In [1]:

```
import pandas as pd
import numpy as np
import sklearn
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
df=pd.read_csv('train (1).csv')
df.head()
```

Out[2]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							•

In [3]:

1 df.shape

Out[3]:

(54808, 14)

In [4]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 14 columns):
```

Data	COTUMNS (LOCAL 14 COT	, (211111 <i>x</i>						
#	Column	Non-N	ull Count	Dtype				
0	employee_id	54808	non-null	int64				
1	department	54808	non-null	object				
2	region	54808	non-null	object				
3	education	52399	non-null	object				
4	gender	54808	non-null	object				
5	recruitment_channel	54808	non-null	object				
6	no_of_trainings	54808	non-null	int64				
7	age	54808	non-null	int64				
8	<pre>previous_year_rating</pre>	50684	non-null	float64				
9	length_of_service	54808	non-null	int64				
10	KPIs_met >80%	54808	non-null	int64				
11	awards_won?	54808	non-null	int64				
12	avg_training_score	54808	non-null	int64				
13	is_promoted	54808	non-null	int64				
dtype	dtypes: float64(1), int64(8), object(5)							
memory usage: 5 9+ MR								

memory usage: 5.9+ MB

In [5]:

```
1 df.describe()
```

Out[5]:

	employee_id	no_of_trainings	age	previous_year_rating	length_of_service	
count	54808.000000	54808.000000	54808.000000	50684.000000	54808.000000	548
mean	39195.830627	1.253011	34.803915	3.329256	5.865512	
std	22586.581449	0.609264	7.660169	1.259993	4.265094	
min	1.000000	1.000000	20.000000	1.000000	1.000000	
25%	19669.750000	1.000000	29.000000	3.000000	3.000000	
50%	39225.500000	1.000000	33.000000	3.000000	5.000000	
75%	58730.500000	1.000000	39.000000	4.000000	7.000000	
max	78298.000000	10.000000	60.000000	5.000000	37.000000	
4						•

In [6]:

```
1 df.isnull().sum()
```

Out[6]:

```
employee_id
                             0
department
                             0
region
                             0
                          2409
education
gender
                             0
recruitment_channel
                             0
no_of_trainings
                             0
                             0
previous_year_rating
                         4124
length_of_service
                             0
KPIs_met >80%
                             0
awards_won?
                             0
                             0
avg_training_score
is_promoted
                             0
dtype: int64
```

In [7]:

```
df['previous_year_rating']=df['previous_year_rating'].fillna(df['previous_year_rati
df['education']=df['education'].fillna(df['education'].mode()[0])
```

In [8]:

```
1 df.isnull().sum()
```

Out[8]:

```
employee_id
                         0
department
                         0
region
                         0
                         0
education
gender
recruitment channel
                         0
                         0
no_of_trainings
                         0
previous_year_rating
                         0
length_of_service
                         0
KPIs_met >80%
                         0
awards won?
                         0
                         0
avg_training_score
is_promoted
                         0
dtype: int64
```

In [9]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 14 columns):
     Column
                           Non-Null Count Dtype
     _ _ _ _ _
                           -----
_ _ _
 0
     employee_id
                           54808 non-null
                                           int64
 1
     department
                           54808 non-null object
 2
     region
                           54808 non-null object
 3
     education
                           54808 non-null object
 4
     gender
                           54808 non-null object
 5
     recruitment_channel
                           54808 non-null
                                           object
 6
     no_of_trainings
                           54808 non-null
                                           int64
 7
                           54808 non-null int64
 8
     previous_year_rating 54808 non-null float64
     length_of_service
 9
                           54808 non-null
                                          int64
 10
    KPIs_met >80%
                           54808 non-null
                                          int64
     awards_won?
                           54808 non-null
                                           int64
 11
                           54808 non-null
 12
     avg_training_score
                                           int64
                           54808 non-null
 13
     is_promoted
                                           int64
dtypes: float64(1), int64(8), object(5)
memory usage: 5.9+ MB
```

In [10]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['gender'])
plt.show()
```


In [11]:

```
#percentage of male and females
males=df.gender.value_counts()['m']/len(df)
print("percentage of male :",round(males*100,2))

females=df.gender.value_counts()['f']/len(df)
print("percentage of female :",round(females*100,2))
```

percentage of male : 70.24 percentage of female : 29.76

In [12]:

```
#department wise distribution
plt.figure(figsize=(14,7))
sns.countplot(x=df['department'])
plt.xticks(rotation=90)
plt.show()
```


In [13]:

```
plt.rcParams['figure.figsize']=(18,10)

sns.countplot(y=df['region'],palette='spring',orient='v')

#y= ... and orient = v means count plot(bins) as vertically

plt.ylabel('region name',fontsize='15')

plt.title('countplot of no of training',fontsize=20)

plt.show()
```


In [14]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['education'])
plt.xticks(rotation=90)
plt.show()
```


In [15]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['recruitment_channel'])
plt.xticks(rotation=90)
plt.show()
```


In [16]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['no_of_trainings'])
plt.xticks(rotation=90)
plt.show()
```


In [17]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['age'])
plt.xticks(rotation=90)
plt.show()
```


In [18]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['previous_year_rating'])
plt.xticks(rotation=90)
plt.show()
```


In [19]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['length_of_service'])
plt.xticks(rotation=90)
plt.show()
```


In [20]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['awards_won?'])
plt.xticks(rotation=90)
plt.show()
```


In [21]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['avg_training_score'])
plt.xticks(rotation=90)
plt.show()
```


In [22]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [23]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['department'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [24]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['gender'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [25]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['education'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [26]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['recruitment_channel'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [27]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['no_of_trainings'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [28]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['age'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [29]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['length_of_service'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [30]:

```
plt.figure(figsize=(14,7))
sns.boxplot(x=df['department'],y = df['avg_training_score'], hue = df['is_promoted']
plt.xticks(rotation=90)
plt.show()
```


In [31]:

plt.figure(figsize=(14,6))
sns.heatmap(df.corr(),annot=True)
plt.show()

In [32]:

```
df['Sum_of_kpa']=df['KPIs_met >80%']+df['previous_year_rating']+df['awards_won?']
df.head()
```

Out[32]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							•

In [33]:

```
plt.figure(figsize=(14,7))
sns.countplot(x=df['department'], hue=df['is_promoted'])
plt.xticks(rotation=90)
plt.show()
```


In [34]:

```
1 #df=df.drop(['employee_id','recruitment_channel','region'],axis=1,inplace=True)
2 df=df.drop(['recruitment_channel','avg_training_score','region','employee_id', 'no_
```

```
In [35]:
```

```
1 df.head()
```

Out[35]:

	department	education	gender	age	length_of_service	is_promoted	Sum_of_kpa
0	Sales & Marketing	Master's & above	f	35	8	0	6.0
1	Operations	Bachelor's	m	30	4	0	5.0
2	Sales & Marketing	Bachelor's	m	34	7	0	3.0
3	Sales & Marketing	Bachelor's	m	39	10	0	1.0
4	Technology	Bachelor's	m	45	2	0	3.0

In [36]:

```
1 df.columns
```

Out[36]:

from sklearn.model selection import train test split

```
x_train,x_test,y_train,y_test= train_test_split(df.iloc[:, [0,1,2,3,4,6]],df.iloc[:,5:6],test_size=0.2,random_state=10)
```

x train.head()

In []:

1

In [37]:

```
from sklearn.preprocessing import OneHotEncoder

from sklearn.preprocessing import OrdinalEncoder

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler
```

In [38]:

```
#Data preprocessing

#normalizing all the numerical features and encoding all the categorical features
```

In [39]:

```
1 cat_cols=['gender','education','department']
```

In [40]:

1 enc=OneHotEncoder(sparse=False)

In [41]:

```
gender=enc.fit_transform(df['gender'].values.reshape(-1,1))
gender_df=pd.DataFrame(gender,columns=list(enc.categories_[0]))

deducation=enc.fit_transform(df['education'].values.reshape(-1,1))
education_df=pd.DataFrame(education,columns=list(enc.categories_[0]))

department=enc.fit_transform(df['department'].values.reshape(-1,1))
department_df=pd.DataFrame(department,columns=list(enc.categories_[0]))

cat_df=pd.concat([gender_df,education_df,department_df],axis=1)
cat_df
```

Out[41]:

	f	m	Bachelor's	Below Secondary	Master's & above	Analytics	Finance	HR	Legal	Operations	Pro
0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
2	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54803	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54804	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	
54805	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
54806	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54807	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	

54808 rows × 14 columns

standard scaling

In [42]:

```
num_cols=['age','length_of_service','Sum_of_kpa']
scale=StandardScaler()
df[num_cols]=scale.fit_transform(df[num_cols])
num_df=df[num_cols]
num_df.head()
```

Out[42]:

	age	length_of_service	Sum_of_kpa
0	0.025598	0.500460	1.585631
1	-0.627135	-0.437395	0.902279
2	-0.104948	0.265996	-0.464424
3	0.547785	0.969387	-1.831127
4	1.331064	-0.906322	-0.464424

In [43]:

```
1 num_df.shape
```

Out[43]:

(54808, 3)

In [44]:

```
1 cat_df.shape
```

Out[44]:

(54808, 14)

In [45]:

```
features=pd.concat([num_df,cat_df],axis=1)
target=df['is_promoted']
```

In [46]:

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test= train_test_split(features,target,test_size=0.2,randor
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

```
(43846, 17)
(43846,)
(10962, 17)
(10962,)
```

```
In [47]:
```

```
earn.linear_model import LogisticRegression
earn.tree import DecisionTreeClassifier
earn.metrics import accuracy_score
earn.ensemble import RandomForestClassifier,AdaBoostClassifier,GradientBoostingClassifier
```

In [48]:

```
1 model1=LogisticRegression().fit(x_train,y_train)
```

In []:

```
1 #model2=DecisionTreeClassifier().fit(x_train,y_train)
```

In [50]:

```
1 model3=RandomForestClassifier().fit(x_train,y_train)
```

In [51]:

```
1 #model4=AdaBoostClassifier().fit(x_train,y_train)
```

In []:

```
1 a
```

In [53]:

```
1  y_pred1=model1.predict(x_test)
2  #y_pred2=model2.predict(x_test)
3  y_pred3=model3.predict(x_test)
4  #y_pred4=model4.predict(x_test)
5
6
```

In [54]:

```
print("Logisticregression", accuracy_score(y_test,y_pred1))
#print("Decision Tree", accuracy_score(y_test,y_pred2))
print("RandomForest", accuracy_score(y_test,y_pred3))
#print("Adaboost", accuracy_score(y_test,y_pred4))
```

Logisticregression 0.9176245210727969 RandomForest 0.8986498814085021

In []:

```
1 You can use different models also...for best results
```

In []:

```
1
```

```
In [ ]:
  1
In [ ]:
 1
In [ ]:
 1
In [ ]:
 1
In [ ]:
  1
In [ ]:
 1
In [ ]:
  1
In [ ]:
 1
In [ ]:
    #Trans=ColumnTransformer(transformers=[
           ('tnf1',OrdinalEncoder(categories=[['Below Secondary', "Bachelor's", "Master's &
  2
           ('tnf3',OneHotEncoder(sparse=False,drop='first'),['gender','department'])
 3
    #
 4
  5
    #],remainder='drop')
tnf1= ColumnTransformer([ ('OHE_gender',OneHotEncoder(sparse=False,handle_unknown='ignore'),
['gender','department']) ],remainder='passthrough')
tnf2= ColumnTransformer([ ('Ord_education',OrdinalEncoder(categories=[['Below
Secondary', "Bachelor's", "Master's & above"]]), ['education']) ], remainder='passthrough')
tnf3= ColumnTransformer([ ('scale',MinMaxScaler(),slice(0,6)) ],remainder='passthrough')
from sklearn.feature_selection import SelectKBest,chi2
tnf4=ColumnTransformer([ ('feature',SelectKBest(score_func=chi2,k=4)) ])
```

from sklearn.tree import DecisionTreeClassifier tnf5=DecisionTreeClassifier()

from sklearn.pipeline import Pipeline,make_pipeline

pipe1 = Pipeline([('tnf1',tnf1), ('tnf2',tnf2), ('tnf3',tnf3), ('tnf4',tnf4), ('tnf5',tnf5)])

from sklearn import set_config set_config(display='diagram')

pipe1.fit(x_train,y_train)

In []:

In []:

In []: