



This dataset is made of blocks information of the page layout of different documents.

Those blocks are labeled with 5 classes:



| 1 |      | height | length | area | eccen | p_black | p_and | mean_tr | blackpix | blackand | wb_trans | class |          |
|---|------|--------|--------|------|-------|---------|-------|---------|----------|----------|----------|-------|----------|
| - | 0    | 5      | 7      | 35   | 1.400 | 0.400   | 0.657 | 2.33    | 14       | 23       | 6        | 1     |          |
|   | 1    | 6      | 7      | 42   | 1.167 | 0.429   | 0.881 | 3.60    | 18       | 37       | 5        | 1     | <i>y</i> |
|   | •••  | •••    | •••    |      |       | •••     | •••   | •••     | •••      | •••      | •••      | •••   |          |
|   | 5472 | 7      | 41     | 287  | 5.857 | 0.213   | 0.801 | 1.36    | 61       | 230      | 45       | 1     |          |
|   | 5473 | 8      | 1      | 8    | 0.125 | 1.000   | 1.000 | 8.00    | 8        | 8        | 1        | 4     |          |
|   |      |        |        |      |       | 1       |       |         |          |          |          |       |          |



How to classify all the blocks of the page layout of a document that has been detected by a segmentation process?











# Scatterplot of the number of black pixels according to the number of white/black transitions $10^{3}$ wb\_trans 10¹ 10° $10^{4}$ 101 10<sup>2</sup> 10<sup>3</sup> blackpix



#### **Linear Regression**

#### **Logistic Regression**





0.218s

**Training time** 

0.955s

30.9%

**Testing score** 

94.8%

# **Linear Discriminant Analysis**









## **Linear Classifiers** with SGD









## **Linear Support Vector Classification**









#### **Gaussian Naive Bayes**



**Training time** 

22.45s

**Training score** 

95.8%

**Testing score** 

96.2%

#### **Decision Tree Classifier**

#### **Random Forest Classifier**



#### **K-Nearest Neighbors**



**Training time** 

22.45s

**Training score** 

95.8%

**Testing score** 

96.2%

#### **Multi-Layer Perceptron Classifier**



**Training time** 

666.8s

**Training score** 

96.5%

**Testing score** 

96.9%

|   | Model                                | Training time | Training score | Test score |
|---|--------------------------------------|---------------|----------------|------------|
|   | Linear Regression                    | 0.218s        | /              | 30.9%      |
| 1 | Logistic Regression                  | 0.955s        | /              | 94.8%      |
| - | Linear Discriminant Analysis         | 0.527s        | 94.3%          | 95.3%      |
|   | Linear Classifiers with SGD          | 14.37s        | 93.6%          | 93.5%      |
|   | Linear Support Vector Classification | 8.12s         | 95.6%          | 95.9%      |
|   | Gaussian Naive Bayes Classifier      | 0.22s         | /              | 91.0%      |
|   | Decision Tree Classifier             | 1.562s        | 95.3%          | 96.0%      |
|   | Random Forest Classifier             | 264.758s      | 96.5%          | 97.0%      |
|   | K-Nearest Neighbors                  | 22.45s        | 95.8%          | 96.2%      |
|   | Multi-Layer Perceptron Classifier    | 666.818s      | 96.5%          | 96.9%      |
|   |                                      |               |                |            |



