Statistical Machine Learning Approaches to Liver Disease Prediction

Team ID: PNT2022TMID26382

Team Leader: Madhulika I Team Member: Rithika AM Team Member: Kavya A P Team Member: Kirthiga S

Exploratory Data Analysis

The exploratory data analysis (EDA) notebook is designed to assist you with discovering patterns in data, checking data sanity, and summarizing the relevant data for predictive models.

The EDA notebook example was optimized with web-based data in mind and consists of two parts. Part one starts with using Query Service to view trends and data snapshots. Next, with a goal in mind for exploratory data analysis, the data is aggregated at the profile and visitor level.

Part two starts by performing descriptive analysis on aggregated data using Python libraries. This notebook showcases visualizations such as histograms, scatter plots, box plots, and a correlation matrix to derive actionable insights used to determine which features are most likely to be helpful in predicting a goal.

[4];		Year	Month	Count_days	First_date		
	0	2020	1	1	31	31	117060
	1	2020	2	29	1	29	3503948

head(): To check the first five rows of the dataset, we have a function called head().

Out[14]:		Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	$Alamine_Aminotransferase$	Aspartate_Aminotransferase	Total_Protiens	Albumin	Albumin_and_G
	0	65	0.7	0.1	187	16	18	6.8	3.3	
	1	62	10.9	5.5	699	64	100	7.5	3.2	
	2	62	7.3	4.1	490	60	68	7.0	3.3	
	3	58	1.0	0.4	182	14	20	6.8	3.4	
	4	72	3.9	2.0	195	27	59	7.3	2.4	

Tail(): To check the last five rows of the dataset, we have a function called tail().

Out[16]:											
		Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Protiens	Albumin	Alb
	578	60	Male	0.5	0.1	500	20	34	5.9	1.6	
	579	40	Male	0.6	0.1	98	35	31	6.0	3.2	
	580	52	Male	0.8	0.2	245	48	49	6.4	3.2	
	581	31	Male	1.3	0.5	184	29	32	6.8	3.4	
	582	38	Male	1.0	0.3	216	21	24	7.3	4.4	

Will see how our dataset is, by using the info() method.

describe(): functions are used to compute values like count, mean, standard deviation and IQR(Inter Quantile Ranges) and give a summary of numeric type data.

Out[5]:		Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Protiens	Albumin
	count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000
	mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806	6.483190	3.141852
	std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529	1.085451	0.795519
	min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	2.700000	0.900000
	25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	5.800000	2.600000
	50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	6.600000	3.100000
	75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	7.200000	3.800000
	max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000	9.600000	5.500000