

VIII. *Propositiones aliquot de Projectilium motu Parabolico, Scriptæ An. 1710. Per B. Taylor, LL. D. R. S. S.*

PROPOSITION I.

Vis gravitatis, ejusq; directione datis, motus corporis projecti, in medio non resistente, fit in Parabolâ.

DEMONSTRATIO.

Projiciatur corpus de loco *A* (Fig. 1.) in directione lineæ *AB*, sitque ejus trajectoria curva *ACD*. Ad trajectoriarum punctum quodlibet *C*, duc rectam *CB* in directione vis Gravitatis, rectæ *AB* occurrentem in *B*; atq; resolvetur motus projectilis per *AC* in partes *AB*, *BC*, quarum *AB* oritur a motu projectionis uniformi, atq; *BC* a vi gravitatis accelerante. Est ergo recta descripta *AB* temporis proportionalis ab initio motûs in *A*, atq; est *BC* in duplicatâ ratione ejusdem temporis, sicut olim demonstravit Galilæus; adeoque in duplicatâ ratione rectæ *AB*. Cum ergo sit *BC* in duplicatâ ratione rectæ *AB*, constat curvam *ACD* esse Parabolam.
Q. E. D.

PROP.

P R O P. II.

*Velocitas corporis proiecti in quolibet puncto trajectoriae,
ea est, quam corpus acquirere potest cadendo per
altitudinem aequalem quartae parti parameiri Para-
bolæ ad punctum illud.*

DEMONSTRATIO.

Sit Trajectoria ACD (Fig. 2.) Ad punctum quodlibet A ducantur tangens AB , & diameter AE . In tangentे AB fiat AB æqualis dimidio parametri ad verticem A , & diametro AE parallela ducatur BC , trajectoriæ occurrens in C , & ad punctum C duci intelligatur tangens CG , tangentи AB occurrens in F , atq; diametro AE in G . Tum ex naturâ parabolæ erunt AG , CB æquales, adeoq; & AF , FB ; & quoniam est AB æqualis dimidio parametri ad punctum A , erit BC quarta pars ejusdem parametri, & proinde æqualis ipsi BF . Ipsi BC proximam & parallelam duc $b\ c$, parabolæ occurrentem in c , & duc linea $B\ b$ parallelam $C\beta$, ipsi $b\ c$ occurrentem in β . Tum quoniam spatium $C\ c$, adeoque & spatium $\beta\ c$, finguntur pere exigua, velocitates quibus describuntur erunt æquabiles quam proximè; adeoq; spatia $B\ b$, seu $C\beta$, $C\ c$, cum eodem tempore describantur, erunt ut velocitates quibus describuntur, & vicissim velocitates erunt ut spatia. Coincidant puncta C , c , atq; erunt hæ rationes accuratæ. Sed in isto casu propter similia triangula $C\beta\ c$, $FB\ C$, fit $C\beta$ ad $\beta\ c$, sicut FB ad BC ; ideoq; velocitates quibus describuntur $B\ b$, $\beta\ c$ sunt ut FB , BC , hoc est, sunt æquales. Velocitas autem, quâ describitur $\beta\ c$, ea

ea est, qua movetur projectile in punto A , & velocitas altera qua describitur βc , ea est quam corpus acquirit cadendo per altitudinem BC quartæ partis parametri ad punctum A . Est ergo velocitas projectilis in quolibet punto A æqualis velocitati, quam corpus acquirere potest cadendo per altitudinem quartæ partis parametri ad punctum illud. *Q. E. D.*

P R O P . III.

Datis velocitate & directione projectionis, invenire Trajectoriam corporis projecti.

1. Projiciatur corpus de loco A (Fig. 3.) in directione rectæ AB . Duc AC in directione vis gravitatis, (hoc est Horizonti perpendicularis,) ejus longitudinis, ut sit C punctum, unde corpus cadendo acquirere potest velocitatem in A , quâ sit projectio. Duc AF æqualem AC , angulum FAB constitutem cum lineâ directionis AB , æqualem angulo CAB . Duc CD perpendicularis ad AC (hoc est horizonti parallelam,) eiq; occurrentem FD , ipsi AC parallelam. Biseca FD in E ; atq; erit EF axis, atq; E vertex principalis Parabolæ, per quam movetur projectile. Unde describetur Trajectoria per notas proprietates Parabolæ. *Q. E. F.*

D E M O N S T R A T I O .

Est enim AC quarta pars parametri ad verticem A . Unde constant cætera ex conicis.

2. Ad punctum Trajectoriæ quodvis G , duc GH ipsi AC parallelam, & ipsi CD occurrentem in H ; atque iter HG altitudo, per quam corpus cadendo acquirere potest

potest velocitatem, quâ movetur projectile in puncto G. Q. E. F.

Hoc item constat ex Prop. 2. & ex conicis.

Scholium. Si ad puncta A, & C (Fig. 2.) ducantur tangentes AB, CG occurrentes rectis horizonti perpendicularibus CB, AG, in B & G; velocitates in A & C erunt inter se ut tangentium partes interceptæ, AB, CG.

P R O P. IV.

Unico facto experimento invenire velocitatem projectionis.

Projiciatur corpus de loco A (Fig. 2.) in directione qualibet AB, atq; observetur punctum percussum C. In directione vis gravitatis ducatur CB, ipsi AB occurrens in B, atque ipsis CB, AB, fiat tertia proportionalis L. Erit quarta pars longitudinis L altitudo, per quam corpus cadendo acquirere potest velocitatem projectilis in A. Q. E. I.

D E M O N S T R A T I O.

Est enim L parameter Trajectoriæ ad punctum A; unde constat solutio per propositionem secundam.

Scholium. Commodissimè instituitur experimentum, erectâ ad horizontem perpendiculari AG, & directionem sumendo AB, quæ bisecet angulum CAG, rectâ etiam AC existente horizonti parallelâ. Nam in isto casu altitudo quæ sita æqualis est dimidio distantia AC.

PROP.

P R O P . V.

Datis directione & velocitate projectionis; invenire occursum Trajectoriæ cum rectâ transeunte per punctum unde fit projectio.

Projiciatur corpus de loco A (Fig. 4.) in directione rectæ AB . In directione gravitati contrariâ, fiat AC æqualis altitudini, per quam corpus cadendo acquirere potest velocitatem, quâ fit projectio, atq; ducatur CE ipsi AC perpendicularis. Fiat FA æqualis ipsi CA , atq; angulum constituens FAB æqualem angulo CAB . Sit AK recta, cujus occursus cum Trajectoriâ queritur. Duc FI ipsi AK perpendicularem, atq; ipsi CE occurrentem in D . In CE sume ED æqualem CD , atq; ducatur ipsi CE perpendicularis EK , ipsi AK occurrens in K . Erit K punctum quæsumum.

DEMONSTRATIO.

In FI productâ fiat fI æqualis FI , atq; ducantur fA , fE , FE , FK . Quoniam est angulus FIA rectus, atq; fI æqualis FI , est etiam fA æqualis FA . Sed per constructionem est FA æqualis CA , atque angulus DCA rectus. Sunt ergo puncta C , F , f ad circulum centro A descriptum, quem tangit recta DC in C . Sunt ergo FD , CD , fD , continuè proportionales. Sed est ED æqualis CD (per constructionem) Sunt ergo FD , ED , fD continuè proportionales; adeoque ob angulum communem ad D , triangula FED , EfD sunt similia, atque angulus DEF æqualis angulo EfF .

Puncta itaq; tria F , E , f sunt ad circulum, quem tangit recta ED in E . Sed quoniam est fI æqualis FI , atq; angulus FIK rectus, centrum istius circuli est in rectâ IK ; item quoniam est angulus DEK rectus, centrum illud est etiam in rectâ EK . Est ergo K centrum istius circuli, adeoq; FK æqualis est ipsi EK . Jam (*per Prop. 3.*) sunt F focus Trajectoriæ, atq; $C A$ quarta pars parametri ad punctum A . Unde cum sit CE ad AC & EK perpendicularis, atq; FK æqualis EK , erit punctum K ad Trajectoriam (*per conica*). *Q. E. D.*

P R O P. VI.

Iisdem datis, invenire occursum Trajectoriæ cum rectâ, quâlibet positione data.

Projiciatur corpus de loco A (Fig. 5.) in directione AB , sitq; GH recta cujus occursus cum Trajectoriâ quæritur. Duc AC in directione gravitati contrariâ, atq; æqualem altitudini, per quam corpus cadendo acquirere potest velocitatem, quâ sit projectio; & duc AF æqualem ipsi AC , ita ut sit angulus FAB æqualis angulo CAB ; & ducatur CE perpendicularis ipsi CA . Ducatur FI ipsi GH occurrentis ad angulos rectos in I , atq; ipsi CE in D ; & in FI fiat fI æqualis FI . In CE fiat ED media proportionalis inter FD & fD ; & ipsi CE ducatur perpendicularis EK , ipsi GH occurrentis in K . Erit K punctum quæsิตum. *Q. E. I.*

D E M O N S T R A T I O.

Conjugendo fE demonstratur ad modum propositionis præcedentis.

Scholium.

Scholium. Quoniam punctum E sumi potest ad utramlibet partem puncti D , duo sunt puncta K, k , ubi recta $G H$ occurrit Trajectoriæ.

P R O P. VII.

Datā velocitate projectionis, invenire directionem, quæ faciat, ut Trajectoria transeat per punctum datum.

Projiciatur corpus de loco A , (Fig. 4.) & sit K punctum, per quod transire debet Trajectoria quæsita. Fiat AC , in directione gravitati contrariâ, æqualis altitudini, per quam corpus cadendo acquirere potest velocitatem projectionis. Ducatur CE ipsi AC perpendicularis, & ad eam duc KE perpendicularē. Centris A & K , & radiis CA , EK describantur duo circuli sibi mutuo occurrentes in F . Duc FA , & bifeca angulum CAF rectâ AB . Erit AB directio quæsita, in quâ fieri debet projectio, ut transeat Trajectoria per punctum K . *Q. E. F.*

D E M O N S T R A T I O.

Est CA æqualis quartæ parti parametri ad punctum A (per *Prop. 2.*) Et per constructionem sunt FA , CA æquales, item FK , EK . Est ergo F focus Parabolæ per puncta A , K , descriptæ: Sed illam tangit recta AB in A , propter angulos FAB , CAB æquales. Corpore itaq; projecto de punto A , in directione AB , eâ cum velocitate, quam corpus acquirere potest cadendo per altitudinem CA , transibit Trajectoria per punctum K . *Q. E. D.*

N.B. Cum

N.B. Cum circulorum centris A , K , & radiis CA , EK , descriptorum duo sint concursus, F , f , bisectis angulis FAC , fAC , duo etiam erunt directiones, quæ faciant, ut Trajectoria transeat per punctum datum K .

P R O P. VIII.

Datâ directione projectionis, invenire velocitatem, quæ faciat ut Trajectoria transeat per punctum datum.

Projiciatur corpus de loco A (Fig. 6.) in directione rectæ AB , & faciendum sit ut transeat Trajectoria per punctum K . Duc AK , eamq; biseca in C , & in directione gravitatis duc CB , ipsi AB occurrentem in B ; & junge BK . Duc AD , KE , ipsi CB parallelas, & ducantur AF , KF sibi mutuo occurrentes in F , ita ut sint anguli FAB , DAB æquales, item FKB , EKB . Erit FA æqualis altitudini, per quam corpus cadendo acquirere potest velocitatem quæsิตam, quâ projectio fieri debet in directione AB , ut transeat Trajectoria per K . *Q. E. F.*

DEMONSTRATIO.

Quoniam CB est in directione gravitatis, est diameter Parabolæ; & quoniam CA æqualis est CK , est CB diameter ad ordinatam AK . Unde cum sit AB tangens ad parabolam in A , erit etiam KB tangens ad punctum K . Hinc quoniam AD est in directione diametrorum, atq; angulus FAB æqualis angulo DAB , transit AF per focum parabolæ. Eodem argumento transit etiam KF per focum. Est ergo

ergo F focus parabolæ, adeoq; FA quarta pars parametri ad punctum A , quæ proinde æqualis est altitudini, per quam corpus cadendo acquirere potest velocitatem ad hoc necessariam, ut projecto corpore de A , in directione AB , transeat Trajectoria per punctum K .

P R O P. IX.

Invenire velocitatem minimam & directionem ei congruam, quâ fieri potest, ut transeat Trajectoria per punctum datum.

Projiciendum sit corpus de loco A (Fig. 7.) cum velocitate omnium minimâ & directione ei congruâ, quâ fieri potest ut perveniat in locum K , hoc est ut transeat Trajectoria per punctum K . Ductis AC , KE in directione gravitati contrariâ, & ductâ AK , biseca angulos CAK , EKA , rectis AB , KB , sibi multo occurrentibus in B . Duc BC ipsi AC occurrentem ad angulos rectos in C , atq; erit CA altitudo, per quam corpus cadendo acquirere potest velocitatem quæsitam; eritq; AB directio quæsita. Q.E.F.

D E M O N S T R A T I O.

Ducatur BF ipsi AK occurrens ad angulos rectos in F , atque occurrat CB ipsi KE in E . Propter angulos CAB , BAF , item angulos EKB , BKF , æquales atq; angulos rectos in C , E , & F , erunt æquales CA , FA , item EK , FK . Hinc constat puncta A , K esse ad parabolam, quam tangit recta AB in A , cuiusq; parameter ad punctum A est quadruplum altitudinis CA , foco existente F . Corpore itaque projecto

projecto de A in directione AB , eâ cum velocitate, quam corpus acquirere potest cadendo per altitudinem CA . Trajectoria erit dicta Parabola (per Prop. 2.) Dico autem illam esse velocitatem minimum, seu esse CA partem quartam parametri omnium minimæ, quâ Parabola describi potest, quæ transeat per puncta A, K .

Si fieri potest, in CA capiatur altitudo cA minor, quæ sit quarta pars parametri ad punctum A . Duc ipsi CA perpendicularē ce , ipsi KE occurrentem in e , & centro A & radio Ac describatur circulus ipsi AK occurrens in f . Quoniam cA dicitur quarta pars parametri ad punctum A , focus Parabolæ erit punctum aliquod p , in circumferentia circuli cpf , centro A & radio Ac descripti. Si ergo sit punctum K ad parabolam illam, erit pK æqualis eK . Est vero FK æqualis EK . Unde cum sit eK minor ipsâ EK , erit etiam pK minor ipsâ FK . Sed est pK major ipsâ fK , atq; est fK major ipsâ FK , (quoniam est fA minor ipsâ FA per hyp.) unde fit pK major ipsâ FK . Sed jam dicebatur pK minor ipsâ FK ; quæ repugnant. Nequit ergo Parabola describi, quæ transeat per puncta A, K , minori parametro quam in solutione definitum est. Q. E. D.

P R O P. X.

Datâ velocitate projectionis, invenire directionem, quæ faciat, ut corpus projiciatur ad distantiam omnium maximam in plano dato; atq; distantiam illam definire.

Sit planum datum AK (Fig. 8.) atq; invenienda sit distantia maxima AK , ad quam corpus projici potest in plano illo. Duc

Duc AC in directione gravitati contrariâ, æqualem quartæ parti parametri ad punctum A . Tum bisecto angulo ACK rectâ AB , erit AB directio projectio-
nis quæfita. Duc CB ipsi CA perpendicularēm, rectâ AB occurrentem in B , atque in CB productâ
fiat BE æqualis ipsi BC . Tum ductâ EK , ipsi CA parallelâ, quæ occurrat piano AK in K , erit AK di-
stantia maxima quæfita.

DEMONSTRATIO.

Centro A & radio AC describe circulum, ipsi AK occurrentem in F , & ducantur BF , BK . Quoniam anguli CAB , BAF sunt æquales (per constructionem) atque AF æqualis CA , erit BF æqualis CB , æqualis BE (per constructionem) atq; anguli ad F recti. Unde etiam fit FK æqualis EK . Sunt ergo puncta A , K ad parabolam foco F descriptam, quam tangit AB in A (propter angulos CAB , FAB æquales) quartâ parte parametri ad punctum A exi-
stente CA . Corpore igitur projecto de loco A , in di-
rectione AB , eâ cum velocitate, quam corpus acquirere potest cadendo per altitudinem CA , Trajectoria tran-
sibit per punctum K (per Prop. 2.) *Q. E. D.*

Dico autem, quod fit KA distantia omnium maxi-
ma, ad quam corpus projici potest de loco A eâdem
cum velocitate.

Si fieri potest, eâdem parametro, ad A describatur parabola, quæ transeat per punctum distantius k ; hoc est projiciatur corpus ad distantiam majorem kA . Duc Bk , atq; ipsi KE parallelam ke , ipsi CE occurrentem in e . Quoniam FB , EB , item FK , EK sunt æquales, sunt etiam anguli FBK , EBK æquales. Angulus ergo FBk major est angulo kBe ; unde

fit kF major ipsa ke . Sed quoniam est AC quarta pars parametri ad punctum A , focus parabolæ erit alicubi in circumferentiâ circuli centro A , & radio CA descripti. Sit focus ille p , & ducatur pk . Tum quoniam pk major est ipsâ Fk , erit etiam pk major ipsâ ke . Sed ut parabola transeat per punctum k , debet esse pk æqualis ke . Nequit ergo parabola duci in circumstantiis propositis, quæ transeat per punctum k distantius puncto K ; adeoq; nec corpus projici ad distantiam majorem ipsâ KA . *Q. E. D.*

P R O P. XI.

Iisdem positis, invenire locum puncti K, seu Curvam describere, quæ tangat omnes parolas eodem vertice A & eadēm parametro descriptas.

Sit A (Fig. 9.) vertex datus, atq; in directione gravitati contrariâ ducatur AC æqualis quartæ parti parametri datae. Tum descriptâ parabolâ, cuius vertex principalis sit C , atq; focus A ; erit ea curva quæsita.

D E M O N S T R A T I O.

Duc quamlibet AK , atq; in eâ sume FA æqualem CA , & ducatur CB ad CA perpendicularis, sitq; K punctum in propositione præcedente inventum. In AC produciâ, factâ Cc æquali CA , ducatur ce parallelâ ipsi CE ; ducatur etiam KE parallelâ ipsi AC , ipsis CE , ce occurrentis in E & e . Per propositionem præcedentem est KE æqualis ipsi FK ; unde cum sit etiam FA æqualis ipsi AC , æqualis ipsis Cc , Ee (per con-

(163)

constructionem) est ergo Ke æqualis KA ; unde
est punctum K ad parabolam foco A & vertice princi-
pali C descriptam. *Q. E. D.*

Bisecto autem angulo AKE à rectâ KB , tanget
hæc utramq; parabolam, tam foco F per A & K , quam
foco A per K descriptam. Unde se mutuo tangunt
parabolæ. *Q. E. D.*

Errat. *Pag. 152. l. ult. pro βc. l. Bb.*

F I N I S.

L O N D O N:

Printed for *W. and J. Innys. Printers to the Roy:
Society;* at the Sign of the Prince's ~~Arms~~,
End of St. Paul's-Church-Yard.

Pla: II.

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 3.

Fig. 6.

Fig. 7.

Fig. 5.

Fig. 8.

Fig. 9.

Fig. 2.