Lecture 13: Deep Reinforcement Learning

Matteo Hessel

UCL 2020

Updates

- Working on grading the first assignment,
- ► Some more time needed to finalise grades/feedback on individual questions,

Recap

- ► Deep learning and function approximation
 - Autodifferentiation
 - ► The JAX library
- ▶ Deep learning aware reinforcement learning
 - ► Recovering i.i.d updates and batching (experience replay, dyna)

Recap

- ► The deadly triad in deep rl
 - Soft divergence and target networks
 - Multi-step updates
 - Prioritised sampling
- ▶ Reinforcement learning aware deep learning
 - Inductive biases for reinforcement learning: dueling networks
 - Revisiting deep learning assumptions: network capacity
 - Bootstrapping and generalisations: leakage propagation

Outline

- ► Learning about many thing
 - GVFs and UVFAs
 - Distributional RL
 - ► Trade-offs

Learning about many thing

- Many deep RL algorithms only optimise for a very narrow objective
 - Narrow objectives induce narrow state representations,
 - ▶ Narrow representation can't support good generalisation,
 - Deadly triad, leakage propagation, ...
- Our agents should strive to build rich knowledge about the world
 - Learn about more than just the main task reward.

The reward hypothesis (Sutton and Barto 2018)

- ▶ All goals can be represented as maximization of a scalar reward,
 - ▶ All useful knowledge may be encoded as predictions about rewards
 - ► For instance in the form of "general" value functions (GVFs),

General value functions (Sutton et al. 2011)

A GVF is conditioned on more than just state and actions

$$q_{c,\gamma,\pi}(s,a) = \mathbb{E}\left[C_{t+1} + \gamma_{t+1}C_{t+2} + \gamma_{t+1}\gamma_{t+2}C_{t+3} + \dots \mid S_t = s, A_{t+i} \sim \pi(S_{t+i})\right]$$

where $C_t = c(S_t)$ and $\gamma_t = \gamma(S_t)$ where S_t could be the environment state

- $ightharpoonup c: \mathcal{S}
 ightarrow \mathbb{R}$ is the cumulant
 - Predict many things, including but not limited to reward
- $ightharpoonup \gamma: \mathcal{S} \to \mathbb{R}$ is the discount or termination
 - ightharpoonup Predict for different time horizons γ
- $ightharpoonup \pi: \mathcal{S} o \mathcal{A}$ is the target policy
 - Predict under many different (hypothetical) policies π

Example: Simple predictive questions

- Reward prediction:
 - $ightharpoonup C_t = R_t$, $\gamma = 0$, under the agent's policy π
- ► Next state prediction:
 - $\{C_t^i = S_t^i\}_i$, $\gamma = 0$, under the agent's policy π
 - $\{C_t^i = \phi^i(S_t)\}_i$, $\gamma = 0$, under the agent's policy π

Predictive state representations (Littman et al. 2002)

- ► A large diverse set of GVF predictions
 - will be a sufficient statistics for any other prediction,
 - including the value estimates for the main task reward.
- ► In predictive state representations (PSR):
 - Use the predictions themselves as representation of state,
 - Learn policy and values as a linear function of these predictions,

GVFs as auxiliary tasks (Jaderberg et al., 2016)

- GVFs can also be used as auxiliary tasks,
 - that share part of the neural network,
 - minimise jointly the losses for the main task reward and the auxiliary GVFs
 - ▶ force the shared hidden layers to be more robust,

Example: Pixel Control (Jaderberg et al. 2016)

Example: Feature Control (Jaderberg et al. 2016)

GVFs as auxiliary tasks

Value-Improvement Path (Dabny et al. 2020)

- Why regularise the representation?
 - ▶ Over the course of learning we need to approximate many value functions,
 - As we are tracking a continuously improving agent policy,
 - Must support all functions in the value improvement path from Q^{π_0} to Q^{π^*}

Value-Improvement Path (Dabny et al. 2020)

▶ Which GVFs best regularise the representation?

Discovery of useful questions (Veeriah et al. 2015)

- Which GVFs best regularise the representation?
- ▶ The notion of value improvement path seeks a general answer,
- Instead, learn from experience what cumulants to predict,
- ► Using meta-learning (e.g. meta-gradients),

Learning about many things, and generalise (Schaul et al. 2015)

- GVFs-based auxiliary tasks help each other by sharing the representations,
- otherwise, each prediction is learnt independently
- Can we generalise what we learn about one GVF to other GVFs?
- ▶ Idea: feed a representation of (c, γ) is as **input**
- ▶ Allows generalization across goals/tasks within an environment
- This kind of GVFs are referred to as universal value functions

Learning about many things, off-policy

- We can learn about one cumulant off policy
- ▶ from data generated by a policy that maximises a different cumulant

'Unicorn' (Mankowitz et al., 2018) Learn about many things to learn to do the hard thing

Distributional reinforcement learning (Bellemare, Dabney, Munos 2017)

- Learning about many things may also mean learning the distribution of returns,
- rather than just approximating its expected value,
- Forces the representation (e.g., deep neural network) to be more robust,
- Knowing the distribution may be helpful for some things,
- For instance, you can perhaps reason about the probability of termination.

Distributional reinforcement learning

- ► A specific instance is Categorical DQN (Bellemare et al., 2017)
- ► Consider a 'comb' distribution on $\mathbf{z} = (-10, -9.9, \dots, 9.9, 10)^{\top}$
- ▶ For each point of support, we assign a 'probability' $p_{\theta}^{i}(S_{t}, A_{t})$
- ▶ The approximate distribution of the return s and a is the tuple $(z, p_{\theta}(s, a))$
- lackbox Our estimate of the expectation is: $m{z}^{ op}m{
 ho}_{ heta}(s,a)pprox q(s,a)$ use this to act
- ► Goal: learn these probabilities

Distributional reinforcement learning

1. Find max action:

$$oldsymbol{a}^* = \operatornamewithlimits{argmax}_{oldsymbol{a}} oldsymbol{z}^ op oldsymbol{p}_{ heta}(S_{t+1}, oldsymbol{a})$$
 (use, e.g., $oldsymbol{ heta}^-$ for double Q)

2. Update support:

$$\mathbf{z}' = R_{t+1} + \gamma \mathbf{z}$$

3. Project distribution $(\mathbf{z}', \mathbf{p}_{\theta}(S_{t+1}, a^*))$ onto support \mathbf{z} $d' = (\mathbf{z}, \mathbf{p}') = \Pi(\mathbf{z}', \mathbf{p}_{\theta}(S_{t+1}, a^*))$

where Π denotes projection

4. Minimize divergence

$$\mathsf{KL}(d'\|d) = -\sum_i p_i' \frac{\log p_i'}{\log p_o'(S_t, A_t)}$$

Bottom-right: target distribution $\Pi(R_{t+1} + \gamma \mathbf{z}, \mathbf{p}_{\theta}(S_{t+1}, a^*))$ Update $\mathbf{p}_{\theta}(S_t, A_t)$ towards this

Distributional reinforcement learning

- ► Categorical DQN is just one example of distributional reinforcement learning,
- There are many ways of modelling return distributions,
- For instance, we can model the quantiles via a GVF!
- ▶ ... see for instance (Dabney et al, 2018)

Learning about many things: trade-offs

- We want to learn as much as possible about the world,
- ▶ We only have limited resources (e.g. capacity, computation, ...),
- Different tasks compete for these resources,
- ▶ How do we trade-off between competing needs?

Learning about many things: trade-offs

- There is always a trade-off,
- ► Even if you don't do anything explicit
- ▶ The magnitude of the updates to shared weight differs across tasks,
 - e.g. scales linearly with the frequency and size of per-task rewards,
- ▶ Different tasks contribute to different degrees to representation learning,

Gradient norms

Update normalization

- In supervised learning we know before hand the dataset we will learn from,
 - ▶ We can normalise inputs and targets so that they have appropriate scales
- Many deep learning models do not work well without this
- ▶ In reinforcement learning we do not access to the "full dataset"
 - ▶ The scale of the values we predict also changes over time.
- Solution: adaptive normalization of updates

Adaptive target normalization (van Hasselt et al. 2016)

- 1. Observe target, e.g., $T_{t+1} = R_{t+1} + \gamma \max_a q_{\theta}(S_{t+1}, a)$
- 2. Update normalization parameters:

$$\mu_{t+1} = \mu_t + \eta (T_{t+1} - \mu_t) \qquad \qquad \text{(first moment / mean)}$$

$$\nu_{t+1} = \nu_t + \eta (T_{t+1}^2 - \nu_t) \qquad \qquad \text{(second moment)}$$

$$\sigma_{t+1} = \nu_t - \mu_t^2 \qquad \qquad \text{(variance)}$$

where η is a step size (e.g., $\eta = 0.001$)

3. Network outputs $\tilde{q}_{\theta}(s, a)$, update with

$$\Delta heta_t \propto \left(rac{T_{t+1} - \mu_{t+1}}{\sigma_{t+1}} - ilde{q}_ heta(S_t, A_t)
ight)
abla_ heta ilde{q}_ heta(S_t, A_t)$$

4. Recover unnormalized value: $q_{\theta}(s, a) = \sigma_t \tilde{q}_{\theta}(s, a) + \mu_t$ (used for bootstrapping)

Preserve outputs

- Naive implementation changes all outputs whenever we update the normalization
- This seems bad: we should avoid updating values of unrelated states
- ▶ We can avoid this. Typically:

$$ilde{m{q}}_{m{W},m{b}, heta}(s) = m{W}\phi_{ heta}(s) + m{b}$$
 .

► Idea: define

$$m{W}_t' = rac{\sigma_t}{\sigma_{t+1}} m{W}$$
 $m{b}_t' = rac{\sigma_t m{b}_t + \mu_t - \mu_{t+1}}{\sigma_{t+1}}$

Then

$$\sigma_{t+1} \tilde{\boldsymbol{q}}_{\boldsymbol{W}_t',\boldsymbol{b}_t',\theta_t}(s) + \mu_{t+1} = \sigma_t \tilde{\boldsymbol{q}}_{\boldsymbol{W}_t,\boldsymbol{b}_t,\theta_t}(s) + \mu_t$$

▶ Then update W'_t , b'_t and θ_t as normal (e.g., SGD)

Multi-task PopArt

Learning about many things: other benefits

- ▶ If we learn values and policies for multiple cumulants,
 - ► Temporally extended exploration,
 - Policy composition
- Value functions are not the only form of useful knowledge,
 - learn policy-independent environment models,
 - ► for instance, as auxiliary tasks
 - or to support model-based RL and planning,

Learning about many things: JAX

- ▶ There are open source JAX implementations for many of these ideas,
- ► See for instance the Rlax reinforcement learning package,
 - distributional value learning,
 - pixel-based cumulants,