ZESTAW ZADAŃ IV

Zadanie 1

- (a) Zapisz wzór Taylora dla funkcji $f(x) = \ln(x+1)$ w okolicy $x_0 = 0$ z dokładnością do n wyrazów; wykorzystaj otrzymany wzór do obliczenia przybliżenia ln 2 (wartość wskazana przez kalkulator: 0,693147),
- (b) Zapisz wzór Taylora dla funkcji $f(x) = \frac{2x}{2-x}$ z dokładnością do dwóch wyrazów w okolicy $x_0 = 1$; wykorzystaj otrzymany wzór do przybliżenia wartości funkcji dla x = 0.9,
- (c) w oparciu o wzór Taylora przybliż funkcję $y = \sqrt{8 x^2}$ w okolicy $x_0 = 2$ za pomocą paraboli; sprawdź dokładność przybliżenia w punktach x = 2.5 oraz x = 2.1.

Zadanie 2

Wyznacz przedziały monotoniczności i ekstrema lokalne podanych funkcji:

(a)
$$y = -2x^3 + 4x^2 + 8x + 10$$
, (b) $y = -3x^4 + 20x^3 - 24x^2 - 72x + 11$, (c) $y = 3x + \frac{1}{x^3}$, (d) $y = x^5 + (1-x)^5$, (e) $y = x^4(2x-3)^6$, (f) $y = \frac{x}{x^2+4}$, (g) $y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$, (h) $y = x^2 \ln x$, (i) $y = x^3 e^{-2x}$.

(d)
$$y = x^5 + (1-x)^5$$
, (e) $y = x^4(2x-3)^6$, (f) $y = \frac{x}{x^2+4}$,

(g)
$$y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$$
, (h) $y = x^2 \ln x$, (i) $y = x^3 e^{-2x}$.