

mmaire

- Partie I: Introduction.
 - Problématique
- Présentation de Wastine - Cahier des charges - Planification des tâches

- Le choix du matériel

- Obstacles rencontrés

- Conception détaillée

- La solution finale choisie

- Benchmark
- Partie II: Les solutions.

 - Les normes et études
 - Le matériel final choisi
- Partie III: Travail personnel.
 - Prototype
 - Travail personnel
 - Réalisation finale
 - Partie IV: Conclusion.

Problématiques

- 130g de déchets par personne
- 150 mille tonnes par an pour le scolaire.
- ~ 22 500 € de perte par an.

Comment avoir une maîtrise du gaspillage alimentaire, tout en respectant l'environnement ?

Comment améliorer le passage en cantine de notre lycée ?

Présentation

Cahier des charges Diagramme de contexte

Cahier des charges Diagramme de blocs

Cahier des charges Diagramme des exigences

Lecture de la carte magnétique

Interface visuelle

Quantification des repas Et envois des données à la cuisine

Cahier des charges

Diagramme de blocs internes

(1) Messages des applications

Traitement des messages, transformées et quantifiées

(3) Courant électrique

Planification des tâches

Benchmark

Le lycée saint-Joseph de Saint-Martin-Boulogne

Popularité: 20% →70%

Prix du repas: 5,5€ **→**2,9€

Création d'une file d'attente conséquente

Les normes et études

La loi n°2016-138 du 11 février 2016:

"la lutte contre le gaspillage alimentaire" "sensibilisation et formation des acteurs"

Etude sur l'émission de CO2: 32 6634.8 kg équ. CO2

Etude sur la consommation électrique: 12.36kWh par an.

Comparaison du matériel

	Raspberry Pi 3	Arduino Uno	Udoo X86
Dimensions	8.6 x 5.4 x 1.7 cm	7.6 x 1.9 x 6.4 cm	7.6 x 1.9 x 6.4 cm
Simplicité	X	✓	×
Compatibilité	Très large	Limitée	Très large
Programmation	Très large	Programme unique	Très large
Multi-Tâches	✓	×	✓
Prix	~35-40€	~20€	~80€

	Ecran TV / PC	ASUS MB168
Ecran tactile	х	√
Prix	√	√

Comparaison du matériel

	Sim900	Dongle GSM
Compatiblité Raspberry	×	*
Compatibilité Arduino	✓	✓
Dimensions	75 x 55 x 10 mm	71 x 25 x 89 mm
Prix	~30€	~15€

Choix du matériel final

150€

15€

2€

3 €

10€

1 €

Cout total: 216 € (-150€ de l'écran tactile récupéré) Cout final réel: 66 €

14/23

La solution finale

Une borne à écran tactile avec un choix de menu par élève via une identification par carte RFID.

L'ensemble fonctionnant sous RasperryPi avec une liaison dongleGSM pour la réception des repas commandés et l'émission en cuisine des quantités.

Prototype

Liaison Raspberry / Lecteur RFID

Liaison Raspberry / Dongle GSM

Travail personnel

Interface affichée

La réception des SMS

Liaison Raspberry / Lecteur RFID

```
public class Principale extends JPanel {
   private static final long serialVersionUID = 1L; {
    System.out.println("Affichage du screen: Principal");
         this.setLayout(new BorderLayout());
Jlabel back = new Jlabel(new ImageIcon(this.getClass().getResource("/fond.png")));
         JLabel mid = new JLabel("Veuillez passer votre carte ", JLabel.CENTER);
         mid.setFont(Utils.Fonts.getFont("Ouotus.ttf", 90f));
         mid.setForeground(new Color(0,70,0));
         back.add(mid, BorderLayout.CENTER);
              RaspRC522 rasp = new RaspRC522():
                bover rue
ublic void run() {
    byte tagid[] = new byte[5];
    int back_bits[] = new int[1];
                   if(rasp.Request(RaspRC522.PICC_REQIDL, back_bits) == RaspRC522.MI_OK) {
                        if(rasp.AntiColl(tagid) == RaspRC522.MI OK) {
                            rasp.Select Tag(tagid);
                             System.arraycopy(tagid, 0, tagid, 0, 5);
                             String uid = tagid[0]+","+tagid[1]+","+tagid[2]+","+tagid[3]+","+ tagid[4];
                            mid.setFont(new Font("serif", Font.80LD, 50));
mid.setForeground(new Color(0,200,0));
mid.setText(uid);
                                 WasteEleve eleve = Utils.SOL.getEleve(uid):
                                       Main.getWastInstance().pageEleve(eleve);
                                  mid.setForeground(Color.RED);
```

Travail personnel

Conception détaillée

- Acquisition des données inscrites sur le badge.
- Traitement de ces données.
- Création d'une interface détaillée.
- -Rassemblement des différentes parties du système global.

Réalisation finale

Obstacles rencontrés

Ecran tactile hors-service

Fin

Merci pour votre attention

Avez-vous des questions?

