

YACHAY TECH UNIVERSITY

COURSE PROGRAM

1.0	1. General Information						
Λ	SCHOOL	Physical Sciences and	В.	B. MAJOR	Physics		
Α.		Nananotechnology	B. WAJOR		Nanotechnology		
C.	COURSE	Quantum Mechanics I		CODE	PHYS602		
E.	CURRICULAR UNIT	Professional		MODALITY	Face to face		
G.	TOTAL HOURS	64 ¹ 48 ² 88 ³	Н.	SEMESTER	6th		

2. Prerequisites and Corequisites						
PREREQUISITES	COREQUISITES					
COURSES	Code	COURSES	Code			
Modern Physics	PHYS502					
Classical Mechanics	PHYS503					
Oscillations, electricity and magnetism	PHYS501					
Mathematical Physics I	PHYS504					

3. Course Description

This course provides an introduction to the formal mathematical treatment of Quantum Mechanics. The course introduces the Schrödinger Equation and its solutions for different potentials, emphasising on its statistical interpretation and its importance for the description of experiments at quantum scales. Topics range from wave functions, the time-independent Schrödinger's equation, through Hilbert spaces and the mathematical formalism of quantum mechanics, to the description of the hydrogen atom and two-particle systems. The course includes examples of different applications of quantum mechanics, including writing Hamiltonians for different physical systems and extracting information about them.

4. Course Contribution to professional training

The course helps students to develop the mathematical skills needed to create realistic models of quantum systems.

¹ Teaching Hours. For courses with NON-VALID curriculums, take into account the total number of hours of each course found in each curriculum and place it in this space.

Hours of Internship and Experimental Learning

³ Hours of Independent Learning

5. Course objectives

- Understand the fundamental ideas and experiments that led to the formulation of quantum mechanics.
- Learn the mathematical skills and formalism needed to solve Schrödinger's equation and interpret its solutions.
- Study the Hamiltonians of quantum systems in 1D and 3D for different potentials and coordinates, and provide a detailed quantum description of the hydrogen atom.
- Use quantum mechanics to analyse real microscopic phenomena and interpret experimental data.

CURRICULAR UNITS	CONTENTS					
UC.1	Review of quantum experiments and mathematical tools.					
The Schrödinger equation	The wave function and the Schrödinger equation.					
	Statistical interpretation of the wave function and probability.					
	Normalisation, momentum, and the uncertainty principle.					
UC.2	Stationary states and the time-independent Schrödinger equation.					
Quantum Mechanics in 1D	Finite, Infinite potential wells, and the harmonic oscillator.					
	Free particles and wave packets.					
	Delta-function potentials, tunnelling and scattering states.					
UC.3	Linear algebra, Hermitian operators, and Hilbert space					
Mathematical formalism of Quantum Mechanics	Eigenfunctions, eigenvectors, and eigenvalues for discrete and continuous spectra.					
	Dirac notation and the Generalised statistical interpretation					
	Operators of position and momentum and the uncertainty principle					
UC.4	Schrodinger Equations in Spherical Coordinates					
Quantum Mechanics in 3D	Coulomb potential and quantum description of the Hydrogen atom					
	Angular momentum and spin					
	Larmor precession and the Stern- Gerlach experiment					
UC.5	Identical particles and introduction to two-particle systems.					
Two-Particle Systems and quantum applications	Exchange interactions and covalent bonds					
	Atoms					
	Applications of quantum mechanics					

7. Le	7. Learning outcomes of the course					
A.	Understand the fundamental ideas and experiments that led to the formulation of quantum mechanics.					
B.	Learn the mathematical skills and formalism needed to solve Schrödinger's equation and interpret its solutions.					
_	Study the Hamiltonians of quantum systems in 1D and 3D for different potentials and coordinates, and provide a detailed quantum description of					
_ C.	the hydrogen atom.					
D.	Use quantum mechanics to analyse real microscopic phenomena and interpret experimental data.					

8. Methodology

- 1. Interactive lectures including theory and exercises.
- 2. Classwork including exercises and quizzes based on reading material and online laboratory applets.
- 3. Individual and group projects including problem sets and bibliographic research.

9. Information Sources (Bil	oliography)						
9.1 Main							
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library		
Griffiths, David	Introduction to Quantum Mechanics	2nd	2017	Cambridge University Press – United States	530.12 G8553i 2017		
9.2 Complementary							
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH		
			Fublication		Library		
Townsend, John	A Modern Approach to Quantum Mechanics	2nd	2012	University Science Books – United States	Library 530.12 T748m 2012		

10.Student's Evaluation							
Midterm Exam (MT)	V	Formative Evaluation (FO)	Ø	Laboratory (LAB)	Ø	Final Exam (FI)	Ø

Based on the Academic Regime Regulation issued by the Higher Education Council (CES in Spanish) and the Academic Regime Regulation of Yachay Tech The inputs that contribute to the completion of this format must be taken from the major project approved by CES.

Prepared by:	Reviewed by:	Approved by:		
PROFESSOR - PROFESSORS	MAJOR COORDINATOR - MAJOR DIRECTOR	DEAN - DIRECTOR		
SIGNATURE AND DATE:	SIGNATURE AND DATE:	SIGNATURE AND DATE:		