An Overview on Description Logics, and Axiom Pinpointing in \mathcal{EL}

Barış Sertkaya

Theoretical Computer Science TU Dresden, Germany

June 15, 2009

Outline

- Months in the second of the
- 2 Description Logics
- \bigcirc The DL \mathcal{ALC}
- 4 DL Ontology
- 6 Reasoning and its Complexity
- 6 Web Ontology Language OWL
- $m{0}$ Axiom Pinpointing in \mathcal{EL}

I am working on...

- Description Logics:
 - logics for representing conceptual knowledge.
 - describe the world with a logical language, classify the descriptions
- Formal Concept Analysis:
 - field of lattice theory for conceptual data analysis
 - derive a classification from the given samples
- o combining them, using methods from one field in the other

Knowledge Representation

Develop formalisms that have

- a well-defined syntax,
- formal, unambigious semantics,
- practical methods for reasoning, and efficient implementations

Conceptual knowledge

- Classes: country, coastal country, ...
- Relations: has border to, has neighbour, ...
- Individuals: Portugal, Mediterranean, Atlantic, ...

Early days

Semantic networks [Quillian(1967)]

- nodes represent classes
- links represent relations
- hasBorderTo: has a border to sth., or only has border to sth.?
- ambigious semantics!

KL-ONE [Brachman & Levesque(1985)]

logic-based semantics

Description Logics (DLs)

- family of logic-based knowledge representation formalisms
- describe an application domain in terms of
 - concepts (classes) like Country, Ocean, ...
 - individuals like Portugal, Atlantic, ...
 - roles (relations) like hasBorderTo, hasNeighbour,...
- well-defined, formal semantics
- decidable fragments of First Order Logic
 - Sea ⊔ Ocean,
 - Country □ ∃hasBorderTo.Ocean,
 - Ocean(Atlantic),
 - OceanCountry(Portugal)

The DL ALC

ALC: The smallest propositionally closed DL

- Atomic concepts: A, B, . . . (unary predicates) (binary predicates) • Atomic roles: r, s, \ldots Constructors: • ¬C (negation)
 - \bullet $C \sqcap D$ \bullet $C \sqcup D$
 - ∃r.C (existential restriction) (value restriction)
 - ∀r.C

Examples:

- Country □ ¬Island
- Country □ ∀hasBorderTo.LandMass
- Country □ ∃hasNeighbour.(∃hasBorderTo.Ocean)

(conjunction)

(disjunction)

Semantics of ALC

based on interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consisting of a domain $\Delta^{\mathcal{I}}$, and an interpretation function $\cdot^{\mathcal{I}}$

Concept and role names:

- ullet $\mathcal{A}^\mathcal{I}\subseteq \Delta^\mathcal{I}$ (concepts interpreted as sets)
- ullet $r^{\mathcal{I}}\subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$ (roles interpreted as binary relations)

Complex concept descriptions:

- $\bullet \ (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}, \quad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}, \quad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\exists r.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid \text{ there is } e \in \Delta^{\mathcal{I}} : (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$
- $\bullet \ (\forall r. C)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \ \text{for all } e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \}$

 \mathcal{I} is a model of C if $C^{\mathcal{I}} \neq \emptyset$

8 / 27

Example of an interpretation

 $(Country \sqcap \exists hasNeighbour.(\exists hasBorderTo.Ocean))^{\mathcal{I}} = \{Spain\}$

Relation to FOL

- \bullet \mathcal{ALC} is a fragment of FOL
- Concept names are unary predicates, role names are binary predicates
- Concept descriptions yield formulae with one free variable
- \mathcal{ALC} concept desriptions can be written in the two-variable fragment (\mathcal{L}^2) of FOL

$$\forall r.(\exists r.A) \Rightarrow \forall y.(r(x,y) \rightarrow (\exists z.(r(y,z) \land A(z))))$$
$$\Rightarrow \forall y.(r(x,y) \rightarrow (\exists x.(r(y,x) \land A(x))))$$

• \mathcal{L}^2 is decidable [Mortimer(1975)]

Reasoning tasks

Two main reasoning tasks:

- concept satisfiability: Is there a model of *C*?
- concept subsumption: Does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for all \mathcal{I} ? (written $C \sqsubseteq D$?)

Concept subsumption for computing the subsumption hierarchy:

For \mathcal{ALC} , satisfiability and subsumption are mutually reducible: $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable

DL Knowledge Bases (Ontologies)

```
\mathsf{DL}\ \mathsf{Knowledge}\ \mathsf{Base}\ (\mathsf{Ontology}) = \mathsf{TBox} + \mathsf{ABox}
```

- ullet TBox (\mathcal{T}) defines the terminology of the application domain
- ABox (A) states facts about a specific "world"

TBox: set of concept definitions

 $\label{eq:country} LockedCountry \equiv Country \sqcap \forall hasBorderTo.LandMass\\ OceanCountry \equiv Country \sqcap \exists hasBorderTo.Ocean$

<u>ABox:</u> set of concept and role assertions

General TBox: set of GCIs (general concept inclusion axiom)

Ocean(Atlantic), Sea(Mediterrenaean), hasBorderTo(Portugal, Atlantic),

DL Knowledge Bases

An interpretation \mathcal{I} is a model of

- a TBox \mathcal{T} if it satisfies all its concept definitions: $A^{\mathcal{I}} = C^{\mathcal{I}}$ for all $A \equiv C \in \mathcal{T}$
- a general TBox \mathcal{T} if it satisfies all its concept inclusions: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all $C \sqsubseteq D \in \mathcal{T}$
- an ABox A if it satisfies all its assertions:
 - $a^{\mathcal{I}} \in C^{\mathcal{I}}$ for all $C(a) \in \mathcal{A}$
 - $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ for all $r(a, b) \in \mathcal{A}$
- a knowledge base $(\mathcal{T}, \mathcal{A})$ if it is a common model of \mathcal{T} and \mathcal{A} .

Reasoning with TBox and ABox

T a TBox, A an ABox, C and D concept descriptions, A an individual name.

TBox Reasoning

- Satisfiability: Is there a common model of C and T?
- Subsumption: Does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold in all models \mathcal{I} of \mathcal{T} ? (written $C \sqsubseteq_{\mathcal{T}} D$)

ABox Reasoning

- Consistency: Is there a common model of \mathcal{A} and \mathcal{T} ?
- Instance: Does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models \mathcal{I} of \mathcal{A} and \mathcal{T} ? (written $\mathcal{T}, \mathcal{A} \models C(a)$)

Tableau Algorithms

```
Satisfiability \Leftrightarrow Subsumption Consistency \Leftrightarrow Instance
```

 $Satisfiability \Rightarrow Consistency$

Tableau Algorithm:

- decision procedure for checking ABox consistency
- tries to generate a finite model for the input ABox
- extends the ABox by applying tableau rules
- checks for contradictions
- if no rule applies and no contradiction is found, the ABox is consistent

Complexity of Reasoning in \mathcal{ALC}

- with empty TBox PSPACE-complete [Schmidt-Schauß & Smolka(1991)]
 - in PSPACE: the tableau algorithm
 - PSPACE-hard: reduction from satisfiability in QBF (quantified boolean formulae)
- \bullet with general TBoxes: $ExpTime\mbox{-complete}$
 - in EXPTIME: tableau algorithm in [Donini & Massacci(2000)]
 - EXPTIME-hard: [Schild(1991)]

PSPACE: solvable by a deterministic machine with polynomial space EXPTIME: solvable by a deterministic machine in exponential time

tradeoff between expressivity and computational complexity!

More expressive DLs \mathcal{ALCN} and \mathcal{ALCQ}

 \mathcal{ALC} cannot express countries that have at most 3 neighbours

Unqualified number restrictions: Country \sqcap (\leq 3 hasNeighbour)

- at most: $(\leq n \ r)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid card(\{e \mid (d,e) \in r^{\mathcal{I}}\}) \leq n\}$
- at least: $(\geq n \ r)^{\mathcal{I}} = \dots$

 \mathcal{ALCN} cannot express countries that have at least 1 neighbour that is an ocean country

Qualified nr. restrns: Country \sqcap (≥ 1 hasNeighbour.OceanCountry)

- at least: $(\geq n \ r.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid card(\{e \mid (d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}) \geq n\}$
- at most: $(\leq n \ r.C)^{\mathcal{I}} = \dots$

More expressive DLs ALCQI, ALCQO

ALCQI: ALCQ + inverse roles

Inverse roles:
$$(r^-)^{\mathcal{I}} = \{(e,d) \mid (d,e) \in r^{\mathcal{I}}\}$$

countries recognized by an EU member

Country $\sqcap \exists recognizes^-$. EUmember

ALCQO: ALCQ + nominals

Nominals:
$$\{a_1,\ldots,a_n\}^{\mathcal{I}}=\{a_1^{\mathcal{I}},\ldots,a_n^{\mathcal{I}}\}$$

countries that have territories in Europe or Asia

Country $\sqcap \exists \mathsf{hasTerritoryIn}. \{ \mathit{Asia}, \mathit{Europe} \}$

Very expressive DLs SHIF, SHOIN

- transitive roles (R₊): hasGoodRelationsWith₊
- role hierarchy (\mathcal{H}) : hasNeighbour \sqsubseteq hasBorderTo
- functional restriction(\mathcal{F}): hasCapitalCity
- Concrete domains (D): natural numbers, reals, time, ...
- S: ALC with transitive roles

OWL: the standard ontology language for The Semantic Web!

- OWL Lite = SHIF (D) (reasoning EXPTIME)
- OWL DL = \mathcal{SHOIN} (D) (reasoning NEXPTIME)
- OWL Full = beyond DLs (reasoning undecidable!)

(EXPTIME \subseteq NEXPTIME: solvable in exp. time by a nond. mach.)

DL Reasoners

- very high worst-case complexity: EXPTIME, NEXPTIME
- almost 20 years of research
- highly optimized tableau algorithms
- efficient implementations
- Reasoners: FaCT++, RACERPRO, Pellet, KAON2, Hermit ...
- can classify large real world ontologies written in very expressive DLs!

Leightweigt DLs:The \mathcal{EL} family

- DLs with polynomial time reasoning!
- still expressive enough for widely used bio-medial ontologies
 - SNOMED (Systematized Nomenclature of Medicine): medical terminology for diseases, treatments, ...
 - Gene Ontology: controlled vocabulary to describe gene and gene product attributes
- \mathcal{EL}^+ constructors:
 - ⊤ (top)
 - $C \sqcap D$ (conjunction)
 - $\exists r.C$ (existensial restriction)
 - $C \sqsubseteq D$ (GCI)
 - $r_1 \circ \cdots \circ r_n \sqsubseteq s$ (role inclusion)

Axiom pinpointing in \mathcal{EL}^+

- SNOMED contains more than 350.000 axioms
- ontology development is an error prone task
- in SNOMED Amputation-of-Finger is classified as a subconcept of Amputation-of-Arm
- obviously a modelling error
- what is the reason, which axioms out of 350.000 are responsible?
- Axiom pinpointing: finding small subsets of the knowledge base that have given consequence
- Minimal explanation of $C \sqsubseteq D$ in \mathcal{T} is a $\mathcal{T}' \subseteq \mathcal{T}$ s.t. $\mathcal{T}' \models C \sqsubseteq D$ and \mathcal{T}' minimal

- finding a minimum cardinality explanation is NP-complete
 [Baader et al.(2007)Baader, Peñaloza, & Suntisrivaraporn]
- finding one minimal explanation is polynomial: remove axioms one by one and test
- what about finding all minimal explanations?
- there can be exponentially many of them!
- clearly not computable in polynomial time

Enumaration complexity

- polynomial delay: polynomial time between each consequetive solution
- output-polynomial: polynomial in the size of the input and the total number of solutions

- finding a minimum cardinality explanation is NP-complete [Baader et al.(2007)Baader, Peñaloza, & Suntisrivaraporn]
- finding one minimal explanation is polynomial: remove axioms one by one and test
- what about finding all minimal explanations?
- there can be exponentially many of them!
- clearly not computable in polynomial time

Enumaration complexity

- polynomial delay: polynomial time between each consequetive solution
- output-polynomial: polynomial in the size of the input and the total number of solutions

We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- ullet NO! cannot be done with polynomial delay unless P = NP
- checking whether a given minimal explanation is is the first one is conp-complete

- We do not know :(
- the corresponding decision problem is in conp
- it is TRANS-HYP-hard (hypergraph problem open for 20 years)

We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- ullet NO! cannot be done with polynomial delay unless P = NP
- checking whether a given minimal explanation is is the first one is conp-complete

- We do not know :(
- the corresponding decision problem is in CONP
- it is TRANS-HYP-hard (hypergraph problem open for 20 years)

We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- ullet NO! cannot be done with polynomial delay unless P = NP
- checking whether a given minimal explanation is is the first one is conp-complete

- We do not know :(
- the corresponding decision problem is in conp
- it is TRANS-HYP-hard (hypergraph problem open for 20 years)

We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- ullet NO! cannot be done with polynomial delay unless P = NP
- checking whether a given minimal explanation is is the first one is conp-complete

- We do not know :(
- the corresponding decision problem is in coNP
- it is TRANS-HYP-hard (hypergraph problem open for 20 years)

We have considered the following:

- Is there a minimal explanation that contains a given axiom?
 - NP-complete
- Is there a min. exp. that does not contain any of the given subsets of the original KB?
 - NP-complete
- Determine the number of minimal explanations
 - #P-complete

Summary

- DLs are logic-based KR formalisms
- decidable fragments of FOL
- theoretical background of OWL: the W3C standard ontology language for The Semantic Web
- Lightweight DLs, polynomial time reasoning
- Axiom pinpointing: finding explanations

References

Baader, F., Peñaloza, R., & Suntisrivaraporn, B. (2007).

Pinpointing in the description logic \mathcal{EL}^+ .

In J. Hertzberg, M. Beetz, & R. Englert (Eds.), Proceedings of the 30th German Conference on Artificial Intelligence (KI2007). Springer-Verlag, vol. 4667 of Lecture Notes in Artificial Intelligence, 52–67.

Brachman, R. J. & Levesque, H. J. (Eds.) (1985).

Readings in Knowledge Representation.

Los Altos (CA), USA: Morgan-Kaufmann.

Donini, F. M. & Massacci, F. (2000).

EXPTIME tableaux for \mathcal{ALC} .

Artificial Intelligence, 124(1), 87–138.

Mortimer, M. (1975).

On languages with two variables.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 21, 135-140.

Quillian, M. R. (1967).

Word concepts: A theory and simulation of some basic capabilities.

Behavioral Science, 12, 410-430.

Republished in [Brachman & Levesque(1985)].

Schild, K. (1991).

A correspondence theory for terminological logics: preliminary report.

In J. Mylopoulos & R. Reiter (Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI'91), Morgan Kaufmann, 466–471.

Schmidt-Schauß, M. & Smolka, G. (1991).

Attributive concept descriptions with complements.

Artificial Intelligence, 48(1), 1-26.