On Notation

I write the following as symbols of the metalanguage:

- " \Rightarrow ", " \Leftarrow ", " \Leftrightarrow " as the material conditional.
- "&" or "+" as logical "and" like in " $ZFC + CH \models \aleph_1 = 2^{\aleph_0}$ ". I use & when dealing with arithmetic.
- " $\exists_x \varphi(x)$ " is as usual.
- "=", " \neg " are as usual.

If a symbol is preceded by " $\mathcal{M} \models$ " or has $\cdot^{\mathcal{M}}$ is part of the object language. Consider that all named symbols are logical constants, i.e. for \mathcal{M} and \mathcal{N} models $\Rightarrow^{\mathcal{M}} = \Rightarrow^{\mathcal{N}}$ and similarly for the other symbols. For a model \mathcal{M} , I write:

- $\bullet \ ``\Rightarrow^{\mathcal{M}"} as \ ``\rightarrow"$
- "& $^{\mathcal{M}}$ " as " \wedge "
- " $\exists^{\mathcal{M}}$ ", " $=^{\mathcal{M}}$ ", " $\neg^{\mathcal{M}}$ " remain the same

I see an advantage in changing the symbol of relations only, distinguishing meta- and object language will otherwise be clear. Order of metalinguistic relations is as usual and has precedence on object language, e.g. $\mathcal{M} \models \varphi \leftrightarrow \psi \Rightarrow \varphi \rightarrow \psi$ is the same as $\mathcal{M} \models (\varphi \leftrightarrow \psi) \Rightarrow (\varphi \rightarrow \psi)$.

The symbol " \models " denotes classical logical consequence is to be understood into two different ways: a relation between a model and a sentence in the object language or between a theory and a sentence in the metalanguage. Both interpretations are familiar, note the two following examples: $ZFC \models \pi > 1$ & 2+1=3 and $\mathcal{M} \models \neg \aleph_1 = 2^{\aleph_0} \land \exists_x 2+x=3$.

I also write usual abbreviations like $\neg a = b$ as $a \neq b$ or $\exists_x \varphi(x) \land \psi(x)$ as $\exists_{\varphi(x)} \psi(x)$.

I write ":=" for a relation between a syntactical object and a semantical object (or a second syntactical object) and denotes syntactical overwrite e.g., " $\varphi := 1+1=2$ " every time I type " φ " the reader should understand it just like "2+1=2". I also use """ to refer to the syntax of symbols.

Letters in Fraktur Alphabet are structures, like " \mathfrak{A} ", " \mathfrak{B} ", " \mathfrak{A} " and caligraphic letters are models, like " \mathcal{M} ", " \mathcal{N} ". Models are structure, though usually they are related to a theory e.g. a model of ZFC is also a structure. I also denote with the respective capital letter the domain of the model or structure, like "M", "A".

I write " \mathcal{L} " to refer to language of classical logic $\langle \neg, \wedge, \exists \rangle$, " \mathcal{L}_{ϵ} " to refer to language of set theory $\langle \neg, \wedge, \exists, =, \in \rangle$ and " $\mathcal{L}_{\mathfrak{A}}$ " to the language of a structure \mathfrak{A} .