Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE0624 — Laboratorio de Microcontroladores III ciclo 2023

Profesor: MSc. Marco Villalta Fallas

Propuesta de Proyecto: Sistema de Control Electrónico de Garaje con Módulo Bluetooth HC y Arduino.

Miguel Chaves Bejarano B61950 Dualok Fonseca Monge B42629

Enero 2024

Índice

Li	sta de Figuras	II		
1	Descripción de la Aplicación:	1		
2	Justificación:	2		
3	Objetivos y alcance	3		
	3.1 Objetivo Principal:	3		
	3.2 Objetivos Específicos:	3		
	3.3 Alcances:	3		
4	Metodología:	4		
5	Cronograma:			
6	5 Aporte por estudiante			
7	Referencias	6		

Lista de Figuras

Índice d	le cua	dros
----------	--------	------

1. Descripción de la Aplicación:

Este proyecto consiste en desarrollar un sistema de control electrónico de garaje utilizando un Arduino (preferiblemente Arduino Nano BLE 33) y un módulo Bluetooth HC. La aplicación permitirá a los usuarios abrir y cerrar la puerta del garaje de forma remota mediante una conexión Bluetooth establecida con sus dispositivos móviles.

2. Justificación:

Este proyecto busca proporcionar una solución eficiente y segura para el acceso remoto a garajes, mejorando la comodidad y seguridad de los usuarios. El uso de la tecnología Bluetooth permite una conexión confiable y de corto alcance, asegurando que solo usuarios autorizados tengan acceso al control de la puerta del garaje. La capacidad de control remoto utilizando un teléfono móvil resulta conveniente y fácil de utilizar, además proporciona comodidad y flexibilidad a la aplicación.

3. Objetivos y alcance

3.1. Objetivo Principal:

Desarrollar un sistema de control remoto de garaje mediante una conexión Bluetooth con Arduino.

3.2. Objetivos Específicos:

- Diseñar un sistema de control para abrir y cerrar la puerta del garaje.
- Implementar un mecanismo de conexión Bluetooth entre el Arduino y dispositivos móviles.
- Integrar un sistema de sensado para el cerrado automático del portón en caso de olvidar cerrar.
- Desarrollar un mecanismo de autenticación medianamente seguro mediante códigos de acceso.
- Implementar un sistema basado en LEDs y señales auditivas con el fin de proporcionar retroalimentación visual y auditiva sobre los estados actuales de la compuerta.
- Diseñar e implementar una aplicación móvil sencilla que permita el control remoto de la puerta y que reciba notificaciones para mostrar al usuario el estado de la compuerta.

3.3. Alcances:

- Desarrollar un sistema con Arduino para portones eléctricos de los hogares, considerando la integración con la tecnología existente.
- Crear una aplicación móvil que permita a los usuarios abrir y cerrar los portones desde sus teléfonos celulares.
- Implementar un mecanismo que cierre automáticamente los portones en caso de que los usuarios se olviden de hacerlo manualmente.
- Optimizar el sistema para un consumo eficiente de energía, utilizando la alimentación del sistema eléctrico del hogar.
- Desarrollar una solución económica en comparación con los controladores de motor tradicionales.

4. Metodología:

La metodología a seguir es la siguiente:

- Investigación y Planificación.
- Seleccionar y enlistar los componentes.
- Comprender el funcionamiento del microcontrolador y el modulo bluetooth y configurar el entorno de trabajo.
- Diseñar el circuito y códigos necesarios tanto del dispositivo como de la aplicación móvil básica.
- Integrar y realizar pruebas para verificar el correcto funcionamiento del sistema.
- Documentar el procedimiento y funcionalidad del proyecto

Utilizaremos el lenguaje de programación C o C++, con las bibliotecas SoftwareSerial.h para manejar la comunicación serial con el modulo bluetooth y Servo.h para controlar el servomotor que se encargará de abrir y cerrar la compuerta del garaje. Además de realizar una investigación de mercado necesaria para la implementación eficiente y efectiva del circuito, esto incluye un análisis de componentes, disposición, costos, etc.

5. Cronograma:

El proyecto se dividirá en etapas para un desarrollo eficiente:

Investigación y Planificación (22 Enero / 28 de Enero): Investigación sobre el control de motores y módulos Bluetooth con Arduino. Planificación detallada del proyecto. Selección de componentes y configuracion del entorno (29 Enero / 4 Febrero): Seleccionar los componentes y hacer una lista de componentes y precio. Revisar las hojas de datos de los componentes y sus especificaciones eléctricas. Configuración del entorno de desarrollo Arduino y conexión.

Desarrollo de Funcionalidades (5 Febrero / 11 Febrero): Implementación del control de motor. Programación y prueba del módulo Bluetooth para la comunicación con dispositivos móviles. Desarrollo de la aplicación móvil simple.

Integración y Pruebas (12 Febrero / 18 Febrero): Integración de todas los módulos realizados anteriormente. Realizar pruebas para verificar el correcto funcionamiento del sistema.

Documentación y Presentación (19 Febrero / 25 Febrero): Documentación detallada del proyecto. Preparación para la presentación.

Cuadro 1: Cronograma

Semana Inicio Fin	Actividad 1	Actividad 2	Actividad 3
22 Enero 28 de Enero	Investigación sobre el control de motores y módulos Bluetooth con Arduino	Planificación detallada del proyecto	
29 Enero 4 Febrero	Seleccionar los componentes y hacer una lista de componentes y precio.	Revisar las hojas de datos de los componentes y sus especificaciones eléctricas.	Configuración del entorno de desarrollo Arduino y conexión.
5 Febrero 11 Febrero	Implementación del control de motor.	Programación y prueba del módulo Bluetooth	Desarrollo de la aplicación móvil simple.
12 Febrero 18 Febrero	Integración de todas los módulos realizados anteriormente.	Realizar pruebas para verificar el correcto funcionamiento del sistema.	
19 Febrero 25 Febrero	Documentación detallada del proyecto.	Preparación para la presentación	

6. Aporte por estudiante

Miguel Chaves

- Diseñar el sistema de control para abrir y cerrar la puerta del garaje: Investigar y proponer el mecanismo físico o electrónico para controlar la apertura y cierre del portón y trabajar en la integración de este mecanismo con el Arduino.
- Implementar el sistema de sensado para el cerrado automático del portón: Investigar y seleccionar sensores adecuados para detectar el estado de la puerta (abierta/cerrada).Programar la lógica necesaria en el Arduino para el cerrado automático en caso de olvido.
- Desarrollar el mecanismo de autenticación mediante códigos de acceso: Investigar métodos de autenticación seguros para implementar en el sistema. Programar la funcionalidad de autenticación en el Arduino.

Dualok Fonseca

■ Implementar el mecanismo de conexión Bluetooth entre el Arduino y dispositivos móviles: Investigar y seleccionar módulos Bluetooth compatibles con Arduino. Programar la comunicación Bluetooth entre el Arduino y la aplicación móvil.

- Implementar el sistema basado en LEDs y señales auditivas: Diseñar el sistema de retroalimentación visual y auditiva. Programar la lógica para activar las señales según el estado de la compuerta.
- Diseñar e implementar la aplicación móvil: Diseñar la interfaz de usuario de la aplicación. Programar la aplicación para permitir el control remoto de la puerta y recibir notificaciones sobre el estado.

Ambos

- Optimizar el sistema para un consumo eficiente de energía: Colaborar en la optimización del código y el diseño para reducir el consumo de energía. Asegurarse de que el sistema funcione eficientemente con la alimentación del sistema eléctrico del hogar.
- Desarrollar una solución económica: Colaborar en la búsqueda de componentes y métodos que hagan la solución económica y accesible.

7. Referencias

- Arduino. (2024). Servo Motor Basics with Arduino. docs.arduino.cc. https://docs.arduino.cc/learn/electronics/servo-motors/
- Arduino: Garage con portón automático | Mis ladrillos. (s.f.). https://misladrillos.com/ml/producto/arduino-garage-con-porton-automatico/
- Automatic gate opener using arduino and IR sensor. (s.f.). projecthub.arduino.cc.
 https://projecthub.arduino.cc/hrbhadrappa/automatic-gate-opener-using-arduino-and-ir-sensor-ladcc8
- Electrónica y Circuitos. (2016, 22 diciembre). SENSOR AUTOMÁTICO PARA PUERTAS «SIMULACIÓN»
 Vídeo. YouTube. https://www.youtube.com/watch?v=j 9o5Vud2c
- José Bagur. (2024). Connecting Nano 33 BLE Devices over Bluetooth®. docs.arduino.com. https://docs.arduino.cc/tutorials/nano-33-ble-sense/ble-device-to-device/
- MI CEREBRO CREATIVO. (2018, 17 abril).SISTEMA DE APERTURA y CIE-RRE PARA PUERTA DE GARAJE CON MODULO BLUETOOTH HC - 06 y ARDUINO [Vídeo].

YouTube. https://www.youtube.com/watch?v=erxwm-IMsNk

- Pili-Zhangqiu. (sf.).GitHub Pili-Zhangqiu/Wireless-PC-Communication-with-the-Arduino-Nano-33-Series: This repository showcases different methods to create a wireless communication between the Arduino 33 BLE/IoT boards and a PC. GitHub. https://github.com/pili-zhangqiu/Wireless-PC-Communication-with-the-Arduino-Nano-33-Series
- Profe Garro. (2022, 15 diciembre).Garaje controlado con Bluetooth y arduino Vídeo. YouTube. https://www.youtube.com/watch?v=T-0W3DyLNk8
- Ramun. (s.f.). GitHub ramun9533/Porton: Proyectos con Arduino. GitHub. https://github.com/ramun9533/Porton/tree/master
- Simple Bluetooth lamp controller using Android and Arduino. (s.f.). projecthub.arduino.cc. https://projecthub.arduino.cc/Serge144/simple-bluetooth-lamp-controller-using-android-and-arduino-0903d8