Latex Homework 9th Grade Unit 1 - Methods of Proof - Formal Style of a Proof Week 3 - Logic

Dr. Chapman and Dr. Rupel

Edited September 11, 2023

1

Form a logical expression using the logical statements A, B, C and the operators \land, \lor, \neg , which is true if at least two of the statements are true, but false otherwise. Note: not every operator must be used, but you can use no others.

in abe no others.							
$(A \wedge B) \vee \neg (\neg B \vee \neg C) \vee (A \wedge C)$							
A	$\mid B \mid$	C	$A \wedge B$	$\neg(\neg B \lor \neg C)$	$A \wedge C$	$(A \land B) \lor \neg(\neg B \lor \neg C)$	$(A \land B) \lor \neg(\neg B \lor \neg C) \lor (A \land C)$
\overline{T}	T	T	T	T	T	T	T
T	T	F	T	F	F	T	T
T	F	F	F	F	F	F	F
\overline{F}	T	T	F	T	F	T	T
\overline{F}	F	T	F	F	F	F	\overline{F}
\overline{F}	T	F	F	F	F	F	\overline{F}
\overline{T}	F	T	F	F	T	F	T
\overline{F}	F	F	F	F	F	F	F

2

Simplify $\neg (A \land \neg (B \land \neg (A \land \neg B)))$. In particular, your answer should only have negations applied to logical variables and not compound statements.

Step 1: $\neg (A \land \neg (B \land \neg (A \land \neg B)))$

Step 2: $\equiv \neg(A \land \neg(B \land (\neg A \lor B)))$

Step 3: $\equiv \neg (A \land (\neg B \lor (A \land \neg B)))$

Step 4: $\equiv A \vee (\neg B \wedge (\neg A \vee B)))$

Step 5: $\equiv A \vee ((\neg B \wedge \neg A) \vee (\neg B \wedge B))$

Step 6: $\equiv A \lor ((\neg B \land \neg A) \lor c)$

Step 7: $\equiv A \vee (\neg B \wedge \neg A)$

Step 8: $\equiv (A \vee \neg B) \wedge (A \vee \neg A)$

Step 9: $\equiv (A \vee \neg B) \wedge A$

Step 10: $\equiv (A \land A) \lor (A \land \neg B)$

Step 11: $\equiv A \lor (A \land \neg B)$

Step 12: $\equiv (A \lor A) \land (A \lor \neg B)$

Step 13: $\equiv A \wedge (A \vee \neg B)$

Step 14: $\equiv (A \land A) \lor (A \land \neg B)$

Step 15: $\equiv A \lor (A \land \neg B)$

3

Prove that $A \Rightarrow (B \land C)$ is equivalent to $(A \Rightarrow B) \land (A \Rightarrow C)$.