Lecture 1,2,3 - Introduction, Diophantine Equations, Divisibility, GCD

• Finding all integer solutions x , y such that for integers a, b, c, we have ax+by=c

1. Definitions

- **Divisibility**: a, b are integers. We say "a divides b" or "b is a multiple of a" if b=ka for an integer k. We write a|b in that case and $a\nmid b$ otherwise.
 - o Let a be any natural number. Then, we have
 - $a \mid 0$
 - $\blacksquare a \mid a$
 - $a \mid -a$
 - 1 | a
 - o Similarly, we have
 - lacksquare $a \mid b \wedge b \mid c
 ightarrow a \mid c$
 - \bullet $a \mid b \land c \mid d \Leftrightarrow ac \mid bd$
 - lacksquare Let m
 eq 0. $a \mid b \Leftrightarrow ma \mid mb$
 - $lacksquare x \mid a \wedge x \mid b
 ightarrow x \mid ma + nb$
 - $lacksquare a \mid b \wedge b \mid a
 ightarrow a = \pm b$
 - $lacksquare a\mid b
 ightarrow |a|<=|b|$ unless b=0
- Division Algorithm: Given $a,b\in Z$ with a>0, $\exists q,r\in Z$ such that b=aq+r, 0<=r< a
 - We can partition the integers into several classes using Division Algorithms
 - ullet even: 2k, odd: 2k+1
 - 3k, 3k + 1, 3k + 2
 - -4k, 4k+1, 4k+2, 4k+3
 - -2k, 4k+1, 4k+3
- GCD and LCM
 - $\circ \ c$ is a common divisor of a and b if $c \mid a$ and $c \mid b$.
 - $\circ d$ is a common multiple of a and b if $a \mid d$ and $b \mid d$.
 - $\circ \ gcd(a,b) = (a,b)$
 - eg. (10, 12) = 2
 - $oldsymbol{lcm} lcm(a,b) = [a,b]$
 - \bullet eg. [10, 12] = 60
 - $lacksquare [a,b] = rac{ab}{(a,b)}$
 - \circ (a, b, c) = ((a, b), c)

$$\circ$$
 $(ma, mb) = m(a, b)$

$$\circ \ (a,b)=1
ightarrow [a,b]=|a,b|$$
 if $a,b
eq 0$

2. Theorems on GCD

- ullet There are integers x, y such that ax+by=(a,b)
- a = kb + r then (a, b) = (b, r)
- ax + by = c has solution if and only if $(a, b) \mid c$
- GCD is the smallest positive integer that can be written as ax+by.
- $c \mid a$ and $c \mid b \Leftrightarrow c \mid (a,b)$
- · Common divisors are divisors of greatest common divisor
- We say a and b are relativly prime if (a,b)=1

Lecture 3,4,5,6 - Euclidean Algorithm, Primes

1. Step by Step - Solve Diophantine Equations

Back to the equation ax + by = c.

Step 1 - Find gcd(a,b)

• Use Euclid's algorithm, find x_0 and y_0 such that $ax_0 + by_0 = (a,b)$.

Step 2 - If divisible, then

- Check whether $gcd(a,b) \mid c$.
- If not divisible, then there is no solution to the dioiphantine equation. If divisible, proceed to step3.

Step 3 - Find general solution

- From step 1, we have $ax_0 + by_0 = (a, b)$.
- ullet if k(a,b)=c, thus we have $k(ax_0+by_0)=k(a,b)=c$
- Thus, one solution is $x=kx_0, y=ky_0$
- General solutions:

$$\circ \ x = x_0 + m \cdot rac{b}{(a,b)}$$

$$y = y_0 - m \cdot \frac{a}{(a,b)}$$

U Diophantine Equations Examples

Find all integers (x,y) such that

•
$$66x + 121y = 100$$

- \circ Sol: $(66,121)=11 \nmid 100 \rightarrow$ no solution
- 14x + 8y = 6
 - Use Euclidean algorithm to find GCD
 - \bullet 14 = 1 * 8 + 6
 - 8 = 1 * 6 + 2
 - 6 = 3 * 2 + 0
 - Thus, gcd(14,8)=2
 - Thus, exist x and y such that 14x+8y=2

$$2 = 8 - 1 \times 6 = 8 - 6 = 8 - (14 - 8) = 2 \times 8 - 14$$

- \blacksquare Thus, 14*-1+8*2=2
- Thus, 3*(14*-1+8*2)=6
- \blacksquare Thus, (-3*14+6*8)=6
- Thus, one solution is $x_0 = -3$, $y_0 = 6$
- \circ Thus, $x=-3+mrac{8}{2}=4m-3, y=6-mrac{14}{2}=6-7m$

2. Prime and Divisibility

- p>=2 is called prime if 1 and p are its only positive divisors
- n>=2 is called composite if it is not prime.
 - \circ it has a divisor $a \mid n$ such that 1 < a < n
 - $\circ \ \ n = ab \ \text{with} \ 1 < a,b < n$
- p prime. n integer. Then, (n, p) = 1 or p.
- $p \mid ab \rightarrow p \mid a \lor p \mid b$

3. Fundamental Theorem of Arithmetic

- ullet Every n>=2 has a prime factorization $n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}$ where p_i are distinct primes and a_i are positive integers. This factoriztion is unique up to re-ordering.
- Similarly, we have

$$\circ \ \ ab = p_1^{a_1+b_1}p_2^{a_2+b_2}...p_k^{a_k+b_k}$$

$$\circ \ rac{a}{b} = p_1^{a_1-b_1}p_2^{a_2-b_2}...p_k^{a_k-b_k}$$

$$\circ \ a^m = p_1^{ma_1} p_2^{ma_2} ... p_k^{ma_k}$$

$$\circ \ qcd(a,b) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} ... p_k^{min(a_k,b_k)}$$

$$egin{align*} \circ & ab = p_1^{a_1+b_1}p_2^{a_2+b_2}...p_k^{a_k+b_k} \ \circ & rac{a}{b} = p_1^{a_1-b_1}p_2^{a_2-b_2}...p_k^{a_k-b_k} \ \circ & a^m = p_1^{ma_1}p_2^{ma_2}...p_k^{ma_k} \ \circ & gcd(a,b) = p_1^{min(a_1,b_1)}p_2^{min(a_2,b_2)}...p_k^{min(a_k,b_k)} \ \circ & lcm(a,b) = p_1^{max(a_1,b_1)}p_2^{max(a_2,b_2)}...p_k^{max(a_k,b_k)} \end{array}$$

- if $a_1 <= b_1, a_2 <= b_2, ..., a_k <= b_k$, then a divide b.
- gcd(a,b)*lcm(a,b)

$$egin{aligned} gca(a,b)*lcm(a,b) \ &= p_1^{min(a_1,b_1)}p_2^{min(a_2,b_2)}...p_k^{min(a_k,b_k)}*p_1^{max(a_1,b_1)}p_2^{max(a_2,b_2)}...p_k^{max(a_k,b_k)} \ &= p_1^{min(a_1,b_1)+max(a_1,b_1)}p_2^{min(a_2,b_2)+max(a_2,b_2)}...p_k^{min(a_k,b_k)+max(a_k,b_k)} \ &= p_1^{min(a_1,b_1)+max(a_1,b_1)}p_2^{min(a_2,b_2)+max(a_2,b_2)}...p_k^{min(a_k,b_k)+max(a_k,b_k)} \end{aligned}$$

$$= n_1^{1} min(a_1,b_1) + max(a_1,b_1) min(a_2,b_2) + max(a_2,b_2) min(a_k,b_k) + max(a_k,b_k) = n_1^{1} min(a_k,b_k) + max(a_k,b_k) + max(a$$

4. Rational Number

- **Definition**: If n is a rational number, then it can be written in the form of $\frac{a}{b}$ where a and b are integers.
- $\sqrt{2}$ is not a rational number
 - Proof:

Assume $\sqrt{2}$ is a rational number.

Then,
$$\sqrt{2} = \frac{a}{b}$$
.

Thus,
$$a = \sqrt{2} \cdot b$$
.

Thus,
$$a^2=2b^2$$

As per Fundamental Theorem of Arithmetic $a=2^{a_1}...$ and $b=2^{b_1}...$

Then, we have
$$2^{2a_1}=2^{2b_1+1}$$

Thus,
$$2a_1 = 2b_1 + 1$$
.

Reach contradiction.

- Fully Divisibility
 - We say that p^e fully divides a (i.e. $p^e||a$) if $p^e|a$ and $p^{e+1} \nmid a$. That is, p^e is the highest power of p contained in a.

$$\circ \ (p^x||a) \wedge (p^y||b)
ightarrow (p^{x+y}||ab) \wedge (p^{x-y}||rac{a}{b})$$

$$\circ \ (p^x || a) \wedge (p^y || b) \wedge (x < y)
ightarrow p^x || a + b$$

5. Square

- ullet (a,b)=1 and ab is a square o a and b are both square
- n(n+1) is never a square

6. Dirchlet's Theorem

There are infinitely many primes of the form ak + b if and only if (a, b) = 1.

- Infinitely many primes (4k+3)
 - \circ Suppose $p_1=3, p_2=7, p_3, ...p_n$ are all the primes of the form 4k+3.
 - $or m = 4p_1p_2p_3...p_n 1$, which is of the form 4k+3
 - $\circ~$ m has a prime divisor of the form 4k+3 $\,$
 - \circ Let $p_i \mid m$
 - \circ Then, $p_i \mid 4p_1p_2..p_n
 ightarrow p_i \mid 1$
 - Thus, reach contradiction.

7. Check Primeness

• If n is composite, then it must have a prime divisor $p <= \sqrt{n}$.

• Divisibility by 2

$$n=a_0+a_1\cdot 10+a_2\cdot 10^2+...+a_k\cdot 10^k$$

Thus, $2|n\leftrightarrow 2|a_0$

Divisibility by 4

Notice that 4/100,1000,...Thus, $4|n \leftrightarrow 4|a_0+10a_1$

• Divisibility by 5 : $5|a_0|$

• Divisibility by 3

$$n = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + ... + a_k \cdot 10^k = a_0 + a_1 + ... + a_k + 9a_1 + 99a_2 + ... + (10^k - 1)a_k$$

Thus, $3|n\leftrightarrow 2|a_0+a_1+a_2+...+a_k$

Divisibility by 11

$$n=a_0-a_1+a_2-...+(-1)^ka_k+(11a_1)+(10^2-1)a_2+...+(10^k-(-1)^k)a_k$$
 Thus, $11|n\leftrightarrow 11|a_0-a_1+a_2-...+(-1)^ka_k$

8. Factoring

•
$$x^a - 1 = (x - 1)(x^{a-1} + x^{a-2} + x^{a-3} + \dots + x + 1)$$

•
$$x^{2a+1} + 1 = (x+1)(x^{2a} - x^{2a-1} + x^{2a-2} - ... - x + 1)$$

9. Consider $p=2^m+1$

m is not odd

$$p = 2^m + 1 = (2+1)(x^{m-1} - x^{m-2} + \dots - x + 1) \rightarrow p$$
 is divisible by $3 \rightarrow p$ is not prime.

- ullet m is not divisible by any odd number except 1
 - \circ Assume m can be divided by a odd number 2a+1.
 - \circ Then, we have m=(2a+1)k
 - \circ This means that $2^m+1=2^{(2a+1)k}+1=2^{k(2a+1)}=(2^k+1)(2^{2ak}...)$
- ullet if 2^m+1 is prime, then $m=2^n$ for some n.

9. Consider $p=2^m-1$

• m must be a prime, otherwise m=ab with 1< a,b< m and $2^m-1=2^{ab}-1$ is divisible by 2^b-1 , cannot be prime.

Lecture 6,7 - Modular Arithmetic

Definitions

- ullet Fermat Numbers: $F_n=2^{2^n}+1$
- Mersenne Numbers: $M_p=2^p-1$

Congruence Class

Integers are partitioned into n sets (congruence classes)

- $\mathbf{Z_n} = \{[0]_n, [1]_n, ..., [n-1]_n\}$
- $[a]_n = [b]_n \leftrightarrow n \mid a-b$. (i.e. $a \equiv b \pmod n$))
- $[a]_n + [b]_n = [a+b]_n$
- $[a]_n \cdot [b]_n = [ab]_n$

Theorems

- If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then
 - $\circ \ a+b \equiv c+d \ (\mathsf{mod} \ n)$
 - $\circ ab \equiv cd \pmod{n}$
 - $\circ \ a^k \equiv c^k \ (\mathsf{mod} \ n) \ \mathsf{where} \ k \in N$
- · Also, we have
 - $\circ x \equiv x \pmod{n}$
 - $\circ \ x \equiv y \pmod{n} \rightarrow y \equiv x \pmod{n}$
 - $\circ \ x \equiv y \ (\mathsf{mod} \ n) \ \mathsf{and} \ y \equiv z \ (\mathsf{mod} \ n) o x \equiv z \ (\mathsf{mod} \ n)$
 - $\circ \ a \equiv 0 \ ({
 m mod} \ n)$ means a is divisible by n
- ullet Let p(x) be a polynomial with integer coefficients, then $a\equiv b\ ({
 m mod}\ n) o p(a)\equiv p(b)\ ({
 m mod}\ n)$
- ullet Suppose $d\geqslant 1$ and $d\mid m$, then $a\equiv b\ ({\sf mod}\ m) o a\equiv b\ ({\sf mod}\ d)$
- ullet Suppose c>0, then $a\equiv b\ ({
 m mod}\ m) o ac\equiv bc\ ({
 m mod}\ mc)$
- $ax \equiv ay \ (\operatorname{mod} \ m) o x \equiv y \ (\operatorname{mod} \ rac{m}{(m,a)})$

Step by Step - Solve $ax \equiv b \pmod{m}$

Step 1

Check whether $\gcd(a,m)$ divides b. If not, then there is no solution. Elsewise, proceed to step 2.

- Step 2
- Find x_0 and then $x=x_0+t\frac{m}{(a,m)}$.
- We can find x_0 using Euclid's algorithm
 - $ullet \ ax \equiv b \ (\mathrm{mod} \ \mathrm{m}) o ax \equiv mk + b \ (\mathrm{mod} \ \mathrm{m}) o ax mk = b$
- That is, the set of all solutions : $\{x \in Z : x \equiv x_0(\mathrm{mod} rac{m}{(a,m)})\}$

Examples

• Find remainder of $113 \cdot 114$ after dividing by 120

$$113 \equiv 7 \pmod{120}$$

$$114 \equiv 6 \pmod{120}$$

$$\rightarrow 113 \cdot 114 \equiv 7 \cdot 6 \equiv 42 \pmod{120}$$

ullet Find remainder of 5^{16} after dividing by 17

$$5^2=25\equiv 8\ ({
m mod}\ 17)$$
 $5^4\equiv 8^2\equiv 64\equiv -4\ ({
m mod}\ 17)$ $5^8\equiv (-4)^2\equiv 16\equiv -1({
m mod}\ 17)$ $5^{16}\equiv (-1)^2\equiv 1\ ({
m mod}\ 17)$

- Prove that n^3 is of the form 7k or 7k+1 or 7k+6
 - \circ That is, we want to show that $n^3 \equiv 0, 1, 6 \pmod{7}$
 - $\circ \ \ n$ can be either of form 7a, 7a+1, 7a+2, 7a+3, 7a+4, 7a+5, 7a+6
 - $(7a)^3 \equiv 0^3 \equiv 0 \pmod{7}$
 - $(7a+1)^3 \equiv 1^3 \equiv 1 \pmod{7}$
 - $(7a+2)^3 \equiv 2^3 \equiv 8 \equiv 1 \pmod{7}$
 - $(7a+3)^3 \equiv 3^3 \equiv 27 \equiv 6 \pmod{7}$
 - $(7a+4)^3 \equiv 4^3 \equiv (2^3)^2 \equiv 1 \pmod{7}$
 - $(7a+5)^3 \equiv 5^3 \equiv (-2)^3 \equiv -8 \equiv 6 \pmod{7}$
 - $(7a+6)^3 \equiv 6^3 \equiv (-1)^3 \equiv 6 \pmod{7}$
- ullet Prove that $n\cdot (n+1)\cdot (n+2)$ is divisible by 6
 - $\circ \hspace{0.2cm} n$ can be either of form 6a, 6a+1, 6a+2, 6a+3, 6a+4, 6a+5
 - \circ Let $N = n \cdot (n+1) \cdot (n+2)$
 - Then, consider the six cases
 - $N \equiv_6 0 * 1 * 2 \equiv_6 0$
 - $N \equiv_6 1 * 2 * 3 \equiv_6 6 \equiv_6 0$
 - $N \equiv_6 2 * 3 * 4 \equiv_6 0$
 - $N \equiv_6 3 * 4 * 5 \equiv_6 0$
 - $N \equiv_6 4 * 5 * 6 \equiv_6 0$
 - $N \equiv_6 5*6*7 \equiv_6 0$
 - Thus N is divisible by 6 is proved
- Prove that $x^3 x + 1 = 42$ has no integer solution
 - $\circ \ p(x) = x^3 x + 1$ and $p(x) \equiv 42 \equiv 0$ (mod 3)
 - $\circ \ \, x \equiv 0,1,2 \ (\mathrm{mod}\ 3)$
 - \circ Thus, $p(x) \equiv p(0) \lor p(1) \lor p(2)$
 - $p(1) = 1^3 1 + 1 = 1 \equiv 1 \pmod{3}$

- $p(2) = 2^3 2 + 1 = 7 \equiv 1 \pmod{3}$
- $p(3) = 3^3 3 + 1 = 25 \equiv 1 \pmod{3}$
- Thus, no such integer solution.

• Which integers x satisfy $15x \equiv 30$ (mod 40)?

- o gcd(15, 40) = 5
- \circ Thus, $x\equiv 2(\mathrm{mod}\ rac{40}{5})$ i.e. $x\equiv 2(\mathrm{mod}\ 8)$
- \circ Thus, we have x-2=8t
- \circ That is, x=8t+2 where $t\in Z$

• Solve $3x \equiv 7 \pmod{11}$

- $\circ \ gcd(11,3) = 1 o$ there exists solution
- $\circ 11 = 3 * 3 + 2, 3 = 2 * 1 + 1, 2 = 1 * 2 + 0$
- $\circ 1 = 3 2 = 3 11 + 3 * 3 = 3 * 4 + 11 * 1$
- $\circ~$ Thus, solve the original linear congruence by multiplying 4. That is, we need to solve $12x\equiv28\equiv6~(\mathrm{mod}~11)$
- $\circ \ 2x \equiv 1$ (mod 11) as gcd(2,11)=1
 - Notice that 1 = 2 * 6 1
 - Thus, $2*6 \equiv 1 \pmod{11}$
- \circ Thus, $x_0=6$ is one of the solutions. As a result, we have the general solution : $x\equiv 6$ (mod 11) as gcd=1

• Solve $9x \equiv 6 \pmod{12}$

- o gcd(9,12)=3 which divides 6.
- $\circ~$ Thus, we have $3x\equiv 2$ (mod 4)
- $\circ~$ thus $x_0=2$ and x=2+4t
- \circ i.e. $x\equiv_4 2$

• Solve $66x \equiv 100 \pmod{121}$

- $\circ \ gcd(121,66) = 11$ which does not divide 100
- Thus, no solution

• Solve $14x \equiv 1 \pmod{45}$

- o gcd(14,45)=1
- Euclidean algorithm
 - **45** = 3*14 + 3
 - \blacksquare 14 = 4*3 + 2
 - **3** = 1*2+1

$$\circ 1 = 3 - 2 = 45 - 4 * 14 + 4 * (45 - 3 * 14) = 5 * 45 - 16 * 14$$

 $\circ x \equiv_{45} -16$

• Solve $30x \equiv 56 \pmod{71}$

- Euclediean algo
 - $\gcd(30,71)=1$

$$-71 = 2 \cdot 30 + 11$$

$$30 = 2 \cdot 11 + 8$$

■
$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

Thus,

■
$$1 = 3 - 1 \cdot 2$$

 $= 3 - 8 + 2 \cdot 3$
 $= 3 \cdot 3 - 8$
 $= 3 \cdot (11 - 8) - (30 - 2 \cdot 11)$
 $= 5 \cdot 11 - 3 \cdot 8 - 30$
 $= 5 \cdot 11 - 3 \cdot 8 - (2 \cdot 11 + 8)$
 $= 3 \cdot 11 - 4 \cdot 8$
 $= 3 \cdot (71 - 2 \cdot 30) - 4 \cdot (30 - 2 \cdot 11)$
 $= 3 \cdot 71 - 10 \cdot 30 + 8 \cdot 11$
 $= 3 \cdot 71 - 10 \cdot 30 + 8 \cdot (71 - 2 \cdot 30)$
 $= 11 \cdot 71 - 26 \cdot 30$

 \circ Thus, we have $-26 \cdot 30x \equiv_{71} 56 \cdot -26$

 \circ That is, $x \equiv_{71} 56 \cdot -26 \equiv_{71} 35$

Lecture 8,9 - Chinese Remainder Theorem

1.Theorem

 $x\equiv_{m_1}a, x\equiv_{m_2}a,..., x\equiv_{m_k}a$ is equivalent to $x\equiv_ma$ where $m=lcm[m_1,m_2,...,m_k]$

ullet for example, to prove that x is divisible by 120, we can show that x is divisible by all of 8,3 and 5

2. Chinese Remainder Theorem (pairwise coprime moduli)

 $x\equiv a_1\pmod{m_1}, x\equiv a_2\pmod{m_2},...,x\equiv a_k\pmod{m_k}$ with $(m_i,m_j)=1$ for all $i\neq j$ has a unique solution $x\equiv a\pmod{m_1m_2..m_k}$ in $Z_{m_1m_2..m_k}$ for some a.

3. Simultaneous non-linear congruences

- ullet Example: Consider the simultaneous congruences $x^2\equiv 1\ ({
 m mod}\ 3)$ and $x\equiv 2\ ({
 m mod}\ 4)$.
 - $\circ \ x^2 \equiv 1 \ ext{(mod 3)}$ is equivalent to $x \equiv 1 \ ext{(mod 3)}$ AND $x \equiv 2 \ ext{(mod 3)}$
 - Then, we need to consider the following two cases:
 - $lacksquare x \equiv 2 \ ({
 m mod} \ 4) \ {
 m AND} \ x \equiv 1 \ ({
 m mod} \ 3)$

- Then, solve this by CRT.
- $lacksquare x=4k+2\equiv 1\ ({
 m mod}\ 3)
 ightarrow 4k\equiv 2\ ({
 m mod}\ 3)$
- lacksquare Then, we have $2k\equiv 1$ (mod3)
- Then, $k = 2 + 3t \rightarrow x = 10 + 12t$
- lacksquare Thus, $x\equiv_{12}10\equiv_{12}-2$
- $x\equiv 2\ ({\sf mod}\ 4)\ {\sf AND}\ x\equiv 2\ ({\sf mod}\ 3)$
 - Then, solve this by CRT.
 - lacksquare Similarly, $x=4k+2\equiv 2\ ({
 m mod}\ 3)
 ightarrow 4k\equiv 0\ ({
 m mod}\ 3)$
 - lacksquare Then, we have $k\equiv 0$ (mod3)
 - lacksquare Then, k=3t
 ightarrow x=12t+2
 - lacksquare Thus, $x\equiv_{12}2$
- \circ Thus, the general solution should be $x\equiv\pm2$ (mod 12)
- Number of solutions to $x^2 \equiv 1$ (mod n) in Z_n
 - $\circ \,$ if $n\equiv 0$ (mod 8), then $N=2^{k+1}$ where k is the number of primes in prime factorization of n.
 - \circ if $n\equiv 2$ (mod 4), then $N=2^{k-1}$ where k is the number of primes in prime factorization of n.
 - $\circ\,$ elsewise, $N=2^k$

Examples

- Which integers x satisfy both $x \equiv 1 \pmod{5}$ and $x \equiv 5 \pmod{7}$
 - $x \equiv 1 \pmod{5} \rightarrow x \equiv_{35} 1, 6, 11, 16, 21, 26, \dots$
 - $\circ \ x \equiv 5 \ (\text{mod} \ 7) \rightarrow x \equiv_{35} 5, 12, 19, 26...$
- Solve $x\equiv_{15} 2$ and $x\equiv_{7} 3$
 - $x = 7k + 3 \equiv_{15} 2$
 - \circ 7 $k \equiv_{15} -1 \equiv_{15} 14$
 - \circ Thus, $k \equiv_{15} 2$ as gcd(7,15) = 1
 - \circ Thus, k=15l+2
 - \circ Thus, $x \equiv_{15} 7k + 3 \equiv_{15} 7(15l + 2) + 3 \equiv_{15} 105l + 17$
 - $\circ~$ Thus, we get $x \equiv_{105} 17$
- Check the isolated pdf on exercises on Chinese Remainder Theorem

Lecture 10 - Congruence Class, lagrange, Fermat Theorem

- 1. Linear Congruences : $ax \equiv b \pmod p$
 - If (p,a)=p i.e $p\mid a$, then we have -- solution x exists $\leftrightarrow b\equiv 0$ (mod p)

- If (p,a)=1, then there exist a unique solution x in $Z_{\frac{p}{(p,a)}}$ = Z_p
 - \circ In particular, a^{-1} always exist (mod p) unless $a \equiv 0$ (mod p)

2. Lagrange Theorem

 $f(x)=a_dx^d+a_{d-1}x^{d-1}+...+a_1x+a_0$ is a polynomial with integer coefficients such that $a_i\neq 0$ for at least one i. Then, $f(x)\equiv 0$ (mod p) has at most d solutions in Z_p

3. Lemma based on Lagrange

• If $f(x)=a_dx^d+a_{d-1}x^{d-1}+...+a_1x+a_0\equiv_p 0$ has more than d roots, then $a_i\equiv 0$ (mod p) for all i.

4. Fermat Theorem

For $a\not\equiv 0$ (mod p), then $a^{p-1}\equiv 1$ (mod p)

Examples

- $\bullet \ \ \textbf{Compute} \ 2^{1003} \ \ \textbf{(mod 11)}$
 - \circ By Fermat's Theorem, since 11 is prime, thus, $2^{10}\equiv 1$. Thus, $2^{1000}\cdot 8\equiv 1\cdot 8\equiv 8$ (mod 11)
- ullet Prove that $n^{25}-n$ is divisible by 30 for all ${f n}$
 - $\circ \hspace{0.1cm}$ show $n^{25}-n$ is divisible by 2
 - lacksquare By Fermat's theorem, $n\equiv 1\ ({
 m mod}\ 2)$
 - lacksquare Thus, $n^{25}-n\equiv 1-1\equiv 0\ ({
 m mod}\ 2)$
 - \circ show $n^{25}-n$ is divisible by 3
 - lacksquare By Fermat's theorem, $n\equiv 2\ ({
 m mod}\ 3)$
 - lacksquare Thus, $n^5\equiv 2^5\equiv 2$ (mod 3)
 - lacksquare Thus, $n^{25}\equiv 2^5\equiv 2\ ({
 m mod}\ 3)$
 - lacksquare Thus, $n^{25}-n\equiv 2-2\equiv 0\ ({
 m mod}\ 3)$
 - \circ show $n^{25}-n$ is divisible by 5
 - lacksquare By Fermat's theorem, $n\equiv 2^4\equiv 1\ ({
 m mod}\ 5)$
 - lacksquare Thus, $n^{25}-n\equiv 1-1\equiv 0\ ({
 m mod}\ 5)$
- Solve $x^{17}+6x^{14}+2x^5+1\equiv_5 0$
 - \circ By Fermat's Theorem, $x^4 \equiv_5 1$
 - \circ Thus, equivalent to $x+6x^2+2x+1\equiv_5 0$
 - \circ That is, $6x^2 + 3x + 1 \equiv_5 0$
 - \circ Thus, $x^2-2x+1\equiv_5 0$
 - \circ Thus, $(x-1)^2 \equiv_5 0$
 - \circ Thus, $x \equiv 1 \pmod{5}$

Lecture 11,12,13,14 - Wilson Theorem, Base a Test

1. Wilson Theorem

- $n \geq 2$ is a prime if and only if $(n-1)! \equiv -1 \pmod{\mathfrak{n}}$
- ullet p odd prime. $x^2+1\equiv 0$ (mod p) has a solution if and only if $p\equiv 1$ (mod 4)

2. Check Prime or Not

- Use Wilson Theorem (hard to compute)
 - $(n-1)! \not\equiv 1 \pmod{\mathsf{n}} \rightarrow \neg\mathsf{prime}(\mathsf{n})$
- Use Fermat's theorem
 - \circ if not $a^p \equiv a$ (mod p), then p is not prime
 - We call this the "base a test"
 - Composite numbers that can pass the "base 2 test" are all pseudoprimes
 - 341=11*31 is a pseudoprime
 - lacksquare Notice that $2^{10}\equiv 1$ (mod 11) and $2^{30}\equiv 1$ (mod 31)
 - ullet Thus, $2^{341}\equiv 2^{11\cdot 31}\equiv 2^{31}\equiv 2$ (mod 31)
 - There are infinitely many pseudoprimes as for any pseudoprime $n, 2^n 1$ is also a pseudoprime. (Textbook Theorem 4.7)

3. Carmichael Numbers

- Numbers that pass base a test for all a are called Carmichael numbers.
 - Example: 561 is a Carmichael number
 - ullet WTS: $a^{561}\equiv a\ ({
 m mod}\ 561)$
 - $561 = 3 \cdot 11 \cdot 17$
 - ullet By Fermat's Theorem, $a^2\equiv 1$ (mod 3), $a^{10}\equiv 1$ (mod 11), $a^{16}\equiv 1$ (mod 17)
 - Thus,
 - $a^{561} \equiv (a^2)^{280} \cdot a \equiv a \pmod{3}$
 - $a^{561} \equiv (a^{10})^{51} + a \equiv a \pmod{11}$
 - $a^{561} \equiv (a^{16})^{35} + a \equiv a \pmod{17}$
 - lacksquare Thus, by CRT, $a^{561} \equiv a \pmod{3*11*17} = 561$)
- Suppose $n=p_1p_2...p_k$ is a product of distinct primes such that $p_i-1\mid n-1$ for i=1,2,...,k, then n is a Carmichael number

4. Congruences modulo p^k

We now focus on $f(x) \equiv 0 \ (\mathrm{mod} \ p^k).$

We can solve $f(x)\equiv 0\pmod p$, using the solution we will find we can next solve $f(x)\equiv 0\pmod p^2$) and then $f(x)\equiv 0\pmod p^3$, ..., until mod p^k

• Example : $x^3-x^2-x+4\equiv 0$ (mod 27)

$$27 = 3^3$$

- $\circ~$ STEP 1: Solve $x^3-x^2-x+4\equiv 0$ (mod 3)
 - $x \equiv 1, 2 \pmod{3}$
 - Thus, x = 3k+1 or x=3k+2
- STEP 2: Plug in x raise to second power
 - Case #1: x = 3k+1
 - $-(3k+1)^3-(3k+1)^2-(3k+1)+4\equiv 0\ ({
 m mod}\ 9)$
 - 3 \equiv 0 (mod 9)
 - Thus, no solution
 - Case #2: x = 3k+2

$$-(3k+2)^3-(3k+2)^2-(3k+2)+4\equiv 0\ ({
m mod}\ 9)$$

- $-15k + 6 \equiv 0 \pmod{9}$
- $-5k+2\equiv 0\ (\mathrm{mod}\ 3)$
- $k+2 \equiv 0 \pmod{3}$
- $k \equiv -2 \pmod{3}$
- $k \equiv 1 \pmod{3}$
- lacksquare Thus, k=3l+1
- Thus, x = 3(3l+1) + 2 = 9l + 5
- STEP 3: Plug in x raise to third power
 - $(9l+5)^3 (9l+5)^2 (9l+5) + 4 \equiv 0 \pmod{27}$
 - $-99l + 99 \equiv 0 \pmod{27}$
 - $-11l + 11 \equiv 0 \pmod{3}$
 - $l+2 \equiv 0 \ (\mathrm{mod}\ 3)$
 - $l \equiv -2 \equiv 1 \pmod{3}$
 - x = 9l + 5 = 9(3m + 1) + 5 = 27m + 14
 - Thus, $x \equiv 14 \pmod{27}$

5. Hensel's Lemma

If $f(a) \equiv 0 \ ({
m mod} \ p^j)$ and $f'(a) \equiv 0 \ ({
m mod} \ {
m p}).$

- ullet Case 1: $rac{f(a)}{p^j}
 ot\equiv 0$ (mod p) o a cannot be lifted to mod p^{j+1}
- Case 2: $rac{f(a)}{p^j}\equiv 0$ (mod p) $o f(a+tp^j)\equiv 0$ (mod p) for all t=0,1,...,p-1, i.e. a can be lifted to p solutions in mod p^{j+1} .
- When $f'(a) \equiv 0 \pmod{p}$, either every lift is a solution or none of them is a solution.

If $f(a)\equiv 0$ (mod p^j) and $f'(a)\not\equiv 0$ (mod p), then there is a unique $0\le t\le p-1$ such that $f(a+tp^j)\equiv 0$ (mod p^{j+1})

Examples

- $x^3 x^2 + 4x + 1 \equiv 0$ (mod 125)
 - o 125 = 5³
 - Thus, lets try to solve $x^3 x^2 + 4x + 1 \equiv 0 \pmod{5}$.
 - Plug in 1 to 5, we get that x=1 or 4.
 - Case 1: x=1
 - $f'(x) = 3x^2 2x + 4$
 - $f'(1) = 3 2 + 4 = 5 \equiv 0 \pmod{5}$

 - Thus, no solution
 - Case 2: x=4
 - $f'(4) = 44 \equiv 4 \not\equiv 0 \pmod{5}$.
 - Thus, unique solution.
- $f(x) = x^2 + x + 7$; $f(x) \equiv 0$ (mod 27)
 - $\circ~27=3*3*3.$ Thus, try to solve $f(x)\equiv 0$ (mod 3)
 - $f(0) = 7 \equiv 1 \pmod{3}$
 - $f(1) = 2 + 7 = 9 \equiv 0 \pmod{3}$
 - $f(2) = 4 + 2 + 7 = 13 \equiv 1 \pmod{3}$
 - $\circ \ f'(x)=2x+1$ and $f'(1)=2+1=3\equiv 0$ (mod 3)
 - \circ Thus, in this case, a=1, p=3 and $f(a)\equiv 0$ (mod p^1) and $f'(a)\equiv 0$ (mod p). Thus, by Hensel's Lemma, it can be lifted to mod p^2 , i.e. $3^2=9$. Either every lift is a solution or none of them is a solution.
 - \circ Since $f(1) \equiv 9 \equiv 0$ (mod 9), we know that 1 is a solution. Thus, 1,4,7 are all solutions mod 9.
 - ullet $f(1)=9
 ot\equiv 0\ ({\sf mod}\ {\sf 27})
 ightarrow 1, 10, 19$ are not solutions in mod 27
 - ullet $f(4)=27\equiv 0$ (mod 27) ightarrow 4,4+9=13,4+2*9=22 are solutions in mod 27
 - $f(7)=63
 ot\equiv 0 \pmod{27}
 ightarrow 7, 16, 25$ are not solutions in mod 27
 - $\circ \ \ \mathsf{Thus}, \, x \equiv 4, 13, 22 \, (\mathsf{mod} \, \, \mathsf{27})$
- $f(x) = x^3 + 4x^2 + 19x + 1$; $f(x) \equiv 0 \pmod{25}$
 - $\circ 25 = 5^2$
 - \circ Try to solve $f(x) \equiv 0 \pmod{5}$
 - $f(0) = 1 \not\equiv_5 0$
 - $f(1) = 25 \equiv_5 0$
 - $f(2) = 63 \equiv_5 3 \not\equiv_5 0$
 - $f(3) = 121 \equiv_5 1 \not\equiv_5 0$
 - $f(4) = 205 \equiv_5 0$
 - lacksquare Thus, $x\equiv 1,4\ ({
 m mod}\ 5)$

$$f'(x) = 3x^2 + 8x + 19$$

- $f'(1) = 30 \equiv 0 \pmod{5}$
- $f'(4) = 99 \equiv 4 \pmod{5}$
- Thus, when x=4, there is a unique solution.
- Otherwise, when x=1, $\frac{f(1)}{5}=5$. This means that it can be lifted to mod 25. Either every lift is a solution or none of them is a solution.
- $\circ \ f(1) = 25 \equiv 0 ext{ (mod 25)}
 ightarrow 1, 6, 11, 16, 21$ are solutions in mod 25
- Thus, there are a total of 6 solutions in mod 25.

6. Unit Modulo n

We will say u is a unit modulo n if it has an inverse (or equivalently (u, n) = 1).

- Units of $Z_8: 1, 3, 5, 7$
- Units of Z_9 : 1, 2, 4, 5, 6, 7, 8
- Units of Z_{10} : 1, 3, 7, 9
- Units of Z_p : 1, 2, ..., p-1

Let u and v be units in Z_n . Then u^{-1} , v^{-1} , -u, -v, uv are also units in Z_n .

Lecture 15,16,17,18,19 - Euler's Function

 $\phi(n)= ext{number of units in }Z_n=|\{u:1\leq u\leq n-1\land (u,n)=1\}|$

- $\phi(8) = |\{1, 3, 5, 7\}| = 4$
- $\phi(9) = |\{1, 2, 4, 5, 7, 8\}| = 6$
- $\phi(10) = |\{1, 3, 7, 9\}| = 4$
- $\phi(p) = p 1$

1. Euler's Theorem

Suppose (a,n)=1, then we have $a^{\phi(n)} \equiv 1 \ ({\sf mod} \ {\sf n})$

- $\bullet \;\; \mathsf{Example} ; n=12$
 - $\circ \ (a,12)=1
 ightarrow (a,3)=1$ and (a,4)=1
 - $\circ \ (a,3)=1$ means that a mod 3 can be either 1 or 2
 - thus, a mod 3 = 1 or 2
 - That is,
 - $a \equiv 1 \pmod{3}$
 - $a \equiv 2 \pmod{3}$
 - $\circ \ (a,4)=1$ means that a mod 4 can be either 1 or 3

- thus, a mod 4 = 1 or 3
- That is,
 - $a \equiv 1 \pmod{4}$
 - $a \equiv 3 \pmod{4}$
- Thus, by CRT, we know there are four possibility of solutions
 - $a \equiv 1 \pmod{12}$
 - $a \equiv 5 \pmod{12}$
 - $a \equiv 7 \pmod{12}$
 - $a \equiv 11 \pmod{12}$
- \circ Thus, $\phi(12) = \phi(4)\phi(3) = 4$

2. Theorems

Let p be a prime number. Let $k \ge 1$.

- For (m,n)=1, we have $\phi(mn)=\phi(m)\cdot\phi(n)$
- $\phi(1) = 1$
- $ullet \ \phi(p_1^{lpha_1}p_2^{lpha_2}...p_k^{lpha_k}) = \phi(p_1^{lpha_1})\phi(p_2^{lpha_2})...\phi(p_k^{lpha_k})$
- $\phi(p^k) = p^k p^{k-1} = p^k (1 \frac{1}{p})$
- $ullet n=p_1^{lpha_1}p_2^{lpha_2}...p_k^{lpha_k}
 ightarrow \phi(n)=n\cdot \prod_{i=1}^k (1-rac{1}{p_i})$
- $\phi(p^2) = p(p-1)$

Examples

- $\phi(42) = \phi(2 \cdot 3 \cdot 7) = \phi(2)\phi(3)\phi(7) = 1 \cdot 2 \cdot 6 = 12$
- $\phi(48) = \phi(2^4 \cdot 3) = 48 \cdot \frac{1}{2} \cdot \frac{2}{3} = 16$
- $\phi(60) = \phi(2^2 \cdot 3 \cdot 5) = 60 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} = 16$
- ullet Lst two digits of 3^{2001}
 - $\circ~$ That is, we want to find $3^{2001}~\text{mod}~100$
 - $\phi(100) = 100 \cdot \frac{1}{2} \cdot \frac{4}{5} = 40$
 - $\circ~$ By Euler's Theorem, we have $a^{40}\equiv 1~({
 m mod}~100)$ as long as (a,100)=1 for any a.
 - $\circ~$ Since (3,40)=1, we have $(3^{40})^{50}\cdot 3\equiv 3$ (mod 100)
 - $\circ\;$ Thus, the last two digits are 03
- Show that $a^{12} \equiv 1 \pmod{42}$ for (a,42)=1
 - $\phi(42) = 42 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{6}{7} = 12$
 - o Thus, by Euler's Theorem, we have shown the asked relation.

3. Structure of the units of \mathbb{Z}_n

- ullet units of Z_3 : $\{1,2\}\equiv\{2,2^2\}$ (mod 3)
- units of Z_5 : $\{1, 2, 3, 4\} \equiv \{2, 2^2, 2^3, 2^4\}$ (mod 5)

Let p be any prime. There exists an integer such that $\{1,2,...,p-1\}\equiv\{g,g^2,g^3,...,g^{p-1}\}$ in Z_p . g satisfying this condition will be called a primitive root.

Theorem

A unit u is a primitive root mod p if and only if the smallest positive integer k satisfying $u^k\equiv 1$ (mod p) is k=p-1

Definition

Let u be a unit in Z_n . We call the smallest positive integer k satisfying $u^k \equiv 1 \pmod n$ the order of u modulo n, denoted by $ord_n(u)$

A primitive root modulo p is a unit of order p-1

Theorem

- ullet g is a primitive root modulo p and $k\geq 0$ is an integer. Then, $g^k\equiv 1\ (ext{mod p}) \leftrightarrow p-1 \mid k$
- Take a unit modulo p, it can be written g^a in Z_p for some $1 \leq a \leq p-1$. Then, $ord_p(g^a) = \frac{p-1}{\gcd(p-1,a)}$
- Order of a unit modulo p always divides p-1
- Let d be a positive divisor of p-1 then there are exactly $\phi(d)$ units modulo p of order d
- ullet There are $\phi(p-1)$ primitive roots modulo p
- $\sum_{d|p-1} \phi(d) = p-1$
- ullet $k\geq 0$ and $u^k\equiv 1$ (mod n) $\leftrightarrow ord_n(u)\mid k$. In particular, $ord_n(u)\mid \phi(n)$
- $ord_n(u^a) = \frac{ord_n(u)}{(ord_n(u),a)}$
- $\sum_{m|n} \phi(m) = n$

4. Primitive Roots Modulo n

WE say g is a primitive root modulo n if it generates all units of Z_n , i.e. $\{1 \le u \le n : (u,n) = 1\} = \{g, g^2, g^3, ..., g^{\phi(n)}\}$ (mod n)

- ullet g is a primitive root modulo n if and only if $ord_n(g)=\phi(n)$
- If g is a primitive root modulo n, then $g^k \equiv 1 \ (\mathsf{mod}\ \mathsf{n}) \leftrightarrow \phi(n) \mid k$
- $ord_n(g^a) = rac{\phi(n)}{gcd(\phi(n),a)}$
- Suppose Z_n has a primitive root and d is a positive divisor of $\phi(n)$. Then, there are exactly $\phi(d)$ units of order d. In particular, there will be $\phi(\phi(n))$ primitive roots in Z_n
- Which Z_n has primitive roots?
 - $\circ \,\,$ exactly when n=1,2,4 or $n=p^m$ where p is a odd prime, or $n=2\cdot p^m$
 - o Otherwise, no primitive roots

- Let n be odd. If g is a primitive root modulo n and g is odd, then g is also a primitive root modulo 2n.
- If n=ab with (a,b)=1, and a,b>2, then Z_n has no primitive root.
- ullet Let u be an odd integer and $e\geq 3$, then $u^{2^{e-2}}\equiv 1$ (mod 2^e)
 - \circ Hence, $ord_{2^e} \leq 2^{3-2} \leq 2^{e-1} \leq \phi(2^e)$
- $ord_{2^n}(5) \equiv 2^{n-2}$
- Units of Z_{2^n} can be generated by two units: 5 and -1.
 - \circ In other words, units of Z_{2^n} = $\{\pm 5^k: 1 \le k \le 2^{n-2}\}$

Lecture 20 - Cryptography

1. Caesar's Cipher

$$A \rightarrow B, B \rightarrow C, C \rightarrow D, ..., Y \rightarrow Z, Z \rightarrow A$$

2. Modular Exponentian Ciper

Two parties A and B want to exchange messages. Say x is the message that A wants to send B.

- 1. Choose prime number p, which is a public information that everyone knows.
- 2. They agree on a secret key e such that (e,p-1)=1 before starting to exchange messages. e is known by A and B only
- 3. A will compute $m \equiv x^e \pmod{\mathfrak{p}}$ and send the encoded message m to B
- 4. To decode the received message, B first finds the inverse of e modulo p-1, which is equivalent to x (mod p) by Fermat's Theorem.

$$\circ \ m^f \equiv (x^e)^f \equiv x^{ef} \equiv x^{k \cdot (p-1)+1} \equiv x^{k(p-1)} \cdot x \equiv x \ ext{(mod p)}$$

3. Diffie-Hellman Key Exchange

A and B want to agree on a key securely to use later.

- 1. They pick a large prime p and an integer $1 \leq g \leq p$. p and g are public information, everyone knows.
- 2. A chooses a secret integer a and B chooses a secret integer b.
 - o a is only known by A
 - o b is only known by B
- 3. A computers $a'\equiv g^a\pmod{\mathfrak{p}}$ and sends it to B. B computes $b'\equiv g^b\pmod{\mathfrak{p}}$ and sends it to A.
 - $\circ a'$ and b' are public information, everyone knows.
- 4. A and B compute $(a')^b \equiv (b')^a$ (mod p) using their secret integers, this will be their key

4. RSA Public Key

- 1. Pick two very large distinct primes p and q and an encryption key e such that (e, (p-1)(q-1))=1.
 - o pq and e are public information
 - The pair (pq,e) is called the public key.
- 2. Say someone wants to send us the message x securely. They will compute $m \equiv x^e \pmod{pq}$ and send the encoded message m to us.
- 3. To decode the received message, we first find the inverse of e modulo (p-1)(q-1), which is equivalent to x (mod pq) by Euler's theorem.
 - \circ f is the private key, where $fe\equiv 1\ ({
 m mod}\ (p+1)(p-1))$
 - \circ Thus, ef = k(p+1)(p-1) + 1
 - $\circ \ m^f \equiv x^{ef} \equiv x^{k(p+1)(p-1)+1} \equiv x^{\phi(pq)} \cdot x \equiv x \ (\mathsf{mod} \ \mathsf{pq})$

Examples

- Modular Exponentian Ciper
 - \circ Encode x=7 using e=26 and p=101 $x^e\equiv m\ ({
 m mod}\ {
 m p}) o 7^{26}\equiv (7^4)^6\cdot 7^2$ $7^4\equiv 78\ ({
 m mod}\ 101)$ $7^8\equiv 78^2\equiv 24\ ({
 m mod}\ 101)$ $7^{16}\equiv 24^2\equiv 71\ ({
 m mod}\ 101)$ $7^{20}\equiv 71\cdot 78\equiv 84\ ({
 m mod}\ 101)$ $7^{24}\equiv 84\cdot 78\equiv 88\ ({
 m mod}\ 101)$ $7^{26}\equiv 88\cdot 49\equiv 70\ ({
 m mod}\ 101)$

Thus, m=70

- o Decode m=13, with e=7 and p=101
 - lacksquare Find f such that $ef\equiv 1$ (mod p-1)
 - lacksquare That is, find f such that $7f\equiv 1\ ({
 m mod}\ 100)$
 - Now, use Euclidean Algorithm, to find f.
 - We have.
 - $100 = 14 \cdot 7 + 2$
 - $7 = 3 \cdot 2 + 1$
 - $2 = 2 \cdot 1 + 0$
 - lacksquare Thus, $1=7-3\cdot 2=7-3\cdot (100-14\cdot 7)=43\cdot 7-3\cdot 100$
 - Thus, f= 43
 - lacksquare Then, $x^{ef}\equiv x\equiv m^f\equiv 13^{43}\equiv 9\pmod{101}$
- Diffie-Hellman Key Exchange
 - $\circ g = 2, p = 101, a = 23, b = 73$
 - $ullet g^{ab}=g^{ba}\equiv 2^{23\cdot 73}\equiv (2^{100})^{16}\cdot 2^{79}\equiv 2^{79}\equiv 42$ (mod 101)

RSA Public Key

$$p = 73, q = 139, e = 119, m = 9247$$

- $lacksquare m = x^e \pmod{(pq)}$
- lacksquare We want to find f such that $fe\equiv 1\ ({
 m mod}\ (p-1)(q-1))$
 - $119f \equiv 1 \pmod{72 \cdot 138}$
 - ullet Thus, f=167 by Euclidena algorithm
- lacksquare Then, $m^f=x^{ef}\equiv x\equiv 9247^{167}\equiv 3$ (mod pq=10147)

Lecture 21,22,23 - Quadratic Residues

n is a positive integer and a is a unit in Z_n . Consider the congruence $x^2 \equiv a \pmod{n}$. If there is a solution, then a is called a quadratic residue (QR). Otherwise, it will be called a quadratic non-residue (QNR) modulo n.

- n = 4. units = 1 (QR),3 (QNR).
- n = 7. units = 1 (QR),2 (QR),3 (QNR),4 (QR),5 (QNR),6 (QNR).

Quadratic Residues modulo odd prime p

Legendre Symbol

$$(\frac{a}{p}) = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if a is a QR} \\ -1 & \text{if a is a QNR} \end{cases}$$

Let g be a primitive root of \mathbb{Z}_p , then we have

$$(\frac{g^k}{p}) = \begin{cases} 1 & \text{if k is a even} \\ -1 & \text{if k is a odd} \end{cases}$$

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & p \equiv 1,7 \pmod{8} \\ -1 & p \equiv 3,5 \pmod{8} \end{cases}$$

$$(\frac{3}{p}) = \left\{ egin{array}{ll} 1 & p \equiv 1, 11 \ (\bmod{\ 12}) \ -1 & p \equiv 5, 7 \ (\bmod{\ 12}) \ 0 & p \equiv 3 \ (\bmod{\ 12}) \end{array}
ight.$$

Number of Quadratic Residues

There are
$$\frac{p-1}{2}$$
 QR and $\frac{p-1}{2}$ QNR $p^{k-1}\cdot\frac{p-1}{2}$ QR and $p^{k-1}\cdot\frac{p-1}{2}$ QNR

Properties of Legendre Symbol

1.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$

2.
$$(\frac{1}{p}) = 1$$
, i.e. 1 is a QR

3. a is a unit.
$$\left(\frac{a^{-1}}{p}\right) = \left(\frac{a}{p}\right)$$

4. If a is a unit, then
$$(\frac{a^2}{p})=1$$

5. If a is a unit, then
$$(\frac{a^2b}{p})=(\frac{b}{p})$$

6. Euler's Criterion:
$$(\frac{a}{p}) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

$$\circ x^2 \equiv a^{p-1} \equiv 1 \pmod{p}$$

$$\circ$$
 Thus, $x \equiv \pm 1$ (mod p)

7.
$$\left(\frac{-1}{p}\right) \equiv \left(-1\right)^{\frac{p-1}{2}} \pmod{\mathsf{p}}$$

8. –1 is a quadratic residue modulo p if and only if $p\equiv 1\ (ext{mod4})$

QNR and primitive root

Every primitive root has to be a quadratic nonresidue.

Gauss' Lemma

Suppose a is a unit modulo p. Write each of $a,2a,...,\frac{p-1}{2}a$ between $-\frac{p-1}{2}$ and $\frac{p-1}{2}$ modulo p, and say there are n negative signs. Then, $(\frac{a}{p})=(-1)^n$. The product of the elements will be $(\frac{p-1}{2})!a^{\frac{p-1}{2}}\equiv (\frac{p-1}{2})!(-1)^n$ (mod p)

Related Theorems & Lemma

Consider $S=\{a,2a,3a,...,rac{p-1}{2}a\}$

•
$$p = 7, a = 3$$

$$S = \{3,6,9\} \equiv \{2,3,6\} \equiv \{-1,2,3\}$$

•
$$p = 12, a = 2$$

$$S = \{2,4,6,8,10,12\} \equiv \{-1,2,-3,4,-5,6\}$$

Law of Quadratic Reciprocity

- Suppose $p \neq q$ are odd primes, then $(rac{q}{p}) = (rac{p}{q})(-1)^{rac{p-1}{2}\cdotrac{q-1}{2}}$
- Suppose $p \neq q$ are odd primes. if p or q or both $\equiv 1 \pmod 4$, then we have $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$. Else if $p \equiv q \equiv 3 \pmod 4$, then $\left(\frac{q}{p}\right) = \left(-\frac{p}{q}\right)$

The case of 2^k

Let $k\geq 3$, then a is a QR modulo 2^k if and only $a\equiv 1$ (mod 8). Therefore, there are 2^{k-3} QR modulo 2^k and $3\cdot 2^{k-3}$ QNR modulo 2^k

The general case
$$n=p_1^{lpha_1}p_2^{lpha_2}...p_k^{lpha_k}$$

a is a QR modulo n if and only if a is a QR modulo each $p_i^{lpha_i}$

Exercises

• What are the quadratic residues modulo 17?

- \circ No need to check above $rac{p-1}{2}=8$ as $9\equiv -8$ (mod 17)
- $\circ \ 1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 9, \bar{4^2} \equiv 16, 5^2 \equiv 8, 6^2 \equiv 2, 7^2 \equiv 15, 8^2 \equiv 13$

• Is 7 a quadratic residue modulo 23?

- In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime.
- \circ Euler's criterion can be concisely reformulated using the Legendre symbol $(rac{a}{p})\equiv a^{rac{p-1}{2}}$ (mod p)
- $\circ \ 7^{11} \equiv 13 \cdot 7 \equiv -1 \ (\mathrm{mod} \ 17)$
- \circ So, $(rac{7}{23})\equiv 7^{rac{23-1}{2}}\equiv -1$
- o Thus, not a QR.

• Show: There are infinitely many primes of the form 4k+1

- Suppose there are finitely many primes $p_1, p_2, ..., p_k$ of the form 4k+1.
- \circ Let $m=(2p_1p_2...p_k)^2+1$
- $\circ~$ Clearly, m is of the form 4k+1
- \circ Since m is not one of $p_1,p_2,...,p_k$, it must be a composite number. That is, there must be a prime number p such that $p\mid m$. That is, $(2p_1p_2...p_k)^2+1\equiv 0$ (mod p)
- \circ Then, we have $(2p_1p_2...p_k)^2 \equiv -1$ (mod p)
- o Thus, -1 is a quadratic residue (QR)
- \circ That is, $\left(rac{-1}{p}
 ight)=1$
- $\circ \ \ \mathsf{Thus}, \, p \equiv 1 \, (\mathsf{mod} \, \mathsf{4})$
- \circ Thus, $p_1, p_2, ..., p_k \nmid m$, contradiction.
- Consider $\left(\frac{2^3 \cdot 17^2 \cdot 19 \cdot 23^3}{71}\right)$
 - $\circ = \left(\frac{2^2 \cdot 17^2 \cdot 23^3}{71}\right) \left(\frac{19}{71}\right) \left(\frac{2}{71}\right)$ $= \left(\frac{19}{71}\right) \left(\frac{23}{71}\right) \text{ as } 71 \text{ mod } 8 = 7$