2021 年全国硕士研究生招生考试

学 (一) 数

(科目代码:301)

(1) 函数
$$f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0, \\ 1, & x = 0 \end{cases}$$
 在 $x = 0$ 处().

(A) 连续且取得极大值

(B) 连续目取得极小值

(C) 可导目导数等干零

- (D) 可导且导数不为零
- (2) 设函数 f(x,y) 可微,且 $f(x+1,e^x) = x(x+1)^2$, $f(x,x^2) = 2x^2 \ln x$,则 df(1,1) = ((B)dx - dy(C)dy
- (3) 设函数 $f(x) = \frac{\sin x}{1+r^2}$ 在 x = 0 处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$,则(

$$(A)a = 1, b = 0, c = -\frac{7}{6}$$

(B)
$$a = 1, b = 0, c = \frac{7}{6}$$

(C)
$$a = -1, b = -1, c = -\frac{7}{6}$$
 (D) $a = -1, b = -1, c = \frac{7}{6}$

(D)
$$a = -1, b = -1, c = \frac{7}{6}$$

(4) 设函数 f(x) 在区间[0,1] 上连续,则 $\int_{0}^{1} f(x) dx = ($).

(A)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{2n}$$

(B)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{n}$$

(C)
$$\lim_{n \to \infty} \sum_{k=1}^{2n} f\left(\frac{k-1}{2n}\right) \frac{1}{n}$$

(D)
$$\lim_{n \to \infty} \sum_{k=1}^{2n} f\left(\frac{k}{2n}\right) \frac{2}{n}$$

(5) 设二次型 $f(x_1,x_2,x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 - (x_3 - x_1)^2$ 的正惯性指数与负惯 性指数依次为(

- (A)2,0
- (B)1.1

(6) 已知 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1$, $\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - k\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - l_1\boldsymbol{\beta}_1 - l_2\boldsymbol{\beta}_2$, 若 $\boldsymbol{\beta}_1$,

β₂, β₃ 两两相交,则 l₁, l₂ 依次为().

- (A) $\frac{5}{2}$, $\frac{1}{2}$ (B) $-\frac{5}{2}$, $\frac{1}{2}$ (C) $\frac{5}{2}$, $-\frac{1}{2}$ (D) $-\frac{5}{2}$, $-\frac{1}{2}$

7) 设A,B 为n 阶实矩阵,下列结论不成立的是(

$$(A)r\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}}\mathbf{A} \end{pmatrix} = 2r(\mathbf{A})$$

$$(B)r\begin{pmatrix} \mathbf{A} & \mathbf{AB} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A})$$

$$(B)r\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A})$$

$$(B)r\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A})$$

$$(C)r\begin{pmatrix} \mathbf{A} & \mathbf{B}\mathbf{A} \\ \mathbf{O} & \mathbf{A}\mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A})$$
 (D) $r\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B}\mathbf{A} & \mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A})$

- 8) 设 A, B 为随机事件, E 0 < P(E) < 1, 下列命题中为假命题的是(
 - (A) 若 P(A|B) = P(A), 则 P(A|B) = P(A)
 - (B) 若P(A|B) > P(A),则 $P(\overline{A}|\overline{B}) > P(\overline{A})$
 - (C) 若 P(A|B) > P(A|B),则 P(A|B) > P(A)
 - (D) 若 $P(A \mid A \cup B) > P(\overline{A} \mid A \cup B)$,则 P(A) > P(B)
- 9) 设 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ 为来自总体 $N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$ 的简单随机样本,

令
$$\theta = \mu_1 - \mu_2$$
, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$, $\hat{\theta} = \overline{X} - \overline{Y}$,则().

$$(A)\hat{\theta}$$
 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$

(B)
$$\hat{\theta}$$
 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$

$$(C)\hat{\theta}$$
 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}{n}$

(D)
$$\hat{\theta}$$
 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}{n}$

10) 设 X_1, X_2, \cdots, X_{16} 是来自总体 $N(\mu, 4)$ 的简单随机样本,考虑假设检验问题: $H_0: \mu \leq 10$, $H_1:\mu > 10, \Phi(x)$ 表示标准正态分布函数,若该检验问题的拒绝域为 $W = \{\overline{X} \ge 11\}$,其

中
$$\overline{X} = \frac{1}{16} \sum_{i=1}^{16} X_{i}$$
,则 $\mu = 11.5$ 时,该检验犯第二类错误的概率为()

$$(A)1 - \Phi(0.5)$$

(B)1
$$- \Phi(1)$$

$$(C)1 - \Phi(1.5)$$

(D)1
$$-\Phi(2)$$

-、填空题($11\sim16$ 小题,每小题 5 分,共 30 分,请将答案写在题中的横线上,)

$$11) \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} = \underline{\qquad}.$$

12) 设函数
$$y = y(x)$$
 由参数方程 $\begin{vmatrix} x = 2e^t + t + 1, \\ y = 4(t - 1)e^t + t^2 \end{vmatrix}$ 所确定,则 $\frac{d^2 y}{dx^2} \Big|_{t=0} =$ _____.

- 3) 欧拉方程 $x^2y'' + xy' 4y = 0$ 满足条件 y(1) = 1, y'(1) = 2 的解为 y = 1
- 4) 设 Σ 为空间区域 $\{(x,y,z) \mid x^2 + 4y^2 \le 4, 0 \le z \le 2\}$ 表面的外侧,则曲面积分 $\iint x^2 \, \mathrm{d}y \, \mathrm{d}z + y^2 \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y = \underline{\qquad}.$
- 5) 设 $\mathbf{A} = (a_{ij})$ 为 3 阶矩阵, A_{ij} 为代数余子式,若 \mathbf{A} 的每行元素之和均为 2,且 $|\mathbf{A}| = 3$, 则 $A_{11} + A_{21} + A_{31} =$
- 6) 甲、乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙 盒中,再从乙盒中任取一球,令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y

的相关系数为 .

三、解答题($17\sim22$ 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)

(17) (本题满分 10 分)

求极限
$$\lim_{x\to 0} \left(\frac{1+\int_0^x e^{t^2} dt}{e^x-1} - \frac{1}{\sin x} \right).$$

(18) (本题满分 12 分)

设
$$u_n(x) = e^{-nx} + \frac{x^{n+1}}{n(n+1)} (n=1,2,\dots)$$
,求级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域及和函数.

(19) (本题满分 12 分)

已知曲线
$$C: \begin{cases} x^2 + 2y^2 - z = 6, \\ 4x + 2y + z = 30, \end{cases}$$
 求 C 上的点到 xOy 坐标面距离的最大值.

(20) (本题满分12分)

设 $D \subset \mathbf{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4-x^2-y^2) \mathrm{d}x \,\mathrm{d}y$ 取得最大值的积分区域为 D_1 .

(I) 求 *I*(*D*₁) 的值;

(II) 计算
$$\int_{\partial D_1} \frac{(x e^{x^2+4y^2}+y) dx + (4y e^{x^2+4y^2}-x) dy}{x^2+4y^2}$$
,其中 ∂D_1 是 D_1 的正向边界.

(21)(本题满分12分)

已知
$$\mathbf{A} = \begin{pmatrix} a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$$
.

- (I) 求正交矩阵 P, 使得 $P^{T}AP$ 为对角矩阵;
- (II) 求正定矩阵 C, 使得 $C^2 = (a+3)E A$.

(22)(本题满分12分)

在区间(0,2) 上随机取一点,将该区间分成两段,较短一段的长度为 X,较长一段的长度为 Y,令 $Z=\frac{Y}{Y}$.

- (I) 求 X 的概率密度;
- (Ⅱ) 求 Z 的概率密度;

(
$$\blacksquare$$
) 求 $E\left(\frac{X}{Y}\right)$.