Chapter 2 Theory of Constrained Optimization

2.1 Basic notations and examples

We consider nonlinear optimization problems (NLP) of the form

minimize
$$f(x)$$
 (2.1a)

over $x \in \mathbb{R}^n$

subject to
$$h(x) = 0$$
 (2.1b)

$$g(x) \le 0 \tag{2.1c}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is the objective functional and the functions $h: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ describe the equality and inequality constraints.

Definition 2.1 Special cases

The minimization problem (2.1a)-(2.1c) is said to be a linear programming problem (LP) respectively a quadratic programming problem (QP), if f is linear respectively quadratic and the constraint functions h and g are affine.

Definition 2.2 Feasible set

The set of points that satisfy the equality and inequality constraints, i.e.,

$$\mathcal{F} := \{ x \in \mathbb{R}^n \mid h(x) = 0, g(x) \le 0 \}$$
 (2.2)

is called the feasible set of the NLP (2.1a)-(2.1c). Its elements are referred to as feasible points.

In terms of the feasible set, the NLP (2.1a)-(2.1c) can be written in the more compact form

$$\min_{x \in \mathcal{F}} f(x) \ . \tag{2.3}$$

The following examples illustrate the impact of the constraints on the solution of an NLP.

Example 2.3: Consider the constrained quadratic minimization problem

$$minimize ||x||_2^2 (2.4a)$$

over $x \in \mathbb{R}^n$

subject to
$$g(x) := 1 - ||x||_2^2 \le 0$$
, (2.4b)

where $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^n .

If there is no constraint, the NLP has the unique solution x = 0. However, with the constraint (2.4b) any vector $x \in \mathbb{R}^n$ satisfying $||x||_2 = 1$ is a solution

of the NLP (2.4a)-(2.4b). Hence, if $n \ge 2$, the solution set forms an (n-1)-st dimensional manifold.

Example 2.4: Consider the constrained nonlinear minimization problem

minimize
$$(x_2 + 100)^2 + 0.01 x_1^2$$
 (2.5a)

over
$$x = (x_1, x_2) \in \mathbb{R}^2$$

subject to
$$g(x) := \cos x_1 - x_2 \le 0$$
. (2.5b)

Without constraint, the NLP has the unique solution $x = (-100, 0)^T$. With the constraint, there are infinitely many solutions near to the points

$$x = (k\pi, -1)^T$$
, $k = \pm 1, \pm 3, \pm 5, ...$

Consequently, in contrast to the previous example, the set of solutions does not form a connected set.

Figure 3: Constrained problem with multiple minima

The two examples give rise to the following definitions.

Definition 2.5 Local minimizers

A vector $x^* \in \mathbb{R}^n$ is called

- a local minimum of the NLP (2.1a)-(2.1c), if $x^* \in \mathcal{F}$ and there is a neighborhood $\mathcal{U}(x^*) \subset \mathbb{R}^n$ such that $f(x) \geq f(x^*)$ for all $x \in \mathcal{U}(x^*) \cap \mathcal{F}$,
- an isolated local minimum of the NLP (2.1a)-(2.1c), if $x^* \in \mathcal{F}$ and there is a neighborhood $\mathcal{U}(x^*) \subset \mathbb{R}^n$ such that x^* is the only local minimum in $\mathcal{U}(x^*) \cap \mathcal{F}$.

We will now focus our interest on the characterization of solutions to the NLP (2.1a)-(2.1c).

Example 2.6 A single equality constraint

Consider the NLP

$$minimize x_1 + x_2 (2.6a)$$

over $x = (x_1, x_2) \in \mathbb{R}^2$

subject to
$$h(x) := x_1^2 + x_2^2 - 2 = 0$$
. (2.6b)

The unique solution of (2.6a)-(2.6b) is obviously given by $x^* = (-1, -1)^T$. Computing the gradients of f and h in x^* , we obtain

$$\nabla f(x^*) = (1,1)^T$$
 , $\nabla h(x^*) = (-2,-2)^T$.

Obviously, $\nabla f(x^*)$ and $\nabla h(x^*)$ are parallel, i.e., there exists a scalar $\lambda^* \in \mathbb{R}$, in this particular case $\lambda^* = 1/2$ such that

$$\nabla f(x^*) = -\lambda^* \nabla h(x^*) . \tag{2.7}$$

Figure 4: Function and constraint gradients in Example 2.6

We will now show that (2.7) is a necessary condition for optimality in the general case.

Assume that $x \in \mathcal{F}$. Then, Taylor expansion of h(x+d), $d \in \mathbb{R}^n$, gives

$$h(x+d) \approx \underbrace{h(x)}_{=0} + \nabla h(x)^T d$$
.

If we want to retain feasibility at x + d, we have to require

$$\nabla h(x)^T d = 0. (2.8)$$

On the other hand, if we want that the direction d results in a decrease of the objective functional f, there must hold

$$0 > f(x+d) - f(x) \approx \nabla f(x)^T d$$

which leads to the requirement

$$\nabla f(x)^T d < 0. (2.9)$$

Consequently, if x is a local minimum, there is no direction d satisfying (2.8) and (2.9) simultaneously. The only way that such a direction does not exist is that $\nabla f(x)$ and $\nabla h(x)$ are parallel.

Introducing the Lagrangian functional $\mathcal{L}: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ by means of

$$\mathcal{L}(x,\lambda) := f(x) + \lambda h(x), \qquad (2.10)$$

and observing $\nabla_x \mathcal{L}(x,\lambda) = \nabla f(x) + \lambda \nabla h(x)$, condition (2.7) can be equivalently stated as

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = 0. (2.11)$$

Example 2.7 A single inequality constraint

Consider the inequality constrained NLP

$$minimize x_1 + x_2 (2.12a)$$

over $x = (x_1, x_2) \in \mathbb{R}^2$

subject to
$$g(x) := x_1^2 + x_2^2 - 2 \le 0$$
. (2.12b)

The feasible region is the closed ball $\bar{B}_{\sqrt{2}}(0)$ with radius $\sqrt{2}$ around the origin. As in the previous example, the solution is $x^* = (-1, -1)^T$.

Again, a feasible point $x \in \mathcal{F}$ is not optimal, if we can find a direction $d \in \mathbb{R}^2$ such that d is a descent direction, i.e.,

$$\nabla f(x)^T d < 0 , (2.13)$$

and x + d is still feasible, i.e.,

$$0 \ge g(x+d) \approx g(x) + \nabla g(x)^T d.$$

To first order, this leads to the condition

$$g(x) + \nabla g(x)^T d \le 0. (2.14)$$

For the characterization of directions d that satisfy (2.13) and (2.14), we distinguish the two cases $x \in B_{\sqrt{2}}(0)$ and $x \in \partial B_{\sqrt{2}}(0)$.

Figure 5: Descent directions from two feasible points in Example 2.7 where the constraint is active/inactive

Case I: $x \in B_{\sqrt{2}}(0)$

In this case we have g(x) < 0. Obviously, (2.14) is satisfied for any vector d provided its length is sufficiently small. In particular, for $\nabla f(x) \neq 0$, a direction $d \neq 0$ that satisfies (2.13) and (2.14) is given by

$$d = \alpha \ g(x) \ \frac{\nabla f(x)}{\|\nabla f(x)\|_2} \quad , \quad 0 < \alpha < \left\{ \begin{array}{cc} +\infty & , & \nabla g(x) = 0 \\ \frac{1}{\|\nabla g(x)\|_2} & , & \nabla g(x) \neq 0 \end{array} \right. .$$

The only situation where such a direction fails to exist is when

$$\nabla f(x) = 0. (2.15)$$

Case II: $x \in \partial B_{\sqrt{2}}(0)$

In this case we have g(x) = 0 and hence, conditions (2.13) and (2.14) reduce to

$$\nabla f(x)^T d \ < \ 0 \quad , \quad \nabla g(x)^T d \ \leq \ 0 \ .$$

It is obvious that these conditions cannot be satisfied if $\nabla f(x)$ and $\nabla g(x)$ point in different directions, i.e.,

$$\nabla f(x) = -\mu \nabla g(x)$$
 for some $\mu \ge 0$. (2.16)

Note that the sign of the Lagrangian multiplier μ is essential.

Again, the optimality condition for both cases can be summarized by considering the Lagrangian functional

$$\mathcal{L}(x,\mu) := f(x) + \mu g(x) .$$

When no first-order feasible descent direction exists at some $x^* \in \mathcal{F}$, we have

$$\nabla_x \mathcal{L}(x^*, \mu^*) = 0 \quad \text{for some } \mu^* \ge 0 , \qquad (2.17)$$

and we also require

$$\mu^* g(x^*) = 0. (2.18)$$

Condition (2.18) is called a complementarity condition. It says that the Lagrangian multiplier μ^* can be strictly positive only if the constraint g is active, i.e., $g(x^*) = 0$.

In case I, we have $g(x^*) < 0$ so that according to (2.18) the multiplier has to satisfy $\mu^* = 0$. Hence, (2.17) reduces to $\nabla f(x^*) = 0$ which corresponds to (2.15).

On the other hand, in case II the multiplier μ^* can take a nonnegative value. Consequently, (2.17) is equivalent to (2.16).

2.2 First Order Optimality Conditions

The Lagrangian associated with the NLP (2.1a)-(2.1c) is given by the functional $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$\mathcal{L}(x,\lambda,\mu) := f(x) + \lambda^T h(x) + \mu^T q(x). \tag{2.19}$$

Definition 2.8 Active set

Let $x \in \mathcal{F}$. Then, the set

$$\mathcal{I}_{ac}(x) := \{ 1 \le i \le p \mid g_i(x) = 0 \}$$
 (2.20)

is said to be the set of active inequality constraints at x. Its complement $\mathcal{I}_{ia}(x) := \{1, ..., p\} \setminus \mathcal{I}_{ac}(x)$ is referred to as the set of inactive inequality constraints.

The vectors $\nabla h_i(x)$, $1 \leq i \leq m$, and $\nabla g_i(x)$, $1 \leq i \leq p$, are called the normals of the equality constraints h_i respectively g_i at x.

Considering Example 2.6, if we choose

$$h(x) = (x_1^2 + x_2^2 - 2)^2,$$

we obtain

$$\nabla h(x) = 4 (x_1^2 + x_2^2 - 2) (x_1, x_2)^T.$$

Obviously, $\nabla h(x) = 0$ for all $x \in \mathcal{F} = \partial B_{\sqrt{2}}(0)$. Consequently, $\nabla f(x) = \lambda \nabla h(x)$ does no longer hold true at the minimum $x^* = (-1, -1)^T$. In the sequel, we want to exclude such a degenerate behavior by the following constraint qualification.

Definition 2.9 Linear Independence Constraint Qualification

Let $\mathcal{I}_{ac}(x^*)$, $x^* \in \mathcal{F}$, be the set of active inequality constraints. Then, the Linear Independence Constraint Qualification (LICQ) is satisfied at x^* , if the set of active constraint gradients

$$\{ \nabla h_1(x^*), ..., \nabla h_m(x^*), \nabla g_i(x^*), i \in \mathcal{I}_{ac}(x^*) \}$$
 (2.21)

is linearly independent.

We further introduce the concepts of feasible sequences and associated limiting directions.

Definition 2.10 Feasible sequence and limiting direction

(i) A sequence $\{x_k\}_{\mathbb{N}}$ with $x_k \in \mathbb{R}^n$, $k \in \mathbb{N}$, is said to be a feasible sequence with respect to a feasible point $x^* \in \mathbb{R}^n$, if there exists $k_0 \in \mathbb{N}$ such that the following properties are satisfied

$$x_k \neq x^*, \ k \in \mathbb{N} \ , \tag{2.22a}$$

$$\lim_{k \to \infty} x_k = x^* , \qquad (2.22b)$$

$$x_k \in \mathcal{F} , \ k \ge k_0$$
 (2.22c)

The set of all feasible sequences with respect to a feasible point $x^* \in \mathcal{F}$ will be denoted by $\mathcal{T}(x^*)$.

(ii) A vector $d \in \mathbb{R}^n$ is said to be a limiting direction of a feasible sequence $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$, if there exists a subsequence $\{x_k\}_{\mathbb{N}'}$, $\mathbb{N}' \subset \mathbb{N}$, such that

$$\lim_{k \in \mathbb{N}'} \frac{x_k - x^*}{\|x_k - x^*\|_2} = d. \tag{2.23}$$

Definition 2.11 Local solution

A feasible point $x^* \in \mathcal{F}$ is called a local solution of the NLP (2.1a)-(2.1c), if for all feasible sequences $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$ there exists $k_0 \in \mathbb{N}$ such that

$$f(x_k) \geq f(x^*) , k \geq k_0 .$$

Example 2.12: Let us consider the equality constrained NLP (2.6a)-(2.6b) and the feasible point $x^* = (-\sqrt{2}, 0)^T$.

A feasible sequence is given by

$$x_k = \begin{pmatrix} -\sqrt{2-1/k^2} \\ 1/k \end{pmatrix}, k \in \mathbb{N}.$$

Obviously, $f(x_k) \ge f(x^*)$, $k \in \mathbb{N}$, and $d = (0,1)^T$ is the limiting direction of that feasible sequence.

On the other hand, another feasible sequence is

$$x_k = \begin{pmatrix} -\sqrt{2-1/k^2} \\ -1/k \end{pmatrix}, k \in \mathbb{N}.$$

In this case we have $f(x_k) < f(x^*)$, $k \ge 2$, and $d = (0, -1)^T$ is the limiting direction.

It follows that x^* cannot be a local solution of (2.6a)-(2.6b).

Theorem 2.12 Characterization of local solutions

If $x^* \in \mathcal{F}$ is a local solution of the NLP (2.1a)-(2.1c), then for any feasible sequence $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$ and any limiting direction d of the feasible sequence there holds

$$\nabla f(x^*)^T d \ge 0. (2.24)$$

Proof: The proof is by contradiction. We assume that there exists a feasible sequence $\{x_k\}_{\mathbb{N}} \subset \mathcal{T}(x^*)$ and a limiting direction d such that

$$\nabla f(x^*)^T d < 0. ag{2.25}$$

Let $\mathbb{N}' \subset \mathbb{N}$ be such that $\lim_{k \in \mathbb{N}'} x_k = x^*$. By Taylor expansion, for $k \in \mathbb{N}'$ we obtain

$$f(x_k) = f(x^*) + \nabla f(x^*)^T (x_k - x^*) + o(\|x_k - x^*\|_2) =$$

= $f(x^*) + \|x_k - x^*\|_2 \nabla f(x^*)^T d + o(\|x_k - x^*\|_2)$.

In view of (2.25) there exists $k_0 \in \mathbb{N}'$ such that

$$f(x_k) < f(x^*) + \frac{1}{2} ||x_k - x^*||_2 \nabla f(x^*)^T d, \ k \ge k_0,$$

whence $f(x_k) < f(x^*)$, $k \ge k_0$. Consequently, x^* is not a local solution.

The Linear Independence Constraint Qualification (LICQ) allows the characterization of the set of all possible limiting directions d of a feasible sequence in $\mathcal{T}(x^*)$ in terms of the gradients $\nabla h_i(x^*)$, $1 \leq i \leq m$, and $\nabla g_i(x^*)$, $i \in \mathcal{I}_{ac}(x^*)$.

Lemma 2.13 Characterization of limiting directions

(i) If $d \in \mathbb{R}^n$ is a limiting direction of a feasible sequence in $\mathcal{T}(x^*)$, then

$$\nabla h_i(x^*)^T d = 0 , 1 \le i \le m ,$$
 (2.26a)

$$\nabla g_i(x^*)^T d \leq 0 , i \in \mathcal{I}_{ac}(x^*) . \tag{2.26b}$$

(ii) On the other hand, if (2.26a)-(2.26b) holds true with $||d||_2 = 1$ and if the LICQ is satisfied, then d is a limiting direction of the feasible sequence.

Proof: For the proof of part (i) let $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$ a feasible sequence with limiting direction d such that for $\mathbb{N}' \subset \mathbb{N}$

$$\lim_{k \in \mathbb{N}'} \frac{x_k - x^*}{\|x_k - x^*\|_2} = d.$$

It follows that

$$x_k = x^* + d \|x_k - x^*\|_2 + o(\|x_k - x^*\|_2).$$

For $1 \leq i \leq m$, by Taylor expansion we obtain

$$0 = \frac{1}{\|x_k - x^*\|_2} h_i(x_k) =$$

$$= \frac{1}{\|x_k - x^*\|_2} \left[h_i(x^*) + \|x_k - x^*\|_2 \nabla h_i(x^*)^T d + o(\|x_k - x^*\|_2) \right] =$$

$$= \nabla h_i(x^*)^T d + \frac{o(\|x_k - x^*\|_2)}{\|x_k - x^*\|_2} .$$

For $k \to \infty$ this gives $\nabla h_i(x^*)^T d = 0$. Similarly, for $i \in \mathcal{I}_{ac}(x^*)$ we get

$$0 \geq \frac{1}{\|x_k - x^*\|_2} g_i(x_k) =$$

$$= \frac{1}{\|x_k - x^*\|_2} \left[g_i(x^*) + \|x_k - x^*\|_2 \nabla g_i(x^*)^T d + o(\|x_k - x^*\|_2) \right] =$$

$$= \nabla g_i(x^*)^T d + \frac{o(\|x_k - x^*\|_2)}{\|x_k - x^*\|_2} .$$

Hence, $k \to \infty$ implies $\nabla g_i(x^*)^T d \le 0$.

For the proof of (ii) let $p^* := \operatorname{card} \mathcal{I}_{ac}(x^*)$ and reorder $g_1, ..., g_p$ such that $g_i(x^*) = 0$, $1 \le i \le p^*$. Set $q^* := m + p^*$ and consider the matrix $A \in \mathbb{R}^{q^* \times n}$

$$A_{1} = \begin{bmatrix} \nabla h_{1}(x^{*}) \\ \cdot \\ \nabla h_{m}(x^{*}) \end{bmatrix}$$

$$A = \begin{bmatrix} A_{1} \\ A_{2} \end{bmatrix} , \qquad (2.27)$$

$$A_{2} = \begin{bmatrix} \nabla g_{1}(x^{*}) \\ \cdot \\ \nabla g_{p^{*}}(x^{*}) \end{bmatrix}$$

If LIQC holds true, the matrix A has full row rank q^* . We denote by Z the matrix whose columns form a basis of the kernel of A, i.e.,

$$Z \in \mathbb{R}^{n \times (n-q^*)}$$
 has full column rank , $AZ = 0$. (2.28)

Let d be a limiting direction of a feasible sequence satisfying (2.26a),(2.26b) and let $\{t_k\}_{\mathbb{N}}$ be a null sequence of positive real numbers. Consider the parametrized system of equations

$$R(z,t) := \begin{bmatrix} h_i(z) - tA_1d \\ g_i(z) - tA_2d \\ Z^T(z - x^* - td \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad 1 \le i \le m \\ 1 \le i \le p^* \quad . \tag{2.29}$$

We show that there exists $k_0 \in \mathbb{N}$ such that for $t = t_k$, $k \geq k_0$, the system (2.29) admits a unique solution $z = x_k$ and that $\{x_k\}_{\mathbb{N}}$ is a feasible sequence with limiting direction d:

For t = 0, the solution of (2.29) is given by $z = x^*$ with the Jacobian

$$\nabla_z R(x^*, 0) = \begin{bmatrix} A \\ Z^T \end{bmatrix}.$$

By construction of Z it follows that $\nabla_z R(x^*, 0) \in \mathbb{R}^{n \times n}$ is regular. The implicit function theorem implies that (2.29) is uniquely solvable for sufficiently small t_k , i.e., there exists $k_0 \in \mathbb{N}$ such that for $k \geq k_0$ and $t = t_k$ the system (2.29) has a unique solution $z = x_k$. Observing (2.26a),(2.26b), and (2.29), we get

$$h_i(x_k) = t_k \nabla h_i(x_k)^T d = 0 , 1 \le i \le m ,$$
 (2.30a)

$$g_i(x_k) = t_k \nabla g_i(x_k)^T d \le 0 , \ 1 \le i \le p^* ,$$
 (2.30b)

which proves that x_k is feasible.

We now show that $x_k = z(t_k) \neq x^*$ for all k. The proof is by contradiction: Assume $z(\bar{t}) = x^*$ for some $\bar{t} > 0$, i.e.,

$$\begin{bmatrix} h_i(x^*) - \bar{t}A_1 d \\ g_i(x^*) - \bar{t}A_2 d \\ -Z^T(\bar{t}d) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad 1 \le i \le m \\ 1 \le i \le p^* \quad . \tag{2.31}$$

Since $h_i(x^*) = 0$, $1 \le i \le m$, $g_i(x^*) = 0$, $1 \le i \le p^*$, and $\begin{bmatrix} A \\ Z^T \end{bmatrix}$ is regular, (2.31) has the unique solution d = 0 contradicting $||d||_2 = 1$.

It remains to be shown that d is a limiting direction of the feasible sequence $\{x_k\}_{\mathbb{N}}$. Observing $R(x_k, t_k) = 0$, by Taylor expansion we find

$$0 = R(x_k, t_k) = \begin{bmatrix} h_i(x_k) - t_k A_1 d \\ g_i(x_k) - t_k A_2 d \\ Z^T(x_k - x^* - t_k d) \end{bmatrix} =$$

$$= \begin{bmatrix} A_1(x_k - x^*) + o(\|x_k - x^*\|_2) - t_k A_1 d \\ A_2(x_k - x^*) + o(\|x_k - x^*\|_2) - t_k A_2 d \\ Z^T(x_k - x^* - t_k d) \end{bmatrix} =$$

$$= \begin{bmatrix} A \\ Z^T \end{bmatrix} (x_k - x^* - t_k d) + o(\|x_k - x^*\|_2).$$

Setting

$$d_k := \frac{x_k - x^*}{\|x_k - x^*\|_2}$$

and observing that $\left[\begin{array}{c}A\\Z^T\end{array}\right]$ is nonsingular, it follows that

$$\lim_{k \to \infty} \left[d_k - \frac{t_k}{\|x_k - x^*\|_2} d \right] = 0.$$

Since $||d_k||_2 = 1$, $k \in \mathbb{N}$, and $||d||_2 = 1$, we deduce

$$\lim_{k \to \infty} \frac{t_k}{\|x_k - x^*\|_2} = 1 ,$$

whence $\lim_{k\to\infty} d_k = d$.

Definition 2.14 Tangent and normal cone to the feasible set

A vector $w \in \mathbb{R}^n$ is tangent to the feasible set \mathcal{F} at $x \in \mathcal{F}$, if for all sequences $\{x_k\}_{\mathbb{N}}$, $x_k \in \mathcal{F}$, $k \in \mathbb{N}$, with $\lim_{k \to \infty} x_k = x$ and all null sequences $\{t_k\}_{\mathbb{N}}$ of positive real numbers t_k , $k \in \mathbb{N}$, there exists a sequence $\{w_k\}_{\mathbb{N}}$, $w_k \in \mathbb{R}^n$, $k \in \mathbb{N}$, with $\lim_{k \to \infty} w_k = w$ such that $x_k + t_k w_k \in \mathcal{F}$, $k \in \mathbb{N}$.

The set $T_{\mathcal{F}}(x)$ of all tangent vectors to \mathcal{F} at $x \in \mathcal{F}$ is a cone, i.e., it has the property

$$w \in T_{\mathcal{F}}(x) \implies \alpha w \in T_{\mathcal{F}}(x) \text{ for all } \alpha \ge 0.$$

 $T_{\mathcal{F}}(x)$ is called the tangent cone to \mathcal{F} at x.

The orthogonal complement to the tangent cone

$$N_{\mathcal{F}}(x) := \{ v \in \mathbb{R}^n \mid v^T w \leq 0, w \in T_{\mathcal{F}}(x) \}$$

is called the normal cone to the feasible set \mathcal{F} at $x \in \mathcal{F}$.

Lemma 2.15 Limiting directions and the tangent cone

Given $x^* \in \mathcal{F}$, the set

$$F_1 := \left\{ \alpha d \mid \alpha \ge 0 , \begin{array}{c} \nabla h_i(x^*)^T d = 0 \\ \nabla q_i(x^*)^T d < 0 \end{array}, \begin{array}{c} 1 \le i \le m \\ i \in \mathcal{I}_{ac}(x^*) \end{array} \right\}$$
 (2.32)

is a cone. If LICQ is satisfied, F_1 is the tangent cone to the feasible set \mathcal{F} at x^* .

Proof: The proof is left as an exercise.

We now show that the nonexistence of a descent direction for the objective functional f can be stated in terms of the normal cone to the feasible set which is generated by the gradients of the active constraints.

Lemma 2.16 Nonexistence of a descent direction

There is no descent direction $d \in F_1$, i.e., satisfying $\nabla f(x^*)^T d < 0$, if and only if there exist a vector $\lambda \in \mathbb{R}^m$ and a vector $\mu \in \mathbb{R}^{p^*}_+$ such that

$$\nabla f(x^*) \in N := \{ s \mid s = \sum_{i=1}^m \lambda_i \nabla h_i(x^*) - \sum_{i \in \mathcal{I}_{ac}(x^*)} \mu_i \nabla g_i(x^*) \} . \tag{2.33}$$

Proof: We first prove the sufficiency of (2.33). For that purpose, we assume that (2.33) holds true and $d \in F_1$. We obtain

$$\nabla f(x^*)^T d = \sum_{i=1}^m \lambda_i \underbrace{\nabla h_i(x^*)^T d}_{=0} - \sum_{i \in \mathcal{I}_{ac}(x^*)} \mu_i \underbrace{\nabla g_i(x^*)^T d}_{<0} \ge 0.$$

The proof of the necessity of (2.33) is by contradiction. If $\nabla f(x^*) \notin N$, then we can find a vector $d \in F_1$ for which $\nabla f(x^*)^T d < 0$.

Let $\hat{s} \in N$ be the best approximation of $\nabla f(x^*)$ in N, i.e.,

$$\|\hat{s} - \nabla f(x^*)\|_2 = \min_{s \in N} \|s - \nabla f(x^*)\|_2.$$
 (2.34)

Since $t\hat{s} \in N$ for all $t \geq 0$ and $||t\hat{s} - \nabla f(x^*)||_2$ is minimized at t = 1, there holds

$$\frac{d}{dt} \|t\hat{s} - \nabla f(x^*)\|_{2|_{t=1}} = 0$$

$$\Rightarrow (-2\hat{s}^T \nabla f(x^*) + 2t\hat{s}^T \hat{s})|_{t=1} = 0 \Rightarrow \hat{s}^T (\hat{s} - \nabla f(x^*)) = 0.$$

Now, let $s \in N$, $s \neq \hat{s}$. Due to the convexity of N and the minimizing property of \hat{s} we have

$$\|\hat{s} + \theta(s - \hat{s}) - \nabla f(x^*)\|_2^2 \ge \|\hat{s} - \nabla f(x^*)\|_2^2$$
, $\theta \in [0, 1]$,

from which we readily deduce

$$2\theta(s-\hat{s})^T(\hat{s}-\nabla f(x^*)) + \theta^2||s-\hat{s}||_2^2 \ge 0$$
.

Division by $\theta \neq 0$ and the limit process $\theta \to 0$ yield $(s - \hat{s})^T (\hat{s} - \nabla f(x^*)) \geq 0$. Observing (2.34), we get

$$s^{T}(\hat{s} - \nabla f(x^{*})) \ge 0 \quad , \quad s \in N$$
 (2.36)

Setting $d := \hat{s} - \nabla f(x^*)$, we will show that $d \in F_1$ is a descent direction, i.e., $\nabla f(x^*)^T d < 0$. We first note that $d \neq 0$, since $\nabla f(x^*) \notin N$. It follows from (2.35) that

$$\nabla f(x^*)^T d = (\hat{s} - d)^T d = \hat{s}^T (\hat{s} - \nabla f(x^*)) - d^T d = -\|d\|_2^2 < 0.$$

It remains to be shown that $d \in F_1$, i.e., that (2.26a) and (2.26b) are satisfied: Choosing $\lambda_i = \pm \delta_{ij}$, $1 \le i \le m$, and $\mu_i = \delta_{ij}$, $i \in \mathcal{I}_{ac}(x^*)$, in the definition of the cone N (cf. (2.33)), we find

$$\pm \nabla h_i(x^*) \in N , \quad 1 \le i \le m ,$$

$$-\nabla g_i(x^*) \in N , \quad i \in \mathcal{I}_{ac}(x^*) .$$

Hence, substituting $\hat{s} - \nabla f(x^*)$ by d in (2.36) and choosing $s = \pm \nabla h_i(x^*)$, $1 \le i \le m$, respectively $s = -\nabla g_i(x^*)$, $i \in \mathcal{I}_{ac}(x^*)$, we arrive at

$$\pm \nabla h_i(x^*)^T d \geq 0 \implies \nabla h_i(x^*)^T d = 0 , \quad 1 \leq i \leq m ,$$

$$\nabla g_i(x^*)^T d \leq 0 , \quad i \in \mathcal{I}_{ac}(x^*) .$$

We are now in a position to state the main result of this section, the first order necessary optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditions.

Theorem 2.17 Karush-Kuhn-Tucker conditions

Assume that $x^* \in \mathcal{F}$ is a local solution of (2.1a)-(2.1c) and that the LICQ is satisfied at x^* . Then, there exist Lagrange multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that the following conditions hold true at (x^*, λ^*, μ^*) :

$$\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0 , \qquad (2.37a)$$

$$h_i(x^*) = 0 , 1 \le i \le m ,$$
 (2.37b)

$$g_i(x^*) \le 0 , \ 1 \le i \le p ,$$
 (2.37c)

$$\mu_i^* \ge 0 , \ 1 \le i \le p ,$$
 (2.37d)

$$\mu_i^* g_i(x^*) = 0 , 1 \le i \le p .$$
 (2.37e)

Proof: We first prove that there exist multipliers μ_i , $i \in \mathcal{I}_{ac}(x^*)$, such that (2.33) in Lemma 2.16 is satisfied. From Theorem 2.12 we know that $\nabla f(x^*)^T d \geq 0$ for all limiting directions d of feasible sequences. Under the condition LICQ, Lemma 2.13 states that the set of all possible limiting directions satisfies (2.26). Consequently, all directions d for which (2.26) holds true, also satisfy $\nabla f(x^*)^T d \geq 0$. Hence, by Lemma 2.16 there exists $\mu \in \mathbb{R}_+^p$ such that (2.33) is fulfilled. We now define $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ according to

$$\lambda_i^* := 0 , 1 \le i \le m , \quad \mu_i^* := \begin{cases} \mu_i , & i \in \mathcal{I}_{ac}(x^*) \\ 0 , & i \in \mathcal{I}_{in}(x^*) \end{cases}$$
 (2.38)

With that definition of the multipliers λ^*, μ^* , taking advantage of (2.33) we have

$$\mathcal{L}_{x}(x^{*}, \lambda^{*}, \mu^{*}) = \nabla f(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}(x^{*}) + \sum_{i \in \mathcal{I}_{ac}(x^{*})} \mu_{i}^{*} \nabla g_{i}(x^{*}) + \underbrace{\sum_{i \in \mathcal{I}_{in}(x^{*})} \mu_{i}^{*} \nabla g_{i}(x^{*})}_{= 0} = 0 ,$$

which is (2.37a) of the KKT-conditions.

Since x^* is feasible, it is obvious that (2.37b) and (2.37c) are satisfied.

In view of (2.33) we have $\mu_i^* \ge 0$, $i \in \mathcal{I}_{ac}(x^*)$, whereas $\mu_i^* = 0$, $i \in \mathcal{I}_{in}(x^*)$ by (2.38). Hence, $\mu_i^* \ge 0$, $1 \le i \le p$, which is (2.37d).

Finally, $g_i(x^*) = 0$, $i \in \mathcal{I}_{ac}(x^*)$, and $\mu_i^* = 0$, $i \in \mathcal{I}_{in}(x^*)$ so that $\mu_i^* g_i(x^*) = 0$, $1 \le i \le p$, which is (2.37e).

Definition 2.18 Strict complementarity

Let $x^* \in \mathcal{F}$ be a local solution of the NLP (2.1a)-(2.1c) and λ^* , μ^* Lagrange multipliers satisfying the KKT conditions (2.37a)-(2.37e). Then, strict complementarity holds true if

$$\mu_i^* > 0 \quad , \quad i \in \mathcal{I}_{ac}(x^*) \ . \tag{2.39}$$

Remark 2.19 Since $\mu_i^* = 0$, $i \in \mathcal{I}_{in}(x^*)$, strict complementarity means that exactly one of the quantities μ_i^* and $g_i(x^*)$ is zero for each $1 \le i \le p$.

2.3 Second order optimality conditions

The first order optimality conditions (KKT-conditions) give information how the first derivatives of the objective functional f and the constraints h and g behave at a local solution $x^* \in \mathcal{F}$ of the NLP (2.1a)-(2.1c). If we proceed from x^* along a vector $w \in F_1$, then the first order approximation $f(x^*) + \nabla f(x^*)^T w$ of $f(x^* + w)$ either increases $(\nabla f(x^*)^T w > 0)$ or stays constant $(\nabla f(x^*)^T w = 0)$. In the latter case, additional information will be provided by the second derivatives of f, h and g at x^* . In the sequel, we assume f, h and g to be twice continuously differentiable.

Given Lagrange multipliers $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$ that satisfy the KKT-conditions (2.37a)-(2.37e), we define a subset

$$F_2(\lambda^*, \mu^*) \subset F_1$$

as follows

$$F_2(\lambda^*, \mu^*) := \{ w \in F_1 \mid \nabla g_i(x^*)^T w = 0 , i \in \mathcal{I}_{ac}(x^*) \text{ with } \mu_i^* > 0 \} .$$
 (2.40)

By the definition of F_1 (cf. (2.32)) we have

$$w \in F_2(\lambda^*, \mu^*) \quad \Longleftrightarrow \tag{2.41}$$

$$\begin{cases} \nabla h_i(x^*)^T w = 0 , & 1 \leq i \leq m, \\ \nabla g_i(x^*)^T w = 0 , & i \in \mathcal{I}_{ac}(x^*) \text{ with } \mu_i^* > 0, \\ \nabla g_i(x^*)^T w \leq 0 , & i \in \mathcal{I}_{ac}(x^*) \text{ with } \mu_i^* = 0. \end{cases}$$

Since $\mu_i^* = 0$, $i \in \mathcal{I}_{in}(x^*)$, we conclude from (2.41)

$$w \in F_2(\lambda^*, \mu^*) \iff \begin{cases} \lambda_i^* \nabla h_i(x^*)^T w = 0 & , & 1 \le i \le m , \\ \mu_i^* \nabla g_i(x^*)^T w = 0 & , & 1 \le i \le p . \end{cases}$$
 (2.42)

Finally, taking the first optimality condition (2.37a) into account

$$\mathcal{L}_{x}(x^{*}, \lambda^{*}, \mu^{*}) = \nabla f(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}(x^{*}) + \sum_{i=1}^{p} \mu_{i}^{*} \nabla g_{i}(x^{*}) = 0 ,$$

we find

$$w \in F_{2}(\lambda^{*}, \mu^{*}) \implies (2.43)$$

$$\nabla f(x^{*})^{T} w = -\sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}(x^{*})^{T} w - \sum_{i=1}^{p} \mu_{i}^{*} \nabla g_{i}(x^{*})^{T} w = 0.$$

Consequently, $F_2(\lambda^*, \mu^*)$ contains all those directions from F_1 for which we do not get information from the KKT conditions whether the objective functional f will decrease or increase.

Theorem 2.20 Second order necessary optimality conditions

Assume that $x^* \in \mathcal{F}$ is a local solution of the NLP (2.1a)-(2.1c) and that the LICQ condition holds true. Further, suppose that $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ are Lagrange multipliers satisfying the KKT conditions (2.37a)-(2.37e). Then, the curvature of the Lagrangian is nonnegative along directions in $F_2(\lambda^*, \mu^*)$, i.e.,

$$w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w \ge 0 \quad , \quad w \in F_2(\lambda^*, \mu^*) .$$
 (2.44)

Proof: The idea of proof is to construct a feasible sequence $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$ with limiting direction $\frac{w}{\|w\|_2}$ such that $f(x_k) \geq f(x^*)$, k sufficiently large, implies (2.44).

Since $w \in F_2(\lambda^*, \mu^*) F_2(\lambda^*, \mu^*) \subset F_1$, for a null sequence $\{t_k\}_{\mathbb{N}}$ of positive real numbers we construct $x_k = z(t_k)$ as in the proof of Lemma 2.13 (ii). In particular, it follows from (2.26a), (2.26b) that

$$h_i(x_k) = \frac{t_k}{\|w\|_2} \nabla h_i(x^*)^T w , \quad 1 \le i \le m ,$$
 (2.45a)

$$g_i(x_k) = \frac{t_k}{\|w\|_2} \nabla g_i(x^*)^T w , \quad 1 \le i \le p .$$
 (2.45b)

Moreover, we have

$$||x_k - x^*||_2 = t_k + o(t_k),$$
 (2.46)

whence

$$x_k - x^* = \frac{t_k}{\|w\|_2} w + o(t_k)$$
 (2.47)

Observing the KKT conditions (2.37a)-(2.37e) and (2.45a), (2.45b), we obtain

$$\mathcal{L}(x_k, \lambda^*, \mu^*) = f(x_k) + \sum_{i=1}^m \lambda_i^* h_i(x_k) + \sum_{i=1}^p \mu_i^* g_i(x_k) = (2.48)$$

$$= f(x_k) + \frac{t_k}{\|w\|_2} \sum_{i=1}^m \underbrace{\lambda_i^* \nabla h_i(x^*)^T w}_{i=0 \text{ due to } (2.42)} + \frac{t_k}{\|w\|_2} \sum_{i=1}^p \underbrace{\mu_i^* \nabla g_i(x^*)^T w}_{i=0 \text{ due to } (2.42)} = f(x_k) .$$

On the other hand, Taylor expansion yields

$$\underbrace{\mathcal{L}(x_{k}, \lambda^{*}, \mu^{*})}_{= f(x_{k}) \text{ by } (2.48)} = \underbrace{\mathcal{L}(x^{*}, \lambda^{*}, \mu^{*})}_{= f(x^{*}) \text{ by KKT}} + (x_{k} - x^{*})^{T} \underbrace{\mathcal{L}_{x}(x^{*}, \lambda^{*}, \mu^{*})}_{= 0 \text{ by KKT}}$$

$$+ \frac{1}{2} (x_{k} - x^{*})^{T} \mathcal{L}_{xx}(x^{*}, \lambda^{*}, \mu^{*})(x_{k} - x^{*}) + o(\|x_{k} - x^{*}\|_{2}^{2}) =$$

$$= f(x^{*}) + \frac{1}{2} (x_{k} - x^{*})^{T} \mathcal{L}_{xx}(x^{*}, \lambda^{*}, \mu^{*})(x_{k} - x^{*}) + o(\|x_{k} - x^{*}\|_{2}^{2}).$$
(2.49)

Taking (2.46) and (2.47) into account, (2.49) results in

$$f(x_k) = f(x^*) + \frac{1}{2} \frac{t_k^2}{\|w\|_2^2} w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w + o(t_k^2) . \tag{2.50}$$

Now, $w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w < 0$ would imply that $f(x_k) < f(x^*)$ for sufficiently large $k \in \mathbb{N}$, which contradicts the assumption that x^* is a local solution of the NLP (2.1a)-(2.1c). Consequently, (2.44) must hold true.

If we require $\mathcal{L}_{xx}(x^*, \lambda^*, \mu^*)$ to be uniformly positive definite on $F_2(\lambda^*, \mu^*)$, then this constitutes a sufficient condition for optimality. Note that the LICQ condition is not required.

Theorem 2.21 Second order sufficient optimality conditions

Assume that $x^* \in \mathcal{F}$ is a feasible point and there exist Lagrange multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ satisfying the KKT conditions (2.37a)-(2.37e). Further, suppose that

$$w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w > 0 \quad , \quad w \in F_2(\lambda^*, \mu^*)$$
 (2.51)

Then, x^* is a strict local solution of the NLP (2.1a)-(2.1c).

Proof: We will show that for any feasible sequence $\{x_k\}_{\mathbb{N}} \in \mathcal{T}(x^*)$ with $x_k \to x^*$ $(k \to \infty)$ we have that

$$f(x_k) > f(x^*)$$
 for sufficiently large $k \in \mathbb{N}$. (2.52)

By Lemma 2.13 (i) and Definition 2.14 we have that all limiting directions d of $\{x_k\}_{\mathbb{N}}$ satisfy $d \in F_1$. Let d be a limiting direction and $N' \subset \mathbb{N}$ such that for all $k \in \mathbb{N}'$

$$x_k - x^* = \|x_k - x^*\|_2 d + o(\|x_k - x^*\|_2).$$
 (2.53)

For the Lagrangian we have

$$\mathcal{L}(x_k, \lambda^*, \mu^*) = f(x_k) + \sum_{i \in \mathcal{I}_{ac}(x^*)} \mu_i^* g_i(x_k) \le f(x_k) . \tag{2.54}$$

We will prove (2.52) for the two cases $d \notin F_2(\lambda^*, \mu^*)$ and $d \in F_2(\lambda^*, \mu^*)$.

Case I: $d \notin F_2(\lambda^*, \mu^*)$

In view of (2.41) there exists an index $j \in \mathcal{I}_{ac}(x^*)$ such that

$$\mu_i^* \nabla g_i(x^*)^T d < 0 , \qquad (2.55a)$$

$$\mu_i^* \nabla g_i(x^*)^T d < 0 , i \in \mathcal{I}_{ac}(x^*) \setminus \{j\} . \tag{2.55b}$$

Observing (2.53), by Taylor expansion we get for $k \in \mathbb{N}'$

$$\mu_{j}^{*}g_{j}(x_{k}) = \underbrace{\mu_{j}^{*}g_{j}(x^{*})}_{= 0} + \mu_{j}^{*}\nabla g_{j}(x^{*})^{T}(x_{k} - x^{*}) + o(\|x_{k} - x^{*}\|_{2}) =$$

$$= \|x_{k} - x^{*}\|_{2} \mu_{j}^{*}\nabla g_{j}(x^{*})^{T}d + o(\|x_{k} - x^{*}\|_{2}).$$

Consequently, (2.54) infers

$$\mathcal{L}(x_k, \lambda^*, \mu^*) = f(x_k) + \sum_{i \in \mathcal{I}_{ac}(x^*)} \mu_i^* g_i(x_k) \le$$

$$\le f(x_k) + \|x_k - x^*\|_2 \mu_i^* \nabla g_i(x^*)^T d + o(\|x_k - x^*\|_2).$$
(2.56)

On the other hand, using the Taylor expansion (2.49) in the proof of Theorem 2.20, we have

$$\mathcal{L}(x_k, \lambda^*, \mu^*) = f(x^*) + O(\|x_k - x^*\|_2^2).$$
 (2.57)

Combining (2.56) and (2.57) yields

$$f(x_k) \ge f(x^*) - \|x_k - x^*\|_2 \mu_j^* \nabla g_j(x^*)^T d + o(\|x_k - x^*\|_2).$$

Observing (2.55a), we deduce (2.52).

Case II: $d \in F_2(\lambda^*, \mu^*)$

In this case, the Taylor expansion (2.49) and (2.53), (2.54) imply

$$f(x_k) \geq f(x^*) + \frac{1}{2} (x_k - x^*)^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*)(x_k - x^*) + o(\|x_k - x^*\|_2^2) =$$

$$= f(x^*) + \frac{1}{2} \|x_k - x^*\|_2^2 \underbrace{d^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*)d}_{> 0 \text{ by } (2.51)} + o(\|x_k - x^*\|_2^2),$$

from which we deduce (2.52).

Finally, since each x_k , $k \in \mathbb{N}$, can be assigned to one of the subsequences $\mathbb{N}' \subset \mathbb{N}$ such that $\{x_k\}_{\mathbb{N}'}$ converges to a limiting direction d, we have that $f(x_k) > f(x^*)$ for sufficiently large $k \in \mathbb{N}$.

Example 2.22 Second order optimality conditions

We reconsider Example 2.6 where the Lagrangian is given by

$$\mathcal{L}(x,\lambda) = (x_1 + x_2) + \lambda (x_1^2 + x_2^2 - 2).$$

The KKT conditions (2.37a)-(2.37e) are satisfied for $x^* = (-1, -1)^T$ and $\lambda^* = 0.5$. The Hessian of the Lagrangian at (x^*, λ^*) is given by

$$\mathcal{L}_{xx}(x^*,\lambda^*) = \begin{pmatrix} 2\lambda^* & 0 \\ 0 & 2\lambda^* \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Obviously, $w^T \mathcal{L}_{xx}(x^*, \lambda^*) w > 0$ for all $w \neq 0$, and hence, it follows from Theorem 2.21 that x^* is a strict local solution.

Example 2.23 Second order optimality conditions

Consider the inequality constrained NLP

minimize
$$f(x) := -0.1(x_1 - 4)^2 + x_2^2$$
 (2.58a)

over $x \in \mathbb{R}^2$

subject to
$$g(x) := 1 - (x_1^2 + x_2^2) \le 0$$
, (2.58b)

Obviously, the objective functional f is not bounded from below on the feasible set \mathcal{F} , and hence, no global solution exists.

For the associated Lagrangian we obtain

$$\mathcal{L}_x(x,\mu) = \begin{pmatrix} -0.2(x_1 - 4) - 2\mu x_1 \\ 2x_2 - 2\mu x_2 \end{pmatrix}, \qquad (2.59a)$$

$$\mathcal{L}_{xx}(x,\mu) = \begin{pmatrix} -0.2 - 2\mu & 0\\ 0 & 2 - 2\mu \end{pmatrix} . \tag{2.59b}$$

The pair (x^*, μ^*) with $x^* = (1, 0)^T$ and $\mu^* = 0.3$ satisfies the KKT conditions (2.37a)-(2.37e). In order to check the second order sufficient optimality condition (2.51), we note that

$$\nabla g(x^*) = \begin{pmatrix} -2x_1^* \\ -2x_2^* \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} ,$$

whence

$$F_2(\mu^*) = \{ w = (w_1, w_2)^T \in \mathbb{R}^2 \mid w_1 = 0 \}.$$

Consequently, it follows from (2.59b) that for $w \in F_2(\mu^*)$

$$w^{T} \mathcal{L}_{xx}(x^{*}, \mu^{*}) w = \begin{pmatrix} 0 \\ w_{2} \end{pmatrix}^{T} \begin{pmatrix} -0.8 & 0 \\ 0 & 1.4 \end{pmatrix} \begin{pmatrix} 0 \\ w_{2} \end{pmatrix} = 1.4 w_{2}^{2} > 0.$$

Hence, (2.51) is satisfied and thus, x^* is a strict local solution for (2.58a), (2.58b).

2.4 Projected Hessians

The second order conditions (2.44) and (2.51) are now stated in a weaker form that can be checked numerically in an easier way. We assume that the triple (x^*, λ^*, μ^*) with uniquely determined Lagrange multipliers λ^* , μ^* fulfills the KKT conditions (2.37a)-(2.37e) and distinguish the two cases where either strict complementarity (2.39) is satisfied or does not hold true.

Case I: KKT & Strict complementarity

We assume that the KKT conditions (2.37a)-(2.37e) are fulfilled and strict complementarity (2.39) holds true. In this case, the definition of $F_2(\lambda^*, \mu^*)$ (cf. (2.42)) reduces to

$$F_2(\lambda^*, \mu^*) = \operatorname{Ker} A$$

where the matrix A is given by (2.27). It follows that the matrix Z defined by (2.28) has full column rank (since λ^*, μ^* are uniquely determined), and its columns span the space $F_2(\lambda^*, \mu^*)$. Hence, $w \in F_2(\lambda^*, \mu^*)$ if and only if w = Zu for some $u \in \mathbb{R}^{n-q^*}$. Consequently, the conditions (2.44) in Theorem 2.20 and (2.51) in Theorem 2.21 can be written as follows

$$u^T Z^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) Zu \ge 0$$
 , $u \in \mathbb{R}^{n-q^*}$, (2.60a)

$$u^{T}Z^{T}\mathcal{L}_{xx}(x^{*}, \lambda^{*}, \mu^{*})Zu > 0 , u \in \mathbb{R}^{n-q^{*}} \setminus \{0\},$$
 (2.60b)

which means that $Z^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*)Z$ is positive semidefinite and positive definite, respectively.

Case II: KKT without strict complementarity

We suppose that the KKT conditions (2.37a)-(2.37e) with uniquely determined Lagrange multipliers λ^* , μ^* are satisfied, but do not assume strict complementarity (2.39). In this case, $F_2(\lambda^*, \mu^*)$ is not a subspace but the intersection of the planes defined by the first two conditions in (2.41) and the half-spaces defined by the third condition in (2.41).

We introduce F_2 and \overline{F}_2 according to

$$\underline{F}_2 := \{ d \in F_1 \mid \left\{ \begin{array}{l} \nabla h_i(x^*)^T d = 0 & , & 1 \le i \le m \\ \nabla g_i(x^*)^T d = 0 & , & i \in \mathcal{I}_{ac}(x^*) \end{array} \right\} \}, \quad (2.61a)$$

$$\overline{F}_2 := \{ d \in F_1 \mid \left\{ \begin{array}{l} \nabla h_i(x^*)^T d = 0 & , & 1 \le i \le m \\ \nabla g_i(x^*)^T d = 0 & , & i \in \mathcal{I}_{ac}(x^*) \text{ or } \mu_i^* > 0 \end{array} \right\} \} . \quad (2.61b)$$

Note that $\underline{F_2}$ is the largest-dimensional subspace that is contained in $F_2(\lambda^*, \mu^*)$, whereas $\overline{F_2}$ is the smallest-dimensional subspace that contains $F_2(\lambda^*, \mu^*)$.

As in case I we construct matrices \underline{A} and \overline{A} as well as \underline{Z} and \overline{Z} whose columns span Ker $\underline{A} = F_2$ and Ker $\overline{A} = \overline{F}_2$.

Now, if (2.44) in Theorem 2.20 is satisfied, due to $F_2 \subset F_2(\lambda^*, \mu^*)$ we have

$$w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w \geq 0$$
 , $w \in F_2$,

i.e., $\underline{Z}^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*)\underline{Z}$ is positive semidefinite. Likewise, the condition

$$w^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) w > 0 \quad , \quad w \in \overline{F}_2 ,$$

i.e., $\overline{Z}^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) \overline{Z}$ is positive definite, implies (2.52) in Theorem 2.21.

Definition 2.24 Projected Hessians

The matrices $Z^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) Z$ and $\underline{Z}^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) \underline{Z}$, $\overline{Z}^T \mathcal{L}_{xx}(x^*, \lambda^*, \mu^*) \overline{Z}$ are called projected Hessians.

The matrices Z and \underline{Z} , \overline{Z} can be computed by a QR-factorization of the matrices A^T and \underline{A} , \overline{A} . If $A \in \mathbb{R}^{q^* \times n}$ has full row rank q^* , we obtain

$$A^{T} = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = [Q_1 \ Q_2] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R , \qquad (2.62)$$

where $R \in \mathbb{R}^{q^* \times q^*}$ is a regular upper triangular matrix and $Q \in \mathbb{R}^{n \times n}$ is orthogonal. Moreover, $Q_1 \in \mathbb{R}^{n \times q^*}$, $Q_2 \in \mathbb{R}^{n \times (n-q^*)}$. Since

$$AQ = [R^T \ 0] \ Q^T Q = [R^T \ 0]$$

and R is nonsingular, we find $Z = Q_2$.

If A has row rank $\hat{q} < q^*$, we perform column pivoting during the QR-factorization of A^T . This means that we get a QR-factorization

$$A^{T}P = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = [Q_1 \ Q_2] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1R, \qquad (2.63)$$

where $P \in \mathbb{R}^{q^* \times n}$ is a permutation matrix, $R \in \mathbb{R}^{\hat{q} \times \hat{q}}$ is upper triangular and regular, and $Q_1 \in \mathbb{R}^{n \times \hat{q}}$, $Q_2 \in \mathbb{R}^{n \times (n - \hat{q})}$ have orthonormal columns. Again, we obtain $Z = Q_2$.