1 DEFINITIONS 1

1 Definitions

1.1 Vector Space

Assume that u, v, w are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

• u + v = v + u

Associativity:

- (u + v) + w = u + (v + w)
- (ab)v = a(bv)

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity:

• for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties:

- a(u+v) = au + av
- (a+b)v = av + bv

1.2 Linear Combination

A linear combination of a list of vectors $v_1, ..., v_n$ is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

1.3 Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , or $\mathrm{Span}(v_1, \ldots, v_n)$. Defined as:

$$span(v_1,...,v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1,...,a_m \in \mathbb{R}\}\$$

If the span is equal to some space $\operatorname{span}(\nu_1, \ldots, \nu_n) = V$, then you could say that ν_1, \ldots, ν_n spans V.

1.4 Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors v_1, \dots, v_n is called **linearly independent** when

$$a_1 = \cdots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

1.5 Basis

A **basis** of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^{\ltimes} is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation, as:

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

1.6 Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim\,\mathbb{R}^n=n$$

1.7 Inner Product

For a pair of vectors $u, v \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined

$$u \cdot v = u_1 v_1 + ... + u_n v_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of u and v must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}}\cdot \nu_{\{n\times 1\}}$$

The **Inner Product** is also a function $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$. The input is an ordered pair of vectors, and the output is a number. Inner products have the following properties:

Positivity:

• $\langle v, v \rangle \ge 0$ for all $v \in V$

Definiteness:

• $\langle v, v \rangle = 0$ if and only if v = 0

Additivity in First Slot:

• $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$

Homogeneity in First Slot:

• $\langle au, v \rangle = a \langle u, v \rangle$ for all $a \in \mathbb{R}$ and all $u, v \in V$

2 PROOFS 2

In another definition of the Inner Product, the concepts of "additivity" and "homogeneity" are combined into a concept called "linearity". **Bilinearity** is when there is linearity in both the First and Second slots. Additionally, there is a concept called **Symmetry** for all real numbers.

For $x, y, z \in V$ and $a, b \in \mathbb{R}$:

Bilinearity:

- Additivity and Homogeneity in First and Second Slot:
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$

Symmetry:

• $\langle x, y \rangle = \langle y, x \rangle$

1.8 Norm

The Norm of a vector \mathbf{x} is defined as the square root inner product of \mathbf{x} with itself:

$$\|x\| = \sqrt{\langle x, x \rangle}$$

The Euclidean Norm, also called 2-norm, is defined:

$$\|\mathbf{x}\|_2 = \sqrt{{\mathbf{x_1}}^2 + \ldots + {\mathbf{x_n}}^2}$$

which has the following properties:

Positivity:

- ||x|| > 0
- ||x|| = 0 if and only if x = 0

Homogeneity:

• $\|ax\| = |a|\|x\|$ for all $a \in \mathbb{R}$

Triangle Inequality:

• $||x + y|| \le ||x|| + ||y||$

1.9 Orthogonal

Two vectors $u, v \in V$ are called **orthogonal** if the inner product between them is 0,

$$\langle u, v \rangle = 0$$

you could also say "u is orthogonal to v". Orthogonal is another way of saying "at right angles to each other", or "perpendicular".

1.10 Linear Map

A linear map from vector space V to vector space W is a function $T:V\to W$ with the following properties:

Additivity

• T(u + v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity

• $T(\alpha \nu) = \alpha(T\nu)$ for all $\alpha \in \mathbb{R}$ and all $\nu \in V$

1.11 Linear Maps and Matrices

Suppose M is a linear map $f: \mathbb{R}^a \to \mathbb{R}^b$, then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,\alpha} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,\alpha} \end{bmatrix}$$

2 Proofs

2.1 Law of Cosines

For any triangle with sides a, b, c, The Law of Cosines states,

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where the angle $\angle ab = \theta$.

To generalize to vectors, we take the Law of Cosines and make Cosine Formula for Inner Product. For vectors $x, y \in V$, we can treat them as sides of the triangle:

- a = ||x||
- b = ||y||
- c = ||x y||

You can rewrite the Law of Cosines to say:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

Proof:

Start with the definition of Inner Product, and apply its algebraic properties (notably the Bilinearity property), to show that Law of Cosines for Inner Products is correct.

$$||x - y||^{2}$$

$$= \langle x - y, x - y \rangle$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle$$

$$= (\langle x, x \rangle - \langle x, y \rangle) - (\langle y, x \rangle - \langle y, y \rangle)$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}$$

The Bilinearity property is used multiple times to break down the original 1 inner product into the 4 different ones. In the last step, the Symmetry property was used to get the term $2\langle x, y \rangle$.

2 PROOFS 3

2.2 Triangle Inequality

TODO

2.3 Cauchy-Schwartz Inequality

TODO

2.4 Other

For vectors $u, v \in V$ such that:

$$\langle u, \nu \rangle = \|u\| \|\nu\| \cos \theta$$

Show that u, v are orthogonal when $\theta = 0$.