Конспект по алгебре за I семестр бакалавриата Чебышёва СПбГУ (лекции Степанова Алексея Владимировича)

November 12, 2019

Contents

1	Лин	ейная алгебра. Векторные пространства	2
	1.1	Лекция 1	2
	1.2	Лекция 2	4
	1.3	Лекция 3	5
		1.3.1 Произведение матриц	6
	1.4	Лекция 4	6
	1.5	Лекция 5	9
	1.6	Лекция 6	9
	1.7	Лекция 7	9
	1.8	Лекция 8	9
	1.9	Лекция 9	11
	1.10	Лекция 10	14
	1.11	Лекция 11	15
	1.12	Лекция 12	17
		Лекция 13	20
		Лекция 14	20
2	Нач	ала теории групп	23
	2.1	Лекция 15	23
	2.2	Лекция 16	24
	2.3	Лекция 17	26
	2.4	Лекция 18	28
	2.5	Лекция 19	30
		2.5.1 Поговорим о комутаторах	30
		2.5.2 Возвращаемся к матрицам	31
	2.6	Лекция 20	32
		2.6.1 Симметрическая группа	32

Chapter 1

Линейная алгебра. Векторные пространства

1.1 Лекция 1

X - множество $*: X \times X \to X$ $(x,y) \mapsto x * y$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e*a = a*e = a \ ($ нейтральный элемент)
- 3. $\forall a \in X \; \exists a' \in X : a*a' = a'*a = e \; \; (\text{обратный элемент})$
- 4. $\forall a,b \in X: a*b=b*a$ (коммутативность)

Определение 1. Множество X с операцией * , удовлетворяющее аксиоме 1, называется **полугруппой**

Определение 2. Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется **моноидом**

Определение 3. Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется **группой**

Определение 4. Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Примеры.

- 1. (ℤ, +) группа
- 2. $(\mathbb{N},+)$ полугруппа

3.
$$(\mathbb{N}_0, +)$$
 – моноид

4.
$$(\mathbb{R}\setminus\{0\},\cdot)$$
 – группа

5. Пусть A - множество

X:= множество биективных отображений $A \to A$

 id_A – нейтральный элемент

Если
$$f(x)=y$$
, то $\tilde{f}(y)=x$ – обратная функция $(f\circ \tilde{f}=\tilde{f}\circ f=id_A).$

$$f(x) = x + 1, g(x) - 2x, id_A(x) = x$$

$$f \circ g(x) = f(g(x)) = f(2x) = 2x + 1$$

$$g \circ f(x) = g(f(x)) = g(x+1) = 2x + 2 \neq 2x + 1$$

Следовательно, (X, \circ) – не коммутативная группа

Обозначение.

- · мультипликативность, $1, x^{-1}$
- + аддитивность, 0, -x
- \circ относительно композиции, id, x^{-1}
- * абстрактная операция, e, x^{-1}

Пусть (R,+) – абелева группа

Определим отображение

$$\cdot: R \times R \to R$$

$$(a,b) \mapsto a \cdot b$$

Для $(R,+,\cdot)$ могут быть верны следующие аксиомы:

5.
$$a(b+c) = ab + ac$$

 $(b+c)a = ba + ca$ (дистрибутивность)

6.
$$a(bc) = (ab)c$$
 (ассоциативность)

7.
$$\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a \; ($$
нейтральный элемент $)$

9.
$$0_R \neq 1_R$$

10.
$$\forall a \neq 0_R \; \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R \; (\text{обратный элемент})$$

Определение 5. $(R, +, \cdot)$, удовлетворяющее аксиоме 5, называется не ассоциативным кольцом без единицы.

Определение 6. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-6, называется ассоциативным кольцом без единицы.

Определение 7. $(R, +, \cdot)$, удовлетворяющее аксиоме 5-7, называется **ассоциативным** кольцом с единицей.

Определение 8. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-8, называется коммутативным кольцом.

Примеры.

- 1. \mathbb{Z} -коммутативное кольцо
- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n = 0, \ldots, n-1$ с операциями $+_n, \cdot_n$: $a +_n b = (a+b)\%n$ $a \cdot_n b = (a \cdot b) \% n$ Обратимые элементы: ax = 1 + ny

$$ax = 1 + ny$$

$$ax - ny = 1$$

Если (a,n)=1, есть решение, иначе – нет. \mathbb{Z}_p – поле $\Leftrightarrow p\in\mathbb{P}$

1.2 Лекция 2

Определение 9. V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V \times F \to V$ $(x,\alpha)\mapsto x\cdot\alpha$, удовлетворяющее аксиомам $\forall x,y\in V, \forall a,b\in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x+y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

$$A \in M_n(F), \alpha \in F$$
$$(A, \alpha)_{ij} = a_{ij} \cdot \alpha$$
$$(AB)\alpha = A(B\alpha)$$

Примеры.

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \mid a_{i} \in F \right\}$$
$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

3.
$$X$$
 - множество, $F^X = \{f \mid f: X \to F\}$ $f,g: X \to F$ $(f+g)(x) = f(x) + g(x)$ $(f\alpha)(x) = f(x)\alpha$

- 4. F[t] многочлены от одной переменной t
- 5. V абелева группа, в которой $\forall a \in V: \underbrace{a+a+\ldots+a}_{n \in \mathbb{P}} = 0$ Тогда V векторное пространство над $\mathbb{Z}_p \ k \cdot a = \underbrace{a + \ldots + a}_k$

1.3 Лекция 3

Определение 10. Алгебра A над полем F – кольцо, являющееся векторным пространством над F ("+" - операция в кольце и в векторном пространстве), такое что $(ab)\alpha =$ $a, b \in A, \alpha \in F$ $a(b\alpha)$

Пример. $(\mathbb{R}^3, +, \times)$ - не ассоциативная алгебра на \mathbb{R}

Определение 11. Матрица размера $I \times J$ (I, J - множества индексов) над множеством X - это функция

$$A: I \times J \to X, \qquad (i,j) \to a_{ij}.$$

Пусть определено умножение $X \times Y \to Z, \qquad (x,y) \to xy$ (Z - коммутативный моноид относительно "+")

Определение 12. Строка - матрица размера $\{1\} \times J$ Столбец - матрица размера $J \times \{1\}$

A - строка длины J над X

B - строка длины J над Y

Тогда произведение $AB = \sum\limits_{j \in J} a_{1j} b_{j1} \in Z$

 $x \to x_e$ - координаты вектора x

$$x \cdot y = x_e^T \cdot y_e$$

 $\underbrace{x \cdot y}_{\text{скалярное произведение}}$

Определение 13. Транспонирование матрицы.

D - матрица $I \times J$ над X

$$D^{T}$$
 - матрица $J \times I$ над $X : (D^{T})_{ij} = (D)_{ji}$

Замечание. Пусть в X есть элемент $0:0\cdot y=0\quad \forall y\in Y$. Все кроме конечного числа $a_i = 0$. Тогда AB имеет смысл, даже когда $|J| = \infty$. "почти все" = кроме конечного количества

Обозначение.

$$a_{i*}$$
 - i -я строка матрицы A a_{*j} - j -й столбец матрицы A

1.3.1 Произведение матриц

$$A$$
 - матрица $I \times J$ над X .

$$B$$
 - матрица $J \times K$ над Y .

$$AB$$
 - матрица $I \times K$ над $Z = X \cdot Y$, $(AB)_{ik} = a_{i*} \cdot b_{*k} = \sum_{j \in J} a_{ij} \cdot b_{jk}$.

$$(x_1, \dots x_n) \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = va, \qquad v \in V, a \in F.$$

1.4 Лекция 4

Определение 14. (G,*), (H,#)– группа $\varphi: G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Определение 15. R, S -кольца $\varphi : R \to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с $1:\varphi(1)=1$

Определение 16. U, V - векторные пространства над F $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$
$$\varphi(u\alpha) = \varphi(u)\alpha$$

Замечание. Изоморфизм – биективный гомоморфизм.

Определение 17. V - векторное пространство над полем F v - строка элементов "длины" I над V a - столбец "высоты" I, почти все элементы которого равны 0. Тогда va - линейная комбинация набора v с коэффициентами .

3амечание. $U \subset V$

Uявляется векторным пространством относительно тех же операций, которые заданы в V. Тогда U - подпространство V

Лемма. $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F$:

 $u_1+u_2\in U, u_1\alpha\in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U\subseteq V$.

Определение 18. $v = \{v_i | i \in I\}$, где $v_i \in V \ \forall i \in I$

< v > - наименьшее подпространство, содержащее все v_i

Лемма. $< v> = \{va|a-$ столбец высоты I над F, где почти всюду элементы равны нулю $\}=U$

Доказательство. $v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$

 $\Rightarrow v_{i_1} a_{i_1} a + \dots + v_{i_k} a_{i_k} \in \langle v \rangle$

 $\Rightarrow < v >$ содержит все варианты комбинаций. $va + vb = v(a + b) \in U$

 $(va)\alpha = v(a\alpha) \in U$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$

П

< v >а – наименьшее подпространство, содержащее v_i

 $\Rightarrow < v > \subseteq U$ тогда < v > = U

Определение 19. Если < v >= V, то v – система образующих пространство V Базис – система образующих.

Обозначение. F^I – множество функций из I в F= множество столбцов высоты I $^IV-$ множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I\to V$ $i\mapsto f_c$

Определение 20. $v \in I V$

v – линейно независим, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Теорема 1.4.1. $v \subseteq V$ (можно считать, что v - строка длины v Следующие утверждения эквивалентны:

- 1. v линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- 3. v минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

```
Доказательство. (1) \Rightarrow (4) — доказали ранее (1) \Rightarrow (2) x \in V \setminus v x = va(a \in F^v) va = x \cdot 1 = 0 — линейная зависимость набора v \cup x Т.о. любой набор , строго содержащий v, линейно зависим \Rightarrow v — максимальный. (1) \Rightarrow (2) x \in V \setminus v \subseteq V \cup x—линейно зависим va + xa_x = 0 a \neq 0 Если a_x = 0 \Rightarrow va = 0 \Rightarrow a = 0?! Значит a_x \neq 0 va = c \cdot (-a_x) va = c \cdot (-a_x)
```

Пемма. (Цорн) Пусть \mathbb{A} – набор подмножеств (не всех) множества X.

Eсли объединение любой цепи из \mathbb{A} , принадлежащей \mathbb{A} , то в \mathbb{A} существует максимальный элемент.

 $M \in \mathbb{C}$ - максимальная, если $M \subseteq M' \subseteq \mathbb{A} \Rightarrow M = M'$

Теорема 1.4.2. (о существовании базиса) V – векторное пространства

X – линейное независимое подмножество V

Y – cucmema образующих V

 $X \leq Y$

Тогда существует базис Z пространства $V:X\leq Z\leq Y$

Доказательство. А-множество всех линейно независимых подмножеств, лежащих между

X и Y. $X \in \mathbb{A}$

 $\mathbb{C} \leq \mathbb{A}$

 $X < \cup C \in \mathbb{C} < Y$

Пусть $\cup C \in \mathbb{C}$ – линейно зависимый. То есть $\exists u_1, ..., u_2 \in /...$

. . .

Пусть v - базис V.

$$\forall x \in V \; \exists ! x_v \in F^v : x = v \cdot x_v$$
 $v = (v_1, \dots, v_n), \; x_v = \;$ матрица столцов альфа;

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$

1.5 Лекция 5

1.6 Лекция 6

1.7 Лекция 7

Утверждение.

$$U \leq W \quad \exists V \leq W : W = U \oplus V$$

Доказательство. Выберем базис u в U. Дополним до базиса $u \cup v$ пространства W и положим $V = \langle v \rangle$.

$$< u >= U < v >= V < u \cup v >= < u > + < v >= U \oplus V = W$$

 $x\in U\cap V\Rightarrow x=ua=vb\Leftrightarrow ua-vb=0\Rightarrow a=0, b=0(u\cup v$ – линейно независимый

Следствие.

$$u$$
 — базис U, v — базис $V, U, V \leq W$ $u \cup v$ — базис $W \Leftrightarrow U \oplus V$

25.09.2019

1.8 Лекция 8

$$v - (v_1, v_2, \dots v_n) \in n^V$$

 $M_n(F)$ — алгебра матриц размера $n \times n$ над F

 $GL_n(F) = M_n(F)^*$ — полная линейная группа степени n над F

Лемма.

$$v \in n^V, A \in GL_n(F)$$

v- линейно независимый $\Leftrightarrow vA-$ линейно независимый

$$< v > = < vA >$$

Доказательство. $(vA)A^{-1} = v(AA^{-1}) = vE = v$, поэтому можно доказывать только в одну строну.

v - линейно независимый.

 $vAb=0 \Rightarrow A^{-1}Ab=0 \Rightarrow b=0$, т.е vA - линейно независимый.

$$(vA)b = v(Ab) \in \langle v \rangle, \langle vA \rangle \leq \langle v \rangle$$

Утверждение. u, v - два разных базиса пространства V.

Тогда $\exists !$ матрица $A \in GL_n(F) : u = vA$

При этом $a_{*k} = (u_k)_v$ $\forall k = 1, \dots n$. Такая матрица обозначается $C_{v \to u}$ и называется матрицей перехода от v κ u.

$$C_{v \to u} C_{u \to v} = C_{v \to u} C_{u \to v} = E$$

Доказательство. Положим $a_{*k}=(a_k)_v\Rightarrow u_k=va_{*k}\Rightarrow u=vA.$ $vA=vB\Leftrightarrow A=B$ то есть A - единственно. Далее:

$$u = vC_{v \to u}$$

$$v = uC_{u \to v}$$

$$uE - uC_{v \to u}C_{v \to u}$$

$$E = C_{u \to v}C_{v \to u}$$

 \mathbf{C} ледствие. v - базис V

 $f:GL_n(F) o$ множество базисов пространства V f(A)=vA - биекция.

Доказательство.

$$|F|=q \qquad \dim V=u$$

$$(q^n-1)(q^n-q)\dots (q^n-q^{n-1})-\text{количество базисов}$$

 \mathbb{F} - поле из q элементов.

Утверждение. Если матрица двусторонне обратима, то она квадратная.

Следствие. u, v - базисы V

$$x = C_{u \to v} x_v$$

Доказательство.

$$x = ux_u = vx_v$$

$$v = uC_{u \to v}$$

$$ux_u = uC_{u \to v}x_v \Rightarrow x_u = C_{u \to v}x_v$$

Следствие. (Матричные линейные отображения)

$$L: U \to V$$
, u — базис U, v — базис V

Тогда $\exists !$ матрица $L_{v,u}(L_u^v: \forall x \in UL(x)_v = L_u^v x_u$ При этом $(L_u^v)_{*k} = L(u_k)_v$

Замечание.

$$u = (u_1, \dots u_n) \in n^U$$

$$L : U \to V$$

$$L(a) := (L(u_1), \dots, L(u_n))$$

$$L(ua) = L(u)a \qquad a \in F^n$$

$$\varphi_v: V \to F^n$$

$$\varphi_v(g) = y_v \qquad \forall q \in V$$

 $arphi_v$ - линейно $\Rightarrow (L(u)a)_v = L(u)_v a$

$$L(u)_v := (L(u_1)_v, \dots L(u_n))v)$$

Доказательство.

$$x = ux_u$$

$$L(x) = L(u)x_u$$

$$L(x)_v = L(u)_v x_u$$

Положим $L_u^v := L(u)_v$.

$$orall x\in U: L(x)_v=L^v_u x_u$$
 При $x=u_k: L(u_k)_v=L^v_u (u_k)_u=(L^v_u)_k$

Замечание. Если $Ax = Bx \quad \forall x \in F^n$, то A = B 26.09.2019

1.9 Лекция 9

Примеры.

1. $V=\mathbb{R}[t]_3$ - многочлены степени не более 3

$$D(p) = p' V \to V$$

$$v = (1, t, t^2, t^3).$$

$$D(1) = 0, D(t) = 1, D(t^2) = 2t.$$

$$D_v = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$v^{(1)} = (1, \frac{t}{1!}, \frac{t^2}{2!}, \frac{t^3}{3!}).$$

$$2. V = \mathbb{R}[t]$$

$$v = (1, t, \frac{t^2}{2}, \dots, \frac{t^n}{n!}, \dots).$$

$$D(v_0) = 0, D(v_k) = v_{k-1}.$$

$$\begin{pmatrix} 0 & 1 & \dots \\ 0 & 1 & \dots \\ & 0 & 1 \\ \vdots & \vdots & \ddots \end{pmatrix}$$

3.
$$V = \mathbb{R}^3$$

$$|L(a)| = |a|$$

$$L(a)$$

$$e_1$$

$$\overrightarrow{a}$$

$$a$$

$$a$$

$$A$$

$$e_2$$

$$a$$

$$a$$

$$e_2$$

$$a$$

$$e_1$$

$$e_2$$

$$a$$

$$e_2$$

$$a$$

$$e_2$$

$$e_3$$

$$e_2$$

$$e_3$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_4$$

$$e_4$$

$$e_5$$

$$e_7$$

$$e_8$$

$$L(e_1)_e = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$L(e_2)_e = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$L_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

$$a_e = \begin{pmatrix} \cos \psi \\ \sin \varphi \end{pmatrix}$$

$$L(a)_e = \begin{pmatrix} \cos(\psi + \varphi) \\ \sin(\psi + \varphi) \end{pmatrix}.$$

$$L(a)_e = L_e \cdot a_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi - \sin \varphi \sin \psi \\ \cos \varphi \sin \psi + \sin \varphi \cos \psi \end{pmatrix}.$$

Утверждение. $L:U\to V$

$$u, u' - базис U$$

$$v, v'$$
 — базис V

$$T$$
огда $L_{u'}^{v'} = C_{v' o v} \quad L_u^v C_{u o u'}$

Доказательство.

$$L(x)_v = L_u^v x_u.$$

$$C_{v' \to v} L(x)_v = L(x)_{v_1} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_u.$$

 $\forall x_u \in F^{dimU}$

$$L(x)_{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_{k}.$$

$$L_{u}^{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u}.$$

Замечание.

Если
$$U = V$$
 $u = v, u' = v'.$ $L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$

Утверждение. Линейное отображение однозначно определяется образом базисных векторов.

$$u = (u_1, \dots u_n) - \delta a \beta u c U$$

Для любого векторного пространства V:

$$\forall v_1, \dots v_n = V$$

 $\exists !$ линейное отображение (*) $L:U \to V:L(u_k)=v_k \quad \forall k$

Доказательство.

$$L(ua) := va$$
$$\forall L^* : L(ua) = L(u)a = va$$

При этом L - инъективно тогда и только тогда, когда v - линейно независимый L - сюрьективно тогда и только тогда, когда v - система образующих L - изоморфизм тогда и тоько тогда, когда v - базис.

Утверждение. V, v, v' – базис V

$$L:V o V$$
 — линейно

$$L(v_k) = v_k' \qquad \forall k$$

$$(L_v)_k = L(v_k)_v = (v_k')_v$$

$$L_v = C_{v \to v'}.$$

по другому

$$(Id_{v'}^v)_k = Id(v'_k)_v = (v'_k)_v.$$

Тогда $L_v = C_{v \to v'} = Id_{v'}^v$

Определение 21. $f: X \to Y$ $Imf = \{f(x) \mid x \in X\}$ $L: U \to V$ - линейное отображение $ImL = \{L(x) \mid x \in U\}$ $KerL = L^{-1}(0) = \{x \in U \mid L(x) = 0\}$

Лемма.

 $ImL \le V$ $KerL \le U$ $\Pi ycmb \ L(x) = y$

$$\forall y \in V: L^{-1} = x + KerL$$

$$L^{-1}(y) = \{z \in U \mid L(z) = y\}$$

$$x + KerL = \{x + z \mid z \in KerL\}$$

1.10 Лекция 10

Теорема 1.10.1. $L: U \to V$

$$\dim U = \dim KerL + \dim ImL.$$

Доказательство. $u=(u_1,\ldots u_k)$ — базис KerL $v=(v_1,\ldots U_m)$ Дополним базис ядра до базиса $U\colon u\cup v$ - базис U $L(v)=(L(v_1),L(v_2),\ldots L(v_m))$ - базис образа. $\vartriangleleft x\in ImL$ $\exists y\in U:L(y)=x.$ y=ua+vb, $a\in F^k,b\in F^m$

$$x = L(y) = \underbrace{L(u)}_{(L(u_1), \dots L(u_k)) = (0, \dots 0)} + L(v).$$

Следовательно, L(v) - система образующих.

$$L(v)c = 0, \qquad c \in F^m.$$

 $L(vc) = 0 \Rightarrow vc \in KerL \Rightarrow vc = ud$ для некоторого $d \in F^k$.

Тогда vc-ud=0, но v и u - два базисных вектора. Следовательно, c=d=0 и L(v) - линейно незвисимый.

Теорема 1.10.2. (формула Грассмана о размерности суммы и пересечения) $U, V \leq W$

$$\dim U \cap V + \dim U + V = \dim U + \dim V.$$

Доказательство. \triangleleft внешнюю сумму $U\oplus V,\ L(u,v)=u+v$ Тогда $ImL=U+V.\ (u,v)\in KerL\Leftrightarrow u+v=0\Leftrightarrow u=-v\subset U\cap V$

 $KerL = (u, -u) \mid u \in U \cap V \cong U \cap V$

 $\dim(U \oplus V = \dim KerL + \dim ImL = \dim U \cap V + \dim U + V$

08.10.2019

1.11 Лекция 11

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \cdot x_1 + \dots + \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \cdot x_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Простейший базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

 $x = vx_v, \quad x = ex_e = Ex_e$

$$eC_{e \to v} = v$$
 — из столбцов v .

 $C_{e o v} = v$ — матрица из столбцов $(v_1, \dots v_n)$.

$$L: F^m \to F^n, \qquad A \in M_{n \times m}(F) \ L(x) = Ax$$

$$L(x)_e = L_0^e x_e, L(x)_e = L(x) = Ax = L_e^e x_e.$$

 $Hom(F^n, F^m) \cong M_{m \times n}(F)$ - изоморфизм векторных пространств. В дальнейшем A отождествляется с L , пишем A^v_u вместо L^v_u (A в базисе u-v).

Определение 22. Линейный оператор из V в V называется эндоморфизмом V . Множество эндоморфизмов V = End(V) - ассоциативная алгебра над f

 $+,*\alpha$ - поточечные операции, * - композиция.

$$L,M,N\in End(V): \quad L\circ (M+N)=L\circ M+L\circ N$$
 - следует из линейности L

$$v$$
 - базис $V, u = \dim V$ $\theta_v : End(V) \to M_n(F)$ $\theta_v = L_v$

Утверждение. θ_v - биективно.

Упраженение. Построить обратное θ_v

Лемма.
$$(M \circ L)_v = M_v \circ L_v$$

Утверждение. θ_v - изоморфизм

F - алгебра $EndV \cong M_n(F)$

15

Теорема 1.11.1. $U \le V$

 $\forall L: V \to V, \quad U \leq KerL, \exists !\tilde{L}: V \backslash U \to W$

$$\tau: \begin{array}{ccc} V \backslash U & \longrightarrow & W \\ \tau: & \uparrow \pi_U & & \\ V & \stackrel{L}{\longrightarrow} & W \end{array}.$$

 $\tau \circ \pi_U = L$

L - эпиморфизм $\Rightarrow \tau$ - эпиморфизм

 $KerL = U \Rightarrow \tau$ - мономорфизм

Доказательство. Диаграмма коммутативна, следовательно, \tilde{L} строится однозначно. Пусть $\tilde{L}(x+U):=L(x).y\in U\in KerL: L(x+y)=L(x)+L(y)=L(x)$ \tilde{L} задано корректно (легко проверить, что оно линейно, единственность следует из коммутативности диаграммы. $\tilde{L}(x+U)=L(x)$ - необходимо и достаточно коммутативности диаграммы. $\tilde{L}(x+U)=0_W\Leftrightarrow L(x)=0\Leftrightarrow x\in KerL=U\Leftrightarrow x+U=0+U=O_{V\setminus U}$

Для инъективности : $Ker\tilde{L}=0_{V\setminus U}$

Теорема 1.11.2 (О гомоморфизме). $L: V \to W$

$$VKerL \cong ImL.$$

Доказательство. Возьмем U = KerL и заменим W на ImL $n = \dim \langle a_{*1}, \dots a_{*n} \rangle \le \dim F^m = m$. Из линейной независимости строк следует, что $m \le n$ Таким образом m = n.

n линейно независимых столбцов (строк) в n-мерном пространстве - базис и матрица A - матрица перехода $C_{e\to a}$, где $a=(a_{*1},\ldots a_{*n})$ - набор столбцов A . Следовательно, $A\in GL_n(F)$ - множество обратных матриц.

Определение 23. Ранг:

 $rk(v_1,v_2,\ldots,v_n)=\dim\langle v_1,\ldots v_n\rangle,$ $rkL=\dim ImL$ $u_1,\ldots u_n$ - базис $U,L:U\to V$ $rkL=rk((L(u))=\dim\langle L(u_1),\ldots L(u_n)\rangle$ $A\in M_{m\times n}(f)$ Столбцовый ранг $A:rkA-rk(a_{*1},\ldots a_{*m})$ Строчный ранг : $rkA=rk(a_{1*},\ldots a_{n*})$

Лемма. $A \in M_{m \times n}$

1. столбцы A линейно независимы \Leftrightarrow столбцовый rkA=n

или наибольшее количество независимых столбцов (строк).

- 2. столбиы A система образующих в $F^m \Leftrightarrow$ столбиовый rkA=m
- 3. строки A линейно независимы \Leftrightarrow строчной rkA=m

- 4. строки A система образующих в ${}^mF \Leftrightarrow$ строчной rkA=n
- 5. столбиы являются базисом $F^n \Leftrightarrow m=n=c$ трочной rkA
- 6. если столбцы и строки A линейно независимы $\Leftrightarrow n = m$, строки и столбцы базисы, A обратима.

Доказательство. (6) из $(1) \Rightarrow c.rkA = n$ $n = \dim\langle a_{*1}, \dots a_{*n} \rangle$ \square 10.10.2019

1.12 Лекция 12

Доказательство.

$$\begin{array}{ccc} U & \stackrel{L}{\rightarrow} & V \\ \downarrow \varphi_n & \downarrow \varphi_v \\ F^n & \stackrel{L_U^V}{\rightarrow} & F^m \end{array}$$

 $A \in M_{m \times n}(F)$

$$ImA = \{Ax \mid x \in F^m\} = \{a_{*1}x_1 + \dots a_{*n}x_n \mid x_i \in F\} = \langle a_{*1}, \dots a_{*n} \rangle.$$

rkA=c.rkA - ранг оператора умножения на А. Из диаграммы $ImL\cong ImL_U^V\Rightarrow rkL=c.rkL_U^V$

 Π емма. $A \in M_{m \times n}(F)$ $B \in GL_m(F), C \in GL_n(F)$ rkA = rkBAC - строчной или столбцовый.

Доказательство. $L: F^n \to F^m$ - оператор умножения на $A. A = L_e^e$.

 $B=C_{e o v}, C=C_{e o u}$, где u,v - базисы пространств $F^m,F^n.$

 $BAC=L_v^u$ Тогда c.rkA=c.rkBAC=rkL. Со столбцами все хорошо. Теперь со строками: $r.rkA^T=c.rkA$

 $r.rk(BAC)^T = r.rk(A^TB^TC^T) \ r.rk(BAC)^T = c.rkBAC$

Тогда $r.rkA^T = r.rkC^TA^TB^T$. (Заметим, что $(B^T)^{-1} = ((B^{-1})^T)$ Следовательно, B^T, C^T - произвольные обратимые матрицы.

Упраженение. $(AB)^T = B^T A^T$

Теорема 1.12.1 (PDQ - разложение, равенство базисов). $L: U \to V$ - линейное отображений,

 $1. \ \, C$ уществуют базисы u,v пространств U,V такие что

$$L_u^v = \left(\begin{array}{cc} E & 0 \\ 0 & 0 \end{array} \right).$$

Pазмер E = rkL.

2.
$$\forall A \in M_{m \times n}(F) \exists P \in GL_m(F), Q = \in GL_n(F) : A = PDQ, \quad \text{ide } D = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

3. c.rkA = r.rkA

Доказательство. $(f_1, \ldots f_k)$ - базис KerL. Дополним до базиса на пространства $U: g \cup f = u$. Тогда (см. Теорему о ядре и о,разе). L(g) - базис Im L. Дополним его до базиса v пространства V.

$$v = (L(g_1), \dots, L(g_l), v_{l+1}, \dots, v_n).$$

$$L(g_1)_v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

:

$$L(g_l)_v = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} .$$

:

$$L(f_i)=0$$
 таким образом $L_u^v=\left(egin{array}{cc} E & 0 \ 0 & 0 \end{array}
ight)$

Определение 24. W - множество матриц-перестановок (группа Вейля).

$$a_{*i}=e_{\sigma(k)},$$
 где $\sigma:\{1,\ldots n\} o\{1,\ldots n\}$ -биекция.

B= - множество обратимых верхнетреугольных матриц.(борелевская подгруппа) B^- - множество обратимых нижнетругольных матриц.

Теорема 1.12.2 (разложение Брюа).

$$GL_n(F) = BWB = \{b_1wb_2 \mid b_1, b_2 \in B, w \in W\}.$$

 $w \in W : BwB$ - клетка Брюа.

Доказательство. $a \in GL_n(F)$

$$\exists b, c \in B : bac \in W$$
.

Индукция по n

В первом столбце а выберем низший ненулевой элемент.

$$\begin{pmatrix} 1 & * \\ 0 & 1 & \end{pmatrix}.$$

$$ua = ()$$

Пусть a' - матрица, полученная из uav вычеркиванием i-ого столбца и j-строки. Легко видеть, что ее столбцы линейно независимы. Следовательно, a' - обратима. Тогда по ПИ $\exists b',c':b'a'c'\in W_{n-1}$. Все получилось!

Доказательство. см конспект $GL_n(F)=BWB$ $a\in GL_n(F)$

Теорема 1.12.3 (разложение Гаусса).

$$GL_n(F) = WB^-B.$$

 $w \in W : wB^-B$ - клетка Гаусса.

Доказательство. Докажем, что $\forall w \in W : BwB \subset wB^-B$ $BWB = \bigcup_{w \in W} BwB \subset ...$

Лемма (1). $D = D_n(F)$ - множество обратимых диагональных матриц. $U = U_n(F)$ - множество унитреугольных матриц. Тогда B = DU = UD.

Упраженение. $a=\left(\begin{array}{ccc} \alpha_i & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & 0 \end{array}\right), \qquad \alpha_i \neq \alpha_j,$ если $i\neq j \ \Rightarrow \ ab=ba \Rightarrow b \in D$

Доказательство.

$$\left(\begin{array}{ccc}
\frac{1}{b_{11}} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \frac{1}{b_{nn}}
\end{array}\right)$$

Лемма (2). $U = \prod_{i < j} X_{ij}$, причем произведение берется в любом наперед заданном порядке.

Доказательство. Будет в теории групп

Обозначение. $w \in W : U_w := \prod_{i < j, \sigma(i) > \sigma(J)} X_{ij}$, где σ - перестановка соответствующая w. То есть $w^{-1}X_{ij}w = X_{\sigma(i)\sigma(j)}$.

Теорема 1.12.4 (Приведенной разложение Брюа). $B = \bigcup_{w \in W} U_w w D U$ При этом w, а также элеметны из U_w, D, U определены по элементам из B из единственным образом.

Доказательство. \Box Следствие. $BwB\subset wB^{-1}B=w(w^{-1}U_ww)B\subset wU^-B\subset wB^-B$ Доказательство. $BwB=U_wwB$

Утверждение.

$$BwB \cap Bw'B = \emptyset, \ \forall w \neq w'.$$

1.13 Лекция 13

15.10.2019 Доказательство теорем

1.14 Лекция 14

17.10.2019

Разложение Гаусса. Идея доказательства: $a \in GL_n(F)$, $wa \in U^-B$. Найдем такое w.

Определение 25. Главная подматрица матрицы A- подматрица $k \times k$ стоящая в левом верхнем углу матрицы A.

Лемма. Обратимость любой главной подматрицы не зависит от умножения на U^- слева и на U справа.

 \mathcal{A} оказательство. $a^{(k)}$ - главная подматрица $k \times k$ в a.

$$\begin{pmatrix} b & 0 \\ c & d \end{pmatrix} \begin{pmatrix} a^{(k)} & * \\ * & * \end{pmatrix} = \begin{pmatrix} ba^{(k)} & * \\ * & * \end{pmatrix}.$$

Где $b \in U^- F$ Обратимость $a^{(k)}$ равносильно обратимости $ba^{(k)}$, так как b - обратима. \square

Лемма. $a \in U^-B \Leftrightarrow \mathit{все}$ главные подматрицы обратимы.

Доказательство. Доказываем следствие влево. Индукция по n. База: n=1 - очевидно Переход:

$$a = \begin{pmatrix} a^{(n-1)} & * \\ * & a_{nn} \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 \\ -xa^{(n-1)} & 1 \end{pmatrix} \begin{pmatrix} a^{(n-1)} & * \\ x & a_{nn} \end{pmatrix} = \begin{pmatrix} a^{(n-1)} & * \\ 0 & * \end{pmatrix}.$$

Дальше применим предположение индукции к $a^{(n-1)}$. Она раскладывается в произведение верхне- и нижнетреугольной.

В обратную сторону следует из прошлой леммы. Действительно, у обратимой верхнетреугольной матрицы все главные подматрицы обратимы, а умножение слева на обратимые нижнетреугольные не меняет их обратимость.

Лемма. $\forall a \in GL_n(F) \exists w \in W : \textit{все подматрицы в wа обратимы. По условию <math>a^{(n-1)}$ обратима,

Доказательство. Индукция по k. Докажем, что существует перестановка $a \in GL_n(F)$ такая, что главные подматрицы размера не более $k \times k$ обратимы. k=1

$$a_{*1} = 0 \Rightarrow \exists i : a_{ij} \neq 0.$$

Меняем і- строку с первой.

Переход:

$$a = \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right).$$

По индукционному предположению все главные подматрицы в $a^{(k)}$ обратимы. Все

столбцы линейно независимы, следовательно, ранг матрицы $\begin{pmatrix} a_{11} & \cdots & a_{1k+1} \\ & \ddots & \\ a_{n1} & \cdots & a_{nk+1} \end{pmatrix} =$

k+1 k+1 - мерное подпространство U в ^{k+1}F . А первые k строк этой матрицы линейно независимы. $X=b_1,\ldots b_k, Y=b_1,\ldots b_n, \quad b_i=(a_{i1},\ldots a_{ik+1}).$ X - линейно независимый, $\langle y \rangle = U$, $\dim U=k+1$.

$$\exists Z: X \geq X \geq Y$$
, где Z — базис U .. $|Z| = k+1 \Rightarrow Z = b_1, \dots b_k, b_i, i > k$..

Переставляем i-ю строку на k+1 место. У получившейся матрицы первые k главных подматриц равны главным подматрицам в a, а строки k+1-й строки главной подматрицы линейно независимы. Следовательно, она независима.

$$wa \in B^-B$$
. Домножая на B, B^- , получим, что хотели.

Теорема 1.14.1 (Кронокера-Капелли). Система линейных уравнений Ax = b Имеет хотя бы одно решение тогда и только тогда, когда rkA = rk(Ab), где (Ab) - расширенная матрица.

Доказательство.

$$rkA = rk(Ab) \Leftrightarrow \langle a_{*1}, \ldots \rangle = \langle a_{*1}, \ldots a_{*n}, b \rangle \Leftrightarrow b \in \langle a_{*1}, \ldots a_{*n} \rangle \Leftrightarrow$$
 система имеет решение.

22

Chapter 2

Начала теории групп

2.1 Лекция 15

Определение 26. Подмножество $H \subset G$ называется подгруппой, если H – группа относительно операции, заданной в G.

$$H \leq G$$
.

Лемма. $H \subset B$ H - $nodepynna \Leftrightarrow \forall h,g \in H: gh,g^{-1} \in H.$

Утверждение. G, H - группы.

$$G \times H = \{(g, h) \mid g \in G, h \in H\}.$$

$$(g,h)\cdot (g',h'):=(g\cdot g',h\cdot h').$$

Определение 27. $\varphi X \to Y, (X,*), (Y,\cdots)$ – .

 φ - гомоморфизм групп, если:

$$\varphi(x_1 * x_2) = \varphi(x_1) \cdot \varphi(x_2), \quad \forall x_1, x_2 \in X.$$

Изоморфизм - биективный гомоморфизм.

Лемма. $G, H \leq F$

1.
$$G \cap H = \{1\}$$

2.
$$G \cdot H = F$$

3.
$$\forall g \in G, h \in H : gh = hg$$

Тогда $F \cong G \times H$.

Доказательство. $\varphi: G \times H \to F$ $\varphi(g,h) = g \cdot h$

$$\varphi((g,h)\cdot(g',h')) = \varphi(gg',hh') = gg'hh'.$$

$$\varphi(g,h)\cdot\varphi(g',h') = ghg'h'.$$

 $(1) \Leftrightarrow \varphi$ - сюрьективно.

$$\varphi(g,h) = \varphi(g',h') \Leftrightarrow gh = g'h' \Leftrightarrow g'^{-1}g = h'h^{-1} = 1 \Rightarrow g' = g, h' = h.$$

2.2 Лекция 16

22.10.2019

Пример. $\ln : \mathbb{R}^*_{>0} \to (\mathbb{R}, +)$ $\ln ab = \ln a + \ln b$ - гомоморфизм.

Определение 28.

$$arphi G o H$$
 — гомоморфизм.
$$Im \varphi=\{\varphi(g)\mid g\in G\}.$$
 $Ker \varphi=\varphi-1=\{g\in G\mid \varphi(g)=1\}.$

Лемма. $Im\varphi$ и $Ker\varphi$ - подгруппы.

Доказательство.

$$a, b \in Ker\varphi.$$

$$\varphi(ab) = \varphi(a)\varphi(b) = 1 \Leftrightarrow ab \in Ker\varphi.$$

$$\varphi(a^{-1}) = \varphi(a)^{-1} = 1 \Rightarrow a^{-1} \in Ker\varphi.$$

Лемма.

$$\varphi(g) = h, \quad \varphi: G \to H - \ \textit{гомоморфизм}.$$

$$\varphi^{-1} = \underbrace{gKer\varphi}_{\textit{левый смеженый класс по ядру}\varphi} = \underbrace{Ker\varphi g}_{\textit{правый}}.$$

Доказательство. $\varphi(x) = h = \varphi(g)$) $\Leftrightarrow \varphi \varphi^{-1} = 1 \Leftrightarrow \varphi(xy^{-1}) = 1 \Leftrightarrow xg^{-1} \in Ker \varphi \Leftrightarrow x \in Ker \varphi g$

Определение 29. $H \leq G$

H называется нормальной подгруппой , если $gH=Hg\quad g\in G.$ $(H\unlhd G)$

Замечание. $g^{-1}Hg = H \quad \forall g \in G \Leftrightarrow g^{-1}Hg \subseteq H \quad \forall g \in G$

Лемма. $H \leq G$

$$g_1H \cap g_2H \neq 0 \Leftrightarrow g_1H = g_2H.$$

Доказательство. $x \in g_1H \cap g_2H \Rightarrow x = g_1h_1 = g_2h_2, h_1, h_2 \in H$. Тогда $g_1 = g_2(h_2h_1^{-1}) \Rightarrow g_1H = g_2(h_2h-1)H$.

Следствие. $G=\bigsqcup_{g\in X}gH$, где X - множество представителей левых смежных классов по h. $g_1\overset{H}{\sim}g_2\Leftrightarrow g_1^{-1}g_2\in H$

Лемма.

$$|g_1H| = |g_2H|, \quad \forall g_1, g_2 \in G, H \leq G.$$

Доказательство.

$$\left(\begin{array}{c} g_1H \to g_2H \\ x \mapsto g_2g_1^{-1}x \end{array}\right).$$

Обратная $y \mapsto g_1 g_2^{-1} y$

Теорема 2.2.1 (Лагранж). G - конечна группа. Тогда |G| = |H||G:H|, где |G:H| - количество левых смежных классов G по H. |G:H| - индекс Hв G.

Доказательство. Из прошлой леммы и следствия

Следствие. Если $p = |G| \in \mathbb{P}$, то $\forall g \in G \backslash 1 : G = \{1, g, \dots g^{p-1}\} \cong \mathbb{Z}_p$

Доказательство. $\{g^n \mid n \in \mathbb{Z}\} \leq G = \langle g \rangle$.

 $|\langle g \rangle|$ делит p и больше единицы, так как содержит единицу и $g \neq 1$. Следовательно, $|\langle g \rangle| = p$.

Докажем, что все элементы $1,g,\ldots g^{p-1}$ различны. Рассмотрим $0 \leq k,l \leq p-1$. Пусть $g^k = g^l \Rightarrow g^{k-l} = 1$. При $k-l \neq 0,\ g^n = g^{m(k-l)+r} = g^r, \quad r < k-l \leq p-1$. Тогда бы $\{1,g,\ldots g^{k-l-1}\} = \langle g \rangle$. Из чего следует $|\langle g \rangle| < p$. Противоречие.

Рассмотрим $k \in [0, p-1]$. $g^p = g^k \Leftrightarrow g^{p-k} = 1 \Rightarrow k = 0 \Rightarrow g^p = 1$.

Теперь проверим изоморфность. $\varphi: \mathbb{Z}_p \to G, \varphi(k) = g^k$

Определение 30. Группа, порожденная одним элементом, называется циклической.

Утверждение. Любая циклическая группа изоморфна \mathbb{Z} или \mathbb{Z}_n .

 \mathcal{A} оказательство. $G=\{g^m\mid m\in\mathbb{Z}\}$. Разберем два случая:

1. $g^m \neq 1 \ \forall m \in \mathbb{N} \Rightarrow g^m \neq 1 \ \forall m \neq 0$.

$$\varphi \mathbb{Z} \to G, \quad \varphi(m) = g^m.$$

$$\varphi(m+k)=g^{m+k}=g^mg^k=\varphi(m)\varphi(k).$$

2. Пусть n - наименьшее натуральное число, такое что $g^n = 1$.

$$\varphi: \mathbb{Z} \to G, \quad \varphi(m) = g^m$$
 сюрьективно ..

$$g^m = 1 \Leftrightarrow g^{nk+r} = 1 \Leftrightarrow g^r = 1 \Rightarrow r = 0$$

$$Ker\varphi = \{m \mid g^m = 1\} = n\mathbb{Z}.$$

Определение 31. Порядок $g \in G$ - наименьшее натуральное число, такое что $g^n = 1$. $ord(g) = |\langle g \rangle|$

Утверждение (из теоремы Силова). $|G| = p^m, \ p \nmid m$. Тогда $\exists H \leq G : |H| = p^k \ \forall h \in H \backslash 1$.

 $ord(h \mid p^k)$, следовательно, $h^{pl} = 1 \Rightarrow (h^{p^{l-1}})^p = 1$

2.3 Лекция 17

24.10.2019

G - группа.

Определение 32. $S \subseteq G$

 $\langle S \rangle$ - наименьшая подгруппа содержащая S.

Утверждение. $\langle S \rangle = \{ S_1^{n_1} \cdot \dots S_k^{n_k} \mid k \in \mathbb{N}, S_i \in S, n_i \in \mathbb{Z} \}, \$ для абелевой $: s_i \neq s_j \ npu \ j \neq j.$

Определение 33. $s^g := g^{-1}sg$

Замечание.
$$(s^g)^h = s^{g^h}$$
 $h(g_S) = h gS$

Свойства.

1.
$$(s_1s_2)^g = s_1^g s_2^g$$

2.
$$(s^g)^{-1} = (s^{-1})^g$$

 $s \mapsto s^g$ - автоморфизм G .

Определение 34. $H \leq G$

$$H^G = \langle h^g \mid h \in H, g \in G \rangle$$
 – нормальное замыкание H в G .

Нормальное замыкание равно наименьшей нормальной подгруппе в G, содержащей H. $\langle S \rangle^G$ - наименьшая нормальная подгруппа, содержащая S. $s^g = q^{-1}sq$ - сопряженный с s при помощи q.

$$H^g = \langle h^g \mid h \in H \rangle$$
 – подгруппа, сопряженная с H при помощи g .

Определение 35. $aba^{-1}b^{-1} = [a, b]$ – коммутатор элементов a, b.

3амечание. $ab = ba \Leftrightarrow aba^{-1}b^{-1} = 1$

Утверждение. $\varphi:G\to A$ - гомоморфизм в абелеву группу.

$$\varphi([g,h]) = 1$$

Тогда $[G,G] = \langle [g,h] \mid h,g \in G \rangle \subseteq Ker\varphi$ - коммутант G. $[g,h]^f = [g^f,h^f]$

Утверждение. $[a, b]^{-1} = [a, b]$

Определение 36. Центр группы - $Center(G) = Z(G) := \{c \in G \mid cg = gc \forall g \in G \mid c$

Обозначение.

 $G/H = \{gH \mid g \in G\}$ – множество левых смежных классов.

 $H \setminus G = \{Hg \mid g \in G\}$ – множество левых смежных классов.

$$H \le G \quad (H^g = H \forall g \in G)$$

Определение 37. Фактор-группа G/H - множество смежных классов по H с операцией $(g_1H)(g_2H)=g_1g_2H$.

корректнсть определения.

$$g_1' \in g_1 H \Rightarrow g_1' h_1$$
.

$$g_2' \in g_2 H \Rightarrow g_2' h_1$$
.

$$g_1 \mid +g_2 \mid = g_1 h_1 g_2 h_2 = g_1 g_2 g_2^{-1} = (g_1 g_2)(g_2^{-1} h_1 g_2) h_2 \in g_1 g_2 H.$$

Определение 38. $\pi_{\rm H}: G \to G/H, \ g \mapsto gH$ $\pi_{\rm H}$ - эпиморфизм, $Ker\pi_{\rm H} = H$

Теорема 2.3.1 (универсальное свойство факторгруппы). $H \leq G$

Для любого гомоморфизма $\varphi:G\to F$, такого что $H\le Ker \varphi\exists! \bar{\varphi}:G/H\to F$ коммутативна для диаграммы

$$\begin{array}{ccc}
G & \stackrel{\wedge n}{\to} & G/H \\
\downarrow F & & \downarrow \exists! \hat{\varphi} \\
F & & F
\end{array}$$

Теорема 2.3.2. $\varphi G \to F$

$$G/Ker\varphi\cong Im\varphi.$$

Доказательство. Заменим F на $Im\varphi$.

$$\varphi' \to Im\varphi \quad Ker\varphi' = Ker\varphi.$$

По прошлой теореме существует единственное:

$$\begin{array}{ccc} G/Ker\varphi & \to & Im\varphi \\ \hat{\varphi}: & \uparrow \pi & & \uparrow \varphi' \\ G & & G \end{array}.$$

 φ -сюрьективно. Следовательно, φ' - сюрьективно.

 $gKer \varphi \in Ker \hat{\varphi} \Leftrightarrow p\hat{h}i(gKer \varphi) = 1 \Leftrightarrow \varphi(g) = 1 \Leftrightarrow gKer \varphi = Ker \varphi = 1_{G/Ker \varphi}$. Следовательно, $\hat{\varphi}$ - инъективно .

Пример. $\mathbb{Z} \to \mathbb{Z}_n$, $\varphi(x) = x \mod n$. $Ker \varphi = n \mathbb{Z}$ $\mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z}$

2.4 Лекция 18

Пример.

$$U_n(F) = \left\{ \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \right\}.$$

Обозначим

$$U_n(k) = \left\{ \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & * \\ 0 & 1 & 0 & \dots & & * \\ 0 & 0 & 1 & 0 & \dots & \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & & 1 \end{pmatrix} \right\} = \{ a \mid a_{ij} = 1, a_{ij} = 0, \forall i \neq j, j - i < k \}.$$

Мартица трансвекций:

$$t_{ij}(\alpha) = \begin{pmatrix} 1 & \dots & \alpha & \dots & 0 \\ 0 & & \ddots & & 0 \\ 0 & & 0 & & 1 \end{pmatrix}.$$

Тогда $U_n^{(k)}(F)=U_n^{(k)}=\langle t_{ij}(\alpha)\mid j-i\geq k, \alpha\in F\rangle$ - группа.

Лемма. $U_n^{(k)} \setminus U_n^{(k-1)} \cong \underbrace{F \times \ldots \times F}_{n-k}$, F = (F, +). Проверим, что есть гомоморфизм, и применим теорему о гомоморфизме.

Доказательство.

$$\varphi: U_n^k \to F^{n-k}, \quad \varphi(a) = (a_{i k+1}, \dots, a_{n-k})^T.$$

Заметим, что φ - сюрьективна, $\varphi^{-1}(e) = U_n^{k+1}$.

$$a, b \in U_n^{(k)}, \qquad (a, b)_{i \ i+k} = \sum_{j=1}^n a_{ij} \cdot b_{i \ j+k} = b_{j \ i+k} + a_{i \ i+k}.$$

Тогда $\varphi(a \cdot b) = \varphi(a) + \varphi(b)$. Следовательно, φ - гомоморфизм.

Определение 39. $[a,b]=aba^{-1}b^{-1}$ – коммутатор. $H,K\leq G,\quad [H,K]:=\langle [h,k]\mid h\in H, k\in K\rangle$ – коммутант.

Утверждение. $[h,k]^g = [h^g,k^g] \Rightarrow [G,G] \leq G$.

Утверждение. $\varphi:G\to A$ - гомоморфизм.

 $A - aбелева \Longrightarrow [G, G] \subseteq Ker \varphi.$

Доказательство.

$$\varphi([g,h]) = [\varphi(g), \varphi(h)] = 1.$$

Тогда

$$[g,h] \in Ker\varphi, \quad \forall g,h \in G.$$

Из этого следует, что $[G,G] \subseteq Ker \varphi$.

Следствие. $[U_n^{(k)}, U_n^{(k)}] \leq U_n^{(k+1)}$

Лемма. $[U_n^{(k)}, U_n^{(m)}] = U_n^{(m+k)}, (ecnu \ l \ge n, mo \ U_n^l := e).$

Доказательство.

$$[t_{ij}(\alpha),t_{jh}(\beta)]=t_{ih}(\alpha\beta),\quad i,j,h$$
 - различны.

 $\forall i, h : h - i \geq m :$

$$\exists j: j-i \geq k, h-j \geq m.$$

Следовательно, любая образующая (и сама группа) содержится: $U_n^{(m+k)} \subseteq [U_n^{(m)}, U_n^{(k)}]$. В обратную сторону:

$$[xy, z] = xyzy^{-1}x^{-1}z^{-1} = x(yzy^{-1}z^{-1}zx^{-1}z^{-1} = x[y, z]x^{-1}xzx^{-1}z^{-1} = [y, z]^{x^{-1}} \cdot [x, z]$$

Заметим, что

$$[t_{ij}(\alpha), t_{lh}(\beta)] = e$$
, если $j \neq l, h \neq i$.

Тогда

$$t_{ij}(\alpha) \in U_n^{(k)}, \ t_{hk}(\beta) \Longrightarrow [t_{ij}(\alpha), t_{lh}(\beta)] \in U^{(m+k)_n}.$$

Посчитаем

$$\underbrace{[t_{ij}(\alpha), t_{li}(\beta)]}_{j \neq l} = [t_{li}(\beta), t_{ij}(\alpha)]^{-1} = t_{lj}(\beta\alpha)^{-1} = t_{lj}(-\beta\alpha).$$

Так как $U_n^{(k+m)}$ - нормальная подгруппа, то есть трансвекцию во включении 2.4 можно заменить на произведение трансвекций, то есть на любые элементы $U_n^{(k)}, U_n^{(m)}$. Доказали обратное утверждение.

2.5 Лекция 19

2.5.1 Поговорим о комутаторах

Лемма.

$$H = \langle X \rangle \le G = \langle y \rangle.$$

Tог ∂a

$$H \trianglelefteq G \iff x^y \in H \quad \forall x \in X, y \in Y.$$

Доказательство. В правую сторону очевидно (по определению), обратно: нужно доказать, что $h^g \in H \quad \forall h \in H, g \in G$. Разложим $g = y_1 \cdot \dots \cdot y_m, \quad y_i = U \cup Y^{-1}$.

Индукция по m. При $m = 0 : g = 1 \land h^1 = h \in H$.

Переход: $m \ge 1$. По ИП $h^{y_1...y_{m-1}} \in H$, $h = x_1...x_n$, $x_i \in X \cup X^{-1}$.

$$h^y = (h^{y_1 \dots y^{m-1}})_m^y = x_1^{y_m} \dots x_n^{y_m}.$$

 $x_i \in X \Rightarrow x_i \in H$ по условию.

$$x_i \in X^{-1} \Rightarrow ((x_i)^{-1})^{y_m} = ((x^{-1})^{y_m})^{-1} \in H.$$

Замечание. В определении нормальной подгруппы вместо h^g такде можно написать [g,h], так так для $h\in H, g\in G$

$$[g,h] - ghg^{-1}h^{-1} = h^{g^{-1}}h \in H \iff h^{g^{-1}} \in H.$$

 g^{-1} можно заменить на g.

Аналогично в лемме можно заменить x^y на [x,y].

Свойства (Формулы для комутаторов). 1. $[x,y] = [y,x]^{-1}$

$$2. [xy,z] = {}^x[y,z] \cdot [x,z]$$

3.
$$[x, y]^z = [x^z, y^z]$$

Лемма. $H, K \leq G, \quad [H, K] \leq \langle H \cup K \rangle$

$$h \in H, k \in K, x \in H$$
 (для $x \in K$ аналогично).

$$[h, k]^x = {}^{x^{-1}}[h, k] = [h^{-1}h, k]^{-1} \cdot [x^{-1}, k]^{-1} \in [H, K].$$

Возвращаемся к матрицам

$$U_n^{(k)}(F) = U_n^{(k)} = \{ a \in M_n(F) \mid a_{i \mid i} = 1, a_{i \mid j} \forall i \neq j, j - i < k \} = \langle t_{i \mid j}(\alpha) \mid \alpha \in F, j - i \geq k \rangle.$$

Лемма. $U_n^{(k)} \triangleleft U_n = U_n^{(1)}$

Доказательство. Докажем, что $a=[t_{i\ j}(\alpha),t_{h\ l}(\beta)]\in U_n^{(k)}\quad \forall j-i\geq k.\ l>h$ Первый случай $i\neq h,i\neq l\Rightarrow a=e\in U_n^{(k)}.$

Второй случай $j=h\Rightarrow i\neq j$: $a=t_{i\ l}(\alpha\beta), l-i\geq k+1$. Тогда $a\in U_n^{(k+1)}\leq U_n^{(k)}$. Третий случай $j\neq h, i=l$: $a=[t_{h\ j}(\beta), t_{i\ j}(\alpha)]^{-1}=t_{h\ j}(\beta\alpha)^{-1}=t_{h\ j}(-\beta\alpha).$ $j-h\geq 0$ $k+1 \Rightarrow t_{h,i}(-\beta\alpha) \in U_n^{(k+1)}$.

Лемма. Пусть \leq - отношение линейного порядка на $P = \{(i, j) \mid 1 \leq i < j \leq n\}$.

$$U_n(F) = \{ \prod_{(i,j)\in P} t_{ij}(\alpha_{ij}) \mid \alpha_{ij} \in F \}.$$

Замечание. $H \leq G$, $x, y \in G$: $xH = yH \Leftrightarrow y^{-1}x \in H \Leftrightarrow x \equiv y \mod H$

Доказательство. Рассмотрим элемент $h \in U_n(F)$. Докажем по индукции (по k), что

$$h \equiv \prod_{\substack{(i,j) \in P \\ 0 \le j-i < k}} t_{ij}(\alpha_{ij}) \mod U_n^{(k)}.$$

При k=1 утверждение очевидно, доказыать нечего.

Переход: $k-1 \rightarrow k$

По предположению индукции

$$h \equiv \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \mod U_n^{(k-1)} = \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \cdot \prod_{j - i = k - 1} t_{ij}(\alpha_{ij}) U_n^{(k)}$$

Так как комутатор $[u, t_{i \ i+k-1}(\alpha)] \in U_n^{(k)} \quad \forall u \in U_n$. То есть $[u, t_{i \ i+k-1}(\alpha)] \equiv 1 \mod U_n^{(k)}$. Это равосильно

$$ut_{i\ i+k-1}(\alpha) \equiv t_{i\ i+k-1} \cdot u \mod U_n^{(k)}.$$

Получаем

$$h \equiv \prod_{0 < j - i < k} t_{ij} (\alpha_{ij} \mod U_n^{(k)}.$$

Введем обозначения: w - матрица перестановки.

$$\begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \in U.$$

$$\begin{pmatrix} \bullet & & 0 \\ & \ddots & \\ 0 & & \bullet \end{pmatrix} \in D.$$

$$B_n = D_n U_n = U_n D_n \quad (\forall d \in D_n : U_n^d = U_n).$$

 $B_nwB_n=U_nD_nwB_n$, где $U_w=\langle t_{ij}(\alpha)\mid \alpha\in F, j>i,\ t_{ij}(\alpha)^w\rangle\in U_n^-$ - нижне треугольные. $U_w=\langle t_{ij}(\alpha)\mid j>1, \alpha\in F, t_{ij}(\alpha)^w\in U_n\rangle.$

Следствие. Матрица и U_n представляется в виде произведения трансвекций в любом порядке. $U_n = U_w \cdot \overline{U}_w$

$$oxed{\varPio}$$
казатель c тво.

Следствие (приведенное разложение Брюа). $B_n w B_{\subset} w B_n^- B_n$

Доказательство.
$$B_nwB_n = U_nwB_n = wU_ww^{-1}\overline{U}_wwB_n = w\underbrace{U_w^w}_{\subseteq U_n} \underbrace{\overline{U}_w^w}_{\subseteq U_n} \subseteq wU_n^-B_n = wB_n^-B_n$$

2.6 Лекция 20

2.6.1 Симметрическая группа

Определение 40 (Перестановка). $\sigma \in S_n \iff \sigma : \{1, \dots n\} \stackrel{\sim}{\to} \{1, \dots n\}$ Табличная запись перестановки:

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ i_1, & \dots & i_n \end{pmatrix}, i_j \neq i_k (j \neq k).$$

Циклическая запись перестановки:

$$\tau = (j_1, \dots, j_n) \iff \tau(j_1) = j_2, \ \tau(j_2) = j_3, \ \dots, \tau(j_{n-1}) = j_n, \ \tau(j_n) = j_1, \quad \tau(i) = i, \forall i \neq j_k.$$

Определение 41. $(j_1 \dots j_n)$ и $(k_1 \dots k_m)$ независимы, если $j_h \neq j_l \quad \forall h, l.$

Пемма. Любая перестановка равна произведению независимых (композиции) циклов.

Определение 42. Циклический (цикленный) тип перестановки – набор из длин независимых циклов,в произведение которых раскладывается перестановка.

Замечание. В определении слово "набор" подразумевает мультимножество, то есть порядок не важен, но элементы повторятся.

Пример. $(12)(345) \in S_6$ записывают 2+3.

Лемма.

$$\sigma(i_1, i_2, \dots i_k)\sigma^{-1} = (\sigma(i_1), \dots \sigma(i_k)).$$

Следовательно, сопряжение не меняет циклический тип.

Доказательство. $\sigma(i_1 \dots i_k) \sigma^{-1}(\sigma(t_i)) = \sigma \circ (i_1 \dots i_k) \sigma(i_{l+1 \mod m})$

Определение 43. Отношение на группе G:

$$x \sim_c y \Leftrightarrow \exists z : x = y^z$$
.

 $x = y^z \wedge y = ab \Rightarrow x = (a^b)^z - a^{bz}$.

Класс эквивалентности " \sim_c " – класс сопряженных элементов.

Теорема 2.6.1. Класс сопряженных элементов в S_n состоит из всех перестановок фиксированного циклического типа.

Доказательство. Следует из леммы 2.6.1

Пример. Рассмотрим группу S_4 и перестановки циклического типа 2+2:

(12)(34)

(13)(24)

(14)(32)

 $\sigma(12)(34)\sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4))$

Еще есть нейтральный класс е и 2, 3, 4. Двумерная группа Клейна

$$K_4 = \{e, (12)(34), (13)(24), (14)(23)\}.$$

- единственная нормальная подгруппа в S_n для любого n, индекс которой более 2.

Упражнение. Найти S_4/K_4 . Там 6 элементов.

Утверждение. $ord(ab) \mid (ord(a), ord(b))$.

Порядок перестановки равен НОКу порядков независмых циклов.