同学们好!

大学物理(二)

主讲教师:邓科

(ke.deng@hust.edu.cn)

University Physics 大学物理

主 编 项林川 副主编 朱佑新 王章金

本课程有关事项

- 1. 学习内容: 9.6节-17章 (不含*部分,不含第12章几何光学)
- 2. 电话(微信): 136-9735-9347 邮箱: ke.deng@hust.edu.cn

班级群:企业微信群(大学物理二-计算机2301-2304)

- 3. 演示实验室参观: 14-15周, 每周两次
- 4. 答疑安排: 期中一次,期末两次 C_5- 116
- 5. 总成绩 = 期末考试(70) + 平时(30)平时成绩构成: 作业20, 网测10
- ◆ 网测: 电磁学、振动与波动5分(第9-10周) 波动光学5分(第13-14周)

网测相关说明

网测平台:华中科技大学网络教学平台(学习通app)

http://hust.fanya.chaoxing.com/

网测时长:每次1节课(45-50分钟),课上进行

题目类型:单选题,约15-20题

◆示例:

无限长直细导线,垂直距离a处的磁场大小为 (5分)

- $A = \frac{\mu_0 I}{4\pi a}$
- $B_{\star} = \frac{\mu_0 I}{2\pi a}$
- \subset $\frac{\mu_0 I}{2a}$
- $D, \frac{\mu_0 I}{4a}$

作业要求

- 作业一律采用习题册。
- 请勿用铅笔答题。
- 图和公式要有必要的标注或文字说明。
- 作业纸上每次(奇数页)都要写学号(或学号末三位),各班 收作业后按学号由小到大排序。
- 每周五上课之前交作业。补交的作业只计60分。
- 缺交作业累计超过三分之一者,该课程成绩以零分计。----华中科技大学普通本科生学籍管理细则(校教〔2021〕3号)

第三十四条 无故缺课累计超过课程教学时数的1/3,缺交作业或实验报告累计超过课程教学要求的1/3者,不得参加课程的考核,登记成绩时,注明"缺平时成绩"字样,该课程成绩以零分计。

部分网络资源的网址

中国教育部爱课程网:

http://www.icourses.cn/home/

中国MOOC课程平台:

http://www.icourses.cn/imooc/

清华大学学堂在线

http://www.xuetangx.com/

东西部高校课程联盟共享

http://www.wemooc.edu.cn

上海高校课程中心

http://www.ucc.sh.edu.cn/

物理英文网站:

国际MOOC课程平台:

Udacity

https://www.udacity.com/

Coursera

https://www.coursera.org/

edX

https://www.edx.org/

网易公开课:

http://open.163.com/

新浪公开课:

http://open.sina.com.cn/

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

我校《大学物理》资源共享课网址(爱课网):

http://www.icourses.cn/coursestatic/course_6180.html

部分网络资源的网址

《The Feynman Lectures on Physics》

http://www.feynmanlectures.caltech.edu/

科普中国

http://news.xinhuanet.com/science

北京科技视频网_分享科学的快乐

https://www.bjscivid.org

本学期授课安排

第三篇 电磁学

第9章 磁场与实物的相互作用 磁介质第10章 电磁感应

第四篇 振动与波动

第11章 振动与波动

第五篇 光学

第13章 波动光学

第六篇 量子物理

第14章 早期量子论 第15章 量子力学基础 第16章 半导体与激光简介 第17章 原子核物理简介

大学物理 (二)课堂演示实验目录

三.电磁学

电流相互作用 巴克豪森效应 楞次定律 自感系数与磁导率的关系

四.振动与波

弹簧纵波演示 音叉演示拍现象 激光垂直振动合成 弦驻波 电磁波演示仪 五.光学

双缝干涉 单缝衍射 光栅色散船 光栅与检偏 方解石的不 偏振光的干涉

稳恒磁场的性质

基本规律: 毕一萨定律

高斯定理:
$$\int \vec{B} \cdot d\vec{S} = 0$$
 — 无源场

安培环路定理:
$$\int \bar{B} \cdot d\bar{l} = \mu_0 \sum I_i \longrightarrow \text{有旋场}$$

对比静电场:

静电场高斯定理:
$$\int \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum q_i \longrightarrow 有源场$$

静电场环路定理:
$$\int \vec{E} \cdot d\vec{l} = 0$$
 — 无旋场

计算B的两种方法:

- 1) 毕 萨定律+叠加原理 $\vec{B} = \int d\vec{B}$
- 2) 安培环路定理计算对称磁场

分析:安培环路定理对一段电流的磁场是否成立?举例说明。

$$B = \frac{\mu_0 I}{4\pi r} (\cos\theta_1 - \cos\theta_2)$$

构造扇形环路abcda:

ab和cd两条边贡献环流为零

假设位置参数:

内圆张角45°(下)与135°(上),

外圆张角60°(下)与120°(上)

结果:
$$\frac{\mu_0 I}{4\pi} (\sqrt{2} - 1)\alpha \neq \mathbf{0}$$

思考: 毕-萨定律与安培环路定理中, 磁场和电流的关联关系。

$$\bar{B} = \int d\bar{B} = \frac{\mu_0}{4\pi} \int \frac{Id\bar{l} \times \bar{r}}{r^3}$$
 场点 P 处的 B 与所有的电流有关。

$$\int_{L} \vec{B} \cdot d\vec{l} = \mu_0 \sum I_i \quad \text{环路上} B \text{的环量与} L \text{所环绕的电流有关}.$$

是否反映环路上某点B与L所环绕的电流的关系?

L未环绕的电流对环路上某点B是否有贡献?对B的环量?

L环绕的电流对环路上某点B是否有贡献?对B的环量?

思考: 载流长直螺线管截面形状不是圆的情况。

圆形截面载流长直螺线管

$$B(\mathbf{r}) = \mu_0 nI$$
 $B(\mathbf{r}) = 0$

说明:

- 1:如果是有限长的任意截面螺线管,磁场分布规律不能等同于同样长的圆形螺线管。
- 2: 即使是无限长圆形截面,上述磁场分布结果只是近似。
- 3:实际螺线管的导线有粗细,无法做到内部电流抵消,因此上述情况只是近似。

第6节 磁场对实物的作用

- 一、磁场对运动电荷的作用
- 1. 磁场对带电粒子的作用力 $\vec{F}_m = q\vec{v} \times \vec{B} \perp \vec{v}$ 洛伦兹力不做功

四个诺贝尔物理奖:

回旋加速器(1939年) 电子显微镜(1986年) 量子霍尔效应(1985年)分数量子霍尔效应(1998年)下面分三种情况讨论:

①若 $\overline{v}//\overline{B}$,磁场对带电粒子的作用力为零,粒子仍以原速度作匀速直线运动。

②q以 $\bar{v}\perp\bar{B}$ 进入磁场:

运动方程:
$$qvB = \frac{mv^2}{R}$$

得:
$$R = \frac{mv}{qB}$$

q转一周的时间:

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$
 ——回旋周期

频率:
$$v = \frac{1}{T} = \frac{qB}{2\pi m}$$

为磁聚焦,回旋加速器的基本理论依据。

③普遍情形下 $(\bar{v}, \bar{B}) = \theta$ (任意角)

$$R = \frac{mv_{\perp}}{qB}$$

$$T = \frac{2\pi m}{qB}$$

运动合成
$$\Longrightarrow$$
 螺旋线。 螺距: $d=v_{//}T=\frac{2\pi m v_{//}}{qB}$

2. 霍耳效应

在一个通有电流的导体(或半导体)板上,若垂直于板面施加一磁场,则在与电流和磁场都垂直的方向上,板面两侧会出现微弱电势差。

稳定时平衡条件:

$$qE_{\rm H} = qvB$$

$$E_{\rm H} = vB$$

$$U_{\rm H} = vBb$$

$$I = \frac{qnV}{t} = qnvbd$$

$$U_{\rm H} = \frac{IB}{nqd}$$

霍耳
$$R_{\rm H} = \frac{1}{nq}$$

霍耳电压
$$U_{\rm H} = R_{\rm H} \frac{IB}{d}$$

霍耳效应的应用

(1) 判断半导体的类型

(2) 测量磁场

霍耳电压
$$U_{\rm H} = R_{\rm H} \frac{IB}{d}$$

量子霍尔效应

克利青(Klitzing) (1980)

低温(~K),强磁场(~10 T)条件下

霍尔电阻量子化:

$$R_H = \frac{R_K}{n} \quad (n = 2, 3, \cdots)$$

$$R_K = \frac{h}{e^2} = 25 \ 812.806 \ \Omega$$

Klaus von Klitzing
1985 Nobel Prize

''for the discovery of the quantized Hall effect''

3. 磁聚焦

$$v_{//} = v \cos\theta$$

$$d = \frac{2\pi m \, v_{//}}{qB}$$

当带电粒子束发散角不太大时,即 θ 很小: $v_{\parallel} \approx v$

若带电粒子的速度大致相同,则螺距近似相等,

粒子束经过一个回旋 周期后,重新会聚。

广泛应用于电子光学 特别是电子显微镜中。

4. 磁约束

$$R = \frac{m v_{\perp}}{qB} \qquad d = \frac{2\pi m v_{//}}{qB}$$

在非均匀磁场中,速度方向与磁场方向不同的带电粒子,也要作螺旋运动,但R和d都将不断发生变化。

 $ar{F}_{//}$ 使粒子运动发生"反射" $ar{F}_{//}$ 使粒子运动"绕螺旋"

横向磁约束:

磁场越强,半径越小。在强磁场中,带电粒子被约束在一根磁感应线附近很小范围内,只能沿磁感应线作纵向运动。

纵向磁约束:

磁场由弱到强的 配置称为磁镜。

之间的范围内。

能约束带电粒子运动的 磁场分布称为磁镜约束 。—— 磁瓶

用于束缚等离子体进行受控热 核反应,解决高温下容器问题

地球的磁约束效应

—— 天然磁瓶。

地球南北极极光的原理

太阳风+地磁场+大气

太阳风:

太阳发出的高速带电粒子

地磁场:

两极磁力线密集

大气:被碰撞激发后,

氧原子放出绿光或红光, 氧分子放出红光或黄光, 氮分子放出紫光或粉红光

分析: 磁场对运动电荷的力怎么传递给载流导线的?

自由电荷受到洛伦兹力:

$$\vec{F}_m = q\vec{v} \times \vec{B}$$

内表面出现正负电荷分布。

正负电荷激发横向霍尔电场,对自由电荷施力。

霍尔电场作为媒介,力传递给了载流导线上。

注: 自由电荷还有无规热运动,各方向整体抵消。

二、磁场对载流导线的作用

电流元中每个带电粒子在磁场中受洛伦兹力

$$\vec{F} = q\vec{v} \times \vec{B}$$

一段载流导线 dl 中,带电粒子数:nSdl

电流元受磁力:

$$d\vec{F} = \underline{n}\underline{S}d\underline{l}\underline{q}\underline{\vec{v}} \times \vec{B} \qquad I = \frac{dq}{dt} = \frac{qnSvdt}{dt} = nSqv$$

$$d\vec{F} = Id\vec{l} \times \vec{B}$$
 _____安培定律

电流元处的磁场

任意载流导线在磁场中所受的合力为:

$$\vec{F} = \int_0^l I d\vec{l} \times \vec{B}$$

讨论:如果载流导线存在运动,受到的磁力是否有变?

自由电荷同时参与两种运动:

$$\vec{v}' = \vec{v} + \vec{u}$$

其中, ū 是随着载流导线运动的速度。

所以,自由电荷感受的洛伦兹力变为 $\bar{F}_m' = q\bar{v}' \times \bar{B}$

有变化!

但是,导体内自由电荷旁边伴随有等量异种电荷, $\vec{F}_{-q} = -q\vec{u} \times \vec{B}$

结论:整体所受磁力与载流导线的运动无关。

例1. 在均匀磁场 B中有一弯曲导线ab,通有电流I,求其受磁场力。

$$\vec{F} = \int_0^l I d\vec{l} \times \vec{B}$$

解: 由安培定律

$$\vec{F} = \int_{a}^{b} I d\vec{l} \times \vec{B} = I \left(\int_{a}^{b} d\vec{l} \right) \times \vec{B}$$
$$= I \vec{L}_{ab} \times \vec{B}$$

相当于载流直线L所受的力! 方向垂直板面向外。

任意平面导线在均匀磁场中所受的磁力,等效于从起点到终点连的直导线通以相同电流时受的磁力。任意平面载流线圈,在均匀磁场中所受的磁力为零。

例2. 圆柱形磁铁 N 极上方水平放置一个载流导线

环,已知在导线所在处磁场的方向与竖直方向成 α

角,大小为B,导线上电流为I,求其受力。

解: 分析可知:

圆环受的总磁力的方向 在 z 轴正向。

任意电流元所受磁力大小为:

$$\left| \mathbf{d}\vec{F} \right| = \left| I\mathbf{d}\vec{l} \times \vec{B} \right| = IB\mathbf{d}l$$

圆环受总磁力的大小:

$$F = F_z = \int \mathrm{d}F \sin \alpha$$

$$= \int_{0}^{2\pi R} IB \sin \alpha \cdot dl = 2\pi RIB \sin \alpha$$

例3. 求两平行无限长直电流单位长度上的相互作用力。

解: 电流 2 处于电流 1 的磁场中

$$B_1 = \frac{\mu_0 I_1}{2\pi a}$$

电流 2 中单位长度上受的安培力

$$F_{12} = I_2 B_1 = \frac{\mu_0 I_1 I_2}{2\pi a}$$

同理,电流1处于电流2的磁场中,电流1中单位长度上受的安培力

$$F_{21} = I_1 B_2 = \frac{\mu_0 I_1 I_2}{2\pi a}$$

$$I = \sqrt{\frac{2\pi F}{\mu_0}}$$

电流强度单位安培的定义:

在真空中,两条通有同值电流的无限长平行直导线,当导线相距1 m,每米长度上受力为2×10⁻⁷N时,各导线上的电流为1安培。

$$I = \sqrt{2\pi \cdot \frac{2 \times 10^{-7}}{4\pi \times 10^{-7}}} = 1(A)$$

注: 电流 1 中单位长度上受的安培力 $F_{21} = I_1 B_2 = \frac{\mu_0 I_1 I_2}{2\pi n}$

严格写法:
$$F_{21} = \frac{\mu_0 I_1 I_2}{2\pi a} \cdot 1$$
m

电流定义中: $\mu_0 = 4\pi \times 10^{-7}$ N/A²

毕-萨定律中: $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$

二者的联系: $1N = 1A \cdot T \cdot m$

例4. 求无限长半圆柱面电流(电流均匀分布)对其轴线 上长直载流导线的作用力。

解: 先计算长半圆柱面电流在轴线上的磁场:

$$dI = idl = \frac{I}{\pi R} \times Rd\theta = \frac{I}{\pi}d\theta$$

$$dB = \frac{\mu_0 dI}{2\pi R} = \frac{\mu_0 I d\theta}{2\pi^2 R} \quad \text{由对称性: } B_x = 0$$

由对称性:
$$B_x = 0$$

$$\frac{\mathrm{d}\vec{B}}{O} \times \frac{\mathrm{d}\vec{B}}{x}$$

$$B = \int dB_y = \int_0^{\pi} \frac{\mu_0 I}{2\pi^2 R} \sin \theta d\theta = \frac{\mu_0 I}{\pi^2 R}$$

单位长度上
$$F = BI = \frac{\mu_0 I^2}{\pi^2 R}$$
 沿-x方向

问题: 若将一无限长直线取代半圆柱面,产生相同 作用力,应将该导线放在何处?

例5.(非匀强场)一段直导线ab长为L,通有电流 I_2 ,处于长直电流 I_1 的磁场中, I_1 、 I_2 共面,且 I_2 $\perp I_1$,尺寸如图,求ab 所受安培力。

解: I_1 右边的磁场均上纸面向里在距 I_1 为r处的 I_2 上取电流元 I_2 dld $f = I_2$ d $\vec{l} \times \vec{B}$ 故d $f \perp ab$ d $f = BI_2$ d $l = BI_2$ dr

于是直导线ab所受安培力为 $f = \int_{d}^{d+L} \frac{\mu_0 I_1}{2\pi r} \cdot I_2 dr = \frac{\mu_0 I_1 I_2}{2\pi} \ln \frac{d+L}{d}$

三、均匀磁场对平面闭合载流线圈的作用

$$\vec{F} = \int_0^L I d\vec{l} \times \vec{B}$$

1. 矩形线圈

设矩形线圈处在均匀磁场,由

如图由安培定律可得各边受力:

$$F_1 = F_2 = |\int_d^a I d\vec{l} \times \vec{B}| = IBl_2$$
 $F_3 = F_4 = IB\cos\theta l_1$
 E_1 、 F_2 不在一直线上

则:线圈受力矩 $\vec{M} = \vec{r} \times \vec{F}$

$$M = F_1 \frac{l_1}{2} \cos \alpha + F_2 \frac{l_1}{2} \cos \alpha = IBl_1 l_2 \cos \alpha$$
$$= IBS \sin \theta = p_m B \sin \theta$$

其中,磁偶极矩 $\vec{p}_m = IS\bar{n}$

$$\therefore \vec{M} = \vec{p}_m \times \vec{B}$$

线圈在均匀外磁场中的几种情况:

磁场作用在线圈的磁力矩总是使该线圈转向外磁场方向。

以上的讨论可推广到任意一线圈!

2. 任意形状的平面线圈

设任意形状的闭合平面线圈电流为I,面积为S, $(\vec{n}, \vec{B}) = \theta$ 把线圈分割成许多无限小矩形组成,

每一小窄条的磁矩为: $\mathrm{d}\vec{p}_m = I\mathrm{d}S\vec{n}$

均匀磁场对任意形状线圈的作用只取决于产加

一般线圈
$$\sum \vec{F} = 0$$
 $\sum \vec{M} \neq 0$

小结: 磁感应强度B的三种定义方法

- ①利用 $\vec{F}_m = q\vec{v} \times \vec{B}$,
- ②利用 $d\vec{F} = Id\vec{l} \times \vec{B}$,

以上三种定义等价,第三种更容易实际操作,步骤为:

- (1) 寻找载流小线圈在磁场中的稳定平衡位置,此时磁矩方向即为B的方向。
 - (2) 转向,让磁矩方向与B的方向垂直。 $B = \frac{m_{\text{max}}}{p_m}$
- (3) 综合B的大小和方向,可表述为 $\bar{B} = \frac{\bar{M}_{\text{max}} \times \hat{p}_{m}}{\bar{p}_{m}^{2}}$

思考: 载流线圈受磁力矩作用而转动, 转轴在哪里?

$$\sum \vec{F} = 0$$
 质心运动定理,质心保持静止。

$$x_c = \frac{\int x \, dm}{m}$$
 假设线密度λ是均匀的。

$$= \frac{1}{\lambda(4R+\pi R)} \cdot (\int_0^{\pi} R \sin\theta \cdot \lambda R d\theta + 2 \int_{-R}^{0} \lambda x dx - 2\lambda R^2)$$

$$x_c = -\frac{R}{1 + \pi}$$
 转轴在通过质心 x_c 的竖直的线上。