

Project Proposal Form MCST1043 Sem: 2 Session: 2024/25

SECTION A: Project Information.

Program Name:	Masters of Science (Data Science)			
Subject Name:	Project 1 (MCST1043)			
Student Name:	Gao Jingkai			
Metric Number:	MCS241032			
Student Email & Phone:	gaojingkai@graduate.utm.my & +60167101780			
Project Title:	An Interpretable Hybrid BERT-ML Framework for Twitter Sentiment Classification			
Supervisor 1:				
Supervisor 2 / Industry Advisor(if any):				
SECTION B: Project	et Proposal			
Introduction:				
Social media (particularly Twitter) contains a vast amount of emotionally charged text, and sentiment analysis of this				
	te in areas such as business, public opinion monitoring, and social governance (Rodríguez-			
Ibáñez et al., 2023). Howev	ver, the subjectivity and non-normative nature (slang, sarcasm) of tweets limit the semantic			
capture capabilities of trad	itional NLP techniques (Sadia & Basak, 2021). In recent years, research has shown that			
Transformer-based BERT	models can more effectively capture contextual semantics and significantly outperform			
traditional methods in short	rt text sentiment classification (Devlin et al., 2019; Rogers et al al., 2020). However, existing			
research indicates that BERT belongs to a type of model that is structurally complex and lacks interpretability, which				
limits its application in high-risk scenarios such as financial risk control (Rogers et al., 2020; Gurrapu et al., 2023). Model				
explanation techniques such as SHAP have been proposed to improve the understandability of its decision-making				
process (Lundberg & Lee, 2017). Therefore, this paper proposes a Twitter sentiment prediction framework that uses				
SVM as the main classifier, combines BERT semantic embeddings, and introduces the SHAP method to enhance model				
interpretability. To further verify the model's effectiveness, the study will also use RF and LR as comparative evaluation				
baselines.				

Problem Background:

Social media (especially Twitter) is an important data source for sentiment analysis, reflecting individual emotions and collective attitudes (Rodríguez-Ibáñez et al., 2023). However, the unstructured nature, semantic ambiguity, and linguistic diversity (slang, abbreviations, etc.) of its text limit the effectiveness of traditional NLP methods (Mutanov et al., 2021; Sadia & Basak, 2021). Although Transformer models such as BERT have improved semantic understanding capabilities (Devlin et al., 2019; Rogers et al., 2020), they still have limitations in handling informal expressions (such as sarcasm) in tweets (Sadia & Basak, 2021). Furthermore, BERT lacks interpretability, which limits its application in critical scenarios (Lundberg & Lee, 2017). Therefore, the key challenge at present is to build a tweet sentiment recognition framework that possesses both strong semantic understanding capabilities and provides decision interpretability.

Problem Statement:

Although Transformer models such as BERT have demonstrated excellent performance in sentiment classification (Devlin et al., 2019; Rogers et al., 2020), their direct application to Twitter faces two major challenges. First, the unstructured and informal language of tweets (slang, sarcasm, etc.) makes it difficult for models to accurately capture complex emotions (Sadia & Basak, 2021; Mutanov et al., 2021). Second, BERT's lack of interpretability limits its practicality in high-risk scenarios such as financial risk control (Lundberg & Lee, 2017). Current research focuses on performance improvement but neglects the need to integrate semantic adaptability and interpretability. Therefore, there is an urgent need for a sentiment prediction framework that can accurately process complex social media text and provide a transparent decision-making process to enhance the credibility of practical applications.

Aim of the Project:

This research aims to construct a Twitter sentiment analysis framework combining BERT semantic embeddings with an SVM classifier, introduce the SHAP method to enhance model interpretability, and evaluate the advantages of the proposed framework in terms of decision transparency and practical application reliability through performance comparison with traditional machine learning models (Random Forest and Logistic Regression).

Objectives of the Project:

- 1. To collect and pre-process Twitter data covering informal expressions, and to utilize BERT to extract contextual semantic information.
- 2. To construct an SVM sentiment classifier and conduct comparative analysis with RF and LR to evaluate the performance of each model in terms of accuracy, F1-score, and interpretability.
- 3. To apply SHAP for model explanation (local/global), and comprehensively verify the effectiveness and transparency of the framework in conjunction with performance metrics.

Scopes of the Project:						
1. Focusing on English	h Twitter text containing informal expressions (slang, abbreviations, etc.) (excluding					
emoticons), and perfor	rming binary (positive/negative) sentiment analysis.					
2. Using only BERT to	2. Using only BERT to extract semantic embeddings, with SVM as the primary classifier (comparing with RF, LR),					
and using only SHAP	for model explanation.					
3. Not involving other	Transformer models (such as RoBERTa), deep classifiers (such as LSTM/CNN), or other					
explanation methods (such as LIME).					
4. Evaluating based on existing publicly available English tweet datasets (such as Sentiment140), excluding real-time						
scraping or cross-lingu	al tasks.					
5. Not covering multi-	-modal, multi-lingual sentiment analysis and deployment optimization.					
Expected Contribution of	the Project:					
1. Methodological Inn	ovation: Proposing a hybrid framework combining BERT embeddings with traditional					
classifiers (SVM/RF/I	.R), balancing semantic understanding and classification efficiency.					
2. Enhanced Interpretability: Applying SHAP for local/global explanations of sentiment models, enhancing						
transparency and credi	bility.					
3. Application Validat	ion: Demonstrating the framework's adaptability to informal Twitter text containing slang,					
irony, etc., providing p	ractical reference.					
4. Comparative Cogni	tion: Deepening the understanding of the performance of lightweight classifiers combined					
with semantic embedd	ings through comparison with RF/LR.					
5. Practical Bridge: Pr	oviding an interpretable social sentiment analysis model paradigm, connecting academic					
research and engineeri	ng applications.					
Project Requirements:						
Software:	Python programming language, Google Colab					
Hardware:	CPU: Minimum Intel i5 or AMD Ryzen 5					
	RAM: ≥ 16GB					
	Storage: ≥ 10GB available disk space					
	GPU (Optional): CUDA-compatible GPU (e.g., NVIDIA GTX 1660 or better) recommended					
	for BERT processing acceleration					
Technology/Technique/ Methodology/Algorithm:	Natural Language Processing (NLP), Traditional Machine Learning Model Integration					
	BERT: Used for extracting contextual semantic embeddings from tweets					
	SVM (Primary Model): Main classifier for sentiment prediction					

The Supervisor(s) sha	come the supersor 1:	Acknowledgement ection. rvisor(s) for this student under aforesaid proposed Signature	Date
The Supervisor(s) sha	all complete this secome the super	rvisor(s) for this student under aforesaid proposed	title.
The Supervisor(s) sha	ll complete this se	ection.	title.
	Signature	April 13 Date	0, 2025
		. 11	2025
Student Name:	Gao Jingkai		
[]	Supervisor/I	ndustry Advisor ()	
[√]	Myself		
SECTION C: I declare that this			
If continued, wh	.1.1.5		
_] Continu	ned	
[√] <u>New</u>		
Status of Project:			
[] Data Sc	ience Application in Business Domain	
[√] Machine	e Learning and Prediction	
]] Busines	s Intelligence and Analytics	
]	√] Data Ar	nalysis and Visualization	
]] Data Pr	eparation and Modeling	
Type of Project (I	Focusing on D	ata Science):	
			promoney tourned to
	***************************************	luation Metrics: Accuracy, F1-score, SHAP-based inter	
	CHA	AP: Explanation technique for analyzing influential feat	ares behind sentiment classification
	***************************************	and LR: Baseline models for performance comparison	

SECTION E: Evaluation Panel Approval

The Evaluator(s) shall complete this section.
Result: [] FULL APPROVAL [] CONDITIONAL APPROVAL (Major)* [] CONDITIONAL APPROVAL (Minor) [] FAIL* * Student has to submit new proposal form considering the evaluators' comments.
Comments:

N. CE 1 . 1		
Name of Evaluator 1:		
	Signature	Date
	OIS IMMUIC	Duic
NI CE I O		
Name of Evaluator 2:		
	Cionatura	Date
	Signature	Date