Lecture13: MOSFET, small-signal model

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review on MOSFET IV

- When $V_G < V_{TH}$,
 - No drain current!

$$I_D = 0$$

- When $V_G > V_{TH}$,
 - Triode mode $(V_{DS} < V_G V_{TH})$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- Saturation mode
$$(V_{DS} > V_G - V_{TH})$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{TH})^2$$

- For a short channel device, I_D increases slightly as V_{DS} increases.

An example

Draw $I_D - V_{DS}$ at $V_{GS} = 1$ V. $\mu_n C_{ox} = 100 \mu A/V^2$ $\frac{W}{L} = 2.0/0.18$ – What is the saturation current? I_D (A) 400µ 300µ 200μ 100µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9

GIST Lecture on April 29, 2020 (Internal use only)

Example 6.6 (Razavi)

- Assume the saturation region.
 - The saturation current becomes 200 μ A.

Then, the drain voltage is

 $V_{TH} = 0.4 \text{ V}$ $\mu_n C_{ox} = 100 \mu \text{A/V}^2$ $\frac{W}{L} = 2.0/0.18$

1.8 V

- Is the MOSFET in the saturation mode?
- Graphical visualization

V_{out} versus V_{in}

A table

V_{in} (V)	V _{out} (V)
0.0	1.8
<0.4	1.8
0.7	1.55
1.0	0.8
X	X - 0.4
1.8	Y

– What are the values of X and Y?

MOS transconductance

- "conductance" of a simple resistor: $\partial I/\partial V = I/V$
- "trans" + "conductance" between different terminals

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$
 (Razavi 6.44)

For the saturation region,

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Channel length modulation

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

Derivatives

- We can define two derivatives.
 - Transconductance, g_m . Output resistance, r_0 .

Large-signal model (1/2)

- Saturation region
 - Drain current is determined by gate voltage. (voltage-controlled current source)

Large-signal model (2/2)

- Triode region
 - Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal current

- Using the transconductance (g_m) and the output resistance (r_O) ,
 - The small-signal drain current is given as $i_D = g_m v_G + \frac{v_D}{r_O}$.
 - When we build a small-signal model, two contributions must be separately considered.

Small-signal model

 For small-signal analysis, a small-signal model for the MOSFET is introduced.

Time-dependent one?

In general, capacitive components can be seen.

At low frequencies

- Capacitor current is $I = C \frac{dV}{dt}$.
 - When a sinusoidal dependence, for example $\sin \omega t$, is assumed, the capacitor current is proportional to ω .
 - At low frequencies, ω can be regarded as a small number.
 - In other words, the electric conduction between two nodes becomes rather weak.
 - Therefore, we often neglect the capacitive components in the small-signal model.
 - Of course, at higher frequencies, they become very important.