Predicting 3M Corporation's Weekly Stock Return using Linear Regression

Jay Kwon

Metis Data Science and Engineering (flex program)

Module 2 – Linear Regression and Web Scraping

November 10, 2021

Goal:

- Create a Linear Regression model to predict the weekly returns for 3M corporation's stock.
 - 1. optimize the performance of the model.
 - 2. gain insights on how to predict stock returns, including which features are most relevant

Motivation:

- insights gained would be beneficial to anyone interested in stock returns including:
 - investors (individuals, wealth management firms, hedge funds, pension funds)
 - financial news (Bloomberg, CNBC, Wall Street Journal)
 - ratings agencies (S&P, Moody's, Fitch)
 - financial services

DATASET:

- Target: Weekly return of 3M stock derived from historic prices scraped from https://finance.yahoo.com/quote/MMM/
- Feb, 2010 to Feb, 2020 : 522 weeks
- Features derived from historic price and volume: previous week's price, weekly avg volume traded
- Features from other data sources (Federal Reserve): inflation, unemployment,
 Fed Funds rate, and US treasury rate
- Why 3M Corporation? Less volatile, easier to predict
 - large, mature company with long history (founded 1902, part of S&P 500), not as volatile as a small growing company
 - Industrials sector is not as volatile as other sectors like Tech

Tools used:

Selenium, BS, Numpy, Pandas, Matplotlib, Seaborn, StatsModels, scikit-learn

HISTORIC TREND OF STOCK MARKET

Initial Model:

Takeaways:

- Recent historical returns may be more valuable predictors compared to older historical returns.
- Fed Funds Rate, Inflation, and 1-yr Treasuries are not good predictors of returns

Performance and Feature Interpretation:

OLS Regression Results							
Dep. Variable:		wk_return		R-squared:			0.106
Model:		OLS		Adj.	Adj. R-squared:		0.098
Method:		Least Squares		F-statistic:			12.28
Date:		Wed, 10 Nov 2021		Prob (F-statistic):			2.87e-11
Time:		01:	19:21	Log-	Likelihood:	1181.3	
No. Observations:			522	AIC:			-2351.
Df Residuals:			516	BIC:			-2325.
Df Model:			5				
Covariance	Type:	nonro	obust 				
	coef	std err		t	P> t	[0.025	0.975]
const	0.0100	0.004	:	2.639	0.009	0.003	0.018
avg_volume	-9.562e-09	1.3e-09	_'	7.372	0.000	-1.21e-08	-7.01e-09
wk_1	-0.1629	0.044	-:	3.691	0.000	-0.250	-0.076
wk_2_5	-0.4021	0.095		4.235	0.000	-0.589	-0.216
wk_6_17	-0.4676	0.176	-:	2.662	0.008	-0.813	-0.123
UNRATE	0.0034	0.001		5.072	0.000	0.002	0.005
========		 :========	=====	=====	========		========

- Adj R-squared of 0.10
 means that our features
 explain 10% of the variance
 of our target
- In the domain of finance, an R-squared of 0.20 is considered stellar

High condition number (not shown) suggest multicollinearity

- When average volume traded was high last week, the weekly return this week will be low
- When returns have been high in previous weeks, the weekly return this week will be low
- When unemployment is high, the returns will be high

Fixing Multicollinearity

- Problem: correlation between features:
 Average volume and Unemployment rate
- Keep Average Volume
 (stronger correlation of -0.18)

- Upon removing UNRATE, wk_6_17 became insignificant and had to be removed
- Our final model has 3 features, with avg_volume having the strongest correlation to our target.

Performance on Unseen Data

- Our final model has 3 features: previous week return, -2 to -5 week average return, and previous week's average volume (highest correlation to target, -0.18)
 - → R-squared: 0.059 Adj. R-squared: 0.053
 - → this is on the entire 522 rows that it was trained on
- 5-fold Cross Validation on final model
 - \rightarrow R-squares: 0.041, -0.16, -0.075, -0.068, -0.012
 - → avg. R-square: -0.055
 - → significantly smaller than 0.059 we saw above.
- A negative R-squared of -0.055 means that our model is performing worse than if we were to use the simple average of the previous weekly stock returns (naïve model).
- Perhaps party affected by 20% less data used to train the model
- 522 rows total is a limited amount of data
- wide ranged in R-squared values calculated in the cross validation suggests that more of the same type of data is necessary

CONCLUSIONS AND RECOMMENDATIONS:

Conclusions:

- Previous week's average volume traded may be weakly, negatively correlated with future return
- Macro factors including inflation, fed funds rate, unemployment are poor predictors of future return
- Previous returns are poor predictors of future return
- Weekly returns may limit the amount of data too much for the features and target examined.

Recommendations:

- Look for more company specific features, metrics derived from financial statements and the news such as expected and actual revenue, and earnings per share
- Find a way to obtain more data to train and test the models on: e.g. use daily returns or try to predict cross sectionally across many stocks instead of longitudinally over time
- Try modeling sectors or indices instead of individual stocks.

Supplemental:

- Further regression assumption check on avg_volume feature:

- RMSE of 5-fold cross validation of our final model:
- 5-fold cross validation RMSE's: [0.035 0.021 0.023 0.02 0.031]
- 5-fold cross validation RMSE mean: 0.026