

Table 1. Effect of aging (250°C for 1hr) on the mechanical properties of new alloys

Alloy	State	TYS MPa	UTS MPa	E%	CYS MPa	MCR·10 ⁹ , S ⁻¹		CR mg/cm ² /day
						150°C 100 MPa	200°C 55 MPa	
Example 3	F	183	237	4	183	0.84	1.05	1.58
	T5	195	250	5	195	0.82	1.08	1.53
Example 6	F	179	240	5	179	1.44	2.54	1.38
	T5	200	255	5	198	1.28	2.35	1.41
Example 8	F	188	236	5	186	1.05	1.95	1.35
	T5	197	243	3	198	1.02	1.97	1.32
Example 14	F	195	234	3	193	1.31	2.40	1.35
	T5	203	250	3	202	1.18	2.28	1.37

Fig. 1

Table 2. Chemical Compositions of Alloys

Alloy	Al %	Mn %	Zn %	Ca %	Sr %	Si %	Fe %	Ni %	Cu %	Be %
Example 1	4.7	0.29	-	1.9	1.8	0.3	0.01	0.002	0.0006	0.0005
Example 2	5.3	0.31	0.3	1.8	0.3	-	0.01	0.002	0.0005	0.0006
Example 3	5.1	0.30	-	2.9	1.0	-	0.01	0.003	0.0006	0.0006
Example 4	4.9	0.30	-	2.0	2.0	0.3	0.01	0.003	0.0005	-
Example 5	5.2	0.31	-	3.1	0.5	-	0.01	0.002	0.0007	0.0004
Example 6	6.1	0.29	0.6	2.2	2.0	-	0.01	0.002	0.0006	0.0006
Example 7	6.2	0.30	-	2.1	0.5	0.3	0.01	0.003	0.0006	0.0005
Example 8	6.2	0.28	-	2.8	1.5	-	0.01	0.003	0.0007	0.0005
Example 9	5.9	0.26	-	3.0	0.5	0.3	0.01	0.002	0.0005	0.0006
Example 10	6.6	0.25	-	1.9	1.5	0.5	0.01	0.003	0.0006	0.0005
Example 11	7.1	0.26	-	2.0	0.5	-	0.01	0.003	0.0006	0.0006
Example 12	7.0	0.23	0.8	2.1	2.0	-	0.01	0.002	0.0005	0.0005
Example 13	7.3	0.24	-	3.1	0.7	-	0.01	0.003	0.0006	0.0005
Example 14	7.1	0.21	0.7	3.0	1.1	-	0.01	0.002	0.0005	0.0005
Comparative Example 1	8.9	0.23	0.74	-	-	-	0.01	0.002	0.0007	0.0009
Comparative Example 2	4.3	0.29	0.01	2.4% RE	-	-	0.01	0.002	0.0008	0.0008
Comparative Example 3	4.1	0.34	-	1.5	-	0.10	0.01	0.002	0.0005	0.0007
Comparative Example 4	5.5	0.31	-	2.7	-	0.15	0.01	0.003	0.0006	0.0008
Comparative Example 5	7.9	0.24	0.7	2.2	1.0	-	0.01	0.003	0.0008	0.0007

Fig. 2

Table 3. Die castability properties of new alloys

Alloy	Metal temperature [°C]	Oxidation resistance	Fluidity	Die sticking	Rank
Example 1	670	10	9	9	91.7
Example 2	690	10	10	8	86.7
Example 3	675	10	9	8	85.1
Example 4	680	10	10	9	93.3
Example 5	670	10	9	9	91.7
Example 6	670	10	9	10	98.4
Example 7	660	10	9	9	91.7
Example 8	660	10	9	9	91.7
Example 9	670	10	10	9	93.3
Example 10	675	10	10	9	93.3
Example 11	.660	10	10	9	93.3
Example 12	660	10	10	10	100
Example 13	660	10	10	9	93.3
Example 14	660	10	10	9	93.3
Comparative Example 1	670	9	10	10	98.4
Comparative Example 2	690	8	8	9	80
Comparative Example 3	690	10	8	5	60
Comparative Example 4	675	10	9	7	78.3
Comparative Example 5	660	10	10	9	93.3

Fig. 3

Table 4. Intermetallic Phases in New Alloys

Alloy	Phase composition
Example 1	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.54} Mn _{0.06}
Example 2	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.56} Mn _{0.44}
Example 3	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.55} Mn _{0.45}
Example 4	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.53} Mn _{0.47}
Example 5	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.58} Mn _{0.42}
Example 6	Mg-Al-Zn-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.61} Mn _{0.39}
Example 7	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sn,Sr), Al _{0.59} Mn _{0.41}
Example 8	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.63} Mn _{0.37}
Example 9	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.62} Mn _{0.38}
Example 10	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr)
Example 11	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.64} Mn _{0.36}
Example 12	Mg-Al-Zn-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.65} Mn _{0.35}
Example 13	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.62} Mn _{0.38}
Example 14	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.64} Mn _{0.36}
Comparative example 1	Mg-Al _{ss} , Mg ₁₇ (Al,Zn) ₁₂ , Al ₈ Mn ₅
Comparative example 2	Mg-Al _{ss} , Al ₁₁ RE ₃ , Al ₁₀ RE ₂ Mn ₇
Comparative example 3	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.58} Mn _{0.42}
Comparative example 4	Mg-Al _{ss} , Al ₂ Ca, Al ₂ (Ca,Sr), Al _{0.54} Mn _{0.46}
Comparative example 5	Mg-Al-Sn-Zn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn)

Fig. 4

Table 5. Mechanical Properties and Creep Behavior

Alloy	TYS Mpa			UTS MPa			E %			CYS MPa			MCR·10 ⁹ , S ⁻¹			CR mg/cm ² /day
	20°C	175°C	200°C	20°C	20°C	20°C	175°C	200°C	100 MPa	150°C, 100 MPa	200°C, 55 MPa	100 MPa	150°C, 100 MPa	200°C, 55 MPa		
Example 1	175	160	145	227	5	172	155	143	1.30	1.96	1.52	1.25	1.85	1.05	1.40	1.48
Example 2	172	158	142	235	5	175	159	146	1.25	1.85	1.50	1.25	1.84	1.05	1.40	1.48
Example 3	183	165	154	237	4	183	165	155	0.84	1.05	1.58	1.05	1.82	0.87	1.67	1.47
Example 4	170	161	142	236	6	171	160	143	1.05	1.40	1.48	1.05	1.75	0.87	1.56	1.39
Example 5	180	168	152	235	4	179	168	153	0.80	1.08	1.56	1.05	1.78	0.87	1.62	1.45
Example 6	179	165	145	240	5	179	164	147	1.44	2.54	1.38	1.44	1.82	1.05	1.72	1.45
Example 7	178	163	148	238	5	176	163	146	1.39	2.44	1.45	1.39	1.82	1.05	1.72	1.45
Example 8	188	170	155	236	5	186	169	155	1.05	1.95	1.37	1.05	1.82	0.95	1.88	1.49
Example 9	186	172	157	232	4	186	172	157	0.95	1.95	1.45	1.05	1.82	0.95	1.88	1.49
Example 10	179	162	145	250	5	180	160	146	1.65	4.50	1.54	1.65	1.82	1.05	1.88	1.54
Example 11	180	160	143	248	5	179	160	142	1.64	4.80	1.32	1.64	1.82	1.05	1.88	1.54
Example 12	183	165	145	245	4	185	163	144	1.59	4.55	1.45	1.59	1.82	1.05	1.88	1.54
Example 13	196	170	158	230	3	192	170	157	1.25	2.25	1.47	1.25	1.82	1.05	1.88	1.54
Example 14	195	174	160	234	3	193	173	161	1.31	2.40	1.32	1.31	1.82	1.05	1.88	1.54
Comparative Example 1	160	88	75	260	6	158	86	75	1426	2890	1.31	1426	1.82	0.87	1.67	1.47
Comparative Example 2	135	88	85	240	12	136	90	86	784	463	1.62	784	1.82	0.87	1.67	1.47
Comparative Example 3	160	148	138	225	3	155	147	136	1.82	4.72	1.59	1.82	1.82	0.87	1.67	1.47
Comparative Example 4	179	160	145	220	3	178	161	144	0.87	1.67	1.47	0.87	1.82	0.87	1.67	1.47
Comparative Example 5	195	168	153	230	1	192	165	150	1.75	5.6	1.39	1.75	1.82	0.87	1.67	1.47

Fig. 5

Fig. 6A

Fig. 6B

PRINTED 14/10/2002

Fig. 7A

Fig. 7B

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B

20030414-040300