Derivation of Maxwell's Equations from Topological Flux Relations in the Spacetime Klein Bottle Hypothesis

James Cupps

July 18, 2025

1 Introduction

The Spacetime Klein Bottle (SKB) hypothesis posits that spacetime is a 4D pseudo-Riemannian manifold M with Lorentzian metric $g_{\mu\nu}$, and elementary particles are non-orientable 4D submanifolds $K_p \subset M$ with Klein bottle-like topology, characterized by quantized twists t_p . These submanifolds act as topological defects, and physical properties like charge emerge from topological invariants. Specifically, electric charge is defined via flux quantization:

$$Q = \frac{1}{2\pi} \int_{\partial K_p} F,$$

where F is a 2-form representing the electromagnetic field strength, and ∂K_p is the boundary of the submanifold K_p (a 3D hypersurface in the 4D embedding).

The claim is that Maxwell's equations emerge naturally from topological flux relations—namely, conservation and quantization of flux through surfaces, enforced by the topology of M and its defects—without invoking gauge postulates (i.e., no a priori introduction of a U(1) connection A or bundle). This derivation is presented in relativistic covariant form using differential forms on M, leveraging de Rham cohomology and Stokes' theorem in the presence of defects.

2 Topological Preliminaries

Definition 1 (Spacetime Manifold and Defects). The spacetime manifold M is a four-dimensional pseudo-Riemannian manifold with Lorentzian metric $g_{\mu\nu}$. Particle-like defects are non-orientable submanifolds $K_p \subset M$ with Klein bottle topology, characterized by twists t_p in spatiotemporal planes. The boundary ∂K_p is a 3D hypersurface.

Axiom 1 (Flux Quantization). For any closed 2-surface $S \subset M$ enclosing a defect K_p , the flux $\Phi = \int_S F$ is quantized as $\Phi = 2\pi Q$, where Q is determined by the topological invariant (twist t_p or holonomy phase).

Axiom 2 (Flux Conservation). For any closed surface not enclosing defects, $\int_S F = 0$. Flux is conserved along defect worldlines, enforced by bordism classes (e.g., $k \mod 16$).

Axiom 3 (Causal Compensation Principle (CCP)). Closed timelike curves (CTCs) in K_p are confined and balanced by twists; unresolved CTCs lead to collapse, preserving macroscopic causality.

The electromagnetic field is modeled by a 2-form F on $M \setminus K_p$, with cohomology class $[F] \in H^2_{dR}(M \setminus K_p, \mathbb{R})$. The Lorentzian metric induces the Hodge star \star , so $\star F$ is the dual 2-form.

3 Derivation of Homogeneous Maxwell Equations

The homogeneous equations are dF = 0 and $d(\star F) = 0$ away from defects.

Theorem 1 (Closedness of F). dF = 0 on $M \setminus K_p$.

Proof. Consider any 3-volume $V \subset M \setminus K_p$ with boundary ∂V . By Axiom 2 (flux conservation), since no defects are enclosed, $\int_{\partial V} F = 0$. By Stokes' theorem,

$$\int_{\partial V} F = \int_{V} dF = 0$$

for all such V. As V is arbitrary, dF = 0 pointwise. Topologically, the trivial cohomology away from defects (no non-trivial 3-cycles) ensures no global obstructions.

Corollary 1 (No Magnetic Monopoles and Faraday's Law). In components, dF = 0 implies $\partial_{[\lambda} F_{\mu\nu]} = 0$, yielding $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$.

Theorem 2 (Co-closedness of F). $d(\star F) = 0$ on $M \setminus K_p$.

Proof. The dual flux $\int_S \star F$ must conserve by CCP (Axiom 3), which balances CTCs and preserves Lorentz invariance. Thus, $\int_{\partial V} \star F = 0$ for defect-free V. By Stokes' theorem,

$$\int_{V} d(\star F) = 0,$$

implying $d(\star F) = 0$ pointwise.

4 Derivation of Inhomogeneous Maxwell Equations

The inhomogeneous equation is $d(\star F) = \mu_0 J$, where J is a 3-form current supported on defects.

Theorem 3 (Sourced Dual Equation). $d(\star F) = \mu_0 J$ globally, with J localized on K_p .

Proof. Consider a 3-volume V enclosing K_p . By Axiom 1, $\int_{\partial V} \star F = 2\pi Q$ (quantized flux, rescaled). In singular manifolds, generalized Stokes' theorem gives

$$\int_{\partial V} \star F = \int_{V} d(\star F) + \int_{K_{\tau} \cap V} \delta_{K_{\tau}},$$

where δ_{K_p} is a delta-form on the defect. Away from K_p , $d(\star F) = 0$ (Theorem above), so the flux is sourced by the defect: $\int_{\partial V} \star F = \int_{K_p} \mu_0 J$, with $J = Q \delta^{(3)}(x - x_p) dx^0 \wedge dx^1 \wedge dx^2$ in approximation. For arbitrary V,

$$d(\star F) = \mu_0 J$$

pointwise, with J fixed by topology (e.g., bordism class for charge).

Corollary 2 (Gauss's Law and Ampère-Maxwell Law). In components, $\partial^{\mu} F_{\mu\nu} = \mu_0 J_{\nu}$, yielding $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$ and $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \partial_t \mathbf{E}$.

5 Emergence Without Gauge Postulates

Traditional theory postulates F=dA with gauge freedom. Here, derivations use only: - Stokes' theorem. - Flux axioms. - Defect singularities.

Gauge-like invariance emerges from manifold geometry (e.g., holonomies from parallel transport, basis changes on ∂K_p).

6 Conclusion

Maxwell's equations emerge from SKB topology. Extensions to other forces follow similarly.