AD-A259 486 GE

Form Approved

5. FUNDING NUMBERS

OMB No. 0704-0188 sponse, including the time for reviewing instructions, searching existing data sources, ornation. Send comments regarding this burden estimate or any other aspect of this quarters Services, Directorate for information Operations and Reports, 1215 Jefferson idget, Paperwork Reduction Project (0704-0188), Washington, DÇ 20503.

Public reporting burde gathering and maintai collection of informati Davis Highway, Suite 1

December 1991

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

1. AGENCY USE ONLY (Leave blank)

Performance of the Monopole Antenna Element for the 96-Element Receiving Array of the High-Frequency, High-Resolution Experimental Site: Volume 2 - Appendices

6. AUTHOR(S)

R. L. Lagace

8. PERFORMING ORGANIZATION REPORT NUMBER

MTR 11291 Volume 2

The MITRE Corporation 202 Burlington Road Bedford, MA 01730-1420

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

same as above

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

92-33088

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

See attached

14. SUBJECT TERMS

Antenna Element, Numerical Electromagnetics Code-Ground Screen (NEC-GS)

17. SECURITY CLASSIFICATION OF REPORT

Unclassified NSN 7540-01-280-5500 SECURITY CLASSIFICATION OF THIS PAGE Unclassified

SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std Z39-18 298-102

92 12 29 050 Performance of the Monopole Antenna Element for the 96-Element Receiving Array of the High-Frequency, High-Resolution Experimental Site: Volume 2 — Appendices

MTR11291 Volume 2 December 1991

R. L. Lagace

Contract Sponsor MSR Contract No. N/A Project No. 91030 Dept. D085

Approved for public release; distribution unlimited.

Accesio	n For		
NTIS	CRA&I	12)	
DITIC	TAB		i
Unanno	periced		
Justific	ation		· · · · · · ·
	By		
A.	vailability	Codes	
Dist	Avail a		
A-1			

TI HILLIMID 2

MITRE

Bedford, Massachusetts

ABSTRACT

The theoretical performance of the antenna element for the 96-element receiving array of MITRE's High-Frequency, High-Resolution Experimental Site is analyzed. The antenna element consists of a monopole tower with a buried radial-wire ground screen of modest diameter. Each element is connected by a long buried coaxial cable to an associated receiver in one of three electronics shelters within the array. The analysis forms the basis for selecting the final design configuration of the monopole antenna element, its associated ground screen, and the buried feed cable. System internal noise figure and antenna directivity serve as the principal measures of performance. The contributions of antenna efficiency, cable mismatch loss, cable attenuation loss, and receiver noise figure to system internal noise figure are treated.

The monopole antenna element and an alternative dipole antenna element are modeled and analyzed using the Numerical Electromagnetics Code—Ground Screen (NEC-GS) version of the NEC Method-of-Moments software. NEC-GS, which is particularly well-suited for modeling azimuthally symmetric structures, is used to calculate the antenna input impedance, efficiency, and power gain pattern. The antenna efficiency, cable mismatch loss, and antenna directivity pattern are determined as a function of frequency, earth electrical properties, and antenna element/ground-screen geometry. Asymmetric radiation pattern effects caused by a long, buried or unburied, coaxial feed cable, and by a nearby electronics shelter, are also evaluated. This is accomplished by using NEC software versions NEC-3I and NEC-3 to model the monopole with ground screen in the presence of a jacketed feed cable and a shelter, respectively. Included are brief descriptions of NEC-GS, NEC-3, and NEC-3I versions of NEC, and some associated modeling constraints.

ACKNOWLEDGMENTS

- J. D. R. Kramer and M. M. Weiner provided constructive observations and suggestions during the course of the work and review of this report.
- M. K. Eggimann and L. Giandomenico executed a large number of NEC computer runs during the course of this work.
- S. Zamoscianyk generated the performance plots from Numerical Electromagnetic Code (NEC) computer output files.
- M. H. Weeden and C. S. E. Sherman prepared the balance of the graphics and tables.
- J. K. Viveiros prepared the typed manuscript.

Figures 5 and 6; and figures 7, 8, and 36 are modified versions of figures from two MITRE reports MTR-9221, March 1984 and MTR-11278, September 1991, respectively, by M. M. Weiner.

TABLE OF CONTENTS

SECTION	
A1 Overview	1
A2 5.4 Meter Monopole Configuration Results	3
A3 6.3 Meter Monopole Configuration Results	83
A4 6.0, 6.5, 7.0 Meter Monopole Results	117

LIST OF FIGURES

FIGU	FIGURE PA	
A-1	Antenna Input Resistance and Reactance versus Frequency in Wet Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	s 4
A-2	Antenna Input Resistance and Reactance versus Frequency in <i>Moist Clay</i> for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	5
A-3	Antenna Input Resistance and Reactance versus Frequency in <i>Medium Dry Ground</i> for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	6
A-4	Antenna Input Resistance and Reactance versus Frequency in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	7
A-5	Antenna Input Resistance and Reactance versus Frequency in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	8
A-6	Antenna Input Resistance and Reactance versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	9
A-7	Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	11
A-8	Antenna Input Resistance and Reactance versus Frequency in Wet Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	13
A-9	Antenna Input Resistance and Reactance versus Frequency in Moist Clay for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	14
A-10	Antenna Input Resistance and Reactance versus Frequency in <i>Medium Dry Ground</i> for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	15
A-11	Antenna Input Resistance and Reactance versus Frequency in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	16

FIGU	RE PA	AGE
A-12	Antenna Input Resistance and Reactance versus Frequency in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	17
A-13	Antenna Input Resistance and Reactance versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	18
A-14	Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	20
A-15	Antenna Input Resistance and Reactance versus Frequency and Five Ground Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of Either 16 or 32 Radials	22
A-16	Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen Having Either 16 or 32 Radials	23
A-17	Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Wet Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen	24
A-18	Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Moist Clay for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen	25
A-19	Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Medium Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen	26
A-20	Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen	27
A-21	Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen	28
A-22	Antenna Noise Figure (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	29

FIGU	TGURE PA	
A-23	Antenna Noise Figure (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	30
A-24	Antenna Noise Figure (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 or 32 Radials	31
A-25	Cable Attenuation Loss versus Frequency for Four Cable Lengths	42
A-26	System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	43
A-27	System Internal Noise Figure Cumulative Contributions for Case of <i>Moist Clay</i> and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	44
A-28	System Internal Noise Figure Cumulative Contributions for Case of <i>Medium Dry Ground</i> and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	2 45
A-29	System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	46
A-30	System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	47
A-31	System Internal Noise Figure versus Frequency, Soil Condition, and Maximum and Minimum Cable Lengths for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	48
A-32	System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	i 49
A-33	System Internal Noise Figure Cumulative Contributions for Case of <i>Moist Clay</i> and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	50

FIGU	RE	PAGE
A-34	System Internal Noise Figure Cumulative Contributions for Case of Medium Dry Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	51
A-35	System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	52
A-36	System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	53
A-37	System Internal Noise Figure versus Frequency, Soil Condition, and Maximum and Minimum Cable Lengths for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	54
A-38	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	55
A-39	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	56
A-40	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	57
A-41	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	58
A-42	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	59
A-43	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	60
A-44	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Wet Ground Condition	61

FIGU	FIGURE	
A-45	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Moist Clay Condition	62
A-46	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Medium Dry Ground Condition	63
A-47	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Sandy Soil Condition	64
A-48	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Very Dry Ground Condition	65
A-49	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	69
A-50	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	70
A-51	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	71
A-52	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	72
A-53	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	73
A-54	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	74
A-55	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Wet Ground Condition	75

FIGU	RE	PAGE
A-56	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Moist Clay Condition	76
A-57	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Medium Dry Ground Condition	77
A-58	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Sandy Soil Condition	78
A-59	Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Very Dry Ground Condition	79
A-60	Antenna Input Impedance (Resistance and Reactance) versus Frequency in Wet Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	84
A-61	Antenna Input Impedance (Resistance and Reactance) versus Frequency in <i>Moist Clay</i> for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	85
A-62	Antenna Input Impedance (Resistance and Reactance) versus Frequency in Medium Dry Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	86
A-63	Antenna Input Impedance (Resistance and Reactance) versus Frequency in Sand for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	87
A-64	Antenna Input Impedance (Resistance and Reactance) versus Frequency in Very Dry Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	88
A-65	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	1 89
A-66	Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	90

FIGU	RE P	AGE
A-67	Antenna Noise Figure Ohmic Loss versus Frequency and Five Soil Conditions for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radi ils	92
A-68	System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	94
A-69	System Internal Noise Figure Cumulative Contributions for Case of <i>Moist Clay</i> and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	95
A-7 0	System Internal Noise Figure Cumulative Contributions for Case of <i>Medium Dry Ground</i> and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	96
A-71	System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	97
A-72	System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	98
A-73	System Internal Noise Figure versus Frequency, Soil Condition, and Maximum and Minimum Cable Lengths for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radial Wires	99
A-74	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	100
A-75	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	101
A-76	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radial	102
A-77	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	103

FIGU	FIGURE	
A-78	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	104
A-79	Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	105
A-80	Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Wet Ground Condition	106
A-81	Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Moist Clay Condition	107
A-82	Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Medium Dry Ground Condition	108
A-83	Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Sandy Soil Condition	109
A-84	Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Very Dry Ground Condition	110
A-85	Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 5 MHz	120
A-86	Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 17.5 MHz	121
A-87	Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz	122
A-88	Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Wet Ground Condition	123

FIGU	RE	PAGE
A-89	Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Moist Clay Condition	124
A-90	Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Medium Dry Ground Condition	125
A-91	Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Sandy Soil Condition	126
A-92	Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Very Dry Ground Condition	127
A-93	Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz	128
A-94	Antenna Directivity versus Elevation Angle and Five Soil Conditions for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz	129

LIST OF TABLES

TABL	TABLE	
A-1	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep	n 10
A-2	Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole and 12 Meter Radius Ground Screen 16 Radials and a 75 ohm Feed Cable	
A-3	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178 Deep	19
A-4	Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole and 12 Meter Radius Ground Screen of 32 Radials and a 75 ohm Feed Cable	
A-5	Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep	n 32
A-6	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep	n 33
A-7	Antenna Input Resistance and Reactance versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep	n 34
A-8	Antenna Efficiency and Noise Figure versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep	n 35
A-9	Antenna Input Resistance and Reactance versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep	36
A-10	Antenna Efficiency and Noise Figure versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep	37

TABL	E	PAGE
A-11	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.305 Deep	n 38
A-12	Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.305 Deep	n 39
A-13	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with Feed Point Raised 0.2m and with 12 Meter Radius Ground Screen of 16 Radials, 2mm in Diameter and Buried 0.178 Deep	40
A-14	Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with Feed Point Raised 0.2m and with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178 Deep	41
A-15	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	66
A-16	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials	80
A-17	Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient ($ \Gamma ^2$), and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 6.3 Meter High Monopole and 12 Meter Radius Grou Screen of 16 Radials and a 75 ohm Feed Cable	nd 91
A-18	6.3 Meter High Monopole Antenna: Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178 Deep	93
A-19	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Eleven Frequencies and Five Soil Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	111
A-20	Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions, for 6.0, 6.5, and 7.0 Meter High Monopoles with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178 Deep	118

TABL	JE	PAGE
A-21	Antenna Efficiency and Noise versus Frequency for Five Soil Conditions, for 6.0, 6.5, and 7.0 Meter High Monopoles with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178 Deep	119
A-22	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	130
A-23	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	133
A-24	Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials	136

SECTION A1

OVERVIEW

Volume 2—Appendices presents a more comprehensive reference set of theoretical performance results, in tabular and graphical form, for the symmetrical "fat" monopole antenna configuration. The results were obtained from computations using the Numerical Electromagnetics Code—Ground Screen option (NEC-GS). The objective was to provide a more complete reference for investigators interested in a more extensive set of results than was supplied in Volume 1. The results are suitably identified, but presented without elaboration, to serve as an archival reference.

The measures of performance include antenna input impedance, magnitude of the reflection coefficient, cable mismatch loss, antenna efficiency, ohmic loss (noise figure), and directivity. These were examined as a function of monopole antenna dimensions (height and feed height), number, length, and depth of ground screen radial wires, electrical properties (conductivity and relative dielectric constant) of the surrounding earth, and operating frequency across the HF band. The remainder of Volume 2 is organized as follows:

SECTION A2 — 5.4 METER MONOPOLE CONFIGURATION RESULTS

- Antenna input impedance
- Antenna reflection coefficient and cable mismatch loss
- Antenna efficiency and noise figure (ohmic loss)
- Cable attenuation loss
- System internal noise figure
- Directivity

SECTION A3 — 6.3 METER MONOPOLE CONFIGURATION RESULTS

- Antenna input impedance
- Antenna reflection coefficient and cable mismatch loss
- Antenna efficiency and noise figure (ohmic loss)
- Cable attenuation loss
- System internal noise figure
- Directivity

SECTION A4 — 6.0, 6.5, 7.0 METER MONOPOLE RESULTS

- Antenna input impedance
- Antenna efficiency and noise figure (ohmic loss)
- Directivity

SECTION A2 5.4 METER MONOPOLE CONFIGURATION RESULTS

Figure A-1. Antenna Input Resistance and Reactance versus Frequency in Wet Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-2. Antenna Input Resistance and Reactance versus Frequency in Moist Clay for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-3. Antenna Input Resistance and Reactance versus Frequency in Meduium Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A.4. Antenna Input Resistance and Reactance versus Frequency in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-5. Antenna Input Resistance and Reactance versus Frequency in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-6. Antenna Input Resistance and Reactance versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

1.2788-1

Table A-1. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 5, 6, 7, 8, 9, 10, & 12)

			Soil Characteristics		
Frequency (MHz)	Very Good (Wet Ground)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$\epsilon_r = 30$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
5.0	5.26 – j203.9	5.01 – j203.7	5.73 – j201.7	4.79 – j201.7	3.35 – j202.6
7.5	12.2 – j104.6	11.7 – j104.1	14.3 – j102.9	12.4 – j99.5	14.9 – j90.5
10.0	24.6 + j46.3	24.3 – j45.2	27.2 - 547.7	30.6 – j42.2	37.9 – 349.0
12.5	46.1 – j1.19	46.6 + j0.25	49.0 – j1.69	51.4 – j3.62	42.3 – j11.4
15.0	83.3 + j34.1	84.4 + j34.9	84.2 + j32.6	82.0 + j33.8	83.2 + j47.9
17.5	146.0 + j46.1	146.8 + j45.8	145.9 + j46.6	148.1 + j50.4	158.3 + j43.3
20.0	213.4 – j2.56	207.7 – j93.0	211.9 – j2.62	212.5 – j1.49	198.0 – j3.67
22.5	209.3 – j95.1	212.3 – j93.0	211.8 – j91.0	213.2 – j83.6	225.3 – j83.9
25.0	143.7 – j138.4	144.5 – j135.9	147.3 – j138.4	155.6 – j136.6	153.3 – j143.0
27.5	87.5 – j130.3	88.7 – j129.4	89.2 – j131.2	93.1 – j133.1	92.8 – j132.7
30.0	55.7 – j104.9	55.8 – j104.3	56.1 – j105.1	57.8 – j105.8	57.5 – j106.8

Figure A-7. Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Table A-2. Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole and 12 Meter Radius Ground Screen of 16 Radials and a 75 ohm Feed Cable

(Supports Vol. 1, Tables 5, 6, 7, 8, 9, 10 & 12)

FREQ	R X	GAMMA SQ	ďВ	
5.0	5.26 -203.	90 9.67137E-01	14.83	
7.5	12.20 -104.		7.05	
10.0	24.60 -46.	30 3.88255E-01	2.13	
12.5	46.10 -1.	19 5.70429E-02	0.26	Mat O
15.0	83.30 34.		0.21	Wet Ground
17.5	146.00 46.	10 1.40607E-01	0.66	$\varepsilon_r = 30$, $\sigma = 15$ mS/m
20.0	213.40 -2.		1.14	cr = 30, 0 = 13 m3/m
22.5	209.30 -95.	10 3.01328E-01	1.56	
25.0	143.70 -138.4	40 3.56416E-01	1.91	
27.5	87.50 -130.	30 3.94943E-01	2.18	
30.0	55.70 -104.9	90 4.05052E-01	2.26	
5.0	5.01 -203.1		15.03	
7.5	11.70 -104.3	10 8.08758E-01	7.18	
10.0	24.30 -45.3	20 3.87577E-01	2.13	
12.5	46.60 0.3		0.24	
15.0	84.40 34.9	90 4.90630E-02	0.22	Maint Olas
17.5	146.80 45.8		0.66	Moist Clay
20.0	212.30 -2.9		1.13	$\varepsilon_r = 10$, $\sigma = 15$ mS/m
22.5	207.70 -93.0		1.53	cf = 10, 0 = 15 1113/111
25.0	144.50 -135.9		1.87	
27.5	88.70 -129.4		2.14	
30.0	55.80 -104.3	30 4.01868E-01	2.23	
5.0	5.73 -201.7		14.39	
7.5	14.30 -102.9		6.36	
10.0	27.20 -47.7	70 3.58497E-01	1.93	
12.5	49.00 -1.6		0.20	
15.0	84.20 32.6		0.19	4.4
17.5	146.90 46.6	50 1.42793E-01	0.67	Medium Dry Ground
20.0	211.90 -2.6		1.12	
22.5	211.80 -91.0		1.54	$\varepsilon_r = 10$, $\sigma = 1.5$ mS/m
25.0	147.30 -138.4		1.91	
27.5	89.20 -131.2		2.18	
30.0	56.10 -105.1	10 4.03894E-01	2.25	
5.0	4.79 -201.7		15.15	
7.5	12.40 -99.5		6.73	
10.0	30.60 -42.2		1.49	
12.5	51.40 -3.6		0.16	
15.0	82.00 33.8		0.21	Sandy Soil
17.5	148.10 50.4		0.71	
20.0	212.50 -1.4		1.13	$\varepsilon_r = 4$, $\sigma = 1.5$ mS/m
22.5	213.20 -83.6		1.49	•
25.0	155.60 -136.6		1.87	
27.5	93.10 -133.1		2.16	
30.0	57.80 -105.8	0 3.98532E-01	2.21	
5.0	3.35 -202.6		16.72	
·7.5	14.90 -90.5		5.61	
10.0	37.90 -49.0		1.25	
12.5	42.30 -11.4		0.39	Very Dry Ground
15.0	83.20 47.9		0.39	- ·
17.5	158.30 43.3		0.74	$\varepsilon_r = 4$, $\sigma = 0.15$ mS/m
20.0	198.00 -3.6		0.99	-1 1, 2 112 113
22.5	225.30 -83.9		1.58	
25.0 27.5	153.30 -143.00 92.80 -132.70		1.98	
30.0	57.50 -106.8		2.16	
30.0	37.30 -106.8	0 4.04402E-01	2.25	

Figure A-8. Antenna Input Resistance and Reactance versus Frequency in Wet Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-9. Antenna Input Resistance and Reactance versus Frequency in *Moist Clay* for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-10. Antenna Input Resistance and Reactance versus Frequency in Medium Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-11. Antenna Input Resistance and Reactance versus Frequency in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-12. Antenna Input Resistance and Reactance versus Frequency in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-13. Antenna Input Resistance and Reactance versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

1,2766-1

Table A.3. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radius, 2 mm in Diameter and Buried 0.178 Deep

(Supports Vol. 1, Tables 5, 7, & 8)

			Soil Characteristics		
Frequency (MHz)	Very Good (Wet Ground)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$e_r = 30$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$e_t = 10$, $\sigma = 1.5$ mS/m $e_t = 4$, $\sigma = 1.5$ mS/m	$\epsilon_{r} = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
5.0	3.80 – j192.0	3.66 – j191.9	3.08 – j190.6	2.30-j190.5	2.85 – j189.7
7.5	10.0 – j91.1	9.64 – j99.2	9.74 – j97.3	7.42 – j96.4	7.79 – j92.8
10.0	22.0 – j43.2	21.6 – 142.8	23.7 – j41.9	22.8 – j38.2	27.5 – j37.2
12.5	43.9 – j0.1	44.1 + j0.51	45.3 – j1.66	49.7 – j0.83	52.3 – j6.05
15.0	83.4 + j32.8	83.4 + j32.3	80.7 + j32.1	77.9 + j26.6	69.4 + j29.0
17.5	149.5 + j35.7	147.8 + j35.6	149.1 + j39.4	139.9 + 48.8	146.3 + j57.6
20.0	202.5 – j29.3	201.8 – j28.4	203.2 – j24.5	215.5 – j27.2	220.5 – j45.4
22.5	174.3 – j107.4	172.9 – j106.3	174.3 – j104.2	169.9 – j104.2	168.3 – j96.4
25.0	114.0 – j129.5	114.1 – j127.7	116.8 – j128.7	126.6 – j123.0	126.0-j125.3
27.5	69.9 – j116.5	70.6 – j116.1	71.0 – j117.4	75.0 – j119.4	72.2 – j121.7
30.0	45.3 – j93.0	45.2 – j93.1	45.2 – j83.9	45.4 – j94.2	45.3 – j93.8

Figure A-14. Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Table A-4. Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole and 12 Meter Radius Ground Screen of 32 Radials and a 75 ohm Feed Cable

(Supports Vol. 1, Tables 5, 7 & 8)

		(PPULL .U.	,
FREQ	R X	GAMMA SQ	₫B	
5.0	3.80 -192.0	0 9.73534E-01	15.77	
7.5	10.00 -91.1	0 8.06753E-01	7.14	
10.0	22.00 -43.2	0 4.14647E-01	2.33	
12.5	43.90 +0.1	0 6.84166E-02	0.31	14/a4 Onnumel
15.0	83.40 32.8	0 4.38119E-02	0.19	Wet Ground
17.5	149.50 35.7		0.62	$\varepsilon_r = 30$, $\sigma = 15$ mS/m
20.0	202.50 -29.3	0 2.19801E-01	1.08	Er = 50, 0 = 15 1115/111
22.5	174.30 -107.4		1.49	
25.0	114.00 -129.5		1.86	
27.5	69.90 -116.5		2.17	
30.0	45.30 -93.0	0 4.12225E-01	2.31	
5.0	3.66 -191.9	0 9.74473E-01	15.93	
7.5	9.64 -99.2		7.69	
10.0	21.60 -42.8		2.36	
12.5	44.10 0.5	1 6.73293E-02	0.30	
15.0	83.40 32.3	0 4.26210E-02	0.19	Moist Clay
17.5	147.80 35.6	0 1.29003E-01	0.60	•
20.0	201.80 -28.4	0 2.18080E-01	1.07	$\varepsilon_r = 10$, $\sigma = 15$ mS/m
22.5	172.90 -106.3	0 2.87051E-01	1.47	•
25.0	114.10 -127.7	0 3.42566E-01	1.82	
27.5	70.60 -116.1	0 3.89248E-01	2.14	
30.0	45.20 -93.1	0 4.13384E-01	2.32	
5.0	3.08 -190.6	0 9.78220E-01	16.62	
7.5	9.79 -97.3		7.54	
10.0	23.70 -41.9		2.09	
12.5	45.30 -1.6		0.27	
15.0	80.70 32.1		0.19	Medium Dry Ground
17.5	149.10 39.4		0.64	$\varepsilon_r = 10$, $\sigma = 1.5$ mS/m
20.0	203.20 -29.5		1.09	C ₁ = 10, 0 = 1.5 116/111
22.5	174.30 -104.2		1.45	
25.0	116.80 -128.7	0 3.43217E-01	1.83	
27.5	71.00 -117.4	0 3.93141E-01	2.17	
30.0	45.20 -83.9	0 3.68928E-01	2.00	
5.0	2.30 -190.5	0 9.83675E-01	17.87	
7.5	7.42 -96.4		8.59	
10.0	22.80 -38.2		2.07	
12.5	49.70 -0.8	3 4.12056E-02	0.18	
15.0	77.90 26.6	0 2.97256E-02	0.13	Sandy Soil
17.5	139.90 48.8		0.63	$\varepsilon_r = 4$, $\sigma = 1.5$ mS/m
20.0	215.50 -27.2	0 2.40574E-01	1.20	E _r = 4, 0 = 1.5 1115/111
22.5	169.90 -104.2	0 2.80427E-01	1.43	
25.0	121.60 -123.0	0 3.21688E-01	1.69	
27.5	75.00 -119.4	0 3.87861E-01	2.13	
30.0	45.40 -94.2	0 4.17197E-01	2.34	
5.0	2.85 -189.7	0 9.79665E-01	16.92	
7.5	7.79 -92.8		8.21	
10.0	27.50 -37.2		1.59	W - 5 6
12.5	52.30 -6.0	5 3.39796E-02	0.15	Very Dry Ground
15.0	69.40 29.0		0.18	$\varepsilon_r = 4$, $\sigma = 0.15$ mS/m
17.5	146.30 57.6		0.76	Cy = 4, 0 = 0.15 mo/m
20.0	220.50 -45.4		1.31	
22.5	168.30 -96.4		1.32	
25.0	126.00 -125.3		1.71	
27.5	72.20 -121.7		2.26	
30.0	45.30 -93.8	0 4.16000E-01	2.34	

Figure A-15. Antenna Input Resistance and Reactance versus Frequency and Five Ground Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of Either 16 or 32 Radials

Figure A-16. Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 5.4 Meter High Monopole with 12 Meter Radius Ground Screen Having Either 16 or 32 Radials

Figure A-17. Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Wet Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen

Figure A-18. Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Moist Clay for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen

Figure A-19. Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Medium Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen

Figure A-20. Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Sandy Soil for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen

Figure A-21. Antenna Noise Figure (Ohmic Loss) versus Frequency and Number of Radials (16 or 32) in Very Dry Ground for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen

Figure A-22. Antenna Noise Figure (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-23. Antenna Noise Figure (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-24. Antenna Noise (Ohmic Loss) versus Frequency and Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 or 32 Radials

1,2786.6

Table A-5. Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5,4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radius, 2 mm in Diameter and Burled 0.178m Deep

(Supports Vol. 1, Tables 5, 6, 7, 8, 9, 10 & 12)

					Soil Cha	Soil Characteristics				
Frequency	Very (Wet (Good Ground)	Ge (Mois	Good (Moist Clay)	Ave (Medium I	Average (Medium Dry Ground)	S	Fair (Sand)	P (Very D	Poor (Very Dry Ground)
(ZUM)	$\epsilon_r = 30$, σ	= 15 mS/m	$\epsilon_{\rm r} = 10, \sigma$	10, $\sigma = 15 \text{mS/m}$	$\epsilon_r = 10, \sigma$	$\epsilon_{\rm r} = 10$, $\sigma = 1.5$ mS/m	ε _r = 4, σ	$\epsilon_{r} = 4$, $\sigma = 1.5$ mS/m	Er=4,0:	$\epsilon_{r} = 4$, $\sigma = 0.15$ mS/m
	(%) և	NF (dB)	ւր (%)	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
5.0	28.9	5.4	29.7	5.3	18.2	4.7	15.3	8.2	20.2	6.9
7.5	29.3	5.3	28.5	5.4	20.5	6.9	1.61	7.2	26.6	5.8
10.0	31.0	5.1	28.7	5.4	22.9	6.4	21.9	9:9	24.7	6.1
12.5	32.1	4.9	28.6	5.4	24.4	6.1	23.8	6.2	28.1	5.5
15.0	32.6	4.9	27.8	5.6	25.0	6.0	22.4	6.5	20.2	6.9
17.5	33.2	4.8	27.0	5.7	25.3	0.9	21.6	6.7	21.3	6.7
20.0	33.7	4.7	26.3	5.8	26.4	5.8	22.5	6.5	23.4	6.3
22.5	34.5	4.6	26.3	5.8	27.8	5.6	24.2	6.2	24.4	6.1
25.0	35.8	4.5	27.1	5.7	30.2	5.2	26.8	5.7	27.7	5.6
27.5	38.1	4.2	29.9	5.2	34.8	4.6	32.4	4.9	33.6	4.7
30.0	42.1	3.8	36.6	4.4	42.4	3.7	42.9	3.7	45.0	3.5

1.2787-1

Table A-6. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 5, 7, & 8)

					Soil Cha	Soil Characteristics				
Frequency	Very (Wet (r Good Ground)	Good (Moist Cl	Good (Moist Clay)	Ave (Medium I	Average (Medium Dry Ground)	I (S)	Fair (Sand)	P (Very Dr	Poor (Very Dry Ground)
(MHZ)	$\epsilon_r = 30$, σ	= 15 mS/m	$\epsilon_r = 10, \sigma$	= 10 , $\sigma = 15$ mS/m	$\epsilon_r = 10, \sigma$	$e_r = 10$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4, \sigma$	σ = 1.5 mS/m	∈ _r =4,σ=	$= 4$, $\sigma = 0.15$ mS/m
	(%) և	NF (dB)	(%) և	NF (dB)	ա (%)	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
5.0	39.0	4.1	39.5	4.0	30.1	5.2	29.4	5.3	22.4	6.5
7.5	36.8	4.3	35.1	4.5	30.1	5.2	28.7	5.4	35.7	4.5
10.0	37.3	4.3	34.3	4.6	33.3	4.8	31.1	5.1	36.6	4.4
12.5	37.4	4.3	33.7	4.7	33.9	4.7	34.6	4.6	40.8	3.9
15.0	36.7	4.4	32.4	4.9	32.2	4.9	33.7	4.7	36.5	4.4
17.5	35.9	4.5	30.8	5.1	30.4	5.2	30.0	5.2	30.6	5.1
20.0	35.3	4.5	29.2	5.3	29.9	5.2	28.5	5.4	31.0	5.1
22.5	35.2	4.5	28.4	5.5	29.9	5.2	29.4	5.3	30.4	5.2
25.0	35.8	4.5	28.6	5.4	30.7	5.1	29.8	5.3	30.3	5.2
27.5	38.2	4.2	30.7	5.1	34.1	4.7	32.2	4.9	32.8	4.8
30.0	44.1	3.6	38.0	4.2	43.0	3.7	42.7	3.7	43.9	3.6

112768-2

Table A-7. Antenna Input Resistance and Reactance versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 6 and 8)

		Soil Characteristics	ncteristics	
Frequency (MHz)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$\epsilon_r = 10, \sigma = 15 \text{ mS/m}$	$\epsilon_r = 10$, $\sigma = 15$ mS/m $\epsilon_r = 10$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 0.15$ mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
5.0	5.02 – j203.5	6.50 – j202.1	6.21 – j200.5	10.8 – j202.7
10.0	24.2 – j45.2	26.9 – j45.5	27.8 – j43.2	28.5 – j45.1
15.0	84.5 + j35.7	85.3 + j33.6	86.6 + j34.4	86.5 + j32.5
20.0	212.3 – j1.87	211.4 – j1.25	210.4 + j5.58	216.3 + j11.2
25.0	145.8 – j136.5	148.7 – j137.4	154.6 – j136.6	153.1 – j140.1
30.0	56.7 – j104.5	58.4 – j103.8	58.4 – j105.1	58.3 – j106.5

2788.2

Table A-8. Antenna Efficiency and Noise Figure versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with *24 Meter* Radius Ground Screen of *16 Radials*, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 6 and 8)

				Soil Characteristics	cteristics			
Frequency	G (Mois	Good (Moist Clay)	Ave (Medium I	Average (Medium Dry Ground)	A (S)	Fair (Sand)	P (Very Dr	Poor (Very Dry Ground)
(MIRC)	$\epsilon_r = 10, \sigma$	$\epsilon_f = 10$, $\sigma = 15$ mS/m $\epsilon_f = 10$, $\sigma = 1.5$ mS/m $\epsilon_f = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 10$, σ	= 1.5 mS/m	€,=4,0=		$\epsilon_r = 4$, σ =	$\epsilon_{r} = 4$, $\sigma = 0.15$ mS/m
	u (%)	NF (dB)	(%) և	NF (dB)	ղ (%)	NF (dB)	(%) և	NF (dB)
5.0	30.7	5.1	18.4	7.3	18.3	7.4	19.3	7.2
10.0	29.0	5.4	21.7	9:9	19.2	7.2	18.4	7.3
15.0	27.6	5.6	24.0	6.2	20.3	6.9	20.4	6.9
20.0	26.2	5.8	25.9	5.9	21.6	6.7	22.0	9.9
25.0	26.8	5.7	29.8	5.3	26.1	5.8	27.3	5.6
30.0	36.1	4.4	41.4	3.8	42.5	3.7	1.7	3.6

1.2768-3

Table A-9. Antenna Input Resistance and Reactance versus Frequency for Four Soil Conditions for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 7 and 8)

		Soil Characteristics	acteristics	
Frequency (MHz)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_{\rm r} = 4$, $\sigma = 0.15$ mS/m
5.0	3.68 – j191.7	3.95 – j190.1	2.84 – j188.9	5.85 – j187.1
10.0	21.4 – j43.1	22.4 – j42.5	21.7 – j40.7	23.9 – j39.9
15.0	83.5 + j33.5	83.5 + j33.4	82.4 + j35.1	83.7 + j35.5
20.0	200.3 – j26.7	201.0 - j24.3	201.0 – j18.1	204.6 – j17.1
25.0	115.2 – j128.1	116.5 – j128.5	120.5 – j128.1	120.7 – j130.4
30.0	46.0 – j92.9	46.3 – j92.2	46.7 – j93.1	46.4 – j93.5

1,2766-3

Table A-10. Antenna Efficiency and Noise Figure versus Frequency for Four Soil Conditions, for 5.4 Meter High Monopole with 24 Meter Radius Ground Screen of 32 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Tables 7 and 8)

				Soil Characteristics	acteristics		!	
Frequency	G (Mois	Good (Moist Clay)	Ave (Medium L	Average (Medium Dry Ground)	F (S ₂	Fair (Sand)	Pe (Very Dr	Poor (Very Dry Ground)
(MIRZ)	$\epsilon_r = 10, \sigma$	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$\epsilon_r = 10, \sigma$	$\epsilon_r = 10$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 1.5$ mS/m	e _r =4,σ=		$\epsilon_r = 4$, $\sigma =$	$\epsilon_{\rm r} = 4$, $\sigma = 0.15$ mS/m
	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
9:0	41.8	3.8	33.9	4.7	39.5	4.0	32.3	4.9
10.0	35.3	4.5	30.3	5.2	29.6	5.3	29.3	5.3
15.0	32.0	5.0	29.5	5.3	27.7	5.6	27.6	5.6
20.0	28.9	5.4	28.4	5.5	25.8	5.9	26.0	5.9
25.0	27.7	5.6	29.4	5.3	26.6	5.8	27.1	5.7
30.0	37.4	4.3	41.8	3.8	41.5	3.8	42.8	3.7

1.2768-4

Table A-11. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.305m Deep

(Supports Vol. 1, Table 9)

			Soil Characteristics		
Frequency (MHz)	Very Good (Wet Ground)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$\epsilon_r = 30$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 15$ mS/m	= 15 mS/m ϵ_r = 10, σ = 15 mS/m ϵ_r = 10, σ = 1.5 mS/m ϵ_r = 4, σ = 1.5 mS/m ϵ_r = 4, σ = 0.15 mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
5.0	5.63 – j202.8	5.31 – j202.8	5.97 – j200.3	4.76 – j200.5	3.45 – j200.8
10.0	26.4 – j44.4	25.8 – j43.3	28.8 – j43.2	32.1 – j40.0	39.4 – j47.4
15.0	88.0 + j35.1	88.5 + j36.4	88.9 + j34.8	86.4 + j37.4	91.4 + j53.1
20.0	214.4 – j5.81	214.4 – j5.78	214.2 – j5.28	213.9 – j2.69	197.3 + j1.88
25.0	144.8 – j138.9	146.2 – j136.1	149.2 – j139.0	157.8 – j137.7	154.1 – j143.3
30.0	57.2 – j105.2	57.4 – j103.5	58.0 – j104.1	59.3 – j104.6	58.8 – j105.8

1,2786-4

Table A-12. Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.305m Deep

(Supports Vol. 1, Table 9)

					Soil Cha	Soil Characteristics				
Frequency	Very (Wet C	, Good Ground)	G _C (Moist	Good (Moist Clay)	Ave (Medium I	Average (Medium Dry Ground)	I (S)	Fair (Sand)	P (Very Dr	Poor (Very Dry Ground)
(MILIE)	$\epsilon_r = 30$, σ	= 15 mS/m	ε, = 10, σ	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, σ	$\epsilon_{\rm r} = 10$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4, \sigma$	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	e, = 4, 0 =	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
	ղ (%)	NF (dB)	(%) L	NF (dB)	ա (%)	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
5.0	27.2	5.7	28.3	5.5	17.9	2.5	15.8	8.0	20.4	6.9
10.0	28.8	5.4	27.2	2.5	21.5	6.7	21.3	6.7	24.1	6.2
15.0	29.9	5.2	25.9	5.9	22.8	6.4	20.6	6.9	18.1	7.4
20.0	31.4	5.0	24.5	6.1	24.1	6.2	20.8	8.9	21.5	6.7
25.0	34.6	4.6	25.9	5.9	28.7	5.4	25.5	5.9	26.3	5.8
30.0	40.6	3.9	36.1	4.4	42.4	3.7	43.9	3.6	46.6	3.3

1.2768-5

Table A-13. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with Feed Point Raised 0.2m and with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol.1, Table 10)

			Soil Characteristics		
Frequency (MHz)	Very Good (Wet Ground)	Good (Moist Clay)	Average (Medium Dry Ground)	Fair (Sand)	Poor (Very Dry Ground)
	$\epsilon_r = 30$, $\sigma = 15$ mS/m	$\sigma = 15 \text{ mS/m}$ $e_r = 10, \sigma = 15 \text{ mS/m}$	$\epsilon_r = 10$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 0.15$ mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
5.0	6.26 – j218.2	6.05 – j218.0	7.12 – j217.2	7.21 – j217.9	4.06 – j220.0
10.0	26.5 – j48.2	26.3 – j47.0	29.5 – j47.9	33.5 – j44.3	41.3 – į51.7
15.0	79.6 + j39.2	80.6 + j40.5	81.7 + j38.0	80.8 + j39.6	81.1 + j52.4
20.0	206.7 + j47.9	207.5 + j48.3	208.0 + j45.3	213.7 + j44.5	200.3 + j35.9
25.0	217.8 – j121.5	218.4 – j119.1	220.9 – j121.6	228.1 – j119.9	227.2 – j127.3
30.0	86.7 – j125.3	87.0 – j125.1	87.0 – j126.1	88.0 – j127.6	87.7 – j128.2

2786.5

Table A-14. Antenna Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 5.4 Meter High Monopole with Feed Point Raised 0.2m and with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Table 10)

					Soil Cha	Soil Characteristics				
Frequency	Very (Wet C	r Good Ground)	Good (Moist Clay)	od Clay)	Ave (Medium I	Average (Medium Dry Ground)	F (Si	Fair (Sand)	Pt (Very Dr)	Poor (Very Dry Ground)
(MHZ)	$\epsilon_r = 30$, σ	= 15 mS/m	$\epsilon_r = 10$, $\sigma = 15$ mS/m	= 15 mS/m	$\epsilon_r = 10, \sigma$	$\epsilon_{r} = 10$, $\sigma = 1.5$ mS/m	e,=4,σ:	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m	$\epsilon_{\rm r} = 4$, $\sigma = 0.15$ mS/m	0.15 mS/m
	ա (%)	NF (dB)	(%) և	NF (dB)	ա (%)	NF (dB)	(%) և	NF (dB)	ւկ (%)	NF (dB)
5.0	27.6	9.6	28.0	5.5	16.5	7.8	11.5	9.4	18.6	7.3
10.0	31.1	5.1	28.8	5.4	8.22	6.4	21.5	6.7	24.3	6.2
15.0	32.5	4.9	27.8	5.6	24.7	6.1	22.0	9:9	19.6	7.1
20.0	33.5	4.7	26.3	5.8	25.9	5.9	22.1	9.9	1.22	6.4
25.0	35.5	4.5	27.1	5.7	29.7	5.3	26.1	5.8	26.6	5.8
30.0	42.2	3.7	36.3	4.4	41.8	3.8	41.7	3.8	43.4	3.6

Figure A-25. Cable Attenuation Loss versus Frequency for Four Cable Lengths

Figure A-26. System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-27. System Internal Noise Figure Cumulative Contributions for Case of Moist Clay and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-28. System Internal Noise Figure Cumulative Contributions for Case of Medium Dry Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-29. System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials Figure A-30. System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and

Figure A-31. System Internal Noise Figure versus Frequency, Soil Condition, and Maximum and Minimum Cable Lengths for 5.4 Meter High Monopole with 12 Meter Ground Screen of 16 Radials

Figure A-32. System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-33. System Internal Noise Figure Cumulative Contributions for Case of Moist Clay and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-34. System Internal Noise Figure Cumulative Contributions for Case of Medium Dry Ground and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-35. System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Maximum Length Cable, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials Figure A-36. System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and

Figure A-37. System Internal Noise Figure versus Frequency, Soil Condition, and Maximum and Minimum Cable Lengths for 5.4 Meter High Monopole with 12 Meter High Radius Ground Screen of 32 Radials

Figure A-38. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-39. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-40. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-41. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-42. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-43. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A.44. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Wet Ground Condition

Figure A-45. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Moist Clay Condition

Figure A.46. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Medium Dry Ground Condition

Figure A-47. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Sandy Soil Condition

Figure A-48. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials for a Very Dry Ground Condition

Table A-15. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

		25 MHz 30 MHz -86.38 -87.67	_	•		-12.62 -6.88						•	-4.12 0.34							1.50 2.25		2.89 2.79				5.03 4.31		. 66 5.02			.78 5.42					0.40 0.36		86.38 -87.67
h = 90° -θ]	Moist Clay $\varepsilon_r = 10$, $\sigma = 15$ mS/m	20 MHz 25 -86.25 -86				-12.87 -12	٠									-0.14 -1				2.63						5.15 5							4				. 10	•
[Elevation Angle ψ = 90° –θ]	19 Er = 10, c	15 MHz -86.48	-21.48	-15.46		-9.43		-5.90	-4.56	-3.39	-2.37	-1.46	-0.63	0.11	0.79	1.41	1.98	2.50	2.97	3.40	3.78	4.12	4.42	4.67	4.88	5.03	5.12	5.15	5.10	4.97	4.72	4.32	3.72	2.83	1.43	-0.89	-5.60	-86.48
Eleva	Moist Cla	10 MHz -86.62	-20.57	-14.55	-11.04	-8.56	-6.64	-5.08	-3.78	-2.65	-1.67	-0.81	-0.03	99.0	1.28	1.84	2.35	2.81	3.22	3.59	3.92	4.20	4.45	4.65	4.81	4.92		4.98	4.92	4.78	4.54	4.16	3.60	2.76	1.45	-0.77	-5.34	-86.62
		5 MHz -86.78	-20.55	-14.53	-11.03	-8.55	-6.64	-5.09	-3.80	-2.68	-1.72	-0.87	-0.11	0.57	1.18	1.72	2.22	2.66	3.06	3.42	3.74	4.02	4.26	4.46	4.63	4.75	4.84	4.87	4.85	4.76	4.59	4.30	3.86	3.18	2.08	0.14	-4.07	-86.78
		THETA 0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	20.0	52.5	55.0	57.5	0.09	62.5	65.0	67.5	70.0	72.5	75.0	77.5	0.08	82.5	85.0	87.5	0 06
		30 MHz -88.29	-20.17	-14.18	-10.72	-8.31	-6.49	-5.05	-3.89	-2.94	-2.16	-1.52	-1.00	-0.58	-0.24	0.03	0.27	0.48	0.71	0.98	1.31	1.72	2.20	2.74	3.32	3.9:	4.47	4.97	5.40	5.71	5.89	5.89	5.66	5.10	4.04	2.06	-2.27	-RR 29
_	Ę	25 MHZ -87.58	-25.92	-19.92	-16.43	-13.97	-12.08	-10.54	-9.23	-8.08	-7.04	-6.07	-5.14	-4.25	-3.37	-2.50	-1.64	-0.79	0.04	0.84	1.61	2.34	3.03	3.66	4.23	4.74		5.52		5.93	5.94	5.80	5.45	4.79	3.65	1.61	-2.74	-87 58
06 = ≯	σ = 15 mS/m	20 MHZ -87.32	-25.41	-19.35	-15.76	-13.17	-11.11	-9.39	-7.90	-6.57	-5.37	-4.27	-3.24	-2.29	-1.41	-0.57	0.20	0.93	1.61	2.24	2.82	3.35	3.84	4.27	4.64	4.96	5.21	5.40	5.50	5.51	5.41	5.16	4.72	3.99	2.80	0.73	-3.64	-87.32
[Elevation Angle ψ = 90° $-\theta$]	Ground $\varepsilon_{\rm f} = 30$,	15 MHz -87.18	-22.13	-16.11	-12.57	-10.06	-8.10	-6.50	-5.14	-3.96	-2.91	-1.98	-1.13	-0.36	0.35	1.00	1.59	2.14	2.64	3.09	3.51	3.88		4.49	4.73	4.92	5.06	5.13	5.14	5.06	4.89	4.58	4.08	3.32	2.11	0.03	-4.32	-87.18
Elevat	Wet Groun	10 MHz -86.95	-20.76	-14.75	-11.24	-8.75	-6.83	-5.27	-3.96	-2.84	-1.85	-0.98	-0.21	0.49	1.12	1.68				3.46			4.34			4.85			4.92				3.77			-0.22		
	_	5 MHz -86.64	-20.54	-14.53	-11.03	-8.55	9	-5.09	L	-2.68	-1.72	-0.87	-0.11	0.57	1.17	1.72	2.21	2.66	3.06	3.41	3.73	4.01	4.25	4.45	4.62	4.75	4.83	4.86	4.84	4.76	4.59	4.31	3.88	3.22	2.15	0.28	-3.79	· v

Table A-15. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Continued)

		[Elevati	on Angle v	ation Angle \(\psi = 90°	_				(Elevatio	[Elevation Angle w = 90°8]	[0- .06 =		
	Mediur	Medium Dry Ground $\epsilon_{\rm r}=10$, $\sigma=1.5$ mS/m	und c, = 1(), a = 1.5 r	mS/m				Sander	Sand $\varepsilon_{\rm f} = 4$, $\sigma = 1.5$ mS/m	5 mS/m		
THETA	5 MHz	10 MHz	15 MHz	20 MRz	25 MRZ	30 MHz -88.31	THETA	5 MHz	10 MHz	15 Miz	20 MHz	25 MHz	30 MHz
2.5	-19.38	-19.62	-21.19	-25.98	-23.75	-19.24	2.5	-19.13	-18.54	-19.77	-30.41	-20.75	-18.93
5.0	-13.37	-13.61	-15.17	-19.88	-17.77	-13.27	5.0	-13.12	-12.54	-13.76	-24.16	-14.82	-12.95
7.5	-9.87	-10.11	-11.64	-16.25	-14.31	-9.83	7.5	-9.62	-9.04	-10.26	-20.26	-11.45	-9.48
10.0	-7.40	-7.64	-9.13	-13.60	-11.89	-7.44	10.0	-7.15	-6.59	-7.79	-17.27	-9.15	-7.07
12.5	-5.50	-5.73	-7.19	-11.47	-10.04	-5.64	12.5	-5.25	-4.70	-5.89	-14.75	-7.46	-5.24
15.0	-3.97	-4.19	-5.60	-9.66	-8.55	-4.23	15.0	-3.72	-3.19	-4.35	-12.52	-6.16	-3.79
17.5	-2.68	-2.90	-4.25	-8.07	-7.31	-3.09	17.5	-2.43	-1.93	-3.06	-10.51	-5.13	-2.61
20.0	-1.59	-1.79	-3.08	-6.65	-6.24	-2.16	20.0	-1.34	-0.86	-1.95	-8.67	-4.28	-1.63
22.5	-0.64	-0.84	-2.05	-5.34	-5.28	-1.40	22.5	-0.40	90.0	-0.99	-6.99	-3,56	-0.82
25.0	0.19	0.01	-1.14	-4.14	-4.41	-0.76	25.0	0.43	98.0	-0.15	-5.43	-2.92	-0.14
27.5	0.92	0.75	-0.31	-3.03	-3.58	-0.24	27.5	1.16	1.56	0.61	-4.01	-2.31	0.42
30.0	1.57	1.41	0.44	-2.00	-2.78	0.19	30.0	1.80	2.17	1.28	-2.70	-1.71	06.0
32.5	2.14	2.00	1.12	-1.04	-2.00	0.56	32.5	2.38	2.71	1.89	-1.51	-1.09	1.29
35.0	2.65	2.53	1.73	-0.15	-1.23	0.87	35.0	2.88	3.18	2.44	-0.42	-0.46	1.64
37.5	3.11	3.00	2.30	0.67	-0.46	1.16	37.5	3.33	3,59	2.93	0.57	0.20	1.94
40.0	3.51	3.41	2.61	1.44	0.29	1.43	40.0	3.72	3.95	3.38	1.46	0.88	2.22
42.5	3.86	3.78	3.27	2.14	1.04	1.72	42.5	4.06	4.26	3.77	2.26	1.55	2.50
45.0	4.16	4.10	3.69	2.78	1.75	2.03	45.0	4.35	4.51	4.12	2.98	2.22	2.79
47.5	4.42	4.37	4.06	3,36	2.44	2.37	47.5	4.60	4.72	4.42	3.61	2.87	3.09
50.0	4.63	4.60	4.38	3.87	3.09	2.76	20.0	4.79	4.88	4.67	4.16	3.47	3.42
52.5	4.80	4.79	4.65	4.33	3.69	3.18	52.5	4.94	2.00	4.88	4.63	4.03	3.76
55.0	4.92	4.92	4.87	4.72	4.23	3.63	55.0	5.04	5.06	5.03	5.02	4.53	4.11
57.5	4.99	5.01	5.04	5.05	4.71	4.08	57.5	5.08	5.07	5.13	5.33	4.95	4.46
0.09	5.01	5.04	5.15	5.30	5.12	4.51	0.09	5.07	5.02	5.17	5.56	5.30	4.77
62.5	4.97	5.01	5.19	5.48	5.45	4 . 90	62.5	4.99	4.91	5.14	5.69	5.56	5.04
65.0	4.86	4.91	5.17	5.57	5.68	5.23	65.0	4.84	4.73	5.03	5.73	5.72	5.24
67.5	4.68		5.05	5.57	5.81	5.46	67.5	4.61	4.46	4.83	5.65	5.77	5.34
70.0	4.41	4.47	4.84	5.45	5.82	5.54	70.0	4.28	4.09	4.52	5.46	5.68	5.32
72.5	4.02	4.09	4.51	5.20	5.68	5.54	72.5	3.81	3.60	4.08	5.11	5.43	5.14
75.0	3.48	3.54	4.01	4.77	5.35	5.32	75.0	3.19	2.93	3.46	4.57	4.98	4.76
77.5	2.73	2.79	3.29	4.11	4.77	4.83	77.5	2.34	2.04	2.61	3.78	4.27	4.11
80.0	1.67	1.72	2.25	3.13	3.85	3.99	80.0	1.15	0.81	1.41	2.64	3.19	3.09
82.5	0.10	0.15	0.70	1.61	2.39	2.59	82.5	-0.56	-0.95	-0.33	0.94	1.54	1.49
85.0	-2.41	-2.38	-1.81	-0.88	-0.06	0.19	85.0	-3.26	-3.71	-3.07	-1.77	-1.14	-1.16
87.5	-7.33	-7.32	-6.74	-5.79	-4.95	-4.68	87.5	-8.43	-8.92	-8.28	96.9-	-6.31	-6.31
0.06	-84.63	-85.63	-86.02	-86.25	-86.85	-88.31	90.0	-83.88	-85,45	-85.55	-85.57	-86.32	-88.36

Table A-15. Antenna Directivity in dBi versus Polar Angle Theta (8) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats (Concluded)

[Elevation Angle ∨ = 90° --0]

5 MHz -85.09 -18.90	x · ·	5.0 8.4 8.8	85.7 25.8	£ 4.0.	Y · ·
	-8.5 -6.0	-12.29	16.55	-10.80	101.6
	47.4	5.0	11.0 -9.6	5.5	4.4
	* *	3.8 2.8	9.4	ن ق	6.4 6.4 6.4
	40	ø. 6	8.4 8.5	2.3	0.5
	2.0	u v	40	4,	9. 7
	4.0	4	ō	2.0	9.0
	<u>۳</u> .	is is:	: . .	. e.	j w
	4.0	0 50	6. 6.	જ: ન	٠. e.
	000	0.4	4.0	~ w	น พ
		~0	20	3.90	8 4
			ο,	, ee .	من ه
		. .	۲.	i iv	9 0
	9,	4.	æ. ∟	۰ ب	4
	າຄ	•	: v:	. ب	. "
	w. c	6.	i, i	4.0	4.
		o ~	ė œ	. m.	٠.
	'n	9		7	۰.
	1.2	 	٠	1.6	4.4
	2 6	. v.	-6.87	-6.24	7 E
	5.9	5.0	5.7	6.4	8.5

Figure A-49. Antenna Directivity versus Ekvation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-50. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-51. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-52. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-53. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-54. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

Figure A-55. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Wet Ground Condition

Figure A-58. Antenna Directivity versus Elevation Angle and Frequency for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials for a Sandy Soil Condition

Table A-16. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

		30 MHz	-17 87	-11.90	-8.47	-6.09	-4.31	-2.92	-1.81	-0.91	-0.18	0.40	98.0	1.22	1.50	1.70	1.86	1.98	2.10	2.24	2.43	2.67	2.97	3.34	3.74	4.16	4.56	4.92	5.20	5.37	5.39	5.23	4.82	4.04	2.72	0.39	-4.39	-90.85
		25 MHz	-24 02	-18.08	-14.68	-12.34	-10.60	-9.23	-8.09	-7.12	-6.25	-5.43	-4.62	-3.81	-2.97	-2.12	-1.26	-0.40	0.45	1.26	2.04	2.77	3.44	4.05	4.59	5.05	5.42	5.71	5.89	5.94	5.85	5.58	5.08	4.23	2.82	0.49	-4.30	-89.61
(0 - 06 -	= 15 mS/m	20 MHz	26.24	-20.15	-16.50	-13.83	-11.69	-9.87	-8.27	-6.84	-5.53	-4.33	-3.22	-2.19	-1.24	-0.35	0.47	1.23	1.93	2.57	3.16	3.69	4.15	4.56	4.91	5.19	5.39	5.53	5.56	5.50	5.30	4.94	4.37	3.47	2.07	-0.29	-5.06	-89.71
[Elevation Angle ¥ = 90°9]	ε _τ = 10, σ :	15 MHz	-21 11	-15.09	-11.57	-9.08	-7.15	-5.57	-4.25	-3.10	-2.10	-1.20	-0.40	0.32	0.98	1.58	2.12	2.62	3.07	3.48	3.85	4.17	4.45	4.68	4.87	5.01	5.09	5.11	5.05	4.91	4.65	4.25	3.64	2.74	1.35	-0.98	-5.69	-90.16
[Elevation	Moist Clay $\varepsilon_{t} = 10$, $\sigma = 15$ mS/m	10 MHz	-20.41	-14.46	-10.95	-8.47	-6.55	-5.00	-3.70	-2.58	-1.60	-0.74	0.03	0.71	1.33	1.89	2.39	2.84	3.25	3.61	3.93	4.21	4.45	4.64	4.80	4.91	4.96	4.96	4.90	4.75	4.51	4.13	3.56	2.72	1.41	-0.81	-5.38	-90.41
	~	5 MHz	20.16	-14.53	-11.03	-8.55	-6.64	-5.09	-3.79	-2.68	-1.71	-0.86	-0.10	0.57	1.18	1.73	2.23	2.67	3.07	3.43	3.74	4.02	4.27	4.47	4.64	4.76	4.84	4.88	4.86	4.77	4.60	4.31	3.87	3.19	2.09	0.15	-4.06	-91.01
		THETA		9 0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.0	57.5	0.09	62.5	65.0	67.5	0.07	72.5	75.0	77.5	80.0	82.5	85.0	87.5	0.06
		30 KHZ	-10 57	-13.58	-10.12	-7.70	-5.87	-4.42	-3.25	-2.29	-1.50	-0.86	-0.35	90.0	0.37	0.61	0.79	96.0	1.09	1.27	1.50	1.81	2.21	2.69	3.23	3.79		4.85	5.28	2.60	5.79	5.80	5.58	5.04	3.99	2.01	-2.32	-91.49
	Æ	25 MHz	-25.33	-19.20	-15.76	-13.36	-11.54	-10.08	-8.87	-7.83	-6.89	-6.03	-5.20	-4.38	-3.56	-2.72	-1.88	-1.04	-0.20	0.63	1.43	2.19	2.91	3.58	4.18	4.71	5.17	5.54	5.81	5.98	6.01	5.88	5.53	4.88	3.75	1.71	-2.64	-90.59
[0 .06 ■	30, a = 15 mS/m	20 MHz	-26 41	-20.33	-16.71	-14.08	-11.97	-10.20	-8.64	-7.24	-5.97	-4.80	-3.71	-2.70	-1.75	-0.86	-0.04	0.74	1.46	2.12	2.74	3.30	3.80	4.25	4.65	4.98	5.24	5.44	5.55	5.57	5.47	5.23	4.79	4.06	2.88	0.81	-3.56	-90.53
Elevation Angle w = 90°9]	J Er = 30, C	15 MHz	-22.10	-16.07	-12.54	-10.03	-8.07	-6.47	-5.11	-3.93	-2.88	-1.95	-1.10	-0.33	0.37	1.02	1.61	2.16	2.66	3.11	3.52	3.89	4.22	4.50	4.74	4.93	2.06	5.14	5.14	90.5	4.88		4.08	3.32	2.11	0.03	-4.33	-90.69
(Elevation	Wet Ground Er =	10 MHz	-20.65	-14.63	-11.12	-8.64	-6.73	-5.17	-3.86	-2.74	-1.76	-0.90	-0.13	0.56	1.18	1.74	2.25	2.71	3.12	3.49	3.82	4.11	4.35	4.56	4.73	4.85	4.93	4.94	4 . 90	4.79	4.58	4.25	3.74	2.98	1.79	-0.25	-4.55	-90.77
	>	5 MHz						-5.09	-3.80	-2.69	-1.72	-0.87	-0.11	0.57	1.17	1.72	2.21	2.66	3.06	3.41	3.73	4.01	4.25	4.45	4.62	4.75	4.83	4.86	4.84	4.76	4.59	4.31	3.88	3.22	2.15	0.28	-3.79	-90.96
		FRETA		0.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.0	57.5	0.09	62.5	65.0	67.5	70.0	72.5	75.0	77.5	0.08	82.5	85.0	87.5	90.0

Table A-16. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for S.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials (Continued)

			30 MH2	-91.35	-16.28	-10.36		-3.07	-1.82	-0.84	-0.08	0.51	96.0	1.31	1.55	1.72	1.83	1.90	1.97	3.06	2.21	2.44	2.75	3.14	3.58	40.4	4.40	5.18	5.38	5.44	5.33	5.00	4.40	3.41	1.83	-0.80	-5.94	-91.35
			25 MHz	-89.80	-18.45	-12.61	27.33	-5.91	-4.97	-4.36	-4.00	-3.79	-3.65	-3.47	-3.15	-2.65	-1.94	-1.09	-0.16	0.78	1.69	2.53	3.30	3.97	4.56	5.05	5 . 5	5.89	5.94	5.85	5.60	5.14	4.42	3.34	1.68	-1.00	-6.17	-89.80
	[0 - 06	mS/m	20 MHz	-89.60	-28.17	-22.29	-16.30	-14.96	-13.44	-11.96	-10.42	-8.83	-7.19	-5.59	-4.06	-2.64	-1.33	-0.14	0.93	1.87	2.71	3.44	4.07	4.61	5.05	5,39	, v	5,85	5.79	2,60	5.25	4.71	3.93	2.78	1.08	-1,63	-6.82	-89.60
	[Elevation Angle 🌾 = 90°6]	4, a = 1.5 mS/m	15 MHz	-90.33	-17.84	-11.85	90.30	-4.11	-2.64	-1.43	-0.42	0.44	1.18	1.82	2.38	2.87	3.29	3.66	3.98	4.25	4.48	4.67	4.83	4.93	4.99	5.00	4.90	4.68	4.42	4.06	3.57	2.92	2.03	0.81	-0.95	-3.71	-8.92	-90.33
	Elevation	Sand c, =	10 MHz	86.68-	-18.42	-12.42	40.93	-4.60	-3.08	-1.83	-0.77	0.15	0.94	1.63	2.24	2.17	3.23	3.64	3.99	4.29	4.54	4.74	4.89	5.00	5.06	5.06	7 O. V		4.43	4.06	3.56	2.89	1.99	9 0 16	-1.00	-3.75	-8.97	-89.98
	_		5 MHz	-89.74	-19.16	-13.15	0.61	-5.28	-3.74	-2.46	-1.37	-0.42	0.41	1.14	1.78	2.36	2.86	3.31	3.71	4.05	4.34	4.59	4.79	4.94	5.03	5.08	70.6	4.85	4.62	4.28	3.82	3.20	2.35	1.16	-0.55	-3.25	-8.41	-89.74
			THETA	0.0	2.5	o, r		12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	20.0	52.5	55.0	57.5	0.09	65.0	67.5	70.0	72.5	75.0	77.5	0.08	82.5	85.0	87.5	0.06
			30 MHz	-91.38	90'AT-	-12.70		-5.00	-3.56	-2.40	-1.44	99.0-	-0.03	0.48	88.0	1.19	1.43	1.61	1.76	1.90	2.08	2.30	2.59	2.95	3.37	3.82	4.70	5.08	5.35	5.51	5.51	5.32	4.86	4.04	2.65	0.26	-4.60	-91.38
		mS/m	25 MHz	-89.93	-21./3	-15.82	10 21	-8.57	-7.32	-6.36	-5.58	-4.93	-4.35	-3.79	-3.21	-2.58	-1.90	-1.15	-0.37	0.44	1.24	2.03	2.77	3.46	4.08	4.63			5.92		5.83	5.52	4.96	4.05	2.60	0.15	-4.74	-89.93
•	[- 06 = 0	ry Ground $\varepsilon_f \approx 10$, $\sigma \approx 1.5$ mS/m	20 MHz	-89.81	-31.03	-24.76	17 86	-15.34	-13.12	-11.11	-9.28	-7.59	-6.04	-4.61	-3.30	-2.09	-0.99	0.03	0.94	1.77	2.52	3.19	3.78	4.29	4.73	01.0			5.70	5.60	5.35	4.93	4.28	3.29	1.78	-0.71	-5.62	-89.81
-	levation Angle w = 90°6	und E _f = 10	15 MHz	-90.13	79.07	-14.61	19.4	-6.69	-5.13	-3.81	-2.68	-1.68	-0.80	-0.01	0.70	1.35		2.47	2.95	3.38	3.77	4.12	4.42	4.67	4.87	5.03	5.15	5.11	4.98	4.76	4.42	3.91	3.19	2.14	0.59	-1.93	-6.86	-90.13
	[Elevati	m Dry Gro	10 MHz	-90.28	-19.17	-13.17	-7.20	-5.31	-3.78	-2.51	-1.43	-0.49	0.33	1.05	1.68				3.57	3.91	4.21	4.45	4.65	4.81	4.92	4.4	4 94	4.83	4.64	4.35	3.95	3.40	2.63	1.56	-0.03	-2.56	-7.50	-90.28
		Medium D	S MHz	-89.83	19.42	-13.41	-7 44	-5.54	-4.00	-2.72	-1.62	-0.67	0.16	0.89	1.54	2.12	2.63	3.09	3.49	3.85	4.15	4.41	4.63	4.80	4.92	4. A	40.4	87	4.69	4.42	4.03	3.49	2.74	1.68	0.12	-2.39	-7.31	-89.83
			THETA	0 0	 	v v o v	0.01	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	20.0	52.5	52.0	ر . د . د	20.0	65.0	67.5	0.07	72.5	75.0	77.5	90.0	82.5	85.0	87.5	D. 06

Table A-16. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Six Frequencies and Five Soil Conditions, for 5.4 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radiats (Concluded)

[Elevation Angle w = 90° -6]

		91.	Ñ	11	œ	S	0.	2.7	9.	0.7	0	ø.	٥.	4	9	æ	٥.	٦.	4	٣.	'n	₩.	۲.	9.	٥.	₹.	Θ.	7	'n	*	m.	5.01	₹.	*	8	7	5	4
m/Sr	5	89.8	٦.	11.2	9.0	5.9	4.6	3.6	3.1	2.7	9.	2.6	2.6	2.6	2.3	1.9	۲.	0.3	S.	₹.	۲.	٥.	۲.	₹.	œ.	ď.	۰.	8	σ,	æ	9	ŗ	s.	₹.	-	€.	-6.06	9.6
Very Dry Ground $\varepsilon_{\rm f}=4$, $\sigma=0.15$ mS/m	S S	89.9	•	19.6	6.7	-15.08		-14.08	-14.39	7	4	7	7	9	٣.	3.3	9.	0.1	۲.	٦.	٦.	₩.	S	0	•	۲.	٥.	9	0	0	₹.	4.95	_	0	~		9	
nd E, = 4,	5 E	9.0	17.3	٣.	7.8	4.	3.6	2.2	0	0	۲.	4	٥.	S.	6	Ľ.	9.	9	7	4	9	-	8	9	•	0	8	9	*	0	5	0	o.	8	-0.94	9	-8.91	9.0
, Dry Grou	10 MHz	90.6	-17.96	11.9	8.4	-6.03	٦.	2.6	1.4	0.3	5	4	6	S	0	₹.	89	7	4	9	8	4.95	0	0	0	6	8	5	٣.	6	m.	9	۲.	0.52	"	٥.	-9.26	9.0
æ. Æ	₹	88.5	6.	12.9	9.4	6.9	5.0	3.5	2.2	٦.	0.2	9	m.	6	S.	9	₹.	æ	7	4	9	80	0	0	٦.	0	Ð	8	S	-	1	0	7	6	0.8	3.6	-8.83	8.5
	THETA	0.0		•		ö	•		7	ö		Š	7	Ö	~	ς.	7	Ö.	ä	ď.	7.	0	ä	ς.	ζ.	ö	7	'n	7	ö	ä	75.0	7.	ö	Ŕ	'n	87.5	Ö

SECTION A3 6.3 METER MONOPOLE CONFIGURATION RESULTS

Figure A-60. Antenna Input Impedance (Resistance and Reactance) versus Frequency in Wet Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-61. Antenna Input Impedance (Resistance and Reactance) versus Frequency in Moist Clay for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-62. Antenna Input Impedance (Resistance and Reactance) versus Frequency in Medium Dry Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-63. Antenna Input Impedance (Resistance and Reactance) versus Frequency in Sand for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-64. Antenna Input Impedance (Resistance and Reactance) versus Frequency in Very Dry Ground for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-65. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-66. Cable Mismatch Loss versus Frequency and Five Soil Conditions for 75 ohm Coaxial Cable Feeding 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Table A-17. Antenna Input Resistance (ohms), Reactance (ohms), Magnitude Squared of Reflection Coefficient ($|\Gamma|^2$), and Mismatch Loss (dB) versus Frequency for Five Soil Conditions for 6.3 Meter High Monopole and 12 Meter Radius Ground Screen of 16 Radials and a 75 ohm Feed Cable (Supports Vol. 1, Table 12)

			(Supports V	(OI. 1, 12016 12)	
Freq	R	X	∏²	MML (dB)	
5.0 10.5 10.5 15.5 20.0 22.5 25.0 30.0	6.92 17.53 36.65 75.25 149.16 237.06 206.71 118.69 42.88 38.10	-79.74 -16.76 31.55 54.33 -10.45 -127.21 -150.02	9.43279E-01 6.47576E-01 1.37452E-01 4.22240E-02 1.58850E-01 2.70509E-01 3.50947E-01 4.06758E-01 4.33678E-01 4.05114E-01 2.77810E-01	12.46 4.53 0.64 0.19 0.75 1.37 1.88 2.27 2.47 2.26 1.41	Wet Ground $\varepsilon_{\rm f} = 30$, $\sigma = 15$ mS/m
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	6.63 17.05 36.61 76.56 150.32 234.92 206.01 119.46 66.36 42.49 37.59	-172.69 -79.41 -15.39 32.69 53.25 -10.88 -148.51 -122.15 -87.04 -53.31	9.45454E-01 6.53930E-01 1.34749E-01 4.45537E-02 1.58732E-01 2.67152E-01 3.46426E-01 4.01414E-01 4.29614E-01 4.03754E-01 2.73339E-01	12.63 4.61 0.63 0.20 0.75 1.35 1.85 2.23 2.44 2.25 1.39	Moist Clay $\varepsilon_{\rm f} = 10$, $\sigma = 15$ mS/m
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	7.32 20.47 39.84 77.74 146.94 238.04 208.52 122.11 66.69 43.22 39.07	-170.16 -78.25 -16.60 29.43 52.57 -6.57 -125.39 -150.37 -123.39 -87.13 -53.49	9.38583E-01 5.96928E-01 1.12305E-01 3.61164E-02 1.52604E-01 2.71588E-01 3.49090E-01 4.03981E-01 4.33273E-01 3.98831E-01 2.61620E-01	12.12 3.95 0.52 0.16 0.72 1.38 1.86 2.25 2.47 2.21	Medium Dry Ground $\varepsilon_r = 10$, $\sigma = 1.5$ mS/m
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	6.06 19.42 44.60 79.59 139.99 242.38 211.20 127.47 69.91 44.07 40.17	-170.45 -74.15 -12.81 24.55 55.74 0.61 -122.75 -148.26 -124.82 -87.06 -52.06	9.489°3E-01 3.95821E-01 7.52202E-02 2.54591E-02 1.48610E-01 2.78125E-01 3.46656E-01 3.92769E-01 4.26671E-01 3.92344E-01 2.45597E-01	12.92 3.93 0.34 0.11 0.70 1.42 1.85 2.17 2.42 2.16 1.22	Sandy Soil ε _r = 4, σ = 1.5 mS/m
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	4.36 20.82 53.49 69.53 147.79 250.99 199.32 132.91 67.02 44.67 40.71	-171.01 -64.70 -21.92 15.05 80.64 -18.09 -112.90 -155.00 -127.27 -85.92 -53.19	9.63191E-01 5.32818E-01 5.55211E-02 1.21466E-02 2.10215E-01 2.93623E-01 3.20483E-01 4.07110E-01 4.47141E-01 3.82508E-01 2.46922E-01	14.34 3.31 0.25 0.05 1.02 1.51 1.68 2.27 2.57 2.09 1.23	Very Dry Ground $\varepsilon_r = 4$, $\sigma = 0.15$ mS/m

Figure A-67. Antenna Noise (Ohmic Loss) versus Frequency and Five Soil Conditions for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 32 Radials

140644-2

Table A-18. 6.3 Meter High Monopole Antenna: Efficiency and Noise Figure versus Frequency for Five Soil Conditions for 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178 Deep

(Supports Vol. 1, Table 12)

					Soil Cha	Soil Characteristics				
Frequency	Very (Wet G	Good Ground)	Gc (Moist	Good (Moist Clay)	Avı (Medium I	Average (Medium Dry Ground)	F (S)	Fair (Sand)	P (Very Dr	Poor (Very Dry Ground)
(MITZ)	$\epsilon_r = 30$, σ	= 15 mS/m	$\epsilon_r = 10$, σ	10, a = 15 mS/m	$\epsilon_r = 10, \sigma$	$\epsilon_{\rm r} = 10$, $\sigma = 1.5$ mS/m	€,=4, G	4, a = 1.5 mS/m	e,=4,0=	$\epsilon_r = 4$, $\sigma = 0.15$ mS/m
	ա (%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
5.0	2.6	5.2	10.0	5.1	6.2	7.1	5.3	7.8	8.9	6.7
7.5	10.3	4.9	10.0	5.1	7.1	6.5	6.0	7.3	1.6	5.4
10.0	10.4	4.9	9.5	5.3	7.7	6.2	7.3	6.4	8.3	5.9
12.5	10.7	4.8	6.3	5.4	8.1	5.9	8.7	6.1	6.2	5.4
15.0	10.8	4.7	0.6	5.5	8.4	5.8	1.4	6.4	7.0	9:9
17.5	10.9	4.7	9.8	5.7	9.8	5.7	7.3	6.4	7.5	6.3
20.0	11.2	4.6	8.5	5.8	5.6	5.4	8.0	6.0	8.5	5.8
22.5	11.7	4.4	6.8	5.5	10.2	5.0	9.3	5.3	9.6	5.2
25.0	12.7	4.0	10.5	4.9	12.4	4.1	12.1	4.2	12.8	4.0
27.5	14.8	3.3	14.0	3.6	15.9	3.0	16.8	2.8	17.0	2.7
30.0	17.4	2.7	18.5	2.4	19.0	2.3	20.8	2.0	21.0	2.0

Figure A-68. System Internal Noise Figure Cumulative Contributions for Case of Wet Ground and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-69. System Internal Noise Figure Cumulative Contributions for Case of Moist Clay and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-70. System Internal Noise Figure Cumulative Contributions for Case of Medium Dry Ground and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-71. System Internal Noise Figure Cumulative Contributions for Case of Sandy Soil and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-72. System Internal Noise Figure Cumulative Contributions for Case of Very Dry Ground and Maximum Length Cable for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Cable Lengths for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radial Wires Figure A-73. System Internal Noise Figures versus Frequency, Soil Condition, and Maximum and Minimum

Figure A-74. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 5 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-75. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 10 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-76. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 15 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-77. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz, figure A-77. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 20 MHz,

Figure A-78. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 25 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-79. Antenna Directivity versus Elevation Angle and Five Soil Conditions, at Frequency of 30 MHz, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

Figure A-80. Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radials, for a Wer Ground Condition

Figure A-81. Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radials, for a Moist Clay Condition

Figure A-82. Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radials, for a Medium Dry Ground Condition

Figure A-83. Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radials, for a Sandy Soil Condition

Figure A-84. Antenna Directivity versus Elevation Angle and Frequency, for 6.3 Meter High Monopole Antenna with 12 Meter Radius Ground Screen of 16 Radials, for a Very Dry Ground Condition

Table A-19. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Eleven Frequencies and Five Soil Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats

Wet Ground $\epsilon_{\rm r} = 30$, $\sigma = 15$ mS/m

					Directivity in dBI	y in dBi					
θ	F = 5 MHz	7.5 MHz	5	12.5	5	17.5	20	22.5	52	27.5	9
0.0	-86.87	-87.13	7	87.2	-87.33	۳.	87.4	-87.66		۲.	-89.39
2.5	0	۲.	21	æ	-23.27	5.5	φ.	ທ່		.	9
5.0	4	۲.	S	15.8	-17.23	9.4	21.5	ö		2.0	9
7.5	~	7	1	12.3	-13.68	8.	18.0	'n		8. S.	Τ.
0.0	8	۲.	σ	9.8	-11.15	ъ.	15.4	ë.		6.1	9
2.5	ø	8	~	7.8	-9.16	1.2	13.3	ä		4.3	œ
5.0	S	7	S	6.2	-7.52	9.5	11.5	ö		2.9	ო.
7.5	~	6	4	4.9	-6.12	9.0	0.0	œ.		1.7	٦
0.0	~	8	ຕ	3.7	-4.89	6.7	8.6	۲.		6.7	٠:
2.5	_	8	-2.12	2.7	-3.80	5.5	7.4	œ.		٥.	۳.
5.0	0	6	-1.24	1.8	-2.81	4.4	6.2	Ġ		9	٠:
7.5	-0.16	7	-0.44	6.0	-1.91	3.3	5.1	ď.		٦.	Γ.
0.0	0.52	4	0.27	0.2	-1.08	2.4	6.0	÷		3	۳.
2.5	1.13	٦.	0.91	4.	-0.31	S	9.0	~		∞.	٧:
5.0	1.68	9	1.50	Ξ.	0.40	9	2.0	~;		0	٠,
7.5	2.18	7	2.03	۹.	1.06	~	1.1	~		7	٦.
0.0	2.63	9	2.52	?	1.67	æ	0.2	_:		~	₹.
2.5	3.03	٥.	2.96	۲.	2.24	'n	s.	•		~	₹.
5.0	3.39	٧.	3.35	٦.	2.76	٦.	۳.	•		~	۳.
7.5	3.71	۲.	3.71	3	3.23	۲.	٥.	•		~	Ξ.
0.0	3.99	0	4.02	٥.	3.67	۳.	۲.	•		~	ς.
2.5	4.24	٣.	4.30	۲.	4.06	۲.	۳.	•		٣	۳.
5.0	4.45	S	4.53	₹.	4.40	4	σ.	•		9	₹.
7.5	4.62	9	4.72	۲.	4.69	બ	₹.	•		0	_
0.0	4.74	80	4.86	٥.	4.93	0	₩.			Ľ,	9
2.5	4.83	σ.	4.96	٥.	5.12	~	7	•		œ	0
5.0	4.87	٥.	2.00	Ξ.	5.24	7	s.	•		ų.	_
7.5	4.85	σ.	4.97	٦.	5.29	'n	۲.	•		۲.	۳.
0.0	4.77	∞.	4.88	٥.	5.25	ñ	₩.			7	Ψ.
2.5	4.60	۹.	4.68	₩.	5.10	4	۲.			3	æ
5.0	4.33	۳.	4.36	s.	4.82	~	۹.			4	∞.
7.5	3.90	₩.	3.87	٥.	4.36	Γ.	7	•		~	Γ.
0.0	3.24	٦.	3.12	۳.	3.62	٥.	s.	•		۲.	m
2.5	2.18	٥.	1.94	٣.	2.42	∞.	4	•		۲.	m.
5.0	0.31	-0.03	-0.10	0.04	0.36	0.82	1.35	1.87	2.18	1.82	0.43
7.5	3	4.2	4	4.3	-3.99	3.5	3.0	ς.	2	2.4	₽.
0.0	-86.87	۲.	-87.15	?	-87,33	۳.	₹.	•		ŗ.,	۳.

Table A-19. Antenna Directivity in dBi versus Polar Angle Theta (0) for Eleven Prequencies and Five Soil Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats (Continued)

(Elevation Angle $\psi = 90^{\circ} - \theta$)

Moist Clay $\epsilon_{\rm r} = 10$, $\sigma = 15$ mS/m

	ဓ	89.6	9.	10.6	7.1	4.6	2.8	1.3	0.0	6.	æ	3.	٦.	9.	٥.	ო.	s.	۲.	۲.	۲.	9.	s.	۳.	٦.	6.	۲.	9.	s.	Ś	₹.	ų.	Ξ.	۲.	σ.	۰.	1.6	-6.45	9.6
	27.5	88.4	٦.	11.2	7.7	5.3	3.5	2.1	6.0	٥.	æ	₹.	٠.	<u>ښ</u>	۲.	٥.	٦.	7	?	٣.	۳.	۳.	₹.	Š	9.	ō.	~	Ŧ	9	۲.	۲.	9.	?	₹.	Ξ.	0:1	-4.88	æ.
	જ	87.1	s.	13.6	10.1	7.8	6.0	4.6	3.5	2.6	1.8	1.2	0.7	о Э	٥.	٣.	9.	٥.	~	9.	°.	₹.	٥.	٧.	6.	₹.	æ	7	ŝ	9.	٩.	٠.	٦.	۳.	0	9	1 (7.1
	22.5	86.4	۰.	18.1	14.6	12.2	10.4	8.9	7.7	9.9	5.7	₩.	4.0	Э.	2.5	1.8	٥.	0.3	٧.	7	٥.	۹.	?	æ	۲.	σ.	۳.	9.	₩.	٥.	c.	۹.	Ξ.	۳.	٥.	٠.	90.6	9.
	ଷ	86.2	ų.	21.2	17.6	15.0	12.9	11.1	9.6	8.2	6.9	5.7	4.5	3.5	2.4	1.5	9.0	4	٥.	æ	'n	Ξ.	۲.	?	۲.	7	₹.	9.	۲.	۲.	9.	٠.	∞.	٥.	9	۳.	4.44	6.2
in dBi	17.5	86.3	₩.	18.7	15.2	12.6	10.5	8.8	7.3	6.0	4.8	3.8	2.8	7.8	1:0	0:1	'n	~	٥.	s.	٦.	۰.	٥.	₹.	₩.	Ξ.	٣.	₹.	s.	₹.	۳.	6.	₹.	s.	٦.		-4.90	6.3
Directivity in dB	15	6.5	22.5	16.5	5.9	10.4	œ.	6.8	5.4	4.2	3.5	2.2	. J	S	۳.	₩.	4	0	S.	0	ŝ	o.	~	'n	80	0	~	?	~	٦.	6.	ŝ	٥.	٠	۲.	0.5	-5.25	9
	12.5	86.6	₹.	15.3	11.8	9.3	7.4	5.8	4.5	۳.	۳,	1.4	9.	٦.	∞.	₹.	6.	4.	σ.	٠.	۲.	Ξ.	٣.	9.	€.	٥.	0	Ξ.	٥.	٥.	۲.	ų.	۲.	6.	S.	0.7	-5.36	9.9
	9	86.7	6.	14.8	11.3	8.8	6.9	5,3	4.0	2.9	1.9	1:0	0.2	4.	٥.	9.	۳.	9.	٦.	٠.	æ	٦.	4.	۹.	∞.	6.	٥.	٥.	6.	∞.	9.	7	۲.	₩.	S	9.0	-5.21	6.7
	7.5 MHz	86.9	9	14.6	11.1	8.6	6.7	5.1	3.8	2.7	1.7	6.0	0.1	S	٦.	۲.	~		٦.	4.	æ	∹	۳.	3.	۲.	æ	٥.	6.	٥.	۲.	s.	?	۲.	٥.	۲.	۳.	-4.81	6.9
	F = 5 MHz	86.	9.	14.6	11.0	9.6	6.7	5.1	3.8	2.7	1.7	9.9	0.7	ŝ	٦.	۹.	۲.	۰.	٥.	₹.	۲.	٥.	۲.	4	9.	۲.	В.	8	₩.	۲.	9.	٣.	€.	?	٦.	٦.	-4.03	6.9
	θ		•		7	。	۲,	Š	۲.	。	۲,	s.	۲.	。	ς.	S.	۲.	0	2	S.	۲.	。	ς.	S.	7.	ö	2	Š.	7.	0	?	5.	۲.	。	2	Š	87.5	。

Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats (Continued) Table A-19. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Eleven Frequencies and Five Soil

(Elevation Angle $\psi = 90^{\circ} - \theta$)

Medium Dry Ground $\varepsilon_r = 10$, $\sigma = 1.5$ mS/m	Directivity in dBi	20 22.5 25 27.	0 -86.21 -86.32 -86.61 -87.09 -87.92 -89.01 -	3 -22.33 -26.03 -27.11 -22.99 -20.19 -18.15 -	1 -16.29 -19.94 -21.05 -17.02 -14.22 -12.17 -	9 -12.75 -16.30 -17.47 -13.59 -10.78 -8.70	0 -10.22 -13.64 -14.89 -11.22 -8.40 -6.29	7 -8.24 -11.51 -12.83 -9.43 -6.61 -4.4	0 -6.61 -9.70 -11.09 -8.01 -5.21 -3.01	8 -5.22 -8.11 -9.55 -6.85 -4.08 -1.83	63 -4.00 -6.68 -8.16 -5.86 -3.16 -0.8	63 -2.92 -5.38 -6.86 -5.01 -2.40 -0.0	75 -1.94 -4.19 -5.64 -4.23 -1.76 0.6	05 -1.06 -3.08 -4.49 -3.50 -1.22 1.1	76 -0.25 -2.05 -3.39 -2.80 -0.76 1.6	41 0.50 -1.10 -2.35 -2.10 -0.35 1.9	99 1.18 -0.21 -1.36 -1.39 0.02 2.2	52 1.81 0.61 -0.42 -0.68 0.39 2.4	00 2.39 1.38 0.46 0.05 0.77 2.	43 2.92 2.08 1.29 0.78 1.18 2.7	81 3.40 2.72 2.05 1.50 1.62 2.8	15 3.83 3.31 2.76 2.20 2.10 2.9	44 4.21 3.83 3.40 2.88 2.61 3.1	68 4.54 4.29 3.97 3.51 3.14 3.3	88 4.82 4.69 4.48 4.09 3.67 3.5	02 5.04 5.03 4.91 4.61 4.19 3.8	11 5.20 5.29 5.2/ 5.05 4.66 4.1	13 5.29 5.48 5.55 5.42 5.08 4.5	09 5.31 5.58 5.73 5.69 5.41 4.7	9.24 5.58 5.81 5.85 5.65 5.0	73 5.06 5.47 5.76 5.89 5.76 5.13	38 4.76 5.23 5.58 5.77 5.71 5.12	87 4.29 4.81 5.21 5.47 5.47 4.9	15 3.59 4.16 4.60 4.92 4.98 4.46	10 2.58 3.18 3.66 4.01 4.12 3.6	55 1.04 1.67 2.17 2.57 2.72 2.2	97 -1.46 -0.82 -0.29 0.13 0.30 -0.1	90 -6.39 -5.73 -5.19 -4.76 -4.57 -4.97	10 -86.21 -86.32 -86.61 -87.09 -87.92 -89.01 -
		8	86.61	27.11	21.05	17.47	14.89	12.8	11.0	9.5	8.1	6.8	5.6	4.4	3.3	2.3	1.3	₹.	4.	7	•		4	6.	٠,	σ.	"	Ů.	`.'	D		s.	?	9.	9.	٦.	0.5	5.1	86.61
Ground 1.5 mS/m	₽.		86.3	26.0	19.9	16.3	13.6	11.5	9.7	8.1	9.9	5.3	4.1	3.0	2.0	1.1	0.5	9	m (0	-	m	∞ (~	9	0	7	•	'n,	n.	•	~	8	-	_	9	8	5.7	86.3
ledium Dry = 10, σ = '	Directivity		86.2	22.3	16.2	12.7	10.2	8.2	9.9	5.2	4.0	2.9	1.9	1.0	0.5	'n.	Ξ.	Φ.	<u>س</u> ا	6	₹.	æ	7	نې	œ.	9	7	7	٦.	7	0	۲.	'n	'n	'n	٥.	1.4	6.3	6.2
≥ ہے		12.5	86.1	20.6	4.6	11.0	8.6	9.	5.1	3.7	2.6	1.6	0.7	٥.	۲.	₹.	6	ŝ	3.00	₹.	æ ·	٠,	7	9	æ (٠.	ન્∙	፣ '	٠,	٠.	•	۳.	œ		7	ŝ	ο.	6.9	6.1
		9	85.8	19.8	3,8	10.3	7.8	٥.	4.4	3.1	2.0	1.0	0:1	ŝ	۲.	∞.	۳.	₿.	3.30	٠.	0,	۵,	5	۲.	5.	۰.	٠,	? '	າ. ເ	*	'n	Ξ.	۰.	₩.	æ	۲.	7	7.1	5.8
		7.5 MHz	85.5	19.5	3.5	10.0	7.5	9	4.0	2.8	1.7	0.7	٥.	₩.	₹.	٥.	S.	0	3.46	∞.	Ξ,	₹.	9	æ,	٥.	۰.	٠.	? '	٠.	•	•	٥.	ŝ	۲.	۹.	٦:	4.	7.3	5.5
		MHZ	9	4	4	σ	₹.	S	0		9.	9.	~	æ	S	۳.	9	•	.48	∞.	Ξ.	٠.	9	æ,	<u>ه</u>	6.	9	٠.	æ (•	₹.	٥.	s.	۲.	۲.	٦.	۳.	Ċ.	0

Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats (Continued) Table A-19. Antenna Directivity in dBi versus Polar Angle Theta (8) for Eleven Frequencies and Five Soli

Sandy Soil

 $E_{\rm r} = 4$, $\sigma = 1.5$ mS/m Directivity in dBi u

Table A-19. Antenna Directivity in dBi versus Polar Angle Theta (0) for Eleven Frequencies and Five Soil Conditions, for 6.3 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radiats (Concluded)

(Elevation Angle $\psi = 90^{\circ} - \theta$)

Very Dry Ground

				~	$E_{\rm r} = 4$, $G =$	= 4, G = 0.15 mS/m	F				
					Directiv	Directivity in dBi					
θ	F = 5 MHz	7.5 MHz	0	12.5	5	17.5	20	22.5	52	27.5	90
	85.3	86.5	86.1	86.6	85.4	85.7	86.2	86.8	88.0	89.3	90.2
	6.	۳.		٦.	σ.	۲.	Τ.	Ξ.	σ.	٠.	۰.
	12.9	12.3	12.2	12.1	16.9	28.3	17.2	13.2	12.0	13.9	12.9
•	9.4	8.8	8.7	8.6	13.4	24.0	13.9	8.6	9.6	10.4	9.4
•	6.9	6.4	6.2	6.2	10.9	20.7	11.7	7.6	6.3	7.8	6.8
•	5.0	4.5	4.4	4.3	9.0	17.7	10.2	5.9	4.6	S.8	4.8
•	3.5	3.0	2.8	2.8	7.4	15.1	9.0	4.6	3.3	4.2	3.1
•	2.2	1.7	1.6	1.6	6.0	12.8	9.1	3.7	2.2	2.8	1.7
•	1.1	0.7	0.5	9.0	4.8	10.6	7.3	2.9	1.4	1.6	9.
•	0.2	?	۳.		3.7	8.6	9.9	2.3	8.0	9.0	7.
•	s.	٥.	٥.	٥.	2.7	6.8	8.3	7.7	0.3	7	7
	?	۰.	۲.	۲.	1.8	5.2	4.9	1.3	٦.	σ.	٥.
•	6.	۳.	۳.	7	0.9	3.7	3.9	6.0	4.	s.	۹.
•	s.	₩.	₩.	Φ.	0.1	2.4	2.9	0.5	۲.	٥.	Ξ.
	٥.	?	۳.	?	9.	1.1	1.8	0.0	٥.	₹.	s.
٠	₹.	۰.	۲.	۰.	٦.	٥.	٥.,	₹.	~	₩.	∞.
	∞.	٥.	٥.	٥.	٥.	٥.	?	σ.	S.	۰.	٦.
•	٦.	۳.	۳.	?	9	æ	۲,	S.	æ	?	۲.
•	₹.	s.	S.	₹.	?	9.	٦.	٥.	٧.	4.	۳.
•	9.	۲.	٠.	9.	۲.	٣.	٥.	٩.	۰.	۰.	7.
•	æ	٥.	٥.	₽.	?	٥.	۹.	7	٥.	۲.	7.
•	6.	٥.	٥.	٥.	9.	ς.	۲.	8	3.	σ.	₹.
•	0	٥.	۰.	٥.	σ.	٥.	۲.	۳.	σ.	٦.	₹.
•	٦.	٥.	٥.	0	?	٠.	?	٠.	7	۳.	₹.
•	•	0	٥.	σ.	4	S.	ŝ	7	₩.	ທ	4
٠	٥.	₩.	∞.	₿.	S.	۲.	۲.	4	Ξ.	۲.	₹.
•	₩.	9.	9.	۲.	ŝ	æ	٥.	9	4	٥.	۳.
•	'n	₹.	۳.	₹.	₹.	۲.	σ.	۲.	s.	٥.	۳.
•	?	۰.	0	٥.	7	۰.	۲.	9	s.	σ.	7
•	٠,	s.	₹.	'n	œ	٣.	₽.	7.	۳.	∞.	6.
•	٥.	₩.	æ	٥.	۳.	۲.	٥.	٥.	٥.	7.	s.
•	٦.	٥.	٥.	٥.	'n	٥.	7	ų.	۳.	₩.	٥.
•	σ.	۹.	۹.	∞.	۳.	æ	~	۲.	۳.	æ	σ.
•	0.8	1.0	1.1	0.9	۹.	Ξ.	4.	9.	۲.	۲.	۳.
•	9.	3.8	3.8	3.7	2.0	1.5	1.2	o.	σ.	₹.	۳.
17.5	-8.82	-9.08	-9.11	-8.93	-7.25	-6.71	-6.39	-6.19	-6.05	-6.55	-7.46
•	۳.	6.5	6.1	9.9	5.4	5.7	6.2	6.8	8.0	9.3	0.2

SECTION A4 6.0, 6.5, 7.0 METER MONOPOLE RESULTS

Table A-20. Antenna Input Resistance and Reactance versus Frequency for Five Soil Conditions, for 6.0, 6.5 and 7.0 Meter High Monopoles with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Table 12)

			Soil Characteristics		
Frequency	Very Good	Good	Medium	Fair	Poor
(1111112)	$\epsilon_r = 30$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, $\sigma = 15$ mS/m	$\epsilon_{\rm r} = 10$, $\sigma = 1.5$ mS/m	$\epsilon_{r} = 4$, $\sigma = 1.5$ mS/m	$\epsilon_r = 4$, $\sigma = 1.5$ mS/m $\epsilon_r = 4$, $\sigma = 0.15$ mS/m
			Height = 6.0m	:	
5.0	6.26 – j182.6	5.99 – j182.1	6.65 – j179.3	5.36 – j179.8	3.95 – j180.0
17.5	210.3 + j19.8	209.3 + j18.7	210.4 + j22.3	212.6 + j28.5	223.5 + j14.3
30.0	38.6 – j71.4	38.0 – j70.1	39.1 – j70.2	40.0 – j69.3	40.4 – j70.3
			Height = 6.5m		
5.0	7.32 - j167.3	7.04 – j167.5	7.70 – j164.8	6.44 – j165.0	4.62 – j166.8
17.5	247.9 – j37.1	245.4 – j36.7	250.2 – j32.7	256.4 – j25.5	262.0 – j46.6
30.0	40.0 – j44.3	39.7 – j42.3	41.3 – j42.6	42.6 – j41.0	43.0 – j42.2
			Height = 7.0m		
5.0	8.44 – j153.1	8.41 - j152.5	8.83 – j149.7	7.42 – j151.2	5.36 – j151.0
17.5	241.2 – j110.1	239.4 – j107.6	246.9 – j106.9	257.3 – j103.4	252.4 – j25.2
30.0	53.4 – j19.4	53.8 – j17.3	55.5 – j18.1	57.2 – j16.4	58.0 - j18.0

TA1789

Sterling

Table A-21. Antenna Efficiency and Noise versus Frequency for Five Soil Conditions, for 6.0, 6.5 and 7.0 Meter High Monopoles with 12 Meter Radius Ground Screen of 16 Radials, 2 mm in Diameter and Buried 0.178m Deep

(Supports Vol. 1, Table 12)

					Soil Cha	Soil Characteristics				
Frequency	Very	Very Good	Good	þ	Medium	W.	Fair	ir	Pc	Poor
(JUINI)	$\epsilon_r = 30, \sigma$	o = 15 mS/m	e _r = 10, σ	$e_r = 10$, $\sigma = 15$ mS/m	$\epsilon_r = 10$, σ	$\epsilon_r = 10$, $\sigma = 1.5$ mS/m	€,=4,σ	$\epsilon_{r} = 4$, $\sigma = 1.5 \text{ mS/m}$	e,=4,0=	$\epsilon_{r} = 4$, $\sigma = 0.15$ mS/m
	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)	(%) և	NF (dB)
					Height	Height = 6.0m				
5.0	30.1	5.2	30.9	5.1	19.3	7.1	16.8	7.7	21.2	2.9
17.5	33.9	4.7	27.0	5.7	26.3	5.8	23	6.5	22.6	6.5
30.0	50.0	3.0	50.7	2.9	54.9	2.6	59.6	2.2	61.1	2.1
					Height	Height = 6.5m				
5.0	30.7	5.1	31.3	5.0	19.7	7.1	16.6	7.8	21.4	6.7
17.5	34.4	4.6	27.0	5.7	27.1	5.6	23.0	6.4	23.8	6.2
30.0	56.6	2.5	61.2	2.1	61.0	2.1	66.5	1.8	66.7	1.8
					Height	Height = 7.0m				
5.0	30.4	5.0	31.9	5.0	20.2	7.0	6'91	1.7	21.7	9:9
17.5	34.8	4.6	27.0	5.7	28.1	5.5	24.0	6.2	25.5	5.9
30.0	60.2	2.2	64.3	1.9	8.09	2.2	64.5	1.9	64.2	1.9

Figure A-85. Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 5 MHz

Figure A-86. Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 17.5 MHz

Figure A-87. Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz

Figure A-88. Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Wet Ground Condition

Figure A-89. Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Moist Clay Condition

Figure A-91. Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Sandy Soil Condition

Figure A-92. Antenna Directivity versus Elevation Angle and Frequency, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials, for a Very Dry Ground Condition

Figure A-93. Antenna Directivity versus Elevation Angle and Five Soil Conditions for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz

Figure A-94. Antenna Directivity versus Elevation Angle and Five Soil Conditions for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials at Frequency of 30 MHz

Table A-22. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

 $\varepsilon_r = 30$, $\sigma = 15$ mS/m

 $\varepsilon_{\rm r} = 10$, $\sigma = 15$ mS/m

	WET G	ROUND			MOIS	T CLAY	
THETA	5 MH2	17.5 MHz	30 MHz	THETA	5 MHz	17.5 MHz	
0.0	-86.91	-87.40	-89.57	0.0	-87.00	-86.35	-89.91
2.5	-20.63	-26.08	-16.45	2.5	-20.63	-25.37	-16.66
5.0	-14.62	-20.01	-10.45	5.0	-14.62	-19.31	-10.65
7.5	-11.11	-16.42	-6.95	7.5	-11.11		-7.16
10.0	-8.64	-13.81	-4.49	10.0	-8.63	-13.12	-4.69
12.5	-6.72	-11.75	-2.60	12.5	-6.72	-11.06	-2.80
15.0	-5.17	-10.01	-1.08	15.0	-5.17	-9.33	-1.28
17.5	-3.87	-8.50	0.17	17.5	-3.87	-7.83	-0.03
20.0	-2.76	-7.15	1.22	20.0	-2.75	-6.50	1.03
22.5	-1.79	-5.92	2.11	22.5	-1.78		1.93
25.0	-0.93	-4.79	2.86	25.0	-0.93		2.69
27.5	-0.17	-3.73	3.48	27.5	-0.17		3.33
30.0	0.51	-2.75	4.00	30.0	0.52	-2.18	3.86
32.5	1.12	-1.83	4.40	32.5	1.13	-1.28	4.29
35.0	1.67	-0.96	4.71	35.0	1.68	-0.44	4.63
37.5	2.17	-0.15	4.91	37.5	2.18	0.34	4.88
40.0	2.62	0.61	5.02	40.0	2.63	1.08	5.04
42.5	3.02	1.33 -	5.03	42.5	3.03	1.76	5.12
45.0	3.39	2.00	4.94	45.0	3.40	2.40	5.11
47.5	3.71	2.62	4.76	47.5	3.72	2.99	5.03
50.0	3.99	3.19	4.50	50.0	4.00	3.52	4.87
52.5	4.24	3.71	4.18	52.5	4.25	4.01	4.66
55.0	4.45	4.17	3.81	55.0	4.46	4.43	4.40
57.5	4.62	4.58	3.44	57.5	4.63	4.80	4.12
60.0	4.75	4.93	3.12	60.0	4.76	5.11	3.85
62.5	4.83	5.22	2.90	62.5	4.85	5.35	3.59
65.0	4.87	5,43	2.80	65.0	4.88	5.51	3.37
67.5	4.85	5.56	2.63	67.5	4.87		3.19
70.0	4.77	5.60	2.95	70.0	4.78		3.03
72.5	4.61	5.52	3.08	72.5	4.61		2.84
75.0	4.33	5.30	3.13	75.0	4.33		2.55
77.5	3.91	4.87	3.00	77.5	3.89		2.08
80.0	3.25	4.17	2.56	80.0	3.21		1.30
82.5	2.18	2.99	1.61	82.5	2.11		-0.02
85.0	0.31	0.94	-0.29	85.0	0.17		-2.33
87.5	-3.76	-3.42	-4.56	87.5	-4.03		-7.10
90.0	-86.91	-87.40	-89.57	90.0	-87.00	-86.35	-89.91

Table A-22. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Continued)

 $\varepsilon_r = 10$, $\sigma = 1.5$ mS/m

 $\varepsilon_{r} = 4$, $\sigma = 1.5$ mS/m

	MEDIUM D	RY GROUNT	D		Si	AND	
THETA	5 MHz	17.5 MHz	30 MHz	THETA		17.5 MHz	30 MHz
0.0	-84.98	-86.37	-89.90	0.0	-84.25	-85.65	-90.27
2.5	-19.47	-26.61	-16.96	2.5	-19.22		-17.93
5.0	-13.46	-20.51	-10.96	5.0	-13.21	-22.04	-11.90
7.5	-9.96	-16.86	-7.47	7.5	-9.71	-18.31	-8.38
10.0	-7.48	-14.18	-5.02	10.0	-7.24	-15.53	-5.88
12.5	-5.58	-12.02	-3.15	12.5	-5.33	-13.24	-3.95
15.0	-4.04	-10.19	-1.65	15.0	-3.80	-11.27	-2.39
17.5	-2.76	-8.57	-0.41	17.5	-2.51	-9.49	-1.08
20.0	-1.66	-7.12	0.63	20.0	-1.42	-7.88	0.02
22.5	-0.71	-5.79	1.50	22.5	-0.47	-6.39	0.96
25.0	0.12	-4.56	2.24	25.0	0.36	-5.01	1.77
27.5	0.86	-3.42	2.86	27.5	1.10		2.45
30.0	1.51	-2.36	3.38	30.0	1.75	-2.54	3.03
32.5	2.09	-1.38	3.79	32.5	2.32	-1.44	3.50
35.0	2.61	-0.46	4.12	35.0	2.83	-0.42	3.89
37.5	3.07	0.40	4.36	37.5	3.29	0.52	4.18
40.0	3.47	1.19	4.51	40.0	3.68	1.37	4.40
42.5	3.83	1.92	4.59	42.5	4.03	2.15	4.55
45.0	4.14	2.59	4.60	45.0	4.33	2.86	4.63
47.5	4.40	3.20	4.54	47.5	4.58		4.66
50.0	4.62	3.75	4.43	50.0	4.78		4.64
52.5	4.79	4.24	4.29	52.5	4.93	4.53	4.59
55.0	4.91	4.66	4.14	55.0	5.03	4.94	4.52
57.5	4.99	5.01	3.99	57.5	5.08	5.26	4.44
60.0	5.01	5.29	3.88	60.0	5.07	5.51	4.35
62.5	4.98	5.50	3.80	62.5	5.00	5.67	4.27
65.0	4.88	5.62	3.77	65.0	4.86	5.73	4.18
67.5	4.70	5.64	3.75	67.5	4.63	5.68	4.06
70.0	4.43	5.54	3.72	70.0	4.30		3.88
72.5	4.04	5.31	3.61	72.5	3.84	5.17	3.61
75.0	3.50	4.90	3.37	75.0	3.22	4.65	3.17
77.5	2.76	4.26	2.91	77.5	2.37		2.50
80.0	1.70	3.28	2.11	80.0	1.19		1.47
82.5	0.14	1.78	0.76	82.5	-0.53		-0.13
85.0	-2.38	-0.70	-1.61	85.0	-3.23	_	-2.76
87.5	-7.30	-5.61	-6.45	87.5	-8.38		-7.90
90.0	-84.98	-86.37	-89.90	90.0	-84.25	-85.65	-90.27

Table A-22. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.5 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Concluded)

 $\varepsilon_{\rm r} = 4$, $\sigma = 0.15$ mS/m

	VERY DRY	GROUND	
THETA		17.5 MHz	30 MHz
0.0	-85.34	-85.81	-90.28
2.5	-18.98	-36.54	-19.01
5.0	-12.98	-29.95	-12.95
7.5	-9.48	-25.56	-9.37
10.0	-7.01	-22.00	-6.79
12.5	-5.11	-18.90	-4.77
15.0	-3.58	-16.13	-3.10
17.5	-2.30	-13.62	-1.69
20.0	-1.21	-11.34	-0.49
22.5	-0.27	-9.27	0.55
25.0	0.56	-7.39	1.45
27.5	1.28	-5.68	2.21
30.0	1.92	-4.13	2.85
32.5	2.49	-2.72	3.38
35.0	2.99	-1.44	3.81
37.5	3.43	-0.29	4.14
40.0	3.81	0.75	4.39
42.5	4.15	1.69	4.55
45.0	4.43	2.52	4.64
47.5	4.67	3.26	4.67
50.0	4.85	3.90	4.66
52.5	4.99	4.46	4.61
55.0	5.08	4.93	4.54
57.5	5.11	5.31	4.46
60.0	5.08	5.59	4.39
62.5	4.99	5.79	4.31
65.0	4.82	5.87	4.24
67.5	4.56	5.85	4.13
70.0	4.20	5.69	3.97
72.5	3.71	5.37	3.70
75.0	3.05	4.86	3.28
77.5	2.16	4.10	2.61
80.0	0.93	2.97	1.59
82.5	-0.83	1.29	0.00
85.0	-3.59	-1.42	-2.63
87.5	-8.81	-6.60	-7.77 -90.28
90.0	-85.34	-85.81	-90.28

Table A-23. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

 $\varepsilon_r = 30$, $\sigma = 15$ mS/m

 $\varepsilon_r = 10$, $\sigma = 15$ mS/m

	WET GI	ROUND			MOIS	T CLAY	
THETA	5 MHz 3	17.5 MH2	30 MHz	THETA	5 MHz	17.5 MHz	30 MHz
0.0	-86.83	-87.34	-89.03	0.0	-86.94	-86.36	-89.09
2.5	-20.59	-24.80	-17.30	2.5	-20.59	-24.11	-16.89
5.0	-14.58	-18.75	-11.30	5.0	-14.58	-18.06	-10.90
7.5	-11.08	-15.17	-7.83	7.5	-11.07	-14.48	-7.42
10.0	-8.60	-12.59	-5.39	10.0	-8.59	-11.92	-4.99
12.5	-6.69	-10.56	-3.54	12.5	-6.68	-9.90	-3.14
15.0	-5.14	-8.87	-2.06	15.0	-5.13	-8.21	-1.67
17.5	-3.84	-7.40	-0.86	17.5	-3.83	-6.76	-0.47
20.0	-2.73	-6.10	0.14	20.0	-2.72	-5.48	0.53
22.5	-1.76	-4.93	0.96	22.5	-1.75	-4.33	1.36
25.0	-0.90	-3.86	1.64	25.0	-0.90	-3.28	2.05
27.5	-0.15	-2.87	2.20	27.5	-0.14	-2.31	2.62
30.0	0.53	-1.96	2.63	30.0	0.54	-1.42	3.08
32.5	1.14	-1.11	2.96	32.5	1.15	-0.59	3.44
35.0	1.69	-0.31	3.19	35.0	1.70	0.18	3.71
37.5	2.19	0.43	3.33	37.5	2.20	0.90	3.90
40.0	2.63	1.13	3.38	40.0	2.65	1.56	4.01
42.5	3.04	1.78	3.36	42.5	3.05		4.05
45.0	3.40	2.38	3.28	45.0	3.41	2.75	4.04
47.5	3.72	2.93	3.16	47.5	3.73	3.27	3.99
50.0	4.00	3.44	3.03	50.0	4.01	3.75	3.92
52.5	4.24	3.89	2.93	52.5	4.26	4.17	3.85
55.0	4.45	4.30	2.90	55.0	4.46	4.54	3.79
57.5	4.62	4.66	2.97	5 7.5	4.63	4.85	3.78
60.0	4.74	4.95	3.16	60.0	4.76	5.11	3.82
62.5	4.83	5.19	3.46	62.5	4.84	5.30	3.90
65.0	4.86	5.36	3.82	65.0	4.88	5.41	4.02
67.5	4.84	5.45	4.20	67.5	4.86	5.44	4.13
70.0	4.76	5.45	4.54	70.0	4.77	5.37	4.20
72.5	4.59	5.33	4.78	72.5	4.60	5.18	4.18
75.0	4.32	5.08	4.86	75.0	4.32	4.83	4.00
77.5	3.89	4.63	4.71	77.5	3.88	4.26	3.59
80.0	3.23	3.91	4.24	80.0	3.20	3.38	2.84
82.5	2.17	2.72	3.25	82.5	2.09	1.99	1.53
85.0	0.29	0.65	1.31	85.0	0.16	-0.35	-0.78
87.5	-3.78	-3.71	-2.99	87.5	-4.05		~ 5.55
90.0	-86.83	-87.34	-89.03	90.0	-86.94	-86.36	-89.09

Table A-23. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Continued)

 $\varepsilon_{\rm f}$ = 10, σ = 1.5 mS/m

 $\varepsilon_r = 4$, $\sigma = 1.5$ mS/m

	MEDIUM D	RY GROUN	D		si	AND	
THETA	5 MHz	17.5 MHz	30 MHz	THETA	5 MHz	17.5 MHz	30 MHz
0.0	-84.89	-86.24	-89.43	0.0	~84.30	-85.52	-89.80
2.5	-19.42	-25.22	-17.46	2.5	-19.17	-25.84	-18.03
5.0	-13.41	-19.14	-11.47	5.0	-13.16	-19.74	-12.02
7.5	-9.91	-15.52	-8.00	7.5	-9.66	-16.10	-8.52
10.0	-7.44	-12.88	-5.58	10.0	-7.19	-13.44	-6.06
12.5	-5.54	-10.78	-3.74	12.5	-5.29	-11.29	-4.17
15.0	-4.00	-9.01	-2.28	15.0	-3.75	-9.47	-2.65
17.5	-2.72	-7.46	-1.09	17.5	-2.47	-7.85	-1.40
20.0	-1.63	-6.08	-0.11	20.0	-1.38	-6.40	-0.35
22.5	-0.68	-4.82	0.71	22.5	-0.43	-5.07	0.53
25.0	0.16	-3.67	1.38	25.0	0.40	-3.84	1.27
27.5	0.89	-2.61	1.94	27.5	1.13	-2.70	1.89
30.0	1.54	-1.62	2.40	30.0	1.78	-1.64	2.41
32.5	2.12	-0.71	2.75	32.5	2.35	-0.66	2.83
35.0	2.63	0.13	3.03	35.0	2.86	0.25	3.17
37.5	3.09	0.91	3.23	37.5	3.31	1.08	3.43
40.0	3.49	1.64	3.36	40.0	3.71	1.85	3.63
42.5	3.84	2.30	3.45	42.5	4.05	2.54	3.78
45.0	4.15	2.91	3.50	45.0	4.34	3.17	3.89
47.5	4.41	3.45	3.53	47.5	4.59	3.73	3.98
50.0	4.63	3.94	3.56	50.0	4.79	4.22	4.05
52.5	4.80	4.37	3.61	52.5	4.94	4.65	4.13
55.0	4.92	4.74	3.71	55.0	5.04	5.00	4.22
57.5	4.99	5.05	3.84	57.5	5.09	5.27	4.33
60.0	5.01	5.28	4.03	60.0	5.07	5.47	4 . 44
62.5	4.98	5.44	4.23	62.5	5.00	5.59	4.54
65.0	4.87	5.52	4.44	65.0	4.85	5.61	4.61
67.5	4.69	5.50	4.61	67.5	4.62	5.53	4.63
70.0	4.42	5.38	4.71	70.0	4.29	5.32	4.56
72.5	4.03	5.11	4.69	72.5	3.83	4.96	4.36
75.0	3.49	4.68	4.49	75.0	3.21	4.42	3.97
77.5	2.74	4.02	4.04	77.5	2.36	3.63	3.33
80.0	1.68	3.02	3.23	80.0	1.18	2.48	2.31
82.5	0.12	1.50	1.87	82.5	-0.54	0.78	0.72
85.0	-2.39	-0.99	-0.51	85.0	-3.24	-1.93	-1.91
87.5	-7.31	-5.90	-5.36	87.5	-8.40	-7.13	-7.05
90.0	-84.89	-86.24	-89.43	90.0	-84.30	-85.52	-89.80

Table A-23. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 6.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Concluded)

 $\varepsilon_r = 4$, $\sigma = 0.15$ mS/m

	VERY DR	Y GROUND	
THETA	5 MHz	17.5 MHz	30 MHz
0.0	-85.30	-85.58	-89.90
2.5	-18.95	-32.45	-19.21
5.0	-12.94	-26.11	-13.17
7.5	-9.44	-22.07	-9.61
10.0	-6.98	-18.92	-7.06
12.5	-5.08	-16.22	-5.08
15.0	-3.55	-13.82	-3.45
17.5	-2.27	-11.65	-2.10
20.0	-1.18	-9.66	-0.94
22.5	-0.24	-7.84	0.04
25.0	0.58	-6.17	0.88
27.5	1.30	-4.64	1.59
30.0	1.94	-3.24	2.19
32.5	2.50	-1.96	2.68
35.0	3.00	-0.80	3.07
37.5	3.44	0.26	3.38
40.0	3.83	1.21	3.62
42.5	4.16	2.06	3.79
45.0	4.44	2.82	3.92
47.5	4.67	3.50	4.02
50.0	4.85	4.08	4.11
52.5	4.99	4.59	4.19
55.0	5.07	5.00	4.28
57.5	5.10	5.34	4.38
60.0	5.07	5.58	4.49
62.5	4.97	5.73	4.59
65.0	4.80	5.79	4.66
67.5	4.55	5.73	4.68
70.0	4.19	5.54	4.61
72.5	3.69	5.20	4.41
75.0	3.03	4.67	4.02
77.5	2.14	3.88	3.38
80.0	0.91	2.74	2.36
82.5	-0.85	1.05	0.77
85.0	-3.61	-1.66	-1.86
87.5	-8.83	-6.86	-7.00
90.0	-85.30	-85.58	-89.90

Table A-24. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials

 $\varepsilon_{\rm f}$ = 30, σ = 15 mS/m

 $\varepsilon_{\rm f}$ = 10, σ = 15 mS/m

	WET G	ROUND			MOIS	ET CLAY	
THETA		17.5 MHz	30 MHz	THETA	5 MHz	17.5 MHz	30 MHz
0.0	-87.01	-87.46	-89.83	0.0	-87.08	-86.35	-90.13
2.5	-20.68	-27.43	-16.74	2.5	-20.68	-26.68	-17.24
5.0	-14.66	-21.36	-10.72	5.0	-14.67	-20.61	-11.22
7.5	-11.16	-17.75	-7.20	7.5	-11.16	-17.00	-7.70
10.0	-8.68	-15.13	-4.70	10.0	-8.68	-14.38	-5.20
12.5	-6.77	-13.04	-2.78	12.5	-6.77	-12.30	-3.27
15.0	-5.21	-11.27	-1.21	15.0	-5.21	-10.53	-1.70
17.5	-3.91	-9.72	0.10	17.5	-3.91	-8.99	-0.38
20.0	-2.80	-8.33	1.21	20.0	-2.79	-7.61	0.74
22.5	-1.82	-7.04	2.17	22.5	-1.82	-6.34	1.71
25.0	-0.97	-5.85	2.99	25.0	-0.96	-5.17	2.55
27.5	-0.20	-4.74	3.70	27.5	-0.20	-4.08	3.27
30.0	0.48	-3.69	4.30	30.0	0.48	-3.05	3.89
32.5	1.09	-2.69	4.79	32.5	1.10	-2.09	4.41
35.0	1.65	-1.75	5.19	35.0	1.65	-1.18	4.83
37.5	2.15	-0.86	5.50	37.5	2.15	-0.31	5.17
40.0	2.60	-0.01	5.70	40.0	2.61	0.50	5.41
42.5	3.01	0.78	5.80	42.5	3.01	1.26	5.57
45.0	3.37	1.53	5.80	45.0	3.38	1.97	5.63
47.5	3.70	2.23	5.69	47.5	3.71	2.63	5.60
50.0	3.98	2.87	5.48	50.0	3.99	3.24	5.48
52.5	4.23	3.46	5.16	52.5	4.24	3.79	5.27
55.0	4.44	4.00	4.74	55.0	4.45	4.28	4.97
57.5	4.62	4.47	4.23	57.5	4.63	4.72	4.61
60.0	4.75	4.89	3.66	60.0	4.76	5.08	4.18
62.5	4.84	5.23	3.05	62.5	4.85	5.38	3.71
65.0	4.86	5.49	2.48	65.0	4.89	5.59	3.23
67.5	4.86	5.67	1.99	67.5	4.87	5.71	2.76
70.0	4.78	5.75	1.63	70.0	4.79	5.71	2.30
72.5	4.62	5.71	1.38	72.5	4.62	5.59	1.84
75.0	4.35	5.52	1.19	75.0	4.34	5.30	1.34
77.5	3.92	5.13	0.93	77.5	3.91	4.78	0.71
80.0	3.26	4.44	0.44	80.0	3.22	3.95	-0.18
82.5	2.20	3.29	-0.52	82.5	2.12	2.59	-1.56
85.0	0.33	1.25	-2.41	85.0	0.19	0.28	-3.91
87.5	-3.74	-3.10	-6.67	87.5	-4.02	-4.44	-8.69
90.0	-87.01	-87.46	-89.83	90.0	-87.08	-86.35	-90.13

Table A-24. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Continued)

 $\varepsilon_r = 10$, $\sigma = 1.5$ mS/m

 $\varepsilon_r = 4$, $\sigma = 1.5$ mS/m

MEDIUM DRY GROUND			SAND				
THETA		17.5 MHz		THETA	5 MHz	17.5 MHz	30 MHz
0.0	-85.09	-86.53	-89.88	0.0	-84.33	-85.83	-90.14
2.5	-19.51	-27.99	-17.19	2.5	-19.26	-31.45	-18.31
5.0	-13.50	-21.87	-11.18	5.0	-13.25	-25.19	-12.27
7.5	-10.00	-18.20	-7.67	7.5	-9.75	-21.28	-8.73
10.0	-7.53	-15.49	-5.19	10.0	-7.28	-18.28	-6.20
12.5	-5.63	-13.29	-3.28	12.5	-5.37	-15.75	-4.23
15.0	-4.09	-11.41	-1.74	15.0	-3.83	-13.51	-2.63
17.5	-2.80	-9.74	-0.45	17.5	-2.55	-11.49	-1.27
20.0	-1.70	-8.22	0.65	20.0	-1.45	-9.64	-0.11
22.5	-0.75	-6.83	1.58	22.5	-0.50	-7.93	0.89
25.0	0.09	-5.53	2.39	25.0	0.33	-6.35	1.76
27.5	0.83	-4.32	3.09	27.5	1.07	-4.89	2.51
30.0	1.48	-3.18	3.68	30.0	1.72	-3.54	3.16
32.5	2.06	-2.12	4.17	32.5	2.30	-2.30	3.70
35.0	2.58	-1.13	4.58	35.0	2.81	-1.16	4.16
37.5	3.04	-0.20	4.89	37.5	3.27	-0.11	4.52
40.0	3.45	0.67	5.11	40.0	3.67	0.85	4.79
42.5	3.81	1.47	5.25	42.5	4.02	1.72	4.99
45.0	4.12	2.21	5.30	45.0	4.32	2.51	5.10
47.5	4.39	2.89	5.26	47.5	4.57	3.21	5.13
50.0	4.61	3.51	5.14	50.0	4.77	3.84	5.10
52.5	4.78	4.06	4.94	52.5	4.93	4.39	5.00
55.0	4.91	4.54	4.69	55.0	5.03	4.85	4.86
57.5	4.99	4.95	4.38	57.5	5.08	5.23	4 . 67
60.0	5.01	5.28	4.05	60.0	5.08	5.53	4.45
62.5	4.98	5.54	3.73	62.5	5.01	5.73	4.21
65.0	4.88	5.70	3.42	65.0	4.87	5.83	3.96
67.5	4.71	5.76	3.14	67.5	4.64	5.82	3.69
70.0	4.44	5.70	2.88	70.0	4.31	5.68	3.38
72.5	4.05	5.50	2.61	72.5	3.86	5.38	2.99
75.0	3.52	5.12	2.25	75.0	3.23	4.89	2.48
77.5	2.77	4.51	1.72	77.5	2.39	4.14	1.75
80.0	1.71	3.55	0.89	80.0	1.21	3.03	0.69
82.5	0.15	2.06	-0.48	82.5	-0.51	1.36	-0.93
85.0	~2.36	-0.41	-2.85	85.0	-3.21	-1.34	-3.57
87.5	-7.28	-5.31	-7.69	87.5	-8.36	-6.52	-8.72
90.0	-85.09	-86:53	-89.88	90.0	-84.33	-85.83	-90.14

Table A-24. Antenna Directivity in dBi versus Polar Angle Theta (θ) for Three Frequencies and Five Soil Conditions, for 7.0 Meter High Monopole with 12 Meter Radius Ground Screen of 16 Radials (Concluded)

 $\varepsilon_{\rm f}$ = 4, σ = 0.15 mS/m

	VERY DE	Y GROUND	
THETA	5 MHz		30 MHz
0.0	-85.40	-86.10	-90.12
2.5	-19.02	-37.48	-19.35
5.0	-13.01	-31.14	-13.28
7.5	-9.51	-27.05	-9.67
10.0	-7.04	-23.71	-7.06
12.5	-5.15	-20.69	-5.00
15.0	-3.61	-17.89	-3.28
17.5	-2.33	-15.27	-1.82
20.0	-1.24	-12.85	-0.56
22.5	-0.30	-10.62	0.54
25.0	0.53	-8.58	1.50
27.5	1.26	-6.72	2.33
30.0	1.90	-5.04	3.03
32.5	2.47	-3.51	3.63
35.0	2.97	-2.12	4:12
37.5	3.41	-0.87	4.51
40.0	3.80	0.26	4.80
42.5	4.14	1.27	5.00 5.11
45.0	4.43	2.18	5.11
47.5	4.66	2.99	5.10
50.0	4.85 4.99	3.70 4.31	5.00
52.5 55.0	4.99 5.08	4.31	4.84
57.5	5.11	5.26	4.65
60.0	5.09	5.59	4.44
62.5	5.00	5.82	4.21
65.0	4.83	5.95	3.98
67.5	4.58	5.96	3.73
70.0	4.22	5.83	3.44
72.5	3.73	5.54	3.08
75.0	3.07	5.06	2.59
77.5	2.18	4.31	1.88
80.0	0.96	3.20	0.83
82.5	-0.81	1.53	-0.77
85.0	-3.57	-1.16	-3.41
87.5	-8.79	-6.34	-8.55
90.0	-85.40	-86.10	-90.12