Inteligencia artificial

Alejandro López Gómez

Emilio Macías Do Santos

Cristina Del Pilar Mallaupoma Cáceres

3° del GIC

Cargar los datos y librerías:

Explicación división de la muestra:

Se ha realizado la división de los datos de la siguiente forma:

- 80% datos de entrenamiento.
- 20% datos de prueba.

Falsos Negativos en problemas de clasificación:

¿Cómo se calculan los Falsos Negativos?

Utilizando el modelo anterior y habiendo dividido los datos de entrenamiento y prueba en trozos de 5 elementos:

- 1. Ajustamos el modelo con los datos de entrenamiento.
- 2. Realizamos una predicción de los datos utilizando una aproximación.
- 3. Creamos una matriz de confusión con la predicción del modelo y los datos de prueba.
- 4. Obtenemos la media de la puntuación obtenida.

Explicación del modelo K-nn:

- 1. Nos creamos el modelo Knn.
- 2. Lo entrenamos con los datos de prueba.
- 3. Calculamos los Falsos Negativos y la puntuación obtenida de la validación cruzada.

Representación del modelo Knn:

Explicación del modelo lineal:

- I. Nos creamos el modelo lineal.
- 2. Adaptamos el conjunto de entrenamiento.
- 3. Ajustamos el modelo con los datos anteriores.
- 4. Calculamos el AIC (Criterio de Información de Akaike) y los Falsos Negativos.

Representación del modelo lineal:

```
El mejor valor de AIC es: 6.416903
El mejor numero de parametros es: 1 , los cuales son [-0.10023176]
El mejor valor de FN es: 0.342857
El mejor numero de parametros es: 2 , los cuales son [-0.09195942 -0.02254531]
                    Valores de AIC:
                                                                         Pendiente del modelo
                                                                                                                               Media de FN frente a
 20
                                                       2.0
                                                                                                             0.44
 18
                                                                                                             0.42
                                                       1.5
 16
 14
                                                                                                             0.40
                                                       1.0
 12
                                                                                                             0.38
 10
                                                       0.5
                                                                                                             0.36
                                                       0.0
                                                                                                             0.34
```

Explicación del modelo de árboles de decisión:

- 1. Nos creamos el modelo de árboles de decisión.
- 2. Entrenamos el modelo.
- 3. Obtenemos una predicción de los datos.
- 4. Calculamos los Falsos Negativos.
- 5. Calculamos su precisión utilizando la media de la validación cruzada de los datos obtenidos.

Representación del modelo de árboles de decisión:

Explicación del modelo RNA Multicapa (Parte 1):

- 1. Nos creamos el modelo RNA Multicapa.
- 2. Entrenamos los modelos utilizando datos de entrenamiento estandarizados.
- 3. Obtenemos la puntuación del modelo utilizando los datos de prueba.
- 4. Obtenemos la precisión del modelo utilizando la validación cruzada de los datos de entrenamiento.

Explicación del modelo RNA Multicapa (Parte 2):

¿Por qué estandarizamos/escalamos los datos?

- Se realiza el escalado de los datos debido a que aumenta la precisión del modelo.
- El escalado se realiza con los datos de entrenamiento y prueba de X.

Representación del modelo RNA Multicapa:

Comparación de modelos (Parte 1):

Exactitud de los modelos:

Exactitud:

Exactitud knn: 93.187 %
Exactitud lineal: 60.0 %
Exactitud árbol 93.407 %
Exactitud rna: 96.923 %

Falsos Negativos en los modelos:

FN:

Probabilidad de FN en knn: 0.013 Probabilidad de FN en lineal: 0.343 Probabilidad de FN en árbol 0.026

Probabilidad de FN en redes neuronales: 0.015

Se puede observar que el modelo Lineal es el modelo más ineficiente debido a que genera mayor probabilidad de Falsos Negativos y tiene la menor exactitud.

Comparación de modelos (Parte 2):

Datos de entrenamiento

Datos de test

A continuación podemos observar que el peor modelo en función a los Falsos Negativos y la exactitud es el *modelo lineal*. El mejor modelo son las *redes neuronales*, ya que tienen la menor probabilidad y la mayor exactitud.

Extensión de los modelos a otros problemas médicos (Parte 1):

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Se ha utilizado una base de datos con la siguiente estructura.

Extensión de los modelos a otros problemas médicos (Parte 2):

Modelo Knn

Modelo de Árboles de Decisión

Extensión de los modelos a otros problemas médicos (Parte 3):

- La base de datos utilizada es sobre un estudio para determinar si una paciente embarazada tiene o no diabetes.
- Lo que comprobamos, con está nueva base de datos, los resultados se mantienen alrededor del 70%. En cambio, con la primera base de datos la exactitud no baja del 80%.
- Lo único en lo que se diferencia es el número de parámetros. En esta nueva base de datos solo hay 8 parámetros mientras en la anterior hay 30.

Conclusiones:

1º Base de Datos

2º Base de Datos

- A la hora de predecir en ambos conjuntos utilizamos los conjuntos de test.
- Nuestros modelos creados se ajustan mejor a la 1º base de datos que a la 2º.
- En la 2º Base de Datos tenemos menos precisión y mayor probabilidad de Falsos Negativos.

Fin

Alejandro López Gómez Emilio Macías Do Santos Cristina Del Pilar Mallaupoma Cáceres