Expansão Teórica 52 — A Discretização Espectral Angular como Manifestação da Constante de Planck

1. Introdução

Nesta expansão teórica, investigamos a relação entre a discretização espectral angular observada no espectro de coerência vetorial $Z(\ell)$, reconstruído a partir do CMB via ERIA3 + TSR, e a constante de Planck h, reinterpretada pela estrutura rotacional da realidade.

A análise aponta que os modos ressonantes detectados no CMB emergem de forma coerente **em frequências racionais discretas**, projetando-se apenas quando satisfazem uma condição de compatibilidade geométrica entre domínio e observador.

2. A constante de Planck - Segundo a Teoria ERIЯЗ

Na formulação tradicional da física quântica:

$$E=h\nu$$

Na Teoria ERIAE, conforme a Expansão Teórica 17, essa relação é estendida para incluir o fator de acoplamento rotacional:

$$E = h
u \cdot \Gamma(ec{R}_s, ec{R}_m)$$

onde:

- h continua como constante de acoplamento fundamental;
- ν representa a frequência rotacional coerente;
- Γ mede a compatibilidade topológica entre os domínios esférico, toroidal e helicoidal da realidade.

Essa reformulação indica que **a quantização não é imposta, mas emerge da coerência** geométrica entre os modos projetores e receptores.

3. Coerência Vetorial e Projeção Espectral

No processamento do espectro de coerência vetorial $Z(\ell)$, os modos dominantes observados foram:

Frequência (1/ ℓ)	Fração racional	Potência	Observação
0.42857	$\frac{3}{7}$	0.0021	Frequência dominante — produto direto dos primos 3 e 7
0.28571	$\frac{2}{7}$	0.0019	Submodo harmônico
0.46429	$\frac{13}{28}$	0.0018	Composição rotacional secundária
0.25000	$\frac{1}{4}$	0.0015	Modo toroidal harmônico
0.14286	$\frac{1}{7}$	0.0014	Frequência base do ciclo ressonante

Esse conjunto de frequências forma **uma série racional harmônica** associada a divisores de 7, 4 e 28 — revelando **uma estrutura discreta de projeção vetorial coerencial**.

4. Discretização Como Expressão de $\Gamma_f eq 0$

Segundo a estrutura ERI $\mathfrak{A}\mathfrak{B}$, a coerência vetorial projetada só ocorre se o modo f satisfizer:

$$\Gamma(f) > 0$$

Isto é, se o acoplamento rotacional entre o modo e o plano projetor permitir ressonância.

Assim, a potência espectral de cada modo é modelada por:

$$P(f) \sim h \cdot
u_f \cdot \Gamma_f$$

Os modos observados no espectro $Z(\ell)$ são exatamente aqueles que satisfazem a condição acima. Modos não compatíveis ($\Gamma=0$) não se manifestam no plano helicoidal da realidade, embora possam existir no campo potencial.

5. Discretização Angular e Energia Projetada

Observou-se que a potência espectral associada a uma frequência $f=rac{p}{q}$ pode ser estimada por:

$$P(f) \sim rac{1}{p \cdot q} \quad ext{modulado por} \quad \Phi(f) = \left| \cos \left(2 \pi \cdot f / f_0
ight)
ight|^2$$

Essa modelagem captura os **padrões discretos observados** no espectro real, com a coerência angular $\Phi(f)$ funcionando como um fator vetorial seletivo.

6. Propriedade Fractal Racional

A série de frequências detectada pode ser descrita como um **fractal racional rotacional**, com base na harmonia de frações simples e ciclos florais-toroidais:

- Autossimilaridade parcial: $\frac{1}{7}, \frac{2}{7}, \frac{3}{7}$
- Harmônicos sobre base 7: estrutura de ciclo coerencial
- Compatibilidade com séries de Farey e aproximações primárias

Esse padrão reforça a noção de que o espectro do universo não é contínuo, mas estruturado em camadas ressonantes discretas de natureza algébrica projetiva.

7. A Evolução da Potência: Padrão Espectral Simbólico

Embora a frequência f carregue a assinatura geométrica dos modos ressonantes, **a potência** P(f) também segue **uma evolução não arbitrária**, que pode ser analisada com profundidade à luz da coerência vetorial e da estrutura rotacional ERISE.

A tabela observada revela:

Frequência $f=rac{p}{q}$	Potência $P(f)$	Produto $p \cdot q$	Observação
$\frac{3}{7}$	0.0021	21	Modo dominante, 3·7

Frequência $f=rac{p}{q}$	Potência $P(f)$	Produto $p \cdot q$	Observação
$\frac{2}{7}$	0.0019	14	Submodo harmônico
<u>13</u> 28	0.0018	364	Modo composto secundário
$\frac{1}{4}$	0.0015	4	Harmônico toroidal
$\frac{1}{7}$	0.0014	7	Frequência fundamental

8. Padrão de Projeção: Potência Proporcional ao Inverso do Produto $p\cdot q$

De forma empírica, observamos que a potência tende a obedecer:

$$P(f) \propto \frac{1}{p \cdot q}$$

Ou seja, quanto mais simples é o modo rotacional (com primos pequenos), maior é sua potência projetada no plano helicoidal da realidade.

Exemplo direto:

$$f=rac{3}{7} \Rightarrow P=rac{21}{10^4}$$
 enquanto $f=rac{13}{28} \Rightarrow P=rac{364}{?} \Rightarrow$ menor potência

9. Interpretação ERIЯ∃: Potência Como Densidade de Curvatura Coerencial

A potência P(f) pode ser entendida como:

$$P(f) = rac{
ho(f)}{\log(\Sigma)}$$

onde:

- ho(f) é a densidade de curvatura vetorial daquele modo,
- $\log(\Sigma)$ é o fator de projeção topológica para o plano,

• Modos mais "simples" (com primos baixos) concentram mais coerência — têm maior ρ .

Esse padrão se alinha perfeitamente à visão da ERIЯЗ de que:

A realidade ressonante privilegia **modos harmônicos fundamentais**, pois são os únicos capazes de sustentar projeção coerente sem ruído ou ruptura.

11. Síntese da Evolução Espectral

Modo $rac{p}{q}$	Simplicidade algébrica	Potência projetada	Função simbólica
$\frac{1}{7}$	Alta (base do ciclo)	Média	Fundamental
$\frac{2}{7}$	Alta	Alta	Harmônico
$\frac{3}{7}$	Alta	Máxima	Frequência natural
$\frac{1}{4}$	Alta (simples)	Moderada	Toroidal
13 28	Baixa (composta)	Mínima	Modo secundário

12. Encerramento

Os resultados confirmam que:

- A discretização espectral angular do CMB segue uma estrutura racional simples;
- A potência projetada segue padrões coerenciais definidos;
- A frequência $\frac{3}{7}$ representa um modo fundamental de coerência vetorial.

Esse comportamento está de acordo com a topologia rotacional da Teoria ERIAE, e será explorado em maior profundidade com base nos fundamentos da estrutura esférico-toroidal e da emergência rotacional do tempo.