curs 5

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LOGICĂ PROPOZIŢIONALĂ

PRINCIPIUL INDUCȚIEI PE FORMULE

Propoziția 5.1 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea P.
- (1) Pentru orice formulă φ , dacă φ are proprietatea P, atunci şi $(\neg \varphi)$ are proprietatea P.
- (2) Pentru orice formule φ, ψ , dacă φ şi ψ au proprietatea P, atunci $(\varphi \to \psi)$ are proprietatea P.

Atunci orice formulă φ are proprietatea **P**.

Demonstrație. Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ .

Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \le n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

PRINCIPIUL INDUCȚIEI PE FORMULE

Pasul iniţial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ şi, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducţie. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $\cdot \varphi = \mathsf{V} \in \mathsf{V}$. Atunci φ are proprietatea P , conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducţie, ψ are proprietatea P. Aplicînd ipoteza (1), rezultă că φ are proprietatea P.
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea P. Rezultă din (2) că φ are proprietatea P.

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea P.

PRINCIPIUL INDUCȚIEI PE FORMULE

Propoziția 5.2 (Principiul inducției pe formule - variantă alternativă) Fie Γ o mulțime de formule care are următoarele proprietăți:

- $\cdot V \subseteq \Gamma;$
- · Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- · Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Demonstrație. Definim următoarea proprietate P: pentru orice formulă φ ,

 φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 5.1), deci îl putem aplica pentru a obține că orice formulă are proprietatea P, deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Propoziția 5.3 (Principiul recursiei pe formule)

Fie A o mulţime şi funcţiile

$$G_0: V \to A$$
, $G_{\neg}: A \to A$, $G_{\rightarrow}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Demonstrație. Exercițiu suplimentar.

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu.

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ ,

 $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v
 $c(\neg \varphi) = c(\varphi) + 1$ pentru orice formulă φ
 $c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$ pentru orice formule φ, ψ .

În acest caz, $A = \mathbb{N}$,

$$G_0: V \to \mathbb{N}, \qquad G_0(v) = 0,$$
 $G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$ $G_{\to}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\to}(m,n) = m+n+1.$

Notaţie.

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație.

Mulţimea $Var(\varphi)$ poate fi definită şi recursiv.

Demonstrație. Exercițiu.

Propoziția 5.4 (Principiul recursiei pe formule - varianta 2) Fie A o mulțime și funcțiile

$$G_0: V \to A, \quad G_\neg: A \times Form \to A, \quad G_\to: A \times A \times Form \times Form \to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi), \varphi)$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi), \varphi, \psi)$ pentru orice formule φ, ψ .

Demonstrație. Exercițiu suplimentar.

SUBFORMULE

Definiția 5.5

Fie φ o formulă a lui LP . O subformulă a lui φ este orice formulă ψ care apare în φ .

Notaţie.

Mulţimea subformulelor lui φ se notează $SubForm(\varphi)$.

Exemplu.

Fie
$$\varphi=((v_1\to v_2)\to (\neg v_1))$$
. Atunci
$$SubForm(\varphi)=\{v_1,v_2,v_1\to v_2,\neg v_1,\varphi\}.$$

Definiție alternativă.

Mulţimea $SubForm(\varphi)$ poate fi definită şi recursiv:

$$\begin{array}{lll} \textit{SubForm}(\textit{v}) &=& \{\textit{v}\} \\ & \textit{SubForm}(\neg\varphi) &=& \textit{SubForm}(\varphi) \cup \{\neg\varphi\} \\ & \textit{SubForm}(\varphi \rightarrow \psi) &=& \textit{SubForm}(\varphi) \cup \textit{SubForm}(\psi) \cup \{\varphi \rightarrow \psi\}. \end{array}$$

În acest caz,

SubForm : Form
$$\rightarrow 2^{Form}$$
, deci A = 2^{Form} ,

şi

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

$$G_{\neg}: A \times Form \to A, \qquad G_{\neg}(\Gamma, \varphi) = \Gamma \cup \{\neg \varphi\},$$

$$G_{\to}: A \times A \times Form \times Form \to A, \quad G_{\to}(\Gamma, \Delta, \varphi, \psi) = \Gamma \cup \Delta \cup \{\varphi \to \psi\}.$$

TABELE DE ADEVĂR

Valori de adevăr.

Folosim următoarele notații pentru cele două valori de adevăr posibile:

- · 1 pentru adevărat și
- · 0 pentru fals.

Prin urmare, mulţimea valorilor de adevăr este $\{0,1\}$.

TABELE DE ADEVĂR

Tabele de adevăr.

Definim următoarele operații pe {0,1} folosind tabelele de adevăr.

Se observă că

$$\neg p = 1 \Longleftrightarrow p = 0.$$

$$p \rightarrow q = 1 \Longleftrightarrow p \le q.$$

TABELE DE ADEVĂR

Operaţiile $V : \{0,1\} \times \{0,1\} \to \{0,1\}, \Lambda : \{0,1\} \times \{0,1\} \to \{0,1\}$ şi \leftrightarrow : $\{0,1\} \times \{0,1\} \to \{0,1\}$ se definesc astfel:

р	q	p V q	р	q	p∧q	р	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	0	0	1	0	0
1	0 1 0 1	1	0 0 1 1	1	1	1	1	1 0 0

Observație.

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ şi $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Demonstrație. Exercițiu.

EVALUĂRI

Definiția 5.6

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0, 1\}$.

Teorema 5.7

Pentru orice evaluare $e:V \to \{0,1\}$ există o unică funcție

$$e^+: Form \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Demonstrație. Aplicăm Principiul Recursiei pe formule (Propoziția 5.3) cu

$$A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ şi } G_{\rightarrow} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$$

EVALUARE (INTERPRETARE)

Propoziția 5.8

Dacă $e:V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ,ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Demonstraţie. Exerciţiu.

Pe data viitoare!