制御工学第一レポート

03190449 堀 紡希

7月17日

1 基本課題

1.1 Bode 線図の折れ線近似

$$P_1(s) = \frac{1}{s+100}$$

$$P_2(s) = \frac{s}{s + 100}$$

1.2 根軌跡

MATLAB で描いた $P_3(s) = \frac{1}{(s+2)(s^2+2s+2)}$ の根軌 跡は以下の通り

根軌跡のそれぞれの性質について、

- 1. 軌跡の数は次数と同じで3本
- 2. 極 -2, $-1 \pm j$ から出発し、零点は存在しないので 3 本全てが無限遠点に発散する
- 3. 軌跡は実軸対称である
- 4. 実軸上の点で、その右側に極が奇数個あれば、その点は軌跡上の点となっている
- 5. 無限遠点に至る軌跡の漸近線の角度は $\frac{180^{\circ}+360^{\circ}}{3}=60^{\circ},180^{\circ},300^{\circ}$
- 6. 漸近線と実軸の交点はただひとつ、((-1) + (-1+j) + (-1-j))/3 = -4/3 である
- 7. 虚軸を横切る点

1.3 ステップ応答

1)MATLAB によるステップ応答

2) 逆ラプラス変換によって求めた解

>> X1 = ilaplace(P1)

X1 =

1 - exp(-t/5)*(cos((2*6^(1/2)*t)/5) + (6^(1/2)*sin((2*6^(1/2)*t)/5))/12)

>> X2 = ilaplace(P2)

X2 =

1 - exp(-(7*t)/10)*(cos((51^(1/2)*t)/10) + (7*51^(1/2)*sin((51^(1/2)*t)/10))/51)

>> X3 = ilaplace(P3)

vo -

1 - t*exp(-t) - exp(-t)

> X4 = ilaplace(P4)

x4 =

1 - exp(-2*t)*(cosh(3^(1/2)*t) + (2*3^(1/2)*sinh(3^(1/2)*t))/3)

2 応用課題

2.1 制御対象のモデル化

mn=4.2,bn=80,kn=2500, として制御対象をモデル化することができた。