1. 标准模型:

max
$$2X_1 + X_2 - X_3 + 0X_4 + 0X_5 + 0X_6$$

S.t. $3X_1 + X_2 + X_3 + X_4 = 40$
 $X_1 - X_2 + X_3 + X_5 = 10$
 $X_1 + X_2 - X_3 + X_6 = 20$
 $X_1 \ge 0$, $j = 1, 2, 3, 4, 5, 6$

D

单纯型表:

BV	Χ,	XZ	x,	X4	χs	X 6	RHS
	3	ı	ı	1	0	٥	40
X4			1	0	1	0	10
ХF	1	- (•				20
*6	ı	1	-1	0	0	ı	
1	2	ı	-1	D	0	0	2
V				×4	χ	x X ₆	RHS
ВV	X,	λ>	××	~4	•		
	D	4	-5	. 1	~	3 0	10
% 4	U	•					
x_{i}	1	-1	2	0	1	6	0 ا
× 6	D	2	-3	6	-1	((D
						. •	7-20
_	٥	3	-5	•	0 -	2 0	0 1 3
C				v	. x	5 × 16	RHS
₿V	11	Xν	X3	X			
• •		1	- 5	14	. <i>-</i>	3 0	<u>\$</u>
X	D	'	•				25
λ,	1	0	3	$\frac{1}{4}$	_	1 0	
×4	D	0	-54	-	3	1 0	S
^ 6	•		5		3 -	<u>!</u>	5-17

国而当 X1=10. X2=10 X3=0. X4=0. X5=10 X6=0时, RHS最大为 30

2. 单纯型表:

By
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 RHS
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 RHS
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_7 x_8
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_7
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8
 x_1 x_2 x_3 x_4 x_5 x_7
 x_1 x_2 x_3 x_4 x_5 x_7 x_7
 x_1 x_2 x_3 x_4 x_7 x_7

BV X₁ Y₂ X₃ X₄ $\frac{3}{1}$ X₆ X₇ RHS X₄ 4 0 0 1 -32 -4 36 0 X₄ -1 0 0 4 $\frac{3}{2}$ -15 D X₃ 0 0 1 0 0 1 0 1 -3 0 0 0 4 $\frac{7}{2}$ -33 $\frac{2}{3}$

RHS χŢ $\chi_{\mathcal{E}}$ **X**7 X2 X4 Xι BV χ4 X5 l 0 **X** 3 -18 2 2 0 -1 0

```
X5
                                                      RHS
                             74
                        ХJ
            -\frac{1}{8} 0 -\frac{3}{64} 1 0 \frac{3}{16}
Xδ
x s
                            -<del>1</del>
x3
                                                       2
                                               X7 RHS
                                          x<sub>6</sub>
                                    χL
                            Χ4
                       Хз
         χ,
               χν
                                    24 1
λ6
                             -\frac{3}{4} 16 0 3
x,
×3
                            54
                                                      RHS
                            X4 X5 X6
                                                 X7
                       \lambda_{3}
          ×ı
                 Xz
 BV
                                    D
                             0
 76
                    l = \frac{l}{4} - 8
 X,
                XZ
                                                      RHS
                                 χc
                       Хz
                  λι
  BV
           1 1
   X6
                   -\frac{1}{2} \frac{3}{4}
  ۲,
                                  -24 0
                      1
                  2
   X4
                  -\frac{3}{2} -\frac{5}{4} 0 -2 0 -\frac{21}{2} -\frac{5}{4}
```

因此、 $x_1 = \frac{3}{4}$, $x_2 = 0$ $x_3 = 0$ $x_4 = 1$ $x_5 = 0$ $x_6 = 1$ $x_7 = 0$ 时

3. 第一阶段:

$$max - x_5 - x_6$$

$$s.t. \quad x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

BV X, X2 X, X4 X5 X6 PHS

$$\lambda_{2} \quad \frac{1}{4} \quad 1 \quad -\frac{1}{2} \quad 2 \quad \frac{1}{4} \quad 0 \quad \frac{1}{2}$$
 $\lambda_{3} \quad \frac{1}{4} \quad 0 \quad \frac{4}{4} \quad 0 \quad -\frac{1}{2} \quad 1 \quad 0$
 $\lambda_{6} \quad -\frac{3}{2} \quad 0 \quad 4 \quad 0 \quad -\frac{3}{2} \quad 0 \quad 2$

BV X, X2 X, X4 | X5 X6 PHS

$$\frac{1}{16}$$
 1 0 2 | $\frac{3}{16}$ $\frac{1}{8}$ $\frac{1}{2}$

第二阶段

因此,当 N =8. N=0. N=3. N=0时 RHS最大为31

0 -66 0 -130 2-31

讨论:下例

$$\begin{cases} x_1 + 4x_2 - 2x_3 + 8x_4 = 2 & \textcircled{2} \\ -x_1 + 2x_2 + 3x_3 + 4x_4 = 1 & \textcircled{2} \\ 2x_1 + 2x_2 - 5x_3 + 4x_4 = 1 & \textcircled{2} \end{cases}$$

时③=①-①、效③式可以删点后按西阶段方法求解。

当分数难阵非行福铁时,在第二阶段可防出现某行生为。无法继续

进行,此时可利用线性组合关系消至冗余行,使系数阵行高秩.

4. max
$$6x_1-2x_1+10x_3+0x_4+0x_5$$

S.t.
$$\begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3+x_4=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+x_5=b_2\\ x_1.x_2,x_3.x_4,x_5\geq 0 \end{cases}$$

BV
$$X_1$$
 X_2 X_3 X_4 X_5 RHS
 β_{11} 1 2 β_{14} 0 5
 β_{21} β_{22} $\frac{1}{3}$ β_{24} $\frac{1}{3}$ δ_{2}'
 β_{15} β_{25} β_{25} β_{25} δ_{25} δ_{25}

由于 5 + 1 1 + 1 2 + 0 极 电基变量 Xs 进基变量 Xi X2, X3仍为非基变量 X3 基变量 即 出基变量为 Xs 进基变量为 Xi

(1). \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (8)

 $30 (6 -2 10 0 0 0) - k_2(3 a_{22} 10 1 b_2)$ $= (0 0 6_3 0 6_5 - 20)$

t/2 $K_2 = 2$. $b_2 = 10$ $0_{22} = -1$. $6_3 = 8$ $6_5 = -2$ $\eta = \frac{10}{3}$ $\beta_{22} = -\frac{1}{3}$

S.t.
$$\begin{cases} x_2 + 2x_3 \le 5 \\ 3x_1 - x_2 + x_3 \le 10 \end{cases}$$

 $\begin{cases} x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$