Algoritmos e Estruturas de Dados heaps

2010-2011

Carlos Lisboa Bento

Heaps

HEAPS

- Árvores binárias.
- 2. Nenhum nó tem valor inferior ao dos seus descendentes (max Heap).
- 3. A árvore é perfeitamente equilibrada e os nós no último nível ocupam as posições mais à esquerda.

Data Structures and Algorithms in JAVA, Adam Drozdek

conceitos

ÁRVORES PERF. EQUILIBRADAS e ARRAYS

Uma árvore perfeitamente equilibrada pode ser representada por um array segundo a sequência:

- o Nós da raiz para as folhas
- o Em cada nível da esquerda para a direita
- o Ex.: [2 8 6 1 10 15 3 12 11]

(... esta árvore é uma Heap?)

Temos assim num array HEAP(descendente) de comprimento n (max Heap):

$$heap[i] \ge heap[2 \cdot i + 1] \text{ para } 0 \le i \le \frac{n-1}{2}$$

e
$$heap[i] \ge heap[2 \cdot i + 2]$$
 para $0 \le i \le \frac{n-1}{2}$

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

NÃO É GARANTIDO ordenamento na Horizontal

HEAPS como LISTAS DE PRIORIDADES

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

HEAPS como LISTAS DE PRIORIDADES

Insere 15

Data Structures and Algorithms in JAVA, Adam Drozdek

HEAPS como LISTAS DE PRIORIDADES

Insere 15

Data Structures and Algorithms in JAVA, Adam Drozdek

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

HEAPS como LISTAS DE PRIORIDADES

Insere 15

Data Structures and Algorithms in JAVA, Adam Drozdek

HEAPS como LISTAS DE PRIORIDADES

Insere 15

Data Structures and Algorithms in JAVA, Adam Drozdek

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps implementação

HEAPS como LISTAS DE PRIORIDADES

Inserção numa HEAP definida como LISTA DE PRIORIDADES

heapEnqueue(el)
 put el at the end of heap;
while el is not in the root and el > parent(el)
 swap el with its parent;

HEAPS como LISTAS DE PRIORIDADES

Eliminação numa HEAP definida como LISTA DE PRIORIDADES

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

HEAPS como LISTAS DE PRIORIDADES

Eliminação numa HEAP definida como LISTA DE PRIORIDADES

HEAPS como LISTAS DE PRIORIDADES

Eliminação numa HEAP definida como LISTA DE PRIORIDADES

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

HEAPS como LISTAS DE PRIORIDADES

Eliminação numa HEAP definida como LISTA DE PRIORIDADES

Heaps implementação

HEAPS como LISTAS DE PRIORIDADES

Eliminação numa HEAP definida como LISTA DE PRIORIDADES

heapDequeue()

extract the element from the root;

put the element from the last leaf in its place;

remove the last leaf;

// both subtrees of the root are heaps;

p = the root;

while p is not a leaf and p < any of its children

swap p with the larger child;

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

Heaps

conceitos

ARRAYS organizados como HEAPS (abordagem top-down)

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

Heaps aplicações

- o Filas de Prioridades
- o Ordenamento Heap (Heap Sort)

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -

http://ccism.pc.athabascau.ca/html/lo/repos/comp272/applets/heap/index.html

http://www.student.seas.gwu.edu/~idsv/idsv.html

http://www.bridgeport.edu/~dichter/lilly/heapsorting.htm

© DEI Carlos Lisboa Bento

ALGORITMOS E ESTRUTURAS DE DADOS

05.3 -