寒假作业 小结报告

这篇文档将按照如下三个部分展开,第一部分将对论文的结构¹及其主要结果进行一个简要的介绍;第二部分用来说明一下我的主要工作——用 Matlab 生成文中的全部八张表格和一张图片;最后,第三部分是对工作结果的简要评述。

1 论文概述

1.1 行文结构

文章最重要的贡献是建立了对"GARCH模型中回报率的平稳性(Stationary)"这一假设的检验方法。

为了逐步展开这个问题,作者首先引用了 Nelson (1990) 关于 GARCH 模型存在"严格平稳"(Strictly Stationary)的回报率解的充要条件: γ_0 < 0 (γ_0 是 GARCH 模型中若干参数的函数)。

在此基础上,作者本应顺势将 γ_0 < 0 作为零假设,设法进行假设检验。但是作者又做了一层铺垫,以说明平稳性假设成立与否的必要性(也即说明其论文主要贡献的重要性)。

具体而言,作者发现用 QMLE 估计出的 GARCH(1,1)模型中的 α_0 和 β_0 的一致性和渐近正态性都不受平稳性存在与否的影响,而截距参数 ω_0 的一致性则需要平稳性假设成立作为前提。

在上面论述的基础上,作者开始介绍其主要贡献——对 GARCH 模型严格平稳性假设(γ_0 < 0)的检验。检验的套路符合通常假设检验的套路: 先设定一个统计量 T_n ,然后根据置信度得到相应的拒绝域。至于统计量 T_n 的构建及其原理,可以直接参考原文。

并且不仅如此,作者还发现上述检验方法,不仅适用于 GARCH(1,1),也适用于其他"非线性 GARCH 模型"(例如 GJR GARCH 模型)。

¹ CHRISTIAN FRANCQ AND JEAN-MICHEL ZAKOÏAN. STRICT STATIONARITY TESTING AND ESTIMATION OF EXPLOSIVE AND STATIONARY GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY MODELS. Econometrica, Vol. 80, No. 2 (March, 2012), 821–861.

最后,在上述理论分析与数学推导完成以后,作者在第五部分使用了 Monte-Carlo 模拟实验来验证之前理论推导得到的结果。结果模拟得到的结果(表一至表八)可以说与理论推导完美符合,难怪能发 Econometrica。

1.2 主要结论

文章的主要结论在摘要和第六部分(结论)都有较为详细的叙述,这里简化整合归纳成两点,分别是:

- 第一,QMLE对于GARCH(1,1)的参数 α_0 和 β_0 的估计总是一致的,无需模型平稳性的假设;而参数 ω_0 的一致性则依赖于模型平稳性的假设,这也是之所以要检验这一假设的主要原因。
- 第二,作者提出的假设检验方法本身是一致的(这个我其实没太明白,也没有细究),且这个检验方法不仅适用于GARCH(1,1),还适用于包括GJR GARCH在内的其它一些"非线性"GARCH模型。

2 工作说明

由于这次作业的主要任务是编写 Matlab 代码复现原文的表格和图片, 于是在这里先简要介绍一下文章第五部分(模拟实验)中涉及到的八张表格和一张图片。

在介绍完作者文中的表格之后,我会放上自己的 code 跑出的数据,作为对比,方便参照。

2.1 表格一

表格一是为了展示上面提到的结论一,即"QMLE 对 GARCH 模型参数的估计结果中, α_0 和 β_0 的估计总是一致的,而参数 ω_0 的一致性则依赖于模型平稳性的假设"。

为此,作者选定了三组不同的参数初值,并将三个对应的 GARCH(1,1)模型记为"2nd"(二阶平稳, $\gamma_0=-0.18$)、"ST"(平稳, $\gamma_0=-0.038$)和"NS"(非平稳, $\gamma_0=0.078$),其中前两个模型是平稳的,而第三个模型非平稳。

然后作者分别取定用于估计得数据量为 200 和 4000, 进行了 2x3, 一共 6 组 QMLE 估计, 每组做 1000 次取平均值。6 次估计的一阶偏差(Bias)和 二阶偏差(MSE)分别如下所示:

TABLE I

BIAS (MEAN ERRORS) AND MSE (MEAN SQUARED ERRORS) FOR THE QMLE OF A

GARCH(1, 1), WITH $\eta_i \sim \mathcal{N}(0, 1)^a$

	2nd ($\gamma_0 = -0.180$)			$ST (\gamma_0 = -0.038)$			NS $(\gamma_0 = 0.078)$		
	ω	α	β	ω	α	β	ω	α	β
n = 200									
Bias	-0.21	0.01	0.01	-0.34	0.01	0.01	-0.51	0.02	0.02
MSE	0.58	0.01	0.01	1.10	0.02	0.02	3.77	0.03	0.03
n = 4,000									
Bias	0.00	0.00	0.00	-0.03	0.00	0.00	-0.51	0.00	0.00
MSE	0.01	0.00	0.00	0.03	0.00	0.00	4.95	0.00	0.00

^aThe parameters $\theta_0 = (1, 0.3, 0.6)$, $\theta_0 = (1, 0.5, 0.6)$, and $\theta_0 = (1, 0.7, 0.6)$, correspond to second-order stationary (2nd), strict stationary (ST), and nonstationary (NS) models. Bias and MSE are computed over 1,000 independent simulations of length n = 200 or 4,000.

从中可以看到,6 组估计中对 α_0 和 β_0 的估计确实总是误差较小。而当 n=4000(样本较大)的情形下,也只有在前两个模型(γ_0 < 0 的平稳模型)中,对参数 ω_0 的估计误差较小。至此,表格一给作者的第一个结论提供了有力的支持。

我得到的结果如下:

Replication of Table I

	2nd,	$\gamma_0 = -$	-0.18	51, γ	$y_0 = -0$).038	NS,	$\gamma_0 = 0$.078
N=200	ω	α	β	ω	α	β	ω	α	β
Bias	-0.20	0.01	0.01	-0.45	0.01	0.01	-0.53	0.03	0.03
MSE	0.56	0.01	0.01	1.60	0.02	0.02	4.11	0.02	0.02
N=4000	ω	α	β	ω	α	β	ω	α	β
Bias	-0.01	0.00	0.00	-0.03	0.00	0.00	-0.47	0.00	0.00
MSE	0.01	0.00	0.00	0.03	0.00	0.00	3.97	0.00	0.00

2.2 表格二和表格三

在表格二和表格三中,作者分别针对平稳和非平稳的 GARCH(1,1)模型,进行了一个相对简单的假设检验——检验 β_0 是否小于 0.7。作者在两个模型中,分别给定了七个 β_0 的初值,然后对每个初值在样本数为 500,2000,4000的三种情形下进行 1000 次假设检验以消除随机误差,计算出 7x3 共计 21 种情形下,1000 次拒绝原假设的频率(几乎可以视为概率),如下所示:

TABLE II RELATIVE FREQUENCY OF REJECTION (IN %) FOR THE TEST (3.2) OF THE NULL HYPOTHESIS $H_0: \beta_0 \le 0.7$ AGAINST $H_1: \beta_0 > 0.7$ ^a

	β_0									
n	0.61	0.64	0.67	0.70	0.73	0.76	0.79			
500	3.5	4.3	5.2	8.9	12.6	26.8	49.6			
2,000	0.3	0.6	1.8	6.8	18.3	53.1	91.5			
4,000	0.2	0.3	1.0	5.5	27.7	76.9	99.0			

^a Here a = 0, b = 1, and c = 0.7 in (3.1). The nominal level is $\underline{\alpha} = 5\%$ when $\alpha_0 = 0.2$. The value (α_0, β_0) = (0.2, 0.7) corresponds to a stationary process.

TABLE III

RELATIVE FREQUENCY OF REJECTION (IN %) FOR THE TEST (3.2) OF THE HYPOTHESIS $H_0: \beta_0 \leq 0.7$ AGAINST $H_1: \beta_0 > 0.7$ When $\alpha_0 = 0.5^*$

	$oldsymbol{eta}_0$								
n	0.61	0.64	0.67	0.70	0.73	0.76	0.79		
500	0.3	0.5	2.8	9.9	25.5	47.7	67.2		
2,000	0.0	0.0	0.1	6.2	41.6	81.8	97.0		
4,000	0.0	0.0	0.1	6.1	61.0	96.2	99.7		

^aThe value $(\alpha_0, \beta_0) = (0.5, 0.7)$ corresponds to a nonstationary process.

作者没有在上述表格的基础上在定义或使用相关指标(例如犯第一类错误的概率,犯第二类错的概率,灵敏度,召回率,等等)来评判上述检验方法的优劣。不过从上述结果中直观考察,假设检验的结果可以说是令人满意的。此外,虽然作者认为这种检验对于平稳模型和非平稳模型都适用,但不难看出,这种假设检验方法似乎对于非平稳模型的表现要更胜一筹。

我得到的结果如下:

Replication of Table II

$n \setminus \beta_0$	0.61	0.64	0.67	0.70	0.73	0.76	0.79
500	3. 1	3. 0	4. 2	7. 7	13. 7	25. 9	50. 1
2000	0.6	0.6	2. 1	6. 4	21.5	52. 3	91.8
4000	0.0	0.3	1.3	7. 1	28.8	77. 9	99. 5

Replication of Table III

$n \setminus \beta_0$	0.61	0.64	0.67	0.70	0.73	0.76	0.79
500	0. 1	0. 7	1.9	10.0	22. 6	42. 2	63. 5
2000	0.0	0.0	0.3	6.8	36. 3	76. 9	92.4
4000	0.0	0.0	0.0	6. 7	51.9	86. 2	95.8

2.3 表格四和表格五

在上述表格二和表格三的相似框架下,作者分别将假设检验的 H_0 变成了我们关心的 $\gamma_0 < 0$ (严格平稳假设成立)/ $\gamma_0 \ge 0$ (严格平稳假设不成立)。所不同的是,这里作者给定了 β_0 ,通过调整 α_0 的初值和样本的规模,各进行了 7x3 共计 21 组情形下的假设检验。

同样地,每种情形都重复 1000 次,以消除随机误差。下面表格中汇报的结果,就是这 1000 次重复中,拒绝原假设的 H₀ 频率:

TABLE IV

RELATIVE FREQUENCY OF REJECTION (IN %) OF THE TEST (3.7) OF THE STATIONARITY HYPOTHESIS H_0 : $\gamma_0 < 0$ for the GARCH(1, 1) Model With $\beta_0 = 0.8^a$

	a_0									
n	0.18	0.20	0.22	0.2575	0.28	0.30	0.31			
500	0.0	0.0	0.1	7.5	27.8	61.4	75.2			
2,000	0.0	0.0	0.0	6.3	67.8	98.6	99.9			
4,000	0.0	0.0	0.0	5.3	92.4	100.0	100.0			

^aThe nominal level is $\underline{\alpha} = 5\%$. The parameter $\alpha_0 = 0.2575$ corresponds to $\gamma_0 = 0$.

TABLE V RELATIVE FREQUENCY OF REJECTION (IN %) FOR TESTING THE NONSTATIONARITY HYPOTHESIS $H_0: \gamma_0 \geq 0$ with the Test (3.8) for the GARCH(1, 1) Model With $\beta_0 = 0.8^a$

				α()			
n	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
500	98.3	91.7	69.3	19.8	4.1	0.7	0.4
2,000	100.0	100.0	98.3	11.1	0.1	0.0	0.0
4,000	100.0	100.0	100.0	9.1	0.0	0.0	0.0

我得到的结果如下:

Replication of Table IV

$n \setminus \alpha_0$	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
500	0.0	0.0	0.0	5. 6	28. 1	54. 1	67.6
2000	0.0	0.0	0.0	4. 3	58.4	84.8	89. 7
4000	0.0	0.0	0.0	3. 9	77. 2	92. 3	93. 9

Replication of Table V

$n \setminus \alpha_0$	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
500	98. 3	90. 1	71. 3	21.0	5. 2	1.9	0.8
2000	100.0	100.0	98.6	16. 2	7. 2	2. 7	1.2
4000	100.0	100.0	100.0	15. 7	5. 7	2. 3	0.5

2.4 表格六

表格六就是对一个"非线性"的Garch模型——GJR GARCH进行与表格四完全相同的假设检验($\Gamma < 0$),这里的 Γ 与之前的 γ_0 在定义上稍有不同,不过都是有关(严格)平稳性的充要条件。假设检验得到的结果如下:

TABLE VI RELATIVE FREQUENCY OF REJECTION (IN %) FOR THE TEST (3.8) OF THE STATIONARITY HYPOTHESIS $H_0: \alpha < 0$ FOR a GJR MODEL³

				α_1			
n	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
500 2,000	0.1 0.0	0.1 0.0	1.1 0.1	7.8 6.6	15.8 31.7	32.7 65.8	35.2 77.4
4,000	0.0	0.0	0.0	5.6	45.1	87.7	96.1

^aThe parameter $\alpha_1 = 0.2575$ corresponds to $\Gamma = 0$. The nominal level is $\alpha = 5\%$.

我得到的结果如下:

Replication of Table VI

$n \setminus \alpha_1$	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
500	0.0	0.2	0.6	7. 0	13.3	24. 2	30. 1
2000	0.0	0.0	0. 1	4.6	26. 7	56. 2	64. 7
4000	0.0	0.0	0.0	3.6	37. 5	73. 9	81.5

2.5 表格七和表格八

表格七和表格八都使用了真实的市场交易数据来进行建模(而不是人为的 Monte Carlo实验)。表格七使用的数据是十三个市场的指数数据;表格八使用的则是各个公司单独的股票数据。

表格七和表格八的检验,零假设都是模型的平稳性假设成立,非常直观。 得到的结果如下所示:

TABLE VII TEST STATISTIC T_n OF THE STRICT STATIONARITY TESTS (3.7) AND (3.8)^a

CAC	DAX	DJA	DЛ	DJT	DJU	FTSE	Nasdaq	Nikkei		
-14.5	-15.8	-15.1	-13	-15.1	-14	-10.7	-8.5	-15.4	-23	-11.1

^aThe test statistic is the realization of a random variable which is asymptotically $\mathcal{N}(0,1)$ distributed when $\gamma_0 = 0$, tends to $-\infty$ under the strict stationarity hypothesis $\gamma_0 < 0$, and tends to $+\infty$ when $\gamma_0 > 0$.

TABLE VIII
TEST STATISTIC T_n and p-Values of the Nonstationarity Test (3.8) for Stock Returns

	ICGN	MCBF	KV-A	BTC	CCME
n	928	868	1,221	908	469
$\hat{\alpha}_n$	0.581	0.023	0.143	0.508	0.413
$\hat{\beta}_n$	0.696	0.979	0.927	0.765	0.750
T_n	-2.297	0.024	1.120	0.491	0.457
p-value	0.011	0.510	0.869	0.688	0.676

从中,作者得到的结论是:对于股票市场的指数数据(表格七),非平稳的回报率假设应当被拒绝;而对于个别公司的股票数据(表格八),非平稳的回报率假设则可以被拒绝。

我得到的结果如下:

Replication of Table VII

CAC	DAX	DJA	DJI	DJT	DJU	FISE	Nasdaq	Nikkei	SMI	SP500
-	_	_	_	_	_	_	-	_	_	_
14. 5	15.8	15. 1	13.0	15. 1	14.0	10.7	58. 9	15. 4	23.0	11. 1

Replication of Table VIII

	ICGN	MCBF	KV-A	ВТС	CCME
n	928	868	1221	908	469
α_n	1. 721	0. 023	0. 143	0. 508	0. 413
eta_n	0. 011	0. 979	0. 927	0. 765	0.750
T_n	-19. 700	0.000	1. 100	0.500	0. 500
p- <i>value</i>	0.000	0. 490	0.831	0.712	0. 676

2.6 图片一

下面的这张图片只是一个描述性统计,是MCBF股票的对数回报率的时间序列走势图,作为表格八中用到的五只股票的一个例子而已。

FIGURE 1.-Log returns (in %) of the MCBF stock series.

我得到的结果如下:

Replication of Figure I

3 结果评述

最后, 仔细对比我得到的结果和作者文章中的结果, 不难发现:

- 第一,绝大多数数据的结果吻合程度很高,并且从表格意义上的整体范围去看,作者想要通过表格表达的信息,都可以从我得到的数据中得到证实与支持。
- 第二,少数不吻合的数据的来由,我认为基本可以归结为随机误差的影响。首先是因为偏差不大,其次则是因为这些偏差并没有固定的方向,特别是没有偏向作者可能希望出现的方向。
- 第三,只有表格 8 中 ICGN 的一列数据出了较大偏差,但考虑到其余四 列数据均无偏差,我不认为是我的代码出现了问题,暂时还不清 楚是什么原因,不过好在真是市场的数据并不影响作者这篇理论 文章的任何结论。

综上所述,在编写代码,复制结果的过程中,我认为作者的这篇文章做得很 扎实,结果也相当真实可信。

此外,我也对自己的工作感到基本满意。如果助教姐姐想要考察我的代码的编写过程,可以参见如下 github 仓库:

https://github.com/HutchinHuang/GARCH Paper Replication