Lab Session 4

MA581: Numerical Computations Lab

R. Alam

August 23, 2021

Note: To be consistent with MATLAB, consider polynomial interpolation in which indexing of data (nodes and values) starts with 1 rather than 0. Thus we denote the data points as $(x_1, f_1), \ldots, (x_n, f_n)$. The interpolating polynomial $p_n(x)$ will be of degree n-1.

- 1. Consider the Runge function $g(x) := 1/(1+25x^2)$ for $x \in [-1,1]$. Interpolate g at n equally spaced points in the interval $x \in [-1,1]$ using barycent function. Plot $||g-p_n||_{\infty}$ vs. n on "semilogy" axes for $n=5,10,15,\ldots,45$. You should estimate $||g-p_n||_{\infty}$ by taking maximum of |g(x)-p(x)| at 1000 equispaced points in [-1,1]. Separately plot (in single plot) $f(x), p_{15}(x)$ and $p_{20}(x)$. Also plot the error $E_n(x) := |f(x)-p_n(x)|$ as a function of x for n=15,25,35.
 - Next, consider the Chebyshev nodes $x_j := \cos\left(\frac{(2j-1)\pi}{2n}\right)$ for j=1:n. Repeat the experiment above for the Chebyshev nodes. What is your observation?
 - Finally, consider the function $h(x) := e^{\cos(6x)}$ for $x \in [0, 2\pi]$ and repeat the experiment above by considering equispaced nodes and Chebyshev nodes in $[0, 2\pi]$. The Chebyshev nodes in $[0, 2\pi]$ are given by $x_j := \pi/2(1 + \cos\left(\frac{(2j-1)\pi}{2n}\right)) = \pi\cos^2\left(\frac{(2j-1)\pi}{4n}\right)$ for j = 1:n.
- 2. Consider the Runge function $g(x) := 1/(1+25x^2)$ for $x \in [-1,1]$. Consider the Lebesgue function $\lambda_n(x) := \sum_{j=1}^n |\ell_j(x)|$ and the Lebesgue constant $\Lambda_n := \max_{x \in [-1,1]} |\lambda_n(x)|$. Now, consider equally spaced nodes and plot (in separate plots) the Lebesgue function and the Lebesgue constant for n = 10 : 5 : 60. Repeat the experiment for Chebyshev nodes. (To compute Λ_n , consider 1000 equally spaced points and compute the maximum of $\lambda_n(x)$ at these points.) What do you observe about the growth of Λ_n for equally spaced nodes and Chebyshev nodes? How does the growth of Λ_n relate to the following estimates? For equispaced nodes $\Lambda_n \sim \frac{2^n}{en\log n}$ and for Chebyshev nodes $\Lambda_n \leq \frac{2}{\pi}\log(n+1) + 1$. This can be checked by plotting Λ_n and $\frac{2^n}{en\log n}$ for equispaced nodes, and Λ_n and $\frac{2}{\pi}\log(n+1) + 1$ for Chebyshev nodes for various values of n.

*** End ***