

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Apucarana

Laboratório de Análise de Circuitos Elétricos 1 (FUCO5A) 3º Experimento – Tensão, corrente, resistência, Lei de Ohm, Potência e Energia.

1) Objetivos

- Calcular a resistência em circuitos séries e circuitos paralelos;
- Calcular a tensão circuitos séries e circuitos paralelos;
- Calcular

2) Material utilizado

- Multímetro;
- Matriz de contato (protoboard);
- Cinco resistores de 470 Ω , 470 Ω , de 560 Ω , de 820 Ω , de 1 k Ω ;
- Potenciômetro.
- Fonte de Tensão variável.

3) Parte prática 01

Circuito Série

i) Construa o Circuito Série ilustrado na Fig. 1. Escolha o valor de R1 até R5, considerando os resistores fornecidos.

Figura 1 – Circuito Série com a Fonte de Tensão.

ii) Usando o ohmímetro determine a resistência equivalente R_T . Faça o cálculo teórico da resistência equivalente. Compare com o valor teórico.

Tabela 1 - Resistência equivalente teórica e medida do circuito Série, em Ω

	Teórico		Medido
Nominal	Máximo	Mínimo	

iii) Determine a tensão em cada resistor para a fonte de tensão CC em 6 e 15 V nos terminais A e B, compare com o valor teórico (apresente os cálculos, adotando o conceito de divisor de Tensão, então demonstre o conceito LKT).

Tabela 2 – Corrente teórica e medida em cada Resistor do circuito Série, em A

Resistor	Teórico			Medido
	Nominal	Min	Máximo	
R1				
R2				
R3				
R4				
R5				

iv) Determine a corrente em cada resistor para a fonte de tensão CC em 6 e 15 V nos terminais A e B, compare com o valor teórico (apresente os cálculos, adotando a Lei de ohm).

Tabela 3 – Tensão teórica e medida em cada Resistor do circuito Série, em V

Resistor		Teórico		Medido
	Nominal	Min	Máximo	
R1				
R2				
R3				
R4				
R5				

4) Parte prática 03

i) Construa o Circuito Paralelo ilustrado na Fig. 1. Escolha o valor de R1 até R5, considerando os resistores fornecidos.

Figura 2 – Circuito Série com a Fonte de Tensão.

ii) Usando o ohmímetro determine a resistência equivalente R_T . Faça o cálculo teórico da resistência equivalente. Compare com o valor teórico.

Tabela 4 - Resistência equivalente teórica e medida do circuito em Paralelo, em Ω

	· · · · · · · · · · · · · · · · · · ·
Teórico	Medido

Nominal	Máximo	Mínimo	

iii) Determine a tensão em cada resistor para a fonte de tensão CC em 6 e 15 V nos terminais A e B, compare com o valor teórico (apresente os cálculos).

Tabela 5 – Corrente teórica e medida em cada Resistor do circuito em Paralelo, em A

Resistor		Teórico	Medido	
	Nominal	Min	Máximo	
R1				
R2				
R3				
R4				
R5				

iv) Determine a corrente em cada resistor para a fonte de tensão CC em 6 e 15 V nos terminais A e B, compare com o valor teórico (apresente os cálculos, adotando o conceito de divisor de corrente e LKC).

Tabela 6 – Tensão teórica e medida em cada Resistor do circuito Série, em V

Resistor		Teórico	Medido	
	Nominal	Min	Máximo	
R1				
R2				
R3				
R4				
R5				

4) Parte prática 04

i) Construa um divisor de tensão utilizando o potenciômetro de 10 K, tal como ilustrado abaixo.

Figura 3 – Potenciômetro como um divisor de Tensão.

ii) Ajuste o potenciômetro para obter uma tensão V = 7,5 V. Faça o cálculo teórico a partir do conceito divisor de tensão e compare com os valores medidos.