

(一) 对,如此事时,  $\frac{1}{\mathbb{Z}^{q}}$   $\frac{\mathbb{Z}^{q}}{\mathbb{Z}^{q}}$   $\frac{\mathbb{Z}^{2n+1}}{\mathbb{Z}^{2n+1}}$ = 70 (30 2) + 51 Z3 - Z31 + FT (32.2- SmZ. 本 1 /im # d2. (shiz) (02 221. C-1 (-1=-1. fit)= smt. T= (Z+1)(Z-1) dZ F[fit-T) unt-Ty)= e-St. Fis) JIZ ZIE- JIZIZU dz. Dsm(t-3) ult-3 e-35 Frs) = 201 Ker(=1,1) - 221 Per (=1,1). T=3. -221- 十一21十

## 性为( 🛊 🕽

(A) 绝对收敛

(B) 条件收敛

(C) 发散

- (D) 不能确定
- 8. 设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为

D内解析函数的是( )   
(A) 
$$v(x,y) + iu(x,y)$$
   
(B)  $v(x,y) - iu(x,y)$    
(C)  $u(x,y) - iv(x,y)$    
(D)  $\frac{\partial u}{\partial x} - i\frac{\partial v}{\partial x}$ 

第一 Q(t) n 9. 设 z=0 为函数  $\frac{1-e^{-t}}{2^4\sin z}$  的 m 级极点,那么 m=(  $Az^2\cdot\sin t+z^4\cos t+z^$ (D) 2 = 126 sint + 4t wort + 42 wort - 2 4 win 4 = 24 Sint + 242 cost

 $\frac{1}{2h(t)} = \int_{-\infty}^{\infty} \int_{\{t\}} \frac{dt}{dt} \frac{dt}{dt} = (XB). \quad \text{Then } f(t) = \int_{\infty}^{\infty} f(t) dt = \int_{\infty$ (B)  $\frac{1}{i\omega}F(\frac{\omega}{2})$   $F[(\int_{-\infty}^{2t}f_{(t)}dt)]$ 

(B) 
$$\frac{1}{i\omega}F(\frac{1}{2})$$

$$= \frac{1}{i\omega}F(\omega)$$

$$= \frac{1}{2}f(\omega)$$

11. 设  $f(t) = \sin(t - \frac{\pi}{3})$ , 则 L[f(t)] = (  $\lambda$  ).

(A) 
$$\frac{1-\sqrt{3}s}{2(1+s^2)}$$

in filher (C)  $\frac{1}{2i\omega}F(\omega)$ 

(B) 
$$\frac{s-\sqrt{3}}{2(1+s^2)}$$

(C) 
$$\frac{1}{1+s^2}e^{-\frac{\pi}{3}s}$$

(D) 
$$\frac{s}{1+s^2}e^{-\frac{\pi}{3}s}$$

 $\frac{1}{1+s^2}e^{-\frac{\pi}{3}s}$   $(D) \frac{s}{1+s^2}e^{-\frac{\pi}{3}s}$   $(\frac{5}{1+s^2}e^{-\frac{\pi}{3}s})$   $(\frac{5}{1+s^2}e^{-\frac{\pi}{3}s})$ 

7/ 又) (一5かち) 71037 4207-Zi SMZ = Zi 15 - 210 Lar (22) 418 (2) (celyin = 022) (2) (+1)(12) 1,42 1 (Z-Z) 7 (Z) - 2 2 ) 2 ! 2 ! ] (2+1)} - <del>1</del> 13 (-8-2) 4. S (2-8)4. 74 75 (4) (4) + (42)-和 X 22, 1 = 1-1= 8-11+ + (7+2) 1-2-

THE PHOP IN TOUR IN WALLEY 1. 设 $|z| = \sqrt{5}$ ,  $\arg(z - i) = \frac{3\pi}{4}$ , 则 $z = \underline{-|+2i|}$  $\frac{(2) \, \partial f(z)}{w = \sqrt{\frac{2}{3}}} = \frac{1}{4} z^4 + 8z, \, \text{则方程} f'(z) = 0 \, \text{的所有根为} 2e^{\frac{1}{3}} i$   $\frac{2^3 = -8}{2} = \sqrt{\frac{2}{3}} i \quad \text{(} k = 0, \vec{z}, \vec{z}) = 8$   $3. \, f(z) = 2(x - 1) + i \cdot \cdot \cdot^2$  $3. \ f(z) = 2(x-1)y + i(y^2 - x^2 + 2x), \ y f'(1+i) = 2$   $= (e^{i\theta} + (e^{i\theta} + e^{i\theta}) + (e^{i\theta} + e$ 7. 设函数  $\frac{z^2+z}{\sin z}$  的泰勒展开式为  $\sum_{n=0}^{\infty} c_n (z-\frac{\pi}{2})^n$  ,那么幂级数 岩有鬼子小 看術松村之為意山  $\sum_{n=0}^{\infty} c_n (z - \frac{\pi}{2})^n \text{ on } \psi \text{ de } R = \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}$ 8. 函数  $\frac{\cos z}{1-z}$  在 z=0 处的泰勒展开式为  $\frac{(z+z)^2}{1+z+z+z^2+z^2}$  1 2  $z^2$  2  $z^2$  2  $z^2$  2  $z^2$  3  $z^2$  4  $z^2$  3  $z^2$  4  $z^2$  4  $z^2$  5  $z^2$  6  $z^2$  6  $z^2$  6  $z^2$  7  $z^2$  6  $z^2$  7  $z^2$  7  $z^2$  7  $z^2$  8  $z^2$  8  $z^2$  8  $z^2$  8  $z^2$  8  $z^2$  9  $z^2$  9 (至少写到含z³的项).  $\frac{3}{3} + \frac{2}{2} + 2 =$ 10. 在有限复平面函数  $f(z) = \frac{1}{\cos^{\frac{1}{z}}}$  的孤立奇点为  $\frac{1}{2}$  的孤立奇点为  $\frac{1}{2}$  (2-0, t1, t1) 个  $\frac{1}{2}$  在其孤立奇点处的留数为  $\frac{1}{2}$  (2-0, t1, t2) 个  $\frac{1}{2}$  (2-0, t1) 个  $\frac{1}{2}$  (2-0, t1) 个  $\frac{1}{2}$  (2-0, t1) は1: f(z)= P(z) Res [f(z), Zu]= P(zo) (教性: to 是 Q(z) vio - 形象は、 入を (Na) wを と) 法2:用乘量的多信直接求,利用给收公式(这里比较贩)  $3t = \frac{e^{it} + e^{-it}}{2}$ nt = oit - et

I fier = FHS) MI [ 13t file) Ott ) - 5 (t3) F(fret) = = = F(-\frac{w}{2}) 1 ( tf-2t) > [wf/s) \[ \frac{1}{2} \limbda F[tf(v)] = 1 - = [-2] F-[(t-2)fit)]= i F(w) > F(w)  $\left[-\left(-2t\right)\right] = \frac{1}{2}\left[-\left(-\frac{u}{2}\right)\right]$ F[(at+b)flat+b)]

11.已知 
$$F(s) = \frac{e^{-2s}}{s(s+1)}$$
, 则  $L^{-1}[F(s)] = \frac{1 - e^{-(t-2)} \mathcal{U}(t-2)}{e^{-(t-2)}}$ 

12. 设a > 0,  $f(t) = \begin{cases} e^{at}, t < 0 \end{cases}$ , 则函数 f(t) 的 Fourier 变换为 at = 1 at =

成含 z 的幂的洛朗级数.



12/41 14/2/42 24/2/40

四、(8分)、计算函数 
$$f(t) = e^{-tt} \cos t$$
的 Fourier 变换,并证明
$$\int_{-\infty}^{\infty} \frac{\omega^{2} + 2}{\omega^{4} + 4} \cos \omega t d\omega = \frac{\pi}{2} e^{-tt} \cos t.$$

$$F(w) = \int_{-\infty}^{+\infty} e^{-tt} \cot t = \int_{-\infty}^{+\infty} e^{-tt} dt + \int_{-\infty}^{+\infty} e^{-t$$

4

 $U=\chi^2-\eta^2$ .  $V=\chi^2\eta-\eta^2$ Ux=2X Vp>X-m v= y2-5+77 Un= my N= x3-4xy V= 2x2y-y3 -0.5Uc = Z, R.  $Ux=hx^2-3y$   $\forall y=3x^2-3y^2$  $U_{N}=-\lambda_{1}\times M=-b_{1},\quad V_{X}=\lambda_{1}-\nu_{2}=b_{1}$ = enitidt ent = 1- 5 ( wsxt + 1 sin 2t) oft. = 1. [#smal = 1. # cosat] the = Pa i [m2-sm2-i(c2-c32)]  $=\frac{1}{2}\left[1-0-i(0+1)\right]=\frac{1}{2}(1-i)=\frac{1+1}{2}$