

UTC UNISONIC TECHNOLOGIES CO., LTD

2N4401

NPN SILICON TRANSISTOR

NPN GENERAL PURPOSE **AMPLIFIER**

DESCRIPTION

The UTC 2N4401 is designed for use as a medium power amplifier and switch requiring collector currents up to 500mA.

Lead-free: 2N4401L Halogen-free:2N4401G

ORDERING INFORMATION

Order Number			Dookooo	Pin Assignment			Dealing
Normal	Lead Free	Halogen Free	Package	1	2	3	Packing
2N4401-T92-B	2N4401L-T92-B	2N4401G-T92-B	TO-92	E	В	С	Tape Box
2N4401-T92-K	2N4401L-T92-K	2N4401G-T92-K	TO-92	Е	В	С	Bulk

www.unisonic.com.tw 1 of 6 QW-R201-052.C

■ ABSOLUTE MAXIMUM RATING (Ta=25°C, unless otherwise specified)

PARAMETER		RATINGS	UNIT
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	6	V
Collector Current-Continuous	I _C	600	mA
Power Dissipation	PD	625	mW
Derate above 25°C	ı b	5.0	mW/°C
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

- Notes: 1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
 - 2. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA (Ta=25°C, unless otherwise specified)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	200	°C/W	
Junction to Case	θ_{JC}	83.3	°C/W	

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Collector-Base Breakdown Voltage	BV_{CBO}	I_C =0.1mA, I_E =0	60			V	
Collector-Emitter Breakdown Voltage (note)	BV _{CEO}	$I_C=1$ mA, $I_B=0$	40			V	
Emitter-Base Breakdown Voltage	BV_{EBO}	I_E =0.1mA, I_C =0	6			V	
Collector Cut-off Current	I _{CEX}	V _{CE} =35V, V _{EB} =0.4V				μΑ	
Base Cut-off Current	I_{BL}	V _{CE} =35V, V _{EB} =0.4V				μΑ	
ON CHARACTERISTICS (note)							
	h _{FE1}	V _{CE} =1V, I _C =0.1mA	20				
	h _{FE2}	V _{CE} =1V, I _C =1mA	40				
DC Current Gain	h _{FE3}	V _{CE} =1V, I _C =10mA	80				
	h _{FE4}	V _{CE} =1V, I _C =150mA	100		300		
	h _{FE5}	V _{CE} =2V, I _C =500mA	40				
Callantan Fraittan Catamatian Maltana	V _{CE(SAT1})	I _C =150mA, I _B =15mA			0.4	V	
Collector-Emitter Saturation Voltage		I _C =500mA, I _B =50mA			0.75	V	
Dage Emitter Ceturation Voltage	V _{BE(SAT1)}	I _C =150mA, I _B =15mA	0.75		0.95	V	
Base-Emitter Saturation Voltage	V _{BE(SAT2)}	I _C =500mA, I _B =50mA	0.75		1.2	V	
SMALL SIGNAL CHARACTERISTICS1							
Current Gain Bandwidth Product	f_{T}	V _{CE} =10V, I _C =20mA, f=100MHz	250			MHz	
Collector-Base Capacitance	C_cb	V _{CB} =5V, I _E =0, f=140kHz			6.5	pF	
Emitter-Base Capacitance	C_{eb}	V_{BE} =0.5V, I_{C} =0, f=140kHz			30	pF	
Input Impedance	hie	V _{CE} =10V, I _C =1mA, f=1kHz	1		15	kΩ	
Voltage Feedback Ratio	hre	V _{CE} =10V, I _C =1mA, f=1kHz	0.1		8	×10 ⁻⁴	
Small-Signal Current Gain	hfe	V _{CE} =10V, I _C =1mA, f=1kHz	40		500		
Output Admittance	hoe	V _{CE} =10V, I _C =1mA, f=1kHz	1		30	µmhos	
SWITCHING CHARACTERISTICS							
Dolou Time	t _D	V _{CC} =30V, V _{EB} =2V			4.5		
Delay Time		I _C =150mA I _{B1} =15mA			15	ns	
Rise Time		V_{CC} =30V, V_{EB} =2V			20	no	
Rise Time	t _R	I _C =150mA I _{B1} =15mA			20	ns	
Storage Time	ts				225	ns	
Fall Time	t _F	V_{CC} =30V, I_{C} =150mA			30	ns	
		I _{B1} = I _{B2} =15mA			30	115	

Note: Pulse test: PulseWidth≤300µs, Duty Cycle≤2%

TEST CIRCUITS

Figure 1. Saturated Turn-On Switching Timer

Figure 2. Saturated Turn-Off Switching Timer

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

