Soham Chatterjee

Email: soham.chatterjee@tifr.res.in

Course: Algebra, Number Theory and Computation

Assignment - 1

Dept: STCS, TIFR Date: March 4, 2025

Problem 1 5 Points

Let \mathbb{F} be a field of characteristic equal to p. Then, show that over the polynomial ring $\mathbb{F}[x,y]$, $(x+y)^p = x^p + y^p$

Solution:

Lemma 1. $p \mid \binom{p}{k} \iff 0 < k < p$

Proof: Let 0 < k < p. Then $\binom{p}{k} = \frac{p!}{k!(p-k)!}$. As 0 < k < p, 0 < p-k < p. Since p is a prime none of numbers from 0 to $\max\{k, p-k\}$ divides p. Therefore p never gets canceled out in $\binom{p}{k}$. Hence $p \mid \binom{p}{k}$.

Now suppose $p \mid \binom{p}{k}$. Now

$$\binom{p}{k} = \frac{p!}{k!}(p-k)! = \frac{\prod_{i=1}^{k}(p-k+i)}{k!} = \frac{\prod_{i=1}^{p-k}(k+i)}{(p-k)!}$$

Now the highest power of p that divides $\prod_{i=1}^{k} (p-k+i)$ and $\prod_{i=1}^{p-k} (k+i)$ is 1. Therefore $p \nmid k!$ and $p \nmid (p-k)!$. Therefore k < p and p-k < p. Hence we have 0 < k < p.

So now using the lemma we have $(x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} {p \choose i} x^{p-i} y^i = x^p + y^p + p \cdot C$ where $p \cdot C = \sum_{i=1}^{p-1} {p \choose i} x^{p-i} y^i$. Since the characteristic of the field is p we have $p \cdot C = 0$. Hence $(x+y)^p = x^p + y^p$.

Problem 2 20 Points

Let q be a prime power and let k > 0 be a natural number. The polynomial Trace(x) is defined as

Trace(
$$x$$
) = $x + x^q + x^{q^2} + \dots + x^{q^{k-1}}$

- (a) **(5 points)** Show that for every $\alpha \in \mathbb{F}_{q^k}$, $\mathsf{Trace}(\alpha) \in \mathbb{F}_q$.
- (b) (5 points) Show that when viewed as a map from the vector space \mathbb{F}_{q^k} to \mathbb{F}_q . Trace is \mathbb{F}_q -linear.
- (c) **(10 points)** Using the properties of Trace, conclude that for *every* \mathbb{F}_q linear map L from \mathbb{F}_{q^k} to \mathbb{F}_q , there is an $\alpha_L \in \mathbb{F}_{q^k}$ such that for all $\beta \in \mathbb{F}_{q^k}$, $L(\beta) = \operatorname{Trace}(\alpha_L \cdot \beta)$.

Solution:

(a) The Frobenius map $\varphi : \mathbb{F}_{q^k} \to \mathbb{F}_{q^k}$, where $\varphi(x) = x^q$ is an automorphism and it is \mathbb{F}_q -linear and the only elements for which $\varphi(x) = x$ are the elements of \mathbb{F}_q .

Lemma 2. The maps Trace and φ commutes over \mathbb{F}_{a^k} .

Proof:

$$\begin{aligned} \operatorname{Trace} \circ \varphi(x) &= \operatorname{Trace}(x^q) = x^q + (x^q)^q + (x^q)^{q^2} + \dots + (x^q)^{q^{k-1}} \\ &= x^q + \left(x^{q^2}\right)^q + \left(x^{q^3}\right)^q + \dots + \left(x^{q^{k-1}}\right)^q \\ &= \left(x + x^q + x^{q^2} + \dots + x^{q^{k-1}}\right)^q = (\operatorname{Trace}(x))^q = \varphi \circ \operatorname{Trace}(x) \end{aligned}$$

Now notice that for any $\alpha \in \mathbb{F}_{q^k}$

$$\mathsf{Trace}(\alpha)^{q} = \mathsf{Trace}(\alpha^{q}) = \sum_{i=0}^{k-1} (\alpha^{q})^{q^{i}} = \sum_{i=0}^{k-1} \alpha^{q^{i+1}} = \sum_{i=1}^{k} \alpha^{q^{i}} = \sum_{i=0}^{k-1} \alpha^{q^{i}} = \mathsf{Trace}(\alpha)$$

The third from the last inequality is true is because $\alpha^{q^k} = \alpha$ for all $\alpha \in \mathbb{F}_{q^k}$. Hence for all $\alpha \in \text{Range}(\text{Trace})$. $\varphi(\alpha) = \alpha$. Now the only elements which remains same under the Frobenius map are the elements of \mathbb{F}_q . Therefore $\text{Range}(\text{Trace}) \subseteq \mathbb{F}_q$. So the for all $\alpha \in \mathbb{F}_{q^k}$, $\text{Trace}(\alpha) \in \mathbb{F}$.

(b) Suppose $a, b \in \mathbb{F}_{q^k}$ and $\alpha \in \mathbb{F}_q$. Then we have

$$\operatorname{Trace}(\alpha \cdot a + b) = \sum_{i=0}^{k-1} (\alpha \cdot a + b)^{q^{i}} = \sum_{i=0}^{k-1} (\alpha \cdot a)^{q^{i}} + b^{q^{i}} = \sum_{i=0}^{k-1} (\alpha \cdot a^{q^{i}} + b^{q^{i}})$$

$$= \alpha \left(\sum_{i=0}^{k-1} a^{q_{i}} \right) + \left(\sum_{i=0}^{k-1} b^{q_{i}} \right) = \alpha \operatorname{Trace}(a) + \operatorname{Trace}(b)$$

Therefore Trace(x) is a \mathbb{F}_q -linear map.

(c) Let $S = \{L : \mathbb{F}_{q^k} \to \mathbb{F}_q \mid L \text{ is } \mathbb{F}_q - \text{linear}\}$. As \mathbb{F}_{q^k} forms a vector space over \mathbb{F}_q the set S also forms a vector space over \mathbb{F}_q and actually called the dual of \mathbb{F}_q . Since dimension of the vector space \mathbb{F}_{q^k} over \mathbb{F}_q is k we have the dimension of S over \mathbb{F}_q is also k.

Now since dimension of \mathbb{F}_{q^k} is k over \mathbb{F}_q there exists k elements of \mathbb{F}_{q^k} , $\{\beta_1, \ldots, \beta_k\} \subseteq \mathbb{F}_{q^k}$ such that they form a basis of \mathbb{F}_{q^k} over \mathbb{F}_q . Then consider the collection of maps $\{\operatorname{Trace}(\beta_i \cdot x) \mid i \in [k]\}$. We will show that these maps are linearly independent. And since they are \mathbb{F}_q -linear they are in S. Since they form a k size collection of linearly independent \mathbb{F}_q -linear maps they span the set S.

Lemma 3. { $Trace(\beta_i \cdot x) \mid i \in [k]$ } are linearly independent.

Proof: Suppose they are linearly dependent. Let there exists $\gamma_i \in \mathbb{F}_q$ for all $i \in [k]$ not all zero such that $\sum_{i=1}^k \gamma_i \operatorname{Trace}(\beta_i \cdot x) \equiv 0$. Then we have

$$\sum_{i=1}^{k} \gamma_i \operatorname{Trace}(\beta_i \cdot x) = \sum_{i=1}^{k} \gamma_i \cdot \beta_i \operatorname{Trace}(\cdot x) = \left(\sum_{i=1}^{k} \gamma_i \beta_i\right) \operatorname{Trace}(x)$$

Therefore $\left(\sum_{i=1}^k \gamma_i \beta_i\right)$ Trace $(x) \equiv 0$ for all $x \in \mathbb{F}_{q^k}$. Since $\beta_i's$ are linearly independent Trace $(\alpha) \equiv 0$ for all $\alpha \in \mathbb{F}_{q^k}$. But that means every element of \mathbb{F}_{q^k} is a root of Trace(x) but that is not possible since deg Trace $(x) = q^{k-1}$. Therefore Trace(x) is a zero polynomial which is not true. Hence contradiction. Therefore $\{\text{Trace}(\beta_i \cdot x) \mid i \in [k]\}$ are linearly independent.

Therefore the set $\{\operatorname{Trace}(\beta_i \cdot x) \mid i \in [k]\}$ spans the set of \mathbb{F}_q -linear maps over \mathbb{F}_{q^k} . Now let $L \in S$. Then there exists $\gamma_i \in \mathbb{F}$ for all $i \in [k]$ such that $L = \sum_{i=1}^k \gamma_i \operatorname{Trace}(\beta_i \cdot x) = \sum_{i=1}^k \operatorname{Trace}(\gamma_i \beta_i \cdot x) = \operatorname{Trace}\left(\left(\sum_{i=1}^k \gamma_i \beta_i\right)x\right) = L(\alpha_L \cdot x)$ where $\alpha_L = \sum_{i=1}^k \gamma_i \beta_i$.

2

Problem 3 10 Points

Let q be a prime power, k > 0 be a natural number and let $S \subset \mathbb{F}_{q^k}$ be a subspace of \mathbb{F}_{q^k} of dimension s, when we view \mathbb{F}_{q^k} as a k dimensional linear space over \mathbb{F}_q . Consider the polynomial $P_S(x)$ defined as

$$P_S(x) = \prod_{\alpha \in S} (x - \alpha)$$

Show that there exist $\beta_1,\beta_2,\ldots,\beta_s\in\mathbb{F}_{q^k}$ such that

$$P_S(x) = x_{q^s} + \beta_1 x^{q^{s-1}} + \beta_2 x^{q^{s-2}} + \dots + \beta_s x$$

Solution:

Problem 4 20 Points

Let $\alpha_1, \alpha_2, ..., \alpha_n$ distinct elements of some field \mathbb{F} . And, let $V(\alpha_1, \alpha_2, ..., \alpha_n)$ be the $n \times n$ matrix whose (i, j) entry equals α_i^{j-1} .

- (a) **(5 points)** Show that V has rank equal to n.
- (b) **(10 points)** Show that the determinant of V equals $\prod_{i < j} (\alpha_j \alpha_i)$
- (c) **(5 points)** For every $\beta_1, \beta_2, \dots, \beta_n \in \mathbb{F}$, show that there is a unique polynomial $f \in \mathbb{F}[x]$ of degree at most n-1 such that for every $i \in \{1, 2, \dots, n\}$, $f(\alpha_i) = \beta_i$.

Solution:

(a) Suppose the rank of V is less than n. Then the columns of V are linearly dependent. Then there exists $\beta_j \in \mathbb{F}$ for all $j \in [n]$ not all zero such that for all $i \in [n]$ $\sum_{j=1}^n \beta_j \cdot \alpha_i^{j-1} = 0$. Then consider the polynomial $f \in \mathbb{F}[x]$ where $f(x) = \sum_{i=1}^n \beta_i x^{i-1}$. Then we conclude that $f(\alpha_i) = 0$ for all $i \in [n]$. Therefore roots of f are $\alpha_1, \alpha_2, \ldots, \alpha_n$. But $\deg f \leq n-1$. Hence f cannot have more than n-1 roots. Hence contradiction. Therefore rank of V is n.

(b)

(c) Consider the vector $\hat{f} = \begin{bmatrix} f_0 & f_1 & \cdots & f_{n-1} \end{bmatrix}^T$ where f_i 's denote the coefficients of the polynomial $f(x) = \sum_{i=0}^n f_i x^i$ for which $f(\alpha_i) = \beta_i$ and the vector $b = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix}^T$. Now such a polynomial f exists if and only if the equation $V\hat{f} = b$ is satisfied. Since V has full rank V is invertible. Hence we get a $\hat{f} = V^{-1}b$. Therefore the equation has a unique solution. Hence there exists an unique polynomial f such that $f(\alpha_i) = \beta_i$.

Problem 5 20 Points

Let $\mathbb F$ be any field. $\alpha \in \mathbb F$ is said to be a zero (or root) of multiplicity at least k of a non-zero polynomial $f(x) \in \mathbb F[x]$ if $f(\alpha) = \frac{\partial f}{\partial x}(\alpha) = \cdots = \frac{\partial^{k-1} f}{\partial x^{k-1}}(\alpha) = 0$ and $\frac{\partial^k f}{\partial x^k}(\alpha) \neq 0$.

- (a) (10 points) Show that α is a zero of multiplicity at least k of f if and only if $(x \alpha)^k$ divides f(x).
- (b) (10 points) If $\alpha_1, \alpha_2, \dots, \alpha_t$ are distinct elements of $\mathbb C$, then show that

$$\sum_{i=1}^{t} (\operatorname{Mult}(f, \alpha_i)) \leq \operatorname{Degree}(f)$$

where $\operatorname{Mult}(f, \alpha_i)$ denotes the multiplicity of f at α_i .

Solution:

(a)