

L KORESPONDENCYJNY KURS Z MATEMATYKI styczeń 2021 r.

## PRACA KONTROLNA nr 5 - POZIOM PODSTAWOWY

- 1. Jeden z wierzchołków trójkąta równobocznego wpisanego w okrąg  $x^2+y^2=2$  znajduje się w punkcie P(1,1). Wyznacz położenie pozostałych wierzchołków i sporządź odpowiedni rysunek.
- 2. Zbadaj, dla jakiej wartości parametru  $\alpha \in [0,2\pi]$ liczba0jest największą wartością funkcji

$$f(x) = x^2 \cos \alpha + x(1 + \cos 2\alpha) - 1$$

w całej jej dziedzinie.

3. Wyznacz te argumenty funkcji

$$g(x) = 16 \cdot 2^{x^4} \cdot 243^{x^2} - 81 \cdot 3^{x^4} \cdot 32^{x^2},$$

dla których funkcja ta przyjmuje wartości nieujemne.

4. Zakładając, że  $x \in [0, 2\pi]$ , rozwiąż nierówność trygonometryczną

$$16\sin^4\frac{x}{2} - 16\sin^2\frac{x}{2} + 3 \geqslant 0.$$

5. Wyznacz wszystkie punkty wspólne krzywych

$$y = \log_{\sqrt{2}} \sqrt{2x - 1} + \log_{\frac{1}{2}} \frac{1}{3x + 1}$$
 oraz  $y = 1 + 2\log_4(x + 1)$ .

6. Narysuj wykres funkcji

$$f(x) = |2 - |2 - 2^{|x|}|$$

i precyzyjnie opisz zastosowaną metodę jego konstrukcji. Na podstawie rysunku wskaż lokalne ekstrema funkcji oraz określ jej najmniejszą i największą wartość w całej dziedzinie, o ile one istnieją.

## PRACA KONTROLNA nr 5 - POZIOM ROZSZERZONY

- 1. Jeden z wierzchołków sześciokąta foremnego wpisanego w okrąg  $x^2+y^2=2$  znajduje się w punkcie P(-1,-1). Wyznacz położenie pozostałych wierzchołków i sporządź odpowiedni rysunek.
- 2. Rozwiąż nierówność

$$2^{3x^3+x^2-3x+1} \cdot 3^{6x^4-x^2} \geqslant 3^{x^3+6x^2-x-1} \cdot 4^{3x^4+x^3-3x^2-x+1}.$$

3. Określ dziedzinę i zbadaj, dla jakich argumentów funkcja

$$f(x) = \log_{x-1}(x+2) + \log_{x+2}\frac{1}{x-1}$$

przyjmuje wartości dodatnie.

4. Rozwiąż nierówność

$$3 - 3\sin^2 x + 3\sin^4 x - 3\sin^6 x + \dots \leqslant \frac{16\cos^2 x - 16\cos^4 x}{2 - \cos^2 x},$$

której lewa strona jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego.

- 5. Na stożku o promieniu podstawy R opisano ostrosłup prawidłowy czworokątny, a w stożek ten wpisano ostrosłup prawidłowy sześciokątny. Stosunek pól powierzchni bocznych obu ostrosłupów wynosi k. Wyznacz zakres zmienności parametru k, a dla  $k=\frac{11}{8}$  oblicz wysokość stożka i wykonać staranne rysunki rozważanych brył.
- 6. Określ dziedzinę, wyznacz wszystkie asymptoty, przedziały monotoniczności oraz wszystkie lokalne ekstrema funkcji

$$f(x) = \frac{x^3 + x^2 - x + 2}{x^2 + x - 2}.$$

Sporządź staranny wykres.

Rozwiązania (rękopis) zadań z wybranego poziomu prosimy nadsyłać do **20 stycznia 2021r.** na adres:

Wydział Matematyki Politechnika Wrocławska Wybrzeże Wyspiańskiego 27 50-370 WROCŁAW.

Na kopercie prosimy <u>koniecznie</u> zaznaczyć wybrany poziom! (np. poziom podstawowy lub rozszerzony). Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do formatu listu. Polecamy stosowanie kopert formatu C5 (160x230mm) ze znaczkiem o wartości 3,30 zł. Na każdą większą kopertę należy nakleić droższy znaczek. Prace niespełniające podanych warunków nie będą poprawiane ani odsyłane.

**Uwaga.** Wysyłając nam rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje **dane osobowe**, które przetwarzamy **wyłącznie** w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie internetowej Kursu.

Adres internetowy Kursu: http://www.im.pwr.edu.pl/kurs