Zadanie 1.

Portfel składa się z 990 niezależnych, identycznych ryzyk. Dla każdego z nich ilość szkód ma rozkład Poissona z parametrem częstotliwości 0.1, a wartość pojedynczej szkody ma zawsze (niezależnie od ilości i wartości ewentualnych innych szkód) rozkład wykładniczy o wartości oczekiwanej równej jeden.

Uznano, iż rozkład łącznej wartości szkód z portfela ma zbyt wysoki współczynnik skośności (stosunek trzeciego momentu centralnego do sześcianu odchylenia standardowego). Rozważa się odstąpienie reasekuratorowi nadwyżki każdej szkody z portfela ponad *d*, co w efekcie spowoduje zmniejszenie współczynnika skośności.

Wskaż taką wartość d > 0, dla której współczynnik skośności wyniesie 0.1

- (A) 2
- (B) 1
- (C) 0.5
- (D) 0.1
- (E) takie d > 0 nie istnieje

Zadanie 2.

Zmienna losowa X przyjmuje wartości nieujemne – tzn. $\Pr(X < 0) = 0$. Dla dwóch punktów d_1 i d_2 takich, że $0 < d_1 < d_2$ znamy wartości dystrybuanty $F_X(d_i)$ oraz wartości oczekiwane nadwyżki zmiennej X ponad odpowiednie d_i . Nasze dane zawarte są w tabeli:

i	d_{i}	$F_X(d_i)$	$E((X-d_i)_+)$
1	8	0.25	10.0
2	10	0.50	8.6

Oblicz warunkową wartość oczekiwaną $E(X/X \in (8, 10])$.

(A)
$$E(X/X \in (8, 10]) = 8.4$$

(B)
$$E(X/X \in (8, 10]) = 8.8$$

(C)
$$E(X/X \in (8, 10]) = 9.2$$

(D)
$$E(X/X \in (8, 10]) = 9.6$$

(E)
$$E(X/X \in (8, 10]) = 10$$

Zadanie 3.

W pewnym ubezpieczeniu może zajść co najwyżej jedna szkoda (z jednej polisy) w ciągu roku. Pojedynczy ubezpieczony generuje szkody w kolejnych latach niezależnie, ciągle z tym samym prawdopodobieństwem q. Dla losowo wybranego ubezpieczonego z populacji "jego q" jest realizacją zmiennej losowej Q. Zmienna losowa Q ma rozkład beta dany na odcinku (0,1) gęstością:

$$f_{\mathcal{Q}}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot x^{\alpha - 1} \cdot (1 - x)^{\beta - 1}$$

z parametrami $\alpha = 2$, $\beta = 8$.

Niech *N* oznacza zmienną losową wyrażającą ilość szkód wygenerowaną przez (losowo wybranego z populacji) ubezpieczonego w ciągu trzech kolejnych lat ubezpieczenia.

Oblicz prawdopodobieństwo przyjęcia wartości środkowych: Pr(N = 1) + Pr(N = 2).

(A)
$$Pr(N = 1) + Pr(N = 2) = \frac{24}{55}$$

(B)
$$Pr(N = 1) + Pr(N = 2) = \frac{153}{5 \cdot 5 \cdot 11}$$

(C)
$$Pr(N = 1) + Pr(N = 2) = \frac{48}{125}$$

(D)
$$Pr(N = 1) + Pr(N = 2) = \frac{8}{55}$$

(E)
$$Pr(N = 1) + Pr(N = 2) = \frac{16}{125}$$

Zadanie 4.

Niech:

- $\bullet \qquad S = Y_1 + \ldots + Y_N ,$
- $\bullet \quad N = M_1 + ... + M_K,$

oraz wszystkie zmienne $Y_1,Y_2,..., M_1,M_2,...$ oraz K są nawzajem niezależne.

Zmienna K ma rozkład Poissona z parametrem częstotliwości 0.2.

Zmienne M_1, M_2, \dots mają identyczny rozkład Poissona z parametrem częstotliwości 0.5

Zmienne $Y_1,Y_2,...$ mają identyczny rozkład z wartością oczekiwaną m_1 i momentem zwykłym drugiego rzędu m_2 .

Wariancja zmiennej S wynosi:

(A)
$$VAR(S) = 0.1m_2 + 0.02m_1^2$$

(B)
$$VAR(S) = 0.1m_2 + 0.03m_1^2$$

(C)
$$VAR(S) = 0.1m_2 + 0.04m_1^2$$

(D)
$$VAR(S) = 0.1m_2 + 0.05m_1^2$$

(E)
$$VAR(S) = 0.1m_2 + 0.06m_1^2$$

Zadanie 5.

Łączna wartość szkód w pewnym portfelu ryzyk: $S = Y_1 + ... + Y_N$, ma złożony rozkład Poissona, gdzie E(N) = 10 i rozkład wartości pojedynczej szkody Y jest taki, że:

- $E(Y^2) < \infty$, $E[(Y-10)_+] = 10$

Niech teraz zmienna $S_{\scriptscriptstyle R}\,$ oznacza łączną wartość nadwyżek każdej ze szkód ponad wartość 10, pokrywaną przez reasekuratora:

•
$$S_R = (Y_1 - 10)_+ + \dots + (Y_N - 10)_+,$$

zaś zmienna $S_U = S - S_R$ oznacza pozostałą na udziale własnym ubezpieczyciela kwotę, a więc:

•
$$S_U = \min\{Y_1, 10\} + \ldots + \min\{Y_N, 10\}.$$

Ile wynosi $COV(S_R, S_U)$?

(A)
$$COV(S_R, S_U) = 100$$

(B)
$$COV(S_R, S_U) = 200$$

(C)
$$COV(S_R, S_U) = 500$$

(D)
$$COV(S_R, S_U) = 1000$$

(E) brakuje danych do udzielenia odpowiedzi

Zadanie 6.

Łączna wartość szkód X w pewnym ubezpieczeniu rocznym ma rozkład złożony:

$$X = Y_1 + ... + Y_N$$
 $(X = 0 \text{ gdy } N = 0)$

gdzie ilość szkód *N* ma pewien rozkład określony ma liczbach naturalnych z zerem. Rozkład wartości pojedynczej szkody *Y* jest rozkładem ciągłym.

Oznaczmy przez F prawdopodobieństwo:

$$F = \Pr(Y \le c)$$

dla pewnej ustalonej liczby c. Załóżmy że 0 < F < 1.

Niech Z oznacza łączną wartość szkód zgłoszonych, przy następującej strategii zgłaszania szkód przez ubezpieczonego:

- ubezpieczony wstrzymuje się od zgłaszania szkód do momentu, do którego wartość pewnej szkody nie przekroczy liczby *c*;
- jeśli do takiej szkody dojdzie, ubezpieczony ją zgłasza, i zgłasza także wszystkie następne szkody (które ewentualnie przed końcem roku się zdarzą) bez względu na ich wysokość.

Zakładamy przy tym, że szkody pojawiają się sekwencyjnie (niemożliwe jest zajście dwóch szkód w tym samym momencie czasu), decyzje o zgłoszeniu lub niezgłoszeniu podejmowane są natychmiast, i mają charakter nieodwołalny.

Przy ustalonej wartości n takiej, że n > 0 oraz Pr(N = n) > 0 E(Z/N = n) dane jest wzorem (wybierz poprawną odpowiedź):

(A)
$$E(Z/N = n) = E(Y/Y > c) \cdot (1 - F^n) + E(Y) \cdot \sum_{k=1}^{n-1} (1 - F^k)$$

(B)
$$E(Z/N = n) = E(Y/Y > c) \cdot (1 - F^n) + E(Y) \cdot \sum_{k=1}^{n} (1 - F^k)$$

(C)
$$E(Z/N = n) = E(Y/Y > c) + E(Y) \cdot \sum_{k=1}^{n-1} (1 - F^k)$$

(D)
$$E(Z/N = n) = E(Y/Y > c) + E(Y) \cdot \sum_{k=1}^{n} (1 - F^{k})$$

(E)
$$E(Z/N = n) = E(Y) \cdot \sum_{k=1}^{n} (1 - F^{k})$$

. . .

Zadanie 7.

Zmienna losowa $L = l_1 + l_2 + ... + l_N$

ma złożony rozkład geometryczny taki, że:

$$Pr(N = k) = (1 - q) \cdot q^{k}, \qquad k = 0,1,2,...$$

zaś pojedynczy składnik l_i sumy L ma rozkład wykładniczy.

Rozkład warunkowy zmiennej losowej L pod warunkiem, że L>0 jest oczywiście rozkładem ciągłym określonym na półosi dodatniej. Oznaczmy jego dystrybuantę symbolem $F_{L/L>0}$.

 $F_{L/L>0}$ jest dystrybuantą rozkładu:

- (A) Gamma (α, β) o parametrze $\alpha < 1$ (tzn. o wariancji większej niż kwadrat wartości oczekiwanej)
- (B) Gamma (α, β) o parametrze $\alpha > 1$ (tzn. o wariancji mniejszej niż kwadrat wartości oczekiwanej)
- (C) wykładniczego
- (D) innego niż wykładniczy, ale o wariancji równej kwadratowi wartości oczekiwanej
- (E) innego niż Gamma, ale o wariancji większej niż kwadrat wartości oczekiwanej

Zadanie 8.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

 $U_n = u + c \cdot n - S_n, \quad n = 0,1,2,...$

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych o identycznym rozkładzie, gdzie:

- nadwyżka początkowa *u* jest nieujemna,
- składka c jest większa od wartości oczekiwanej przyrostu szkód W_i ,
- moment centralny trzeciego rzędu przyrostu szkód $\mu_3(W_i)$ jest dodatni ale skończony.

Rozważmy funkcję:

• $\Psi_{dV}(u, c, E(W_i), VAR(W_i), \mu_3(W_i))$

przypisującą procesowi nadwyżki spełniającemu ww. założenia prawdopodobieństwo ruiny aproksymowane **metodą deVyldera**.

Oznaczmy przez:

- Ψ_{dV} (1) wartość tak uzyskanej aproksymacji dla procesu o parametrach $(u, c, \mu, \sigma^2, \mu_3)$, zaś przez:
- $\Psi_{dV}(2)$ wartość tak uzyskanej aproksymacji dla procesu o parametrach $(2u, 2c, 2\mu, 2\sigma^2, 2\mu_3)$

Zachodzi równość (wybierz poprawną odpowiedź):

(A)
$$\Psi_{dV}(2) = [\Psi_{dV}(1)]^2$$

(B)
$$\Psi_{dV}(2) = \left(1 + \frac{2(c-\mu)}{\sigma^4} \cdot \frac{\mu_3}{3}\right) \cdot \left[\Psi_{dV}(1)\right]^2$$

(C)
$$\Psi_{dV}(2) = \left(1 + \frac{(c - \mu)}{\sigma^4} \cdot \mu_3\right) \cdot \left[\Psi_{dV}(1)\right]^2$$

(D)
$$\Psi_{dV}(2) = \left(1 + \frac{2(c-\mu)}{\sigma^2} \cdot \frac{\mu_3}{3}\right) \cdot \left[\Psi_{dV}(1)\right]^2$$

(E)
$$\Psi_{dV}(2) = \left(1 + \frac{(c - \mu)}{\sigma^2} \cdot \mu_3\right) \cdot \left[\Psi_{dV}(1)\right]^2$$

Uwaga: **metoda de Vyldera** polega na tym, iż Ψ_{dV} wyznaczamy jako dokładne prawdopodobieństwo ruiny dla procesu aproksymującego $U_{dV}(t)$, w którym szkody pojawiają się zgodnie z procesem Poissona, ich rozkład jest wykładniczy (β_{dV}) , zaś parametry procesu aproksymującego $(\theta_{dV}, \lambda_{dV}, \beta_{dV})$ są tak dobrane, aby przyrosty procesu aproksymującego i przyrosty procesu aproksymującego i przyrosty procesu aproksymowanego miały takie same momenty trzech pierwszych rzędów.

Zadanie 9.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

$$U_n = u + (c - d \cdot u) \cdot n - S_n, \quad n = 0,1,2,...$$

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych normalnych. Dokładniej, przyjmujemy że:

- $W_i \sim N(\mu, \sigma^2), \ \sigma^2 > 0$
- *u* to nadwyżka początkowa
- d to stopa dywidendy wypłacanej corocznie akcjonariuszom (kwota wypłacanej corocznie dywidendy wynosi $d \cdot u$)

Składkę c kalkulujemy jako sumę trzech składników:

$$c(u) = \mu + RiskLoading(u) + d \cdot u$$
,

wyznaczając równocześnie wysokość kapitału początkowego *u* w taki sposób, aby składka była na konkurencyjnym poziomie (czyli jak najmniejsza).

Składnik RiskLoading(u) wyznaczamy w taki sposób, aby zagwarantować iż prawdopodobieństwo ruiny nie przekroczy wartości $\exp(-2)$. Posługujemy się przy tym dla prostoty górnym ograniczeniem Lundberga na funkcję prawdopodobieństwa ruiny.

Przyjmijmy założenie liczbowe:

$$d = 4\%$$

Niech c^* oznacza najmniejszą (na zbiorze $u \ge 0$) wartość składki c(u).

 c^* wynosi:

(A)
$$c^* = \mu + 0.2 \cdot \sigma$$

(B)
$$c^* = \mu + 0.3 \cdot \sigma$$

(C)
$$c^* = \mu + 0.4 \cdot \sigma$$

(D)
$$c^* = \mu + 0.5 \cdot \sigma$$

(E)
$$c^* = \mu + 0.6 \cdot \sigma$$

Zadanie 10.

Zmienne losowe $X_0, X_1, X_2,...$ mają złożone rozkłady Poissona.

Dla każdego j = 0,1,2,...:

- $X_j = Y_j(1) + Y_j(2) + ... + Y_j(N_j)$ oznacza łączną wartość szkód zaszłych w pewnym miesiącu i zlikwidowanych w j miesięcy później,
- N_j oznacza ilość ww. szkód, i jest zmienną losową o rozkładzie Poissona o wartości oczekiwanej równej $\lambda \cdot r_i$,
- zmienne $Y_j(1), Y_j(2), ..., Y_j(N_j)$ są niezależne nawzajem oraz od zmiennej N_j , i mają identyczny rozkład o wartości oczekiwanej równej $m \cdot w^j$.

Zakładamy że parametry λ oraz m są dodatnie, zaś o parametrach w oraz r_0, r_1, r_2, \ldots przyjmujemy konkretne założenia liczbowe:

- w = 1.400, oraz:
- $r_j = \frac{2^j}{j!} \cdot \exp(-2)$, j = 0,1,2,...

Stosunek oczekiwanej łącznej wartości szkód zlikwidowanych z opóźnieniem $j \le 2$ do oczekiwanej łącznej wartości wszystkich szkód:

$$\frac{E(X_0) + E(X_1) + E(X_2)}{\sum_{i=0}^{\infty} E(X_i)}$$

wynosi:

- (A) 0.677
- (B) 0.623
- (C) 0.570
- (D) 0.518
- (E) 0.469

Egzamin dla Aktuariuszy z 15 czerwca 2002 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko K L U C Z	ODPOWIEDZI
Docal_	

Zadanie nr	Odpowiedź	Punktacja*
1	Е	
2	D	
3	A	
4	D	
5	D	
6	A	
7	C	
8	В	
9	C	
10	Е	
	_	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.