Check List For Math104

- DEF:
 - o operation
 - o field
 - 9 axioms (4+4+1)
 - o ordered field
 - 6 properties
- prove: 1>0
- **DEF**: completeness of ordered field
 - $\circ (\mathbb{Q},+,\cdot,>)$ is not complete
- **Def**: bounded, bounded above, bounded below
- DEF: Sup_A
- Consequences of completeness of $(\mathfrak{R},+,\cdot,>)$
 - Archimedian property (zoom in & out)
 - o Existence of integer part of every real & proof
 - \circ **proof**: Denseness of $\mathbb Q$
 - \circ **proof**: Denseness of $\mathfrak{R} \setminus \mathbb{Q}$
- Triangular inequality
 - with its two corollaries
- Bernoulli's
- Binomial expansion
- Cauchy inequality
- A-G-H mean:
 - o harmonic mean
 - o geometric mean
 - o arithmetic mean
- Def:
 - **neighborhood** of a for $a \in \mathfrak{R}$
 - Sequnce
 - $\circ \ (a_n)_n o a, a \in \mathbb{R}$ (2 ways)
- **Proof**: Uniqueness of limits
- Every convergent Sequence is bdd & proof
- Algebra of Limits
 - $\circ \ a_n \to a \iff a_n a \to 0$
 - $\circ a_n \to 0 \iff |a_n| \to 0$
 - $\circ \ a_n o 0, b_n \ \mathsf{bounded} \implies a_n \cdot b_n o 0$

$$\circ \ a_n \to a, b_n \to b \implies a_n + b_n \to a + b$$

■ & proof

(i.e. we can multiply ϵ by any constant in \Re)

$$ullet$$
 $a_n o a, b_n o b \implies a_n \cdot b_n o a \cdot b$

- & proof
- \blacksquare $(-a \cdot b_n + a \cdot b_n)$

$$ullet k \in \mathbb{N}, a_n o a \implies a_n^k o a^k$$

$$ullet$$
 $b_n
eq 0, b_n
ightarrow b \implies rac{1}{b_n}
ightarrow rac{1}{b}$

& proof (*note: hard)

$$\circ (a_n)_n \geq 0, k \geq 0, a_n \rightarrow a \implies \sqrt[k]{a_n} \rightarrow \sqrt[k]{a}$$

$$\circ \ a>0$$
, when $n o +\infty$, $\sqrt[n]{a} o 1$

$$\circ$$
 when $n \to +\infty$, $\sqrt[n]{n} \to 1$

• Squeeze Thereom & Proof

• Monotone Sequence $(a_n)_n$ converges \iff

- o increasing & bdd above or
- o decreasing & bdd below
- & proof

•
$$(a_n)_n = (1 + \frac{1}{n})^n$$
 converges

- o proof
- \circ definition of e

• **DEF**:
$$+\infty$$
, $-\infty$ as limit

$$\circ$$
 i.e. as $n \to +\infty, (a_n)_n \to +\infty$

o 2 ways

• ratio test, root test

& proof

• bolzano-Weierstrasss (or whatever it's called)

- o 2 ways of proof
 - peak point
 - nested interval
- **DEF**: Cauchy Sequence

Converge ⇒ Cauchy

o converse does not hold unless in $\mathfrak R$

• In any metric space, $(b_n)_n$ cauchy with a subsequence:

$$(b_{k_n})_n \to b \in \mathfrak{R} \implies b_n \to b$$

& proof

11. Metric Space

• DEF:

- topology
- o open / closed set
- o neighborhood
- basis
- metric (distance)
 - 3 properties
 - prove the triangular eqaulity in d_n
 - Minkowski's inequality

12. Topology Induced by a Metric

- topology induced by a metric T_d ($\{\emptyset$, union of ... $\}$)
- characterisation
- open ball / open set w.r.t d
- **proof**: finite intersections of sets in T_d are also in T_d
- closed ball / closed set
- discrete topology (all subsets are open and closed)

13. Open Sets and Closed Sets

- Properties of unions and intersections:
 - **finite intersections** of **open** sets (def)
 - **arbitrary unions** of **open** sets (def)
 - \implies (due to de morgan's law)
 - finite unions of closed sets
 - arbitrary intersections of closed set

 \Longrightarrow

o all finite sets are closed

14. Closure

• **DEF**: closure

• $\overline{F} = F \iff F \text{ closed}$

• proof: \overline{F} is closed (w.r.t d)

ullet \overline{F} is the smallest closed set containing F

o proof

15. Normed Space

• **DEF**: norm(|| ⋅ ||)

- nonnegativity
- sacalar multiplication
- triangle inequality
- $||\cdot||_p$ for $p \ge 1$, Minkawski's Inequality
- def: memtric induced by norm
- Restrictions of normed space
 - $\circ X$ must be vector space
 - translation invariant
 - $\circ \ d_{||\cdot||}$ takes all non-negative values in ${\mathfrak R}$
 - a result of λ multiplication

16. Sequence in Metric Space

- def:
 - Sequence in a metric space
 - \circ Convergence: $(x_n)_n o x_0 \in X$, w.r.t d (3 ways)
- 3 properties for convergent Sequence (say, $\rightarrow x_o$)in metric spaces
 - o unique limit
 - every subsequence converge
 - bounded w.r.t d(meaning ..?)
- Extra 3 properties in normed spaces (normed space gives us addition, zero, etc.)
- DEF: characterisation of closures / closed sets via sequences
- ullet 2 techniques to prove $F\subset X$ is closed / not closed

MIDTERM ENDS HERE

17. Accumulation Points

- **Def**: accumulation point
- ullet **Proof**: $\overline{A}=A\cup A'$,wher A':= accumulation points of A,
 - $\circ \ \ \mathsf{prove} \colon A \cup A' \subset \overline{A}$
 - $\circ \ \ \mathsf{prove} \colon A \subset A \cup A'$
- $\bullet \ \ \mathsf{ex:} \ \overline{(a,b) \cup \{c\}} = ((a,b) \cup \{c\}) \cup ((a,b) \cup \{c\})' = (a,b) \cup \{\} \cup [a,b] = [ab] \cup \{c\}$

18. Cauchy Sequences In Metric Space

- Def: Cauchy sequence in metric space
- cauchy and convergence
 - the key is to note the difference: cauchy only concerns *d* and all the elements in the squence, while convergence will also need one extra point: the limit. i.e. we need to think about the ambient space

- **Def**: Complete metric space (now we include the extra point)
- **proof**: Complete ⇒ closed

19. Limits of Functions

- **Def**: accumulation point x_0 of A, for $x_0 \in \mathbb{R}, A \subset \mathbb{R}$
 - o 3 ways
- **Def**: x_0 isolated point of A, for $A \subset R, x_0 \in A$
- ullet **Def**: $\lim_{x o x_0}f(x)=l$, for $f:A o\mathbb{R}$, and x_0 a.c point of A.
 - o 3 ways
- $+\infty, -\infty$ as limits
- $+\infty, -\infty$ as A.C. points

20. Characterisation of Accumulation Points

- The following three are equivalent
 - $\circ x_0$ is an A.C points of A
 - \circ Every neighbourhood of x_0 contains infinitely many elements of A, different from x_0
 - o there exits a sequence $(x_n)_{n\in\mathbb{N}}$ in A, all of whose terms are pairwise distinct, such that $x_n \to x_0$

21. Characterisation of Limits via Limits of Sequences

- $ullet \ \lim_{x o x_0}f(x)=l$ vs $f(x_n) o l$, when $x_n o x_0$
- Corollary: Algebra of limits

22. Continuity

- **Def**: f is continuous at x_0
 - o 3 ways
 - \circ Compare to limits, we now really care about $f(x_0)$
 - \circ consider x_0 to be an isolated point
- Proof continuity
 - \circ by ϵ definiton
 - o by limit of sequence (i.e. when not an isolation point)
- **Def**: Continuity via limits of Sequence
- Thm: Continuity of algebra of functions $(f+g, \lambda \cdot f, f \cdot g, \frac{f}{g})$
- **Thm**: Composition of functions, $g \circ f$, peserves continuity

23. Continuity as a Local Property

Continuity is a local property

- if f is cont. at x_0 , then f is bounded in a neighbourhood of x_0
- Local preservation of sign and points of continuity

25. Continuous functions on closed intervals

- Every continuous function $f:[a,b] o \mathbb{R}$ is bounded.
- (Stronger) Every continuous function $f:[a,b] o \mathbb{R}$ has a maximal value and minimal value.

26. IVT

- IVT
 - ∘ **Def**: IVT
 - o proof: IVT
 - 2 ways
 - o 3 other forms

27. Applications of IVT

- Every positive number has a unique n-th root
- ullet Each polynomial of odd degree has a root in ${\mathbb R}$
- Fix point theorem
- **Def**: Interval
- Continuous images of intervals are intervals
- Continuous on I + 1 to 1 \Longrightarrow strictly monotone
- ullet $f:I o\mathbb{R}$ continuous and 1-1
 - $\implies f^{-1}:f(I) o I$ is continuous, and has the same kind of monotonicity

28. Continuous functions on metric spaces

- **Def**: Let (X, d_x) , (Y, d_y) be metric spaces, let $f: X \to Y$, f is continuous at $x_0 \in X$
 - o 2 ways
- Def: $f^{-1}(A), A \subset Y$
 - $\circ f^{-1}(A)$ is well defined $orall A\subset Y$,whether the function $f^{-1}:Y o X$ is well defined or not
 - $\circ B \subset f^{-1}(A) \iff f(B) \subset A$
- f continuous $\iff f$ inverts open sets to open sets (i.e. $f^{-1}(U)$ open in (X,d_x) , for every $U\subset Y$, open in (Y,d_y)).
 - o proof

29. Compact Sets

- **Def**: open cover of K, $K \subset X$ in (X, d)
 - **Def**: subcover $A' \subset A$
- **Def**: (X, d) compact
 - **Def**: compact subset
- $K \subset X, K$ compact $\implies K$ closed and bounded in (X, d)
 - the converse is not always true
 - o proof
- Thm: Continuous Functions send compact sets to compact sets.

30. Sequentially Compactness

- **Def**: (X, d) Sequentially compact
- ullet Sequentially compact \Longrightarrow closed
 - \circ not closed \Longrightarrow not sequentially compact

31. Differentiability

- **Def**: f dfferentiable at x_0
 - **def**: derivative of f at x_0
- **Proof**: differentiable \Longrightarrow continuous
- Rules of differentiation
 - 0 4
- Proof: Chain rule

32. Local Extrema

- Thm: $f \uparrow \implies f'(x) \ge 0, \forall x \in (a,b); \dots$
 - $\circ \ f'(x)$ can be zero even strictly increasing, consider $x^3, x=0$
 - $\qquad \text{however, } f'(x)>0 \implies f \text{ strictly increasing...}$
- **def**: local extremum
- ullet Fermat's Prop: local extremum at x_0 and $f'(x_0)$ exists $\implies f'(x_0) = 0$
- **def**: critical point

33. Rolle's, MVT, L' Hopital

- Rolle's Theorem
 - o proof
- Mean Value Theorem
 - o proof
- L'Hopistal
 - Def: Cauchy's Generalised Mean Value Theorem

34. Uniform Continuity

- **Def**: Uniform Continuity
- ullet $f:(X,d_x) o (Y,d_y)$ continuous, (X,d_x) compact $\Longrightarrow f$ uniformly continuous

35. Riemann Integration

- X_I characteristic function
- $\int X_I := \text{length of } I$
- **Def**: step function ϕ
 - \circ equivalence: $\phi(x) = \sum c_i X_{(x_{i-1},x_i)}$
 - o observation:
 - bounded support
 - continuity
 - $\circ \int \phi$
 - \circ observation: adding subset $\{y_0,y_1,\ldots y_m\}$ to $\{x_o,x_1,\ldots x_n\}$ of ϕ
 - Linearity of integral for step function
- **def**: Riemann Integrable (R.I.)
 - o prop: step functions are R.I.
 - 2 properties of R.I *f*:
 - f bounded
 - f has bounded support
 - \circ Theorem: R.I. f with bounded support \iff
 - $\circ \int f$

36. R.I. Proof & Corollary

- 2 criterions
- 2 corollary
- 4 basic properties
- ullet Thm: Any monotone function $f:[a,b] o \mathbb{R}$ is Riemann Integrable.
- ullet Thm: Any continuous function $f:[a,b] o \mathbb{R}$ is Riemann Integrable.