Food
Distribution
at GW's 23
Commencement

Chao Zhang, Danyu Zhao, Haoyang Wang, Xinyi Li

Table of Contents

01

About the Project

Introduce Supply Chain Problem and Motivation

02

Preparation for Project

Analytical Models the Project Used and Data Collection

03

Scenario 1: Food Delivery

Application of the Proposed Models and Preliminary Findings

04

Scenario 2: Pick-up Location

Application of the Proposed Models and Preliminary Findings

05

Conclusion

About the Project

Problem and Motivation

Goal

Meet the requirement of food delivery under graduation ceremony. To provide timely and efficient food distribution to multiple colleges with a lot of considerations on May 21st, 2023, our team has designed two scenarios for the food distribution in 23 GW's Commencement.

Motivation

Providing timely food delivery to multiple schools is essential to ensure that students receive the necessary sustenance to participate fully in the graduation ceremony.

Solution

- Food delivery— Develop a prioritization system
- Pick up station— Combine the actual geographical location

Preparation for the Project

Analytical Models and Data Collection

Scenario	Model	Data Collection
Logistics Planning: Food Delivery	Traveling Sales Problem (TSP)	Real distance among the marked locations searched by Google Map
	TSP with Precedence Constraints	Real distance via Google Map Simulation: Precedence pairs
	Vehicle Routing Problem	Real distance among the marked locations searched by Google Map
Food Pick-up Locations	Set Covering Problem	Real distance via Google Map Simulation: Candidate facilities
	Clustering: K-mean & K- median	The latitude and longitude of each location

Scenario 1: Food Delivery Problem

Travelling Salesman Problem (TSP)

Implementation

- 1. Set the source at Shenkman Hall, collected the distances among every node, and input data.
- 2. Got the optimal route and the objective, the total amount of distance to accomplish the route.
- 3. Set the source at Thurston Hall and repeated the process.
- 4. Compared the objectives of the two cases and identify a better one.

Result: The case starting from the Shenkman Hall would be better because of less objective.

Difference

- 1. Differences between the actual distances and what we see on the map(e.g. gates)
- 2. Single lane roads

TSP with Precedence Constraints

Occasion

A prioritization system for food delivery based on some specific needs (e.g. gaps in the timetable of the specific college events)

Implementation: Added the precedence pairs in the former model.

Result: The optimal route has changed and the objective, the total distance, gets longer.

Vehicle Routing Problem

Thoughts: Would two-vans delivery always be more efficient that one-van delivery?

Simplification

- 1. 2^11
- 2. 2^3
- 3. One example of Node 8

Implementation

- 1. Grouped the nodes by their locations except for Node 8.
- 2. Added Node 8 to Shenkman Hall and got the objectives of Shenkman Hall and Thurston Hall.
- 3. Added Node 8 to Thurston Hall and got the objectives of Shenkman Hall and Thurston Hall.
- 4. Compared the objectives.

Result: The objective of the one-van delivery would be better in the example.

Scenario 2: Pick-up Location

Set Covering Problem

Objective: Find minimum pick-up locations (candidate facilities) to cover all colleges (demand locations)

Data Collection

- Demand Location: 11 colleges

- Coverage Distance: 0.32

- Candidate Facility: 5 locations

Distance between Demand Location and Candidate Facility

Result: The minimum pick-up stations are 2 with Shenkman Hall and Thurston Hall

Limitation

- The candidate facilities are not chosen randomly around the colleges on the map
- The coverage distance is not completely random, and needs to analyze and make a decision according to the known distance

Clustering: Data Collection

Canteens and Colleges	Latitude	Longitude
Thurston Hall	38.89802389	-77.04403504
Shenkman Hall	38.89863688	-77.04986
School of Medicine and Health Sciences	38.90118486	-77.0506355
Science and Engineering Hall	38.90039115	-77.04951445
School of Media and Public Affairs	38.90013894	-77.0462463
Duques Hall School of Business	38.89917099	-77.0492324
GW law School	38.89871772	-77.04506193
Elliott school of international affairs	38.89632618	-77.04354111
Graduate School of Education & Human Development	38.89834127	-77.04839263
Corcoran School of the Arts & Design	38.89662355	-77.03953849
Phillips Hall Columbian College of Arts & Sciences	38.90048732	-77.04810611
Milken Institute School of Public Health	38.90270405	-77.05062654
School of nursing offices	38.90083459	-77.04427794

Location visualization

Red dots indicate canteens (left red dot is Shenkman Hall and right ted dot is Thurston Hall), blue dots indicate colleges.

Optimal K

Calculate the optimal k in this model, according to the plot we have at this point optimal k = 2.

Predicted Results

Conclusion

Scenario 1
Food Delivery

Source node at the Shenkman Hall via one van

Scenario 2
Pick-up Location

Best Location: Shenkman Hall and Thurston Hall

Thanks!

