SLE₆ on Liouville quantum gravity as a growth-fragmentation process

William Da Silva Branching and Persistence (Angers)

Based on joint work with Ellen Powell (Durham) and Alex Watson (UCL)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Bertoin, Curien, Kortchemski (2018)

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to \mathbb{X} = growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X =growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X = growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X =growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to \mathbb{X} = growth-fragmentation process

•
$$\gamma$$
-LQG disc: $\gamma = \sqrt{8/3}$

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

GOAL: Build X in the continuum

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

Branch η^z towards point $z \in \mathbb{D}$

GOAL: Build X in the continuum

•
$$\gamma$$
-LQG disc: $\gamma = \sqrt{8/3}$

• space-filling curve η : SLE₆

Branch η^z towards point $z \in \mathbb{D}$

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆
- Branching process: η^z , η^z'

GOAL: Build X in the continuum

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

Branching process: η^z , η^z'

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆
- Branching process: η^z , η^z'

GOAL: Build X in the continuum

•
$$\gamma$$
-LQG disc: $\gamma = \sqrt{8/3}$

• space-filling curve η : SLE₆

Branching process: η^z , η^z

GOAL: Build X in the continuum

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

Branching process: η^z , η^z

 $z \in \mathbb{D}$

 $oldsymbol{D}^z(s)$ c.c. of $\mathbb{D}\setminus \eta^z([0,s])$ containing z

 $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

 $z \in \mathbb{D}$

- $oxed{D}^z(s)$ c.c. of $\mathbb{D}\setminus \eta^z([0,s])$ containing z
- $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

$$\mathbb{X}(s) := \{X^z(s), z \in \mathbb{D}\}$$

 $z \in \mathbb{D}$

- $D^{z}(s)$ c.c. of $\mathbb{D} \setminus \eta^{z}([0,s])$ containing z
- $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

$$\mathbb{X}(s) := \{X^z(s), z \in \mathbb{D}\}$$

Thm (DS, Powell, Watson)

★ = growth-fragmentation process of BCK

variant of 3/2-stable Lévy process

Thm (DS, Powell, Watson)

★ = growth-fragmentation process of BCK

PRIOR ART

• Scaling limit from peeling Boltzmann triangulations
Bertoin, Curien, Kortchemski '18

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations

 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20
- CLE_{κ} GF on γ -LQG, $\sqrt{8/3} < \gamma < 2$ \longrightarrow \mathbb{X}_{α} , $\alpha = 4/\gamma^2$ Miller, Sheffield, Werner '22

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20
- CLE_{κ} GF on γ -LQG, $\sqrt{8/3} < \gamma < 2 \longrightarrow \mathbb{X}_{\alpha}$, $\alpha = 4/\gamma^2$ Miller, Sheffield, Werner '22
- CLE₄ GF on critical LQG $\longrightarrow X_1$ Aïdékon, DS '22 Aru, Holden, Powell, Sun '23

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit
$$\gamma$$
-quantum disc

$$L_0 = 0, R_0 = 1$$

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

•
$$L_t = red$$
 quantum length $R_t = blue$ quantum length

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

• $L_t = red$ quantum length $R_t = blue$ quantum length

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

• $L_t = red$ quantum length $R_t = blue$ quantum length

Burdzy '85 Shimura '85 Duplantier, Miller, Sheffield '21

CONCLUSION

- **Growth-fragmentation** embedded in LQG/Brownian cone excursions
- New **elementary** proofs of old LQG results:

Target invariance property of ${\rm SLE}_6$ on $\sqrt{8/3}$ -LQG

Law of area of quantum disc conditioned on perimeter

- Explicit description of BM subordinated on backward cone points (Le Gall)
- Questions about pathwise constructions of conditioned ssMPs