Folha Prática 2

- 1. Descreva informalmente a linguagem de alfabeto $\Sigma = \{0, 1\}$ indicada em cada alínea. Para facilitar a análise, note que os operadores de fecho de Kleene, concatenação e união (ou interseção) têm uma precedência análoga aos operadores potência, produto e soma em expressões aritméticas. Assim, por exemplo, $\{0\}\{00\}^* \cup \{1\}^*$ deve ser entendida como $(\{0\}(\{00\}^*)) \cup (\{1\}^*)$.
- a) $\{0\}^*\{00\}$
- **b)** $\{0\}^* \cup \{1\}^*$
- c) $\{0\}^*\{1\}^*$
- **d)** $\{01,00\}\{0,1\}^*$
- **e)** $\{0,1\}^*\{101,111\}$ **h)** $\{0,1\}^*\{1\}\{0,1\}^*$ **f)** $\{0,1\}^*\{11,00\}\{0,1\}^*$ **i)** $\{0\}\{00\}^* \cup \{1\}^*$ **g)** $\{0,1\}^* \setminus \{0\}^*$, isto \acute{e} , $\overline{\{0\}^*}$ **j)** $\{000,1\}^* \cap \{00,1\}^*$

- **2.** Averigue a veracidade ou falsidade de:
- **a)** $\{0,1\}^*\{1\}\{0,1\}^* = \{0,1\}^*\{1\}$ **b)** $\{0\}^*\{00\} = \{00,000\}^* \setminus \{\varepsilon\}$ **c)** $(\{0\}\{00,1\}^*)^* = \{0,1\}^*$

- **d)** $(\{0\}\{1\}^*\{0\})^* = (\{0\}\{1\}^*\{0\} \cup \{1\})^*$ **e)** $\{1\}^*(\{0\}\{1\}^*\{0\}\{1\}^*)^* = (\{0\}\{1\}^*\{0\} \cup \{1\})^*$

Expressões regulares abreviadas são obtidas de expressões regulares por remoção de parentesis desnecessários, considerando a associatividade da união e da concatenação e a precedência relativa das operações (união, concatenação e fecho de Kleene). Não é efetuada qualquer outra alteração além da remoção de parentesis.

A forma abreviada permite-nos mais facilmente identificar a linguagem que a expressão descreve.

Por exemplo, $((bb) + ((a(a^*)) + (((aa)(bb))(b^*))))$ ficaria $bb + aa^* + aabbb^*$.

Notar que $((bb)^*)$ não é equivalente a $(b(b^*))$, pelo que não pode ser escrita na forma abreviada como bb^* . Tem de ficar $(bb)^*$.

Analogamente, $(b(a + b)) \not\equiv ((ba) + b)$. Assim, (b(a + b)) pode ser escrita como b(a + b) mas não como ba + b.

- 3. Todas as linguagens definidas no problema 1. são linguagens regulares (i.e., linguagens que podem ser descritas por expressões regulares). Apresente uma expressão regular **não abreviada** que caraterize a linguagem definida em **1a**) e, a seguir, defina-a por uma expressão regular abreviada. Proceda do mesmo modo para 1b) e 1c), e depois descreva as restantes linguagens por expressões regulares abreviadas.
- **4.** Justificando sucintamente a resposta, indique uma expressão regular *abreviada*, sobre $\Sigma = \{0, 1\}$, que caraterize a linguagem formada pelas palavras de Σ^* que:
- a) têm no máximo três 0's.
- b) têm pelo menos dois 0's consecutivos e pelo menos dois 1's consecutivos.
- c) não têm 10 como prefixo.
- d) têm no máximo dois 0's, no mínimo dois 1's e não terminam em 1.
- e) têm 001 como sufixo e têm pelo menos três 0's consecutivos.
- f) têm 001 como subpalavra e têm no máximo dois 1's.
- g) têm 1101 como subpalavra e têm número par de 1's.
- 5. Para cada uma das linguagens indicadas em 4., determine um autómato finito determinístico (AFD) que a reconheça e caraterize a linguagem de alfabeto $\Sigma = \{0, 1\}$ constituída pelas palavras que levam o AFD do estado inicial a cada estado.

6. Seja Σ um alfabeto e sejam r, s e t expressões regulares sobre Σ . Por definição, duas expressões regulares são equivalentes se e só se descrevem a mesma linguagem, isto é, $r \equiv s$ sse $\mathcal{L}(r) = \mathcal{L}(s)$. Prove as seguintes equivalências:

a)
$$(\emptyset + r) \equiv r$$

b) $((\varepsilon + r)^*) \equiv (r^*)$
c) $((\emptyset^*)r) \equiv r$
d) $(\emptyset r) \equiv \emptyset$
e) $(r(s+t)) \equiv ((rs) + (rt))$
f) $(((r^*) + (s^*))^*) \equiv ((r+s)^*)$
g) $(((r^*)(s^*))^*) \equiv ((r+s)^*)$
abreviadamente, $\emptyset + r \equiv r$
 $(\varepsilon + r)^* \equiv r^*$
 $(\varepsilon + r)^* \equiv (r+s)^*$
 $(r^* + s^*)^* \equiv (r+s)^*$

Sugestão: em 6., deve usar a noção de linguagem descrita por uma expressão regular sobre Σ e as definições das operações sobre linguagens, recordando que:

$$\mathcal{L}((r+s)) = \mathcal{L}(r) \cup \mathcal{L}(s)$$
 $\mathcal{L}((rs)) = \mathcal{L}(r)\mathcal{L}(s)$
 $\mathcal{L}((r^*)) = (\mathcal{L}(r))^*$
 $\mathcal{L}(\emptyset) = \emptyset$
 $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
 $\mathcal{L}(a) = \{a\}, \text{ para todo } a \in \Sigma.$