Domácí cvičení 8

(primitivní funkce)

8/1) Najděte derivace následujících funkcí:

a)
$$f(x) = \ln 3x$$
,

b)
$$f(x) = \ln \frac{x}{3}$$

c)
$$f(x) = \ln(3x + 6)$$
,

a)
$$f(x) = \ln 3x$$
, b) $f(x) = \ln \frac{x}{3}$, c) $f(x) = \ln (3x + 6)$, d) $f(x) = \ln \frac{x + 6}{3}$

e)
$$f(x) = \ln 5x$$

f)
$$f(x) = \ln \frac{x}{5}$$

$$g) f(x) = \ln(5x - 8)$$

e)
$$f(x) = \ln 5x$$
, f) $f(x) = \ln \frac{x}{5}$, g) $f(x) = \ln(5x - 8)$, h) $f(x) = \ln \frac{x - 8}{5}$,

$$i) f(x) = \ln(-2x),$$

i)
$$f(x) = \ln(-2x)$$
, j) $f(x) = \ln\left(\frac{x}{-2}\right)$, k) $f(x) = \ln(-2x+5)$, l) $f(x) = \ln\frac{x+5}{-2}$.

k)
$$f(x) = \ln(-2x + 5)$$

l)
$$f(x) = \ln \frac{x+5}{-2}$$
.

(Praxe v určování derivací funkcí tohoto typu se vám bude velmi hodit při hledání primitivních funkcí.)

8/2) Vypočtěte:

a)
$$\int x^2 (2x^2 - 1)^2 dx$$
,

b)
$$\int \left(\sqrt[3]{x} + \frac{1}{\sqrt{x^3}}\right)^2 dx$$
, c) $\int \frac{3}{\sqrt{4 - 4x^2}} dx$,

c)
$$\int \frac{3}{\sqrt{4-4x^2}} \, \mathrm{d}x,$$

d)
$$\int (5^x + 2 \cdot 3^{-x} - 4\cos x) dx$$
, e) $\int \frac{x^2 + 3}{5 + 5x^2} dx$

e)
$$\int \frac{x^2 + 3}{5 + 5x^2} \, dx$$

8/3) Vypočtěte:

a)
$$\int x \ln x \, dx$$
,

b)
$$\int e^x (x^3 - 2x) dx$$

8/4) Vypočtěte:

a)
$$\int \sin 7x \, dx$$
,

b)
$$\int e^{-2x} dx$$
,

a)
$$\int \sin 7x \, dx$$
, b) $\int e^{-2x} \, dx$, c) $\int \cos(-8x) \, dx$, d) $\int \cosh 6x \, dx$,

d)
$$\int \cosh 6x \, dx$$

e)
$$\int \frac{1}{\cos^2 3x} \, \mathrm{d}x$$

f)
$$\int \frac{1}{\sin^2(-5x)} \, \mathrm{d}x$$

$$g) \int \frac{1}{1 + (3x)^2} \, \mathrm{d}x$$

e)
$$\int \frac{1}{\cos^2 3x} dx$$
, f) $\int \frac{1}{\sin^2(-5x)} dx$, g) $\int \frac{1}{1 + (3x)^2} dx$, h) $\int \frac{1}{\sqrt{1 - (-2x)^2}} dx$,

i)
$$\int \sin \frac{x}{7} \, \mathrm{d}x$$

$$j) \int e^{\frac{x}{-2}} dx,$$

i)
$$\int \sin \frac{x}{7} dx$$
, j) $\int e^{-\frac{x}{2}} dx$, k) $\int \cos \left(\frac{x}{-8}\right) dx$, l) $\int \cosh \frac{x}{6} dx$,

1)
$$\int \cosh \frac{x}{6} \, \mathrm{d}x$$

$$m) \int \frac{1}{\cos^2 \frac{x}{3}} \, \mathrm{d}x$$

n)
$$\int \frac{1}{\sin^2(-x)} dx$$

o)
$$\int \frac{1}{1+\left(\frac{x}{2}\right)^2} dx$$

m)
$$\int \frac{1}{\cos^2 \frac{x}{3}} dx$$
, n) $\int \frac{1}{\sin^2 \left(\frac{x}{-5}\right)} dx$, o) $\int \frac{1}{1 + \left(\frac{x}{3}\right)^2} dx$, p) $\int \frac{1}{\sqrt{1 - \left(\frac{x}{-2}\right)^2}} dx$

8/5) Vypočtěte (pomocí lineárních substitucí, tedy bez umocnění v integrandu!):

a)
$$\int (2x+1)^3 \, \mathrm{d}x$$

b)
$$\int (1-7x)^8 dx$$
,

a)
$$\int (2x+1)^3 dx$$
, b) $\int (1-7x)^8 dx$, c) $\int \left(\frac{4-x}{3}\right)^2 dx$, d) $\int \left(5+\frac{x}{4}\right) dx$,

$$d) \int \left(5 + \frac{x}{4}\right) dx,$$

e)
$$\int \frac{1}{(2x+1)^3} \, \mathrm{d}x$$
,

f)
$$\int \frac{1}{(1-7x)^8} \, \mathrm{d}x$$

e)
$$\int \frac{1}{(2x+1)^3} dx$$
, f) $\int \frac{1}{(1-7x)^8} dx$, g) $\int \frac{1}{\left(\frac{4-x}{3}\right)^2} dx$, h) $\int \frac{1}{\left(5+\frac{x}{4}\right)} dx$,

$$h) \int \frac{1}{\left(5 + \frac{x}{4}\right)} \, \mathrm{d}x$$

i)
$$\int e^{2x+1} dx$$
,

i)
$$\int e^{2x+1} dx$$
, j) $\int \frac{1}{1+(1-7x)^2} dx$, k) $\int \sin\left(\frac{4-x}{3}\right) dx$, l) $\int \frac{1}{\cos^2\left(5+\frac{x}{4}\right)} dx$

$$k) \int \sin\left(\frac{4-x}{3}\right) dx$$

$$1) \int \frac{1}{\cos^2\left(5 + \frac{x}{4}\right)} \, \mathrm{d}x$$

8/6) Vypočtěte:

a)
$$\int (5x^4 + 6x^2 - 6x) \ln 4x \, dx$$
,

b)
$$\int (2x^2 - 3x) \sin \frac{x}{3} \, \mathrm{d}x$$

c)
$$\int (x^2 + 5) \cos 2x \, \mathrm{d}x,$$

d)
$$\int (-x^2 + 4x - 7) e^{\frac{x}{2}} dx$$

Výsledky:

$$f'(x) = \frac{1}{x}$$

b)
$$f'(x) = \frac{1}{x}$$

a)
$$f'(x) = \frac{1}{x}$$
, b) $f'(x) = \frac{1}{x}$, c) $f'(x) = \frac{3}{3x+6}$, d) $f'(x) = \frac{1}{x+6}$,

d)
$$f'(x) = \frac{1}{x+6}$$

e)
$$f'(x) = \frac{1}{x}$$
,

$$f) f'(x) = \frac{1}{x}$$

e)
$$f'(x) = \frac{1}{x}$$
, f) $f'(x) = \frac{1}{x}$, g) $f'(x) = \frac{5}{5x - 8}$, h) $f'(x) = \frac{1}{x - 8}$,

h)
$$f'(x) = \frac{1}{x - 8}$$

i)
$$f'(x) = \frac{1}{x}$$
,

j)
$$f'(x) = \frac{1}{x}$$

i)
$$f'(x) = \frac{1}{x}$$
, j) $f'(x) = \frac{1}{x}$, k) $f'(x) = \frac{-2}{-2x+5}$,

1)
$$f'(x) = \frac{1}{x+5}$$
.

$$8/2$$
) a) $\frac{4}{7}x^7 - \frac{4}{5}x^5 + \frac{1}{3}x^3 + c$ na \mathbb{R} (integrand roznásobte)

b)
$$\frac{3}{5}\sqrt[3]{x^5} - 12\frac{1}{\sqrt[6]{x}} - \frac{1}{2}\frac{1}{x^2} + c$$
 na $(0, \infty)$ (integrand roznásobte a odmocniny převed'te na mocniny)

c)
$$\frac{3}{2}\arcsin x + c \quad \text{na} \ (-1,1) \quad \Big(\text{ ve jmenovateli vytkněte } 2 = \sqrt{4} \text{ ven z odmocniny } \Big)$$

d)
$$\frac{5^x}{\ln 5} - 2\frac{3^{-x}}{\ln 3} - 4\sin x + c$$
 na \mathbb{R}

e)
$$\frac{1}{5}(x+2\operatorname{arctg} x)+c$$
 na \mathbb{R} (použijte přepis integrandu $f(x)=\frac{1}{5}\frac{x^2+3}{1+x^2}=\frac{1}{5}\left(1+\frac{2}{1+x^2}\right)$)

$$8/3$$
) a) $\frac{x^2}{2} \ln x - \frac{x^2}{4} + c$ na $(0, \infty)$ (1× per partes, derivujeme logaritmus)

b)
$$e^x(x^3-3x^2+4x-4)+c$$
 na \mathbb{R} (3× per partes, derivujeme pokaždé polynom)

 $8/4\,)$ Z prostorových důvodů je uvedena vždy jen jedna z primitivních funkcí (prok vždy platí $k\in\mathbb{Z})$:

a)
$$-\frac{1}{7}\cos 7x$$
 na \mathbb{R} ,
b) $-\frac{1}{2}e^{-2x}$ na \mathbb{R} ,
c) $-\frac{1}{8}\sin(-8x)$ na \mathbb{R} ,
d) $\frac{1}{6}\sinh 6x$ na \mathbb{R} ,

e)
$$\frac{1}{3} \operatorname{tg} 3x$$
 na $(-\frac{\pi}{6} + k\frac{\pi}{3}, \frac{\pi}{6} + k\frac{\pi}{3}),$ f) $\frac{1}{5} \operatorname{cotg}(-5x)$ na $(k\frac{\pi}{5}, (k+1)\frac{\pi}{5}),$

g)
$$\frac{1}{3}\operatorname{arctg} 3x$$
 na \mathbb{R} , h) $-\frac{1}{2}\operatorname{arcsin}(-2x)$ na $(-\frac{1}{2},\frac{1}{2})$,

i)
$$-7\cos\frac{x}{7}$$
 na \mathbb{R} , j) $-2e^{\frac{x}{-2}}$ na \mathbb{R} ,

k)
$$-8\sin\left(\frac{x}{-8}\right)$$
 na \mathbb{R} , l) $6\sinh\frac{x}{6}$ na \mathbb{R} ,

m)
$$3 \operatorname{tg} \frac{x}{3}$$
 na $(-\frac{3\pi}{2} + 3k\pi, \frac{3\pi}{2} + 3k\pi)$, n) $5 \operatorname{cotg} (\frac{x}{-5})$ na $(5k\pi, 5(k+1)\pi)$,

o)
$$3 \operatorname{arctg}\left(\frac{x}{3}\right)$$
 na \mathbb{R} , p) $-2 \operatorname{arcsin}\left(\frac{x}{-2}\right)$ na $(-2,2)$

(Zkuste integrály ještě jednou přepočítat bez vypisování substituce. Např. v a) můžete uvažovat takto: Primitivní funkcí k funkci sin t je funkce $-\cos t$, primitivní funkcí k funkci sin t tedy bude nějaký násobek funkce $-\cos 7x$. Kdybychom funkci $-\cos 7x$ zderivovali, dostali bychom funkci t sin t wy však máme z této funkce jen sedminu, tedy primitivní funkcí bude sedmina funkce t (Nebo: "Když se při derivování konstantou u t vydělit".)

8/5) Z prostorových důvodů je uvedena vždy jen jedna z primitivních funkcí (pro k platí $k \in \mathbb{Z}$):

a)
$$\frac{1}{8}(2x+1)^4$$
 na \mathbb{R} , b) $-\frac{1}{63}(1-7x)^9$ na \mathbb{R} ,

c)
$$-\left(\frac{4-x}{3}\right)^3$$
 na \mathbb{R} , d) $2\left(5+\frac{x}{4}\right)^2$ na \mathbb{R} ,

e)
$$-\frac{1}{4}\frac{1}{(2x+1)^2}$$
 na $(-\infty, -\frac{1}{2})$ a na $(-\frac{1}{2}, \infty)$, f) $\frac{1}{49}\frac{1}{(1-7x)^7}$ na $(-\infty, \frac{1}{7})$ a na $(\frac{1}{7}, \infty)$,

g)
$$3\frac{1}{\left(\frac{4-x}{3}\right)}$$
 na $(-\infty,4)$ a na $(4,\infty)$, h) $4\ln\left|5+\frac{x}{4}\right|$ na $(-\infty,-20)$ a na $(-20,\infty)$,

i)
$$\frac{1}{2} e^{2x+1}$$
 na \mathbb{R} , j) $-\frac{1}{7} \operatorname{arctg} (1-7x)$ na \mathbb{R} ,

k)
$$3\cos\left(\frac{4-x}{3}\right)$$
 na \mathbb{R} , l) $4\operatorname{tg}\left(5+\frac{x}{4}\right)$ na $((4k-2)\pi-20,(4k+2)\pi-20)$

(Jako v předchozím příkladu zkuste integrály ještě jednou přepočítat bez vypisování substituce.)

$$8/6$$
) a) $(x^5 + 2x^3 - 3x^2) \ln 4x - \frac{x^5}{5} - \frac{2x^3}{3} + \frac{3x^2}{2} + c$ na $(0, \infty)$ (1× per partes, derivujeme logaritmus)

b)
$$(-6x^2 + 9x + 108)\cos\frac{x}{3} + (36x - 27)\sin\frac{x}{3} + c$$
 na \mathbb{R} (2× per partes, derivujeme pokaždé polynom)

c)
$$\left(\frac{x^2}{2} + \frac{9}{4}\right) \sin 2x + \frac{x}{2} \cos 2x + c$$
 na \mathbb{R} $\left(2 \times \text{ per partes, derivujeme pokaždé polynom}\right)$

d)
$$(-2x^2+16x-46)$$
 e $^{\frac{x}{2}}+c$ na \mathbb{R} (2× per partes, derivujeme pokaždé polynom)