Design and Analysis of Algorithm

M. Sakthi Balan

Department of Computer Science & Engineering LNMIIT, Jaipur

Contents

- **Interval Scheduling**
- **Weighted Interval Scheduling**
- **Huffman Coding**
- **Knapscak Problem**
- **LCS**

Design and Analysis of Algorithm

Greedy Approach

- Used in optimization problems
- Builds up a solution in small steps, choosing a decision at each step myopically to optimize some underlying criterion
- One can often design many different greedy algorithms for the same problem, each one locally, incrementally optimizing some different measure on its way to a solution
- Does not guarantee optimal solutions in general but in most cases it produces a solution very close to an optimal one

Greedy Approach

- Type 1 Stays ahead: It always stays ahead of any other algorithm
- Type 2 Exchange argument: Considers any possible solution and slowly it transforms into an optimal one

Huffman Coding

Problem

Interval Scheduling

- Given *n* requests − {1, 2, ..., *n*}
- Each request i has a starting time s(i) and finishing time f(i)
- Two requests are said to be compatible if their time does not overlap
- A set of requests is said to be compatible if no two pairs of request have time overlaps
- Problem is to find a subset of requests that is maximum (with respect to cardinality) and compatible

Design and Analysis of Algorithm

Huffman Coding

From Kleinberg and Eva Tardos

Design and Analysis of Algorithm

Approaches

- Select the available request that starts earliest, that is, the one with minimal start time s(i)
- 2 Accepting the request that requires the smallest interval of time, namely, the request for which f(i) s(i) is as small as possible
- Solution
 For each request, we count the number of other requests that are not compatible, and accept the request that has the fewest number of incompatible requests

Optimal Approach

- Accept first the request that finishes first, that is, the request i for which f(i) is as small as possible.
- Now it seems natural! We ensure that our resource becomes free as soon as possible while still satisfying one request

Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request $i \in R$ that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i

EndWhile

Interval Scheduling

Return the set A as the set of accepted requests

Interval Scheduling

Proof

- Suppose the optimal scheduling that our algorithm gives is $A = i_1, i_2, \dots, i_k$
- Suppose there is another optimal scheduling that gives $\mathcal{O} = j_1, j_2, \dots, j_m$
- We need to show k = m
- First we will show

For all indices $r \le k$ we have $f(i_r) \le f(j_r)$

Interval Scheduling

For all indices $r \leq k$ we have $f(i_r) \leq f(j_r)$ Prove by induction r=1 it is obvious

Assume the result for r-1 and show for r

We can make this argument precise as follows. We know (since O consists of compatible intervals) that $f(j_{r-1}) \leq s(j_r)$. Combining this with the induction hypothesis $f(i_{r-1}) \le f(j_{r-1})$, we get $f(i_{r-1}) \le s(j_r)$. Thus the interval j_r is in the set R of available intervals at the time when the greedy algorithm selects i_r . The greedy algorithm selects the available interval with *smallest* finish time; since interval j_r is one of these available intervals, we have $f(i_r) \leq f(j_r)$. This completes the induction step.

(4.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, then an optimal set O must have more requests, that is, we must have m > k. Applying (4.2) with r = k, we get that $f(i_k) \le f(j_k)$. Since m > k, there is a request j_{k+1} in O. This request starts after request j_k ends, and hence after i_k ends. So after deleting all requests that are not compatible with requests i_1, \ldots, i_k , the set of possible requests R still contains j_{k+1} . But the greedy algorithm stops with request i_k , and it is only supposed to stop when R is empty—a contradiction. \blacksquare

Dynamic Programming

Dynamic programming. Break up a problem into a series of overlapping subproblems, and build up solutions to larger and larger subproblems.

> fancy name for caching away intermediate results in a table for later reuse

Dynamic Programming

- First pioneered by Bellman (Mathematician) in 1950s
- Dynamic programming is nothing but planning over time
- Secretary of Defense was hostile to mathematical research and so Bellman sought an impressive name to avoid confrontation! (from Kleinberg and Eva Tardos)

Problem

- Given n requests {1, 2, ..., n}
- Each request i has a starting time s(i) and finishing time f(i)
- Each request has a value v_i associated with it
- Problem is to find a subset of requests S that has the maximum sum of weights and each pair of interval in S is compatible

Weighted Interval Scheduling

Same Greedy algorithm won't work!

Huffman Coding

- Suppose the intervals are sorted according to f(i)
- For an interval j calculate the value p(j)
- p(i) is nothing but the largest i such that i is compatible with i

Index

Interval Scheduling

Weighted Interval Scheduling

Suppose $\ensuremath{\mathcal{O}}$ is an optimal scheduling for the given instance of WIS problem

Case 1: $n \in \mathcal{O} \implies$ no intervals $p(n) + 1, p(n) + 2, \dots, n - 1$ can belong to \mathcal{O}

This means

$$OPT(n) = v_n + OPT(p(n))$$

optimal scheduling for the given instance of WIS problem

Case 2: $n \notin \mathcal{O} \implies$ means

$$OPT(n) = OPT(n-1)$$

This can be generalized as either

$$OPT(j) = v_n + OPT(p(j))$$

or

$$OPT(j) = OPT(j-1)$$

for any interval *j* Now take

$$OPT(j) = Max(v_n + OPT(p(j)), OPT(j-1))$$

Knapscak Problem

```
Compute-Opt(j)
  If j=0 then
     Return 0
  Else
     Return \max(v_i + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))
  Endif
```

The algorithm is not optimal! It computes many values again and again!

Knapscak Problem

Weighted Interval Scheduling

- This was first proposed by Dr. David A. Huffman in 1952 through his paper on A Method for the Construction of Minimum Redundancy Codes
- Applications: data transmission, efficient storage of data and so on

Basic Idea

- All characters does not occur with same frequency
- But still all characters are given the same space
- Can we any savings in tailoring codes to frequency of character?
- Code word lengths can vary. It will be shorter for the more frequently used characters.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the characters a-f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only 224,000 bits.

From Cormen et al

Prefix Codes

- A *prefix code* for a set S is a function c that maps each $x \in S$ to 1s and 0s in such a way that for $x, y \in S, x \neq y, c(x)$ is not a prefix of c(y).
- For example: c(a) = 11, c(e) = 01, c(k) = 001, c(l) = 10, c(u) = 000. What is the meaning of 1001000001?

From Internet


```
Huffman(C)
  n = |C|
Q = C
   for i = 1 to n - 1
       allocate a new node z
       z.left = x = EXTRACT-MIN(Q)
       z.right = y = EXTRACT-MIN(Q)
       z.freq = x.freq + y.freq
       INSERT(Q,z)
9
   return EXTRACT-MIN(Q)
                             // return the root of the tree
```

From Cormen et al

(f)

c:12

(b)

From Cormen et al

d:16 a:45

Knapsack Problem

A thief robbing a store finds n items. The i^{th} item is worth v_i dollars and weighs w_i kilogram, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W kilogram in his knapsack, for some integer W. Which items should he take?

Versions

- 0-1 Knapsack Problem
- Fractional Knapsack Problem

Huffman Coding

- Greedy approach helps to solve fractional Knapsack
- For 0-1 knapsack greedy approach does not give an optimal solution

Fractional Knapsack Problem

- Find the f_i values where $f_i = v_i/w_i$
- Sort f_i in decreasing order
- Take the first item in the sorted list, say i, as much as possible
- For the remaining amount in the knaspsack repeat the same method as above with the remaining leftover things until the knapsack total weight becomes W

Knapsack Problem

From Cormen et al

0-1 Knapsack Problem

Huffman Coding

Problem

- There are n data files that we want to store
- We have available W bytes availability
- File i has size w_i bytes and takes v_i minutes to compute.
- We want to avoid recomputing as much as possible, so the idea is to find a subset of files to store such that the files have combined size at most W.
- The total computing time of the stored files is as large as possible.
- We cannot store parts of files, it is the whole file or nothing.
- How should we select the files in these circumstances?

Problem

Interval Scheduling

We are given two tuples of positive numbers:

$$(v_1, v_2, \ldots, v_n)$$

and

$$(w_1, w_2, \ldots, w_n)$$

with W > 0. The problem is to find a subset $S \subseteq \{1, 2, ..., n\}$ that maximises

$$\sum_{i\in T} v_i$$

subject to

$$\sum_{i\in\mathcal{I}}w_i\leq W$$

Interval Scheduling

Huffman Coding

- Construct a table of values V[0..n, 0..W]
- V[i,j] denotes maximum computing of files from $\{1,2,\ldots,i\}$ with at most size j where $1 \le i \le n$ and $0 \le j \le W$
- V[n, W] contains the maximum computing time of the files and that is the solution we are looking for

Knapscak Problem

0-1 Knapsack Problem

Initial Settings: Set

$$V[0,w]=0$$
 for $0 \le w \le W$, no item $V[i,w]=-\infty$ for $w < 0$, illegal

Recursive Step: Use

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w - w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

Lemma: For 1 < i < n, 0 < w < W, $V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i]).$

Proof: To compute V[i, w] we note that we have only two choices for file i:

Leave file i: The best we can do with files $\{1,2,\ldots,i-1\}$ and storage limit w is V[i-1,w].

Take file i (only possible if $w_i < w$): Then we gain v_i of computing time, but have spent w_i bytes of our storage. The best we can do with remaining files $\{1,2,\ldots,i-1\}$ and storage $(w-w_i)$ is $V[i-1, w-w_i].$ Totally, we get $v_i + V[i-1, w-w_i]$.

Note that if $w_i > w$, then $v_i + V[i-1, w-w_i] = -\infty$ so the lemma is correct in any case.

0-1 Knapsack Problem

Let W = 10 and

V[i,w]											
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	50 70
4	0	0	0	50	50	50	50	90	90	90	90

Knapscak Problem

0-1 Knapsack Problem

The Dynamic Programming Algorithm

```
\mathsf{KnapSack}(v, w, n, W)
  for (w = 0 \text{ to } W) V[0, w] = 0:
  for (i = 1 \text{ to } n)
     for (w = 0 \text{ to } W)
       if (w[i] < w)
          V[i, w] = \max\{V[i-1, w], v[i] + V[i-1, w-w[i]]\};
       else
          V[i,w] = V[i-1,w];
  return V[n, W]:
```

Time complexity: Clearly, O(nW).

Interval Scheduling

0-1 Knapsack Problem

Huffman Coding

- Algorithm described does not find the subset of items that gives the optimal solution! How to find it?
- To compute the actual subset, we can add an auxiliary boolean

Interval Scheduling

Huffman Coding

- Algorithm described does not find the subset of items that gives the optimal solution! How to find it?
- To compute the actual subset, we can add an auxiliary boolean array keep[i, j] which is 1 if we decide to take the i^{th} file in V[i, j]and 0 otherwise.

Knapscak Problem

0-1 Knapsack Problem

```
\mathsf{KnapSack}(v, w, n, W)
   for (w = 0 to W) V[0, w] = 0:
   for (i = 1 \text{ to } n)
       for (w = 0 \text{ to } W)
           if ((w[i] \le w) and (v[i] + V[i-1, w-w[i]] > V[i-1, w]))
               V[i, w] = v[i] + V[i - 1, w - w[i]]:
               \mathsf{keep}[i, w] = 1;
           else
               V[i, w] = V[i - 1, w];
               \mathsf{keep}[i, w] = 0:
    K = W:
   for (i = n \text{ downto } 1)
       if (\text{keep}[i, K] == 1)
           output i:
           K = K - w[i]:
   return V[n, W]:
```


Longest Common Subsequence Problem

We are given two sequences

$$X = \langle x_1, x_2 \dots, x_m \rangle$$

and

Interval Scheduling

$$Y = \langle y_1, y_2, \dots, y_n \rangle$$

and wish to find a maximum length common subsequence of X and Y.

LCS - Example

Let

$$X = \langle A, B, C, B, D, A, B \rangle$$

and

$$Y = \langle B, D, C, A, B, A \rangle$$

the sequence

$$\langle B, C, A \rangle$$

is a common subsequence but it is not a longest common subsequence (LCS) of X and Y.

$$\langle B, C, B, A \rangle$$

is an LCS of X and Y, as is the sequence

$$\langle B, D, A, B \rangle$$

Huffman Coding

Theorem 15.1 (Optimal substructure of an LCS)

Let $X = (x_1, x_2, \dots, x_m)$ and $Y = (y_1, y_2, \dots, y_n)$ be sequences, and let Z = $\langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

From Cormen et al.

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

From Cormen et al


```
LCS-LENGTH(X, Y)
     m = X.length
 2
    n = Y.length
     let b[1 \dots m, 1 \dots n] and c[0 \dots m, 0 \dots n] be new tables
 4
     for i = 1 to m
 5
          c[i,0] = 0
 6
     for j = 0 to n
 7
          c[0, j] = 0
 8
     for i = 1 to m
 9
          for j = 1 to n
10
               if x_i == y_i
                    c[i, j] = c[i-1, j-1] + 1

b[i, j] = "\"
11
12
13
               elseif c[i - 1, j] \ge c[i, j - 1]
                    c[i,j] = c[i-1,j]
14
                    b[i, j] = "\uparrow"
15
               else c[i, j] = c[i, j - 1]
16
                    b[i, j] = "\leftarrow"
17
18
     return c and b
```

From Cormen et al

Interval Scheduling Weighted Interval Scheduling Huffman Coding Knapscak Problem

LCS Problem

From Cormen et al

(LCS)


```
PRINT-LCS(b, X, i, j)
   if i == 0 or j == 0
        return
   if b[i, j] == "
"
        PRINT-LCS(b, X, i - 1, j - 1)
4
5
        print x_i
   elseif b[i, j] == "\uparrow"
        PRINT-LCS(b, X, i-1, j)
   else Print-LCS(b, X, i, j - 1)
8
```

From Cormen et al

