

Asymmetric Cryptography and Key Management

RSA Algorithm

Sang-Yoon Chang, Ph.D.

Module: RSA Algorithm

Prime factorization problem

RSA encryption and decryption

RSA key setup

RSA security

Primer Factorization Problem

Integer factorization:

$$p \cdot q \leftarrow n$$

p and q are prime numbers (a number that is only divisible by one and itself)

 $n \leftarrow p \cdot q$ is easy for large n $p \cdot q \leftarrow n$ is difficult for large n

 $n \leftarrow p \cdot q$ is easy for large n $p \cdot q \leftarrow n$ is difficult for large n

In RSA, derive public key *e* and private key *d* from *p*, *q*

Use e, d and n for encryption $(m \rightarrow c)$ and decryption $(c \rightarrow m)$

 $n \leftarrow p \cdot q$ is easy for large n $p \cdot q \leftarrow n$ is difficult for large n

In RSA, derive public key *e* and private key *d* from *p*, *q*

Use e, d and n for encryption $(m \rightarrow c)$ and decryption $(c \rightarrow m)$

 $n \leftarrow p \cdot q$ is easy for large n $p \cdot q \leftarrow n$ is difficult for large n

- (2) In RSA, derive public key *e* and private key *d* from *p*, *q*
- (1) Use e, d and n for encryption ($m \rightarrow c$) and decryption ($c \rightarrow m$)

RSA Algorithm

By Rivest, Shamir, and Adleman in 1976

Keys are typically 1024-4096 bit long

Security is based on the difficulty of finding *p* and *q* of a large *n*

RSA Encryption and Decryption

To encrypt a message *m*, the sender:

- obtains the recipient's public key {e,n}
- computes $c = m^e \mod n$, where $0 \le m < n$

RSA Encryption and Decryption

To encrypt a message m, the sender:

- obtains the recipient's public key {e,n}
- computes $c = m^e \mod n$, where $0 \le m < n$

To decrypt the *c*, the receiver

- uses the recipient's private key {d,n}
- computes $m = c^d \mod n$

RSA Encryption and Decryption

To encrypt a message m, the sender:

- obtains the recipient's public key {e,n}
- computes $c = m^e \mod n$, where $0 \le m < n$

To decrypt the *c*, the receiver

- uses the recipient's private key {d,n}
- computes $m = c^d \mod n$

```
The sender computes: c = m^e \mod n

From c, the recipient computes:

m = c^d \mod n

= (m^e \mod n)^d \mod n
```

```
The sender computes: c = m^e \mod n
From c, the recipient computes:
```

```
m = c^d \mod n
= (m^e \mod n)^d \mod n
= (m^e)^d \mod n
= m^{ed} \mod n
```

```
The sender computes: c = m^e \mod n
From c, the recipient computes:
```

```
m = c^d \mod n
= (m^e \mod n)^d \mod n
= (m^e)^d \mod n
= m^{ed} \mod n = m
```

The sender computes: $c = m^e \mod n$ From c, the recipient computes:

```
m = c^d \mod n
= (m^e \mod n)^d \mod n
= (m^e)^d \mod n
= m^{ed} \mod n = m
```

This holds for carefully chosen *e* and *d*!

Each user selects two large primes (p, q)Compute $n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)$ // Euler Totient Function

Each user selects two large primes (p, q)Compute $n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)$ // Euler Totient Function Select random e where $1 < e < \phi(n)$, $\gcd(e \cdot \phi(n)) = 1$

```
Each user selects two large primes (p, q)

Compute n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)

// Euler Totient Function

Select random e where

1 < e < \phi(n), \gcd(e \cdot \phi(n)) = 1

Solve d where e \cdot d \equiv 1 \mod \phi(n), 0 \le d \le n

// Extended Euclidean algorithm
```

```
Each user selects two large primes (p, q)

Compute n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)

// Euler Totient Function

Select random e where

1 < e < \phi(n), \gcd(e \cdot \phi(n)) = 1

Solve d where e \cdot d \equiv 1 \mod \phi(n), 0 \le d \le n

// Extended Euclidean algorithm
```

```
Select p=11, q=13
Each user selects two large primes (p, q)
Compute n = p \cdot q \Rightarrow \emptyset(n) = (p-1)(q-1)
// Euler Totient Function
Select random e where 1 < e < \emptyset(n), \gcd(e \cdot \emptyset(n)) = 1
Solve d where e \cdot d \equiv 1 \mod \emptyset(n), 0 \le d \le n
// Extended Euclidean algorithm
```

```
Select p=11, q=13
Each user selects two large primes (p, q)
Compute n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)
Compute n=143 \Rightarrow \phi(n) = 10 \cdot 12 = 120
Select random e where 1 < e < \phi(n), \gcd(e \cdot \phi(n)) = 1
Solve d where e \cdot d \equiv 1 \mod \phi(n), 0 \le d \le n
// Extended Euclidean algorithm
```

```
Select p=11, q=13
Each user selects two large primes (p, q)
Compute n = p \cdot q \Rightarrow \phi(n) = (p-1)(q-1)
Compute n=143 \Rightarrow \phi(n) = 10 \cdot 12 = 120
Select random e where 1 < e < \phi(n), \gcd(e \cdot \phi(n)) = 1 Select e=11
Solve d where e \cdot d \equiv 1 \mod \phi(n), 0 \le d \le n
// Extended Euclidean algorithm
```

```
Select p=11, q=13
Each user selects two large primes (p, q)
Compute n = p \cdot q \Rightarrow \emptyset(n) = (p-1)(q-1)
Compute n=143 \Rightarrow \emptyset(n) = 10 \cdot 12 = 120
Select random e where 1 < e < \emptyset(n), \gcd(e \cdot \emptyset(n)) = 1 Select e=11
Solve d where e \cdot d \equiv 1 \mod \emptyset(n), 0 \le d \le n
Compute d=11 \Rightarrow 11 \cdot 11 \equiv 1 \mod 120
```

```
Select p=11, q=13

Each user selects two large primes (p, q)

Compute n = p \cdot q \Rightarrow \emptyset(n) = (p-1)(q-1)

Compute n=143 \Rightarrow \emptyset(n) = 10 \cdot 12 = 120

Select random e where 1 < e < \emptyset(n), \gcd(e \cdot \emptyset(n)) = 1 Select e=11

Solve d where e \cdot d \equiv 1 \mod \emptyset(n), 0 \le d \le n

Compute d=11 \Rightarrow 11 \cdot 11 \equiv 1 \mod 120

Encryption: c = m^e \mod n
```

```
Select p=11, q=13

Each user selects two large primes (p, q)

Compute n = p \cdot q \implies \emptyset(n) = (p-1)(q-1)

Compute n=143 \implies \emptyset(n) = 10 \cdot 12 = 120

Select random e where 1 < e < \emptyset(n), \gcd(e \cdot \emptyset(n)) = 1 Select e=11

Solve d where e \cdot d \equiv 1 \mod \emptyset(n), 0 \le d \le n

Compute d=11 \implies 11 \cdot 11 \equiv 1 \mod 120

Encryption: c = 7^e \mod n = 106
```

Select p=11, q=13Each user selects two large primes (p, q) Compute $n = p \cdot q \rightarrow \phi(n) = (p-1)(q-1)$ Compute $n=143 \implies \phi(n)=10.12=120$ Select random e where $1 < e < \emptyset(n)$, $gcd(e \cdot \emptyset(n)) = 1$ Select e = 11Solve d where $e \cdot d \equiv 1 \mod \emptyset(n)$, $0 \le d \le n$ Compute $d=11 \to 11.11 \equiv 1 \mod 120$ Encryption: $c = 7^e \mod n = 106$ Decryption: $m = c^d \mod n = 7$

RSA Key Setup and Encryption

p, q are used for e, d generation p, q must not be easily derived from n Select either e or d and compute the other (mod $\emptyset(n)$) gcd(e, $\emptyset(n)$)=1 and $e \cdot d \equiv 1 \mod \emptyset(n)$

The encryption/decryption computes exponentiation over mod *n*

RSA Security

Brute force key search

Prime factorization assumption

Timing-based side channel attack

Chosen ciphertext attack

Prime Factorization Problem

"Factoring could turn out to be easy"
- Rivest

RSA factoring challenge, 1991-2007

Timing Side-Channel Attacks

Paul Kocher in mid 1990's

Infer operand size based on operation duration (higher exponent takes longer)

Countermeasures based on obfuscating operation duration

Chosen Ciphertext Attacks

Attackers choose ciphertexts and get the decrypted plaintext back

Vulnerability from being multiplicative: $Enc(m_1) \cdot Enc(m_2) = Enc(m_1 \cdot m_2)$

Attacker wants to know m from cChooses $c' = c \cdot r^e \pmod{n}$ for some r $m' = m \cdot r \pmod{n}$

Chosen Ciphertext Attacks

Attackers choose ciphertexts and get the decrypted plaintext back

Vulnerability from being multiplicative: $Enc(m_1) \cdot Enc(m_2) = Enc(m_1 \cdot m_2)$

Attacker wants to know m from cChooses $c' = c \cdot r^e \pmod{n}$ for some r $m' = m \cdot r \pmod{n}$

Counter with random pad of plaintext, e.g., OAEP