Name: \_\_\_\_\_\_Teacher: \_\_\_\_\_

Section One: Multiple Choice (10 marks)

1. According to the following energy diagram, which of the following represents the activation energy and the heat of reaction for the **REVERSE** reaction?



reaction path

|    | Activation<br>Energy | Heat of<br>Reaction |
|----|----------------------|---------------------|
| A. | R                    | S                   |
| B. | P + Q                | Т                   |
| C. | R                    | Q                   |
| D. | Q                    | S                   |

The reaction below is exothermic

$$A+B \longrightarrow C+D$$

The total enthalpy (heat content) of the products is:

- A. higher than the reactants
- B. different for different elements
- C. the same for all compounds
- D. lower than that of the reactants

- 3. Reaction rate is **NOT** increased by
  - A. heating the reagents
  - B. adding a catalyst
  - C. adding larger lumps of reagent
  - D. stirring a reaction mixture
- Q4. The rate at which a chemical dissolves is found to be proportional to the surface area in contact with the solvent.



A cubic shaped crystal of a chemical which measures 2cm x 2cm x 2cm takes 10 minutes dissolve. A similar crystal of the same chemical was cut along the lines shown above. How long will it take all 8 pieces to dissolve?

- A. about 5 minutes
- B. about 7.5 minutes
- C. about 10 minutes
- D. about 20 minutes
- Q5. The reaction between hydrazine and hydrogen peroxide, used to propel rockets, is represented by the following equation:

$$N_2H_4 + 2H_2O_2 \longrightarrow N_2 + 4H_2O$$
  $\Delta H = -684 \text{ kJ}$ 

1368 kJ of heat is released by this reaction if:

- A. one mole of hydrazine is used
- B. 64 g of hydrazine is used
- C. 28 g of nitrogen is formed
- D. 28 mole of nitrogen is formed.
- Q6. Which of the following statements is **TRUE**?
  - A. Exothermic reactions slow down when the reactants are heated.
  - B. Only endothermic reactions go faster when the reactants are heated..
  - C. Only exothermic reactions proceed spontaneously at room temperature.
  - D. The rates of all chemical reactions increase with temperature.

$$2NO_{2(g)} \longrightarrow N_{2(g)} + 2O_{2(g)} \quad \triangle H = +33.7 \text{ kJ mol}^{-1}$$

Which graph below could represent the changes of potential energy during the course of this reaction?



- Q8. In which of the following changes at constant temperature does the entropy of the system **NOT** increase?
  - A. decomposition of one mole of hydrogen peroxide:

$$H_2O_{2(I)}$$
  $\longrightarrow$   $H_2O_{(I)} + \frac{1}{2}O_{2(g)}$ 

B. decomposition of two moles of ammonia:

C. formation of one mole of water from its elements:

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(I)}$$

D. reaction of one mole of zinc with hydrochloric acid:

$$Zn_{(s)} + 2HCI_{(aq)} \longrightarrow ZnCI_{2(aq)} + H_{2(g)}$$

- Q9. When a liquid evaporates:
  - A. there is a decrease in entropy
  - B. the value for  $\Delta H$  for the process is negative
  - C. the process can be described as homogenous
  - D. none of the above.

- Q10. A mixture of oxygen and hydrogen gases do not react rapidly at room temperature because:
  - A.  $\Delta H$  is small and negative
  - B. Ea is large
  - C.  $\Delta H$  is small and positive
  - D. Ea is small.

## **End of Section One**

## Section Two: Short answer

(15 marks)

11. Ethene can be produced from ethane by heating it in the presence of a catalyst. The reaction can be represented by the equation:

$$C_2H_6(g) = C_2H_4(g) + H_2(g); \Delta H = +120 \text{ kJ mol}^{-1}$$

On the axes below

- A. draw a potential energy diagram for the uncatalysed reaction if the activation energy is 180 kJ mol<sup>-1</sup>.
- B. using a dotted line, draw a possible potential energy diagram for the same reaction in the presence of a catalyst.



| <b>(I)</b>                               | $2C_{(s)} + O_{2(g)}$ -                              | <b>→ 2CO</b> (g)                    | ∆ <b>H</b> = <b>-22</b>              | 2 kJ                                      |            |                 |
|------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|------------|-----------------|
| (II)                                     | $C_{(s)} + O_{2(g)}$                                 | <b>CO</b> <sub>2(g)</sub>           | ∆ <b>H</b> = −39                     | 3 kJ                                      |            |                 |
| Use the inf<br>the reaction              | ormation given ir<br>n:                              | n equations (I) a                   | and (II) to ca                       | lculate ti                                | ne enthalp | oy change (/    |
|                                          | $C_{(s)} + CO_{2(g)}$                                | <b>→</b> 2CO <sub>(g)</sub>         |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
| •                                        |                                                      |                                     | ******                               |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            |                 |
|                                          |                                                      |                                     |                                      |                                           |            | (4 mark         |
| Propene (Ca                              | зН <sub>6</sub> ) has a Heat o                       | of Combustion or                    | ΔH = -2056                           | i kJ mol                                  | -1 while   | (4 mark         |
| Propene (Cabutene (C4H                   | BH6) has a Heat o                                    | of Combustion or<br>Combustion or ∆ | ΔH = −2056<br>H = −2715 k            | kJ mol <sup>-1</sup> .                    | -1 while   | (4 mark         |
| butene (C₄H<br>a) Write a b              | l <sub>8</sub> ) has a Heat of (<br>palanced chemica | Combustion or ∆                     | .H = -2715 k                         | <b>√J mol</b> -1 <sub>.</sub><br>combusti | on of prop |                 |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or ∆                     | . <b>H = −2715 k</b><br>e complete c | <b>d mol</b> ⁻¹.                          | on of prop | ene.            |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |
| butene (C <sub>4</sub> H<br>a) Write a b | l <sub>8</sub> ) has a Heat of (                     | Combustion or Δ                     | . <b>H = −2715 k</b><br>e complete c | k <b>J mol</b> -1                         | on of prop | ene.<br>(1 mark |

|             | nzyme <i>polyphenoxidase</i> is involved in the oxidation reaction that causes sl<br>rown in air. Explain the following observations. | iced apple to |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------|
| A.          | When the apple is first cut open the apple is not brown.                                                                              |               |
|             |                                                                                                                                       |               |
| В.          | Browning is much slower when the apple is placed in the fridge.                                                                       | (1 mark)      |
|             |                                                                                                                                       | (1 mark)      |
| C. does.    | Apple that has been pulped in a food mixer turns brown much faster than                                                               | sliced apple  |
|             |                                                                                                                                       |               |
| D.<br>lemon | The browning reaction does not take place if the sliced apple is dipped in juice straight away.                                       | (2 marks)     |
|             |                                                                                                                                       | (1 mark)      |

14.

**End of Section Two** 

| Sect | ion Th       | nree: Extended answer                                                                                            | (10 marks                              |
|------|--------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 15.  | Mar<br>the   | nganese may be prepared by the reduction of manganese (II, III) oxide M<br>following equation                    | 1n₃O₄ according                        |
|      |              | 3Mn <sub>3</sub> O <sub>4</sub> + 8Al → 9Mn + 4Al <sub>2</sub> O <sub>3</sub> ; $\Delta H = -2510 \text{ kJ mo}$ | <b> -1</b>                             |
|      | The          | notation $\Delta H = -2510 \text{ kJ mol}^{-1}$ refers to the enthalpy change per mole of                        | Mn <sub>3</sub> O <sub>4</sub> reduced |
|      | A.           | Explain what is meant by the notation $\Delta H$ or the term enthalpy change                                     | ÷.                                     |
|      | <del>-</del> |                                                                                                                  | (1 mark)                               |
|      | B.           | State whether this reaction is endothermic or exothermic. Explain you                                            | ranswer                                |
|      |              | endothermic or exothermic                                                                                        | (1 mark)                               |
|      |              | Explanation:                                                                                                     |                                        |
|      | C.           | Calculate the mass of Al required to reduce (react with) 10.0 g of Mn <sub>3</sub> 0                             | (1 mark)<br>O <sub>4</sub>             |
|      |              |                                                                                                                  | (3 marks)                              |
|      | D.           | Calculate the enthalpy change for the reduction of 1.00 g of Mn <sub>3</sub> O <sub>4</sub>                      |                                        |
|      |              |                                                                                                                  | (2 marks)                              |
|      | E.           | Calculate the number of moles of $Al_2O_3$ resulting from the reduction of $Mn_3O_4$ .                           | 1.00 kg of                             |

(2 marks)

**RATES AND ENERGY:** 

Answer all questions

Section One: MULTIPLE CHOICE QUESTIONS (10 marks)

| 1A | 2D | 3C | 4A | 5B | 6D | 7B | 8C | 9D | 10B |
|----|----|----|----|----|----|----|----|----|-----|

## Section Two: Short Answer (15 marks)

12. Ethene can be produced from ethane by heating it in the presence of a catalyst. The reaction can be represented by the equation:

$$C_2H_{6(g)} = C_2H_{4(g)} + H_{2(g)}; \Delta H = +120 \text{ kJ mol}^{-1}$$

On the axes below

- A. draw a potential energy diagram for the uncatalysed reaction if the activation energy is 180 kJ mol<sup>-1</sup>.
- B. using a dotted line, draw a possible potential energy diagram for the same reaction in the presence of a catalyst.



(3 marks)



| The enzyme <i>polyphenoxidase</i> is involved in the oxidation reaction that causes sliturn brown in air. Explain the following observations. | ced apple to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. When the apple is first cut open the apple is not brown.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oxygen has not had time to react with apple. Or any comment about DURATION                                                                    | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B. Browning is much slower when the apple is placed in the fridge.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature decreased making molecules move slowly less collisions per unit ti                                                                | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OR; Molecules have less than Activation energy required to react                                                                              | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                               | (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C. Apple that has been pulped in a food mixer turns brown much faster than does.                                                              | sliced apple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Increased surface area in pulped apple [1]                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Increase number of collisions per unit time [1]                                                                                               | 1 Table 1 Tabl |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D. The browning reaction does not take place if the sliced apple is dipped in lemon juice straight away.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lemon juice denatures the enzyme catalyst [1]                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                               | (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

14.

**End of Section Two** 

(2 marks)

| 14. |                     | anese may be prepared by the reduction of manganese (II, III) oxide Mn <sub>3</sub> C<br>llowing equation            | ) <sub>4</sub> according to                     |
|-----|---------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|     |                     | $3Mn_3O_4 + 8AI \longrightarrow 9Mn + 4AI_2O_3$ ; $\Delta H = -2510 \text{ kJ mol}^{-1}$                             |                                                 |
|     | The n               | otation $\Delta H = -2510 \text{ kJ mol}^{-1}$ refers to the enthalpy change per mole of Mns                         | 3O4 reduced.                                    |
|     | A.                  | Explain what is meant by the notation $\Delta H$ or the term enthalpy change.                                        |                                                 |
|     |                     | et change in energy, from the start of the reaction until the end [1] stored vules involved. [1]                     |                                                 |
|     | В.                  | State whether this reaction is endothermic or exothermic. Explain your an                                            | (1 mark)                                        |
|     | Б.                  |                                                                                                                      |                                                 |
|     |                     | endothermic or exothermic exothermic                                                                                 | _(1 mark)                                       |
|     |                     | Explanation: Because the molecules have lost stored bond energy overal                                               | <u>ll</u><br>(1 mark)                           |
|     | C.                  | Calculate the mass of Al required to reduce (react with) 10.0 g of Mn <sub>3</sub> O <sub>4</sub>                    |                                                 |
|     | <u>n(Mn₃</u>        | $O_4$ ) = m(Mn <sub>3</sub> O <sub>4</sub> )/ M(Mn <sub>3</sub> O <sub>4</sub> ) = 10 / 228.82 = 0.0437024 moles [1] |                                                 |
|     | <u>n(Al) =</u>      | = 8/3 n(Mn <sub>3</sub> O <sub>4</sub> ) = 0.1165399 moles [1]                                                       |                                                 |
|     | m(Al)               | $= n(AI) \times M(AI) = 26.98 \times n(AI) = 3.14 g$ [1]                                                             | _                                               |
|     |                     |                                                                                                                      | (3 marks)                                       |
|     | D.                  | Calculate the enthalpy change for the reduction of 1.00 g of Mn <sub>3</sub> O <sub>4</sub>                          | ,                                               |
|     | n(Mn <sub>3</sub>   | $O_4$ ) = m(Mn <sub>3</sub> O <sub>4</sub> )/M(Mn <sub>3</sub> O <sub>4</sub> ) = 1g / 228.82 = 0.0043702 [1]        |                                                 |
|     |                     | H/g = n (Mn3O4) × ΔH/mol = 0.0043702 × -2510 = 10.969202 kJ/g [1]                                                    | The same safe safe safe safe safe safe safe saf |
|     | totar               | 11/g = 11 (1811/304) X \(\text{A1 (18110)} = 0.0040102 \(\text{X} - 2010 = 10.303202 \(\text{R0/g} \) [1]            |                                                 |
|     |                     |                                                                                                                      | (2 marks)                                       |
|     | E.                  | Calculate the number of moles of $Al_2O_3$ resulting from the reduction of 1.0 $Mn_3O_4$ .                           | 00 kg of                                        |
|     | <u>n(Mn₃</u>        | $O_4$ ) = m(Mn <sub>3</sub> O <sub>4</sub> )/M(Mn <sub>3</sub> O <sub>4</sub> ) = 1000g / 228.82 = 4.3702 moles [1]  |                                                 |
|     | n(Al <sub>2</sub> C | 0 <sub>3</sub> ) = 4/3 n(Mn <sub>3</sub> O <sub>4</sub> ) = 5.826996 moles <b>[1]</b>                                |                                                 |