

EE 046746 - Technion - Computer Vision

Elias Nehme

Tutorial 10 - Camera Calibration and Epipolar Geometry

Agenda

- Camera Model
- Camera Calibration
 - Estimating M
 - Chessboard Demo
 - Homography Quiz
- Epipolar Geometry
 - Essential Matrix
 - Fundamental Matrix
 - Fundamental Demo
- Recommended Videos
- Credits

Camera Model

The (rearranged) pinhole camera

What is the camera matrix **M** for a pinhole camera?

$$p = MP$$

- A 3D world point P is projected by the camera matrix M to the 2D image point p

The (rearranged) pinhole camera

A camera is a mapping from:

the 3D world

to:

a 2D image

What are the dimensions of each variable?

The (rearranged) pinhole camera

$$p = MP$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} m_1 & m_2 & m_3 & m_4 \\ m_5 & m_6 & m_7 & m_8 \\ m_9 & m_{10} & m_{11} & m_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1

camera matrix 3 x 4 homogeneous world coordinates 4 x 1

• What is the decomposed structure of M?

The Camera Matrix

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

ullet M is a 3 imes 4 matrix comprised of two sets of parameters: **Intrinsic** and **Extrinsic**.

The Camera Matrix

$$M = K [R|t]$$

$$\mathbf{M} = \begin{bmatrix} f & 0 & m_{\chi} \\ 0 & f & m_{\chi} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \end{bmatrix}$$
 intrinsic extrinsic parameters parameters

$$\mathbf{R}=\left[egin{array}{ccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] \qquad \mathbf{t}=\left[egin{array}{c} t_1 \ t_2 \ t_3 \end{array}
ight]$$
3D rotation 3D translation

- How many degress of freedom so far?
- And after switching f with f_x and f_y and adding skew s?

Camera Calibration

- ullet Estimation of M
- Separating Extrinsic and Intrinsic Parameters

Given a set of matched points

$$\{P_i, p_i\}$$

point in 3D

point in the image

and camera model

$$p = f(P; m) = M_{\text{projection model}} P$$

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

• Where did we get such matched points?

Estimating M

• Same trick as in the Homogrpahy tutorial \rightarrow switch to row-wise representation of the unknowns:

$$egin{bmatrix} x \ y \ w \end{bmatrix} = egin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \ m_{21} & m_{22} & m_{23} & m_{24} \ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} egin{bmatrix} X \ Y \ Z \ 1 \end{bmatrix}$$

Equivalently

$$egin{bmatrix} x \ y \ w \end{bmatrix} = egin{bmatrix} - & m_1^T & - \ - & m_2^T & - \ - & m_3^T & - \end{bmatrix} P$$

Estimating ${\cal M}$

• Resulting equation for x and y in heterogeneous coordinates:

$$ilde{x}=rac{m_1^TP}{m_3^TP}, ilde{y}=rac{m_2^TP}{m_3^TP}$$

• Rearranging to solve for m_i :

$$m_1^T P - \tilde{x} m_3^T P = 0$$

$$m_2^T P - \tilde{y} m_3^T P = 0$$

• What is the dimension of $m_i^T P$?

• Rearrange into a matrix for N points:

$$\begin{bmatrix} P_i^T & 0^T & -\tilde{x}_i P_i^T \\ 0^T & P_i^T & -\tilde{y}_i P_i^T \\ \vdots & \vdots & \ddots & \vdots \\ P_N^T & 0^T & -\tilde{x}_N P_N^T \\ 0^T & P_N^T & -\tilde{y}_N P_N^T \end{bmatrix} \begin{bmatrix} | \\ m_1 \\ | \\ m_2 \\ | \\ m_3 \\ | \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \leftrightarrow Am = 0$$

• What are the dimensions? How much points N do we need?

Estimating M

• boils down to the problem:

$$\hat{m} = rg \min_{m} \left\|Am
ight\|^2 s. t. \left\|m
ight\|^2 = 1$$

- Solution via SVD of $A = U\Sigma V^T$:
 - \hat{m} is the column of V corresponding to the smallest eigen-value.
- How about separating M to K[R|t]?

Decomposition of M to K, R & t

• rewrite M:

$$M=K\left[R|t\right]=K\left[R|{-}Rc\right]=\left[N|{-}Nc\right]$$

• c can be found via SVD of M due to the relation:

$$Mc = 0$$

- Then N can be found and further decomposed into $N=K\!R$:
 - lacktriangledown How? using QR decomposition because K is upper triangular and R is orthogonal
- However..
 - Does not take into account noise, radial distortions, hard to impose prior knowledge (e.g. f), etc.
 - Solution?

// Minimize reprojection error

Minimizing reprojection error with radial distortion

• Where the radial distortion model is:

$$\lambda = 1 + k_1 r^2 + k_2 r^4 + k_3 r^6$$

Minimize reprojection error

• Radial distortion is multiplicative:

$$x_{rad} = x \left[1 + k_1 r^2 + k_2 r^4 + k_3 r^6
ight]$$

$$y_{rad}=y\left[1+k_1r^2+k_2r^4+k_3r^6
ight]$$

• Usually we also include tangential distortion (additive):

$$x_{tan}=x+\left[2p_{1}xy+p_{2}\left(r^{2}+2x^{2}
ight)
ight]$$

$$y_{tan}=y+\left[p_{1}\left(r^{2}+2y^{2}
ight)+2p_{2}xy
ight]$$

• We end up with 5 parameters to estimate:

$$ext{distortion coefficients} = \left[k_1, k_2, k_3, p_1, p_2
ight]^T$$

Chessboard Calibration in OpenCV

- Take a notebook and paste a chesspattern
- · Capture this pattern from several angles and positions
- Calibrate using OpenCV

Chessboard Calibration in OpenCV

- Getting the 3D to 2D points correspondences from a known planar object
- Chessboard has fixed distances between squares known appriori

- Camera moves \leftrightarrow Extrinsic parameters in each frame change
- Therefore we got the matches of real world points and camera points $\{P_i, p_i\}_{i=1}^N$!
 - $lacksquare P_i = [X_i, Y_i, Z_i = 0]$, where, X_i, Y_i set by periodicity of the chessbaord
 - $lacksquare p_i = [x_i, y_i]$, detected corners in the image

```
In [1]:
         import numpy as np
         import cv2
         import glob
         # termination criteria
         criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
         # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ..., (6,5,0)
         objp = np.zeros((6*7,3), np.float32)
         objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
         # Arrays to store object points and image points from all the images.
         objpoints = [] # 3d point in real world space
         imgpoints = [] # 2d points in image plane.
         images = glob.glob('./assets/left*.jpg')
         for fname in images:
             img = cv2.imread(fname)
             gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
             # Find the chess board corners
             ret, corners = cv2.findChessboardCorners(gray, (7,6), None)
             # If found, add object points, image points (after refining them)
             if ret == True:
                 objpoints.append(objp)
                 corners2 = cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
                 imgpoints.append(corners)
                 # Draw and display the corners
                 imlast = cv2.drawChessboardCorners(img, (7,6), corners2, ret)
                 cv2.imshow('img', img)
                 cv2.waitKey(500)
         cv2.destroyAllWindows()
```

```
In [2]:
# show the last image and the detected corners
import matplotlib.pyplot as plt
plt.figure(figsize=(13,10))
plt.imshow(imlast)
plt.axis('off')
plt.title('Calibration Target Corners', fontsize=30)
plt.show()
```

Calibration Target Corners


```
In [3]:
                               # now that we have object points and and image points, we jsut apply OpenCV builtin function
                               ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
                               # resulting camera matrix
print("M = ")
                               print(repr(mtx))
                               # distortion coeff.
                               print("distortion coeff = ")
                               print(repr(dist))
                               # Rodriguez rotation vectors and translation vectors
                               print("Rotation vector 1 = ")
                               print(rvecs[0])
                               print("Translation vector 1 = ")
                               print(tvecs[0])
                               print("\n . \n . \n")
                               print("Rotation vector N = ")
                               print(rvecs[-1])
                               print("Translation vector N = ")
                               print(tvecs[-1])
                                                   [ 0. , 534.11914595, 232.94565259],
[ 0. , 0. 1
                            array([[534.07088364, 0.
                            ردرد. , ودرون , رودرد. , رودرد. , رودرد. , رودرد. , رودرد , ر
                                                                                                                                                                                            ]])
                            array([[-2.92971637e-01, 1.07706962e-01, 1.31038376e-03, -3.11018780e-05, 4.34798110e-02]])
                            Rotation vector 1 =
                            [[-0.43239599]
                                 [ 0.25603401]
                                [-3.08832021]]
                            Translation vector 1 =
                            [[ 3.79739146]
                                 [ 0.89895018]
```

[14.8593055]]

```
Rotation vector N =
        [[-0.17288944]
         [-0.46764681]
         [ 1.34745198]]
        Translation vector N =
        [[ 1.81888151]
          [-4.2642919]
         [12.45728517]]
In [4]:
         # let us examine the distortion on a given image
         img = cv2.imread('./assets/left12.jpg')
         h, w = img.shape[:2]
         newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
         dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
         # crop the image
         x, y, w, h = roi
         dst = dst[y:y+h, x:x+w]
         # plot the image ebfore and after fixing distortion
         plt.figure(figsize=(18,13))
         plt.subplot(1,2,1)
         plt.imshow(img)
         plt.axis('off')
         plt.title('Distorted', fontsize=30)
         plt.subplot(1,2,2)
         plt.imshow(dst)
         plt.axis('off')
         plt.title('Undistorted', fontsize=30)
         plt.show()
```


Distorted


```
In [5]:
         # checking reprojection errors for validation - ideally we should get ~0
         mean_error = 0
         errs_all = []
         for i in range(len(objpoints)):
             imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
             errs_all.append(np.squeeze(np.sqrt(np.sum((imgpoints[i] - imgpoints2)**2,axis=2))))
         # all reprojection errors in absolute pixel values
         errs_all = np.hstack(errs_all)
         print("Mean error: {:.4f} px".format(errs_all.mean()))
         fig = plt.figure(figsize=(12, 7))
         ax = fig.add_subplot(1, 1,1)
         ax.hist(errs_all, 20)
         ax.set_title("Histogram of Reprojection Errors", fontsize=30)
         ax.set_xlabel('Error in [pixels]', fontsize=30)
         ax.set_ylabel('Counts', fontsize=30)
         ax.grid()
```

Mean error: 0.1387 px

Homography Quiz

Homography Quiz

1. Prove that there exists a homogrpahy ${\cal H}$ that satisfies:

$$p_1 \equiv H p_2$$

between the 2D points (in homogeneous coordinates) p_1 and p_2 in the images of a plane Π captured by two 3×4 camera projection matrices M_1 and M_2 , respectively. The symbol \equiv stands for equality $up \ to \ scale$.

(Note: A degenerate case happens when the plan Π contains both cameras' centers, in which case there are infinite choices of H satisfying the equation. You can ignore this special case in your answer.)

Homography Quiz

• Plane in 3D using homogeneous coordinates is given by:

$$n^T P = 0$$

Where n, P are homogeneous vectors (4 numbers each) and n is the normal to the plane.

• Therefore, we can find a basis of 3 vectors u_1, u_2, u_3 in \mathbb{R}^4 , such that each point on the plane is given by:

$$P = \sum_{i=1}^{3} lpha_i u_i$$

• The projection of 3D point P to the j^{th} image point p_j is given by:

$$p_j = M_j P = \sum_{i=1}^3 lpha_i M_j u_i$$

Homography Quiz

ullet If we denote $v_{\,i}^i=M_ju_i$ we get:

$$p_1 = \sum_{i=1}^3 lpha_i v_1^i$$

$$p_2 = \sum_{i=1}^3 lpha_i v_2^i$$

• Hence, the relation between the two points is a 3×3 matrix satisfying:

$$\begin{bmatrix} \mid & \mid & \mid \\ v_1^1 & v_1^2 & v_1^3 \\ \mid & \mid & \mid \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} \mid & \mid & \mid \\ v_1^1 & v_2^2 & v_2^3 \\ \mid & \mid & \mid \end{bmatrix}$$

Homography Quiz

- Relation to camera calibration:
 - \blacksquare Recall that we have 11 degrees of freedom in M.
 - If all the calibration points are on a plane, we get at most 6 independent equations out of 3 pts.
 - Any 4th point will be a linear combination of the previous 3 on the plane.
 - lacktriangledown Therefore, in estimating M we can't rely on a single image of the chessboard.

Homography Quiz

1. Prove that there exists a homography H that satisfies the equation $p_1=Hp_2$, given two cameras separated by a pure rotation. That is, for camera 1, $p_1=K_1\left[I|0\right]P$, and for camera 2, $p_2=K_2\left[R|0\right]P$. Note that K_1 and K_2 are the 3×3 intrinsic matrices of the cameras and are different. I is 3×3 identity matrix, 0 is a 3×1 zero vector and P is a point in 3D space. R is the 3×3 rotation matrix of the camera.

Homography Quiz

• Since the last column is zero, we can see that:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = R^{-1}K_2^{-1}p_2$$

• Substituting this in the second equation we get:

$$p_1 = K_1 R^{-1} K_2^{-1} p_2$$

• Therefore, the resulting homography is given by:

$$H = K_1 R^{-1} K_2^{-1}$$

Homography Quiz

• Take away is 2 cameras differing only in rotation can't triangulate!

Figure 15.14 Images under pure camera rotation. When the camera rotates but does not translate, the bundle of rays remains the same, but is cut by a different plane. It follows that the two images are related by a homography.

- Image Source Prince.
- Remember where this was useful?
 - Panorama stitching! (There we did not care about recovering depth)

Homography Quiz

1. Suppose that a camera is rotating about its center C, keeping the intrinsic parameters K constant. Let H be the homography that maps the view from one camera orientation to the view at a second orientation. Let θ be the angle of rotation between the two. Show that H^2 is the homography corresponding to a rotation of 2θ .

Homography Quiz

• We have just shown that for such a scenario:

$$H_{2 o 1} = K_1 R_{ heta}^{-1} K_2^{-1}$$

$$H_{1
ightarrow2}=K_2R_ heta K_1^{-1}$$

• Applying the constraint $K_1=K_2\equiv K$ gets us:

$$H_{1 \rightarrow 2} = K R_{\theta} K^{-1}$$

• Applying $H_{1 o 2}$ twice gets us:

$$H_{1 o 2}^2 = K R_{ heta} K^{-1} K R_{ heta} K^{-1} = K R_{ heta} R_{ heta} K^{-1}$$

• Since $R_{ heta}R_{ heta}=R_{2 heta}$, we indeed get:

$$H^2_{1
ightarrow2}=KR_{2 heta}K^{-1}$$

Which is a homography that corresponds to a rotation of 2θ .

Epipolar Geometry

Epipolar Lingo

Epipolar geometry

Essential Matrix

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Essential Matrix vs Homography

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$Ep = l'$$

Essential matrix maps a **point** to a **line**

$$Hp = p'$$

Homography maps a **point** to a **point**

When can we use a homography? And when only an essential matrix?

Homography applies only for planer scenes

The essential matrix

$$(p')^T E p = 0$$

$$E = R[dC_{\times}]$$

Can also show $E = [t_{\times}]R$

with t = -RdC

Essential Matrix Properties

properties of the E matrix

Longuet-Higgins equation

$$p'^T E p = 0$$

Epipolar lines

$$p^T l = 0$$

$$p'^T l' = 0$$

$$l' = Ep$$

$$l = E^T p'$$

Epipoles

$$e'^T E = 0$$
 $Ee = 0$

$$Ee = 0$$

(Since for every p: $e'^T l' = e'^T E p = 0 \implies e'^T E = 0$)

-Fundamental Matrix

$$\widehat{p'}^T E \hat{p} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\widehat{p'} = K'^{-1}p' \qquad \widehat{p} = K^{-1}p$$
camera
point
point

Writing out the epipolar constraint in terms of image coordinates

$$p'^{T}K'^{-T}EK^{-1}p = 0$$

$$p'^{T}(K'^{-T}EK^{-1})p = 0$$

$$p'^{T}Fp = 0$$

Fundamental Geometric Interpretation

Breaking down the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$$

 $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Fundamental Matrix Properties

properties of the matrix

Longuet-Higgins equation

$$p'^T E p = 0$$

Epipolar lines

$$p^T l = 0$$

$$p'^T l' = 0$$

$$l' = E r$$

$$l' = \mathbf{E} \quad p \qquad \qquad l = \mathbf{E}^T p'$$

Epipoles

$$e^{\prime T} E = 0$$
 $E = 0$

$$E = 0$$

undamental Matrix Estimation

• Assume we are given 2D to 2D M matched image points:

$$\left\{p_i, p_i'\right\}_{i=1}^M$$

• Each cosspondence should satisfy:

$$egin{aligned} p_i^T F p_i' &= 0 \leftrightarrow \left[egin{array}{ccc} x_i & y_i & 1 \end{array}
ight]^T egin{bmatrix} f_1 & f_2 & f_3 \ f_4 & f_5 & f_6 \ f_7 & f_8 & f_9 \end{array} egin{bmatrix} x_i' \ y_i' \ 1 \end{array} = 0 \end{aligned}$$

- How to solve?
 - The 8-point algorithm \leftrightarrow arrange into homogeneous linear equations and SVD..

undamental Matrix Estimation

- How much matches needed to solve?
- How much did we need for Homography?

Fundamental Matrix Demo

```
In [6]:
         # start by detecting features and matching them with SIFT
         img1 = cv2.imread('./assets/left.jpg',0) #queryimage # Left image
         img2 = cv2.imread('./assets/right.jpg',0) #trainimage # right image
         sift = cv2.SIFT_create()
         # find the keypoints and descriptors with SIFT
         kp1, des1 = sift.detectAndCompute(img1,None)
         kp2, des2 = sift.detectAndCompute(img2,None)
         # FLANN parameters
         FLANN_INDEX_KDTREE = 1
         index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
         search_params = dict(checks=50)
         flann = cv2.FlannBasedMatcher(index_params, search_params)
         matches = flann.knnMatch(des1,des2,k=2)
         pts1 = []
         pts2 = []
         # ratio test as per Lowe's paper
         for i,(m,n) in enumerate(matches):
             if m.distance < 0.8*n.distance:</pre>
                 pts2.append(kp2[m.trainIdx].pt)
                  pts1.append(kp1[m.queryIdx].pt)
In [7]:
         # estimating the fundamental matrix
         pts1 = np.int32(pts1)
         pts2 = np.int32(pts2)
         F, mask = cv2.findFundamentalMat(pts1,pts2,cv2.FM_LMEDS)
         # We select only inlier points
         pts1 = pts1[mask.ravel()==1]
         pts2 = pts2[mask.ravel()==1]
In [8]:
         # drawing epilines
         def drawlines(img1,img2,lines,pts1,pts2):
               '' img1 - image on which we draw the epilines for the points in img2 lines - corresponding epilines '''
             r,c = img1.shape
             img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2BGR)
             img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2BGR)
             for r,pt1,pt2 in zip(lines,pts1,pts2):
                  color = tuple(np.random.randint(0,255,3).tolist())
                 x0,y0 = map(int, [0, -r[2]/r[1]])
                  x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
                  img1 = cv2.line(img1, (x0,y0), (x1,y1), color,1)
                  img1 = cv2.circle(img1,tuple(pt1),5,color,-1)
                  img2 = cv2.circle(img2,tuple(pt2),5,color,-1)
             return img1,img2
```

```
In [9]: # Find epilines corresponding to points in right image (second image) and
         # drawing its lines on left image
         lines1 = cv2.computeCorrespondEpilines(pts2.reshape(-1,1,2), 2,F)
         lines1 = lines1.reshape(-1,3)
         img5,img6 = drawlines(img1,img2,lines1,pts1,pts2)
         # Find epilines corresponding to points in left image (first image) and
         # drawing its lines on right image
         lines2 = cv2.computeCorrespondEpilines(pts1.reshape(-1,1,2), 1,F)
         lines2 = lines2.reshape(-1,3)
         img3,img4 = drawlines(img2,img1,lines2,pts2,pts1)
         plt.figure(figsize=(20,10))
         plt.subplot(121)
         plt.imshow(img5)
         plt.axis('off')
         plt.title('Left Image', fontsize=30)
         plt.subplot(122)
         plt.imshow(img3)
         plt.axis('off')
         plt.title('Right Image', fontsize=30)
         plt.show()
```


Recommended Videos

Warning!

- These videos do not replace the lectures and tutorials.
- Please use these to get a better understanding of the material, and not as an alternative to the written material.

Video By Subject

- Epipolar and Essential matrix William Hoff
- Fundamental Matrix William Hoff
- The Fundamental Matrix Song Daniel Wedge

Credits

- EE 046746 Spring 2020 Dahlia Urbach
- Slides Elad Osherov (Technion), Simon Lucey (CMU)
- Multiple View Geometry in Computer Vision Hartley and Zisserman Chapter 6
- Least-squares Solution of Homogeneous Equations Center for Machine Perception Tomas Svoboda
- Computer vision: models, learning and inference, Simon J.D. Prince Chapter 15
- Computer Vision: Algorithms and Applications Richard Szeliski Sections 2.1.5, 6.2., 7.1, 7.2, 11.1
- Icons from Icon8.com https://icons8.com