EIE3810 Microprocessor System Design Laboratory

Laboratory Report #5

Name: 关嘉俊

Student ID: 116010060

Date: April 15th

The Chinese University of Hong Kong, Shenzhen

• Experiment A: e.g. Learn how to set up the TIM3 first, and make use of the interrupt handler for controlling the LED0.

- Experiment B: e.g. Similarly, learn how to set up the TIM4, which could control the LED1 together with the TIM3.
- Experiment C: e.g. Instead of using two timers for two individual processes, we setup SYSTICK with a 10ms periodic tick to control the two LEDs,
- Experiment D: e.g. First set up the related register, including the compare register, and then drive an LED with PWM.
- Experiment E: e.g. Achieve reading function of the JOYPAD key input based on TIM3 interrupt handler.

I. Experiment A

- (a) Basic procedure: 1. Type the program code and download it in the board. 2. Measure the DS0 flashing period with an oscilloscope 3. Try to change other flashing frequency.
- (b) Raw Data:

In the figure we can see that, for the blue line, its period is 1s, the timer interrupt set up the DSO successfully.

(c) Question:

For the LED flashing period, it is equal to 72M/pre-scalar value+1/reload-value+1*2

(d) Source Code:

#include "stm32f10x.h"
#include "EIE3810_LED.h"
#include "EIE3810_clock.h"

```
void EIE3810_Key2_EXTIInit(void);
void EIE3810_TIM3_Init(u16 arr, u16 psc);
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup);
int main(void)
{
    EIE3810_clock_tree_init();
    EIE3810_LED_Init();
    EIE3810_NVIC_SetPriorityGroup(5); //Set PRIGROUP
    EIE3810_TIM3_Init(4999,7199); //set arr to 4999 and psc to 7199 to flash in 1Hz
    //EIE3810_TIM3_Init(2499,7199);//set arr to 2499 and psc to 7199 to flash in 2Hz
    while(1)
    {
    }
}
void EIE3810_TIM3_Init(u16 arr, u16 psc)
{
    //TIM3
    RCC->APB1ENR|=1<<1;//enable TIM#
    TIM3->ARR=arr;//set TIM3 auto-reload register
    TIM3->PSC=psc;//set prescaler register
    TIM3->DIER |=1<<0;//TIM3 update interrup enable
    TIM3->CR1|=0x01;//couter enable
    NVIC->IP[29]=0x45;//set the priority of TIM3 interrupt to 0100
    NVIC->ISER[0]=(1<<29);//enable interrupt #29
}
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup)
{
    u32 temp1, temp2;
    temp2 = prigroup&0x00000007;
    temp2 <<=8;
```

```
temp1 = SCB->AIRCR;
temp1 &= 0x0000F8FF;
temp1 |= 0x05FA0000;
temp1 |= temp2;
SCB->AIRCR = temp1;
}

void TIM3_IRQHandler(void)
{
    if (TIM3->SR & 1<<0)//if update interrupt pending
    {
        GPIOB->ODR ^=1<<5;//toggle LED 0 by XOR a 1
    }
    TIM3->SR &= ~(1<<0);//get rid of the pending
}</pre>
```

II. Experiment B

(a) Procedure: 1.Set up TIM4 to control DS1 to have a flashing rate of 4Hz. Keep the TIM3's work. 2.Comple and run the program. 3)Achieve that the DS0 is on when DS1 is off

(b) Raw Data:

Figure 1 Ds1flash with 4Hz, Ds0 flash with 1 Hz

Figure 2 DS0 is on when Ds1 is off

(c) Source Code

```
#include "stm32f10x.h"
#include "EIE3810_LED.h"
#include "EIE3810_clock.h"
```

```
void EIE3810_Key2_EXTIInit(void);
void EIE3810_TIM3_Init(u16 arr, u16 psc);
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup);
void EIE3810_TIM4_Init(u16 arr, u16 psc);
int main(void)
{
 EIE3810_clock_tree_init();
 EIE3810_LED_Init();
 EIE3810_NVIC_SetPriorityGroup(5); //Set PRIGROUP
 EIE3810_TIM3_Init(4999,7199); //set arr to 4999 and psc to 7199 to flash in 1Hz
 //EIE3810_TIM3_Init(2499,7199);//set arr to 2499 and psc to 7199 to flash in 2Hz
 EIE3810_TIM4_Init(1249,7199);
 while(1)
 {;
  }
}
void EIE3810_TIM3_Init(u16 arr, u16 psc)
{
 //TIM3
 RCC->APB1ENR|=1<<1;//enable TIM3
 TIM3->ARR=arr;//set TIM3 auto-reload register
 TIM3->PSC=psc;//set prescaler register
 TIM3->DIER|=1<<0;//TIM3 update interrup enable
 TIM3->CR1|=0x01;//couter enable
 NVIC->IP[29]=0x45;//set the priority of TIM3 interrupt to 0100
 NVIC->ISER[0]=(1<<29);//enable interrupt #29}
void EIE3810_TIM4_Init(u16 arr, u16 psc)
{
 //TIM3
 RCC->APB1ENR|=1<<2;//enable TIM3
 TIM4->ARR=arr;//set TIM3 auto-reload register
 TIM4->PSC=psc;//set prescaler register
 TIM4->DIER|=1<<0;//TIM3 update interrup enable
 TIM4->CR1 |=0x01;//couter enable
 NVIC->IP[30]=0x45;//set the priority of TIM3 interrupt to 0100
 NVIC->ISER[0]=(1<<30);//enable interrupt #29
}
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup)
 u32 temp1, temp2;
 temp2 = prigroup&0x00000007;
```

```
temp2 <<=8;
 temp1 = SCB->AIRCR;
 temp1 &= 0x0000F8FF;
 temp1 |= 0x05FA0000;
 temp1 |= temp2;
 SCB->AIRCR = temp1;
}
void TIM3_IRQHandler(void)
 if (TIM3->SR & 1<<0)//if update interrupt pending
  GPIOB->ODR ^=1<<5;//toggle LED 0 by XOR a 1s
 TIM3->SR \&= (1<<0);//get rid of the pending
}
void TIM4_IRQHandler(void)
{
 if (TIM4->SR & 1<<0)//if update interrupt pending
  GPIOE->ODR ^=1<<5;//toggle LED1 by XOR a 1
 TIM4->SR &= ^{(1<<0);//get} rid of the pending
}
/** For the additional experiment, the code is shown as followed:
void TIM4_IRQHandler(void)
{
 if (TIM4->SR & 1<<0)
  if ((GPIOB-> ODR & 0x0020) == 0x0020)
   GPIOE->BRR = 1<<5;
  }
  else{
   GPIOE->BSRR = 1<<5;
  }
 }
}**/
```

III. Experiment C

(a) Procedure: (1) Instead of using two timers, we apply one timer and achieve multi-tasking by the 24-bit timer SYSTICL (2) Type and complete the function that achieve the goal. Include it into the main.c. (3) Modify the SysTick_Handler in the stm32f10x_it.c (4) Mody the code to achieve the function

(b) Raw Data:

(c) Source Code\

Figure 3 Ds1 flash 5 times one second

Figure 4 Ds0 flash w times one second

```
#include "stm32f10x.h"
#include "stm32f10x it.h"
#include "EIE3810_LED.h"
#include "EIE3810 clock.h"
u8 task1HeartBeat;
u8 LED0couter = 0;
u8 LED1couter = 0;
void EIE3810_SYSTICK_Init(void);
void EIE3810 Key2 EXTIInit(void);
void EIE3810 NVIC SetPriorityGroup(u8 prigroup);
int main(void){
 task1HeartBeat=0;
 EIE3810 clock tree init();
 EIE3810 SYSTICK Init();
 EIE3810 NVIC SetPriorityGroup(5);
 EIE3810_LED_Init();
 while(1){
```

if (task1HeartBeat>=10){
 task1HeartBeat = 0;

```
if (LED0couter==10){
   GPIOB->ODR ^=1<<5;//toggle LED 0 by XOR a 1
   LED0couter = 0;
  if (LED1couter==25){
   GPIOE->ODR ^=1<<5;//toggle LED 0 by XOR a 1
   LED1couter = 0;
  LED0couter++;
 LED1couter++;
void EIE3810 SYSTICK Init()
//SYSTICK
SysTick->CTRL = 0;//Clear SysTick->CTRL setting
SysTick->LOAD = 8999;//tick every 9000 clock pulses,72000000/8/9000=1000
SysTick->CTRL = 0x00010003; //COUNTFLAG set to 1; clocksource=0,FCLK/8;
        //counter enable with pending
}
void EIE3810 NVIC SetPriorityGroup(u8 prigroup)
u32 temp1, temp2;
temp2 = prigroup&0x000000007;
temp2 <<=8;
temp1 = SCB->AIRCR;
temp1 &= 0x0000F8FF;
temp1 = 0x05FA0000;
temp1 = temp2;
SCB->AIRCR = temp1;
```

(**D**) Question: In order to change the SysTick frequency to 200Hz, we need to change the pre-scalar value or counter value. In this experiment, the original frequency is 100Hz. Therefore, we need to set SysTick_LOAD register. The original setting is 0xFF015F8F. The last 5 bits stands for the pre-scalar value 0x15F8F = 89999. So the frequency = 72000000/((89999+1)*8) = 100Hz. In order to increasing the frequency to 200Hz, we need to change the pre-scalar value to 44999 = 0xAFC8. So the register should change to 0xFF00AFC8.

IV. Experiment D

(a) Procedure: 1) Type EIE3810_TIM3_PWMInit() into the main.c, we will use a PWM signal that is generate by TIM3 to drive LED DS0 with various brightness. 2)Measure the output of the LED DS0 with an oscilloscope.

(b) Raw Data:

(c) Question: When LED0_PWM_VAL is 0, LED0 is turned off because the brightness is 0. In oscilloscope, the signal of PB5 is always high. When LED0_PWM_VAL is 9999, LED brightness is set to 9999, so the LED is very shining. The signal in oscilloscope is almost in low voltage with only little high pulse.

(d) Source Code

```
#include "stm32f10x.h"

#include "stm32f10x_it.h"

#include "EIE3810_LED.h"

#include "EIE3810_clock.h"

#define LED0_PWM_VAL TIM3->CCR2

void Delay(u32);
```

void EIE3810_TIM3_PWMInit(u16 arr, u16 psc);

```
int main(void)
{
     u16 LED0PWMVal=0;
     u8 dir=1;
     EIE3810_clock_tree_init();
     EIE3810 LED Init();
     EIE3810_TIM3_PWMInit(9999, 71);//100Hz
     while(1)
    {
         Delay(1500);
         if (dir) LEDOPWMVal++; //increae the value which is going to be loaded CCR2
         else LEDOPWMVal--;//decrease the value which is going to be loaded in CCR2
         if (LED0PWMVal > 5000) dir=0;//start to decrease
         if (LEDOPWMVal ==0) dir=1;//start to increase
         LEDO_PWM_VAL = LEDOPWMVal;//set the value of TIM_CCR2
    }
}
void Delay(u32 count)
{
     u32 i;
    for (i=0;i<count;i++);
}
void EIE3810 TIM3 PWMInit(u16 arr, u16 psc)
{
    //load TIM3_CCR2 to actual compare 2 register
     RCC->APB2ENR |=1<<3;//enable GPIOB
     GPIOB->CRL &= 0xFF0FFFFF;//clear bit5
     GPIOB->CRL |= 0x00B00000;//set PB5 to 1011, 50MHz alternate function output Push-pull
     RCC->APB2ENR |= 1<<0;//enable AIFO
     AFIO->MAPR &= 0xFFFFF3FF;//clear bit TIM3_REMAP which is at [11:10]
     AFIO->MAPR |= 1<<11;//set TIM3_REMAP to '10'
     RCC->APB1ENR |= 1<<1;//enable TIM3
     TIM3->ARR = arr;//set auto-reload register
     TIM3->PSC = psc;//set prescaler register
     TIM3->CCMR1 |= 7<<12;//set output compare 2 mode as 0111.
     TIM3->CCMR1 |= 1<<11;//set OC2PE to 1, to enable output compare 2 preload
    TIM3->CCER |= 1<<4;//enable compare 2 output
     TIM3->CR1 = 0x0080;//enable auto-reload preload
    TIM3->CR1 |= 1<<0; //enable counter
}
```

V. Experiment E

(a) Procedure: (1) Complete the JOYPAD initiation function and reading function. (2) Modify the handler to connect the JOYPAD with the TIM3 at a frequency of 100Hz.

(b) Raw Data:

Figure 5 Pressng start would show on the LCD screen

Figure 6 Pressing down would also show on the screen

```
(c) Source Code:
#include "stm32f10x.h"
#include "stm32f10x it.h"
#include "EIE3810_LED.h"
#include "EIE3810_Clock.h"
#include "EIE3810_TFTLCD.h"
void Delay(u32);
void JOYPAD_Init(void);
void JOYPAD_Delay(u16 t);
u8 JOYPAD_Read(void);
void EIE3810_TIM3_Init(u16 arr, u16 psc);
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup);
int main(void){
 EIE3810_clock_tree_init();
 EIE3810_LED_Init();
 EIE3810 TFTLCD Init();
 EIE3810_NVIC_SetPriorityGroup(5);
 JOYPAD_Init();
 EIE3810_TIM3_Init(99, 7199);//100Hz
  EIE3810_TFTLCD_DrawAll(0,0,WHITE);
 while(1)
 {;}
void JOYPAD_Init(void)
 RCC->APB2ENR|=1<<3; //Enable GPIOB
 RCC->APB2ENR|=1<<5; //Enable GPIOE
 GPIOB->CRH&=0XFFFF00FF; //Clear the bit of the pin11, pin10
 GPIOB->CRH|=0X00003800; //Set the pin10 as the Input with pull-ip mode,
                              //and the pin11 with the general purpose output push-pull
                         //initialize PB10 PB11 to 1
 GPIOB->ODR|=3<<10;
 GPIOD->CRL&=0XFFFF0FFF; //Clear the bit3
 GPIOD->CRL|=0X00003000; //Set up pin bit3 as the input with pull-up/pull-down
 GPIOD->ODR|=1<<3;
                         //Enable the input pull-up mode
}
void JOYPAD DELAY(u16 t)
{while(t--);}
u8 JOYPAD_Read(void)
{
 vu8 temp=0;
 u8 t;
 GPIOB->BSRR |= 1<<11; //Set PB11 to high at the start of reading
 Delay(80); //Delay for a while
 GPIOB->BSRR |= 1<<27; //Set PB27 to high at the start of reading
```

```
for(t=0;t<8;t++)
 {
  temp>>=1; //Move the temp to one right digit
  if((((GPIOB->IDR)>>10)&0x01)==0) temp|=0x80; //detect a low voltage of PB10 and set bit 7-t to 1
  GPIOD->BSRR |= (1<<3);
  Delay(80);//generate a high voltage in PD3 lasted delay(80)
  GPIOD->BSRR |=(1<<19);
  Delay(80);//generate a low voltage in PD3 lasted delay(80)
 }
 return temp;
void EIE3810_TIM3_Init(u16 arr, u16 psc)
 //TIM3
 RCC->APB1ENR|=1<<1;//enable TIM#
 TIM3->ARR=arr;//set TIM3 auto-reload register
 TIM3->PSC=psc;//set prescaler register
 TIM3->DIER|=1<<0;//TIM3 update interrup enable
 TIM3->CR1|=0x01;//couter enable
 NVIC->IP[29]=0x45;//set the priority of TIM3 interrupt to 0100
 NVIC->ISER[0]=(1<<29);//enable interrupt #29
void EIE3810_NVIC_SetPriorityGroup(u8 prigroup)
 u32 temp1, temp2;
 temp2 = prigroup & 0x00000007;
 temp2 <<=8;
 temp1 = SCB->AIRCR;
 temp1 &= 0x0000F8FF;
 temp1 |= 0x05FA0000;
 temp1 |= temp2;
 SCB->AIRCR = temp1;
}
void TIM3_IRQHandler(void)
 u8 temp = 0;
 if (TIM3->SR & 1<<0){//if update interrupt pending
  temp = JOYPAD_Read();
  if ((temp)&0x01){
   EIE3810_TFTLCD_DrawAll(0,0,WHITE);
   EIE3810 TFTLCD ShowChar(200,200,'A',BLUE,WHITE);
  }
  if ((temp>>1)&0x01){
   EIE3810_TFTLCD_DrawAll(0,0,WHITE);
   EIE3810_TFTLCD_ShowChar(200,200,'B',BLUE,WHITE);
  }
```

```
if ((temp>>2)\&0x01){}
  EIE3810_TFTLCD_DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'S',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(210,200,'E',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(220,200,'L',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(230,200,'E',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(240,200,'C',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(250,200, 'T', BLUE, WHITE);
 }
 if ((temp>>3)\&0x01){}
  EIE3810 TFTLCD DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'S',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(210,200,'T',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(220,200,'A',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(230,200,'R',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(240,200,'T',BLUE,WHITE);
 }
 if ((temp>>4)&0x01){
  EIE3810 TFTLCD DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'U',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(210,200,'P',BLUE,WHITE);
 if ((temp>>5)&0x01){
  EIE3810 TFTLCD DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'D',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(210,200,'O',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(220,200,'W',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(230,200,'N',BLUE,WHITE);
 }
 if ((temp >> 6) \& 0x01){
  EIE3810 TFTLCD DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'L',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(210,200,'E',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(220,200, 'F', BLUE, WHITE);
  EIE3810_TFTLCD_ShowChar(230,200,'T',BLUE,WHITE);
 }
 if ((temp>>7)&0x01){
  EIE3810_TFTLCD_DrawAll(0,0,WHITE);
  EIE3810_TFTLCD_ShowChar(200,200,'R',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(210,200,'I',BLUE,WHITE);
  EIE3810 TFTLCD ShowChar(220,200,'G',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(230,200,'H',BLUE,WHITE);
  EIE3810_TFTLCD_ShowChar(240,200,'T',BLUE,WHITE);
 }
}
TIM3->SR &= \sim(1<<0);//get rid of the pending}
```