20 0 21	PAGE NO 1	PAGE NO.: DATE: / /		
20.9.21	Area of Parallelogram			
	-R - Q			
184	RM = B'sino.	THAT I		
8.3	3/1			
	3/1-21			
baso	10:			
	OMA			
*	Area of Parallelogram = OPXRM	Y=A= V		
	= AB Sh B	+0		
	$= \overrightarrow{A} \times \overrightarrow{B} + \overrightarrow{A} - \overrightarrow{A} $			
	B 40 ± A			
Malon	Axea of triumgle OPR=			
	AME OF STREET OPR = 1 A X B .			
	4	to attition.		
	Molion in two dimension	3 STUTIERUS		
	Position			
	(aswen			
	The Pin the po	osition vector.		
- Han	The Pin the po	us ->O		
		A september of se		
		1111		
	43	11 - 1		
	TA A FINA I	44		
Marie Charles	100 i	1-10-11-0		
The Hall	20 2 - 1/4/Y	springly 20		
	si' = 1 x + y Magnitude	of a vector		
	· A = 100 = 11			
	2 MAISA TEAT	30		
	Let the particle move from PtoP' PtoP'.			

-

1

-

PAGE NO). : _		
DATE:	1	1	
			1

Motion in a plane with constant acceleration

$$\vec{a} = \vec{V} - \vec{V}_0 = \vec{V} - \vec{V}_0$$

Now, in let ms of companions, components,

Now,
$$\overrightarrow{y'} - \overrightarrow{y'_0} = \left(\overrightarrow{y'} - \overrightarrow{v'_0} \right) t$$

$$= \left(\frac{\overrightarrow{V_0} + \overrightarrow{at} + \overrightarrow{V_0}}{2}\right) t$$

Now, in tirms of components, $n = x_0 + \sqrt{x_0}t + \frac{1}{2}ax.t^2$

Projectile Motion

A body a thrown at an angle of with a certain velocity and it more with the influence of gravity then it is called Projectile Motion.

Types & Brojetile Holien

- Obilique Projectile Motion
 Horizontal Projectile Motion
 Perojectile motion and an Enclined.

PAGE NO. : _____
DATE : / /

OBLIQUE PROJECTILE: When a body is thrown upward in a dixection other than vertical and actual upon force of quarty only, then it moves in a surved path. This motion is called projected At time t', P(x,y) is position of the particle It means the body has convered horizontal distance & and vertical distance y in time to HORIZONTAL MOTION: - The body will conex horizontal distance

x with velocity ucos 0.

x = uxt + 1 axt 2. 2 = ucos 0 x = [ona = 0] y t= x ~ Y (1) VERTICAL MOTION &- The body will comer vertical tot distance with acceleration due to gravity y = Uyt + 1 ayt2. y = using x + - 1 gt - (2)

PAGE NO.: ______DATE: / /

From eq 1 putting the value of t $y = \sqrt{\sin \theta} \times x = \frac{1}{2} \sqrt{\left(\frac{x}{\cos \theta}\right)^2}$ y = x tan 0 - 1 g x2 fq. 3 is the equation of a trajector of a projectile which is parabollie in nativo. TIME OF FLIGHT :-Second Method Let T is time of Flight. I Time to seach max. height (+). y = usin 0 x + -1 gt2. thy = ly = ly - gl-Ty-O=wind-gt = Y 1 gt = usin 0 x T = Y T = 2 usin 0 - Y 1 Or - Orien = + Y= Time of Hight T = 2+ = 249 mo ->(D) Time of ascent = Jime of de cent = T = usino HORIZONTAL RANGE :-R= Ux XT R = ucos 0 x 2usin 0 R= 2 (2sin 0. cos a) (. Sin 20 = 28m 0, cas 0) R = usin 20 ->2 For mare horizontal stange gin 20 = 1 = 4 sin 20 = 90°

> => 20=90° => 0=45°.

PAGE NO. : _ DATE: / /

Max. Horizontal stange, Rmax = u2 -> 3

Maximum height reached?

$$v_y^2 = u_y^2 + 2ax$$

= 7 29H = usin20

INDE DE FLIGHT S

Vy = O at max height)