Examples Volume I Salm

Salm: extra - Poisson variation in dose - response study

Breslow (1984) analyses some mutagenicity assay data (shown below) on salmonella in which three plates have been processed at each dose *i* of quinoline and the number of revertant colonies of TA98 Salmonella measured. A certain dose-response curve is suggested by theory.

dose of quinoline (µg per plate)

0	10	33	100	333	1000	
15	16	16	27	33	20	
21	18	26	41	38	27	
29	21	33	69	41	42	

This is assumed to be a random effects Poisson model allowing for over-dispersion. Let x_i be the dose on the plates i1, i2 and i3. Then we assume

$$\begin{aligned} y_{ij} &\sim & Poisson(\mu_{ij}) \\ &log(\mu_{ij}) &= \alpha + \beta \ log(x_i + 10) + \gamma x_i + \lambda_{ij} \\ &\lambda_{ij} &\sim & Normal(0,\tau) \end{aligned}$$

 α , β , γ , τ are given independent ``noninformative" priors. The appropriate graph is shown

Graphical model for salm example

Salm Examples Volume I

BUGS language for salm example

```
model
{
    for( i in 1 : doses ) {
        for( j in 1 : plates ) {
            y[i , j] ~ dpois(mu[i , j])
            log(mu[i , j]) <- alpha + beta * log(x[i] + 10) +
                gamma * x[i] + lambda[i , j]
            lambda[i , j] ~ dnorm(0.0, tau)
        }
    }
    alpha ~ dnorm(0.0,1.0E-6)
    beta ~ dnorm(0.0,1.0E-6)
        gamma ~ dnorm(0.0,1.0E-6)
        tau ~ dgamma(0.001, 0.001)
        sigma <- 1 / sqrt(tau)
    }

Data ( click to open )
```

<u>Inits</u> (click to open)

Examples Volume I Salm

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample
alpha	2.193	0.3874	0.01118	1.438	2.194	2.959	1001	10000
beta	0.3059	0.1054	0.003266	0.09692	0.3065	0.5131	1001	10000
gamma	-9.577E-4	4.525E-4	1.48E-5	-0.001837	-9.622E-4	-3.196E-5	1001	10000
sigma	0.2608	0.08077	0.002114	0.1305	0.2512	0.4472	1001	10000

These estimates can be compared with the quasi-likelihood estimates of Breslow (1984) who reported α = 2.203 +/- 0.363, β = 0.311 +/- 0.099, γ = -9.74E-4 +/- 4.37E-4, σ = 0.268