ÜBUNGEN ZUR VORLESUNG MITTLERER KRÜMMUNGSFLUSS

Blatt 1

Aufgabe 1. (2 Punkte)

Zeige, dass eine offene Überdeckung des Intervalles [0,1] durch Teilintervalle eine endliche Überde-

$$[0,1] \subset \bigcup_{j=1}^k I_j$$
 mit $\sum_{j=1}^k |I_j| \le 2$

enthält.

${\bf Aufgabe~2}~({\bf Fubini}).~({\bf 4~Punkte})$

Sei $\mathbb{R}^{n-1}_t := \{x \in \mathbb{R}^n \, | \, x^n = t\} \subset \mathbb{R}^n$. Sei $U \subset \mathbb{R}^n$ kompakt and $U_t := U \cap \mathbb{R}^{n-1}_t$ von Maß Null in $\mathbb{R}^{n-1}_t \cong \mathbb{R}^{n-1}$ für alle $t \in \mathbb{R}$.

Zeige, dass dann auch U von Maß Null in \mathbb{R}^n ist.

Hinweis: Betrachte zunächst $U \subset \mathbb{R}^{n-1} \times [0,1]$. Für festes $t \in [0,1]$ und $\varepsilon > 0$, überdecke U_t mit Würfeln W_t^i sodass $\sum_i |W_t^i| < \varepsilon$. Schätze die Menge $\{x \in U \mid |x^n - t| < \alpha\}$ für geeignetes α ab und benutze Aufgabe 1.

Aufgabe 3. (8 Punkte)

Seien $n, m \ge 1$ und $U \in \mathbb{R}^n$ offen. Sei $f: U \to \mathbb{R}^m$ in C^k mit $k > \max\{n-m, 0\}$. Ein Punkt $p \in \mathbb{R}^n$ heißt regulär, falls das Differential von f in p surjektiv ist. Ein Punkt $q \in \mathbb{R}^m$ heißt regulärer Wert, falls $f^{-1}(q)$ aus regulären Punkten besteht. Nicht reguläre Punkte/Werte nennt man singulär oder kritisch. Sei $D_i \subset U$ die Menge aller Punkte, in denen alle partiellen Ableitungen der Ordnung $\leq i$

Es gelte für alle Funktionen $g: V \to \mathbb{R}^m$, $V \subset \mathbb{R}^{n-1}$ offen, in C^l mit $l > \max\{n-1-m,0\}$, dass die Menge der kritischen Werte von g in \mathbb{R}^m Lebesgue-Maß Null hat.

Zeige, dass folgendes gilt

- (i) $f(D \setminus D_1)$ hat Maß Null. *Hinweis:* Betrachte für geeignete Koordinaten die Funktionen $h(x) = (f^1(x), x^2, \dots, x^n)$ und $g = f \circ h^{-1}$.
- (ii) $f(D_i \setminus D_{i+1})$ hat Maß Null. *Hinweis:* Verfahre ähnlich wie in (i) mit $h(x) = \left(\frac{\partial^k}{\partial r^{\nu_1}} \frac{\partial^k}{\partial x^{\nu_k}} f^1(x), x^2, \dots, x^n\right)$ für geeignete Koordinaten.
- (iii) $f(D_k)$ von Maß Null. Hinweis: Schätze |f(x+h)-f(x)| mithilfe der Taylorentwickung auf kleinen Würfeln ab.

Aufgabe 4 (Satz von Sard). (2 Punkte)

Seien N^n und M^m differenzierbare Mannigfaltigkeiten mit einer abzählbaren Basis der Topologie. Sei $f: \mathbb{N}^n \to \mathbb{M}^m$ in \mathbb{C}^k mit $k > \max\{n-m, 0\}$.

Zeige:

- (i) Die Menge der kritischen Werte von f hat Lebesgue-Maß Null.
- (ii) $f^{-1}(y) \subset N^n$ ist für fast alle $y \in M^m$ eine differenzierbare Untermannigfaltigkeit der Kodimension m.
- (iii) Sei $f \in C^{\infty}$. Dann liegen die regulären Werte von f dicht in M^m .

Aufgabe 5 (Zusatz). (4 Punkte)

Sei $A \subset B$. Eine Retraktion ist eine stetige Abbildung $f: B \to A$, sodass $f|_A = \mathrm{Id}$, also f(x) = x für alle $x \in A$, gilt.

(i) Zeige, dass es keine Retraktion von $\overline{B_1(0)} \subset \mathbb{R}^n$ auf \mathbb{S}^{n-1} gibt. *Hinweis:* Führe einen Widerspruchbeweis. Sei $f: \overline{B_1(0)} \to \mathbb{S}^{n-1}$ eine Retraktion. Betrachte die Glättung der Funktion

$$g(x) = \begin{cases} f\left(\frac{x}{|x|}\right) & 1/2 \le |x| \le 1\\ f(2x) & 0 \le |x| \le 1. \end{cases}$$

Benutze dann Aufgabe 4.

(ii) Brouwerscher Fixpunktsatz: Sei $f: \overline{B_1(0)} \to \overline{B_1(0)}$ stetig. Dann besitzt f einen Fixpunkt, d.h. es gibt ein $x \in \overline{B_1(0)}$ mit f(x) = x.

Abgabe: Bis Montag, 12.11.2018, 15:00 Uhr, in die Mappe vor Büro F 402.