Úng dụng học máy để phân vùng ảnh và phát hiện bất thường trong giám sát rừng

Trần Văn Thành¹ GVHD: Phạm Văn Hải ² Đỗ Phan Thuận¹

Hanoi University of Science and Technology

¹Computer Science

²Information System

Nội dung

- 🚺 Giới thiệu
- Kiến thức cơ sở
- Phương pháp đề xuất
- Oánh giá
- 💿 Kết luận

- Các vấn đề về biến đổi khí hậu
 - Quản lý tài nguyên, giám sát và bảo vệ rừng
 - Phát hiện những thay đổi bất thường

Rừng Rondonia, Brazil, tháng 6/1975 và tháng 8/2009.1

Hồ Mar Chiquita, Argentina, tháng 7/1998 và tháng 9/2011.²

- Phương pháp truyền thống
 - Dùng bản vẽ, bản đồ
 - Di thực nghiệm
- Han chế
 - Nguy hiếm, tốn thời gian và công sức
 - Không thể thực hiện đồng loạt trên quy mô lớn
 - Có những nơi con người không thể đến để kiểm tra đo đạc

Bài toán đặt ra

 Phân vùng ảnh vệ tinh, phát hiện bất thường, trợ giúp ra quyết định trong giám sát và bảo vệ rừng

Công việc liên quan

Các phương pháp phân vùng ảnh

- Mô hình học sâu
 - ResNet, FCN, R-CNN, U-Net,..
 - Hiệu qủa, độ chính xác cao

- Phân cum
 - K-means, Fuzzy C-Means, Mean-shift...
 - Dễ hiểu, dễ cài đặt

Vấn đề

 Chỉ những thuật toán phức tạp mới có thể giải quyết được vấn đề !?

Công việc liên quan

- Những hạn chế của Deep Learning
 - Phụ thuộc vào số lượng và chất lượng dữ liệu
 - Cấu trúc mạng nơ-ron hoạt động phức tạp, khó hiểu
 - Tốn kém tài nguyên bộ nhớ, thời gian và chi phí
- Những thuật toán phức tạp
 - Yêu cầu độ tính toán cao
 - Nhạy cảm với cách chọn tham số đầu vào

- Những thuật toán đơn giản
 - Sớm có một mô hình tổng quát cho bài toán
 - Kết quả sẽ được dần cải thiện ở những bước sau

Phương pháp học không giám sát

• Thuật toán phân cụm K-means

Algorithm 1 Thuật toán phân cụm K-means

```
1: procedure K-MEANS(D,k):
```

D - tập học

k - số cụm kết quả

 Khởi tạo: Chọn ngẫu nhiên k quan sát trong tập D để làm các điểm trung tâm ban đầu

3: while not CONVERGENCE do

4: **for** each $x \in D$ **do**

5: Tính các khoảng cách từ x đến các điểm trung tâm 3

6: Gán x vào cụm có điểm trung tâm gần x nhất

7: end for

8: for each cum do

9: Xác định lại điểm trung tâm dựa trên các quan sát hiện thời đang thuộc vào cụm này

10: end for

11: end while

12: end procedure

³ Khoảng cách Euclidean

Thuật toán phân cụm K-means

- Những hạn chế
 - Cần biết trước số cụm k
 - Kết quả và tốc độ hội tụ phụ thuộc vào bước khởi tạo
 - Các cụm cần có dạng hình cầu, kích thước gần bằng nhau
 - Không thể phân cụm dữ liệu nằm bên trong cụm khác

Các công việc cải tiến K-means trước đây

Một số đề xuất cải tiến K-means

Tác giả, năm	Phương pháp đề xuất
G. P. Babu, M. N. Murty, 1993 C.Huang, R. Harris , 1993 I. Katsavounidis, C. C. J. Kuo, Z. Zhen, 1994 M. B. A. Daoud, S. A. Roberts, 1996 A. Likas, N. Vlassis, J. J. Verbeek, 2003 S. S. Khan, A. Ahmad, 2004 Bo Zhao and Zhongxiang Zhu, 2007 Wang Min and Yin Siqing, 2010	Lập trình di truyền dựa trên tâm cụm tối ưu gần nhất Tìm kiếm trực tiếp bằng phương pháp chia nhị phân Khởi tạo tâm cụm ở các cạnh (biên) của dữ liệu Khởi tạo dựa trên phân phối ngẫu nhiên trong cụm Tăng dần số cụm cho đến khi tìm thấy K cho đến khi hội tụ Khởi tạo tâm cụm dựa trên mặt đồ ngưng tụ dữ liệu đa quy mô Phân vùng ảnh dựa trên tối ưu hóa đàn kiến Cải tiến K-means dựa trên giải thuật di truyền

Phương pháp đề xuất BK-means

Sơ đồ phương pháp BK-means.

Biểu diễn dữ liệu

Biểu diễn ảnh màu RGB bằng ma trận 3 chiều.⁴

Định dạng lại ảnh về ma trận 2 chiều: $Image(h,w,c) \mapsto Matrix(h \times w,c)$

Tiền xử lý ảnh

- Phương pháp SMQT⁵
 - $\bullet \ \mathsf{MQU^6} \colon \mathsf{Pixel} \ (\mathsf{V}) \to \mathsf{Mean} \to \mathsf{M}\{0,1\}$

$$M(x) = \begin{cases} 1, & \text{if } V(x) > Mean \\ 0, & else \end{cases}$$

Cây nhị phân SMQT.

 $^{^{5}}$ Successive Mean Quantization Transform

⁶ Mean Quantization Units

Phương pháp SMQT

V	25	62	32	5	2	6	70	42	54	0	20	10
1	25 0	5 0	2 0	6 0	0	20	10	62 1	32 1	70 1	42 1	54 1
2	5 00	2 00	6 00	0 00	25 01	20 01	10 01	32 10	42 10	62 11	70 11	54 11
3	2 000	0 000	5 001	6 001	10 010	25 011	20 011	32 100	42 101	54 110	62 110	70 111
4	0 0000	2 0001	5 0010	6 0011	10 0100	20 0110	25 0111	32 1000	42 1010	54 1100	62 1101	70 1110
5-8	0 0000 0000 0	2 0001 0000 16	5 0010 0000 32	6 0011 0000 48	10 0100 0000 64	20 0110 0000 96	25 0111 0000 122	32 1000 0000 128	42 1010 0000 160	54 1100 0000 192	62 1101 0000 208	70 1110 0000 224

Tiền xử lý ảnh

Kết quả tiền xử lý ảnh bằng SMQT.

Lựa chọn tham số K

- Phương pháp khửu tay (Elbow)
 - Tại vị trí khửu tay sẽ cho gía trị K tốt nhất
 - Lỗi sẽ giảm rất nhanh (chậm) trước (sau) khi đi qua vị trí K
- Phương pháp hình chiếu (Silhouette)

$$a(o_i) = \frac{1}{|C_A|-1} \sum_{o_j \in C_A, o_j \neq o_i} d(o_i, o_j)$$

$$b(o_i) = \min_{C_B \neq C_A} \frac{1}{|C_B|} \sum_{o_j \in C_B} d(o_i, o_j)$$

$$sil(o_t) = \frac{b(o_t) - a(o_t)}{max\{b(o_t), a(o_t)\}}$$

- Sự gắn kết của các điểm dữ liệu trong cùng cụm
- Sự tách biệt với các cụm lân cận

$$S_i = \begin{cases} 1 - a_i/b_i \,, & \text{if } a_i < b_i \\ 0 \,, & \text{if } a_i = b_i \\ b_i/a_i - 1 \,, & \text{if } a_i > b_i \end{cases}$$

$$-1 \leq S_i \leq 1$$

→□▶→□▶→□▶→□▶ □ 900

Lựa chọn tham số K

Ånh gốc⁷ (493 \times 481)

Đồ thị tối ưu tham số K

Kết quả tối ưu tham số K

К	2	3	4	5	6	7	8	9
w css × 10 ⁸	4.1562	2.5291	1.7860		1.0935	0.9713	0.8687	0.7756
silhouette	0.7101	0.4671	0.4691		0.4298	0.3904	0.4051	0.3793

7_{NASA}

Thử nghiệm

Ground Truth

BK-means

Kết quả gán nhãn 481×321 pixel với K=2

Total=154401	Predicted as 0	Predicted as 1	
Actual: 0	TP = 140693	FN = 609	
Actual: 1	FP = 4145	TN = 8954	

Thử nghiệm

Kết quả phân lớp 481×321 pixel với K=2

	Same clust	er	Different cluster
Same classes Different classes	TP = 9946 FP = 5886		FN = 122796367 TN = 1262289427
	Predicted as	Positive	Predicted as Negative
Actual:Positive Actual:Negative	TPR = 0.987 FPR = 0.318		FNR = 0.012196 TNR = 0.681981
	RI Precision Recall F1	0.94031 0.94412 0.98780 0.96547	5 4

Sơ đồ phát hiện đám cháy trong ảnh.

Xác định điểm ảnh vùng lửa

Hệ màu	Quy tắc
RGB	 R>G>B R>Rmean ∩ G>Gmean ∩ B>Bmean
YCbCr	3. $Y\geqslant Cb$ 4. $Cr\geqslant Cb$ 5. $Y\geqslant Ymean \cap Cb\geqslant Cbmean \cap Cr\geqslant Crmean$ 6. $ Cb-Cr \geqslant Th,\ (Th=75)$ 7. $Cb\leqslant 150\cap Cr\geqslant 120$

Tách các kênh màu R,G,B.9

Tách kênh sáng Y, kênh màu Cb và Cr. 10

Biểu đồ màu trên kênh Cb và Cr. 11

¹¹Quy tắc 7

Thử nghiệm

Thử nghiệm nhận diện đám cháy trong ảnh.

BK-means

	RMSE	MAE	SC	SSIM	SNR	PSNR	Time	lterator
K-means	0.0486	0.0362	0.9863	0.8550	18.5860	26.2638	30.8658	28
BK-means	0.0944	0.0735	0.9768	0.8369	15.8679	20.5045	29.2071	26

So sánh hiệu năng K-means và BK-means.

BK-means

Ảnh gốc

K-means

BK-means

K-means

BK-means

Phân loai ảnh

- Tập dữ liệu gồm 2 lớp:
 - fire (2400 ånh)
 - not-fire (2931 ånh)

Kết quả phân loại ảnh

Total=5331	Predicted as	s Positive(fire)	Predicted as Negativ	/e(not-fire)
Actual:Positive(fire) Actual:Negative(not-fire)	TP = 1689 FP = 566		FN = 711 TN = 2365	
Act ual: Positi Act ual: Negat	` '	TPR = 0.7038 FPR = 0.1931		
	RI Preci: Recal F1			

Kết quả đạt được

- Cải thiện của BK-means so với K-means
 - Thời gian chạy nhanh hơn
 - Số lần lặp rút ngắn
- Tỷ lệ 70.38% báo cháy đúng và 19.31% báo cháy giả
- Những hạn chế
 - Tập dữ liệu còn đơn giản, chưa đủ lớn
 - Nhận diện đám cháy trong video realtime còn chậm
 - Chưa nhận diện được khói
- Công việc tương lai
 - Phát hiện chuyển động của lửa và khói trong video để tăng tỷ lệ báo cháy đúng và giảm tỷ lệ báo cháy giả

Kết quả đạt được

Giao diện chương trình.

Q&A

Thank You!

Tài liêu tham khảo

- Vũ Hữu Tiệp, Machine Learning cơ bản, Nhà xuất bản khoa học và kỹ thuật, 2018.
- ZhongwuWang, John R.Jensen, Jungholm., An automatic region-based image segmentation algorithm for remote sensing applications, Environmental Modelling & Software, Elsevier Science Publishers, Volume 25, Issue 10, October 2010, Pages 1149-1165.
- Zhensong Chen, Zhiquan Qi, Fan Meng, Limeng Cui & Yong Shi., Image Segmentation via Improving Clustering Algorithms with Density and Distance, Information Technology and Quantitative Management (ITQM 2015), Elsevier Science Publishers, 55: 1015-1022, 2015.
- V.V.

