Introduction to :::: Data Structures

By: Yehia M. Abu Eita

Outlines

- Introduction
- Why data structures are important?
- Types of data structures
- Static and dynamic data structures
- Space and time complexities
- Some data structures applications

Introduction

- It is data organization, management, and storage formats that enables efficient access and modifications of data.
- It allows the processing of a large amount of data in a relatively short period of time.
- The main purpose of using data structures is to reduce time and space complexities.
- An efficient data structure makes use of minimum memory space and takes the minimal possible time to modify data.

Why data structures are important?

- It is the building block of more complex problems.
- It enhances software design and algorithms' implementation.
- Choosing an inappropriate data structure may result in slow runtimes or inefficient code.
- Data structures are used in:
 - Storing data
 - Managing resources and services
 - Data exchange

Types of data structures

- Arrays
- Stack
- Heap
- Queue
- Tree
- Table
- Graph
- Linked lists

Static and dynamic data structures

Static data structure:

- These types of data structures have fixed size in memory.
- Data can be modified but the allocated memory can not be changed during the run-time.
- **Arrays** are static data structures and any data structure is implemented using arrays is static also.

Dynamic data structure:

- These types of data structures have **dynamic size** in memory.
- Both data and the allocated memory can be modified during the run-time.
- Linked lists are dynamic data structures and any data structure is implemented using linked lists is dynamic also.

Space and time complexities

Space complexity:

- It means how much space of memory is consumed during the run-time.
- Space complexity is **increased** as long as you define **more variables** that allocates more memory.

Time complexity:

- It means **how much time** does it take **to finish** the needed operation.
- Time complexity is **increased** as long as you make **more iterations/steps** to reach your goal.

Space and time complexities

- Complexity is measured in Big-O notation.
- Time complexity is CPU operations Vs. data size.
 - O(1):
 - This means there is **no dependency** on the input data size (**The best**).
 - O(log n):
 - This means there a logarithmic increase in operations.
 - O(n):
 - This means that number of operations is the **same** as the data size.
 - O(n log n):
 - · This means that there is **more increase** in operations.
 - O(n²):
 - · This means that number of operations is **increasing rapidly** with any small change in data size (**Very bad**).

Space and time complexities

Data structure	Time Complexity (Worst)				Space complexity
	Access	Search	Insertion	Deletion	Worst
Array	O(1)	O(N)	O(N)	O(N)	O(N)
Stack	O(N)	O(N)	O(1)	O(1)	O(N)
Queue	O(N)	O(N)	O(1)	O(1)	O(N)
Singly Linked list	O(N)	O(N)	O(1)	O(1)	O(N)
Doubly Linked List	O(N)	O(N)	O(1)	O(1)	O(N)

Some data structures applications

• Some **arrays** applications:

- 2D arrays, commonly known as, matrices, are used in image processing.
- It is also used in speech processing, in which each speech signal is an array.
- Your viewing screen is also a multidimensional array of pixels.

• Some **linked** lists applications:

- Used for symbol table management in a designing compiler.
- Used in switching between applications and programs (Alt + Tab) in the Operating system (implemented using Circular Linked List).
- It can be used to implement Stacks, Queues, Graphs, and Trees.

Some data structures applications

- Some Stack applications:
 - Undo/Redo button/operation in word processors.
 - Syntaxes in languages are parsed using stacks.
 - Message logs and all messages you get are arranged in a stack.
- Some Queue applications:
 - Operating System uses queues for job scheduling.
 - To handle congestion in the networking queue can be used.
 - Sending an email, it will be queued.

Summary

- Now you have good understanding about data structures.
- It's clear that data structures are involved in many applications.
- Choosing suitable data structure results in fast and memory saving applications.
- Time and space complexities are very important for data structures.