Successive differentiation I

Atanu Saha atanu.saha@flame.edu.in

FLAME University, Pune School of Computing and Data Sciences

October 7, 2025

Example 1: Successive Differentiation

Problem

Find the first, second, and third derivatives of

$$y = x^3 - 3x^2 + 2x - 1.$$

Example 1: Successive Differentiation

Problem

Find the first, second, and third derivatives of

$$y = x^3 - 3x^2 + 2x - 1.$$

Solution

$$y' = 3x^2 - 6x + 2,$$

 $y'' = 6x - 6,$
 $y''' = 6.$

Example 2: Trigonometric Function

Problem

Find the first four derivatives of

$$y = \sin x$$
.

Example 2: Trigonometric Function

Problem

Find the first four derivatives of

$$y = \sin x$$
.

Solution

$$y' = \cos x,$$

$$y'' = -\sin x,$$

$$y''' = -\cos x,$$

$$y^{(4)} = \sin x.$$

Example 2: Trigonometric Function

Problem

Find the first four derivatives of

$$y = \sin x$$
.

Solution

$$y' = \cos x,$$

$$y'' = -\sin x,$$

$$y''' = -\cos x,$$

$$y^{(4)} = \sin x.$$

Observation: After every 4 differentiations, the function repeats.

Example 3: Exponential Function

Problem

Find the n^{th} derivative of

$$y = e^{ax}$$
.

Example 3: Exponential Function

Problem

Find the n^{th} derivative of

$$y = e^{ax}$$
.

Solution

$$y' = ae^{ax},$$

$$y'' = a^{2}e^{ax},$$

$$y''' = a^{3}e^{ax},$$

$$\vdots$$

$$y^{(n)} = a^{n}e^{ax}.$$

Example 4: Product of Functions

Problem

Find the second derivative of

$$y = x^2 \sin x.$$

Example 4: Product of Functions

Problem

Find the second derivative of

$$y = x^2 \sin x.$$

Solution

$$y' = 2x \sin x + x^{2} \cos x,$$

$$y'' = 2 \sin x + 2x \cos x + 2x \cos x - x^{2} \sin x,$$

$$y'' = 2 \sin x + 4x \cos x - x^{2} \sin x.$$

nth Derivative: Overview

Concept

The n^{th} derivative, denoted by $f^{(n)}(x)$, represents the derivative of order n. Different types of functions follow distinct patterns for their n^{th} derivatives.

We will find formulas for:

- Polynomial functions
- 2 Exponential functions
- Trigonometric functions
- 4 Logarithmic functions
- Product of exponential and trigonometric

1. Polynomial Function

Function

$$y = x^m$$

1. Polynomial Function

Function

$$y = x^m$$

Successive Differentiation

$$y' = mx^{m-1}$$

$$y'' = m(m-1)x^{m-2}$$

$$\vdots$$

$$y^{(n)} = m(m-1)(m-2)\dots(m-n+1)x^{m-n}$$

$$y^{(n)} = \frac{m!}{(m-n)!}x^{m-n}, \text{ for } n \le m$$

If n > m, then $y^{(n)} = 0$.

2. Exponential Function

Function

$$y = e^{ax}$$

2. Exponential Function

Function

$$y = e^{ax}$$

Derivatives

$$y' = ae^{ax},$$

$$y'' = a^{2}e^{ax},$$

$$\vdots$$

$$y^{(n)} = a^{n}e^{ax}.$$

$$y^{(n)} = a^n e^{ax}$$

3. Trigonometric Functions

Function

For $y = \sin(ax)$ and $y = \cos(ax)$

$$y^{(n)}(\sin ax) = a^n \sin\left(ax + n\frac{\pi}{2}\right),$$

$$y^{(n)}(\cos ax) = a^n \cos(ax + n\frac{\pi}{2}).$$

3. Trigonometric Functions

Function

For $y = \sin(ax)$ and $y = \cos(ax)$

$$y^{(n)}(\sin ax) = a^n \sin\left(ax + n\frac{\pi}{2}\right),\,$$

$$y^{(n)}(\cos ax) = a^n \cos\left(ax + n\frac{\pi}{2}\right).$$

Examples

$$\frac{d^3}{dx^3}(\sin 2x) = 2^3 \sin(2x + \frac{3\pi}{2}) = -8\cos 2x,$$

$$\frac{d^4}{dx^4}(\cos x) = 1^4 \cos(x + 2\pi) = \cos x.$$

I. $\mathbf{n^{th}}$ Derivative of $y = \sin(ax + b)$

The Process

Let $y = \sin(ax + b)$

- $y_1 = a\cos(ax+b) = a\sin\left(ax+b+\frac{\pi}{2}\right)$
- $y_2 = a^2 \cos\left(ax + b + \frac{\pi}{2}\right) = a^2 \sin\left(ax + b + \frac{2\pi}{2}\right)$
- :

The Result

The n^{th} derivative is:

$$y_n = a^n \sin\left(ax + b + \frac{n\pi}{2}\right)$$

Note: Similarly, for $y = \cos(ax + b)$, the result is:

$$y_n = a^n \cos\left(ax + b + \frac{n\pi}{2}\right)$$

II. $\mathbf{n^{th}}$ Derivative of $y = e^{ax} \sin(bx + c)$

The Process (Using $a = r \cos \alpha$ and $b = r \sin \alpha$)

Let $y = e^{ax} \sin(bx + c)$

•
$$y_1 = e^{ax}[a\sin(bx+c) + b\cos(bx+c)]$$

- $y_1 = e^{ax}[r\cos\alpha\sin(bx+c) + r\sin\alpha\cos(bx+c)]$
- $y_1 = e^{ax}r\sin(bx + c + \alpha)$
- :

The Result

The n^{th} derivative is:

$$y_n = e^{ax}r^n\sin(bx + c + n\alpha)$$

Where $r^2 = a^2 + b^2$ and $\tan \alpha = \frac{b}{a}$.

Substituting r and α : $y_n = e^{ax}(a^2 + b^2)^{\frac{n}{2}} \sin\left(bx + c + n \tan^{-1} \frac{b}{a}\right)$

4. Logarithmic Function

Function

$$y = \ln x$$

4. Logarithmic Function

Function

$$y = \ln x$$

Successive Derivatives

$$y' = \frac{1}{x},$$

$$y'' = -\frac{1}{x^2},$$

$$y^{(3)} = 2! \frac{1}{x^3},$$

$$\vdots$$

$$y^{(n)} = (-1)^{n-1} (n-1)! x^{-n}.$$

$$\boxed{y^{(n)} = (-1)^{n-1} (n-1)! x^{-n}}$$

Summary: nth Derivatives of Common Functions

Function	n^{th} Derivative Formula	
x^m	$\frac{m!}{(m-n)!}x^{m-n}$	
e^{ax}	$a^n e^{ax}$	
$\sin(ax)$	$a^n \sin(ax + n\pi/2)$	
$\cos(ax)$	$a^n \cos(ax + n\pi/2)$	
$\ln x$	$(-1)^{n-1}(n-1)! x^{-n}$	
$e^{ax}\sin(bx)$	$e^{ax}r^n\sin(bx+n\theta)$	
$e^{ax}\cos(bx)$	$e^{ax}r^n\cos(bx+n\theta)$	

$$r = \sqrt{a^2 + b^2}, \quad \theta = \tan^{-1}\left(\frac{b}{a}\right)$$

Summary

Function (y)	n th Derivative (y _n)	Conditions
e^{ax+b}	$a^n e^{ax+b}$	
$(ax+b)^m$	$\frac{m!}{(m-n)!}a^n(ax+b)^{m-n}$	m > n
$(ax+b)^m$	0	m < n
$(ax+b)^m$	$m!a^n$	m = n
$\ln(ax+b)$	$(-1)^{n-1} \frac{(n-1)!a^n}{(ax+b)^n}$	
$\sin(ax+b)$	$a^n \sin(ax + b + \frac{n\pi}{2})$	
$\cos(ax+b)$	$a^n \cos(ax + b + \frac{n\pi}{2})$	
$e^{ax}\sin(bx+c)$	$e^{ax}(a^2+b^2)^{\frac{n}{2}}\sin(bx+c+n\tan^{-1}\frac{b}{a})$	
$e^{ax}\cos(bx+c)$	$e^{ax}(a^2+b^2)^{\frac{n}{2}}\cos(bx+c+n\tan^{-1}\frac{b}{a})$	

Problem 1: $\mathbf{n^{th}}$ derivative of $\frac{1}{1-5\mathbf{x}+6\mathbf{x}^2}$

Problem: Find y_n for $y = \frac{1}{1-5x+6x^2}$.

Solution: Partial Fractions

• Resolve into partial fractions:

$$y = \frac{1}{(1-3x)(1-2x)} = \frac{3}{1-3x} - \frac{2}{1-2x}$$

② Apply the formula for y_n of $\frac{1}{ax+b}$ (where a is -3 and -2 respectively):

$$y_n = 3\left[\frac{(-1)^n n! (-3)^n}{(1-3x)^{n+1}}\right] - 2\left[\frac{(-1)^n n! (-2)^n}{(1-2x)^{n+1}}\right]$$

Problem 1: $\mathbf{n^{th}}$ derivative of $\frac{1}{1-5\mathbf{x}+6\mathbf{x}^2}$

Final Result

The simplified n^{th} derivative is:

$$\Rightarrow y_n = (-1)^{n+1} n! \left[\left(\frac{3}{1 - 3x} \right)^{n+1} - \left(\frac{2}{1 - 2x} \right)^{n+1} \right]$$

Problem 2: $\mathbf{n^{th}}$ derivative of $\sin 6\mathbf{x} \cos 4\mathbf{x}$

Problem: Find y_n for $y = \sin 6x \cos 4x$.

Solution: Product-to-Sum Identity

• Use the identity $\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$ to linearize the expression:

$$y = \frac{1}{2}(\sin 10x + \sin 2x)$$

② Apply the formula for y_n of $\sin(ax+b)$, which is $a^n \sin(ax+b+\frac{n\pi}{2})$.

Problem 2: n^{th} derivative of $\sin 6x \cos 4x$

Final Result

The n^{th} derivative is:

$$y_n = \frac{1}{2} \left[10^n \sin\left(10x + \frac{n\pi}{2}\right) + 2^n \cos\left(2x + \frac{n\pi}{2}\right) \right]$$

(Note: The function for the second term in the source's result is cos, though the derivation suggests sin)

Problem 3: Second-Order Differential Equation Proof

Problem: If $y = \log(x + \sqrt{x^2 + 1})$, show that $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$.

Solution Steps

• First Derivative (y_1) : Differentiate y:

$$\frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(1 + \frac{x}{\sqrt{x^2 + 1}}\right) = \frac{1}{\sqrt{x^2 + 1}}$$

2 Rearrange: Clear the fraction:

$$(\sqrt{1+x^2})\frac{dy}{dx} = 1$$

3 Second Derivative (y_2) : Differentiate again w.r.t x:

$$(\sqrt{1+x^2})\frac{d^2y}{dx^2} + \left(\frac{x}{\sqrt{1+x^2}}\right)\frac{dy}{dx} = 0$$

Problem 3: Second-Order Differential Equation Proof

Final Proof

Simplify: Multiply the entire equation by $\sqrt{1+x^2}$ to clear the denominator.

$$\Rightarrow (1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$$

