

# LOUISIANA STATE UNIVERSITY College of Agriculture

School of Plant, Environmental, and Soil Sciences HTP in Plant Breeding



# Data mining and modeling

**Prof. Roberto Fritsche-Neto** 

rfneto@agcenter.lsu.edu

Baton Rouge, March 20th, 2024

### **LeNet 1989**

Recognize zip codes in US postal service





Around 5% error rate. Good enough to be useful

### **CNN: Detection**



#### Groundtruth:

strawberry

strawberry (2)

strawberry (3)

strawberry (4)

strawberry (5)

strawberry (6)

strawberry (7)

strawberry (8)

strawberry (9)

strawberry (10)

apple

apple (2)

apple (3)



#### Groundtruth:

tv or monitor

tv or monitor (2)

tv or monitor (3)

person

remote control

remote control (2)

Sermanet, CVPR 2014

# **Types of Learning**

**Supervised:** Learning with a labeled training set *Example*: seed *classification* based on colors and shape

**Unsupervised:** Discover patterns in unlabeled data *Example: cluster* images based on color components



# The Curse of Learning





#### $A\,guide\,to\,machine\,learning\,for\,biologists$

Joe G. Greener, Shaun M. Kandathil, Lewis Moffat & David T. Jones ™

Nature Reviews Molecular Cell Biology 23, 40-55 (2022) | Cite this article

https://www.nature.com/articles/s41580-021-00407-0

### The Way of Learning



#### A guide to machine learning for biologists

Joe G. Greener, Shaun M. Kandathil, Lewis Moffat & David T. Jones □

Nature Reviews Molecular Cell Biology 23, 40-55 (2022) | Cite this article

https://www.nature.com/articles/s41580-021-00407-0

### One size does not fit all



#### A guide to machine learning for biologists

Joe G. Greener, Shaun M. Kandathil, Lewis Moffat & David T. Jones ™

Nature Reviews Molecular Cell Biology 23, 40-55 (2022) Cite this article

https://www.nature.com/articles/s41580-021-00407-0

# Data structure for supervised learning

#### Classification

| Var1 | Var2 | Var3 | Var4 | Var5 | Var6 | Var7 | Var8 | Var9 | Var10 | Var-target |
|------|------|------|------|------|------|------|------|------|-------|------------|
| 1.2  | 2.3  | 4.21 | 22   | 1.5  | 0.2  | 0.77 | 2.9  | 3.4  | 0.8   | Α          |
| 1.5  | 2.99 | 5.21 | 23   | 41.5 | 1.2  | 1.77 | 2.6  | 1.4  | 3.8   | Α          |
| 1.9  | 4.3  | 4.44 | 11   | 8.5  | 0.1  | 9.77 | 6.9  | 0.4  | 6.8   | В          |

### Regression

| Var1 | Var2 | Var3 | Var4 | Var5 | Var6 | Var7 | Var8 | Var9 | Var10 | Var-target |
|------|------|------|------|------|------|------|------|------|-------|------------|
| 0.2  | 2.3  | 4.23 | 22   | 1.5  | 0.2  | 0.76 | 2.9  | 3.4  | 0.8   | 3.12       |
| 1.5  | 2.99 | 5.21 | 23   | 41.5 | 1.2  | 1.77 | 2.6  | 1.4  | 3.8   | 4.88       |
| 1.9  | 4.3  | 4.44 | 11   | 8.5  | 0.1  | 9.79 | 6.9  | 0.4  | 6.8   | 9.73       |



- Scale / normalize/standardize the data
- Balanced classes
- Imputation
- Create dummy variables
- Replace variables that don't bring any information zip code -> lat and long
- Feature selection Reduce dimensionality to help to avoid overfitting
- ML models do not work properly with collinearity

### **Artificial Neural Networks (ANN)**

# Many layers of staked multiple regressions The regression type depends on the activation function

#### **Inputs**



Independent variables

Weights

HiddenLaye r Weights

Dependent variable

**Prediction** 

# Algorithm for learning ANN

- Initialize the weights  $(w_0, w_1, ..., w_k)$
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples

**Error function:** 

$$E = \sum_{i} [Y_i - f(w_i, X_i)]^2$$

• Find the weights  $w_i$ 's that minimize the error function e.g., gradient descent, backpropagation algorithm







| Row ID | Study Hrs | Sleep Hrs | Quiz | Exam |
|--------|-----------|-----------|------|------|
| 1      | 12        | 6         | 78%  | 93%  |
| 2      | 22        | 6.5       | 24%  | 68%  |
| 3      | 115       | 4         | 100% | 95%  |
| 4      | 31        | 9         | 67%  | 75%  |
| 5      | 0         | 10        | 58%  | 51%  |
| 6      | 5         | 8         | 78%  | 60%  |
| 7      | 92        | 6         | 82%  | 89%  |
| 8      | 57        | 8         | 91%  | 97%  |







# Algorithm for learning ANN

**STEP 1:** Randomly initialise the weights to small numbers close to 0 (but not 0).

STEP 2: Input the first observation of your dataset in the input layer, each feature in one input node.

**STEP 3:** Forward-Propagation: from left to right, the neurons are activated in a way that the impact of each neuron's activation is limited by the weights. Propagate the activations until getting the predicted result y.

**STEP 4:** Compare the predicted result to the actual result. Measure the generated error.

**STEP 5:** Back-Propagation: from right to left, the error is back-propagated. Update the weights according to how much they are responsible for the error. The learning rate decides by how much we update the weights.

STEP 6: Repeat Steps 1 to 5 and update the weights after each observation (Reinforcement Learning). Or:

Repeat Steps 1 to 5 but update the weights only after a batch of observations (Batch Learning).

STEP 7: When the whole training set passed through the ANN, that makes an epoch. Redo more epochs.

Batch: sample (fold) used for training

**Epoch: iteration** 

### ML vs. Deep Learning

- DL is a machine learning subfield of learning representations of data exceptionally effective at learning patterns
- Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers
- If you provide the system tons of information, it begins to understand it and respond in useful ways











### Learnable parameters



Weights
$$h = \sigma(W_1x + b_1)$$

$$y = \sigma(W_2h + b_2)$$

**Activation functions** 

How do we train?

$$4 + 2 = 6$$
 neurons (not counting inputs)  
 $[3 \times 4] + [4 \times 2] = 20$  weights  
 $4 + 2 = 6$  biases

26 learnable parameters

### Number of neurons and layers

- The number of neurons in the input layer is the number of explanatory variables
- Non-linearities needed to learn complex (non-linear) representations of data
- Otherwise, the ANN would be just a linear function



More hidden layers and neurons can approximate more complex functions

### **Activation functions**

- The learned information extracted from the training data is stored and captured by the weight values of the connections between the layers
- The final output can be continuous, binary, ordinal, or count, which is controlled for the activation function in the output layer



| Activation functions                                            | g(z)                                                                               | String  | Use                                                                                                                        | Data                                |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| rectifier linear unit                                           | Max(0, Z)                                                                          | relu    | Positive values                                                                                                            | CONTINUOS BUT POSITIVE              |  |
| sigmoid                                                         | $(1+e^{-z})^{-1}$                                                                  | sigmoid | converts independent variables of near infinite range into simple probabilities between 0 and 1                            | BINARY                              |  |
| Tanh                                                            | tanh(z)                                                                            | tanh    | deal more easily with negative numbers                                                                                     | CONTINUOS FROM NEGATIVE TO POSITIVE |  |
| softmax $g(z_j) = \frac{\exp(z_j)}{1 + \sum_{c=1}^{C} e^{z_j}}$ | oftmax $g(z_j) = \frac{\exp(z_j)}{1 + \sum_{c=1}^{C} \exp(z_c)}, j = 1,,C$ softmax |         | sigmoid activation function that handles multinomial labeling systems, that is, it is appropriate for categorical outcomes | MORE THAN TWO CLASSES               |  |

### **Activation: ReLU**



Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

$$R^n \to R^n_+$$

#### Trains much faster

- accelerates the convergence
- **Less expensive operations** 
  - compared to sigmoid/tanh (exponentials etc.)
  - implemented by simply thresholding a matrix at zero

### Loss or cost functions and output

Measure the amount of 'disagreement' between the obtained and ideal outputs

#### Classification

Training examples

R<sup>n</sup> x {class\_1, ..., class\_n} (one-hot encoding)

Output Layer Softmax

[map R<sup>n</sup> to a probability distribution]

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Cost (loss) function

Cross-entropy

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[ y_k^{(i)} \log \hat{y}_k^{(i)} + \left( 1 - y_k^{(i)} \right) \log \left( 1 - \hat{y}_k^{(i)} \right) \right]$$

#### Regression

 $R^n \times R^m$ 

Tanh, linear or Sigmoid



Mean Squared Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

Mean Absolute Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

Most them weigh more the values near the average, but in breeding, our concern is the extreme values

### Cross-validation and model selection

- Randomly select two portions of the data to be used for training and validation
- Then, run the model on the test set to see how it performs







- Learn the training data very well, even outliers (noise)
- Fail to generalize to new examples (test data)

### Regularization





#### **Dropout**

- Randomly drop units (along with their connections) during training
- Each unit retained with fixed probability p, independent of other units
- Hyper-parameter p to be chosen (tuned)

#### L2 = weight decay

• Regularization term that penalizes big weights, added to the objective

$$J_{reg}(\theta) = J(\theta) + \lambda \sum_{k} \theta_k^2$$

- Weight decay value determines how dominant regularization is during gradient computation
- Big weight decay coefficient → big penalty for big weights

#### **Early-stopping**

- Use validation error to decide when to stop training
- Stop when monitored quantity has not improved after n subsequent epochs
- n is called patience