Dummit & Foote Ch. 3.3: The Isomorphism Theorems

Scott Donaldson

Oct. 2023

Let G be a group.

1. (10/20/23)

Let F be a finite field of order q and let $n \in \mathbb{Z}^+$. Prove that $|GL_n(F): SL_n(F)| = q-1$.

Proof. Define a map $\varphi: GL_n(F) \to F^{\times}$ by $\varphi(A) = \det A$ for all $A \in GL_n(F)$. From Ch. 3.1, Exercise 35., φ is a surjective homomorphism with $\ker \varphi = SL_n(F)$.

From Corollary 17, we have:

$$|GL_n(F): \ker \varphi| = |\varphi(GL_n(F))|$$
, which implies that $|GL_n(F): SL_n(F)| = \underbrace{|F^{\times}|}_{\varphi \text{ is surjective}} = q - 1,$

as desired.