University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

A Power-of-Two Checker

ECE 120: Introduction to Computing

© 2016-2017 Steven S. Lumetta. All rights reserved.

l

Powers of Two are Easy to Spot in Binary

Let's do another bit-sliced design.

Can we check whether an unsigned number represents a power of two?

What does a power of two look like in bits?

For **5-bit unsigned**, the powers of 2 are...

00001, 00010, 00100, 01000, 10000

A power of two has exactly one 1 bit (with place value 2^N for some N, of course!).

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

The Answers are Not Always Enough

So our design will answer the following: Is $A = a_{N,1}a_{N,2}...a_1a_0$ a power of two?

How many answers are possible?

Two: Yes, and No.

A trick question:

How many bits do we need to pass between slices?

That's right: TWO bits.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 3

What Extra Information Do We Need?

Why not just one? An answer only needs 1 bit!

Say that we pass bits from right to left.

If the bits $a_{N-2}...a_1a_0$ represent a power of two, is $a_{N-1}a_{N-2}...a_1a_0$ be a power of two?

What if $\mathbf{a}_{N-2}...a_1\mathbf{a}_0$ does **not** represent a power of two?

Iff $a_{N-1} = 0$.

In that case, we can't tell whether $a_{N-1}a_{N-2}...a_1a_0$ is a power of two or not!

What else do we need to know?

ECE 120: Introduction to Computing

© 2016-2017 Steven S. Lumetta. All rights reserved.

For Inductive Step, We Must Know Whether all Bits are 0

Imagine that we have completed **N-1** bits.

Under what conditions can number **A** be a power of two?

- 1. $\mathbf{a}_{N-1} = 1$ and the rest is all 0s, or
- 2. $\mathbf{a}_{N-1} = \mathbf{0}$ and the rest is a power of two.

For #2, we need to know whether the rest of the bits form a power of two.

But for #1, we also need to know whether the rest of the bits are all 0.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

slide 7

There are Three Possible Messages between Bit Slices

The "yes" cases for #1 and #2 do not overlap: all 0 bits is not a power of two.

The "no" cases need not be further separated:

- all 0s means no 1 bits
- a power of two means **one 1 bit**
- more than one 1 bit means "no" to both questions

That's all we need to know. Three possible messages between slices, so two bits.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

We Need a Representation for Answers

I'll use the following representation.

Others may be better.

$\mathbf{C_1}$	$\mathbf{C_0}$	meaning
0	0	no 1 bits
0	1	one 1 bit
1	0	not used
1	1	more than
		one 1 bit

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

We Need a Representation for Answers

Let's build a slice that operates on two bits of **A**.

In the bit slice, we call them **A** and **B**.

Inputs from the previous bit slice are C_1 and C_0 .

Outputs to the next bit slice are \mathbb{Z}_1 and \mathbb{Z}_0 .

Direction of our operation doesn't matter. Either will do.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

Two Zeroes Do Not Change the Result

Let's fill in a truth table.

We'll start with the case of A = 0 and B = 0.

A	В	$\mathbf{C_1}$	$\mathbf{C_0}$	meaning	\mathbf{Z}_1	\mathbf{Z}_0	meaning
0	0	0	0	no 1s	0	0	no 1s
0	0	0	1	one 1	0	1	one 1
0	0	1	0	???	x	x	don't care
0	0	1	1	>one 1	1	1	>one 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

slide 11

One 1 Input Increments the Count of 1 Bits

Now consider A = 0 and B = 1.

A	В	$\mathbf{C_1}$	$\mathbf{C_0}$	meaning	\mathbf{Z}_1	\mathbf{Z}_0	meaning
0	1	0	0	no 1s	0	1	one 1
0	1	0	1	one 1	1	1	>one 1
				???			
0	1	1	1	>one 1	1	1	>one 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

. .

One 1 Input Increments the Count of 1 Bits

The case for A = 1 and B = 0 is the same.

A	В	$\mathbf{C_1}$	$\mathbf{C_0}$	meaning	\mathbf{Z}_1	\mathbf{Z}_0	meaning
				no 1s			
				one 1			
				???			
1	0	1	1	>one 1	1	1	>one 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

Two 1s in the Number Rules Out Powers of Two

Finally, consider A = 1 and B = 1.

Α	В	$\mathbf{C_1}$	$\mathbf{C_0}$	meaning	\mathbf{Z}_1	\mathbf{Z}_0	meaning
				no 1s			
				one 1			
1	1	1	0	???	x	x	don't care
1	1	1	1	>one 1	1	1	>one 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

We Can Reuse Some Factors with Algebra

Notice that we can reuse factors from \mathbf{Z}_1 to calculate \mathbf{Z}_0 :

$$Z_1 = (C_1 + A + B)(C_0 + A)(C_0 + B)$$

 $Z_0 = (C_0 + A + B) = (C_0 + A) + (C_0 + B)$

Let's draw the bit slice, then analyze its area and delay.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 15

Area is 6N, and Delay is N Gate Delays for N Bits

Here is an implementation of the bit slice using NAND and NOR. Let's find area.

How many literals?

Thow many operations?

5 (4 NOR, 1 NAND)

And delay?

2 on all paths.

So N gate delays for N bits.

C 2016 Steven S. Lumetta. All rights reserved.

Need One More Gate Delay to Get the Answer

But we don't get an answer!

Our **N-bit** checker,

- composed of N/2 bit slices,
- produces only a "count" of 1 bits (0, 1, or "many").

We want yes (P = 1) or no (P = 0)!

Looking at the representation, the fastest solution is to add an XOR gate at the end. $\,$

 $P = Z_1 \oplus Z_0$ from the last bit slice.

So delay is actually N + 1 gate delays.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.