Math Insight

Multiplying matrices and vectors

Matrix-vector product

To define multiplication between a matrix A and a vector \mathbf{x} (i.e., the matrix-vector product), we need to view the vector as a column matrix. We define the matrix-vector product only for the case when the number of columns in A equals the number of rows in \mathbf{x} . So, if A is an $m \times n$ matrix (i.e., with n columns), then the product $A\mathbf{x}$ is defined for $n \times 1$ column vectors \mathbf{x} . If we let $A\mathbf{x} = \mathbf{b}$, then \mathbf{b} is an $m \times 1$ column vector. In other words, the number of rows in A (which can be anything) determines the number of rows in the product \mathbf{b} .

The general formula for a matrix-vector product is

$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}.$$

Although it may look confusing at first, the process of matrix-vector multiplication is actually quite simple. One takes the **dot** product of \mathbf{x} with each of the rows of A. (This is why the number of columns in A has to equal the number of components in \mathbf{x} .) The first component of the matrix-vector product is the dot product of \mathbf{x} with the first row of A, etc. In fact, if A has only one row, the matrix-vector product is really a **dot** product in **disguise**.

For example, if

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -3 & 1 \end{bmatrix}$$

and x = (2, 1, 0), then

1 of 4 09/07/18, 10:13 AM

$$A\mathbf{x} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot 1 - 1 \cdot 1 + 0 \cdot 2 \\ 2 \cdot 0 - 1 \cdot 3 + 0 \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ -3 \end{bmatrix}.$$

Matrix-matrix product

Since we view vectors as column matrices, the matrix-vector product is simply a special case of the matrix-matrix product (i.e., a product between two matrices). Just like for the matrix-vector product, the product AB between matrices A and B is defined only if the number of *columns* in A equals the number of *rows* in B. In math terms, we say we can multiply an $m \times n$ matrix A by an $n \times p$ matrix B. (If p happened to be 1, then B would be an $n \times 1$ column vector and we'd be back to the matrix-vector product.)

The product AB is an $m \times p$ matrix which we'll call C, i.e., AB = C. To calculate the product B, we view B as a bunch of $n \times 1$ column vectors lined up next to each other:

$$\begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{n2} \end{bmatrix} \cdots \begin{bmatrix} b_{1p} \\ b_{2p} \\ \vdots \\ b_{np} \end{bmatrix}$$

Then each column of C is the matrix-vector product of A with the respective column of B. In other words, the component in the ith row and jth column of C is the dot product between the ith row of A and the jth column of B. In math, we write this component of C as $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

An example help makes the process clear. Let A be the 2×3 matrix

$$A = \begin{bmatrix} 0 & 4 & -2 \\ -4 & -3 & 0 \end{bmatrix}$$

and *B* be the 3×2 matrix

$$B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 2 & 3 \end{bmatrix}.$$

Then,

$$AB = \begin{bmatrix} 0 & 4 & -2 \\ -4 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \cdot 0 + 4 \cdot 1 - 2 \cdot 2 & 0 \cdot 1 + 4 \cdot (-1) - 2 \cdot 3 \\ -4 \cdot 0 - 3 \cdot 1 + 0 \cdot 2 & -4 \cdot 1 - 3 \cdot (-1) + 0 \cdot 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 + 4 - 4 & 0 - 4 - 6 \\ 0 - 3 + 0 & -4 + 3 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -10 \\ -3 & -1 \end{bmatrix}.$$

Want more examples?

See also

Vectors in arbitrary dimensions

Introduction to matrices

Matrix and vector multiplication examples

Matrices and determinants for multivariable calculus

Dot product in matrix notation

Cite this as

Nykamp DQ, "Multiplying matrices and vectors." From *Math Insight*. http://mathinsight.org/matrix_vector_multiplication

Keywords: matrices, vectors

Multiplying matrices and vectors by Duane Q. Nykamp is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 License. For permissions beyond the scope of this license, please contact us.

4 of 4 09/07/18, 10:13 AM