Particle Swarm Optimization (2)

Winter 2011

Outline

- Tuning parameters
- Constriction factor
- Topology and neighborhood
- Binary and discrete PSO
- Diversity among particles
- Constraint handling
- PSO versus GA

Tuning Parameters

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

- Swarm size
- Inertia weight
- Acceleration constants
- Velocity limit

Swarm Size

- Population sizes ranging from 10 to 50 are the most common.
- It has been learned that PSO needed <u>smaller</u> <u>populations</u> than other evolutionary algorithms to reach high quality solutions

Inertia weight

- Larger value results in smoother, more gradually changes in direction (exploration)
- Smaller value allows particle to settle into the optima (exploitation)
- The inertia weight is typically set up to vary linearly from 1 to 0 during the course

$$w(t) = \overline{w} - \frac{t}{T}(\overline{w} - \underline{w})$$

t: current iteration; T: total iterations

w: upper bound; \underline{w} : lower bound

Settings of Acceleration Constants

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

 c_1 : self confidence (cognition) factor

 c_2 : swarm confidence (social) factor

$$(c_1, c_2 > 0)$$

$$(c_1 > 0 \text{ and } c_2 = 0),$$

$$(c_1 = 0 \text{ and } c_2 > 0)$$

$$(c_1 = 0, c_2 > 0, \text{ and gBest} \neq i)$$

Velocity Limit

$$v^{\text{max}} = k \times x_{\text{max}}$$
$$0.1 \le k \le 1.0$$

- It restricts the velocity to prevent oscillation
- This does not restrict the location to the range of $[-v^{max}, v^{max}]$

Constriction Factor

$$\vec{v}_{i}(t+1) = k \times [\vec{v}_{i}(t) + r_{1}c_{1}(\vec{x}_{pBest} - \vec{x}_{i}(t)) + r_{2}c_{2}(\vec{x}_{gBest} - \vec{x}_{i}(t))]$$

$$k = \frac{2}{|2 - \varphi - \sqrt{\varphi^{2} - 4\varphi}|} \text{ where } \varphi = c_{1} + c_{2}, \varphi > 4$$

- In this way, the amplitude of the trajectory's oscillations decreases over time; hence, <u>v^{max} is</u> not necessary
- In literature, $c_1 = c_2 = 2.05$, $\varphi = 4.10$
- If $c_1 = c_2$, we only need to specify one parameter

Swarm Topology

- In PSO, there have been two basic topologies used in the literature
 - Ring Topology (neighborhood of 3)
 - Star Topology (global neighborhood)

Particle Neighborhood (1)

- The neighborhood of a particles can be determined by
 - Pre-specified ID
 - Relative geographic positions in the search space
 - Ranks of particles in terms of fitness values

Particle Neighborhood (2)

• Relative geographic positions

Particle Neighborhood (3)

• Ranks of particles in terms of fitness values

Binary PSO

- PSO can also be used to solve binary problems
- Two steps need special caution
 - Initiation of swarm
 - If U(0,1)>0.5, $x_i=0$; otherwise, $x_i=1$
 - Using velocity as a probability to transfer from real-valued to binary representation

Real-valued to Binary

• After updating the velocity, use the following sigmoid function to transfer *x* to binary values

Restrict
$$|v_{i}(t)| \le v^{\max} (\approx 4)$$

$$\sigma(v_{i}(t)) = \frac{1}{1 + e^{-v_{i}(t)}}$$

$$\begin{cases} x_{i}(t) = 0 & \text{if } r > \sigma(v_{i}(t)) \\ x_{i}(t) = 1 & \text{otherwise} \end{cases}$$

$$r \sim U(0,1)$$

$$v \quad \sigma(v)$$

$$-4 \quad 0.0180$$

$$-2 \quad 0.1192$$

$$-1 \quad 0.2689$$

$$0 \quad 0.5000$$

$$1 \quad 0.7311$$

$$2 \quad 0.8808$$

$$3 \quad 0.9526$$

$$4 \quad 0.9820$$

Another Binary PSO

• Use the following rule to update location X

if
$$(0 \le v_{id} \le \alpha)$$

 $x_{id}(t+1) = x_{id}(t)$
elseif $(\alpha < v_{id} \le (1+\alpha)/2)$
 $x_{id}(t+1) = pBest_{id}(t)$
elseif $((1+\alpha)/2 < v_{id} \le 1)$
 $x_{id}(t+1) = gBest_{id}(t)$

α is a specified parameter between 0 and 1. The smaller the value, the faster the convergence

end

Discrete PSO

- Three ways to solve discrete problems using PSO
 - Rounding
 - Discretizing
 - Gray or binary encoding

Discrete PSO (1)

• Rounding:

- Round the result to the nearest integer or
- With probabilities proportional to the distance of the number to each of the integers

Discrete PSO (2)

• Discretizing: Convert continuous values into discrete ranges

Discrete PSO (3)

 Gray encoding or binary encoding, similar to GA

e.g.,
$$(1, 7, 4) \sim [001\ 111\ 100]$$

• Then, use binary PSO for each bit

Diversity among Particles

- A multi-peaks search space may trap PSO to local optima
- It may occur that all particles move to the same local optima and the velocities are all decayed to 0
- Thus, diversity should be properly maintained

Maintain Diversity (1)

- Spatial particle extension
 - Each particle is conceptualized as being surrounded by a sphere of some radius
 - When one spatially extended particle collides with another, it bounces off

Maintain Diversity (2)

- Dissipative PSO
 - When particles are in equilibrium (same locations, same pBest) or close-to-equilibrium state, introduce external chaos to velocity and location with certain probabilities p_{ν} and p_{l}

If
$$r < p_v, v_i(t) = rand() \times v^{\text{max}}$$

If $r < p_i, x_i(t) = rand(\underline{x}, x)$
 $r \sim U(0,1)$

Maintain Diversity (3)

• Craziness:

particle may change direction suddenly (analogous to mutation in GA)

$$v_i(t+1) = rand() \times v^{\text{max}}$$
 if $r \le p_{crazy}$
 $v_i(t+1) = v_i(t+1)$ otherwise
 $r \sim \text{U}(0,1)$

Constraints Handling in PSO

- How do we treat constraints in PSO?
- Several alternatives
 - Change the velocity to 0 if the resulting location will violate the constraint; Do not move particle
 - Use various strategies to direct particles back to feasible range
 - Adopt penalty functions

Constraint Handling (1)

• Bouncing strategy $d' = d \times r \ (r \le 1.0)$

Constraint Handling (2)

Adhere strategy

Constraint Handling (3)

• Re-entering strategy

Constraint Handling (4)

- Penalty: refer to "Genetic Algorithms (2)"
 - Static
 - Dynamic
 - Adaptive

PSO vs. GA

	GA	PSO
General feature	Random search	Random search
	Population-based	Population-based
Individual memory	None	Yes; through pBest
Individual operator	Mutation	pBest updating
Social operator	Selection	gBest
	Crossover	
Balance	Tunable	Higher w: Exploration
Exploitation/		Lower w: Exploitation
Exploration		

PSO vs. GA

- By their natures, **PSO** seems good at continuous optimization whereas **GA** seems good at discrete problems
- In PSO, particles neither die nor age
- PSO is considered <u>easier to implement</u> than
 GA