

Universidad Politécnica de Aguascalientes

Materia: Lenguajes y Autómatas.

Tarea: Ensayo Unidad 3.

Profesor: Dr. Christian José Correa Villalón.

Alumno: Juan Carlos Pedroza Hernández.

Matrícula: UP170132.

Grupo: ISEI007.

Fecha de Entrega: 09/04/2020

Contenido

Introducción:	2
Lenguajes regulares sobre un alfabeto	3
Propiedades de los lenguajes regulares	4
Lema de Pumping	4
Propiedades de Cerradura	6
Equivalencia y minimización de autómatas	6
Expresiones regulares	7
Operaciones de los lenguajes:	7
Operandos	8
Precedencia:	8
Identidades y Aniquiladores	11
Leyes distributivas	11
Conclusión:	12
Bibliografía	12

Introducción:

Con este ensayo abarcaremos toda la unidad 3 hablando sobre los temas que debemos abarcar en la unidad.

Se hará una investigación de los distintos temas, lenguajes regulares, expresiones regulares, equivalencia de expresiones regulares y gramáticas regulares, con está investigación podremos tener conocimiento de cada uno de los temas.

Lenguajes Regulares y Expresiones Regulares

Son los que se pueden generar partir de los lenguajes básicos, con la aplicación de operaciones de unión, concatenación y * de Kleene un número finito de veces.

Pueden ser reconocidos por:

- Un autónomo finito determinista.
- Un autómata finito no determinista.
- Un autómata de pila.
- Un autómata finito alterno
- Una máquina de Turing de solo lectura.

Lenguajes regulares sobre un alfabeto

Un lenguaje regular sobre un alfabeto ∑ dado se define recursivamente como:

- El lenguaje regular Ø es un lenguaje regular.
- El lenguaje cadena vacía {} es un lenguaje regular.
- Para todos los símbolos a € ∑ es un lenguaje regular.
- Si A y B son lenguajes regulares A U B (unión), A * B (concatenación) y A* (clausura o estrella de Kleene) son lenguajes regulares.
- Si A es un lenguaje regular entonces (A) es el mismo lenguaje regular.

Lenguaje	Expresión regular
$\{\lambda\}$	λ
{0}	0
$\{001\} = \{0\}\{0\}\{1\}$	001
$\{0,1\} = \{0\} \cup \{1\}$	0 + 1
$\{0, 10\} = \{0\} \cup \{10\}$	0 + 10
$\{1, \lambda\}\{001\}$	$(1+\lambda)001$
$\{110\}^*\{0,1\}$	$(110)^*(0+1)$
$\{1\}^*\{10\}$	1*10
$\{10, 111, 11010\}^*$	$(10 + 111 + 11010)^*$
$\{0, 10\}^*(\{11\}^* \cup \{001, \lambda\})$	$(0+10)^*((11)^*+001+\lambda)$
$(00+01+10+11)^*$	$((0+1)(0+1))^*$

Ilustración 1: Expresiones regulares.

Ilustración 2: Autómata finito.

Propiedades de los lenguajes regulares

Existen distintas herramientas que se pueden utilizar sobre los lenguajes regulares:

- El **Lema Pumping**: cualquier lenguaje regular satisface el Lema de Pumping, el cual se puede usar para probar que un lenguaje no es regular.
- Propiedades de cerradura: se pueden construir autómatas a partir de componentes usando operaciones, por ejemplo, dado un lenguaje L y M construir un autómata para L ∩ M.
- **Propiedades de decisión:** análisis computacional de autómatas. Por ejemplo, probar si dos autómatas son equivalentes.
- **Técnicas de minimización:** útiles para construir máquinas más pequeñas.

La clase de lenguajes conocidos como *lenguajes regulares* tienen al menos 4 descripciones: DFA, NFA, €-NFA y RE.

No todos los lenguajes son regulares, por ejemplo: $L = \{0 \text{ n1 n } | n \ge 1\}$.

Lema de Pumping

Si L es un lenguaje regular, entonces existe una constante n tal que cada cadena $w \in L$, de longitud n o más, puede ser escrita como w = xyz, donde:

- 1. $y \notin \varepsilon$.
- $2. |xy| \le n$
- 3. Para toda $i \ge 0$, wy^iz también está en L. Nótese que $y^i = y$ repetida i veces; $y^0 = \varepsilon$.

Lo que dice este lema es que, si tenemos una cadena con una longitud mayor al número de estados del autómata, entonces una cadena no vacía y puede ser repetida ("pumped") un número arbitrario de veces.

Algunas consideraciones importantes son:

- Como se da por hecho que L es regular, debe existir un DFA A tal que L=L(A).
 Si A tiene n estados; escogemos esta n para el Lema de Pumping.
- Sea w una cadena de longitud ≥ n en L, por ejemplo, w = a1a2 . . . am, donde m ≥ n.
- Sea qi el estado en que A esta después de leer los primeros i símbolos de w.
- q0 = estado de inicio, q1 = (q0, a1), q2 = (q0, a1a2), etc.
- Como solo hay n estados diferentes, dos de q0, q1, . . ., qn deben ser los mismos; digamos qi = qi, donde 0 ≤ i < j ≤ n.

Sea x = a₁ . . . a_i; y = a_i+1 . . . a_j; z = a_j+1 . . . a_m. Entonces, si repetimos el ciclo desde q_i a q_i con la etiqueta ai+1 . . . a_j cero o más veces, se puede probar que xyⁱz es aceptado por A.

Ilustración 3: Lema de Pumping.

El uso de Pumping se utiliza para mostrar que un lenguaje L no es regular.

- Se inicia suponiendo que L es regular.
- Luego, debe haber alguna n que sirve como constante de PL (puede que no sepamos el valor n).
- Escogemos una w que sabemos que está en L (normalmente w depende de n).
- Aplicando el PL, sabemos que w puede descomponerse en la forma xyz, satisfaciendo las propiedades del PL (de nuevo, puede que no sepamos cómo descomponer w, así que utilizamos x, y, z como parámetros).
- Derivamos una contradicción escogiendo i (la cual puede depender de n, x, y, y/ o z) tal que xyⁱz no está en L.

Ejemplo:

 Considere el lenguaje de cadenas con el mismo número de 0's y 1's. Por el pumping lemma, w = xyz, |xy| ≤ n, y ≠ ε y xy^kz ∈ L

$$w = \underbrace{000\ldots y}_{x} \underbrace{0111\ldots 11}_{z}$$

• En particular, $xz \in L$, pero xz tiene menos 0's que 1's

Ilustración 4: Ejemplo 1.

Propiedades de Cerradura

Unión: la unión de lenguajes regulares es regular. Sea L=L€ y M = L(F). Entonces L (E + F) = L U M, pro la definición de "+" en RE.

Complemento: Si L es un lenguaje regular sobre ∑, entonces también lo es L' = ∑ * L. Todos los estados son de aceptación excepto los F.

Ejemplo:

Sea L definido por el siguiente DFA (el lenguaje de cadenas que terminan en 01):

Ilustración 5: Ejemplo 2 propiedades de cerradura.

Equivalencia y minimización de autómatas

- Lo que queremos saber es si dos autómatas diferentes definen el mismo lenguaje.
- Primero definiremos lo que son estados **equivalentes**:
- Dos estados p y q dentro de un autómata son equivalentes si: p ≡ q ⇔ ∀w ∈ Σ *: δˆ (p, w) ∈ F ⇔ δˆ (q, w) ∈ F.
- Si no, entonces se dice que son **distinguibles**. Es decir, p y q son distinguibles si:

 $\exists w: \delta^{\hat{}}(p, w) \in F \land \delta^{\hat{}}(q, w) \in / F \text{ o viceversa.}$

Ilustración 6: Ejemplo de propiedades de cerradura.

Expresiones regulares

- Es un equivalente algebraico para un autómata.
- Utilizado en muchos lugares como un lenguaje para describir patrones en texto que son sencillos pero muy útiles.
- Pueden definir exactamente los mismos lenguajes que los autómatas pueden describir: lenguajes regulares.
- Ofrecen algo que los autómatas no: Maneras declarativas de expresar las cadenas que queremos aceptar.

Ejemplos de usos:

- Comandos de búsqueda, por ejemplo, grep de UNIX.
- Sistemas de formateo de texto: usan notación de tipo expresión regular para describir patrones.
- Convierte la expresión regular a un DFA o un NFA y simula el autómata en el archivo de búsqueda.
- Generadores de analizadores-léxicos, como Lex o Flex.

Las expresiones regulares denotan lenguajes. Por ejemplo, las expresiones regulares: 01*+ 10* denotan todas las cadenas que no son o un 0 seguido de cualquier cantidad de 1's o un 1 seguido de cualquier cantidad de 0's.

Operaciones de los lenguajes:

- 1. Unión.
- 2. Concatenación
- 3. Cerradura (o cerradura de Kleene)

Si E es una expresión regular, entonces L(E) denota el lenguaje que define E. Las expresiones se construyen de la manera siguiente:

Las constantes € y Ø son expresiones regulares que representan al lenguaje
 L (€) = {€} y L (Ø) = Ø respectivamente.

 Si a es un símbolo, entonces es una expresión regular que representa al lenguaje: L(a) = {a}.

Operandos

- 1. Si E y F son expresiones regulares, entonces E + F también lo es denotando la unión de L(E) y L(F) como L (E + F) = L(E) ∪ L(F).
- 2. Si E y F son expresiones regulares, entonces EF también lo es denotando la concatenación de L(E) y L(F) como L(EF) = L(E)L(F).
- 3. Si E es una expresión regular, entonces E* también lo es y denota la cerradura de L(E) es decir L (E *) = (L(E)) *
- 4. Si E es una expresión regular, entonces (E) también lo es. Formalmente tenemos L((E)) = L(E).

Precedencia:

- 1. El asterisco de la cerradura tiene la mayor precedencia
- Concatenación sigue en precedencia a la cerradura, el operador "dot".
 Concatenación es asociativa y se ´ sugiere agrupar desde la izquierda (i.e. 012 se agrupa (01)2).
- 3. La unión (operador ´+) tiene la siguiente precedencia, también es asociativa.
- 4. Los paréntesis pueden ser utilizados para alterar el agrupamiento.

Ejemplos:

- L(001) = 001.
- $L(0+10^*) = \{0,1,10,100,1000,\ldots\}.$
- L((0(0+1))*) = el conjunto de cadenas de 0's y 1's, de longitud par, de tal manera que cada posición impar tenga un 0.
- Expresión regular de cadenas que alterna 0's y 1's:
 - 1 $(01)^* + (10)^* + 0(10)^* + 1(01)^*$ (opción 1)
 - **2** $(\epsilon + 1)(01)^*(\epsilon + 0)$ (opción 2)

Ilustración 7: Ejemplos de expresiones regulares.

- 1 Encuentra la expresión regular para el conjunto de cadenas sobre el alfabeto $\{a, b, c\}$ que tiene al menos una a y al menos una b
- 2 Encuentra la expresión regular para el conjunto de cadenas de 0's y 1's tal que cada par de 0's adyacentes aparece antes de cualquier par de 1's adyacentes

Ilustración 8: Ejemplos 1 y 2.

- 1 $c^*a(a+c)^*b(a+b+c)^* + c^*b(b+c)^*a(a+b+c)^*$ Osea, cuando la primera a esta antes que la primera bo cuando la primera b está antes de la primera a
- 2 $(10+0)^*(\epsilon+1)(01+1)^*(\epsilon+1)$ $(10+0)^*(\epsilon+1)$ es el conjunto de cadenas que no tienen dos 1's adyacentes. La segunda parte es el conjunto de cadenas que no tienen dos 0's adyacentes. De hecho $\epsilon+1$ lo podríamos eliminar porque se puede obtener el 1 de lo que sigue, por lo que podemos simplificarlo a: $(10+0)^*(01+1)^*(\epsilon+1)$

Ilustración 9: Resultado 1 y 2.

Equivalencia de Expresiones Regulares

- Si I=L(A) para algún DFA A, entonces existe una expresión regular suponiendo que A tiene estados {1, 2, . . ., n}, n finito. Tratemos de construir una colección de RE que describan progresivamente conjuntos de rutas del diagrama de transiciones de A.
- R (k)ij es el nombre de la RE cuyo lenguaje es el conjunto de cadenas w.
- w es la etiqueta de la ruta del estado i al estado j de A. Esta ruta no tiene estado intermedio mayor a k. Los estados inicial y terminal no son intermedios, i y/o j pueden ser igual o menores que k.
- Para construir R(k)ij se utiliza una definición inductiva de k = 0 hasta k = n.
- Base: k = 0, implica que no hay estados intermedios. Solo dos clases de rutas cumplen con esta condición:
- 1. Un arco del nodo (estado) i al nodo j.
- 2. Una ruta de longitud 0 con un solo nodo i.

• Si i 6= j, solo el caso 1 es posible.

Ejemplo

Un DFA que acepta todas las cadenas que tienen al menos un 0

Ilustración 10 Ejemplo DFA.

Inicialmente sustituimos para la base: (i)
$$R_{ij}^{(0)} = \epsilon$$
, (ii) $R_{ij}^{(0)} = \epsilon + a$ y (iii) $R_{ij}^{(0)} = \epsilon + a_1 + a_2 + \ldots + a_k$ $R_{11}^{(0)} = \epsilon + 1$ $R_{12}^{(0)} = 0$ $R_{21}^{(0)} = \emptyset$ $R_{22}^{(0)} = (\epsilon + 0 + 1)$

Ilustración 11: Solución.

Ahora para el paso de inducción:
$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$
 Por sustitución directa Simplificado
$$R_{11}^{(1)} = \epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^* (\epsilon + 1) \qquad 1^*$$

$$R_{12}^{(1)} = 0 + (\epsilon + 1)(\epsilon + 1)^* 0 \qquad 1^* 0$$

$$R_{21}^{(1)} = \emptyset + \emptyset(\epsilon + 1)^* (\epsilon + 1) \qquad \emptyset$$

$$R_{22}^{(1)} = \epsilon + 0 + 1 + \emptyset(\epsilon + 1)^* 0 \qquad \epsilon + 0 + 1$$

Ilustración 12: Solución.

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$
Por sustitución directa Simplificado
$$R_{11}^{(2)} = 1^* + 1^* 0 (\epsilon + 0 + 1)^* \emptyset \qquad 1^*$$

$$R_{12}^{(2)} = 1^* 0 + 1^* 0 (\epsilon + 0 + 1)^* (\epsilon + 0 + 1) \qquad 1^* 0 (0 + 1)^*$$

$$R_{21}^{(2)} = \emptyset + (\epsilon + 0 + 1) (\epsilon + 0 + 1)^* \emptyset \qquad \emptyset$$

$$R_{22}^{(2)} = \epsilon + 0 + 1 + (\epsilon + 0 + 1) (\epsilon + 0 + 1)^* \qquad (0 + 1)^*$$

$$(\epsilon + 0 + 1)$$

Ilustración 13: Solución.

Gramáticas Regulares

Existen un conjunto de leyes algebraicas que se pueden utilizar para las expresiones regulares:

- Ley conmutativa para la unión: L + M = M + L.
- Ley asociativa para la unión: (L + M) + N = L + (M + N).
- Ley asociativa para la concatenación: (LM)N = L(MN).

Identidades y Aniquiladores

- Una identidad para un operador es un valor tal que cuando el operador se aplica a la identidad y a algún´ otro valor, el resultado es el otro valor.
- 0 es la identidad para la adición: 0 ´ + x = x + 0 = x.
- 1 es la identidad para la multiplicación: 1 x x = x x 1 = x
- Un aniquilador para un operador es un valor tal que cuando el operador se aplica al aniquilador y algún otro valor, el resultado es el aniquilador.
- 0 es el aniquilador para la multiplicación: ´0 x x = x x 0 = 0
- No hay aniquilador para

Leyes distributivas

Como la concatenación no es conmutativa, tenemos ´ dos formas de la ley distributiva para la concatenación:

• Ley Distributiva Izquierda para la concatenación sobre unión:

$$L(M + N) = LM + LN.$$

• Ley Distributiva Derecha para la concatenación sobre unión:

$$(M + N) L = ML + N.$$

Conclusión:

Con esta investigación pude obtener el conocimiento para poder abordar estos temas y poder tener noción de lo que se está hablando.

Bibliografía

- http://decsai.ugr.es/~rosa/tutormc/teoria/EXPRESIONES%20REGULARES.htm. (s.f.). Obtenido de http://decsai.ugr.es/~rosa/tutormc/teoria/EXPRESIONES%20REGULARES.htm.
- https://ccc.inaoep.mx/~emorales/Cursos/Automatas/ExpRegulares.pdf. (s.f.). Obtenido de https://ccc.inaoep.mx/~emorales/Cursos/Automatas/ExpRegulares.pdf.
- https://ccc.inaoep.mx/~emorales/Cursos/Automatas/PropsLengRegulares.pdf. (s.f.). Obtenido de https://ccc.inaoep.mx/~emorales/Cursos/Automatas/PropsLengRegulares.pdf.
- https://prezi.com/l53byacorq8h/lenguajes-regulares-expresiones-regulares-y-gramatica-regul/. (s.f.). Obtenido de https://prezi.com/l53byacorq8h/lenguajes-regulares-expresiones-regulares-y-gramatica-regul/.