C:\cygwin\home\zahorjan\cse461\12au\02-directLinkA.cp3 C:\cygwin\home\zahorjan\cse461\12au\02-directLinkA.cp3 **CSE 461: Introduction to Computer Communications Networks Physical and Data Link Layers**

Direct Link Networks

"Direct link" \Rightarrow no switching/routing

First Problem: Sending Data

Received signal is attenuated and distorted

Where We're Headed

- It turns out that how fast communication can be depends on how much of the frequency spectrum we're allowed to use
 - 0-100Mz potentially offers transmission rates that are twice as high as 0-50MHz
- The rate actually achieved depends on lots of things
 - One is <u>coding</u>: what properties of the signal are used to represent bits

Terminology: "Bandwidth"

- The usual CS use of "bandwidth" is a measurement of bits/second
 - "I have only about 10 Mbps bandwidth into my house."
- The signal processing use of "bandwidth" is amount of frequency spectrum in MHz
 - "802.11n has a channel bandwidth of 40MHz"
- Why we care...
 - Bandwidth_{cs} is fundamentally limited by bandwidth_{ee}
 - The maximum possible bits/second is limited by the width of the available frequency spectrum

Aid to Intuition: Fourier Analysis (!)

http://www.yorku.ca/eye/squarwav.htm

Time Domain ⇔ Frequency Domain

Two different representations of one signal

http://arachnoid.com/maxima/fourier_analysis.html

Properties of Media: Wires

Frequency (MHz)	Category 5e UTP Cable, solid Attenuation (dB)	Category 6 UTP Cable, solid Attenuation (dB)
0.772	1.8	1.8
1.0	2.0	2.0
4.0	4.1	3.8
8.0	5.8	5.3
10.0	6.5	6.0
16.0	8.2	7.6
20.0	9.3	8.5
25.0	10.4	9.5
31.25	11.7	10.7
62.5	17.0	15.4
100.0	22.0	19.8
200.0	_	29.0
250.0	_	32.8

Table T1: Attenuation of UTP cables, Categories 5e and 6, 100 m

http://www.siemon.com/uk/white_papers/04-01-15_cat6.asp

Radio Spectrum Allocation

http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf

Unlicensed band

- · ISM bands Industrial, Scientific, and Medical
- · Free for use at low power; devices manage interference
 - Widely used for networking (Bluetooth, Zigbee, Microwave)
 - Most importantly WiFi
- What percentage of the entire spectrum is used by 802.11?
 - -0.06%

Baseband / Passband

- We know that (more or less) any signal can be thought of as the sum of pure sines and cosines
- We know that transmission media have limited bandwidth
- Does it matter if the spectrum we have is 0-B MHz (baseband) or C to C+B MHz (passband)?

• Nope

Signal

AM

http://en.wikipedia.org/wiki/Amplitude_modulation

Sampling: Continuous Signal to Discrete Series

Every sample produces a <u>symbol</u>.

Can I Increase Bit Rate By Sampling Faster?

bits/second = symbols/second * bits/symbol

Nyquist Formula: Limit on Symbol Rate

If the signal is restricted to bandwidth_{EE} B, then...

2B samples of the signal are sufficient to reconstruct the entire signal

- That is, once you've learned 2B "things," there's nothing more to learn from faster sampling of the input signal
- Thus, 2B is maximum possible (independent) symbol rate, even if there is no distortion at all in the received signal

How about more bits/symbol?

bits/second = symbols/second * bits/symbol

• Shannon's Theorem:

bit rate
$$\leq$$
 B log₂(1 + S/N)

where S is the received signal power, N is the noise, and B is the available bandwidth $_{\rm EE}$

- So, bit rate is:
 - Limited by noise (inaccuracy in sampling)
 - Limited by received power, with diminishing returns

Engineering symbols: signal modulation

 The modulating signal has data; the carrier signal is the signal being moduled; the modulated signal is the radio wave

Multi-bit Symbols: Examples

 Represent amplitude (distance from origin) and phase (angle around origin) modulation in a constellation diagram

Links Are Valuable

FCC Auction 73

Revised 700 MHz Band Plan for Commercial Services

Block	Frequencies (MHz)	Bandwidth	Pairing	Area Type	Licenses
A	698-704, 728-734	12 MHz	2 x 6 MHz	EA	176
В	704-710, 734-740	12 MHz	2 x 6 MHz	CMA	734
С	710-716, 740-746	12 MHz	2 x 6 MHz	CMA	734
D	716-722	6 MHz	unpaired	EAG	6
E	722-728	6 MHz	unpaired	EA	176
C	746-757, 776-787	22 MHz	2 x 11 MHz	REAG	12
A	757-758, 787-788	2 MHz	2 x 1 MHz	MEA	52
D	758-763, 788-793	10 MHz	$2 \times 5 \text{ MHz}$	Nationwide	1 *
В	775-776, 805-806	2 MHz	2 x 1 MHz	MEA	52

^{*} Subject to conditions respecting a public/private partnership.

The blocks shaded above in gray (Lower 700 MHz Band C and D Blocks and Upper 700 MHz Band A and B Blocks) were auctioned prior to Auction 73.

Links Are Valuable

The New york Times

March 21, 2008

And the Winners Are ...

The government made \$19.1 billion in its auction of wireless spectrum to 101 companies. The big spenders were established cellphone carriers, although a satellite TV company was a winner.

COMPANY	ALUE OF WINNING BIDS
Cellco Partnership (Verizon Wireless) AT&T Mobility Spectrum	\$9,363,160,000 6,636,658,000
Frontier Wireless (DIsh Network) Qualcomm King Street Wireless (US Cellular)	711,871,000 558,142,000 400,638,000
MetroPCS 700 MHz Cox Wireless	313,267,000
Cellular South Licenses	304,633,000 191,533,000
CenturyTel Broadband Wireless Vulcan Spectrum (backed by Paul Allen)	148,964,000 112,793,000
Continuum 700	88,179,000
Cavalier Wireless Puerto Rico Telephone Co.	61,803,000 31,402,000
Triad 700	22,694,000
McBride Spectrum Partners	8,490,000
Sources: Federal Communications Commission; Goldman Sact	75 THE NEW YORK TIME

Coding

- Modulate something amplitude, frequency, phase
- · A key issue is clocking
 - Higher transmission rates require better sync
- Some example encodings (thanks, wikipedia):

NRZI (CDs, USB, Fast Ethernet)

Encoding: Self-Clocking

- · Receiver can derive clock from the data signal
- Example 1:

Manchester (10Mbps Ethernet)

- Example 2: Use NRZI, but make sure there are transitions
 - 4B/5B multi-level transition (MLT)
 - 100Mbps Ethernet, with 3 levels of signal
 - 8B/10B MLT
 - · 1000Mbps Ethernet, with 5 levels of signal
 - (MLT is used to limit the required signal bandwidth to what can be carried on cheap, CAT 5 cable (100MHz).)

Ethernet (802.3) History

	10 Mbps	100 Mbps	1000 Mbps
Medium	Cat 3 cable 16 Mhz	Cat 5 cable 100 MHz	Cat 5e cable 100 Mhz Cat 6 cable 250 MHz
Encoding	Manchester	NRZI 4b/5b MLT-3	PAM5 8b/10b

Wireless (802.11) History

 Each "release" (802.11b, 802.11g, etc.) provides a number of rates and uses a number of distinct codings and modulations

Encodings:

DPSK – 1 bit/symbol QAM16 – 4 bits/symbol QAM64 – 6 bits/symbol

Direct Link Networks: Framing and Errors

