講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- まとめ&アルゴリズム表
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

左:方策更新	の中身は fのステップ数 mのステップ数	方策更新の解が 決定的方策 (エントロピー正則化 なし)	方策更新の解が 確率的方策 (エントロピー正則化 あり) 色 が濃い部分は 関数近似&勾配法を使用
		方策更新	方策評価
方策評価を	Q学習(1, 1)	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s') \right)$
Deep化 方策更新を	DQN(1, 1)	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
連続行動化 工夫3つで	DDPG(1. 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
性能向上	TD3(1, 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$
方策評価を	Soft-Q学習 (1, 1)	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi \in \Pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k (s,a) + \underset{\pi}{\alpha} \mathcal{H}_{\pi}(s)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
Deep化 方策更新を	Soft-DQN (1, 1)	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi \in \Pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \alpha \mathcal{H}_{\pi}(s)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
連続行動化	SAC(1, 1)	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \middle\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \mathfrak{Z} Z} \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$
方策勾配法で 方策更新を置換 &	Q学習(h, n)	$\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1 s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi(a_2 s_2) \left(r(s_2, a_2) + \gamma \dots \right) \right)$	$Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2 s_2) (r(s_2, a_2) + \gamma \dots)$
& モンテカルロ近似 で方策評価	REINFORCE (T, T)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) Q(s_{t}, a_{t}) \right]$	$Q(s_1, a_1) = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$ 方策評価をモンテカルロ近似
GAEや ベースラインで 性能を向上	Actor-Critic + GAE (T, λ)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) \ A(s_{t}, a_{t}) \right]$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$
性能の単調向上を 自然勾配法で実装	TRPO+GAE (T, λ)	$\phi \leftarrow \phi + \alpha \mathbf{H}(\phi)^{-1} \nabla_{\phi'} \mathbf{L}(\phi')$ $\mathbf{L}(\phi') = \sum_{s,a \in S,A} d_h^{\pi_{\phi}}(s) \pi_{\phi'}(a s) A(s,a)$ $\mathbf{H}(\phi) = \nabla_{\phi'}^2 D_{KL} \left(\pi_{\phi'} \left\ \pi_{\phi} \right) \right _{\phi' = \phi}$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) \right) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$

復習:強化学習の定式化(マルコフ決定過程)

強化学習の目標:マルコフ決定過程 (MDP)を解く

MDPの定義

- 行動集合 A: エージェントが選択可能な行動 $(a \in A)$ の集合
- 状態集合 S: エージェントは環境の状態 $(s \in S)$ に応じて行動を選択する
- 状態遷移確率 $P(\cdot | s_t, a_t): S \rightarrow [0,1] : (s_t, a_t)$ から次の状態に遷移する確率
- 報酬関数 $r \in \mathbb{R}^{S \times A}$: 状態と行動に対する評価 $(r_t = r(s_t, a_t)$ と略記する)
- 初期状態分布 $p(s_1): S \rightarrow [0,1]$: 初期状態 s_1 が従う分布
- 割引率 $\gamma \in (0,1)$:目的関数の定義に使うパラメータ

「MDPを解く」とは?→何らかの「目的関数を最大化」

MDPの定義は文献によって様々です 今回はこの定義で説明します

復習:強化学習の定式化(収益・目的関数)

「MDPを解く」とは? \rightarrow 期待収益を最大化する最適方策 π^* の獲得

目的関数関連の表記

- 確率的方策 $\pi(\cdot|s): A \to [0,1]: エージェントが状態 <math>s$ で生成する行動が従う分布
- 決定的方策 $\mu(s): S \to A$:特定の行動を返す確率が1の決定的な方策と等価 $(\pi(a|s) = 1, \pi(a'|s) = 0)$
- 収益: $R^{\pi} = r(s_1, a_1) + \gamma r(s_2, a_2) + \gamma^2 r(s_3, a_3) + \cdots \in \mathbb{R}$
- π の状態行動価値関数: $Q^{\pi}(s,a) = E_{\pi}[R^{\pi}|s_1 = s,a_1 = a]$
- π の状態価値関数: $V^{\pi}(s) = \sum_{a \in A} \pi(s,a) Q^{\pi}(s,a)$
- 最適方策: $\pi_* = \underset{\pi}{\operatorname{argmax}} \sum_{s \in S} p(s_1) E_{\pi}[r(s_1, a_1) + \gamma r(s_2, a_2) + \cdots]$

このスライドまで:問題設定と目的関数を定義

次:どうやって π_* を学習するか? \rightarrow 方策更新と方策評価

目的関数の定義も問題設定によって様々です。 今回はこの定義で説明します。

準備:方策更新と方策評価

超重要:方策更新と方策評価

- **方策更新**: $\pi_{k+1}(\cdot | s) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(a | s) Q_k(s, a)$
 - ・ モチベーション: π_k よりも良い方策 $(Q_{\pi_k}(s,a) \leq Q_{\pi_{k+1}}(s,a) \ \forall (s,a) \in S \times A)$ が欲しい
 - 実際、 $Q_k = Q_{\pi_k}$ のとき方策更新すると $Q_{\pi_k} \le Q_{\pi_{k+1}}$ を満たす
- 方策評価: $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi_{k+1}(a'|s') Q_k(s',a')$
 - ・ **モチベーション:**正しく方策更新するために π_{k+1} **の価値 Q_{\pi_{k+1}}(s,a)**が欲しい
 - 実際、**方策評価**を繰り返すと Q_k は $k \to \infty$ で $Q_{\pi_{k+1}}$ に収束
- なぜ方策更新と方策評価をしたいのか?
 - 更新と評価の繰り返し「 $\cdots \rightarrow$ 方策更新 \rightarrow 方策評価 \rightarrow 方策更新 \rightarrow 方策更新 \rightarrow 方策評価 $\rightarrow \cdots$ 」は $k \rightarrow \infty \tilde{c} \pi_k \rightarrow \pi^*, Q_k \rightarrow Q^{\pi_*}$ に収束します (証明は「強化学習(機械学習プロフェッショナルシリーズ)」)

π_{k+1} は Q_k についての**貪欲方策**:

 $\pi_{k+1}(a|s) = 1$ if $a = \operatorname{argmax}_{a \in A} Q_k(s, a)$ $\pi_{k+1}(a|s) = 0$ otherwise

今回のスライドでは簡単のために…

- 全状態行動対 $\forall (s,a) \in S \times A$ で更新が 行われることにします(探索の話を省略)
- RLアルゴリズムとの対応付けのため、 価値反復法をO学習と呼ぶことにします

多くのRLアルゴリズムは方策更新と方策評価を使うとキレイに書けます(Deepでは必要に応じて勾配法で近似)

Q学習(価値反復法):

- $\pi_{k+1}(\cdot | s) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(a | s) Q_k(s, a)$
- $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi_{k+1}(a'|s') Q_k(s',a')$

SARSA:

- π_{k+1} ← (Q_kのε-貪欲方策など)
- $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi_{k+1}(a'|s') Q_k(s',a')$

講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- まとめ&アルゴリズム表
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

アルゴリズムのまとめ

どのアルゴリズムも「方策更新」と「方策評価」を繰り返しています。 更新と評価のやり方が違うだけです。

色が濃い部分は 方策更新の解が**決定的方策** 方策更新の解が**確率的方策** 関数近似&勾配法を使用 (エントロピー正則化なし) (エントロピー正則化あり) 方策更新 方策評価 Q学習 $\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$ $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) Q_k(s',\mu_{k+1}(s'))$ 方策評価を Deep化 $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$ DQN $\mu_{\theta}(s) \leftarrow \operatorname{argmax}_{a \in A} Q_{\theta}(s, a)$ 方策更新を 連続行動化 $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left| \left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right|$ $\mu_{\phi} \leftarrow \operatorname{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$ **DDPG** 工夫3つで 性能向上 二回に一回 $\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left| \left(r + \gamma \min_{i=1,2} Q_{\theta_i}(s', \mathbf{a}') - Q_{\theta}(s, a) \right)^2 \right|$ $a' = \mu_{\phi^-}(s') + \checkmark \checkmark \vec{\lambda}$ TD3 $\pi_{k+1}(s,\cdot) \leftarrow \operatorname{argmax} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \alpha \mathcal{H}_{\pi}(s)$ $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi_{k+1}(a'|s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$ Soft-Q学習 方策評価を Deep化 $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left| \left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a'|s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right|$ $\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \alpha \mathcal{H}_{\pi}(s)$ Soft-DQN 方策更新を 連続行動化 $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left| \left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot|s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a'|s') \right] - Q_{\theta}(s, a) \right)^{2} \right|$ $\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot | s) \middle\| \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\text{From } Z} \right)$ SAC

DDPG: Q学習を連続行動に対応させよう

Q学習(方策更新を μ_k : $S \to A$ を使った等価な形で書き換たもの)

- 方策更新: $\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s,a)$
- 方策評価: $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) Q_k \left(s', \mu_{k+1}(s')\right)$

 $\mathbf{DQN}: \mathbf{Q}$ 学習 + **方策評価をNNで近似**(方策更新を $\mu_{\theta}: S \to A$ を使った等価な形で書き換えたもの)

- 方策更新: μ_{θ} (s) = $\underset{a \in A}{\operatorname{argmax}} Q_{\theta}$ (s, a)
- 方策評価: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s,a,s',r)\sim\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s',\mu_{\theta^{-}}(s')) Q_{\theta}(s,a) \right)^{2} \right] /$

第一回のDQNと等価です:

 $\left(r + \gamma \max_{a' \in A} Q_{\theta^{-}}(s', a') - Q_{\theta}(s, a)\right)^{2}$

このスライドまで:Q学習とDQNの復習

次:連続行動の場合に $\operatorname*{arg} \max_{a \in A}$ はどうする? \rightarrow 方策更新のNN近似

DDPG: Deep Deterministic Policy Gradient

- モチベーション: $arg \max_a Q_{\theta}(s,a)$ を別のNN (μ_{ϕ}) で近似しよう $\mu_{\phi}(s) \approx \operatorname{argmax}_{a \in A} Q_{\theta}(s, a)$
- **やり方:** $Q_{\theta}(s,a)$ を最大化する a を学習すればよい $ightarrow Q_{ heta}(s,\mu_{\phi}(s))$ を ϕ について勾配上昇法でパラメータ更新しよう

$$egin{aligned} \phi \leftarrow \phi + eta E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \sim \mathcal{D}} [
abla_{\phi} Q_{ heta}] & rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\phi} = rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} rac{\mathrm{d}\mathbf{a}}{\mathrm{d}\phi} & = rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} rac{\mathrm{d}\mathbf{a}}{\mathrm{d}\phi} & = rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} (\mathbf{s}, \mu(\mathbf{s})) rac{\mathrm{d}\mu}{\mathrm{d}\phi} (\mathbf{s}) & = rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} (\mathbf{s}, \mu(\mathbf{s})) rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\phi} (\mathbf{s}) & = rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a} (\mathbf{s}, \mu(\mathbf{s})) rac{\mathrm{d}Q_{ het$$

$$egin{aligned} rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\phi} &= rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} rac{\mathrm{d}\mathbf{a}}{\mathrm{d}\phi} \ &= rac{\mathrm{d}Q_{ heta}}{\mathrm{d}\mathbf{a}} (\mathbf{s},\mu(\mathbf{s})) rac{\mathrm{d}\mu}{\mathrm{d}\phi} (\mathbf{s}) \end{aligned}$$

DDPG:Q学習 + 方策評価をNN (Q_{θ}) で近似 + 方策更新をNN (μ_{ϕ}) で近似

 μ_{ϕ} : \mathbb{P} \mathcal{D} \mathcal{D} \mathcal{D} $Q_{ heta}$: クリティック

- 方策更新: $\mu_{\phi} \leftarrow \operatorname*{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$
- 方策評価: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s,a,s',r) \sim \mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) Q_{\theta}(s,a) \right)^{2} \right]$

TD3: Twin-Delayed DDPG

モチベーション:

DDPGの性能を上げたい

やり方:

工夫を3つ導入

1. Double Q-learningを導入しQ値の過大評価を低減 (参考: [Hado, 2010]など)

• 方策評価:
$$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s,a,s',r)\sim\mathcal{D}} \left[\left(r(s,a) + \gamma \min_{i=1,2} Q_{\theta_i^-} \left(s', \mu_{\phi^-}(s') \right) - Q_{\theta}(s,a) \right)^2 \right]$$

- 2. 方策の更新頻度を少なくする (2回に1回)
 - アクターの更新が早すぎるとクリティックが追い付けず、収束性が保証できない場合がある (参考: [Kondo, 2003]など)
- 3. TD 学習の argmax_a にノイズをのせる
 - $\max_a Q(s,a)$ は誤差に弱い (参考: [Bruno, 2015])。 \max を弱めて過適合を防ぐ。

 $\mathsf{TD3}: \mathrm{Q学習} + \mathrm{方策評価をNN}\,(Q_{\theta})$ で近似 $+ \mathrm{方策更新をNN}\,(\mu_{\phi})$ で近似 $+ \mathbf{工夫30}$

- 方策更新(工夫2: 2回に1回): $\mu_{\phi} \leftarrow \operatorname*{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$ 工夫3: $a' = \operatorname{clip} \left(\mu_{\phi^{-}}(s') + \operatorname{clip}(\varepsilon, -c, c), a_{low}, a_{high} \right), \varepsilon \sim \mathcal{N}(0, \sigma)$
- 方策評価: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s,a,s',r)\sim\mathcal{D}} \left[\left(r + \gamma \min_{\underline{i}=1,2} Q_{\theta_{\overline{i}}}(s',\underline{a'}) \middle/ Q_{\theta}(s,a) \right)^{2} \right]$

Scott Fujimoto, Herke van Hoof, David Meger, "Addressing Function Approximation Error in Actor-Critic Methods," ICML2018.

工夫1: Double Q-learning

Hado Hasselt, "Double Q-learning," NIPS2010.

Konda, Vijay, and John Tsitsiklis, "On actor-critic algorithms," SIAM2003.

ここまでのおさらい

方策更新の解が**決定的方策** (エントロピー正則化**なし**) 色が濃い部分は **関数近似&勾配法を使用**

		方策更新	方策評価
	Q学習	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s')\right)$
Deep化 方策更新を	DQN	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
連続行動化 工夫3つで	DDPG	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
性能向上	TD3	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$

このスライドまで:DDPGとTD3を確認

次: TD3は誤差頑健性を工夫3つで向上させたけど、ほかのやり方もある?→エントロピー正則化

SAC:Soft Actor-Critic の準備

- **モチベーション:**エントロピー正則化RLは誤差に強い (参考: [Husain 2021]など)
- やり方:Soft Q学習 [Haarnoja 2017]を連続値行動に対応させたい

Soft-Q学習:Q学習 + **エントロピー正則化**

方策更新: $\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \alpha \mathcal{H}_{\pi}(s)$

- 方策 π のエントロピー $\mathcal{H}_{\pi}(s) = -\sum \pi(s, a) \log \pi(s, a)$
- 方策評価: $Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi_{k+1}(a'|s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$

実はエントロピー正則化された argmax の解はsoftmax方策と同じ (参考: [Vieillard 2021]など) :

$$\pi_{k+1}(s,a) = \frac{\exp\left(\frac{1}{\alpha}Q_k(s,a)\right)}{\sum_{a'\in A}\exp\left(\frac{1}{\alpha}Q_k(s,a')\right)}$$

 $\pi_{k+1}(s,a) = \frac{\exp\left(\frac{1}{a}Q_k(s,a)\right)}{\sum_{a' \in A} \exp\left(\frac{1}{a}Q_k(s,a')\right)}$ です。行動集合が離散だと簡単に実現可能 (Soft-DQN, 省略)ですが、連続だと難しいので…

SAC: softmax方策を連続行動用に修正する

SAC: Soft Actor-Critic

パラメータ化された ガウス分布が良く使われます 例: $\mathcal{N}\left(\mu_{oldsymbol{\phi}},\sigma_{oldsymbol{\phi}}\right)$

- ・ モチベーション:softmax方策 $\pi(a|s) \propto \exp\left(\frac{1}{\alpha}Q_{\theta}(s,a)\right)$ を連続分布 $(\pi_{\phi}(\cdot|s):A \to [0,1])$ で近似しよう
- ・ **やり方:** π_{ϕ} を $\exp\left(\frac{1}{\alpha}Q_{\theta}(s,a)\right)$ にKLダイバージェンスの最小化で近づけよう(勾配法で更新)

$$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot | s) \middle| \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \boxtimes Z} \right)$$

 $\mathsf{SAC}: \mathsf{Q}$ 学習 + エントロピー正則化 + 方策評価を $\mathsf{NN}(Q_{\theta})$ で近似 + 方策更新を $\mathsf{NN}(\pi_{\phi})$ で近似

• 方策更新: $\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot | s) \middle\| \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} Z} \right)$

 $\sum_{a\in A}\pi_{m{\phi}}(a|s')$... のサンプル近似

		方策更新	方策評価
Deep化	Q学習	$\mu_{k+1}(s) \leftarrow \operatorname*{argmax}_{a \in A} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s') \right)$
方策更新を	DQN	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
連続行動化 工夫3つで	DDPG	$\mu_{\phi} \leftarrow \operatorname{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
性能向上	TD3	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$ 二回に一回 更新	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right] \qquad \boldsymbol{a}' = \boldsymbol{\mu_{\phi}} - (\boldsymbol{s}') + \boldsymbol{1} \boldsymbol{\lambda} \boldsymbol{\lambda}'$
Deep化	Soft-Q学習	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
方策更新を	Soft-DQN	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
連続行動化	SAC	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \left\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \boxtimes Z} \right) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$

このスライドまで:Q学習ベースの連続値制御RLアルゴリズムを確認

次:方策更新と方策評価を「マルチステップ化」することで、この表をさらに一般化しよう

講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- まとめ&アルゴリズム表
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

準備:軌跡・割引訪問頻度

導出に便利な表記

- ホライゾンT:エピソードの長さ。 割引ありの設定を考えているので $T = \infty$ で導出をしますが、Tが有限&割引なしでも似たような結果が出ます。
- 軌跡 $\tau = \{s_1, a_1 ..., s_T, a_T\}$: 方策 π がたどる状態と行動の軌跡
- 割引訪問頻度: $d_h^{\pi}(s) = \sum_{t=1}^h \gamma^{t-1} p(s_t = s \mid \pi)$ 方策 π がステップhまでに状態sに訪れる割引された総回数の期待値
- ・ 状態価値関数の略記: $V_{\theta}(s)=\sum_{a}\pi_{\phi}(s,a)\,Q_{\theta}(s,a)$ 使っている方策が自明& 状態行動価値関数が Q_{θ} な場合は $V_{\theta}(s)=\sum_{a}\pi_{\phi}(s,a)\,Q_{\theta}(s,a)$ とします

復習:Q学習・DQN

Q学習

 (s_1, a_1) についてだけargmaxで最適化

- 方策更新: $\pi_{k+1}(s_1,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a_1 \in A} \underline{\pi(a_1|s_1)} Q_k(s_1,a_1)$
- 方策評価: $Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2|s_2) Q_k(s_2, a_2)$

 (s_1,a_1) の報酬の情報だけ使用

 (s_1, a_1) についての情報しか使ってないけど… もう少し未来の情報を使ってもいいのでは?

このスライドまで: (s_1, a_1) の情報だけ使って更新するアルゴリズム

次: マルチステップの情報 $(s_1, a_1, s_2, a_2, ...)$ を使うアルゴリズムへ

方策更新のマルチステップ化

復習:Q学習ベース(DDPGなど)の方策更新

- 方策更新(初期状態分布で書き換えたもの):
 - $\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \ \underline{\sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1)} \ Q_k(s_1, a_1)$
- 最適方策:

 (s_1,a_1) についてだけargmaxで最適化

 $(s_1, a_1, s_2, a_2, ...)$ の全てをargmaxで最適化

• $\pi^* = \underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} \underline{p(s_1)} \sum_{a_1 \in A} \pi(a_1|s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1|a_1) \sum_{a_2 \in A} \pi(a_2|s_2) \left(r(s_2, a_2) + \cdots \right) \right)$

マルチステップ方策更新 [Efroni 2018]:方策更新をマルチステップにして一般化しよう

1ステップ更新: $\underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1) Q_k(s_1, a_1)$

2ステップ更新: $\underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1, a_1) \sum_{a_2 \in A} \pi(a_2|s_2) Q_k(s_2, a_2) \right)$

hステップ更新: $\underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1) \left(r(s_1, a_1) + \gamma \left(\dots + \gamma \sum_{s_h \in S} P(s_h|s_{h-1}, a_{h-1}) \sum_{a_h \in A} \pi(a_h|s_{h-1}) Q_k(s_h, a_h) \right) \right)$

Tステップ更新: $\pi^* = \operatorname*{argmax}_{\pi} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1|a_1) \sum_{a_2 \in A} \pi(a_2|s_2) \left(r(s_2, a_2) + \cdots \right) \right)$

RL以外のアルゴリズムもマルチステップ貪欲方策で一般化できます

h=1: Q学習, DDPG, SAC, など

h>1: Alpha-Goなど

h=T:モンテカルロ木探索, モデル予測制御, 方策勾配法など

「方策勾配法」はTステップ(∞ステップ)方策更新を勾配法で求めています。導出してみましょう。

Q学習ベース(DDPGなど)の方策更新:簡単のために方策評価が完璧に行われた状況を仮定($ar{Q}_{\pi_{\phi}}=Q_{\pi_{\phi}}$ を満たす関数)

- 方策更新: $\pi_{\phi} \leftarrow \underset{\pi_{\phi}}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \bar{Q}_{\pi_{\phi}}(s_1, a)$
- 実装方法: $J_1(\phi) = \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \bar{Q}_{\pi_{\phi}}(s_1, a_1)$ として、

$$\nabla_{\phi}J_1(\phi) = \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \nabla_{\phi} \pi_{\phi}(a_1|s_1) \bar{Q}_{\pi_{\phi}}(s_1, a_1)$$
について勾配上昇でargmaxを計算していた

 $\underset{\pi_{\phi}}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \bar{Q}_{\pi_{\phi}}(s_1, a_1)$ を分解してみよう

$$\bar{Q}_{\pi_{\phi}}(s_1, a_1)$$
を1ステップ分解 argmax $\sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \bar{Q}_{\pi_{\phi}}(s_1, a_1)$

$$\underset{\pi_{\phi}}{\operatorname{argmax}} \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi_{\phi}(a_{1}|s_{1}) \left(r(s_{1}, a_{1}) + \gamma \sum_{s_{2} \in S} P(s_{2}|s_{1}, a_{1}) \sum_{a_{2} \in A} \pi_{\phi}(a_{2}|s_{2}) \, \bar{Q}_{\pi_{\phi}}(s_{2}, a_{2}) \right)$$

Q学習ベースの目的関数: $J_1(\phi) = \sum_{s_1 \in S} p(s_1) \sum_{a \in A} \pi_{\phi}(a|s_1) Q(s_1,a)$

1ステップ分解した目的関数: $J_2(\phi) = \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \left(r(s_1,a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1,a_1) \sum_{a_2 \in A} \pi_{\phi}(a_2|s_2) \bar{Q}_{\pi_{\phi}}(s_2,a_2) \right)$

 $J_2(\phi)$ を最大化してみよう

 $\nabla_{\phi}\pi_{\phi}(a|s) = \pi_{\phi}(a|s)\nabla_{\phi}\log\pi_{\phi}(a|s)$ と 合成関数の微分 を使って書き換え

$$= \bar{Q}_{\pi_{\phi}}(s_1, a_1)$$

$$\nabla_{\phi} J_{2}(\phi) = \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi_{\phi}(a_{1}|s_{1}) \nabla_{\phi} \log \pi_{\phi}(a_{1}|s_{1}) \left(r(s_{1}, a_{1}) + \gamma \sum_{s_{2} \in S} P(s_{2}|s_{1}, a_{1}) \sum_{a_{2} \in A} \pi_{\phi}(a_{2}|s_{2}) \bar{Q}_{\pi_{\phi}}(s_{2}, a_{2}) \right)$$

$$+ \gamma \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi_{\phi}(a_{1}|s_{1}) \sum_{s_{2} \in S} P(s_{2}|s_{1}, a_{1}) \sum_{a_{2} \in A} \pi_{\phi}(a_{2}|s_{2}) \nabla_{\phi} \log \pi_{\phi}(a_{2}|s_{2}) \bar{Q}_{\pi_{\phi}}(s_{2}, a_{2})$$

$$= \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi_{\phi}(a_{1}|s_{1}) \nabla_{\phi} \log \pi_{\phi}(a_{1}|s_{1}) \bar{Q}_{\pi_{\phi}}(s_{1}, a_{1})$$

$$+\gamma \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1|s_1) \sum_{s_2 \in S} P(s_2|s_1, a_1) \sum_{a_2 \in A} \pi_{\phi}(a_2|s_2) \nabla_{\phi} \log \pi_{\phi}(a_2|s_2) \bar{Q}_{\pi_{\phi}}(s_2, a_2)$$

次ページ**:hステップ分解**して $I_h(\phi)$ を考えてみよう

hステップ分解した目的関数:

$$J_h(\phi) = \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1 | s_1) \left(r(s_1, a_1) + \gamma \left(\dots + \gamma \sum_{s_h \in S} P(s_h | s_{h-1}, a_{h-1}) \sum_{a_h \in A} \pi_{\phi}(a_h | s_{h-1}) \, \bar{Q}_{\pi_{\phi}}(s_h, a_h) \right) \right)$$

導出に便利な状態の割引訪問頻度を導入:

 $d_h^{\pi}(s) = \sum_{t=1}^h \gamma^{t-1} p(s_t = s \mid \pi)$:方策 π で状態sに訪れる割引された総回数の期待値

$$\begin{split} \nabla_{\phi} J_h(\phi) &= \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1 | s_1) \nabla_{\phi} \log \pi_{\phi}(a_1 | s_1) \, \bar{Q}_{\pi_{\phi}}(s_1, a_1) \\ &+ \gamma \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1 | s_1) \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi_{\phi}(a_2 | s_2) \, \nabla_{\phi} \log \pi_{\phi}(a_2 | s_2) \, \bar{Q}_{\pi_{\phi}}(s_2, a_2) \\ &+ \gamma^2 \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi_{\phi}(a_1 | s_1) \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi_{\phi}(a_2 | s_2) \sum_{s_3 \in S} P(s_3 | s_2, a_2) \sum_{a_3 \in A} \pi_{\phi}(a_3 | s_3) \, \nabla_{\phi} \log \pi_{\phi}(a_3 | s_3) \, \bar{Q}_{\pi_{\phi}}(s_3, a_3) \\ &\vdots \end{split}$$

$$=\textstyle\sum_{s,a\in S,A}d_h^{\pi_\phi}(s)\pi_\phi(a|s)\nabla_\phi\log\pi_\phi(a|s)\,\bar{Q}_{\pi_\phi}(s,a\,)$$

$$= E_{\pi_{\phi}} \left[\sum_{t=1}^{h} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) \, \bar{Q}_{\pi_{\phi}}(s_t, a_t) \right]$$

∞ホライゾンMDPを考えているので割引率が出てきます。 有限ホライゾンではγ = 1のせいで出てこないことがあります。

$$\nabla_{\phi}J_{h}(\phi) = E_{\pi_{\phi}}\left[\sum_{t=1}^{h} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t}|s_{t}) \, \bar{Q}_{\pi_{\phi}}(s_{t}, a_{t})\right]$$
を使って $\phi \leftarrow \phi + \alpha \nabla_{\phi}J_{h}(\phi)$ がしたい!

hステップ方策勾配法における方策更新と方策評価

- 方策更新: $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_h(\phi)$
 - **モチベーション:**hステップ貪欲方策を近似したい
 - $\nabla_{\phi} J_h(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^h \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) \, \bar{Q}_{\pi_{\phi}}(s_t, a_t) \right]$
- ・ 方策評価: $ar{Q}_{\pi_{m{\phi}}}(s_t,a_t)$ を何らかの方法で推定
 - **モチベーション:**方策更新における $ar{Q}_{\pi_{m{\phi}}}(s_t,a_t)$ の精度が上がると方策更新の精度も上がる

このスライドまで:方策更新をマルチステップ化して一般化した

次:方策評価をマルチステップ化しよう

方策評価のマルチステップ化

復習:Q学習ベース(DDPGなど)の方策更新

報酬は $r(s_1,a_1)$ だけ使用

- 方策評価:
 - $Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2|s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2|s_2) Q_k(s_2, a_2)$

 $(s_1,a_1,s_2,a_2,...)$ の全ての報酬を使用

- 期待行動価値関数:
 - $Q_{\pi_{k+1}}(s_1, a_1) = r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2 | s_2) (r(s_2, a_2) + \cdots$

マルチステップ方策評価 [Kozuno, 2021]:方策評価をマルチステップにして一般化しよう

1ステップ評価: $Q(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi(a_2 | s_2) Q(s_2, a_2)$

2ステップ評価: $Q(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi(a_2 | s_2) \left(r(s_2, a_2) + \gamma \sum_{s_3 \in S} P(s_3 | s_2, a_2) \sum_{a_3 \in A} \pi(a_3 | s_3) Q(s_3, a_3) \right)$

:

nステップ評価: $Q(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi(a_2 | s_2) \left(\dots + \gamma \sum_{s_{n+1} \in S} P(s_{n+1} | s_n, a_n) \sum_{a_{n+1} \in A} \pi(a_{n+1} | s_{n+1}) Q(s_{n+1}, a_{n+1}) \right)$

:

Tステップ評価: $Q(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 | s_1, a_1) \sum_{a_2 \in A} \pi(a_2 | s_2) \Big(r(s_2, a_2) + \gamma \sum_{s_3 \in S} P(s_3 | s_2, a_2) \sum_{a_3 \in A} \pi(a_3 | s_3) \dots \Big) \Big)$

マルチステップ方策評価でいろいろ一般化できます

n=1: Q学習, DDPG, SAC, など

n>1: nステップ収益(Rainbowなどで使用)

n=T: モンテカルロ近似(REINFORCEなどで使用)

マルチステップ強化学習

マルチステップ方策更新とマルチステップ方策評価

- hステップ方策更新: $\pi_{k+1} \leftarrow \arg\max_{\pi} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1|s_1) \left(r(s_1, a_1) + \gamma \left(... + \gamma \sum_{s_h \in S} P(s_h|s_{h-1}, a_{h-1}) \sum_{a_h \in A} \pi(a_h|s_{h-1}) Q_k(s_h, a_h) \right) \right)$
- nステップ方策評価: $Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \left(... + \gamma \sum_{s_{n+1} \in S} P(s_{n+1} | s_n, a_n) \sum_{a_{n+1} \in A} \pi_{k+1}(a_{n+1} | s_{n+1}) Q_k(s_{n+1}, a_{n+1}) \right)$
- 理論保障:
 - $h \ge 1$ かつ $n \ge 1$ なら、更新と評価の繰り返し「 $\cdots \to h$ 更新 $\to n$ 評価 $\to h$ 更新 $\to n$ 評価 $\to \cdots$ 」 は $k \to \infty$ でh = 1 よりも早く $\pi_k \to \pi^*$, $Q_k \to Q^{\pi_*}$ に収束します [Efroni, 2018など]

方策更新と方策評価に関数近似を導入

マルチステップ方策更新とマルチステップ方策評価 + 関数近似

- hステップ方策更新: $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_h(\phi)$
 - 方策勾配: $\nabla_{\phi}J_h(\phi) = E_{\pi_{\phi}}\left[\sum_{t=1}^h \gamma^{t-1}\nabla_{\phi}\log \pi_{\phi}(a_t|s_t) Q(s_t, a_t)\right]$

$$V_{\theta}(s) = \sum_{a} \pi_{\phi}(s, a) Q_{\theta}(s, a)$$

- nステップ方策評価: $Q(s_1, a_1) \leftarrow \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^n V_{\theta}(s_{n+1}))_{i}$
 - ・ Q関数の更新: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_1,a_1) \sim \mathcal{D}} \left[\left(Q(s_1,a_2) Q_{\theta}(s_1,a_1) \right)^2 \right]$

h = T の勾配を求める定理が方策勾配定理と呼ばれるため、 h = T のアルゴリズムは「方策勾配法ベースのアルゴリズム」と 呼ばれることがあります。

方策勾配法ベース (h = T, n = T) :REINFORCE

REINFORCE: Tステップ方策勾配&Tステップ方策評価をモンテカルロ近似

- h = Tステップ方策更新: $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$
 - $\Box \mathbb{R}$: $\nabla_{\phi} J_T(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^T \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) Q(s_t, a_t) \right]$
- n = Tステップ方策評価: $Q(s_1, a_1) = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$
 - N個の軌跡で $Q \approx Q_{\pi_{\phi}}$ とモンテカルロ近似した形

$$Q = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$$

このスライドまで: 「Q学習(h=1,n=1)」と「REINFORCE(h=T,n=T)」の極端なアルゴリズムしか見てない!

次:中間のアルゴリズム & バイアスとバリアンスのトレードオフ

左:方策更新のステップ数 右:方策評価のステップ数] 方策更新の解が**決定的方策** (エントロピー正則化**なし**) 方策更新の解が**確率的方策** (エントロピー正則化**あり**)

		方策更新	方策評価
	Q学 <u>習(1, 1)</u>	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s')\right)$
	DQN(1, 1)	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
	DDPG(1. 1)	$\mu_{\phi} \leftarrow \operatorname*{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
(1, 1)	TD3(1, 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$
	Soft-Q学習 (1, 1)	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \alpha \mathcal{H}_{\pi}(s)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
	Soft-DQN (1, 1)	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	SAC(1, 1)	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \middle\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \boxtimes Z} \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$
方策勾配法で 方策更新を置換 &	Q学習(h, n)	$\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi(a_{1} s_{1}) \left(r(s_{1}, a_{1}) + \gamma \left(+ \gamma \sum_{s_{h} \in S} P(s_{h} s_{h-1}, a_{h-1}) \sum_{a_{h} \in A} \pi(a_{h} s_{h-1}) Q_{k}(s_{h}, a_{h}) \right) \right)$	$Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \left(\dots + \sum_{S_{n+1} \in S} P(s_{n+1} s_n, a_n) \sum_{a_{n+1} \in A} \pi_{k+1}(a_{n+1} s_{n+1}) Q_k(s_{n+1}, a_{n+1}) \right)$
モンテカルロ近似 で方策評価	REINFORCE (T, T)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) Q(s_{t}, a_{t}) \right]$	$Q(s_1,a_1) = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$ 方策評価をモンテカルロ近似

講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- まとめ&アルゴリズム表
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

バイアス・バリアンスのトレードオフ

とりあえず方策評価を例に考えます(方策更新でも似たようなことが言えます)

- (復習) nステップ方策評価: $Q(s_1, a_1) \leftarrow \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^n V_{\theta}(s_{n+1}, a_{n+1}))_i$
 - ・ Q関数の更新: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_1,a_1) \sim \mathcal{D}} \left[\left(Q(s_1,a_2) Q_{\theta}(s_1,a_1) \right)^2 \right]$

バイアス大 バリアンス小

$$1$$
ステップ評価: $\frac{1}{N}\sum_{i=1}^{N}(r_1+\gamma V_{\theta}(s_2,a_2))_i$ (s_2,a_2) がランダム

$$2$$
ステップ評価: $\frac{1}{N}\sum_{i=1}^{N} \left(r_1 + \gamma r_2 + \gamma^2 V_{\theta}(s_3, a_3)\right)_i$ (s_2, a_2, s_3, a_3) がランダム:

nステップ評価:
$$\frac{1}{N}\sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^n V_{\theta}(s_{n+1}, a_{n+1}))_i$$
 $(s_2, a_2, s_3, a_3, \dots, s_{n+1}, a_{n+1})$ がランダム:

バイアス小 バリアンス大

適当なnを選んでもいいけど…

1~Tステップ評価の結果全部を混ぜてもよさそう(次ページ:λ方策評価)

λ方策評価

λ 方策評価 $(T = \infty のとき)$

nが大きいほどバリアンスが大きいので…

大きいnの重みは小さくして、 $\lambda \in [0,1]$ の重みですべての評価を混ぜてみよう

 $\lambda = 0 \sim 1$ でバイアスとバリアンスのトレードオフが調整できる

 $(\lambda = 0$ で1ステップ評価、 $\lambda = 1$ でモンテカルロ評価)

方策勾配のバリアンスを減らそう:ベースライン

方策勾配とλ方策評価

- hステップ方策更新: $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_h(\phi)$
 - $\Box \mathbb{R}$: $\nabla_{\phi} J_h(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^h \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) \, \mathbf{Q}(s_t, a_t) \right]$
- λ 方策評価: $Q(s_1, a_1) \leftarrow (1 \lambda) \sum_{n=1}^{T} \lambda^{n-1} Q_n(s_1, a_1)$
 - nステップ状態価値関数の推定: $Q_n(s_1,a_1) = (r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots + \gamma^n V_{\theta}(s_{n+1}))_n$
 - Q関数の更新: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_1,a_1) \sim \mathcal{D}} \left[\left(Q(s_1,a_1) Q_{\theta}(s_1,a_1) \right)^2 \right]$

もっとバリアンス減らせる?

- 実は $E_{\pi_{\phi}}\left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t|s_t) b(s_t)\right] = 0$ なので適当なベースライン関数 $b: S \to R$ を使って変換可能:
 - $\nabla_{\phi} J_h(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^h \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) \left(Q(s_t, a_t) \boldsymbol{b}(\boldsymbol{s_t}) \right) \right]$
- 適切な $b(s_t)$ を使うと $\nabla_{\phi}J_T(\phi)$ の推定値のバリアンスが減らせる
 - 状態価値関数を近似した $b(s_t) = V_{\theta}(s_t)$ が良く使われます。
 - $ightarrow Q_{\pi}(s,a)$ の代わりに**アドバンテージ関数** $A_{\pi}(s,a)=Q_{\pi}(s,a)-V_{\pi}(s)$ を推定しても方策勾配は等価!
 - \rightarrow アドバンテージ関数をλステップ評価しよう!

GAE: Generalized Advantage Estimation

(復習) : λ 方策評価: $Q(s_1, a_1) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^n V_{\theta}(s_{n+1}, a_{n+1}))_n$

Generalized Advantage Estimation (GAE)

- Q(s,a)の代わりに**アドバンテージ関数** A(s,a) = Q(s,a) V(s) を λ 推定しよう!
 - 1ステップ評価: $A_1(s_1, a_1) = -V_{\theta}(s_1) + r_1 + \gamma V_{\theta}(s_2)$
 - 2ステップ評価: $A_2(s_1, a_1) = -V_{\theta}(s_1) + r_1 + \gamma r_2 + \gamma^2 V_{\theta}(s_3)$
 - nステップ評価: $A_n(s_1, a_1) = -V_{\theta}(s_1) + r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^n V_{\theta}(s_{n+1}, a_{n+1})$
- GAE: $A(s_1, a_1) \leftarrow (1 \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_n(s_1, a_1)$
 - Q関数の更新: $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_1,a_1) \sim \mathcal{D}} \left[\left(\left(A(s_1,a_1) + V_{\theta}(s_1) \right) Q_{\theta}(s_1,a_1) \right)^2 \right]$

(h, n) の中身は 左:方策更新のステップ数 右:方策評価のステップ数

| 方策更新の解が**決定的方策** | (エントロピー正則化**なし**) 方策更新の解が**確率的方策** (エントロピー正則化**あり**)

		方策更新	方策評価
	Q学習(1, 1)	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s')\right)$
	DQN(1, 1)	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
	DDPG(1. 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
(1, 1)	TD3(1, 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$
	Soft-Q学習 (1, 1)	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
	Soft-DQN (1, 1)	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	SAC(1, 1)	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \middle\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} Z} \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$
方策勾配法で 方策更新を置換 &	Q学習(h, n)	$\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1 s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi(a_2 s_2) \left(r(s_2, a_2) + \gamma \dots \right) \right)$	$Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2 s_2) (r(s_2, a_2) + \gamma \dots)$
モンテカルロ近似 で方策評価	REINFORCE (T, T)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) Q(s_{t}, a_{t}) \right]$	$Q(s_1,a_1)=rac{1}{N}\sum_{i=1}^N(r_1+\gamma r_2+\gamma^2 r_3+\cdots+\gamma^{T-1}r_T)_i$ 方策評価をモンテカルロ近似
GAEや ベースラインで 性能を向上	Actor-Critic + GAE (T, λ)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) \ A(s_{t}, a_{t}) \right]$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$

今まで $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_T(\phi)$ で更新してきたけど… もっと良いのないの? \rightarrow TRPO, PPOへ

講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- ・まとめ
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

方策勾配と単調性能向上

方策勾配による方策の更新をよく見てみよう

• hステップ方策更新: $\phi \leftarrow \phi + \alpha \nabla_{\phi} J_h(\phi)$

• \Box \Box : $\nabla_{\phi} J_h(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^h \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_t | s_t) A(s_t, a_t) \right]$

この勾配をサンプルで近似するわけだけど…

近似や更新の精度が悪いと期待収益 $(J_T(\phi))$ がガタガタすることも:

これは実世界応用では非常に問題! 例:今まで動いてたロボットが急に 動かなくなる

次:性能を単調に向上させたい!→TRPO, PPO

方策更新前後の収益の差

方策更新前後の期待収益をよく見てみよう

$$J_{T}(\phi) = \sum_{s_{1} \in S} p(s_{1}) \sum_{a_{1} \in A} \pi_{\phi}(a_{1}|s_{1}) \left(r(s_{1}, a_{1}) + \gamma \left(... + \gamma \sum_{s_{T} \in S} P(s_{T}|s_{T-1}, a_{T-1}) \sum_{a_{T} \in A} \pi_{\phi}(a_{T}|s_{T-1}) r(s_{T}, a_{T}) \right) \right)$$

$$= E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_{t}, a_{t}) \right] = \sum_{s_{1} \in S} p(s_{1}) V_{\pi_{\phi}}(s_{1})$$

• 何らかの方法で更新された方策を $\pi_{\phi'}$ とすると、

$$\begin{split} J_{T}(\phi') &= E_{\pi_{\phi'}} \big[\sum_{t=1}^{T} \gamma^{t-1} \, r(s_{t}, a_{t}) \big] \\ &= E_{\pi_{\phi'}} \left[\sum_{t=1}^{T} \gamma^{t-1} \left(r(s_{t}, a_{t}) + V_{\pi_{\phi}}(s_{t}) - V_{\pi_{\phi}}(s_{t}) \right) \right] \\ &= E_{\pi_{\phi'}} \left[\sum_{t=1}^{T} \gamma^{t-1} \left(r(s_{t}, a_{t}) + \gamma V_{\pi_{\phi}}(s_{t+1}) - V_{\pi_{\phi}}(s_{t}) \right) \right] + \sum_{s_{1} \in S} p(s_{1}) \, V_{\pi_{\phi}}(s_{1}) \\ &= E_{\pi_{\phi'}} \left[\sum_{t=1}^{T} \gamma^{t-1} \, A_{\pi_{\phi}}(s_{t}) \right] + J_{T}(\phi) \\ &= \sum_{s, a \in S, A} d_{h}^{\pi_{\phi'}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s, a) + J_{T}(\phi) \end{split}$$

この値が正なら方策の性能は 単調に向上するよ!

任意の方策の期待収益の差: $J_T(\phi') - J_T(\phi) = \sum_{s,a \in S,A} d_h^{\pi_{\phi'}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s,a)$

方策更新前後の収益の差

この値が正なら方策の性能は 単調に向上するよ!

任意の方策の期待収益の差: $J_T(\phi')-J_T(\phi)=\sum_{s,a\in S,A}d_h^{\pi_{\phi'}}(s)\pi_{\phi'}(a|s)A_{\pi_{\phi}}(s,a)$

良く見ると $\sum_{s,a\in S,A}d_h^{\pi_{\phi'}}(s)\pi_{\phi'}(a|s)A_{\pi_{\phi}}(s,a)$ は計算できない…

• $d_h^{\pi_{\phi'}}(s)$ は更新後の方策 $\pi_{\phi'}$ が訪れる割引訪問頻度。 「方策更新の性能向上」を事前に保証したいのに、更新後の方策でデータを集めたら本末転倒!

頑張って $d_h^{\pi_\phi}(s)$ を使った形に直す

(証明は[Shulman, 2015]よりもコロンビア大学のIEOR 8100のLecture 7の方が分かりやすいかも)

$$J_{T}(\phi') - J_{T}(\phi) = \sum_{s,a \in S,A} d_{h}^{\pi_{\phi'}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s,a)$$

$$\geq \sum_{s,a \in S,A} d_{h}^{\pi_{\phi}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s,a) - (定数項) D_{KL}(\pi_{\phi'} \| \pi_{\phi})$$

 $D_{KL}\left(\pi_{\phi'} \middle\| \pi_{\phi}\right)$ を小さく抑えつつ $\sum_{s,a \in S,A} d_h^{\pi_{\phi}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s,a)$ を最大化すれば単調に性能向上しそう!

単調な性能向上と自然勾配法

今までの方策勾配法: $\phi \leftarrow \phi + \alpha V_{\phi} J_{h}(\phi)$

 $\phi \leftarrow \operatorname{argmax}_{\phi'} (\phi' - \phi)^T \nabla_{\phi} J_h(\phi) \text{ s.t. } \|\phi' - \phi\|_2 \le \varepsilon$

今まではユークリッドノルムを 小さく抑えながら $I_h(\phi)$ を最大化

- やりたいこと(単調な性能向上):
 - $D_{KL}\left(\pi_{\phi'} \middle\| \pi_{\phi}\right)$ を小さく抑えつつ $L(\phi') = \sum_{s,a \in S,A} d_h^{\pi_{\phi}}(s) \pi_{\phi'}(a|s) A_{\pi_{\phi}}(s,a)$ を最大化

実は $D_{KL}\left(\pi_{\phi'} \, \middle\| \pi_{\phi}\right)$ をテイラー展開して二次近似すると フィッシャー情報行列 $H(\phi) = \nabla_{\phi'}^2 D_{KL} \left(\pi_{\phi'} \left\| \pi_{\phi} \right) \right|_{\phi' = \phi}$ を使って $D_{KL}\left(\pi_{\phi'} \left\| \pi_{\phi} \right) pprox (\phi' - \phi)^T H(\phi) (\phi' - \phi)$ の形に近似可能

 $(\phi' - \phi)^T V_{\phi'} L(\phi')$ をよく見ると…

 $(\phi' - \phi)^T \nabla_{\phi'} L(\phi') = \left((\phi' - \phi)^T H(\phi)^{\frac{1}{2}} \right) \left(\nabla_{\phi'} L(\phi')^T H(\phi)^{-\frac{1}{2}} \right)^t \le \sqrt{\varepsilon} \left\| \nabla_{\phi'} L(\phi')^T H(\phi)^{-\frac{1}{2}} \right\|$ であり、等号成立は $\phi' - \phi \propto H(\phi)^{-1} \nabla_{\phi'} L(\phi')$ のとき!

シュワルツの不等式&KLの制約

単調な性能向上のための自然方策勾配

自然勾配法と呼ばれます[機械学習のための連続最適化など参照]

- 方策勾配による更新: $\phi \leftarrow \phi + \alpha H(\phi)^{-1} \nabla_{\phi'} L(\phi')$
 - $\mathbf{L}(\boldsymbol{\phi}') = \sum_{s,a \in S,A} d_h^{\pi_{\boldsymbol{\phi}}}(s) \pi_{\boldsymbol{\phi}'}(a|s) A_{\pi_{\boldsymbol{\phi}}}(s,a), \ \mathbf{H}(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}'}^2 D_{KL} \left(\pi_{\boldsymbol{\phi}'} \, \left\| \pi_{\boldsymbol{\phi}} \right) \right|_{\boldsymbol{\phi}' = \boldsymbol{\phi}}$

TRPO: Trust Region Policy Optimization

$$\phi \leftarrow \operatorname{argmax}_{\phi'} L(\phi') - L(\phi') = E_{\pi_{\phi}} \left[\sum_{t=1}^{h} \gamma^{t-1} E_{a_{t} \sim \pi_{\phi(\cdot|s_{t})}} \left[\frac{\pi_{\phi'}(a_{t}|s_{t})}{\pi_{\phi}(a_{t}|s_{t})} A(s_{t}, a_{t}) \right] \right]$$
s.t. $D_{KL} \left(\pi_{\phi'}(a_{t}|s_{t}) \left\| \pi_{\phi}(a_{t}|s_{t}) \right\| \leq \varepsilon$

- 制約を破らないように信頼領域法で解く
 - 1. 目的関数・制約条件をTaylor展開し近似
 - 2. ラグランジュ未定乗数法で解く

- 3. 制約を満たすように線形探索
 - 1. 以下の制約を守っていたら終了
 - 1. $\pi_{\phi'}$ がKL制約を破っていないか?
 - 2. $L(\phi') L(\phi) > 0$?
 - 2. 満たしていないなら $\beta \leftarrow \beta/2$

$$\phi' = \operatorname{argmax}_{\phi'} (\phi' - \phi)^T g$$

s.t. $\frac{1}{2} (\phi' - \phi)^T H(\phi) (\phi' - \phi) \le \varepsilon$

where
$$g=
abla_{\phi'}L(\phi')$$
 , $H(\phi)=
abla_{\phi'}^2D_{KL}\left(\pi_{\phi'}\left\|\pi_{\phi}\right)\right|_{\phi'=\phi}$

$$\phi' = \phi + \alpha H^{-1}g = \phi + \sqrt{\frac{2\varepsilon}{(H^{-1}g)^T H (H^{-1}g)}} H^{-1}g$$

PPO: Proximal Policy Optimization

$$\phi \leftarrow \operatorname{argmax}_{\phi'} L(\phi') - L(\phi') = E_{\pi_{\phi}} \left[\sum_{t=1}^{h} \gamma^{t-1} E_{a_{t} \sim \pi_{\phi(\cdot|s_{t})}} \left[\frac{\pi_{\phi'}(a_{t}|s_{t})}{\pi_{\phi}(a_{t}|s_{t})} A(s_{t}, a_{t}) \right] \right]$$
s.t. $D_{KL} \left(\pi_{\phi'}(a_{t}|s_{t}) \left\| \pi_{\phi}(a_{t}|s_{t}) \right\| \leq \varepsilon \right)$

- TRPOを実装するのはめんどくさい→簡単な方法で代用しよう(PPO)
- $\frac{\pi_{\phi'}(a_t|s_t)}{\pi_{\phi}(a_t|s_t)}A(s_t,a_t)$ は $A(s_t,a_t)>0$ なら最適解は $\frac{\pi_{\phi'}(a_t|s_t)}{\pi_{\phi}(a_t|s_t)}\to\infty$ であり、どんどん方策が離れてしまう。
 PPO: $1-\epsilon<\frac{\pi_{\phi'}(a_t|s_t)}{\pi_{\phi}(a_t|s_t)}<1+\epsilon$ 以外の範囲では $L(\phi')$ の値が変わらないようにすれば $\frac{\pi_{\phi'}(a_t|s_t)}{\pi_{\phi}(a_t|s_t)}\to\infty$ が防げそう。

左:方策更		の中身は のステップ数 のステップ数	方策更新の解が 決定的方策 (エントロピー正則化 なし)	方策更新の解が 確率的方策 (エントロピー正則化 あり) 色が濃い部分は 関数近似&勾配法を使用
			方策更新	方策評価
D 方3 連約 エ:	5策評価を	Q学習(1, 1)	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s')\right)$
	Deep化 5策更新を	DQN(1, 1)	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
	連続行動化 L夫3つで	DDPG(1. 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	性能向上	TD3(1, 1)	$\mu_{\phi} \leftarrow \operatorname*{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$
方	5策評価を	Soft-Q学習 (1, 1)	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \alpha \mathcal{H}_{\pi}(s)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
	Deep化 5策更新を	Soft-DQN (1, 1)	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	連続行動化	SAC(1, 1)	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \middle\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \boxtimes Z} \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$
方策	策勾配法で 受更新を置換 &	Q学習(h, n)	$\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1 s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi(a_2 s_2) \left(r(s_2, a_2) + \gamma \dots \right) \right)$	$Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2 s_2) (r(s_2, a_2) + \gamma \dots)$
	ス テカルロ近似 で方策評価	REINFORCE (T, T)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) Q(s_{t}, a_{t}) \right]$	$Q(s_1,a_1) = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$ 方策評価をモンテカルロ近似
	GAEや -スラインで 生能を向上	Actor-Critic + GAE (T, λ)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) \ A(s_{t}, a_{t}) \right]$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) \right) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$
	の単調向上を学勾配法で実装	TRPO+GAE (T, λ)	$\phi \leftarrow \phi + \alpha \mathbf{H}(\phi)^{-1} \nabla_{\phi'} \mathbf{L}(\phi')$ $\mathbf{L}(\phi') = \sum_{s,a \in S,A} d_h^{\pi_{\phi}}(s) \pi_{\phi'}(a s) A(s,a)$ $\mathbf{H}(\phi) = \nabla_{\phi'}^2 D_{KL} \left(\pi_{\phi'} \left\ \pi_{\phi} \right) \right _{\phi' = \phi}$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$

講義の概要

- 導入
 - 強化学習の復習
 - 連続値制御と離散値制御
- 1ステップRLアルゴリズム
 - DDPG, TD3, SAC
- マルチステップRLアルゴリズム
 - マルチステップRLの導入, REINFORCE
 - バイアスとバリアンスのトレードオフ, GAE
 - 方策の単調性能向上, TRPO, PPO
- まとめ&アルゴリズム表
- 補足:
 - 本日紹介する深層強化学習アルゴリズムは「<u>OpenAl Spinning UP</u>」に実装とともに良くまとまっています
 - 方策勾配の議論は「強化学習(機械学習プロフェッショナルシリーズ)」が参考になります
 - 参考文献は各ページの下に追記してあります
 - アルゴリズムの実装方法は文献によって違います。本スライドに乗せた実装は一例です。

まとめ

- RLのアルゴリズムの多くは**マルチステップRL**として一般化できます
 - DQN, DDPG, SACは1ステップ方策更新 &1ステップ方策評価
 - REINFORCEはTステップ方策更新&Tステップ方策評価
 - GAEはλステップ方策評価
 - ..
 - その他の中間のアルゴリズムも存在します(Alpha-Goなど)。 また、まだ未発達のアルゴリズムも存在します(κステップ方策更新など)。探してみてください。
- 連続値制御に対応したRLは**方策更新側に関数近似(アクター)**が入ったアルゴリズムです
- 実は今回のスライドでは、 1ステップのアルゴリズムはオフポリシー 2ステップ以上のアルゴリズムはオンポリシーになっています
 - 2ステップ以上ではアルゴリズムの中に E_{π} が出てくるためです

→次ページ:アルゴリズム表

左:方策更		の中身は のステップ数 のステップ数	方策更新の解が 決定的方策 (エントロピー正則化 なし)	方策更新の解が 確率的方策 (エントロピー正則化 あり) 色が濃い部分は 関数近似&勾配法を使用
			方策更新	方策評価
D 方3 連約 エ:	5策評価を	Q学習(1, 1)	$\mu_{k+1}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_k(s, a)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) Q_k \left(s', \mu_{k+1}(s')\right)$
	Deep化 5策更新を	DQN(1, 1)	$\mu_{\theta}(s) \leftarrow \underset{a \in A}{\operatorname{argmax}} Q_{\theta}(s, a)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\theta}(s, a) \right)^{2} \right]$
	連続行動化 L夫3つで	DDPG(1. 1)	$\mu_{\phi} \leftarrow \underset{\mu_{\phi}}{\operatorname{argmax}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma Q_{\theta^{-}} \left(s', \mu_{\phi^{-}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	性能向上	TD3(1, 1)	$\mu_{\phi} \leftarrow \operatorname*{argmax}_{\mu_{\phi}} Q_{\theta} \left(s, \mu_{\phi}(s) \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \min_{i=1,2} Q_{\theta_i^-}(s', \boldsymbol{a}') - Q_{\theta}(s, a) \right)^2 \right]$
方	5策評価を	Soft-Q学習 (1, 1)	$\pi_{k+1}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_k(s,a) + \alpha \mathcal{H}_{\pi}(s)$	$Q_{k+1}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) \sum_{a' \in A} \pi_{k+1}(a' s') \left(Q_k(s',a') + \alpha \mathcal{H}_{\pi_k}(s') \right)$
	Deep化 5策更新を	Soft-DQN (1, 1)	$\pi_{\theta}(s,\cdot) \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{a \in A} \pi(s,a) Q_{\theta}(s,a) + \underset{\pi}{\alpha \mathcal{H}_{\pi}(s)}$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma \sum_{a' \in A} \pi_{\theta^{-}}(a' s') \left(Q_{\theta^{-}}(s', a') + \alpha \mathcal{H}_{\pi_{\theta^{-}}}(s') \right) - Q_{\theta}(s, a) \right)^{2} \right]$
	連続行動化	SAC(1, 1)	$\pi_{\phi} \leftarrow \operatorname{argmin}_{\pi_{\phi}} D_{KL} \left(\pi_{\phi}(\cdot s) \middle\ \frac{\exp(Q_{\theta}(s, a) / \alpha)}{\mathbb{E} \boxtimes Z} \right)$	$Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{\mathcal{D}} \left[\left(r + \gamma E_{a' \sim \pi_{\phi}(\cdot s')} \left[Q_{\theta^{-}}(s', a') - \log \pi_{\phi}(a' s') \right] - Q_{\theta}(s, a) \right)^{2} \right]$
方策	策勾配法で 受更新を置換 &	Q学習(h, n)	$\pi_{k+1} \leftarrow \underset{\pi}{\operatorname{argmax}} \sum_{s_1 \in S} p(s_1) \sum_{a_1 \in A} \pi(a_1 s_1) \left(r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi(a_2 s_2) \left(r(s_2, a_2) + \gamma \dots \right) \right)$	$Q_{k+1}(s_1, a_1) \leftarrow r(s_1, a_1) + \gamma \sum_{s_2 \in S} P(s_2 s_1, a_1) \sum_{a_2 \in A} \pi_{k+1}(a_2 s_2) (r(s_2, a_2) + \gamma \dots)$
	ス テカルロ近似 で方策評価	REINFORCE (T, T)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) Q(s_{t}, a_{t}) \right]$	$Q(s_1,a_1) = \frac{1}{N} \sum_{i=1}^{N} (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{T-1} r_T)_i$ 方策評価をモンテカルロ近似
	GAEや -スラインで 生能を向上	Actor-Critic + GAE (T, λ)	$\phi \leftarrow \phi + \alpha \nabla_{\phi} J_{T}(\phi)$ $\nabla_{\phi} J_{T}(\phi) = E_{\pi_{\phi}} \left[\sum_{t=1}^{T} \gamma^{t-1} \nabla_{\phi} \log \pi_{\phi}(a_{t} s_{t}) \ A(s_{t}, a_{t}) \right]$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) \right) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$
	の単調向上を学勾配法で実装	TRPO+GAE (T, λ)	$\phi \leftarrow \phi + \alpha \mathbf{H}(\phi)^{-1} \nabla_{\phi'} \mathbf{L}(\phi')$ $\mathbf{L}(\phi') = \sum_{s,a \in S,A} d_h^{\pi_{\phi}}(s) \pi_{\phi'}(a s) A(s,a)$ $\mathbf{H}(\phi) = \nabla_{\phi'}^2 D_{KL} \left(\pi_{\phi'} \left\ \pi_{\phi} \right) \right _{\phi' = \phi}$	$A(s_{1}, a_{1}) \leftarrow (1 - \lambda) \sum_{n=1}^{T} \lambda^{n-1} A_{n}(s_{1}, a_{1})$ $A_{n}(s_{1}, a_{1}) = -V_{\theta}(s_{1}) + r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \dots + \gamma^{n} V_{\theta}(s_{n+1}, a_{n+1})$ $Q_{\theta} \leftarrow \operatorname{argmin}_{Q_{\theta}} E_{(s_{1}, a_{1}) \sim \mathcal{D}} \left[\left(A(s_{1}, a_{1}) + V_{\theta}(s_{1}) - Q_{\theta}(s_{1}, a_{1}) \right)^{2} \right]$