Due: 2012/11/22

Homework 7

Problem 1. Determine the Schur number S(2,2), justify your answer.

Problem 2. Prove the stronger version of Schur's theorem: For any positive integers c and m, there exists $S^*(c,m)$ such that no matter how we colour $[S^*(c,m)]$ by c colours, there are distinct $x_1, x_2, ..., x_m, y \in [S(c)]$ with the same colour such that $\sum_{i=1}^m x_i = y$.

Problem 3. Prove that for any positive integer c, there is a number N = N(c) such that for any c-colouring of all subsets of [N], $f: 2^{[N]} \to [c]$, there exists non-empty disjoint sets $X, Y \subseteq [N]$ such that f(X), f(Y) and $f(X \cup Y)$ are the same.