Week 4 Assignment - Descriptive Modeling

Name: Kesav Adithya Venkidusamy Course: DSC630 - Predictive Analytics

Instructor: Fadi Alsaleem

You will be using the dataset als_data.csv to apply clustering methods for this assignment. This data gives anonymized data on ALS patients. With this data, complete the following steps:

Importing all the libraries required for this exercise

```
In [26]:
           ## Importing libraries required for this assignment
           import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           import seaborn as sns
           from sklearn.preprocessing import StandardScaler
           from sklearn.cluster import KMeans
           from sklearn import metrics
           from scipy.spatial.distance import cdist
In [13]:
           ## Display all columns in pandas dataframe
           pd.set option('display.max columns', None)
           pd.set option('display.max rows', None)
         Load the Dataset into dataframe
In [14]:
           ## Load the ALS data into a dataframe
           als_df = pd.read_csv('als_data.csv')
           als_df.head(5)
Out[14]:
                Age_mean
                           Albumin_max Albumin_median Albumin_min
                                                                     Albumin_range
                                                                                   ALSFRS_slope ALSFRS
          0
              1
                       65
                                    57.0
                                                    40.5
                                                                 38.0
                                                                            0.066202
                                                                                        -0.965608
              2
                       48
                                   45.0
                                                    41.0
                                                                 39.0
                                                                            0.010453
                                                                                        -0.921717
          2
              3
                       38
                                    50.0
                                                    47.0
                                                                 45.0
                                                                            0.008929
                                                                                        -0.914787
                                    47.0
                                                    44.0
                                                                 41.0
                                                                            0.012111
                                                                                        -0.598361
          3
                       63
              5
                       63
                                    47.0
                                                    45.5
                                                                 42.0
                                                                            0.008292
                                                                                        -0.444039
In [15]:
           ## Printing number of rows and columns of als dataframe
           als df.shape
Out[15]: (2223, 101)
In [16]:
           ## Printing the dtype for each of the column
           als df.dtypes
```

Out[16]:	ID	int64
	Age_mean	int64
	Albumin_max	float64
	Albumin_median	float64
	Albumin_min	float64
	Albumin_range	float64 float64
	ALSFRS_slope ALSFRS_Total_max	int64
	ALSFRS_Total_median	float64
	ALSFRS_Total_min	int64
	ALSFRS_Total_range	float64
	ALT.SGPTmax	float64
	ALT.SGPTmedian	float64
	ALT.SGPTmin	float64
	ALT.SGPTrange	float64
	AST.SGOTmax	int64
	AST.SGOTmedian	float64
	AST.SGOTmin	float64
	AST.SGOTrange	float64
	Bicarbonate_max	float64
	Bicarbonate_median Bicarbonate min	float64 float64
	Bicarbonate_min	float64
	Blood.Urea.NitrogenBUNmax	float64
	Blood.Urea.NitrogenBUNmedian	float64
	Blood.Urea.NitrogenBUNmin	float64
	Blood.Urea.NitrogenBUNrange	float64
	<pre>bp_diastolic_max</pre>	int64
	<pre>bp_diastolic_median</pre>	float64
	<pre>bp_diastolic_min</pre>	int64
	bp_diastolic_range	float64
	bp_systolic_max	int64
	bp_systolic_median	float64
	bp_systolic_min	int64
	<pre>bp_systolic_range Calcium_may</pre>	float64
	Calcium_max Calcium_median	float64 float64
	Calcium min	float64
	Calcium_range	float64
	Chloride_max	float64
	Chloride median	float64
		float64
	Chloride_range	float64
	Creatinine_max	float64
	Creatinine_median	float64
	Creatinine_min	float64
	Creatinine_range	float64
	Gender_mean	int64
	Glucose_max	float64 float64
	Glucose_median Glucose_min	float64
	Glucose_range	float64
	hands max	int64
	hands_median	float64
	hands_min	int64
	hands_range	float64
	Hematocrit_max	float64
	Hematocrit_median	float64
	Hematocrit_min	float64
	Hematocrit_range	float64
	Hemoglobin_max	float64
	Hemoglobin_median	float64
	Hemoglobin_min	float64

	NesavAditiya_velikida
Hemoglobin_range	float64
leg_max	int64
leg_median	float64
leg_min	int64
leg_range	float64
mouth_max	int64
mouth_median	float64
mouth_min	int64
mouth_range	float64
onset_delta_mean	int64
onset_site_mean	int64
Platelets_max	int64
Platelets_median	float64
Platelets_min	float64
Potassium_max	float64
Potassium_median	float64
Potassium_min	float64
Potassium_range	float64
pulse_max	int64
pulse_median	float64
pulse_min	int64
pulse_range	float64
respiratory_max	int64
respiratory_median	float64
respiratory_min	int64
respiratory_range	float64
Sodium_max	float64
Sodium_median	float64
Sodium_min	float64
Sodium_range	float64
SubjectID	int64
trunk_max	int64
trunk_median	float64
trunk_min	int64
trunk_range	float64
Urine.Ph_max	float64
Urine.Ph_median	float64
Urine.Ph_min	float64
dtype: object	

In [17]:

Looking at summary information about your data (total, mean, min, max, freq, unique,
als_df.describe()

Out[17]:

•		ID	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_range	ALSFRS
	count	2223.000000	2223.000000	2223.000000	2223.000000	2223.000000	2223.000000	2223.
	mean	1214.874944	54.550157	47.011134	43.952542	40.766347	0.013779	-0.
	std	696.678300	11.396546	3.233980	2.654804	3.193087	0.009567	0.
	min	1.000000	18.000000	37.000000	34.500000	24.000000	0.000000	-4.
	25%	614.500000	47.000000	45.000000	42.000000	39.000000	0.009042	-1.
	50%	1213.000000	55.000000	47.000000	44.000000	41.000000	0.012111	-0.
	75%	1815.500000	63.000000	49.000000	46.000000	43.000000	0.015873	-0.
	max	2424.000000	81.000000	70.300000	51.100000	49.000000	0.243902	1.
	4							+

1. Remove any data that is not relevant to the patient's ALS condition.

On analyzing all the features present in the data set, I see SubjectID and ID features are irrelavent to patient's ALS condition. So, these variables can be removed from the dataset.

```
In [18]:
           # Removing Patients ID and SubjectID fields from the dataset
           als df.drop(["SubjectID", "ID"], axis=1, inplace=True)
In [19]:
           ## Validating the dataset after removing the columns
           als df.shape
Out[19]: (2223, 99)
In [20]:
           ## Displaying few records in the dataframe
           als_df.head()
                       Albumin_max Albumin_median Albumin_min
                                                                                 ALSFRS_slope ALSFRS_Tot
Out[20]:
             Age_mean
                                                                  Albumin_range
          0
                    65
                                57.0
                                                40.5
                                                             38.0
                                                                        0.066202
                                                                                     -0.965608
                                                             39.0
          1
                    48
                                45.0
                                                41.0
                                                                        0.010453
                                                                                     -0.921717
          2
                                50.0
                                                47.0
                                                             45.0
                    38
                                                                        0.008929
                                                                                     -0.914787
          3
                    63
                                47.0
                                                44.0
                                                             41.0
                                                                        0.012111
                                                                                     -0.598361
                                47.0
                                                45.5
                                                             42.0
                                                                        0.008292
                                                                                     -0.444039
          4
                    63
         2. Apply a standard scalar to the data.
In [22]:
           ## Define standard scaler
           scaler = StandardScaler()
           ## Transform data
           X = scaler.fit transform(als df)
           print(X)
          [[ 0.91713698     3.08941722 -1.30078105     ... -0.88037551     0.46305355
             1.86853157]
           [-0.57487867 -0.62201561 -1.11240084 ... 0.1926645 -1.13720768
            -0.41915124]
           [-1.45253494 0.92441474 1.14816173 ... -0.88037551 -1.13720768
            -0.41915124]
           [-0.6626443 -0.31272954 0.01788044 ... 2.33874452 0.46305355
            -0.41915124]
                                      0.01788044 ... -0.88037551 -1.13720768
           [-1.54030057 0.61512867
            -0.41915124]
           [-0.57487867 0.3058426
                                       0.39464087 ... -1.95341552 -1.13720768
            -0.41915124]]
In [23]:
           ## Calculating the shape of dataframe
           X. shape
Out[23]: (2223, 99)
```

```
In [25]: ## Calculating the mean and standard deviation of the dataset
    np.mean(X),np.std(X)
```

Out[25]: (-8.908541299845311e-17, 1.0)

Observation:

- 1. The mean value is close to zero as expected as the mean value should be close to 0 after applying StandardScalar
- 2. The Standard deviation is 1 which is also as expected

```
In [27]:
          ## Reference: https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmea
          ## Building the clustering model and calculating the values of the Distortion and Inert
          distortions = []
          inertias = []
          mapping1 = {}
          mapping2 = {}
          K = range(1, 10)
          for k in K:
              # Building and fitting the model
              kmeanModel = KMeans(n_clusters=k).fit(X)
              kmeanModel.fit(X)
              distortions.append(sum(np.min(cdist(X, kmeanModel.cluster_centers_,'euclidean'), ax
              inertias.append(kmeanModel.inertia_)
              mapping1[k] = sum(np.min(cdist(X, kmeanModel.cluster centers ,'euclidean'), axis=1)
              mapping2[k] = kmeanModel.inertia
In [28]:
          ## Tabulating and Visualizing the results
          ## Using the different values of Distortion
          for key, val in mapping1.items():
              print(f'{key} : {val}')
         1: 9.466971249370545
         2: 9.063781809801627
         3: 8.890733728366843
         4 : 8.734143328933625
         5 : 8.621578780871832
         6: 8.557595851395476
         7 : 8.47019365921882
         8: 8.392994844892927
         9: 8.357677447737448
In [31]:
          # Plot Elbow method to find K
          plt.plot(K, distortions, 'bx-')
          plt.xlabel('Values of K')
          plt.ylabel('Distortion')
          plt.title('The Elbow Method using Distortion')
          plt.show()
```



```
In [32]: # Plot Elbow method to find K
  plt.plot(K, inertias, 'bx-')
  plt.xlabel('Values of K')
  plt.ylabel('Intertia')
  plt.title('The Elbow Method using Intertias')
  plt.show()
```


3. Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster.

```
In [38]: ## Importing the libraries required for silhousette
    from sklearn.datasets import make_blobs
    from sklearn.metrics import silhouette_samples, silhouette_score
    import matplotlib.cm as cm
    import matplotlib.style as style
In [39]: ## Plotting the cluster silhouette score versus the number of clusters in a K-means clu
    range_n_clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10]
```

silhouette_avg_n_clusters = []

```
for n clusters in range n clusters:
   # Create a subplot with 1 row and 2 columns
   fig, (ax1, ax2) = plt.subplots(1, 2)
   fig.set_size_inches(18, 7)
   # The 1st subplot is the silhouette plot
   # The silhouette coefficient can range from -1, 1 but in this example all
   # lie within [-0.1, 1]
   ax1.set_xlim([-0.1, 1])
   # The (n clusters+1)*10 is for inserting blank space between silhouette
   # plots of individual clusters, to demarcate them clearly.
   ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
   # Initialize the clusterer with n clusters value and a random generator
   # seed of 10 for reproducibility.
   clusterer = KMeans(n clusters=n clusters, random state=42)
   cluster_labels = clusterer.fit_predict(X)
   # The silhouette_score gives the average value for all the samples.
   # This gives a perspective into the density and separation of the formed
   # clusters
   silhouette_avg = silhouette_score(X, cluster_labels)
   print("For n_clusters =", n_clusters,
          "The average silhouette score is :", silhouette avg)
   silhouette_avg_n_clusters.append(silhouette_avg)
   # Compute the silhouette scores for each sample
   sample silhouette values = silhouette samples(X, cluster labels)
   y lower = 10
   for i in range(n_clusters):
       # Aggregate the silhouette scores for samples belonging to
       # cluster i, and sort them
       ith cluster silhouette values = \
            sample silhouette values[cluster labels == i]
       ith cluster silhouette values.sort()
        size_cluster_i = ith_cluster_silhouette_values.shape[0]
       y_upper = y_lower + size_cluster_i
        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill betweenx(np.arange(y lower, y upper),
                          0, ith_cluster_silhouette_values,
                          facecolor=color, edgecolor=color, alpha=0.7)
        # Label the silhouette plots with their cluster numbers at the middle
        ax1.text(-0.05, y lower + 0.5 * size cluster i, str(i))
       # Compute the new y lower for next plot
       y lower = y upper + 10 # 10 for the 0 samples
   ax1.set title("The silhouette plot for the various clusters.")
   ax1.set_xlabel("The silhouette coefficient values")
   ax1.set ylabel("Cluster label")
   # The vertical line for average silhouette score of all the values
   ax1.axvline(x=silhouette avg, color="red", linestyle="--")
```

```
ax1.set_yticks([]) # Clear the yaxis labels / ticks
    ax1.set xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
    # 2nd Plot showing the actual clusters formed
    colors = cm.nipy spectral(cluster labels.astype(float) / n clusters)
    ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
                c=colors, edgecolor='k')
    # Labeling the clusters
    centers = clusterer.cluster centers
    # Draw white circles at cluster centers
    ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                c="white", alpha=1, s=200, edgecolor='k')
    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                    s=50, edgecolor='k')
    ax2.set title("The visualization of the clustered data.")
    ax2.set xlabel("Feature space for the 1st feature")
    ax2.set ylabel("Feature space for the 2nd feature")
    plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
                  "with n clusters = %d" % n clusters),
                 fontsize=14, fontweight='bold')
plt.show()
style.use("fivethirtyeight")
plt.plot(range n clusters, silhouette avg n clusters)
plt.xlabel("Number of Clusters (k)")
plt.ylabel("silhouette score")
plt.show()
```

```
For n_clusters = 2 The average silhouette_score is : 0.07878005888570402
For n_clusters = 3 The average silhouette_score is : 0.0687707291658565
For n_clusters = 4 The average silhouette_score is : 0.06973816142698218
For n_clusters = 5 The average silhouette_score is : 0.05697679932842005
For n_clusters = 6 The average silhouette_score is : 0.06477886829610223
For n_clusters = 7 The average silhouette_score is : 0.05187647631845004
For n_clusters = 8 The average silhouette_score is : 0.04954004349267961
For n_clusters = 9 The average silhouette_score is : 0.04393719582297171
For n clusters = 10 The average silhouette score is : 0.046121611845315456
```

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

Silhouette analysis for KMeans clustering on sample data with n_clusters = 7

Silhouette analysis for KMeans clustering on sample data with n_clusters = 8

Silhouette analysis for KMeans clustering on sample data with n_clusters = 9

Silhouette analysis for KMeans clustering on sample data with n_c lusters = 10

4. Use the plot created in (3) to choose an optimal number of clusters for K-means. Justify your choice.

Observation

- 1. None of the silhouettes have clusters that are below-average silhouette scores, so none of the cluster values can be considered bad picks for the given dataset.
- 2. However, plotting the average silhouette scores for each k shows that the best choice for k is 2 since it has the maximum score (0.07878005888570402). This can also be validated in the Elbow method plot above.
- 5. Fit a K-means model to the data with the optimal number of clusters chosen in part (4).

```
In [40]:
          ## Using the cluster value as 2
          kmeans = KMeans(init="random",n_clusters=2, n_init=10, max_iter=300, random_state=42)
In [41]:
          ## Fit the model to the data with cluster value as 2
          kmeans.fit(X)
Out[41]: KMeans(init='random', n_clusters=2, random_state=42)
         6. Fit a PCA transformation with two features to the scaled data.
In [43]:
          ## Import PCA library
          from sklearn.decomposition import PCA
In [44]:
          ## Reference 1: https://365datascience.com/tutorials/python-tutorials/pca-k-means/
          ## Reference 2: https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e
          ## Initialize PCA for 2 features
          pca als = PCA(n components=2)
          pca_als.fit(X)
         PCA(n_components=2)
Out[44]:
In [45]:
```

```
# Transform PCA
          pca als.transform(X)
Out[45]: array([[-1.4267157 , -2.31976744],
                 [-1.44023996, -4.87137188],
                 [1.6178652, -0.42935149],
                 . . . ,
                 [-0.43290564, 4.2452173],
                 [-0.330793 , 3.31718127],
                 [ 1.46800221, 0.58155086]])
In [49]:
          # Creating a variable called score to store transformed PCA
          score_pca_als = pca_als.transform(X)
In [51]:
          # Create a new dataframe with the original features and add the PCA scores and assigned
          df_segm_pca_kmeans = pd.concat([als_df.reset_index(drop=True), pd.DataFrame(score_pca_al)
          df_segm_pca_kmeans.columns.values[-2: ] = ['PCA_1', 'PCA_2']
In [52]:
          # The last column we addd contains the pca k-means clustering labels
          df segm pca kmeans['Segment K-means PCA'] = kmeans.labels
In [56]:
          # Add the names of the segments to the labels
          df_segm_pca_kmeans['Segment'] = df_segm_pca_kmeans['Segment K-means PCA'].map({0:'first
In [57]:
          ## Show few records from the dataframe
          df segm pca kmeans.head()
Out[57]:
            Age_mean Albumin_max Albumin_median Albumin_min Albumin_range ALSFRS_slope ALSFRS_Tot
```

0	65	57.0	40.5	38.0	0.066202	-0.965608	
1	48	45.0	41.0	39.0	0.010453	-0.921717	
2	38	50.0	47.0	45.0	0.008929	-0.914787	
3	63	47.0	44.0	41.0	0.012111	-0.598361	
4	63	47.0	45.5	42.0	0.008292	-0.444039	

7. Make a scatterplot of the PCA transformed data coloring each point by its cluster value.

```
In [58]:
          # Plot scatterplot of PCA transformed data coloring each point by its cluster value
          x axis = df segm pca kmeans['PCA 2']
          y_axis = df_segm_pca_kmeans['PCA_1']
          plt.figure(figsize =(10,8))
          sns.scatterplot(x_axis,y_axis, hue=df_segm_pca_kmeans['Segment'], palette = ['g', 'r'])
          plt.title('Clusters by PCA Components')
          plt.show()
```

C:\Users\KesavAdithya\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarni

ng: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.


```
In [61]:
## Calculating Eigen values for each components
print('Eigenvalues: {}'.format(pca_als.explained_variance_))
print('Explained Variance Ratio: {}'.format(pca_als.explained_variance_ratio_))
```

Eigenvalues: [11.22229079 6.38502006] Explained Variance Ratio: [0.11330548 0.06446614]

8. Summarize your results and make a conclusion.

- 1. By plotting the results of K-means algorithm with PCA, we see all the cluster clusters are jumbled all together. However, when we employ PCA prior to using K-means we can visually separate almost the entire data set. That was one of the biggest goals of PCA to reduce the number of variables by combining them into bigger, more meaningful features.
- 2. There is some overlap between the red and green segments. But, as a whole, both the segments are clearly separated.
- 3. Here we can see, the first component explained 11.33% variance and the second component explained 6.4% variance
- 4. Looking at Eigenvalues, we see Pricipal Compenent 1 is \sim 64% (11.22/17.7) and PC2 is about \sim 36% (6.3/17.6). This means that the Y axis accounts for \sim 64% of the variation in the dataset, and X axis accounts for the remaining \sim 36%.

In []: