"ANÁLISE DE OCORRÊNCIAS AERONÁUTICAS NA AVIAÇÃO BRASILEIRA"

Robert Rossi Silva de Mesquita Cientista de Dados

- Explorar dados de ocorrências aeronáuticas disponibilizados pelo CENIPA (Centro de Investigação e Prevenção de Acidentes Aeronáuticos).
- Aplicar técnicas de ciência de dados para identificar padrões, insights para compreensão dos fatos relacionados a ocorrências aéreas.

DADOS UTILIZADOS

Fonte: CENIOA – Dados abertos do Governo Federal.

Tabelas utilizadas:

- ocorrencia.csv;
 - Dados gerais das ocorrências.
- aeronave.csv;
 - Dados gerais das aeronaves envolvidas.
- fator_contribuinte.csv
 - Fatores contribuintes das ocorrências.

TECNOLOGIAS UTILIZADAS

- Google Colab;
- Python;
 - Pandas, numpy, seaborn, matplotlib, scikitlearn, spicy, chardet.
- Github

ETAPAS DA EXPLORAÇÃO DOS DADOS

Tratamento dos Dados: Qualidade dos dados, limpeza, merge;

Análise Exploratória: Exploração visual dos dados, Análises temporais e epaciais.

Hipóteses e Estatísticas: Formulação de hipóteses e testes e validação.

ETAPAS DA EXPLORAÇÃO DOS DADOS

Tratamento dos Dados: Qualidade dos dados, limpeza, merge;

Análise Exploratória: Exploração visual dos dados, Análises temporais e epaciais.

Hipóteses e Estatísticas: Formulação de hipóteses e testes e validação.

ETAPA 1- TRATAMENTO DOS DADOS

- Leitura e inspeção dos dados;
- Identificação de chaves primárias e estrangeiras;
- Padronização dos dados e imputação/exclusão de campos nulos;
- Padronização de Encoding de tabelas;
- Aplicação de técnica One-Hot Encoding em variável de interesse;
- Junção de tabelas.

ETAPA 2- ANÁLISE EXPLORATÓRIA

- Análise temporal (ano, mês, hora);
- Análise de ocorrências por tipo de operação;
- Análise de ocorrências por fatores de área;
- Análise espacial-temporal de fatalidades, com destaque para os eventos com maior impacto.

ETAPA 2 -Ocorrências por Ano

ETAPA 2 -Ocorrências por Mês

ETAPA 2 – Horários com PICO de ocorrências

ETAPA 2 – Tipo de operação envolvida em ocorrências em horário de PICO

ETAPA 2 – Análise da frequência dos fatores contribuintes por área.

ETAPA 2 – Análise espacial-temporal de fatalidades.

ETAPA 2 – Análise espacial-temporal de fatalidades, com destaque para os eventos com maior impacto.

ETAPA 3- HIPÓTESE

Hipótese:

Existem perfis distintos de ocorrências aeronáuticas que se agrupam segundo características da aeronave (como número de motores, peso e assentos), fatores contribuintes (humano, material, operacional e outros.) e fases de operação (pouso, decolagem, cruzeiro, manobra, etc).

ETAPA 3- METODOLOGIA

- Método escolhido:
 - Clusterização com Kmeans/método Elbow;
 - Padronização do Z-score;
 - Variável categórica transformada por one-hot encoding;

ETAPA 3- RESULTADOS

ETAPA 3- RESULTADOS

ETAPA 3- CLUSTERS

Grupos	Peso médio(Kg)	assentos	Dano médio	Fatores	Fase	
	Aeronaves de pequeno porte					
Cluster 0	~3.676	~9	~1.9 (substancial)	Operacional (78%)	Pouso(78%)	
				Humano (27%)	corrida pós pouso (27%)	
					Decolagem e cruzeiro	
	Aeronaves muito leves					
Cluster 1	~1.393	~3.3	~2 (substancial)	Operacional (72%)	Multiplas	
				Humano (17%)		
	Aviões comerciais/grande porte					
Cluster 2				Operacional(87%)	Pouso(44%)	
	~110.263	~135	~0.94(Leve)	Humano(50%)	Descida(12%)	

ETAPA 3- CLUSTERS

ETAPA 3- ANÁLISES ESTATÍSTICA

Método	Resultado
Silhouette Score	0.352
Calinski-Harabasz Index	405.5
Davies-Bouldin Index	1.1

- Silhouette score: Clusters moderadamente definidos, porém com sobreposição;
- Calinski-Harabasz Index: Relativamente alto, conseguiu segmentar bem;
- Davies-Bouldin Index: Existe proximodade entre os clusters, o que é esperado devido a perfis similares.

ETAPA 3- CONCLUSÃO

- A análise exploratória revelou padrões relevantes nas ocorrências aeronáuticas no Brasil, destacando a importância de entender os dados sob diferentes perspectivas.
- A aplicação de clusterização permitiu identificar três perfis distintos de acidentes, diretamente associados a características técnicas das aeronaves, aos fatores contribuintes e às fases do voo mais críticas.
- Essa segmentação evidenciou que diferentes perfis operacionais enfrentam riscos distintos, e que estratégias de prevenção genéricas podem ser ineficazes. Os resultados sugerem que ações personalizadas de mitigação, orientadas por dados, podem elevar significativamente a segurança operacional na aviação civil.