Activité 1. Relier une fonction et sa dérivée

- Durée estimée : 40 min
- **Objectif :** Découvrir le lien entre la variation d'une fonction et le signe de la dérivée, par une approche graphique puis algébrique.

A. Conjecturer avec un logiciel de géométrie dynamique

- **2. a)** La tangente est « montante » si son coefficient directeur est positif, donc la courbe est aussi « montante » en ce point.
- **b)** La tangente est « descendante » si son coefficient directeur est négatif, donc la courbe est aussi « descendante » en ce point.
- **3. a)** $f'(x) \ge 0$ sur $]-\infty:-1]$
- **b)** $f'(x) \le 0 \text{ sur } [-1; 5]$
- c) $f'(x) \ge 0 \text{ sur } [5 : +\infty[$
- **4.** f'(x) = 0 lorsque x = -1 ou x = 5.

5.

X	-∞		- 1		5		+ ∞
f'(x)		+	0	-	0	+	
f	/		42		-66	/	7

6. Lorsque f'(x) est positif sur un intervalle I alors la fonction f est croissante sur I.

Lorsque f'(x) est négatif sur un intervalle I alors la fonction f est décroissante sur I.

B. Étude algébrique du signe de la dérivée

- **1.** $f'(x) = 3x^2 12x 15$
- **2.** f'(x) est de la forme $ax^2 + bx + c$ avec a = 3, b = -12 et c = -15. f'(x) est donc du signe de a sur \mathbb{R} , sauf entre les racines s'il y en a. Le discriminant Δ est égal à 324. f'(x) a donc deux racines $x_1 = -1$ et $x_2 = 5$. On en déduit donc que f'(x) = 0 lorsque x = -1 ou x = 5, et que f'(x) > 0 sur $]-\infty$; $-1[\cup]5$; $+\infty[$, et f'(x) < 0 sur]-1; 5[.
- **3.** Cela correspond bien aux résultats trouvés à la question **A.5**.

Activité 2. Optimisation

- Durée estimée: 40 min
- **Objectif :** Découvrir l'optimisation avec l'aide d'un tableur.

A. Utilisation d'un tableur

- **2.** B2=80/A2
- 3. C2=2*A2+B2
- **4.** $L_2 = 6.3 \text{ m et } L_2 \approx 12.7 \text{ m}.$

B. Modélisation avec une fonction

1. On sait que $L_2 \times L_1 = 80$. Donc $L_2 = \frac{80}{L_1} = \frac{80}{x}$. Or, Bordure = $2 \times L_1 + L_2$.

Donc
$$b(x) = 2x + \frac{80}{x}$$
.

2. *b* est une somme de fonctions dérivables sur]0:20], donc elle est dérivable sur]0:20].

$$b'(x) = 2 - \frac{80}{x^2} = \frac{2x^2 - 80}{x^2}$$

3. Le dénominateur x^2 est strictement positif sur]0; 20]. Donc b'(x) est du signe du numérateur $2x^2 - 80$. Or c'est un trinôme qui a deux racines $x_1 = -2\sqrt{10}$ et $x_2 = 2\sqrt{10}$.

4. $x = 2\sqrt{10}$ correspond à b'(x) = 0.