서울특별시 아파트 가격 예측 모델링

OVERVIEW

Project Outline

- Introduction
- EDA(Exploratory Data Analysis)
- Modeling
 - Pipeline(Linear Regression, Randomforest, XGBBoost, LGBM)
 - RandomizedCV
 - Evaluation
- XAI(eXplainable AI)
 - Global(Feature Importance, Permutation Importance with ELI5)
 - Local(SHAP)
- Conclusion

Introduction

01 Background

- : 부동산 적정가 산출의 필요성
- 1) 각종 규제정책에도 불구하고 부동산 가격은 지속적으로 증가하는 추세
- 2) 서울특별시의 아파트 가격은 69주 연속 상승
- 3) 적정 아파트 가격 산출 모델링으로 투자 판단을 돕고 부작용을 방지하고자 함

02 Goal

: R2 Score 95% 이상의 서울아파트 거래가격 예측 모델 구현 및 분석

Introduction

03 SEMMA

01 데이터 수집

❖ 데이터셋 7종

구분	수집 지표	출처		
서울시 아파트 매매	지역코드, 법정동, 거래일, 아파트, 지번, 전용면적, 층, 건축년도, 거래금액, 거래년 도	국토교통부 아파트매매 실거래자료		
주가지수	KS11(코스피), KQ11(코스닥), DJI (다우존 스), IXIC (나스닥), VIX (뉴욕주식시장), CSI300(상하이/심천 상위 300 주가지수), SSEC (상하이), DE30(독일), FCHI(프랑스) NG/GC/HG/CL(선물가지수)	E-나라지표		
외국인증권투자		FinanceData.KR		
인구	인구, 세대당 인구, 세대, 서울시 전입 인 구	서울시 열린데이터 광장		
금리	국고채 3년(평균) , 국고채 5년(평균) , 국 고채 10년(평균) , 회사채 3년(평균) , CD 91물(평균)	E-나라지표		
물가	소비자물가, 농축수산물, 공업제품, 공 공서비스, 근원물가	E-나라지표		
자동차등록		서울시 열린데이터 광장		

- 2018년 1월부터 2021년 2월까지 월 기준으로 데이터 정렬 평당가(거래금액/전용면적), 거래 횟수, KRX(KQ11+KS11), K-means Clusting에 따른 군집화 라벨 컬럼 추가

02 데이터 분석

❖데이터 시각화

1. 평당가 분포도

- 적은 수의 아파트가 높은 평당가로 거래되는 right_skewed 분포

2. 아파트별 거래 금액 순위

- 용산구 위치 한남더힐, 강남구 위치 현대아파트 등이 상위권

3. 아파트별 평당가 순위

- 강남구 개포 주공, 서초구 아크로리버파크 등이 높은 평당가를 기록

4. 월별 평당가

- 2018년부터 2021년 상반끼까지 평당가는 전반적으로 상승하고 있음

02 데이터 분석

❖데이터 시각화

02 데이터 분석

❖ 데이터 시각화

7. 인구(녹색선) vs 세대(푸른선) vs 세대별 인구(주황선)

- 인구는 지속적으로 감소하는 반면 세대수는 증가하는 추세 (1인 가구 증가로 판단)

8. 전입인구(푸른선) vs 평당가(붉은선)

- 평당가가 상승할 시기 전입인구가 줄어드는 양상을 보임(가격 부담에 따른 영향)

9. 평당가와 인구/자동차 등록 간의 상관관계

- 세대는 평당가와 양의 상관관계, 인구는 음의 상관관계를 보이며 전입인 구와 자동차등록수는 높은 상관성을 보이지 않음

02 데이터 분석

❖ 데이터 시각화

02 데이터 분석

❖ 데이터 시각화

02 데이터 분석

❖ 데이터 시각화

15. 실질 GDP

- 경제성장률(실질)GDP는 평당가와 상관관계가 뚜렷하지 않음

02 데이터 분석

❖ K-means Clustering

01 Process

<u>1단계</u> 2단계 3단계 Pipeline 구축 RandomizedCV **Evaluation** • Hyper-parameter 최적화 • 모델 검증 • Linear Regression RandomForest • XAI를 통한 분석 • CV 일반화 XGBBoost Training • LGBM

Modeling

02 Results

1. 성능비교

구분	Training		Validation		Test	
Score	R2	MAE	R2	MAE	R2	MAE
Linear Regression	0.55	24823	0.55	24679	0.56	29947
RandomForest	0.99	1811	0.97	4799	0.98	3799
XGBBoost	0.85	14154	0.84	14110	0.83	19214
LGBM	0.93	9736	0.93	9883	0.92	13852

⁻ RandomForest 성능이 가장 높게 나왔지만 Hyper-parameter Tuning 후의 LGBM 모델 성능이 더 높을 것이라 판단, 최종 모델을 LGBM으로 선정 후 Randomized CV 진행

2. RandomizedCV Fine Tuning 후 LGBM 성능 평가

구분	Training		Validation		Test	
Score	R2	MAE	R2	MAE	R2	MAE
LGBM	0.99	2449	0.97	4163	0.99	3854

- Hyper-parameter Tuning 후 Test R2 0.99/ MAE 3854로 최고 성 능을 기록

XAI

01 예측오차 및 특성 중요도

XAI

02 ELI5 / SHAP

Conclusion

01 결론

- 1) 서울특별시 아파트 거래가격 예측 모델(LGBM) Evaluation 결과 R2 Score 0.99, MAE 3854
- 2) 가격에 영향을 미치는 주요 변수는 아파트 매매 데이터(전용면적, 아파트, 지역, 층 등)였으며 유동성 지표와 인구 등의 비중은 적음
- 3) ELI5, SHAP 라이브러리를 사용하여 예측 결과를 Global, Local 단위로 분석할 수 있음

02 기대효과

: ML 알고리즘을 통해 적정 부동산뿐 아니라 각종 금융상품의 가격을 오차율 1% 내로 예측할 수 있을 것으로 예상되며, LGBM과 같은 경량화된 모델로 앱 배포가 가능할 것으로 보임