DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO – UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA RSA

S. C. COUTINHO

1. Respostas dos exercícios do capítulo 1

- (1) (a) mdc(14, 35) = 7; $\alpha = -2 e \beta = 1$;
 - (b) mdc(252, 180) = 36, $\alpha = -2 e \beta = 3$;
 - (c) mdc(6643, 2873) = 13, $\alpha = -16$ e $\beta = 37$.
- (2) Para verificar (1) e (2) simplesmente use o algoritmo euclidiano. Para fazer (3) observe antes que:

$$(n+1)(n!+1) - ((n+1)!+1) = n.$$

Chamando de d o mdc(n! + 1, (n + 1)! + 1), concluímos que d divide n. Então este d divide n! + 1 e n, logo d divide 1; isto é d = 1.

(3) Digamos que dividindo n por m temos quociente q e resto r; isto é, n = mq + r. Queremos mostrar que $2^r - 1$ é o resto da divisão de $2^n - 1$ por $2^m - 1$; isto é, queremos mostrar que existe um inteiro Q tal que

$$2^{n} - 1 = (2^{m} - 1)Q + 2^{r} - 1$$
 e $0 \le 2^{r} - 1 \le 2^{m} - 1$.

Observe que se estas equações são satisfeitas então o resto é 2^r-1 por causa da unicidade do resto da divisão. Note que, como $0 \le r < m$, então

$$2^0 \le 2^r \le 2^m$$
 donde $0 \le 2^r - 1 \le 2^n - 1$.

Precisamos agora mostrar que existe um inteiro Q tal que $2^n - 1 = (2^m - 1)Q + 2^r - 1$. Mas desta equação concluímos que

$$Q = \frac{(2^n - 1) - (2^r - 1)}{2^m - 1} = \frac{2^n - 2^r}{2^m - 1}.$$

Como $2^n - 2^r = 2^r(2^{n-r} - 1) = 2^r(2^{mq} - 1)$, então

$$\frac{2^n-2^r}{2^m-1} = \frac{2^r(2^m-1)(2^{mq-1}+\cdots+1)}{2^m-1} = 2^r(2^{mq-1}+\cdots+1),$$

é um número inteiro, e isto completa a solução.

(4) (1) Pelo exercício anterior temos que $2^{2^n} - 1$ é divisível por $2^{2^{m+1}} - 1$, já que 2^{m+1} divide 2^n . Assim existe Q tal que

$$2^{2^{n}} - 1 = (2^{2^{m+1}} - 1)Q$$
$$= (2^{2^{m}} + 1)(2^{2^{m}} - 1)Q,$$

o que mostra que $2^{2^m}+1$ divide $2^{2^n}-1$ quando n>m. O quociente é $(2^{2^m}-1)Q$, onde Q é calculado como no exercício anterior.

(2) De (1) temos que

$$2^{2^{n}} + 1 = (2^{2^{n}} - 1) + 2$$
$$= (2^{2^{m}} + 1)(2^{2^{m}} - 1)Q + 2.$$

Portanto o resto da divisão de $2^{2^n} + 1$ por $2^{2^m} + 1$ é 2.

- (3) Basta aplicar o algoritmo euclidiano. Dividindo $2^{2^n}+1$ por $2^{2^m}+1$ temos resto 2. Dividindo $2^{2^m}+1$ por 2 temos resto 1. Logo o mdc desejado é 1.
- (5) (1) Copie a idéia da demonstração do Algoritmo Euclidiano. Mostre que dividindo f_n por f_{n-1} o quociente é 1 e o resto é f_{n-2} . Conclua que o mdc de dois números de Fibonacci consecutivos é sempre o mesmo. Com isto o problema se reduz a calcular $\mathrm{mdc}(f_2, f_3) = \mathrm{mdc}(1, 2) = 1$.
 - (2) Temos que fazer n-1 divisões para calcular $\operatorname{mdc}(f_n, f_{n-1})$ se $n \geq 4$; supondo que a última divisão é a que dá resto zero.
- (6) Seja m o menor múltiplo comum de a e b e seja r = a'b'd. Como

$$r = a'b'd = ab' = a'b$$
.

então r é um múltiplo comum de a e b. Portanto $m \leq r$.

Por outro lado, como m é um múltiplo de a e também de b, então existem inteiros x e y tais que m=ax=by. Seja $d=\mathrm{mdc}(a,b)$. Logo existem inteiros a' e b' tais que a=da' e b=db'; observe que $\mathrm{mdc}(a',b')=1$. Cancelando d de ambos os membros de ax=by, concluímos que a'x=b'y. Pelo algoritmo euclidiano estendido existem inteiros α e β tais que $a'\alpha+b'\beta=1$. Multiplicando esta equação por x ficamos com $xa'\alpha+xb'\beta=x$. Mas xa'=yb', donde

$$x = yb'\alpha + xb'\beta = b'(y\alpha + x\beta).$$

Portanto b' divide x. Temos então que a'b'd divide ax = a'dx. Logo $r \le m$. Como já havíamos provado que $m \le r$, concluímos que m = a'b'd = ab/d.

(7) Usando a notação do exercício temos que a=da' e b=db'. Portanto se a equação ax+by=c tem solução x_0, y_0 , obtemos

$$c = ax_0 + by_0 = da'x_0 + db'y_0 = d(a'x_0 + b'y_0).$$

Donde concluímos que a equação só pode ter solução se d dividir c. Se isto acontecer, então escrevendo c=dc', substituindo isto na equação acima e cancelando d, temos

$$c' = a'x_0 + b'y_0.$$

Chamando a'x + b'y = c' de equação reduzida, concluímos que qualquer solução da equação original também é solução da reduzida. Mas a recíproca também é verdadeira, porque para passar da reduzida para a equação original basta multiplicá-la por d.

Finalmente é fácil obter soluções da equação reduzida usando o algoritmo euclidiano estendido. Observe que como d = mdc(a,b) e a = da' e b = db', então mdc(a',b') = 1. Aplicando o algoritmo euclidiano estendido encontramos inteiros α e β tais que $a\alpha + b\beta = 1$. Multiplicando por c',

temos que $c'=a(c'\alpha)+b(c'\beta)$. Logo $x=c'\alpha$ e $y=c'\beta$ é uma solução da equação reduzida; e, portanto, da equação original, conforme já vimos acima.

- 2. Respostas dos exercícios do capítulo 2
- (1) Fatorando 26 e 39, a equação dada toma a forma

$$2^{x+y} \cdot 3^4 \cdot 13^y = 3^z \cdot 13^z$$

Como a fatoração em primos é única, podemos comparar os expoentes dos dois lados, obtendo

$$x + y = 0$$
, $z = 4$, $z = y$.

Como $x,\,y,\,$ e z são inteiros não negativos, concluímos da primeira equação que x=y=0. Portanto o sistema é impossível; isto é, não existem inteiros não-negativos que satisfaçam à equação dada.

(2) Observe que se $1 < i \le k$, então k! + i é divisível por i. Como k! + i > i > 1, temos que k! + i é composto. Dado um inteiro qualquer m, a seqüência

$$(m+1)!+2,\ldots,(m+1)!+(m+1)$$

tem m inteiros consecutivos que, como vimos, são todos compostos.

- (3) Um fator de 175557 é 421, um fator de 455621 é 677 e um fator de 731021 é 857.
- (4) (a) Escreva $\sqrt{6}$ como uma fração reduzida e obtenha uma contradição. Mas cuidado: 6 não é primo!
 - (b) É, porque a soma de duas frações é sempre uma fração.
 - (c) Não. Sabemos que $\sqrt{2}$ é irracional e que $2 \sqrt{2}$ é irracional por (2). Mas a soma dos dois é 2, que é racional.
 - (d) Não. Elevando ao quadrado

$$(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}.$$

Se $\sqrt{2} + \sqrt{3}$ fosse uma fração, então o seu quadrado também seria. Mas isto implicaria que $\sqrt{6}$ é racional, o que sabemos ser falso por (1).

(5) Temos que $R(n) = (10^n - 1)/3$ e $R(k) = (10^k - 1)/3$. Portanto para mostrar que R(k) divide R(n), basta mostrar que $10^k - 1$ divide $10^n - 1$. Suponhamos que n = kt; então

$$10^{n} - 1 = 10^{kt} - 1 = (10^{k} - 1)(10^{k(t-1)} + 10^{k(t-2)} + \dots + 10^{k} + 1),$$

que mostra o que queremos.

(6) Como p é o menor fator primo de n, temos que $p \le \sqrt{n}$. Mas, por hipótese, $p \ge \sqrt{n}$. Logo $p = \sqrt{n}$; ou seja $n = p^2$. Aplicando o algoritmo euclidiano a 6n + 7 e 3n + 2, verificamos que têm mdc igual a 1. Como p - 4 divide este mdc, devemos ter que p - 4 é 1 ou -1. No primeiro caso p = 5, no segundo p = 3. Portanto os valores possíveis para n são 9 e 25.

- 4
- (7) A multiplicidade de p_i na fatoração do mdc(a, b) é $min\{e_i, r_i\}$. A multiplicidade de p_i na fatoração de mmc(a, b) é $max\{e_i, r_i\}$.
- (8) Como estamos supondo que $2^{s+1} 1$ é primo, os divisores de $2^s(2^{s+1} 1)$ são

$$1, 2, 2^2, \ldots, 2^s;$$

$$2^{s+1}-1$$
, $2(2^{s+1}-1)$, $2^2(2^{s+1}-1)$, ..., $2^s(2^{s+1}-1)$.

Os divisores na primeira linha formam uma progressão geométrica de razão 2 e primeiro termo 1; os da segunda linha formam uma progressão geométrica de razão 2 e primeiro termo $2^{s+1}-1$. Isto verifica o que é pedido em (1); passemos a (2). Assim a soma dos divisores da primeira linha é $2^{s+1}-1$ e a soma dos divisores da segunda linha é $(2^{s+1}-1)(2^{s+1}-1)$. Somando os dois obtemos

$$2^{s+1} - 1 + (2^{s+1} - 1)(2^{s+1} - 1) = (2^{s+1} - 1)(1 + 2^{s+1} - 1) = 2^{s+1}(2^{s+1} - 1)$$
 que é o dobro de $2^s(2^{s+1} - 1)$. Portanto este número é perfeito.

- (9) (1) Qualquer inteiro positivo r tem pelo menos dois fatores: 1 e r. Portanto $S(r) \geq 1 + r$, qualquer que seja r. Se S(r) = 1 + r, então r não pode ter nenhum outro fator além de 1 e r; logo r tem que ser primo.
 - (2) Isto á apenas a definição de número perfeito.
 - (3) Sejam d, b_1 , b_2 e d_1 e d_2 como no problema. Como d_1 divide d, podemos escrever $d=d_1c$, para algum inteiro positivo c. Como $\mathrm{mdc}(d_1,d_2)=1$ e d_2 divide $d=d_1c$, então pelo lema da seção 6 temos que d_2 divide c; em particular $d_2 \leq c$. Por outro lado, $\mathrm{mdc}(c,b_1)=1$, e c divide $d=b_1b_2$. Portanto, novamente pelo lema da seção 6 temos que c divide c. Assim c é um divisor comum entre c0 donde c1 donde c2 donde c3 de demonstração do resultado está completa.
 - (4) Vamos listar os divisores de b_1 e de b_2 :

divisores de
$$b_1$$
: $a_0 = 1$, a_1 , a_2 , ..., a_m divisores de b_2 : $c_0 = 1$, c_1 , c_2 , ..., c_n

Mas

$$S(b_1)S(b_2) = (1 + a_1 + a_2 + \dots + a_m)(1 + c_1 + c_2 + \dots + c_n).$$

Efetuando o produto, concluímos que $S(b_1)S(b_2)$ é a soma dos números da forma a_ic_j com $0 \le i \le m$ e $0 \le j \le n$ que, como vimos acima, são exatamente os divisores de b_1b_2 . Portanto $S(b_1)S(b_2) = S(b_1b_2)$.

(10) (1) Suponhamos que n é um inteiro positivo par. Então podemos fatorar a maior potência possível de 2 que divide n e escrever $n=2^st$, onde t é um inteiro positivo ímpar. Como $\mathrm{mdc}(2^s,t)=1$ podemos usar (4) do exercício anterior para concluir que $S(2^st)=S(2^s)S(t)$. Mas os fatores de 2^s são $1,2,\ldots,2^s$; que formam uma progressão geométrica cuja soma é $2^{s+1}-1$. Portanto

$$S(n) = (2^{s+1} - 1)S(t).$$

Suponhamos, agora, que n é perfeito; isto é, que S(n)=2n. Então

$$(\star) 2^{s+1}t = (2^{s+1} - 1)S(t).$$

Como $\operatorname{mdc}(2^{s+1}, 2^{s+1} - 1) = 1$, concluímos que 2^{s+1} divide S(t).

(2) De (1) sabemos que podemos escrever $S(t)=2^{s+1}q$, para algum inteiro positivo q. Substituindo na fórmula (\star) acima

$$2^{s+1}t = (2^{s+1} - 1)2^{s+1}q,$$

donde $t = (2^{s+1} - 1)q$.

(3) Queremos mostrar que q=1. Digamos, por contradição, que q>1. Então t tem pelo menos três fatores: 1, q e t; donde $S(t) \ge 1 + q + t$. Mas, por outro lado,

$$S(t) = 2^{s+1}q = (2^{s+1} - 1)q + q = t + q,$$

uma contradição. Logo q=1.

(4) Como q = 1 por (3), temos que

$$t = 2^{s+1} - 1$$
 e $S(t) = 2^{s+1}$.

Juntamente com (1) do exercício anterior isto implica que t é primo.

Reunindo o que provamos temos:

- $n = 2^s t$;
- $t = 2^{s+1} 1$;
- \bullet t é primo.

Isto mostra que n é euclidiano.

- 3. Respostas dos exercícios do capítulo 3
- (1) Procedendo como no caso do polinômio de grau 2, concluímos que h tem que satisfazer à desigualdade

$$ap^{2}h^{2} + (3amp + bp)h + (3am^{2} + 2mb + c) > 0.$$

Sejam $\alpha \leq \beta$ as raízes da equação do segundo grau à esquerda da desigualdade. Como $ap^2 > 0$, a desigualdade será satisfeita quando $h < \alpha$ ou $h > \beta$. Mas só estamos interessados em valores positivos de h, por isso basta tomar $h > \beta$.

- (2) Temos que $13^{\sharp} + 1 = 59 \cdot 509$ e $17^{\sharp} + 1 = 19 \cdot 97 \cdot 277$.
- (3) (4n+1)(4k+1) = 4(4nk+n+k) + 1. Note que é preciso escolher letras diferentes $k \in n$, porque os números $4n+1 \in 4k+1$ podem ser diferentes.
- (4) Qualquer número dividido por 4 tem resto 0, 1, 2 ou 3. Como um primo diferente de 2 é ímpar, os únicos restos possíveis neste caso são 1 e 3.
- (5) Não. Por exemplo $3 \times 7 = 21 = 4 \times 5 + 1$.
- (6) Pelo Teorema de Fatoração Única, o número $4(p_1 ldots p_k) + 3$ pode ser escrito como um produto de primos. Estes primos $n\tilde{a}o$ podem pertencer ao conjunto $\{p_1, \ldots, p_k\}$. Só resta mostrar que os primos na fatoração de $4(p_1 ldots p_k) + 3$ não podem ser todos da forma 4n + 1. Mas se fosse este o caso, o produto destes primos seria da forma 4n + 1 pelo exercício 4, o que não é verdade: $4(p_1 ldots p_k) + 3$ deixa resto 3 na divisão por 4.

- 6
- (7) Suponha, por absurdo, que $\{3, p_1, \dots, p_k\}$ é o conjunto de todos os primos da forma 4n + 3 e aplique o exercício anterior.
- (8) Seja p_n um primo que divide o número de Fermat F(n). Se houvesse um quantidade finita de primos, então, como há infinitos números de Fermat, teríamos que ter $p_n = p_m$ para dois inteiros m e n diferentes. Mas isto significaria que $p_m = p_n$ dividiria F(m) e F(n); assim

$$mdc(F(n), F(m)) \ge p_n > 1$$
,

o que contradiz o fato de que $\mathrm{mdc}(F(n),F(m))=1$ se $m\neq n,$ que foi provado no exercício 4 do capítulo 1.

- (9) Suponhamos que p, p+2 e p+4 sejam primos. Observamos que p tem que ser ímpar, já que se p=2 então p+2=4 é composto. Logo p tem que ser da forma 3k, 3k+1 ou 3k+2. Mas 3k é composto se $k\geq 2$, logo p=3k+1 ou p=3k+2. No primeiro caso p+2=3k+3 é composto, no segundo p+4=3k+6 é composto. Logo a única possibilidade é p=3k e k=1, que dá p=3, p+2=5 e p+4=7; todos primos.
 - 4. Respostas dos exercícios do capítulo 3
- (1) (1) não é transitiva nem reflexiva, mas (2) é de equivalência.
- (2) (1) 1; (2) 6; (3) 7.
- (3) (1) 4; (2) 7; (3) 132; (4) 14.
- (4) $1000! \equiv 0 \pmod{3^{300}}$.
- (5) $U(4) = \{\overline{1}, \overline{3}\}\ e\ \overline{3}\ \acute{\text{e}}\ \text{inverso dele mesmo.}$

 $U(11) = \mathbb{Z}_{11} \setminus \{\overline{0}\}$; onde $\overline{10}$ é inverso dele próprio e os outros pares de inversos são: $\overline{2}$ e $\overline{6}$, $\overline{3}$ e $\overline{4}$, $\overline{7}$ e $\overline{8}$, $\overline{5}$ e $\overline{9}$.

 $U(15) = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$. Os elementos $\overline{4}$, $\overline{11}$ e $\overline{14}$ são seus próprios inversos; os outros pares de inversos são: $\overline{2}$ e $\overline{8}$, $\overline{7}$ e $\overline{13}$,

- (6) (1) não tem solução; (2) $x \equiv 2 \pmod{4}$; (3) $x \equiv 4 \pmod{15}$.
- (7) $\overline{a} = \overline{3}$ satisfaz à propriedade.
- (8) Se $x^2 7y^2 = 3$ tivesse solução inteira, então a equação $x^2 \equiv 3 \pmod{7}$ teria solução. Mas o resto da divisão do quadrado de qualquer inteiro por 7 só pode ser 0, 1, 2 ou 4. Logo a congruência não tem solução, portanto a equação original também não tem.
- (9) Efetuando os cálculos módulo p=274177, temos:

$$7^8 \equiv 7084$$
, $9^8 \equiv 932$ e $17^8 \equiv 146207$.

Portanto

$$1071^8 \equiv (7 \cdot 9 \cdot 17)^8 \equiv 7084 \cdot 932 \cdot 146207 \equiv 274176 \equiv -1 \pmod{p}.$$

Logo

$$(1071 \cdot 2^8)^8 \equiv 1071^8 \cdot 2^{64} \equiv -2^{64} \pmod{p}.$$

Como $(1071 \cdot 2^8)^8 \equiv 1 \pmod{p}$, obtemos $-2^{64} \equiv 1 \pmod{p}$; isto é $2^{64} + 1 \equiv 0 \pmod{p}$. Logo p divide F(6).

(10) (1) Se o número é par então é da forma 2k, mas

$$(2k)^2 \equiv 4k^2 \equiv 0 \pmod{4}.$$

Se o número é ímpar, então pode ser escrito na forma 2k+1, donde

$$(2k+1)^2 \equiv 4(k^2+k) + 1 \equiv 1 \pmod{4}$$

(2) Sejam x e y inteiros, então x^2 e y^2 só podem ser congruentes a 0 ou 1 módulo 4 por (1). Temos a seguinte tabela:

$$\begin{array}{cccc} x & y & x^2 + y^2 \\ \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{1} & \overline{1} \\ \overline{1} & \overline{0} & \overline{1} \\ \overline{1} & \overline{1} & \overline{2} \end{array}$$

Logo $x^2 + y^2$ só pode ser congruente a 0, 1 ou 2 módulo 4.

(3) Se existissem inteiros x e y tais que $x^2 + y^2 = 4n + 3$ então teríamos $x^2 + y^2 \equiv 3 \pmod{4}$ o que não é verdade por (2).

5. Respostas dos exercícios do capítulo 5

(1) (1) Se n=1 então $n^3+2n=1+3$ é divisível por 3. Suponha que o resultado vale para n e vamos prová-lo para n+1. Expandindo o produto notável e agrupando termos:

$$(n+1)^3 + 2(n+1) = (n^3 + 2n) + 3(n^2 + 3n + 1)$$

A expressão no primeiro parêntesis é divisível por 3 pela hipótese de indução. Como a segunda parcela é múltipla de 3, obtemos o que queremos.

(2) Um inteiro positivo ímpar é da forma n=2k+1. Logo desejamos mostrar que

$$n^{3} - n = (2k+1)^{3} - (2k+1) = 4(2k^{3} + 3k^{2} + k)$$

é divisível por 24. Para isto basta mostrar que a expressão entre parêntesis é divisível por 6. Vamos fazer isto por indução. Se k=1 então $2k^3+3k^2+k=6$. Suponha que $2k^3+3k^2+k$ é divisível por 6, vamos mostrar que o mesmo vale para k+1. Temos que:

$$2(k+1)^3 + 3(k+1)^2 + (k+1) = (2k^3 + 3k^2 + k) + 6(k^2 + 2k + 1).$$

A primeira parcela é divisível por 6 pela hipótese de indução e a segunda parcela já é um múltiplo de 6, provando o que queríamos.

Outra maneira: Se n = 1, então $n^3 - n = 0$ é divisível por 24. Suponhamos que n é um número ímpar e que $n^3 - n$ é divisível por 24. O número ímpar seguinte a n é n + 2, para completar a indução basta mostrar que $(n+2)^3 - (n+2)$ é divisível por 24. Mas:

$$(n+2)^3 - (n+2) = (n^3 - n) + 6(n^2 + 2n + 1) = (n^3 - n) + 6(n+1)^2.$$

Sabemos que $n^3 - n$ é divisível por 24 pela hipótese de indução; falta verificar que $6(n+1)^2$ é divisível por 24. Na verdade, basta provar que $(n+1)^2$

é divisível por 4. Mas n é impar, logo n+1 é par. Portanto $(n+1)^2$ é múltiplo de 4, o que completa a demonstração.

(3) Calculando pela fórmula vemos que o número de diagonais de um triângulo é zero, o que corresponde à verdade e nos permite iniciar a indução. Suponhamos que a fórmula esteja correta para um polígono de n lados e vamos mostrar que vale para um de n+1 lados. Sejam A, B e C três vértices consecutivos do polígono de n+1 lados. Removendo o vértice B, obtemos um polígono de n lados. Quantas diagonais foram perdidas? Do vértice B partiam n-2 diagonais: uma para cada vértice do polígono, excluindo o próprio B e os adjacentes a B, isto é A e C. Além disso, a diagonal AC passou a ser um lado. Portanto o polígono de n+1 lados tem (n-2)+1 diagonais a mais do que o polígono de n lados obtido removendo-se C. Usando a hipótese de indução temos que o polígono de n lados tem:

$$\frac{n(n-3)}{2} + (n-1) = \frac{(n+1)(n-2)}{2}$$

diagonais, conforme predito pela fórmula.

(4) Somando um único termo temos $1 \cdot 2 = 2$; e fazendo n = 1 na fórmula temos $1 \cdot 2 \cdot 3/3 = 2$. Suponhamos agora que a fórmula vale para n e vamos prová-la para n + 1. Temos que:

$$\sum_{k=1}^{n+1} k(k+1) = \sum_{k=1}^{n} k(k+1) + (n+1)(n+2).$$

Substitundo o valor da soma até n dado pela hipótese de indução:

$$\sum_{k=1}^{n+1} k(k+1) = n(n+1)(n+2)/3 + (n+1)(n+2);$$

Donde,

$$\sum_{k=1}^{n+1} k(k+1) = (n+1)(n+2)(n+3)/3.$$

conforme predito pela fórmula.

(2) Vamos denotar por S_n a soma dos n primeiros números hexagonais. Isto é

$$S_n = h_1 + h_2 + h_3 + \dots + h_n.$$

Tabelando a soma destes números, como indicado, verificamos que S_n deve ser igual a n^3 . Vamos provar isto por indunção em n. Se n=1 o resultado é imediato porque $h_1=1=S_1$. Digamos que $S_k=k^3$ (hipótese de indução) e vamos determinar quem é S_{k+1} . Mas, por definição, $S_{k+1}=S_k+h_{k+1}$. Usando a hipótese de indução, temos

$$S_{k+1} = S_k + h_{k+1} = k^3 + (1 + 3(k+1)k) = k^3 + 3k^2 + 3k + 1 = (k+1)^3.$$

Portanto $S_{k+1}=(k+1)^3$ e a fórmula $S_n=n^3$ está demonstrada por indução.

(3) Experimente passar de um conjunto de uma bola para um conjunto de duas bolas. Por que é que a indução não funciona neste caso?

(4) Se n=1, temos apenas três moedas. Escolha duas delas e ponha uma em cada prato da balança. Se uma for mais leve, você achou a moeda adulterada. Se os pratos se equilibrarem, a adulterada é a que ficou de fora. Portanto 1 pesagem é sufuciente quando temos apenas 3 moedas.

Suponha agora que k pesagens bastam quando há 3^k moedas; esta é a hipótese de indução. Digamos que temos 3^{k+1} moedas e vamos tentar provar que k+1 pesagens bastam neste caso. Divida as moedas em 3 grupos de 3^k moedas. Ponha dois destes na balança. Se um deles é mais leve, é lá que está a moeda adulterada. Se os pratos se equilibram, a moeda adulterada está no grupo de moedas que não foi para a balança. Até agora fizemos apenas uma pesagem, e com isto descobrimos em qual dos 3 grupos de 3^k moedas está a adulterada. Mas sabemos que entre 3^k moedas a mais leve pode ser achada com k pesagens (isto é a hipótese de indução). Portanto k pesagens, além da que já fizemos bastam para encontrar a moeda adulterada; isto dá um total de k+1 pesagens, quando há 3^{k+1} moedas, e conclui a demonstração.

(5) Lembre-se que mostramos no Cap. 3 que o menor fator primo q de $p_1 ldots p_n + 1$ é maior que p_n . Logo $p_{n+1} \leq q$. Mas q é fator de $p_1 ldots p_n + 1$, logo $q \leq p_1 ldots p_n + 1$. Combinando as duas desigualdades, obtemos $p_{n+1} \leq p_1 ldots p_n + 1$. Isto mostra (1).

Vamos mostrar (2) por indução em n. Como $p_1=2$, temos claramente que $p_1 \leq 2^{2^1}=4$. Vamos usar a versão do princípio de indução enunciada na seção 4. Suponhamos que $p_n \leq 2^{2^n}$ sempre que $n \leq k-1$ e vamos tentar mostrar que $p_k \leq 2^{2^k}$. Mas já vimos em (1) que $p_k \leq p_1 \dots p_{k-1} + 1$; logo, usando a hipótese de indução

$$p_k \le p_1 \dots p_{k-1} + 1 \le 2^{2^1} \cdot 2^{2^2} \dots 2^{2^{k-1}} + 1$$

$$\le 2^{2+2^2 + \dots + 2^{k-1}} + 1$$

$$\le 2^{2+2^k} + 1$$

$$\le 2^{2^{k+1}}$$

provando assim a afirmação.

(6) Temos que $70 = 12 \cdot 5 + 10$. Logo usando o Teorema de Fermat:

$$2^{70} + 3^{70} \equiv (2^{12})^5 \cdot 2^{10} + (3^{12})^5 \cdot 3^{10} \equiv 2^{10} + 3^{10}$$

módulo 13. Mas $3^2 \equiv 9 \equiv -4 \equiv -2^2$ módulo 13. Portanto:

$$2^{70} + 3^{70} \equiv 2^{10} + (3^2)^5 \equiv 2^{10} - (2^2)^5 \equiv 0$$

módulo 13.

(7) Observe que se a_0 é o algarismo das unidades de a então $a \equiv a_0 \pmod{10}$. Logo basta mostrar que a_0^5 e a_0 têm o mesmo algarismo das unidades. Mais uma vez, isto significa que $a_0^5 \equiv a_0 \pmod{10}$. Como a_0 é um algarismo, isto é, um número entre 0 e 9, você pode verificar isto por tentativa. Uma maneira mais sofisticada de proceder é a seguinte. Dizer que $a_0^5 \equiv a_0$ módulo 10 é dizer que $a_0^5 - a_0$ é divisível por 10. Para um número ser divisível por 10 basta que seja divisível por 2 e por 3 (isto é verdade por causa do Exercício 3 desta lista). Mas é claro que $a_0^5 - a_0$ é divisível por 3:

isto é o Teorema de Fermat. Fica para você verificar que $a_0^5 - a_0$ é sempre par.

(8) Queremos mostrar que a expressão dada é congruente a zero módulo 9. Expandindo pelo binômio e esquecendo os termos que são claramente múltiplos de 9 ficamos com: $n^3 + (n+1)^3 + (n+2)^3 \equiv 3(n^3+2n)$ módulo 9. Esta última expressão será múltipla de 9 se $n^3 + 2n$ for divisível por 3, mas usando Fermat:

$$n^3 + 2n \equiv n + 2n \equiv 3n \equiv 0 \pmod{3}$$

como queríamos.

- (9) O número 111 é divisível por 3. logo podemos supor que p>5. Pelo Teorema de Fermat $10^{p-1}-1=9(1\dots 1)$ é divisível por p. Como p é primo ele tem que dividir um dos fatores: 9 ou $11\dots 11$. Mas p>3 não divide 9; logo p divide $11\dots 11$ que é o que desejávamos mostrar.
- (10) Digamos que a equação tenha soluções inteiras x_0 e y_0 . Então $x_0^{13} + 12x_0 + 13y_0^6 = 1$. Esta é uma igualdade entre números inteiros, temos portanto que

$$x_0^{13} + 12x_0 + 13y_0^6 \equiv 1 \pmod{13}.$$

Mas 13 $\equiv 0 \pmod{13}$ e pelo teorema de Fermat $x_0^{13} \equiv x_0 \pmod{13}$. Fazendo estas substituições na equação acima, obtemos

$$x_0 + 12x_0 \equiv 1 \pmod{13}$$
.

Daí chegamos a $0\equiv 1\pmod{13},$ uma contradição. Logo a equação não pode ter solução inteira.

(11) Vamos usar congruência e o teorema de Fermat. Observe que 2251 é primo. Para verificar isto experimente dividir 2251 pelos primos menores que $\sqrt{2251} = 47,44$. Por outro lado $2251 - 1 = 2250 = 2 \cdot 3^2 \cdot 5^3$. Portanto 2250 divide 50!; digamos que $50! = 2250 \cdot k$. Assim, pelo teorema de Fermat

$$39^{50!} \equiv (39^{2250})^k \equiv 1^k \equiv 1 \pmod{2251}.$$

Logo o resto neste caso é 1.

No segundo exercício, temos novamente que 191 é primo. Dividindo $39^4=2313441$ por 190, obtemos quociente 12176 e resto 1. Portanto, usando o teorema de Fermat, temos que

$$19^{39^4} \equiv (19^{190})^{12176} \cdot 19^1 \equiv 1 \cdot 19 \equiv 19 \pmod{191}.$$

Logo o resto é 19 neste caso.

(12) Seja p=4n+1 um número primo e sejam x e y dois inteiros primos com p. Lembre-se que, como p-1=4n e p é primo, temos pelo teorema de Fermat que

$$x^{4n} \equiv x^{p-1} \equiv 1 \pmod{p}.$$

Da mesma forma $y^{4n} \equiv 1 \pmod{p}$. Portanto, se $a = x^n$ e $b = y^n$, concluímos que

$$(a^2 - b^2)(a^2 + b^2) \equiv x^{4n} - y^{4n} \equiv 1 - 1 \equiv 0 \pmod{p}.$$

Logo $(a^2-b^2)(a^2+b^2)$ é divisível por p, o que verifica (1). Pela propriedade fundamental dos primos concluímos que ou p divide a^2-b^2 ou p divide a^2+b^2 . No segundo caso provamos o que queríamos. Vejamos o que acontece se este segundo caso nunca é verificado para nenhuma escolha de x e y. Isto é, suponhamos por absurdo que, dados quaisquer x e y primos com p, temos que $x^{2n}-y^{2n}$ é divisível por p. Em particular isto deve valer quando y=1. Mas isto significa que p divide $x^{2n}-1$, isto é que $x^{2n}\equiv 1\pmod{p}$. Pela hipótese que fizemos esta congruência deve valer para qualquer x primo $com\ p$. Logo a equação $x^{2n}\equiv 1\pmod{p}$ deve ter p-1=4n soluções distintas módulo p. Como isto dá um número de soluções maior que o grau, obtivemos uma contradição com o teorema da §4, o que verifica (3).

Resumindo: entre os números inteiros primos com p têm que existir dois, digamos x e y, tais que $x^{2n} + y^{2n}$ é divisível por p. Logo p divide $a^2 + b^2$, onde $a = x^n$ e $b = y^n$; que é o que queríamos mostrar.

(13) Vamos mostrar que os elementos de S são todos distintos. Consideremos dois elementos de S, digamos $\overline{k}\overline{a}$ e $\overline{r}a$. Se forem iguais

$$\overline{k}\overline{a} = \overline{r}\overline{a}$$
.

Mas $\overline{a} \neq \overline{0}$ em \mathbb{Z}_p , logo \overline{a} tem inverso em \mathbb{Z}_p . Digamos que o inverso é $\overline{\alpha}$. Multiplicando a equação acima por $\overline{\alpha}$, verificamos que $\overline{k} = \overline{r}$. Portanto $\overline{k}\overline{a}$ e \overline{ra} só podem ser iguais se \overline{k} e \overline{r} forem iguais.

Assim os elementos de S são todos distintos, o que significa que S tem p-1 elementos. Porém $S\subseteq U(p)$, e este último conjunto também tem p-1 elementos. Logo S=U(p). Em particular, o produto dos elementos de S tem que ser igual ao produto dos elementos de U(p), já que são os mesmos elementos, apenas listados em ordem diferente. Isto dá

$$\overline{a}\cdot \overline{2a}\cdots \overline{(p-1)a}=\overline{1}\cdot \overline{2}\cdots \overline{p-1}=\overline{(p-1)!}.$$

Agrupando os \overline{a} no termo da esquerda, vemos que é igual a $\overline{a}^{p-1} \cdot \overline{(p-1)!}$. Igualando com o termo da direita

$$\overline{a}^{p-1} \cdot \overline{(p-1)!} = \overline{(p-1)!}.$$

Como p é primo $\overline{(p-1)!} \neq \overline{0}$. Portanto podemos cancelar $\overline{(p-1)!}$ na última equação acima, obtendo assim que $\overline{a}^{p-1} = \overline{1}$ que é o teorema de Fermat.

(14) Multiplicando temos

$$\overline{a}^{p-2} \cdot \overline{a} = \overline{a}^{p-1} = \overline{1}.$$

onde a última igualdade segue do teorema de Fermat, já que a não é divisível por p.

(15) Por exemplo, se p=7 e a=3 ou 5, então a equação não tem solução. Digamos que a equação tem solução; vamos chamar de b a solução. Então $b^2 \equiv a \pmod{p}$. Queremos verificar que $b \equiv \pm a^{k+1} \pmod{p}$. Como p é primo, a equação só pode ter duas soluções, por isso basta verificar que a^{k+1} é solução da equação. Mas

$$(a^{k+1})^2 \equiv a^{2k+2} \equiv b^{4k+4} \pmod{p},$$

já que, por hipótese $b^2 \equiv a \pmod{p}$. Mas

$$b^{4k+4} \equiv b^{4k+3} \cdot b \pmod{p}.$$

Como, pelo teorema de Fermat, $b^{4k+3} \equiv b \pmod{p}$, concluímos que

$$(a^{k+1})^2 \equiv b^2 \equiv a \pmod{p},$$

onde a última congruência vale pela hipótese feita sobre b. Portanto a^{k+1} é solução de $x^2 \equiv a \pmod{p}$, desde que esta equação tenha solução.

6. Respostas dos exercícios do capítulo 6

- (1) 645 é pseudoprimo para a base 2, 567 é composto e não é pseudoprimo para a base 2 e 701 é primo. Nenhum dos números é pseudoprimo para a base 3
- (2) Se n é pseudoprimo para a base ab, então

$$a^n b^n \equiv (ab)^n \equiv ab \pmod{n}$$
.

Mas n também é pseudoprimo para a base a, logo $a^n \equiv a \pmod{n}$. Portanto,

$$ab^n \equiv ab \pmod{n}$$
.

Como mdc(a, n) = 1, podemos cancelar a na equação acima e concluir que n é pseudoprimo para a base b.

(3) Efetuando a multiplicação, temos que,

$$n - 1 = p_1 p_2 p_3 - 1 = 36n(36n^2 + 11n + 1)$$

que é claramente divisível por $p_1 - 1 = 6n$, por $p_2 - 1 = 12n$ e por $p_3 - 1 = 18n$. Logo n é um número de Carmichael.

Quando n=1, temos $p_1=7$, $p_2=13$ e $p_3=19$ e o número de Carmichael correspondente é 1729. Quando n=6 temos $p_1=37$, $p_2=73$ e $p_3=421$ e o número de Carmichael correspondente é 294409. Finalmente, quando n=35, temos que $p_1=211$, $p_2=421$ e $p_3=631$, e o número de Carmichael correspondente é 56052361.

(4) Fatorando $29341 = 13 \times 37 \times 61$. Como

$$29340 = 12 \times 2445 = 36 \times 815 = 60 \times 489$$

então 29341 é um número de Carmichael.

(5) Seja $n = p_1 p_2$, então

$$n-1 = p_1p_2 - 1 = (p_2 - 1)p_1 + (p_1 - 1).$$

Portanto, $n-1 \equiv p_1-1 \pmod{p_2-1}$. Como $p_1-1 < p_1 < p_2$, temos que $p_1-1 \not\equiv 0 \pmod{p_2-1}$. Isto é p_2-1 não divide n-1, o que contradiz as hipóteses do exercício. Para concluir daí que um número de Carmichael não pode ter apenas dois fatores primos você precisa usar o teorema de Korselt.

(6) 645 não é pseudoprimo forte para a base 2, $2047 = 23 \times 89$ é pseudoprimo forte para a base 2 e 2309 é primo. Nenhum dos números é psudoprimo forte para a base 3.

(7) Como n é impar, escrevemos $n-1=2^kq$, onde $k\geq 1$ e q é um número impar. Se n é um pseudoprimo forte para a base b então ou $b^q\equiv 1\pmod n$ ou $b^{2^jq}\equiv -1\pmod n$, onde $0\leq j\leq k-1$. No primeiro caso temos que

$$b^{n-1} \equiv (b^q)^{2^k} \equiv 1^{2^k} \equiv 1 \pmod{n}.$$

No segundo caso

$$b^{n-1} \equiv (b^{2^j q})^{2^{k-j}} \equiv (-1)^{2^{k-j}} \equiv 1 \pmod{n}.$$

Observe que k>j, logo $k-j\geq 1$ e, portanto, $(-1)^{2^{k-j}}=1$. Em qualquer dos dois casos obtivemos que $b^{n-1}\equiv 1\pmod n$. Logo n é um pseudoprimo para a base b.

- 7. Respostas dos exercícios do capítulo 7
- 1. $x \equiv 17 \pmod{60}$.
- 2. A quantidade (mínima) total de arroz é 3 · 105288.
- 3. 137
- 4. 2913
- 5. Suponhamos que o sistema dado tem soluções $\alpha \in \beta$. De

$$\alpha \equiv a \pmod{m}$$
 e $\beta \equiv a \pmod{m}$

concluímos que $\alpha-\beta$ é múltiplo de m. Analogamente $\alpha-\beta$ tem que ser múltiplo de n. Seja μ o mínimo múltiplo comum entre m e n. Então $\mu<\alpha-\beta$ e dividindo $\alpha-\beta$ por μ obtemos

$$\alpha - \beta = \mu \cdot q + r$$
 onde $0 \le r < \mu$.

Observe que, como $\alpha-\beta$ e μ são múltiplos de m e de n, então isto também tem que ser verdade sobre r. Logo r é um múltiplo comum de m e de n que é menor que μ . Como μ é o mínimo múltiplo comum deduzimos que r=0. Portanto $\alpha\equiv\beta\pmod{\mu}$.

- 6. $2^{45632} \equiv 10201$ e $3^{54632} \equiv 9876$ ambos módulo $12155 = 5 \cdot 11 \cdot 13 \cdot 17$.
- 7. $x \equiv 84 \pmod{105}$.
- 8. Digamos que a sequência de primos consecutivos seja p_1,\ldots,p_k . O primeiro elemento é 11, logo $p_1=11$. Além disso a sequência deve ter limiar 3; o que significa que

$$p_1 p_2 p_3 > p_{k-1} p_{k-2}.$$

Mas $p_1 = 11$, $p_2 = 13$ e $p_3 = 17$; logo $p_1p_2p_3 = 2431$. Assim

$$2431 = p_1 p_2 p_3 > p_{k-1} p_{k-2} > p_{k-1}^2.$$

Concluímos que $p_{k-1}<[\sqrt{2431}]=49$. O maior primo menor que 49 é 47, e o primo seguinte a 47 é 53. Entretanto $47\cdot 53=2491>2431$, e não temos o limiar correto. O primo anterior a 47 é 43 e 43 · 47 = 2021 < 2431. Portanto escolhendo $p_k=47$ e $p_{k-1}=43$ temos a seqüência desejada, que é:

$$11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.$$

Como a sequência tem 11 elementos, temos k=11. Procedendo da mesma maneira para limiar 4, obtemos $p_1p_2p_3p_4=46189$. Queremos que

$$46189 = p_1 p_2 p_3 p_4 > p_{k-2} p_{k-1} p_k > p_{k-2}^3.$$

Assim $p_{k-2} < 35$. Portanto o maior valor possível de p_{k-2} é 31. Neste caso teríamos $p_{k-1} = 37$ e $p_k = 41$, donde $p_{k-2}p_{k-1}p_k = 47027$, que é maior que 46189. Escolhendo para p_{k-2} o primo anterior a 31, teremos $p_{k-2} = 29$. Neste caso

$$p_{k-2}p_{k-1}p_k = 29 \cdot 31 \cdot 37 = 33263,$$

que satisfaz às hipóteses. Assim a seqüência de primos desejada é

que tem 8 elementos.

9. Seja α_1 uma solução de $x^2 \equiv a \pmod{p}$ e α_2 uma solução de $x^2 \equiv a \pmod{q}$. Resolvendo o sistema

$$x \equiv \alpha_1 \pmod{p}$$
$$x \equiv \alpha_2 \pmod{q}$$

digamos que obtivemos β como solução. Vamos mostrar que a forma reduzida de β^2 módulo n é a. Observe que, módulo p temos

$$\beta^2 \equiv \alpha_1^2 \equiv a \pmod{p}.$$

De modo que $\beta^2 - a$ é divisível por p. Analogamente $\beta^2 - a$ é divisível por q. Como p e q são primos entre si, seque que $\beta^2 - a$ é divisível por pq = n.

8. Respostas dos exercícios do capítulo 7

1. Seja ρ a rotação de 90^o . Então ρ, ρ^2, ρ^3 são simetrias do quadrado. As outras simetrias são reflexões. Temos dois tipos de reflexões: duas reflexões em torno das diagonais e duas reflexões em torno da reta que liga os meios dos lados. Juntamente com a transformação identidade, isto nos dá os oito elementos de D_4 . Observe que cada reflexão é seu próprio inverso. Por outro lado o inverso de ρ é ρ^3 e o inverso de ρ^2 é ele próprio.

Vamos denotar por α_1 e α_2 as reflexões que deixam fixos os vértices 1,3 e 2,4, respectivamente; e vamos denotar por β_1 a reflexão que troca os vértices 1 por 4 e 2 por 3, e por β_2 a reflexão que troca os vértices 1 por 2 e 3 por 4. Com esta notação, a tabela do grupo é a seguinte:

	e	ρ	ρ^2	ρ^3		α_2	β_1	β_2
e	e	ρ	$ ho^2$	ρ^3	α_1	α_2	β_1	β_2
ρ	ρ	$ ho^2$	$ ho^3$	e	β_1	β_2	α_2	α_1
ρ^2	ρ^2	$ ho^3$	e	ρ	α_2	α_1	β_2	β_1
ρ^3	ρ^3	e	ρ	$ ho^2$	β_2		α_1	α_2
α_1	α_1	β_2	α_2	β_1	e		$ ho^3$	•
α_2	α_2	β_1	α_1	β_2	$ ho^2$		ρ	$ ho^3$
β_1	β_1	α_1	β_2	α_2			e	$ ho^2$
β_2	β_2	α_2	β_1	α_1	ρ^3	ρ	ρ^2	e

2. Temos um grupo G com uma operação \star , tal que $x^2=e$ para todo $x\in G$. Sejam $x,y\in G$. Queremos mostrar que $x\star y=y\star x$. Mas sabemos que $(x\star y)^2=e$, isto é:

$$x \star y \star x \star y = e$$
.

Multiplicando esta equação à esquerda por x e à direita por y, obtemos:

$$x^2 \star y \star x \star y^2 = x \star y.$$

Como $x^2 = y^2 = e$, por hipótese, então $x \star y = y \star x$, como queríamos mostrar.

3.
$$\phi(125) = 100$$
, $\phi(16200) = 4320$ e $\phi(10!) = 2^{11}.3^4.5$.

4. Note que se p é um primo que divide n então podemos escrever $n=p^r\cdot m$, onde p não divide m. Assim $\mathrm{mdc}(m,p)=1$ e portanto

$$\phi(p^r \cdot m) = \phi(p^r)\phi(m) = p^{r-1}(p-1)\phi(m).$$

Logo p-1 divide $\phi(n)$, o que prova (1). Para que p divida n mas $n\tilde{a}o$ divida $\phi(n)$ basta que r=1.

Finamente, se $n = p_1^{e_1} \dots p_s^{e_s}$ onde $p_1 < \dots < p_s$ são primos, então

$$\phi(n) = \phi(p_1^{e_1}) \dots \phi(p_s^{e_s}).$$

Logo, basta mostrar que se p é primo então $\phi(p^e) < p^e$. Mas

$$\phi(p^e) = p^{e-1}(p-1) < p^e$$

já que p-1 < p.

- 5. Temos que $\phi(19)=18$ e $\phi(11)=10$. Por outro lado, se $\phi(n)=14$, e p é um primo que divide n então p-1 é igual a 1, 2, 7 ou 14. Logo p é 2 ou 3. Então $n=2^r3^s$. Mas neste caso $\phi(n)=2^r3^{s-1}$ não pode ser igual a 14. Portanto não existe n tal que $\phi(n)=14$.
- 6. Como $\phi(n)$ é sempre par, então $\phi(n)$ só pode ser primo se $\phi(n)=2$. Mas se p é fator primo de n então p-1 divide 2. Logo p-1=1 ou p-1=2, donde p=2 ou p=3. Assim $n=2^e3^r$. Observe que se r>1 então 3 dividiria $\phi(n)=2$, o que não é verdade. Portanto r=0 ou 1. Se r=0 então $n=2^e$ e é fácil ver que e=2. Se r=1, então $n=2^e3$ e é fácil ver que e=0 ou e=1. Logo os possíveis valores de n são 3, 4 e 6.
- 7. Seja q o maior primo que divide n. Podemos escrever $n=q^ec$ onde c é um inteiro cujos fatores primos são todos menores que q. Então

$$n\phi(n) = q^e c\phi(q^e c) = q^e c \cdot \phi(q^e)\phi(c) = q^{e-1}(q-1)\phi(c)$$

Como mdc(q, c) = 1, temos que

$$n\phi(n) = q^e c\phi(q^e)\phi(c) = q^e c \cdot q^{e-1}(q-1)\phi(c),$$

donde

$$n\phi(n) = q^{2e-1}(q-1)c\phi(c).$$

Observe que os primos que dividem $(q-1)c\phi(c)$ têm que ser todos menores que q. Assim, se p é o maior primo que divide k e se $k=n\phi(n)$ precisamos ter p=q e a multiplicidade de p na fatoração de k tem que ser ímpar, já que 2r-1 é sempre ímpar. Observe que esta conclusão só vale para o maior primo que divide

n; um primo que divide c poderia dividir também q-1 e assim ter expoente par na fatoração de $n\phi(n)$. Por exemplo, se n=14 então

$$n\phi(n) = 14 \cdot 6 = 2^2 \cdot 3 \cdot 7$$

e 2 tem expoente par na fatoração de $n\phi(n)$, mas 7, que é o maior primo, tem expoente ímpar, como já sabíamos. Com isto provamos (1) e (2).

Se $k=n\phi(n)$, então já sabemos que $k=p^{2e-1}k'$, para algum inteiro positivo k'< k. Igualando isto a expressão para $n\phi(n)$ obtida em (\star) , obtemos

$$\frac{k'}{p-1} = c\phi(c).$$

Se p-1 dividir k podemos continuar o processo e tentar calcular c. Observe que k' < k, portanto continuando desta maneira obtemos uma seqüência estritamente decrescente de inteiros positivos. Portanto o algoritmo tem que parar.

- 8. Se $\phi(n) = n-1$, então todos os inteiros positivos menores que n têm que estar em U(n). Isto é o máximo divisor comum entre qualquer inteiro positivo menor que n e o próprio n é 1. Mas isto só acontece se nenhum inteiro positivo menor que n, exceto 1, não dividir n. Portanto n não tem divisores menores que n exceto 1; logo n é primo.
- 9. Dado um número n qualquer podemos escrevê-lo na forma $n=2^k r$, onde r é um número ímpar. Observe que $mdc(2^k,r)=1$. Como ϕ é uma função multiplicativa:

$$\phi(n) = \phi(2^k r) = \phi(2^k)\phi(r) = 2^{k-1}\phi(r).$$

Se $\phi(n)=n/2$ então podemos concluir que $n/2=2^{k-1}\phi(r)$. Isto é $n=2^k\phi(r)$. Como $n=2^kr$ temos que $\phi(r)=r$, o que só é possível quando r=1. Mas neste caso $n=2^k$ é uma potência de 2.

10. Se m divide n então as fatorações de m e n serão

$$m = p_1^{r_1} \dots p_k^{r_k} \in n = p_1^{s_1} \dots p_k^{s_k}$$

onde $p_1 < \cdots < p_k$ são primos e $r_1 \le s_1, \ldots, r_k \le s_k$. Logo:

$$mn = p_1^{r_1 + s_1} \dots p_k^{r_k + s_k}.$$

Aplicando a fórmula para calcular $\phi(mn)$, obtemos:

$$\phi(mn) = p_1^{r_1+s_1-1} \dots p_k^{r_k+s_k-1}(p_1-1) \dots (p_k-1)$$

= $p_1^{r_1} \dots p_k^{r_k} (p_1^{s_1-1} \dots p_k^{s_k-1}(p_1-1) \dots (p_k-1))$
= $m\phi(n)$.

11.

Subgrupos de ordem 1: $\{e\}$. Subgrupos de ordem 2: $\{e, \alpha_1\}, \{e, \alpha_2\}, \{e, \beta_1\}, \{e, \beta_2\}$ e $\{e, \rho^2\}$.

Subgrupos de ordem 4: $\{e, \rho, \rho^2, \rho^3\}$, $\{e, \rho^2, \alpha_1, \alpha_2\}$ e $\{e, \rho^2, \beta_1, \beta_2\}$. Subgrupos de ordem 8: D_4 .

12. Temos que U(2) tem ordem 1 e U(4) tem ordem 2 logo são cíclicos. Já U(8) tem ordem 4 mas todos os seus elementos têm ordem 2.

13. Digamos que G seja cíclico com gerador a. Então

$$G = \{e, a, a^2, a^3, \dots, a^{n-1}\}.$$

Como m divide n, temos que n=km para algum inteiro positivo k. Verifique agora que o elemento a^k tem ordem m.

14. (1) A ordem de U(20) é

$$\phi(20) = \phi(4)\phi(5) = 2 \cdot 4 = 8.$$

Os elementos de U(20) são:

$$U(20) = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}, \overline{11}, \overline{13}, \overline{17}, \overline{19}\}.$$

- (2) Pelo teorema de Lagrange, a ordem de qualquer elemento de U(20) tem que dividir 8. Os elementos de ordem 2 são $\overline{9}$, $\overline{11}$ e $\overline{19}$. Os demais elementos têm ordem 4, execeto o $\overline{1}$, que tem ordem 1.
- (3) O grupo não é cíclico porque não tem elementos de ordem 8.
- (4) Os subgrupos de ordem 4 são:

$$\begin{aligned} &\{\overline{1},\overline{3},\overline{9},\overline{7}\} \\ &\{\overline{1},\overline{1}3,\overline{9},\overline{17}\} \\ &\{\overline{1},\overline{9},\overline{11},\overline{19}\} \end{aligned}$$

(5) O último dos subgrupos acima não é cíclico.

15.

- (1) Em primeiro lugar, como S_1 e S_2 contêm o elemento neutro e, então $e \in S_1 \cap S_2$. Digamos que $x,y \in S_1 \cap S_2$. Como $x,y \in S_1$ e S_1 é um subgrupo de G por hipótese, então $x \star y \in S_1$. Analogamente $x \star y \in S_2$. Assim $x \star y \in S_1 \cap S_2$. Finalmente, se $x \in S_1 \cap S_2$ então $x \in S_1$. Como S_1 é um subgrupo por hipótese, temos que o inverso x' de x em G pertence a S_1 . Analogamente $x' \in S_2$. Portanto $x' \in S_1 \cap S_2$. Concluímos assim que $S_1 \cap S_2$ é um subgrupo de G.
- (2) Como $S_1 \cap S_2$ é um subgrupo e está contido em S_1 e em S_2 , então $S_1 \cap S_2$ é um subgrupo de S_1 e também é um subgrupo de S_2 . Portanto a ordem de $S_1 \cap S_2$ tem que dividir a ordem de S_1 e a ordem de S_2 . Se as ordens de S_1 e S_2 forem primas entre si, isto só pode acontecer se $S_1 \cap S_2$ tiver ordem 1. Mas neste caso $S_1 \cap S_2 = \{e\}$.
- (3) Basta dar um exemplo em que a união de subgrupos não é um subgrupo. Por exemplo, se $G = D_3$ e $S_1 = \{e, \rho, \rho^2\}$ e $S_2 = \{e, \sigma_2\}$ então $S_1 \cup S_2 = \{e, \rho, \rho^2, \sigma_2\}$ tem 4 elementos, logo não pode ser subgrupo de D_3 , já que 4 não divide 6.
- 16. A afirmação (1) é verdadeira. Vamos mostrar primeiro que se $\overline{b_1}, \overline{b_2} \in H(n)$, então $\overline{b_1b_2} \in H(n)$. Isto é fácil:

$$(b_1b_2)^{n-1} \equiv b_1^{n-1}b_2^{n-1} \equiv 1 \pmod{n}.$$

A operação é associativa e é claro que $\overline{1} \in H(n)$. Falta mostrar que se $\overline{b} \in H(n)$ então seu inverso $\overline{\beta}$ também está em H(n). Mas $\overline{b} \cdot \overline{\beta} = \overline{1}$, logo

$$1 \equiv (b\beta)^{n-1} \equiv b^{n-1}\beta^{n-1} \equiv \beta^{n-1} \pmod{n},$$

que prova o desejado.

A afirmação (2) é falsa. Se n é Carmichael, então H(n)=U(n). A afirmação (3) é verdadeira. Se U(n) tem um elemento de ordem n-1, então U(n) tem ordem pelo menos n-1. Mas $\phi(n) \leq n-1$ e mais, $\phi(n)=n-1$ se, e somente se, n é primo.

- 17. Usando o teorema de Euler é fácil verificar que $7^{9876} \equiv 1 \pmod{60}$ e $3^{87654} \equiv 44 \pmod{125}$.
- 18. Digamos que p^r seja um pseudoprimo para a base b, onde mdc(b, p) = 1, então,

$$b^{p^r} \equiv b \pmod{p^r}$$
.

Mas $p^r(p-1) = p\phi(p^r)$, donde

$$b^{(p-1)} \equiv (b^{p^r})^{p-1} \equiv (b^{\phi(p^r)})^p \equiv 1 \pmod{p^r}.$$

pelo teorema de Euler. Reciprocamente, se $b^{p-1} \equiv 1 \pmod{p^r}$, então como $(p-1)(p^{r-2}+\cdots+p+1)=p^r-1$, temos

$$b^{p^r-1} \equiv (b^{p-1})^{(p^{r-2}+\dots+p+1)} \equiv 1 \pmod{p^r}.$$

- 19. Pelo exercício anterior, basta mostrar que $2^{1092} \equiv 1 \pmod{1093^2}$. Use que $1092 = 4 \cdot 3 \cdot 91$. Mesmo assim os cálculos são muito trabalhosos em uma calculadora!
 - 9. Respostas dos exercícios do capítulo 9
- 1. Se a equação $x^p \equiv 1 \pmod q$ tem uma solução $x \not\equiv 1 \pmod q$ então $\overline{1} \not\equiv \overline{x} \in U(q)$. Como p é primo, então x tem ordem p. Pelo Teorema de Lagrange, a ordem de x divide a ordem de U(q). Em outras palavras, p divide $\phi(q)$. Mas q é primo, logo $\phi(q) = q 1$. Assim, p divide q 1, isto é: $q \equiv 1 \pmod p$.
- 2. 43 é primo e $\phi(43)=2\times 3\times 7$. Logo 17 não divide $\phi(43)$. Portanto, pelo exercício anterior a única solução da equação é $x\equiv 1 \pmod{43}$.
- 3. Os geradores de U(17) são: $\overline{3}$, $\overline{5}$, $\overline{6}$, $\overline{7}$, $\overline{10}$, $\overline{11}$, $\overline{12}$ e $\overline{14}$. Observe que, como $\phi(17)=16=2^4$, a ordem de cada elemento de U(17) tem que ser uma potência de 2 com expoente menor que 4. Assim, para verificar que $\overline{a} \in U(17)$ não é gerador, basta testar se $a^8 \equiv 1 \pmod{17}$.

Temos que $7 \equiv 3^{11} \pmod{17}$ e $6 \equiv 3^{15} \pmod{17}$. A partir de $7^x \equiv 6 \pmod{17}$ obtemos $3^{11x} \equiv 3^{15} \pmod{17}$. Isto é $3^{11x-15} \equiv 1 \pmod{17}$. Assim a ordem de 3 módulo 17 divide 11x - 15. Mas $\overline{3}$ gera \mathbb{Z}_{17} . Logo 3 tem ordem 16 módulo 17. Então $11x \equiv 15 \pmod{16}$. Resolvendo a equação temos $x \equiv 13 \pmod{16}$.

4. De acordo com o método de Fermat, os fatores de M(11) são da forma 22k+1. Fazendo k=1 verificamos que 23 divide M(11). De modo semelhante, os fatores de M(29) são da forma 58k+1. Fazendo k=1 temos 59 que é primo mas não é fator. Para k=2 e k=3 obtemos 117 e 175, respectivamente; mas nenhum dos dois é primo. Finalmente, para k=4 obtemos 233 que é fator de M(29). Para verificar que M(7) é primo, precisamos mostrar que não tem fatores $\leq \sqrt{M(7)}$. Como a parte inteira da raiz é 11, basta verificar que M(7) não tem fatores ≤ 11 . Mas pelo método de Fermat, os fatores de M(7) são da forma 14k+1. O menor destes fatores é 15, que já é maior que 11. Logo M(7) é primo.

5. Pelo método de Euler, os fatores de F(4) são da forma 32k+1. Para mostrar que F(4) é primo, precisamos verificar que não tem fatores menores que 256, que é a parte inteira da raiz quadrada de F(4). Isto nos dá: $32k+1 \le 256$, donde obtemos $k \le 7$. Logo se 32k+1 não divide F(4) para $k \le 7$ então F(4) é primo. Mas os únicos valores de k para os quais 32k+1 é primo são k=3 e k=6. É fácil verificar diretamente que os números obtidos nestes casos não sõ fatores de F(4).

6. (1) Temos que

$$\alpha^2 \equiv (2^{2^{k-2}}(2^{2^{k-1}} - 1))^2 \equiv 2^{2^{k-1}}(2^{2^k} + 1 - 2 \cdot 2^{2^{k-1}}) \pmod{p}.$$

Como $F(k) = 2^{2^k} + 1$ é divisível por p,

$$\alpha^2 \equiv -2^{2^{k-1}} \cdot 2 \cdot 2^{2^{k-1}} \equiv -2 \cdot 2^{2^k} \equiv 2 \pmod{p}.$$

Para resolver (2) usamos (1). Sabemos que 2 tem ordem 2^{k+1} módulo p, portanto

$$\alpha^{2^{k+2}} \equiv 2^{2^{k+1}} \equiv 1 \pmod{p}.$$

Logo a ordem de α tem que dividir 2^{k+2} . Se a ordem não for exatamente 2^{k+2} então tem que dividir 2^{k+1} . Se isto acontecesse, teríamos

$$\alpha^{2^{k+1}} \equiv 1 \pmod{p},$$

o que implicaria que $2^{2^k}\equiv 1\pmod p,$ que não é verdade. Assim α tem ordem $2^{k+2}.$

Finalmente, a ordem de α módulo p (que é 2^{k+2}) divide a ordem de U(p), que é $\phi(p) = p - 1$. Assim existe um inteiro positivo r tal que $p = 2^{k+2}r + 1$.

7. k = 12.

8. (1) Observe que

$$\log(2^{n} - 1) = \log(2^{n}(1 - 2^{-n})) = n \log 2 + \log(1 - 2^{-n}).$$

Como n>2 no exemplo, temos que $\log(1-2^{-n})>\log(1-1/4)>-1$. Por outro lado $\log(1-2^{-n})<\log 1=0$. Portanto

$$n \log 2 - 1 < \log(2^n - 1) < n \log 2$$
.

(2) Aplicando logaritmos na base 10 à equação

$$10^{20} < 2^{n-1}(2^n - 1) < 10^{22}$$

obtemos

$$20 < (n-1)\log 2 + \log(2^n - 1) < 22.$$

Combinando com as desigualdades de (1) temos

$$20 \le (2n-1)\log 2 - 1 < (n-1)\log 2 + \log(2^n-1) < (2n-1)\log 2 \le 22.$$

Assim $(2n-1) \ge [21/\log 2]$. Como $\log 2 < 0,302$, concluímos que $2n-1 \ge 70$, donde $n \ge 35$. Já da desigualdade à esquerda temos $(2n-1) \le [22/\log 2]$. Como $\log 2 > 0,3$, obtemos $n \le 37$. Assim $35 \le n \le 37$, como desejado.

(3) O único primo entre 35 e 37 é 37, logo M(n) só pode ser primo para estes expoentes quando n=37. Aplicando o método de Fermat a M(37) temos que os fatores têm que ser da forma 74k+1. O primeiro primo desta forma é 149, mas $2^{37}-1\equiv 104\pmod{149}$, logo 149 não é fator de M(37). O primo seguinte é 223, que é fator de M(37). Logo M(37) é composto. Portanto não existem primos de

Mersenne com $35 \le n \le 37$, o que significa que não existem números perfeitos pares no intervalo dado.

10. Respostas dos exercícios do capítulo 10

- 1. Temos que 990 = $2 \times 3^2 \times 5 \times 11$. Podemos usar 2 como base para cada um destes fatores.
- 2. Se 4 não divide n-1então $n-1=2\cdot q$ onde q é ímpar. Logo (n-1)/2=q é ímpar. Portanto

$$(n-1)^{(n-1)/2} \equiv (n-1)^q \equiv -1 \not\equiv 1 \pmod{n}.$$

- 3. Temos que $2^7 2 = 2 \times 3^2 \times 7$. Podemos usar 2 como base para 7 e -1 como base para 2. Para o fator 3 podemos usar 3 como base.
- 4. (1) Como $2^{n-1}=2^{2p}=4^p$ e como $2^{n-1}\equiv 1\pmod n$ então $4^p\equiv 1\pmod n$. Se q é um fator primo de n então $4^p\equiv 1\pmod q$. Mas isto implica que a ordem de $\overline{4}$ em U(q) é 1 ou p. Se a ordem fosse 1 então $4\equiv 1\pmod q$, o que nos dá $3\equiv 0\pmod q$. Como 3 e q são primos, temos que q=3. Mas 3 não é um fator de n por hipótese. Logo $\overline{4}$ tem ordem p em U(q).
- (2) Pelo teorema de Fermat, temos que $4^{q-1} \equiv 1 \pmod{q}$. Como $\overline{4}$ tem ordem p em U(q), concluímos que p divide q-1. Isto é q=kp+1, para algm inteiro positivo k.
- (3) Supondo que q é um fator primo de n diferente de n, temos que q < n. Isto é kp+1 < 2p+1. Logo k=1.
- (4) Para verificar que n é primo basta testar se p+1 divide 2p+1, já que pelos ítens anteriores este é o único fator primo possível para n. Mas se p+1 dividir 2p+1, então $2p+1\equiv 0\pmod{p+1}$. Isto é $p\equiv 0\pmod{p+1}$, o que não é possível, já que p+1 é maior que p.
- 5. (1) A indução começa com k=3. Neste caso $2^k=2^3=8$ e b pode assumir os valores $\overline{1},\overline{3},\overline{5},\overline{7}$. É imediato verificar que cada um destes elementos tem ordem 2 em U(8). Assim se b é ímpar, $b^2\equiv 1\pmod 8$.

em U(8). Assim se b é ímpar, $b^2 \equiv 1 \pmod{8}$. Suponhamos então que $b^{2^{k-2}} \equiv 1 \pmod{2^k}$ para algum $k \geq 3$ (hipótese de indução). Queremos calcular $b^{2^{(k+1)-2}}$ módulo 2^{k+1} e mostrar que é 1. Mas $b^{2^{k-1}} \equiv 1 \pmod{2^k}$ nos diz que $b^{2^{k-2}} - 1 = 2^k \cdot a$ para algum $a \in \mathbb{Z}$. Temos a seguinte seqüência de congruências módulo 2^{k+1} :

$$b^{2^{(k+1)-2}} \equiv (b^{2^{k-2}})^2 \equiv (2^k \cdot a + 1)^2 \equiv 2^{k+1} (2^{k-1} \cdot a^2 + a) + 1 \equiv 1,$$

completando a demonstração por indução.

(2) Se $U(2^k)$ fosse cíclico, teria um elemento de ordem igual a $\phi(2^k)=2^{k-1}$. Mas isto é equivalente a dizer que existe um b impar tal que

$$b^{2^{k-1}} \equiv 1 \pmod{2^k} \mod 2^k$$
 mas $b^{2^{k-2}} \not\equiv 1 \pmod{2^k}$.

Entretanto $b^{2^{k-2}} \equiv 1 \pmod{2^k}$ para qualquer b impar por (1). Logo $U(2^k)$ $n\tilde{a}o$ pode ser cíclico.

6. (1) Digamos que G tem operação \star . Podemos agrupar os elementos de G em dois tipos: os elementos cujos inversos são diferentes deles próprios e os elementos

que são seus próprios inversos. Estes últimos são os elementos de ordem 2. Sejam a_1, \ldots, a_{2n} os elementos de G do primeiro tipo. Vamos supor que numeramos os elementos de modo que a_1 seja o inverso de a_2 , a_3 seja o inverso de a_4 , e assim por diante. Sejam b_1, \ldots, b_m os elementos de G do segundo tipo. Então

$$(e \star a_1 \star a_2 \star \dots a_{2n}) \star b_1 \star \dots \star b_m = b_1 \star \dots \star b_m$$

já que $a_1 \star a_2 = e, \ldots, a_{2n-1} \star a_{2n} = e$. Observe que a ordem dos elementos no produto acima não é importante porque o grupo é abeliano.

- (2) Se \overline{a} é um elemento de U(p) de ordem 2 então $\overline{a}^2 = \overline{1}$ em U(p). Isto é $a^2 1$ é divisível por p. Mas $a^2 1 = (a 1)(a + 1)$. Como p é primo, tem que dividir um destes fatores. Se dividir o primeiro, então $\overline{a} = \overline{1}$; se o segundo, então $\overline{a} = -\overline{1}$.
- (3) De acordo com (1), multiplicando todos os elementos de U(p) obtemos o produto dos seus elementos de ordem 2. Mas por (2), o grupo U(p) tem apenas um elemento de ordem 2, que é $-\overline{1}$. Como o produto dos elementos de U(p) é $\overline{(p-1)!}$, temos que $\overline{(p-1)!} = -\overline{1}$. Em outras palavras $(p-1)! \equiv -1 \pmod{p}$.
- (4) Se n for composto, podemos escrevê-lo na forma ab onde a e b são inteiros positivos menores que n. Portanto a e b são ambos fatores de (n-1)!. Logo n divide (n-1)!, donde a congruência desejada.
- (5) A validade do teste é consequência imediata de (3) e (4). A principal desvantagem deste teste é que é muito lento calcular (n-1)!, mesmo executando o fatorial módulo n.

7. O gerador obtido é 5.

- 8. Note primeiro que se p é um primo ímpar, então $\phi(2p) = \phi(p) = p-1$. Suponha que $\overline{a} \in U(p)$ é um gerador. Então \overline{a} tem ordem p-1.
- (1) Suponhamos que a é ímpar. Como $\overline{a} \in U(p)$, então p não divide a. Como a é ímpar, então mdc(a,2p)=1. Logo a classe de a em \mathbb{Z}_{2p} é inversível. Qual a ordem da classe de a em U(2p)? Digamos que a ordem é r>1. Então $a^r\equiv 1\pmod{2p}$, donde $a^r\equiv 1\pmod{p}$. Portanto $r\geq p-1$. Como U(2p) tem ordem p-1, temos de fato que r=p-1 e a classe de a em U(2p) gera todo este grupo.
- (2) Se a for par, então a classe de a em \mathbb{Z}_{2p} não é inversível. Vamos considerar então a+p. Como p é ímpar, assim também é a+p. Além do mais, como p não divide a, também não pode dividir a+p. Portanto mdc(a+p,2p)=1. Assim a classe de a+p em \mathbb{Z}_{2p} está de fato em U(2p). Qual a ordem da classe de a+p em U(2p)? Digamos que é r>1. Então $(a+p)^r\equiv 1\pmod{2p}$. Mas disto concluímos que $a^r\equiv 1\pmod{p}$. Portanto $r\geq p-1$ e, como em (1), podemos concluir que a+p gera U(2p).
- (3) Pelo teorema do elemento primitivo o grupo U(p) é cíclico. Vimos em (1) e (2) que, sendo o gerador de U(p) par ou ímpar, podemos constuir a partir dele um gerador para U(2p). Logo U(2p) é cíclico.
- 9. Se G é um grupo cíclico de ordem n gerado por g então g também tem ordem n. (1) Digamos que $d=\mathrm{mdc}(k,n)$ e $d=\alpha\cdot k+\beta\cdot n$. Então

$$q^d = q^{\alpha k + \beta n} = (q^k)^{\alpha} \cdot (q^n)^{\beta} = (q^k)^{\alpha},$$

já que $g^n = e$, o elemento neutro de G. Concluímos que g^d é uma potência de g^k . Se n e k são primos entre si, então d = 1, e $g = (g^k)^{\alpha}$; logo g^k é um um gerador de G, neste caso. Se $d \neq 1$, então n = dr e, portanto, kr é múltiplo de n. Temos,

então, pelo lema chave, que $(g^k)^r = e$. Como r < n (já que $d \neq 1$), concluímos que g^k tem ordem menor que n neste caso.

- (2) Por (1), se g é um gerador de G, então os demais geradores de G serão da forma g^k , onde k < n e $\mathrm{mdc}(k,n) = 1$. Mas existem exatamente $\phi(n)$ inteiros positivos menores que n que são primos a n. Logo G tem $\phi(n)$ geradores.
- (3) O grupo U(p) tem ordem $\phi(p) = p 1$, já que p é primo. Portanto, de acordo com (2), terá que ter $\phi(p-1)$ geradores.

11. Respostas dos exercícios do capítulo 11

- 1. $n = 2131 \times 1667$.
- 2. A mensagem é 'FERMAT VIVE'.
- 3. Os fatores primos de n são 71 e 107, d=3 e a mensagem é 'FIM'.
- 4. A equação $x^3 \equiv x \pmod p$ tem três soluções qualquer que seja o primo $p \neq 2$. De fato, se $x \not\equiv 0 \pmod p$ então $x^2 \equiv 1 \pmod p$. Esta última equação só tem raízes congruentes a 1 e -1 módulo p, como vimos no exercício 5(2) do capítulo 10. Portanto o sistema

$$x^3 \equiv x \pmod{3}$$

 $x^3 \equiv x \pmod{p}$

tem 9 soluções pelo teorema chinês do resto. Logo $x^3 \equiv x \pmod{3p}$ tem 9 soluções.

- 5. Relembrando a notação: p é primo e $\overline{g} \in U(p)$ é um gerador. O número a foi escolhido aleatoriamente no intervalo 0 < a < p-1. O número b é um bloco da mensagem original. Para codificá-lo escolhemos aleatoriamente um inteiro positivo k e codificamos b como sendo o par $(\overline{g}^k, \overline{b}\overline{g}^{ak})$.
- (1) Decodificar significa obter b a partir do par $(\overline{g}^k, \overline{b}\overline{g}^{ak})$. Digamos que conhecemos a. Então podemos achar b calculando

$$(\overline{b}\overline{g}^{ak})(\overline{g}^k)^{(n-a)} = \overline{b} \cdot \overline{g}^{ak+(n-a)k} = \overline{b} \cdot \overline{(g^n)^k} = \overline{b}.$$

Note que isto nos dá b apenas porque escolhemos b de modo que $0 \le b \le p-1$.

- (2) Para decodificar usando o método descrito em (1), precisamos encontrar a a partir de \overline{g}^a e \overline{g} , que são conhecidos. Isto é, queremos resolver a equação $\overline{g}^x=\overline{c}$, onde c é a forma reduzida de g^a módulo p. Se p é grande, isto é muito difícil de efetuar na prática. Observe que se g, x e c fossem números reais, então $x=\log_g c$. Por isso o valor de x que satisfaz 'a equação $\overline{g}^x=\overline{c}$ é conhecido como logaritmo discreto de c na base g. Na verdade, não é realmente necessário resolver $\overline{g}^x=\overline{c}$ para achar a. Bastaria que pudéssemos determinar a a partir de \overline{g}^k e \overline{g}^{ak} , que são conhecidos. Entretanto, acredita-se (embora isto ainda não tenha sido provado), que este problema seja equivalente à determinação do logaritmo discreto.
- 6. Seja $u=p^{q-1}-q^{p-1}$ e vamos calcular u^2 módulo p. Usando o teorema de Fermat (e lembrando que $p\neq q$ são primos), obtemos

$$u \equiv p^{q-1} - q^{p-1} \equiv p^{q-1} \equiv 1 \pmod{q}$$

$$u \equiv p^{q-1} - q^{p-1} \equiv -q^{p-1} \equiv -1 \pmod{p}.$$

De modo que $u^2 \equiv 1 \pmod{p}$ e $u^2 \equiv 1 \pmod{q}$. Como $u^2 - 1$ é divisível por p e por q que são primos distintos, temos que $u^2 - 1$ é divisível por pq. Isto é $u^2 \equiv 1 \pmod{n}$.

Seja agora x_0 uma solução de $x^2 \equiv a \pmod{n}$. Então

$$(ux_0)^2 \equiv x_0^2 \cdot u^2 \equiv a \cdot 1 \equiv a \pmod{n}.$$

O mesmo vale para $-x_0$ e $-ux_0$.

Observe que $u \not\equiv \pm 1 \pmod{n}$. Por exemplo, se $u \equiv 1 \pmod{n}$, então u seria congruente a 1 módulo p e módulo q. Mas $u \equiv -1 \pmod{p}$.

7. É evidente que se temos uma maneira eficiente de fatorar n, então fica fácil quebrar o código. Digamos que alguém inventou uma máquina capaz de quebrar o método de Rabin com chave pública b e n. Da análise do mtodo de Rabin sabemos que o que a máquina faz é equivalente a achar uma raiz para a equação $x^2 \equiv a \pmod{n}$, para um dado inteiro a. Para falar a verdade, a máquina precisa achar as 4 raízes da equação. Vamos supor uma coisa um pouco mais fraca. Digamos que temos uma máquina que, dado um inteiro a, onde $0 \le a < n$, calcula uma raiz de $x^2 \equiv a \pmod{n}$. Note que não precisamos saber como funciona a máquina.

Escolha agora, aleatoriamente, um inteiro positivo r, menor que n e tal que $\mathrm{mdc}(r,n)=1$. Calcule $a\equiv r^2\pmod{n}$. Use então a máquina de descodificação para encontrar uma solução para $\overline{x}^2\equiv \overline{a}$ em \mathbb{Z}_n . Observe que conhecemos duas soluções desta equação, que são r e n-r. Entretanto, como a equação tem, em geral, 4 soluções, há uma probabilidade de 1/2 de que a solução v produzida pela máquina seja diferente de r e de n-r. Logo

$$(v-r)(v+r) \equiv v^2 - r^2 \equiv 0 \pmod{n}.$$

Mas n = pq. Assim p divide o produto (v - r)(v + r), logo divide um dos fatores. Digamos que p divide v + r.

Sob estas hipóteses q não pode dividir v+r. Se dividisse, então n dividiria v+r; ou seja $v\equiv -r\pmod n$. Como $0\leq v< n$, teríamos v=n-r, o que foi excluído por hipótese. Assim p divide v+r, mas q não divide v+r. Portanto $\mathrm{mdc}(v+r,n)=p$, o que nos daria uma maneira eficiente de calcular p.

Observe que a probabilidade de obter um fator de n fazendo uma escolha aleatória de $r \in 1/2$. Por isso esperamos achar um fator de n fazendo, em média, duas escolhas aletórias de r, o que é bastante eficiente.

8. Não vou estragar a surpresa dizendo qual a decodificação da mensagem!