Foldable Robotics

Class XVI: Sensors

Sensors

- Measure Physical properties
 - Light, Strain, Heat
 - Measuring Force is hard directly

Light

- Lots of different mechanisms for light
- Photoresistor
- Photodiode
 - Photovoltaic
 - +light→+V
 - Photoconductor
 - +light →-R
- Phototransistor
 - +light

Magnetic Field

- Types
 - Reed Switch
 - Inductive Galvonometer
 - Hall Effect Sensor go linear.

Motion

- Accelerometer
 - accelerations
- Gyro
 - Angular accelerations
- IMU
 - Everything
 - Smoothing
 - Integration
 - Position, Velocity, Acceleration
 - Rotation, rotational velocity, angular acceleration

Position Resistive

- Temperaturedependence
- Hysterisis
- Types
 - Linear Potentiometer
 - Rotary Potentiometer
 - Flex Sensor
 - etc

Position Capacitive

Spacing variation

Area variation

- Two charged plates
 - Spacing Change

$$C = \frac{\epsilon A}{d}$$

$$\bullet \ \delta_d = \frac{pd}{\rho E}$$

- Area Change
 - Digital Calipers

http://www.chenyang-ism.com/CapaSensorPosi.htm

Position - Other

- Emittor/Detector Pair
 - Proximity
 - Based on reflectance
- Ultrasonic
 - High Noise
 - Longer distances

Pressure / Force

- Strain Gauge
 - Temperaturesensitive
 - Wheatstone Bridge
 - Load Cell
- Other Position Sensors

esistance decreases

Dynamic Tactile Sensing

Piezo

Position
Induction

- Non-contacting
- Requires AC
- Senses Metals, esp Ferrous Metals
- Types:
 - Inductive Proximity Switch, Position Sensors
 - LVDT
 - Inductive Encoders

LVDT Signal Conditioning Circuit

https://sensonwiki.org/dowwydros/sensors/linear variable differential transformer

Temperature

- Resistance temperature detector
- Thermistor
- Thermocouple

Encoders

- Types
 - Optical
 - Absolute
 - Relative
 - Magnetic
 - Capacitive
 - Inductive

Embedding Sensors

Embedding Sensors

Rubber Casting Process

- Rubber is poured into the mold
 Rubber does not fill the sensor
 - Rubber does not fill the sensor area

- 2) Use a vacuum chamber
- Degassing removes air bubbles
- Rubber fills the sensor

Common Circuits

Circuit Conditioning

- Self-contained packages
- Op Amps
- Transistor-based amplification

