FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Linguagens Formais e Autômatos - Aula 11 - 1º SEMESTRE/2016

Prof. Luciano Silva

TEORIA: ANÁLISES DESCENDENTE LL(1)

Nossos objetivos nesta aula são:

- conhecer o processo de geração de tabelas LL(1)
- pratica com geração de tabelas de análise LL(1)

Para esta semana, usamos como referência as **Seções 4.1** (**Gramáticas Livres de Contexto**) até **4.4** (**Ambigüidade**) do nosso livro da referência básica:

RAMOS, M.V.M., JOSÉ NETO, J., VEJA, I.S. Linguagens Formais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009.

Não deixem de ler estas seções depois desta aula!

CONJUNTOS NULLABE, FIRST e FOLLOW

• Para se construir uma tabela de análise LL(1), vamos utilizar três procedimentos computacionais aplicados a uma produção:

nullable(X) : verifica se X produz a cadeia vazia (ε)

FIRST(X) : conjunto de terminais que iniciam as palavras derivadas de X **FOLLOW(X)** : conjunto de terminais que podem imediatamente seguir X

Em particular, os conjuntos FIRST e FOLLOW ajudam a determinar qual regra será aplicada na ocorrência de um determinado terminal.

• Exemplo - vamos considerar a seguinte gramática:

 $Z \rightarrow d\$$ $Z \rightarrow XYZ\$$ $Y \rightarrow \epsilon$ $Y \rightarrow c$ $X \rightarrow Y$

X → a

Para esta gramática, teremos os seguintes valores para nullable, FIRST e FOLLOW:

	nullable	FIRST	FOLLOW
Х	Т	асв	a c d
Υ	Т	СЕ	a c d
Z	F	a c d	\$

 Observe que somente terminais fazem parte dos conjuntos FIRST e FOLLOW. O conjunto FIRST pode, eventualmente, incluir a cadeia vazia. FOLLOW nunca pode conter a cadeia vazia.

Algoritmo iterativo para computar Nullable, FIRST e FOLLOW:

- 1. Inicializar nullable como F para todas as regras e FIRST/FOLLOW como conjuntos vazios
- 2. Para cada símbolo terminal Z
- 3. $FIRST[Z] = \{Z\}$
- 4. Repita
- 5. Para cada produção X → Y₁ ... Y_k
- 6. Se Y_1 ... Y_k são todos nullable (ou se k=0)
- 7. nullable[X] = T
- 8. Para cada i de 1 até k
- 9. Se $Y_1 \dots Y_{i-1}$ são todos nullable (ou se i=1)
- 10. $FIRST[X] = FIRST[X] \cup FIRST[Y_i]$
- 11. Se Y_{i+1} ... Y_k são todos nullable (ou se i=k)
- 12. $FOLLOW[Y_i] = FOLLOW[Y_i] \cup FOLLOW[X]$
- 13. Para cada j de i+1 até k
- 14. Se $Y_{i+1} \dots Y_{i-1}$ são todos nullable (ou se i+1=k)
- 15. $FOLLOW[Y_i] = FOLLOW[Y_i] \cup FIRST[Y_i]$
- 16. Até que nullable, FIRST e FOLLOW não se alterem

Para facilitar a execução deste algoritmo, utilizamos uma tabela como mostrado abaixo:

	nullable	FIRST	FOLLOW
X			
Υ			
Z			

Na primeira coluna, colocamos todos os símbolos não-terminais e, nas demais colunas, os valores para nullable, FIRST e FOLLOW.

EXERCÍCIO TUTORIADO

Calcular os valores de nullable, FIRST e FOLLOW para a seguinte gramática:

- $Z \rightarrow d$ \$
- $Z \rightarrow XYZ$ \$
- $3 \leftarrow Y$
- $Y \rightarrow c$
- $X \rightarrow Y$
- $X \rightarrow a$

	nullable	FIRST	FOLLOW
Х			
Υ			
Z			

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

Calcular os valores de nullable, FIRST e FOLLOW para a seguinte gramática:

- S → cAa\$
- $A \rightarrow cB \mid B$
- $B \rightarrow bcB \mid \epsilon$

	nullable	FIRST	FOLLOW
S			
Α			
В			

TABELAS DE ANÁLISE LL (1)

Para se montar uma tabela preditiva descendente, colocamos os símbolos não-terminais nas linhas e os terminais nas colunas. Colocamos a produção X→Y na linha X e coluna T se e somente se T∈FIRST[Y]. Se Y for nullable, colocamos também a produção X→Y na linha X e coluna T para cada T∈FOLLOW[X].

EXERCÍCIO TUTORIADO

Construa a tabela preditiva descendente para a gramática abaixo e seus conjuntos nullable, FIRST e FOLLOW:

$z \rightarrow$	d\$
$z \rightarrow$	XYZ\$
$Y \rightarrow$	3
$Y \rightarrow$	С
$x \rightarrow$	Υ
$x \rightarrow$	а

	nullable	FIRST	FOLLOW
Х	Т	асε	a c d
Υ	Т	сε	a c d
Z	F	a c d	\$

	а	С	d	\$
Х				
Υ				
Z				

Esta tabela apresenta um pequeno problema. Há entradas com mais de uma regra que pode ser aplicadas: **isto ocorre porque esta gramática é ambígua**. Para verificar isto, basta encontrar duas árvores para a entrada d. **Entradas não preenchidas significam ERRO**.

Gramáticas cujas tabelas preditivas descendentes **não contém entradas duplicadas** são chamadas de **gramáticas LL(1)**.

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

Montar a tabela preditiva descendente para a gramática abaixo. Ela é uma tabela do tipo LL(1)?

- S → cAa\$
- $A \rightarrow cB \mid B$
- $B \rightarrow bcB \mid \epsilon$

EXERCÍCIOS EXTRA-CLASSE

1. Utilizando a tabela LL(1) construída em classe

	а	b	С	\$
S	ERRO	ERRO	$S \rightarrow cAa$	ERRO
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	ERRO
В	$B \rightarrow \epsilon$	B →bcB	ERRO	ERRO

Mostre a análise para a entrada **cbca\$**:

PILHA	ENTRADA	AÇÃO

2. Considere-se a GLC mostrada abaixo:

- S → E\$
- $E \rightarrow TE'$
- $E' \rightarrow +TE'$
- E'**→** -TE'
- E'**→** ε
- $T \rightarrow FT'$
- $T' \rightarrow *FT'$
- $T' \rightarrow /FT'$
- T′**→**ε
- $F \rightarrow id$
- $F \rightarrow num$
- $F \rightarrow (E)$
- Construa os conjuntos nullable, FIRST e FOLLOW
- Construa a tabela preditiva descendente para esta gramática. Esta tabela é do tipo LL(1)?