

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

STUDIENARBEIT

über das dritte Studienjahr

im Studiengang Elektrotechnik, Nachrichten- und Kommunikationstechnik

> an der DHBW Ravensburg Campus Friedrichshafen

> > von

Sarah Brückner, Maximilian Stiefel und Hannes Bohnengel

15. Juli 2016

Bearbeitungszeitraum: Oktober - Dezember 2015

April - Juni 2016

Betreuer: Dipl.-Ing. (DH) Hardy Lau

Kurfassung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Abstract

Translation of "Kurzfassung" comes here...

Erklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2015.

Wir versichern hiermit, dass wir unsere Studienarbeit mit dem Thema:

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Friedrichshafen, den 1. Mai 2016	
Sarah Brückner	
	_
Maximilian Stiefel	
	_
Hannes Bohnengel	

Inhaltsverzeichnis

Formelgrößen und Einheiten
Abkürzungen
1 Einleitung
2 GPredict
2.1 Übersicht
2.2 Grafische Oberfläche
2.3 Inbetriebnahme unter Windows
2.4 Inbetriebnahme unter Linux
3 Zusammenfassung und Ausblick
Abbildungsverzeichnis
Tabellenverzeichnis
Literatur- und Quellenverzeichnis
A Datenblatt XYZ VI

Formelgrößen und Einheiten

Formelzeichen	Einheit	Abkürzung	Physikalische Größe
R	Ohm	Ω	Elektrischer Widerstand
U	Volt	V	Elektrische Spannung
P	Watt	W	Elektrische Leistung
f	Hertz	Hz	Frequenz
D	Bit	_	Daten
1	Meter	m	Länge
_	Dezibel	dB	Logarithmisches Maß (Pseudoeinheit)

Abkürzungen

GPL General Public License

1 Einleitung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Aliquam sed finibus sapien. Cras sapien purus, tempus vel lorem nec, egestas auctor urna. Morbi iaculis felis eget mi sollicitudin consectetur sit amet sit amet turpis. Donec malesuada risus sit amet erat euismod dignissim. Etiam faucibus eleifend est in molestie. Maecenas nec elit at purus vulputate tincidunt. Vivamus pulvinar viverra porttitor. Fusce aliquet tristique enim, eget sollicitudin ex tincidunt vel. Praesent turpis erat, consequat at finibus eget, ultrices vel neque. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque turpis nulla, suscipit at mauris quis, rhoncus pharetra ligula. Suspendisse leo lorem, imperdiet a vehicula at, porta eu mauris.

2 GPredict

2.1 Übersicht

GPredict ist eine freie Software zur Satellitenverfolgung und Orbitvorhersage und steht als Quellcode oder bereits fertig kompiliertes Programm für Windows, Mac OS und Linux zur Verfügung. Die Software ist in C geschrieben und unter der GNU General Public License (GPL) lizenziert, somit kann sie frei verändert und an die entsprechenden Nutzervoraussetzungen angepasst werden.

In Abbildung 2.1 ist das Prinzip eines Satellitenverfolgungsprogramms zu sehen (die blauen Blöcke stellen hierbei die Funktionalität des Programms dar). Zunächst wird an Hand der Keplerschen Bahnelemente und dem aktuellen Zeitpunkt die absolute Position des Satelliten berechnet. Daraufhin wird der Vektor, der von der Bodenstation zum Satelliten zeigt, bestimmt. Nun können Azimut und Elevation dieses Vektors für die Ansteuerung der Antenne verwendet werden.

Abbildung 2.1: Prinzip eines Satellitenverfolgungsprogramms [1]

Zur Berechnung der Satellitenposition wird auf den NORAD SGP4/SDP4 Algorithmus zurückgegriffen (siehe Abschnitt XXX). Um hierfür zu jedem Zeitpunkt die aktuellen Kepler-Elemente des zu verfolgenden Satelliten zu kennen, gibt es unter GPredict die Möglichkeit einer automatischen Aktualisierung über HTTP, FTP oder aus dem lokalen Verzeichnis.

Bei GPredict ist im Gegensatz zu anderen Satellitenverfolgungsprogrammen wie SatPC32 kein Limit an zu verfolgenden Satelliten und Bodenstationen gegeben. Durch die Verwendung von Modulen kann außerdem unkompliziert zwischen verschiedenen Konfigurationen gewechselt werden. Die Orbitvorhersage eines Satelliten lässt sich sowohl grafisch als auch tabellarisch darstellen, wobei durch die Einstellungen verschiedenster Parameter eine sehr individuelle Anzeige erreicht werden kann [2].

2.2 Grafische Oberfläche

Abbildung 2.2: Standardoberfläche von GPredict

Abbildung 2.2

- Radio Control
- Rotator Control
- Sky at a Glance
- Time Controller
- Modul-Einstellungen (Configure)
- Polar View
- Single Sat View (Pass Details)

- 2.3 Inbetriebnahme unter Windows
- 2.4 Inbetriebnahme unter Linux

3 Zusammenfassung und Ausblick

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et [3]. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Donec feugiat augue leo, a malesuada tortor laoreet eu. Praesent dictum tortor eu egestas sodales. Maecenas rhoncus pretium leo ut sodales. Praesent blandit sit amet ante posuere malesuada. Vestibulum egestas sit amet ex et placerat. In sed dapibus sem, placerat interdum mi. Sed eget eros ante. Duis varius molestie eleifend. Suspendisse eu aliquet velit. Nulla facilisi. Morbi eu sapien in odio viverra luctus.

Abbildungsverzeichnis

2.1	Prinzip eines Satellitenverfolgungsprogramms [1]	2
2.2	Standardoberfläche von GPredict	3
Alle	hier nicht eigens nachgewiesenen Abbildungen stammen von den Autoren.	

Tabellenverzeichnis

Literatur- und Quellenverzeichnis

- [1] GPredict User Manual. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/gpredict-user-manual-1.3.pdf/download (besucht am 01.05.2016).
- [2] Sourceforge.net: GPredict 1.3. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/ (besucht am 01.05.2016).
- [3] D. F.-J. Kauffels, Lokale Netze, Deutsch, 12. Aufl. Bonn: MITP-Verlag GmbH, 2000.

A Datenblatt XYZ