МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №25

ОТЧЕТ		
ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
ассистент		Н.В. Степанов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 2

ИССЛЕДОВАНИЕ ДИСКРЕТНЫХ СИГНАЛОВ ВО ЧАСТОТНОЙ ОБЛАСТИ

по курсу: ОБЩАЯ ТЕОРИЯ СВЯЗИ

СТУДЕНТ ГР. №	3032		А.А. Алёшкин
	номер группы	подпись, дата	инициалы, фамилия

Санкт-Петербург 2022

1. Цель работы

- Привести вывод выражений преобразования Фурье для отрезков синусоиды и косинусоиды
- Привести выражения для преобразования Фурье сигналов из сигнального множества
- Вычислить амплитудные спектры всех сигналов, построить графики, определить ширину полосы частот, занимаемой каждым сигналом и множеством всех сигналов
- Привести вывод выражения спектра последовательности сигналов
- Вычислить спектр последовательности сигналов, построить графики, сравнить полученные спектры со спектрами одиночных сигналов

Вариант III.10(Квадратурная амплитудная модуляция):

- = 1800 Гц несущая частота;
 - = 2400 Бод модуляционная скорость;
- = 14400 бит/с информационная скорость.

2. Вывод выражений преобразования Фурье для отрезков синусоиды и косинусоиды

Рассмотрим косинусоиду. Пусть задан сигнал:

Допустим s(t) = g(t)c(t), где g(t) = A - некоторая произвольная функция (огибающая,) $c(t) = \cos(2$) — гармонический сигнал.

Расчёт спектральной функции:

где

тогда Tеперь рассмотрим g(t) = A: Подставим G(f) в S(f): Рассмотрим синусоиду. Пусть задан сигнал: Допустим s(t) = g(t)c(t), где g(t) = A - некоторая произвольная функция (огибающая,) $c(t) = \sin(2)$) – гармонический сигнал Расчёт спектральной функции: где тогда Теперь рассмотрим g(t) = A: Подставим G(f) в S(f):

3.	Выражение	для	преобразования	Фурье	сигналов	из	сигнального
	множества:						

Формула сигнала для квадратурной амплитудной модуляции выглядит следующим образом

Используя выражения из пункта 2, получим преобразование Фурье для КАМ

4. Вычислить амплитудные спектры сигналов

Сигналы дискретной фазовой модуляции задаются следующим образом:

(2.1)

Или

(2.2)

Где

Рис. 1 – Графики амплитудных спектров сигналов

Рис. 2 – Отмер ширины полосы частот на графике амплитудных спектров сигналов

Теоретический расчёт ширины полосы частот:

5. B	Вывод вы	ражения	спектра	последо	овательности	сигналов
------	----------	---------	---------	---------	--------------	----------

Пусть — сигнальное множество, $i=0,1,\dots$ q-1. Тогда

где N – длина последовательности индексов. Используя свойство линейности:

если и , то

А также свойство задержки:

Получаем, что

6. Вычислить спектры последовательности сигналов и построить графики

Рис. 3 – График суммы спектров последовательности из 8 случайных сигналов

Рис. 4 - Графики суммы спектров первого и последнего сигнала
Ширина полосы частот для последовательности сигналов рассчитывается по
формуле

7. Вывод:

В ходе лабораторной работы были исследованы дискретные сигналы квадратурной амплитудной модуляции в частотной области.

- Были выведены формулы для спектров отрезка гармоник сигналов синуса и косинуса.
- По полученным формулам были вычислены спектры сигналов и построены их графики.
- Была вычислена ширина полосы частот для одиночного сигнала.
- Были вычислены спектры последовательностей сигналов для нескольких различных последовательностей различной длины.
- Были построены графики спектров последовательностей сигналов.

• Были вычислена ширина полосы частот, занимаемой различными последовательностями сигналов.

8. Код программы:

```
clc;
clear:
close all;
f0 = 1800;
Vmod = 2400;
Vinf = 14400;
T = 1/V mod;
W = 1/T;
m = Vinf * T;
q = 2^m;
Ts = T;
dt = 1/f0/20;
t = -Ts/2:dt:Ts/2;
df = 10;
f = 0:df:8000;
i1 = zeros(q,1);
i2 = zeros(q,1);
A = 1:
s1s2 = zeros(q,2);
for c = 1:q
i1(c) = floor((c - 1) / sqrt(q));
i2(c) = mod(c - 1, sqrt(q));
s1s2(c,1) = A*(1-((2*i1(c))/(sqrt(q)-1)));
s1s2(c, 2) = A*(1-((2*i2(c))/(sqrt(q)-1)));
end
%%signal
%disp("s values:")
s = zeros(q,length(t));
for c = 1:q
s(c,:) = (s1s2(c,1)*sqrt(W).*cos(2*pi*f0*t)) +
(s1s2(c,2)*sqrt(W).*sin(2*pi*f0*t));
    for p = 1:length(t)
     %fprintf('%f ,',s(c,p));
    end
%fprintf('\n');
end
%%signal output
```

```
nfig = 0;
figure (1);
Amax = abs(max(max(s)));
hold on;
for c = 1:q
nfig = nfig + 1;
subplot(sqrt(q),sqrt(q),nfig);
plot(t,s(c,:), 'LineWidth', 2);
xlabel('t, sec');
title(['s {',num2str(c-1),'}(t)']);
axis([min(t), max(t), -1.2*Amax, 1.2*Amax]);
grid on;
%if(mod(nfig, 16) == 0) \&\& (c \sim= q)
nfig = 0;
%end
end
hold off;
%%signals in one plot
count = 0;
figure(2);
for i = 1:q
count = count + 1;
s(count, :) = s1s2(:,1)*sqrt(2/T)*cos(2*pi*f0*t) +
s1s2(:,2)*sqrt(2/T)*sin(2*pi*f0*t);
plot(t, s(count, :));
hold on;
end
hold off;
%%Energy
Eteor = zeros(1, q);
Ereal = zeros(1, q);
for c = 1:q
Eteor(1,c) = s1s2(c,1).^2 + s1s2(c,2).^2;
Ereal (1, c) = sum(s(c, :).^2) * dt;
Ereal(1,c)= trapz(t,s(c, :).^2);
f('Ee%d = f(n',c-1), Ereal(1,c));
f('Eteor = f(n), Eteor(1,c));
end
%%Energy output
xEn = 1:1:q;
figure(3);
plot(xEn', [Eteor' Ereal']);
xlabel('signal, number');
title('Eteor and Ereal');
axis([1, q, 0, 5]);
grid on;
```

```
%%spectrum
%disp("Si value spec:")
S = zeros(q, length(f));
figure(4);
hold on;
for c = 1:q
S(c, :) = s1s2(c,1) * sqrt(T / 2) * (sinc((f - f0) * T) +
sinc((f + f0) * T)) .* exp(-1j * pi * f * T) + (s1s2(c, 2))
/1j) * (sqrt(T / 2)) * (sinc((f - f0) * T) - sinc((f + f0))
* T)) .* exp(-1j * pi * f * T);
        subplot(sqrt(q),sqrt(q),c);
        plot(f, abs(S(c,:)));
        title(['Spectre of signal S {',num2str(c-
1),'}(f)']);
        ylabel('S(f)'); xlabel('f');
        grid on;
   %for p = 1:length(f)
   %fprintf('%f ,',S(c,p));
   %end
   %fprintf('\n');
end
hold off;
figure(5);
for c = 1:q
S(c, :) = s1s2(c,1) * sqrt(T / 2) * (sinc((f - f0) * T) +
sinc((f + f0) * T)) .* exp(-1j * pi * f * T) + (s1s2(c, 2))
/1j) * (sqrt(T / 2)) * (sinc((f - f0) * T) - sinc((f + f0))
* T)) . * exp(-1; * pi * f * T);
plot(f, abs(S));
hold on;
title('Spectre of signals(f)');
grid on;
vlabel('S(f)'); xlabel('f');
end
%%signal sequence spectrum
figure(6);
N = 8;
randMas = round((q-1)*rand(1, N));
randNum = round((q-N-1)*rand());
Si = zeros(1, length(f));
for k = 1:N
S = S(randMas(k)+1,:);
S = S(randNum+k,:);
```

```
plot(f,abs(S ed));
hold on;
Si = Si + S ed.*exp(-1j*2*pi*(k-1)*f*T);
plot(f,abs(S ed));
hold on:
Si = Si/N;
plot(f,abs(Si), 'm--');
legend('Single signal');
hold off;
title('Combined spectre of 8 random signals');
figure(7);
N = 8;
randMas = round((q-1)*rand(1, N));
Si = zeros(1, length(f));
for k = 1:N
S = S(1, :);
plot(f,abs(S ed));
hold on;
Si = Si + S ed.*exp(-1j*2*pi*1*f*T);
S = S(64, :);
plot(f,abs(S ed));
hold on;
Si = Si + S ed.*exp(-1j*2*pi*2*f*T);
%end
%plot(f,abs(S ed));
%hold on;
Si = Si/2;
plot(f,abs(Si), 'm--');
legend('Single signal');
hold off;
title('Combined spectre of 0 and 63 signals');
```