Упражнения

1. Пусть функторы $K, K': D \to \mathbf{Set}$ имеют представления $\langle r, \psi \rangle$ и $\langle r', \psi' \rangle$ соответственно. Докажите, что для каждого естественного преобразования $\tau: K \to K'$ существует единственный морфизм $h: r \to r'$ из D такой, что

$$\tau \circ \psi = \psi' \circ D(h, -) : D(r, -) \rightarrow K'.$$

- 2. Сформулируйте утверждение, двойственное к лемме Йонеды (с заменой D на D^{op}).
- 3. (Кап; «лемма ко-Йонеды».) Пусть $K:D\to \mathbf{Set}$ функтор; $(*\downarrow K)$ категория элементов $x\in Kd;\ Q:(*\downarrow K)\to D$ проекция $x\in Kd\mapsto d;$ $a:(*\downarrow K)\to D$ при любом $a\in D$ диагональный функтор, образом которого является константа a. Установите естественный изоморфизм

$$\operatorname{Nat}(K, D(a, -)) \cong \operatorname{Nat}(a, Q).$$

4. (Естественность не затрагивается при расширении категории-кообласти.) Пусть E — полная подкатегория в E', а $J:E\to E'$ — соответствующее вложение. Докажите для функторов $K,L:D\to E$, что $\mathrm{Nat}\,(K,L)\cong\mathrm{Nat}\,(JK,JL)$.

Маклейн 3.2

Упраннения 1

$$T \cdot \psi = \psi' \cdot \mathcal{D}(h, -) = \mathcal{D}(h, -) = \psi^{-1} \cdot T \cdot \psi \left(\mathcal{D}(h, -)$$
 educaseum b cuy objectment ψ'

No result Quedes Not $(D(r,-),K) \cong K_r$. 3 HORSET OFFEREN $h = (y_r^{-1} \cdot T_r \cdot p_r)(1_r)$

YAPAHHELLE 2

 $\mathbb{D}(-,r): \mathbb{D}^{op} \longrightarrow Set$ — главный контрвариантный функтор (из \mathbb{D}^{op} ок , иснечно, ковариантный) $\mathbb{C}(\mathbb{C}[x])$ $\mathbb{C}(x)$ $\mathbb{C}(x)$

Poetpour exects ensus u so suppose N at $(\mathcal{D}(-,r),K)\cong K_r$ $\tau \longmapsto \tau_r i_r$

Πο элементу $v \in Kr$ монно мостроить естественное преобразование $\tau^* \colon \mathcal{D}(-,v) \xrightarrow{\longrightarrow} K$, моторый действует $\tau^* \colon \mathcal{D}(-,v) \xrightarrow{\longrightarrow} K$, моторый действует $\tau^* \colon \mathcal{D}(A,r) \xrightarrow{\tau_A} KA$; $\tau^* \colon \mathcal{D}(f) = K_{f^{op}}(v)$. Легио проверить, что

Tamar Monnohenta Deñ crontendo 3adaët ecretorusoe preofresorune.

Den notronemen otos attenue $y: Nat(D(-,r),K) \rightarrow Kr$ in $y^1: Kr \longrightarrow Nat(D(-,r),K)$ odpatuoi dope in dope in dope in the definition of the definit

Inparmenue 3 (semma ko- Übereder)

K: D - Set - pyuntop

(* l K) - истегдие запетой (категдия элешентов, 1

Q: (* LK) -D - npoeugue

 $\Delta a: (*\downarrow K) \longrightarrow D$ при любот $a \in D$ — диалонамный функтор , образам моторого коллетем кометамога a

$$\operatorname{Nat}(K, D(a, -)) \cong \operatorname{Nat}(a, Q)$$

Nyero 3 Dan
$$\tau: k \to \mathcal{D}(a,-)$$
, $\tau.e.$ d $kd \xrightarrow{Td} \mathcal{D}(a,d)$
h | kh | $\mathcal{D}(a,h)$
d' $kd' \xrightarrow{Td} \mathcal{D}(a,d')$

Procepoum
$$\sigma: \Delta a \rightarrow Q$$

$$\begin{cases}
\uparrow \\
C_{a}
\end{cases}
\uparrow$$

$$\downarrow h$$

$$\downarrow h$$

$$\downarrow h$$

$$\downarrow h$$

$$\uparrow \downarrow C_{a}$$

$$\downarrow h$$

$$\uparrow \downarrow C_{b}$$

$$\downarrow h$$

$$\uparrow \downarrow C_{b}$$

$$\downarrow \downarrow C_{b}$$

$$\uparrow \downarrow C_{b}$$

$$\downarrow \downarrow \downarrow \downarrow C_{b}$$

$$\downarrow \downarrow \downarrow \downarrow C_{b}$$

$$\downarrow \downarrow \downarrow \downarrow C_{b}$$

Tanua osposon, eru nocrpouwe osporum degr u degry => Nat $(K, D(a,-))\cong Nat(\Delta a, Q)$

Упранниемие 4

Полиота: Hom (Jd, Jd') = Hom (Jd, Jd') = Hom (Jd, Jd') $J: E \rightarrow E' - y$ инвалентной молиот функтор. Унивалентность: = If = If' = If' = If' = If'

 $Nat(K,L) \cong Nat(JK,JL)$?

 $Nat(K,L) \xrightarrow{\varphi} Naf(JK,JL)$ $T \longrightarrow 1_{J} \circ T ; (1_{J} \circ T)(d) = JT(d)$

Nat (JK, JL) - Nat (K,L)

Посмольки финитар J - молььй функтор, TO DIR Td и Td' существуют стрелии T'd и T'd' такие, что JT'd = Td и JT'd'= Td'

Ryere τ' -ne notyponeuse npeodososome, $\tau.e.$ \exists espenia d d $kd \xrightarrow{Td} Ld$ d' $kd' \xrightarrow{T'} Ld'$

400 200 OSMARGAD Su? 400 Thokf + Lfo Th , NO J (Thokf) = Tho JKg = JLfo Th = J (Lfo Th) противорения с ушивалентностью.

Tames objection $\varphi \varphi^{-1} = 1$ is $\varphi^{-1} \varphi^{-1} = 1$, T.e. $Nat(K, L) \cong Nat(JK, JL)$