SURP - Graph Theory

Pulkit Agarwal Guide: Prof. Ajit Diwan Computer Science and Engineering Department, IIT Bombay

Summer Undergraduate Research Project

July 2021

Contents

1	Introduction	1
2	Star Decomposition of Regular Digraphs	2
3	Special 1-factors and Star Decomposition	3
4	1-factors in Bipartite Digraphs	4

1 Introduction

A 1-factor in a directed graph is a spanning 1-regular subgraph. Equivalently, it is a collection of disjoint directed cycles such that every vertex in the graph is in exactly one cycle. Call a 1-factor special if for any pair of vertices u, v such that both (u, v) and (v, u) are edges, either both edges are in the 1-factor, or none of them is.

A directed graph is symmetric if (b, a) is an edge whenever (a, b) is an edge. Also we define the (a, b)-star graph as a directed graph on a + b + 1 vertices with the center vertex u, such that there are a vertices x_1, x_2, \ldots, x_a with edges (u, x_i) for all $i \in [a]$, and b vertices y_1, y_2, \ldots, y_b with edges (y_i, u) for all $i \in [b]$. A (a, b)-star decomposition of a directed graph is a partition of the edges of the graph into (a, b)-stars, and such a graph is called (a, b)-star decomposable.

In this article, I study the decomposition of directed regular graphs and directed bipartite graphs into star graphs, and make some observations regarding the relation between a graph being star decomposable and being factorizable into 1-factors or special 1-factors.

2 Star Decomposition of Regular Digraphs

LEMMA 1: For a > 1, if an (a + 1)-regular directed graph \mathcal{G} is (a, 1)-star decomposable, then every vertex in \mathcal{G} is the center of exactly one (a, 1)-star graph

Proof. First suppose some vertex is the center of at least two such star graphs. Then it will have at least 2a outgoing edges, contrary to our assumption that \mathcal{G} is a+1-regular. Now if \mathcal{G} has n vertices, then it must have a total of (a+1)n directed edges. So it must have gotten divided into n star graphs, which means that there are n centers of these star graphs. This is only possible if each vertex is the center of exactly one star graph.

LEMMA 2: Suppose we have a 3-regular symmetric directed graph \mathcal{G} . Then it has a (2,1)-star decomposition if and only if the underlying undirected graph has a perfect matching.

Proof. IF

Suppose the graph has a perfect matching \mathcal{M} . Take an edge in \mathcal{M} joining vertices u and v. Then, as \mathcal{G} is symmetric, so it contains both edges (u, v) and (v, u). Suppose x_1 and y_1 are the other two neighbors of u, and x_2 and y_2 are the other two neighbors of v. Then the graphs $\{(u, x_1), (u, y_1), (v, u)\}$ and $\{(v, x_2), (v, y_2), (u, v)\}$ are star graphs. We can do the same division for each edge of \mathcal{M} , and note that none of the edges are common to any two star graphs. Thus, we get a (2, 1)-star decomposition of \mathcal{G} .

ONLY IF

Now suppose \mathcal{G} is (2,1)-star decomposable. Now take v as some vertex in \mathcal{G} . Then by Lemma 1, it is the center of a unique (2,1)-star graph $\{(v,x),(v,y),(u,v)\}$. Then the star graph of which u is a center cannot have an edge towards v. So this star graph must have the edge (v,u). And so u and v form a unique pair. We can then take such pairs and get the desired perfect matching.

Note that if we have a symmetric directed graph, then it has a special 1-factor if and only if the underlying undirected graph has a perfect matching (since the only directed cycles allowed in a special 1-factor in a symmetric graph will be a directed cycle of length 2, which can be thought of as a simple edge in the undirected graph). This observation can be extended to a more general situation, as given in the section below.

3 Special 1-factors and Star Decomposition

LEMMA 3: For $a \in \mathbb{N}$, consider an (a+1)-regular directed graph \mathcal{G} . Then-

- 1. If \mathcal{G} has a special 1-factor, then it also has an (a,1)-star decomposition.
- 2. If a > 1, then \mathcal{G} has a 1-factor if it is (a, 1)-star decomposable.
- Proof. 1. Consider a vertex v in \mathcal{G} such that it has outgoing edges towards $x_1, x_2, \ldots, x_{a+1}$ and incoming edges from $y_1, y_2, \ldots, y_{a+1}$. Suppose in the special 1-factor, this vertex is a part of a directed cycle which passes through $y_1 \to v \to x_1$. Then we take one of the (a, 1)-stars as $\{(y_2, v), (y_3, v), \ldots, (y_{a+1}, v), (v, x_1)\}$, and do this for all vertices. To prove that this works, note that none of the other edges adjacent to v can be a part of a star graph centered at v. Also this sort of division without running into an edge twice will always be possible since the vertex x_1 cannot be the same as any of the vertices y_i for $2 \le i \le a+1$ (So each y_i has the star graph). Thus \mathcal{G} is (a, 1)-star decomposable.
 - 2. Now suppose a > 1 and \mathcal{G} has a (a, 1)-star decomposition. By Lemma 1, each vertex v in \mathcal{G} is the center of exactly one (a, 1)-star graph. Let this star graph has an edge (v, x), and let (y, v) be the only incoming edge to v which is not a part of this star graph. Then we consider the (1, 1)-star $y \to v \to x$, and take the union of all such (1, 1)-stars to get the desired 1-factor. Here we use the fact that (y, v) will be a part of the (1, 1)-star centered at y, and so we'll get directed cycles by this union operation.

6 2 3 4 1 9 8

Figure 1: 1-factorizable and (1,1)-star docomposable 2-regular digraph with no special 1-factor

4 1-factors in Bipartite Digraphs

LEMMA 4: A bipartite directed graph \mathcal{G} with bipartite sets X and Y has a 1-factor if and only if the subgraph consisting of edges from X to Y and the subgraph consisting of edges from Y to X both have a perfect matching.

Proof. IF

First assume the two subgraphs have perfect matchings. Then for every vertex u in X, there is a vertex v in Y and w in X (w might be the same as x) such that (u, v) is a perfect matched pair in the first subgraph, and (v, w) a perfect matched pair in the second one. We can then divide the whole graph into such triplets (u, v, w) for any u in X. Joining these edges gives us the desired 1-factor.

ONLY IF

Suppose \mathcal{G} has a 1-factor. Then for each vertex u in X, there is a unique vertex v in Y such that (u,v) is a directed edge in the 1-factor. Dividing \mathcal{G} into these pairs $\{u,v\}$ gives the desired perfect matching for the subgraph consisting of edges from X to Y. Similar argument works for the other direction. Note that, as a corollary, this also gives that |X| = |Y|.

COROLLARY: Any *d*-regular bipartite directed graph, for $d \ge 1$, has a 1-factor.

Proof. Due to the above lemma, we just need to show the existence of a perfect matching in the two subgraphs which only have edges from one bipartition to another and vice-versa. Take one such subgraph, say from bipartition X to Y. Then for any subset S of X, the number of edges adjacent to S and present in this subgraph is $d \cdot |S|$. If N(S) is the neighborhood of S in this subgraph, then each vertex in N(S) has exactly d incoming edges, so we get

$$d \cdot |S| \le d \cdot |N(S)| \Rightarrow |S| \le |N(S)|$$

Then Hall's Marriage Theorem gives us that this subgraph has a perfect matching. By a similar argument, the other subgraph also has a perfect matching, and so a d regular bipartite graph has a 1-factor.

The above lemma also gives us a polynomial time algorithm to find a 1-factor in a bipartite directed graph. We can simply find perfect matchings in the subgraph consisting of edges from X to Y and Y to X, and then for each pair $\{u,v\}$ in the first matching, consider the corresponding pair $\{v,w\}$ in the second matching. Then we take the path $u \to v \to w$, and continue the same operation for w. Finally the whole graph will be divided into various directed cycles, which gives us the desired 1-factor.