Lecture 13: Self-Supervised Learning

Administrative

- Assignment 3 due in two weeks 5/25
- Midterm grade is out
- Regrade request:
 - Gradescope regrade only for mistakes according to the current rubric
 - Teaching team will discuss concerns in MC & T/F next Monday

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets

Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Samples from the model look much better!

Radford et al, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in laten space

Radford et al, ICLR 2016

Radford et al, ICLR 2016

2017: Explosion of GANs

See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

"The GAN Zoo"

- GAN Generative Adversarial Networks
- · 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- · AdaGAN AdaGAN: Boosting Generative Models
- · AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- · AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- . Bayesian GAN Deep and Hierarchical Implicit Models
- . BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- . BiGAN Adversarial Feature Learning
- . BS-GAN Boundary-Seeking Generative Adversarial Networks
- . CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters
 with Generative Adversarial Networks
- · CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- . C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- · CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- . DTN Unsupervised Cross-Domain Image Generation
- . DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- . DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- . DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- . EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- . FF-GAN Towards Large-Pose Face Frontalization in the Wild
- . GAWWN Learning What and Where to Draw
- GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN Geometric GAN
- GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- IAN Neural Photo Editing with Introspective Adversarial Networks
- iGAN Generative Visual Manipulation on the Natural Image Manifold
- IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017.

Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

2017: Explosion of GANs

Source->Target domain transfer

CycleGAN. Zhu et al. 2017.

Text -> Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

this magnificent fellow is crest, and white cheek patch.

Reed et al. 2017. Many GAN applications

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

2019: BigGAN

Brock et al., 2019

Scene graphs to GANs

Specifying exactly what kind of image you want to generate.

The explicit structure in scene graphs provides better image generation for complex scenes.

Figures copyright 2019. Reproduced with permission.

Johnson et al. Image Generation from Scene Graphs, CVPR 2019

HYPE: Human eYe Perceptual Evaluations

hype.stanford.edu

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurIPS 2019

Figures copyright 2019. Reproduced with permission.

Summary: GANs

Don't work with an explicit density function Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Summary

Autoregressive models:

PixelRNN, PixelCNN

Van der Oord et al, "Conditional image generation with pixelCNN decoders". NIPS 2016

Variational Autoencoders

Kingma and Welling, "Auto-encoding variational bayes", ICLR 2013

Generative Adversarial Networks (GANs)

Goodfellow et al, "Generative Adversarial Nets", NIPS 2014

Useful Resources on Generative Models

CS 236: <u>Deep Generative Models</u> (Stanford)

CS 294-158 <u>Deep Unsupervised Learning</u> (Berkeley)

Last Lecture: Generative Modeling

Given training data, generate new samples from same distribution

Objectives:

- 1. Learn $p_{model}(x)$ that approximates $p_{data}(x)$
- 2. Sampling new x from $p_{model}(x)$

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Ffjord

Generative vs. Self-supervised Learning

- Both aim to learn from data without manual label annotation.
- Generative learning aims to model **data distribution** $p_{data}(x)$, e.g., generating realistic images.
- Self-supervised learning methods solve "pretext" tasks that produce good features for downstream tasks.
 - Learn with supervised learning objectives, e.g., classification, regression.
 - Labels of these pretext tasks are generated automatically

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

Generative vs. Self-supervised Learning

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein</u>, <u>2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

Source: Anand, 2020

How to evaluate a self-supervised learning method?

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

Evaluate the learned feature encoders on downstream *target tasks*

How to evaluate a self-supervised learning method?

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

How to evaluate a self-supervised learning method?

- 1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations
- 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

Broader picture Today's lecture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

on a large corpus of sex followed by this studies on a specific task. While cylically task-approxic in architecture, this method still require task-specific the tuning distance of thousands of tens of thousands of camples, by corrued, humans can generally perform a new language task from only a few examples or from simple interactions—something which carriers AP systems still targets are supported to the control of the con

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

speech synthesis

Wavenet (van den Oord et al., 2016)

. . .

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Evaluation on semi-supervised learning

Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

Transfer learned features to supervised learning

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)	
Trained layers	fc6-8	all	all	all	
ImageNet labels	78.9	79.9	56.8	48.0	
Random		53.3	43.4	19.8	
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6	
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9		
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7	
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4		
Context (Doersch et al., 2015)	55.1	65.3	51.1		
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9	
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6	
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4		
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0	
ColorProxy (Larsson et al., 2017)		65.9		38.4	
Counting (Noroozi et al., 2017)	1-	67.7	51.4	36.6	
(Ours) RotNet	70.87	72.97	54.4	39.1	

Pretrained with full ImageNet supervision

No pretraining

Self-supervised learning on ImageNet (entire training set) with AlexNet.

Finetune on labeled data from Pascal VOC 2007.

Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

Visualize learned visual attentions

(a) Attention maps of supervised model

(b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)

Pretext task: predict relative patch locations

$$X = (); Y = 3$$

(Image source: <u>Doersch et al., 2015</u>)

Pretext task: solving "jigsaw puzzles"

(Image source: Noroozi & Favaro, 2016)

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak et al. [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	3 days	1000 class labels	78.2%	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	=
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{days}$	context	$\boldsymbol{67.6\%}$	53.2%	$\boldsymbol{37.6\%}$

"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Inpainting evaluation

Input (context)

reconstruction

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= \left|\left|M*(x - F_{ heta}((1-M)*x))
ight|
ight|_2^2 \end{aligned}$$

$$L_{adv} = \max_D \mathbb{E}[\log(D(x))] + \log(1 - D(F((1-M)*x)))]$$

Adversarial loss between "real" images and inpainted images

Inpainting evaluation

Input (context)

reconstruction

adversarial

recon + adv

Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal et al. [1]	egomotion	10 hours	52.9%	41.8%	-
Wang et al. [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Pretext task: image coloring

Pretext task: image coloring

Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions

Split-Brain Autoencoder

Learning features from colorization: Split-brain Autoencoder

Learning features from colorization: Split-brain Autoencoder

Transfer learned features to supervised learning

Self-supervised learning on **ImageNet** (entire training set).

Use concatenated features from F₁ and F₂

Labeled data is from the **Places** (Zhou 2016).

Source: Zhang et al., 2017

Pretext task: image coloring

Pretext task: image coloring

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

t = 0

how should I color these frames?

t = 1

t = 2

t = 3

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

how should I color these frames?

Should be the same color!

t = 1

t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{ heta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}
ight)$$

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Tracking emerges from colorization

Propagate pose keypoints using learned attention

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Pretext tasks from image transformations

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

A more general pretext task?

A more general pretext task?

Contrastive Representation Learning

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning

Contrastive Representation Learning

What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder function** f that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-) .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Loss function given 1 positive sample and N - 1 negative samples:

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the score for the N-1 positive pair negative pairs

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the score for the N-1 positive pair negative pairs

This seems familiar ...

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network $h(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

 random cropping, random color distortion, and random blur.

SimCLR: generating positive samples from data augmentation

SimCLR

Generate a positive pair by sampling data augmentation functions

```
Algorithm 1 SimCLR's main learning algorithm.
   input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
   for sampled minibatch \{x_k\}_{k=1}^N do
       for all k \in \{1, \ldots, N\} do
           draw two augmentation functions t \sim T, t' \sim T
           # the first augmentation
           \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
           \boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})
                                                                # representation
           z_{2k-1} = g(h_{2k-1})
                                                                      # projection
           # the second augmentation
           	ilde{m{x}}_{2k} = t'(m{x}_k)
           \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                                # representation
           \boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})
                                                                      # projection
       end for
       for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
           s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
       end for
       define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
       \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
       update networks f and g to minimize \mathcal{L}
   end for
   return encoder network f(\cdot), and throw away g(\cdot)
```

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

SimCLR

Generate a positive pair by sampling data augmentation functions

```
Algorithm 1 SimCLR's main learning algorithm.
   input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
   for sampled minibatch \{x_k\}_{k=1}^N do
       for all k \in \{1, \ldots, N\} do
          draw two augmentation functions t \sim T, t' \sim T
           # the first augmentation
          \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
                                                              # representation
          h_{2k-1} = f(\tilde{x}_{2k-1})
          z_{2k-1} = g(h_{2k-1})
                                                                    # projection
           # the second augmentation
          	ilde{m{x}}_{2k} = t'(m{x}_k)
          oldsymbol{h}_{2k} = f(	ilde{oldsymbol{x}}_{2k})
                                                              # representation
          \boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})
                                                                    # projection
       end for
       for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
           s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
       end for
       define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
       \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
       update networks f and g to minimize \mathcal{L}
   end for
   return encoder network f(\cdot), and throw away g(\cdot)
```

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x^{-}

SimCLR

Generate a positive pair by sampling data augmentation functions

Iterate through and use each of the 2N sample as reference, compute average loss

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ # representation $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation $ilde{m{x}}_{2k} = t'(m{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x^{-}

SimCLR: mini-batch training

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

SimCLR: mini-batch training

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

= classification label for each row

Training linear classifier on SimCLR features

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Semi-supervised learning on SimCLR features

		Label	fraction
Method	Architecture	1%	10%
		To	p 5
Supervised baseline	ResNet-50	48.4	80.4
Methods using other labe	l-propagation:		
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	-	88.5
FixMatch (w. RandAug)	ResNet-50	<u></u>	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	<i>a</i>	91.2
Methods using representa	tion learning only:	1	
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

Table 7. ImageNet accuracy of models trained with few labels.

SimCLR design choices: projection head

Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space z is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

SimCLR design choices: large batch size

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch. ¹⁰

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Source: He et al., 2020

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

MoCo

Generate a positive pair by sampling data augmentation functions

> No gradient through the positive sample

Update the FIFO negative sample queue

```
f g, f k: encoder networks for query and key
  queue: dictionary as a queue of K keys (CxK)
  m: momentum
  t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_q = aug(x) # a randomly augmented version
   x_k = aug(x) # another randomly augmented version
   q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
  k = k.detach() # no gradient to keys
    positive logits: Nxl
                                                           Use the running
   l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
                                                            queue of keys as the
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
                                                            negative samples
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neq], dim=1)
   # contrastive loss, Eqn. (1)
   labels = zeros(N) # positives are the 0-th
   loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
   update(f_q.params)
     momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
    update dictionary
   engueue (queue, k) # engueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
```

Source: He et al., 2020

Update f k through

InfoNCE loss

momentum

"MoCo V2"

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

MoCo vs. SimCLR vs. MoCo V2

		unsup. j	ore-tra	iin	ImageNet	vo	C detec	tion
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP_{75}
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		✓		200	63.4	82.2	56.8	63.2
(c)	✓	✓		200	67.3	82.5	57.2	63.9
(d)	✓	✓	✓	200	67.5	82.4	57.0	63.6
(e)	✓	✓	1	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

MoCo vs. SimCLR vs. MoCo V2

		un	sup. pre	-train		ImageNet
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	✓	✓	1	200	256	61.9
SimCLR [2]	✓	✓	1	200	8192	66.6
MoCo v2	✓	✓	1	200	256	67.5
results of longe	e r unsupe	rvised tr	aining	follow:		
SimCLR [2]	1	✓	✓	1000	4096	69.3
MoCo v2	√	✓	1	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (ResNet-50, 1-crop 224×224), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

Table 3. **Memory and time cost** in 8 V100 16G GPUs, implemented in PyTorch. †: based on our estimation.

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning:

contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo

Source: van den Oord et al., 2018

Sequence-level contrastive learning:

contrastive learning based on sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Figure source

1. Encode all samples in a sequence into vectors $\mathbf{z}_t = \mathbf{g}_{enc}(\mathbf{x}_t)$

- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code $\boldsymbol{c_t}$ using an auto-regressive model ($\boldsymbol{g_{ar}}$). The original paper uses GRU-RNN here.

Figure source: van den Oord et al., 2018,

- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})
- 3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

, where W_{ν} is a trainable matrix.

Figure source

CPC example: modeling audio sequences

CPC example: modeling audio sequences

Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC
Phone classification	1
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	1
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset)

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.

CPC example: modeling visual context

Method	Top-1 ACC	
Using AlexNet conv5	Ì	
Video [28]	29.8	
Relative Position [11]	30.4	
BiGan [35]	34.8	
Colorization [10]	35.2	
Jigsaw [29] *	38.1	
Using ResNet-V2		
Motion Segmentation [36]	27.6	
Exemplar [36]	31.5	
Relative Position [36]	36.2	
Colorization [36]	39.6	
CPC	48.7	

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext task-based self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.

A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

SimCLR: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint

MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning

CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.

Contrastive learning between image and natural language sentences

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Contrastive learning on pixel-wise feature descriptors

Dense Object Net, Florence et al., 2018

Dense Object Net, Florence et al., 2018

Next time: Visualizing and understanding deep neural networks