Assignment #3

- 1 (Weight: 30%) Describe an O(n) algorithm that, given a set S of n distinct numbers and a positive integer k<=n, determines the k numbers in S that are closest to the median of S.
- 2 (Weight: 30%) Find an optimal parenthesization of a matrix chain multiplication for the following matrices:

Α	В	С	D	E	
7 X 10	10 X 9	9 X 5	5 X 12	12 X 6	

- 3 (Weight: 40%) Suppose n activities apply for using a common resource. Activity a_i $(1 \le i \le n)$ has a starting time S[i] and a finish time F[i] such that 0 < S[i] < F[i]. Two activities a_i and a_j $(1 \le i, j \le n)$ are compatible if intervals [S[i], F[i]) and [S[j], F[j]) do not overlap. We assume the activities have been sorted such that $S[1] \le S[2] \le ... \le S[n]$.
 - (a) Design an $O(n^2)$ dynamic programming algorithm to find a set of compatible activities such that the total amount of time the resource is used by these compatible activities is maximized. You need to define the sub-problems, establish inductive formula, and show the initial conditions. Pseudo code is not required.
 - (b) Apply your algorithm to the following set of activities

i	1	2	3	4	5	6	7	8	9	10	11
S[i]	2	3	5	6	7	9	10	12	13	14	16
F[i]	6	5	7	10	8	13	16	14	14	18	20