

THE UNIVERSITY OF TEXAS AT ARLINGTON, TEXAS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 5321 - 001 OPTIMAL CONTROL

> HW # 2 ASSIGNMENT

> > by

SOUTRIK MAITI 1001569883

Presented to
Prof. Michael Niestroy

Feb 8,2018

Problem 1:

a) Computing the first derivative of the given function:

```
clc
clear all
close all
%Equation for first problem
syms y x
y=(x^4)-(4*x^3)+(8*x)+1;

dy=diff(y,x); %first derivative of y

cpy=double(solve(dy==0)) %critical points of y
```

Result: The critical points of the function are as follows-

```
cpy =

1.0000
-0.7321
2.7321
```

MATLAB CODE:

b) Computing the second derivative of the given function and determining the nature of the critical points:

MATLAB CODE:

```
ysol=(cpy.^4)-(4.*cpy.^3)+(8.*cpy)+1 %value of y at the critical points ddy=diff(dy,x); %second derivative of y ynat=(12.*cpy.^2-24.*cpy) %determining the nature of critical points
```

Result:

```
ysol = ynat =

6.0000
-3.0000
-3.0000
24
24
```

From the above results we can say that the maxima occur at 1 and the minima occur at -0.7321.

The **global minima** from the second derivative is determined to be at -0.7321.

The local maxima occur at 1.

c) Plotting the function:

MATLAB CODE:

```
x = [-2:0.1:4];

y = (x.^4) - (4.*x.^3) + (8.*x) + 1;

plot(x,y,'b-');

grid
```

Result:

d) MATLAB CODE:

```
x0 = -1.5;
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
[xoptimal, optimal_cost] = fminunc('hw2p1cf', x0, options)
```

Cost function:

```
Function cost = hw2p1cf(x)

cost = (x^4) - (4*x^3) + (8*x) + 1;

end
```

Result:

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	2	7.5625		32.5
1	4	-2.4375	0.0307692	4.5
2	6	-2.86285	1	2.4
3	8	-2.98985	1	0.71
4	10	-2.9999	1	0.0698
5	12	-3	1	0.00172
6	14	-3	1	4.35e-06

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the default value of the $\underline{\text{optimality tolerance}}$.

<stopping criteria details>

```
xoptimal =
    -0.7321

optimal_cost =
    -3.0000
```

The number of iterations required to calculate is 5 and the **global minima** is -0.732 from the previous part of the problem and it matches with the results from this code. Therefore, our algorithm worked correctly, and the optimal cost of the function is -3.0000.

e) When x0=1.1

MATLAB CODE:

```
x0 = 1.1;
options = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
[xoptimal, optimal_cost] = fminunc('hw2p1cf',x0,options)
```

Result: The number of iterations decrease as the value of x is selected near the local maxima. The same code with x=1.1 took 3 iterations.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	2	5.9401		1.2
1	8	-2.99971	1.36049	0.117
2	14	-3	0.0277423	1.57e-06

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the default value of the $\underline{\text{optimality tolerance}}$.

<stopping criteria details>

```
xoptimal =
     2.7321

optimal_cost =
     -3.0000
```

f) When x=1.0, using the same code as above

Result: The number of iterations is just 1 as the value of x is exactly the critical point which is the local maxima.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	2	6		1.19e-07

Initial point is a local minimum.

Optimization completed because the <u>size of the gradient</u> at the initial point is less than the default value of the <u>optimality tolerance</u>.

<stopping criteria details>

```
xoptimal =
    1
optimal_cost =
    6
```

Problem 2:

a) MATLAB CODE:

Result:

b) MATLAB CODE:

```
x0=[5.5,5.5]';
options = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
[xopt,optimal_cost] = fminunc('hw2p2cf',x0,options)
```

Result:

Iteration	Func-count	f(x)	Step-size	First-order optimality
0	3	0.00312945	_	0.709
1	6	-0.914907	1	0.997
2	12	-1.54316	0.134752	0.769
3	15	-1.7267	1	0.684
4	18	-1.87794	1	0.45
5	21	-1.97915	1	0.177
6	24	-1.99875	1	0.0499
7	27	- 2	1	0.0023
8	30	-2	1	0.000101
9	33	-2	1	8.63e-07

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the default value of the $\underline{\text{optimality tolerance}}$.

<stopping criteria details>

```
xopt =
    4.7124
    3.1416

optimal_cost =
    -2.0000
```

Problem 3:

a) MATLAB CODE:

Cost function:

```
function cost = hw2p3cf(x)
    cost = sin(x(1)) + cos(x(2));
end
```

Constraint function:

```
\neg function [cineq, ceq] = hw2p3c(x)
        ceq = [];
        cineq = [];
        if x(2) < 4
              cineq = -1*(x(2)-4);
        else
              cineq = 0;
        end
  end
 x=[pi/2 :0.1: 2*pi];
 y=[pi/2 :0.1: 2*pi];
for i=1:length(x)
    for j=1:length(y)
        z(j,i)=\sin(x(i))+\cos(y(j));
 end
 x0=[5.5,5.5;2,2];
for i=1:2
    init=x0(i,:);
    % Finding minimum (unconstrained)
 options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
 [xoptimal, optimal_cost] = fminunc(@hw2p3cf,init,options)
 % Finding minimum (constrained)
 options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'sqp');
 [xoptimalc, optimal_costc] = fmincon(@hw2p3cf,init,[],[],[],[],[],@hw2p3c,options)
 % Contour plot
 figure;
 contour(x,y,z);
 title('Contour plot for intial point (5.5,5.5)');
 plot3(xoptimal(1), xoptimal(2), optimal_cost, 'b*')
 plot3(xoptimalc(1), xoptimalc(2), optimal_costc, 'r*')
 %plotting line y=4
 \label{line} \mbox{line([x(1) x(end)],[4 4],'Color','green','linestyle','--','lineWidth',1.5)}
 legend('Contour plot', 'Unconstrained', 'Constrained', 'Inequality');
 end
```

Results:

When x0=[5.5,5.5]

The unconstrained minimum

Iteration	Func-count	f(x)	Step-size	First-order optimality
0	3	0.00312945		0.709
1	6	-0.914907	1	0.997
2	12	-1.54316	0.134752	0.769
3	15	-1.7267	1	0.684
4	18	-1.87794	1	0.45
5	21	-1.97915	1	0.177
6	24	-1.99875	1	0.0499
7	27	- 2	1	0.0023
8	30	-2	1	0.000101
9	33	- 2	1	8.63e-07

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the default value of the $\underline{\text{optimality tolerance}}$.

<stopping criteria details>

```
xoptimal =
     4.7124     3.1416

optimal_cost =
     -2.0000
```

The constrained minimum

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	3	3.129449e-03	0.000e+00	1.000e+00	0.000e+00	7.087e-01
1	6	-9.149071e-01	0.000e+00	1.000e+00	1.000e+00	9.966e-01
2	15	-1.689978e+00	2.974e-01	1.176e-01	1.269e+00	5.375e-01
3	18	-1.623247e+00	0.000e+00	1.000e+00	4.371e-01	7.568e-01
4	21	-1.823687e+00	2.615e-01	1.000e+00	3.092e-01	5.621e-01
5	24	-1.652609e+00	0.000e+00	1.000e+00	2.640e-01	7.568e-01
6	55	-1.652609e+00	0.000e+00	1.578e-05	3.236e-06	7.568e-01

Local minimum possible. Constraints satisfied.

fmincon stopped because the $\underline{\text{size of the current step}}$ is less than the default value of the $\underline{\text{step size tolerance}}$ and constraints are satisfied to within the default value of the $\underline{\text{constraint tolerance}}$.

<stopping criteria details>

```
xoptimalc =
     4.6669     4.0000

optimal_costc =
     -1.6526
```

The unconstrained minima

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	3	0.493151		0.909
1	6	-0.309672	1	0.748
2	9	-1.02945	1	0.994
3	12	-1.53793	1	0.684
4	15	-1.68507	1	0.727
5	18	-1.99817	1	0.057
6	21	-1.99988	1	0.0156
7	24	-2	1	0.000325
8	27	-2	1	4.27e-05
9	30	-2	1	3.16e-08

Local minimum found.

Optimization completed because the $\underline{\text{size of the gradient}}$ is less than the default value of the $\underline{\text{optimality tolerance}}$.

<stopping criteria details>

```
xoptimal =
    4.7124    3.1416

optimal_cost =
    -2.0000
```

The constrained minima

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	3	4.931506e-01	2.000e+00	1.000e+00	0.000e+00	9.093e-01
1	6	9.825438e-03	0.000e+00	1.000e+00	2.043e+00	7.568e-01
2	9	-7.813812e-01	3.604e-01	1.000e+00	7.242e-01	9.953e-01
3	13	-1.271350e+00	1.081e-01	7.000e-01	2.681e+00	8.418e-01
4	16	-1.629200e+00	0.000e+00	1.000e+00	1.227e+00	7.568e-01
5	50	-1.629200e+00	0.000e+00	5.412e-06	3.610e-06	7.568e-01

Local minimum possible. Constraints satisfied.

fmincon stopped because the <u>size of the current step</u> is less than the default value of the <u>step size tolerance</u> and constraints are satisfied to within the default value of the <u>constraint tolerance</u>.

<stopping criteria details>

```
xoptimalc =
     4.4908      4.0000

optimal_costc =
     -1.6292
```

Contour Plot:

