

YOODS

ソフトウェア インストール

RoVIの環境を構築しましょう

Copyrights YOODS Co. Ltd. All Right Reserver

A1. R o V I のインストール 1. PCの準備 CPU Intel Core 系 CPU2コア以上(4コア推奨) NIC Jumbo/パット協会 Memory 4G以上 OS Ubuntu 16.04 LinuxMint 18.XX Kinetic 2. RoVI のダウンロード cd - /catkin_ws/src git clone -b devel https://github.com/YOODS/rovi.git ※上記ではdevelブランチをインストールしています 3. パッケージのインストール、ビルド RoVI を実行するために必要なパッケージをインストールし、ビルドします。 ... cd rovi ../Install.sh Copyrights YOODS Co. Ltd. All Right Reserved

3 Dカメラ(YCAM3D) 接続と起動

カメラをPCと接続し、起動してみましょう

Copyright® YOODS Co. Ltd., All Right Reserved

A2. 3 Dカメラの接続

YOODS

- 1. 3 Dカメラの接続
- (1) YCAM3D の図の①と PC を GigE LAN ケーブルで接続します。
- (2) YCAM3D の図の②と電源アダプタを接続し、電源を投入します。

- ③ Power:本体に電源が供給されると点灯します。 点灯しない場合は故障です。
- ④ Ethernet Link: PC と Ethernet 接続した際に点灯しま
- ⑤ Packet:パケット送受信の際に点灯します。
- 2. GigEインターフェースの設定

PC のインターフェースを設定します。

0122 21 .	A CENT OF S	
項目	設定値	備考
アドレス	192.168.222.XX	XXは10以外
ネットマスク	24	
ゲートウェイ	_	設定不要
MTU	8192	Jumboパケット対応のため

A2. 3 Dカメラの接続確認

YOODS

- 3. 3 Dカメラの接続確認
- (1) PC と YCAM3D がネットワーク接続できているかを確認します。
- (2) YCAM3D が起動しているかを確認します。

YCAM3D が起動している場合は、カメラの ID を表示します。

RoVIの起動

RoVIを接続し、 ROSの動作状況を確認してみましょう

Copyright® YOODS Co. Ltd., All Right Reserved

A3. RoVIの起動

YOODS

1. RoVIの起動

YCAM3D は、 SXGA と VGA の2種類の解像度に対応しており、起動 方法が異なります。

		解像度
	SXGA	1280 × 1024
1	VGA	640 × 480

(1) RoVI を起動します。

✓ SXGA の場合

roslaunch rovi yca

✓ VGA の場合

A3. ROSの動作状況確認

YOODS

2. ROS ノードの確認

新規にターミナルを起動し、ROSの動作状況を確認します。

アクティブなノードの一覧を表示します。

RoVI にて起動した下記ノードも含まれます。

/rovi/genpc_node /rovi/left/remap_node /rovi/right/remap_node /rovi/ycam3d_node

3. ROS Topic の確認

アクティブな Toipc の一覧を表示します。

RoVI にて設定した Topic を確認できます。

rovi/r c toxxeの/r Topic を確認をとるよう。 /rovi/reft/mage_raw ・・・左カメラ Raw 画像 /rovi/right/ image_raw ・・・右カメラ Raw 画像 すべての Toipc は、別紙の補足 「ROS Topic 一覧」をご参照ください。

	4 1/2 2 2 2	
A3. ROSの動作状況確認	YOODS	
5. ROS rosparam の確認 ROVI 起動時に下記パラメータを rosparam に展開しています。		
rosparam list パラメータ名の一覧を表示します。		
RoVI にて設定した rosparam を確認できます。		
Commission VOODS Co. Lad. All Disable Doorses		

Copyrighto YOODS Co. Ltd., All Right Reserved

2 D画像表示 YCAM3Dのライブ機能で 2 D画像を表示してみましょう。

YOODS

A4. ライブ YOODS

1. ライブ切替

ライブ機能は、 rosparam にて、停止 / 開始 を切替えることができま す。ライブを開始した場合、 YCAM3D は定期的に撮影を行います。

rosparam	Description	Default
/rovi/ycam/Mode	ライブ [1:停止 / 2:開始]	停止

※ Default は、yaml ファイルにて変更可能

(1) カメラ解像度を SXGA にて、RoVI を起動します。

(2) ライブを開始します。

新規にターミナルを起動し、rosparam の設定値を変更します。

YCAM3D から定期的に光を照射していることが確認できます。 (デフォルトが、ストロボ ON の場合)

(3) ストロボ ON/OFF

1-ON/0-OFFに切り替えることができます。

Copyright® YOODS Co. Ltd., All Right Reserved

A4. ライブの2D画像

YOODS

2. ライブの2D画像

ライブ中は、 YCAM3Dで撮影した 2 D画像を、 Topic にPublish していま

す。Topicはカメラごとの RAW 画像とレクティファイ画像に対応していま

す。

topic	type	Description
/rovi/left/image_raw	sensor_msgs::lmage	左カメラ RAW 画像(MONO8)
/rovi/left/image_rect	sensor_msgs::lmage	左カメラ レクティファイ画像(MONO8 / RGB8) ※
/rovi/left/image_rect1	sensor_msgs::lmage	左カメラ レクティファイ画像 1(MONO8)
/rovi/right/image_raw		右カメラ RAW 画像(MONO8)
/rovi/right/image_rect	sensor_msgs::lmage	右カメラ レクティファイ画像(MONO8 / RGB8) ※
/rovi/right/image_rect1	sensor_msgs::lmage	右カメラ レクティファイ画像 1(MONO8)

※ レクティファイ画像は、rosparam の「 /rovi/ycam/DrawCameraOrigin 」により、配信する画像が

カメラ原点描画有無

False: 措面なし。レクティファイ画像 l と同等 True: 描画あり。 3 次元の中心位置をクロスで描画します。 マーカーの都合でカラー画像になります。

Copyright∘ YOODS Co. Ltd., All Right Reserved

A4.2D画像の表示

YOODS

3.2 D画像の表示

ROS の image_view にて、 YCAM3D で撮影した2 D画像を表示しま す。

(1) 新規にターミナルを起動し、image_view を起動します。

引数に表示する画像の Topic を指定します。

(2) image_view のウィンドウを表示します。

(3) ライブを停止します。

被写体を変化しても、ウィンドウの画像は変化しません。

A4. 撮影条件の変更

YOODS

4. ストロボ ON/OFF

rosparam にて、ストロボ ON/OFF を切替えることができます。

rosparam	Description	Default
/rovi/ycam/Strobe	ストロボ [0:OFF / 1:ON]	ON

※ Default は、yaml ファイルにて変更可能

(1) ライブを開始します。

rosparam set /rovi/ycam/Mode 2

(2) ストロボ ON/OFF を切替えます。

✓ ストロボ OFF の場合

image_view のウィンドウの画像が暗くなります。

✓ ストロボ ON の場合

rosparam set /rovi/vcam/Strobe :

image_view のウィンドウの画像が明るくなります。

Copyright® YOODS Co. Ltd., All Right Reserved

A4. 撮影条件の変更

YOODS

5. 明るさ調整

rosparam を使って、下記 3 パターンの方法で明るさを調整することができます。

rosparam	Description
/rovi/ycam/	露光レベル [1 - 6]
ExposureTimeLevel	
/rovi/ycam/camera/Gain	デジタルゲイン [0-100]
/rovi/ycam/projector/	プロジェクタ発光強度 [0 - 255]
Intensity	

画像が黒つぶれしている場合は、下記の順で調整します。

- ① プロジェクタの発行強度を上げる。
- ② デジタルゲインを上げる。上げすぎると、白黒が反転する。
- ③ 露光レベルを上げる。外乱に弱く、撮影時間が長くなる。

画像が白くハレーションしている場合は、照明などの環境光を遮り、上記とは逆の順に、各パラメータを下げて調整します。

Copyrights YOODS Co. Ltd. All Right Reserved

YOODS

二值化画像表示

ライブの撮影画像を二値化して表示してみましょう。

YOODS

YOODS

RoVIの 3D点群撮影機能

RoVI にて提供する3D点群撮影機能を説明します。

Copyrights YOODS Co. Ltd. All Right Reserves

A6.3D点群撮影

- 1. 3 D 点群撮影
- 3 D点群撮影は、1 4 枚の2 D撮影画像(以降、位相シフト撮影)により、
- 3 D点群データを生成します。
- 3 D点群撮影の要求は、 Topic とサービスの両方に対応しています。
- ✓ Topic を使用する場合
- 3 D点群撮影要求の Topic を Publish します。

3 ロ 本 併 取 が 安 小・	DENO TOPIC & LUDIISTI O & 90		
Topic	Type	Description	
/rovi/X1	sensor_msgs::Bool	3D点群撮影要求 ※メッセージは don't care	
/rovi/Y1	sensor msgs::Bool	3 D 点群撮影要求の応答 [True:成功 / False:失敗]	

- ✓ サービスを使用する場合
- 3 D点群撮影要求のサービスをコールします。

サービス	Type	Description
/rovi/pshift_genpc	std_srvs::TriggerRequest	3 D点群撮影要求
	std_srvs::TriggerResponse	※ Request は don't care、Response は応答メッセージ

A 6. HDR機能 YOODS

2. HDR機能

一般的に、カメラによる3D撮影は、光沢を持つワークや黒いワークの 撮影を苦手としています。これは光が一方向に反射されたり、吸収され ることにより、カメラに戻ってこないことが原因です。

このような問題に対応するため、RoVI は HDR 機能を搭載しています。 HDR 機能では、撮影条件を変えて2回の位相シフト撮影を実行して、2 回の撮影データから、ピクセルごとにいずれのデータを使うか採用/不 採用を評価します。

本機能は、 rosparam にて、有無効を切替えることができます。

rosparam		Description
	/rovi/ycam/hdr/enabled	HDR 機能有無効 [True:有効 / False:無
		\$h 1

A6. 撮影条件の変更

YOODS

撮影条件は、2 D画像の撮影条件の明るさ調整と同じパラメータで調整

049.			
Description	rosparam		
	1回目の位相シフト撮影条件	2回目の位相シフト撮影条件	
露光レベル	/rovi/ycam/ExposureTimeLevel	/rovi/ycam/hdr/ExposureTimeLevel	
デジタルゲイン	/rovi/ycam/camera/Gain	/rovi/ycam/hdr/camera/Gain	
プロジェクタ発光強度	/rovi/ycam/projector/Intensity	/rovi/ycam/hdr/projector/Intensity	

✓ HDR 機能無効の場合

1回目の位相シフト撮影条件を使用します。

✓ HDR 機能有効の場合

2回目の位相シフト撮影条件は、1回目の撮影条件から変更する場合の

み yaml に定義します。デフォルトは、プロジェクタの発光強度のみ定

義し、1回目を明るく、2回目を暗くする設定にしています。

A6. 点群算出条件の変更

YOODS

4. 点群算出条件の変更

rosparam にて、点群算出の条件を調整することができます。 撮影条件の明るさを調整しても、点群がうまく生成されない場合に調整 します。

rosparam	Description
/rovi/pshift_genpc/calc/bw_diff	白黒画像の最小差 [0 - 255]
	ここで指定した値よりも輝度差が少ない画素は計算から除外する
/rovi/pshift_genpc/calc/brightness	ハレーションに対する関値 [0 - 256]
	ここで指定した値よりも白画像の輝度値が高い画素は計算から除外す
	る。ハレーションが生じている画素では、位相が正確に測定できないた
	め。
/rovi/pshift_genpc/calc/darkness	点群を出力しない黒の閾値
	ここで指定した値よりも白画像の輝度値が低い画素は計算から除外す
	る。プロジェクタの光が当たっていない画素では、位相が測定できない
	ため。
/rovi/pshift_genpc/calc/max_parallax	近い側最大視差 [pixel] (30 万画素の場合半分にすること)
/rovi/pshift_genpc/calc/min_parallax	遠い側最大視差 [pixel] (30 万画素の場合半分にすること)

A 6 . 3 D 点群撮影結果 5 . 3 D 点群撮影結果 3 D 点群撮影結果は、下記に対応しています。 ・撮影画像(RAW、レクティファイ) ・3 D 点群データ(PointCloud 形式、Numpy 形式) ・デブス画像 Topic への Publish、ファイル保存に対応しており、 rosparam にて、 有無を切替えることができます。

Copyright® YOODS Co. Ltd., All Right Reserved

YOODS

点群処理を やってみよう

取得した点群データをボクセル化して ノイズ除去した点群を表示してみましょう。

Copyrighto YOODS Co. Ltd., All Right Reserve

- 1. ノイズ除去した3D点群データの表示 Open3Dの下記を使用して、3D点群撮影の結果をノイズ除去し、Rviz に表示します。
- ✓ open3d.geometry.voxel_down_sample ボクセルを使用して、ダウンサンプリングする

A7. 点群処理をやってみよう

✓ open3d.geometry.radius_outlier_removal 指定された半径の球内に隣接点が少ない点を削除する

B1. ROS Topic 一覧表

YOODS

✓ 撮影画像関連

Name	Type	Description
/rovi/left/image_raw	sensor_msgs::lmag	RAW 画像 (MONO8)
/rovi/right/image_raw	e	RAW 画像 ストロボ ON (MONO8)
/rovi/left/image_rect	sensor_msgs::lmag	レクティファイ画像(MONO8 / RGB8)
/rovi/right/image_rect	e	レクティファイ画像 ストロボ ON(MONO8)
/rovi/left/image_rect0	sensor_msgs::lmag	
/rovi/right/image_rect0	e	レクティファイ画像 ストロボ OFF(MONO8)
/rovi/left/image_rect1	sensor_msgs::lmag	レクティファイ画像 1 (MONO8)
/rovi/right/image_rect1	e	レクティファイ画像 ストロポ OFF(MONO8)
/rovi/left/diff_rect	sensor_msgs::lmag	_
/rovi/right/diff_rect	e	レクティファイ画像 輝度差(MONO8)
/rovi/left/remap/tat	std_msgs::Float64	レクティファイ画像変換処理時間
/rovi/right/remap/tat		

- ※ Name の上段は左カメラ、下段は右カメラ
- ※ Description の上段はライブ時、下段は3D点群撮影時

Copyright® YOODS Co. Ltd., All Right Reserved

B1. ROS Topic 一覧表

YOODS

✓ 3 D点群撮影関連

Name	Type	Description
/rovi/ps_pc	sensor_msgs::PointClou	3 D点群データ(PointCloud形式)
/rovi/ps_pc_r	d	
/rovi/ps_floats	rovi::Floats	3 D点群データ(Numpy形式)
/rovi/ps_floats_r		※ rosparam の設定により、ポクセル化対応
/rovi/image_depth	sensor_msgs::lmage	デプス画像 (MONO16)
/rovi/image_depth_r		
/rovi/ps_all	rovi::Floats	3 D点群データ (Numpy形式)
/rovi/ps_all_r		
/rovi/pcount	std_msgs::Int32	点群数
/rovi/pcount_r		
/report	std_msgs::String	レポート画面の表示情報
		位相シフト点群生成 ノードの結果

※ Name の上段は左カメラ、下段は右カメラ

Copyright® YOODS Co. Ltd., All Right Reserved

B1. ROS Topic 一覧表

YOODS

✓ ロボットキャリブレーション関連

Name	type	Description
/gridboard/image_in	sensor_msgs::lmage	カメラ RAW 画像(MONO8)
	sensor_msgs::lmage	キャリブ板の認識結果画像(BGR6)
/gridboard/tf	eometry_msgs::Transfo	キャリブ板 位置
	rm	
/gridboard/floats	rovi::Floats	マーカ位置が取得出来ている点の位置
/gridboard/done	std_msgs::Bool	キャリブ結果 [True:成功 / False:失敗]
/gridboard/stats	std_msgs::Float32	再投影誤差(平均)
/gridboard/reload	std msgs::Bool	キャリブ結果保存要求 ※メッセージは don't care

✓ 3 D点群データ変換関連

Name	type	Description
/floats	rovi::Floats	変換前 3D点群データ(Numpy形式)
/base64	std_msgs::String	変換前 3 D点群データ (String形式)
/ps	sensor_msgs::PointClou	変換後 3D点群データ(PointCloud形式)
	at the second se	

