On se place dans un repère orthonormé. Dans chacun des cas suivants, dire si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

$$\mathbf{a}. \vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix} et \vec{v} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

b.
$$\overrightarrow{u} \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 6 \\ 15 \end{pmatrix}$

c.
$$\overrightarrow{u} \begin{pmatrix} \sqrt{10} \\ -2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \end{pmatrix}$$

Dans le repère orthonormé ci-dessous, les points A, B, C et D ont des coordonnées entières.

Les droites (AB) et (CD)sont-elles perpendiculaires ?

Soit \widehat{ABC} un triangle tel que $\widehat{AB} = 4$, $\widehat{AC} = 5$ et $\widehat{BAC} = 60^{\circ}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

QCM une seule réponse exacte

ABCD est un rectangle de centre O tel que AB = 4 et AD = 2.

 $\overrightarrow{CO} \cdot \overrightarrow{AB}$ vaut :

$$c$$
 $-4\sqrt{5}$

VRAI ou FAUX

ABCD est un carré de centre O et de côté 1. Indiquer si les égalités suivantes sont vraies ou fausses.

$$\overrightarrow{OB} \cdot \overrightarrow{OD} = 0$$

$$\overrightarrow{b.AC} \cdot \overrightarrow{BD} = 0$$

$$\overrightarrow{C.AC} \cdot \overrightarrow{AD} = 1$$

Calculer la valeur exacte de la longueur BC.

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $AB \cdot BM = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $AM \cdot BM = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.