Package 'LMD'

October 12, 2022

, -
Type Package
Date 2022-09-10
Title A Self-Adaptive Approach for Demodulating Multi-Component Signal
Version 1.0.0
Maintainer Shubhra Prakash <shubhraprakash279@gmail.com></shubhraprakash279@gmail.com>
Description Local Mean Decomposition is an iterative and self-adaptive approach for demodulating, processing, and analyzing multi-component amplitude modulated and frequency modulated signals. This R package is based on the approach suggested by Smith (2005) <doi:10.1098 rsif.2005.0058=""> and the 'Python' library 'PyLMD'.</doi:10.1098>
License Apache License (>= 2)
Depends R (>= 3.6.0)
BugReports https://github.com/shubhra-opensource/LMD/issues
<pre>URL https://github.com/shubhra-opensource/LMD</pre>
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, ggformula, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
Imports EMD, ggplot2, patchwork
NeedsCompilation no
Author Shubhra Prakash [trl, aut, cre]
Repository CRAN
Date/Publication 2022-09-20 09:56:07 UTC
R topics documented:
extract_product_function

```
      Imd
      5

      local_mean_and_envelope
      6

      moving_average_smooth
      7

      plot_lmd
      8

      Index
      9
```

extract_product_function

Extract Product Function

Description

Method for extracting product functions

Usage

```
extract_product_function(
    signal,
    max_envelope_iteration = 200,
    envelope_epsilon = 0.01,
    convergence_epsilon = 0.01
)
```

Arguments

```
signal Signal values (Numeric | vector)

max_envelope_iteration

Maximum number of iterations when separating local envelope signals (Integer)

envelope_epsilon

Terminate processing when obtaining pure FM signal (Double)

convergence_epsilon

Terminate processing when modulation signal converges (Double)
```

Value

Product Function

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

References

```
https://pypi.org/project/PyLMD/
```

find_extrema 3

Examples

```
x=1:100

y = (2 / 3)* \sin(x * 30) + (2 / 3)* \sin(x * 17.5) + (4 / 5)* \cos(x * 2)

plot(y,type="l")

pf=extract\_product\_function(y)
```

find_extrema

Find Extreme Points

Description

Method for finding Extreme Points

Usage

```
find_extrema(signal, include_endpoints = TRUE)
```

Arguments

```
signal Signal values (Numeric | vector)
include_endpoints
whether to include end points or not (Boolean)
```

Details

A local extrema is the point at which a maximum or minimum value of the function in some open interval containing the point is obtained.

Value

Indexes of all extrema values (including starting and ending points)

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

```
signal = c( 0.841471 , 0.9092974, 0.14112, -0.7568025, -0.9589243) \\ find_extrema(signal)
```

is_monotonous

is_monotonous

Monotonicity Check

Description

Method for checking if signal is increasing or decreasing monotonously

Usage

```
is_monotonous(signal)
```

Arguments

signal

Signal values (Numeric | vector)

Details

A monotonic signal is a function that keeps increasing or decreasing as its domain variable proceeds.#'

Value

Boolean

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

References

```
https://pypi.org/project/PyLMD/
```

```
x=1:100
is_monotonous(x)
```

Imd 5

1md

Local Mean Decomposition

Description

Method for finding Product Functions (PFs)

Usage

```
lmd(
    signal,
    include_endpoints = TRUE,
    max_smooth_iteration = 12,
    max_envelope_iteration = 200,
    envelope_epsilon = 0.01,
    convergence_epsilon = 0.01,
    max_num_pf = 8
)
```

Arguments

```
signal Signal values (Numeric | vector)

include_endpoints

Whether to treat the endpoint of the signal as a pseudo-extreme point (Boolean)

max_smooth_iteration

Maximum number of iterations of moving average algorithm (Integer)

max_envelope_iteration

Maximum number of iterations when separating local envelope signals (Integer)

envelope_epsilon

Terminate processing when obtaining pure FM signal (Double)

convergence_epsilon

Terminate processing when modulation signal converges (Double)

max_num_pf

The maximum number of PFs generated(Integer)
```

Details

LMD is a method of decomposing signal into Product Functions (PFs) based on algorithm presented in Jonathan S. Smith. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5):443-454

Value

list(pf,residue) | PFs:The decompose functions arranged from high frequency to low frequency | residue:residual component

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

References

```
https://pypi.org/project/PyLMD/
```

Examples

```
x=1:100

y = (2 / 3) * \sin(x * 30) + (2 / 3) * \sin(x * 17.5) + (4 / 5) * \cos(x * 2)

plot(y, type="1")

lmd(y)
```

local_mean_and_envelope

Local Mean and Envelope

Description

Method for finding Local Mean and Envelope

Usage

```
local_mean_and_envelope(signal, extrema)
```

Arguments

signal Signal values (Numeric | vector)
extrema indexes for extreme values

Value

mean, envelope and smoothed mean and envelope values

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

References

```
https://pypi.org/project/PyLMD/
```

```
signal = sin(1:10)
extrema = c(1 , 2, 5, 8, 10)
local_mean_and_envelope(signal, extrema)
```

moving_average_smooth Weighted Moving Average

Description

Weighted Moving Average Smoothing

Usage

```
moving_average_smooth(signal, window, max_smooth_iteration = 12)
```

Arguments

```
signal Signal values (Numeric | vector)

window filter weights for smoothing (Numeric | vector)

max_smooth_iteration

Maximum number of iterations of moving average algorithm (Integer)
```

Details

Weighted Moving Average Smoothing is used to smooth en the mean and envelope signal

Value

smooth signal

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

References

```
https://pypi.org/project/PyLMD/
```

```
x=0:100

y = (2 / 3)* \sin(x * 30) + (2 / 3)* \sin(x * 17.5) + (4 / 5)* \cos(x * 2)

plot(y,type="1")

wma=moving\_average\_smooth(y,5)

plot(wma,type="1")
```

8 plot_lmd

plot_lmd

LMD Plot

Description

Method for plotting Product Functions (PFs) and Residue

Usage

```
plot_lmd(
  lmd_obj,
  max_pf = length(lmd_obj[["pf"]]),
  show_residue = TRUE,
  pricolor_plot = "midnightblue",
  line_size_plot = 1
)
```

Arguments

```
    lmd_obj
    LMD object created from LMD function
    max_pf
    Number of PFs to Plot
    show_residue
    Whether to plot residue or not
    pricolor_plot
    color of plots
    line_size_plot
    Size of line in ggplot
```

Value

ggplot plot for Product Functions (PFs) and Residue

Author(s)

Shubhra Prakash, <shubhraprakash279@gmail.com>

```
x=1:100
y = (2 / 3 )* sin(x * 30) + (2 / 3) * sin(x * 17.5) + (4 / 5) *cos(x * 2) plot_lmd(lmd(y))
```

Index

* Average	1md, 5
<pre>moving_average_smooth, 7</pre>	* mechanism
* Demodulation	1md, 5
lmd, 5	* monotonic
* Envelope	is_monotonous,4
$local_mean_and_envelope, 6$	* monotonous
* Fault	is_monotonous, 4
lmd, 5	* self-adaptive
* LMD	1md, 5
plot_lmd, 8	* wma
* Local	moving_average_smooth, 7
lmd, 5	
<pre>local_mean_and_envelope, 6</pre>	extract_product_function, 2
* Mean	find_extrema, 3
<pre>local_mean_and_envelope, 6</pre>	Tilid_extrellia, 3
* Moving	is_monotonous, 4
moving_average_smooth, 7	, .
* PF	1md, 5
plot_lmd, 8	<pre>local_mean_and_envelope, 6</pre>
* Product	
lmd, 5	moving_average_smooth, 7
* Residue	1 . 1 . 0
plot_lmd, 8	$plot_lmd, 8$
* Weighted	
moving_average_smooth, 7	
* and	
<pre>local_mean_and_envelope, 6</pre>	
* decomposition	
lmd, 5	
* diagnosis	
1md, 5	
* extrema	
find_extrema, 3	
* functions	
1md, 5	
* Imd	
<pre>extract_product_function, 2</pre>	
1md, 5	
* mean	