# R 프로그래밍 #12

2019.6.4

한국생명공학연구원 김하성

## Sequence analysis III

- Get sequences of 20 genes by searching "esterase & lipase & bacteria" from NCBI
- Align and visualize the sequences

## Download sequence dataset







## Esterase & lipase in bacteria

```
eldata <- read.table("gene_result.txt", sep="\t", header = T)
str(eldata)
```

```
> eldata <- read.table("gene_result.txt", sep="\t", header = T)</pre>
> str(eldata)
'data.frame':
               2518 obs. of 18 variables:
 $ tax_id
                                          : int 233413 233413 243090 243090 272560 100226 243090 765698 7
 $ org_name
                                          : Factor w/ 633 levels "[Bacillus thuringiensis] serovar konkuki:
 126 563 480 328 328 577 ...
                                          : int 32287372 32287184 1795313 1791469 3094698 1099080 1790916
 $ GeneID
 $ CurrentID
                                          : int 0000000000...
                                          : Factor w/ 1 level "live": 1 1 1 1 1 1 1 1 1 1 ...
 $ Status
                                          : Factor w/ 2486 levels "A0U91_RS09800",..: 1477 1488 1963 1970 :
 $ Symbol
                                          : Factor w/ 2518 levels "", "A0U91_RS09800, A0U91_09755",..: 827
 $ Aliases
634 2351 ...
 $ description
                                          : Factor w/ 208 levels "1,4-beta-xylanase",..: 146 124 106 106 6
                                          : Factor w/ 63 levels "", "abhydrolase domain-containing 18",..:
 $ other_designations
 $ map_location
                                          : logi NA NA NA NA NA NA ...
                                          : Factor w/ 14 levels "","1","2","3",..: 13 13 1 1 2 1 1 1 1 1 .
 $ chromosome
                                          : Factor w/ 316 levels "", "NC_000853.1",..: 22 22 67 67 78 47 67
 $ genomic_nucleotide_accession.version
 $ start_position_on_the_genomic_accession: int 3856210 3426737 7061904 4062057 1667911 4022264 2400274 5
 $ end_position_on_the_genomic_accession
                                         : int 3857340 3428050 7063085 4062959 1668906 4023169 2401710 5
                                          : Factor w/ 3 levels "", "minus", "plus": 2 2 2 2 3 2 2 3 2 3 ...
 $ orientation
 $ exon_count
                                          : int 0000000000...
                                          : logi NA NA NA NA NA NA ...
 $ OMIM
                                          : logi NA NA NA NA NA NA ...
 $ X
```

## Data selection, filtering

|    | nead(eldata_filtered, 10) |                                  |               |              |              |                    |          |                        |               |                        |
|----|---------------------------|----------------------------------|---------------|--------------|--------------|--------------------|----------|------------------------|---------------|------------------------|
|    | GeneID                    | Org_name                         | Symbol        |              |              |                    |          |                        |               | description            |
| 1  | 32287372                  | Mycobacterium bovis AF2122/97    | lipF          |              |              |                    |          |                        | PROBABLE      | E ESTERASE/LIPASE LIPF |
| 2  | 32287184                  | Mycobacterium bovis AF2122/97    |               | ne-nors fam  | ilv protein  | triacylalycerol    | linase 1 | lipy (esterase/lipase) |               |                        |
| 3  | 1795313                   | Rhodopirellula baltica SH 1      | RB13156       | pe pg. 5 . a | , p. scc,    | ci racy igiyeei or | puse .   | , (esec. ase,pase,     | (cg.) cc. rac | lipase/esterase        |
| 4  | 1791469                   | Rhodopirellula baltica SH 1      | RB7562        |              |              |                    |          |                        |               | lipase/esterase        |
| 5  |                           | urkholderia pseudomallei K96243  | BPSL1431      |              |              |                    |          |                        |               | esterase/lipase        |
| 6  | 1099080                   | Streptomyces coelicolor A3(2)    | SC03644       |              |              |                    |          |                        |               | lipase/esterase        |
| 7  | 1790916                   | Rhodopirellula baltica SH 1      | RB4702        |              |              |                    |          |                        |               | lipase/esterase        |
| 8  | 10120705 Mesorhizobium ci | iceri biovar biserrulae WSM1271  | Mesci_5205    |              |              |                    |          |                        |               | lipase/esterase        |
| 9  | 10116281 Mesorhizobium ci | iceri biovar biserrulae WSM1271  | Mesci_0836    |              |              |                    |          |                        |               | lipase (esterase)      |
| 10 | 4267749                   | Streptomyces rochei              | ST1928_p029   |              |              |                    |          |                        | pro           | obable lipase/esterase |
|    | genomic_nucleotide_access | sion.version start_position_on_t | :he_genomic_a | accession en | d_position_o | n_the_genomic_ac   | cession  |                        |               |                        |
| 1  |                           | NC_002945.4                      |               | 3856210      |              |                    | 3857340  |                        |               |                        |
| 2  |                           | NC_002945.4                      |               | 3426737      |              |                    | 3428050  |                        |               |                        |
| 3  |                           | NC_005027.1                      |               | 7061904      |              |                    | 7063085  |                        |               |                        |
| 4  |                           | NC_005027.1                      |               | 4062057      |              |                    | 4062959  |                        |               |                        |
| 5  |                           | NC_006350.1                      |               | 1667911      |              |                    | 1668906  |                        |               |                        |
| 6  |                           | NC_003888.3                      |               | 4022264      |              |                    | 4023169  |                        |               |                        |
| 7  |                           | NC_005027.1                      |               | 2400274      |              |                    | 2401710  |                        |               |                        |
| 8  |                           | NC_014923.1                      |               | 5363841      |              |                    | 5364794  |                        |               |                        |
| 9  |                           | NC_014923.1                      |               | 879588       |              |                    | 880535   |                        |               |                        |
| 10 |                           | NC_004808.2                      |               | 182293       |              |                    | 183234   |                        |               |                        |

#### **Download fasta files**

```
eldata filtered2 <- eldata filtered[1:20,]
acc <- eldata filtered2$genomic nucleotide accession.version</pre>
acc2 <- as.character(acc)</pre>
acc2down <- acc2[!duplicated(acc2)]</pre>
acc path names <- paste("sequences/", acc2down, ".fasta", sep="")</pre>
for(i in 1:length(acc2down)){
  ef <- efetch(uid = acc2down[i],</pre>
                  db = "nuccore",
                  retmode = "text",
                  rettype = "fasta")
  write(content(ef),file=acc_path_names[i])
  Sys.sleep(1)
  cat(i, "/", length(acc2down), "\n")
  flush.console()
      > acc_path_names <- paste("sequences/", acc2down, ".fasta", sep="")</pre>
      > for(i in 1:length(acc2down)){
        ef <- efetch(uid = acc2down[i],
                     db = "nuccore",
                     retmode = "text"
                     rettype = "fasta")
      + write(content(ef),file=acc_path_names[i])
      + Sys.sleep(1)
      + cat(i, "/", length(acc2down), "\n")
        flush.console()
      1 / 12
      2 / 12
      3 / 12
      4 / 12
      5 / 12
      6 / 12
      7 / 12
      8 / 12
      9 / 12
      10 / 12
      11 / 12
      12 / 12
```

https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chap ter4.T.\_valid\_values\_of\_\_retmode\_and/?report=objectonly - Valid values of &retmode and &rettype for EFetch (null = empty string)

| - valid values of determode and deterty perfor E | a can (non cmpt   | ., sam <u>e</u> , |  |  |  |  |  |  |  |  |
|--------------------------------------------------|-------------------|-------------------|--|--|--|--|--|--|--|--|
| Record Type                                      | &rettype          | &retmode          |  |  |  |  |  |  |  |  |
| All Databases                                    |                   |                   |  |  |  |  |  |  |  |  |
| Document summary                                 | docsum            | xml, default      |  |  |  |  |  |  |  |  |
| List of UIDs in XML                              | uilist            | xm1               |  |  |  |  |  |  |  |  |
| List of UIDs in plain text                       | uilist            | text              |  |  |  |  |  |  |  |  |
| db = bioproject                                  |                   |                   |  |  |  |  |  |  |  |  |
| Full record XML                                  | xm1, default      | xm1, default      |  |  |  |  |  |  |  |  |
| db = biosample                                   |                   |                   |  |  |  |  |  |  |  |  |
| Full record XML                                  | full, default     | xm1, default      |  |  |  |  |  |  |  |  |
| Full record text                                 | full, default     | text              |  |  |  |  |  |  |  |  |
| db = biosystems                                  |                   |                   |  |  |  |  |  |  |  |  |
| Full record XML                                  | xm1, default      | xm1, default      |  |  |  |  |  |  |  |  |
| db = gds                                         |                   |                   |  |  |  |  |  |  |  |  |
| Summary                                          | summary, default  | text, default     |  |  |  |  |  |  |  |  |
| db = gene                                        |                   |                   |  |  |  |  |  |  |  |  |
| text ASN.1                                       | null              | asn.1, default    |  |  |  |  |  |  |  |  |
| XML                                              | null              | xm1               |  |  |  |  |  |  |  |  |
| Gene table                                       | gene_table        | text              |  |  |  |  |  |  |  |  |
| db = homologene                                  |                   |                   |  |  |  |  |  |  |  |  |
| text ASN.1                                       | null              | asn.1, default    |  |  |  |  |  |  |  |  |
| XML                                              | null              | xm1               |  |  |  |  |  |  |  |  |
| Alignment scores                                 | alignmentscores   | text              |  |  |  |  |  |  |  |  |
| FASTA                                            | fasta             | text              |  |  |  |  |  |  |  |  |
| HomoloGene                                       | homologene        | text              |  |  |  |  |  |  |  |  |
| db = mesh                                        |                   |                   |  |  |  |  |  |  |  |  |
| Full record                                      | full, default     | text, default     |  |  |  |  |  |  |  |  |
| db = nlmcatale                                   | og                |                   |  |  |  |  |  |  |  |  |
| Full record                                      | null              | text, default     |  |  |  |  |  |  |  |  |
| XML                                              | null              | xm1               |  |  |  |  |  |  |  |  |
| db = nuccore, nucest, nucgss, protein or popset  |                   |                   |  |  |  |  |  |  |  |  |
| text ASN.1                                       | null              | text, default     |  |  |  |  |  |  |  |  |
| binary ASN.1                                     | null              | asn.1             |  |  |  |  |  |  |  |  |
| Full record in XML                               | native            | xm1               |  |  |  |  |  |  |  |  |
| Accession number(s)                              | acc               | text              |  |  |  |  |  |  |  |  |
| FASTA                                            | fasta             | text              |  |  |  |  |  |  |  |  |
| TinySeq XML                                      | fasta             | xm1               |  |  |  |  |  |  |  |  |
| SeqID string                                     | seqid             | text              |  |  |  |  |  |  |  |  |
| Additional options for db = nuccore,             | nucest, nucgss or | popset            |  |  |  |  |  |  |  |  |

### **Extract gene sequences**

```
library(Biostrings)
genomeseq <- readDNAStringSet(acc path names)</pre>
tmp <- strsplit(names(genomeseq), split=" ")</pre>
tmp2 < -lapply(tmp, function(x){x[1]})
names(genomeseq) <- unlist(tmp2)</pre>
acc ids <-
as.character(eldata_filtered2$genomic_nucleotide_accession.version)
startpos <- eldata filtered2$start position on the genomic accession
endpos <- eldata filtered2$end position on the genomic accession
```

#### Exercise 12-1

- Make a list type variable "myseq" with length 20
- Use 'for' to read all the lipase/esterase sequences
- change the type of "myseq" to DNAStringSet

#### **DECIPHER**

DECIPHER is a software toolset that can be used for deciphering and managing biological sequences efficiently using the R statistical programming language. The program features tools falling into five categories:

- Sequence databases: import, maintain, view, and export a massive number of sequences.
- Sequence alignment: accurately align thousands of DNA, RNA, or amino acid sequences. Quickly find and align the syntenic regions of multiple genomes.
- Oligo design: test oligos in silico, or create new primer and probe sequences optimized for a variety of objectives.
- Manipulate sequences: trim low quality regions, correct frameshifts, reorient nucleotides, determine consensus, or digest with restriction enzymes.
- Analyze sequences: find chimeras, classify into a taxonomy, predict secondary structure, and create phylogenetic trees.

https://bioconductor.org/packages/release/bioc/html/DECIPHER.html

## **Browse sequences**

```
> myseq
 A DNAStringSet instance of length 20
    width seq
     1131 CTAGATAGGCGACTGTCCAAACGCGCCACGGCTTGCGGCGCGAGGTGAACCCGCGACGTAGCGCGACCGATGCACCGGACTCAACGACGAGTCAGCGGTGGCGTCGCG.
     1314 TCAGGCGGCGATACCGAGTTGCTGGTTAATCTGCGGCCAGGACAGCAAACCCCAGGGGGTGAGCAGTATCCAGTCGTGGATTTGCCAGGGGGCCAGTACGAAGCTGAA
     903 TCAATCCGGTCGATGGGCGTTCAAAAAAAGAATTGCTTTCTGAAGTGAATCCCCCTCAAAGAATCGCTTGCCGCCGTGGCCTGCTCCTTCCAGCCTGATGAGTTCGAC.
 [51
      996 TTGCGTTGCTGTTTGCCCCGCCGTTTGCCCTTGACGATGCCGCTGAATCCGAAGATCGCGCAGGTGCTCGACATGATCGAGCGCCCAAGCGTCCCGATTATCATGAA.
[16]
      915 TTAAGCGCGAATAATGTGAGTCACTTGCGCCATGGCATCCCGCGCTGATTGGCTGACGCCCGCGAGTTGAAAGAAGCCGTGGATCACCCCTAAATAGCGCCGACAATG.
[17]
      912 ATGCCAAGCTGCAAGCTTCTGTATTAAATACCATTTTGTCCTATGTCGCGCGGCCATCCTTAAGCCGTGGTAAGGCAAAGTTACCTTTGGCCCAAATGCGACAACGT.
[18]
      633 GTGAAAAAAGTACTTATGGCATTCATTATTTGTTTATCGCTGATTCTATCTGTTTTAGCCGCTCCGCCGTCTGGCGCAAAAGCTGAGTCAGTACATAATCCTGTCGTT.
[19]
      831 TCAATAATTACCAGCTAACAATCCCTGTTCTTGTAACCACCGCAATGCTAATTGTGGCCATATTGCAGCCTGGTCATTCAAATACTTGTCCTTGCCAGGTTTTTTGCGT.
[20]
      837 CTAAATTTCAGTACTATTCTTGCTAGCATATAATGTACGTAACCAGCCCAATGCCATTGGAAACCAGTTTTGAACCCGTGGGACCACATCTTCAGGGTGATGATAGCG.
```

#### library(DECIPHER)

BrowseSeqs(myseq, htmlFile="myseq.html", colWidth=100)
dnacolors <- c("#1E90FF", "#32CD32", "#9400D3", "black", "#EE3300")
BrowseSeqs(myseq, htmlFile="myseq.html", colors=dnacolors, colWidth=100)</pre>





## Sequence alignment



```
aln <- AlignSeqs(myseq) # output alignment
BrowseSeqs(aln, htmlFile="myaln.html", colWidth=100)</pre>
```

## **Clustering and tree**

```
d <- DistanceMatrix(aln, correction="Jukes-Cantor", verbose=FALSE)
c <- IdClusters(d, method="ML", cutoff=.05, showPlot=TRUE, myXStringSet=aln)</pre>
```



## Clustering and tree II

```
library(msa)
library(ape)
library(seqinr)
library(ggtree)
myaln<-msa(myseq, method="ClustalOmega", type="dna")</pre>
myaln2 <- msaConvert(myaln, type="seqinr::alignment")</pre>
d <- dist.alignment(myaln2, "identity")</pre>
mytree <- njs(d)</pre>
ggtree(mytree) +
  geom tiplab() +
 xlim(-1, 15)
ggtree(mytree, branch.length="none") +
  geom tiplab() +
  xlim(-1, 15)
ggtree(mytree, layout="circular") +
  geom tiplab2(color='blue', size=3)
ggtree(mytree, layout="circular", branch.length="none",
  geom tiplab2(aes(angle=angle), color='blue', size=3)
```



## Heatmap with ggplot2

```
library(reshape2)
library(ggplot2)
d <- DistanceMatrix(aln, correction="Jukes-Cantor", verbose=FALSE)

d_melt <- melt(d)
ggplot(d_melt, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile()

ggplot(d_melt, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



### **Next**

- Sequence analysis IV
- Case study
- R with blast