Family Name
Given Name
Student No.
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

FINAL EXAMINATION

SUMMER 2016 - 2017

ELEC1111 Electric Circuits

TIME ALLOWED: 3 hours
TOTAL MARKS: 100
TOTAL NUMBER OF QUESTIONS: 5

THIS EXAM CONTRIBUTES 60% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 5 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer booklet.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

QUESTION 1 [20 marks]

- (i) Calculate the equivalent impedance of the circuit of Figure 1 as seen by :
 - a. (4 marks) a dc voltage source
 - b. (6 marks) an ac voltage source with a frequency of $\omega = 1$ rad/sec

(ii) **(6 marks)** Find the Thevenin equivalent of the circuit in Figure 2.

(iii) (4 marks) Calculate the power of the three sources in the circuit of Figure 3. Clearly explain if a source supplies or absorbs power.

QUESTION 2 [20 marks]

(i) (6 marks) Find the voltage across the 1 Ω resistor and the power dissipated in the 3 Ω resistor of the circuit in Figure 4.

(ii) (5 marks) Find the voltage of node $x(V_x)$ in the circuit of Figure 5.

(iii) (9 marks) Find the current $i_0(t)$ in the circuit of Figure 6.

QUESTION 3 [20 marks]

(i) (8 marks) In the circuit of Figure 7, the switch has been in the open position for a long time and closes at t = 0. Showing all working, derive an expression for the voltage of the capacitor $v_c(t)$ for t>0.

(ii) (8 marks) In the circuit of Figure 8, the switch has been in the closed position for a long time. The switch opens at t=0 and closes again at t=1sec. Showing all working, derive an expression for the current through the inductor i_L(t) for t>0.

(iii) (4 marks) Find the element and the value of the element that must be connected parallel to nodes a-b of the circuit shown in Figure 9 so that the impedance Z_{eq} , seen from an ac voltage source with a frequency $\omega = 10$ rad/sec is purely resistive.

QUESTION 4 [20 marks]

(i) (5 marks) Find V_0 in the circuit of Figure 10 and draw phasors V_0 , V_1 , and V_2 in the same phasor diagram.

Figure 10

(ii) (7 marks) Consider the circuit of Figure 11. Find the current I_o and the voltages of the resistor V_R , the capacitor V_C and the inductor V_L . Plot them in the same phasor diagram, clearly indicating each phasor.

- (iii) (8 marks) Two loads are connected in parallel and are supplied by a 230 V_{rms} , 50 Hz voltage source. Load 1 consumes 10 kVA of power at a power factor of 0.8 leading (capacitive) while load 2 consumes 5 kW at a power factor of 0.9 lagging (inductive). Calculate:
 - a. The total complex power of the two loads.
 - b. The total apparent power.
 - c. The combined power factor of the two loads, and
 - d. The rms value of the current supplied by the source.

QUESTION 5 [20 marks]

- (i) (5 marks) Design an operational amplifier circuit where $v_o(t) = -15 \ v_s(t)$. Explain analytically your design process.
- (ii) (7 marks) For the circuit shown in Figure 12, calculate the output voltage V_o .

Figure 12

- (iii) (8 marks) Consider the following logical diagram
 - a. Derive a logical expression for Z.
 - b. Write the truth table of the circuit.
 - c. Explain, also showing the required connections ad circuits, how a NAND Gate can be used to configure i) a NOT gate, ii) an AND gate and iii) an OR gate.

Figure 13

END OF PAPER