

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑪ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑫ Offenlegungsschrift
⑬ DE 197 34 794 A 1

⑭ Int. Cl. 6:
H 01 L 23/50
H 01 L 23/495
H 01 L 21/60

DE 197 34 794 A 1

⑮ Aktenzeichen: 197 34 794.0
⑯ Anmeldetag: 11. 8. 97
⑰ Offenlegungstag: 16. 7. 98

⑱ Unionspriorität
P 2310/97 09. 01. 97 JP
⑲ Anmelder:
Mitsubishi Denki K.K., Tokio/Tokyo, JP
⑳ Vertreter:
Tiedtke, Bühlung, Kinne & Partner, 80336 München

㉑ Erfinder:
Takahashi, Yoshiharu, Tokio/Tokyo, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen
Prüfungsantrag gem. § 44 PatG ist gestellt

㉒ Verdrahtungsteil und Leiterrahmen mit dem Verdrahtungsteil

㉓ Es wird ein Verdrahtungsteil mit einem ersten Elektrodenabschnitt (4), der mit einer an einer Oberfläche eines Halbleiterelementes (8) ausgebildeten Elektrode elektrisch verbunden ist, einem zweiten Elektrodenabschnitt (5), der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, und einem Verdrahtungsabschnitt (2) geschaffen, der den ersten Elektrodenabschnitt (4) mit dem zweiten Elektrodenabschnitt (5) verbindet. Der erste Elektrodenabschnitt (4), der zweite Elektrodenabschnitt (5) und der Verdrahtungsabschnitt (2) sind aus einem plattenförmigen leitenden Körper (1) ausgebildet, wobei die Dicke des Verdrahtungsabschnitts (2) nicht größer als die Hälfte der Dicke des ersten Elektrodenabschnitts (4) oder des zweiten Elektrodenabschnitts (5) ausgeführt ist. Eine Feinverdrahtung kann dadurch erreicht werden, indem der Leiter als Verdrahtungsteil zur elektrischen Verbindung der Halbleiterelementelektroden (9) mit den Außenlektroden der Halbleitervorrichtung nicht größer als die Hälfte der erforderlichen Dicke des Leiterrahmenmaterials ausgeführt wird.

DE 197 34 794 A 1

1
Beschreibung

Die Erfindung betrifft ein Verdrahtungsteil zur Verwendung bei einer Halbleitervorrichtung und einen Leiterrahmen mit dem Verdrahtungsteil.

In letzter Zeit ist im Zusammenhang mit der nöheren Integration und der höheren Dichte von Halbleitervorrichtungen die Anzahl der Eingabe-/Ausgangsanschlüsse von Halbleiterelementen angestiegen und die Unterteilungsbreite der Anschlüsse enger geworden.

Die Größe und die Unterteilungsbreite von Halbleiterelementelektroden, die an den Oberflächen von einer Halbleitervorrichtung bildenden Halbleiterelementen vorgesehen sind, unterscheiden sich von denen der Außenelektroden, die beispielsweise auf der äußeren Oberfläche der Halbleitervorrichtung vorgesehen sind. Deshalb ist zur elektrischen Verbindung der Halbleiterelementelektroden und der Außenelektroden der Halbleitervorrichtung ein Verdrahtungsteil erforderlich.

Als Verdrahtungsteil ist ein Leiterrahmen oder eine gedruckte Leiterplatte verwendbar worden. Die Verdrahtung mit einem Leiterrahmen kann als eine Einschichverdrahtung zur Verbindung erster Elektrodenabschnitte, die mit den auf den Oberflächen der Halbleiterelemente vorgesehenen Halbleiterelementelektroden über Metalldrähte oder dergleichen elektrisch verbunden sind, mit zweien Elektrodenabschnitten definiert werden, bei denen es sich um die Außenelektroden der Halbleitervorrichtung handelt. Demgegenüber kann die Verdrahtung mit einer Leiterplatte als eine Mehrschichverdrahtung zur elektrischen Verbindung der ersten Elektrodenabschnitte, die mit den Halbleiterelementelektroden über Metalldrähte oder dergleichen elektrisch verbunden sind, mit den zweiten Elektrodenabschnitten, bei denen es sich um die Außenelektroden der Halbleitervorrichtung handelt, unter Verwendung von auf den Oberflächen von zumindest zwei Schichten einer doppelseitigen Platte oder einer Mehrschichtplatte vorgesehenen leitenden Verdrahtungen und außerdem eines Durchgangslochs definiert werden, das die bei den unterschiedlichen Schichten ausgebildeten leitenden Verdrahtungen elektrisch verbindet.

Fig. 22 zeigt eine Schnittansicht einer Halbleitervorrichtung, bei der eine beispielsweise in der japanischen Offenlegungsschrift 79 652/1982 offenbarten herkömmliche Leiterplatte angewendet ist. In dieser Darstellung bezeichnet die Bezugszahl 8 ein Halbleiterelement, 9 eine an der Oberfläche des Halbleiterelementes ausgebildete Halbleiterelementelektrode, 10 eine gedruckte Leiterplatte, an deren Oberfläche das Halbleiterelement 8 angebracht ist, 11 eine an der Oberfläche der gedruckten Leiterplatte 10 ausgebildete leitende Verdrahtung, 12 einen Metalldraht, 13 ein Durchgangsloch, 14 einen an der rückwärtigen Oberfläche der gedruckten Leiterplatte 10 ausgebildeten Außenanschluß und 15 ein Vergußharz. Bei der mit Harz vergossenen Halbleitervorrichtung, bei der das Halbleiterelement 8 an der gedruckten Leiterplatte 10 angebracht ist und mit dem Vergußharz 15 vergossen bzw. abgedichtet ist, ist die an der Oberfläche des Halbleiterelementes 8 ausgebildete Halbleiterelementelektrode 9 über den Metalldraht 12 mit einem Ende der an der oberen Oberfläche der gedruckten Leiterplatte 10 vorgesehenen leitenden Verdrahtung 11 elektrisch verbunden, wobei das eine Ende in der Nähe des Halbleiterelementes 8 angeordnet ist. Das andere Ende der leitenden Verdrahtung 11 ist über das Durchgangsloch 13 mit dem an der rückwärtigen Oberfläche der gedruckten Leiterplatte 10 ausgebildeten Außenanschluß 14 verbunden.

Fig. 23 zeigt eine Schnittansicht einer Halbleitervorrichtung, bei der eine in der japanischen Offenlegungsschrift

258 048/1988 offenbarte herkömmliche Leiterplatte angewendet ist. Bei der Darstellung bezeichnet die Bezugszahl 8 ein Halbleiterelement, 9 eine an der Oberfläche des Halbleiterelementes ausgebildete Halbleiterelementelektrode und 16 eine gedruckte Mehrschicht-Leiterplatte der, an deren Oberfläche das Halbleiterelement 8 angebracht ist. Die Bezugszahl 11 bezeichnet eine an der Oberfläche der gedruckten Mehrschicht-Leiterplatte 16 ausgebildete leitende Verdrahtung, 17 eine in den inneren Schichten der gedruckten Mehrschicht-Leiterplatte 16 ausgebildete interne Verdrahtung, 18 ein Blindloch zur elektrischen Verbindung aller Schichten der gedruckten Mehrschicht-Leiterplatte 16, 14 einen an der rückwärtigen Oberfläche der gedruckten Mehrschicht-Leiterplatte 16 ausgebildeten externen Anschluß, 19 ein Band (TAB-Band bzw. TAB-Film) mit einem Verdrahtungsmuster zur elektrischen Verbindung der Halbleiterelementelektrode 9 mit der an der Oberfläche der gedruckten Mehrschicht-Leiterplatte 16 ausgebildeten leitenden Verdrahtung 11 und 15 ein Vergußharz dar. Bei der mit Harz vergossenen Halbleitervorrichtung, bei der das Halbleiterelement 8 an der gedruckten Mehrschicht-Leiterplatte 16 angebracht ist und mit dem Vergußharz 15 vergossen ist, sind die Halbleiterelementelektrode 9 und die an der Oberfläche der gedruckten Mehrschicht-Leiterplatte 16 ausgebildete leitende Verdrahtung 11 miteinander mittels des TAB-Bands 19 elektrisch verbunden. Außerdem ist die leitende Verdrahtung 11 über das Blindloch 18 und der internen Verdrahtung 17 mit dem an der rückwärtigen Oberfläche der gedruckten Mehrschicht-Leiterplatte 16 ausgebildeten Außenanschluß 14 verbunden. Bei der in der japanischen Offenlegungsschrift 258 048/1988 offenbarten Halbleitervorrichtung kann ein Halbleiterelement mit mehr Anschlüssen als das in der japanischen Offenlegungsschrift 79 652/1982 offenbarte Halbleiterelement 8 angebracht werden, da bei dieser das gedruckte Mehrschicht-Leiterplatte 16 mit der internen Verdrahtung 17 und dem Blindloch 18 sowie das TAB-Band 19 angewandt wird.

Wenn als Verdrahtungsteil zur elektrischen Verbindung der Elektroden an den Oberflächen der Halbleiterelemente mit den Außenelektroden der Halbleitervorrichtung eine Leiterplatte verwendet wird, wird eine Kupfersfolie mit einer Dicke von 25 µm bis 75 µm bei den Verdrahtungsteilen verwendet, wodurch ermöglicht wird, eine Verdrahtungsunterschicht von 50 µm bis 150 µm auszubilden. Zusätzlich sind die Außenelektroden einer Halbleitervorrichtung mit einem großen Verdrahtungsabstand aufgrund der Ausbildung eines Löuenschlusses (eine Lötwölbung) oder der gleichen an der Oberfläche ausgebildet, die der Oberfläche gegenüberliegend angeordnet ist, an der die Halbleiterelemente angebracht sind, damit die Größe Halbleitervorrichtung verringert werden kann.

Fig. 24 zeigt eine Schnittansicht einer Halbleitervorrichtung, die einen herkömmlichen Leiterrahmen anwendet. Bei dieser Darstellung bezeichnet die Bezugszahl 8 ein Halbleiterelement, 9 eine an der Oberfläche des Halbleiterelementes ausgebildete Halbleiterelementelektrode, 20 an Befestigungsplättchen, an den das Halbleiterelement angebracht ist, 21 ein Befestigungsharz bzw. einen Kleber, der das Halbleiterelement an das Befestigungsplättchen 20 klebt, 4 einen ersten Elektrodenabschnitt des Leiterrahmens, 5 einen zweiten Elektrodenabschnitt 5 des Leiterrahmens, 12 einen dünnen Metalldraht zur elektrischen Verbindung der Halbleiterelementelektrode 9 mit dem ersten Elektrodenabschnitt 4, 15 ein die Halbleiterelemente abdichtendes Vergußharz, 22 eine externe Schaltung und 23 eine an der externen Schaltung angebrachte Elektrode, die an den zweiten Elektrodenabschnitt 5 durch Lötwirb 25 oder dergleichen geführt ist.

Fig. 25 zeigt ein Schnittansicht eines Leiterrahmens zur Beschreibung des Herstellungsverfahrens des Leiterrahmens durch einen herkömmlichen Ätzvorgang. Bei dieser Darstellung bezeichnet die Bezugszahl 1 eine leitende Metallplatte (ein Leiterrahmenmaterial) mit einer Dicke von 125 bis 200 μ m und 3 eine Ätzmaske mit einem vorbestimmten Muster, wobei dasselbe Muster auf beiden Oberflächen der leitenden Metallplatte 1 ausgebildet sind. Die Bezugszahl 2 bezeichnet einen Verdrahlungsabschnitt des Leiterrahmens, der durch Ätzen der leitenden Metallplatte 1 von beiden Oberflächen erzeugt wird, damit ein nicht von der Ätzmaske bedeckter Abschnitt durchdrängt wird. Da der herkömmliche Leiterrahmen auf diese Weise hergestellt wird, wenn die leitende Metallplatte 1 mit einer Dicke von 125 μ m bis 200 μ m verwendet wird, muß der Abstand zwischen benachbarten Verdrahlungsabschnitten 2 etwa so groß wie die Dicke der leitenden Metallplatte 1 sein. Außerdem ist zur Gewährleistung des Ätzvorgangs die minimale Unterteilungsbreite (pitch) des Leiterrahmens in einem Bereich von 210 μ m bis 250 μ m, was etwa doppelt so groß wie die Dicke der leitenden Metallplatte 1 ist.

Zur Verkleinerung der Unterteilungsbreite des herkömmlichen Leiterrahmens sind bei Definition des mit einer Halbleiterelementelektrode durch Drahtbunden verbundenen Abschnitts des Leiterrahmens als ein erster Elektrodenabschnitt und des an eine externe Schaltung gelösten Abschnitts als ein zweiter Elektrodenabschnitt Verfahren zur Verringerung der Dicke des ersten Elektrodenabschnitts durch Ätzen und darausfolgendes Verkleinern des Verdrahlungsabstands in den japanischen Offenlegungsschriften 45 967/1990 und 375 804/1995 offenbar. Fig. 26 zeigt den Vorgang zur Herstellung des Leiterrahmens, die in der japanischen Offenlegungsschrift 375 804/1995 offenbar ist. Bei dieser Darstellung stellt die Bezugszahl 1 eine leitende Metallplatte, bei der es sich um ein Leiterrahmenmaterial handelt, 3a und 3b Ätzmasken und 4 den ersten Elektrodenabschnitt 4 dar. Die an einer Oberfläche der leitenden Metallplatte 1 ausgebildete Ätzmaske 3b weist eine Öffnung zur Ausbildung des ersten Elektrodenabschnitts 4 auf, wobei die an der anderen Oberfläche der leitenden Metallplatte 1 ausgebildete Ätzmaske 3b eine Öffnung zum Ätzen der anderen Oberfläche aufweist, um diese vollständig eben auszubilden. Die Bezugszahl 23 stellt eine Aussparung, die, um diese eben auszubilden, durch die Ätzmaske 3a geätzt wurde, und 24 eine Ätzwiderstandsschicht dar. Zunächst werden die Ätzmasken 3a und 3b an den Oberflächen der leitenden Metallplatte 1 ausgebildet (Fig. 26(a)), wobei der Ätzvorgang an beiden Oberflächen gestartet wird und zeitweilig ausgesetzt wird, wenn die Tiefe der Aussparung 23 zwei Drittel der Dicke der leitenden Metallplatte 1 erreicht (Fig. 26(b)). Die Ätzwiderstandsschicht 24 ist an der Seite der leitenden Metallplatte 1 mit der Aussparung 23 ausgebildet, wodurch verminder wird, daß der Ätzvorgang weiter voranschreitet (Fig. 26(c)). Dann wird der Ätzvorgang an der Seite der leitenden Metallplatte 1 mit der Öffnung zur Ausbildung des ersten Elektrodenabschnitts 4 fortgesetzt, bis das Ätzen die Ätzwiderstandsschicht 24 zur Ausbildung des ersten Elektrodenabschnitts 4 erreicht (Fig. 26(d)). Schließlich werden die Ätzwiderstandsschicht 24 und die Ätzmasken 3a und 3b entfernt, wodurch der Leiterrahmen fertiggestellt wird (Fig. 26(e)). Fig. 27 zeigt eine Schnittansicht des auf diese Weise ausgebildeten Leiterrahmens. Wenn die Dicke T der leitenden Metallplatte 1 150 μ m beträgt, wird die Dicke T2 des ersten Elektrodenabschnitts 4 des Leiters 50 μ m, was eine Verkleinerung der Leiterteilungsbreite ermöglicht. Die Bezugszahl stellt einen zweiten Elektrodenabschnitt dar, bei dem es sich um die Außenelektrode der Halbleiterverstärkung handelt und 20 ein Be-

festigungsschraube, an das ein Halbleiterelement angebracht ist.

In den japanischen Offenlegungsschriften 216 524/1987 und 232 305/1994 sind Verfahren zur Verringerung der Dicke des Leiters durch Ausbildung der Ätzmasken 3, abwechselnd auf beiden Oberflächen der leitenden Metallplatte 1, bei der es sich um Leiterrahmenmaterial handelt und zur Verkleinerung der Leiterteilungsbreite durch Vorsehen des Leiters auf beiden Seiten, wie in Fig. 28 gezeigt. Jedoch weist ein derartig dünner ausgeföhrter Leiter den Nachteil auf, daß die geätzten Oberflächen abwechselnd freiliegen, falls diese als Elektrode zur Verringerung mittels Drahtbunden mit dem Halbleiterelement verwendet wird, sich das nahtförmige Bondenmittel zwischen den geätzten rehen Oberfläche und dem Halbleiterelement abläßt.

Wie vorstehend beschrieben kann bei Verwendung einer Mehrschicht-Leiterplatte als Verdrahlungsseil eine größere Anzahl von Eingangs-/Ausgangsanschlüssen eines Halbleiterelement (Halbleiterelementelektroden) und einer kleinen Unterteilungsbreite hinsichtlich der Größe verwirklicht werden. Jedoch erfordert das Durchgangsloch und das Blindloch, die in unterschiedlichen Schichten ausgebildete unterschiedliche Verdrahlungen verbinder, einen Bohrvorgang. Folglich ist das Problem auf, daß die Kosten des Halbleitervermöhlung durch die Beschädigung des Bohrs, die Reinigung der gebornten Oberflächen, den Schutz der Leiterplatte vor Schneideöl für das Bohren und vor Bohrspangen und dergleichen erhöht werden.

Dengegenüber ist bei der Verwendung eines Leiterrahmens als Verdrahlungsseil eine Technik vorgeschlagen worden, die die Leiterunterteilungsbreite verkleinert, jedoch ist für die Außenkontakte der Halbleiterverstärkung keine Technik vorgeschlagen. Deshalb ist ein Verdrahlungsabstand, der derselbe oder größer wie der herkömmliche ist, zwischen den ersten Elektrodenabschnitten mit kleiner Unterteilungsbreite und den zweiten Elektrodenabschnitten (Außenkontakte) mit der großen Unterteilungsbreite erforderlich. Zusätzlich ist das Problem auf, daß eine große Unterteilungsbreite und ein großer Bereich zur Ausbildung eines Loianschlusses oder dergleichen erforderlich ist, weshalb es folglich unmöglich ist, eine verkleinerte Halbleitervorrichtung zu erhalten.

Daher liegt der Erfundung die Aufgabe zugrunde, diese Probleme zu lösen und einen Aufbau zur Verkleinerung des Verdrahlungsabstands, die bisher nur durch Verwendung einer Mehrschicht-Leiterplatte verwirklicht wurde, durch Verwendung eines Leiterrahmen und Verdrahlungsseils zu verwirklichen, durch den der Leiterrahmen aufgebaut ist. Dabei soll ein Verdrahlungsseil, das eine größere Anzahl und eine kleinere Unterteilungsbreite der Stufe der Eingangs-/Ausgangsanschlüsse eines Halbleiterelement erreichen sowie die Verkleinerung und Kostenverminderung der Halbleitervorrichtung erreichen kann, sowie einen Leiterrahmen mit einem derartigen Verdrahlungsseil geschnitten werden.

Diese Aufgabe wird durch die in den beigefügten Patentansprüchen dargelegten Maßnahmen gelöst.

Erfundungsgemäß wird ein Verdrahlungsseil geschaffen, das durch einer ersten Elektrodenabschnitt, der mit einer an einer Oberfläche eines Halbleiterelement ausgebildeten Elektrode elektrisch verbunden ist, einen zweiten Elektrodenabschnitt, der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, und einen Verdrahlungsabschnitt gekennzeichnet ist, der den ersten Elektrodenabschnitt mit dem zweiten Elektrodenabschnitt verbindet, wobei der erste Elektrodenabschnitt der zweite Elektrodenabschnitt und der Verdrahlungsabschnitt aus einem plattenförmigen leitenden Körper ausgespult sind und die Dicke des Verdrahlungsabschnitt nicht dicker als nein-

so dick wie der erste Elektrodenabschnitt oder der zweite Elektrodenabschnitt ausgeführt ist.

Der Verdrahlungsabschnitt kann an einer Oberfläche des plattenförmigen leitenden Körpers vorgesehen sein.

Außerdem können die Verdrahlungsabschnitte verspreiten an beiden Oberflächen des plattenförmigen leitenden Körpers angeordnet sein.

Die Dicke des ersten Elektrodenabschnitts und die Dicke des zweiten Elektrodenabschnitts können dieselbe wie die des plattenförmigen leitenden Körpers sein.

Weiterhin kann die Dicke entweder des ersten Elektrodenabschnitts oder des zweiten Elektrodenabschnitts dieselbe wie die des plattenförmigen Körpers sein, wobei die Dicke des anderen nicht mehr als die Hälfte der des plattenförmigen leitenden Körpers betragen kann.

Darüberhinaus kann der erste Elektrodenabschnitt oder der zweite Elektrodenabschnitt, deren Dicke nicht mehr als die Hälfte des plattenförmigen leitenden Körpers beträgt, geprägt werden, um deren Oberflächen eben auszuführen.

Erfundengemäß wird außerdem ein Verdrahlungssteil geschaffen, das durch einen ersten Elektrodenabschnitt, der mit einer an einer Oberfläche eines Halbleiterelements ausgebildeten Elektrode elektrisch verbunden ist, einen zweiten Elektrodenabschnitt, der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, einen Verdrahlungsabschnitt, der den ersten Elektrodenabschnitt mit dem zweiten Elektrodenabschnitt verbindet und einen Verbindungsabschnitt gekennzeichnet ist, der bei einem Teil des Verdrahlungsabschnitts zur Verbindung des Verdrahlungsabschnitts ausgebildet ist, wobei der erste Elektrodenabschnitt, der zweite Elektrodenabschnitt, der Verdrahlungsabschnitt und der Verbindungsabschnitt aus einem plattenförmigen leitenden Körper ausgebildet sind und jeweils die Dicke des ersten Elektrodenabschnitts, des zweiten Elektrodenabschnitts und des Verdrahlungsabschnitts nicht größer als die Hälfte der Dicke des Verbindungsabschnitts ausgeführt ist.

Der Verbindungsabschnitt kann ein Abschnitt sein, bei dem der Verdrahlungsabschnitt und entweder der erste Elektrodenabschnitt oder der zweite Elektrodenabschnitt, der breiter als der Verdrahlungsabschnitt ist, sich gegenseitig überlappen.

Außerdem können die Verbindungsabschnitte, die entweder den ersten Elektrodenabschnitt oder den zweiten Elektrodenabschnitt aufweisen und an benachbarten Verdrahlungsabschnitten ausgebildet sind, derart angeordnet werden, daß sie nicht nebeneinander ausgerichtet sind.

Der Verdrahlungsabschnitt kann aus dem plattenförmigen leitenden Körper durch Ätzen ausgebildet werden.

Zumindest eine Oberfläche des ersten Elektrodenabschnitts oder des zweiten Elektrodenabschnitts kann nicht dem Ätzvorgang unterzogen worden sein.

Der Leiterrahmen gemäß der Erfindung ist mit einer Vielzahl von Verdrahlungsstellen versehen.

Die Erfindung wird nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegende Zeichnung näher beschrieben. Es zeigen:

Fig. 1 eine Schnittansicht eines Leiterrahmens gemäß einem ersten Ausführungsbeispiel.

Fig. 2 eine Draufsicht des Leiterrahmens gemäß dem ersten Ausführungsbeispiel.

Fig. 3 eine Schnittansicht des Leiterrahmens gemäß dem ersten Ausführungsbeispiel.

Fig. 4 eine Schnittansicht des Leiterrahmens gemäß dem ersten Ausführungsbeispiel.

Fig. 5 eine Schnittansicht eines Leiters des Leiterrahmens gemäß dem ersten Ausführungsbeispiel.

Fig. 6 eine Schnittansicht des Leiters des Leiterrahmens

gemäß dem ersten Ausführungsbeispiel.

Fig. 7 eine Schnittansicht eines Leiters eines Leiterrahmens gemäß einem zweiten Ausführungsbeispiel.

Fig. 8 eine Schnittansicht des Leiters des Leiterrahmens gemäß dem zweiten Ausführungsbeispiel.

Fig. 9 eine Schnittansicht eines Leiters eines Leiterrahmens gemäß einem dritten Ausführungsbeispiel.

Fig. 10 eine Schnittansicht des Leiters des Leiterrahmens gemäß dem dritten Ausführungsbeispiel.

Fig. 11 eine Schnittansicht eines Leiters eines Leiterrahmens gemäß einem vierten Ausführungsbeispiel.

Fig. 12 eine Seitenansicht des Leiters des Leiterrahmens gemäß dem vierten Ausführungsbeispiel.

Fig. 13 eine Draufsicht eines Leiters eines Leiterrahmens gemäß einem fünften Ausführungsbeispiel.

Fig. 14 eine Seitenansicht des Leiters des Leiterrahmens gemäß dem fünften Ausführungsbeispiel.

Fig. 15 eine Draufsicht des Leiters des Leiterrahmens gemäß dem fünften Ausführungsbeispiel.

Fig. 16 eine seitliche Schnittansicht eines Leiterrahmens gemäß einem sechsten Ausführungsbeispiel.

Fig. 17 eine Ansicht eines Leiters des Leiterrahmens gemäß dem sechsten Ausführungsbeispiel.

Fig. 18 eine Ansicht des Leiters des Leiterrahmens gemäß dem sechsten Ausführungsbeispiel.

Fig. 19 eine Draufsicht eines Leiterrahmens gemäß einem siebten Ausführungsbeispiel.

Fig. 20 eine Schnittansicht des Leiterrahmens gemäß dem siebten Ausführungsbeispiel.

Fig. 21 eine perspektivische Ansicht eines zweiten Elektrodenabschnitts des Leiterrahmens gemäß dem siebten Ausführungsbeispiel der Erfindung.

Fig. 22 eine Schnittansicht einer mit Harz vergossenen Halbleitervorrichtung, bei der ein Halbleiterelement an einer herkömmlichen gedruckten Leiterplatte angebracht ist.

Fig. 23 eine Schnittansicht einer anderen mit Harz vergossenen Halbleitervorrichtung, bei der ein Halbleiterelement an einer herkömmlichen gedruckten Leiterplatte angebracht ist.

Fig. 24 eine Schnittansicht einer mit Harz vergossenen Halbleitervorrichtung, bei der ein herkömmlicher Leiterrahmen angewendet ist.

Fig. 25 eine Schnittansicht eines herkömmlichen Leiterrahmens.

Fig. 26 eine Schnittansicht, die einen Vorgang zur Ausbildung eines anderen herkömmlichen Leiterrahmens darstellt.

Fig. 27 eine Schnittansicht eines anderen herkömmlichen Leiterrahmens und

Fig. 28 eine Schnittansicht, die einen Vorgang zur Ausbildung eines anderen herkömmlichen Leiterrahmens darstellt.

Erstes Ausführungsbeispiel

Nachstehend ist ein Leiterrahmen gemäß dem ersten Ausführungsbeispiel unter Bezug auf die Zeichnung beschrieben.

Fig. 1 zeigt eine Schnittansicht, die den Aufbau des Leiterrahmens gemäß dieser Erfindung darstellt, wobei Fig. 2 eine schematische Draufsicht des Leiterrahmens zeigt. Bei diesen Darstellungen bezeichnet die Bezugszahl 1 eine leitende Metallplatte (ein Leiterrahmenmaterial), 2 einen Verdrahlungsabschnitt des Leiterrahmens, 4 einen ersten Elektrodenabschnitt, 4, der elektrisch über einer dünnen Metallplatte oder dergleichen mit einer an der Oberfläche des Halbleiterelements X ausgebildeten Elektrode 9 elektrisch verbunden ist, 5 einen zweiten Elektrodenabschnitt 5, bei dem es sich um eine mit einem externen Anschluß 14 elektrisch verbundene Außenelektrode der Halbleitervorrichtung handelt.

deit, die aus einem 19 Anschluß hergestellt ist, 15 ein Ver-
gußharz, 20 ein Festigungsplättchen, an das das Halblei-
terelement 8 angebracht ist, 101 eine Führungsschiene und
102 einen Leiterrahmen.

Fig. 3 zeigt eine Schnittansicht, die den Herstellungsver-
gang des Leiterrahmens gemäß dem Ausführungsbeispiel
darstellt. Bei dieser Darstellung bezeichnet die Bezugszahl
3 Ätzmasken, T die Dicke der leitenden Metallplatte 1, T1
die von der Oberfläche (rückwärtigen Oberfläche) der lei-
tenden Metallplatte 1 geätzte Dicke, an der die Verdra-
htungsabschnitte 2 nicht ausgebildet sind, T2 die Dicke der
Verdrahtungsabschnitte, die durch Ätzen dünner ausgeführt
werden, M1 ein Maskierungsmuster der Ätzmaske 3 zur
Ausbildung der Verdrahtungsabschnitte 2 und M2 eine Öff-
nung der Ätzmaske 3 zur Ausbildung des Abstands zwis-
chen den Verdrahtungsabschnitten 2. Das Bezugssymbol
W1 bezeichnete die Breite eines durch das Maskierungsmuster
M1 ausgebildeter, innerer Abschnitts des Verdra-
htungsabschnitts 2 in der Richtung der Dicke, wobei lediglich
aufgrund der geätzten Seiten die Dicke kleiner als das Mas-
kierungsmuster M1 ist. Das Bezugssymbol W2 bezeichnet
den Abstand zwischen den durch Ätzen ausgebildeten Ver-
drahtungsabschnitten 2, wobei der Abstand lediglich auf-
grund der geätzten Seiten größer als die Öffnung M2 ist. Die
Bezugssymbole A und B bezeichnen Ätzgrenzflächen, die die
Mustergrenzflächen an den durch Ätzen von der unteren
Oberfläche des Verdrahtungsabschnitts 2, das heißt von den
von der rückwärtigen Oberfläche der leitenden Metallplatte
1 ausgebildeten Oberflächen sind. Der Leiterrahmen wird
durch Ausbildung der Ätzmasken 3 mit einem vorbestim-
mten Muster an beiden Oberflächen der leitenden Metallplatte
1 erhalten, wobei das Ätzen an beiden Oberflächen gleich-
zeitig gestartet wird, das Ätzen zugesetzt wird, wenn die
leitende Metallplatte 1 teilweise durchdrungen ist und die
vorbestimmten Ätzenden A und B erhalten werden, und
schließlich die Ätzmasken 3 entfernt werden. Dabei wird die
Ätztiefe T1 von der rückwärtigen Oberfläche größer als die
Hälfte der Dicke T der leitenden Metallplatte 1 und die
Dicke T2 der Verdrahtungsabschnitte 2 kleiner als die Hälfte
der Dicke T der leitenden Metallplatte 1.

Gemäß Fig. 3 sind die Verdrahtungsabschnitte 2 lediglich
an einer Seite der leitenden Metallplatte 1 vorgesehen, je-
doch können wie in Fig. 4 gezeigt die Verdrahtungsab-
schnitte 2a und die Verdrahtungsabschnitte 2 jeweils ab-
wechselnd auf der ersten und der zweiten Seite der leitenden
Metallplatte 1 vorgesehen werden, wodurch weiter die Leiter-
unterteilungsbreite verringert wird. Gemäß dieser Dar-
stellung bezeichnet die Bezugszahl 2a Verdrahtungsab-
schnitte für die erste Seite der leitenden Metallplatte 1, 2b
Verdrahtungsabschnitte für die zweite Seite der leitenden
Metallplatte 1, M3 eine Öffnung für die Ätzmasken 3 zur
Ausbildung des Abstands zwischen den Verdrahtungsab-
schnitten 2a oder zwischen den Verdrahtungsabschnitten 2b,
die an unterschiedlichen Seiten der leitenden Metallplatte 1
ausgebildet sind.

Fig. 5 und 6 zeigen Schnittansichten eines Leiters des
Leiterrahmens gemäß diesem Ausführungsbeispiel. Da
beide Oberflächen des ersten Elektrodenabschnitts 4 und des
zweiten Elektrodenabschnitts 5 mit den Ätzmasken 3 wäh-
rend des Ätzvorgangs bedeckt sind, weisen sowohl der erste
Elektrodenabschnitt 4 als auch der zweite Elektrodenabschnitt
5 dieselbe Dicke wie die leitende Metallplatte 1 auf. Obwohl eine Seite des ersten Elektrodenabschnitts 4 mit
dem zweiten Elektrodenabschnitt 5 verbindenden Verdra-
htungsabschnitt 2 mit der Ätzmaske 3 während des Ätz-
vorgangs bedeckt ist, wird das Ätzen von der anderen Seite
durchgeführt. Deshalb wird der Verdrahtungsabschnitt 2
dünner als der erste Elektrodenabschnitt 4 und der zweite

Elektrodenabschnitt 5 ausgeführt.

Fig. 5 zeigt den Fall, bei dem die Verbindungsflächen
(Anschlussflächen) 4a und 5a des ersten Elektrodenab-
schnitts 4 und des zweiten Elektrodenabschnitts 5 an densel-
ben Seiten der leitenden Metallplatte 1 ausgebildet sind, wäh-
rend Fig. 6 den Fall zeigt, bei dem die Verbindungs-
flächen 4a und 4b an unterschiedlichen Seiten der lei-
tenden Metallplatte 1 angeordnet sind. Da neite Seiten des
ersten Elektrodenabschnitts 4 und des zweiten Elektrodenab-
schnitts 5 nicht geätzte Oberflächen der leitenden
Metallplatte 1 sind, wird kein Problem beim Bönen verur-
sacht. Deshalb können die Verbindungsflächen des er-
sten Elektrodenabschnitts 4 und des zweiten Elektrodenab-
schnitts 5 wie gewünscht ausgewählt werden.

Bei dem Leiterrahmen gemäß diesem Ausführungsbeispiel
wird ein Ätzen von beiden Seiten der leitenden Metall-
platte 1 durchgeführt, wodurch die Verdrahtungsabschnitte 2
nicht dicker als die Hälfte der Dicke der leitenden Metall-
platte 1 ausgeführt werden. Folglich kann das Ätzen unter
den Bedingungen durchgeführt werden, daß der Abstand
W2 zwischen den Verdrahtungsabschnitten 2 oder der Ab-
stand W3 zwischen den Verdrahtungsabschnitten 2a und 2b
derselbe wie die Dicke T2 der Verdrahtungsabschnitte 2, 2a
und 2b ist. Folglich kann, selbst wenn die Leiteruntertei-
lungsbreite doppelt so dick ausgeführt wird, wie die Dicke
T2 normalerweise ist, diese kleiner als die Dicke T der lei-
tenden Metallplatte 1 sein.

Gemäß diesem Ausführungsbeispiel können die zweiten
Elektrodenabschnitte 5 an der Innenseite der ersten Elektro-
denabschnitte 4, das heißt an der Rückseite des an dem Be-
festigungsplättchen 20 angebrachten Halbleiterelementes 8
angeordnet werden. Folglich kann eine verkleinerte Halb-
leiterverrichtung erhalten werden.

Außerdem kann der Vorgang unter den Bedingungen
durchgeführt werden, daß der Abstand zwischen den Ver-
drahtungsabschnitten 2 etwa genauso groß ist wie die Dicke
T2 der Verdrahtungsabschnitte 2, indem die Dicke T2 der
Verdrahtungsabschnitte 2 dünner ausgeführt wird. Deshalb
kann die Leiterunterteilungsbreite verkürzt werden, wobei
eine Feinverdrahtung möglich wird. Zusätzlich kann, wenn
die Verdrahtungsabschnitte 2a der ersten Seite der leitenden
Metallplatte 1 und die Verdrahtungsabschnitte 2b der zweiten
Seite der leitenden Metallplatte 1 abwechselnd angeord-
net werden, der Abstand W3 zwischen benachbarten an un-
terschiedlichen Seiten der leitenden Metallplatte 1 ausgebil-
deten Verdrahtungsabschnitten 2a und 2b kleiner als der Ab-
stand W2 der Verdrahtungsabschnitte 2 ausgeführt werden,
wobei folglich die Leiterunterteilungsbreite weiter verklei-
nert werden kann. Außerdem können die Verbindungsflä-
chen der ersten Elektrodenabschnitte 4 und der zweiten
Elektrodenabschnitte 5 derart wie gewünscht bestimmt werden,
daß die Flexibilität der Anordnung der Halbleiterver-
richtung erhöht wird.

Zweites Ausführungsbeispiel

Gemäß dem ersten Ausführungsbeispiel weisen die ersten
Elektrodenabschnitte 4 und die zweiten Elektrodenab-
schnitte 5 dieselbe Dicke wie die leitende Metallplatte 1 auf.
Jedoch kann wie in Fig. 7 und 8 gezeigt der Abstand zwis-
chen den zweiten Elektrodenabschnitten 5 in derselben
Weise wie die Verdrahtungsabschnitte 2 durch eine dünneren
Ausführung der zweiten Elektrodenabschnitte 5 mittels Ätzen
von einer Seite bei dem Ätzvorgang verkleinert werden.

Gemäß Fig. 7 ist die Verbindungsfläche 5a des zweiten
Elektrodenabschnitts 5 an der Seite vorgesehen, die nicht
geätzte wird. Jedoch kann wie in Fig. 8 gezeigt, wenn es

erforderlich ist, die Verbindungsfläche 5a des zweiten Elektrodenabschnitts 5 an der geätzten Seite vorzusehen, die Verbindungsfläche durch Anwenden eines Pressens an dem zweiten Elektrodenabschnitt 5aen ausgeführt werden, was herkömmlich ausgeführt wurde, um ein Leiterende eben auszuführen, ohne das ein Problem beim Bonden verursacht wird. Jedoch wird, falls der zweite Elektrodenabschnitt 5 durch Pressen dünner ausgeführt wird, wenn der zweite Elektrodenabschnitt 5 eine Dicke T1, eine Leiterbreite W1 und eine Verringungsgröße $\Delta T2$ aufweist, $\Delta T2$ gleich ϵ T2, wobei die erhöhte Leiterbreite gleich $v \times (\Delta T2/T2) \times (W1)$ wird, was anzeigt, daß der Leiterabstand lediglich aufgrund der erhöhten Leiterbreite kleiner wird. Deshalb sollte der Prävgang, um den zweiten Elektrodenabschnitt 5 dünner auszuführen, nur soweit durchgeführt werden, um die roh geätzte Oberfläche eben auszuführen.

Gemäß diesem Ausführungsbeispiel kann der Abstand zwischen den zweiten Elektrodenabschnitten 5 kleiner ausgeführt werden, indem der zweite Elektrodenabschnitt 5 dünner ausgeführt wird. Folglich kann eine verkleinerte Halbleitervormichtung erhalten werden.

Drittes Ausführungsbeispiel

Gemäß dem zweiten Ausführungsbeispiel sind die zweiten Elektrodenabschnitte 5 dünner ausgeführt. Jedoch kann der Abstand zwischen den ersten Elektrodenabschnitten 4 kleiner ausgeführt werden, indem die ersten Elektrodenabschnitte 4 wie die Verdrahlungsabschnitte 2 durch Ätzen von einer Seite bei dem Ätzvorgang dünner ausgeführt werden.

Gemäß Fig. 9 ist die Verbindungsfläche 4a des ersten Elektrodenabschnitts 4 an der Seite vorgesehen, die nicht geätzt wurde. Jedoch kann wie in Fig. 10 gezeigt, wenn es erforderlich ist, die Verbindungsfläche 4a des ersten Elektrodenabschnitts 4 an der geätzten Seite vorzusehen, die Verbindungsfläche durch einen Prävgang in derselben Weise wie gemäß dem zweiten Ausführungsbeispiel eben ausgeführt werden, ohne daß ein Problem beim Bonden verursacht wird.

Gemäß diesem Ausführungsbeispiel kann der Abstand zwischen den Elektroden kleiner ausgeführt werden, indem die ersten Elektrodenabschnitte 4 dünner ausgeführt werden. Folglich kann gemäß diesem Ausführungsbeispiel dem Wunsch nach einer großen Anzahl von Säulen (Anschlüssen, Elektroden) und einer kürzeren Unterteilungsbreite bei dem Halbleiterelement entsprochen werden.

Viertes Ausführungsbeispiel

Fig. 11 und 12 zeigen eine Draufsicht und eine Seitenansicht eines Leiters des Leiterrahmens gemäß dem vierten Ausführungsbeispiel. Gemäß diesen Darstellungen bezeichnen die Bezugszahlen 2a und 2b Verdrahlungsabschnitte, die durch Ätzen von einer Seite bei Ausbildung des Leiterrahmens dünner ausgeführt worden sind. Dabei bezeichnet die Bezugszahl 2a einen an der ersten Seite der leitenden Metallplatte 1 ausgebildeten Verdrahlungsabschnitt und 2b einen an der zweiten Seite der leitenden Metallplatte 1 ausgebildeten Verdrahlungsabschnitt. Die Bezugszahl 4 bezeichnet einen ersten Elektrodenabschnitt und 5 einen zweiten Elektrodenabschnitt, wobei beide dünner ausgeführt sind. Die Bezugszahl 6 bezeichnet einen Verbindungsabschnitt zwischen dem Verdrahlungsabschnitt 2a an der ersten Seite und dem Verdrahlungsabschnitt 2b an der zweiten Seite, der bei Ausbildung des Leiterrahmens nicht geätzt wird, da beide Seiten mit Ätzmasken bedeckt sind.

Gemäß diesem Ausführungsbeispiel werden die An-

schnitte außer dem Verbindungsabschnitt 6 des Leiters durch Ätzen von einer Seite dünner ausgeführt, was eine Feinverdrahlung ermöglicht. Wie in Fig. 12 gezeigt ermöglicht die Verwendung des Verbindungsabschnitts 6 ein Anordnen des ersten Elektrodenabschnitts 4 und des Verdrahlungsabschnitts 2a an der ersten Seite der leitenden Metallplatte 1 sowie ein Anordnen des zweiten Elektrodenabschnitts 5 und des Verdrahlungsabschnitts 2b an der zweiten Seite der leitenden Metallplatte 1, wodurch eine dreidimensionale vertikale Anordnung erreicht wird. Folglich kann eine Verdrahlung mit einer höheren Dichte verwirklicht und eine verkleinerte Halbleitervormichtung erreicht werden.

Fünftes Ausführungsbeispiel

Gemäß dem vierten Ausführungsbeispiel sind der erste Elektrodenabschnitt 4, der zweite Elektrodenabschnitt 5 und die Verdrahlungsabschnitte 2a und 2b in einer Geraden angeordnet. Jedoch können wie in Fig. 13 bis 15 gezeigt die ersten Elektrodenabschnitte 4 und die zweiten Elektrodenabschnitte 5 an jeder beliebigen Position durch Anordnen der die ersten Elektrodenabschnitte 4 und die zweiten Elektrodenabschnitte 5 verbindenden Verdrahlungsabschnitte 2a und 2b derart, daß sich die Richtung der Verdrahlungsabschnitte 2a und 2b in der Mitte um einen rechten Winkel ändert. Folglich kann die Flexibilität der Anordnung der Halbleiterelementelektroden und der Außenelektroden der Halbleitervormichtung erhöht werden, was eine weitere Verkleinerung der Halbleitervormichtung ermöglicht.

Fig. 13 und 14 zeigen eine Draufsicht und eine Seitenansicht eines Leiters, der anwendbar ist, wenn der erste Elektrodenabschnitt 4, der zweite Elektrodenabschnitt 5 und die Verdrahlungsabschnitte 2a und 2b nicht geradlinig verlaufen. Fig. 15 zeigt eine perspektivische Ansicht eines Leiters, der anwendbar ist, wenn es erforderlich ist, die Verdrahlungsabschnitte 2a und 2b mit einem rechten Winkel anzuordnen.

Gemäß diesem Ausführungsbeispiel können der erste Elektrodenabschnitt 4 und der zweite Elektrodenabschnitt 5 derart in jeder beliebigen Lage angeordnet werden, daß die Flexibilität der Anordnung der Halbleiterelementelektroden und der Außenelektroden der Halbleitervormichtung erhöht wird, was eine weitere Verkleinerung der Halbleitervormichtung ermöglicht.

Sechstes Ausführungsbeispiel

Fig. 16 zeigt eine Schnittansicht eines Leiterrahmens gemäß dem sechsten Ausführungsbeispiel, wobei Fig. 17 und 18 eine Draufsicht und eine Seitenansicht eines Leiters des Leiterrahmens darstellen. Da die Bezugszahlen bei diesen Darstellungen dieselben Bauelemente wie die gemäß Fig. 1 bezeichneten, entfällt deren Beschreibung.

Wenn der erste Elektrodenabschnitt 4 und der zweite Elektrodenabschnitt 5 wie in Fig. 10 gezeigt nahe aneinander liegen, kann zur Verdrahlung ein wie in Fig. 17 und 18 gezeigter U-förmiger Leiter verwendet werden, wodurch eine verkleinerte Halbleitervormichtung erhalten wird.

Siebtes Ausführungsbeispiel

Fig. 19 zeigt eine Draufsicht eines Leiterrahmens gemäß dem siebten Ausführungsbeispiel, wobei Fig. 20 eine entlang der Linie C-C genommene Schnittansicht und Fig. 20 eine perspektivische Ansicht des zweiten Elektrodenabschnitts 5 zeigen. Die Verdrahlungsabschnitte 2 sind an der zweiten Seite des Leiterrahmenmaterials und die zweiten

Elektrodenabschnitt 5 an dessen ersten Seite ausgebildet. Bei dem Abschnitt, an dem ein Verdrahtungsabschnitt 2 und ein zweiter Elektrodenabschnitt 5 sich überlappen, ist an der ersten Seite durch Älzen ein Kreis gemustert, der die Form des zweiten Elektrodenabschnitts 5 ist, wohingegen der Verdrahtungsabschnitt bzw. das Verdrahtungsmuster an der zweiten Seite durch Älzen ausgebildet ist. Hinsichtlich der anderen Punkte ist der Aufbau gemäß diesem Ausführungsbeispiel wie gemäß dem vierten Ausführungsbeispiel, wobei gemäß diesem Ausführungsbeispiel ein Fall dargestellt ist, bei dem der zweite Elektrodenabschnitt 5 an dem in Fig. 11 gezeigten Verbindungsabschnitt 6 ausgebildet ist.

Gemäß diesem Ausführungsbeispiel sind die Verdrahtungsabschnitte 2 und die zweiten Elektrodenabschnitte 5, die breiter als die Verdrahtungsabschnitte 2 sind, an voneinander unterschiedlichen Seiten ausgebildet, wobei zumindest ein Verdrahtungsabschnitt 2 zwischen benachbarten zweiten Elektrodenabschnitten 5 ausgebildet ist, damit die breiten zweiten Elektrodenabschnitte 5 nicht nebeneinander in einer Reihe ausgebildet sind. Folglich besteht keine Notwendigkeit, den Abstand zwischen den Verdrahtungsabschnitten 2 zur Ausbildung der zweiten Elektrodenabschnitte 5 zu verbreitern, was eine Verdrahtung mit einer höheren Dicke und eine verkleinerte Halbleitervorrichtung erreicht.

25

Achtes Ausführungsbeispiel

Gemäß dem siebten Ausführungsbeispiel sind die zweiten Elektrodenabschnitte 5 und die Verdrahtungsabschnitte 2 überlappt. Jedoch können die Halbleiterelementelektroden eine kleinere Unterteilungsbreite aufweisen, indem die ersten Elektrodenabschnitte 4 und die Verdrahtungsabschnitte 2 an unterschiedlichen Seiten ausgebildet werden und ein Verdrahtungsabschnitt 2 zwischen benachbarten ersten Elektrodenabschnitten 4 derart angeordnet wird, daß die ersten Elektrodenabschnitte 4 nicht in einer Linie seitlich angeordnet sind.

Wie vorsichtig beschrieben, kann gemäß den Ausführungsbeispielen eine Feinverdrahtung erreicht werden, indem die Dicke des Leiters als Verdrahtungsseil zur elektrischen Verbindung der Halbleiterelementelektroden mit den Außenelektroden der Halbleitervorrichtung nicht dicker als die Hälfte der erforderlichen Dicke des Leiterrahmenmaterials ausgeführt wird. Außerdem kann durch Verwendung eines Leiterrahmens, der die an beiden Seiten des Leiterrahmenmaterials angeordneten Verdrahtungs- und Elektrodenabschnitte aufweist, ein Halbleiterelement mit einer größeren Anzahl von Stiften und einer kleineren Unterteilungsbreite erreicht werden. Zusätzlich kann durch Anordnung der Außenelektroden an der rückwärtigen Seite der Halbleiterelemente eine kleinere Halbleitervorrichtung mit niedrigeren Kosten erreicht werden.

Wie der vorsichtig Beschreibung zu entnehmen ist, wird ein Verdrahtungsseil mit einem ersten Elektrodenabschnitt 4, der mit einer an einer Oberfläche eines Halbleiterelementes 8 ausgebildeten Elektrode elektrisch verbunden ist, einem zweiten Elektrodenabschnitt 5, der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, und einem Verdrahtungsabschnitt 2 geschaffen, der den ersten Elektrodenabschnitt 4 mit dem zweiten Elektrodenabschnitt 5. Der erste Elektrodenabschnitt 4, der zweite Elektrodenabschnitt 5 und der Verdrahtungsabschnitt 2 sind aus einem plattenförmigen leitenden Körper 3 ausgebildet, wobei die Dicke des Verdrahtungsabschnitts 2 nicht größer als die Hälfte der Dicke des ersten Elektrodenabschnitts 4 oder des zweiten Elektrodenabschnitts 5 ausfällt. Eine Feinverdrahtung kann erzielt werden, indem der

Leiter als Verdrahtungsseil zur elektrischen Verbindung der Halbleiterelementelektroden 9 mit den Außenelektroden der Halbleitervorrichtung nicht größer als die Hälfte der erforderlichen Dicke des Leiterrahmenmaterials ausgeführt wird.

Patentansprüche

1. Verdrahtungsseil, gekennzeichnet durch einen ersten Elektrodenabschnitt (4), der mit einer an einer Oberfläche eines Halbleiterelementes (8) ausgebildeten Elektrode (9) elektrisch verbunden ist, einen zweiten Elektrodenabschnitt (5), der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, und einen Verdrahtungsabschnitt (2), der den ersten Elektrodenabschnitt (4) mit dem zweiten Elektrodenabschnitt (5) verbindet, wobei der erste Elektrodenabschnitt (4), der zweite Elektrodenabschnitt (5) und der Verdrahtungsabschnitt (2) aus einem plattenförmigen leitenden Körper (1) ausgebildet sind und die Dicke des Verdrahtungsabschnitts (2) nicht dicker als halb so dick wie der erste Elektrodenabschnitt (4) oder der zweite Elektrodenabschnitt (5) ausgeführt ist.
2. Verdrahtungsseil nach Anspruch 1, dadurch gekennzeichnet, daß der Verdrahtungsabschnitt (2) an einer Oberfläche des plattenförmigen leitenden Körpers (1) vorgesehen ist.
3. Verdrahtungsseil nach Anspruch 1, dadurch gekennzeichnet, daß die Verdrahtungsabschnitte (2) versetzt an beiden Oberflächen des plattenförmigen leitenden Körpers (1) angeordnet sind.
4. Verdrahtungsseil nach einem der Ansprüche 1, dadurch gekennzeichnet, daß die Dicke des ersten Elektrodenabschnitts (4) und die Dicke des zweiten Elektrodenabschnitts (5) dieselbe wie die des plattenförmigen leitenden Körpers (1) sind.
5. Verdrahtungsseil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dicke entweder des ersten Elektrodenabschnitts (4) oder des zweiten Elektrodenabschnitts (5) dieselbe wie die des plattenförmigen Körpers (1) ist, wobei die Dicke des anderen nicht mehr als die Hälfte der des plattenförmigen leitenden Körpers (1) beträgt.
6. Verdrahtungsseil nach Anspruch 5, dadurch gekennzeichnet, daß der erste Elektrodenabschnitt (4) oder der zweite Elektrodenabschnitt (5), deren Dicke nicht mehr als die Hälfte des plattenförmigen leitenden Körpers (1) beträgt, geprägt wird, um deren Oberflächen eben auszuführen.
7. Verdrahtungsseil, gekennzeichnet durch einen ersten Elektrodenabschnitt (4), der mit einer an einer Oberfläche eines Halbleiterelementes (8) ausgebildeten Elektrode (9) elektrisch verbunden ist, einen zweiten Elektrodenabschnitt (5), der mit einer an einer externen Schaltung ausgebildeten Elektrode elektrisch verbunden ist, einen Verdrahtungsabschnitt (2), der den ersten Elektrodenabschnitt (4) mit dem zweiten Elektrodenabschnitt (5) verbindet und einen Verbindungsabschnitt (6), der bei einem Teil des Verdrahtungsabschnitts (2) zur Verbindung des Verdrahtungsabschnitts (2) ausgebildet ist, wobei der erste Elektrodenabschnitt (4), der zweite Elektrodenabschnitt (5), der Verdrahtungsabschnitt (2) und der Verbindungsabschnitt (6) aus einem plattenförmigen leitenden Körper (1) ausgebildet sind und jeweils die Dicke des ersten Elektrodenabschnitts (4) oder des zweiten Elektrodenabschnitts (5) und des Verbindungsabschnitts (6) nicht größer als die Hälfte der

Dicke des Verbindungsabschnitts (6) ausgeführt ist.

8. Verdrahlungsteil nach Anspruch 7, dadurch gekennzeichnet, daß der Verbindungsabschnitt (6) ein Abschnitt ist, bei dem nur Verdrahlungsabschnitt (2) und entweder der erste Elektrodenabschnitt (4) oder der zweite Elektrodenabschnitt (5), der breiter als der Verdrahlungsabschnitt (2) ist, sich gegenseitig überlappen.

9. Verdrahlungsteil nach Anspruch 8, dadurch gekennzeichnet, daß die Verbindungsabschnitte (6), die entweder den ersten Elektrodenabschnitt (4) oder den zweiten Elektrodenabschnitt (5) aufweisen, und an benachbarten Verdrahlungsabschnitten (2) ausgebildet sind, deran angeordnet sind, daß sie nicht nebeneinander ausgerichtet sind.

10. Verdrahlungsteil nach einem der Ansprüche von 1 bis 9, dadurch gekennzeichnet, daß der Verdrahlungsabschnitt (2) aus dem plattenförmigen leitenden Körper (1) durch Ätzen ausgebildet ist.

11. Verdrahlungsteil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zumindest eine Oberfläche des ersten Elektrodenabschnitts (4) oder des zweiten Elektrodenabschnitts (5) nicht dem Anzug unterzogen worden ist.

12. Leiterrahmen, gekennzeichnet durch eine Vielzahl von Verdrahlungsteilen, wobei das Verdrahlungsteil einen ersten Elektrodenabschnitt (4), der mit einer an einer Oberfläche eines Halbleiterelementen (8) ausgebildeten Elektrode (9) elektrisch verbunden ist, einen zweiten Elektrodenabschnitt (5), der mit einer an einer externen Schaltung ausgebildeten Elektrode (30) elektrisch verbunden ist, und einen Verdrahlungsabschnitt (2) aufweist, der den ersten Elektrodenabschnitt (4) mit dem zweiten Elektrodenabschnitt (5) verbindet, wobei der erste Elektrodenabschnitt (4), der zweite Elektrodenabschnitt (5) und der Verdrahlungsabschnitt (2) aus einem plattenförmigen leitenden Körper (1) ausgebildet sind und die Dicke des Verdrahlungsabschnitts (2) nicht dicker als halb so dick wie der erste Elektrodenabschnitt (4) oder der zweite Elektrodenabschnitt (5) ausgeführt ist.

13. Leiterrahmen, gekennzeichnet durch eine Vielzahl von Verdrahlungsteilen, wobei das Verdrahlungsteil einen ersten Elektrodenabschnitt (4), der mit einer an einer Oberfläche eines Halbleiterelementen (8) ausgebildeten Elektrode (9) elektrisch verbunden ist, einen zweiten Elektrodenabschnitt (5), der mit einer an einer externen Schaltung ausgebildeten Elektrode (30) elektrisch verbunden ist, einen Verdrahlungsabschnitt (2), der den ersten Elektrodenabschnitt (4) mit dem zweiten Elektrodenabschnitt (5) verbindet, und einen Verbindungsabschnitt (6) aufweist, der bei einem Teil des Verdrahlungsabschnitts (2) zur Verbindung des Verdrahlungsabschnitts (2) ausgebildet ist, wobei der erste Elektrodenabschnitt (4), der zweite Elektrodenabschnitt (5), der Verdrahlungsabschnitt (2) und der Verbindungsabschnitt (6) aus einem plattenförmigen leitenden Körper (1) ausgebildet sind und jeweils die Dicke des ersten Elektrodenabschnitts (4), des zweiten Elektrodenabschnitts (5) und des Verdrahlungsabschnitts (2) nicht größer als die Hälfte der Dicke des Verbindungsabschnitts (6) ausgeführt ist.

Hierzu 12 Seiten Zeichnungen.

FIG. 1

FIG. 2

FIG. 3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG.13

FIG.14

FIG.15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22
(STAND DER TECHNIK)

FIG. 23
(STAND DER TECHNIK)

FIG. 24 (STAND DER TECHNIK)

FIG. 25
(STAND DER TECHNIK)

FIG. 26(a)

(STAND DER TECHNIK)

FIG. 26(b)

(STAND DER TECHNIK)

FIG. 26(c)

(STAND DER TECHNIK)

FIG. 26(d)

(STAND DER TECHNIK)

FIG. 26(e)

(STAND DER TECHNIK)

FIG. 27

(STAND DER TECHNIK)

FIG. 28

(STAND DER TECHNIK)

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 09-092775
 (43) Date of publication of application : 04.04.1997

H01L 23/50

(51) Int.CI.

(21) Application number : 07-244204
 (22) Date of filing : 22.09.1995

(71) Applicant : HITACHI CABLE LTD

(72) Inventor : OTAKA TATSUYA
 HATANO KAZUHISA
 MURAKAMI HAJIME
 YONEMOTO TAKAHARU
 YOSHIOKA OSAMU

(54) SEMICONDUCTOR DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To make a package small in thickness in a CSP (Chip Scale Package) structure by which a lead frame of the same size is mounted on a semiconductor chip.

SOLUTION: A lead frame 4 to be adhered to a semiconductor chip 1 is almost the same in size as the chip 1. The surface 4e of an inner lead 4a of the lead frame 4 is coined to form a coined part 5 with reduced thickness. The lead frame 4 and the end surface 1c of the chip 1 are adhered to each other with a double-faced adhesive tape 3 interposed. The coined part 5 of the inner lead 4a is connected with a bonding pad 2 of the chip 1 through a bonding wire 9. The surface 1a of the chip 1 is packaged with a mold resin 8, thereby exposing only the surface 4c of an outer lead 4b on the packaged resin surface 8a.

LEGAL STATUS

[Date of request for examination] 30.11.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

3163961

[Patent number]

02.03.2001

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C), 1998,2000 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any
damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Pile up the leadframe of a semiconductor chip and abbreviation same size on the surface of a semiconductor chip, and it sticks through adhesives. Connect the inner lead and semiconductor chip of a leadframe by the bonding wire, and the front-face side of a semiconductor chip is closed by the mould resin so that it may become flat-tapped with the front face of an outer lead. In the semiconductor device which exposed the front face of an outer lead on the closure resin front face The semiconductor device characterized by having reduced the thickness by the side of the front face of an inner lead, and making an inner lead front face lower one step than an outer lead front face so that the bonding wire connected to an inner lead may not cross the front face of an outer lead.

[Claim 2] The semiconductor device according to claim 1 which also closed the gap between the end faces which form the size of the above-mentioned leadframe a little more greatly than a semiconductor chip, and are formed when this leadframe is piled up on the surface of a semiconductor chip by the mould resin.

[Claim 3] The semiconductor device according to claim 1 or 2 which made the adhesives which stick a leadframe on the front face of the above-mentioned semiconductor chip placed not only between an inner lead side but between outer lead sides.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any
damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] the semiconductor device with which this invention used the leadframe -- starting -- especially, a chip size and abbreviation -- it is related with a thin shape and small semiconductor package structure with the same size

[0002]

[Description of the Prior Art] Although the LOC (Lead On Chip) structure which can contain the semiconductor chip which turned into the comparatively small package on a large scale is adopted in mass DRAM (Dynamic Random Access Memory) corresponding to the demand of high density assembly, the package further miniaturized by even chip size level by the increase in capacity has come to be required. Moreover, it is required that the semiconductor package for electronic equipment should also be miniaturized more with reduction of sizes, such as a personal computer, facsimile, personal telephone, and an IC card. And only the area which a package only has chiefly is called for also in the thickness direction of a package rather than it is asked for this miniaturization.

[0003] Conventionally, the semiconductor device called CSP (Chip Scale Package) which exposed a part of lead on the base of a package as what responds to these requests is proposed (JP,6-132453,A). Specifically, as shown in drawing 7, an end face is doubled and the leadframe 22 of the same size as a semiconductor chip 21 is stuck on wiring side (front face) 21a of a semiconductor chip 21 with adhesives 23. In case it closes by the mould resin 25 after connecting inner lead 22a of a leadframe 22, and a semiconductor chip 21 by the bonding wire 24, the front-face side of a semiconductor chip 21 is closed by the mould resin 25, and surface 22c of outer lead 22b is exposed to surface 25a of the mould resin 25.

[0004] Although the bonding wire 24 which connects inner lead 22a and a semiconductor chip 21 needs to prepare a level difference here at a lead from surface 25a of the mould resin 25 made flat-tapped with surface 22c of outer lead 22b so that it may not disturb, in this conventional example, inner lead 22a is made lower one step than outer lead 22b by carrying out down set processing of the leadframe 22.

[0005]

[Problem(s) to be Solved by the Invention] By it, the miniaturization of a package is not only reflected in the area which a package has chiefly by the conventional technology mentioned above, but has come to be reflected also in the thickness direction of a package. However, since it is made to prepare a level difference in a lead by carrying out down set processing of the leadframe, the processing depth beyond lead ** is needed, and the part and package thickness cannot be made thin.

[0006] moreover -- although the minimum package can be obtained as the size of a package is the same as that of a semiconductor chip 1 -- dispersion in the size of a semiconductor chip 1 -- the time of a mould resin seal -- a mould -- there is a possibility that metal mold may damage a part of semiconductor chip 1

[0007] Furthermore, since adhesion fixation of the leadframe to a semiconductor chip was performed only by the inner lead side, although the case where fixation in the thickness direction by the side of an outer lead was not enough arose on the occasion of a mould resin seal, when

fixation was not enough, a mould resin needed to begin to delete a wraparound and a mold face thinly on the surface of the outer lead.

[0008] The purpose of this invention is to cancel the trouble of the conventional technology mentioned above and offer the semiconductor device which can make package thickness thinner. Moreover, the purpose of this invention is at the time of a mould resin seal to offer the semiconductor device which a semiconductor chip does not damage. Furthermore, the purpose of this invention is after a mould resin seal to offer the semiconductor device which does not need shaving *** on the front face of an outer lead.

[0009]

[Means for Solving the Problem] The semiconductor device of this invention piles up the leadframe of a semiconductor chip and abbreviation same size on the surface of a semiconductor chip, and sticks it through adhesives. Connect the inner lead and semiconductor chip of a leadframe by the bonding wire, and the front-face side of a semiconductor chip is closed by the mould resin so that it may become flat-tapped with the front face of an outer lead. In the semiconductor device which exposed the front face of an outer lead on the closure resin front face The thickness by the side of the front face of an inner lead is reduced, and one step of inner lead front face is made lower than an outer lead front face so that the bonding wire connected to an inner lead may not cross the front face of an outer lead. Thus, if the thickness of an inner lead is reduced rather than an outer lead and it can be made to make an inner lead lower one step than an outer lead, as compared with the case where the down set of the lead is carried out, package thickness can be made thinner.

[0010] Moreover, in the semiconductor device of such this invention, also closing the gap between the end faces which form the size of a leadframe a little more greatly than a semiconductor chip, and are formed when a leadframe is piled up on the surface of a semiconductor chip by the mould resin can prevent breakage of a semiconductor chip effectively. Moreover, making the adhesives which stick a leadframe on the surface of a semiconductor chip placed not only between an inner lead side but between outer lead sides can prevent the wraparound of the mould resin to the front face of an outer lead.

[0011]

[Embodiments of the Invention] The gestalt of operation of the semiconductor device of this invention is explained in detail using a drawing below. Drawing 1 is the cross section of CSP structure which carried the leadframe 4 of the same size on the semiconductor chip 1.

[0012] Near the center of surface 1a which is the wiring side, a bonding pad 2 is arranged and a semiconductor chip 1 is constituted. The leadframe 4 stuck on surface 1a of this semiconductor chip 1 consists of same sizes as a semiconductor chip 1, and has inner lead 4a for connecting with a semiconductor chip 1, and outer lead 4b used as an external terminal. The attachment by the semiconductor chip 1 and the leadframe 4 piles up a semiconductor chip 1 and a leadframe 4, and is performed through the tape 3 with double-sided adhesives so that end-face 1c of a semiconductor chip 1 and 4d of end faces of a leadframe 4 may be in agreement.

[0013] Instead of having not bent, a leadframe 4 reduces a part of thickness, and has made it thin. That is, inner lead 4a of a leadframe 4 forms the coining section 5 which carried out coining of the attachment side and opposite side (surface 4e) side, and made it thinner than outer lead 4b, and the height of the bonding wire 9 which connects inner lead 4a and the bonding pad 2 of a semiconductor chip 1 is made to become lower than the attachment side and opposite side (surface 4c) of outer lead 4b.

[0014] Thus, the bonding pad 2 allotted near [where silver plating 6 was performed to the coining section 5 of inner lead 4a which reduced thickness and was made lower one step than surface 4c of outer lead 4b, and silver plating 6 was performed] the center of the coining section 5 and a semiconductor chip 1 is connected by the bonding wire 9. Since one step of coining section 5 is low, the height of a bonding wire 9 can be stopped lower than surface 4c of outer lead 4b.

[0015] Closure by the mould resin 8 is performed by the surface 1a side of a semiconductor chip 1. Thickness of the mould resin 8 is made into the same height as surface 4c of outer lead 4b, and although inner lead 4a, a bonding wire 9, etc. are buried and protected in the mould resin 8, surface

4c of outer lead 4b is exposed to closure resin surface 8a. At this time, it is small in the area of a package, and in order to make thickness of a package thin, it is made for the mould resin 8 not to have the surroundings top in rear-face 1b of the end-face 1c and the semiconductor chip 1 of 4d of end faces of a leadframe 4, and a semiconductor chip 1.

[0016] Thus, since the constituted semiconductor package has prepared the level difference in the lead with coining, it does not need to carry out the down set of the leadframe like before. Moreover, package thickness turns into thickness which totaled the semiconductor thickness of tip, tape ** with double-sided adhesives, and lead ** of one sheet, and since the processing depth more than the double precision of lead ** which a down set requires is not required of a lead portion, it can make thickness of a package thinner.

[0017] In order to manufacture the semiconductor package mentioned above, in order to make end-face 8b of the mould resin 8 in agreement with end-face 1c of a semiconductor chip 1, the leadframe 4 used for a package is first constituted so that the position of the resin dambar 17 may be arranged along with the periphery of the semiconductor chip 1 shown with the alternate long and short dash line, as shown in drawing 2. moreover, the mould used at the time of package manufacture -- metal mold is made into the almost same size as the appearance of a semiconductor chip 1, and as the mould resin 8 does not turn around it to the rear-face 1b side of a semiconductor chip 1, it carries out the mould only of the front-face side of a semiconductor chip 1. In addition, 4d of end faces of a leadframe 4 turns into a cutting plane of the resin dambar 17.

[0018] Metal mold cuts the resin dambar 17 after a mould, and Leads 4a and 4b are separated separately. Here, before cutting the resin dambar 17, it is good that wetting with solder performs good silver plating 7 to surface 4c of outer lead 4b exposed to surface 8a of the mould resin 8 simultaneously with the silver plating 6 of the coining section 5 of inner lead 4a. If it carries out like this, it becomes unnecessary, and the sheathing solder plating of the front face of outer lead 4b is advantageous after a mould also at the point that the process which gives a damage to a package can be reduced while it can carry out cost reduction.

[0019] According to this manufacture method, remaining as it is or since it can omit a part and can use, though it is equivalent in price as compared with the conventional mould package in the manufacturing process and resin mould process of the LOC leadframe currently performed conventionally, the package of small and a thin shape can be obtained more.

[0020] since [by the way,] the size of a package is the same as that of a semiconductor chip 1 in the mould field of the package structure shown in drawing 1 -- dispersion in the size of a semiconductor chip 1 -- a mould -- we are anxious about metal mold damaging a part of semiconductor chip 1 such concern performs a setup to which a mould field is expanded a little to a semiconductor chip 1, as shown in drawing 3 -- it is cancelable namely, the size of a leadframe 4 -- a semiconductor chip 1 -- a little -- large -- forming -- the resin dambar 17 of this leadframe 4 formed a little more greatly -- a mould -- when the size of metal mold is doubled and formed, even if dispersion suits the size of a semiconductor chip 1 -- a mould -- since metal mold stops touching end-face 1c of a semiconductor chip 1, it can prevent breakage of a semiconductor chip 1. In addition, the gap G formed between 4d of end faces of a leadframe 4 and end-face 1c of a semiconductor chip 1 is buried by the mould resin 11 by closure by the mould resin 8. Therefore, end-face 1c of a semiconductor chip 1 is protected by the mould resin 11 after a resin seal.

[0021] Moreover, if the package structure shown in drawing 1 and drawing 3 is not enough as fixation in the thickness direction by the side of outer lead 4b on the tape 3 with double-sided adhesives in case the mould of the package is carried out, a mould resin will need to begin to delete a wraparound and a front face thinly to surface 4c of outer lead 4b. This can prevent effectively surroundings **** to outer lead surface 4c of the mould resin 8 by making the tape 13 with double-sided adhesives with thickness equivalent to the tape 3 with double-sided adhesives by the side of an inner lead intervene between the semiconductor chip 1 near the package periphery, and outer lead 4b, as shown in drawing 4. In addition, of course, it is good also as structure which combined drawing 3 and drawing 4.

[0022] Moreover, with the structure of drawing 1, drawing 3, and drawing 4, although silver plating 7 was performed all over surface 4c of outer lead 4b, if it does so, it will be expected that

the silver amount of eyes increases and cost goes up. However, as shown in drawing 2, by making small the field of the silver plating 14 of outer lead 4b, it can decrease and the silver amount of eyes can be made advantageous in cost. In addition, a sign 15 shows the portion which has not performed silver plating.

[0023] Drawing 6 shows the example which carried out sheathing of the solder plating 16 to surface 4c of outer lead 4b. Although it means that the process of carry out [to the front face of outer lead 4b / sheathing of the solder plating] which gives a damage after a mould to a package increases as mentioned already, this invention does not eliminate this.

[0024] In the gestalt of this operation described above, the thickness of 0.3mm and a leadframe of the thickness of the used semiconductor chip is 0.05mm of ***** of 0.15mm and a tape with double-sided adhesives. Moreover, 0.075mm coining was performed to the inner lead. Moreover, although the coining method was used as the technique of reducing the thickness of an inner lead with the gestalt of this operation, you may use the half dirty method. Moreover, although the tape with double-sided adhesives was used as a means to stick a leadframe on a semiconductor chip, it is only good also as adhesives.

[0025]

[Effect of the Invention] Since the level difference was prepared in the lead by reducing the thickness of an inner lead according to this invention and the processing depth beyond lead ** is not needed like the conventional example which prepared the level difference by carrying out down set processing, package thickness can be made thinner. moreover -- since the size of a leadframe was formed a little more greatly than a semiconductor chip -- a mould -- the injury on the semiconductor chip by metal mold can be prevented effectively Furthermore, since it was made to make the adhesives which stick a leadframe on the surface of a semiconductor chip placed also between outer lead sides, the wraparound of the mould resin on the front face of an outer lead can be prevented, and surface shaving **** is not required.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 3]

[Drawing 4]

[Drawing 5]

[Drawing 6]

[Translation done.]