Clase 19 Cargas desbalanceadas en LT

Sadiku, M. (2018). *Elements of Electromagnetics*. 7th Edition: pp. 564-567

Javier Silva Orellana

jisilva8@uc.cl

Contexto

- Anteriormente solo nos dedicamos a estudiar las líneas como tales.
- Ahora nos centraremos en lo que hay al final de estas.

Objetivos de Aprendizaje involucrados:

• OA-14: Distinguir las ecuaciones y el significado de una línea de transmisión general y las versiones correspondientes para líneas sin pérdidas, para pérdidas bajas, para pérdidas altas, y para líneas sin distorsión.

• En nuestra primera clase de líneas de transmisión llegamos a las soluciones:

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z}$$

- No obstante, el significado que le dimos a $V_0^-e^{\gamma z}$ es falso.
- ¿Cuál podría ser la verdadera razón de la existencia de $V_0^- e^{\gamma z}$?

• En clases anteriores, vimos un caso donde dos ondas con sentido opuesto conviven y son una solución válida a la ecuación de onda:

• En clases anteriores, vimos un caso donde dos ondas con sentido opuesto conviven y son una solución válida a la ecuación de onda:

- Hasta ahora analizamos la línea, pero no nos preocupamos de qué hay al otro extremo:
 - ¿Una carga?
 - ¿Otra línea distinta?
 - ¿Con circuito abierto?

 Hasta ahora analizamos la línea, pero no nos preocupamos de qué hay al otro extremo:

- ¿Una carga?
- ¿Otra línea distinta?
- ¿Con circuito abierto?

 Todos estos elementos tienen algo en común: producen un cambio en la impedancia.

• Y cuando el medio cambia de impedancia hay reflexión.

Onda incidente Onda reflejada

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z}$$

Contenidos

- Cargas balanceadas
- Cargas desbalanceadas
- Impedancia de entrada

• Consideremos una línea de transmisión de impedancia Z_0 , a la cual le conectamos una carga Z_L .

• ¿Qué pasará con la onda si $Z_L = Z_0$?

• Consideremos una línea de transmisión de impedancia Z_0 , a la cual le conectamos una carga Z_L .

• ¿Qué pasará con la onda si $Z_L=Z_0$? No verá cambios en el medio, se transmite al 100% (si no hay pérdidas obviamente).

• Consideremos una línea de transmisión de impedancia Z_0 , a la cual le conectamos una carga Z_L .

• En circuitos, esto se conoce como el **Principio de Máxima Transferencia de Potencia**.

• En caso contrario, donde $Z_L \neq Z_0$, deberíamos esperar una onda reflejada.

• Definamos convenientemente un sistema de coordenadas para la longitud de la línea de transmisión.

Veamos qué ocurre justo entre la línea y la carga

$$V(z=0) = V_0^+ e^0 + V_0^- e^0 = V_0^+ + V_0^-$$

$$I(z=0) = \frac{V_0^+}{Z_0}e^0 - \frac{V_0^-}{Z_0}e^0 = \frac{1}{Z_0}(V_0^+ - V_0^-)$$

$$Z_L = \frac{V(z=0)}{I(z=0)} = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} Z_0$$

• Reordenemos la expresión:

$$(V_0^+ - V_0^-)Z_L = (V_0^+ + V_0^-)Z_0$$

$$V_0^+ Z_L - V_0^- Z_L = V_0^+ Z_0 + V_0^- Z_0$$

$$V_0^+ (Z_L - Z_0) = V_0^- (Z_L + Z_0)$$

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Coeficiente de Reflexión

• A partir del coeficiente de reflexión, es posible establecer una métrica cuantitativa para la calidad de la línea:

$$RL = -20 \log_{10} |\Gamma| \text{ [dB]}$$

Pérdida de retorno (Return Loss)

• Una línea de transmisión buena tendrá un RL grande y positivo (por muy contraintuitivo que suene).

 Empleando el coeficiente de reflexión, resulta más sencillo expresar las ecuaciones de la línea:

$$V(z) = V_0^+(e^{-\gamma z} + \Gamma e^{\gamma z})$$

$$I(z) = \frac{V_0^+}{Z_0}(e^{-\gamma z} - \Gamma e^{\gamma z})$$

Si además asumimos una línea sin pérdidas:

$$V(z) = V_0^+ \left(e^{-j\beta z} + \Gamma e^{j\beta z} \right)$$

$$I(z) = \frac{V_0^+}{Z_0} \left(e^{-j\beta z} - \Gamma e^{j\beta z} \right)$$

• Si nos paramos en un tramo arbitrario de la línea de transmisión, podríamos considerar todo el tramo de la derecha como una única impedancia equivalente:

• Si nos paramos en un punto arbitrario de la línea $z=-\ell$:

$$Z_{in} = \frac{V(-\ell)}{I(-\ell)} = \frac{V_0^+ \left(e^{\gamma \ell} + \Gamma e^{-\gamma \ell}\right)}{V_0^+ \left(e^{\gamma \ell} - \Gamma e^{-\gamma \ell}\right)} Z_0$$

$$Z_{in} = \left[\frac{e^{\gamma \ell} + \Gamma e^{-\gamma \ell}}{e^{\gamma \ell} - \Gamma e^{-\gamma \ell}} \right] Z_0$$

$$Z_{in} = \left[\frac{e^{\gamma \ell} + \frac{Z_L - Z_0}{Z_L + Z_0} e^{-\gamma \ell}}{e^{\gamma \ell} - \frac{Z_L - Z_0}{Z_L + Z_0} e^{-\gamma \ell}} \right] Z_0$$

Despejando:

$$Z_{in} = \left[\frac{(Z_L + Z_0)e^{\gamma \ell} + (Z_L - Z_0)e^{-\gamma \ell}}{(Z_L + Z_0)e^{\gamma \ell} - (Z_L - Z_0)e^{-\gamma \ell}} \right] Z_0$$

$$Z_{in} = \left[\frac{Z_L(e^{\gamma\ell} + e^{-\gamma\ell}) + Z_0(e^{\gamma\ell} - e^{-\gamma\ell})}{Z_0(e^{\gamma\ell} + e^{-\gamma\ell}) + Z_L(e^{\gamma\ell} - e^{-\gamma\ell})} \right] Z_0$$

$$Z_{in} = \left[\frac{Z_L + Z_0 \left(e^{\gamma \ell} - e^{-\gamma \ell} \right) / \left(e^{\gamma \ell} + e^{-\gamma \ell} \right)}{Z_0 + Z_L \left(e^{\gamma \ell} - e^{-\gamma \ell} \right) / \left(e^{\gamma \ell} + e^{-\gamma \ell} \right)} \right] Z_0$$

Despejando:

$$Z_{in} = \left[\frac{(Z_L + Z_0)e^{\gamma \ell} + (Z_L - Z_0)e^{-\gamma \ell}}{(Z_L + Z_0)e^{\gamma \ell} + (Z_L - Z_0)e^{-\gamma \ell}} \right] Z_0$$

$$Z_{in} = \left[\frac{Z_L(e^{\gamma\ell} + e^{-\gamma\ell}) + Z_0(e^{\gamma\ell} - e^{-\gamma\ell})}{Z_0(e^{\gamma\ell} + e^{-\gamma\ell}) + Z_0(e^{\gamma\ell} - e^{-\gamma\ell})} \right] Z_0$$

$$Z_{in} = \left[\frac{Z_L + Z_0 \tanh(\gamma \ell)}{Z_0 + Z_L \tanh(\gamma \ell)} \right] Z_0$$

- Asumiendo que no hay pérdidas $\gamma \longrightarrow i \beta$
- Por propiedades de la tangente hiperbólica $\tanh(j\beta\ell) = j\tan(\beta\ell)$. Luego:

$$Z_{in} = \left[\frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_L \tan(\beta \ell)} \right] Z_0$$

Ecuación de Impedancia

Resumen

- Revelamos el verdadero significado de las ecuaciones de LT.
- Analizamos que ocurre al conectar una carga de valor igual y distinto al de la LT.
- Analizamos y caracterizamos el fenómeno de reflexión en LT.
- Establecimos una ecuación para ver la impedancia de entrada, vista desde un punto arbitrario de la línea.

Cerrando la clase de hoy

 Hasta ahora nos hemos centrado en la línea, pero no en lo que está al final de ella.

Próxima Clase:

ROE, Potencia y Terminaciones en LT.

Bibliografía:

Sadiku, M. (2018). Elements of Electromagnetics. 7th Edition: pp. 567 – 571