Homework 6

Motoaki Takahashi

Question 1

Given the initial stock of lumber k_0 , let $\mathcal{K} = [0, k_0]$ be the set of possible values for a stock of lumber, and let $\mathcal{P} = \mathbb{R}$ be the set of possible prices. $\mathcal{K} \times \mathcal{P}$ is the state space. Let $(k, p) \in \mathcal{K} \times \mathcal{P}$. Then the Bellman equation is

$$V(k,p) = \max_{k'} p \cdot (k - k') - 0.2(k - k')^{1.5} + \delta \mathbb{E}_{p'|p} V(k', p')$$
 (1)

subject to

$$p' = p_0 + \rho p + u, \ u \sim N(0, \sigma_u^2),$$

and

$$k' \in [0, k]$$
.

Question 2

The vector of grids is $(0.6536, 0.6882, 0.7229, 0.7575, 0.7922, 0.8268, 0.8614, \cdots, 1.3118, 1.3464)$.

Figure 1: The values as a function of lumber stocks, for p=0.9,1,1.1

Figure 2: Next period optimal stocks as a function of lumber prices, for current period stock $0.1,\,10.1,\,20.1,\,...,\,90.1$

Figure 3: Expected stock and 90% confidence interval

Since p=0.9,1.1 are not on the grid, I draw two curves associated with the closest prices to them in Fig. 4.

Figure 4: The values as a function of lumber stocks, for p = 0.827, 1, 1.173

Figure 5: Next period optimal stocks as a function of lumber prices, for current period stock $0.1,\,10.1,\,20.1,\,...,\,90.1$

Figure 6: Expected stock and 90% confidence interval