RyzhkinMA 18092024-150526

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.352	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.1	0.679	106.9	1.757	24.4	0.129	42.9	0.219	-86.9
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7
3.7	0.719	96.1	1.441	12.7	0.148	37.3	0.217	-106.1
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5
3.9	0.731	92.9	1.357	9.0	0.154	35.4	0.220	-112.8

и частоты $f_{\mbox{\tiny H}}=3.2$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=3.5$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти модуль $s_{21}\,$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\,$.

Варианты ОТВЕТА:

- 1) -13.3 дБ
- 2) 4.6 дБ
- 3) -17.6 дБ
- 4) -3.3 дБ

Задан двухполюсник на рисунке 2, причём R1 = 64.25 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.455	-145.3	20.384	94.7	0.026	56.0	0.358	-67.2
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
7.4	0.537	134.7	3.753	26.6	0.105	41.6	0.131	-154.6

и частоты $f_{\scriptscriptstyle \rm H}=2.1$ ГГц, $f_{\scriptscriptstyle \rm B}=6.3$ ГГц.

Найти обратные потери по выходу $% f_{\mathrm{B}}$ на f_{B} .

Варианты ОТВЕТА:

1) 15.2 дБ 2) 11.3 дБ 3) 7.6 дБ 4) 5.7 дБ

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.3+0.24\mathrm{i}$.

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
5.0	0.410	141.9	2.491	42.4	0.160	48.3	0.131	-139.8

и частоты $f_{\mbox{\tiny H}}=2.2$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=4.0$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 1.9 дБ 2) 5.4 дБ 3) 8.6 дБ 4) 2.7 дБ