A Decentralized SDN Architecture for the WAN

Alexander Krentsel¹², Nitika Saran³, Bikash Koley¹, Subhasree Mandal¹, Ashok Narayanan¹, Sylvia Ratnasamy¹², Ali Al-Shabibi¹, Anees Shaikh¹, Rob Shakir¹, Ankit Singla¹, Hakim Weatherspoon³

¹Google, ²UC Berkeley, ³Cornell

Introduction: Outages Continue

Global WANs continue to see large outages

- ◆ Global-scale WANs underpin planet-scale computing
- ◆ Outages continue despite decades of experience
- ◆ Small outages to be expected, large ones are unexpected ...often complex, cascading root causes

What can we do at *design* time to limit the occurrence of complex failures?

SDN WAN Architectures Today: Complexity Abounds

Running SDN for large-scale WANs requires much infrastructure:

- → Hierarchy of control programs to provide aggregation
- ◆ Dedicated HW & SW to run them
- ◆ Control Plane Network to reach routers
- → Discovery services to collect inputs
- ◆ Traditional protocols for fallback in case of split-brain

Majority of our SDN WAN large outages caused by control plane:

Traditional SDN Infrastructure

Approach: Decentralizing SDN

Key idea: decentralize SDN by replicating operator-written controller code on each router. Program paths via strict source routing to maintain "consensus-free" path selection.

Concretely, every router runs a dSDN controller that...

- 1. floods its local demand and link state; learns global network view
- 2. locally computes *all* paths (using a traffic eng. algorithm)
- 3. "programs" ingress end-to-end paths as source routes

Enabling Techniques: On-Box Containers, Source Routing

Router ecosystem developments provide new opportunities:

- (1) Vendors support running 3rd-party containerized code on-box → operators can run <u>custom</u> control code on router CPU
- (2) Standardized control APIs (gRIBI, gNMI, OF/P4) reach maturity
- → control code is <u>uniform across vendors</u>
- (3) Expanded on-router CPU resources
 - → from single-core to multi-core multi-GHz CPUs

Operator-defined control applications can run on-box

A packet's experience in a source-routed network

Source routing enables simple decentralization

- Maintains simplicity through authority: single point of responsibility per path
- Historically infeasible due to length of WAN paths

Enabled by hardware advancements and **novel** encoding technique that doubles information we can encode in headers

Google

Contact: akrentsel@berkeley.edu

dSDN Achieves Benefits of SDN and Decentralization

Original SDN Benefits

- ◆ Operator-defined code, which enabled innovation
 - running operator-written containers on the router
- ◆ Optimized computations (TE) on global view of network ◆ Distributed survivability
 - \nearrow new APIs + simple dissemination \rightarrow global view
- ◆ Simplicity of "consensus free" path selection
 - source-routing; "ingress" router authoritatively decides path

Decentralization Benefits

- ◆ Drastically fewer external dependencies
- control plane running entirely in-band

- no central point of failure

Evaluation: Simplicity Improves Performance

Primary goal: cutting complexity from the WAN architecture

Removed	Added
(1) Central controller jobs	On-router containers
(2) Regional controller jobs	
(3) Dedicated server hardware	
(4) Control plane network	
(5) Instrumentation services	
(6) Traditional protocols	

Success! Do we lose anything in the process? On the contrary, performance improves...

Methodology

- → Built production-grade dSDN Implementation
- ◆ Profiled traditional SDN performance in production
- ◆ Profiled dSDN on production hardware feeding in production B4 topology & demand
- ◆ Simulated historical failure events in high-fidelity simulator

dSDN Implementation Architecture

Convergence time: 120x-150x faster

- ◆ Propagation & programming time 100-1000x faster
- ◆ Computation ~30% slower due to weaker router compute

Convergence impact: 20x-60x faster

- ◆ "Impact" comprises both number of flows affected and amount of time
- **♦** Bad seconds metric defined in paper captures both

Conclusion: dSDN as a New Point in Design Space

We've spent...

- → 30 years trying to make decentralized protocols work more efficiently with more features
- → 15 years trying to make SDN-based networks work more reliability

We present dSDN, a new point in the design space enabled by new hardware capabilities...

- ⇒ achieves the best of both by decentralizing the SDN controller in a way that...
 - ★ maintains benefits of SDN
 - * significantly simplifies the control plane infrastructure
 - ★ improves convergence performance