GPU Implementation of Data-Aided Equalizers

Jeffrey T. Ravert

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Michael D. Rice, Chair Brian D. Jeffs Brian A. Mazzeo

Department of Electrical and Computer Engineering

Brigham Young University

April 2017

Copyright © 2017 Jeffrey T. Ravert

All Rights Reserved

ABSTRACT

GPU Implementation of Data-Aided Equalizers

Jeffrey T. Ravert

Department of Electrical and Computer Engineering

Master of Science

Multipath is one of the dominant causes for link loss in aeronautical telemetry. Equalizers have been studied to combat multipath interference in aeronautical telemetry. Blind Constant Modulus Algorithm (CMA) equalizers are currently being used on SOQPSK-TG. The Preamble Assisted Equalization (PAQ) has been funded by the Air Force to study data-aided equalizers on SOQPSK-TG. PAQ compares side by side no equalization, data-aided zero forcing equalization, data-aided MMSE equalization, data-aided initialized CMA equalization, data-aided frequency domain equalization, and blind CMA equalization. An real time experimental test setup has been assembled including an RF receiver for data acquisition, FPGA for hardware interfacing and buffering, GPUs for signal processing, spectrum analyzer for viewing multipath events, and an 8 channel bit error rate tester to compare equalization performance. Lab tests were done with channel and noise emulators. Flight tests were conducted in March 2016 and June 2016 at Edwards Air Force Base to test the equalizers on live signals. The test setup achieved a 10Mbps throughput with a 6 second delay. Counter intuitive to the simulation results, the flight tests at Edwards AFB in March and June showed blind equalization is superior to data-aided equalization. Lab tests revealed some types of multipath caused timing loops in the RF receiver to produce garbage samples. Data-aided equalizers based on data-aided channel estimation leads to high bit error rates. A new experimental setup is been proposed, replacing the RF receiver with a RF data acquisition card. The data acquisition card will always provide good samples because the card has no timing loops, regardless of severe multipath.

Keywords: MISSING

ACKNOWLEDGMENTS

Students may use the acknowledgments page to express appreciation for the committee members, friends, or family who provided assistance in research, writing, or technical aspects of the dissertation, thesis, or selected project. Acknowledgments should be simple and in good taste.

Table of Contents

Li	st of T	Tables	ix
Li	st of I	Figures	xi
1	Intr	oduction	1
2	Prol	olem Statement	3
3	Sign	al Processing with GPUs	5
	3.1	Simple GPU code example	5
	3.2	GPU kernel using threads and thread blocks	8
	3.3	GPU memory	9
	3.4	Cuda Libraries	12
	3.5	Cuda Convolution	13
	3.6	Thread Optimization	18
4	Syst	em Overview	27
	4.1	Overview	27
	4.2	Preamble Detection	27
	4.3	Frequency Offset Compensation	30
	4.4	Channel Estimation	32
	45	Noise Variance Estimation	32

	4.6	SxS Detector	32
5	Equ	alizer Equations	35
	5.1	Overview	35
	5.2	Zero-Forcing and MMSE Equalizers	35
		5.2.1 The Iterative Equalizer	40
		5.2.2 The Multiply Equalizers	43
6	Equ	alizer Performance	45
7	Fina	al Summary	47
Bi	bliogi	raphy	48

List of Tables

3.1	The computational resources available with three NVIDIA GPUs used in this thesis (1x Tesla K40c 2x Tesla K20c)	11
3.2	Defining start and stop lines for timing comparison in Listing 3.2	14
3.3	Convolution computation times with signal length $2^{15}=32768$ and filter length 186 on a Tesla K40c GPU	16
3.4	Convolution computation times with signal length 12672 and filter length 186 on a Tesla K40c GPU	17

List of Figures

3.1	A block diagram of how a CPU sequentially performs vector addition	6
3.2	A block diagram of how a GPU performs vector addition in parallel	6
3.3	Block 0 32 threads launched in 4 thread blocks with 8 threads per block	9
3.4	36 threads launched in 5 thread blocks with 8 threads per block with 4 idle threads.	9
3.5	A block diagram where local, shared, and global memory is located. Each thread has private local memory. Each thread block has private shared memory. The GPU has global memory that all threads can access	10
3.6	NVIDIA Tesla K40c and K20c	11
3.7	Example of an NVIDIA GPU card. The SRAM is shown to be boxed in yellow. The GPU chip is shown to be boxed in red.	12
3.8	Comparison of complex convolution on CPU to GPU with varying signal lengths without lower bounding	15
3.9	Comparison of complex convolution on CPU to GPU with varying signal lengths with lower bounding	16
3.10	Plot showing when CPU convolution is faster than GPU convolution	17
3.11	Plot showing trade offs with convolution in GPUs	18
3.12	Lower bounded plot showing trade offs with convolution in GPUs	19
3.13	ConvGPU thread optimization 128 threads per block 0.006811	20
3.14	The GPU convolution thread optimization of a 12672 length signal with a 10 tap filter using shared memory. 192 is the optimal number of threads per block executing in 0.1101ms	21
4.1	This a simple block diagram of what the GPU does	28

4.2	The iNET packet structure	28
4.3	The output of the Preamble Detector $L(u)$	31
4.4	Offset Quadriture Phase Shift Keying symbol by symbol detector	33
5.1	A block diagram illustrating organization of the algorithms in the GPU	44

Chapter 1

Introduction

This is the introduction

Chapter 2

Problem Statement

This is the Problem Statement

Some algorithms map very well to CPUs because they are computationally light, but what happens why your CPU cannot acheive the desired throughput or data rate?

In the past, the answer was FPGAs. But now, with Graphics Processing Units getting bigger faster stronger, there has been a recent pull towards GPUs because of

the ease of implementation vs HDL programming the ease of setup

Chapter 3

Signal Processing with GPUs

This thesis explores the use of GPUs in data-aided estimation, equalization and filtering operations.

A Graphics Processing Unit (GPU) is a computational unit with a highly-parallel architecture well-suited for executing the same function on many data elements. In the past, GPUs were used to process graphics data. Recently, general purpose GPUs are being used for high performance computing in computer vision, deep learning, artificial intelligence and signal processing [1].

GPUs cannot be programmed the way as a CPU. NVIDIA released a extension to C, C++ and Fortran called CUDA (Compute Unified Device Architecture). CUDA allows a programmer to write C++ like functions that are massively parallel called kernels. To invoke parallelism, a GPU kernel is called N times and mapped to N threads that run concurrently. To achieve the full potential of high performance GPUs, kernels must be written with some basic concepts about GPU architecture and memory in mind.

The purpose of this overview is to provide context for the contributions of this thesis. As such this overview is not a tutorial. For a full explination of CUDA programming please see the CUDA toolkit documentation [3].

3.1 Simple GPU code example

If a programmer has some C++ experience, learning how to program GPUs using CUDA comes fairly easily. GPU code still runs top to bottom and memory still has to be allocated. The only real difference is where the memory physically is and how functions run on GPUs. To run functions or kernels on GPUs, the memory must be copied from the host (CPU) to the device (GPU). Once the memory has been copied, the parallel GPU kernels can be called. After the GPU

Figure 3.1: A block diagram of how a CPU sequentially performs vector addition.

Figure 3.2: A block diagram of how a GPU performs vector addition in parallel.

kernels have finished, the resulting memory has to be copied back from the device (GPU) to the host (CPU).

Listing 3.1 shows a simple program that sums to vectors together

$$\mathbf{C}_1 = \mathbf{A}_1 + \mathbf{B}_1$$

$$\mathbf{C}_2 = \mathbf{A}_2 + \mathbf{B}_2$$
(3.1)

where each vector is length 1024. Figure 3.1 shows how the CPU computes C_1 by summing elements of A_1 and B_1 together *sequentially*. Figure 3.2 shows how the GPU computes C_2 by summing elements of A_1 and B_1 together *in parallel*. The GPU kernel computes every element of C_2 in parallel while the CPU computes one element of C_1 at a time.

Listing 3.1: Comparison of CPU verse GPU code.

```
1 #include <iostream>
   #include <stdlib.h>
 3 #include <math.h>
 4 using namespace std;
 6 void VecAddCPU(float* destination, float* source0, float* source1, int myLength) {
 7
            for(int i = 0; i < myLength; i++)</pre>
                     destination[i] = source0[i] + source1[i];
 8
 9
    }
10
   __global__ void VecAddGPU(float* destination, float* source0, float* source1, int lastThread){
11
12
            int i = blockIdx.x*blockDim.x + threadIdx.x;
13
            // don't access elements out of bounds
14
1.5
            if(i >= lastThread)
16
                    return;
17
18
            destination[i] = source0[i] + source1[i];
19 }
20
21
22
    int main(){
        int numPoints = pow(2,22);
23
24
           cout << numPoints << endl;</pre>
2.5
26
                                       CPU Start
2.7
28
            // allocate memory on host
29
            float *A1;
30
            float *B1;
31
            float *C1;
32
            A1 = (float*) malloc (numPoints*sizeof(float));
33
            B1 = (float*) malloc (numPoints*sizeof(float));
34
            C1 = (float*) malloc (numPoints*sizeof(float));
35
36
            // Initialize vectors 0-99
            for(int i = 0; i < numPoints; i++) {</pre>
37
38
                    A1[i] = rand()%100;
39
                     B1[i] = rand()%100;
40
            }
41
            // vector sum C1 = A1 + B1
42
            VecAddCPU(C1, A1, B1, numPoints);
4.3
44
45
                                        CPU End
46
47
48
49
                                       GPU End
50
            // allocate memory on host for result
51
52
            float *C2;
53
            C2 = (float*) malloc (numPoints*sizeof(float));
54
55
            // allocate memory on device for computation
            float *A2_gpu;
56
57
            float *B2_gpu;
58
            float *C2_gpu;
            cudaMalloc(&A2_gpu, sizeof(float)*numPoints);
59
            cudaMalloc(&B2_gpu, sizeof(float)*numPoints);
cudaMalloc(&C2_gpu, sizeof(float)*numPoints);
60
61
62
63
            // Copy vectors A and B from host to device
64
            \verb|cudaMemcpy(A2_gpu, A1, sizeof(float)*numPoints, cudaMemcpyHostToDevice);|\\
65
            cudaMemcpy(B2_gpu, B1, sizeof(float)*numPoints, cudaMemcpyHostToDevice);
66
```

```
67
             // Set optimal number of threads per block
             int numTreadsPerBlock = 32;
 68
 69
 70
             // Compute number of blocks for set number of threads
 71
             int numBlocks = numPoints/numTreadsPerBlock;
 72
 7.3
             // If there are left over points, run an extra block
 74
             if (numPoints % numTreadsPerBlock > 0)
 75
                      numBlocks++;
 76
 77
             // Run computation on device
 78
             //for(int i = 0; i < 100; i++)
 79
             VecAddGPU<<<numBlocks, numTreadsPerBlock>>>(C2_gpu, A2_gpu, B2_gpu, numPoints);
 80
 81
             // Copy vector C2 from device to host
 82
             cudaMemcpy(C2, C2_gpu, sizeof(float)*numPoints, cudaMemcpyDeviceToHost);
 83
 84
                                         GPU End
 85
 86
 87
             // Compare C2 to C1
 88
             bool equal = true;
 89
             for(int i = 0; i < numPoints; i++)</pre>
                     if(C1[i] != C2[i])
 90
 91
                              equal = false;
             if(equal)
 92
                    cout << "C2 is equal to C1." << endl;</pre>
 93
 94
                     cout << "C2 is NOT equal to C1." << endl;</pre>
 9.5
 96
             sleep(2);
 97
 98
             // Free vectors on CPU
 99
             free (A1);
100
             free (B1);
101
             free (C1);
             free(C2);
102
103
104
             // Free vectors on GPU
105
             cudaFree (A2_gpu);
106
             cudaFree (B2_gpu);
             cudaFree(C2_gpu);
107
108
```

3.2 GPU kernel using threads and thread blocks

A GPU kernel is executed on a GPU by launching numTreadsPerBlock×numBlocks threads. Each thread has a unique index. CUDA calls this indes threadIdx and blockIdx. threadIdx is the thread index inside the assigned thread block. blockIdx is the index of the block the thread is assigned. blockDim is the number of threads assigned per block, in fact blockDim = numTreadsPerBlock. Both threadIdx and blockIdx are three dimensional and have x, y and z components. In this thesis only the x dimension is used because GPU kernels operate only on vectors.

To replace a CPU for loop that runs 0 to N-1, a GPU kernel launches N threads are with T threads per thread block. The number of blocks need is $M=\frac{N}{T}$ or $M=\frac{N}{T}+1$ if N is not an

Figure 3.3: Block 0 32 threads launched in 4 thread blocks with 8 threads per block.

Figure 3.4: 36 threads launched in 5 thread blocks with 8 threads per block with 4 idle threads.

integer multiple of T. Figure 3.3 shows 32 threads launched in 4 thread blocks with 8 threads per block. Figure 3.4 shows 36 threads launched in 5 thread blocks with 8 threads per block. An full extra thread block must be launched to with 8 threads but 4 threads are idle.

3.3 **GPU** memory

Thread blocks run independent of other thread blocks. The GPU does not guarantee Block 0 will execute before Block 2. Threads in blocks can coordinate and use shared memory but blocks do not coordinate with other blocks. Threads have access to private local memory that is fast and efficient. Each thread in a thread block has access to private shared memory in the thread block. All threads have access to global memory.

Local memory is the fastest and global memory is by far the slowest. One global memory access takes 400-800 clock cycles while a local memory is a few clock cycles. Why not just do all computations in local memory? The memory needs come from global memory to before it can be used in local memory. Memory should be saved in shared memory if many threads are going to use it in a thread block. Local and shared memory should be used as much as possible but sometimes a GPU kernel cant utilized local and shared memory because elements might only be used once.

Why is global memory so slow? Looking at the physical hardware will shed some light. This thesis uses NVIDIA Tesla K40c and K20c GPUs, Table 3.1 gives some specifications and Figure 3.6 shows the form factor of the these GPUs. The red box in Figure 3.7 show the GPU

Figure 3.5: A block diagram where local, shared, and global memory is located. Each thread has private local memory. Each thread block has private shared memory. The GPU has global memory that all threads can access.

Figure 3.6: NVIDIA Tesla K40c and K20c.

Feature	Tesla K40c	Tesla K20c
Memory size (GDDR5)	12 GB	5 GB
CUDA cores	2880	2496
Base clock (MHz)	745	732

Table 3.1: The computational resources available with three NVIDIA GPUs used in this thesis (1x Tesla K40c 2x Tesla K20c).

chip and the yellow boxes show the SRAM that is *off* the GPU chip. The GPU global memory is located in the SRAM. To move memory to thread blocks *on* the GPU chip from global memory requires fetching memory from *off* the GPU. Now 400-800 clock cycles doesn't sound all the bad huh?

Figure 3.7: Example of an NVIDIA GPU card. The SRAM is shown to be boxed in yellow. The GPU chip is shown to be boxed in red.

3.4 Cuda Libraries

CUDA isn't just a programming language, it also has many libraries that are extreemly useful that are optimized for NVIDIA GPUs. CUDA libraries are written by NVIDIA engineers that know how to squeeze out every drop of performance out of NVIDIA GPUs. Because ninjas are unbeatable, NVIDIA engineers are known as ninjas in the Telemetry Group at BYU. While figuring out how to optimize a GPU kernel is extremely satisfying, GPU programmers should always search the CUDA libraries for any thing that might be useful.

Some libraries used in this Thesis are

- cufft
- cublas
- cusolver
- cusolverSp

3.5 Cuda Convolution

An important tool to Digital Communications and Digital Signal Processing is convolution.

Time domain convolution is

$$y(n) = \sum_{m=0}^{L_{\rm h}-1} x(m)h(n-m)$$
 (3.2)

where x(m), h(n-m) and y(n) are complex. While Listing 3.1 is a simple and good example showing how program GPUs, frankly, it is pretty boring and doesn't display the real challenges and tradeoffs of GPUs. Listing 3.2 shows four different ways of implementing convolution

- time domain convolution in a CPU
- time domain convolution in a GPU using global memory
- time domain convolution in a GPU using shared memory
- frequency domain convolution in a GPU using CUDA libraries

The CPU implements Equation (3.2) in ConvCPU directly from line 6 to 30. The GPU implements time domain convolution using global memory in the GPU kernel ConvGPU. ConvGPU on lines 32 to 59 is a parallel of ConvCPU. ConvGPU implements time domain convolution by accessing global memory for any needed element of the signal and filter.

Threads accessing the same elements of the filter in global memory seems like a waste of valuable clock cycles. The GPU kernel ConvGPUshared on lines 61 to 96 differs slightly from ConvGPU by making $L_{\rm h}$ threads save the filter to shared memory from global memory.

Any graduate of a signal processing class knows the trade off of convolution in the time verse frequency domain. Time domain convolution takes $\approx L_{\rm s}L_{\rm h}$ complex multiplies where $L_{\rm s}$ is the signal length and $L_{\rm h}$ is the filter length. Frequency domain convolution takes $\approx \frac{3N_{\rm FFT}}{2}\log_2(N_{\rm FFT}) + N_{\rm FFT}$ complex multiplies where $N_{\rm FFT}$ is the next multiple of 2 above the convolution length $L_{\rm s} + L_{\rm h} - 1$.

Table 3.2: Defining start and stop lines for timing comparison in Listing 3.2.

Algorithm	Start Timing Line	Stop Timing Line
CPU time domain (ConvCPU)	182	183
GPU time domain global (ConvGPU)	187	195
GPU time domain shared (ConvGPUshared)	200	208
GPU frequency domain	212	231

Lines 213 to 232 show how to do frequency domain convolution using the cuFFT library and two simple GPU kernels.

So the questions are: When should I stay on the host and run my convolution on the CPU? When should I copy my vectors to the GPU, run my convolution, then copy the vectors back to the host? If I am going to run my convolution the GPU, when should I only use global memory? When should I use shared memory? When should I do convolution in the frequency domain?

The answer to all of the questions is...it depends on your signal length, filter length, CPU, GPU and memory.

A CUDA programmer can make an educated guess on which way may be faster, but until the algorithms have been implemented and timed, there is no definite answer. Figures 3.8 to ?? compare the four different ways of doing convolution implemented in Listing 3.1 on a Tesla K40c GPU. The filter length for Figures 3.8 to ?? is 186. The filter length for Figure 3.12 is 10. Table 3.2 lists how the kernels were timed. Note that all memory transfers from host to device and device to host were included in execution times.

Figure 3.8 shows the raw computation time on the K40c for each algorithm in Table 3.2 with the filter length set to 186. The figure has many irregularities because the operating system doesn't always provide as much resources as needed.

Figure 3.9 is generated from the raw computation data but lower bounded by searching for a minimum every 20 samples. Judging my the Figure, for long signals convolved with 186 tap filters, GPU convolution is much faster than CPU.

Looking at the bottom left of Figures 3.8 and 3.9, a DSP engineer would ask, "Is it ever better to do convolution on the CPU rather than GPU?" Yes, but for very short signals with a 186 tap filter. Figure 3.10 shows when a CPU is faster than a GPU.

Now for the interesting question, if I am going to do convolution in the GPU, should I do time domain or frequency domain convolution? If I do time domain convolution, should I use global or shared memory? Figure 3.11 shows that the answer: "It depends." A good choice is to do frequency domain, but not always. As the signal length increases, the frequency domain execution time has a staircase shape because the signal is zero padded out to the next power of 2 to leverage the Cooley-Tukey FFT algorithm [?].

Usually, when implementing convolution, the signal and filter length is set. If is good practice to implement convolution in the CPU and GPU in many ways to evaluate which way is

Figure 3.9: Comparison of complex convolution on CPU to GPU with varying signal lengths with lower bounding.

Table 3.3: Convolution computation times with signal length $2^{15} = 32768$ and filter length 186 on a Tesla K40c GPU.

Algorithm	time (ms)
CPU time domain (ConvCPU)	131.943
GPU time domain global (ConvGPU)	7.79477
GPU time domain shared (ConvGPUshared)	6.77736
GPU frequency domain	5.81085

best. Choosing the signal length to be 2^{15} and the filter length to be 186, Tables 3.3 and 3.4 shows how the different algorithms compare for different signal lengths.

If the length of the filter were changed from 186 to 10 taps, everything changes. Figure 3.12 shows execution time for a varying length complex signal convolved with a 10 tap complex filter.

Figure 3.10: Plot showing when CPU convolution is faster than GPU convolution.

Table 3.4: Convolution computation times with signal length 12672 and filter length 186 on a Tesla K40c GPU.

Algorithm	time (ms)
CPU time domain (ConvCPU)	5.04636
GPU time domain global (ConvGPU)	0.320013
GPU time domain shared (ConvGPUshared)	0.292616
GPU frequency domain	0.284187

Contrary to the text book number of flops comparison, convolution in the frequency domain is never faster than time domain in GPUs for a 10 tap filter, even with an extremely long signal. Time domain convolution using shared memory in ConvGPUshared is fastest for a signal of significant length. ConvGPUshared performs very well because only 10 threads per thread block need to

Figure 3.11: Plot showing trade offs with convolution in GPUs.

access global memory for the filter coefficients while all other threads only need to access global memory for the signal.

Long story short, most of the time a GPU DSP engineer is given a set length of signal and filter for convolution. As Figures 3.8 through 3.11 have shown, unless every implementation is explored, there is no way of saying which implementation is fastest.

Thread Optimization 3.6

When first introduced to GPUs, a programmer might to tempted to launch as many threads per block possible. But, notice in Listing 3.2 lines 190, 203, 219 and 225 launch a minimum of 96 threads per block and maximum of 192 threads per block. Running the GPU with less threads per block with lower occupancy leaves each thread with more resources and memory bandwidth. Running the GPU with more threads per block with higher occupancy utilizes the full parallel

Figure 3.12: Lower bounded plot showing trade offs with convolution in GPUs.

might of the GPU. If 1024 threads per block were always launched, lighter computation GPU kernels will be starving for memory while other thread blocks eat up the memory bandwidth. If 32 threads per block were always launched, heavier computation GPU kernels will be swimming in resources.

Improving memory accesses should always be the first optimization when a GPU kernel needs to be faster. The next step is to find the optimal number of threads per block to launch. Knowing the perfect number of threads per block to launch is challenging to calculate. Luckily, there is a finite number of possible threads per block, 1 to 1024. A simple test program could time a GPU kernel while sweeping the number of threads per block from 1 to 1024. The number of threads per block with the fastest computation time is the optimal number of threads per block for that specific GPU kernel.

Most of the time the optimal number of threads per block is a multiple of 32. At the lowest level of architecture, GPUs do computations in *warps*. Warps are groups of 32 threads that do every computation together in lock step. If the number of threads per block is a non multiple of 32, some threads in a warp will be idle and the GPU will have unused resources.

Figure 3.14 shows the execution time of ConvGPUshared while varying threads per block. Although the minimum execution time is 0.1078ms at the optimal 96 threads per block, incorrect output will result if ConvGPUshared is launched with less than 186 threads per block. Launching 96 threads per block only transfer 96 filter coefficients to shared memory from global memory. Luckily, launching 192 threads per block is near optimal with an execution time of 0.1101ms. By simply adjusting the number of threads per block, ConvGPUshared can have a $2\times$ speed up.

Adjusting the number of threads per block doesn't always drastically speed up GPU kernels. Figure 3.14 shows the execution time for ConvGPU with varying threads per block.

To answer the question: "There are X number of ways to implement this algorithm, which one is executes the fastest?" the answer always is "It depends. Implement the algorithm X ways and see which is fastest."

Figure 3.13: The GPU convolution thread optimization of a 12672 length signal with a 186 tap filter using shared memory. 192 is the optimal number of threads per block executing in 0.1101ms. Note that at least 186 threads per block must be launched to compute correct output.

Listing 3.2: CUDA code to performing complex convolution four different ways: time domain CPU, time domain GPU, time domain GPU using shared memory and frequency domain GPU.

```
1
    #include <cufft.h>
    using namespace std;
    // Length of Filter (186 is a magic number)
    const int LH = 186;
 4
    void ConvCPU(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx,int Lh){
 6
 7
             for(int yIdx = 0; yIdx < Lx+Lh-1; yIdx++){</pre>
                     cufftComplex temp;
 8
                     temp.x = 0;
 9
10
                     temp.y = 0;
                     for(int hIdx = 0; hIdx < Lh; hIdx++) {</pre>
11
                              int xAccessIdx = yIdx-hIdx;
12
                              if (xAccessIdx>=0 && xAccessIdx<Lx) {</pre>
13
                                       // temp += x[xAccessIdx]*h[hIdx];
14
15
                                       // (A+jB) (C+jD) = (AC-BD) + j(AD+BC)
16
                                      float A = x[xAccessIdx].x;
                                      float B = x[xAccessIdx].y;
float C = h[hIdx].x;
17
18
                                      float D = h[hIdx].y;
19
20
                                      cufftComplex complexMult;
21
                                      complexMult.x = A*C-B*D;
22
                                      complexMult.y = A*D+B*C;
23
24
                                      temp.x += complexMult.x;
25
                                      temp.y += complexMult.y;
26
27
28
                     y[yIdx] = temp;
29
30
31
32
    __global__ void ConvGPU(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx,int Lh){
33
            int yIdx = blockIdx.x*blockDim.x + threadIdx.x;
34
             int lastThread = Lx+Lh-1;
35
             // Don't access elements out of bounds
36
             if(yIdx >= lastThread)
37
                     return;
38
            cufftComplex temp;
39
             temp.x = 0;
40
             temp.y = 0;
             for(int hIdx = 0; hIdx < Lh; hIdx++) {</pre>
41
                      int xAccessIdx = yIdx-hIdx;
42
43
                     if (xAccessIdx>=0 && xAccessIdx<Lx) {</pre>
44
                              // temp += x[xAccessIdx]*h[hIdx];
4.5
                              // (A+jB) (C+jD) = (AC-BD) + j(AD+BC)
46
                              float A = x[xAccessIdx].x;
                              float B = x[xAccessIdx].y;
47
                              float C = h[hIdx].x;
48
49
                              float D = h[hIdx].y;
50
                              cufftComplex complexMult;
51
                              complexMult.x = A*C-B*D;
                              complexMult.y = A*D+B*C;
52
53
54
                              temp.x += complexMult.x;
55
                              temp.y += complexMult.y;
56
57
                     y[yIdx] = temp;
58
59
60
61
     _global__ void ConvGPUshared(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx,int Lh){
            int yIdx = blockIdx.x*blockDim.x + threadIdx.x;
62
             // Be sure to read in full h_shared before checking lastThread
63
            // First Lh threads in thread block read h from global memory into shared memory
64
            __shared__ cufftComplex h_shared[LH];
```

```
66
             if(threadIdx.x < LH)</pre>
                     h_shared[threadIdx.x] = h[threadIdx.x];
 67
 68
             int lastThread = Lx+Lh-1;
             // Don't access elements out of bounds
 69
 70
             if(yIdx >= lastThread)
 71
                     return;
 72
             // Thread barrier, ensures threads wait until h has been read into h_shared
 73
             __syncthreads();
 74
             cufftComplex temp;
 75
             temp.x = 0;
             temp.y = 0;
 76
 77
             for(int hIdx = 0; hIdx < Lh; hIdx++) {</pre>
 78
                      int xAccessIdx = yIdx-hIdx;
 79
                      if (xAccessIdx>=0 && xAccessIdx<Lx) {</pre>
                              // temp += x[xAccessIdx]*h_shared[hIdx];
 80
 81
 82
                              // (A+jB) (C+jD) = (AC-BD) + j(AD+BC)
 83
                              float A = x[xAccessIdx].x;
                              float B = x[xAccessIdx].y;
 84
 85
                              float C = h_shared[hIdx].x;
 86
                              float D = h_shared[hIdx].y;
 87
                              cufftComplex complexMult;
 88
                              complexMult.x = A*C-B*D;
                              complexMult.y = A*D+B*C;
 89
 90
 91
                              temp.x += complexMult.x;
 92
                              temp.y += complexMult.y;
 9.3
 94
                     y[yIdx] = temp;
 95
 96
 97
98
     __global__ void PointToPointMultiply(cufftComplex* vec0, cufftComplex* vec1, int lastThread){
99
             int i = blockIdx.x*blockDim.x + threadIdx.x;
100
             // Don't access elements out of bounds
101
             if(i >= lastThread)
102
                     return;
             // vec0[i] = vec0[i]*vec1[i]];
103
             // (A+jB) (C+jD) = (AC-BD) + j(AD+BC)
104
105
             float A = vec0[i].x;
106
             float B = vec0[i].y;
107
             float C = vec1[i].x;
             float D = vec1[i].y;
108
109
             cufftComplex complexMult;
110
             complexMult.x = A*C-B*D;
111
             complexMult.y = A*D+B*C;
112
             vec0[i] = complexMult;
113
114
115 __global__ void ScalarMultiply(cufftComplex* vec0, float scalar, int lastThread){
116
             int i = blockIdx.x*blockDim.x + threadIdx.x;
             // Don't access elements out of bounds
117
118
             if(i >= lastThread)
119
                     return;
             cufftComplex scalarMult;
120
121
             scalarMult.x = vec0[i].x*scalar;
             scalarMult.y = vec0[i].y*scalar;
122
123
             vec0[i] = scalarMult;
124
125
126 int main(){
127
             int mySignalLength = pow(2,15);
             int myFilterLength = LH;
128
129
             int myConvLength = mySignalLength + myFilterLength - 1;
130
                             = pow(2, ceil(log(myConvLength)/log(2)));
             int Nfft.
131
             int numTreadsPerBlock;
             int numBlocks;
132
133
```

```
134
             cufftHandle plan;
135
             int n[1] = {Nfft};
136
             cufftPlanMany(&plan,1,n,NULL,1,1,NULL,1,1,CUFFT_C2C,1);
137
138
             // Allocate memory on host
139
             cufftComplex *mySignal1;
140
             cufftComplex *myFilter1;
             cufftComplex *myConv1;
141
             cufftComplex *myConv2;
142
143
             cufftComplex *myConv3;
144
             cufftComplex *myConv4;
             mySignal1 = (cufftComplex*) malloc(mySignalLength*sizeof(cufftComplex));
145
146
             myFilter1
                            = (cufftComplex*) malloc(myFilterLength*sizeof(cufftComplex));
                            = (cufftComplex*) malloc(myConvLength *sizeof(cufftComplex));
147
             myConv1
             myConv2
                            = (cufftComplex*) malloc(myConvLength *sizeof(cufftComplex));
148
149
             myConv3
                            = (cufftComplex*) malloc(myConvLength *sizeof(cufftComplex));
             myConv4
150
                            = (cufftComplex*) malloc(Nfft *sizeof(cufftComplex));
151
             for(int i = 0; i < mySignalLength; i++){</pre>
152
                     mySignal1[i].x = rand()%100-50;
153
                      mySignal1[i].y = rand()%100-50;
154
              for(int i = 0; i < myFilterLength; i++) {</pre>
155
                      myFilter1[i].x = rand()%100-50;
156
                     myFilter1[i].y = rand()%100-50;
157
158
159
160
             // Allocate memory on device
161
             cufftComplex *dev_mySignal2;
             cufftComplex *dev_myFilter2;
162
163
             cufftComplex *dev_myConv2;
164
             cufftComplex *dev_mySignal3;
165
             cufftComplex *dev_myFilter3;
             cufftComplex *dev_myConv3;
166
167
             cufftComplex *dev mySignal4;
168
             cufftComplex *dev_myFilter4;
169
             cufftComplex *dev_myConv4;
170
             cudaMalloc(&dev_mySignal2, mySignalLength*sizeof(cufftComplex));
             cudaMalloc(&dev_myFilter2, myFilterLength*sizeof(cufftComplex));
171
             cudaMalloc(&dev_myConv2, myConvLength *sizeof(cufftComplex));
cudaMalloc(&dev_mySignal3, mySignalLength*sizeof(cufftComplex));
172
173
174
             cudaMalloc(&dev_myFilter3, myFilterLength*sizeof(cufftComplex));
             cudaMalloc(&dev_myConv3, myConvLength *sizeof(cufftComplex));
cudaMalloc(&dev_mySignal4, Nfft *sizeof(cufftComplex));
175
176
177
             cudaMalloc(&dev_myFilter4, Nfft
                                                       *sizeof(cufftComplex));
178
             cudaMalloc(&dev_myConv4, Nfft
                                                        *sizeof(cufftComplex));
179
180
181
                                     CPU Time Domain Direct Convolution
182
183
             ConvCPU(myConv1,mySignal1,myFilter1,mySignalLength,myFilterLength);
184
185
186
                              GPU Time DomainDirect Convolution
187
188
              cudaMemcpy(dev_mySignal2, mySignal1, sizeof(cufftComplex)*mySignalLength,
                 cudaMemcpyHostToDevice);
              cudaMemcpy(dev_myFilter2, myFilter1, sizeof(cufftComplex)*myFilterLength,
189
                 cudaMemcpyHostToDevice);
190
             numTreadsPerBlock = 128;
             numBlocks = myConvLength/numTreadsPerBlock;
191
192
              if (myConvLength % numTreadsPerBlock > 0)
193
                     numBlocks++;
194
             ConvGPU<<<numBlocks, numTreadsPerBlock>>>(dev_myConv2, dev_mySignal2, dev_myFilter2,
                 mySignalLength, myFilterLength);
195
             cudaMemcpy(myConv2, dev_myConv2, myConvLength*sizeof(cufftComplex),
                 cudaMemcpyDeviceToHost);
196
197
```

```
198
199
                                    GPU Time Domain Convolution Using Shared Memory
200
201
             cudaMemcpy(dev_mySignal3, mySignal1, sizeof(cufftComplex)*mySignalLength,
                 cudaMemcpyHostToDevice);
202
             cudaMemcpy(dev_myFilter3, myFilter1, sizeof(cufftComplex)*myFilterLength,
                 cudaMemcpyHostToDevice);
             numTreadsPerBlock = 192;
203
204
             numBlocks = myConvLength/numTreadsPerBlock;
205
             if (myConvLength % numTreadsPerBlock > 0)
206
                    numBlocks++;
             ConvGPUshared<<<numBlocks, numTreadsPerBlock>>>(dev_myConv3, dev_mySignal3, dev_myFilter3
207
                 , mySignalLength, myFilterLength);
             cudaMemcpy(myConv3, dev_myConv3, myConvLength*sizeof(cufftComplex),
208
                 cudaMemcpyDeviceToHost);
209
210
211
                                    GPU Frequency Domain Convolution using cuFFT
212
213
             cudaMemset(dev_mySignal4, 0, Nfft*sizeof(cufftComplex));
214
             cudaMemset(dev_myFilter4, 0, Nfft*sizeof(cufftComplex));
215
             cudaMemcpy(dev_mySignal4, mySignal1, sizeof(cufftComplex)*mySignalLength,
                 cudaMemcpyHostToDevice);
216
             cudaMemcpy(dev_myFilter4, myFilter1, sizeof(cufftComplex)*myFilterLength,
                 cudaMemcpyHostToDevice);
217
             cufftExecC2C(plan, dev_mySignal4, dev_mySignal4, CUFFT_FORWARD);
             cufftExecC2C(plan, dev_myFilter4, dev_myFilter4, CUFFT_FORWARD);
218
219
             numTreadsPerBlock = 96;
220
             numBlocks = Nfft/numTreadsPerBlock;
221
             if(Nfft % numTreadsPerBlock > 0)
2.2.2
                    numBlocks++;
223
             PointToPointMultiply<<<numBlocks, numTreadsPerBlock>>>(dev_mySignal4, dev_myFilter4, Nfft
224
             cufftExecC2C(plan, dev_mySignal4, dev_mySignal4, CUFFT_INVERSE);
225
             numTreadsPerBlock = 128;
226
             numBlocks = Nfft/numTreadsPerBlock;
227
             if (Nfft % numTreadsPerBlock > 0)
                     numBlocks++;
228
229
             float scalar = 1.0/((float)Nfft);
230
             ScalarMultiply<<<numBlocks, numTreadsPerBlock>>>(dev_mySignal4, scalar, Nfft);
231
             cudaMemcpy(myConv4, dev_mySignal4, myConvLength*sizeof(cufftComplex),
                 cudaMemcpvDeviceToHost);
232
             cufftDestroy(plan);
233
             // Free vectors on CPU
234
235
             free (mySignal1);
236
             free (myFilter1);
237
             free (myConv1);
238
             free (myConv2);
2.39
             free (myConv3);
240
             free (myConv4);
2.41
242
             // Free vectors on GPU
243
             cudaFree(dev_mySignal2);
             cudaFree(dev_myFilter2);
244
             cudaFree (dev_myConv2);
245
             cudaFree(dev_mySignal2);
246
247
             cudaFree(dev_myFilter2);
248
             cudaFree (dev_myConv2);
             cudaFree(dev_mySignal3);
2.49
250
             cudaFree(dev_myFilter3);
2.51
             cudaFree(dev_myConv3);
252
             cudaFree (dev mySignal4);
253
             cudaFree(dev_myFilter4);
254
             cudaFree(dev_myConv4);
255
256
             return 0;
2.57
```

System Overview

4.1 Overview

This chapter gives a high lever overview of the the algorithms implemented into the GPU. A block diagram is shown in Figure 4.1. The algorithms implemented in GPUs will briefly be explained. Chapter 5 explains the computation and application of the equalizers at a lower level. A simple block Diagram is shown in Figure 4.1.

This chapter will proceed as follows, section 4.2 will explain the algorithm used to find the preambles and packetize the received signal, section 4.3 will explain the frequency offset estimator and frequency offset compensation, section 4.4 will explain channel channel estimation, section 4.5 will explain noise variance, section 4.6 will explain the GPU implementation of the OQPSK detector. The explanation of the GPU implantation of the equalizers will be explained in much detail in Chapter 5.

4.2 Preamble Detection

The received samples in this project has the iNET packet structure shown in Figure 4.2. The iNET packet consists of a preamble and ASM periodically inserted into the data stream. The iNET preamble and ASM bits are inserted every 6144 data bits. The received signal is sampled at 2 samples/bit, making a iNET packet $L_{\rm pkt}$ long or 12672 samples. The iNET preamble comprises eight repetitions of the 16-bit sequence CD98_{hex} and the ASM field

$$034776C72728950B0_{\text{hex}} \tag{4.1}$$

Figure 4.1: This a simple block diagram of what the GPU does.

Figure 4.2: The iNET packet structure.

Each 16-bit sequence CD98_{hex} sampled at two samples/bit are 32 or L_q samples long.

To compute data-aided preamble assisted equalizers, preambles in the received signal are found then used to estimate various parameters. The goal of the preamble detection step is to "packetize" the received samples into vectors with the packet structure shown in Figure 4.2. Each packet of received samples contains a $L_{\rm p}$ preamble samples, $L_{\rm ASM}$ ASM samples and $L_{\rm d}$ data

samples. The received signal is sampled at two samples per bit making $L_{\rm p}=256,\,L_{\rm ASM}=136$ and $L_{\rm d}=12288.$ The full length of a packet is $L_{\rm p}+L_{\rm ASM}+L_{\rm d}=12672.$

Before the received samples can be packetized, the preambles are found using a preamble detector explained in [4]. The preamble detector output L(u) is computed by

$$L(u) = \sum_{m=0}^{7} \left[I^{2}(n,m) + Q^{2}(n,m) \right]$$
 (4.2)

where the inner summations are

$$I(n,m) \approx \sum_{\ell \in \mathcal{L}_1} r_R(\ell+32m+n) - \sum_{\ell \in \mathcal{L}_2} r_R(\ell+32m+n) + \sum_{\ell \in \mathcal{L}_3} r_I(\ell+32m+n) - \sum_{\ell \in \mathcal{L}_4} r_I(\ell+32m+n) + 0.7071 \left[\sum_{\ell \in \mathcal{L}_5} r_R(\ell+32m+n) - \sum_{\ell \in \mathcal{L}_6} r_R(\ell+32m+n) - \sum_{\ell \in \mathcal{L}_6} r_R(\ell+32m+n) \right] + \sum_{\ell \in \mathcal{L}_7} r_I(\ell+32m+n) - \sum_{\ell \in \mathcal{L}_8} r_I(\ell+32m+n) \right], \quad (4.3)$$

and

$$Q(n,m) \approx \sum_{\ell \in \mathcal{L}_1} r_I(\ell + 32m + n) - \sum_{\ell \in \mathcal{L}_2} r_I(\ell + 32m + n)$$

$$- \sum_{\ell \in \mathcal{L}_3} r_R(\ell + 32m + n) + \sum_{\ell \in \mathcal{L}_4} r_R(\ell + 32m + n)$$

$$+ 0.7071 \left[\sum_{\ell \in \mathcal{L}_5} r_I(\ell + 32m + n) - \sum_{\ell \in \mathcal{L}_6} r_I(\ell + 32m + n) - \sum_{\ell \in \mathcal{L}_6} r_I(\ell + 32m + n) \right]$$

$$- \sum_{\ell \in \mathcal{L}_7} r_R(\ell + 32m + n) + \sum_{\ell \in \mathcal{L}_8} r_R(\ell + 32m + n)$$

$$(4.4)$$

with

$$\mathcal{L}_{1} = \{0, 8, 16, 24\}$$

$$\mathcal{L}_{2} = \{4, 20\}$$

$$\mathcal{L}_{3} = \{2, 10, 14, 22\}$$

$$\mathcal{L}_{4} = \{6, 18, 26, 30\}$$

$$\mathcal{L}_{5} = \{1, 7, 9, 15, 17, 23, 25, 31\}$$

$$\mathcal{L}_{6} = \{3, 5, 11, 12, 13, 19, 21, 27, 28, 29\}$$

$$\mathcal{L}_{7} = \{1, 3, 9, 11, 12, 13, 15, 21, 23\}$$

$$\mathcal{L}_{8} = \{5, 7, 17, 19, 25, 27, 28, 29, 31\}.$$
(4.5)

Figure 4.3 shows $2L_{\rm pkt}$ samples of the preamble detector output L(u). The start of a preamble is indicated by a local maximum of the preamble detector output. Using the index of the local maximums, the received samples are packetized. The vector $\mathbf{r}_{\rm pkt}$ as shown in Figure 4.1 contains 12672 samples of data with the packet structure shown in Figure 4.2.

The preamble detection algoritm in Equations (4.2)-(4.5) and the local maximum search algorithms are easily implemented into GPUs. The GPU implementation of these algorithms wont be explained here.

4.3 Frequency Offset Compensation

The frequency offset estimator shown in Figure 4.1 is an algorithm taken from blah. With the notation adjusted slightly, the frequency offset estimate is

$$\hat{\omega}_0 = \frac{1}{L_q} \arg \left\{ \sum_{n=i+2L_q}^{i+7L_q-1} r(n) r^*(n-L_q) \right\}$$
(4.6)

where L_q is the length of where a frequency offset estimate is produced for every packet in \mathbf{r}_{pkt} .

Figure 4.3: The output of the Preamble Detector L(u).

The frequency offset is compensated for by derotating the packetized samples by $-\hat{\omega}_0$

$$r(n) = r_{\text{pkt}}(n)e^{-j\hat{\omega}_0} \tag{4.7}$$

Equations (4.6) and (4.7) are easily implemented into GPUs.

4.4 Channel Estimation

The channel estimator is the ML estimator taken from blah.

$$\hat{\mathbf{h}} = \underbrace{\left(\mathbf{X}^{\dagger}\mathbf{X}\right)^{-1}\mathbf{X}^{\dagger}}_{\mathbf{P}_{ir}}\mathbf{r} \tag{4.8}$$

where ${\bf X}$ is a convolution matrix formed from the ideal preamble and ASM samples. The matrix ${\bf P}_{ix}$ is

$$\mathbf{P}_{ix} = \left(\mathbf{X}^{\dagger}\mathbf{X}\right)^{-1}\mathbf{X}^{\dagger} \tag{4.9}$$

making the channel estimate simply

$$\hat{\mathbf{h}} = \mathbf{P}_{ix}\mathbf{r} \tag{4.10}$$

The matrix multiplication is easily implemented into GPUs.

4.5 Noise Variance Estimation

The noise variance estimator is the algorithm taken from blah. The algorithm is

$$\hat{\sigma}_w^2 = \frac{1}{2\rho} \left| \mathbf{r} - \mathbf{X} \hat{\mathbf{h}} \right|^2 \tag{4.11}$$

where ρ is the pre-computed constant

$$\rho = \operatorname{Trace}\left\{\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\dagger} \mathbf{X}\right)^{-1} \mathbf{X}^{\dagger}\right\}. \tag{4.12}$$

Equation (4.11) is easily implemented into GPUs.

4.6 SxS Detector

The Symbol by Symbol (SxS) detector block in Figure 4.1 is a Offset Quadtriture Phase Shift Keying (OQPSK) detector. Using the simple OQPSK detector in place of the complex MLSE SOQPSK-TG detector leads to less than 1 dB in bit error rate blah.

Figure 4.4: Offset Quadriture Phase Shift Keying symbol by symbol detector.

The Phase Lock Loop (PLL) in the SxS OQPSK detector cannot be parallelized to be implemented into GPUs because of the feedback loop. Feedback loops are inherently serial. Although the OQPSK detector cannot be parallelized on a sample by sample basis, it can be parallelized on a packet by packet basis. Running the PLL and detector serially through a full packet of data is still relatively fast because each iteration of the PLL and detector is computationally light.

Equalizer Equations

5.1 Overview

There are 3 different kinds of equalizers I run 1. the solving ones!!! They are equations like Ax=b where I have A and b but I need x 2. the initialized then iterative ones. CMA is initialized with MMSE then runs as many times a possible 3. the multiply ones! the FDEs are a simple multiply in the frequency domain

5.2 Zero-Forcing and MMSE Equalizers

The Zero-Forcing (ZF) and MMSE equalizers are treated together here because they have many common features...

The ZF equalizer is an FIR filter defined by the coefficients

$$c_{\mathsf{ZF}}(-L_1) \quad \cdots \quad c_{\mathsf{ZF}}(0) \quad \cdots \quad c_{\mathsf{ZF}}(L_2). \tag{5.1}$$

The filter coefficients are the solution to the matrix vector equation [?, eq. (324)]

$$Hc_{ZF} = \mathbf{u}_{n_0} \tag{5.2}$$

where

$$\mathbf{c}_{ZF} = \begin{bmatrix} c_{ZF}(-L_1) \\ \vdots \\ c_{ZF}(0) \\ \vdots \\ c_{ZF}(L_2) \end{bmatrix}, \tag{5.3}$$

$$\mathbf{u}_{n_0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, n_0 - 1 \text{ zeros}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$N_1 + N_2 + L_1 + L_2 - n_0 + 1 \text{ zeros}$$

$$(5.4)$$

and

$$\mathbf{H} = \begin{bmatrix} h(-N_1) \\ h(-N_1+1) & h(-N_1) \\ \vdots & \vdots & \ddots \\ h(N_2) & h(N_2-1) & h(-N_1) \\ & & h(N_2) & h(-N_1+1) \\ & & \vdots \\ & & h(N_2) \end{bmatrix}.$$
 (5.5)

Jeff explains how cuda solvers handle this equation.

The ZF equalizer was studied in the PAQ Phase 1 Final Report in equation 324

$$\mathbf{c}_{\mathsf{ZF}} = (\mathbf{H}^{\dagger} \mathbf{H})^{-1} \mathbf{H}^{\dagger} \mathbf{u}_{n_0} \tag{5.6}$$

where \mathbf{c}_{ZF} is a $L_{eq} \times 1$ vector of equalizer coefficients computed to invert the channel estimate \mathbf{h} and \mathbf{u}_{n_0} is the desired channel impulse response centered on $n0 = N_1 + L_1 + 1$

The $L_{eq}+N_1+N_2 imes L_{eq}$ convolution matrix ${f H}$ is built using the channel estimate ${f h}$

$$\mathbf{H} = \begin{bmatrix} h(-N_1) \\ h(-N_1+1) & h(-N_1) \\ \vdots & \vdots & \ddots \\ h(N_2) & h(N_2-1) & h(-N_1) \\ & h(N_2) & h(-N_1+1) \\ & \vdots \\ & h(N_2) \end{bmatrix}.$$
 (5.8)

The computation of the coefficients in Equation (5.6) can be simplified in a couple of ways: First the matrix multiplication of \mathbf{H}^{\dagger} and \mathbf{H} is the autocorrelation matrix of the channel

$$\mathbf{R}_{h} = \mathbf{H}^{\dagger} \mathbf{H} = \begin{bmatrix} r_{h}(0) & r_{h}^{*}(1) & \cdots & r_{h}^{*}(L_{eq} - 1) \\ r_{h}(1) & r_{h}(0) & \cdots & r_{h}^{*}(L_{eq} - 2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{h}(L_{eq} - 1) & r_{h}(L_{eq} - 2) & \cdots & r_{h}(0) \end{bmatrix}$$
(5.9)

where

$$r_h(k) = \sum_{n=-N_1}^{N_2} h(n)h^*(n-k).$$
 (5.10)

Second the matrix vector multiplication of \mathbf{H}^{\dagger} and \mathbf{u}_{n_0} is simply the n_0 th row of \mathbf{H}^{\dagger} or the conjugated n_0 th column of \mathbf{H} . A new vector \mathbf{h}_{n_0} is defined by

$$\mathbf{h}_{n_0} = \mathbf{H}^{\dagger} \mathbf{u}_{n_0} = \begin{bmatrix} h(L_1) \\ \vdots \\ h(0) \\ \vdots \\ h(-L_2) \end{bmatrix}. \tag{5.11}$$

To simplify, Equations (5.9) and (5.11) are substituted into Equation (5.6) resulting in

$$\mathbf{c}_{\rm ZF} = \mathbf{R}_b^{-1} \mathbf{h}_{n_0}. \tag{5.12}$$

Computing the inverse of \mathbf{R}_h is computationally heavy because an inverse is an N^3 operation. To avoid an inverse, \mathbf{R}_h is moved to the left side and \mathbf{c}_{ZF} is found by solving a system of linear equations. Note that $r_h(k)$ only has support on $-L_{ch} \leq k \leq L_{ch}$ making \mathbf{R}_h sparse or %63 zeros. The sparseness of \mathbf{R}_h is leveraged to reduce computation drastically. The Zero-Forcing Equalizer coefficients are computed by solving

$$\mathbf{R}_h \mathbf{c}_{\mathsf{ZF}} = \mathbf{h}_{n_0}. \tag{5.13}$$

MMSE Equalizer

The MMSE equalizer has the same form as the Zero-Forcing equalizer. The MMSE equalizer was also studied in the PAQ Phase 1 Final Report in equation 330.

$$\mathbf{c}_{MMSE} = \left[\mathbf{G}\mathbf{G}^{\dagger} + \frac{\sigma_w^2}{\sigma_s^2} \mathbf{I}_{L_1 + L_2 + 1}\right] \mathbf{g}^{\dagger}$$
 (5.14)

where

$$\mathbf{G} = \begin{bmatrix} h(N_2) & \cdots & h(-N_1) \\ & h(N_2) & \cdots & h(-N_1) \\ & & \ddots & & \ddots \\ & & & h(N_2) & \cdots & h(-N_1) \end{bmatrix}$$
 (5.15)

and

$$\mathbf{g} = \left[h(L_1) \cdots h(-L_2) \right]. \tag{5.16}$$

The vector \mathbf{g}^{\dagger} is also the same vector as \mathbf{h}_{n_0} in Equation (5.7). The matrix multiplication $\mathbf{G}\mathbf{G}^{\dagger}$ is also the same autocorrelation matrix \mathbf{R}_h as Equation (5.9). The fraction $\frac{1}{2\sigma_w^2}$ is substituted in for the fraction $\frac{\sigma_w^2}{\sigma_s^2}$ using Equation 333 Rice's report. MMSE only differs from Zero-Forcing by adding the signal-to-noise ratio estimate down the diagonal of the autocorrelation matrix \mathbf{R}_h . Substituting in all these similarities in to Equation (5.14) results in

$$\left[\mathbf{R}_{h} + \frac{1}{2\hat{\sigma}_{w}^{2}}\mathbf{I}_{L_{1}+L_{2}+1}\right]\mathbf{c}_{\text{MMSE}} = \mathbf{h}_{n_{0}}.$$
(5.17)

To further simplify the notation, \mathbf{R}_{hw} is substituted in for $\mathbf{R}_h + \frac{1}{2\hat{\sigma_w^2}}\mathbf{I}_{L_1+L_2+1}$ where

$$\mathbf{R}_{hw} = \mathbf{R}_h + \frac{1}{2\hat{\sigma_w^2}} \mathbf{I}_{L_1 + L_2 + 1} = \begin{bmatrix} r_h(0) + \frac{1}{2\hat{\sigma_w^2}} & r_h^*(1) & \cdots & r_h^*(L_{eq} - 1) \\ r_h(1) & r_h(0) + \frac{1}{2\hat{\sigma_w^2}} & \cdots & r_h^*(L_{eq} - 2) \\ \vdots & \vdots & \ddots & \vdots \\ r_h(L_{eq} - 1) & r_h(L_{eq} - 2) & \cdots & r_h(0) + \frac{1}{2\hat{\sigma_w^2}} \end{bmatrix} .$$
 (5.18)

The MMSE equalizer coefficients are solved for in a similar fashion to the Zero-Forcing equalizer coefficients in Equation (5.13).

$$\mathbf{R}_{hw}\mathbf{c}_{\mathrm{MMSE}} = \mathbf{h}_{n_0}.\tag{5.19}$$

5.2.1 The Iterative Equalizer

The Constant Modulus Algorithm

CMA uses a steepest decent algorithm.

$$\mathbf{c}_{b+1} = \mathbf{c}_b - \mu \nabla \mathbf{J} \tag{5.20}$$

The vector \mathbf{J} is the cost function and ∇J is the cost function gradient defined in the PAQ report 352 by

$$\nabla J = \frac{2}{L_{pkt}} \sum_{n=0}^{L_{pkt}-1} \left[y(n)y^*(n) - R_2 \right] y(n)\mathbf{r}^*(n).$$
 (5.21)

where

$$\mathbf{r}(n) = \begin{bmatrix} r(n+L_1) \\ \vdots \\ r(n) \\ \vdots \\ r(n-L_2) \end{bmatrix}. \tag{5.22}$$

This means ∇J is of the form

$$\nabla J = \begin{bmatrix} \nabla J(-L_1) \\ \vdots \\ \nabla J(0) \\ \vdots \\ \nabla J(L_2) \end{bmatrix}. \tag{5.23}$$

To leverage the computational efficiency of the Fast Fourier Transform (FFT), Equation (5.21) is re-expressed as a convolution.

To begin messaging ∇J

$$z(n) = 2 \left[y(n)y^{*}(n) - R_{2} \right] y(n)$$
 (5.24)

is defined to make the expression of ∇J to be

$$\nabla J = \frac{1}{L_{pkt}} \sum_{n=0}^{L_{pkt}-1} z(n) \mathbf{r}^*(n).$$
 (5.25)

then writing the summation out in vector form

$$\nabla J = \frac{z(0)}{L_{pkt}} \begin{bmatrix} r^*(L_1) \\ \vdots \\ r^*(0) \\ \vdots \\ r^*(L_2) \end{bmatrix} + \frac{z(1)}{L_{pkt}} \begin{bmatrix} r^*(1+L_1) \\ \vdots \\ r^*(1) \\ \vdots \\ r^*(1-L_2) \end{bmatrix} + \cdots \frac{z(L_{pkt}-1)}{L_{pkt}} \begin{bmatrix} r^*(L_{pkt}-1+L_1) \\ \vdots \\ r^*(L_{pkt}-1) \\ \vdots \\ r^*(L_{pkt}-1-L_2) \end{bmatrix}. \quad (5.26)$$

The kth value of ∇J is

$$\nabla J(k) = \frac{1}{L_{pkt}} \sum_{m=0}^{L_{pkt}-1} z(m) r^*(m-k), \quad -L_1 \le k \le L_2.$$
 (5.27)

The summation almost looks like a convolution. To put the summation in convolution form, define

$$\rho(n) = r^*(n). \tag{5.28}$$

Now

$$\nabla J(k) = \frac{1}{L_{pkt}} \sum_{m=0}^{L_{pkt}-1} z(m) \rho(k-m).$$
 (5.29)

Because z(n) has support on $0 \le n \le L_{pkt} - 1$ and $\rho(n)$ has support on $-L_{pkt} + 1 \le n \le 0$, the result of the convolution sum b(n) has support on $-L_{pkt} + 1 \le n \le L_{pkt} - 1$. Putting all the pieces together, we have

$$b(n) = \sum_{m=0}^{L_{pkt}-1} z(m)\rho(n-m)$$

$$=\sum_{m=0}^{L_{pkt}-1} z(m)r^*(m-n)$$
 (5.30)

Comparing Equation (5.29) and (5.30) shows that

$$\nabla J(k) = \frac{1}{L_{pkt}} b(k), \quad -L_1 \le k \le L_2.$$
 (5.31)

The values of interest are shown in Figure Foo!!!!(c)

This suggest the following algorithm for computing the gradient vector ∇J Matlab Code!!!

5.2.2 The Multiply Equalizers

The Frequency Domain Equalizer One

The Frequency Domain Equalizer One (FDE1) is the MMSE or wiener filter applied in the frequency domain. Ian E. Williams and M. Saquib derived FDE1 for this project in a paper called Linear Frequency Domain Equalization of SOQPSK-TG for Wideband Aeronautical Telemetry. The FDE1 equalizer is defined in Equation (11) as

$$C_{\text{FDE1}}(\omega) = \frac{\hat{H}^*(\omega)}{|\hat{H}(\omega)|^2 + \frac{1}{\hat{\sigma}^2}}$$
 (5.32)

The term $C_{\text{FDE1}}(\omega)$ is the Frequency Domain Equalizer One frequency response at ω . The term $\hat{H}(\omega)$ is the channel estimate frequency response at ω . The term $\hat{\sigma}^2$ is the noise variance estimate, this term is completely independent of frequency because the noise is assumed to be white or spectrally flat.

FDE1 needs no massaging because Equation (5.32) is easily implemented in the GPU and it is computationally efficient.

The Frequency Domain Equalizer One

The Frequency Domain Equalizer Two (FDE2) is the MMSE or wiener filter applied in the frequency domain. Ian E. Williams and M. Saquib derived FDE1 for this project in a paper called Linear Frequency Domain Equalization of SOQPSK-TG for Wideband Aeronautical Telemetry. The FDE2 equalizer is defined in Equation (12) as

$$C_{\text{FDE2}}(\omega) = \frac{\hat{H}^*(\omega)}{|\hat{H}(\omega)|^2 + \frac{\Psi(\omega)}{\hat{\sigma}^2}}$$
 (5.33)

FDE2 almost identical to FDE1. The only difference is term $\Psi(\omega)$ in the denominator. The term $\Psi(\omega)$ is the average spectrum of SPQOSK-TG shown in Figure 5.1. FDE2 needs no massaging because Equation (5.33) is easily implemented in the GPU and is computationally efficient.

Figure 5.1: A block diagram illustrating organization of the algorithms in the GPU.

Equalizer Performance

This is the Equalizer Performance

Final Summary

this is the final summary

Bibliography

- [1] Wikipedia, "Graphics processing unit," 2015. [Online]. Available: http://en.wikipedia.org/wiki/Graphics_processing_unit 5
- [2] —, "CUDA," 2015. [Online]. Available: http://en.wikipedia.org/wiki/CUDA
- [3] NVIDIA, "Cuda toolkit documentation," 2017. [Online]. Available: http://docs.nvidia.com/cuda/ 5
- [4] M. Rice and A. Mcmurdie, "On frame synchronization in aeronautical telemetry," **IEEE Transactions on Aerospace and Electronic Systems**, vol. 52, no. 5, pp. 2263–2280, October 2016. 29