Homework 1

Vincent La Math 122A July 3, 2017

Monday

4. (a) Show $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Proof. First, denote $z_k = x_k - iy_k$.

Then,

$$\overline{z_1} + \overline{z_2} = (x_1 - iy_1) + (x_2 - iy_2)$$

= $(x_1 + x_2) - i(y_1 + y_2)$

Furthermore, because $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, this implies $\overline{z_1 + z_2} = (x_1 + x_2) - i(y_1 + y_2)$.

Therefore, $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$.

(b) Show $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

Proof. First, $\overline{z_1} \cdot \overline{z_2} = (x_1 - iy_1) \cdot (x_2 - iy_2)$. Simplifying, we get $x_1x_2 - ix_1y_2 - ix_2y_1 + i^2y_1y_2$ or equivalently $x_1x_2 - y_1y_2 - i(x_1y_2 + x_2y_1)$.

Continuing,

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2)$$

$$= x_1 \cdot x_2 + i \cdot x_1 y_2 + i \cdot x_2 y_1 + i^2 y_1 y_2$$

$$= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

This implies that $\overline{z_1 \cdot z_2} = (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + x_2 y_1)$. Therefore, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

(c) Show that $\overline{P(z)} = P(\overline{z})$ where P is any polynomial with real coefficients.

Proof. Let P(z) be any polynomial with real coefficients and write it as $P(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n$.

Then, we get

$$\overline{P(z)} = \overline{a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n}$$

$$= \overline{a_0} + \overline{a_1 \overline{z}} + \overline{a_2 z^2} + \dots + \overline{a_n z^n}$$
By 4a
$$= \overline{a_0} + \overline{a_1 \overline{z}} + \overline{a_2} \overline{z^2} + \dots + \overline{a_n} \overline{z^n}$$
By 4b
$$= a_0 + a_1 \overline{z} + a_2 \overline{z^2} + \dots + a_n \overline{z^n} \quad \text{Since } a_i \in \mathbb{R}, \ a_i = \overline{a_i}$$

$$= a_0 + a_1 \overline{z} + a_2 \overline{z^2} + \dots + a_n \overline{z^n} \quad \overline{z^n} = \overline{z}^n \text{ by 4b}$$

Trivially,

$$P(\overline{z}) = a_0 + a_1 \cdot \overline{z} + a_2 \cdot \overline{z}^2 + \dots + a_n \cdot \overline{z}^n$$

Therefore, $\overline{P(z)} = P(\overline{z})$.

(d) Show $\overline{\overline{z}} = z$.

Proof. If
$$\overline{z} = x - iy$$
, then $\overline{\overline{z}} = \overline{x - iy} = x - -(iy) = x + iy = z$.

5. If P is a polynomial with real coefficients, we want to show that P(z) = 0 if and only if $P(\overline{z}) = 0$.

Proof. For one direction, assume that P(z) = 0 and try to prove that $P(\overline{z}) = 0$. First, if P(z) = 0 then $\overline{P(z)} = \overline{0} = 0$. Moreover, from 4c we know that $\overline{P(z)} = P(\overline{z})$. So if $\overline{P(z)} = 0$, then $P(\overline{z}) = 0$ as well.

Now, for the other direction assume that $P(\overline{z}) = 0$. With 4c, this implies $\overline{P(z)} = 0$. Because zero is its own complex conjugate, this implies P(z) = 0 and this completes the proof.

12. Solve using polar coordinates.

(a)
$$z^6 = 1$$

Solution First, notice that $z^6 = 1$ is equivalent to

$$\prod_{i=1}^{n=6} |z|e^{i\theta} = |z|^6 e^{6i\theta} = 1$$

This implies that z and $e^{6i\theta}$ are both equal to 1. Because only $e^0 = 1$, this implies $6\theta = 0$ modulo 2π . Thus, this implies six different solutions:

- $6\theta = 0 \implies \theta = 0$
- $6\theta = 2\pi \implies \theta = \frac{1}{3}\pi$
- $6\theta = 4\pi \implies \theta = \frac{2}{3}\pi$
- $6\theta = 6\pi \implies \theta = \pi$
- $6\theta = 8\pi \implies \theta = \frac{4}{3}\pi$
- $6\theta = 10\pi \implies \theta = \frac{5}{3}\pi$
- (b) $z^4 = -1$.

Solution Using polar coordinates, this is equivalent to

$$|z|^4[\cos(4\theta) + i\sin(4\theta)] = -1$$

Because $|z|^4$ can only ever be a positive quantity, this implies z=1 while $\cos(4\theta) + i\sin(4\theta) = -1$. Furthermore, recall that

$$\cos(\theta) + i\sin(\theta) = -1 + 0 = -1$$

when $\theta = \pi$.

Therefore, $4 \cdot \pi = \theta$ modulo 2π . This implies four solutions:

•
$$4\theta = \pi \implies \theta = \frac{\pi}{4}$$

•
$$4\theta = 3\pi \implies \theta = \frac{3\pi}{4}$$

•
$$4\theta = 5\pi \implies \theta = \frac{5\pi}{4}$$

•
$$4\theta = \pi \implies \theta = \frac{\pi}{4}$$

• $4\theta = 3\pi \implies \theta = \frac{3\pi}{4}$
• $4\theta = 5\pi \implies \theta = \frac{5\pi}{4}$
• $4\theta = 7\pi \implies \theta = \frac{7\pi}{4}$

13. We want to show that the n-th roots of 1 (aside from 1) satisfy the cyclotomic equation $z^{n-1} + z^{n-2} + \dots + z + 1 = 0.$

Proof. Let z be the n-th root of unity where n > 1, implying that $z^n = 1$. Obviously, it follows $z^n - 1 = 0$.

Using the identity $z^n - 1 = (z - 1)(z^{n-1} + z^{n-2} + \dots + 1)$, this implies the right hand side must be zero as well. But because z-1 is a non-zero quantity, it must be that

$$z^{n-1} + z^{n-2} + \dots + 1 = 0$$

as we set out to prove.

Wednesday

Lemma The sequence $\{i^k\}$ takes on values of either i, -1, -i, or 1.

Proof. First, let $k \in \mathbb{N}$ be arbitrary and consider the following exhaustive cases.

Case 1: k modulo 4 = 0 This implies that k is a multiple of 4. Then, notice that

$$i^k = (i^4)^{k/4}$$

Because k is a multiple of 4, k/4 is an integer. Therefore, i^n is simply a repeated multiplication of i^4 . Because $i^4 = 1$, $i^n = 1$ also.

Case 2: k modulo 4 = 1 This implies that k - 1 is a multiple of 4. Therefore,

$$i^k = i^{k-1} \cdot i$$

= 1 \cdot i \quad i^{k-1} = 1 by Case 1

Case 3: k modulo 4 = 2 This implies that k - 2 is a multiple of 4. Therefore,

$$i^k = i^{k-2} \cdot i^2$$
$$= 1 \cdot i^2 = -1$$

Case 4: k modulo 4 = 3 This implies that k - 3 is a multiple of 4. Therefore,

$$i^k = i^{k-3} \cdot i^3$$
$$= 1 \cdot i^3 = -i$$

1. Prove that $\{i^k\}$ is not a Cauchy sequence.

Proof. Assume (for contradiction) that $\{i^k\}$ is a Cauchy sequence. This implies that for any $\epsilon > 0$, e.g. $\epsilon_1 = \frac{1}{2}$, we can find an N such that for all n, m > N where $|a_n - a_m| < \epsilon_1 = \frac{1}{2}$.

But as shown previously, for any N there are some n, m > N where $a_n = 1$ and $a_n = -1$. Because, $|1 - (-1)| = 2 \nleq \frac{1}{2}$, this contradicts our previous assumption that $\{i^k\}$ is Cauchy.

2. Prove that if $\{z_n\}$ converges to z, and z_n is an element of the unit circle S^1 for all n, then z is also in S^1 .

Proof. Assume that $\{z_n\}$ converges to z, where $z_n \in S^1$ for all n. Then suppose for a contradiction that z is not in S^1 . First, because $\{z_n\}$ converges to z then for any $\epsilon > 0$ there is some N such that for all $n > N, |z_n - z| < \epsilon$. Moreover, because z_n is on the unit circle while z is not, $|z_n - z|$ is always some positive quantity, call it ϵ_1 . Now suppose we pick some point on the unit circle that minimizes ϵ_1 and call it ϵ_L . Again, for the same reasoning $\epsilon_L > 0$.

However, recall that because $\{z_n\} \to z$, then for any $\epsilon > 0$, e.g. $\frac{\epsilon_L}{2}$, there is some z_n such that $|z_n - z| < \frac{\epsilon_L}{2}$. Because $\frac{\epsilon_L}{2}$ is less than the minimum distance between any point on the unit circle and z, it it implies z_n is not on the unit circle—contradicting our previous assumption that $z_n \in S^1$ for all n.

Therefore, it must be that if $\{z_n\}$ converges to z, and z_n is an element of the unit circle S^1 for all n, then z is also in S^1 .