2,2,8,2

A intensidade total da corrente que atravessa o circuito abaixo indicado é de 5,74 A.

A intensidade da corrente que atravessa a resistência R, é de:

a)	1,69 A	***************************************	\boxtimes
------------	--------	---	-------------

Nota: chamando V_1 à queda de tensão em R_1 e V_p à queda de tensão no paralelo de $(R_2 /\!\!/ R_3 /\!\!/ R_4)$ vem:

$$V_1 = R_1 I_{\pm}$$
 ou $V_1 = 2 \times 5,74 = 11,48 V$

e
$$V = V_1 + V_p$$
 ou $25 = 11.48 + V_p \implies V_p = 25 - 11.48 + V_p = 13.52 V$

Sabendo R_{pl} fica-se a saber a corrente que passa nesse paralelo ($R_2 /\!\!/ R_4$), aplicando a lei de Ohm.

 $V_{\rm pl} = R_{\rm pl} I_{\rm pl}$ ou 13,52 = 3,333 $I_{\rm pl} = > I_{\rm pl} = \frac{13,52}{3,333} = 4,056$ A Então, se, dos 5,74 A que entram no paralelo $(R_2//R_3//R_4)$, 4,056 A passam no paralelo $(R_2//R_4)$, em R_3 passa o restante.

ou seja
$$I_3 = 5,74-4,056 = 1,684 A = 1,69 A.$$