Constraint Satisfaction Problems over the Integers with Successor

Manuel Bodirsky, Barnaby Martin, **Antoine Mottet** ICALP 2015

Motivation

A σ -sentence ϕ is primitive positive if it is of the form

$$\exists x_1,\ldots,x_n \bigwedge_{i=1}^m R_i(x_{i_1},\ldots,x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

A σ -sentence ϕ is primitive positive if it is of the form

$$\exists x_1,\ldots,x_n \bigwedge_{i=1}^m R_i(x_{i_1},\ldots,x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z} , depending on σ ?

A σ -sentence ϕ is primitive positive if it is of the form

$$\exists x_1,\ldots,x_n \bigwedge_{i=1}^m R_i(x_{i_1},\ldots,x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z} , depending on σ ?

Examples:

► {<,+}: in P (consequence of LP tractability and scalability)

A σ -sentence ϕ is primitive positive if it is of the form

$$\exists x_1,\ldots,x_n \bigwedge_{i=1}^m R_i(x_{i_1},\ldots,x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z} , depending on σ ?

Examples:

- ► {<,+}: in P (consequence of LP tractability and scalability)
- \blacktriangleright {<, +, 1}: NP-complete (integer linear programming)

A σ -sentence ϕ is primitive positive if it is of the form

$$\exists x_1,\ldots,x_n \bigwedge_{i=1}^m R_i(x_{i_1},\ldots,x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z} , depending on σ ?

Examples:

- ► {<,+}: in P (consequence of LP tractability and scalability)
- \blacktriangleright {<,+,1}: NP-complete (integer linear programming)
- \blacktriangleright {+, \times }: undecidable (Hilbert's Tenth Problem)

Constraint Satisfaction Problems

Definition (CSP(Γ))

Let Γ be a relational structure with a finite signature. The constraint satisfaction problem of Γ is the following decision problem:

INPUT: a primitive positive sentence ϕ in the language of Γ , QUESTION: is ϕ true in Γ ?

The structure Γ is called the template of CSP(Γ).

Example

The CSP of (\mathbb{Z} ; succ):

Example

The CSP of (\mathbb{Z} ; succ):

 \blacktriangleright We view the input formula as a directed graph G.

Example

The CSP of (\mathbb{Z} ; succ):

- \blacktriangleright We view the input formula as a directed graph G.
- ▶ The input is true in $(\mathbb{Z}, \operatorname{succ})$ iff there is a graph homomorphism from G to $(\mathbb{Z}; \operatorname{succ})$.

- \blacktriangleright We view the input formula as a directed graph G.
- ▶ The input is true in $(\mathbb{Z}, \operatorname{succ})$ iff there is a graph homomorphism from G to $(\mathbb{Z}; \operatorname{succ})$.

$$\exists x_1, \dots, x_6 (x_2 = \operatorname{succ}(x_1) \land x_4 = \operatorname{succ}(x_2) \land \dots) \quad \widehat{=} \quad$$

- \blacktriangleright We view the input formula as a directed graph G.
- ▶ The input is true in $(\mathbb{Z}, \operatorname{succ})$ iff there is a graph homomorphism from G to $(\mathbb{Z}; \operatorname{succ})$.

$$\exists x_1, \dots, x_6 (x_2 = \operatorname{succ}(x_1) \land x_4 = \operatorname{succ}(x_2) \land \dots) \quad \hat{=} \qquad x_2 \checkmark$$

 x_1 x_2 x_4 x_5 x_6

satisfying assignment

 $\widehat{=}$ homomorphism to $(\mathbb{Z}; \operatorname{succ})$

- \blacktriangleright We view the input formula as a directed graph G.
- ▶ The input is true in $(\mathbb{Z}, \operatorname{succ})$ iff there is a graph homomorphism from G to $(\mathbb{Z}; \operatorname{succ})$.
- Complexity:

$$\exists x_1, \dots, x_6 (x_2 = \operatorname{succ}(x_1) \land x_4 = \operatorname{succ}(x_2) \land \dots) \quad \stackrel{\frown}{=} \quad x_2 \qquad x_4 \qquad x_5$$

satisfying assignment

 $\widehat{=}$ homomorphism to $(\mathbb{Z}; \operatorname{succ})$

- \blacktriangleright We view the input formula as a directed graph G.
- ▶ The input is true in $(\mathbb{Z}, \operatorname{succ})$ iff there is a graph homomorphism from G to $(\mathbb{Z}; \operatorname{succ})$.
- Complexity: in P.

$$\exists x_1, \dots, x_6 (x_2 = \operatorname{succ}(x_1) \land x_4 = \operatorname{succ}(x_2) \land \dots) \quad \widehat{=} \qquad x_2 \blacktriangleleft$$

 x_1 x_2 x_4 x_5 x_6

satisfying assignment

 $\widehat{=}$ homomorphism to $(\mathbb{Z}; \operatorname{succ})$

New relations from old

Definition

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation.

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1,\ldots,x_n)$ in the language of Γ such that

$$(a_1,\ldots,a_n)\in R \Leftrightarrow \Gamma \models \phi(a_1,\ldots,a_n).$$

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1,\ldots,x_n)$ in the language of Γ such that

$$(a_1,\ldots,a_n)\in R \Leftrightarrow \Gamma \models \phi(a_1,\ldots,a_n).$$

Examples:

▶ The unary $R = \{x \in \mathbb{Z} : x \text{ is even}\}$ is definable in $(\mathbb{Z}; +)$,

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1,\ldots,x_n)$ in the language of Γ such that

$$(a_1,\ldots,a_n)\in R \Leftrightarrow \Gamma \models \phi(a_1,\ldots,a_n).$$

Examples:

- ▶ The unary $R = \{x \in \mathbb{Z} : x \text{ is even}\}$ is definable in $(\mathbb{Z}; +)$,
- ▶ $\{(x, y) \in \mathbb{Z}^2 : x \text{ divides } y\}$ is definable in $(\mathbb{Z}; \times)$.

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ in the language of Γ such that

$$(a_1,\ldots,a_n)\in R \Leftrightarrow \Gamma \models \phi(a_1,\ldots,a_n).$$

Examples:

- ▶ The unary $R = \{x \in \mathbb{Z} : x \text{ is even}\}$ is definable in $(\mathbb{Z}; +)$,
- ▶ $\{(x,y) \in \mathbb{Z}^2 : x \text{ divides } y\}$ is definable in $(\mathbb{Z}; \times)$.

Definition

Let Γ, Δ be structures over the same domain. We say that Γ is a reduct of Δ when all the relations of Γ are (fo-)definable in Δ .

Distance Constraint Satisfaction Problems

Definition

A distance CSP is a CSP whose template is a reduct of (\mathbb{Z} ; succ).

Distance Constraint Satisfaction Problems

Definition

A distance CSP is a CSP whose template is a reduct of (\mathbb{Z} ; succ).

Examples:

 $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

 $CSP(\mathbb{Z}; R)$:

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

 $CSP(\mathbb{Z}; R)$: in \mathbb{P} ,

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

 $CSP(\mathbb{Z}; R)$: in P,

► CSP(\mathbb{Z} ; |x - y| = 1, |x - y| = 5): NP-complete,

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- ightharpoonup CSP(\mathbb{Z} ; succ): in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

- $CSP(\mathbb{Z}; R)$: in P,
- ► CSP(\mathbb{Z} ; |x y| = 1, |x y| = 5): NP-complete,
- ► CSP(\mathbb{Z} ; \neq , $y x \in \{1, 2\}$): NP-complete.

A distance CSP is a CSP whose template is a reduct of $(\mathbb{Z}; succ)$.

Examples:

- $ightharpoonup CSP(\mathbb{Z}; succ)$: in P,
- Let R be the ternary relation

$$\{(a+1,a,a),(a,a+1,a),(a+1,a+1,a)\mid a\in\mathbb{Z}\}.$$

 $CSP(\mathbb{Z}; R)$: in P,

- ► CSP(\mathbb{Z} ; |x y| = 1, |x y| = 5): NP-complete,
- ► CSP(\mathbb{Z} ; \neq , $y x \in \{1, 2\}$): NP-complete.

Problem (Complexity classification project for $(\mathbb{Z}; \operatorname{succ})$)

Give a complete classification of the complexity of distance CSPs.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

 \blacktriangleright (\mathbb{Z} ; $x = y \lor u = v$, succ) is not.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

 \blacktriangleright (\mathbb{Z} ; $x = y \lor u = v$, succ) is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker '10)

Let Γ be a locally finite reduct of $(\mathbb{Z}; \operatorname{succ})$. Then $\operatorname{CSP}(\Gamma)$ is in P or $\operatorname{NP-complete}$, or $\operatorname{CSP}(\Gamma)$ is the CSP of a finite structure.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

 \blacktriangleright (\mathbb{Z} ; $x = y \lor u = v$, succ) is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker '10)

Let Γ be a locally finite reduct of $(\mathbb{Z}; \operatorname{succ})$. Then $\operatorname{CSP}(\Gamma)$ is in P or $\operatorname{NP-complete}$, or $\operatorname{CSP}(\Gamma)$ is the CSP of a finite structure.

Our result:

► Complete classification of the complexity of distance CSPs.

A reduct Γ of $(\mathbb{Z}; \operatorname{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ .

▶ $(\mathbb{Z}; |y - x| \le 3)$ is locally finite.

 \blacktriangleright (\mathbb{Z} ; $x = y \lor u = v$, succ) is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker '10)

Let Γ be a locally finite reduct of $(\mathbb{Z}; \operatorname{succ})$. Then $\operatorname{CSP}(\Gamma)$ is in P or $\operatorname{NP-complete}$, or $\operatorname{CSP}(\Gamma)$ is the CSP of a finite structure.

Our result:

- ► Complete classification of the complexity of distance CSPs.
- ► Systematic approach using universal algebraic methods.

Fact

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $\mathrm{CSP}(\Gamma)$ and $\mathrm{CSP}(\Gamma,R)$ are polynomial-time equivalent.

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $CSP(\Gamma)$ and $CSP(\Gamma, R)$ are polynomial-time equivalent.

How to determine if R is pp-definable in Γ ?

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $\mathsf{CSP}(\Gamma)$ and $\mathsf{CSP}(\Gamma, R)$ are polynomial-time equivalent.

How to determine if R is pp-definable in Γ ?

Definition

Let $f: D^k \to D$ and let $R \subseteq D^n$ be a relation. We say that f preserves R iff

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $\mathsf{CSP}(\Gamma)$ and $\mathsf{CSP}(\Gamma, R)$ are polynomial-time equivalent.

How to determine if R is pp-definable in Γ ?

Definition

Let $f: D^k \to D$ and let $R \subseteq D^n$ be a relation. We say that f preserves R iff

$$\begin{pmatrix} a_1^1 & a_2^1 & \cdots & a_n^1 \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ & \vdots & & \\ a_1^k & a_2^k & \cdots & a_n^k \end{pmatrix} \in R$$

$$\in R$$

$$\in R$$

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $\mathsf{CSP}(\Gamma)$ and $\mathsf{CSP}(\Gamma,R)$ are polynomial-time equivalent.

How to determine if R is pp-definable in Γ ?

Definition

Let $f: D^k \to D$ and let $R \subseteq D^n$ be a relation. We say that f preserves R iff

$$\begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \cdots & a_{n}^{1} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\ & \vdots & & \\ a_{1}^{k} & a_{2}^{k} & \cdots & a_{n}^{k} \end{pmatrix} \in R$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(b_{1} \quad b_{2} \quad \cdots \quad b_{n}) \in R$$

The Algebraic Approach to Constraint Satisfaction

A polymorphism of Γ is a function that preserves all the relations of Γ .

Lemma

If Γ is a finite structure, a relation R is pp-definable in Γ if and only if R is preserved by all the polymorphisms of Γ .

A polymorphism of Γ is a function that preserves all the relations of Γ .

Lemma

If Γ is a finite structure, a relation R is pp-definable in Γ if and only if R is preserved by all the polymorphisms of Γ .

► The previous lemma generalizes to infinite structures which have many automorphisms.

A polymorphism of Γ is a function that preserves all the relations of Γ .

Lemma

If Γ is a finite structure, a relation R is pp-definable in Γ if and only if R is preserved by all the polymorphisms of Γ .

- ► The previous lemma generalizes to infinite structures which have many automorphisms.
- ▶ In general, a reduct of $(\mathbb{Z}; succ)$ does not satisfy this condition.

A polymorphism of Γ is a function that preserves all the relations of Γ .

Lemma

If Γ is a finite structure, a relation R is pp-definable in Γ if and only if R is preserved by all the polymorphisms of Γ .

- ► The previous lemma generalizes to infinite structures which have many automorphisms.
- ▶ In general, a reduct of $(\mathbb{Z}; succ)$ does not satisfy this condition.
- ▶ Solution: we can recover a part of the connection if Γ has enough elements.

ω -saturation

Definition

Let Γ be a reduct of (\mathbb{Z} ; succ). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω -saturated model of Γ , denoted by ω . Γ .

Let Γ be a reduct of (\mathbb{Z} ; succ). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω -saturated model of Γ , denoted by ω . Γ .

Let Γ be a reduct of (\mathbb{Z} ; succ). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω -saturated model of Γ , denoted by ω . Γ .

 Γ and ω . Γ have the same CSP.

Let Γ be a reduct of (\mathbb{Z} ; succ). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω -saturated model of Γ , denoted by ω . Γ .

 Γ and ω . Γ have the same CSP.

Lemma

Let Γ be a reduct of $(\mathbb{Z}; \operatorname{succ})$. Let R be a relation fo-definable in $(\omega.\mathbb{Z}; \operatorname{succ})$ that consists of n orbits under $\operatorname{Aut}(\omega.\Gamma)$. Then R is pp-definable in $\omega.\Gamma$ if and only if R is preserved by all the polymorphisms of arity n of $\omega.\Gamma$.

Let Γ be a reduct of (\mathbb{Z} ; succ). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω -saturated model of Γ , denoted by ω . Γ .

 Γ and ω . Γ have the same CSP.

Lemma

Let Γ be a reduct of (\mathbb{Z} ; succ). Let R be a relation fo-definable in $(\omega.\mathbb{Z}; \operatorname{succ})$ that consists of n orbits under $\operatorname{Aut}(\omega.\Gamma)$. Then R is pp-definable in $\omega.\Gamma$ if and only if R is preserved by all the polymorphisms of arity n of $\omega.\Gamma$.

Example: succ consists of 1 orbit under $\operatorname{Aut}(\omega.\Gamma)$. By the lemma, succ is pp-definable in $\omega.\Gamma$ iff it is preserved by all the endomorphisms of $\omega.\Gamma$.

The Result

Theorem (Bodirsky, Martin, AM '15)

Let Γ be a reduct of (\mathbb{Z} ; succ) with a finite signature. There exists a structure Δ with $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ and such that one of the following cases applies.

Theorem (Bodirsky, Martin, AM '15)

Let Γ be a reduct of (\mathbb{Z} ; succ) with a finite signature. There exists a structure Δ with $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ and such that one of the following cases applies.

1. Δ is a finite structure. In this case, CSP(Γ) is conjectured to be in P or NP-complete.

Theorem (Bodirsky, Martin, AM '15)

Let Γ be a reduct of (\mathbb{Z} ; succ) with a finite signature. There exists a structure Δ with $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ and such that one of the following cases applies.

- 1. Δ is a finite structure. In this case, CSP(Γ) is conjectured to be in P or NP-complete.
- **2.** Δ is a reduct of $(\mathbb{Z}; =)$. In this case, $\mathsf{CSP}(\Gamma)$ is either in P or NP-complete (Bodirsky, Kára '08).

Theorem (Bodirsky, Martin, AM '15)

Let Γ be a reduct of (\mathbb{Z} ; succ) with a finite signature. There exists a structure Δ with $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ and such that one of the following cases applies.

- 1. Δ is a finite structure. In this case, CSP(Γ) is conjectured to be in P or NP-complete.
- 2. Δ is a reduct of $(\mathbb{Z}; =)$. In this case, $\mathsf{CSP}(\Gamma)$ is either in P or NP-complete (Bodirsky, Kára '08).
- 3. Δ is a reduct of (\mathbb{Z} ; succ) whose endomorphisms are all isometries. In this case, CSP(Γ) is in P or NP-complete. Moreover, the tractability of CSP(Γ) is characterized by the existence of certain polymorphisms of finite arity.

Idea of the Proof

▶ We obtain a characterization of those reducts of (\mathbb{Z} ; succ) that are not homomorphically equivalent to a finite structure or to a reduct of (\mathbb{Z} ; =).

Idea of the Proof

- We obtain a characterization of those reducts of $(\mathbb{Z}; \operatorname{succ})$ that are not homomorphically equivalent to a finite structure or to a reduct of $(\mathbb{Z}; =)$.
- ► This characterization tells us that the endomorphisms of ω . Γ have infinite range; and that there exists t > 0 such that for every endomorphism e of ω . Γ and all $x \in \omega$. \mathbb{Z} , we have

$$|e(x+t)-e(x)|\leq t.$$

- ▶ We obtain a characterization of those reducts of (\mathbb{Z} ; succ) that are not homomorphically equivalent to a finite structure or to a reduct of (\mathbb{Z} ; =).
- ► This characterization tells us that the endomorphisms of ω . Γ have infinite range; and that there exists t > 0 such that for every endomorphism e of ω . Γ and all $x \in \omega$. \mathbb{Z} , we have

$$|e(x+t)-e(x)|\leq t.$$

• We inductively reduce t to 1 by replacing Γ, which finally gives us that all the endomorphisms of ω . Γ satisfy

$$|e(x+1)-e(x)|=1.$$

Open Problems

▶ Does the class of reducts of (Z; <) exhibit a P/NP-complete dichotomy?

Open Problems

- ▶ Does the class of reducts of (\mathbb{Z} ; <) exhibit a P/NP-complete dichotomy?
- More ambitious project: classify the complexity of reducts of $(\mathbb{Z}; <, +)$, i.e., reducts of Presburger Arithmetic.