Lambda Calcolo

Luca Abeni

May 18, 2016

Lambda? (λ !)

- Definizione di funzione: sintassi differente rispetto ad applicazione
 - In ML, $\mathbf{fn} \times => \mathbf{e}$
 - x: identificatore per il parametro formale
 - e: espressione (sperabilmente usa x)
- Ora, sostituiamo la keyword fin con λ e il simbolo => con .
 - $\lambda x.e$
 - x: variabile legata
 - e: espressione
- Abbiamo appena scoperto il lambda-calcolo!!!
 - Ma... A che serve?
 - Formalismo matematico per quanto detto fin'ora... Definizioni rigorose!

IPM2

Definizione Formale

- Nel lambda-calcolo, un'espressione è un nome, una funzione o un'applicazione di espressioni a espressioni
 - funzione: λ nome.espressione
 - applicazione: espressione espressione
- Più formalmente, $e = x \mid \lambda x . e \mid e e$
 - x indica un identificatore (variabile, costante...)
 - e indica una generica espressione
- Dal punto di vista pratico, aggiungiamo parentesi per rendere più leggibile!!!
 - $e = x \mid (\lambda x.e) \mid (e e)$
 - Non strettamente necessario, ma $((f_1f_2)f_3)f_4)$ è più chiaro di $f_1f_2f_3f_4...$

Lambda-Calcolo vs Paradigma Funzionale

- Definizione di epressioni del lambda-calcolo: si identificano subito astrazione ($\lambda x.e$) ed applicazione (e)
 - Astrazione: lega variabile x nell'espressione e
 - Se si cambia λx in λy e si cambiano tutte le x di e in y, la semantica di e non cambia!!!
 - Le sostituzioni dovute ad applicazione non hanno effetto su x
 - Applicazione: richiede sostituzione (senza cattura!!!)
- Concetti utilizzabili per la computazione di programmi funzionali
- Lambda-calcolo permette di formalizzare le cose, basandosi si definizioni matematicamente solide
 - Partiamo da variabili libere e legate

Variabili Libere e Variabili Legate

- Informalmente parlando: una variabile x è *legata* da λx .; una variabile è libera se non è legata da nessun λ
- Formalmente: $F_v(e)$: variabili libere nell'espressione e; $B_v(e)$: variabili legate nell'espressione e
 - Se x è un identificatore, $F_v(x) = \{x\}$ e $B_v(x) = \emptyset$
 - Se un'espressione è composta solo da una variabile, quella variabile è libera
 - $F_v(e_1e_2) = F_v(e_1) \cup F_v(e_2)$ e $B_v(e_1e_2) = B_v(e_1) \cup B_v(e_2)$
 - Componendo due espressioni, non si "cambia lo stato" (libere o non libere) delle loro variabili
 - $F_v(\lambda x.e) = F_v(e) \setminus \{x\} \ \mathbf{e} \ B_v(\lambda x.e) = B_v(e) \cup \{x\}$
 - L'operatore λ (astrazione) rimuove una variabile dalle variabili libere e la aggiunge alle variabili legate
- Semplice, no?

Sostituzione

- Basandosi su $F_v(e)$ e $B_v(e)$, definizione formale di sostituzione!
- Notazione:
 - M[N/x]: nell'espressione M, sostituisci x con N
- Definizione formale:
 - Se x è un identificatore, x[N/x] = N
 - Se $x \neq y$, y[N/x] = y
 - Sostituendo x con N nell'espressione "x", si ottiene N
 - Sostituendo x con N nell'espressione "y", non cambia
 - $(M_1M_2)[N/x] = (M_1[N/x]M_2[N/x])$
 - Se $x \neq y$ e $y \notin F_v(N)$, $(\lambda y.M)[N/x] = (\lambda y.M[N/x])$
 - Se x = y, $(\lambda y.M)[N/x] = (\lambda y.M)$
 - Sostituire la variabile legata da λ non cambia nulla...

Sostituzione - Cattura

- Se $x \neq y$ e $y \notin F_v(N)$, $(\lambda y.M)[N/x] = (\lambda y.M[N/x])$
 - $y \notin F_v(N)$: metodo semplice per evitare cattura di y!!!
 - Cosa succede se $y \in F_v(N)$?
- Per evitare cattura, si rinomina la variabile legata da λ !
 - Una funzione non deve dipendere dal nome del parametro formale...
 - $\lambda x.x = \lambda y.y$ e simili... (in generale: $\lambda x.M = \lambda y.(M[y/x])$
- Possibile rinominare in modo da usare una variabile non libera in N!

Equivalenza fra Espressioni

- Date due espressioni M_1 ed M_2 , quando si possono dichiarare equivalenti?
 - Risposta intuitiva: quando differiscono solo per il nome di variabili legate!
- Data una variabile y non presente in M, $\lambda x.M \equiv \lambda y.M[y/x]$
 - Cambia λx in λy
 - Cambia tutte le occorrenze di x in y dentro all'espressione M
- Alfa Equivalenza!!! \equiv_{α}
- Due espressioni sono α -equivalenti anche se una si ottiene dall'altra sostituendo una sua parte con una parte α -equivalente

Dopo α , ... β !

- Come noto, computazione per riscrittura / semplificazione...
- Più formalmente, β-riduzione!!!
 - $(\lambda x.M)N \to_{\beta} M[N/x]$
- M_1 è β -ridotta ad M_2 quando M_2 si ottiene da M_1 tramite β -riduzione di qualche sotto espressione
 - Nota: $(\lambda x.M)N$ è un redex!
 - E M[N/x] è il suo ridotto...
 - Come si procede se ci sono più redex? Non importa! (confluenza)
- Relazione non simmetrica: $M_1 \rightarrow_{\beta} M_2 \not\Rightarrow M_2 \rightarrow_{\beta} M_1$
 - No relazione di equivalenza...
 - Esiste però β -equivalenza $=_{\beta}$ (chiusura riflessiva e transitiva di \rightarrow_{β})

β Equivalenza

- β -equivalenza $=_{\beta}$: definita in base alla β -riduzione \to_{β}
 - Tecnicamente, è la chiusura riflessiva e transitiva di \rightarrow_{β} ...
 - Ma che significa???
- Prendiamo la relazione $M_1 \to_{\beta} M_2$ ed estendiamola per essere riflessiva ($M_1 =_{\beta} M_2 \Rightarrow M_2 =_{\beta} M_1$) e transitiva ($M_1 =_{\beta} M_2 =_{\beta} M_3 \Rightarrow M_1 =_{\beta} M_3$)
 - $\bullet \quad M_1 \to_{\beta} M_2 \Rightarrow M_1 =_{\beta} M_2$
 - $\forall M, M =_{\beta} M$
 - $M_1 =_{\beta} M_2 \Rightarrow M_2 =_{\beta} M_1$
 - $\bullet \quad M_1 =_{\beta} M_2 =_{\beta} M_3 \Rightarrow M_1 =_{\beta} M_3$
- Informalmente: $M_1 =_{\beta} M_2$ significa che esiste una catena di β -riduzioni che "collega" M_1 ed M_2

Forme Normali

- Espressione che non contiene redex \rightarrow no β -riduzioni
 - Forma normale
 - $\lambda x. \lambda y. x$ è in forma normale, $\lambda x. (\lambda y. y) x$ no $((\lambda y. y) x \rightarrow_{\beta} x$, quindi $\lambda x. (\lambda y. y) x =_{\beta} \lambda x. x)$
- β -riduzione può terminare in una forma normale...
- ...O può procedere all'infinito!
 - $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)[(\lambda x.xx)/x] = (\lambda x.xx)(\lambda x.xx)...$
- Come ricorsione infinita o loop infiniti...

IPM2

Confluenza

• Torniamo a β -riduzioni di espressioni con più redex...

"Se M si riduce a M_1 con qualche passo di $(\beta$ -)riduzione ed M si riduce a M_2 con qualche passo di riduzione, allora esiste M_3 tale che sia M_1 che M_2 si riducono a M_3 con qualche passo di riduzione"

• Se M è riducibile in forma normale, allora questa non dipende dall'ordine in cui si sono ridotti i redex.

LPM2 Luca Abeni

Espressività del λ -Calcolo

- Il λ calcolo come definito fino ad ora può apparire "limitante"
 - Espressioni composte solo da variabili, applicazione ed astrazione...
 - $\lambda x.x + 2$ non è un'espressione valida
 - 2 non è una variabile; + non è una variabile!
- Il λ calcolo ha però una grande potenza espressiva...
 - Turing equivalente: può codificare tutti gli algoritmi "sensati"
 - Permette allora di codificare costanti, operazioni aritmetiche, etc...
 - Come?

Esempio: Codifica dei Naturali

- Definizione basata su assiomi di Peano:
 - 0 è un naturale
 - Se n è un naturale, il successivo di n (succ(n)) è anch'esso un naturale
- Church ha fatto qualcosa di simile...
 - 0 è codificato come $\lambda f.\lambda x.x$ (funzione f applicata 0 volte a x)
 - succ(n): applica f ad n
- Sostanzialmente, 0 è una funzione appilcata 0 volte ad una variabile, 1
 è una funziona applicata 1 volta ad una variabile, ...
- n: funzione applicata n volte ad una variabile
- $succ(n) = \lambda n.\lambda f.\lambda x.f((nf)x)$
 - Aggiungi una f a n... Ma perché questa espressione???

IPM2

Naturali: Successivo

- Informalmente: n rappresentato da $\lambda f.\lambda x.$ seguito da n volte f e da x
 - "Corpo" della funzione n: $\widehat{f(\ldots f(x)\ldots)}$
 - Va "estratto" da n (rimuovendo $\lambda f.\lambda x.$), aggiunta una f e astratto di nuovo rispetto a f e x
- Vediamo come fare:
 - "Estrazione": si applica n ad f ed $x \to ((nf)x)$
 - Aggiunta di f: facile... $\rightarrow f((nf)x)$
 - Ri-astrazione: $\lambda f.\lambda x.f((nf)x)$
- Il tutto è funzione di n: $\lambda n. \lambda f. \lambda x. f((nf)x)$

Codifica dei Naturali - 1, 2, ...

- 1 = succ(0): $(\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.x)$
 - $(\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.x)$
 - $\lambda g.\lambda y.g(((\lambda f.\lambda x.x)g)y)$
 - $\lambda g.\lambda y.g((\lambda x.x)y) = \lambda g.\lambda y.gy$
 - $\lambda g.\lambda y.gy = \lambda f.\lambda x.fx$
- 2 = succ(1): $(\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.fx)$
 - $(\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.fx)$
 - $\lambda g.\lambda y.g(((\lambda f.\lambda x.fx)g)y)$
 - $\lambda g.\lambda y.g((\lambda x.gx)y)$
 - $\lambda g.\lambda y.g(gy) = \lambda f.\lambda x.f(fx)$
- Analogamente, $3 = \text{succ}(2) = \lambda f. \lambda x. f(f(fx)), \text{ etc...}$

Naturali: Somma

- Come detto, $n \equiv f$ applicata n volte ad x
- Quindi, 2+3= "applica 2 volte f a 3" (o, "applica 3 volte f a 2...)
 - Applica 2 volte f ad "applica 3 volte f ad x"...
- n+m: applica n volte f a m
 - Estrai il corpo di n e di m
 - Nel corpo di n, sostituisci x con m
 - Ri-astrai il tutto rispetto ad f e ad x
 - Astrai rispetto ad m ed n
- Come fare:
 - Corpo di m: (mf)x
 - Corpo di n con il corpo di m al posto di x: (nf)((mf)x)
 - Quindi, $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$

Somma: Esempio

- 2 + 3: $\lambda f.\lambda x.f(fx) + \lambda f.\lambda x.f(f(fx))$
 - +: $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$
- $(\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx)))$
 - $(\lambda n.\lambda m.\lambda g.\lambda y.(ng)((mg)y))(\lambda h.\lambda z.h(hz))(\lambda f.\lambda x.f(f(fx)))$
 - $\lambda g.\lambda y.((\lambda h.\lambda z.h(hz))g)(((\lambda f.\lambda x.f(f(fx)))g)y)$
 - $\lambda g.\lambda y.(\lambda z.g(gz))((\lambda x.g(g(gx)))y)$
 - $\lambda g.\lambda y.(\lambda z.g(gz))(g(g(gy)))$
 - $\lambda g.\lambda y.(g(g(g(g(gy)))))$
- Che è uguale a $\lambda f.\lambda x.f(f(f(f(f(x)))))$
 - f applicata 5 volte ad x: 5!
 - Infatti, 2 + 3 = 5...

Si Può Fare...

- Analogamente a naturali ed operazioni aritmetiche, si possono implementare molte altre cose...
 - Tutto quel che serve!
 - Booleani, condizioni (if ... then ... else), ...
- Ma questo non vuol dire che la notazione sia semplice!
 - $2+3 \equiv (\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx)))$
- $\lambda x.x + 2$ non è un'espressione valida...
 - Ma $\lambda x.((\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))x(\lambda f.\lambda x.f(fx))$ lo è!
 - E vuole dire la stessa cosa...

Estensione a λ Calcolo

- Lieve abuso di notazione: permettiamo di usare numeri naturali, operazioni, condizioni e quant'altro serve nelle espressioni
 - Tanto si può implementare tutto usando solo variabili, applicazione ed astrazione...
- Espressioni come $\lambda x.(x+2)$ o $\lambda x.if$ x = 1 then 0 else ... diventano valide!
 - Se vogliamo fare i puristi, possiamo sempre sostituire 2, +, if
 ... con la loro codifica...
- Versione "estesa" del λ calcolo puro (che ha solo variabili, astrazione ed applicazione)

IPM2

Iterazione / Ricorsione

- Come implementare iterazione nel λ calcolo?
 - Paradigma funzionale: tramite ricorsione!
 - Riformuliamo la domanda: come implementare ricorsione????
- Occorrerebbe "dare un nome" ad una espressione λx
 - Ma questo non è possibile! No nozione di "ambiente esterno"...
- Implementiamo ricorsione usando solo astrazione ed applicazione...
- Esempio stupido:

```
val rec f = fn n => if n = 0 then 0 else 1 + f (n-1)
```

- Parecchio stupida, ma è un esempio...
- E' abbastanza ovvio che implementa l'identità val f = fn n => n

λ Calcolo e Ricorsione - Esempio

- $f = \lambda n$.if n = 0 then 0 else 1 + f (n 1)
- Non vediamo f = come una definizione, ma come un'equazione...
 - f = G(f)...G() funzione di ordine superiore
 - Riceve una funzione come argomento
 - Ritorna una fuzione come risultato
 - Risolvendo, si trova f... Ma, cosa significa "="?
- Come risolvere questa equazione?
- Prima di tutto, definiamo G astraendo rispetto ad f:
- ullet $G=\lambda f.\lambda n. {
 m if}$ n = 0 then 0 else 1 + f (n 1)
- Quindi, si tratta di trovare $h: h =_{\beta} Gh$
 - Applicando G ad h si ottiene ancora h (con β -uguaglianza!)

Ricorsione - Continua Esempio

- Da $f=\lambda n$.if n = 0 then 0 else 1 + f (n 1) siamo passati a $\lambda f.\lambda n$.if n = 0 then 0 else 1 + f (n 1)
 - Che senso ha? Abbiamo Eliminato la Ricorsione!!!
 - Funzione da invocare ricorsivamente passata come parametro!
- Esempio:

```
val rec f = fn n \Rightarrow if n = 0 then 0 else 1 + f (n - 1)
```

 \Rightarrow

val
$$g = fn f \Rightarrow fn n \Rightarrow if n = 0 then 0 else 1 + f (n - 1)$$

- cerchiamo f1 tale che f1 = g f1...
- Notare la scomparsa di rec

λ , α , β , ... Y???

- Torniamo al nostro problema: data una funzione G trovare $f: f =_{\beta} Gf$
 - Qui, "=" dopo qualche β -riduzione a destra o sinistra... β -uguaglianza!
- Equivale a trovare il punto fisso (fixpoint) di G...
- Come si fa? Y combinator! $Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$
 - Uh??? E come funziona??? Consideriamo espressione e e calcoliamo Ye...
 - $Ye = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))e$
 - $(\lambda x.e(xx))(\lambda x.e(xx)) = (\lambda y.e(yy))(\lambda x.e(xx))$
 - $e(\lambda x.e(xx))(\lambda x.e(xx))$
 - Ma $(\lambda x.e(xx))(\lambda x.e(xx))$ può essere il risultato di una β -riduzione...
 - $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ applicato ad e
 - $e(\lambda x.e(xx))(\lambda x.e(xx)) =_{\beta} e(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))e) =_{\beta} e(Ye)$
 - Nota: passaggi non per β-riduzione!
 - $Ye = e(Ye) \Rightarrow YG = G(YG)$: YG è un punto fisso per G!!!

Y... Combinator???

- Y Combinator: $\lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$
- Combinator: espressione λ senza variabili libere
 - $\lambda f.$...
 - Funzione di ordine superiore: ha una funzione (G) come argomento e genera una funzione come risultato
 - Non contiene variabili libere! Tutti i simboli sono legati da qualche λ
- Come si vede Y è un'espressione λf e non contiene variabili libere \rightarrow è un combinator!
- E' un particolare combinator, che data una funzione ne calcola il punto fisso (fixed point combinator)
 - Non è l'unico... Ne esistono infiniti altri!
 - Funziona usando β-uguaglianza

Fixed Poing Combinators

- Importanza: permettono di implementare ricorsione in λ -calcolo
 - In ML, permettono ricorsione senza val rec!
 - WTH???
- Y Combinator: funziona con valutazione per nome / lazy
 - Con valutazione per valore, ricorsione infinita...
- Altri fixed point combinator funzionano con valutazione per valore
 - Z Combinator: $\lambda f.((\lambda x.(f(\lambda y.(xx)y)))(\lambda x.(f(\lambda y.(xx)y))))$
 - H Combinator: $\lambda f.((\lambda x.xx)(\lambda x.(f(\lambda y.(xx)y))))$
- Implementazione in ML: possibile, ma... Non proprio facile!
 - Problema coi tipi delle funzioni...
 - Vanno usati tipi di dati ricorsivi per eliminare ricorsione dalle funzioni!