Aufgabenblatt 2, Mathematik für Physiker 1

Finn Jannik Wagner 28.10.2021

A 2.1

(i)

Zeigen Sie, dass die Abbildung aus Bsp. 1.15 (b) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (n, m) \mapsto 2^{n-1}(2m-1)$ eine Bijektion ist.

Hierzu sei die Umkehrfunktion (Inverse) g definiert als:

Verfahren für $x \in \mathbb{N}$ beliebig: Man suche für x die größte Zweierpotenz die es restlos teilt. Nun nehme man den Logarithmus zur Basis 2 dieser Potenz. Hierzu addiere man 1. Dieser Wert ist n. Für m teile man x durch n, addiere 1 hinzu und teile durch 2.

Es folgt das f, auf Grund der Existenz der Umkehrfunktion, bijektiv ist.

(ii)

Zeigen Sie für M_1, M_2 injektiv das auch $M_1 \times M_2$ injektiv ist. Aus der Vorlesung ist bekannt das eine Teilmenge einer abzählbaren Menge wieder abzählbar ist.

Lemma 1 Jede Vereinigung von abzählbaren Mengen ist wieder abzählbar Seien M_1, M_2 sind abzählbare Mengen. Zu zeigen ist das $M_1 \cup M_2$ abzählbar ist. Dafür muss eine bijektive Abbildung $\phi(n) : \mathbb{N} \to M_1 \times M_2$ existieren. Sei

$$\phi(n) = \begin{cases} m_1 \in M_1 & \text{für } n = 1\\ m_{(n-1)/2} \in M_1 & \text{für } n \text{ ungerade}\\ m_{n/2} \in M_2 & \text{für } n \text{ gerade} \end{cases}$$

Diese Abbildung ist surjektiv da alle Elemente $m_1, m_2, m_3, m_4, \dots \in M_1$ und alle Elemente $m_1, m_2, m_3, m_4, \dots \in M_2$ angenommen werden. Diese Abbildung ist außerdem injektiv, da jeder natürlichen Zahl nach Definition nur ein Mengenelement zugewiesen wird.

 $M_1 \times M_2$ lässt sich auch schreiben als $\bigcup_{m \in M_1} m \times M_2$ $m \times M_2$ ergibt $|M_2|$ 2er-Tupel bei denen das erste Element m ist. Die Menge dieser Tupel ist gleich groß zu M_2 und ist damit auch abzählbar. Vereinigt man nun alle abzählbaren Tupelmengen so erhält man, da eine Vereinigung von abzählbaren Mengen wieder abzählbar ist, das $M_1 \times M_2$ abzählbar ist.

A 2.2

(i) Es seien $f:A\to B$ und $g:B\to C$ injektiv. Zeigen Sie, dass dann auch $g\circ f$ injektiv ist.

f injektiv:
$$\forall a_1, a_2 \in A \ f(a_1) = f(a_2) \Leftrightarrow a_1 = a_2$$

g injektiv: $\forall b_1, b_2 \in B \ g(b_1) = g(b_2) \Leftrightarrow b_1 = b_2$ Zu zeigen ist: $\forall a_1, a_2 \in A \ g(f(a_1)) = g(f(a_2)) \Leftrightarrow a_1 = a_2$ $\forall a_1, a_2 \in A \ g(f(a_1)) = g(f(a_2)), \text{ da g injektiv ist, folgt } f(a_1) = f(a_2).$ Da aber auch f injektiv ist, folgt $a_1 = a_2$ Die linke Richtung gilt auch, da f und g Funktionen sind.

Damit ist $g \circ f$ injektiv

(ii) Zeigen Sie dass die Umkehrung falsch ist, indem Sie eine injektive Funktion $g \circ f$ angeben, bei der f oder g nicht injektiv ist.

 $f: \mathbb{R}_+ \to \mathbb{R} : a \mapsto a$ $g: \mathbb{R} \to \mathbb{R} : a \mapsto a^2$ $g \circ f: \mathbb{R}_+ \to \mathbb{R} : a^2$

f ist injektiv, g ist nicht injektiv, aber $g \circ f$ ist wieder injektiv.

A 2.3

1. Annahme: $(0,1)\subset\mathbb{R}$ ist abzählbar. Es folgt die Existenz einer surjektiven Abbildung $\phi:\mathbb{N}\to(0,1)$

Sei $\phi(n)$ mit $n \in \mathbb{N}$

 $\phi(n) = 0, a_1^n a_2^n a_3^n a_4^n \dots \text{ mit } a_i^n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

2. Sei nun $z = 0, d_1 d_2 d_3 d_4 \dots$ mit

$$d_i = \begin{cases} 1 & \text{für } a_n^n \neq 1 \\ 2 & \text{alle anderen Fälle} \end{cases}$$

Diese Zahl weicht an der n-ten Nachkommastelle von allen $\phi(n)$ ab. Sie ist somit anders als alle $\phi(n)$, weil sie sich immer and der n-ten Nachkommastelle unterscheidet.

3. Es gilt $z \in (0,1)$ aber $z \notin \text{Bild}(\phi)$ was ein Wiederspruch zur Surjektivität von ϕ ist. Also war die Annahme falsch. q.e.d

A 2.4

(i) Es sei K ein Körper. Zeigen sie, dass $a \cdot 0 = 0$ für alle $a \in K$ Zu zeigen ist das das neutrale Element der Addition bei der Multiplikation mit einem anderen Element des Körpers sich selbst ergibt.

$$0 = ^{\text{Erweitert mit } 0 \cdot a} 0 \cdot a - 0 \cdot a = (0 + 0) \cdot a - 0 \cdot a = ^{\text{mit Distributivgesetz}} 0 \cdot a + 0 \cdot a - 0 \cdot a = 0 \cdot a + 0 = 0 \cdot a + 0 \cdot a = 0 \cdot a = 0 \cdot a + 0 \cdot a = 0 \cdot a = 0 \cdot a + 0 \cdot a = 0 \cdot a + 0 \cdot a = 0 \cdot a =$$

(ii) Zeigen sie das \mathbb{F}_n kein Körper ist falls $n \in \mathbb{N}$ keine Primzahl ist.

 $\min_{n} \mathbb{F}_n : (\mathbb{Z}_n, +, \cdot)$

und \mathbb{Z}_m : $(\{0,\ldots,m-1\},+,\cdot)$

wobei für \mathbb{Z}_m +, · definiert sind als:

$$+ := \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m (z_1 + z_2) \mod z_m$$
$$\cdot := \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m (z_1 \cdot z_2) \mod z_m$$

Ist n keine Primzahl, so lässt sie sich in ihre Primfaktoren zerlegen. Ein Primfaktor von n ist immer kleiener als n. Nun teilt man die Menge der

Primfaktoren in zwei P_1, P_2 mit $P_1, P_2 \neq \emptyset$. Seien q_1, q_2 das Produkt aller Zahlen der Mengen P_1 und P_2 . Setzt man nun q_1 und q_2 in · ein. So ergibt $q_1 \cdot q_2$ wieder n. $n \mod n = 0$. Da in diesem Ausdruch aber weder q_1 noch q_2 die Null waren ist die Multiplikation nicht nullteilerfrei. Somit ist \mathbb{F}_n kein Körper.

(iii) Für $m \in \mathbb{N}$ definieren wir

$$m\mathbb{Z} := \{ m \cdot z | z \in \mathbb{Z} \}$$

Zeigen Sie dass $(m\mathbb{Z}, +)$ mit der von \mathbb{Z} induzierten Addition eine abelsche Gruppe ist.

Wir überprüfen die Gruppen Axiome:

- (a) Assoziativgesetz \rightarrow Assoziativ mit + aus \mathbb{Z}
- (b) Existenz eines neutralen Elements: Die 0 ist immer in $m\mathbb{Z}$, weil $0 \in \mathbb{Z}$ und m * 0 = 0
- (c) Existenz eines inversen Elements: $\forall x \in m\mathbb{Z} \exists z \in \mathbb{Z} : x = m * z \Rightarrow (-x) = m * (-z) \text{ Mit } (-x) \in m\mathbb{Z}, \text{ da}(-z) \in \mathbb{Z}$
- (d) Abgeschlossenheit von + auf \mathbb{Z} : + : $m\mathbb{Z} \times m\mathbb{Z} \to m\mathbb{Z}$ $m\mathbb{Z} \to m\mathbb{Z} \to m\mathbb{Z}$ $\exists x, y \in m\mathbb{Z} = mx, b := my \to mx + my = m(x + y)$ Weil $(x + y) \in \mathbb{Z}$ ist + auf $m\mathbb{Z}$ abgeschlossen.
- (e) Abelsche Gruppe: a+b=mx+my=m(x+y)=m(y+x)=my+mx=b+a

Zeigen Sie weiter, dass für alle $z \in \mathbb{Z}$ und $a \in I(I)$ ist die Menge der Vielfachen von m) gilt, dass $az \in m\mathbb{Z}$:

Für beliebige $a \in I$ und $z \in \mathbb{Z}$

 $a := m * b \text{ mit } b \in \mathbb{N} \Rightarrow a * z = m * b * z \Rightarrow az \in m\mathbb{Z} \text{ weil } b * z \in \mathbb{Z}$