

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistemi lineari Lezione 2.2b

Richiami sui sistemi lineari

Richiami sui sistemi lineari (esistenza e unicità)

- \blacktriangleright Un sistema di n equazioni in n incognite (con matrice $n \times n$) può avere:
 - Un'unica soluzione
 - Nessuna soluzione
 - Infinite soluzioni
- \blacktriangleright Esempio: sistema 2×2 $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$ \blacksquare Due rette nel piano \mathbb{R}^2

Unica soluzione x_2 x_2 x_1

Richiami sui sistemi lineari (esistenza e unicità)

Tre piani nello spazio \mathbb{R}^3

Richiami sui sistemi lineari (esistenza e unicità)

- Un sistema arbitrario ammette soluzione ed è unica se:
 - 1. A è non singolare: $det(A) \neq 0$
 - 2. $Az = 0 \iff z = 0$: Sistema omogeneo ha come unica soluzione la soluzione nulla
 - 3. Rango di A è uguale al rango di $(A|\mathbf{b})$ = n dim. del sistema Rango: ordine massimo di determinanti non nulli estratti da A

$$n = \operatorname{rank}(A) = \operatorname{rank}(A|\mathbf{b}) \quad A|\mathbf{b} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{pmatrix}$$

Richiami sui sistemi lineari (il determinante)

ightharpoonup A è non singolare: $\det(A)
eq 0$, dove il determinante è definito

$$\det(A) = \begin{cases} a_{11} & n = 1\\ \sum_{j=1}^{n} a_{ij} C_{ij} & n > 1 \end{cases}$$

- $ightharpoonup C_{ij}$ è il cofattore di $a_{ij} \implies C_{ij} = -1^{(i+j)} \det(A_{ij})$
- $ightharpoonup \det(A_{ij})$ determinante che si ottiene togliendo la i riga e j colonna

$$n = 1$$
 $\det(A) = a_{11}$ $A = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$

$$det(A) = a_{11}(-1)^{2}(a_{22}a_{33} - a_{23}a_{32}) + a_{21}(-1)^{3}(a_{12}a_{33} - a_{13}a_{32}) + a_{31}(-1)^{4}(a_{12}a_{23} - a_{13}a_{22})$$