Execution of a Recursive Algorithm

We will illustrate how a computer executes a recursive algorithm using the recursive version of binary search as example.

Computer memory					Code									
Algorithn	n Binar	ySearc	h (L,x,	first, la	ist)									
if first >	last the	n retu	rn -1											
else mid	← (firs	t +last)/2											
if x = L[m	id] the	n retur	n mid											
else if x <	< L[mid]	then	return	Binar	ySearc	h (L,x,f	irst,mi	d -1)						
else	return	Binar	ySearc	h (L,x,ı	mid +1	,last)								
Algorithn	n main()													
pos = Bina	arySear	h (L,x,	0,n-1)											

Computer memory					Co	de	_								
Algo	rithm	Binar	ySearc	h (L,x,	first, la	ıst)									
if fir	st > la	st the	n retu	rn -1											
else	mid 🗧	- (firs	t +last)/2											
if x =	L[mic	l] ther	ı retur	n mid											
else	if x < 1	.[mid]	then	eturn	Binar	/Searc	h (L,x,f	irst,mi	id -1)						
	else re	turn	Binar	ySearc	h (L,x,ı	nid +1	,last)								
Algo	rithm	main()													
pos =	Binar	ySearc	h (L,x,	0,n-1)											
L	5	7	13	26	33	45	52	55							
						Da	ita S	truct	tures	5					-

Information is Stored in Binary

Computer memory

Code

Data Structures


```
Algorithm BinarySearch (L,x, first, last)
if first > last then return -1
else mid ← (first +last )/2
if x = L[mid ] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid-1) A1
    else return
                BinarySearch (L,x,mid +1,last ) A2
Algorithm main()
pos = BinarySearch (L,x,0,n-1) A0
                  23
                         26
                              35
                                     49
 x = 23
```

Activation Records

Every time that an algorithm (or method) is invoked an activation record is created at the top of the execution stack.

Activation Records

Every time that an algorithm (or method) is invoked an activation record is created at the top of the execution stack.

An activation record stores all the information that an algorithm needs to be executed:

- parameters
- local variables
- return address
- return value (if any)

Execution Stack

Statement at address A3 stores

```
Algorithm BinarySearch (L,x, first, last)
if first > last then return -1
else mid \leftarrow (first +last )/2
if x = L[mid ] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid -1) \leftarrow A1
    else return BinarySearch (L,x,mid +1,last) A2
Algorithm main(args)
pos = BinarySearch (L,x,0,n-1) A3
                                               x = 23
                   23
             12
                          26
                                35
                                      49
```

The rest of algorithm main is executed. When the algorithm ends the activation record is popped out of the stack and control goes back to the operating system

L = A4 x = 23 first = 2	last = 2 mid = 1	ret addr: A2 ret val: 2
L = A4 x = 23 first = 0	last = 2 mid = 1	ret addr: A1 ret val: 2
L = A4 x = 23 first = 0	last = 7 mid = 3	ret addr: A3 ret val: 2
aras – INIDI	IT 0	

args = INPUTn = 8L = A4pos = 2x = 26ret addr: A_{os}

TOP Execution Stack

We will now compute the time complexity of binary search by first writing a recurrence equation for the time complexity function and then solving this equation using repeated substitution.

The worst case for binary search is when x is not in L. Let

f(n) = number of primitive operations performed by binary search in the worst case when the size of the input is n

We will compute f(n) for the base case and the recursive case.

Algorithm BinarySearch (L,x, first, last)
Input: Array L of size n and value x
Output: Index i, $0 \le i < n$, such that L[i] = x if x in L, or -1 if x not in L
if first > last then return -1
else mid $\leftarrow L(first + last)/2 \rfloor$ if x = L[mid] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid -1)
else return BinarySearch (L,x,mid +1,last)

In the base case the algorithm performs a constant number c_1 of primitive operations. Note that in the base case fist > last, so the number of elements n is 0:

$$f(0) = c_1$$

```
Algorithm BinarySearch (L,x, first, last )
Input: Array L of size n and value x
Output: Index i, 0 ≤ i < n, such that L[i] = x if x in L, or -1 if x not in L
if first > last then return -1
else mid ← L(first +last )/2 J
if x = L[mid] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid -1)
else return BinarySearch (L,x,mid +1,last )</pre>
```

Ignoring the recursive calls, when n > 0 the algorithm performs a constant number c_2 of primitive operations ...

$$f(n) = c2 + ...$$
 for $n > 0$

We need to add to this the number of operations performed by the recursive calls.

```
Algorithm BinarySearch (L,x, first, last )
Input: Array L of size n and value x
Output: Index i, 0 ≤ i < n, such that L[i] = x if x in L, or -1 if x not in L
if first > last then return -1
else mid ← L(first +last )/2 J
if x = L[mid] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid -1)
else return BinarySearch (L,x,mid +1,last )</pre>
```

Let L[first..last] denote the part of array L that starts at index first and ends at index last.

first last

If the number of elements in L is n and the first recursive call is made, the number of elements in the first half of the array is (n-1)/2, so the number of primitive operations performed by the first recursive call is

f((n-1)/2)

Similarly, if the second recursive call is made, the number of elements in the second half of the array is (n-1)/2, so the number of primitive operations performed by the second recursive call is also

f((n-1)/2)

```
Algorithm BinarySearch (L,x, first, last)
Input: Array L of size n and value x
Output: Index i, 0 ≤ i < n, such that L[i] = x if x in L, or -1 if x not in L

if first > last then return -1
else mid ← L(first + last )/2 J

if x = L[mid] then return mid
else if x < L[mid] then return BinarySearch (L,x,first,mid -1)

else return BinarySearch (L,x,mid +1,last)

f((n-1)/2)
```

So, the number of primitive operations performed by the algorithm is

$$f(0) = c_1$$

 $f(n) = c_2 + f((n-1)/2)$ for $n > 0$

This equation is called a recurrence equation.

Solving the Recurrence Equation using Repeated Substitution

$$f(0) = c_1 \tag{1}$$

$$f(n) = f\left(\frac{n-1}{2}\right) + c_2 \tag{2}$$

Start with equation (2):

$$f(n) = f\left(\frac{n-1}{2}\right) + c_2$$
 Use (2) to compute $f\left(\frac{n-1}{2}\right)$

$$f\left(\frac{n-2^{0}-2^{1}}{2^{2}}\right) = f\left(\frac{\frac{n-2^{0}-2^{1}}{2^{2}}-1}{2}\right) + c_{2} = f\left(\frac{n-2^{0}-2^{1}-2^{2}}{2^{3}}\right) + c_{2}$$
 And so on ...

$$f\left(\frac{n-2^{0}-2^{1}-2^{2}}{2^{3}}\right) = f\left(\frac{n-2^{0}-2^{1}-2^{2}-2^{3}}{2^{4}}\right) + c_{2}$$

$$f\left(\frac{n-2^{0}-2^{1}-2^{2}-...-2^{j}}{2^{j+1}}\right) = f\left(\frac{n-2^{0}-2^{1}-2^{2}-...-2^{j}}{2^{j+2}}\right) + c_{2} = c_{1} + c_{2}$$

$$= 0 \qquad f(0) = c_{1}$$

Now we substitute each equation into the equation above it

Solving the Recurrence Equation using Repeated Substitution

$$f(0) = c_1 \tag{1}$$

$$f(n) = f\left(\frac{n-1}{2}\right) + c_2 \tag{2}$$

Start with equation (2):

$$f(n) = f\left(\frac{n-1}{2}\right) + c_2$$

$$f\left(\frac{n-1}{2}\right) = f\left(\frac{n-1}{2}-1\right) + c_2 = f\left(\frac{n-1-2}{2^2}\right) + c_2 = f\left(\frac{n-2^0-2^1}{2^2}\right) + c_2 \quad \text{Use (2) to compute } f\left(\frac{n-2^0-2^1}{2^2}\right)$$

$$f\left(\frac{n-2^{0}-2^{1}}{2^{2}}\right) = f\left(\frac{\frac{n-2^{0}-2^{1}}{2^{2}}-1}{2}\right) + c_{2} = f\left(\frac{n-2^{0}-2^{1}-2^{2}}{2^{3}}\right) + c_{2}$$
 And so on ...

$$f\left(\frac{n-2^{0}-2^{1}-2^{2}}{2^{3}}\right) = f\left(\frac{n-2^{0}-2^{1}-2^{2}-2^{3}}{2^{4}}\right) + c_{2}$$

$$f\left(\frac{n-2^{0}-2^{1}-2^{2}-...-2^{j}}{2^{j+1}}\right) = f\left(\frac{n-2^{0}-2^{1}-2^{2}-...-2^{j+1}}{2^{j+2}}\right) + c_{2} = c_{1} + c_{2}$$
We get

We get

$$f(n) = c_2 + c_2 + c_2 + ... + c_2 + c_1 = (j+2) c_1$$

Since $n-2^0-2^1-2^2-...-2^{j+1}=0$ then $n=2^0+2^1+2^2+...2^{j+1}=2^{j+2}-1$. Taking logarithms on both sides we get $\log_2(n+1) = j+2$, therefore $f(n) = c_1 \log_2(n+1)$

Using the rules we learned for computing the order of functions we finally get that f(n) is O(log n)

Comparing Time Complexities

Linear search

$$f(n)$$
 is $O(n) = \{t(n) | t(n) \le c \text{ n for all } n \ge n_0, n_0, c \text{ constants}\}$

Binary search

$$f(n)$$
 is $O(\log n) = \{t(n) | t(n) \le c \log n \text{ for all } n \ge n_0, n_0, c \text{ const}\}$

running time of EVERY implementation of binary search

Comparing Time Complexities

Linear search

f(n) is $O(n) = \{t(n) | t(n) \le c \text{ n for all } n \ge n_0, n_0, c \text{ constants} \}$ Binary search

f(n) is $O(\log n) = \{t(n) | t(n) \le c \log n \text{ for all } n \ge n_0, n_0, c \text{ const}\}$

running time of EVERY implementation of binary search

O (log n) = Running times of all possible implementations of binary search

Algorithm A has complexity O(f(n))
Algorithm B has complexity O(g(n))
Which algorithm is faster?

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

• f(n) is O(g(n)) and g(n) is O(f(n))

Both algorithms have the same set of possible running times

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

f(n) is O(g(n)) and g(n) is not O(f(n))

Algorithm A has complexity O(f(n))
Algorithm B has complexity O(g(n))

Two cases:

f(n) is O(g(n)) and g(n) is not O(f(n))

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

 f(n) is O(g(n)) and g(n) is not O(f(n)): B is slower than A in ALL running **implementations** times of B g(n)g(n) > c f(n) for $n \ge n_0$ for all c, n_0 , i.e. all f(n) implementations O(g(n))O(f(n))

Complexity Classes

$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n)$$
constant logarithmic linear

 $C O(n^2) \subset O(n^a) \subset O(b^n)$
quadratic polynomial
(constant $a > 2$) exponential
(b constant)

 $C O(n!) \subset O(n^n) \dots$
factorial Efficient algorithms