1 Prostori in preslikave

1.1 Topološki prostori

- 1. Topološki prostori
 - Definicija. Topologija. Odprte množice.
 - Opomba. Kako običajno preverimo aksiom T2?
 - Definicija. Topološki prostor.
 - **Definicija.** Finejša topologija. Grobejša topologija.
 - Primer. Naj bo (M, d) metrični prostor. Porojena (inducirana) topologija z metriko d. Evklidska topologija.
 - Definicija. Metrizabilen prostor.
 - Primer. Trivialna topologija. Diskretna topologija. Ali sta metrizabilna?
 - **Definicija.** Notranjost množice A.
 - Trditev. Čemu je enaka Int A (unija množic)?
 - Trditev. Čemu je enaka Int A (točke)?
 - Definicija. Zaprta množica.
 - Opomba. Kako vpeljemo topologijo z pomočjo zaprtih množic?
 - **Primer.** Topologija končnih komplementov. Ali so vse točke zaprte? Ali je metrizabilna?
 - **Definicija.** Zaprtje množice A.
 - Trditev. Čemu je enako Cl A (presek množic)?
 - Trditev. Čemu je enako Cl A (točke)?
 - **Primer.** Kakšna zvezna med $\overline{A \cup B}$ in $\overline{A} \cup \overline{B}$ ter med $\overline{A \cap B}$ in $\overline{A} \cap \overline{B}$?
 - Definicija. Mejna točka.
 - Definicija. Meja množice.
 - Trditev. Čemu je enaka Fr A (formula)?
 - Opomba. Ali je Fr A vedno zaprta množica?

Rezultati z vaj

- Topologija vsebovane točke. [2.3. naloga]
- Ali je presek poljubne družine topologij spet topologija? [2.5. naloga]

1.2 Zvezne preslikave

- 1. Slike in praslike
 - Definicija. Praslika. Slika.
 - Trditev. Monotonost slike in praslike.
 - Trditev. Praslika unije in preseka. Slika unije in preseka.
 - Opomba. Kadar slika ohranja preseke?
 - Trditev. Praslika komplementa.
 - Trditev. Praslika slike. Slika praslike.
- 2. Zvezne preslikave
 - Definicija. Zvezna preslikava.
 - **Primer.** Ali so zvezne:
 - Vse zvezne funkcije v smislu metričnih prostorov.
 - Funkcije v prostor s trivialno topologijo.

1.3 Homeomorfizmi 2

- Funkcije iz prostora z diskretno topologijo.
- Primer. Ugotovi:
 - Kadar je id : $(X, \mathcal{T}) \to (X, \mathcal{T}')$ zvezna?
 - Katere funkcije $f:(\mathbb{R},\mathcal{T}_{kk})\to(\mathbb{R},\mathcal{T}_{evkl})$ so zvezne?
 - Naj bosta X, Y neskončni, d metrika na Y. Katere funkcije $f: (X, \mathcal{T}_{kk}) \to (Y, \mathcal{T}_d)$ so zvezne?
- Trditev. Kaj lahko povemo o kompozitumu zveznih preslikav?
- Trditev. 2 karakterizaciji zveznosti preslikave $f: X \to Y$.

1.3 Homeomorfizmi

- 1. Homeomorfizmi
 - **Definicija.** Homeomorfizem.
 - **Definicija.** Homeomorfna prostora.
 - Opomba. Ali je homeomorfizem ekvivalenčna relacija? Kako nam to pomaga?
 - Definicija. Odprta preslikava. Zaprta preslikava.
 - Trditev. 3 karakterizaciji homeomorfizma.
 - **Primer.** Ali sta prostora $[0,1) \cup \{2\}$ in [0,1] homeomorfna? Ali inverz zvezne bijekcije vedno zvezen?
 - **Primer.** Pokaži, da vsak interval (končen ali neskončen) homeomorfen enemu izmed [0,1], [0,1), (0,1).
 - **Primer.** Pokaži, da intervali [0, 1], [0, 1), (0, 1) niso paroma homeomorfni.
 - Kaj je najboljša izbira za homeomorfizem $(-1,1) \approx \mathbb{R}$?
 - **Definicija.** Enotska n-krogla. Odprta enotska n-krogla. Enotska (n-1)-sfera.
 - **Primer.** Kako lahko $(0,1) \approx \mathbb{R}$ posplošimo do homeomorfizma med odprto kroglo \mathring{B}^n in \mathbb{R}^n ?
 - Primer. Zakaj sfera S^{n-1} v \mathbb{R}^n topološko bolj podobna \mathbb{R}^{n-1} kot \mathbb{R}^n ? Stereografska projekcija.
 - Definicija. Mnogoterosti.
 - Primer. Ali je $f:[0,2\pi]\to S^1,\ f(t)=e^{it}$ zvezna in bijektivna? Ali je zaprta? Kaj to pove o f^{-1} ?
 - **Primer.** Ali je projekcija pr : $\mathbb{R}^2 \to \mathbb{R}$, pr(x,y) = x zaprta?
 - **Definicija.** Topološka lastnost.
 - Primer. Ali je omejenost in polnost topološka lastnost?
 - Primer. Ali je možno, da $\mathbb{R} \approx \mathbb{R}^2$? Ali enak sklep deluje za \mathbb{R}^3 in \mathbb{R}^2 ?

1.4 Baze in predbaze

1. Baze in predbaze

Naj bo (X, \mathcal{T}) topološki prostor.

- Definicija. Lokalna baza okolic.
- **Zgled.** Lokalna baza $x \in X$ v metričnem prostoru (X, d).
- **Definicija.** Baza topologije \mathcal{T} .
- Zgled.
 - Kaj je baza metričnega prostora?
 - Kaj je baza diskretnega prostora?

- Trditev. Kako iz baze pridemo do lokalne baze okolic za neko točko $x \in X$? Kako pa obrat?
- Trditev. Kaj lahko preverimo na bazi?
- **Zgled.** Ali je $f:S^1\to S^1\subseteq\mathbb{C}$ (enotska kompleksna števila), $f(z)=z^2$ odprta?
- 2. Topologija, generirana z bazo
 - Trditev. Topologija, generirana z bazo.
 - Definicija. Produktna topologija.
 - Opomba. Ali družina produktov baznih množic tudi generira produktno topologijo?
 - Trditev. O projekcijah na produktne topologije.
 - **Zgled.** Ali je projekcija zaprta?

Rezultati z vaj

- Ali so vse vektorski operaciji v evklidske topologiji zvezne? [3.2. naloga]
- Kako lahko gledamo na ravnino \mathbb{R}^2 ? [3.2. naloga]
- Ali so vse p-norme ekvivalentne med sabo? Kaj to pomeni o topologii oz. o konvergence zaporedij? [3.3. naloga]
- (?) Kam zvezna preslikava preslika konvergentna zaporedja? [3.4. naloga]
- Kaj lahko povemo o preslikavi $\mathbb{R}^n \to \mathbb{R}$, ki ima lokalni ekstrem? [3.5. naloga]

2 Topološke lastnosti

2.1 Ločljivost

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Hausdorffovi in Frechetovi prostori
 - **Definicija.** Kadar pravimo, da \mathcal{T} **loči** $A \subseteq X$ od $B \subseteq X$?
 - **Definicija.** Kadar pravimo, da \mathcal{T} ostro loči $A \subseteq X$ od $B \subseteq X$?
 - *Primer*. Ali je trivialna topologija loči množice? Kaj pa diskretna?
 - *Primer*. Kaj je zaprtje podmnožice $A \subseteq X$ v jeziku ločljivosti?
 - **Definicija.** Hausdorffov prostor.
 - *Primer*. Ali so Hausdorffovi:
 - Metrični prostori.
 - $-(X,\mathcal{T}_{kk}), X$ je neskončna.
 - Trditev. 3 ekvivalentne trditve o Hausdorffovih prostorih. Diagonala v produktu.
 - **Izrek.** Lastnosti Hausdorffovih prostorov:
 - (a) Kaj lahko povemo o končnih množicah?
 - (b) Koliko limit lahko ima zaporedje v Hausdorffovem prostoru?
 - (c) Naj bosta $f, g: X \to Y^{\text{Haus}}$ preslikavi. Kaj lahko povemo o množici $\{x \in X \mid f(x) = g(x)\}$?
 - (d) Naj bosta $f,g:X\to Y^{\mathrm{Haus}}$ preslikavi. Kaj če se f,g ujemata na kakšne goste podmnožice $A\subseteq X$?
 - (e) Kaj lahko povemo o grafu preslikave $f: X \to Y^{\text{Haus}}$?
 - **Definicija.** Frechetov prostor.
 - *Primer*. Ali so Hausdorffovi prostori Frechetovi? Ali je trivialen prostor Frechetov?
 - Trditev. Karakterizacija Frechetova prostora (enojčki).
 - **Definicija.** Multiplikativna lastnost.
 - Trditev. Ali sta Hausdorffova in Frechetova lastnosti dedni in multiplkativni?
- 2. Regularnost in normalnost
 - **Definicija.** Regularen prostor.
 - **Definicija.** Normalen prostor.
 - *Primer.* V kakšni povezavi so normalnost, regularnost, Hausdorff in Frechet?
 - Primer. Naj bo (X, \mathcal{T}) Hausdorffov in $\mathcal{T} \subseteq \mathcal{T}'$. Ali je (X, \mathcal{T}') Hausdorffov? Ali je Hausdorffova lastnost implicira regularnost?
 - **Trditev.** Ali je vsak metričen prostor normalen?
 - **Trditev.** Ali je regularnost dedna?
 - **Trditev.** Naj bo X normalen. Kaj je zadostni pogoj, da bi bil $A \subseteq X$ normalen?
- 3. Aksiomi ločljivosti
 - **Aksiom.** Aksiomi $T_0 T_4$.
 - *Opomba*. Kako s aksiomi se izraža regularnost in normalnost? Kaj je T_0, T_1, T_2 ?
 - *Primer*. Zapiši, kaj iz česa sledi.
 - Trditev. Karakterizacija T_3 .

2.1 Ločljivost 5

- **Trditev.** Karakterizacija T_4 .
- **Trditev.** Ali je T_3 multiplikativna?
- Posledica. Ali je regularnost multiplikativna?
- Izrek. Izrek Tihonova. Zadostni pogoj za normalnost prostora.

Rezultati z vaj

- Ali je T_4 multiplikativna? Ali je normalnost multiplikativna?

2.2 Povezanost 6

2.2 Povezanost

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Povezanost
 - **Definicija.** Nepovezan prostor.
 - **Definicija.** Povezan prostor.
 - Trditev. 4 ekvivalentne trditve o nepovazanosti.
 - *Opomba*. Kaj pravi trditev o povezanosti?
 - Izrek. Karakterizacija povezanosti v \mathbb{R} .
 - Izrek. Ali je povezanost topološka lastnost?
 - Izrek. Lastnosti povezanosti:
 - (a) Kaj lahko povemo o uniji družine povezanih podmnožic vX,ki imajo neprazen presek?
 - (b) Ali je povezanost multiplikativna?
 - (c) Pot v X. Zadostni pogoj za povezanost prostora.
 - (d) Recimo, da je A povezan. Kaj lahko povemo o vsake množice B, za katero velja $A\subseteq B\subseteq \overline{A}$?
 - *Primer*. Ali so povezane:
 - Vsaka konveksna podmnožica v \mathbb{R}^n .
 - Komplement končne množice v \mathbb{R}^n , n > 1.
 - Komplement števne množice v \mathbb{R}^n , n > 1.
 - Primer. Ali je $\mathbb{R} \approx \mathbb{R}^n, \ n > 1$?
 - Izrek. Izrek o vmesni vrednosti.
- 2. Povezanost s potmi
 - *Primer*. Kaj je varšavski lok (oz. lok Sierpinskega)?
 - **Definicija.** Kadar rečemo, da je X povezan s potmi?
 - **Trditev.** Zadostni pogoj za povezanost X.
 - *Opomba*. Ali velja implikacija v nasprotno smer?
- 3. Komponente

3 Prostori preslikav

- 1. Topologije na prostorih preslikav
 - Naj bosta X, Y topološka prostora
 - Množica vseh preslikav iz $A \subseteq X$ v $U \subseteq Y$.
 - Topologija konvergence po točkah.
 - Trditev. O topologiji konvergence po točkah.
 - (*) **Definicija.** Kompaktno-odprta topologija. Prostor zveznih funkcij, opremljen z kompaktno-odprto topologijo.
 - (*) **Trditev.** Baza $\widehat{C}(X,Y)$, če je Y metričen prostor. Topologija enakomerne konvergence na kompaktih.

Dokaz

- (a) Najprej preverimo, da je to sploh baza.
- (b) Kako dobimo predbazo \mathcal{T}_{co} ?
- (*) **Trditev.** Kakšna poveza med Y in $\widehat{C}(X,Y)$.

Dokaz. (a) Pokažemo, da je vložitev odprta.

- (b) Pokažemo, da je slika zaprt podprostor.
- (*) **Trditev.** Povezava ločljivostih lastnosti Y in $\widehat{C}(X,Y)$.
- Kaj če je domena X diskreten prostor?
- 2. Preslikave na normalnih prostorih
 - Kaj so zvezne preslikave iz neskončne množice X z topologijo končnih komplementov v \mathbb{R} ?
 - (*) Izrek. Urisonova lema.
 - (*) Izrek. Urisonov metrizacijski izrek.
 - (*) **Posledica.** Čemu je ekvivalentna metrizabilnost v 2-števnih prostorih?
 - (*) Izrek. Tietzejev razširitveni izrek.
- 3. Stone-Weierstrassov izrek
 - (*) **Izrek.** Weierstrassov izrek.
 - (*) **Izrek.** Stone-Weierstrassov izrek.