2. Sequences and series

2.1. Sequences

Analysis 1 for Engineers V. Grushkovska

Functions

Content:

- Notion of a sequence
- Representation of sequences
- Bounded and unbounded sequences
- Monotone sequences
- Accumulation points

Notion of sequence

A **sequence** is an enumerated collection of objects in which repetitions are allowed and order matters.

Sequence:

Definition

A **sequence** is a function which assigns to each natural number a unique element of a non-empty set $S \subset \mathbb{R}^n$.

Examples:

$$\{1,2,3,\ldots,\}, \{1,-1,2,-2,3,-3,\ldots\}, \{0,1,0,1,0,1,\ldots\}.$$

Representation of a sequence

Notations:
$$\{a_1, a_2, \dots, \}$$
, $\{a_n\}_{n \in \mathbb{N}}$, $\{a_n\}_{n=1}^{\infty}$, $\{a_n\}$, $\{a_n\}_{n \in \mathbb{N}}$, $\{a_n\}_{n=1}^{\infty}$. a_1 is the 1st element, a_n is the n^{th} element.

A sequence can be described by

- listing in order, e.g. $\{-1, 1, -1, 1, \dots\}$;
- a formula for the *n*-th term, e.g. $\{(-1)^n\}_{n\in\mathbb{N}}$;
- a recursion formula, i.e. by a rule which expresses the *n*-th term via previous terms, i.e. $\{a_n\}_{n\in\mathbb{N}}$, where $a_1=0$, $a_2=1$, $a_n=a_{n-2}+a_{n-1}$ for $n\geq 3$ (Fibonacci sequence).

Representation of a sequence

Graphical representation

Sequences can be represented as points on the real line or as points in the plane where the horizontal axis n is the index number of the term and the vertical axis a_n is its value.

(from Thomas' Calculus)

Some special sequences

- arithmetic sequences: $\{b+d(n-1)\}_{n\in\mathbb{N}}$, where $b\in\mathbb{R}$ is the first term, d is the common difference;
- geometric sequences: $\{br^{n-1}\}_{n\in\mathbb{N}}$, where $b\in\mathbb{R}$ is the first term, r is the common ration, $r\neq 0$;
- triangular numbers: $\left\{\frac{n(n+1)}{2}\right\}_{n\in\mathbb{N}}$;

(from mathisfun.com)

- square numbers, cubic numbers: $\{n^2\}_{n\in\mathbb{N}}$, $\{n^3\}_{n\in\mathbb{N}}$;
- Fibonacci numbers: $\{a_n\}_{n\in\mathbb{N}}$, where $a_1=1$, $a_2=1$, $a_n=a_{n-2}+a_{n-1}$ for $n\geq 3$.

Boundedness

Remainder:

A function f(x) with a domain $D \subseteq \mathbb{R}$ is

- **bounded from below** if there exists an $m \in \mathbb{R}$ such that $f(x) \ge m$ for all $x \in D$; m is called a lower bound of f.
- bounded from above if there exists an $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in D$; M is called an upper bound of f.
- **bounded** if it is bounded both from above and below; equivalently, f is bounded if there exists a c>0 such that $|f(x)| \le c$ for all $x \in D$;
- unbounded if it is not bounded.

Definition

A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is

- bounded from below if there exists an $m \in \mathbb{R}$ such that $a_n \ge m$ for all $n \in \mathbb{N}$; m is called a lower bound of $\{a_n\}_{n \in \mathbb{N}}$.
- bounded from above if there exists an $M \in \mathbb{R}$ such that $a_n \leq M$ for all $n \in \mathbb{N}$; M is called an upper bound of $\{a_n\}_{n \in \mathbb{N}}$.
- bounded if it is bounded both from above and below; equivalently, it is bounded if there exists a $c \ge 0$ such that $|a_n| \le c \ \forall n \in \mathbb{N}$;
- unbounded if it is not bounded, i.e. $\forall c \geq 0 \exists n_c \in \mathbb{N} : |a_{n_c}| > c$.

Infimum and supremum of a sequence

Remainder

Let S be a set in $\mathbb R$. The infimum of S (resp., supremum of S), is the greatest element in $\mathbb R$ that is less than or equal to each element of S, if such an element exists (resp., the least element in $\mathbb R$ that is greater than or equal to each element of S, if such an element exists).

Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

Definition

The **infimum** (resp., the **supremum**) **of the sequence** $\{a_n\}_{n\in\mathbb{N}}$ is the infimum (resp., supremum) of the set of its values (if exists): $\inf_{n\in\mathbb{N}}\{a_n\}=\inf\{a_1,\ldots,a_n\}$ (resp., $\sup_{n\in\mathbb{N}}\{a_n\}=\sup\{a_1,\ldots,a_n\}$).

Equivalent definition

A number $a \in \mathbb{R}$ is

- the infimum of the sequence $\{a_n\}_{n\in\mathbb{N}}$, if $a_n\geq a$ for all $n\in\mathbb{N}$ and for any $\varepsilon>0$ $\exists n_\varepsilon\in\mathbb{N}$ such that $a_{n_\varepsilon}< a+\varepsilon$.
- the supremum of the sequence $\{a_n\}_{n\in\mathbb{N}}$, if $a_n\leq a$ for all $n\in\mathbb{N}$ and for any $\varepsilon>0$ $\exists n_\varepsilon\in\mathbb{N}$ such that $a_{n_\varepsilon}>a-\varepsilon$.

Infimum and supremum of a sequence can be infinite.

Monotonicity

Remainder:

A function $f: D \to \mathbb{R}$ $(D \subseteq \mathbb{R})$ is monotonically increasing (decreasing) if $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$ whenever $x_1 < x_2$, for all $x_1, x_2 \in D$.

Definition

A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is

- monotonically increasing if $a_{n+1} \geq a_n$ for all $n \in \mathbb{N}$;
- monotonically decreasing if $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$;
- monotonic if it is either decreasing or increasing;
- strictly monotonically increasing if $a_{n+1} > a_n$ for all $n \in \mathbb{N}$;
- strictly monotonically decreasing if $a_{n+1} < a_n$ for all $n \in \mathbb{N}$.

Examples:

1) $\left\{\frac{n}{n+1}\right\}$: bounded, strictly monotonically increasing.

Indeed, let
$$a_n = \frac{n}{n+1}$$
, $n \in \mathbb{N}$. Boundedness: $a_n = 1 - \frac{1}{n+1}$, $\frac{1}{2} \le a_n \le 1 \ \forall n \in \mathbb{N}$. Monotonicity: $a_{n+1} - a_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+1)(n+2)} > 0 \Rightarrow a_{n+1} > a_n, \ \forall n \in \mathbb{N}$.

Monotonicity:
$$a_{n+1} - a_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+1)(n+2)} > 0 \Rightarrow a_{n+1} > a_n, \forall n \in \mathbb{N}.$$

$$\inf_{n \in \mathbb{N}} \frac{n}{n+1} = \frac{1}{2}, \sup_{n \in \mathbb{N}} \frac{n}{n+1} = 1.$$

2) $\{(-1)^n\}_{n\in\mathbb{N}}$: bounded, not monotonic,

$$\inf_{n \in \mathbb{N}} (-1)^n = -1, \sup_{n \in \mathbb{N}} (-1)^n = 1.$$

3) $\{n(-1)^n\}_{n\in\mathbb{N}}$: unbounded, not monotonic, $\inf_{n \in \mathbb{N}} n(-1)^n = -\infty$, $\sup_{n \in \mathbb{N}} n(-1)^n = +\infty$.

4)
$$\left\{\frac{(-1)^n}{n}\right\}_{n\in\mathbb{N}}$$
: bounded, not monotonic, $\inf_{n\in\mathbb{N}}\frac{(-1)^n}{n}=-1$, $\sup_{n\in\mathbb{N}}\frac{(-1)^n}{n}=\frac{1}{2}$.

- 5) $\left\{\frac{1}{n}\right\}$: bounded from above, str.mon.decreasing, $\inf_{n\in\mathbb{N}}\frac{1}{n}=0$, $\sup_{n\in\mathbb{N}}\frac{1}{n}=1$.
- 6) $\{n\}_{n\in\mathbb{N}}$: bounded from above, str.mon.decreasing, $\inf_{n\in\mathbb{N}} n = 1$, $\sup_{n\in\mathbb{N}} n = +\infty$.
- 7) $\left\{n\sin\frac{\pi n}{2}\right\}_{n\in\mathbb{N}}$: unbounded, not monotonic, $\inf_{n\in\mathbb{N}}n=-\infty$, $\sup_{n\in\mathbb{N}}n=+\infty$.

Examples:

- 8) $\{a_n\}_{n\in\mathbb{N}}$, with $a_1=1$, $a_{n+1}=\frac{a_n^2+1}{2}$: bounded, not strictly monotonic (constant), $\inf_{n\in\mathbb{N}}a_n=\sup_{n\in\mathbb{N}}a_n=1$.
- 9) $\{a_n\}_{n\in\mathbb{N}}$, with $a_1=2$, $a_{n+1}=\frac{a_n^2+1}{2}$: bounded from below, monotonically increasing, $\inf_{n\in\mathbb{N}}a_n=2$, $\sup_{n\in\mathbb{N}}a_n=+\infty$.
- 10) $\{a_n\}_{n\in\mathbb{N}}$, with $a_1=1/2$, $a_{n+1}=\frac{\bar{a_n^2}+1}{2}$: bounded, monotonically increasing, $\inf_{n\in\mathbb{N}}a_n=\frac{1}{2}$, $\sup_{n\in\mathbb{N}}a_n=1$.
- 11) $\left\{\left(1+1/n\right)^n\right\}_{n\in\mathbb{N}}$: bounded from below, strictly monotonically increasing.

$$a_1 = 2$$
, $a_2 = 2.25$, $a_3 \approx 2,37...$, $a_4 \approx 2.44...$, $a_4 \approx 2.48...$, $a_6 \approx 2.52...$, $a_7 \approx 2.54...$

$$a_n \rightarrow e \approx 2.718281828...$$
 as $n \rightarrow \infty$.

Examples:

12)
$$\left\{\frac{n-3}{n^2+1}\right\}_{n\in\mathbb{N}}$$
: boundedness? monotonicity? Let $a_n=\frac{n-3}{n^2+1}$, $n\in\mathbb{N}$.

Boundedness from above:

$$a_n = \frac{n}{n^2 + 1} \underbrace{-\frac{3}{n^2 + 1}}_{<0} < \frac{n}{n^2 + 1} < \frac{n}{n^2} = \frac{1}{n} \le 1.$$

Boundedness from below: $a_n > 0 \ \forall n \ge 0$, $a_1 = -1$, $a_2 = -\frac{1}{5}$. Therefore,

$$a_n \ge \min\{0, -1, -1/5\} = -1 \ \forall n \in \mathbb{N}.$$

Monotonicity:
$$a_1 = -1 < a_2 = -\frac{1}{5} < a_3 = 0 < a_4 = \frac{1}{17} < a_5 = \frac{1}{13} < a_5 = \frac{1}{13}$$

$$a_6 = \frac{3}{37} > a_7 = \frac{2}{25} <>???$$

Examples:

$$\left\{\frac{n-3}{n^2+1}\right\}_{n\in\mathbb{N}}. \text{ For which values } n\in\mathbb{N} \text{ } a_n>a_{n+1}?$$

$$a_n>a_{n+1}\iff \frac{n-3}{n^2+1}>\frac{n+1-3}{(n+1)^2+1}=\frac{n-2}{(n+1)^2+1}$$

$$\iff (n-3)((n+1)^2+1)>(n-2)(n^2+1)$$

$$\iff n^2-5n-4>0.$$

Consider the function
$$f(x) = x^2 - 5x - 4$$
.

$$f(x) = 0 \iff x_{1,2} = \frac{5 \pm \sqrt{41}}{2}$$

 $\Rightarrow x_1 \approx -0.7, x_2 \approx 5.7.$
 $f(x) = (x - x_1)(x - x_2) \Rightarrow n^2 - 5n - 4 > 0$
holds for all $n \ge 6$, i.e. starting from $n = 6$ the sequence becomes strictly decreasing.

Examples:

Fibonacci sequence: $\{a_n\}_{n\in\mathbb{N}}$ with $a_1=0, a_2=1$, $a_n=a_{n-2}+a_{n-1}$ for $n\geq 3$. It is:

- bounded from below: $a_n \ge 0 \ \forall n \in \mathbb{N}$ (prove by mathematical induction);
- not bounded from above: $\nexists M: a_n \leq M$ for all $n \in \mathbb{N}$. Assume contrary: $\exists M > 0: a_n \leq M \forall n \in \mathbb{N}$. Consider the element a_k with $k \geq M+2$.

Then
$$a_k = \underbrace{a_k - a_{k-1}}_{=a_k - 2 \geq 1} + \underbrace{a_{k-1} - a_{k-2}}_{=a_k - 3 \geq 1} + \cdots + \underbrace{a_4 - a_3}_{=a_2 = 1} + \underbrace{a_3 - a_2}_{=a_1 = 0} + \underbrace{a_2 \geq (k-1)}_{=1} \geq M+1$$
. Thus, we get the contradiction: $M+1 \leq a_k \leq M$.

- monotonically increasing: $a_{n+1} a_n = a_{n-1} \ge 0$ for all $n \in \mathbb{N}$;
- not strictly monotonic: $a_2 = a_3 = 1$.

Operations with sequences

Definition

Given two sequences of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$, the sequences $\{a_n+b_n\}_{n\in\mathbb{N}}$, $\{a_n-b_n\}_{n\in\mathbb{N}}$, $\{a_n\cdot b_n\}_{n\in\mathbb{N}}$, and (in case $b_n\neq 0 \forall n\in\mathbb{N}$) $\left\{\frac{a_n}{b_n}\right\}_{n\in\mathbb{N}}$ are called the **sum**, **difference**, **product** and **quotient** of these sequence, respectively.

Neighbourhood in R

Definition

Given a real number $a \in \mathbb{R}$ and a number $\varepsilon > 0$, an ε -neighbourhood of the number a is the interval $(a - \varepsilon, a + \varepsilon)$:

$$U(a,\varepsilon):=(a-\varepsilon,a+\varepsilon).$$

For
$$a = \pm \infty$$
, $U(+\infty, \varepsilon) := \left(\frac{1}{\varepsilon}, +\infty\right]$, $U(-\infty, \varepsilon) := \left[-\infty, -\frac{1}{\varepsilon}\right)$.

Lemma

For any $a, b \in \mathbb{R}$ there exist $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that $U(a, \varepsilon_1) \cap U(b, \varepsilon_2) = \emptyset$.

$$U\left(a;\frac{b-a}{2}\right) \quad U\left(b;\frac{b-a}{2}\right) \qquad U\left(a;1\right) \qquad U\left(+\infty;\frac{1}{|a|+1}\right) \qquad U\left(-\infty;\frac{1}{|b|+1}\right) \qquad U\left(b;1\right) \qquad U\left(+\infty;\varepsilon\right) \qquad u\left(+\infty;\varepsilon\right$$

Accumulation point

Definition

- A number $\alpha \in \mathbb{R}$ is accumulation point of a sequence $\{a_n\}_{n\in\mathbb{N}}$, if any ε -neighborhood of α contains infinitely many elements of $\{a_n\}_{n\in\mathbb{N}}$, i.e. $|\alpha-a_k|<\varepsilon$ for infinitely many $k\in\mathbb{N}$.
- We say that $+\infty$ (resp., $-\infty$) is an accumulation point of a sequence $\{a_n\}_{n\in\mathbb{N}}$, if for any M>0 there are infinitely numbers $k\in\mathbb{N}$ such that $a_k>M$ (resp., $a_k<-M$).

Sufficient condition: $\alpha \in \mathbb{R}$ is accumulation point of a sequence $\{a_n\}_{n \in \mathbb{N}}$, if for any $\varepsilon > 0$ and $n \in \mathbb{N}$ there is an integer k > n such that $|\alpha - a_k| < \varepsilon$. A sequence is unbounded from above (resp., from below) iff $+\infty$ (resp., $-\infty$) is an accumulation point. **Examples**: accumulation points of $\{(-1)^n\}_{n \in \mathbb{N}}$ are 1 and -1; $\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ is 0; $\{(1+(-1)^n)^n\}_{n \in \mathbb{N}}$ are 0 and $+\infty$.