ENHANCING KNOWLEDGE DISTILLATION PERFORMANCE THROUGH ATTENTION TRANSFER FOR CLASSIFICATION TASKS.

Nguyễn Viết Đức^{1,1}

Đoàn Văn Hoàng^{1,2}

² University of Information and Technology UIT. Vietnam

What?

We introduce now approach to enhance performance for classification task in IoT device

- Proposed a robust architecture combine Knowledge Distillation with Attention Transfer
- Evaluated the pipeline performance on several benchmark and compare with existing methods.

Why AT in Classification Tasks?

- Traditional KD limitations: In some cases, logits alone don't capture all the nuances of the data (e.g., spatial relationships in an image).
- AT advantage: By transferring attention maps, the student learns not just the output but also where and what the teacher is focusing on, leading to better generalization and accuracy.

Overview

b)Seft-attention mechanism

Description

- **1.Teacher Model**: Using **ResNet-50**, a large, pre-trained model as a source of knowledge transfer with attention maps extracted from intermediate layers using self-attention mechanism to highlight characteristic spatial regions and logits feature
- **2.Student Model**: MobileNetV2, Smaller, computationally efficient model is trained to:
 - Match the logits of the teacher using KL Divergence Loss.

$$L_{KD} = KL(Z_t||Z_s)$$

Aggregate loss function:

 Mimic the teacher's attention maps using Mean Squared Error (MSE) Loss.

$$L_{total} = \alpha L_{KD} + \beta L_{AT}$$

$$L_{AT} = MSE(A_t, A_s)$$

3.Outcome: The student achieves high performance with reduced size, making it suitable for deployment on devices with limited computational power.