Question: Find the graph of

$$f(x) = \frac{x}{|x|} + \frac{x-1}{|x-1|}.$$

my solution: Let us say:

$$g(x) = \frac{x}{|x|}$$

and

$$h(x) = \frac{x-1}{|x-1|}$$

. Then we know

$$g(x) = \begin{cases} \frac{x}{x}, & x > 0, \\ \frac{x}{-x}, & x < 0. \end{cases}$$

[why 0 disappear? since |x| is in the denominator.] similarly:

$$h(x) = \begin{cases} \frac{x-1}{x-1}, & x-1 > 0, \\ \frac{x-1}{-(x-1)}, & x-1 < 0. \end{cases}$$

Let us make it simpler:

$$h(x) = \begin{cases} 1, & x > 1, \\ -1, & x < 1. \end{cases}$$

Then we know f(x) = g(x) + h(x), so let us consider the different domain one by one:

First case: when x > 1, h(x) = 1 and g(x) = 1, thus f(x) = 2.

Second case: when 0 < x < 1, h(x) = -1 and g(x) = 1, thus f(x) = 0.

Third case: when x < 0, h(x) = -1 and g(x) = -1, thus f(x) = -2.

Then you may know the answer.

Question 11: Solve the inequality.

$$2x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}} \ge 0.$$

my solution: Factorize this left hand side of this inequality:

$$x^{-\frac{1}{3}}(x-3)^{-\frac{2}{3}}(2(x-3)^{\frac{1}{3}+\frac{2}{3}}+x^{\frac{2}{3}+\frac{1}{3}}) \ge 0$$

Then simpify it, you will get:

$$x^{-\frac{1}{3}}(x-3)^{-\frac{2}{3}}(3x-6) \ge 0$$

Look at three critical points:

$$x^{-\frac{1}{3}} = \frac{1}{x^{1/3}},$$
 thus $x \neq 0$

$$(x-3)^{-\frac{2}{3}} = \frac{1}{(x-3)^{2/3}},$$
 thus $x-3 \neq 0$, that implies $x \neq 3$.
 $3x-6=0$ that implies $x=2$.

so you can draw the number line and the table then take a look at the value sign.

	x = -1	x = 1	$x = \frac{5}{2}$	x = 4
3x-6	-9 (-)	-3(-)	$\frac{3}{2}(+)$	6 (+)
$x^{-\frac{1}{3}}$	-1 (-)	1 (+)	$\left(\frac{5}{2}\right)^{-\frac{1}{3}}$ (+)	$4^{-\frac{1}{3}} (+)$
$(x-3)^{-\frac{2}{3}}$	$\frac{1}{\sqrt[3]{4^2}}$ (+)	$\frac{1}{\sqrt[3]{2^2}}$ (+)	$\frac{1}{\sqrt[3]{\left(-\frac{1}{2}\right)^2}}$ (+)	1 (+)

Then choose for "+" sign for inequality greater and equal to 0, we will get the answer $(-\infty,0)\cup[2,3)\cup(3,\infty)$.