

Anita Soroush

98222085

assignment 1 of Computational Neuroscience course

Abstract

We usually simulate a spiking neuron in a relatively simple form, known as Leaky Integrate-and-Fire (LIF) model. The reaction of this model to different input currents **cannot** represent a real neuron's behavior **accurately**. But can we add some terms to this model in a way so that it behaves more real...?

Introduction

In this report, I will discuss 3 neuron models, including leaky integrate-and-fire (LIF), Adaptive LIF and Adaptive Exponential LIF, and study their dynamics in response to 5 different types of inputs which are as follows:

- constant current
- sine wave current
- step function current
- linear current
- GWN current

Leaky integrate-and-fire (LIF) neuron model

One of the simplest mathematical models of a neuron is the Leaky integrate-and-fire (LIF) model. The subthreshold membrane potential dynamics of a LIF neuron is described by:

$$C_m rac{dV}{dt} = -g_L(V - V_L) + I,$$

where C_m is the membrane capacitance, V is the membrane potential, g_L is the leak conductance, V_L is the resting potential, and I is the external input current. Dividing both sides of the above equation by g_L gives:

$$\tau_m \frac{dV}{dt} = -(V - V_L) + \frac{I}{g_L}, \quad (1)$$

where the time constant τ_m is defined as $\tau_m = C/g_L$. Below we will use Eqn.(1) to simulate the LIF neuron dynamics. If I is sufficiently

strong such that V reaches a certain threshold value V_{th} , V is reset to a reset potential $V_{reset} < V_{th}$ and voltage is clamped to Vreset for tref ms mimicking the refractoriness of the neuron during an action potential, *i.e.*,

$$ext{if} \quad V(t) \geq V_{ ext{th}}: V(t^+) = V_{ ext{reset}}$$

Adaptive LIF neuron model

In order to make an adaptive LIF neuron model, we simply have to add an adaption term (-w) to Eqn.(1). Then we have:

$$\tau_m \frac{dV}{dt} = -(V - V_L) - \frac{w}{g_L} + \frac{I}{g_L}$$
 (2)

w itself changes based on the following dynamics:

$$au_w \, rac{dw}{dt} = a(V-E_L) - w$$

$$at \quad t = t^f \quad reset \qquad w o w + b$$

Exponential Adaptive LIF neuron model

The relative equation is as follows:

$$\tau_m \frac{dV}{dt} = -(V - V_L) + \Delta_T exp(\frac{V - V_{th}}{\Delta_T}) - \frac{w}{g_L} + \frac{I}{g_L}$$
 (3)

Let's move on to the notebook's results:

Point: in all following models **parameters** are:

$$V_{th} = -55 \text{ (mV)}$$

$$V_{reset} = -75 \text{ (mV)}$$

$$\tau_m = 10 \text{ (ms)}$$

$$g_L = 10$$

$$V_{init} = -65 \text{ (mV)}$$

$$V_L = -75 \text{ (mV)}$$

$$-t_{ref} = 2 \text{ (ms)}$$

-
$$T = 400 \text{ (ms)}$$

-
$$dt = 0.1 (ms)$$

-
$$\Delta_T = 1 \text{ (mV)}$$

-
$$w_{init} = 0$$

$$- a = 6$$

-
$$b = 10 (pA)$$

1) Constant Current:

$$I = 300$$

Adaptive LIF reaction:

Adaptive Exponential LIF reaction:

2) Sine Wave Current

 $I = 400 * (\sin(t) + 0.9)$

LIF reaction:

Adaptive LIF reaction:

Adaptive Exponential LIF reaction:

3) Step Function Current

LIF reaction:

Adaptive LIF reaction:

Adaptive Exponential LIF reaction:

4) Linear Current

$$I = 10 * t$$

LIF reaction:

Adaptive LIF reaction:

Adaptive Exponential LIF reaction:

5) (Gaussian white Noise) GWN Current

At the end, The following plots are showing the frequency of spikes for each neuron model as a response to a range of constant input currents:

• LIF

ALIF

• AELIF

Resources:

- http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
- https://colab.research.google.com/github/johanjan/MOOC-HPFEM-source/blob/master/LIF ei balance irregularity.ipynb#scrollTo=BoL7Mub0eMzT
- https://colab.research.google.com/github/NeuromatchAcademy/course-content/blob/N MA2020/tutorials/W3D1_RealNeurons/student/W3D1_Tutorial1.ipynb#scrollTo=Qc nfVdHX4JPU