Devoir à la maison n° 08

À rendre le 03 décembre

I. Ordre lexicographique

1) On définit une relation \leq^0 sur \mathbb{R}^2 en posant pour tous $(x,y),(x',y')\in\mathbb{R}^2$:

$$(x,y) \leqslant^0 (x',y') \iff x \leqslant x' \text{ et } y \leqslant y'.$$

- a) Montrer que \leq^0 est une relation d'ordre sur \mathbb{R}^2 .
- b) Représenter graphiquement l'ensemble des majorants et l'ensemble des minorants de (x,y) pour \leq^0 .
- c) Montrer que cet ordre n'est pas total.
- 2) On définit une relation \leq^* sur \mathbb{R}^2 en posant pour tous $(x,y),(x',y')\in\mathbb{R}^2$:

$$(x,y) \leqslant^{\star} (x',y') \iff x < x' \text{ ou } (x=x' \text{ et } y \leqslant y').$$

- a) Montrer que \leq^* est une relation d'ordre sur \mathbb{R}^2 . Cet ordre s'appelle l'ordre lexicographique.
- b) Représenter graphiquement l'ensemble des majorants et l'ensemble des minorants de (x,y) pour \leq^* .
- c) Montrer que cet ordre est total.
- d) Soit $\mathcal{A} = \mathbb{R}_{-}^{\star} \times \mathbb{R}$. Montrer que \mathcal{A} est une partie non vide de \mathbb{R}^2 majorée pour \leq^{\star} , mais que \mathcal{A} n'a pas de borne supérieure.

II. Diviseur supérieur à vingt

Soit d_1, d_2, \ldots, d_9 , neuf entiers relatifs distincts.

On note $f: \mathbb{Z} \to \mathbb{Z}$

$$n \mapsto (n+d_1) \times \cdots \times (n+d_9)$$

L'objectif de ce problème est de montrer qu'il existe $N \in \mathbb{Z}$ tel que pour tout $n \geq N$, f(n) est divisible par un nombre premier supérieur ou égal à 20.

On se place pour commencer dans le cas où d_1, \ldots, d_n sont des entiers strictement positifs. On note H le nombre de nombres premiers inférieurs ou égaux à 20 et p_1, \ldots, p_H ces entiers.

1) Déterminer H.

- 2) On pose $d = \max(d_1, \ldots, d_9)$ et $N = d^8$. On suppose par l'absurde qu'il existe $n \ge N$ tel que tous les diviseurs premiers de f(n) soient inférieurs ou égaux à 20. Montrer alors que pour tout $i \in \{1, \ldots, 9\}$, il existe un nombre premier q_i avec $q_i \le 20$ et un entier α_i tels que $q_i^{\alpha_i}|n+d_i$ et $q_i^{\alpha_i}>d$.
- 3) En déduire qu'il existe i et j avec $i \neq j$ tels que $q_i = q_j$.
- **4)** Montrer qu'alors $q_i^{\min(\alpha_i,\alpha_j)}$ divise d_i-d_j .
- 5) En déduire une absurdité.
- **6)** Conclure.
- 7) On se place maintenant dans le cas général, c'est-à-dire qu'on ne suppose plus que d_1 , ..., d_9 sont strictement positifs. Montrer que le résultat est encore vrai et donner, en fonction de d_1 , ..., d_9 , une valeur de N convenant.

— FIN —