Relational Data Model

Introduction

- Proposed by Edgar F Codd (1923-2003) in the early seventies [Turing Award – 1981]
- Most of the modern DBMS use the *relational* data model.
- Simple and elegant model with a mathematical basis.
- Led to the development of a theory of data dependencies and database design.
- Relational algebra operations crucial role in query optimization and execution.
- Laid the foundation for the development of
 - Tuple relational calculus and then
 - Database standard SQL

Prof P Sreenivasa Kumar Department of CS&E, IITM 1

Relation Scheme

- Consists of relation name, and a set of attributes or field names or column names. Each attribute has an associated domain.
- Example:

Prof P Sreenivasa Kumar Department of CS&E, IITM 2

Relation Instance

- A finite set of tuples constitute a relation instance.
- A tuple of the relation with scheme $R = (A_1, A_2, ..., A_m)$ is an ordered sequence of values

 $(v_1,\!v_2,...\;,\!v_m)\;\;\text{such that}\;v_i\in\;\;\text{domain}\;(A_i),\;1\!\leq i\leq m$

student

studentName	rollNumber	yearOf Admission	phoneNumber	branch Of Study
Ravi Teja Raiesh	CS05B015 CS04B125	2005 2004	9840110489 9840110490	CS CS
Rujesii	C304B123	2004	7040110470	CS

No duplicate tuples (or rows) in a relation instance. $\,$

We shall later see that in SQL, duplicate rows would be allowed in tables.

Prof P Sreenivasa Kumar Department of CS&E, IITM

Another Relation Example

enrollment (studentName, rollNo, courseNo, sectionNo)

enrollment

studentName	rollNumber	courseNo	sectionNo
Rajesh	CS04B125	CS3200	2
Rajesh	CS04B125	CS3700	1
Suresh	CS04B130	CS3200	2

Prof P Sreenivasa Kumar Department of CS&E, IITM

Keys for a Relation (1/2)

Key: A set of attributes K, whose values uniquely identify a tuple in <u>any</u> instance. And none of the proper subsets of K has this property

Example: {rollNumber} is a key for student relation. {rollNumber, name} - values can uniquely identify a tuple

- but the set is not minimal
- not a Key
- A key can not be determined from any particular instance data
 - it is an intrinsic property of a scheme
 - it can only be determined from the meaning of attributes

Prof P Sreenivasa Kumar Department of CS&E, IITM 5

Keys for a Relation (2/2)

- A relation can have more than one key.
- Each of the keys is called a *candidate* key

Example: book (isbnNo, authorName, title, publisher, year)
(Assumption: books have only one author)

Keys: {isbnNo}, {authorName, title}

- · A relation has at least one key
 - the set of all attributes, in case no proper subset is a key.
- Superkey: A set of attributes that contains a key as a subset.
 - A key can also be defined as a minimal superkey
- Primary Key: One of the candidate keys chosen for indexing purposes (More details later...)

Prof P Sreenivasa Kumar Department of CS&E, IITM

Relational Database Scheme and Instance

Relational database scheme: D consist of a finite no. of relation schemes and a set I of integrity constraints.

Integrity constraints: Necessary conditions to be satisfied by the data values in the relational instances so that the set of data values constitute a meaningful database

- · domain constraints
- · key constraints
- · referential integrity constraints

Database instance: Collection of relational instances satisfying the integrity constraints.

Prof P Sreenivasa Kumar Department of CS&E, IITM 7

Domain and Key Constraints

- Domain Constraints: Attributes have associated domains
 Domain set of atomic data values of a specific type.
 Constraint stipulates that the actual values of an attribute in any tuple must belong to the declared domain.
- Key Constraint: Relation scheme associated keys
 Constraint if K is supposed to be a key for scheme R,
 any relation instance r on R should not have two tuples
 that have identical values for attributes in K.

 Also, none of the key attributes can have <u>null</u> value.

Prof P Sreenivasa Kumar Department of CS&E, IITM 8

Foreign Keys

- • Tuples in one relation, say $r_1(R_1)$, often need to refer to tuples in another relation, say $r_2(R_2)$
 - to capture relationships between entities
- Primary Key of $R_2 : K = \{B_1, B_2, ..., B_j\}$
- A set of attributes $F = \{A_1, A_2, ..., A_j\}$ of R_1 such that $dom(A_i) = dom(B_i)$, $1 \le i \le j$ and whose values are used to refer to tuples in r_2 is called a *foreign key* in R_1 referring to R_2 .
- \bullet R₁, R₂ can be the same scheme also.
- There can be more than one foreign key in a relation scheme

Prof P Sreenivasa Kumar Department of CS&E, IITM

Foreign Key – Examples (1/2) Foreign key attribute deptNo of course relation refers to Primary key attribute deptID of department relation Course Department courseId deptId name name phone CS635 ALGORITHMS CS636 22576234 ELECTRICAL ENGG ES456 D.S.P ME650 AERO DYNAMICS ME01 22576233 courseId credits deptNo Prof P Sreenivasa Kumar Department of CS&E, IITM

Foreign Key – Examples(2/2)

It is possible for a foreign key in a relation to refer to the primary key of the relation itself

An Example:

univEmployee (empNo, name, sex, salary, dept, reportsTo)

reportsTo is a foreign key referring to empNo of the same relation

Every employee in the university reports to some other employee for administrative purposes
- except the *vice-chancellor*, of course!

Prof P Sreenivasa Kumar Department of CS&E, IITM

11

Referential Integrity Constraint (RIC)

- Let F be a foreign key in scheme R_1 referring to scheme R_2 and let K be the primary key of R_2 .
- RIC: any relational instances r₁ on R₁ and r₂ on R₂ must be s.t for any tuple t in r₁, either its F-attribute values are all null or they are identical to the K-attribute values of some tuple in r₂.
- RIC ensures that references to tuples in ${\bf r}_2$ are for *currently existing* tuples.
 - That is, there are no dangling references.

Prof P Sreenivasa Kumar Department of CS&E, IITM

Referential Integrity Constraint (RIC) - Example

COURSE

DEPARTMENT

courseId	name	credits	deptNo	l
CS635	ALGORITHMS	3	1	l
CS636	A.I	4	1	l
ES456	D.S.P	3	2	l
ME650	AERO DYNAMICS	3	3	l
CE751	MASS TRANSFER	3	4	I

deptId	name	hod	phone
1	COMPUTER SCIENCE	CS01	22576235
2	ELECTRICAL ENGG.	ES01	22576234
3	MECHANICAL ENGG.	ME01	22576233

The course CE751 refers to a non-existent department 4 and thus violates the RIC $\,$

Prof P Sreenivasa Kumar Department of CS&E, IITM 13

Example Relational Scheme

student (<u>rollNo</u>, name, degree, year, sex, deptNo, advisor)

degree is the program (B Tech, M Tech, M S, Ph D etc)

for which the student has joined.

year is the year of admission and

advisor is the Empld of a faculty member identified as
the student's advisor.

department (deptId, name, hod, phone)

phone is that of the department's office.

professor (empId, name, sex, startYear, deptNo, phone) startYear is the year when the faculty member has joined the department deptNo.

> Prof P Sreenivasa Kumar Department of CS&E, IITM

14

Example Relational Scheme

course (<u>courseId</u>, cname, credits, deptNo)

deptNo indicates the department that offers the course.

enrollment (<u>rollNo, courseld, sem, year</u>, grade)

sem can be either "odd" or "even" indicating the two
semesters of an academic year.

The value of *grade* will be null for the current semester
and non-null for past semesters.

teaching (empId, courseId, sem, year, classRoom)

preRequisite (<u>preReqCourse, courseID</u>)

Here, if (c1, c2) is a tuple, it indicates that c1 should be successfully completed before enrolling for c2.

Prof P Sreenivasa Kumar Department of CS&E, IITM

Example Relational Scheme
student (rollNo, name, degree, year, sex, deptNo, advisor)
department (deptId, name, hod, phone)
professor (empId, name, sex, startYear, deptNo, phone)
course (courseld, cname, credits, deptNo)
enrollment (rollNo, courseld, sem, year, grade)
teaching (empId, courseId, sem, year, classRoom)
preRequisite (preReqCourse, courseId) XProd TCOuery
Prof P Sreenivasa Kumar 16 Department of CS&E, IITM
Example Relational Scheme with RICs shown
student (<u>rollNo</u> , name, degree, year, sex, deptNo, advisor)
department (deptId, name, hod, phone)
professor (empld, name, sex, startYear, deptNo, phone)
course (courseld, cname, credits, deptNo)
enrollment (roll No, courseld, sem, year, grade)
teaching (empId, courseld sem, year, classRoom)
preRequisite (preReqCourse, courseId)
Prof P Sreenivasa Kumar 17 Department of CS&E, IITM
Relational Algebra
A set of operators (unary and binary) that take relation
:t

- instances as arguments and return new relations.
- Gives a procedural method of specifying a retrieval query.
- Forms the core component of a relational query engine.
- SQL queries are internally translated into RA expressions.
- Provides a framework for query optimization.

RA operations: select (σ), project (π), cross product (\times), union (U), intersection (\cap), difference (-), join (\bowtie)

Prof P Sreenivasa Kumar Department of CS&E, IITM

The select Operator

- Unary operator.
- can be used to *select* those tuples of a relation that satisfy a given condition.
- $\sigma_{\theta}(r)$ ■ Notation:

 σ : select operator (read as $\mathit{sigma})$

 $\boldsymbol{\theta}$: selection condition

r: relation name

- lacktriangle Result: a relation with the same schema as rconsisting of the tuples in \emph{r} that satisfy condition θ
- Select operation is commutative:

$$\sigma_{c1}(\sigma_{c2}(r)) = \sigma_{c2}(\sigma_{c1}(r))$$

Prof P Sreenivasa Kumar Department of CS&E, IITM

Selection Condition

• Select condition:

Basic condition or Composite condition

• Basic condition:

Either A_i <compOp> A_i or A_i <compOp> c

• Composite condition:

Basic conditions combined with logical operators AND, OR and NOT appropriately.

• Notation:

<compOp>: one of <, \leq , >, \geq , \equiv , \neq A_i , A_j : attributes in the scheme R of r

c: constant of appropriate data type

Prof P Sreenivasa Kumar Department of CS&E, IITM

Examples of select expressions

1. Obtain information about a professor with name "Giridhar"

 $\sigma_{\text{name = "Giridhar"}}$ (professor)

2. Obtain information about professors who joined the university between 1980 and 1985, both inclusive

 $\sigma_{startYear \, \geq \, 1980 \, ^{\wedge} \, startYear \, \leq \, 1985} \, \left(professor\right)$

Prof P Sreenivasa Kumar Department of CS&E, IITM

The project Operator

- Unary operator.
- Can be used to keep only the required attributes of a relation instance and throw away others.
- Notation: $\pi_{A_1,A_2,\dots,A_k}(r)$ where A_1,A_2,\dots,A_k is a list L of desired attributes in the scheme of r.
- $\begin{tabular}{ll} \blacksquare & Result = \{ \ (v_1,v_2,\ldots,v_k) \ | \ v_i \in dom(A_i) \ , \ 1 \leq i \leq k \ and \\ & there \ is \ some \ tuple \ t \ in \ r \ \emph{s.t} \end{tabular}$

 $t.A_1 = v_1, t.A_2 = v_2, ..., t.A_k = v_k$

• If $r_1 = \pi_L(r_2)$ then scheme of r_1 is L

Prof P Sreenivasa Kumar Department of CS&E, IITM

22

Examples of project expressions

student

rollNo	name	degree	year	sex	deptNo	advisor
CS04S001	Mahesh	M.S	2004	M	1	CS01
CS03S001	Rajesh	M.S	2003	M	1	CS02
CS04M002	Piyush	M.E	2004	M	1	CS01
ES04M001	Deepak	M.E	2004	M	2	ES01
ME04M001	Lalitha	M.E	2004	F	3	ME01
ME03M002	Mahesh	M.S	2003	М	3	ME01

$\pi_{rollNo, name}(student)$

rollNo	name
CS04S001	Mahesh
CS03S001	Rajesh
CS04M002	Piyush
ES04M001	Deepak
ME04M001	Lalitha
ME03M002	Mahesh

$$\pi_{\text{name}} \left(\sigma_{\text{degree} = \text{"M.S"}} \left(\text{student} \right) \right)$$

Note: Mahesh is displayed only once because project operation results in a set.

Prof P Sreenivasa Kumar Department of CS&E, IITM 23

Size of project expression result

- If $r_1 = \pi_L(r_2)$ then scheme of r_1 is L
- What about the number of tuples in r_1 ?
- Two cases arise:
 - $\ ^{\blacksquare}$ Projection List L contains some key of r_2
 - Then $|\mathbf{r}_1| = |\mathbf{r}_2|$
 - Projection List L does not contain any key of r₂
 - $\bullet \ Then \ |r_1| \leq |r_2|$

Prof P Sreenivasa Kumar Department of CS&E, IITM

Set Operators on Relations

- As relations are sets of tuples, set operations are applicable to them; but not in all cases.
- Union Compatibility : Consider two schemes R_1 , R_2 where $R_1=(A_1,A_2,...,A_k) \ ; \ R_2=(B_1,B_2,...,B_m)$
- $\bullet \quad R_1 \text{ and } R_2 \text{ are called } \textit{union-compatible} \text{ if }$
 - k = m and
 - $\bullet \quad dom(A_i) = \ dom(B_i) \quad for \ 1 \leq i \leq k$
- Set operations union, intersection, difference
 - Applicable to two relations if their schemes are union-compatible
- If $r_3 = r_1 \cup r_2$, scheme of r_3 is R_1 (as a convention)

Prof P Sreenivasa Kumar Department of CS&E, IITM 25

Set Operations

r₁ - relation with scheme R₁

 $\overset{\cdot}{r_2}$ - relation with scheme $\overset{\cdot}{R_2}$ - union compatible with R_1

$$\begin{array}{l} r_1 \ \cup \ r_2 = \{t \ | \ t \in r_1 \ or \ t \in r_2\} \\ r_1 \ \cap \ r_2 = \{t \ | \ t \in r_1 \ and \ t \in r_2\} \\ r_1 \ - \ r_2 = \{t \ | \ t \in r_1 \ and \ t \not \in r_2\} \end{array}$$

By convention, in all the cases, the scheme of the result is that of the first operand i.e $\, r_1. \,$

Prof P Sreenivasa Kumar Department of CS&E, IITM 26

Cross product Operation

 \mathbf{r}_1 : s tuples \mathbf{r}_2 : t tuples $\mathbf{r}_1 \times \mathbf{r}_2$: $s \times t$ tuples

Prof P Sreenivasa Kumar Department of CS&E, IITM

Example Query using cross product

Obtain the list of professors (Id and Name) along with the *name* of their respective departments

- Info is present in two relations: professor and department

Schema

- profDetail (eId, pname, deptno) $\leftarrow \pi_{\text{ empId, name, deptNo}}$ (professor)
- $\bullet \; deptDetail \, (dId, \, dname) \leftarrow \pi_{\; deptId, \; name} \, (department)$
- $profDept \leftarrow profDetail \times deptDetail$
- $\bullet \ desiredProfDept \leftarrow \sigma_{\ deptno \ = \ dId} \ (profDept)$
- result $\leftarrow \pi_{\text{eld, pname, dname}}$ (desiredProfDept)

Prof P Sreenivasa Kumar Department of CS&E, IITM 28

Query using cross product - use of renaming

Query: Obtain the list of professors (Id and Name) along with the *name* of their respective departments

- profDetail (eId, pname, deptno) $\leftarrow \pi_{\text{empId, name, deptNo}}$ (professor)
 - this is a temporary relation to hold the intermediate result
 - "empId, name, deptNo" are being renamed as "eId, pname, deptno"
- creating such relations helps us understand/formulate the query
- we use " \leftarrow " to indicate assignment operation.
- deptDetail (dId, dname) $\leftarrow \pi_{deptId, name}$ (department)
 - another temporary relation
- Renaming is necessary to ensure that the cross product has distinct attribute names.

Prof P Sreenivasa Kumar Department of CS&E, IITM 29

Use of renaming operator $\boldsymbol{\rho}$

Query: Obtain the list of professors (Id and Name) along with the *name* of their respective departments

 One can use the rename operator ρ and write the whole query as one big expression (as an alternative to using temporary relations)

$$\begin{split} \pi_{\text{eld, pname, dname}} & (\sigma_{\text{deptno} = \text{dld}} \left(\right. \rho_{\text{eld, pname, deptno}} (\pi_{\text{ empld, name, deptNo}} (\text{professor})) \\ & \times \rho_{\text{dld, dname}} (\pi_{\text{ deptld, name}} (\text{department})) \end{split}$$

- It is easier to understand and formulate the query with *meaningfully named* temporary relations as shown earlier.
- Students are encouraged to use temporary relations.

Prof P Sreenivasa Kumar Department of CS&E, IITM

Join Operation

- Cross product : produces all combinations of tuples
 - often only certain combinations are meaningful cross product is usually followed by selection
- Join: combines tuples from two relations provided they satisfy a specified condition (join condition)
 - equivalent to performing cross product followed by selection
 - · a very useful operation
- Depending on the type of condition we have
 theta join

 - equi join

Prof P Sreenivasa Kumar Department of CS&E, IITM

Theta join

- Let r_1 relation with scheme $R_1 = (A_1, A_2, ..., A_m)$ r_2 - relation with scheme R_2 = (B $_1,$ B $_2,$ $\ldots,$ B $_n)$ where w.l.o.g we assume $R_1 \cap R_2 = \phi$
- Notation for join expression : $r = r_1 \bowtie_{\theta} r_2$
- θ the join condition is of the form : $C_1 \land C_2 \land \dots \land C_s$

 C_i is of the form : $A_i < CompOp > B_k$

where $\langle CompOp \rangle$ is one of $\{ =, \neq, <, \leq, >, \geq \}$

• Scheme of the result relation r is:

$$\begin{split} (A_1,A_2,...,A_m,B_1,B_2,...,B_n) \\ r &= \{(a_1,a_2,...,a_m,b_1,b_2,...,b_n) \mid \ (a_1,a_2,...,a_m) \in r_1, \\ (b_1,b_2,...,b_n) &\in r_2 \\ \text{and } (a_1,a_2,...,a_m,b_1,b_2,...,b_n) \text{ satisfies } \theta\} \end{split}$$

Prof P Sreenivasa Kumar Department of CS&E, IITM

empId	name	sex	startYear	deptNo	phone
CS01	GIRIDHAR	M	1984	1	22576345
CS02	KESHAV MURTHY	М	1989	1	22576346
ES01	RAJIV GUPTHA	M	1980	2	22576244
ME01	TAHIR NAYYAR	M	1999	3	22576243

For each department, find its name and the name, sex and phone number of the head of the departmen

Department							
deptId	leptId name		phone				
1	Computer Science	CS01	22576235				
2	Electrical Engg.	ES01	22576234				
3	Mechanical Engg.	ME01	22576233				

Courses

courseId	cname	credits	deptNo
CS635	Algorithms	3	1
CS636	A.I	4	1
ES456	D.S.P	3	2
ME650	Aero Dynamics	3	3

Prof P Sreenivasa Kumar Department of CS&E, IITM

Example

For each department, find its name and the name, sex and phone number of the head of the department.

prof (empId, p-name, sex, deptNo, prof-phone)

 $\leftarrow \pi_{\text{ empId, name, sex, deptNo, phone}} \text{ (professor)}$

result $\leftarrow \pi_{\text{deptId, name, hod, p-name, sex, prof-phone}}$ (department $\bowtie_{\text{(hod = empId)}}$ prof)

deptId	name	hod	p-name	sex	prof-phone
1	Computer Science	CS01	Giridher	М	22576235
2	Electrical Engg.	EE01	Rajiv Guptha	M	22576234
3	Mechanical Engg.	ME01	Tahir Navvar	М	22576233

Prof P Sreenivasa Kumar Department of CS&E, IITM

34

Equi-join and Natural join

- Equi-join : Equality is the only comparison operator used in the join condition
- • Natural join : $\,R_{1},\,R_{2}\,\text{-}$ have common attributes, say $X_{1},\,X_{2},\,X_{3}$
 - Join condition:

$$(R_1.X_1 = R_2.X_1) \wedge (R_1.X_2 = R_2.X_2) \wedge (R_1.X_3 = R_2.X_3)$$

- Values of common attributes should be equal
- \bullet Schema for the result $\textit{Q} = R_1 \cup (R_2 \{X_1, X_2, X_3\})$
 - Only one copy of the common attributes is kept
- Notation for natural join : $r = r_1 * r_2$

Prof P Sreenivasa Kumar Department of CS&E, IITM 35

Example – Equi-join

Find courses offered by each department

 $\pi_{\text{ deptld, name, courseld, cname, credits}} \text{(Department } \bowtie_{\text{(deptld = deptNo)}} \text{Courses)}$

deptId	name	courseId	cname	credits
1	Computer Science	CS635	Algorithms	3
1	Computer Science	CS636	A.I	4
2	Electrical Engg.	ES456	D.S.P	3
3	Mechanical Engg.	ME650	Aero Dynamics	3

Prof P Sreenivasa Kumar Department of CS&E, IITM

Teaching

empId	courseId	sem	year	classRoom
CS01	CS635	1	2005	BSB361
CS02	CS636	1	2005	BSB632
ES01	ES456	2	2004	ESB650
ME01	ME650	1	2004	MSB331

To find the courses handled by each professor Professor * Teaching

resuit									
empId	name	sex	startYear	deptNo	phone	courseId	sem	year	classRoom
CS01	Giridhar	M	1984	1	22576345	CS635	1	2005	BSB361
CS02	Keshav Murthy	M	1989	1	22576346	CS636	1	2005	BSB632
ES01	Rajiv Guptha	M	1989	2	22576244	ES456	2	2004	ESB650
ME01	Tahir Nayyar	M	1999	3	22576243	ME650	1	2004	MSB331

Prof P Sreenivasa Kumar Department of CS&E, IITM

Division operator

- The necessary condition to determine r ÷ s on instances r(R) and s(S) is $S \subseteq R$
- The relation $r \div s$ is a relation on schema R S.

A tuple t is in $r \div s$ if and only if

1) t is in $\pi_{R-S}(r)$ 2) For every tuple t_s in s, there is t_r in r satisfying both a) $t_r[S] = t_s$

b) $t_r[R-S] = t$

// $t_r[S]$ – the sub-tuple of t_r consisting of values of attributes in S

Another Definition $r = r_1 \div r_2$ Division operator produces a relation R(X) that includes all tuples t[X] that appear in r_1 in combination with every tuple from r_2 where $R_1 = Z$ and $R_2 = Y$ and $Z = X \cup Y$

Prof P Sreenivasa Kumar Department of CS&E, IITM

38

$$R = (A, B, C, D), S = (A, B), X = (C, D)$$

 $x = r \div s$

$$\begin{array}{c|cccc} s & A & B \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}$$

$$r \quad \begin{array}{c|cccc} A & B & C & D \\ \hline a_{_1} & b_{_1} & c_{_1} & d_{_1} \end{array}$$

$$a_1$$
 b_1 c_1 d_1
 a_2 b_2 c_1 d_1

$$a_1$$
 b_1 c_2 d_2
 a_1 b_1 c_2 d_3

$$a_1 \quad b_1 \quad c_2 \quad d_2$$
 $a_1 \quad b_1 \quad c_3 \quad d_3$
 $a_2 \quad b_2 \quad c_3 \quad d_3$

$$\begin{array}{c|cc} X & C & D \\ \hline c_1 & d_1 \\ c_3 & d_3 \\ \end{array}$$

 $(c_2,\,d_2)$ is not present in the result of division as it does not appear in combination with \underline{all} the tuples of s in r

Prof P Sreenivasa Kumar Department of CS&E, IITM

Query using division operation Find those students who have enrolled for all courses offered in the dept of Computer Science. Step1: Get the course enrollment information for all students $studEnroll \leftarrow \pi_{rollNo, name, courseId} (student * enrollment)$ Step2: Get the course Ids of all courses offered by CS dept $csCourse \leftarrow \pi_{courseId}(\sigma_{dname \,=\, \text{``Computer Science''}}(courses \, \bowtie_{\, deptId \,=\, deptNo} dept))$ Result : studEnroll ÷ csCourse Schema Prof P Sreenivasa Kumar Department of CS&E, IITM result of step 2 Suppose result of step 1 csCourse (we skip roll number for simplicity) courseId CS635 studEnroll courseId CS635 Mahesh Let's assume for a moment that student Rajesh CS635 names are unique! Piyush CS635 ES456 Lalitha ME650 studEnroll + csCourse result

Complete Set of Operators

Are all Relational Algebra operators essential?
 Some operators can be realized through other operators

Prof P Sreenivasa Kumar Department of CS&E, IITM

- What is the minimal set of operators ?
 - \bullet The operators $\,\{\sigma\,,\pi\,,\times\,,\,U,-\,\}$ constitute a $\emph{complete}$ set of operators
 - Necessary and sufficient set of operators.
 - \bullet Intersection union and difference
 - Join cross product followed by selection
 - Division project, cross product and difference

Prof P Sreenivasa Kumar Department of CS&E, IITM 42

Example Queries Schema Retrieve the list of female PhD students $\sigma_{\text{ degree = 'phD' ^sex = 'F'}} \text{ (student)}$ Obtain the name and rollNo of all female BTech students $\pi_{rollNo,\;name}$ (σ $_{degree\;=\;\;'BTech'\;\;\wedge\;sex\;=\;\;'F'}$ (student)) Obtain the rollNo of students who never obtained an 'E' grade $\pi_{rollNo} \left(\sigma_{\text{ grade * 'E'}} \left(enrollment \right) \right)$ is incorrect!! (what if some student gets \boldsymbol{E} in one course and \boldsymbol{A} in another?) $\pi_{\text{ rollNo}}\left(\text{student}\right) - \ \pi_{\text{ rollNo}}\left(\sigma_{\text{ grade = 'E'}}\left(\text{enrollment}\right)\right)$ Prof P Sreenivasa Kumar Department of CS&E, IITM More Example Queries Obtain the department Ids for departments with no lady professor π_{deptId} (dept) $-\pi_{deptId}$ ($\sigma_{sex = 'F'}$ (professor)) Obtain the rollNo of male students who have obtained at least one S grade $\pi_{\text{ rollNo}}\left(\sigma_{\text{ sex = 'M'}}(\text{student})\right) \cap \pi_{\text{ rollNo}}\left(\sigma_{\text{ grade = 'S'}}\left(\text{enrollment}\right)\right)$ Another Example Query <u>Schema</u> Obtain the names, roll numbers of students who have got S grade in the CS3700 course offered in 2017 odd semester along with his/her advisor name. $reqStudsRollNo \leftarrow$ $\pi_{rollNo}(\sigma_{courseld \,=\, 'CS3700' \,\& \, year \,=\, '2017' \,\& \, sem \,=\, 'odd' \,\& \, grade \,=\, 'S'}(enrollment))$ $reqStuds\text{-Name-AdvId} \text{ (} rollNo, sName, advId\text{)} \leftarrow$ $\pi_{rollNo, name, advisor}$ (reqStudsRollNo * student) $result(\ rollNo,\ studentName,\ advisorName) \leftarrow$

 $\pi_{\text{ rollNo, sName, name}}(\text{reqStuds-Name-AdvId}\bowtie_{\text{advId}=\text{empId}}\text{professor})$

Prof P Sreenivasa Kumar Department of CS&E, IITM

Transitive Closure Queries Schema	
Obtain the courses that are either direct or indirect prerequisites of the course CS767.	
• Indirect prerequisite – (prerequisite of) ⁺ a prerequisite course	-
Prerequisites at all levels are to be reported	
levelOnePrereq(cId1) $\leftarrow \pi_{preReqCourse}(\sigma_{courseld = 'CS767'}(preRequisite))$	
levelTwoPrereq(cId2) ←	
$\pi_{\text{preReqCourse}}(\text{preRequisite} \bowtie_{\text{courseId} = \text{cld1}} \text{levelOnePrereq}))$	
Similarly, level <i>k</i> prerequisites can be obtained.	
But, prerequisites at all levels can not be obtained as there is no looping mechanism.	
Prof P Sreenivasa Kumar 46	
Department of CS&E, IITM	
	7
Outer Join Operation (1/2)	
Theta join, equi-join, natural join are all called <i>inner joins</i> . The result of these operations contain only the matching tuples	
■ The set of operations called <i>outer joins</i> are used when <u>all</u>	
tuples in relation r or relation s or both in r and s have to be in result.	-
There are 3 kinds of outer joins: Left outer join	
Right outer join	
Full outer join	-
Prof P Sreenivasa Kumar Department of CS&E, ITIM	
Department of Coxes, 1130	
Outer Join Operation (2/2)	
	-
Left outer join: $r \longrightarrow s$ It keeps all tuples in the first, or left relation r in the result. For	
some tuple t in r , if no matching tuple is found in s then S-attributes of t are made null in the result.	
Right outer join: $r \bowtie s$ Same as above but tuples in the second relation are all kept in	
the result. If necessary, R-attributes are made null.	
Full outer join: $r \supset s$	
All the tuples in both the relations r and s are in the result.	
	-
Prof P Sreenivasa Kumar 48	
Department of CS&E, IITM	

	1
Full outer join	
$temp \leftarrow (student _{advisor = empld} professor)$	
$\rho_{\text{rollNo, name, advisor}}(\pi_{\text{rollNo, student.name, professor.name}}(\text{temp}))$	
Result rollNo name advisor CS04S001 Mahesh Giridhar	
CS04M002 Piyush Giridhar CS05S001 Amrish Null	
null null Keshav Murthy ES04M001 Deepak Null null null Rajiv Guptha ME04M001 Laitha Tahir Nayyer	
ME03M002 Mahesh Tahir Nayyer	
Prof P Sreenivasa Kumar 52 Department of CS&E, IITM	
E/R Diagrams to Relational Schema	
E/R model and the relational model give different representations	
of a real world enterprise	
An E/R diagram can be converted to a collection of relations	
For each entity set and relationship set in E/R diagram we will have a corresponding relational table with the same name as	
entity set / relationship set	
Each table will have multiple columns whose names are obtained from the attributes of entity types/relationship types	
Prof P Srcenivasa Kumar 53	
Department of CS&E, IITM	
	_
Relational representation of strong entity sets	
■ Create a table T _i for each strong entity set E _i .	
Include simple attributes and simple components of composite attributes of entity set E, as attributes of T _i .	
•Multi-valued attributes of entities are dealt with separately.	
• The primary key of E _i will also be the primary key of T _i .	
The primary key can be referred to by other tables via foreign keys in them to capture relationships as we see later	
	-
Prof P Sreenivasa Kumar 54	

Relational representation of weak entity sets

- Let E' be a weak entity owned by a strong/weak entity E
- E' is converted to a table, say R', where...
- Attributes of R' will be
 - Attributes of the weak entity set E' and
 Primary key attributes of the identifying strong entity E
 (Or, partial key of E + primary key of the owner of E,
 - $if\ E\ is\ itself\ a\ weak\ entity)$ These attributes will also be a foreign key in R' referring to the table corresponding to E
- Key of R': partial key of E' + Key of E
- Multi-valued attributes of E' are dealt separately as described later

Prof P Sreenivasa Kumar Department of CS&E, IITM ---

Relational representation of multi-valued attribute One separate table for each multi-valued attribute One column for this attribute and Column(s) for the primary key attribute(s) of the table that corresponds to the entity / relationship set for which this is an attribute. One column for this attribute and Column for this attribute a

Prof P Sreenivasa Kumar Department of CS&E, IITM

Handling Binary 1:1 Relationship

- Let S and T be entity sets in relationship R and S' and T' be the tables corresponding to these entity sets
- Choose an entity set which has total participation in R, if there is one (say, S)
- Include the primary key of T' as a foreign key in S' referring
- Include all simple attributes (and simple components of composite attributes) of R as attributes of S'
- We can do the other way round too

- lot of null values

Prof P Sreenivasa Kumar Department of CS&E, IITM 58

Handling 1: N Relationship

- Let S be the participating entity on the N-side and T the other entity. Let S' and T' be the corresponding tables.
- Include primary key of T' as foreign key in S'
- Include any simple attribute (and simple components of composite attributes) of 1:N relation type as attributes of S'

Prof P Sreenivasa Kumar Department of CS&E, IITM

