

Started on

Harsday, 15 May 2025, 10:30 AM

State

← Finished

Completed on

Thursday, 15 May 2025, 10:34 AM

Time taken

© 3 mins 33 secs

Grade

2 10.00 out of 10.00 (100%)

Complete

Mark 2.00 out of 2.00

ECTE203_Q4

The following graph shows a _____ filter.

- a. Band Stop
- b. High Pass
- c. Band Pass
- d. Low Pass

Question 2	Flag question
	riag question
Complete Mark 2.00 out of 2.00	
ECTE203_Q4	
The magnitude response of a system with known B and A can be calculated with:	
[H,w] = freqz(B,A);	
a. abs(w)	
angle(w) b.	
D.	
c. angle(H)	
d. abs(H)	

Complete

Mark 2.00 out of 2.00

ECTE203_Q4 (copy)

This system is **NOT** stable.

Select one:

True

False

Complete

Mark 2.00 out of 2.00

ECTE203_Q4 (copy)

which system is an FIR system?

- y[n] = 0.2x[n-1] + 0.5x[n] 1.3x[n-2]
- y[n] = 0.7y[n-1] + 0.5y[n-2] + 0.2x[n] + 0.5x[n-2] 1.3x[n-5] b.
- y[n] = 0.2y[n-1] + 0.5x[n] 1.3x[n-2]
- d. y[n] = 1.5y[n-1] + 0.6x[n]

Question 5

Flag question

Complete

Mark 2.00 out of 2.00

ECTE203_Q4

H(z) is the ratio of _____ to ____.

- a. transfer function, input
 - b. output, transfer function
 - c. input, output
 - d. output, input

Finish review