Programme n°3

Notions d'analyse dimensionnelle

cours et exercices

Oscillateur harmonique

Exercices

PROPAGATION D'UN SIGNAL

P1 . Propagation d'un signal, ondes progressives

cours et exercices

P2. Les interférences mécaniques ou acoustiques

Cours et exercices

P3. Ondes stationnaires mécaniques (Cours uniquement)

- Etude théorique
 - Résultats observés
 - Expression de la vibration résultante
 - Etude de l'amplitude
 - Etude de la phase
- Corde de Melde
 - Cas d'une ode progressive sinusoïdale entre deux extrémités fixes
 - Onde stationnaire et résonance
 - Les différents modes
 - Corde vibrante

Ondes stationnaires mécaniques.	Décrire une onde stationnaire observée par stroboscopie sur la corde de Melde.
	Caractériser une onde stationnaire par l'existence de nœuds et de ventres.
	Exprimer les fréquences des modes propres connaissant la célérité et la longueur de la corde.
	Savoir qu'une vibration quelconque d'une corde accrochée entre deux extrémités fixes se décompose en modes propres.
	Mettre en œuvre un dispositif expérimental permettant d'analyser le spectre du signal acoustique produit par une corde vibrante.

P4. Diffraction à l'infini

- Observations
- Interprétation
 - Principe de Huygens Fresnel
 - Diffraction de la lumière par une fente
 - Diffraction la lumière par deux fentes
 - Cas d'un réseau
 - Cas d'une ouverture circulaire

Diffraction à l'infini.	Utiliser la relation sinθ ≈ λ/d entre l'échelle angulaire
	du phénomène de diffraction et la taille
	caractéristique de l'ouverture.

OPTIQUE GEMOMETRIQUE

OG1. Approximation de l'optique géométrique

- Historique
- Définitions (isotrope, homogène)
- Source lumineuse
 - La lumière
 - Sources lumineuses
- Propagation de la lumière

- Vitesse de propagationIndice du milieu

3. Optique géométrique	
Sources lumineuses.	Caractériser une source lumineuse par son spectre.
Modèle de la source ponctuelle monochromatique.	
Indice d'un milieu transparent.	Relier la longueur d'onde dans le vide et la longueur d'onde dans le milieu. Relier la longueur d'onde dans le vide et la couleur.

<u>TP</u>

Ondes ultra sonores

Déterminer la vitesse de propagation des ondes sonores dans l'air par plusieurs méthodes