TDWI WEBINAR SERIES

The Logical Data Warehouse What It Is and Why You Need It

Philip Russom

TDWI Research Director for Data Management June 24, 2015

Sponsors

Speakers

Philip Russom TDWI Research Director, Data Management

Tom Traubitz
Senior Director, Product Strategy
SAP

Agenda

- The Logical Data Warehouse
 - Definitions
 - Characteristics
- Enabling Technologies
 - Virtualization
 - In-Memory Functions
- In-Memory Data Fabric
 - The Logical Data Warehouse concept applied more broadly
- Beneficial Use Cases
 - Real-time & near-time processes
 - Biz visibility & situational awareness
 - Agility & flexibility, integrating multiple platforms
- Recommendations

PLEASE TWEET
@pRussom, @SAP, #TDWI,
#DataFabric, #LogicalDW,
#Analytics, #RealTime

Upcoming Points

- There isn't one, single architecture for all data warehouses (DWs)
 - Each org is different
- Expect multiple architectures
 - A well-designed DW has multiple architectural layers
 - Architectural approaches get mixed together into hybrids
 - A DW architecture interacts with architectures for data integration, reporting, analytics, operational applications, etc.
- The warehouse is still vital, even central
 - But it's evolving into a multiple platform environment
 - Architecture is more important than ever, but now as a logical design that's deployed over multiple physical platforms
- Please don't ask me to draw a Reference Architecture for DWs
 - Given the current diversity, there isn't just one. But I'll describe many.

Drivers of Change

Does your primary enterprise data warehouse have an architectural design?

Yes	79%
No	18%
Don't know	3%

Is the architecture of your data warehouse environment evolving?

Yes – moderately	54%
Yes – dramatically	22%
No – except with DW updates	22%
Don't know	2%

What technical issues or practices are driving change in your DW architecture?

· ·	
Advanced analytics	57%
Increasing data volumes	56%
Real-time operations	41%
Business performance mgt	38%
OLAP	30%
Non-relational data	25%
Virtualization of data	23%
Cloud adoption	21%
Streaming data	15%

What business issues or practices are driving change in your DW architecture?

Competitiveness	45%
Fast-paced business processes	43%
Compliance	29%
Funding	29%
Sponsorship	26%
Reorganizations	25%
Centralizing business control	30%
Departmental power struggles	19%
Mergers and acquisitions	18%

What do you think data warehouse architecture is? Select all that apply.

Source: TDWI survey run in late 2013. Based on 1197 responses from 538 respondents. 2.2 responses per respondent, on average.

Logical versus Physical DW Architectures And Other Architectural Components that Coexist

- Logical architecture mostly about data models and their relationships, with a focus on how these represent organizational entities and processes
 - Data standards including standards for data modeling, data quality metrics, interfaces for data integration, programming style, format standards, etc.
- Physical architecture mostly a plan for deploying data and data structures based on the workload and platform requirements of each
 - System architecture a topology of hardware servers and software servers, plus the interfaces and networks that tie them together

DEFINITIONS OF THE

Logical Data Warehouse

- TDWI: A Data Warehouse is user-defined data architecture
 - The architecture & its design components must be populated by data
 - But the data can be physical, virtual, or both
- Gartner's view: A Logical Data Warehouse depends on virtual tech more than older DWs
 - From simple federation to object-oriented virtualization, plus virtual views, indices, semantics, server memory...
- Building out the Logical Layer of your DW is important
 - Focus on design (not server platforms), agile dev & updates, more real-time options (OpBI), multi-source insights on the fly (analytics)

ENABLING TECH for LOGICAL DATA WAREHOUSE

Data Virtualization

- Purely semantic views of data structures
 - No physical data, until view is materialized
- Benefits of data virtualization
 - Doesn't prep & persist a lot of data on the off chance a user or app might need it
 - Collects fresh data, as needed, instead of hoarding stale data
- Various processing available
 - Some views are read only
 - Others can write data and perform data processing functions (or call them)
 - E.g., views that represent joins or aggregates
- Virtualization intersects with real time
 - Most views (but not all of them) execute in real time (or close) when materializing data

ENABLING TECH for LOGICAL DATA WAREHOUSE

In-Memory Data Functions

- Data mgt & processing in server memory
 - Rarely a DBMS in memory
 - Usually a data subset in memory
- Benefits of in-memory data
 - Eliminates disk IO, which is traditional bottleneck for data mgt
 - Provides high performance for many datadriven applications, including data virtualization
- Various processing available
 - Simple table cached in memory
 - E.g., table of metrics/KPIs for dashboards
 - Multidimensional data
 - E.g., cube of sales data for intraday analysis
 - Analytic models and scores
 - E.g., rescored intraday to spot/report likely churn

ENABLING TECH for LOGICAL DATA WAREHOUSE

In-Memory Data Fabric

- Data Fabric is a unified view (or collection of views) of data in multiple systems across an enterprise
 - Plus a simplified (yet diverse & performing) collection of interfaces into such sources and targets
- The point of a data fabric is to provide:
 - A fairly comprehensive big picture of enterprise data
 - A single layer through which data can be accessed, thereby reducing data redundancy, movement, processing
 - A simplified view & mechanism that enables more user types
- In-Memory Data Fabric (IMDF) is combination of things:
 - The data fabric, in-memory data functions, and data virtualization discussed earlier, integrated w/usual apps, databases, & data mgt tools
- Benefits of IMDF
 - A high-performance form of a data fabric, due to in-memory data functions, parallel processing, direct interfaces, optimization, etc.
 - Real-time speed for time-sensitive biz practices, lean data mgt, scalability, embedding analytics in apps, operationalization, etc.

Data Fabric – Example 1

Data Fabric – Example 2

Use Cases for the Logical Data Warehouse / Data Fabric

Real-Time Business Practices

- Real-Time technologies are a foundation for time-sensitive business practices:
 - Operational business intelligence
 - Just-in-time inventory
 - Facility monitoring
 - Self-service information portals
 - eCommerce recommendations
 - Production yield & workforce mgt in manufacturing
- Real-Time Reporting is common
 - Real-Time Analytics is coming on strong

Use Cases for the Logical Data Warehouse / Data Fabric

Visibility and Awareness

- Visibility = Know and act on the knowledge quickly:
 - Know and correct SLA or performance problems
 - Spot and stop fraud or security breaches
 - Feel confident, knowing that "all systems are go"
- Situational Awareness = See & react accordingly:
 - See a cluster of street crimes
 - Deploy squad cars as a deterrent.
 - See a drop in unit production on manufacturing floor
 - Bring in more workers and turn on more machinery.
 - See a product recurring in abandoned shopping carts
 - Run a promotion to close more sales of that product.
 - See a social media sentiment or pattern
 - Direct it or correct it as it evolves.

Use Cases for the Logical Data Warehouse / Data Fabric

Integration and Agility

- LDW usually involves advanced forms of data integration
 - Federation, virtualization
 - These are key to unifying multi-platform data ecosystems, especially data warehouse environments
 - Move data around less (plus real time, as mentioned earlier)
- LDW, if used well, enables agile development & upgrades
 - Developing with virtual views of data can be faster than relocating data physically
 - Virtual views can be altered without heavy movement of data to transform and reload data

Recommendations

- Recognize that successful data warehouse architectures have integrated logical and physical layers, plus other components.
 - Determine the business and technical drivers in your organization, and let those determine the evolution of your DW architecture.
- Note that a data fabric is seldom 100% virtual, in-memory, real time, etc.
 - Based on your organizational needs, selectively decide which data is best represented virtually, persisted, near real time, in a fabric, etc.
- In-memory data functions & data virtualization are more viable than ever – so use them!
 - New level of maturity for speed, reliability, functionality, interoperability
- Put in-memory functions & data virtualization together in a data fabric
 - Use in-memory functions for speed and as a point of integration
 - Use data virtualization for agile dataset design in development and integration on the fly in deployment
- A logical layer or data fabric should be an access layer
 - With interfaces, not just views
- For success with a logical DW and similar architectures (such as data fabric)
 - Infuse it with ample data virtualization and in-memory caching and processing.

Key Trends

Cloud

Cloud spending will surge by 25%, reaching over \$100 billion. There will be a doubling of cloud data centers.

Internet of Things

30 billion devices, sensors in 2020 – driving \$8.9 Trillion in revenue. The need for real-time processing and analytics will explode

Data Lake

Data volumes will continue to grow to 6 billion petabytes, including unstructured data such as social networking data and low level IoT data. Mining the value from this data is essential

Complexity built up over decades limits the ability to innovate; radical **simplification** is needed to unlock the potential.

- McKinsey study, 2013

SAP's Data Warehouse enables a revolutionary approach streamlines and simplifies data warehousing

Providing greater speed and scale along with agility for development and efficiency that reduces data movement and data preparation. SAP's complete architecture offers:

Pre-packaged or Customize

Flexible Architecture

Rapid Deployment

SAP Gives You The Power of Both Custom and Packaged

Customized Data Warehouse

Pre-Packaged Data Warehouse

- Usually depends on SQL tools and low-level programming
- Fewer controls on schema updates
- Easier to change

SAP HANA PLATFORM Real-time transactions + end-to-end analytics Extended Application Services Processing Engine HANA Smart Data Streaming Application Function Lib. & Data Models Integration Services

- Controlled schemas, often prepopulated with structure
- Lifecycle management of schemas
- High level languages and less programming
- More prebuilt tools to purpose

SAP Provides The Best of Both Approaches!

- An integrated architecture that reduces data redundancy while keeping all information at hand
- Utilizes state-of-the-art in-memory techniques that furnish answers in-context, in real time
- Makes more data available at the right time to the right person at the right place in the business process

.ess

Implement

HANA Flexible Architecture Example: Data Fabric

Traditional Data Warehouses Just Copy Data And Create More And More Copies In Indexes Cubes and Indexes **Data Bloat slows** take time to build the database & becomes hard to manage Copy schedules delay data **Business Data:** Hadoop / Reference/

Supplier Data

Social Media

ERP, CRM, SCM

HANA Flexible Architecture: Data Lake

Business Network, Real-time Applications, Data Warehousing, Interactive Analysis Mobile Experience

ERP

SaaS

Network

Text

Geo

Sensor

Social

Logs

CONSUME

COMPUTE

STORE

INGEST

Customer value delivered by SAP Data Warehouse

Simplified Architecture

- **Enterprise Wide Analytics**
- Real-time Analytics
- Data Lake
- **Internet of Things**

- Eliminate or reduce data movement
- Fewer copies of data
- Access data across your enterprise
- Unmatched federation of data without centralizing
- In-memory performance gives answers in seconds, not hours
- Reduced latency means current data is addressed not old data
- Petabytes of historical data storage
- Advanced analytics for mining non-traditional data
- Extensive Hadoop and no-SQL support
- Data management and analytics from device to enterprise
- Streaming analytics

SAP Data Warehouse Portfolio on Intel

SAP Business Warehouse

Real-time complex event processing

HANA Dynamic Tiering

Multi-temperature Tiering

HANA Smart Data Streaming

Real-time complex event processing

SAP HANA PLATFORM

Real-time, in-memory database, data processing, and application platform

·SAP IQ & NLS

Logical Big Data warehousing (OLAP)

HANA Advanced Analytics

Breakthrough performance at lower cost

SAP Data Services

All types of data integration

A-z **Simplify**

Accelerate

Innovate

Questions?

Contact Information

If you have further questions or comments:

Philip Russom, TDWI prussom@tdwi.org

Tom Traubitz, SAP tom.traubitz@sap.com