Maharishi University of Management Computer science Department CS 435: Algorithms

MIDTERM EXAM - NOV-2018

Student Name:	Student Id:
Instructor: Sami Taha	

Question #	1 (12)	2 (16)	3 (12)	4 (5)	Total Grade
Grade (45)					

Instructions

- 1. Allotted exam duration is 2 hours.
- 2. Closed book/notes.
- 3. No personal items including electronic devices (cell phones, computers, calculators, PDAs).
- 4. Cell phones must be turned in to your proctor before beginning exam.
- 5. No additional papers are allowed. Sufficient blank paper is included in the exam packet.
- 6. Exams are copyrighted and may not be copied or transferred.
- 7. Restroom and other personal breaks are not permitted.
- 8. Total exam including questions and scratch paper must be returned to the proctor.

Information you might need.

1. Master Formula

Suppose T(n) satisfies

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT(\left\lceil \frac{n}{b} \right\rceil) + cn^k & \text{otherwise} \end{cases}$$

Where k is none negative integer and a, b, c, d are constants with a>0, b>1, c>0, d>=0 then

$$T(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b^a}) & \text{if } a > b^k \end{cases}$$

2.
$$x = b^y = \sum Log_b x = y$$

3.
$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$

Q1) (12 points) Complexity Analysis

1. [12 points] Multiple Choice Question:

5	statements	Lim 2n+log n/n Lim 2+log n/n=0 the two	l	Only statement I is true <this ii="" is="" only="" statement="" th="" true<=""></this>
	1. $f(n) = \Theta(n)$ 11. $f(n) = \Theta(\log n)$	Lim n/(2n+log n)=0 Si theta	c.	Statement I and II are true Both statements are
		Lim 2n+log n/log n 2n/log n + 1=infinite		false
6	The order of 2n is	no theta		$O(n^2)$ $O(n^2)$

Q2) (16 points) Analysis

1. [4 points] Give tight asymptotic bound for the following recurrences.

a.
$$T(n)=3T(n/9)+2n$$

a=3

b=9

c=2 k=1

3 < 9^1 Yes => n

b.
$$T(n) = 16T(n/4) + 100 n^2$$

a=16 b=4

c=100

k=2

 $16 < 4^2$, no a = 16, yes => $n^2 \log n$

2. [2 points] Discuss whether the statement "Amortization makes an algorithm more efficient" is true or false. Justify your answer.

No. Amortization is a mechanism to calculate the average cost of single operation in a sequence of n operations, with the formula: O(n)/n

- 3. [3 points] An algorithm solves a problem by dividing it into 4 sub-problems. Each recursive call divides the problem into one-third of the size of the problem. After solving all sub-problems it combines the solutions in quadratic time.
 - a. Give a recurrence formula for this algorithm.

$$T(n) = 4(T(n/3)) + n^4$$

b. Give the tightest asymptotic bound for the proposed recurrence in part a.

```
a=4,
b=3,
c=1,
k=4
4 < 3^4 => n^4
```

4. [2 points] Express the complexity of the following algorithm as a recurrence relation procedure

5. [5 points] Given an array A with n integers and there may be duplicate elements. We want to find which element has the most duplicates in A. Propose an algorithm to solve this problem in O(n) worst-case time or better. Example: [1 2 2 3 1 4 2 2 3] the entry with most duplicate is 2

Q3) (12 points) Sorting algorithms:

- 1. [5 points] Answer the following questions by True or False. Fill your answers in the following table.
 - a. For the binary search algorithm, the successful search requires only O(log n) comparisons, but the unsuccessful search requires n comparisons.
 - b. The best time complexity of Bubble Sort is O(n log n).
 - c. Selection-Sort makes less swap operations than Merge Sort.
 - d. Any comparison based sorting algorithm can be made stable by using position as a criteria when two elements are compared.
 - e. Bubble-Sort is stable sorting algorithm.

A	ВС		D	Е	
T	F	F	Т	Т	

- 2. [7 points] Considering Quick Sort Algorithm.
 - a. [1 point] What is the worst running time for Quick Sort?O(n*log n)

b. [2 points] What can you do to avoid the worst case running time?

We have to guarantee pickPivot always choose a good pivot. Ex: choose the median as pivot not random nor always leftmost or rightmost c. [4 point] Sort the following array using Quick-Sort Algorithm. Assume that the first element is the pivot in every iteration. Show all your work in each step. You do not need to write the algorithm

ı								
	48	33	31	60	1	49	30	70

Q4) (5 points) SCI Question:

Write a short essay that connects one of the studied topics to the Science of Creative Intelligence (SCI). You can pick any topic.