AVL Free: Height balance tree.
Binary Search Thee
RB Tree AVL Free
BST→ n-nodes:
Search: 12(Ign) -> best case
O(n) -> the worst case complexity.
Goal: Search: timing complexity 19 (1gn).
Best case: \(\(\lambda\)
Worst case: O(Ign)
Under BST: Tsearch & hisst.
(hBST -> Min) -> (Tsearch -> Min).
Min. possible height with n nodes = g n.
R.B. tree: 2.1g (n+1) = Max. height of RB tree
with n nodes.
hrs-tree = 10 (lgn)
Tseanch-RRTnee = D (Ign)
AVL tree: Definition: An AVL tree is a binary
Search tree satisfying the following property.
- (Y nodes E AVL-Tree) (max(Height (LST (node)) -
Height (RST (node)) = 1)
mergia (KSI (node I)) - I)

```
mod: R-> R+Ufo}.
  \chi if x > 0 mod(x) =
                              | m =
             -x if x <0
  Also denoted by 120
  |x1>0 max(|x1)=1 , mod(x) EI.
  | 2 = 0 or mod (x) = 1,
   n=0 -) x=0
   [x]=1 -) x=1 or x=-1
max(InI)= 1 A mod(n) EI.
= M=0 V M=
三 20 0 1 20 1 20-1
(Ynodes E AVI Tree) (max (Height (LST (node)) - Height (RST (node))
                    =1)
= (Y nodes & AVL tree)
 Height (LST (node)) - Height (RST (node)) = 0
 Height (LST (node)) - Height (RST (node)) = 1
  Heigh (LST (node)) - Height (RST (node)) =-1,
  Ret node o be any arbitrary node in AVLTree.
  Height (LST (node)) - Height (RST (node)) = 0
  Height (LST (node)) - Height (RST (node)) = 1
  Heigh (LST (noded)) - Height (RST (noded)) =- 1,
(1) Maintain height of mode in struct aul_node.
    And modify the insert scheme.
```


Modify RR + LR routine to adjust the heights of the nodes involved.

left rotate (x) requires 20-3 right = NULL right rotate (x) requires 20-3 left != NULL.

