Math 151b: Problem Set 1

Owen Jones

1/17/2024

$$\begin{aligned} \textbf{Problem 1} \ \ y(t) &= e^{\lambda t} = e^{(a+bi)t} = e^{at}e^{bit} = e^{at}\cos(bt) + e^{at}i\sin(bt). \ \ \text{The modulus} \ \ |y(t)| &= \sqrt{(e^{at}\cos(bt))^2 + (e^{at}\sin(bt))^2} = \sqrt{e^{2at}(\cos^2(bt) + \sin^2(bt))} = \\ \sqrt{e^{2at}} &= |e^{at}| = e^{at} \\ |y(t)| &= \begin{cases} \infty & \text{if } a > 0 & \lim_{t \to \infty} e^{at} = \lim_{t \to \infty} \sum_{i=0}^{\infty} \frac{(at)^i}{i!} \geq \lim_{t \to \infty} t + 1 = +\infty \\ 0 & \text{if } a < 0 & \lim_{t \to \infty} e^{at} = \lim_{t \to \infty} \frac{1}{e^{|a|t}} = \frac{1}{\infty} = 0 \\ 1 & \text{if } a = 0 & \lim_{t \to \infty} e^{at} = \lim_{t \to \infty} 1 = 1 \end{aligned}$$

- **Problem 2** (a) Because $f \in C^1(D)$, we can say that f_y is continuous on (c,d). It follows by the MVT that for any points $y_1, y_2 \in [c,d]$, there exists some ξ between y_1 and y_2 s.t $\frac{f(y_1,t)-f(y_2,t)}{y_1-y_2}=f_y(\xi)$. Because D is a closed region, f_y assumes a maximum and a minimum. Thus, there exists some L s.t $|f_y| \leq L$ for all $(y,t) \in D$. Moreover, $\frac{|f(y_1,t)-f(y_2,t)|}{|y_1-y_2|} \leq L \Rightarrow |f(y_1,t)-f(y_2,t)| \leq L|y_1-y_2|$. Hence f is Lipschitz continuous in D.
 - (b) $f_y(y,t) = \frac{2yt^2}{t^2+1} \le \frac{2\delta t_f^2}{t_f^2+1}$ assuming time to be positive. In the case where t is some other variable, we replace t_f with $\max(|t_0|,|t_f|)$. Thus, $|f(y_1,t)-f(y_2,t)| \le \frac{2\delta t_f^2}{t_f^2+1}|y_1-y_2|$. Hence f is Lipschitz continuous in D.
- **Problem 3** (a) $y_n = y_{n-1} + \lambda y_{n-1}h = y_{n-1}(1-10h)$ from Euler's method. Solving the characteric equation x (1-10h) = 0 for our linear recurrence, we obtain $y_n = c(1-10h)^n$. Using our initial condition $y_0 = 1$, we find c = 1. Hence, $y_n = (1-10h)^n$.
 - (b) $y_1, y_2, y_3 = \begin{cases} -\frac{2}{3}, \frac{4}{9}, -\frac{296}{999} & \text{for } h = \frac{1}{6} \\ \frac{1}{6}, \frac{1}{36}, \frac{1}{216} & \text{for } h = \frac{1}{12} \end{cases}$. $h = \frac{1}{6}$ oscilates between positive and negative while $h = \frac{1}{12}$ stays positive because 1 10h > 0.
 - (c) So long $h < \frac{1}{10} y_n$ will be positive for all $n \ge 1$.
- **Problem 4** (a) Let u := y(t) and v(t) := y'(t). We substitute in u and v(t) to obtain $v'(t) + u \cdot v(t) + 4u = t^2$. Because u' = v(t) we obtain the following

system:

$$v' = t^2 - u \cdot v(t) - 4u$$
$$u' = v(t)$$

$$\begin{array}{l} \text{(b)} \ \, \begin{bmatrix} u_n \\ v_n \end{bmatrix} = \begin{bmatrix} u_{n-1} \\ v_{n-1} \end{bmatrix} + \begin{bmatrix} u'_{n-1} \\ v'_{n-1} \end{bmatrix} \, h \\ \\ \Rightarrow \begin{bmatrix} u_n \\ v_n \end{bmatrix} = \begin{bmatrix} u_{n-1} \\ v_{n-1} \end{bmatrix} + \begin{bmatrix} v_{n-1} \\ [(n-1)h]^2 - u_{n-1}v_{n-1} - 4u_{n-1} \end{bmatrix} \, h \\ \\ \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0.1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 1 \end{bmatrix} \\ \\ \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 1 \end{bmatrix} + 0.1 \begin{bmatrix} 0.1^2 - 0.1 \cdot 1 - 4 \cdot 0.1 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.951 \end{bmatrix} \\ \\ \text{which gives us } u(0.2) \approx 0.2, v(0.2) \approx 0.951 \text{ as approximations.} \end{array}$$