Álgebra Linear

Monitoria de 18 de agosto 134

PAD: Lucas

August 17, 2021

Exercício 1.1 Verifique se (E,\star) tem uma estrutura de grupo abeliano. Em caso negativo, dizer quais propriedades não são satisfeitas.

(a)
$$E = \mathbb{N}_0 = \{0, 1, 2 \cdots\}$$
 $e \ x \star y = x + y$

(b)
$$E = \mathbb{Z}$$
 e $x \star y = x + y - 1$

(c)
$$E = \mathbb{Z}$$
 e $x \star y = x + y + 1$

(d)
$$E = \mathbb{Z}$$
 e $x \star y = 2 \times x + y$

(e)
$$E = \mathbb{Z}$$
 e $x \star y = x \times y$

 $onde \ + \ indica \ a \ operação \ usual \ de \ adição \ e \ \times \ indica \ a \ operação \ usual \ de \ multiplicação.$

Exercício 1.2 Considere o conjunto dos números reais \mathbb{R} munido da operação \star definida por $x\star y=x+y+4$. Mostre que (\mathbb{R},\star) tem uma estrutura de grupo comutativo.

Exercício 1.3 Considere o conjunto dos números reais \mathbb{R} munido da operação \star definida por $x\star y=x+2\times y-4$. Verifique se (\mathbb{R},\star) tem uma estrutura de grupo comutativo. Em caso negativo, dizer quais propriedades não são satisfeitas.

Exercício 1.5 Considere o conjunto dos números reais positivos \mathbb{R}^+ munido da operação \star definida por $x\star y=x+y-6$. Verifique se (\mathbb{R}^+,\star) possui uma estrutura de grupo comutativo.

Exercício 1.7 Verifique se $(\mathbb{M}_n(\mathbb{R}), \star)$ tem uma estrutura de grupo multiplicativo, onde

* é a operação usual de multiplicação de matrizes.

Exercício 1.12 Considere o conjunto $G = \{e, a, b, c\}$. Se (G, \star) tem uma estrutura de grupo, complete a tabela abaixo.

*	е	a	b	С
е	е	a	b	С
a	а			
b	b	С		
С	С	е	a	

 $A \ regra \ de \ operação \ na \ tabela \ \'e \ de \ forma \ que \ o \ elemento \ \ a_{ij} \ = \ a_i \star a_j.$

Exercício 3.2 Mostre que o conjunto de todas as matrizes reais de ordem \underline{n} , que denotamos por $\underline{M}_n(\underline{R})$, com a operação de adição de elementos, $A = [a_{ij}]$ e $B = [b_{ij}]$, definida por: $A + B = [a_{ij} + b_{ij}]$ e a operação de multiplicação por escalar definida por: $\lambda A = [\lambda a_{ij}]$, é um espaço vetorial real.

Resolução (V, +, .) Ser espaço vetorial sobre F significa:

- Assoc. na soma - Existe AVEV Qv + V = v + Qv = v $(\wedge + \omega) + x = \wedge + (\omega + x)$

- Soma comutativa
ath=bta - Elemento inverso soma: tvEV, IV to que V+V=V+V= Qv

Produte por escalar em # E {R, C, Q, ...}

• : # x V -> V precisa comprir:

~ \lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot 6

~ 1 , v = v

 $\sim (\lambda \mu) \cdot \nu = \lambda \cdot (\mu \cdot \nu)$

$$\lambda(\lambda + \mu) \cdot \lambda = \lambda \cdot \lambda + \mu \cdot \lambda$$

Para todos X, M E #, } Multiplica qão

Exercício $\overline{\textbf{3.4}}$ Considere o conjunto $V = \{ x \in \mathbb{R} \mid x > 0 \}$. Definimos as seguintes operações em V:

1.
$$x \oplus y = xy, \ \forall x, y \in V;$$

$$2. \ \alpha \odot x \ = \ x^{\alpha} \, , \ \forall \ x \in V, \ \forall \ \alpha \in I\!\!R.$$

Verifique se
$$(V,\oplus,\odot)$$
 é um espaço vetorial real. \longrightarrow E Sim

$$\theta_{y} = \times$$

$$x \overline{x} = 1$$

$$\overline{X} \otimes X = \theta_V$$

Resolução $\forall x,y,z \in V, (x \oplus (y \oplus z) = (x \oplus y) \oplus z$ = x(yz) = (xy)z $(x \oplus y) = (xy)z$ Distributividade $\mu \in \mathbb{F} = \mathbb{R}, \ \underline{a,b} \in V$ μ⊙ (a θ b) = μ⊙ (ab) = (ab) = ar.br = (ar) ⊕ (br) V = (µ0a) ⊕ (µ0b) =(400) +(40b)

Distributivida de ?
$$(\mu + \lambda) \odot x = x^{(\mu + \lambda)} = x^{\mu} x^{\lambda} = (x^{\mu}) \oplus (x^{\lambda}) = \mu \odot x \oplus \lambda \odot x$$

$$\frac{(h+y)[\odot] \times [=] \times (h+y)}{(h+y)} = \chi_{h} \times_{y} = (\times_{h}) \oplus (\times_{y}) = h \odot \times \oplus y \odot \times$$