CUBCOEF

Table of Contents

'alling Syntax	. 1
O Variables	
xample	. 1
(ypothesis	
imitations	
ersion Control	. 2
Froup Members	. 2
unction	. 2
alidityalidity	. 2
Iain Calculations	
Output Data	. 3
4	

Para cada junta, escreve os coeficientes de um sistema de planejamento de trajetórias no espaço de juntas por interpolação cúbica.

Calling Syntax

[cc]=cubcoef(th0,thdot0,thf,thdotf,T)

I/O Variables

```
IN Double th0: \theta_0 posição inicial de \theta no segmento

IN Double thdot0: \dot{\theta}_0 velocidade inicial do segmento

IN Double thf: \theta_f posição final de \theta no segmento

IN Double thdotf: \dot{\theta}_f velocidade final do segmento

IN Double T: tempo de duração de cada segmento (seg)
```

OU Double Array cc: Cubic Coefficients vetor de saída com os quatro coeficientes do polinômio cúbico

Example

```
From example 7.1 in Craig

th0 = 15;
thdot0 = 0;
thf = 75;
thdotf = 0;
T = 3;

[cc]=cubcoef(th0,thdot0,thf,thdotf,T)
```

Hypothesis

RRR planar robot.

Limitations

A matriz de transformção homogênea precisa seguir a sintaxe de classe e não tem validade para qualquer configuração de robô.

Version Control

1.0; Grupo 04; 2025/06/06; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

• João Pedro Dionizio Calazans

13673086

Function

```
function [cc]=cubcoef(th0,thdot0,thf,thdotf,T)
```

Validity

Not apply

Main Calculations

```
a0 = th0;
a1 = thdot0;
a2 = 3/T^2*(thf - th0) - 2/T*thdot0 - 1/T*thdotf;
a3 = -2/T^3*(thf - th0) + 1/T^2*(thdotf + thdot0);
```

Output Data

Published with MATLAB® R2024b