Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Lógica Proposicional - clase 2

Teorema de la deducción, lema de Lindenbaum, completitud de SP, compacidad

Plan

- ▶ vimos que *SP* es correcto: $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$ Esto prueba
 - $ightharpoonup \Gamma$ satisfacible $\Rightarrow \Gamma$ consistente
- ▶ ahora veremos que *SP* es completo: $\Gamma \vdash \varphi \Leftarrow \Gamma \models \varphi$ Para esto:
 - Lema de Lindenbaum
 - $ightharpoonup \Gamma$ satisfacible $\Leftarrow \Gamma$ consistente
- consecuencia: Teorema de Compacidad

2

El Teorema de la Deducción

Teorema

Si
$$\Gamma \cup \{\varphi\} \vdash \psi$$
 entonces $\Gamma \vdash \varphi \rightarrow \psi$

Demostración.

Por inducción en la longitud de la demostración de $\Gamma \cup \{\varphi\} \vdash \psi$. Supongamos que

$$\varphi_1,\ldots,\varphi_n$$

es una derivación de ψ (= φ_n) a partir de $\Gamma \cup \{\varphi\}$.

- ▶ caso base (n = 1)
- paso inductivo
 - ▶ HI: para toda derivación de ψ' a partir de $\Gamma \cup \{\varphi\}$ de longitud < n tenemos $\Gamma \vdash \varphi \rightarrow \psi'$
 - ▶ probamos que para una demostración de longitud n de $\Gamma \cup \{\varphi\} \vdash \psi$ tenemos $\Gamma \vdash \varphi \rightarrow \psi$.

.

Demostración del Teorema de la Deducción (caso base)

Supongamos

- $ightharpoonup \varphi_1, \ldots, \varphi_n$ es una derivación de ψ a partir de $\Gamma \cup \{\varphi\}$
- ightharpoonup n=1 (i.e. la derivación es una sola fórmula $\varphi_1=\psi$)

Queremos ver que $\Gamma \vdash \varphi \rightarrow \psi$. Hay 3 posibilidades:

- 1. ψ es un axioma de SP
 - 1. ψ ψ es axioma 2. $\psi \to (\varphi \to \psi)$ SP1 3. $\varphi \to \psi$ MP 1,2
- 2. $\psi \in \Gamma$
- $\begin{array}{ll} 1. & \psi & \psi \in \Gamma \\ 2. & \psi \to (\varphi \to \psi) & \mathsf{SP1} \\ 3. & \varphi \to \psi & \mathsf{MP 1,2} \end{array} \right\} \Gamma \vdash \varphi \to \psi$
- 3. $\psi = \varphi$ vimos que $\vdash p \rightarrow p$. la misma demostración sirve para probar $\vdash \varphi \rightarrow \varphi$

Demostración del Teorema de la Deducción (paso inductivo)

Supongamos

$$\varphi_1,\ldots,\varphi_n$$

es una derivación de ψ a partir de $\Gamma \cup \{\varphi\}$

HI: para toda derivación de ψ' a partir de $\Gamma \cup \{\varphi\}$ de longitud < n tenemos $\Gamma \vdash \varphi \rightarrow \psi'$

Queremos ver que $\Gamma \vdash \varphi \rightarrow \psi$. Hay 4 posibilidades:

- 1. ψ es un axioma de SP: igual que en en caso base
- 2. $\psi \in \Gamma$: igual que en en caso base
- 3. $\psi = \varphi$: igual que en en caso base
- 4. ψ se infiere por MP de φ_i y φ_i (i, j < n)
 - sin pérdida de generalidad, $\varphi_i = \varphi_i \rightarrow \psi$
 - ▶ $\Gamma \cup \{\varphi\} \vdash \varphi_i$ y la derivación tiene longitud < n
 - ▶ por HI $\Gamma \vdash \varphi \rightarrow \varphi_i$
 - ▶ $\Gamma \cup \{\varphi\} \vdash \varphi_i$ y la derivación tiene longitud < n
 - ▶ por HI $\Gamma \vdash \varphi \rightarrow \varphi_i$, i.e. $\Gamma \vdash \varphi \rightarrow (\varphi_i \rightarrow \psi)$
 - ▶ sabemos (SP2) $\vdash (\varphi \rightarrow (\varphi_i \rightarrow \psi)) \rightarrow ((\varphi \rightarrow \varphi_i) \rightarrow (\varphi \rightarrow \psi))$
 - ▶ por MP 2 veces $\Gamma \vdash \varphi \rightarrow \psi$

Conjuntos consistentes

Proposición

- 1. $\Gamma \cup \{\neg \varphi\}$ es inconsistente sii $\Gamma \vdash \varphi$
- 2. $\Gamma \cup \{\varphi\}$ es inconsistente sii $\Gamma \vdash \neg \varphi$

Demostración de 1.

$$\begin{array}{ccc} (\Leftarrow) & \Gamma \vdash \varphi & \Rightarrow & \Gamma \cup \{ \neg \varphi \} \vdash \varphi \\ & \text{trivialmente} & \Gamma \cup \{ \neg \varphi \} \vdash \neg \varphi \end{array} \right\} \ \Gamma \cup \{ \neg \varphi \} \text{ es inconsistente}$$

 $(\Rightarrow) \ \, \text{existe} \,\, \psi \,\, \text{tal que} \quad \Gamma \cup \{\neg \varphi\} \vdash \psi \quad \, \text{y} \quad \Gamma \cup \{\neg \varphi\} \vdash \neg \psi \\ \text{por el Teorema de la Deducción,}$

$$\Gamma \vdash \neg \varphi \rightarrow \psi$$
 y $\Gamma \vdash \neg \varphi \rightarrow \neg \psi$

se puede ver que (ejercicio) $\vdash (\neg \varphi \to \psi) \to ((\neg \varphi \to \neg \psi) \to \varphi)$ por MP 2 veces tenemos $\Gamma \vdash \varphi$

Satisfacible \Rightarrow consistente

Teorema

Si $\Gamma \subseteq \mathsf{FORM}$ es satisfacible entonces Γ es consistente.

Demostración.

- ▶ supongamos v tal que $v \models \Gamma$ pero Γ es inconsistente
- ▶ por correctitud de *SP*, $\Gamma \models \psi$ y $\Gamma \models \neg \psi$
- \triangleright $\mathbf{v} \models \psi$ y $\mathbf{v} \models \neg \psi$

7

Lema de Lindenbaum

 $\Gamma \subseteq FORM$ es maximal consistente (m.c.) en SP si

- Γ es consistente y
- ightharpoonup para toda fórmula arphi
 - $\varphi \in \Gamma$ o
 - existe ψ tal que $\Gamma \cup \{\varphi\} \vdash \psi$ y $\Gamma \cup \{\varphi\} \vdash \neg \psi$

Lema

Si $\Gamma \subseteq \mathsf{FORM}$ es consistente, existe Γ' m.c. tal que $\Gamma \subseteq \Gamma'$.

8

Demostración del Lema de Lindenbaum (obtener Γ' ⊇ Γ m.c.)

Enumeramos todas las fórmulas: $\varphi_1, \varphi_2, \ldots$ Definimos

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\varphi_{n+1}\} & \text{si } \Gamma_n \cup \{\varphi_{n+1}\} \text{ es consistente} \\ \Gamma_n & \text{si no} \end{cases}$$

$$\Gamma' = \bigcup_{i \geq 0} \Gamma_i$$

Tenemos

- 1. $\Gamma' \supset \Gamma$
- 2. cada Γ_i es consistente
- 3. Γ' es consistente
 - ▶ si no, existe ψ tal que $\Gamma' \vdash \psi$ y $\Gamma' \vdash \neg \psi$
 - en ambas derivaciones aparecen únicamente $\{\gamma_1, \dots, \gamma_k\} \subseteq \Gamma'$.
 - sea j suficientemente grande tal que $\{\gamma_1,\ldots,\gamma_k\}\subseteq \Gamma_j$
 - entonces $\Gamma_i \vdash \psi$ y $\Gamma_i \vdash \neg \psi$; contradice 2
- 4. Γ' es maximal
 - ▶ supongamos $\varphi \notin \Gamma'$. Debe existir n tal que $\varphi_{n+1} = \varphi$
 - $\varphi_{n+1} \notin \Gamma_{n+1}$, entonces $\Gamma_n \cup \{\varphi_{n+1}\}$ es inconsistente
 - ▶ luego $\Gamma' \cup \{\varphi_{n+1}\}$ es inconsistente (pues $\Gamma' \supseteq \Gamma_n$)

Conjuntos maximales consistentes

Proposición

Si Γ' es m.c. entonces para toda $\varphi \in \mathsf{FORM}$, o bien $\varphi \in \Gamma'$ o bien $\neg \varphi \in \Gamma'$.

Demostración.

- ▶ no puede ser que φ y $\neg \varphi$ estén en Γ' porque sería inconsistente
- supongamos que ninguna está. Como Γ' es maximal y por Proposición de la hoja 6,

$$\begin{array}{lll} \Gamma' \cup \{\varphi\} \text{ es inconsistente} & \Rightarrow & \Gamma' \vdash \neg \varphi \\ \Gamma' \cup \{\neg \varphi\} \text{ es inconsistente} & \Rightarrow & \Gamma' \vdash \varphi \end{array} \right\} \Gamma' \text{ inconsistente}$$

Proposición

Sea Γ' m.c. $\Gamma' \vdash \varphi$ sii $\varphi \in \Gamma'$.

Consistente \Rightarrow satisfacible

Teorema

Si $\Gamma \subseteq FORM$ es consistente entonces Γ es satisfacible.

Demostración.

Dado Γ consistente, construimos $\Gamma' \supseteq \Gamma$ m.c. (Lindenbaum)

Definimos la interpretación v tal que

$$v(p) = 1 \operatorname{sii} \ p \in \Gamma'$$

Veamos $v \models \varphi$ sii $\varphi \in \Gamma'$ por inducción en la complejidad de φ (i.e. cantidad de \neg o \rightarrow que aparecen en φ)

- caso base: $\varphi = p$. Trivial por definición de v.
- paso inductivo:
 HI: v ⊨ φ sii φ ∈ Γ' para toda φ de complejidad < m
 Sea φ de complejidad m. Hay 2 casos:
 - 1. $\varphi = \neg \psi$
 - 2. $\varphi = \psi \rightarrow \rho$

Demostración de consistente \Rightarrow satisfacible (caso $\varphi = \neg \psi$)

HI: $v \models \varphi$ sii $\varphi \in \Gamma'$ para toda φ de complejidad < m $\varphi = \neg \psi \text{ tiene complejidad } m.$

Quiero probar que $v \models \varphi$ sii $\varphi \in \Gamma'$

$$(\Rightarrow) \ \ v \models \varphi \Rightarrow v \not\models \psi \stackrel{\mathsf{HI}}{\Rightarrow} \psi \notin \Gamma' \Rightarrow \neg \psi \in \Gamma' \Rightarrow \varphi \in \Gamma'$$

$$(\Leftarrow) \ \ \varphi \in \Gamma' \Rightarrow \psi \notin \Gamma' \stackrel{\mathsf{HI}}{\Rightarrow} v \not\models \psi \Rightarrow v \models \neg \psi \Rightarrow v \models \varphi$$

Demostración de consistente \Rightarrow satisfacible (caso $\varphi = \psi \rightarrow \rho$)

HI: $\mathbf{v} \models \varphi \text{ sii } \varphi \in \Gamma'$ para toda φ de complejidad $< \mathbf{m}$ $\varphi = \psi \rightarrow \rho$ tiene complejidad \mathbf{m} .

Quiero probar que $v \models \varphi$ sii $\varphi \in \Gamma'$

entonces $\psi \to \rho \in \Gamma'$

$$(\Rightarrow) \ \mathsf{v} \models \varphi \Rightarrow \mathsf{v} \models (\psi \to \rho) \Rightarrow \mathsf{v} \not\models \psi \ \mathsf{o} \ \mathsf{v} \models \rho$$

▶
$$v \not\models \psi \stackrel{\mathsf{HI}}{\Rightarrow} \psi \notin \Gamma' \Rightarrow \neg \psi \in \Gamma' \Rightarrow \Gamma' \vdash \neg \psi$$

sabemos $\vdash \neg \psi \rightarrow (\psi \rightarrow \rho)$
por MP $\Gamma' \vdash \psi \rightarrow \rho$

▶
$$v \models \rho \stackrel{\mathsf{HI}}{\Rightarrow} \rho \in \Gamma' \Rightarrow \Gamma' \vdash \rho$$

sabemos por SP1 que $\vdash \rho \rightarrow (\psi \rightarrow \rho)$
por MP $\Gamma' \vdash \psi \rightarrow \rho$
entonces $\psi \rightarrow \rho \in \Gamma'$

(
$$\Leftarrow$$
) $v \not\models \varphi \Rightarrow v \models \psi \text{ y } v \not\models \rho \stackrel{\mathsf{HI}}{\Rightarrow} \psi \in \Gamma' \text{ y } \rho \notin \Gamma'$
 $\psi \in \Gamma' \text{ y } \neg \rho \in \Gamma' \Rightarrow \Gamma' \vdash \psi \text{ y } \Gamma' \vdash \neg \rho$
sabemos $\vdash \psi \rightarrow (\neg \rho \rightarrow \neg (\psi \rightarrow \rho))$
aplicando MP 2 veces, $\Gamma' \vdash \neg (\psi \rightarrow \rho)$

aplicando MP 2 veces, $\Gamma' \vdash \neg(\psi \rightarrow \rho)$ por lo tanto $\neg(\psi \rightarrow \rho) \in \Gamma'$ entonces $\psi \rightarrow \rho \notin \Gamma'$ (ejercicio)

(ejercicio)

Teorema de Completitud (fuerte)

Probamos que

- Γ consistente sii Γ satisfacible (hojas 7 y 11)
- ▶ $\Gamma \cup \{\neg \varphi\}$ es inconsistente sii $\Gamma \vdash \varphi$ (hoja 6)

Teorema

Si $\Gamma \models \varphi$ entonces $\Gamma \vdash \varphi$.

Demostración.

- supongamos $\Gamma \models \varphi$
- ▶ $\Gamma \cup \{\neg \varphi\}$ es insatisfacible
- ▶ $\Gamma \cup \{\neg \varphi\}$ es inconsistente
- ightharpoonup $\Gamma \vdash \varphi$

Consecuencias del Teorema de Completitud

Corolario

$$\Gamma \vdash \varphi \text{ sii } \Gamma \models \varphi$$

Corolario

 $\vdash \varphi \; \mathit{sii} \models \varphi \; \mathit{(i.e.} \; \varphi \; \mathit{es un teorema de SP sii es tautolog\'(a)}$

Teorema (Compacidad)

Sea $\Gamma \subseteq \mathsf{FORM}$. Si todo subconjunto finito de Γ es satisfacible, entonces Γ es satisfacible.

Demostración.

- supongamos Γ insatisfacible
- Γ es inconsistente
- existe ψ tal que $\Gamma \vdash \psi$ y $\Gamma \vdash \neg \psi$
- se usan solo finitos axiomas de Γ
- existe $\Delta \subseteq \Gamma$ finito tal que $\Delta \vdash \psi$ y $\Delta \vdash \neg \psi$
- Δ es inconsistente
- Δ es insatisfacible

Resumen

Notas sobre computabilidad

Habíamos visto que el conjunto de teoremas de SP es c.e.

Vemos que, de hecho, es computable:

método de decisión = tablas de verdad

$$\vdash \varphi \quad \mathit{sii} \quad \models \varphi$$

dash arphi sii en la tabla de verdad de arphi solo hay 1s en la última columna