Классическая и квантовая теория поля

Напоминание про теорию поля.

Лагранжева формулировка классической теории поля.

Действие

$$S = \int d^d x \mathcal{L} \tag{1}$$

зависит от полей φ и констант связи $\vec{u} = (u_1, \dots, u_n)$. Например:

$$S[\varphi] = \int d^d x \left(-\frac{(\partial \varphi)^2}{2} - \frac{\mu \varphi^2}{2} - \frac{u \varphi^4}{24} + h \varphi \right), \tag{2}$$

Симметрии

При преобразованиях координат

$$x \to x'$$
 (3)

поля тоже преобразуются, то есть у них не только меняется аргумент, но и само поле. Тип поля (скалярное, векторное, спинорное) – это вид такого преобразования.

$$\varphi(x) \to \varphi'(x') = F(\varphi(x))$$
 (4)

При этом действие тоже преобразуется:

$$S' = \int d^d x' \mathcal{L}(\varphi'(x'), \partial_\mu \varphi'(x')) = \int d^d x \left| \frac{\partial x'}{\partial x} \right| \mathcal{L}(F(\varphi(x)), \frac{\partial x^\nu}{\partial x'^\mu} \partial_\nu F(\varphi(x)))$$
 (5)

Примеры.

Трансляции:

$$x'^{\mu} = x^{\mu} + a^{\mu}, \quad \varphi'(x+a) = \varphi(x), \quad S' = S$$

Поворот (преобразования Лоренца):

$$x'^{\mu}=m^{\mu}_{
u}x^{
u},\quad arphi'(mx)=\Lambda arphi(x),\quad \Lambda$$
-представление группы

Теперь рассмотрим инфинитезимальные преобразования. Если действие инвариантно относительно каких-либо преобразований, то говорят, что в теории есть симметрия. В этом случае действие должно быть стационарно по отношению к инфинитезимальным преобразованиям.

$$x^{\prime\mu} = x^{\mu} + \omega_a \frac{\delta x^{\mu}}{\delta \omega_a} \tag{6}$$

 $(\omega_a$ – бесконечно малые параметры).

Наше поле преобразуется так:

$$\varphi'(x') = \varphi(x) + \omega_a \frac{\delta F}{\delta \omega_a}(x). \tag{7}$$

Генератор преобразования определяется следующим равенством:

$$\delta_{\omega}\varphi(x) = \varphi'(x) - \varphi(x) \equiv -i\omega_a G_a \varphi(x) \tag{8}$$

(здесь нет суммирования по a). Действие генератора на поле:

$$iG_a\varphi = \frac{\delta x^\mu}{\delta\omega_a}\partial_\mu\varphi - \frac{\delta F}{\delta\omega_a} \tag{9}$$

Примеры генераторов: Если мы предположим, что поле φ – такое поле, которое не меняется при конформных преобразованиях, то есть $F(\varphi) = \varphi$, то мы получим следующий вид для генераторов:

трансляция
$$x'^{\mu} = x^{\mu} + \omega^{\mu}$$
 $P_{\mu} = -i\partial_{\mu}$ (10)
поворот $x'^{\mu} = x^{\mu} + \omega^{\mu}_{\nu} x^{\nu}$ $L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$ (11)

поворот
$$x'^{\mu} = x^{\mu} + \omega^{\mu}_{\nu} x^{\nu}$$
 $L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$ (11)

Если же при поворотах поле преобразуется $\varphi'(x') = \Lambda \varphi(x)$, то при инфинитезимальных преобразованиях $\varphi'(x') = \varphi(x) - \frac{i}{2}\omega_{\mu\nu}S^{\mu\nu}$ и генератор принимает вид

$$L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial\mu) + S_{\mu\nu}$$

Теорема Нётер

Теперь рассмотрим произвольные инфинитезимальные преобразования, при которых действие не меняется. Якобиан такого преобразования

$$\frac{\partial x'^{\nu}}{\partial x^{\mu}} = \delta^{\mu}_{\nu} + \partial_{\mu} \left(\omega_{a} \frac{\delta x^{\nu}}{\delta \omega_{a}} \right)$$

$$\frac{\partial x^{\nu}}{\partial x'^{\mu}} = \delta^{\mu}_{\nu} - \partial_{\mu} \left(\omega_{a} \frac{\delta x^{\nu}}{\delta \omega_{a}} \right)$$

$$\left| \frac{\partial x'^{\nu}}{\partial x^{\mu}} \right| = 1 + \partial_{\mu} \left(\omega_{a} \frac{\delta x^{\mu}}{\delta \omega_{a}} \right)$$

Вариация действия

$$0 = \delta_{\omega} S = \int \mathcal{L}(\varphi', \partial_{\mu} \varphi', x'^{\mu}) dx' - \int \mathcal{L}(\varphi, \partial_{\mu} \varphi, x) dx =$$

$$\int d^{d}x \left[\left(1 + \partial_{\mu} \left(\omega_{a} \frac{\delta x^{\mu}}{\delta \omega_{a}} \right) \right) \mathcal{L}(\varphi + \delta_{\omega} \varphi, \partial_{\mu} \varphi + \partial_{\mu} \delta_{\omega} \varphi) \right] - \mathcal{L}(\varphi, \partial_{\mu} \varphi) =$$

$$\int d^{d}x \left(\frac{\partial \mathcal{L}}{\partial \varphi} \delta_{\omega} \varphi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta_{\omega} \partial_{\mu} \varphi + \partial_{\mu} \left(\omega_{a} \frac{\delta x^{\mu}}{\delta \omega_{a}} \right) \mathcal{L} \right)$$

Первые два члена переписываются с использованием уравнений Эйлера-Лагранжа и интегрирования по частям:

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \right) \delta_{\omega} \varphi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta_{\omega} \partial_{\mu} \varphi = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta_{\omega} \varphi \right)$$

В итоге имеем:

$$0 = \int d^d x \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi)} \delta_\omega \varphi + \delta^\mu_\nu \mathcal{L} \frac{\delta x^\nu}{\delta \omega_a} \right)$$

Если подставить явный вид вариации поля и ввести обозначение

$$j_a^{\mu} = \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)}\partial_{\nu}\varphi - \delta_{\nu}^{\mu}\mathcal{L}\right)\frac{\delta x^{\nu}}{\delta\omega_a} - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)}\frac{\delta F}{\delta w_a},$$

то для вариации действия выходит:

$$\delta_{\omega}S = -\int d^dx j_a^{\mu} \partial_{\mu} \omega_a$$

 j_a^μ называется нетеровским током, соответствующим данной симметрии. Если $\delta_\omega S=0$, то

$$\partial_{\mu}j_{a}^{\mu}=0$$

Сохраняющийся заряд:

$$Q_a = \int d^{d-1}x \ j_a^0$$

Рассмотрим инфинитезимальное масштабное преобразование $\lambda = 1 + \omega$. При этом вариация x_{ν} будет $\delta_{\omega}x_{\nu} = \omega x_{\nu}$. При инфинитезимальных преобразованиях $x \to x + dlx$ вариация плотности лагранжиана дается Нётеровским током:

$$\delta \mathcal{L} = \partial_{\mu} J^{\mu} dl \tag{12}$$

$$J^{\mu} = x_{\nu} T^{\mu\nu} \tag{13}$$

Здесь $T^{\mu\nu}$ - тензор энергии-импульса. Через Θ мы обозначим след тензора энергии-импульса $\Theta=\partial_{\mu}J^{\mu}=T^{\mu}_{\mu}$. Он задает вариацию действия

$$\delta S = dl \int d^d x \Theta(x) \tag{14}$$

Если теория масштабно-инвариантна, то $\partial_{\mu}J^{\mu}=T^{\mu}_{\mu}=\Theta=0$. В масштабно-инвариантной теории тензор энергии-импульса бесследовый.

Конформная алгебра

Сейчас мы обсудим, какие ограничения накладывает на теорию конформная инвариантность, а затем покажем, что в двух измерениях она следует из масштабной, трансляционной и вращательной инвариантностей.

Сперва рассмотрим конформную группу в произвольном числе измерений d. Метрический тензор обозначим через $g_{\mu\nu}, \ \mu, \nu = 1, \ldots, d$. Конформными называются преобразования $x \to x'$, сохраняющие метрический тензор с точностью до масштаба:

$$g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x). \tag{15}$$

Заметим, что группа Пуанкаре является подгруппой конформной группы с $\Lambda(x)=1$, а также что конформные преобразования сохраняют углы.

Рассмотрим инфинитезимальные преобразования

$$x^{\mu} \to x'^{\mu} = x^{\mu} + \epsilon^{\mu}. \tag{16}$$

Метрический тензор преобразуется следующим образом:

$$g'_{\mu\nu} = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} g_{\alpha\beta} = (\delta^{\alpha}_{\mu} - \partial_{\mu} \epsilon^{\alpha}) (\delta^{\beta}_{\nu} - \partial_{\nu} \epsilon^{\beta}) g_{\alpha\beta} = g_{\mu\nu} - (\partial_{\mu} \epsilon_{\nu} + \partial_{\nu} \epsilon_{\mu})$$
(17)

Перепишем условие (15)в таком виде:

$$g'_{\mu\nu}(x') = g_{\mu\nu}(x) - f(x)g_{\mu\nu}(x) \tag{18}$$

Отсюда вытекает условие на вид преобразований:

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = f(x)g_{\mu\nu}(x). \tag{19}$$

Для простоты рассмотрим преобразования, действующие на плоскую метрику $g_{\mu\nu}(x) = \eta_{\mu\nu}$, кроме того, с учетом приложений к статистической физике, будем работать в евклидовом пространстве, а не в пространстве Минковского. Так что $\eta = \text{diag}(1, 1, \dots, 1)$, $\eta_{\mu\nu} = \delta_{\mu\nu}$. В этом случае условие (19) перепишется в простом виде

$$f(x) = \frac{2}{d}\partial_{\rho}\epsilon^{\rho}.$$
 (20)

Теперь подставим $g_{\mu\nu} = \eta_{\mu\nu}$ в уравнение (19) и продиффернцируем:

$$\partial_{\rho}\partial_{\mu}\epsilon_{\nu} + \partial_{\rho}\partial_{\nu}\epsilon_{\mu} = \eta_{\mu\nu}\partial_{\rho}f. \tag{21}$$

Переставим два раза значки и скомбинируем три уравнения в одно:

$$2\partial_{\mu}\partial_{\nu}\epsilon_{\rho} = \eta_{\mu\rho}\partial_{\nu}f + \eta_{\nu\rho}\partial_{\mu}f - \eta_{\mu\nu}\partial_{\rho}f \tag{22}$$

Свернем это уравнение с $\eta^{\mu\nu}$ и получим

$$2\partial^2 \epsilon_{\rho} = (2 - d)\partial_{\rho} f \tag{23}$$

Теперь продифференцируем его по x^{ν} и поменяем значок ρ на μ :

$$2\partial^2 \partial_\nu \epsilon_\mu = (2 - d)\partial_\mu \partial_\nu f \tag{24}$$

Сравним полученное равенство с результатом применения оператора ∂^2 к уравнению (21):

$$\partial^2 \partial_\mu \epsilon_\nu + \partial^2 \partial_\nu \epsilon_\mu = \eta_{\mu\nu} \partial^2 f \tag{25}$$

Из равенств (24), (25) следует, что

$$(2-d)\partial_{\mu}\partial_{\nu}f = \eta_{\mu\nu}\partial^{2}f. \tag{26}$$

Свернув с $\eta^{\mu\nu}$ получим

$$(d-1)\partial^2 f = 0. (27)$$

Сразу можно отметить, что при d=1 любое гладкое преобразование будет конформным. Рассмотрим случай $d \geq 3$. Функция f(x) должна иметь вид

$$f(x) = A + B_{\mu}x^{\mu}. \tag{28}$$

Тогда из (20) получаем для ϵ

$$\epsilon_{\mu} = a_{\mu} + b_{\mu\nu}x^{\nu} + c_{\mu\nu\rho}x^{\nu}x^{\rho}, \quad c_{\mu\nu\rho} = c_{\mu\rho\nu} \tag{29}$$

Так как равенства $(19),\,(20),\,(22)$ должны выполняться для любых $x^\mu,$ то мономы в ϵ можно рассматривать независимо. На a_μ не возникает никаких ограничений. Этот член соответствует трансляциям. Теперь подставляем линейный член в (19), (20) и получаем условие

$$b_{\mu\nu} + b_{\nu\mu} = \frac{2}{d} b_{\lambda}^{\lambda} \eta_{\mu\nu} \tag{30}$$

To есть $b_{\mu\nu}$ можно записать в виде

$$b_{\mu\nu} = \alpha \eta_{\mu\nu} + m_{\mu\nu}, \quad m_{\mu\nu} = -m_{\nu\mu}$$
 (31)

Первый член соответствует масштабному преобразованию, а второй - повороту. В результате подстановки квадратичного члена ϵ в $(20),\,(22)$ получаем следующее условие на $c_{\mu
u
ho}$:

$$c_{\mu\nu\rho} = \eta_{\mu\rho}h_{\nu} + \eta_{\mu\nu}h_{\rho} - \eta_{\nu\rho}h_{\mu}, \quad h_{\mu} = \frac{1}{d}c_{\alpha\mu}^{\alpha}$$
 (32)

Ему соответствует преобразование

$$x^{\prime \mu} = x^{\mu} + 2(x^{\nu}h_{\nu})x^{\mu} - h^{\mu}x^{\nu}x_{\nu} \tag{33}$$

Такое преобразование называется специальным конформным преобразованием. Это преобразование можно естественно интерпретировать, если переписать в виде

$$\frac{x'^{\mu}}{x'^2} = \frac{x^{\mu}}{x^2} - h^{\mu}. (34)$$

Видно, что специальное конформное преобразование — это инверсия, трансляция и обратная инверсия.

Соответствующие конченые конформные преобразования имеют вид

$$x'^{\mu} = x^{\mu} + a^{\mu} \qquad - \text{трансляция} \tag{35}$$

$$x'\mu = \alpha x^{\mu}$$
 — растяжение (36)

$$x'^{\mu} = m_{\nu}^{\mu} x^{\nu} \qquad - \text{поворот} \tag{37}$$

$$x'^{\mu} = m_{\nu}^{\mu} x^{\nu}$$
 — поворот (37)
 $x'^{\mu} = \frac{x^{\mu} - h^{\mu} x^2}{1 - 2h_{\mu} x^{\mu} + h^2 x^2}$ — специальное конформное преобразование

Теперь выпишем вид генераторов конформных преобразований для скалярного поля. Напомним, что при произвольном конечном преобразовании скалярное поле преобразуется как

$$\Phi'(x') = F(\Phi(x)). \tag{39}$$

При соответствующем инфинитезимальном преобразовании

$$x^{\prime\mu} = x^{\mu} + \omega_a \frac{\delta x^{\mu}}{\delta \omega_a} \tag{40}$$

скалярное поле преобразуется так:

$$\Phi'(x') = \Phi(x) + \omega_a \frac{\delta F}{\delta \omega_a}(x). \tag{41}$$

Генератор преобразования определяется следующим равенством:

$$\delta_{\omega}\Phi(x) = \Phi'(x) - \Phi(x) \equiv -i\omega_a G_a \Phi(x) \tag{42}$$

(здесь нет суммирования по a). Из (41) получаем действие генератора на скалярное поле:

$$iG_a \Phi = \frac{\delta x^{\mu}}{\delta \omega_a} \partial_{\mu} \Phi - \frac{\delta F}{\delta \omega_a} \tag{43}$$

Если мы предположим, что поле Φ такое поле, которое не меняется при конформных преобразованиях, то есть $F(\Phi) = \Phi$, то мы получим следующий вид для генераторов:

трансляция
$$P_{\mu} = -i\partial_{\mu}$$
 (44)

поворот
$$L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial\mu) \tag{45}$$

растяжение
$$D = -ix^{\mu}\partial_{\mu}$$
 (46)

специальное конформное преобразование
$$K_{\mu} = -i(2x_{\mu}x^{\nu}\partial_{\nu} - x^{2}\partial_{\mu}) \tag{47}$$

Отсюда легко найти коммутационные соотношения алгебры конформных преобразований в случае $d \geq 3$:

$$[D, P_{\mu}] = iP_{\mu} \tag{48}$$

$$[D, K_{\mu}] = -iK_{\mu} \tag{49}$$

$$[K_{\mu}, P_{\nu}] = 2i(\eta_{\mu\nu}D - L_{\mu\nu}) \tag{50}$$

$$[K_{\rho}, L_{\mu\nu}] = i(\eta_{\rho\mu} P_{\nu} - \eta_{\rho\nu} P_{\mu}) \tag{51}$$

$$[L_{\mu\nu}, L_{\rho\sigma}] = i(\eta_{\nu\rho} L_{\mu\sigma} + \eta_{\mu\sigma} L_{\nu\rho} - \eta_{\mu\rho} L_{\nu\sigma} - \eta_{\nu\sigma} L_{\mu\rho})$$

$$(52)$$

Остальные коммутаторы равны нулю. Чтобы понять, о какой алгебре идет речь, переопределим генераторы следующим образом. Введем генераторы $J_{ab},\ a,b=-1,0,\ldots,d,J_{ab}=-J_{ba}$:

$$J_{\mu\nu} = L_{\mu\nu} \tag{53}$$

$$J_{-1,0} = D (54)$$

$$J_{-1,\mu} = \frac{1}{2}(P_{\mu} - K_{\mu}) \tag{55}$$

$$J_{0,\mu} = \frac{1}{2}(P_{\mu} + K_{\mu}) \tag{56}$$

Коммутационные соотношения для таких генераторов запишутся в виде

$$[J_{ab}, J_{cd}] = i(\eta_{ad}J_{bc} + \eta_{bc}J_{ad} - \eta_{ac}J_{bd} - \eta_{bd}J_{ac}), \tag{57}$$

где $\eta_{ab} = \text{diag}(-1, 1, \dots, 1)$. Видно, что мы получили алгебру so(d+1, 1). В случае пространства Минковского была бы so(d, 2).

Мы получили общее условие на вид инфинитезимальных конформных преобразований:

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = \frac{2}{d}\partial_{\rho}\epsilon^{\rho}\eta_{\mu\nu}.$$
 (58)

Теперь у нас $d=2, \mu, \nu=0,1$ и $\eta_{\mu\nu}=\delta_{\mu\nu}$, так как мы работаем в евклидовой теории. Расписывая компоненты уравнения (58), получаем

$$\partial_0 \epsilon_1 + \partial_1 \epsilon_0 = 0 \quad \Rightarrow \qquad \partial_0 \epsilon_1 = -\partial_1 \epsilon_0 \tag{59}$$

$$2\partial_0 \epsilon_0 = \partial_0 \epsilon_0 + \partial_1 \epsilon_1 \quad \Rightarrow \qquad \partial_0 \epsilon_0 = \partial_1 \epsilon_1 \tag{60}$$

То есть мы получили уравнения Коши-Римана. Введем комплексные координаты

$$z = x_0 + ix_1 \tag{61}$$

$$\bar{z} = x_0 - ix_1 \tag{62}$$

$$\partial = \partial_z = \frac{1}{2}(\partial_0 - i\partial_1) \tag{63}$$

$$\bar{\partial} = \partial_{\bar{z}} = \frac{1}{2}(\partial_0 + i\partial_1) \tag{64}$$

$$\epsilon = \epsilon_0 + i\epsilon_1 \tag{65}$$

$$\bar{\epsilon} = \epsilon_0 - i\epsilon_1,\tag{66}$$

тогда уравнения (59) можно переписать в виде

$$\partial \epsilon = 0 \tag{67}$$

$$\bar{\partial}\bar{\epsilon} = 0. \tag{68}$$

Решениями будут любые голоморфные и антиголоморфные функции: $\epsilon = \epsilon(z)$ – голоморфная функция и $\bar{\epsilon} = \bar{\epsilon}(\bar{z})$ – антиголоморфная. Таким образом мы видим, что алгебра локальных конформных преобразований в двумерном случае оказывается бесконечномерной алгеброй преобразований

$$z \to f(z) \tag{69}$$

$$\bar{z} \to \bar{f}(\bar{z})$$
 (70)

Введем в алгебре конформых преобразований следующий базис:

$$z' = z + \epsilon_n(z) \tag{71}$$

$$\bar{z}' = \bar{z} + \bar{\epsilon}_n(\bar{z}) \tag{72}$$

$$\epsilon_n(z) = -z^{n+1} \tag{73}$$

$$\bar{\epsilon}_n(\bar{z}) = -\bar{z}^{n+1} \tag{74}$$

Тогда соответствующие генераторы будут равны

$$l_n = -z^{n+1}\partial (75)$$

$$\bar{l}_n = -\bar{z}^{n+1}\bar{\partial} \tag{76}$$

Легко видеть, что коммутационные соотношения имеют вид

$$[l_m, l_n] = (m-n)l_{m+n} (77)$$

$$\left[\bar{l}_m, \bar{l}_n\right] = (m-n)\bar{l}_{m+n} \tag{78}$$

$$\begin{bmatrix} l_n, \bar{l}_m \end{bmatrix} = 0 \tag{79}$$

Мы видим, что алгебра распадается в прямую сумму $\mathcal{A} \oplus \bar{\mathcal{A}}$, каждая компонента — это алгебра Витта (Witt algebra). Оказывается удобно продолжить теорию на случай независимых z, \bar{z} . Тогда теория распадется на два независимых сектора. Условие же $z^* = \bar{z}$ можно наложить в самом конце. Такая процедура соответствует комплексному продолжению всех функций от x_0, x_1 на $x_0, x_1 \in \mathbb{C}^2$. Заметим, что вещественная плоскость сохраняется подалгеброй, натянутой на генераторы $l_n + \bar{l}_n$ и $i(l_n - \bar{l}_n)$.

0.1 Глобальные конформные преобразования

Глобальными называются те преобразования, которые определены на всей сфере Римана $S^2 = \mathbb{C}^2 \cup \{\infty\}$. Понятно, что это может быть только при $n \geq -1$. Кроме того, чтобы рассмотреть окрестность точки $z = \infty$ можно сделать преобразование координат $z = -\frac{1}{w}$. Тогда

$$l_n = -z^{n+1}\partial = -\left(-\frac{1}{w}\right)^{n+1} \left(\frac{\partial z}{\partial w}\right) \partial_w = -\left(-\frac{1}{w}\right)^{n-1} \partial_w.$$
 (80)

Это выражение должно быть хорошо определено при $w\to 0$, то есть $n\le 1$. Значит глобальные конформные преобразования генерируются $l_{\pm 1}, l_0, \bar l_{\pm 1}, \bar l_0$. Заметим, что генераторы $l_{-1}, \bar l_{-1}$ порождают трансляции, $i(l_0-\bar l_0)$ – вращения, $l_0+\bar l_0$ – масштабные преобразования. Конечные глобальные преобразования имеют вид

$$z \to \frac{az+b}{cz+d}, \quad ad-bc=1, \quad a,b,c,d \in \mathbb{C}$$
 (81)

(И аналогично для \bar{z}). Если собрать коэффициенты a,b,c,d в матрицу $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, то ясно, что мы имеем дело с группой $SL_2(\mathbb{C})/Z_2\approx SO(3,1)$. Факторизация по Z_2 соответствует тому, что изменение

знака у a, b, c, d разом не меняет преобразования. Эта группа называется также группой проективных конформных преобразований.

Трансляции, дилатации и вращения в матричном виде записываются следующим образом:

трансляции
$$x \to x + a, B = a^0 + ia^1,$$
 $\begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix}$ (82)

вращения
$$\begin{pmatrix} e^{i\Theta/2} & 0 \\ 0 & e^{-i\Theta/2} \end{pmatrix}$$
 (83)

дилатации
$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 (84)

специальные конформные преобразования
$$C = h_0 - ih_1$$
 $\begin{pmatrix} 0 & \lambda^{-1} \end{pmatrix}$ (85)

Глобальные конформные преобразования образуют группу, локальные же преобразования не обратимы, поэтому по отношению к ним говорят только об алгебре.

Глобальные преобразования полезны для описания физических состояний. Допустим, мы работаем в базисе собственных состояний операторов l_0, \bar{l}_0 , соответствующие собственные значения h, \bar{h} независимые, вещественные, называются конформными весами или голоморфной и антиголоморфной размерностями. Так как $l_0 + \bar{l}_0$ – генератор дилатации, то скейлинговая размерность $\Delta = h + \bar{h}$, а поскольку $i(l_0 - \bar{l}_0)$ порождает вращения, то спин $s = h - \bar{h}$.