MATH 450 Seminar in Proof

Let $f: \mathbb{Z} \to 2\mathbb{Z}$ be defined by f(x) = 2x - 6. Prove that f is a bijection.

Proof. Let f be the function defined as in the question.

One-to-One: Let $f(x_1) = f(x_2)$, then

$$2x_1 - 6 = 2x_2 - 6 \tag{1}$$

$$2x_1 = 2x_2 \tag{2}$$

$$x_1 = x_1 \quad \text{period} \tag{3}$$

This means that if $f(x_1) = f(x_2)$ then, $x_1 = x_1$ thus f is one-to-one. Onto: Let $y \in 2\mathbb{Z}$. Let $x = \frac{y+6}{2}$.

Need a transitional
$$f(x)=2x-6$$

$$=2\left(\frac{y+6}{2}\right)-6$$

$$=y+6-6$$
 $f(x)=y$ period

This means that for every $y \in 2\mathbb{Z}$ there exists an $x \in \mathbb{Z}$ such that $x = \frac{y+6}{2}$ and making f onto. Thus f is bijective.

This is not the definition of onto lol. x doesn't always have to be (y+6)/2 for any onto function.