5/16/22, 6:34 PM Untitled

```
import pandas as pd
In [72]:
          from sklearn.tree import DecisionTreeClassifier
          import tensorflow as tf
          import seaborn as sn
          import matplotlib.pyplot as plt
          from sklearn.metrics import classification report
         df = pd.read_csv("D:\Backend\data.csv")
In [27]:
          clf = DecisionTreeClassifier()
In [29]:
         df.Income.replace(["Low","Med","High"],[0,1,2],inplace=True)
In [30]:
         df.Marital_status.replace(["Single","Married"],[0,1],inplace=True)
In [49]:
         df.Gender.replace(["M","F"],[0,1],inplace=True)
          df.Age.replace(["<21","21-35",">35"],[0,1,2],inplace=True)
          df.Buys.replace(["Y","N"],[0,1],inplace=True)
In [50]:
         df.Buys
               1
Out[50]:
               1
         2
               0
         3
               0
         4
               0
         5
               1
         6
               0
         7
               1
         8
         9
               0
         10
               0
         11
         12
               0
         13
               1
         Name: Buys, dtype: int64
          features = df[["Age","Income","Gender","Marital_status"]]
In [32]:
          features
In [33]:
```

Out[33]:		Age	Income	Gender	Marital_status
	0	0	2	0	0
	1	0	2	0	1
	2	1	2	0	0
	3	2	1	0	0
	4	2	0	1	0
	5	2	0	1	1
	6	1	0	1	1
	7	0	1	0	0
	8	0	0	1	1
	9	2	1	1	0
	10	0	1	1	1
	11	1	1	0	1
	12	1	2	1	0
	13	2	1	0	1

```
In [51]: labels = df[["Buys"]]
```

In [52]: df

2

 Out[52]:
 Age
 Income
 Gender
 Marital_status
 Buys

 0
 0
 2
 0
 0
 1

 1
 0
 2
 0
 1
 1

2

3 2 1 0 0 0

0

4 2 0 1 0 0

5 2 0 1 1 16 1 0 1 1 0

7 0 1 0 0 1

8 0 0 1 1 0

9 2 1 1 0 0

10 0 1 1 1 0

11 1 1 0 1 0

 12
 1
 2
 1
 0
 0

 13
 2
 1
 0
 1
 1

In [53]: clf.fit(features,labels)

Out[53]: DecisionTreeClassifier()

5/16/22, 6:34 PM Untitled

```
In [54]: | x=df[['Age','Income','Gender','Marital_status']]
In [55]:
Out[55]:
              Age Income Gender Marital_status
           0
                0
                        2
                                0
                                              0
           1
                0
                        2
                                0
                                              1
                        2
           2
                1
                                              0
           3
                2
                        1
                                0
                                              0
                2
                        0
           4
                                              0
                2
           5
                        0
                                              1
           6
                1
                        0
                                1
                                              1
           7
                0
                        1
                                0
                                              0
           8
                0
                        0
                                1
                                              1
           9
                2
                                              0
                        1
                                1
          10
                        1
                                1
                                              1
          11
                1
                        1
                                0
                                              1
                        2
          12
                1
                                1
                                              0
          13
                2
                        1
                                0
                                              1
          y=clf.predict(x)
In [56]:
In [57]:
          array([1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1], dtype=int64)
Out[57]:
In [58]:
          cm=tf.math.confusion_matrix(labels=df.Buys, predictions= y)
          <tf.Tensor: shape=(2, 2), dtype=int32, numpy=
Out[58]:
          array([[9, 0],
                 [0, 5]])>
          sn.heatmap(cm,annot=True)
In [71]:
          plt.xlabel("Predicted")
          plt.ylabel("Truth")
```

Text(33.0, 0.5, 'Truth')

Out[71]:

5/16/22, 6:34 PM Untitled

In [73]:	print(cla	e=df.Buys ,	y_pred=y))			
			precision	recall	f1-score	support
		0	1.00	1.00	1.00	9
		1	1.00	1.00	1.00	5
	accur	racy			1.00	14
	macro	avg	1.00	1.00	1.00	14
	weighted	avg	1.00	1.00	1.00	14