following questions.

Instructor: PaoLien Lai
Closed book

Student name:	Student number:
There are 7 questions and 100 marks	total. Please write an answer and the detailed calculation to each of th

- 1. (15 points) Let P(n) be the statement that $1^2+2^2+...+n^2=n(n+1)(2n+1)/6$ for the positive integer n.
 - (a) What is the statement P(1)?
 - (b) Show that P(1) is true, completing the basis step of the proof.
 - (c) What is the inductive hypothesis?
 - (d) What do you need to prove in the inductive step?
 - (e) Complete the inductive step.
- 2. (15 points) Prove that $1^2+3^2+5^2+...+(2n+1)^2=(n+1)(2n+1)(2n+3)/3$ whenever n is a nonnegative integer.
- 3. (15 points) Let P(n) be the statement that a postage of n cents can be formed using just 3-cent stamps and 5-cent stamps. Prove P(n) is true for $n \ge 8$ by the following strong induction proof process.
 - (a) Show that the statement P(8), P(9), and P(10) are true, completing the basis step of the proof.
 - (b) What is the inductive hypothesis of the proof?
 - (c) What do you need to prove in the inductive step?
 - (d) Complete the inductive step for $k \ge 10$.
- 4. (15 points) Find f(2), f(3), f(4), if f is defined recursively by f(0)=-1, f(1)=2 and for n=1,2,...
 - (a) $f(n+1)=f(n)^2f(n-1)$.
 - (b) $f(n+1)=3f(n)^2-4f(n-1)^2$.
 - (c) f(n+1)=f(n-1)/f(n).
- 5. (10 points) Give a recursive definition of the sequence $\{a_n\}$, n=1,2,3,... if
 - (a) $a_n = 2n + 1$
- (b) $a_n = 5$
- 6. (10 points) Let F be the function such that F(n) is the sum of the first n positive integers. Give a recursive definition of F(n)
- 7. (20 points) Give a recursive algorithm for finding the sum of the first n odd positive integers.