Design of Boost Inductor

Required Inductance, L = 0.9mH

Required Specifications are:

 $I_{peak} = 13.94A; I_{rms} = 5.6A$

Winding factor, $K_w = 0.6$

Max Flux density, $B_m = (Ferrite core)$

Current density, $J = 3A/mm^2$ (Copper)

Using Area product method for Design:

Area Product

$$A_p = A_c.\,A_w = rac{L imes I_{peak} imes I_{rms}}{J imes K_w imes B_m}$$
 , $A_{ imes}$ = Core Area , $A_{ imes}$ = Window Area

Substituting values we get:

$$A_p = 19.516 \times 10^4 \text{ mm}^2$$

We have selected EE65/32/26 based on area product from the standard core table available

Specifications of EE 65/32/26 are:

$$A_c = 532 \text{ mm}^2$$

No. of Turns ,

$$N = \frac{L \times I_m}{A_c \times B_m}$$

Substituting values we get :

$$N = 117.9 \approx 118 \text{ turns}$$

Gauge of Wire ,

Gauge ,
$$\alpha = \frac{I}{J} = \frac{6}{3} = 2 \text{ mm}^2$$

SWG based on value of 2 mm^2 is SWG 16

Air Gap Length ,

$$l_g = \frac{\mu_0 \times N^2 \times A_c}{L} = 5 \text{mm}$$

