import numpy as np
import pandas as pd
import matplotlib as plt
%matplotlib inline
import seaborn as sns

df = pd.read_csv('diabetes.csv')
df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
4)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	

df.shape

(768, 9)

df.Outcome.value_counts()

0 5001 268

Name: Outcome, dtype: int64

sns.countplot(x='Outcome' , data =df);

df.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64
dtypo: object	

dtype: object

df.describe()

#THELE ALC THEOLICEC VALUES T.C.O S TH OTACOSC, DIOUALLESSALE, SKITHITEKHESS, THSAITH, DEL.

replacing 0 with median of corresponding column.

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

```
dataframe_temp = df.drop(["Pregnancies","Outcome"],axis = 1)
dataframe_temp
medians = dataframe_temp.median()
print("medians",medians)
dataframe_nonzero = dataframe_temp.replace(0,medians)
dataframe_nonzero["Pregnancies"] = df["Pregnancies"]
dataframe_nonzero["Outcome"] = df["Outcome"]
```

medians Glucose 117.0000
BloodPressure 72.0000
SkinThickness 23.0000
Insulin 30.5000
BMI 32.0000
DiabetesPedigreeFunction 0.3725

corr = dataframe_nonzero.corr()
corr

	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
Glucose	1.000000	0.218937	0.172143	0.357573	0.231400	
BloodPressure	0.218937	1.000000	0.147809	-0.028721	0.281132	
SkinThickness	0.172143	0.147809	1.000000	0.238188	0.546951	
Insulin	0.357573	-0.028721	0.238188	1.000000	0.189022	
ВМІ	0.231400	0.281132	0.546951	0.189022	1.000000	
DiabetesPedigreeFunction	0.137327	-0.002378	0.142977	0.178029	0.153506	
Age	0.266909	0.324915	0.054514	-0.015413	0.025744	
Pregnancies	0.128213	0.208615	0.032568	-0.055697	0.021546	
Outcome	0.492782	0.165723	0.189065	0.148457	0.312249	
4						•

Takeaway: outcome is positively corelated to Glucose feature.

Age & no. of pregencies have positive corelation.

BMI & Skin thickness has positive corelation

No other strong negetive corelation is observed.

sns.heatmap(corr)

<matplotlib.axes._subplots.AxesSubplot at 0x7f945b12a150>

sns.pairplot(dataframe_nonzero, diag_kind='kde', hue="Outcome") # plotting pairplot

[38 47]]

Scaling the datapoints using MinMax Scalar

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X train scaled = scaler.fit transform(X train)
X test scaled = scaler.fit transform(X test)
#Zscore
from scipy.stats import zscore
X_train_z = X_train.apply(zscore) # converting to Z score
X test z = X test.apply(zscore)
# Model score on Minmax scaled values
clf = svm.SVC(C = 10,gamma= "scale")
clf.fit(X_train_scaled,Y_train)
score2 = clf.score(X test scaled,Y test)
score2
     0.7532467532467533
# Model score using zscore values
clf = svm.SVC(C = 10,gamma= "scale")
clf.fit(X_train_z,Y_train)
score3 = clf.score(X test z,Y test)
score3
     0.72727272727273
```

We can try increasing either C or gamma to fit a more complex model.

```
'C': [ 0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5, 3.0 ]
gs = GridSearchCV(estimator=SVC(), param grid=param grid,scoring='accuracy', cv=10, n jobs=mu
gs.fit(X train scaled, Y train)
     GridSearchCV(cv=10, estimator=SVC(), n_jobs=2,
                  param_grid=[{'C': [0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5,
                               'kernel': ['linear', 'rbf', 'poly', 'sigmoid']}],
                  scoring='accuracy')
gs.best_estimator_
     SVC(kernel='linear')
gs.best score
     0.7653738644304683
Calculate AUC score and plot ROC curve
```

```
from sklearn.metrics import roc_auc_score,roc_curve
auc = roc_auc_score(Y_test,Y_pred)
print("AUC %0.3f" %auc)
     AUC 0.725
```

AUC measures how true positive rate (recall) and false positive rate trade off

```
from sklearn import model selection
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
seed = 7
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
```

```
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
models.append(('RFC', RandomForestClassifier()))
results = []
names = []
scoring = 'accuracy'
import warnings
warnings.filterwarnings("ignore")
for name, model in models:
   kfold = model_selection.KFold(n_splits=10, random_state=None)
   cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
   results.append(cv_results)
   names.append(name)
   msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
   print(msg)
     LR: 0.763347 (0.061653)
     LDA: 0.770790 (0.062164)
     KNN: 0.696261 (0.085826)
     CART: 0.683368 (0.060197)
     NB: 0.730119 (0.054511)
     SVM: 0.744794 (0.054232)
     RFC: 0.757757 (0.055708)
```

Linear Discriminant Analysis is giving a better accuracy of 77% as compared with the other models.

×