KØBENHAVNS UNIVERSITET

Tosidet variansanalyse

Anders Tolver Institut for Matematiske Fag

Dagens program

Tosidet variansanalyse (ANOVA)

- Additive model (uden vekselvirkning)
- Model med vekselvirkning
- Forskel på additive effekter og vekselvirkning
- Test for vekselvirkning
- Forskellige parametriseringer (primært af den additive model)

Generel info:

Det er ekstremt vigtigt, at I lærer at løse standardopgaver hurtigt og uden hjælp!

Gå i træning nu og træk på de mange hjælpelærere ...

- Afleveringsopgave til onsdag den 13. oktober
- Gamle eksamensopgaver: Kør selv analyserne hvis der er data
- HS-opgaver minder også om kommende eksamensopgaver

Overblik

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	ΚI	Test	Kontrol	Præd.
En stikprøve	✓	✓	√	✓	✓	✓	✓
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lineær regr.	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
To stikprøver	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multipel regr.	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tosidet ANOVA	nu	nu	nu	nu	nu	nu	nu
Blandede modeller							

Tosidet ANOVA uden vekselvirkning

Eksempel: Højde på studieretninger

Spørgeskema med studerende på Statistisk Dataanalyse 2017: bl.a. info om studieretning og højde.

- Svar fra 50 BB + 42 HV + 31 JØ + 31 NR + 2 andre. Skipper de "2 andre".
- ullet Der mangler desuden højde for en mindre antal studerende ightarrow n=152

Eksempel: Højde på studieretninger

Spørgeskema med studerende på Statistisk Dataanalyse 2017: bl.a. info om studieretning og højde.

- Svar fra 50 BB + 42 HV + 31 JØ + 31 NR + 2 andre. Skipper de "2 andre".
- ullet Der mangler desuden højde for en mindre antal studerende ightarrow n=152

Spørgsmål: Er den gennemsnitlige højde forskellig på studierne?

- Respons: Højde
- Forklarende variabel: Studieretning
- Lægger op til ensidet ANOVA

Ensidet ANOVA

```
oneway <- lm(hojde ~ studie, data = useData)
onesample <- lm(hojde ~ 1, data = useData)
drop1(oneway, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                     11299 662.91
## studie 3 1185.2 12484 672.07 5.1745 0.001985 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```


Ensidet ANOVA

```
oneway <- lm(hojde ~ studie, data = useData)
onesample <- lm(hojde ~ 1, data = useData)
drop1(oneway, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie
## Df Sum of Sq RSS AIC F value Pr(>F)
                      11299 662.91
## <none>
## studie 3 1185.2 12484 672.07 5.1745 0.001985 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```

Har vi nu vist at "unge menneskers studievalg har noget med deres højde at gøre"? Eller **er der noget vi har overset?**

Tosidet ANOVA

Køn påvirker (formentlig) både højde og studievalg.

Vores egentlige spørgsmål er nok snarere: Er der en forskel på højden på de fire studieretninger, selv hvis vi justerer for køn?

Tosidet ANOVA

Køn påvirker (formentlig) både højde og studievalg.

Vores egentlige spørgsmål er nok snarere: Er der en forskel på højden på de fire studieretninger, selv hvis vi **justerer for køn?**

Ny analyse:

- Respons: Højde
- Forklarende var. Studieretning og køn. Begge er kategoriske
- Tosidet ANOVA

Check modelskemaet.

Statistisk model

Model for **tosidet ANOVA uden vekselvirkning**, kaldes også den **additive model** for tosidet ANOVA:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

hvor e_i 'erne som sædvanlig er uafhængige $N(0, \sigma^2)$

Parametre:

- Et α per studie: $\alpha_{J\emptyset}$, α_{NR} , α_{HV} , α_{BB}
- Et β per køn: β_M og β_K
- ullet Residualspredning σ

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

R: Tilføj leddene til 1m, med + imellem:

```
twoway.add <- lm(hojde ~ studie + kon, data=useData)</pre>
```

NB. Det er lidt sværere at bestemme antal frihedsgrader — men det klarer R heldigvis for os.

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

R: Tilføj leddene til 1m, med + imellem:

```
twoway.add <- lm(hojde ~ studie + kon, data=useData)
```

NB. Det er lidt sværere at bestemme antal frihedsgrader — men det klarer R heldigvis for os.

Hvad nu?

- Modelkontrol: Se dagens R-materiale
- Fortolkning af parameterestimater
- Test for studieretning når vi justerer for køn

Fortolkning af parameterestimater

R vælger en **referencegruppe for hver variabel**. Her: BB og kvinder.

Følgende estimater anigves:

- "Intercept": Estimeret middelværdi gives for kombinationen af de to referencer, altså for kvindelige BB-studerende
- Estimerede forskelle mellem de andre studieretninger og BB
- Estimeret forskel mellem mænd og kvinder

Spørgsmål

- Estimat for gennemsnitshøjde blandt kvindelige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige JØ-stud.?
- Hvilket studie estimeres til at have de højeste studerende (når der er korrigeret for køn)?
- Estimat for σ ?
- Antal frihedsgrader? Er det mærkeligt?
- Hvordan skal p-værdierne fortolkes?


```
twoway.add <- lm(hojde ~ studie + kon, data=useData)
summary (twoway.add)
##
## Call:
## lm(formula = hojde ~ studie + kon, data = useData)
##
## Residuals:
        Min
                   1Q Median
                                                Max
## -14.5701 -4.1354 -0.2316 4.0228 17.1185
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            168.1051 0.9859 170.517 <2e-16 ***
## studieHusdyrvidenskab 1.1211 1.3901 0.806 0.421
## studieJordbrugsøkonomi -0.5350 1.5086 -0.355 0.723
## studieNaturressourcer 0.2531 1.4892 0.170 0.865
                             14 5233 1 2590 11 535 <2e=16 ***
## konMand
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.352 on 147 degrees of freedom
## Multiple R-squared: 0.525, Adjusted R-squared: 0.512
## F-statistic: 40.61 on 4 and 147 DF, p-value: < 2.2e-16
```


Test for studieretning når vi justerer for køn

Statistisk model:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

Hypotese:

$$H_0: \alpha_{J\emptyset} = \alpha_{NR} = \alpha_{HV} = \alpha_{BB}$$

Test for studieretning når vi justerer for køn

Statistisk model:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

Hypotese:

$$H_0: \alpha_{J\emptyset} = \alpha_{NR} = \alpha_{HV} = \alpha_{BB}$$

Testes med *F*-test. Flere metoder i R, men med samme resultat:

- Fit stat. model + model under hypotese og brug anova med de to modeller som argumenter. Hvad er nulmodellen her?
- drop1: Kan vi "droppe" hvert af leddene fra modellen?
- Brug ikke anova med kun en model som argument

Test for studieretning når vi justerer for køn: med drop1

```
twoway.add <- lm(hojde ~ studie + kon, data = useData)
drop1(twoway.add, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie + kon
         Df Sum of Sq RSS AIC F value Pr(>F)
##
## <none>
                      5930.7 566.93
## studie 3 44.4 5975.1 562.06 0.3666 0.7772
## kon 1 5368.6 11299.3 662.91 133.0654 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Test for studieretning når vi justerer for køn: med anova

```
oneway.kon <- lm(hojde ~ kon, data=useData)
anova(oneway.kon, twoway.add)

## Analysis of Variance Table

##
## Model 1: hojde ~ kon

## Model 2: hojde ~ studie + kon

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 150 5975.1

## 2 147 5930.7 3 44.371 0.3666 0.7772
```


Konklusion

Der er **ikke** signifikant forskel på højden af studerende på de fire studieretninger når vi korrigerer for køn (p = 0.78).

Konklusion

Der er **ikke** signifikant forskel på højden af studerende på de fire studieretninger når vi korrigerer for køn (p = 0.78).

I denne situation var vi mest interesseret i den ene variabel (studieretning), men vi kunne også have undersøgt den anden:

- Hypotese, $H_0: \beta_M = \beta_K$
- Testes med *F*-test eller *t*-test. Begge giver $p \approx 0$
- Konklusion: Gennemsnitshøjden er forskellig for mænd og kvinder, også når vi korrigerer for studieretning

Uden vekselvirkning: Vi lavede implicit en antagelse ...

Antagelsen om additivitet

I eksemplet brugte vi den additive model, modellen uden vekselvirkning:

- Vi antog implicit at der var samme højdeforskel i mænd og kvinder for alle studieretninger (og omvendt).
- R: Vi skrev + mellem leddene i lm.

Men sådan er det jo ikke nødvendigvis: Det kan være at effekten af en variabel afhænger af den anden variabel \rightarrow **vekselvirkning**

Additive effekter vs. vekselvirkning

Prisskilt fra isbod

•	1 kugle 15
•	2 kugler20
•	3 kugler23
•	1 kugle med guf19
•	2 kugler med guf24
•	3 kugler med guf27

To ækvivalente prisskilte

Prisskilt 1:

•	1	kugle15
•	2	kugler20
•	3	kugler23
•	1	kugle med guf 19

- 2 kugler med guf24
- 3 kugler med guf27

Prisskilt 2:

•	1	kugle,	uden	guf	 15
	_	Rugic,	uucii	gui	

•	2	kug	er												+	5
---	---	-----	----	--	--	--	--	--	--	--	--	--	--	--	---	---

• 3 kugler+	8
-------------	---

Prisskilt 1.

To ækvivalente prisskilte

• 1 kugle15

- 2 kugler20
- 3 kugler23
- 1 kugle med guf 19
- 2 kugler med guf24
- 3 kugler med guf27

Prisskilt 2:

- 1 kugle, uden guf ... 15
- 2 kugler+5
- 3 kugler+8
- med guf+4

Seks forskellige is at vælge imellem, men "effekterne" af guf og størrelse indgår additivt. Guf koster altid 4 kr ekstra.

Dermed kan priserne beskrives med kun fire parametre (1+2+1)

Eksempel med højdedata

Tilsvarende for den additive model for højdedata

- Der er otte kombinationer af studieretning og køn
- Men kun 1+3+1=5 parametre i den additive model: En for ref-gruppen, tre for studieretningsforskelle, en for kønsforskel.

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

 Is: Ingen vekselvirkning mellem guf og kugler: Guf kostede 4 kr uanset antal kugler.

Ækvivalent: Prisen for ekstra kugler er den samme uanset om der skal guf på eller ej.

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

- Is: Ingen vekselvirkning mellem guf og kugler: Guf kostede 4 kr uanset antal kugler.
 - Ækvivalent: Prisen for ekstra kugler er den samme uanset om der skal guf på eller ej.
- Højde: Antog at kønsforskellen er den samme på alle studier.
 - Ækvivalent: Forskel ml. studier er den samme for begge køn.

Prisskilte uden/med vekselvirkning

Nye priser giver rabat på guf hvis man køber store is:

Gam	ile priser:
•	$1 \ kugle \ \dots \dots 15$
•	$2 \ kugler \ \dots \dots 20$
•	$3 \ kugler \ \dots \dots 23$
•	1 kugle med guf19

- 2 kugler med guf .. 24
- 3 kugler med guf .. 27

Nye priser:

• 1 kugle15
• 2 kugler20
• 3 kugler23
• 1 kugle med guf19

- 2 kugler med guf .. 22
- 3 kugler med guf ...23

Prisskilte uden/med vekselvirkning

Nye priser giver rabat på guf hvis man køber store is:

Gan	nle priser:
•	1 kugle15
•	2 kugler20
•	3 kugler23
•	$1 \text{ kugle med guf } \dots 19$
•	2 kugler med guf 24
•	3 kugler med guf 27

Nye priser:

•	1	kugle							15
•	2	kugler							20

• 3 kugler2

- 1 kugle med guf ... 19
- 2 kugler med guf .. 22
- 3 kugler med guf .. 23

Nu er der vekselvirkning/interaktion! Prisen for guf afhænger af antal kugler: 4/2/0 kr ved 1/2/3 kugler.

Det kræver seks parametre at beskrive den nye prisstruktur.

Vekselvirkningsgraf/interaktionsplot

Plottet visualiserer vekselvirkning. Kig efter **parallellitet**:

- Parallelle profiler ↔ Ingen vekselvirkning
- Ikke-parallelle profiler ↔ Vekselvirkning

Vekselvirkningsgraf/interaktionsplot, forventede værdier

Tosidet ANOVA med/uden vekselvirkning

Model uden vekselvirkning

Modellen uden vekselvirkning:

$$højde_i = \alpha_{studie_i} + \beta_{kon_i} + e_i$$

Modellen angiver middelværdien for alle otte kombinationer af studie og køn — men lægger **restriktioner** på dem.

Model uden vekselvirkning = additiv model.

Model med vekselvirkning

Modellen med vekselvirkning lægger **ingen restriktioner** på de otte middelværdier. Vi skriver

$$\mathsf{h}\mathsf{g}\mathsf{j}\mathsf{d}\mathsf{e}_i = lpha_{\mathsf{studie}_i} + eta_{\mathsf{kon}_i} + \gamma_{\mathsf{studie}_i,\mathsf{kon}_i} + e_i$$

eller blot

$$\mathsf{h}\mathsf{øjde}_i = \gamma_{\mathsf{studie}_i,\mathsf{kon}_i} + e_i$$

Dette svarer faktisk til en ensidet ANOVA efter den variabel der inddeler obs. i otte grupper.

Opskrivningen med græske bogstaver ikke så vigtig. Vigtigt:

- at forstå den konceptuelle forskel mellem de to modeller
- at kunne fortolke output/estimater fra R

Eksempel: Højde efter studieretning og køn

Ingen mandlige HV-studerende i datasættet:

- Lidt bøvlet når vi skal have vekselvirkning med \rightarrow vi dropper HV-studerende (selvom det faktisk ikke er nødvendigt)
- Datasættet useData2 indeholder data fra 110 studerende med højderegistreringer: 49 BB, 30 JØ, 31 NR.

Modellen uden vekselvirkning

```
useData2 <- filter(useData, !(studie == "Husdyrvidenskab") )
twoway.add2 <- lm(hojde ~ studie + kon, data = useData2)
summary(twoway.add2)
##
## Call:
## lm(formula = hoide ~ studie + kon, data = useData2)
##
## Residuals:
       Min
                1Q Median 3Q
                                         Max
## -14.5701 -3.1051 -0.1051 3.8949 17.1185
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        168.1051 0.9841 170.825 <2e-16 ***
## studieJordbrugsøkonomi -0.5350 1.5059 -0.355 0.723
## studieNaturressourcer 0.2531 1.4866 0.170 0.865
                        14.5233 1.2567 11.556 <2e-16 ***
## konMand
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.34 on 106 degrees of freedom
## Multiple R-squared: 0.5726, Adjusted R-squared: 0.5605
## F-statistic: 47.33 on 3 and 106 DF, p-value: < 2.2e-16
```


Med vekselvirkning

```
twoway.int <- lm(hojde ~ studie + kon + studie*kon, data=useData2)
round(summary(twoway.int)$coef, digits = 5)
##
                                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                167.76471
                                            1.09212 153.61443 0.00000
## studieJordbrugsøkonomi
                                 -0.45701 2.07657 -0.22008 0.82624
## studieNaturressourcer
                                 1.66387
                                            2.02220 0.82280 0.41251
                                 15.63529 1.97388 7.92109 0.00000
## konMand
## studieJordbrugsøkonomi:konMand
                                 -0.64887
                                            3.06611 -0.21163 0.83281
## studieNaturressourcer:konMand
                                 -3.06387
                                            3.02956 -1.01132 0.31421
```


Modelfit og fortolkning af estimater

Modelfit:

- Uden vekselvirkning:
 lm(hojde ~ studie + kon, data=useData2)
- Med vekselvirkning:
 lm(hojde ~ studie + kon + studie*kon, data=useData2)

Modellen uden vekselvirkning: Estimater læses som før, men er lidt anderledes da HV ikke er med mere.

Modellen med vekselvirkning:

- Hvorfor netop seks linier med estimater?
- Estimat for BB, kvinder? For JØ, kvinder? For JØ, mænd?

Opsummering

Tosidet ANOVA efter to kategoriske variable, A og B:

- Model uden vekselvirkning: A+B
- Model med vekselvirkning: A+B+A*B
- Faktisk mange versioner af modellen med vekselvirkning:
 A+B+A:B eller A*B eller A:B. Prøv selv!

Estimater:

- R vælger referencegrupper for A og B (i de fleste versioner). Så er interceptet estimatet for referencekombinationen.
- Estimat for andre kombinationer: Interceptestimatet plus de relevante estimater.

Test for vekselvirkning

Er der faktisk vekselvirkning?

- Uformelt: Vekselvirkningsgraf/interaktionsplot
- Formelt: Hypotesetest

Vekselvirkningsgraf/interaktionsplot

- Gennemsnit plottes med profiler med den ene variabel på x-aksen og med profiler for niveauerne af den anden var.
- Er profilerne parallelle, på nær tilfældig variation?
- \bullet Parallelle \to tegn på at der ikke er vekselvirkning. Ikke-parallelle \to tegn på at der er vekselvirkning.
 - Under alle omstændigheder nyttig til at forstå samspillet.
- Svært at vurdere om ikke-parallellitet faktisk skyldes vekselvirkning eller blot tilfældig variation
- R: interaction.plot (se dagens R-kode)

Velselvirkningsgraf/interaktionsplot

- Profiler ser ganske parallelle ud, så næppe vekselvirkning
- Helt parallelle profiler på "den ene graf"

 ⇔ Helt parallelle profiler på "den anden graf"

Hypotesetest

Model uden vekselvirkning er et **specialtilfælde** af model med vekselvirkning \rightarrow de to modeller er nestede \rightarrow F-test.

- Hypotese, H_0 : Ingen vekselvirkning mellem studie og køn (dvs. kønseffekt den samme for alle studier, eller omvendt).
- Beskriver modellen med vekselv. faktisk data bedre end modellen uden vekselvirkning?
- Brug anova med de to modeller som argumenter, eller drop1 på model med vekselvirkning.

Konklusion

Der er ikke signifikant vekselv. mellem studie og køn (p = 0.59)

Vi ser defor nærmere på modellen uden vekselvirkning:

- Der er en sign. kønseffekt ($p \approx 0$), men ikke en signifikant effekt af studieretning (p = 0.88).
- Mænd estimeres til at være 14.5 cm (SE 1.26) højere end kvinder; 95% konfidensinterval (12.0, 17.0)

R: Hypotesetest ved brug af anova

```
anova(twoway.add2, twoway.int)

## Analysis of Variance Table

##

## Model 1: hojde ~ studie + kon

## Model 2: hojde ~ studie + kon + studie * kon

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 106 4261.1

## 2 104 4217.4 2 43.7 0.5388 0.5851
```


R: Hypotesetest ved brug af drop1

```
drop1(twoway.int, test="F")

## Single term deletions

##

## Model:

## hojde ~ studie + kon + studie * kon

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none>

4217.4 413.12

## studie:kon 2 43.7 4261.1 410.25 0.5388 0.5851
```


Modellen uden vekselvirkning (- studerende på HV)

```
drop1(twowav.add2, test="F")
## Single term deletions
##
## Model:
## hoide ~ studie + kon
         Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                    4261.1 410.25
                 9.9 4271.1 406.50 0.1233 0.8841
## studie 2
## kon 1 5368 6 9629 7 497 93 133 5478 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary (twoway.add2) $coef
                          Estimate Std. Error t value
                                                            Pr(>|t|)
## (Intercept)
                      168.1051102 0.9840758 170.8253621 3.135005e-131
## studieJordbrugsøkonomi -0.5349840 1.5058537 -0.3552696 7.230936e-01
## studieNaturressourcer 0.2530765 1.4865576 0.1702433 8.651433e-01
## konMand
                       14.5233067 1.2567448 11.5562892 1.759654e-20
```


Diverse om vekselvirkning

Vekselvirkning ml. A og B siger ikke at der er sammenhæng mellem A og B, men at effekten af A på y afhænger af B.

Vi taler om **hovedeffekter** og **vekselvirkning** af de to variable:

- Ofte ligger den primære interesse i hovedeffekterne, men sommetider er vekselvirkningen det primære
- Inddrag kun vekselvirkning hvis det giver faglig mening

Vekselvirkningsmodellen kræver **gentagelser:** Kan ikke fittes hvis der kun er en obs. for hver kombination af de to variable.

Diverse om vekselvirkning

Det giver ikke mening af tale om effekt**en** (bestemt form) af en variabel hvis den indgår i vekselvirkning med en anden:

- Fx kan man ikke bestemme estimatet for kønseffekten i modellen hvor studie og køn indgår med vekselvirkning
- Fx kan man ikke teste hovedeffekten af køn i modellen hvor studie og køn indgår med vekselvirkning

Opsummering — til eget brug

- Hvornår kan man bruge tosidet ANOVA?
- Hvad betyder det at der vekselvirkning mellem to variable?
- Hvordan fitter du en tosidet ANOVA (med/uden vekselvirkning)
 i R, og hvordan bruger du estimaterne?
- Hvordan undersøger man om de er vekselvirkning?

