Architettura degli Elaboratori

Corso di Laurea in Informatica Prova Finale - 18 Dicembre 2006

Compito 1 Prima Parte

1.	Codificare il numero reale -99,59375 nella notazi frazionaria e 8 per quella intera in	ione in virgola fissa a 14 bit, di cui 6 bit per la parte
	(a) modulo e segno a 8 bit	
	(b) complemento a 2 a 8 bit	
2.	Determinare il numero reale rappresentato dalla fissa in cui la parte intera è codificata in	sequeza di bit 1010101001 nella notazione in virgola
	(a) modulo e segno a 6 bit	(b) complemento a 2 a 6 bit
3.	Convertire da base 8 a base 2 i seguenti numeri	
	(a) 53	(b) 74
4.	Determinare la forma SOP minimale della fun-	zione booleana avente la seguente tabella di verità

4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

				1.1
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	-
0	1	0	1	0
0	1	1	0	0
0	1	1	1	-
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

SOP			

	$\overline{x}_3\overline{x}_4$	\overline{x}_3x_4	x_3x_4	$x_3\overline{x}_4$
$\overline{x}_1\overline{x}_2$				
$\overline{x}_1 x_2$				
x_1x_2				
$x_1\overline{x}_2$				

5.

6. Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j=3i per $i\geq 0$ $z_j=1$ se e solo se $x_{j-2}x_{j-1}x_j$ coincide con la sequenza 100, mentre in tutti gli altri istanti $z_j=0$.

x	y_1	y_2	Y_1	Y_2	d_1	t_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Seconda Parte

- 1. (3 punti) Un disco rigido di 256MB ha 16 piatti con 512 tracce a piatto e settori da 1024 byte. Quanti sono i settori per traccia?
- 2. (3 punti) Cosa contiene il registro R3 dopo la seguente sequenza di istruzioni? LDI R1,20 – LDI R2,2 – MUL R1,R1,R2 – ADD R3,R1,R1 – SUB R3,R3,R1
- 3. (3 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	5	150
Moltiplicazione	6	200
Accesso in Memoria	8	400
Salti Condizionati	2	80

Determinare il tempo impiegato per l'esecuzione del programma da parte di una CPU con una frequenza di clock pari a 2GHz.

- 4. (3 punti) Determinare la fase di execute dell'istruzione INC4 V(RB), RA, che ha l'effetto di porre nella locazione di memoria il cui indirizzo simbolico é V(RB) il contenuto del registro RA incrementato di 4, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA e RB e i 16 bit meno significativi alla codifica dell'indirizzo simbolico V.
- 5. (3 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 256GB assumendo che essa sia composta nell'ordine da integrati di dimensione 64MB, 32MB, 16MB, 16MB e 128MB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

Architetture degli Eleboratori

Corso di Laurea in Informatica 18 Dicembre 2006

Compito 2

Prima Parte

1.	Codificare il numero reale $-121,4375$ nella notazione in virgola fissa a 14 bit, di cui 6 bit per la parte frazionaria e 8 per quella intera in
	(a) modulo e segno a 8 bit (b) complemento a 2 a 8 bit
2.	Determinare il numero reale rappresentato dalla sequeza di bit 1101010110 nella notazione in virgola fissa in cui la parte intera codificata in
	(a) modulo e segno a 6 bit (b) complemento a 2 a 6 bit
3.	Convertire da base 8 a base 2 i seguenti numeri naturali
	(a) 34 (b) 71
1	Determinare le forme COP minimale delle funcione heclane evente le germante tabelle di venité

4. Determinare la forma SOP	minimale della fu	unzione booleana	avente la seguente	tabella di veritá,
utilizzando il metodo delle	mappe di Karnau	ıgh:		

				1.1
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	-

	$\overline{x}_3\overline{x}_4$	\overline{x}_3x_4	x_3x_4	$x_3\overline{x}_4$
$\overline{x}_1\overline{x}_2$				
$\overline{x}_1 x_2$				
x_1x_2				
$x_1\overline{x}_2$				

5

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j=3*i zj=1 se e solo se xj-2 xj-1 xj coincide con la sequenza 011.

x	y_1	y_2	Y_1	Y_2	d_1	t_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Seconda Parte

- 1. (3 punti) Un disco rigido di 128 MB ha 8 piatti con 1024 tracce a piatto, 128 settori per traccia. Quanti sono i byte per settore?
- 2. (3 punti) Cosa contiene il registro R3 dopo la seguente sequenza di istruzioni? LDI R1,40 LDI R2,3 MUL R3,R1,R1 ADD R1,R1,R2 SUB R3,R3,R1
- 3. (3 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	110
Moltiplicazione	4	150
Accesso in Memoria	8	200
Salti Condizionati	7	70

Determinare il tempo impiegato per l'esecuzione del programma da parte di una CPU con una frequenza di clock pari a 2GHz.

- 4. (3 punti) Determinare la fase di execute dell'istruzione QUAD V(RB), RA, che ha l'effetto di porre nella locazione di memoria il cui indirizzo simbolico é V(RB) il contenuto del registro RA elevato al quadrato, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA e RB e i 16 bit meno significativi alla codifica dell'indirizzo simbolico V.
- 5. (3 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 128MB assumendo che essa sia composta nell'ordine da integrati di dimensione 16MB, 8MB, 8MB, 32MB e 64MB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

Architetture degli Eleboratori

Corso di Laurea in Informatica 18 Dicembre 2006

${\bf Compito} \ {\bf 3}$

Prima Parte

1.	Codificare il numero reale -69,34375 nella notazione in virgola fissa a 14 bit, di cui 6 bit per la parte frazionaria e 8 per quella intera in
	(a) modulo e segno a 8 bit
	(b) complemento a 2 a 8 bit
2.	Determinare il numero reale rappresentato dalla sequeza di bit 1001101010 nella notazione in virgola fissa in cui la parte intera codificata in
	(a) modulo e segno a 6 bit (b) complemento a 2 a 6 bit
3.	Convertire da base 8 a base 2 i seguenti numeri naturali
	(a) 69
	(b) 55
4.	Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di verità.

4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá, utilizzando il metodo delle mappe di Karnaugh:

The second of th						
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$		
0	0	0	0	1		
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	1		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	-		
1	1	1	0	-		
1	1	1	1	0		

	$\overline{x}_3\overline{x}_4$	\overline{x}_3x_4	x_3x_4	$x_3\overline{x}_4$
$\overline{x}_1\overline{x}_2$				
$\overline{x}_1 x_2$				
x_1x_2				
$x_1\overline{x}_2$				

5

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j=3*i zj=1 se e solo se xj-2 xj-1 xj coincide con la sequenza 110.

x	y_1	y_2	Y_1	Y_2	d_1	t_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Seconda Parte

- 1. (3 punti) Un disco rigido di 256MB ha 512 tracce a piatto, 32 settori per traccia e settori da 1024 byte. Quanti sono i piatti?
- 2. (3 punti) Cosa contiene il registro R3 dopo la seguente sequenza di istruzioni? LDI R1,10 LDI R2,2 ADD R1,R1,R2 MUL R3,R1,R1 SUB R3,R3,R1
- 3. (3 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	1	115
Moltiplicazione	9	90
Accesso in Memoria	7	80
Salti Condizionati	3	300

Determinare il tempo impiegato per l'esecuzione del programma da parte di una CPU con una frequenza di clock pari a 4GHz.

- 4. (3 punti) Determinare la fase di execute dell'istruzione INC4 RA,V(RB), che ha l'effetto di porre nel registro RA il contenuto della locazione di memoria il cui indirizzo simbolico é V(RB) incrementato di 4, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA e RB e i 16 bit meno significativi alla codifica dell'indirizzo simbolico V.
- 5. (3 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 512KB assumendo che essa sia composta nell'ordine da integrati di dimensione 32KB, 32KB, 64KB, 128KB e 256KB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

Architetture degli Eleboratori

Corso di Laurea in Informatica 18 Dicembre 2006

Compito 4

Prima Parte

1.	Codificare il numero reale -85,65625 nella notazione in virgola fissa a 14 bit, di cui 6 bit per la parte frazionaria e 8 per quella intera in
	(a) modulo e segno a 8 bit
	(b) complemento a 2 a 8 bit
2.	Determinare il numero reale rappresentato dalla sequeza di bit 1011101101 nella notazione in virgola fissa in cui la parte intera codificata in
	(a) modulo e segno a 6 bit (b) complemento a 2 a 6 bit
3.	Convertire da base 8 a base 2 i seguenti numeri naturali
	(a) 77
	(b) 94
1	Determinare la forma SOP minimale della funzione hooleana avente la seguente tabella di verità

4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá, utilizzando il metodo delle mappe di Karnaugh:

mazando il metodo dene mappe di 11a						
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	1		
0	0	1	1	1		
0	1	0	0	0		
0	1	0	1	-		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	-		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	0		
1	1	1	0	1		
1	1	1	1	1		

	$\overline{x}_3\overline{x}_4$	\overline{x}_3x_4	x_3x_4	$x_3\overline{x}_4$
$\overline{x}_1\overline{x}_2$				
$\overline{x}_1 x_2$				
x_1x_2				
$x_1\overline{x}_2$				

5

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j=3*i zj=1 se e solo se xj-2 xj-1 xj coincide con la sequenza 001.

x	y_1	y_2	Y_1	Y_2	d_1	t_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Seconda Parte

- 1. (3 punti) Un disco rigido di 512MB ha 16 piatti con 128 settori per traccia e settori da 510 byte. Quante sono le tracce per piatto?
- 2. (3 punti) Cosa contiene il registro R3 dopo la seguente sequenza di istruzioni? LDI R1,30 LDI R2,3 ADD R1,R1,R2 MUL R3,R1,R1 SUB R3,R3,R1
- 3. (3 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	200
Moltiplicazione	3	70
Accesso in Memoria	5	30
Salti Condizionati	8	120

Determinare il tempo impiegato per l'esecuzione del programma da parte di una CPU con una frequenza di clock pari a 4GHz.

- 4. (3 punti) Determinare la fase di execute dell'istruzione QUAD RA, V(RB), che ha l'effetto di porre nel registro RA il contenuto della locazione di memoria il cui indirizzo simbolico é V(RB) elevato al quadrato, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA e RB e i 16 bit meno significativi alla codifica dell'indirizzo simbolico V.
- 5. (3 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 64MB assumendo che essa sia composta nell'ordine da integrati di dimensione 16MB, 4MB, 4MB, 8MB e 32MB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.