

PHYSICS

SECTION ONE: SHORT ANSWER

Question 1(a)

Wave period

Description	Mark
Period = 12 s.	1

Question 1(b)

Wave frequency

De	escription	Mark
frequency = $\frac{1}{\text{period}}$		1
$=\frac{1}{12} s^{-1} = 0.083 \text{Hz}$.		1

Question 1(c)

Number of waves

	Description	Mark
period =12 s		1
5.0 min =300 s		<u> </u>
∴ n° waves $=\frac{300}{12} = 25$.		1

Question 2 Light bulb

 $\begin{array}{c|c} & \text{Description} & \text{Mark} \\ \hline P = VI & & 1 \\ \hline I = \frac{P}{V} = \frac{60}{250} & & 1 \\ = 0.24 \text{ A} \,. & & 1 \end{array}$

Question 3

Standing waves

Description	Mark
The lines represent the maximum amplitude, at any point, of the air molecules in the	1
tube.	

Question 4(a)

Alternating current

Description	Mark
The emf alternates OR the current direction alternates.	1

Question 4(b)

AC home delivery

Description	Mark
High voltages are more efficient for long distance power transmission.	1
Low voltages are safer for domestic use.	1
AC allows transformers to step current up and down.	1

Question 5

Seesaw

Description	Mark
Assume: child has mass 25 kg (allow 5-50 kg)	1
Assume: child is 2 m from the fulcrum (allow 1-4 m)	1
$\tau = rF$	1
$=(2)(25)(9.8) \mathrm{m} \mathrm{N} = 490 \mathrm{m} \mathrm{N}$. (allow 49-1960 m N)	1

Question 6

Magnetic field

Description	Mark
False.	1
Moving charges create magnetic fields.	1

Question 7(a) Electric field

	Description	Mark
$E = \frac{V}{d} = \frac{18}{0.04} = 450 \text{ V m}^{-1}$		1

Question 7(b) Electric field

	Description		Mark
$E = \frac{V}{d} = \frac{18}{0.04} = 450 \text{ V m}^{-1}$			1

Question 8(a) Transformer

Description	Mark
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	1
$V_s = \frac{N_s \times V_p}{N_p} = \frac{600 \times 120}{200}$	1
$V_s = 360 \text{ V}$	1

Question 8(b) Current in transformer

Description	Mark
In an ideal transformer, $P_{in} = P_{out}$	1
so $V_{in}I_{in} = V_{out}I_{out}$	1
$\frac{I_{\text{out}}}{I_{\text{in}}} = \frac{V_{\text{in}}}{V_{\text{out}}}$, so $\frac{I_{\text{out}}}{I_{\text{in}}} = \frac{120}{360} = 1:3$	1

Question 9 Big bang

Description	Mark
The Universe is expanding.	1
The rate of recession for galaxies etc increases with distance.	1

Question 10 Force between moons

Description	Mark
Minimum force is when they are furthest apart. Distance = $(4.22 \times 10^8 + 1.07 \times 10^9)$ m = 1.492×10^9 m apart	1
$F_{g} = G \frac{m_{l} m_{G}}{d^{2}}$	1
$F_{g} = 6.67 \times 10^{-11} \times \frac{8.93 \times 10^{22} \times 1.48 \times 10^{23}}{(1.492 \times 10^{9})^{2}} = 3.96 \times 10^{17} \text{ N}$	1

Question 11 Quasars

Description	Mark
Red shift is a Doppler effect showing that the emitter is moving away from us.	1
Large red shift means high recession rate.	1
Recession rates increase with distance.	1

Question 12 Lenz's law

Description	Mark
Aluminium is a good conductor.	1
The falling magnet's magnetic field induces eddy currents in the tube.	1
These eddy currents oppose the change that created them (Lenz's law) and slow down the falling magnet.	1
Plastic is not a conductor so no eddy currents are created in it.	1

Question 13 Circular motion free body diagram

Description	Mark
weight force $=$ mg $=$ 20x9.8 $=$ 196 N	1
Angle between pole and chains: $\sin\theta = \frac{0.7}{1.8}$ $\theta = 22.89^{\circ}$	1
Tension in each chain has vertical component = half the child's weight $T_{v} = \frac{T\cos\theta}{2}$	1
$T = \frac{T_v}{2\cos\theta} = \frac{196}{2\cos 22.89^{\circ}} = 106 \text{N}.$	1
106 N 106 N 196 N	2

SECTION TWO: PROBLEM-SOLVING

Question 14(a)

Standing wave formation

Description	Mark
The quiet places are displacement nodes (or pressure antinodes) in a standing wave.	1
The two speakers had the same frequency, and in air both have the same wavelength and speed.	1
A standing wave forms from interference between two such waves, travelling in opposite directions.	1

Question 14(b)(i) Error reduction

Description	Mark
B: Measure the distance between several quiet spots	1

Question 14(b)(ii)

Explaining error reduction

Description	Mark
Measuring a greater distance involves the same absolute error.	1
Sam should divide the distance by the number of internodal distances to determine the	. 1
value for one internodal distance.	1
This reduces the relative error in distance measurement.	1

Question 14(c)

Speed of sound

Description	Mark
int ernodal distance $=\frac{1}{2}\lambda$	1
$so \lambda = 2 \times 0.39 = 0.78 \text{ m}$	
$v = f\lambda = (440)(0.78)$	1
$v = 3.4 \times 10^2 \mathrm{m s^{-1}}$	1

Question 15(a)(i)

Frequency of AC

Description	Mark
83.3 Hz.	1

Question 15(a)(ii)

Power to lamp

	Description	Mark
$P = \frac{V^2}{R}$		1
$P = \frac{4.4^2}{1.1} = 18 \text{ W}.$		1

Question 15(b) Magnetic field strength

Description	Mark
$\therefore \Delta t = \frac{1}{4} T = \frac{1}{4} (\frac{1}{83.3}) = 0.00300 \text{ s}$	1
$emf = -N\frac{\Delta\Phi}{\Delta t}$	1
$\Delta\Phi = \frac{(\text{emf})(\Delta t)}{N} = \frac{(4.4)(0.003)}{400} = 3.3 \times 10^{-5} \text{Wb}$	1
In $\frac{1}{4}$ turn, $\Delta\Phi = \Phi - 0 = \Phi$	1
$B = \frac{\Phi}{A}$	1
$B = \frac{3.3 \times 10^{-5}}{140 \times 10^{-6}} = 0.24 \text{ T}.$	1

Question 15(c) Commutator used to change to DC

Description	Mark
Required commutator is a split ring.	1
This reverses the induced current in phase with the reversal of the field through the coil.	1
In effect this keeps current direction constant.	1

Question 16(a)(i) Trajectory

Description	Mark
Parabolic shape.	1
Starts above ground, ends on the ground.	1

Question 16(a)(ii) Effect of air resistance

Description	Mark
Starts along the same path, becomes more strongly curved.	1

Question 16(a)(iii) Explaining effect of air resistance

Description	Mark
Air resistance decreases the forward component of velocity.	1
So the ball does not travel as far forward in the time of flight.	1

Question 16(a)(iv) Acceleration of ball

Description	Mark
No.	1
The ball is continually subject to the acceleration due to gravity.	1

Question 16(b)(i) Flight time

Description	Mark
Vertical component of initial velocity =u sin θ =(55)(sin 1.5°) =1.44 m s ⁻¹	1
Vertical motion $s = ut + \frac{1}{2}gt^2$; let up be positive.	1
$t = \sqrt{\frac{2 \text{ s}}{g}} = \sqrt{\frac{2(-0.35)}{-9.8}} = 0.267 \text{ s}.$	1

Question 16(b)(ii) Range

Description	Mark
Horizontal component of initial velocity = $u \cos \theta = (55)(\cos 1.5^{\circ}) = 54.98 \mathrm{m \ s^{-1}}$	1
Horizontal motion s = vt.	1
s =(54.98)(0.267) =14.7 m	1

Question 17(a)(i) Plotting v² vs T

Description	Mark
v^2 vs T gives a straight line, v vs T does not OR v vs T does not map the function.	1
A straight line allows gradient to be calculated more easily and accurately.	1

Question 17(a)(ii) Units of □

Description	Mark
$\mu = \frac{T}{v^2} = \frac{\text{force}}{\text{velocity}^2}$	1
units of $\mu = \frac{\text{kg m s}^{-2}}{\text{m}^2 \text{ s}^{-2}}$. So the units of μ are kg m ⁻¹ (accept N s ² m ⁻²).	1

Question 17(b) Experimental value for μ

Question 17(c) Fundamental mode when stretched

Description	Mark
The wave velocity is $v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{125}{4.5 \times 10^{-3}}} = 166.7 \text{ m s}^{-1}$	1
The wavelength is (2×0.76) m	1
so we can find the frequency $f = \frac{V}{\lambda} = 110 \text{ Hz}.$	1

Question 18(a) Motion of positive ions

	Description	Mark
Path is curved		1
To the left.		1

Question 18(b) Motion of negative ions

	Description	Mark
Path is curved.		1
To the left.		1

Question 18(c)

How the pump works

Description	Mark
The electric field accelerates both positively and negatively charged particles so they move across the tube.	1
Charged particles moving across magnetic field lines experience a magnetic force at right angles to both the movement and the magnetic field.	1
This pushes the charged particles to the left whether their charge is positive or negative.	1
The charged particles drag the solution with them as they move, so the pump moves the entire solution.	1
As particles leave the pump to the left, more arrive from the right and the process repeats.	1

Question 18(d)

Energy transfer in pump

Description	Mark
The electric field transfers energy to the charged particles.	1
The charged particles transfer energy to the liquid.	1
The magnetic field does not transfer energy to the charges.	1

Question 19(a)(i)

Ionisation energy

9.	Description		Mark
Minimum energy = 5.3 eV			1

Question 19(a)(ii)

Process

Description	Mark
The arrow represents an electron falling to a lower energy level.	1
The result is the emission of a photon.	1
Whose energy is equal to the energy difference between the levels.	1

Question 19(b)(i) Two yellow lines

Description	Mark
Two energy levels are very close together. Electron transitions from these energy levels	1
to the ground state produce almost equal wavelengths.	
$\lambda = \frac{hc}{E}$	1
$\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2.103 \times 1.6 \times 10^{-19}} \text{ m}$ $\lambda = 5.91 \times 10^{-7} \text{ m (591 nm) (allow 590-592 nm)}$	1

Question 19(b)(ii)

Electron transition

Question 19(c)

Using the spectrum

Description	Mark
Each line in the spectrum represents a transition between energy levels.	1
These transitions are unique to each element and so can be used to identify specific	1
elements.	+

SECTION THREE: COMPREHENSION

Question 20(a)(i)

Producing X-rays

Description	Mark
X-rays are produced when high energy electrons are rapidly decelerated—as when	1
striking the molybdenum target.	
The peaks result when electrons are lost ('knocked out') from the lowest energy levels	1
(shells) of a molybdenum atom.	
When electrons from higher levels drop into the vacant spaces, X-rays of a specific	
energy are produced.	1
Note: K_{α} results from electron transition from L shell to K shell	
K_{β} results from electron transition from M shell to K shell	

Question 20(a)(ii)

Electron energy

Description	Mark
35 kV	1
Max energy of incoming electrons corresponds to shortest wavelength X-ray = 0.035nm (estimate)	1
$W = Vq = hf = \frac{hc}{\lambda}$ $\therefore V = \frac{hc}{q\lambda} = \frac{6.63 \times 10^{-34} (3 \times 10^8)}{1.60 \times 10^{-19} (0.035 \times 10^{-9})} = 3.6 \times 10^4 \text{ V} = 36 \text{kV}$ [possible range that might be calculated = 35-41 kV]	1

Question 20(b)(i)

Table

Element	Wavelength (m)	$\frac{1}{\sqrt{\lambda}}$ (m ^{-1/2})
Molybdenum	5.4 x 10 ⁻¹¹	1.4 x 10 ⁵
Tin	3.8 x 10 ⁻¹¹	1.6 x 10 ⁵
Barium	3.0 x 10 ⁻¹¹	1.8 x 10 ⁵
Ytterbium	1.9 x 10 ⁻¹¹	2.3 x 10 ⁵
Tungsten	1.7 x 10 ⁻¹¹	2.4 x 10 ⁵
Platinum	1.5 x 10 ⁻¹¹	2.6 x 10 ⁵
Lead	1.4 x 10 ⁻¹¹	2.7 x 10 ⁵

Description	Mark
Wavelengths all correctly calculated <i>OR</i> mostly correct (1 mark)	2
$\frac{1}{\sqrt{\lambda}}$ all correctly calculated OR mostly correct (1 mark)	2

Question 20(b)(ii) Graph

	Description	Ma	ırk
Axes marked.		1	-
Points plotted.		1	
Line of best fit.		1	_

Question 20(c)(i)Gradient

Description	Mark
gradient = $\frac{\text{rise}}{\text{run}} = \frac{\text{change in y - values}}{\text{change in x - values}}$	1
gradient = $\frac{85 - 50}{2.80 - 1.64}$ = $3.0 \times 10^{-4} \text{m}^{0.5}$	1

Question 20(c)(ii) Gradient

	Description	Mark
two significant figures		1
since both Z and λ are given	to 2 SF (and gradient is the ratio of these two)	1

Question 20(d)

Gradient

Description	Mark
gradient = $3.0 \times 10^{-4} = 6.60 \times 10^{8} \sqrt{\text{hc}}$	1
$\therefore hc = \left(\frac{3.0 \times 10^{-4}}{6.60 \times 10^{8}}\right)^{2}$	1
$h = \frac{2.1 \times 10^{-25}}{3 \times 10^8} = 6.9 \times 10^{-34} \text{Js}$	1
reasonable range = $6.4 - 7.3 (x10^{-34})$ If using $2.5x10^{-4}$, h = $4.8x10^{-34}$ Js	_

Question 21(a)

Magnetic field direction

Description	Mark
Into the page.	1

Question 21(b) Identify ion

Description	Mark
lon 1.	1
It has a greater mass.	1
From the equation, it must also have a greater path radius.	1

Question 21(c)

Ionising atoms with an electrons beam

Description	Mark
Electrons in the beam have large kinetic energies and can remove an electron from the	1
target atoms i.e. ionise the atom positively.	

Question 21(d)(i) Accelerating electric field

	Description	Mark
Straight lines, orientation to left.		1

Question 21(d)(ii)

Kinetic energy of ion

Description	Mark
$\Delta E_k = Vq$	1
$E_k = (25000)(1.6 \times 10^{-19}) = 4 \times 10^{-15} \text{ J}$ OR 25 keV (2 marks)	1

Question 21(d)(iii) Radius of ion path

Description	
$r = \frac{mv}{Bq}$	1
$r = \frac{(2.656 \times 10^{-26})(5.49 \times 10^{5})}{(8)(1.6 \times 10^{-19})} m$	1
r = 0.114 m.	1

Question 21(e) Isotope ratios

Description		
The ice core will have a ratio of ${}^{18}_{8}$ O to ${}^{16}_{8}$ O that reflects the conditions at the time		
because the ice forms from rainfall.		
The cave sample will have a different ${}^{18}_{8}$ O to ${}^{16}_{8}$ O ratio because of the effect of calcium	1	
carbonate deposition		
added to the effect of rainfall.	1	
The final ratio of the cave sample will depend on which effect is greater.	1	

Physics Stage 3 exam

	3A				3B			
	Working in physics	Motion and forces in a gravitational field	Electricity and magnetism		Working in physics	Particles, waves and quanta	Motion and forces in electric and magnetic fields	
SECT								
Α								
1						X		
2			X			_		
3						X		
4			X					
5			Х					
6							X	
7							Х	
8			Х					
9						X		
10		Х		4				
11						X		
12			Х					
13		Х						
SECT						Y		
В								
14					X	X		
15			X					
16		Х						
17					X	X		
18							X	
19						Х		
SECT								
С								
20					X	Х		
21							X	