A. 16
vecturs

d'erreur

penvint orrigis

	bits de message	001	010	011	100	101	110	111
1	0000000	1101001	1011010	0110011	0111100	1010101	1100110	0001111
2	1000000	0101001	0011010	1110011	1111100	0010101	0100110	1001111
3	0100000	1001001	1111010	0010011	0011100	1110101	1000110	0101111
v	0010000	1111001	1001010	0100011	0101100	1000101	1110110	0011111
6	0001000	1100001	1010010	0111011	0110100	1011101	1101110	0000111
6	0000100	1101101	1011110	0110111	0111000	1010001	1100010	0001011
プ	0000010	1101011	1011000	0110001	0111110	1010111	1100100	0001101
8	0000001	1101000	1011011	0110010	0111101	1010100	1100111	0001110
ž	1100000	0001001	0111010	1010011	1011100	0110101	0000110	1101111
0	1010000	0111001	0001010	1100011	1101100	0000101	0110110	1011111
1	0110000	1011001	1101010	0000011	0001100	1100101	1010110	0111111
1	1001000	0100001	0010010	1111011	1110100	0011101	0101110	1000111
3	0101000	1000001	1110010	0011011	0010100	1111101	1001110	0100111
4	0011000	1110001	1000010	0101011	0100100	1001101	1111110	0010111
5	1000100	0101101	0011110	1110111	1111000	0010001	0100010	1001011
6	1110000	0011001	0101010	1000011	1001100	0100101	0010110	1111111

tous les
vecteurs de
vecteurs de vecteurs de
vecteurs de vecteurs de
vecteurs de vecteurs de
vecteurs de vecteurs de vecteurs de
vecteurs de vecteurs de vecteurs de vecteurs de
vecteurs de vecteurs

messa	ige	001	010	011	100	101	110	111
00000	000	1101001	1011010	0110011	0111100	1010101	1100110	0001111
10000	000	0101001	0011010	1110011	1111100	0010101	0100110	1001111
0100	000	1001001	1111010	0010011	0011100	1110101	1000110	0101111
0010	000	1111001	1001010	0100011	0101100	1000101	1110110	0011111
0001	000	1100001	1010010	0111011	0110100	1011101	1101110	0000111
0000	100	1101101	1011110	0110111	0111000	1010001	1100010	0001011
00000	010	1101011	1011000	0110001	0111110	1010111	1100100	0001101
00000	001	1101000	1011011	0110010	0111101	1010100	1100111	0001110
11000	000	0001001	0111010	1010011	1011100	0110101	0000110	1101111
1010	000	0111001	0001010	1100011	1101100	0000101	0110110	1011111
0110	000	1011001	1101010	0000011	0001100	1100101	1010110	0111111
1001	000	0100001	0010010	1111011	1110100	0011101	0101110	1000111
01010	000	1000001	1110010	0011011	0010100	1111101	1001110	0100111
0011	000	1110001	1000010	0101011	0100100	1001101	1111110	0010111
1000	100	0101101	0011110	1110111	1111000	0010001	0100010	1001011
11100	000	0011001	0101010	1000011	1001100	0100101	0010110	1111111

c) Oul
on peut live
se buts travents
du buts travents

bits de message	001	010	011	100	101	110	111
0000000	1101001	1011010	0110011	0111100	1010101	1100110	0001111
1000000	0101001	0011010	1110011	1111100	0010101	0100110	1001111
0100000	1001001	1111010	0010011	0011100	1110101	1000110	0101111
0010000	1111001	1001010	0100011	0101100	1000101	1110110	0011111
0001000	1100001	1010010	0111011	0110100	1011101	1101110	0000111
0000100	1101101	1011110	0110111	0111000	1010001	1100010	0001011
0000010	1101011	1011000	0110001	0111110	1010111	1100100	0001101
0000001	1101000	1011011	0110010	0111101	1010100	1100111	0001110
1100000	0001001	0111010	1010011	1011100	0110101	0000110	1101111
1010000	0111001	0001010	1100011	1101100	0000101	0110110	1011111
0110000	1011001	1101010	0000011	0001100	1100101	1010110	0111111
1001000	0100001	0010010	1111011	1110100	0011101	0101110	1000111
0101000	1000001	1110010	0011011	0010100	1111101	1001110	0100111
0011000	1110001	1000010	0101011	0100100	1001101	1111110	0010111
1000100	0101101	0011110	1110111	1111000	0010001	0100010	1001011
1110000	0011001	0101010	1000011	1001100	0100101	0010110	1111111

ϵ	h -217c	bits de							
)	1 = 3 bus	message	001	010	011	100	101	110	111
	γ $($								
	N= / buts	0000000	1101001	1011010	0110011	0111100	1010101	1100110	0001111

taux = 3/7

En cherchant le vecteur reçu dans le tableau standard, nous pouvons lire le mot de code correct dans la première rangé de la colonne avec le vecteur reçu. Par exemple, la séquence 0011011 n'est pas un mot de code donc il y avait une erreur de transmission. En cherchant 0011011 dans la table nous trouvons que le mot de code valide était 011011, c.-à-d., que le troisième bit a été inversé.

								ha 4/5
bits de message	001	010	011	100	101	110	111	l hots de code n'incluent pas
		0,10	511	- 100	101	110		four
0000000	1101001	1011010	0110011	0111100	1010101	1100110	0001111	2 · 1 · M / /
1000000	0101001	0011010	1110011	1111100	0010101	0100110	1001111	1 Charchille
0100000	1001001	1111010	0010011	0011100	1110101	1000110	0101111	IN OVER
0010000	1111001	1001010	0100011	0101100	1000101	1110110	0011111	
0001000	1100001	1010010	0111011	0110100	1011101	1101110	0000111	donc un areur
0000100	1101101	1011110	0110111	0111000	1010001	1100010	0001011	
0000010	1101011	1011000	0110001	0111110	1010111	1100100	0001101	, WM
0000001	1101000	1011011	0110010	0111101	1010100	1100111	0001110	Jour
1100000	0001001	0111010	1010011	1011100	0110101	0000110	1101111	
1010000	0111001	0001010	1100011	1101100	0000101	0110110	1011111	cherche dans le toubl
0110000	1011001	1101010	0000011	0001100	1100101	1010110	0111111	and la tout
1001000	0100001	0010010	1111011	1110100	0011101	0101110	1000111	Christian Co.
0101000	1000001	1110010	0011011	0010100	1111101	1001110	0100111	
0011000	1110001	1000010	0101011	0100100	1001101	1111110	0010111	
1000100	0101101	0011110	1110111	1111000	0010001	0100010	1001011	
1110000	0011001	0101010	1000011	1001100	0100101	0010110	11111111	
				N.				

message: 011

le bon message est en tite de la colonne avec le vecteur Pegu 4)

bits de message	001	010	011	100	101	110	111
0000000	1101001	1011010	D	0111100	4040404	1100110	0001111
				4		_	
1000000	0101001		1110011	1111100	0010101	0100110	1001111
0100000	1001001	1111010	0010011	0011100	1110101	1000110	0101111
0010000	1111001	1001010	0100011	0101100	1000101	1110110	0011111
0001000	1100001	1010010	0111011	0110100	1011101	1101110	0000111
0000100	1101101	1011110	0110111	0111000	1010001	1100010	0001011
0000010	1101011	1011000	0110001	0111110	1010111	1100100	0001101
0000001	1101000	1011011	0110010	0111101	1010100	1100111	0001110
1100000	0001001	0111010	1010011	1011100	0110101	0000110	1101111
1010000	0111001	0001010	1100011	1101100	0000101	0110110	1011111
0110000	1011001	1101010	0000011	0001100	1100101	1010110	0111111
1001000	0100001	0010010	1111011	1110100	0011101	0101110	1000111
0101000	1000001	1110010	0011011	0010100	1111101	1001110	0100111
0011000	1110001	1000010	0101011	0100100	1001101	1111110	0010111
1000100	0101101	0011110	1110111	1111000	0010001	0100010	1001011
1110000	0011001	0101010	1000011	1001100	0100101	0010110	1111111

messag: 011

La distance n'est pas nulle, donc il y a eu des erreurs. La distance est 2, donc deux erreurs.

$$\frac{1.4^{2}}{0.4} = \frac{16^{2}}{10} + \frac{128}{10} + \frac{16^{2}}{10} = \frac{16^{2}}{5} + \frac{64}{5}$$

$$= 64 \cdot \left[\frac{4}{5} + \frac{1}{5}\right] = 64$$

$$d=11$$

$$dvat^{2} \qquad dvat^{2} \qquad dvat^{2}$$

$$=0 \qquad = 16^{2} \cdot 2 \qquad = 0$$

$$dist^{2} = 0 + \frac{16^{7}}{5} + 0 = \frac{16^{7}}{5}$$
$$= \frac{256}{5} = 51.2$$

Prob 4

April 22, 2014 3:21 PM

Nous limitons l'expansion en largeur de bande à 50% pour le code correcteur d'erreur.

largur de bande initial =
$$\times$$

11 " " après codage = $\times + \frac{\times}{2} = \frac{3}{2} \times$

taux de clothe = $\frac{\times}{3} = \frac{2}{3}$

Temps de garde

- Codage moyenne (2/3 ou 3/4)
 - » Temps de garde = 4 fois délai

Nous limitons la perte en SNR à 1 dB pour l'exploitation d'un temps de garde.

$$SNR_{perre} = 10\log_{10} \frac{\text{temps util}}{\text{temps totale}} = 10\log_{10} \frac{\text{temps util}}{\text{temps d'un symbole}} = \frac{7}{6} \frac{10\log_{10} \frac{1}{4}}{10\log_{10} \frac{4}{5}} = 10\log_{10} \frac{1}{10\log_{10} \frac{4}{5}} = 10\log_{10} \frac{4}{5} = 1\log_{10} \frac{4}{5} =$$

Nombre de porteuses

Largeur de bande totale

de porteuses temps d'un symbole-temps de garde

· Larguer de bande d'un « sous canal »

Carl binguil

taux sans codage = # bits sans codage dans un "symbole" OFDM temps util+temps de garde

326M1 => 5 bits # bits sans codage s un "symbole" OFDM = # de porteuses × 1 symbole codé porteuse × # bits codés # symboles codés # bits codés # bits codés dans un "symbole" ÕFDM

> codage modulation $10080 \times 1 \times 5 \times \frac{2}{3}$

tout binain = $\frac{266.7 \text{ bits}}{200 \text{ npec}} = \frac{1333.33}{1000 \text{ npec}} = \frac{1.33}{1000 \text{ npec}} = \frac{1.33}{10000 \text{ npec}} = \frac{1.33}{1000 \text{ npec}} = \frac{1.33}{10000 \text{ npec}} = \frac{1.33}{10000 \text{ npec}} = \frac{1.33}{10000 \text{ npec}} = \frac{1.33}{100000$

Bande de garde = 10% - 500 = 50kHz =

=) 450 ktg disposible -) 450 = 75 porteuses 100 - 10% 100 = 90 (80 - 10% 80 = 72)

2 pour tonalités => 70 pour les données

11/ -. 1/7 1/1/

$$\frac{70\times5\times3}{200\text{n sec}} = \frac{14}{4.3} = \frac{14}{12} = \frac{7}{6} = 1.167 \text{ Mb/s}$$

$$\frac{88\times5\times2}{240} = 1.27 \text{ mb/s}$$

3:49 PM April 22, 2014

Band-pass Received filter Mth-power tuned to filter signal Mf_c $sin (2M\pi f_{e}t + M\hat{\phi})$ VCO Frequency divider + MOutput

PLL 1. B) re-modulation

Nous voyons que le détecteur sort la décision et fait entrer les données dans le boucle pour enlever la modulation de la référence. La désavantage de cette approche est le délai.

Low-pass filter $\cos(2\pi f_c t + \hat{\phi})$ 909 phase shift s(t)vco $\sin(2\pi f_c t + \hat{\phi})$ Low-pass

PLL 4. B) re-modulation

Dans une boucle de Costas la décision est générée dans la boucle, donc en exploitant la re-modulation des données. Il n'y a pas de délai introduit.

PLL 2. C) mettre signal reçu au carré (puissance quatre, etc.)

PLL 3. C) mettre signal reçu au carré (puissance quatre, etc.)

Changle piece piece) signal de constant de la phase

Signal de contrôle

Entrée de VCO positive

$$\theta - \hat{\theta} > 0 \Rightarrow \frac{d\hat{\theta}}{dt} > 0 \Rightarrow \hat{\theta} \nearrow$$

$$\theta - \hat{\theta} \rightarrow 0$$

Entrée de VCO négative

$$\theta - \hat{\theta} < 0 \implies \frac{d\hat{\theta}}{dt} < 0 \implies \hat{\theta} \searrow$$

$$\theta - \hat{\theta} \to 0$$