# 数字逻辑与处理器基础知识与方法

 $\boldsymbol{T}^T\boldsymbol{T}$ 

## 2024年9月23日

|   | 目录          |   | 2.1 | 从电路到逻辑门           |  |  |  |
|---|-------------|---|-----|-------------------|--|--|--|
|   |             |   | 2.2 | 组合逻辑 3            |  |  |  |
| 1 | 布尔代数        | 2 |     | 2.2.1 组合逻辑电路的分析方法 |  |  |  |
|   | 1.1 数的编码与表示 | 2 |     | 2.2.2 组合逻辑电路的设计过程 |  |  |  |
|   |             |   |     | 2.2.3 组合逻辑电路的评价指标 |  |  |  |
| 2 | 逻辑计算        | 3 |     | 2.2.4 组合逻辑电路的设计实例 |  |  |  |

1 布尔代数 2

### 1 布尔代数

#### 1.1 数的编码与表示

### 定义 1.1.1. 二进制

二进制是基数为 2, 只有两个数码 0 和 1 的数制。二进制数中, 每一个数码称为一个二进制位 (bit), 权值最小的二进制位称为最低位 (LSB), 权值最大的二进制位称为最高位 (MSB)。

所有的 4-bit 二进制数如表 1.1 所示。

表 1.1: 4-bit 二进制数

|   | B | IN |   | DEC | HEX |   | B | IN |   | DEC | I |
|---|---|----|---|-----|-----|---|---|----|---|-----|---|
| 0 | 0 | 0  | 0 | 0   | 0   | 1 | 0 | 0  | 0 | 8   |   |
| 0 | 0 | 0  | 1 | 1   | 1   | 1 | 0 | 0  | 1 | 9   |   |
| 0 | 0 | 1  | 0 | 2   | 2   | 1 | 0 | 1  | 0 | 10  |   |
| 0 | 0 | 1  | 1 | 3   | 3   | 1 | 0 | 1  | 1 | 11  |   |
| 0 | 1 | 0  | 0 | 4   | 4   | 1 | 1 | 0  | 0 | 12  |   |
| 0 | 1 | 0  | 1 | 5   | 5   | 1 | 1 | 0  | 1 | 13  |   |
| 0 | 1 | 1  | 0 | 6   | 6   | 1 | 1 | 1  | 0 | 14  |   |
| 0 | 1 | 1  | 1 | 7   | 7   | 1 | 1 | 1  | 1 | 15  |   |

二进制数的**左移**运算和**右移**运算分别是将二进制数的所有位向左或向右移动一位,移动后的空位补0。左移一位相当于乘2,右移一位相当于除2。

### 定义 1.1.2. BCD 码

BCD (binary-coded decimal) 码是二进制编码的一种,用 4 位二进制数表示一个十进制数的一位。8421 BCD 码的编码规则是:用二进制数的 0-9 的编码表示十进制数的 0-9,不使用二进制数的 10-15的编码。

由于 8421 BCD 码是**有权码**, 其加减法运算可以直接使用二进制数和十进制数的加减法运算规则。

例题 1.1.1. (1)  $34_{10} + 45_{10} = 0011 \, 0100_{BCD} + 0100 \, 0101_{BCD} = 0111 \, 1001_{BCD} = 79_{10}$ 。
(2)  $14_{10} + 9_{10} = 0001 \, 0100_{BCD} + 0000 \, 1001_{BCD} = 0001 \, 1101_{BCD}$  並位  $= 0010 \, 0011_{BCD} = 23_{10}$ 。

8个二进制位称为一个字节。

2 逻辑计算 3

# 2 逻辑计算

### 2.1 从电路到逻辑门

### 定义 2.1.1. 逻辑门

逻辑门是一种能够实现逻辑运算的电路, 其输入和输出均为逻辑值。逻辑门的输入和输出均为二进制数, 输入的二进制数称为输入变量, 输出的二进制数称为输出变量。

常用的逻辑门如表 2.2 所示。

表 2.2: 常用逻辑门

| 逻辑门  | 符号                                      | 记号   | 运算                          | 逻辑门 | 符号                    | 记号  | <br>运算           |
|------|-----------------------------------------|------|-----------------------------|-----|-----------------------|-----|------------------|
| 非门   | A — Y                                   | NOT  | $Y = \overline{A}$          | 缓冲器 | $A \longrightarrow Y$ | BUF | Y = A            |
| 与非门  | A = B                                   | NAND | $Y = \overline{A \cdot B}$  | 与门  | $A = \bigcup_{B} - Y$ | AND | $Y = A \cdot B$  |
| 或非门  | $A \longrightarrow B \longrightarrow Y$ | NOR  | $Y = \overline{A + B}$      | 或门  | $A \longrightarrow Y$ | OR  | Y = A + B        |
| 异或非门 | $A \xrightarrow{B} Y$                   | XNOR | $Y = \overline{A \oplus B}$ | 异或门 | $A \longrightarrow Y$ | XOR | $Y = A \oplus B$ |

### 元件 2.1. 传输门



特性 传输门是一种多输入单输出的逻辑门,其输出为与或逻辑(AND-OR)运算的结果。

### 2.2 组合逻辑

### 定义 2.2.1. 组合逻辑

**组合逻辑**是一种逻辑电路, 其输出仅取决于当前的输入及延时, 与电路的历史状态无关。组合逻辑电路中没有反馈回路。

2 逻辑计算 4

- 2.2.1 组合逻辑电路的分析方法
- 2.2.2 组合逻辑电路的设计过程
- 2.2.3 组合逻辑电路的评价指标
- 2.2.4 组合逻辑电路的设计实例
- **A)** 编码器(Encoder) 用 m 个二进制位对  $n \le 2^m$  个输入信号进行编码,得到 m 位二进制代码的电路。
- B) 译码器(Decoder) 用n 个二进制位对 $m \le log_2 n$  个输入信号进行译码,得到n 位二进制代码的电路。
- C) **多路选择器(Multiplexer,MUX)** 用 n 个控制信号对  $2^n$  个输入信号进行选择,得到一个输出信号的电路。
  - D) 加法器 用于实现二进制数的加法运算。

**例题** 2.2.1. 设计一个 4-bit 全加器电路。

解. 1-bit 全加器有 3 个输入信号 (A、B 和进位信号  $C_{\rm in}$ )、2 个输出信号 (本位的和 S、进位输出信号  $C_{\rm out}$ , 其 真值表如表 2.3 所示。

表 2.3: 1-bit 全加器真值表

| A | В | $C_{\rm in}$ | S | $C_{\text{out}}$ |
|---|---|--------------|---|------------------|
| 0 | 0 | 0            | 0 | 0                |
| 0 | 0 | 1            | 1 | 0                |
| 0 | 1 | 0            | 1 | 0                |
| 0 | 1 | 1            | 0 | 1                |
| 1 | 0 | 0            | 1 | 0                |
| 1 | 0 | 1            | 0 | 1                |
| 1 | 1 | 0            | 0 | 1                |
| 1 | 1 | 1            | 1 | 1                |
| 则 |   |              |   |                  |

 $^{\circ}$