Fiche résumé mécanique

2. Changement de référentiel

Référentiel

Un référentiel est défini par (horloge sous-entendue) :

- trois axes formant un trièdre orthogonal et fixes les uns par rapport aux autres,
- un point fixe par rapport au trièdre (appelé origine),

Décomposition du mouvement de \mathcal{R}' par rapport à \mathcal{R} :

Mouvement	Description	Grandeur			
Translation	Déplacement de O' dans $\mathcal R$	$\vec{v}(O')_{\mathcal{R}}$			
Rotation	Changement d'orientation des axes de \mathcal{R}' dans \mathcal{R}	$ec{\Omega}$			
$\vec{\Omega} = \vec{0}$: translation pure					
$\vec{v}(O')_{\mathcal{R}} = \vec{0}$ et $\vec{\Omega} = \vec{\text{cst}}$: rotation pure uniforme					

Lois de composition

$$\begin{split} \vec{v}(M)_{\mathcal{R}} &= \vec{v}(M)_{\mathcal{R}'} + \vec{v}_e \\ \vec{a}(M)_{\mathcal{R}} &= \vec{a}(M)_{\mathcal{R}'} + \vec{a}_e + \vec{a}_c \end{split}$$

Accélération de Coriolis : $\vec{a}_c = 2\vec{\Omega} \wedge \vec{v}(M)_{\mathcal{R}'}$

Vitesse et accélération d'entraînement :

	$ec{v}_e$	\vec{a}_e	Remarques
Translation pure	$\vec{v}(O')_{\mathcal{R}}$	$\vec{a}(O')_{\mathcal{R}}$	
Rotation pure uniforme	$\vec{\Omega} \wedge \overrightarrow{O'M}$	$-\omega^2 \overrightarrow{HM}$	H projeté de M sur l'axe, $\omega = \ \vec{\Omega}\ $