

Projet réducteur

Notice de calcul

Ilies GHANZOURI et Pierre DHENNIN

Table des matières

1.0	Introduction
2.0	Cahier des charges 3
3.0	Pré-étude du pignon 3
3.1	Choix du matériau3
3.2	Détermination des dimensions du pignon4
3.3	Détermination du module et du nombre de dents Z1, Z24
3.4	Détermination des déports5
3.5	Vérifications sur le logiciel5
4.0	Dimensionnements des composants 5
4.1	Arbres5
3.1	Roulements6
3.2	Clavettes6
4.0	Solutions technologiques
4.1	Carter
4.2	Arbre
4.3	Frettage7
4.4	Lubrification8
4.5	Etanchéité8
4.6	Traitements thermiques8
5.0	Annexe

1.0 Introduction

Ce projet consistait à concevoir et modéliser un réducteur. Pour cela, nous disposions d'un cahier de charges imposé.

A partir de ces caractéristiques, nous devions dimensionner les différentes pièces de ce réducteur (pignon, roue dentée, arbres, roulements, clavettes...) et vérifier qu'ils peuvent résister aux efforts. Ensuite, nous avions modélisé notre prototype sur CATIA.

2.0 Cahier des charges

La puissance à transmettre est de 7 kW.

Le rapport de réduction entre l'entrée et la sortie est u=3.

Les engrenages sont à axes parallèles et à dentures droites.

L'usinage des roues dentées est réalisé par un taillage par génération.

La vitesse de rotation en entrée : N = 1500 tr/min.

Les engrenages doivent avoir une durée de vie minimale de D=20 000H.

Le facteur application de la charge $K_A=1,5$.

3.0 Pré-étude du pignon

3.1 Choix du matériau

Qualité	Mode d'obtention	Matériau
ISO 7	Taillage par génération	35 NiCrMo 6

3.2 Détermination des dimensions du pignon

A partir de l'équation de pression constante et du tableau de la figure 1, on détermine d1.

$$d_1^3 \ge \frac{2.C_1}{R.\left(\frac{\sigma_{Hlim}}{Z_E}\right)^2.\frac{Z_V^2.Z_R^2}{Z_s^2}.\frac{C_r}{K_{\alpha\beta}.K_V.K_B}}$$

Par cette relation, on trouve d₁≥59mm

On en déduit b à partir de la formule suivante : $b = R \times d_1$

On trouve $b \ge 35 \text{ mm}$.

Après vérification dans les abaques,

V (m/s)	4,6
σ_{Hlim}	820
V*Z1/100	1,4

On trouve Zv=0,96 et Kv=1,08

3.3 Détermination du module et du nombre de dents Z1, Z2

A partir de l'équation de résistance à la rupture, on détermine le module minimal m₀ :

$$m_0 \ge \frac{F_T}{\frac{\sigma_{Flim}.Y_{ST}}{Y_{Fa}.Y_{Sa}.Y_{\varepsilon}} \cdot \frac{b}{K_{\alpha\beta}.K_V.K_B}}$$

Enfin par le tableau de la figure 2, on déduit <mark>m₀ ≥ m_{mini}= 0,5823</mark>.

On détermine le module m en respectant la condition précédente, en favorisant le critère économique et en ayant $Z_1+Z_2\geq 60$:

Dans notre cas, il faut que Z1+Z2 >= 60 et que Z1 < 30. Afin de minimaliser les coûts, on choisit $m_0 = 4$. En effet, avec ce module, les engrenages auront moins de dents et seront donc moins chers à usiner.

Ainsi, on déduit <mark>Z1 = 15</mark> et <mark>Z2 = 45</mark>.

3.4 Détermination des déports

$$Z_1 + Z_2 < 60$$
 et $Z_1 < 30$, donc : $X_1 = -X_2 = 0.03 * (30 - Z_1)$.

On en déduit $X_1 = 0.45$ et $X_2 = -0.45$.

3.5 Vérifications sur le logiciel

On rentre les données dans le logiciel pour vérifier que la puissance à transmettre corresponde au CDCF.

Par les calculs de dimensionnement, b ≥ 36 mm. Cependant, on décide de prendre b=30 mm car sinon les engrenages seraient surdimensionnés.

Avec b=30mm, on voit que la puissance admissible $P_{adm} = 7.87W > 7 \text{ kW} = P_{CDCF}$. Les données qu'on a choisies sont donc bonnes.

Les figures 3, 4, 5 et 6 synthétisent l'ensemble des caractéristiques de l'engrenage.

4.0 Dimensionnements des composants

4.1 Arbres

Pour les arbres, on a choisi comme matériau un acier 50 CrMo 4 de résistance élastique Re=700MPa, voir figure 7. On avait à notre disposition un fichier Excel qui calculait les diamètres minimums des arbres d'entrée et de sortie permettant aux arbres de résister à des contraintes en flexion. On rentre les données relatives à notre CDCF (figure 9).

Ainsi, d'après la figure 8 :

ø_{mini,entrée}≥ 19mm et ø_{mini,sortie}≥ 27mm

3.1 Roulements

Nous disposons des diamètres minimum des arbres d'entrée et de sortie. De plus, d'après la figure 10, le fichier Excel nous renvoie les charges dynamiques minimales des roulements :

On choisit donc les roulements de la figure 11.

Ces roulements répondent à la contrainte en flexion, car le diamètre intérieur des roulements et leur charge dynamique sont supérieurs à ceux trouvés précédemment.

Il faut aussi vérifier que ces roulements répondent au critère de durée de vie à 20.000 heures.

l et B (6005)	Roulement C (61907) Roulement D (619			: D (61908)
1500	N (tr/min)	375	N (tr/min)	375
790	P(N)	800	P(N)	781
2090	L ₉₀ (M de	2012	L ₉₀ (M de	6400
	tours)		tours)	
23 219	D (h)	22 359	D (h)	71 106
	790 2090	1500 N (tr/min) 790 P(N) 2090 L ₉₀ (M de tours)	1500 N (tr/min) 375 790 P(N) 800 2090 L ₉₀ (M de 2012 tours)	1500 N (tr/min) 375 N (tr/min) 790 P(N) 800 P(N) 2090 L ₉₀ (M de tours) 2012 L ₉₀ (M de tours)

A partir de ces calculs, on remarque que D > 20 000 heures, donc ces roulements répondent bien au CDCF.

3.2 Clavettes

Les clavettes sont dimensionnées en utilisant le tableau normalisé de type NFE 22-175 : Ainsi, à partir de la figure 12, on détermine les dimensions des clavettes d'entrée et de sortie.

Sur l'arbre d'entrée : d=20 mm

a = 6 mm	b = 6 mm	L = 17 mm
----------	----------	-----------

Sur l'arbre de sortie : d=30 mm

a = 8 mm b	= 7 mm	L = 24 mm
------------	--------	-----------

4.0 Solutions technologiques

4.1 Carter

Le carter est réalisé par moulage avec une fonte. L'épaisseur du carter est constante de 8 mm pour respecter les règles de moulage. Le carter est réalisé de tel sorte à faciliter le montage des joints à lèvres, des roulements puis des arbres et enfin des engrenages à la presse. Nous avons ajouté des chanfreins sur les bords en contact avec les roulements pour faciliter le montage.

Les congés sont ajoutés presque partout sur les arêtes pour avoir l'allure d'un brut de fonderie et garder les arêtes pour les surfaces fonctionnelles.

Le carter est fait en deux parties. Le couvercle et le carter sont mis en position par deux pions de centrage et maintenus en positions par des vis CHC M10 55. Les pions et les vis ont été choisis sur le site TraceParts online.

Le bouchon de remplissage situé en haut du carter et le bouchon de vidange (situés à 6 fois le module de la roue dentée sur l'une des faces du carter) facilitent leurs accessibilités. Un voyant de niveau d'huile a de même était ajouté au niveau du bouchon de vidange.

4.2 Arbre

- Des épaulements ont été ajoutés sur les arbres pour bloquer la translation du pignon et de la roue lors du montage à la presse. Les épaulements sont aussi utilisés comme arrêts en translation des roulements. Des épaulements sont préférables à des circlips car leur précision est plus grande, et l'usinage des épaulements est simple.
- Les chanfreins servent à faciliter le montage des roulements et des engrenages sur les arbres, pour qu'ils ne soient pas dégradés.

4.3 Frettage

Nous avons opté à une solution par frettage des engrenages sur les arbres. D'après les figures 16,17 et 18, les ajustements à réaliser sont 30 H7p6 entre le pignon et l'arbre d'entrée et 40 H7p6 entre la roue et l'arbre de sortie.

4.4 Lubrification

Lubrification à l'huile

La vitesse de rotation en entrée est de 1500 tr/min et le rapport de réduction est de 3. Donc la vitesse de rotation de la roue est 500 tr/min. Le rayon de la roue fait 90 mm et la vitesse tangentielle est $V=2\pi^*90^*500=282\ 743\ \text{mm/min}=4,71\ \text{m/s}$.

Par le critère de SHELL, il faut que $V \ge 2,275\sqrt{D_2} = 0,41 \text{m/s}$ et inférieur à 12,5 m/s.

La vitesse tangentielle de la roue respecte bien le critère de SHELL. Le réducteur peut donc être lubrifier par barbotage.

• Qualité de l'huile

D'après la figure 13,

v=230,33 cSt et H_{min}= 34,94 μm

• Quantité d'huile

D'après la figure 14,

Q=0,28 litres

4.5 Etanchéité

<u>Etanchéité dynamique</u>

L'étanchéité dynamique est réalisée par les joints à lèvres de la figure 15.

• Etanchéité statique

L'étanchéité statique est réalisée par un joint plat.

4.6 Traitements thermiques

L'engrenage est traité thermiquement par une trempe totale et durcis superficiellement. La trempe augmente considérablement la dureté. La dureté de l'engrenage (35 NiCrMo 6) vaut 310 HV. Une trempe permettrait de faire un passage de dureté de Hv=310 à Hv environ 550.

5.0 Annexe

Facteurs	Nom	Formule	Valeur
$\left(\frac{\sigma_{Hlim}}{Z_E}\right)^2$	Facteur de résistance à la pression superficielle de contact	Abaque	18,1 MPa
Z_V	Facteur de vitesse tangentielle	Hypothèse	1
Z_R	Facteur de rugosité	Taillage par génération	0,85
$arepsilon_lpha$	Rapport de conduite	Hypothèse	1,45
${Z_{arepsilon}}^2$	Facteur de conduite	$\frac{4-arepsilon_{lpha}}{3}$	0,85
$\frac{1}{K_{lphaeta}}$	Facteur de répartition de la charge	Lecture graphique	0,75
Z_N	Facteur de durée	Donnée	1
K_B	Facteur de service	$\frac{K_A}{Z_N^2}$	1,5
C_r	Facteur de réduction	$0.16 * \frac{u}{u+1}$	0,12
C_1	Couple dans l'arbre d'entrée	$\frac{P}{\omega}$	44,56 Nm
K_v	Facteur dynamique	Hypothèse	1,25
R	Rapport largeur b par diamètre primitif d1	Fixé R=u/5	0,6

Fig1 : Tableau des facteurs permettant de déterminer le diamètre d₁ du pignon

Facteurs	Nom	Formule	Valeur
F_T	Effort tangentiel	$\frac{2.C_1}{d_1}$	1521,14 N
$\sigma_{Flim}.Y_{ST}$	Résistance en fatigue flexion de dent du matériau	Abaque	620 MPa
Y_{Fa}	Facteur de forme	Donnée	2,5
Y_{Sa}	Facteur de correction de contrainte	Donnée	1,74
$Y_{arepsilon}$	Facteur de conduite	$40,25 + \frac{0,75}{\varepsilon_{\alpha}}$	0,77

Fig2 : Tableau des facteurs permettant de déterminer le module minimum

Fig3 : Géométrie de l'engrenage

Fig4 : Réalisation de l'engrenage

Fig5 : Résistance à la pression superficielle de l'engrenage

Fig6 : Résistance à la rupture de l'engrenage

Quenched and tempered steels [Extract from DIN 17200 (3.87)] Mechanical properties of steels in quenched and tempered condition (Code letter V)											
Mechar	roper	tempered	cond	lition (Co	de lett	er V)					
					Dia	meter					
Steel gra	de			ah	ove 16	above 40 above 100			we 100	aho	ve 160
		up t	o 16 mm		o 40 mm		100 mm		160 mm		250 mm
		Yield		Yield		Yield		Yield		Yield	
		point		point		point		point		point	
	Mate-	(0.2	Tensile								
Symbol	rial	Gr) N/mm ²	strength N/mm ²								
	no.	min.	R _m	min.	Rm	min.	Rm	min.	Rm	min.	Rm
		Re.		Re,		Re.		Re.		Re.	
		R _{p 0.2}		Rp 0.2		R _{p 0.2}		R _{p 0.2}		R _{p 0.2}	
C 22	1.0402	350	550- 700	300	500- 650	-	-	-	-	-	-
C 35	1.0501	430	630- 780	370	600- 750	320	550- 700	-	_	-	-
C 45	1.0503	500	700- 850	430	650- 800	370	630- 780	-	-	-	-
C 55	1.0535	550	800- 950	500	750- 900	430	700- 850	_	-	-	-
C 60	1.0601	580	850-1000	520	800- 950	450	750- 900	-	-	-	-
Ck 22	1.1151	350	550- 700	300	500- 650	-	-	_	-		
Ck 35	1.1181	430	630- 780	370	600- 750	320	550- 700	_	_	-	-
Cm 35	1.1180	430	630- 780	370	600- 750	320	550- 700	_	_	_	-
Ck 45	1.1191	500	700- 850	430	650- 800	370	630- 780	_	_	-	-
Cm 45	1.1201	500	700- 850	430	650- 800	370	630- 780	_	_	-	_
Ck 55	1.1203	550	800- 950	500	750- 900	430	700- 850	_	_	-	-
Cm 55	1.1209	550	800- 950	500	750- 900	430	700- 850	_	_	-	-
Ck 60	1.1221	580	850-1000	520	800- 950	450	750- 900	_	_	-	-
Cm 60	1.1223	580	850-1000	520	800- 950	450	750- 900	_	-	-	-
28 Mn 6	1.1170	590	780- 930	490	690- 840	440	640- 790	-	-	-	-
38 Cr 2	1.7003	550	800- 950	450	700- 850	350	600- 750	_	_	_	_
46 Cr 2	1.7006	650	900-1100	550	800- 950	400	650- 800	_	_	-	-
34 Cr 4	1.7033	700	900-1100	590	800- 950	460	700- 850	_	_	_	-
34 Cr S4	1.7037	700	900-1100	590	800- 950	460	700- 850	_	_	_	_
37 Cr 4	1.7034	750	950-1150	630	850-1000	510	750- 900	_	_	_	_
37 Cr S4	1.7038	750	950-1150	630	850-1000	510	750- 900	_	_	-	_
41 Cr 4	1.7035	800	1000-1200	660	900-1100	560	800- 950	_	_	_	_
41 Cr S4	1.7039	800	1000-1200	660	900-1100	560	800- 950	_	-	-	-
25 CrMo 4	1.7218	700	900-1100	600	800- 950	450	700- 850	400	650- 800	-	-
34 CrMo 4	1.7220	800	1000-1200	650	900-1100	550	800- 950	500	750- 900	450	700- 850
34 CrMo S4	1.7226	800	1000-1200	650	900-1100	550	800- 950	500	750- 900	450	700- 850
42 CrMo 4	1.7225	900	1100-1300	750	1000-1200	650	900–1100	550	800- 950	500	750- 900
42 CrMo S4	1 7227	900	1100-1300	750	1000-1200	650	900_1100	550	800_ 950	500	750_ 900
50 CrMo 4	1.7228	900	1100–1300	780	1000–1200	700	900–1100	650	850-1000	550	800- 950
36 CrNiMo 4	1 6511	900	1100-1300	800	1000-1200	700	900-1100	600	800- 950	550	750- 900
34 CrNiMo 6	1.6582	1000	1200-1400	900	1100-1300	800	1000–1200	700	900-1100	600	800- 950
30 CrNiMo 6	1.6580	1050	1250–1450	1050	1250-1450	900	1100–1300	800	1000–1200	700	900–1100
50 CrV 4	1.8159	900	1100-1300	800	1000-1200	700	900-1100	650	850-1000	600	800- 950
30 CrMo√9	1.7707	1050	1250-1450	1020	1200-1450	900	1100–1300	800	1000-1200	700	900-1100

Fig7 : Caractéristique mécanique de l'arbre (Re = 700MPa) et de l'engrenage (Re = 800MPa)

Fig8 : Dimensionnement des arbres Ømini

données:		
puissance	7	kW
Vitesse pignon	1500	tr/mn
Engrenage:		
m0=	4	mm
Z1=	15	
Z2=	45	
Durée de vie:	20000	Heures
Résistance arbre:		
Re=	700	Мра
s(coef.sécurité)=	10	

Fig9 : Données du CdCF, des caractéristiques de l'engrenage, et de la résistance élastique de l'arbre

calculs:									
P1=	7000	W	ω1=	157,08	rd/s				
couples:				efforts /dentures					
	C1=	45	N.m	FN=	1581	N			
	C2=	134	N.m						
			_						
Equilibre	arbres:		Roulements:			Moments			
Réactions (radiales)	aux appuis	arbre1:	Cdynamiques			flexion	max	MiT	4
R _{A1} =	790	N	Cmini (A)=	9615	N	22406	N.mm	55100 N.mm	AREL
R _{B1} =	790	N	Cmini (B)=	9615	N	32400	IN.IIIIII	55100 14.11111	ENTREE
Réactions (radiales) aux appuis arbre2:		Cdynamiques		flexion	max	MiT			
R _{C2} =	800	N	Cmini(C)=	6749	N	32006 N.mm		137468 N.mm	SORTIE
R _{D2} =	781	N	Cmini(D)=	6584	N	32006	IN.IIIII	13/408 N.MM	S

Fig 10 : Valeurs des efforts, des couples soumis par les arbres et les roulements

Roulement	A, B (6005)	Roulemen	t C (61907)	Roulement	t D (61908)
d	25	d	35	d	40
D	47	D	55	D	62
В	12	В	10	В	12
C _{dyn} (kN)	10,10	C _{dyn} (kN)	10,1	C _{dyn} (kN)	14,5
Co(kN)	5,9	Co(kN)	6,8	C₀(kN)	9,9

Fig11 : Caractéristiques des roulements à billes à contacts radiales utilisés

			série normale					série mince			cas d'une fixation par vis				
Aut	d	a	b	S	J	K	L	b*	J*	K*	vis	t	Z	g	r
6 à	8 inclus	2	2	0.08	d-1,2	d+1	6à 20								
8.à	10	3	3	à	d - 1.8	d + 1.4	6à 36								
10 à	12	4	4	0,16	d - 2.5	d + 1.8	8 à 45								
12 à	17	5	5	0.16	d-3	d + 2.3	10 à 56	3	d - 1.8	d+1.4					
17 à	22	6	6	à	d - 3.5	d + 2.8	14 à 70	4	d - 2.5	d + 1.8	M2,5-6	5	2,9	3	2,5
22 à	30	8	7	0,25	d-4	d + 3,3	18 à 90	5	d-3	d+2,3	M3-8	6,5	3,4 *	3,5	3
30 à	38	10	8	0,25	d-5	d+3,3	22 à 110	- 6	d = 3.5	d+2,8	M4-10	8	4,5	4,5	4
38 à	44	12	8		d-5	d+3,3	28 à 140	6	d - 3.5	d+2,8	M5-10	10	5,5	5,5	5
44 à	50	14	9	à	d-5,5	d + 3.5	36 à 160	6	d - 3.5	d+2,8	M6-10	12	6,6	6,5	6
50 à	58	16.	10		d-6	d + 4,3	45 à 180	7	d-4	d+3,3	M6-10	12	6,6	6,5	6
58 à	65	18	11	0,4	d-7	d+4,4	50 à 200	7	d-4	d+3,3	M8-12	16	9	8,5	8
65 à	75	20	12	0,4	d - 7.5	d + 4.9	56 à 220	8	d-5	d+3,3	M8-12	16	9	8,5	8
75 à	85	22	14	à	d-9	d + 5.4	63 à 250	9	d - 5.5	d+3,8	M10-12	20	11	10,5	10
85 à	95	25	14	0.6	d-9	d + 5.4	70 à 280	9	d - 5.5	d+3,8	M10-12	20	11	10,5	10
95 à 1	10	28	16		d-10	d+6,4	80 à 320	10	d-6	d + 4.5	M10-16	20	11	10,5	10

Fig 12 : Tableau normalisé de dimensionnement des clavettes (entrée et sortie)

Le phénomène physique de répartition des pressions au contact de deux profils conjugués de roues dentées est complexe, en particulier, il existe un film d'huile au niveau du primitif alors que la vitesse de glissement est nulle.

L'épaisseur du film d'huile est donnée par la relation (SHELL) :

$$hmin = 0,05 \left[v_0 D_1 V \frac{\rho}{\rho + 1} \right]^{0,5}$$

- hmin : épaisseur du film en μm au primitif
- γ₀ : viscosité de l'huile en cSt à 40°C
- V : vitesse périphérique en cm/sec
- D₁: diamètre du pignon en cm
- ρ : rapport de réduction =D₂/D₁

Remarque : Le jeu entre dentures doit respecter cette épaisseur mini.

Les nuances d'huiles dont très variables avec la nature de l'huile et les nombreux additifs possibles, mais la viscosité reste sa caractéristique essentielle. On utilise généralement des huiles minérales dont la viscosité en cSt varie de 50 à 700 à 40°C.

7.2.1 Méthode ne tenant compte que de la vitesse.

y : viscosité en cSt à 40°C

SHELL:

 $\begin{array}{l} \nu = \frac{500}{\sqrt{V}} \\ \nu = \frac{200}{V^{0.4}} \quad \text{pour fonctionnement à 45°C} \\ \nu = \frac{100}{V^{0.4}} \quad \text{pour fonctionnement à 90°C} \end{array}$

Fig 13 : Qualité de l'huile

- Quantité d'huile (selon ANTAR, NIEMAN)

$$Q = k. P \left[\frac{0, 1}{21} + \frac{0, 03}{V + 2} \right]$$

- Q : quantité d'huile en litres
- K : coefficient : mini = 2,5 (impératif)

maxi = 8 (si possible)

- P: puissance transmise en CV (1CV=736W)
- Z1: nombre de dents du pignon
- V : vitesse tangentielle au primitif en m/sec

Fig 14 : Quantité d'huile

	Joint sur l'arbre	Joint sur l'arbre de
	d'entrée	sortie
d (mm)	25	40
D (mm)	42	52
E : Epaisseur (mm)	8	7
Type de joints	IE	IE
Réf	722517	722325

Fig15 : Caractéristiques du joint à lèvre utilisé

Fig16: Dimensionnement au frettage du pignon

Fig 17 : Dimensionnement au frettage de la roue dentée

Fig18 : Ajustement au frettage du pignon et de la roue dentée

Fig 19 : Déformation de l'arbre d'entrée et du pignon

Fig20 : Déformation de l'arbre de sortie et de la roue dentée