

10738-43.ST25.txt SEQUENCE LISTING

<110> Liggett, Stephen Small, Kersten M.											
<120> Alpha-2B-Adrenergic Receptor Polymorphisms											
<130> 10738-43											
<140> 09/692,077 <141> 2000-10-19											
<160> 26											
<170> PatentIn version 3.2											
<210> 1 <211> 1353 <212> DNA <213> Homo sapiens											
<400> 1 atggaccacc aggaccccta ctccgtgcag gccacagcgg ccatagcggc ggccatcacc	60										
ttcctcattc tctttaccat cttcggcaac gctctggtca tcctggctgt gttgaccagc	120										
cgctcgctgc gcgcccctca gaacctgttc ctggtgtcgc tggccgccgc cgacatcctg	180										
gtggccacgc tcatcatccc tttctcgctg gccaacgagc tgctgggcta ctggtacttc	240										
cggcgcacgt ggtgcgaggt gtacctggcg ctcgacgtgc tcttctgcac ctcgtccatc	300										
gtgcacctgt gcgccatcag cctggaccgc tactgggccg tgagccgcgc gctggagtac	360										
aactccaagc gcaccccgcg ccgcatcaag tgcatcatcc tcactgtgtg gctcatcgcc	420										
gccgtcatct cgctgccgcc cctcatctac aagggcgacc agggccccca gccgcgggg	480										
cgccccagt gcaagctcaa ccaggaggcc tggtacatcc tggcctccag catcggatct	540										
ttctttgctc cttgcctcat catgatcctt gtctacctgc gcatctacct gatcgccaaa	600										
cgcagcaacc gcagaggtcc cagggccaag ggggggcctg ggcagggtga gtccaagcag	660										
ccccgacccg accatggtgg ggctttggcc tcagccaaac tgccagccct ggcctctgtg	720										
gcttctgcca gagaggtcaa cggacactcg aagtccactg gggagaagga ggagggggag	780										
acccctgaag atactgggac ccgggccttg ccacccagtt gggctgccct tcccaactca	840										
ggccagggcc agaaggaggg tgtttgtggg gcatctccag aggatgaagc tgaagaggag	900										
gaagaggagg aggaggagga ggaagagtgt gaaccccagg cagtgccagt gtctccggcc	960										
tcagcttgca gccccccgct gcagcagcca cagggctccc gggtgctggc caccctacgt	1020										
ggccaggtgc tcctgggcag gggcgtgggt gctataggtg ggcagtggtg gcgtcgaagg	1080										
gcgcagctga cccgggagaa gcgcttcacc ttcgtgctgg ctgtggtcat tggcgttttt	1140										
gtgctctgct ggttcccctt cttcttcagc tacagcctgg gcgccatctg cccgaagcac	1200										
tgcaaggtgc cccatggcct cttccagttc ttcttctgga tcggctactg caacagctca Page 1	1260										

ctgaaccctg ttatctacac catcttcaac caggacttcc gc	ccgtgcctt ccggaggatc 1320
ctgtgccgcc cgtggaccca gacggcctgg tga	1353
<210> 2 <211> 1344 <212> DNA <213> Homo sapiens	
<400> 2 atggaccacc aggaccccta ctccgtgcag gccacagcgg cc	catagcggc ggccatcacc 60
ttcctcattc tctttaccat cttcggcaac gctctggtca tc	cctggctgt gttgaccagc 120
cgctcgctgc gcgcccctca gaacctgttc ctggtgtcgc tg	ggccgccgc cgacatcctg 180
gtggccacgc tcatcatccc tttctcgctg gccaacgagc tg	gctgggcta ctggtacttc 240
cggcgcacgt ggtgcgaggt gtacctggcg ctcgacgtgc to	cttctgcac ctcgtccatc 300
gtgcacctgt gcgccatcag cctggaccgc tactgggccg tg	gagccgcgc gctggagtac 360
aactccaagc gcaccccgcg ccgcatcaag tgcatcatcc to	cactgtgtg gctcatcgcc 420
gccgtcatct cgctgccgcc cctcatctac aagggcgacc ag	gggccccca gccgcgcggg 480
cgcccccagt gcaagctcaa ccaggaggcc tggtacatcc tg	ggcctccag catcggatct 540
ttctttgctc cttgcctcat catgatcctt gtctacctgc gc	catctacct gatcgccaaa 600
cgcagcaacc gcagaggtcc cagggccaag ggggggcctg gg	gcagggtga gtccaagcag 660
ccccgacccg accatggtgg ggctttggcc tcagccaaac tg	gccagccct ggcctctgtg 720
gcttctgcca gagaggtcaa cggacactcg aagtccactg gg	ggagaagga ggaggggag 780
acccctgaag atactgggac ccgggccttg ccacccagtt gg	ggctgccct tcccaactca 840
ggccagggcc agaaggaggg tgtttgtggg gcatctccag ag	ggatgaagc tgaagaggag 900
gaggaggagg aggaagagtg tgaaccccag gcagtgccag tg	gtctccggc ctcagcttgc 960
agcccccgc tgcagcagcc acagggctcc cgggtgctgg cc	caccctacg tggccaggtg 1020
ctcctgggca ggggcgtggg tgctataggt gggcagtggt gg	gcgtcgaag ggcgcagctg 1080
acccgggaga agcgcttcac cttcgtgctg gctgtggtca tt	tggcgtttt tgtgctctgc 1140
tggttcccct tcttcttcag ctacagcctg ggcgccatct gc	cccgaagca ctgcaaggtg 1200
ccccatggcc tcttccagtt cttcttctgg atcggctact gc	caacagctc actgaaccct 1260
gttatctaca ccatcttcaa ccaggacttc cgccgtgcct to	ccggaggat cctgtgccgc 1320
ccgtggaccc agacggcctg gtga	1344
240 2	

<210> 3 <211> 9 <212> DNA <213> Homo sapiens

gaagaggag										9							
	<210> <211> <212> <213>	4 9 DNA Homo	sap ⁻	iens													
	<400> gaggag	4 gag															9
	<210> <211> <212> <213>	5 9 DNA Homo	sap ⁻	iens													
	<400> cttctc	5 ctc															9
	<210> <211> <212> <213>	6 9 DNA Homo	sap ⁻	iens													
	<400> ctcctc	6 ctc															9
	<210> <211> <212> <213>	7 450 PRT Homo	sap ⁻	iens													
<400> 7																	
	Met As 1	р His	Gln	Asp 5	Pro	Туг	Ser	val	Gln 10	Ala	Thr	Ala	Ala	Ile 15	Ala		
	Ala Al	a Ile	Thr 20	Phe	Leu	Ile	Leu	Phe 25	Thr	Ile	Phe	Gly	Asn 30	Ala	Leu		
	Val Il	e Leu 35	Ala	val	Leu	Thr	Ser 40	Arg	Ser	Leu	Arg	Ala 45	Pro	Gln	Asn		
	Leu Ph 50		۷al	Ser	Leu	Ala 55	Ala	Ala	Asp	Ile	Leu 60	val	Ala	Thr	Leu		
	Ile Il 65	e Pro	Phe	Ser	Leu 70	Ala	Asn	Glu	Leu	Leu 75	Gly	Tyr	Trp	туг	Phe 80		
	Arg Ar	g Thr	тгр	Cys 85	Glu	val	Tyr	Leu	Ala 90	Leu	Asp	٧al	Leu	Phe 95	Cys		

10738-43.ST25.txt Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Trp Ala Val Ser Arg Ala Leu Glu Tyr Asn Ser Lys Arg Thr Pro Arg Arg 115 120 125 Ile Lys Cys Ile Ile Leu Thr Val Trp Leu Ile Ala Ala Val Ile Ser 130 140 Leu Pro Pro Leu Ile Tyr Lys Gly Asp Gln Gly Pro Gln Pro Arg Gly 145 150 155 160 Arg Pro Gln Cys Lys Leu Asn Gln Glu Ala Trp Tyr Ile Leu Ala Ser 165 170 175 Ser Ile Gly Ser Phe Phe Ala Pro Cys Leu Ile Met Ile Leu Val Tyr 180 185 190 Leu Arg Ile Tyr Leu Ile Ala Lys Arg Ser Asn Arg Arg Gly Pro Arg 195 200 205 Ala Lys Gly Gly Pro Gly Gln Gly Glu Ser Lys Gln Pro Arg Pro Asp 210 215 220 His Gly Gly Ala Leu Ala Ser Ala Lys Leu Pro Ala Leu Ala Ser Val 225 230 235 240 Ala Ser Ala Arg Glu Val Asn Gly His Ser Lys Ser Thr Gly Glu Lys 245 250 255 Glu Glu Gly Glu Thr Pro Glu Asp Thr Gly Thr Arg Ala Leu Pro Pro 260 265 270 Ser Trp Ala Ala Leu Pro Asn Ser Gly Gln Gly Gln Lys Glu Gly Val 275 280 285 Glu Glu Glu Glu Cys Glu Pro Gln Ala Val Pro Val Ser Pro Ala 305 310 315 320 Ser Ala Cys Ser Pro Pro Leu Gln Gln Pro Gln Gly Ser Arg Val Leu 325 330 335 Ala Thr Leu Arg Gly Gln Val Leu Leu Gly Arg Gly Val Gly Ala Ile 340 345 350

Gly Gly Gln Trp Trp Arg Arg Ala Gln Leu Thr Arg Glu Lys Arg 355 360 365

Phe Thr Phe Val Leu Ala Val Val Ile Gly Val Phe Val Leu Cys Trp 370 375 380

Phe Pro Phe Phe Ser Tyr Ser Leu Gly Ala Ile Cys Pro Lys His 385 390 395 400

Cys Lys Val Pro His Gly Leu Phe Gln Phe Phe Phe Trp Ile Gly Tyr 405 410 415

Cys Asn Ser Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn Gln Asp 420 425 430

Phe Arg Arg Ala Phe Arg Arg Ile Leu Cys Arg Pro Trp Thr Gln Thr 435 440 445

Ala Trp 450

<210> 8

<211> 447

<212> PRT

<213> Homo sapiens

<400> 8

Met Asp His Gln Asp Pro Tyr Ser Val Gln Ala Thr Ala Ala Ile Ala $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Ala Ile Thr Phe Leu Ile Leu Phe Thr Ile Phe Gly Asn Ala Leu 20 25 30

Val Ile Leu Ala Val Leu Thr Ser Arg Ser Leu Arg Ala Pro Gln Asn 35 40 45

Leu Phe Leu Val Ser Leu Ala Ala Ala Asp Ile Leu Val Ala Thr Leu 50 60

Ile Ile Pro Phe Ser Leu Ala Asn Glu Leu Leu Gly Tyr Trp Tyr Phe 65 70 75 80

Arg Arg Thr Trp Cys Glu Val Tyr Leu Ala Leu Asp Val Leu Phe Cys 85 90 95

Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Trp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ala Val Ser Arg Ala Leu Glu Tyr Asn Ser Lys Arg Thr Pro Arg Arg 115 120 125 Ile Lys Cys Ile Ile Leu Thr Val Trp Leu Ile Ala Ala Val Ile Ser 130 135 140 Leu Pro Pro Leu Ile Tyr Lys Gly Asp Gln Gly Pro Gln Pro Arg Gly 145 150 155 160 Arg Pro Gln Cys Lys Leu Asn Gln Glu Ala Trp Tyr Ile Leu Ala Ser 165 170 175 Ser Ile Gly Ser Phe Phe Ala Pro Cys Leu Ile Met Ile Leu Val Tyr 180 185 190 Leu Arg Ile Tyr Leu Ile Ala Lys Arg Ser Asn Arg Arg Gly Pro Arg 195 200 205 Ala Lys Gly Gly Pro Gly Gln Gly Glu Ser Lys Gln Pro Arg Pro Asp 210 225 220 His Gly Gly Ala Leu Ala Ser Ala Lys Leu Pro Ala Leu Ala Ser Val 225 230 235 240 Ala Ser Ala Arg Glu Val Asn Gly His Ser Lys Ser Thr Gly Glu Lys 245 250 255 Glu Glu Gly Glu Thr Pro Glu Asp Thr Gly Thr Arg Ala Leu Pro Pro 260 265 270 Ser Trp Ala Ala Leu Pro Asn Ser Gly Gln Gly Gln Lys Glu Gly Val 275 280 285 Cys Gly Ala Ser Pro Glu Asp Glu Ala Glu Glu Glu Glu Glu Glu Glu Glu 290 295 300 Glu Glu Cys Glu Pro Gln Ala Val Pro Val Ser Pro Ala Ser Ala Cys 305 310 315 320 Ser Pro Pro Leu Gln Gln Pro Gln Gly Ser Arg Val Leu Ala Thr Leu 325 330 335 Arg Gly Gln Val Leu Leu Gly Arg Gly Val Gly Ala Ile Gly Gly Gln 340 350 Trp Trp Arg Arg Arg Ala Gln Leu Thr Arg Glu Lys Arg Phe Thr Phe 355 360 365 Page 6

```
Val Leu Ala Val Val Ile Gly Val Phe Val Leu Cys Trp Phe Pro Phe 370 375 380
Phe Phe Ser Tyr Ser Leu Gly Ala Ile Cys Pro Lys His Cys Lys Val
Pro His Gly Leu Phe Gln Phe Phe Phe Trp Ile Gly Tyr Cys Asn Ser
Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn Gln Asp Phe Arg Arg
                              425
Ala Phe Arg Arg Ile Leu Cys Arg Pro Trp Thr Gln Thr Ala Trp 435 440 445
<210>
<211>
      16
<212>
      PRT
<213>
      Homo sapiens
<400>
<210>
      10
      13
<211>
<212>
      PRT
<213>
      Homo sapiens
<400>
Glu Asp Glu Ala Glu Glu Glu Glu Glu Glu Glu Glu 1
<210>
      11
<211>
<212>
      PRT
<213>
     Homo sapiens
<400> 11
Glu Glu Glu
<210> 12
<211>
      3
<212>
      PRT
<213>
      Homo sapiens
<400> 12
Cys Glu Pro
```

<210> <211> <212> <213>	21	
<400> gctca1	13 tcatc cctttctcgc t	21
<210> <211> <212> <213>	21	
<400> aaagco	14 cccac catggtcggg t	21
<210> <211> <212> <213>	DNA	
<400> ctgato	15 gcca aacgagcaac	20
<210> <211> <212> <213>	20	
<400> aaaaac	16 gcca atgaccacag	20
<210> <211> <212> <213>	18	
	17 acga cggccagt	18
<210> <211> <212> <213>	18 18 DNA Homo sapiens	
<400> caggaa	18 acag ctatgacc	18
<210> <211> <212> <213>	19 21 DNA Homo sapiens	
<400>	19	

Page 8

10738-43.ST25.txt agaaggaggg tgtttgtggg g 21 <210> 20 <211> 21 <212> DNA <213> Homo sapiens <400> 20 acctatagca cccacgcccc t 21 <210> 21 <211> 21 <212> DNA <213> Homo sapiens <400> 21 ggccgacgct cttgtctagc c 21 <210> 22 <211> 20 <212> DNA <213> Homo sapiens <400> 22 caaggggttc ctaagatgag 20 <210> 23 <211> 9 <212> PRT <213> Homo sapiens <400> 23 Tyr Pro Tyr Asp \underline{V} al Pro Asp Tyr Ala <210> 24 <211> 69 <212> DNA <213> Homo sapiens <400> 24 gggcatctcc agaggatgaa gctgaagagg aggaagagga ggaggaggag gaggaagagt 60 gtgaacccc 69 <210> 25 <211> 60 <212> DNA <213> Homo sapiens gggcatctcc agaggatgaa gctgaagagg aggaggagga ggaggaagag tgtgaacccc 60

<210> 26 <211> 233 <212> PRT

<213> Homo sapiens

<400> 26

Asn Gln Glu Ala Trp Tyr Ile Leu Ala Ser Ser Ile Gly Ser Phe Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Pro Cys Ala Ile Met Ile Leu Val Tyr Leu Arg Ile Tyr Leu Ile 20 25 30

Ala Lys Arg Ser Asn Arg Arg Gly Pro Arg Ala Lys Gly Gly Pro Gly 35 40 45

Gln Gly Glu Ser Lys Gln Pro Arg Pro Asp His Gly Gly Ala Leu Ala 50 60

Ser Ala Lys Leu Pro Ala Leu Ala Ser Val Ala Ser Ala Arg Glu Val 65 70 75 80

Asn Gly His Ser Lys Ser Thr Gly Glu Lys Glu Glu Gly Glu Thr Pro 85 90 95

Glu Asp Thr Gly Thr Arg Ala Leu Pro Pro Ser Trp Ala Ala Leu Pro 100 105 110

Asn Ser Gly Gln Gly Gln Lys Glu Gly Val Cys Gly Ala Ser Pro Glu 115 120 125

Glu Pro Gln Ala Val Pro Val Ser Pro Ala Ser Ala Cys Ser Pro Pro 145 150 155 160

Leu Gln Gln Pro Gln Gly Ser Arg Val Leu Ala Thr Leu Arg Gly Gln 165 170 175

Val Leu Leu Gly Arg Gly Val Gly Ala Ile Gly Gly Gln Trp Trp Arg 180 185 190

Arg Arg Ala Gln Leu Thr Arg Glu Lys Arg Phe Thr Phe Val Leu Ala 195 200 205

Val Val Ile Gly Val Phe Val Leu Cys Trp Phe Pro Phe Phe Phe Ser 210 215 220

Tyr Ser Leu Gly Ala Ile Cys Pro Lys 225 230