Lesson 4.1: Network Layer

CSC450 - COMPUTER NETWORKS | WITNER 2019-20

DR. ANDREY TIMOFEYEV

OUTLINE

- •Introduction.
- Network layer functions & service models.
- Virtual circuit networks.
- Datagram networks.
- Forwarding function.
 - Router architecture.
 - Input processing.
 - Switching.
 - Output processing.
 - Queueing.

INTRODUCTION

Network layer provides logical communication between hosts.

• Transports datagrams from one host to another.

•On sending host:

- Takes segment from transport layer.
- Encapsulates segment into datagram.
- Sends datagram to the router.

•On receiving host:

- Receives datagram from router.
- Extracts transport-layer segment.
- Delivers segment up to transport layer.
- Network layer protocols are implemented in every host & router.

NETWORK LAYER FUNCTIONS

- Two key network layer functions:
 - Forwarding (data plane).
 - Determines how datagram arriving on router input port is forwarded to router output port.
 - Local, per-router logic.
 - Forwarding function.
 - Routing (control plane).
 - **Determines** how datagram is **routed** among routers along **end-to-end** path from **source** host to **destination** host.
 - Network-wide logic.
 - Routing algorithms.

FORWARDING VS ROUTING

•Forwarding process:

 Router forwards a datagram by matching its header value with the corresponding output link in the forwarding table.

•Routing process:

 Routing algorithm determines the values that are inserted into forwarding table based on routing protocol messages.

•Two types of routing algorithms:

- Centralized.
 - Algorithm executes on central site and downloads routing information to each router.
- Decentralized.
 - Distributed routing algorithms running on each router.

Routing algorithm & forwarding table

NETWORK LAYER SERVICE MODELS

- •Network layer provides two service models:
 - Host-to-host connectionless service.
 - Internet (TCP/IP) model.
 - Datagram networks.
 - IP network layer protocol provides best-effort service.
 - Almost "no service at all".
 - Host-to-host connection-oriented service.
 - Asynchronous Transfer Mode (ATM) model.
 - Virtual circuit (VC) networks.

VIRTUAL CIRCUIT NETWORKS

- •Virtual circuit network use connections at the network level virtual circuits (VCs).
- •VC consists of:
 - Path (links/routers) between the source and destination hosts.
 - VC number for each link.
 - Entries in forwarding table in each router.
- •VC goes through three phases:
 - VC setup.
 - Path is chosen.
 - Connection is established.
 - Circuit information stored in routers.
 - Data transfer.
 - Packets are forwarded along the path.
 - VC teardown.
 - Circuit information is removed from routers.

A simple virtual circuit network

DATAGRAM NETWORKS (1)

- Datagram network is a connectionless network model.
 - Each packet contains destination host address.
 - Routers uses this address to forward the packet.
 - Each router has a forwarding table that maps addresses to link interfaces.
 - Routing table gives next hop for each destination address.

Datagram network

DATAGRAM NETWORKS (2)

- •Routers use longest prefix matching rule to forward packet to an appropriate link.
 - When looking for forwarding link interface for given destination address, use longest address
 prefix that matches destination address.

•Example:

Forwarding table:

Destination address range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 *******	1
11001000 00010111 00011*** *******	2
Otherwise	3

Destination addresses:

- 11001000 00010111 00010110 10100001 →
- 11001000 00010111 00011000 10101010 →

FORWARDING: ROUTER ARCHITECTURE

•Four components of router architecture:

- Input ports.
 - Physical-layer functions.
 - Link-layer functions.
 - Look up forwarding table.
- Switching fabric.
 - Connects I/O port.
- Output ports.
 - Store packets.
 - Link-layer functions.
 - Physical layer function.
- Routing processor.
 - Executes routing protocols.
 - Maintains routing tables.
 - Computes forwarding tables.

Router architecture

FORWARDING: INPUT PROCESSING

•Input port consists of three parts:

- Physical layer.
 - Bit-level reception.
- Data link layer.
 - De-capsulation.
- Decentralized switching.
 - Lookup forwarding destination.
 - Longest prefix match.
 - Forward datagrams.
 - Queue datagrams.

Input port processing

FORWARDING: SWITCHING

Packets are forwarded from input ports to output ports through switching fabric.

• Three types of switching fabric:

- Switching via memory.
 - First generation routers.
 - Traditional computers with switching under direct control of CPU.
- Switching via bus.
 - Datagram transferred from input port to output port via shared bus.
- Switching via interconnection network.
 - Overcome bus limitation.
 - Interconnection nets used to connect processors in multiprocessors.

Three switching techniques

FORWARDING: OUTPUT PROCESSING

- Output port consists of the same parts as input port.
 - **De-queues** packets for transmission.
 - Encapsulates on data link layer.
 - Sends bits on physical layer.

Output port processing

FORWARDING: QUEUEING

- Queueing of packets can occur on both input ports and output ports.
- •Depends on:
 - Traffic load;
 - Speed of switching fabric;
 - Speed of line.
- Main cause of delays & packet loss.

QUEUEING: INPUT PORTS

Input ports queueing.

- <u>Cause</u>: switching fabric is **slower** than input ports combined.
- Input ports buffer overflow → queueing delays and packet loss.
- Head-of-the-line (HOL) blocking issue.
 - Queued datagram at front of queue prevents others in queue from moving forward.

QUEUEING: OUTPUT PORTS

- Output ports queueing.
 - <u>Cause</u>: datagrams arrive from fabric **faster** than the transmission rate.
 - Arrival rate via switch exceeds output line speed.
 - Scheduling algorithms choose among queued datagrams for transmission.

SUMMARY

- •Forwarding & routing.
- Network layer service models.
- Virtual circuit networks.
- Datagram networks.
- Router input & output ports.
- Switching fabric.
- Queueing.