Computer Science and Engineering Department

Artificial Intelligence (UCS-521)

Lab Assignment-3

Note: As a data scientist, you have been assigned a job to solve the 8 puzzle problem. To generate the states of the search space, you need to define the rules/operators properly. As a solution, you need to print the intermediate steps of the solution as well as total number of moves used to achieve the goal state.

1	If the initial and final states are as below and H(n): number of misplaced tiles in the current state									
	n as compared to the goal node need to be considered as the heuristic function. You need to use									
	Best First Search algorithm.									
	Initial:		2	3			1	2	3	
			1	8	4	Goal:	8		4	
			7	6	5		7	6	5	
2	If the initial and final states have been changed as below and approach you need to use is Hill									
	Climbing searching algorithm. $H(n)$: number of misplaced tiles in the current state n as									
	compared to the goal node as the heuristic function for the following states.									
		2	8	3		1	2	3	3	
		1	5	4		8		4	1	
		7	6			7	6	5	5	
	Initial State Final State									
	initial State									
3	Apply A* searching algorithm by taking H(n): number of correctly placed tiles in the current									
	state <i>n</i> as compared to the goal node. as the heuristic function.									
	Initial:		2	3			1	2	3	7
			1	8	4	Goal:	8		4	\dashv
			7	6	5	10.002	7	6	5	\dashv
				0	5		'	- 0	9	
4	Apply AO* searching algorithm by taking H(n): number of correctly placed tiles in the current									
	state n as compared to the goal node. as the heuristic function for the following node states.									
		2	8	3		1	2 3			
		1	5	4		8		4	1	
		7	6			7	6	5	5	
	Initial State Final State									