# Restauration des images anciennes par Deep Learning

Projet Image et deep learning

STEFANOVA Albena AWWAD Mhamad

#### Sommaire

- Introduction
- Type de dégradations
- Méthodes
- Implementations
- Analyse des Résultats
- Solution proposée
- Conclusion
- Demo

#### Introduction

## "Old Photo Restoration via Deep Latent Space Translation"

Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong Chen, Jing Liao, Fang Wen





#### Type de dégradations

#### Types de dégradations

Dégradation Structurée: rayures et taches

 Dégradation non-Structurée: bruit, flou et décoloration



#### Méthode

#### Méthode - sans apprentissage profond

## Inpainting







#### Erosion



### Méthode - avec apprentissage profond

#### Restauration avec apprentissage profond

- Problème de traduction: faire passer une image d'un domaine à un autre.
- 3 domaines comme base de notre deep learning
- l'apprentissage au niveau de l'espace latente
- $rR \rightarrow Y = GY \circ TZ \circ ER(r)$



#### Comment obtenir un espace latent?



#### Aperçu général de la méthode

- Premier VAE: R et X
- Mappage par bloc
- Deuxième VAE: Y



#### Qu'est-ce qu'un GAN (Generative Adversarial Network)?

- Technique de machine learning
- Deux réseaux:
  - Générateur
  - Discriminateur
- Produire des nouvelles données



#### Mappage par bloc

#### Une branche globale:

- artefacts contexte local
- l'inpainting un bloc non-local qui prend en compte le contexte global en utilisant un masque



#### Difficultés rencontrées



#### **Implementations**

#### Génération de la base des données



#### Génération de la base des données - 9 000 photos



#### Création d'un VAE

- Encoder
- Définir une zone de l'espace latent: moyenne et écart-type (paramètres de dispersion)
- Génération d'un vecteur: échantillonnage à partir de la moyenne et de l'écart-type.
- Decoder



#### Résultat du VAE



**Images Originales** 



1ère Époque



200ème Époque

# Génération des masques avec apprentissage supervisé





















#### Inpainting avec apprentissage supervisee



#### Interface Graphique

- TKinter
- le package GUI (Graphical User Interface) standard de Python.
- Facile à utiliser
- Semble au css du conception des pages web.



#### Analyse des Résultats

#### Méthode sans apprentissage profond

Photo dégradée



Photo restaurée



Photo originale



SSIM: 0.85

PSNR: 31.55

#### Méthode avec apprentissage profond



SSIM: 0.88

PSNR: 30.82

### Solution proposée

#### VAE - GAN

#### **Etapes:**

- Encoder
- Espace latent
- Utiliser le décodeur comme générateur du GAN.
- Discriminator par rapport à Y.



#### Conclusion

#### Restauration sans apprentissage profond:

- Propose des résultats de haute qualité pour des blocs plutôt uniformes
- La correction des défauts non structurés corrige des artefacts pas capturés par l'inpainting.
- La correction des défauts non structurés modifie le contraste de la photo.

#### Restauration avec apprentissage profond:

 Propose des résultats performants par rapport aux dimensions spécifiques des photos.

Il y a encore du travail à mettre en œuvre pour pouvoir avoir des résultats de qualité comparable à ceux proposés dans la méthode avec apprentissage profond.

L'approche présentée par nous (VAE-GAN) reste à être implémentée.

#### Demo

#### Cliquez sur la vidéo pour l'ouvrir sur Youtube



## Merci de votre attention!