Learning objectives:

- 1. Find areas of regions bounded between two or more curves.
- 2. We either divide a region in vertical strips and integrate with respect to x, or we divide a region in horizontal strips and integrate with respect to y.

Area using vertical strips

The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continuous and $f(x) \ge g(x)$, for $a \le x \le b$, is

$$A = \int_a^b \left[f(x) - g(x) \right] dx.$$

Example 1. Find the area of the region bounded by $y = x^2 + 1$, y = x, x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

Example 3. Find the area of the region enclosed by $y = x/\sqrt{x^2 + 1}$, $x = \sqrt{3}$ and the x-axis.

To find the area between the curves y = f(x) and y = g(x), when $f(x) \ge g(x)$ for some values of x while $g(x) \ge f(x)$ for some other values of x, we split the given region into several regions.

In general, the area between the curves y = f(x), y = g(x), x = a and x = b, (a < b), is given by

$$A = \int_a^b |f(x) - g(x)| dx.$$

Here we keep in mind that

$$|f(x) - g(x)| = \begin{cases} f(x) - g(x) & \text{if } f(x) \ge g(x), \\ g(x) - f(x) & \text{if } g(x) \ge f(x). \end{cases}$$

Example 4. Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

Area using horizontal strips.

Some regions are best treated by regarding x as a function of y.

If a region is bounded by the curves x = f(y), x = g(x), y = c and y = d, (c < d), then its area is given by

$$A = \int_c^d |f(y) - g(y)| \, dy \; .$$

Example 5. Find the area enclosed by the line y = x-1 and the parabola $y^2 = 2x+6$.