Exercise 1

In each of the following cases, find whether the vectors \vec{u} , \vec{v} and \vec{w} form a basis in \mathbb{R}^3 , and whether it is an orthogonal basis.

- $\vec{u} = (3, 1, -4), \vec{v} = (2, 5, 6), \text{ and } \vec{w} = (1, 4, 8);$
- ② $\vec{u} = (2, -3, 1)$, $\vec{v} = (4, 1, 1)$, and $\vec{w} = (0, -7, 1)$;
- $\vec{u} = (2,0,-1), \vec{v} = (0,-4,0) \text{ and } \vec{w} = (1,0,2).$

Exercise 1: Solution

The vectors

- 1 form a basis but not orthogonal;
- do not form a basis;
- form an orthogonal basis.

Exercise 2

In each of the following cases, verify that the vectors in B form a basis of \mathbb{Q}^2 and find the coordinate vector of \vec{v} , relative to the basis B. This is written as $[\vec{v}]_B$.

- **1** $\vec{v} = (1,1)$ and $B = \{(2,-4),(3,8)\};$
- ② $\vec{v} = (4,0)$ and $B = \{(1,1),(1,-1)\};$
- $\vec{v} = (-2,2) \text{ and } B = \{(-5,1),(3,0)\};$
- $\vec{v} = (0,0) \text{ and } B = \{(10,0),(8,-3)\}.$

Exercise 2: Solution

The coordinate vector is

②
$$[\vec{v}]_B = (2,2);$$

3
$$[\vec{v}]_B = (2, 8/3);$$

Exercise 3

In each of the following cases, find $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{u}$, and $\vec{v} \cdot \vec{v}$, and whether \vec{u} and \vec{v} are orthogonal.

- $\vec{u} = (3,1,2)$ and $\vec{v} = (2,2,-4)$;
- ② $\vec{u} = (-5, 0, 2)$ and $\vec{v} = (1, 7, 3)$;
- **3** $\vec{u} = (0,0,0)$ and $\vec{v} = (-3,8,-1)$.

Execise 3: Solution

We have

- ① $\vec{u} \cdot \vec{v} = 0$ (orthogonal), $\vec{u} \cdot \vec{u} = 14$, and $\vec{v} \cdot \vec{v} = 24$;
- ② $\vec{u} \cdot \vec{v} = 1$ (not orthogonal), $\vec{u} \cdot \vec{u} = 29$, and $\vec{v} \cdot \vec{v} = 59$;
- **3** $\vec{u} \cdot \vec{v} = 0$ (orthogonal), $\vec{u} \cdot \vec{u} = 0$, and $\vec{v} \cdot \vec{v} = 74$.