Réduction des endomorphismes 2: Théorie

Exercice 1 Soit f un endormorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. Montrer qu'il existe toujours une droite ou un plan de E stable par f.

Exercice 2 Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel de dimension finie. On suppose que g est diagonalisable et inversible, et qu'il existe un entier k tel que $f^k = g$. Prouver que f est diagonalisable.

Exercice 3 Soient f et g deux endomorphismes permutables d'un espace vectoriel E de dimension finie sur \mathbb{C} .

- a) Démontrez que tout sous-espace propre de f est stable par g.
- b) Démontrez par récurrence sur la dimension n de E qu'il existe un vecteur propre $x \neq 0$ commun à f et à g.

Exercice 4 Soient f et g deux endomorphismes de l'espace vectoriel E de dimension finie n sur K ayant chacun n valeurs propres deux à deux distinctes dans K. Démontrez que les deux propriétés suivantes sont équivalentes :

- a) $f \circ q = q \circ f$
- b) f et g ont les mêmes vecteurs propres.

Exercice 5 oient f et g deux endomorphismes permutables d'un espace vectoriel E de dimension finie sur \mathbb{C} .

- a) Montrez que si f et g sont diagonalisables, il existe une même base dans laquelle f et g soient diagonaux.
- b) Démontrez que f et g sont réductibles à la forme triangulaire dans une même base de E.

Exercice 6 Soient E un \mathbb{K} -espace vectoriel de dimension finie, u_1, \ldots, u_m une famille d'endomorphismes diagonalisables de E commutant deux à deux. Montrer qu'il existe une base de E diagonalisant tous les u_i .

Exercice 7 Soit E un espace vectoriel de dimension finie sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et soit $u \in \mathcal{L}(E)$. Démontrer que u est diagonalisable si et seulement si tout sous-espace de E possède un supplémentaire stable par u.

Exercice 8 Soit $M \in M_n(\mathbb{C})$ et $p \ge 1$. Montrer que M est diagonalisable si et seulement si M^p est diagonalisable et $\ker(M) = \ker(M^p)$.

Exercice 9 Déterminer les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que la matrice $B = \left(\frac{A \mid A}{0 \mid A}\right)$ soit diagonalisable.

Exercice 10 Soit E un espace vectoriel de dimension finie, et f un endomorphisme de E vérifiant $f^2 = -Id$.

- 1. Donner un exemple de tel endomorphisme sur \mathbb{R}^2 .
- 2. Montrer que f n'a pas de valeurs propres réelles. En déduire que la dimension de E est paire.
- 3. Montrer que, pour tout x de E, Vect(x, f(x)) est stable par f.
- 4. En déduire que si dim E = 2n, il existe des vecteurs (e_1, \ldots, e_n) tels que $(e_1, f(e_1), \ldots, e_n, f(e_n))$ forme une base de E. Quelle est la matrice de f dans cette base?

Exercice 11 Soient $n, p \ge 1$ et $A \in M_n(\mathbb{C})$ tel que $A^p = 1$. Soit ω une racine p-ième de l'unité telle que ω^{-1} n'est pas une valeur propre de A. Montrer que $\sum_{k=0}^{p-1} w^k A^k = 0$.

Exercice 12 Soit E un K-espace vectoriel de dimension finie n, u un endomorphisme nilpotent de E (il existe r tel que $u^r = 0$). Soit p le plus petit entier tel que $u^p = 0$.

- a) On pose $I_k = u^k(E)$. Montrez que $0 = I_p \subset I_{p-1} \subset \ldots \subset I_1 \subset I_0 = E$, les inclusions étant strictes.
- b) En déduire une base de E par rapport à laquelle la matrice de u est triangulaire supérieure avec uniquement des 0 sur la diagonale principale. Quel est le polynôme caractéristique de u?
- c) Montrez que si un endomorphisme a sa matrice, relativement à une base, de cette forme il est nilpotent.

Exercice 13 Soient $P = X^n + a_{n-1}X^{n-1} + \ldots + a_0 \in \mathbb{C}[X]$ et u_P l'endomorphisme de \mathbb{C}^n défini par $u_P(e_i) = e_{i+1}$ pour $1 \leq i \leq n-1$ et $u_P(e_n) = -a_0e_1 - a_1e_2 - \ldots - a_{n-1}e_{n-1}$ où (e_1, \ldots, e_n) est la base canonique de \mathbb{C}^n .

- a) Calculer le polynôme caractéristique de u_P .
- b) Vérifier que $P(u_P) = 0$.
- c) Montrez à l'aide de la définition que tout polynôme S de $\mathbb{C}[X]$ tel que degré de S < degré de P et $S(u_P) = 0$ est nul.
- d) Déduire de 2 et 3 que tout polynôme Q de $\mathbb{C}[X]$ tel que $Q(u_P) = 0$ est un multiple de P.
- e) Dans le cas où u_P est diagonalisable, montrer que P n'a que des racines simples.
- f) Dans le cas général, montrez que P est le polynôme minimal de u_P .

Exercice 14 Soit $X \in M_n(K)$ où K est algébriquement clos. Montrez qu'il existe une matrice diagonale D et une matrice nilpotente N telles que X = D + S, DS = SD et que ces matrices sont uniquement déterminées par ces conditions.