Sistemi Operativi II Sistema Operativo Windows (parte 2)

Docente: Claudio E. Palazzi cpalazzi@math.unipd.it

- Ogni processo dispone di uno spazio di indirizzamento virtuale paginato ampio 4 GB e suddiviso in 2 zone adiacenti ampie 2 GB ciascuna
 - Indirizzi virtuali espressi su 32 bit

Indirizzamento virtuale - 1

Indirizzamento virtuale – 2

- Una pagina virtuale può essere
 - R (lettura) / W (scrittura) / E (esecuzione)
 - Libera (free): non riferita da alcun PTE
 - Tutte le pagine di un processo sono inizialmente libere (pagingon-demand)
 - Page fault
 - Assegnata (committed): in uso per codice o dati
 - Viene riferita tramite indirizzo virtuale e caricata da disco ove non fosse già presente in RAM
 - Prenotata (reserved): non ancora in uso, ma non libera
 - Per agevolare l'assegnazione di pagine contigue a processi
 - Alla creazione di un nuovo processo 1MB è riservato per lo stack

- Più processi possono condividere l'accesso a pagine di uno stesso file mappato in memoria
 - Un libreria condivisa DLL (Dynamic Link Library) è un tipico esempio di file mappato in memoria
 - Codice condiviso in sola lettura
 - Dati statici R/W **copiati** per ciascun processo (*copy-on-write*)
 - Ogni processo che accede a un file possiede specifici diritti di accesso che il S/O si preoccupa di far rispettare
- La stessa posizione nel file può corrispondere ad indirizzi virtuali diversi per processi distinti
 - Gli indirizzi riferiti nel codice condiviso di DLL devono pertanto essere espressi in modo relativo
 - A cura del compilatore

- Il caricamento di una nuova pagina in RAM può richiedere il **rimpiazzo** locale di un pagina "vecchia"
 - Solo se non vi sono abbastanza pagine libere
 - Il sistema mantiene una lista delle pagine libere
 - A ogni processo i si associa l'insieme I_i delle sue pagine attualmente in RAM (Working Set)
 - L'ampiezza del WS I_i può variare solo entro limiti prefissati $Min_i \le \#\{I_i\} \le Max_i$
 - Politica di rimpiazzo locale
- Si ha rimpiazzo globale se e solo se un particolare processo deve scambiare proprie pagine tra RAM e disco troppo spesso

- Anche il S/O stesso è visto come un processo con un proprio WS con pagine rimpiazzabili
 - Min set iniziale nell'ordine di 20-50 pagine
 - Max set iniziale nell'ordine di 45-345 pagine
 - Solo alcune pagine del S/O sono inamovibili
- Un daemon di kernel con periodo 1 s accerta che vi siano sufficienti pagine libere
 - Balance set manager
- Se insufficienti il daemon attiva un thread del Memory manager che esamina con una euristica i WS dei processi per rilasciarne pagine
 - Working set manager
 - Processi non recentemente attivi con WS ampi vengono scrutinati prima degli altri
 - Le pagine necessarie si prelevano dagli WS di ampiezza vicina al massimo e con scarso uso recente

- Ciascuna page frame in RAM può essere
 - In uso e appartenere a 1 WS (≥1 se condivisa)
 - Rilasciata e appartenere a 1 e 1 sola lista tra:
 - [A] In attesa: pagina recentemente rimossa dal WS di un processo ma ancora associata a esso e non modificata
 - Può essere riassegnata e sovrascritta senza problemi
 - [B] Da copiare su disco: ~ A ma se rimpiazzata deve essere riportata su disco
 - [C] Libera: ~ A ma non più associata ad alcun processo
 - [D] Azzerata: ~ C ma con contenuto obliterato a zero per consentire riassegnazione senza travaso di info privata
 - [E] Difettosa: pagina che non può più essere utilizzata a causa di difetti nella zona di memoria fisica

- Lo swapper thread (daemon) del Memory manager porta in [A] o [B] le pagine dello stack dei processi i cui thread siano stati tutti recentemente inattivi
- Altri 2 daemon assicurano che vi siano abbastanza pagine in [C] salvando su disco quelle in [B] e poi accodandole in [A]
- Un WS che cresce preleva pagine libere da [C] se le sovrascrive interamente (senza conservare dati precedenti) da [D] altrimenti
 - Un daemon dedicato che opera per conto del kernel azzera periodicamente il contenuto di pagine in [C] e le pone in [D]

- Euristiche complesse e non garantite governano le scelte effettuate dalle varie attività di gestione delle liste [A] – [D]
 - L'amministratore di sistema può influenzare alcune euristiche mediante parametri di configurazione
- Lo stato della RAM viene mantenuto in una tabella dedicata acceduta per indice di pagina fisica (page frame database)
 - Pagina valida/invalida, contatore dei riferimenti, WS di appartenenza, lista di appartenenza, etc.

