Andrew P. Sabelhaus

870 55th St. Apt. B, Oakland CA 94608 www.apsabelhaus.com | apsabelhaus@berkeley.edu | (301) 807-9842

EDUCATION

PH.D. MECHANICAL ENGINEERING

Disseration title (tentative): Quadruped Robots with Actuated Tensegrity Spines Disseration Committee: Alice M. Agogino (Chair), Andrew Packard, Claire Tomlin

M.S. MECHANICAL ENGINEERING

Thesis: Mechanism and Sensor Design for SUPERball, a Cable-Driven Tensegrity Robot

B.S. MECHANICAL ENGINEERING

(With Minor in Computer Science)

University of California, Berkeley
Expected May 2019

University of California, Berkeley

Dec. 2014

University of Maryland, College Park
May 2012

GRANTS + FUNDING + AWARDS

- 4. CITRIS Tech for Social Good Development Grant. \$5,000. Title: Laika, The Robot Transport for Disaster Relief. University of California Center for Information Technology Research in the Interest of Society (CITRIS), 2018.
- 3. NASA Space Technology Research Fellowship. \$75,000/yr, 4 years. Title: *Trajectory Tracking in Nonlinear, High-Order, Underactuated Robotic Systems.* 2015-2019.
- 2. Markowski-Leach Scholarship Award. 4 years (re-awarded after two.) Awarded to LGBTQ individuals at San Francisco Bay Area institutions who "are likely to make a substantial contribution to society." 2013-2014, 2016-2018. Currently the only repeated awardee on record.
- 1. NSF Graduate Research Fellowship. National Science Foundation. \$32,000/yr, 3 years. 2012-2015
 *In addition to these independent awards and grants, Drew has assisted in writing three large multiple-PI proposals (NSF), one large single-PI proposal (NASA), and two small single-PI proposals.

PEER-REVIEWED PUBLICATIONS

- 10. Modular Elastic Lattice Platform for Rapid Prototyping of Tensegrity Robots. Chen, L-H.; Daly, M.C.; Sabelhaus, A.P.; Janse van Vuuren, L.A.; Garnier, H.J.; Verdugo, M.I.; Tang, E.; Spangenberg, C.U.; Ghahani, F.; Agogino, A.K.; Agogino, A.M.; ASME International Design Engineering Technical Conferences (IDETC) / 41st Mechanisms and Robotics Conference, Aug 2017.
- 9. Model-Predictive Control of a Flexible Spine Robot. <u>Sabelhaus, A.P.</u>; Akella, A.K.; Ahmad, Z.A.; SunSpiral, V.; *American Control Conference (ACC)*, May 2017.
- 8. DNA-Structured Linear Actuators. Zampaglione, K.; <u>Sabelhaus, A.P.</u>; Chen, L.; Agogino, A.M.; Agogino, A.K.; ASME International Design Engineering Technical Conferences (IDETC) / 40th Mechanisms and Robotics Conference, Aug 2016.
- 7. Mechanism Design and Simulation of the ULTRA Spine, a Tensegrity Robot. Sabelhaus, A.P.; Ji, H.; Hylton, P.; Madaan, Y.; Yang, C.; Friesen, J.; SunSpiral, V.; Agogino, A.M.; ASME International Design Engineering Technical Conferences (IDETC) / 39th Mechanisms and Robotics Conference, Aug 2015.
- 6. System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot. Sabelhaus, A.P.; Bruce, J.; Caluwaerts, K.; Manovi, P.; Fallah Firoozi, R.; Dobi, S.; Agogino, A.M.; SunSpiral, V.; IEEE International Conference on Robotics and Automation (ICRA), May 2015.
- 5. Design and Control of Compliant Tensegrity Robots through Simulation and Hardware Validation. Caluwaerts, K.; Despraz, J.; Iscen, A.; Sabelhaus, A.P.; Bruce, J.; Schrauwen, B.; SunSpiral, V.; Journal of the Royal Society Interface, Sept. 2014.
- 4. Hardware Design and Testing of SUPERball, a Modular Tensegrity Robot. Sabelhaus, A.P.; Bruce, J.; Caluwaerts, K.; Chen, Y.; Lu, D.; Liu, Y.; Agogino, A.K.; SunSpiral, V.; Agogino, A.M.; The 6th World Conference on Structural Control and Monitoring (6WCSCM), July 2014

- 3. SUPERball: Exploring Tensegrities for Planetary Probes. Bruce, J.; Sabelhaus, A.P.; Chen, Y.; Lu, D.; Morse, K.; Milam, S.; Caluwaerts, K.; Agogino, A.M.; SunSpiral, V.; 12th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS), June 2014
- 2. Design and Evolution of a Modular Tensegrity Robot Platform. Bruce, J.; Caluwaerts, K.; Iscen, A.; Sabelhaus, A.P.; SunSpiral, V.; IEEE International Conference on Robotics and Automation (ICRA), May 2014
- 1. TinyTeRP: A Tiny Terrestrial Robotic Platform with Modular Sensing. Sabelhaus, A.P.; Mirsky, D.; Hill, L.M.; Bergbreiter, S.; IEEE International Conference on Robotics and Automation (ICRA), May 2013

WORKSHOP PUBLICATIONS

1. Trajectory Tracking Control of a Flexible Spine Robot, With and Without a Reference Input. Sabelhaus, A.P.; Zhao, S.H.; Daly, M.C.; Tang, E.; Zhu, E.; Akella, A.K.; Ahmad, Z.A.; SunSpiral, V.; Agogino, A.M.; NASA/ESA Conference on Adaptive Hardware and Systems: Structurally Adaptive Tensegrity Robots Workshop, July 2017. Available, arXiv:

PRE-PRINTS + PUBLICATIONS UNDER REVIEW

- 3. Inverse Kinematics for Control of Tensegrity Soft Robots: Existence and Optimality of Solutions. Sabelhaus, A.P.; Agogino, A.K.; *Under Review (Workshop.)* Preprint available, arXiv:
- 2. Model-Predictive Control with Reference Input Tracking for Tensegrity Spine Robots. Sabelhaus, A.P.; Zhao, H.; Zhu, E.; Agogino, A.K.; Agogino, A.M.; Under Review (Journal.) Preprint available, arXiv:1806.08868
- 1. Design, Simulation, and Testing of Laika, a Quadruped Robot with a Flexible Actuated Spine.

 Sabelhaus, A.P.; Janse van Vuuren, L.A.; Joshi, A.; Zhu,E.; Garnier, H.J.; Sover, K.A.; Navarro, J.; Agogino, A.K.; SunSpiral, V.; Agogino, A.M.; Under review (Conference.) Preprint available, arXiv:1804.06527

IN-PREPARATION PUBLICATIONS

- 3. Slack Cables in Cable-Driven Robots: Modeling and Passivity-Based Control. Sabelhaus, A.P. et al.
- 2. DNA-Structured Linear Actuators: Modeling and Experimental Characterization. Sabelhaus, A.P.; Tang, E.; Zampaglione, K.; Agogino, A.M.
- 1. Quadruped Robot Spines Require Torsion for Foot-Lifting, Sabelhaus, A.P. et al.

PATENTS

- DNA Structured Linear Actuator. Agogino, A.; Zampaglione, K.; Chen, L-H.; Sabelhaus, A.; US Patent Application Number: PCT/US2016/032899. Under Review.
- Elastic Lattices for Design of Tensegrity Structures and Robots. Chen, L-H.; Agogino, A.; Daly, M.; Sabelhaus, A.P.; Agogino, A.K.; Provisional Patent.

PRESENTATIONS + POSTERS

- Laika, The Quadruped Robot with a Tensegrity Spine. Bay Area Robotics Symposium (BARS), Oct. 2018.
 Presentation and Poster.
- DNA-Structured Linear Actuators. SKTA Innopartners IP Redux Event, Apr 2016. Presentation.
- ULTRA Spine Project. Bay Area Robotics Symposium (BARS), Oct 2015. Presentation and Poster.
- Robotics, Mechatronics, and Intelligent Systems. Osher Lifelong Learning Institute, Feb 2014. Invited Talk.
- Mechatronic Design of Tensegrity Robotic Systems for Dynamic Locomotion. NASA Ames Research Center Autonomous Systems Lab Poster Symposium, Aug 2013. Poster.
- TinyTeRP: A Tiny Terrestrial Robotic Platform. International Symposium on Distributed Autonomous Robotic Systems (DARS), Nov 2012. Poster.

TFACHING

Graduate Student Instructor (GSI). University of California, Berkeley.

Jan. - May, 2018 | Mech. Eng. 135/235, Design of Microprocessor-Based Mechanical Systems

- Created course content for lab and discussion sections, delivered stand-in lectures, assisted students with projects.
- Overall Course Evaluations: Total Effectiveness of Instructor: 4.7/5.0 (Undergrad.), 4.88/5.0 (Grad.)
- Students' course evaluation averages were above department averages in all metrics.

REVIEWER FOR JOURNALS AND CONFERENCES

Drew has served as a reviewer for the following journals and conferences:

- IEEE Robotics and Automation Magazine, 2018
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.
- IEEE Robotics and Automation Letters (RA-L), 2017, 2018
- IEEE International Conference on Robotics and Automation (ICRA), 2017.
- · American Control Conference (ACC), 2017-2018.
- ASME International Design Engineering Technical Conference (IDETC), 2016-2017.
- · International Journal of Space Structures, 2017.
- · IEEE Conference on Control Technology and Applications (CCTA), 2017.

MENTORSHIP + ADVISING

Drew has participated extensively in UC Berkeley's Undergraduate Research Apprenticeship Program (URAP) and as a graduate student mentor for the Master of Engineering (M.Eng) program. He mentored or advised the following students in an official capacity:

Graduate Student Researchers:

- · Holly Stein, M.Eng 2018
- · Nigel Mevana, M.Eng 2018
- · Jonathan Marr, M.Eng 2018
- · Lara Janse van Vuuren, M.Eng 2017
- Shirley (Huajing) Zhao, M.Eng 2017
- · Robel Teweldebirhan, M.Eng 2017
- · Asher Saghian, M.Eng 2017
- · June (Shu Jun) Tan, M.Eng 2017
- Kyle Zampaglione (project mentoring), M.S. 2015
- Patrick Hylton, M.Eng 2015
- · ChanWoo Yang, M.Eng 2015
- · Yakshu Madaan, M.Eng 2015
- · Yangxin Chen, M.Eng 2014
- · Dizhou Lu, M.Eng 2014
- · Margaret (Yuejia) Liu, M.Eng 2014

Undergraduate Student Researchers:

- · Angela Wang, B.S. 2020
- · Jesus Navarro, B.S. 2018
- Kimberly Sover, B.S. 2019
- · Lua Varner, B.S. 2018
- · Hunter Garnier, B.S. 2018
- · Akhilesh Mishra, B.S. 2018
- · Ankita Joshi, B.S. 2017
- Jorge Vizcayno, B.S. 2016
- · Heeyeon Kwon, B.S. 2016
- · Zeerek Ahmad, B.S. 2015
- · Roya Fallah Firoozi, B.S. 2014
- · Sarah Dobi, B.S. 2015

RELEVANT WORK EXPERIENCE

Visiting Technologist. NASA Ames Research Center, Intelligent Systems Division.

- 2015 Present | Moffett Field, CA
 - Developed hardware prototypes, using novel fabrication tehniques, for tensegrity spine robots
 - Designed and simulated model-predictive controllers for tensegrity spine robots
 - Wrote and maintained components of the NASA Tensegrity Robotics Toolkit in C++
 - Tested and verified model validity of a tensegrity spine within a quadruped robot
 - Created framework for asymptotically-stable closed-loop controllers for cable-driven robots using passivity

Volunteer Researcher. NASA Ames Research Center, Intelligent Robotics Group 2013 - 2014 | Moffett Field, CA

- Designed, prototyped, and tested mechanisms of SUPERball, an autonomous tensegrity robot: cable driving system, actuation system, active compliance spring system
- Designed, tested, calibrated, and assembled custom force sensors for SUPERball
- Demonstrated first prototype locomotion of SUPERball, providing proof-of-concept of a full-scale spherical tensegrity robot in rolling motion

DIVERSITY + OUTREACH + SERVICE

- ASME Diversity and Inclusion Strategic Committee (DISC), Advisor. American Society of Mechanical Engineers (ASME). Revised ASME policy P-15.11, PS16-02, and Statement on Diversity and Inclusion to include protections for transgender ASME members. June 2016 - Ongoing.
- ASEE LGBTQ Virtual Community of Practice, Member. American Society for Engineering Education.
 Organizing for LGBTQ safe space workshops in engineering. March 2018 Ongoing.
- Graduate Student Search Committee, Member. UC Berkeley Mechanical Engineering Faculty Searches. Led committee in interviewing and recommending faculty candidates. Spring 2017 Spring 2018.
- Graduate Peer Advisor. UC Berkeley Mechanical Engineering Equity, Diversity, and Inclusion Initiative. Created and assessed various programs serving under-represented students. Aug 2014 May 2015.
- Coordinator, Chapter Leadership Programs. Out in Science, Technology, Engineering, and Mathematics (oSTEM) Incoporated. Led team in developing resources for LGBTQ student leaders. July 2012 April 2013.
 - *In addition to these formal programs, Drew has organized many lab tours and smaller outreach events, and has volunteered with programs that recruit under-represented students to UC Berkeley.

PROFESSIONAL DEVELOPMENT

- Summer Institute for Preparing Future Faculty. A professional development program to prepare students for academic careers. University of California Berkeley, June 2018.
- Question, Persuade, Refer: Gatekeeper. Training for response to mental health crises in students.
 University of California Berkeley Health Center, March 2018.