Live Interaction #3:

19th October 2023

E-masters Communication Systems

Detection for Wireless

- **▶** Neyman-Pearson Criterion:
- Optimal detector:
- Maximizes the P_D for a given P_{FA} .
- \triangleright R_1 is the region corresponding to deciding H_1 .

$$P_{D} = \int_{R_{1}} p(\bar{\mathbf{y}}; \mathcal{H}_{1}) d\bar{\mathbf{y}}$$

$$P_{MD} = \int_{R_{0}} p(\bar{\mathbf{y}}; \mathcal{H}_{1}) d\bar{\mathbf{y}}$$

$$P_{FA} = \int_{R_{1}} p(\bar{\mathbf{y}}; \mathcal{H}_{0}) d\bar{\mathbf{y}}$$

$$\max P_{D}$$

$$\text{S. t. } P_{FA} \leq \alpha$$

<u>Lagrange multiplier</u>.

$$P_D + \lambda(\alpha - P_{FA})$$

• Optimal detector that maximizes P_D for a given P_{FA}

$$\Rightarrow \frac{p(\overline{\mathbf{y}}; \mathcal{H}_1)}{p(\overline{\mathbf{y}}; \mathcal{H}_0)} \ge \alpha$$

Likelihood Ratio Test (LRT)

Signal detection:

$$P_{FA} = Q\left(\frac{\gamma}{\sigma \|\bar{\mathbf{s}}\|}\right) = \alpha$$

$$P_D = Q\left(\frac{\gamma - \|\bar{\mathbf{s}}\|^2}{\sigma \|\bar{\mathbf{s}}\|}\right)$$

$$\gamma = \sigma \|\bar{\mathbf{s}}\| Q^{-1}(\alpha)$$

$$P_D = Q\left(\frac{\sigma \|\bar{\mathbf{s}}\| Q^{-1}(\alpha) - \|\bar{\mathbf{s}}\|^2}{\sigma \|\bar{\mathbf{s}}\|}\right)$$

Generalized signal detection:

$$\mathcal{H}_0: \overline{\mathbf{y}} = \overline{\mathbf{s}_0} + \overline{\mathbf{v}}$$
$$\mathcal{H}_1: \overline{\mathbf{y}} = \overline{\mathbf{s}_1} + \overline{\mathbf{v}}$$

- Optimal detector:
- Choose \mathcal{H}_0 if

$$(\mathbf{\bar{s}}_{1} - \mathbf{\bar{s}}_{0})^{T} \mathbf{\bar{y}} \leq \gamma$$
Test statistic
$$P_{FA} = Q \left(\frac{\gamma}{\sigma \|\mathbf{\bar{s}}_{1} - \mathbf{\bar{s}}_{0}\|} \right)$$

$$P_{D} = Q \left(\frac{\gamma - \|\mathbf{\bar{s}}_{1} - \mathbf{\bar{s}}_{0}\|^{2}}{\sigma \|\mathbf{\bar{s}}_{1} - \mathbf{\bar{s}}_{0}\|} \right)$$

$$P_e = Q\left(\frac{\|\bar{\mathbf{s}}_1 - \bar{\mathbf{s}}_0\|}{2\sigma}\right) = Q\left(\frac{d}{2\sigma}\right)$$

▶ BPSK: Binary Phase Shift Keying.

$$\mathcal{H}_0$$
: $y = -A + v$
 \mathcal{H}_1 : $y = A + v$

 $\blacktriangleright E\{v^2\} = \sigma$

$$P_e = Q\left(\frac{A}{\sigma}\right) = Q\left(\frac{\sqrt{E_b}}{\sqrt{\frac{N_0}{2}}}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

$$P_{e} = Q \left(\sqrt{\frac{E_{b}}{N_{0}}} \right)$$

$$ASK$$

- ▶ BPSK is 3 dB more efficient than ASK.
- Multiple Hypothesis Testing.

$$\mathcal{H}_0: \overline{\mathbf{y}} = \overline{\mathbf{s}}_0 + \overline{\mathbf{v}}$$
$$\mathcal{H}_1: \overline{\mathbf{y}} = \overline{\mathbf{s}}_1 + \overline{\mathbf{v}}$$
$$\vdots$$

$$\mathcal{H}_{L-1}: \overline{\mathbf{y}} = \overline{\mathbf{s}}_{L-1} + \overline{\mathbf{v}}$$

▶ How to decide? What is the *detection rule*?

choose
$$\mathcal{H}_j$$
: $j = \underset{i}{\operatorname{argmin}} \|\bar{\mathbf{y}} - \bar{\mathbf{s}}_i\|$

- Minimum distance decoder.
- M ary PAM

Probability of error for interior point

$$2Q\left(\frac{A}{\sigma}\right)$$

Probability of error for boundary point

$$Q\left(\frac{A}{\sigma}\right)$$

▶ Probability of error:

$$2\left(1 - \frac{1}{M}\right)Q\left(\frac{A}{\sigma}\right) = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{A}{\sqrt{N_0/2}}\right)$$

Symbol Error Rate (SER)

- Assignment 3 deadline 21st October 11:59 PM
- Live interaction Friday 27th October 2023: 9-10 PM
- ▶ Assignment 4 deadline 28th October 11:59 PM
- ▶ Assignment 3, 4 discussion 30th October 8:30 PM.
- Quiz #2 30th October Monday 9:00 PM.