mk 31-07-23

In []: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [289]: a=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset.csv")
a

Out[289]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77
1	2	Ma l e	28	Doctor	6.2	6	60	8	Normal	125/80	75
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
3	4	Male	28	Sa l es Representative	5.9	4	30	8	Obese	140/90	85
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
369	370	Fema l e	59	Nurse	8.1	9	75	3	Overweight	140/95	68
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	68
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68
373	374	Fema l e	59	Nurse	8.1	9	75	3	Overweight	140/95	68

374 rows × 13 columns

```
In [290]: a=a.head(10)
a
```

Out[290]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	D S1
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10
3	4	Ma l e	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3
4	5	Ma l e	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3
5	6	Ma l e	28	Software Engineer	5.9	4	30	8	Obese	140/90	85	3
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/90	82	3
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8
8	9	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8
9	10	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8
4												•

In [291]: a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Person ID	10 non-null	int64
1	Gender	10 non-null	object
2	Age	10 non-null	int64
3	Occupation	10 non-null	object
4	Sleep Duration	10 non-null	float64
5	Quality of Sleep	10 non-null	int64
6	Physical Activity Level	10 non-null	int64
7	Stress Level	10 non-null	int64
8	BMI Category	10 non-null	object
9	Blood Pressure	10 non-null	object
10	Heart Rate	10 non-null	int64
11	Daily Steps	10 non-null	int64
12	Sleep Disorder	10 non-null	object
4+,,,,	oc. floot(1/1) int(1/7)	object/El	

dtypes: float64(1), int64(7), object(5)

memory usage: 1.1+ KB

```
In [292]: a.columns
```

In [293]: a.describe()

Out[293]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	10.00000	10.000000	10.000000	10.000000	10.000000	10.000000	10.00000	10.000000
mean	5.50000	28.300000	6.590000	5.700000	51.700000	7.100000	77.40000	6070.000000
std	3.02765	0.674949	0.846496	1.251666	19.465354	0.994429	6.41526	2989.630226
min	1.00000	27.000000	5.900000	4.000000	30.000000	6.000000	70.00000	3000.000000
25%	3.25000	28.000000	5.950000	4.500000	32.500000	6.000000	71.25000	3125.000000
50%	5.50000	28.000000	6.200000	6.000000	51.000000	7.500000	76.00000	6100.000000
75%	7.75000	29.000000	7.425000	6.750000	71.250000	8.000000	84.25000	8000.000000
max	10.00000	29.000000	7.800000	7.000000	75.000000	8.000000	85.00000	10000.000000

In [295]: sns.distplot(a['Daily Steps'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[295]: <AxesSubplot:xlabel='Daily Steps', ylabel='Density'>

In [296]: x1=a[['Sleep Duration', 'Quality of Sleep', 'Physical Activity Level', 'Stress Level']]

In [297]: | sns.heatmap(x1.corr())

Out[297]: <AxesSubplot:>

In [298]: x=a[['Sleep Duration','Quality of Sleep', 'Physical Activity Level', 'Stress Level']]
y=a['Daily Steps']

```
In [299]: | from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [300]:
          from sklearn.linear model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[300]: LinearRegression()
In [301]: print(lr.intercept_)
           -11153.042765840984
In [302]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[302]:
                                Co-efficient
                  Sleep Duration -1305.233622
                 Quality of Sleep
                                 16.353031
           Physical Activity Level
                                 245.295467
                    Stress Level
                                1803.705624
In [303]: | prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[303]: <matplotlib.collections.PathCollection at 0x190c40e81f0>
            3200
            3000
            2800
            2600
            2400
            2200
                 3000
                        3200
                               3400
                                      3600
                                             3800
                                                    4000
                                                           4200
In [304]:
          print(lr.score(x_test,y_test))
           -5.183056818542676
          from sklearn.linear_model import Ridge,Lasso
In [305]:
In [306]:
          rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[306]: Ridge(alpha=10)
```

```
In [307]: | rr.score(x_test,y_test)
Out[307]: -1.1412286635195228
In [308]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[308]: Lasso(alpha=10)
In [309]: la.score(x_test,y_test)
Out[309]: -20.459946593410077
In [310]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[310]: ElasticNet()
In [311]: print(en.coef_)
          [-680.12572035
                           11.56994357 183.6932392
                                                       941.03047253]
In [312]: |print(en.intercept_)
          -5649.6669855904165
In [313]: print(en.predict(x_test))
          [3632.28466316 3422.91199479 4069.90351322]
In [314]: en.score(x test,y test)
Out[314]: -0.1366219358816212
In [315]: from sklearn import metrics
In [316]: | print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 810.7815451094957
In [317]: | print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
          Mean Squared Error 1497673.7627136705
In [318]: print(" Root Mean Squared Error",np.sqrt(metrics.mean squared error(y test,prediction))
           Root Mean Squared Error 1223.7948205126831
```