矩阵理论作业7

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 11 日

55 页 1、3、4、5

1. 习题 1

 $\sigma: A \to AB^{\mathsf{T}} + BA$, 注意到 $BA = (A^{\mathsf{T}}B^{\mathsf{T}})^{\mathsf{T}} = (AB^{\mathsf{T}})^{\mathsf{T}}$, 所以 $AB^{\mathsf{T}} + BA$ 是 2 阶的实对称矩阵,仍在 $V \oplus_{\circ}$

- (1) 对任意的 $\lambda_1, \lambda_2 \in \mathbb{R}$, $A_1, A_2 \in V$, 有 $\sigma(\lambda_1 A_1 + \lambda_2 A_2) = (\lambda_1 A_1 + \lambda_2 A_2) B^{\top} + B(\lambda_1 A_1 + \lambda_2 A_2) = (\lambda_1 A_1 + \lambda_2 A_2) B^{\top}$ $\lambda_1 \cdot (A_1 B^{\top} + B A_1) + \lambda_2 \cdot (A_2 B^{\top} + B A_2) = \lambda_1 \sigma(A_1) + \lambda_2 \sigma(A_2).$
- (2) 由于 $\sigma(E_{11}) = 2E_{11}$, $\sigma(E_{12} + E_{21}) = -2E_{11} + (E_{12} + E_{21})$, $\sigma(E_{22}) = -(E_{12} + E_{21})$. 故 σ 在这组基 下,对应于矩阵 $\begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$
- (3) 对于任意 $A \in V$, $A = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot [c_1, c_2, c_3]^\top$, $c_i \in \mathbb{R}$,

$$\sigma A = \sigma[E_{11}, E_{12} + E_{21}, E_{22}] \cdot [c_1, c_2, c_3]^{\top} = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix} E_{11}, E_{12} + E_{21}, E_{22} \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = \begin{bmatrix}$$

 $[E_{11}, E_{12} + E_{21}, E_{22}] \cdot [2c_1 - 2c_2, c_2 - c_3, 0]^{\top}$,由此可知 $\{E_{11}, E_{12} + E_{21}\}$ 是像子空间 $\operatorname{im}(\sigma)$ 的一组基。

- (4) 延用 (3) 中的记号,由于 E_{11} , $E_{12}+E_{21}$, E_{22} 线性无关,所以 $\sigma A=0$ 当且仅当 $\begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c \end{bmatrix} =$ $[0, m \mapsto [c_1, c_2, c_3]^{\top} = [c_3, c_3, c_3]^{\top}, c_3 \in \mathbb{R}.$ 故核子空间 $\ker(\sigma)$ 的一组基是 $\{E_{11} + E_{12}\}$
- (5) 是直和,且 $V = im(\sigma) \oplus ker(\sigma)$.因为 $im(\sigma)$ 与 $ker(\sigma)$ 的基不交,且它们基的并是 V的一组基。

2. 习题 3

设 $\{\eta_1, \eta_2, \cdots, \eta_n\}$ 是 n 维空间 \mathbb{F}^n 的一组基。对于线性变换 σ , 以及任意的 $\alpha \in \mathbb{F}^n$, $\alpha = [\eta_1, \eta_2, \cdots, \eta_n] \cdot c^\top$, 其中 $c = [c_1, c_2, \dots, c_n] \in \mathbb{F}^n$. $\sigma(\alpha) = \sigma[\eta_1, \eta_2, \dots, \eta_n] \cdot c^{\mathsf{T}}$. 由于 $\{\eta_i\}$ 是基,故存在矩阵 A 使得 $\sigma[\eta_1,\cdots,\eta_n]=[\eta_1,\cdots,\eta_n]\cdot A$. 再记 $N=[\eta_1,\eta_2,\cdots,\eta_n]$, 显然 N 可逆,构造 $B=NAN^{-1}\in M_n(\mathbb{F})$, 有 $B\alpha = B(Nc^{\top}) = NAN^{-1}Nc^{\top} = NAc^{\top} = \sigma(\alpha).$

3. 习题 4

(1) $V = W_1 \oplus W_2$, $\sigma: \alpha_1 + \alpha_2 \to \alpha_1$, 其中 $\alpha_i \in W_i$. 取 W_1 的一组基 $(\alpha_1, \dots, \alpha_r)$; 取 W_2 的一组基 $(\beta_1, \dots, \beta_s)$. 那么 $(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)$ 是 V 的一组基。对于 V 的任意基 $(\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s})$, 有 $(\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s}) = (\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)C$, 其中 $C \in M_{r+s}(\mathbb{F})$. 将 σ 作用于其上:

$$\begin{split} \sigma(\gamma,\cdots,\gamma_r,\gamma_{r+1},\cdots,\gamma_{r+s}) &= \sigma(\alpha_1,\cdots,\alpha_r,\beta_1,\cdots,\beta_s) \cdot C \\ &= (\alpha_1,\cdots,\alpha_r,\beta_1,\cdots,\beta_s) \left[\begin{array}{c} E_r & 0 \\ 0 & 0 \end{array} \right] C \\ &= (\gamma,\cdots,\gamma_r,\gamma_{r+1},\cdots,\gamma_{r+s}) \cdot C^{-1} \left[\begin{array}{c} E_r & 0 \\ 0 & 0 \end{array} \right] C \end{split}$$

从而得到 $A = C^{-1} \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C$,显然有 $A^2 = A$.

- (2) (a) 即 $\sigma_A: (\alpha_1, \dots, \alpha_n)\beta \to (\alpha_1, \dots, \alpha_n)(A\beta)$. 容易验证对任意 $\lambda_1, \lambda_2 \in \mathbb{F}$, 以及任意 $v_1, v_2 \in V$, 有 $\exists \beta_1, v_1 = (\alpha_1, \dots, \alpha_n)\beta_1$, $\exists \beta_2, v_2 = (\alpha_1, \dots, \alpha_n)\beta_2$, $\sigma(\lambda_1 v_1 + \lambda_2 v_2) = (\alpha_1, \dots, \alpha_n)(A\lambda_1\beta_1 + A\lambda_2\beta_2) = \lambda_1(\alpha_1, \dots, \alpha_n)(A\beta_1) + \lambda_2(\alpha_1, \dots, \alpha_n)(A\beta_2) = \lambda_1\sigma(v_1) + \lambda_2\sigma(v_2)$, 所以 σ 是线性变换
 - (b) $A^2 = A \Rightarrow A(A E) = (A E)A = 0$. 下考察 r(A E) 与 r(A) 的关系. 设 r(A) = r, 则存在可逆矩阵 $P,Q \in M_n(\mathbb{F})$ 使得 $A = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q$, 由于 $A^2 = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}QP\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q = A$, 所以 QP 具有 $QP = \begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$ 的形式。 $A E = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q PP^{-1}Q^{-1}Q = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{-1}Q$. 注意到 $\begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{-1} = \begin{bmatrix} E_r + C_{12}D^{-1}C_{21} & -C_{12}D^{-1} \\ -D^{-1}C_{21} & D^{-1} \end{bmatrix}$, 其中 $D = C_{22} C_{21}C_{12}$ 是 (n-r) 阶可逆矩阵 (可逆性由 QP 可逆推出). 所以: $\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$ —

$$\begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{-1} = \begin{bmatrix} -C_{12} \\ E_{n-r} \end{bmatrix} D^{-1} [C_{21}; -E_{n-r}], \, \text{Mfff} \, r(A-E) = n-r.$$

下面验证 A 的列向量空间和 A - E 的解空间相同,即 $\operatorname{col}(A) = (A - E)^{\perp}$. $v \in \operatorname{col}(A) \Rightarrow \exists \gamma, v = A\gamma \Rightarrow (A - E)v = (A - E)A\gamma = 0 \Rightarrow v \in (A - E)^{\perp}$,故 $\operatorname{col}(A) \subset (A - E)^{\perp}$.又 $\operatorname{dim}(\operatorname{col}(A)) = r(A) = r = n - r(A - E) = \operatorname{dim}\left((A - E)^{\perp}\right)$,所以 $\operatorname{col}(A) = (A - E)^{\perp}$.同理可得, $\operatorname{col}(A - E) = A^{\perp}$.

令 $W_1 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in A^{\perp}\}, W_2 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in (A-E)^{\perp}\}$ (或等价地, $W_1 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in \operatorname{col}(A-E)\}, W_2 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in \operatorname{col}(A)\}$),则 $V = W_1 \oplus W_2$ 是满足题意的一个直和分解,验证如下:

- (i) 设 $v = (\alpha_1, \dots, \alpha_n)\beta \in W_1 \cap W_2$ 则 $\beta \in A^{\perp} \cap (A E)^{\perp}$, 于是 $\beta = A\beta = 0$, x = 0. 所以 $W_1 \cap W_2 = 0$.
- (ii) $\dim(W_1) + \dim(W_2) = \dim(A^{\perp}) + \dim((A E)^{\perp}) = (n r) + r = n = \dim(V)$, 结合 (i) 知, $V = W_1 \oplus W_2$.
- (iii) $\forall \alpha = (\alpha_1, \dots, \alpha_n) \beta \in W_1$, 有 $\sigma \alpha = (\alpha_1, \dots, \alpha_n) (A\beta) = 0$ 因为 $\beta \in A^{\perp}, A\beta = 0$. 类似地, $\forall \alpha = (\alpha_1, \dots, \alpha_n) \beta \in W_2$, 有 $\sigma \alpha = (\alpha_1, \dots, \alpha_n) (A\beta) = \alpha$ 因为 $\beta \in (A E)^{\perp}, A\beta = \beta$.

 $(好像 W_1, W_2 和题目中的顺序反了, 算了不改了)$

4. 习题 5

设线性变换在基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 下的对应的矩阵为 A, 在基 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 下对应的矩阵为 B. 根据定义有: $\sigma(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)A$, $\sigma(\beta_1,\cdots,\beta_n)=(\beta_1,\cdots,\beta_n)B$. 考虑到同一线性空间的基之间能互相表示,故存在可逆矩阵 Q 使得 $(\beta_1,\cdots,\beta_n)=(\alpha_1,\cdots,\alpha_n)Q$, 从而有

$$\sigma(\beta_1, \dots, \beta_n) = (\beta_1, \dots, \beta_n)B = (\alpha_1, \dots, \alpha_n)QB$$
$$= \sigma[(\alpha_1, \dots, \alpha_n)Q] = (\sigma\alpha_1, \dots, \sigma\alpha_n)Q = (\alpha_1, \dots, \alpha_n)AQ$$

故而 $(\alpha_1, \dots, \alpha_n)(QB - AQ) = 0$, 由于基线性无关, 故 $QB - AQ = 0 \Rightarrow A = QBQ^{-1}$, 即 $A \subseteq B$ 相似。