1 В какой точке пространства должны появиться новвые шары?

1.1 Описание

Проблема в том, что большинство шаров находятся в состоянии плотной упаковки 1

Рис. 1: Плотная упаковка

При разбиении должно происходить сохранение массы. Следовательно сумма кубов радиусов (так как у нас шары, а не диски) новых шаров должна давать куб радиуса изначального шара. Как это выглядит при разном количестве новых шаров визуально показано на рисунках ниже.

1.2 Проблема 1

Шары очень сильно накладываются друг на друга в данной модели. Я боюсь что это может привести к неадекватному поведению программы. Они очень сильно неконтролируемо могут начать разлетаться.

Возможное костыльное решение. Можно поставить ограничение на скорость, но это будет влиять на работу программы.

Рис. 2:

Рис. 3:

Рис. 4:

Возможное честное решение. Можно реализовать сложные фигуры, но это мне кажется довольно сложным и не факт, что я одно это успею сделать к диплому.

1.3 Проблема 2

Так как мы сохраняем массу (сумма кубов), то говорить о равенстве площади не приходится. Это приведет к тому что визуально объем материала будет увеличиваться. Хотя масса останется прежней.

Возможное костыльное решение. Можно заменить шары на диски.

2 Какая модель разрушения должна быть?

1) Первый вариант описан в работе Альтшуля Г.. В этом случае у каждого шара есть параметр χ . Изначально он равен 0, но в тот момент когда он достигает 1 – шар разрушается. При контакте образуется $\Delta \chi$

$$\chi + = \Delta \chi$$
$$\Delta \chi = \frac{1}{F_i}$$

 F_i – амплитуда силы в данном контакте (изменяющемся по синусоидальному закону).

Альтшуль Г. предлагает считать F_i как $F_i = C \cdot (t_{kr})^n$ где С, n – эмпирические коэффициенты, а t_{kr} – время проведенной в зацеплении.

Но работа моей программы предполагает что я могу найти точное значение F_i . Возможно стоит этот способ несколько модифицировать и обойти без эмпирически получаемых коэффициентов.

2) Этот способ описан в https://openbooks.itmo.ru/read_pribor/16002/16002.pdf.

Сначала определяется энергия взаимодействия E. Если E превышает E_{min} (которая является константой материала), то параметр материала E_t увеличивается

$$E_t += E - E_{min}$$

Далее расчитывается вероятность распада частицы по формуле

$$P = 1 - \exp^{-S \cdot E_t}$$

S – параметр прочности материала.

Если частица разрушена, то ее фрагменты генерируются по алгоритму разрушения Вороного (http://inis.jinr.ru/sl/vol1/CMC/Preparata,Sheimos, Vychislitelnaya%20geometriya,%201989.pdf). Этот алгоритм я пока не понял (он как будто вообще про другое), а другого объяснения найти не

смог. Но насколько я понял – этот алгоритм (в купе с парой других) позволяет спрогнозировать положение новообразованных шаров. Это бы могло решить предыдущую проблему если бы у нас в распоряжении были не только шары, но и более сложные геометрические фигуры.

3 Какую скорость должны иметь образованные частицы?

Пока кажется очевидным ответ что такую же как и первоначальная.

4 Должно ли быть ограничение на минимальный радиус?

Если его не будет то частицы будут дробиться и дробиться бесконечно.

Здесь же вопрос: должны ли исчезать достаточно маленькие частицы (как это происходит в реальной мельницы)?