WEEK-4

KEY CONCEPT ON DEEP NEURAL NETWORK

1.	. What is stored in the 'cache' during forward propagation for latter use in backward propagation?					
	$\bigcirc \ z^{[l]}$					
	$left{igorphi} A^{[l]}$					
	$\bigcirc \ b^{[l]}$					
2	$\bigcirc W^{[l]}$ Which of the following are "parameters" of a neural network? (Check all that apply.)					
2.						
	$igsqcup b^{[l]}$ the bias vector.					
	$igwedge W^[l]$ the weight matrices.					
	Correct Correct The weight matrices and the bigs vectors are the parameters of the naturally					
	Correct. The weight matrices and the bias vectors are the parameters of the network.					
	$igsqcup g^{[l]}$ the activation functions.					
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					
3.	Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?					
	Carly layers of the deep neural network.					
	Later layers of the deep neural network.					
	Middle layers of the deep neural network.					
	O Input layer of the deep neural network.					
	 Correct Correct. The deep layers of a neural network are typically computing more complex features such as the 					

4.	Vectorization allows you to compute forward propagation in an L -layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False?						
	False						
	○ True						
5.	Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]} = g^{[2]}(z^{[2]}), z^{[2]} = W^{[2]}a^{[1]} + b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]} = g^{[l]}(z^{[l]}), z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]},)$. 5. Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4,3,2,1]$. So I four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to in the parameters for the model?						
	0						
	for i in range(1, len(layer_dims)/2):						
	$parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * (layer_dims[i], layer_dims[i-1]) * (layer_dims[i], layer_dims[i-1]) * (layer_dims[i], layer_dims[i-1]) * (layer_dims[i], layer_dims[i-1]) * (layer_dims[i-1]) * (layer_dims[i-1]) * (layer_d$	0.01					
	parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01						
	0						
	for i in range(1, len(layer_dims)/2):						
	parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01						
	parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01						
	for i in range(1, len(layer_dims)):						
	parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01						
	parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01						

6. Consider the following neural network.

How many layers does this network have?

0	The number of	of lavers L	is 4. The	number of	hidden la	avers is 4.
\	Title Healthout 1	0, 10, 0, 0	15 11 1110	1101111001 01	Induction	3,010101

- \bigcirc The number of layers L is 3. The number of hidden layers is 3.
- lacktriangle The number of layers L is 4. The number of hidden layers is 3.
- \bigcirc The number of layers L is 5. The number of hidden layers is 4.
- 7. If L is the number of layers of a neural network then $dZ^{[L]}=A^{[L]}-Y$. True/False?
 - O False

No. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.

True

Yes. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.

8. There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

- True
- O False
 - **⊘** Correct

9. Consider the following 2 hidden layers neural network:

Which of the following statements is true? (Check all that apply).

- $ightharpoonup W^{[1]}$ will have shape (4, 3)
- igotimes Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
- $ightharpoonup W^{[2]}$ will have shape (3, 1)
- igotimes This should not be selected No. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
- $lacksquare W^{[1]}$ will have shape (3, 4)
- igotimes This should not be selected No. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
- lacksquare $b^{[1]}$ will have shape (4, 1)
- **10.** In the general case if we are training with m examples what is the shape of $A^{[l]}$?
 - \bigcirc $(n^{[l]}, m)$
 - $\bigcap \ (m,n^{[l+1]})$
 - $\bigcap (n^{[l+1]}, m)$
 - $\bigcap (m, n^{[l]})$
 - **⊘** Correct

Yes. The number of rows in $A^{[1]}$ corresponds to the number of units in the l-th layer.