Operating System (OS) CS232

Persistence: Redundant Arrays of Inexpensive Disks (RAIDs)

Dr. Muhammad Mobeen Movania

Outlines

- What are RAIDs?
- What does RAIDs contain?
- Why RAIDs were invented?
- How RAIDs provide reliability?
- Redundancy using striping and mirroring
- Logical to physical mapping
- RAID levels and comparison
- Summary

What are RAIDs?

 Redundant Array of Inexpensive Disks (RAIDs) is a technique to use multiple disks in concert to build a faster, bigger and more reliable disk system.

Goals

- Reliability (restore of data on disk failures)
- Capacity (more than one disks together)
- Performance (writes can happen in parallel on different disks)

RAIDs contents

- Externally,
 - RAID looks like a disk that contains a group of blocks that can be read or written to.
- Internally
 - RAID consists of multiple disks, memory (both volatile and non-volatile), and one or more processors to manage the system.
- To the user system, RAID appears as a big disk

Why RAIDs were invented?

Basic idea

 to combine multiple, small inexpensive disks drive into an array of disk drives which yields performance exceeding that of a Single, Large Expensive Drive(SLED).

Additionally

 this array of drives appear to the computer as a single logical storage unit or drive.

Inventors:

 In 1987, Patterson, Gibson and Katz at the University of California Berkeley, published a paper entitled "A Case for Redundant Array of Inexpensive Disks(RAID)".

How RAIDs provide reliability?

- RAIDs provide reliability through redundancy
- In a single large disk, disk failure results in complete data loss
 - As number of disks per component increases, the probability of failure also increases
- Solution
 - Redundancy (Make a copy of the data on another disk in parallel)

Redundancy through striping

Striping:

- Key idea: Distribute data across multiple disk
- Read/write from multiple disk in parallel
- Method of concatenating multiple drives into one

logical drive

Two types: bit-level or block level

Blocks in the same row are called stripes

Extract the most parallelism when requests are made for contiguous chunks of the array

1
5
9
13
Disk 1

5	
9	
13	
Disk 1	•

Disk 3

Disk4

		9			
all ->	files	striped	across	many	disks
41 1	.:				

> position time goes up because worst case

-chunk size design considerations:

- 2. big -> vice versa
 - Capacity = N.B
 - reliability = worst (ask disk failure leads to data loss)
 - performance = excellent
 - single-request latency: identical to a single disk/
 - steady state throughput: -- for sequential workload: N times S (transfer rate for
 - sequential workload of a single disk) --for random workload:

N times R (... random

Redundancy through mirroring

- Mirroring: Duplicate data on every disk
 - One logical disk consists of two physical disk
 - Every write carried out on both disks
 - If one of the disk fails, data read from the other

 Data permanently lost only if the second disk fails before the first failed disk is replaced.

Disk 3

Capacity: 0.5 N.BReliability: ca

Disk4

1	1	2
3	3	4
5	5	6
7	7	8

Disk 2

Disk 1

Logical to physical mapping (Striping)

RAID Levels

- Data are distributed across the array of disk drives
- Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure
- Levels decided according to schemes to provide redundancy at lower cost by using striping and "parity" bits
- Different cost-performance trade-offs

- Striping at the level of blocks
- Data split across drives resulting in higher data throughput
- Pros
 - Performance is very good
- Cons
 - Failure of any disk in the array results in data loss
 - Reliability problems due to no mirroring or parity bits
- Commonly referred to as striping

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Disk 1 Disk 2 Disk 3 Disk 4

- Introduce redundancy through mirroring
- Pros
 - No data loss if either drive fails
 - Good read performance
- Cons
 - Expensive: Cost/MB is high
- Commonly referred to as mirroring

- Uses Hamming (or any other) error-correcting code (ECC)
- Intended for use in drives which do not have built-in error detection
- Key Idea: If one of the disks fail the remaining bits of the byte and the associated ECC bits can be used to reconstruct the data
- Not very popular

Improves upon RAID 2, known as Bit-Interleaved
 Parity

Pros:

- Disk Controllers can detect whether a sector has been read correctly.
- Storage overhead is reduced only 1 parity disk needed

• Cons:

- Expense of computing and writing parity
- Need to include a dedicated parity hardware

 Stripes data at a block level across several drives, with parity stored on one drive - blockinterleaved parity

Pros

- Allows recovery from the failure of any of the disks
- Performance is very good for reads

Cons

- Writes require that parity data be updated each time.
- Slows small random writes but large writes are fairly fast

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
4	5	6	7	P1
8	9	10	11	P2
12	13	14	15	P3

Figure 38.4: **RAID-4 With Parity**

C0	C1	C2	C3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0) = 1

Block0	Block1	Block2	Block3	Parity
00	10	11	10	11
10	01	00	01	10

Capacity: (N - 1).B Reliability: Tolerate 1 disk failure and not more Performance:

steady state throughput: (N - 1). S (seq read) (N - 1). S (seq. writes, full stripe writes) (N - 1).R (random read)

Writing to parity disk occurs with every write. So independent disks still create a bottleneck for each other. R/2

- Addresses small writes problem of RAID 4
- Rotates parity block across drives

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	P3	12	13	14
P4	16	17	18	19

Figure 38.7: RAID-5 With Rotated Parity

RAID Capacity, Reliability, Performance

- N disks, B blocks
- Sequential workload (S MB/s)
- Random workload (R MB/s)

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	$N \cdot B$	$(N \cdot B)/2$	$(N-1)\cdot B$	$(N-1)\cdot B$
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Random Read	$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			-	•
Read	T	T	T	T
Write	T	T	2T	2T

Figure 38.8: RAID Capacity, Reliability, and Performance

Summary

- RAID transforms a number of independent disks into a large, more capacious, and more reliable single entity
 - Hardware and software are relatively oblivious to the change.
- There are many possible RAID levels
 - The exact RAID level to use depends heavily on what is important to the end-user.
 - Mirrored RAID is simple, reliable, and generally provides good performance but at a high capacity cost
 - RAID-5, in contrast, is reliable and better from a capacity standpoint, but performs quite poorly when there are small writes in the workload.
- Picking a RAID and setting its parameters (chunk size, number of disks, etc.) properly for a particular workload is challenging