BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05-030466

(43) Date of publication of application: 05.02.1993

(51)Int.CI.

HO4N 5/91 G11B 20/02

(21)Application number: 03-203223

(71)Applicant: SONY CORP

(22)Date of filing:

19.07.1991

(72)Inventor: SAITO ISAO

SHIROCHI YOSHIKI

(54) VIDEO SIGNAL RECORDER AND SIGNAL RECORDING MEDIUM

(57)Abstract:

PURPOSE: To record an inhibition signal, which is easily detected without practical degradation of a reproduced picture and is difficult to illegally copy, in a signal recording medium.

CONSTITUTION: An antis-signal of copy inhibition or a pilot signal of copy permission is recorded by a high vision signal recording processing circuit 100. A timing generating circuit 108 which detects the timing of a synchronizing signal from a TDM encoder 107, a synchronizing signal generating circuit 109 which generates a synchronizing signal SYNC at the synchronizing signal generation timing, and a copy control signal generating circuit 110 which generates a copy control signal indicating copy inhibition or permission to a reserved area after the synchronizing signal are provided. The synchronizing signal SYNC and the copy control signal are superposed in the synchronizing signal insertion position and the reserved area through signal adding circuits 111 and

. 101

112 by time base multiplexing and are recorded on a video tape.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-30466

(43)公開日 平成5年 (1993) 2月5日

(51) Int. Cl. 5

識別記号

庁内整理番号

技術表示箇所

HO4N 5/91

P 8324-5C

G 1 1 B 20/02

L 7426-5D

審査請求 未請求 請求項の数6(全9頁)

(21)出願番号

特願平3-203223

(22)出願日

平成3年 (1991) 7月19日

(71)出願人 000002185

FΙ

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72) 発明者 斉藤 勲

東京都品川区北品川6丁目7番35号 ソニー

株式会社内

(72)発明者 城地 義樹

東京都品川区北品川6丁目7番35号 ソニー

株式会社内

(74)代理人 弁理士 佐藤 隆久

11033 U.S. PTO 09/815849

(54) 【発明の名称】映像信号記録装置および信号記録媒体

(57)【要約】

(修正有)

[目的] 違法ダビングを有効に防止するコピー禁示信号またはコピー許可信号を記録する映像信号記録装置。

【構成】 ハイビジョン用信号記録処理回路100において、コピー禁示のアンチバイラシー信号またはコピー許可のバイロット信号が記録される。 TDMエンコーダ107から同期信号のタイミングを検出するタイミング発生回路108、同期信号発生タイミングにおいて同期信号の後のリザーブエリアにコピー禁示または許可を示すコピー制御信号を発生するコピー制御信号発生回路110を有する。同期信号SYNCおよびコピー制御信号は信号加算回路111,112を介してそれぞれ同期信号押入位置およびリザーブエリアに時間軸多重されて重置され、ビデオテーブに記録される。

(効果) 再生画像に実質的な劣化を生じさせないで検 出容易、違法コピー難かしい禁示信号を信号記録媒体に 記録する映像信号記録装置。

1

【特許請求の範囲】

【請求項1】 信号記録媒体のビデオトラック内のリザーブエリアに、該リザーブエリアに記録されるベースバンド信号にコピー制御信号を時分割多重して記録することを特徴とする映像信号記録装置。

【請求項2】 周波数変調後の映像信号に、該映像信号の周波数帯域より低い周波数を有するコピー制御を示す信号を周波数多重して信号記録媒体に記録することを特徴とする映像信号記録装置。

【請求項3】 信号記録媒体のインデックスエリア内に インデックスなどのデータの一部としてコピー制御信号 を記録すること特徴とする映像信号記録装置。

【請求項4】 そのビデオトラック内のリザーブエリアに、該リザーブエリアに記録されるベースバンド信号にコピー制御信号が時分割多重化されて記録されていることを特徴とする信号記録媒体。

【請求項5】 周波数変調後の映像信号に、該周波数帯域より低い周波数を有するコピー制御信号が周波数多重されて記録されていることを特徴とする信号記録媒体。

(請求項6) そのインデックスエリアに、該インデックスエリアに記録されるベースバンド信号にコピー制御信号が<u>軍</u>畳されて記録されていることを特徴とする信号記録媒体。

【発明の詳細な説明】

[0001]

[産業上の利用分野] 本発明は映像信号処理装置に関するものであり、特に、違法に映像信号をコピー(またはダビング) することを禁止または適法に許可する映像信号記録装置およびかかるコピー禁止または許可を示すコピー制御信号が記録された信号記録媒体に関する。

[0002]

【従来の技術】ビデオテープに記録された映像信号の違 法なコピーを禁止する方法としては,たとえば,民生用 VTRなどにおいて、コピーを禁止すること示すアンチ パイラシー信号を同期信号部分に組み込むことが試みら れている。しかしながら、同期信号部分にアンチバイラ シー信号を組み込む方法は同期信号部分をすげ替えるこ とにより、容易にアンチパイラシー信号が解除されてし まうという問題がある。違法コピーを防止する他の方法 としては、映像信号の周波数帯域よりも周波数の高いア ンチパイラシー信号を映像信号に重畳させる方法が提案 されている。この方法は、映像信号の周波数帯域よりも 高い周波数領域にアンチバイラシー信号が存在するから モニタ装置で再生した画像が劣化するという問題は少な い。しかしながら、簡単な回路構成のローパスフィルタ でアンチパイラシー信号が容易に除去されてしまい、違 法コピーを有効に防止できない。違法コピーを防止する 方法としてはその他の方法も考えられるが、モニタ装置 $f_{AP} = (N+1/2) f_B$

Nは信号発生回路23内にあるPLL回路内の分周回路

に通常の形態で再生させた場合にその再生画像に劣化を 惹起させないで効果的に違法コピーを防止する有効な方 法はまだ実現されていない。

【0003】かかる状況に鑑みて、本願の発明者は、ハイビジョン用モニタ装置などにおける再生映像信号に実質的な画質劣化を生じさせず、しかもその解除が事実上困難なアンチパイラシー信号を映像信号に重畳する映像信号処理装置を提案している(たとえば、平成3年6月14日に特許出願した「映像信号処理装置」)。図10はかかるハイビジョン用ビデオ装置などの映像信号処理装置の全体構成図であり、図11は映像信号に重畳されるアンチパイラシー信号の周波数特性図であり、図12はアンチパイラシー信号が間欠的に重畳されるタイミングを示す図である。

[0004] 図10において、第1のビデオ装置1から

出力される再生映像信号をモニタ装置 5 において再生画像を表示し、第 2 のビデオ装置 6 において記録する。第 1 のビデオ装置 1 で再生された輝度信号 Y , 第 1 の色差信号 P 。 および第 2 の色差信号 P 。 からなる映像信号を , 第 2 のビデオ装置 6 において記録することを禁止させるため、アンチパイラシー信号発生回路 2 においてアンチパイラシー信号が発生され、信号重畳回路 3 において再生映像信号にアンチパイラシー信号が重畳される。上記アンチパイラシー信号が重畳された映像信号の記録を禁止するため、アンチパイラシー信号検出回路 7 がアンチパイラシー信号を検出して第 2 のビデオ装置 6 に記録の禁止を示す信号 S T O P を出力する。

【0005】アンチパイラシー信号発生回路2は、マト リクス回路21.制御回路22,信号発生回路23およ 30 びアンチパイラシー信号分配回路24を有している。マ トリクス回路21は輝度信号Y、第1の色差信号P。お よび第2の色差信号Pi から公知のマトリクス演算によ って3原色G, B, Rに変換する。制御回路22は変換 されたG, B, Rの成分比率を分析して、アンチパイラ シー信号分配回路24において算出されるG, B, Rご とのアンチパイラシー信号py,pb,prの比率を算 出する。アンチパイラシー信号分配回路24は信号発生 回路23から出力される周波数信号を用いて、制御回路 22で算出されたアンチパイラシー信号配分比率に基づ 40 いてアンチパイラシー信号py, pb, prを出力す る。信号重畳回路3は上記アンチパイラシー信号py, pb, prをそれぞれ輝度信号Y,第1の色差信号 Pa, 第2の色差信号Paに重量する。

【0006】図11に示すように、アンチバイラシー信号のアンチバイラシー周波数 fapは、水平同期を規定する水平走査周波数 fa に対して下記式1に基づく周波数インターリーブ関係に設定される。

(1)

(図示せず) の分周率である。 アンチパイラシー信号

は、上記周波数関係を有する他、違法コピーを禁止させるために検出可能な振幅を有するとともに、モニタ装置5において再生画像に実質的な劣化を生じさせないあるレベル以下の振幅を有している。

[0007] 図12に示すように、上記アンチパイラシ 一信号はモニタ装置における再生画像の劣化が実質的に 生じないように、さらに間欠的なタイミングで重畳され る。つまり、アンチパイラシー信号は全フィールドごと に重畳されるのではなく、複数フィールドごとに1フィ ールドだけ輝度信号Y, 第1の色差信号P。, 第2の色 差信号P』に重畳される。ただし、アンチパイラシー信 号は映像信号の信号領域、たとえば、輝度信号Yについ て、3値同期信号に続く、水平ブランキング期間内の実 質的な輝度信号成分にアンチパイラシー信号pyが重畳 され、同期信号部分にはアンチパイラシー信号pyを重 畳せず、同期信号部分にアンチパイラシー信号を重畳す ることによる同期乱れを生じさせない。映像信号へのバ イロット信号の重畳(実質的な信号成分への重畳)は、 ある強度(振幅)で、モニタ装置を監視する人間の目の 積分効果の残らない時間Toxだけ重畳し、目の積分効果 がリセットされる間隔Torr その重畳は禁止される。こ のように、デューティを変化させことにより、目に対す る等価強度を低下させている。このように、周波数fg と周波数インターリーブ関係にあり、上記振幅範囲内に あるアンチバイラシー信号を映像信号に重畳してもTV 画面52における再生画像には事実上影響がでない。

[0008] 図10のアンチバイラシー信号検出回路7内には、マトリクス回路71、制御回路72、信号合成回路73および検出回路74が設けられている。マトリクス回路71はアンチバイラシー信号発生回路2内のマトリクス回路21と同様にアンチバイラシー信号が重量されている輝度信号Y、第1の色差信号P。、第2の色差信号P。からG、B、Rに変換する。制御回路72もアンチバイラシー信号発生回路2内の制御回路22と同様にアンチバイラシー信号配分xg、xb、xrを算出する。信号合成回路73はこの配分比の極性から同位相でアンチバイラシー信号Pのレベルが所定レベル以上のとき検出回路74からダビング禁止信号STOPが第2のビデオ装置6に出力され、第2のビデオ装置6は入力された映像信号の記録を停止する。

[0009]

【発明が解決しようとする課題】図10~図12を参照して述べた映像信号処理装置においては、周波数f s と周波数インターリーブ関係にあり、再生画像に画質劣化を生じさせない程度の振幅範囲にあるアンチパイラシー信号を映像信号に重量し、コピー禁止か否かの判断をかかる重量されたアンチパイラシー信号を検出しているが、より簡単な回路構成でコピー禁止するまたは適法にコピーを許可するコピー制御信号を信号記録媒体に記録

し,またそのコピー制御信号を信号記録媒体から正確に 検出することが望まれている。

[0010]

【課題を解決するための手段】上記問題を解決するた め、本発明においては、伝送用の映像(ビデオ)信号出 力とは異なる形態でコピー禁止するまたはコピーを許可 するコピー制御信号を信号記録媒体に記録する。本発明 の第1の形態によれば、信号記録媒体のビデオトラック 内のリザーブエリアに、該リザーブエリアに記録される ベースバンド信号にコピー禁止または許可するコピー制 御信号を時分割多重して記録する映像信号記録装置が提 供される。本発明の第2の形態によれば、周波数変調後 の映像信号の周波数帯域よりも低い周波数を有するコピ 一制御信号を映像信号に周波数多重して信号記録媒体に 記録する映像信号記録装置が提供される。本発明の第3 の形態によれば、信号記録媒体のインデックスエリア内 にインデックスなどのデータの一部としてコピー制御信 号を記録する映像信号記録装置が提供される。または本 発明によれば,上記映像信号記録装置によって記録され た信号記録媒体、すなわち、(1) そのビデオトラック 内のリザーブエリアにベースバンド信号にコピー制御信 号が時分割多重化によって記録されている信号記録媒 体. (2) 周波数変調後の映像信号の周波数帯域より低 い周波数を有するコピー制御信号が映像信号に周波数多 重によって記録されている信号記録媒体、および、 (3) そのインデックスエリアにコピー制御信号が記録 されている信号記録媒体が提供される。

[0011]

【作用】本発明の第1の形態の映像信号記録装置によれ ば、リザーブエリアに時分割多重化信号として規定され る最大レベルまでコピー制御信号を記録することができ る。したがって,再生のS/Nが充分高くとれ,コピー 制御信号の検出が容易となる。一方、リザーブエリアに 記録されたコピー制御信号は再生映像信号にはなんら悪 影響を与えない。 本発明の第2の形態の映像信号記録装 置によれば、コピー制御信号の周波数帯域か映像信号の 周波数帯域とは異なるので、充分大きい振幅のコピー制 御信号を周波数多重化できる。この場合も、再生のS/ Nが充分高くとれ、コピー制御信号の検出が容易とな 40 る。一方、リザーブエリアに記録されたコピー制御信号 は再生映像信号には実質的にになんら悪影響を与えな い。本発明の第3の形態の映像信号記録装置によれば、 コピー制御信号がインデックスエリアに記録されるの で、再生映像信号になんらの悪影響を与えず、その検出 が容易である。以上のコピー制御信号はいずれも,同期 信号部分に挿入されるのではないので、同期を乱すこと がない。またこのように方法で記録された信号記録媒体 がビデオ装置などの映像信号処理装置に装荷された場 合,上述したように検出が容易に行われ,違法コピーを 容易に禁止することができる。また、適法のコピーを許 可することができる。

[0012]

【実施例】図1に本発明の映像信号記録装置の第1実施 例として、ハイビジョン用ビデオ装置内の信号記録処理 回路100を示す。信号記録処理回路100は、ビデオ テープに記録されたビデオ信号のリニアリティ補正用の ランブ信号が記録される部分のうち未使用部分であるり ザーブエリアに記録されるコピーを禁止または許可を示 すコピー制御信号を出力し、図示しない回転ドラムを介 してビデオテープに記録される。信号記録処理回路10 0は、ビデオ信号(映像信号)として、アナログの輝度 信号Y, 第1の色差信号P1, 第2の色差信号P1に含 まれる低周波成分を通過させるローパスフィルタ(LP F) 101~103, LPF101~103の出力をデ ィジタル映像信号に変換するA/Dコンパータ104~ 106, A/Dコンバータ104~106からのディジ タル映像信号を、ディジタルフィルタリング、時間軸圧 縮、伸長、シャフリングなどを行う時分割多重(TD M) エンコーダ107, このTDMエンコーダからの2 チャネルのディジタル出力をアナログ映像信号に変換す。20 るD/Aコンバータ113, 114, および, LPF1 15. 116を有している。図1には示していないが、 LPF115, 116の後段には、たとえば、図7に示 されるアナログ信号処理回路207, FM変調回路20 8, 磁気回転ドラム215に接続された記録増幅回路2 11と同等の回路が設けられる。信号記録処理回路10 0にはさらに、TDMエンコーダ107に接続されたタ イミング発生回路108, 同期信号発生回路109, コ ピー制御信号発生回路110,および,信号加算回路1 11.112が設けられている。

[0013] 図2に図1の信号記録処理回路100からの信号が回転ドラムによって記録されるビデオテーブのフォーマット(記録パターン)の例を示す。本実施例においては、同期信号SYNC記録部分、バースト信号記録部分およびID信号記録部分を有する4.5Hの長さのプリアンブル部PREAMBLEに続く、ビデオ信号部分に、たとえば、リニアリティ補正のために設けられたランプ信号を記録する部分のうちの未使用部分であるリザーブエリアにコピー制御信号を記録する。

【0014】タイミング発生回路108はTDMエンコーダ107の処理信号から同期信号SYNCが記録される部分が位置するタイミングを検出し、そのタイミング信号を同期信号発生回路109に出力する。同期信号発生回路109はそのタイミングで同期信号SYNCを発生し、信号加算回路117に出力する。信号加算回路117はその同期信号SYNCを信号加算回路111、112に出力してTDMエンコーダ107からの信号の同期信号位置に上記同期信号SYNCを挿入する。同期信号発生回路109からは同期信号SYNCを発生したタイミング信号がコピー制御信号発生回路110に出力さ

6

れる。コピー制御信号発生回路110は同期信号発生回路109からのタイミングを参照してランブ信号を記録する位置に続くリザーブエリアが位置するタイミングを検出し、コピー禁止を示すアンチパイラシー信号APまたはコピー許可信号を信号加算回路117に出力する。信号加算回路117はリザーブエリアにアンチパイラシー信号APまたはコピー許可信号を挿入する。これにより、リザーブエリアにコピー制御信号が挿入された信号が回転ドラムを介してビデオテーブに記録される。

4 (A) はコピー制御信号の第1例を示す。図 4 (A) はコピー制御信号発生回路110で発生された 論理「1」の信号がリザーブエリアに記録され、コピー を許可すること, (B) は逆にコピー制御信号発生回路 110から信号は発生されずリザーブエリアは未使用の まであり、コピー禁止状態であることを示している。リ ザーブエリアになにも記録されていない場合には、その ピデオテーブのコピーが禁止されるから、この例では、 アンチパイラシー信号APは出力されず、コピー制御信 号発生回路110はコピーを許可する場合のみ論理 「1」のパイロット信号を出力するように構成されてい

【0016】図5にコピー制御信号の第2例を示す。図5(A)はコピー制御信号発生回路110で発生された「10101」のディジタルバイロット信号がリザーブエリアに記録された場合のみコピー可能であり,(B)はコピー制御信号発生回路110で発生された「10110」のディジタルアンチバイラシー信号APがリザーブエリアに記録されてコピーを禁止する例を示す。この例においても、コピーを禁止するためリザーブエリア
30 を、図5(B)に示したデータパターンに代えて、図4

(B) に示したデータなしの状態にすることができる。 [0017] 図6にコピー制御信号の第3例を示す。図6 (A) はコピー制御信号発生回路110で発生された 直流成分に交流成分を重畳させたパイロット信号がリザーブエリアに記録された場合のみコピー可能であり,

(B) はリザーブエリアにはなにも記録されていずコピーを禁止する例を示す。

【0018】リザーブエリアに記録され、コピーを禁止あるいは許可するコピー制御信号のデータパターンは上 がした例に限らず、他の種々のパターンを用いることができる。ビデオ装置にはビデオテープから上記コピー制御信号を検出するコピー禁止信号検出回路が設けられている。コピー禁止信号検出回路は、同期信号SYNCを検出した後、リザーブエリアを検出し、そのリザーブエリアに記録されている信号が上述した特定のパイロットデータパターンでない限り記録回路の動作を禁止する。この実施例においては、TDM信号として定められている最大レベルまでコピー制御信号を記録できるから、再生のS/Nが充分とれ、コピー制御信号の検出が確実に なる。その一方で、再生映像信号にはなんらの悪影響を

与えない。もし、違法にコピーを行うには上述したリザーブエリアを検出し、さらに上述した信号を検出する複雑な構成の回路が必要になり、容易に違法コピーを行うことができない。

【0019】図7に本発明の映像信号記録装置の第2実施例としてのハイビジョン用ビデオ装置200内の信号記録系200Aおよび信号再生系200Bの回路構成を示す。このビデオ装置200においては、図8に示すように、FM変調された映像信号の周波数帯域以下の低い周波数を有するパイロット信号Pまたはアンチパイラシー信号APを映像信号に周波数多重化してビデオテープに記録する。この例においては、パイロット信号Pが存在するときコピーを許可し、信号が存在しないときコピーを禁止する。

[0020] 信号記録系200Aは図1に示した信号記 録処理回路100とほぼ同様の回路構成である。 しかし ながら、図1に示したコピー制御信号発生回路110に 代えて、FM変調回路208の後段に信号加算回路21 0を付加し、コピー許可を示すパイロット信号を発生す るパイロット信号発生回路209を別途設けている。信 号再生系200Bは回転ドラム215で検出した信号を 増幅する再生増幅回路221,ハイパスフィルタ(HP F) 222, FM復調回路223, アナログ信号処理回 路224. LPF225, A/Dコンパータ226, T DMエンコーダ203と逆の信号処理を行うTDMデコ ーダ227, D/Aコンバータ228, LPF229を 有している。信号再生系200Bはさらに、LPF23 1. 検波回路232, ORゲート回路233およびコピ 一禁止処理回路234からなるコピー信号処理回路23 0を有している。以上の回路構成は輝度信号Yに関する 1系統、および、AチャネルCHAに関する1系統のみ 示したが、他の系統も上記同様の回路構成である。

[0021] TDM信号はFM変調回路208において FM変調されてビデオテーブに記録されるが、FM変調 後の周波数スペクトルは図8に示したように低周波では 信号成分が非常に少なくなる。パイロット信号発生回路 209は、コピーを許可するときのみ、映像信号につい てFM変調した周波数スペクトルよりも低い周波数のパ イロット信号Pを信号加算回路210に出力して、FM 変調された映像信号にパイロット信号Pを周波数多重す る。LPF231は上記パイロット信号Pのみを通過さ せ、検波回路232が通過されたパイロット信号Pを検 波してパイロット信号Pを検出する。ORゲート回路2 33でいずれかのチャネルにパイロット信号 Pが含まれ ることが検出され、コピー禁止処理回路234はパイロ ット信号Pが存在するときのみTDMデコーダ227の 動作を許可して映像信号の正常な再生動作を可能にす る。一方、コピー信号処理回路230は上記パイロット 信号 Pが検出されない時はTDMデコーダ227にその 旨を通報する。この場合,TDMデコーダ227は,た

とえば、再生ビデオ信号にビデオ信号の周波数帯域内の 周波数で大きい振幅の信号を重畳して出力して再生画像 を著しく劣化させ、事実上、コピーを無効にする。FM 変調後の映像信号の周波数帯域とは異なる周波数のパイ ロット信号Pを用いることで、コピー信号処理回路23 0におけるパイロット信号Pの検出は容易になる。また このパイロット信号の周波数はFM変調された映像信号 の周波数帯域とは異なるから、パイロット信号発生回路 209で発生するパイロット信号のレベルを大きくとる ことができ、再生S/Nが良好でパイロット信号の検出

がより容易になる。 【0022】バイロット信号Pの記録の方法としては、

- (1) ビデオトラック全体に、A、Bチャネルとも同じ 周波数のパイロット信号を重畳して記録する方法、
- (2)数トラックごとにチャネルごと異なる周波数のパイロット信号を重畳して記録する方法, (3)特定セグメントのみに上記いずれかの周波数のパイロット信号を重畳して記録する方法, (4)これらを組合せた方法など,種々の方法をとることができる。
- 20 【0023】図9に本発明の映像信号記録装置の第3実施例としてのハイビジョン用ビデオ装置の回路構成を示す。図9の回路図は、図1および図7を参照して述べた映像信号を記録する信号記録系200Aに対応する信号記録系200B'の他、音声信号処理系300A、300Bをも示している。図9のビデオ装置にはさらにコピー禁止処理回路400が設けられている。この実施例は図2に示したビデオテープのフォーマットに示されるように、オーディオトラックの10とビデオトラックとの間にあるインデックス部IDが設けられている場合、このインデックス部IDが設けられている場合、このインデックス部IDにコピー禁止または許可を示すコピー制御信号を記録する。

【0024】インデックス部IDにはタイムコード,プログラム番号,頭出しフラグなどのインデックスが記録されるが,本実施例では,このデータのうちの1~数ビットをコピー制御データとして割り当てる。たとえば,1ビットを割り当てた場合,「1」のときはコピー許可,「0」のときはコピー禁止とする。あるいはこの逆の の論理でもよい。また2ビットを割り当てたときは,

「00」のときはコピー許可,「01」のときは1回だけコピー許可,「11」のときはコピー禁止とする。図9の回路構成は,インデックス信号がオーディオ信号と同様に処理される場合の回路構成である。

[0025] 信号記録系200A'には、スイッチ213,214が設けられている。これらのスイッチは、音声信号処理系300A、300Bからコピー制御信号を重畳するとき図示実線の位置に付勢される。音声信号処理系300A、300Bはそれぞれ、2チャネル分のオーディオ信号の記録および再生を行う。チャネル1、2

についての音声信号処理系300AはLPF301, A /Dコンバータ302, エラー訂正回路303, RAM304, 8/10ビット変調回路305, NRZI処理回路306からなるオーディオ信号記録回路を有している。また, 音声信号処理系300Aは, イコライザ311, NRZI処理回路312, 8/10ビット復調回路313, RAM304, エラー訂正回路303, D/Aコンバータ316, LPF317を有している。RAM304およびエラー訂正回路303は記録および再生に共用される。コピー禁止処理回路400は, システムコントロール用のマイクロコンピュータ401, インデックス処理用マイクロコンピュータ402, および, コピー禁止信号処理回路403を有している。

【0026】システムコントロール用のマイクロコンピ ュータ401はコピー禁止または許可の全体制御を行う ため、スイッチ213、214を付勢または消勢し、タ イミング信号およびコピーを制御データをインデックス 処理用マイクロコンピュータ402との間が伝送する。 コピー制御データを記録するときは、システムコントロ ール用のマイクロコンピュータ401はスイッチ21 3. 214を図示実線の状態に付勢し、コピー制御デー タをインデックス処理用マイクロコンピュータ402に 出力する。インデックス処理用マイクロコンピュータ4 02にシステムコントロール用のマイクロコンピュータ 401からのタイミングでコピー制御データをインデッ クスデータとしてRAM304に書き込む。RAM30 4に書き込まれたコピー制御データはインデックスデー タとして変調され回転ドラム215を介してビデオテー プに記録される。再生時,回転ドラム215で検出され たコピー制御データはインデックスデータとして復調さ れ、RAM304に記憶される。インデックス処理用マ イクロコンピュータ402はシステムコントロール用の マイクロコンピュータ401からのタイミングに応答し て、RAM304に記憶された再生コピー制御データを 入力し、コピー禁止を示すデータか否かを判断する。も し、コピー禁止を示すデータの場合、インデックス処理 用マイクロコンピュータ402はコピー禁止信号処理回 路403を駆動し、TDMデコーダ227にコピー禁止 であることを通報する。TDMデコーダ227はコピー 禁止情報を受信した場合,たとえば,出力ビデオ信号に このビデオ信号の周波数帯域内で振幅の大きなパイロッ ト信号を重畳して再生画像を著しく劣化させ、事実上、 コピーを禁止状態にする。

[0027] 本発明の実施例としては、上記ビデオ装置によってコピー制御信号が記録されたビデオテープなどの信号記録媒体が得られる。このような信号記録媒体を用いれば、上述したようにコピー制御情報が検出される。

[0028]

【発明の効果】以上述べたように、本発明によれば、再

10

生画像に実質的な劣化を生じさせないで、検出が容易な一方、違法コピーが難しいコピー禁止信号を信号記録媒体に記録する映像信号記録装置が提供される。または本発明によれば、かかる映像信号記録装置によって上記コピー禁止信号が記録された信号記録媒体が提供される。【図面の簡単な説明】

[図1] 本発明の映像信号記録装置の第1実施例のビデオ装置内の信号記録処理回路の部分構成図である。

【図2】図1に示した信号記録処理回路を介して記録さ 10 れるビデオテープの記録フォーマットを示す図である。

【図3】図2に示したビデオテーブ内のブリアンブル部 および図1に示した信号記録処理回路によってコピー制 御信号が記録されるリザーブエリアを示す図である。

【図4】図1に示す信号記録処理回路を介してのビデオテープのリザーブエリアに記録されるコピー制御を示すデータバターンの第1例を示す図である。

【図5】図1に示す信号記録処理回路を介してのビデオテープのリザーブエリアに記録されるコピー制御を示すデータパターンの第2例を示す図である。

20 (図6)図1に示す信号記録処理回路を介してのビデオテープのリザーブエリアに記録されるコピー制御を示すデータパターンの第3例を示す図である。

【図7】本発明の映像信号記録装置の第2実施例として のビデオ装置の映像信号記録・再生処理系の構成図であ る。

【図8】図2のビデオ装置においてFM変調後の映像信号とこの映像信号に周波数多重化重量されるパイロット 信号の周波数関係を示す図である。

【図9】本発明の映像信号記録装置の第3実施例として 30 のビデオ装置の信号処理系の構成図である。

【図10】本発明の先行技術としてのビデオテーブにアンチバイラシー信号を記録する映像信号処理装置の構成を示す図である。

【図11】図10に示した映像信号処理装置におけるアンチバイラシー信号の周波数特性図である。

(図12) 図10に示した映像信号処理装置において映像信号に<u>重優</u>するアンチパイラシーの<u>重</u>優タイミング図である。

【符号の説明】

40 100・・信号記録処理回路, 107・・TDMエンコ

108・・タイミング発生回路、109・・同期信号発生回路。

110・・コピー制御信号発生回路,200A・・信号 記録系.

200B・・信号再生系, 209・・パイロット信号発 生回路,

215··回転ドラム, 227··TDMデコーダ,

230・・コピー信号処理回路, 232・・検波回路,

50 234·・コピー禁止処理回路, 300A, 300B・

· 音声信号処理系,

400・・コピー禁止処理回路,

401・・システムコントロール用のマイクロコンピュ

402・・インデックス処理用マイクロコンピュータ,

12

403・・コピー禁止信号処理回路。

【図3】.

[图8]

(図1)

[図2]

【図4】

[図5]

【図6】

(図7)

[図10]

[図11]

[図12]

[図9]

