We claim:

1. A process for purifying compounds of the formula (Ia)

where

40

45

20 M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements, in particular Ti, Zr or Hf, particularly preferably zimcenium,

are identical or different and are each a radical SiR312, \mathbb{R}^1 where R12 are identical or different and are each a hydrogen 25 atom or a C_1 - C_{40} group, preferably C_1 - C_{20} -alkyl, C_1-C_{10} -fluoroalkyl, C_1-C_{10} -alkoxy, C_6-C_{20} -aryl, C_6-C_{10} -fluoroaryl, C_6-C_{10} -aryloxy, C_2-C_{10} -alkenyl, C_7-C_{40} -arylalkyl, C_7-C_{40} -alkylaryl ox C_8-C_{40} -arylalkenyl, or R^1 is a C_1 - C_{30} group, preferably C_1 - C_{25} -alkyl such as 30 methyl, ethyl, tert-butyl, cyclohexyl or octyl, C_2-C_{25} -alkenyl, C_3-C_{15} -alkylalkenyl, C_6-C_{24} -aryl, C_5-C_{24} -heteroaryl, C_7-C_{30} -arylalkyl, C_7-C_{30} -alkylaryl, fluorinated C_1-C_{25} -alkyl, fluorinated $C_6-C_{\lambda4}$ -aryl, fluorinated C7-C30-arylalkyl, fluorinated C7-C30-alkylaryl or 35 $C_1-C_{12}-alkoxy$, or two or more radicals R1 may be joined to one another in such a way that the radicals R1 and the atoms of the cyclopentadienyl ring which connect them form $a\C_4-C_{24}$ -ring

R² are identical or different and are each a radical SiR_3^{12} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, preferably C_1 - C_{20} -alkyl, C_1 - C_{10} -fluoroalkyl, C_1 - C_{10} -alkoxy, C_6 - C_{14} -aryl,

system which may in turn be substituted,

 C_6-C_{10} -fluoroaryl, C_6-C_{10} -aryloxy, C_2-C_{10} -alkenyl, C_7-C_{40} -arylalkyl, C_7-C_{40} -alkylaryl or C_8-C_{40} -arylalkenyl,

5

42

for R^2 is a C_1 - C_{30} group, preferably C_1 - C_{25} -alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, $C_2 \setminus C_{25}$ -alkenyl, $C_3 - C_{15}$ -alkylalkenyl, $C_6 - C_{24}$ -aryl, $C_5 - \dot{C}_{24}$ -heteroaryl, $C_7 - C_{30}$ -arylalkyl, $C_7 - C_{30}$ -alkylaryl, fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl, fluorinated C₇-C₃₀-alkylaryl or $C_1-C_{12}-a$ tkoxy, or two or more radicals R2 may be joined to one another in such a way that the radicals R2 and the atoms of the cyclopentadienyl ring which connect them form a C4-C24 ring

10 system which may in turn be substituted,

- is a halogen atom, in particular chlorine, Х
- is from 1 to 5 when k = 0, and n is from 0 to 4 when k = 1,
- is from 1 to 5 when k = 0, and n' is from 0 to 4 when k = 1, 15 n' is from 1 to 4, preferably 2, m
 - is zero or 1, where t = metallocene is unbridged when k = 0and is bridged when k } $\mathbf{A}_{\mathbf{k}}$ with preference being given to $\mathbf{k} =$ 1, and
- **20** B is a bridging structural element between the two cyclopentadienyl rings,

comprising the steps:

reacting the compound of the formula (Ia) with a ligand 25 a) exchange component

 $M^{1}YR^{3}$

30 where

> M^1 is a cation or a cationic fragment, in particular Li, Na, K, MgCl, MgBr, MgI, or is an ammonium\cation corresponding to an amine,

is hydrogen or a C_1 - C_{40} group, preferably C_1 - C_{25} -alkyl R^3 such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C_2-C_{25} -alkenyl, C_3-C_{15} -alkylalkenyl, C_6-C_{24} -aryl, C₅-C₂₄-heteroaryl such as pyridyl, furyl or quinolyl, C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl, fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C7-C30-arylalkyl or fluorinated C7-C30-alkylaryl,

45

35

40

5

10

15

25

35

is an element of main group 6 of the Periodic Table of the Elements, in particular oxygen or sulfur, or a fragment CR^3_2 , NR^3 , $NR^3(CO)_-$, $NR^3(SO_2)_-$, PR^3 or $P(=O)R^3$, $Q(CO)_-$, $Q(SO_2)_-$,

to form the compound of the formula (I)

20 where

M, R^1 , R^2 , R^3 , X, Y, n, n, m, k, B and R^{12} are as defined above and

m' is from 1 to 4, preferably 1 or 2, with the compound of the formula M¹X, where M¹ and X are as defined above, being eliminated, in an inert solvent or solvent mixture.

- b) if desired, separating off solid residues of the formula M1X
- c) if desired, separating off the inert solvent or solvent
 30 mixture,
 - d) recrystallizing the compound of the formula (I) from an aprotic hydrocarbon,
 - e) separating the compound of the formula (I) from the mother liquor.
 - A process as claimed in claim 1, wherein a polar or nonpolar, aprotic hydrocarbon or hydrocarbon mixture is used in step d).

A process as claimed in claim 1 or 2, wherein toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene/THF, heptane/DME or toluene/DME is used in step d).

45 4. The use of a compound obtained as set forth in claim 1 for preparing a catalyst system for the polymerization of olefins.

- 5. A catalyst system comprising at least one compound obtained as set forth in claim 1 and a support and, if desired, a cocatalyst.
- 5 6. A process for preparing a polyolefin in the presence of a catalyst system as claimed in claim 5.
 - 7. The use of a catalyst as claimed in claim 5 for the polymerization of one or more olefins.

15

10

20

25

30

35

40

45