Funciones Complejas Período 2022-II

Práctico 2

Ej. 1 Sea z_n una sucesión de números complejos. Demostrar:

- 1. El límite $\lim_{n\to\infty} z_n = 0$ si y solo si $\lim_{n\to\infty} |z_n| = 0$.
- 2. Si el límite $\lim_{n\to\infty} z_n = w$ entonces $\lim_{n\to\infty} |z_n| = |w|$. ¿Qué puede decir de la recíproca?
- **Ej. 2** Sea w un complejo de módulo 1 y z_n la sucesión definida por $z_n = n(\sqrt[n]{w} 1)$ para todo $n \in \mathbb{N}$. Mostrar que $\lim_{n\to\infty} z_n = i \operatorname{Arg}(w)$.
- **Ej. 3** Considerar la sucesión z_n definida recursivamente por $z_1 = 0$, $z_2 = i$ y $z_n = (z_{n-1} + z_{n-2})/2$ si $n \geq 3$. Dar una fórmula explícita para la sucesión, concluir que es una sucesión convergente y dar el límite de la sucesión.
- **Ej. 4** Considerar la sucesión z_n definida por $z_n = \sqrt{n+2i} \sqrt{n+i}$. Mostrar que el límite de la sucesión es 0.
- **Ej. 5** Describir el dominio de definición de las siguientes funciones y expresarlas en la forma f(z)u(x,y) + iv(x,y):

1.
$$f(z) = z^2 + z - 1$$
,

4.
$$f(z) = \frac{iz^2 + 2z + 5}{z^4 + 3z^2 - 4}$$
, 7. $f(z) = \frac{z\overline{z}}{z^2 + \overline{z}^2}$,

7.
$$f(z) = \frac{z\overline{z}}{z^2 + \overline{z}^2},$$

2.
$$f(z) = \frac{1}{z^2 + 1}$$
,

5.
$$f(z) = \frac{1}{1 - |z|^2}$$
.

8.
$$f(z) = (z^2 - \overline{z}^2 + 1)^{-1}$$
,

3.
$$f(z) = z + \frac{1}{z}$$
,

6.
$$f(z) = \frac{2z^2 + 3}{|z - 1|}$$
.

9.
$$f(z) = \operatorname{Arg}\left(\frac{1}{z}\right)$$
,

$$10. \ f(z) = \frac{\Re \mathfrak{e}(z) + \Im \mathfrak{m}(z)^3}{i - \Re \mathfrak{e}(z)^2 - i \Re \mathfrak{e}(z)^2 \Im \mathfrak{m}(z)^2},$$

- **Ej. 6** Sea $A = \{z : |z| > 1\}$ y considerar $f : A \subseteq \mathbb{C} \to \mathbb{C}$ la función definida por $f(z) = (z + z^{-1})/2$. Mostrar que f es inyectiva y su imagen es el conjunto $\mathbb{C} \setminus [-1, 1]$, dar la inversa de f.
- **Ej. 7** Sea $D=\{z:|z|<1\}$ y sea $c\in\mathbb{C}$ con |c|<1. Mostrar que $f:D\subseteq\mathbb{C}\to\mathbb{C}$ definida por $f(z) = (z+c)/(1+\overline{c}z)$ satisface f(D) = D.
- **Ej. 8** Sean $a,b \in \mathbb{C}$ números complejos con $a \neq 1$ y considerar la función $f : \mathbb{C} \to \mathbb{C}$ definida por f(z) = az + b. Mostrar que f tiene un único punto fijo y que geométricamente f es una rotación en el plano complejo con respecto a un punto z_0 seguida por una homotecia con respecto a z_0 .
- Ej. 9 Computar los siguientes límites

1.
$$\lim_{z \to i} [2z^2 - iz^3 + z \operatorname{Arg}(\overline{z})],$$

2.
$$\lim_{z \to 0} \frac{\mathfrak{Re}(z)\mathfrak{Im}(z)^2}{\mathfrak{Re}(z)^2 + \mathfrak{Im}(z)^4}$$

3.
$$\lim_{z \to i} \frac{iz^3 - 1}{z + i}$$

5.
$$\lim_{z \to 0} \frac{\overline{z}}{z}$$

7.
$$\lim_{z \to 0} \left(\frac{z}{z}\right)^2$$

9.
$$\lim_{z \to -i} \frac{z^2 - 1}{z + i}$$

3.
$$\lim_{z \to i} \frac{iz^3 - 1}{z + i}$$
 5. $\lim_{z \to 0} \frac{\overline{z}}{z}$ 7. $\lim_{z \to 0} \left(\frac{z}{\overline{z}}\right)^2$ 9. $\lim_{z \to -i} \frac{z^2 - 1}{z + i}$, 11. $\lim_{z \to 2i} \frac{z^2 - iz + 2}{z^2 + 4}$,

4.
$$\lim_{z \to i} \frac{z^4 + 1}{z + i}$$
,

6.
$$\lim_{z \to 0} \frac{\overline{z}^2}{z}$$

4.
$$\lim_{z \to i} \frac{z^4 + 1}{z + i}$$
, 6. $\lim_{z \to 0} \frac{\overline{z}^2}{z}$ 8. $\lim_{z \to -i} \frac{z^4 - 1}{z + i}$, 10. $\lim_{z \to i} \frac{z^2 + i}{z^4 - 1}$, 12. $\lim_{z \to 1} \frac{\sqrt{z} - 1}{z - 1}$

10.
$$\lim_{z \to i} \frac{z^2 + i}{z^4 - 1}$$

12.
$$\lim_{z \to 1} \frac{\sqrt{z} - 1}{z - 1}$$

- **Ej. 10** Sea $f: \mathbb{C} \to \mathbb{C}$ la función definida por $f(z) = 3z^2 + 2z$. Mostrar que $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ es igual a $6z_0 + 2$.
- **Ej. 11** Sea $f: \mathbb{C} \to \mathbb{C}$ la función definida por

$$f(z) = \begin{cases} \frac{z^2 + 4}{z - 2i}, & \text{si } z \neq 2i, \\ 3 + 4i, & \text{si } z = 2i. \end{cases}$$

Probar que el límite de f(z) existe cuando z tiende a 2i y determinar su valor. ¿Es f una función continua y si no lo es, cómo modificaría la definición de f para que si lo sea?

- **Ej. 12** Para cada una de las siguientes funciones $f: K \subseteq \mathbb{C} \to \mathbb{C}$ encontrar, en caso de ser posible, el valor máximo y mínimo de |f|, $\mathfrak{Re}(f)$ y $\mathfrak{Im}(f)$:
 - 1. Si $f(z) = z \frac{1}{z}$ y K es la circunferencia centrada en el origen de radio 2,
 - 2. Si $f(z) = z^3 + 2iz$ y K es es la clausura del disco abierto con centro en el origen y radio 1,
 - 3. Si $f(z) = \frac{z^3}{z^2 1}$ y K es la circunferencia centrada en el origen de radio 3,
 - 4. Si $f(z) = \frac{1}{z^2 + 4}$ y K es es la clausura del disco abierto con centro en el origen y radio 1.
 - 5. Si f(z)=z y K es el conjunto $\{z\in\mathbb{C}:|z+1|+4|z-1|=25\}.$
- **Ej. 13** Sea D un domino en el plano complejo (es decir un subconjunto abierto no vacío de \mathbb{C} conexo) y sea $f:D\subseteq\mathbb{C}\to\mathbb{C}$ una función continua. Demostrar:
 - 1. Si f satisface que $|f(z)^2 1| < 1$ para todo $z \in D$, entonces |f(z) 1| < 1 para todo $z \in D$ ó |f(z) + 1| < 1 para todo $z \in D$.
 - 2. Si f satisface que $1 = \exp(\Re \mathfrak{e} f(z)) \exp(i\Im \mathfrak{m} f(z))$ para todo $z \in D$, entonces f es constante y más aún $f(z) = 2k\pi i$ para algún $k \in \mathbb{Z}$.
 - 3. Si la imagen de f no corta el eje imaginario y además satisface $f(z)^2=z$ para todo $z\in D$, entonces $f(z)=\sqrt{z}$ para todo $z\in D$ ó $f(z)=-\sqrt{z}$ para todo $z\in D$.
- **Ej. 14** Sea L una recta en el plano complejo. Visualizar la imagen de L bajo la función raíz cuadrada principal $f(z) = z^2$ cuando
 - 1. L es una recta horizontal.
 - 2. L es una recta vertical.
 - 3. L tiene ecuación $\mathfrak{Im}(z) = \sqrt{3}\mathfrak{Re}(z)$.

Según lo observado, conjeturar que forma tiene dicha imagen y probar la afirmación. ¿Puede extender los resultados obtenidos a otro tipo de rectas en el plano complejo?

- **Ej. 15** Considerar la función $f(z) = \frac{1}{z}$. Visualizar la imagen de los siguientes conjuntos bajo la función f, conjeturar su forma y demostrar dichas afirmaciones:
 - 1. La circunferencia de radio r centrada en 0,
 - 2. Una circunferencia de radio r centrada en a con $a \in \mathbb{R}$.
 - 3. el sector $\{z: 0 \leq \operatorname{Arg} z \leq \frac{\pi}{2}\},\$

Dibujar las curvas |f(z)| = constante y Arg(f(z)) = constante y verificar que son ortogonales donde se intersecan.

