

2022 대한공간정보학회 춘계학술대회

해양 항공 영상으로부터 선박 탐지 및 위치 결정

2022.05.20

한승연1, 이임평2 1서울시립대학교 공간정보공학과 센서및모델링연구실 석사과정 2서울시립대학교 공간정보공학과 교수

해양 감시 체계

- ❖ 해양, 수중에 위치한 선박, 불특정 위협을 감시하는 체계
- ❖ 의심 선박과 불법 행위 감시로 국가 안보 및 영토 보존
- ❖ 해양 내 위급 상황 발생시 신속한 현장 파악과 대응 가능

해양 감시 체계 (출처 : 해양 경찰청)

해양 감시 주요 객체

- ❖ 해양 내 주요 객체는 선박 → "해양감시 ≒ 선박감시"
- ❖ 선박 정보, 위치 및 동선 파악은 감시체계에서 매우 중요

선박 감시 흐름 (출처 : 해양수산부, marine traffic)

우리나라의 선박 감시 체계

- ❖ 해양경찰청 소속 항공단은 정기적으로 항공기를 운용해 관할 수역 내 선박 감시
- ❖ 현장 감시마다 해양 상황을 촬영해 육안으로 영상 내 선박을 탐지해 선박 정보, 위치 정보 기록

현재 해양 항공 영상 분석의 한계점

- ❖ 하지만 이와 같은 방법은 신속 분석이 요구되는 시점에 효율적으로 영상을 처리할 수 없다는 한계가 존재
- ❖ 따라서 영상 내 선박 **자동** 탐지 후 위치 저장 방안 필요

- ❖ 해양 영상 내 선박 자동 탐지 후 선박의 3차원 위치 결정
 - 높은 성능을 보이며 자동으로 객체탐지가 가능한 딥러닝 이용
 - OCR로 추출한 영상 내 메타정보를 이용해 탐지 선박 위치 결정

연구방법

❖ 연구 아키텍쳐

데이터 전처리

❖ 해양 동영상을 1초에 1프레임씩 추출하여 이미지로 가공

프레임 추출

딥러닝

- ❖ 영상 내 선박 자동 탐지를 위한 영상 분석 기술⇒ 딥러닝
- ❖ 이미지 내 중요한 특징을 스스로 학습
- ❖ CNN의 발전으로 높은 성능을 보여 활발한 연구 진행

심층 신경망 (출처 : 창의 컴퓨팅)

딥러닝 연구 동향 (출처 : 브런치)

객체 탐지

❖ 영상 분석 딥러닝 분야는 분류, 객체 탐지 등 다양함

Classification

Detection

Segmentation

컴퓨터 비전 분야 (출처: 스탠포드 대학교)

- ❖ 그 중 객체 탐지는 영상 내 관심 객체를 개체별로 경계 상자(bbox)를 이용해 탐지
 - 본 연구는 탐지 선박의 3차원 위치를 결정하기 위해 선박의 위치 좌표가 필요하므로 "**객체 탐지 연구"**가 적절

객체 탐지 모델 종류

- One-Stage Detector Yolo
 - 이미지 내 객체의 클래스와 위치를 동시에 예측해 빠르지만 비교적 정확도가 낮음

- Two-Stage Detector Faster R-CNN
 - 이미지에 대한 후보영역을 생성 후, 후보영역의 클래스 분류
 - 두 단계로 더 정확하지만 비교적 느림

2-Stage Detector - Regional Proposal와 Classification이 순차적으로 이루어짐.

객체 탐지 종류

(출처: https://jdselectron.tistory.com/101)

객체 탐지 모델

- ❖ 속도보다 정확도에 초점 두어 Two-Stage Detector 사용
- ❖ 이에 2020년 CVPR에서 발표된 VFNet 모델 선정
 - 새로운 손실 함수와 bbox 탐지 방안을 제안해 성능 향상 도모

VFNet (Zhang et al., 2020)

학습 데이터

❖ 동영상에서 추출한 이미지를 이용해 선박 라벨링 진행

라벨링

이미지

json

모델 학습 및 결과

❖ 데이터 셋

Category	Specifications
Train	2500
Test	500

❖ 학습 관련 하이퍼파라미터

Category	Specifications		
Learning Rate	start : 0.01 Linear Warming up = 0.1		
Batch Size	8		
Epoch	100		
Pretrained Model	coco data		

- ❖ 정밀도(Precision)
 - 모델이 예측한 대상 중 실제 정답인 비율 ⇒ "미탐지"와 연관
- ❖ 재현율(Recall)
 - 실제 정답 중 모델이 예측한 비율 ⇒ "과탐지" 와 연관
- ❖ 태스크에 따라 정밀도와 재현율의 중요도는 결정됨
 - 본 연구는 추론 후 육안 검수를 고려해 재현율이 높게 예측하는 것이 적합

학습 결과

- ❖ 정밀도 52.9%, 재현율 61.8% 도출
- ❖ 큰 선박의 경우, 정확한 영역 탐지를 보이지만 두 개의 영역으로 탐지하기도 함 → 과탐지

학습 결과

❖ 작은 선박의 경우, 물결을 선박으로 탐지하는 사례 존재→ 과탐지

추론 결과

❖ 학습 완료 모델에 평가 데이터를 적용해 경계 상자 추론

학습 완료 모델

file_name	class_id	confidence	x_min	y_min	x_max	y_max
REC-20_11_09_10_48_30 0254	1	0.9306488	960	420	1266	680
REC-20_11_09_10_48_30 0255	1	0.77705103	690	426	1055	689
REC-20_11_09_10_48_30 0256	1	0.864553	526	278	927	694
REC-20_11_09_10_48_30 0257	1	0.825393	573	298	985	700
REC-20_11_09_10_48_30 0258	1	0.54290944	778	389	1206	684
REC-20_11_09_10_48_30 0259	1	0.96423274	500	267	954	688
REC-20_11_09_10_48_30 0260	1	0.9526828	454	140	925	685
REC-20_11_09_10_48_30 0261	1	0.90268534	786	19	1280	610
REC-20_11_09_10_48_30 0263	1	0.942712	318	195	878	697
REC-20_11_09_10_48_30 0264	1	0.93568784	504	117	1075	694
REC-20_11_09_10_48_30 0265	1	0.7082812	821	10	1280	566
REC-20_11_09_10_48_30 0266	1	0.9241244	611	112	1239	700
REC-20_11_09_10_48_30 0267	1	0.84522194	656	175	1227	696
REC-20_11_09_10_48_30 0268	1	0.92219615	583	207	1266	685
REC-20_11_09_10_48_30 0269	1	0.4639585	1178	363	1280	646

탐지 선박 이미지

탐지 선박 경계 상자(bbox) 좌표

3차원 위치 결정 개요

- ❖ 탐지 선박 경계 상자로부터 선박의 3차원 위치 결정을 위해 좌표 변환 과정 필수
- ❖ 이를 위해 카메라의 내부, 외부 표정 요소 활용

탐지 선박 경계 상자 (이미지 좌표계)

변환과정

탐지 선박 3차원 좌표 (3차원 좌표계)

Step 1	센서 구성 및 좌표계 설정
Step 2	내부표정 - 영상점 벡터 설정
Step 3	외부표정 – 지상점 벡터 설정
Step 4	대상지점의 3차원 좌표 결정
Output	추정된 지상점

3차원 좌표 결정 개요

(출처: Oh et al., 2010)

메타 정보 추출을 위한 OCR 활용

❖ 카메라의 내부, 외부 표정 요소 파악을 위해 영상 내메타 정보(항공기 위치, 카메라 자세 등)을 OCR로 추출

- ❖ 탐지 선박 경계 상자 좌표와 영상 내 메타 정보를 이용해 두 좌표계 간의 관계 수립
- ❖ 이로 유도한 공선 방정식에 경계 상자 좌표 대입

3차원 위치 결정 결과

❖ 추론한 선박의 3차원 위치 가시화 - Qgis

결론

- ❖ 영상 내 선박 탐지와 위치 결정
 - 딥러닝을 이용해 자동으로 영상 내 선박 탐지
 - 선박의 3차원 위치 결정을 위해 OCR로 메타 정보 추출
 - 공선 방정식을 이용해 이미지 좌표계에서 3차원 좌표계로 변환
 - 높은 성능으로 선박 탐지와 3차원 위치 결정 수행

❖ 본 연구의 방안으로 향후 해양 영상 내 선박 분석을 효과적으로 수행할 수 있을 것이라 기대

발표자: 한승연 http://lsm.uos.ac.kr oneseungyeon@naver.com

Thank You!

