UNIVERSIDAD SANTO TOMÁS

Facultad de Ingeniería Electrónica

Dockerización de Simulaciones con PyBullet

Autores:

Yossed Riaño Jeferson Hernández Miguel Montaña

Asignatura: Digital 3

Docente: [Nombre del profesor]

Bogotá D.C., Octubre de 2025

Índice

1.	Introducción	2
2.	Objetivos	3
3.	Configuración del entorno	4
	3.1. Requisitos en Windows	4
	3.2. Requisitos en Linux	4
	3.3. Dependencias del contenedor	4
4.	Simulación 1: Brazo Robótico	5
5.	Simulación 2: Carrito Deslizante	7
6.	Simulación 3: Volador (Dron Simple)	9
7.	Análisis y resultados	11
8.	Conclusiones	12
9.	Referencias	13

1. Introducción

El presente informe documenta el proceso de desarrollo y dockerización de tres simulaciones físicas utilizando la librería **PyBullet**. El objetivo fue ejecutar simulaciones interactivas dentro de contenedores Docker con salida gráfica, garantizando portabilidad y estabilidad en diferentes sistemas operativos.

Las simulaciones realizadas fueron:

- Brazo Robótico: un modelo KUKA IIWA articulado.
- Carrito Deslizante: cubo móvil sobre superficie plana.
- Volador: dron simplificado mediante fuerza de empuje vertical.

2. Objetivos

Objetivo General

Implementar y dockerizar tres simulaciones interactivas en PyBullet, comprobando su correcto funcionamiento físico y gráfico dentro de contenedores aislados.

Objetivos Específicos

- Crear imágenes Docker independientes para cada simulación.
- Ejecutar cada entorno en Windows y Linux con salida gráfica.
- Documentar evidencias de ejecución y análisis de desempeño.

3. Configuración del entorno

3.1. Requisitos en Windows

- 1. Instalar **Docker Desktop**.
- 2. Instalar VcXsrv y ejecutar con la opción Disable access control.
- 3. Abrir PowerShell o VSCode en la carpeta del proyecto.

3.2. Requisitos en Linux

```
sudo apt install docker.io
xhost +local:docker
```

3.3. Dependencias del contenedor

4. Simulación 1: Brazo Robótico

Descripción

Simulación del brazo KUKA IIWA incluido en PyBullet. Se implementa control de articulaciones y renderizado 3D en tiempo real.

Archivo y Dockerfile

Archivo: brazo.py

-v /tmp/.X11-unix:/tmp/.X11-unix brazo-pybullet

Evidencias

5. Simulación 2: Carrito Deslizante

Descripción

Simulación básica de movimiento sobre un plano horizontal, verificando física de traslación, colisiones y fricción.

Archivo y Dockerfile

Archivo: carrito.py

```
FROM python:3.10-slim

RUN apt-get update && apt-get install -y xvfb x11-apps libgl1 \
        && pip install pybullet \
        && apt-get clean && rm -rf /var/lib/apt/lists/*

WORKDIR /app

COPY carrito.py .

CMD ["python", "carrito.py"]

Comandos

Construcción:

docker build -t carrito-pybullet -f Dockerfile.carrito .

Ejecución (Windows):

docker run -it --rm -e DISPLAY=host.docker.internal:0.0 carrito-pybullet

Ejecución (Linux):

docker run -it --rm -e DISPLAY=$DISPLAY \
```

-v /tmp/.X11-unix:/tmp/.X11-unix carrito-pybullet

Evidencias

6. Simulación 3: Volador (Dron Simple)

Descripción

Simulación de un cubo flotante controlado por una fuerza de empuje vertical, representando el comportamiento de un dron simple.

Archivo y Dockerfile

Archivo: volador.py

-v /tmp/.X11-unix:/tmp/.X11-unix volador-pybullet

Evidencias

7. Análisis y resultados

- Docker permitió aislar dependencias gráficas y físicas sin conflictos.
- Las simulaciones fueron ejecutadas correctamente en Windows y Linux.
- Se logró interacción gráfica estable con PyBullet a través de VcXsrv.

8. Conclusiones

- Se logró dockerizar tres simulaciones PyBullet con soporte visual.
- Docker facilita la portabilidad y replicabilidad de los entornos.
- PyBullet demostró ser ideal para simulaciones ligeras en 3D.

9. Referencias

- PyBullet Documentation: https://pybullet.org/wordpress/
- Docker Documentation: https://docs.docker.com/
- VcXsrv Display Server: https://sourceforge.net/projects/vcxsrv/