Predicting age at maturity in black carp

Eddie Wu

2024-04-04

Introduction

We used different temperature metrics to predict black carp age at maturity. Simple linear regression model was used for all metrics.

- 1. Annual average temperature. (obtained from the WORLDCLIM dataset BIO1) (1970 2000)
- 2. Cold quarter temperature. (obtained from the WORLDCLIM dataset BIO11) (1970 2000)
- 3. Warm quarter temperature. (obtained from the WORLDCLIM dataset BIO10) (1970 2000)
- 4. Growing degree day Base 0. (calculated from CPC Global Daily Temperature) (1979 2022)
- 5. Winter duration (calculated from CPC Global Daily Temperature) (1979 2022)
- 6. Annual water temperature. (averaged weekly water temperature calculated from futureStream database) (1979 2005)
- 7. Cold quarter water temperature. (averaged weekly water temperature calculated from future-Stream database) (1979 2005)

Both water temperature metrics using the calculation method in the WorldClim database in terms of "annual" and "cold quarter". (package dismo)

Predict black carp age at maturity

```
library(car)
library(dplyr)
## Import data
Black <- read.csv("eddie_carp_new.csv")</pre>
Black$condition <- as.factor(Black$condition)</pre>
# Clean data
Black <- Black %>% filter(!row_number() == 5) %>% filter(sex != "male")
# Remove the South Ukraine data point
black.clean <- Black %>% filter(!row number() == 20)
black.annual <- lm(log(AAM)~AnnualTemp, data = black.clean)
black.cold <- lm(log(AAM)~ColdTemp, data = black.clean)</pre>
black.warm <- lm(log(AAM)~WarmTemp, data = black.clean)</pre>
black.gdd <- lm(log(AAM)~average_gdd_0, data = black.clean)</pre>
black.below5 <- lm(log(AAM)~below5, data = black.clean)</pre>
black.water <- lm(log(AAM)~WaterTemp, data = black.clean)</pre>
black.coldwater <- lm(log(AAM)~WaterCold, data = black.clean)</pre>
```

```
summary(black.annual)
##
## Call:
## lm(formula = log(AAM) ~ AnnualTemp, data = black.clean)
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.42489 -0.12464 0.00059 0.09959 0.30683
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.984762
                          0.074361 26.691 < 2e-16 ***
## AnnualTemp -0.017186
                         0.005344 -3.216 0.00433 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1754 on 20 degrees of freedom
## Multiple R-squared: 0.3409, Adjusted R-squared: 0.3079
## F-statistic: 10.34 on 1 and 20 DF, p-value: 0.004333
summary(black.cold)
##
## Call:
## lm(formula = log(AAM) ~ ColdTemp, data = black.clean)
## Residuals:
##
                 1Q Median
                                   3Q
                                           Max
       Min
## -0.39468 -0.12079 -0.00699 0.08961 0.29562
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          0.035603 49.638
## (Intercept) 1.767262
                                            <2e-16 ***
                          0.003084 -3.704
                                             0.0014 **
## ColdTemp
              -0.011423
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1664 on 20 degrees of freedom
## Multiple R-squared: 0.4069, Adjusted R-squared: 0.3772
## F-statistic: 13.72 on 1 and 20 DF, p-value: 0.001405
summary(black.warm)
##
## Call:
## lm(formula = log(AAM) ~ WarmTemp, data = black.clean)
## Residuals:
                 1Q
                     Median
                                   3Q
                                           Max
## -0.44602 -0.15359 0.03875 0.13845 0.30624
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.13752
                          0.26482
                                   8.072 1.02e-07 ***
```

```
## WarmTemp
              -0.01511
                        0.01098 -1.377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2065 on 20 degrees of freedom
## Multiple R-squared: 0.08655,
                                  Adjusted R-squared: 0.04087
## F-statistic: 1.895 on 1 and 20 DF, p-value: 0.1839
summary(black.gdd)
##
## Call:
## lm(formula = log(AAM) ~ average_gdd_0, data = black.clean)
## Residuals:
##
       Min
                                   3Q
                 1Q
                      Median
## -0.46712 -0.09978 0.00423 0.08019 0.32039
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                 2.142e+00 1.276e-01 16.787 2.97e-13 ***
## (Intercept)
## average_gdd_0 -6.895e-05 2.307e-05 -2.988 0.00727 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1797 on 20 degrees of freedom
## Multiple R-squared: 0.3086, Adjusted R-squared: 0.2741
## F-statistic: 8.929 on 1 and 20 DF, p-value: 0.007268
summary(black.below5)
##
## Call:
## lm(formula = log(AAM) ~ below5, data = black.clean)
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.34614 -0.13083 0.01528 0.08633 0.32716
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6449045 0.0474995 34.630 < 2e-16 ***
## below5
              0.0018623 0.0004611
                                   4.039 0.000643 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1604 on 20 degrees of freedom
## Multiple R-squared: 0.4492, Adjusted R-squared: 0.4217
## F-statistic: 16.31 on 1 and 20 DF, p-value: 0.0006427
summary(black.water)
##
## Call:
## lm(formula = log(AAM) ~ WaterTemp, data = black.clean)
##
```

```
## Residuals:
##
       Min
                 1Q Median
                                   30
## -0.43891 -0.14624 0.01017 0.12283 0.35815
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.077127
                          0.137615 15.094 2.15e-12 ***
## WaterTemp -0.020957 0.009204 -2.277 0.0339 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1926 on 20 degrees of freedom
## Multiple R-squared: 0.2059, Adjusted R-squared: 0.1661
## F-statistic: 5.184 on 1 and 20 DF, p-value: 0.03393
summary(black.coldwater)
##
## Call:
## lm(formula = log(AAM) ~ WaterCold, data = black.clean)
## Residuals:
       Min
                 1Q
                     Median
                                   30
## -0.49139 -0.09544 -0.02325 0.11838 0.29075
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.923428 0.059900 32.111 < 2e-16 ***
## WaterCold -0.023142 0.007403 -3.126 0.00532 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1771 on 20 degrees of freedom
## Multiple R-squared: 0.3283, Adjusted R-squared: 0.2947
## F-statistic: 9.773 on 1 and 20 DF, p-value: 0.005318
plot(black.annual, which=5)
```

