习题 1.1

1. (1) -2, 1; (2) 7, -7; (3) -12.

2. (1) 6; (2) $ab^2 - a^2b$; (3) $3abc - (a^2 + b^2 + c^2)$;

(4) 16; (5) -7; (6) 0.

3. (1) $x_1 = \frac{7}{5}$, $x_2 = \frac{1}{5}$; (2) $x_1 = \frac{7}{2}$, $x_2 = \frac{5}{4}$.

4. (1) -6; (2) $\left(-1\right)^{\frac{(n+1)(n+2)}{2}}n!$; (3) -12.

5. $x = \pm 2$.

习题 1.2

1. (1) 6; (2) 4; (3) 2; (4) -12; (5) 0; (6) 0.

2. (1) -65; (2) -8; (3) 0; (4) 160; (5) $b^2(b^2-4a^2)$;

(6) $-2(x^3+y^3)$; (7) $x^n+(-1)^{n+1}y^n$; (8) $[x+(n-1)a](x-a)^{n-1}$;

(9) 12; (10) $\left[1 - \sum_{i=1}^{n} \frac{1}{a_i}\right] \prod_{i=1}^{n} a_i$

3. (1) 略; (2) 略.

4. (1) 6; (2) 912000; (3) $\left[1+\sum_{i=1}^{n}\frac{a}{x_{1}-a}\right]\prod_{i=1}^{n}\left(x_{i}-a\right);$ (4) $1+\sum_{i=1}^{n}a_{i}$.

5. $x_{1,2} = \pm 1, x_{3,4} = \pm 2$.

习题 1.3

1. (1) $x = \frac{1}{3}, y = \frac{-5}{6}$; (2) $c \neq b, c \neq a, b \neq a$.

2. (1) $x_1 = 3$, $x_2 = 1$, $x_3 = 2$; (2) $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = -1$;

(3) $x_1 = 3$, $x_2 = 4$, $x_3 = 5$; (4) $x_1 = 3$, $x_2 = -4$, $x_3 = -1$, $x_4 = 1$.

3. $\lambda = 1, 2, -3$.

总习题一

1. (1) C; (2) D; (3) C; (4) D.

2. (1) -6; (2) -120; (3) 18; (4) $\left(1 + \frac{100}{11} + \frac{100}{12} + \frac{100}{13} + \frac{100}{14}\right) 24024;$

(5) abcd + ab + ad + cd + 1; (6) (a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d);

(7)
$$[x+(n-2)a](x-2a)^{n-1}$$
; (8) $3^{n+1}-2^{n+1}$; (9) $1-a+a^2-a^3+a^4-a^5$.

3. (1) 略; (2) 略; (3) 略.

4. (1)
$$x_1 = -1$$
, $x_2 = -1$, $x_3 = 0$, $x_4 = 1$;

(2)
$$x_1 = \frac{1507}{665}$$
, $x_2 = \frac{-1145}{665}$, $x_3 = \frac{703}{665}$, $x_4 = \frac{-395}{665}$, $x_5 = \frac{212}{665}$;

(3)
$$x_1 = -2$$
, $x_2 = 0$, $x_3 = 1$, $x_4 = -1$; (4) $x_1 = 1$, $x_2 = -1$, $x_3 = -1$, $x_4 = 1$;

(5)
$$x_1 = -9$$
, $x_2 = 1$, $x_3 = -1$, $x_4 = 19$.

5.
$$\mu = -\frac{4}{5} \vec{\boxtimes} \mu = 1$$
.

6.
$$\lambda = 1$$
或 $\mu = 0$.

7.
$$\mu = 0.2$$
或3.

9.
$$\mu \neq -2$$
或 $\mu \neq 1$.

第二章

习题 2.1

$$1. \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

习题 2.2

1.
$$x = 1$$
, $y = -1$

2.(1)
$$\begin{pmatrix} -3 & 8 \\ 4 & 7 \end{pmatrix}$$
; (2) $\begin{pmatrix} 1 & 0 \\ -3 & 3 \end{pmatrix}$; (3) $\begin{pmatrix} 2 & -3 \\ -2 & -2 \end{pmatrix}$.

3. (1) 4; (2)
$$\begin{pmatrix} 2 & 0 & 4 \\ -1 & 0 & -2 \\ 1 & 0 & 2 \end{pmatrix}$$
; (3) $\begin{pmatrix} 7 & 4 & 1 \\ 2 & -3 & 3 \end{pmatrix}$; (4) 36.

$$4.\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}.$$

$$5.3^{5} \begin{pmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \\ -1 & -1 & 1 \end{pmatrix}.$$

6. (1) 错; (2) 对; (3) 错; (4) 对; (5) 错.

7.
$$x = -3$$
, $y = 2$, $z = -1$.

8.略.

 $9.16;4\times10^{3}$.

10.总重量 29 吨,总体积 395 m^3 ,总收入 485万元.

习题 2.3

1. (1)
$$\begin{pmatrix} 2 & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{pmatrix}; (2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}; (3) \begin{pmatrix} 0 & 2 & -1 \\ -1 & 4 & -1 \\ 1 & -3 & 1 \end{pmatrix};$$

$$\begin{pmatrix}
-\frac{3}{25} & \frac{6}{25} & 1\\
\frac{2}{25} & -\frac{29}{25} & \frac{34}{25}\\
\frac{3}{25} & \frac{19}{25} & -\frac{24}{25}
\end{pmatrix}$$

$$2.(1)\begin{pmatrix} -2 & -4 & 1 \\ -2 & -5 & 1 \\ 3 & 6 & -1 \end{pmatrix}; (2)\begin{pmatrix} -7 & 34 & 22 \\ -8 & 39 & 25 \\ 10 & -48 & -31 \end{pmatrix}; (3)\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & \frac{9}{2} & -1 \\ 0 & -4 & 1 \end{pmatrix}$$

$$3.24; \frac{5^3}{3}$$
.

$$4.\begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix}$$

5.略

6.略

习题 2.4

1. (1)
$$\begin{pmatrix} 1 & 0 & 0 & 13 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \end{pmatrix}$$
; (2) $\begin{pmatrix} 1 & 0 & -\frac{7}{2} & \frac{5}{2} \\ 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; (3) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$;

2. (1)
$$\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}; \quad (2) \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix}; \quad (3) \begin{pmatrix} \frac{7}{2} & -1 & -\frac{3}{2} \\ -2 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$(4) \begin{pmatrix} -1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -2 \end{pmatrix}.$$

3. (1)
$$\begin{pmatrix} 10 & 2 \\ -15 & -3 \\ -12 & -4 \end{pmatrix}$$
; (2) $\begin{pmatrix} 3 & 2 \\ -2 & -3 \\ 1 & 3 \end{pmatrix}$; (3) $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$.

习题 2.5

1.
$$\begin{vmatrix} 3 & 2 & -1 \\ 0 & 0 & 0 \\ 4 & 1 & 2 \end{vmatrix} = 0$$
, $\begin{vmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \\ 4 & 1 & - \end{vmatrix} = 0$, $\begin{vmatrix} 2 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & -1 \end{vmatrix} = 0$, $\begin{vmatrix} 3 & -1 & 1 \\ 0 & 0 & 0 \\ 4 & 2 & -1 \end{vmatrix} = 0$, $R(A) = 2$.

2. (1)
$$R(A) = 2$$
; (2) $R(A) = 4$; (3) $R(A) = 2$; (4) $R(A) = 3$.

3.
$$a = 5, b = 1$$
.

4.
$$a = 6, b = 8$$
.

习题 2.6

1.
$$\begin{pmatrix} 7 & 7 \\ 3 & 5 \\ -4 & 9 \\ -2 & 1 \end{pmatrix}$$
.

$$2. \begin{pmatrix} -2 & 10 & 0 & 0 \\ -2 & 26 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix}.$$

3.
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 5 & 6 \end{pmatrix}.$$

$$4. \begin{pmatrix} 5^4 & 0 & 0 & 0 \\ 0 & 5^4 & 0 & 0 \\ 0 & 0 & 2^4 & 0 \\ 0 & 0 & 2^6 & 2^4 \end{pmatrix}.$$

总习题二

2. (1)
$$(A + E)$$
; (2) $(\frac{9}{64})$; (3) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$; (4) $-\frac{1}{2}$;

(5)
$$\frac{1}{125}$$
; (6) $\frac{1}{9}$; (7) -3 \mathbb{R} -6; (8) $(A + 4E)$.

3. (1)
$$\begin{pmatrix} -1 & 6 & 5 \\ -2 & -1 & 12 \end{pmatrix}$$
; (2) $\begin{pmatrix} -1 & 3 \\ 10 & -6 \end{pmatrix}$; (3) $\begin{pmatrix} 10 & 4 & -1 \\ 4 & -3 & -1 \end{pmatrix}$;

$$(4) \begin{pmatrix} 7 & 6 & 5 & 7 \\ 4 & 4 & 4 & 4 \\ 3 & 5 & 9 & 11 \end{pmatrix}, \begin{pmatrix} 14 & 11 & 8 & 7 \\ -2 & 7 & -2 & 7 \\ 2 & 1 & 6 & 5 \end{pmatrix}; (5) \begin{pmatrix} -8 & -12 \\ -13 & 13 \\ -1 & 11 \end{pmatrix}, \begin{pmatrix} 15 & -14 \\ -15 & 14 \end{pmatrix}, \begin{pmatrix} 6 & -12 \\ 5 & 7 \end{pmatrix};$$

4. (1)
$$-\frac{1}{6}(A+2E)$$
; (2) $\frac{1}{2}(A-3E)$.

5. (1)
$$\begin{pmatrix} -2 & 1 \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}$$
; (2) $\begin{pmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{pmatrix}$; (3) $\begin{pmatrix} \frac{3}{4} & \frac{1}{2} & 0 \\ -\frac{1}{4} & \frac{1}{2} & 0 \\ -1 & -1 & 1 \end{pmatrix}$;

$$(4) \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{4} \\ 0 & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ 0 & -1 & -1 & 1 \end{pmatrix}; (5) \begin{pmatrix} 3 & -5 & -8 & 13 \\ -1 & 2 & 3 & -5 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}; (6) \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0 & -1 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

6. (1)
$$X = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & -4 \\ 1 & 0 & -2 \end{pmatrix}$$
; (2) $X = \begin{pmatrix} 10 & 2 \\ -15 & -3 \\ 12 & 4 \end{pmatrix}$; (3) $X = \begin{pmatrix} 2 & -1 & -1 \\ -4 & 7 & 4 \end{pmatrix}$.

7. (1)
$$\begin{pmatrix} 1 & 0 & \frac{7}{2} & \frac{5}{2} \\ 0 & 1 & -\frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 0 & 0 \end{pmatrix}; (2) \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; (3) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

8. (1)
$$R(A) = 2$$
; (2) $R(A) = 4$.

第三章

习题 3.1

1. (1)
$$\begin{cases} x_1 = 0 \\ x_2 = 0; \\ x_3 = 0 \end{cases}$$
 (2) $X = c_1 \begin{pmatrix} -0.5 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0.5 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0.5 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ (c_1, c_2 为常数);

(3)
$$\mathbf{X} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + \mathbf{k} \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} (\mathbf{k})$$
 为常数)

2. (1)
$$\begin{cases} x_1 = 0 \\ x_2 = 0; \\ x_3 = 0 \end{cases}$$
 (2) $X = k \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ (k 为常数); (3) 无解;

$$(4) \quad \boldsymbol{X} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

习题 3.2

1. (1) 唯一解零解; (2) 无穷多解,
$$X = k \begin{pmatrix} \frac{4}{3} \\ -3 \\ \frac{4}{3} \\ 1 \end{pmatrix}$$
 (k 为常数); (3) 无穷多解,

$$\boldsymbol{X} = \begin{pmatrix} -8 \\ 3 \\ 0 \\ 2 \end{pmatrix} + \boldsymbol{k} \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} \quad (\boldsymbol{k} \text{ 为常数});$$

(4) 无穷多解,
$$X = c_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} \frac{7}{5} \\ 0 \\ \frac{1}{5} \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} \frac{1}{5} \\ 0 \\ -\frac{2}{5} \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \\ 0 \\ 0 \end{pmatrix} (c_1, c_2, c_3) 为常数);$$

- 2.当 λ ≠1时,有唯一解,当 λ =1时,无穷多解;
- 3.当 $\lambda = -1$ 或 $\lambda = 5$ 时,有非零解;
- 4. 当 λ ≠ −1 且 λ ≠ 4 时,只有零解;

$$5.$$
当 $\lambda \neq -\frac{4}{5}$ 时,无解;当 $\lambda \neq -\frac{4}{5}$ 且 $\lambda \neq 1$ 时,有唯一解;当 $\lambda = 1$ 时,有无穷多解,且解

为:
$$X = k \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

习题 3.3

$$1.(3, 8, 7);$$
 $2.(-4,-3,-10,-5);$

3. (1)
$$\beta = \frac{3}{2}\alpha_1 - \frac{1}{2}\alpha_3$$
; (2) $\beta = 2\alpha_1 + \alpha_2 + \alpha_3$;

4. 线性相关; 5.略; 6.略; 7 当t = 2时,线性相关,当 $t \neq 2$ 时,线性无关.; 8. (1) 极大无关组为: $\alpha_1, \alpha_2, \alpha_3$,且 $\alpha_4 = -3\alpha_1 + 5\alpha_2 - \alpha_3$; (2) 极大无关组为: $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 。

习题 3.4

1. (1) 基础解析为:
$$\eta_1 = \begin{pmatrix} -4 \\ \frac{3}{4} \\ 1 \\ 0 \end{pmatrix}$$
, $\eta_2 = \begin{pmatrix} 0 \\ \frac{1}{4} \\ 0 \\ 1 \end{pmatrix}$, 通解为: $X = \mathbf{k}_1 \eta_1 + \mathbf{k}_2 \eta_2$ ($\mathbf{k}_1, \mathbf{k}_2$ 为常数);

(2) 基础解析为:
$$\eta_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\eta_2 = \begin{pmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, 通解为: $X = \mathbf{k}_1 \eta_1 + \mathbf{k}_2 \eta_2$ ($\mathbf{k}_1, \mathbf{k}_2$ 为常数);

(3) 基础解析为:
$$\eta_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\eta_2 = \begin{pmatrix} \frac{2}{7} \\ 0 \\ -\frac{5}{7} \\ 1 \end{pmatrix}$, 通解为: $X = \mathbf{k}_1 \eta_1 + \mathbf{k}_2 \eta_2$ ($\mathbf{k}_1, \mathbf{k}_2$ 为常数)。

2. (1) 特解为:
$$\eta_0 = \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{4} \\ 0 \\ 0 \end{pmatrix}$$
, 对应齐次方程组基础解析为: $\eta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ 0 \end{pmatrix}$, $\eta_2 = \begin{pmatrix} -\frac{3}{4} \\ \frac{7}{4} \\ 0 \\ 1 \end{pmatrix}$

通解为: $X = k_1 \eta_1 + k_2 \eta_2 + \eta_0 (k_1, k_2)$ 为常数);

(2) 特解为:
$$\eta_0 = \begin{pmatrix} -\frac{3}{2} \\ 0 \\ \frac{13}{6} \\ 0 \end{pmatrix}$$
, 对应齐次方程组基础解析为: $\eta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\eta_2 = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \end{pmatrix}$

通解为: $X = \mathbf{k}_1 \eta_1 + \mathbf{k}_2 \eta_2 + \eta_0$ ($\mathbf{k}_1, \mathbf{k}_2$ 为常数);

$$(3)特解为: \eta_0 = \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \\ 0 \\ 0 \end{pmatrix}, 对应齐次方程组基础解析为: \eta_1 = \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \eta_2 = \begin{pmatrix} \frac{7}{5} \\ 0 \\ \frac{1}{5} \\ 1 \\ 0 \end{pmatrix}, \eta_3 = \begin{pmatrix} \frac{1}{5} \\ 0 \\ -\frac{2}{5} \\ 0 \\ 1 \end{pmatrix}$$

通解为: $X = k_1 \eta_1 + k_2 \eta_2 + k_3 \eta_3 + \eta_0 (k_1, k_2, k_3)$ 常数)。

总习题三

1. (1)
$$a = 2b$$
; (2) 1,1, -1;(3) 3; (4)2; (5) $r = n$, $R(A) = R(A,b) = r < n$;

(6)
$$\lambda = 1$$
; (7) $k[\alpha_1 - \frac{1}{2}(\alpha_2 + \alpha_3)] + \alpha_1$.

2.
$$x = \left(-\frac{3}{2} - 3 - \frac{9}{2} - 6\right);$$

$$3. \beta = -\frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2 + \alpha_4$$

4.极大无关组为:
$$\alpha_1$$
, α_2 ; $\alpha_3 = 2\alpha_1 - \alpha_2$, $\alpha_4 = \alpha_1 + 3\alpha_2$, $\alpha_5 = 2\alpha_1 + \alpha_2$

5. (1)
$$t \neq 5$$
; (2) $t = 5$; $\alpha_3 = -\alpha_1 + 2\alpha_2$

$$6.$$
当 $\lambda = -\frac{4}{5}$ 时,方程组无解;当 $\lambda \neq 1$ 且 $\lambda \neq -\frac{4}{5}$ 时,方程组有唯一解; $\lambda = 1$ 时,无穷多

解, 其解为:
$$\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \mathbf{k} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
;

7.略;

$$8. \mathbf{x} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 1 \end{pmatrix} + \mathbf{k} \begin{pmatrix} 0 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$

第四章

习题 4.1

1. (1)
$$\lambda_1 = -2$$
, $\lambda_2 = 7$,属于特征值 -2 的全部特征向量 $k_1 \begin{pmatrix} -\frac{4}{5} \\ 1 \end{pmatrix}$,属于特征值 7 的全部特征

向量
$$k_2\begin{pmatrix}1\\1\end{pmatrix}$$
,其中 k_1 和 k_2 为任意非零常数.

(2)
$$\lambda_1=2$$
, $\lambda_2=4$ (二重根), 属于特征值 2 的全部特征向量 $k_1\begin{pmatrix}0\\-1\\1\end{pmatrix}$,属于特征值 4 的全部

特征向量
$$k_2\begin{pmatrix}1\\0\\0\end{pmatrix}$$
,其中 k_1 和 k_2 为任意非零常数.

(3)
$$\lambda_1 = 8$$
, $\lambda_2 = -1$ (二重根), 属于特征值 8 的全部特征向量 k_1 $\begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}$,属于特征值 -1 的全部

特征向量
$$k_2 \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + k_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
,其中 k_1 , k_2 , k_3 为任意.非零常数.

2.
$$a = 1$$
; $\lambda_1 = 1$, $\lambda_2 = 2$.

4. (1)
$$\lambda_1 = 1$$
 (二重根), $\lambda_2 = 2$;(2) $2, \frac{3}{2}$.

5.
$$k = -2, \lambda = 1$$
 或 $k = 1, \lambda = 4$.

习题 4.2

1. (1)不能; (2) 能,
$$\Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
.(3) 能, $\Lambda = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3.
$$x = -1, y = -2$$
.

4.
$$\lambda = 1, -1, 2$$
, $P = \begin{pmatrix} 0 & -1 & 2 \\ 0 & -\frac{3}{4} & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $P^{-1} = \begin{pmatrix} -\frac{1}{2} & 2 & 1 \\ 0 & -\frac{4}{3} & 0 \\ \frac{1}{2} & -\frac{2}{3} & 0 \end{pmatrix}$, $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

因 $A = P\Lambda P^{-1}$, 则 $A^n = P\Lambda^n P^{-1}$.

习题 4.3

1. (1) 7; (2) 26.

2.(1)
$$\frac{1}{\sqrt{3}} (1,-1,1)^T$$
; (2) $\frac{1}{\sqrt{15}} (1,2,3,-1)^T$ (3) $\frac{1}{2} (0,-1,1,2)^T$.

3.略.

4.(1) 是;(2) 不是;(3) 是.

5.提示:
$$(A-2E)(A-2E)^T = E$$
.

习题 4.4

1. (1)
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$;

(2)
$$Q = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ 0 & \frac{\sqrt{6}}{3} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 4 \end{pmatrix}$.

2. (1) x = 0, y = 0;

(2)
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
; (3) $Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$.

总习题四

1. (1) $\lambda_1 = 3$, $\lambda_2 = 5$,属于特征值 3 的全部特征向量 $k_1 \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$,属于特征值 5 的全部特征向

量
$$k_2$$
 $\left(\begin{array}{c} \frac{1}{2} \\ 1 \end{array}\right)$,其中 k_1 和 k_2 为任意非零常数;

(2)
$$\lambda_1=-1$$
, $\lambda_2=2$ (二重根), 属于特征值 -1 的全部特征向量 k_1 $\begin{pmatrix} 7\\2\\1 \end{pmatrix}$,属于特征值 2 的全

部特征向量
$$k_2\begin{pmatrix}1\\4\\0\end{pmatrix}+k_3\begin{pmatrix}0\\-1\\1\end{pmatrix}$$
,其中 k_1 , k_2 , k_3 为任意非零常数;

(3)
$$\lambda_1=-1$$
, $\lambda_2=0$, $\lambda_3=9$,属于特征值 -1 的全部特征向量 $k_1\begin{pmatrix} -1\\1\\0\end{pmatrix}$,属于特征值 0 的全部

特征向量
$$k_2 \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
 ,属于特征值 9 的全部特征向量 $k_3 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$,其中 k_1 , k_2 , k_3 为任意非零常数.

2. 能,
$$\Lambda = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$$
, $A = P\Lambda P^{-1}$, 其中 $P = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$, $P^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -1 & 1 \end{pmatrix}$.

3.
$$a=1,b=-1$$
. A 的特征向量 $\xi=k\begin{pmatrix}0\\1\\1\end{pmatrix}$, k 为任意非零常数.

4. (1)
$$-6, -4, -12$$
; (2) $|B| = -288, |A - 5E| = -72$.

5. (1)
$$Q = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 5 \end{pmatrix}$;

(2)
$$Q = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & \frac{2}{3} \\ 0 & \frac{5}{3\sqrt{5}} & -\frac{2}{3} \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 10 \end{pmatrix}$.

6. (1)
$$\beta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$,

(2)
$$\gamma_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$
, $\gamma_2 = \frac{1}{3} \begin{pmatrix} 2 \\ -3 \\ 1 \\ -1 \end{pmatrix}$, $\gamma_3 = \frac{1}{5} \begin{pmatrix} 1 \\ 1 \\ 3 \\ 2 \end{pmatrix}$.

7. (1) 是; (2) 不是.

8. 提示: 特征根为
$$\lambda_1=1$$
 (二重根), $\lambda=-2$, 可逆矩阵 $P=\begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,

$$P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}, \quad A = P\Lambda^{10}P^{-1}.$$

习题 5.1

1. (1)
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 3; (2) $4x_2^2 - 3x_3^2 + 2x_1x_2 - 6x_1x_3 + 10x_2x_3$.

2. (1)
$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; (2) \begin{pmatrix} 2 & -1 & 2 \\ -1 & -2 & 0 \\ 2 & 0 & 3 \end{pmatrix}; (3) \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

习题 5.2

1. (1)
$$f = y_1^2 + y_2^2 + y_3^2$$
, $P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$;

(2)
$$f = 2y_1^2 - 2y_2^2 - 2y_3^2$$
, $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

2. (1)
$$Q = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}$$
, $f = 4y_1^2 + y_2^2 - 2y_3^2$;

(2) 习题
$$f = y_1^2 + y_2^2 + 10y_3^2$$
.

习题 5.3

1. (1) 正定; (2) 不一定.

2. -3 < a < 1.

总习题五

1. (1)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & -1 \end{pmatrix}$$
, 3; (2) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$; (3) $-1 < t < 1$; (4) $X = A^{-1}Y$.

2.
$$Q = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $f = y_1^2 + 2y_2^2 + 5y_3^2$.

3. (1)
$$f = y_1^2 - 4y_2^2 + \frac{9}{16}y_3^2$$
, $P = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & \frac{3}{8} \\ 0 & 0 & 1 \end{pmatrix}$;

(2)
$$f = z_1^2 - z_2^2 - 3z_3^2$$
, $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

4. 正定二次型.

5. (1)
$$t > 2$$
; (2) $-\frac{5}{3} < t < \frac{5}{3}$.