

Aufgaben zur Algebra 1

Besprechungstermin: Do. 16. Jänner 2025

Aufgabe 1

Sei $p \in k[x]$ und K ein Zerfällungskörper von p über k. Zeigen Sie

$$[K:k] \leq \deg(p)!$$

Aufgabe 2

Bestimmen Sie

$$\left[\mathbb{C}\colon\mathbb{R}\right],\;\left[\mathbb{R}:\mathbb{Q}\right],\;\left[\mathbb{Q}(\sqrt{2}):\mathbb{Q}\right],\;\left[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}\right].$$

Aufgabe 3

Sei K ein algebraisch abgeschlossener Körper, also ein Körper für den jedes Polynom $p \in K[x]$ über K in Linearfaktoren zerfällt. Zeigen Sie, dass K nicht endlich sein kann.

Aufgabe 4

Sei $k \subseteq K$ eine Körpererweiterung. Wir definieren

$$\operatorname{Aut}(K,k) := \left\{ \varphi \colon K \to K \mid \varphi \text{ bijektiver Ringhomomorphismus}, \varphi_{\mid_k} = \operatorname{id}_k \right\}.$$

Zeigen Sie:

- (i) Aut(K,k) ist eine Gruppe bezüglich Hintereinanderausführung.
- (ii) Für jede Untergruppe H < Aut(K, k) ist

$$Fix(H) := \{ a \in K \mid \forall \varphi \in H \colon \varphi(a) = a \}$$

ein Körper zwischen k und K.

- (iii) Für jeden Zwischenkörper $k\subseteq L\subseteq K$ ist ${\rm Aut}(K,L)$ eine Untergruppe von ${\rm Aut}(K,k).$
 - (iv) Es gilt $L \subseteq \text{Fix}(\text{Aut}(K, L))$ und $H \subseteq \text{Aut}(K, \text{Fix}(H))$.