Chapitre V - Dérivation

Exercice 54 p. 114

Il y a une erreur dans cet exercice sur les intervalles. Dans tout l'exercice, on devrait avoir le même intervalle. Donc pour le corrigé, je vais prendre l'intervalle $[0\ ;\ 10]$ qui me semble être le bon.

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

1. Calculer g'(x).

Soit g la fonction définie sur [-1; 1] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

1. Calculer g'(x). On utilise le tableau des dérivées présent dans le cours et/ou

l'exemple décrit.

$$g'(x) = 3x^2 \dots$$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

1. Calculer g'(x).

$$g'(x) = 3x^2 - 16, 5 \times 2x \dots$$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

1. Calculer g'(x).

$$g'(x) = 3x^2 - 16, 5 \times 2x + 72...$$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

1. Calculer g'(x).

$$g'(x) = 3x^2 - 16,5 \times 2x + 72 + 0$$

1. Calculer g'(x).

$$g'(x) = 3x^2 - 16, 5 \times 2x + 72 + 0$$

$$g'(x) = 3x^2 - 33x + 72$$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

2. Justifier que g'(x) = (3x - 9)(x - 8).

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

$$(3x - 9(x - 8)) = 3x \times x + 3x \times (-8) - 9 \times x - 9 \times (-8)$$

$$(3x - 9(x - 8) = 3x \times x + 3x \times (-8) - 9 \times x - 9 \times (-8)$$

= $3x^2 - 24x - 9x + 72$

$$(3x - 9(x - 8) = 3x \times x + 3x \times (-8) - 9 \times x - 9 \times (-8)$$

= $3x^2 - 24x - 9x + 72$
= $3x^2 - 33x + 72$

$$(3x - 9(x - 8) = 3x \times x + 3x \times (-8) - 9 \times x - 9 \times (-8)$$

$$= 3x^2 - 24x - 9x + 72$$

$$= 3x^2 - 33x + 72$$
Donc $g'(x) = (3x - 9)(x - 8)$.

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

3. Résoudre g'(x) = 0.

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

3. Résoudre g'(x)=0. On reprend l'expression factorisée et on applique la propriété du produit nul :

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

3. Résoudre g'(x) = 0.

On reprend l'expression factorisée et on applique la propriété du produit nul :

$$(3x-9)(x-8) = 0$$
 équivaut à $3x-9 = 0$ ou $x-8 = 0$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

3. Résoudre g'(x) = 0.

On reprend l'expression factorisée et on applique la propriété du produit nul :

$$(3x-9)(x-8)=0$$
 équivaut à $3x-9=0$ ou $x-8=0$ $3x=9$ ou $x=8$

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

3. Résoudre g'(x) = 0.

On reprend l'expression factorisée et on applique la propriété du produit nul :

$$(3x-9)(x-8)=0 \ \text{équivaut à } 3x-9=0 \qquad \qquad \text{ou } x-8=0 \\ 3x=9 \qquad \qquad \text{ou} \qquad x=8 \\ x=\frac{9}{3}=3 \quad \text{ou} \qquad x=8$$

Donc les solutions de l'équation g'(x) = sont 3 et 8.

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

4. Étudier le signe de g'(x) et en déduire le tableau de variation de g sur [0; 10].

- **4.** Étudier le signe de g'(x) et en déduire le tableau de variation de g sur [0; 10].
 - g'(x) étant un produit, on peut construire un tableau de signes (les valeurs en lesquelles s'annule chaque fonction affine ayant déjà été trouvées.

- **4.** Étudier le signe de g'(x) et en déduire le tableau de variation de g sur $[0\ ;\ 10].$
 - g'(x) étant un produit, on peut construire un tableau de signes (les valeurs en lesquelles s'annule chaque fonction affine ayant déjà été trouvées.

x	0 :	3 8	3 10
signe de $3x - 9$			
signe de $x-8$			
signe de $g'(x)$			

- **4.** Étudier le signe de g'(x) et en déduire le tableau de variation de g sur $[0\,;\,10]$.
 - g'(x) étant un produit, on peut construire un tableau de signes (les valeurs en lesquelles s'annule chaque fonction affine ayant déjà été trouvées.

x	0	3		8		10
signe de $3x - 9$	_	0	+		+	
signe de $x-8$	_		_	ф	+	
signe de $g'(x)$						

- **4.** Étudier le signe de g'(x) et en déduire le tableau de variation de g sur $[0\,;\,10]$.
 - g'(x) étant un produit, on peut construire un tableau de signes (les valeurs en lesquelles s'annule chaque fonction affine ayant déjà été trouvées.

x	0	;	3		8	10
signe de $3x - 9$	-	-	∮ +	-	+	
signe de $x-8$	-	_	_	- () +	
signe de $g'(x)$	-	+ () –	- (+	

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

4. Étudier le signe de g'(x) et en déduire le tableau de variation de g sur [0; 10].

On peut alors construire le tableau de variations de la fonction g:

•		,	io tabioac			40 .u	.0
	\boldsymbol{x}	0	3		8		10
	g'(x)	+	0	_	0	+	
	g						

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

4. Étudier le signe de g'(x) et en déduire le tableau de variation de g sur [0; 10].

On peut alors construire le tableau de variations de la fonction g:

x	0		3		8		10
g'(x)		+	0	_	0	+	
g			7		_		

Soit g la fonction définie sur [0; 10] par $g(x) = x^3 - 16, 5x^2 + 72x + 5$.

4. Étudier le signe de g'(x) et en déduire le tableau de variation de g sur [0; 10].

On peut alors construire le tableau de variations de la fonction g:

x	0		3		8		10
g'(x)		+	0	_	0	+	
g	5		99,5		3 7		75