Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A21

Název úlohy: Studium rentgenových spekter

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0-3	
Teoretická část	0-2	
Výsledky a zpracování měření	0-9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 20	

Posuzoval: dne:

1 Pracovní úkoly

- 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter:
 - (a) Rentgenka s Cu anodou.
 - i. proměřte krátkovlnné oblasti spekter brzdného záření při napětích 15 kV/1 mA, 25 kV/0,8 mA, 30 kV/0,8 mA, 33 kV/0,8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu pro 15 kV v rozmezí $(10^{\circ}-15^{\circ})$ s krokem 0.2° a dobou expozice 8 s a pro ostatní napětí interval Braggova úhlu $(3^{\circ}-10^{\circ})$ s krokem 0.2° a dobou expozice 5 s;
 - ii. proměřte charakteristická spektra rentgenky při napětích 15 kV/1 mA a 33 kV/0,8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu $(15^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s;
 - iii. proměřte tvar spektra s Zr absorbérem. K měření používejte tyto parametry: clonu s Zr absorbérem tloušťky 0.05 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s;
 - iv. proměřte tvar spektra s Ni absorbérem. K měření používejte tyto parametry: clonu s Ni absorbérem tloušťky 0.01 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s.
 - (b) Rentgenka s Fe anodou
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s;
 - ii. proměřte tvar spektra s Zr absorbérem. K měření používejte tyto parametry: clonu s Zr absorbérem tloušťky 0.05 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 3 s.
 - (c) Rentgenka s Mo anodou.
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu $(3^{\circ} 35^{\circ})$, krok 0.1° a dobu expozice 3 s.
 - (d) Rentgenka s Cu anodou:
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA v intervalu Braggova úhlu ($42^{\circ} 51^{\circ}$). K měření používejte tyto parametry: clonu o průměru 2 mm, krok 0.1° a dobou expozice 2 s.
- 2. Interpretujte naměřené výsledky (pro mezirovinnou vzdálenost krystalu LiF používejte hodnotu d=201,4 pm):
 - (a) Krátkovlnná mez brzdného záření
 - i. Ze změřených mezních vlnových délek (respektive frekvencí) určete hodnotu Planckovy konstanty a oceňte přesnost měření
 - (b) Moseleyův zákon
 - i. Přesvědčte se, že naměřené úhlové frekvence spektrálních čar K a K pro různé prvky splňují Moseleyův zákon. Ze směrnice příslušné závislosti určete hodnotu Rydbergovy úhlové frekvence a využitím této hodnoty určete též průměrnou hodnotu stínící konstanty.
 - ii. Přesvědčte se, že i naměřené polohy absorpčních hran Zr a Ni splňují Moseleyův zákon.
 - iii. Všimněte si, že absorpční hrana Ni koinciduje se spektrální čarou K mědi; této skutečnosti se využívá v rentgenové difraktografii pro monochromatizaci charakteristického spektra mědi. Z provedeného měření určete filtrační efekt niklu pro čáru K .
 - (c) Úhlová disperze
 - i. Ze změřených spekter molybdenu určete velikost úhlové disperze pro různé řády difrakce.
- 2 Teoretická část
- 3 Výsledky měření
- 4 Diskuse
- 5 Závěr
- 6 Literatura