ELEC 207 Instrumentation and Control

4 – Strain Gauge

Dr Roberto Ferrero

Email: Roberto.Ferrero@liverpool.ac.uk

Telephone: 0151 7946613

Office: Room 506, EEE A block

Stress and strain

Definitions

A strain gauge is a widely used transducer to measure strain:

- Strain is the deformation of a physical body under the action of an applied force (stress):
 - > Strain = change in length per unit length: $e = \frac{\Delta l}{l}$
 - > **Stress** = force per unit area: $\sigma = \frac{F}{A}$
 - **Elastic modulus** = ratio between stress and strain: $E = \frac{\sigma}{e}$

© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.

Stress and strain

Poisson's ratio

The longitudinal tensile strain is accompanied by a transverse compressive strain, and vice-versa:

- The ratio between them is called **Poisson's ratio**: $v = -\frac{e_I}{e_I}$
 - ➤ It is usually between 0.25 and 0.4 for most materials;
 - \triangleright The negative sign is used because e_T and e_I have opposite signs.

Strain gauge Operating principle (1)

A **strain gauge** is a metal or semiconductor element that experiences a change in resistance when it is strained:

 It converts a strain into a change in electrical resistance, which can be measured.

Operating principle (2)

The applied strain leads to changes in physical parameters (length l, cross-section area A, resistivity ρ):

• These parameters determine the **resistance** of the material: $R = \rho \frac{l}{A}$

• The **Gauge factor** is defined as: $G = \frac{\Delta R/R}{\rho}$ \Longrightarrow $\frac{\Delta R}{R} = G \epsilon$

Strain gauge Input-output relationship

The input-output relationship (**transfer function**) of a strain gauge can be written as:

$$\Delta R = R - R_o = R_o Ge$$
 \Rightarrow $R = R_o (1 + Ge)$

- Typical values of gauge factors (G) for metal strain gauges are around 2.0;
- Strain values (e) are usually very small, with maximum values around 5%:
 - ➤ Strain is often measured in microstrain (·10⁻⁶);
- Nominal (unstrained) resistance values (R_o) are around 100 Ω .

Gauge factor (1)

For small changes in the resistance value, the following approximation applies:

$$\Delta R \approx \left(\frac{\partial R}{\partial l}\right) \Delta l + \left(\frac{\partial R}{\partial A}\right) \Delta A + \left(\frac{\partial R}{\partial \rho}\right) \Delta \rho \qquad \Longrightarrow \qquad \frac{\Delta R}{R} \approx \frac{\Delta l}{l} - \frac{\Delta A}{A} + \frac{\Delta \rho}{\rho}$$

Consider a circular cross section as an example:

$$A = \pi r^2$$

$$\Delta A \approx (2\pi r) \cdot \Delta r$$

$$\frac{\Delta A}{A} \approx \frac{2\pi r \Delta r}{\pi r^2} \approx 2\frac{\Delta r}{r}$$

Gauge factor (2)

$$e_T = -ve_L$$
 \longrightarrow $\frac{\Delta r}{r} = -v\frac{\Delta l}{l}$ \Longrightarrow $\frac{\Delta A}{A} \approx -2v\frac{\Delta l}{l}$ \Longrightarrow $\frac{\Delta R}{R} \approx \frac{\Delta l}{l} - \left(-2v\frac{\Delta l}{l}\right) + \frac{\Delta \rho}{\rho} = (1+2v)\frac{\Delta l}{l} + \frac{\Delta \rho}{\rho}$

Therefore the Gauge factor can be written as:

$$G \approx 1 + 2\nu + \frac{1}{e} \frac{\Delta \rho}{\rho}$$

deformation effect piezoresistive effect

Metal vs semiconductor materials

- In **metal strain gauges** the deformation effect is dominant:
 - They have a low cost and therefore are very common;
 - They are less sensitive to temperature changes;
 - ➤ A typical material is the 'advance' alloy: 54% copper, 44% nickel, 1% manganese.
- In semiconductor strain gauges the piezoresistive effect is dominant:
 - They have a higher sensitivity, with Gauge factors higher than 100;
 - They are more sensitive to temperature changes;
 - The most common material is silicon doped with p-type or n-type material.

Strain measurement

Strain gauge in a measurement system

References

Textbook: Principles of Measurement Systems, 4th ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Bentley** textbook:

• Chapter 8, Sec. 8.1.3: Metal and semiconductor resistive strain gauges.

<u>NOTE</u>: Topics not covered in the lecture are not required for the exam.

References

Textbook: Measurement and Instrumentation, 2nd ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Morris-Langari** textbook:

- Chapter 13, Sec. 13.7: Strain Gauges;
- Chapter 13, Sec. 13.8: Piezoresistive Sensors.

<u>NOTE</u>: Topics not covered in the lecture are not required for the exam.

