1 10th of October 2018 — F. Poloni

This lecture has the goal of introducing the concept of linear combinations.

Definition 1.1 (Linear combination). In a very unformal way, we can define the goal of linear combination as the pursuit of obtaining a certain target vector $b \in \mathbb{R}^n$ using m (in principle $m \neq n$) vectors a_1, a_2, \ldots, a_m such that:

$$a_1x_1 + a_2x_2 + \dots + a_mx_m = b$$

where x_i are properly chosen.

The task of finding such vectors is called **solving a linear system** and it is formally written as Ax = b.

Theorem 1.1. Let $A \in M(n,m)$ and let $b \in \mathbb{R}^n$. It holds that any linear system Ax = b is solvable iff A is invertible.

We are interested in finding approximate solutions of such systems, where the proximity to the target is expressed in terms as ||Ax - b|| that should be close to zero. A geometric inutition is displayed in Figure 1.1.

FIGURE 1.1: In this case the image of the matrix A (in red) does not contain b and the best one can do is to obtain a projection of b in the plane Im(A) (drawn in blue).

Something on Matlab ...

Matlab provides syntactic sugar to solve linear systems.

Before introducing such syntax let we just notice the following $5\ 2\ (=2/5) \neq 5/2$. The syntax to solve Ax = b is $A\ b$, where the algorithm used in Matlab is not inverting the matrix A and then performing the multiplication, but it is a more sophisticated and efficient one.

Definition 1.2 (Linearly square problem). Let $A \in M(n, m, \mathbb{R})$ and let $b \in \mathbb{R}^n$, we term linearly square problem the task of computing $\min_{x \in \mathbb{R}^m} ||Ax - b||_2$.

Something on Matlab ...

In Matlab the syntax .func means that function func should be performed entry by entry of the non-scalar variable.

An example of a practical least square problem may be predicting the salary of NBA players, assuming that the income is obtained as a linear combination of some features.

Definition 1.3 (Full rank matrix). Let $A \in M(n, m, \mathbb{R})$ we say that A has **full column** $\operatorname{rank} if \ker A = \{0\}.$

Equivalently, rk(A) = n or alternatively $\nexists z \in \mathbb{R}^n \setminus \{0\}$ such that Az = 0.

Fact 1.2. Let $A \in M(n, m, \mathbb{R})$, the least square problem ||Ax - b|| = 0|| has a unique solution iff A has full column rank.

Theorem 1.3. Let $A \in M(n, m, \mathbb{R})$. A has full column rank iff A^TA is positive definite.

Proof. A has full column rank $\iff ||Az|| \neq 0, \forall z \in \mathbb{R}^m \setminus \{0\} \iff ||Az||^2 \neq 0, \forall z \in \mathbb{R}^m \setminus \{0\} \iff 0 = (Az)^T Az = z^T A^T Az.$