Функциональные ряды

02.10.24

Опр. 1. Ряд, члены которых - это функции

$$\sum_{n=1}^{\infty} U_n(x) \tag{1}$$

где $\{U_n(x)\}$ называется функциональной последовательностью

Пример.

$$\sum_{n=1}^{\infty} a_n x^n - \text{степенной ряд}$$
 (2)

Опр. 2. Частичная сумма функционального ряда

$$S_n(x) = \sum_{k=1}^n U_k(x) \tag{3}$$

 $\{S_n(x)\}$ - последовательность частичных сумм

Опр. 3. Функциональная последовательность

$$\{f_n(x)\}\tag{4}$$

1 Сходимость функциональной последовательности

Опр. 4. сходимость функциональной последовательности: Если f(x), $f_n(x)$ определены на X:

$$\{f_n(x)\}$$
 сходится на X к $f(x) \implies \lim_{n \to \infty} f_n(x) = f(x)$.
$$f_n(x) \to f(x) \Leftrightarrow \forall x_0 \in X$$
 (5)
$$\lim_{n \to \infty} f_n(x) = f_x$$

Опр. 5. Если при фиксированном x_0 функциональный ряд сходится, тоговорят, что он сходится в точке $x=x_0$. При этом множество X всех таких точек называется **областью сходимости** ряда. Аналогично для расходимости.

Теорема 1.0.1. Остаток сходящегося функционального ряда равен 0. Если ряд

сходится к сумме S(x) и $S(x) = S_n(x) + r_{n+1}(x)$ (r - остаток ряда), то

$$\lim_{n \to \infty} r_{n+1}(x) = \lim_{n \to \infty} (S(x) - S_n(x)) = S(x) - \underbrace{\lim_{n \to \infty} S_{n+1}(x)_{=S(x)}}_{=S(x)} = 0$$
 (6)

Пример.

$$\sum \frac{n+1}{x^3} \text{ везде расходится:}$$

$$\lim_{n\to\infty} U_n(x) = \lim_{n\to\infty} \frac{n+1}{x^3} = \frac{1}{x^3} \lim_{n\to\infty} (n+1) = \infty.$$
 (7)

Пример.

$$\sum x^n \cdot n! - \text{сходится только в 0}$$

$$\sum \frac{x^n}{n!} - \text{везде сходится}$$

$$\sum \frac{1}{x^n \cdot n!} - \text{расходится при } x = 0$$
 (8)

Пример.

$$\sum x^n$$
 — геом. ряд $|x|<1 \implies$ сходится $|x|>=1 \implies$ расходится $(-1;1)$ - область сходимости

2 Нахожедение области абсолютной сходимости

Теорема 2.0.1.

$$\lim_{n\to\infty}\left|\frac{U_{n+1}(x)}{U_n(x)}\right|=q(x)\qquad\begin{cases}\lim=0\implies & \text{сходится на }-\infty;+\infty\\ \lim=\infty\implies & \text{сходится только в }x=0\\ & \text{иначе: интервал из н-ва }|q(x)|<1. \ \text{Затем исследуются концы интервала}\end{cases}$$

Пример.

$$\sum \frac{(-1)^n \cdot 5^n}{(2n+5)(3x-2)^{2n}}$$

$$U_{n+1}(x) = \frac{5 \cdot 5^n}{(2n+5)(3x-2)^{2n+2}}$$

$$\frac{U_{n+1}(x)}{U_n(x)} = \dots = \frac{5(2n+3)}{(2n+5)(3x-2)^2}$$

$$\lim_{n \to \infty} \left| \frac{5(2n+3)}{(2n+5)(3x-2)^2} \right| = \frac{5}{(3x-2)^2} \underbrace{\lim_{n \to \infty} \frac{2n+3}{2n+5}}_{=1} < 1$$

$$\frac{5}{(3x-2)^2} < 1$$

$$(3x-2)^2 < 1$$

$$(3x-2)^2 > 5$$

$$|3x-2| > \sqrt{5}$$

$$3x-2 > \sqrt{5} \implies x > \frac{2+\sqrt{5}}{3}$$

границы проверяем отдельно, исследуем возникающие числовые ряды:

 $x\in (-\infty;rac{2-\sqrt{5}}{3})\cup (rac{2+\sqrt{5}}{3};+\infty)$ - область абсолютной сходимости ряда

Теорема 2.0.2. признак Коши

 $3x - 2 < -\sqrt{5} \implies x < \frac{2 - \sqrt{5}}{3}$

$$\lim_{n \to \infty} \left| \sqrt[n]{U_n(x)} \right| < 1 \implies \textit{pewaem}$$
 (12)

3 Равномерная сходимость функционального ряда

Опр. 6. ряд называется равномерно сходящимся на множестве $X \Leftrightarrow \forall \epsilon > 0: \exists N(\epsilon)$ и не зависящее от x:

$$\forall n > N \implies |S_n(x) - S(x)| < \epsilon \Leftrightarrow |R_n(x)| < \epsilon$$

$$|S_n(x) - S(x)| = |S(x) - S_n(x)| = |R_n(x)|$$
(13)

Пример. ряд, сходящийся неравномерно:

3.1 Признаки равномерной сходимости

Теорема 3.1.1. Признак равномерной сходимости **Вейритрасса**. Если члены функционального ряда $\sum U_n(x)$ не превосходят на некотором множестве X членов сходящегося числового ряда, то на X ряд $\sum U_n(x)$ сходится равномерно

Proof.

$$1. \sum U_n(x) \qquad \qquad \text{Остаток: } R_n$$

$$2. \sum |U_n(x)| \qquad \qquad \text{Остаток: } F_n$$

$$3. \sum C_n \qquad \qquad \text{числовой ряд, сходится. Остаток: } P_n \qquad \qquad \textbf{(15)}$$

$$\forall x \in X : |U_n(x)| \le C_n$$

Если ряд 3 сходится, то ряд 2 сходится на X по признаку сравнения. Тогда ряд 1 сходится абсолютно на $X \implies$ сходится на X.

Докажем равномерную сходимость.

$$U_n(x) \le |U_n(x)| \le C_n$$

$$R_n(x) \le F_n(x) \le P_n(x)$$

$$|R_n(x)| \le F_n(x) \le P_n(x) \forall x \in X$$

$$(16)$$

Так как 3 сходится, то $\lim_{n \to \infty} P_n = 0$ (по св-ву сходящегося числового ряда). Тогда

$$\Leftrightarrow \forall \epsilon > 0 : \exists N(\epsilon)$$

$$\Rightarrow |P_n - 0| < \epsilon$$

$$\Rightarrow |P_n < \epsilon|;$$

$$|P_n < \epsilon| \forall x \in X$$
(17)