

Description

The VST12N088 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =120V, I_D =50A $R_{DS(ON)}$ =8.8m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =10.7m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Mai	rking	Device	Device Package	Reel Size	Tape width	Quantity
VST12N08	8-T2	VST12N088	TO-252	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	120	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	50	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35.3	А	
Pulsed Drain Current	I _{DM}	200	А	
Maximum Power Dissipation	P _D	105	W	
Derating factor		0.7	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	210	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	1.42	°C/W
---	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	120	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =120V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.7	2.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	8.8	10.1	mΩ
Diam-Source On-State Resistance		V _{GS} =4.5V, I _D =20A	-	10.7	13.9	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	-	30	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V 00V/V 0V/	-	3050	-	PF
Output Capacitance	Coss	V_{DS} =60V, V_{GS} =0V, F=1.0MHz	-	274	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	17.8	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =60 V , I_{D} =20 A	-	7	-	nS
Turn-Off Delay Time	t _{d(off)}	$V_{GS}=10V,R_{G}=1.6\Omega$		30	-	nS
Turn-Off Fall Time	t _f		-	4	-	nS
Total Gate Charge	Qg	V _{DS} =60V,I _D =20A,	-	45	-	nC
Gate-Source Charge	te-Source Charge		-	11.6	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	20	Α
Reverse Recovery Time t _{rr}		$T_J = 25$ °C, $I_F = I_S$	-	78	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	149	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Ip- Drain Current (A)

Figure 7 Capacitance vs Vds 10μs R_{DS(ON)}

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance