실내 스포츠를 위한 실시간 자세 분석 및 피드백 모바일 시스템 설계

Design of a Real-Time Posture Analysis and Feedback Mobile System for Indoor Sports

Seungtaek Lim, Juwan Son, Junhyeon Hwang, Woojin Jang and Keejun Han

Hansung University

Contents

목차

실내 스포츠를 위한 실시간 자세 분석 및 피드백 모바일 시스템 설계

Design of a Real-Time Posture Analysis and Feedback Mobile System for Indoor Sports

1. 연구 배경 및 필요성

-실내스포츠수요증가 -기존자세 분석시스템의 한계

2. 연구 목적 및 차별성

- 모바일 기반실시간 자세 분석 - 자연어 피드백 시스템 - 하이브리드 구조 설계

3. 시스템 구조 및 분석 흐름

-분석 흐름도 및 아키텍처

4. 애플리케이션 구성

- 자동 촬영, 분석 요청, 결과 시각화 - 온디바이스 모델 활용 및 구조

5. 모델 최적화 및 성능 개선

- W8A8 양자화 및 TFLite 변환 - 성능 개선 결과 (속도/메모리)

6. 분석 결과 및 사용자 화면 예시

- 점수, 차트, 자연어 피드백 UI - 사용자 히스토리 및 반복 학습 유도

7. 결론 및 향후 연구 방향

연구배경 및 필요성

실내스포츠의 수요증가

• 최근 인공지능 기술, 특히 딥러닝 기반의 컴퓨터 비전 기술은 다양한 산업 분야에서 혁신적인 변화를 이끌고 있으며, 스포츠 분야에서도 활발히 응용되고 있다.

• 그중에서도 운동 수행 중의 자세를 정확하게 인식하고 분석하는 기술은 부상 예방, 기술 향상, 운동 효율성 증대 등에서 높은 가치를 지니며, 이에 따라 영상 데이터를 활용한 자세 분석 및 동작 유사도 평가에 관한 시스템 개발이 활발히 이루어지고 있다.

연구배경 및 필요성

기존 시스템의 문제점

SSTC 모션 애널라이저

SSTC가 개발한 스포츠 데이터 분석 소프트웨어

딥스크라이크 (DeepStrike)

Jabbr가 개발한 격투 스포츠용 통계 분석 AI 프로그램

- 기존의 시스템들은 스포츠 동작을 정량적으로 분석하거나 실시간 피드백을 제공함으로써, 운동 보조기술의 정밀성과 유용성을 입증해왔다.
- 그러나 대부분의 시스템은 단일 디바이스나 서버 중심 구조에 기반하고 있어, 실시간 피드백을 위해 고정된 장비나 비싼 고성능 장비에 의존해야 하는 구조적 한계가 존재한다.

연구목적및차별성

모바일 기반 실시간 자세 분석

• 모바일 개인 맞춤 스포츠 피드백 시스템

시스템구조및분석흐름

분석 흐름도 및 아키텍처

시스템구조및분석흐름

분석 흐름도 및 아키텍처

1. 어깨 각도 차이

정의

오른쪽 어깨 각도는 다음 세 점을 기준으로 정의된다.

- A = Left Shoulder
- B = Right Shoulder
- C = Right Elbow

오른팔 각도는 다음과 같이 계산된다.

$$\theta_{\text{shoulder}} = \min (\angle ABC, \angle CBA)$$

90도 기준 편차는 다음과 같다.

$$\Delta\theta = |\theta_{\text{shoulder}} - 90^{\circ}|$$

평균 어깨 각도 차이

$$\Delta \hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} \Delta \theta_i$$

2. 상체 중심 이동 거리

중심 좌표 계산

프레임 (t)에서의 상체 중심은 다음과 같이 계산된다.

$$C_{t} = \frac{1}{2} \left(\frac{P_{LS}^{t} + P_{RS}^{t}}{2} + \frac{P_{LH}^{t} + P_{RH}^{t}}{2} \right)$$

정규화된 거리 계산

프레임 (t)와 (t-1) 간의 상체 이동 거리는 다음과 같다.

$$d_t = \sqrt{\left(\frac{x_t - x_{t-1}}{W}\right)^2 + \left(\frac{y_t - y_{t-1}}{H}\right)^2}$$

여기서 (W)는 프레임 너비, (H)는 프레임 높이이다.

평균 이동 거리

$$\dot{d} = \frac{1}{N-1} \sum_{t=2}^{N} d_t$$

3. 손목 이동 거리 누적

오른쪽 손목의 누적 이동 거리는 다음과 같다.

$$D_{\text{wrist}} = \sum_{t=2}^{N} \sqrt{\left(\frac{x_t - x_{t-1}}{W}\right)^2 + \left(\frac{y_t - y_{t-1}}{H}\right)^2}$$

단, ((x_t, y_t))는 프레임(t)에서의 오른쪽 손목 좌표이다.

4. 발목 위치 변화 횟수

조건 정의

프레임 간 발목 y좌표가 다음 조건을 만족할 경우 위치 변화 이벤트로 간주한다.

$$\Delta y_t = \left| y_t - y_{t-1} \right|$$

Switch_t =
$$\begin{cases} 1, & \text{if } \Delta y_t > \frac{H}{30} \text{ and } y_t \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

총 변화 횟수

$$A = \sum_{t} Switch_{t}$$

시스템구조및분석흐름

4. 총 접수 (0~100점 사이의 숫자)

분석 흐름도 및 아키텍처

```
Score = f\left(\Delta \theta, d, D_{\text{wrist}}, A, \text{User Level}\right)
```

```
# 프롬프트 작성
prompt = f"""
제가 불링 자세 평가를 완료했습니다. 결과는 아래와 같습니다:
- 평균 어깨 각도 차이 (90도에서): {avg_shoulder_angle_diff}도 → 0~10점 중 {interpretations["shoulder_angle_diff"]}점
- 평균 이동 거리: {avg movement} → 0~10절 중 {interpretations["movement distance"]}절
- 손목 이동 거리 총합: {wrist_movement_total} → 0~10절 중 {interpretations["wrist_movement_total"]}절
- 발목 높이 변화 이벤트 수: {ankle switch count} → 0~10점 중 {interpretations["ankle switch count"]}점
※ 점수는 0점(가장 부족하거나 과한 상태) ~ 10점(가장 부족하거나 과한 상태)까지이며,
5점이 가장 이상적인 자세를 의미합니다.
5점에서 멀어질수록 개선이 필요한 점수이며, 0~3점 또는 7~10점은 많이 개선이 필요한 상태입니다.
4점 또는 6점은 약간의 개선이 필요합니다.
유저의 현재 실력은 {user level}입니다.
- BEGINNER는 4~6점도 좋은 점수로 간주될 수 있습니다.
- ADVANCED는 반드시 5점에 가까운 점수를 지향해야 합니다.
이 평가 결과를 바탕으로 저의 불링 자세에 대해 아래 내용을 포함하여 JSON 형식으로 평가해 주세요:
1. 잘한 점
2. 개선이 필요한 점
3. 다음 투구에 대한 짧은 추천
```


COMMON

recommend-pose

다음 투구 시 발목을 더 부드럽고 일관되게 움직이도록 연습하고, 손목을 보다 안정적으로 계하여 스트라이크 확률을 높이세요. 어깨는 현재 상태를 유지하면서 투구 동작을 최적화하세요.

good-point

어깨 각도가 비교적 안정적이며, 볼을 던질 때 큰 각도 변경이 발생하지 않아서 안정적인 자세를 유지할 가능성이 높습니다.

bad-point

발목의 높이 변화가 잦으며, 이는 투구의 일관성에 영향을 줄 수 있습니다. 또한 손목 이동 거리가 비교적 큰 편이므로 좀 더 고정적으로 유지할 필요가 있습니다.

시스템구성

자동 촬영, 분석 요청 및 실시간 확인

SPORTYUP

COMMON

다음 투구 시 발목을 더 부드럽고 일관되게 움직이도록 연습하고, 손목을 보다 안정적으로 계하여 스트라이크 확률을 높이세요. 어깨는 현재 상태를 유지하면서 투구 동작을 최적화하세요.

SPORTYUP

카메라 위치를 조정하거나 조명을 개선해주세요.

실시간 자세 추정 및 자연어 피드백 생성 및 상세 분석

분석 ID: 107

COMMON

recommend-pose

다음 투구 시 발목을 더 부드럽고 일관되게 움직이도록 연습하고, 손목을 보다 안정적으로 계하여 스트라이크 확률을 높이세요. 어깨는 현재 상태를 유지하면서 투구 동작을 최적화하세요.

good-point

어깨 각도가 비교적 안정적이며, 볼을 던질 때 큰 각도 변경이 발생하지 않아서 안정적인 자세를 유지할 가능성이 높습니다.

bad-point

발목의 높이 변화가 잦으며, 이는 투구의 일관성에 영향을 줄 수 있습니다. 또한 손목 이동 거리가 비교적 큰 편이므로 좀 더 고정적으로 유지할 필요가 있습니다.

모델 최적화 및 성능 개선

자동 촬영, 분석 요청 및 실시간 확인

양자화된 YOLOv11 객체 탐지 모델이 TFLite 형태로 내장되어 온디바이스에서 촬영 시점을 판단

항목	최적화전	최적화후
최소추론시간	4.3ms	1.1ms
평균추론시간	4.5ms	1.1ms
메모리사용량	31MB	26MB
PSNR(정확도)	N/A	37.7

모바일에서 추론 속도는 약 74% 빨라지고, 메모리 사용량은 약 16% 감소

결론 및 기대 효과

자동 촬영, 분석 요청 및 실시간 확인

- 실시간 자세 분석과 자연어 피드백을 제공하는 모바일 시스템을 성공적으로 구현
- 전문 장비 없이도 누구나 사용할 수 있고, 반복 학습 기반의 자세 교정이 가능한 시스템 설계
- 모바일 환경에서도 빠르고 정확하게 작동함을 확인

향후에는 **다양한 스포츠 종목으로 시스템을 확장**하고, 사용자 커뮤니티 기반의 **맞춤형 피드백 공유 기능**도 개발할 예정

Thank you for listening