INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

C07C 271/12, A01N 47/12, C07C 271/24, C07D 295/20, C07C 271/28, 271/14, 271/22, A01N 47/16, 47/18, 47/20

(11) Internationale Veröffentlichungsnummer:

A1

(43) Internationales Veröffentlichungsdatum:

22. December 1994 (22.12.94)

(21) Internationales Aktenzeichen:

PCT/EP94/01691

(22) Internationales Anmeldedatum:

25. Mai 1994 (25.05.94)

P 43 18 890.7

7. Juni 1993 (07.06.93)

DE

(81) Bestimmungsstaaten: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, NO, NZ, PL, RO, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(30) Prioritätsdaten:

P 43 32 508.4

24. September 1993 (24.09.93) DE

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HEUER, Lutz [DE/DE]; Scheibler Strasse 83, D-47800 Krefeld (DE). WACHTLER, Peter [DE/DE]; Morgengraben 4, D-51061 Köln (DE). KU-GLER, Martin [DE/DE]; Am Kloster 47, D-42799 Leichlingen (DE). SCHRAGE, Heinrich [DE/DE]; Doerperhofstrasse 31, D-47800 Krefeld (DE). BUSCHHAUS, Hans-Ulrich [DE/DE]; Bethelstrasse 24, D-47800 Krefeld (DE).

(74) Gemeinsamer Vertreter: AKTIENGE-BAYER SELLSCHAFT; D-51368 Leverkusen (DE).

(54) Title: IODOPROPARGYL CARBAMATES AND THEIR USE AS BIOCIDES IN THE PROTECTION OF PLANTS AND **MATERIALS**

(54) Bezeichnung: IODPROPARGYLCARBAMATE UND IHRE VERWENDUNG ALS BIOZIDE IM PFLANZEN- UND MATERI-**ALSCHUTZ**

(57) Abstract

The invention concerns propargyl carbamates of formula (I) in which R¹ and R², independently of each other, are hydrogen, alkyl or phenyl, or R1 and R2 together form a 5- to 8-membered ring, and R³ and R⁴, independently of each other, are alkyl (which may optionally have 1 to 3 oxygen, sulphur or nitrogen atoms in the carbon chain and/or may optionally be susbtituted) or optionally substituted

$$I \cdot C \equiv C - \begin{pmatrix} R^1 \\ C - O \end{pmatrix} \times \begin{pmatrix} R^3 \\ R^4 \end{pmatrix}$$
 (I)

aryl or aralkyl, or R3 and R4, together with the nitrogen atom to which they are bound, form an optionally substituted 5- to 8-membered ring which may optionally include 1 to 3 oxygen, sulphur and/or nitrogen atoms in the ring and/or may optionally be benzoanellated. The invention also concerns a method of preparing them and their use as biocides in the protection of plants and materials.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Propagylcarbamate der Formel (I), in welcher R¹, R² unabhängig voneinander für Wasserstoff, Alkyl oder Phenyl stehen oder R1 und R2 einen 5- bis 8-gliedrigen Ring bilden, R3, R4 unabhängig voneinander für gegebenenfalls durch 1 bis 3 Sauerstoff-, Schwefel-, oder Stickstoffatome unterbrochenes und/oder gegebenenfalls substituiertes Alkyl, oder für gegebenenfalls substituiertes Aryl, Aralkyl stehen, oder zusammen mit dem Stickstoffatom an das sie gebunden sind einen gegebenenfalls substituierten 5bis 8-gliedrigen Ring bilden, der gegebenenfalls durch 1 bis 3 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochen ist, und/oder der gegebenenfalls benzoanelliert ist. Verfahren zu ihrer Herstellung und ihre Verwendung als Biozide im Pflanzen- und Materialschutz.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarica	HU	Ungarn	NZ	Neusceland
BJ	Benin	Œ	Irland	PL	Polen
BR	Brasilien	П	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Techad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldan	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ.	Usbekistan
FR	Frankreich	MIN	Mongolei	VN	Vietnam

IODPROPARGYLCARBAMATE UND IHRE VERWENDUNG ALS BIOZIDE IM PFLANZEN- UND MATERIALSCHUTZ

10

Die vorliegende Erfindung betrifft neue Propargylcarbamate, Verfahren zu ihrer Herstellung und ihre Verwendung als Biozide im Pflanzen- und Materialschutz.

Aus US-3 923 870 sind Iodpropargylcarbamate des allgemeinen Typs

$$\left[\begin{array}{c} \text{I-C=C-C(CH_2)n-O} \\ \text{O} \end{array}\right] \stackrel{\text{NH}}{\longrightarrow} \left[\begin{array}{c} -R \\ m \end{array}\right]$$

20

bekannt.

Aus US-4 865 892 sind Verbindungen des Typs

25

$$I - C \equiv C - \begin{pmatrix} R' \\ 1 \\ C - O \end{pmatrix} NH - \begin{pmatrix} R \\ R' \\ Q \end{pmatrix}$$

30

bekannt und aus DE 3.216.895 des Typs

- 2 -

5

10

Diesen Verbindungen wird eine antimikrobielle, fungizide, bakterizide Verwendung im Material- oder im Pflanzenschutz zugeschrieben.

- Die Verwendung dieser Stoffe wird jedoch durch eintretende Zersetzung dieser Verbindung im Anwendungsgebiet eingeschränkt. Dadurch werden sowohl höhere Anfangsdosierungen nötig als rein biologisch erforderlich, auch treten Verfärbungen auf, was insbesondere bei der Verwendung im Materialschutz zu Problemen führt.
- 20 Es wurden nun neue Propagylcarbamate der allgemeinen Formel (I)

$$I-C \equiv C - \begin{bmatrix} R^1 \\ I - O \\ R^2 \end{bmatrix}$$

$$R^3$$

$$R^4$$
(I)

25

in welcher

- 30 R¹, R² unabhängig voneinander für Wasserstoff, Alkyl oder Phenyl stehen oder R¹ und R² einen 5- bis 8-gliedrigen Ring bilden,
- unabhängig voneinander für gegebenenfalls durch 1 bis 3 Sauerstoff-,
 Schwefel-, oder Stickstoffatome unterbrochenes und/oder
 gegebenenfalls substituiertes Alkyl, oder für gegebenenfalls
 substituiertes Aryl, Aralkyl stehen,

oder zusammen mit dem Stickstoffatom an das sie gebunden sind einen gegebenenfalls substituierten 5- bis 8-gliedrigen Ring bilden, der gegebenenfalls durch 1 bis 3 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochen ist, und/oder der gegebenenfalls benzoanelliert ist,

10

15

20

25

30

gefunden.

Ar

steht im folgenden bevorzugt für Aryl mit 6 bis 10 Kohlenstoffatomen, das einfach bis fünffach, gleichartig oder verschieden substituiert sein kann durch Halogen, Hydroxy, Cyano, Nitro, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfinyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylsulfinyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylsulfonyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, Dialkylamino mit 1 bis 4 Kohlenstoffatomen in jedem Alkylteil, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil, Alkoximinoalkyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen substituiertes,

zweifach verknüpftes Alkylen mit 1 bis 3 Kohlenstoffatomen, gegebenen-

10

15

20

30

35

falls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes Dioxyalkylen mit 1 bis 4 Kohlenstoffatomen, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes Cycloalkyl mit 3 mit 6 Kohlenstoffatomen, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalokyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes, gesättigtes Heterocyclyl mit 5 bis 7 Ringgliedern sowie 4 bis 6 Kohlenstoffatomen und 1 oder 2 gleichen oder verschiedenen Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, und ferner durch Phenyl, Phenoxy, Benzyl, Benzyloxy, Phenylethyl oder Phenylethyloxy, wobei jeder der 6 letztgenannten Substituenten im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen, Alkoxy mit 1 bis 3 Kohlenstoffatomen, Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen und/oder durch Halogenalkoxy mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen.

25 oder

auch bevorzugt für gegebenenfalls benzoannelliertes Heteoaryl mit 2 bis 9 Kohlenstoffatomen und 1 bis 3 gleich oder verschiedenen Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, wobei jeder dieser Reste einfach bis fünffach substituiert sein kann durch Halogen, Hydroxy, Cyano, Nitro, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfinyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen,

10

15

20

25

30

35

und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylsulfinyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkylsulfonyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, Dialkylamino mit 1 bis 4 Kohlenstoffatomen in jedem Alkylteil, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil, Alkoximinoalkyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen substituiertes, zweifach verknüpftes Alkylen mit 1 bis 4 Kohlenstoffatomen, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes Dioxyalkylen mit 1 bis 4 Kohlenstoffatomen, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes Cycloalkyl mit 3 mit 6 Kohlenstoffatomen, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen und/oder Halogenalokyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 Halogenatomen substituiertes, gesättigtes Heterocyclyl mit 5 bis 7 Ringgliedern sowie 4 bis 6 Kohlenstoffatomen und 1 oder 2 gleichen oder verschiedenen Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, und ferner durch Phenyl, Phenoxy, Benzyl, Benzyloxy, Phenylethyl oder Phenylethyloxy, wobei jeder der 6 letztgenannten Substituenten im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 3 Kohlenstoffatomen, Alkoxy mit 1 bis 3 Kohlenstoffatomen, Halogenalkyl mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen und/oder durch Halogenalkoxy mit 1 bis 3 Kohlenstoffatomen und 1 bis 7 gleichen oder verschiedenen Halogenatomen.

steht besonders bevorzugt für Phenyl oder Naphthyl, wobei jeder dieser Αr Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein kann 10 durch Fluor, Chlor, Brom, Hydroxy, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, soder t-Butoxy, Methylthio, Ethylthio, Methylsulfinyl, Methylsulfonyl, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Methoxycarbonyl, 15 Ethoxycarbonyl, Methoximinomethyl, Methoximinoethyl, Ethoxyiminomethyl, Ethoximinoethyl, Propan-1,3-diyl, Butan-1,4-diyl, Dioxymethylen, Dioxyethylen, Dioxypropylen, Difluordioxymethylen, Tetrafluordioxyethylen, Cyclopropyl, Cyclopentyl, Cyclohexyl, 1-Pyrrolidinyl, 1-Piperidinyl, 1-Perhydroazepinyl, 4-Morpholinyl, Phenyl, Phenoxy, Benzyl, 20 Benzyloxy, Phenylethyloxy, wobei jeder der 6 letzgenananten Reste im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy, Ethoxy, Trifluormethyl und/oder Trifluormethoxy, oder

25

30

auch bevorzugt für Furanyl, Thienyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxyzolyl, Isothiazolyl, Pyrazolyl, Imidazolyl, Oxadiazolyl, Thiadiazolyl, Triazolyl, Pyridyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl oder Triazinyl, wobei jeder dieser Reste benzoannelliert sein kann und einfach bis dreifach gleichartig oder verschiedenn substituiert sein kann durch Fluor, Chlor, Brom, Hydroxy, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethylthio, Methylsulfinyl, Methylsulfonyl, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Methoxycarbonyl, Ethoxycarbonyl, Methoximinomethyl, Butan-1,4-diyl, Dioxymethylen, Dioxyethylen, Dioxy-

propylen, Difluordioxymethylen, Tetrafluordioxyethylen, Cyclopropyl, Cyclopentyl, Cyclohexyl, 1-Pyrrolidinyl, 1-Piperidinyl, 1-Perhydroazepinyl, 4-Morpholinyl, Phenyl, Phenoxy, Benzyl, Benzyloxy, Phenylethyloxy, wobei jeder der 6 letzgenananten Reste im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy, Ethoxy, Trifluormethyl und/oder Trifluormethoxy.

Aralkyl steht im folgenden vorzugsweise für Aryl-C₁C₆alkyl, wobei Aryl die oben angegebene Bedeutung hat und Alkyl besonders bevorzugt für Methylen, Ethylen, n-, i-Propylen oder n-, i-, s- oder t-Butylen steht.

Alkyl steht im folgenden für gegebenenfalls substituiertes geradkettiges oder verzweigtes oder cyclisches Alkyl mit vorzugsweise 1 bis 30, besonder bevorzugt 1 bis 18 Kohlenstoffatomen, das gegebenenfalls durch 1 bis 3, vorzugsweise 1 oder 2 Sauerstoff-, Schwefel- oder Stickstoffatome unterbrochen ist. Insbesondere seien genannt: Methyl, Ethyl, n-, i-Propyl, n-, i-, s-, t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decanyl, n-Undecanyl, n-Dodecanyl, n-Tridecanyl, n-Tetradecanyl, n-Pentadecanyl, n-Hexadecanyl, n-Heptadecanyl sowie deren verzweigte Isomere, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecanyl, Cycloundecanyl und Cyclododecanyl. Als Substituenten der Alkylreste R³ bzw. R⁴ seien vorzugsweise die schon unter Aryl aufgezeigten Substituenten genannt.

Bevorzugt sind Verbindungen der Formel (I),

in welcher

30

 R^1 , R^2 unabhängig voneinander für Wasserstoff, C_1 - C_6 -Alkyl stehen oder R^1 und R^2 zusammen einen fünf- bis sechsgliedrigen Ring bilden,

R³, R⁴ unabhängig voneinander für gegebenenfalls durch 1 oder 2 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochenes und/oder . 10

gegebenenfalls durch Halogen, Alkyl, Alkylthio, Alkoxy, Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil oder Aryl oder durch die Gruppe CO₂R¹ substituiertes geradkettiges, verzweigtes oder cyclisches C₁-C₁₈-Alkyl stehen, oder für gegebenenfalls durch Halogen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil oder Aryl substituiertes Aryl, Hetaryl oder Aralkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil stehen, oder zusammen mir dem Stickstoffatom, an das sie gebunden sind einen fünf- bis sechsgliederigen Ring bilden der gegebenenfalls durch 1 oder 2 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochen ist und/oder gegebenenfalls benzoanelliert ist und/oder gegebenenfalls durch Halogen, Alkyl, Alkoxy, Alkylthio- oder Aryl substituiert ist.

Besonders bevorzugt sind Verbindungen der Formel (I)

20

25

30

15

in welcher

 R^1, R^2

 R^3 , R^4

unabhängig voneinander für gegebenenfalls durch 1 oder 2 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochenes und/oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-, i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n-, i-Propyloxy, n-, i-, s- oder

unabhängig voneinander für Wasserstoff oder Methyl stehen,

t-Butyloxy, Methylthio, Ethylthio, n-, i-Propylthio, n-, i-, s- oder

t-Butylthio,

Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen und 1 bis 4 Kohlenstoffatomen, Phenyl oder die Gruppe CO₂R¹ substi-

tuiertes, geradkettiges, verzweigtes oder cyclisches C₁-C₁₄-Alkyl stehen, oder für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n., i-Propyl, n., i-, s. oder t-Butyl, Methoxy, Ethoxy, n., i-Propyloxy, n.,

i-, s- oder t-Butyloxy, Methylthio, Ethylthio, n-, i-Propylthio, n-, i-, s- oder t-Butylthio, Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 5

Halogenatomen und 1 bis 4 Kohlenstoffatomen, Phenyl substituiertes Phenyl, Naphthyl, Biphenyl, Benzyl, Phenylethyl, Pyridyl, Furyl, Thiophenyl Pyrrolyl, Oxazolyl, Thiazolyl, Pyrazolyl, Imidazolyl oder Triazoyl stehen, oder zusammen mit dem Stickstoffatom an das sie gebunden sind einen Pyrrolidin-, Piperidin-, Morpholin-, Tetrahydro-isochinolin oder Piperazinring bilden, der gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy, Trifluormethyl, Ethyl, Ethoxy substituiert ist.

10

Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher R³ und R⁴

jeweils für den gleichen Rest stehen, oder R³ für Me und R⁴ die oben angegebenen

Bedeutungen hat.

Desweiteren wurde ein Verfahren zur Herstellung der Verbindungen der Formel (I) gefunden, in dem man

20

1. Verbindungen der Formel (II)

25

$$\begin{array}{c}
R^1 \\
X-C = C - C - OH \\
\downarrow \\
R^2
\end{array}$$
(II)

worin

30

X für Wasserstoff oder Iod steht

mit Verbindungen der Formel (III)

$$CI - C - N R^{3}$$

$$R^{4}$$
(III)

- gegebenenfalls in Gegenwart eines Verdünnungsmittels, in Gegenwart einer Base umsetzt, oder
 - 2. Verbindungen der Formel (IV)

15

$$\begin{array}{ccc}
R^{1} \\
I & \\
X-C = C - C - C - C \\
I & O
\end{array} (IV)$$

20 worin

X für Wasserstoff oder Iod steht

mit Aminen der Formel (V)

25

$$HN-N$$
 R^3
 (V)

- gegebenenfalls in Gegenwart eines Verdünnungsmittels, in Gegenwart einer Base umsetzt, oder
 - 3. Verbindungen der Formel (VI)

$$\begin{array}{c} R^1 \\ \vdots \\ X\text{-}C\text{-}C - \overset{}{C} - Y \\ \vdots \\ R^2 \end{array}$$

0

10

- X für Wasserstoff oder Iod steht
- Y für eine Abgangsgruppe, wie Halogen, O-Tosyl oder O-Mesyl, steht

15 mit Aminen der Formel (V)

worin

in Gegenwart einer Base und Kohlendioxid und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt und

4. für den Fall, daß X in den Formel (II), (IV) oder (VI) für Wasserstoff steht, anschließend in Gegenwart einer Hilfsbase und gegebenenfalls einem Verdünnungsmittel iodiert.

Die Verfahren 1 und 2 sind im Prinzip bekannt und werden entsprechend der EP-430 127, US 4 865 892 und GB 2 220 000 durchgeführt.

Das Verfahren 4 ist ebenfalls im Prinzip bekannt. Die Iodierung wird dabei vorzugsweise mit elementarem Iod, Na I, K I, I Cl in Gegenwart von NaOH, KOH oder NaOCl und gegebenenfalls in Gegenwart von elementarem Chlor durchgeführt.

30

35

Als Verdünnungsmittel kommen vorzugsweise polare Verdünnungsmittel wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Polyethylenglykole, Polypropylenglykole und andere Alkohole sowie Ketone wie Aceton und Methylbutylketon, Dimethylsulfoxid, Dimethylformamid und Wasser oder auch unpolare Verdünnungsmittel wie Toluol, Ethylacetat, Diethylether, Methylenchlorid, bei gleichzeitiger Verwendung von Phasentransferkatalysatoren sowie Mischungen verschiedener Verdünnnungsmittel in Frage.

Die Umsetzung wird im allgemeinen bei Temperaturen von -10°C bis 80°C, vorzugsweise -5°C bis 20°C durchgeführt.

Das Verfahren 3 ist neu und ebenfalls Gegenstand der Anmeldung.

10
Als Abgangsgruppe Y kommen vorzugsweise Brom, Chlor, Iod oder die Gruppen

$$-O-SO_2$$
 — Me $-O-SO_2$ — Br

15
$$-O-SO_2$$
 $-NO_2$, $O-SO_2-Me$, $O-SO_2-CF_3$, $O-SO_2-nC_4H_9$ und $O-SO_2-CH_2CF_3$ in Frage.

Bevorzugt werden Verbindungen der Formel (VI) eingesetzt in welcher R¹ und R² für Wasserstoff stehen.

Vorzugsweise wird in dem Verfahren 3 das Amin der Formel (V) mit Kohlendioxid in Gegenwart von einer oder mehreren basischen Verbindungen der Elemente Lithium, Natrium, Kalium, Rubidium zur Reaktion gebracht und dann das Propylderivat hinzufügt.

In das erfindungsgemäße Verfahren können die verschiedensten basisch reagierenden Amine eingesetzt werden, vorzugsweise solche der Formel (V).

Pro eingesetztes Aminäquivalent werden in das erfindungsgemäße Verfahren 0,01 bis 10.000 Äquivalente Kohlendioxid eingesetzt. Vorzugsweise beträgt dieses Verhältnis 1:0,5 bis 1.000, insbesondere 1:1 bis 10.

Pro eingesetztes Aminäquivalent werden in das erfindungsgemäße Verfahren beispielsweise 0,01 bis 10.0 Äquivalente Alkylierungsmittel eingesetzt. Vorzugsweise beträgt dieses Verhältnis 1:0,3 bis 10, insbesondere 1:0,4 bis 3.

30

35

Es ist ein wesentliches Merkmal der vorliegenden Erfindung, daß man in Gegenwart 5 einer oder mehrerer basischen Verbindungen der Elemente Lithium, Natrium, Kalium, Rubidium arbeitet. Als basische Verbindungen kommen z.B. basisch reagierende Salze, Oxide, Hydride und Hydroxide in Frage. Beispielsweise seien genannt: Lithiumhydrid, Natriumhydrid, Kaliumhydrid, Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid, Rubidiumhydroxid, Lithiumoxid, Natriumperoxid, 10 Lithiumhydrogencarbonat, Lithiumcarbonat, Kaliumperoxid, Kaliumoxid. Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Rubidiumcarbonat, Rubidiumhydrogencarbonat, Ammoniumcarbonat, Ammoniumcarbamat, und/oder deren natürlich vorkommende oder synthetisch erhältliche Gemische sowie DBU oder DBN. 15

Bevorzugt sind Alkalicarbonate und/oder Hydrogencarbonate, ganz besonders bevorzugt Kaliumcarbonat.

Das erfindungsgemäße Verfahren wird gegebenenfalls in Gegenwart von Hilfsbasen durchgeführt, d.h. in Gegenwart von weiteren Basen, beispielsweise in einer Menge von weniger als 0,5 Mol, bezogen auf die eingesetzte Menge an Base.

Als solche Hilfsbasen kommen beispielsweise in Frage: Halogenide von Alkalimetallen, Zeolithe, Kaliumacetat, Lithiumperchlorat, Kaliumformiat, Natriumacetat, Titanalkoholaten, Titanalkoholate, Titansäureamide, Amidinbasen, Guanidinbasen wie 1,5-Diazabicyclo(4.3.0)non-5-en (DBN), 1,8-Diazabicyclo(5.4.0)undec-7-en (DBU), 7-Methyl-1,5,7-triazabicyclo(4.4.0)dec-5-en (MTBD), Cyclohexyl-tetraguanidin, Cyclohexyl-tetramethylguanidin, N,N,N,N-Tetramethyl-1,8-naphthalindiamin, Pentamethylpiperdin, N,N-Dimethylpyrridin, N-Butyl-tetraethylguanidin, N-t-Butyl-N',N'-dimethylacetamidin, N-Cyclohexyl-tetraethylguanidin und N-t-Butyl-tetraethylguanidin sowie 1,4-Diazabicyclo(2.2.2)octan (DABCO), tertiäre Amine wie Triethylamin, Trimethylamin, N-Methylmorpholin, Pyridin, N,N-Dimethylpyridin und Tetramethylethylendiamin, eingesetztes Amin, Alkoholate wie Kalium-t-butylat, Natriummethylat, Natriumneopentylat und Kaliumneopentylat, Alkyl- und Arylmetallverbindungen wie Butyl, Methyl-, Phenyl- und Neoprylithium, sowie Grignardreagenzien.

10

15

20

Im allgemeinen ist es vorteilhaft, das erfindungsgemäße Verfahren in Gegenwart von Verdünnungsmittel durchzuführen. Verdünnungsmittel werden vorteilhafterweise in einer solchen Menge eingesetzt, daß das Reaktionsgemisch während des ganzen Verfahrens gut rührbar bleibt. Als Verdünnungsmittel kommen beispielsweise in Frage: Kohlenwasserstoffe wie Petrolether, Benzol, Toluol, Chlorbenzol, Dichlorbenzol, Hexan, Cyclohexan, Methancyclohexan, Pentan, Heptan, Octan und technische Kohlenwasserstoffgemische, beispielsweise sogenannte White Spirits mit Komponenten mit Siedepunkten im Bereich von beipielsweise 40 bis 250°C, Ether wie Dimethyl-, Diethyl-, Dipropyl-, Diisopropyl, Dibutyl-, Methyl-t-butylether, Tetrahydrofuran, 1,4-Dioxan und Polyether des Ethylenoxids und/oder Propylenoxids, Amine wie Trimethyl-, Triethyl-, Tripropyl-, Tributyl-, Diethyl- und Dibutylamin, sowie n-Methylmorpholin, Pyridin, N,N-Dimethylpyridin und Tetramethylethylendiamin, Ester wie Methyl-, Ethyl- und Butylacetat sowie Dimethyl-, Dibutyl- und Ethylencarbonat, Nitroverbindungen wie Nitromethan, Nitroethan, Nitropropan und Nitrobenzol, Nitrile wie Acetonitril, Propionitril und Benzonitril sowie Verbindungen wie Tetrahydrothiophendioxid und Dimethylsulfoxid, Ketone wie Aceton, Methylbutylketon und Methylethylketon, verflüssigtes Kohlendioxid des Ethylenoxids und/oder Propylenoxids und Amide wie Hexamethylenphosphortriamid, N-Methylpyrrolidon, N-Methylcaprolactam, 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidin, Octylpyrrolidon, Octylcaprolacton, 1,3-Dimethyl-2-imidazolindion, Dimethylformamid, Dimethylacetamid und Formamid.

Außerdem kann man in das erfindungsgemäße Verfahren auch Verdünnungsmittel-Gemische einsetzen.

30

25

Bevorzugte Lösungsmittel sind Dimethylformamid und Dimethylsulfoxid sowie Gemische dieser mit anderen oben genannten Lösungsmitteln.

35

Das erfindungsgemäße Verfahren führt man im allgemeinen so durch, daß man zunächst das basisch reagierende Amin und das Kohlendioxid in Gegenwart einer basischen Verbindung der genannten Elemente zusammenbringt und miteinander reagieren läßt. Das Alkylierungsmittel fügt man vorteilhafterweise erst dann zu,

25

wenn die Umsetzung des Amins mit dem Kohlendioxid weitgehend oder vollständig abgelaufen ist. Das Fortschreiten der Reaktion des Amins mit dem Kohlendioxid kann man z.B. an der Wärmetönung erkennen.

Das erfindungsgemäße Verfahren wird in beiden Stufen beispielsweise bei Temperaturen von 50 bis 130°C durchgeführt. Bevorzugt sind Temperaturen im Bereich 30°C bis +150°C, insbesondere solche im Bereich -10°C bis +100°C.

Der Druck ist beim erfindungsgemäßen Verfahren nicht kritisch. Es kann grundsätzlich bei Normaldruck, aber auch bei erhöhtem oder erniedrigtem Druck gearbeitet werden, Vorzugsweise arbeitet man bei Normaldruck oder bei Drucken bis zu 5 bar. Insbesondere bei erhöhter Temperatur empfiehlt es sich, den Druck entsprechend höher zu wählen.

Man kann das erfindungsgemäße Verfahren unter einer Kohlendioxid-Atmosphäre durchführen, aber auch in einer Atmosphäre, die Kohlendioxid und noch andere, vorzugsweise inerte Gase enthält.

Die Aufarbeitung erfolgte nach üblicher Art und Weise. Bevorzugt ist das folgende Vorgehen: Abtrennen des Feststoffes und Destillation der flüssigen Phase. So werden überschüssige Base, Lösungsmittel und Produkt in reiner oder wiederverwendbarer Form erhalten. Es entstehen damit oder sehr geringe Menge nicht wiederwendbaren Abfalls.

Der erfindungsgemäße Stoff eignet sich als Schädlingsbekämpfungsmittel, insbesondere als Fungizide im Pflanzenschutz.

Fungizide werden im Pflanzenschutz eingesetzt zur Bekämpfung von Plasmadiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie Xanthomonas oryzae;

Pseudomonas-Arten, wie Pseudomonas lachrymans;

Erwinia-Arten, wie Erwinia amylovora;

Pythium-Arten, wie Pythium ultimum;

10 Phytophthora-Arten, wie Phytophthora infestans;

Pseudoperonospora-Arten, wie Pseudoperonospora humuli oder Pseudoperonospora cubensis:

Plasmopara-Arten, wie Plasmopara viticola;

Peronospora-Arten, wie Peronospora pisi oder P. brasssicae;

Erysiphe-Arten, wie Erysiphe graminis;

Sphaerotheca-Arten, wie Sphaerotheca fuliginea;

Podosphaera-Arten, wie Podosphaera leucitricha;

Venturia-Arten, wie Venturia inaequalis;

Pyrenophora-Arten, wie Pyrenophora teres oder P. graminea;

20 (Konidienform: Drechslera, Syn: Helminthosporium);

Cochliobolus-Arten, wie Cochliobolus sativus;

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie Uromyces appendiculatus;

Puccinia-Arten, wie Puccinia recondita;

Tilletia-Arten, wie Tilletia caries;

Ustilago-Arten, wie Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie Pellicularia sasakii;

Pyricularia-Arten, wie Pyricularia oryzae;

Fusarium-Arten, wie Fusarium culmorum;

Botrytis-Arten, wie Botrytis cinerea;

Septoria-Arten, wie Septoria nodorum;

Leptosphaeria-Arten, wie Leptosphaeria nodorum;

Cercospora-Arten, wie Cercospora canescens;

Alternaria-Arten, wie Alternaria brassicae;

Pseudocercosporella-Arten, wie Pseudocercosporella herpotrichoides.

15

20

25

30

35

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.

Die erfindungsgemäßen Stoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächen-aktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösemittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Waser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomerde und synthestische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit, sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokusnußschalen, Maiskolben und Tabakstengel; als Emulgier

und/oder schaumerzeugende Mittel kommen in Frage: z.B. nicht-ionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fett-alkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

10

15

20

Es können in den Formulierungen Haftmittel wie Carboxy-methylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall-phthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwische 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

25

Die erfindungsgemäßen Wirkstoffe können in den Formulierungen in Mischung mit anderen bekannten Wirkstoffen vorliegen wie Fungizide, Insektizide, Akaridzide und Herbizide sowie in Mischungen mit Düngemitteln und Wachstumsregulatoren.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen wie gebrauchsfertige Lösungen, emulgierbare Konzentrate, Emulsionen. Schäume, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate, angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verschäumen, Bestreichen usw. Es ist ferner möglich die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

>

Beim Einsatz der erfindungsgemäßen Stoffe kann die Aufwandmenge je nach Art der Applikation in einem größeren Bereich variiert werden. So liegen die Wirkstoffkonzentrationen bei der Behandlung von Pflanzenteilen in den Anwendungsformen im allgemeinen zwischen 1 und 0,001 Gew.-%, vorzugsweise zwischen 0,5 und 0,001 %. Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g je kg Saatgut, vorzugsweise 0,01 bis 10 g benötigt. Bei der Behandlung des Bodens sind Wirkstoffkonzentrationen von 0,00001 bis 0,1 Gew.-%, vorzugsweise von 0,0001 bis 0,02 %, am Wirkungsort erforderlich.

15

20

10

Die erfindungsgemäßen Wirkstoffe bzw. Mittel weisen desweiteren eine starke Wirkung gegen Mikroorganismen auf. Sie werden im Materialschutz zum Schutz technischer Materialien verwendet: sie sind vor allem wirksam gegen Schimmelpilze, holzverfärbende und holzzerstörende Pilze und Bakterien, sowie gegen Hefen, Algen und Schleimorganismen. Beispielhaft - ohne jedoch zu limitieren - seien die folgenden Gattungen von Mikroorganismen genannt:

25

Alternaria wie Alternaria tenuis, Aspergillus wie Aspergillus niger und Aspergillus terreus, Aureobasidium wie Aureobasidium pullulans, Chaetomium wie Chaetomium globosum, Cladosporium wie Cladosporium herbarum, Coniophora wie Coniophora puteana, Gliocladium wie Gliocladium virens, Lentinus wie Lentinus tigrinus, Paecilomyces wie Paecilomyces varioti, Penicillium wie Penicillium brevicaule, Penicillium glaucum und Penicillium pinophilum, Polyporus wie Polyporus versicolor, Sclerophoma wie Sclerophoma pityophila, Streptoverticillium wie Streptoverticillium reticulum, Trichoderma wie Trichoderma viride, Trichophyton wie Trichophyton mentagrophytes;

30

Escherichia wie Escherichia coli, Pseudomonas wie Pseudomonas areuginosa, Staphylococcus wie Staphylococcus aureus;

35

Candida wie Candida albicans.

30

Die Menge der eingesetzten Wirkstoffe ist von der Art und dem Vorkommen der Mikroorganismen der Keimzahl und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,001 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, der Wirkstoffgemische, bezogen auf das zu schützende Material, einzusetzen.

Die neuen Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit Lösungs- bzw. Verdünnungs- mitteln, Emulgatoren, Dispergatoren und/oder Binde- oder Fixiermitteln, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

Als Lösungs-bzw. Verdünnungsmittel kommen organisch-chemische Lösungsmittel oder Lösungsmittelgemische und/oder ein polares organisches Lösungsmittel oder Lösungsmittelgemische und/oder ein öliges bzw. ölartiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser mit vorzugsweise einem Emulgator und/oder Netzmittel in Frage. Als übliche schwerflüchtige, wasserunlösliche ölige oder ölartige Lösungsmittel werden vorzugsweise die jeweiligen Mineralöle/mineralölhaltige Lösungsmittelgemische oder deren Aromatenfraktionen verwendet. Beispielhaft seien Testbenzin, Petroleum oder Alkylbenzole genannt, daneben Spindelöl und Monochlornaphthalin. Die Siedebereiche dieser schwerflüchtigen Lösemittel(gemische) überstreichen den Bereich von ca. 170°C bis maximal 350°C.

Die vorbeschriebenen schwerflüchtigen öligen oder ölartigen Lösungsmittel können teilweise durch leichter flüchtige organisch-chemische Lösungsmittel ersetzt werden.

WO 94/29268 PCT/EP94/01691

- 21 -

Zur Herstellung eines Holzschutzmittels wird vorzugsweise ein Teil des oben be-5 schriebenen Lösungsmittels oder Lösungsmittelgemisches durch ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisches ersetzt. Vorzugsweise gelangen dabei Lösungsmittel, die Hydroxygruppen, Estergruppen, Ethergruppen oder Gemische dieser Funktionalität enthalten, zum Einsatz. Beispielhaft seien Ester oder Glykolether genannt. Als Bindemittel werden erfindungsgemäß 10 verstanden wasserverdünnbare bzw. in organisch-chemischen Lösungsmitteln löslich, dispergier- oder emulgierbare Kunstharze, bindende trocknende Öle, z.B. auf Basis von Acrylharzen, Vinylharzen, Polyesterharzen, Polyurethanharzen, Alkydharzen, Phenolharzen, Kohlenwasserstoffharzen, Silikonharzen. Das benutzte Bindemittel kann als Lösung, Emulsion oder Dispersion eingesetzt werden. Vor-15 zugsweise werden Gemische aus Alkydharzen und trocknendem pflanzlichen Öl verwendet. Besonders bevorzugt sind Alkydharze mit einem Ölanteil zwischen 45 und 70 %.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel-20 gemisch oder ein Weichmachergemisch ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. eines Ausfällens vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

25 Die Weichmacher stammen aus den chemischen Klassen oder Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat und Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester. 30

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylbenzophenon.

Als Lösungs- bzw. Verdünnungsmittels kommt vorzugsweise Wasser in Frage, ge-35 gebenenfalls in Mischung mit einem oder mehreren der obengenannten Lösungsbzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

10

15

30

Technische Materialien sind erfindungsgemäß nicht lebende Materialien, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Bevorzugte technische Materialien im Sinne der Erfindung sind Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel, wäßrige Hydraulikflüssigkeiten und Kühlkreisläufe und allgemein wäßrige funktionelle Flüssigkeiten.

Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäßen Wirkstoffe bzw. den daraus herstellbaren Mitteln, Konzentraten oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die erfindungsgemäßen Verbindungen.

In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die der Wirksamkeit der Einzelkomponenten. Besonders günstige Mischungspartner sind z.B. die folgenden Verbindungen:

Sulfenamide wie Dichlofluanid (Euparen), Tolylfluanid (Methyleuparen), Folpet, Fluorfolpet;

Benzimidazole wie Carbendazim (MBC), Benomyl, Fuberidazole, Thiabendazole oder deren Salze;

- Thiocyanate wie Thiocyanatomethylthiobenzothiazol (TCMTB), Methylenbisthiocyanat (MBT);
 - quartäre Ammoniumverbindungen wie Benzyldimethyltetradecylammoniumchlorid, Benzyl-dimethyl-dodecyl-ammoniumchlorid, Didecyl-dimethyl-ammoniumchlorid;
- Morpholinderivate wie C₁₁-C₁₄-4-Alkyl-2,6-dimethyl-morpholin-homologe(Tride-morph),(+)-cis-4-[3-tert-Butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholin (Fenpropimorph), Falimorph;
- Phenole wie o-Phenylphenol, Tribromphenol, Tetrachlorphenol, Pentachlorphenol, 3-Methyl-4-chlorphenol, Dichlorophen, Chlorophen oder deren Salze;
 - Azole wie Triadimefon, Triadimenol, Bitertanol, Tebuconazole, Propiconazole, Azaconazole, Hexaconazole, Prochloraz;
- Iodpropargylderivate wie Iodpropargyl-butylcarbamat (IPBC), -chlorophenylformal, -phenylcarbamat, -hexylcarbamat, -cyclohexylcarbamat, Iodpropargyloxyethyl-phenylcarbamat;
- 25 Iodderivate wie Diiodmethyl-p-arylsulfone z.B. Diiodmethyl-p-tolylsulfon;
 - Bromderivate wie Bronopol;
- Isothiazolinone wie N-Methylisothiazolin-3-on, 5-Chloro-N-methylisothiazolin-3-on, 3-on, 4,5-Dichloro-N-octylisothiazolin-3-on, N-Octylisothiazolin-3-on (Octhilinone);
 - Benzisothiazolinone, Cyclopentenisothiazoline;
- Pyridine wie 1-Hydroxy-2-pyridinthion (und ihre Na-, Fe-, Ma, Zn-Salze), Tetrachlor-4-methylsulphonylpyridin;

Metallseifen wie Zinn-, Kupfer-, Zink-naphthenat, -oc-toat, -2-ethylhexanoat, -oleat, phosphat, -benzoat, Oxide wie TBTO, Cu₂O, CuO, ZnO;

Organische Zinnverbindungen wie Tributylzinnnaphthenat und Tributylzinnoxid;

Dialkyldithiocarbamate wie Na- und Zn-Salze von Dialkyldithiocarbamaten, Tetramethyldiuramidisulfid (TMTD);

Nitrile wie 2,4,5,6-Tetrachlorisophthalonitril (Chlorthalonil) u.a. Mikrobizide mit aktivierten Halogengruppen wie Cl-Ac, MCA, Tectamer, Bronopol, Bromidox;

Benzthiazole wie 2-Mercaptobenzothiazol; s.o. Dazomet;

Chinoline wie 8-Hydroxychinolin;

Formaldehydabspaltende Verbindungen wie Benzylalkohol-mono(poly)hemiformal, Oxazolidine, Hexahydro-s-triazine, N-Methylolchloracetamid;

Tris-N-(Cyclohexyldiazeniumdioxy)-Aluminium N-(Cyclohexyldiazeniumdioxy)-Tributylzinn bzw. K.Salze, Bis-(N-cyclohexyl)diazinium (-dioxy- Kupfer oder Aluminium);

Als Insektizide werden bevorzugt zugesetzt:

- Phosphorsäureester wie Azinphos-ethyl, Azinphos-methyl, 1-(4-Chlorphenyl)-4(O-ethyl, S-propyl)phosphoryloxypyrazol (TIA-230), Chlorpyrifos, Coumaphos,
 Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoate, Ethoprophos,
 Etrimfos, Fenitrothion, Fention, Heptenophos, Parathion, Parathion-methyl,
 Phosalone, Phoxion, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos,
 Sulprofos, Triazophos und Trichlorphon.
- Carbamate wie Aldicarb, Bendiocarb, BPMC (2-(1-Methylpropyl)phenylmethylcarbamat), Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan,

- 5 Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Pirimicarb, Promecarb, Propoxur und Thiodicarb.
- Pyrethroide wie Allethrin, Alphamethrin, Bioresmethrin, Byfenthrin (FMC 54 800), Cycloprothrin, Cyfluthrin, Decamethrion, Cyhalothrin, Cypermethrin, Deltamethrin, Alpha-cyano-3-phenyl-2-methylbenzyl-2,2-dimethyl-3-(2-chlor-2-trifluormethyl-vinyl)cyclopropancarboxylat, Fenpropathrin, Fenfluthrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate, Permethrin und Resmethrin; Nitroimide wie 1-[(6-Chlor-3-pyridinyl)-methyl]-4,5-dihydro-N-nitro-1H-imidazol-2-anin (Imidacloprid).
- Organosiliciumverbindungen, vorzugsweise Dimethyl(phenyl)silylmethyl-3phenoxy-benzylether wie z.B. Dimethyl(4-ethoxyphenyl)-silylmethyl-3-phenoxybenzylether oder Dimethyl(phenyl)-silylmethyl-2-phenoxy-6-pyridylmethylether
 wie z.B. Dimethyl(9-ethoxyphenyl)-silylmethyl-2-phenoxy-6-pyridylmethylether
 oder (Phenyl)[3-(3-phenoxyphenyl)-propyl](dimethyl)-silane wie z.B. (4-ethoxyphenyl)-[3-(4-fluoro-3-phenoxyphenyl)-propyl]dimethyl-silan.
 - Als andere Wirkstoffe kommen in Betracht Algizide, Molluskizide, Wirkstoffe gegen "sea animals", die sich auf z.B. Schiffsbodenanstrichen ansiedeln.
- Die zum Schutz der technischen Materialien verwendeten mikrobiziden Mittel oder Konzentrate enthalten die erfindungsgemäßen Wirkstoffe in einer Konzentration von 0,01 bis 95 Gew.-%, insbesondere 0,01 bis 60 Gew.-%, daneben gegebenenfalls 0,001 bis 10 Gew.-% eines geeigneten weiteren Fungizids, Insektizids oder eines weiteren Wirkstoffs wie oben genannt.
- Die erfindungsgemäßen Wirkstoffe bzw. Mittel ermöglichen in vorteilhafter Weise, die bisher verfügbaren mikrobiziden Mittel durch effektivere zu ersetzen. Sie zeigen eine gute Stabilität und haben in vorteilhafter Weise ein breites Wirkungsspektrum.
- Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung ohne sie darauf zu limitieren. Teile und Prozentangaben bedeuten Gewichtsteile bzw. Gewichtsprozente.

- 26 -

5

Beispiel A1 (Herstellung der Vorstufe)

N,N-nDibutyl-0-propagyicarbamat (A)

In einem 100 ml Kolben werden 50 ml Dimethylformamid, 10,0 g (0,078 mol) Dibutylamin und 18,87 g (0,137 mol) Kaliumcarbonat vorgelegt und 5,78 g Propagylchlorid zugegeben. Dabei wird ständig eine CO₂-Atmosphäre aufrechterhalten. Die Reaktion wird bei 25°C so lange gerührt, bis nach GC-Analyse kein Dibutylamin mehr vorhanden ist.

15

Nach salzsaurer Extraktion wird das Produkt destilliert ($Kp_{1.3} = 97 - 98$ °C)

Man erhält (1 % der Theorie des Produktes (A)).

20 (C¹³-NMR:

 $\delta = 155,1; 79,3; 74,4; 52,5; 47,6; 46,8; 31,1; 30,6; 20,2;$

14,0 ppm/TMS)

Beispiel 1

25

30

N,N-nDibutyl-o-(3-Iod)-propagylcarbamat

10,6 g Verbindung (A) in 20 ml Dipropylenglykol werden bei 0-5°C mit 5 g 40 % NaOH 30 min lang gerührt und dann mit 6,43 g Iod in kleinen Portionen versetzt. Nach 30 min bei 0-5°C und der letzten Zugabe von Iod werden 21,5 g (6,2 %ige) NaOCl-Lösung bei 0-5°C bis zur Entfärbung zulaufen gelassen. Das Reaktionsgemisch wird auf Wasser gegeben, mit Ether extrahiert, getrocknet, eingeengt, am Kugelrohr vom Edukt befreit und der Sumpf an Kieselgel, Toluol, Ether 10:1 chromatographiert.

35

Ausbeute: 6,35 g (38 %) $M^{(+)}$ (Massenspektrum): 337; $v = 2210 \text{ m}^{-1}$

5 Beispiel A2

N,N-Dibutylpropagylcarbamat (A)

10 100 g (0,775 mol) Dibuylamin, 189,0 g (1,37 ml) K₂CO₃ und 500 ml DMF werden in einem 3 l VA-Autoklav mit 440 g CO₂ versetzt und 30 min auf 100°C erwärmt. Nach Abkühlen auf 50°C (Druck: 75 bar) wird mit 60,0 g (95 %) (0,765 ml) Propagylchlorid versetzt und 6 h bei 50°C gehalten. Nach Entspannen wird abgesaugt, der Rückstand mit 1 l CH₂CH₂ gewaschen und die organische Phase destilliert.

Man erhält 118,94 g (69,2 %) des Produktes (A).

Beispiel A3

20

25

N,N-Dibutylpropagylcarbamat

10,0 g (0,078 mol) Dibutylamin, 18,87 g (0,137mol) K₂CO₃ und 250 ml DMSO werden 1 h bei 25°C mit CO₂ unter (Normaldruck) begast. Man setzt 5,78 g (0,078 mol) Propagylchlorid zu und rührt 4 h. Nach Analyse in GC (Flächenprozent) erhält man 99,4 % des Produktes (A).

Beispiel A4

30

35

21,2 g Verbindung (A) in 40 g Ethanol werden mit 10 g NaOH (40 % in H₂O) bei 0-5°C versetzt und anschließend in sechs Portionen 25,4 g Iod hinzugefügt. Nach Zugabe von 10 ml 6,2 %iger NAOCl wird 4 Tage stehen gelassen, mit Wasser, Diethylether extrahiert, getrocknet, und an Kieselgel/Aktivkohle chromatographiert (Toluol/Ethylacetat 10:1).

Man erhält 22,9 g (68 %) der Verbindung des Beispiels 2.

Beispiel 45

N-Methyl-n-phenyl-propagylcarbamat

10

8,29 g (0,078 mol) N-Methylanilin, 18,87 g K_2CO_3 und 50 ml DMSO werden 1 h bei 25°C mit CO_2 begast. Anschließend werden 5,78 g (0,78 mol) Propagylchlorid zugesetzt und 45 h 25°C werden im GC-MS, bezogen auf den Umsatz (76 %)

15

74,4 % 83 (M+: 189 U, Basis 106)

neben

20,3 % N-methyl-N-phenyl-Na-propagylamin

beobachtet.

20

Nach Aufarbeitung wie im Versuch 1 beschrieben erhält man analog den Beispielen und entsprechend der allgemeinen Beschreibung die in der nachstehenden Tabelle 1 aufgeführten Verbindungen der Formel (I).

25

30

Tabelle 1
$$I - C \equiv C - \begin{matrix} R^1 & R^3 \\ - C - O & N \\ R^2 & O \end{matrix}$$

BelspNr.	R ¹	R ²	R ³	R ⁴	phys. Parameter
2	н	н	Мө	Me	F.: 57-59°C
3	н	н	Me	Et .	
4	н	н	Me	n-Propyi	F.:61-62°C
5	н	н	Me	i-Propyl	
6	н	н.	Me	n-C ₄ H ₉	Ōl, γ (C≡C) 2205 cm ⁻¹
7	н	н	Me	I-C ₄ H ₉	i
8	Н	н	Me	s-C ₄ H ₉	
9	н	н	Me	t-C ₄ H ₉	
10	Н	Н	Me	n-C ₅ -H ₁₁	ļ
11	н	н	Me	-сн ₂ -сн ₂ — сн ₃ п-с ₆ н ₁₃	
12	н	н	Me	n-C ₆ H ₁₃	ŐI, γ (C≡C) 2203 cm ⁻¹
13	н	н	Me	$\overline{}$	F.:28-100°C
14	н	н	Me	n-C ₇ H ₁₅	ŎI, γ (C≡C) 2200 cm ⁻¹
15	н	н	Мө	$\overline{}$	
16	н	Н	Me	n-C ₈ H ₁₇	ŎI, γ (C≡C) 2200 cm ⁻¹
17	н	н	Мө	\rightarrow	
18	н	н	Me	n-C ₉ H ₁₉	· ·
19	н	н	Me	n-C ₁₀ H ₂₁	
20	Н		Me	n-C ₁₁ H ₂₃	
21	н	H H	Me	n-C ₁₂ H ₂₅	
22	н	н	Ме		
23	н	н	Мө	B-CooHer	
24	Н	Н	Me	n-C ₁₃ H ₂₇ n-C ₁₄ H ₂₉	1
25	Н	Н	Me	n-C ₁₅ H ₃₁	
26	Н	Н	Me	n-C ₁₆ H ₃₃	
27	н	Н	Me	n-C ₁₇ H ₃₅	
28	н	н	Me	n-C ₁₈ H ₃₇	

Fortsetzung

	R ¹	R ²	R ³ R ⁴	phys. Parameter
			и. ос и	•
29	Н	H	Me n-C ₁₉ H ₃₉	
30	Н	Н	Me n-C ₂₀ H ₄₁	Ōl, γ (C≡C) = 2210 cm ⁻¹
31	Н	н		Ŏi, γ (C≡C) = 2220 cm ⁻¹
32	H	Н	n-Propyl n-Propyl	Öl, γ (C≡C) = 2213 cm ⁻¹
32-1	н	Н	I-Propyl	
33	н	Н	n-C ₅ H ₁₁ n-C ₅ H ₁₁	
34	Н	. н	n-C ₆ H ₁₃ n-C ₆ H ₁₃	İ
35	Н	н	n-C ₇ H ₁₅ n-C ₇ H ₁₅	
36	н	н	n-C ₈ H ₁₇ n-C ₈ H ₁₇	
37	Н	н	n-C ₉ H ₁₉ n-C ₉ H ₁₉	
38	Н	н	n-C ₁₂ H ₂₅ n-C ₁₂ H ₂₅	1.
39	н	н	$\overline{}$	Öl, γ (C≡C) = 2215 cm ⁻¹
40	н	н	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	F: 68°C
41	н	н	-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -	
42	н	н	-CH ₂ -CH ₂ -NMe-CH ₂ -CH ₂ -	
43	н	н	-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -	
44	н	н	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	F: 60-61°C
44-1	н	. н	CH ₂ CH ₂ -CH ₂	F: 108-112°C
45	н	н	Me Ph	Ŏl, γ (C≡C) = 2205 cm ⁻¹
46	Н	H	Et Ph	Öl, γ (C≡C) = 2210 cm ⁻¹
47	н	H	n-Propyl Ph	
48	н	H	i-Propyl Ph	
49	н	н	Ph Ph	
1			' ''	is1
49-1	н	н	Ph-CH ₂ Ph-CH ₂	Õi, γ (C≡C) = 2205 cm ⁻¹
49-11	н	н	Ph-CHMe- Ph-CHMe-	
49-111	н	н	Me Ph-CH ₂ -	F: 136-138°C
49-IV	н	н	Me CI —CH ₂ -	
49-V	н	н	Me CI —CH ₂ -	
49-VI	н	н	Me Me-CH ₂ -	

Fortsetzung

	R ¹	R ²	R ³	R ⁴		phys. Parameter
49-VII	Н	н	Мө	Me CH ₂ -		
49-VIII	н	н	, Me	Me CH ₂ -		
49-IX	н	н	Et	Ph-CH ₂		Ōl, γ (C≡C): 2185 cm ⁻¹
49-X	н	Н	I-Pr	Ph-CH ₂		Öl, γ (C≡C): 2205 cm ⁻¹
49-XI	н	н	NC-CH	2CH2 Ph-CH2		Öl, γ (C≡C): 2200 cm ⁻¹
49-XII	н	н	Мө	CH ₂		γ (C≡C): 2250 cm ⁻¹ F: 84°C
49-XIII	н	н		CH ₂ CI		
50	н	н	Мө	─ cı		F: 84°C
51	н	н	Me	→ Ci		
52	н	н .	Мө	~ Ci → Ci	_	
53	н	н	Me	————Ме		
54	н	н	Мө	CH ₂ CO ₂ Me		
54-1	н	н	Me	CH ₂ CO ₂ Et		F.: 66-78°C
54-li	Н	н	CH ₂ Pr	CH ₂ CO ₂ Et		ŌI, δH: 3,85,d 4,16,q
				Me		4,64,d 4,83,dd
55	н	н	Мө	Me		

$$I-C \equiv C - \begin{matrix} R^1 \\ -C - Q \end{matrix} \begin{matrix} R^3 \\ R^2 \end{matrix} \begin{matrix} R^3 \end{matrix}$$

	R ¹	R ²	R ³	R ⁴		phys. Paramete
56	н	н	Me	Me Et		
57	н	Me	Me	Me		
58	н	Me	Me	Et		
59	H	Me	Me	n-Propyl		1
60	H.	Me	Me	i-Propyl		
61 .	н.	Ме	Me	n-C ₄ H ₉		
62		Me	Me	I-C ₄ H ₀		
63	н н	Me	Me	s-C ₄ H ₉		ļ
64	н	Me	Me	1011		
65	H	Me	Me	n-C _e H.		}
66	н	Ме	Me	n-C ₅ H ₁₁ CH ₃ -CH ₂ -CH ₂ — CH ₃		
67	н	Me	Me	n-C ₆ H ₁₃		
68	н	Me	Me .	$\overline{}$		ļ
69	н	Me	Мө	n-C ₇ H ₁₅		
70	н	Me	Me	$\overline{}$		
71	н	Me	Ме	n-C ₆ H ₁₇		,
72	н	Ме	Ме			. •
73	н	Мө	Me	n-C ₉ H ₁₉		
74	н	Me	Me	n-C ₁₀ H ₂₁	,	
75	н	Me	Me	n-C ₁₁ H ₂₃		
76	н	Me	Me	n-C ₁₂ H ₂₅		į
77	н	Мө	Me			
78	н	Me	Me	n-C ₁₃ H ₂₇		
79	н	Me	Me	n-C ₁₄ H ₂₉		1
80	н	Me	Me	n-C ₁₅ H ₃₁		
81	н	Me	Me	n-C ₁₆ H ₃₃	1	
82	н	Me	Me	n-C ₁₇ H ₃₅	1	
83	н	Me	Me	n-C ₁₈ H ₃₇		

$$I-C \equiv C - C - O N R^{3}$$
 $R^{2} O R^{4}$

	R ¹	R ²	R ³	R ⁴	phys. Paramete
84	н	Me	Me	n-C ₁₉ H ₃₉	
85	н	Me	Me	n-C ₂₀ H ₄₁	İ
86	н	Me	Et	Et	
87	н	Me	Propyl	Propyl	
88	н	Me	n-C ₅ H ₁₁	n-C ₅ H ₁₁	
89	н	Me	n-C ₆ H ₁₃	n-C ₆ H ₁₃	
90	н	Me	n-C ₇ H ₁₅	n-C ₇ H ₁₅	
91	н	Me	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
92	Н	Me	n-C ₉ H ₁₉	n-C _g H ₁₉	
93	Н	Me	n-C ₁₂ H ₂₅	n-C ₁₂ H ₂₅	1
94	н	Me	$\overline{}$	\rightarrow	
95	н	Me	-CH ₂ -CH ₂	-CH ₂ -CH ₂ -CH ₂ -	
96	н	Me	-CH2-CH2	-O-CH ₂ -CH ₂ -	
97	н	Me		-NMe-CH ₂ -CH ₂ -	
98	н	Me	-CHJ-CHJ	-S-CH ₂ -CH ₂ -	
99	н	Me		-CH ₂ -CH ₂ -	
100	н	Me	Me	Ph	
101	н	Me	Et	Ph	
102	н	Me	n-Propyl	Ph	
103	н	Me	i-Propyl	Ph	
104	н	Me	Ph	Ph	
105	н	Me	Ме	— (_)—cı	
106	н	Me	, Me	CI CI CI	
107	н	Me	Мө	~ >~a	
108	н	Me	Me	————Me	
109	н	Me	Me	CH ₂ CO ₂ Me	
110	н	Me	Me .	Me	

Fortsetzung

	R ¹	R ²	R ³	R ⁴	Bernerkungen	phys. Parameter
				Ме		
111	н	Me	Me			
112	Me	Me	Me	Et [*] Me		
113	Me	Me	Me	Et		ı
114	Me	Me	Me	n-Propyl		1
115	Me	Me	Мө	i-Propyi		
116	Me	Me	Me	n-C ₄ H ₉		
117	Me	Me	Me	I-C4H		İ
118	Me	Me	Me	s-C ₄ H ₉		
119	Me	Me	Me	t-C ₄ H ₉		
120	Me	Me	Me	n-C ₅ H ₁₁	ł	
121	Me	Me	Me	-CH ₂ -CH ₂ -< CH ₃		
122	Мө	Me	Мө	n-C ₆ H ₁₃		
123	Me		Me	$\overline{}$		
	Me	Me	Me]
124	MIG	Me	MA	n-C ₇ H ₁₅		1
125	Ме	Me	Me	$\overline{}$		
126	Me	Me	Me	n-C ₆ H ₁₇ ∖		
127	Me	Me	Me			
128	Мө	Me	Me	n-C ₉ H ₁₉		
129	Me	Me	Me	n-C ₁₀ H ₂₁		
130	Me	Me	Me	n-C ₁₁ H ₂₃		
131	Me	Me	Me	n-C ₁₂ H ₂₅		
132	Me	Мө	Me			
133	Me	Me	Me	n-C ₁₃ H ₂₇		
134	Me	Me	Me	n-C ₁₄ H ₂₉		
135	Me	Me	Me	n-C ₁₅ H ₃₁	•	
136	Me	Me	Me	n-C ₁₆ H ₃₃	1	
137	Me	Me	Me	n-C ₁₇ H ₃₅		
138	Me	Me	Me	n-C ₁₈ H ₃₇	1	
139	Me	Me	Me	n-C ₁₉ H ₃₉		
140	Me	Me	Me	n-C ₂₀ H ₂₁		

$$I-C \equiv C - C - O N$$
 R^{3}
 R^{2}
 R^{4}

	R ¹	R ²	R ³	R ⁴			phys. Paramet
141	Me	Me	Eŧ	Et			
142	Me	Me	Propyl	Propyl	į		
143	Me	Me	n-C ₅ H ₁₁	n-C ₅ H ₁₁	ł	i	
144	Me	Me	n-C ₆ H ₁₃	n-C ₆ H ₁₃	ŀ		
145	Me	Me	n-C ₇ H ₁₅	n-C ₇ H ₁₅			
146	Me	Me	n-C ₈ H ₁₇	n-C _B H ₁₇	ŀ	Ï	
147	Me	Me	n-C ₉ H ₁₉	n-C ₉ H ₁₉			
148	Me	Me	n-C ₁₂ H ₂₅	n-C ₁₂ H ₂₅			
149	Me	Me	$-\!$	$\overline{}$			
150	Me	Me	-CHCH(CH ₂ -CH ₂ -CH ₂ -			
151	Me	Me		O-CH ₂ -CH ₂ -			
152	Me	Me		NMe-CH ₂ -CH ₂ -			
153	Me	Me		s-CH ₂ -CH ₂ -			
154	Me	Me	-CH2-CH2-	CH,-CH,-			
155	Me	Me	Me	Ph	l		
156	Me	Me	Et	Ph			
157	Me	Me	n-Propyl	Ph	ļ		
158	Me	Me	i-Propyl	Ph	ł		
159	Me	Me	Ph	Ph			
160	Me	Мө	Me -	-{_}_cı			
161	Мө	Me	Me -	CI CI			
162	Me	Me	Мө	-CI			
163	Ме	Me	Me	{			
164	Мө	Me	Me	CH ₂ CO ₂ Me			
165	Me	Me	Ме	Me			
				Me	1		

	R ¹	R ²	R ³	R ⁴			phys. Parameter
				Me			
146	Me	Me	Мө				
				_`>=/	ļ		
147	Et	Me	Me	Et [*] Me	-		
148	Et	Me	Me	Et			
149	Et	Me	Me	n-Propyl			
150	Et	Me	Me	i-Propyl	1		
151	Et	Me	Me	n-C₄H _a	l		
152	Et	Me	Me	I-C ₄ H ₉			
153	Et Et	Me	Me	s-C ₄ H ₉	ļ		İ
154	Et	Me	Me	t-C ₄ H ₉			
155	Et	Me	Me	n-C ₅ H ₁₁	ł		
				CH.	1		1
156	Et	Me	Me	-CH ₂ -CH ₂ -< CH ₃			
157	Et	Me	Me	n-C ₆ H ₁₃			
158	Et	Me	Me	$\overline{}$	ļ		
159	Et	Me	Me	-			
		1110	1110	n-C ₇ H ₁₅	1		Į
160	Et	Me	Me	→)	Ì		
				n-C ₆ H ₁₇	Ì		
161	Et	Me	Me	6-117			
400				\rightarrow			
162	Et	Me	Me	()			
400	Et	Me	Me	n-C _g H ₁₉	_	-	
163	Et .	Me	Me	n-C ₁₀ H ₂₁			
164 165	Et	Me	Me	n-C ₁₁ H ₂₃			
166	Et	Me	Me	n-C ₁₂ H ₂₅	1		
100				11-012: "25			
167	Et	Me	Ме		ł		
					1		
168	Et	Me	Me	n-C ₁₃ H ₂₇	ŀ		
169	Et	Me	Me	n-C ₁₄ H ₂₉	1		1
170	Et	Me	Me	n-C ₁₅ H ₃₁	1		
171	Et	Me	Me	n-C ₁₆ H ₃₃	1		1 .
172	Et	Me	Мө	n-C ₁₇ H ₃₅			
173	Et	Me	Me	n-C ₁₈ H ₃₇			
174	Et	Me	Me	n-C ₁₉ H ₃₉	1		
175	Et	Me	Мө	n-C ₂₀ H ₂₁			

$$I-C \equiv C - \begin{array}{c} R^1 & R^3 \\ - C - C - O & N \\ R^2 & O & R^4 \end{array}$$

	R ¹	R ²	R ³	R ⁴		phys. Parame
176	Et	Me	Et	Et		1
177	Et	Me	Propyl	Propyl		
178	Et	Me	n-C ₅ H ₁₁	n-C ₅ H ₁₁		1
179	Et	Me	n-C ₆ H ₁₃	n-C ₆ H ₁₃		
180	Et	Me	n-C ₇ H ₁₅	n-C ₇ H ₁₅		
181	Et	Me	n-C ₈ H ₁₇	n-C ₈ H ₁₇		1
182	Et	Me	n-C ₉ H ₁₉	n-C ₉ H ₁₉		
183	Et	Me	n-C ₁₂ H ₂₅	n-C ₁₂ H ₂₅		
184	Et	Me	$\overline{}$	$\overline{}$		
185	Et	Me	-СН,-СН, -	CH ₂ -CH ₂ -CH ₂ -	l l	
186	Et	Me	-сн,-сн, .	O-ĆH ₂ -ĆH ₂ -		
187	Et	Me	-CH ₂ -CH ₂ .	NMe-CHCH		
188	Et	Me	-сн,-сн,	S-CH ₂ -CH ₂ -		
189	Et	Me	-CH2-CH2.	CHL-CHL-		ì
190	Et	Me	Me	Ph		
191	Et	Me	Et	Ph		
192	Et	Me	n-Propyl	Ph		
193	Et	Me	i-Propyl	Ph		
194	Et	Me	Ph	Ph		
195	Et	Me	Me -	- ⟨ _}-cı		
196	Et	Мө	Me -	-√a -√a		
197	Et	Me	Me -	a		
198	Et	Me	Me -	————Me		
199	Et	Me	Me	CH ₂ CO ₂ Me		
200	Et	Me	Ме	Me		

201 Et Me Me 202 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me Me 203 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me Et 204 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-Propyl 205 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-Propyl 206 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₉ 207 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₂ H ₉ 208 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₂ H ₉ 209 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₂ H ₉ 201 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₂ H ₉ 202 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₃ H ₁₁ 203 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₄ H ₉ 204 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₉ 205 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₉ 206 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₉ 207 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₉ 208 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₉ 210 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₁₁ 211 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₁₁ 212 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₁₃ 213 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₁₃ 214 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₆ H ₁₇ 215 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₁₉ 216 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₁₉ 217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₁₉ 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₁₉ 219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ -H ₂ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ -H ₂ 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₂ 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₂ 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₂ 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₂ 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₂ 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₂ H ₃ 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me I-C ₁ H ₃ 220 -CH ₂ -CH ₂		R ¹ R ² R	3 A ⁴	phys. Parameter
202			Me	
202	201	Et Me Me		
203	202	-CH ₃ -CH ₃ -CH ₃ -CH ₃ - Me		
204 - CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	203			
205 - CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me			n-Propyl	
206 - CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me		
207	206			·
208	207		I-C ₄ H ₉	
209 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 210 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 211 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 212 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 213 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 214 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 215 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 216 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 210 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 211 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 212 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 213 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 214 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 215 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 216 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 210 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 211 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 212 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 213 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 214 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 215 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 216 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me 220 -CH ₂ -C	208		s-C ₄ H ₉	
210	209			
212			n-C ₅ H ₁₁	
212 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	211	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Mo	· -CH ₂ -CH ₂ -CH ₃	
214 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	212	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -		
214 .CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	213	-CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	-	
216 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2233 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2244 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2255 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2266 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2277 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2288 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2299 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2290 -CH ₂ -CH ₂ -CH ₂ - Me 2390 -CH ₂ -CH ₂ -CH ₂ - Me	214	-CH2-CH2-CH2-CH2- Me	n-C ₇ H ₁₅	
217 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 2222 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me 221 -CH ₂ -CH ₂ -CH ₂ - Me 2222 -CH ₂ -CH ₂ -CH ₂ - Me 2233 -CH ₂ -CH ₂ -CH ₂ - Me 2244 -CH ₂ -CH ₂ -CH ₂ - Me 225 -CH ₂ -CH ₂ -CH ₂ - Me 226 -CH ₂ -CH ₂ -CH ₂ - Me 227 -CH ₂ -CH ₂ -CH ₂ - Me 228 -CH ₂ -CH ₂ -CH ₂ - Me 229 -CH ₂ -CH ₂ -CH ₂ - CH ₂ - Me 229 -CH ₂ -CH ₂ - CH ₂ - CH ₂ - Me 229 -CH ₂ -CH ₂ - CH ₂ - CH ₂ - Me 229 -CH ₂ -CH ₂ - CH ₂ - CH ₂ - Me	215	-CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	$\overline{}$	
218 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	216	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	n-C _e H ₁₇	
219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	217	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me		
219 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	218	-CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	n-C _o H _{so}	
220 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me	219	-CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	n-C ₁₀ H ₂₁	
221 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	220			i
223 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	221	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -Me		
224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₄ H ₂₉ 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₅ H ₃₁ 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₆ H ₃₃ 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₇ H ₃₅ 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇	222	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - M		
224 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₄ H ₂₉ 225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₅ H ₃₁ 226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₆ H ₃₃ 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₇ H ₃₅ 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇	223	-CH2-CH2-CH3-CH3-CH3- M	e n-CH	
225 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me	224		e n-CH-	
226 -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₃ 227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₇ H ₃₅ 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇	225	-CH2-CH2-CH2-CH2-CH2- M	e n-C _* -H _* .	1
227 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₇ H ₃₅ 228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₉		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - M	e n-C _{te} H ₂₂	
228 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₇ 229 -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₈ H ₃₉		-CH ₂ -CH ₂ -CH ₂ -CH ₂ - M	e n-C ₁ -H _{3c}	·
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - Me n-C ₁₂ H ₃₉		-CH ₂ -CH ₂ -CH ₂ -CH ₂ - M	^в n-С ₁₈ Н ₃₇	
		-0112-0112-0112-0112-	n-C _{to} H ₂₀	}

	R ¹	R ²	R ³	R ⁴		 phys. Parameter
231 232 233	-CH ₂ -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ - CH ₃ -CH ₃ -	Et Propy n-C _s H n-C _s H	l ₁₁ n-C₅H ₁ ,		
234 235 236 237 238	-CH ₂ -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ -	n-C ₇ H n-C ₈ H n-C ₉ H	l ₁₅ n-C ₇ H _{1!} l ₁₇ n-C ₈ H _{1!} l ₁₉ n-C ₈ H ₁	9	
239	-CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ -	_	\rightarrow	\rangle	
240 241 242 243 244 245 246 247 248 249	-CH ₂ -CH ₂ -CH ₂ -C -CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ - CH ₂ -CH ₂ -	-CH ₂ -(-CH ₂ -(-CH ₂ -(H ₂ -	
251	-CH ₂ -CH ₂ -CH	H ₂ -CH ₂ -	Me	а ——— а		
252	-CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ -	Me	را سکے a		
253	-CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ -	Мө	— Д—Мө		
254	-CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -CH ₂ -	Мө	CH ₂ CO ₂ Me Me		
255	-CH ₂ -CH ₂ -CH ₂ -C	H ₂ -CH ₂ -	Me	Me		

	R ¹	R ²	R ³	R ⁴		phys. Parameter
				Ме		
246	-CH ₂ -CH ₂ -CH	₂ -CH ₂ -CH ₂ -	Me	→		
247	н	3-C ₇ H ₁₅	Me	Et Me		
248	H	3-C ₇ H ₁₅	Ме	Et		
249	H	3-C ₇ H ₁₅	Me	n-Propyl		ļ
250	н	3-C ₇ H ₁₅	Me	i-Propyl		
251	н	3-C ₇ H ₁₅	Ме	n-C ₄ H ₉		
252	н	3-C7H15	Me	I-C ₄ H ₉		
253	н	3-C ₇ H ₁₅	Me	s-C ₄ H ₉		
254	н	3-C ₇ H ₁₅	Me	t-C ₄ H ₉		
255	H	3-C ₇ H ₁₅	Me			
256	н	3-C ₇ H ₁₅		n-C ₅ H ₁₁		
		7-15	Me	-CH ₂ -CH ₂ -< CH ₃		
257	н	3-C ₇ H ₁₅	Me	n-C ₆ H ₁₃		
258	н	3-C ₇ H ₁₅	Мө	$\overline{}$		
259	н	3-C ₇ H ₁₅	Me	n-C ₇ H ₁₅		
260	н	3-C ₇ H ₁₅	Ме	$\overline{}$		
261	н	3-C ₇ H ₁₅	Me	n-C _e H ₁₇		
262	н	3-C ₇ H ₁₅	Ме			
263	н	3-C ₇ H ₁₅	Me	n-C ₉ H ₁₉	*	İ
264	н	3-C ₇ H ₁₅	Me	n-C ₁₀ H ₂₁		
265	н	3-C7H15	Me	n-C ₁₁ H ₂₃		
266	, н	3-C ₇ H ₁₅	Me	n-C ₁₂ H ₂₅		}
267	н	3-C ₇ H ₁₅	Me			
268	н	3-C ₇ H ₁₅	Me	n-C ₁₃ H ₂₇		
269	н	3-C ₇ H ₁₅	Me	n-C ₁₄ H ₂₉		
270		3-C ₇ H ₁₅	Me	n-C ₁₅ H ₃₁		
271	н	3-C ₇ H ₁₅	Me	n-C ₁₆ H ₃₃		
272	H H	3-C ₇ H ₁₅	Me	n-C ₁₇ H ₃₅		
273	H	3-C ₇ H ₁₅	Me	n-C ₁₈ H ₃₇		
274	н	3-C ₇ H ₁₅	Me	n-C ₁₉ H ₃₉		
275	н	3-C7H15	Me	n-C ₂₀ H ₂₁		

288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Et 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me ———————————————————————————————————	Et Propyl n-C ₅ H ₁₁ n-C ₆ H ₁₃ n-C ₇ H ₁₅ n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
277 H 3-C ₇ H ₁₅ Propyl 278 H 3-C ₇ H ₁₅ n-C ₅ H ₁₁ 279 H 3-C ₇ H ₁₅ n-C ₆ H ₁₃ 280 3-C ₇ H ₁₅ n-C ₇ H ₁₅ 281 H 3-C ₇ H ₁₅ n-C ₈ H ₁₇ 282 H 3-C ₇ H ₁₅ n-C ₉ H ₁₉ 283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅ c-H ₂ -CH ₂ -C 285 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ n-Propyl 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ n-Propyl 294 3-C ₇ H ₁₅ h-Propyl 295 H 3-C ₇ H ₁₅ h-Propyl 296 H 3-C ₇ H ₁₅ he 297 H 3-C ₇ H ₁₅ Me	Propyl n-C ₅ H ₁₁ n-C ₆ H ₁₃ n-C ₇ H ₁₅ n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
277 H 3-C ₇ H ₁₅ Propyl 278 H 3-C ₇ H ₁₅ n-C ₅ H ₁₁ 279 H 3-C ₇ H ₁₅ n-C ₆ H ₁₃ 280 3-C ₇ H ₁₅ n-C ₇ H ₁₅ 281 H 3-C ₇ H ₁₅ n-C ₈ H ₁₇ 282 H 3-C ₇ H ₁₅ n-C ₈ H ₁₇ 283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 285 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ n-Propyl 294 3-C ₇ H ₁₅ h-Propyl 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me 297 C H 3-C ₇ H ₁₅ Me	Propyl n-C ₅ H ₁₁ n-C ₆ H ₁₃ n-C ₇ H ₁₅ n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
278 H 3-C ₇ H ₁₅ n-C ₅ H ₁₁ 279 H 3-C ₇ H ₁₅ n-C ₆ H ₁₃ 280 3-C ₇ H ₁₅ n-C ₇ H ₁₅ 281 H 3-C ₇ H ₁₅ n-C ₈ H ₁₇ 282 H 3-C ₇ H ₁₅ n-C ₉ H ₁₉ 283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 285 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ n-Propyl 290 H 3-C ₇ H ₁₅ he 291 H 3-C ₇ H ₁₅ he 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ he 294 3-C ₇ H ₁₅ he 295 H 3-C ₇ H ₁₅ he 296 H 3-C ₇ H ₁₅ he 297 C Cl	n-C ₆ H ₁₃ n-C ₇ H ₁₅ n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
279 H 3-C ₇ H ₁₅ n-C ₆ H ₁₃ 280 3-C ₇ H ₁₅ n-C ₇ H ₁₅ 281 H 3-C ₇ H ₁₅ n-C ₉ H ₁₇ 282 H 3-C ₇ H ₁₅ n-C ₉ H ₁₉ 283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 285 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ c-CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ me 291 H 3-C ₇ H ₁₅ EI 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ i-Propyl 294 3-C ₇ H ₁₅ he 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me 297 CI	n-C ₇ H ₁₅ n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
280 281 281 281 3-C ₇ H ₁₅ 3-C ₇ H ₁₅ 10-C ₈ H ₁₇ 1282 13-C ₇ H ₁₅ 10-C ₈ H ₁₉ 13-C ₇ H ₁₅ 10-C ₁₂ H ₂₅ 1284 13-C ₇ H ₁₅ 10-C ₁₂ H ₂₅ 1285 13-C ₇ H ₁₅ 1286 13-C ₇ H ₁₅ 1286 13-C ₇ H ₁₅ 13-C ₇ H	n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
281 282 H 3-C ₇ H ₁₅ n-C ₆ H ₁₉ 283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅	n-C ₉ H ₁₉ n-C ₁₂ H ₂₅
283 H 3-C ₇ H ₁₅ n-C ₁₂ H ₂₅ 284 H 3-C ₇ H ₁₅ —	n-C ₁₂ H ₂₅
284 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 285 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Ei 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ n-Propyl 294 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me CI 297 H 3-C ₇ H ₁₅ Me	$\overline{}$
285 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Ei 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me	CH,-CH,-CH,-
286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -N 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Et 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me	он,-он,-он,-
286 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 287 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -N 288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -Q 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Et 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me	
288 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Ei 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me CI 297 H 3-C ₇ H ₁₅ Me	O-CH ₂ -CH ₂ -
289 H 3-C ₇ H ₁₅ -CH ₂ -CH ₂ -C 290 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Et 292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me CI 297 H 3-C ₇ H ₁₅ Me	NMe-CH ₂ -CH ₂ -
299 H 3-C ₇ H ₁₅ Me 291 H 3-C ₇ H ₁₅ Et 292 H 3-C ₇ H ₁₅ I-Propyl 293 H 3-C ₇ H ₁₅ I-Propyl 294 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me 296 H 3-C ₇ H ₁₅ Me CI 297 H 3-C ₇ H ₁₅ Me	s-ch ₂ -ch ₂ -
290 H 3-C ₇ H ₁₅ E1 292 H 3-C ₇ H ₁₅ 1-Propyl 293 H 3-C ₇ H ₁₅ 1-Propyl 294 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me C1 297 H 3-C ₇ H ₁₅ Me	
292 H 3-C ₇ H ₁₅ n-Propyl 293 H 3-C ₇ H ₁₅ I-Propyl 294 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me — 296 H 3-C ₇ H ₁₅ Me — CI 297 H 3-C ₇ H ₁₅ Me	Ph
293 H 3-C ₇ H ₁₅ I-Propyl 294 B 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me — 296 H 3-C ₇ H ₁₅ Me — CI 297 H 3-C ₇ H ₁₅ Me	Ph Ph
294 H 3-C ₇ H ₁₅ Ph 295 H 3-C ₇ H ₁₅ Me — 296 H 3-C ₇ H ₁₅ Me — CI 297 H 3-C ₇ H ₁₅ Me	Ph
295 H 3-C ₇ H ₁₅ Me ———————————————————————————————————	Ph
CI 297 H 3-C ₇ H _{15 Me}	_}_a
297 H 3-C ₇ H _{15 Me}	ci ci
AND H SICH MA F	,
298 H 3-C ₇ H ₁₅ Me/_	
299 H 3-C ₇ H ₁₅ Me CH ₂ C	
300 H 3-С ₇ Н ₁₅ Ме —	CO ₂ Me

		R ¹	R ²	R ³	R ⁴	phys. Parameter
10	301	н	3-C ₇ H ₁₅	Ме	Me Et	

15

Stabilitätsüberprüfung

Verbindungen:

20

n-Bu-NH O-CH₂- C
$$\equiv$$
 C-I lodpropagylbutylcarbamat (s. US-3 923 870)

25

30

35

Je 0,5 g der Verbindung wurden in 1,0 g Ethylenglykol eingetragen. Dabei bildet sich eine Suspension von IPBC und eine Emulsion der Verbindung des Beispiels 1 in Ethylenglykol. Beide Gemische werden 42 Tage bei 50°C im verschlossenen Röhrchen gelagert, anschließend geöffnet, mit Ethylacetat auf 100 ml verdünnt und auf ihren Gehalt an Edukt hin mittels HPLC-Analyse untersucht. Man findet

IPBC

: 64 % in deutlich gelber Lösung

Verbindung des Beispiel 1

: 99,3 % in nahezu farbloser Lösung

*(HPLC-Analyse)

5 Patentansprüche

1. Propagylcarbamate der allgemeinen Formel (I)

in welcher

25

30

R¹, R² unabhängig voneinander für Wasserstoff, Alkyl oder Phenyl stehen oder R¹ und R² einen 5- bis 8-gliedrigen Ring bilden,

R³, R⁴ unabhängig voneinander für gegebenenfalls durch 1 bis 3 Sauerstoff-, Schwefel-, oder Stickstoffatome unterbrochenes und/oder gegebenenfalls substituiertes Alkyl, oder für gegebenenfalls substituiertes Aryl, Aralkyl stehen,

oder zusammen mit dem Stickstoffatom an das sie gebunden sind einen gegebenenfalls substituierten 5- bis 8-gliedrigen Ring bilden, der gegebenenfalls durch 1 bis 3 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochen ist, und/oder gegebenenfalls benzoanelliert ist.

2. Verbindungen gemäß Anspruch 1 der Formel (I),

in welcher

R¹, R² unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl stehen oder R¹ und R² zusammen einen fünf- bis sechsgliedrigen Ring bilden,

R³, R⁴ unabhängig voneinander für gegebenenfalls durch 1 oder 2 Sauer-5 stoff-, Schwefel- und/oder Stickstoffatome unterbrochenes und/oder gegebenenfalls durch Halogen, Alkyl, Alkylthio, Alkoxy, Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil oder Aryl oder durch die Gruppe CO₂R¹ substituiertes geradkettiges, verzweigtes oder cyclisches C1-C18-Alkyl stehen, oder 10 für gegebenenfalls durch Halogen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil oder Aryl substituiertes Aryl, Hetaryl oder Aralkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil stehen, oder zusammen mir dem Stickstoffatom, an das sie gebunden sind einen fünf- bis sechsgliederigen Ring 15 bilden der gegebenenfalls durch 1 oder 2 Sauerstoff-, Schwefelund/oder Stickstoffatome unterbrochen ist und/oder gegebenenfalls durch Halogen, Alkyl, Alkoxy, Alkylthio- oder Aryl substituiert ist, und/oder gegebenenfalls benzoanelliert ist.

20

3. Verbindungen gemäß Anspruch 1 der Formel (I)

in welcher

25 R¹, R² unabhängig voneinander für Wasserstoff oder Methyl stehen,

R³, R⁴ unabhängig voneinander für gegebenenfalls durch 1 oder 2 Sauerstoff-, Schwefel- und/oder Stickstoffatome unterbrochenes und/oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-, i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n-, i-Propyloxy, n-, i-, s- oder t-Butyloxy, Methylthio, Ethylthio, n-, i-Propylthio, n-, i-, s- oder t-Butylthio,

35

30

Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen und 1 bis 4 Kohlenstoffatomen, Phenyl oder die Gruppe CO_2R^1 substituiertes, geradkettiges, verzweigtes oder cyclisches C_1 - C_{14} -Alkyl stehen, oder für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-, i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n-, i-Propyloxy, n-,

5

i-, s- oder t-Butyloxy, Methylthio, Ethylthio, n-, i-Propylthio, n-, i-, s- oder t-Butylthio, Halogenalkyl, Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen und 1 bis 4 Kohlenstoffatomen, Phenyl substituiertes Phenyl, Naphthyl, Biphenyl, Benzyl, Phenylethyl, Pyridyl, Furyl, Thiophenyl Pyrrolyl, Oxazolyl, Thiazolyl, Pyrazolyl, Imidazolyl oder Triazoyl stehen, oder zusammen mit dem Stickstoffatom an das sie gebunden sind einen Pyrrolidin-, Piperidin-, Morpholin- oder Piperazinring bilden, der gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy, Trifluormethyl, Ethyl, Ethoxy substituiert ist.

10

- Verbindungen der Formel (I) gemäß Anspruch 1 in welcher R³ und R⁴ jeweils für den gleichen Rest stehen, oder R³ für Methyl steht und R⁴ die in den Ansprüchen 1 bis 3 angegebene Bedeutungen hat.
- 5. Schädlingsbekämpfungsmittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) nach Anspruch 1.
 - Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß
 man Verbindungen der Formel (I) nach Anspruch 1 auf Schädlinge und/oder
 ihren Lebensraum einwirken läßt.

25

7. Verfahren zur Herstellung von Verbindungen der Formel (I)

30

in welcher

35

R¹, R², R³ und R⁴ die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, daß man

WO 94/29268

5

1. Verbindungen der Formel (II)

10

$$\begin{array}{c}
R^1 \\
\downarrow \\
X-C=C-C-OH \\
\downarrow \\
R^2
\end{array}$$
(II)

worin

15

X für Wasserstoff oder Iod steht

mit Verbindungen der Formel (III)

20

$$CI - C - N \stackrel{R^3}{\smile} R^4$$
 (III)

25

gegebenenfalls in Gegenwart eines Verdünnungsmittels, in Gegenwart einer Base umsetzt, oder

2. Verbindungen der Formel (IV)

30

35

worin

X für Wasserstoff oder Iod steht

5

mit Aminen der Formel (V)

10

$$R^3$$
 R^4
(V)

gegebenenfalls in Gegenwart eines Verdünnungsmittels, in Gegen-

15

3. Verbindungen der Formel (VI)

wart einer Base umsetzt, oder

20

worin

X für Wasserstoff oder Iod steht

25

Y für eine Abgangsgruppe, wie Halogen, O-Tosyl oder O-Mesyl, steht

mit Aminen der Formel (V)

30

in Gegenwart einer Base und Kohlendioxid und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt und

4. für den Fall, daß X in den Formel (II), (IV) oder (VI) für Wasserstoff steht, anschließend in Gegenwart einer Hilfsbase und gegebenenfalls einem Verdünnungsmittel iodiert.

5	8.	Verwendung von Verbindungen der Formel (I) nach Anspruch 1 zur Be
		kämpfung von Schädlingen.

- Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) nach Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.
- 10. Verfahren zum Schutz von technischen Materialien, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) nach Anspruch 1 auf die zu schützenden Materialien aufbringt oder beimischt.

15

10

20

25

30

35

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/EP 94/01691

					1017	/EP 34/01031
A. CLASS IPC 5		CT MATTER A01N47/12 C07C271/22				
According	to International Patent Cla	assification (IPC) or to be	oth national classifica	tion and IPC		
B. FIELD	S SEARCHED					
Minimum d IPC 5	documentation searched (c CO7C CO7D	dassification system follo	wed by classification	symbols)		
Documenta	ation searched other than m	unimum documentation t	to the extent that such	i documents are in	chided in t	he fields searched
Electronic d	data base consulted during	the international search (name of data base a	id, where practical	, search to	rms used)
C. DOCUM	MENTS CONSIDERED T	O BE RELEVANT				
Category *	Citation of document, w	vith indication, where app	ropnate, of the relev	ant passages		Relevant to claim No.
x	EP,A,O 490 June 1992 see claim 1	566 (ROHM UND) HAAS COMP/	(NY) 17		1,8-10
A	EP,A,O 257 March 1988 see claims;	1-10				
A	EP,A,O 258 March 1988 see claims;	030 (SUMITOMO) CHEMICAL (:0.) 2		1-10
A	DE,A,32 34 see claims;	037 (BAYER AG examples	i) 29 March	1984		1-10
Furt	her documents are listed in	n the continuation of box	: c.	Patent family	members	are listed in annex.
'A' docume consider if iling of 'L' docume which citation other in 'P' docume later the	ent which may throw doub is cited to establish the pul in or other special reason (s ent referring to an oral dis	ate of the art which is not levance not after the internations at on priority claim(s) or but on priority claim(s) or but of another as specified) sclosure, use, exhibition o international filing date beed	ont	or priority date as cited to understan invention document of partical cannot be conside involve an inventionation of comment of partical control of council is comment, such comment, such comment in the art.	nd not in cond the printicular relevenced novel tive step whicular relevenced to involute with bination bear of the sain	ter the international filing date conflict with the application but ciple or theory underlying the vance; the claimed invention or cannot be considered to ben the document is taken alone vance; the claimed invention olve an inventive step when the one or more other such docu- cing obvious to a person skilled me patent family sational search report
	August 1994				08. 94	·
Name and n	mailing address of the ISA European Patent Offic NL - 2280 HV Rijswi Tel. (+31-70) 340-200	ce, P.B. 5818 Patentiaan ijk 40, Tx. 31 651 epo nl,	2	Authorized officer		

INTERNATIONAL SEARCH REPORT

iformation on patent family members

Inter that Application No
PCT/EP 94/01691

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0490566	17-06-92	US-A- 5209930 AU-A- 8891091 JP-A- 5092949	11-06-92
EP-A-0257888	02-03-88	AU-B- 600297 AU-A- 7715287 DE-A- 3779836 EP-A- 0258030 JP-A- 1006250 JP-A- 63264449 US-A- 4841088 US-A- 4933366	7 03-03-88 5 23-07-92 0 02-03-88 0 10-01-89 0 01-11-88 3 20-06-89
EP-A-0258030	02-03-88	AU-B- 600297 AU-A- 7715287 DE-A- 3779836 EP-A,B 0257888 JP-A- 1006250 JP-A- 63264449 US-A- 4841088 US-A- 4933366	7 03-03-88 5 23-07-92 6 02-03-88 0 10-01-89 9 01-11-88 8 20-06-89
DE-A-3234037	29-03-84	CA-A- 1234814 EP-A,B 0106093 JP-C- 1629080 JP-B- 2047993 JP-A- 59076052 US-A- 4457930	25-04-84 20-12-91 3 23-10-90 2 28-04-84

INTERNATIONALER RECHERCHENBERICHT

Inten sales Aktenzeichen
PC1/EP 94/01691

					7617	EP 94/01031
A. KLASS IPK 5	IFIZIERUNG DES AN CO7C271/12 CO7C271/14		C07C271/24		-	
Nach der In	ternationalen Patentklassi	fikation (IPK) oder nach	der nationalen Klassi	fikation und der II	PK	
B. RECHE	RCHIERTE GEBIETE					
Recherchier IPK 5	ter Mindestprüfstoff (KIa CO7C CO7D	ssifikationsrystem und K	lassifikationssymbole			
Recherchier	te aber nicht zum Mindes	tprüßtoff gehörende Veri	offentlichungen, sowei	t diese unter die re	cherchiert	en Gebiete fallen
Während de	r internationalen Recherc	he konsultierte elektronis	che Datenbank (Nam	e der Datenbank u	md evil. w	erwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEH	ENE UNTERLAGEN	·			
Kategorie*	Bezeichnung der Veröffe	entlichung, soweit erforde	rlich unter Angabe de	r in Betracht kom	menden Te	eile Betr. Anspruch Nr.
X	EP,A,O 490 Juni 1992 siehe Anspr	566 (ROHM UND	HAAS COMPA	NY) 17.		1,8-10
A	März 1988	888 (SUMITOMO		0.) 2.		1-10
A	März 1988	030 (SUMITOMO		0.) 2.		1-10
A		037 (BAYER AG Cüche; Beispie		1984		1-10
Weite		d der Fortsetzung von Fe	id C zu X	Siche Anhang	Patentfam	ilie
* Besondere ! *A* Veröffer aber nie *E* älteres E Anmeld *L* Veröffer scheiner anderen soll ode	Kategorien von angegebentlichung, die den allgemeht als besonders bedeuts bolument, das jedoch ers etestatum veröffentlicht wortlichung, die gezignet ist, n zu lassen, oder durch die im Recherchenbericht ger die aus einem anderen	einen Stand der Technik im anzuschen ist tam oder nach dem inter oden ist, einen Prioritätsanspruch in das Veröffentlichungs	nationalen zweifelhaft eratum einer g belegt werden	oer eem Prionau Anmeldung nicht k Erfindung zugrund Deorie angegeben /eröffentlichung vo ann allein aufgrun rfinderischer Täng /eröffentlichung vo	ollidiert, seliegenden ist on besonde d dieser V jkeit beruh on besonde	nach dem internationalen Anmeldedatum öffenlicht worden ist und mit der ondern nur zum Verständnis des der Prinzips oder der ihr zugrundeliegenden erer Bedeutung; die beanspruchte Erfindung eröffentlichung nicht als neu oder auf ern bedeutung; die beanspruchte Erfindung her Tätigkeit beruhend betrachtet
'P' Veröffer dem be	ntlichung, die sich auf ein mutzung, eine Ausstellung tlichung, die vor dem int anspruchten Prioritätsdat	e mündliche Offenbarung oder andere Maßnahme ernationalen Anmeldedat um veröffentlicht worden	n bezieht um, aber nach ist	verden, wenn die \ /erôffentlichungen liese Verbindung fi /erôffentlichung, d	eröffentli dieser Ka ür einen F ie Mitglier	chung mit einer oder mehreren anderen tegone in Verbindung gebracht wird und achmann naheliegend ist d derselben Patentfamilie ist
	August 1994	men recipies		Absendedatum des 19, [nalen Recherchenberichts
Name und Pe	estanschrift der Internatio Europäisches Patentar NL - 2280 HV Rijswi Tel. (+31-70) 340-204 Fax: (+31-70) 340-30	nt, P.B. 5818 Patentiaan jk 10, Tx. 31 651 epo nl,		Bevollmächtigter B Seufert		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlich. a, die zur selben Patentfamilie gehören

Inter nales Aktenzeichen PCT/EP 94/01691

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A-0490566	17-06-92	US-A- 5209930 AU-A- 8891091 JP-A- 5092949	11-05-93 11-06-92 16-04-93
EP-A-0257888	02-03-88	AU-B- 600297 AU-A- 7715287 DE-A- 3779836 EP-A- 0258030 JP-A- 1006250 JP-A- 63264449 US-A- 4841088 US-A- 4933366	09-08-90 03-03-88 23-07-92 02-03-88 10-01-89 01-11-88 20-06-89 12-06-90
EP-A-0258030	02-03-88	AU-B- 600297 AU-A- 7715287 DE-A- 3779836 EP-A,B 0257888 JP-A- 1006250 JP-A- 63264449 US-A- 4841088 US-A- 4933366	09-08-90 03-03-88 23-07-92 02-03-88 10-01-89 01-11-88 20-06-89 12-06-90
DE-A-3234037	29-03-84	CA-A- 1234814 EP-A,B 0106093 JP-C- 1629080 JP-B- 2047993 JP-A- 59076052 US-A- 4457930	05-04-88 25-04-84 20-12-91 23-10-90 28-04-84 03-07-84