Question 1

- (a) $P(-3) = (-3)^3 = -27$.
- (b) $\frac{-3}{\sqrt{1-9x^2}}$.
- (c) $\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} = \left[\sin^{-1} \frac{x}{2} \right]_{-1}^{1} = 2 \times \frac{\pi}{6} = \frac{\pi}{3}.$
- (d) $^{12}C_4 2^8 3^4$.
- (e) $\left[\frac{\sin^3\theta}{3}\right]_0^{\frac{\pi}{4}} = \frac{1}{3} \times \left(\frac{\sqrt{2}}{2}\right)^3 = \frac{2\sqrt{2}}{24}.$
- (f) (x-3)(5-x) > 0, $\therefore 3 < x < 5$.

Question 2

- (a) $u = \ln x$, $du = \frac{1}{x} dx$.
- When x = e, u = 1; when $x = e^2, u = 2$.

$$\int_{1}^{2} \frac{1}{u^{2}} du = \left[\frac{-1}{u} \right]_{1}^{2} = 1 - \frac{1}{2} = \frac{1}{2}.$$

(b)
$$\frac{1}{2}v^2 = \frac{x^2}{2} + 4x + C$$
.

When
$$x = 1, v = 0, : C = -\frac{9}{2}$$
.

$$\therefore v^2 = x^2 + 8x - 9.$$

When
$$x = 2, v^2 = 11, :. \text{ Speed } = \sqrt{11} \text{ m/s}.$$

(c)
$$\sum \alpha = -2 + 3 + \alpha = \frac{-16}{a}$$
.

$$1 + \alpha = -\frac{16}{a} \tag{1}$$

$$\prod \alpha = -6\alpha = \frac{120}{a} \therefore a = -\frac{20}{\alpha}.$$

From (1),
$$1 + \alpha = \frac{16}{20}\alpha = \frac{4}{5}\alpha$$
.

$$1 = -\frac{1}{5}\alpha \therefore \alpha = -5.$$

(d)
$$f'(x) = \sec^2 x - \frac{1}{x}$$
.

$$x_1 = 4 - \frac{\tan 4 - \ln 4}{\sec^2 4 - \frac{1}{4}} = 4.11.$$

Question 3

(a)

(b)

From the graph, $|2x-1| \le |x-3|$ for $\pm (2x-1) \le -x+3$.

$$2x-1 \le -x+3$$
 gives $3x \le 4$, $\therefore x \le \frac{4}{3}$.

$$-2x+1 \le -x+3$$
 gives $x \ge -2$.

$$\therefore -2 \le x \le \frac{4}{3}.$$

(c) (i)
$$\tan \theta = \frac{x}{\ell}$$
.

$$\theta = \tan^{-1}\frac{x}{\ell}.$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx}\frac{dx}{dt} = \frac{1}{\ell}\frac{1}{1 + \frac{x^2}{\ell^2}}\frac{dx}{dt} = \frac{\ell}{\ell^2 + x^2} \times v = \frac{v\ell}{\ell^2 + x^2}.$$

- (ii) Given that v and ℓ are constant, $\frac{d\theta}{dt}$ is the reciprocal
- of $\ell^2 + x^2$, ... It is maximum $\ell^2 + x^2$ is minimum, i.e. when x = 0.
- $\therefore \text{ The maximum value of } \frac{d\theta}{dt} \text{ is } \frac{v\ell}{\ell^2} = \frac{v}{\ell}.$

(iii)
$$\frac{d\theta}{dt} = \frac{v}{4\ell}$$
 gives $\frac{v\ell}{\ell^2 + v^2} = \frac{v}{4\ell}$.

$$4\ell^2 = \ell^2 + x^2.$$

$$3\ell^2 = x^2.$$

$$\frac{x}{\ell} = \pm \sqrt{3}$$
.

$$\tan \theta = \pm \sqrt{3}$$
.

$$\theta = \pm \frac{\pi}{3}$$
.

Question 4

(a) (i) $T = 190 - 185e^{-kt}$.

When
$$t = 0$$
, $T = 190^{\circ} - 185^{\circ} = 5^{\circ}$.

$$\frac{dT}{dt} = 185ke^{-ky} = -k\left(190 - T\right).$$

- : It satisfies both the equation and the initial condition.
- (ii) When t = 1, T = 29: $29 = 190 185e^{-k}$.

$$185e^{-k} = 161.$$

$$-k = \ln \frac{161}{185} = -0.1390.$$

$$k = 0.1390.$$

When $T = 80, 80 = 190 - 185e^{-0.1390t}$.

$$185e^{-0.1390t} = 190 - 80 = 110.$$

$$-0.1390t = \ln \frac{110}{185}.$$

$$t = \frac{\ln \frac{110}{185}}{-0.1390} = 3.74.$$

3.74 hours = 3 hours 44 minutes.

∴ The turkey will be cooked at 12:44 pm.

(b) (i)
$$7! = 5040$$
, (ii) $\frac{8!}{2!} = 20160$.

(c) (i) Gradient of
$$QO = \frac{aq^2}{2aq} = \frac{q}{2}$$

Gradient of the tangent at $P = \frac{2ap}{2a} = p$.

These two lines are perpendicular, $\therefore \frac{q}{2}p = -1, \therefore pq = -2$.

(ii) The gradient of PO is $\frac{p}{2}$ and the gradient of the

tangent at Q is q, and given pq = -2, : PO is perpendicular to the tangent at Q. $\therefore \angle PLQ = 90^{\circ}$.

(iii) $\angle PLQ = \angle PKQ = 90^{\circ}$, $\therefore PQLK$ is a semicircle on the diameter PQ.

If M is the midpoint of PQ, M is the centre. $\therefore ML = MK =$ radius.

Question 5

(a) (i)
$$f(x) = \frac{1}{2}x(2-x), x \le 1$$

$$(\frac{1}{2}, 1)$$

$$f^{-1}(x)$$

$$f(x) = \frac{1}{2}x(2-x), x \le 1$$

(ii)
$$f: y = x - \frac{1}{2}x^2$$
.

$$f^{-1}: x = y - \frac{1}{2}y^2.$$

$$y^2 - 2y + 2x = 0.$$

$$(y-1)^2 = 1-2x$$
.

$$y = 1 \pm \sqrt{1 - 2x}$$
. Take $y = 1 - \sqrt{1 - 2x}$ so that $y \le 1$.

(c)
$$f^{-1}\left(\frac{3}{8}\right) = 1 - \sqrt{1 - \frac{3}{4}} = 1 - \frac{1}{2} = \frac{1}{2}$$
.

(b) From $v^2 = n^2(A^2 - x^2)$, when x = 0, v = 2, $\therefore 4 = n^2 A^2$.

From $a = -n^2 x$, when $x = A, |a| = 6, : 6 = n^2 A$.

$$\frac{4}{6} = A, :: A = \frac{2}{3}$$
 m.

$$4 = n^2 \frac{4}{9}, \therefore n^2 = 9, \therefore n = 3.$$

Period
$$T = \frac{2\pi}{3}$$
 s.

(c) $\angle PLK = \angle PQM$ (in a cyclic quadrilateral, interior angle = opposite exterior angle)

 $\angle PQM = \angle TPM$ (angles in alternate segments are equal)

 $\angle TPM = \angle LPK$ (vertically opposite angles).

 $\therefore \angle PLK = \angle LPK$.

∴ $\triangle PKL$ is isosceles.

Question 6

(a) (i)

(ii)
$$\tan 23^\circ = \frac{h}{QA}$$
, $\therefore OA = h \cot 23^\circ$.

$$\tan 32^{\circ} = \frac{h}{OB}, \therefore OB = h \cot 32^{\circ}.$$

$$AB^2 = OA^2 + OB^2 - 2OA.OB.\cos(180 - 120)^\circ.$$

$$200^2 = h^2 \left(\cot^2 23^\circ + \cot^2 32^\circ - \cot 23^\circ \cot 32^\circ \right)$$

$$h = \frac{200}{\sqrt{\cot^2 23^\circ + \cot^2 32^\circ - \cot 23^\circ \cot 32^\circ}} = 96 \text{ m}.$$

(b) $3\sin\theta - 4\sin^3\theta + \sin 2\theta = \sin\theta$.

$$2\sin\theta - 4\sin^3\theta + 2\sin\theta\cos\theta = 0$$
.

$$\sin\theta - 2\sin^3\theta + \sin\theta\cos\theta = 0.$$

$$\sin\theta (1 - 2\sin^2\theta + \cos\theta) = 0.$$

$$\sin\theta \left(1 - 2(1 - \cos^2\theta) + \cos\theta\right) = 0.$$

$$\sin\theta (2\cos^2\theta + \cos\theta - 1) = 0.$$

 $\sin\theta(\cos\theta+1)(2\cos\theta-1)=0.$

$$\sin \theta = 0, \cos \theta = -1, \cos \theta = \frac{1}{2}.$$

$$\therefore \theta = 0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi.$$

(c) (i)

$$(1+x)^{p+q} = {}^{p+q}C_0 + {}^{p+q}C_1x + {}^{p+q}Cx^2 + \dots + {}^{p+q}C_{p+q}x^{p+q}.$$

 \therefore The term independent of x in $\frac{(1+x)^{p+q}}{x^q}$ is $^{p+q}C_q$.

(ii) The constant term in the RHS is the sum of the product of each of the following pairs:

	$\binom{p}{0}x^0$	$\binom{q}{0}\frac{1}{x^0}$
	$\binom{p}{1}x^1$	$\binom{q}{1}\frac{1}{x}$
	$\binom{p}{2}x^2$	$\binom{q}{2}\frac{1}{x^2}$
	••	•••
	$\binom{p}{p}x^p$	$\binom{q}{p} \frac{1}{x^p}$

$$1 + {p \choose 1} + {p \choose 2} + {p \choose 2} + \dots + {p \choose p} + {q \choose p}$$
 is the coefficient of

the constant term in the expansion of $(1+x)^p \left(1+\frac{1}{x}\right)^q$.

: Its simpler expression is ${}^{p+q}C_q$.

Question 7

(a) When
$$y = h$$
, $h = Vt \sin \theta - \frac{1}{2}gt^2$.

$$gt^2 - 2V\sin\theta t + 2h = 0.$$

$$\sum \alpha = t_1 + t_2 = \frac{2V \sin \theta}{g}$$
 and $\prod \alpha = t_1 t_2 = \frac{2h}{g}$.

(b)
$$\tan \alpha + \tan \beta = \frac{h}{V \cos \theta} \left(\frac{1}{t_1} + \frac{1}{t_2} \right)$$
.

$$= \frac{h}{V\cos\theta} \times \frac{t_1 + t_2}{t_1 t_2}$$

$$= \frac{h}{V\cos\theta} \times \frac{\frac{2V\sin\theta}{g}}{\frac{2h}{g}}$$

$$=$$
 tan θ .

(c)
$$\tan \alpha \tan \beta = \frac{h^2}{V^2 \cos^2 \theta} \left(\frac{1}{t_1 t_2} \right)$$
.

$$= \frac{h^2}{V^2 \cos^2 \theta} \times \frac{g}{2h}$$
$$= \frac{gh}{2V^2 \cos^2 \theta}.$$

(d) From the diagram,

$$r = h \tan \alpha + h \tan \beta = h(\tan \alpha + \tan \beta)$$

$$w = r - 2h \tan \alpha = h(\tan \alpha + \tan \beta) - 2h \tan \alpha$$

$$= h(\tan \alpha - \tan \beta).$$

(e)
$$\tan \phi = \frac{\dot{y}}{\dot{x}} = \frac{V \sin \theta - gt_1}{V \cos \theta}$$

$$= \tan \theta - \frac{g}{V \cos \theta} \frac{h}{V \cos \theta \tan \alpha}$$

$$= \tan \theta - \frac{gh}{V^2 \cos^2 \theta} \frac{1}{\tan \alpha}$$

$$= \tan \theta - 2 \tan \beta$$

$$= \tan \alpha - \tan \beta.$$

(f)
$$\frac{w}{r} = \frac{h(\tan \alpha - \tan \beta)}{h(\tan \alpha + \tan \beta)}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha + \tan \beta} = \frac{\tan \phi}{\tan \theta}.$$

$$\therefore \frac{w}{\tan \phi} = \frac{r}{\tan \theta}.$$