Université Paul Sabatier

Master Intelligence Artificielle et Reconnaissance des Formes Master Robotique : Décision et Commande

Rapport

Navigation Autonome de Robot Mobile

Auteur:

Thibaut Aghnatios Marine Bouchet Bruno Dato Tristan Klempla Thibault Lagoute Tuteur : Frédéric LERASLE Michaël LAUER Michel TAIX

Suivi du document

Nom du document	Version Majeure	Version Majeure	Date de création	Dernière version
Rapport	A	0	13/03/2017	13/03/2017

Auteurs du document

Rédaction	Intégration	Relecture	Validation Interne
Equipe	??	??	??

Validation du document

Validation	Nom	Date	Visa

Liste de diffusion

Le rapport du projet est diffusé à l'ensemble des clients et des intervenants externes aux projets.

Historiques de révision

Version	Modification apportée		Date
A.0	Création du document	Bruno Dato	13/03/2017

Table des matières

1	Pré	sentation du projet	3
	1.1	Contexte	3
	1.2	Problématiques	Ş
2	Rec	cherche balle	4
3	Nav	vigation avec amers 2D dans un environnement connu	5
	3.1	Solution mise en place	Ę
	3.2	Commande haut niveau	F
	3.3	Détection et localisation	F
		3.3.1 Détection	Ę
		3.3.2 Localisation	Ę
	3.4	Commande	6
		3.4.1 Odométrie	6
4	Cor	nclusion	7

- 1 Présentation du projet
- 1.1 Contexte
- 1.2 Problématiques

2 Recherche balle

3 Navigation avec amers 2D dans un environnement connu

3.1 Solution mise en place

3.2 Commande haut niveau

3.3 Détection et localisation

Avant toute chose, il est important de rappeler que quelque soit la situation :

- $-/map \rightarrow /odom \rightarrow /base_link (cf.http://www.ros.org/reps/rep-0105.html)$
- /odom est le repère relatif, assimilé certain, du robot et est placé au départ sur /map
- chaque frame peut avoir plusieurs fils mais qu'un seul parent
- la transformé entre deux frames est décrite par deux attributs :
 - m_origin : Vector3 de translation
 - m_basis : Matrix3x3 de rotation

3.3.1 Détection

Pour la localisation, nous utilisons la librairie ar_track_alvar qui utilise des marqueurs AR tags. Cette librairie permet de détecter et de suivre ces markers. Elle retourne l'identifiant, la position et l'orientation du marker.

Mise en place physique:

On a utilisé des AR tags de 16×16 cms. On place leur milieu à 31 cm du sol.

Initialisation:

Performance

- tracking
- x ar
- renvoie l'id du marker
- renvoie la position et l'orientation d'un amer dans le repère de la caméra $/camera_rgb_optical_frame$ Dans notre projets

3.3.2 Localisation

localisation_node.cpp:

Ce nœud permet d'envoyer la nouvelle localisation du robot si il détecte un marqueur.

La recherche se déclanche uniquement quand la commande haut niveau publie un <std_msgs : :Empty> sur le topic /nav/HLC/askForMarker.

Dans le cas ou un marqueur est visible :

 $\frac{\rm init}{\rm /map} \to {\rm /odom} \to {\rm /baselink} \to {\rm /camera_rgb_frame} \to {\rm /camera_rgb_optical_frame} = \frac{\rm arriv\acute{e}e\ d'un\ marker}{\rm /camera_rgb_optical_frame} \to {\rm /ar_marker_0}$

traitement

/baselink \rightarrow /camera_rgb_frame \rightarrow /camera_rgb_optical_frame \rightarrow /ar_marker_0 on sait donc /ar_marker_0 \rightarrow /baselink = /marker_0 \rightarrow /baselink sachant /map \rightarrow /marker_0, on sait /map \rightarrow /baselink = /map \rightarrow /odom

Cette transformation est envoyé sur $/new_odom$ que l'on publie avec le publisher $odom_pub$. On publie également l'id du marqueur vu sur /nav/loca/markerSeen sous un <std_msgs : :Int16>. Dans le cas où on ne voit rien on publie : -1

$localisation_broadcaster_node.cpp$:

Ce nœud permet de tout le temps broadcaster la transfom entre /map et /odom. Il souscrit à la <geometry_msgs : :Transform> /new_odom, qui contient la "nouvelle" position certaine du robot. Dès que celle-ci est publiée, /odom actualise sa position et on réinitialise le nav_msgs/Odometry : il devient notre nouveau référentiel.

3.4 Commande

3.4.1 Odométrie

4 Conclusion

Table	des	figures
-------	-----	---------

ANNEXE