Software Process & Process Models

Lecture # 09 25 Feb

Rubab Jaffar rubab.jaffar@nu.edu.pk

Introduction to Software Engineering SE-110

Today's Outline

- Process activities
- Software validation
- Software Change

Coping with Change

Coping with Change

- Change is inevitable in all large software projects.
 - o Business changes lead to new and changed system requirements
 - New technologies open up new possibilities for improving implementations
 - Changing platforms require application changes
- Change leads to rework so the costs of change include both rework (e.g. re-analysing requirements) as well as the costs of implementing new functionality

Reducing the Costs of Rework

- Change anticipation, where the software process includes activities that can anticipate possible changes before significant rework is required.
 - For example, a prototype system may be developed to show some key features of the system to customers.
- Change tolerance, where the process is designed so that changes can be accommodated at relatively low cost.
 - o This normally involves some form of incremental development. Proposed changes may be implemented in increments that have not yet been developed. If this is impossible, then only a single increment (a small part of the system) may have be altered to incorporate the change.

Coping with Changing Requirements

- System prototyping, where a version of the system or part of the system is developed quickly to check the customer's requirements and the feasibility of design decisions. This approach supports change anticipation.
- Incremental delivery, where system increments are delivered to the customer for comment and experimentation. This supports both change avoidance and change tolerance.

Software Prototyping

- A prototype is an initial version of a system used to demonstrate concepts and try out design options.
- A prototype can be used in:
 - The requirements engineering process to help with requirements elicitation and validation;
 - In design processes to explore options and develop a UI design;
 - In the testing process to run back-to-back tests.

Benefits of Prototyping

- Improved system usability.
- A closer match to users' real needs.
- Improved design quality.
- Improved maintainability.
- Reduced development effort.

The Process of Prototype Development

Prototype Development

- May be based on rapid prototyping languages or tools
- May involve leaving out functionality
 - Prototype should focus on areas of the product that are not wellunderstood;
 - Error checking and recovery may not be included in the prototype;
 - Focus on functional rather than non-functional requirements such as reliability and security

Throw-away Prototypes

- Prototypes should be discarded after development as they are not a good basis for a production system:
 - It may be impossible to tune the system to meet non-functional requirements;
 - o Prototypes are normally undocumented;
 - The prototype structure is usually degraded through rapid change;
 - o The prototype probably will not meet normal organisational quality standards.

Incremental Delivery

- Rather than deliver the system as a single delivery, the development and delivery is broken down into increments with each increment delivering part of the required functionality.
- User requirements are prioritised and the highest priority requirements are included in early increments.
- Once the development of an increment is started, the requirements are frozen though requirements for later increments can continue to evolve.

Incremental Delivery

Incremental Delivery Advantages

- Customer value can be delivered with each increment so system functionality is available earlier.
- Early increments act as a prototype to help elicit requirements for later increments.
- Lower risk of overall project failure.
- The highest priority system services tend to receive the most testing.

Incremental Delivery Problems

- Most systems require a set of basic facilities that are used by different parts of the system.
 - As requirements are not defined in detail until an increment is to be implemented, it can be hard to identify common facilities that are needed by all increments.
- The essence of iterative processes is that the specification is developed in conjunction with the software.
 - However, this conflicts with the procurement model of many organizations, where the complete system specification is part of the system development contract.

Process Improvement

Process Improvement

- Many software companies have turned to software process improvement as a way of enhancing the quality of their software, reducing costs or accelerating their development processes.
- Process improvement means understanding existing processes and changing these processes to increase product quality and/or reduce costs and development time.

Approaches to Improvement

- The process maturity approach, which focuses on improving process and project management and introducing good software engineering practice.
 - The level of process maturity reflects the extent to which good technical and management practice has been adopted in organizational software development processes.
- The agile approach, which focuses on iterative development and the reduction of overheads in the software process.
 - The primary characteristics of agile methods are rapid delivery of functionality and responsiveness to changing customer requirements.

The Process Improvement Cycle

Process Improvement Activities

Process measurement

You measure one or more attributes of the software process or product.
 These measurements forms a baseline that helps you decide if process improvements have been effective.

Process analysis

 The current process is assessed, and process weaknesses and bottlenecks are identified. Process models (sometimes called process maps) that describe the process may be developed.

Process change

 Process changes are proposed to address some of the identified process weaknesses. These are introduced and the cycle resumes to collect data about the effectiveness of the changes.

Process Measurement

- Wherever possible, quantitative process data should be collected
 - However, where organisations do not have clearly defined process standards this is very difficult as you don't know what to measure. A process may have to be defined before any measurement is possible.
- Process measurements should be used to assess process improvements
 - But this does not mean that measurements should drive the improvements. The improvement driver should be the organizational objectives.

Process Metrics

- Time taken for process activities to be completed
 - E.g. Calendar time or effort to complete an activity or process.
- Resources required for processes or activities
 - E.g. Total effort in person-days.
- Number of occurrences of a particular event
 - o E.g. Number of defects discovered.

Capability Maturity Levels

The SEI Capability Maturity Model

- Initial
 - Essentially uncontrolled
- Repeatable
 - Product management procedures defined and used
- Defined
 - Process management procedures and strategies defined and used
- Managed
 - Quality management strategies defined and used
- Optimising
 - Process improvement strategies defined and used

That is all