ACADEMIC UNDERGRADUATE STUDIES DIVISION FIRST SEMESTER 2024-2025

Course Handout Part II

02-08-2024

In addition to part I (the general handout for all courses appended to the timetable), this portion gives specific details regarding the course.

Course No. : CHEM F311

Course Title : Organic Chemistry III Instructor-in-charge : **KVG Chandra Sekhar**

1. Course Description:

The initial portions of this course emphasize applications of important reagents and reactions in organic synthesis; the later portion of the course deals with disconnection or *synthon* approach. In the *disconnection* or *synthon* approach, the target molecule is broken down by a series of disconnections into possible starting materials, followed by synthesis.

2. Scope and Objective of the Course:

The aim of this course is to familiarize students with various common organic reagents, expose them to some of the important transition metal catalyzed organic reactions and retrosynthetic analysis and enable the student to design the synthesis of various organic compounds using appropriate reagents.

3. Text Book:

TB1: M. B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th edition, 2012.

TB2: Stuart Warren: Organic Synthesis: The Disconnection Approach: John Wiley & Sons, 2004.

Reference Books:

R1: J. Clayden, Greeves, Warren & Wothers, Organic Chemistry, Oxford University Press, 1st edition, 2000.

R2: G. S. Zweifel and M. H. Nantz, The Modern Organic Synthesis: An Introduction. Wiley, 2nd edition, 2017.

R3: Carruthers and Coldham, Modern Methods of Organic Synthesis. Cambridge, 4th edition, 2004.

4. Course Plan:

Lec.	Learning	Topic(s) to be Covered	Learning Outcomes	Chap(s).
No.	Objectives			No(s).
1	Introduction	Organic synthesis and its	Relate the importance of	Class notes
		applications	various organic compounds,	
			their synthesis, and uses	
2-5	Common	NaBH4, LiAlH4, DIBAL, BH3, Birch	Define and consolidate new	TB1 : 15-13;
	organic	reduction, Swern oxidation, OsO4,	oxidative and reductive	R2: 4;
	reagents	O ₃ , DMP, <i>m</i> -CPBA, Ti(ⁱ OPr) ₄ ,	reagents to be used in	Class notes
		Lindlar catalyst, NBS, NaIO ₄	various organic synthesis	
6-9	Organometallic	Grignard reagents, organolithium	Define the various	R2: 7;

	reagents	reagents, organocuprates, organozinc reagents, organosilicon reagents, organosilicon reagents, organotin compounds	organometallic reagents to be used in organic synthesis	Class notes
10-12	Transition metal- catalyzed organic reactions	C-C bond forming reactions (Suzuki, Heck, Negishi, Sonogashira, Stille reaction), C-N bond forming reactions (Buchwald-Hartwig reaction)	Define various bond-forming reactions and their application-based name reactions in organic synthesis	TB1: 13-12, 13-10, R1: 48; Class notes
13	Introduction of disconnection approach	Basic principles of disconnection approach in organic synthesis	Define retrosynthesis and the basis for the mathematical approach toward synthesizing organic compounds	TB2: 1
14-16	Synthesis of aromatic Compounds	Basic Principles: Synthesis of Aromatic Compounds, The Order of Events	Use retrosynthetic analysis to work out and compare alternative syntheses of	TB2: 2, 3
17-24	One group C-X and C-C disconnections	One Group C-X Disconnections, Chemoselectivity, Synthesis of Alcohols, General Strategy of Choosing Disconnection, Stereoselectivity, Synthesis of Carbonyl Compounds, Regioselectivity, Alkene Synthesis, Use of acetylenes for synthesis.	complex organic compounds. Outline important classical and modern reactions used in organic synthesis. Discuss how reaction conditions influence the outcome of important reactions with respect to regioselectivity, stereospecificity and	TB2: 4, 5, 10-16
25-35	Two group C-X and C-C disconnections	Two Group C-X Disconnections, Reversal of Polarity, Cyclisation Reactions, Summary of Strategy, Amine Synthesis, Diels-Alder Reactions, 1,3-Difuntionalised Compounds and α,β-Unsaturated Carbonyl Compounds, Control in Carbonyl Condensations, 1,5-Difuntionalised Compounds, Michael addition, and Robinson annelation, Use of Aliphatic Nitro Compounds in Synthesis, 1,2-Difuntionalised compounds, FGA and its Reverse, Reconnections, 1,4- and 1,6-Difuntionalised Compounds, Strategy of Carbonyl Disconnections (SS).	stereoselectivity.	TB2: 6-9, 17-28. SS : self-study
36-39	Ring synthesis (saturated heterocycles)	Introduction to Ring synthesis, Synthesis of three, four, five, and six-membered Rings, and general strategy of Ring Synthesis	Use the disconnection approach for the synthesis of ring compounds and apply all the principles learnt already	TB2: 29, 30, 34, 36, 37
40-42	Synthesis of heterocyclic compounds	Aromatic Heterocycles	in synthesizing various aromatic heterocycles	TB2: 39

5. Evaluation scheme:

Component	Duration	Weightage (%)	Date and Time	Remarks
Midsemester Test	90 min.	25	7/10 400 - 530 PM	Closed Book
Class tests*	15 min.	20	Continuous	Closed Book
Assignment#		15		Open Book
Comprehensive	180 min.	20 % Closed book +	10/12 AN	Partially Open
Examination		20 % Open book		Book

^{*}Six class tests will be conducted at regular intervals. The best five will be considered. **Makeup is not** permissible for class tests.

#One home assignment would be given, and each student is expected to submit **a handwritten report** (approx 8-10 pages) on the assigned topic.

Note: Active and regular participation in class discussions is expected from each student.

- **6. Chamber Consultation Hour**: Friday, 09th hour (4-5 PM)
- **7. Make-up policy:** Makeup would be considered only for **genuine reasons** (**hospitalization with appropriate documentary proof**), and any other extreme emergency situations.
- **8. Notice**: All notices concerning the course will be displayed on the chemistry notice board / CMS.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester, and no type of academic dishonesty is acceptable.
- **10. Final grading** will be done based on a student's overall performance in each of the components listed in item no. 5. For **mid-semester grading**, progress made by a student up to that point will be evaluated.

Instructor-in-Charge

hvkch

Organic Chemistry - III

