UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1100 — Kalkulus

Eksamensdag: Fredag 15. oktober 2010.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 5 sider.

Vedlegg: Formelsamling, svarark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark

Alle oppgavene teller 1 poeng hver. Den totale poengsummen er altså 20. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

Oppgaveark

Oppgave 1. Den deriverte til funksjonen $f(x) = \sin(\pi \cos(x))$ er:

- $\mathbf{A} \cos(\pi \sin(x))$
- $\mathbf{B} -\pi \sin(x) \cos(\pi \cos(x))$
- $\mathbf{C} -\pi \cos(x) \cos(\pi \cos(x))$
- $\mathbf{D} -\pi \sin(x) \cos(\pi \sin(x))$
- $\mathbf{E} \ \pi \cos(\pi \cos(x))$

Oppgave 2. Det komplekse tallet i/(1+i) blir på formen $re^{i\theta}$:

- **A** $2e^{i\frac{7}{4}\pi}$
- **B** $2e^{i\frac{1}{4}\pi}$
- **C** $(\sqrt{2}/2)e^{i\pi/4}$
- **D** $\sqrt{2}e^{i\frac{3}{4}\pi}$
- $\mathbf{E} \sqrt{2}i$

Oppgave 3. Det komplekse tallet $z=3e^{i\frac{5}{6}\pi},\,z$ er lik:

$$\mathbf{A} - (3/2)\sqrt{3} + (3/2)i$$

B
$$-3\sqrt{3} - (3/4)i$$

C
$$-1\sqrt{3} + (1/4)i$$

D
$$-3 + 3i$$

E
$$3\sqrt{3} - (3/4)i$$

Oppgave 4. Polynomet $z^3 - 3z^2 + 6z - 4$ har røtter

A 1, 2 og
$$1+i$$

B 1,
$$1 - i \text{ og } 1 + i$$

C 1,
$$1 - i\sqrt{3}$$
 og $1 + i\sqrt{3}$

D
$$-1, 1 - i\sqrt{3} \text{ og } 1 + i\sqrt{3}$$

E
$$i, 1 - i\sqrt{3} \text{ og } 1 + i\sqrt{3}$$

Oppgave 5. For $z \in \mathbb{C}$, $z \neq 0$, definer $w = \bar{z}/z$. Hvilket av følgende utsagn er sant:

A
$$w \in \mathbb{R}$$
 for alle $z \in \mathbb{C} \setminus \{0\}$

B
$$w$$
 er rent imaginær for alle $z \in \mathbb{C} \setminus \{0\}$

$$\mathbf{C} \ w = 1/\bar{z} \text{ for alle } z \in \mathbb{C} \setminus \{0\}$$

D
$$\overline{wz} = \overline{z}^2$$
 for alle $z \in \mathbb{C} \setminus \{0\}$

$$\mathbf{E} |w| = 1 \text{ for alle } z \in \mathbb{C} \setminus \{0\}$$

Oppgave 6. Det komplekse tallet $z = e^{i\pi/3} + \sqrt{3}e^{i7\pi/6}$ er lik

$$\mathbf{A}$$
 $-i$

$$\mathbf{B} \ e^i$$

C
$$(1+\sqrt{3})e^{i9\pi/6}$$

$$D -1$$

$$\mathbf{E} 1$$

Oppgave 7. La

$$a_n = e^{\frac{\sin(n)}{n}}, \ n = 1, 2, 3, 4, \dots$$

Da er $\lim_{n\to\infty} a_n$ lik

$$\mathbf{A}$$
 1

$$\mathbf{B}$$
 π

$$\mathbf{D} = 0$$

$$\mathbf{E}$$
 e

Oppgave 8. Den deriverte til $f(x) = \ln(\cos(x))$ er

$$\mathbf{A} - \tan(x)$$

$$\mathbf{B} 1/\sin(x)$$

$$\mathbf{C} - 1/\sin(x)$$

$$\mathbf{D}$$
 Fins ikke, siden f ikke er deriverbar.

$$\mathbf{E}$$
 1

Oppgave 9. Grenseverdien

$$\lim_{x \to 0^+} \frac{\sin(x)}{\sqrt{\sin^2(x) + x^2} - x}$$
 blir

- **A** 1
- **B** 1/2
- **C** $1 + \sqrt{2}$
- **D** Grensen eksisterer ikke
- $\mathbf{E} \propto$

Oppgave 10. Grenseverdien

$$\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x \text{ blir}$$

- $\mathbf{A} = 0$
- \mathbf{B} 1
- \mathbf{C} e
- $\mathbf{D} 1/e$
- $\mathbf{E} \infty$

Oppgave 11. Den deriverte til funksjonen

$$f(x) = x \ln \left(\frac{1}{1+x^2}\right)$$
 er:

- **A** $x/(1+x^2)$
- **B** $1/(1+x^2) + \ln(1+x^2)$
- $\mathbf{C} \ x^2/(1+x^2) + \ln(1/(1+x^2))$
- $\mathbf{D} -2x^2/(1+x^2) + \ln(1/(1+x^2))$
- **E** $x^2/(1+x^2)$

Oppgave 12. En sylinderformet eske med høyde x og radius r skal ha volum lik 1. Hvilken radius må esken ha hvis det totale overflatearealet (topp, bunn og sidevegg) skal bli minst mulig?

- \mathbf{A} π
- $\mathbf{B} \sqrt{2\pi}$
- \mathbf{C} 1
- **D** $(2\pi)^{1/3}$
- **E** $(2\pi)^{-1/3}$

Oppgave 13. Vi har at

$$\sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Den inverse til denne funksjonen, $sinh^{-1}(y)$, er gitt ved:

- **A** $2(\ln(-y) \ln(y))$
- $\mathbf{B} \ \ln(y + \sqrt{y^2 + 1})$
- $\mathbf{C} \ \ln(y \sqrt{y^2 + 1})$
- $\mathbf{D} \sin(y)$
- E Funksjonen har ingen inversfunksjon

Oppgave 14. Når $x \to \infty$ har funksjonen

$$f(x) = \sqrt{x^2 + 1} + \frac{x}{\sqrt{x^2 + 1}}$$

asymptote:

- $\mathbf{A} \ y = x$
- **B** $y = \sqrt{x^2 + 1}$
- **C** y = x + 1
- **D** y = 2x + 1
- **E** y = x 1

Oppgave 15. Funksjonen

$$f(x) = e^{-x^2}$$

er konkav på mengden:

- $\mathbf{A} \ [0,\infty)$
- **B** $[-1/\sqrt{2}, 1/\sqrt{2}]$
- $\mathbf{C} \ (-\infty, -1/\sqrt{2})$
- **D** $[-\sqrt{2}, \sqrt{2}]$
- E Ingen steder

Oppgave 16. Funksjonen $f:(0,\sqrt{\pi}/2)\to\mathbb{R}$ er definert ved

$$f(x) = \frac{\ln(\cos(x^2))}{x^4}.$$

Da blir grensen $\lim_{x\to 0^+} f(x)$

- $\mathbf{A} \propto$
- **B** 1
- \mathbf{C} 0
- **D** 1/4
- $\mathbf{E} 1/2$

Oppgave 17. Den andrederiverte til funksjonen

$$f(x) = e^{\sin(x)}$$

er

 $\mathbf{A} \ e^{\sin(x)}(\sin^2(x) + \cos(x))$

 $\mathbf{B} \ e^{\sin(x)}\cos(x)$

 $\mathbf{C} e^{\sin(x)}(\cos^2(x) - \sin(x))$

 $\mathbf{D} \ e^{\sin(x)}(\cos^2(x) + \cos(x))$

 $\mathbf{E} \ e^{\cos(x)}$

Oppgave 18. Funksjonen

 $f(x) = e^{\sin^3(x)}$ er injektiv på mengden:

 $\mathbf{A} \ [0,\infty)$

B $[-\pi/2, \pi/2]$

 $\mathbf{C} \ [-\pi/2,\pi/2] \bigcup [5\pi/2,7\pi/2]$

D [-2,2]

 \mathbf{E} hele \mathbb{R}

Oppgave 19. Et prosjektil som skytes ut med en vinkel $\theta \in [0, \pi/2]$ har etter en tid t posisjonen (x(t), y(t)), der $x(t) = (\frac{\pi}{2} - \theta)\sqrt{t}$ og $y(t) = \theta t - \frac{t^2}{2}$.

Prosjektilet lander når det etter en tid s treffer bakken, slik at y(s) = 0. Hvilken utgangsvinkel θ vil maksimere lengden x(s)?

 $\mathbf{A} \pi/4$

 $\mathbf{B} \pi/2$

 $\mathbf{C} \ \pi/\sqrt{5}$

 $\mathbf{D} \ \pi/6$

 $\mathbf{E} \ \pi/12$

Oppgave 20. En konkav og to ganger kontinuerlig deriverbar funksjon f er slik at f(x) > 0 for alle x med i definisjonsområdet til f, D_f . Sett g(x) = 1/f(x). Hvilket av følgende utsagn må da være sant?

 $\mathbf{A} \ g$ er konkav på D_f

 $\mathbf{B} \ g$ er konveks på D_f

 ${f C}~g$ er verken konveks eller konkav på D_f

 $\mathbf{D} \ g$ er voksende på D_f

 $\mathbf{E} \ g$ er avtagende på D_f

SLUTT