Lillian Huang

+1 734 276 8008 \$ lilhuang@umd.edu

RESEARCH INTEREST

I am interested in exploring graphics applications that benefit 2D artists and animators. As an artist myself with a passion for hand-drawn animation, I am driven to create tools that help ease artists' workflow in a way that saves them time and effort, but allows them to maintain creative control over their art. I am also interested in how to use computer vision methods to help achieve this, because intelligent perception, comprehension, and extrapolation are imperative to the creation of art.

RESEARCH EXPERIENCE

Graduate Research Assistant

January 2019 - Present

University of Maryland

Advisor: Professor Abhinav Shrivastava

Current Project Description:

My research focuses on on video interpolation in the domain for hand-drawn animation, or computer vision-aided "in-betweening."

Undergraduate Research Assistant

August 2017 - July 2018

University of Michigan

Advisor: Professor Fred Adams

Summer Student Researcher

June 2017 - August 2017

NSF REU Program at CERN Advisor: Daniel van der Ster

Student Engineer

May 2016 - August 2016

Open Storage Research Infrastructure (OSiRIS)

Advisor: Professor Shawn McKee

Undergraduate Research Assistant

May 2015 - August 2015

University of Michigan

Advisor: Professor Junjie Zhu

TEACHING EXPERIENCE

Teaching Assistant

August 2018 - December 2018

Undergraduate Discrete Math

Discussion section leader and grader

EDUCATION

University of Maryland, College Park

August 2018 - Present

Pursuing Ph.D. in Computer Science

Advisor: Professor Abhinav Shrivastava

University of Michigan, Ann Arbor

September 2014 - April 2018

B.S. in Physics, Honors B.S. in Computer Science NSF Graduate Research Fellowship

PUBLICATIONS (REVERSE CHRONOLOGICAL ORDER)

- L. Huang, S.-N. Lim, and A. Shrivastava, "Knowledge-Driven Hallucination for Low-Shot Classification." Women in Machine Learning Workshop, poster. 2019.
- L. Huang, F. C. Adams, and E. Grohs, "Sensitivity of Carbon and Oxygen Yields to the Triple-Alpha Resonance in Massive Stars," *Astroparticle Physics*, 105 (2019), p. 13, arXiv:1809.09168 [astro-ph.SR]
- J. Searcy, L. Huang, M. A. Pleier, and J. Zhu, "Determination of the WW polarization fractions in $pp \to W^{\pm}W^{\pm}jj$ using a deep machine learning technique", Phys. Rev. **D93** (2016) no. 9, 094033, arXiv:1510.01691 [hep-ph]