15.3.19

Série 14

1. Mettre sous la forme a + ib:

(a)
$$(4-i) + (2+3i)(1-i)$$
; (c) i^n n entier;

(b)
$$\frac{1}{3-2i}$$
; (d) $\frac{(1+i)^9}{(1-i)^7}$.

2. Résoudre :

(a)
$$z^2 + 2(1+i)z - \frac{5}{1+2i} = 0$$

en complétant le membre de gauche pour former un carré parfait ;

(b)
$$z^3 + 9z - 10 = 0$$
.

3. Montrer que:

(a) Si $z=x+iy\in\mathbb{C},\ (y\neq 0)$, il existe deux nombres réels T et N tels que :

$$z^2 - Tz + N = 0$$

- Donner une interprétation de ces nombres.
- $\bullet\,$ Résoudre cette équation en prenant les valeurs de T=1 et N=2 ;

(b)
$$|z| < 1$$
 implique $|(1-i)z^3 - iz| < \frac{5}{2}$.

4. On considère l'équation : $|z|^2 = \left(-\frac{3}{4} + bi\right) \cdot \left(\frac{z}{1-z}\right), \ b \in \mathbb{R}^+$

Déterminer b pour que cette équation ne possède qu'une solution $(\neq 0)$; Quelle est cette solution ?

- 5. Résoudre l'équation suivante : $Arthx + Arth2x = Arth\frac{2}{3}$
- **6.** Soient $f(x) = -\operatorname{Arsh}(\tan x)$ et $g(x) = 2\ln\left(2\sqrt{\left|\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|}\right)$ où $x \in \left|\frac{\pi}{2}, \frac{3\pi}{2}\right|$
 - (a) Montrer que ces deux fonctions ne diffèrent que d'une constante ;
 - (b) Déterminer la valeur de celle-ci.

EPFL - CMS Analyse II

Solutions

S1 (a)
$$a = 9$$
, $b = 0$

(b)
$$a = \frac{3}{13}$$
, $b = \frac{2}{13}$

S2 (a)
$$z = -i \text{ ou} z = -2 - i$$

S3
$$T = 2\text{Re}z$$
, $N = |z|^2$

S4
$$b = 1$$
, $z = \frac{1}{2} - i$

S5
$$x = \frac{1}{4}$$

S6
$$c = -\ln(4)$$

(c)
$$i^{4k} = 1$$
, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$ $k \in \mathbb{N}$

(d)
$$a = 2, b = 0$$

(b)
$$z_1 = 1$$
, $z_{2,3} = -\frac{1 \pm i\sqrt{39}}{2}$