	Surname	Type
Group Number	Name	٨
List Number	e-mail	$oldsymbol{\Delta}$
Student ID	Signature	1 1

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

Questions 1-5

A scale is adjusted so that when a large, shallow pan is placed on it, it reads zero Newton. There is a water faucet 1.6 m above the pan. When the faucet is turned on, water leaves the faucet with a speed of 2 m/s and falls into the pan at a rate R = 0.14 kg/s. Take $g = 10 \text{ m/s}^2$.

- 1. What is the magnitude of the velocity of water as it strikes the pan in m/s?
 - (a) 3 (b) $4\sqrt{2}$ (c) 5 (d) 4 (e) 6
- 2. Just after water strikes the pan what is the momentum change per unit time in kgm/s²?
 - (a) 0.14 (b) 0.56 (c) 0.84 (d) 0.42 (e) 0.28
- **3.** What is the scale reading at t = 0 s (Water just strikes to the pan initially)
 - (a) 0.84 N (b) 1 N (c) 10 N (d) 1.4 N (e) 0.64 N
- **4.** What is the mass of water in the pan at t = 4 s in kg?
 - (b) 1.5 kg (c) 2 kg (d) 1 kg (e) 3 kg
- 5. What is the scale reading at t = 4 s? (Assume that the increase in water level is negligible)
 - (a) 10.2 N (b) 15.6 N (c) 6.44 N (d) 21 N (e) 16 N

Questions 6-8

Two objects, A ($m_A = 1.0 \text{ kg}$) and B ($m_B = 2.0 \text{ kg}$), collide. The velocities before the collision are $\vec{v_A} = 2\hat{\imath} \text{ m/s}$ and $\vec{v_B} = 4\hat{\jmath} \text{ m/s}$. The velocity of object A after the collision is given by $\vec{v_A}' = -0.4\hat{\imath} + 2\hat{\jmath} \text{ m/s}$.

- **6.** What is the speed of object B just after the collision (v_B') ?

 - (a) $\sqrt{8.76}$ m/s (b) $\sqrt{10.44}$ m/s (c) $\sqrt{8.44}$ m/s (d) $\sqrt{9.36}$ m/s (e) $\sqrt{9.64}$ m/s
- 7. What is $\tan \theta$, where θ is the angle between the velocity of B (v_B) and the x-axis?
 - (a) 1.5 (b) 5 (c) 2 (d) 2.5 (e) 3
- **8.** What is the energy lost due to the collision?
- (a) 7.16 J (b) 7.48 J (c) 5.48 J (d) 6.56 J (e) 6.38 J

Questions 9-15

A rigid, massless rod has three masses attached to it. The rod is free to rotate in a vertical plane about a frictionless axle perpendicular to the rod through the point P, and it is released from rest in the horizontal position at t=0s.

- 9. Find the moment of inertia of the system about the point P.
 - (a) $7md^2$ (b) $4md^2$ (c) $\frac{7md^2}{3}$ (d) $\frac{22md^2}{9}$ (e) $\frac{4md^2}{9}$
- 10. Find the magnitude of the torque about point P at t=0s.
 - (a) 0 (b) mgd (c) $\frac{3}{4}mgd$ (d) $\frac{7mgd}{q}$ (e) $\frac{4}{3}mgd$
- 11. Find the angular acceleration of the system at t=0s.
 - (a) $\frac{6g}{11d}$ counter clockwise (b) $\frac{3g}{7d}$ counter clockwise (c) $\frac{3g}{7d}$ clockwise (d) $\frac{6d}{11d}$ counter clockwise (e) $\frac{6g}{11d}$ clockwise
- 12. Find the linear acceleration of the mass labelled as "3" at t=0s.
 - (a) $\frac{4g}{11}$ down (b) 0 (c) $\frac{2g}{7}$ up (d) $\frac{2g}{7}$ down (e) $\frac{4g}{11}$ up
- 13. Find the maximum kinetic energy of the system.
 - (a) $\frac{4}{5}mgd$ (b) $\frac{4}{3}mgd$ (c) $\frac{5}{4}mgd$ (d) $\frac{3}{4}mgd$ (e) mgd
- 14. Find the maximum angular speed attained by the rod.
 - (a) $\sqrt{\frac{7g}{6d}}$ (b) $\sqrt{\frac{4g}{3d}}$ (c) $\sqrt{\frac{12g}{11d}}$ (d) $\sqrt{\frac{6g}{7d}}$ (e) $\sqrt{\frac{11g}{12d}}$

15. Find the maximum value of the magnitude of the angular momentum of the system about point P.

(a)
$$md^{\frac{3}{2}}\sqrt{(\frac{14g}{3})}$$
 (b) $\frac{44}{9}md^{\frac{3}{2}}\sqrt{\frac{3g}{11}}$ (c) $md^{\frac{3}{2}}\sqrt{(\frac{5g}{14})}$ (d) $22md^{\frac{3}{2}}\sqrt{(\frac{14g}{3})}$ (e) $\frac{44}{9}md^{\frac{3}{2}}\sqrt{\frac{5g}{21}}$

Questions 16-20

The turbine and associated rotating parts of a jet engine have a total moment of inertia of 10 kgm². The turbine is accelerated uniformly from rest to an angular speed of 100 rad/s in a time of 25 s. Find

16. the angular acceleration,

(a)
$$1/4 \text{ rad/s}^2$$
 (b) 4 rad/s^2 (c) $1/2 \text{ rad/s}^2$ (d) 2 rad/s^2 (e) 5 rad/s^2

17. the net torque required,

$${\rm (a)\ 20\ Nm} \quad {\rm (b)\ 5\ Nm} \quad {\rm (c)\ 50\ Nm} \quad {\rm (d)\ 40\ Nm} \quad {\rm (e)\ 2\ Nm}$$

18. the angle turned through in 25 s,

$$\hbox{(a) 1750 rad } \hbox{(b) 1000 rad } \hbox{(c) 500 rad } \hbox{(d) 750 rad } \hbox{(e) 1250 rad }$$

19. the work done by the net torque,

20. the kinetic energy of the turbine at the end of the 25 s.

(a)
$$25000 \,\mathrm{J}$$
 (b) 0 (c) $100000 \,\mathrm{J}$ (d) $50000 \,\mathrm{J}$ (e) $12500 \,\mathrm{J}$

Questions 21-25

The potential energy between two identical point like objects of the same mass, m, is given by the relation, $U(r) = m \cdot A[(\frac{r_0}{r})^{12} - 2(\frac{r_0}{r})^6]$. Here r is the distance between the objects, r_0 is the equilibrium distance where the net force on the objects is zero, and A is a constant.

21. What is the unit of A?

(a)
$$N.kg/m^9$$
 (b) $N.kg/m^6$ (c) $N.m/kg$ (d) $N.kg/m^{12}$ (e) $N/m.kg$

22. What is the minimum value of the potential energy?

(a)
$$-6mA$$
 (b) $-mA$ (c) $3mA$ (d) $-2mA$ (e) $-3mA$

23. What is the magnitude of the force applied by one of the objects on the other at the distance that the *potential energy becomes minimum*?

(a)
$$F = 3mA$$
 (b) $F = mA[r_0^{11} - 2r_0^5]$ (c) $F = mA[r_0^{12} - 2r_0^6]$ (d) $F = 0$ (e) $F = 2mA$

24. What is the magnitude of the force applied on each object as a function of the distance r?

(a)
$$F = 12m.A[+\frac{r_0^{12}}{r^{13}} - \frac{r_0^6}{r^7}]$$
 (b) $F = m.A[-\frac{r_0^{13}}{r^{11}} - \frac{r_0^7}{r^5}]$ (c) $F = m.A[-\frac{r_0^{13}}{r^{11}} + \frac{r_0^7}{r^5}]$ (d) $F = 12m.A[-\frac{r_0^{12}}{r^{13}} - \frac{r_0^6}{r^7}]$ (e) $F = m.A[+\frac{r_0^{12}}{r^{13}} - \frac{r_0^6}{r^9}]$

25. Consider that one of the objects is fixed. What is the minimum work that must be done to bring the other object from a distance r_0 to $2r_0$.

(a)
$$W = mA(1 - 2^{-12} - 2^{-7})$$
 (b) $W = 12mA(1 + 2^{-11} - 2^{-6})$ (c) $W = 12mA(-1 - 2^{-11} + 2^{-6})$ (d) $W = mA(1 + 2^{-12} - 2^{-5})$ (e) $W = mA(-1 - 2^{-12} + 2^{-7})$

Page 2 of 2