P2 - Econometria III

Pedro Mendes

15, C2)

Os dados em fertil2 incluem informações sobre o número de filhos, anos de escolaridade, idade, e variáveis de religião e status econômico de mulheres de Botsuana durante 1988.

```
fertil2 <- tibble::as_tibble(wooldridge::fertil2)</pre>
fertil2 |> head()
## # A tibble: 6 x 27
    mnthborn yearborn
                         age electric radio
                                                tv bicycle
                                                           educ
                                                                   ceb agefbrth
        <int>
              <int> <int>
                                <int> <int> <int>
                                                     <int> <int> <int>
##
                                                                           <int>
          5
                    64
                                   1
                                                1
                                                         1
## 1
                          2.4
                                          1
                                                              12
                                                                              NA
           1
                    56
                          32
                                    1
                                          1
                                                 1
                                                         1
                                                              13
                                                                     3
                                                                              25
  2
           7
                    58
                          30
                                    1
                                           0
                                                 0
                                                         0
                                                               5
                                                                              27
          11
                    45
                          42
                                   1
                                           0
                                                 1
                                                         0
                                                               4
                                                                      3
                                                                              17
  4
            5
                                                 1
## 5
                    45
                          43
                                    1
                                          1
                                                         1
                                                              11
                                                                      2
                                                                              24
            8
                    52
                          36
                                    1
                                           0
                                                 0
                                                         0
                                                               7
                                                                              2.6
  # ... with 17 more variables: children <int>, knowmeth <int>, usemeth <int>,
      monthfm <int>, yearfm <int>, agefm <int>, idlnchld <int>, heduc <int>,
      agesq <int>, urban <int>, urb_educ <int>, spirit <int>, protest <int>,
####
      catholic <int>, frsthalf <int>, educ0 <int>, evermarr <int>
## #
```

(i)

Estime o modelo

$$children = \beta_0 + \beta_1 educ + \beta_2 age + \beta_3 age^2 + u$$

por OLS e interprete as estimativas. Em particular, mantendo age fixo, qual é o efeito estimado de mais um ano de escolaridade em fertilidade? Se 100 mulheres completassem mais um ano de escolaridade, haveria uma diminuição na quantidade de filhos (representados pela variável children)?

```
ols_model <- fertil2 |>
  fixest::feols(children ~ educ + age + I(age^2))
summary(ols_model)
```

OLS estimation, Dep. Var.: children

- Caso haja um aumento de um ano na educação de 100 mulheres, em média, ocorreria uma diminuição em 9 na quantidade de filhos.
- O aumento de um ano na idade de 100 mulheres leva a um aumento de 33 na quantidade de filhos.
- Aparentemente existe um efeito n\u00e3o linear significativo na idade, o que pode expressar a quest\u00e3o da tend\u00e8ncia decrescente da fertilidade das mulheres com o passar dos anos, o que mostra que o efeito do aumento da idade na quantidade de filhos n\u00e3o \u00e9 o mesmo para todas as idades.

(ii)

A variável frsthalf é uma variável *dummy* igual a um, caso a mulher tenha nascido durante os primeiros seis meses do ano. Presumindo que frsthalf não seja correlacionada com o termo de erro do item (i), mostre que frsthalf é um candidato VI razoável a educ (Dica: é preciso fazer uma regressão).

```
forma_reduzida <- fertil2 |>
 fixest::feols(educ ~ age + I(age^2) + frsthalf)
summary(forma_reduzida)
## OLS estimation, Dep. Var.: educ
## Observations: 4,361
## Standard-errors: IID
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.692864 0.598069 16.206945 < 2.2e-16 ***
         -0.107950 0.042040 -2.567789 1.0268e-02 *
## age
## I(age^2)
            -0.000506 0.000693 -0.729597 4.6568e-01
## frsthalf
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 3.70926 Adj. R2: 0.107037
theta <- forma reduzida$coefficients['frsthalf']</pre>
r <- residuals(forma_reduzida)</pre>
z <- fertil2$frsthalf
age <- fertil2$age
cov_r_z \leftarrow cov(r, z)
```

```
1. cov(u, z) = 0 por suposição do item (ii)
```

```
2. \theta \neq 0 \rightarrow -0.8522854
```

- 3. $cov(r,z) \approx 0 \rightarrow -3.5624827 \times 10^{-15}$
- 4. $cov(r, x_j), j = 1, 2 \approx 0 \rightarrow \text{rod}$ rodando a regressão $r = \delta_0 + \delta_1 age + \delta_2 age^2 + e$, percebe-se que todos os coeficientes são aproximadamente iguais a 0, além de nenhuma ser significante.

```
model_r <- fertil2 |>
 dplyr::bind_cols(r = r) >
 fixest::feols(r ~ age + I(age^2))
summary(model_r)
## OLS estimation, Dep. Var.: r
## Observations: 4,361
## Standard-errors: IID
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.4020e-15 0.595427 4.0300e-15 1
        -3.8754e-14 0.042035 -9.2195e-13
## age
## I(age^2) 2.1200e-16 0.000693 3.0657e-13
                                                    1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 3.70926 Adj. R2: -4.589e-4
```

Logo, frsthalf é um candidato IV razoavel para age.

(iii)

Estime o modelo do item (i) usando frsthalf como IV para educ. Compare o efeito estimado de educação com a estimativa OLS do item (i).

```
iv_model <- AER::ivreg(</pre>
 children ~ age + I(age^2) + educ | age + I(age^2) + frsthalf,
 data = fertil2
)
summary(iv_model)
##
## Call:
## AER::ivreg(formula = children ~ age + I(age^2) + educ | age +
     I(age^2) + frsthalf, data = fertil2)
##
##
## Residuals:
   Min 1Q Median 3Q
##
                                        Max
## -6.05272 -0.71481 0.06224 0.76236 7.23693
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.3878054 0.5481502 -6.180 6.98e-10 ***
## age
             0.3236052 0.0178596 18.119 < 2e-16 ***
## I(age^2) -0.0026723 0.0002797 -9.555 < 2e-16 ***
             -0.1714989 0.0531796 -3.225 0.00127 **
## educ
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.491 on 4357 degrees of freedom
## Multiple R-Squared: 0.5502, Adjusted R-squared: 0.5499
## Wald test: 1765 on 3 and 4357 DF, p-value: < 2.2e-16</pre>
```

O efeito da educação sobre o número de filhos é maior quando estimado pelo modelo de variável instrumental usando a variável frsthalf, já que em tal modelo, o efeito de um ano adicional de educação sobre o número de filhos é 1.89 vezes maior.

(iv)

##

Adicione as variáveis binárias electric, tv e bicycle ao modelo e presuma que elas sejam exógenas. Estime a equação por OLS e 2SLS e compare os coeficientes estimados em educ. Interprete o coeficiente em tv e explique por que a posse de televisão tem efeito negativo sobre a fertilidade.

```
ols model 2 <- fertil2 |>
 fixest::feols(children ~ age + I(age^2) + electric + tv + bicycle + educ)
## NOTE: 5 observations removed because of NA values (RHS: 5).
summary(ols_model_2)
## OLS estimation, Dep. Var.: children
## Observations: 4,356
## Standard-errors: IID
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.389784   0.240317 -18.26662   < 2.2e-16 ***
             ## age
## I(age^2) -0.002708 0.000271 -10.00951 < 2.2e-16 ***
## electric -0.302729
                        0.076187 -3.97351 7.1969e-05 ***
            ## tv
                        0.049366 6.43954 1.3283e-10 ***
## bicycle
             0.317895
            -0.076709
                        0.006353 -12.07528 < 2.2e-16 ***
## educ
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.44664 Adj. R2: 0.575475
iv_model_2 <- AER::ivreg(</pre>
 children ~ age + I(age^2) + electric + tv + bicycle + educ |
   age + I(age^2) + electric + tv + bicycle + frsthalf,
 data = fertil2
summary(iv_model_2)
##
## Call:
## AER::ivreg(formula = children ~ age + I(age^2) + electric + tv +
```

bicycle + educ | age + I(age^2) + electric + tv + bicycle +

```
##
      frsthalf, data = fertil2)
##
## Residuals:
##
      Min
             10 Median
                           3Q
                                    Max
## -5.9519 -0.7184 0.0290 0.7384
                                7.3372
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) -3.5913324  0.6450889  -5.567  2.74e-08 ***
##
             0.3281451 0.0190587 17.218 < 2e-16 ***
                                  -9.843 < 2e-16 ***
## I(age^2)
             -0.0027222 0.0002766
## electric
             -0.1065314 0.1659650 -0.642
                                          0.5210
## tv
             -0.0025550 0.2092301 -0.012
                                           0.9903
## bicycle
             0.3320724 0.0515264
                                  6.445 1.28e-10 ***
             ## educ
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.479 on 4349 degrees of freedom
## Multiple R-Squared: 0.5577, Adjusted R-squared: 0.5571
## Wald test: 921.7 on 6 and 4349 DF, p-value: < 2.2e-16
```

Possuir uma televisão pode diminuir a taxa de fertilidade talvez pelo fato de aumentar o sedentarismo ou desestimular atividades sexuais.

Cap. 17, C8)

6

#

1

22

9

1

0

O arquivo jtrain2 contém dados sobre um experimento de treinamento profissional para um grupo de homens. O programa começaria em janeiro de 1976 e se estenderia até meados de 1977. O programa acabou em dezembro de 1977. A ideia é testar se a participação no programa de treinamento profissional teve um efeito nas probabilidades de desemprego e rendimentos de 1978.

```
jtrain2 <- tibble::as_tibble(wooldridge::jtrain2)</pre>
jtrain2 |> head()
## # A tibble: 6 x 19
             age educ black hisp married nodegree mosinex re74
                                                                        re75
                                                                                 re78
     <int> <int> <int> <int> <int>
                                        <int>
                                                  <int>
                                                           <int> <dbl> <dbl>
                                                                                <dbl>
## 1
         1
               37
                     11
                             1
                                   0
                                           1
                                                      1
                                                              13
                                                                      0
                                                                            0
                                                                                9.93
## 2
         1
               22
                      9
                             0
                                   1
                                            0
                                                      1
                                                              13
                                                                      0
                                                                            0 3.60
         1
                     12
                             1
                                    0
                                            0
                                                       0
                                                                      0
                                                                            0 24.9
##
  3
               30
                                                              13
##
  4
         1
               27
                     11
                             1
                                    0
                                             0
                                                      1
                                                              13
                                                                      0
                                                                               7.51
## 5
         1
               33
                      8
                             1
                                    0
                                             0
                                                      1
                                                              13
                                                                      0
                                                                            \cap
                                                                               0.290
```

1

13

0

0 4.06

0

... with 8 more variables: unem74 <int>, unem75 <int>, unem78 <int>,
lre74 <dbl>, lre75 <dbl>, lre78 <dbl>, agesq <int>, mostrn <int>

Estabeleça uma regressão linear de treino em muitas variáveis demográficas e pré-treino: unem74, unem75, age, educ, black, hisp e married. Essas variáveis são significativas conjuntamente ao nível de 5%?

```
ols_model_train <- lm(</pre>
 train ~ unem74 + unem75 + age + educ + black + hisp + married,
 data = jtrain2
)
summary(ols_model_train)
##
## Call:
## lm(formula = train \sim unem74 + unem75 + age + educ + black + hisp +
      married, data = jtrain2)
##
## Residuals:
    Min
           1Q Median 3Q
                                    Max
## -0.6024 -0.4196 -0.3437 0.5537 0.7669
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.338022 0.189445 1.784 0.0751 .
## unem74
             0.020880 0.077294 0.270 0.7872
## unem75
           -0.095571 0.071902 -1.329 0.1845
             0.003206 0.003403 0.942 0.3467
## age
## educ
             0.012013 0.013342 0.900 0.3684
            -0.081666 0.087732 -0.931 0.3524
## black
## hisp
             -0.200017 0.116971 -1.710 0.0880 .
                       0.064404 0.579 0.5629
## married
             0.037289
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4917 on 437 degrees of freedom
## Multiple R-squared: 0.02238, Adjusted R-squared: 0.006722
## F-statistic: 1.429 on 7 and 437 DF, p-value: 0.1915
```

As variáveis não são conjuntamente significantes ao nível de 5% (p-valor = 0,1915).

(iii)

Estime uma versão probit do modelo linear do item (ii). Calcule o teste de razão de verossimilhança para a significância conjunta de todas as variáveis. O que você conclui?

```
probit_model_train <- glm(
    train ~ unem74 + unem75 + age + educ + black + hisp + married,
    family = binomial(link = "probit"),
    data = jtrain2
)
summary(probit_model_train)</pre>
```

```
##
## Call:
## glm(formula = train \sim unem74 + unem75 + age + educ + black +
      hisp + married, family = binomial(link = "probit"), data = jtrain2)
##
## Deviance Residuals:
      Min 1Q Median 3Q Max
## -1.3620 -1.0421 -0.9159 1.2702 1.6962
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.424107   0.489506   -0.866   0.3863
## unem74
             0.053026 0.198834 0.267 0.7897
            -0.247725 0.184806 -1.340 0.1801
## unem75
             0.008344 0.008780 0.950 0.3419
## age
             0.031443 0.034657 0.907 0.3643
## educ
            -0.206930 0.224614 -0.921 0.3569
## black
            -0.539777 0.307947 -1.753 0.0796.
## hisp
             0.096625 0.165503 0.584 0.5593
## married
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 604.20 on 444 degrees of freedom
## Residual deviance: 594.02 on 437 degrees of freedom
## AIC: 610.02
## Number of Fisher Scoring iterations: 4
lmtest::lrtest(probit_model_train)
## Likelihood ratio test
## Model 1: train ~ unem74 + unem75 + age + educ + black + hisp + married
## Model 2: train ~ 1
   #Df LogLik Df Chisq Pr(>Chisq)
## 1 8 -297.01
## 2 1 -302.10 -7 10.182 0.1785
```

As variáveis não são conjuntamente significantes ao nível de 5%.

(iv)

Com base em suas respostas aos itens (ii) e (iii), parece-lhe que a participação em treinamento profissional possa ser tratada como exógena como forma de explicar o status de desemprego de 1978? Explique.

Sim, pois a variável não apresenta correlação relevante em relação às demais variáveis do modelo, ou seja, a variável não apresenta endogeneidade.

Estabeleça uma regressão simples de unem78 em train e reporte os resultados em forma de equação. Qual é o efeito estimado de participar do programa de treina-mento na probabilidade de estar desempregado em 1978? Isso é estatisticamente significante?

```
ols_model_unem78 <- lm(unem78 ~ train, data = jtrain2)</pre>
summary(ols_model_unem78)
##
## Call:
## lm(formula = unem78 ~ train, data = jtrain2)
## Residuals:
              1Q Median
##
      Min
                             3Q
                                     Max
## -0.3538 -0.3538 -0.2432 0.6462 0.7568
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.35385 0.02849 12.419 <2e-16 ***
          -0.11060
                         0.04419 -2.503 0.0127 *
## train
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4594 on 443 degrees of freedom
## Multiple R-squared: 0.01394, Adjusted R-squared: 0.01172
## F-statistic: 6.265 on 1 and 443 DF, p-value: 0.01267
```

 $unem78 = -0.11 \cdot train$

(vi)

Estabeleça um probit de unem78 em train. Faz sentido comparar o coeficiente probit em train com o coeficiente obtido do modelo linear do item (v)?

```
probit_model_unem78 <- glm(</pre>
 unem78 ~ train,
 data = jtrain2,
 family = binomial(link = "probit")
)
summary(probit_model_unem78)
```

```
##
## Call:
## glm(formula = unem78 ~ train, family = binomial(link = "probit"),
##
       data = jtrain2)
##
## Deviance Residuals:
```

```
Min 1Q Median 3Q
##
                                 Max
## -0.9346 -0.9346 -0.7466 1.4414
                                 1.6815
## Coefficients:
            Estimate Std. Error z value Pr(>|z|)
  -0.32095 0.12848 -2.498 0.0125 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
     Null deviance: 549.47 on 444 degrees of freedom
##
## Residual deviance: 543.17 on 443 degrees of freedom
## AIC: 547.17
##
## Number of Fisher Scoring iterations: 4
```

Não, pois a interpretação do efeito marginal dado pelo coeficiente do modelo probit depende dos valores de nível da variável independente em questão, nesse caso, train.

(vii)

Encontre as probabilidades apropriadas dos itens (v) e (vi). Explique por que elas são idênticas. Qual abordagem você usaria para medir o efeito e a significância estatística do programa de treinamento profissional?

Os dois modelos retornam os mesmos valores por reportarem as frequências como as probabilidades estimadas pelos modelos:

- $0.354 \rightarrow \text{train} = 0$
- $0.243 \rightarrow \text{train} = 1$

Eu usaria uma regressão logística para medir o efeito e a significância estatística do programa de treinamento por ser de mais fácil interpretação (retornando uma razão de probabilidades) e por mostrar efeitos não lineares nas probabilidades estimadas.