Machine Learning 2.1 : Classification

Théo Trouillon - theo.trouillon@le-campus-numerique.fr

- Supervised learning
 - Feature matrix $X \in \mathbb{R}^{n \times m}$, n samples, m features
 - ullet Target vector y of size n
 - $y \approx f(X)$

- Supervised learning
 - Feature matrix $X \in \mathbb{R}^{n \times m}$, n samples, m features
 - ullet Target vector y of size n
 - $y \approx f(X)$
- Regression
 - $y \in \mathbb{R}^n$
 - Linear regression :

$$y_i \approx w_1 x_{i1} + w_2 x_{i2} + \dots + w_m x_{im}$$

- Supervised learning
 - Feature matrix $X \in \mathbb{R}^{n \times m}$, n samples, m features
 - Target vector y of size n
 - $y \approx f(X)$
- Regression
 - $y \in \mathbb{R}^n$
 - Linear regression : $y_i \approx w_1 x_{i1} + w_2 x_{i2} + ... + w_m x_{im}$

- Supervised learning
 - Feature matrix $X \in \mathbb{R}^{n \times m}$, nsamples, m features
 - Target vector y of size n
 - $y \approx f(X)$
- (Binary) Classification
 - $y \in \{0,1\}^n$, called classes or labels
 - Red : positives, y=1
 - Blue : negatives, y=0
 - Many algorithms, today : K-Nearest-Neighbors

Binary classification with K-Nearest Neighbors (KNN)

- Example of binary classification :
 - Red : positives, y=1
 - Blue : negatives, y=0

Binary classification with K-Nearest Neighbors (KNN)

Nearest Neighbors

x1

- Example of binary classification :
 - Red: positives, y=1Blue: negatives, y=0
- K-Nearest Neighbors :
 - Training : memorize all training points
 - Prediction: same y as the majority among K-nearest training points
 - Here : K = 3

Binary classification with K-Nearest Neighbors (KNN)

x1

- Example of binary classification :
 - Red : positives, y=1
 - Blue : negatives, y=0
- K-Nearest Neighbors :
 - Training : memorize all training points
 - Prediction: same y as the majority among K-nearest training points
 - Here : K = 3
- Two types of error :
 - False positives (FP)
 - False negatives (FN)

- Four prediction possibilities :
 - True Positives (TP): 1's correctly predicted as 1's
 - True Negatives (TN): 0's correctly predicted as 0's
 - False Negatives (FN): 1's incorrectly predicted as 0's
 - False Positives (FP): 0's incorrectly predicted as 1's

- Four prediction possibilities :
 - True Positives (TP): 1's correctly predicted as 1's
 - True Negatives (TN): 0's correctly predicted as 0's
 - False Negatives (FN): 1's incorrectly predicted as 0's
 - False Positives (FP): 0's incorrectly predicted as 1's
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
 - Overall classes prediction ability

- Four prediction possibilities :
 - True Positives (TP): 1's correctly predicted as 1's
 - True Negatives (TN): 0's correctly predicted as 0's
 - False Negatives (FN): 1's incorrectly predicted as 0's
 - False Positives (FP): 0's incorrectly predicted as 1's
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
 - Overall classes prediction ability
- Precision = $\frac{TP}{TP+FP}$
 - Ability to not predict 0's as 1's

- Four prediction possibilities :
 - True Positives (TP): 1's correctly predicted as 1's
 - True Negatives (TN): 0's correctly predicted as 0's
 - False Negatives (FN): 1's incorrectly predicted as 0's
 - False Positives (FP): 0's incorrectly predicted as 1's
- \bullet Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
 - Overall classes prediction ability
- Precision = $\frac{TP}{TP+FP}$
 - Ability to not predict 0's as 1's
- Recall = $\frac{TP}{TP+FN}$
 - Ability to not predict 1's as 0's

Today

- Heart disease diagnostic with k-nearest neighbors
 - Features : Age, cholesterol, blood pressure, ...
 - Classes: 0: no heart disease, 1: heart disease
 - Importance of Precision vs Recall
- Experimental setup : same as previous module : train/test, cross-validation, ...
 - Chapter 2 from Hand's On Machine Learning ...
- Understand the difference between regression and classification :
 - Chapter 4.1 and 4.2 from Introduction to Statistical Learning
- Take time to read the resources when mentioned in the notebook