

华中科技大学 2022~2023 学年第一学期

" 复变函数与积分变换 " 考试试卷(A 卷)

	考试方式:	闭卷	考试日期	2022-11-	· <u>13</u> 考证	、时长:_	<u>150</u> 分钟
	院 (系):			专业班	级:		
	学 号:			姓	名:		
_	、单项选择	释题 (毒数2 :	宁,共24分).			
1.	复数 $\sqrt{-\frac{1}{2}}$	_ <i>i</i> 的值为().				
	A. $\frac{\sqrt{2}}{2}e^{(k)}$	$\alpha \pi + \frac{\pi}{4})i \ (k = 0,$	1),	В	$-\frac{\sqrt{2}}{2}e^{(k\pi+1)}$	$\frac{\pi}{4}i$ $(k=$	0,1),
	C. $\frac{\sqrt{2}}{2}e^{(k)}$	$e^{\pi-\frac{\pi}{4})i} \ (k=0,$	1),	D	$\cdot -\frac{\sqrt{2}}{2}e^{(k\pi -$	$\frac{3\pi}{4}$)i (k =	0,1).
2.	复数 ln(-	$-\sin\frac{\pi}{8} + i\cos$	$\left(\frac{\pi}{8}\right)$ 的值为().			
	A. $\frac{7}{8}\pi i$,	B. $\frac{5}{8}$	τί,	C. $\frac{3}{8}\pi i$,	D .	$\frac{1}{8}\pi i$.	
3.	下列关系	不正确的是().				
	A. $\overline{e^z} =$	$e^{\overline{z}}$, B. \overline{c}	$\overline{\operatorname{os} z} = \operatorname{cos} \overline{z},$	C. $\overline{\ln z}$	$= \ln \overline{z},$	D. sin	$\overline{z} = \sin \overline{z}$.
4.	函数 f(z)=	$=x^2-iy$ 在下	面哪个点可	导?().			
	A. $-\frac{1}{2}$	$+\frac{1}{2}i$,	B. $\frac{1}{2} - \frac{1}{2}$	i,	C. $\frac{1}{2}i$,	D.	$-\frac{1}{2}i$.
5.	设 <i>C</i> 为单位	立圆周,则积	分 $\oint_C \frac{1}{z^2 \sin(1-z^2)}$	dz 的值为	J().		
	Α.0,	В.	2πi,	$C2\pi i$]	D . 4πi	
6.	若C为单位	位圆周,则移	以分 $\oint_C \frac{e^z}{\cos z} dz$	z 的值为().		
	Α.0,	В	-2πi,	C. 2πi,		D. 4πi.	

7. 级数
$$\sum_{n=0}^{+\infty} \frac{z^n}{e^{n-in}}$$
的收敛半径为 ().

A.1,

B. 1/e, C. e^{1-i} , D. e.

8. 函数 $\frac{z - \sin z}{1 - \cos z} + 1$ 在 $0 < |z| < 2\pi$ 上展开成洛朗级数 $\sum_{n=0}^{+\infty} a_n z^n$ 时,系数 a_{-1} 为

().

A.0,

B.1/3,

C.1/2,

9. z=0是函数 $\frac{1}{1-\cos z} - \frac{2}{z^2}$ 何种类型的孤立奇点? ().

A 本性奇点,

B. 二阶极点, C. 三阶极点, D. 可去奇点.

10. 下列哪种映射在扩充复平面上不是分式线性映射? ()

A. w = 6z + 1, B. w = 1 + 1/z, C. w = z + 1/z, D. w = z/3.

11. 设 $f(t) = e^{it} + \delta(t-1)$, 则 f(t) 的 Fourier 变换 $F(\omega)$ 为(

A. $e^{-j\omega} + \delta(\omega - 1)$,

B. $e^{-j\omega} + 2\pi\delta(\omega - 1)$,

C. $e^{-j\omega} - \delta(\omega - 1)$,

D. $e^{-j\omega} - 2\pi\delta(\omega - 1)$.

12. $\delta(1-t)$ 与 sin(t-1) 的卷积为().

A. $\sin(t-1)$, B. $-\sin(t-1)$, C.0, D. $\sin(t-2)$.

二、(12 分) 已知解析函数 f(z) = u(x, y) + iv(x, y) 的实部 $u = e^{-x}(x\cos y + y\sin y)$, 求解析函数 f(z).

三、(12 **s**) 把函数 $f(z) = \frac{z+1}{(z-1)(z-2)}$ 在下列环域内展开为洛朗级数:

 $(1) \ 0 < |z - 1| < 1,$

(2) 1 < |z| < 2.

四、计算下列积分(每题5分,共10分)。

1. $\int_{C} (-2y+2xi)dz$, 其中 C 为从原点到 3+i 的直线段.

2. $\oint_{|z|=0.5} \frac{1-\cos z}{z^5(1-z)} dz$.

五、计算下列积分(每题5分,共10分)。

1.
$$\oint_{|z|=3} \frac{z^{30}}{(z-4)(z^6+1)^5} dz,$$
 2.
$$\int_0^{+\infty} \frac{\cos x + x \sin x}{x^2+1} dx.$$

六、(6 **分**) 求区域
$$D = \{z : |z| < 1, \operatorname{Im} z > 0\}$$
 在映射 $w = \left(\frac{z-1}{z+1}e^{-\frac{\pi}{3}i}\right)^2$ 下的像.

(答题过程需用图形表示)

七、(n **4**) 求一共形映射 w = f(z),将区域 $D = \{z : 1 < \text{Re } z < 2, \text{Im } z < 0\}$ 映射到上 半平面. (答题过程需用图形表示)

八、(10 分) 利用 Laplace 变换求解下面常微分方程:

$$f''(t) - 2f'(t) + f(t) = -2\sin t$$
, $f(0) = 0$, $f'(0) = 1$.

九、 $(6 \, \$)$ 若函数 f(z) 在全平面解析,且有 $\lim_{z \to \infty} f(z)/z = 0$. 证明对复平面上任意一点 z_0 ,都有 $f(z_0) = f(0)$.