Page 49, 1

line 22, change "A-A" to --XIV-XIV'-- and change "B-B" to

--XV-XV'--.

Page 51,

line 21, charige "H-H" to --XVII-XVII'--.

IN THE CLAIMS:

Please amend claims 1-30 as follows:

1. (Amended) An electro-optical device, comprising:

a substrate;

a plurality of scanning lines formed above the substrate;

a plurality of data lines formed above the substrate;

a thin-film transistor [and a pixel electrode disposed at an intersection

between] connected to each of the scanning lines and each of the data lines;

a pixel electrode connected to the thin-film transistor;

a light shielding first conductive layer disposed between a semiconductor layer

constituting a source region and a drain region of the thin-film transistor, and the pixel

electrode, the first conductive layer being electrically connected to the semiconductor layer

and electrically connected to the pixel electrode; and

a second conductive layer comprising [the same a film [as that of] comprising

the first conductive layer, at least partially overlapping the data lines in a plan view.

2. (Amended) The electro-optical device according to claim 1, [wherein] the

second conductive layer at least partially [overlaps] overlapping the pixel electrode in a plan

view.

3. (Amended) The electro-optical device according to [one of claims 1 and 2,

wherein] claim 1, the first conductive layer [is] being electrically connected to the

semiconductor layer through a first contact hole and is electrically connected to the pixel electrode through a second contact hole.

- 4. (Amended) The electro-optical device according to [any one of claims 1 to 3, wherein] <u>claim 1</u>, the data lines [are] <u>being</u> electrically connected to the semiconductor layer through a third contact hole.
- 5. (Amended) The electro-optical device according to [any one of claims 1 to 4, wherein] claim 1, the data lines [do] not at least partially [overlap] overlapping the pixel electrode in a plan view.
- 6. (Amended) The electro-optical device according to [any one of claims 1 to 5, wherein] claim 1, the second conductive layer [is] being electrically connected to a constant-potential line.
- 7. (Amended) The electro-optical device according to [any one of claims 1 to 6] claim 1, further comprising a light-shielding film formed on the substrate side of at least a channel region of the semiconductor layer with an underlying insulating film therebetween.
- 8. (Amended) The electro-optical device according to [any one of claims 1 to 7, wherein] claim 1, the first conductive layer and the second conductive layer [comprise] comprising a high-melting point metal.
- 9. (Amended) The electro-optical device according to [any one of claims 1 to 8, wherein] claim 1, the second conductive layer and the data lines [are] being at least partially disposed opposite to each other with an interlayer insulating film therebetween.
- 10. (Amended) The electro-optical device according to [any one of claims 1 to 9] claim 1, further comprising a storage capacitor connected to the pixel electrode.

- 11. (Amended) The electro-optical device according to claim 10, [wherein] the first conductive layer and the second conductive layer [are] being provided on the scanning [line] lines and one electrode of the storage capacitor with an insulating film therebetween.
- 12. (Amended) The electro-optical device according to claim 11, [wherein] a first storage capacitor electrode comprising a portion of the semiconductor layer and a second storage capacitor electrode as said one electrode of the storage capacitor [are] being disposed opposite to each other with a first dielectric film therebetween, and the second storage capacitor electrode and a third storage capacitor electrode comprising a portion of the first conductive layer [are] being disposed opposite to each other with a second dielectric film therebetween, to form the storage capacitor.
- 13. (Amended) The electro-optical device according to [any one of claims 10 to 12, wherein] claim 12, the second conductive layer [is] being connected to the second storage capacitor electrode.
- 14. (Amended) The electro-optical device according to claim 13, [wherein] the second conductive layer [is] being electrically connected to the second storage capacitor electrode through a fourth contact hole, and the fourth contact hole [is] being opened [in the same step as that of] when opening the first contact hole.
- 15. (Amended) The electro-optical device according to claim 12, [wherein] the second storage capacitor electrode [extends] extending to form a capacitor line.
- 16. (Amended) The electro-optical device according to claim 13, [wherein] the second storage capacitor electrode [is] being connected to a light-shielding film.
- 17. (Amended) The electro-optical device according to claim 16, [wherein] the light-shielding film also [acts] acting as the capacitor line, a planar shape of the second storage capacitor electrode on the substrate [extends] extending along a scanning line

between adjacent data lines, and the second storage capacitor electrode [is] <u>being</u> shaped like an island for each pixel electrode and [is] <u>being</u> connected to a light-shielding film.

- 18. (Amended) The electro-optical device according to claim 15, [wherein] the light-shielding film [is] being electrically connected to the capacitor line through a fifth contact hole opened at a planar position different from that of the fourth contact hole.
- 19. (Amended) The electro-optical device according [any one of claims 10 to 18, wherein] claim 12, the second conductive layer and the light-shielding film [are] being electrically connected to each other through the second storage capacitor electrode, and the second conductive layer and a light-shielding film [are] being connected to adjacent pixel electrodes.
- 20. (Amended) The electro-optical device according to [any one of claims 1 to 19, wherein] claim 1, the first conductive layer and the second conductive layer [are] being provided below the data lines.
- 21. (Amended) The electro-optical device according to [any one of claims 1 to 20, wherein] claim 1. the second conductive layer [is] being shaped like an island in a plan view and at least partially [delimits] delimiting a region along the data lines in a pixel-aperture region.
- 22. (Amended) The electro-optical device according to [any one of claims 1 to 10, wherein] claim 1, the first conductive layer and the second conductive layer [are] being provided above the data lines.
- Amended) The electro-optical device according to claim 22, [wherein] the second conductive layer [is] being formed like a grid excluding a region in which the first conductive layer is present in a plan view and [delimits] delimiting regions along the data lines and the scanning lines in the pixel-aperture region.

- 24. (Amended) The electro-optical device according to [one of claims 22 and 23, wherein] claim 22, the semiconductor layer and the first conductive layer [are] being connected to each other with an interconnecting conductive layer comprising [the same] a film [as that off comprising the data lines therebetween.
- 25. (Amended) The electro-optical device according to claim 24 further a storage capacitor connected to the pixel electrode, [wherein] the data lines [are] being sandwiched between one electrode of the storage capacitor and the second conductive layer with an interlayer insulating film therebetween.
- 26. (Amended) A method for fabricating an electro-optical device comprising a substrate, a plurality of scanning lines, a plurality of data lines, a thin-film transistor connected to each of the scanning lines and each of the data lines, and a pixel electrode connected to the thin-film transistor, the method comprising the steps of:

forming a semiconductor layer for producing a source region, a channel region, and a drain region on the substrate;

forming an insulating thin film on the semiconductor layer;

forming the scanning lines and one electrode of a storage capacitor on the insulating thin film;

forming a first interlayer insulating film on the scanning lines and the one electrode;

making a first contact hole leading to the semiconductor layer in the insulating film and the first interlayer insulating film;

forming a light-shielding first conductive layer on the first interlayer insulating film so as to be electrically connected to the semiconductor layer through the first contact

hole and forming a second conductive layer comprising [the same] <u>a</u> film [as that of] <u>comprising</u> the first conductive layer;

forming a second interlayer insulating film on the first conductive layer and the second conductive layer;

forming the data lines on the second interlayer insulating film;

forming a third interlayer insulating film on the data lines;

making a second contact hole leading to the first conductive layer in the second interlayer insulating film and the third interlayer insulating film; and

forming the pixel electrode so as to be electrically connected to the first conductive layer through the second contact hole,

[wherein] the second conductive layer [is] being formed so as to at least partially overlap the data lines in a plan view.

27. (Amended) The method for fabricating an electro-optical device according to claim 26, further comprising the step of:

making a third contact hole leading to the second interlayer insulating film after the step of forming the second interlayer insulating film,

[wherein] in the step of forming the data lines, the data lines [are] being formed so as to be electrically connected to the semiconductor layer through the third contact hole, in the step of making the first contact hole, a fourth contact hole leading to the one electrode of the storage capacitor [is] being made in the first interlayer insulating film simultaneously with the making of the first contact hole, and in the step of forming the second conductive layer, the second conductive layer [is] being formed so as to be electrically connected to the one electrode of the storage capacitor through the fourth contact hole.

28. (Amended) A method for fabricating an electro-optical device comprising a substrate, a plurality of scanning lines, a plurality of data lines, a thin-film transistor connected to each of the scanning lines and each of the data lines, and a pixel electrode connected to the thin-film transistor, the method comprising the steps of:

forming a semiconductor layer for producing a source region, a channel region, and a drain region on the substrate;

forming an insulating thin film on the semiconductor layer;

forming the scanning lines and one electrode of a storage capacitor on the insulating thin film;

forming a first interlayer insulating film on the scanning lines and the one electrode of the storage capacitor;

making a first contact hole leading to the semiconductor layer in the first interlayer insulating film;

forming the data lines on the first interlayer insulating film and simultaneously forming an interconnecting conductive layer comprising [the same] a film [as that of] comprising the data lines so as to be electrically connected to the semiconductor layer through the first contact hole;

forming a second interlayer insulating film on the data lines and the interconnecting conductive layer;

making a second contact hole leading to the interconnecting conductive layer in the second interlayer insulating film;

forming a light-shielding first conductive film on the second interlayer insulating film so as to be electrically connected to the interconnecting conductive layer through the second contact hole, and simultaneously forming a second conductive layer

comprising the same film as that of the first conductive layer so as to overlap the data lines in a plan view;

forming a third interlayer insulating film on the first conductive layer and the second conductive layer;

making a third contact hole leading to the first conductive layer in the third interlayer insulating film; and

forming the pixel electrode so as to be electrically connected to the first conductive layer through the third contact hole.

29. (Amended) The method for fabricating an electro-optical device according to claim 28, further comprising the step of:

making a fourth contact hole leading to the semiconductor layer in the first interlayer insulating film after the step of forming the first interlayer insulating film,

[wherein] in the step of forming the data lines, the data lines [are] being formed so as to be electrically connected to the semiconductor layer through the fourth contact hole, in the step of making the second contact hole, a fifth contact hole leading to the one electrode of the storage capacitor [is] being made in the first interlayer insulating film and in the second interlayer insulating film simultaneously with the making of the second contact hole, and in the step of forming the second conductive layer, the second conductive layer [is] being formed so as to be electrically connected to said one electrode of the storage capacitor through the fifth contact hole.

30. An electronic apparatus comprising the electro-optical device according to [any one of claims 1 to 25] claim 1.

/ oseoleo osoloc

oul