MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2007 SOLUTION KEY

Round 1

- A) Adding and substituting x = 5, $2ax = 20 \Rightarrow \underline{a} = \underline{2}$ Subtracting and substituting y = 15, $2by = -10 \Rightarrow \underline{b} = -1/3$
- B) The matrix equation is equivalent to: $\begin{cases} 3x + ay = 7 \\ bx + 4y = -6 \end{cases}$ Substituting, $\begin{cases} 15 + a = 7 \\ 5b + 4 = -6 \end{cases}$ \Rightarrow (a, b) = (-8, -2) Evaluating the determinant, 12 (-8)(-2) = -4
- C) Think of -21 as $0x^2 + 0x 21$

As a single fraction, the left hand side is $\frac{A(2x^2+5x-3)+B(x^2+3x)+C(2x^2-x)}{2x^3+5x^2-3x}$

Re-arranging terms, $\frac{(2A+B+2C)x^2 + (5A+3B-C)x - 3A}{2x^3 + 5x^2 - 3x}$

Thus,
$$\begin{cases} 2A + B + 2C = 0 \\ 5A + 3B - C = 0 \end{cases} \Rightarrow A = 7 \text{ and } \begin{cases} B + 2C = -14 \\ 3B - C = -35 \end{cases} \Rightarrow (B, C) = (-12, -1)$$

and the required sum is 7 + (-12) + (-1) = -6.

Round 2

- A) Trial and error \rightarrow $(a, b, c, d) = (1, -2, -4, 3) <math>\rightarrow$ $(1)^{-2} (-4)^3 = 1 + 64 = 65$
- B) x y = 4 and $2^{4x-2y} = 2^{24x-6y} \rightarrow 2^{20x-4y} = 1 \rightarrow 20x 4y = 0$ or 5x y = 0Solving simultaneously, $4x = -4 \rightarrow \underline{x = -1}$. Substituting back, $\underline{y = -5}$.
- C) The radicand must represent a perfect square, call it $(a+b\sqrt{3})^2 = a^2 + 3b^2 + 2ab\sqrt{3}$ For integer values of a and b, $a^2 + 3b^2$ must represent an integer and $2ab\sqrt{3}$ a multiple of $\sqrt{3}$. Thus, $a^2 + 3b^2 = 48$ and ab = -12. Clearly, a and b have opposite signs and checking out factors of 12 in the first equation produces either $(6, -2) \rightarrow \boxed{6-2\sqrt{3}}$ which is positive or $(-6, 2) \rightarrow -6+2\sqrt{3}$ which is a negative value and must be rejected. Thus, $\underline{a} = 6, \underline{b} = -2, \underline{c} = 3$