ACTIVITÉ 1 📐

On considère un triangle équilatéral de côté 1 que l'on colorie en turquoise. À chaque étape, on trace dans chaque triangle turquoise un triangle plus clair qui a pour sommet les milieux des côtés du triangle turquoise.

Étape 0

Cette construction porte un nom : c'est le triangle de Sierpiński.

- 1. On s'intéresse au nombre de triangles turquoises.
 - a. Combien y en a t-il à l'étape 0?
 - b. Combien y en a t-il à l'étape 1?
 - c. Combien y en a t-il à l'étape 2?
 - d. Combien y en a t-il à l'étape 3?
 - e. Combien y en a t-il à l'étape 4?
- **2.** On définit une fonction t sur \mathbb{N} qui, à chaque étape, associe le nombre de triangles turquoises.

Une telle fonction définie sur \mathbb{N} s'appelle une **suite**. Souvent, pour $n \in \mathbb{N}$, au lieu d'écrire t(n), on écrira t_n .

- **a.** Donner les valeurs de t_0 et de t_1 .
- **b.** Donner l'expression de t_n en fonction de n.
- **c.** En déduire la valeur de t_{10} .

EXERCICE

La mosaïque est un art décoratif que l'on retrouve dans beaucoup de constructions. Voici un exemple de mosaïque où des carreaux colorés sont disposés autour de carreaux blancs formant un carré.

Soit $n \in \mathbb{N}^*$. On note c_n le nombre de carreaux colorés pour un carré de taille n.

- 1. Écrire les trois premiers termes de la suite (c_n) .
- 2. a. Écrire c_{n+1} en fonction de c_n (ie. écrire par quel(s) opération(s) on peut trouver le nombre de carreaux colorés d'une étape à partir de la précédente).

Ainsi, avec la donnée de c_1 et de c_{n+1} , on peut calculer tous les termes de la suite!

- **b.** Calculer c_6 et c_7 .
- **c.** Pourrait-on calculer c_{56} facilement?
- **3. a.** Exprimer c_n en fonction de n.
 - **b.** Calculer c_{56} .

D'après education.gouv.fr.

EXERCICE 🗷

On considère la suite (c_n) de l'activité précédente. Pour rappel, on note c_n le nombre de carreaux colorés pour un carré de taille n, où $n \in \mathbb{N}^*$. L'expression obtenue était la suivante :

 $c_1=8$ et, pour tout $n\in\mathbb{N}^*$, $c_{n+1}=c_n+4$

Trouver comment représenter la suite dans le graphique ci-dessous.

D'après education.gouv.fr.

EXERCICE 🗷

Soit (u_n) une suite numérique.

- **1. a.** On suppose $u_{n+1} u_n \ge 0$. Que peut-on dire sur la suite (u_n) ?
 - **b.** En supposant $u_n > 0$ pour tout $n \in \mathbb{N}$ et $\frac{u_{n+1}}{u_n} \ge 1$, que peut-on dire sur la suite (u_n) ?
- **2. a.** On suppose $u_{n+1} u_n \le 0$. Que peut-on dire sur la suite (u_n) ?
 - **b.** En supposant $u_n > 0$ pour tout $n \in \mathbb{N}$ et $\frac{u_{n+1}}{u_n} \le 1$, que peut-on dire sur la suite (u_n) ?
- **3.** La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 4n 2$ est-elle croissante?

