情報数学 III — 演習問題(座標変換) 解答

(担当:佐藤 弘康)

問題 **2.1.** $y = 2x^2 + 3x + 1$ の右辺を平方完成すると $y = 2\left(x + \frac{3}{4}\right)^2 - \frac{1}{8}$ となるので、

$$x + \frac{3}{4} = X$$
, $y + \frac{1}{8} = Y$

と原点を移動すれば、 $Y = 2X^2$ となる.

問題 2.2.

(1) $\{O; \vec{e_1}, \vec{e_2}\}$ 座標系の単位点をそれぞれ E_1, E_2 とする.つまり, $\vec{e_1} = \overrightarrow{OE_1}$, $\vec{e_2} = \overrightarrow{OE_2}$.さらに, $\vec{e_1}, \vec{e_2}$ を原点を中心に回転したベクトル $\vec{e_1}, \vec{e_2}$ に対し,点 E_1', E_2' を $\vec{e_1} = \overrightarrow{OE_1'}$, $\vec{e_2} = \overrightarrow{OE_2'}$ となるように定める(下図を参照).点 E_1, E_2, E_1', E_2' は 原点を中心とする円周上にあり,下図のように $\angle E_1OE_1' = \angle E_2OE_2' = \frac{\pi}{4}$ であるから,三角関数の定義から,

$$E_1' = \left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right),$$

$$E_2' = \left(\cos(\frac{\pi}{4} + \frac{\pi}{2}), \sin(\frac{\pi}{4} + \frac{\pi}{2})\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

したがって,

$$\vec{e}'_1 = \overrightarrow{OE'_1} = \frac{\sqrt{2}}{2} \vec{e}_1 + \frac{\sqrt{2}}{2} \vec{e}_2,$$

 $\vec{e}'_2 = \overrightarrow{OE'_2} = -\frac{\sqrt{2}}{2} \vec{e}_1 + \frac{\sqrt{2}}{2} \vec{e}_2.$

または

$$(\vec{e}_1' \ \vec{e}_2') = (\vec{e}_1 \ \vec{e}_2)A, \qquad A = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

(2) 基底の変換行列が上の A でるとき、上記のように変換されるとき、 $\{O; \vec{e_1}, \vec{e_2}\}$ 座標系の座標 (x,y) と $\{O; \vec{e_1}, \vec{e_2}\}$ 座標系の座標 (X,Y) との関係は

$$\left(\begin{array}{c} x \\ y \end{array}\right) = A \left(\begin{array}{c} X \\ Y \end{array}\right), \qquad \ \ \, \Im\sharp\,\, \emptyset \;\; \left\{\begin{array}{c} x = \frac{\sqrt{2}}{2}X - \frac{\sqrt{2}}{2}Y \\ y = \frac{\sqrt{2}}{2}X + \frac{\sqrt{2}}{2}Y \end{array}\right.$$

これを $x^2 - y^2 = 1$ に代入すると $XY = -\frac{1}{2}$ となる.

