Deep Learning 101

Biological and Artificial Neural Networks

Human Brain

- Thalamocortical system:
 3 million neurons
 476 million synapses
- Full brain:100 billion neurons1,000 trillion synapses

Artificial Neural Network

ResNet-152:60 million synapses

Human brains have ~10,000,000 times synapses than artificial neural networks.

Neuron: Biological Inspiration for Computation

Neuron: Biological Inspiration for Computation

 Neuron: computational building block for the brain

 (Artificial) Neuron: computational building block for the "neural network"

Key Difference:

- Parameters: Human brains have
 ~10,000,000 times synapses than
 artificial neural networks.
- Topology: Human brains have no "layers". Async: The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. We don't know what human brains use
- Power consumption: Biological neural networks use very little power compared to artificial networks
- Stages: Biological networks usually never stop learning. ANNs first train then test.

Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception: 540,000,000 years of data

Bipedal movement: 230,000,000 years of data

Abstract thought: 100,000 years of data

Prediction: **Dog** + Distortion Prediction: **Ostrich**

"Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it."

- Hans Moravec, Mind Children (1988)

History of Deep Learning Ideas and Milestones*

Perspective:

- Universe created13.8 billion years ago
- Earth created4.54 billion years ago
- Modern humans 300,000 years ago
- Civilization 12,000 years ago
- Written record
 5,000 years ago

1943: Neural networks

• 1957: Perceptron

1974-86: Backpropagation, RBM, RNN

1989-98: CNN, MNIST, LSTM, Bidirectional RNN

2006: "Deep Learning", DBN

• 2009: ImageNet

2012: AlexNet, Dropout

• 2014: GANs

2014: DeepFace

• 2016: AlphaGo

2017: AlphaZero, Capsule Networks

2018: BERT

^{*} Dates are for perspective and not as definitive historical record of invention or credit

SOFTWARE 1.0

SOFTWARE 2.0

SOFTWARE 1.0

SOFTWARE 2.0

SOFTWARE 2.0

Deep Learning is Representation Learning

(aka Feature Learning)

Deep Learning from Human and Machine

The Challenge of Deep Learning: Efficient Teaching + Efficient Learning

- Humans can learn from very few examples
- Machines (in most cases) need thousands/millions of examples

Deep Learning: Training and Testing

Training Stage:

Testing Stage:

How Neural Networks Learn: Backpropagation

Forward Pass:

Backward Pass (aka Backpropagation):

Regression vs Classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Multi-Class vs Multi-Label

Multi-Class

Multi-Label

What can we do with Deep Learning?

- Number
- Vector of numbers
- Sequence of numbers
- Sequence of vectors of numbers

- Number
- Vector of numbers
- Sequence of numbers
- Sequence of vectors of numbers

Neuron: Forward Pass

Combing Neurons in Hidden Layers: The "Emergent" Power to Approximate

Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

Tensorflow: Bringing artificial neurons to life

Tensor: Arrays that can be of any dimension (rank) and shape

Tensorflow: Framework for manipulating tensors

Key Concepts:

Activation Functions

Sigmoid

- Vanishing gradients
- Not zero centered

Tanh

Vanishing gradients

ReLU

Not zero centered

Loss Functions

- Loss function quantifies gap between prediction and ground truth
- For regression:
 - Mean Squared Error (MSE)
- For classification:
 - Cross Entropy Loss

Mean Squared Error

$MSE = rac{1}{N}\sum_{i=1}^{N} (t_i - s_i)^2$

Cross Entropy Loss

Classes Prediction
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth {0,1}

Backpropagation

Task: Update the weights and biases to decrease loss function

Subtasks:

- 1. Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- 3. A fraction of the weight's gradient is subtracted from the weight.

tearning Rate

Numerical Method: Automatic Differentiation

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

SGD: Stochastic Gradient Descent

Overfitting and Regularization

- Help the network **generalize** to data it hasn't seen.
- Big problem for **small datasets**.
- Overfitting example (a sine curve vs 9-degree polynomial):

Overfitting and Regularization

• Overfitting: The error decreases in the training set but increases in the test set.

Regularization: Early Stoppage

- Create "validation" set (subset of the training set).
 - Validation set is assumed to be a representative of the testing set.
- Early stoppage: Stop training (or at least save a checkpoint) when performance on the validation set decreases

Dropout

- Dropout: Randomly remove some nodes in the network (along with incoming and outgoing edges)
- Notes:
 - Usually $p \ge 0.5$ (p is probability of keeping node)
 - Input layers p should be much higher (and use noise instead of dropout)
 - Most deep learning frameworks come with a dropout layer

Regularization: Weight Penalty (aka Weight Decay)

- L2 Penalty: Penalize squared weights. Result:
 - Keeps weight small unless error derivative is very large.
 - Prevent from fitting sampling error.
 - Smoother model (output changes slower as the input change).
 - If network has two similar inputs, it prefers to put half the weight on each rather than all the weight on one.
- L1 Penalty: Penalize absolute weights. Result:
 - Allow for a few weights to remain large.

Normalization

- Network Input Normalization
 - Example: Pixel to [0, 1] or [-1, 1] or according to mean and std.
- Batch Normalization (BatchNorm, BN)
 - Normalize hidden layer inputs to mini-batch mean & variance
 - Reduces impact of earlier layers on later layers
- Batch Renormalization (BatchRenorm, BR)
 - Fixes difference b/w training and inference by keeping a moving average asymptotically approaching a global normalization.
- Other options:
 - Layer normalization (LN) conceived for RNNs
 - Instance normalization (IN) conceived for Style Transfer
 - Group normalization (GN) conceived for CNNs

Neural Network Playground

http://playground.tensorflow.org

Convolutional Neural Networks: Image Classification

 Convolutional filters: take advantage of spatial invariance

Human error (5.1%) surpassed in 2015

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

Object Detection / Localization

Region-Based Methods | Shown: Faster R-CNN


```
ROIs = region_proposal(image)
for ROI in ROIs
    patch = get_patch(image, ROI)
    results = detector(patch)
```


Object Detection / Localization

Single-Shot Methods | Shown: SSD

Semantic Segmentation

Transfer Learning

- Fine-tune a pre-trained model
- Effective in many applications: computer vision, audio, speech, natural language processing

Autoencoders

- Unsupervised learning
- Gives embedding
 - Typically better embeddings come from discriminative task

http://projector.tensorflow.org/

Recurrent Neural Networks

Applications

- Sequence Data
- Text
- Speech
- Audio
- Video
- Generation

Long-Term Dependency

Short-term dependence:
 Bob is eating an apple.

Context ----

Long-term dependence:

Bob likes **apples**. He is hungry and decided to have a snack. So now he is eating an **apple**.

In theory, vanilla RNNs can handle arbitrarily long-term dependence.

In practice, it's difficult.

Long Short-Term Memory (LSTM) Networks: Pick What to Forget and What To Remember

Conveyer belt for previous state and new data:

- 1. Decide what to forget (state)
- Decide what to remember (state)
- Decide what to output (if anything)

Bidirectional LSTM

 Learn representations from both previous time steps and future time steps

Encoder-Decoder Architecture

Encoder RNN encodes input sequence into a fixed size vector, and then is passed repeatedly to decoder RNN.

AutoML and Neural Architecture Search (NASNet)

Deep Reinforcement Learning

Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

The **generator** turns random noise into immitations of the data, in an attempt to fool the discriminator.

Progressive GAN 10/2017 1024 x 1024

Toward Artificial General Intelligence

- Transfer Learning
- Hyperparameter Optimization
- Architecture Search
- Meta Learning

Thank You

Website:

aoxo.pages.dev

- Videos and slides will be posted online
- Code will be posted on GitHub