```
!pip install matplotlib seaborn pandas
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv("healthcare_data_set.csv")
data.head()
# Categorical variables
categorical_vars = ['Smoker', 'PhysActivity', 'Fruits', 'Veggies']
# --- Bar Charts (2x2 grid) ---
fig, axes = plt.subplots(\frac{2}{2}, figsize=(\frac{12}{10}))
for ax, var in zip(axes.flatten(), categorical vars):
    counts = data[var].value counts()
    counts.plot(kind='bar', ax=ax, edgecolor='black',
color=['skyblue', 'orange'])
    ax.set_title(f"Distribution of {var}")
    ax.set xlabel(var)
    ax.set ylabel("Count")
plt.tight layout()
plt.show()
```



```
# categorical variables

target = 'HeartDiseaseorAttack'
categorical_vars = ['Smoker', 'PhysActivity', 'Fruits', 'Veggies']

# Plot grouped bar charts
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

for ax, var in zip(axes.flatten(), categorical_vars):
    # Create crosstab: counts of HeartDisease by category
    ct = pd.crosstab(data[var], data[target], normalize='index') * 100

# percentage

# Plot grouped bar chart
ct.plot(
    kind='bar',
    stacked=False,
    ax=ax,
    edgecolor='black',
```

```
color=['skyblue', 'orange']
)

ax.set_title(f"Heart Disease Prevalence by {var}")
ax.set_xlabel(var)
ax.set_ylabel("Percentage (%)")
ax.legend(title='HeartDisease', labels=['No (0)', 'Yes (1)'])

plt.tight_layout()
plt.show()
```



```
######### a.Display Distributions of Continuous Variables

# Continuous variables
continuous_vars = ['BMI', 'MentHlth', 'PhysHlth']

# --- Histograms (1 row) ---
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
```

```
for ax, var in zip(axes, continuous_vars):
    ax.hist(data[var].dropna(), bins=30, color='skyblue',
edgecolor='black')
    ax.set_title(f"Histogram of {var}")
    ax.set_xlabel(var)
    ax.set_ylabel("Frequency")

plt.tight_layout()
plt.show()
```



```
b. Heatmaps and Correlation Plots: Explore Variable
###########
Relationships
numeric_vars = ['HeartDiseaseorAttack', 'HighBP', 'HighChol',
'CholCheck',
                'BMI', 'Smoker', 'Stroke', 'Diabetes', 'PhysActivity',
                'Fruits', 'Veggies', 'HvyAlcoholConsump',
'AnyHealthcare',
                'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth']
data numeric = data[numeric vars]
corr_matrix = data_numeric.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm",
linewidths=0.5)
plt.title("Correlation Heatmap of Variables", fontsize=16)
plt.show()
```

Correlation Heatmap of Variables

HeartDiseaseorAttack -	1.00	0.21	0.18	0.04	0.05	0.11	0.20	0.18	-0.09	-0.02	-0.04	-0.03	0.02	0.03	0.26	0.06	0.18	T 1	L.O
HighBP -	0.21	1.00	0.30	0.10	0.21	0.10	0.13	0.27	-0.13	-0.04	-0.06		0.04		0.30	0.06	0.16		
HighChol -	0.18	0.30	1.00	0.09	0.11	0.09	0.09	0.21	-0.08	-0.04	-0.04	-0.01	0.04		0.21	0.06	0.12	- (0.8
CholCheck -	0.04	0.10	0.09	1.00	0.03	-0.01		0.07	0.00	0.02			0.12	-0.06	0.05		0.03		
BMI -	0.05	0.21	0.11	0.03	1.00			0.22	-0.15	-0.09	-0.06	-0.05	-0.02	0.06	0.24	0.09	0.12		
Smoker -	0.11	0.10	0.09	-0.01	0.01	1.00	0.06	0.06	-0.09	-0.08	-0.03	0.10	-0.02	0.05	0.16	0.09	0.12	- (0.6
Stroke -	0.20	0.13	0.09	0.02	0.02	0.06	1.00	0.11	-0.07	-0.01	-0.04	-0.02	0.01	0.03	0.18	0.07	0.15		
Diabetes -	0.18	0.27	0.21	0.07	0.22	0.06	0.11	1.00	-0.12	-0.04	-0.06	-0.06	0.02	0.04	0.30	0.07	0.18		
PhysActivity -	-0.09	-0.13	-0.08	0.00	-0.15	-0.09	-0.07	-0.12	1.00	0.14	0.15		0.04	-0.06	-0.27	-0.13	-0.22	- ().4
Fruits -	-0.02	-0.04	-0.04	0.02	-0.09	-0.08	-0.01	-0.04	0.14	1.00	0.25	-0.04	0.03	-0.04	-0.10	-0.07	-0.04		
Veggies -	-0.04	-0.06	-0.04		-0.06	-0.03	-0.04	-0.06	0.15	0.25	1.00	0.02		-0.03	-0.12	-0.06	-0.06	- (0.2
HvyAlcoholConsump -		-0.00		-0.02	-0.05	0.10	-0.02	-0.06	0.01	-0.04		1.00	-0.01	0.00	-0.04		-0.03		
AnyHealthcare -	0.02	0.04	0.04	0.12	-0.02	-0.02		0.02	0.04	0.03		-0.01	1.00	-0.23	-0.04	-0.05	-0.01		
NoDocbcCost -	0.03	0.02	0.01	-0.06	0.06	0.05	0.03	0.04	-0.06	-0.04	-0.03	0.00	-0.23	1.00	0.17	0.19	0.15	- (0.0
GenHlth -	0.26	0.30	0.21	0.05	0.24	0.16	0.18	0.30	-0.27	-0.10	-0.12	-0.04	-0.04	0.17	1.00	0.30	0.52		
MentHith -	0.06	0.06	0.06	-0.01	0.09	0.09	0.07	0.07	-0.13	-0.07	-0.06	0.02	-0.05	0.19	0.30	1.00	0.35		-0.2
PhysHlth -	0.18	0.16	0.12	0.03	0.12	0.12	0.15	0.18	-0.22	-0.04	-0.06	-0.03	-0.01	0.15	0.52	0.35	1.00		-0.2
	HeartDiseaseorAttack	HighBP	HighChol	CholCheck	BMI	Smoker	Stroke	Diabetes	PhysActivity	Fruits	Veggies	HvyAlcoholConsump -	AnyHealthcare	NoDocbcCost	GenHlth	MentHlth	PhysHlth .		

```
!pip install matplotlib seaborn pandas
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv("healthcare_data_set.csv")
data.head()
   HeartDiseaseorAttack HighBP HighChol CholCheck
                                                        BMI
                                                              Smoker
Stroke \
                                                          40
0
                                                     1
                                                                   1
0
1
                                                     0
                                                          25
                                                                   1
0
2
                                                     1
                                                          28
0
3
                               1
                                          0
                                                     1
                                                          27
                                                                   0
0
4
                               1
                                                     1
                                                          24
                                                                   0
0
   Diabetes
             PhysActivity Fruits ... AnyHealthcare NoDocbcCost
GenHlth \
0
          0
5
1
          0
                         1
                                                                    1
                                 0
3
2
          0
                         0
                                                                    1
                                 1
5
3
          0
                                                                    0
                                 1
2
4
          0
                                 1
                                                                    0
2
   MentHlth
             PhysHlth
                        DiffWalk Sex Age
                                             Education
                                                        Income
0
                    15
                                          9
         18
                               1
                                    0
                                                     4
                                                              3
1
          0
                     0
                               0
                                    0
                                          7
                                                     6
                                                              1
2
         30
                    30
                               1
                                    0
                                          9
                                                     4
                                                              8
3
                                                     3
          0
                     0
                               0
                                    0
                                         11
                                                              6
4
          3
                               0
                                         11
                                                     5
[5 rows x 22 columns]
########## c. Scatter Plots: Investigate Relationships Between
Variables
risk factors = ['BMI', 'PhysActivity', 'MentHlth', 'PhysHlth'] #
independent variables
target = 'HeartDiseaseorAttack' # dependent variable
```

```
missing = [col for col in risk factors + [target] if col not in
data.columns]
if missing:
    raise ValueError(f"Missing columns in dataset: {missing}")
#######Scatter plots for each risk factor vs. heart disease
plt.figure(figsize=(15, 10))
for i, var in enumerate(risk_factors):
    plt.subplot(2, 2, i+1)
    sns.scatterplot(
        data=data, x=var, y=target,
        hue=target, palette="coolwarm", alpha=0.7
    plt.title(f"{target} vs {var}")
    plt.xlabel(var)
    plt.ylabel(target)
plt.tight layout()
plt.show()
sns.pairplot(data, vars=risk_factors + [target], hue=target,
palette="coolwarm")
plt.show()
```



```
#############################d. Line Plots: Display trends over time or
across ordered categories.
target = 'HeartDiseaseorAttack'
# Create BMI categories
bins = [0, 18.5, 25, 30, 35, 40, 100]
labels = ['Underweight', 'Normal', 'Overweight', 'Obese I', 'Obese
II', 'Obese III']
data['BMI Category'] = pd.cut(data['BMI'], bins=bins, labels=labels,
right=False)
# Calculate prevalence of heart disease by BMI category
prevalence = data.groupby('BMI_Category')[target].mean() * 100
# Line plot with seaborn style
plt.figure(figsize=(8, 5))
sns.set style("whitegrid")
plt.plot(prevalence.index, prevalence.values, marker='o',
linestyle='-', color='blue', label='Heart Disease Prevalence')
# Add data labels on top of each point
for i, value in enumerate(prevalence.values):
    plt.text(i, value + 0.5, f"{value:.1f}%", ha='center',
```

```
va='bottom', fontsize=9)
# Optional: Add a shaded region for visual emphasis
plt.fill between(prevalence.index, 0, prevalence.values, color='blue',
alpha=0.1)
# Titles and labels
plt.xticks(rotation=45)
plt.title("Heart Disease Prevalence Across BMI Categories",
fontsize=14)
plt.xlabel("BMI Category", fontsize=12)
plt.ylabel("Prevalence (%)", fontsize=12)
plt.ylim(0, prevalence.max() + 5)
plt.legend()
plt.tight layout()
plt.show()
C:\Users\seeth\AppData\Local\Temp\ipykernel 24032\2932911419.py:9:
FutureWarning: The default of observed=False is deprecated and will be
changed to True in a future version of pandas. Pass observed=False to
retain current behavior or observed=True to adopt the future default
and silence this warning.
  prevalence = data.groupby('BMI Category')[target].mean() * 100
```


###################. Violin Plots: Combine aspects of box plots and density plots to show the distribution of data.

```
# Create BMI categories (ordered)
bins = [0, 18.5, 25, 30, 35, 40, 100]
labels = ['Underweight', 'Normal', 'Overweight', 'Obese I', 'Obese
II', 'Obese III']
data['BMI Category'] = pd.cut(data['BMI'], bins=bins, labels=labels,
right=False)
# Violin plot: Distribution of BMI by Heart Disease status
plt.figure(figsize=(10, 6))
sns.violinplot(x='BMI Category', y='BMI', hue='HeartDiseaseorAttack',
data=data,
               split=True, inner='quartile', palette='Set2')
plt.title("Distribution of BMI Across Heart Disease Status")
plt.xlabel("BMI Category")
plt.ylabel("BMI")
plt.xticks(rotation=45)
plt.legend(title='Heart Disease', loc='upper left')
plt.tight layout()
plt.show()
```



```
continuous_vars = ['BMI', 'MentHlth', 'PhysHlth', 'Age']
target = 'HeartDiseaseorAttack'
# Display first few rows to check
print(data[continuous vars + [target]].head())
# Pair plot
sns.pairplot(data[continuous vars + [target]], hue=target,
diag_kind='kde', palette='Set1')
plt.suptitle("Pairwise Relationships Between Continuous Variables",
y=1.02)
plt.show()
   BMI
        MentHlth PhysHlth Age HeartDiseaseorAttack
0
    40
              18
                        15
                              7
1
    25
               0
                         0
                                                    0
2
                        30
                                                    0
    28
              30
                              9
3
    27
               0
                         0
                             11
                                                    0
    24
               3
                         0
                             11
                                                    0
```


10 20 PhysHlth

Age

BMI

10 20 MentHlth

o