USAMO 2021/1

Dylan Yu

April 15, 2021

Problem 1 (USAMO 2021/1). Rectangles BCC_1B_2 , CAA_1C_2 , and $ABB_1A_@$ are erected outside an acute triangle ABC. Suppose that

$$\angle BC_1C + \angle CA_1A + \angle AB_1B = 180^{\circ}.$$

Prove that lines B_1C_2 , C_1A_2 , and A_1B_2 are concurrent.

Solution. Let *X* be the foot of *A* to B_1C_2 .

Claim — The circumcircles of BCC_1B_2 , CAA_1C_2 , and AB_1A_2 are concurrent on BC_2 .

Proof. Because $\angle AXB_1 = 90^\circ$, we must have that AXB_1A_2 is cyclic. Furthermore, ABB_1A_2 is also cyclic because it is a rectangle, so X lies on it. By similar reasoning, X lies on CAA_1C_2 .

Let $\angle AB_1B = \alpha$ and $\angle CA_1A = \beta$. Then

$$\angle BXB_1 = \angle BAB_1 = 90^{\circ} - \alpha$$
,

and similarly $\angle CXC_2 = 90^{\circ} - \beta$. Thus, $\angle BXC_1 = \alpha + \beta$. But by definition,

$$\angle BC_1C + \angle CA_1A + \angle AB_1B = 180^\circ$$
,

so

$$\angle BC_1C = 180^\circ - (\alpha + \beta),$$

implying

$$\angle BXC + \angle BC_1C = 180^{\circ}$$
,

and thus $BXCC_1$ is cyclic. Again, BCC_1B_2 is a rectangle, so X lies on it.

Similarly, the three circles are concurrent on C_1A_2 and A_1B_2 . Thus, X lies on B_1C_2 , C_1A_2 , and A_1B_2 , implying the desired.