Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 06.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 29

Anomalia rozszerzalności cieplnej wody

Spis treści

1	Wstęp teoretyczny	2					
2	Opis doświadczenia						
3	Opracowanie wyników pomiarów3.1 Tabele pomiarowe	4					
4	Ocena niepewności pomiarowych 4.1 Niepewność pomiaru temperatury						
5	Wnioski	5					
6	Wykresy	6					

1 Wstęp teoretyczny

Większość ciał zmienia swoją objętość liniowo wraz z temperaturą zgodnie z równaniem:

$$V = V_0(1 + \beta T) \tag{1}$$

gdzie V to objętość w temperaturze T (w °C), V_0 to objętość w 0°C, a β to współczynnik rozszerzalności objętościowej, który zależy od rodzaju substancji i stanu skupienia.

W cząsteczkach występują różne rodzaje wiązań atomowych:

- wiązania kowalencyjne powstają przez nakładanie się orbitali atomowych
- wiązania jonowe między jonami dodatnimi i ujemnymi
- wiązania wodorowe szczególnie istotne w przypadku wody

Cząsteczka wody (H_2O) jest dipolem, gdzie atomy wodoru mają ładunek dodatni, a atom tlenu ujemny. Wiązania OH tworzą kąt 104.5° , co jest spowodowane polarnością wiązań. W stanie ciekłym cząsteczki wody łączą się wiązaniami wodorowymi, tworząc strukturę przypominającą kryształ z bliskim porządkiem.

Woda zachowuje się nietypowo w zakresie temperatur 0-4°C. Powyżej 4°C jej objętość maleje wraz z obniżaniem temperatury, jak u większości ciał. Jednak w zakresie 0-4°C objętość wody rośnie przy ochładzaniu, osiągając minimum (a więc maksymalną gęstość) w temperaturze 4°C. To zjawisko nazywamy anomalną rozszerzalnością cieplną wody.

Poniżej 4°C cząsteczki wody intensywnie asocjują, tworząc heksagonalną strukturę podobną do lodu. Ta struktura ma duże, otwarte przestrzenie, co prowadzi do zmniejszenia gęstości (około 0,9 g/cm³ dla lodu). Podczas topnienia wiązania wodorowe pękają, pozwalając cząsteczkom na ciaśniejsze ułożenie, co powoduje zmniejszenie objętości o około 10% względem fazy ciekłej.

Ta anomalia ma istotne znaczenie ekologiczne - zimą woda o temperaturze 4°C opada na dno zbiornika, podczas gdy zimniejsza unosi się do góry i zamarza na powierzchni. Lód izoluje zbiornik, a woda przy dnie pozostaje w okolicach 4°C, umożliwiając przetrwanie organizmów wodnych.

Wstęp teoretyczny opracowano na podstawie następujących źródeł: podręcznika [1], który zawiera podstawowe informacje o rozszerzalności cieplnej ciał, oraz wstępu do ćwiczenia [2].

2 Opis doświadczenia

Doświadczenie polegało na badaniu zmiany objętości wody w funkcji temperatury. Wykonano je w następujących etapach:

- Przygotowano aparaturę pomiarową składającą się z:
 - kolby z wodą destylowaną ($V_{\text{kolby}} = 300 \,\text{cm}^3$)
 - kapilary o średnicy wewnętrznej $d = 1.7 \,\mathrm{mm}$
 - termometru elektronicznego o dokładności 0,1°C
 - mieszadła magnetycznego
- Przeprowadzono pomiary w dwóch seriach:
 - ochładzanie: od 11°C do 0,3°C (co 0,2°C)
 - ogrzewanie: od 0,3°C do 11°C (co 0,2°C)
- Dla każdej temperatury zmierzono wysokość słupa wody w kapilarze
- Na podstawie pomiarów obliczono:
 - objętość wody w kapilarze
 - całkowitą objętość wody

- zmianę objętości względem minimalnej
- względną zmianę gęstości

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

$T [^{\circ}C]$	h [mm]				
	Seria 1 Seria 2				
11.0	80	71			
10.8	77	70			
10.6	75	68			
10.4	74	66			
10.2	72	64			
10.0	69	62			
9.8	68	60			
9.6	66	58			
9.4	64	56			
9.2	63	55			
9.0	61	54			
8.8	61	51			
8.6	60	51			
8.4	56	49			
8.2	55	48			
8.0	53	46			
7.8	52	44			
7.6	51	44			
7.4	50	43			
7.2	49	41			
7.0	47	40			
6.8	46	39			
6.6	45	37			
6.4	44	37			
6.2	43	36			
6.0	42	40			
5.8	42	36			
5.6	42	34			
5.4	40	32			
5.2	40	32			
5.0	39	< 30			
4.8	38	< 30			
4.6	38	< 30			
4.4	38	< 30			
4.2	37	< 30			
4.0	37	< 30			
3.8	37	< 30			
3.6	37	< 30			
3.4	37	< 30			
3.2	37	< 30			

T [°C]	h [mm]		
	Seria 1	Seria 2	
3.0	37	< 30	
2.8	37	30	
2.6	37	30	
2.4	38	30	
2.2	38	32	
2.0	38	33	
1.8	39	34	
1.6	39	34	
1.4	40	35	
1.2	40	36	
1.0	41	37	
0.8	41	38	
0.6	42	39	
0.4	43	40	
0.2	43	41	

Tabela 1: Wyniki pomiarów wysokości słupa wody w zależności od temperatury

Średnica wewnętrzna kapilary wynosi d = 1.7 mm.

3.2 Zmiana objętości wody

Na podstawie zmierzonej wysokości słupa wody obliczono objętość wody w kapilarze według wzoru:

$$V = V_{\text{kolby}} + \pi \cdot \frac{d^2}{4} \cdot h \tag{2}$$

gdzie d=1,7mm jest średnicą wewnętrzną kapilary, a h jest wysokością słupa wody, $V_{\rm kolby}=300\cdot 10^{-6}~{\rm m}^3$ jest objętością kolby.

Öbliczono również zmianę objętości ΔV względem objętości minimalnej (dla temperatury 4°C):

$$\Delta V = V - V_{4^{\circ}C} \tag{3}$$

Tabela 2: Wartości objętości wody oraz zmiany objętości (wybrane temperatury)

$T [^{\circ}C]$	$V_1 [{ m m}^3]$	$V_2 [\mathrm{m}^3]$	$\Delta V_1 [\mathrm{m}^3]$	$\Delta V_2 [\mathrm{m}^3]$
11,0	$3,0018 \cdot 10^{-4}$	$3,0016 \cdot 10^{-4}$	$9,76\cdot10^{-8}$	$9,31\cdot10^{-8}$
10,0	$3,0016 \cdot 10^{-4}$	$3,0014 \cdot 10^{-4}$	$7,26\cdot10^{-8}$	$7,26\cdot10^{-8}$
9,0	$3,0014 \cdot 10^{-4}$	$3,0012 \cdot 10^{-4}$	$5,45\cdot10^{-8}$	$5,45\cdot10^{-8}$
8,0	$3,0012 \cdot 10^{-4}$	$3,0010 \cdot 10^{-4}$	$3,63\cdot10^{-8}$	$3,63\cdot10^{-8}$
7,0	$3,0011 \cdot 10^{-4}$	$3,0009 \cdot 10^{-4}$	$2,27\cdot10^{-8}$	$2,27\cdot10^{-8}$
6,0	$3,0010 \cdot 10^{-4}$	$3,0008 \cdot 10^{-4}$	$1,36\cdot10^{-8}$	$1,36\cdot10^{-8}$
5,0	$3,0009 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$4,54\cdot10^{-9}$	$4,54 \cdot 10^{-9}$
4,0	$3,0008 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$0.00 \cdot 10^{-8}$	$0.00 \cdot 10^{-8}$
3,0	$3,0008 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$2,27\cdot10^{-9}$	$4,54 \cdot 10^{-9}$
2,0	$3,0009 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$4,54\cdot10^{-9}$	$9,08\cdot10^{-9}$
1,0	$3,0009 \cdot 10^{-4}$	$3,0008 \cdot 10^{-4}$	$6,81 \cdot 10^{-9}$	$1,13\cdot10^{-8}$
0,2	$3,0010\cdot10^{-4}$	$3,0009 \cdot 10^{-4}$	$9,08\cdot10^{-9}$	$1,36\cdot10^{-8}$

Pełne dane objętości dla wszystkich pomiarów przedstawiono na wykresie (Rys. 1). Można zauważyć, że woda osiąga najmniejszą objętość (największą gęstość) w okolicy temperatury 4°C, co potwierdza zjawisko anomalii rozszerzalności cieplnej wody.

3.3 Względna zmiana gęstości

Względna zmiana gęstości wody w temperaturze 10°C względem maksymalnej gęstości. Na podstawie wykresu (Rys. 1) woda osiąga największą gęstość w temperaturze 4°C.

$$V_{10^{\circ}C} = 300 \cdot 10^{-6} + \frac{\pi \cdot 0,0017^{2} \cdot 0,037}{4} = 0.00030008 \text{ m}^{3}$$

$$V_{4^{\circ}C} = 300 \cdot 10^{-6} + \frac{\pi \cdot 0,0017^{2} \cdot 0,069}{4} = 0.0003001 \text{ m}^{3}$$

$$\frac{\rho(T = 4^{\circ}C) - \rho(T = 10^{\circ}C)}{\rho_{T=4^{\circ}C}} = \frac{\frac{m}{V(4^{\circ}C)} - \frac{m}{V(10^{\circ}C)}}{\frac{m}{V(4^{\circ}C)}}$$

$$= \frac{V_{10^{\circ}C} - V_{4^{\circ}C}}{V_{10^{\circ}C}} = \frac{0.0003001 - 0.00030008}{0.0003001} = 0.00024 = 2,4 \cdot 10^{-4}$$

4 Ocena niepewności pomiarowych

4.1 Niepewność pomiaru temperatury

Do pomiaru temperatury użyto termometru elektronicznego o niepewności maksymalnej $\Delta_d T = 0.1$ °C. Niepewność standardową oszacowano za pomocą metody typu B:

$$u(t) = \frac{\Delta_d T}{\sqrt{3}} = \frac{0.1}{\sqrt{3}} \approx 0.0577 \,^{\circ}\text{C}$$
 (4)

4.2 Niepewność pomiaru wysokości słupa cieczy

Wysokość słupa wody w kapilarze była odczytywana z niepewnością maksymalną $\Delta_d h = 0.001 \,\mathrm{m}$. Niepewność standardową oszacowano za pomocą metody typu B:

$$u(h) = \frac{\Delta h}{\sqrt{3}} = \frac{0,001}{\sqrt{3}} \approx 0,00058 \,\mathrm{m}$$
 (5)

Wykres razem z niepewnościami przedstawiono na Rys. 2.

5 Wnioski

- Woda osiąga maksymalną gęstość w temperaturze 4°C, co potwierdza zjawisko anomalii rozszerzalności cieplnej wody [1].
- Względna zmiana gęstości wody między temperaturą 10°C a 4°C wynosi:

$$\frac{\Delta \rho}{\rho} = (2.43 \pm 0.07) \cdot 10^{-4}$$

- Niepewność pomiaru wysokości słupa wody wynosi $u(h) = 0,00058 \,\mathrm{m}$, a niepewność pomiaru temperatury wynosi $u(t) = 0,0577 \,^{\circ}\mathrm{C}$.
- Wyniki pomiarów potwierdzają, że woda zachowuje się nietypowo w zakresie temperatur 0-4°C, zwiększając swoją objętość wraz ze spadkiem temperatury.

6 Wykresy

Rysunek 1: Wysokość słupa wody oraz zmiana objętości wody w zależności od temperatury.

Rysunek 2: Wysokość słupa wody oraz zmiana objętości wody w zależności od temperatury z uwzględnieniem niepewności.

Literatura

- [1] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.
- [2] Instytut Fizyki Doświadczalnej UWr. Anomalia rozszerzalności cieplnej wody, 2023.