Théorème de Rice

Question 1. Ce problème est bien semi-décidable : Il suffit d'exécuter f sur x et de renvoyer la valeur de retour : Formellement, **univ** $\langle f \rangle$ $x = \top \iff f$ termine et renvoie vrai sur x.

Cependant, ce problème n'est pas décidable : Supposons qu'il existe \mathscr{A} , algorithme répondant à **Appartient**. Soit $(\langle f \rangle, x)$, entrée de **Appartient**. Construisons un algorithme f_{\top} via le code suivant :

```
let f_top (f : string -> bool) : string -> bool = fun x -> let val = f x in true
```

Alors $f_{\top}(x)$ renvoie vrai si et seulement si $f_{\top}(x)$ termine, si et seulement si f(x) termine. Ainsi, via cette transformation (notée φ) de $(\langle f \rangle, x)$ en $(\langle f_{\top} \rangle, x)$, nous réduisons le problème de l'arrêt à **Appartient** :

Soit $(\langle f \rangle, x)$, instance de **Halts**. Alors **Halts** $((\langle f \rangle, x)) = \top \iff f(x)$ termine $\iff f_{\top}(x)$ termine et renvoie vrai \iff **Appartient** $((\langle f_{\top} \rangle, x)) = \top$.

Or, le problème de l'arrêt est indécidable, donc **Appartient** l'est aussi, sinon nous pourrions décider **Halts** via φ .

Question 2. Supposons que **Diagonal** soit semi-décidable via \mathscr{A} . Intéressons-nous à **Diagonal**($\langle \mathscr{A} \rangle$):

La question se réduit à " $\mathscr{A}(\langle \mathscr{A} \rangle) = \top$?". Supposons que $\langle \mathscr{A} \rangle \not\in \mathscr{L}(\mathscr{A})$, alors \mathscr{A} renvoie vrai lorsqu'appliqué à $\langle \mathscr{A} \rangle$ (du fait de sa semi-décidabilité). Alors $\langle \mathscr{A} \rangle \in \mathscr{L}(\mathscr{A})$: Ceci est absurde.

Supposons maintenant que $\langle \mathscr{A} \rangle \in \mathscr{L}(\mathscr{A})$, alors par définition de $\langle \mathscr{A} \rangle \in \mathscr{L}(\mathscr{A})$, $\mathscr{A}(\langle \mathscr{A} \rangle)$ renvoie faux : Ceci est également absurde. Alors **Diagonal** n'est pas semi-décidable, donc indécidable (s'il était décidable, l'algorithme associé réaliserait une semi-décision).

Question 3. Soit $\langle f \rangle$, entrée de **Diagonal**. Alors posons $\varphi(\langle f \rangle) = (\langle f \rangle, \langle f \rangle)$.

Il vient alors que **Diagonal**($\langle f \rangle$) = $\top \iff \langle f \rangle \notin \mathcal{L}(f) \iff \mathbf{coAppartient}(\langle f \rangle, \langle f \rangle) = \top$.

Ainsi, **Diagonal** \leq_m **coAppartient** via φ (le fait que φ) soit polynomiale en $|\langle f \rangle|$ est évident : nous copions simplement $\langle f \rangle$.

Nous en déduisons donc que **coAppartient** est non semi-décidable (ce qui est cohérent, sans quoi **Appartient** serait décidable). De plus, nous déduisons que **coDiagonal** \leq_m **Appartient** (via la même transformation), donc **coDiagonal** est semi-décidable (par cette réduction à **Appartient**, semi-décidable).

Question 4. Posons $P = \{ \mathscr{L}(f) \in \mathscr{P}(\Sigma^*) \mid \langle f \rangle \in \Sigma^*, \langle f \rangle \not\in \mathscr{L}(f) \} \subseteq \mathscr{P}(\Sigma^*) :$ Alors par construction, le problème associé à P est exactement **Diagonal**.

Question 5. Si $\emptyset \in P$, il suffit de démontrer que P^c est indécidable, auquel cas P l'est aussi.

MPI* Prime 2 MPI* Faidherbe 2023-2024

Question 6. Soit $(\langle f \rangle, x)$, entrée de **Appartient**.

Remarquons que $g(y) = \top \iff f(x) = \top = f_L(y)$. Ainsi, en supposant $\emptyset \notin P$, il vient que $\mathcal{L}(g) \in P \iff f(x) = \top$, car f_L est un algorithme décidant partiellement $L \in P$. Dès lors, posons la transformation :

```
let g (f : string) (x : string) : string -> bool = fun y -> univ f x && univ f_l y
```

Alors cette transformation est telle que $x \in \mathcal{L}(f) \iff \forall y \in L, \ y \in \mathcal{L}(g) \iff \mathcal{L}(g) \in P$, car si $f(x) = \bot$, $\mathcal{L}(g) = \emptyset \notin P$. Ainsi, **Appartient** $\leq_m P$ via cette transformation. (Qui est construite en temps $\mathcal{O}(1)$).

Question 7. La transformation précédente nous permet de déduire le Théorème de Rice : La Question 1. nous donne l'indécidabilité de **Appartient**. Or, ce problème se réduit au problème P (dont on peut supposer que $\emptyset \not\in P$ car P est non Triviale). Ainsi, P est indécidable, car si P l'était, la transformation précédente nous permettrait de décider **Appartient**.

Question 8. Ce problème est indécidable d'après le théorème de Rice, car en posant $P = \{\emptyset\}^{C}$ (tout langage sauf le vide), il vient que P est une propriété des Langages non triviale, et notre problème correspond exactement à P, donc est à ce titre indécidable.

Question 9.

- a) Ce problème est bien décidable, il suffit de parser le code pour compter le nombre d'occurences du token WHILE (avec espace à gauche et droite, et hors string), ce que tout compilateur est en théorie capable de faire.
- b) Le fait que ce problème soit décidable n'entre pas en conflit avec le Théorème de Rice, car la propriété "s'écrire avec au moins 5 boucles while" n'est pas une propriété sémantique mais Syntaxique! Cette propriété ne porte pas sur le langage de la fonction passée en paramètre, car tout langage décidable / semi-décidable peut s'écrire via un algorithme auquel nous ajoutons 5 boucles while inutiles (via while (false) {}).

MPI* Prime 3 MPI* Faidherbe 2023-2024