EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform

11_1 What is z-transform?

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Why do we need another transform?

- Think about all the transforms you have seen so far
 - Laplace transform, Fourier series, CTFT, DTFT and DFT
- Why do we need another one?
 - Convergence issues with the Fourier transforms:

The DTFT of a sequence exists if and only if the sequence x[n] is absolutely summable, that is, if

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

 DTFT may not exist for certain signals of practical interest or some analytical signals, whose frequency analysis can therefore not be obtained through DTFT

Z-Transform

- A generalization of the DTFT leads to the z-transform that may exist for many signals for which the DTFT does not.
 - DTFT is in fact a special case of the z-transform
 - ...just like the CTFT is a special case of Laplace's transform.
- Importance of z-transform
 - The use of z-transform techniques permits simple algebraic manipulations
 - The z-transform has become an important tool in the analysis and design of digital filters
 - The representation of an LTI discrete-time system in the z-domain is given by its transfer function which is the z-transform of the impulse response of the system

Z-Transform

• For a given sequence x[n], its z-transform X(z) is defined as

$$X[z] = \sum_{n = -\infty}^{\infty} x[n]z^{-n} = \sum_{n = -\infty}^{\infty} x[n] \left(re^{j\omega}\right)^{-n} = \sum_{n = -\infty}^{\infty} x[n]r^{-n}e^{-j\omega n}$$

where z lies in the complex space, that is : $z=a+jb=re^{j\omega}$

- It follows that the DTFT is indeed a special case of the z-transform, specifically, z-transform reduces to DTFT for the special case of r=1, that is, |z|=1.
- The contour |z|=1 is a circle in the z-plane of unit radius -> the unit circle
- Hence, the DTFT is really the ztransform evaluated on the unit circle.

$$X(\omega) = X[z]|_{e^{j\omega}}$$

Rez

unit circle

Convergence

- Just like the DTFT, z-transform also has its own convergence requirements: $x[n]r^{-n}$ must be absolutely summable, that is, $\sum_{n=0}^{\infty} |x[n]r^{-n}| < \infty$
- For a given sequence, the set R of values of z for which its z-transform converges is called the region of convergence (ROC).
 - The area where the above condition is satisfied defines the ROC,
 which in general is an annular region of the z-plane

$$R^{-} < |z| < R^{+}$$
 where $0 \le R^{-} < R^{+} \le \infty$

The z-transform must always be specified with its ROC!

Example 1

• Determine the z-transform and the corresponding ROC of the unit step sequence u[n]

$$U[z] = \sum_{n=0}^{\infty} u[n]z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1 + z^{-1} + z^{-2} + \dots + z^{-n} + \dots$$

which converges to

$$U[z] = \frac{1}{1 - z^{-1}}, \quad for |z^{-1}| < 1$$
$$= \frac{z}{z - 1}, \quad for |z| > 1$$

• The region of convergence is the annular region in the z-plane $1 < |z| < \infty$

Example 2

• Determine the z-transform and the corresponding ROC of the causal sequence $x[n] = \alpha^n u[n]$ (right-sided)

$$X[z] = \sum_{n = -\infty}^{\infty} \alpha^{n} u[n] z^{-n} = \sum_{n = 0}^{\infty} \left(\alpha z^{-1}\right)^{n} \implies X[z] = \frac{1}{1 - \alpha z^{-1}}, \quad for \left|\alpha z^{-1}\right| < 1$$

$$= \frac{z}{z - \alpha}, \quad for \left|\alpha\right| < z$$

• Now consider the anti-causal y[n]= $-\alpha^n u[-n-1]$ (<u>left-sided</u>)

$$Y[z] = \sum_{n = -\infty}^{\infty} -\alpha^{n} u[-n - 1] z^{-n} = -\sum_{n = -\infty}^{-1} \alpha^{n} z^{-n} = -\sum_{m = 1}^{\infty} \alpha^{-m} z^{m} = -\alpha^{-1} z \sum_{m = 0}^{\infty} \alpha^{-m} z^{m}$$

$$= -\frac{\alpha^{-1} z}{1 - \alpha^{-1} z} = \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}, \quad \text{for } z < |\alpha|$$

Impulse response and transfer function

- Impulse responses: $x[n] = \alpha^n u[n]$ and $y[n] = -\alpha^n u[-n-1]$
- Transfer functions: $X[z] = \frac{z}{z \alpha}$, for $z > |\alpha|$

$$Y[z] = \frac{z}{z - \alpha}$$
, for $z < |\alpha|$

- The z-transforms of the two sequences x[n] and y[n] are identical even though the two parent sequences are different
- Only way a unique sequence can be associated with a z-transform is by specifying its ROC
- Both transfer functions have a pole at $z=\alpha$, which make the transfer function asymptotically approach to infinity at this value. Therefore, $z=\alpha$ is not included in either of the ROCs.

11_1 Wrap up

- Relationships between DTFT and z-transform
 - The reason of introducing z-transform
- Definition of z-transform + ROC
 - Importance of ROC
- Examples and their calculations

EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform

11_2 ROC of z-transform

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

ROC of the z-transform

$$X[z] = \frac{N[z]}{D[z]} = \frac{z}{z - \alpha}, \quad for |z| > |\alpha|$$

- In the X[z] given above, z = 0 is its **zero**, and $z = \alpha$ is its **pole**.
- The circle with the radius of α is called the *pole circle*. A system may have many poles, and hence many pole circles.
- For right sided sequences, the ROCs extend outside of the outermost pole circle, whereas for left sided sequences, the ROCs are the inside of the innermost pole circle.
- For two-sided sequences, the ROC will be the intersection of the two ROC areas corresponding to the left and right sides of the sequence.

ROC of the z-Transform

• For double sided sequence:

$$x[n] = \beta^n u[n] - \alpha^n u[-n-1]$$

• Its z-transform is:

$$X(z) = \frac{1}{1 - \alpha z^{-1}} + \frac{1}{1 - \beta z^{-1}}$$

- Two poles of the transfer function: $|z| = |\alpha|$ and $|z| = |\beta|$
- ROC: $|z| > |\beta|$ and $|z| < |\alpha|$

ROC of the z-Transform

• When $R_1 < R_2$

$$R_1 < |z| < R_2$$

if $0 \le R_1 < R_2 \le \infty$

Right-sided

ROC of a right-sided sequence is outside of a circular area

- When $R_1 > R_2$
 - No valid ROC => z-transform doesn't exist.

Example 4

• Consider $x[n]=5^nu[n]-8^nu[-n-1]$

$$X[z] = \frac{z}{z-5} + \frac{z}{z-8}$$

- Therefore the ROC for this signal is the annular region 5 < |z| < 8
- Consider $x[n]=8^nu[n]-5^nu[-n-1]$ $X[z] = \frac{z}{z-5} + \frac{z}{z-8}$
 - Corresponding ROCs are |z| < 5 and |z| > 8
 - Therefore, the z-transform of this sequence does not exist!

Existence of DTFT and z-transform

- Since DTFT is the z-transform evaluated on the unit circle, that is for $z=e^{j\omega}$, DTFT of a sequence exists if and only if the ROC includes the unit circle!
 - The DTFT for x[n]=5ⁿu[n]-8ⁿu[-n-1] clearly does not exist, since the ROC does not include the unit circle!
 - Consider the sequence $x[n]=0.9^nu[n]-1.1^nu[-n-1]$
 - Its transfer function is: $X[z] = \frac{z}{z 0.9} + \frac{z}{z 1.1}$
 - with the ROC as 0.9 < |z| < 1.1, which includes the unit circle
 - Therefore, the DTFT of x[n] exists

The existence of DTFT is not a guarantee for the existence of the z-transform either!

10_2 Wrap up

- Zeroes and poles
- ROC: intersection of all ROCs of the constitutes
 - All right sided;
 - All left sided;
 - Double sided.
- Existence of DTFT: ROC includes |z|=1

EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform

11_3 Inverse z-transform

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Inverse z-transform

• The inverse z-transform is defined as

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) \cdot z^{n-1} dz$$

where C is a counter-clockwise contour encircling the origin in the ROC of X(z) gives the contour integral

- There are three methods for the evaluation of the inverse z-transform in practice
 - 0. Observe the X[z] and directly get x[n] from the commonly used z-transform pair;
 - 1. Direct evaluation by the contour integration using the Cauchy
 - Residue theorem
 - 2. Long division of the numerator by the denominator
 - 3. Partial-fraction expansion and table lookup

Commonly used z-transform pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n) u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Inverse z-Transform by long division

- The z-transform of a causal sequence can be expanded in a power series in z^{-1} .
- For a rational z-transform expressed as a ratio of polynomials in z⁻¹, the power series expansion can be obtained by long division.
- Example Evaluate the inverse z-transform of

$$H(z) = \frac{1 + 2z^{-1}}{1 + 0.4z^{-1} - 0.12z^{-2}}$$

Using the long division

Not close-form expression, not good enough!

• A rational H(z) can be expressed as

$$H(z) = \frac{Y(z)}{X(z)} = \frac{P(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}} = \frac{\sum_{i=0}^{M} b_i z^{-i}}{\sum_{i=0}^{N} a_i z^{-i}}$$

• If $M \ge N$ then H(z) can be re-expressed through long division

$$H(z) = \sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell} + \frac{P_1(z)}{D(z)}$$

$$H(z) = \frac{2 + 0.8z^{-1} + 0.5z^{-2} + 0.3z^{-3}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

$$H(z) = \frac{2 + 0.8z^{-1} + 0.5z^{-2} + 0.3z^{-3}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

$$H(z) = -3.5 + 1.5z^{-1} + \frac{5.5 + 2.1z^{-1}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

where the degree of $P_1(z)$ is less than N. The rational fraction $P_1(z)/D(z)$ is then called a proper polynomial.

• *Simple Poles*: In most practical cases, the rational z-transform of interest H(z) is a proper fraction with simple poles, then it can be written in the following form

$$H(z) = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}$$

$$H(z) \cdot z = \frac{z \cdot A_1}{z - p_1} + \frac{z \cdot A_2}{z - p_2} + \dots + \frac{z \cdot A_N}{z - p_N} \iff A_1(p_1)^n u[n] + A_2(p_2)^n u[n] + \dots + A_N(p_N)^n u[n]$$

is not the inverse transform of the original H(z) we are interested in

• So, we simply compute the partial fraction of H(z)/z, which will then give us the inverse z-transform of H(z)

$$\frac{H(z)}{z} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{z(z - p_1)(z - p_2) \dots (z - p_N)} = \frac{A_0}{z} + \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}$$

• The constants A_i , which are the residues at the poles of H(z)/z, can be computed as follows:

$$A_i = (z - p_i) \frac{H(z)}{z} \Big|_{z=p_i} i = 0,1,2,\dots N$$

• Find the inverse z-transform of H(z) given the ROC

$$-i) 0.2 < |z| < 0.6$$

$$-ii) |z| > 0.6$$

$$H(z) = \frac{z^2 + 2z + 1}{z^2 + 0.4z - 0.12}$$

• *Multiple Poles*: If the z-domain function contains an m-multiple pole, that is, a term as the following is included

$$\frac{H(z)}{z} = \frac{P(z)}{(z-p)^m}$$

• this term is expanded as follows:

$$\frac{H(z)}{z} = \frac{A_1}{z - p} + \frac{A_2}{(z - p)^2} + \dots + \frac{A_{m-1}}{(z - p)^{m-1}} + \frac{A_m}{(z - p)^m}$$

where each coefficient can be computed by taking consecutive derivatives and evaluating the function at the pole

$$A_{m-i} = \frac{1}{(i)!} \frac{d^{i} \left((z-p)^{m} \frac{H(z)}{z} \right)}{dz^{i}}$$

$$= \frac{1}{(i)!} \frac{d^{i} P(z)}{dz^{i}} \Big|_{z=p} i = 0,1,2,...,m-1$$

Inverse z-Transform in Matlab

- [r,p,k]=residuez (num,den) develops the partial-fraction expansion of a rational z-transform with numerator and denominator coefficients given by vectors num and den.
 - Vector r contains the residues, vector p contains the poles, vector k contains the direct term constants
- [num,den]=residuez(r,p,k) converts a z-transform expressed in a partial-fraction expansion form to its rational form.
- Example: Consider the first question in the exercise, and write it in terms of z^{-1} : $X(z) = \frac{z}{2z^2 3z + 1} = \frac{z}{z^2 \left(2 3z^{-1} + z^{-2}\right)} = \frac{z^{-1}}{2 3z^{-1} + z^{-2}}$

10_3 Wrap up

- Familiar with the methods for inverse-z transform
 - Directly using the common z-transform pairs
 - Long division
 - Partial Fraction Expansion

EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform

11_4 Properties of z-transform

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Linearity

$$x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$

$$x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$$

$$x(n) = a_1 x_1(n) + a_2 x_2(n) \stackrel{z}{\longleftrightarrow} X(z) = a_1 X_1(z) + a_2 X_2(z)$$

- ROC of X(z) is the intersection of ROCs of $X_1(z)$ and $X_2(z)$

Example

- 1. Determine the z-Transform and the ROC of $x(n) = [3(2^n) 4(3^n)]u(n)$
- 2. Determine the z-Transform and the ROC of $x[n] = \alpha^n u[n] b^n u[-n-1]$
- 3. Determine the z-Transform and the ROC of $x[n] = (\cos \omega_0 n) u(n)$

Time-shifting $x(n) \stackrel{z}{\longleftrightarrow} X(z)$

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

$$x(n-k) \stackrel{z}{\longleftrightarrow} z^{-k} X(z)$$

And the ROC remains unchanged except for z = 0 if k > 0 and $z = \infty$ if k < 0

- Example
 - Determine the z-Transform of the signal

$$x(n) = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{elsewhere} \end{cases}$$

• Scaling in the z-domain

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$
, ROC: $r_1 < |z| < r_2$

$$a^n x(n) \stackrel{z}{\longleftrightarrow} X(a^{-1}z)$$
, ROC: $|a| r_1 < |z| < |a| r_2$

For any constant a

- Example
 - Determine the z-transform and its ROC of the causal sequence

$$x(n) = r^n (\cos \omega_0 n) u(n)$$

$$x(n) = r^n \left(\sin \omega_0 n \right) u(n)$$

Time Reversal

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$
, ROC: $r_1 < |z| < r_2$

$$x(-n) \stackrel{z}{\longleftrightarrow} X(z^{-1}), \quad \text{ROC: } \frac{1}{r_2} < |z| < \frac{1}{r_1}$$

- Example
 - Determine the z-transform and its ROC of x(n) = u(-n)

<u>Differentiation in the z-Domain</u>

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

$$nx(n) \stackrel{z}{\longleftrightarrow} -z \frac{dX(z)}{dz}$$

ROC remains unchanged

- Example
 - Find the z-Transform of $x(n) = na^n u(n)$

Convolution of Two Sequences

$$x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$
 and $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$

$$x(n) = x_1(n) * x_2(n) \stackrel{z}{\longleftrightarrow} X(z) = X_1(z)X_2(z)$$

The ROC is the intersection of that for $X_1(z)$ and $X_2(z)$

• Parseval's relation

$$x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$
 and $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$

$$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(v) X_2^* \left(\frac{1}{v^*}\right) v^{-1} dv$$

11_4 Wrap up

Property	Time Domain	z-Domain	ROC
Notation	x(n)	X(z)	ROC: $r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC ₂
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z) \\$	At least the intersection of ROC ₁ and ROC ₂
Time shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2< z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC
Real part	$\operatorname{Re}\{x(n)\}\$	${\textstyle\frac{1}{2}}\big[X(z)+X^*(z^*)\big]$	Includes ROC
Imaginary part	$\operatorname{Im}\{x(n)\}$	$\tfrac{1}{2}j\big[X(z)-X^*(z^*)\big]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) \ast x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC ₁ and ROC ₂
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least, $r_{1i}r_{2i} < z < r_{1a}r_{2a}$
Parseval's relation	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n)$	$= \frac{1}{2\pi i} \oint_C X_1(v) X_2^* (1/v^*) v^{-1} dv$	

EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform 11_5 Zeroes and Poles

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

Rational z-transform

- The z-transforms of LTI systems can be expressed as a ratio of two polynomials in z^{-1} , hence they are rational transforms.
 - Starting with the constant coefficient linear difference equation (CCLDE) representation of an LTI system:

$$\sum_{i=0}^{N} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$y[n] + a_{1}y[n-1] + a_{2}y[n-2] + \cdots + a_{N}y[n-N] \stackrel{!}{=} b_{0}x[n] + b_{1}x[n-1] + \cdots + b_{M}x[n-M]$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-i] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

$$\sum_{i=0}^{M} a_{i}y[n-j] \stackrel{!}{=} \sum_{j=0}^{M} b_{j}x[n-j], \ a_{0} = 1$$

Rational z-transform

• A rational z-transform can be alternately written in factored form as

$$H(z) = \frac{b_0 \prod_{\ell=1}^{M} (1 - \zeta_{\ell} z^{-1})}{a_0 \prod_{\ell=1}^{N} (1 - p_{\ell} z^{-1})} = z^{(N-M)} \frac{p_0 \prod_{\ell=1}^{M} (z - \zeta_{\ell})}{d_0 \prod_{\ell=1}^{N} (z - p_{\ell})}$$

- At a root $z = \xi_l$ of the numerator polynomial, $H(\xi_l) = 0$ and these values of z are called the *zeroes* of H(z)
- At a root $z = p_{\ell}$ of the denominator polynomial $H(p_{\ell})$ ->∞, and as a result, these values of z are known as the **poles** of H(z)
- There are M finite zeroes and N finite poles of H(z)
- There are additional (N-M) zeros at the origin if N>M or (N-M) poles at z = 0 if N<M

Rational z-transform

• Example: z-Transform of the Unit Step

$$\mu(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

$$\begin{cases} \text{zero: } z = 0 \\ \text{pole: } z = 1 \end{cases}$$

- The region of convergence in the z-plane

The ROC of a rational ztransform is bounded by the locations of its poles • Example: A physical interpretation of the concepts of poles and zeros can be given by plotting the log-magnitude

 $20\log 10|G(z)|$ of G(z)

$$G(z) = \frac{1 - 2.4z^{-1} + 2.88z^{-2}}{1 - 0.8z^{-1} + 0.64z^{-2}}$$

The poles are at z=0.4 \pm j0.6928 The zeroes are at z=1.2 \pm j1.2


```
clear;
close all;
N=256;
rez=linspace(-4,4,N);
imz=linspace(-4,4,N);
%create a uniform z-plane
for n=1:N
  z(n,:) = ones(1,N).*rez(n)+j*ones(1,N).*imz(1:N);
end
%Compute the H function on the z-plane
for n=1:N
  for m=1:N
    Hz(n,m) = (1-2.4*z(n,m)^{(-1)}+2.88*z(n,m)^{(-1)}
2))/(1-0.8*z(n,m)^{(-1)}+0.64*z(n,m)^{(-2)};
  end
end
%Logarithmic mesh plot of the H function
mesh(rez, imz, 20*log10(abs(Hz)))
```


• Matlab has simple functions to determine and plot the poles and zeros of a function in the z-plane

```
- tf2zpk(): [Z,P,K]=tf2zpk(NUM,DEN) finds the zeros, poles, and gain.

b=[1 -2.4 2.88]; z = 1.2000 + 1.2000i

a=[1 -0.8 0.64]; 1.2000 - 1.2000i

[z,p,k] = tf2zpk(b,a) p = 0.4000 + 0.6928i

0.4000 - 0.6928i

k=1
```

- [num, den] = zp2tf(z,p,k) implements the reverse process
- **zplane()**: **zplane(Z,P)** plots the zeros Z and poles P (in column vectors) with the unit circle for reference.

zplane (B,A) plots the poles and zeros of B(z)/A(z) where B and A are row vectors containing transfer function polynomial coefficients

```
zplane(b,a);
zplane(z,p);
```

Frequency Response

$$G(z) = \frac{1 - 2.4z^{-1} + 2.88z^{-2}}{1 - 0.8z^{-1} + 0.64z^{-2}}$$

(Numerator) b- coefficients

(Denominator) a- coefficients

```
[H w]=freqz([1 -2.4 2.88],[1 -0.8 0.64],256);
figure
plot(w/pi, abs(H))
grid
title('Transfer function')
xlabel('Frequency \omega / \pi')
```

This system has two zeros at $z=1.2\pm j1.2$ and two poles at $z=0.4\pm j0.6928$

Poles and Zeros

• The ROC of a rational z-transform cannot contain any poles and is bounded by the poles

 For a right sided sequence, the ROC is outside of the largest pole

 For a left sided sequence, the ROC is inside of the smallest pole

For a two sided sequence, some of the poles contribute to terms in the parent sequence for n<0 and other to terms for n>0. Therefore, the ROC is between two circular regions: outside of the largest pole coming from the n>0 sequence and inside of the smallest pole coming from the n<0 sequence.</p>

If the sequence is of finite length, then the ROC includes the entire z-plane, except possibly z=0 and/or z=∞.

Stability & ROC

- Now, for an LTI system to be stable it must be absolutely summable, or in other words, it must have a DTFT. But for a system to have a DTFT, its ROC must include the unit circle.
- An LTI system is stable, if and only if the ROC of its transfer function H(z) includes the unit circle!
 - Furthermore, a causal system's ROC lies outside of a pole circle. If that system is also stable, its ROC must include unit circle
- Then a causal system is stable, if and only if, all poles are inside the unit circle!
 - Similarly, an anti-causal system is stable, if and only if its poles lie outside the unit circle.

Behavior of a Single Real-Pole Causal Signal

$$x(n) = a^n u(n) \stackrel{z}{\longleftrightarrow} X(z) = \frac{1}{1 - az^{-1}}, \quad \text{ROC: } |z| > |a|$$

Behavior of a Double Real-Pole Causal Signal

Behavior of a Causal Signal with a Pair of Complex-Conjugate Poles

$$x(n) = \left(r^n \cos \omega_0 n\right) u(n)$$

11_5 Wrap up

- Analysing the transfer function:
 - Representation: polynomial ratio VS factor form
 - Roots of numerator \rightarrow zeroes \rightarrow H(zero) = 0
 - Roots of denominator \rightarrow poles \rightarrow H(pole) $\rightarrow \infty$
 - Pole circles: bounds the ROC
- For an LTI system to be causal and stable
 - ROC includes |z|=1 All poles inside the unit circle Right sided

EEE336 Signal Processing and Digital Filtering

Lecture 11 Z-Transform 11_6 Transfer Functions and Frequency Responses

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

CCLDE coefficients

All discrete systems can be represented using <u>Constant Coefficient</u>,
 <u>Linear Difference Equations</u> (CCLDE), of the form

$$y[n] + a_1y[n-1] + a_2y[n-2] + \cdots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \cdots + b_Mx[n-M]$$

$$\sum_{i=0}^{N} a_i y[n-i] = \sum_{j=0}^{M} b_j x[n-j], \quad a_0 = 1$$

- The function H(z), which is the z-transform of the impulse response h[n] of the LTI system, is called the <u>transfer function</u>
 - Using the CCLDE coefficients

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = z^{(N-M)} \frac{\sum_{k=0}^{M} b_k z^{M-k}}{\sum_{k=0}^{N} a_k z^{N-k}} = \frac{b_0}{a_0} \cdot \frac{\prod_{k=1}^{M} (1 - \zeta_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})} = \frac{b_0}{a_0} z^{(N-M)} \frac{\prod_{k=1}^{M} (z - \zeta_k)}{\prod_{k=1}^{N} (z - p_k)}$$
CCLDE
coefficients
Zeros & pole
factors

Frequency response and the transfer function

• If the ROC of the transfer function H(z) includes the unit circle, then the frequency response $H(\omega)$ of the LTI digital filter can be obtained simply as follows:

$$H(\omega) = H(e^{j\omega}) = H(z)\Big|_{z=e^{j\omega}}$$

• So the frequency response of a typical LTI system is

$$H(z) = \frac{b_0}{a_0} z^{(N-M)} \frac{\prod_{k=1}^{M} (z - \zeta_k)}{\prod_{k=1}^{N} (z - p_k)}$$

$$H(z) = \frac{b_0}{a_0} z^{(N-M)} \frac{\prod_{k=1}^{M} (z - \zeta_k)}{\prod_{k=1}^{N} (z - p_k)}$$

$$H(e^{j\omega}) = \frac{b_0}{a_0} e^{j\omega(N-M)} \frac{\prod_{k=1}^{M} (e^{j\omega} - \zeta_k)}{\prod_{k=1}^{N} (e^{j\omega} - p_k)}$$

• From which we can obtain the magnitude and phase response

$$\left| H\left(e^{j\omega}\right) \right| = \left| \frac{b_0}{a_0} \right| \frac{\prod_{k=1}^{M} \left| e^{j\omega} - \zeta_k \right|}{\prod_{k=1}^{N} \left| e^{j\omega} - p_k \right|}$$

$$\left|H\left(e^{j\omega}\right)\right| = \left|\frac{b_0}{a_0}\right| \frac{\prod_{k=1}^{M} \left|e^{j\omega} - \zeta_k\right|}{\prod_{k=1}^{N} \left|e^{j\omega} - p_k\right|} = \arg\left(\frac{b_0}{a_0}\right) + \omega\left(\frac{N-M}{a_0}\right) + \sum_{k=1}^{M} \arg\left(\frac{b_0}{a_0}\right) + \omega\left(\frac{N-M}{a_0}\right) + \sum_{k=1}^{N} \arg\left(\frac{b_0}{a_0}\right) + \omega\left(\frac{N-M}{a_0}\right) + \sum_{k=1}^{N} \arg\left(\frac{b_0}{a_0}\right) + \omega\left(\frac{N-M}{a_0}\right) + \omega\left(\frac{N-M}{$$

Frequency response and the transfer function

$$\left| H\left(e^{j\omega}\right) \right| = \left| \frac{b_0}{a_0} \right| \frac{\prod_{k=1}^{M} \left| e^{j\omega} - \zeta_k \right|}{\prod_{k=1}^{N} \left| e^{j\omega} - p_k \right|}$$

– The magnitude response $|H(\omega)|$ at a specific value of ω is given by the product of the distances to all zeros divided by the product of the distances to all poles!

$$\arg H\left(e^{j\omega}\right) = \arg\left(b_0 / a_0\right) + \omega\left(N - M\right) + \sum_{k=1}^{M} \arg\left(e^{j\omega} - \zeta_k\right) - \sum_{k=1}^{N} \arg\left(e^{j\omega} - p_k\right)$$

- The phase response at a specific value of ω is obtained by adding the phase of the term b_0/a_0 and the linear-phase term ω(N-M) to the sum of the angles of the zero vectors minus the angles of the pole vectors

Frequency response by pole and zero distances

• Example:

- The transfer function of a filter has zeros at $z_o = r_o e^{\pm j\theta_o}$ and poles at $z_p = r_p e^{\pm j\omega_p}$, thus

$$H(z) = \frac{(z - r_o e^{j\theta_o})(z - r_o e^{-j\theta_o})}{(z - r_p e^{j\theta_p})(z - r_p e^{-j\theta_p})} = \frac{z^2 - 2r_o \cos \theta_o z + r_o^2}{z^2 - 2r_p \cos \theta_p z + r_p^2}$$

- Choosing $r_o = 1.2$, $\theta_o = 30^{\circ}$, $r_p = 0.9$, $\theta_p = 60^{\circ}$ $H(z) = \frac{z^2 - 2.078z + 1.440}{z^2 - 0.900z + 0.810}$

– The frequency response at ω is given by

$$H(e^{j\omega}) = \frac{(e^{j\omega} - r_o e^{j\theta_0})(e^{j\omega} - r_o e^{-j\theta_0})}{(e^{j\omega} - r_p e^{j\theta_p})(e^{j\omega} - r_p e^{-j\theta_p})} = \frac{\vec{u}_1 \vec{u}_2}{\vec{u}_3 \vec{u}_4}$$

• Where the \vec{u}_k are complex phasors pointing from a zero or pole to the point $e^{j\omega}$ on the unit circle.

Frequency response by pole and zero distances

• Thus we may evaluate the frequency response at a given frequency in terms of the magnitudes and angles of the phasors \vec{u}_k

$$|H(e^{j\omega})| = \frac{\text{product of distances to zeros}}{\text{product of distances to poles}}$$

 $Arg\{H(e^{j\omega})\}\ = (\text{sum of angles from zeros to }e^{j\omega})$

-(sum of angles from poles to $e^{j\omega}$)

This pole – zero diagram shows u_1 u_2 u_3 and u_4 for our example

- An approximate plot of the magnitude and phase responses of the transfer function of an LTI digital filter can be developed by examining the pole and zero locations
- Now, the frequency response has the smallest magnitude around $\omega = \zeta$, and the largest magnitude around $\omega = p$.
- Of course, at ω =p, the response is infinitely large, and at ω = ζ , the response is zero

Frequency response by pole and zero distances

• Therefore:

- To highly attenuate signal components in a specified frequency range, we need to place zeros very close to or on the unit circle in this range.
- Likewise, to highly emphasize signal components in a specified frequency range, we need to place poles very close to or on the unit circle in this range.

Graphical interpretation

$$\left| H\left(e^{j\omega}\right) \right| = \left| \frac{b_0}{a_0} \right| \frac{\prod_{k=1}^{M} \left| e^{j\omega} - \zeta_k \right|}{\prod_{k=1}^{N} \left| e^{j\omega} - p_k \right|}$$

- Complex vector
 - α_k is in general a complex quantity, let's write that as $\alpha_k = \rho_k e^{j\phi_k}$
 - Then we have $e^{j\omega} \alpha_k = e^{j\omega} \rho_k e^{j\phi_k}$
 - the term $e^{j\omega} \rho_k e^{j\phi_k}$ represents a vector in the z-plane, that starts at the point $z = \rho_k e^{j\phi_k}$ and ends at the point $z = e^{j\omega}$, which is on the unit circle
 - As ω varies from 0 to 2π , the tip of this vector moves counterclockwise tracing the unit circle.

Zero vectors: α_k is ξ_k , in numerator;

Pole vectors: α_k is p_k , in denominator.

- The magnitude response $|H(\omega)|$, at a given frequency ω , is the product of the magnitude (length of orange vector) of all zeros, divided by the magnitude of all poles, as evaluated at that ω .
 - If α_k is a zero (i.e., a numerator factor), the overall magnitude vector of $H(\omega)$ will be small at frequencies around ϕ_k , and will be exactly zero if α_k is on the unit circle, causing $H(\omega_k) = 0$.
 - Conversely, if α_k is a pole (i.e., a denominator factor), the overall magnitude vector of $H(\omega)$ will be large at frequencies around φ_k , and will go to infinity if α_k is on the unit circle.
 - This is why the zeros and the poles that are at or close to the unit circle have a larger impact on the overall frequency response than those that are further away from the unit circle.

Graphical interpretation – An example

One zero at z = 0

One pair of conjugate poles at $z = -0.5000 \pm j0.5000$

Graphical interpretation – Another example

• Consider the M-point moving-average FIR filter with an impulse response $h[n] = \begin{cases} 1/M, & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$

$$H(z) = \frac{1}{M} \sum_{n=0}^{M-1} z^{-n} = \frac{1 - z^{-M}}{M(1 - z^{-1})} = \frac{z^{M} - 1}{M[z^{M}(z - 1)]}$$

- The transfer function has M zeros on the unit circle at $z = e^{j2\pi k/M}$, $0 \le k \le M-1$
- There are M-1 poles at z = 0 and a single pole at z = 1
- The pole at z = 1 exactly cancels the zero at z = 1
- The ROC is the entire z-plane except z = 0

Moving Average Filter

11_6 Wrap up

- Frequency response
 - Magnitude response
 Phase response
 Z-transform
 (Zero-pole positions)
- Graphic explanation
- Filter design based on zero position arrangement

Chapter 11 Summary

- DTFT $\leftarrow \rightarrow$ Z-transform
- Z-transform
 - Definition
 - -ROC
 - Properties
 - Inverse
 - Zeroes and poles
- Frequency response (DTFT)

