Stat 510: Homework 4.

Moulinath Banerjee

October 28, 2020

- 1 (i) Let (U, V) be distributed jointly with a spherically symmetric density. In other words, let their joint density $f(u, v) = Cg(u^2 + v^2)$, for some non-negative function g. Show that $(\epsilon_1 U, \epsilon_2 V)$ has the same distribution as (U, V), where ϵ_1 and ϵ_2 are either 1 or -1. Deduce that U and V are uncorrelated.
 - (ii) Now consider a pair of random variables (W_1, W_2) that are independent of (U, V) in (a), where each W_i assumes the value 1 or -1. Let $Z_1 = W_1U$ and $Z_2 = W_2V$. Show that (Z_1, Z_2) again has the same distribution as (U, V).
- 2. (i) Let Y have a density which is symmetric about 0 and let X = SY where S is independent of Y and assumes values 1 and -1 with probability 1/2. Show that Cov(X,Y) = 0 but that X and Y are not independent. (This shows that uncorrelatedness does not necessarily imply independence.)
 - (ii) A random rectangle is generated in the following way: The base X is chosen to be a U(0,1) random variable and after having generated the base, the height of the rectangle is chosen to be uniform on (0, X). Find the expected circumference and area of the rectangle.
 - (iii) Two streams cross at a point at right angles. (You can think of the X stream running along the X axis and the Y stream running along the Y axis, intersecting at the origin.) At the intersection, the flow of each stream is regulated via its own lock, say the X lock (for X stream) and the Y lock (for Y stream). At the stroke of midnight, one of the locks is randomly opened and left that way for an hour. The chance that the X-lock is obtained is p_x and the chance of the Y-lock being opened $p_y = 1 p_x$. Let W be the number of the fish that pass through the intersection in that hour. If the X-lock is opened, this is a Poisson(λ_x) random variable; otherwise a Poisson(λ_y). Find EW and Var(W).
- 3. Let $(N_1, N_2, ..., N_m)$ be distributed as Multinomial $(n, p_1, p_2, ..., p_m)$. Calculate: (i) the covariance between N_i and N_j , (iv) the conditional covariance between N_i and N_j for $i, j \leq r$ given $(N_{r+1}, ..., N_m)$, (iii) an appropriate approximation to the probability that N_1 is larger than 65 when N = 100 and $p_1 = 0.25$. (30 points)
 - **Hint:** It might be useful to think of the multinomial vector as $\sum_{i=1}^{n} V_i$ where $V_i = (V_{i,1}, \dots, V_{i,m})$'s are i.i.d Multinomial $(1, p_1, p_2, \dots, p_m)$.

- 4. Let (X,Y) be jointly distributed inside the ellipse given by $\{(x,y): a\,x^2+b\,y^2=1\}$. Find the marginal densities of X and Y and the conditional densities of Y given X and X given Y. Are X and Y correlated? Are they independent?
- 5. Before we start this problem, some preliminary facts from calculus. For $\alpha, \beta > 0$,

$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} := B(\alpha,\beta),$$

where B is called the beta function. Here Γ is the usual gamma function from calculus.

Suppose Θ follows the Uniform(0,1) distribution and $(X_1, X_2, \dots, X_n)|\Theta = \theta$ are i.i.d. Bernoulli (θ) . Let $S_n = \sum_{i=1}^n X_i$.

- (i) Write down $f(m,\theta)$ the 'mixed' joint density of (S_n,Θ) for (m,θ) in an appropriate set that you should identify. Calculate $p_n(k) := P(S_n = k)$, the pm.f of S_n and find the conditional density of Θ given $S_n = k$, as well as $E(\Theta|S_n)$. Argue that the form of the conditional density makes sense intuitively.
- (ii) Write down the 'mixed' joint density of $(X_1, X_2, ..., X_n, \Theta)$, say $f(\epsilon_1, \epsilon_2, ..., \epsilon_n, \theta)$ and use this to calculate the joint pm.f. of $(X_1, X_2, ..., X_n)$, i.e. $P(X_1 = \epsilon_1, X_2 = \epsilon_2, ..., X_n = \epsilon)$ where the vector $(\epsilon_1, ..., \epsilon)$ is a generic point in $\{0, 1\}^n$.
- (iii) Argue that the distribution of $(X_1, X_2, ..., X_n)$ is exchangeable, i.e. $(X_1, X_2, ..., X_n)$ has the same distribution as $(X_{\pi(1)}, ..., X_{\pi(n)})$ where π is any permutation of the integers 1 through n.
- (iv) Compute the conditional distribution of $(X_1, X_2, ..., X_n)$ given S_n and the conditional distribution of X_1 given S_n . What is $E(X_1 | S_n)$?