

Samples

		Pri-1	Pri-2	Met-1	Met-2
Genes	Gene-A	2	4	8	10
	Gene-B	1	2	10	12
	Gene-C	7	8	9	8
	Gene-D	10	12	4	5
	Gene-E	5	5	1	2

Gene expression

mean

mean

Activity Score = 4

Activity Score = 9.5

Strategy for Identifying Subnetwork Markers

BIOINFORMATICS

Vol. 27 ISMB 2011, pages i205–i213 doi:10.1093/bioinformatics/btr245

Optimally discriminative subnetwork markers predict response to chemotherapy

Phuong Dao^{1,†}, Kendric Wang^{2,3,†}, Colin Collins^{3,4,*}, Martin Ester^{1,}, Anna Lapuk^{3,*,‡} and S. Cenk Sahinalp^{1,*,‡}

¹School of Computing Science, Simon Fraser University, ²Bioinformatics Training Program, University of British Columbia, ³Vancouver Prostate Centre and ⁴Department of Urology, University of British Columbia

1. Data Integration

Overlay gene expression onto PPI network

2. Search

Find most differentially active subnetworks (search algorithm)

3. Marker Selection

Rank and select top subnetworks as predictors

Training Dataset

Dataset we are processing

Test Dataset

Other dataset (Already processed)

SubNetwork Markers are Discovered from Training set

Performance of the SubNetwork
Markers are tested

Classification Performance

Matthews Coefficient Correlation (MCC):

- used as a measure to determine the quality of the classifiers
- returns a value between -1 and +1
 - +1 : perfect prediction,
 - 0 : random prediction
 - −1 : total disagreement between prediction and observation

$$MCC = \frac{TP X TN - FP X FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Classification Performance with Varying No. of Top Subnetworks

