Title

D. Zack Garza

Contents

1 Tuesday, December 01

3

Contents 2

1 | Tuesday, December 01

Last time: we started discussing smoothness.

Definition 1.0.1 (Tangent Space)

The tangent space T_pX of a variety X at a point $p \in X$ is defined as

$$V\left(\left\{f_1 \mid f \in I(U_i), U_i \ni p = 0 \text{ affine }\right\}\right)$$

where f_1 denotes the degree 1 part.

Figure 1: Image

Remark 1.0.2: We've really only defined it for affine varieties and p = 0, but this is a local definition. Note that this is also not a canonical definition, since it depends on the affine chart U_i .

Example 1.0.3(?): Consider $T_0V(xy) = V(f_1 \mid f \in \langle xy \rangle) = V(0) = \mathbb{A}^2$, since every polynomial in this ideal has degree at least 2. Letting X = V(xy), note that we could embed $X \hookrightarrow \mathbb{A}^3$ as $X \cong V(xy, z)$. In this case we have $T_0X = V(f_1 \mid f \in \langle xy, z \rangle) = V(z) \cong \mathbb{A}^2$. So we get a vector space of a different dimension from this different affine embedding, but dim T_0X is the same.

Example 1.0.4(?): Let $X = V_p(xy - z^2) \subset \mathbb{P}^2$, which is a projective curve. What is T_pX for p = [0:1:0]? Take an affine chart $\{y \neq 0\} \cap X$, noting that $\{y \neq 0\} \cong \mathbb{A}^2$. We could dehomogenize the ideal $\left\langle xy - z^2 \right\rangle \Big|_{y=1} = \left\langle x - z^2 \right\rangle$. Thus $X \cap D(y) = V(x - z^2) \subset \mathbb{A}^2$ and the point $[0:1:0] \in X$ gives (0,0) in this affine chart. Then $T_pX = V(f_1 \mid f \in \left\langle x - z^2 \right\rangle) = V(x)$. Then $f = (x - z^2)g$ implies that $f_1 = (xg)_1 = g_0x$, the constant term of g multiplied by g, since g kills any degree 1 part of g. So g a line.

Example 1.0.5(?): Take X to be the union of the coordinate axes in \mathbb{A}^3 .

Figure 2: Image

Then $I(X)=\langle xy,yz,xz\rangle$ and $T_0X=V(f_1\mid f\in I(X))=V(0)=\mathbb{A}^3$, since the minimal degree of any such polynomial is 2. Note that $\dim X=1$ but $\dim T_0X=3$

Example 1.0.6(?): Take $Y = V(xy(x-y)) \subset \mathbb{A}^2$. Then $T_0X = V(0) = \mathbb{A}^2$:

Figure 3: Image

Remark 1.0.7: Note that X and Y both consists of 3 copies of \mathbb{A}^1 intersecting at a single point.

Figure 4: Image

Note that dim $T_0X = 3$ but dim $T_0Y = 3$, and interestingly $X \not\cong Y$ as affine varieties. There is a bijective morphism that is not invertible.

Remark 1.0.8: We will prove that dim T_pX is invariant under choice of affine embedding.

Example 1.0.9(?): How to compute $T_{(1,0,0)}V(xy,yz,xz)$: first move (1,0,0) to the origin, yielding $T_{(0,0,0)}V((x+1)y,yz,(x+1)z)$. This is a different choice of affine embedding into \mathbb{A}^3 which sends $(1,0,0)\mapsto (0,0,0)$. Taking the vanishing locus of linear parts, it suffices to take the linear parts of the generators, which yields the x-axis V(y,z), making the dimension of the tangent space 1.

Lemma 1.0.10(?).

Let $X \subset \mathbb{A}^n$ be an affine variety and let $0 = p \in X$. Then

$$T_0(X)^{\vee} := \hom_k(T_0X, k) \cong I_X(p)/I_X(p)^2$$

Remark 1.0.11: Note that the hom involves an affine embedding, but the quotient of ideals does not. We know that the category of affine varieties is equivalent to the category of reduced k-algebras, since the points of X biject with the maximal ideals of the coordinate ring A(X). $I_X(p)$ is the maximal ideal in A(X) of regular functions vanishing at p.

Proof (?).

Consider the map

$$\varphi: I_X(p) \to T_0(X)^{\vee}$$

$$\overline{f} \mapsto f_1|_{T_0(X)}.$$

E.g. given $\bar{x}_1 - \bar{x}_2^2 \in A(X)$, we first lift to $x_1 - x_2^2 \in A(\mathbb{A}^n)$, restrict to the linear part x_1 , then restrict to $T_0(X)$. Note that $I_X(p) = \langle \bar{x}_1, \cdots, \bar{x}_n \rangle \in k[x_1, \cdots, x_n]/I(X)$, and we need to check that this well-defined since there is ambiguity in choosing the above lift.

Claim: φ is well-defined.

Consider two lifts f, f' of $\overline{f} \in A(X) = k[x_1, \dots, x_n]/I(X)$. Then $f - f' \in I(X)$, so $(f - f')_1 = f_1 - f'_1$ is the linear part of some element in I(X). The definition of $T_0(X)$ was the vanishing locus of linear parts of elements in I(X), which contains $f_1 - f'_1$, and thus $(f_1 - f'_1)|_{T_0(X)} = 0$. So $f_1 = f'_1$ on $T_0(X)$.

Claim: $I_X(p)^2 \to 0$.

We know $I_X(p) = \langle \bar{x}_1, \dots, \bar{x}_n \rangle$, and so $I_X(p)^2 = \langle \bar{x}_i \bar{x}_j \rangle$. Giving any $\bar{f} \in I_X(p)^2$, we can lift this to some $f \in \langle x_i x_j \rangle$, in which case $f_1 = 0$.

So φ descends to

$$\overline{\varphi}: I_X(p)/I_X(p^2) \to T_0(X)^{\vee}$$

:::{.claim} φ is injective and surjective.

That φ is surjective follows from:

Figure 5: Image

the fact that if $\bar{x}_1, \dots, \bar{x}_n \in I_X(p)$, then..

For injectivity, suppose $\overline{\varphi}(\overline{f}) = 0$, then $f_1|_{T_0(X)} = 0$.

:::