Finite Mixture Model

Introduction

Imagine we randomly choose a distribution to sample from. Let k denote which distribution we choose.

- Distribution 1
 - Parameter Ω_1
 - Probability of choosing distribution 1 is π_1
 - $-x|k=1,\Omega_1 \sim \Pr(x|k=1,\Omega_1)$
- Distribution 2
 - Parameter Ω_2
 - Probability of choosing distribution 2 is π_2
 - $-x|k=2,\Omega_2 \sim \Pr(x|k=2,\Omega_2)$

.

- Distribution C
 - Parameter Ω_C
 - Probability of choosing distribution C is π_C
 - $-x|k=C,\Omega_C \sim \Pr(x|k=C,\Omega_C)$

In general we have data $\mathbf{x} = \{x_1, x_2, ... x_n\}$. Suppose we know which distribution each sample was sampled from $\mathbf{k} = \{k_1, k_2, ... k_n\}$. We know the parameters of each distribution $\mathbf{\Omega} = \{\Omega_1, \Omega_2, ... \Omega_C\}$. Finally we know the probability of choosing each distribution $\mathbf{\pi} = \{\pi_1, \pi_2, ... \pi_C\}$. We can represent each sample as:

$$x_i|k_i, \mathbf{\Omega}| \sim \Pr(x_i|k_i, \mathbf{\Omega})$$

Bayes Theorm

$$\Pr(\mathbf{k}, \mathbf{\Omega} | \mathbf{x}) \propto \Pr(\mathbf{x} | \mathbf{k}, \mathbf{\Omega}) \Pr(\mathbf{k}, \mathbf{\Omega}, \boldsymbol{\pi})$$

Prior

We often times assume independence between the some of the parameters

$$\Pr(\mathbf{k}, \mathbf{\Omega}, \boldsymbol{\pi}) = \Pr(\mathbf{k} | \boldsymbol{\pi}) \Pr(\boldsymbol{\pi}) \Pr(\mathbf{\Omega})$$

$$\begin{aligned} \Pr(\mathbf{k}, \mathbf{\Omega}, \boldsymbol{\pi}) &= \Pr(\mathbf{k}, \boldsymbol{\pi}) \Pr(\mathbf{\Omega}) \\ &\propto \Pr(\mathbf{k} | \boldsymbol{\pi}) \Pr(\boldsymbol{\pi}) \Pr(\mathbf{\Omega}) \end{aligned}$$

 $\mathbf{Prior}\ \mathbf{Pr}(\mathbf{k}|\boldsymbol{\pi})$

 ${\rm todo}$

 $\mathbf{Prior}\ \mathbf{Pr}(\boldsymbol{\pi})$

 ${\rm todo}$

 $\mathbf{Prior}\ \mathbf{Pr}(\mathbf{\Omega})$

 todo

Likelihood

todo : We want a general form for $\Pr(\mathbf{x}|\mathbf{k}, \boldsymbol{\Omega})$