

Comparing Systems

3

5

1

How to Compare Systems

Perform the same number of replications for both systems and record the desired result sequences Y_1 and Y_2 , then compute confidence intervals.

Approach 1:

- Compute C.I. for each sequence separately
- If the two C.I. do not overlap, evaluate positions

Problem: difficult to interpret combined level of confidence

Approach 2:

- Compute single C.I. for the difference sequence
- If C.I. does not include the origin, evaluate position

Y ₁ -Y ₂	
-2	
-1	
1	

Correlated Sampling - Why does it help?

Approach 2 is easier to compute and potentially more efficient

- C.I. width depends on data variance
- So, for A2 it depends on the variance of the *differences*:

$$var(\overline{Y_1} - \overline{Y_2}) = \overbrace{\frac{\sigma_1^2}{R}}^2 + \overbrace{\frac{\sigma_2^2}{R}}^2 - \underbrace{\frac{2\rho_{12}\sigma_1\sigma_2}{R}}^2$$

$$Variance\ of\ Y_1\ \ Variance\ of\ Y_2$$

$$Correlation\ coefficient\ between\ Y_1\ and\ Y_2$$

→ If results between both models correlate, variance and width of difference C.I. get smaller

Consequence: Fewer replications for desired level of accuracy

Review: Correlation

The correlation coefficient ρ describes the statistical relationship between two data sequences U and V

• $\rho > 0$ for a positive linear relationship between U and V

How do we create a positive correlation?

- Ensure that the models to be compared behave similarly in the same replication
- Do NOT manipulate the models or re-order the results!

Y ₁	Y ₂
100	105
345	314
57	64

Correlated Sampling -Achieving a Positive Correlation

Idea:

Use the same random numbers in both models

More precisely:

- For each model, each replication uses different random numbers
- In each replication, both models use the same RNs

Then,

- Different replications will be independent (Required for C.I.)
- Every pair of results Y_{r1} , Y_{r2} will be positively correlated

Correlated Sampling

Algorithm for comparing two systems:

• Compute
$$D_r = Y_{r1} - Y_{r2}$$

• Compute
$$\overline{D} = \frac{1}{R} \sum D_r$$

• Compute
$$S^2 = \frac{1}{R-1} \sum (D_r - \overline{D})^2$$

• Compute
$$\sigma = \frac{S}{\sqrt{R}}$$

• Choose α and compute the confidence interval

Example

Example: Compare one- and two-server models

Example

Do a simulation study to make the comparison

We will do the following experiment:

- Compute average queue length at T = 10,000
- Use R = 15 replications

AnyLogic Model Using Correlated Sampling

Controlling Random Numbers in AnyLogic

Declare four separate random number streams
Initialize the random number streams in a function


```
initRandom - Function

Returns value

▶ Arguments

▼ Function body

rSlowArr = new Random(SlowArrSeed);
rFastArr = new Random(FastArrSeed);
rSlowServ = new Random(SlowServSeed);
rFastServ = new Random(FastServSeed);
```


Controlling Random Numbers in AnyLogic

Assign specific random number stream to each random variable

Experiment Setup

Controlling Random Numbers in AnyLogic

Set seeds and initialize the random number streams from the experiment

- Use the same seeds for correlated runs
- Use different seeds for independent runs

Before simulation run:

Experimental Results

Individual replication results, unsynchronised

Unsynchronised

Experimental Results

Individual replication results, only arrivals synchronised

Arrivals Synchronised

Experimental Results

Individual replication results, fully synchronised

Fully Synchronised

Results

For 100 Replications:

	Sample		C.I. ($\alpha = 0.05$)	
RN	Corr.	Variance	Width	Interval
Independent	0.02	6.46	1.01	[-0.90, 0.11] -1 0 +1
Arrivals Synchronized	0.54	2.75	0.66	[-0.54, 0.12] -1 0 +1
Fully Synchronized	0.99	0.05	0.09	[-0.35, -0.26] -1 0 +1