University of Toronto Scarborough	First Name:	
CSCD27	Last Name:	
Fall 2018	Student Number:	
Final Exam		

Do not turn this page until you have received the signal to start.

In the meantime, fill out the identification section above and read the instructions below carefully.

This 3 hours exam contains 23 pages (including this cover page) and 5 parts. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may **not** use notes, or any calculator on this exam.

There are several types of questions identified throughout the exam by their logos:

✓ 1	select the best answer only among multiple choices.
✓ ★	select all correct answers (and those ones only) among multiple choices. At least one applies.
my answer	fill the blanks with a short answer (less than 5 words).
•—•	connect each item from the left side to one (and one only) item from the right side. A right side item might be connected to several left side items. The right side and the left side might not necessarily have the same number of items.

For each question, the following rules apply:

- There is no partial credit. This means that, for a given question, you either receive the full mark allocated if all answers are correct or 0 if there is any mistake.
- Your answer should be clear. Your answer to a question might be considered as incorrect
 if there is:
 - any part of the answer that cannot be read
 - any part of the answer that cannot be associated with its corresponding question part

Do not write anything in the table below.

Part:	1	2	3	4	5	Total
Points:	10	30	30	30	6	106
Score:						

1. G er	neral Concepts
(1.1)	1 point - my answer
	The goal of security is not to prevent threats but to lower the
(1.2)	3 points - <u>my answer</u> and •—•
	What are the CIA security goals? Fill the blanks and match each of them to its defi-
	nition:
	C • information is modified by legitimate users
	I • information is disclosed to legitimate users
	A • information is accessible to legitimate users
(1.3)	1 point - \checkmark ₁
	Calculating the risk exposure takes into account:
	\bigcirc $probability \times impact$
	\bigcirc probability \times cost
	$\bigcirc impact imes cost$
	\bigcirc probability \times impact \times cost

inferring what can go wrong with the system

the security goals

defining a strategy to realize the security goals

making sure that the security mechanisms realize

(1.4) 3 points - \bullet — \bullet

risk analysis

security mechanisms •

security assurance

Match each concept with its definition:

(1.5) 1 point - \checkmark_1				
In cryptography, the Kerckhoffs' principle says:				
\bigcirc a cryptosystem should be secure as long as everything about the system, includ-				
ing the key, is public.				
\bigcirc a cryptosystem should be secure as long as everything about the system, includ-				
ing the key, is private.				
\bigcirc a cryptosystem should be secure even if everything about the system, except the				
key, is public.				
\bigcirc a cryptosystem is secure if everything about the system, except the key, is pri-				
vate.				
(1.6) 1 point - \checkmark_1				
In general, the Kerckhoffs' principle goes against:				
odefense in-depth				
 seperation of concerns 				
o security through obscurity				
omplete mediation				

2.	Crv	ptog	raphy
⊿.	$\mathcal{O}_{\mathbf{I},\mathbf{y}}$	puos.	ιαρπ.

(2.1) 1 point - \checkmark_1
Which family of cipher is the most resistant to cryptanalysis by statistical analysis:
monoalphabetic ciphers
O polyalphabetic ciphers
transposition ciphers
one-time pad
(2.2) 2 points - \checkmark_{\bigstar}
Using a key k , Alice encrypts a plaintext message $m=a+c$ using AES 128 bits in ECB
mode (Electronic Code Book) into a ciphertext x ($E_k(m) = x$). Mallory does not know
the key but knows the plaintext message $m'=b+c$ and its ciphertext encrypted using the
same key and the same mode. Given that a,b and c are each 128 bits long, Mallory can:
\Box recover the key k
\square recognize c from the second half of the ciphertext x
\Box change x to decrypt into m' by substituting the first half of the ciphertext x
with the ciphertext of b
\square none of the above

(2.3) 2 points - \checkmark

Same question but considering the CBC mode (Cipher Block Chaining), Mallory can:

- \Box recover the key k
- \square recognize c from the second half of the ciphertext x
- \Box change x to decrypt into m' by substituting the first half of the ciphertext x with the ciphertext of b
- $\hfill\Box$ none of the above

(2.4) 2 points	_	•—•
----------------	---	-----

Match each standard with its concept:

RC4 • symmetric encryption (stream cipher)

DES • symmetric encryption (block cipher)

AES • asymmetric encryption

RSA • cryptographic hash function

MD5 • MAC - Message Authentication Code

SHA • digital signature

TLS • cryptography protocol

(2.5) 1 point - \checkmark ₁

Considering **AES 128 bits** used with the CBC mode (Cipher Block Chaining), what is the easiest attack that allows an attacker to recover the key?

- \bigcirc ciphertext-only
- O known-plaintext
- O chosen-ciphertext
- O chosen-plaintext
- O none of the above

(2.6) 2 points - \bullet — \bullet

Match each attack with its concept:

key-reused attack

hash-length extension attack •

birthday attack •

collision attack

replay attack •

 ${\rm man-in-the-middle\ attack} \qquad \bullet$

- symmetric encryption (stream cipher)
- symmetric encryption (block cipher)
- asymmetric encryption
- cryptographic hash function
- cryptography protocol

(2.7)	3 points - \checkmark_{\bigstar} (and <u>my answer</u>)	
	Select the correct assertions and fill the blanks (only the ones you have selected) with
	either "Alice's public", "Alice's private", "Bob's	public", "Bob's private". When Alice
	sends a signed and encrypted message to Bob using	ng GPG:
	□ Alice encrypts the message with	key
	□ Alice signs the message with	key
	□ Bob decrypts the message using	key
	□ Bob verifies the signature with	key
(2.8)	1 point - \checkmark_1	
	What is the the entropy (n-bit security) of RSA	2048 bits:
	\bigcirc less than 2048 bits	
	○ 2048 bits	
	omore than 2048 bits	
(2.9)	2 points - •—•	
	Considering a cryptographic hash function ${\cal H}(m)$	= x, match each concept with its defi-
	nition:	
	Collision Resistant • •	given H and x ,
		it is hard to find m
	Preimage Resistant • •	given H , it is hard to find m and m'
		such that $H(m) = H(m') = x$
	Second Preimage Resistant • •	given H , m and x , it is hard to find m
		such that $H(m) = H(m') = x$
(2.10)	2 points - my answer	
	Considering a cryptographic hash function with m	bits input and n bits output, the total
	number of possible candidate hash values is	, however
	in average it takes	tries to find a collision.

(2.11)	2 points	-	✓ ↓
(Z.11)	2 points	-	~ 4

Hash functions such as MD5, SHA1 and SHA2 take 512 bits input. Yet, it is possible to hash messages greater than 512 bits by composing hash functions based on:

- □ the Cipher Block Chaining mode (CBC)
- □ the Electronic Codebook mode (ECB)
- □ the Cryptographic Hash Compression mode (CHC)
- □ the Merkle-Damgard construction

(2.12) 1 point - \checkmark_1

The hash length extension attack exploits:

- (MAC) a bad construction of the Message Authentication Code (MAC)
- a padding overflow vulnerability in MD5
- () a way to find collisions in MD5
- a man in the middle attack to capture a hash and extend it

$(2.13) 1 \text{ point } - \checkmark_1$

In a cryptography protocol, a **nonce** is:

- o a random number to defeat replay attacks
- () a time stamp to ensure freshness of the request
- () a message to initiate a cryptography protocol
- none of the above

(2.14) 2 points - my answer

Considering the simplified version of the *Needham-Shroeder* asymmetric protocol for mutual authentication involving Alice A (and her public key K_A) and Bob B (and his public key K_B). Complete the protocol so that it is **not** vulnerable to a man-in-the-middle attack:

- 1. $A \rightarrow B$: $\{N_A, A\}_{K_B}$
- $A \leftarrow B$:
- 3. $A \rightarrow B$: $\{N_B\}_{K_B}$
- 4. $A \leftarrow B$: "Hi Alice"

(2.15) 3 points - my answer

Considering the original but yet broken Needham-Shroeder symmetric protocol for key exchange involving Alice A, Bob B and a Key Distribution Server S. Complete the protocol by filling each blank with the appropriate shared key as either K_{AS} , K_{BS} or K_{AB} .

- 1. $A \rightarrow S$: A, B
- 2. $A \leftarrow S$: {_____, B, {_____, A}___}
- 3. $A \to B$: {_____, A}____
- 4. $A \leftarrow B$: $\{N_B\}$
- 5. $A \to B$: $\{N_B 1\}$ _____

(2.16) 1 point - \checkmark 1

The Needham-Shroeder symmetric protocol given above is vulnerable to a replay attack that could compromised the freshness of the session key K_{AB} . Assuming that Mallory has compromised a key k_{AB} , what is the protocol line number that Mallory can replay to achieve the attack?

- \bigcirc 1
- \bigcirc 2
- \bigcirc 3
- \bigcirc 4
- \bigcirc 5

(2.17) 1 point - \bullet — \bullet

Match each trust model with its type:

PKI - Public Key Infrastructure

• decentralized trust model

- Web of Trust
- centralized trust model

(2.18) 1 point - \bullet — \bullet

Match each trust model with the technology that relies on it:

PKI - Public Key Infrastructure •

• TLS (a.k.a SSL)

Web of Trust

•

GPG

3.	Network	Security
----	---------	----------

(3.1)	2 points	- ✓★
	TLS (a.	k.a SSL) relies on:
		symmetric encryption
		asymmetric encryption
		cryptographic hash functions
(3.2)	2 points	- ✓★
	TLS (a.	k.a SSL) provides:
		confidentiality by setting up an end-to-end secure channel
		confidentiality by encrypting the IP addresses of the source and the destination
		integrity by setting up an authentication handshake
		integrity by checking the digital signature of each IP packet
		availability by ensuring packet fragmentation
		availability by repeating failed TCP messages
(3.3)	2 points	- ✓★
	To obtain	a a valid certificate, we need to ask a CA (Certificate Authority) to:
		provide us with a valid private/public key pair
		keep a public record endorsing our public key
		sign our public key
		sign our private key
		forward our public key to its Root CA
(3.4)	2 points	- ✓ ★
	A man-i	n-the-middle attack between a client and a server communicating over HTTPS
	is possibl	e if the attacker can:
		generate a valid (i.e signed by a trusted CA) certificate impersonating the server
		add its own certificate to the list of trusted CAs in the client's browser
		steal the server's private key
		none of the above

(3.5) 2 points - \checkmark_{\bigstar}
When used over HTTP, what information is encrypted by TLS :
\Box the IP address of the client
\Box the IP address of the server
\Box the query string (i.e path + arguments)
\Box the headers
\Box the body
(3.6) 1 point - \checkmark_1
What is the attack that consist in sending incorrect associations between the server's
name and the IP address.
O DNS spoofing
O BGP hijacking (a.k.a route hijacking)
○ ARP-cache poisoning
\bigcirc none of the above
(3.7) 1 point - \checkmark_1
What is the attack that consists in sending incorrect associations between the MAC
address and the IP address:
\bigcirc DNS spoofing
O BGP hijacking (a.k.a route hijacking)
○ ARP-cache poisoning
\bigcirc none of the above

(3.8) 4 points - <u>my answer</u>	
Complete these sentences with the na	ame of a network security protection mechanism:
– The	defines a logical defense parameter and acts an
access control between two netwo	orks.
– The	extends a private network over a public domain.
– The	performs deep packet inspection to detect mali-
cious packets transiting over the	network.
– The	is a network configuration that isolates exposed
public servers such as web server	, mail server and so on.
(3.9) 1 point - \checkmark_1	
Considering the network setup in the a	arp spoofing challenge, when Mallory wants to hijack
the communication between Alice and	Seclab, Mallory should send a spoofed ARP message $$
that says that:	
○ Mallory's IP address is Gat	eway's MAC address
○ Mallory's IP address is Alic	e's MAC address
○ Alice's IP address is Mallor	y's MAC address
○ Alice's IP address is Gatew	ay's MAC address
○ Gateway's IP address is Ma	ullory's MAC address
○ Gateway's IP address is Ali	ce's MAC address

(3.10) 3 points - **my answer**

Considering the initial setup of the SSL-Stripping challenge, complete these sentences with
either HTTP or HTTPS.
1. Alice asks the SecLab server for the login page. This request is sent over using HTTP.
2. The $SecLab$ server sends back a notification (HTTP-redirect) that asks Alice to use
HTTPS instead. This response is sent back over using
3. Alice's browser receives the notification and automatically sends another request for
the login page to the $SecLab$ server. This request is sent over using
4. The SecLab server sends back the login page. This response is sent back over using
5. Alice receives the login page and submit her credentials that are sent over using
6. The SecLab server verifies Alice's credential and sends back her personal information.
This response is sent back over using
(3.11) 3 points - my answer
Now let us consider that Mallory is using SSL-Stripping for a man-in-the-middle attack,
complete these sentences with either HTTP or HTTPS.
1. Mallory intercepts the HTTP-redirect sent back from the server over
2. Mallory sends a new request for the login page to the server over
3. Mallory intercepts the login page sent back from the server over and
forwards it to Alice over
4. Mallory's intercepts the credentials that Alice sent over and forwards
them to the server over
(3.12) 3 points - my answer
There are three authentication factors:
- something that you
- something that you
- something that you

(3.13) 2 points $-\checkmark_{\bigstar}$
What are the authentication mechanism that would qualify as two-factor authentication:
\Box a credit card + a secret pin
$\hfill\Box$ a credit card + the three digits behind the credit card
\Box a password + a secret pin
\Box a password + a pin sent as a mobile text message
\Box a password + a fingerprint
(3.14) 1 point - \checkmark_1
A rainbow table is a list of
\bigcirc login and passwords used by default by commercial and open-source applications
\bigcirc all passwords matching a given pattern and their corresponding non-salted hash
\bigcirc all passwords matching a given pattern and their corresponding salted hash
omost frequently used passwords and their corresponding non-salted hash
omost frequently used passwords and their corresponding salted hash
(3.15) 1 point - \checkmark_1
The server example.com logs all source IP addresses that connect to its port 80 and 443.
What is the IP address that is logged when Alice browses https://example.com using
TOR (a.k.a The Onion Router)?
○ the IP address of Alice
the IP address of the guard node (a.k.a also called entry node)
the IP address of the middle node
the IP address of the exit node
○ the IP address of the server example.com
\bigcirc none of the above since HTTPS is used

4. System security	4.	System	Secu	rity
--------------------	----	--------	------	------

System Security	
4.1) 1 point - \checkmark_1	
A \mathbf{CVE} is emitted when someone discloses having found:	
○ a vulnerability	
o an exploit	
o an attack	
o a patch	
4.2) 1 point - \checkmark_1	
We talk about a 0-day attack when someone has found:	
on unknown vulnerability	
on unknown vulnerability in a software that never had any before	
on exploit about a known vulnerability	
on exploit about an unknown vulnerability	
on exploit that still work after patching the software	
4.3) 1 point $-\checkmark_1$	
Mallory is able to exploit a vulnerability in a program that allows her to execute a shell	ll.
Mallory has a user account mallory on the machine and she has found a compiled version	n
of this vulnerable program that she is allowed to execute. This program is owned by the	ıe
user alice and does not have the setuid set (a.k.a sticky bit). What privileges wi	ill

Mallory get once the attack succeeds:

 $\bigcirc \ \mathtt{mallory}$

 \bigcirc alice

 \bigcirc root

(4.4)	1 point	- ✓ 1
	Same que	estion as previously except that the setuid is now set . What privileges will
	Mallory g	get once the attack succeeds:
	\circ	mallory
	\bigcirc	alice
	\bigcirc	root
(4.5)	2 points	- ✓ ★
	What are	e the recommended security practices to prevent software vulnerabilities:
		defensive programming
		agile software development
		not releasing the source code
		code obfuscation
		functional testing
		penetration testing
		formal verification
(4.6)	1 point	- √ 1
	Stack car	naries protects the stack by:
	\bigcirc	preventing any buffer stored on the stack to overflow
	\circ	detecting that a buffer overflow has overwritten the returned address of the stack
		frame
	\circ	detecting the injection of malicious code (shellcode)
	\bigcirc	preventing malicious code from being written to the stack
	\circ	preventing the execution of code stored in memory adresses that were previously
		identified as containing data
	\circ	preventing memory addresses to be predictable

(4.7) 1 point - \checkmark_1
Executable-space protection protects the stack by:
O preventing buffer stored on the stack to overflow
\bigcirc detecting that a buffer overflow has overwritten the returned adress of the stack
frame
Odetecting the injection of malicious code (shellcode)
O preventing malicious code from being written on the stack
\bigcirc preventing the execution of code stored in memory adresses that were previously
identified as containing data
O preventing memory addresses to be predictable
(4.8) 1 point - \checkmark_1
ASLR (Address Space Layout Randomization) prevents the attacker from guessing mem-
ory adresses reliably by
\bigcirc obfuscating all memory addresses when compiling the source code
\bigcirc randomizing the layout of functions and library calls when compiling the source
code
\bigcirc shifting the entire adress space by a random offset when executing the program
\bigcirc randomizing the layout of the stack when executing the program

```
(4.9) 2 points - \checkmark
```

In the *Stack Overflow Branching* challenge (see code below), the goal was to exploit a buffer overflow vulnerability to execute the function secretFunction. To do so, the payload must:

- \Box contain a NOP-sled
- □ contain a shellcode

return 0;

}

- \square overwrite the return address of the echo stack frame with the address of secretFunction
- □ overwrite the return address of the echo stack frame with an address located between the beginning of buffer and the end of the NOP-sled

```
void secretFunction(){
    printf("Smashing the Stack for Fun and Profit\n");
}

void echo(){
    char buffer[20];
    printf("Enter some text:\n");
    scanf("%s", buffer);
    printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv){
    echo();
```

(4.10) 2 points - my answer

In the *Adjacent Memory* challenge (see code below), to correctly exploit the vulnerability, the return address of the echo stack frame is overwritten right after executing the instruction line ______

```
#define BUFFER_SIZE 1000
   void echo(char *arg1, char *arg2){
         char result[BUFFER_SIZE*2];
         char input1[BUFFER_SIZE];
         char input2[BUFFER_SIZE];
         strncpy(input1, arg1, BUFFER_SIZE);
         strncpy(input2, arg2, BUFFER_SIZE);
         strcat(result, input1);
         strcat(result, input2);
10
        printf("Echo Response: %s\n", result);
11
   }
12
13
   int main(int argc, char **argv){
14
       echo(argv[1], argv[2]);
15
       return 0;
  }
```

```
(4.11) 3 points - my answer
      In the File-based Shellcode challenge (see code below), to exploit the vulnerability, the
      NOP-sled must be injected in the buffer named ______, the shellcode must be
      injected in the buffer named ______, while the buffer named _____ must
      be overflown to overwrite the return address of the echo stack frame.
      #define FILE_SIZE 1000
      #define LINE_SIZE 12
      void echo(char *arg){
          char input[LINE_SIZE];
          strcpy(input, arg);
          printf("Echo response: %s\n", input);
      }
      int main(int argc, char **argv){
          char text[FILE_SIZE];
          FILE *file;
          file = fopen(argv[1], "r");
          fread(text, sizeof(char), FILE_SIZE, file);
          fclose(file);
          text[strlen(text)-1] = 0;
          char *line = strtok(strdup(text), "\n");
          while(line) {
             echo(line);
             line = strtok(NULL, "\n");
          }
          return 0;
```

}

(4.12) 2 points - \checkmark_{\bigstar}
Among all of the buffer overflow challenges given above, what are the one(s) that can still
be exploited even if the executable-space protection is enabled?
\Box the Stack Smashing Branching
\Box the Adjacent Memory
\Box the File-based Shellcode
$\hfill\Box$ none of the above
(4.13) 2 points - \bullet — \bullet
Match each malware part with its definition:
RAT \bullet is what the malware does once installed on the system
Exploit Bundle • is how the malware evades detection
Packer • is how the malware spread and gets installed on the system
$(4.14) 1 \text{ point } - \checkmark_1$
What is a rootkit ?
$\hfill\Box$ a malware that can mutate automatically when it spreads
$\hfill\Box$ a malware that infects the system kernel
$\hfill\Box$ a malware that spreads over the web
\square a software used for generating new malware
(4.15) 2 points - \bullet — \bullet
Match each technique used by anti-virus software with its type

Static Analysis

Dynamic Analysis

Scan the program comparing it to a collection of signatures

Run the program in a sandbox and monitor from its behaviour

(4.16)	3 points	- •—•		
	Match ea	ch attack with the type of co	ntent it injects into	the web application:
	SQLi (S	QL injection)	•	HTML content
	Content	Spoofing	•	URLs
	XSS (C	ross-Site Scripting)	•	Javascript
	CSRF (Cross-Site Request Forgery)	•	Database queries
(4.17)	2 points	- ✓★		
	Exploitin	g an XSS vulnerability mig	ght allow the attacke	er to:
		steal user's credentials		
		change the layout and/or cor	ntent of the vulneral	ole webpage
		perform authenticated but ye	et unsolicited HTTP	requests
		install a reverse shell on the	server	
		crash the web server		
(4.18)	2 points	- ✓★		
	Exploitin	g an CSRF vulnerability n	night allow the attac	cker to:
		steal user's credentials		
		change the layout and/or cor	ntent of the vulneral	ole webpage
		perform authenticated but ye	et unsolicited HTTP	requests
		install a reverse shell on the	server	
		crash the web server		

.) 130	onus

 \bigcirc for sure, easy A

(5.5)	2 points - my answer
	Share something with the course staff (can be more than 5 words)

Thank you for this great semester and have a good winter break!