

Under the supervision of Asst.prof.Ramkaji Budhathoki

Prabin Giri(011-452) Roshan Basnet(011-461)

Topic included

- Motivational Factors
- References of our articles
- Objective
- Application
- System overall block diagram
- > Task done
 - Obstacles detection
 - Accident detection
 - Locating and reporting
 - > AT commands
 - > Panic switch implementation
 - Integration
- Future extension
- Conclusion

Motivational factors

- ➤ With the development of technology and the living standard of people, the road accident is the main concern of today's world.
- With reference to the data collected from traffic police & Av news TV, around 25782 road accident takes place every 3 years time.
- > 5440 people died on the spot, 11520 people are badly injured, and 23690 people are simply injured.
- This project basically focuses to convey the authentic information about accidents.
- Rescue of fatalities as soon as possible.
- People sometimes may need help while travelling in case of minor accident.

Reference article of our project:

- In May 2014 a research paper named "microcontroller based collision detecting & warning system" was published in International Journal of Advanced Research for Electrical, Electronics & Instrumentation Engineering.
- In Jan. 6, 2014 a research based on "automatic accident alert & safety system" was published in International Journal of Computer Application.
- Suzuki & Tata-motors have implemented some portion of avoiding accidents in their new models.
- "A fully integrated accident management in vehicular system using smart phones" was published by department of computer engineering of Abdullah Gul University, Bahcesehir University jointly
- In 2013-14 another research paper named "Accident detection and Alert systems for immediate emergency services", was published in International Journal of Science and Research (IJSR).
- In November and December 2013 another paper entitled "Prevention of train Accidents using wireless sensor network" by department of Electronics and Communication Engineering of Gudlavalleru Engineering College, Gudlavalleru, A.P India

Objective

- To design and develop the automatic system for the pre-alert and post accident detection system..
- To design a panic switch.
- To track the geographical location of vehicles through GPS and relay the information through GSM module.

Application

- The system can be used in security of vehicle.
- The system can be used for crash detection.
- This system can be used to locate the vehicle using GPS.
- The system can be used for the immediate rescue of the victims.
- Can be implemented in the health department

Works Completed

- Ultrasonic's sensor data parsing and obstacles detection.
- Accelerometer data parsing.
- GPS data extracting and analyzing.
- > Uploading & relaying the message of accident and it GPS coordinates in cell phone.
- Panic switch implementation
- integration

Block diagram of task that have been done(Pre Part):

Ultrasonic Sensor(HC-SR04)

- The HCSR04 takes DC input 5V and operates on 15mA current.
- > the working frequency is 40kHz and the maximum range is 4m whereas the minimum range is 2cm whereas the measuring angle is 15 degrees.
- Using IO trigger for at least 10μs high level signal.
- > The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.
- ➤ If the signal is back, through high level, time of high output IO duration is the time from sending ultrasonic to return.
- > Test distance = (high level time* velocity of sound (340M/S) / 2

Block diagram of task that have been done (post part-Detecting)

ADXL345

- During the communication between the accelerometer and the arduino, We had connected the following pins.
- Vcc -3.3 v
- GND-GND
- Chip select(CS)-3.3v
- SCL- analog pin 5
- SDA-analog pin 4
- SD0 open
- Two pull down resistor are used from SDA and SCL pins for the power control purpose of accelerometer.
- The output of the accelerometer was obtained in the serial monitor and the values were analyzed and thus the threshold was maintained.

working

- Data extracted
- Pass them in low pass filter

$$rollangle = arctan \frac{-G_x}{Gz}$$
 (1)

$$pitchangle = arctan \frac{g_y}{\sqrt{g_x^2 + g_z^2}}$$

Where G_x = acceleration in x direction

 G_x = acceleration in y direction

 G_x = acceleration in z direction

Accelerometer data plotting

GSM Interfacing(reporting part)

GSM(SIM900A)

- A GSM modem is used in the data acquisition section of the project for transmitting the measured GPS data to the central server or the logging section via SMS.
- we use the SIM900 module which supports communication in 900 MHz band
- There are two types of interfacing available in SIM900 which are TTL and RS232 respectively among which we preferred the TTL mode.
- baud rate of SIM900 is 9600bits per seconds.
- The modem is given the appropriate AT commands by the microcontroller to which it is interfaced through a serial port.

AT Commands

- > AT+CPIN=to check sim
- > AT+CMGF=1 +carriage return
- > AT+CMGS=" mobile number" carriage return
- > Once The AT commands is given'>' prompt will be displayed on the screen.
- > Type the message to send via SMS. After this, press "ctrl+Z" to send the SMS.
- ➤ If the SMS sending is successful, "ok" will be displayed along with the message number

GPS Interfacing(locating part)

GPS (U-blox)

- > The TX pin of GPS is connected to Rx of microcontroller and vice versa.
- > After GPS extracts the geographical location through satellites, it transmits the data to the microcontroller.

Message in twitter

Call and Text Though GSM

Panic switch

integration and power requirement

Integration was done in breadboard.

Power was managed by using external adapter.

In real field

Future extension

- This system can be extended by using the ARM processor instead of Arduino for the fast and efficient operation.
- > Image processing for perfect Scenario of accident.
- > Automatic de-acceleration system can be implemented.
- The system can be designed which automatically shutoff the engine in case of accidents.
- > Auto-map generation by developing android application.

Conclusion

- > Up to this end of final year project, we have integrated the whole system.
- ➤ This system basically shows the embedded system design & its effective use in accident cases.

References

- M. C. P. Ms.Kajal Nandaniya, "microcontroller based accident detecting and warning system," international journal of advanced research for electrical, electronics and instrumentation engineering, vol. 3, no. 5, pp. 9565-9570, may 2014.
- M. C. P. P. Ms.Kajal Nandaniya, "automatic accident alert and safety system," *international journal of computer application*, vol. 85, pp. 26-30, jan.6 2014.
- B. G. O. o. k. G. Sergi kaya, "a fully integrated accident management system in vehicular system using smartphone," pp. 1-5.

THANKYOU EVERYONE....