

EDUCATION

Zhejiang University

Sep 2022 - Jul 2026

Major in Aircraft Design and Engineering (Specialization: Aircraft Information and Electronics)

GPA: 3.62/4.0

Relevant Courses: Aerodynamics, Flight Dynamics, Embedded Computing Technology, Finite Element Method, Automatic Control, Signals and Systems, Digital Circuit, Robot Modeling and Control, Fundamentals of Pattern Recognition and Machine Learning.

Research Projects

Learning-based Attitude Estimation and CPG Control for a Robotic Butterfly Featuring Significant Oscillation Motion

Advisor: Prof. Tiefeng Li, Institute of Applied Mechanics, Zhejiang University

Mar 2025 - Present

- Built a 3D-printed robotic platform with two independently driven servos, incorporating onboard sensors and implementing a sensor fusion strategy for robust attitude estimation and control.
- Trained a neural network using servo outputs, angular velocities, and accelerations as inputs, with motion-capture attitude as reference outputs to learn accurate flight attitudes under oscillations.
- Integrated angular velocity measurements and neural network outputs applying an Extended Kalman Filter (EKF), achieving accurate and robust attitude estimation for stable flight performance.
- Used Central Pattern Generators (CPG) to generate coordinated flapping signals for independent servos, optimizing flight stability with real-time attitude feedback.
- Validated the robustness and adaptability of the attitude estimation and control algorithms using motion capture, ensuring stable flight across different conditions.

Abdominal Undulation with Compliant Mechanism Improves Flight Performance of Biomimetic Robotic Butterfly

Advisor: **Prof.** Tiefeng Li, Institute of Applied Mechanics, Zhejiang University

Apr 2024 - Mar 2025

- Aimed to develop a biomimetic robotic butterfly with a compliant mechanism that couples abdominal undulation and wing motion, enhancing overall flight performance, stability, and efficiency.
- Designed a flapping wing mechanism using a 3D-printed rigid PLA skeleton and flexible TPU hinges to mimic the muscle contractiondriven wing flapping of a real butterfly.
- Integrated an abdominal undulation mechanism with a TPU pivot, carbon fiber rod, and PLA rings that undulates in **counter-phase** to the wing motion, simulating natural butterfly abdominal movement.
- Performed theoretical dynamic modeling which revealed that the flexible hinges increase flapping frequency by 16.85%, while abdominal undulation enhances average lift by approximately 3.4% and amplifies pitch oscillation amplitude.
- Validated the design through motion capture experiments, demonstrating a 10-meter flight distance and a 4-second flight duration, along with significant improvements in stability and efficiency.

Characterization of Soft Materials under High Hydrostatic Pressure

Advisor: Prof. Tiefeng Li, Institute of Applied Mechanics, Zhejiang University

Jul 2023 - Aug 2023

2024

- Aimed to characterize the mechanical properties and deformation behaviors of soft materials under ultra-high hydrostatic pressure using magnetic field control for precise testing.
- Designed a high hydrostatic pressure simulation device with magnetic actuation, enabling controlled bending of soft material samples using micro-magnets and external coil-generated magnetic fields.
- Conducted in situ observations of material deformations under high pressure and calculated mechanical properties like Young's modulus and bulk modulus for comparison with atmospheric conditions.
- Achieved reliable measurements of **mechanical properties** and verified the effects of high pressure on deformation, providing a comprehensive tool for studying soft materials under extreme conditions.

AWARDS

Second Prize in Zhejiang Province, Undergraduate Physics Competition Dec 2023 Student Innovation and Entrepreneurship Award 2023-2024 National Student Research Training Program (1/28)

Core skills: Aircraft structure design, embedded system development, control system analysis, electronic circuit experiments, and fluid dynamics simulations.

Programming Skills: C/C++, MATLAB, Python, LaTex, Verilog

Software Tools: AutoCAD, Solidworks, Webots, Abaqus, MATLAB, Qgis, Vivado, Modelsim, Photoshop