Diskretna matematika 2

Zadaća 2 March 2, 2025 Borna Gojšić

- 1. Dokažite da za svaki prirodan broj n vrijedi
 - a) $n^3 \equiv n \pmod{6}$
 - b) $n^5 \equiv n \pmod{30}$

Rj:

- a) Primijetimo da je $n^3 n = n(n^2 1) = n(n 1)(n + 1)$. n 1, n i n + 1 su 3 uzastopna prirodna broja. Dakle, bar 1 od njih je djeljiv s 2 i također bar 1 od njih je djeljiv s 3. Dakle, imamo $2 \mid n^3 n$ i $3 \mid n^3 n$, odnosno $6 \mid n^3 n$, tj. $n^3 \equiv n \pmod 6$.
- b) Primijetimo da je $n^5 n = n(n^4 1) = n(n^2 1)(n^2 + 1) = n(n 1)(n + 1)(n^2 + 1)$. Već smo dokazali da 6 | n(n + 1)(n 1). Sada, ako $5 \nmid n, n 1, n + 1$, onda imamo $n = 5k \pm 2$ za neki $k \in \mathbb{Z}$. Sada vidimo da je $n^2 + 1 = 25k^2 \pm 20k + 5$, odnosno $5 \mid n^2 + 1$. Dakle, $30 \mid n^5 n$, tj. $n^5 \equiv n \pmod{30}$.
- 2. a) Ako je $13x \equiv 13y \pmod{65}$, dokažite da je $x \equiv y \pmod{5}$. Vrijedi li obrat te tvrdnje?
 - b) Ako je $a \equiv b \pmod{m}$, dokažite da je $a^2 \equiv b^2 \pmod{m}$. Vrijedi li obrat te tvrdnje? Obrazložite!

Rj:

- a) Ako je $13x \equiv 13y \pmod{65}$, tada je 13(x-y) = 65k za neki $k \in \mathbb{Z}$. Iz toga slijedi da je x-y=5k, odnosno $x \equiv y \pmod{5}$. Ako je $x \equiv y \pmod{5}$, tada je x-y=5k za neki $k \in \mathbb{Z}$. Iz toga slijedi da je 13(x-y)=65k, odnosno $13x \equiv 13y \pmod{65}$.
- b) Ako je $a \equiv b \pmod{m}$, tada je a-b=mk za neki $k \in \mathbb{Z}$. Iz toga slijedi da je $a^2-b^2=(a-b)(a+b)=mk(a+b)$, odnosno $a^2\equiv b^2 \pmod{m}$. Obrat te tvrdnje ne vrijedi. Na primjer, za $m=5, a=1\equiv 1 \pmod{5}$ i $b=4\equiv -1 \pmod{5}$ imamo $a^2\equiv 1\equiv 1\equiv b^2 \pmod{5}$, ali $a\equiv 1\not\equiv 4\equiv b \pmod{5}$.
- 3. Riješite sljedeće kongruencije:
 - a) $175x \equiv 252 \pmod{294}$
 - b) $415x \equiv 15 \pmod{1115}$
 - c) $238x \equiv 350 \pmod{420}$

DISMAT 2 - Zadaća 2 Borna Gojšić

Rj:

a) Prvo ćemo Euklidovim algoritmom odrediti $d = \gcd(175, 294)$.

a	b	$\lfloor \frac{a}{b} \rfloor$
294	175	1
175	119	1
119	56	2
56	7	8
7	0	

Dakle, d=7. 175 : 7=25, 252 : 7=36, 294 : 7=42. Sada rješavamo kongruenciju $25x \equiv 36 \pmod{42}$. Koristit ćemo prošireni Euklidov algoritam za rješavanje kongruencije.

y	g	v	w	$\lfloor \frac{a}{b} \rfloor$
0	42	1	25	1
1	25	-1	17	1
-1	17	2	8	2
2	8	2 -5	1	8
-5	1		0	

Dakle, imamo $u \equiv -5 \pmod{42}$. Konačno, $x \equiv -5 \cdot 36 \equiv -180 \equiv 30 \pmod{42}$. Sada su sva rješenja početne kongruencije $x \equiv 30 + 42k \pmod{294}$ za $k \in \{0, 1, 2, 3, 4, 5, 6\}$.

b) Prvo ćemo Euklidovim algoritmom odrediti $d=\gcd(415,1115)=5$. $415:5=83,\ 15:5=3,\ 1115:5=223$. Sada rješavamo kongruenciju $83x\equiv 3\ (\text{mod }223)$.

y	g	v	w	$\lfloor \frac{a}{b} \rfloor$
0	223	1	83	2
1	83	-2	57	1
-2	57	3	26	2
3	26	-8	5	5
-8	5	43	1	5
43	1		0	

Dakle, imamo $u \equiv 43 \pmod{223}$. Konačno, $x \equiv 43 \cdot 3 \equiv 129 \pmod{223}$. Sada su sva rješenja početne kongruencije $x \equiv 129 + 223k \pmod{1115}$ za $k \in \{0, 1, 2, 3, 4\}$.

c) Euklidovim algoritmom dobijemo: $d = \gcd(238, 420) = 14$. Dakle, 238 : 14 = 17, 350 : 14 = 25, 420 : 14 = 30, pa rješavamo kongruenciju $17x \equiv 25 \pmod{30}$.

y	g	v	w	$\left\lfloor \frac{a}{b} \right\rfloor$
0	30	1	17	1
1	17	-1	13	1
-1	13	2	4	3
2	4	-7	1	4
-7	1		0	

Dakle, imamo $u \equiv -7 \pmod{30}$. Konačno, $x \equiv -7 \cdot 25 \equiv -175 \equiv 5 \pmod{30}$. Sada su sva rješenja početne kongruencije $x \equiv 5 + 30k \pmod{420}$ za $k \in \{0, 1, 2, 3, \dots, 12, 13\}$.

DISMAT 2 - Zadaća 2 Borna Gojšić

- 4. a) Riješite kongruenciju $159x \equiv 66 \pmod{201}$.
 - b) Odredite sve prirodne brojeve n iz intervala [1100, 1400] koji zadovoljavaju kongruenciju $159n \equiv 66 \pmod{201}$.

c) Odredite sve prirodne brojeve m za koje vrijedi $159 \equiv 66 \pmod{m}$.

Rj:

a) Euklidovim algoritmom dobijemo: $d = \gcd(159, 201) = 3$. Dakle, 159: 3 = 53, 66: 3 = 22, 201: 3 = 67, pa rješavamo kongruenciju $53x \equiv 22 \pmod{67}$.

y	g	v	w	$\lfloor \frac{a}{b} \rfloor$
0	67	1	53	1
1	53	-1	14	3
-1	14	4	11	1
4	11	-5	3	3
-5	3	19	2	1
19	2	-24	1	2
-24	1		0	

Dakle, imamo $u \equiv -24 \pmod{67}$. Konačno, $x \equiv -24 \cdot 22 \equiv -528 \equiv 8 \pmod{67}$. Sada su sva rješenja početne kongruencije $x \equiv 8, 75, 142 \pmod{201}$.

- b) Znamo da je $1100 \equiv 95 \pmod{201}$, pa je najmanji broj iz [1100, 1400] koji zadovoljava kongruenciju 1100 + (142 95) = 1147. Sada lako dobijemo sve brojeve iz intervala [1100, 1400] koji zadovoljavaju kongruenciju: 1147, 1214, 1281, 1348.
- c) 159 \equiv 66 (mod m) znači $m \mid 159-66=93$. Rastav 93 na proste faktore je 93 = $3\cdot 31$. Dakle, $m\in\{1,3,31,93\}$.
- 5. Riješite sljedeće sustave kongruencija:
 - a) $x \equiv 7 \pmod{17}$, $x \equiv 18 \pmod{31}$, $x \equiv 33 \pmod{37}$
 - b) $x \equiv 2 \pmod{5}$, $x \equiv 1 \pmod{6}$, $x \equiv 4 \pmod{11}$, $x \equiv 5 \pmod{17}$
 - c) $5x \equiv 3 \pmod{7}$, $16x \equiv 7 \pmod{17}$, $25x \equiv 2 \pmod{37}$.

Rj:

a) Imamo $m=17\cdot 31\cdot 37=19499$ i $x_0=1147x_1+629x_2+527x_3$. Dakle, imamo sljedeći sustav:

$$1147x_1 \equiv 7 \pmod{17}, \quad 629x_2 \equiv 18 \pmod{31}, \quad 527x_3 \equiv 33 \pmod{37}$$

$$8x_1 \equiv 7 \pmod{17}, \quad 9x_2 \equiv 18 \pmod{31}, \quad 9x_3 \equiv 33 \pmod{37}$$

Dakle, imamo $x_1 = 3$, $x_2 = 2$ i $x_3 = 16$, $x_0 = 13131$ i $x \equiv 13131 \pmod{19499}$.

b) Imamo $m = 5 \cdot 6 \cdot 11 \cdot 17 = 5610$ i $x_0 = 1122x_1 + 935x_2 + 510x_3 + 330x_4$. Dakle, imamo sljedeći sustav:

$$1122x_1 \equiv 2 \pmod{5}$$
, $935x_2 \equiv 1 \pmod{6}$, $510x_3 \equiv 4 \pmod{11}$, $330x_4 \equiv 5 \pmod{17}$

$$2x_1 \equiv 2 \pmod{5}$$
, $5x_2 \equiv 1 \pmod{6}$, $4x_3 \equiv 4 \pmod{11}$, $7x_4 \equiv 5 \pmod{17}$

Dakle, imamo $x_1 = 1$, $x_2 = -1$, $x_3 = 1$ i $x_4 = 8$, $x_0 = 3337$ i $x \equiv 3337 \pmod{5610}$.

DISMAT 2 - Zadaća 2 Borna Gojšíć

c) Ovaj sustav ćemo prvo dovesti u oblik $x \equiv a \pmod{m}$ što možemo jer su svi moduli prosti brojevi pa postoje multiplikativni inverzi modulo m_i .

$$5x \cdot 3 \equiv 3 \cdot 3 \pmod{7}, \quad 16x \cdot (-1) \equiv 7 \cdot (-1) \pmod{17}, \quad 25x \cdot 3 \equiv 2 \cdot 3 \pmod{37}$$

 $x \equiv 2 \pmod{7}, \quad x \equiv 10 \pmod{17}, \quad x \equiv 6 \pmod{37}$

Sada imamo $m=7\cdot 17\cdot 37=4403$ i $x_0=629x_1+259x_2+119x_3.$ Dakle, imamo sljedeći sustav:

$$629x_1 \equiv 2 \pmod{7}$$
, $259x_2 \equiv 10 \pmod{17}$, $119x_3 \equiv 6 \pmod{37}$
 $-x_1 \equiv 2 \pmod{7}$, $4x_2 \equiv 10 \pmod{17}$, $8x_3 \equiv 6 \pmod{37}$

Dakle, $x_1 = -2$, $x_2 = 11$, $x_3 = 10$, $x_0 = 2781$ i $x \equiv 2781 \pmod{4403}$.

- 6. Riješite sljedeće sustave kongruencija:
 - a) $x \equiv 10 \pmod{15}$, $x \equiv 19 \pmod{21}$, $x \equiv 25 \pmod{60}$
 - b) $x \equiv 13 \pmod{16}$, $x \equiv 5 \pmod{24}$, $x \equiv 8 \pmod{27}$, $x \equiv 2 \pmod{5}$.

Napomena: Uočite da moduli nisu u parovima relativno prosti.

Rj:

a) Kongruencije rastavljamo na kongruencije potencija prostih modula.

$$x \equiv 10 \pmod{15} \implies x \equiv 10 \pmod{3}, \quad x \equiv 10 \pmod{5}$$

 $x \equiv 19 \pmod{21} \implies x \equiv 19 \pmod{3}, \quad x \equiv 19 \pmod{7}$
 $x \equiv 25 \pmod{60} \implies x \equiv 25 \pmod{3}, \quad x \equiv 25 \pmod{4}, \quad x \equiv 25 \pmod{5}$

Dakle, imamo:

$$x\equiv 10\ (\mathrm{mod}\ 3),\quad x\equiv 19\ (\mathrm{mod}\ 3),\quad x\equiv 25\ (\mathrm{mod}\ 3) \implies x\equiv 1\ (\mathrm{mod}\ 3)$$

$$x\equiv 25\ (\mathrm{mod}\ 4) \implies x\equiv 1\ (\mathrm{mod}\ 4)$$

$$x\equiv 10\ (\mathrm{mod}\ 5),\quad x\equiv 25\ (\mathrm{mod}\ 5) \implies x\equiv 0\ (\mathrm{mod}\ 5)$$

$$x\equiv 19\ (\mathrm{mod}\ 7) \implies x\equiv 5\ (\mathrm{mod}\ 7)$$

Sada možemo primijeniti kineski teorem o ostacima. Imamo $m=3\cdot 4\cdot 5\cdot 7=420$ i $x_0=140x_1+105x_2+84x_3+60x_4$. Dakle, imamo sljedeći sustav:

$$140x_1 \equiv 1 \pmod{3}, \quad 105x_2 \equiv 1 \pmod{4}, \quad 84x_3 \equiv 0 \pmod{5}, \quad 60x_4 \equiv 5 \pmod{7}$$
 $2x_1 \equiv 1 \pmod{3}, \quad x_2 \equiv 1 \pmod{4}, \quad 4x_3 \equiv 0 \pmod{5}, \quad 4x_4 \equiv 5 \pmod{7}$ Dakle, imamo $x_1 = 2, x_2 = 1, x_3 = 0, x_4 = 3, x_0 = 565$ i $x \equiv 565 \equiv 145 \pmod{420}$.

b)

$$x \equiv 13 \pmod{16}$$

 $x \equiv 5 \pmod{24} \implies x \equiv 5 \pmod{3}, \quad x \equiv 5 \pmod{8}$
 $x \equiv 8 \pmod{27}$
 $x \equiv 2 \pmod{5}$

DISMAT 2 - Zadaća 2 Borna Gojšíć

Dakle, imamo:

$$x \equiv 13 \pmod{16}, \quad x \equiv 5 \pmod{8} \implies x \equiv 13 \pmod{16}$$

 $x \equiv 5 \pmod{3}, \quad x \equiv 8 \pmod{27} \implies x \equiv 8 \pmod{27}$
 $x \equiv 2 \pmod{5}$

Sada možemo primijeniti kineski teorem o ostacima. Imamo $m=16\cdot 27\cdot 5=2160$ i $x_0=135x_1+80x_2+432x_3$. Dakle, imamo sljedeći sustav:

$$135x_1 \equiv 13 \pmod{16}, \quad 80x_2 \equiv 8 \pmod{27}, \quad 432x_3 \equiv 2 \pmod{5}$$

$$7x_1 \equiv 13 \pmod{16}, \quad -x_2 \equiv 8 \pmod{27}, \quad 2x_3 \equiv 2 \pmod{5}$$

Dakle, $x_1 = 11$, $x_2 = -8$, $x_3 = 1$, $x_0 = 1277$ i $x \equiv 1277 \pmod{2160}$.

7. Odredite najmanji prirodan broj koji pri dijeljenju s brojevima 41, 42 i 43 daje ostatke 1, 2 i 3 (u tom redoslijedu).

Rj: Ovo je ekvivalentno rješavanju sustava kongruencija:

$$x \equiv 1 \pmod{41}$$
, $x \equiv 2 \pmod{42}$, $x \equiv 3 \pmod{43}$

Budući da su 41 i 43 prosti brojevi, možemo koristiti kineski teorem o ostacima. Imamo m=74046 i $x_0=1806x_1+1763x_2+1722x_3$. Dakle, imamo sljedeći sustav:

$$1806x_1 \equiv 1 \pmod{41}$$
, $1763x_2 \equiv 2 \pmod{42}$, $1722x_3 \equiv 3 \pmod{43}$

$$2x_1 \equiv 1 \pmod{41}$$
, $41x_2 \equiv 2 \pmod{42}$, $2x_3 \equiv 3 \pmod{43}$

Dakle, $x_1 = 21$, $x_2 = -2$, $x_3 = 23$, $x_0 = 74006$ i $x \equiv 74006$ (mod 74046). Budući da je 74006 < 74046, najmanji prirodan broj koji zadovoljava uvjete je 74006.

- 8. a) Odredite najmanji prirodan broj n takav da $3^2 \mid n, 4^2 \mid n+1$ i $5^2 \mid n+2$.
 - b) Postoji li prirodan broj n takav da $2^2 \mid n, 3^2 \mid n+1$ i $4^2 \mid n+2$? Obrazložite!

Rj:

a) Budući da su svi moduli relativno prosti u parovima, možemo primijeniti kineski teorem o ostacima. Imamo $m=3^2\cdot 4^2\cdot 5^2=3600$ i $x_0=400x_1+225x_2+144x_3$. Dakle, imamo sljedeći sustav:

$$400x_1 \equiv 0 \pmod{9}, \quad 225x_2 \equiv -1 \pmod{16}, \quad 144x_3 \equiv -2 \pmod{25}$$

$$4x_1 \equiv 0 \pmod{9}, \quad x_2 \equiv -1 \pmod{16}, \quad 19x_3 \equiv -2 \pmod{25}$$

Dakle, $x_1 = 0$, $x_2 = -1$ i $x_3 = 17$, $x_0 = 2223$ i budući da je 2223 < 3600, najmanji takav n je 2223.

b) Iz prve kongruencije imamo n=4k, a iz zadnje n=16l-2. Dakle 4k=16l-2, odnosno 2k=8l-1. Lijeva strana je paran broj, a desna je neparan, pa nema rješenja.

DISMAT 2 - Zadaća 2 Borna Gojšić

- 9. Neka je p prost broj.
 - a) Dokažite da je $\binom{p}{k} \equiv 0 \pmod{p}$ za $k \in \{1,2,\ldots,p-1\}.$
 - b) Dokažite da za svaki cijeli broj n vrijedi $(n+1)^p \equiv n^p + 1 \pmod{p}$.

a)
$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$
. Ako je $k \in \{1,2,\ldots,p-1\}$, tada $p \mid p!, \ p \nmid k!$ i $p \nmid (p-k)!$. Dakle, $p \mid \binom{p}{k}$.

b)

$$(n+1)^p = \sum_{k=0}^p \binom{p}{k} n^k$$
$$= n^p + \sum_{k=1}^{p-1} \binom{p}{k} n^k + 1$$
$$\equiv n^p + 1 \pmod{p}$$