Laboratorio 1: Acción y Percepción

IIC2685 - Robótica Móvil

Equipo:

- Benjamín Farías
- Rafael Fernández
- Lukas Fuenzalida

Diseño del Software

Acción: Implementación de Navegación

Se implementó navegación simple usando el siguiente algoritmo:

Para cada pose:

Rotar el robot para que apunte a la siguiente pose

Avanzar hasta alcanzar la posición (x, y) de dicha pose

Rotar el robot con la orientación de la siguiente pose

- Se usaron ecuaciones vectoriales para los cálculos de ángulos de rotación y distancias
- El robot no tiene percepción sobre su entorno, simplemente actúa "a ciegas"

Acción: Trayectoria Sin Corrección

- Las rotaciones del robot muestran una distancia angular menor a la esperada
- Las distancias lineales no presentan mayores problemas
- El error de las rotaciones parece relativamente constante, por lo que usaremos un factor de corrección

Acción: Cálculo del Factor de Corrección

La expresión del factor está dada por:

$$\omega' t' \alpha = \omega t$$

$$\alpha = \frac{\omega t}{\omega' t'}$$

$$\alpha = \frac{rotaci\acute{o}n \ esperada}{rotaci\acute{o}n \ real}$$

Realizamos 5 experimentos de 3 vueltas cada uno y promediamos los factores calculados para reducir el error muestral. Con esto obtenemos:

$$\alpha = 1.09845578$$

Acción: Antes y Después

Sin Factor de Corrección

# Experimento	X Final	Y Final	Error en Distancia
1	2.051122	0.790522	1.0717922
2	2.050978	0.790422	1.0716705
3	2.051073	0.790500	1.0717484
4	2.050910	0.790394	1.0716093
5	2.051002	0.790410	1.0716964
		Error Promedio (m)	1.0717034
		Desviación Estándar	0.0000705

Con Factor de Corrección

# Experimento	X Final	Y Final	Error en Distancia
1	0.937788	1.068675	0.0926638
2	0.937863	1.068649	0.0925942
3	0.937832	1.068619	0.0925928
4	0.937919	1.068495	0.0924425
5	0.937829	1.068676	0.0926371
		Error Promedio (m)	0.0925861
		Desviación Estándar	0.0000857

Posibles Razones

- Descalibración mecánica o eléctrica de motores, drivers incorrectos
- Inercia, fricción y momentum del robot
- Imperfecciones del entorno (desniveles, grietas)
- Latencia al enviar instrucciones a motores debido a carga en la CPU

Acción: Antes y Después

Percepción: Sensor de Profundidad

- Se dota al robot de percepción básica utilizando las mediciones del sensor Kinect
- El sensor entrega imágenes de profundidad, permitiendo detectar obstáculos en el espacio 3D por medio de una proyección 2D del mismo
- Se crea un nodo obstacle_detector que se encarga de procesar las imágenes de profundidad y determinar si existen obstáculos a menos de 60 [cm] del robot, así como la ubicación general en caso afirmativo

Percepción: Detección de Obstáculos

El criterio utilizado para la detección consiste en **dividir la imagen en 3 particiones** del mismo tamaño (izquierda, centro, derecha), para luego buscar si existen píxeles con un **valor de distancia menor a los 60 [cm]** dentro de cada partición (en cuyo caso se logró detectar un obstáculo en dicha dirección)

Percepción: Mediciones Inválidas

Debido a la naturaleza óptica del sensor *Kinect*, existirán mediciones **inválidas** causadas por **obstáculos "sombra"**, **largas distancias o superficies demasiado cercanas** al sensor. Si un **80% (o más)** de los píxeles de una partición son **NaN (Not a Number)**, entonces se asumirá que **hay un obstáculo en frente** del robot.

Acción + Percepción

Se modificó el script de movimiento dentro del nodo **dead_reckoning_nav** para recibir mensajes desde el tópico **/occupancy_state,** logrando así que el robot se detenga ante obstáculos detectados.

También se hace uso del paquete **soundplay** para que el robot hable por el parlante cuando se topa con un obstáculo.

Conclusiones

Acción: En la realidad **existen muchos factores que generan error** en el movimiento del robot, tanto de software como hardware. Se deben considerar dentro del código de **navegación**.

Visión: Los sensores de profundidad son esenciales para dotar al robot de percepción sobre su entorno. Se deben tener en cuenta las mediciones NaN.

Acción + Percepción: Se requiere una **integración entre acción y percepción** que sea eficiente y extensible, de forma que pueda ser mejorada en el futuro.