

Abdelilah Mejdoubi

Plan

- Technologies, techniques et applications de localisation indoor
- Caractéristiques de la base UJIIndoorLoc
- Data Preprocessing
- Prédiction
- Conclusion

Applications de localisation indoor

- Intelligence ambiante (objets à localiser les uns par rapport aux autres)
- Applications de guidage de personnes (milieu hospitalier, musée, automobile, etc.)
- Surveillance de personnes à risques (prisonniers, enfants en bas âge, etc.)
- Dans les bâtiments (Gestions d'alarmes, obtention de statistiques sur des parcours)

Techniques de localisation indoor

- Les dispositifs RFID, La localisation par identification de cellule : Cell ID, La localisation par mesures temporelles (TOA/TDOA), etc
- La localisation par mesure de puissance de signal (fingerprinting / RSSI)
 - Information simple à mesurer par les interfaces radio
 - Tous les équipements WiFi sont donc "localisables" sans modification

Exploitation de la technique du fingerprinting pour se localiser

- Besoin de créer une base de données
- Localisation : recherche dans cette BDD de celle qui est la plus proche de la mesure instantanée

Inconvénients

- Besoin de constituer une carte d'empreintes des puissances par enregistrement en plusieurs points de l'espace (calibrage)
- Carte "invalide" si l'environnement change

Caractéristique de la base UJIIndoorLoc

- Couvre une surface de 108 703 m2 3 bâtiments de 4 ou 5 étages
- → 19737 échantillon d'apprentissage et 1111 échantillon de test/validation 21048 au total
- 520 différents WAPs (Wireless Access Points)
- L'intensité des signaux varie de -104 dBm (faible intensité) à 0 dbm (forte intensité).
 La valeur 100 dBm est utilisé pour indiquer qu'il n' y a pas de signal détecté
- Les données sont collectées par 18 utilisateurs avec 25 modèles d'appareils mobiles différents
- Les coordonnées latitude, longitude, étage et l'ID du bâtiment sont fournis comme des attributs à prédire.

Aucune donnée manquante pour le training et le test

Nombre d'enregistrements par bâtiment & étage

Seul le bâtiment 2 a le niveau 5

Répartition relativement uniforme sur tous les étages des bâtiments 0 et 1

Nombres d'enregistrements plus élevé au niveau 4 pour le bâtiment 2

Building

Nombre d'enregistrements par Longitude, Latitude & bâtiment

Réduction de dimensions

 520 colonnes WAP: pour chaque enregistrement, tous les variables d'entrées sont remplacées dans une seule colonne [MAXSIGNAL] par la puissance du signal la plus élevée sur tous les WAP

Certain enregistrements n'ont pas de valeur du signal (pas de lecture RSSI)

MAXSIGNAL		
	-53.0	
	-46.0	
	-61.0	
	-55.0	
	NaN	

Analyse des enregistrements des signaux non détecté

	USERID	RECORDS
0	7	1.32%
1	8	77.63%
2	11	2.63%
3	17	18 42%

- Nombres d'enregistrements des signaux non détecté : 76 (0,38%)
- La majorité des enregistrements NaN proviennent de l'utilisateur 8 : 59 signaux (77,63%)
- Nombres d'enregistrements NaN dans la base VALIDATION : 0 (0%)

55 enregistrements NaN sont supprimer de la base d'apprentissage

Prédiction: bâtiment & Etage

Algorithme de classification

- 520 variables d'entrées (dont 55 variables sont exclus)
- Variables cibles: bâtiments et étages
- 13 classes

Modèles utilisés

- Linear Discriminant Analysis
- Decision Tree
- Random Forest
- Neural Network
- XGBoost
- Pour estimer les performances de chaque modèle, on a utilisé 5-fold cross validation

Prédiction: bâtiment & Etage

Algorithme de classification - Modélisation sans paramètres

Algorithm Comparison

Prédiction : bâtiment & Etage

Algorithme de classification - XGBoost (Modélisation avec paramètres)

```
Accuracy = 87,67 %
```

```
"learning_rate":0.1,
"n_estimators":100,
"max_depth":5,
"min_child_weight":1,
"gamma":0,
"alpha":0,
"lambda":1,
```


Prédiction : bâtiment & Etage

Algorithme de classification - XGBoost (RandomizedSearchCV) & Random Forest

Utilisation de l'algorithme PCA : 200 variables d'entrée

Best paramètres

```
{'gamma': 0,
  'learning_rate': 0.27117147016034093,
  'max_depth': 4,
  'min_child_weight': 3,
  'n_estimators': 390,
  'objective': 'multi:softmax'}
```

XGBOOST

Base accuracy: 87.67%
Best accuracy from Randomized Search: 91.25%
Improvement of 4.09%

Comparaison

	XGBOOST improvements	Random Forest
Buildings	99.91 %	99.73 %
Floors	90.10 %	87.31 %

Algorithme de régression

- 520 variables d'entrées (dont 55 variables sont exclus)
- Variables cibles : Latitude et Longitude

Modèles utilisés

- Lasso Regression
- Ridge Regression
- ElasticNet Regression
- K-Nearest Neighbours
- Random Forest
- Gradient Boosting
- XGBoost
- Pour estimer les performances de chaque modèle, on a utilisé 5-fold cross validation

Algorithme de régression - Modélisation sans paramètres

Algorithm Comparison (Regression Algorithms)

Algorithme de régression - K-Nearest Neighbours & Random Forest

K-Nearest Neighbours

R-squared score: 0.9696

Mean Squared Error:

Latitude: 206.76

Longitude: 272.66

Random Forest

R-squared score: 0.9739

Mean Squared Error:

Latitude: 177.23

Longitude: 236.41

En moyenne:

- Le modèle KNN est précis jusqu'à un rayon de 13,15 m
- Le modèle Random Forest est précis jusqu'à un rayon de 14,28 m

La distance entre la valeur actuel et la valeur prédite est calculé en utilisant le théorème de pythagore

Algorithme de régression - K-Nearest Neighbours & Random Forest

K-Nearest Neighbours

KNN Model: Geographical Distribution of Actual vs. Predicted Records

Random Forest

RForest Model: Geographical Distribution of Actual vs. Predicted Records

Algorithme de régression - K-Nearest Neighbours & Random Forest

Random Forest

Algorithme de régression - K-Nearest Neighbours - Amélioration du modèle

Conclusion

- Les modèles XGBoost, Random Forest et KNN donnent une meilleure performance
- La prédiction de la position pour les bâtiments et plus élevée que celle de l'étage

Amélioration

Ajouter d'autres dimensions dans les modèles, par exemple examiner l'effet du temps sur les prévisions mejd.abdel@gmail.com

06 10 05 36 17

Questions?