

Assignment 4: CS220

3-bit Gray code counter and 8-bit Adder/Subtracter Using FSM

Abhishek Pardhi, Aayush Kumar, Jahnavi Kairamkonda 200026, 200008, 200482

B.Tech students apardhi20@iitk.ac.in, akgarg20@iitk.ac.in, kjahnavi20@iitk.ac.in

Indian Institute of Technology Kanpur

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
March 6, 2022

Contents

1	3-bi	t Gray code counter	1
	1.1	State Diagram	1
	1.2	State Assignment Table	1
	1.3	State Table	2
	1.4	Excitation Table	2
	1.5	K-map	3
	1.6	Circuit Diagram	4
_	0.1.1		_
2	8-bi	t Adder/Subtracter	5
	2.1	Description	5
	2.2	Circuit Diagram	5

1 3-bit Gray code counter

1.1 State Diagram

Figure 1: State diagram of sequence detector

1.2 State Assignment Table

Sta	State Assignment							
S_0	000							
$ S_1$	001							
S_2	011							
S_3	010							
S_4	110							
S_5	111							
S_6	101							
S_7	100							

Table 1: State Assignment table

1.3 State Table

PS	NS
000	001
001	011
011	010
010	110
110	111
111	101
101	100
100	000

Table 2: State table

1.4 Excitation Table

P.S.	P.S.	P.S.	N.S.	N.S.	N.S.	FF's	FF's	FF's	O/P
X	Y	Z	X'	Y'	Z'	T_x	T_Y	T_Z	
0	0	0	0	0	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1	0
0	1	0	1	1	0	1	0	0	0
1	1	0	1	1	1	0	0	1	0
1	1	1	1	0	1	0	1	0	0
1	0	1	1	0	0	0	0	1	0
$\parallel 1$	0	0	0	0	0	1	0	0	1

Table 3: Excitation table

1.5 K-map

Figure 2: *K-maps*

$$\Rightarrow T_x = \overline{Z}(X \oplus Y)$$

$$\Rightarrow T_y = Z(\overline{X \oplus Y})$$

$$\Rightarrow T_z = \overline{Z \oplus (X \oplus Y)}$$

$$\Rightarrow O = X\overline{Y}\overline{Z} \cdot T_x \overline{T_y T_z}$$

1.6 Circuit Diagram

Figure 3: Circuit diagram of 3-bit Gray code counter

2 8-bit Adder/Subtracter

2.1 Description

The 8-bit adder/subtracter was made using eight 1-bit adder/subtracter. Each 1-bit adder/subtracter takes three 1-bit inputs \mathbf{a} , \mathbf{b} , \mathbf{cin} , \mathbf{opcode} and gives two 1-bit outputs sum and carry. We first made a full adder and then gave it \mathbf{a} and $\mathbf{b} \oplus \mathbf{opcode}$ as input . Here, $\mathbf{b} \oplus \mathbf{opcode}$ gives us the 1's complement of \mathbf{b} whenever \mathbf{opcode} is 1'b1 (since XOR gate can invert or not invert a Boolean bit depending on input at other terminal). Also, we gave \mathbf{opcode} as \mathbf{cin} to the lower most significant bit's adder to convert the 1's complement of \mathbf{b} to 2's complement of \mathbf{b} (since 2's complement is obtained by flipping all bits of the binary number and adding 1).

The 8-bit adder/subtracter takes two 8-bit inputs A & B and one 1-bit input **opcode** and it gives one 8-bit output Sum if there's no overflow. The overflow is known from the value of $cout[7] \oplus cout[6]$ (since overflow occurs whenever the carry out of last bit is not equal to carry out of second last bit).

2.2 Circuit Diagram

Figure 4: Circuit diagram of 8-bit Adder/Subtracter