INDIAN INSTITUTE OF TECHNOLOGY ROORKEE Department of Computer Science and Engineering Spring Semester 2018-19 End Term Examination 24.4.2019 CS312 Principles of Programming Languages FM: 50 Duration: 3hour

Answer all the questions. Answers should appear in the order of the questions. Answer to each question must begin in a new page. Parts of the same question should appear in a contiguous manner. No mark will be given if multiple answers are written for a question. Answers written in PENCIL shall not be evaluated. Use PEN for diagrams. Answers that violate the above instructions will be awarded zero mark.

DO NOT WRITE ANYTHING ON THE QUESTION PAPER

- $\mathcal{L}(i)$ Define a lifted set for a given set X.
 - (ii) Define an information ordering relation on a lifted set.
 - (iii) Define an information ordering relation on the Cartesian product of two lifted sets.
 - (iv) Using the Definition in 1.(iii), construct the mathematical object when $X = \{\text{true, false}\}\$. State the name of the mathematical object. [2+2+2+4]
- (i) State and briefly justify the rules for if-then-else, while, and assignment statements for proving partial correctness of computer programs.
 - (ii) Establish the partial correctness of the following program by giving a suitable loop invariant. Justify the choice of the loop invariant.

```
The precondition is y \ge 0. The post condition is z = y \times c. [5+5] a := 0; z := 0; while (a \ne y) {
 z := z + c; 
 a := a + 1; }
```

- 3. (i) Compute the normal form of M N, where $M = (\lambda x. x. x)$ and $N = (\lambda y. \lambda z. y. z)$. Justify all the steps clearly.
 - (jii) Design simple lambda terms for the Boolean operations AND and XOR. Explain how you arrived at the result. Merely stating the lambda terms shall yield zero mark. [5+5]
- 4.(i) Give a recursive definition of add function for addition of two numbers m, n. Show the computation of add in lambda calculus for m = 1, n = 2. Assume call-by-name semantics.
- (ii) Find the principal type of the term (λx. λy. λz. x y z z) using the Principal Type algorithm.
 Show all the steps.
- 5. (i) Construct a derivation tree for the term given below and use it to infer the type of the term (if any).

if iszero (succ 0) then succ(succ 0) else pred(succ 0)

- (ii) Give appropriate mathematical representations of the following and briefly explain:
 - (a) The function age: employee → int can be used for all subtypes of employee.
 - (b) A class that has a list of elements as data and only one function that returns the last element of the list. [5+5]

****END***