KAIST, School of Computing, Spring 2024 Algorithms for NP-hard problems (CS492) Lecture: Eunjung KIM

Scribed By: Eunjung KIM Lecture #13 9 April 2024

Contents

1	Dynamic programming		
	1.1	DP for Travelling Salesman Person	2
	1.2	DP for Steiner Tree	2
2 Inc	Incl	Inclusion-Exclusion based algorithms	
	2.1	Inclusion-Exclusion formula	2
	2.2	IE-based algorithm for HAMILTONIAN CYCLE	(
	23	IF-based algorithm for k-COLORING	•

1 Dynamic programming

If a problem can be optimally solved by combining the solutions to a smaller problem, then dynamic programming approach can be used. We give two dynamic programming algorithm, one for Travelling Salesman Person and another for Steiner Tree. Both runs in time $2^n \cdot n^{O(1)}$ and requires exponential space.

TRAVELLING SALESMAN PERSON

Instance: a complete graph G = (V, E) with distance $d: \binom{V}{2} \to \mathbb{R}_{\geq 0}$

Question: find a closed tour of minimum total distance visiting every vertex precisely once.

For a graph G=(V,E), and a vertex subset $K\subseteq V$, a *steiner subgraph* for K is a connected subgraph H of G which contains all vertices of K. Intuitively, a steiner subgraph for K is an essential structure in G that pairwise connect the vertices of K The vertices of K are called *terminals*. For a subgraph H of an edge-weighted graph G with weight function $\omega:E\to\mathbb{R}_{\geq 0}$, the weight of H is the sum $\sum_{e\in E(H)}\omega(e)$ over all H's edges and will be denoted by $\omega(H)$. In this vein, we are interested in finding a steiner subgraph of minimum weight. With non-negative weights, a steiner subgraph of minimum edge count/weight sum can be assumed to be a tree and we call a steiner subgraph which is a tree a *steiner tree*, or K-steiner tree to emphasize the terminal set that the tree covers. This leads to the following fundamental problem.

STEINER TREE

Instance: an edge-weighted graph G=(V,E) with weight function $\omega:E\to\mathbb{R}_{\geq 0}$, and a set of

vertices $K \subseteq V$ (terminals)

Question: find a K-steiner tree of minimum weight, if one exists.

1.1 DP for TRAVELLING SALESMAN PERSON

Fix a vertex s. For all subsets $s \in S \subseteq V$ and a vertex $v \in S$, we compute the value P[S,v] of a minimum distance (s,v)-path in G[S] visiting every vertex exactly once. Note that the value of a minimum distance closed tour in G visiting every vertex once equals

$$\min\{P[S,v]+d(v,s):v\in V\}.$$

The base case is when $S = \{s\}$ and v = s, and we have P[S, s] = 0 trivially. For sets S containing s with $|S| \ge 2$, the next recursion for P[S, v] is easy to see.

$$P[S, v] = \begin{cases} 0 & \text{if } v = s \\ \min\{P[S \setminus v, w] + d(w, v) : w \in S \setminus v\} & \text{if } v \neq s. \end{cases}$$

Each computation of P[S, v] requires O(|S|) look-ups of the table P constructed for sets of size |S| - 1. As there are $2^{n-1} \cdot n$ entries in the table, the algorithm takes $O(2^n \cdot n^2)$ -time.

The above recursive formula and the resulting algorithm computes the value of an optimal TSP tour. How can we find a tour whose total distance equals the determined value?

1.2 DP for STEINER TREE

Assumption. If $|K| \le 2$, then STEINER TREE has a trivial solution; if |K| = 1, a trivial steiner tree consisting of a a singleton is an optimal solution and a steiner tree which is a shortest path between two terminals is an optimal solution for the case when |K| = 2. Therefore, we assume $|K| \ge 3$. Moreover, G can be assumed to be connected; if K resides in more than one connected components of G, there is no K-steiner tree and we report so. If this is not the case, we can take as the input graph the unique connected component of G containing the entire set K.

Notations. For all subsets $\emptyset \neq K' \subseteq K$ and $v \in V$, let t(T',v) be the weight of an optimal $(K' \cup v)$ -steiner tree which takes v as a leaf. Note that any leaf of an optimal K-steiner tree can be assumed to be a terminal (i.e. a vertex in K) since otherwise one can remove a non-terminal leaf and get a K-steiner tree of less or equal weight. Therefore, the weight of an optimal K-steiner tree equals $\min\{t(K,s):s\in K\}$. Figuring out how to construct an optimal steiner tree achieving this minimum weight is left to the readers as an exercise. We denote by $\operatorname{dist}(u,v)$ the total weight of a shortest (with respect to ω) (u,v)-path.

For $|K' \cup v| \le 2$, the value of t(K', v) equals 0 if $K' = \{v\}$ and $\operatorname{dist}_G(u, v)$ when $K' \cup v = \{u, v\}$. Therefore, we consider the case when $|K' \cup v| \ge 3$ and notice that $|K'| \ge 2$ in this case. We want to compute the table entry t(K', v).

Recursive formula. We prove that the following recursive formula holds for all subsets $\emptyset \neq K' \subseteq K$ and $v \in V$ with $|K' \cup v| \geq 3$.

$$(\star) \qquad t(K',v) = \min_{\substack{z \neq v \\ K^1 \uplus K^2 = K' \backslash v \\ K^i \neq \emptyset, i=1,2}} t(K^1,z) + t(K^2,z) + \mathsf{dist}_G(z,v)$$

Lemma 1.
$$t(K',v) \leq \min_{\substack{K^1 \uplus K^2 = K' \setminus v \\ K^i \neq \emptyset, i=1,2}} t(K^1,z) + t(K^2,z) + \textit{dist}_G(z,v)$$

Proof: Let T_i be a $(K^i \cup z)$ -steiner tree having z as a leaf of minimum weight for i=1,2, and note that $\omega(T_i)=t(K^i,z)$. Let P be a shortest (z,v)-path of G. Then the graph $H:=T_1\cup T_2\cup P$, i.e. the subgraph of G whose vertex set is $V(T_1)\cup V(T_2)\cup V(P)$ and takes $E(T_1)\cup E(T_2)\cup E(P)$ as an edge set, is a steiner subgraph for $K^1\cup K^2\cup \{z,v\}$ and thus for $K'\cup \{v\}$. It suffices to observe that $\omega(H)=t(K^1,z)+t(K^2,z)+\operatorname{dist}_G(z,v)$ and H contains a $(K'\cup v)$ -steiner tree T of weight at most $\omega(H)=t(K^1,z)+t(K^2,z)+\operatorname{dist}_G(z,v)$ such that v is a leaf of T.

Lemma 2.
$$t(K',v) \geq \min_{\substack{K^1 \uplus K^2 = K' \setminus v \\ K^i \neq \emptyset, i=1,2}} t(K^1,z) + t(K^2,z) + \textit{dist}_G(z,v)$$

Proof: Let T be an optimal $(K' \cup v)$ -steiner tree in which v is a leaf which attains the total weight $t(K' \cup v)$. Let P be a maximal path in T such that one endpoint of P is v and none of the internal vertices of P is in K' and none of them is a branching vertex of T (i.e. degree at least three in T). Let z be the endpoint of P other than v. Such z is well-defined; indeed, choose a terminal vertex $z' \in K' \setminus v$ which is closest to v in T. If the (z', v)-subpath P' of P has no branching vertex of T as an internal vertex, then we take z := z'. Otherwise, choose a branching vertex on P' closest to v and take it as z. Clearly, any internal vertex of (z, v)-path is neither a terminal nor a branching vertex of T.

Notice that z is a branching vertex of T or a terminal, and $z \neq v$. There are two cases.

Case 1. z is a branching vertex. Let T_1,\ldots,T_ℓ be the subtress of T obtained from T by removing all vertices of P. We observe that $\ell \geq 2$ and each subtrees T_i contains at least one terminal. Let T^1 be the subtree of T induced by the vertex set $V(T_1) \cup \{z\}$ and T^2 be the subtree of T induced by the vertex set $\bigcup_{i=2}^\ell V(T_i) \cup \{z\}$. Then for both $i=1,2,T^i$ is a $(K^i \cup z)$ -steiner tree with z being a leaf, where $K^i=K'\cap V(T^i)$. Moreover, we have $K^i \neq \emptyset$ for i=1,2 and (K^1,K^2) forms a bipartition of $K'\setminus v$. Clearly, P is a (z,v)-path of G. Therefore

$$\begin{split} t(K',v) &= \omega(T) = \omega(T^1 \cup T^2 \cup P) = \omega(T^1) + \omega(T^2) + \omega(P) \\ &\geq t(K^1,z) + t(K^2,z) + \mathsf{dist}_G(z,v) \\ &\geq \min_{\substack{z \neq v \\ K^1 \uplus K^2 = K' \setminus v \\ K^i \neq \emptyset}} t(K^1,z) + t(K^2,z) + \mathsf{dist}_G(z,v) \end{split}$$

which settles the inequality.

Case 2. z is not a branching vertex. Note that z is a terminal in this case. Then let T^1 be the subtree of T obtained by deleting all vertices of P except for z, and let T^2 be the trivial tree consisting of the singleton $\{z\}$. It is straightforward to verify that the inequality holds.

Algorithm and Runtime. Assuming that t(K',v) have been computed for all $\emptyset \neq K' \subseteq K$ with $|K'| \leq i$ and for all $v \in V$, one can compute t(K',v) for all $\emptyset \neq K' \subseteq K$ with |K'| = i+1 and for all $v \in V$. This is because the computation of t(K',v) requires access only to those entries of the form t(K'',v) with $\emptyset \neq K'' \subseteq K'$ and $z \in V$ such that |K''| < |K|. Therefore we can compute the full table, and in particular determine the weight of an optimal K-steiner tree by computing $\min\{t(K,s): s \in K\}$.

To see the running time, observe that determining the value of t(K',v) requires to inspect n different choices for z and at most $2^{|K'|}$ different bipartitions of $K' \setminus v$. Therefore, computing t(K',v) takes at most $n \cdot 2^{|K'|}$ arithmetic operations. In total, it takes

(Running time of all-pairs shortest paths problem)
$$+\sum_{i=2}^{|K|}n2^i=O(n^3)+n3^{|K|},$$

that is, $O(n^3 + n \cdot 3^{|K|})$ -time.

2 Inclusion-Exclusion based algorithms

2.1 Inclusion-Exclusion formula

Theorem 1 (Inclusion-Exclusion, union version). Let A_i for i = 1, ..., n be finite sets. Then,

$$|\bigcup_{i \in [n]} A_i| = \sum_{\emptyset \neq X \subseteq [n]} (-1)^{|X|+1} |\bigcap_{i \in X} A_i|.$$

Proof: Notice that an element not in $\bigcup_{i \in [n]} A_i$ contributes neither to any term of the right-hand side, nor to the left-hand side. For an element $x \in \bigcup_{i \in [n]} A_i$, its contribution to the left-hand side is 1. It remains to

show that the sum of contribution of x to the right-hand side is precisely 1. Let $Y \subseteq [n]$ be the set of indices i such that $x \in A_i$. Then for every $\emptyset \neq X \subseteq Y$, $\bigcap_{i \in X} A_i$ contains x. Conversely, for every $\emptyset \neq X \nsubseteq Y$ we have $x \notin \bigcap_{i \in X} A_i$. Therefore, x creates the following terms of the right-hand side:

$$\begin{split} \sum_{\emptyset \neq X \subseteq Y} (-1)^{|X|+1} \cdot 1 &= (-1) \sum_{\emptyset \neq X \subseteq Y} (-1)^{|X|} \\ &= -\sum_{i=1}^{|Y|} \sum_{X \subseteq Y, |X|=i} (-1)^i \\ &= -\sum_{i=1}^{|Y|} \binom{|Y|}{i} (-1)^i 1^{|Y|-i} \\ &= - \Big(\sum_{i=0}^{|Y|} \binom{|Y|}{i} (-1)^i 1^{|Y|-i} - 1 \Big) \\ &= 1 - (-1+1)^{|Y|} = 1. \end{split}$$

Theorem 2 (Inclusion-Exclusion, intersection version). Let A_i for i = 1, ..., n be sets of a finite universe U. Then,

$$|\bigcap_{i \in [n]} A_i| = \sum_{X \subseteq [n]} (-1)^{|X|+1} |\bigcap_{i \in X} (U \setminus A_i)|.$$

Proof: First, we note that for finite sets B_i , $i \in [n]$,

$$U \setminus \bigcup_{i \in [n]} B_i = \bigcap_{i \in [n]} (U \setminus B_i). \tag{1}$$

Therefore, by Theorem 1 it holds that

$$|U \setminus \bigcup_{i \in [n]} B_i| = |U| + \sum_{\emptyset \neq X \subseteq [n]} (-1)^{|X|} |\bigcap_{i \in X} B_i|$$

$$= \sum_{X \subseteq [n]} (-1)^{|X|} |\bigcap_{i \in X} B_i|.$$
(2)

Set $A_i = U \setminus B_i$ and combine the equations (1)-(2). Now,

$$\left| \bigcap_{i \in [n]} A_i \right| = \left| \bigcap_{i \in [n]} (U \setminus B_i) \right| = \left| U \setminus \bigcup_{i \in [n]} B_i \right|$$

$$= \left| U \right| - \sum_{\emptyset \subsetneq X \subseteq [n]} (-1)^{|X|+1} \left| \bigcap_{i \in X} B_i \right|$$

$$= \sum_{X \subseteq [n]} (-1)^{|X|} \left| \bigcap_{i \in X} (U \setminus A_i) \right|,$$

where the last equation follows from the convention of writing $U = \bigcap_{i \in \emptyset} B_i$.

2.2 IE-based algorithm for HAMILTONIAN CYCLE

Using the Inclusion-exclusion formula we can compute Hamiltonian Cycle in $2^n \cdot n^{O(1)}$ -time. In fact we can count the number of Hamiltonian cycles in the same running time.

Let G = (V, E) be on n vertices v_1, \ldots, v_n , and let $v_0 = v_n$. A closed walk is a sequence of vertices of G whose start and end vertices are identical, and any two consecutive vertices are adjacent in G. Notice that a vertex or an edge might appear in a walk multiple times. The length of a closed walk is the length of vertex sequence minus one. By v_0 -walk, we mean a closed walk that begins and ends with v_0 . To apply the (intersection version) of inclusion-exclusion formula, we define the ground set U as follows:

$$U = \{ \text{all } v_0 \text{-walks of length } n \}.$$

Now we can view a Hamiltonian cycle (with an orientation) as a v_0 -walk of length n which visits every $v \in V$. Notice that each Hamiltonian cycle yields two v_0 -walks of length n visiting every vertex v. Therefore with A_i defined as

$$A_i = \{ \text{all } v_0 \text{-walks of length } n \text{ visiting } v_i \},$$

the Hamiltonian cycles, the v_0 -walks of length n visiting all $v \in V$ to be precise, are captured by $\bigcap_{i \in [n]} A_i$. Its cardinality can be computed by computing $|\bigcap_{i \in X} (U \setminus A_i)|$ for every $X \subseteq [n]$ thanks to Theorem 2.

So, what kind objects constitute $\bigcap_{i \in X} (U \setminus A_i)$? Observe that $U \setminus A_i$ are precisely the v_0 -walks of length n which avoid v_i , and thus $\bigcap_{i \in X} (U \setminus A_i)$ are v_0 -walks of length n which avoid all vertices corresponding to X. In other words, $\bigcap_{i \in X} (U \setminus A_i)$ are the set of all v_0 -walks of length n in G - X (formally $G - \{v_i : i \in X\}$).

Finally, the number of (v_i, v_j) -walks of length ℓ in a graph H can be computed in polynomial time by computing ℓ -th power of the adjacency matrix of H and reading off the (i, j)-entry of the resulting matrix. This completes the algorithm and it is straightforward to see that after 2^n steps all the terms of $\sum_{X\subseteq [n]} (-1)^{|X|} |\bigcap_{i\in X} (U\setminus A_i)|$ have summed up. We remark that this algorithm works both for directed and undirected graphs.

2.3 IE-based algorithm for k-COLORING

To apply the intersection version of inclusion-exclusion formula, we view a k-coloring as a k-tuple of independent sets of G. Namely, we define

$$U = \{(I_1, \dots, I_k) : I_i \text{ is an independent set of } G\}.$$

Notice that two independent sets in a tuple may intersect and even coincide. Observe that there is a (proper) k-coloring if and only if there is k-tuple of independent sets covering all vertices of G. Therefore let

$$A_i = \{(I_1, \dots, I_k) \in U : v_i \in I_1 \cup \dots \cup I_k\},\$$

and G admits a proper k-coloring if and only if $\bigcap_{i \in [n]} A_i \neq \emptyset$. Due to Theorem 2, we can decide this via computing the value $\sum_{\emptyset \neq X \subset [n]} (-1)^{|X|+1} |\bigcap_{i \in X} (U \setminus A_i)|$.

Again, $\bigcap_{i \in X} (U \setminus A_i)$ is the set of all k-tuples of independent sets avoiding the vertices in X altogether. In other words, it is the set of all k-tuples of independent sets of G - X. Let i(G) be the number of independent sets of G and observe

$$|\bigcap_{i\in X}(U\setminus A_i)|=i(G-X)^k.$$

Now i(G) can be computed with dynamic programming. Choose an arbitrary vertex $v \in G$ and note that

$$i(G) = i(G - v) + i(G - N[v])$$

where the first term in r.h.s counts the independent sets of G not containing v and the second term counts the independent sets of G containing v, thus excluding N(v). The base case is $i(\emptyset)$ and $i(K_1)$, i.e. an empty graph and a graph on one vertex. The number of independent sets in each case is 1 and 2 respectively. This recursion indicates that i(G[Z]) over all subsets Z of V can be tabulated, and this can be done in time $2^n \cdot n^{O(1)}$.

With the above table containing values for i(G - X) for all $X \subseteq [n]$, we can compute

$$\sum_{X \subseteq [n]} (-1)^{|X|+1} |\bigcap_{i \in X} (U \setminus A_i)| = \sum_{X \subseteq [n]} (-1)^{|X|+1} i^k (G - X)$$

in time $2^n \cdot n^{O(1)}$.