АРХІТЕКТУРА СУЧАСНИХ ЕОМ

Лекція 5: Рівень мікроархітектури

План лекції

- Організація АЛУ
- Основні оптимізації швидкодії
- Приклади мікроархітектури

Рівні архітектури

- Цифровий логічний рівень
- Рівень мікроархітектури
- Рівень архітектури набору команд
- Рівень операційної системи
- рівень асемблера

Рівні архітектури

Поняття мікроархітектури процесора

- Робота елементів мікроархітектури контролюється мікрокодом, вбудованим в процесор.
- У разі наявності шару мікрокода в архітектурі процесора він виступає своєрідним інтерпретатором, перетворюючи команди рівня архітектури системи команд в команди рівня мікроархітектури. При цьому різні системи команд можуть бути реалізовані на базі однієї мікроархітектури.
- Під мікроархітектурою розуміється внутрішня реалізація програмної моделі.

Аспекти мікроархітектури

- Конвеєрний тракт даних є найбільш широко використовуваним в сучасних мікроархітектурах.
- Конвеєрна архітектура дозволяє декільком інструкціям перекриватися у виконанні, що нагадує складальну лінію.
- Конвеєр включає кілька різних стадій, вибір яких є фундаментальним при розробці мікроархітектури.
- Деякі з цих стадій включають вибір інструкцій, декодування інструкцій, виконання і запис результату.
- Деякі архітектури включають інші стадії, такі як доступ до пам'яті.
- Дизайн конвеєра один з центральних питань проектування мікроархітектури.

Мікроархітектура процесорів

ТРАКТ ДАНИХ

Мікрокоманди

- Для управління трактом даних, нам потрібно 29 сигналів. Їх можна розділити на п'ять функціональних груп:
- 9 сигналів для запису даних з шини С в регістри;
- 9 сигналів для дозволу передачі регістрів на шину виводу АЛУ;
- 8 сигналів для управління АЛУ і схемою зсуву;
- 2 сигналу, які вказують, що потрібно здійснити читання або запис через регістри MAR / MDR;
- + 1 сигнал, який вказує, що потрібно здійснити виклик з пам'яті через регістри РС / MBR (на малюнку також не показаний).

Мікрокоманда

- Addr адреса наступної потенційної мікрокоманд;
- JAM визначення того, як вибирається наступна мікрокоманда;
- ALU функції АЛ У і схеми зсуву;
- С вибір регістрів, які записуються з шини С;
- Мет функції пам'яті;
- В вибір джерела для шини

Регистры шины В

0 — MDR 5 — LV 1 — PC 6 — CPP 2 — MBR 7 — TOS 3 — MBRU 8 — OPC 4 — SP 9—15 — нет

Повна діаграма Міс-1

Сигналы управления памятью (rd, wr, fetch)

Основні оптимізації (1)

- Зниження кількості мікрокоманд
- 3-шинна архітектура
- Блок вибірки команд
- Упереджувальна вибірка команд
- Конвеєр

Основні оптимізації (2)

- Зміни порядку виконання мікрокоманд
- Підміна регістрів
- Прогнозування розгалужень
- Спекулятивне виконання

Блок выборки команд

Проблемы конвейра

- RAW- взаимосвязи
- WAR- взаимосвязи
- WAW- взаимосвязи

Переименование регистров и переупорядочивание микрокоманд

						Registers being read								Registers being written							
Су	#	Decoded	Iss	Ret	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	
1	1	R3=R0*R1	1		1	1										1					
	2	R4=R0+R2	2		2	1	1									1	1				
2	3	R5=R0+R1	3		3	2	1									1	1	1			
	4	R6=R1+R4	_		3	2	1									1	1	1			
3	5	R7=R1*R2	5		3	3	2									1	1	1		1	
	6	S1=R0-R2	6		4	3	3									1	1	1		1	
				2	3	3	2						╙			1		1		1	
4			4		3	4	2		1							1		1	1	1	
	7	R3=R3*S1	_		3	4	2		1							1		1	1	1	
	8	S2=R4+R4	8		3	4	2		3							1		1	1	1	
				3	2	3	2		3									1	1	1	
_					1	2	2		3				├	_	_	<u> </u>	<u> </u>	<u> </u>	1	1	
5				6		2	1		3				_	1		_	_	_	1	1	
6			7			2	1	1	3					1		1			1	1	
				4		1	1	1	2					1		1				1	
				5 8				1	2					1		1					
<u> </u>				8				1					├			ا				\vdash	
7								1					_			1					
8								1					$oxed{oxed}$			1					
9				7																	

Спекулятивное Выполнение

```
evensum = 0;
oddsum = 0;
i = 0;
                                                i >= limit
while (i < limit) {
   k = i * i * i;
   if (((i/2) * 2) == i)
      evensum = evensum + k;
   else
      oddsum = oddsum + k:
   i = i + 1;
            (a)
```


- (а) Фрагмент программы.
- (b) Блок схема.

NetBurst Микроархитектура

The NetBurst Конвейер

Планировщики АЛУ

- АЛУ1 и блок смещения оп-ций с пл. точкой
- АЛУ2 и блок исполнения оп-ций с пл. точкой
- Команды загрузки
- Команды сохранения

Микроархитектура UltraSPARC III Cu

UltraSPARC III Cu конвейер

Микроархитектура 8051 ЦПУ

