Review

- Linear search
 - Evaluate the **first** item and cut the **one** evaluated item
 - Time proportional to **len(L)**
 - Applicable to any list

- Binary search
 - Evaluate the **middle** item and cut the **half**
 - Time proportional to $log_2^{len(L)}$
 - Applicable to a **sorted** list

Computing Bootcamp

Selection Sort

Lecture 10-1

Hyung-Sin Kim

Why Sorting?

- People often want to see numerous items sorted!
 - Midterm score, sports...
 - Dictionary
- Sorting helps searching
 - Binary search

Then, how can we sort a list?

index	0	1	2	3	4	5	6	7	8	9	10	11
values	5	-2	0	100	-6	7	4	9	-7	50	4	3

Selection Sort – Idea

index	0	1	2	3	4	5	6	7	8	9	10	11
values	5	-2	0	100	-6	7	4	9	-7	50	4	3

• Find the minimum value of the unsorted list and swap it with the leftmost entry

1-st iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	5	-2	0	100	-6	7	4	9	-7	50	4	3

unsorted

• Find the minimum value of the unsorted list and swap it with the leftmost entry

2-nd iteration

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

3-rd iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	0	100	-2	7	4	9	5	50	4	3
	son	ted	uns	orted								

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

4-th iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	-2	100	0	7	4	9	5	50	4	3
		sort	ted	uns	orted							

• Find the minimum value of the unsorted list and swap it with the leftmost entry

• Find the minimum value of the unsorted list and swap it with the leftmost entry

5-th iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	-2	0	100	7	4	9	5	50	4	3
			sort	ted	uns	orted						

• Find the minimum value of the unsorted list and swap it with the leftmost entry

Repeat the procedure 12 times!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	-2	0	3	7	4	9	5	50	4	100
				son	ted	uns	orted					

• Find the minimum value of the unsorted list and swap it with the leftmost entry

Repeat the procedure 12 times!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	-2	0	3	4	4	5	7	9	50	100

sorted

Selection Sort – Code

- def selection_sort(L: list) -> None:
- for i in range(len(L)):
- # Find the index of the smallest item in L[i:]: smallest
- L[i], L[smallest] = L[smallest], L[i] # swap

Selection Sort – Code

- def selection_sort(L: list) -> None:
- for i in range(len(L)):
- $smallest = find_min(L, i)$
- L[i], L[smallest] = L[smallest], L[i]# swap

Selection Sort – Code

```
    def find_min(L: list, start_idx: int) -> int:
    smallest = start_idx # (1) Initialize smallest
    for i in range(start_idx+1, len(L)): # (2) Update smallest
    if L[i] < L[smallest]:</li>
    smallest = i
    return smallest # (3) Return the final value
```

Selection Sort – Code (in one function)

```
def selection_sort(L: list) -> None:
for i in range(len(L)):
smallest = i
for j in range(i+1, len(L)):
if L[j] < L[smallest]:</li>
smallest = j
L[i], L[smallest] = L[smallest], L[i] # swap
```

Selection Sort – Time Complexity

- At i-th iteration, its inner loop (func **find_min**) needs to look up (N+1-i) items
 - When N = len(L)
- N + (N-1) + (N-2) + ... + 1 = N(N+1)/2

Summary

- Selection sort A basic sorting algorithm
 - Find the minimum value of the unsorted list and swap it with the leftmost entry
 - Time complexity $\sim N^{**}2$

Computing Bootcamp

Insertion Sort

Lecture 10-2

Hyung-Sin Kim

Insertion Sort – Idea

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

index	0	1	2	3	4	5	6	7	8	9	10	11
values	5	-2	0	100	-6	7	4	9	-7	50	4	3

Insertion Sort – Algorithm

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

1-st iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	5	-2	0	100	-6	7	4	9	-7	50	4	3
SOI	ted	uns	orted									

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

37

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

39

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

2-nd iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-2	5	0	100	-6	7	4	9	-7	50	4	3
	sor	ted	uns	orted								

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

3-rd iteration

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-2	0	5	100	-6	7	4	9	-7	50	4	3
		sor	ted	uns	orted							

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

3-rd iteration Current Insert target location index 0 3 5 8 9 2 4 6 10 11 values 5 100 -6 9 -7 50 3 0 sorted unsorted

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

3-rd iteration

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

3-rd iteration

47

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-2	0	5	100	-6	7	4	9	-7	50	4	3
			SOI	ted	uns	orted						

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

51

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-6	-2	0	5	100	7	4	9	-7	50	4	3
				sor	ted	uns	orted					

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

Repeat the procedure 11 times!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-6	-2	0	5	7	100	4	9	-7	50	4	3
				sorted			uns	orted				

• Insert the leftmost item of the unsorted list to the proper location of the sorted list

Repeat the procedure 11 times!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	-7	-6	-2	0	3	4	4	5	7	9	50	100

sorted

Insertion Sort – Code

- def insertion_sort(L: list) -> None:
- for i in range(1, len(L)):
- # insert L[i] to the proper location of L[:i]

- def insertion_sort(L: list) -> None:
- for i in range(1, len(L)):
- insert(L, i)

Insertion Sort – Code

- def insert(L: list, last_idx: int) -> None:
- for i in range(last_idx,0,-1):
 - # (1) Go backwards

L[i-1], L[i] = L[i], L[i-1]

- if L[i-1] > L[i]:
- # (2) Check stopping condition

(3) Swap

- else:
- break

Insertion Sort – Code

```
    def insertion_sort(L: list) -> None:
    for i in range(1, len(L)):
    for j in range(i,0,-1): # (1) Go backwards
    if L[j-1] > L[j]: # (2) Check stopping condition
    L[j-1], L[j] = L[j], L[j-1] # (3) Swap
    else:
    break
```

Insertion Sort – Time Complexity

- At i-th iteration, its inner loop (**func insert**) needs to <u>look up</u> (i+1)/2 items and swap i/2 times on average
 - Look up: 1 + 1.5 + 2 + 2.5 + ... + (N-1)/2 + N/2 (When N = len(L))

• =
$$(1 + 2 + 3 + ... + (N-1) + N)/2 - \frac{1}{2} = N(N+1)/4 - \frac{1}{2}$$

- Swap: 0.5 + 1 + 1.5 + ... + (N-1)/2
 - = (1 + 2 + 3 + ... + (N-1))/2 = (N-1)N/4
- A bit slower than Selection sort
 - find_min() needs to look up the **whole** list
 - Insert() needs to look up only **half** on average but also need to swap!
- When a list is almost sorted, insertion sort needs to look up only **kN** items

Summary

- Insertion sort
 - Insert the leftmost item of the unsorted list to the proper location of the sorted list
 - Time complexity $\sim N^{**}2$ (a bit slower than selection sort)
 - Nice when a list is almost sorted already

Big O

Lecture 10-3

Hyung-Sin Kim

Two Types of Program Cost

- Execution cost (our focus while learning algorithms)
 - Time complexity of a program (how much time?)
 - Memory complexity of a program (how much memory?)

- Programming cost (very important in practice, but not a focus in this course)
 - Development time
 - What if you develop a very nice program a year later than your competitor?
 - Readability, modifiability, and maintainability
 - Super important for real-world products (majority of cost actually...)

Measuring Time Complexity

- Measure execution time in seconds using a client program (e.g., time module)
 - **Pros**: Easy to measure. Gives actual time
 - **Cons**: large amounts of time might be required. Results depend on lots of factors (machine, compiler, data...)
- Count possible operations in terms of input list size N
 - **Pros**: Machine independent. Gives algorithm's scalability
 - Cons: Tedious to compute... Does not give actual time
 - ⇒ Fortunately, we usually care only about asymptotic behavior (with a very large N Big Data!)

65

Count Possible Operations

Assume that input list size is N

Operation	Count
→ ==	1 to N

Operation	Count
→ Smallest = i	
→ <	
Smallest = j	
> Swapping	

Count Possible Operations

Assume that input list size is N

Operation	Count
→ ==	1 to N

Operation	Count
→ Smallest = i	N
→ <	$(N^2 - N)/2$
→ Smallest = j	0 to $(N^2 - N)/2$
> Swapping	N

What is Important for Asymptotic Analysis?

- Compare the two algorithms below:
 - Algorithm 1 requires 2N² operations
 - Algorithm 2 requires 500N operations
- Algorithm 1 is faster than Algorithm 2 for a small N, but becomes much slower for a very large N
 - What is important?: Not a specific value but a function **shape**! (parabola vs. line)
 - Order of growth

The figures are from 61B course material at UC Berkeley

How can we characterize an algorithm's time complexity more **formally** and **simply**?

- 1. Consider only the worst case
 - When comparing algorithms, we usually care only about the worst case performance

Operation	Count
Smallest = i	N
<	$(N^2 - N)/2$
Smallest = j	$\frac{-0 \text{ to}}{(N^2 - N)/2}$
Swapping	N

- 1. Consider only the worst case
 - When comparing algorithms, we usually care only about the worst case performance
- 2. Focus on only one operation that has the highest order of growth
 - There could be multiple good choices. Then, just choose any of them.

Operation	Count				
Smallest = i	-N-				
<	$\frac{(N^2 N)/2}{}$				
Smallest = j	$(N^2 - N)/2$				
Swapping	-N-				

- 1. Consider only the worst case
 - When comparing algorithms, we usually care only about the worst case performance
- 2. Focus on only one operation that has the highest order of growth
 - There could be multiple good choices. Then, just choose any of them.
- 3. Remove lower order terms

Operation	Count
Smallest = j	$(N^2 - N)/2$

- 1. Consider only the worst case
 - When comparing algorithms, we usually care only about the worst case performance
- 2. Focus on only one operation that has the highest order of growth
 - There could be multiple good choices. Then, just choose any of them.
- 3. Remove lower order terms
- 4. Remove constants
 - We have already thrown away information at step 2. At this stage, constants are not meaningful
- Worst-case order of growth of selection sort
 - N^2

Operation	Count
Smallest = j	$N^2/2$

73

Formal Definition

- If a function T(N) has its order of growth less than or equal to f(N),
- we write this as $T(N) \in O(f(N))$
- where *O* is called **Big-O** notation

- More mathematically, $T(N) \in O(f(N))$ means that
- there exists positive constants k such that
- $T(N) \le k \cdot f(N)$ for all values of N greater than some N_0 (i.e., very large N)

Examples

• Simplify T(N) to find f(N) and use the Big-O notation

Function T(N)	Order of Growth in terms of Big-O
$N^2 + 5N^5$	
1/N + 100	
$100\cos(N) + N^2/50$	
$Ne^{2N} + 100N^2$	

Examples

• Simplify T(N) to find f(N) and use the Big-O notation

Function T(N)	Order of Growth in terms of Big-O
$N^2 + 5N^5$	$O(N^5)$
1/N + 100	0(1)
$100\cos(N) + N^2/50$	$O(N^2)$
$Ne^{2N} + 100N^2$	$O(Ne^{2N})$

Summary

- Big O
 - A simple and formal way to represent complexity
 - Focusing on asymptotic behavior
 - No need to run an algorithm on a machine

Thanks!