Dilatación térmica

Dilatación Lineal

$$L = L_0 + L_0 \cdot \alpha (T_F - T_0)$$

$$\Delta L = L_0 \cdot \alpha \cdot \Delta t$$

 ΔL = Variación de longitud

L₀ = Longitud inicial

L_F = Longitud final

 α = Coeficiente de Dilatación lineal

 T_0 = Temperatura inicial

T_F =Temperatura Final

 Δt = Variación de temperatura

Dilatación Superficial

$$S_F = S_0 + S_0 \cdot \beta (T_F - T_0)$$

$$\Delta S = S_0 \cdot \beta \cdot \Delta t$$

 ΔS = Variación de superficie

 S_0 = Superficie inicial

S_F = Superficie final

 β = Coeficiente de Dilatación superficial

 T_0 = Temperatura inicial

T_F = Temperatura Final

 Δt = Variación de temperatura

Dilatación Volumétrica

$$V_F = V_0 + V_0 \cdot \gamma (T_F - T_0)$$

$$\Delta V = V_0 \cdot \gamma \cdot \Delta t$$

 ΔV = Variación volumétrica

 V_0 = Volumen inicial

V_F = Volumen final

 γ = Coeficiente de Dilatación volumétrica

 T_0 = Temperatura inicial

T_F =Temperatura Final

 Δt = Variación de temperatura