Geometrische Numerische Integration mittels des Störmer-Verlet-Verfahrens

Philipp Storck

9. November 2006

basierend auf gleichnamiger Quelle von Hairer, Lubich und Wanner Erschienen: Acta Numerica (2003), Seiten 399-450

1 Einleitung

Der folgende Text befasst sich mit dem Aufbau des Störmer-Verlet-Verfahrens und seinen strukturerhaltenden Eigenschaften, welche es für viele Anwendungen attraktiv machen.

2 Aufbau von Störmer-Verlet

Wir betrachten Systeme von Differentialgleichungen zweiter Ordnung der Form

$$\ddot{q} = f(q)$$
.

Durch die Wahl einer Schrittweite h und Gitterpunkten $t_n = t_0 + nh$ ergibt sich als einfachste Zwei-Schritt-Diskretisierung zur Berechnung von q_{n+1} bei bekannten q_n und q_{n-1} :

$$q_{n+1} - 2q_n + q_{n+1} = h^2 f(q_n)$$
.

Anschaulich entspricht dies dem Legen einer Interpolationsparablel durch die drei Punkte $(t_{n-1},q_{n-1}), (t_n,q_n)$ und (t_{n+1},q_{n+1}) :

Grafische Veranschaulichung der Zwei-Schritt-Methode

Mittels Einführen der Geschwindigkeit $\dot{q}=v$ kann das System in eine EinSchritt-Methode umformuliert werden. Zunächst einmal führt es zu folgendem System:

$$\dot{q} = v \\
\dot{v} = f(q)$$

Eine Halbierung des Gitters lässt folgende diskrete Näherungen für q und v zu, wie sich leicht anhand des Bildes nachvollziehen lässt:

$$v_n = \frac{q_{n+1} - q_{n-1}}{2h}$$

$$v_{n-1} = \frac{q_n - q_{n-1}}{h}$$

$$q_{n-\frac{1}{2}} = \frac{q_n + q_{n-1}}{2} .$$

Grafische Veranschaulichung der Zwischengrößenschritte

Einsetzen in die ursprüngliche Zwei-Schritt-Diskretisierung ergibt als Ein-Schritt-Verfahren $\Phi^{(A)}:(q_n,v_n)\longmapsto (q_{n+1},v_{n+1})$ die Störmer-Verlet-Methode (A):

$$\begin{array}{rcl} v_{n+\frac{1}{2}} & = & v_n + \frac{h}{2}f(q_n) \\ q_{n+1} & = & q_n + hv_{n+\frac{1}{2}} \\ v_{n+1} & = & v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}) \end{array} \right| (A)$$

oder, auf dem halbierten Gitter, $\Phi^{(B)}:(v_{n-\frac{1}{2}},q_{n-\frac{1}{2}})\longmapsto(v_{n+\frac{1}{2}},q_{n+\frac{1}{2}})$ die Störmer-Verlet-Methode (B):

$$\begin{array}{rcl} q_n & = & q_{n-\frac{1}{2}} + \frac{h}{2} v_{n-\frac{1}{2}} \\ v_{n+\frac{1}{2}} & = & v_{n-\frac{1}{2}} + h f(q_n) \\ q_{n+\frac{1}{2}} & = & q_n + \frac{h}{2} v_{n+\frac{1}{2}} \end{array} \bigg| (B)$$

3 Interpretationen des Verfahrens

3.1 Störmer-Verlet als Komposition von Symplectic-Euler

Durch folgende Gleichungen sind die Symplectic-Euler-Verfahren definiert:

Dementsprechend gilt

$$(A) = (SE2) \circ (SE1)$$

und

$$(B) = (SE1) \circ (SE2) .$$

3.2 Interpretation durch Vektorfeld-Splitting

Das Vektorfeld (v, f(q)) lässt sich aufteilen in die Summe der Vektorfelder (v, 0) und (0, f(q)):

Für deren Flüsse gilt:

$$\phi_t^{[1]} = \left\{ \begin{array}{lcl} q_1 & = & q_0 + tv_0 \\ v_1 & = & v_0 \end{array} \right. , \qquad \phi_t^{[2]} = \left\{ \begin{array}{lcl} q_1 & = & q_0 \\ v_1 & = & v_0 + tf(q_0) \end{array} \right.$$

Aus eben diesen Flüssen sind die Symplectic-Euler-Verfahren (SE1) und (SE2) aufgebaut:

$$\begin{array}{rcl} (SE2) & = & \phi_{\frac{h}{2}}^{[2]} \circ \phi_{\frac{h}{2}}^{[1]} \\ (SE1) & = & \phi_{\frac{h}{2}}^{[1]} \circ \phi_{\frac{h}{2}}^{[2]} \,. \end{array}$$

Aus den Erkenntnissen des ersten Teils dieses Abschnitts folgt

$$\begin{array}{lcl} (B) & = & (SE1) \circ (SE2) & = & \phi_{\frac{h}{2}}^{[1]} \circ \phi_{\frac{h}{2}}^{[2]} \circ \phi_{\frac{h}{2}}^{[2]} \circ \phi_{\frac{h}{2}}^{[1]} \\ & = & \phi_{\frac{h}{2}}^{[1]} \circ \phi_{h}^{[2]} \circ \phi_{\frac{h}{2}}^{[1]} & = & \Phi_{h}^{(B)} \; . \end{array}$$

4 Numerisches Beispiel

Wir betrachten das Kepler Problem, gegeben durch die Gleichungen

$$\ddot{q}_1 = -\frac{q_1}{(q_1^2 + q_2^2)^{\frac{3}{2}}}
 \ddot{q}_2 = -\frac{q_2}{(q_1^2 + q_2^2)^{\frac{3}{2}}}$$

mit den Startwerten

$$q_1(0) = 1 - e$$
 $\dot{q}_1(0) = 0$
 $q_2(0) = 0$ $\dot{q}_2(0) = \sqrt{\frac{1+e}{1-e}}$

wobei e=0,6 gewählt sei:

Störmer-Verlet-Verfahren mit h=0,05 in 100 und 200 Schritten

Runge-Verfahren mit variabler Schrittweite in 100 und 200 Schritten

Daß recht starke Rungeverfahren entfernt sich bei größeren Integrationsintervallen schneller von der exakten Lösung des Systems als das Störmer-Verlet-Verfahren.

5 Verallgemeinerung von Störmer-Verlet

Auf allgemeine geteilte Probleme der Form

$$\dot{q} = g(q, v)$$

$$\dot{v} = f(q, v)$$

erweitert lesen sich die besprochenen Verfahren wie folgt:

$$\begin{array}{rcl} v_{n+\frac{1}{2}} & = & v_n + \frac{h}{2} f(q_n, v_{n+\frac{1}{2}}) \\ q_{n+\frac{1}{2}} & = & q_n + \frac{h}{2} g(q_n, v_{n+\frac{1}{2}}) \end{array} | (SE1)$$

$$\begin{array}{rcl}
q_{n+1} & = & q_{n+\frac{1}{2}} + \frac{h}{2}g(q_{n+1}, v_{n+\frac{1}{2}}) \\
v_{n+1} & = & v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}, v_{n+\frac{1}{2}})
\end{array} | (SE2)$$

$$\begin{array}{lcl} v_{n+\frac{1}{2}} & = & v_n + \frac{h}{2}f(q_n, v_{n+\frac{1}{2}}) \\ q_{n+1} & = & q_n + \frac{h}{2}(g(q_n, v_{n+\frac{1}{2}}) + g(q_{n+1}, v_{n+\frac{1}{2}})) \\ v_{n+1} & = & v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}, v_{n+\frac{1}{2}}) \end{array} \right| (A)$$

$$\begin{array}{rcl}
q_{n} & = & q_{n-\frac{1}{2}} + \frac{h}{2}g(q_{n}, v_{n-\frac{1}{2}}) \\
v_{n+\frac{1}{2}} & = & v_{n-\frac{1}{2}} + \frac{h}{2}(f(q_{n}, v_{n-\frac{1}{2}}) + f(q_{n}, v_{n+\frac{1}{2}})) \\
q_{n+\frac{1}{2}} & = & q_{n} + \frac{h}{2}g(q_{n}, v_{n+\frac{1}{2}})
\end{array} \right| (B)$$

6 Geometrische Eigenschaften

6.1 Symmetrie und Umkehrbarkeit

Das gleichzeitige Vertauschen von h und -h sowie von n und n+1 bzw. $n-\frac{1}{2}$ und $n+\frac{1}{2}$ in den Störmer-Verlet-Verfahren (A) und (B) verändert diese nicht, es gilt also

$$\Phi_h = \Phi_{-h}^{-1}$$
.

Das Invertieren der Anfangsgeschwindigkeit ändert folglich nicht die Lösungskurve, lediglich ihre Richtung:

Mittels Störmer-Verlet ermittelte Lösungskurve

Entsprechende Lösungskurve der invertierten Methode

Die Störmer-Verlet-Verfahren (A) und (B) sind demzufolge zeitsymmetrisch und umkehrbar. Dies gilt unter anderem nicht für die Symplectic-Euler-Verfahren (SE1) und (SE2). Diese werden durch die oben beschriebenen Vertauschungen ineinander überführt, wie sich ebenfalls leicht nachvollziehen lässt.

6.2 Symplektizität bei Hamilton'schen Systemen

Mit H(p,q) einer beliebigen skalarwertigen Funktion in Abhängig von (p,q) ist durch

$$\begin{array}{cccc} \dot{p} & = & -\nabla_q H(p,q) \\ \dot{q} & = & \nabla_p H(p,q) \end{array}$$

die Klasse der Hamilton'schen Systeme definiert.

Der Fluss ϕ_t von Hamilton'schen Systemen ist symplektisch, das heißt er erfüllt

$$\phi_t'(p,q)^T \; J \; \phi_t'(p,q) \; = \; J \qquad \qquad \mathrm{mit} \quad J \; = \; \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array} \right) \, .$$

Anschaulich bedeutet es, daß der Fluss eines Hamilton'schen Systems Flächengrößen invariant läßt.

Analog zu obiger Aussage heißt eine numerische Methode symplektisch, falls für Hamilton'sche Systeme die Jacobi-Matrix Φ' des numerischen Flusses Φ für alle (p,q) und Schrittweiten h die Gleichung

$$\Phi_h'(p,q)^T J \Phi_h'(p,q) = J$$

erfüllt.

Satz 1 Die Störmer-Verlet-Methoden (A) und (B) angewandt auf Hamilton'sche Systeme sind symplektisch.

Beweisskizze

Durch einfache Rechnung lässt sich zeigen, daß die Symplectic-Euler-Verfahren (SE1) und (SE2) symplektisch sind. Somit sind es (A) und (B) als deren Komposition auch.

6.3 Volumenerhaltung

Systeme der Form $(\dot{q} = v, \dot{v} = f(q))$ und Hamilton'sche Systeme haben divergenzfreie, d.h. quellenfreie Vektorfelder. Das bedeutet für deren Fluss ϕ_t :

$$\det \phi_t' = 1.$$

Systeme für die dies zutrifft erhalten Volumina im Phasenraum

$$vol(\phi_t(\Omega)) = vol(\Omega)$$
.

Satz 2 Die Störmer-Verlet-Methoden (A) und (B) angewandt auf Hamilton'sche Systeme sowie auf allgemeine geteilte divergenzfreie Probleme sind volumenerhaltend.

Beweis für Hamilton'sche Systeme

Nach Abschnitt 6.2 sind die Verfahren (A) und (B) symplektisch, folglich gilt

$$\begin{split} \Phi_t'(p,q)^T J \Phi_t'(p,q) &= J \\ \Rightarrow & \det(\Phi_t'(p,q)^T J \Phi_t'(p,q)) &= \det J \\ \Leftrightarrow & \det(\Phi_t'(p,q)^T) \det(J) \det(\Phi_t'(p,q)) &= \det J &= 1 \\ \\ \Rightarrow & \det(\Phi_t'(p,q)^T) &= \det(\Phi_t'(p,q)) &= 1 \; . \end{split}$$

Beweis für allgmeine geteilte Probleme

Angewandt auf allgemeine Systeme, lässt sich der Fluss ϕ_t der Verfahren (A) und (B) analog zu Kapitel 3.2 aufteilen in $\phi_t^{[1]}$ den Fluss von $(\dot{q}=g(v),\dot{v}=0)$ und $\phi_t^{[2]}$ den Fluss von $(\dot{q}=0,\dot{v}=f(q))$. Diese sind divergenzfrei, d.h. quellenfrei und damit auch ihre Komposition.

6.4 Erhaltung erster Integrale

Definition 3 Eine (nicht-konstante Funktion) I(y) heißt erstes Integral (conserved quantity, constant of motion) einer Differentialgleichung $\dot{y} = F(y)$, falls für alle y gilt

$$I'(y)F(y) = 0.$$

Satz 4 Die Störmer-Verlet-Verfahren (A) und (B) erhalten lineare erste Integrale der Form $I(q, v) = b^T q + c^T v$.

Beweis

Sei I(q, v) erstes Integral von $(\dot{q} = v, \dot{v} = f(q))$, so gilt für alle q und v:

$$\begin{split} I'(q,y)F(q,y) &= & \left(\begin{array}{c} \nabla_q I(q,v) \\ \nabla_v I(q,v) \end{array} \right) \left(\begin{array}{c} v \\ f(q) \end{array} \right) \\ &= & \left(\begin{array}{c} b^T \\ c^T \end{array} \right) \left(\begin{array}{c} v \\ f(q) \end{array} \right) &= & b^T v + c^T f(q) \;. \end{split}$$

Da I(q, v) konstant entlang jedes Pfades ist, folgt $b^T v + c^T f(q) = 0$ für alle v und q. Demnach muß gelten $c^T f(q) = 0$ und b = 0. Daraus ergibt sich:

$$\begin{split} I(q_{n+\frac{1}{2}},v_{n+\frac{1}{2}}) &= b^T q_{n+\frac{1}{2}} + c^T v_{n+\frac{1}{2}} \\ &= b^T (q_n + \frac{h}{2} v_{n+\frac{1}{2}}) + c^T (v_n + \frac{h}{2} f(q_n)) \\ &= b^T q_n + c^T v_n + \frac{h}{2} b^T v_{n+\frac{1}{2}} + \frac{h}{2} c^T f(q_n) \\ &= b^T q_n + c^T v_n \\ &= I(q_n,v_n) \; . \end{split}$$

Für den Fall $v,q\in\mathbb{R}$ ist I=0. Daher sind lineare erste Integrale nur für Vektoren q und v von Interesse.

Satz 5 Die Störmer-Verlet-Verfahren (A) und (B) erhalten quadratische erste Integrale der Form $I(q, v) = v^T(Cq + k)$.

Beweis

Sei I(q,v) erstes Integral von $(\dot{q}=v,\dot{v}=f(q)),$ so gilt für alle q und v

$$\begin{split} I'(y)F(y) &= \left(\begin{array}{c} \nabla_q I(q,v) \\ \nabla_v I(q,v) \end{array} \right) \left(\begin{array}{c} v \\ f(q) \end{array} \right) \\ &= \left(\begin{array}{c} v^T C \\ (Cq+k)^T \end{array} \right) \left(\begin{array}{c} v \\ f(q) \end{array} \right) \quad = \quad v^T C v + f(q)^T (Cq+k) \quad = \quad 0 \; . \end{split}$$

Betrachtet man Störmer-Verlet wieder als Komposition der Symplectic-Euler-Verfahren (SE1) und (SE2) so ergibt sich

$$\begin{split} I(q_{n+\frac{1}{2}},v_{n+\frac{1}{2}}) &= v_{n+\frac{1}{2}}^T(Cq_{n+\frac{1}{2}}+k) \\ &= v_n^T(Cq_n+k) + \frac{h}{2} \left(f(q_n)^T(Cq_n+k) + v_{n+\frac{1}{2}}^TCv_{n+\frac{1}{2}} \right) \\ &= v_n^T(Cq_n+k) \\ &= \mathrm{I}(\mathbf{q}_n,v_n) \end{split}$$

sowie

$$v_{n+1}^T(Cq_{n+1}+k) = v_{n+\frac{1}{2}}^T(Cq_{n+\frac{1}{2}}+k)$$

und daher

$$I(q_{n+1}, v_{n+1}) = I(q_n, v_n)$$
.