

Fuel Efficiency Prediction

Purpose

The automotive industry is extremely competitive. With increasing fuel prices and picky consumers, automobile makers are constantly optimizing their processes to increase fuel efficiency. But, what if you could have a reliable estimator for a car's mpg given some known specifications about the vehicle? Then, you could beat a competitor to market by both having a more desirable vehicle that is also more efficient, reducing wasted R&D costs, and gaining large chunks of the market.

Utilizing machine learning, Cocolevio can help you build prediction models designed to give you an edge over your competitors

Introduction

Having a decent comprehension of what influences fuel utilization, and afterward having the option to foresee it, is vital to upgrading eco-friendliness. In the transportation business, the Miles per Gallon, or MPG, is utilized to work out a vehicle's proficiency as a component of the energy it consumes.

Dataset

Dataset link: https://www.kaggle.com/datasets/uciml/autompg-dataset

Importing required Liabraries

```
from __future__ import absolute_import, division, print_function
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.metrics import mean_squared_error
```

Loading dataset using pandas liabrary

```
In [69]: df = pd.read_csv('/content/auto-mpg.csv')
```

Checking dataset shape & information

```
In [70]: df.shape
Out[70]: (398, 9)
In [71]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
d+		: -+ C1/1\ - b-:-	-+ (2)

dtypes: float64(3), int64(4), object(2)

memory usage: 28.1+ KB

In [72]:

df.head()

Out[72]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

Data Cleaning

We can see that dataset contains charater values in 'car name' column. So we have toremove this column from dataset usind pandas drop method.

In [74]: df.head()

Out[74]: mpg cylinders displacement horsepower weight acceleration model year origin 18.0 307.0 130 3504 12.0 1 15.0 70 1 1 8 350.0 165 3693 11.5 18.0 318.0 150 3436 11.0 70 1 3 16.0 8 304.0 150 3433 12.0 70 1

140

3449

10.5

70

1

302.0

Checking null value in dataset

8

17.0

```
In [75]:
          df.isna().sum()
                          0
Out[75]: mpg
         cylinders
                          0
         displacement
                          0
         horsepower
         weight
                         0
         acceleration
                         0
         model year
                         0
                         0
         origin
         dtype: int64
         EDA
```

corelation matrix for features

```
In [76]:
           plt.figure(figsize=(6,4))
           cor = df.corr()
           sns.heatmap(cor, annot = True, cmap = plt.cm.Reds)
           plt.show()
```


Relating with output variable

```
In [77]:
          #Correlation with output variable
          cor_target = abs(cor['mpg'])
          #Selecting highly correlated features
          relavent_features = cor_target[cor_target>0.5]
          relavent_features
```

```
Out[77]: mpg
                         1.000000
         cylinders
                         0.775396
         displacement
                         0.804203
         weight
                         0.831741
         model year
                         0.579267
         origin
                         0.563450
         Name: mpg, dtype: float64
```

The "Origin" column is really categorical, not numeric. So convert that to a one-hot

```
In [78]:
           origin = df.pop('origin')
In [79]:
           df['USA'] = (origin==1)*1.0
           df['Europe'] = (origin==2)*1.0
           df['Japan'] = (origin==3)*1.0
In [80]:
           df['horsepower'] = df['horsepower'].replace(to_replace = '?', value =105)
           df['horsepower'] = df['horsepower'].astype(float)
In [81]:
           df.head()
Out[81]:
                                                                          model
                                                                                 USA Europe Japar
             mpg cylinders displacement horsepower weight acceleration
                                                                            year
                          8
          0
              18.0
                                    307.0
                                                130.0
                                                        3504
                                                                     12.0
                                                                             70
                                                                                  1.0
                                                                                          0.0
                                                                                                 0.0
              15.0
                          8
                                    350.0
                                                165.0
                                                        3693
                                                                     11.5
                                                                             70
                                                                                   1.0
                                                                                          0.0
                                                                                                 0.0
          2
              18.0
                          8
                                    318.0
                                                150.0
                                                        3436
                                                                     11.0
                                                                             70
                                                                                   1.0
                                                                                          0.0
                                                                                                 0.0
          3
              16.0
                          8
                                    304.0
                                                150.0
                                                                     12.0
                                                                             70
                                                                                   1.0
                                                                                           0.0
                                                                                                 0.0
                                                        3433
                                                140.0
                                                                     10.5
                                                                             70
                                                                                          0.0
              17.0
                          8
                                    302.0
                                                        3449
                                                                                   1.0
                                                                                                 0.0
In [43]:
           sns.pairplot(df[["mpg", "cylinders", "horsepower", "displacement", "weight"]], d
```

Out[43]: <seaborn.axisgrid.PairGrid at 0x7fe0749429a0>

In [44]:
 df_stats = df.describe()
 df_stats.pop("mpg")
 df_stats = df_stats.transpose()
 df_stats

Out[44]:		count	mean	std	min	25%	50%	75%	max
	cylinders	398.0	5.454774	1.701004	3.0	4.000	4.0	8.000	8.0
	displacement	398.0	193.425879	104.269838	68.0	104.250	148.5	262.000	455.0
	horsepower	398.0	104.477387	38.199242	46.0	76.000	95.0	125.000	230.0
	weight	398.0	2970.424623	846.841774	1613.0	2223.750	2803.5	3608.000	5140.0
	acceleration	398.0	15.568090	2.757689	8.0	13.825	15.5	17.175	24.8
	model year	398.0	76.010050	3.697627	70.0	73.000	76.0	79.000	82.0
	USA	398.0	0.625628	0.484569	0.0	0.000	1.0	1.000	1.0
	Europe	398.0	0.175879	0.381197	0.0	0.000	0.0	0.000	1.0
	Japan	398.0	0.198492	0.399367	0.0	0.000	0.0	0.000	1.0

In [45]: X = df.drop(['mpg'], axis = 1)

V = df['mng']

Splitting dataset into train and test

```
In [46]: X_train,X_test,Y_train,Y_test = train_test_split(X,Y, random_state=10, test_siz
In [47]: X_train.shape
```

Out[47]: (318, 9)

In [48]: X_train.head()

Out[48]:		cylinders	displacement	horsepower	weight	acceleration	model year	USA	Europe	Japan
	303	4	85.0	65.0	2020	19.2	79	0.0	0.0	1.0
	347	4	85.0	65.0	1975	19.4	81	0.0	0.0	1.0
	149	4	120.0	97.0	2489	15.0	74	0.0	0.0	1.0
	100	6	250.0	88.0	3021	16.5	73	1.0	0.0	0.0
	175	4	90.0	70.0	1937	14.0	75	0.0	1.0	0.0

```
In [49]: Y_train.shape
```

Out[49]: (318,)

Loading models to make prediction

lightgbm model

```
In [50]: import lightgbm as lgb
```

Building model

Loading Data

```
In [52]: lgb_train = lgb.Dataset(X_train, Y_train)
lgb_test = lgb.Dataset(X_test, Y_test)
```

Fit the model using training dataset

In [53]:

```
valid_0's l1: 6.02569
[1]
        valid_0's l2: 51.2169
Training until validation scores don't improve for 50 rounds.
[2]
        valid_0's 12: 42.8875
                                 valid_0's l1: 5.47208
[3]
        valid_0's 12: 36.3846
                                 valid_0's l1: 4.9916
[4]
        valid 0's 12: 30.8799
                                 valid 0's l1: 4.55334
[5]
        valid_0's 12: 26.0557
                                 valid_0's l1: 4.14178
                                 valid 0's l1: 3.83761
[6]
        valid 0's 12: 22.51
[7]
        valid_0's 12: 19.631
                                 valid_0's l1: 3.55343
        valid_0's 12: 17.0105
[8]
                                 valid_0's l1: 3.2666
[9]
        valid_0's l2: 15.2441
                                 valid_0's l1: 3.06476
        valid_0's 12: 13.7179
                                 valid 0's l1: 2.88228
[10]
        valid_0's 12: 12.6141
                                 valid_0's l1: 2.75135
[11]
        valid_0's 12: 11.7395
                                 valid_0's l1: 2.64718
[12]
[13]
        valid 0's 12: 10.9539
                                 valid_0's l1: 2.54565
        valid_0's 12: 10.3067
                                 valid_0's l1: 2.47033
[14]
[15]
        valid_0's l2: 9.81338
                                 valid 0's l1: 2.40809
        valid 0's 12: 9.47483
                                 valid 0's l1: 2.36082
[16]
[17]
        valid_0's 12: 9.15844
                                 valid_0's l1: 2.3265
                                 valid_0's l1: 2.28878
[18]
        valid_0's 12: 8.97987
        valid_0's 12: 8.81615
                                 valid_0's l1: 2.25614
[19]
        valid_0's 12: 8.6848
[20]
                                 valid_0's l1: 2.22431
[21]
        valid_0's 12: 8.64037
                                 valid_0's l1: 2.20288
[22]
        valid 0's 12: 8.52279
                                 valid 0's l1: 2.17722
                                 valid_0's l1: 2.15867
[23]
        valid_0's 12: 8.45621
                                 valid_0's l1: 2.14677
[24]
        valid_0's 12: 8.45798
                                 valid_0's l1: 2.12966
[25]
        valid_0's 12: 8.3907
        valid_0's 12: 8.34034
                                 valid_0's l1: 2.12046
[26]
[27]
        valid_0's 12: 8.36848
                                 valid_0's l1: 2.11936
[28]
        valid_0's l2: 8.37117
                                 valid_0's l1: 2.11785
        valid_0's 12: 8.4405
                                 valid_0's l1: 2.12432
[29]
                                 valid 0's l1: 2.12967
[30]
        valid 0's 12: 8.42782
[31]
        valid_0's 12: 8.41697
                                 valid_0's l1: 2.12671
        valid_0's 12: 8.39526
[32]
                                 valid_0's l1: 2.1244
[33]
        valid_0's 12: 8.45727
                                 valid_0's l1: 2.13712
        valid_0's 12: 8.46272
                                 valid_0's l1: 2.14496
[34]
                                 valid_0's l1: 2.16007
[35]
        valid_0's 12: 8.53309
[36]
        valid_0's 12: 8.48266
                                 valid_0's l1: 2.15465
[37]
        valid_0's 12: 8.48117
                                 valid_0's l1: 2.16193
[38]
        valid 0's 12: 8.4492
                                 valid 0's l1: 2.15621
        valid 0's 12: 8.4918
                                 valid 0's l1: 2.16705
[39]
[40]
        valid 0's 12: 8.51376
                                 valid_0's l1: 2.16651
[41]
        valid_0's 12: 8.55759
                                 valid_0's l1: 2.16729
                                 valid_0's 11: 2.16898
[42]
        valid 0's 12: 8.59404
[43]
        valid_0's 12: 8.59404
                                 valid_0's l1: 2.16876
[44]
        valid_0's 12: 8.63315
                                 valid_0's l1: 2.17645
                                 valid_0's l1: 2.17499
[45]
        valid_0's l2: 8.61844
        valid_0's 12: 8.65743
                                 valid_0's l1: 2.17704
[46]
                                 valid 0's l1: 2.18124
[47]
        valid 0's 12: 8.67704
        valid 0's 12: 8.6547
                                 valid 0's l1: 2.17757
[48]
[49]
        valid_0's 12: 8.69421
                                 valid_0's l1: 2.18172
[50]
        valid 0's 12: 8.71998
                                 valid 0's l1: 2.18442
[51]
        valid 0's 12: 8.74161
                                 valid 0's l1: 2.18943
[52]
        valid_0's 12: 8.75293
                                 valid_0's l1: 2.18742
        valid_0's 12: 8.69851
                                 valid_0's l1: 2.18446
[53]
[54]
        valid_0's 12: 8.68149
                                 valid_0's l1: 2.18536
[55]
        valid_0's 12: 8.68528
                                 valid_0's l1: 2.1861
[56]
        valid 0's 12: 8.67969
                                 valid 0's l1: 2.18697
[57]
        valid 0's 12: 8.68458
                                 valid 0's l1: 2.18994
```

```
valid_0's l2: 8.79361
                                         valid_0's l1: 2.20688
         [61]
                                         valid 0's l1: 2.20617
         [62]
                 valid 0's 12: 8.80226
                                         valid_0's l1: 2.19885
         [63]
                 valid_0's 12: 8.73345
                 valid_0's 12: 8.74069
                                         valid_0's l1: 2.20164
         [64]
                 valid 0's 12: 8.74203
                                         valid 0's l1: 2.20473
         [65]
                 valid_0's 12: 8.78281
                                         valid_0's l1: 2.21407
         [66]
         [67]
                 valid_0's 12: 8.7945
                                         valid_0's l1: 2.21491
         [68]
                 valid_0's 12: 8.78422
                                         valid_0's 11: 2.20813
                 valid_0's 12: 8.76369
                                         valid_0's l1: 2.20435
         [69]
                 valid_0's 12: 8.79072
                                         valid 0's l1: 2.21003
         [70]
                 valid 0's 12: 8.80996
                                         valid 0's l1: 2.2146
         [71]
         [72]
                 valid_0's 12: 8.80287
                                         valid_0's l1: 2.21262
                                         valid_0's l1: 2.21107
                 valid_0's 12: 8.80999
         [73]
                 valid_0's 12: 8.83093
                                         valid_0's l1: 2.2151
         [74]
         [75]
                 valid_0's 12: 8.79597
                                         valid_0's l1: 2.21289
                                         valid_0's l1: 2.21191
         [76]
                 valid_0's 12: 8.77739
         Early stopping, best iteration is:
                 valid_0's 12: 8.34034
                                         valid_0's l1: 2.12046
         [26]
         Predicting test dataset
In [54]:
          Y_pred1 = model1.predict(X_test)
          # accuracy check
          mse1 = mean_squared_error(Y_test, Y_pred1)
          rmse1 = mse1**(0.5)
          print("MSE1: %.2f" % mse1)
          print("RMSE1: %.2f" % rmse1)
         MSE1: 8.34
         RMSE1: 2.89
In [82]:
          x_as = range(len(Y_test))
          plt.figure(figsize=(10,5))
          plt.plot(x_as, Y_test, label='Orginal')
          plt.plot(x_as, Y_pred1, label='Predicted')
          plt.title('Fuel Efficiency Prediction')
          plt.xlabel('Features')
          plt.ylabel('Mpg')
          plt.legend(loc='best', fancybox=True, shadow=True)
          plt.grid(True)
          plt.show()
```

valid_0's l1: 2.19531

valid_0's l1: 2.20056

valid 0's l1: 2.19968

valid_0's l2: 8.71028

valid_0's 12: 8.75022

valid 0's 12: 8.76207

[58]

[59]

[60]

Plot feature importance of lightgbm

```
In [55]: lgb.plot_importance(model1, height=0.6)
```

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe090fc7e50>

Visualizing in plot

```
In [56]:
    plt.scatter(Y_test, Y_pred1)
    plt.xlabel('True Values [Mpg]')
    plt.ylabel('Predictions [Mpg]')
    plt.axis('equal')
    plt.axis('square')
    plt.xlim([0,plt.xlim()[1]])
    plt.ylim([0,plt.ylim()[1]])
    _ = plt.plot([-100, 100], [-100, 100])
```



```
In [57]:
    error = Y_pred1 - Y_test
    plt.hist(error, bins = 25)
    plt.xlabel("Prediction Error [Mpg]")
    _ = plt.ylabel("Count")
```


XGBregressor model

```
import xgboost as xgb
from xgboost import plot_importance
```

Training model

[17:33:50] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[0] validation_0-rmse:22.0706 validation_1-rmse:21.5671
Multiple eval metrics have been passed: 'validation_1-rmse' will be used for earl
y stopping.

Will train until validation_1-rmse hasn't improved in 50 rounds.

- [1] validation_0-rmse:19.9603 validation_1-rmse:19.4536
- [2] validation_0-rmse:18.0566 validation_1-rmse:17.5614

```
validation_1-rmse:15.8315
[3]
        validation_0-rmse:16.3384
[4]
        validation_0-rmse:14.7926
                                         validation_1-rmse:14.2802
[5]
        validation_0-rmse:13.402
                                         validation_1-rmse:12.8893
[6]
        validation_0-rmse:12.1546
                                         validation_1-rmse:11.6899
[7]
        validation 0-rmse:11.0274
                                         validation 1-rmse:10.5709
[8]
        validation_0-rmse:10.0123
                                         validation_1-rmse:9.58037
[9]
        validation 0-rmse:9.09865
                                         validation_1-rmse:8.67439
        validation 0-rmse:8.27837
[10]
                                         validation 1-rmse:7.92317
        validation_0-rmse:7.54034
[11]
                                         validation_1-rmse:7.18336
                                         validation_1-rmse:6.59136
[12]
        validation_0-rmse:6.88015
[13]
        validation_0-rmse:6.285 validation_1-rmse:6.00407
        validation_0-rmse:5.7527
[14]
                                         validation_1-rmse:5.54299
        validation 0-rmse:5.26965
[15]
                                         validation 1-rmse:5.12071
        validation 0-rmse:4.83836
                                         validation 1-rmse:4.78264
[16]
[17]
        validation_0-rmse:4.44725
                                         validation_1-rmse:4.46414
                                         validation_1-rmse:4.21112
[18]
        validation_0-rmse:4.09563
[19]
        validation_0-rmse:3.77962
                                         validation_1-rmse:3.99148
[20]
        validation_0-rmse:3.49072
                                         validation_1-rmse:3.81154
[21]
        validation_0-rmse:3.23031
                                         validation_1-rmse:3.64446
[22]
        validation_0-rmse:2.99851
                                         validation_1-rmse:3.50426
        validation_0-rmse:2.77853
                                         validation_1-rmse:3.40322
[23]
        validation_0-rmse:2.58142
                                         validation_1-rmse:3.33079
[24]
[25]
        validation_0-rmse:2.40917
                                         validation 1-rmse:3.25084
        validation_0-rmse:2.24785
[26]
                                         validation_1-rmse:3.20552
[27]
        validation_0-rmse:2.10046
                                         validation_1-rmse:3.16878
[28]
        validation_0-rmse:1.96528
                                         validation_1-rmse:3.12512
        validation_0-rmse:1.84593
                                         validation_1-rmse:3.08058
[29]
[30]
        validation_0-rmse:1.73507
                                         validation_1-rmse:3.05219
[31]
        validation_0-rmse:1.6367
                                         validation_1-rmse:3.02894
[32]
        validation_0-rmse:1.5447
                                         validation_1-rmse:3.01868
[33]
        validation 0-rmse:1.46044
                                         validation 1-rmse:3.02398
[34]
        validation 0-rmse:1.38998
                                         validation 1-rmse:3.03542
                                         validation_1-rmse:3.02912
[35]
        validation_0-rmse:1.32641
[36]
        validation_0-rmse:1.26713
                                         validation_1-rmse:3.02931
[37]
        validation_0-rmse:1.21629
                                         validation_1-rmse:3.02863
        validation_0-rmse:1.16438
                                         validation_1-rmse:3.03408
[38]
[39]
        validation_0-rmse:1.12141
                                         validation_1-rmse:3.04009
[40]
        validation_0-rmse:1.07923
                                         validation_1-rmse:3.04273
[41]
        validation 0-rmse:1.04443
                                         validation 1-rmse:3.04986
[42]
        validation 0-rmse:1.01046
                                         validation 1-rmse:3.05075
[43]
        validation_0-rmse:0.975881
                                         validation_1-rmse:3.05824
[44]
        validation 0-rmse:0.950507
                                         validation 1-rmse:3.06622
[45]
        validation 0-rmse:0.924352
                                         validation 1-rmse:3.06658
[46]
        validation_0-rmse:0.900951
                                         validation_1-rmse:3.07304
                                         validation_1-rmse:3.06549
[47]
        validation_0-rmse:0.87535
[48]
        validation_0-rmse:0.857326
                                         validation_1-rmse:3.06882
[49]
        validation_0-rmse:0.839809
                                         validation_1-rmse:3.07142
[50]
        validation 0-rmse:0.825392
                                         validation 1-rmse:3.07488
[51]
        validation 0-rmse:0.813913
                                         validation 1-rmse:3.079
[52]
        validation_0-rmse:0.795791
                                         validation_1-rmse:3.07659
[53]
        validation 0-rmse:0.782728
                                         validation 1-rmse:3.07911
[54]
        validation_0-rmse:0.771689
                                         validation_1-rmse:3.08125
[55]
        validation_0-rmse:0.7569
                                         validation_1-rmse:3.0796
[56]
        validation_0-rmse:0.749628
                                         validation_1-rmse:3.08095
[57]
        validation_0-rmse:0.743282
                                         validation_1-rmse:3.08022
        validation 0-rmse:0.732893
                                         validation 1-rmse:3.07967
[58]
[59]
        validation 0-rmse:0.720177
                                         validation 1-rmse:3.0767
[60]
        validation_0-rmse:0.714853
                                         validation_1-rmse:3.0761
[61]
        validation 0-rmse:0.70829
                                         validation 1-rmse:3.07421
[62]
        validation 0-rmse:0.69935
                                         validation 1-rmse:3.074
[63]
        validation_0-rmse:0.689904
                                         validation_1-rmse:3.07424
[64]
        validation_0-rmse:0.685563
                                         validation_1-rmse:3.07322
[65]
        validation 0-rmse:0.676983
                                         validation_1-rmse:3.07243
[66]
        validation_0-rmse:0.672616
                                         validation_1-rmse:3.07167
```

```
validation_0-rmse:0.660425
                                         validation_1-rmse:3.07417
[67]
        validation_0-rmse:0.6576
[68]
                                         validation_1-rmse:3.07497
[69]
        validation_0-rmse:0.653832
                                         validation_1-rmse:3.07527
        validation_0-rmse:0.644787
                                         validation_1-rmse:3.08213
[70]
[71]
        validation 0-rmse:0.641982
                                         validation 1-rmse:3.08373
[72]
        validation_0-rmse:0.638424
                                         validation_1-rmse:3.08352
        validation_0-rmse:0.632505
[73]
                                         validation_1-rmse:3.0797
[74]
        validation 0-rmse:0.624917
                                         validation 1-rmse:3.08528
[75]
        validation_0-rmse:0.620513
                                         validation_1-rmse:3.08619
                                         validation_1-rmse:3.09111
[76]
        validation_0-rmse:0.616895
[77]
        validation_0-rmse:0.613557
                                         validation_1-rmse:3.09021
        validation_0-rmse:0.607806
[78]
                                         validation_1-rmse:3.08981
        validation_0-rmse:0.599988
[79]
                                         validation_1-rmse:3.08895
        validation 0-rmse:0.595802
                                         validation 1-rmse:3.08944
[88]
        validation_0-rmse:0.587563
                                         validation_1-rmse:3.0875
[81]
        validation_0-rmse:0.582584
                                         validation_1-rmse:3.08774
[82]
Stopping. Best iteration:
        validation_0-rmse:1.5447
                                        validation_1-rmse:3.01868
[32]
```

Out[59]: XGBRegressor(max_depth=6)

After training the model, we'll check the model training score

```
In [60]:
    score = model2.score(X_train, Y_train)
    print("Training score of XGBregressor: ", score)
```

Training score of XGBregressor: 0.960763226476405

We can also apply the cross-validation method to evaluate the training score

```
scores = cross_val_score(model2, X_train, Y_train,cv=10)
print("Mean cross-validation score of XGBregressor: %.2f" % scores.mean())
```

[17:33:50] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:50] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:50] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

Mean cross-validation score of XGBregressor: 0.87

Or if you want to use the KFlold method in cross-validation it goes as below

```
In [62]:
    kfold = KFold(n_splits=10, shuffle=True)
    kf_cv_scores = cross_val_score(model2, X_train, Y_train, cv=kfold )
    print("K-fold CV average score of XGBregressor: %.2f" % kf_cv_scores.mean())
```

```
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
[17:33:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is
now deprecated in favor of reg:squarederror.
K-fold CV average score of XGBregressor: 0.85
```

Test dataset prediction and MSE and RMSE calculation

```
In [63]:
    Y_pred2 = model2.predict(X_test)
    # accuracy check
    mse2 = mean_squared_error(Y_test, Y_pred2)
    print("MSE: %.2f" % mse2)
    rmse2 = mse2**(0.5)
    print("RMSE2: %.2f" % rmse2)
MSE: 9.11
```

MSE: 9.11 RMSE2: 3.02

Finally, we'll visualize the original and predicted test data in a plot to compare visually

```
In [64]: x_as = range(len(Y_test))
    plt.figure(figsize=(10,5))
    plt.plot(x_as, Y_test, label='Orginal')
    plt.plot(x_as, Y_pred2, label='Predicted')
    plt.title('Fuel Efficiency Prediction')
    plt.xlabel('Features')
    plt.ylabel('Mpg')
    plt.legend(loc='best', fancybox=True, shadow=True)
    plt.grid(True)
    plt.show()
```


Plot feature importance of XGBregressor

```
In [65]: plot_importance(model2, height=0.6)
```

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe06b4aa3a0>

Lightgbm gives less RSME score than XGBregressor.

Visualizing in plot

```
In [66]:
    plt.scatter(Y_test, Y_pred2)
    plt.xlabel('True Values [Mpg]')
    plt.ylabel('Predictions [Mpg]')
    plt.axis('equal')
    plt.axis('square')
    plt.xlim([0,plt.xlim()[1]])
    plt.ylim([0,plt.ylim()[1]])
    _ = plt.plot([-100, 100], [-100, 100])
```



```
In [67]:
    error = Y_pred2 - Y_test
    plt.hist(error, bins = 25)
    plt.xlabel("Prediction Error [Mpg]")
    _ = plt.ylabel("Count")
```


Conclusion

From the above model training using "lightgbm" and "XGBregressor" models I found that lightgbm model has less RSME(Root Mean Squared Error) = 2.89 than XGBregressor model RSME = 3.02.