

Validazione basata su regole di documenti per il progetto Smart Publishing Management

Tesi presentata da: Tommaso Ognibene

Relatore: Chiar.mo Prof. Fabio Vitali

Sessione: I - 2015/2016

Il progetto Smart Publishing Management

- Un sistema di gestione documentale per Alstom.
- Non un mero sistema informatico, ma un sistema informativo: definisce best practices e tre ruoli formali all'interno dell'organizzazione aziendale.
- Realizza i seguenti desiderata:
 - Un processo di produzione documentale univoco.
 - Un formato dati XML ad-hoc per la rappresentazione dei documenti.
 - Un ambiente di group editing online trusted.
 - Un sistema di templating e re-utilizzo di componenti documentali.
 - Un motore basato su regole per la validazione dei documenti.
- La tesi si compone di due parti:
 - Disamina dei requisiti teorici per l'intero progetto.
 - Presentazione del prototipo del motore basato su regole.

3 ruoli - 3 strumenti software

Ruolo	Strumento
Document Writer	Smart Structured Editor
Process Manager	Validation Engine
Document Editor	Meta-Template Editor

Nuovi contenuti estratti arricchiscono lo Smart Structured Editor.

</title>

</add>

Requisiti teorici (1)

Temporal XML XBIT (XML-based Bitemporal Data Model) MXML (Multidimensional XML Model) **Overlapping Markup** add Milestones: CLIX e ECLIX **GODDAG** (General Ordered-Descendant Directed Acyclic Graph) Esempio: <add> title Modulo di Registrazione e Monitoraggio Variabili <title> Modulo di Registrazione <add> Cronologica del add con Storicizzazione </add> degli Eventi </de|> Cronologica con Storicizzazione degli Eventi e Monitoraggio Variabili

Un esempio di GODDAG.

Requisiti teorici (2)

Operational Transformation (OT)

- Un metodo per garantire consistency maintenance in group editors.
- Rispetto al locking, OT ottiene convergence e intention preservation senza il sacrificio della responsiveness e del concurrent work.
- OT è adottato dai principali strumenti di realtime collaborative editing, ad esempio Apache Wave e Google Docs.

Office Open XML (OOXML)

- Open Packaging Conventions.
- Standards ISO/IEC 29500:2008 and ECMA-376.

Il problema dell'*intention preservation*.

II Validation Engine

Stack tecnologico:

Back-end: Node.js, Express (development framework), Passport.js (authentication middleware),

 Advance DB (development framework)

<u>MongoDB</u> (document-oriented database).

Front-end: <u>Jade</u> (template engine), <u>iQuery</u>.

Package manager: Bower, NPM.

Revision control system: Git.

Casi d'uso:

Document Writer:

- Carica un documento.
- Seleziona le regole.
- Esegui la validazione.
- Leggi e scarica i risultati.

Process Manager:

Crea le regole.

Repository:

https://github.com/tomOgn/ValidationEngine

https://github.com/tomOgn/ValidationEngineUserManagement

UML Use Case Diagram

Le regole di validazione

- Due formati XML ad-hoc:
 - Collect-And-Check:
 - <collect>: identifica una lista di elementi del documento.
 - <check>: per ciascun elemento, verifica la sua conformità ad una regola sintattica.
 - Collect-And-Compare
 - <collect>: identifica due o più liste di elementi del documento.
 - <compare>: verifica la conformità delle liste tramite una regola di comparazione.
- Linguaggi sfruttati: Regex, XPath (1.0, 2.0), XSLT (1.0, 2.0).
- Esempio minimale:

- Esempio di maggiore complessità:
 - Verificare la corretta corrispondenza tra gli acronimi contenuti nel documento e gli acronimi definitivi nella relativa tabella degli acronimi.

Schermate principali (0)

Login Enter Username Password

Cancel

Submit

Schermate principali (1)

Schermate principali (2)

Validation Engine

Schermate principali (3)

ALSTOM Validation Engine

(1) Select the document to validate (docx or xml or zip): Choose File | Pep T_A4561_t-E[1].docx (2) Select the rules to fire: Show 10 + entries Search: Target Name Description (3) View and download the results: Analytical View Synthetical View Show 10 ' entries Search: Document A Rule Matches Failed Pep_T_A456167it-E[1].docx Check Dates Format: dd-mm-yyyy 13 11 Pep_T_A456167it-E[1].docx Check Figures Description Pep_T_A456167it-E[1].docx Check Tables Description 26 17 307 Pep_T_A456167it-E[1].docx Cross Check Acronyms 343 Showing 1 to 4 of 4 entries Previous Download Synthetical View Download Analytical View

Conclusioni

Prosecuzione del lavoro:

- Completamento del Validation Engine:
 - o aggiungere il supporto al formato XLSX per i documenti.
 - o aggiungere il supporto ai controlli inter-documentali.
 - o aggiungere il supporto al linguaggio XQuery all'interno delle regole.
- Sviluppare gli altri due strumenti: Smart Structured Editor e Meta-Template Editor.

Considerazioni personali:

- Relativamente a Node is come linguaggio server-side:
 - o Ambiente open-source, cross-platform.
 - Architettura event-driven.
- Relativamente a XML come linguaggio per rappresentare documenti e regole:
 - Copiosa letteratura scientifica.
 - Ampia versatilità ma limitata capacità espressiva.
 - Linguaggi di interrogazione e manipolazione potenti ma tuttora poco diffusi.
- Relativamente alla progettazione di un sistema informatico complesso:
 - o Capacità di analisi dei desiderata del cliente.
 - o Identificazione dei casi d'uso e delle *feature* da realizzare.
 - Definizione della migliore architettura software possibile.
 - o Organizzazione del lavoro in termini di fasi esecutive, *deployment* intermedi, ripartizione dei compiti e dei ruoli.