Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Лабораторная работа №3 Вариант №4

«Исследование простых цепей синусоидального тока»

Проверил Нехайчик Е. В.

Выполнил Шумигай В. В. Кульбеда Е. А.

ст. гр. 020601

$$\begin{array}{lll} U \coloneqq 10 & R_1 \coloneqq 110 & R_3 \coloneqq 109.9 & r_K \coloneqq 58.7 \\ f \coloneqq 800 & R_2 \coloneqq 109.6 & L \coloneqq 44.3 \cdot 10^{-3} & C \coloneqq 1.04 \cdot 10^{-6} \end{array}$$

1) Расчет последовательной цепи

а) Определим модули сопротивлений индуктивности и емкости:

$$X_L \coloneqq 2 \cdot \pi \cdot f \cdot L = 222.676$$

$$X_C \coloneqq \frac{1}{2 \cdot \pi \cdot f \cdot C} = 191.292$$

б) определим полное комплексное сопротивление цепи:

$$Z \coloneqq R_1 + r_K + 1 \mathbf{j} \ \left(X_L - X_C \right) = 168.7 + 31.384 \mathbf{j} \qquad \qquad Z = 171.594 \angle 10.539^\circ$$

в) по закону Ома определяем полный комплексный ток в цепи:

$$I = \frac{U}{Z} = 0.057 - 0.011$$
j $I = 0.058 \angle -10.539$ °

$$\begin{array}{lll} \Gamma) & U_1 \coloneqq I \cdot R_1 = 6.302 - 1.172 \mathrm{j} & U_1 = 6.41 \angle -10.539^\circ \\ U_K \coloneqq I \cdot \left(r_K + 1 \mathrm{j} \cdot X_L \right) = 5.737 + 12.132 \mathrm{j} & U_K = 13.42 \angle 64.694^\circ \\ U_C \coloneqq I \cdot \left(-1 \mathrm{j} \cdot X_C \right) = -2.039 - 10.96 \mathrm{j} & U_C = 11.148 \angle -100.539^\circ \end{array}$$

б) Составление баланса мощностей

$$S_{\textit{ucm}} \coloneqq U \cdot \overline{I} = 0.573 + 0.107 \text{j}$$

$$P_{\textit{ucm}} \coloneqq \operatorname{Re} \left(S_{\textit{ucm}} \right) = 0.573$$

$$Q_{\textit{ucm}} \coloneqq \operatorname{Im} \left(S_{\textit{ucm}} \right) = 0.107$$

$$\begin{split} &P_{\textit{nomp}} \coloneqq \left| I \right|^2 \bullet R_1 + \left| I \right|^2 \bullet r_K = 0.573 \\ &Q_{\textit{nomp}} \coloneqq \left| I \right|^2 \bullet \left(-X_C \right) + \left| I^2 \right| \bullet X_L = 0.107 \end{split}$$

Коэффициент мощности цепи:

$$cos(\varphi) \coloneqq \frac{P_{nomp}}{\sqrt{P_{nomp}^2 + Q_{nomp}^2}} = 0.983$$

д) построение топографической диаграммы напряжений

2) Расчет параллельной цепи

а) рассчитаем по закону Ома комплексные токи I_1 , I_2 , I_3 :

$$I_1 \coloneqq \frac{U}{R_1} = 0.091$$

$$I_2\!\coloneqq\!\frac{U}{-1\mathbf{j}\!\cdot\! X_C}\!=\!0.052\mathbf{j} \qquad \qquad I_2\!=\!0.052\angle 90^\circ$$

$$I_3\!\coloneqq\!\frac{U}{r_K\!+1\mathrm{j}\!\cdot\! X_L}\!=\!0.011-0.042\mathrm{j} \qquad \qquad I_3\!=\!0.043\,\angle\!-75.232^\circ$$

$$I_3 = 0.043 \angle -75.232^{\circ}$$

$$I\!\coloneqq\!I_1\!+\!I_2\!+\!I_3\!=\!0.102+0.01\mathbf{j}$$

$$I\!=\!0.102\angle 5.76^{\circ}$$

б) Составление баланса мощностей

$$S_{ucm} := U \cdot \overline{I} = 1.02 - 0.103 \mathbf{j}$$

$$\begin{aligned} P_{\textit{ucm}} &\coloneqq \operatorname{Re} \left(S_{\textit{ucm}} \right) = 1.02 \\ Q_{\textit{ucm}} &\coloneqq \operatorname{Im} \left(S_{\textit{ucm}} \right) = -0.103 \end{aligned}$$

$$\begin{split} &P_{\textit{nomp}} \coloneqq \left| I_1 \right|^2 \cdot R_1 + \left| I_3 \right|^2 \cdot r_K = 1.02 \\ &Q_{\textit{nomp}} \coloneqq \left| I_2 \right|^2 \cdot \left(-X_C \right) + \left| I_3 \right|^2 \cdot X_L = -0.103 \end{split}$$

Коэффициент мощности цепи:

$$cos(\varphi) \coloneqq \frac{P_{nomp}}{\sqrt{P_{nomp}^2 + Q_{nomp}^2}} = 0.995$$

б) построение векторной диаграммы токов и напряжений

3) Расчет разветвлённой цепи

а) методом эквивалентных преобразований рассчитаем разветвленную цепь

$$Z \coloneqq R_1 + \frac{R_2 \cdot \left(R_3 - 1\mathbf{j} \cdot X_C\right)}{R_2 + R_3 - 1\mathbf{j} \cdot X_C} = 188.497 - 27.106\mathbf{j} \qquad \qquad Z = 190.436 \angle -8.183^\circ$$

По закону Ома определяем ток в неразветвленной части схемы:

$$I_1 \coloneqq \frac{U}{Z} = 0.052 + 0.007 \text{j}$$
 $I_1 = 0.053 \angle 8.183^\circ$

По правилу плеч найдем ток I_2 :

$$I_2 \coloneqq I_1 \cdot \frac{R_3 - 1\mathbf{j} \cdot X_C}{R_2 + R_3 - 1\mathbf{j} \cdot X_C} = 0.039 - 0.008\mathbf{j} \qquad \qquad I_2 = 0.04 \angle -10.867^\circ$$

Из первого закона Киргофа найдем ток I_3 :

$$I_3 := I_1 - I_2 = 0.013 + 0.015$$
j $I_3 = 0.02 \angle 49.255^{\circ}$

Найдем комплексные напряжения всех элементов:

$$\begin{array}{ll} U_1\!\coloneqq\!I_1\!\cdot\!R_1\!=\!5.717\!+\!0.822\mathbf{j} & U_1\!=\!5.776\angle 8.183^\circ \\ U_2\!\coloneqq\!I_2\!\cdot\!R_2\!=\!4.283\!-\!0.822\mathbf{j} & U_2\!=\!4.361\angle -10.867^\circ \\ U_3\!\coloneqq\!I_3\!\cdot\!R_3\!=\!1.418\!+\!1.646\mathbf{j} & U_3\!=\!2.172\angle 49.255^\circ \\ U_C\!\coloneqq\!I_3\!\cdot\!\left\langle -1\mathbf{j}\!\cdot\!X_C\right\rangle\!=\!2.865\!-\!2.468\mathbf{j} & U_C\!=\!3.781\angle -40.745^\circ \end{array}$$

б) Составление баланса мощностей

$$\begin{split} S_{\textit{ucm}} \coloneqq U \cdot \overline{I_1} = 0.52 - 0.075 \mathbf{j} & P_{\textit{ucm}} \coloneqq \operatorname{Re}\left(S_{\textit{ucm}}\right) = 0.52 \\ Q_{\textit{ucm}} \coloneqq \operatorname{Im}\left(S_{\textit{ucm}}\right) = -0.075 \end{split}$$

$$\begin{split} P_{\textit{nomp}} &\coloneqq \left| I_1 \right|^2 \cdot R_1 + \left| I_2 \right|^2 \cdot R_2 + \left| I_3 \right|^2 \cdot R_3 = 0.52 \\ Q_{\textit{nomp}} &\coloneqq \left| I_3 \right|^2 \cdot (-X_C) = -0.075 \end{split}$$

Коэффициент мощности цепи:

$$cos(\varphi) \coloneqq \frac{P_{nomp}}{\sqrt{P_{nomp}^2 + Q_{nomp}^2}} = 0.99$$

в) построение топографической диаграммы напряжения всех элементов и совмещенной с ней векторной диаграммы токов

Таблица 3.2

Цепь на рис. 3.5	v	<i>X_C</i> , Ом	$Z_{\scriptscriptstyle m BX}$		I		U_K		U_C		U_1	
	X_L , Om		$Z_{\rm BX}, \ { m Om}$	$oldsymbol{arphi},$ град	I, mA	$\psi_1,$ град	U_K , B	$\psi_{UK},$ град	U_C , B	$\psi_{{\scriptscriptstyle U}{\scriptscriptstyle C}},$ град	U_1 , B	$\psi_{UC},$ град
Рас-	222.6	191.3	171.6	10.5	58	-10.5	13.42	64.7	11.15	-100.5	6.41	-10.5
Опыт		_			57	14.2	13.84		10.96		6.26	-14.2

Таблица 3.3

Цепь на рис. 3.6		I	1	1	1	2	I_3			
	I, mA	ψ_I , град	I_1 , mA	ψ_{I_1} , град	<i>I</i> ₂ , мА	ψ_{I_2} , град	I_3 , MA	ψ_{I_3} , град		
Расчет	102	5.76	91	0	52	90	43	-75.232		
Опыт	106	37.7	91.7		45.9		39.2			

Таблица 3.4

	I_1		I_2		I_3					U_K			U_C
Разветв- ленная цепь	<i>I</i> ₁ , мА	$\psi_{I_1},$ град	<i>I</i> ₂ , мА	$\psi_{I_2},$ град	<i>I</i> ₃ , мА	$\psi_{I_3},$ град	<i>U</i> ₁ , В	<i>U</i> ₂ , B	<i>U</i> ₃ , В	U_K , B	ψ_{UK} , град	<i>U_C</i> , В	$\psi_{UC},$ град
Расчет	53	8.1	40	-10.9	20	49.3	5.78	4.36	2.17			3.78	-40.75
Опыт	52.3	8.0	39.7	-10.8	19.6	48.6	5.73	4.32	2.12			3.73	_