

SCHOOL OF COMPUTER AND COMMUNICATION SCIENCES

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Computer Vision Laboratory Unseen Spacecraft Pose Estimation

Baseline solution by implementing a machine learning framework with target models included

Bachelor's Thesis in Computer Science

Author: Jérémy Chaverot

Supervisor: Prof. Dr. Mathieu Salzmann

Advisor: PhD. Andrew Price, PhD. Chen Zhao

Semester: Fall 2023

that I hav	confirm that I am we compiled it in ent by the advisor	my own words			
Lausanne	, Switzerland, 05.	.01.24		Jérémy Chav	erot

Acknowledgments

Before we dive into the real subject, I would like to make a few acknowledgements. First and foremost I must thank my advisors Andrew Price and Chen Zhao for accepting my request to take part in a semester project under their guidance. I am grateful to have been able to practice my skills with them, and can only hope that the feeling is mutual. Moreover I would also like to thoroughly thank my friends and family for supporting me in my academic journey, despite a rather unstable start in my studies.

Contents

Acl	nowledgments	ii			
Ab	tract	iii			
1	Introduction 1.1 Problem statement	1 1 1 1 1			
2	Scientific papers review 2.1 Some ML models	2 2			
	Gen6D: formal description 3.1 Overview of the network 3.2 Detection 3.3 Viewpoint selection 3.4 Pose refinement 3.5 Results on LINEMOD	3 3 3 3 3			
4	Implementation of the model 4.1 Data loader	4 4 4 4			
5	Experimental results and analysis 5.1 Spacecraft dataset characteristics	5 5 5 5			
6	Ways of improvements 5.1 Specialized spacecraft training set	6 6 6			
	Conclusion	7 iv			
Appendix					

1 Introduction

- 1.1 Problem statement
- 1.1.1 The settings
- **1.1.2** The goal
- 1.2 The work environment: Scitas Izar

2 Scientific papers review

- 2.1 Some ML models
- 2.2 Gen6D: Pros and cons

3 Gen6D: formal description

- 3.1 Overview of the network
- 3.2 Detection
- 3.3 Viewpoint selection
- 3.4 Pose refinement
- 3.5 Results on LINEMOD

4 Implementation of the model

- 4.1 Data loader
- 4.2 Issues and proposed solutions
- 4.2.1 Issues No. 1
- 4.2.2 Issues No. 2

5 Experimental results and analysis

- 5.1 Spacecraft dataset characteristics
- 5.2 Vizualisation of results
- 5.3 Evaluation metrics
- 5.4 Quantitative evaluation

6 Ways of improvements

- 6.1 Specialized spacecraft training set
- 6.2 Improved object detection algorithms

Rely more on the 3D model (for now only the size), would optimize for symmetric and irregular shaped spacecrafts

6.3 Robustness to occlusion

Conclusion

Limitations Acknowledgments My personal contribution

Abbreviations

