

DATA C9005: Time Series Analysis

Module Details					
Module Code:	DATA C9005				
Full Title:	Time Series Analysis APPROVED				
Valid From::	Semester 1 - 2024/25 (September 2024)				
Language of Instruction:	English				
Duration:	1 Semester				
Credits::	5				
Module Owner::	Rajesh Jaiswal				
Departments:	Unknown				
Module Description:	This module builds on fundamentals of linear algebra needed to comprehend various dimension reduction techniques, time series and auto-correlated responses. The module focuses on dimension reduction techniques such as ICA and PCA of time series data for prediction and signal extraction. Students will learn techniques to build various time series models for time series forecasting.				

Module Learning Outcome					
On successful completion of this module the learner will be able to:					
#	Module Learning Outcome Description				
MLO1	Investigate the role of linear algebra in Statistics				
MLO2	Interpret and implement dimension reduction techniques using basis vectors				
MLO3	Design and develop regression and time series models for prediction, and give an account of the paradigm under which the forecasts are being made, along with their reliability.				
MLO4	Perform diagnostic analysis and forecasts for time series models				

Pre-requisite learning

Module Recommendations

This is prior learning (or a practical skill) that is strongly recommended before enrolment in this module. You may enrol in this module if you have not acquired the recommended learning but you will have considerable difficulty in passing (i.e. achieving the learning outcomes of) the module. While the prior learning is expressed as named DkIT module(s) it also allows for learning (in another module or modules) which is equivalent to the learning specified in the named module(s).

No recommendations listed

Module Indicative Content

Linear Algebra

Matrix Algebra, Eigenvalues, Eigenvectors, Linear transformations

Basis Vectors and Data Projections

Dimension reduction - Principle Components Analysis, Independent Component Analysis, Common Factor Analysis - Non-negative Matrix Factorisation

Time series Analysis

Time and Frequency domain analysis. Decomposition, Smoothing Techniques, Stationarity, Autocorrelation, Correlograms, Autoregressive (AR), Moving Average (MA) and ARIMA models.

Forecast Error, Confidence Intervals, MAE, MAPE, MPE, RMSE, Ljung-Box Statistic

Module Assessment				
Assessment Breakdown	%			
Course Work	50.00%			
Final Examination	50.00%			

Module Special Regulation

Assessments

Full-time

Course Work 15 Assessment Type Continuous Assessment Marks Out Of 100 Pass Mark 40 Timing S1 Week 4 **Learning Outcome** 1,2

Duration in minutes

Assessment DescriptionAssignment covering the role of linear algebra in Statistics and application of dimension reduction techniques

Continuous Assessment % of Total Mark 35 Assessment Type 40 Marks Out Of 100 Pass Mark Timing S1 Week 10 **Learning Outcome** 1,2,3,4

Duration in minutes 0

Assessment Description

Data Project 2- End of semester project where students will use regression and time series model for a data analytics problem and perform a diagnostic analysis and carry out informed predictions

No Project

No Practical

Final Examination

Assessment Type Formal Exam % of Total Mark 50 Marks Out Of 100 Pass Mark 40 1,2,3,4 Timing End-of-Semester Learning Outcome

Duration in minutes 120

Assessment Description

End of module examination covering all the learning outcomes

Part-time Course Work

Course Work			
Assessment Type	Continuous Assessment	% of Total Mark	15
Marks Out Of	100	Pass Mark	40
Timing	S1 Week 4	Learning Outcome	1,2
Duration in minutes	0		

Assessment Description

Assignment covering the role of linear algebra in Statistics and application of dimension reduction techniques

Continuous Assessment % of Total Mark 35 Assessment Type Marks Out Of Pass Mark 100 40 Timing S1 Week 10 **Learning Outcome** 1,2,3,4

Duration in minutes

Assessment Description

Data Project 2- End of semester project where students will use regression and time series model for a data analytics problem and perform a diagnostic analysis and carry out informed predictions

No Project

No Practical

Final Examination

% of Total Mark 50 Assessment Type Formal Exam Marks Out Of 100 Pass Mark 40 Timing End-of-Semester Learning Outcome 1,2,3,4

Duration in minutes 120

Assessment Description End of Module Examination covering all the learning outcomes

Reassessment Requirement

A repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

DKIT reserves the right to alter the nature and timings of assessment

Modu	I AV		
NV/COTO I		14 0 1 d (4 [0]= [0]

Workload: Full-time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	1-hour lecture to cover theory of time series analysis	Every Week	1.00	1
Practical	Contact	2-hour labs with integrated tutorials	Every Week	2.00	2
Directed Reading	Non Contact	Lecture notes, books and online materials	Every Week	1.00	1
Independent Study	Non Contact	Lecture notes, books and online materials	Every Week	4.00	4
Total Weekly Learner Workload					8.00
Total Weekly Contact Hours				3.00	

Workload: Part-time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	1-hour lecture to cover theory of time series analysis	Every Week	1.00	1
Practical	Contact	2-hour labs with integrated tutorials	Every Week	2.00	2
Directed Reading	Non Contact	Lecture notes, books and online materials	Every Week	1.00	1
Independent Study	Non Contact	Lecture notes, books and online materials	Every Week	4.00	4
Total Weekly Learner Workload					8.00
Total Weekly Contact Hours					3.00

Module Resources

Recommended Book Resources

Peter J. Brockwell, Richard A. Davis. (2016), Introduction to Time Series and Forecasting (Springer Texts in Statistics).

Supplementary Book Resources

Aileen Nielsen. (2019), Practical Time Series Analysis.

This module does not have any article/paper resources

Website, GITHUB - python, https://github.com/rouseguy/TimeSeriesAn alysiswithPython