

Soutenance El Jeux évolutionnaires

Erwan DAVID - Guillaume FAYNOT - Hiyu SHINTANI - Ali ZAYANE

Introduction

Reformulation ⇒ problème d'optimisation:

- Modifier un modèle de conformation 3D
- Circulariser un plasmide

2 méthodes :

- Recuit simulé
- Algorithme génétique
- Méthodes simples et automatiques
- Convergence vers de "bonnes" solutions
- Algos non-déterministes
- Aucune garantie de solution optimale

Quelle organisation durant la semaine?

Utilisation de Git

- Travail collaboratif
- Parallélisation des tâches
- Mise en commun

Répartition des tâches

- Codage du corps des algorithmes
- Amélioration itérative
- Affichage des résultats
- Tests de couverture

Fichiers et classes

- Un fichier par classe
- Une classe par algo

Partage des tâches

Phase 1

Hiyu & Guillaume:

Algo de recuit

Ali & Erwan:

Algo Génétique

Phase 2

Hiyu & Erwan:

Optimisation des algos

Ali & Guillaume:

Test unitaires et algos de statistiques

Phase 3

Tout le monde :

Soutenance et rapport

Structure du code

2 scripts : recuit.py genetique.py

Classes utilisées

RotTable()
rot_table(attr)

Genetique()

energie(meth)

generation_individu(meth)

selection_'méthode'(meth)

croisement_N_points(meth)

mutation(meth)

Traj3D()
traj3D(meth)

Recuit()

energie(meth)

voisins(meth)

P(meth)

Tests et couverture

Tests et couverture

Tests unitaires pour recuit.py et genetique.py

Objectif: couverture à 100%

recuit.py	79	0	0	100%
test_recuit.py	22	0	0	100%

ModuLe	statements	missing	excLuded	coverage ↑
genetique.py	176	0	0	100%
test_genetique.py	48	0	0	100%

Fonction objectif

Comment l'avons-nous construite?

Deux termes dans la fonction objectif

Distance

Distance entre deux nucléotides à superposer

(virtuel)

Angle

Similarités cosinus entre

- v_{fin} et v_{milieu}: dot1
- v_{milieu} et v_{début} : dot2

$$dist + 5 \cdot exp\left(-\frac{dist}{50}\right) \cdot (1 - exp\left(-0.8 \cdot \left[(1 - dot1)^2 + (1 - dot2)^2 \right] \right)$$

Visualisation du second terme de la fonction

$$(1 - \exp(-0.8((dot1 - 1)^2 + (dot2 - 1)^2))$$

Recuit simulé

- Fonction énergie = fonction **objectif**
- Voisin : distribution **gaussienne** autour de la précédente valeur et un écart type de $stdFact \times limit$.

$$stdFact = \frac{T}{3T_{init}}$$

Résultats

Recuit simulé

Paramètres:

Nombre d'itérations : 700

• Taux de refroidissement : 0.99

Température	100	200	300	400	500	600	700	800	900	1000
Energie										
moyenne	24.55	23.46	18.68	24.58	35.44	20.98	74.86	53.60	67.83	83.87
Ecart type	17.67	13.92	15.54	13.22	33.75	10.18	76.75	60.87	87.78	119.44

Résultats recuit simulé : convergence

Temps de convergence

Séqunce ADN	Temps de convergence observé
plasmid_8k	~10s
plasmid_180k	~4 min

Résultats recuit simulé : optimisation

Optimisation du paramètre T_init ⇒ Optimum à T_init=300

Etude de la variabilité

Algorithme génétique

Algorithme génétique

1. Genèse:

- 2. Evaluation
- 3. Sélection : Élitisme, Tournoi, Roulette, Rang
- 4. Croisement: N-points

5. Mutation : Gaussienne

$$stdFact = 1 - \frac{n}{3 \, nbr_generation_max}$$

6. Terminer

Résultats

Algorithme génétique

Evolution des énérgie

Influence des paramètres

Paramètres:

• Nombre de générations : 150

• Probabilité de mutation : 0,05

N	20	40	60	80	100	120
Energie						
moyenne	17,12	6,45	6,16	5,74	4,63	5,18
Ecart type	35,14	2,89	6,81	3,31	2,19	3,02

Etude de variabilité

Visualisation des résultats

Visualisation des résultats

Etude comparative

Comparaison des deux algorithmes

Critères	Recuit simulé	Algorithme génétique
Temps de convergence	++	-
Nombre d'itérations à convergence	-	++
Stabilité	++	-
Nombre de valeurs optimal	++	-

Algorithme génétique

A METTRE 2e SLIDE ERWAN:

- on garde meilleur
- 2 individus explorateur
- courbe energies = f(itération)
- mutation

Conclusion

Conclusion

Les +:

- Algorithmes fonctionnels
- Résultats satisfaisants (plasmide circularisé)
- Mise en évidence des pros/cons de chaque algorithme
- Etude de la variabilité

Les -:

- Difficultés à définir une fonction objectif de qualité
- Manque de temps pour exploiter plasmid_180k

Merci pour votre attention

Annexe : Comparaison des méthodes de sélection

Méthode	Temps de convergence observé	Distance	Produit scalaire
Élitisme	98s	++	+
Roulette	96s	+	
Rang	97s		_
Tournoi	92s	+	+

Séquence plasmid_8k, N = 50 individus, 150 générations, p. mutation = 0,05.

Annexe: Plasmide 180k - Recuit

Distance: 3.34

