Puit non infini:

- ightharpoonup On a toujours le confinement \Rightarrow énergie de confinement
- $lackbox{ On a plus V_1 infini \Rightarrow condition limite : $\frac{\partial \Psi}{\partial x}$ continue en 0 et en $L$$
- ightharpoonup onde évanescente à l'extérieur du puits x < 0 ou L < x.

Puit non rectangulaire

fabrication de couches atomiques

minimum local d'énergie potentielle

énergie potentielle issue d'une force en $\frac{1}{r^2}$

Remarque

- On a de plus en plus d'onde evanescente avec une marche de potentielle de moins en moins haute
- Les niveaux d'énergie se resserrent de + en +, car + d'onde evanescente donc Ψ + étalée donc Δx + grand, donc énergie de confinement plus petite.

4. Etats non stationnaire d'une particule

4.1. Combinaison linéaire d'état stationnaire

On a principalement étudié des états stationnaires, soit des états avec $\rho(x)$ qui ne dépend pas du temps.

Question : comment modéliser une particule qui bouge ?

Réponse : voir Paquet d'onde pour les particules libres

exemple: paquet d'onde gaussien avec

$$\Psi(x,t) = \frac{1}{\sqrt{\hbar}} \int_{-\infty}^{+\infty} g(p) \exp\left(-i(\omega t - px/\hbar)\right) dp \text{ avec}$$

$$g(p) = \frac{1}{(2\pi\sigma_p^2)^{1/4}} \exp\left(-\frac{(p-p_0)^2}{4\sigma_p^2}\right)$$

... calcul ...

on trouve
$$\Psi(x,t) = \left(\frac{2\pi}{\sigma_x^2}\right)^{1/4} e^{-i\omega t} \exp\left(-\frac{(x-p_0t/m)^2}{4(\sigma_x^2+i\hbar t/(2m))}\right)$$

donc $\rho(x,t) = \sqrt{\frac{2\pi}{\sigma_x^2}} \exp\left(-\frac{(x-p_0t/m)^2}{2\sigma_x^2(1+(\hbar t/(2m\sigma_x))^2)}\right)$

donc il faut faire des sommes d'état stationnaire, ici c'est une somme d'onde progressive monochromatique d'expression $\frac{g(p)dp}{\sqrt{\hbar}}e^{-i(\omega t-px/\hbar)} \to |.|^2 \to \frac{\gamma(p)dp}{\hbar} \text{ indépendant de } t, \text{ stationnaire}$ De manière générale les états stationnaires constituent une base des fonctions d'onde et on peut reconstituer tous les états non-stationnaire par combinaison linéaire d'états stationnaire.

4.2. Cas dans un puit de potentiel

Dans un puit de potentiel les niveaux d'énergie des états stationnaires sont quantifiés.

On peut choisir deux niveaux d'énergie E_a et E_b différents

 $(E_a \neq E_b)$ et de fonctions d'ondes

$$\Psi_a = e^{-iE_a t/\hbar} \phi_a(x)$$

$$\Psi_b = e^{-iE_b t/\hbar} \phi_b(x)$$

et faire une combinaison linaire de coefficient (α, β) complexes

$$\Psi_{tot} = \alpha \Psi_a + \beta \Psi_b$$

Remarque:

la normalisation
$$\Rightarrow \int_{-\infty}^{+\infty} |\Psi_a|^2 dx = 1$$
 et $\int_{-\infty}^{+\infty} |\Psi_b|^2 dx = 1$ et $\int_{-\infty}^{+\infty} |\Psi_{tot}|^2 dx = 1$ Donc $\int_{-\infty}^{+\infty} |\alpha \Psi_a|^2 dx + \beta \Psi_b|^2 dx = 1$
$$|\alpha|^2 \int_{-\infty}^{+\infty} |\Psi_a|^2 dx + |\beta|^2 \int_{-\infty}^{+\infty} |\Psi_b|^2 dx + 2 \int_{-\infty}^{+\infty} \Re \left(\alpha \beta^* \Psi_a \Psi_b^*\right) dx = 1$$

$$2\Re (\alpha \beta^* [\int_{-\infty}^{+\infty} \phi_a \phi_b^* dx] e^{-i(E_a - E_b)t/\hbar}) = 1 - |\alpha|^2 - |\beta|^2$$

$$2r \cos(\theta - \frac{E_a - E_b}{\hbar} t) = 1 - |\alpha|^2 - |\beta|^2$$
 donc $r = 0$

donc $\int_{-\infty}^{+\infty} \phi_a(x) \phi_b^*(x) dx = 0$ et $|\alpha|^2 + |\beta|^2 = 1$ D'autre part $\Psi_{tot} = \alpha e^{-iE_at/\hbar} \phi_a + \beta e^{-iE_bt/\hbar} \phi_b$ donc

$$\rho = |\Psi_{tot}|^2 = |\alpha|^2 |\phi_a|^2 + |\beta|^2 |\phi_b|^2 + 2\Re(\alpha\beta^*\phi_a\phi_b^*e^{-i(E_a - E_b)t/\hbar})$$
donc $\rho_{tot} = |\alpha|^2 \rho_a + |\beta|^2 \rho_b + 2|\alpha\beta| \rho_{ab} \cos(\theta(x) - \frac{E_a - E_b}{\hbar}t)$

La densité de probabilité de présence évolue périodiquement à la pulsation $\frac{E_a-E_b}{\hbar}$, il s'agit de la pulsation de transition entre les niveaux d'énergie

on retrouve l'interprétation du spectre discret de la fluorescence des atomes ($\Delta E = h \nu$) et de l'effet photo-électrique ($h \nu = \Delta E$)

Application : pour les horloges atomiques on définit la seconde comme 9 192 631 770 fois la période de transition entre les deux niveaux hyperfins de l'état de plus basse énergie de l'atome de césium 133.

 ${f exo}$: Dans le cas d'un puit de potentiel infini tel que $V_0=0$ et de largeur L

Calculer et tracer pour différent instant convenablement choisi

$$\rho_{tot}(x, t) \text{ pour } \Psi_{tot} = \frac{1}{\sqrt{2}} (\Psi_{n=1} + \Psi_{n=2})$$

