Uppgift 1

För att lösa denna uppgift kommer jag använda mig av följande formler.

Ohms Lag

Ohms lag säger att

Definition av effekt

Definitionen av effekt och slutsatser vi kan dra

Tillvägagångsätt

För att lösa uppgiftera 1A och 1B kommer jag räkna ut följande steg.

- Räkna ut det totala motståndet (R_{tot}) i hela kretsen
- $\bullet\,$ Räkna ut den totala strömmen (I_{tot}) i hela kretsen
- \bullet Räkna ut spänningsfallet över den parallellkopplade delen i kretsen ($V_{par})$
- Räkna ut spänningsfallet över den seriekopplade delen i kretsen (V_{serie})
- $\bullet\,$ Räkna ut strömmen över A, B, C (
 $I_A,\,I_B,\,I_C$ respektive)
- Räkna ut effekten över A, B, C (P_A, P_B, P_C respektive)

Uppgift 1a

Definition av lamporna

Lamporna har enligt uppgiften följande egenskaper

Lampa	Märkspänning	Märkeffekt
$\overline{L_1}$	24v	2w
L_2	24v	3w
L_3	24v	7w

Från det kan man räkna att deras mostånd är 288 $\Omega,$ 192 Ω och 82.286 $\Omega.$

Detta kan räknas ut med formeln nedan:

#+BEGIN{equation}
$$R = \frac{v^2}{P}$$

$$R_{L1} = \frac{24^2}{2} = 288$$

$$R_{L2} = \frac{24^2}{3} = 192$$

$$R_{L3} = \frac{24^2}{7} = 82.28571$$

#+END

Lampa	Märkspänning	Märkeffekt	Resistans
L_1	24v	2w	288 Ω
L_2	24v	3w	192Ω
L_3	24v	$7\mathrm{w}$	82.286Ω

Lösning

Då det inte spelar någon roll om $A=L_1, B=L_2$ eller $A=L_2, B=L_1$ då A och B är parallellkopplade så är de enda intressanta fallen de nedan.

Permutation	A	В	\mathbf{C}
Fall_1	L_1	L_2	L_3
$Fall_2$	L_3	L_1	L_2
Fall ₃	L_2	L_3	L_1

Fall 1

Över a->e så har vi ett motstånd på...

#+BEGIN{equation}
$$R_{ae} = (\frac{1}{288} + \frac{1}{192})^{-1}$$

$$\begin{array}{c} R_{ae} = 115.2\Omega \\ \# + \mathrm{END} \end{array}$$

Sedan tidigare vet vi att $R_{\rm C}=82.286\Omega$. Så den totala resistansen är

$$\begin{array}{l} \#+\text{BEGIN}\{\text{equation}\}\\ R_{tot} = 82.286\Omega + 115.2\Omega = 197.485\Omega\\ \#+\text{END} \end{array}$$

Då kan vi räkna ut att $I_{\rm tot}$ blir

#+BEGIN{equation}
$$I_{tot} = \frac{24}{R_{tot}} = 0.12152821733A \approx 0.1252A$$

$$\#+END$$

Spänningsfallet över $a->e\ (V_{ae})$ går att räkna ut med följande

#+BEGIN{equation}
$$V_{ae} = R_{ae} \times I_{ae}$$

$$V_{ae} = 115.2\Omega \times 0.12152821733$$

$$V_{ae} = 14.00005V \approx 14V$$
 #+END

Då blir spänningsfallet över $V_{ef} = V_{tot} - V_{ae} = 10V$.

Från detta kan vi räkna ut att

$$\begin{split} \# + & \text{BEGIN}\{\text{equation}\} \\ I_A &= \frac{V_{ae}}{R_A} = \frac{14}{288} = 0.04861111 \approx 0.0486 \\ I_B &= \frac{V_{ae}}{R_B} = \frac{14}{192} = 0.07291666 \approx 0.0729 \\ I_C &= \frac{V_c}{R_C} = \frac{10}{82.2857} = 0.12152779 \approx 0.1252A = I_{tot} \\ \# + & \text{END} \end{split}$$

Och från det kan vi enkelt räkna ut effekten

$$\begin{split} \# + & \text{BEGIN}\{\text{equation}\} \\ P_B &= V_{ae} \times I_A \approx 14 \times 0.0486 = 0.6804W \\ P_B &= V_{ae} \times I_B \approx 14 \times 0.0729 = 1.0206W \\ P_C &= V_{ef} \times I_C \approx 10 \times 0.1252 = 1.2520W \\ \# + & \text{END} \end{split}$$

 L_1 lyser då med ungefär 34% effekt, alltså **svagt**. L_2 lyser då med ungefär 34% effekt, alltså **svagt**. L_3 lyser då med ungefär 17% effekt, alltså **svagt**.

Fall 2

På position A sitter L_3 , på B sitter L_1 och på C sitter L_2 .

equation

 $P_B = A \times 4$