Reliable Communications and Expander Graphs

Iftekhar Chowdhury

Overview of the Talk

- Background in Communication Theory
- Transition to Graph Theory
- Expander Graphs
 - Definitions and Properties
- Construction of Expander Graphs
 - Graph Squaring
 - Zig-Zag Product

Physical Layer Communication Theory

Shannon, "A Mathematical Theory of Communication" (1948)

Communication over noisy channel

Alice and Bob can communicate over a noisy channel that might corrupt a proportion p of the bits sent through it. How can Alice send Bob a message of k bits?

Error Detection and Correction

- · Build a dictionary (or code) $\mathcal{C} \subseteq \{0,1\}^n$ such that $|\mathcal{C}_k| = 2^k$
- Every *k*-bits message is encoded by a code word in *C* and transmitted.
- Bob receives *n* (corrupted) bits and finds the closest code word that matches in *C*.

A Good Dictionary (code)

 Key idea is to construct a good dictionary (code).

- · A good dictionary is the one
 - That is big (|C| is big)
 - Length of the words in C are small

Communication Theory to Graph Theory

Is it possible to design a series of dictionaries $\{C_k\}$ such that $|C_k| = 2^k$?

Recent trends in designing good codes are based on

Communication Theory to Graph Theory

· Is it possible to design a series of dictionaries

$$\{\mathcal{C}_k\}$$
 such that $|\mathcal{C}_k| = 2^k$?

Recent trends in designing good codes are based on

Expander Graphs!

Expander Graphs

Combinatorially, Expander graphs are <u>strongly</u> <u>connected</u> graphs, and one has to remove many edges to disconnect a large part of the graph.

· Geometric, Algebraic, Probabilistic definitions omitted here.

Terminology

$$E(S,T) = \{(u,v) \in E \mid u \in S, v \in T \text{ or } u \in T, v \in S\}$$

Terminology

Let G=(V,E) be an undirected graph. For any set $S\subseteq V$, let $\partial S:=E(S,\overline{S})$

be the edge boundary of S.

$$\partial S = \{(u, v) \in E \mid u \in S, v \notin S\}$$
$$= E(S, \overline{S})$$

Terminology

Let G=(V,E) be an undirected graph. For any set, $S\subseteq V$ let

$$\partial_{\text{out}}(S) = \{ v \in V \mid \exists u \in S \colon (u, v) \in E \}$$

be the <u>neighbouring set</u> of *S*.

Vertex Expansion

Definition: Vertex Expansion Factor

$$h_{\text{out}}(G) = \min_{0 < |S| \le \frac{n}{2}} \frac{|\partial_{\text{out}}(S)|}{|S|}$$

Edge Expansion

The edge expansion of a graph G = (V, E) is

$$h(G) = \min_{1 \le |S| \le |V|/2} \frac{|\partial S|}{|S|}$$

Examples: Edge Expansion

$$G = \mathcal{K}_n$$

$$h(G) = \frac{n}{2}$$

Examples:

- ▶ If G is a complete graph, then $h(G) = \lceil |V|/2 \rceil$.
- ▶ If G is not connected, then h(G) = 0.

Expander Graphs

Definition

Let $d \in \mathbb{N}$. A sequence of d-regular graphs $\{G_i\}_{i \in \mathbb{N}}$ of size increasing with i is a family of expanders if there is $\epsilon > 0$ such that $h(G_i) \geq \epsilon$ for all i.

Lemma

Any expander graph is a connected graph.

Construction of Expander Graph: Graph Squaring

The square $G^2=(V,E')$ is a graph that has the same number of vertices and $(u,w)\in E'$ iff there is path of length 2 in G from u to v.

Increased expansion factor!

Construction of Expander Graph: Zig-Zag Product

Let G be d-regular graph on n vertices

Let H be r-regular graph on d vertices

Then, the zig-zag product of G and H, G $^{\odot}$ H is a r^2 -regular graph on nd vertices.

- Inherits the size of larger graph, but the degree of the smaller one.

Neighbourhood of a vertex in G

Applications of Expanders

- ► In Computer Science
 - Derandomization
 - Circuit complexity
 - Error correcting codes
 - Communication networks
 - Approximation algorithms

- ► In Mathematics
 - Graph theory
 - Group theory
 - Number theory
 - Information theory

References

- 1. Amin Shokrollahi's talk on "Expander Graphs" at EPFL, Switzerland.
- 2. He Sun's lecture notes on "Introduction to Expander Graphs", Max Planck Institute for Informatics
- 3. Nati Linial and Avi Wigderson's lecture notes on "Expander Graphs and their Applications" at the Hebrew University, Israel, 2003.