Indoor Localization

PROJECT WORK IN MACHINE LEARNING — LORENZO MARIO AMOROSA MASTER DEGREE IN ARTIFICIAL INTELLIGENCE — UNIVERSITY OF BOLOGNA

Overview: Main Tasks

- Room and floor classification using machine learning methods on RSSI
- WAPs position inference via trilateration techniques
- WAPs coverage analysis using correlation measures

Dataset: UJIIndoorLoc

- Multi-building and multi-floor dataset (905 rooms within 13 floors)
- > WLAN fingerprint-based infrastructure-less localization
- > 20.000 RSSI recordings within a surface of 108.703 m²

Pre-processing

- Data kept:
 - > The WAPs detected at least once
 - Latitude and longitude, converted from UTM (Universal Transverse Mercator coordinate system)
 - Building, floor, spaceID and relative position to the spaceID

Data Visualization

Overall number of detection for each RSSI intensity in range [-104, 0] dB

- Highly sparse dataset the zero values are the 96.13%
- The 71.22% of non-null detection are in range [-95, -73] dB

Floor and room classification

Floor and room classification

- Room and floor prediction on the basis of WAPs' RSSI using cross validation tuning both accuracy and f1-macro score on:
- Support Vector Machine:
 - kernel:rbf, linear
 - gamma: scale, 1e-3, 1e-4 (for rbf kernel)
 - > C: 10, 100, 1000

- K Nearest Neighbor:
 - n_neighbors: from1 to 10
 - metric:euclidean, manhattan, chebyshev

- Random Forest:
 - max_depth: from5 to 50 by steps of5

Principal Component Analysis (PCA)

Plot of the cumulative explained variance wrt number of components used

Cumulative explained variance wrt number of components used

Highly sparse dataset — the zero values are the 96.13%

- Dimensionality reduction
- The 96.03% of the variance is explained using 125 components out of over 450
- ML models trained also on PCA dataset

Best models: room prediction

Predict Room - Accuracy				
Model	Hyperparameters	PCA	Score	
Random Forest	max_depth: 50	No	0.84	
Support Vector	C: 100, gamma: 0.0001, kernel: rbf	Yes	0.81	

Predict Room - F1 Macro					
Model	Hyperparameters	PCA	Score		
K Nearest Neighbor	metric: manhattan, n_neighbors: 1	No	0.80		
Support Vector	C: 100, gamma: 0.0001, kernel: rbf	Yes	0.79		

Best models: floor prediction

Predict Floor - Accuracy					
Model	Hyperparameters	PCA	Score		
Random Forest	max_depth: 45	No	0.99		
Support Vector	C: 10, gamma: 0.0001, kernel: rbf	Yes	0.99		

Predict Floor - F1 Macro					
Model	Hyperparameters	PCA	Score		
Support Vector	C: 100, gamma: 0.0001, kernel: rbf	No	0.99		
Support Vector	C: 10, gamma: 0.0001, kernel: rbf	Yes	0.99		

Statistical comparison of 2 models

The error of the metrics of the models e can be approximated by a Normal distribution in case the samples are N > 30:

$$e \sim N(\mu, \sigma)$$

$$\sigma^2 = \frac{e \cdot (1 - e)}{N}$$

The difference d between two errors e_1 and e_2 can still be approximated by a Normal distribution:

$$d \sim N(d_t, \sigma_t)$$
 $\sigma_t^2 = \sigma_1^2 + \sigma_2^2 = \frac{e_1 \cdot (1 - e_1)}{N_1} + \frac{e_2 \cdot (1 - e_2)}{N_2}$

Statistical comparison of 2 models

> The mean d_t is obtained with a confidence of 1 - a:

$$d_t = d \pm Z_{\frac{\alpha}{2}} \cdot \sigma_t$$

- If the interval of d_t contains the zero \Longrightarrow the difference between the two models is not statistically significant
- Reduce the confidence 1 a (increase a) \Longrightarrow accept the hypothesis that two models are statistically different, smaller $Z_{\alpha/2}$ and narrower interval for d_t

Statistical comparison of 2 models

The confidence interval includes the zero NO statistical difference

The confidence interval doesn't include the zero statistical difference

Statistical comparison outcome

- Best models differ for: PCA, tuning metric and scope (floor/room prediction)
- The best models are compared with confidence 1 a = 90% and on a test set with cardinality of almost N = 4000
- > Floor prediction: no statistical difference between models for both metrics
- ➤ Room prediction: Random Forest model trained without PCA and tuned by accuracy is statistically better with respect to the accuracy than the other best models tuned for f1-macro and with PCA and it is equivalent to others with respect to the f1-macro score

Random Forest model tuned by accuracy and without PCA preferable in room prediction

WAPs position estimation via trilateration

WAPs position estimation via trilateration

- Compute the coordinates (latitude, longitude) of the WAPs, not provided within the dataset
- Mathematical method: Trilateration solved with optimization technique
- Trilateration aims to reconstruct the position starting from several measured distances between the devices and the WAPs

Trilateration: Mathematical formulation

- > At least 3 devices for unique positioning
- \triangleright WAP P in unknown position (x, y)
- \triangleright Devices L_i in postion (x_i, y_i)

$$(x - x_1)^2 + (y - y_1)^2 = d_1^2$$

$$(x - x_2)^2 + (y - y_2)^2 = d_2^2$$

$$(x - x_3)^2 + (y - y_3)^2 = d_3^2$$

Often NO solution because of the environement

Trilateration: Optimization

Instead of solving the system of equations

- Find point X that betterreplaces P
- ▶ If the distances between X and the devices perfectly match with the respective distances d_i, then X is indeed P
- The more X deviates from these distances, the further it is assumed from P

Trilateration: Optimization

Minimization of error function:

$$e_i = d_i - dist(X, L_i)$$

For all devices:

$$MSE = \frac{\sum [d_i - dist(X, L_i)]^2}{N}$$

Minimized with scipy.optimize.minimize to obtain the estimated position for each WAP

Appendix - From RSSI to distance

- ▶ In the dataset we have RSSI only → need to compute distances
- > Two assumptions needed: WAP calibration power T_x (e.g. -65 dB) and conservation of energy, so signal strength falls off as $1/r^2$ (no refraction, etc.)
- We can get: $d_dB = T_x RSSI$ [dBm] \implies $d_linear = 10^{d_ldB/10}$ [mW], consequently:

$$power = \frac{power_at_1_meter}{r^2} \qquad r = \sqrt{d_linear}$$

Appendix -From RSSI to distance

Received signal strength vs the distance

WAPs coverage analysis

Spearman's correlation

- WAPs reciprocal coverage is analysed through Spearman's correlation
- It assesses how well the relationship between two variables (i.e WAPs' RSSI) can be described using a monotonic function
- \triangleright Correlation $\rho > 0 \implies$ the RSSI Y tends to increase when the RSSI X increases
- \triangleright Correlation $\rho < 0 \implies$ the RSSI Y tends to decrease when the RSSI X increases
- ightharpoonup Correlation $ho = 0 \Rightarrow$ the RSSI Y is not correlated with the RSSI X
- The correlation ρ is associated with a confidence 1 p-value according to which the null hypothesis (i.e. two WAPs are not correlated) can be rejected.

Spearman vs Pearson Correlations

A Spearman correlation of 1 results when the two variables are monotonically related, even if their relationship is not linear

The Spearman correlation is less sensitive than the Pearson correlation to strong outliers

WAPs coverage analysis

- Main idea: if two WAPs (i.e. their RSSI) are correlated then they have a similar coverage
- The Spearman correlation is computed pairwise between all the WAPs
- For each pair of WAPs, only those records where **at least the RSSI of one** WAP is **not null** are taken, to deal with high data sparsity and reduce correlation
- For each WAP, it is **counted** the number of times in which it results positively correlated with another WAP with a confidence of 99%

Thank you for your attention