République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Tunis El Manar

Ecole Nationale d'Ingénieurs de Tunis

DEPARTEMENT GENIE CIVIL Mémoire Hydraulique Urbaine

CONCEPTION ET DIMENSIONNEMENT D'UN RESEAU D'ALIMENTATON EN EAU POTABLE D'UNE AGGLOMERATION UEBAINE

Présenté par
Fares Frikha
Mohamed Aziz Tounsi

Présenté par Mme. Hedia Chakroun

Classe

2 Année Génie Civil 2

Année Universitaire: 2019/2020

Remerciements

Nous tenons à remercier, en premier lieu, notre professeur Madame Hedia CHAKROUN pour le soutien, l'aide et le temps qu'elle a bien voulu nous consacrer et sans qui ce rapport n'aurait jamais vu le jour. Aussi nous remercions l'école nationale d'ingénieurs de Tunis, en particulier le département de Génie Civil de nous avoir donné l'opportunité d'acquérir une expérience enrichissante.

Table des matières

REMERCIEMENTS	2
TABLE DES MATIERES	3
TABLE DES FIGURES	4
LISTE DES TABLEAUX	5
1. INTRODUCTION	7
2. DONNEES DE BASE	7
3. CALCUL DE CONSOMMATIONS	8
4. CALCUL DE RESEAU	9
4.1. HYPOTHESES DE CALCUL	9
4.2. CONCEPTION DE RESEAU	10
4.3. DIMENSIONNEMENT DE RESEAU	11
5. EXPLOITATION DU LOGICIEL « EPANET »	14
5.1. Instructions des caracteristiques du reseau	14
5.2. DIMENSIONNEMENT DU RESERVOIR	17
5.3. En CAS D'INCENDIE	
5.4. VERIFICATION DES VITESSES	20
5.5. VERIFICATION DU RESERVOIR	22
5.6. STATION DE POMPAGE	22
5.6.1. Débit de pompage	22
5.6.2. Hauteur de refoulement	22
5.7. Puissance de la pompe	23
6. CONCLUSION	23

Table des figures

FIGURE 1: DISPOSITION DES LOTS DE LA VILLE	7
FIGURE 2: CALCUL DE LA SURFACE SUR AUTOCAD	8
FIGURE 3: TRAÇAGE DU RESEAU DE DISTRIBUTION D'EAU SUR EPANET	10
FIGURE 4: TRAÇAGE DU RESEAU DE DISTRIBUTION D'EAU SUR AUTOCAD	10
FIGURE 5: FICHIER TEXTE	15
FIGURE 6: FICHIER TEXTE	16
FIGURE 7: PREMIERE SIMULATION SUR EPANET	17
FIGURE 8: LISTE DES PRESSIONS APRES LA PREMIERES SIMILATION	
FIGURE 9: LISTE DES PRESSIONS DE LA SIMULATION APRES L'ELEVATION DU RESERVOIR	
FIGURE 10: RESULTAT APRES LA SIMULATION EN CAS D'INCENDIE	19
FIGURE 11: LISTE DES PRESSIONS APRES LA SIMULATION EN CAS D'INCENDIE	19
FIGURE 12: LES VITESSES APRES VERIFICATIONS	20
FIGURE 13: LES VITESSE AVANT VERIFICATIONS	20
FIGURE 14: LA RESULTAT FINALE	21

Liste des tableaux

TABLEAU 1: LES DONNEES DE CALCUL	8
Tableau 2: Tableau des Qr	
Tableau 3: Tableau des Qn	12
Tableau A. Tableau des diametres et des vitesses	1/

1. Introduction

Dans cette mémoire, on se propose de faire le tracé et le dimensionnement d'un réseau d'alimentation en eau potable dont le captage est fait par un forage.

Pour que l'eau arrive aux abonnés, il suit quatre étapes :

- Captage
- Epuration et traitement
- Adduction
- Distribution

En fait, on calcule des différents débits suivis par le tracé du réseau de distribution et l'emplacement du réservoir. Ensuite, on calcule le réseau pendant l'heure de pointe et on détermine la surélévation du réservoir afin d'assurer la pression minimale en tout point du réseau, et on vérifie ensuite l'heure de pointe et l'incendie. Par suite, on calcule le volume nécessaire du réservoir.

Le calcul du réseau sera effectué par l'aide du logiciel « EPANET ».

2. Données de base

On dispose pendant l'étude du plan de masse de la ville qui est supposée homogène ainsi que les courbes de niveau et l'implantation des quartiers (voir la figure suivante).

Figure 1: Disposition des lots de la ville

Ceci nous permet de déterminer la surface habitable nécessaire pour estimer la demande en eau potable de la ville

Dans le tableau ci-dessous, on présente les informations et les données de calcul sur l'agglomération et les coefficients de pointe.

Densité moyenne d'habitant (hab/ha)	105
Consommation moyenne C_0 (l/hab/j)	125
Surface (ha)	388,599778
Nombre d'habitants N_0	40802
Coefficient de pointe journalière : K1	1.4
Coefficient de pointe horaire : K2	2.5
Coefficient de perte d'eau : K3	1.2

Tableau 1: Les données de calcul

La surface de l'agglomération est calculée à l'aide du logiciel « **AutoCAD** » (voir la figure suivante), en mesurant l'aire de chaque quartier tout en respectant l'échelle donnée.

Figure 2: Calcul de la surface sur AutoCAD

3. Calcul de consommations

On commence d'abord par le calcul de différentes consommations

La consommation journalière moyenne totale de cette agglomération est égale à :

$$Q_{jmoy} = N_0 \times C_0 = 5100,25 \, m^3 \, / \, j$$

Afin de dimensionner le réservoir, et déterminer les caractéristiques de la station de pompage et les conduites d'adduction, on détermine le débit journalier maximum :

$$Q_{imax} = k_1 \times k_3 \times Q_{imov} = 8568,42m^3 / j$$

Les abonnées sont alimentées par un réseau de distribution qui est desservi par un réservoir de stockage. Pour le dimensionnement des conduites de distribution et les réservoirs on va calculer le débit horaire maximum :

$$Q_{h\text{max}} = k_1 \times k_2 \times k_3 \times Q_{imov} / 24 = 892,544m^3/h = 247,93l/s$$

4. Calcul de réseau

Dans ce mémoire on va utiliser la méthode de Hardy cross pour calculer notre réseau Cette méthode repose sur les deux lois suivantes :

1^{ére} loi : La somme des débits qui arrivent à un nœud est égale à la somme des débits qui en partent.

2^{eme} loi : Le long d'un parcours orienté et fermé (une maille), la somme algébrique des pertes des charges est nulle.

La méthode de Hardy Cross consiste à fixer une répartition provisoire des débits ainsi qu'un un sens d'écoulement dans tout le réseau, tout en respectant la première loi.

Dans une conduite d'adduction, le débit d'eau est constant. Dans les canalisations de distribution, chaque tronçon, matérialisé par deux nœuds, est alors caractérisé par deux débits : un débit d'extrémité appelé débit transit et noté \mathbf{Q}_t et un débit consommé par les branchements raccordés sur le tronçon appelé débit en route \mathbf{Q}_r .

Après le calcul des consommations, on détermine alors les différents débits tels que les débits en route, les débits aux nœuds, les débits de consommation, les diamètres des tronçons, les vitesses dans chaque tronçon.

4.1. Hypothèses de calcul

- Sur la vitesse : $0.6 \text{ m/s} \le \text{V} \le 1.2 \text{ m/s}$

- Sur le diamètre de la conduite : $d \ge 100 \text{ mm}$

- Sur la longueur de la conduite : L< 1000 m

4.2. Conception de réseau

La conception du réseau se fait d'une manière tel que on prend en considération que chaque tronçon ne doit pas dépasser le 1 km, et que chaque quartier doit être alimenter au moins d'une coté.

Figure 4: Traçage du réseau de distribution d'eau sur AutoCAD

Figure 3: Traçage du réseau de distribution d'eau sur EPANET

4.3. Dimensionnement de réseau

La première étape consiste à numéroter les nœuds et les tronçons, on a dans notre réseau 29 nœuds et 37 tronçons. Ensuite on calcule la longueur de chaque tronçon et par suite la longueur totale des tronçons en faisant la somme sans tenir compte de la longueur du tronçon entre le réservoir et le premier nœud.

- La longueur totale :

$$L_{tot} = \sum_{i}^{29} l_i = 14365,5m$$

- Le Débit spécifique :

$$q_{sq}=Q_{h\mathrm{max}}\,/\,L_{tot}=0.0172587\;l\,/\,s\,/\,ml$$

- Le débit en route :

$$Q_r = q_{sq} \times l_i$$

Tron	çon	Longour/m)	0 (1 /6)
Nœud Dep	Nœud Arr	Longeur(m)	Qr(L/s)
R	0	507,97	0
0	1	192,79	0
1	2	815,08	14,0672294
1	6	434,58	7,50029024
2	3	922,78	15,9259925
2	8	385,12	6,64667444
3	4	284,49	4,90993044
3	10	359,61	6,20640474
4	5	397,18	6,85481448
5	12	167,85	2,89687449
6	7	407,43	7,03171626
6	14	344,43	5,94441752
7	8	550,2	9,4957423
7	24	754,81	13,027047
8	9	488,28	8,42708297
8	25	762,03	13,1516549
9	10	293,08	5,05818276
9	26	821,36	14,1756141
10	11	311,87	5,38247392

11	12	429,48	7,41227082
11	17	716,64	12,368282
12	13	435,97	7,52427984
13	16	315,48	5,44477786
14	15	35,34	0,60992282
15	21	393,09	6,78422635
16	18	329,25	5,6824303
16	19	272,81	4,7083487
17	18	201,2	3,47245247
17	27	265,96	4,59012654
19	20	345,65	5,96547315
20	27	270,33	4,6655471
21	22	297,3	5,13101451
22	23	35,09	0,60560814
23	24	168,53	2,90861041
24	25	559,56	9,65728383
25	26	223,34	3,85456031
26	27	570,3	9,84264237
		14365,5	247,93

Tableau 2: Tableau des Qr

On vérifie : $\Sigma Q_r = Q_{h\text{max}} = 274.93l / s$

- Le débit au nœuds :

On suppose que le débit en route dans chaque tronçon se divise en deux débits égaux aux nœuds d'entrée et de sortie. Cette approximation pour le réseau maillé reste valable car on a déjà pris des tronçons de longueurs inférieures ou égales à 1 Km.

Nœuds	Cote(m)	Qn(L/s)	
R	180	0	
0	178	0	
1	176,5	10,784	
2	174,6	18,320	
3	173,7	13,521	
4	173,2	5,882	
5	172,1	4,876	
6	173,8	10,238	
7	173,2	14,777	
8	173	18,861	
9	172,8	13,830	
10	172,4	8,324	
11	171,8	12,582	
12	171,1	8,917	
13	170,4	6,485	
14	172,5	3,277	
15	172,4	3,697	
16	170,05	7,918	
17	170,9	10,215	
18	170,8	4,577	
19	169,8	5,337	
20	170,05	5,316	
21	171,3	5,958	
22	171,2	2,868	
23	171,1	1,757	
24	171,05	12,796	
25	170,9	13,332	
26	170,8	13,936	
27	170,4	9,549	
		247,930	

Tableau 3: Tableau des Qn

On vérifie : $\Sigma Q_n = Q_{h\text{max}} = 274.93l / s$

On fait une répartition initiale des débits Qc dans les tronçons en évitant d'avoir un débit inférieur à 2 l/s dans les troncons. Le débit Qc est calculé en tranchant Qn d'un nœud i du débit entrant dans ce nœud. Le débit restant est alors divisé entre les tronçons sortant de ce nœud de manière à obtenir Qc = Qn du dernier nœud n'ayant aucun tronçon sortant de lui => La demande a été satisfaite dans tous les tronçons.

Il s'agit de la méthode de Hardy Cross qui consiste à respecter les deux lois suivantes :

- La loi des nœuds : A chaque nœud, la somme des débits entrant doit être égale à la somme de débits sortants.
- La loi des mailles : Dans chaque maille, la somme algébrique des pertes des charges est nulle

Ensuite, on calcule les diamètres des conduites :

$$D_{calcul} = (\frac{4 \times Q_c}{\pi \times v_{fix\acute{e}}})^{\frac{1}{2}}$$

Avec $v_{fixe} = 1 \text{ m/s}$.

Et on recalcule la vitesse d'écoulement. :

$$v_{calcul} = \frac{4 \times Q_c}{\pi \times D_{calcul}^2}$$

Les résultats obtenus sont indiqués dans le tableau ci-dessous :

Tronçon Nœud Dep Nœud Arr		06(1/6)	D(m)	D normalicó	\//m/s\
		Qc(L/s)	D(m)	D normalisé	V(m/s)
0	1	247,93	0,56184898	0,6	0,87731776
1	2	130	0,40684289	0,45	0,81780294
1	6	107,146	0,3693542	0,4	0,85307325
2	3	70	0,29854107	0,3	0,99079972
2	8	41,68	0,23036628	0,25	0,84952866
3	4	25	0,17841241	0,2	0,79617834
3	10	31,476	0,20019113	0,25	0,64154904
4 5		19,118	0,15601857	0,2	0,6088535
5	12	14,242	0,1346606	0,15	0,80634112
6 7		48,716	0,24905248	0,25	0,99293758
6	14	48,192	0,24770943	0,3	0,68212314
7	8	23,939	0,17458546	0,2	0,76238854
7	24	10	0,11283792	0,125	0,81528662
8	9	40	0,22567583	0,25	0,81528662
8	25	6,758	0,09276073	0,1	0,86089172
9	10	20	0,15957691	0,2	0,63694268
9	26	6,07	0,08791225	0,1	0,77324841
10	11	43,152	0,23439888	0,25	0,87953121

11	12	6	0,08740387	0,1	0,76433121
11	17	24,57	0,17687141	0,2	0,78248408
12	13	11,325	0,12008096	0,125	0,9233121
13	16	4,84	0,07850146	0,1	0,61656051
14	15	44,915	0,23913919	0,25	0,91546497
15	21	41,218	0,22908598	0,25	0,8401121
16	19	2,5	0,05641896	0,1	0,31847134
17	18	10,155	0,11370905	0,125	0,82792357
17	27	4,2	0,07312733	0,1	0,53503185
18	16	5,578	0,08427414	0,1	0,71057325
20	19	2,734	0,05900031	0,1	0,34828025
21	22	35,26	0,21188305	0,25	0,71867516
22	23	32,392	0,20308317	0,25	0,66021911
23	24	30,635	0,19749859	0,2	0,97563694
24	25	27,839	0,18827033	0,2	0,88659236
25	26	21,265	0,16454616	0,2	0,6772293
26	27	13,399	0,13061446	0,15	0,75861288
27	20	8,05	0,1012402	0,125	0,65630573
R	0	247,93	0,56184898	0,6	0,87731776

Tableau 4: Tableau des diamètres et des vitesses

On remarque que 3 vitesses ne vérifient pas la condition sur la vitesse du tronçon. Cela est dû à la grande différence entre le diamètre réel et normalisé, on ne peut pas prendre un diamètre inférieur à 100mm.

5. Exploitation du logiciel « EPANET »

EPANET calcule le débit dans chaque tuyau du réseau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs et la concentration en substances chimiques dans les différentes parties du réseau au cours d'une durée de simulation divisée en plusieurs étapes. Le logiciel est également capable de calculer les temps de séjour et de suivre l'origine de l'eau.

5.1. Instructions des caractéristiques du réseau

On introduit dans EPANET un fichier texte contenant les informations relatives des nœuds (ID, débit, élévation, les coordonnées), du réservoir (ID, élévation) et des tronçons (ID, nœuds amont, nœud aval, longueur, diamètre, rugosité).

[TITL	_					
EXAMPLE [JUNCTIONS]				[COORDI	NATES]	
;ID	ELÉV	DEMAND		; Node	X-Coord	Y-Coord
0	178	0		100	0	2000
1	176.5	10.784	(0	491.12	1834.668
2	174.6	18.32	:	1	465.054	1643.65
3	173.7	13.521	:	2	1280.13	1639.617
4	173.2	5.882		3	2202.89	1621.41
5	172.1	4.876	4	4	2487.17	1615.622
6	173.8	10.238	!	5	2859.35	1476.91
7	173.2	14.777	(6	328.68	1231.013
8	173	18.861	-	7	736.122	1230.5
9	172.8	13.83	:	8	1285.81	1254.534
10	172.4	8.324	9	9	1773.63	1275.87
11	171.8	12.582	:	10	2066.34	1288.67
12	171.1	8.917	:	11	2378.01	1302.27
13	170.4	6.485	:	12	2807.24	1317.36
14	172.5	3.277		13	2672.34	902.78
15	172.4	3.697		14	221.134	903.8
16	170.05	7.918		15	253.51	889.62
17	170.9	10.215		16	2673.34	587.29
18	170.8	4.577		17	2147.38	623.78
19	169.8	5.337		18	2342.23	577.67
20	170.05	5.316		19	2670.93	314.48
21	171.3	5.958	:	20	2325.28	311.59
22	171.2	2.868	:	21	249.62	496.54
23	171.1	1.757	:	22	546.83	504.31
24	171.05	12.796	:	23	554.89	470.16
25	170.9	13.332	:	24	735.17	475.69
26	170.8	13.936	:	25	1282.65	492.51
27	170.4	9.549	:	26	1505.89	499.36
			:	27	2061.78	371.97
[RESE	RVOIRS]					
;ID	HEAD			[END]		
100	180					

Figure 5: Fichier texte

[PIPES]							
;ID	;ID NODE1 NODE2 L			DIAMETE	RROUGHNE	SSMINORL	OSSSTATUS
1	100	0	507.97	600	100	0	OPEN
2	0	1	192.79	600	100	0	OPEN
3	1	2	815.08	450	100	0	OPEN
4	1	6	434.58	400	100	0	OPEN
5	2	3	922.78	300	100	0	OPEN
6	2	8	385.12	250	100	0	OPEN
7	3	4	284.49	200	100	0	OPEN
8	3	10	359.61	250	100	0	OPEN
9	4	5	397.18	200	100	0	OPEN
10	5	12	167.85	150	100	0	OPEN
11	6	7	407.43	250	100	0	OPEN
12	6	14	344.43	300	100	0	OPEN
13	7	8	550.2	200	100	0	OPEN
14	7	24	754.8	125	100	0	OPEN
15	8	9	488.28	250	100	0	OPEN
16	8	25	762.03	100	100	0	OPEN
17	9	10	293.08	200	100	0	OPEN
18	9	26	821.36	100	100	0	OPEN
19	10	11	311.87	250	100	0	OPEN
20	11	12	429.48	100	100	0	OPEN
21	11	17	716.64	200	100	0	OPEN
22	12	13	435.97	125	100	0	OPEN
23	13	16	315.48	100	100	0	OPEN
24	14	15	35.34	250	100	0	OPEN
25	15	21	393.25	250	100	0	OPEN
26	16	19	272.81	60	100	0	OPEN
27	17	18	201.2	125	100	0	OPEN
28	17	27	265.96	80	100	0	OPEN
29	18	16	392.25	100	100	0	OPEN
30	20	19	345.65	60	100	0	OPEN
31	21	22	297.3	250	100	0	OPEN
32	22	23	35.09	250	100	0	OPEN
33	23	24	168.53	200	100	0	OPEN
34	24	25	559.56	200	100	0	OPEN
35	25	26	223.34	200	100	0	OPEN
36	26	27	570.3	150	100	0	OPEN
37	27	20	270.33	125	100	0	OPEN

Figure 6: Fichier texte

La simulation nous donne en premier temps le résultat suivant :

Figure 7: Première simulation sur EPANET

5.2. Dimensionnement du réservoir

On suppose dans un premier temps que le réservoir est déjà enterré, donc il se trouve à l'élévation 180m du sol.

On affiche les pressions dans les nœuds dans EPANET

ID Noeud	Demande LPS	Charge m	Pression m	Qualité
Noeud 0	0,00	179,03	1,03	0,00
Noeud 1	10,78	178,66	2,16	0,00
Noeud 2	18,32	176,59	1,99	0,00
Noeud 3	13,52	171,69	-2,01	0,00
Noeud 4	5,88	169,83	-3,37	0,00
Noeud 5	4,88	168,19	-3,91	0,00
Noeud 6	10,24	177,49	3,69	0,00
Noeud 7	14,78	175,65	2,45	0,00
Noeud 8	18,86	174,15	1,15	0,00
Noeud 9	13,83	171,94	-0,86	0,00
Noeud 10	8,32	170,75	-1,65	0,00
Noeud 11	12,58	169,20	-2,60	0,00
Noeud 12	8,92	166,48	-4,62	0,00
Noeud 13	6,49	160,78	-9,62	0,00
Noeud 14	3,28	176,40	3,90	0,00
Noeud 15	3,70	176,16	3,76	0,00
Noeud 16	7,92	158,27	-11,78	0,00
Noeud 17	10,22	165,15	-5,75	0,00
Noeud 18	4,58	162,86	-7,94	0,00
Noeud 19	5,34	148,68	-21,12	0,00
Noeud 20	5,32	158,90	-11,15	0,00
Noeud 21	5,96	173,84	2,54	0,00
Noeud 22	2,87	172,48	1,28	0,00
Noeud 23	1,76	172,34	1,24	0,00
Noeud 24	12,80	170,53	-0,52	0,00
Noeud 25	13,33	165,98	-4,92	0,00
Noeud 26	13,94	164,93	-5,87	0,00
Noeud 27	9,55	160,70	-9,70	0,00

Figure 8: Liste des préssions après la premieres similation

On remarque que le nœud 19 a la valeur du la pression la plus basse et qui vaut -21.12 m colonne d'eau. On détermine alors la valeur de la surélévation qui égale à la différence entre 25 m et la plus faible pression dans tous les nœuds. On obtient alors : 25-(-21.12) =46.12 m.

Donc l'élévation finale du réservoir est 180+46.12= 226.12 m. On refait la simulation sur EPANET avec une hauteur du réseau à 46.12 mètres du sol :

ID Noeud	Demande LPS	Charge m	Pression m	Qualité
Noeud 0	0,00	225,15	47,15	0,00
Noeud 1	10,78	224,78	48,28	0,00
Noeud 2	18,32	222,71	48,11	0,00
Noeud 3	13,52	217,81	44,11	0,00
Noeud 4	5,88	215,95	42,75	0,00
Noeud 5	4,88	214,31	42,21	0,00
Noeud 6	10,24	223,61	49,81	0,00
Noeud 7	14,78	221,77	48,57	0,00
Noeud 8	18,86	220,27	47,27	0,00
Noeud 9	13,83	218,06	45,26	0,00
Noeud 10	8,32	216,87	44,47	0,00
Noeud 11	12,58	215,32	43,52	0,00
Noeud 12	8,92	212,60	41,50	0,00
Noeud 13	6,49	206,90	36,50	0,00
Noeud 14	3,28	222,52	50,02	0,00
Noeud 15	3,70	222,28	49,88	0,00
Noeud 16	7,92	204,39	34,34	0,00
Noeud 17	10,22	211,27	40,37	0,00
Noeud 18	4,58	208,98	38,18	0,00
Noeud 19	5,34	194,80	25,00	0,00
Noeud 20	5,32	205,02	34,97	0,00
Noeud 21	5,96	219,96	48,66	0,00
Noeud 22	2,87	218,60	47,40	0,00
Noeud 23	1,76	218,46	47,36	0,00
Noeud 24	12,80	216,65	45,60	0,00
Noeud 25	13,33	212,10	41,20	0,00
Noeud 26	13,94	211,05	40,25	0,00
Noeud 27	9,55	206,82	36,42	0,00
Bâche 100	-247,93	226,12	0,00	0,00

Figure 9: Liste des pressions de la simulation après l'élévation du réservoir

5.3. En cas d'incendie

On s'intéresse au nœud ayant la pression la moins élevée (nœud 19) et on lui ajoute une demande supplémentaire pour le cas d'incendie de 17 l/s.

Donc on aura au nœud 19:

$$Q_n(19) = Q_n(19) + 17 = 5.34 + 17 = 22.34 l/s$$

Et on refait la simulation pour obtenir le cas d'incendie.

On obtient le résultat suivant :

Figure 10: Résultat après la simulation en cas d'incendie

ID Noeud	Demande LPS	Charge m	Pression m	Qualité
Noeud 0	0,00	225,02	47,02	0,00
Noeud 1	10,78	224,60	48,10	0,00
Noeud 2	18,32	222,21	47,61	0,00
Noeud 3	13,52	216,21	42,51	0,00
Noeud 4	5,88	213,86	40,66	0,00
Noeud 5	4,88	211,65	39,55	0,00
Noeud 6	10,24	223,32	49,52	0,00
Noeud 7	14,78	221,25	48,05	0,00
Noeud 8	18,86	219,42	46,42	0,00
Noeud 9	13,83	216,69	43,89	0,00
Noeud 10	8,32	215,01	42,61	0,00
Noeud 11	12,58	212,81	41,01	0,00
Noeud 12	8,92	209,14	38,04	0,00
Noeud 13	6,49	198,68	28,28	0,00
Noeud 14	3,28	222,10	49,60	0,00
Noeud 15	3,70	221,83	49,43	0,00
Noeud 16	7,92	190,32	20,27	0,00
Noeud 17	10,22	206,09	35,19	0,00
Noeud 18	4,58	201,99	31,19	0,00
Noeud 19	22,34	180,16	10,36	0,00
Noeud 20	5,32	193,55	23,50	0,00
Noeud 21	5,96	219,20	47,90	0,00
Noeud 22	2,87	217,64	46,44	0,00
Noeud 23	1,76	217,48	46,38	0,00
Noeud 24	12,80	215,36	44,31	0,00
Noeud 25	13,33	209,70	38,80	0,00
Noeud 26	13,94	208,25	37,45	0,00
Noeud 27	9,55	200,77	30,37	0,00
Bâche 100	-264,93	226,12	0,00	0,00

Figure 11: Liste des pressions après la simulation en cas d'incendie

On remarque que toutes les pressions sont supérieures à 10 (pression minimale exigée en cas d'incendie)=> Condition vérifiée donc on maintient l'élévation du réservoir à 226.12m.

5.4. Vérification des vitesses

Après tous les changements qu'on a faits, on remarque que certaines conduites ont des vitesses soit supérieure à 1.2 l/s soit inférieure à 0.6 l/s donc il faut changer les diamètres de ces conduites.

ID Arc	Débit LPS	Vitesse m/s
Tuyau 1	264,93	0,94
Tuyau 2	264,93	0,94
Tuyau 3	146,41	0,92
Tuyau 4	107,74	0,86
Tuyau 5	77,36	1,09
Tuyau 6	50,73	1,03
Tuyau 7	30,36	0,97
Tuyau 8	33,48	0,68
Tuyau 9	24,48	0,78
Tuyau 10	19,60	1,11
Tuyau 11	41,87	0,85
Tuyau 12	55,62	0,79
Tuyau 13	18,55	0,59
Tuyau 14	8,55	0,70
Tuyau 15	44,22	0,90
Tuyau 16	6,19	0,79
Tuyau 17	24,88	0,79
Tuyau 18	5,51	0,70
Tuyau 19	50,04	1,02
Tuyau 20	4,99	0,64
Tuyau 21	32,47	1,03
Tuyau 22	15,67	1,28
Tuyau 23	9,19	1,17
Tuyau 24	52,35	1,07
Tuyau 25	48,65	0,99
Tuyau 26	11,05	1,41
Tuyau 27	14,36	1,17
Tuyau 28	7,90	1,01
Tuyau 29	9,78	1,25
Tuyau 30	11,29	1,44
Tuyau 31	42,69	0,87
Tuyau 32	39,82	0,81
Tuyau 33	38,07	1,21
Tuyau 34	33,82	1,08
Tuyau 35	26,68	0,85
Tuyau 36	18,25	1,03
Tuyau 37	16,60	1,35

Figure 13: Les vitesse avant vérifications

l ics diam	Débit	Vitesse
ID Arc	LPS	m/s
Tuyau 1	264,93	0,94
Tuyau 2	264,93	0,94
Tuyau 3	151,95	0,96
Tuyau 4	102,19	0,81
Tuyau 5	78,15	1,11
Tuyau 6	55,48	1,13
Tuyau 7	29,82	0,95
Tuyau 8	34,82	0,71
Tuyau 9	23,93	0,76
Tuyau 10	19,06	1,08
Tuyau 11	34,81	0,71
Tuyau 12	57,15	0,81
Tuyau 13	11,81	0,67
Tuyau 14	8,22	0,67
Tuyau 15	42,74	0,87
Tuyau 16	5,69	0,72
Tuyau 17	23,83	0,76
Tuyau 18	5,08	0,65
Tuyau 19	50,32	1,03
Tuyau 20	4,68	0,60
Tuyau 21	33,06	1,05
Tuyau 22	14,82	0,84
Tuyau 23	8,34	1,06
Tuyau 24	53,87	1,10
Tuyau 25	50,17	1,02
Tuyau 26	11,72	0,96
Tuyau 27	15,88	0,90
Tuyau 28	6,96	0,89
Tuyau 29	11,30	0,92
Tuyau 30	10,62	0,87
Tuyau 31	44,21	0,90
Tuyau 32	41,35	0,84
Tuyau 33	39,59	0,81
Tuyau 34	35,02	1,11
Tuyau 35	27,37	0,87
Tuyau 36	18,52	1,05
Tuyau 37	15,93	0,90

Figure 12: Les vitesses après vérifications

Figure 14: La résultat finale

5.5. Vérification du réservoir

Le réservoir doit fournir une pression au sol suffisante Hmin = 2.5 bar = 25 m, pendant l'heure de pointe, en tout point du réseau de distribution.

L'altitude du réservoir d'eau doit être calculée pour que la pression soit supérieure ou égale à Hmin dans toute l'agglomération à alimenter.

Pour les zones urbaines comme cette agglomération, on calcule forfaitairement la capacité du réservoir égale à 25% de la consommation journalière maximale dans les grandes villes.

Il faut prend en compte le réserve d'incendie dans le dimensionnement du réservoir en ajoutant un volume $120 m^3$:

$$V_r = 0.25 \times Q_{imax} + 120 = 2262.05m^3$$

Les réservoirs les plus utilisées sont des réservoirs circulaires avec :

- Une hauteur de réservoir h_r entre 3m et 6m (il peut attendre 10m pour les grandes villes).
- Un diamètre d_r tel que $1.5 \times h_r \le d_r \le 2 \times h_r$, on choisit $d_r = 2 \times h_r$

$$V_r = \pi \times d \times r^2 \times h_r/4 = \Pi \times h_r \times r^3 = h_r = 8.96m$$

On choisit:

$$h_r = 9m$$
 et $d_r = 18m$

D'où le volume du réservoir devient :

$$V_r = 2290m^3$$

5.6. Station de pompage

5.6.1. Débit de pompage

On choisit d'utiliser deux pompes en parallèle et pour cela on calcule le débit de chaque pompe :

$$Q_p = \frac{Q_{hmax}}{2} = 123.965 \ l/s$$

5.6.2. Hauteur de refoulement

Le forage se trouve à une altitude de 170.2 m.

Le point le plus haut du réservoir est à 180 + 46.12 + 9 = 235.12m.

D'où
$$Hg = 235.12 - 107.2 = 127.92 m$$

La hauteur de refoulement : $Hr\acute{e}f = Hg + JF - R$ (JF-R est la perte de charge du forage au réservoir)

Et on a LF - R = 2452.4m (Lest la longueur du forage au château d'eau)

On va choisir comme un diamètre de la conduite allant de la station de pompage vers le réservoir D = 500 mm pour que la vitesse soit comprise entre 0.6 m/s et 1.2 m/s (V=1m/s).

La rugosité est Ks = 10^{-4} . On détermine la perte de charge linéaire on se référant à l'abaque du cours : J = 0.001704 m/m.

La perte de charge totale sera $JF - R = j * LF - R = 0.001704 \times 2452.4 = 4.179m$

Donc la hauteur de refoulement est :

$$Hr = Hg + JF - R = 65.02 + 4.179 = 69.217m$$

5.7. Puissance de la pompe

La puissance utile de chaque pompe est

$$Pf = \rho \times g \times Q \times H \times Q_{hmax}/2 = 1000 \times 9.8 \times 69.217 \times 0.1239$$

=> $Pf = 84.04KW/par\ pompe = 112.629\ chevaux/par\ pompe$

Le rendement d'une pompe : $\eta_p = 0.8$.

Le rendement d'un moteur : $\eta_{mot} = 0.8$.

Donc la puissance absolue par une pompe est :

$$Pa = Pf/(\eta_{mot} \times \eta_p \;) = 84.04/(0.8 \times 0.8) = 131.31 KW/pompe = 176 cheveux/pompe$$

La puissance absolue par les deux pompes est 262.62KW.

6. Conclusion

Le long de ce mémoire on a déterminé pour une agglomération urbaine :

- Le réseau ainsi que le diamètre des conduites le constituant.
- L'emplacement du château d'eau
- La surélévation du château d'eau
- Le diamètre et la hauteur du réservoir cylindrique
- Les caractéristiques des deux pompes