1.

(a)

- (b) From the graph, we can see that for the boundary, w = (1, 1) and b = -7. Thus, margin = $1/||w|| = 1/\sqrt{2}$
- (c) From the graph, we can see that for the boundary, w = (1, 1) and b = -7.

(a)

In the graph below, all support vectors are circled with black, and their slack variables are indicated directly above the circles.

(b) Suppose the factor C in the soft-margin SVM optimization problem were increased, we would expect the margin to decrease.

3.

(a)

Answer: possibly false

Justification: a_i represents the number of times an update occurred on point i, which could be greater than 1.

(b)

Answer: necessarily true

Justification: since \mathbf{a}_{i} represents the number of times an update occurred on point i, and we

have a total of k updates on all our point, we have $\sum_{i} a_{i} = k$

(c)

Answer: necessarily true

Justification: a_i would be 0 if and only if there were no updates on point i. Since we only have k updates, a has at most k nonzero coordinates.

(d)

Answer: necessarily true

Justification: since the training data converges after k updates, we know that the training data must be linearly separable, otherwise it would never converge.

- 4.
- (a) In the primal optimization problem, w has d variables, b is a single variable, and epsilon has n variables. Thus, there are a total of d+1+n variables.
- (b) In the dual optimization problem, a has n vriables. Thus, there are a total of n variables.

5.

data1

data2

(c) kernel Perceptron with RBG kerne

data1(sigma=0.1)

data2(sigma=0.1)

data1(sigma=10)

data2(sigma=10)

(b)

С	Training Error Test Error	
0.01	11.81%	12.60%
0.1	10.74%	11.33%
1.0	13.18% 13.92%	
10.0	11.01%	11.67%
100.0	13.73%	14.67%

From the table, we can see that the error rates never drop. Therefore, the data is clearly not linearly separable.

(c)

С	Training Error	Test Error	# of support vectors
1.0	0.00%	0.0194%	8652