ECE5463: Introduction to Robotics

Lecture Note 9: Trajectory Generation

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

- Trajectory Generation Problem
- Point-to-Point Trajectories
- Time Scaling of Straight-Line Path
- Trajectory Generation Using Via Points

Path and Time Scaling

- Roughly, a trajectory is a specification of the robot position (configuration) as a function of time.
- It is often useful to view a trajectory as a combination of a path, a purely geometric description of the sequence of configurations achieved by the robot, and a time scaling, which specifies the times when those configurations are reached.
- Path: a function $\theta:[0,1]\to\Theta$ that maps a scalar path parameter s to a point in the robot configuration space Θ
 - s=0: the start of the path
 - s=1: the end of the path
- Time scaling: a function $s:[0,T]\to [0,1]$ that maps each time instant to a value of the geometric path parameter.

Trajectory Generation Problem

- Trajectory: $\theta(s(t))$ or $\theta(t)$ for short.
- ullet Velocity and acceleration along a trajectory heta(s(t)):

$$\dot{\theta} = \frac{d\theta}{ds}\dot{s}; \qquad \ddot{\theta} = \frac{d\theta}{ds}\ddot{s} + \frac{d^2\theta}{ds^2}\dot{s}^2$$

- **Trajectory Generation:** Construct a trajectory (path + time scaling) so that the robot reaches a sequence of points in a given time
- Trajectory should be sufficiently smooth and respect limits on joint variables, velocities, accelerations, or torques
- · Some of the joint limits can be "state-dependent"
- Due to time limit, we will not formally discuss path planning problems (design path to avoid obstacles).

Straight-Line Path

• Straight-line path in joint space:

$$\theta(s) = \theta_{\mathsf{start}} + s(\theta_{\mathsf{end}} - \theta_{\mathsf{start}})$$

 Straight lines in joint space generally do not yield straight-line motion of the end-effector in task space

- We may prefer to have straight-line path in task space that connects $T_{\text{start}} \in SE(3)$ to $T_{\text{end}} \in SE(3)$.
- There are two ways to design a "straight-line" path in task space: using minimum representation and using screw motion

Straight-Line Path in Task Space: Approach 1

- Let x(s) be some minimum representation of the end-effect frame (e.g. location + Euler angles)
- The straight line can be defined as $x(s) = x_{\text{start}} + s(x_{\text{end}} x_{\text{start}})$
- Use inverse kinematics to find the corresponding joint space path $\theta(s)$
- Even when $x_{\sf start}$ and $x_{\sf end}$ are both reachable, some points along the straight line in task space may not be reachable

Straight-Line Path in Task Space: Approach 2

- How do define "straight line" in SE(3)? Note that: $T_{\rm start} + s(T_{\rm end} T_{\rm start})$ may not lie in SE(3)
- Straight line motion in Euclidean space \leftrightarrow Screw motion in SE(3)
- Let X(s) be the screw motion path with constant twist such that $X(0)=T_{\rm start}$ and $X(1)=T_{\rm end}.$

$$X(s) = T_{\mathsf{start}} \exp\left(\log\left(T_{\mathsf{start}}^{-1}T_{\mathsf{end}}\right)s\right)$$

• The translational and rotational parts of X(s) = (R(s), p(s)) are:

$$p(s) = p_{\mathsf{start}} + s(p_{\mathsf{end}} - p_{\mathsf{start}}), R(s) = R_{\mathsf{start}} \exp\left(\log\left(R_{\mathsf{start}}^T R_{\mathsf{end}}\right)s\right)$$

Time Scaling: Cubic Polynomial

- We can design scaling function $s:[0,T]\to [0,1]$ to ensure a "smooth" motion along the path $\theta(s)$ and all the velocity and acceleration constraints are satisfied.
- We often require zero velocity at the start and the end of a path. This leads to the following constraint:

$$s(0) = 0, s(T) = 1, \dot{s}(0) = \dot{s}(T) = 0$$

• We can use a cubic polynomial to meet these constraints:

$$s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Time Scaling: Cubic Polynomial

• Assume straight-line path in joint space (other cases are similar)

$$\theta(s) = \theta_{\mathsf{start}} + s(\theta_{\mathsf{end}} - \theta_{\mathsf{start}})$$

- \bullet Max joint velocities are achieved at the halfway point of the motion t=T/2
- Max joint accelerations and decelerations are achieved at t=0 and t=T:

• Joint constraints $\dot{\theta}_{\rm limit}$ and $\ddot{\theta}_{\rm limit}$ can be checked at these critical times to ensure feasibility

Time Scaling: Fifth-Order Polynomial

ullet We may also want to have zero accelerations at t=0 and t=T, which leads to the following constraints:

$$s(0) = 0, s(T) = 1, \dot{s}(0) = \dot{s}(T) = \ddot{s}(0) = \ddot{s}(T) = 0$$

• These can be met with a fifth-order polynomial:

$$s(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$$

• We can use the 6 constraints to solve uniquely for the coefficients.

Time Scaling: Trapezoidal

- Trapezoidal time scaling:
 - $t \in [0, t_a]$: constant acceleration phase $\ddot{s} = a$
 - $t \in (t_a, T 2t_a]$: constant velocity phase $\dot{s} = v$
 - $t \in (T 2t_a, T]$: constant deceleration phase $\ddot{s} = -a$
- Not very smooth, but allows for easy incorporation of joint velocity and acceleration limits.
- ullet For example, a and v can be chosen to be the largest ones satisfying

$$|(\theta_{\mathsf{end}} - \theta_{\mathsf{start}})v| \leq \dot{\theta}_{\mathsf{limit}} \quad \text{ and } \quad |(\theta_{\mathsf{end}} - \theta_{\mathsf{start}})a| \leq \ddot{\theta}_{\mathsf{limit}}$$

Time Scaling: S-Curve

- Trapezoidal scaling causes discontinuities in acceleration at $t=0,t_a,T-2t_a,T$
- An improved version is the **S-curve** time scaling. It consists of 7 phases.
 - (1) constant jerk $d^3s/dt^3=J$; (2) constant acceleration $\ddot{s}=a$;
 - (3) constant negative jerk -J; (4) coasting at constant v;
 - (5) constant negative jerk; (6) constant deceleration; (7) constant positive jerk

Trajectory Generation Using Via Points

- Suppose that the robot joints need to pass through a series of via points at specified times
- Suppose that there are no strict specifications on the shape of the path between consecutive points

• In this case, we can directly construct the trajectory $\theta(t)$ instead of finding a path $\theta(s)$ and then a time scaling s(t),

ullet Since the trajectory for each joint can be designed individually, we focus on a single joint variable and call it eta(t) to simplify notation

Trajectory Generation Using Via Points

- Suppose there are k via points $(\beta_i, \dot{\beta}_i, T_i)$, i = 1, ..., k, where β_i and $\dot{\beta}_i$ are the specified desired position and velocity, and T_i is the specified time to reach the i^{th} via point.
- We can use a cubic polynomial to generate the ith trajectory segment. Polynomial: $\beta(T_i + \Delta t) = a_{i,0} + a_{i,1}\Delta t + a_{i,2}\Delta t^2 + a_{i,3}\Delta t^2$ Constraints: $\beta(T_i) = \beta_i, \beta(T_{i+1}) = \beta_{i+1}, \dot{\beta}(T_i) = \dot{\beta}_i, \dot{\beta}(T_{i+1}) = \dot{\beta}_{i+1}$
- We can solve for all the coefficients for each segment (see page 286 of textbook)
- This approach can be easily extended to 5th-order polynomial

Trajectory Generation Using Via Points

Example:

- Time instants: $T_1 = 0, T_2 = 1, T_3 = 2, T_4 = 3$;
- Via points: (0,0), (0,1), (1,1), and (1,0)
- ullet Velocities: (0,0), (1,0), (0,-1), and (0,0)

• Change via point velocities to (0,0), (1,1), (1,-1), and (0,0) will result in a different trajectory

More Discussions

•