

Quantum Cryptography in a nutshell

Quantum Technology

$Q \rightarrow NU$

$Q \rightarrow NU$

Standards of superposition permits parallelism in the computations

Cryptography

Q → NU

Cryptography after quantum computers comes into picture

Post-Quantum Security

Conjectured

PQC

Crystal Kyber, Dilithium, Falcon

PQC: Post Quantum Cryptography

QKD: Quantum Key Distribution

Information theoretic

QKD

BB84, B92, SARG04, DPS, Ekert, Sixstate

Quantum security companies

Quantum Key Distribution

Point-to-Point QKD

 $Q \rightarrow NU$

Protocol: BB84

$Q \rightarrow NU$

Protocol: Decoy-DPS

Armos protocol - Decoy-DPS

Q-NU

Point-to-Multipoint QKD (ChaQra)

Q → NU

Fig. Simulink block diagram of ChaQra.

Software Defined Networking (SDN)

Fig. Dynamical switching mechanism in ChaQra.

ChaQra is live

Q → NU

ChaQra – 1 Hub and 5 Spokes

S.No.	Spoke no.	Distance (Km)	Loss (dB)	Key rate (kbps)	QBER (%)
1	A1	100	28	3.2	3.66
2	A2	90	25	6.4	3.34
3	A3	75	18	9.8	3.2
4	A4	65	15	16.2	2.34
5	A5	100	30	1.8	3.5

Implementation security

Hardware architecture – Alice node Inline Polarizer Quantum Channel Intensity Phase Laser source VOA (3) FC/PC connector Modulator Modulator Sync channel Controlling Electronics TRNG Hardware & Software control system Data Streamer Measure and Monitor subsystem STPC connector Clock gen Clocking subsystem Control interfaces Management interface Authentication module Data Key retrieval interface Key generation software Streamer Classical channel Management and administration software

Hardware architecture – Bob node Wavelength Quantum Channel filter FC/PC connector SPD 0 DLI SPD 1 Sync channel **Controlling Electronics** Hardware & Software control system Data STPC connector Measure and Monitor subsystem Streamer Clock syn Clocking subsystem Control interfaces Management interface Authentication module Data Key retrieval interface Key generation software Streamer Classical channel Management and administration software

Beyond QKD

- *Step-1*. Let the shared QKD keys between Alice₁ and Alice₂, Alice₂ and Alice₃, Alice₃ and Alice₄, Alice₄ and Alice₅, and Alice₅ and Alice₁ are $X_{1,2}$, $X_{2,3}$, $X_{3,4}$, $X_{4,5}$, and $X_{5,1}$ respectively.
- Step-2. Alice₁ computes $A_1 = a_1 + X_{1,2} X_{5,1}$ which is random. Similarly, Alice₂, Alice₃, Alice₄, Alice₅, computes $A_2 = a_2 + X_{2,3} X_{1,2}$, $A_3 = a_3 + X_{3,4} X_{2,3}$, $A_4 = a_4 + X_{4,5} X_{3,4}$, $A_5 = a_5 + X_{5,1} X_{4,5}$ respectively. A_1, A_2, A_3, A_4, A_5 being random are publicly announced by the spokes. Note that the Hub is the trusted node in our setup.
- Step-3. The sum (S) = $A_1 + A_2 + A_3 + A_4 + A_5 = a_1 + a_2 + a_3 + a_4 + a_5$. The privacy of the inputs is ensured by the QKD keys derived using the ChaQra.

QKD network is a platform for the shared randomness that will support distributed computing, threshold computation, authentication and lot more

Q→NU Thank You

qnulabs.com

SparQ Summer Internship - 2025

