Búsqueda con adversario (parte 1)

Julio Godoy DIICC

- Ambiente multiagente
 - Comportamiento de otros agentes muchas veces impredecible
 - Dificultan la toma de decisiones de un agente
 - Asumimos ambientes competitivos
 - Objetivos de los agentes están en conflicto
 - Teoría de juegos
 - Rama de la economía que considera ambientes multiagente como juegos

Ambiente

- Determinista
- Observable
- Decisiones se toman en turnos
- Dos agentes/jugadores
- La utilidad de un estado final es opuesta con la misma magnitud
 - Juego de suma cero/constante o zero sum game

Formulación de Problemas de Búsqueda

- estado inicial
 - tablero, posiciones de piezas
 - ¿de quién es el turno?
- operadores
 - definen los movimientos legales
- test objetivo
 - determina cuándo termina el juego
 - calcula el resultado
 - ganado, perdido, empate
- función de utilidad o resultado
 - valor numérico que mide la ganancia del juego

Juegos para dos Personas

- En juegos con dos jugadores
 - Ilamados MIN y MAX
 - generalmente MAX mueve primero, luego se turnan
- MAX debe encontrar una estrategia para llegar a un estado ganador
 - no importa lo que haga MIN
- MIN hace lo mismo
 - o al menos trata de evitar que MAX gane
- información completa
 - ambos jugadores conocen el estado completo del ambiente

Decisiones Perfectas

- Basadas en una estrategia racional (óptima) para MAX
 - recorren todas las partes relevantes del árbol de búsqueda
 - esto debe incluir posibles movidas de MIN
 - identifican un camino que lleva a MAX a un estado ganador

- A menudo no es muy práctico
 - limitaciones de tiempo y espacio

Estrategia Minimax

- Estrategia óptima para MAX:
- Genera el árbol de juego completo
- calcula el valor de cada estado terminal basado en la función de utilidad
- •calcula la utilidad de los nodos de mayor nivel, partiendo de los nodos hoja hacia la raíz
- •MAX selecciona el nodo con valor más alto
- •MAX supone que MIN en su movida seleccionará el nodo que minimiza el valor

MINIMAX-VALUE(n) =

 $\mathsf{UTILITY}(n)$ $\max_{s \in Successors(n)} MINIMAX-VALUE(s)$ if n is a MAX node $\min_{s \in Successors(n)} MINIMAX-VALUE(s)$ if n is a MIN node.

if n is a terminal state

Algoritmo MiniMax


```
function Minimax-Decision(juego) returns operador
  for each op in Operadores[juego] do
   Valor[op] := Minimax-Valor(Aplica(op, juego), juego)
  end
 return op con el mayor valor[op]
function Minimax-Valor(estado, juego) returns valor de utilidad
  if Test-Objetivo [juego](estado) then
   return Utilidad[juego](estado)
  else if mueve Max then
   return el mayor Minimax-Valor de exitosos(estado)
  else
   return el menor Minimax-Valor de exitosos(estado)
```


Propiedades Minimax

- Basado en búsqueda en profundidad
 - implementación recursiva

• complejidad temporal: $O(b^m)$

- complejidad espacial: O(bm)
 - donde b es el factor de ramificación y m la profundidad máxima del árbol de búsqueda

Nodos terminales: valores calculados a partir de la función de utilidad

Otros nodos: valores calculados vía algoritmo minimax

Movidas por Max y contramovidas por Min

Fin parte 1

Búsqueda con adversario (parte 2)

Julio Godoy DIICC

Poda

- Descarta partes del árbol de búsqueda
 - que garantizadamente no serán buenos movimientos

- Resulta un ahorro substancial tanto en tiempo como en espacio
 - sin embargo, la parte de la tarea que queda puede ser exponencial

Poda Alfa-Beta

- Descarta movimientos que con certeza no tendrán una buena evaluación
 - nodos superiores en el árbol tienen una mejor opción
- Se aplica a movimientos de ambos jugadores
 - $-\alpha$ indica la mejor elección para Max así que nunca disminuirá
 - $-\beta$ indica la mejor elección para Min así que nunca aumentará
- Es una extensión del minimax
 - como resultado entrega el mismo movimiento que minimax, pero menos costoso

Algorítmo Alfa-Beta


```
function Max-Value(estado, juego, alfa, beta) returns el valor minimax de estado
 if Cutoff-Test (estado) then return Eval(estado)
  for each s in Sucesores(estado) do
    alfa := Max (alfa, Min-Value(s, juego, alfa, beta))
   if alfa >= beta then return beta
  end
  return alfa
function Min-Value(estado, juego, alfa, beta) returns el valor minimax de estado
 if Cutoff-Test (estado) then return Eval(estado)
  for each s in Sucesores(estado) do
    beta := Min (beta, Max-Value(s, juego, alfa, beta))
   if beta <= alfa then return alfa
  end
  return beta
```


MINIMAX-VALUE
$$(root) = \max(\min(3, 12, 8), \min(2, x, y), \min(14, 5, 2))$$

$$= \max(3, \min(2, x, y), 2)$$

$$= \max(3, z, 2) \quad \text{where } z \le 2$$

$$= 3.$$

Ejemplo 1 Alfa-Beta

$$\alpha$$
 mejor elección para Max 5 β mejor elección para Min $7 -> 6 -> 5 -> 3$

- Algunas ramas del árbol pueden ser podadas ya que ellas nunca serán consideradas
 - después de examinar una rama, Max ya sabe si ella no le interesará, Min eligiría un valor menor del que Max ya tiene a su disposición

Ejemplo 2 Alfa-Beta

Nodos terminales: valores calculados a partir de la función de utilidad

Ejemplo 2 Alfa-Beta

Ejemplo 2 Alfa-Beta

Propiedades Poda Alfa - Beta

 El orden en que se generan los nodos terminales a evaluar importa

Propiedades Poda Alfa - Beta

- El orden en que se generan los nodos terminales a evaluar importa
- Con ordenamiento 'perfecto':
 - C. Temporal: $O(b^m) \rightarrow O(b^{m/2})!$
 - En ajedrez, $35^{100} \rightarrow 35^{50}$
 - Sin embargo, 35⁵⁰ sigue siendo un número muy grande.

Fin parte 2

Búsqueda con adversario (parte 3)

Julio Godoy DIICC

 La búsqueda completa es impracticable para la mayoría de los juegos

Ajedrez: 35¹⁰⁰ (grafo de búsqueda aprox. 10⁴⁰ nodos)

• Go: 250^{??}

- Alternativa:
 - buscar sólo parte del árbol
 - requiere un test de corte para determinar cuándo parar
 - Usa función de evaluación
 - basada en heurísticas para estimar la utilidad esperada del juego a partir de una posición dada

Función de Evaluación

Determina la eficiencia de un programa de juegos

- debe ser consistente con la función de utilidad
 - los valores para los nodos terminales deben ser los mismos

- compromiso entre precisión y costo en tiempo
 - sin límites de tiempo, puede usarse minimax

debería reflejar las chances reales de ganar

- con frecuencia usa funciones lineales ponderadas $E = w_1 f_1 + w_2 f_2 + ... + w_n f_n$
 - combinación de características, ponderadas de acuerdo a su relevancia

Ejemplo: Juego del gato

Función de evaluación simple

$$E(s) = (fx + cx + dx) - (fo + co + do)$$

donde f,c,d son los números de las filas, columnas y diagonales aún disponibles; x y o son las piezas de los dos jugadores

- 1-jugador lookahead
 - inicia en el tope del árbol
 - evalúa las 9 elecciones para el jugador 1
 - elige el valor máximo de E
- 2-jugadores lookahead
 - también mira posibles movimientos del oponente
 - suponiendo que el oponente elige el mínimo valor para E

Juego del gato 1-Jugador

Juego del Gato 2-Jugadores

Límites de Búsqueda

 La búsqueda debe ser acotada a causa de las limitaciones de tiempo y espacio

- pueden usarse estrategias de búsqueda como profundidad limitada o profundización iterativa
 - no sacan partido del conocimiento sobre el problema

 estrategias más refinadas usan conocimiento de respaldo

El Problema del Horizonte

- Movimientos pueden tener consecuencias desastrozas en el futuro, pero no son visibles
 - los cambios en la evaluación no serán evidentes hasta en niveles más profundos
 - ellos están "detrás del horizonte"
- Qué horizonte usar?
 - problema abierto aún, sin una solución general
 - Sólo aproximaciones pragmáticas restringidas a juegos o situaciones especificas

- Juegos donde hay elementos aleatorios
 - Juegos con dados
 - Buen desempeño: mezcla de habilidad y suerte.

Expectiminimax(n) =

1	UTILITY(n)	if n is a terminal state
J	$\max_{s \in Successors(n)} EXPECTIMINIMAX(s)$	if n is a MAX node
Ì	$\min_{s \in Successors(n)} EXPECTIMINIMAX(s)$	if n is a MIN node
	$\sum_{s \in Successors(n)} P(s) \cdot \text{EXPECTIMINIMAX}(s)$	if n is a chance node

- Elementos aleatorios afectan la complejidad
- Ej: Backgammon
 - b aprox. 20
 - Posibles combinaciones de 2 dados: 21
 - A profundidad 4: 1.2*10⁹ !
 - TD-gammon d=2 + muy buena función de evaluación.
- A mayor profundidad, probabilidad de alcanzar un nodo disminuye
- Podemos utilizar poda alfa-beta?

Estado del arte en juegos

- Damas: Chinook (usando poda alfa-beta) venció al campeón humano en 1994.
 - Desde 2007, Chinook juega a la perfección
 - Además usa base de datos de 37 billones de jugadas finales.
- Ajedrez: Deep Blue (de IBM) venció a campeón humano en 1997
 - Analizaba 30 mil millones de jugadas por cada movimiento, alcanzando profundidad 14.
 - Función de evaluación de +8000 elementos

Estado del arte en juegos

- Backgammon: TD-Gammon, competitivo con mejores jugadores, usa:
 - Aprendizaje por refuerzo
 - Redes neuronales
- Go: AlphaGo venció a campeón humano en 2016. Usa:
 - Búsqueda en árbol basada en método Monte Carlo
 - Aprendizaje profundo

Estado del arte en juegos

• Starcraft?

DOTA?