Chapter 11 Ceramic Materials 陶瓷材料

- Ceramic為無機的非金屬材料(inorganic nonmetallic material)於高溫下燒成而得。如: Al₂O₃、MgO、BaTiO₃、TiC、Si₃N₄、C材料等
 - 1.分為traditional ceramic與engineering ceramic (又稱 **fine ceramic** 精密陶瓷**或 advanced ceramic** 高等[科 技] 陶瓷)。

• 2. fine ceramic依其功用分為三類:

Electronic ceramic 電子陶瓷 BaTiO3

Structure ceramic 結構陶瓷 TiC

Biomedical ceramic 生醫陶瓷 Al₂O₃

Simple ceramic crystal structures

• ionic (離子) and covalent bonding (共價鍵) in simple ceramic compound

Ceramic compound	Melting point, °C	Ceramic compound	Melting point, °C
Hafnium carbide, HfC	4150	Boron carbide, B ₄ C	2450
Titanium carbide, TIC	3120	Aluminum oxide, Al ₂ O ₃	2050
Tungsten carbide, WC	2850	Silicon dioxide,* SiO ₂	1715
Magnesium oxide, MgO	2798	Silicon nitride, Si ₃ N ₄	1900
Sillicon carbide, SiC	2500	Titanium dioxide, TiO ₂	1605

• Ceramic之bonding 為ionic& covalent的混合,其比例由化合物原electronegativity (陰電性,電負度)。

• Simple ionic Arrangements found in ionically bonded solids

離子的堆積方式,依

- 1. 離子的相對大小
- 2. 必須維持 electrical neutrality (電中性)

Ceramic compound	Bonding atoms	Electronegativity difference	% lonic character	% Covale characte
Magnesium oxide, MaO	Мд—О	2.3	73	27
Aluminum axide, Al ₂ O ₃	AI—O	2.0	63	37
Silicon dioxide, SiO ₂	si—o	1.7	51	49
Silicon nitride, Sl ₃ N ₄	SIN	1.2	30	70
Silicon carbide, SIC	siC	0.7	11	89

- Size limitations for the dense packing of ions in an ionic solid 緊密堆積的尺寸限制
- 1. 離子的安定堆積如下方式: 安定與否取決於 radius ratio (離子半徑比), $\frac{\gamma_{cation}}{\gamma_{anion}}$
- 2. critical (minimum) radius ratio (臨界最小半徑比) 當anion彼此恰好接觸且同時與中心cation相接時之radius ratio

Disposition abou central	t	Range of cation radius ratio to anion radius	
Corners cube		≥0.732	
7 7 7	月豆		\sim
Corners octahedr 八面	ron	≥0.414	COP)
Corners tetrahedr 四面	ron	≥0.225	9
Corners triangle 三角	e	≥0.155	8

• Ex 10.17 calculate the critical radius ratio r/R for the triangular coordination (CN=3) of three anions of radii R surrounding a central cation of radius r in an ionic solid. 計算在離子固體中圍繞半徑為 r 的中心陽離子的三個半徑為 R 的陰離子的三角配位 (CN=3) 的臨界半徑比 r/R。

Ans:

ABC為正三角形, 平分∠CAB ∴∠DAE=30°

由圖解:

AD=R+r

$$\cos 30^{\circ} = \frac{AE}{AD} = \frac{R}{R+r} = 0.866$$

$$R = 0.866(R+r)$$

$$\therefore \frac{r}{R} = 0.155$$

• Ex10. 27 Predict the coordination number for the ionic solids CsCl and NaCl. Use the following ionic radii for the prediction: Cs+: 0.170 nm, Na+: 0.102nm,Cl+: 0.181nm (預測離子固體 CsCl 和 NaCl 的配位數。使用以下離子半徑進行預測)

Ans:

CsC1:
$$\frac{r(Cs^+)}{R(Cl^{-1})} = \frac{0.170}{0.181} = 0.94$$

0.94 > 0.732 CsCl should show cubic coordination

NaC1:
$$\frac{r(Na+)}{R(Cl-)} = 0.102 / 0.181 = 0.56$$

NaCl should show octahedral coordination

• Cesium chloride (CsCl) Crystal structure 氯化銫

CsCl 半徑比值為0.94, CN=8, 即unit cell内, 8個Cl-1 圍繞於 (1/2,1/2,1/2)的中心Cs+.

Ex10.37 Calculate the ionic packing factor (填充因子) for CsCl. Ionic radii are Cs⁺=0.170nm and Cl⁻¹=0.181nm

Ans:

$$\sqrt{3} \text{ a= 2r+2R = 2(0.170 + 0.181)} \qquad \text{a = 0.405 nm,}$$

$$\text{CsC1 ionic packing factor : —個Cs與—}$$

$$= \frac{\frac{4}{3}\pi r^3 + \frac{4}{3}\pi R^3}{a^3}$$

$$= \frac{\frac{4}{3}\pi (0.17^3 + 0.181^3)}{(0.405)^3}$$

$$= 0.68$$

• <u>Sodium</u> chloride (NaCl) Crystal structure 氯化鈉

NaCl 的結構如右下圖:

 Na^{+} (1/2,0,0) (0,1/2,0) (0,0,1/2) (1/2,1/2,1/2)

 $C1^{-1}$ (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)

Cl⁻: regular FCC 位置

Na+: the interstitial site (插入位置)

between the FCC atom sites

• Ex 10.47 Calculate the density of NaCl, the ionic radii of Na⁺ and Cl⁻¹ ions, and the atomic masses of Na and Cl. The ionic radius of Na⁺=0.102 nm and that of Cl⁻¹=0.181 nm. The atomic mass of Na=22.99 and that of Cl=35.45g/mole.

Ans:

如圖知 1個 unit cell: 4個Na與4個Cl 由圖知 a=2 (r+ R) =2 (0.102 nm + 0.181nm)

 $=5.66 \times 10^{-8}$ cm

The density of NaCl is

• Interstitial site in FCC and HCP Crystal Lattices 插入型格隙

voids:堆積承結晶的原子或離子之間會有空隙

interstitial site: 可以填入於void 的原子或離子在FCC和HCP中有

兩種插入型格隙: Octahedral (八面體) 和 tetrahedral (四面體)

FCC中八面體的插入位

FCC中四面體的插入位

圖10.11 面心立方單位晶胞的挿入型格隊位置。(a)面心立方晶胞的八面體格隊位於晶胞中心和各邊之中點。(b)四面體格隊之座標列於下方,圖上僅顯示具代表性的位置。

(3, 1, 1) (1, 1, 2) (2, 1, 1) (2, 1, 2)

(L1) (L1) (L1) (L1)

• Zinc Blende (ZnS) Crystal structure 閃鋅礦 Zinc blende 的結構式為ZnS, 如圖

S (or Zn): occupies the lattice of FCC sites
Zn (or S): occupies half the tetrahedral interstitial sites of FCC unit

- S atom: (0, 0, 0) (1/2, 1/2, 0) (1/2, 0, 1/2) (0, 1/2, 1/2) Zn atom: (3/4, 1/4, 1/4) (1/4, 1/4, 3/4) (1/4, 3/4, 1/4) (3/4, 3/4, 3/4)
- 4個S 與4個Zn 於單位晶胞内 (4:4 = 1:1 → ZnS) 具Zinc blende 的結構有: CdS, InAs, InSb, ZnSe, 等半導體 化合物

• Ex Calculate the density of ZnS. Assume the structure to consist of ions and that the ionic radius of $Zn^{2+}=0.06$ nm and that of $S^{2-}=0.174$ nm. (計算 ZnS 的密度。假設結構由離子組成, $Zn^{2+}=0.06$ nm, $S^{2-}=0.174$ nm)

Ans: 由圖知

$$\frac{\sqrt{3}}{4}a = r + R \qquad a = \frac{4}{\sqrt{3}}(r + R)$$

$$\frac{\sqrt{3}}{4}a = 0.06 + 0.174 = 0.234 \qquad a = 5.40 \times 10^{-8} cm$$

unit cell 内有4個Zn²⁺ 與4個S²⁻

Mass of unit cell

$$= \frac{4(65.37 + 32.06)}{6.02 \times 10^{23}}$$
$$= 6.47 \times 10^{-22}$$

$$\rho = \frac{w}{v} = \frac{6.47 \times 10^{-22}}{(5.4 \times 10^{-8})^3}$$
$$= 4.12 \frac{g}{cm^3}$$

• Calcium Fluorite (CaF₂) Crystal structure

CaF₂的unit cell 內,Ca²⁺佔據FCC的格子點,F-佔據八個四面 體間隙位置,一個unit cell 內有4個Ca²⁺與8個F-屬此結構者: UO₂, BaF₂, AuAl₂, PbMg₂

• antifluorite crystal structure 反螢石

由O²·佔據FCC的格子點,而Li⁺ (陽離子) 填入FCC的八個四面體格隙 如: Li₂O, Na₂O, K₂O, Mg₂Si等

• Corundum (Al₂O₃) Crystal Structure 剛玉

Al₂O₃的結構,O²-依HCP的排列,而Al³⁺佔有八面體格隙總數的2/3,使維持電中性

• perovskite (CaTiO3) crystal Structure 鈣鈦鑛

Ca²⁺在unit cell的8個頂點, O²⁻在各方面的中心,Ti⁴⁺則於中心處。

BaTiO₃ 在1200°C以上屬之,但1200°C以下略有變化BaTiO₃、PbTiO₃、SrTiO₃、SrZiO₃等屬之。

• Spinel (MgAl₂O₄) Crystal structure 晶尖石

Spinel的通式為AB₂O₄, A: +2, B: +3, 結構中,氧離子組成FCC,而A、B離子分別填入tetrahedral和octahedral 格隙nonmetallic magnetic 非金屬磁性材料。

• Graphite 石墨

graphite 為碳的同素異形體 (polymoph),且被視為ceramic graphite為層狀結構,各層內的碳原子以covalent bonding 結合成六角形排列,而層層面,則以weak secondary bond (指van der waal force) 存在。

奈米碳管 (carbon nanotube, CNT)

石墨烯 (graphene)

• Silicate structure 矽酸鹽

Silicate:由砂與氧原子以不同的排列方式組合而成 basic structural unit of the silicate structure

基本單位為 SO_4^{4-} ,由於 Si^{4+} 體積小,價數高故 SO_4^{4-} 内之鍵結力強。

• Island, chain, and ring structure of silicate island silicate

當陽離子與 SO4-四面體的氫鍵結時,如(Mg.Fe)2SiO4。

chain silicate

每一個 SO_4^- 的任意二個角隅離子與其他四面體的角隅離子相鍵結生成 SiO_3^{2-} 之chain或ring silicate。

• Sheet structure of silicate 平板結構

Silicate的三個角隅離子與其他三個silicate的角隅離子鍵結時, 形成sheet structure。

Silicate Netwoak

所有的 $_{SO_{+}}$ 四面體共用彼此的四個角隅氧原子時,生成一 SiO_{2} Silicate netwoak謂之矽石。