Propositional Logic Lecture1

Hadjila Fethallah
Associate Professor at the
Department of Computer Science
fethallah.hadjila@univ-tlemcen.dz

Introduction

- Mathematical logic
 - A discipline which is interested in studying methods and models of valid reasoning
- It is split into 04 branches:
 - ■Theory of models
 - ■Theory of proof
 - ☐ Set theory
 - □ Computability (recursion thesory)

The birth of Mathematical Logic (ML)

- Paradoxes (19 & 20 centuries)
 - certain formalized mathematical domains contained unsound axioms or even paradoxes.
 - ☐ geometry (initially done by Euclid), set theory (initially done by Cantor),...
- Russell's paradox:let R be the set of all sets that do not belong to themselves;
- a naive question :does R belong to itself or not?
 - If the answer is yes, then, as by definition the members of this set do not belong to themselves, R does not belong to itself → contradiction.
 - ☐ If the answer is no, then it has the property required to belong to itself → contradiction again.
 - \square R={X| X\notin X}, from this definition we will have: R\in R\notin R\notin R
- Postulate of parallelism (geometry)

Berry's paradox

- English version
- "the smallest positive integer not definable in fewer than twelve words"
- Another (more precise) variation: use sixty letters in place of twelve words.

French version

- « Le plus petit <u>entier naturel</u> non descriptible par une expression de quinze mots ou moins. »

ML Pioneers

David Hilbert

1862-1943

1845-1918

1848-1925

1872-1970

1906-1978

1912-1954

The birth of ML

- Are the mathematical foundations consistent (free from errors)?
- Hilbert Program (1900)
- A list of 23 problems to be solved
 - Consistency of arithmetic (properties of natural numbers)
 - □Continuum hypothesis
 - □ Diophantine equations
- Godel's incompleteness theorem (1931)
 - Any sufficiently expressive axiomatic theory (containing a least arithmetic) is incomplete
 - ■We can't even prove the consistency of arithmetic

Definitions

- Proposition (assertion): declarative statement that can be either true or false
- Example:
- The earth is round
- The amphitheater is closed
- Everyone is present
- **■**3+4=8

. . .

Definitions

- The definition excludes imperative, exclamatory, and interrogative statements
- Examples:
 - Close the window!
 - ☐ Is the window closed?
 - What a beautiful window!
 - ☐ He is present
 - ■N is prime
 - □x+y > 10
 - □This expression is false (self-reference)

Definitions

- Predicate: n-ary relation defined on the Cartesian product of a set of domains
- Ex: friend(X,Y), with X,Y \in L2CLASS
 - ☐ friend={(etu1, etu3), (etu2, etu9), (etu3, etu1), (etu9, etu2)...}.
- Note: after replacing free variables with concrete individuals, the predicate becomes a proposition

Logic of propositions

- The proposition calculus goes through the following stages:
 - ■How to write the formulas?
 - Syntactic aspects
 - How to determine the truth value of a formula?
 Semantic aspects
 - How to (automatically) demonstrate new results?
 Deductive aspects

Syntax

- the vocabulary (alphabet) of propositional logic is composed of:
 - \square all connectors: $\{\land,\lor,\Rightarrow,\Leftrightarrow,\neg,(,)\}$
 - □the set of symbols of propositional variables (atomic propositions) denoted as P= { p, q, r, s, ...}.
- To construct a well formed formula (wff) we apply the grammar rules:
- Any formula F∈Prop can be defined as follows:
- F≡p, with p an atomic proposition
- $F \equiv \neg H$, with $H \in Prop$
- $F \equiv H \land I$, or $F \equiv H \lor I$, or $F \equiv H \Leftrightarrow I$.

with H,I∈Prop

Syntax

Examples

- **-**p
- $\blacksquare (q \Rightarrow p) \Leftrightarrow (s \Rightarrow p)$
- $\blacksquare \neg (p \lor (r \land \neg s) \lor t)$
- **п**

Counter examples:

- ■pq V
- $\blacksquare\Rightarrow p$

Syntax

Semantics (model theory)

- The semantics of a propositional formula is its truth value, i.e., 1 or 0
- ■We calculate the meaning using the notion of interpretation
- ■An interpretation I is a function $\delta:P\rightarrow\{0, 1\}$, and can be extended to all propositional formulas:
- lacksquare δ : Prop \longrightarrow $\{0,1\}$
- it assigns a truth value to each atomic proposition; in addition, it represents the semantics of the connectives

Mathematical logic L2

Semantics

Example:

р	q	$\neg \mathbf{p}$	¬ q	p∧q	¬ (p\q)	$(\neg p \lor \neg q)$	F
1	1	1	0	1	0	0	1
0	1	1	0	0	1	1	1
1	0	0	1	0	1	1	1
0	0	0	1	0	1	1	1

Each row of the truth table represents a possible interpretation

The interpretation ensuring a 1 is called a model.

The interpretation ensuring a 0 is called an antimodel

м

Types of propositional formulas

■ Satisfiable (consistent) formula

- \square F is satisfiable iff \exists δ such that: δ (F)=1
- □ In other words, There is at least one row giving1 in the truth table of F

Examples

- \square (s \Rightarrow p)
- $\Box(\neg p \lor (r \land \neg s))$

Types of propositional formulas

- Unsatisfiable formula (antilogy, inconsistent, contradictory)
 - \square F is unsatisfiable iff \forall δ : δ (F)=0
 - ☐ In other words, all rows in the truth table give 0s
- Examples
 - □ (p ∧ ¬p)
 - \Box (¬p \Leftrightarrow p)

Types of propositional formulas

Valid formula (tautology)

- \square F is valid iff $\forall \delta$: $\delta(F)=1$
- □ In other words, all rows in the truth table give1s

Examples

- □ (p∨¬p)
- $\Box(\neg p \Rightarrow \neg s) \Rightarrow (s \Rightarrow p)$

M

Types of propositional formulas

Contingent formula

- □F is contingent iff \exists δ such that: $\delta(F)=1$, and δ' such that: $\delta'(F)=0$
- □ In other words, there is at least one row which gives 1 and another which gives 0, in the truth table of F

examples

- \square (s \Rightarrow p)
- \square (p \vee (r $\wedge \neg$ s))

Formula Classes

Satisfiable wff (hachured area)

re.

Logical (semantic) consequence

- Let A={F1,....Fn} be a set of well-formed formulas 'wff', similarly G is an 'wff'.
- G is a logical consequence of A iff:
 - $\forall \delta$: if δ (F1)=1 and δ (F2)=1...and δ (Fn)=1 Then δ (G)=1
 - □ In other words every model of A is also a model of G
- We note A ⊨G
 - ■Example: $\{s \Rightarrow p, \neg p\} \models \neg s$
 - ■Note: A logical consequence of Ø is a tautology

Logical equivalence

- Let A and G be two well-formed 'wff' formulas, A is logically equivalent to B iff:
 - A |=G and
 - \blacksquare G \models A

Normal forms

- Literal
 - □ It is an atomic proposition or its negation
 - □ Examples: ¬p, q...
- Clause
 - It is a disjunction of literals
 - Examples: (P1∨ ¬P2∨ ¬P3 ∨ ¬ P4), (¬P1∨ ¬P2),...
- **Conjunctive Normal Form**
 - It is a conjunction of disjunction of literals
 - $\square Ex: (\neg P1 \lor \neg P2 \lor \neg P3) \land (P3 \lor \neg P2) \land (P1 \lor \neg P3)$
- Disjunctive Normal Form
 - □ It is a disjunction of conjunction of literals

END