Московский государственный университет им. М.В. Ломоносова Механико-математический факультет Кафедра математической теории интеллектуальных систем

Отчет по практикуму на ЭВМ Задача 2 вариант 6

Выполнил студент 411 группы Орлов Г.В.

1 Постановка задачи

$$\int_{0}^{\frac{\pi}{2}} u^{2} dt \to inf, \quad \ddot{x} + xe^{-\alpha t} = u,$$

$$x(\frac{\pi}{2}) = \dot{x}(0) = 0, \ \dot{x}(\frac{\pi}{2}) = -\frac{\pi}{2},$$

$$\alpha = \{0.0; \ 0.1; \ 1.5; \ 10\}.$$

1.1 Формализация задачи

Введём обозначения: $x_1 := x, \ x_2 := \dot{x}$, тогда рассматриваемая задача представляется в виде:

$$\int_{0}^{\frac{\pi}{2}} u^{2} dt \to inf,$$

$$\begin{cases} \dot{x_{1}} = x_{2}, \\ \dot{x_{2}} = u - x_{1}e^{-\alpha t}, \end{cases}$$

$$x_{1}(\frac{\pi}{2}) = 0, \ x_{2}(0) = 0, \ x_{2}(\frac{\pi}{2}) = -\frac{\pi}{2},$$

$$\alpha = \{0.0; \ 0.1; \ 1.5; \ 10\}.$$

2 Необходимые условия принципа максимума

$$\mathcal{L} := \int_{0}^{\frac{\pi}{2}} Ldt + l,$$

$$L := \lambda_{0}u^{2} + p_{1}(\dot{x_{1}} - x_{2}) + p_{2}(\dot{x_{2}} - u + x_{1}e^{-\alpha t}),$$

$$l := \lambda_{1}x_{1}(\frac{\pi}{2}) + \lambda_{2}x_{2}(0) + \lambda_{3}(x_{2}(\frac{\pi}{2}) + \frac{\pi}{2}).$$

Необходимые уловия оптимальности:

1. Уравнения Лагранжа:

$$\begin{cases} -\dot{p}_1 + p_2 e^{-\alpha t} = 0\\ \dot{p}_2 + p_1 = 0 \end{cases}$$

2. Условие оптимальности по управлению:

$$\hat{u} = \underset{u \in \mathbf{R}}{\operatorname{argmin}} (\lambda_0 u^2 - p_2 u),$$

Отсюда получаем, что

$$\hat{u} = \frac{p_2}{2\lambda_0}$$

3. Условия трансвенсальности:

$$\begin{cases} p_1(0) = 0, \\ p_1(\frac{\pi}{2}) = -\lambda_1, \\ p_2(0) = \lambda_2, \\ p_2(\frac{\pi}{2}) = -\lambda_3. \end{cases}$$

4. Условия неотрицательности:

$$\lambda_0 \geqslant 0.$$

3 Сведение задачи оптимального управления к краевой

Если $\lambda_0=0$, то $p_i(t)\equiv 0\,$ и $\lambda_i=0$. Значит, случай $\lambda_0=0$ невозможен. Тогда пусть $\lambda_0=\frac{1}{2}$. Таким образом, на основе принципа максимума решение задачи Лагранжа сводится к решению краевой задачи:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 + x_1 e^{-\alpha t} = p_2, \\ \dot{p}_2 + p_1 = 0, \\ -\dot{p}_1 + p_2 e^{-\alpha t} = 0, \\ x_1(\frac{\pi}{2}) = 0, \ x_2(0) = 0, \ x_2(\frac{\pi}{2}) = -\frac{\pi}{2}, \ p_1(0) = 0. \end{cases}$$

4 Решение краевой задачи

Для начала найдем решение при $\alpha=0$. Тогда из системы

$$\begin{cases} -\dot{p}_1 + p_2 = 0, \\ \dot{p}_2 + p_1 = 0. \end{cases}$$

Получаем

$$\begin{cases} p_1(t) = c_1 cost + c_2 sint, \\ p_2(t) = -c_1 sint + c_2 cost. \end{cases}$$

Зная, что $p_1(0) = 0$, получаем $c_1 = 0$, а значит

$$\begin{cases} p_1(t) = csint, \\ p_2(t) = ccost. \end{cases}$$

Теперь из уравнения $\ddot{x} + x = \dot{x}_2 + x_1 e^{-\alpha t} = p_2 = ccost$ находим х:

$$x = x_1 = \frac{1}{2}ctsint + c_1sint + c_2cost$$

Подставляя граничные условия, находим все три константы: $c=c_1=0,\ c_2=\frac{\pi}{2}.$ Итак:

$$\begin{cases} x_1(t) = \frac{\pi}{2}cost, \\ x_2(t) = -\frac{\pi}{2}sint, \\ p_1(t) = p_2(t) = 0 \end{cases}$$

Итак, остается численно решить задачу для остальных α . Будем решать методом Рунге-Кутта, используя данные при $\alpha=0$ как начальные. Начальные условия, которые могут меняться - $x_1(0)$ и $p_2(0)$. При $\alpha=0$: $x_1(0)=\frac{\pi}{2}$, $p_2(0)=0$.

5 Результаты

α	$x_1(0)$	$p_2(0)$	error	value
0	$\frac{\pi}{2}$	0	6.156760148118029e-14	0
0.1	$1.593\overline{3}96612$	-0.070951229	4.16392958717653e-11	0.000913734
1.5	1.63484959	-0.654098303	1.534598406500603e-10	0.027808055
10	1.356765756	-0.982358444	5.249881640098711e-10	0.003396431

Таблица зависимости переменных от α .

