Ecole nationale Supérieure d'Informatique

Février 2022

2CPI

Contrôle final Analyse mathématique 3 Durée: 2 heures

Les documents, calculatrices et téléphones sont interdits. Le sujet comporte 3 pages.

Veuillez répondre aux exercices sur le cahier.

Exercice 1 (4 points):

Soit la série entière $\sum_{n\geq 0} \frac{x^n}{7^n \cdot (n+1)}$.

- 1) Déterminer son rayon de convergence.
- 2) Déterminer son domaine de convergence.
- 3) a- Développer la fonction suivante en série entière :

$$f(x) = \int_{0}^{x} \frac{dt}{7-t}$$
, avec $0 < |x| < 7$.

b- En déduire la somme de la série entière $\sum_{n>0} \frac{x^n}{7^n \cdot (n+1)}$.

Exercice 2 (5,5 points):

 $\overline{\text{Soit la fonction } f: [-\pi, \pi]} \to \mathbb{R}, \ 2\pi - \text{périodique définie par} :$

$$f(x) = \cos(\alpha x)$$
, $x \in [-\pi, \pi]$ avec $\alpha \in \mathbb{R} - \mathbb{Z}$.

- 1) Tracer le graphe de f dans l'intervalle $[-2\pi, 2\pi]$ pour $\alpha = \frac{1}{2}$.
- 2) Calculer les coefficients de Fourier de f puis donner sa série de Fourier.
- 3) Développer f en série de Fourier.
- 4) Déduire la valeur de la série numérique : $\sum_{n\geq 1} \frac{1}{\alpha^2 n^2}$. 3) Montrer que: $\forall x \in \mathbb{R} \pi \mathbb{Z}$: $\cot g(x) = \frac{1}{x} + \sum_{n\geq 1} \frac{2x}{x^2 n^2 \pi^2}$, où $\pi \mathbb{Z} = \frac{1}{x^2 n^2 \pi^2}$

 $\{k\pi, k \in \mathbb{Z}\}$. Rappel:

$$\cos a. \cos b = \frac{1}{2} (\cos (a - b) + \cos (a + b)).$$

$$\sin a. \sin b = \frac{1}{2} (\cos (a - b) - \cos (a + b)).$$

$$\sin a. \cos b = \frac{1}{2} (\sin (a - b) + \sin (a + b)).$$

Exercice 3 (5 points):

Soient

$$f(x,y) = \begin{cases} \frac{|x|^3 \cdot y \cdot \exp(x+y)}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

$$g(x,y) = \begin{cases} \frac{y \cdot \cos(x)}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1) Etudier la continuité de f et g au point (0,0).
- 2) Etudier l'existence des dérivées partielles premières de f en (0,0).
- 3) Etudier la différentiabilité de f sur \mathbb{R}^2 .
- 4) On pose $\Phi = (f, g)$.

 Φ est elle différentiable au point (0,0)? Justifier la réponse.

Exercice 4 (3 points):

1) Soit la fonction Ψ définie de \mathbb{R}^2 dans \mathbb{R}^2 par: $\Psi(x,y) = (3x+y,2x+y)$.

Montrer que Ψ est un \mathbb{C}^1 -difféomorphisme.

2) En posant:

$$\begin{cases} u = 3x + y, \\ v = 2x + y. \end{cases}$$

Résoudre l'équation aux dérivées partielles :

$$\frac{\partial f}{\partial x}\left(x,y\right)-3\frac{\partial f}{\partial y}\left(x,y\right)=0 \ \ \text{où} \ \ f\in C^{1}\left(\mathbb{R}^{2}\right).$$

ESI. 2021/2022. CF- ANA3.

Veuillez répondre au questionnaire sur le sujet et le remettre dans le cahier.

Nom:

Prénom:

Groupe:

Questionnaire (2,5 points):

I- Soit f une application, $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, $D \neq \emptyset$. Pour chaque affirmation répondre (sans justifier) par Σ si elle est toujours vraie ou par Σ sinon.

A1: Si
$$\lim_{x\to 0} f(x,kx) = 0$$
, $\forall k \in \mathbb{R}$ alors $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

A2: Si f est discontinue en (a,b) alors f n'est pas définie en (a,b).

A3: Si
$$f \in C^1(\mathbb{R}^2)$$
 et $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$ alors $f \notin \mathbf{C}^3(\mathbb{R}^2)$.

____ **A4**: Si $\lim_{(x,y)\to(0,0)} f(x,y)$ existe alors (0,0) est un point d'accumulation de D.

A5: Si
$$\lim_{(x,y)\to(a,b)} f(x,y) = +\infty$$
 alors $\lim_{y\to b} \left(\lim_{x\to a} f(x,y)\right) = \lim_{x\to a} \left(\lim_{y\to b} f(x,y)\right)$.

A6: Si
$$D = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 \ge 1\} \cup \{\left(0, \frac{1}{2}\right)\}$$
 alors $\left(0, \frac{1}{2}\right)$

est un point frontière de D.

II- Compléter:

On appelle distance sur l'ensemble \mathbb{R}^n $(n \geq 1)$, une application notée $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ vérifiant:

$$i)$$

$$ii)$$
 $d(X,Y) = d(Y,X), \forall X, Y \in \mathbb{R}^n$.

III- Expliquer pourquoi la série trigonométrique

$$\sum_{n\geq 1} \frac{\sin\left(nx\right)}{\sqrt{n}},$$

ne peut pas être la série de Fourier d'une fonction localement intégrable et 2π -périodique sur \mathbb{R} .

La réponse de la partie III se fera au verso.

Un corrigé:

Exercice 1:

1) On pose $a_n = \frac{1}{(n+1).7^n} > 0$. On a $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{(n+1).7^n}{(n+2).7^{n+1}} = \lim_{n \to +\infty} \frac{1}{7} \left(\frac{n+1}{n+2}\right) = \frac{1}{7} \boxed{0.5} \Rightarrow R = 7. \boxed{0.25}$

2) Pour déterminer le domaine de convergence on doit faire l'étude aux bornes.

En x = 7: On a $\sum u_n(7) = \sum \frac{1}{n+1}$ diverge (série de Rieman). $\boxed{0,5}$

 $\underline{\text{En } x = -7}$: On a $\sum u_n(-7) = \frac{(-1)^n}{n+1}$ est série altérnée qui satisfait le critère de Leibnitz, donc convergente $\boxed{0,75}$.

En conclusion le domaine de convergence de la série donnée est

$$D = [-7, 7] \leftarrow \boxed{0.25}$$

3) a- On a pour tout x tel que 0 < |x| < 7:

$$f(x) = \int_{0}^{x} \left(\frac{1}{7-t}\right) dt = \frac{1}{7} \int_{0}^{x} \left(\frac{1}{1-\frac{t}{7}}\right) dt = \frac{1}{7} \int_{0}^{x} \sum_{n \ge 0} \left(\frac{t}{7}\right)^{n} dt \quad \boxed{0,5}$$

$$\Rightarrow f(x) = \frac{1}{7} \sum_{n \ge 0} \int_{0}^{x} \left(\frac{t}{7}\right)^{n} dt = \frac{1}{7} \sum_{n \ge 0} \left(\frac{1}{7}\right)^{n} \int_{0}^{x} t^{n} dt = \sum_{n \ge 0} \frac{x^{n+1}}{(n+1)^{n+1}}. \quad \boxed{0,5}$$

En fait on a utilisé que pour tout $y \in]-1,1[$ on a $\sum_{n>0} y^n = \frac{1}{1-y}$.

b- Deduction :

$$\sum_{n\geq 0} \frac{x^n}{(n+1)\,7^n} = \begin{cases} \frac{7}{x} \sum_{n\geq 0} \frac{x^{n+1}}{(n+1)\,7^{n+1}} & \text{si } x \neq 0, \quad \boxed{0,25} \\ 1 & \text{si } x = 0. \quad \boxed{0,25} \end{cases}$$

$$= \begin{cases} \frac{7}{x} f(x) & \text{si } x \neq 0, \quad \boxed{0,25} \\ 1 & \text{si } x = 0. \end{cases} = \begin{cases} \frac{7}{x} \left[\log 7 - \log (7-x)\right] & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Exercice 2:

- 1) Le graphe 0.5
- 2) f est intégrable sur tout férmé borné de \mathbb{R} (elle est localement intégrable sur

 \mathbb{R}) 0,25 donc $\mathcal{F}f$ existe.

Calculons les coéfficients de la série de Fourier associée à f:

*
$$a_0 = \frac{2}{\pi} \int_0^{\pi} \cos(\alpha x) dx = \left[\frac{2}{\alpha \pi} \sin(\alpha x)\right]_0^{\pi} = \frac{2 \sin(\alpha \pi)}{\alpha \pi} \boxed{0,25}$$
.
* $a_n = \frac{2}{\pi} \int_0^{\pi} \cos(\alpha x) \cos(nx) dx = \frac{1}{\pi} \int_0^{\pi} \left[\cos((\alpha + n)x) + \cos((\alpha - n)x)\right] dx$ ie:
$$a_n = \frac{1}{\pi} \left[\frac{\sin((\alpha + n)\pi)}{\alpha + n} + \frac{\sin((\alpha - n)\pi)}{\alpha - n}\right] = (-1)^n \cdot \frac{2\alpha \sin(\alpha \pi)}{\pi (\alpha^2 - n^2)} \boxed{0,5}.$$
Donc $\mathcal{F}f(x) = \frac{a_0}{2} + \sum_{n \ge 1} a_n \cdot \cos(nx) \boxed{0,25}$

Donc
$$\mathcal{F}f(x) = \frac{a_0}{2} + \sum_{n \ge 1} a_n \cdot \cos(nx) \left[\frac{\mathbf{0}, \mathbf{25}}{\mathbf{0}, \mathbf{25}} \right]$$
$$= \frac{\sin(\alpha\pi)}{\alpha\pi} + \sum_{n \ge 1} (-1)^n \cdot \frac{2\alpha \sin(\alpha\pi)}{\pi (\alpha^2 - n^2)} \cdot \cos(nx).$$

3) Appliquons le corrolaire de Dirichlet sur $[0,\pi]$ car f est 2π -périodique paire 0,25

 $\rightsquigarrow f \text{ est } C^1 \text{ par morceaux car:}$

 $\leadsto f$ est continue sur \mathbb{R} (d'après le graphe) donc la série de Fourier $\mathcal{F}(f)$ associée à f est égale à f sur \mathbb{R} $0,\overline{5}$ ie f est developpable en série de Fourier sur \mathbb{R} , en particulier on a:

$$\mathcal{F}(f)(x) = \frac{\sin\left(\alpha\pi\right)}{\alpha\pi} + \sum_{n\geq 1} \left(-1\right)^n \cdot \frac{2\alpha\sin\left(\alpha\pi\right)}{\pi\left(\alpha^2 - n^2\right)} \cdot \cos\left(nx\right) \stackrel{(*)}{=} \cos\left(\alpha x\right); \ \forall x \in [0,\pi] \ \boxed{0,25}.$$

4) Pour déduire la somme S donnée il suffit de remplacer $x=\pi$ 0,25 dans la relation précédente :

$$\cos\left(\alpha\pi\right) = \frac{\sin\left(\alpha\pi\right)}{\alpha\pi} + \left(\frac{2\alpha\sin\left(\alpha\pi\right)}{\pi}\right)S,$$

donc

$$S = \left(\cos\left(\alpha\pi\right) - \frac{\sin\left(\alpha\pi\right)}{\alpha\pi}\right) \left(\frac{\pi}{2\alpha\sin\left(\alpha\pi\right)}\right) \boxed{0.5}$$

3) On remplace dans l'égalité (*) $x = \pi$ et on divise par :sin $(\alpha \pi)$, on obtient:

$$\cot g\left(\alpha\pi\right) = \frac{1}{\alpha\pi} + \sum_{n\geq 1} \frac{2\alpha}{\left(\alpha^2 - n^2\right)\pi}, \ \forall \alpha \in \mathbb{R} - \mathbb{Z} \boxed{0,5}$$

Finalement il suffit de prendre en particulier $\alpha = \frac{x}{\pi}$, (ie $x = \alpha \pi$) on obtient donc : $\forall x \in \mathbb{R} - \pi \mathbb{Z} : \cot g\left(x\right) = \frac{1}{x} + \sum_{n \geq 1} \frac{2x}{x^2 - n^2 \pi^2} \boxed{0,5}.$

$$\forall x \in \mathbb{R} - \pi \mathbb{Z} : \cot g(x) = \frac{1}{x} + \sum_{n \ge 1} \frac{2x}{x^2 - n^2 \pi^2} \boxed{0,5}.$$

Exercice 3:

 $\overline{1)}$ Etude de la continuité de f en (0,0):

A t-on
$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0$$
.

$$\lim_{(x,y)\longrightarrow(0,0)} f(x,y) = \lim_{(x,y)\longrightarrow(0,b)} \frac{|x|^3 y \cdot \exp(x+y)}{x^2 + y^4} = \lim_{(x,y)\longrightarrow(0,0)} \underbrace{\frac{x^2}{x^2 + y^4}}_{\text{bounds}} \cdot \underbrace{\frac{|x| y}{x^2 + y^4}}_{\text{tend vers 1}} \cdot \underbrace{\exp(x+y)}_{\text{tend vers 1}} = \underbrace{\exp(x+y)}_{\text{tend vers 1}}$$

 $_{0} [0,5]$

Donc f est continue en (0,0) 0.25

Etude de la continuité de g en (0,0):

A t-on
$$\lim_{(x,y)\to(0,0)} g(x,y) = g(0,0) = 0.$$

 $\lim_{(x,y)\to(0,0)}g(x,y)=\lim_{(x,y)\to(0,0)}\frac{y.\cos{(x)}}{x^2+y^2}, \text{utilisons le chemin }y=x\boxed{0,5}\,.$

$$\lim_{x \to 0} g(x, x) = \lim_{x \to 0} \frac{\cos(x)}{2x},$$

cette limite n'est pas égale à 0 (elle n'existe pas), ce chemin suffit.

On en conclut que g n'est pas continue en (0,0) 0,25

2) Calculons (si elles existent) les dérivées partielles premières en
$$(0,0)$$
:
$$\frac{\partial f}{\partial x}(0,0) : \lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x-0} = \lim_{x\to 0} \frac{0}{x} = \lim_{x\to 0} 0 = 0 \implies \frac{\partial f}{\partial x}(0,0) = 0$$

$$0 \boxed{0,25}_{\exists}$$

$$\frac{\partial x}{\partial y} = x + 0 \qquad x + 0$$

et composée de fonctions C^1 (polynômes, expo) ce qui implique que f est différentiable 0,5

 \rightsquigarrow En (0,0): Utilisons la définition :

$$f((0,0) + (h_1, h_2)) - f(0,0) - \left[h_1 \cdot \frac{\partial f}{\partial x}(0,0) + h_2 \cdot \frac{\partial f}{\partial y}(0,0)\right] = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial y}(0,0) = \|(h_1, h_2)\| \cdot \varepsilon(h_1, h_2) \cdot \frac{\partial f}{\partial$$

ie $f(h_1, h_2) = ||(h_1, h_2)|| \cdot \varepsilon(h_1, h_2)$, choisissons la norme euclidien

$$\lim_{(h_1,h_2)\to(0,0)} \varepsilon (h_1,h_2) = \lim_{(h_1,h_2)\to(0,0)} \frac{f(h_1,h_2)}{\sqrt{h_1^2 + h_2^2}} = \lim_{(h_1,h_2)\to(0,0)} \frac{|h_1|^3 \cdot h_2 \cdot \exp(h_1 + h_2)}{(h_1^2 + h_2^4) \sqrt{h_1^2 + h_2^2}} \boxed{0,5}.$$

$$\operatorname{Donc} \lim_{(h_1,h_2)\to(0,0)} \varepsilon (h_1,h_2) = \lim_{(x,y)\to(0,0)} \underbrace{\frac{h_1^2}{(h_1^2 + h_2^4)} \cdot \frac{|h_1|}{\sqrt{h_1^2 + h_2^2}}}_{\text{bornée}} \underbrace{h_2 \cdot \exp(x + y)}_{\text{tend vers 0}} = \underbrace{\frac{h_2 \cdot \exp(x + y)}{hornée}}_{\text{tend vers 0}}$$

 $_{0}[0,5]$

On obtient alors $\lim_{(h_1,h_2)\to(0,0)} \varepsilon(h_1,h_2) = 0$ 0,25

On en conclut que f est différentiable en (0,0) 0.25

4) Comme g n'est pas différentiable en (0,0) puisqu'elle n'y est pas continue

 $[0,\!25]$

alors Φ n'est pas différentiable au point (0,0) 0,25

 $1 \overline{) \Psi : \mathbb{R}^2 \longrightarrow} \mathbb{R}^2$ telle que $\Psi(x,y) = (3x + y, 2x + y) = (\Psi_1(x,y), \Psi_2(x,y))$. Soient $(u, v) \in \mathbb{R}^2$ trouvons un unique (x, y) tel que $\Psi(x, y) = (u, v)$.

$$\Psi(x,y) = (u,v) \iff \begin{cases} 3x+y=u \\ 2x+y=v \end{cases} \text{; ce système étant un système linéaire,}$$
 il admet une unique solution qui est
$$\begin{cases} x=u-v \\ y=-2u+3v \end{cases}$$
 est donc

bijective.

de plus $\Psi \in C^1(\mathbb{R}^2)$ car ses composantes le sont (polynômes) $\boxed{0,5}$ de meme $\Psi^{-1}(u,v)=(x,y)=(u-v,-2u+3v)\in C^1(\mathbb{R}^2)$ car ses composantes le sont (polynômes) | 0,25

Remarque: Cette question peut être notée avec la question suivante.

2) Soit l'équation aux dérivées partielles :

$$\frac{\partial f}{\partial x}\left(x,y\right)-3\frac{\partial f}{\partial y}\left(x,y\right)=0 \ \ \text{où} \ \ f\in C^{1}\left(\mathbb{R}^{2}\right).$$

On a $f(x,y) = f(\Psi^{-1}(u,v)) = f \circ \Psi^{-1}(u,v)$. Posons alors $F = f \circ \Psi^{-1}$ ie $f = F \circ \Psi \ \boxed{0.25}$

Exprimons les dérivées partielles de f en fonction des dérivées partielles de F; pour cela vérifions les hypothèses du théorème de composition 0,25 F et Ψ sont C^1 sur \mathbb{R}^2 car Ψ est un difféomorphisme et F est la composée de fonctions de classe C^1 sur \mathbb{R}^2 , donc

$$J_{(x,y)}f = J_{(u,v)}F \times J_{_{(x,y)}}\Psi, \boxed{0,25}$$

ce qui donnera

$$\begin{pmatrix} \frac{\partial f}{\partial x}(x,y) & \frac{\partial f}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} \frac{\partial F}{\partial u}(u,v) & \frac{\partial F}{\partial v}(u,v) \end{pmatrix} \begin{pmatrix} \frac{\partial \Psi_1}{\partial x}(x,y) & \frac{\partial \Psi_1}{\partial y}(x,y) \\ \frac{\partial \Psi_2}{\partial x}(x,y) & \frac{\partial \Psi_2}{\partial x}(x,y) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial F}{\partial u}(u,v) & \frac{\partial F}{\partial v}(u,v) \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \boxed{0,25}$$

On obtient

$$\begin{cases}
\frac{\partial f}{\partial x} = 3\frac{\partial F}{\partial u} + 2\frac{\partial F}{\partial v} \\
\frac{\partial f}{\partial u} = \frac{\partial F}{\partial u} + \frac{\partial F}{\partial v}
\end{cases}$$
(0,25)

Remplaçons dans l'EDP

$$\frac{\partial f}{\partial x} - 3 \frac{\partial f}{\partial y} = 0 \iff \frac{\partial F}{\partial v} = 0 \iff F(u, v) = H(u) \text{ où } H \in C^1(\mathbb{R}) \quad \boxed{0,5}$$

Les solutions de l'EDP sont donc les fonctions qui s'écrivent:

$$f(x,y) = H(3x + y) / H \in C^{1}(\mathbb{R})$$
 0.25

Questionnaire:

I- Soit f une application, $f:D\subseteq\mathbb{R}^2\to\mathbb{R},\,D\neq\varnothing$. Pour chaque affirmation répondre (sans justifier) par Σ si elle est toujours vraie ou par Σ sinon. 0.25 par bonne réponse.

F A1: Si
$$\lim_{x\to 0} f(x,kx) = 0$$
, $\forall k \in \mathbb{R}$ alors $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

F A2: Si f est discontinue en (a,b) alors f n'est pas définie en (a,b).

$$oxed{\mathbf{N}}$$
 A3: Si $f \in C^1(\mathbb{R}^2)$ et $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$ alors $f \notin \mathbf{C}^3(\mathbb{R}^2)$.

est un point frontière de D.

II- Compléter:

On appelle distance sur l'ensemble \mathbb{R}^n $(n \geq 1)$, une application notée $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ $(X,Y) \to d(X,Y)$ vérifiant:

$$i) \ d(X,Y) = 0 \iff X = Y, \ \forall X, Y \in \mathbb{R}^n. \boxed{0.25}$$

$$ii)$$
 $d(X,Y) = d(Y,X), \forall X, Y \in \mathbb{R}^n.$

$$iii) \ d(X,Y) \le d(X,Z) + d(Z,Y) \ \forall X,Y,Z \in \mathbb{R}^n.$$

III- Car d'après le théorème de Parseval la série numérique

$$\sum_{n\geq 1}\frac{1}{n},$$

serait convergente etceci n'est pas le cas. $\boxed{0,5}$