APPENDIX B: AIRPLANE DATA

The purpose of this appendix is to present geometric, mass, inertial, stability, control and (where available) hingemoment data for a range of airplanes and flight conditions. The airplanes are identified as Airplanes A through J:

Airplane A	is representative of a small, single piston-engine general aviation airplane
	such as the Cessna 182 (See Table B1: Pages 480–486)
Airplane B	is representative of a small, twin piston—engine general aviation airplane such as the Cessna 310 (See Table B2: Pages 487–493)
Airplane C	is representative of a small, single jet–engine, military training airplane such as the SIAI–Marchetti S–211 (See Table B3: Pages 494–500)
Airplane D	is representative of a small, twin jet-engine, military training airplane such as the Cessna T-37A (See Table B4: Pages 501-507)
Airplane E	is representative of a small, regional, twin-turboprop commuter airplane such as the Beech 99 (See Table B5: Pages 508–514)
Airplane F	is representative of a corporate four piston–engine airplane such as the Cessna 620 (See Table B6: Pages 515–521)
Airplane G	is representative of a corporate twin jet–engine airplane such as the Learjet 24 (See Table B7: Pages 522–528)
Airplane H	is representaive of a single jet–engine interceptor fighter airplane such as the Lockheed F–104 (See Table B8: Pages 529–535)
Airplane I	is representative of a twin jet–engine fighter/attack airplane such as the McDonnell F–4 (See Table B9: Pages 536–542)
Airplane J	is representative of a large four jet-engine commercial transport airplane such as the Boeing 747–200 (See Table B10: Pages 543–549)

Tables B1-B10 also include examples of the open loop, longitudinal and lateral-directional, modes and transfer functions of these airplanes.

Table B1 Stability and Control Derivatives for Airplane A (Pages 480–486)

Three-view

Reference Geometry

S (ft ²)	174
\overline{c} (ft)	4.9
b (ft)	36.0

Flight Condition Data	Climb	Cruise	Approach
Altitude, h (ft)	0	5,000	0
Mach Number, M	0.120	0.201	0.096
TAS, U ₁ (ft/sec)	133.5	220.1	107.1
Dynamic pressure, q (lbs/ft2)	21.2	49.6	13.6
C.G. location, fraction \overline{c}	26.4	26.4	26.4
Angle of attack, α_1 (deg)	5.4	0	4
Mass Data			
W (lbs)	2,650	2,650	2,650
I_{xx_B} (slugft2)	948	948	948
I_{yy_B} (slugft2)	1,346	1,346	1,346
I_{zz_B} (slugft2)	1,967	1,967	1,967
I_{xz_B} (slugft2)	0	0	0

<u>Table B1 (Continued)</u> Stability and Control Derivatives for Airplane A (Pages 480–486)

Cruise

Approach

Climb

Flight Condition

Steady State Coefficients			
C_{L_1}	0.719	0.307	1.120
C_{D_1}	0.057	0.032	0.132
C_{Tx_1} C_{m_1}	0.057	0.032	0.132
$C_{\mathfrak{m}_1}$	0	0	0
$C_{m_{T_1}}$	0	0	0
Longitudinal Coefficients and Sta	bility Derivatives (Sta	ıbility Axes, Dimensio	onless)
C_{D_0}	0.0270	0.0270	0.0605
$\mathrm{C}_{\mathrm{D}_{\mathrm{u}}}$	0	0	0
$C_{\mathrm{D}_{lpha}}$	0.380	0.121	0.547
$C_{T_{x_u}}$	-0.171	-0.096	-0.396
C_{L_0}	0.307	0.307	0.807
$egin{array}{c} C_{T_{x_u}} \ C_{L_0} \ C_{L_u} \end{array}$	0	0	0
$C_{L_{\mathfrak{u}}}$	4.41	4.41	4.41
$C_{L_{lpha}}$	1.7	1.7	1.7
$\mathrm{C}_{\mathrm{L}_{\mathfrak{q}}}$	3.9	3.9	3.9
C_{m_0}	0.04	0.04	0.09
C_{m_u}	0	0	0
$C_{m_{\alpha}}$	-0.650	-0.613	-0.611
$C_{m_{\alpha}}$	-5.57	-7.27	-5.40
C_{m_q}	-15.2	-12.4	-11.4
$C_{m_{T_u}}$	0	0	0
$C_{m_{T_{tt}}}$	0	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

	_	- ·	
$C_{D_{\delta_c}}$	0	0	0
$\mathrm{C}_{\mathrm{L}_{\delta_{\mathrm{e}}}}$	0.43	0.43	0.43
$C_{m_{\delta_e}}$	-1.369	-1.122	-1.029
$C_{D_{i_h}}$	not applicable		
$\mathbf{C}_{\mathbf{L}_{i_h}}$	not applicable		
$C_{\mathfrak{m}_{i_h}}$	not applicable		

Table B1 (Continued)	Stability and Control	<u>Derivatives for Air</u> pla	ne A (Pages 480–486)
Flight Condition	Climb	Cruise	Approach
			**
Longitudinal Control and	_		•
$C_{h_{\alpha}}$	-0.0545	-0.0584	-0.0549
$C_{\mathfrak{h}_{\delta_{\mathbf{e}}}}$	-0.594	-0.585	-0.594
Lateral-Directional Stabil	ity Derivatives (Stabilit	y Axes, Dimensionles	s <u>s)</u>
$C_{l_{\beta}}$	-0.0895	-0.0923	-0.0969
C_{l_p}	-0.487	-0.484	-0.494
C_{I_r}	0.1869	0.0798	0.2039
$egin{array}{c} C_{oldsymbol{y}_{oldsymbol{p}}} \ C_{oldsymbol{y}_{oldsymbol{p}}} \end{array}$	-0.404	-0.393	-0.303
	-0.145	-0.075	-0.213
C_{y_r}	0.267	0.214	0.201
$C_{n_{\beta}}$	0.0907	0.0587	0.0701
$egin{array}{c} C_{n_{\mathfrak{p}}} \ C_{n_{\mathfrak{p}}} \end{array}$	0	0	0
$\mathrm{C}_{n_{p}}$	-0.0649	-0.0278	-0.0960
C_{n_r}	-0.1199	-0.0937	-0.1151
Lateral-Directional Conta	rol and Hinge Moment	Derivatives (Stability	Axes, Dimensionless)
$\overline{\mathrm{C}}_{\mathrm{l}_{\delta_{\mathrm{a}}}}$	0.229	0.229	0.229
$C_{l_{\delta_r}}$	0.0147	0.0147	0.0147
$C_{y_{\delta_a}}$	0	0	0
$C_{y_{\delta_r}}$	0.187	0.187	0.187
$\mathrm{C}_{n_{\delta_{a}}}$	-0.0504	-0.0216	-0.0786
$C_{n_{\delta_{r}}}$	-0.0805	-0.0645	-0.0604
$C_{h_{lpha_a}}$???	???	???
$\mathrm{C}_{h_{\delta_a}}$	-0.369	-0.363	-0.369
$C_{h_{\beta_{f}}}$	0.0819	0.0819	0.0819
$\mathbf{C}_{\mathbf{r}}$	0.570	0.507	0.570

Appendix B 482

-0.567

-0.579

 $C_{h_{\delta_{r}}}$

-0.579

Longitudinal Transfer Function Data

Altitude	_	E000	EL	M_1	=	0.201	
	=	5000		n	==	1.00	a
U_1 W_current	=	130.39		q_bar	=	49.60	_
***		2650.0		(W/S)_TO	=	15.23	-
S_w	=	174.00		X_u	=	-0.0304	_
	=	0.00	-	x_u X_T_u	=	-0.0152	
C_bar	=	4.90		X_1_u X_a	=	19.4588	
I_YY_B	=		slgft2	_		-0.2919	
C_m_1	=	0.0000		Z_u	=		
C_m_u	=	0.0000		Z_a.	=	-464.7095	
C_m_a	=	-0.6130	1/rad	Z_a_dot	=	-1.9799	
C_m_a.dot	=	-7.2700	1/rad	Z _ q	=	-4.5422	
C_m_q	=	-12.4000	1/rad	M_u	=	0.0000	1/ft/s
C_m_T_1	=	0.0000		M_T_u	=	0.0000	1/ft/s
C_m_T_u	=	0.0000		M_a	=	-19.2591	1/s^2
C_m_T_a	=	0.0000		M_T_a	=	0.0000	1/s^2
C_L_1	=	0.3070		${ t M_a_dot}$	=	-2.5428	1/s
 C_L_u	=	0.0000		M_q	=	-4.3370	1/s
 C_L_a	=	4.4100	1/rad				
C_L_a.dot	=	1.7000	1/rad				
C_L_q	=	3.9000	1/rad				
C_D_1	=	0.0320					
 CD_a	=	0.1210	1/rad	w_n_SP	=	5.2707	rad/s
C_D_u	=	0.0000		z_SP	=	0.8442	
C_T_X_1	=	0.0320		w_n_P	=	0.1711	rad/s
 C_T_X_u	=	-0.0960		z_P	=	0.1289	
C_L_d_e	=	0.4300	1/rad	X_del_e	=	0.0000	ft/s^2
C_D_d_e	=	0.0000		Z_del_e	=	-44.9854	ft/s^2
C_m_d_e	±=	-1.1220		M_del_e	=	-35.2508	1/s^2
c_iii_u_e	_	-1.1220	I/Iau				

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
- 44.9854 s^3 - 7794.8686 s^2 - 355.6293 s - 330.5164
```

+ 222.0551 S^4 + 1985.9525 S^3 + 6262.2861 S^2 + 329.8825 S + 180.5762

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.830343

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 875.3615 s^2 + 96137.8071 s + 498397.2852
```

+ 222.0551 S^4 + 1985.9525 S^3 + 6262.2861 S^2 + 329.8825 S + 180.5762

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 2760.037863

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -5.029704

Lateral-Directional Transfer Function Data

W_current	=	2650.0	lb	(W/S)_TO	=	15.23	psf
Altitude	=	5000	ft	q_bar	=	49.60	psf
S_w	=	174.00	ft^2	I_xx_S	=	948	slgft2
U_1	=	130.39	kts	I_zz_S	=	1967	slgft2
Theta_1	=	0.00	deg	I_xz_S	=	0	slgft2
Alpha	=	0.00	deg	Y_B	=	-41.1146	ft/s^2
b_w	=	36.00	ft	q_Y	=	-0.6417	ft/s
I_xx_B	=	948	slgft2	Y_r	=	1.8311	ft/s
I_zz_B	=	1967	slgft2	L_B	=	-30.2497	1/s^2
I_xz_B	=	0	slgft2	r_b	=	-12.9738	1/s
C_1_B	=	-0.0923	1/rad	L_r	=	2.1391	1/s
C_1_p	=	-0.4840	1/rad	N_B	=	9.2717	1/s^2
C_1_r	=	0.0798	1/rad	N_T_B	=	0.0000	1/s^2
C_n_B	=	0.0587	1/rad	N_p	=	-0.3591	1/s
 C_n_T_B	=	0.0000		N_r	=	-1.2105	1/s
C_n_p	=	-0.0278	1/rad	w_n_D	=	3.2448	rad/s
 C_n_r	=	-0.0937	1/rad	z_D	=	0.2066	
C_y_B	=	-0.3930	1/rad	TC_SPIRAL	=	55.922	s
 C_y_p	=	-0.0750	1/rad	TC_ROLL	=	0.077	S
C_y_r	=	0.2140	1/rad	TC_1	=	0.077	S
 C_1_d_a	=	0.2290	1/rad	TC_2	=	55.922	s
C_1_d_r	==	0.0147	1/rad	Y_del_a	=	0.0000	ft/s^2
 C_n_d_a	=	-0.0216	1/rad	Y_del_r	=	19.5634	ft/s^2
C_n_d_r	=	-0.0645	1/rad	L_del_a	=	75.0507	1/s^2
C_y_d_a	=	0.0000	1/rad	${ t L_del_r}$	=	4.8177	1/s^2
C_y_d_r	=	0.1870	1/rad	N_del_a	=	-3.4117	
-				N_del_r	=	-10.1879	1/s^2

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 + 696.4302 S^3 + 17900.0258 S^2 + 2683.9498 S
 + 220.0752 \text{ s}^5 + 3162.7190 \text{ s}^4 + 6212.5579 \text{ s}^3 + 30261.6885 \text{ s}^2 + 539.1737 \text{ s}
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
696.4302 S(S + 25.5517)(S + 0.1508)
220.0752 S(S + 13.0127)(S + 0.0179)(S^2 + 1.3405 S + 10.5287)
 SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = 4.977895
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 19.5634 S^4 + 2497.8410 S^3 + 29711.2702 S^2 - 512.7145 S
 + 220.0752 \$^5 + 3162.7190 <math>\$^4 + 6212.5579 \$^3 + 30261.6885 \$^2 + 539.1737 \$
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
19.5634 S(S - 0.0172)(S + 114.4019)(S + 13.2945)
220.0752
          S(S + 13.0127)(S + 0.0179)(S^2 + 1.3405 S + 10.5287)
 SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -0.950926
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
 + 16516.7989 \text{ s}^3 + 21473.1354 \text{ s}^2 + 132776.7201 \text{ s}
 + 220.0752 S^5 + 3162.7190 S^4 + 6212.5579 S^3 + 30261.6885 S^2 + 539.1737 S
FACTORED ROLL TO AILERON TRANSFER FUNCTION
16516.7989 S(S^2 + 1.3001 S + 8.0389)
220.0752 S(S + 13.0127)(S + 0.0179)(S^2 + 1.3405 S + 10.5287)
ROLL TO AILERON TRANSFER FUNCTION K_gain = 246.259658
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
  + 1060.2487 S^3 - 3906.2643 S^2 - 58494.3958 S
_______
  + 220.0752 \$^5 + 3162.7190 <math>\$^4 + 6212.5579 \$^3 + 30261.6885 \$^2 + 539.1737 \$
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
1060.2487 S(S - 9.4949)(S + 5.8106)
220.0752 S(S + 13.0127)(S + 0.0179)(S^2 + 1.3405 S + 10.5287)
 ROLL TO RUDDER TRANSFER FUNCTION K_gain = -108.488972
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
  -750.8413 \text{ s}^3 - 15813.4284 \text{ s}^2 - 3308.3966 \text{ s} + 19037.9166
  + 220.0752 s^5 + 3162.7190 s^4 + 6212.5579 s^3 + 30261.6885 s^2 + 539.1737 s
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-750.8413 (S - 0.9773)(S + 20.7903)(S + 1.2479)
220.0752 S(S + 13.0127)(S + 0.0179)(S<sup>2</sup> + 1.3405 S + 10.5287)
 HEADING TO AILERON TRANSFER FUNCTION K_gain = 35.309434
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
  -2242.0954 $^3 -29706.6792 $^2 -2770.5323 $ -8464.9288
   + 220.0752 s^5 + 3162.7190 s^4 + 6212.5579 s^3 + 30261.6885 s^2 + 539.1737 s^4 + 539.1738 s^4 + 539.1737 s^4 + 539.1738 s^4 + 549.1748 s^4 
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
 -2242.0954 (S + 13.1775)(S<sup>2</sup> + 0.0720 S + 0.2865)
 ______
 220.0752 S(S + 13.0127)(S + 0.0179)(S^2 + 1.3405 S + 10.5287)
```

Appendix B 486

HEADING TO RUDDER TRANSFER FUNCTION K_gain = -15.699819

Table B2 Stability and Control Derivatives for Airplane B (Pages 487–493)

<u>Table B2 (Continued)</u> <u>Stability and Control Derivatives for Airplane B (Pages 487–493)</u>

Flight Condition	Climb	Cruise	Approach
Steady State Coefficients			
C_{L_1}	0.690	0.288	1.163
C_{D_1}	0.0540	0.0310	0.1710
$C_{T_{x_1}}$	0.0540	0.0310	0.1710
C_{m_1}	0	0	0
$\mathbf{C}_{m_{T_{I}}}$	0	0	0
Longitudinal Coefficients and Sta	bility Derivatives (St	ability Axes, Dimensi	onless)
C_{D_0}	0.0290	0.0290	0.0974
$\mathrm{C}_{\mathrm{D}_{u}}$	0	0	0
$C_{D_{\mathfrak{a}}}$	0.362	0.160	0.650
$C_{T_{x_u}}$	-0.162	-0.093	-0.513
C_{L_0}	0.288	0.288	0.640
C_{L_u}	0	0	0
$\mathrm{C}_{\mathrm{L}_{\mathrm{u}}}$	4.58	4.58	4.58
$\mathrm{C}_{\mathrm{L}_{\dot{lpha}}}$	4.5	5.3	4.1
C_{L_q}	8.8	9.7	8.4
C_{m_0}	0.07	0.07	0.10
C_{m_u}	0	0	0
$C_{m_{lpha}}$	-0.339	-0.137	-0.619
$C_{m_{\dot{\alpha}}}$	-14.8	-12.7	-11.4
C_{m_q}	-29.2	-26.3	-25.1
$C_{m_{T_u}}$	0	0	0
$C_{m_{T_{n}}}$	0	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

$C_{D_{\delta_e}}$	0	0	0
$C_{L_{\delta_{e}}}$	0.90	0.81	0.77
$C_{m_{\delta_c}}$	-2.53	-2.26	-2.16
$egin{aligned} & C_{D_{\delta_e}} \ & C_{L_{\delta_e}} \ & C_{m_{\delta_e}} \ & C_{D_{i_h}} \ & C_{L_{i_h}} \ & C_{m_{i_h}} \end{aligned}$	not applicable		
$C_{L_{i_h}}$	not applicable		
$C_{m_{i_h}}$	not applicable		

Table B2 (Continued) Stability and Control Derivatives for Airplane B (Pages 487–493)

Table B2 (Continued)	Stability and Control	<u>Derivatives for Airpla</u>	ne B (Pages 487–493)
Flight Condition	Climb	Cruise	Approach
Longitudinal Control and H	<u> Iinge Moment Deriva</u>	tives: Cont'd (Stabilit	y Axes, 1/rad)
$\mathrm{C}_{h_{lpha}}$	-0.0826	-0.0863	-0.0925
$C_{h_{\delta_e}}$	-0.742	-0.742	-0.742
Lateral–Directional Stabilit	y Derivatives (Stabilit	y Axes, Dimensionles	<u>s)</u>
$C_{l_{\beta}}$	-0.0923	-0.1096	-0.0965
C_{l_p}	-0.552	-0.551	-0.566
C_{l_r}	0.1746	0.0729	0.2433
$\mathbf{C}_{\mathbf{y}_{\mathbf{\beta}}}$	-0.610	-0.698	-0.577
C_{y_p}	-0.2093	-0.1410	-0.2897
C_{y_r}	0.356	0.355	0.355
$C_{n_{\beta}}$	0.1552	0.1444	0.1683
$egin{array}{c} C_{n_{_{ar{eta}}}} \ C_{n_{_{ar{eta}}}} \end{array}$	0	0	0
	-0.0615	-0.0257	-0.1021
C_{n_r}	-0.1561	-0.1495	-0.1947
Lateral-Directional Contro	l and Hinge Moment	Derivatives (Stability .	Axes, Dimensionless)
$C_{ m l_{\delta_a}}$	0.1720	0.1720	0.1720
$C_{l_{\delta_r}}$	0.0192	0.0192	0.0192
$\mathbf{C}_{\mathbf{y}_{\mathbf{\delta}_{\mathbf{a}}}}$	0	0	0
$C_{y_{\delta_r}}$	0.230	0.230	0.230
$C_{n_{\delta_a}}$	-0.0402	-0.0168	-0.0676
$C_{n_{\delta_r}}$	-0.1152	-0.1152	-0.1152
$C_{h_{lpha_{a}}}$???	???	???
$C_{h_{\delta_{a}}}$	-0.481	-0.453	-0.481
$C_{h_{\beta_{\mathsf{r}}}}$	0.0722	0.0722	0.0722
$C_{h_{\delta_r}}$	-0.602	-0.590	-0.602

Longitudinal Transfer Function Data

```
0.160
                                             M_1
Altitude =
                   0 ft
                                                             1.00 g
                                                      _
                                             n
U_1
               106.04 kts
                                             q_bar =
                                                            38.07 psf
W_current =
               4600.0 lb
                                             (W/S)_TO =
                                                            26.29 psf
S__w =
               175.00 ft^2
                                                           -0.0281 1/s
                                             X_u
Theta_1 =
                5.00 deg
                                                           -0.0141 1/s
                                             X_T_u
                                                     -
C_bar
       =
                4.79 ft
                                             X_a
                                                           15.2843 ft/s^2
                                                     ==
I_yy_B
       =
                1939 slgft2
                                                           -0.3593 1/s
                                             Z_u
                                                      =
C_m_1
       =
             0.0000
                                                         -215.9370 ft/s^2
                                                     =
                                             Z_a
C_m_u
              0.0000
C_m_a
                                                           -2.8060 ft/s
                                             Z_a_{dot} =
             -0.3390 1/rad
       =
                                                      =
                                                           -5.4873 ft/s
                                             Z_q
C_m_a.dot =
             -14.8000 1/rad
                                                            0.0000 \, 1/ft/s
                                             M_u
             -29.2000 1/rad
       =
C_m_q
                                                           0.0000 1/ft/s
                                             M_T_u
                                                     =
C_m_T_1 =
              0.0000
                                                           -5.5793 1/s^2
                                                     =
                                             M_a
              0.0000
C_m_T_u =
                                                           0.0000 1/s^2
                                             M_T_a
                                                      =
C_m_T_a =
              0.0000
                                                           -3.2595 1/s
                                             M_a_dot =
C_L_1
              0.6900
                                                           -6.4308 1/s
                                             M_q
              0.0000
C_L_u
        =
              4.5800 1/rad
C_L_a
               4.5000 1/rad
C_L_a.dot =
                                             w_n_3 osc =
                                                           0.1647 \text{ rad/s}
               8.8000 1/rad
C_L_q
                                              z_3rd osc =
                                                           0.1338
C_D_1
              0.0540
                                                             0.107 s
                                             TC_1
                                                     =
C_D_a
              0.3620 1/rad
                                             TC 2
                                                     =
                                                             0.725 s
              0.0000
C_D_u
                                             X_del_e =
                                                            0.0000 ft/s^2
              0.0540
C_T_X_1 =
                                                          -41.9386 ft/s^2
                                              Z_del_e =
             -0.1620
C_TXu =
                                                          -41.6392 1/s^2
                                             M_del_e =
C_L_d_e =
              0.9000 1/rad
C_D_d_e =
              0.0000 1/rad
C_m_d_e =
              -2.5300 1/rad
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -7.463127

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 641.0008 s^2 + 123693.0423 s + 282474.6952
```

^{+ 181.7858} S^4 + 1958.1258 S^3 + 2435.2386 S^2 + 156.2160 S + 63.5906

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

```
-641.0008 (S - 195.2259) (S + 2.2573)
181.7858 (S + 9.3480) (S + 1.3796) (S^2 + 0.0441 S + 0.0271)
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 4442.079652

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-7432.7155 \text{ s}^2 - 9070.9460 \text{ s} - 598.0300
______
+ 181.7858 \$^4 + 1958.1258 \$^3 + 2435.2386 \$^2 + 156.2160 \$ + 63.5906
```

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-7432.7155 (S + 1.1505)(S + 0.0699)
181.7858 (S + 9.3480) (S + 1.3796) (S^2 + 0.0441 S + 0.0271)
```

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -9.404371

Lateral-Directional Transfer Function Data

				(W/S)_TO	=	26.29	psf
W_current		4600.0		q_bar	=	38.07	psf
Altitude	=		ft	I_xx_S	=	8900	slgft2
S_w	=	175.00			=	10985	slgft2
U_1	=	106.04	kts	I_xz_S	=		slgft2
Theta_1	=	5.00	deg	 Y_B	=	-28,4250	_
Alpha	=	5.00	deg	 Y_p	=	-1.0054	·
b_w	=	36.90		Yr	=	1.7101	
I_xx_B	=	8884	slgft2	L_B	=	-2.5495	
I_zz_B	=	11001	slgft2	 L_p	=	-1.5718	**
I_xz_B	=	0	slgft2	L_r	=	0.4972	
C_1_B	=	-0.0923	1/rad	 N_B	=	3.4733	
C_1_p	=	-0.5520	1/rad	N_T_B	=	0.0000	
C_1_r	=	0.1746	1/rad	N_p	=	-0.1419	
C_n_B	=	0.1552	1/rad	N_r	=	-0.3601	
C_n_T_B	=	0.0000		w_n_D	=	1.9400	
C_n_p	=	-0.0615	1/rad	z D	=	0.1050	
C_n_r	=	-0.1561	1/rad	TC SPIRAL	=	-44.476	s
С_у_В	=	-0.6100	1/rad	TC_ROLL	=	0.584	
C_Y_p	=	-0.2093	1/rad	_			
C_y_r	=	0.3560	1/rad	TC_1	=	0.584	
C_1_d_a	=	0.1720	1/rad	TC_2	=	-44.476	
C_1_d_r	=	0.0192	1/rad	Y_del_a	=	0.0000	
C_n_d_a	=	-0.0402	1/rad	Y_del_r	=	10.7176	·
C_n_d_r	=	-0.1152	1/rad	L_del_a	=	4.7510	
C_y_d_a	=	0.0000	1/rad	L_del_r	=	0.5303	
C_y_d_r	=	0.2300	1/rad	N_del_a	=	-0.8997	
				N_del_r	=	-2.5781	1/s^2
Appendix B							491

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 + 168.7800 \text{ S}^3 + 521.7640 \text{ S}^2 + 40.5023 \text{ S}
+ 178.9180 S^5 + 375.1483 S^4 + 789.6410 S^3 + 1134.8049 S^2 - 25.9185 S
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
168.7800 S(S + 3.0117)(S + 0.0797)
 178.9180 S(S - 0.0225)(S + 1.7119)(S<sup>2</sup> + 0.4074 S + 3.7637)
 SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = -1.562683
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
 + 10.7139 \text{ S}^4 + 478.7750 \text{ S}^3 + 758.2996 \text{ S}^2 - 34.9602 \text{ S}
 + 178.9180 S<sup>5</sup> + 375.1483 S<sup>4</sup> + 789.6410 S<sup>3</sup> + 1134.8049 S<sup>2</sup> - 25.9185 S
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
10.7139 S(S - 0.0448)(S + 43.0410)(S + 1.6910)
178.9180 S(S - 0.0225)(S + 1.7119)(S<sup>2</sup> + 0.4074 S + 3.7637)
 SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = 1.348853
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
 + 853.6582 S^3 + 361.7453 S^2 + 2554.5759 S
 + 178.9180 S^5 + 375.1483 S^4 + 789.6410 S^3 + 1134.8049 S^2 - 25.9185 S
FACTORED ROLL TO AILERON TRANSFER FUNCTION
853.6582 S(S^2 + 0.4238 S + 2.9925)
178.9180 S(S - 0.0225)(S + 1.7119)(S^2 + 0.4074 S + 3.7637)
 ROLL TO AILERON TRANSFER FUNCTION K_gain = -98.562052
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
+ 104.4505 $^3 - 206.7270 $^2 - 860.9920 $
-----
+ 178.9180 S^5 + 375.1483 S^4 + 789.6410 S^3 + 1134.8049 S^2 - 25.9185 S
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
104.4505
       S(S - 4.0264)(S + 2.0472)
178.9180
       S(S + 0.0225)(S + 1.7119)(S^2 + 0.4074 S + 3.7637)
ROLL TO RUDDER TRANSFER FUNCTION K gain = 33.219266
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
-175.2497 S<sup>3</sup> -401.5655 S<sup>2</sup> -73.6397 S +455.3900
_______
+ 178.9180 S^5 + 375.1483 S^4 + 789.6410 S^3 + 1134.8049 S^2 - 25.9185 S
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-175.2497 (S - 0.8456)(S<sup>2</sup> + 3.1370 S + 3.0729)
_____
178.9180 S(S - 0.0225)(S + 1.7119)(S<sup>2</sup> + 0.4074 S + 3.7637)
HEADING TO AILERON TRANSFER FUNCTION K_gain = -17.570107
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
-463.0227 \text{ s}^3 -774.5867 \text{ s}^2 -50.1800 \text{ s} -151.6343
_____
+ 178.9180 \$^5 + 375.1483 \$^4 + 789.6410 \$^3 + 1134.8049 \$^2 - 25.9185 \$
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-463.0227 (S + 1.7205)(S<sup>2</sup> + -0.0476 S + 0.1903)
178.9180 S(S - 0.0225)(S + 1.7119)(S^2 + 0.4074 S + 3.7637)
HEADING TO RUDDER TRANSFER FUNCTION K_gain = 5.850439
```

Table B3 Stability and Control Derivatives for Airplane C (Pages 494–500)

Three-view

Reference Geometry

S (ft ²)	136
\overline{c} (ft)	5.4
b (ft)	26.3

Flight Condition Data	Approach	Cruise 1	Cruise 2
Altitude, h (ft) Mach Number, M TAS, U ₁ (ft/sec)	0 0.111 124	25,000 0.600 610	35,000 0.600 584
Dynamic pressure, \overline{q} (lbs/ft ²) C.G. location, fraction \overline{c}	18.2 0.25	198.0 0.25	125.7 0.25
Angle of attack, α_1 (deg)	8	0	0.9
Mass Data			
W (lbs)	3,500	4,000	4,000
I_{xx_B} (slugft ²)	750	800	800
I_{yy_B} (slugft2)	4,600	4,800	4,800
I_{zz_B} (slugft2)	5,000	5,200	5,200
I _{xz_B} (slugft ²)	200	200	200

Table B3 (Continued)	Stability and Control Derivatives for Airplane C (Pages 494–500)

Elinka Condition	A	Comite 1	G : 0
Flight Condition	Approach	Cruise 1	Cruise 2
Steady State Coefficients			
C_{L_1}	1.414	0.149	0.234
C_{D_1}	0.2100	0.0220	0.0250
$C_{\mathbf{T}_{\mathbf{x_1}}}$ $C_{\mathbf{m_1}}$	0.2100	0.0220	0.0250
C_{m_1}	0	0	0
	0	0	0
Longitudinal Coefficients and Sta	buily Derivatives (St	ability Axes, Dimensi	<u>onless)</u>
C_{D_0}	0.0900	0.0205	0.0205
$\mathrm{C}_{\mathrm{D}_{\mathrm{u}}}$	0	0.05	0.05
$\mathrm{C}_{\mathrm{D}_{lpha}}$	1.14	0.12	0.17
$\mathbf{C}_{\mathrm{T}_{\mathrm{x_{\mathrm{u}}}}}$	-0.45	-0.05	-0.055
$\mathbf{C}_{\mathbf{T}_{\mathbf{x_u}}}$ $\mathbf{C}_{\mathbf{L}_0}$	0.65	0.149	0.149
C_{L_u}	0.071	0.084	0.132
$C_{L_{\alpha}}$	5.0	5.5	5.5
$C_{L_{\dot{lpha}}}$	3.0	4.2	4.2
$egin{array}{c} C_{L_q} \ C_{m_0} \end{array}$	9.0	10.0	10.0
C_{m_0}	-0.07	-0.08	-0.08
C_{m_u}	0	0	0
$C_{m_{\alpha}}$	-0.60	-0.24	-0.24
$C_{\mathfrak{m}_{\dot{lpha}}}$	-7.0	-9.6	-9.6
C_{m_q}	-15.7	-17.7	-17.7
$C_{\mathfrak{m}_{T_{\mathbf{u}}}}$	0	0	0
$\mathrm{C}_{m_{T_{lpha}}}$	0	0	0
Longitudinal Control and Hinge I	<u> Moment Derivatives (</u>	Stability Axes, 1/rad)	
$C_{D_{\delta_{\mathrm{e}}}}$	0	0	0
$C_{L_{\delta_{c}}}$	0.39	0.38	0.35
$\mathrm{C}_{m_{\delta_c}}$	-0.90	-0.88	-0.82
$egin{array}{c} \mathbf{C_{D_{i_h}}} \ \mathbf{C_{L_{i_h}}} \end{array}$	0	0	0
$\mathbf{C_{L_{i_{\mathbf{h}}}}}$	1.0	0.99	0.99
$\mathbf{C}_{m_{\mathrm{i}_{\mathrm{h}}}}$	-2.3	-2.3	-2.3

<u>Table B3 (Continued)</u> Stability and Control Derivatives f	or Airplane C (Pages 494–500)
---	-------------------------------

Flight Condition	Approach	Cruise 1	Cruise 2
Longitudinal Control and Hinge I	Moment Derivatives:	Cont'd (Stability Axe	s, 1/rad)
$C_{h_{lpha}}$	-0.22	-0.22	-0.22
$C_{h_{\delta_{e}}}$	-0.504	-0.504	-0.504
Lateral-Directional Stability Deri	ivatives (Stability Axe	es, Dimensionless)	
$C_{l_{\beta}}$	-0.140	-0.110	-0.110
C_{l_p}	-0.350	-0.390	-0.390
C_{l_r}	0.560	0.280	0.310
$\mathbf{C}_{y_{\boldsymbol{\beta}}}$	-0.94	-1.00	-1.00
C_{y_p}	-0.010	-0.140	-0.120
C_{y_r}	0.590	0.610	0.620
$\mathrm{C}_{\mathrm{n}_{eta}}$	0.160	0.170	0.170
C _{n_{T_β}} C _{n_p}	0	0	0
C_{n_p}	-0.030	0.090	0.080
C_{n_r}	-0.310	-0.260	-0.260
		4° (C/4 - 1- 2124 A	Th:

<u>Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)</u>

$C_{l_{\delta_{a}}}$	0.110	0.100	0.100
$C_{ m l_{\delta_r}}$	0.030	0.050	0.050
$C_{l_{\delta_r}}$ $C_{y_{\delta_a}}$	0	0	0
$C_{y_{\delta_r}}$	0.260	0.0280	0.0280
$C_{n_{\delta_a}}$	-0.030	-0.003	-0.005
$C_{n_{\delta_r}}$	-0.110	-0.120	-0.120
$C_{h_{\alpha_a}}$	-0.143	-0.143	-0.143
$C_{h_{\delta_{a}}}$	-0.500	-0.500	-0.500
$C_{h_{oldsymbol{eta_{r}}}}$	0.25	0.25	0.25
$C_{h_{\delta_r}}$	-0.380	-0.380	-0.380

Longitudinal Transfer Function Data

```
M 1
                                                   =
                                                         0.111
                  0 ft.
Altitude =
                                                          1.00 g
                                                  =
                                           n
              73.46 kts
U_1 =
                                           g bar =
                                                        18.27 psf
W_current =
            3500.0 lb
                                           (W/S)_TO =
                                                         25.74 psf
S_w =
             136.00 ft^2
                                                       -0.0774 1/s
                                           X_u =
Theta_1 =
              8.00 dea
                                           X_T_u
                                                 =
                                                       -0.0055 1/s
C_bar =
              5.40 ft
                                                        6.2582 ft/s^2
                                           X_a
                                                  =
I_yy_B =
              4600 slgft2
                                                        -0.5340 1/s
                                                  =
                                           Z_u
C_m_1
       =
            0.0000
                                           z_a
                                                  = -118.9972 \text{ ft/s}^2
C_m_u
       =
             0.0000
                                           Z_a_dot =
                                                       -1.4921 ft/s
C_m_a
       =
            -0.6000 1/rad
                                                        -4.4764 ft/s
                                           Z_q
C_m_a.dot =
            -7.0000 1/rad
                                                        0.0000 1/ft/s
                                           M_u
                                                  =
C_m_q =
            -15.7000 1/rad
                                          M_T_u
                                                       0.0000 1/ft/s
                                                  =
C_m_T_1 =
            0.0000
                                                       -1.7500 1/s^2
                                                  =
                                           M_a
C_m_T_u =
            0.0000
                                          M_T_a
                                                        0.0000 1/s^2
                                                  ==
C_m_T_a =
             0.0000
                                                       -0.4446 1/s
                                           M_a_{dot} =
C_L_1
      =
             1.4140
                                           p_M
                                                  =
                                                       -0.9972 1/s
C_L_u
       =
            0.0710
C_L_a =
            5.0000 1/rad
                                           w_n_SP =
                                                        1.6452 rad/s
             3.0000 1/rad
C_L_a.dot =
                                           z_SP =
                                                       0.7418
C_L_q =
             9.0000 1/rad
                                           w_n_P
                                                  =
                                                       0.2929 rad/s
             0.2100
C_D_1
                                           z_P
                                                       0.0191
                                                  =
C_D_a
             1.1400 1/rad
       =
                                                       0.0000 ft/s^2
                                           X_{del_e} =
             0.0000
C_D_u
       =
                                           Z_del_e =
                                                       -8.9077 ft/s^2
C_T_X_1 =
             0.2100
                                           M_del_e =
                                                       -2.6251 1/s^2
C_T_X_u =
            -0.4500
             0.3900 1/rad
C_L_d_e =
             0.0000 1/rad
C_D_d_e =
            -0.9000 1/rad
C_m_d_e =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.500000

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 55.7460 s^2 + 8349.5123 s + 9529.4560
```

 $^{+\ 125.4782\ \}text{S}^4\ +\ 307.6638\ \text{S}^3\ +\ 353.8063\ \text{S}^2\ +\ 30.0714\ \text{S}\ +\ 29.1274$

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 327.164213

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -1.145864

Lateral-Directional Transfer Function Data

			Lucciui	Directional rights i	different De			
W_current	=	3500.0	lb		(W/S)_TO	=	25.74	psf
Altitude	=	0	ft		q_bar	=	18.27	psf
S_w	Ξ	136.00	ft^2		I_xx_S	=	777	slgft2
U_1	=	73.46	kts		I_zz_S	=	4973	slgft2
Theta_1	=	8.00	deg		I_xz_S	=	-393	slgft2
Alpha	=	8.00	deg		Y_B	=	-21.4697	ft/s^2
b_w	=	26.30	ft		Yp	=	-0.0242	ft/s
_ I_xx_B	=	750	slgft2		Y_r	=	1.4292	ft/s
I_zz_B	=	5000	slgft2		L_B	=	-11.7711	1/s^2
I_xz_B	=	200	slgft2		L_p	=	-3.1211	1/s
 C_1_B	=	-0.1400	1/rad		L_r	=	4.9938	1/s
C_1_p	=	-0.3500	1/rad		N_B	=	2.1025	1/s^2
 C_1_r	=	0.5600	1/rad		N_T_B	=	0.0000	1/s^2
 C_n_B	=	0.1600	1/rad		q_{\perp} И	=	-0.0418	1/s
C_n_T_B	=	0.0000			N_r	=	-0.4320	1/s
C_n_p	=	-0.0300	1/rad		w_n_D	=	1.7980	rad/s
C_n_r	=	-0.3100	1/rad		z_D	=	0.2118	
C_y_B	=	-0.9400	1/rad		TC_SPIRAL	=	-8.089	s
C_y_p	=	-0.0100	1/rad		TC_ROLL	=	0.276	s
C_y_r	=	0.5900	1/rad		TC_1	=	0.276	S
C_1_d_a	=	0.1100	1/rad		TC_2	=	-8.089	s
C_1_d_r	=	0.0300	1/rad		Y_del_a	=	0.0000	ft/s^2
C_n_d_a	=	-0.0300	1/rad		Y_del_r	=	5.9384	ft/s^2
C_n_d_r	=	-0.1100	1/rad		L_del_a	=	9.2487	1/s^2
C_y_d_a	=	0.0000	1/rad		L_del_r	==	2.5224	
c_y_d_r	=	0.2600	1/rad		N_del_a	=	-0.3942	
					N_del_r	=	-1.4455	1/s^2

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
+ 137.7740 \text{ s}^3 + 499.1699 \text{ s}^2 + 64.5896 \text{ s}
  + 119.0192 \$^5 + 507.5201 \$^4 + 648.9080 \$^3 + 1307.0734 \$^2 - 172.4879 \$
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
137.7740 S(S + 3.4887)(S + 0.1344)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = -0.374459
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 5.7005 \text{ S}^4 + 224.8549 \text{ S}^3 + 678.9163 \text{ S}^2 - 195.2623 \text{ S}
+ 119.0192 \$^5 + 507.5201 \$^4 + 648.9080 \$^3 + 1307.0734 \$^2 - 172.4879 \$
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
5.7005 S(S - 0.2643)(S + 36.1210)(S + 3.5877)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain =
                                        1.132035
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
+ 1171.4603 S^3 + 454.2025 S^2 + 1857.9873 S
+ 119.0192 \$^5 + 507.5201 \$^4 + 648.9080 \$^3 + 1307.0734 \$^2 - 172.4879 \$
FACTORED ROLL TO AILERON TRANSFER FUNCTION
1171.4603 S(S^2 + 0.3877 S + 1.5860)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
ROLL TO AILERON TRANSFER FUNCTION K_gain = -10.771696
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
+ 403.4749 S^3 - 766.2161 S^2 - 1534.7513 S
+ 119.0192 \$^5 + 507.5201 \$^4 + 648.9080 \$^3 + 1307.0734 \$^2 - 172.4879 <math>\$
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
403.4749 S(S - 3.1187)(S + 1.2197)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
ROLL TO RUDDER TRANSFER FUNCTION K_gain = 8.897733
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
- 139.6122 S^3 - 224.6739 S^2 - 35.0775 S + 471.7029
+ 119.0192 S^5 + 507.5201 S^4 + 648.9080 S^3 + 1307.0734 S^2 - 172.4879 S
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-139.6122 (S - 1.0759)(S<sup>2</sup> + 2.6852 S + 3.1403)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
HEADING TO AILERON TRANSFER FUNCTION K_gain = -2.734701
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
-203.9638 \text{ s}^3 - 589.7395 \text{ s}^2 - 56.9493 \text{ s} - 373.1381
+ 119.0192 S^5 + 507.5201 S^4 + 648.9080 S^3 + 1307.0734 S^2 - 172.4879 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-203.9638 (S + 3.0014)(S<sup>2</sup> + -0.1100 S + 0.6095)
119.0192 S(S - 0.1236)(S + 3.6262)(S^2 + 0.7616 S + 3.2329)
HEADING TO RUDDER TRANSFER FUNCTION K_gain = 2.163271
```

Table B4 Stability and Control Derivatives for Airplane D (Pages 501–507)

Flight Condition Data	Climb	Cruise	Approach
Altitude, h (ft)	0	30,000	0
Mach Number, M	0.313	0.459	0.143
TAS, U ₁ (ft/sec)	349	456	160
Dynamic pressure, q (lbs/ft ²)	144.9	92.7	30.4
C.G. location, fraction \overline{c}	27.0	27.0	27.0
Angle of attack, $\alpha_1(\text{deg})$	0.7	2	4.2
Mass Data			
W (lbs)	6,360	6,360	6,360
I_{XX_B} (slugft2)	7,985	7,985	7,985
I_{yy_B} (slugft ²)	3,326	3,326	3,326
Izz _B (slugft2)	11,183	11,183	11,183
I_{xz_B} (slugft ²)	0	0	0

Table B4 (Continued)	Stability and Control	Danizativas for	Aimplone D (Doge	~ E01 E07\
Table B4 (Conunued)	Stability and Control	Derivauves for A	Airbiane D'IPage	S 501-5071

Cruise

Climb

Approach

Flight Condition

Steady State Coefficients			
C_{L_i}	0.241	0.378	1.150
C_{D_1}	0.0220	0.0300	0.1580
$C_{T_{x_1}}$	0.0220	0.0300	0.1580
C_{m_1}	0	0	0
$C_{m_{T_1}}$	0	0	0
Longitudinal Coefficients and Sta	<u>bility Derivatives (Sta</u>	bility Axes, Dimensio	onless)
C_{D_0}	0.0200	0.0200	0.0689
$C_{D_{u}}$	0	0	0
$C_{D_{lpha}}$	0.130	0.250	0.682
$C_{T_{x_u}}$	-0.05	-0.07	-0.40
C_{L_0}	0.19	0.20	0.81
$C_{L_{u}}$	0	0	0
$C_{L_{lpha}}$	4.81	5.15	4.64
$C_{L_{\dot{lpha}}}$	1.8	2.0	1.8
$C_{L_{q}}$	3.7	4.1	3.7
C_{m_0}	0.025	0.025	0.10
C_{m_u}	0	0	0
$C_{m_{\alpha}}$	-0.668	-0.700	-0.631
$C_{m_{\alpha}}$	-6.64	-6.95	-6.84
C_{m_q}	-14.3	-14.9	-14.0
$C_{m_{T_u}}$	0	0	0
$C_{m_{T_{lpha}}}$	0	0	0
Longitudinal Control and Hinge N	<u> Ioment Derivatives (S</u>	Stability Axes, 1/rad)	

$C_{D_{\delta_e}}$	0	0	0
$C_{D_{\delta_e}}$ $C_{L_{\delta_e}}$ $C_{m_{\delta_e}}$	0.4	0.5	0.4
$C_{m_{\delta_e}}$	-1.07	-1.12	-1.05
$C_{D_{i_h}}$	not applicable		
$C_{L_{i_h}}$	not applicable		
$C_{m_{i_h}}$	not applicable		

<u>Table B4 (Continued)</u> <u>Stability and Control Derivatives for Airplane D (Pages 501–507)</u>

Flight Condition	Climb	Cruise	Approach
Longitudinal Control and Hinge	Moment Derivatives:	Cont'd (Stability Axe	es, 1/rad)
$C_{h_{\alpha}}$	-0.00784	-0.00775	-0.00739
$C_{\mathfrak{h}_{\delta_{e}}}$	-0.347	-0.497	-0.347
Lateral-Directional Stability Der	ivatives (Stability Axe	es, Dimensionless)	
$C_{l_{\beta}}$	-0.0851	-0.0944	-0.0822
C_{l_p}	-0.440	-0.442	-0.458
C_{l_r}	0.0590	0.0926	0.2540
$C_{y_{\beta}}$	0.361	-0.346	-0.303
$\mathbf{C}_{\mathtt{y_p}}$	-0.0635	-0.0827	-0.1908
C_{y_r}	0.314	0.300	0.263
$C_{n_{oldsymbol{eta}}}$	0.1052	0.1106	0.1095
$C_{n_{T_{\beta}}}$	0	0	0
C_{n_p}	-0.0154	-0.0243	-0.0768
C_{n_r}	-0.1433	-0.1390	-0.1613

<u>Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)</u>

$C_{l_{\delta_{a}}}$	0.1788	0.1810	0.1788
$C_{l_{\delta_{r}}}$	0.015	0.015	0.015
$C_{y_{\delta_a}}$	0	0	0
$C_{y_{\delta_r}}$	0.2	0.2	0.2
$C_{n_{\delta_a}}$	-0.0160	-0.0254	-0.0760
$C_{n_{\delta_r}}$	-0.0365	-0.0365	-0.0365
$C_{h_{a_a}}$???	???	???
$C_{h_{\delta_{a}}}$	-0.226	-0.226	-0.226
$C_{h_{\beta_r}}$	0.1146	0.1146	0.1146
$C_{h_{\delta_r}}$	-0.372	-0.372	-0.372

Longitudinal Transfer Function Data

```
0.458
                                           M_1
                                                   =
Altitude =
             30000 ft
                                                          1.00 g
                                           n
             270.14 kts
U_1
   =
                                           _
q_bar =
                                                        92.58 psf
W_current =
            6360.0 lb
                                           (W/S)_TO =
                                                         34.95 psf
S_w =
             182.00 ft^2
                                                        -0.0111 1/s
                                           x_u =
Theta_1 =
               2.00 deg
                                           X_T_u
                                                  =
                                                        -0.0019 1/s
              5.47 ft
C_bar =
                                                  =
                                                        10.8087 ft/s^2
                                           X_a
I_yy_B =
              3326 slaft2
                                                        -0.1400 1/s
                                           Z_u
       =
            0.0000
C_m_1
                                                  = -437.4153 \text{ ft/s}^2
                                           Z_a
C_m_u
       =
             0.0000
C_m_a =
                                           Z_a_dot =
                                                        -1.0131 ft/s
            -0.7000 1/rad
                                                        -2.0768 ft/s
                                           Z_q
                                                   =
C_m_a.dot =
            -6.9500 1/rad
                                                  =
                                                        0.0000 1/ft/s
                                           M_u
C m q
       =
            -14.9000 1/rad
                                                  =
                                                        0.0000 1/ft/s
                                           M_T_u
             0.0000
C_m_T_1 =
                                                      -19.3979 1/s^2
                                                  =
                                           M_a
C_m_T_u =
            0.0000
                                                        0.0000 1/s^2
                                           M_T_a
                                                  =
            0.0000
C_m_T_a
       =
                                                       -1.1553 1/s
                                           M_a_dot =
C_L_1
       =
            0.3780
                                                        -2.4768 1/s
                                           M_q
C_L_u
       =
            0.0000
C_L_a ≃
             5.1500 1/rad
                                           w_n_{SP} =
                                                        4.6523 rad/s
C_L_a.dot =
             2.0000 1/rad
                                                        0.4927
                                           z_SP
                                                  =
            4.1000 1/rad
C_L_q =
                                           w_n_P
                                                  =
                                                        0.0934 rad/s
C_D_1
       =
            0.0300
                                           z_P
                                                  =
                                                        0.0526
       =
            0.2500 1/rad
C_D_a
                                           X_del_e
                                                        0.0000 ft/s^2
                                                  =
C_D_u
       =
             0.0000
                                           Z_{del_e} = -42.2216 \text{ ft/s}^2
C_T_X_1 =
            0.0300
                                           M_{del_e} = -31.0366 1/s^2
C_T_X_u =
            -0.0700
             0.5000 1/rad
C_L_d_e
             0.0000 1/rad
C_D_d_e =
             -1.1200 1/rad
C_m_d_e =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
- 42.2216 s^3 - 14191.7548 s^2 - 149.4537 s - 137.9759

+ 456.9617 s^4 + 2099.4660 s^3 + 9914.8881 s^2 + 115.4904 s + 86.2350
```

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.600000

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 456.3609 s^2 + 296829.8192 s + 406732.2497
```

^{+ 456.9617} s^4 + 2099.4660 S^3 + 9914.8881 S^2 + 115.4904 S + 86.2350

```
FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION
```

```
-456.3609 (S - 651.7952) (S + 1.3674)
456.9617 (S<sup>2</sup> + 4.5846 S + 21.6436)(S<sup>2</sup> + 0.0098 S + 0.0087)
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 4716.558886

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
- 14133.7557 S<sup>2</sup> - 12940.1035 S - 212.3526
+456.9617 S<sup>4</sup> + 2099.4660 S<sup>3</sup> + 9914.8881 S<sup>2</sup> + 115.4904 S + 86.2350
```

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-14133.7557 (S + 0.8988)(S + 0.0167)
456.9617 (S<sup>2</sup> + 4.5846 S + 21.6436) (S<sup>2</sup> + 0.0098 S + 0.0087)
```

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -2.462488

Lateral-Directional Transfer Function Data

W_current	=	6360.0	lb	(W/:	S)_TO	=	34.95	psf
Altitude	=	30000	ft	d_b	ar	=	92.58	psf
S_w	=	182.00	ft^2	I_x	x_S	=	79 89	slgft2
U_1	=	270.14	kts	I_2:	z_S	=	11179	slgft2
Theta_1	=	2.00	deg	I_ x :	z_S	=	-112	slgft2
Alpha	=	2.00	deg	Y_B		=	-29.2173	ft/s^2
b_w	=	33.80	ft	q_ Y		=	-0.2588	ft/s
I_xx_B	=	7985	slgft2	Y_r		=	0.9390	ft/s
I_zz_B	=	11183	slgft2	L_B		=	-6.7297	1/s^2
I_xz_B	=	0	slgft2	L_p		=	-1.1679	1/s
C_1_B	=	-0.0944	1/rad	L_r		=	0.2447	1/s
C_1_p	=	-0.4420	1/rad	N_B		=	5.6345	1/s^2
C_1_r	=	0.0926	1/rad	NT_	_B	=	0.0000	1/s^2
C_n_B	=	0.1106	1/rad	N_p		=	-0.0459	1/s
C_n_T_B	=	0.0000		N_r		=	-0.2625	1/s
C_n_p	=	~0.0243	1/rad	w_n_	_D	=	2.4092	rad/s
C_n_r	=	-0.1390	1/rad	z_D		=	0.0470	
C_y_B	=	-0.3460	1/rad		SPIRAL	=	271.310	s
С_у_р	=	-0.0827	1/rad	TC_F	(OLL	=	0.790	s
C_y_r	=	0.3000	1/rad	TC_1		=	0.790	q
C_1_d_a	=	0.1810	1/rad	TC_2		=	271.310	
C_1_d_r	=	0.0150	1/rad	Y_de		=	0.0000	
C_n_d_a	=	-0.0254	1/rad	Y_de		=	16.8886	
C_n_d_r	=	-0.0365	1/rad		 el_a	=	12.9033	
C_y_d_a	=	0.0000	1/rad	L_de	_	=	1.0693	
C_y_d_r	=	0.2000	1/rad		 ≥l_a	=	-1.2940	
				N_de		=	-1.8595	
Appendix B								505

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
+ 644.0174 \text{ S}^3 + 1367.8551 \text{ S}^2 + 97.7970 \text{ S}
  + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
644.0174 S(S + 2.0499)(S + 0.0741)
455.8852 S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = 7.918973
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 16.8863 S^4 + 874.8441 S^3 + 1050.7889 S^2 - 5.5526 S
+ 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
16.8863 S(S - 0.0053)(S + 50.5775)(S + 1.2357)
455.8852 S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -0.449612
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
+ 5891.4614 S^3 + 1777.3570 S^2 + 29208.1767 S
 + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED ROLL TO AILERON TRANSFER FUNCTION
5891.4614 S(S<sup>2</sup> + 0.3017 S + 4.9577)
455.8852 S(S + 1.2663)(S + 0.0037)(S<sup>2</sup> + 0.2265 S + 5.8041)
ROLL TO AILERON TRANSFER FUNCTION K_gain = 2365.091648
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
 + 499.3974 S^3 - 162.4592 S^2 - 2964.0008 S
 -----
 + 455.8852 \text{ S}^5 + 682.2214 \text{ S}^4 + 2779.2781 \text{ S}^3 + 3360.8268 \text{ S}^2 + 12.3497 \text{ S}
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
499.3974 S(S - 2.6043)(S + 2.2790)
455.8852 S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
ROLL TO RUDDER TRANSFER FUNCTION K_gain = -240.005862
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
-648.6980 \text{ s}^{3} - 1000.5959 \text{ s}^{2} - 78.0196 \text{ s} + 2038.5145
+ 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-648.6980 (S - 1.0733)(S<sup>2</sup> + 2.6158 S + 2.9278)
455.8852 S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
HEADING TO AILERON TRANSFER FUNCTION K_gain = 165.065891
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
-852.6958 \text{ s}^3 - 970.9207 \text{ s}^2 + 53.1470 \text{ s} - 206.6877
_______
+ 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-852.6958 (S + 1.3240)(S<sup>2</sup> + -0.1854 S + 0.1831)
         S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
HEADING TO RUDDER TRANSFER FUNCTION K_gain = -16.736246
```

Three-view

Reference Geometry

S (ft ²)	280
c (ft)	6.5
b (ft)	46

Flight Condition Data	Approach	Cruise (low)	Cruise (high)
Altitude, h (ft)	0	5,000	20,000
Mach Number, M	0.152	0.310	0.434
TAS, U ₁ (ft/sec)	170	340	450
Dynamic pressure, \overline{q} (lbs/ft ²)	34.2	118.3	128.2
C.G. location, fraction \overline{c}	0.16	0.16	0.16
Angle of attack, α_1 (deg)	3.5	0	1.1
Mass Data			
W (lbs)	11,000	7,000	11,000
I_{xx_B} (slugft2)	15,189	10,085	15,189
I _{yy_B} (slugft ²)	20,250	15,148	20,250
I_{zz_B} (slugft2)	34,141	23,046	34,141
I_{xz_B} (slugft2)	4,371	1,600	4,371

Table B5 (Continued) Stability and Control Derivatives for Airplane E (Pages 508–514)

Flight Condition	Approach	Cruise (low)	Cruise (high)
Steady State Coefficients			
C_{L_1}	1.15	0.211	0.306
C_{D_1}	0.162	0.0298	0.0298
$C_{T_{x_i}}$	0.162	0.0298	0.0298
C_{m_1}	0	0	0
$C_{m_{T_1}}$	0	0	0
Longitudinal Coefficients and Sta	<u>bility Derivatives (Sta</u>	ability Axes, Dimension	onless)
C_{D_0}	0.0969	0.0270	0.0270
$\mathrm{C}_{\mathrm{D}_{\mathtt{u}}}$	0	0	0
$C_{D_{\alpha}}$	0.933	0.131	0.131
$C_{T_{x_u}}$	-0.324	-0.0596	-0.0596
C_{L_0}	0.760	0.201	0.201
C_{L_u}	0.027	0.020	0.020
$C_{L_{\alpha}}$	6.24	5.48	5.48
$\mathrm{C}_{\mathrm{L}_{\dot{lpha}}}$	2.7	2.5	2.5
C_{L_q}	8.1	8.1	8.1
C_{m_0}	0.10	0.05	0.05
C_{m_u}	0	0	0
$C_{m_{\alpha}}$	-2.08	-1.89	-1.89
$C_{m_{\check{\alpha}}}$	-9.1	-9.1	-9.1
C_{m_q}	-34.0	-34.0	-34.0
$C_{m_{T_u}}$	0	0	0
$C_{m_{T_{lpha}}}$	0	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

$C_{D_{\delta_{\mathbf{e}}}}$	0	0	0
$C_{L_{\delta_c}}$	0.58	0.60	0.60
$C_{m_{\delta_e}}$	-1.9	-2.0	-2.0
$C_{D_{i_{h}}}$	0	0	0
$C_{D_{\delta_e}}$ $C_{L_{\delta_e}}$ $C_{m_{\delta_e}}$ $C_{D_{i_h}}$ $C_{L_{i_h}}$ $C_{m_{i_h}}$	1.3	1.35	1.35
C_{m} .	-3.9	-4 .1	-4.1
h	-3.9		-4 .1

Table B5 (Continued)	Stability	<u>y and Contro</u>	<u>l Derivative</u> s	s for Air	plane E	(Pages 508	-5 <u>14</u>)
		·-					

Stability and Contr	of Derivatives for Airp	name E (Pages 500-514)
Approach	Cruise (low)	Cruise (high)
Hinge Moment Deriv	atives: Cont'd (Stabi	lity Axes, 1/rad)
???	???	???
???	???	???
<u>lity Derivatives (Stabi</u>	lity Axes, Dimensionl	ess)
-0.13	-0.13	-0.13
-0.50	-0.50	-0.50
0.06	0.14	0.14
-0.59	-0.59	-0.59
-0.21	-0.19	-0.19
0.39	0.39	0.39
0.120	0.080	0.080
0	0	0
-0.005	0.019	0.019
	Approach Hinge Moment Derive ??? ??? lity Derivatives (Stabile -0.13 -0.50 0.06 -0.59 -0.21 0.39 0.120 0	Hinge Moment Derivatives: Cont'd (Stabil ???? ??? ??? lity Derivatives (Stability Axes, Dimension) -0.13 -0.13 -0.50 -0.50 0.06 0.14 -0.59 -0.59 -0.21 -0.19 0.39 0.39 0.120 0.080 0 0

<u>Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)</u>

-0.197

-0.197

$C_{l_{\delta_a}}$	0.156	0.156	0.156
$C_{l_{\delta_{\Gamma}}}$	0.0087	0.0109	0.0106
$C_{\mathbf{y}_{\delta_a}}$	0	0	0
$C_{y_{\delta_r}}$	0.144	0.148	0.144
$C_{n_{\delta_a}}$	-0.0012	-0.0012	-0.0012
$C_{n_{\delta_r}}$	-0.0763	-0.0772	-0.0758
$egin{aligned} &\mathbf{C_{h_{lpha_a}}} \ &\mathbf{C_{h_{\delta_a}}} \ &\mathbf{C_{h_{eta_r}}} \end{aligned}$???	???	???
$C_{h_{\delta_{\mathfrak{a}}}}$???	???	???
$C_{h_{eta_r}}$???	???	???
$C_{\mathfrak{h}_{\delta_r}}$???	???	???

-0.204

Appendix B

 $C_{n_{\rm r}}$

Longitudinal Transfer Function Data

```
0.434
               20000 ft
                                           M_1
Altitude =
                                                           1.00 g
                                                   =
                                           n
             266.59 kts
U_1 =
                                           q_bar =
                                                         128.28 psf
W_current =
            11000.0 lb
                                                          39.29 psf
                                           (W/S)_TO =
S_w =
              280.00 ft^2
                                                         -0.0138 1/s
                                           X_u
                                                   =
Theta_1 =
               1.10 \, \deg
                                                         0.0000 1/s
                                                   =
                                           X_T_u
C_bar
      =
               6.50 ft
                                                         18.2703 ft/s^2
                                                   =
                                           X_a
I_yy_B =
              20250 slgft2
                                                         -0.1466 1/s
                                                   =
                                           Z_u
C_m_1 =
             0.0000
                                                      -575.2323 ft/s^2
                                                   =
                                           2_a
C_m_u
       =
             0.0000
                                                         -1.8852 ft/s
C_m_a =
                                           Z_a_{dot} =
             -1.8900 \, 1/rad
                                                         -6.1082 \text{ ft/s}
                                                   =
C_m_a.dot =
             -9.1000 1/rad
                                           Z_q
                                                         0.0000 1/ft/s
                                           M_u
C_m_q =
            -34.0000 1/rad
                                                          0.0000 1/ft/s
                                                   =
                                           M_T_u
C_m_T = 
              0.0000
                                                       -21.7904 1/s^2
                                           M_a
C_m_T_u =
              0.0000
                                           M_T_a
                                                         0.0000 1/s^2
                                                   =
C_m_T_a =
             0.0000
                                           M_a_dot =
                                                         -0.7578 1/s
C L 1
      =
             0.3060
                                                         -2.8314 1/s
                                           M_q
C_{L}u
       =
              0.0200
C_L_a =
             5.4800 1/rad
                                                         5.0015 rad/s
                                           w_n = sP
C_L_a.dot =
             2.5000 1/rad
                                                 =
                                                         0.4849
                                           z_SP
C_L_q
             8.1000 1/rad
       =
                                                         0.0950 rad/s
                                           w_n_P
C_D_1
        =
              0.0298
                                                         0.0625
                                           z_P
                                                   =
C_D_a
       =
             0.1310 1/rad
                                           X_del_e =
                                                         0.0000 ft/s^2
C_D_u
       =
             0.0000
                                                       -62.6410 ft/s^2
                                           Z_del_e =
C_T_X_1
        =
              0.0298
                                                        -23.0586 1/s^2
                                           M_del_e =
            -0.0596
C_T_X_u =
C_L_d_e =
             0.6000 1/rad
       =
C_D_d_e
              0.0000 1/rad
             -2.0000 1/rad
C_m_d_e
      =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.058201

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 1144.4693 s^2 + 141313.7394 s + 380639.6108
```

+ 451.8346 S^4 + 2197.1573 S^3 + 11332.6989 S^2 + 154.0270 S + 101.9633

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

```
+1144.4693 (S - 126.1126)(S + 2.6373)
451.8346 (S<sup>2</sup> + 4.8509 S + 25.0149) (S<sup>2</sup> + 0.0119 S + 0.0090)
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 3733.103383

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
- 10371.2086 \text{ S}^2 - 12042.5102 \text{ S} - 226.3310
______
+\ 451.8346\ S^4\ +\ 2197.1573\ S^3\ +\ 11332.6989\ S^2\ +\ 154.0270\ S\ +\ 101.9633
```

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-10371.2086 (S + 1.1420)(S + 0.0191)
451.8346 (S<sup>2</sup> + 4.8509 S + 25.0149) (S<sup>2</sup> + 0.0119 S + 0.0090)
```

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -2.219730

Lateral-Directional Transfer Function Data

W_current	=	11000.0	1b	(W/S)_TO	=	39.29	psf
Altitude	=	20000	ft	q_bar	=	128.28	psf
S_w	=	280.00	ft^2	I_xx_S	=	15028	slgft2
U_1	=	266.59	kts	I_zz_S	=	34302	slgft2
Theta 1	=	1.10	đeg	I_xz_S	=	4004	slgft2
Alpha	=	1.10	deg	Y_B	=	-61.5970	ft/s^2
b_w	=	46.00	ft	Y_p	=	-1.0140	ft/s
I_xx_B	=	15189	slgft2	Y_r	=	2.0813	ft/s
I_zz_B	=	34141	slgft2	L_B	=	14.2925	1/s^2
I_xz_B	=	4371	slgft2	L_p	=	-2.8100	1/s
C_1_B	=	-0.1300	1/rad	L_r	=	0.7868	1/s
C_1_p	=	-0.5000	1/rad	N_B	=	3.8534	
C_1_r	=	0.1400	1/rad	N_T_B	=	0.0000	
C_n_B	=	0.0800	1/rad	N_p	=	0.0468	
C_n_T_B	=	0.0000		N_r	=	-0.4850	
C_n_p	=	0.0190	1/rad	w_n_D	Ξ	1.8740	rad/s
C_n_r	=	-0.1970	1/rad	z_D	=	0.0356	
C_y_B	=	-0.5900	1/rad	TC_SPIRAL	=	40.169	
С_у_р	=	-0.1900	1/rad	TC_ROLL	=	0.306	S
C_y_r	=	0.3900	1/rad	TC_1	=	0.306	s
C_1_d_a	=	0.1560	1/rad	TC_2	=	40.169	
C_1_d_r	=	0.0106	1/rad	Y_del_a	=	0.0000	ft/s^2
C_n_d_a	=	-0.0012	1/rad	Y_del_r	=	15.0338	ft/s^2
C_n_d_r	=	-0.0758	1/rad	L_del_a	E .	17.1510	1/s^2
C_y_d_a	=	0.0000	1/rad	L_del_r	=	1.1654	
C_y_d_r	=	0.1440	1/rad	N_del_a	=	-0.0578	1/s^2
				N_del_r	=	-3.6511	1/s^2
Appendix B				- - -			512

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 -888.1303 \text{ s}^3 + 252.7854 \text{ s}^2 + 264.4851 \text{ s}
 +\ 435.9557\ \text{S}^5\ +\ 1495.3368\ \text{S}^4\ +\ 1758.4115\ \text{S}^3\ +\ 5051.8377\ \text{S}^2\ +\ 124.6967\ \text{S}
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
-888.1303 S(S - 0.7063)(S + 0.4216)
435.9557 S(S + 3.2716)(S + 0.0249)(S^2 + 0.1335 S + 3.5119)
 SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = 2.121027
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 14.5663 \text{ S}^4 + 1622.0629 \text{ S}^3 + 4598.9072 \text{ S}^2 - 73.7606 \text{ S}
 + 435.9557 S^5 + 1495.3368 S^4 + 1758.4115 S^3 + 5051.8377 S^2 + 124.6967 S^3
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
14.5663 S(S - 0.0159)(S + 108.4456)(S + 2.9277)
435.9557 S(S + 3.2716)(S + 0.0249)(S<sup>2</sup> + 0.1335 S + 3.5119)
 SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -0.591520
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
 + 7710.1719 S^3 + 4778.2179 <math>S^2 + 29739.2664 S
-----
 + 435.9557 \$^5 + 1495.3368 \$^4 + 1758.4115 \$^3 + 5051.8377 \$^2 + 124.6967 \$
FACTORED ROLL TO AILERON TRANSFER FUNCTION
7710.1719 S(S^2 + 0.6197 S + 3.8571)
435.9557 S(S + 3.2716)(S + 0.0249)(S<sup>2</sup> + 0.1335 S + 3.5119)
 ROLL TO AILERON TRANSFER FUNCTION K_gain = 238.492770
```

POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION + 86.6662 s^3 - 1225.7765 s^2 - 21560.8896 s + 435.9557 S^5 + 1495.3368 S^4 + 1758.4115 S^3 + 5051.8377 S^2 + 124.6967 S FACTORED ROLL TO RUDDER TRANSFER FUNCTION 86.6662 S(S - 24.3574)(S + 10.2138)435.9557 S(S + 3.2716)(S + 0.0249)(S^2 + 0.1335 S + 3.5119) ROLL TO RUDDER TRANSFER FUNCTION K gain = -172.906628 POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION + 874.8018 S^3 + 407.6949 S^2 - 26.7579 S + 2086.3085 $+ 435.9557 \text{ s}^5 + 1495.3368 \text{ s}^4 + 1758.4115 \text{ s}^3 + 5051.8377 \text{ s}^2 + 124.6967 \text{ s}$ FACTORED HEADING TO AILERON TRANSFER FUNCTION 874.8018 (S + 1.5193) (S² + -1.0533 S + 1.5697) 435.9557 S(S + 3.2716)(S + 0.0249)(S^2 + 0.1335 S + 3.5119) HEADING TO AILERON TRANSFER FUNCTION K_gain = 16.731062 POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION -1581.6056 S³ -4775.3808 S² -427.5017 S -1524.6101+ 435.9557 S^5 + 1495.3368 S^4 + 1758.4115 S^3 + 5051.8377 S^2 + 124.6967 SFACTORED HEADING TO RUDDER TRANSFER FUNCTION -1581.6056 (S + 3.0349)(S² + -0.0156 S + 0.3176) 435.9557 S(S + 3.2716)(S + 0.0249)(S² + 0.1335 S + 3.5119)

HEADING TO RUDDER TRANSFER FUNCTION K_gain = -12.226545

Table B6 Stability and Control Derivatives for Airplane F (Pages 515–521)

Flight Condition Data	Climb	Cruise	Approach
Altitude, h (ft)	0	18,000	0
Mach Number, M	0.181	0.351	0.170
TAS, U ₁ (ft/sec)	202.4	366.8	189.2
Dynamic pressure, q (lbs/ft2)	48.7	91.1	42.6
C.G. location, fraction \overline{c}	0.25	0.25	0.25
Angle of attack, α_1 (deg)	5	0	6
Mass Data			
W (lbs)	15,000	15,000	15,000
I_{xx_B} (slugft ²)	64,811	64,811	64,811
I _{yyB} (slugft2)	17,300	17,300	17,300
I_{zz_B} (slugft2)	64,543	64,543	64,543
I_{xz_B} (slugft2)	0	0	0

1able Bo (Continued) Stability and Control Derivatives for Airplane F (Pages 515–52)	Table B6 (Continued)	Stability and Control Derivatives for Airplane F (Pages 515-521)
--	----------------------	--

Flight Condition	Climb	Cruise	Approach
Steady State Coefficients			
C_{L_1}	0.903	0.484	1.038
C_{D_1}	0.0750	0.0420	0.1140
$\mathbf{C}_{\mathbf{T}_{\mathbf{x}_1}}$ $\mathbf{C}_{\mathbf{m}_1}$	0.0750	0.0420	0.1140
C_{m_1}	0	0	0
$C_{m_{T_1}}$	0	0	0
Longitudinal Coefficients and Sta	bility Derivatives (Sta	ability Axes, Dimension	onless)
C_{D_0}	0.0408	0.0322	0.0628
$C_{D_{\mathfrak{u}}}$	0	0	0
$C_{D_{lpha}}$	0.527	0.269	0.475
$C_{T_{x_u}}$	-0.225	-0.126	-0.342
$egin{array}{c} C_{ extsf{L}_0} \ C_{ extsf{L}_u} \end{array}$	0.43	0.48	0.48
C_{L_u}	0	0	0
$C_{L_{\alpha}}$	5.38	5.55	5.38
$\mathrm{C}_{\mathrm{L}_{lpha}}$	3.3	2.7	2.7
$C_{L_{\mathfrak{q}}}$	8.0	7.5	7.6
C_{m_0}	0.06	0.06	0.09
C_{m_u}	0	0	0
$C_{m_{\alpha}}$	-1.06	-1.18	-1.00
$C_{m_{a}}$	-10.3	-8.17	-8.68
C_{m_q}	-24.7	-22.4	-22.8
$C_{m_{T_u}}$	0	0	0
$C_{m_{T_{tt}}}$	0	0	0
Longitudinal Control and Hinge N	Moment Derivatives (Stability Axes, 1/rad)	
$C_{D_{\delta_{-}}}$	0	0	0

$C_{D_{\delta_e}}$	0	0	0
$C_{L_{\delta_{e}}}$	0.63	0.58	0.59
$C_{m_{\delta_{c}}}$	-1.90	-1.73	-1.75
$egin{array}{c} C_{D_{\delta_e}} \ C_{L_{\delta_e}} \ C_{m_{\delta_e}} \ C_{D_{i_h}} \ C_{L_{i_h}} \end{array}$	not applicable		
$C_{L_{i_h}}$	not applicable		
$C_{m_{i_h}}$	not applicable		

<u>Table B6 (Continued)</u> <u>Stability and Control Derivatives for Airplane F (Pages 515–521)</u>

Table Do (Continued) Stat.	mity and Control Dell	vatives for All plane r	(1 ages 313-321)	
Flight Condition	Climb	Cruise	Approach	
Longitudinal Control and Hinge	Moment Derivatives:	Cont'd (Stability Axe	es, 1/rad)	
$\mathrm{C}_{h_{\pmb{lpha}}}$	0	0	0	
$\mathrm{C_{h_{\delta_{\mathrm{e}}}}}$	-0.178	-0.212	-0.212	
Lateral-Directional Stability De	rivatives (Stability Ax	es, Dimensionless)		
$\mathrm{C}_{l_{\mathfrak{g}}}$	-0.1080	-0.1381	-0.1172	
$C_{l_{\mathfrak{p}}}$	-0.570	0.566	-0.576	
$C_{l_{\tau}}$	0.2176	0.1166	0.2307	
$C_{y_{\mathfrak{p}}}$ $C_{y_{\mathfrak{p}}}$	-0.886	-0.883	-0.907	
	-0.315	-0.227	-0.343	
\mathbf{C}_{y_r}	0.448	0.448	0.447	
$C_{n_{\beta}}$	0.1848	0.1739	0.1871	
$C_{n_{T_{\boldsymbol{\beta}}}}$ $C_{n_{p}}$	0	0	0	
	-0.0924	-0.0501	-0.1026	
C_{n_r}	-0.208	-0.200	-0.224	
<u>Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)</u>				
$\mathbf{C}_{\mathrm{l}_{\mathbf{\delta_{\mathrm{a}}}}}$	0.1776	0.1776	0.1776	
$\mathbf{C}_{\mathrm{l}_{oldsymbol{\delta_{\mathbf{r}}}}}$	0.0200	0.0200	0.0200	
$C_{y_{\delta_{a}}}$	0	0	0	
$C_{y_{\delta_{r}}}$	0.20	0.20	0.20	
$C_{n_{\delta_a}}$	-0.0367	-0.0194	-0.0417	
$C_{\mathfrak{n}_{\delta_{r}}}$	-0.1054	-0.1054	-0.1054	
$C_{h_{\alpha_{a}}}$???	???	???	
$C_{h_{\pmb{\delta_{a}}}}$	-0.462	-0.376	-0.462	
$C_{h_{m{\beta_r}}}$	0.0602	0.0602	0.0602	
$C_{h_{\delta_{\mathsf{r}}}}$	-0.588	-0.537	-0.588	

Longitudinal Transfer Function Data

```
0 ft
Altitude =
                                        M_1
                                               =
                                                     0.169
U 1 =
            112.09 kts
                                               =
                                                       1.00 g
                                        q_bar
           15000.0 1ь
W_current =
                                                =
                                                      42.53 psf
             340.00 ft^2
S_w =
                                        (W/S)_TO =
                                                      44.12 psf
Theta_1 =
              6.00 deg
                                        X_u
                                                    -0.0374 1/s
                                               =
C_bar =
              6.58 ft
                                               =
                                                    -0.0187 1/s
                                        X_T_u
             17300 slgft2
I_yy_B
       =
                                                =
                                                     17.4632 ft/s^2
                                        X_a
C_m_1 =
            0.0000
                                               =
                                                    -0.3404 \, 1/s
                                        Z_u
                                        Z_a
                                               = -170.4133 \text{ ft/s}^2
C_m_u
      =
            0.0000
C_m_a
            -1.0000 1/rad
                                                     -1.4565 ft/s
                                        Z_a_dot =
C_m_a.dot =
            -8.6800 1/rad
                                                    -4.0997 ft/s
                                              =
                                        Z_q
                                        M_u
C_m_q =
           -22.8000 1/rad
                                               =
                                                     0.0000 1/ft/s
C_m_T_1 =
            0.0000
                                        M_T_u
                                                     0.0000 1/ft/s
                                                =
C_m_T_u =
             0.0000
                                                    -5.5002 1/s^2
                                               =
                                        M_a
C_m_T_a =
                                        M_T_a
            0.0000
                                                     0.0000 1/s^2
                                               =
C_L_1
      =
            1.0380
                                        M_a_dot =
                                                    -0.8303 1/s
C_L_u
       =
             0.0000
                                               =
                                                     -2.1809 1/s
                                        M_q
      =
C_L_a
            5.3800 1/rad
                                        w_n_SP
                                                     2.7097 rad/s
C_L a.dot =
            2.7000 1/rad
                                        z_SP
                                                     0.7199
                                               =
      =
            7.6000 1/rad
C_L_q
                                        W_n_P
                                               =
                                                     0.2051 rad/s
C_D_1
            0.1140
       =
                                        z_P
                                               =
                                                     0.0871
C_D_a
      =
            0.4750 1/rad
                                        X_del_e =
                                                     0.0000 ft/s^2
            0.0000
C_D_u
      =
                                        Z_{del_e} = -18.3007 \text{ ft/s}^2
C_T_X_1 =
            0.1140
                                        M_del_e =
                                                    -9.6254 1/s^2
C_T_X_u =
           -0.3420
            0.5900 1/rad
C_L_d_e =
C_D_d_e =
            0.0000 1/rad
C_m_d_e =
            -1.7500 1/rad
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.750000

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 319.5876 S^2 + 26420.8184 S + 49830.2577
```

+ 190.6352 $\4 + 750.5300 $\3 + 1434.2726 $\2 + 81.2760 \$ + 58.8687

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 846.464416

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

- 1819.7453 s^2 - 1641.6803 s - 143.5503

 $+ 190.6352 \text{ s}^4 + 750.5300 \text{ s}^3 + 1434.2726 \text{ s}^2 + 81.2760 \text{ s} + 58.8687$

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -2.438483

Lateral-Directional Transfer Function Data

W_current	=	15000.0	1b	(W/S)_TO	=	44.12	psf
Altitude	=		ft	q_bar	=	42.53	psf
S_w	=	340.00		I_xx_S	=	64808	slgft2
U_1	=	112.09	kts	I_zz_S	=	64546	slgft2
Theta_1	=	6.00		I_xz_S	=	28	slgft2
Alpha	=	6.00	_	Y_B	=	-28.1334	ft/s^2
b_w	=	55.10	-	q_ Y	=	-1.5494	ft/s
I_xx_B	=	64811	slgft2	Y_r	=	2.0192	
I_zz_B	=		slgft2	L_B	=	-1.4410	
I_xz_B	=	0	slgft2	L_p	=	-1.0313	
C_1_B	=	-0.1172	1/rad	L_r	=	0.4131	
C_1_p	=	-0.5760	1/rad	N_B	=	2.3097	
C_1_r	=	0.2307	1/rad	N_T_B	=	0.0000	
C_n_B	=	0.1871	1/rad	N_p	=	-0.1845	
C_n_T_B	=	0.0000		N_r	=	-0.4027	
C_n_p	=	-0.1026	1/rad	w_ n_D		1.5875	rad/s
C_n_r	=	-0.2240	1/rad	z_D	=	0.1298	
C_y_B	=	-0.9070	1/rad	TC_SPIRAL		-47.494	
CYp	=	-0.3430	1/rad	TC_ROLL	=	0.839	S
C_y_r	=	0.4470	1/rad	TC_1	=	0.839	s
C_l_d_a	=	0.1776	1/rad	TC_2	=	-47.494	s
C_l_d_r	=	0.0200	1/rad	Y_del_a	=	0.0000	ft/s^2
C_n_d_a	=	-0.0417	1/rad	Y_del_r	=	6.2036	ft/s^2
C_n_d_r	=	-0.1054	1/rad	L_del_a	=	2.1836	1/s^2
C_y_d_a	=	0.0000	1/rad	L_del_r		0.2459	1/s^2
C_y_d_r	=	0.2000	1/rad	N_del_a		-0.5148	1/s^2
				N_del_r	=	-1.3011	1/s^2
Appendix B							519

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 + 92.7863 \text{ s}^3 + 243.5732 \text{ s}^2 + 21.3324 \text{ s}
 + 189.1787 \$^5 + 299.4014 \$^4 + 563.2602 \$^3 + 556.0521 \$^2 - 11.9605 \$
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
92.7863 S(S + 2.5344)(S + 0.0907)
189.1787 S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)
SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = -1.783567
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 6.2036 \text{ S}^4 + 252.0165 \text{ S}^3 + 271.2165 \text{ S}^2 - 14.0290 \text{ S}
+ 189.1787 S^5 + 299.4014 S^4 + 563.2602 S^3 + 556.0521 S^2 - 11.9605 S
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
6.2036 S(S - 0.0495)(S + 39.5163)(S + 1.1573)
189.1787 S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)
SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = 1.172940
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
+ 413.0424 S^3 + 187.5472 S^2 + 823.8478 S^3 + 823.8478 S^3 + 823.8478 S^3 + 823.8478
+ 189.1787 S^5 + 299.4014 S^4 + 563.2602 S^3 + 556.0521 S^2 - 11.9605 S
FACTORED ROLL TO AILERON TRANSFER FUNCTION
413.0424 S(S^2 + 0.4541 S + 1.9946)
_______
189.1787 S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)
ROLL TO AILERON TRANSFER FUNCTION K_gain = -68.880671
```

POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION + 46.4127 S^3 - 84.9735 S^2 - 254.6216 S + 189.1787 S^5 + 299.4014 S^4 + 563.2602 S^3 + 556.0521 S^2 - 11.9605 S FACTORED ROLL TO RUDDER TRANSFER FUNCTION 46.4127 S(S - 3.4302) (S + 1.5993) 189.1787 $S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)$ ROLL TO RUDDER TRANSFER FUNCTION K_gain = 21.288527 POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION -97.2067 S³ -191.0852 S² -32.9320 S +137.6426+ 189.1787 S^5 + 299.4014 S^4 + 563.2602 S^3 + 556.0521 S^2 - 11.9605 S FACTORED HEADING TO AILERON TRANSFER FUNCTION -97.2067 (S ~ 0.6713) (S² + 2.6371 S + 2.1092) 189.1787 $S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)$ HEADING TO AILERON TRANSFER FUNCTION K_gain = -11.508088 POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION $-246.1281 \text{ s}^3 - 284.7168 \text{ s}^2 - 20.5770 \text{ s} - 41.8190$ + 189.1787 S^5 + 299.4014 S^4 + 563.2602 S^3 + 556.0521 S^2 - 11.9605 S FACTORED HEADING TO RUDDER TRANSFER FUNCTION -246.1281 (S + 1.2045)(S² + -0.0477 S + 0.1411) 189.1787 $S(S - 0.0211)(S + 1.1915)(S^2 + 0.4122 S + 2.5201)$

HEADING TO RUDDER TRANSFER FUNCTION K_gain = 3.496427

Table B7 Stability and Control Derivatives for Airplane G (Pages 522–528)

Three-view

Reference Geometry

S (ft ²)	230
\overline{c} (ft)	7.0
b (ft)	34.0

Flight Condition Data	Approach	Cruise (Max Wht)	Cruise(Low Wht)
Altitude, h (ft) Mach Number, M TAS, U ₁ (ft/sec)	0 0.152 170	40,000 0.7 677	40,000 0.7 677
Dynamic pressure, \overline{q} (lbs/ft ²) C.G. location, fraction \overline{c}	34.3 0.32	134.6 0.32	134.6 0.32
Angle of attack, α_1 (deg)	5.0	2.7	1.5
Mass Data			
W (lbs)	13,000	13,000	9,000
I_{xx_B} (slugft2)	28,000	28,000	6,000
I _{yy_B} (slugft ²)	18,800	18,800	17,800
I_{zz_B} (slugft2)	47,000	47,000	25,000
I_{xz_B} (slugft ²)	1,300	1,300	1,400

Table B7 (Continued) Stability and Control Derivatives for Airplane G (Pages 522–528)

Flight Condition	Approach	Cruise (Max Wht)	Cruise(Low Wht)
Steady State Coefficients			
C_{L_1}	1.64	0.41	0.28
C_{D_1} $C_{T_{x_1}}$ C_{m_1}	0.2560	0.0335	0.0279
$C_{T_{x_1}}$	0.2560	0.0335	0.0279
	0	0	0
$C_{m_{T_1}}$	0	0	0

Longitudinal Coefficients and Stability Derivatives (Stability Axes, Dimensionless)

C_{D_0}	0.0431	0.0216	0.0216
$C_{D_{u}}$	0	0.104	0.104
$C_{D_{\mathfrak{a}}}$	1.06	0.30	0.22
$C_{T_{x_u}}$	-0.60	-0.07	-0.07
C_{L_0}	1.2	0.13	0.13
$\mathrm{C}_{\mathrm{L}_{\mathrm{u}}}$	0.04	0.40	0.28
$\mathrm{C}_{\mathrm{L}_lpha}$	5.04	5.84	5.84
$C_{\mathbf{L}_{lpha}}$	1.6	2.2	2.2
C_{L_q}	4.1	4.7	4.7
C_{m_0}	0.047	0.050	0.050
C_{m_u}	-0.01	0.050	0.070
$C_{m_{\alpha}}$	-0.66	-0.64	-0.64
$C_{m_{lpha}}$	-5.0	-6.7	-6.7
C_{m_q}	-13.5	-15.5	-15.5
$C_{m_{T_u}}$	0.006	-0.003	-0.003
$C_{m_{T_{\alpha}}}$	0	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

$C_{D_{\delta_e}}$	0	0	0
$egin{array}{c} C_{L_{\delta_{f e}}} \ C_{m_{\delta_{f e}}} \end{array}$	0.40	0.46	0.46
$\mathrm{C}_{\mathrm{m}_{\delta_{\mathbf{e}}}}$	-0.98	-1.24	-1.24
$\mathbf{C}_{D_{i_b}}$	0	0	0
$egin{array}{c} \mathbf{C}_{\mathbf{L_{i_h}}} \ \mathbf{C}_{\mathbf{m_{i_h}}} \end{array}$	0.85	0.94	0.94
$C_{m_{i_h}}$	-2.1	-2.5	-2.5

Table B7 (Continued)	Stability and Control Derivatives for Airplane G (Pages 522–528)

Table B7 (Continued) Stability and Control Derivatives for Airplane G (Pages 522–528)								
Flight Condition	Approach	Cruise (Max Wht)	Cruise(Low Wht)					
Longitudinal Control and Hinge Moment Derivatives: Cont'd (Stability Axes, 1/rad)								
$C_{h_{\pmb{lpha}}}$	-0.105	-0.132	-0.132					
$\mathrm{C}_{\mathrm{h}_{\delta_{\mathrm{c}}}}$	-0.378	-0.476	-0.476					
Lateral-Directional Stabilit	y Derivatives (Stab	ility Axes, Dimension	less)					
${f C}_{{f I}_{m eta}}$	-0.173	-0.110	-0.100					
$\mathrm{C}_{\mathrm{l}_{\mathfrak{p}}}$	-0.390	-0.450	-0.450					
C_{l_r}	0.450	0.160	0.140					
$C_{y_{oldsymbol{eta}}}$	-0.730	-0.730	-0.730					
C_{y_p}	0	0	0					
$\mathbf{C}_{\mathbf{y}_{\mathrm{r}}}$	0.400	0.400	0.400					
C_{n_g}	0.150	0.127	0.124					
$C_{n_{T_{\beta}}}$	0	0	0					
$\mathrm{C}_{n_{p}}$	-0.130	-0.008	-0.022					
C_{n_r}	-0.260	-0.200	-0.200					
Lateral-Directional Control	l and Hinge Momer	nt Derivatives (Stabili	ty Axes, Dimensionless)					
$\overline{C_{l_{\delta_{\mathtt{u}}}}}$	0.149	0.178	0.178					
$C_{I_{\delta_{-}}}$	0.014	0.019	0.021					
$\mathbf{C}_{\mathbf{y}_{\delta_{\mathbf{a}}}}$	0	0	0					
$C_{y_{\delta_{\mathrm{r}}}}$	0.140	0.140	0.140					
$\mathrm{C}_{n_{\delta_a}}$	-0.050	-0.020	-0.020					
$\mathrm{C}_{n_{\delta_r}}$	-0.074	-0.074	-0.074					
$C_{h_{a_{a}}}$???	???	???					
$C_{h_{\delta_{a}}}$???	???	???					
$C_{h_{g_r}}$???	???	???					
$\mathbf{C_{h_{\delta_{r}}}}$???	???	???					

Appendix B

Longitudinal Transfer Function Data

```
0 ft
                                                        0.152
Altitude =
U_1 =
             100.71 kts
                                          n
                                                         1.00 g
                                          q_bar
           13000.0 lb
W_current =
                                                  =
                                                        34.34 psf
S_w =
             230.00 ft^2
                                                        56.52 psf
                                          (W/S)_TO =
Theta_1 =
              5.00 deg
                                          X_u
                                                 =
                                                       -0.0589 1/s
                                          X_T_u
              7.00 ft
C_bar =
                                                       -0.0101 1/s
                                                  =
                                                       11.3367 ft/s^2
I_YY_B =
             18800 slgft2
                                          X_a
                                                  =
C_m_1 =
            0.0000
                                                       -0.3818 1/s
                                          Z_u
C_m_u
       =
                                          Z_a
                                                  = -103.5160 ft/s^2
            -0.0100
                                                       -0.6439 ft/s
C_m_a
       =
            -0.6600 1/rad
                                          Z_a_{dot} =
                                                       -1.6501 ft/s
C_m_a.dot =
            -5.0000 1/rad
                                                 #
                                          Z_q
                                          M_u
C_m_q
      =
           -13.5000 1/rad
                                                  =
                                                       -0.0002 1/ft/s
                                          M_T_u
                                                        0.0001 1/ft/s
             0.0000
C_m_T_1
        =
                                                      -1.9408 1/s^2
C_m_T_u =
            0.0060
                                          M_a
                                                  =
            0.0000
                                                        0.0000 1/s^2
C_m_T_a =
                                          M_T_a
                                                       -0.3027 1/s
                                          M_a_dot =
             1.6400
C_L_1
      =
C_L_u
       =
             0.0400
                                          M_q
                                                       -0.8174 1/s
C_L_a =
            5.0400 1/rad
                                                       1.5616 rad/s
C_L_a.dot =
            1.6000 1/rad
                                          w n SP
                                                  =
                                                        0.5636
                                          z_SP
             4.1000 1/rad
C_L_q =
                                          w_n_P
       =
                                                  =
                                                       0.2358 rad/s
C_D_1
            0.2560
                                           z_P
                                                  =
                                                       0.0671
C_D_a
       =
            1.0600 1/rad
                                          X_del_e =
                                                        0.0000 ft/s^2
            0.0000
C_D_u
       =
            0.2560
                                           Z_{del_e} =
                                                       -7.8184 ft/s^2
C_T_X_1 =
                                                       -2.8818 1/s^2
C_T_X_u =
           -0.6000
                                          M_del_e =
C_L_d_e =
            0.4000 1/rad
             0.0000 1/rad
C_D_d_e
       =
            -0.9800 1/rad
C_m_d_e =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
-7.8184 \text{ S}^3 - 492.0217 \text{ S}^2 - 25.8286 \text{ S} - 34.6877
+ 170.6233 \$^4 + 305.7196 \$^3 + 435.0697 \$^2 + 29.8732 \$ + 23.1410
```

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
-7.8184 (S + 62.8796) (S^2 + 0.0514 S + 0.0706)
______
170.6233 (S<sup>2</sup> + 1.7601 S + 2.4386)(S<sup>2</sup> + 0.0317 S + 0.0556)
```

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.498972

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
-88.6353 \text{ s}^2 + 10112.1693 \text{ s} + 9166.6414
_______
+ 170.6233 S^4 + 305.7196 S^3 + 435.0697 S^2 + 29.8732 S + 23.1410
```

```
FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 396.120995

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -1.382884

Lateral-Directional Transfer Function Data

W_current	=	13000.0	lb	(W/S)_TO	=	56.52	psf
	=		ft	q_bar	=	34.34	psf
S_w	=	230.00	ft^2	I_xx_S	=	27919	slgft2
U1	=	100.71	kts	I_zz_S	=	47081	slgft2
Theta_1	=	5.00	deg	I_xz_S	=	-369	slgft2
Alpha	=	5.00	deg	Y_B	=	-14.2686	ft/s^2
b_w	=	34.00	ft	YP	=	0.0000	ft/s
I_xx_B	=	28000	slgft2	Y_r	=	0.7819	ft/s
I_zz_B	=	47000	slgft2	L_B	=	-1.6639	1/s^2
I_xz_B	=	1300	slgft2	L_p	=	-0.3751	1/s
C_1_B	=	-0.1730	1/rad	L_r	=	0.4329	1/s
C_1_p	=	-0.3900	1/rad	N_B	=	0.8555	1/s^2
C_1_r	=	0.4500	1/rad	N_T_B	=	0.0000	1/s^2
C_n_B	=	0.1500	1/rad	N_p	=	-0.0742	1/s
C_n_T_B	=	0.0000		N_r	=	-0.1483	1/s
C_n_p	==	-0.1300	1/rad	w_n_D	=	1.0413	rad/s
C_n_r	=	-0.2600	1/rad	z_D	=	-0.0453	
C_Y_B	=	-0.7300	1/rad	TC_SPIRAL	=	-34.137	S
C_Y_P	=	0.0000	1/rad	TC_ROLL	=	1.363	s
C_y_r	=	0.4000	1/rad	Y_del_a	=	0.0000	ft/s^2
$C_1_d_a$	=	0.1490	1/rad	Y_del_r	=	2.7364	ft/s^2
C_l_d_r	=	0.0140	1/rad	L_del_a	=	1.4331	1/s^2
C_n_d_a	=	-0.0500	1/rad	L_del_r	=	0.1347	1/s^2
C_n_d_r	=	-0.0740	1/rad	N_del_a	=	-0.2852	1/s^2
C_y_d_a	=	0.0000	1/rad	N_del_r	=	-0.4220	1/s^2
C_y_d_r	=	0.1400	1/rad				

POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION + 50.1518 S³ + 82.1337 S² + 2.8556 S _____ + 169.9617 S^5 + 103.6534 S^4 + 169.3730 S^3 + 130.1231 S^2 - 3.9599 S FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION 50.1518 S(S + 1.6022)(S + 0.0355)169.9617 S(S - 0.0293)(S + 0.7334)(S² + -0.0943 S + 1.0844) SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = -0.721137 POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION $+ 2.7362 \text{ S}^4 + 73.0267 \text{ S}^3 + 33.2130 \text{ S}^2 - 5.2154 \text{ S}$ + 169.9617 S^5 + 103.6534 S^4 + 169.3730 S^3 + 130.1231 S^2 - 3.9599 S FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION 2.7362 S(S - 0.1234)(S + 26.2238)(S + 0.5890) 169.9617 S(S - 0.0293)(S + 0.7334)(S² + -0.0943 S + 1.0844) SIDESLIP TO RUDDER TRANSFER FUNCTION K gain = 1.317052 POLYNOMIAL BANK ANGLE TO AILERON TRANSFER FUNCTION $+ 244.2348 \text{ S}^3 + 35.6460 \text{ S}^2 + 128.4237 \text{ S}$ + 169,9617 S^5 + 103.6534 S^4 + 169.3730 S^3 + 130.1231 S^2 - 3.9599 S FACTORED BANK ANGLE TO AILERON TRANSFER FUNCTION 244.2348 S(S² + 0.1459 S + 0.5258) 169.9617 S(S - 0.0293)(S + 0.7334)(S^2 + -0.0943 S + 1.0844) BANK ANGLE TO AILERON TRANSFER FUNCTION K_gain = -32.431294

```
POLYNOMIAL BANK ANGLE TO RUDDER TRANSFER FUNCTION
+ 23.8372 \text{ S}^3 - 30.2418 \text{ S}^2 - 101.3111 \text{ S}
_______
+ 169.9617 S^5 + 103.6534 S^4 + 169.3730 S^3 + 130.1231 S^2 - 3.9599 S
FACTORED BANK ANGLE TO RUDDER TRANSFER FUNCTION
23.8372 S(S - 2.7913)(S + 1.5226)
169.9617 S(S - 0.0293) (S + 0.7334) (S^2 + -0.0943 S + 1.0844)
BANK ANGLE TO RUDDER TRANSFER FUNCTION K_gain = 25.584449
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
 -50.3835 \text{ s}^3 - 40.4765 \text{ s}^2 - 3.0427 \text{ s} + 24.0869
+ 169.9617 \$^5 + 103.6534 \$^4 + 169.3730 \$^3 + 130.1231 \$^2 - 3.9599 \$
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-50.3835 (S - 0.5687)(S^2 + 1.3721 S + 0.8407)
169.9617 S(S - 0.0293)(S + 0.7334)(S^2 + -0.0943 S + 1.0844)
HEADING TO AILERON TRANSFER FUNCTION K_gain = -6.082742
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
 -71.9185 \text{ s}^3 - 32.2701 \text{ s}^2 - 1.1857 \text{ s} - 18.8159
 + 169.9617 S^5 + 103.6534 S^4 + 169.3730 S^3 + 130.1231 S^2 - 3.9599 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-71.9185 (S + 0.8188)(S<sup>2</sup> + -0.3701 S + 0.3195)
169.9617 S(S - 0.0293)(S + 0.7334)(S^2 + -0.0943 S + 1.0844)
```

Appendix B 528

HEADING TO RUDDER TRANSFER FUNCTION K_gain = 4.751643

Three-view

529

Reference Geometry

S (ft ²)	196
\overline{c} (ft)	9.6
b (ft)	21.9

Flight Condition Data	Approach	Cruise
Altitude, h (ft) Mach Number, M TAS, U ₁ (ft/sec)	0 0.257 287	55,000 1.800 1,742
Dynamic pressure, \overline{q} (lbs/ft ²) C.G. location, fraction \overline{c}	97.8 0.07	434.5 0.07
Angle of attack, α_1 (deg)	10	2
Mass Data		
W (lbs)	16,300	16,300
$I_{xx_{R}}$ (slugft ²)	3,600	3,600
I_{yy_B} (slugft ²)	59,000	59,000
I _{zz_B} (slugft2)	60,000	60,000
I _{xz_B} (slugft ²)	0	0

Table B8 (Continued) Stability and Control Derivatives for Airplane H (Pages 529–535)

Approach	Cruise
0.850	0.191
0.2634	0.0553
0.2634	0.0553
0	0
0	0
	0.850 0.2634 0.2634 0

Longitudinal Coefficients and Stability Derivatives (Stability Axes, Dimensionless)

Edigituanui Cocinerono una Stabinej E	CITYTETT CO TOTAL DITTE TENEDE DE	
C_{D_0}	0.1189	0.0480
C_{D_u}	0	-0.060
$C_{D_{\pmb{lpha}}}$	0.455	0.384
$C_{T_{x_u}}$	-0.50	-0.13
C_{L_0}	0.240	0.122
$C_{L_{u}}$	0	-0.20
$C_{L_{\mathfrak{a}}}$	3.440	2.005
$C_{L_{\check{a}}}$	0.66	0.82
$C_{L_{q}}$	2.30	1.90
C_{m_0}	0.03	-0.028
C_{m_u}	0	0
$C_{m_{\alpha}}$	-0.644	-1.308
$C_{m_{lpha}}$	-1.640	-2.050
C_{m_q}	-5.84	-4.83
$C_{m_{T_u}}$	0	0
$C_{\mathfrak{m}_{T_{\boldsymbol{\alpha}}}}$	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

$C_{D_{\delta_e}}$	not applicable	
$\mathrm{C}_{\mathrm{L}_{\delta_{e}}}$	not applicable	
$C_{\mathfrak{m}_{\delta_e}}$	not applicable	
$\mathbf{C}_{D_{i_{h}}}$	0	0
$egin{array}{c} \mathbf{C_{D_{\delta_e}}} \ \mathbf{C_{L_{\delta_e}}} \ \mathbf{C_{m_{\delta_e}}} \ \mathbf{C_{D_{i_h}}} \ \mathbf{C_{L_{i_h}}} \end{array}$	0.684	0.523
$C_{m_{i_h}}$	-1.60	-1.31

Flight Condition Approach Cruise

Longitudinal Control and Hinge Moment Derivatives: Cont'd (Stability Axes, 1/rad)

 $egin{array}{ll} C_{h_{lpha}} & & \mbox{not applicable} \\ C_{h_{\delta_c}} & & \mbox{not applicable} \end{array}$

<u>Lateral-Directional Stability Derivatives (Stability Axes, Dimensionless)</u>

$C_{l_{\beta}}$	-0.175	-0.093
C_{l_p}	-0.285	-0.272
C_{l_r}	0.265	0.154
$C_{\mathbf{y}_{oldsymbol{eta}}}$	-1.180	-1.045
C_{y_p}	0	0
C_{y_r}	0	0
$C_{n_{oldsymbol{eta}}}$	0.507	0.242
$C_{n_{p}}$ $C_{n_{p}}$	0	0
$C_{n_{\mathfrak{p}}}$	-0.144	-0.093
C_{n_r}	-0.753	-0.649

Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)

$C_{l_{\delta_a}}$	0.0392	0.0173
$C_{l_{\delta_r}}$	0.0448	0.0079
$egin{array}{c} C_{l_{oldsymbol{\delta_{a}}}} \ C_{l_{oldsymbol{\delta_{r}}}} \ C_{oldsymbol{y}_{oldsymbol{\delta_{a}}}} \ C_{oldsymbol{y}_{oldsymbol{\delta_{r}}}} \end{array}$	0	0
	0.329	0.087
$C_{n_{\delta_a}}$	0.0042	0.0025
$C_{n_{\delta_r}}$	-0.1645	-0.0435
$C_{h_{lpha_{a}}}$???	???
$C_{h_{\delta_{a}}}$???	???
$\mathrm{C}_{\mathfrak{h}_{oldsymbol{eta_{\mathrm{f}}}}}$???	???
$C_{h_{\delta_r}}$???	???

Longitudinal Transfer Function Data

```
0.257
                                                    =
                                            M 1
Altitude =
                  0 ft
                                                   =
                                                           1.00 g
            170.02 kts
                                            n
U_1 =
                                            q_bar =
                                                          97.87 psf
            16300.0 lb
W current =
                                                          83.16 psf
                                            (W/S)_TO =
             196.00 ft^2
S_w =
                                                         -0.0695 \, 1/s
                                            X_u =
              10.00 deg
Theta_1 =
                                                         0.0035 1/s
                                            X_T_u
                                                   =
               9.60 ft
C_bar
       =
                                            X_a
                                                         14,9560 ft/s^2
                                                   =
I_yy_B =
              59000 slgft2
                                                         -0.2243 1/s
                                                    =
             0.0000
                                            Z_u
C_m_1 =
                                                   = -140.2225 \text{ ft/s}^2
C_m u
       =
             0.0000
                                            Z_a
                                            Z_a_dot =
                                                         -0.4180 \text{ ft/s}
Cma =
             -0.6440 1/rad
                                            Z_q
                                                         -1.4566 ft/s
             -1.6400 1/rad
                                                    =
C_m_a.dot =
                                                         0.0000 1/ft/s
                                            M_u
                                                   -
             -5.8400 \text{ 1/rad}
C_m_q =
                                            M_T_u
                                                         0.0000 1/ft/s
C_m_T_1 =
                                                   ==
             0.0000
                                                         -2.0100 1/s^2
                                            M_a
C_m_T_u =
              0.0000
                                                   =
                                            M_T_a
             0.0000
                                                    =
                                                          0.0000 1/s^2
C_m_T_a =
                                                         -0.0856 1/s
                                            M_a_dot =
C L 1
      =
             0.8500
                                                         -0.3049 1/s
                                            M_q
             0.0000
C_L_u
C_L_a =
             3.4400 1/rad
             0.6600 1/rad
                                            w_n_SP =
                                                         1.4679 rad/s
C_L_a.dot =
                                            z_SP
C_L_q
             2.3000 1/rad
                                                   =
                                                         0.3075
      =
                                            w_n_P
C_D_1
       =
              0.2634
                                                    =
                                                         0.1479 rad/s
                                                         0.1385
C_D_a
             0.4550 1/rad
                                            z_P
                                                   =
C_D_u
      =
             0.0000
                                            X_{del_e} =
                                                         0.0000 ft/s^2
                                            Z_del_e =
C_T_X_1 =
                                                        -25.8984 ft/s^2
              0.2634
                                                         -4.9939 1/s^2
            -0.5000
                                            M_del_e =
C_T_X_u =
C_L_d_e =
             0.6840 1/rad
             0.0000 1/rad
C_D_d_e
        =
             -1,6000 1/rad
C_m_d_e =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
- 25.8984 s^3 - 1435.4151 s^2 - 66.6826 s - 33.6512

+ 287.3857 s^4 + 271.2473 s^3 + 636.1609 s^2 + 31.0502 s + 13.5446
```

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -2.484472

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 1547.154040

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -4.394013

Lateral-Directional Transfer Function Data

Ta7		16300 0	11	(W/S)_TO	=	83.16	psf
W_current		16300.0		g bar	=	97.87	psf
-	=		ft		=	5301	slgft2
S_w	=	196.00		 I_zz_S	=	58299	slgft2
U_1	=	170.02		I_xz_S	=		slgft2
Theta_1	=	10.00	_	Y_B	=	-44.6786	ft/s^2
Alpha	=	10.00	-	Yp	=	0.0000	
b_w	=	21.90		Y_r	=	0.0000	
I_xx_B	=	3600	slgft2	 LB	=	-13.8692	
I_zz_B	=	60000	slgft2	г_р	=	-0.8619	
I_xz_B	=	0	slgft2		=	0.8014	
C_1_B	=	-0.1750	1/rad	L_r	=	3.6533	
C_1_p	=	-0.2850	1/rad	N_B		0.0000	
C_1_r	=	0.2650	1/rad	N_T_B	=		
C_n_B	=	0.5070	1/rad	п_р	=	-0.0396	
C_n_T_B	=	0.0000		N_r	=	-0.2070	
C_n_p	=	-0.1440	1/rad	w_n_D	=	2.8810	rad/s
C_n_r	=	-0.7530	1/rad	z_D	=	0.1281	
C_y_B	=	-1.1800	1/rad	TC_SPIRAL	=	-966.957	
C_y_p	=	0.0000		TC_ROLL	=	0.967	S
C_y_r	=	0.0000		TC_1	=	0.967	5
C_1_d_a	=	0.0392		TC_2	=	-966.957	s
C_1_d_r	=	0.0448		Y_del_a	=	0.0000	ft/s^2
C_n_d_a	=	0.0042		Y_del_r	=	12.4570	ft/s^2
C_n_d_r	=	-0.1645		L_del_a	=	3.1067	1/s^2
C_y_d_a	=	0.0000		L_del_r	=	3.5505	1/s^2
c_y_d_a C_y_d_r	=	0.3290		N_del_a	=	0.0303	1/s^2
c_y_a_r	_	0.5290	1/140	N_del_r	=	-1.1853	1/s^2
Appendix B				- -			522

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 + 138.8075 \text{ S}^3 + 124.5049 \text{ S}^2 + 21.1488 \text{ S}
+ 200.5823 S^5 + 355.3425 S^4 + 1817.6079 S^3 + 1720.6151 S^2 - 1.7814 S
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
138.8075 S(S + 0.6693)(S + 0.2276)
200.5823 S(S - 0.0010) (S + 1.0346) (S^2 + 0.7380 S + 8.3000)
 SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = -11.872326
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
 + 8.7071 \text{ s}^4 + 522.7889 \text{ s}^3 + 516.9667 \text{ s}^2 - 6.8065 \text{ s}
 + 200.5823 \text{ s}^5 + 355.3425 \text{ s}^4 + 1817.6079 \text{ s}^3 + 1720.6151 \text{ s}^2 - 1.7814 \text{ s}
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
8.7071 S(S - 0.0130)(S + 59.0359)(S + 1.0189)
200.5823 S(S - 0.0010)(S + 1.0346)(S^2 + 0.7380 S + 8.3000)
 SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = 3.820969
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
 +\ 875.7196\ S^3\ +\ 327.8840\ S^2\ +\ 3407.2931\ S
 +\ 200.5823\ \text{s}^5\ +\ 355.3425\ \text{s}^4\ +\ 1817.6079\ \text{s}^3\ +\ 1720.6151\ \text{s}^2\ -\ 1.7814\ \text{s}
FACTORED ROLL TO AILERON TRANSFER FUNCTION
875.7196 S(S^2 + 0.3744 S + 3.8908)
200.5823 S(S - 0.0010)(S + 1.0346)(S^2 + 0.7380 S + 8.3000)
 ROLL TO AILERON TRANSFER FUNCTION K_gain =-1912.752646
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
 + 1637.8237 S^3 - 62.2256 S^2 - 1004.2890 S
 +\ 200.5823\ S^5\ +\ 355.3425\ S^4\ +\ 1817.6079\ S^3\ +\ 1720.6151\ S^2\ -\ 1.7814\ S
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
1637.8237 S(S - 0.8023)(S + 0.7643)
200.5823 S(S - 0.0010)(S + 1.0346)(S^2 + 0.7380 S + 8.3000)
 ROLL TO RUDDER TRANSFER FUNCTION K_gain = 563.777878
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
 -138.8075 S<sup>3</sup> -49.4245 S<sup>2</sup> -4.3303 S +372.9196
 + 200.5823 \text{ s}^5 + 355.3425 \text{ s}^4 + 1817.6079 \text{ s}^3 + 1720.6151 \text{ s}^2 - 1.7814 \text{ s}
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-138.8075 (S - 1.2742)(S<sup>2</sup> + 1.6303 S + 2.1085)
__________
200.5823 S(S - 0.0010)(S + 1.0346)(S^2 + 0.7380 S + 8.3000)
 HEADING TO AILERON TRANSFER FUNCTION K_gain = -209.345936
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
 -508.7194 \text{ s}^3 - 338.6218 \text{ s}^2 - 5.8614 \text{ s} - 109.9050
 + 200.5823 S^5 + 355.3425 S^4 + 1817.6079 S^3 + 1720.6151 S^2 - 1.7814 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-508.7194 (S + 0.9125)(S<sup>2</sup> + -0.2468 S + 0.2368)
200.5823 S(S - 0.0010)(S + 1.0346)(S^2 + 0.7380 S + 8.3000)
```

Appendix B 535

HEADING TO RUDDER TRANSFER FUNCTION K_gain = 61.697394

Table B9 Stability and Control Derivatives for Airplane I (Pages 536-542)

Three-view

Reference Geometry

S (ft ²)	530
\overline{c} (ft)	16.0
b (ft)	38.7

Flight Condition Data	Approach	Cruise (M<1)	Cruise (M>1)
Altitude, h (ft) Mach Number, M TAS, U ₁ (ft/sec)	0 0.206 230	35,000 0.900 876	55,000 1.800 1,742
Dynamic pressure, \overline{q} (lbs/ft ²) C.G. location, fraction \overline{c}	62.9 0.29	283.2 0.29	434.5 0.29
Angle of attack, α_1 (deg)	11.7	2.6	3.3
Mass Data			
W (lbs)	33,200	39,000	39,000
I_{xx_B} (slugft ²)	23,700	25,000	25,000
I _{yy_B} (slugft ²)	117,500	122,200	122,200
I _{zz_B} (slugft ²)	133,700	139,800	139,800
I_{xz_B} (slugft ²)	1,600	2,200	2,200

<u>Table B9 (Continued)</u> Stability and Control Derivatives for Airplane I (Pages 536–542)

Flight Condition	Approach	Cruise (M<1)	Cruise (M>1)			
Steady State Coefficients						
C_{L_1}	1.0	0.26	0.17			
C_{D_1}	0.2000	0.0300	0.0480			
$C_{T_{x_1}}$ C_{m_1}	0.2000	0.0300	0.0480			
C_{m_1}	0	0	0			
$C_{m_{T_1}}$	0	0	0			
Longitudinal Coefficients and Stability Derivatives (Stability Axes, Dimensionless)						
C_{D_0}	0.0269	0.0205	0.0439			
C_{D_u}	0	0.027	-0.054			
$C_{D_{\alpha}}$	0.555	0.300	0.400			

\mathcal{C}_{D_0}	0.0209	0.0203	0.0439
C_{D_u}	0	0.027	-0.054
$C_{D_{\alpha}}$	0.555	0.300	0.400
$\mathrm{C}_{\mathrm{T}_{x_u}}$	-0.4500	-0.064	-0.1000
C_{L_0}	0.430	0.100	0.010
C_{L_u}	0	0.270	-0.180
$C_{L_{lpha}}$	2.80	3.75	2.80
$C_{L_{\dot{lpha}}}$	0.63	0.86	0.17
$C_{L_{q}}$	1.33	1.80	1.30
C_{m_0}	+0.020	+0.025	-0.025
C_{m_u}	0	-0.117	+0.054
C_{m_n}	-0.098	-0.400	-0.780
$C_{m_{\dot{lpha}}}$	-0.950	-1.300	-0.250
C_{m_q}	-2.00	-2.70	-2.00
$C_{m_{T_n}}$	0	0	0

Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)

0

 $C_{m_{T_{\boldsymbol{\alpha}}}}$

$C_{D_{\delta_e}}$	not applicable	}	
$\mathrm{C}_{\mathrm{L}_{\delta_{\mathrm{c}}}}$	not applicable	:	
$egin{array}{c} C_{D_{\delta_e}} \ C_{L_{\delta_c}} \ C_{m_{\delta_e}} \end{array}$	not applicable		
$\mathrm{C}_{\mathrm{D}_{\mathrm{i}_{\mathrm{h}}}}$	-0.14	-0.10	-0.15
$egin{array}{c} \mathbf{C_{D_{i_h}}} \ \mathbf{C_{L_{i_h}}} \ \mathbf{C_{m_{i_h}}} \end{array}$	0.24	0.40	0.25
$C_{\mathfrak{m}_{i_{\mathfrak{h}}}}$	-0.322	-0.580	-0.380

0

0

Flight Condition Approach Cruise (M<1) Cruise (M>1)

Longitudinal Control and Hinge Moment Derivatives: Cont'd (Stability Axes, 1/rad)

 $\begin{array}{cc} C_{h_\alpha} & \text{not applicable} \\ C_{h_{\delta_e}} & \text{not applicable} \end{array}$

Lateral-Directional Stability Derivatives (Stability Axes, Dimensionless)

$C_{1_{\beta}}$	-0.156	-0.080	-0.025
C_{l_p}	-0.272	-0.240	-0.200
C_{l_r}	0.205	0.070	0.040
$C_{y_{\beta}}$	-0.655	-0.680	-0.700
C_{y_p}	0	0	0
C_{y_r}	0	0	0
$C_{n_{\beta}}$	0.199	0.125	0.090
$C_{n_{T_{\beta}}}$ $C_{n_{p}}$	0	0	0
	0.013	-0.036	0
C_{n_r}	-0.320	-0.270	-0.260

Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)

$\mathbf{C}_{l_{oldsymbol{\delta}_{a}}}$	0.0570	0.0420	0.0150
$\mathrm{C}_{I_{\delta_{\mathrm{r}}}}$	0.0009	0.0060	0.0030
$C_{y_{\delta_a}}$	-0.0355	-0.0160	-0.010
$C_{y_{\delta_r}}$	0.124	0.095	0.050
$C_{n_{\delta_a}}$	0.0041	-0.0010	-0.0009
$C_{n_{\delta_r}}$	-0.072	-0.066	-0.025
$C_{h_{\alpha_a}}$???	???	???
$\mathrm{C}_{h_{\delta_{\mathrm{a}}}}$???	???	???
$\mathrm{C}_{\mathrm{h}_{\mathrm{eta_{\mathrm{r}}}}}$???	???	???
$C_{h_{\delta_{r}}}$???	???	???

Longitudinal Transfer Function Data

```
0.900
                                           M_1
                                                  =
Altitude =
              35000 ft
            518.96 kts
                                                  =
                                                         1.00 g
U_1 =
                                           n
                                          283.17 psf
W_current =
           39000.0 lb
                                                         73.58 psf
                                           (W/S)_TO =
S_w =
             530.00 ft^2
                                                       -0.0122 1/s
Theta_1 =
                                           X_u =
               2.60 deg
                                          X_T_u
X_a
      =
                                                       -0.0006 1/s
                                                  =
C_bar
              16.00 ft
                                                   =
                                                        -4.8986 ft/s^2
I_yy_B =
             122200 slgft2
                                                        -0.1105 1/s
C_m_1 =
             0.0000
                                           z_u
                                                  =
                                           Z_a
                                                  = -462.9218 \text{ ft/s}^2
C_m_u
       =
            -0.1170
C_m_a =
                                                       -0.9619 ft/s
                                           Z_a_dot
                                                   =
             -0.4000 \text{ 1/rad}
                                                       -2.0134 ft/s
                                                 =
C_m_a.dot =
            -1.3000 1/rad
                                           Z_q
C_m_q =
                                                       -0.0026 1/ft/s
            -2.7000 1/rad
                                           M_u
C_m_T_1 =
                                          M_T_u
M_a
                                                        0.0000 1/ft/s
                                                  =
             0.0000
                                                  =
                                                       -7.8602 1/s^2
             0.0000
C_m_T_u =
                                                        0.0000 1/s^2
                                           M_T_a
C_m_T_a =
             0.0000
                                                  =
                                          M_a_dot =
                                                      -0.2333 1/s
      =
             0.2600
C_L_1
                                                  =
                                                       -0.4846 1/s
       =
C_L_u
             0.2700
                                           M_q
C_L_a =
             3.7500 1/rad
                                           w_n_3 osc =
                                                       2.8472 rad/s
             0.8600 1/rad
C_L_a.dot =
                                           z_3rd osc =
                                                        0.2210
C_L_q
              1.8000 1/rad
                                                        25.389 s
                                           TC 1 =
       =
C_D_1
             0.0300
                                           TC_2
                                                       -25.100 s
C_D_a
      =
             0.3000 1/rad
                                                       12.2466 ft/s^2
                                           X_del_e =
C_D_u =
             0.0270
                                                      -48.9864 ft/s^2
                                           Z_del_e =
C_T_X_1 =
             0.0300
                                           M_del_e =
                                                       -11.3973 1/s^2
C_T_X_u =
            -0.0640
C_L_d_e =
             0.4000 1/rad
C_D_d_e =
             -0.1000 1/rad
             -0.5800 1/rad
C_m_d_e =
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = 3.198674

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
+ 10738.6016 s^3 + 13610.0294 s^2 + 453125.8259 s + 155272.0233
```

+ 876.8633 $\4 + 1102.8926 $\3 + 7106.2935 $\2 - 4.9526 \$ - 11.1541

```
FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain =-13920.616547

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
- 9982.4646 s^2 - 5045.9068 s - 60.9416
------+ 876.8633 s^4 + 1102.8926 s^3 + 7106.2935 s^2 - 4.9526 s - 11.1541
```

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = 5.463602

Lateral-Directional Transfer Function Data

Wcurrent	=	39000.0	lb.	(W/S	S)_TO	=	73.58	psf
Altitude		35000		q_ba	ır	=	283.17	psf
S_w	=	530.00		I_xx	_S	=	25037	slgft2
U_1	_ ≃	518.96		Ĭ_ z z	_S	=	139763	slgft2
Theta_1	=	2.60		1_x2	_S	=	-3011	slgft2
Alpha	=	2.60	-	Y_B		=	-83.2769	ft/s^2
b_w	=	38.70		Y_p		=	0.0000	ft/s
I_xx_B	=		slgft2	Y_r		=	0.0000	ft/s
I_zz_B	=	139800	-	L_B		=	-18.5587	1/s^2
I_xz_B	_		slgft2	r_b		=	-1.2300	1/s
C_1_B	=	-0.0800		L_r		=	0.3587	1/s
C_1_p	=	-0.2400		N_B		=	5.1946	1/s^2
C_1_p C_1_r	=	0.0700		N_T_	,B	=	0.0000	1/s^2
C_n_B	=	0.1250		q_ И		=	-0.0331	1/s
C_n_T_B	=	0.0000	-,	N_r		=	-0.2479	1/s
C_n_p	=	-0.0360	1/rad	w_n_	D	=	2.3956	rad/s
C_n_r	=	-0.2700		z_D		=	0.0482	
C_y_B	=	-0.6800		-	PIRAL	=	77.022	
C_y_p	==	0.0000		TC_R	OLL	=	0.748	s
C_y_r	=	0.0000		TC_1		=	0.748	Ś
 C_1_d_a	=	0.0420	1/rad	TC_2		=	77.022	s
C_1_d_r	=	0.0060	1/rad	Y_de	:1_a	=	-1.9595	ft/s^2
 C_n_d_a	=	-0.0010	1/rad	Y_de	1_r	=	11.6343	ft/s^2
C_n_d_r	=	-0.0660	1/rad	L_de	:1_a	=	9.7433	1/s^2
c_y_d_a	=	-0.0160	1/rad	L_de	1_r	=	1.3919	1/s^2
C_y_d_r	=	0.0950	1/rad	N_de	el_a	=	-0.0416	1/s^2
				N_de	:1_r	=	-2.7428	1/s^2
Appendix B								540

```
POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION
 -1.9544 \text{ s}^4 + 217.3759 \text{ s}^3 + 636.1162 \text{ s}^2 + 76.3060 \text{ s}
 ______
 + 873.6315 \$^5 + 1380.7964 <math>\$^4 + 5301.0394 \$^3 + 6769.8305 \$^2 + 87.0037 <math>\$
FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION
-1.9544 S(S - 114.0811)(S + 2.7307)(S + 0.1253)
_______
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
 SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = 0.877043
POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION
+ 11.6041 \$^4 + 2445.8956 \$^3 + 3053.5834 \$^2 - 20.3121 \$
 + 873.6315 S^5 + 1380.7964 S^4 + 5301.0394 S^3 + 6769.8305 S^2 + 87.0037 S
FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION
11.6041 S(S \sim 0.0066)(S + 209.5221)(S + 1.2626)
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
 SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -0.233463
POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION
+ 8538.5611 s^3 + 2951.7568 s^2 + 43861.6068 s
 + 873.6315 S^5 + 1380.7964 S^4 + 5301.0394 S^3 + 6769.8305 S^2 + 87.0037 S
FACTORED ROLL TO AILERON TRANSFER FUNCTION
8538.5611 S(S^2 + 0.3457 S + 5.1369)
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
 ROLL TO AILERON TRANSFER FUNCTION K_gain = 504.134977
```

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
 + 1508.1220 S^3 - 639.4342 S^2 - 38337.1395 S
 + 873.6315 S^5 + 1380.7964 S^4 + 5301.0394 S^3 + 6769.8305 S^2 + 87.0037 S
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
1508.1220 S(S - 5.2583)(S + 4.8343)
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
 ROLL TO RUDDER TRANSFER FUNCTION K_gain = -440.638051
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
 -220.2790 \text{ s}^3 - 358.7315 \text{ s}^2 - 44.7945 \text{ s} + 1584.5260
 + 873.6315 s^5 + 1380.7964 s^4 + 5301.0394 s^3 + 6769.8305 s^2 + 87.0037 s^4 + 87.0037
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-220.2790 (S - 1.4872)(S<sup>2</sup> + 3.1157 S + 4.8369)
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
 HEADING TO AILERON TRANSFER FUNCTION K_gain = 18.212169
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
 - 2428.6583 s^3 - 3160.9790 s^2 - 203.2968 s - 1388.3758
______
 + 873.6315 S^5 + 1380.7964 S^4 + 5301.0394 S^3 + 6769.8305 S^2 + 87.0037 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-2428.6583 (S + 1.4998)(S<sup>2</sup> + -0.1983 S + 0.3811)
873.6315 S(S + 1.3366)(S + 0.0130)(S^2 + 0.2309 S + 5.7388)
```

Appendix B 542

HEADING TO RUDDER TRANSFER FUNCTION K_gain = -15.957664

Table B10 Stability and Control Derivatives for Airplane J (Pages 543–549)

Three-view

Reference Geometry

S (ft²) 5,500 c (ft) 27.3 b (ft) 196

Flight Condition Data	Approach	Cruise (low)	Cruise (high)
Altitude, h (ft) Mach Number, M TAS, U ₁ (ft/sec)	0 0.198 221	20,000 0.650 673	40,000 0.900 871
Dynamic pressure, \overline{q} (lbs/ft ²) C.G. location, fraction \overline{c}	58.0 0.25	287.2 0.25	222.8 0.25
Angle of attack, α_1 (deg)	8.5	2.5	2.4
Mass Data			
W (lbs)	564,000	636,636	636,636
I_{xx_R} (slugft2)	13,700,000	18,200,000	18,200,000
I _{yy_B} (slugft ²)	30,500,000	33,100,000	33,100,000
I _{zz_B} (slugft ²)	43,100,000	49,700,000	49,700,000
I _{XZ_B} (slugft2)	830,000	970,000	970,000