Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/DE05/000299

International filing date: 22 February 2005 (22.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 009 055.6

Filing date: 23 February 2004 (23.02.2004)

Date of receipt at the International Bureau: 09 May 2005 (09.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

PCT/DE 2005/000299 BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 009 055.6

Anmeldetag:

23. Februar 2004

Anmelder/Inhaber:

Infineon Technologies AG, 81669 München/DE

Bezeichnung:

Kühlsystem für Geräte mit Leistungshalbleitern und

Verfahren zum Kühlen derartiger Geräte

IPC:

H 05 K, G 06 F, H 01 L

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

A 9161 03/00 EDV-L

München, den 16. April 2005

Doutsches Patent- und Mark

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Agurks

10

15

16

Zusammenfassung

Kühlsystem für Geräte mit Leistungshalbleitern und Verfahren zum Kühlen derartiger Geräte

Die Erfindung betrifft ein Kühlsystem (22) für Geräte mit Leistungshalbleitern (1) und Verfahren zum Kühlen derartiger Geräte. Dazu weist das Kühlsystem Leiterplatten (4) auf, die auf einem Schaltungsträger (10) in Steckkontaktleisten (7) angeordnet sind. Das Kühlsystem selbst weist eine Kühlplatte (11) auf, die schwenkbar an einer der Steckkontaktleisten (7) im Bereich des Leistungshalbleiterbauteils (1) montiert ist. Die Kühlplatte (11) kann um eine Achse (14) derart geschwenkt werden, dass sie eine erste Position, die von der Leiterplatte (4) weggeschwenkt ist, und eine zweite Position, bei der die Kühlplatte (11) auf dem Leistungshalbleiterbauteil (1) aufliegt, einnimmt.

20 [Figur 1]

Beschreibung

Kühlsystem für Geräte mit Leistungshalbleitern und Verfahren zum Kühlen derartiger Geräte

5

10

Die Erfindung betrifft ein Kühlsystem für Geräte mit Leistungshalbleitern und Verfahren zum Kühlen derartiger Geräte. Insbesondere betrifft die Erfindung die Kühlung auf Leiterplatten, die über Steckkontakte mit übergeordneten Schaltungsträgern verbunden sind.

15

Die Wärmeentwicklung, insbesondere bei elektronischen Speichergeräten, ist aufgrund der räumlichen Einschränkungen kritisch, zumal üblicherweise die Verlustwärme der Leistungshalbleiter zur Versorgung der Speichergeräte über Steckkontakte an den übergeordneten Schaltungsträger weitergeleitet wird, der sich lokal im Bereich der Verbindungselemente aufheizt. Der Anteil an Verlustwärme, die über das Gehäuse des Leistungshalbleiters zusätzlich direkt an die Umgebung abgestrahlt werden kann, ist begrenzt, so dass die Gefahr der lokalen Überhitzung des Leistungshalbleiters besteht.

25

20

Ferner können die übrigen, insbesondere benachbarten Speicherhalbleiterbauteile auf der gleichen Leiterplatte wie der
Leistungshalbleiter, thermisch belastet werden, so dass Speicherausfälle zu befürchten sind. Selbst eine aktive Zwangskühlung mit einem aufgeprägten Kühlluftstrom ist oftmals
nicht ausreichend, da der Wärmeübergang zwischen dem Gehäuse
des Leistungshalbleiters und dem Kühlluftstrom begrenzt ist.

30

Aufgabe der Erfindung ist es, ein preiswertes Kühlsystem für Geräte mit Leistungshalbleitern zu schaffen, das einen preisgünstigen thermischen Ausgleich zwischen Wärmequellen und Um-

15

20

25

30

2

gebung ermöglicht, und eine unmittelbare Kühlung der Wärmeguellen sicherstellt.

Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

Erfindungsgemäß wird ein Kühlsystem für Geräte mit Leistungshalbleiterbauhalbleiterbauteilen geschaffen. Die Leistungshalbleiterbauteile sind auf Leiterplatten angeordnet. Diese Leiterplatten
sind ihrerseits in Steckkontaktleisten eines übergeordneten
Schaltungsträgers angeordnet. Das Kühlsystem weist eine Kühlplatte auf, die schwenkbar an einer der Steckkontaktleisten
im Bereich eines Leistungshalbleiterbauteils montiert ist.
Diese Kühlplatte kann um eine Achse, parallel zur Steckkontaktleiste, geschwenkt werden und weist eine von dem Halbleiterbauteil weggeschwenkte erste Montage- und Wartungsposition
auf. In einer zweiten Kühl- und Betriebsposition ist die
Kühlplatte an das Leistungshalbleiterbauteil angepresst.

Ein derartiges Kühlsystem hat den Vorteil, dass die Wärmeverteilung und die Wärmeabfuhr der Verlustwärme des Leistungshalbleiterbauteils unmittelbar und direkt an der Wärmequelle, nämlich an dem Leistungshalbleiterbauteil, wirkt. Die Kühlplatte ist einerseits eine Wärmesenke, die einen hohen Anteil der Verlustwärme des Leistungshalbleiterbauteils aufnehmen kann. Außerdem weist sie einen niedrigen Wärmeübergangswiderstand zu der Umgebung auf, so dass mit einer intensiven Wärmeabstrahlung und damit Kühlung der Kühlplatte gerechnet werden kann.

Ein weiterer Vorteil ist es, dass die Kühlplatte nicht unmittelbar als Wärmesenke auf dem Leistungshalbleiterbauteil auf-

15

20

30

FIN 565/200354141

3

geklebt ist, sondern vielmehr einen schwenk- oder kippbaren Bestandteil der Steckkontaktleiste bildet. Der Kippmechanismus ist so gestaltet, dass die Kühlpatte zwei stabile Lagen oder Positionen einnehmen kann, wenn sie um ihre Kippachse geschwenkt wird. In der ersten Position, der sogenannten Montage- und Wartungsposition, gibt die Kühlplatte den Weg frei, um eine Leiterplatte mit ihren Halbleiterbauteilen in die Steckkontaktleiste einführen zu können. In der zweiten Position, der sogenannten Kühl- und Betriebsposition, berührt die Oberseite der Kühlplatte auf das Leistungshalbleiterbauteil und bildet einen niedrigen Wärmeübergangswiderstand von dem Leistungshalbleiterbauteil zu der Kühlplatte. Diese zweite Kühl- und Betriebsposition kann gleichzeitig genutzt werden, um die Leiterplatte in der Steckkontaktleiste zu verriegeln. Dazu kann die Kühlplatte in vorteilhafter Weise einen Schnappverschluss oder Schnapphaken aufweisen, der über den Rand der Leiterplatte hinausragt und mit der Kühlseite der Kühlplatte einen Winkel von 90° so dass die Leiterplatte in der Steckkontaktleiste des Schaltungsträgers arretiert ist.

Während, ohne eine derartige Kühlplatte, die Wärmeabführ über die Steckkontaktleiste zu dem übergeordneten Schaltungsträger beschränkt ist, wird nun dieser Wärmeübergang verbessert und gleichzeitig wird die Abgabe von Wärme an die Umgebung inten-25 siviert. Während die Gehäuse der Halbleiterbauteile aus Keramik oder Kunststoff aufgebaut sind, ist ein vorteilhaftes Material für die Kühlplatte Kupfer, Aluminium oder Legierungen derselben. Diese Metalle verfügen über eine hohe Wärmeleitfähigkeit und können durch Einschwärzen ihrer Oberflächen auch in ihrer Wärmeabstrahlung verbessert werden, so dass ein Kühlluftstrom oder eine Zwangskühlung wirksamer das Leistungshalbleiterbauteil kühlen kann.

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 6 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag Betreff: 24 Seite(n) empfangen

30

FIN 565/200354141

4

Da das Leistungshalbleiterbauteil einer Leiterplatte die höchste Verlustwärme entwickelt und nun direkt gekühlt wird, und somit der Kühlaufwand konzentriert auf die Wärmequelle gerichtet ist, hat dieses Kühlsystem den weiteren Vorteil, dass es für einen preisgünstigen thermischen Ausgleich zwischen der Wärmequelle und der Umgebung sorgt. Außerdem hat die Befestigung der Kühlplatte an der Steckkontaktleiste den Vorteil, dass das zu kühlende Leistungshalbleiterbauteil in seinen Außenabmessungen und in dem Aufbau seines Gehäuses nicht modifiziert werden muss, so dass auch die Montagekosten bei der Einführung dieses verbesserten Kühlsystems vernachlässigbar sind. Außerdem kann auf teure auf dem Leistungshalbleiterbauteil fixierte Wärmesenken, verzichtet werden.

In einer bevorzugten Ausführungsform der Erfindung kann die Kühlplatte auf der das Leistungshalbleiterbauteil nicht berührenden. Kühlplattenseite Kühlrippen aufweisen. Derartige Kühlrippen können die Kühlung intensivieren und sie können in Struktur und Ausrichtung einem außen aufgeprägten Kühlluftstrom derart angepasst werden, dass der höchstmögliche Kühlungseffekt erreicht wird. Auch die Querschnittsform der Kühlrippen kann dahingehend optimiert werden, dass möglichst ein niedriger Wärmeübergang zwischen dem Kühlluftstrom und der Kühlplatte geschaffen wird. Ferner wird durch die Kühl-rippen die Wärmesenke vergrößert.

Bei einer weiteren Ausführungsform der Erfindung ist es vorgesehen, dass die Kühlplatte auf ihren Randseiten angebrachte Kühlgitterstrukturen aufweist. Diese Kühlgitterstrukturen können aufgrund der Schwenkbarkeit der Kühlplatte in Bezug auf die eingesteckte Leiterplatte zusammen mit der Kühlplatte von den Halbleiterbauteilen auf der Leiterplatte in die erste Position für Wartung- und Montage geschwenkt werden, so dass

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 7 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag Betreff: 24 Seite(n) empfangen

20

25

30

5

die Leiterplatte ohne Probleme in die Steckkontaktleiste eingeführt werden kann. In der zweiten Position der Kühlplatte erstreckt sich nun die Kühlwirkung auf die zu dem Leistungshalbleiterbauteil benachbarten Halbleiterbauteile. Eine derartige Kühlgitterstruktur kann aus rechtwinklig zueinander angeordneten metallischen Leisten oder Kühlrippen bestehen. Ferner kann die endgültige Gitterstruktur mit der Kühlplatte aus einem Kühlblech ausgestanzt sein. Mit den angebrachten Kühlgitterstrukturen wird die wärmeabstrahlende Oberseite der . Kühlpatte vergrößert und die Wärmeverteilung über die gesamte Leiterplatte verteilt, wobei nun auch die benachbarten Halbleiterbauteile mitgekühlt werden können. Außerdem entstehen leichte Verwirbelungen an den Kühlgitterstrukturen, welche die Intensität der Kühlung des aufgezwungenen Kühlluftstromes vergrößert.

In einer weiteren Ausführungsform der Erfindung kann eine Kühlgitterstruktur an der oberen Randseite der Kühlplatte angeordnet sein, und über die Leiterplatte hinausragen, und in einen Kühlluftstrom hineinragen. Diese Lösung ist von den Gegebenheiten des zur Verfügung stehenden Geräteinnenraumes abhängig, da sich die erforderliche Fläche pro Leiterplatte erhöht, nämlich um die Größe des an dem oberen Rand der Kühlplatte angebrachten Kühlgitters. Ein derartig ausgeführtes Kühlsystem hat den Vorteil, dass ein Kühlluftstrom der orthogonal zur Ausrichtung der Leiterplatten durch das zu kühlende Gerät hindurch geführt wird, nun durch die Kühlgitterstruktur hindurch strömen muss, womit die Kühlwirkung der Kühlplatte weiter erhöht werden kann.

Je nach dem, wie die zusätzlichen Kühlgitterstrukturen angeordnet sind, wird ein den Kühlluftstrom erzeugendes Kühlluftstromgerät, in dem zu kühlenden Gerät angeordnet. Dabei kann

10

15

20

6

die Zwangskühlung parallel oder orthogonal zu den Steckkontaktleisten des zu kühlenden Gerätes angeordnet sein. Eine orthogonale Anordnung ist von Vorteil, wenn eine Kühlgitterstruktur über die Leiterplatten hinausragt und in den Kühlluftstrom hineinragt, weil damit die Kühlung intensiviert wird.

Bei einer weiteren Ausbildung der Erfindung weist das Kühlsystem zwei einander gegenüberstehende Kühlplatten auf, die schwenkbar an einer Steckkontaktleiste im Bereich des Leistungshalbleiterbauteils angeordnet sind. Ein derartiges Kühlsystem hat den Vorteil, dass die Kühlplatte nicht einseitig in der Kühl- und Betriebsposition gegen die Leiterplatte drückt, sondern dass dieser Druck von der zweiten Kühlplatte auf der gegenüberliegenden Seite neutralisiert wird, so dass die Leiterplatte selbst mechanisch nicht belastet wird. Darüber hinaus hat diese Lösung den Vorteil, dass eine derartige Leiterplatte beidseitig bestückt sein kann, mit entsprechenden Leistungshalbleiterbauteilen und Speicherbauteilen. Damit kann praktisch die Speicherdichte verdoppelt werden, ohne dass die Gefahr einer Überhitzung des mit Halbleiterbauteilen dicht gepackten Gerätes besteht.

Ein Verfahren zur Kühlung eines Gerätes mit Leistungshalbleiterbauteilen weist die nachfolgenden Verfahrensschritte auf.
Zunächst werden schwenkbare Kühlplatten auf vorgesehene
Steckkontaktleisten in dem Bereich von Leistungshalbleiterbauteilen in einer ersten Montage- und Wartungsposition montiert. Dabei kann die Steckkontaktleiste bereits auf einem
übergeordneten Schaltungsträger angeordnet sein. Anschließend
werden die Leiterplatten mit Leistungshalbleiterbauteilen auf
den Steckkontaktleisten angebracht und die Kühlplatte wird um
eine Achse parallel zu der Steckkontaktleiste in eine zweite

FIN 565/200354141

7

M

Kühl- und Betriebsposition verbracht. In dieser zweiten Position liegt die Kühlplatte auf dem Leistungshalbleiterbauteil auf. Um eine Zwangskühlung oder aktive Kühlung zu ermöglichen, wird ein Kühlluftstrom erzeugendes Gerät derart ausgerichtet, dass der Kühllüftstrom parallel oder senkrecht zu den Steckkontaktleisten strömt. Über entsprechende Thermosensoren wird sichergestellt, dass beim Überschreiten einer kritischen Temperatur der Kühlluftstrom eingeschaltet wird, um das Gerät entsprechend zu temperieren.

10

Zusammenfassend ist festzustellen, dass das erfindungsgemäße Kühlsystem nachfolgende Vorteile aufweist.

15

1. Das Kühlsystem liefert einen selektiven und ausgezeichneten ten thermischen Pfad von extrem wärmebildenden Komponenten zu einem übergeordneten Schaltungsträger, wie einer Platine eines Computers, als auch durch Wärmeabgabe in die Umgebung, wobei eine Querübertragung der Wärme auf empfindliche Nachbarkomponenten, der extrem wärmebildenden Komponenten, vermieden wird.

20

2. Diese thermische Lösung ist nicht fixiert an die Leiterplatte eines Speichermoduls, sondern sie ist in die Steckkontaktleistenkonstruktion des Schaltungsträgers integriert, ohne direkt auf dem Schaltungsträger montiert zu
sein. Weder der Schaltungsträger noch die Leiterplatten
müssen für dieses Kühlsystem modifiziert werden. Lediglich
die Steckkontaktleisten sind mit einem Schwenkmechanismus
auszurüsten.

30

25

3. Da die Kühlplatte in Form einer Klammer direkt die Rückseite der Leistungshalbleiterbauteile kontaktiert, ergibt
sich ein sehr guter thermischer Pfad, sowohl in Richtung
auf die Umgebung des Moduls, als auch in den übergeordneten Schaltungsträger hinein.

15

20

FIN 565/200354141

8

10

4. Der thermische Pfad von dem Leistungshalbleiterbauteil in eine klammerförmige Kühlplatte ist weiterhin wirkungsvoller, als bisher bekannte Lösungen, zumal die Kühlplatte als Klammer, sowohl als Wärmesenke, als auch als Wärmeverteiler wirkt.

Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert.

- 10 Figur 1 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems, gemäß einer ersten Ausführungsform
 der Erfindung;
 - Figur 2 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems, gemäß einer zweiten Ausführungsform
 der Erfindung;
 - Figur 3 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems, gemäß einer dritten Ausführungsform
 der Erfindung.

Figur 1 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems 22, gemäß einer ersten Ausführungsform der Erfindung. Die Basis dieses Kühlsystems 22 bildet ein Schaltungsträger 10, der mit einer übergeordneten Schaltung versehen ist wie es für Computeranlagen üblich ist. Auf dem Schaltungsträger 10 sind Steckkontaktleisten 7, 8 und 9 parallel ausgerichtet und angeordnet. In den Steckkontaktleisten 7, 8 und 9 stecken Leiterplatten 4, 5 und 6, wobei jede Leiterplatte platte mit neun Speicherbauteilen 17 und einem zentral angeordneten Leistungshalbleiterbauteil 1, 2 oder 3 bestückt ist. Das Kühlsystem 22 sorgt bei Bedarf für einen Kühlluftstrom Lin der angegebenen Pfeilrichtung, der die Leiterplatten 4, 5

10

15

20

25

FIN 565/200354141

und 6 mit ihren Speicherbauteilen 17 und Leistungshalbleiterbauteile 1, 2 oder 3, kühlt.

An den Positionen der Leistungshalbleiterbauteile 1, 2 und 3 sind zusätzlich Kühlplatten 11, 12 und 13 angeordnet, die mit den Steckkontaktleisten 7, 8 und 9 schwenkbar um eine Achse 14 verbunden sind. Die Steckkontaktleiste 7 weist eine Kühlplatte 11 einer ersten Montage- und Wartungsposition W auf, in der die Kühlplatte 11 um die Achse 14 von der Leiterplatte 4 weggeschwenkt ist, so dass die Leiterplatte 4 in die Steckkontaktleiste 7 eingesteckt werden kann, oder von ihr abgezogen werden kann. Um die Kühlfunktion der Kühlplatte 11 voll zu entfalten, wird nach dem Einstecken der Leiterplatte 4 in die Steckkontaktleiste 7, die Kühlplatte 11 in eine zweite Kühl- und Betriebsposition K gebracht, wobei eine Oberseite der Kühlplatte 11 auf das Gehäuse des Leistungshalbleiterbauteils gepresst wird.

Nach diesem Klammervorgang bildet die Kühlplatte 11 sowohl eine Wärmesenke, als auch eine Wärmeverteilungsplatte für das Leistungshalbleiterbauteil 1. Die Wärme einer Kühlplatte 13 in der zweiten Position wird in Pfeilrichtung B über die Steckkontaktleiste zu dem übergeordneten Schaltungsträger 10 einerseits abgeleitet, und andererseits erfolgt eine Wärmeabstrahlung in Pfeilrichtung A von der Kühlplatte 13. Dabei wird die Wärmeabfuhr durch den Kühlluftstrom L in Pfeilrichtung Z intensiviert.

Der Kühlluftstrom wird von einem nicht gezeigten Kühlgebläse 30 erzeugt, das so ausgerichtet ist, dass der Kühlluftstrom L parallel zu der Ausrichtung der Leiterplatten 4, 5 und 6 strömt. Um die Kühlwirkung des Kühlluftstromes L zu erhöhen, kann die nicht in Kontakt mit dem Leistungshalbleiterbautei-

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 12 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag

20

FIN 565/200354141

14

len 1, 2 und 3 befindliche Oberseite 15 der Kühlplatten 11, 12 und 13 mit Kühlrippen ausgestattet sein, die parallel zu dem Kühlluftstrom L ausgerichtet sind.

Dieses Kühlsystem 22 hat einerseits den Vorteil, dass es nicht an dem Leistungshalbleiterbauteil 1, 2 oder 3 selbst fixiert ist und andererseits den Vorteil, dass die Kühlwirkung weiter intensiviert werden kann, indem auf beiden Seiten der Leiterplatten 4, 5 und 6 Kühlplatten vorgesehen werden, die aufeinander zu gekippt werden können. Mit dieser weiteren Lösung ist der Vorteil verbunden, dass die Leiterplatten 4, 5 und 6 beidseitig bestückt sein können und somit die Speicherdichte dieser Speichereinheit weiter erhöht werden kann ohne das Gerät thermisch zu überlasten.

Figur 2 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems 23, gemäß einer zweiten Ausführungsform der Erfindung. Komponenten mit gleichen Funktionen, wie in Figur 1, werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.

In dieser zweiten Ausführungsform der Erfindung wird die

Kühlfläche der Kühlplatten 11, 12 und 13 durch Kühlgitterstrukturen 16, die auf den Randseiten 20 und 21 der Kühlplatte 15 te 12 fixiert sind, vergrößert. Durch diese Kühlgitter 16, die gemeinsam mit den Kühlplatten 11, 12 und 13 in die Montage- und Wartungsposition W oder in die Kühl- und Betriebsposition K geschwenkt werden können, wird der Kühleffekt des Kühlluftstromes L strömenden Kühlluft weiter intensiviert.

30 Dabei werden zusätzlich zu der Abstrahlung in Richtung A, die von der Kühlplatte 12 ausgeht weitere Abstrahlungen durch die Kühlgitterstrukturen 16 in Pfeilrichtung C ermöglicht. Diese Variante des erfindungsgemäßen Kühlsystems ist raumsparend

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 13 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag Betreff: 24 Seite(n) empfangen

15

20

25

30

11

und benötigt kein zusätzliches Gerätevolumen, sondern kann auf die Ausmaße der Steckkontaktleisten 7, 8 und 9 begrenzt bleiben. Eine weitere hier nicht gezeigte Möglichkeit besteht darin, dass die Kühlplatten 11, 12 und 13 in der zweiten Kühl- und Betriebsposition K die Leiterplatten 4, 5 und 6 derart fixieren, dass ihre Steckpositionen in der Steckkontaktleiste 7, 8 oder 9 gesichert bleiben. Die Richtung Z der Zwangskühlung, die auch aktive Kühlung genannt wird, bleibt in dieser zweiten Ausführungsform der Erfindung in gleicher Weise ausgerichtet, wie in der ersten Ausführungsform der Erfindung, die in Figur 1 gezeigt wird.

Figur 3 zeigt eine schematische, perspektivische Ansicht eines Kühlsystems 24, gemäß einer dritten Ausführungsform der Erfindung. Komponenten mit gleichen Funktionen, wie in den vorhergehenden Figuren werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.

Die dritte Ausführungsform der Erfindung setzt voraus, dass die zu kühlende Speichereinheit in ihrer Höhe nicht begrenzt ist. Der Unterschied zu den vorhergehenden Lösungen liegt darin, dass die Kühlwirkung weiter intensiviert wird, indem eine Kühlgitterstruktur 18 an der oberen Randseite 19 der Kühlplatten 11, 12 und 13 fixiert wird, oder mit den Kühlplatten 11, 12 und 13 eine einstückige Einheit bildet, so dass die Kühlgitterstruktur 18 über den oberen Rand 25 der Leiterplatten 4, 5 und 6 hinausragen. Neben den bisher möglichen Wärmeabstrahlung in Richtung B auf den Schaltungsträger 10 zu, die Wärmeableitung A direkt von der Fläche der Kühlplatte, und die Wärmeabstrahlung C senkrecht zur Kühlgitterstruktur 18, kommt bei dieser Lösung noch eine weitere Wärmeabführmöglichkeit in den Pfeilrichtungen D hinzu, die eine seitliche Wärmeabstrahlung von den Kühlgitterstrukturen 18

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 14 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag Betreff: 24 Seite(n) empfangen

•

ermöglichen. Da ferner der Kühlluftstrom L in Richtung Z der Zwangskühlung durch die Kühlgitterstrukturen 18 hindurchtritt, wird für eine erhöhte intensive Wärmeabfuhr bei dieser dritten Ausführungsform der Erfindung eines Kühlsystems 24 gesorgt.

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 15 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag

7

Bezugszeichenliste

1	Leistungshalbleiterbauteil
2,	Leistungshalbleiterbauteil
3	Leistungshalbleiterbauteil
4	Leiterplatte
5	Leiterplatte
6	Leiterplatte
7	Steckkontaktleiste
8	Steckköntaktleiste
9	Steckkontaktleiste
10	Schaltungsträger
11	Kühlplatte
12	Kühlplatte
13	Kühlplatte
14	Achse
15	Kühlplattenseite
16	Kühlgitterstruktur
17	Speicherbauteil
18	Kühlgitterstruktur
19	Randseite
20	Randseite
21	Randseite
22	Kühlsystem
23	Kühlsystem
24	Kühlsystem
25	oberer Rand der Leiterplatte
A	Richtung der Wärmeabfuhr
₿	Richtung der Wärmeabfuhr
C	Richtung der Wärmeabführ
D	Richtung der Wärmeabfuhr
K	Kühl- und Betriebsposition
L	Kühlluftstrom
W	Montage- und Wartungsposition
Z	Richtung der Zwangskühlun

Patentansprüche

25

- 1. Kühlsystem für Geräte mit Leistungshalbleiterbauteilen (1), wobei die Leistungshalbleiterbauteile (1) auf Leiter-5 platten (4) angeordnet sind, die in Steckkontaktleisten (7) eines übergeordneten Schaltungsträgers (10) angeordnet sind, wobei das Kühlsystem eine Kühlplatte (11) aufweist, die schwenkbar an einer Steckkontaktleiste (7) in einem Bereich eines der Leistungshalbleiterbauteile (1) montiert 1.0 ist, und die um eine Achse (14) parallel zur Steckkontaktleiste (7) schwenkbar ist, und die eine von dem Leistungshalbleiterbauteil (1) weggeschwenkte erste Montage- und Wartungsposition (W) aufweist, und die eine an das Leistungshalbleiterbauteil (1) angepresste zweite Kühl- und 15 Betriebsposition (K) aufweist.
- Kühlsystem nach Anspruch 1,
 dadurch gekennzeichnet, dass
 die Kühlplatte (11) auf der das Leistungshalbleiterbauteil
 (1) nicht berührenden Kühlplattenseite (15), Kühlrippen
 aufweist.
 - 3. Kühlsystem nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Kühlplatte (11) auf ihren Randseiten (20, 21) angebrachte Kühlgitterstrukturen (16) aufweist.
- 4. Kühlsystem nach Anspruch 3,
 dadurch gekennzeichnet, dass
 die Kühlgitterstrukturen (16) die übrigen benachbarten
 Halbleiterbauteile (17) einer Leiterplatte (4) abdecken.

10

14

- 5. Kühlsystem nach Anspruch 3 oder Anspruch 4, dadurch gekennzeichnet, dass eine Kühlgitterstruktur (18) an der oberen Randseite (19) der Kühlplatte (11) angeordnet ist und über einen oberen Rand (25) der Leiterplatte (4) hinaus- und in einen Kühlluftstrom L hineinragt.
- 6. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein einen Kühlluftstrom (L) erzeugendes Kühlluftstromgerät derart angeordnet ist, dass es eine Zwangskühlung (Z) parallel zu den Steckkontaktleisten (7) des zu kühlenden Gerätes aufweist.
- 7. Kühlsystem nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass
 ein einen Kühlluftstrom (L) erzeugendes Kühlluftstromgerät
 derart angeordnet ist, dass es eine Zwangskühlung (Z)
 senkrecht zu den Steckkontaktleisten (7) des zu kühlenden
 Gerätes aufweist, in welche mit der Kühlplatte (11) verbundene Kühlgitterstrukturen (18) hineinragen.
- 8. Kühlsystem nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass

 das Kühlsystem zwei einander gegenüberstehende Kühlplatten
 (11) aufweist, die schwenkbar an einer Steckkontaktleiste
 (7) im Bereich eines Leistungshalbleiterbauteils (1) angeordnet sind.
- 9. Verfahren zur Kühlung eines Gerätes, dass Leistungshalbleiterbauteile (1) aufweist, wobei das Verfahren folgende Verfahrensschritte aufweist:

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 17 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag Betreff: 24 Seite(n) empfangen

FIN 565/200354141

15

- Montieren von schwenkbaren Kühlplatten (11) auf Steckkontaktleisten (7) in den Bereichen von Leistungshalbleiterbauteilen (1) in einer ersten Montage- und Wartungsposition (W),
- Anbringen von Leiterplatten (4) mit Leistungshalbleiter-5 bauteilen (1) auf den Steckkontaktleisten (7) und schwenken der Kühlplatte (11) um eine Achse parallel zu der Steckkontaktleiste (7) in eine zweite Kühl- oder Betriebsposition (K), bei der die Kühlplatte (11) auf dem Leistungshalbleiterbauteil (1) aufliegt, 10
 - Ausrichten eines kühlluftstromerzeugenden Gerätes, so dass der Kühlluftstrom (L) parallel oder senkrecht zu den Steckkontaktleisten (7, 8, 9) strömt,
 - Bereitstellen des Kühlluftstromes (L) während des Betreibens der Leistungshalbleiterbauteile (1) bei Erreichen einer kritischen Temperatur der Leistungshalbleiterbauteile (1).

FAXG3 Nr: 343356 von NVS:FAXG3.I0.0101/0 an NVS:PRINTER.0101/LEXMARK2450 (Seite 18 von 24) Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag

SCHWEIGER & PARTNER

Datum 23.02.04 15:45 - Status: Server MRSDPAM02 (MRS 4.00) übernahm Sendeauftrag

GESAMT SEITEN 24