16.** E

5. D

- **8.** B
- **11.** E
- **14.** C ou E
- **17.** C

NOME:______ LOG-IN FEUP:_____

Exame de recurso Ponto 1 22 de Julho de 2010

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g=9.8~\mathrm{m/s^2}$ para a aceleração da gravidade.

1. (4 valores). Uma esfera de 0.6 kg encontra-se inicialmente em repouso, pendurada por dois fios (ver figura). Admita que a massa dos fios é desprezável. O fio da esquerda é cortado subitamente. Desenhe o diagrama das forças que actuam sobre a esfera, após o fio ter sido cortado. Calcule a tensão no fio do lado direito e a aceleração da esfera no instante em que o fio acabou de ser cortado.

2. (4 valores). Uma partícula com massa igual a 1 kg desloca-se ao longo do eixo dos x, sob a acção de uma única força conservativa. Em qualquer ponto com coordenada x, a energia potencial da partícula é dada pela expressão $U = \frac{x^2}{2} + \frac{x^3}{3}$ (unidades SI). (a) Determine a expressão para a foça conservativa, em função de x. (b) Encontre os pontos de equilíbrio da partícula, no plano de fase (x,v), onde v é a velocidade. (c) Diga, justificando, quais dos pontos de equilíbrio são estáveis e quais instáveis. (d) Desenhe o retrato de fase do sistema. tipo de ponto é cada um dos pontos de equilíbrio.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de **Resposta** (e não na folha de exame ou de rascunho).

- 3. Qual dos seguintes sistemas não pode ser caótico?
 - (A) Um sistema de 4 espécies.
 - (B) Um sistema autónomo com 3 variáveis de estado.
 - (C) Um pêndulo duplo (dois pêndulos, um pendurado do outro).
 - (D) Um sistema linear com 4 variáveis de estado.
 - (E) Um sistema autónomo com 4 variáveis de estado.

Resposta:

- **4.** Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
 - (A) $\dot{y} = 2y^2 3y$
- **(D)** $\dot{y} = 6y + xy$
- **(B)** $\dot{y} = 2y 5y^2$
- **(E)** $\dot{y} = 6y y^2$
- (C) $\dot{y} = x + xy^2$

Resposta:

5. O comando

a:rk([f,g],[y,z],[0,1],[x,0,1.5,0.1])

do Maxima foi usado para resolver numericamente um sistema de equações. Qual será o resultado do comando length(a)?

- (**A**) 2
- **(C)** 15
- **(E)** 16

- **(B)** 3
- **(D)** 1

Resposta:

6. Um carro avariado está a ser reboucado por um camião. Através da barra rígida que liga o carro ao camião, o camião exerce uma força \vec{F}_1 sobre o carro e o carro exerce uma força \vec{F}_2 sobre o camião. O camião começa por acelerar desde A até B, mantém velocidade constante entre B e C, e trava entre C e D. Qual das seguintes afirmações é correcta?

- (A) O módulo de \vec{F}_1 é sempre maior que o módulo de \vec{F}_2
- (B) Os sentidos de $\vec{F_1}$ e $\vec{F_2}$ são iguais entre C e D.
- (C) Os sentidos de $\vec{F_1}$ e $\vec{F_2}$ são iguais entre B e C.
- (**D**) Os módulos de \vec{F}_1 e \vec{F}_2 são iguais entre A e B.
- (E) O módulo de \vec{F}_1 é maior que o módulo de \vec{F}_2 entre A

Resposta:

- 7. Qual dos sistemas na lista é equivalente à equação diferencial $\ddot{x} x^2 2 x^2 \dot{x} + 2 x^3 = 0$?
 - (A) $\dot{x} = y$ $\dot{y} = 2y 2$
 - **(B)** $\dot{x} = y$ $\dot{y} = xy 2x^2$
 - (C) $\dot{x} = y$ $\dot{y} = 2y 2x$
 - **(D)** $\dot{x} = y$ $\dot{y} = 2y + x$
 - **(E)** $\dot{x} = y$ $\dot{y} = 4xy 2x$

Resposta:

8. Um bloco com massa m=5 kg encontra-se sobre a superfície de uma mesa horizontal. Sobre o bloco actua uma força externa \vec{F} , com módulo de 90 N e direcção que faz um ângulo $\alpha=40^\circ$ com a horizontal, tal como mostra a figura. Calcule o módulo da reacção normal entre o bloco e a mesa.

- (**A**) 79.78 N
- (C) 106.85 N
- **(E)** 18.22 N

- **(B)** 49.00 N
- (**D**) 8.85 N

	Um bloco de massa de um plano inclin da velocidade igual ponto B. As altura cal desde a base ho $h_A = 70$ cm. Calcu atrito, desde A até $(\mathbf{A}) - 21.3 \mathrm{J}$ $(\mathbf{B}) - 19.4 \mathrm{J}$ Resposta: Um objecto deslocaponto com coorden pela expressão $a =$	ado, partindo do partindo do partindo do partindo do partindo se dos pontos A e Borizontal do plano, ule o trabalho realismo. (C) -17.4 J (D) -18.4 J -se ao longo do eixo ada x, a aceleração da x² (unidades SI).	conto A com valor completamente no comp	(B) centro (C) foco atractivo Resposta: 14. Um caixote de massa 0.5 kg é puxado simultâneamente por duas forças $7\vec{e}_x - 7\vec{e}_y$ (N) e $4\vec{e}_x + 2\vec{e}_y$ (N). Calcule a aceleração do caixote. (A) $5.5\vec{e}_x - 2.5\vec{e}_y$ (m/s²) (B) $22\vec{e}_x - 10\vec{e}_y$ (m/s²) (C) $11\vec{e}_x - 5\vec{e}_y$ (m/s²) Resposta: Resposta: Resposta:
	ao ponto $x = 2 \text{ m}$? (A) 4.90 m/s (B) 4.32 m/s	o $x = 1 \text{ m}$, com que (C) 3.74 m/s (D) 3.10 m/s	velocidade chegará $ (\mathbf{E)} \ \ 2.45 \ \mathrm{m/s} $	á 15. O reboque na figura, com pesso total P , está ligado no ponto A por uma trela que sai da parte posterior de um automóvel. Se o reboque estiver em repouso, e se F for o módulo da força de contacto entre o carro e o reboque, no ponto A, qual das seguintes afirmações é verdadeira?
11.	Resposta: Num sistema dinâr tem um único máxi único mínimo local o sistema tem uma valor da energia des	imo local, $U = 4$ J, , $U = 2$ J, em $x =$ órbita homoclínica	em $x = 2$ m, e um 3 m. Sabendo que	73 cm 50 cm
	(A) 6 J (B) 4 J Resposta:	(C) 3 J (D) 2 J	(E) 0 J	(A) $P/2 < F < P$ (D) $0 < F < P/2$ (B) $F = P$ (E) $F = P/2$
12.	Um sistema dinâm uma curva de evolu ponto P. Em relação 1. foco atractivo. 2. foco repulsivo. 3. nó atractivo.	ıção com conjunto l	imite positivo num pulsivo.	icsposia.
	Que tipo de ponto (A) 2 ou 4 (B) 1 ou 2 Resposta:	de equilíbrio pode s (C) 5 (D) 3 ou 4	ser o ponto P? (E) 1 ou 3	 (C) o traço é positivo (D) o traço é nulo. (E) o determinante é nulo Resposta:
13.	Um sistema dinâm y tem um ponto d O gráfico mostra a tempo. Que tipo de	e equilíbrio no por evolução da variá	iveis de estado x e ato $x = 10, y = 5$. vel x em função de	sapos alimentam-se de peixes. O sistema é aproximado

FELD Excusors to reconstruction of the computation of the computation of the computation of the computation of the contract of

Perguntas

3. D

6. D

9. D

12. E

15. D

4. D

7. C

10. C

13. E

16. A17. D

5. E **8.** C

11. B

14. B

LOG-IN FEUP: NOME:

Exame final 16 de Junho de 2011

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g = 9.8 \text{ m/s}^2$ para a aceleração da gravidade.

1. (4 valores) O sistema dinâmico com equações de evolução: $\dot{x} = -x + 4y - y^3$ tem nove pontos de equilíbrio. As coordenadas (x, y) de dois desses pontos são:

 $P_1 = (-\sqrt{5}, \sqrt{5})$ $P_2 = ((\sqrt{3} - 2)\sqrt{2} + \sqrt{3}, -\sqrt{2} + \sqrt{3})$

- (a) Diga que tipo de pontos de equilíbrio são P_1 e P_2 . (b) Escreva as equações de evolução do sistema linear que aproxima o sistema na vizinhança do ponto P_1 .
- 2. (4 valores) Um atleta com massa de 91 kg puxa um camião numa estrada horizontal, com velocidade constante, por meio de uma corda amarrada às suas costas. A figura mostra as posições relativas do centro de gravidade do atleta, C, do ponto de apoio do seu pé com o chão, A, e do ponto de ligação com a corda, B. (a) Calcule o módulo da tensão na corda. (b) Desenhe um diagrama com as forças que julga que poderão estar a atuar no camião.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de Resposta (e não na folha de exame ou de rascunho).

- 3. Um aluno empurra um bloco de massa 900 g, sobre uma mesa horizontal com uma aceleração constante de 1.9 m/s². A força que o aluno exerce é horizontal. Sabendo que o coeficiente de atrito cinético entre o bloco e a mesa é 0.7, calcule o módulo da força do aluno sobre o bloco.
 - (**A**) 7.88 N
- (C) 78.84 N
- **(E)** 15.77 N

- (B) 19.71 N
- (**D**) 4.46 N

Resposta:

- 4. Um campo de futebol tem 70 m de largura e 115 m de comprimento. No início de um jogo, a bola foi colocada no centro do campo e passados 3 minutos foi colocada num canto. Calcule o módulo da velocidade média nesse intervalo.
 - (**A**) 0.194 m/s
- (**D**) 0.748 m/s
- **(B)** 0.319 m/s
- (**E**) 0.374 m/s
- (C) 1.028 m/s

Resposta:

5. O comando

a:rk([f,g],[y,z],[0,1],[x,0,1.6,0.1])

do Maxima foi usado para resolver numericamente um

- sistema de equações. Qual será o resultado do comando length(a)?
- (A) 17
- **(C)** 1
- **(E)** 16

- **(B)** 2
- (**D**) 3

Resposta:

- **6.** As equações $\dot{x} = x(2+y), \dot{y} = y(2+x)$ definem um sistema:
 - (A) Linear.
 - (B) Conservativo.
 - (C) De duas espécies com cooperação.
 - (D) De duas espécies com competição.
 - (E) Presa-predador.

Resposta:

- 7. Uma partícula desloca-se ao longo do eixo dos x com uma aceleração que aumenta em função do tempo: a = 5t (unidades SI). No instante t=0, a partícula encontra-se em repouso no ponto x=8 m. Calcule a posição da partícula em t = 6 s.
 - (**A**) 564.0 m
- (C) 94.0 m
- **(E)** 188.0 m

- (**B**) 470.0 m
- (**D**) 1165.6 m

8.	O comando a:rk([f,g],[y,z],[0,1],[x,0,1,0.1]) do Maxima foi usado para resolver numericamente um sis tema de equações. Qual dos comandos seguintes produz uma lista com os valores de z?
	(A) makelist(a[3][i],i,1,11) (B) makelist(a[i][3],i,1,11) (C) makelist(a[i][1],i,1,11)
	(D) makelist(a[i][2],i,1,11)
	(E) makelist(a[1][i],i,1,11) Resposta:
0	Um comião com magas total de 1200 km acolone desde o

9. Um camião com massa total de 1300 kg acelera desde o repouso até uma velocidade de 25 km/h numa distância de 100 m, ao longo de uma rampa com declive constante de 20% (em cada 10 metros na horizontal, a rampa sobe 2 metros). Calcule o trabalho realizado pelas forças de atrito.

- (A) 218.5 kJ
- (C) -31.3 kJ
- (E) -218.5 kJ

- (**B**) 281.2 kJ
- (**D**) 249.9 kJ

Resposta:

- 10. Um sistema dinâmico com duas variáveis de estado tem exactamente dois pontos de equilíbrio, P e Q. O ponto P é ponto de sela e o ponto Q é foco repulsivo. Qual das seguintes afirmações sobre o sistema é verdadeira?
 - (A) Pode existir uma órbita homoclínica.
 - (B) O sistema pode ser linear.
 - (C) Podem existir ciclos.
 - (D) Pode existir uma órbita heteroclínica.
 - (\mathbf{E}) O sistema pode estar em estado de equilíbrio estável.

Resposta:

- 11. Um piloto de corridas de aviões, com 105 kg, executa um loop vertical de 900 m de raio, com velocidade constante em módulo. Sabendo que a força exercida no piloto pela base do assento do avião é igual a 2572 N, no ponto mais baixo do loop, calcule a mesma força no ponto mais alto do loop.
 - (A) 2572.0 N
- (C) 257.0 N
- **(E)** 1028.5 N

- (**B**) 1543.0 N
- (**D**) 514.0 N

Resposta:

- 12. Se o ponto de equilíbrio de um sistema linear for um foco atrativo, o que podemos concluir acerca do traço, T, ou o determinante, D, da matriz do sistema?
 - (A) T < 0
- (C) D < 0
- **(E)** T > 0

- **(B)** T = 0
- **(D)** D = 0

Resposta:

13. Na figura, a força \vec{F} é horizontal e constante, com módulo igual a 32 N. As massas dos dois blocos são $m_1=9$ kg e $m_2=63$ kg. Os dois blocos aceleram sobre a superfície horizontal. Calcule o módulo da força que o bloco do lado esquerdo exerce sobre o bloco do lado direito.

- $(\mathbf{A}) 0$
- (C) 4 N
- **(E)** 28 N

- (**B**) 24 N
- (**D**) 32 N

Resposta:

14. De acordo com o critério de Bendixson, qual dos seguintes sistemas dinâmicos não pode ter nenhuma órbita fechada (ciclo, órbita homoclínica ou órbita heteroclínica)?

(A)
$$\dot{x} = 3x^2 + y^2$$
 $\dot{y} = x^2 - y^2$

(B)
$$\dot{x} = 3x^3 + y^2$$
 $\dot{y} = x^2y - y$

(C)
$$\dot{x} = 3x + y^2$$
 $\dot{y} = x^2 + y^2$

(D)
$$\dot{x} = 3x + y^2$$
 $\dot{y} = x^3y - y$

(E)
$$\dot{x} = 3x^3 + y^2$$
 $\dot{y} = y - yx^2$

Resposta:

15. A matriz de um sistema dinâmico linear é:

$$\begin{bmatrix} -2 & 1 \\ 3 & -4 \end{bmatrix}$$

Se A for a trajectória que passa pelo ponto (0,1) no espaço de fase e B for a trajectória que passa pelo ponto (1,0), podemos afirmar que a origem é:

- (A) Conjunto limite negativo de A e de B.
- (B) Conjunto limite positivo e negativo de A.
- (C) Conjunto limite positivo de A e limite negativo de B.
- (D) Conjunto limite negativo de A e limite positivo de B.
- (E) Conjunto limite positivo de A e de B.

Resposta:

- **16.** A força resultante sobre uma partícula que se desloca no eixo dos x é F = (x+1)(x-1)(3-x). Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
 - (A) x = 1 é estável e x = 3 é instável.
 - (B) x = -1 é estável e x = 3 é instável.
 - (C) x = -1 é instável e x = 3 é estável.
 - (**D**) x = -1 e x = 1 são instáveis.
 - (E) x = 1 é instável e x = 3 é estável.

Resposta:

17. A matriz jacobiana de um sistema dinâmico com variáveis de estado (x, y), é:

 $\left[\begin{array}{cc} y & x-1 \\ y+1 & x \end{array}\right]$

Sabendo que (0, 0) é ponto de equilibrio do sistema, determine que tipo de ponto é.

- (A) ponto de sela
- (**D**) nó atractivo
- (B) centro
- (E) foco repulsivo
- (C) nó repulsivo

Exame Resolução

16 de Junho de 2011 Jaime Villate

Problemas

1. (a) A matriz jacobiana do sistema é:

$$J = \begin{bmatrix} \frac{\partial(-x+4y-y^3)}{\partial x} & \frac{\partial(-x+4y-y^3)}{\partial y} \\ \frac{\partial(-y+4x-x^3)}{\partial x} & \frac{\partial(-y+4x-x^3)}{\partial y} \end{bmatrix} = \begin{bmatrix} -1 & 4-3y^2 \\ 4-3x^2 & -1 \end{bmatrix}$$

Substituindo as coordenadas de P_1 na matriz jacobiana obtemos:

$$J_1 = \left[\begin{array}{cc} -1 & -11 \\ -11 & -1 \end{array} \right]$$

O determinante é 1 - 121 = -120 e, por ser negativo, conclui-se que o ponto P_1 é ponto de sela.

Substituindo as coordenadas de P_2 na matriz jacobiana obtemos:

$$J_2 = \left[\begin{array}{cc} -1 & -2 - 3\sqrt{3} \\ -2 + 3\sqrt{3} & -1 \end{array} \right]$$

Assim, a equação caraterística nesse ponto és

$$\lambda^2 + 2\lambda + 24 = 0 \Rightarrow \lambda = -1 \pm \sqrt{1 - 24}$$

portanto, os valores próprios em P_2 são números complexos com parte real negativa. O ponto P_2 é um foco atrativo.

(b) Para deslocar a origem para o ponto de equilíbrio P₁, introduzimos duas novas coordenadas:

$$u = x + \sqrt{5} \qquad v = y - \sqrt{5}$$

em função dessas coordenadas, o sistema pode ser aproximado para um sistema linear se os valores de u e v estiverem próximos de zero. A matriz desse sistema será a matriz jacobiana no ponto P_1 que já foi calculada na alínea anterior; assim, o sistema linear é:

$$\left[\begin{array}{c} \dot{u} \\ \dot{v} \end{array}\right] = \left[\begin{array}{cc} -1 & -11 \\ -11 & -1 \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right]$$

escritas em forma explícita, as duas equações de evolução são:

$$\dot{u} = -u - 11v \qquad \dot{v} = -11u - v$$

2. (a) As forças externas sobre o atleta são o seu peso, de 891.8 N, a tensão na corda, \vec{T} , a reação normal do chão; \vec{R} , e a força de atrito estático no chão, \vec{F} ;

A soma dos momentos em relação a qualquer ponto deverá ser nula. Se usarmos como referência o ponto A, as forças \vec{R} e \vec{F} não produzirão nenhum momento, e a soma dos momentos em relação a A será:

$$0.52 \times 891.8 + 0.19 T \sin(15^{\circ}) - 0.91 T \cos(15^{\circ}) = 0$$

e, portanto, a tensão na corda é:

$$T = \frac{0.52 \times 891.8}{0.91\cos(15^\circ) - 0.19T\sin(15^\circ)} = 559 \text{ N}$$

(b) As forças sobre o camião são a tensão na corda, o peso total do camião e da sua carga e as reações normais e forças de atrito nos pneus. A direção e sentido dessas forças está indicado no diagrama seguinte:

O atrito é estático e aponta na direção oposta ao movimento, porque nenhuma das rodas tem tração. A força da resistência do ar for desprezada, porque a velocidade deverá ser muito baixa, mas se fosse considerada teria a mesma direção e sentido das forças de atrito.

Perguntas

3. A

6. C

9. B

12. A

15. E

4. E

7. E

10. A

13. E

16. E

5. A

8. B

11. D

14. E

17. B

LOG-IN FEUP: NOME:

Exame de recurso 8 de Julho de 2011

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g = 9.8 \text{ m/s}^2$ para a aceleração da gravidade.

1. (4 valores) O avião na figura, com massa total de 1.1×10^5 kg, aterra numa pista horizontal. O ponto C representa o centro de gravidade. No instante em que a velocidade é de 210 km/h (para a esquerda), o piloto liga as turbinas em modo inverso, produzindo a força constante R (representada na figura) e após ter precorrido 580 m na pista a velocidade diminui para 70 km/h. Durante esse percurso, as forças de atrito nos pneus e a resistência do ar podem ser ignoradas, em comparação com a força R que é muito maior. Calcule a reação normal na roda da frente.

2. (4 valores) Uma partícula com massa m desloca-se ao longo do eixo dos x. Em unidades SI, a componente x da forca resultante sobre a partícula é dada pela expressão $F = m(x^3 - 2x^2 - 3x - v)$, onde v é a velocidade e x a posição. (a) Escreva as equações de evolução do sistema. (b) Encontre os pontos de equilíbrio no espaço de fase. (c) Calcule a matriz jacobiana do sistema. (d) Caracterize cada um dos pontos de equilíbrio. (e) Explique se o sistema poderá ter ou não ciclos, órbitas homoclínicas ou órbitas heteroclínicas.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de Resposta (e não na folha de exame ou de rascunho).

- 3. Qual dos seguintes sistemas não pode ser caótico?
 - (A) Um sistema autónomo com 4 variáveis de estado.
 - (B) Um sistema linear com 4 variáveis de estado.
 - (C) Um pêndulo duplo (dois pêndulos, um pendurado do outro).
 - (**D**) Um sistema autónomo com 3 variáveis de estado.
 - (E) Um sistema de 4 espécies.

Resposta:

4. Qual das matrizes na lista é a matriz jacobiana do sistema dinâmico equivalente à equação diferencial $2\ddot{x}x - 2x^2\dot{x} +$ $4x^3 = 0$?

$$(\mathbf{D}) \left[\begin{array}{cc} 0 & 1 \\ -2 & 2 \end{array} \right]$$

$$\begin{array}{c|c}
(\mathbf{C}) & 1 & 2 \\
(\mathbf{C}) & 0 & 1 \\
\end{array}$$

$$(\mathbf{E}) \begin{bmatrix} -2 & 2 \\ 0 & 1 \\ y - 4x & x \end{bmatrix}$$

$$(\mathbf{C}) \begin{bmatrix} 0 & 1 \\ 4y - 2 & 4x \end{bmatrix}$$

Resposta:

5. Um bloco de massa 7 kg desce deslizando sobre a superfície de um plano inclinado com base x = 4 m e altura y = 6 m. Calcule o módulo da reação normal do plano sobre o bloco.

- (A) 114.16 N
- (C) 68.60 N
- (E) 19.03 N

- (**B**) 38.05 N
- (**D**) 22.87 N

Resposta:

- **6.** Um objecto desloca-se ao longo do eixo dos x. Em qualquer ponto com coordenada x, a aceleração do objecto é dada pela expressão $a = 1 x^4$ (unidades SI). Se o objecto parte do repouso no ponto x = 1 m, com que velocidade chegará ao ponto x = 2 m?
 - (A) 4.59 m/s
- (C) 2.47 m/s
- (E) 1.41 m/s

(B) 3.52 m/s

- (**D**) 5.66 m/s

(**A**) 1

(B) -1

Resposta:

do sistema?

Resposta:

(A) centro.

Resposta:

(A) -18.4 J

(B) -21.3 J

Resposta:

(B) foco repulsivo.

(C) foco atractivo.

atrito, desde A até B.

8. Um caixote de massa 0.5 kg é puxado simultâneamente por duas forças $4\vec{e}_x - 11\vec{e}_y$ (N) e $3\vec{e}_x + 7\vec{e}_y$ (N). Calcule a aceleração do caixote.

- (A) $6\vec{e}_x + 14\vec{e}_y \text{ (m/s}^2)$ (D) $14\vec{e}_x 8\vec{e}_y \text{ (m/s}^2)$ (B) $3.5\vec{e}_x 2.0\vec{e}_y \text{ (m/s}^2)$ (E) $7\vec{e}_x 4\vec{e}_y \text{ (m/s}^2)$

- (C) $8\vec{e}_x 22\vec{e}_y \text{ (m/s}^2)$

Resposta:

- 9. A força resultante sobre um objeto de massa 2 kg é $\vec{F} = 9 \vec{e}_x + 1 t \vec{e}_y$ (SI). Se a velocidade do objeto em t = 0for $3\vec{e}_x + 4\vec{e}_y$ m/s, calcule a velocidade em t = 7 s.
 - (A) $34.5 \vec{e}_x + 12.3 \vec{e}_y$
- (**D**) $66.0\,\vec{e}_x + 28.5\,\vec{e}_y$
- **(B)** $31.5 \vec{e}_x + 12.3 \vec{e}_y$
- **(E)** $34.5 \, \vec{e}_x + 7.5 \, \vec{e}_y$
- (C) $34.5 \, \vec{e}_x + 16.3 \, \vec{e}_y$

Resposta:

10. Na figura, a mola elástica é usada para manter a barra na posição horizontal. Sabendo que a constante elástica da mola é igual a 300 N/m e o seu comprimento, quando 15. A matriz jacobiana de um sistema não linear, num não está comprida nem esticada, é 15 cm, calcule a energia elástica da mola na situação apresentada na figura.

- (A) 375 mJ
- (C) 135 mJ
- (E) 240 mJ

- (B) 735 mJ
- (**D**) 540 mJ

Resposta:

- 11. Um sistema dinâmico com duas variáveis de estado tem uma curva de evolução com conjunto limite negativo num ponto P. Em relação à lista seguinte:
 - 1. foco atrativo.
- 4. nó repulsivo.
- 2. foco repulsivo.
- 5. centro.
- 3. nó atrativo.

Que tipo de ponto de equilíbrio pode ser o ponto P?

- (A) 1 ou 2
- (C) 3 ou 4
- (\mathbf{E}) 5

- (**B**) 2 ou 4
- (**D**) 1 ou 3

Resposta:

- 17. Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
 - (A) $\dot{y} = 2y 5y^2$
- (**D**) $\dot{y} = 2y^2 3y$

(E) -17.4 J

- **(B)** $\dot{y} = 6y + xy$
- (E) $\dot{y} = 6y y^2$
- (C) $\dot{y} = x + x y^2$

Resposta:

(C) -19.4 J

(C) 3

(**D**) 2

14. Uma partícula com massa igual a 3 (unidades SI) desloca-se no eixo dos y sob a acção de uma força resultante 2y + 6v,

onde v é a velocidade. Qual das matrizes na lista é a matriz

ponto P do espaço de fase (x, y), foi armazenada na

variável J, no Maxima. O comando eigenvectors(J) produz: [[[-1,-2], [1,1]], [[[1,-1]], [[1,1/3]]]]

16. Um bloco de massa 1 kg desce deslizando sobre a superfície de um plano inclinado, partindo do ponto A com valor

da velocidade igual a 5 m/s e parando completamente no

ponto B. As alturas dos pontos A e B, medidas na vertical desde a base horizontal do plano, são: $h_B = 10 \text{ cm}$ e

 $h_A = 100$ cm. Calcule o trabalho realizado pela força de

que tipo de ponto de equilíbrio é o ponto P?

 $(\mathbf{D}) \left| \begin{array}{cc} 0 & 1 \\ 2 & 6 \end{array} \right|$

(E) $\begin{bmatrix} 0 & 1 \\ 2/3 & 2 \end{bmatrix}$

(D) nó atractivo.

(E) ponto de sela.

(E) -2

(**D**) -20.3 J

Exame de Recurso Resolução

8 de Julho de 2011 Jaime Villate

Problemas

1. (a) A figura seguinte mostra, no lado esquerdo, o **diagrama de corpo livre** indicando todas as forças externas sobre o avião: o peso $m\vec{g}$, a força \vec{R} e as reações normais nos pneus \vec{N}_1 e \vec{N}_2 . O lado direito mostra o **diagrama equivalente**, com a força resultante $m\vec{a}_{\rm cm}$ e sem momento resultante, já que o avião não roda.

Comparando as componentes x e y e os momentos em relação ao centro de massa, nos dois lados da figura, obtêm-se as seguintes equações:

$$R = ma_{cm}$$

$$N_1 + N_2 - mg = 0$$

$$8.2N_1 - 5.1N_2 - 1.6R = 0$$

Como a força *R* permanece constante, a primeira equação implica que a aceleração do centro de massa também será constante e pode integrar-se a equação de movimento:

$$a_{\rm cm} = v \frac{\mathrm{d}v}{\mathrm{d}x} \implies a_{\rm cm} \int_{0}^{580} \mathrm{d}x = \int_{210/3.6}^{70/3.6} v \, \mathrm{d}v \implies 580 \, a_{\rm cm} = \frac{1}{2 \times 3.6^2} \left(70^2 - 210^2\right) \implies a_{\rm cm} = -2.61 \, \frac{\mathrm{m}}{\mathrm{s}^2}$$

O sinal negativo indica que é no sentido oposto à velocidade. Consequentemente:

$$R = 1.1 \times 10^5 \times 2.61 = 287 \times 10^3 \text{ N}$$

Substituindo esse valor na equação da soma dos momentos, pode resolver-se o sistema de duas equações para N_1 e N_2 . Outra forma mais direta de calcular N_1 consiste em comparar momentos em relação ao ponto B, nos dois lados da figura acima:

$$13.3N_1 - 5.1 \times 1.1 \times 10^5 \times 9.8 + 1.4 \times 287 \times 10^3 = 3 \times 1.1 \times 10^5 \times 2.61 \implies N_1 = 448 \times 10^3 \text{ N}$$

2. (a) As equações de evolução são:

$$\dot{x} = v$$

$$\dot{v} = x^3 - 2x^2 - 3x - v$$

(b) Nos pontos de equilíbrio os dois lados direitos das equações de evolução anulam-se. Assim, v = 0 e:

$$x(x^2-2x-3) = 0 \implies x = 0 \lor x = 3 \lor x = -1$$

(c) A matriz jacobiana do sistema é:

$$J = \begin{bmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial v} \\ \frac{\partial (x^3 - 2x^2 - 3x - v)}{\partial x} & \frac{\partial (x^3 - 2x^2 - 3x - v)}{\partial v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3x^2 - 4x - 3 & -1 \end{bmatrix}$$

(*d*) No ponto (x, v) = (0, 0):

$$J_0 = \left[\begin{array}{cc} 0 & 1 \\ -3 & -1 \end{array} \right]$$

O traço é -1 e o determinante é 3. A equação caraterística é:

$$\lambda^2 + \lambda + 3 = 0$$

com raízes $\lambda = -0.5 \pm \sqrt{-2.75}$, nomeadamente, complexas com parte real negativa. O ponto (0,0) é foco atrativo.

No ponto (x, v) = (3, 0):

$$J_3 = \left[\begin{array}{cc} 0 & 1 \\ 12 & -1 \end{array} \right]$$

Como o determinante dessa matriz é negativo, o ponto é ponto de sela.

No ponto (x, v) = (-1, 0):

$$J_{-1} = \left[\begin{array}{cc} 0 & 1 \\ 10 & -1 \end{array} \right]$$

Como o determinante da matriz é negativo, esse ponto também é ponto de sela.

(e) O traço da matriz jacobiana é igual a -1 em todos os pontos do espaço de fase. Portanto, o critério de Bedixson implica que o sistema não pode ter nenhum ciclo, nem órbita homoclínica, nem órbita heteroclínica.

Perguntas

3. B

6. B

9. C

12. B

15. D

4. E

7. D

10. A

13. E

16. B

5. B

8. D

11. B

14. E

17. B

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012

EIC0010 — FÍSICA I

1º ANO 2° SEMESTRE

Prova com consulta de formulário e uso de computador. Duração 2 horas.

Nome do estudante:

Pode consultar unicamente um formulário (uma folha A4) e utilizar calculadora ou PC. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g = 9.8 \text{ m/s}^2$ para a aceleração da gravidade.

- 1. (4 valores) Uma partícula desloca-se no plano xy. A componente y da posição é dada pela expressão $y = 4 3t^2$ (unidades SI), em que t é o tempo, e a componente x da velocidade verifica a expressão $v_x = 3 - 1.2 x$ (unidades SI). Sabendo que no instante t=0 a componente x da posição da partícula é igual a zero, calcule o valor de t e os vetores velocidade e aceleração quando a partícula passe pelo eixo dos x (isto é, quando y=0).
- 2. (4 valores) A barra uniforme na figura tem massa de 40 gramas e comprimento igual a 50 cm. O ponto C é o seu centro de massa (no ponto central da barra) e no ponto O há um prego fixo a um suporte, que permite que a barra rode livremente. (a) Sabendo que o momento de inércia de uma barra uniforme e comprida, em relação ao centro de massa, é dado pela expressão $mL^2/12$, em que m é a massa e L o comprimento, e que a distância entre os pontos O e C é de 8 cm, calcule o momento de inércia da barra em relação ao prego em O. (b) O movimento da barra pode ser descrito com um único grau de liberdade, o ângulo θ medido a partir da posição horizontal e no sentido indicado na figura; escreva as equações de evolução da barra, ignorando o atrito no prego e qualquer outra força dissipativa (se não resolveu a alínea a, faça de conta que o momento de inércia é 1). (c) Diga, justificando, quais são os pontos de equilíbrio da barra e que tipo de pontos são.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

3. Se o bloco B se deslocar para a direita com velocidade v, 5. A matriz de um sistema dinâmico linear é: qual será a velocidade do bloco A?

- (A) v/2
- (\mathbf{C}) 3 v
- $(\mathbf{E}) v$

- (B) 2v
- **(D)** v/3

Resposta:

- 4. Em 1610 Galileu Galilei descobriu 4 luas à volta de Júpiter. Uma delas, Calisto, tem um movimento orbital aproximadamente circular uniforme, com raio de 1882.7×10^3 km e período de 16.69 dias. Calcule o módulo da aceleração de Calisto.
 - (A) 0.111 m/s^2
- (**D**) 0.712 m/s^2
- **(B)** 0.0357 m/s^2
- (E) 0.983 m/s^2
- (C) 0.282 m/s^2

Resposta:

- (**A**) -328.1 kJ
- (C) -48.6 kJ

3 -4Se A for a trajetória que passa pelo ponto (0,1) no espaço de fase e B for a trajetória que passa pelo ponto (1,0),

(C) Conjunto limite negativo de A e limite positivo de B.

(E) Conjunto limite positivo de A e limite negativo de B.

6. Um camião com massa total de 1400 kg acelera desde o

repouso até uma velocidade de 30 km/h numa distância

de 140 m, ao longo de uma rampa com declive constante

de 20% (em cada 10 metros na horizontal, a rampa sobe

2 metros). Calcule o trabalho realizado pelas forças de

podemos afirmar que a origem é:

(A) Conjunto limite negativo de A e de B. (B) Conjunto limite positivo e negativo de A.

(D) Conjunto limite positivo de A e de B.

(E) 328.1 kJ

(B) 425.3 kJ

atrito.

Resposta:

(**D**) 376.7 kJ

Resposta:	
-----------	--

7. A força \vec{F} , com módulo de 54 N, faz acelerar os dois blocos 12. O espaço de fase de uma partícula que se desloca no plano na figura, sobre uma mesa horizontal, sem que o bloco de cima deslize em relação ao outro bloco. As forças de atrito nas rodas podem ser desprezadas. Calcule o módulo da força de atrito entre os dois blocos.

- (**A**) 7 N
- (C) 8 N
- (E) 5 N

- (B) 9 N
- (**D**) 6 N

Resposta:

- 8. Um piloto de corridas de aviões, com 80 kg, executa um loop vertical de 600 m de raio, com velocidade constante em módulo. Sabendo que a força exercida no piloto pela base do assento do avião é igual a 1960 N, no ponto mais baixo do loop, calcule a mesma força no ponto mais alto do loop.
 - (A) 196 N
- (C) 392 N
- **(E)** 784 N

- (**B**) 1960 N
- (**D**) 1176 N

Resposta:

- 9. A força resultante sobre uma partícula que se desloca no eixo dos $x \notin F = (x+1)(x-1)(3-x)$. Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
 - (A) x = 1 é estável e x = 3 é instável.
 - (B) x = -1 e x = 1 são instáveis.
 - (C) x = 1 é instável e x = 3 é estável.
 - (**D**) x = -1 é instável e x = 3 é estável.
 - (E) x = -1 é estável e x = 3 é instável.

Resposta:

- 10. Se o ponto de equilíbrio de um sistema linear for um ponto de sela, o que podemos concluir acerca do traço, T, ou o 16. Um condutor viajou a 70 km/h durante 45 minutos, parou determinante, D, da matriz do sistema?
 - (A) T > 0
- (C) D = 0
- **(E)** D < 0

- **(B)** T = 0
- (**D**) T < 0

Resposta:

11. Qual das matrizes na lista é a matriz jacobiana do sistema dinâmico equivalente à seguinte equação diferencial?

$$\ddot{x}x - 2x\dot{x} + 2x = 0$$

- $\begin{array}{c} \textbf{(A)} \, \left[\begin{array}{cc} 0 & 1 \\ -2 & 2 \end{array} \right] & \textbf{(D)} \, \left[\begin{array}{cc} 0 & 1 \\ 1 & 2 \end{array} \right] \\ \textbf{(B)} \, \left[\begin{array}{cc} 0 & 1 \\ y 4x & x \end{array} \right] & \textbf{(E)} \, \left[\begin{array}{cc} 0 & 1 \\ 4y 2 & 4x \end{array} \right]$

Resposta:

- xyé $(x,\;y,\;v_x,\;v_y)$ e o vetor aceleração é dado pela expressão $\vec{a}=4\,\vec{r}-7\,\vec{v},$ onde $\vec{r}=x\,\vec{e}_x+y\,\vec{e}_y$ é o vetor posição e $\vec{v} = v_x \, \vec{e}_x + v_y \, \vec{e}_y$ é o vetor velocidade. Calcule a terceira linha da matriz jacobiana.
 - (A) (4, -7, 4, -7)
- (**D**) (4, 0, -7, 0)
- **(B)** (-7, -7, 4, 4) (C) (4, 4, -7, -7)
- (\mathbf{E}) (0, 4, 0, -7)

Resposta:

13. As equações de um sistema dinâmico com variáveis de estado (x, y) foram transformadas para coordenadas polares (r, θ) , obtendo-se as equações: $\dot{\theta} = -2$ $\dot{r} = 3r - r^2$

Assim, conclui-se que o sistema tem um ciclo limite:

- (A) attrativo com r=0
- (**D**) repulsivo com r=3
- **(B)** attrativo com r=2
- (E) repulsivo com r=2
- (C) atrativo com r=3

Resposta:

14. Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas poderá ser um sistema de duas espécies, com cooperação?

(A)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 - xy$

(B)
$$\dot{x} = x^2 + xy$$
 $\dot{y} = y^2 + xy$

(C)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 + xy$

(D)
$$\dot{x} = y^2 + xy$$
 $\dot{y} = x^2 + xy$

(E)
$$\dot{x} = xy - x^2$$
 $\dot{y} = y^2 - x^2$

Resposta:

- 15. A posição de um objeto ao longo de um percurso, em função do tempo, é dada por $s=126\,t-9\,t^2$ (SI). Calcule a distância percorrida pelo objeto entre t = 0 e t = 10.5 s.
 - (**A**) 551.25 m
- (C) 110.25 m
- **(E)** 113.25 m

- **(B)** 441 m
- (**D**) 771.75 m

Resposta:

- durante 15 minutos e continuou a 80 km/h durante meia hora. Calcule a velocidade média do percurso total.
 - (A) 74.0 km/h
- (C) 61.7 km/h
- (E) 80 km/h

- (**B**) 75 km/h
- (D) 70 km/h

Resposta:

17. De acordo com o critério de Bendixson, qual dos seguintes sistemas dinâmicos não pode ter nenhuma órbita fechada (ciclo, órbita homoclínica ou órbita heteroclínica)?

(A)
$$\dot{x} = 3x^2 + y^2$$
 $\dot{y} = x^2 - y^2$

(B)
$$\dot{x} = 3x^3 + y^2$$
 $\dot{y} = x^2y - y$

(C)
$$\dot{x} = 3x + y^2$$
 $\dot{y} = x^2 + y^2$

(**D**)
$$\dot{x} = 3x + y^2$$
 $\dot{y} = x^3y - y$

(E)
$$\dot{x} = 3x^3 + y^2$$
 $\dot{y} = y - yx^2$

Resolução do Exame do dia 11 de junho de 2012

Problemas

1. Para obter o valor de t_1 , em que a partícula passa pelo eixo dos x, basta igualar a expressão de y a zero e resolver:

$$4 - 3t_1^2 = 0 \implies t_1 = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

(a raiz negativa não interessa, porque estamos interessados em t > 0). A seguir, podemos derivar as duas expressões dadas para obter mais informação sobre o movimento:

$$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = -6t$$

$$a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t} = -6$$

$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t} = -1.2 \frac{\mathrm{d}x}{\mathrm{d}t} = -1.2 v_x = 1.44 x - 3.6$$

Assim, para poder calcular os valores numéricos dos vetores velocidade e aceleração será preciso também calcular o valor de x_1 no instante $t_1 = 2\sqrt{3}/3$. Isso deverá ser feito por resolução de uma equação diferencial e será preciso saber valores iniciais; podemos ver que no instante inicial $t_0 = 0$, como $x_0 = 0$, então $v_{x0} = 3$. Mostraremos 3 métodos diferentes de obter os valores de v_{x1} e a_{x1} .

Método 1. Integração da expressão para v_x .

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} = 3 - 1.2\,x \implies \int_0^{x_1} \frac{\mathrm{d}\,x}{3 - 1.2\,x} = \int_0^{2\sqrt{3}/3} \mathrm{d}\,t \implies -\frac{1}{1.2}\ln\left(\frac{3 - 1.2\,x_1}{3}\right) = \frac{2\sqrt{3}}{3} \implies x_1 = 2.5\left(1 - \mathrm{e}^{-0.8\sqrt{3}}\right)$$

e, substituindo nas expressões para v_x e a_x , temos:

$$v_{r.} = 3 e^{-0.8\sqrt{3}}$$
 $a_{r1} = -3.6 e^{-0.8\sqrt{3}}$

Método 2. Integração da expressão para a_x .

$$\frac{\mathrm{d}\,v_x}{\mathrm{d}\,t} = -1.2\,v_x \implies \int_3^{v_{x1}} \frac{\mathrm{d}\,v_x}{v_x} = -1.2\int_0^{2\sqrt{3}/3} \mathrm{d}\,t \implies \ln\left(\frac{v_{x1}}{3}\right) = -0.8\sqrt{3} \implies v_{x1} = 3\,\mathrm{e}^{-0.8\sqrt{3}} \quad a_{x1} = -3.6\,\mathrm{e}^{-0.8\sqrt{3}}$$

Método 3. Integração numérica. Usando três algarismos significativos, $t_1 = 2\sqrt{3}/3 \approx 1.15$; assim, usaremos os seguintes comandos do Maxima:

(%i1) fpprintprec: 3\\$

Finalmente, podemos escrever a resposta:

$$t_1 = \frac{2\sqrt{3}}{3} \approx 1.15(s)$$

$$\vec{v}_1 = 3 e^{-0.8\sqrt{3}} \vec{e}_x - 4\sqrt{3} \vec{e}_y \approx (0.750 \vec{e}_x - 6.93 \vec{e}_y) \,\text{m/s}$$

$$\vec{a}_1 = -3.6 e^{-0.8\sqrt{3}} \vec{e}_x - 6 \vec{e}_y \approx (-0.901 \vec{e}_x - 6 \vec{e}_y) \,\text{m/s}^2$$

2. (a) O momento de inércia em relação a O calcula-se usando o teorema dos eixos paralelos. Se d for a distância CO:

$$I_{\rm O} = \frac{m L^2}{12} + m d^2 = \frac{0.04 \times 0.5^2}{12} + 0.04 \times 0.08^2 = 1.089 \times 10^{-3} \, (\text{kg} \cdot \text{m}^2)$$

(b) **Método 1**. (Tal como no exemplo 2 da aula teórica número 12) As variáveis de estado serão o ângulo θ e a velocidade angular ω . As equações de evolução são as expressões das derivadas dessas duas variáveis, em função das próprias variáveis de estado. A derivada $\dot{\omega}$ é a aceleração angular; para calculá-la, em função de θ , começamos por desenhar o diagrama de corpo livre para um ângulo qualquer:

As forças que atuam no ponto O não foram representadas, porque trata-se de um movimento de rotação com eixo fixo e as forças no eixo não produzem momento em relação ao eixo. O momento resultante, em relação a O, será apenas o momento do peso e, portanto:

$$m g d \sin \beta = I_{\rm O} \alpha$$

Como o ângulo β é igual a $\pi/2 - \theta$, então $\sin \beta = \cos \theta$. Substituindo os valores conhecidos obtemos:

$$\alpha = \frac{0.04 \times 9.8 \times 0.08}{1.089 \times 10^{-3}} \cos \theta = 28.79 \, \cos \theta$$

Assim, as equações de evolução são as seguintes:

$$\dot{\theta} = \omega$$
 $\dot{\omega} = 28.79 \cos \theta$

Método 2. As expressões da energia cinética e potencial, em função da coordenada generalizada θ e da velocidade generalizada $\dot{\theta} = \omega$ são:

$$E_{\rm c} = \frac{1}{2} I_{\rm O} \, \omega^2 \qquad \qquad U = -m \, g \, d \sin \theta$$

como o sistema é conservativo, a equação de Lagrange é

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \omega} \right) - \frac{\partial E_{\mathrm{c}}}{\partial \theta} + \frac{\partial U}{\partial \theta} = 0$$

que conduz à equação

$$I_{\rm O}\,\dot{\omega} - m\,g\,d\cos\theta = 0$$

ou seja, as equações de evolução são

$$\dot{\theta} = \omega$$
 $\dot{\omega} = \frac{m g d}{I_{\rm O}} \cos \theta = 28.79 \cos \theta$

(c) **Método 1**. Como se trata de um sistema conservativo, os pontos de equilíbrio terão todos $\omega=0$ e θ corresponderá aos pontos em que a energia potencial for máxima ou mínima. Como vimos na alínea anterior, a energia potencial é $-m\,g\,d\sin\theta$. Restringindo o ângulo θ ao intervalo $[0,\,2\,\pi[$, a função $-\sin\theta$ tem um mínimo local (centro) em $\theta=\pi/2$ e um máximo local (ponto de sela) em $\theta=3\pi/2$.

Método 2. Os pontos de equilíbrio são os pontos do espaço de fase em que as derivadas das duas variáveis de estado são nulas: $\omega = 0$ e 28.79 $\cos \theta = 0$. Restringindo o ângulo θ ao intervalo $[0, 2\pi[$, temos dois pontos de equilíbrio: $(\theta, \omega) = (\pi/2, 0)$ e $(\theta, \omega) = (3\pi/2, 0)$.

A matriz jacobiana do sistema é

$$J = \begin{bmatrix} \frac{\partial \omega}{\partial \theta} & \frac{\partial \omega}{\partial \omega} \\ \frac{\partial (28.79 \cos \theta)}{\partial \theta} & \frac{\partial (28.79 \cos \theta)}{\partial \omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -28.79 \sin \theta & 0 \end{bmatrix}$$

e a equação dos valores próprios é

$$\lambda^2 + 28.79 \sin \theta = 0 \qquad \qquad \lambda = \pm \sqrt{-28.79 \sin \theta}$$

No ponto em $\theta = \pi/2$, o seno é igual a 1 e, portanto, os valores próprios são imaginários e o ponto é um centro. No ponto $\theta = 3\pi/2$, o seno é igual a -1, os valores próprios são reais com sinais opostos e trata-se de um ponto de sela.

Regente: Jaime Villate

Método 3. Como não era pedida nenhuma demonstração matemática, basta justificar que a barra pode ser mantida em repouso, durante muito tempo, nas posições $\theta = \pi/2$ e $\theta = 3\pi/2$. No primeiro caso, é um equilíbrio estável porque a barra terá uma tendência a regressar para esse ponto; no segundo caso é um ponto de equilíbrio instável, porque um pequeno impulso faz descer a barra, afastando-se do ponto de equilíbrio.

Perguntas

3. C

6. B

9. C

12. D

15. A

4. B

7. B

10. E

13. C

16. C

5. D

8. C

11. C

14. B

17. E

Prova com consulta de formulário e uso de computador. Duração 2 horas.

Nome do estudante:

Pode consultar unicamente um formulário (uma folha A4) e utilizar calculadora ou PC. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $q = 9.8 \text{ m/s}^2$ para a aceleração da gravidade.

1. (4 valores) Para testar os travões, uma bicicleta foi colocada com as rodas para o ar e a roda foi posta a rodar livremente, como mostra a figura. Foi medido o tempo que a roda demorou a dar 10 voltas, obtendo-se o valor de 8.2 s (admita que nesse intervalo a velocidade angular ω permanece constante). Imediatamente a seguir, aplicaram-se os travões e a roda demorou 2.9 s até parar completamente. A figura mostra a forca de atrito $ec{F}$ entre os calços e o aro, que é tangente ao aro e aplicada a uma distância de $27.1~\mathrm{cm}$ do eixo da roda. (a) Admitindo que a força \vec{F} é constante, a aceleração angular que ela produz também será constante; calcule essa aceleração angular. (b) Calcule o número de voltas efetuadas pela roda durante o tempo em que os travões atuaram. (c) Sabendo que o momento de inércia da roda, em relação ao seu centro, é igual a 0.135 kg·m², calcule o módulo da força \vec{F} .

2. (4 valores) Um objeto de massa m = 0.3 kg desloca-se no eixo dos x. Se x e v representam a posição e velocidade do centro de massa, a expressão para a energia mecânica total do objeto é: $H = \frac{1}{2}mv^2 + \frac{2}{r} + \frac{x}{2}$

As equações de evolução podem ser obtidas aplicando as equações de Hamilton: $\dot{x} = \frac{1}{m} \frac{\partial H}{\partial v}$ $\dot{v} = -\frac{1}{m} \frac{\partial H}{\partial x}$

(a) Escreva as equações de evolução do sistema. (b) Encontre os pontos de equilíbrio no espaço de fase. (c) Calcule a matriz jacobiana do sistema. (d) Demonstre que este sistema tem ciclos e calcule a frequência de oscilação f desses ciclos.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

3. Na figura, a mola elástica é usada para manter a barra 5. Sabendo que a distância média entre a Terra e a Lua é na posição horizontal. Sabendo que a constante elástica da mola é igual a 600 N/m e o seu comprimento, quando não está comprida nem esticada, é 15 cm, calcule a energia elástica da mola na situação apresentada na figura.

- (**A**) 270 mJ
- (C) 1080 mJ
- (**E**) 750 mJ

- (**B**) 480 mJ
- (**D**) 1470 mJ

Resposta:

- 4. Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
 - (A) $\dot{y} = 6y y^2$ (B) $\dot{y} = 2y^2 3y$
- (D) $\dot{y} = 2y 5y^2$
- **(E)** $\dot{y} = 6y + xy$
- (C) $\dot{y} = x + x y^2$

Resposta:

- 3.84×10^8 m, e que a Lua demora 27.3 dias a completar a sua órbita à volta da Terra, calcule o módulo da aceleração da Lua, em m/s², admitindo que a sua órbita seja circular.
 - (A) 1.38×10^{-10}
- **(D)** 3.53×10^4

(B) 1.57

- (E) 2.72×10^{-3}
- (C) 2.03×10^7

Resposta:

- 6. Se o ponto de equilíbrio de um sistema linear é um foco atrativo, qual das afirmações seguintes, acerca da matriz do sistema, é verdadeira?
 - (A) o determinante é nulo
 - (B) o traço é negativo
 - (C) o determinante é negativo
 - (**D**) o traço é positivo
 - (E) o traço é nulo.

7.	A velocidade de um avião em relação ao ar é 800 km/h, na 13. direção norte. Nesse instante, a velocidade do vento é de 70 km/h, em direção este. Calcule a velocidade do avião em relação à terra.	O comando a:rk([-x,y],[y,z],[0,1],[t,1,3,0.1]) do Maxima foi usado para resolver numericamente um sis- tema dinâmico. Qual dos comandos na lista poderá ser
	(A) 716 km/h (C) 730 km/h (E) 870 km/h	usado para obter o valor da variável y no instante $t=1.2$?
	(B) 884 km/h (D) 803 km/h	(A) a[2][2] (C) a[1][2] (E) a[3][1] (B) a[3][2] (D) a[2][3]
	Resposta:	Resposta:
8.	Um objecto desloca-se ao longo do eixo dos x . Em qualquer ponto com coordenada x , a aceleração do objecto é dada 14. pela expressão $a=4x^3$ (unidades SI). Se o objecto parte do repouso no ponto $x=1$ m, com que velocidade chegará ao ponto $x=2$ m? (A) 4.15 m/s (C) 2.83 m/s (E) 5.48 m/s (B) 8.00 m/s (D) 6.74 m/s	
9.	Um bloco de massa 5 kg desce deslizando sobre a superfície de um plano inclinado com base $x=2$ m e altura $y=7$ m. Calcule o módulo da reação normal do plano sobre o bloco. (A) 94.23 N (C) 6.73 N (E) 13.46 N (B) 49.0 N (D) 7.0 N Resposta:	(A) nó atrativo (D) centro (B) foco repulsivo (E) nó repulsivo (C) foco atrativo Resposta:
10.	O vetor velocidade de um objeto, em função do tempo, é: $\vec{v} = 3 e^{-t} \vec{e}_x + 4 t^2 \vec{e}_y$ (unidades SI). Calcule o vetor 15. deslocamento entre $t = 1$ e $t = 2$. (A) $2.6 \vec{e}_x + 11.0 \vec{e}_y$ (D) $-0.41 \vec{e}_x + 11.0 \vec{e}_y$ (B) $-1.1 \vec{e}_x + 1.3 \vec{e}_y$ (E) $1.9 \vec{e}_x + 1.3 \vec{e}_y$	
	(C) $0.7 \vec{e}_x + 9.3 \vec{e}_y$ Resposta:	СМ
11.	Uma partícula segue a trajetória que mostra a figura. A partícula parte do repouso em A, acelerando com aceleração constante até o ponto B; desde B até E mantém a sua velocidade constante e a partir de E começa a abrandar, com aceleração constante, até parar no ponto F. A distância AB é 20 cm, CD é 20 cm, EF é 15 cm; o raio do arco BC é 60 cm e o raio do arco DE é 45 cm. Em qual dos segmentos na lista o módulo da aceleração foi maior?	(A) $P/2 < F < P$ (D) $0 < F < P/2$ (B) $F = 0$ (E) $F = P/2$
		Resposta:
	$ \begin{pmatrix} B & E \\ A & F \end{pmatrix} $ (A) EF (C) BC (E) AB	Na lista seguinte, qual pode ser o conjunto limite negativo de uma trajectória no espaço de fase? (A) ciclo limite atrativo (D) ponto de sela
	(B) DE (D) CD	(B) centro (E) nó atrativo (C) foco atrativo
	Resposta:	Resposta:
12.	A velocidade de uma partícula que se desloca em uma dimensão é dada pela expressão $2/s$ onde s é a posição. Encontre a expressão para a aceleração tangencial em função de s . (A) $-4/s^3$ (D) $2 \log s$	
	(B) $-2/s^2$ (E) $2/(st)$ (C) $2/s^2$	(B) 1 (D) -1
	Resposta:	Resposta:

Regente: Jaime Villate

UNIVERSIDADE DO PORTO

Resolução do Exame do dia 2 de julho de 2012

Problemas

1. (a) A velocidade angular inicial, no instante em que se aplicam os travões, obtém-se dividindo o ângulo correspondente a dez voltas pelo tempo que a roda demorou a dar essas dez voltas:

$$\omega_0 = \frac{10 \times 2\pi}{8.2} = 7.662 \,\mathrm{s}^{-1}$$

e a velocidade angular final é 0. Como a aceleração angular α é constante,

$$\alpha = \frac{d\omega}{dt} = \frac{\Delta\omega}{\Delta t} = \frac{0 - 7.662}{2.9} = -2.642 \text{ s}^{-2}$$

(b) O ângulo percorrido pela roda durante os 2.9 segundos da travagem determina-se integrando uma das equações de movimento:

$$\alpha = \omega \frac{\mathrm{d}\omega}{\mathrm{d}\theta} \implies \int_0^{\theta} -2.642 \,\mathrm{d}\theta = \int_{7.662}^{0} \omega \,\mathrm{d}\omega \implies -2.642 \,\theta = -\frac{7.662^2}{2} \implies \theta = 11.11$$

que corresponde a $11.11/(2\pi) = 1.8$ voltas.

(c) O momento produzido pela força \vec{F} é igual ao momento de inércia da roda, vezes a sua aceleração angular:

$$-Fr = I_0 \alpha \implies -0.271 F = -0.135 \times 2.64 \implies F = 1.32 N$$

2. (a)

$$\begin{split} \dot{x} &= \frac{1}{m} \frac{\partial H}{\partial v} = \frac{m \, v}{m} = v \\ \dot{v} &= -\frac{1}{m} \frac{\partial H}{\partial x} = -\frac{1}{m} \left(-\frac{2}{x^2} + \frac{1}{2} \right) = \frac{20}{3 \, x^2} - \frac{5}{3} \end{split}$$

(b) Os pontos de equilíbrio são as soluções do sistema:

$$v = 0$$

$$\frac{20}{3 x^2} - \frac{5}{3} = 0 \implies x^2 = 4 \implies x = \pm 2$$

ou seja, há dois pontos de equilíbrio: (x, v) = (2, 0) e (x, v) = (-2, 0).

(c) A matriz jacobiana do sistema é:

$$J = \begin{bmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial v} \\ \frac{\partial}{\partial x} \left(\frac{20}{3x^2} - \frac{5}{3} \right) & \frac{\partial}{\partial v} \left(\frac{20}{3x^2} - \frac{5}{3} \right) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{40}{3x^3} & 0 \end{bmatrix}$$

(d) O traço da matriz jacobiana é nulo e o determinante é $40/(3x^3)$. No ponto de equilíbrio com x=2, o determinante é 5/3 e os valores próprios da matriz jacobiana são:

$$\lambda = \pm i\sqrt{\frac{5}{3}}$$

assim sendo, o ponto em (x, v) = (2, 0) é um centro e existem ciclos na vizinhança desse ponto, com frequência:

$$f = \frac{|\lambda|}{2\pi} = \frac{\sqrt{5/3}}{2\pi} \approx 0.205 \text{ Hz}$$

Perguntas

3. E

6. B

9. E

12. A

15. A

4. E

7. D

10. C

13. B

16. D

5. E

8. E

11. A

14. A

17. A

UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I

1° ANO 2° SEMESTRE

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores). O sistema representado na figura, com 2 roldanas e 2 blocos ligados por um fio de comprimento constante, tem um único grau de liberdade. As massas dos blocos são $m_{\rm A}=0.3~{\rm kg}$ e $m_{\rm B}=0.7~{\rm kg}$. As duas roldanas podem ser consideradas discos homogéneos (momento de inércia $I_{\rm cm} = m R^2/2$), cada uma com massa de 0.06 kg. (a) Encontre as expressões para o valor da velocidade do bloco B e das velocidades angulares de cada uma das roldanas, em função do valor da velocidade $v_{\rm A}$ do bloco A e do raio R das roldanas (admita que as roldanas rodam sem que o fio deslize sobre elas). (b) Determine a expressão da energia mecânica total do sistema, em função de v_A e da distância vertical y_A desde o teto até o centro de massa do bloco A (despreze a massa do fio). (c) Desprezando o trabalho das forças não conservativas, encontre a equação de movimento do sistema e calcule as acelerações dos dois blocos.

$$\dot{x} = -y - x^2 \qquad \qquad \dot{y} = x - x^3$$

(a) Determine os conjuntos limite positivo e negativo das duas curvas de evolução que passam pelos pontos (x,y)=(0,-2) e (x,y)=(0,-0.5). (b)Calcule a divergência da velocidade de fase e diga que pode concluir-se a partir do critério de Bendixson. (c) Indique se o sistema tem algum ciclo, órbita homoclínica ou órbita heteroclínica. (d) Comente a seguinte afirmação, argumentando claramente os seus comentários: "O retrato de fase inclui duas curvas de evolução parabólicas que se cruzam em dois pontos".

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um corpo escorrega, com movimento uniforme, do topo de um plano inclinado, fixo no solo, até à sua base. Para este percurso:
 - (A) A energia cinética do corpo diminui.
 - (B) A energia mecânica do corpo mantém-se constante.
 - (C) O trabalho realizado pela resultante das forças sobre o corpo é positivo.
 - (**D**) A energia potencial do corpo diminui.
 - (E) O trabalho realizado pela força gravítica é negativo.

Resposta:

4. As equações de evolução de um sistema linear são:

 $\dot{x} = x + 2y$ $\dot{y} = x + y$

Que tipo de ponto de equilíbrio é a origem?

- (A) Foco repulsivo.
- (**D**) Centro.
- (B) Foco atrativo.
- (E) Ponto de sela.

(C) Nó repulsivo.

Resposta:

5. O sistema dinâmico não linear:

 $\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 3y - 3$ tem um ponto de equilíbrio em x = 3, y = 4. Qual é o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?

- **(A)** $\dot{x} = 5y$ $\dot{y} = 4x$
- **(D)** $\dot{x} = -5y$ $\dot{y} = -4x$
- **(B)** $\dot{x} = -4y$ $\dot{y} = 5x$ **(E)** $\dot{x} = 4y$ $\dot{y} = 5x$
- (C) $\dot{x} = 5y$ $\dot{y} = -4x$

Resposta:

- 6. A energia mecânica de um sistema conservativo com dois graus de liberdade, x e θ , é dada pela expressão $E_{\rm m} = 5 \dot{x}^2 + 7 \dot{\theta}^2 - 3 x \theta$. Encontre a expressão para a aceleração $\ddot{\theta}$.
 - **(A)** $3x\theta/14$
- (C) 3x/14
- (E) $3x\theta/5$

- **(B)** $3\theta/14$
- **(D)** 3x/5

Resposta:

- 7. Um projétil é lançado desde uma janela a 2.5 m de altura, com velocidade de 16 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima que o projétil atingirá.
 - (**A**) 4.1 m
- (C) 9.0 m
- **(E)** 5.8 m

- (**B**) 15.6 m
- (**D**) 12.3 m

8. A matriz de um sistema dinâmico linear é: $\begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$ 13.	As equações \dot{x}
Se A for a curva de evolução que passa pelo ponto (1,1) no	(\mathbf{A}) De duas
espaço de fase e B for a curva de evolução que passa pelo	(B) Predador
ponto $(1,-1)$, podemos afirmar que a origem é:	(C) Linear.
(A) Conjunto limite positivo de A e limite negativo de B.	(D) Conserva
(B) Conjunto limite negativo de A e de B.	(E) De duas
(C) Conjunto limite negativo de A e limite positivo de B.	Resposta:
(D) Conjunto limite positivo de A e de B.	A figura mosti
(E) Centro de A e B que são ciclos.	variáveis de est
Resposta:	do sistema em

(E) 9.25 m

(E) 42.3°

9. A posição de um ponto ao longo de um percurso, em função do tempo, é dada pela expressão $y = 10 t - t^2$ (SI). Determine a distância percorrida pelo ponto entre t=0 e

(C) 25 m

(**D**) 6.25 m

10. Num sistema dinâmico contínuo no plano xy, se os conjuntos limite positivo e negativo de uma curva de evolução C são ambos o mesmo objeto L, qual das seguintes afirmações

11. O vetor posição de um ponto, em função do tempo, é dado

(C) 67.6°

(**D**) 16.9°

12. O bloco na figura, com massa igual a 6 kg, desloca-se para

Calcule o módulo da aceleração do bloco.

a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície

horizontal. Sobre o bloco atua uma força externa \vec{F} , hori-

zontal e constante, com módulo igual a 30 N. O coeficiente

de atrito cinético entre o bloco e a superfície é igual a 0.25.

(C) 5.0 m/s^2

pela expressão: $2t^4\vec{e}_x + (t^2 + 2)\vec{e}_y$ (unidades SI). Calcule

o ângulo entre a velocidade e o vetor posição, no instante

(A) L é um ponto de equilíbrio atrativo.

(C) C é uma órbita heteroclínica.

(E) L é um atrator estranho.

t = 7.5 s.(A) 31.25 m

(B) 43.75 m

Resposta:

poderá ser verdadeira?

(B) L é um centro.

(D) C é um ciclo.

Resposta:

t = 1.

(A) 88.8°

(B) 55.0°

Resposta:

13. As equações $\dot{x} = x(2+y), \dot{y} = y(2+x)$ definem um sistema
--

- espécies com cooperação.
- presa.
- itivo.
- espécies com competição.

ra o retrato de fase de um sistema com duas tado x e y. Quais são as equações de evolução do sistema em coordenadas polares?

- (A) $\dot{\theta} = 2$ $\dot{r} = 3r^2 2r$
- **(B)** $\dot{\theta} = 2$ $\dot{r} = r^3 3r^2 + 2r$
- (C) $\dot{\theta} = 2$ $\dot{r} = 3r^2 r^3 2r$
- **(D)** $\dot{\theta} = -2$ $\dot{r} = 3r^2 r^3 2r$
- (E) $\dot{\theta} = -2$ $\dot{r} = r^3 3r^2 + 2r$

Resposta:

- 15. Quando se liga um PC, o disco rígido demora 1.8 s, a partir do repouso, até atingir a sua velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angular constante durante esse intervalo, determine o valor da aceleração angular
 - (A) 182 rad/s^2
- (C) 279 rad/s^2
- (E) 838 rad/s^2

- **(B)** 419 rad/s^2
- (**D**) 209 rad/s^2

Resposta:

- 16. Duas crianças com massas de 30 kg e 35 kg estão sentadas nos dois lados de um sobe e desce. Se a criança mais pesada estiver sentada a 1.2 m do eixo do sobe e desce, a que distância do eixo deverá sentar-se a outra criança para manter o sobe e desce em equilíbrio?
 - (**A**) 1.03 m
- (C) 1.63 m
- **(E)** 0.88 m

- **(B)** 1.4 m
- (**D**) 0.6 m

Resposta:

- 17. Num sistema que se desloca no eixo dos x, a força resultante é $-x^2 + x + 6$. O sistema tem uma órbita homoclínica que se aproxima assimptoticamente do ponto (a, 0) no espaço de fase. Qual $\acute{\rm e}$ o valor de a?
 - (**A**) 1
- (C) 2 **(D)** 3
- (E) -2

(**D**) 2.55 m/s^2 **(B)** -1

(E) 7.45 m/s^2

Resposta:

(A) 15.3 m/s^2

(B) 44.7 m/s^2

Regente: Jaime Villate

Resolução do exame de 17 de junho de 2013

Problemas

1. (a) Medindo as posições y_A e y_B dos blocos na vertical, com origem no teto e sentido positivo para baixo,

$$y_A + 2y_B = k \implies v_B = -\frac{v_A}{2}$$

onde k é uma constante. Se ω_1 for a velocidade angular da roldana do lado esquerdo, ω_2 a velocidade angular da roldana do lado direito e arbitrando sentido positivo no sentido antihorário,

$$\omega_1 = \frac{v_A}{R}$$
 $\omega_2 = \frac{v_B}{R} = \frac{v_A}{2R}$

(b) Se m for a massa das roldanas,

$$E_{c} = \frac{1}{2} \left(m_{A} v_{A}^{2} + m_{B} v_{B}^{2} + m v_{B}^{2} + \frac{mR^{2}}{2} \omega_{1}^{2} + \frac{mR^{2}}{2} \omega_{2}^{2} \right) = \frac{v_{A}^{2}}{2} \left(m_{A} + \frac{m_{B}}{4} + \frac{m}{4} + \frac{m}{2} + \frac{m}{8} \right)$$

$$= \frac{v_{A}^{2}}{2} \left(m_{A} + \frac{m_{B}}{4} + \frac{7m}{8} \right) = 0.26375 v_{A}^{2}$$

$$U = -m_{A} g y_{A} - (m_{B} + m) g y_{B} = -m_{A} g y_{A} - \frac{(m_{B} + m) g}{2} (k - y_{A}) = 0.748 y_{A} - 3.724 k$$

$$E_{m} = 0.26375 v_{A}^{2} + 0.748 y_{A} - 3.724 k$$

(c) A equação de Lagrange para a coordenada y_A e a velocidade v_A é:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \nu_{\mathrm{A}}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial y_{\mathrm{A}}} + \frac{\partial U}{\partial_{\mathrm{A}}} = 0$$

que conduz à equação de movimento

$$0.5275 a_{A} + 0.784 = 0 \implies a_{A} = -\frac{0.784}{0.5275} = -1.486 \frac{m}{s^{2}}$$

o sinal negativo indica que o bloco A sobe. A aceleração do bloco B é,

$$a_{\rm B} = -\frac{a_{\rm A}}{2} = 0.743 \; \frac{\rm m}{\rm s^2}$$

o sinal pisitivo indica que o bloco B desce.

- 2. (a) O sistema tem unicamente os 3 pontos de equilíbrio representados na figura: um centro na origem e dois pontos de sela em (1, −1) e (−1, −1). Os conjuntos limite negativo e positivo da curva que passa por (0, −2) não existem. Os conjuntos limite negativo e positivo da curva que passa por (0, −0.5) é um ciclo à volta da origem.
 - (b) A divergência da velocidade de fase é:

$$\vec{\nabla} \cdot \vec{u} = \frac{\partial \left(-y - x^2 \right)}{\partial x} + \frac{\partial \left(x - x^3 \right)}{\partial y} = -2x$$

O critério de Bendixson implica que podem existir ciclos o órbitas, mas deverão incluir sempre pelo menos um ponto do eixo dos *y* (onde *x* é zero).

- (c) O sistema tem uma órbita heteroclínica que une os dois pontos de sela (1, -1) e (-1, -1), e no interior dessa órbita todas as curvas de evolução são ciclos.
- (d) A afirmação é falsa. As duas curvas aparentemente parabólicas são realmente 6 curvas de evolução separadas, que se aproximam assimptoticamente dos dois pontos de sela, sem tocá-los. As curvas de evolução nunca podem cruzar-se entre si.

Perguntas

3. D

6. C

9. A

12. E

15. B

4. E

7. E

10. D

13. A

16. B

5. E

8. C

11. E

14. D

17. E

UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores). Um cilindro com raio de 4 cm está colado a uma roda com 6 cm de raio que se encontra sobre uma superfície horizontal plana, tal como mostra a figura. Uma corda foi enrolada à volta do cilindro e está a ser puxada horizontalmente para a direita, com velocidade constante \vec{v} de valor 2.5 cm/s. O movimento da corda faz rodar a roda sobre a superfície horizontal, sem derrapar. (a) Determine o valor da velocidade angular da roda. (b) Diga em que sentido se desloca o ponto O, no eixo da roda e do cilindro, e determine o valor da sua velocidade. (c) Determine quantos centímetros de corda são desenrolados do cilindro a cada segundo.

2. (4 valores). O sistema dinâmico com equações de evolução:

$$\dot{x} = 2xy^3 - x^4$$
 $\dot{y} = y^4 - 2x^3y$

tem um único ponto de equilíbrio na origem. A matriz jacobiana nesse ponto é igual a zero e, portanto, os valores próprios (nulos) não podem ser usados para caraterizar o ponto de equilíbrio. Use o seguinte método para analisar o retrato de fase do sistema: (a) Determine o versor na direção da velocidade de fase em qualquer ponto do eixo dos x e em qualquer ponto do eixo dos y. (b) Determine o versor na direção da velocidade de fase em qualquer ponto das duas retas y = x e y = -x. (c) Faça a mão um gráfico mostrando os versores que encontrou nas alíneas a e b, em vários pontos nos 4 quadrantes do espaço de fase, e trace algumas curvas de evolução seguindo as direções da velocidade de fase. Com base nesse gráfico, que tipo de ponto de equilíbrio julga que é a origem? (d) Diga se existem ciclos, órbitas homoclínicas ou heteroclínicas e no caso afirmativo quantas. (e) No primeiro quadrante, $x \ge 0, y \ge 0$, o sistema pode ser considerado um sistema de duas espécies. Diga se é um sistema com cooperação, com competição ou predador presa. Explique em palavras como será a evolução das duas populações $x \in y$ a partir de quaisquer valores iniciais $x_0 \in y_0$.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

3. O quadrado na figura tem aresta $d=9~\mathrm{cm}$. O módulo da força \vec{F} é 20 N e o módulo da força \vec{P} é 60 N. Determine o módulo do momento produzido por essas duas forças em relação ao ponto A.

- (A) 3.95 N·m
- (C) 3.6 N·m
- (E) 8.72 N·m

- (**B**) 1.43 N⋅m
- (**D**) 7.2 N·m

(**A**) 3

(A) $\dot{x} = y$

(B) $\dot{x} = y$

(C) $\dot{x} = y$

(D) $\dot{x} = y$ (E) $\dot{x} = y$

Resposta:

- $\dot{r} = r^3 2r^2 + r$. Quantos ciclos limite tem o sistema? **(E)** 4
- **(B)** 1
- Resposta:
- 4. A componente x da aceleração de uma partícula aumenta em função do tempo, de acordo com a expressão $a_x = 5 t$ (unidades SI). No instante t = 0 a componente x da velocidade é nula e a componente da posição é x = 7 m. Determine a componente x da posição em t=2 s.
 - (**A**) 13.7 m
- (C) 41.0 m
- **(E)** 6.8 m

(**B**) 84.7 m

Resposta:

- (**D**) 34.2 m

- Resposta:
- 7. Num sistema que se desloca no eixo dos x, a força resultante é $x^2 + x - 2$. Na lista seguinte, qual dos valores corresponde à posição x dum ponto de equilíbrio estável?

6. O espaço de fase de um sistema dinâmico \acute{e} o plano xy. Em coordenadas polares, as equações de evolução são $\theta = -3$,

5. Qual dos sistemas dinâmicos na lista é equivalente à

equação diferencial $2\ddot{x}x - 2x^2\dot{x} + 4x^3 = 0$?

 $\dot{y} = 4xy - 2x$ $\dot{y} = x \, y - 2 \, x^2$

 $\dot{y} = 2y - 2$

 $\dot{y} = 2y + x$

 $\dot{y} = 2y - 2x$

- (**A**) 1
- (C) 2

 (\mathbf{C}) 0

(**D**) 2

(E) 3

- **(B)** -1
- (**D**) -2

- 8. Um ponto num objeto descreve numa trajetória curva, com 14. A energia mecânica de um corpo celeste em órbita à volta raio constante. Qual das seguintes afirmações é verdadeira? (A) A aceleração angular é constante.
 - (B) A velocidade angular é constante.

 - (C) O módulo da velocidade é diretamente proporcional à velocidade angular.
 - (**D**) A aceleração normal é constante.
 - (E) O módulo da aceleração é diretamente proporcional à aceleração angular.

Resposta:

9. A figura mostra uma barra reta com comprimento L que está a cair; enquanto a barra cai, o extremo A desliza na superfície horizontal e o extremo B desliza sobre a parede vertical. Qual é a relação entre os valores das velocidades dos dois extremos?

- (A) $v_{\rm A} = v_{\rm B} \tan \theta$
- (D) $v_{\rm A} = v_{\rm B} \sin \theta$
- **(B)** $v_{\rm A} = 2 v_{\rm B}$
- (E) $v_{\rm A} = v_{\rm B}$
- (C) $v_{\rm A} = v_{\rm B} \cos \theta$

Resposta:

- de um plano inclinado com base x = 8 m e altura y = 4 m. Calcule o módulo da reação normal do plano sobre o bloco.
 - (**A**) 19.6 N
- (C) 17.53 N
- (E) 8.77 N

- (**B**) 10.87 N
- (**D**) 4.93 N

Resposta:

- 11. Quais são as componentes da velocidade de fase do sistema conservativo com energia potencial $U(x) = 3e^x$ e massa m = 3?
 - (A) $v \vec{e}_x + e^{-x} \vec{e}_y$
- (D) $v \vec{e}_x x \vec{e}_y$
- **(B)** $v \vec{e}_x e^{-x} \vec{e}_y$
- (E) $v \vec{e}_x + e^x \vec{e}_y$
- (C) $v \vec{e}_x e^x \vec{e}_y$

Resposta:

- 12. A velocidade de uma partícula, em função do tempo, é: $2t^2\vec{e}_x + t^4\vec{e}_y$ (unidades SI). Encontre a expressão para o módulo da aceleração.
 - (A) $4t^3 + 4t$
- $(\mathbf{D}) 4t$
- **(B)** $\sqrt{16t^6+16t^2}$
- (E) $4t^3$
- (C) $\sqrt{4t^3+4t}$

Resposta:

- 13. Em qual dos seguintes sistemas dinâmicos o critério de Bendixson permite concluir que não pode existir nenhum ciclo, órbita homoclínica ou órbita heteroclínica?

 - (A) $\dot{x} = 3xy$ $\dot{y} = 2xy$ (D) $\dot{x} = xy^2$ $\dot{y} = -x^2y$ (B) $\dot{x} = -2xy$ $\dot{y} = -xy$ (E) $\dot{x} = xy$ $\dot{y} = x^3y$
- (C) $\dot{x} = 2xy^2 \quad \dot{y} = x^2y$

Resposta:

do Sol pode ser considerada constante e é dada pela expressão

$$E_{\rm m} = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) - \frac{4\pi^2 m}{\sqrt{x^2 + y^2}}$$

onde m é a massa do corpo, x e y as suas coordenadas no plano da órbita com origem no Sol, as distâncias são medidas em unidades astronómicas e o tempo em anos. Encontre a expressão da componente y da aceleração (\ddot{y}) .

- (A) $\ddot{y} = -\frac{4\pi^2 y}{(x^2 + y^2)^{3/2}}$ (D) $\ddot{y} = -\frac{4\pi^2 x y}{(x^2 + y^2)^{3/2}}$ (B) $\ddot{y} = \frac{4\pi^2 y}{(x^2 + y^2)^{3/2}}$ (E) $\ddot{y} = \frac{4\pi^2 x}{(x^2 + y^2)^{3/2}}$

- (C) $\ddot{y} = -\frac{4\pi^2 x}{(x^2 + u^2)^{3/2}}$

Resposta:

- 15. Quando um cilindro com massa 135 g é pendurado de uma mola vertical, fica em equilíbrio a uma altura de 10 cm. Se o cilindro for substituído por outro com massa de 139 g, ficará em equilíbrio a uma altura de 7 cm. Calcule a constante elástica da mola.
 - (A) 2613 mN/m (C) 1307 mN/m
- (E) 653 mN/m

- **(B)** 133 mN/m
- (**D**) 261 mN/m

Resposta:

10. Um bloco de massa 2 kg desce deslizando sobre a superfície 16. A figura mostra o retrato de fase de um sistema não linear com dois pontos de equilíbrio, em (x,y)=(-1,-1)e (x,y)=(2,2). Qual é o sistema linear que aproxima o sistema não linear na vizinhança do ponto (-1, -1)?

- **(A)** $\dot{x} = 3x$ $\dot{y} = -3y$
- **(D)** $\dot{x} = 3y$ $\dot{y} = -3y$
- **(B)** $\dot{x} = -3y$ $\dot{y} = 3x$
- **(E)** $\dot{x} = -3x$ $\dot{y} = -3y$
- (C) $\dot{x} = 3x \quad \dot{y} = 3y$

Resposta:

- 17. Numa máquina de Atwood, com dois cilindros de 200 e 500 gramas e roldana com 600 gramas, a expressão para a energia mecânica total é: $0.5v^2 - 0.3gy$, em unidades SI, onde g é a aceleração da gravidade, y é a distância que o cilindro mais pesado desce e v a velocidade com que esse cilindro desce. Calcule o valor da aceleração dos cilindros, em unidades SI, admitindo conservação da energia mecãnica.
 - (A) 5.88
- **(C)** 16.33
- **(E)** 32.67

- **(B)** 9.8
- (**D**) 2.94

Problemas

1. (a) Como a roda não derrapa, a velocidade do ponto B é nula. Escolhendo o sistema de eixos indicado na figura, e distâncias em centímetros, a velocidade do ponto A será:

$$\vec{v}_{A} = -d_{AB} \omega \vec{e}_{x} = -2 \omega \vec{e}_{x}$$

onde ω é a velocidade angular da roda, positiva no sentido anti horário ou negativa no sentido horário. Como a velocidade do ponto A é igual à velocidade do ponto C, que é $2.5 \, \vec{e}_x$, a velocidade angular é:

$$\omega = \frac{2.5}{-2} = -1.25 \text{ s}^{-1}$$

(b) Como a velocidade angular da roda é no sentido horário, o ponto O desloca-se para a direita. O valor da sua velocidade é:

$$v_{\rm O} = d_{\rm OB} \omega = 7.5 \text{ cm/s}$$

(c) A velocidade do ponto C, em relação ao ponto O, é:

$$\vec{v}_{C/O} = \vec{v}_C - \vec{v}_O = 2.5 \, \vec{e}_x - 7.5 \, \vec{e}_x = -5 \, \vec{e}_x$$

o sentido dessa velocidade, no sentido negativo do eixo dos *x*, indica que os pontos O e C estão a aproximarem-se e o fio não está a desenrolar-se mas sim a enrolar-se ainda mais: cada segundo enrolam-se mais 5 cm de fio.

2. (a) No eixo dos x, y é igual a zero e a velocidade de fase será,

$$\vec{u} = -x^4 \vec{e}_x \implies \vec{e}_u = -\vec{e}_x$$

No eixo dos y, x é igual a zero e a velocidade de fase será,

$$\vec{u} = y^4 \vec{e}_y \implies \vec{e}_u = \vec{e}_y$$

(b) Na reta y = x, a velocidade de fase é,

$$\vec{u} = x^4 \vec{e}_x - x^4 \vec{e}_y$$

o seu módulo é $\sqrt{2}x^4$ e o versor que define a sua direção é,

$$\vec{e}_u = \frac{x^4 \vec{e}_x - x^4 \vec{e}_y}{\sqrt{2} x^4} = \frac{1}{\sqrt{2}} (\vec{e}_x - \vec{e}_y)$$

Na reta y = -x,

$$\vec{u} = -3x^4\vec{e}_x + 3x^4\vec{e}_y \implies \vec{e}_u = \frac{1}{\sqrt{2}}(-\vec{e}_x + \vec{e}_y)$$

- (c) A figura mostra os versores encontrados nas duas alíneas anteriores e algumas curvas de evolução. Como há curvas que se aproximam da origem e curvas que se afastam dele, a origem é um ponto de sela.
- (d) Não existem ciclos nem órbitas heteroclínicas. Existe um número infinito de órbitas homoclínicas: todas as curvas de evolução no primeiro e terceiro quadrantes são órbitas homoclínicas.
- (e) A população y faz aumentar a taxa de crescimento \dot{x} da população x e a população x faz diminuir a taxa de crescimento \dot{y} da população y. Assim sendo, trata-se de um sistema predador presa, em que x são os predadores e y as presas. Se o número inicial de predadores, x_0 , for nulo, o número de presas aumentará ilimitadamente. Se o número inicial de presas, y_0 , for nulo, o número de predadores diminuirá até zero.

Quando os números iniciais de predadores e presas não sejam nulos, as duas populações evoluirão seguindo uma órbita homoclínica. O ponto A em que a população de predadores atinge o seu valor máximo é quando a componente x da velocidade de fase é nula, ou seja, $y = x/\sqrt[3]{2}$. O ponto B onde a população de presas atinge o seu valor máximo é quando a componente y da velocidade de fase é nula, ou seja, $y = \sqrt[3]{2}x$. Assim sendo, existem 3 casos diferentes: (i) Se $y_0 > \sqrt[3]{2}x_0$, os números de predadores e presas aumentam, até um instante t_B em que o número de presas começa a diminuir; num instante posterior t_A , o número de predadores também começa a diminuir e finalmente as duas populações serão extintas. (ii) Se $x_0/\sqrt[3]{2} < y_0 \le \sqrt[3]{2}x_0$, o número de predadores também começa a diminuir e as duas populações serão extintas. (ii) Se $0 < y_0 \le x_0/\sqrt[3]{2}$, as duas populações diminuem até se extinguirem totalmente.

Perguntas

 3. B
 6. B
 9. A
 12. B
 15. C

 4. A
 7. D
 10. C
 13. C
 16. C

 5. C
 8. C
 11. C
 14. A
 17. D

UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores) Uma partícula segue a trajetória que mostra a figura. A partícula parte do repouso em A, acelerando com aceleração constante até o ponto B; desde B até E mantém uma velocidade constante de 10 m/s e a partir de E começa a abrandar, com aceleração constante, até parar no ponto F. A distância AB é 60 cm, CD é 20 cm e EF é 45 cm; o raio do arco BC é 60 cm e o raio do arco DE é 45 cm. Calcule: (a) o módulo da aceleração da partícula em cada um dos trajetos AB, BC, CD, DE e EF; (b) a distância total percorrida e a velocidade média desde A até F.

2. (4 valores). Uma particula com massa m=2 (unidades SI), desloca-se sobre uma calha parabólica vertical. A equação da calha é $y=x^2$, onde x é medida na horizontal e y na vertical (ambas em unidades SI). Assim sendo, o movimento da partícula tem apenas um grau de liberdade. (a) Usando como variável generalizada a coordenada x, escreva a equação da energia cinética em função de x. (b) escreva a equação da energia potencial gravítica, em função de x (admita que, em unidades SI, g = 9.8). (c) Admita que sobre a partícula não atua nenhuma força não conservativa. Usando a equação de Lagrange, determine a equação de movimento. (d) Encontre os pontos de equilíbrio do sistema, no espaço de fase, e diga que tipo de pontos de equilibrio são (justifique a sua resposta).

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

3. A roda na figura tem 8 cm de raio e roda sem deslizar sobre uma superfície plana horizontal. No instante representado na figura, a velocidade do ponto de contacto O é nula e o módulo da velocidade do ponto P é 60 cm/s. Determine o módulo da velocidade do ponto Q, que está à mesma altura do centro C.

- (A) 56.6 cm/s
- (C) 14.1 cm/s
- (E) 42.4 cm/s

- (B) 21.2 cm/s
- (**D**) 28.3 cm/s

Resposta:

- 4. O vetor velocidade de uma partícula, em função do tempo, é: $t^3 \vec{e}_x + 0.3 t^2 \vec{e}_y$ (unidades SI). Em t = 0 a partícula parte do ponto y = -9 no eixo dos y. Calcule o tempo que demora até passar pelo eixo dos x.
 - (**A**) 5.48 s
- (C) 3.91 s
- **(E)** 4.48 s

- **(B)** 3.11 s
- **(D)** 7.75 s

Resposta:

5. A expressão da energia cinética de um sistema conservativo é $\frac{1}{2}$ ($\dot{s}^2 + 2s^2$), onde s é a posição na trajetória, e a expressão da energia potencial total é -4s. O sistema tem um único ponto de equilíbrio; determine o valor de s nesse ponto de equilíbrio.

- (**A**) -1
- (C) 1
- **(E)** 2

- **(B)** -2
- (**D**) 3

Resposta:

- **6.** A velocidade de um ponto é dada pela expressão $2 s^3$ em que s é a posição na trajetória. Determine a expressão para a aceleração segundo a trajetória, $a_{\rm t}$, em função de
 - $(\mathbf{A}) \ \frac{2 \, s^3}{t}$

- (E) $6s^2$

Resposta:

- 7. Um sistema dinâmico com duas variáveis de estado tem uma curva de evolução com conjunto limite positivo num ponto P. Designando os tipos de pontos de equilíbrio assim:
 - 1. foco atrativo.
- 4. nó repulsivo.
- 2. foco repulsivo.
- 5. centro.
- 3. nó atrativo.

Que tipo de ponto de equilíbrio pode ser o ponto P?

- (A) 2 ou 4
- (C) 5
- (**E**) 1 ou 3

- (**B**) 1 ou 2
- (**D**) 3 ou 4

8.	Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?		(A) $\dot{x} = 4y$ $\dot{y} = 5x$ (D) $\dot{x} = -4y$ $\dot{y} = 5x$ (B) $\dot{x} = -5y$ $\dot{y} = -4x$ (E) $\dot{x} = 5y$ $\dot{y} = 4x$	
	(A) $\dot{y} = x + xy^2$ (D) $\dot{y} = 2y^2 - 3y$		(C) $\dot{x} = 5 y \dot{y} = -4 x$	
	(B) $\dot{y} = -5xy + 2y$ (E) $\dot{y} = 2y - 5y^2$ (C) $\dot{y} = 6y - y^2$		Resposta:	
		14.	A força tangencial resultante sobre um objeto é $-s^2 +$	
	Resposta:		2s+3, onde s é a posição na trajetória. Sabendo que o retrato de fase do sistema tem uma órbita homoclínica que	
9.	O espaço de fase de um sistema dinâmico é o plano xy . Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + 2r^2 + r$. Que tipo de ponto de equilíbrio é a		se aproxima assimptoticamente do ponto $(a, 0)$, determine o valor de a .	
	origem?		(A) 2 (C) 3 (E) -2	
	(A) (D) (1)		(B) -1 (D) 1	
	 (A) foco atrativo (B) nó repulsivo (D) ponto de sela (E) foco repulsivo 		Pagnosta.	
	(B) nó repulsivo(C) nó atrativo(E) foco repulsivo		Resposta:	
	` ,	15.	Uma menina atira uma bola verticalmente para cima; a	
	Resposta: Lança-se um projétil desde uma janela a 5.6 m de altura, com velocidade de 14 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima atingida pelo projétil.		bola alcança uma altura máxima de 3 m e a seguir cai de volta até à mão da menina. Durante o percurso, a re-	
10.			sistência do ar sobre a bola pode ser ignorada. Qual das	
			seguintes afirmações é correta?	
			(A) A aceleração é para cima, enquanto a bola sobe, para baixo na descida.	
	(A) 8.1 m (C) 13.1 m (E) 6.9 m (B) 10.6 m (D) 15.6 m		(B) A aceleração da bola aponta sempre no mesmo sen-	
			tido. (C) Na descida, a velocidade da bola aumenta devido a	
	Resposta:		que a sua aceleração aumenta.	
11.	O momento de inércia de um disco de 11 cm de raio é		(\mathbf{D}) A bola pára a 3 m de altura porque a aceleração é	
	$5.2 \times 10^{-3} \text{ kg} \cdot \text{m}^2$. Determine o valor da força tangencial que deve ser aplicada na periferia do disco, para produzir uma aceleração angular de -6 rad/s^2 .		menor quanto maior for a altura	
			(E) A aceleração da bola é nula quando a altura é 3 m.	
			Resposta:	
	(A) 0.57 N (C) 0.19 N (E) 0.28 N (B) 1.13 N (D) 0.11 N	16.	De acordo com o critério de Bendixson, qual dos seguintes	
			sistemas dinâmicos não pode ter nenhuma órbita fechada	
	Resposta:		(ciclo, órbita homoclínica ou órbita heteroclínica)?	
12.	Um bloco de massa 4 kg desce deslizando sobre a superfície		(A) $\dot{x} = 3x + y^2$ $\dot{y} = x^2 + y^2$	
	de um plano inclinado, partindo do ponto A com valor		(B) $\dot{x} = 3x^2 + y^2$ $\dot{y} = x^2 - y^2$	
	da velocidade igual a 7 m/s e parando completamente no ponto B. As alturas dos pontos A e B, medidas na verti-		(C) $\dot{x} = 3x^2 + y^2$ $\dot{y} = y - yx^2$	
	cal desde a base horizontal do plano, são: $h_B=10~\mathrm{cm}$ e		(D) $\dot{x} = 3x + y^2$ $\dot{y} = x^2y - y$	
	$h_A = 60$ cm. Calcule o trabalho realizado pela força de atrito, desde A até B.		(E) $\dot{x} = 3x^2 + y^2$ $\dot{y} = x^2y - y$	
	autio, desde it and b.		Resposta:	
		17.	As equações de evolução de um sistema linear são:	
	(B) -125.4 J (D) -117.6 J		$\dot{x} = -2x - y$ $\dot{y} = 2x$ Que tipo de ponto de equilíbrio tem esse sistema?	
	Resposta:			
13.	O sistema dinâmico não linear:		(A) centro. (D) foco atrativo.	
	$\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 3y - 3$ tem um ponto de equilíbrio em $x = 3, y = 4$. Qual é o sistema linear que aproxima o sistema não linear na vizi-		(B) foco repulsivo.(C) ponto de sela.(E) nó repulsivo.	
			\ \ \ \ -	
	nhanca dossa nanta da aquilíbrio?		Resposta:	

nhança desse ponto de equilíbrio?

Regente: Jaime Villate

Resolução do exame de 13 de junho de 2014

Problemas

1. (a) No trajeto AB,

$$a_{\rm t} = v \frac{\mathrm{d}v}{\mathrm{d}s} \implies a_{\rm t} \int_{0}^{0.6} \mathrm{d}s = \int_{0}^{10} v \,\mathrm{d}v \implies a_{\rm t} = 83.33 \,\mathrm{m/s^2}$$

o módulo da aceleração é 83.33 m/s². No trajeto EF,

$$a_{\rm t} = v \frac{\mathrm{d}v}{\mathrm{d}s} \implies a_{\rm t} \int_{0}^{0.45} \mathrm{d}s = \int_{10}^{0} v \,\mathrm{d}v \implies a_{\rm t} = -111.11 \,\mathrm{m/s^2}$$

o módulo da aceleração é 111.11 m/s². No trajeto CD, o módulo da aceleração é nulo, porque o movimento é retilíneo e uniforme. No trajeto BC, a aceleração tem unicamente componente normal:

$$a_{\rm n} = \frac{v^2}{r} = \frac{10^2}{0.6} = 166.67 \,\mathrm{m/s^2}$$

o módulo da aceleração é 166.67 m/s². No trajeto DE, a aceleração também tem unicamente componente normal:

$$a_{\rm n} = \frac{v^2}{r} = \frac{10^2}{0.45} = 222.22 \,\mathrm{m/s^2}$$

o módulo da aceleração é 222.22 m/s².

(b) A distância total percorrida é a soma dos três segmentos AB, CD e EF, mais os dois arcos BC e DE, ambos com ângulo de $\pi/2$ radianos:

$$d = 0.6 + 0.2 + 0.45 + \frac{\pi}{2} (0.6 + 0.45) = 2.90 \text{ m}$$

O tempo que a partícula demora a percorrer o trajeto BCDE é:

$$t_1 = \frac{0.2 + \frac{\pi}{2} (0.6 + 0.45)}{10} = 0.185 \text{ s}$$

Para calcular o tempo que demora no trajeto AB, integra-se uma equação de movimento

$$a_{t} = \frac{dv}{dt}$$
 \Longrightarrow $t_{2} = \frac{1}{a_{t}} \int_{0}^{10} dv = \frac{10}{83.33} = 0.120 \text{ s}$

e usa-se o mesmo procedimento para calcular o tempo que demora no trajeto EF:

$$a_{\rm t} = \frac{\mathrm{d} v}{\mathrm{d} t} \implies t_3 = \frac{1}{a_{\rm t}} \int_{10}^{0} \mathrm{d} v = \frac{10}{111.11} = 0.090 \,\mathrm{s}$$

A velocidade média é igual à distância percorrida dividida pelo tempo que demorou:

$$v_m = \frac{d}{t_1 + t_2 + t_3} = \frac{2.90}{0.185 + 0.120 + 0.090} = 7.34 \text{ m/s}$$

2. (a) A relação entre \dot{y} e \dot{x} encontra-se derivando a equação da calha $y=x^2$

$$\dot{y} = 2x\dot{x}$$

Em função da coordenada generalizada x e da velocidade generalizada \dot{x} , a energia cinética da partícula é

$$E_{\rm c} = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 \right) = \dot{x}^2 \left(4x^2 + 1 \right)$$

(b) Arbitrando energia potencial gravítica nula em y = 0, A energia potencial gravítica da partícula é:

$$U_{\rm g} = mgy = 19.6x^2$$

(c) A equação de Lagrange é:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{x}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial x} + \frac{\partial U_{\mathrm{g}}}{\partial x} = \ddot{x} \left(8x^2 + 2 \right) + 16\dot{x}^2 x - 8\dot{x}^2 x + 39.2x = 0$$

e a equação de movimento:

$$\ddot{x} = -\frac{x\left(4\dot{x}^2 + 19.6\right)}{4x^2 + 1}$$

(d) As equações de evolução são:

$$\dot{x} = v$$
 $\dot{v} = -\frac{x(4\dot{x}^2 + 19.6)}{4x^2 + 1}$

Os pontos de equilíbrio são as soluções do sistema de equações

$$\begin{cases} v = 0 \\ -\frac{x(4v^2 + 19.6)}{4x^2 + 1} = 0 \end{cases} \implies \begin{cases} v = 0 \\ x = 0 \end{cases}$$

A matriz jacobiana é:

$$J = \begin{bmatrix} 0 & 1 \\ \frac{(16v^2 + 78.4)x^2 - 4v^2 - 19.6}{(4x^2 + 1)^2} & -\frac{8xv}{4x^2 + 1} \end{bmatrix}$$

e no ponto de equilíbrio (0, 0) é igual a

$$\begin{bmatrix} 0 & 1 \\ -19.6 & 0 \end{bmatrix}$$

Como a soma dos valores próprios é nula e o produto é positivo, os dois valores próprios são imaginários e o ponto de equilíbrio é um centro. (Também é possível traçar o retrato de fase para mostrar que a origem é um centro).

Perguntas

3. E

6. D

- **9.** E
- **12.** D
- **15.** B

4. E

- **7.** E
- **10.** A
- **13.** A
- **16.** D

5. B

- **8.** B
- **11.** E
- **14.** B
- **17.** D

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I

1° ANO 2° SEMESTRE

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores) Três cilindros A, B e C foram pendurados no sistema de duas roldanas que mostra a figura. Num instante, a velocidade do bloco A é $v_A = 3$ m/s, para cima, e a sua aceleração é $a_{\rm A}=2~{\rm m/s^2},$ para baixo; no mesmo instante, a velocidade e aceleração do bloco C são: $v_{\rm C} = 1 \text{ m/s}$, para baixo, $a_{\rm C} = 4 \text{ m/s}^2$, para cima. Determine a velocidade e aceleração do bloco B, no mesmo instante, indicando se são para cima ou para baixo.

2. (4 valores). Um cilindro com base circular de área $A=10~\mathrm{cm}^2$, altura $h=16~\mathrm{cm}$ e massa m = 144 g, flutua num recipiente com água, ficando em equilíbrio estável na posição que mostra a figura, com uma parte x da sua altura por fora da água. Se o cilindro é empurrado para baixo, oscila com x a variar à volta do valor de equilíbrio. A força de impulsão da água é vertical, aponta para cima e (se $0 \le x \le$ h) é uma força conservativa com energia potencial $U_i = g \rho A \left(\frac{x^2}{2} - h x\right)$, onde $g = 9.8 \text{ m/s}^2$ é a aceleração da gravidade e $\rho = 1 \text{ g/cm}^3$ é a massa volúmica da água. Para determinar a posição de equilíbrio e o período das oscilações, ignore as forças dissipativas e use o seguinte procedimento: (a) Determine a equação de movimento e escreva as equações de evolução. (b) Encontre o valor de x no ponto de equilíbrio. (c) Determine a matriz do sistema, mostre que o ponto de equilíbrio é um centro e calcule o período de oscilação.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um condutor viajou a 60 km/h durante 45 minutos, parou durante 15 minutos e continuou a 40 km/h durante meia hora. Calcule a velocidade média do percurso total.
 - (A) 65.0 km/h
- (C) 50.0 km/h
- (**E**) 43.3 km/h

- (**B**) 33.3 km/h
- (**D**) 20.0 km/h

Resposta:

4. A barra na figura tem 1.5 m de comprimento e está a cair, enquanto o ponto A desliza na superfície horizontal e o ponto B desliza ao longo da parede vertical. Num instante em que o ângulo é $\theta = 25^{\circ}$ e a velocidade do ponto B tem valor de 3 m/s, determine o valor da velocidade angular da barra $(\dot{\theta})$.

- (A) 4.29 rad/s
- (C) 2.0 rad/s

- (**B**) 2.21 rad/s
- (**D**) 0.44 rad/s
- (E) 4.73 rad/s

Resposta:

- 5. A força tangencial resultante sobre uma partícula é $F_{\rm t}=$ (s+1)(s-1)(s-3). Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
 - (A) s = 1 é instável e s = 3 é estável.
 - (B) s = -1 é instável e s = 3 é estável.
 - (C) s = 1 é estável e s = 3 é instável.
 - (**D**) s = -1 é estável e s = 3 é instável.
 - (E) s = -1 e s = 1 são instáveis.

Resposta:

- 6. Se o conjunto limite positivo de uma curva de evolução A, no espaço de fase, é um ciclo limite C, qual das afirmações é correta?
 - (A) A torna-se exatamente igual a C após algum tempo.
 - (B) Todos os pontos de C pertencem também a A.
 - (C) A toca o ciclo C num ponto.
 - (D) A aproxima-se de C, sem nunca o tocar.
 - (E) A afasta-se de C.

7. Calcule o ângulo entre a velocidade $\vec{v} = 2 \vec{e}_x + 3 \vec{e}_y - \vec{e}_z$ e 12. a aceleração $\vec{a} = \vec{e}_x - 2 \vec{e}_y - 3 \vec{e}_z$ de uma partícula. (A) 115.4° (C) 110.9° (E) 50.0° (B) 94.1° (D) 21.8°	A aceleração tangencial de um objeto verifica a expressão $a_{\rm t}=5s^4$ (unidades SI), em que s é a posição na trajetória. Se o objeto parte do repouso na posição $s=1$ m, determine o valor absoluto da sua velocidade na posição $s=2$ m.
Resposta: 8. Um bloco desce um plano inclinado, deslizando com velocidade constante. Pode afirmar-se que nesse percurso:	(A) 12.65 m/s (C) 5.52 m/s (E) 10.26 m/s (B) 3.16 m/s (D) 7.87 m/s
 (A) O trabalho realizado pela resultante das forças sobre 13. o corpo é positivo. (B) O trabalho realizado pela força gravítica é negativo. (C) A energia cinética do corpo diminui. (D) A energia potencial do corpo diminui. (E) A energia mecânica do corpo mantém-se constante. 	A matriz jacobiana de um sistema não linear, num ponto P do espaço de fase (x, y) , foi armazenada na variável J no Maxima. O comando eigenvectors(J) produz: [[[-1,1], [1,1]], [[[1,-1]], [[1,1/3]]]] que tipo de ponto de equilíbrio é o ponto P? (A) nó atrativo. (B) ponto de sela. (E) foco repulsivo.
Resposta: 9. As distâncias na figura estão em centímetros. O carrinho, incluindo as rodas, tem massa $m_1 = 140$ g, distribuída uniformemente, e o bloco de cima tem massa $m_2 = 315$ g, 14. também distribuída uniformemente. Determine o valor da reação normal total nas duas rodas do lado esquerdo. $ \begin{array}{c} $	(C) centro. Resposta: Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas é um sistema de duas espécies, presa predador? (A) $\dot{x} = y^2 - xy$ $\dot{y} = x^2 + xy$ (B) $\dot{x} = xy - x^2$ $\dot{y} = y^2 - x^2$ (C) $\dot{x} = x^2 + xy$ $\dot{y} = y^2 - xy$ (D) $\dot{x} = x^2 - xy$ $\dot{y} = y^2 - xy$ (E) $\dot{x} = x^2 + xy$ $\dot{y} = y^2 + xy$ Resposta:
	Um aluno empurra um bloco de massa 400 g, sobre uma mesa horizontal, com uma aceleração constante de 1.7 m/s². A força que o aluno exerce é horizontal. Sa-

	1 6	' 1 '	
(A) 1.201 N	(C) 0.743 N	(E) 1.486 N	15. Um aluno empurra um bloco de massa 400 g, sobre
(B) 1.543 N	(D) 2.23 N		uma mesa horizontal, com uma aceleração constante de 1.7 m/s ² . A força que o aluno exerce é horizontal. Sa-
Resposta:			bendo que o coeficiente de atrito cinético entre o bloco e

10. Calcule a matriz jacobiana do sistema dinâmico equiva-

 $(\mathbf{A}) \begin{bmatrix} 0 & 1 \\ 2x - 3y & 3x \end{bmatrix} \qquad (\mathbf{D}) \begin{bmatrix} 0 & 1 \\ -2x - 3y & -3x \end{bmatrix}$ $(\mathbf{B}) \begin{bmatrix} 0 & 1 \\ 2x + 3y & 3x \end{bmatrix} \qquad (\mathbf{E}) \begin{bmatrix} 0 & 1 \\ 3y - 2x & 3x \end{bmatrix}$ $(\mathbf{C}) \begin{bmatrix} 0 & 1 \\ 2x - 3y & -3x \end{bmatrix}$

Que tipo de ponto de equilíbrio tem esse sistema?

(**D**) nó repulsivo.

(E) foco atrativo.

lente à seguinte equação diferencial:

11. A matriz de um sistema dinâmico linear é:

 $\ddot{x} + 3\,\dot{x}\,x - x^2 = 0$

no espaço de fase (x,y).

Resposta:

Resposta:

16. Qual dos seguintes sistemas não pode ser caótico?

(A) Um sistema de 4 espécies.

(B) Um sistema autónomo com 3 variáveis de estado.

(C) Um pêndulo duplo (dois pêndulos, um pendurado no outro).

(D) Um sistema linear com 4 variáveis de estado.

(E) Um sistema autónomo com 4 variáveis de estado.

Resposta:

17. As expressões para as energias cinética e potencial de um sistema conservativo com dois graus de liberdade, $x \in \theta$, são: $E_c = 3\dot{x}^2 + 11\dot{\theta}^2$ e $U = -7x\theta$. Encontre a expressão para a aceleração $\ddot{\theta}$.

(A) $\frac{7}{22}x\theta$ (C) $\frac{7}{22}\theta$ (E) $\frac{7}{3}x$ (B) $\frac{7}{22}x$ (D) $\frac{7}{3}x\theta$

Resposta:

(A) nó atrativo.

(C) centro.

Resposta:

(B) foco repulsivo.

Regente: Jaime Villate

Resolução do exame de 3 de julho de 2014

Problemas

Problema 1. **Método 1**. Como o cilindro A se desloca para cima a 3 m/s, a roldana móvel no lado direito desce com a mesma velocidade. E como o cilindro C também desce, mas com velocidade de apenas 1 m/s, então a velocidade de C, relativa à roldana móvel é 2 m/s, para cima. Em relação à roldana móvel, o cilindro B desce com a mesma velocidade com que C está a subir; ou seja, a velocidade de B, relativa à roldana móvel, é 2 m/s, para baixo. E como a roldana móvel está a descer a 3 m/s, então o cilindro B tem velocidade de 5 m/s, para baixo.

Como o cilindro A acelera para baixo a 2 m/s², a aceleração da roldana móvel é também 2 m/s², mas para cima. E como a aceleração de C é 4 m/s², para cima, então a aceleração de C, relativa à roldana móvel é 2 m/s², para cima. A aceleração de B em relação à roldana móvel é então 2 m/s², para baixo, e a aceleração de B é 0.

Método 2. Outra forma de obter os mesmos resultados consiste em definir 4 variáveis y_A , y_B , y_C e y_R para medir as posições dos cilindros e da roldana móvel, tal como mostra a figura ao lado.

Como o cilindro A e a roldana móvel estão ligados por um fio, então

$$y_A + y_R = constante$$

e a ligação dos cilindros B e C com outro fio que passa pela roldana móvel implica:

$$(y_B - y_R) + (y_C - y_R) = constante$$

Derivando essas duas equações em ordem ao tempo, obtêm-se as relações para as velocidades:

$$\begin{cases} v_{A} + v_{R} = 0 \\ v_{B} + v_{C} - 2v_{R} = 0 \end{cases} \Longrightarrow v_{B} = -2v_{A} - v_{C}$$

Como as distâncias y aumentam quando os objetos descem, então as velocidades para baixo são positivas e para cima são negativas. Assim sendo, as velocidades dadas no enunciado são $v_A = -3$ e $v_C = 1$ e a equação acima dá $v_B = 5$; ou seja, a velocidade do cilindro B é 5 m/s, para baixo.

Derivando novamente a relação entre as velocidades obtém-se a relação entre as acelerações:

$$a_{\rm B} = -2 a_{\rm A} - a_{\rm C}$$

e substituindo os valores dados, $a_A = 2$ e $a_C = -4$, obtém-se $a_B = 0$; ou seja, a aceleração do cilindro B é nula.

Problema 2. (a) Método 1. A energia potencial total do cilindro é a energia potencial de impulsão mais a energia potencial gravítica:

$$U = g \rho A \left(\frac{x^2}{2} - hx\right) + mg\left(x - \frac{h}{2}\right)$$

e a força resultante e como não existem forças não conservativas, a força resultante sobre o cilindro é

$$F = -\frac{\mathrm{d}U}{\mathrm{d}x} = g \rho A (h - x) - mg$$

e a equação de movimento obtém-se dividindo a força resultante pela massa

$$\ddot{x} = \frac{g \rho A}{m} (h - x) - g$$

Método 2. A equação de movimento também pode ser obtida aplicando a equação de Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{x}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial x} + \frac{\partial U}{\partial x} = 0$$

onde a energia cinética é a expressão $E_c = m\dot{x}^2/2$. Calculando as derivadas obtém-se:

$$m\ddot{x} + g\rho A(x - h) + mg = 0$$

que conduz à mesma equação de movimento já obtida.

As equações de evolução são:

$$\dot{x} = v$$
 $\dot{v} = \frac{g \rho A}{m} (h - x) - g$

(b) No ponto de equilíbrio,

$$\frac{g \rho A}{m}(h-x) - g = 0 \implies x_e = h - \frac{m}{\rho A}$$

e, substituindo os valores conhecidos (massas em gramas e distâncias em centímetros),

$$x_e = 16 - \frac{144}{10} = 1.6 \text{ cm}$$

(c) O sistema de equações de evolução é um sistema dinâmico linear e a matriz do sistema é:

$$J = \begin{bmatrix} 0 & 1 \\ -\frac{g \rho A}{m} & 0 \end{bmatrix}$$

A soma dos valores próprios é nula $(\lambda_1 = -\lambda_2)$ e o produto $(-\lambda_1^2)$ é igual a $\frac{g \rho A}{m}$, que é positivo. Assim sendo, os dois valores próprios são:

$$\lambda = \pm i \sqrt{\frac{g \rho A}{m}}$$

Conclui-se que o ponto de equilíbrio é um centro e as curvas de evolução são ciclos com frequência angular

$$\Omega = \sqrt{\frac{g \rho A}{m}}$$

O período de oscilação é (massas em gramas, distâncias em centímetros e tempos em segundos)

$$T = \frac{2\pi}{\Omega} = 2\pi\sqrt{\frac{m}{g\rho A}} = 2\pi\sqrt{\frac{144}{980 \times 10}} = 0.762 \text{ s}$$

Observe-se que o período não depende da altura *h* nem da forma geométrica da base do cilindro, apenas da sua área. Imagine, por exemplo, quais poderão ser os valores da massa e da área de um barco e faça uma estimativa do seu período de oscilação.

Perguntas

3. E

6. D

9. A

12. D

15. C

4. B

7. B

10. C

13. B

16. D

5. C

8. D

11. D

14. C

17. B

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Na figura, a massa do cilindro A é 36 gramas, a massa do cilindro B é 24 gramas e o momento de inércia da roldana dupla é $4.43 \times 10^{-7} \text{ kg} \cdot \text{m}^2$. A roldana está formada por dois discos, de raios 5 cm e 8 cm, colados um ao outro. Cada cilindro está ligado a um fio com o extremo oposto ligado à roldana, de forma que o fio enrola-se ou desenrola-se, sem deslizar sobre a roldana, quando esta roda. Desprezando o atrito no eixo da roldana e a resistência do ar, determine os valores das acelerações de cada cilindro e diga se são para cima ou para baixo.

2. (4 valores) No sistema dinâmico com equações de evolução:

$$\dot{x} = -y$$
$$\dot{y} = 10 x + k(x+y)$$

onde k é um parâmetro real que pode ter qualquer valor entre $-\infty$ e $+\infty$, determine para quais possíveis valores de k o ponto (x,y) = (0,0) é nó atrativo ou repulsivo, foco atrativo ou repulsivo, centro ou ponto de sela.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- **3.** Um cilindro de massa m e raio R roda sobre uma superfície plana, sem derrapar. Sabendo que o momento de inércia, em relação ao centro de massa, de um cilindro é dado pela expressão $\frac{1}{2} m R^2$, determine a expressão para a energia cinética, em função da velocidade v do centro de massa.
 - (A) $\frac{1}{2} m v^2$ (C) $\frac{3}{4} m v^2$ (E) $m v^2$ (B) $\frac{1}{4} m v^2$ (D) $\frac{3}{2} m v^2$

Resposta:

- 4. Um bloco de massa 4 kg desce deslizando sobre a superfície de um plano inclinado, partindo do ponto A com valor da velocidade igual a 3 m/s e parando completamente no ponto B. As alturas dos pontos A e B, medidas na vertical desde a base horizontal do plano, são: $h_B = 10$ cm e $h_A = 100$ cm. Calcule o trabalho realizado pela força de atrito, desde A até B.
 - (**A**) -41.5 J
- (C) -37.6 J
- **(E)** -45.4 J

- **(B)** -49.4 J
- **(D)** -53.3 J

Resposta:

- 5. O vetor posição de um ponto, em função do tempo, é dado pela expressão: $2t^2 \hat{i} + (t^4 + 2) \hat{j}$ (unidades SI). Calcule o ângulo entre os vetores velocidade e posição, no instante t = 1.
 - (A) 23.8°
- (C) 4.5°
- **(E)** 18.1°

- **(B)** 14.7°
- (**D**) 11.3°

Resposta:

- 6. Um homem empurra um bloco de madeira sobre uma superfície horizontal. Sobre o bloco está pousado um livro. Considerando as forças seguintes:
 - 1. Força de contato entre as mãos do homem e o bloco.
 - 2. Peso do livro.
 - 3. Força de atrito produzida pela superfície horizontal.

Quais dessas forças atuam sobre o bloco de madeira?

- (**A**) 2 e 3
- **(C)** 1
- **(E)** 1, 2 e 3

- **(B)** 1 e 2
- (**D**) 1 e 3

Resposta:

7. O bloco na figura, com massa igual a 7 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco atua uma força externa \vec{F} , horizontal e constante, com módulo igual a 42 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. Calcule o módulo da aceleração do bloco.

- (A) 24.85 m/s^2
- (C) 8.45 m/s^2
- (E) 6.0 m/s^2

- **(B)** 59.15 m/s^2
- (**D**) 3.55 m/s^2

(A)
$$\dot{x} = -3y$$
 $\dot{y} = 3x$

(D)
$$\dot{x} = -3x$$
 $\dot{y} = -3y$

(B)
$$\dot{x} = 3y$$
 $\dot{y} = -3y$

(E)
$$\dot{x} = 3x$$
 $\dot{y} = 3y$

(C)
$$\dot{x} = 3x \quad \dot{y} = -3y$$

- 9. O espaço de fase de um sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + r^2 - 2r$. Que tipo de ponto de equilíbrio é a origem?
 - (A) nó repulsivo
- (D) foco repulsivo
- (B) nó atrativo
- (E) foco atrativo
- (C) ponto de sela

Resposta:

- 10. A força tangencial resultante sobre um corpo é $F_{\rm t}$ = s(s+1)(s+2)(s-1)(s-2). Quantos pontos de equilíbrio instável tem este sistema mecânico?
 - (**A**) 5
- **(C)** 2
- (\mathbf{E}) 1

- **(B)** 4
- **(D)** 3

Resposta:

- 11. O espaço de fase de um sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + 2r^2 + r$. Quantos ciclos limite tem o sistema?
 - (A) 4
- **(C)** 3
- $(\mathbf{E}) 0$

- **(B)** 2
- **(D)** 1

Resposta:

- 12. As equações de evolução de um sistema linear são: $\dot{x} = -x - 4y$ $\dot{y} = 4x - y$ Como variam x e y em função do tempo?
 - (A) Oscilam com período π e amplitude crescente.

- (B) Oscilam com período igual a π e amplitude constante.
- (C) Oscilam com período π e amplitude decrescente.
- (D) Oscilam com período $\pi/2$ e amplitude decrescente.
- (E) Oscilam com período $\pi/2$ e amplitude crescente.

Resposta:

- 13. A posição de um ponto ao longo de um percurso, em função do tempo, é dada pela expressão $s = 30 t - 5 t^2$ (SI). Determine a distância percorrida pelo ponto entre t=0 e t = 4.5 s.
 - (**A**) 45 m
- (C) 11.25 m
- **(E)** 14.25 m

- (**B**) 78.75 m
- (**D**) 56.25 m

Resposta:

- 14. Calcule o momento de inércia de uma esfera com raio de 2 centímetros e massa 101 gramas, que roda à volta de um eixo tangente à superfície da esfera, sabendo que o momento de inércia de uma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$.
 - (A) $1.62 \times 10^{-5} \text{ kg·m}^2$ (D) $8.08 \times 10^{-6} \text{ kg·m}^2$ (B) $3.23 \times 10^{-5} \text{ kg·m}^2$ (E) $5.66 \times 10^{-5} \text{ kg·m}^2$
- (C) $2.89 \times 10^{-5} \text{ kg} \cdot \text{m}^2$ batch -> esfera homocoisas

Resposta:

15. Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas é um sistema de duas espécies, com competição?

(A)
$$\dot{x} = x^2 + xy$$
 $\dot{y} = y^2 + xy$

(B)
$$\dot{x} = xy - x^2$$
 $\dot{y} = y^2 - x^2$

(C)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 - xy$

(D)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 + xy$

(E)
$$\dot{x} = x^2 - xy$$
 $\dot{y} = y^2 - xy$

Resposta:

- 16. Calcule o raio de curvatura da trajetória dum ponto, num instante em que o vetor velocidade é $5\hat{i} + 7\hat{j}$ e o vetor aceleração é $-2\hat{\imath} + 5\hat{\jmath}$ (unidades SI).
 - (**A**) 16.32 m
- (C) 25.46 m
- **(E)** 2.96 m

- (**B**) 1.9 m
- (**D**) 14.15 m

Resposta:

- 17. Quando se liga um PC, o disco rígido demora 1.8 s, a partir do repouso, até alcançar a velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angular constante durante esse intervalo, determine o valor da aceleração angular
 - (A) 279 rad/s^2
- (C) 838 rad/s^2
- (E) 182 rad/s^2

- **(B)** 419 rad/s^2
- (**D**) 209 rad/s^2

Regente: Jaime Villate

Resolução do exame de 26 de junho de 2015

Problemas

Problema 1. **Método 1**. Se h_A e h_B são as alturas dos dois cilindros, numa posição inicial, quando a roldana roda um ângulo θ , no sentido anti-horário, as alturas dos cilindros são:

$$y_A = h_A - 0.05 \theta$$
 $y_B = h_B + 0.08 \theta$

Assim sendo, o sistema tem um único grau de liberdade, que pode ser o ângulo θ . As expressões para as velocidades e acelerações dos cilindros são então:

$$v_{\rm A} = -0.05\,\omega \qquad v_{\rm B} = 0.08\,\omega$$

$$a_{\rm A} = -0.05 \,\alpha$$
 $a_{\rm B} = 0.08 \,\alpha$

onde $\omega = \dot{\theta}$ é a velocidade angular da roldana e $\alpha = \ddot{\theta}$ é a sua aceleração angular. A expressão para a energia cinética do sistema é:

$$E_{\rm c} = \frac{0.036}{2} (-0.05\,\omega)^2 + \frac{0.024}{2} (0.08\,\omega)^2 + \frac{4.43 \times 10^{-7}}{2}\,\omega^2 = 1.220215 \times 10^{-4}\,\omega^2$$

E a energia potencial gravítica, ignorando termos constantes, é:

$$U = -0.036 \times 9.8 \times 0.05 \theta + 0.024 \times 9.8 \times 0.08 \theta = 1.176 \times 10^{-3} \theta$$

Aplicando a equação de Lagrange, obtém-se a aceleração angular:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \omega} \right) - \frac{\partial E_{\mathrm{c}}}{\partial \theta} + \frac{\partial U}{\partial \theta} = 2.44043 \times 10^{-4} \,\alpha - 0 + 1.176 \times 10^{-3} = 0 \quad \Longrightarrow \quad \alpha = -4.8188$$

O sinal negativo indica que a roldana acelera no sentido horário. Como tal, a aceleração do bloco A é para cima e a do bloco B é para baixo, e os seus valores absolutos são:

$$a_{\rm A} = 0.05 \times 4.8188 = 0.2409 \,\mathrm{m \cdot s^{-2}}$$
 $a_{\rm B} = 0.08 \times 4.8188 = 0.3855 \,\mathrm{m \cdot s^{-2}}$

Método 2. A figura ao lado mostra os diagramas de corpo livre para a roldana e para cada um dos cilindros. Admitindo que a aceleração a_A do cilindro A é para cima, então a aceleração a_B do cilindro B é para baixo e a aceleração angular α da roldana é no sentido horário. As três equações de movimento são:

$$T_{\rm A} - 0.036 \times 9.8 = 0.036 a_{\rm A}$$

 $0.024 \times 9.8 - T_{\rm B} = 0.024 a_{\rm B}$
 $0.08 T_{\rm B} - 0.05 T_{\rm A} = 4.43 \times 10^{-7} \alpha$

junto com as duas equações:

$$a_{\rm A} = 0.05 \,\alpha$$
 $a_{\rm B} = 0.08 \,\alpha$

tem-se um sistema de 5 equações lineares com 5 incógnitas, T_A , T_B , α , a_A e a_B . A solução desse sistema dá os mesmos valores já encontrados no método 1 para a_A e a_B , com sinais positivos, que indica que o sentido arbitrado para as acelerações foi o correto.

Problema 2. Existem várias formas possíveis de resolver este problema; um método simples é o seguinte. Trata-se de um sistema linear com matriz:

$$\begin{bmatrix} 0 & -1 \\ 10+k & k \end{bmatrix}$$

com traço, t, e determinante, d;

$$t = k$$
 $d = k + 10$

A relação entre o traço e o determinante é d = t + 10. Num plano em que o eixo das abcissas representa o traço t e o eixo das ordenadas representa o determinante d, esta relação é uma reta com declive igual a 1, que corta o eixo das abcissas em $t_0 = -10$.

A curva que delimita a região dos focos da região dos nós é a parábola $d = t^2/4$, que corta a reta d = t + 10 nos dois pontos onde:

$$\frac{t^2}{2} - 2t - 20 = 0 \implies t = 2 \pm \sqrt{44} \implies t_1 = 2 - 2\sqrt{11} \approx -4.633 \qquad t_2 = 2 + 2\sqrt{11} \approx 8.633$$

O gráfico seguinte mostra a reta e a parábola:

O ponto de equilíbrio é ponto de sela, se o traço for menor que t_0 , nó atrativo, se o traço estiver entre t_0 e t_1 , foco atrativo, se o traço estiver entre t_1 e 0, centro se o traço for nulo, foco repulsivo, se o traço estiver entre 0 e t_2 ou nó repulsivo, se o traço for maior que t_2 . Tendo em conta que t_2 e igual ao traço, o resultado é então:

- Ponto de sela, se k < -10
- Nó atrativo, se $-10 < k \le 2 2\sqrt{11}$
- Foco atrativo, se $2 2\sqrt{11} < k < 0$
- Centro, se k = 0
- Foco repulsivo, se $0 < k < 2 + 2\sqrt{11}$
- Nó repulsivo, se $k \ge 2 + 2\sqrt{11}$

Note-se que quando k=-10, o ponto de equilíbrio é não-hiperbólico, que não corresponde a nenhuma das categorias acima. Quando $k=2\pm 2\sqrt{11}$, o ponto é nó impróprio, que já foi incluído nas categorias acima.

Perguntas

3. C

6. D

- **9.** E
- **12.** D
- **15.** E

4. D

- **7.** C
- **10.** D
- **13.** D
- **16.** A

5. D

- **8.** D
- **11.** E
- **14.** E
- **17.** B

UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I — 1° ANO, 2° SEMESTRE

14 de julho de 2015

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

- 1. (4 pontos) Um homem com 72 kg empurra uma caixa de madeira com 8 kg sobre um chão horizontal, exercendo uma força horizontal nela que a faz deslizar no chão. Sobre a caixa está pousado um livro com 0.6 kg. O homem, a caixa e o livro deslocam-se conjuntamente, com aceleração igual a $0.5~\text{m/s}^2$. Determine o valor das forças de atrito entre o chão e a caixa, entre a caixa e o livro e entre o chão e os pés do homem, ignorando a resistência do ar e sabendo que os coeficientes de atrito estático (μ_e) e atrito cinético (μ_c) são: entre o chão e a caixa, $\mu_e = 0.25~\text{e}~\mu_c = 0.2$; entre a caixa e o livro, $\mu_e = 0.35~\text{e}~\mu_c = 0.28$; entre o chão e os pés do homem, $\mu_e = 0.4~\text{e}~\mu_c = 0.3$.
- 2. (4 pontos) O sistema dinâmico:

$$\dot{x} = y + x(x^2 + y^2)$$
 $\dot{y} = -x + y(x^2 + y^2)$

tem um ponto de equilíbrio na origem. Use as substituições $x=r\cos\theta,\,y=r\sin\theta$ para transformar as equações de evolução para coordenadas polares. Encontre as expressões para \dot{r} e $\dot{\theta}$ em função de r e θ . Explique (con argumentos válidos) que tipo de ponto de equilíbrio é a origem e quantos ciclos limite existem.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

3. No instante em que o bloco B desce com velocidade 18 cm/s, com que velocidade se desloca o bloco A para cima?
6. A figura mostra o gráfico da posição de um ponto ao longo da sua trajetória em função do tempo. Se a₁ e a₆ representante.

- (A) 36 cm/s
- (C) 54 cm/s
- (**E**) 9 cm/s

- (**B**) 6 cm/s
- (**D**) 18 cm/s

Resposta:

- **4.** A força resultante sobre um objeto de massa 2 kg é $\vec{F} = 7\hat{\imath} + 5t\hat{\jmath}$ (SI). Se a velocidade do objeto em t = 0 for $3\hat{\imath} + 4\hat{\jmath}$ m/s, calcule a velocidade em t = 6 s.
 - (A) $21.0\,\hat{\imath} + 45.0\,\hat{\jmath}$
- **(D)** $45.0\,\hat{\imath} + 94.0\,\hat{\jmath}$
- **(B)** $24.0\,\hat{\imath} + 19.0\,\hat{\jmath}$
- **(E)** $24.0\,\hat{\imath} + 49.0\,\hat{\jmath}$
- (C) $24.0\,\hat{\imath} + 45.0\,\hat{\jmath}$

Resposta:

- 5. Um primeiro cilindro, com massa 30 g, fica em equilíbrio a uma altura de 40 cm quando é pendurado de uma mola vertical. Substituindo o primeiro cilindro por outro de massa 31 g, este fica em equilíbrio a uma altura de 34 cm. Determine o valor da constante elástica da mola.
 - (A) 17 mN/m
- (C) 82 mN/m
- (E) 33 mN/m

- (**B**) 163 mN/m
- (**D**) 327 mN/m

Resposta:

6. A figura mostra o gráfico da posição de um ponto ao longo da sua trajetória em função do tempo. Se a₁ e a₆ representam a aceleração tangencial nos dois instantes t = 1 e t = 6, qual das afirmações é correta?

- (A) $a_1 > 0, a_6 > 0$
- **(D)** $a_1 = 0, a_6 = 0$
- **(B)** $a_1 < 0, a_6 > 0$
- **(E)** $a_1 > 0, a_6 < 0$
- (C) $a_1 < 0, a_6 < 0$

Resposta:

- 7. A componente tangencial da força resultante sobre uma partícula de massa 2 (unidades SI) é dada pela expressão 4s+7v, onde s é a posição na trajetória e v o valor da velocidade. Qual das matrizes na lista é a matriz do respetivo sistema dinâmico linear?
 - $(\mathbf{A}) \begin{bmatrix} 0 & 1 \\ 2 & 7/2 \end{bmatrix}$
- (D) $\begin{bmatrix} 0 & 1 \\ 8 & 14 \end{bmatrix}$
- $\mathbf{(B)} \begin{bmatrix} 0 & 1 \\ 4 & 7 \end{bmatrix}$
- $(\mathbf{E}) \begin{bmatrix} 0 & 1 \\ 7 & 4 \end{bmatrix}$
- (C) $\begin{bmatrix} 0 & 1 \\ 7/2 & 2 \end{bmatrix}$

8.	A aceleração tanger $a_t = 4 s^2$ (unidades Se o objeto parte o valor absoluto da su (A) 3.57 m/s (B) 5.66 m/s	SI), em que s é a per do repouso em s = ua velocidade em s	osição na trajetória. 1 m, determine o = 2 m.	do plano com velocidade $2\sqrt{\frac{gh}{3}}$. Um segundo cilindro, com o mesmo raio e massa mas densidade que depende da distância ao eixo, atinge uma velocidade $\sqrt{\frac{10gh}{7}}$ no mesmo plano inclinado, partindo do repouso e rodando sem derrapar. Qual é a expressão do momento de inércia do segundo cilindro, em relação ao seu eixo?
9.	Resposta: Um piloto de corric loop vertical de 400 em módulo. Sabend pela base do assent mais baixo do loop alto do loop.) m de raio, com ve o que a força vertica o do avião é igual ε	locidade constante el exercida no piloto a 2450 N, no ponto	(A) $\frac{2}{5}mR^2$ (C) $\frac{3}{4}mR^2$ (E) $\frac{1}{3}mR^2$ (B) $\frac{3}{5}mR^2$ (D) $\frac{2}{3}mR^2$ Resposta: Qual das seguintes equações podera ser uma das equações
	(A) 2450 N (B) 980 N Resposta:	(C) 1470 N (D) 245 N	(E) 490 N	de evolução num sistema predador presa? (A) $\dot{y} = x + xy^2$ (D) $\dot{y} = 2y^2 - 3y$ (B) $\dot{y} = 2y - 5y^2$ (E) $\dot{y} = -5xy + 2y$ (C) $\dot{y} = 6y - y^2$

10. Numa máquina de Atwood penduram-se dois blocos A e B nos extremos de um fio que passa por uma roldana; o bloco A, mais pesado, desce com aceleração constante e o 14. A equação diferencial: bloco B, mais leve, sobe com o mesmo valor da aceleração. Considerando as forças seguintes:

- 1. Forca de contacto no eixo da roldana.
- 2. Peso do bloco A.
- 3. Peso do bloco B.

Quais dessas forças atuam sobre a roldana?

- (**A**) 1 e 2
- (C) 1
- **(E)** 2 e 3

- **(B)** 1 e 3
- **(D)** 1, 2 e 3

Resposta:

11. Um sistema dinâmico com duas variáveis de estado tem um único ponto de equilíbrio na origem e um ciclo limite. Qual poderá ser a matriz jacobiana do sistema na origem?

$$(\mathbf{A}) \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \qquad (\mathbf{C}) \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \qquad (\mathbf{E}) \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$(\mathbf{B}) \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} \qquad (\mathbf{D}) \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}$$

Resposta:

12. O momento de inércia de um cilindro de massa m, raio Re densidade constante, em relação ao seu eixo, é $mR^2/2$. Quando esse cilindro roda sem derrapar num plano inclinado de altura h, partindo do repouso, chega ao fim

Resposta:

$$\ddot{x} - x^2 - 3x - 2 = 0$$

é equivalente a um sistema dinâmico com espaço de fase (x, \dot{x}) . Qual dos pontos na lista é um ponto de equilíbrio do sistema?

- (A) (1, 0)
- (C) (-3, 0)
- (E) (3, 0)

- $(\mathbf{B}) (0, 0)$
- $(\mathbf{D}) (-1, 0)$

Resposta:

15. Lança-se um projétil desde uma janela a 4.2 m de altura, com velocidade de 14 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima atingida pelo projétil.

- (**A**) 14.2 m
- (C) 6.7 m
- (**E**) 9.2 m

- (**B**) 5.5 m
- (**D**) 11.7 m

Resposta:

16. Calcule o valor da componente tangencial da aceleração dum ponto, num instante em que o vetor velocidade é $2\hat{i} + 4\hat{j}$ e o vetor aceleração é $-5\hat{i} + 8\hat{j}$ (unidades SI).

- (A) 22.0 m/s^2 (C) 9.39 m/s^2 (E) 8.05 m/s^2 (B) 36.0 m/s^2 (D) 4.92 m/s^2

Resposta:

17. Num sistema que se desloca no eixo dos x, a força resultante é $x^2 + x - 2$. Na lista seguinte, qual dos valores corresponde à posição x dum ponto de equilíbrio instável?

- (**A**) -1
- **(C)** -2
- **(E)** 2

- **(B)** 3
- **(D)** 1

Regente: Jaime Villate

Resolução do exame de 14 de julho de 2015

Problema 1. Existem quatro pontos de contacto entre corpos rígidos:

- 1. Entre a base do livro e a tampa da caixa.
- 2. Entre a base da caixa e o chão.
- 3. Entre os pés do homem e o chão.
- 4. Entre as mãos do homem e a parede lateral direita da caixa (admitindo que está a ser empurrada para a esquerda).

Em 1 há reação normal, N_1 , vertical, e força horizontal, F_1 , de atrito estático porque o livro não está a deslizar sobre a caixa. Em 2 há força de reação normal, N_2 , vertical, e força horizontal, F_2 , de atrito cinético, porque a caixa desliza sobre o chão. Em 3 há reação normal, N_3 , vertical, e força horizontal, F_3 , de atrito estático porque os pés do homem não derrapam sobre o chão (se derrapassem, a caixa não acelerava). Em 4 há apenas reação normal, N_4 , porque o enunciado diz que a força que o homem exerce na caixa é horizontal.

A figura seguinte mostra os diagramas de corpo livre do livro, da caixa e do homem.

A força de atrito estático F_1 deve atuar sobre o livro de direita para esquerda, para que o livro acelere para a esquerda. O mesmo acontece com a força de atrito estático F_3 atuando no homem. Essas duas forças não podem ultrapassar o valor máximo, $\mu_e N$, mas podem ter qualquer valor entre 0 e esse valor máximo. A força de atrito cinético F_2 é no sentido oposto ao movimento da caixa e tem módulo igual a $F_2 = \mu_c N_2 = 0.2 N_2$. Os pesos do livro, da caixa e do homem são: $P_1 = 5.88$ N, $P_c = 78.4$ N e $P_h = 705.6$ N.

As duas equações de movimento de translação do livro são (unidades SI):

$$N_1 = 5.88$$

 $F_1 = m_1 a = 0.6 \times 0.5 = 0.3$

As equações de movimento de translação da caixa são:

$$N_2 = 78.4 + N_1 = 84.28$$

 $N_4 - F_1 - F_2 = m_c a$ \Longrightarrow $N_4 = 8 \times 0.5 + 0.3 + 0.2 \times 84.28 = 21.156$

E as equações de movimento de translação do homem são:

$$N_3 = 705.6$$

 $F_3 - N_4 = m_h a$ \Longrightarrow $F_3 = 72 \times 0.5 + 21.156 = 57.156$

O valor máximo que pode ter F_1 é $0.35 N_1 = 2.058$ e o valor máximo possível de F_3 é $0.4 N_3 = 282.24$. Como os resultados obtidos não ultrapassam esses valores máximos, esses resultados são válidos e a resposta é: a força de atrito entre a caixa e o livro é 0.3 N, a força de atrito entre a caixa e o chão é $0.2 \times 84.28 = 16.856$ N e a força de atrito entre o chão e os pés do homem é 57.156 N.

Problema 2. As derivadas das expressões $x = r \cos \theta$ e $y = r \sin \theta$ são:

$$\dot{x} = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$$
$$\dot{y} = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$$

Substituindo nas equações de evolução, obtém-se as equações de evolução em coordenadas polares:

$$\dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\sin\theta + r^3\cos\theta$$
$$\dot{r}\sin\theta + r\dot{\theta}\cos\theta = -r\cos\theta + r^3\sin\theta$$

que são duas equações lineares para \dot{r} e $\dot{\theta}$. Aplicando qualquer método de resolução de equações lineares, obtém-se essas duas expressões. Por exemplo, o método de eliminação; multiplicando a primeira equação por $\cos \theta$ e a segunda por $\sin \theta$,

$$\dot{r}\cos^2\theta - r\dot{\theta}\sin\theta\cos\theta = r\sin\theta\cos\theta + r^3\cos^2\theta$$
$$\dot{r}\sin^2\theta + r\dot{\theta}\sin\theta\cos\theta = -r\sin\theta\cos\theta + r^3\sin^2\theta$$

e somando as duas equações obtêm-se a expressão para \dot{r}

$$\dot{r} = r^3$$

Multiplicando a primeira equação de evolução por $\sin \theta$ e a segunda por $\cos \theta$,

$$\dot{r}\sin\theta\cos\theta - r\dot{\theta}\sin^2\theta = r\sin^2\theta + r^3\sin\theta\cos\theta$$
$$\dot{r}\sin\theta\cos\theta + r\dot{\theta}\cos^2\theta = -r\cos^2\theta + r^3\sin\theta\cos\theta$$

e subtraindo a primeira equação da segunda obtêm-se a expressão para $\dot{\theta}$

$$r\dot{\theta} = -r$$
 \Longrightarrow $\dot{\theta} = -1$ (se: $r \neq 0$)

Fora da origem, r é positiva e, como tal, $\dot{r}=r^3$ é sempre positiva. Ou seja, o estado do sistema afasta-se sempre da origem (r aumenta). Enquanto o estado se afasta da origem, dá várias voltas no sentido negativo (sentido dos ponteiros do relógio), porque $\dot{\theta}$ é igual a -1. Isso implica que a origem é um foco repulsivo e não existe nenhum ciclo limite.

As expressões para \dot{r} e $\dot{\theta}$ também podem ser obtidas no Maxima com os seguintes comandos:

```
(%i1) x: r*cos(q)$

(%i2) y: r*sin(q)$

(%i3) gradef(r,t,v)$

(%i4) gradef(q,t,w)$

(%i5) e1: diff(x,t) = y+(x^2+y^2)*x;

(%o5) cos(q)v-sin(q)rw=cos(q)r(sin^2(q)r^2+cos^2(q)r^2)+sin(q)r

(%i6) e2: diff(y,t) = -x+(x^2+y^2)*y;

(%o6) cos(q)rw+sin(q)v=sin(q)r(sin^2(q)r^2+cos^2(q)r^2)-cos(q)r

(%i7) trigsimp(solve([e1,e2],[v,w]));

(%o7) [ [v=r^3, w=-1] ]
```

Perguntas

3. E **6.** B **9.** E **12.** A **15.** C

4. E **7.** A **10.** C **13.** E **16.** D

5. B **8.** E **11.** E **14.** D **17.** D

EIC0010 — FÍSICA I — 1° ANO, 2° SEMESTRE

21 de junho de 2016

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

1. (4 valores) Um bloco de massa $2\,m$ está pendurado por um fio vertical que está ligado no outro extremo a um carrinho de massa $4\,m$, passando por uma roldana de massa m, onde $m=100\,\mathrm{g}$. O carrinho encontra-se na superfície de um plano inclinado 33° em relação à horizontal e a roldana é um disco homogéneo de raio R (momento de inércia $I_{\rm cm}=m\,R^2/2$). A massa do fio e das rodas do carrinho são desprezáveis. O fio faz rodar a roldana, sem deslizar sobre ela. Determine o valor da aceleração do carrinho, ignorando as forças não conservativas (resistência do ar e atrito nos eixos das rodas e da roldana) e o sentido dessa aceleração (para cima ou para baixo do plano inclinado?).

2. (4 valores) Determine a posição dos pontos de equilíbrio e o tipo de cada um desses pontos, no sistema dinâmico com as seguintes equações de evolução:

 $\dot{x} = y^3 - 4x$ $\dot{y} = y^3 - y - 3x$

Diga se o sistema corresponde ou não às seguintes categorias de sistemas: (a) autónomo, (b) linear, (c) conservativo, (d) pedador presa (todas as suas respostas devem ser argumentadas corretamente).

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- **3.** O sistema de Lotka-Volterra consegue explicar muito bem a evolução de um sistema predador presa mas tem uma grande desvantagem que outros sistemas tentam corrigir. Qual é essa desvantagem?
 - (\mathbf{A}) Cada uma das populações pode aumentar indefinidamente.
 - (B) Nenhuma das duas populações atinge nunca um valor constante.
 - (\mathbf{C}) Nenhuma das duas populações pode chegar a extinguir-se totalmente.
 - (D) Cada uma das populações oscila indefinidamente.
 - (E) Cada uma das populações pode oscilar entre um valor muito baixo e um valor muito elevado.

Resposta:

- **4.** Determine o valor da componente normal da aceleração dum ponto, no instante em que o seu vetor velocidade é $3\hat{i} + 6\hat{j}$ e o vetor aceleração é $-5\hat{i} + 6\hat{j}$ (unidades SI).
 - (A) 7.6 m/s^2
- (C) 21.0 m/s^2
- **(E)** 48.0 m/s^2

- **(B)** 3.13 m/s^2
- (**D**) 7.16 m/s^2

Resposta:

- 5. As equações dum sistema dinâmico com variáveis de estado (x, y) foram transformadas para coordenadas polares (r, θ) , obtendo-se as equações: $\dot{\theta} = -2$ $\dot{r} = 3 \, r r^2$ Como tal, conclui-se que o sistema tem um ciclo limite:
 - (A) atrativo com r=2
- (**D**) atrativo com r=3
- **(B)** repulsivo com r=2
- (E) repulsivo com r=3
- (C) at rativo com r=0

Resposta:

- **6.** Um corpo de 18 kg desloca-se ao longo do eixo dos x. A força resultante sobre o corpo é conservativa, com energia potencial dada pela expressão $3 + 5 x^2$ (SI). Se o corpo passa pela origem com velocidade $9 \hat{\imath}$, com que energia cinética chegará ao ponto x = 7 m?
 - (A) 2420.0 J
- (C) 145.2 J
- **(E)** 4114.0 J

- (**B**) 1210.0 J
- (**D**) 484.0 J

Resposta:

- 7. Aplica-se uma força $5 \hat{i} + 4 \hat{j}$ num ponto com vetor posição $4 \hat{i} 1 \hat{j}$ (unidades SI). Determine o módulo do momento dessa força, em relação à origem.
 - (**A**) 33 N⋅m
- (C) 16 N·m
- (**E**) 11 N⋅m

- (**B**) 21 N⋅m
- (**D**) 24 N·m

Resposta:

8. A matriz dum sistema dinâmico linear é (unidades SI):

 $\begin{bmatrix} 2 & 4 \\ -5 & -2 \end{bmatrix}$

Como é a evolução das variáveis de estado em função do tempo?

- (A) Oscilam com período π e amplitude decrescente.
- (B) Oscilam com período igual a π e amplitude constante.
- (C) Oscilam com período $\pi/2$ e amplitude constante.
- (**D**) Oscilam com período $\pi/2$ e amplitude decrescente.
- (E) Oscilam com período $\pi/2$ e amplitude crescente.

Resposta: plotdf mostra que são ciclos -> amplitude constante

	Uma partícula desloca-se numa trajetória circular sob a 14. ação duma força tangencial resultante $F_{\rm t}=3\cos(\theta)$, onde θ é o ângulo medido ao longo do círculo. Qual dos valores			. O vetor velocidade duma partícula, em função do tempo, é: $2t^2\hat{\imath}+2t^3\hat{\jmath}$ (unidades SI). Encontre a expressão para o módulo da aceleração.	
	de θ na lista seguinte corresponde a um ponto de equilíbrio		(A) $6t^2$	(D) $\sqrt{36t^4+16t^2}$	
	instável? (A) $\pi/2$	(C) 0	(E) $3\pi/2$	(B) 4t	(E) $6t^2 + 4t$
	(B) 2π	(D) π	(L) 0 N/2	(C) $\sqrt{6t^2+4t}$	
	Resposta:			Resposta:	
10. A projeção x da aceleração duma partícula aumenta em função do tempo, de acordo com a expressão $a_x = 3t$ (unidades SI). No instante $t = 0$ a projeção x da velocidade		A força \vec{F} , com módulo de 54 N, faz acelerar os dois blocos na figura, sobre uma mesa horizontal, sem que o bloco de cima deslize em relação ao outro bloco. As forças de atrito nas rodas podem ser desprezadas. Calcule o módulo da força de atrito entre os dois blocos.			

(E) 336.0 m

- (A) 8 N
- (C) 9 N
- (E) 7 N

- (B) 5 N
- (**D**) 6 N

Resposta:

generalizada Q_x responsável pelo movimento da partícula. 16. Na figura, a roldana fixa tem raio de 6 cm, a roldana móvel tem raio de 3 cm e o fio faz rodar as roldanas sem deslizar sobre elas. No instante em que o bloco A desce, com velocidade de valor 18 cm/s, qual o valor da velocidade angular da roldana móvel?

- (A) 12 rad/s
- (C) 6 rad/s
- **(E)** 3 rad/s

- (**B**) 18 rad/s

(**D**) 9 rad/s

17. A equação diferencial:

 $\ddot{x} - x^2 + x + 6 = 0$

é equivalente a um sistema dinâmico com espaço de fase (x, \dot{x}) . Qual dos pontos na lista é ponto de equilíbrio desse sistema?

- (A) (-3, 0)
- **(C)** (1, 0)
- $(\mathbf{E}) (0, 0)$

- **(B)** (-1, 0)
- $(\mathbf{D}) (3, 0)$

Resposta:

(**A**) 112.0 m

(**B**) 694.4 m

Resposta:

(A) $m \ddot{x} (1 + x^2) + 2 m x \dot{x}$

(B) $\frac{m \ddot{x}}{2} (1 + x^2) + 1 m x \dot{x}^2$

(C) $\frac{m \ddot{x}}{2} (1 + x^2) - 2 m x^3 \dot{x}^2$

(**D**) $\frac{m \ddot{x}}{2} (1 + x^2) - 2 m x \dot{x}$

(E) $m \ddot{x} (1 + x^2) + 1 m x \dot{x}^2$

Resposta:

objeto 2. (A) $3\hat{i} + 3\hat{j}$

(B) $9\hat{\imath} - 3\hat{\jmath}$

Resposta:

Resposta:

(C) $-9\hat{i} + 13\hat{j}$

(C) 56.0 m

(**D**) 280.0 m

11. Uma partícula de massa m desloca-se ao longo da curva $y = x^2/2$, no plano horizontal xy. Assim sendo, basta uma

12. O vetor velocidade do objeto 1, em função do tempo, é: $\vec{v}_1 = (1 - 6t)\hat{i} + 8t\hat{j}$ (unidades SI) e o vetor velocidade do objeto 2, no mesmo referencial, é: $\vec{v}_2 = 3t \hat{i} + (1-5t) \hat{j}$. Determine o vetor aceleração do objeto 1 em relação ao

13. Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas é um sistema

de duas espécies com competição? (A) $\dot{x} = x^2 + xy$ $\dot{y} = y^2 + xy$

(B) $\dot{x} = y^2 - xy$ $\dot{y} = x^2 - xy$

(C) $\dot{x} = x^2 - xy$ $\dot{y} = y^2 - xy$

(D) $\dot{x} = xy - x^2$ $\dot{y} = y^2 - x^2$

(E) $\dot{x} = y^2 - xy$ $\dot{y} = x^2 + xy$

(D) $9\hat{i} + 3\hat{j}$

(E) $-3\hat{i} + 13\hat{j}$

única variável generalizada para descrever o movimento;

escolhendo a variável x, a expressão da energia cinética é $E_{\rm c}=\frac{m\,\dot{x}^2}{2}\left(1+x^2\right)$. Encontre a expressão para a força

Resolução do exame de 21 de junho de 2016

Regente: Jaime Villate

Problema 1. Para descrever o movimento do sistema são necessárias três variáveis. Duas variáveis s e h, para determinar as posições do carrinho e do bloco, que podem ser definidas como mostra a figura seguinte, e um ângulo θ que determina a rotação da roldana.

Como o fio faz rodar a roldana sem deslizar nela, o ângulo que a roldana roda (no sentido dos ponteiros do relógio) está relacionado com a posição do carrinho: $\theta = s/R + \text{constante}$ e, como tal, a velocidade angular da roldana é:

$$\omega = \frac{v}{R}$$

onde $v = \dot{s}$ é a velocidade do carrinho. O comprimento do fio é igual a

$$L = \text{constante} - s - h$$

e, como permanece constante, a velocidade do bloco é igual a menos a velocidade do carrinho:

$$\dot{h} = -v$$

Assim sendo, o sistema tem um único grau de liberdade, s, e uma única velocidade generalizada, v.

Resolução por mecânica de Lagrange. A expressão da energia cinética total dos três objetos é:

$$E_{\rm c} = \frac{1}{2} (4m) \dot{s}^2 + \frac{1}{2} (2m) \dot{h}^2 + \frac{1}{2} \left(\frac{mR^2}{2} \right) \omega^2 = 2mv^2 + mv^2 + \frac{1}{4} mv^2 = \frac{13}{4} mv^2$$

E a expressão da energia potencial gravítica (ignorando a da roldana que permanece constante) é:

$$U = 4 mg s \sin(33^{\circ}) + 2 mg h = 4 mg s \sin(33^{\circ}) - 2 mg s + \text{constante}$$

A equação de movimento obtém-se a partir da equação de Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial E_{\mathrm{c}}}{\partial v}\right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = \frac{13}{2}ma + 4mg\sin(33^{\circ}) - 2mg = 0$$

E a aceleração do carrinho é então,

$$a = \frac{4g}{13}(1 - 2\sin(33^\circ)) = -0.2692 \frac{\text{m}}{\text{s}^2}$$

O sinal negativo indica que a aceleração é para baixo do plano inclinado (a velocidade do carrinho, v, é uma variável de estado que pode ser positiva ou negativa, ou seja, para cima ou para baixo).

Resolução por mecânica vetorial. A figura ao lado mostra o diagrama de corpo livre do carrinho. A soma das componentes das forças normais ao plano deve ser nula e a soma das componentes das forças tangentes ao plano é igual a:

$$T_1 - 4mg \sin(33^\circ) = 4ma \implies T_1 = 4m(a+g \sin(33^\circ))$$
 (1)

A figura ao lado mostra o diagrama de corpo livre do bloco. Como na equação do carrinho admitiu-se que a aceleração *a* era para cima do plano, então a aceleração do bloco é *a*, para baixo, e a equação de movimento é:

$$2mg - T_2 = 2ma \implies T_2 = 2m(g - a) \tag{2}$$

 R_2

Na roldana atuam as tensões nos dois lados do fio, o seu peso e uma força de contato no eixo (diagrama ao lado). A soma dessas forças deve ser nula e a soma dos momentos, em relação ao eixo, é:

$$T_2R - T_1R = \left(\frac{mR^2}{2}\right)\alpha \implies T_2 - T_1 = \frac{m}{2}a$$

Substituindo nesta expressão as equações (1) e (2), obtém-se a mesma expressão da aceleração obtida pelo método de mecânica de Lagrange.

Problema 2. Os pontos de equilíbrio são as soluções das duas equações:

$$y^3 - 4x = 0 y^3 - y - 3x = 0$$

Subtraindo as duas equações obtém-se y = x, ou seja,

$$x^3 - 4x = x(x^2 - 4) = x(x+2)(x-2) = 0$$

Como tal, há três pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (2,2)$ $P_3 = (-2,-2)$

Derivando as duas expressões das equações de evolução, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} -4 & 3y^2 \\ -3 & 3y^2 - 1 \end{bmatrix}$$

No ponto P₁, a matriz da aproximação linear é então,

$$\mathbf{A}_1 = \begin{bmatrix} -4 & 0 \\ -3 & -1 \end{bmatrix}$$

que tem valores próprios -4 e -1 e, como tal, P_1 é um nó repulsivo.

Nos pontos P₂ e P₃ obtém-se a mesma matriz para a aproximação linear,

$$\mathbf{A}_2 = \mathbf{A}_3 = \begin{bmatrix} -4 & 12 \\ -3 & 11 \end{bmatrix}$$

Que tem determinante igual a -8. Conclui-se então que P_2 e P_3 são ambos pontos de sela.

(a) O sistema é autónomo, porque as expressões das equações de evolução não dependem explicitamente do tempo. (b) Não é um sistema linear, porque a matriz jacobiana não é constante. (c) Não é sistema conservativo, porque o traço da matriz jacobiana, igual a $3y^2 - 5$, não é nulo. (d) Não pode ser sistema predador presa, porque não é um sistema de duas espécias, já que $y^3 - 4x$ não se aproxima de zero quando x se aproxima de zero e $y^3 - y - 3x$ não se aproxima de zero quando y se aproxima de zero.

Perguntas

 3. E
 6. D
 9. E
 12. C
 15. C

 4. D
 7. B
 10. A
 13. C
 16. E

 5. D
 8. C
 11. E
 14. D
 17. D

Critérios de avaliação

Problema 1

Mecânica de Lagrange.

Determinação do grau de liberdade e relações entre as velocidades e acelerações	0.8
Expressão para a energia cinética do sistema	0.8
Expressão para a energia potencial do sistema	0.8
Aplicação da equação de Lagrange para obter a equação de movimento	0.8
Valor da aceleração do carrinho, com unidades corretas	0.4
Indicação do sentido da aceleração do carrinho	0.4
Mecânica vetorial.	
Determinação do grau de liberdade e relações entre as velocidades e acelerações	0.8
Diagrama de corpo libre e equação de movimento do carrinho	0.8
Diagrama de corpo libre e equação de movimento do bloco	0.8
Diagrama de corpo libre e equação de movimento da roldana	0.8
Valor da aceleração do carrinho, com unidades corretas	0.4
Indicação do sentido da aceleração do carrinho	0.4
Problema 2	
Determinação dos 3 pontos de equilíbrio	0.4
Obtenção da matriz jacobiana	0.4
Caraterização do ponto de equilíbrio na origem	0.4
Caraterização dos dois pontos de equilíbrio fora da origem	0.4
• Alínea a	0.6
Alínea b	0.6
• Alínea c	0.6
• Alínea d	0.6

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Um berlinde de vidro, esférico e homogéneo, tem raio $R=5~\mathrm{mm}$ e pesa 13.3 mN. O berlinde desce uma rampa muito comprida, inclinada 20° em relação à horizontal, rodando sem derrapar. A resistência do ar produz uma força igual a $\pi \rho R^2 v^2/4$, onde v é a velocidade do centro da esfera e ρ é a massa volúmica do ar, igual a 1.2 kg/m³; essa força atua no sentido oposto da velocidade e à altura do centro C da esfera. Determine a expressão da aceleração do centro da esfera em função da sua velocidade v (o momento de inércia duma esfera homogénea é $I_{\rm cm} = 2 m R^2/5$). Determine a velocidade máxima que atingirá o berlinde após descer vários metros (velocidade terminal).

2. (4 valores) (a) A expressão da aceleração tangencial dum objeto é:

$$a_{t} = 4 - s^{2} - 5\dot{s} + s\dot{s}$$

onde s é a sua posição na trajetória. Determine os pontos de equilíbrio do sistema, no espaço de fase, e demonstre que tipo de pontos são (foco, nó, etc., atrativo ou repulsivo). (b) Ignorando os termos que dependem de \dot{s} obtém-se $a_{\rm t}=4-s^2$, que corresponde a um sistema conservativo. Determine a expressão da energia potencial deste sistema, por unidade de massa (ou seja, admitindo m=1). Trace o gráfico dessa função e com base nele identifique os pontos de equilíbrio deste sistema conservativo e explique se tem ciclos ou órbitas homoclínicas ou heteroclínicas.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um projétil é lançado desde um telhado a 5.6 m de altura, com velocidade de 12 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule o tempo que o projétil demora até bater no chão.
 - (**A**) 0.93 s
- (C) 1.59 s
- **(E)** 2.24 s

- **(B)** 1.84 s
- (**D**) 1.22 s

Resposta:

4. Se o bloco B se desloca para a direita com velocidade de valor v, qual é o valor da velocidade (para a esquerda) do bloco A?

- (A) v/3
- (\mathbf{C}) v
- **(E)** v/2

- **(B)** 2v
- (D) 3v

Resposta:

- 5. O momento de inércia dum disco homogéneo de 10 cm de raio é $5.2\times 10^{-3}~{\rm kg\cdot m^2}.~$ Determine o valor da força tangencial que deve ser aplicada na periferia do disco, para produzir uma aceleração angular de -6 rad/s^2 .
 - (A) 1.25 N
- (C) 0.62 N
- **(E)** 0.12 N

- (**B**) 0.31 N
- (**D**) 0.21 N

Resposta:

6. As distâncias na figura são em cm e o sistema está em repouso. O carrinho, incluindo as rodas, tem massa $m_1 = 100$ g, distribuída uniformemente, e o bloco de cima tem massa $m_2 = 315$ g, também distribuída uniformemente. Determine o valor da reação normal total nas rodas do lado esquerdo.

- (**A**) 0.678 N
- (C) 1.005 N

(E) 1.356 N

- (**B**) 1.543 N
- (**D**) 2.034 N

Resposta:

- 7. A força tangencial resultante sobre uma partícula é $F_{\rm t}=$ (s+1)(s-1)(3-s). Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
 - (A) s = -1 é instável e s = 3 é estável.
 - (B) s = -1 é estável e s = 3 é instável.
 - (C) s = -1 e s = 1 são instáveis.
 - (**D**) s = 1 é estável e s = 3 é instável.
 - (E) s = 1 é instável e s = 3 é estável.

8.	O sistema dinâmico não linear:
	$\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 1y - 1$
	tem um ponto de equilíbrio em $x = 1, y = 4$. Qual é
	o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?
	(A) $\dot{x} = -5y$ $\dot{y} = -2x$ (D) $\dot{x} = -2y$ $\dot{y} = 5x$
	(B) $\dot{x} = 5y$ $\dot{y} = -2x$ (E) $\dot{x} = 2y$ $\dot{y} = 5x$
	$(\mathbf{C}) \ \dot{x} = 5 y \dot{y} = 2 x$
	Resposta:
9.	Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?

valor absoluto da sua velocidade em s=2 m.

(C) 4.27 m/s

(**D**) 7.95 m/s

11. Um ciclista demora 44 s a percorrer 400 m, numa pista reta e horizontal, com velocidade uniforme. Sabendo que o raio das rodas da bicicleta é 27.2 cm e admitindo que as rodas não deslizam sobre a pista, determine o valor da

(C) 16.7 rad/s

(**D**) 25.1 rad/s

gando ao fim da rampa (altura zero) com velocidade v. Admitindo que a energia mecânica do carrinho permanece constante (forcas dissipativas desprezáveis, massa das rodas desprezável, etc) desde que altura inicial na rampa deveria ser largado o carrinho para que chegasse ao fim

(C) 3h

(D) h/9

 $\dot{y} = x + y$ Que tipo de ponto de equilíbrio é o ponto (x, y) = (0, 0)?

13. As equações de evolução dum sistema linear são:

(D) $\dot{y} = 6y + xy$

(E) $\dot{y} = 6y - y^2$

(**E**) 9.8 m/s

(E) 20.9 rad/s

(E) 6h

(A) $\dot{y} = 2y - 5y^2$

(B) $\dot{y} = x + x y^2$

(C) $\dot{y} = 2y^2 - 3y$

Resposta:

(A) 6.1 m/s

(B) 2.45 m/s

(A) 33.4 rad/s

(**B**) 29.2 rad/s

com velocidade 3v?

 $\dot{x} = x + 2y$

(**A**) 9 h

(B) h/3

Resposta:

Resposta:

velocidade angular das rodas.

Resposta:

) 1.	(C) Foco repulsivo.					
·	Resposta:					
14.	Quando se liga um PC, o disco rígido demora 3.6 s, a partir do repouso, até alcançar a velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angu- lar constante durante esse intervalo, determine o valor da aceleração angular					
3	(A) 419 rad/s^2 (C) 279 rad/s^2 (E) 838 rad/s^2 (B) 209 rad/s^2 (D) 182 rad/s^2					
	D					

(D) Centro.

(E) Nó repulsivo.

(A)
$$\frac{11}{7} x \theta$$
 (C) $\frac{11}{10} \theta$ (E) $\frac{11}{10} x \theta$ (B) $\frac{11}{10} x$

Resposta:

(A) Ponto de sela.

(**B**) Foco atrativo.

17. O bloco na figura, com massa igual a 2 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco atua uma força externa \vec{F} , horizontal e constante, com módulo igual a 10 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. 12. Coloca-se um carrinho numa rampa a uma altura inicial Calcule o módulo da aceleração do bloco. h e deixa-se descer livremente, a partir do repouso, che-

(A) 5.1 m/s^2	(C) 2.55 m/s^2	(E) 14.9 m/s^2
(B) 5.8 m/s^2	(D) 7.45 m/s^2	

Regente: Jaime Villate

Resolução do exame de 12 de julho de 2016

Problema 1. Para descrever o movimento do centro C do berlinde basta uma variável, s, que pode ser a distância desde o topo do plano inclinado:

Como o berlinde roda sem derrapar, a sua velocidade angular ω é no sentido dos ponteiros do relógio e com valor igual à velocidade do seu centro, $v = \dot{s}$, dividida pelo raio R:

$$\omega = \frac{v}{R}$$

O sistema tem então um único grau de liberdade, s, e uma única velocidade generalizada, v.

Resolução por mecânica de Lagrange. A expressão da energia cinética do berlinde é:

$$E_{\rm c} = \frac{m}{2}v^2 + \frac{1}{2}\left(\frac{2mR^2}{5}\right)\omega^2 = \frac{7m}{10}v^2$$

E a expressão da energia potencial gravítica (arbitrando 0 quando s = 0) é:

$$U = -mgs\sin(20^\circ)$$

A expressão da força de resistência do ar é:

$$\vec{F}_{\rm r} = -\frac{\pi}{4} \rho R^2 v^2 \hat{e}_{\rm t}$$

onde \hat{e}_t é o versor tangencial, no sentido em que s aumenta. O ponto de aplicação dessa força pode ser considerado igual à posição do centro C do berlinde, que em função do grau de liberdade é igual a:

$$\vec{r}_{\rm C} = s \, \hat{e}_{\rm t}$$

Como tal, a força generalizada é então:

$$Q = \vec{F}_{\rm r} \cdot \frac{\partial \vec{r}_{\rm C}}{\partial s} = \left(-\frac{\pi}{4} \rho R^2 v^2 \hat{e}_{\rm t} \right) \cdot \hat{e}_{\rm t} = -\frac{\pi}{4} \rho R^2 v^2$$

E a equação de Laplace é:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial v} \right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = Q \quad \Longrightarrow \quad \frac{7m}{5} a_{\mathrm{t}} - mg \sin(20^{\circ}) = -\frac{\pi}{4} \rho R^{2} v^{2}$$

A expressão da aceleração do berlinde é então,

$$a_{\rm t} = \frac{5\,g}{7}\sin(20^\circ) - \frac{5\,\pi\,\rho\,R^2}{28\,m}v^2$$

E substituindo os valores (em unidades SI) de g = 9.8, da massa m = 0.0133/9.8, do raio R = 0.005 e da massa volúmica do ar, $\rho = 1.2$, obtém-se a expressão

$$a_{\rm t} = 2.394 - 1.240 \times 10^{-2} v^2$$

Como tal, a velocidade terminal (quando a aceleração tangencial for nula) é igual a:

$$v = \sqrt{\frac{2.394}{1.240 \times 10^{-2}}} = 13.9 \, \frac{\text{m}}{\text{s}}$$

Quando a velocidade do centro do berlinde é menor que a velocidade terminal, a aceleração tangencial é positiva e a velocidade aumenta. Se a velocidade fosse maior do que a velocidade terminal, a aceleração tangencial seria negativa e a velocidade diminuiria. Após um percurso suficientemente comprido, a velocidade do centro do berlinde atingirá sempre um valor igual à velocidade terminal.

Resolução por mecânica vetorial. A figura ao lado mostra o diagrama de corpo livre do berlinde, onde $R_{\rm n}$ é a reação normal, $F_{\rm a}$ a força de atrito estático e $F_{\rm r} = \pi \rho R^2 v^2/4$ a força de resistência do ar. A expressão da soma das componentes das forças, na direção tangencial, é:

$$mg \sin(20^\circ) - F_a - \frac{\pi}{4} \rho R^2 v^2 = ma_t$$

A única força que produz momento em relação ao centro de massa, no sentido dos ponteiros do relógio, é a força de atrito estático. Como tal, a expressão da soma dos momentos em relação ao centro de massa é:

$$F_{\rm a}R = \left(\frac{2mR^2}{5}\right)\alpha \implies F_{\rm a} = \frac{2}{5}mR\alpha$$

Substituindo esta última expressão na equação anterior, e tendo em conta que como o berlinde não roda então $R\alpha = a_t$, obtém-se a mesma expressão da aceleração já obtida pelo método de mecânica de Lagrange.

Problema 2. (a) As equações de evolução são o seguinte sistema de equações:

$$\dot{s} = v \qquad \qquad \dot{v} = 4 - s^2 - 5v + sv$$

E os pontos de equilíbrio são as soluções das duas equações:

$$v = 0 \qquad 4 - s^2 = 0$$

Como tal, há dois pontos de equilíbrio (s, v):

$$P_1 = (-2,0)$$
 $P_2 = (2,0)$

Derivando as duas expressões das equações de evolução, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ -2s & -5+s \end{bmatrix}$$

No ponto P₁, a matriz da aproximação linear é então,

$$\mathbf{A}_1 = \begin{bmatrix} 0 & 1 \\ 4 & -7 \end{bmatrix}$$

que tem determinante igual a -4, ou seja, P_1 é ponto de sela.

No ponto P2, a matriz da aproximação linear é:

$$\mathbf{A}_2 = \begin{bmatrix} 0 & 1 \\ -4 & -3 \end{bmatrix}$$

E a respetiva equação de valores próprios é $\lambda^2+3\lambda+4=0$. Conclui-se então que os valores próprios são $-3/2\pm i\sqrt{7}/2e$ P_2 é foco atrativo.

(b) A energia potencial, por unidade de massa, obtém-se a partir da expressão:

$$u = \frac{U}{m} = -\int a_t ds = \int (s^2 - 4) ds = \frac{s^3}{3} - 4s$$

Os pontos de equilíbrio encontram-se em $s_1 = -2$ e $s_2 = 2$. O gráfico da função u, mostrando os dois pontos de equilíbrio, é o seguinte:

O ponto s_1 , máximo local, é instável (ponto de sela) e o ponto s_2 , mínimo local, é estável (centro). Existem ciclos quando a energia mecânica, por unidade de massa, estiver compreendida entre -16/3 e 16/3 (valores de u em s_2 e s_1). A reta horizontal apresentada no gráfico, entre o ponto de sela e um ponto de retorno, corresponde a uma órbita homoclínica. Ou seja, este sistema não tem nenhuma órbita heteroclínica, tem uma única órbita homoclínica e infinitos ciclos: todas as curvas de evolução dentro da órbita homoclínica, no espaço de fase.

Perguntas

3. B

6. C

9. D

12. A

15. D

4. D

7. E

10. A

13. A

16. B

5. B

8. E

11. A

14. B

17. D

Critérios de avaliação

Problema 1

Mecânica de Lagrange.

• Determinação do grau de liberdade e relação entre <i>v</i> e ω	10% (0.4)
Expressão da energia cinética	20% (0.8)
Expressão da energia potencial	20% (0.8)
Expressão da força generalizada	20% (0.8)
Aplicação da equação de Lagrange para obter a equação de movimento	10% (0.4)
Valor da aceleração, com unidades corretas	10% (0.4)
Obtenção da velocidade terminal	10% (0.4)
Mecânica vetorial.	
Diagrama de corpo livre	20% (0.8)
Expressão da soma de forças tangenciais	20% (0.8)
Expressão da soma de momentos	20% (0.8)
• Determinação da relação entre $a_{\rm t}$ e α	10% (0.4)
Obtenção da expressão da força de atrito	10% (0.4)
Valor da aceleração, com unidades corretas	10% (0.4)
Obtenção da velocidade terminal	10% (0.4)
Problema 2	
Obtenção das equações de evolução	10% (0.4)
Determinação dos 2 pontos de equilíbrio	10% (0.4)
Obtenção da matriz jacobiana	10% (0.4)
Caraterização do primeiro ponto de equilíbrio	10% (0.4)
Caraterização do segundo ponto de equilíbrio	10% (0.4)
Obtenção da expressão da energia potencial por unidade de massa	20% (0.8)
Gráfico da energia potencial por unidade de massa	10% (0.4)
Interpretação do gráfico (pontos de equilíbrio, ciclos e órbitas)	20% (0.8)

UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I — 1° ANO, 2° SEMESTRE

16 de junho de 2017

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Uma das luas dum planeta é um corpo homogéneo e esférico de raio R. Imagine que a lua é atravessada de lado a lado por um túnel retilíneo que passa pelo seu centro, dentro do qual deixa-se cair livremente um objeto de massa m. Sabendo que a energia potencial gravítica do objeto, no interior desse túnel, é dada pela expressão

$$U = \frac{m g}{2} \left(\frac{r^2}{R} - R \right)$$

na qual r é a distância desde o centro da lua e g é a aceleração da gravidade na superfície do planeta: (a) Determine a equação de movimento (expressão da aceleração) do objeto dentro do túnel, ignorando forças dissipativas (a lua não tem atmosfera). (b) Demonstre que o objeto fica a oscilar no túnel e determine o período de oscilação no caso da lua Mimas, com raio de 198 km e g = 6.8 cm/s². (c) Se existisse um túnel retilíneo desde o Porto até Nova Zelândia, passando pelo centro da Terra, e sabendo que o raio da Terra é 6370 km, quanto tempo demorava viajar desde o Porto até Nova Zelândia saltando nesse túnel? (admitindo que a expressão obtida para a lua homogénea e sem atmosfera fosse válida).

2. (4 valores) As equações de evolução de um sistema dinâmico de duas espécies são:

$$\dot{x} = 3x - \frac{3xy}{1+2x}$$
 $\dot{y} = \frac{3xy}{1+2x} - y$

(a) Explique que tipo de sistema de duas espécies é. (b) Determine os pontos de equilíbrio do sistema e explique que tipos de pontos são. (c) Trace o retrato de fase do sistema.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. A expressão da energia cinética dum sistema conservativo é $\frac{1}{2}$ ($\dot{s}^2 + 5s^2$), onde s é a posição na trajetória, e a expressão da energia potencial total é 15 s. O sistema tem um único ponto de equilíbrio; determine o valor de s nesse ponto de equilíbrio.
 - (A) 2
- **(C)** 1
- (E) -1

- **(B)** -2
- (**D**) 3

Resposta:

- 4. Para aumentar o momento de inércia dum corpo é necessário:
 - (A) Afastar partes do corpo mais longe do eixo.
 - (B) Diminuir a velocidade angular.
 - (C) Aumentar a aceleração angular.
 - (**D**) Compatá-lo, ocupando menor volume.
 - (E) Aumentar a velocidade angular.

Resposta:

- 5. A velocidade de um corredor pode aproximar-se de v= $7.5\sqrt{1-0.03}\,s$, na qual v é expressa em km/h e a posição na trajetória, s, é expressa em km. Sabendo que s=0em t=0, determine quantos quilómetros terá percorrido o corredor ao fim de três quartos de hora.
 - (A) 6.465
- (C) 3.741
- **(E)** 4.49

- **(B)** 7.758
- **(D)** 5.388

Resposta:

6. Para determinar a posição do seu centro de gravidade, uma barra retangular foi pendurada de dois fios verticais, ficando em repouso na posição horizontal que mostra a figura. Sabendo que a tensão no fio ligado no ponto A é 3.4 N, a tensão no fio ligado em B é 1.8 N e o comprimento da barra, desde A até B, é 30 cm, determine a distância desde a aresta AC até o centro de gravidade.

- (A) 21.6 cm
- (C) 12.5 cm
- **(E)** 10.4 cm

- (**B**) 15.0 cm
- (**D**) 18.0 cm

Resposta:

7. O sistema dinâmico não linear: $\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 5y - 5$ tem um ponto de equilíbrio em x = 5, y = 4. Qual é

o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?

- (A) $\dot{x} = 5 y$ $\dot{y} = -6 x$ (B) $\dot{x} = 6 y$ $\dot{y} = 5 x$
- **(D)** $\dot{x} = -5y$ $\dot{y} = -6x$
- **(E)** $\dot{x} = -6y$ $\dot{y} = 5x$
- **(C)** $\dot{x} = 5y$ $\dot{y} = 6x$

8.	A posição dum ponto ao longo dum percurso, em tempo, é dada pela expressão $s=30t-3t^2$ (SI). I a distância percorrida pelo ponto entre $t=0$ e t	Determine	tante é $x^2 + x - 3$	se desloca no eixo d 2 . Na lista seguinte \hat{x} ão x dum ponto de \hat{x}	e, qual dos valores
	(A) 18.75 m (C) 21.75 m (E) 75 (B) 93.75 m (D) 131.25 m	m	(A) 1(B) 3	(C) -1 (D) -2	(E) 2
	Resposta:		Resposta:		
9.	O gráfico da figura representa a energia potencijoules, em função da posição x , em metros, duma com massa igual a 9 kg; os valores no gráfico sã $x_2=18,\ U_1=729$ e $U_2=2916$. Se a partíc do repouso na posição x_2 , com que velocidade co ponto x_1 ?	partícula $x_1 = 9$, ula parte	No instante em que com que velocidad		velocidade 24 cm/s ,
	(A) 44.09 m/s (C) 22.05 m/s (E) 88. (B) 28.66 m/s (D) 11.02 m/s Resposta:	18 m/s		B	
10.	Quando se liga um PC, o disco rígido demora 3.6 do repouso, até alcançar a velocidade normal de de 7200 rotações por minuto. Admitindo acelera lar constante durante esse intervalo, determine o aceleração angular	operação ção angu- o valor da	(A) 12 cm/s (B) 24 cm/s Resposta:	(C) 48 cm/s (D) 8 cm/s	(E) 72 cm/s
	(A) 182 rad/s ² (C) 838 rad/s ² (E) 279 (B) 209 rad/s ² (D) 419 rad/s ² Resposta:	0 rad/s^2 16.	(x, y) foram trans θ), obtendo-se as θ	istema dinâmico com formadas para coord equações: $\dot{\theta} = -2 \dot{r}$ se que o sistema ten	denadas polares $(r,$ = $r^2 - 3r$
11.	As equações de evolução dum sistema linear são $\dot{x} = x + y$ $\dot{y} = 0.5 x + y$ Que tipo de ponto de equilíbrio é o ponto (x,y)		(A) atrativo com(B) repulsivo com(C) atrativo com	r=2 (E) repr	ativo com $r = 3$ ulsivo com $r = 3$
	 (A) Ponto de sela. (B) Foco atrativo. (C) Nó repulsivo. (D) Foco repulsivo. (E) Centro. 			uma possível solução m duas variáveis de o	
	Resposta:		dos valores na lista matriz desse sisten	a poderão ser os dois na?	valores próprios da
12.	Um bloco de massa 4 kg desce deslizando sobre a dum plano inclinado com base $x=6$ m e altura Calcule o módulo da reação normal do plano sobre a calcule o módulo da reação normal do plano sobre a calcule o módulo da reação normal do plano sobre a calcule o módulo da reação normal do plano sobre a calcular da calcula	y = 7 m.	0.8		
	(A) 59.53 N (C) 12.76 N (E) 25. (B) 16.8 N (D) 39.2 N	51 N	0.4		
	Resposta:		0.2		
13.	Uma partícula de massa m desloca-se ao longe curva no plano xy . Sabendo que a expressão d		-0.2		
	cinética da partícula é $E_{\rm c}=\frac{m\dot{x}^2}{2}\left(1+x^6\right)$, es equação da curva.	ncontre a	-0.6 0 2	4 6 8	10 12
	(A) $y = \frac{2x^{5/2}}{5}$ (C) $y = \frac{2x^{3/2}}{3}$ (E) $y = \frac{2x^{3/2}}{3}$	$=\frac{x^5}{5}$	(A) $\frac{1}{4} \pm i \frac{\pi}{2}$	(C) $\frac{1}{4} \pm i \pi$	$(\mathbf{E}) - \frac{1}{4} \pm \mathrm{i} \pi$
	(B) $y = \frac{x^4}{4}$ (D) $y = \frac{x^3}{3}$	Ü	(B) $-\frac{1}{4} \pm i \frac{\pi}{2}$	-	1

 ${\bf Resposta:}$

 ${\bf Resposta:}$

Regente: Jaime Villate

Resolução do exame de 16 de junho de 2017

Problema 1. (a) **Método 1**. Como o potencial depende apenas da distância até o centro, a força resultante é na direção radial e com componente:

$$F = -\frac{\mathrm{d}U}{\mathrm{d}r} = -\frac{mgr}{R}$$

e a expressão para a aceleração é:

$$a = \ddot{r} = \frac{F}{m} = -\frac{gr}{R}$$

Método 2. A expressão da energia cinética é:

$$E_{\rm c} = \frac{m}{2} \dot{r}^2$$

Aplicando a equação de Laplace, para sistemas conservativos com um único grau de liberdade r,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{r}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial r} + \frac{\partial U}{\partial r} = m \ddot{r} + \frac{m g r}{R} = 0 \quad \Longrightarrow \quad \ddot{r} = -\frac{g r}{R}$$

(b) A equação de movimento obtida também é válida considerando r na direção radial, mas com sinais diferentes nos segmentos do túnel aos dois lados do centro, onde r = 0.

Método 1. As equações de evolução do sistema são:

$$\dot{r} = v$$
 $\dot{v} = -\frac{gr}{R}$

Que é um sistema linear e, como tal, com um único ponto de equilíbrio em r = v = 0. A matriz do sistema é:

$$\begin{bmatrix} 0 & 1 \\ -\frac{g}{R} & 0 \end{bmatrix}$$

Com valores próprios,

$$\lambda = \pm i \sqrt{\frac{g}{R}}$$

Conclui-se então que todos os possíveis movimentos, dentro do túnel onde a equação de movimento obtida é válida, são oscilações harmónicas com frequência angular:

$$\Omega = \sqrt{\frac{g}{R}}$$

O período de oscilação é,

$$T = \frac{2\pi}{\Omega} = 2\pi\sqrt{\frac{R}{g}}$$

Substituindo os valores dados para a lua Mimas, em unidades SI,

$$T = 2\pi\sqrt{\frac{1.98 \times 10^5}{6.8 \times 10^{-2}}} = 10722 \text{ s} = 2\text{h} 58\text{m} 42\text{s}$$

Método 1. A energia mecânica $E_{\rm m}$ é igual à energia potencial U nos dois pontos de retorno:

$$r = \pm \sqrt{R^2 + \frac{2E_{\rm m}R}{mg}} = \pm A$$

e, como tal, o objeto oscila na região $-A \le r \le A$. A expressão da energia mecânica, constante, é:

$$\frac{m}{2}v^2 + \frac{mg}{2}\left(\frac{r^2}{R} - R\right) = E_{\rm m} = \frac{mg}{2R}\left(A^2 - R^2\right)$$

Quando o objeto se desloca na direção positiva de r, a expressão da velocidade é então:

$$v = \sqrt{\frac{g}{R}(A^2 - r^2)} = \frac{\mathrm{d}r}{\mathrm{d}t}$$

Separando variáveis e integrando r desde -A até A, que corresponde a meio período de oscilação T/2, obtém-se:

$$\int_{0}^{T/2} dt = \sqrt{\frac{R}{g}} \int_{-A}^{A} \frac{dr}{\sqrt{(A^2 - r^2)}} = \pi \sqrt{\frac{R}{g}} \implies T = 2\pi \sqrt{\frac{R}{g}}$$

(c) O tempo para atravessar o túnel é igual a metade do período de oscilação:

$$t = \frac{T}{2} = \pi \sqrt{\frac{R}{g}} = \pi \sqrt{\frac{6.37 \times 10^6}{9.8}} = 2533 \text{ s} = 42 \text{ m}$$

Problema 2. (*a*) Na primeira equação de evolução, como as variáveis são positivas, é claro que o termo que depende de *y* é negativo e aumenta quando *y* aumenta. Como tal, conclui-se que a espécie *y* faz diminuir a população *x*.

Na segunda equação, já não é evidente se o aumento de *x* faz aumentar ou diminuir a população *y*, porque o termo *y* aparece tanto no numerador como no denominador. É necessário calcular a derivada da expressão:

$$\frac{\mathrm{d}\dot{y}}{\mathrm{d}x} = \frac{3y}{1+2x} - \frac{6xy}{(1+2x)^2} = \frac{3y}{(1+2x)^2}$$

Agora sim é claro que esta expressão é sempre positiva para qualquer valor da população x e, como tal, a espécie x faz aumentar a população y. Trata-se de um sistema predador presa, no qual x são as presas e y os predadores.

(b) Os pontos de equilíbrio são as soluções das duas equações:

$$\begin{cases} 3x - \frac{3xy}{1+2x} = 0 \\ \frac{3xy}{1+2x} - y = 0 \end{cases} \implies \begin{cases} x(2x - y + 1) = 0 \\ y(x-1) = 0 \end{cases}$$

A segunda equação tem duas soluções, y = 0 e x = 1. Com y = 0, a primeira equação tem uma única solução, x = 0 (x não pode ser negativa); e com x = 1, a solução de primeira equação é y = 3. Como tal, há dois pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (1,3)$

Derivando as duas expressões das equações de evolução, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} 3 - \frac{3y}{(1+2x)^2} & \frac{3x}{1+2x} \\ \frac{3y}{(1+2x)^2} & \frac{x-1}{1+2x} \end{bmatrix}$$

No ponto P₁, a matriz da aproximação linear é então,

$$\mathbf{A}_1 = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

com valores próprios 3 e - 1, ou seja, P_1 é ponto de sela.

No ponto P2, a matriz da aproximação linear é:

$$\mathbf{A}_2 = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$

A equação dos valores próprios é $\lambda^2-2\lambda+1=(\lambda-1)^2=0$, com apenas uma raiz, $\lambda=1$. Conclui-se então que P_2 é nó impróprio repulsivo.

(c) O retrato de fase pode ser obtido no Maxima com o comando:

plotdf (
$$[3*x-3*x*y/(1+2*x), 3*x*y/(1+2*x)-y], [x,y], [x,0,3], [y,0,6]);$$

E é representado na seguinte figura:

É importante identificar os dois eixos, mostrar as coordenadas dos pontos de equilíbrio, ter em conta que unicamente interessa o primeiro quadrante do espaço de fase e as linhas de evolução num sistema de duas espécies nunca podem atravessar nenhum dos dois eixos.

3

Perguntas

 3. D
 6. E
 9. C
 12. E
 15. A

 4. A
 7. B
 10. B
 13. B
 16. E

 5. D
 8. B
 11. C
 14. A
 17. D

Critérios de avaliação

Problema 1

Equação de movimento	0.8
Explicação de que o sistema oscila	0.8
Obtenção da expressão do período	0.8
Cálculo do período da lua	0.8
Cálculo do tempo de viagem entre Porto e Nova Zelândia	0.8
Problema 2	
Determinação do tipo de sistema	0.8
Obtenção dos dois pontos de equilíbrio	0.4
Cálculo da matriz jacobiana	0.4
Valores próprios e caraterização do primeiro ponto de equilíbrio	0.8
Valores próprios e caraterização do segundo ponto de equilíbrio	0.8
Retrato de face	0.8

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Uma barra reta, não homogénea e muito estreita, de comprimento L=6 m e massa m=6.2 kg, foi pendurada dum teto horizontal, por meio de duas cordas de comprimentos a=4 m e b=3 m, ligadas nos dois extremos A e B da barra, tal como mostra a figura. A barra fica em equilíbrio quando os ângulos entre as cordas e o teto são $\alpha=60^{\circ}$ e $\beta=70^{\circ}$. (a) Determine os valores das tensões nas duas cordas quando a barra está nessa posição de equilíbrio. (b) Determine a distância desde o centro de gravidade da barra até o ponto A.

- **2.** (4 valores) A equação de movimento $\ddot{x} + (3 x^2) \dot{x} 3x + x^3 = 0$ pode ser escrita como sistema dinâmico no plano xy. (a) Determine a posição dos pontos de equilíbrio no plano xy. (b) Explique de que tipo é cada um dos pontos de equilíbrio.
 - (c) Trace o retrato de fase do sistema. (d) Diga se o sistema tem ciclos (soluções periódicas) e em que regiões do plano xy.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
 - (A) $\dot{y} = -5xy + 2y$
- y (D) $\dot{y} = 6y y^2$ (E) $\dot{y} = 2y 5y^2$
 - **(B)** $\dot{y} = 2y^2 3y$
- (C) $\dot{y} = x + x y^2$

Resposta:

4. Um bloco com massa m=5 kg encontra-se sobre a superfície de uma mesa horizontal. Sobre o bloco atua uma força externa \vec{F} , com módulo de 80 N e direção que faz um ângulo $\alpha = 20^{\circ}$ com a horizontal, tal como mostra a figura. Calcule o módulo da reação normal entre o bloco e a mesa.

- (A) 76.36 N
- (C) 21.64 N
- (E) 2.42 N

- (B) 100.42 N
- (**D**) 49.0 N

Resposta:

- **5.** A força tangencial resultante sobre um objeto é $s^2 s 2$, onde s é a posição na trajetória. Sabendo que o retrato de fase do sistema tem uma órbita homoclínica que se aproxima assimptoticamente do ponto (a, 0), determine o valor de a.
 - (**A**) -1
- **(C)** 3
- (E) -2

- **(B)** 1
- (**D**) 2

Resposta:

- 6. Um jogador de golfe lança a sua bola com uma velocidade inicial de 36 m/s, fazendo um ângulo de 25° com a horizontal. Desprezando a resistência do ar, determine o raio de curvatura da trajetória descrita pela bola, no ponto inicial onde esta foi lançada.
 - (**A**) 210.1 m
- (C) 145.9 m
- **(E)** 121.6 m

- (**B**) 252.1 m
- (**D**) 175.1 m

Resposta:

- 7. Calcule o momento de inércia duma esfera com raio de 1 centímetro e massa 17 gramas, que roda à volta dum eixo tangente à superfície da esfera, sabendo que o momento de inércia duma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$.
- (C) $2.38 \times 10^{-6} \text{ kg} \cdot \text{m}^2$

Resposta:

- 8. Coloca-se um carrinho numa rampa a uma altura inicial h e deixa-se descer livremente, a partir do repouso, chegando ao fim da rampa (altura zero) com velocidade v. Admitindo que a energia mecânica do carrinho permanece constante (forças dissipativas desprezáveis, massa das rodas desprezável, etc) desde que altura inicial na rampa deveria ser largado o carrinho para que chegasse ao fim com velocidade v/3?
 - (**A**) 6 h
- (C) 9h
- (E) 3 h

- **(B)** h/3
- **(D)** h/9

9. A figura mostra uma barra reta com comprimento L que 13. Partindo da origem na sua trajetória e sem velocidade está a cair; enquanto a barra cai, o extremo A desliza na superfície horizontal e o extremo B desliza sobre a parede vertical. Qual é a relação entre os valores das velocidades dos dois extremos? (x_A e y_B medidos a partir de O)

- (A) $v_{\rm A} = -v_{\rm B}\cos\theta$
- (D) $v_{\rm A} = -v_{\rm B} \tan \theta$
- **(B)** $v_{\rm A} = -2 \, v_{\rm B}$
- $(\mathbf{E}) \ v_{\mathrm{A}} = -v_{\mathrm{B}} \sin \theta$
- (C) $v_{\rm A} = -v_{\rm B}$

Resposta:

- 10. O vetor velocidade duma partícula, em função do tempo, é: $2t^2 \hat{i} + 0.4t^2 \hat{j}$ (unidades SI). Em t = 0 a partícula parte do ponto y = -7 no eixo dos y. Calcule o tempo que demora até passar pelo eixo dos x.
 - (A) 3.27 s
- (C) 5.92 s
- **(E)** 2.6 s

- **(B)** 4.18 s
- **(D)** 3.74 s

Resposta:

11. A figura mostra o retrato de fase dum sistema não linear com dois pontos de equilíbrio, em (x,y) = (-1,-1) e (x,y)=(2,2). Qual é o sistema linear que aproxima o sistema não linear na vizinhança do ponto (-1, -1)?

- **(A)** $\dot{x} = 3x$ $\dot{y} = -3y$
- **(D)** $\dot{x} = 3x \quad \dot{y} = 3y$
- **(B)** $\dot{x} = -3x$ $\dot{y} = -3y$
- **(E)** $\dot{x} = 3y$ $\dot{y} = -3y$
- (C) $\dot{x} = -3y$ $\dot{y} = 3x$

Resposta:

12. A trajetória de uma partícula na qual atua uma força central é sempre plana e pode ser descrita em coordenadas polares $r \in \theta$. As expressões da energia cinética e da energia

potencial central em questão são: $E_{\rm c} = \frac{m}{2} (r^2 \dot{\theta}^2 + \dot{r}^2) \qquad U = k \, r^5$

onde m é a massa do corpo e k uma constante. Encontre a equação de movimento para \ddot{r}

- (**D**) $r^2 \dot{\theta}^2 \frac{5 k r^4}{m}$ (**E**) $r \dot{\theta} \frac{5 k r^4}{m}$
- (B) $r\ddot{\theta} \frac{5kr^4}{m}$ (C) $r\dot{\theta}^2 \frac{5kr^4}{m}$

Resposta:

- inicial, uma partícula fica sujeita à aceleração tangencial $2\sqrt{v^2+5}$, em unidades SI, onde v é o valor da velocidade. Determine a posição da partícula na trajetória quando v = 30 m/s.
- (**A**) 13.8 m
- (C) 9.6 m
- **(E)** 16.6 m

- (**B**) 19.9 m
- (**D**) 11.5 m

Resposta:

14. Uma partícula desloca-se ao longo de uma elipse no plano xy. As coordenadas cartesianas da partícula são x e y e as suas coordenadas polares são $r \in \theta$. Na lista seguinte, quais são as possíveis variáveis que podem ser usadas para descrever os graus de liberdade do sistema?

- (A) Duas variáveis (x, y) ou (r, θ) .
- **(B)** As duas variáveis $r \in \theta$.
- (C) Uma única variável x ou y.
- (**D**) Uma única variável x, y ou θ .
- (E) As duas variáveis $x \in y$.

Resposta:

15. As equações de evolução dum sistema linear são:

 $\dot{x} = -2x - y$ $\dot{y} = 2x$

Que tipo de ponto de equilíbrio tem esse sistema?

- (A) foco repulsivo.
- (**D**) foco atrativo.
- (B) nó repulsivo.
- (E) ponto de sela.
- (C) centro.

Resposta:

- 16. Um objeto descreve uma trajetória circular de raio 1 m; a velocidade aumenta em função do tempo t, de acordo com a expressão $v = 4t^2$ (unidades SI). Determine a expressão para o módulo da aceleração.
 - (A) $\sqrt{16t^4+8t}$
- (**D**) $4t^2 + 8t$
- **(B)** $\sqrt{256\,t^8+64\,t^2}$
- (E) 8t
- (C) $\sqrt{16t^4+64t^2}$

Resposta:

- 17. O espaço de fase dum sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = -r^3 + 2\,r^2 - r.$ Que tipo de ponto de equilíbrio é a origem?
 - (A) foco repulsivo
- (D) ponto de sela
- (B) nó repulsivo
- (E) foco atrativo
- (C) nó atrativo

FEUP - MIEIC

Resolução do exame de 30 de junho de 2017

Problema 1. (a) A figura ao lado mostra o diagrama de corpo livre da barra. Como a barra está em equilíbrio, as somas das componentes x e y das três forças devem ser nulas:

$$T_a \cos(60^\circ) - T_b \cos(70^\circ) = 0$$

 $T_a \sin(60^\circ) + T_b \sin(70^\circ) - mg = 0$

Regente: Jaime Villate

e a solução deste sistema é:

$$T_a = \frac{mg \cos(70^\circ)}{\sin(60^\circ)\cos(70^\circ) + \sin(70^\circ)\cos(70^\circ)} = 27.1 \text{ N}$$

$$T_b = \frac{mg \cos(60^\circ)}{\sin(60^\circ)\cos(70^\circ) + \sin(70^\circ)\cos(70^\circ)} = 39.7 \text{ N}$$

(b) A diferença de alturas entre os pontos A e B e a distância horizontal entre eles são (ver figura ao lado):

$$h = 4 \sin(60^\circ) - 3 \sin(70^\circ) = 0.6450 \,\mathrm{m}$$
 $d = \sqrt{6^2 - h^2} = 5.965 \,\mathrm{m}$

A soma dos momentos das forças em relação ao ponto A deve ser nula e, como tal,

$$\begin{vmatrix} r\cos\theta & r\sin\theta \\ 0 & -mg \end{vmatrix} + \begin{vmatrix} d & h \\ T_b\cos(70^\circ) & T_b\sin(70^\circ) \end{vmatrix} = -mgr\cos\theta + T_b(d\sin(70^\circ)) - h\cos(70^\circ) = 0$$

na qual r é a distância desde A até o centro de gravidade C e θ é o ângulo que a barra faz com a horizontal. Substituindo os valores de m, g, T_h e $\cos \theta = d/6$,

$$60.41r = 213.55 \implies r = 3.535 \text{ m}$$

Problema 2. (a) Introduz-se a variável auxiliar $y = \dot{x}$ para tornar a equação diferencial de segunda ordem numa equação de primeira ordem. As equações de evolução do sistema dinâmico são então,

$$\dot{x} = y$$
 $\dot{y} = (x^2 - 3) y + 3x - x^3$

Os pontos de equilíbrio obtêm-se resolvendo o sistema das duas expressões nos lados direitos iguais a zero. No Maxima escreve-se

(%i1) e: [y,
$$(x^2-3)*y+3*x-x^3$$
] \$

(%i2) p: solve(e);

[$[x=0, y=0], [x=-\sqrt{3}, y=0], [x=\sqrt{3}, y=0]$]

Existem então 3 pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (-\sqrt{3},0)$ $P_2 = (\sqrt{3},0)$

(b) a matriz jacobiana é

```
(%i3) j: jacobian(e, [x,y]);
\begin{bmatrix}
0 & 1 \\
2xy-3x^2+3 & x^2-3
\end{bmatrix}
```

E os valores próprios das matrizes das aproximações lineares do sistema, na vizinhança dos 3 pontos de equilíbrio, são

```
(%i4) map (eigenvalues, makelist (subst(q,j), q, p));  \left[ \left[ \left[ -\frac{\sqrt{21}+3}{2} , \frac{\sqrt{21}-3}{2} \right], [1, 1] \right], \left[ \left[ -\sqrt{6}i, \sqrt{6}i \right], [1, 1] \right], \left[ \left[ -\sqrt{6}i, \sqrt{6}i \right], [1, 1] \right] \right]
```

Como $\sqrt{21}$ é maior que 3, P_1 é ponto de sela e P_2 e P_3 parecem ser são ambos centros. Os centros podem ser deformados em focos o nós, devido aos termos não lineares, mas o retrato de fase corrobora que existem ciclos na vizinhança de P_2 e P_3 e, como tal, ambos são centros.

(c) O retrato de fase obtém-se com o comando:

```
(%i5) plotdf (e, [x, y], [x, -3, 3], [y, -3, 3])$
```

e traçando algumas curvas de evolução. A figura seguinte mostra as curvas mais importantes:

 C_1 e C_2 são dois dos ciclos que existem à volta de P_2 e P_3 . As duas curvas de evolução que saem do ponto de sela aproximam-se desses ciclos mas, como não se podem cruzar com eles, conclui-se que existem dois ciclos limite, L_1 e L_2 à volta de cada um dos pontos P_2 e P_3 .

(d) Existe um número infinito de ciclos, dentro dos dois ciclos limite L_1 e L_2 à volta de cada um dos pontos P_2 e P_3 .

Perguntas

 3. A
 6. C
 9. D
 12. C
 15. D

 4. A
 7. C
 10. D
 13. A
 16. B

 5. D
 8. D
 11. D
 14. D
 17. E

Critérios de avaliação

Problema 1

• Equação da soma das componentes x das forças	0.6
• Equação da soma das componentes y das forças	0.6
Obtenção dos valores das duas tensões	0.8
• Determinação das coordenadas dos pontos A e B e ângulo da barra com a horizontal	0.8
Equação da soma dos momentos das forças	0.4
Obtenção da distância até o centro de gravidade	0.8
Problema 2	
Equações de evolução	0.4
Obtenção dos três pontos de equilíbrio	0.4
Cálculo da matriz jacobiana e valores próprios	0.8
Caraterização dos três pontos de equilíbrio	0.8
• Retrato de fase	1.2
■ Identificação dos ciclos	0.4

EIC0010 — FÍSICA I — 1º ANO, 2º SEMESTRE

12 de junho de 2018

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

1. (4 valores) Uma esfera homogénea de massa m, raio r e momento de inércia, em relação ao seu centro, $I = \frac{2}{5} m r^2$, roda sem deslizar numa calha no plano vertical xy, de forma que o centro da esfera descreve uma trajetória com forma de cicloide de 2 m de comprimento, tal como mostra a figura. Como tal, a altura y do centro da esfera é dada pela expressão $y = \frac{1}{2} s^2$, em que s é o comprimento de arco ao longo da trajetória, com $s = \pm 1$ nos dois extremos e s = 0 no ponto meio (y e s em metros). O sistema de eixos tem x horizontal, y vertical e origem no ponto meio da trajetória.

- (a) Encontre as expressões da energia potencial da esfera, em função de s, e da energia cinética em função de s. (b) Encontre a equação de movimento para a aceleração "¿ da esfera, desprezando a resistência do ar. (c) Mostre que se trata de um sistema dinâmico linear e diga de que tipo é o ponto de equilíbrio. (d) Explique como será o movimento da esfera quando for largada do repouso numa posição qualquer s diferente de zero. (e) Determine o tempo que demorará a esfera, largada do repouso em $s \neq 0$, até chegar ao ponto mais baixo, s = 0 (observe-se que esse tempo é o mesmo qualquer que for o valor inicial $s \neq 0$).
- 2. (4 valores) A curvatura de qualquer função y = f(x) pode ser determinada resolvendo um problema de cinemática. Considere-se, por exemplo, a trajetória $y = \cos(x)$. Admitindo uma partícula que se desloca ao longo dessa trajetória, com componente x da velocidade $v_x = 1$, conclui-se então que x = t. (a) Escreva a expressão do vetor posição da partícula em função de t e encontre as expressões para os vetores velocidade e aceleração. (b) Determine a expressão da aceleração tangencial, derivando o valor da velocidade, v, em ordem ao tempo. (c) Determine a expressão da aceleração normal. (d) Encontre a expressão do raio de curvatura e substitua t=x para obter a expressão em função de x.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

Num objeto com m	assa de 0.4 kg atuam u	inicamente duas forças	7.	. Um ciclista demo	ra 39 s a percorrer 35	50 m,	numa pista r	eta
externas: $2\hat{i} - 6\hat{j}$ e	$8\hat{i} + 10\hat{j}$ (ambas em 1	newtons). Determine o		e horizontal, com	velocidade uniforme	. Sab	endo que o ra	aio
módulo da aceleração do centro de massa do objeto.				das rodas da bicic	leta é 26.8 cm e admit	indo c	jue as rodas n	ıão
(A) 26.9 m/s^2	(C) 35.0 m/s^2	(E) 53.9 m/s^2		deslizam sobre a p das rodas.	vista, determine o valor	da vel	ocidade angu	lar
(B) 23.3 m/s ²	(D) 18.0 m/s^2			(A) 28.7 rad/s	(C) 19.1 rad/s	(E)	38.3 rad/s	
Resposta:				(B) 33.5 rad/s	(D) 23.9 rad/s			

4. Num sistema que se desloca no eixo dos x, a força resultante é $x^2 + x - 2$. Na lista seguinte, qual dos valores corresponde à posição x dum ponto de equilíbrio estável? (A) 3 **(C)** -1 (E) -2

(B) 2 Resposta:

5. O vetor posição dum ponto, em função do tempo, é dado pela expressão: $3t^3 \hat{i} + (t^2 + 2) \hat{j}$ (unidades SI). Calcule o ângulo entre

3.

os vetores velocidade e posição, no instante t = 1.

(C) 13.0°

(D) 1

(E) 32.5°

(A) 68.2° **(B)** 52.0°

(D) 42.2°

Resposta:

6. As equações de evolução dum sistema linear, são: $\dot{x} = a x + y$ $\dot{y} = x + a(x + y)$ onde a está no intervalo $a > (1 + \sqrt{5})/2$. Que tipo de ponto de equilíbrio é a origem do espaço de fase?

(A) foco repulsivo

(C) foco atrativo

(E) ponto de sela

(B) nó atrativo

(D) nó repulsivo

Resposta:

8. Um sistema não linear tem um centro no ponto P. Qual das afirmações seguintes, acerca da matriz jacobiana no ponto P, é verdadeira?

(A) o traço é positivo

Resposta:

(B) o determinante é negativo

(C) o determinante é nulo

(D) o traço é negativo (E) o traço é nulo.

Resposta:

9. A velocidade de um corredor pode aproximar-se de v = $7.5\sqrt{1-0.03}$ s, na qual v é expressa em km/h e a posição na trajetória, s, é expressa em km. Sabendo que s = 0 em t = 0, determine quantos quilómetros terá percorrido o corredor ao fim de três quartos de hora.

(A) 3.741

(C) 5.388

(E) 4.49

(B) 6.465

(D) 7.758

- (A) 12 cm/s
- (C) 6 cm/s
- (E) 36 cm/s

- (**B**) 24 cm/s
- (**D**) 4 cm/s

Resposta:

11. Um carpinteiro está a construir um armário formado por uma caixa vertical de 2 m de altura e massa de 15 kg, com centro de massa no ponto C indicado na figura. O armário tem uma barra com massa de 6 kg, ligado a um eixo horizontal no ponto B, 0.1 m à esquerda e 0.8 m por cima do ponto C, que lhe permite rodar um ângulo θ em relação à vertical. O centro de massa da barra é o ponto A. Determine o valor máximo do ângulo θ que a barra pode rodar, sem o armário cair para o lado.

- (A) 73.4°
- (C) 38.7°
- **(E)** 48.6°

- **(B)** 61.0°
- **(D)** 52.3°

Resposta:

- 12. O espaço de fase dum sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + 2r^2 + r$. Que tipo de ponto de equilíbrio é a origem?
 - (A) nó atrativo
- (D) ponto de sela
- (B) foco atrativo
- (E) nó repulsivo
- (C) foco repulsivo

Resposta:

13. Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas é um sistema de duas espécies com competição?

(A)
$$\dot{x} = x^2 - xy$$
 $\dot{y} = y^2 - xy$

(B)
$$\dot{x} = x y - x^2$$
 $\dot{y} = y^2 - x^2$

(C)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 + xy$

(D)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 - xy$

(E)
$$\dot{x} = x^2 + xy$$
 $\dot{y} = y^2 + xy$

Resposta:

posição na trajetória e v a velocidade. Existe um único ponto de equilíbrio em s = 3. Qual das seguintes afirmações é correta?

- (A) Existem ciclos.
- (B) Existe uma órbita heteroclínica.
- (C) Existe uma órbita homoclínica.
- (D) O ponto de equilíbrio é estável
- (E) O ponto de equilíbrio é instável.

Resposta:

- **15.** Um corpo de 18 kg desloca-se ao longo do eixo dos x. A força resultante sobre o corpo é conservativa, com energia potencial dada pela expressão $1 + 7x^2$ (SI). Se o corpo passa pela origem com velocidade 8 î, com que energia cinética chegará ao ponto x = 5 m?
 - (A) 2005.0 J
- (C) 3408.5 J
- **(E)** 401.0 J

- (B) 1002.5 J
- **(D)** 120.3 J

Resposta:

- 16. Um sistema de pesos e roldanas, conservativo, tem um único grau de liberdade y. A energia cinética é dada pela expressão $5 m \dot{y}^2$ e a energia potencial é: U = -6 m g y, onde g é a aceleração da gravidade e m é um parámetro com unidades de massa. Determine o valor da aceleração ÿ.
 - **(A)** $\frac{6}{5} g$
- (C) $\frac{12}{5} g$ (D) $\frac{2}{5} g$
- **(E)** $\frac{3}{5} g$

- **(B)** $\frac{18}{5}$ g

Resposta:

17. O bloco na figura, com massa igual a 6 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco atua uma força externa \vec{F} , horizontal e constante, com módulo igual a 30 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. Calcule o módulo da aceleração do bloco.

- (A) 7.45 m/s^2
- (C) 15.3 m/s^2
- (E) 2.55 m/s^2

- **(B)** 44.7 m/s^2
- **(D)** 5.0 m/s^2

Regente: Jaime Villate

Resolução do exame de 12 de junho de 2018

Problema 1. (a) Como a esfera é homogénea, o seu centro é o centro de massa e:

$$v_{\rm cm} = \dot{s} \qquad I_{\rm cm} = \frac{2}{5} \, m \, r^2$$

A energia cinética da esfera é:

$$E_{\rm c} = \frac{m}{2} \dot{s}^2 + \frac{1}{2} \left(\frac{2}{5} \, m \, r^2 \right) \, \omega^2$$

e como roda sem deslizar, a sua velocidade angular é $\omega = \dot{s}/r$ e, como tal,

$$E_{\rm c} = \frac{m}{2} \, \dot{s}^2 + \frac{m \, r^2}{5} \, \left(\frac{\dot{s}}{r} \right)^2 = \frac{7}{10} \, m \, \dot{s}^2$$

A energia potencial gravítica é:

$$U = m g y = \frac{m g}{2} s^2$$

(b) A equação de movimento obtém-se aplicando a equação de Lagrange para sistemas conservativos com um único grau de liberdade s:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{s}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = \frac{7 \, m}{5} \, \ddot{s} + m \, g \, s = 0 \quad \Longrightarrow \quad \ddot{s} = -\frac{5 \, g}{7} \, s = -7 \, s \quad (SI)$$

(c) As equações de evolução, em função das variáveis de estado s e v, são então,

$$\dot{s} = v$$
 $\dot{v} = -7 s$

Que é um sistema linear, porque os lados direitos são combinações lineares das duas variáveis de estado, e a matriz do sistema é:

$$\begin{bmatrix} 0 & 1 \\ -7 & 0 \end{bmatrix}$$

O traço nulo implica que os dois valores próprios diferem apenas no sinal: $\lambda_1 = -\lambda_2$. O produto dos valores próprios é igual ao determinante da matriz:

$$\lambda_1 \lambda_2 = -\lambda_1^2 = 7 \implies \lambda_{1,2} = \pm i\sqrt{7}$$

Conclui-se então que o ponto de equilíbrio, $s = \dot{s} = 0$, é um centro.

- (d) Todos os possíveis movimentos da esfera na calha são oscilações harmónicas com frequência angular $\Omega = \sqrt{7}$ Hz. Se a esfera parte do repouso em $s_0 \neq 0$, oscilará entre as posições s_0 e $-s_0$ na calha. Na realidade, a resistência do ar faz com que a cada oscilação os valores máximos e mínimos de s se aproximem de zero e a esfera acabará em repouso em s = 0.
- (e) O período de oscilação, em segundos, é,

$$T = \frac{2\,\pi}{\Omega} = \frac{2\,\pi}{\sqrt{7}}$$

O tempo que demora a descer desde s_0 até s=0 é a quarta parte do período:

$$t = \frac{\pi}{2\sqrt{7}} \approx 0.594 \text{ s}$$

2º método. O problema pode também ser resolvido usando a expressão da energia mecânica,

$$E_{\rm m} = E_{\rm c} + U = \frac{7}{10} \, m \, \dot{s}^2 + \frac{m \, g}{2} s^2$$

(b) Ignorando a resistência do ar, essa energia permanece constante e, como tal, a sua derivada em ordem ao tempo é nula:

$$\frac{\mathrm{d} E_{\mathrm{m}}}{\mathrm{d} t} = \frac{7}{5} \, m \, \dot{s} \, \ddot{s} + m \, g \, s \, \dot{s} = 0 \quad \Longrightarrow \quad \ddot{s} = -\frac{5 \, g}{7} \, s$$

(usou-se o facto de que \dot{s} deve ser contínua, ou seja, o resultado quando $\dot{s}=0$ deve ser o mesmo que no limite $\dot{s}\to 0$).

- (c) O sistema é linear porque a expressão para \ddot{s} é combinação linear das variáveis de estado s e \dot{s} . Nos sistemas conservativos os mínimos locais da energia potencial são centros. Como U tem um mínimo local em s=0, esse ponto de equilíbrio é um centro.
- (d) A energia mecânica da esfera largada do repouso em s_0 é:

$$E_0 = \frac{m\,g}{2}\,s_0^2$$

O seguinte gráfico mostra a energia mecânica E_0 (segmento horizontal) e a energia potencial (parábola)

A esfera desloca-se no sentido negativo de s até chegar ao ponto $-s_0$, onde o movimento passa a ser no sentido positivo de s; quando a esfera regressa até o ponto s_0 , o sentido do movimento muda novamente e repete-se o mesmo movimento indefinidamente: oscilação entre $-s_0$ e s_0 .

(e) Em qualquer posição s, entre $-s_0$ e s_0 , a energia mecânica é igual à energia inicial E_0

$$\frac{7}{10}\,m\,\dot{s}^2 + \frac{m\,g}{2}\,s^2 = \frac{m\,g}{2}\,s_0^2$$

Como tal, a expressão da velocidade em função da posição na trajetória é (unidades SI):

$$\dot{s} = \sqrt{7\left(s_0^2 - s^2\right)}$$

Separando variáveis e integrando s desde s_0 até 0, obtém-se o tempo pedido:

$$\sqrt{7} \int_{0}^{t} dt = \int_{s_0}^{0} \frac{ds}{\sqrt{s_0^2 - s^2}} = \frac{\pi}{2} \implies t \approx 0.594 \,\mathrm{s}$$

 3° método. Outra forma de resolver o problema consiste em observar que a energia cinética é igual à energia cinética de uma partícula pontual com massa 7 m/5. (b) A componente tangencial da força resultante nessa partícula é:

$$F_{\rm t} = -\frac{\mathrm{d}\,U}{\mathrm{d}\,s} = -m\,g\,s$$

e a aceleração tangencial é então:

$$\ddot{s} = \frac{F_{\rm t}}{\frac{7}{5}m} = -\frac{m\,g\,s}{\frac{7}{5}m} = -\frac{5\,g}{7}\,s$$

(c) Como a equação diferencial anterior é linear, corresponde a um sistema dinâmico linear. A aceleração tangencial também pode escrever-se assim (unidades SI):

$$v \frac{\mathrm{d} v}{\mathrm{d} s} = -7 s$$

Separando variáveis e integrando desde a posição inicial s_0 , onde $v_0 = 0$, até uma posição qualquer, com velocidade v, obtém-se a expressão da velocidade em função de s:

$$\int_{0}^{v} v \, dv = -7 \int_{s_0}^{s} s \, ds \quad \Longrightarrow \quad v = \sqrt{7 \left(s_0^2 - s^2\right)} = \frac{\mathrm{d} s}{\mathrm{d} t}$$

Separando variáveis novamente e integrando desde t = 0, na posição inicial s_0 , até uma posição qualquer s no instante t,

$$\sqrt{7} \int_{0}^{t} dt = \int_{s_0}^{s} \frac{ds}{\sqrt{s_0^2 - s^2}} = \cos^{-1} \left(\frac{s}{s_0} \right) \implies s = s_0 \cos(\sqrt{7}t)$$

A posição s oscila entre $-s_0$ e s_0 , ou seja, o ponto de equilíbrio é um centro.

- (d) A expressão obtida para s em função do tempo mostra que a esfera oscila entre $-s_0$ e s_0 .
- (e) A frequência angular da função $s_0 \cos(\sqrt{7}t)$ é $\sqrt{7}$. O tempo que a esfera demora desde s_0 até s=0 é um quarto do período, ou seja,

$$t = \frac{1}{4} \left(\frac{2\pi}{\sqrt{7}} \right) \approx 0.594 \,\mathrm{s}$$

Comentários sobre o problema 1.

Este problema está relacionado com um problema famoso da mecânica clássica, proposto por Johann Bernoulli em 1696, chamado *problema da braquistócrona*, que consiste em encontrar a trajetória descrita por um corpo sujeito apenas à força da gravidade que vai dum ponto a outro com menor altura, no menor tempo possível.

A derivada de y em ordem ao tempo é $\dot{y} = s \dot{s}$. A equação $\dot{s}^2 = \dot{x}^2 + \dot{y}^2$ implica $\dot{x}^2 = \left(1 - s^2\right) \dot{s}^2$, que conduz à expressão de x em função de s:

$$x = \int \sqrt{1 - s^2} \, \mathrm{d}s = \frac{1}{2} \sin^{-1}(s) + \frac{s}{2} \sqrt{1 - s^2}$$

Substituindo o comprimento de arco s pelo parámetro $\phi = \sin^{-1}(s)$, obtém-se a representação paramétrica mais habitual da cicloide:

$$x = \frac{\phi}{2} + \frac{\sin(2\phi)}{4} \qquad \qquad y = \frac{1 - \cos(2\phi)}{4}$$

Problema 2. (a) O vetor posição dos pontos no plano $xy \notin x \hat{i} + y \hat{j}$. Em particular, nos pontos da trajetória, x = t, $y = \cos(t)$ e o vetor posição \acute{e} :

$$\vec{r} = t \,\hat{\imath} + \cos(t) \,\hat{\jmath}$$

Os vetores velocidade e aceleração são:

$$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \hat{i} - \sin(t)\hat{j}$$
$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -\cos(t)\hat{j}$$

(b) A expressão do valor da velocidade é,

$$v = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{1 + \sin^2(t)}$$

e a aceleração tangencial é

$$a_{t} = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\sin(t) \cos(t)}{\sqrt{1 + \sin^{2}(t)}}$$

(c) A aceleração normal é

$$a_{\rm n} = \sqrt{a^2 - a_{\rm t}^2} = \sqrt{\vec{a} \cdot \vec{a} - a_{\rm t}^2} = \sqrt{\cos^2(t) - \frac{\sin^2(t) \cos^2(t)}{1 + \sin^2(t)}} = \sqrt{\frac{\cos^2(t)}{1 + \sin^2(t)}} = \frac{|\cos(t)|}{\sqrt{1 + \sin^2(t)}}$$

(d) O raio de curvatura é

$$R = \frac{v^2}{a_{\rm n}} = \left(1 + \sin^2(t)\right) \left(\frac{\sqrt{1 + \sin^2(t)}}{|\cos(t)|}\right)$$

Simplificando e substituindo t por x, obtém-se a expressão do raio de curvatura da função $\cos(x)$

$$R = \frac{(1 + \sin^2(x))^{3/2}}{|\cos(x)|}$$

Perguntas

3. A

6. D

9. C

12. C

15. E

4. E

7. B

10. C

13. A

16. E

5. E

8. E

11. E

14. E

17. A

Cotações

Problema 1

• Alínea <i>a</i>	0.8
• Alínea b	0.8
• Alínea c	0.8
• Alínea d	0.8
• Alínea e	0.8
Problema 2	
Problema 2 • Alínea a	1.2
• Alínea a	0.8

27 de junho de 2018

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

1. (4 valores) Na figura, o bloco 1 tem massa $m_1 = 1$ kg e o bloco 2 tem massa $m_2 = 2$ kg. Os dois blocos estão ligados por uma corda paralela à superfície do plano inclinado. Entre o bloco 1 e o plano inclinado, o coeficiente de atrito estático é $\mu_{1e} = 0.35$ e o coeficiente de atrito cinético $\mu_{1c} = 0.28$. Entre o bloco 2 e o plano inclinado, o coeficiente de atrito estático é $\mu_{2e} = 0.25$ e o coeficiente de atrito cinético μ_{2c} = 0.20. (a) Encontre o ângulo θ máximo que o plano pode ser inclinado, permanecendo os dois blocos em repouso. (b) Quando o plano se inclina um ângulo $\theta = 20^{\circ}$, os dois blocos deslizam para baixo do plano; determine o valor da tensão na corda nesse caso.

2. (4 valores) A corrente num circuito elétrico é uma função contínua do tempo, x(t), que verifica a seguinte equação diferencial:

$$\ddot{x} + x - x^3 + (a + x)\dot{x} = 0$$

onde a é um parámetro real. Analise a equação como sistema dinâmico, nos dois casos a < 0 e a > 0. Em cada caso identifique os pontos de equilíbrio, determine de que tipo são e com base nesses resultados interprete o comportamento físico do circuito.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Lança-se um projétil desde uma janela a 3.4 m de altura, com velocidade de 10 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima atingida pelo projétil.
 - (A) 7.2 m
- (**C**) 4.0 m
- (E) 4.7 m

- **(B)** 6.0 m
- (**D**) 8.5 m

Resposta:

- 4. Um sistema dinâmico com duas variáveis de estado tem um único ponto de equilíbrio na origem e um ciclo limite. Qual poderá ser a matriz jacobiana do sistema na origem?

Calculando o ponto de equilíbrio, se este for um ponto de sela não é um ciclo limite

- Resposta:
- 5. Um bloco com massa m = 6 kg encontra-se sobre a superfície de uma mesa horizontal. Sobre o bloco atua uma força externa \vec{F} , com módulo de 30 N e direção que faz um ângulo $\alpha = 40^{\circ}$ com a horizontal, tal como mostra a figura. Calcule o módulo da reação normal entre o bloco e a mesa.

- (A) 69.06 N
- (C) 78.08 N
- (E) 58.8 N

- (B) 48.54 N
- (**D**) 39.52 N

Resposta:

- - (B) Órbita homoclínica.
- (D) Nulclina.
- (A) Órbita heteroclínica.
- (E) Isoclina.

(C) Ciclo.

Resposta:

dum eixo tangente à superfície da esfera, sabendo que o momento de inércia duma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$. (A) $4.20 \times 10^{-7} \text{ kg} \cdot \text{m}^2$ **(D)** $8.40 \times 10^{-7} \text{ kg} \cdot \text{m}^2$

6. Calcule o momento de inércia de uma esfera homogénea com 1

centímetro de raio e massa igual a 21 gramas, que roda à volta

- **(B)** $2.94 \times 10^{-6} \text{ kg} \cdot \text{m}^2$
- **(E)** $1.68 \times 10^{-6} \text{ kg} \cdot \text{m}^2$
- (C) $1.50 \times 10^{-6} \text{ kg} \cdot \text{m}^2$

Resposta:

- 7. Quando se liga um PC, o disco rígido demora 3.6 s, a partir do repouso, até alcançar a velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angular constante durante esse intervalo, determine o valor da aceleração angular
 - (A) 279 rad/s²
- (**C**) 209 rad/s²
- (**E**) 838 rad/s^2

- **(B)** 419 rad/s^2
- **(D)** 182 rad/s²

batch: esfera-hom Resposta:

8. A figura mostra o retrato de fase dum sistema dinâmico com duas variáveis de estado e 4 pontos de equilíbrio: A, B, C e D. Que tipo de curva de evolução é a circunferência número 2?

- **(A)** $-2x + x^2$
- **(D)** $2x x^2$
- **(B)** $x x^2$

- **(E)** $2x + x^2$
- (C) $-2x x^2$

Resposta:

10. Para determinar a posição do seu centro de gravidade, uma barra retangular foi pendurada de dois fios verticais, ficando em repouso na posição horizontal que mostra a figura. Sabendo que a tensão no fio ligado no ponto A é 3.4 N, a tensão no fio ligado em B é 1.8 N e o comprimento da barra, desde A até B, é 30 cm, determine a distância desde a aresta AC até o centro de gravidade.

- (A) 15.0 cm
- (C) 10.4 cm
- (E) 21.6 cm

- **(B)** 12.5 cm
- (**D**) 18.0 cm

Resposta:

- 11. Uma partícula desloca-se ao longo duma calha circular com aceleração angular a aumentar em função do tempo, de acordo com a expressão $\alpha = 8t$ (unidades SI). No instante t = 0, a partícula encontra-se em repouso na posição em que o ângulo θ é igual a 0. Calcule o valor do ângulo, em radianos, em t = 2.5 s. 17. No sistema da figura, a barra permanece sempre horizontal. De-
 - **(A)** 10.42
- **(C)** 20.83
- **(E)** 62.5

- **(B)** 52.08
- (**D**) 129.17

Resposta:

- 12. Quando uma partícula passa por um ponto P, a sua velocidade é $7\hat{i} + 2\hat{j}$ (SI) e a força resultante é $6\hat{i} + 6\hat{j}$ (SI). Calcule o valor da componente tangencial da força resultante nesse ponto.
 - (A) 54 N
- (C) 8.49 N
- (E) 53 N

- **(B)** 7.42 N
- (**D**) 0 N

Resposta:

13. Quando um avião acelera desde o repouso, na pista de descolagem, a expressão da sua aceleração tangencial é $3.5 - 3 \times 10^{-5} v^2$ (em unidades SI), onde v é o valor da velocidade do avião. Para conseguir levantar voo, a velocidade mínima do avião no fim da

pista deve ser de 250 km/h. Determine o comprimento mínimo, em metros, que deverá ter a pista de descolagem.

- **(A)** 704
- (C) 827
- **(E)** 999

- **(B)** 614
- **(D)** 1260

Resposta:

14. As equações de evolução de dois sistemas dinâmicos são:

$$\begin{cases} \dot{x} = 2 x y - y \\ \dot{y} = 3 x - y^2 \end{cases} \begin{cases} \dot{x} = 3 x - y \\ \dot{y} = 2 x - 2 y \end{cases}$$

Qual das seguintes afirmações é verdadeira

- (A) Nenhum dos dois é linear.
- (B) Ambos são conservativos.
- (C) O 1º é conservativo e o 2º não é conservativo.
- (**D**) Nenhum dos dois é conservativo.
- (E) O 1º não é conservativo e o 2º é conservativo.

Resposta:	batch: conservative
	hataba aanaaniisia

- 15. O sistema de Lotka-Volterra consegue explicar muito bem a evolução dum sistema predador presa mas tem uma grande desvantagem que outros sistemas tentam corrigir. Qual é essa desvantagem?
 - (A) Nenhuma das duas populações pode chegar a extinguir-se totalmente.
 - (B) Cada uma das populações pode aumentar indefinidamente.
 - (C) Cada uma das populações pode oscilar entre um valor muito baixo e um valor muito elevado.
 - (D) Nenhuma das duas populações atinge nunca um valor cons-
 - (E) Cada uma das populações oscila indefinidamente.

Resposta:	

- 16. A expressão da energia cinética dum sistema conservativo é $\frac{1}{2}$ ($\dot{s}^2 + 5 s^2$), onde s é a posição na trajetória, e a expressão da energia potencial total é -10 s. O sistema tem um único ponto de equilíbrio; determine o valor de s nesse ponto de equilíbrio.
 - **(A)** -2
- **(C)** 1
- **(E)** 3

- **(B)** 2
- (D) -1 batch -> aceleracao(ec,ep) resolver com a=0 e tirar o s

Resposta:

termine a velocidade da barra num instante em que a velocidade do carrinho é 50 m/s, para a esquerda, e a velocidade do cilindro é 10 m/s, para cima.

- (A) 12 m/s
- (C) 15 m/s
- (E) 8 m/s

- (**B**) 9 m/s
- **(D)** 10 m/s

Regente: Jaime Villate

FEUP - MIEIC

Resolução do exame de 27 de junho de 2018

Problema 1. A figura seguinte mostra os diagramas de corpo livre dos dois blocos

T é a tensão na corda, N_1 e N_2 as reações normais e F_{a1} e F_{a1} as forças de atrito.

(a) Como os blocos estão em repouso, as somas das componentes das forças tangentes e perpendiculares ao plano inclinado são:

$$\begin{cases} m_1 g \sin \theta + T - F_{a1} = 0 \\ N_1 - m_1 g \cos \theta = 0 \end{cases} \qquad \begin{cases} m_2 g \sin \theta - T - F_{a2} = 0 \\ N_2 - m_2 g \cos \theta = 0 \end{cases}$$

Como o coeficiente de atrito estático do plano com o bloco 2 é menor do que o com o bloco 1, se os blocos não estivessem ligados pela corda, o bloco 2 começava a deslizar a um ângulo menor do que o bloco 1. A tensão na corda permite que o ângulo possa ser maior do que o ângulo ao qual o bloco 2 começava a deslizar e o conjunto só começará a deslizar quando as forças de atrito estático sejam máximas nos dois blocos. Como tal, $F_{a1} = \mu_{e1} N_1$ e $F_{a1} = \mu_{e1} N_1$ e as equações anteriores conduzem a

$$m_1 g \sin \theta + T - \mu_{1e} m_1 g \cos \theta = 0$$
 $m_2 g \sin \theta - T - \mu_{2e} m_2 g \cos \theta = 0$

Somando essas duas equações elimina-se a tensão, e dividindo por $g\cos\theta$ encontra-se uma expressão para a tangente do ângulo máximo

$$\tan \theta = \frac{\mu_{1e} \, m_1 + \mu_{2e} \, m_2}{m_1 + m_2}$$

Substituindo os valores dados, obtém-se o ângulo máximo:

$$\theta = \tan^{-1}\left(\frac{0.35 + 0.25 \times 2}{1 + 2}\right) = 15.8^{\circ}$$

(b) As forças de atrito são atrito cinético e a aceleração a dos dois blocos é a mesma. Como tal, as componentes tangencial e perpendicular das forças resultantes nos dois blocos são:

$$\begin{cases} m_1 g \sin \theta + T - \mu_{1c} N_1 = m_1 a \\ N_1 - m_1 g \cos \theta = 0 \end{cases} \begin{cases} m_2 g \sin \theta - T - \mu_{2c} N_2 = m_2 a \\ N_2 - m_2 g \cos \theta = 0 \end{cases}$$

Ou seja,

$$m_1 g \sin \theta + T - \mu_{1c} m_1 g \cos \theta = m_1 a$$
 $m_2 g \sin \theta - T - \mu_{2c} m_2 g \cos \theta = m_2 a$

Multiplicando a primeira equação por m_2 , a segunda por m_1 , e igualando as duas expressões obtém-se

$$m_1 m_2 g \sin \theta + m_2 T - \mu_{1c} m_1 m_2 g \cos \theta = m_2 m_1 g \sin \theta - m_1 T - \mu_{2c} m_1 m_2 g \cos \theta$$

E a tensão no fio é

$$T = \frac{m_1 m_2 g (\mu_{1c} - \mu_{2c}) \cos \theta}{m_1 + m_2} = \frac{2 \times 9.8 (0.28 - 0.2) \cos 20^{\circ}}{1 + 2} = 0.491 \text{ N}$$

Observe-se que se μ_{1c} não fosse maior que μ_{2c} , a corda não permanecia esticada e aparecia uma força de contacto entre os dois blocos.

Problema 2. Definindo a função y, igual à derivada de x, as equações de evolução do sistema são:

$$\dot{x} = y \qquad \qquad \dot{y} = x^3 - x - (a+x)y$$

Os pontos de equilíbrio são as soluções das equações

$$y = 0$$
 $x^3 - x - (a + x)y = x(x^2 - 1) = 0$

Como tal, há três pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (1,0)$ $P_3 = (-1,0)$

Derivando os lados direitos das equações de evolução, em ordem a x e a y, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} 0 & 1\\ 3x^2 - y - 1 & -x - a \end{bmatrix}$$

No ponto P₁, a matriz da aproximação linear é então,

$$\mathbf{A}_1 = \begin{bmatrix} 0 & 1 \\ -1 & a \end{bmatrix}$$

que tem traço -a e determinante igual a 1. Como tal, se a for positiva, P_1 é um ponto de equilíbrio estável e se a for negativa, esse ponto é instável. Será nó quando $|a| \ge 2$ (determinante menor que o traço ao quadrado sobre 4) ou foco quando |a| < 2.

As matrizes das aproximações lineares próximo dos pontos P_2 e P_3 são

$$\mathbf{A}_2 = \begin{bmatrix} 0 & 1 \\ 2 & -1 - a \end{bmatrix} \qquad \qquad \mathbf{A}_3 = \begin{bmatrix} 0 & 1 \\ 2 & 1 - a \end{bmatrix}$$

ambas com determinante igual a -2. Como tal, P_2 e P_3 são ambos pontos de sela, independentemente do valor de a.

Se a < 0, como todos os pontos de equilíbrio são instáveis, a corrente aumenta indefinidamente, que não é fisicamente possível. Se a > 0, como a origem é ponto de equilíbrio atrativo, para alguns valores iniciais da corrente e da sua derivada, a corrente aproximar-se-á de 0, que é fatível, mas para alguns valores iniciais a corrente também aumenta indefinidamente.

Perguntas

3. E **6.** B **9.** C **12.** B **15.** C **4.** C **7.** C **10.** C **13.** A **16.** A

5. C 8. A 11. C 14. C 17. D

Cotações

Problema 1

• Diagramas de corpo livre e equações das somas das forças na alínea <i>a</i>	1.2
Resolução das equações para encontrar o ângulo máximo	0.8
• Equações das somas das forças na alínea b	1.2
Resolução das equações para encontrar a tensão	0.8
Problema 2	
Obtenção das equações de evolução	0.8
Determinação dos 3 pontos de equilíbrio	0.8
Obtenção da matriz jacobiana	0.4
Obtenção das 3 matrizes das aproximações lineares	0.8
Caraterização dos pontos de equilíbrio	0.8
Interpretação dos resultados	0.4