COMPUTAÇÃO GRÁFICA Conceitos Matemáticos

CURSO DE CIÊNCIA DA COMPUTAÇÃO
UNIPAC BARBACENA
PROFESSOR NAIRON NERI SILVA

Ideia Geral

Sistemas de Coordenadas 2D

- Quando criamos uma imagem no computador, a cena é definida usando geometria simples
- Para cenas 2D nós usaremos o sistema de coordenadas cartesianas 2D
- Todos os objetos serão definidos usando pares de coordenadas

Sistemas de Coordenadas 2D

Sistemas de Coordenadas 3D

 Para cenas tridimensionais, basta adicionar uma coordenada extra

Mão esquerda ou mão direita?

 Há duas formas de pensarmos em sistemas de coordenadas 3D – baseado na mão esquerda e baseado na mão direita

Sistema baseado na mão direta

Sistema baseado na mão esquerda

Mão esquerda ou mão direita?

 Há duas formas de pensarmos em sistemas de coordenadas 3D – baseado na mão esquerda e baseado na mão direita

Pontos e Linhas

Pontos:

- Um ponto no espaço bidimensional é simbolizado por um par ordenado (x, y)
- Em três dimensões um ponto é simbolizado pela tripla (x, y, z)

Linhas:

- Uma linha é definida atráves de um ponto inicial e um ponto final
 - Em 2d: (x_{start}, y_{start}) a (x_{end}, y_{end})
 - Em 3d: $(x_{start}, y_{start}, z_{start})$ a $(x_{end}, y_{end}, z_{end})$

Pontos e Linhas (cont...)

A equação de uma linha

 A equação da linha é dada pela equação: $y = m \cdot x + b$

$$y = m \cdot x + k$$

onde:

$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$

$$b = y_0 - m \cdot x_0$$

 A equação da linha nos dá o valor correspondente de y para cada valor de x

Um exemplo simples

 Vamos desenhar uma pequena porção da linha dada pela equação:

$$y = \frac{3}{5}x + \frac{4}{5}$$

 Basta encontrar o valor da coordenada y para cada valor da coordenada x

Um exemplo simples (cont)

Um exemplo simples (cont)

Por exemplo, vamos variar x de 2 a 7

$$y(2) = \frac{3}{5} \cdot 2 + \frac{4}{5} = 2$$

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5}$$

$$y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$

$$y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$$

$$y(7) = \frac{3}{5} \cdot 7 + \frac{4}{5} = 5$$

Vetores

- Vetores:
 - Um vetor é definido pela diferença entre dois pontos
 - Importante lembrar que um vetor possui uma direção e um tamanho
- Para que servem vetores em CG?
 - Um vetor nos mostra como mover algo de um ponto a outro
 - São especialmente importantes em transformações geométricas

Vetores (2D)

 Para determinar o vetor entre dois pontos, simplesmente subtraia as coordenadas dos pontos

Cuidado: Vários pares de pontos possuem o mesmo vetor entre eles

Vetores (3D)

 Em 3D um vetor é calculado da mesma forma que vetores em 2D

Operações Vetoriais

- Há várias operações importantes que precisamos saber realizar com vetores:
 - Calcular o tamanho do vetor
 - Adição de Vetores
 - Multiplicação do vetor por um escalar
 - Produtor Escalar
 - Produto Vetorial

Operações Vetoriais: Tamanho do Vetor

 Calcular o tamanho de um vetor é fácil tanto em 2D:

$$\mid V \mid = \sqrt{V_x^2 + V_y^2}$$

Quanto em 3D:

$$|V| = \sqrt{V_x^2 + V_y^2 + V_z^2}$$

Operações Vetoriais: Soma de vetores

 A soma de dois vetores é calculada através da soma de suas componentes correspondentes

$$V_1 + V_2 = (V_{1x} + V_{2x}, V_{1y} + V_{2y})$$

O mesmo pode ser feito em 3D

Operações Vetoriais: Multiplicação por escalar

 A multiplicação de um vetor por um escalar ocorre através da multiplicação de cada componente do vetor pelo escalar

$$sV = (sV_x, sV_y)$$

Outras Operações Vetoriais

 Há outras operações importantes que serão vistas no decorrer da disciplina.

- As principais são:
 - Produto Escalar (dot product)
 - Produto Vetorial (cross product)

Matrizes

 Uma matriz é simplesmente uma grade de números

$$\begin{bmatrix} 1 & 11 & 13 \\ 10 & 4 & -3 \\ 2 & 0 & 6 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} \quad \begin{bmatrix} 4.3 \\ 6.7 \\ 1.2 \end{bmatrix} \quad \begin{bmatrix} 4 & 8 & 15 \\ 16 & 23 & 42 \end{bmatrix}$$

 Entretanto, ao utilizarmos operações matriciais nós seremos capazes de realizar inúmeras operações matemáticas em CG de forma extremamente rápidas

Operações Matriciais

- As operações matriciais importantes para esta disciplina são:
 - Multiplicação por escalar
 - Adição
 - Multiplicação
 - Transposta
 - Determinante
 - Matriz inversa

Operações Matriciais: Multiplicação por Escalar

 Para multiplicar os elementos de uma matriz por um escalar basta multiplicar cada componente pelo escalar.

$$s * \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} s*a & s*b & s*c \\ s*d & s*e & s*f \\ s*g & s*h & s*i \end{bmatrix}$$

Exemplo:

$$3 * \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix} = \begin{bmatrix} 6 & 12 & 18 \\ 24 & 30 & 36 \\ 42 & 48 & 54 \end{bmatrix}$$

Operações Matriciais: Adição

 Para somar duas matrizes simplesmente some todos os elementos correspondentes

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} + \begin{bmatrix} r & s & t \\ u & v & w \\ x & y & z \end{bmatrix} = \begin{bmatrix} a+r & b+s & c+t \\ d+u & e+v & f+w \\ g+x & h+y & i+z \end{bmatrix}$$

• Exemplo:

$$\begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix} + \begin{bmatrix} 3 & 5 & 7 \\ 9 & 11 & 13 \\ 15 & 17 & 19 \end{bmatrix} = \begin{bmatrix} 5 & 9 & 13 \\ 17 & 21 & 25 \\ 29 & 33 & 37 \end{bmatrix}$$

As matrizes devem ter o mesmo tamanho

Operações Matriciais: Multiplicação

- Podemos multiplicar duas matrizes A e B desde que o número de colunas de A seja igual ao número de linhas de B
- Então, se tivermos uma matriz A m por n e uma matriz B p por q teremos a multiplicação:

$$C = AB$$

 onde C será uma matriz m por q cujos elementos serão calculados da seguinte forma:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{ki}$$

$$\begin{bmatrix} 0 & -1 \\ 5 & 7 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = ?$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = ?$$

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = ?$$

$$\begin{bmatrix} 0 & -1 \\ 5 & 7 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0*1+(-1)*3 & 0*2+(-1)*4 \\ 5*1+7*3 & 5*2+7*4 \\ -2*1+8*3 & -2*2+8*4 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 26 & 38 \\ 22 & 28 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = ?$$

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = ?$

$$\begin{bmatrix} 0 & -1 \\ 5 & 7 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0*1+(-1)*3 & 0*2+(-1)*4 \\ 5*1+7*3 & 5*2+7*4 \\ -2*1+8*3 & -2*2+8*4 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 26 & 38 \\ 22 & 28 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1*4+2*5+3*6 \end{bmatrix} = \begin{bmatrix} 32 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = ?$

$$\begin{bmatrix} 0 & -1 \\ 5 & 7 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0*1+(-1)*3 & 0*2+(-1)*4 \\ 5*1+7*3 & 5*2+7*4 \\ -2*1+8*3 & -2*2+8*4 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 26 & 38 \\ 22 & 28 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1*4+2*5+3*6 \end{bmatrix} = \begin{bmatrix} 32 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4*1 & 4*2 & 4*3 \\ 5*1 & 5*2 & 5*3 \\ 6*1 & 6*2 & 6*3 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{bmatrix}$$

Atenção!

A multiplicação de matrizes não é uma operação comutativa, então:

$$AB \neq BA$$

Operações Matriciais: Transposta

 $\hbox{$\bullet$ A transposta de uma matriz M, escrita como } \\ M^T ser\'a obtida atrav\'es da invers\~ao das \\ linhas pelas colunas de $M$$

Por exemplo:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{vmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{vmatrix}$$

Outras Operações Matriciais

 Há outras operações matriciais importantes que serão necessárias no decorrer desta disciplina.

- Algumas destas operações:
 - Determinante de uma matriz
 - Matriz Inversa

Fonte dos Slides

Slide do material do Prof. Rodrigo Luis de Souza da Silva - UFJF