Lab11-Reducibility

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- * Please upload your assignment to FTP or submit a paper version on the next class
 - * If there is any problem, please contact: steinsgate@sjtu.edu.cn
 - * Name: Yupeng Zhang StudentId: 5130309468 Email: 845113336@qq.com
- 1. Recall that $A \otimes B = \{\pi(a, b) \mid a \in A, b \in B\}$. Prove the following statements.
 - (a) For any sets A, B, if $B \neq \emptyset$ then $A \leq_m A \otimes B$.

Proof:

Because $B \neq \emptyset$, so we have the total computable function $f(x) = \pi(x, b)$ where $b \in B$. So we have $x \in A$ iff $f(x) \in A \otimes B$. Therefore, we have $A \leq_m A \otimes B$.

(b) $A \equiv_m A \otimes \mathbb{N}$ for any set A,

Proof:

According to (a), we have $A \leq_m A \otimes N$. Then, we have the function $f(x) = \pi_1(x)$, and we have $x \in A \otimes N$ iff $f(x) \in A$. Thus we have $A \otimes N \leq_m A$. Therefore, $A \equiv_m A \otimes N$.

(c) $A \equiv_m A \otimes B$ if $A \neq \mathbb{N}$ and B is a non-empty recursive set.

Proof:

According to (a), we have $A \leq_m A \otimes B$. Then we define a total computable function:

$$f(x) = \begin{cases} \pi_1(x) &, \pi_2 \notin B \\ k &, \text{ otherwise } \end{cases}, k \notin A$$

So, we have $x \in A \otimes N$ iff $f(x) \in A$. Thus we have $A \otimes N \leq_m A$. Therefore, $A \equiv_m A \otimes B$.

- 2. Let **a**, **b** be m-degrees.
 - (a) Show that the least upper bound of \mathbf{a} , \mathbf{b} is uniquely determined; denote this by $\mathbf{a} \cup \mathbf{b}$;

Proof:

According to the theorem, any pair of m-degrees \mathbf{a} , \mathbf{b} have a least upper bound. If \mathbf{c} , \mathbf{d} are both least upper bounds, then $\mathbf{c} \leq_m \mathbf{d}$ and $\mathbf{d} \leq_m \mathbf{c}$, so $\mathbf{c} = \mathbf{d}$.

(b) Show that if $\mathbf{a} \leq_m \mathbf{b}$ then $\mathbf{a} \cup \mathbf{b} = \mathbf{b}$;

Proof:

According to the definition, $\mathbf{b} \leq_m \mathbf{a} \cup \mathbf{b}$. So \mathbf{b} is an upper bound of \mathbf{a} and \mathbf{b} . So, $\mathbf{a} \cup \mathbf{b} \leq_m \mathbf{b}$. So, $\mathbf{c} = \mathbf{d}$.

(c) Show that if \mathbf{a}, \mathbf{b} are r.e., then so is $\mathbf{a} \cup \mathbf{b}$;

Proof:

Pick $A \in \mathbf{a}$, $B \in \mathbf{b}$, and because **a** and **b** are both r.e.. So, A and B are both r.e.. So, their direct sum is still r.e.. By the proof of Theorem 2.8 in the textbook, $\mathbf{a} \cup \mathbf{b}$ is r.e..

(d) Let $A \in \mathbf{a}$ and let \mathbf{a}^* denote $d_m(\overline{A})$. (Check that \mathbf{a}^* is independent of the choice of $A \in \mathbf{a}$.) Show that $(\mathbf{a} \cup \mathbf{a}^*)^* = \mathbf{a} \cup \mathbf{a}^*$.

Proof:

We assume that $\mathbf{b} = \mathbf{a} \cup \mathbf{a}^*$.

We first claim that \mathbf{b}^* is an upper bound for \mathbf{a} and \mathbf{a}^* , so $\mathbf{b} \leq_m \mathbf{b}^*$.

Then, for $X \in \mathbf{b}^*, \overline{X} \in \mathbf{b}$ by definition. So for $Y \in \mathbf{a}, \overline{Y} \in \mathbf{a}^* \leq_m \mathbf{b}$, so $\overline{Y} \leq_m \overline{X}$ and $Y \leq_m X$. So, $\mathbf{a} \leq_m \mathbf{b}^*, \mathbf{a}^* \leq_m \mathbf{b}^*$, so $\mathbf{b} \leq_m \mathbf{b}^*$.

Because \mathbf{b}^* is well-defined, so $\mathbf{b}^* \leq_m (\mathbf{b}^*)^* = \mathbf{b}$, so $\mathbf{b} = \mathbf{b}^*$.

- 3. Show that the following sets all belong to the same m-degree:
 - (a) $\{x \mid \phi_x = 0\},\$
 - (b) $\{x \mid \phi_x \text{ is total and constant}\},\$
 - (c) $\{x \mid W_x \text{ is infinite}\}.$

Proof:

First, we proof $(a) \leq_m (b)$.

According the s-m-n theorem, there exists a total computable function k such that:

$$\forall x, \phi_{k(x)}(y) = y \sum_{z=0}^{y} \phi_{x}(z)$$

If $\phi_x = 0$, then $\phi_{k(x)} = 0$, so $\phi_{k(x)}$ is total and constant.

If $\phi_x \neq 0$, then either ϕ_x is total or it is not. If ϕ_x is not total, then neither is $\phi_{k(x)}$. If ϕ_x is total, choose y such that $\phi_x(y) > 0$. Then:

$$\phi_{k(x)}(y+1) = (y+1) \sum_{z=0}^{y+1} \phi_x(z) \ge (y+1) \sum_{z=0}^{y} \phi_x(z) \ge \phi_{k(x)}(y) + \phi_x(y) > \phi_{k(x)}(y)$$

So, $\phi_{k(x)}$ is not constant, so $(a) \leq_m (b)$.

Then, we proof $(b) \leq_m (c)$.

According the s-m-n theorem there exists a total computable function s such that:

$$\forall x, \phi_{s(x)}(0) = \phi_x(0), \phi_{s(x)}(y+1) = \begin{cases} \phi_x(y+1) &, \phi_{s(x)}(y) \text{ is defined and } \phi_x(y+1) = \phi_{s(x)}(y) \\ \uparrow &, \text{otherwise} \end{cases}$$

If ϕ_x is total and constant, then $\phi_{s(x)} = \phi_x$, so $W_{s(x)} = \mathbb{N}$ is infinite.

If ϕ_x is not total, then there exists y such that $\phi_x(y)$ is undefined; by construction then, $\phi_{s(x)}(z)$ is undefined for all $z \geq y$, so $W_{s(x)}$ is finite.

If ϕ_x is total but not constant, then there exists a least y > 0 such that $\phi_x(y) \neq \phi_x(0)$; by construction again, $\phi_{s(x)}(z)$ is undefined for all $z \geq y$, so $W_{s(x)}$ is finite.

So,
$$(b) \leq_m (c)$$
.

Finally, we proof $(c) \leq_m (a)$.

According to the s-m-n theorem there exists a total computable function u such that:

$$\forall x, \phi_{u(x)} = \mathbf{0}(\mu t(\bigvee_{i=0}^{t} H_1(x, y+i, t)))$$

If W_x is infinite, then for any y there exists $z \ge y$ such that $\phi_x(z)$ is defined, so $\phi_{u(x)}(y) = 0$. Since y was arbitrary, $\phi_{u(x)} = 0$.

If W_x is finite, there exists some y such that for all $z \geq y$, $\phi_{u(x)}(y)$ is undefined and $\phi_{u(x)} \neq 0$. So, $(c) \leq_m (a)$.

Since $(a) \leq_m (b) \leq_m (c) \leq_m (a)$, so these sets all belong to the same m-degree.