

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and from the canade.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0\text{D} + 1.0\text{S} \\ 1.0\text{D} + 0.6\text{W} \\ 1.0\text{D} + 0.75\text{L} + 0.45\text{W} + 0.75\text{S} \\ 0.6\text{D} + 0.6\text{W} \end{array}$

(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2)

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

1.238D + 0.875E $^{\circ}$ 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E $^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>635.12</u>	6066.83	k
Compressive Load =	4039.46	4905.82	k
Lateral Load =	<u>367.62</u>	3272.15	k
Moment (Weak Axis) =	0.73	0.33	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 147141.1 in-lbs Resisting Force Required = 2229.41 lbs A minimum 132in long x 31in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3715.69 lbs to resist overturning. Minimum Width = Weight Provided = 6180.63 lbs Sliding Force = 754.63 lbs Use a 132in long x 31in wide x 18in tall Friction = 0.4 Weight Required = 1886.57 lbs ballast foundation to resist sliding. Resisting Weight = 6180.63 lbs Friction is OK. Additional Weight Required = Cohesion 754.63 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 31in wide x 18in tall 28.42 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3090.31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in
FA	1421 lbs	1421 lbs	1421 lbs	1421 lbs	1394 lbs	1394 lbs	1394 lbs	1394 lbs	1979 lbs	1979 lbs	1979 lbs	1979 lbs	-283 lbs	-283 lbs	-283 lbs	-283 lbs
FB	1411 lbs	1411 lbs	1411 lbs	1411 lbs	1992 lbs	1992 lbs	1992 lbs	1992 lbs	2422 lbs	2422 lbs	2422 lbs	2422 lbs	-2791 lbs	-2791 lbs	-2791 lbs	-2791 lbs
F _V	193 lbs	193 lbs	193 lbs	193 lbs	1364 lbs	1364 lbs	1364 lbs	1364 lbs	1151 lbs	1151 lbs	1151 lbs	1151 lbs	-1509 lbs	-1509 lbs	-1509 lbs	-1509 lbs
P _{total}	9012 lbs	9212 lbs	9411 lbs	9610 lbs	9567 lbs	9766 lbs	9965 lbs	10165 lbs	10581 lbs	10781 lbs	10980 lbs	11179 lbs	635 lbs	754 lbs	874 lbs	994 lbs
M	3769 lbs-ft	3769 lbs-ft	3769 lbs-ft	3769 lbs-ft	3999 lbs-ft	3999 lbs-ft	3999 lbs-ft	3999 lbs-ft	5476 lbs-ft	5476 lbs-ft	5476 lbs-ft	5476 lbs-ft	3091 lbs-ft	3091 lbs-ft	3091 lbs-ft	3091 lbs-ft
е	0.42 ft	0.41 ft	0.40 ft	0.39 ft	0.42 ft	0.41 ft	0.40 ft	0.39 ft	0.52 ft	0.51 ft	0.50 ft	0.49 ft	4.87 ft	4.10 ft	3.54 ft	3.11 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	244.8 psf	243.9 psf	243.1 psf	242.4 psf	259.9 psf	258.6 psf	257.3 psf	256.2 psf	267.3 psf	265.7 psf	264.2 psf	262.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	389.5 psf	384.1 psf	379.1 psf	374.3 psf	413.4 psf	407.3 psf	401.5 psf	396.1 psf	477.5 psf	469.3 psf	461.7 psf	454.5 psf	259.8 psf	134.5 psf	107.9 psf	97.9 psf

32 in

31 in

Ballast Width

6181 lbs 6380 lbs 6579 lbs 6779 lbs

33 in

34 in

Maximum Bearing Pressure = 477 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.58 \text{ ft}) =$

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2393.0 \text{ ft-lbs}$

Resisting Force Required = 1852.63 lbs S.F. = 1.67

Weight Required = 3087.71 lbs Minimum Width = 31 in in Weight Provided = 6180.63 lbs A minimum 132in long x 31in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		31 in			31 in			31 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	285 lbs	650 lbs	215 lbs	842 lbs	2349 lbs	788 lbs	108 lbs	190 lbs	39 lbs		
F _V	217 lbs	213 lbs	220 lbs	160 lbs	156 lbs	172 lbs	217 lbs	214 lbs	219 lbs		
P _{total}	7936 lbs	8302 lbs	7867 lbs	8126 lbs	9633 lbs	8072 lbs	2345 lbs	2428 lbs	2276 lbs		
M	856 lbs-ft	847 lbs-ft	867 lbs-ft	641 lbs-ft	641 lbs-ft	679 lbs-ft	855 lbs-ft	844 lbs-ft	858 lbs-ft		
е	0.11 ft	0.10 ft	0.11 ft	0.08 ft	0.07 ft	0.08 ft	0.36 ft	0.35 ft	0.38 ft		
L/6	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft		
f _{min}	209.3 psf	222.9 psf	206.0 psf	233.6 psf	286.6 psf	228.5 psf	12.6 psf	16.4 psf	10.0 psf		
f _{max}	349.3 psf	361.4 psf	347.7 psf	338.3 psf	391.4 psf	339.6 psf	152.4 psf	154.4 psf	150.2 psf		

Maximum Bearing Pressure = 391 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.107 k 12.808 k 7.421 k <u>42%</u>	Rear Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	4.102 k 12.808 k 7.421 k <u>55%</u>
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.178 k 12.808 k 7.421 k <u>29%</u>	Bolt and bearing capacities are accounting for (ASCE 8-02, Eq. 5.3.4-1)	double shear.
		Strute under compression are obtained	nown to domor

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 46.89 in

Allowable Story Drift for All Other

Structures, $\Delta = \{$ 0.020 h_{sx} 0.938 in

Max Drift, $\Delta_{MAX} =$ 0.632 in

0.632 \leq 0.938, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 123 \text{ in}$$

$$J = 0.432$$

$$340.276$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 27.3 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 123$$
 $J = 0.432$
 216.395

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.6$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 1.6Dp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$32 = \frac{1}{mDbr}$$

$$\varphi F_L = \varphi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$32 = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_{0} = 40$$

$$C_{0} = 40$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3\phi y Fcy$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L}Wk = 33.3 \text{ ksi}$$

16.2

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

$$M_{max} W k = 3.904 \text{ k-ft}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14 24.8 in

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$1.6Dc$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S1 = 12.2$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sx = 0.621 \text{ in}^3$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$
 $C_0 = 27.5$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

lx =	279836 mm
	0.672 in ⁴
y =	27.5 mm
Sx =	0.621 in ³
$M_{max}St =$	1.460 k-ft

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$
 $M_{max}Wk = 1.460 \text{ k-ft}$

Compression

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$

98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 63.42$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Bc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-81.397	-81.397	0	0
2	M14	V	-81.397	-81.397	0	0
3	M15	V	-125.796	-125.796	0	0
4	M16	V	-125.796	-125.796	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	184.994	184.994	0	0
2	M14	V	140.595	140.595	0	0
3	M15	V	73.997	73.997	0	0
4	M16	У	73.997	73.997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	626.621	2	1153.35	2	.767	1	.004	1	0	1	0	1
2		min	-792.743	3	-1424.807	3	-47.701	5	248	4	0	1	0	1
3	N7	max	.039	9	1148.949	1	57	12	001	12	0	1	0	1
4		min	162	2	-123.466	3	-282.781	4	559	4	0	1	0	1
5	N15	max	.029	9	3107.277	1_	0	2	0	2	0	1	0	1
6		min	-1.907	2	-488.556	3	-270.396	4	542	4	0	1	0	1
7	N16	max	2339.094	2	3773.706	2	0	3	0	3	0	1	0	1
8		min	-2517.038	3	-4666.793	3	-47.474	5	25	4	0	1	0	1
9	N23	max	.042	14	1148.949	1	11.209	1	.023	1	0	1	0	1
10		min	162	2	-123.466	3	-274.838	4	546	4	0	1	0	1
11	N24	max	626.621	2	1153.35	2	047	12	0	12	0	1	0	1
12		min	-792.743	3	-1424.807	3	-48.322	5	25	4	0	1	0	1
13	Totals:	max	3590.105	2	11117.384	1	0	2						
14		min	-4102.969	3	-8251.895	3	-966.009	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	114.117	1	454.429	1	-8.052	12	0	3	.273	1	0	4
2			min	5.932	12	-692.685	3	-180.905	1	013	2	.014	12	0	3
3		2	max	114.117	1	318.398	1	-6.333	12	0	3	.114	4	.672	3
4			min	5.932	12	-487.529	3	-139.086	1	013	2	.006	12	44	1
5		3	max	114.117	1	182.366	1	-4.613	12	0	3	.06	5	1.11	3
6			min	5.932	12	-282.372	3	-97.267	1	013	2	044	1	725	1
7		4	max	114.117	1	46.335	1	-2.894	12	0	3	.031	5	1.315	3
8			min	5.932	12	-77.216	3	-55.449	1	013	2	131	1	855	1
9		5	max	114.117	1	127.94	3	-1.146	10	0	3	.005	5	1.286	3
10			min	5.932	12	-89.697	1	-25.122	4	013	2	171	1	831	1
11		6	max	114.117	1	333.097	3	28.189	1	0	3	007	12	1.024	3
12			min	3.323	15	-225.728	1	-18.981	5	013	2	162	1	651	1
13		7	max	114.117	1	538.253	3	70.007	1	0	3	006	12	.528	3
14			min	-6.447	5	-361.76	1	-16.321	5	013	2	106	1	317	1
15		8	max	114.117	1	743.41	3	111.826	1	0	3	0	10	.173	1
16			min	-18.138	5	-497.791	1	-13.661	5	013	2	057	4	202	3
17		9	max	114.117	1	948.566	3	153.645	1	0	3	.148	1	.817	1
18			min	-29.829	5	-633.823	1	-11	5	013	2	07	5	-1.166	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	114.117	1	769.854	1	-7.423	12	.004	14	.347	1	1.617	1
20			min	5.932	12	-1153.722	3	-195.463	1	013	2	.011	12	-2.363	3
21		11	max	114.117	1	633.823	1_	-5.704	12	.013	2	.148	1	.817	1_
22			min	5.932	12	-948.566	3	-153.645	1	0	3	.004	12	-1.166	3
23		12	max	114.117	1_	497.791	1	-3.984	12	.013	2	.055	4	.173	1
24			min	5.932	12	-743.41	3	-111.826	1	0	3	003	3	202	3
25		13	max	114.117	1	361.76	1	-2.265	12	.013	2	.025	5	.528	3
26			min	5.932	12	-538.253	3	-70.007	1	0	3	106	1	317	1
27		14	max	114.117	1	225.728	1_	545	12	.013	2	001	15	1.024	3
28			min	5.932	12	-333.097	3	-29.029	4	0	3	162	1	651	1
29		15	max		1	89.697	1	13.63	1	.013	2	007	12	1.286	3
30			min	-2.453	5	-127.94	3	-19.86	5	0	3	<u>171</u>	1	831	1
31		16	max		1	77.216	3	55.449	1_	.013	2	004	12	1.315	3
32			min	-14.144	5	-46.335	1	-17.2	5	0	3	131	1	855	1
33		17	max	114.117	1_	282.372	3	97.267	1	.013	2	0	3	1.11	3
34			min	-25.835	5	-182.366	1	-14.539	5	0	3	076	4	725	1
35		18	max	114.117	1	487.529	3	139.086	1	.013	2	.09	1_	.672	3
36			min	-37.526	5	-318.398	1	-11.879	5	0	3	081	5	44	1
37		19	max	114.117	1	692.685	3	180.905	1	.013	2	.273	1	0	1
38			min	-49.217	5	-454.429	1	-9.219	5	0	3	093	5	0	3
39	M14	1	max	60.545	4	479.667	1	-8.27	12	.008	3	.31	1_	0	1
40			min	2.505	12	-536.065	3	-186.4	1	01	2	.016	12	0	3
41		2	max	52.19	1	343.636	1	-6.55	12	.008	3	.162	4	.522	3
42			min	2.505	12	-381.474	3	-144.581	1	01	2	.007	12	469	1
43		3	max	52.19	1_	207.604	1	-4.831	12	.008	3	.088	5	.869	3
44			min	2.505	12	-226.883	3	-102.763	1	01	2	019	1	783	1
45		4	max	52.19	1	71.573	1	-3.111	12	.008	3	.047	5	1.039	3
46			min	2.505	12	-72.293	3	-60.944	1	01	2	113	1	942	1
47		5	max	52.19	1	82.298	3	-1.392	12	.008	3	.009	5	1.034	3
48			min	1.484	15	-64.459	1	-37.196	4	01	2	158	1	946	1
49		6	max	52.19	1	236.889	3	22.693	1	.008	3	007	12	.852	3
50			min	-9.424	5	-200.49	1	-29.63	5	01	2	1 <u>56</u>	1	795	1
51		7	max	52.19	1	391.48	3	64.512	1_	.008	3	005	12	.494	3
52			min	-21.115	5	-336.522	1	-26.97	5	01	2	106	1	489	1
53		8	max	52.19	1	546.071	3	106.331	1_	.008	3	0	10	0	15
54			min	-32.806	5	-472.553	1	-24.309	5	01	2	092	4	04	3
55		9	max	52.19	1_	700.662	3	148.149	1_	.008	3	.136	1	.587	1
56			min	-44.497	5	-608.585	1	-21.649	5	01	2	114	5	75	3
57		10	max	74.007	4	744.616	1	-7.206	12	.008	3	.328	1	1.358	1
58			min	2.505	12	-855.253	3	-189.968	1_	01	2	.01	12	-1.636	3
59		11	max		4	608.585	1	-5.486	12	.01	2	.163	4	.587	1
60			min	2.505	12	-700.662	3	-148.149		008	3	.003	12	75	3
61		12	max	52.19	1	472.553	1	-3.767	12	.01	2	.087	5	0	15
62			min	2.505	12	-546.071	3	-106.331	1	008	3	009	1	04	3
63		13		52.19	1	336.522	1	-2.047	12	.01	2	.045	5	.494	3
64			min	2.505	12	-391.48	3	-64.512	1	008	3	106	1	489	1
65		14	max		1	200.49	1	328	12	.01	2	.007	5	.852	3
66		.	min	2.505	12	-236.889	3	-37.993	4	008	3	1 <u>56</u>	1	795	1
67		15	max	52.19	1	64.459	1	19.125	1	.01	2	006	12	1.034	3
68		1.0	min	2.505	12	-82.298	3	-29.81	5	008	3	1 <u>58</u>	1	946	1
69		16	max	52.19	1	72.293	3	60.944	1	.01	2	004	12	1.039	3
70			min	<u>-7.673</u>	5	-71.573	1	-27.149	5	008	3	113	1	942	1
71		17	max	52.19	1	226.883	3	102.763	1	.01	2	.002	3	.869	3
72			min	-19.364	5	-207.604	1	-24.489	5	008	3	097	4	783	1
73		18		52.19	1	381.474	3	144.581	1	.01	2	.121	1	.522	3
74		4.0	min	-31.055	5	-343.636	1	-21.828	5	008	3	<u>117</u>	5	469	1
75		19	max	52.19	1	536.065	3	186.4	_ 1_	.01	2	.31	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-42.746	5	-479.667	1	-19.168	5	008	3	141	5	0	3
77	M15	1	max	85.314	5	627.585	2	-8.223	12	.011	2	.31	1	0	2
78			min	-54.919	1	-280.286	3	-186.374	1	007	3	.016	12	0	12
79		2	max	73.623	5	447.888	2	-6.503	12	.011	2	.2	4	.274	3
80			min	-54.919	1	-201.543	3	-144.556	1	007	3	.007	12	612	2
81		3	max	61.932	5	268.19	2	-4.784	12	.011	2	.115	5	.459	3
82			min	-54.919	1	-122.8	3	-102.737	1	007	3	02	1	-1.02	2
83		4	max	50.241	5	88.492	2	-3.064	12	.011	2	.063	5	.554	3
84			min	-54.919	1	-44.057	3	-60.918	1	007	3	113	1	-1.223	2
85		5	max	38.55	5	34.686	3	-1.345	12	.011	2	.015	5	.559	3
86			min	-54.919	1	-91.206	2	-46.368	4	007	3	158	1	-1.222	2
87		6	max	26.859	5	113.43	3	22.719	1	.011	2	007	12	.475	3
88			min	-54.919	1	-270.903	2	-38.775	5	007	3	156	1	-1.016	2
89		7	max	15.169	5	192.173	3	64.538	1	.011	2	005	12	.301	3
90			min	-54.919	1	-450.601	2	-36.115	5	007	3	107	1	605	2
91		8	max	3.478	5	270.916	3	106.356	1	.011	2	0	10	.037	3
92			min	-54.919	1	-630.299	2	-33.454	5	007	3	117	4	007	9
93		9	max	-2.928	12	349.659	3	148.175	1	.011	2	.136	1	.831	2
94			min	-54.919	1	-809.996	2	-30.794	5	007	3	15	5	316	3
95		10	max	-2.928	12	989.694	2	-7.253	12	.011	2	.328	1	1.856	2
96			min	-54.919	1	-428.402	3	-189.994	1	007	3	.011	12	759	3
97		11	max	.805	5	809.996	2	-5.533	12	.007	3	.199	4	.831	2
98			min	-54.919	1	-349.659		-148.175	1	011	2	.003	12	316	3
99		12	max	-2.928	12	630.299	2	-3.814	12	.007	3	.112	5	.037	3
100			min	-54.919	1	-270.916	3	-106.356	1	011	2	009	1	007	9
101		13	max	-2.928	12	450.601	2	-2.094	12	.007	3	.06	5	.301	3
102		1.0	min	-54.919	1	-192.173	3	-64.538	1	011	2	107	1	605	2
103		14	max	-2.928	12	270.903	2	375	12	.007	3	.011	5	.475	3
104			min	-54.919	1	-113.43	3	-47.188	4	011	2	156	1	-1.016	2
105		15	max	-2.928	12	91.206	2	19.1	1	.007	3	006	12	.559	3
106		10	min	-58.726	4	-34.686	3	-38.958	5	011	2	158	1	-1.222	2
107		16	max	-2.928	12	44.057	3	60.918	1	.007	3	004	12	.554	3
108		10	min	-70.417	4	-88.492	2	-36.297	5	011	2	113	1	-1.223	2
109		17	max	-2.928	12	122.8	3	102.737	1	.007	3	.001	3	.459	3
110		1 '	min	-82.107	4	-268.19	2	-33.637	5	011	2	124	4	-1.02	2
111		18	max	-2.928	12	201.543	3	144.556	1	.007	3	.121	1	.274	3
112		10	min	-93.798	4	-447.888	2	-30.977	5	011	2	154	5	612	2
113		19	max	-2.928	12	280.286	3	186.374	1	.007	3	.31	1	0	2
114		13	min	-105.489		-627.585		-28.316	5	011	2	188	5	0	5
115	M16	1	max	83.65	5	602.342	2	-7.897	12	.011	1	.274	1	0	2
116	IVITO			-121 831	1	-261.708	2	-1.031		01	3	.013	12		3
117		2		71.959	5	422.644	2	-6.178	12	.011	1	.151	4	.253	3
118			min		1	-182.965		-139.33	1	01	3	.005	12	584	2
119		3		60.268	5	242.946	2	-4.458	12	.011	1	.087	5	.417	3
120		-3	min	-121.831	1	-104.222	3	-97.511	1	01	3	043	1	963	2
121		4	max		5	63.248	2	-2.739	12	.011	1	043 .047	5	<u>963</u> .491	3
122		4				-25.479		-55.692	1	01	3	131	1	-1.137	2
		E	min		1 -		3								
123		5	max		5	53.264	3	-1.019	12	.011	1	.011	5	.475	3
124		_		-121.831	1	-116.449		-34.03	4	<u>01</u>	3	17		<u>-1.107</u>	2
125		6	max		5	132.007	3	27.945	1	.011	1	007	12	.369	3
126		7	min		1	-296.147	2	-27.769	5	<u>01</u>	3	162	1	872	2
127		7	max		5	210.751	3	69.764	1	.011	1	005	12	.174	3
128		0		-121.831	1	-475.845		-25.109	5	<u>01</u>	3	<u>107</u>	1	432	2
129		8	max		5	289.494	3	111.582	1	.011	1	0	10	.212	2
130		_	min	-121.831	1	-655.543	2	-22.449	5	<u>01</u>	3	081	4	<u>111</u>	3
131		9	max		12	368.237	3	153.401	1	.011	1	.148	1	1.061	2
132			min	-121.831	1	-835.24	2	-19.788	5	01	3	103	5	485	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-6.033	12	1014.938	2	-7.578	12	.011	1	.346	_1_	2.115	2
134			min	-121.831	1	-446.98	3	-195.22	1	01	3	.012	12	95	3
135		11	max	-3.572	15	835.24	2	-5.859	12	.01	3	.156	_4_	1.061	2
136			min	-121.831	1	-368.237	3	-153.401	1	011	1	.004	12	485	3
137		12	max	-6.033	12	655.543	2	-4.139	12	.01	3	.079	4_	.212	2
138			min	-121.831	1	-289.494	3	-111.582	1	011	1	003	1_	111	3
139		13	max	-6.033	12	475.845	2	-2.42	12	.01	3	.038	5	.174	3
140			min	-121.831	1	-210.751	3	-69.764	1	011	1	107	1	432	2
141		14	max	-6.033	12	296.147	2	7	12	.01	3	.001	5	.369	3
142			min	-121.831	1	-132.007	3	-37.847	4	011	1	162	1	872	2
143		15	max	-6.033	12	116.449	2	13.874	1	.01	3	007	12	.475	3
144			min	-121.831	1	-53.264	3	-28.632	5	011	1	17	1	-1.107	2
145		16	max	-6.033	12	25.479	3	55.692	1	.01	3	005	12	.491	3
146			min	-121.831	1	-63.248	2	-25.972	5	011	1	131	1	-1.137	2
147		17	max	-6.033	12	104.222	3	97.511	1	.01	3	0	12	.417	3
148			min	-121.831	1	-242.946	2	-23.312	5	011	1	103	4	963	2
149		18	max	-6.033	12	182.965	3	139.33	1	.01	3	.091	1	.253	3
150			min	-121.831	1	-422.644	2	-20.651	5	011	1	117	5	584	2
151		19	max	-6.033	12	261.708	3	181.148	1	.01	3	.274	1	0	2
152		'	min	-127.008	4	-602.342	2	-17.991	5	011	1	139	5	0	5
153	M2	1		1023.418	1	1.957	4	.735	1	0	12	0	3	0	1
154	IVIZ		min	-1252.362	3	.477	15	-45.781	4	0	4	0	1	0	1
155		2		1023.847	1	1.901	4	.735	1	0	12	0	1	0	15
156			min	-1252.041	3	.463	15	-46.154	4	0	4	013	4	0	4
		2													
157		3		1024.275	1	1.844	4	.735	1	0	12	0	1_4	0	15
158		1	min	-1251.72	3	.45	15	<u>-46.527</u>	4	0	4	027	4	001	4
159		4		1024.704	1	1.787	4	.735	1	0	12	0	1	0	15
160		_	min	-1251.398	3	.436	15	<u>-46.901</u>	4	0	4	04	4	002	4
161		5		1025.132	1	1.73	4	.735	1	0	12	0	_1_	0	15
162			min	-1251.077	3	.423	15	-47.274	4	0	4	054	4_	002	4
163		6		1025.561	1	1.673	4	.735	1	0	12	.001	_1_	0	15
164			min	-1250.756	3	.41	15	-47.647	4	0	4	068	4_	003	4
165		7		1025.989	1_	1.617	4	.735	1	0	12	.001	_1_	0	15
166			min	-1250.434	3	.396	15	-48.021	4	0	4	082	4	003	4
167		8	max	1026.418	1_	1.56	4	.735	1	0	12	.001	_1_	0	15
168			min	-1250.113	3	.383	15	-48.394	4	0	4	096	4	004	4
169		9	max	1026.846	1	1.503	4	.735	1	0	12	.002	1_	0	15
170			min	-1249.792	3	.37	15	-48.767	4	0	4	11	4	004	4
171		10	max	1027.275	1	1.446	4	.735	1	0	12	.002	1	001	15
172			min	-1249.47	3	.356	15	-49.141	4	0	4	124	4	004	4
173		11	max	1027.703	1	1.39	4	.735	1	0	12	.002	1	001	15
174			min		3	.337	12	-49.514	4	0	4	138	4	005	4
175		12	max	1028.132	1	1.333	4	.735	1	0	12	.002	1	001	15
176			min		3	.315	12	-49.887	4	0	4	153	4	005	4
177		13		1028.56	1	1.276	4	.735	1	0	12	.003	1	001	15
178			min		3	.292	12	-50.261	4	0	4	167	4	006	4
179		14		1028.989	1	1.219	4	.735	1	0	12	.003	1	001	15
180			min	-1248.185	3	.27	12	-50.634	4	0	4	182	4	006	4
181		15		1029.417	1	1.162	4	.735	1	0	12	.003	1	002	15
182			min		3	.248	12	-51.007	4	0	4	197	4	006	4
183		16		1029.846	1	1.106	4	.735	1	0	12	.003	1	002	15
184		10	min		3	.226	12	-51.381	4	0	4	212	4	002	4
185		17		1030.274	1	1.049	4	.735	1	0	12	.003	1	007	15
186		17	min		3	.204	12	-51.754	4	0	4	227	4	002	4
		10													
187		18		1030.703	1	.992	4	.735	1	0	12	.004	1_4	002	15
188		40	min		3	.182	12	-52.127	4	0	4	242	4	007	4
189		19	max	1031.131	1	.935	4	.735	_1_	0	12	.004	<u>1</u>	002	15

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	ı	Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]			LC	z-z Mome	LC_
190			min	-1246.578	3	.16	12	-52.501	4	0	4	257	4	008	4
191	<u>M3</u>	1	max	545.332	2	7.907	4	3.598	4	0	12	0	1	.008	4
192			min	-689.891	3_	1.87	15	.008	12	0	4	027	4	.002	15
193		2	max	545.162	2	7.14	4	4.136	4	0	12	0	1_	.004	2
194			min	-690.019	3	1.69	15	.008	12	0	4	026	4	0	12
195		3	max	544.992	2	6.373	4	4.675	4	0	12	0	1	.002	2
196			min	-690.146	3_	1.509	15	.008	12	0	4	024	4	0	3
197		4	max	544.821	2	5.606	4	5.214	4	0	12	0	1_	0	2
198			min	-690.274	3	1.329	15	.008	12	0	4	022	4	002	3
199		5	max	544.651	2	4.838	4	5.753	4	0	12	0	1_	0	15
200			min	-690.402	3	1.149	15	.008	12	0	4	02	4	003	3
201		6	max	544.481	2	4.071	4	6.291	4	0	12	0	1_	001	15
202			min	-690.53	3	.968	15	.008	12	0	4	017	4	005	6
203		7	max	544.31	2	3.304	4	6.83	4	0	12	0	1	001	15
204			min	-690.657	3	.788	15	.008	12	0	4	014	5	007	6
205		8	max	544.14	_2_	2.537	4	7.369	4	0	12	0	1_	002	15
206			min	-690.785	3	.608	15	.008	12	0	4	011	5	008	6
207		9	max	543.969	2	1.769	4	7.908	4	0	12	0	1	002	15
208			min	-690.913	3	.427	15	.008	12	0	4	008	5	009	6
209		10	max	543.799	2	1.002	4	8.446	4	0	12	.001	1	002	15
210			min	-691.041	3	.247	15	.008	12	0	4	005	5	009	6
211		11	max	543.629	2	.325	2	8.985	4	0	12	.001	1	002	15
212			min	-691.169	3	098	3	.008	12	0	4	001	5	01	6
213		12	max	543.458	2	114	15	9.524	4	0	12	.003	4	002	15
214			min	-691.296	3	546	3	.008	12	0	4	0	12	009	6
215		13	max	543.288	2	294	15	10.063	4	0	12	.007	4	002	15
216			min	-691.424	3	-1.3	6	.008	12	0	4	0	12	009	6
217		14	max	543.118	2	474	15	10.601	4	0	12	.011	4	002	15
218			min	-691.552	3	-2.068	6	.008	12	0	4	0	12	008	6
219		15	max	542.947	2	655	15	11.14	4	0	12	.016	4	002	15
220			min	-691.68	3	-2.835	6	.008	12	0	4	0	12	007	6
221		16	max	542.777	2	835	15	11.679	4	0	12	.021	4	001	15
222			min	-691.807	3	-3.602	6	.008	12	0	4	0	12	006	6
223		17	max	542.607	2	-1.015	15	12.218	4	0	12	.026	4	001	15
224			min	-691.935	3	-4.369	6	.008	12	0	4	0	12	004	6
225		18	max	542.436	2	-1.196	15	12.756	4	0	12	.031	4	0	15
226			min	-692.063	3	-5.137	6	.008	12	0	4	0	12	002	6
227		19	max	542.266	2	-1.376	15	13.295	4	0	12	.036	4	0	1
228			min	-692.191	3	-5.904	6	.008	12	0	4	0	12	0	1
229	M4	1	max	1145.883	1	0	1	569	12	0	1	.026	4	0	1
230			min	-125.766	3	0	1	-281.623	4	0	1	0	12	0	1
231		2	max	1146.053	1	0	1	569	12	0	1	0	3	0	1
232			min	-125.638	3	0	1	-281.771	4	0	1	006	4	0	1
233		3	max	1146.224	1	0	1	569	12	0	1	0	12	0	1
234				-125.51	3	0	1	-281.918	4	0	1	038	4	0	1
235		4		1146.394	1	0	1	569	12	0	1	0	12	0	1
236				-125.383	3	0	1	-282.066	4	0	1	071	4	0	1
237		5		1146.565	1	0	1	569	12	0	1	0	12	0	1
238				-125.255	3	0	1	-282.214		0	1	103	4	0	1
239		6		1146.735	1	0	1	569	12	0	1	0	12	0	1
240				-125.127	3	0	1	-282.361	4	0	1	136	4	0	1
241		7		1146.905	1	0	1	569	12	0	1	0	12	0	1
242				-124.999	3	0	1	-282.509		0	1	168	4	0	1
243		8		1147.076	_	0	1	569	12	0	1	0	12	0	1
244				-124.872	3	0	1	-282.656		0	1	201	4	0	1
245		9		1147.246		0	1	569	12	0	1	0	12	0	1
246				-124.744		0	1	-282.804		0	1	233	4	0	1
0						· ·		T							

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

0.47	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
247		10		1147.416	1	0	1	569	12	0	1	0	12	0	1
248		4.4		-124.616	3	0	1_	-282.952	4	0	1_	266	4	0	1
249		11		1147.587	1	0	1	569	12	0	<u>1</u> 1	0	12	0	1
250		40		-124.488 1147.757	3	0	1	-283.099	4	0	1	298	4	0	1
251		12			1	0	1	569	12	0	1	0	12	0	1
252		12		-124.361	3	0	1	-283.247	4	_	1	331	12	0	1
253		13		1147.927	<u>1</u> 3	0	1	569 -283.395	12 4	0	1	363	4	0	1
254		1.1		-124.233	_	-	1				1		12		1
255		14		1148.098	1	0	1	569	12	0	1	0		0	
256		15		-124.105	3	0	1	-283.542	<u>4</u> 12	0	1	396	12	0	1
257		15		1148.268	1	0	1	569	4	0	1	428	4	0	1
258 259		16		-123.977	3	0	1	-283.69	12	0	1	420 0	12	0	1
		10		1148.438 -123.849	<u>1</u> 3	0	1	569		0	1	461	4	0	1
260		17			<u>ာ</u> 1	_	1	-283.838	12	-	1	461	12		1
261 262		17		1148.609 -123.722	3	0	1	569 -283.985	4	0	1	493	4	0	1
		10					1		_	_	1		12	0	1
263		18		1148.779	1	0		569	12	0	1	001			1
264		40		-123.594	3	0	1_	-284.133	4	0		526	4	0	
265		19		1148.949	1	0	1_	569	12	0	1	001	12	0	1
266	MC	4		-123.466	3	0	1	-284.28	4	0	1_	559	4	0	1
267	<u>M6</u>	1		3297.165	1_	2.34	2	0	1	0	1_1	0	4	0	1
268			min	-4102.14	3	.098	3	-46.252	4	0	4_	0	1	0	1
269		2		3297.593	1_	2.296	2	0	11	0	1_1	0	1	0	3
270				-4101.818	3	.065	3	-46.625	4	0	4	013	4	0	2
271		3		3298.022 -4101.497	1	2.251	2	0	1	0	1_1	0	1	0	3
272		4			3	.032	3	-46.998	4	0	4	027	4	001	2
273		4		3298.45	1_	2.207	2	0	1	0	1_1	0	1	0	3
274		-		-4101.176	3	001	3	-47.372	4	0	4_	041	4	002	2
275		5		3298.879	1	2.163	2	0	1	0	1_	0	1	0	3
276			min	-4100.854	3	035	3	-47.745	4	0	4	055	4	003	2
277		6		3299.307	1_	2.119	2	0	11	0	1	0	1	0	3
278		7	min	-4100.533	3	068	3	-48.118	4	0	4	068	4	003	2
279		7		3299.736	1_	2.074	2	0	11	0	1_1	0	1	0	3
280				-4100.212	3	101	3	-48.492	4	0	4	083	4	004	2
281		8		3300.164	1	2.03	2	0	1	0	1_1	0	1	0	3
282				-4099.89	3	134	3	-48.865	4	0	4	097	4	004	2
283		9		3300.593	1_	1.986	2	-49.238	11	0	1_1	0	1	0	3
284		40		-4099.569	3	167	3		4	0	4	111	4	005	2
285		10		3301.021	1	1.942	2	0	1	0	1_1	0	1	0	3
286		4.4		-4099.247	3	201	3	-49.612	4	0	4	125	4	006	2
287		11		3301.45	1_	1.897	2	0	1	0	1_1	0	1	0	3
288		12	min	-4098.926 3301.878	3	234	2	-49.985	4	0	<u>4</u> 1	14 0	1	006	2
289		12		-4098.605	1	1.853		0	1_1	0				0	3
290		13			3	267	3	-50.358	4	0	<u>4</u> 1	154 0	1	007 0	2
291		13		3302.307 -4098.283	1	1.809	2	0 50.722	1_1	0	4				3
292		1.1			3_	3 1.765	3	-50.732	4	0		169	4	007	2
293		14		3302.735	1		2	0	1	0	1_1	0	1	0	3
294		15		-4097.962 3303.164	3	333 1.72	3	-51.105 0	<u>4</u> 1	0	<u>4</u> 1	184	1	008 0	2
295		15		-4097.641	<u>1</u> 3		3	•	4		4	100			2
296		16				366 1.676		-51.478		0	<u>4</u> 1	199	4	008	_
297		16		3303.592	1	1.676	2	0	1	0		0	1	0	3
298		47	min	-4097.319	3_	4	3	-51.852	4	0	4	214	4	009	2
299		17		3304.021	1	1.632	2	0	1	0	1_1	0	1	0	3
300		40		-4096.998	3_	433	3	-52.225	4	0	4	229	4	009	2
301		18		3304.449	1_	1.588	2	0	1	0	1_1	0	1	0	3
302		40	_	-4096.677	3	466	3	-52.598	4	0	4	244	4	01	2
303		19	max	3304.877	<u> 1 </u>	1.543	2	0	_1_	0	_1_	0	1	.001	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4096.355	3	499	3	-52.972	4	0	4	259	4	01	2
305	M7	1		2090.745	2	7.918	6	3.38	4	0	1	0	1	.01	2
306			min	-2175.764	3	1.859	15	0	1	0	4	028	4	001	3
307		2		2090.575	2	7.151	6	3.918	4	0	1	0	1	.007	2
308			min	-2175.892	3	1.678	15	0	1	0	4	026	4	003	3
309		3		2090.404	2	6.384	6	4.457	4	0	1	0	1_	.005	2
310			min	-2176.02	3	1.498	15	0	1	0	4	024	4	004	3
311		4		2090.234	2	5.617	6	4.996	4	0	1	0	1	.003	2
312			min	-2176.147	3	1.318	15	0	1	0	4	022	4	005	3
313		5		2090.064	2	4.85	6	5.535	4	0	1	0	1	0	2
314			min	-2176.275	3	1.137	15	0	1	0	4	02	4	006	3
315		6		2089.893	2	4.082	6	6.073	4	0	1_	0	1_	0	2
316			min	-2176.403	3	.957	15	0	1	0	4	018	4	007	3
317		7		2089.723	2	3.315	6	6.612	4	0	_1_	0	1	002	15
318			min	-2176.531	3	.777	15	0	1	0	4	015	4	007	3
319		8		2089.553	2	2.548	6	7.151	4	0	1	0	1	002	15
320			min	-2176.659	3	.553	12	0	1	0	4	012	4	008	3
321		9	max	2089.382	2	1.943	2	7.69	4	0	1_	0	1	002	15
322			min	-2176.786	3	.254	12	0	1	0	4	009	4	009	4
323		10	max	2089.212	2	1.346	2	8.228	4	0	1	0	1	002	15
324			min	-2176.914	3	139	3	0	1	0	4	006	4	009	4
325		11	max	2089.041	2	.748	2	8.767	4	0	1	0	1_	002	15
326			min	-2177.042	3	587	3	0	1	0	4	002	5	009	4
327		12	max	2088.871	2	.15	2	9.306	4	0	1	.002	4	002	15
328			min	-2177.17	3	-1.036	3	0	1	0	4	0	1	009	4
329		13	max	2088.701	2	306	15	9.845	4	0	1	.006	4	002	15
330			min	-2177.297	3	-1.484	3	0	1	0	4	0	1	009	4
331		14	max	2088.53	2	486	15	10.383	4	0	1	.01	4	002	15
332			min	-2177.425	3	-2.055	4	0	1	0	4	0	1	008	4
333		15	max	2088.36	2	666	15	10.922	4	0	1	.014	4	002	15
334			min	-2177.553	3	-2.823	4	0	1	0	4	0	1	007	4
335		16	max	2088.19	2	847	15	11.461	4	0	1	.019	4	001	15
336			min	-2177.681	3	-3.59	4	0	1	0	4	0	1	006	4
337		17	max	2088.019	2	-1.027	15	12	4	0	1	.024	4	001	15
338			min	-2177.808	3	-4.357	4	0	1	0	4	0	1	004	4
339		18	max	2087.849	2	-1.207	15	12.538	4	0	1	.029	4	0	15
340			min	-2177.936	3	-5.124	4	0	1	0	4	0	1	002	4
341		19	max	2087.679	2	-1.388	15	13.077	4	0	1	.034	4	0	1
342			min	-2178.064	3	-5.892	4	0	1	0	4	0	1	0	1
343	M8	1	max	3104.21	1	0	1	0	1	0	1	.025	4	0	1
344			min	-490.856	3	0	1	-272.854	4	0	1	0	1	0	1
345		2	max	3104.381	1	0	1	0	1	0	1	0	1	0	1
346			min	-490.728	3	0	1	-273.001	4	0	1	006	4	0	1
347		3	max	3104.551	1	0	1	0	1	0	1	0	1	0	1
348			min	-490.6	3	0	1	-273.149	4	0	1	038	4	0	1
349		4		3104.721	1	0	1	0	1	0	1	0	1	0	1
350			min	-490.473	3	0	1	-273.297	4	0	1	069	4	0	1
351		5		3104.892	1	0	1	0	1	0	1	0	1	0	1
352				-490.345	3	0	1	-273.444	4	0	1	101	4	0	1
353		6		3105.062	1	0	1	0	1	0	1	0	1	0	1
354		Ĭ		-490.217		0	1	-273.592		0	1	132	4	0	1
355		7		3105.232	1	0	1	0	1	0	1	0	1	0	1
356			min			0	1	-273.74	4	0	1	163	4	0	1
357		8		3105.403		0	1	0	1	0	1	0	1	0	1
358				-489.962	3	0	1	-273.887	4	0	1	195	4	0	1
359		9		3105.573		0	1	0	1	0	1	0	1	0	1
360				-489.834		0	1	-274.035		0	1	226	4	0	1
000			111111	+00.00 1				217.000	т			.220	т.		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		15 5	LC		1 1
361		10		3105.743	1_	0	1	0	1	0	_1_	0	1	0	1
362		4.4	min	-489.706	3	0	1	-274.183	4	0	1	258	4	0	1
363		11		3105.914	1_	0	1	0	1	0	1	0	1	0	1
364		40		-489.578	3	0	1	-274.33	4	0	1	289	4	0	1
365		12		3106.084	1_	0	1	0	1	0	1	0	1	0	1
366		10		-489.451	3	0	1	-274.478	4	0	1	321	4	0	1
367		13		3106.254	_1_	0	1	0	1	0	1	0	1	0	1
368				-489.323	3_	0	1_	-274.625	4	0	1_	352	4	0	1
369		14		3106.425	_1_	0	1	0	1	0	1	0	1	0	1
370			min	-489.195	3	0	1	-274.773	4	0	1_	384	4	0	1
371		15		3106.595	_1_	0	1	0	1	0	1	0	1	0	1
372			min	-489.067	3	0	1	-274.921	4	0	1	415	4	0	1
373		16		3106.765	_1_	0	1_	0	1	0	_1_	0	1_	0	1
374				-488.94	3	0	1	-275.068	4	0	1	447	4	0	1
375		17		3106.936	<u>1</u>	0	1	0	1	0	_1_	0	1_	0	1
376			min	-488.812	3	0	1	-275.216	4	0	1	479	4	0	1
377		18	max	3107.106	1_	0	1	0	1	0	1	0	1	0	1
378			min	-488.684	3	0	1	-275.364	4	0	1	51	4	0	1
379		19	max	3107.277	1	0	1	0	1	0	1	0	1	0	1
380			min	-488.556	3	0	1	-275.511	4	0	1	542	4	0	1
381	M10	1	max	1023.418	1	1.885	6	034	12	0	1	0	1	0	1
382			min	-1252.362	3	.428	15	-46.199	4	0	5	0	3	0	1
383		2	max	1023.847	1	1.829	6	034	12	0	1	0	10	0	15
384				-1252.041	3	.415	15	-46.572	4	0	5	013	4	0	6
385		3		1024.275	1	1.772	6	034	12	0	1	0	12	0	15
386				-1251.72	3	.401	15	-46.945	4	0	5	027	4	001	6
387		4		1024.704	1	1.715	6	034	12	0	1	0	12	0	15
388				-1251.398	3	.388	15	-47.319	4	0	5	041	4	002	6
389		5		1025.132	1	1.658	6	034	12	0	1	0	12	0	15
390		ľ	min	-1251.077	3	.375	15	-47.692	4	0	5	055	4	002	6
391		6		1025.561	1	1.601	6	034	12	0	1	0	12	0	15
392			min	-1250.756	3	.361	15	-48.065	4	0	5	068	4	003	6
393		7		1025.989	1	1.545	6	034	12	0	1	0	12	0	15
394				-1250.434	3	.348	15	-48.439	4	0	5	082	4	003	6
395		8		1026.418	1	1.488	6	034	12	0	1	0	12	0	15
396			min	-1250.113	3	.335	15	-48.812	4	0	5	097	4	003	6
397		9		1026.846	1	1.431	6	034	12	0	1	0	12	0	15
398		9		-1249.792	3	.321	15	-49.185	4	0	5	111	4	004	6
399		10		1027.275	<u> </u>	1.374	6	034	12	0	<u> </u>	0	12	0	15
400		10		-1249.47	3	.308	15	-49.559	4	0	5	125	4	004	6
		11		1027.703			,		_	_		0			
401		11		-1249.149	<u>1</u>	1.318	6	034	12	0	<u>1</u> 5		12	001	15
402		12		1028.132	3	.295	15	-49.932	4	0	<u>၁</u> 1	14 0	12	005	15
403 404		12		-1248.827	1	1.261	6	034 -50.305	12	0				001	15
		10			3	.281	15		4	0	5	154	4	005	6
405		13		1028.56	1	1.204	6	034	12	0	1	0	12	001	15
406		4.4		-1248.506	3	.268	15	-50.679	4	0	5	169	4	005	6
407		14		1028.989	1	1.155	2	034	12	0	1	0	12	001	15
408		4-		-1248.185	3	.255	15	-51.052	4	0	5	184	4	006	6
409		15		1029.417	1_	1.11	2	034	12	0	1_	0	12	001	15
410		4.0		-1247.863	3	.241	15	-51.425	4	0	5	198	4	006	6
411		16		1029.846	1_	1.066	2	034	12	0	_1_	0	12	001	15
412		L	min	-1247.542	3	.226	12	-51.799	4	0	5	213	4	006	6
413		17		1030.274	_1_	1.022	2	034	12	0	1_	0	12	001	15
414				-1247.221	3	.204	12	-52.172	4	0	5	229	4	007	6
415		18		1030.703	_1_	.978	2	034	12	0	1	0	12	002	15
416				-1246.899	3	.182	12	-52.545	4	0	5	244	4	007	6
417		19	max	1031.131	1_	.933	2	034	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
418			min	-1246.578	3	.16	12	-52.919	4	0	5	259	4	007	6
419	M11	1	max	545.332	2	7.857	6	3.503	4	0	1	0	12	.007	6
420			min	-689.891	3	1.837	15	167	1	0	4	028	4	.002	15
421		2	max	545.162	2	7.09	6	4.042	4	0	1	0	12	.004	2
422			min	-690.019	3	1.656	15	167	1	0	4	026	4	0	12
423		3	max	544.992	2	6.323	6	4.581	4	0	1	0	12	.002	2
424			min	-690.146	3	1.476	15	167	1	0	4	024	4	0	3
425		4	max	544.821	2	5.556	6	5.119	4	0	1	0	12	0	2
426			min	-690.274	3	1.295	15	167	1	0	4	022	4	002	3
427		5	max	544.651	2	4.788	6	5.658	4	0	1	0	12	0	15
428				-690.402	3	1.115	15	167	1	0	4	02	4	003	4
429		6	max		2	4.021	6	6.197	4	0	1	0	12	001	15
430			min	-690.53	3	.935	15	167	1	0	4	018	4	005	4
431		7	max	544.31	2	3.254	6	6.736	4	0	1	0	12	002	15
432			min	-690.657	3	.754	15	167	1	0	4	015	4	007	4
433		8	max	544.14	2	2.487	6	7.274	4	0	<u> </u>	0	12	002	15
434			min	-690.785	3	.574	15	167	1	0	4	012	4	008	4
435		9	max		2	1.72	6	7.813	4	0	1	0	12	002	15
436		 		-690.913	3	.394	15	167	1	0	4	009	4	009	4
437		10	max	543.799	2	.952	6	8.352	4	0	1	0	12	002	15
438		10		-691.041	3	.213	15	167	1	0	4	005	4	002	4
439		11		543.629	2	.325	2	8.891	4	0	1	0	12	003	15
440					3		3	167	1	0	4	002	4	002 01	4
		12		-691.169		098			_		1			002	
441		12	max	543.458	2	147	15	9.429	4	0		.002	5		15
442		40	min	-691.296	3	583	4	167	1_1	0	<u>4</u> 1	001	1	<u>01</u>	4
443		13	max	543.288	2	328	15	9.968	4	0		.006	5	002	15
444		4.4	min	-691.424	3	-1.35	4	167	1_1	0	4	001	1	009	4
445		14	max		2	508	15	10.507	4_	0	1_	.011	5	002	15
446		45		-691.552	3	-2.118	4	167	1_	0	4_	001	1	008	4
447		15	max	542.947	2	688	15	11.046	4	0	1_	.015	5	002	15
448		40	min	-691.68	3	-2.885	4	167	1_	0	4_	001	1	007	4
449		16	max		2	869	15	11.584	4	0	1_	.02	5	<u>001</u>	15
450		-		-691.807	3	-3.652	4	167	_1_	0	4_	001	1	006	4
451		17	max	542.607	2	-1.049	15	12.123	_4_	0	_1_	.025	4	001	15
452			min	-691.935	3_	-4.419	4	167	_1_	0	4_	002	1	004	4
453		18	max		2	-1.229	15	12.662	4	0	_1_	.03	4	0	15
454			min	-692.063	3	-5.186	4	167	<u>1</u>	0	4	002	1	002	4
455		19	max		2	-1.41	15	13.2	_4_	0	_1_	.035	4	0	1
456			min	-692.191	3	-5.954	4	167	1	0	4	002	1	0	1
457	M12	1		1145.883	_1_	0	1	11.597	_1_	0	_1_	.026	4	0	1
458				-125.766	3	0		-275.011	4	0	1_	001	1	0	1
459		2		1146.053	<u>1</u>	0	1	11.597	<u>1</u>	0	<u>1</u>	0	1	0	1
460			min	-125.638	3	0	1	-275.159	4	0	1_	006	4	0	1
461		3	max	1146.224	1	0	1	11.597	1	0	1	.001	1	0	1
462			min	-125.51	3	0	1	-275.306	4	0	1	038	4	0	1
463		4	max	1146.394	1	0	1	11.597	1	0	1	.003	1	0	1
464			min	-125.383	3	0	1	-275.454	4	0	1	069	4	0	1
465		5	max	1146.565	1	0	1	11.597	1	0	1	.004	1	0	1
466				-125.255	3	0	1	-275.602	4	0	1	101	4	0	1
467		6		1146.735	1	0	1	11.597	1	0	1	.005	1	0	1
468				-125.127	3	0	1	-275.749	4	0	1	133	4	0	1
469		7		1146.905	1	0	1	11.597	1	0	1	.007	1	0	1
470				-124.999	3	0	1	-275.897	4	0	1	164	4	0	1
471		8		1147.076	_	0	1	11.597	1	0	1	.008	1	0	1
472				-124.872	3	0	1	-276.045	4	0	1	196	4	0	1
473		9		1147.246	1	0	1	11.597	1	0	1	.009	1	0	1
474				-124.744	3	0	1	-276.192	4	0	1	228	4	0	1
7/4			1111111	124.744	J	U		210.132	+	U		220	+	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1147.416	1	0	1	11.597	1	0	1	.011	1	0	1
476			min	-124.616	3	0	1	-276.34	4	0	1	259	4	0	1
477		11	max	1147.587	1	0	1	11.597	1	0	1	.012	1	0	1
478			min	-124.488	3	0	1	-276.487	4	0	1	291	4	0	1
479		12		1147.757	1	0	1	11.597	1	0	1	.013	1	0	1
480			min	-124.361	3	0	1	-276.635	4	0	1	323	4	0	1
481		13		1147.927	1	0	1	11.597	1	0	1	.015	1	0	1
482		1.0		-124.233	3	0	1	-276.783	4	0	1	355	4	0	1
483		14		1148.098	1	0	1	11.597	1	0	1	.016	1	0	1
484		17	min		3	0	1	-276.93	4	0	1	386	4	0	1
485		15		1148.268	1	0	1	11.597	1	0	1	.017	1	0	1
486		13		-123.977	3	0	1	-277.078		0	1		4	0	1
		16					1				1	418	1		1
487		16		1148.438	1	0		11.597	1	0		.019	_	0	
488		47	min	-123.849	3	0	1_	-277.226	4	0	1_	45	4	0	1
489		17		1148.609	1_	0	1	11.597	1	0	_1_	.02	1	0	1
490		1.0	min	-123.722	3	0	1	-277.373	4	0	1_	482	4	0	1
491		18		1148.779	_1_	0	1	11.597	1	0	_1_	.021	1	0	1
492			min		3	0	1	-277.521	4	0	<u>1</u>	514	4	0	1
493		19	max	1148.949	_1_	0	1	11.597	1	0	_1_	.023	1	0	1
494			min	-123.466	3	0	1	-277.669	4	0	1	546	4	0	1
495	M1	1	max	180.911	1	692.661	3	49.19	5	0	1_	.273	1	0	3
496			min	-9.219	5	-453.006	1	-113.973	1	0	3	093	5	013	2
497		2	max	181.516	1	691.687	3	50.431	5	0	1	.212	1	.227	1
498			min	-8.936	5	-454.304	1	-113.973	1	0	3	066	5	365	3
499		3	max		3	509.005	1	6.98	5	0	3	.152	1	.455	1
500			min	-250.168	2	-494.887	3	-113.485	1	0	1	04	5	715	3
501		4	max		3	507.707	1	8.221	5	0	3	.092	1	.187	1
502			min	-249.563	2	-495.861	3	-113.485	1	0	1	036	5	454	3
503		5	max		3	506.409	1	9.463	5	0	3	.032	1	003	15
504			min	-248.958	2	-496.834	3	-113.485	1	0	1	031	5	192	3
505		6	max		3	505.111	1	10.704	5	0	3	001	12	.07	3
506			min		2	-497.808		-113.485	1	0	1	032	4	366	2
507		7	max		3	503.813	1	11.946	5	0	3	004	12	.333	3
508			min	-247.747	2	-498.782	3	-113.485	1	0	1	087	1	63	2
509		8	max		3	502.514	1	13.187	5	0	3	008	12	.597	3
510		0	min	-247.141	2	-499.755	3	-113.485	1	0	1	147	1	894	2
511		9			3	43.172	2	57.076	5		9		1	.698	3
		9	max							0	3	.086	5		2
512		40	min		2	.392	15			0		133		-1.023	
513		10	max		3_	41.873	2	58.318	5	0	9	0	10	.678	3
514		4.4	min		2	0	5	-165.714	1	0	3	104	4	-1.046	2
515		11		439.657	3	40.575	2	59.559	5	0	9	005	12	.659	3
516		40		-170.205	2	-1.61	4_	-165.714		0	3	091	4	-1.067	2
517		12	max		3_	317.892	3	153.314		0	2	.145	1	.574	3
518			min	-100.093	10	-587.507	2	-110.857	1	0	3	208	5	946	2
519		13		452.989	3_	316.918	3	154.555	5	0	2	.087	1	.407	3
520			min	-99.588	10	-588.805	2	-110.857	1_	0	3	127	5	635	2
521		14		453.443	3	315.944	3	155.797	5	0	2	.028	1	.24	3
522			min		10	-590.104		-110.857	1	0	3	045	5	326	1
523		15	max		3	314.971	3	157.038	5	0	2	.037	5	.073	3
524			min	-98.579	10	-591.402	2	-110.857	1	0	3	03	1	035	1
525		16	max	454.351	3	313.997	3	158.28	5	0	2	.12	5	.3	2
526			min		10	-592.7	2	-110.857	1	0	3	089	1	093	3
527		17	max		3	313.023	3	159.521	5	0	2	.204	5	.613	2
528			min	-97.57	10	-593.998	2	-110.857	1	0	3	147	1	258	3
529		18	max		5	604.172	2	-6.033	12	0	5	.192	5	.308	2
530			min	-181.749	1	-260.798	3	-128.353	4	0	2	21	1	128	3
531		19			5	602.874	2	-6.033	12	0	5	.139	5	.01	3
UUI		ו ו	πιαλ	17.001		1002.014		0.000	14	·	<u> </u>	.100		.01	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-181.143	1	-261.771	3	-127.112	4	0	2	274	1	011	1
533	M5	1	max	390.914	1	2307.363	3	97.59	5	0	1	0	1_	.027	2
534			min	14.847	12	-1531.286	1	0	1	0	4	209	4	0	3
535		2	max	391.52	1	2306.389	3	98.832	5	0	1	0	1	.833	1
536			min	15.15	12	-1532.584	1	0	1	0	4	157	4	-1.218	3
537		3	max	1363.569	3	1556.259	1	58.756	4	0	4	0	1	1.605	1
538			min	-886.249	2	-1594.318	3	0	1	0	1	106	4	-2.388	3
539		4	max	1364.023	3	1554.96	1	59.998	4	0	4	0	1	.784	1
540			min	-885.644	2	-1595.291	3	0	1	0	1	074	4	-1.546	3
541		5	max	1364.477	3	1553.662	1	61.239	4	0	4	0	1	.007	9
542			min	-885.038	2	-1596.265	3	0	1	0	1	042	4	704	3
543		6	max	1364.931	3	1552.364	1	62.481	4	0	4	0	1	.139	3
544			min	-884.433	2	-1597.239	3	0	1	0	1	01	5	901	2
545		7	max	1365.385	3	1551.066	1	63.722	4	0	4	.024	4	.982	3
546			min	-883.827	2	-1598.212	3	0	1	0	1	0	1	-1.711	2
547		8	max		3	1549.768	1	64.964	4	0	4	.057	4	1.825	3
548			min	-883.222	2	-1599.186	3	0	1	0	1	0	1	-2.52	2
549		9	max		3	143.879	2	185.315	4	0	1	0	1	2.103	3
550			min	-727.079	2	.393	15	0	1	0	1	192	4	-2.867	2
551		10		1388.171	3	142.58	2	186.557	4	0	1	0	1	2.034	3
552		1.0	min	-726.474	2	.001	15	0	1	0	1	094	4	-2.943	2
553		11		1388.625	3	141.282	2	187.798	4	0	1	.004	4	1.965	3
554			min	-725.869	2	-1.435	6	0	1	0	1	0	1	-3.018	2
555		12	+	1410.657	3	1012.396	3	220.917	4	0	1	0	1	1.724	3
556		12	min	-569.764	2	-1823.963	2	0	1	0	4	304	4	-2.7	2
557		13		1411.111	3	1011.422	3	222.159	4	0	1	0	1	1.19	3
558		13	min	-569.158	2	-1825.261	2	0	1	0	4	187	4	-1.737	2
559		14		1411.565	3	1010.449	3	223.4	4	0	1	0	1	.657	3
		14			2			0	1		4	07	4		1
560		15	min	-568.553		-1826.56	2			0			-	79	
561 562		15	min	1412.019 -567.948	2	1009.475 -1827.858	3	224.641	4	0	4	.048	<u>4</u> 1	.19 004	13
		16				1008.501		225.883			_	_			_
563		16		1412.473	3	-1829.156	3		4	0	1	.167	4_	1.155	2
564		47	min	-567.342	2		2	0		0	4	0	1_4	408	3
565		17		1412.927	3	1007.528	3	227.124	4	0	1	.287	4	2.121	2
566		40	min	-566.737	2	-1830.454 2034.229	2	0	1	0	4	0	1_4	94	3
567		18	max		12		2	0	1	0	4	.311	4	1.093	2
568		40	min	-391.055	1	-893.366	3	-28.907	5	0	1	0	1_	492	3
569		19	max	-15.156	12	2032.931	2	0	1	0	4	.297	4	.022	1
570	140		min	-390.449	1_	-894.34	3	-27.665	5	0	1	0	1_	02	3
571	<u>M9</u>	1	max		1	692.661	3	113.973	1	0	3	014	12	0	3
572			mın		12			5.932	12	0	4	273	1_	013	2
573		2	max		1	691.687	3	113.973	1	0	3	011	12	.227	1
574			min	8.355	12	-454.304		5.932	12	0	4	212	1_	365	3
575		3		423.524	3	509.005	1	113.485	1	0	1	008	12	.455	1
576			min		2	-494.887	3	5.896	12	0	3	152	1_	71 <u>5</u>	3
577		4		423.978	3	507.707	1	113.485	1	0	1	005	12	.187	1
578			min		2	-495.861	3	5.896	12	0	3	092	_1_	454	3
579		5		424.432	3	506.409	1	113.485	1_	0	1	002	12	003	15
580				-248.958	2	-496.834	3	5.896	12	0	3	043	4	192	3
581		6		424.886	3	505.111	1	113.485	1_	0	1	.027	_1_	.07	3
582			min		2	-497.808	3	5.896	12	0	3	023	5	366	2
583		7	max		3	503.813	1	113.485	1	0	1	.087	_1_	.333	3
584			min		2	-498.782	3	5.896	12	0	3	009	5	63	2
585		8	max	425.794	3	502.514	1	113.485	1	0	1	.147	1_	.597	3
586			min		2	-499.755	3	5.896	12	0	3	.003	15	894	2
587		9		438.749	3	43.172	2	165.714	1	0	3	004	12	.698	3
588			min	-171.416	2	.399	15	8.397	12	0	9	165	4	-1.023	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	439.203	3	41.873	2	165.714	1	0	3	.001	1	.678	3
590			min	-170.811	2	.007	15	8.397	12	0	9	103	4	-1.046	2
591		11	max	439.657	3	40.575	2	165.714	1	0	3	.089	1	.659	3
592			min	-170.205	2	-1.561	6	8.397	12	0	9	06	5	-1.067	2
593		12	max	452.535	3	317.892	3	194.256	4	0	3	007	12	.574	3
594			min	-100.093	10	-587.507	2	5.473	12	0	2	262	4	946	2
595		13	max	452.989	3	316.918	3	195.497	4	0	3	004	12	.407	3
596			min	-99.588	10	-588.805	2	5.473	12	0	2	159	4	635	2
597		14	max	453.443	3	315.944	3	196.739	4	0	3	001	12	.24	3
598			min	-99.084	10	-590.104	2	5.473	12	0	2	055	4	326	1
599		15	max	453.897	3	314.971	3	197.98	4	0	3	.049	4	.073	3
600			min	-98.579	10	-591.402	2	5.473	12	0	2	.001	12	035	1
601		16	max	454.351	3	313.997	3	199.221	4	0	3	.153	4	.3	2
602			min	-98.075	10	-592.7	2	5.473	12	0	2	.004	12	093	3
603		17	max	454.805	3	313.023	3	200.463	4	0	3	.259	4	.613	2
604			min	-97.57	10	-593.998	2	5.473	12	0	2	.007	12	258	3
605		18	max	-8.2	12	604.172	2	121.97	1	0	2	.268	4	.308	2
606			min	-181.749	1	-260.798	3	-85.073	5	0	3	.01	12	128	3
607		19	max	-7.897	12	602.874	2	121.97	1	0	2	.274	1	.01	3
608			min	-181.143	1	-261.771	3	-83.831	5	0	3	.013	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.106	2	.008	3 8.694e-3	2	NC	1	NC	1
2			min	657	4	014	3	004	2 -1.277e-3	3	NC	1	NC	1
3		2	max	0	1	.34	3	.045	1 1.003e-2	2	NC	5	NC	2
4			min	657	4	11	1	022	5 -1.301e-3	3	696.134	3	5695.867	1
5		3	max	0	1	.626	3	.107	1 1.137e-2	2	NC	5	NC	3
6			min	657	4	278	1	026	5 -1.324e-3	3	384.621	3	2323.554	1
7		4	max	0	1	.8	3	.162	1 1.27e-2	2	NC	5	NC	3
8			min	657	4	372	1	018	5 -1.348e-3	3	302.394	3	1535.449	1
9		5	max	0	1	.84	3	.19	1 1.404e-2	2	NC	5	NC	3
10			min	657	4	379	1	003	5 -1.371e-3	3	288.038	3	1306.925	1
11		6	max	0	1	.751	3	.183	1 1.538e-2	2	NC	5	NC	3
12			min	657	4	302	1	.008	15 -1.395e-3	3	321.905	3	1353.285	1
13		7	max	0	1	.557	3	.144	1 1.671e-2	2	NC	5	NC	3
14			min	657	4	16	1	.009	10 -1.418e-3	3	430.844	3	1725.303	1
15		8	max	0	1	.312	3	.084	1 1.805e-2	2	NC	4	NC	3
16			min	657	4	004	9	0	10 -1.441e-3	3	755.9	3	2992.556	1
17		9	max	0	1	.186	2	.029	4 1.939e-2	2	NC	4	NC	1
18			min	657	4	.005	15	007	10 -1.465e-3	3	2394.742	3	8370.919	4
19		10	max	0	1	.252	2	.024	3 2.072e-2	2	NC	3	NC	1
20			min	657	4	012	3	016	2 -1.488e-3	3	1685.263	2	NC	1
21		11	max	0	12	.186	2	.025	3 1.939e-2	2	NC	4	NC	1
22			min	657	4	.005	15	018	5 -1.465e-3	3	2394.742	3	NC	1
23		12	max	0	12	.312	3	.084	1 1.805e-2	2	NC	4	NC	3
24			min	657	4	004	9	017	5 -1.441e-3	3	755.9	3	2992.556	1
25		13	max	0	12	.557	3	.144	1 1.671e-2	2	NC	5	NC	3
26			min	657	4	16	1	006	5 -1.418e-3	3	430.844	3	1725.303	1
27		14	max	0	12	.751	3	.183	1 1.538e-2	2	NC	5	NC	3
28			min	657	4	302	1	.007	15 -1.395e-3	3	321.905	3	1353.285	1
29		15	max	0	12	.84	3	.19	1 1.404e-2	2	NC	5	NC	3
30			min	657	4	379	1	.016	10 -1.371e-3	3	288.038	3	1306.925	1
31		16	max	0	12	.8	3	.162	1 1.27e-2	2	NC	5	NC	3
32			min	658	4	372	1	.014	10 -1.348e-3	3	302.394	3	1535.449	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.626	3	.107	1	1.137e-2	2	NC	5	NC	3
34			min	658	4	278	1	.008	10	-1.324e-3	3	384.621	3	2323.554	1
35		18	max	0	12	.34	3	.045	1	1.003e-2	2	NC	5	NC	2
36			min	658	4	11	1	.002	10	-1.301e-3	3	696.134	3	5695.867	1
37		19	max	0	12	.106	2	.008	3	8.694e-3	2	NC	1	NC	1
38			min	658	4	014	3	004	2	-1.277e-3	3	NC	1_	NC	1
39	M14	1	max	0	1	.207	3	.007	3	5.179e-3	2	NC	_1_	NC	1
40			min	494	4	<u>341</u>	2	003	2	-3.716e-3	3	NC	_1_	NC	1
41		2	max	0	1	.54	3	.031	1_	6.221e-3	2	NC	5	NC_	2
42			min	494	4	662	2	032	5	-4.538e-3	3	738.675	3_	7399.53	5
43		3	max	0	1	.821	3	.087	1	7.264e-3	2	NC 400,007	<u>15</u>	NC	3
44		4	min	494	4	945	1	038	5	-5.359e-3	3	400.337	1_	2893.005	1
45		4	max	0	1	1.014	3	.139	1	8.306e-3	2	NC 200.057	<u>15</u>	NC	3
46		-	min	494	4	<u>-1.149</u>	1	025	5	-6.181e-3	3	300.357	1_	1791.143	1
47 48		5	max	0 494	1	1.101	3	.169	1	9.349e-3 -7.003e-3	2	NC 205 005	<u>15</u>	NC	3
49		6	min	494 0	1	<u>-1.258</u> 1.083	3	003 .167	<u>5</u>		2	265.095 9990.262	<u>1</u> 15	1471.368 NC	3
50		6	max	494	4	-1.271	1	.013		1.039e-2 -7.824e-3	3	261.453	15 1	1489.559	
51		7	min	494 0	1	.98	3	.133	1	1.143e-2	2	NC	15	NC	3
52		1	max	494	4	-1.208	2	.008	_	-8.646e-3	3	281.678	1	1868.773	1
53		8	max	- <u>494</u> 0	1	.827	3	.078	1	1.248e-2	2	NC	15	NC	2
54			min	494	4	-1.101	2	.001	10	-9.468e-3	3	323.715	2	3197.944	1
55		9	max	0	1	.679	3	.043	4	1.352e-2	2	NC	15	NC	1
56			min	494	4	991	2	006	10	-1.029e-2	3	378.445	2	5752.123	4
57		10	max	0	1	.611	3	.021	3	1.456e-2	2	NC	5	NC	1
58		10	min	494	4	938	2	014	2	-1.111e-2	3	411.849	2	NC	1
59		11	max	0	12	.679	3	.023	1	1.352e-2	2	NC	15	NC	1
60			min	494	4	991	2	031	5	-1.029e-2	3	378.445	2	7825.334	
61		12	max	0	12	.827	3	.078	1	1.248e-2	2	NC	15	NC	2
62			min	494	4	-1.101	2	036	5	-9.468e-3	3	323.715		3197.944	1
63		13	max	0	12	.98	3	.133	1	1.143e-2	2	NC	15	NC	3
64			min	494	4	-1.208	2	022	5	-8.646e-3	3	281.678	1	1868.773	1
65		14	max	0	12	1.083	3	.167	1	1.039e-2	2	9989.881	15	NC	3
66			min	494	4	-1.271	1	0	15	-7.824e-3	3	261.453	1	1489.559	1
67		15	max	0	12	1.101	3	.169	1	9.349e-3	2	NC	15	NC	3
68			min	494	4	-1.258	1	.014	10	-7.003e-3	3	265.095	1	1471.368	1
69		16	max	0	12	1.014	3	.139	1	8.306e-3	2	NC	<u>15</u>	NC	3
70			min	494	4	-1.149	1	.012	10		3	300.357	1_	1791.143	1
71		17	max	0	12	.821	3	.087	1	7.264e-3	2	NC	15	NC	3
72			min	495	4	945	1	.006		-5.359e-3	3	400.337	1_	2893.005	
73		18	max		12	.54	3	.044	4	6.221e-3		NC	5	NC	2
74			min	495	4	662	2	0	10	-4.538e-3	3	738.675	3	5541.002	
75		19	max	0	12	.207	3	.007	3	5.179e-3	2	NC	_1_	NC	1
76			min	495	4	341	2	003	2	-3.716e-3	3	NC	1_	NC	1
77	M15	1_	max	0	12	.212	3	.006	3	3.139e-3	3_	NC	_1_	NC NC	1
78			min	404	4	34	2	003	2	-5.379e-3	2	NC	1_	NC NC	1
79		2	max	0	12	.415	3	.031	1	3.838e-3	3_	NC 000.00	5_	NC 5040,000	2
80			min	404	4	<u>749</u>	2	042	5	-6.466e-3	2	602.63	2	5610.309	
81		3	max	0	12	.592	3	.087	1	4.538e-3	3	NC	<u>15</u>	NC	3
82		1	min	404	4	<u>-1.096</u>	2	051	5	-7.553e-3	2	325.767	2	2884.762	1
83		4	max	0	12	.722 -1.339	3	.139	1	5.237e-3	3	NC	<u>15</u>	NC 1797 001	3
84			min	404	12		2	036	5	-8.639e-3	2	246.29 NC	<u>2</u> 15	1787.091 NC	3
85		5	max	0	4	.795 1.450	2	.169	5	5.936e-3	3				
86 87		6	min	404 0	12	<u>-1.459</u> .812	3	008 .167	1	-9.726e-3	2	219.967 NC	<u>2</u> 15	1468.271 NC	3
88		6	max min	404	4	-1.454	2	.013	10	6.636e-3 -1.081e-2	<u>3</u>	220.851	2	1486.204	
89		7	max	404 0	12	<u>-1.454</u> .781	3	.134	1	7.335e-3	3	NC	15	NC	3
03			πιαλ	U	14	.,,,,,,	L J	. 104		1.0000	<u> </u>	INO	10	INO	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate					
90			min	<u>404</u>	4	<u>-1.347</u>	2	.008	10 -1.19e-		244.38	2	1863.425	1
91		8	max	0	12	.719	3	.079	1 8.035e-		NC NC	<u>15</u>	NC	2
92			min	404	4	<u>-1.179</u>	2	.001	10 -1.299e		293.241	2	3151.917	4
93		9	max	0	12	.655	3	.052	4 8.734e-	3 3	NC 204.004	<u>15</u>	NC	1
94		10	min	<u>404</u>	1	<u>-1.014</u>	3	005 .02	10 -1.407e 3 9.433e-		364.964	<u>2</u> 5	4709.84 NC	1
95 96		10	max	0 404	4	.624 937	2	014	3 9.433e- 2 -1.516e		NC 412.428	2	NC NC	1
97		11	min max	404 0	1	<u>937</u> .655	3	.023	1 8.734e-		NC	15	NC NC	1
98			min	404	4	-1.014	2	041	5 -1.407e		364.964	2	6010.156	5
99		12	max	0	1	.719	3	.079	1 8.035e-		NC	15	NC	2
100		12	min	404	4	-1.179	2	047	5 -1.299e		293.241	2	3182.475	1
101		13	max	0	1	.781	3	.134	1 7.335e-		NC	15	NC	3
102			min	404	4	-1.347	2	031	5 -1.19e-		244.38	2	1863.425	1
103		14	max	0	1	.812	3	.167	1 6.636e-		NC	15	NC	3
104			min	404	4	-1.454	2	001	5 -1.081e		220.851	2	1486.204	1
105		15	max	0	1	.795	3	.169	1 5.936e-		NC	15	NC	3
106			min	404	4	-1.459	2	.014	12 -9.726e		219.967	2	1468.271	1
107		16	max	0	1	.722	3	.139	1 5.237e-	3 3	NC	15	NC	3
108			min	404	4	-1.339	2	.012	12 -8.639e		246.29	2	1787.091	1
109		17	max	0	1	.592	3	.087	1 4.538e-		NC	15	NC	3
110			min	404	4	-1.096	2	.007	10 -7.553e		325.767	2	2884.762	1
111		18	max	0	1	.415	3	.055	4 3.838e-		NC	5	NC	2
112			min	404	4	749	2	0	10 -6.466e		602.63	2	4463.443	4
113		19	max	00	1	.212	3	.006	3 3.139e-		NC	_1_	NC	1
114			min	404	4	34	2	003	2 -5.379e		NC	1_	NC	1
115	M16	1	max	0	12	<u>.097</u>	1	.005	3 5.575e-		NC	1_	NC	1
116		_	min	<u>148</u>	4	07	3	003	2 -7.506e		NC NC	1_	NC NC	1
117		2	max	0	12	.046	3	.044	1 6.6e-3		NC 054.050	5	NC	2
118			min	148	4	194	2	033	5 -8.591e		851.858	2	5732.754	1_
119		3	max	0	12	.137	3	.107	1 7.624e-		NC 472.769	5	NC 2330.339	3
120 121		4	min	148 0	12	424 .186	3	04 .161	5 -9.676e 1 8.649e-		473.768 NC	<u>2</u> 5	NC	3
122		4	max	148	4	557	2	03	5 -1.076e	3 3 -2 1	377.086	2	1536.873	1
123		5	max	<u>140</u> 0	12	.184	3	.19	1 9.674e-		NC	5	NC	3
124		- 5	min	148	4	575	2	009	5 -1.185e		367.043	2	1305.924	1
125		6	max	0	12	.135	3	.184	1 1.07e-2		NC	5	NC	3
126			min	148	4	481	2	.009	15 -1.293e		427.148	2	1349.481	1
127		7	max	0	12	.049	3	.145	1 1.172e-		NC	5	NC	3
128		<u> </u>	min	148	4	299	2	.01	10 -1.402e		624.957	2	1714.497	1
129		8	max	0	12	.004	4	.085	1 1.275e-		NC	3	NC	3
130			min	148	4		2	.003	10 -1.51e-	2 1	1458.968	2	2947.881	1
131		9	max	0	12	.147	1	.038	4 1.377e-		NC	4	NC	1
132			min	148	4	147	3	004	10 -1.619e		3194.792	3	6501.861	4
133		10	max	0	1	.229	1	.017	3 1.48e-2		NC	5	NC	1
134			min	148	4	187	3	013	2 -1.727e		1874.845	1	NC	1
135		11	max	0	1	.147	1	.025	1 1.377e-	2 3	NC	4	NC	1
136			min	148	4	147	3	026	5 -1.619e		3194.792	3	9346.208	5
137		12	max	0	1	.004	6	.085	1 1.275e-	2 3	NC	3	NC	3
138			min	148	4	074	2	027	5 -1.51e-		1458.968	2	2947.881	1
139		13	max	0	1	.049	3	.145	1 1.172e-		NC	5	NC	3
140			min	148	4	299	2	012	5 -1.402e		624.957	2	1714.497	1
141		14	max	0	1	.135	3	.184	1 1.07e-2		NC	5_	NC	3
142			min	<u>147</u>	4	<u>481</u>	2	.007	15 -1.293e		427.148	2	1349.481	1_
143		15	max	0	1	.184	3	.19	1 9.674e-		NC	_5_	NC	3
144		4.0	min	<u>147</u>	4	<u>575</u>	2	.014	12 -1.185e		367.043	2	1305.924	1
145		16	max	0	1	.186	3	.161	1 8.649e-		NC 077.000	5_	NC 4500.070	3
146			min	147	4	557	2	.012	12 -1.076e	-2 1	377.086	2	1536.873	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

147 17 max 0 1 .137 3 .107 1 7.624e-3 3 NC 5 N 148 min 147 4 424 2 .009 12 -9.676e-3 1 473.768 2 2330 149 18 max .001 1 .046 3 .05 4 6.6e-3 3 NC 5 N 150 min 147 4 194 2 .002 10 -8.591e-3 1 851.858 2 494 151 19 max .001 1 .097 1 .005 3 5.575e-3 3 NC 1 N 152 min 147 4 07 3 003 2 -7.506e-3 1 NC 1 N 153 M2 1 max .006 1 .006 2 .009 1 1.496e-3	.339 1 C 2 3.05 4 C 1 C 1 C 2 751 4 C 2 776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
149 18 max .001 1 .046 3 .05 4 6.6e-3 3 NC 5 N 150 min 147 4 194 2 .002 10 -8.591e-3 1 851.858 2 494 151 19 max .001 1 .097 1 .005 3 5.575e-3 3 NC 1 N 152 min 147 4 07 3 003 2 -7.506e-3 1 NC 1 N 153 M2 1 max .006 1 .006 2 .009 1 1.496e-3 5 NC 1 N 154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC	C 2 3.05 4 C 1 C 2 751 4 C 2 776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
150 min 147 4 194 2 .002 10 -8.591e-3 1 851.858 2 4944 151 19 max .001 1 .097 1 .005 3 5.575e-3 3 NC 1 N 152 min 147 4 07 3 003 2 -7.506e-3 1 NC 1 N 153 M2 1 max .006 1 .006 2 .009 1 1.496e-3 5 NC 1 N 154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min 007 3 01 3 566 4 -2.286e-4 1	3.05
151 19 max .001 1 .097 1 .005 3 5.575e-3 3 NC 1 N 152 min 147 4 07 3 003 2 -7.506e-3 1 NC 1 N 153 M2 1 max .006 1 .006 2 .009 1 1.496e-3 5 NC 1 N 154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min 007 3 01 3 566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 <td< td=""><td>C 1 C 1 C 2 7751 4 C 2 7776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1</td></td<>	C 1 C 1 C 2 7751 4 C 2 7776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
152 min 147 4 07 3 003 2 -7.506e-3 1 NC 1 N 153 M2 1 max .006 1 .006 2 .009 1 1.496e-3 5 NC 1 N 154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min 007 3 01 3 566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min 007 3 01 3 516 4 -2.135e-4 1 <	C 1 C 2 751 4 C 2 776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
153 M2 1 max .006 1 .006 2 .009 1 1.496e-3 5 NC 1 N 154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min 007 3 01 3 566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min 007 3 01 3 516 4 -2.135e-4 1 NC 1 N 159 4 max .005 1 .004 2 .007 1 1.794e-3	C 2 751 4 C 2 776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
154 min 008 3 011 3 616 4 -2.437e-4 1 NC 1 101 155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min 007 3 01 3 566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min 007 3 01 3 516 4 -2.135e-4 1 NC 1 121 159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min 006 3 009 3 467 4 -1.984e-4 1 NC	751 4 C 2 776 4 C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
155 2 max .006 1 .005 2 .008 1 1.595e-3 5 NC 1 N 156 min007 301 3566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min007 301 3516 4 -2.135e-4 1 NC 1 121 159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min006 3009 3467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min006 3009 3418 4 -1.833e-4 1 NC 1 149	C 2 7776 4 C 2 .49 4 C 2 3332 4 C 1 898 4 C 1 013 4 C 1
156 min 007 3 01 3 566 4 -2.286e-4 1 NC 1 110 157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min 007 3 01 3 516 4 -2.135e-4 1 NC 1 121 159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min 006 3 009 3 467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min 006 3 009 3 418 4 -1.833e-4 1 NC	776 4 C 2 .49 4 C 2 332 4 C 1 898 4 C 1 013 4 C 1
157 3 max .006 1 .004 2 .007 1 1.694e-3 5 NC 1 N 158 min 007 3 01 3 516 4 -2.135e-4 1 NC 1 121 159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min 006 3 009 3 467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min 006 3 009 3 418 4 -1.833e-4 1 NC 1 149	C 2 .49 4 C 2 .332 4 C 1 .898 4 C 1 .013 4 C 1
158 min 007 3 01 3 516 4 -2.135e-4 1 NC 1 121 159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min 006 3 009 3 467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min 006 3 009 3 418 4 -1.833e-4 1 NC 1 149	.49 4 C 2 332 4 C 1 898 4 C 1 013 4 C 1
159 4 max .005 1 .004 2 .007 1 1.794e-3 5 NC 1 N 160 min 006 3 009 3 467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min 006 3 009 3 418 4 -1.833e-4 1 NC 1 149	C 2 332 4 C 1 898 4 C 1 013 4 C 1
160 min 006 3 009 3 467 4 -1.984e-4 1 NC 1 134 161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min 006 3 009 3 418 4 -1.833e-4 1 NC 1 149	332 4 C 1 898 4 C 1 013 4 C 1
161 5 max .005 1 .003 2 .006 1 1.893e-3 5 NC 1 N 162 min006 3009 3418 4 -1.833e-4 1 NC 1 149	C 1 898 4 C 1 013 4 C 1
162 min006 3009 3418 4 -1.833e-4 1 NC 1 149.	898 4 C 1 013 4 C 1
	C 1 013 4 C 1
163 6 max .004 1 .002 2 .005 1 1.992e-3 5 NC 1 N	013 4 C 1
	0 1
165 7 max .004 1 .001 2 .005 1 2.091e-3 5 NC 1 N	
166 min005 3008 3325 4 -1.531e-4 1 NC 1 192	845 4
167 8 max .004 1 0 2 .004 1 2.19e-3 5 NC 1 N	
168 min005 3008 3281 4 -1.381e-4 1 NC 1 223	097 4
169 9 max .003 1 0 2 .003 1 2.289e-3 4 NC 1 N	
170 min004 3007 3239 4 -1.23e-4 1 NC 1 262	325 4
171 10 max .003 1 0 2 .003 1 2.394e-3 4 NC 1 N	0 1
172 min004 3007 3199 4 -1.079e-4 1 NC 1 314.	
173 11 max .003 1 0 15 .002 1 2.499e-3 4 NC 1 N	
174 min003 3006 3162 4 -9.281e-5 1 NC 1 386.	
175	
176 min003 3006 3128 4 -7.772e-5 1 NC 1 488	
177	
178 min003 3005 3098 4 -6.264e-5 1 NC 1 642	
179	
180 min002 3004 3071 4 -4.755e-5 1 NC 1 889	
181	
	.139 4
183	
185	
187	
188 min 0 3 0 6004 4 4.158e-7 12 NC 1 N	
189	-
190 min 0 1 0 1 0 1 1.219e-6 12 NC 1 N	
191 M3 1 max 0 1 0 1 0 1 -4.142e-7 12 NC 1 N	
192 min 0 1 0 1 -8.152e-4 4 NC 1 N	
193 2 max 0 3 0 15 .016 4 1.626e-5 1 NC 1 N	
194 min 0 2002 6 0 12 -1.301e-4 5 NC 1 N	
195 3 max 0 3 0 15 .03 4 5.598e-4 4 NC 1 N	
196 min 0 2003 6 0 12 2.037e-6 12 NC 1 N	
197 4 max .001 3001 15 .044 4 1.247e-3 4 NC 1 N	
198 min 0 2005 6 0 12 3.262e-6 12 NC 1 9258	
199 5 max .001 3002 15 .057 4 1.935e-3 4 NC 1 N	
200 min001 2007 6 0 12 4.487e-6 12 NC 1 8249	
201 6 max .002 3002 15 .068 4 2.622e-3 4 NC 1 N	
	.389 5
203 7 max .002 3002 15 .079 4 3.31e-3 4 NC 1 N	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
204			min	002	2	01	6	0	12	6.938e-6		8742.731	6	8338.022	
205		8	max	.002	3	003	15	.09	4	3.997e-3	4	NC	1	NC	1
206			min	002	2	012	6	0	12	8.163e-6		7840.305	6	9261.384	
207		9	max	.003	3	003	15	.099	4	4.685e-3	4	NC	2	NC NC	1
208		10	min	002 .003	3	013 003	15	<u> </u>	12	9.389e-6 5.372e-3	<u>12</u> 4	7305.707 NC	<u>6</u> 2	NC NC	1
210		10	max min	002	2	003 013	6	0	12	1.061e-5	12	7045.542	6	NC NC	1
211		11	max	.002	3	003	15	.118	4	6.06e-3	4	NC	5	NC	1
212			min	003	2	013	6	0	12	1.184e-5	12	7021.394	6	NC	1
213		12	max	.003	3	003	15	.127	4	6.747e-3	4	NC	2	NC	1
214		12	min	003	2	013	6	0	12	1.306e-5	12	7235.08	6	NC	1
215		13	max	.004	3	003	15	.137	4	7.435e-3	4	NC	1	NC	1
216			min	003	2	012	6	0	12	1.429e-5	12	7731.223	6	NC	1
217		14	max	.004	3	002	15	.146	4	8.122e-3	4	NC	1	NC	1
218			min	003	2	011	6	0	12	1.552e-5	12	8620.492	6	NC	1
219		15	max	.005	3	002	15	.156	4	8.81e-3	4	NC	1_	NC	1
220			min	004	2	009	6	0	12	1.674e-5	12	NC	1_	NC	1
221		16	max	.005	3	001	15	.167	4	9.497e-3	4_	NC	_1_	NC	1
222			min	004	2	008	1	0	12	1.797e-5	12	NC	1_	NC	1
223		17	max	.005	3	0	15	.179	4	1.018e-2	4_	NC	_1_	NC	1
224		4.0	min	004	2	006	1	0	12	1.919e-5	12	NC	1_	NC	1
225		18	max	.006	3	0	15	.192	4	1.087e-2	4	NC	1	NC NC	1
226		40	min	004	2	004	1	0	12	2.042e-5	12	NC NC	1_	NC NC	1
227		19	max	.006	3	0	5	.206	4	1.156e-2	4	NC NC	_ <u>1_</u>	NC NC	1
228 229	M4	1	min max	005 .003	1	003 .004	2	<u> </u>	12	2.164e-5 6.24e-5	<u>12</u> 1	NC NC	1	NC NC	3
230	IVI4		min	0	3	004 006	3	206	4	-2.952e-4	5	NC NC	1	120.328	4
231		2	max	.003	1	.004	2	0	12	6.24e-5	1	NC	1	NC	3
232			min	0	3	006	3	19	4	-2.952e-4	5	NC	1	130.851	4
233		3	max	.002	1	.004	2	0	12	6.24e-5	1	NC	1	NC	3
234			min	0	3	005	3	173	4	-2.952e-4	5	NC	1	143.374	4
235		4	max	.002	1	.004	2	0	12	6.24e-5	1	NC	1	NC	3
236			min	0	3	005	3	157	4	-2.952e-4	5	NC	1	158.416	4
237		5	max	.002	1	.003	2	0	12	6.24e-5	1	NC	1	NC	2
238			min	0	3	005	3	14	4	-2.952e-4	5	NC	1	176.683	4
239		6	max	.002	1	.003	2	0	12	6.24e-5	_1_	NC	_1_	NC	2
240			min	0	3	004	3	125	4	-2.952e-4	5	NC	1_	199.155	4
241		7	max	.002	1	.003	2	0	12	6.24e-5	_1_	NC	_1_	NC	2
242			min	0	3	004	3	109	4	-2.952e-4	5_	NC	_1_	227.222	4
243		8	max	.002	1	.003	2	0	12	6.24e-5	_1_	NC	1_	NC 200.04	2
244			min		3	004	3	094		-2.952e-4		NC NC	1	262.91	4
245 246		9	max min	.002	3	.002 003	3	0 08	12	6.24e-5 -2.952e-4	<u>1</u> 5	NC NC	1	NC 309.27	4
247		10		.001	1	.002	2	06	12	6.24e-5	<u> </u>	NC NC	1	NC	2
248		10	max min	0	3	003	3	067	4	-2.952e-4	5	NC	1	371.074	4
249		11	max	.001	1	.002	2	<u>.007</u>	12	6.24e-5	1	NC	1	NC	1
250			min	0	3	003	3	054	4	-2.952e-4	5	NC	1	456.122	4
251		12	max	.001	1	.002	2	0	12	6.24e-5	1	NC	1	NC	1
252			min	0	3	002	3	043	4	-2.952e-4	5	NC	1	577.914	4
253		13	max	0	1	.001	2	0	12	6.24e-5	1	NC	1	NC	1
254			min	0	3	002	3	033	4	-2.952e-4	5	NC	1	761.499	4
255		14	max	0	1	.001	2	0	12	6.24e-5	1	NC	1	NC	1
256			min	0	3	002	3	023	4	-2.952e-4	5	NC	1	1057.837	4
257		15	max	0	1	0	2	0	12	6.24e-5	1	NC	1	NC	1
258			min	0	3	001	3	016	4	-2.952e-4	5	NC	1	1584.392	4
259		16	max	0	1	0	2	0	12	6.24e-5	1_	NC	1_	NC	1
260			min	0	3	001	3	009	4	-2.952e-4	5	NC	1	2665.845	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	6.24e-5	1	NC	1	NC	1
262			min	0	3	0	3	005	4	-2.952e-4	5	NC	1	5505.856	4
263		18	max	0	1	0	2	0	12	6.24e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-2.952e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.24e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-2.952e-4	5	NC	1	NC	1
267	M6	1	max	.02	1	.024	2	0	1	1.583e-3	4	NC	4	NC	1
268			min	025	3	034	3	622	4	0	1	1872.028	3	100.807	4
269		2	max	.019	1	.022	2	0	1	1.681e-3	4	NC	4	NC	1
270			min	023	3	032	3	571	4	0	1	1983.236	3	109.75	4
271		3	max	.018	1	.02	2	0	1	1.778e-3	4	NC	4	NC	1
272			min	022	3	03	3	521	4	0	1	2108.528	3	120.367	4
273		4	max	.017	1	.018	2	0	1	1.875e-3	4	NC	4	NC	1
274			min	021	3	028	3	471	4	0	1	2250.781	3	133.093	4
275		5	max	.015	1	.016	2	0	1	1.972e-3	4	NC	4	NC	1
276			min	019	3	026	3	422	4	0	1	2413.7	3	148.518	4
277		6	max	.014	1	.014	2	0	1	2.069e-3	4	NC	4	NC	1
278			min	018	3	024	3	375	4	0	1	2602.129	3	167.461	4
279		7	max	.013	1	.012	2	0	1	2.166e-3	4	NC	1	NC	1
280			min	016	3	022	3	328	4	0	1	2822.527	3	191.081	4
281		8	max	.012	1	.01	2	0	1	2.264e-3	4	NC	1	NC	1
282			min	015	3	02	3	284	4	0	1	3083.704	3	221.064	4
283		9	max	.011	1	.009	2	0	1	2.361e-3	4	NC	1_	NC	1
284			min	014	3	018	3	241	4	0	1	3397.996	3	259.945	4
285		10	max	.01	1	.007	2	0	1	2.458e-3	4	NC	1	NC	1
286			min	012	3	017	3	201	4	0	1	3783.225	3	311.68	4
287		11	max	.009	1	.006	2	0	1	2.555e-3	4	NC	1	NC	1
288			min	011	3	015	3	164	4	0	1	4266.128	3	382.721	4
289		12	max	.008	1	.004	2	0	1	2.652e-3	4	NC	1	NC	1
290			min	01	3	013	3	13	4	0	1	4888.724	3	484.194	4
291		13	max	.007	1	.003	2	0	1	2.749e-3	4	NC	1	NC	1
292			min	008	3	011	3	099	4	0	1	5721.055	3	636.67	4
293		14	max	.006	1	.002	2	0	1	2.847e-3	4	NC	1_	NC	1
294			min	007	3	009	3	071	4	0	1	6889.207	3	881.788	4
295		15	max	.004	1	.001	2	0	1	2.944e-3	4	NC	1	NC	1
296			min	005	3	007	3	048	4	0	1	8645.365	3	1314.88	4
297		16	max	.003	1	0	2	0	1	3.041e-3	4	NC	1	NC	1
298			min	004	3	005	3	029	4	0	1	NC	1	2196.912	4
299		17	max	.002	1	0	2	0	1	3.138e-3	4	NC	1	NC	1
300			min	003	3	004	3	014	4	0	1	NC	1	4480.586	4
301		18	max	.001	1	0	2	0	1	3.235e-3	4	NC	1	NC	1
302			min	001	3	002	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.332e-3	4	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1_	NC	1	NC	1
306			min	0	1	0	1	0	1	-8.134e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.016	4	0	1_	NC	1_	NC	1
308			min	001	2	003	3	0	1	-1.432e-4	4	NC	1	NC	1
309		3	max	.002	3	0	15	.03	4	5.27e-4	4	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	.044	4	1.197e-3	4	NC	_1_	NC	1
312			min	003	2	007	3	0	1	0	1	NC	1	8543.209	4
313		5	max	.004	3	002	15	.056	4	1.867e-3	4	NC	1	NC	1
314			min	004	2	009	3	0	1	0	1	NC	1	7541.876	4
315		6	max	.005	3	002	15	.068	4	2.538e-3	4	NC	1	NC	1
316			min	005	2	011	3	0	1	0	1	9280.863	3	7239.858	4
317		7	max	.006	3	003	15	.079	4	3.208e-3	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	006	2	012	3	0	1	0	_1_	8267.148	3	7415.612	
319		8	max	.007	3	003	15	.089	4	3.878e-3	4	NC	1_	NC	1
320			min	007	2	013	3	0	1	0	_1_	7663.799	3	8058.747	4
321		9	max	.008	3	003	15	.099	4	4.548e-3	4	NC 7040 040	1_	NC	1
322		40	min	008	2	014	3	0	1	0	1_1	7346.812	3	9322.514	4
323		10	max	.009	3	003	15	.108	4	5.219e-3	4	NC 7004 676	<u>1</u> 4	NC NC	1
324 325		11	min	009 .011	3	015 003	15	<u> </u>	4	0 5.889e-3	<u>1</u> 4	7091.676 NC	_ 4 _	NC NC	1
326		+	max	01	2	003 015	3	0	1	0.0096-3	1	7064.956	4	NC NC	1
327		12	max	.012	3	003	15	.126	4	6.559e-3	4	NC	1	NC NC	1
328		12	min	011	2	003 014	3	0	1	0.0096-0	1	7277.874	4	NC NC	1
329		13	max	.013	3	003	15	.134	4	7.229e-3	4	NC	1	NC	1
330		13	min	012	2	014	3	0	1	0	1	7775.077	4	NC	1
331		14	max	.012	3	003	15	.144	4	7.9e-3	4	NC	1	NC	1
332		17	min	013	2	013	3	0	1	0	1	8667.653	4	NC	1
333		15	max	.015	3	002	15	.153	4	8.57e-3	4	NC	1	NC	1
334			min	014	2	011	3	0	1	0	1	NC	1	NC	1
335		16	max	.016	3	002	15	.163	4	9.24e-3	4	NC	1	NC	1
336			min	015	2	01	3	0	1	0	1	NC	1	NC	1
337		17	max	.017	3	001	15	.174	4	9.91e-3	4	NC	1	NC	1
338			min	016	2	008	3	0	1	0	1	NC	1	NC	1
339		18	max	.018	3	0	15	.187	4	1.058e-2	4	NC	1	NC	1
340			min	017	2	006	1	0	1	0	1	NC	1	NC	1
341		19	max	.019	3	0	15	.2	4	1.125e-2	4	NC	1	NC	1
342			min	018	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.017	2	0	1	0	1	NC	1_	NC	1
344			min	001	3	019	3	2	4	-3.7e-4	4	NC	1_	123.987	4
345		2	max	.007	1	.016	2	0	1	0	_1_	NC	_1_	NC	1
346			min	001	3	018	3	184	4	-3.7e-4	4	NC	1_	134.836	4
347		3	max	.007	1	.015	2	0	1	0	_1_	NC	_1_	NC	1
348			min	001	3	017	3	168	4	-3.7e-4	4	NC	1_	147.746	4
349		4	max	.006	1	.014	2	0	1	0	_1_	NC	1	NC	1
350		-	min	0	3	016	3	<u>152</u>	4	-3.7e-4	4_	NC	1_	163.253	4
351		5	max	.006	1	.013	2	0	1	0	1	NC	1_	NC 400,005	1
352			min	0	3	015	3	136	4	-3.7e-4	4_	NC NC	1_	182.085	4
353		6	max	.005	1	.012	2	0	1	0	1	NC NC	1	NC 205.252	1
354		7	min	0	3	<u>014</u>	2	121	1	-3.7e-4	4	NC NC	1	205.252	4
355			max	.005	3	.011	3	0 106	4	0 -3.7e-4	1_1	NC NC	1	NC 234.185	4
356 357		8	min	.005	1	013 .01	2	106 0	1		<u>4</u> 1	NC NC	1	NC	1
358		0	max min		3	012	3	092	4	0 -3.7e-4	4	NC NC	1	270.975	
359		9	max	.004	1	.009	2	092	1	0	1	NC	1	NC	1
360		-	min	0	3	011	3	078	4	-3.7e-4	4	NC	1	318.767	4
361		10	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	01	3	065	4	-3.7e-4	4	NC	1	382.479	4
363		11	max	.003	1	.008	2	<u>.000</u>	1	0	1	NC	1	NC	1
364			min	0	3	009	3	053	4	-3.7e-4	4	NC	1	470.155	4
365		12	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	008	3	042	4	-3.7e-4	4	NC	1	595.709	4
367		13	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	006	3	032	4	-3.7e-4	4	NC	1	784.966	4
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	005	3	023	4	-3.7e-4	4	NC	1	1090.464	4
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	015	4	-3.7e-4	4	NC	1	1633.302	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	003	3	009	4	-3.7e-4	4	NC	1	2748.213	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.002	2	0	1	0	_1_	NC	1_	NC F070.45	1
376		40	min	0	3	002	3	004	4	-3.7e-4	4_	NC	1_	<u>5676.15</u>	4
377		18	max	0	1	0	2	0	1	0	1_	NC NC	1_	NC NC	1
378		40	min	0	3	001	3	001	4	-3.7e-4	4	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
380	N440	-	min	0	1	0	1	0	1	-3.7e-4	4_	NC	1_	NC NC	1
381	M10	1_	max	.006	1	.006	2	0	12	1.592e-3	4	NC	1	NC 400,000	2
382			min	008	3	011	3	621	4	1.324e-5	12	NC	1_	100.929	4
383		2	max	.006	1	.005	2	0	12	1.688e-3	4	NC	1_	NC 400,000	2
384			min	007	3	01	3	<u>571</u>	4	1.244e-5	12	NC	1_	109.883	4
385		3	max	.006	1	.004	2	0	12	1.784e-3	4_	NC	1_	NC 100 510	2
386			min	007	3	01	3	52	4	1.164e-5	12	NC	1_	120.513	4
387		4	max	.005	1	.004	2	0	12	1.88e-3	4	NC	1_	NC	2
388		_	min	006	3	009	3	471	4	1.083e-5	12	NC	1_	133.254	4
389		5	max	.005	1	.003	2	0	12	1.976e-3	4_	NC	_1_	NC	1
390			min	006	3	009	3	422	4	1.003e-5	12	NC	1_	148.699	4
391		6	max	.004	1	.002	2	0	12	2.071e-3	_4_	NC	_1_	NC	1
392			min	005	3	009	3	374	4	9.226e-6	12	NC	_1_	167.666	4
393		7	max	.004	1	.001	2	0	12	2.167e-3	_4_	NC	1_	NC	1
394			min	005	3	008	3	328	4	8.422e-6	12	NC	1_	191.316	4
395		8	max	.004	1	0	2	0	12	2.263e-3	_4_	NC	_1_	NC	_1_
396			min	005	3	008	3	283	4	7.619e-6	12	NC	<u>1</u>	221.337	4
397		9	max	.003	1	00	2	0	12	2.359e-3	_4_	NC	_1_	NC	1_
398			min	004	3	007	3	241	4	6.815e-6	12	NC	1	260.268	4
399		10	max	.003	1	0	2	0	12	2.455e-3	4_	NC	_1_	NC	1_
400			min	004	3	007	3	201	4	6.012e-6	12	NC	1_	312.071	4
401		11	max	.003	1	0	2	0	12	2.551e-3	4_	NC	_1_	NC	1_
402			min	003	3	006	3	164	4	5.208e-6	12	NC	1	383.205	4
403		12	max	.002	1	001	2	0	12	2.647e-3	4	NC	1	NC	1
404			min	003	3	006	3	129	4	4.405e-6	12	NC	1_	484.815	4
405		13	max	.002	1	001	15	0	12	2.743e-3	4_	NC	_1_	NC	1_
406			min	003	3	005	3	098	4	3.602e-6	12	NC	1	637.502	4
407		14	max	.002	1	001	15	0	12	2.839e-3	4	NC	1_	NC	1
408			min	002	3	004	3	071	4	2.798e-6	12	NC	1	882.968	4
409		15	max	.001	1	0	15	0	12	2.935e-3	4	NC	1	NC	1
410			min	002	3	003	3	048	4	1.995e-6	12	NC	1	1316.7	4
411		16	max	.001	1	0	15	0	12	3.031e-3	4	NC	1	NC	1
412			min	001	3	003	4	029	4	1.191e-6	12	NC	1	2200.113	4
413		17	max	0	1	0	15	0	12	3.127e-3	4	NC	1	NC	1
414			min	0	3	002	4	014	4	1.371e-7	10	NC	1	4487.702	4
415		18	max	0	1	0	15	0	12		4	NC	1_	NC	1
416			min	0	3	001	4	004	4	-1.278e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	3.319e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-2.787e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	9.223e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-8.099e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.016	4	-8.112e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.369e-4	4	NC	1	NC	1
423		3	max	0	3	0	15	.03	4	5.361e-4	4	NC	1	NC	1
424			min	0	2	004	4	0	1	-4.175e-5	1	NC	1	NC	1
425		4	max	.001	3	001	15	.044	4	1.209e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-6.724e-5	1	NC	1	8874.431	4
427		5	max	.001	3	002	15	.056	4	1.882e-3	4	NC	1	NC	1
428			min	001	2	008	4	0	1	-9.273e-5	1	NC	1	7879.149	4
429		6	max	.002	3	002	15	.068	4	2.555e-3	4	NC	1	NC	1
430			min	001	2	01	4	0	1	-1.182e-4	1	9855.365	4	7618.535	4
431		7	max	.002	3	003	15	.079	4	3.228e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

1101

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

433		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
434	432			min	002	2	011	4	001	1	-1.437e-4	-	8466.737	4		
436			8													
436																
437			9													•
438			40									_		_		
439			10													
440			44													
441																
442			10									•		•		•
443			12													
A44			12									•				-
446			13								-2 0660-4					
A46			1/													
447			14													
A48			15									_		•		
449			10													
450			16													
451			· ·													
452			17									4		1		1
453														1		
455			18							4		4		1		1
455												1		1		1
457 M12			19		.006	3	0	10	.201	4	1.13e-2	4	NC	1	NC	1
458	456			min	005	2	003	1	008	1	-4.495e-4	1	NC	1	NC	1
459	457	M12	1	max	.003	1	.004	2	.008	1	-3.25e-6	12	NC	1	NC	3
460	458			min	0	3	006	3	201	4	-3.205e-4	4	NC	1	123.188	4
461	459		2	max	.003		.004		.008	1	-3.25e-6	12		1_		3
462				min		3		3		4		4		1_		
463			3	max	.002	-						12				
464														•		
465			4													
466			_											_		
467 6 max .002 1 .003 2 .005 1 -3.25e-6 12 NC 1 NC 2 468 min 0 3 004 3 122 4 -3.205e-4 4 NC 1 203.893 4 469 7 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 470 min 0 3 004 3 107 4 -3.205e-4 4 NC 1 NC 2 471 8 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 472 min 0 3 004 3 092 4 -3.205e-4 4 NC 1 NC 1 NC 1 NC 2 473 1 1 <t< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			5													
468 min 0 3 004 3 122 4 -3.205e-4 4 NC 1 203.893 4 469 7 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 470 min 0 3 004 3 107 4 -3.205e-4 4 NC 1 232.628 4 471 8 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 472 min 0 3 004 3 092 4 -3.205e-4 4 NC 1 269.166 4 473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 10 max .001 1 .00												_				
469 7 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 470 min 0 3 004 3 107 4 -3.25e-6 12 NC 1 NC 2 471 8 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 472 min 0 3 004 3 092 4 -3.205e-6 12 NC 1 NC 2 473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 NC 2 475 10 max .001 1 .002			Ь													
470 min 0 3 004 3 107 4 -3.205e-4 4 NC 1 232.628 4 471 8 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 472 min 0 3 004 3 092 4 -3.25e-6 12 NC 1 NC 2 473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 NC 2 475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 1 NC 4 477 11 max .001			-			_								•		
471 8 max .002 1 .003 2 .004 1 -3.25e-6 12 NC 1 NC 2 472 min 0 3 004 3 092 4 -3.205e-4 4 NC 1 269.166 4 473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 316.63 4 475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 <td></td> <td></td> <td>/</td> <td></td>			/													
472 min 0 3 004 3 092 4 -3.205e-4 4 NC 1 269.166 4 473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 316.63 4 475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1			0		_							•				
473 9 max .002 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 316.63 4 475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1 379.905 4 477 11 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 4481 481 13 max 0 1 <td></td> <td></td> <td>8</td> <td></td>			8													
474 min 0 3 003 3 078 4 -3.205e-4 4 NC 1 316.63 4 475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1 379.905 4 477 11 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 478 min 0 3 003 3 053 4 -3.205e-4 4 NC 1 466.979 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3			0													
475 10 max .001 1 .002 2 .003 1 -3.25e-6 12 NC 1 NC 2 476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1 379.905 4 477 11 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 478 min 0 3 003 3 053 4 -3.205e-4 4 NC 1 466.979 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3 042 4 -3.205e-4 4 NC 1 NC 1 NC 1 481 13 max 0			9		_											
476 min 0 3 003 3 065 4 -3.205e-4 4 NC 1 379.905 4 477 11 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 478 min 0 3 003 3 053 4 -3.205e-4 4 NC 1 466.979 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3 042 4 -3.205e-4 4 NC 1 591.67 4 481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 482 min 0 3 002 3 <td></td> <td></td> <td>10</td> <td></td> <td>_</td> <td></td> <td></td>			10											_		
477 11 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 478 min 0 3 003 3 053 4 -3.205e-4 4 NC 1 466.979 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3 042 4 -3.205e-4 4 NC 1 591.67 4 481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 NC 1 482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 NC 1 483 14 max 0			10													_
478 min 0 3 003 3 053 4 -3.205e-4 4 NC 1 466.979 4 479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3 042 4 -3.205e-4 4 NC 1 591.67 4 481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 779.626 4 483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3			11		_									•		
479 12 max .001 1 .002 2 .002 1 -3.25e-6 12 NC 1 NC 1 480 min 0 3 002 3 042 4 -3.25e-6 12 NC 1 591.67 4 481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 779.626 4 483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0																
480 min 0 3 002 3 042 4 -3.205e-4 4 NC 1 591.67 4 481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 779.626 4 483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 <th< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></th<>			12											•		
481 13 max 0 1 .001 2 .001 1 -3.25e-6 12 NC 1 NC 1 482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 779.626 4 483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0			12													
482 min 0 3 002 3 032 4 -3.205e-4 4 NC 1 779.626 4 483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			13									_		•		
483 14 max 0 1 .001 2 0 1 -3.25e-6 12 NC 1 NC 1 484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			1.0			-										
484 min 0 3 002 3 023 4 -3.205e-4 4 NC 1 1083.019 4 485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			14		_									•		
485 15 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1 486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			m													_
486 min 0 3 001 3 015 4 -3.205e-4 4 NC 1 1622.111 4 487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			15		· ·									_		
487 16 max 0 1 0 2 0 1 -3.25e-6 12 NC 1 NC 1			l .			-										
			16		_							_		1		
<u> </u>	488			min	0	3	001	3	009	4	-3.205e-4	4	NC	1	2729.314	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-3.25e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-3.205e-4	4	NC	1	5636.95	4
491		18	max	0	1	0	2	0	1	-3.25e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-3.205e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.25e-6	12	NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-3.205e-4	4	NC	1	NC	1
495	M1	1	max	.008	3	.106	2	.658	4	1.61e-2	1	NC	1	NC	1
496	1411		min	004	2	014	3	0	12	-2.682e-2	3	NC	1	NC	1
497		2	max	.004	3	.05	2	.637	4	8.628e-3	4	NC	4	NC	1
498			min	004	2	005	3	006	1	-1.327e-2	3	2084.167	2	NC	1
499		3		.008	3	.011	3	.616	4	1.405e-2	4	NC	5	NC	1
		3	max							1.4056-2					
500		-	min	004	2	009	2	009	1	-1.732e-4	1_	1002.682	2	6705.242	5
501		4	max	.007	3	.04	3	<u>.595</u>	4	1.229e-2	4_	NC	5	NC	1
502			min	004	2	077	2	008	1	-4.756e-3	3	631.355	2	4772.157	5
503		5	max	.007	3	.079	3	.573	4	1.053e-2	_4_	NC	<u>15</u>	NC	1
504			min	004	2	147	2	006	1	-9.384e-3	3	454.686	2	3799.643	5
505		6	max	.007	3	.121	3	.551	4	1.374e-2	<u>1</u>	NC	<u>15</u>	NC	1_
506			min	003	2	216	2	002	1	-1.401e-2	3	357.523	2	3216.199	5
507		7	max	.007	3	.162	3	.528	4	1.838e-2	1	NC	15	NC	1
508			min	003	2	277	2	0	12	-1.864e-2	3	300.248	2	2812.564	4
509		8	max	.007	3	.196	3	.504	4	2.301e-2	1	9050.293	15	NC	1
510			min	003	2	326	2	0	12	-2.327e-2	3	266.407	2	2521.829	4
511		9	max	.007	3	.219	3	.479	4	2.548e-2	1	8457.099	15	NC	1
512			min	003	2	357	2	0	1	-2.327e-2	3	248.805	2	2344.649	4
513		10	max	.007	3	.227	3	.452	4	2.744e-2	2	8276.46	15	NC	1
514		10	min	003	2	368	2	0	12	-2.021e-2	3	243.628	2	2294.731	4
515		11	max	.006	3	.221	3	.422	4	2.95e-2	2	8456.826	15	NC	1
516			min	003	2	357	2	0	12	-1.715e-2	3	249.577	2	2349.913	4
517		12		.006	3	.203	3	.391	4	2.849e-2	2	9049.669	15	NC	1
		12	max		2		2		1						
518		13	min	003		325		001	4	-1.418e-2	2	268.77 NC	<u>2</u>	2524.854	1
519		13	max	.006	3	.172	3	.356		2.286e-2			<u>15</u>	NC 0007.054	
520		4.4	min	003	2	274	2	0	1	-1.135e-2	3	306.022	2	2967.854	4
521		14	max	.006	3	134	3	.318	4	1.722e-2	2	NC	<u>15</u>	NC	1
522			min	003	2	21	2	0	12	-8.518e-3	3	369.893	2	3887.975	
523		15	max	.006	3	.091	3	.28	4	1.159e-2	2	NC	15	NC	1
524			min	003	2	14	2	0	12	-5.688e-3	3	480.208	2	5880.375	4
525		16	max	.006	3	.047	3	.242	4	9.536e-3	4	NC	5_	NC	1
526			min	003	2	07	2	0	12	-2.859e-3	3	685.31	2	NC	1
527		17	max	.005	3	.004	3	.207	4	1.067e-2	4	NC	5	NC	1
528			min	003	2	005	2	0	12	-3.003e-5	3	1120.853	1	NC	1
529		18	max	.005	3	.05	1	.175	4	1.095e-2	2	NC	4	NC	1
530			min	003	2	034	3	0	12	-4.357e-3	3	2370.456	1	NC	1
531		19	max	.005	3	.097	1	.147	4	2.197e-2	2	NC	1	NC	1
532			min	003	2	07	3	001	1	-8.851e-3	3	NC	1	NC	1
533	M5	1	max	.024	3	.252	2	.657	4	0	1	NC	1	NC	1
534	1410		min	016	2	012	3	0	1	-4.379e-6	4	NC	1	NC	1
535		2	max	.024	3	.119	2	.641	4	7.214e-3	4	NC	5	NC	1
536			min	016	2	0	3	0	1	0	1	870.763	2	9355.073	
537		3		.024	3	.036	3	.622	4	1.421e-2	4	NC	5	NC	1
		<u> </u>	max		2		2	_	1		1			5430.502	
538		1	min	016		03		0	_	1 1500 2		410.319	<u>2</u>		4
539		4	max	.023	3	.116	3	.6	4	1.158e-2	4	9708.651	<u>15</u>	NC	1
540		-	min	016	2	207	2	0	1	0	1_	251.654	2	4146.836	4
541		5	max	.023	3	.228	3	<u>.576</u>	4	8.944e-3	4_	6795.984	<u>15</u>	NC 0540 404	1
542			min	015	2	398	2	0	1	0	1_	177.413	2	3519.484	
543		6	max	.022	3	.353	3	.552	4	6.312e-3	4	5233.301	<u>15</u>	NC	1
544			min	015	2	588	2	0	1	0	1_	137.297		3133.407	4
545		7	max	.022	3	.476	3	.528	4	3.68e-3	4	4330.641	<u>15</u>	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

E 40	Member	Sec		x [in]	LC	y [in]	LC	z [in]		-	LC	(n) L/y Ratio L(
546			min	015	2	7 <u>59</u>	2	0	1	0	1_4	113.993 2		
547		8	max	.021	3	.579	3	.504	4	1.048e-3	4	3805.7 1		1
548		9	min	015		897	3	0	4	0	<u>1</u> 1	100.386 2		4
549 550		9	max	.021 014	2	.645 984	2	<u>.48</u> 0	1	-2.956e-6	5	3536.463 13 93.387 2		4
551		10	min max	.02	3	.669	3	.452	4	0	1	3455.344		1
552		10	min	014	2	-1.013	2	0	1	-2.852e-6	5	91.333 2		4
553		11	max	.02	3	.653	3	.422	4	0	1	3536.557 1		1
554			min	014	2	983	2	0	1	-2.749e-6	5	93.687 2		4
555		12	max	.019	3	.596	3	.392	4	7.596e-4	4	3805.926 1		1
556			min	014	2	893	2	0	1	0	1	101.365 2		4
557		13	max	.019	3	.506	3	.357	4	2.669e-3	4	4331.108 1		1
558			min	013	2	749	2	0	1	0	1	116.523 2	2920.298	4
559		14	max	.018	3	.391	3	.317	4	4.579e-3	4	5234.224 1	5 NC	1
560			min	013	2	57	2	0	1	0	1	142.978 2		4
561		15	max	.018	3	.264	3	.277	4	6.488e-3	4	6797.823 1		1
562			min	013	2	375	2	0	1	0	1_	189.734 2		4
563		16	max	.018	3	.134	3	.237	4	8.397e-3	4	9712.517 1		1
564		-	min	013	2	184	2	0	1	0	_1_	277.861 1		1
565		17	max	.017	3	.012	3	.201	4	1.031e-2	4_	NC 5		1
566		40	min	013	2	017	2	0	1	0	1_	468.609 1	NC NC	1
567		18	max	.017	3	.117	1	171	4	5.234e-3	4	NC 5		1
568		10	min	013		093	1	149	4	0	<u>1</u> 1	1020.399 1 NC 1	NC NC	1
569 570		19	max	.017 013	2	.229 187	3	.148 0	1	-2.429e-6	4	NC 1	NC NC	1
571	M9	1	min max	.008	3	.106	2	.657	4	2.682e-2	3	NC 1	NC NC	1
572	IVIS		min	004	2	014	3	001	1	-1.61e-2	1	NC 1	NC NC	1
573		2	max	.004	3	.05	2	.641	4	1.327e-2	3	NC 4		1
574			min	004	2	005	3	0	12	-7.814e-3	1	2084.167 2	_	_
575		3	max	.008	3	.011	3	.621	4	1.417e-2	4	NC 5		1
576			min	004	2	009	2	0	12	-2.317e-5	10	1002.682 2		4
577		4	max	.007	3	.04	3	.599	4	1.113e-2	5	NC 5		1
578			min	004	2	077	2	0	12	-4.466e-3	2	631.355 2	4184.418	4
579		5	max	.007	3	.079	3	.576	4	9.384e-3	3	NC 1	5 NC	1
580			min	004	2	147	2	0	12	-9.101e-3	1	454.686 2	3514.878	4
581		6	max	.007	3	.121	3	.552	4	1.401e-2	3	NC 1		1
582			min	003	2	216	2	0	12	-1.374e-2	1_	357.523 2		4
583		7	max	.007	3	.162	3	.528	4	1.864e-2	3_	NC 1		1_
584			min	003	2	277	2	0	1	-1.838e-2	1_	300.248 2		
585		8	max	.007	3	.196	3	.504	4	2.327e-2	3	9031.668 1	5 NC	1
586			min	003	2	326	2	001		-2.301e-2				
587		9	max	.007	2	.219 357	3	.479	4	2.327e-2	3	8439.921 1		1
588 589		10	min	003 .007	3	<u>357</u> .227	3	0 .452	1 <u>2</u>	-2.548e-2 2.021e-2	<u>1</u>	248.805 2		1
590		10	max	003	2	368	2	4 <u>52</u>	1	-2.744e-2	2	8259.707 15 243.628 2		
591		11	max	.006	3	.221	3	.422	4	1.715e-2	3	8439.658 1		1
592			min	003	2	357	2	0	1	-2.95e-2	2	249.577 2		4
593		12	max	.006	3	.203	3	.391	4	1.418e-2	3	9031.167 1		1
594		T'-	min	003	2	325	2	0	12	-2.849e-2	2	268.77 2		_
595		13	max	.006	3	.172	3	.356	4	1.135e-2	3	NC 1:		1
596		-	min	003	2	274	2	0	12	-2.286e-2	2	306.022 2		4
597		14		.006	3	.134	3	.317	4	8.518e-3	3	NC 1:		1
598			min	003	2	21	2	002	1	-1.722e-2	2	369.893 2		_
599		15	max	.006	3	.091	3	.277	4	6.121e-3	5	NC 1:		1
600			min	003	2	14	2	005	1	-1.159e-2	2	480.208 2		5
601		16	max	.006	3	.047	3	.238	4	8.223e-3	5	NC 5	NC	1
602			min	003	2	07	2	008	1	-5.95e-3	2	685.31 2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.005	3	.004	3	.202	4	1.037e-2	4	NC	5	NC	1
604			min	003	2	005	2	008	1	-5.825e-4	1	1120.853	1	NC	1
605		18	max	.005	3	.05	1	.172	4	4.91e-3	5	NC	4	NC	1
606			min	003	2	034	3	006	1	-1.095e-2	2	2370.456	1	NC	1
607		19	max	.005	3	.097	1	.148	4	8.851e-3	3	NC	1	NC	1
608			min	003	2	07	3	0	12	-2.197e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.