

Estrutura de Dados e Algoritmos

Análise de Complexidade

Análise de Complexidade

 Algoritmo: conjunto claramente especificado de instruções a seguir para resolver um problema;

Análise de Complexidade

Análise de algoritmos:

- Provar que um algoritmo está correto;
- Determinar recursos exigidos por um algoritmo (tempo, espaço, etc.);
- Comparar os recursos exigidos por diferentes algoritmos que resolvem o mesmo problema (um algoritmo mais eficiente exige menos recursos para resolver o mesmo problema)
- Prever o crescimento dos recursos exigidos por um algoritmo à medida que o tamanho dos dados de entrada cresce;

Complexidade espacial e temporal

- Complexidade espacial de um programa ou algoritmo: espaço de memória que necessita para executar até ao fim
 - S(n) espaço de memória exigido em função do tamanho (n) da entrada;
- Complexidade temporal de um programa ou algoritmo: tempo que demora a executar (tempo de execução)
 - T(n) tempo de execução em função do tamanho (n) da entrada;

Complexidade espacial e temporal

- Complexidade↑ versus Eficiência↓;
- Por vezes estima-se a complexidade para o "melhor caso" (pouco útil), o "pior caso" (mais útil) e o "caso médio" (igualmente útil);

O Conceito de Complexidade

- A Complexidade Computacional é um ramo da Matemática Computacional que estuda a eficiência dos algoritmos.
- Para medir a eficiência de um algoritmo frequentemente usamos um tempo teórico que o programa leva para encontrar uma resposta em função dos dados de entrada.

PROBLEMA DO CAIXEIRO VIAJANTE:

"Suponha que um caixeiro viajante tenha de visitar n cidades diferentes, iniciando e encerrando sua viagem na primeira cidade. Suponha, também, que não importa a ordem com que as cidades são visitadas e que de cada uma delas pode-se ir diretamente a qualquer outra. O problema do caixeiro viajante consiste em descobrir a rota que torna mínima a viagem total".

- O problema do caixeiro viajante é um problema de otimização combinatória.
 - Como transforma-lo num problema de enumeração?
 - Como determinar todas as rotas do caixeiro?
 - Como saber qual delas é a menor?
- SOLUÇÃO: São (n-1)! Rotas
 - É um trabalho fácil para a máquina?

n	Rotas por segundo	(n - 1)!	Cálculo total
5	250 milhões	24	insignificante
10	110 milhões	362 880	0.003 seg
15	71 milhões	87 bilhões	20 min
20	53 milhões	1.2 x 10 ¹⁷	73 anos
25	42 milhões	6.2 x 10 ²³	470 milhões de anos

- Se descobrirmos como resolver o problema do caixeiro viajante em tempo polinomial, seremos capazes de resolver, também em tempo polinomial, uma grande quantidade de outros problemas matemáticos importantes.
- Se um dia alguém provar que é impossível resolver o problema do caixeiro em tempo polinomial no número de cidades, também se terá estabelecido que uma grande quantidade de problemas importantes não tem solução prática.

- Motivação: Definir ordem entre funções.
- Avaliação pontual -> Não tem sentido:
 - f(N) < g(N)?

Forma de Análise: Taxa de crescimento.

$$T(N) = 1000N$$

$$f(N) = N^2$$

- Apesar de 1000N ser maior que N² para N pequenos, a taxa de crescimento de N² é maior e ultrapassa 1000N para N>1000. Logo, N² é maior que 1000N.
- Há um valor de N (n_0) a partir do qual c.f(N) será sempre, no mínimo, tão grande quanto T(N). Neste caso: n_0 =1000 e c=1. Outra possibilidade seria n_0 =100 e c=10.

 Concluindo, podemos dizer que a taxa de crescimento de T(N)=1000N é menor ou igual à taxa de crescimento de f(N)=N².

Taxas de Crescimento Típicas:

- c Constante;
- logN Logarítmica;
- log²N Log quadrática;
- N Linear;
- N.logN
- N² Quadrática;
- N³ Cúbica;
- 2^N Exponencial;

Taxas de Crescimento Típicas:

Prof. Nilton Correia da Silva