

EJOI 2024 Day 2European Junior Olympiad in Informatics 2024 Chisinau, Moldova

Day 2 Task hora Macedonian (MKD)

Hora

Ова е иншеракшивен йроблем!

Hora е традиционален Романски и Молдовски фолклорен танц. Учесниците се држат за раце и формираат еден голем круг, обично движејќи се кон лево правејќи некој специфични движења.

На 8тата Европска Јуниорска Олимпијада по Информатика, N натпреварувачи го започнале танцот **hora**, каде N е позитивен, **парен** цел број. **Бројот на момчиња е еднаков на бројот на девојчиња во танцот**. Организаторите доделиле индекс на секој учесник во танцот. Индексите започнуваат од 0 и продолжуваат редоследно додавајќи 1, се до N-1. Ова значи дека индексот на учесникот е за еден поголем од индексот на учесникот лево од него (пред него) и учесниците со индекси 0 и N-1 се исто така соседи. Погледнете во примерите за да го видите ова визуелно.

На вас не ви е познато како точно учесниците се подредиле во кругот, бидејќи вие учествуват во натпреварувањето сега! Но, вие можете да правите повици до системот. Секој повик се состои од два цели броеви L и R така што $0 \le L < N$ и $0 \le R < N$. Одговор ќе содржи еден цел број - бројот на момчиња во непрекинат кружен интервал од L до R во нашиот круг. Всушност:

- Ако $L \leq R$, тогаш одговорот ќе го разгледува непрекинатиот кружен интервал од учесници со индекси $L, L+1, \ldots, R-1, R$.
- Ако R < L, тогаш одговор ќе го разгледува непрекинатиот кружен интервал од учесници со индекси $L, L+1, \ldots N-1, 0, \ldots R-1, R$.

Даден ви е еден цел број K ($1 \le K \le N$). Ваша задача е да најдете непрекинат кружен интервал со должина K во нашиот круг за кој **апсолутната разлика** помеѓу бројот на момчиња и бројот на девојчиња е најмал. Формално, од вас се бара да имплементирате процедура која враќа еден цел број $S(0 \le S < N)$ така што непрекинатиот кружен интервал со должина K кој започнува од учесникот со индекс S има најмала можна апсолутна разлика помеѓу бројот на момчиња и бројот на девојчиња. Забележете дека една кружна конфигурација може да има повеќе решенија со иста апсолута разлика помеѓу бројот на момчиња и бројот на девојчиња. Во таков случај, вие можете да го пронајдете било кое решение.

Апсолутната разлика на два броеви x и y е дадена со |x-y|. На пример, |2-4|=2, |7-4|=3

Имплементациски детали

Вие треба да ја имплементирате следнава процедура:

```
int solve(int N, int K)
```

- N : бројот на учесници во танцот.
- Оваа процедура треба да врати S, цел број кој претставува почеток на интервал со должина K со најмала можна апсолутна разлика помеѓу бројот на момчиња и бројот на девојчиња во танцот.
- Оваа процедура е повикана точно еднаш.

Горенаведената процедура може да прави повици до следнава процедура:

```
int ask(int L, int R)
```

- L: Почетниот индекс за прашаниот интервал.
- R: Крајниот индекс за прашаниот интервал.
- Го враќа бројот на момчиња во прашаниот интервал.
- Ако бројот на повици до функција ask е поголем од 10^5 вашето решение ќе биде оценето со порака ask ask ask е поголем од ask as

Пример

Да претпоставиме дека кругот изгледа вака:

Забележете дека сините кругови со буквата B во нив ги претставуваат момчињата и розевите кругови со буквата G во нив ги претставуваат девојчињата. Исто така, бројот запишан на десната страна од секој круг го претставува индексот на соодветниот учесник.

Да го разгледаме следниов повик:

```
solve(12, 5)
```

Во овој пример, имаме 12 учесници во танцот, и бараме непрекинат интервал со должина 5 со најмала можна апсолутна разлика помеѓу бројот на момчиња и бројот на девојчиња. Нашата програма го прави следниот повик:

```
ask(0, 10)
```

Одговорот на прашањето е 6, што значи дека има 6 момчиња кои учествуваат во танцот во соодветниот интервал. Лесно можеме да видиме дека бројот на девојки во интервалот е 5.

```
ask(0, 4)
```

Одговорот на прашањето е 4, што значи дека има 4 момчиња во интервалот.

Одговорот на прашањето е 3, што значи дека има 3 момчиња во танцот. Можеме лесно да одредиме дека има 2 девојчиња во истиот интервал. Бидејќи апсолутната разлика помеѓу 3 и 2 е 1, и не постои интервал со помала апсолутна разлика со должина 5, нашата програма враќа 1, што е почетокот на интервалот.

Ограничувања

- $2 \le N \le 10^5$
- $1 \le K \le N$
- Танцот се состои од еднаков број на момчиња и девојчиња.
- Грејдерот не се адаптира на вашите прашанки (The grader is not adaptive).

Подзадачи

Вашето решение ќе се тестира на множество на тест групи, секоја вреди одреден број на поени. Секоја тест груоа содржи множество на тест примери.

Група	Поени	Ограничувања	Q_{full}
1	5	N=34	34
2	13	N=100000, сите момчиња се наоѓаат еден до друг (сите девојчиња се наоѓаат едни до други исто така).	18
3	8	N=100000, конфигурацијата на танцот е случајно генерирана.	34
4	11	N=100000, K=50000	18
5	10	N=65536, K=128	26
6	10	N=100000, K=400	26
7	9	N=100000, K=99601	26
8	10	N=100000, K=330	68
9	24	Нема додатни ограничувања (вредности на N и K може да се различни)	34

Да земеме некој тест пример од некоја група со параметар Q_{full} и Score. Нека Q е бројот на повици до процедурата ask за тој тест пример. Ако $Q \leq Q_{full}$ вие добивате Score поени за тој тест пример. Ако $N \geq Q > Q_{full}$ вие ќе добиете Score $\cdot \left(1 - \left(\frac{(Q - Q_{full})}{N}\right)^{0.05}\right)$. Ако Q > N или ако одговорот на тој тест пример е погрешен, вие добивате 0 поени за тој тест

пример. Бројот на поени за некоја тест група е минималниот број на поени помеѓу сите тест примери во таа тест група.

Ако бројот на повици до функцијата ask изнесува повеќе од 10^5 ќе добиете Wrong Answer.

Sample Grader (Грејдер-от)

Грејдер-от чита од влез во следниот формат:

- линија 1: N, K
- линија 2: $A[0], A[1], \ldots, A[N-1]$, каде низата A е стринг кој го претставува скриениот круг на учесници. Всушност, ако A[i]= 'X', соодветниот учесник во кругот е момче, и ако A[i]= 'Y', соодветниот учесник во кругот е девојче.

Грејдер-от го печати секоја прашање во следниот формат:

• линија 1: ? *L R*

Грејдер-от го печати секој одговор во следниот формат:

ullet линија 1: x момчиња

Грејдер-от го печати одговорот на натпреварувачот во следниот формат:

линија 1: ! S

На крајот од интеракцијата, во последната линија на стандардне излез грејдер-от го печати бројот на направени повици до процедурата ask oд страна на напреварувачот.