25 Problems: Least Squares

1. Let $L:U\to V$ be a linear transformation. Suppose $v\in L(U)$ and you have found a vector $u_{\rm ps}$ that obeys $L(u_{\rm ps})=v$.

Explain why you need to compute $\ker L$ to describe the solution space of the linear system L(u) = v.

Hint for Problem 1

- 2. Suppose that M is an $m \times n$ matrix with trivial kernel. Show that for any vectors u and v in \mathbb{R}^m :
 - $\bullet \ u^T M^T M v = v^T M^T M u.$
 - $v^T M^T M v \ge 0$. In case you are concerned (you don't need to be) and for future reference, the notation $v \ge 0$ means each entry $v^i \ge 0$.
 - If $v^T M^T M v = 0$, then v = 0.

(Hint: Think about the dot product in \mathbb{R}^n .)

Hint for Problem 2

