Innlevering 10 (innleveringsfrist: mandag 4. november kl. 23.59).

Oppgaver: 17.9 og 17.12 i oppgavesett 17.

17.9

a) ∀x∀yRxy

$$D = \{1,2\}$$

$$R^{M} = \{<1,1>,<1,2>,<2,1>,<2,2>\}$$

Formelen er sann fordi R(x,y) er sann, R(x,y) er sann fordi $\langle x,y \rangle \in R^M$ for alle x og alle y.

b) ∃x∀yRxy

 $D = \{1,2\}$

Antar x = 1

$$R^{M} = \{<1,1>,<1,2>\}$$

Formelen er sann fordi R(x,y) er sann, R(x,y) er sann fordi $\langle x,y \rangle \in R^M$ for en x og alle y.

c) $\forall x \exists y Rxy \land \neg \exists x Rxx$

 $D = \{1,2\}$

Antar y = 2

$$R^{M} = \{<1,2>,<2,2>\}$$

Formelen er sann fordi R(x,y) er sann og R(x,x) er usann. R(x,y) er sann fordi $\langle x,y \rangle \rangle \in R^M$ for alle x og en y. R(x,x) er usann fordi x ikke gjentar seg selv.

d) $\exists x \exists y (Rxy \land \neg Ryx) \land \forall x Rxx$

$$D = \{1,2\}$$

Antar
$$x = 1$$
 og $y = 2$

$$R^{M} = \{<1,1>,<2,2>,<1,2>\}$$

Formelen er sann fordi R(x,y) er sann og R(y,x) er usann, samtidig som at R(x,x) er sann. R(x,y) er sann fordi $\langle x,y \rangle \in R^M$ for en x og en y. R(y,x) er usann fordi det finnes ingen $\langle y,x \rangle \in R^M$ for en x og en y. R(x,x) er sann fordi x kan gjenta seg for alle x.

17.12

a) $(Pa \land Pb) \rightarrow \exists xPx$

Lar M være en vilkårlig valgt modell. Siden det er en implikasjon antar vi at venstre siden er sann. Vi antar også at M er en logisk konsekvens av (Pa V Pb). Siden M er en logisk konsekvens av (Pa V Pb), så vil M oppfylle ∃xPx. Med andre ord om M oppfyller Pa eller Pb og vil den da også oppfylle ∃xPx. M er en vilkårlig valgt modell og vil da si at det er en gyldig formel.

b) $\forall x Px \rightarrow Pa \land Pb$

Lar M være en vilkårlig valgt modell. Vi antar at venstre siden av implikasjonen er sann, hvis P(x) er sann for alle x, er P(x) alltid sann uansett hva x er. Vi antar at modellen M er en logisk konsekvens av $\forall x P x$. Siden det er en logisk konsekvens av $\forall x P x$ vil den også gjøre $Pa \land Pb$ sann. Modellen M oppfyller alt med egenskapen P. Vi kan da konkludere med at hvis M oppfyller $\forall x P x$, så vil den også oppfylle $Pa \land Pb$. Siden M gjør formelen sann og er en vilkårlig valgt modell så er formelen alltid sann og er da en gyldig formel.