Output Bacterial Characterization: resistances, plasmids, virulence and mist.

Pipeline overview

- FastQC v0.11.8 read quality control.
- Trimmomatic v.0.33 adapter and low quality trimming.
- Ariba v.2.14.6 a gene finder for resistance, plasmids, etc. identification.
- Srst2 v.0.2.0 a gene finder for mlst identification.

Note: Depending on the analysis, we could have some ANALYSIS_IDs. This ANALYSIS_IDs are going to be composed of the date of the analysis, and an analysis identification. You can find a README in de ANALYSIS folder with a brief description of the different analysis.

Preprocessing

FastQC

<u>FastQC</u> gives general quality metrics about your reads. It provides information about the quality score distribution across your reads, the per base sequence content (%T/A/G/C). You get information about adapter contamination and other overrepresented sequences.

For further reading and documentation see the FastQC help.

Output directory: 01-fastqc and `03-preprocQC

- {sample_id}/{sample_id}_R[12]_fastqc.html
 - html report. This file can be opened in your favourite web browser (Firefox/chrome preferable) and it contains the different graphs that fastqc calculates for QC.
- {sample_id}/{sample_id}_R[12]_fastqc
 - older with fastqc output in plain text.
- {sample id}/{sample id} R[12] fastqc.zip
 - zip file containing the FastQC report, tab-delimited data file and plot images

Trimming

<u>Trimmomatic</u> (1) is used for removal of adapter contamination and trimming of low quality regions. Parameters included for trimming are:

- Nucleotides with phred quality < 10 in 3'end.
- Mean phred quality < 20 in a 4 nucleotide window.
- Read lenght < 50

Results directory: 02-preprocessing

- Files:
 - {sample_id}/{sample_id}_R[12]_filtered.fastq.gz
 contains high quality reads with both forward and reverse tags surviving.
 - {sample_id}/{sample_id}_R[12]_unpaired.fastq.gz: contains high quality reads with only forward or reverse tags surviving.

Note:To see how your reads look after trimming, look at the FastQC reports in the 03-preprocQC directory

MultiQC

<u>MultiQC</u> aggregates results from bioinformatics analyses across many samples into a single report.

Table of Contents

- Pipeline overview
- Preprocessing
 - FastQC
 - Trimming
- Strain characterization
 - Ariba
 - SRST2
- ANEXES
 - ANEX I

Results directory: 99-stats

- Files:
 - multiqc_report.html: report in html with all qc metrics aggregated.

Strain characterization

Ariba

<u>Ariba</u> (7) is a tool that identifies antibiotic resistance genes by running local assemblies. It can also be used for MLST calling.

Output directory: 04-ariba

- get_prep_ref: databases references for resistance, virulence, etc.
- db_*_mlst: mlst reference database.
- run_mlst: mlst results.
 - - {sample_id}report.tsv: report with detected genes (field explanation in <u>ANEXI</u>)
 - assembled_genes.fa.gz: sequence for the assembled resistance/virulence/etc genes.
- run dbs: databases results.
 - - {sample_id}report.tsv: report with detected genes (field explanation in <u>ANEXI</u>)
 - assembled_genes.fa.gz: sequence for the assembled resistance/virulence/etc genes.
- summary: summary files for all samples.

SRST2

<u>SRST2</u> is designed to take Illumina sequence data, a MLST database and/or a database of gene sequences (e.g. resistance genes, virulence genes, etc) and report the presence of STs and/or reference genes.

Output directory: 05-mlst

- {sample_id}/: contains results per sample.
- summary: contains a table with mlst determination for all samples.

ANEXES

ANEX I

Column	Description
1. ariba_ref_name	ariba name of reference sequence chosen from cluster (needs to rename to stop some tools breaking)
2. ref_name	original name of reference sequence chosen from cluster, before renaming
3. gene	1=gene, 0=non-coding (same as metadata column 2)
4. var_only	1=variant only, 0=presence/absence (same as metadata column 3)
5. flag	cluster flag
6. reads	number of reads in this cluster
7. cluster	name of cluster
8. ref_len	length of reference sequence
9. ref_base_assembled	number of reference nucleotides assembled by this contig
10. pc_ident	%identity between reference sequence and contig
11. ctg	name of contig matching reference
12. ctg_len	length of contig

Column	Description
13. ctg_cov	mean mapped read depth of this contig
14. known_var	is this a known SNP from reference metadata? 1 or 0
15. var_type	The type of variant. Currently only SNP supported
16. var_seq_type	Variant sequence type. if known_var=1, n or p for nucleotide or protein
17. known_var_change	if known_var=1, the wild/variant change, eg I42L
18. has_known_var	if known_var=1, 1 or 0 for whether or not the assembly has the variant
19. ref_ctg_change	amino acid or nucleotide change between reference and contig, eg I42L
20. ref_ctg_effect	effect of change between reference and contig, eg SYS, NONSYN (amino acid changes only)
21. ref_start	start position of variant in reference
22. ref_end	end position of variant in reference
23. ref_nt	nucleotide(s) in reference at variant position
24. ctg_start	start position of variant in contig
25. ctg_end	end position of variant in contig
26. ctg_nt	nucleotide(s) in contig at variant position
27. smtls_total_depth	total read depth at variant start position in contig, reported by mpileup
28. smtls_nts	nucleotides on contig, as reported by mpileup. The first is the contig nucleotide
29. smtls_nts_depth	depths on contig, as reported by mpileup. One number per nucleotide in the previous column
30. var_description	description of variant from reference metdata
31. free_text	other free text about reference sequence, from reference metadata