

ECM304 CIRCUITOS ELÉTRICOS

1

■ Potência em RPS

- Definições
- Potência Média, Ativa, Real ou Útil
- Potência Aparente
- □ Fator de Potência
- Potência Reativa
- Casos particulares: resistor, indutor e capacitor

Potência em um bipolo alimentado com v(t)

$$p(t) = v(t) i(t) \quad [W = V.A]$$

Para v(t) senoidal

$$v(t) = \sqrt{2} V_{ef} \cos (\omega t + \theta_v) \implies \dot{V} = V_{ef} | \theta_v$$

$$\dot{I}(t) = \sqrt{2} I_{ef} \cos (\omega t + \theta_i)$$
 \Rightarrow $\dot{I} = I_{ef} | \underline{\theta_i}$

onde
$$\varphi = \theta_v - \theta_i$$

3

$$\dot{V} = V_{ef} | \underline{\theta_{v}}$$

$$\dot{I} = I_{ef} | \underline{\theta_{i}}$$

$$\varphi = \theta_{v} - \theta_{i}$$

$$\dot{\mathbf{Z}} = |\dot{\mathbf{Z}}| | \underline{\boldsymbol{\varphi}}$$

Se $0 < \varphi \le \frac{\pi}{2}$ \Rightarrow Corrente atrasada em relação à tensão

 \Rightarrow Bipolo Indutivo

Se $-\frac{\pi}{2} \le \varphi < 0 \Rightarrow$ Corrente adiantada (em avanço) em relação à tensão \Rightarrow Bipolo Capacitivo

Se $\varphi = 0$ \Rightarrow Corrente em fase com a tensão

 \Rightarrow Bipolo Puramente Resistivo

- Sistema RPS
 - □ Pode-se escolher qualquer referência conveniente de ângulo para t=0
 - No entanto, sem perda de generalidade, vamos supor:

$$\begin{split} i(t) &= \sqrt{2} \; I_{ef} \cos \; (\omega t) \; \Rightarrow \quad \dot{I} = \; I_{ef} \; | \; \underline{0} \\ \dot{Z} &= \; \left| \dot{Z} \right| \; | \; \underline{\varphi} \qquad \Rightarrow \quad \dot{V} = \; V_{ef} \; | \; \underline{0 + \varphi} \qquad \Rightarrow \quad v(t) = \sqrt{2} \; V_{ef} \cos \; (\omega t + \varphi) \end{split}$$

Logo:

$$p(t) = 2 V_{ef} I_{ef} \cos (\omega t) \cos (\omega t + \varphi)$$

$$p(t) = 2 V_{ef} I_{ef} \cos (\omega t) \cos (\omega t + \varphi) \qquad E \begin{cases} \cos(a+b) = \cos a \cos b - \sin a \sin b \\ \cos(a-b) = \cos a \cos b + \sin a \sin b \\ \cos a \cos b = \frac{1}{2} \cos(a+b) + \frac{1}{2} \cos(a-b) \end{cases}$$

$$p(t) = 2 V_{ef} I_{ef} \frac{1}{2} \left\{ \cos[\omega t - (\omega t + \varphi)] + \cos(2\omega t + \varphi) \right\}$$

$$p(t) = V_{ef} I_{ef} \cos\varphi + V_{ef} I_{ef} \cos(2\omega t + \varphi) \qquad [W]$$

$$\Rightarrow \begin{cases} V_{ef} I_{ef} \cos\varphi & \Rightarrow \text{parcela constante} \\ V_{ef} I_{ef} \cos(2\omega t + \varphi) & \Rightarrow \text{parcela flutuante} \end{cases}$$

6

$$p(t) = 2 V_{ef} I_{ef} \frac{1}{2} \left\{ \cos[\omega t - (\omega t + \varphi)] + \cos(2\omega t + \varphi) \right\}$$

$$p(t) = V_{ef} I_{ef} \cos \varphi + V_{ef} I_{ef} \cos(2\omega t + \varphi)$$
 [W

Potência instantânea, tensão e corrente em função de
 øt para um circuito em regime permanente senoidal

$$p(t) = 2 V_{ef} I_{ef} \frac{1}{2} \left\{ cos[\omega t - (\omega t + \varphi)] + cos(2\omega t + \varphi) \right\}$$

$$p(t) = V_{ef} I_{ef} \cos \varphi + V_{ef} I_{ef} \cos(2\omega t + \varphi)$$
 [W]

Notar que:

- □ A frequência da potência instantânea é duas vezes a frequência da tensão ou da corrente;
- A potência pode ser negativa em parte do ciclo, ainda que a rede seja passiva. Em uma rede completamente passiva, a potência negativa implica que a energia armazenada nos indutores/capacitores seja fornecida para a rede;
- O fato da potência instantânea variar ao longo do tempo, provoca vibração, por exemplo, em motores

POTÊNCIA ATIVA

Potência MÉDIA, ATIVA, REAL ou ÚTIL

$$p(t) = V_{ef} I_{ef} \cos \varphi + V_{ef} I_{ef} \cos(2\omega t + \varphi)$$

$$P = P_m = \frac{1}{T} \int_0^T p(t) dt$$

 \square O termo $\cos(2\omega t + \varphi)$ possui valor médio nulo, logo:

$$P = V_{ef} I_{ef} cos \varphi$$
 [W]

Esta grandeza (P), é a potência que é convertida de uma forma elétrica para uma forma não elétrica

POTÊNCIA APARENTE

9

- Potência APARENTE
 - Representa a potência total disponível para fornecer a potência média desejada

$$P_{ap} = V_{ef} I_{ef}$$
 [VA]

FATOR DE POTÊNCIA

- □ FATOR DE POTÊNCIA FP
 - É definido operacionalmente para regime permanente periódico, mas não necessariamente senoidal por:

$$FP = \frac{P}{V_{ef} I_{ef}} = \frac{P}{P_{ap}}$$

FATOR DE POTÊNCIA

11

□ FP em RPS

$$FP = \frac{P}{P_{ap}} = \frac{V_{ef} \ I_{ef} \ cos\varphi}{V_{ef} \ I_{ef}}$$

$$FP = cos\varphi$$

 \square Sendo arphi, também chamado <u>ângulo de potência</u>

$$\varphi = |\underline{\dot{Z}}|$$

FATOR DE POTÊNCIA

- lacksquare Dado apenas $FP = \cos \varphi$:
 - □ Não é possível determinar diretamente se φ >0 ou φ <0 (cos (φ) = cos (- φ))

- Utiliza-se a seguinte nomenclatura:
 - □ Fator de potência atrasado ou indutivo ⇒ circuito indutivo ⇒ corrente atrasada em relação à tensão;
 - □ Fator de potência adiantado, ou em avanço, ou capacitivo ⇒ circuito capacitivo ⇒ corrente adiantada em relação à tensão.

POTÊNCIA REATIVA

13

Potência REATIVA

Sendo:
$$p(t) = V_{ef} \ l_{ef} \cos \varphi + V_{ef} \ l_{ef} \cos (2\omega t + \varphi)$$

$$e$$

$$\cos (a+b) = \cos a \ \cos b - \sin a \ \sin b$$

$$p(t) = V_{ef} \ l_{ef} \cos \varphi + V_{ef} \ l_{ef} \left[\cos (2\omega t) \ \cos (\varphi) - \sin (2\omega t) \sin (\varphi)\right]$$

$$p(t) = V_{ef} \ l_{ef} \cos \varphi + V_{ef} \ l_{ef} \cos \varphi \cos 2\omega t - V_{ef} \ l_{ef} \sin \varphi \sin 2\omega t$$

$$p(t) = V_{ef} \ l_{ef} \cos \varphi \ (1 + \cos 2\omega t) - V_{ef} \ l_{ef} \sin \varphi \sin 2\omega t$$

$$p(t) = P(1 + \cos 2\omega t) - Q \sin 2\omega t$$

POTÊNCIA REATIVA

Para a expressão

$$p(t) = P(1 + \cos 2\omega t) - Q \sin 2\omega t$$

- \Box P (1+cos 2 ω t)
 - \triangleright Valor máximo 2 $V_{ef} I_{ef} \cos \varphi$
 - Potência realmente fornecida ao bipolo
- \square Q sen $2\omega t \rightarrow$ propriedades:
 - Valor médio nulo;
 - Pode ser positivo ou negativo;
 - Pode ser considerada como uma potência que "vai e vem" entre o Bipolo e o gerador que o alimenta.

MAUÁ

Potência REATIVA

Para caracterizar a troca continuada de energia entre o gerador e o bipolo, dada por Q sen 2\omegat, define-se a potência reativa por:

$$Q = V_{ef} I_{ef} sen \varphi \quad [VAR, kVAR]$$

Que é igual à amplitude da POTÊNCIA

ALTERNANTE

POTÊNCIA REATIVA

16

Potência REATIVA

- Não é uma potência no sentido físico
- Unidade para sua medida: VOLT-AMPÈRE REATIVO (VAR)

$$\varphi = |\underline{\dot{Z}}| \Rightarrow \begin{cases} Q > 0 \Rightarrow \text{ para bipolos indutivos} \\ Q < 0 \Rightarrow \text{ para bipolos capacitivos} \end{cases}$$

17

Potência REATIVA

Como:

$$\left. \begin{array}{l} P = V_{ef} \; I_{ef} \; \cos \varphi \\ Q = V_{ef} \; I_{ef} \; \sin \varphi \end{array} \right\} \quad \Rightarrow P^2 + Q^2 = V_{ef}^2 \; I_{ef}^2 = P_{ap}^2 \label{eq:power_power}$$

Então, a potência aparente pode ser calculada por:

$$P_{ap} = \sqrt{P^2 + Q^2}$$

Potência no RESISTOR

$$\varphi = 0 \Rightarrow FP = 1 \Rightarrow Q = 0$$

$$p(t) = P (1 + \cos 2\omega t) \Rightarrow P = V_{ef} I_{ef} 1 = P_{ap}$$

- A potência instantânea vai de 0 a (2 V_{ef} I_{ef})
- □ É sempre positiva
- □ Em todos os instantes a potência é absorvida pelo bipolo

19

■ Potência no RESISTOR

Potência instantânea e potência média para um circuito puramente resistivo.

20

PotêncianoRESISTOR

- * Toda a energia elétrica é dissipada
- * A frequência da potência é o dobro

Potência no INDUTOR

 $\varphi = +90^{\circ}$ \Rightarrow tensão e corrente defasada de 90° $\cos \varphi = FP = 0$ $\Rightarrow P = 0$ $p(t) = -Q \sec 2\omega t$ $Q = V_{ef} I_{ef} \sec 90^{\circ} \Rightarrow Q = V_{ef} I_{ef} > 0$

- □ Carga puramente indutiva (reativa) a potência ativa (média) é nula
- Não ocorre nenhuma transferência de energia elétrica para outra forma de energia

22

Potência no INDUTOR

 \square A potência instantânea varia entre $+(V_{ef} I_{ef})$ e -(Vef lef), com frequência 2ω

Potência instantânea, potência média e potência reativa para um circuito puramente indutivo.

Potência no INDUTOR

- □ A potência instantânea é continuamente permutada entre o circuito e a fonte que o excita.
- □ A cada $\frac{1}{2}$ ciclo o bipolo devolve ao gerador a energia a ele fornecida, no $\frac{1}{2}$ ciclo anterior
- Quando p(t)>0 a energia está sendo armazenada no campo magnético do elemento indutor
- Quando p(t)<0 a energia está sendo extraída do campo magnético
- Uma medida de potência associada a circuitos puramente indutivos é a potência reativa Q

24

PotêncianoINDUTOR

25

Potência no CAPACITOR

$$\varphi = -90^{\circ}$$
 \Rightarrow corrente adiantada de 90° em relação à tensão)
Potência instantânea: $p(t) = -Q$ sen $2\omega t$
 $\cos \varphi = \cos(-90^{\circ}) = FP = 0 \Rightarrow P = 0$
 $Q = V_{ef} I_{ef} sen (-90^{\circ}) \Rightarrow Q = -V_{ef} I_{ef} < 0$

□ "A energia que o capacitor acumula, ele devolve"

26

■ Potência no CAPACITOR

Potência instantânea, potência média e potência reativa para um circuito puramente capacitivo.

27

- Potência no CAPACITOR
 - Analogamente ao indutor, P=0
 - Não há transferência de energia elétrica em outra forma de energia
 - □ Em um circuito capacitivo a potência é continuamente permutada entre a fonte que excita o circuito e o campo elétrico associado aos elementos capacitivos

28

Potência no CAPACITOR

