



### Parametric study on the interior ballistics of 105 and 155 mm artillery guns

Vincent Tanguay DRDC Valcartier

#### Defence R&D Canada - Valcartier

Technical Memorandum DRDC Valcartier TM 2007-350 March 2008



# Parametric study on the interior ballistics of 105 and 155 mm artillery guns

Vincent Tanguay DRDC Valcartier

#### **Defence R&D Canada – Valcartier**

Technical Memorandum
DRDC Valcartier TM 2007-350
March 2008

| Prir    | ncin | al /  | A 11f. | hor |
|---------|------|-------|--------|-----|
| T T T T | TOID | CO1 1 | 100    | TOT |

Vincent Tanguay

Approved by

Pierre Lessard Head/Energetic Materials

Approved for release by

Christian Carrier Head/Document Review Panel

<sup>©</sup> Her Majesty the Queen in Right of Canada as represented by the Minister of National Defence, 2008

<sup>©</sup> Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2008

#### **Abstract**

The interior ballistics code IBHVG2 was used to calculate the muzzle velocity and peak acceleration of projectiles ranging in mass from 10 to 50 kg. The simulations were performed with both 105 and 155 mm guns. These were the C3 and LG1 (105 mm) and the M777 (155 mm). For comparison purposes, extended length 52-calibre LG1 and 52-calibre M777 were also considered. Three propellants were investigated: the triple base M31, and two composite propellants, JA2 and the developmental propellant LCT. For every gun-propellant-projectile combination, the propelling charge mass and grain geometry (web) were optimized. The web was optimized to match the maximum breech pressure of the gun, while the charge mass was optimized according to two different criteria: projectile travel at burn-out and peak muzzle velocity. The results provide a good overview of the performance of conventional artillery systems.

#### Résumé

Le code de balistique intérieure IBHVG2 a été utilisé pour calculer la vitesse à la bouche et l'accélération maximale de projectiles de 10 à 50 kg. Les simulations ont été faites avec des canons de 105 et 155 mm. Ceux-ci sont les C3 et LG1 (105 mm) et le M777 (155 mm). Pour fins de comparaison, l'étude a aussi porté sur un LG1 et un M777 allongés à 52 calibres. Trois formulations de poudres ont été étudiées : la triple base M31, et deux poudres composites, la JA2 et la LCT en développement. Pour chaque combinaison canon-poudre-projectile, la masse de la charge propulsive ainsi que la géométrie du grain ont été optimisés. La géométrie a été optimisée pour atteindre la pression maximale en culasse du canon, tandis que la masse de la charge propulsive a été optimisée selon deux critères distincts : la distance parcourue par le projectile lorsque toute la poudre est brûlée et la vitesse maximale à la bouche. Les résultats donnent une idée globale des performances possibles de systèmes d'artillerie conventionels.

This page intentionally left blank.

#### **Executive summary**

## Parametric study on the interior ballistics of 105 and 155 mm artillery guns

Vincent Tanguay; DRDC Valcartier TM 2007-350; Defence R&D Canada – Valcartier; March 2008.

Background: In the framework of the Artillery Precision Guided Munitions (APGM) project, it is necessary to have some knowledge of the muzzle velocity of conventional artillery systems to serve as initial conditions for exterior ballistics simulations. For this reason, the present study aims at calculating the muzzle velocity and peak acceleration of projectiles ranging from 10 to 50 kg in various artillery gun systems using various propellants to provide an overview of the performance of conventional artillery systems. The simulations were performed with both 105 and 155 mm guns. These were the C3 and LG1 (105 mm) and the M777 (155 mm). For comparison purposes, extended length 52-calibre LG1 and 52-calibre M777 were also considered. Three propellants were investigated: the triple base M31, and two composite propellants, JA2 and the developmental propellant LCT.

**Principal results:** It is found that muzzle velocity and peak acceleration decrease with increasing projectile mass. It is also found that the extended (52-calibre) guns produce higher muzzle velocity than the guns in service. All 155 mm guns out perform the 105 mm guns. The C3 gun is slightly better than the LG1. The LCT propellant gives better performance than JA2, which in turn, gives better performance than M31.

**Significance of results:** The results give a good overview of the possible performance of conventional artillery systems. These values are suitable for use as initial conditions for exterior ballistic simulations of guided munitions.

#### **Sommaire**

## Parametric study on the interior ballistics of 105 and 155 mm artillery guns

Vincent Tanguay; DRDC Valcartier TM 2007-350; R & D pour la défense Canada – Valcartier; mars 2008.

Introduction: Dans le cadre du projet Artillery Precision Guided Munitions (APGM), il est nécessaire de connaître la vitesse à la bouche de systèmes d'artillerie conventionels qui servira de condition initiale pour des simulations de balistique extérieure. Pour cette raison, l'objectif de cette étude est de calculer la vitesse à la bouche et l'accélération maximale de projectiles de 10 à 50 kg dans divers canons avec diverse poudres pour faire un survol des performances de systèmes d'artillerie conventionels. Les simulations ont été faites avec des canons de 105 et 155 mm. Ceux-ci sont le C3, le LG1 (105 mm) et le M777 (155 mm). Pour fins de comparaison, l'étude a aussi porté sur un LG1 et un M777 allongés à 52 calibres. Trois poudres ont été étudiées : la triple base M31, et deux poudres composites, la JA2 et la LCT en développement.

Résultats principaux: La vitesse à la bouche et l'accélération maximale diminuent lorsque la masse du projectile augmente. La vitesse à la bouche est plus grande pour les canons allongés à 52 calibres que les canons actuellement utilisés. Tous les canons de 155 mm offrent de meilleures performances que les 105 mm. Le canon C3 est légèrement meilleur que le LG1. Le propulsif LCT donne de meilleurs résultats que le JA2, tandis que celui-ci donne de meilleurs résultats que le M31.

Importance des résultats: Les résultats constituent un bon survol des performances possibles des systèmes d'artillerie conventionels. Les données que l'on retrouve dans cette étude peuvent être utilisées comme conditions initiales pour la simulation de balistique extérieure pour les munitions guidées.

## **Table of contents**

| Abstract                          | i   |
|-----------------------------------|-----|
| Résumé                            | i   |
| Executive summary                 | iii |
| Sommaire                          | iv  |
| Table of contents                 | V   |
| List of figures                   | vi  |
| List of tables                    | vii |
| 1 Introduction                    | 1   |
| 2 Scope                           | 1   |
| 2.1 Gun systems                   | 1   |
| 2.2 Propelling charges            | 1   |
| 2.3 Projectiles                   | 1   |
| 3 Methodology                     | 2   |
| 4 Simulations                     | 3   |
| 4.1 Input data                    | 3   |
| 4.2 Validation of simulations     | 3   |
| 4.3 Results                       | 3   |
| 5 Discussion                      | 4   |
| 6 Conclusions                     | 7   |
| References                        | 9   |
| Annex A: Input data               | 11  |
| Annex B: Sample IBHVG2 input file | 13  |
| Annex C: Tabulated results        | 17  |

## **List of figures**

| Figure 1: | Muzzle velocity as a function of projectile mass for 155 mm systems               | 4 |
|-----------|-----------------------------------------------------------------------------------|---|
| Figure 2: | Muzzle velocity as a function of projectile mass for the 105 mm LG1 gun systems   | 5 |
| Figure 3: | Muzzle velocity as a function of projectile mass for the 105 mm C3 gun systems    | 5 |
| Figure 4: | Peak acceleration as a function of projectile mass for 155 mm systems             | 6 |
| Figure 5: | Peak acceleration as a function of projectile mass for the 105 mm LG1 gun systems | 6 |
| Figure 6: | Peak acceleration as a function of projectile mass for the C3 gun systems         | 7 |

## List of tables

| Table A.1: | Input parameters for various gun systems                                                     | 11 |
|------------|----------------------------------------------------------------------------------------------|----|
| Table A.2: | Input parameters for various propellants                                                     | 12 |
| Table C.1: | Results for the M777 39 calibre gun system with LCT propellant (burn-out criterion)          | 17 |
| Table C.2: | Results for the M777 39 calibre gun system with LCT propellant (muzzle velocity criterion)   | 18 |
| Table C.3: | Results for the M777 39 calibre gun system with JA2 propellant (burn-out criterion)          | 19 |
| Table C.4: | Results for the M777 39 calibre gun system with JA2 propellant (muzzle velocity criterion)   | 20 |
| Table C.5: | Results for the M777 39 calibre gun system with M31 propellant (burn-out criterion)          | 21 |
| Table C.6: | Results for the M777 39 calibre gun system with M31 propellant (muzzle velocity criterion)   | 22 |
| Table C.7: | Results for the M777 52 calibre gun system with LCT propellant (burn-out criterion)          | 23 |
| Table C.8: | Results for the M777 52 calibre gun system with LCT propellant (muzzle velocity criterion)   | 24 |
| Table C.9: | Results for the M777 52 calibre gun system with JA2 propellant (burn-out criterion)          | 25 |
| Table C.10 | : Results for the M777 52 calibre gun system with JA2 propellant (muzzle velocity criterion) | 26 |
| Table C.11 | : Results for the M777 52 calibre gun system with M31 propellant (burn-out criterion)        | 27 |
| Table C.12 | : Results for the M777 52 calibre gun system with M31 propellant (muzzle velocity criterion) | 28 |
| Table C.13 | : Results for the LG1 27 calibre gun system with LCT propellant (burn-out criterion)         | 29 |

| Table | C.14: | Results for the LG1 27 calibre gun system with LCT propellant (muzzle velocity criterion) | 30 |
|-------|-------|-------------------------------------------------------------------------------------------|----|
| Table | C.15: | Results for the LG1 27 calibre gun system with JA2 propellant (burn-out criterion)        | 31 |
| Table | C.16: | Results for the LG1 27 calibre gun system with JA2 propellant (muzzle velocity criterion) | 32 |
| Table | C.17: | Results for the LG1 27 calibre gun system with M31 propellant (burn-out criterion)        | 33 |
| Table | C.18: | Results for the LG1 27 calibre gun system with M31 propellant (muzzle velocity criterion) | 34 |
| Table | C.19: | Results for the LG1 52 calibre gun system with LCT propellant (burn-out criterion)        | 35 |
| Table | C.20: | Results for the LG1 52 calibre gun system with JA2 propellant (burn-out criterion)        | 36 |
| Table | C.21: | Results for the LG1 52 calibre gun system with M31 propellant (burn-out criterion)        | 37 |
| Table | C.22: | Results for the C3 27 calibre gun system with LCT propellant (burn-out criterion)         | 38 |
| Table | C.23: | Results for the C3 27 calibre gun system with LCT propellant (muzzle velocity criterion)  | 39 |
| Table | C.24: | Results for the C3 27 calibre gun system with JA2 propellant (burn-out criterion)         | 40 |
| Table | C.25: | Results for the C3 27 calibre gun system with JA2 propellant (muzzle velocity criterion)  | 41 |
| Table | C.26: | Results for the C3 27 calibre gun system with M31 propellant (burn-out criterion)         | 42 |
| Table | C.27: | Results for the C3 27 calibre gun system with M31 propellant (muzzle velocity criterion)  | 43 |

#### 1 Introduction

An important aspect of the Artillery Precision Guided Munitions (APGM) project is exterior ballistics simulations. However, to perform these simulations, one must have knowledge of the muzzle velocity as an initial condition. It is the objective of the present study to estimate the muzzle velocities that can be achieved with conventional artillery systems. These include conventional 105 and 155 mm guns with triple base and composite propelling charges. The muzzle velocities are obtained for various projectile masses from interior ballistics simulations.

#### 2 Scope

The objective is to obtain realistic muzzle velocities in conventional artillery systems as a function of projectile mass. It is not an attempt to optimize the performance of these systems. For this reason, an extensive survey of all gun systems and propelling charges is not included here. Instead, only a limited number of representative gun systems and propelling charges are investigated to determine the performance that can be achieved with conventional artillery systems. A description of the gun systems, propelling charges and projectiles is given in Sections 2.1 to 2.3.

#### 2.1 Gun systems

Two 105 mm gun systems in use by the Canadian Forces (CF) are studied: they are the LG1 and C3. Both these guns are 27 calibres long. For the sake of comparison, a 52 calibre gun system was investigated by considering an LG1 with a longer barrel (no other changes were made to the gun). In the case of the 155 mm, the recently acquired 39 calibre M777 is studied. A hypothetical 52 calibre M777 where only the barrel length was increased is included as well.

#### 2.2 Propelling charges

Three different propellants were investigated: M31 (triple base), JA2 (composite) and LCT (composite). Cylindrical, 7-perforation grain is the grain geometry that was arbitrarily selected. The mass of propellant and the grain web were optimized for every gun system-propellant-projectile combination.

#### 2.3 Projectiles

Since the objective of the Artillery Precision Guided Munition Applied Research Program (APGM ARP) is to develop concepts for gun launched PGMs, a specific

projectile was not selected. Instead, the projectile mass was varied from 10 to 50 kg for every gun system-propellant combination. This was done for both the 105 and 155 mm systems. While 50 kg is a very large projectile for 105 mm systems, it could be representative of a heavy rocket-assisted projectile. Likewise, 10 kg is very small for 155 mm systems. It could be representative of a sub-calibre projectile.

#### 3 Methodology

The interior ballistics simulations were performed with IBHVG2 [1]. This computer code uses a lumped-parameter model, i.e., it considers the gases inside the combustion chamber to be uniformly distributed in space. Doing so, an average pressure can be computed as a function of time. The pressure gradient in the gun is then estimated and used to relate the average pressure to the base pressure. This code allows parametric variations and optimization of parameters.

The methodology that was employed in the present study is described by Oberle [2] and used by Archambault [3]. For a given gun system-propellant-projectile combination, one must optimize the propellant mass and grain geometry (grain web). Given a propellant mass, IBHVG2 can optimize the grain web by iteration such that the peak pressure in the chamber just reaches the maximum breech pressure (parameter of the gun system). One can then run simulations for a number of propelling charge masses and select the mass that produces the highest muzzle velocity. Note that, in some systems, the propellant mass that produces that highest muzzle velocity is not necessarily the best choice. As the propellant mass is increased, the muzzle velocity generally increases. However, the distance traveled by the projectile at the time of burn-out (time at which the propellant has all been consumed) increases as well. While the highest muzzle velocity may be reached when the projectile just reaches the muzzle at burn-out, important muzzle velocity fluctuations will occur from shot to shot in such a case [4]. In order to have a reproducible muzzle velocity (very important for precision) one must have the projectile still well inside the barrel at burn-out. Therefore, one can select the optimal charge mass from an acceptable projectile travel at burn-out. In this study, the acceptable projectile travel is obtained from validation simulations of systems in service. It is assumed that these systems in service are reproducible enough and therefore are an appropriate benchmark. Note that since the projectiles to be launched are guided, the fluctuations in muzzle velocity may be compensated for without penalty. Therefore, one may not need to sacrifice muzzle velocity for reproducibility. For this reason, both criteria will be investigated. Further exterior ballistics simulations will determine if the extra muzzle velocity is an advantage.

Note that another limiting factor is the recoil system of the gun. However, since the objective here was not to increase the performance of existing systems, it is assumed

that the recoil mechanisms of the guns can accommodate the recoil forces.

#### 4 Simulations

#### 4.1 Input data

The detailed input data for the gun systems and propellants that were used for the interior ballistics simulations are included in Annex A. Also, Annex B contains a sample IBHVG2 input file.

#### 4.2 Validation of simulations

In order to validate the code and the input parameters, simulations were run for both a 105 and a 155 mm system. The 105 mm system is a C3 gun with a 12.86 kg HOW C132 projectile and a 2.165 kg propelling charge of B19T95. A simulation of this system produced a muzzle velocity of 723 m/s, which is in close agreement with the actual system (730.3 m/s [3]). The 155 mm system was a M777 with a 46.9 kg M795 projectile and a 11.7 kg propelling charge of M31. The predicted muzzle velocity is 794 m/s, while the firing tables [5] show a value of 792 m/s. Again, the calculations showed excellent agreement with the actual system.

These simulations show that the burn-out of the propellant charge occurs with the projectile located at 1.20 and 1.94 m from the muzzle for the 105 and 155 mm systems, respectively. Since these systems are in service, it is assumed that these burn-out locations result in acceptable reproducibility. These distances are therefore used to select the optimal propellant mass in other systems in this study.

#### 4.3 Results

All results are tabulated in Annex C. Two tables are included for each gun/propellant combination. The first table shows results where the projectile travel at burn-out was used as a criterion (burn-out criterion), while the second simply optimizes the muzzle velocity, irrespective of projectile travel at burn-out (muzzle velocity criterion). As was previously mentioned, these results may produce important irreproducibility in the muzzle velocity. In some cases (e.g. 52-calibre LG1 gun system with all propellants), a single table is presented because both criteria were met simultaneously, i.e., the maximum muzzle velocity is obtained with a charge mass that results in a projectile travel at burn-out less than the maximum allowable travel. Finally, each table shows the projectile mass (PRWT) in kg, charge weight (CHWT) in kg), web (WEB) in m, maximum breech pressure (PMAX) in MPa, projectile travel at burn-out (X@BO) in m, muzzle velocity (VMUZ) in m/s and peak acceleration (AMAX)



**Figure 1:** Muzzle velocity as a function of projectile mass for 155 mm systems

in Gs.

Figure 1 shows the muzzle velocity as a function of projectile mass for all the 155 mm systems. As expected, higher muzzle velocities are obtained with the 52 calibre gun, compared with the 39 calibre gun. Note that the 52 calibre system design studied was not optimized (chamber volume for example). Therefore, it is possible that even higher muzzle velocities could be achieved with a newly designed 52 calibre gun. The LCT and JA2 propellants both perform significantly better than the M31 propellant. LCT and JA2 produce very comparable results.

Figure 2 shows a the muzzle velocity as a function of projectile mass for the LG1 gun system. Again, the 52 calibre gun results in higher muzzle velocity than the 27 calibre gun. LCT produces slightly outperforms JA2, which in turn, outperforms M31.

Figure 3 is a similar plot for the C3 gun system. Relative propellant performance is the same. The C3 and the LG1 (27 calibre) produce very similar results with the C3 gun only slightly outperforming the LG1 gun.

Figures 4 to 6 show peak projectile acceleration for the various cases.

#### 5 Discussion

The results show, as expected, that the muzzle velocity decreases with increasing projectile mass. The peak acceleration also decreases with increasing projectile mass.



**Figure 2:** Muzzle velocity as a function of projectile mass for the  $105~\mathrm{mm}$  LG1 gun systems



**Figure 3:** Muzzle velocity as a function of projectile mass for the 105 mm C3 gun systems



Figure 4: Peak acceleration as a function of projectile mass for 155 mm systems



**Figure 5:** Peak acceleration as a function of projectile mass for the 105 mm LG1 gun systems



**Figure 6:** Peak acceleration as a function of projectile mass for the C3 gun systems

This is to be expected, since the peak acceleration occurs at peak base pressure which is limited by the gun system. Therefore, from Newton's second law, the peak acceleration should be inversely proportional to the projectile mass.

It was found that the developmental LCT propellant produced the best performance, followed by JA2 and finally M31. This is the case in every gun system that was considered. This is mainly due to the impetus (force) of the different propellants: higher impetus results in higher muzzle velocity.

In 105 mm systems, the extended length, 52-calibre LG1 resulted in the highest muzzle velocity. For the two existing 27-calibre guns, the C3 gun system produces slightly higher muzzle velocities than the LG1. This is mainly because the C3 is slightly longer than the LG1. In the 155 mm systems, the extended length 52-calibre M777 outperformed the standard 39-calibre gun. Finally, all 155 mm guns produce higher muzzle velocity than 105 mm guns (for the same projectile mass). The reason is that the larger calibre offers more surface area for the base pressure to accelerate the projectile.

#### 6 Conclusions

It is found that muzzle velocity and peak acceleration decrease with increasing projectile mass. It is found that the extended (52-calibre) guns produce higher muzzle

velocity than the guns in service. All 155 mm guns out perform the 105 mm guns. The C3 gun is slightly better than the LG1. The LCT propellant gives better performance than JA2, which in turn, gives better performance than M31.

#### References

- [1] Anderson, Kurt D, Ronald D.; Fickie (1987), IBHVG2 (Interior Ballistics of High Velocity Guns, Version 2)—A User's Guide, (Technical Report ADB117104) Army Ballistic Research Lab, Aberdeen Proving Ground MD.
- [2] Oberle, W. (2001), Methodology for Determining Propelling Charge Dimensions for Layered Propellant Charges, (Technical Report ARL-TN-178) Army Research Lab.
- [3] Archambault, P. (2005), Ballistic Simulation for an Increasec Range 105 mm HOW Cartrige Layered Propellant, (Technical Report W7701-9-1326/001/XSK) SNC Technologies Inc., Le Gardeur, Canada.
- [4] Corner, J. (1950), Theory of the Interior Ballistics of Guns, New York: John Wiley and Sons, Inc.
- [5] (2006), Firing Tables (Abbridged Format) Cannon, 155 mm, Howitzer, M777, (Technical Report C-71-777-000/DF-001).

This page intentionally left blank.

## **Annex A: Input data**

**Table A.1:** Input parameters for various gun systems

| Parameter                        | M777-39  | M777-52  | LG1-27    | LG1-52    | C3        |
|----------------------------------|----------|----------|-----------|-----------|-----------|
| Chamber Volume (m <sup>3</sup> ) | 0.019155 | 0.019155 | 0.0024362 | 0.0024362 | 0 0024362 |
| Groove (m)                       |          | 0.157582 |           | 0.107     | 0.107     |
| Land (m)                         | 0.15499  | 0.15499  | 0.105     | 0.105     | 0.105     |
| $\mathrm{G/L}$                   | 1.5      | 1.5      | 2.433     | 2.433     | 1.404     |
| Length (m)                       | 5.03     | 7.045    | 2.788     | 5.46      | 3.111     |
| Twist (cal/turn)                 | 20       | 20       | 55        | 55        | 27        |

**Table A.2:** Input parameters for various propellants

| Parameter                   | LCT       | JA2       | M31      |
|-----------------------------|-----------|-----------|----------|
| Density (kg/m³)             | 1600      | 1571      | 1680     |
| Gamma                       | 1.2658    | 1.2246    | 1.258    |
| Force (J/kg)                | 1180000   | 1174000   | 998000   |
| Covolume $(m^3)$            | 0.0011765 | 0.0009649 | 0.001096 |
| Temperature (K)             | 2910      | 3517      | 2631     |
| Alpha                       | 0.8734    | 0.9412    | 0.64     |
| Beta (m/s MPa $^{\alpha}$ ) | 0.00154   | 0.001379  | 0.0035   |
|                             |           |           |          |

#### Annex B: Sample IBHVG2 input file

#### **\$COMMENT**

Calcul des pression et velocite pour les cartouches  $105\ \mathrm{mm}$  dans le LG1 en zone 2

Le poids du projectile est de 10-50 kg

On utilise la fonction de pressittive pressure determin en C3

On utilise comme fichier de dpart ERG2Z21LG11BB

On reduitle poids du projectile de 13.225 kg a 12.86 kg

Le propulsif a t remplace par du JA2

Les courbes de pression gnr par ces courbes de rsistance matchent tres bien la courbe experimentale

Rifling moyen 55:1 IBHVG2 ne simule pas le progressive twist

Le Volume de la chambre disponible pour les gaz est 0.0024362 m3 Le Volume de la chambre disponible pour la poudre est 0.00220597m3 avec un TPA C20

La simulation est basee sur celle du coup en C3. Ce coup a des performances qui sont typiques de la valeur moyenne obtenue dans le C3 a 21C en zone 2 lors des essais de Propellant safety durant la qualification du EGRG2

Le Volume de l'intrusion du projectile ds la chambre est 0.0009322 m3

Le web interieur millieu et exterieur du lot de 7Be93 sont: 0.00113,0.00118 et 0.00106m

Le diametre et la longueur sont 0.00873 m et 0.01228 m Le diametre des perforations est 0.0004

Les gauges sont positionnes a 56 mm et 212 mm de la face du tube cote culasse

Soit 355 mm-56mm et 355mm-212 mm.i.e, 299mm (0.299 m) et 143 mm (0.143 m)

\$TDIS SHOW='TIME'

\$TDIS SHOW='TRAV'

\$TDIS SHOW='VEL'

```
$TDIS SHOW='ACCL' REMK = 'GRAVITIES'
$TDIS SHOW='BRCH'
$TDIS SHOW='GAGE(1)'
$COMM TDIS SHOW='GAGE(2)'
$TDIS SHOW='Z(1)'
$PDIS SHOW='PRWT' DECK='PROJ'
$PDIS SHOW='CHWT' DECK='PROP'
$PDIS SHOW='WEB' DECK='PROP'
$PDIS SHOW='PMAX' DECK='OUT'
$PDIS SHOW='X@BO' DECK='OUT'
$PDIS SHOW='VMUZ' DECK='OUT'
$PDIS SHOW='AMAX' DECK='OUT'
$HEAT TSHL = 0.00011025 CSHL = 460.316 RSHL = 7861.0916 TWAL = 293 HO =
11.3482 \text{ HL} = 1
$GUN NAME = '105MM GUN LG1' CHAM = 0.0024362 GRVE = 0.107 LAND = 0.105 G/L
= 2.433 TRAV = 2.788 TWST = 55 CLEN = 0.386 NGAG = 2 GLOC= -0.143, -0.299
$PROJ NAME = 'GENERIC' PRWT = 20
$RESI NPTS=10 FACT=0.05 RFPT=2 TRAV=0, 0.010, 0.013, 0.028, 0.038, 0.048,
0.063, 0.05207, 0.1143, 2.787 PRES=0, 0.0, 95., 85.0, 75.0, 40.0, 20.0,
15.0, 10.0, 5.0
$RECO
RECO=1 RCWT=550 NAME= 'Selon Nicolet'
$INFO RUN = '105 MM GUN' DELT = 0.0001 GRAD = 1 POPT = 1,0,0,0,2 CONP =
$PRIM NAME='BLK POWDER' CHWT=0.0332385299 GAMA=1.25 FORC=308760 COV=0.00108381
TEMP=2000
```

\$PROP NAME = 'JA2 19P ' CHWT=2.01 GRAN = '19P' RHO=1571. GAMA = 1.2246 FORC = 1174000. COV=0.0009649 TEMP=3517 EROS= 0.000091 ALPH=0.9412 BETA=0.001379 D=0.00873 L= 0.01228 DP= 0.0004 WEB=0.00113

\$PARA VARY='CHWT' DECK='PROP' NTH=1 FROM= 1.9 TO= 2.6 BY=0.01

\$PARA VARY='PRWT' DECK='PROJ' FROM=10 T0=50 BY=2

\$PMAX VARY ='WEB' DECK='PROP' NTH=1 TRY1=0.00133 TRY2=0.00233 PMAX=330

\$END

This page intentionally left blank.

## **Annex C: Tabulated results**

**Table C.1:** Results for the M777 39 calibre gun system with LCT propellant (burn-out criterion).

| PRWT            | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|-----------------|------|----------|------|--------|--------|-------|
| 10              | 12.9 | 1.26E-03 | 370  | 3.0596 | 1609.7 | 41822 |
| 12              | 13   | 1.33E-03 | 370  | 3.0719 | 1517.5 | 37229 |
| 14              | 13.1 | 1.40E-03 | 370  | 3.0932 | 1441.2 | 33543 |
| $\overline{16}$ | 13.1 | 1.46E-03 | 370  | 3.0856 | 1371.3 | 30589 |
| 18              | 13.1 | 1.52E-03 | 370  | 3.0792 | 1311.8 | 28113 |
| 20              | 13.1 | 1.57E-03 | 370  | 3.0767 | 1259.3 | 26008 |
| 22              | 13.1 | 1.62E-03 | 370  | 3.0758 | 1212.9 | 24195 |
| 24              | 13.1 | 1.67E-03 | 370  | 3.0779 | 1171   | 22619 |
| 26              | 13.1 | 1.72E-03 | 370  | 3.082  | 1133.1 | 21235 |
| 28              | 13.1 | 1.77E-03 | 370  | 3.0848 | 1099.4 | 20011 |
| 30              | 13.1 | 1.82E-03 | 370  | 3.0918 | 1067.7 | 18920 |
| 32              | 13.1 | 1.86E-03 | 370  | 3.0992 | 1038.7 | 17942 |
| 34              | 13.1 | 1.91E-03 | 370  | 3.1072 | 1012   |       |
| 36              | 13.1 | 1.95E-03 | 370  | 3.1157 | 987.31 | 16260 |
| 38              | 13   | 1.98E-03 | 370  | 3.0743 | 962    | 15550 |
| 40              | 13   | 2.02E-03 | 370  | 3.0842 | 940.32 | 14884 |
| 42              | 13   | 2.06E-03 | 370  | 3.0942 | 920.16 | 14271 |
| 44              | 13   | 2.10E-03 | 370  | 3.1036 | 901.45 | 13708 |
| 46              | 13   | 2.14E-03 | 370  | 3.1141 | 883.67 | 13187 |
| 48              | 12.9 | 2.16E-03 | 370  | 3.0707 | 864.84 | 12716 |
| 50              | 12.9 | 2.20E-03 | 370  | 3.0819 | 848.82 | 12266 |

**Table C.2:** Results for the M777 39 calibre gun system with LCT propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
| 10   | 16.5 | 1.72E-03 | 370  | 4.8581 | 1666.5 | 37709 |
| 12   | 16.3 | 1.77E-03 | 370  | 4.751  | 1575.3 | 34181 |
| 14   | 16.3 | 1.85E-03 | 370  | 4.7868 | 1496.5 | 31115 |
| 16   | 16.4 | 1.94E-03 | 370  | 4.902  | 1428.1 | 28495 |
| 18   | 16.5 | 2.04E-03 | 370  | 5.03   | 1368.1 | 26281 |
| 20   | 16.4 | 2.09E-03 | 370  | 5.03   | 1314.6 | 24473 |
| 22   | 16.3 | 2.14E-03 | 370  | 5.03   | 1267.1 | 22898 |
| 24   | 16.5 | 2.25E-03 | 370  | 5.03   | 1224.1 | 21413 |
| 26   | 16.3 | 2.28E-03 | 370  | 5.03   | 1184.9 | 20227 |
| 28   | 16.5 | 2.39E-03 | 370  | 5.03   | 1149.1 | 19059 |
| 30   | 16.3 | 2.41E-03 | 370  | 5.03   | 1116.4 | 18114 |
| 32   | 16.2 | 2.46E-03 | 370  | 5.03   | 1086   | 17237 |
| 34   | 16.4 | 2.57E-03 | 370  | 5.03   | 1058   | 16381 |
| 36   | 16.3 | 2.60E-03 | 370  | 5.03   | 1031.9 | 15660 |
| 38   | 16.2 | 2.64E-03 | 370  | 5.03   | 1007.4 | 15000 |
| 40   | 16.2 | 2.70E-03 | 370  | 5.03   | 984.64 | 14378 |
| 42   | 16.2 | 2.76E-03 | 370  | 5.03   | 963.18 | 13805 |
| 44   | 16.1 | 2.79E-03 | 370  | 5.03   | 943.1  | 13290 |
| 46   | 16.1 | 2.85E-03 | 370  | 5.03   | 924.07 | 12799 |
| 48   | 16   | 2.88E-03 | 370  | 5.03   | 906.13 | 12355 |
| 50   | 16   | 2.94E-03 | 370  | 5.03   | 889.2  | 11929 |

**Table C.3:** Results for the M777 39 calibre gun system with JA2 propellant (burn-out criterion).

| PRWT | CHWT  | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|-------|----------|------|--------|--------|-------|
|      |       |          |      |        |        |       |
| 10   | 12.76 | 1.94E-03 | 370  | 3.0896 | 1609.6 | 41988 |
| 12   | 12.82 | 2.06E-03 | 370  | 3.0934 | 1515.6 | 37398 |
| 14   | 12.84 | 2.17E-03 | 370  | 3.0879 | 1435.8 | 33745 |
| 16   | 12.86 | 2.28E-03 | 370  | 3.09   | 1367.7 | 30742 |
| 18   | 12.86 | 2.38E-03 | 370  | 3.0865 | 1308.4 | 28241 |
| 20   | 12.86 | 2.47E-03 | 370  | 3.0907 | 1255.2 | 26116 |
| 22   | 12.86 | 2.56E-03 | 370  | 3.0945 | 1209.1 | 24288 |
| 24   | 12.84 | 2.65E-03 | 370  | 3.0944 | 1165.9 | 22707 |
| 26   | 12.82 | 2.73E-03 | 370  | 3.093  | 1127.7 | 21319 |
| 28   | 12.8  | 2.81E-03 | 370  | 3.0944 | 1092.6 | 20091 |
| 30   | 12.78 | 2.88E-03 | 370  | 3.0966 | 1060.6 | 18996 |
| 32   | 12.74 | 2.95E-03 | 370  | 3.0865 | 1030.7 | 18019 |
| 34   | 12.72 | 3.03E-03 | 370  | 3.0901 | 1003.7 | 17134 |
| 36   | 12.7  | 3.10E-03 | 370  | 3.0946 | 978.5  | 16331 |
| 38   | 12.66 | 3.16E-03 | 370  | 3.0851 | 954.69 | 15604 |
| 40   | 12.64 | 3.23E-03 | 370  | 3.0903 | 932.82 | 14936 |
| 42   | 12.62 | 3.30E-03 | 370  | 3.0958 | 912.36 | 14322 |
| 44   | 12.58 | 3.36E-03 | 370  | 3.0858 | 892.92 | 13760 |
| 46   | 12.56 | 3.42E-03 | 370  | 3.0936 | 874.47 | 13237 |
| 48   | 12.52 | 3.48E-03 | 370  | 3.0846 | 856.94 | 12755 |
| 50   | 12.5  | 3.54E-03 | 370  | 3.0895 | 840.97 | 12305 |

**Table C.4:** Results for the M777 39 calibre gun system with JA2 propellant (muzzle velocity criterion).

| PRWT | CHWT  | WEB      | PMAX   | X@BO   | VMUZ   | AMAX  |
|------|-------|----------|--------|--------|--------|-------|
|      |       |          |        |        |        |       |
| 10   | 15.38 | 2.52E-03 | 370    | 4.8689 | 1649.8 | 38892 |
| 12   | 15.3  | 2.64E-03 | 370    | 4.8354 | 1556.6 | 35043 |
| 14   | 15.28 | 2.77E-03 | 370    | 4.8691 | 1477.2 | 31843 |
| 16   | 15.3  | 2.91E-03 | 370    | 5.03   | 1408.5 | 29153 |
| 18   | 15.32 | 3.05E-03 | 370    | 5.03   | 1347.9 | 26882 |
| 20   | 15.42 | 3.21E-03 | 370    | 5.03   | 1294.9 | 24903 |
| 22   | 15.32 | 3.30E-03 | 370    | 5.03   | 1246.9 | 23274 |
| 24   | 15.28 | 3.41E-03 | 370    | 5.03   | 1204   | 21824 |
| 26   | 15.38 | 3.58E-03 | 370    | 5.03   | 1164.9 | 20501 |
| 28   | 15.22 | 3.63E-03 | 370    | 5.03   | 1129.1 | 19401 |
| 30   | 15.16 | 3.72E-03 | 370    | 5.03   | 1096.2 | 18388 |
| 32   | 15.16 | 3.84E-03 | 370    | 5.03   | 1066   | 17461 |
| 34   | 15.1  | 3.93E-03 | 370    | 5.03   | 1038.1 | 16636 |
| 36   | 15.2  | 4.09E-03 | 370    | 5.03   | 1012.1 | 15856 |
| 38   | 15.12 | 4.16E-03 | 370    | 5.03   | 987.82 | 15176 |
| 40   | 15.04 | 4.24E-03 | 370    | 5.03   | 965.09 | 14552 |
| 42   | 14.98 | 4.32E-03 | 370    | 5.03   | 943.75 | 13975 |
| 44   | 15    | 4.44E-03 | 370    | 5.03   | 923.68 | 13430 |
| 46   | 15.02 | 4.56E-03 | 370    | 5.03   | 904.82 | 12927 |
| 48   | 14.96 | 4.63E-03 | 370    | 5.03   | 886.97 | 12469 |
| 50   | 14.92 | 4.72E-03 | 370.01 | 5.03   | 870.07 | 12041 |

**Table C.5:** Results for the M777 39 calibre gun system with M31 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 9.7  | 4.76E-04 | 370  | 3.0942 | 1395.8 | 46244 |
| 12   | 10   | 5.32E-04 | 370  | 3.104  | 1320.5 | 40445 |
| 14   | 10.2 | 5.80E-04 | 370  | 3.0813 | 1254.6 | 36032 |
| 16   | 10.4 | 6.27E-04 | 370  | 3.0855 | 1200   | 32487 |
| 18   | 10.6 | 6.75E-04 | 370  | 3.1131 | 1153.1 | 29577 |
| 20   | 10.7 | 7.14E-04 | 370  | 3.0823 | 1109.1 | 27198 |
| 22   | 10.8 | 7.52E-04 | 370  | 3.0641 | 1070.6 | 25174 |
| 24   | 10.9 | 7.90E-04 | 370  | 3.0574 | 1036.3 | 23430 |
| 26   | 11   | 8.27E-04 | 370  | 3.0617 | 1005.1 | 21912 |
| 28   | 11.1 | 8.64E-04 | 370  | 3.0734 | 976.92 | 20579 |
| 30   | 11.2 | 9.01E-04 | 370  | 3.0909 | 951.5  | 19399 |
| 32   | 11.3 | 9.38E-04 | 370  | 3.1134 | 928.4  | 18347 |
| 34   | 11.3 | 9.64E-04 | 370  | 3.0654 | 904.35 | 17424 |
| 36   | 11.4 | 1.00E-03 | 370  | 3.0956 | 885.1  | 16571 |
| 38   | 11.4 | 1.02E-03 | 370  | 3.0572 | 864    | 15815 |
| 40   | 11.5 | 1.06E-03 | 370  | 3.0956 | 847.3  | 15108 |
| 42   | 11.6 | 1.10E-03 | 370  | 3.1356 | 831.99 | 14462 |
| 44   | 11.6 | 1.12E-03 | 370  | 3.1057 | 814.56 | 13883 |
| 46   | 11.6 | 1.14E-03 | 370  | 3.0768 | 798.4  | 13349 |
| 48   | 11.6 | 1.17E-03 | 370  | 3.1184 | 783.47 | 12854 |
| 50   | 11.7 | 1.20E-03 | 370  | 3.0997 | 771.33 | 12383 |

**Table C.6:** Results for the M777 39 calibre gun system with M31 propellant (muzzle velocity criterion).

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0110011011) | •    |          |      |      |        |       |
|-----------------------------------------|-------------|------|----------|------|------|--------|-------|
|                                         | PRWT        | CHWT | WEB      | PMAX | X@BO | VMUZ   | AMAX  |
|                                         | 10          | 13.7 | 7.93E-04 | 370  | 5.03 | 1501.2 | 40797 |
|                                         | 12          | 14.1 | 8.76E-04 | 370  | 5.03 | 1417.9 | 36119 |
|                                         | 14          | 14.3 | 9.41E-04 | 370  | 5.03 | 1347.5 | 32556 |
|                                         | 16          | 14.3 | 9.85E-04 | 370  | 5.03 | 1287   | 29761 |
|                                         | 18          | 14.4 | 1.04E-03 | 370  | 5.03 | 1234.5 | 27353 |
|                                         | 20          | 14.6 | 1.10E-03 | 370  | 5.03 | 1187.8 | 25259 |
|                                         | 22          | 14.6 | 1.14E-03 | 370  | 5.03 | 1146.1 | 23543 |
|                                         | 24          | 14.8 | 1.20E-03 | 370  | 5.03 | 1108.6 | 21976 |
|                                         | 26          | 14.8 | 1.24E-03 | 370  | 5.03 | 1074.6 | 20665 |
|                                         | 28          | 15   | 1.31E-03 | 370  | 5.03 | 1043.6 | 19447 |
|                                         | 30          | 14.9 | 1.33E-03 | 370  | 5.03 | 1015.1 | 18439 |
|                                         | 32          | 15   | 1.38E-03 | 370  | 5.03 | 988.95 | 17485 |
|                                         | 34          | 15.1 | 1.43E-03 | 370  | 5.03 | 964.53 | 16625 |
|                                         | 36          | 15.1 | 1.46E-03 | 370  | 5.03 | 941.92 | 15864 |
|                                         | 38          | 15.1 | 1.50E-03 | 370  | 5.03 | 920.84 | 15170 |
|                                         | 40          | 15.2 | 1.55E-03 | 370  | 5.03 | 901.06 | 14518 |
|                                         | 42          | 15.2 | 1.58E-03 | 370  | 5.03 | 882.58 | 13934 |
|                                         | 44          | 15.1 | 1.60E-03 | 370  | 5.03 | 865.09 | 13409 |
|                                         | 46          | 15.3 | 1.66E-03 | 370  | 5.03 | 848.65 | 12885 |
|                                         | 48          | 15.2 | 1.68E-03 | 370  | 5.03 | 833.11 | 12434 |
|                                         | 50          | 15.3 | 1.73E-03 | 370  | 5.03 | 818.34 | 11993 |

**Table C.7:** Results for the M777 calibre gun system with LCT propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 12.9 | 1.26E-03 | 370  | 3.0596 | 1609.7 | 41822 |
| 12   | 13   | 1.33E-03 | 370  | 3.0719 | 1517.5 | 37229 |
| 14   | 13.1 | 1.40E-03 | 370  | 3.0932 | 1441.2 | 33543 |
| 16   | 13.1 | 1.46E-03 | 370  | 3.0856 | 1371.3 | 30589 |
| 18   | 13.1 | 1.52E-03 | 370  | 3.0792 | 1311.8 | 28113 |
| 20   | 13.1 | 1.57E-03 | 370  | 3.0767 | 1259.3 | 26008 |
| 22   | 13.1 | 1.62E-03 | 370  | 3.0758 | 1212.9 | 24195 |
| 24   | 13.1 | 1.67E-03 | 370  | 3.0779 | 1171   | 22619 |
| 26   | 13.1 | 1.72E-03 | 370  | 3.082  | 1133.1 | 21235 |
| 28   | 13.1 | 1.77E-03 | 370  | 3.0848 | 1099.4 | 20011 |
| 30   | 13.1 | 1.82E-03 | 370  | 3.0918 | 1067.7 | 18920 |
| 32   | 13.1 | 1.86E-03 | 370  | 3.0992 | 1038.7 | 17942 |
| 34   | 13.1 | 1.91E-03 | 370  | 3.1072 | 1012   |       |
| 36   | 13.1 | 1.95E-03 | 370  | 3.1157 | 987.31 | 16260 |
| 38   | 13   | 1.98E-03 | 370  | 3.0743 | 962    | 15550 |
| 40   | 13   | 2.02E-03 | 370  | 3.0842 | 940.32 | 14884 |
| 42   | 13   | 2.06E-03 | 370  | 3.0942 | 920.16 | 14271 |
| 44   | 13   | 2.10E-03 | 370  | 3.1036 | 901.45 | 13708 |
| 46   | 13   | 2.14E-03 | 370  | 3.1141 | 883.67 | 13187 |
| 48   | 12.9 | 2.16E-03 | 370  | 3.0707 | 864.84 | 12716 |
| 50   | 12.9 | 2.20E-03 | 370  | 3.0819 | 848.82 | 12266 |

**Table C.8:** Results for the M777 52 calibre gun system with LCT propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 17.2 | 1.83E-03 | 370  | 5.3618 | 1802.1 | 37001 |
| 12   | 17.1 | 1.90E-03 | 370  | 5.3364 | 1702.8 | 33516 |
| 14   | 17.3 | 2.03E-03 | 370  | 5.5645 | 1618.3 | 30427 |
| 16   | 17.3 | 2.11E-03 | 370  | 5.6391 | 1544.5 | 27973 |
| 18   | 17.3 | 2.19E-03 | 370  | 5.7184 | 1479.7 | 25885 |
| 20   | 17.3 | 2.27E-03 | 370  | 5.8036 | 1422   | 24087 |
| 22   | 17.4 | 2.37E-03 | 370  | 5.9948 | 1370.3 | 22485 |
| 24   | 17.2 | 2.41E-03 | 370  | 5.8782 | 1323.7 | 21181 |
| 26   | 17.2 | 2.48E-03 | 370  | 5.9683 | 1281.3 | 19961 |
| 28   | 17.3 | 2.58E-03 | 370  | 6.1734 | 1242.7 | 18849 |
| 30   | 17.2 | 2.63E-03 | 370  | 6.1559 | 1206.9 | 17900 |
| 32   | 17.1 | 2.67E-03 | 370  | 6.1344 | 1174   | 17043 |
| 34   | 17.1 | 2.74E-03 | 370  | 6.2293 | 1143.6 | 16244 |
| 36   | 17   | 2.79E-03 | 370  | 6.2017 | 1115.2 | 15535 |
| 38   | 16.9 | 2.83E-03 | 370  | 6.1709 | 1088.7 | 14885 |
| 40   | 16.9 | 2.89E-03 | 370  | 6.2635 | 1063.9 | 14272 |
| 42   | 16.8 | 2.93E-03 | 370  | 6.2265 | 1040.7 | 13721 |
| 44   | 16.9 | 3.02E-03 | 370  | 6.452  | 1018.9 | 13186 |
| 46   | 16.9 | 3.09E-03 | 370  | 6.5494 | 998.24 | 12703 |
| 48   | 16.8 | 3.12E-03 | 370  | 6.5047 | 978.72 | 12265 |
| 50   | 16.8 | 3.19E-03 | 370  | 6.6011 | 960.24 | 11846 |

**Table C.9:** Results for the M777 calibre gun system with JA2 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 15.6 | 2.58E-03 | 370  | 5.0816 | 1780.4 | 38653 |
| 12   | 15.6 | 2.73E-03 | 370  | 5.1368 | 1679.5 | 34778 |
| 14   | 15.5 | 2.84E-03 | 370  | 5.0982 | 1593.1 | 31682 |
| 16   | 15.4 | 2.94E-03 | 370  | 5.0641 | 1518   | 29091 |
| 18   | 15.3 | 3.04E-03 | 370  | 5.0317 | 1451.8 | 26893 |
| 20   | 15.3 | 3.17E-03 | 370  | 5.1136 | 1394.4 | 24958 |
| 22   | 15.2 | 3.26E-03 | 370  | 5.0801 | 1342.2 | 23322 |
| 24   | 15.2 | 3.38E-03 | 370  | 5.1718 | 1295.7 | 21852 |
| 26   | 15.1 | 3.47E-03 | 370  | 5.1357 | 1253   | 20588 |
| 28   | 15   | 3.54E-03 | 370  | 5.1006 | 1213.4 | 19461 |
| 30   | 14.9 | 3.62E-03 | 370  | 5.062  | 1177.1 | 18452 |
| 32   | 14.9 | 3.73E-03 | 370  | 5.1537 | 1144.9 | 17520 |
| 34   | 14.8 | 3.80E-03 | 370  | 5.1095 | 1113.9 | 16698 |
| 36   | 14.7 | 3.86E-03 | 370  | 5.0618 | 1085.1 | 15949 |
| 38   | 14.6 | 3.92E-03 | 370  | 5.1084 | 1058.2 | 15265 |
| 40   | 14.6 | 4.02E-03 | 370  | 5.1005 | 1034.1 | 14621 |
| 42   | 14.5 | 4.07E-03 | 370  | 5.0437 | 1010.4 | 14044 |
| 44   | 14.5 | 4.17E-03 | 370  | 5.1335 | 989.27 | 13497 |
| 46   | 14.4 | 4.22E-03 | 370  | 5.0715 | 968.13 | 13004 |
| 48   | 14.4 | 4.32E-03 | 370  | 5.1606 | 949.39 | 12534 |
| 50   | 14.3 | 4.36E-03 | 370  | 5.0917 | 930.48 | 12107 |

**Table C.10:** Results for the M777 52 calibre gun system with JA2 propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 16.2 | 2.75E-03 | 370  | 5.7204 | 1781.7 | 38015 |
| 12   | 16.1 | 2.87E-03 | 370  | 5.6926 | 1681.7 | 34345 |
| 14   | 16   | 2.99E-03 | 370  | 5.6712 | 1595.8 | 31322 |
| 16   | 16   | 3.14E-03 | 370  | 5.7798 | 1521.9 | 28727 |
| 18   | 16   | 3.28E-03 | 370  | 5.9014 | 1456.7 | 26529 |
| 20   | 16.2 | 3.50E-03 | 370  | 6.3357 | 1399.1 | 24556 |
| 22   | 16   | 3.56E-03 | 370  | 6.1727 | 1347.3 | 23009 |
| 24   | 16   | 3.70E-03 | 370  | 6.3221 | 1300.7 | 21577 |
| 26   | 16   | 3.84E-03 | 370  | 6.4803 | 1258.4 | 20313 |
| 28   | 15.9 | 3.93E-03 | 370  | 6.4676 | 1219.5 | 19215 |
| 30   | 15.9 | 4.06E-03 | 370  | 6.632  | 1184   | 18206 |
| 32   | 15.9 | 4.19E-03 | 370  | 6.8041 | 1151.2 | 17298 |
| 34   | 15.8 | 4.27E-03 | 370  | 6.7809 | 1120.8 | 16496 |
| 36   | 15.7 | 4.35E-03 | 370  | 6.7498 | 1092.5 | 15765 |
| 38   | 15.7 | 4.47E-03 | 370  | 7.0279 | 1066.1 | 15079 |
| 40   | 15.6 | 4.54E-03 | 370  | 6.8849 | 1041.4 | 14466 |
| 42   | 15.6 | 4.66E-03 | 370  | 7.045  | 1018.3 | 13886 |
| 44   | 15.6 | 4.79E-03 | 370  | 7.045  | 996.54 | 13351 |
| 46   | 15.5 | 4.85E-03 | 370  | 7.045  | 976.07 | 12868 |
| 48   | 15.5 | 4.97E-03 | 370  | 7.045  | 956.59 | 12408 |
| 50   | 15.4 | 5.02E-03 | 370  | 7.045  | 938.22 | 11990 |

**Table C.11:** Results for the M777 52 calibre gun system with M31 propellant (burnout criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX  |
|------|------|----------|------|--------|--------|-------|
|      |      |          |      |        |        |       |
| 10   | 11   | 6.25E-04 | 330  | 5.1622 | 1494.3 | 39302 |
| 12   | 11.2 | 6.82E-04 | 330  | 5.0731 | 1409.6 | 34650 |
| 14   | 11.4 | 7.39E-04 | 330  | 5.0488 | 1339.7 | 30983 |
| 16   | 11.6 | 7.96E-04 | 330  | 5.0715 | 1280.7 | 28018 |
| 18   | 11.8 | 8.52E-04 | 330  | 5.1306 | 1230   | 25570 |
| 20   | 11.9 | 8.98E-04 | 330  | 5.09   | 1183.1 | 23561 |
| 22   | 12   | 9.43E-04 | 330  | 5.0717 | 1141.7 | 21845 |
| 24   | 12.1 | 9.88E-04 | 330  | 5.0729 | 1104.6 | 20362 |
| 26   | 12.2 | 1.03E-03 | 330  | 5.0861 | 1071.6 | 19067 |
| 28   | 12.3 | 1.08E-03 | 330  | 5.1146 | 1041.4 | 17927 |
| 30   | 12.4 | 1.12E-03 | 330  | 5.1551 | 1013.8 | 16916 |
| 32   | 12.4 | 1.15E-03 | 330  | 5.073  | 986.51 | 16033 |
| 34   | 12.5 | 1.20E-03 | 330  | 5.13   | 963.43 | 15220 |
| 36   | 12.5 | 1.23E-03 | 330  | 5.0624 | 939.98 | 14502 |
| 38   | 12.6 | 1.27E-03 | 330  | 5.1326 | 920.22 | 13833 |
| 40   | 12.6 | 1.30E-03 | 330  | 5.0758 | 899.9  | 13237 |
| 42   | 12.7 | 1.34E-03 | 330  | 5.1574 | 882.69 | 12677 |
| 44   | 12.7 | 1.37E-03 | 330  | 5.1099 | 864.76 | 12175 |
| 46   | 12.7 | 1.40E-03 | 330  | 5.0662 | 847.87 | 11711 |
| 48   | 12.8 | 1.44E-03 | 330  | 5.1584 | 833.84 | 11271 |
| 50   | 12.8 | 1.47E-03 | 330  | 5.1224 | 818.63 | 10872 |

**Table C.12:** Results for the M777 52 calibre gun system with M31 propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO  | VMUZ   | AMAX  |
|------|------|----------|------|-------|--------|-------|
|      |      |          |      |       |        |       |
| 10   | 13.7 | 8.68E-04 | 330  | 7.045 | 1543.8 | 36175 |
| 12   | 13.8 | 9.27E-04 | 330  | 7.045 | 1458.1 | 32280 |
| 14   | 14   | 9.96E-04 | 330  | 7.045 | 1385.8 | 29073 |
| 16   | 14.3 | 1.08E-03 | 330  | 7.045 | 1324.1 | 26389 |
| 18   | 14.4 | 1.13E-03 | 330  | 7.045 | 1269.7 | 24254 |
| 20   | 14.5 | 1.19E-03 | 330  | 7.045 | 1221.7 | 22438 |
| 22   | 14.6 | 1.25E-03 | 330  | 7.045 | 1178.9 | 20876 |
| 24   | 14.7 | 1.30E-03 | 330  | 7.045 | 1140.3 | 19517 |
| 26   | 14.8 | 1.36E-03 | 330  | 7.045 | 1105.3 | 18324 |
| 28   | 14.9 | 1.41E-03 | 330  | 7.045 | 1073.3 | 17268 |
| 30   | 15   | 1.47E-03 | 330  | 7.045 | 1044   | 16328 |
| 32   | 15   | 1.51E-03 | 330  | 7.045 | 1016.9 | 15504 |
| 34   | 15   | 1.55E-03 | 330  | 7.045 | 991.81 | 14759 |
| 36   | 15.1 | 1.60E-03 | 330  | 7.045 | 968.51 | 14067 |
| 38   | 15.1 | 1.64E-03 | 330  | 7.045 | 946.77 | 13451 |
| 40   | 15.1 | 1.67E-03 | 330  | 7.045 | 926.41 | 12887 |
| 42   | 15.1 | 1.71E-03 | 330  | 7.045 | 907.31 | 12368 |
| 44   | 15.1 | 1.75E-03 | 330  | 7.045 | 889.32 | 11890 |
| 46   | 15.2 | 1.80E-03 | 330  | 7.045 | 872.37 | 11436 |
| 48   | 15.2 | 1.83E-03 | 330  | 7.045 | 856.34 | 11026 |
| 50   | 15.2 | 1.87E-03 | 330  | 7.045 | 841.14 | 10644 |

**Table C.13:** Results for the LG1 27 calibre gun system with LCT propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.13 | 8.81E-04 | 390  | 1.5816 | 873.8  | 31905  |
| 12   | 2.12 | 9.46E-04 | 390  | 1.5761 | 799.94 | 27039  |
| 14   | 2.12 | 1.01E-03 | 390  | 1.5884 | 742.82 | 23453  |
| 16   | 2.11 | 1.07E-03 | 390  | 1.5807 | 695.06 | 20713  |
| 18   | 2.1  | 1.12E-03 | 390  | 1.5722 | 654.97 | 18546  |
| 20   | 2.1  | 1.17E-03 | 390  | 1.5835 | 621.94 | 16786  |
| 22   | 2.09 | 1.22E-03 | 390  | 1.575  | 591.8  | 15334  |
| 24   | 2.09 | 1.27E-03 | 390  | 1.5879 | 566.31 | 14111  |
| 26   | 2.08 | 1.30E-03 | 390  | 1.5761 | 543.11 | 13070  |
| 28   | 2.08 | 1.35E-03 | 390  | 1.5887 | 522.86 | 12171  |
| 30   | 2.07 | 1.38E-03 | 390  | 1.5766 | 503.99 | 11389  |
| 32   | 2.07 | 1.43E-03 | 390  | 1.5881 | 487.43 | 10700  |
| 34   | 2.06 | 1.46E-03 | 390  | 1.5738 | 471.84 | 10091  |
| 36   | 2.06 | 1.50E-03 | 390  | 1.5862 | 457.8  | 9546.3 |
| 38   | 2.05 | 1.53E-03 | 390  | 1.5718 | 444.41 | 9058.6 |
| 40   | 2.05 | 1.56E-03 | 390  | 1.5831 | 432.51 | 8617.2 |
| 42   | 2.05 | 1.60E-03 | 390  | 1.5948 | 421.45 | 8216.8 |
| 44   | 2.04 | 1.62E-03 | 390  | 1.577  | 410.77 | 7852.9 |
| 46   | 2.04 | 1.66E-03 | 390  | 1.5893 | 401    | 7519.1 |
| 48   | 2.03 | 1.68E-03 | 390  | 1.5717 | 391.46 | 7213.2 |
| 50   | 2.03 | 1.71E-03 | 390  | 1.5828 | 382.89 | 6930.5 |

**Table C.14:** Results for the LG1 27 calibre gun system with LCT propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
| 1.0  | 0.41 | 1 050 00 | 200  | 0.0700 | 001.07 | 01500  |
| 10   | 2.41 | 1.05E-03 | 390  | 2.2702 | 891.27 | 31509  |
| 12   | 2.4  | 1.13E-03 | 390  | 2.2907 | 817.21 | 26754  |
| 14   | 2.41 | 1.21E-03 | 390  | 2.3763 | 758.36 | 23231  |
| 16   | 2.42 | 1.30E-03 | 390  | 2.4659 | 710.15 | 20528  |
| 18   | 2.39 | 1.34E-03 | 390  | 2.4047 | 669.63 | 18407  |
| 20   | 2.41 | 1.43E-03 | 390  | 2.5327 | 635.05 | 16664  |
| 22   | 2.4  | 1.48E-03 | 390  | 2.5439 | 604.88 | 15233  |
| 24   | 2.38 | 1.52E-03 | 390  | 2.5067 | 578.5  | 14030  |
| 26   | 2.38 | 1.58E-03 | 390  | 2.5532 | 555.07 | 12999  |
| 28   | 2.37 | 1.63E-03 | 390  | 2.5527 | 534.17 | 12111  |
| 30   | 2.37 | 1.68E-03 | 390  | 2.5979 | 515.15 | 11335  |
| 32   | 2.34 | 1.70E-03 | 390  | 2.5023 | 497.87 | 10657  |
| 34   | 2.37 | 1.79E-03 | 390  | 2.6883 | 482.1  | 10047  |
| 36   | 2.35 | 1.81E-03 | 390  | 2.6312 | 467.65 | 9509.4 |
| 38   | 2.32 | 1.82E-03 | 390  | 2.5244 | 454.31 | 9027.7 |
| 40   | 2.33 | 1.88E-03 | 390  | 2.6115 | 441.94 | 8588.2 |
| 42   | 2.32 | 1.91E-03 | 390  | 2.6003 | 430.38 | 8191.4 |
| 44   | 2.34 | 1.98E-03 | 390  | 2.7426 | 419.67 | 7827.1 |
| 46   | 2.3  | 1.97E-03 | 390  | 2.5694 | 409.57 | 7498.5 |
| 48   | 2.31 | 2.03E-03 | 390  | 2.6571 | 400.16 | 7192.8 |
| 50   | 2.32 | 2.08E-03 | 390  | 2.7499 | 391.23 | 6911.1 |

**Table C.15:** Results for the LG1 27 calibre gun system with JA2 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX   | X@BO   | VMUZ   | AMAX   |
|------|------|----------|--------|--------|--------|--------|
|      |      |          |        |        |        |        |
| 10   | 2.03 | 1.37E-03 | 330    | 1.5923 | 844.8  | 27075  |
| 12   | 2.02 | 1.48E-03 | 330    | 1.5811 | 773.49 | 22930  |
| 14   | 2.01 | 1.57E-03 | 330    | 1.5683 | 717.57 | 19886  |
| 16   | 2.01 | 1.67E-03 | 330    | 1.5866 | 671.76 | 17551  |
| 18   | 2    | 1.76E-03 | 330    | 1.5782 | 632.74 | 15710  |
| 20   | 2    | 1.85E-03 | 330.01 | 1.5953 | 600.51 | 14215  |
| 22   | 1.99 | 1.92E-03 | 330    | 1.5865 | 571.52 | 12983  |
| 24   | 1.98 | 1.99E-03 | 330    | 1.5765 | 546.11 | 11948  |
| 26   | 1.98 | 2.07E-03 | 330    | 1.5953 | 524.27 | 11063  |
| 28   | 1.97 | 2.13E-03 | 330    | 1.5839 | 504.06 | 10302  |
| 30   | 1.96 | 2.19E-03 | 330    | 1.5738 | 485.54 | 9639.4 |
| 32   | 1.96 | 2.26E-03 | 330    | 1.592  | 469.59 | 9055.3 |
| 34   | 1.95 | 2.32E-03 | 330    | 1.5781 | 454.45 | 8538.9 |
| 36   | 1.94 | 2.37E-03 | 330    | 1.5657 | 440.26 | 8078.6 |
| 38   | 1.94 | 2.43E-03 | 330    | 1.5834 | 427.93 | 7664.1 |
| 40   | 1.93 | 2.48E-03 | 330.01 | 1.569  | 415.82 | 7291.3 |
| 42   | 1.93 | 2.54E-03 | 330    | 1.5861 | 405.25 | 6952   |
| 44   | 1.92 | 2.58E-03 | 330    | 1.5711 | 394.63 | 6643.5 |
| 46   | 1.92 | 2.64E-03 | 330    | 1.5885 | 385.34 | 6360.9 |
| 48   | 1.91 | 2.67E-03 | 330    | 1.5703 | 376.15 | 6101.8 |
| 50   | 1.91 | 2.73E-03 | 330    | 1.5879 | 367.91 | 5862.4 |

**Table C.16:** Results for the LG1 27 calibre gun system with JA2 propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.34 | 1.70E-03 | 330  | 2.6535 | 862.61 | 26703  |
| 12   | 2.29 | 1.78E-03 | 330  | 2.4974 | 790.67 | 22697  |
| 14   | 2.28 | 1.90E-03 | 330  | 2.5254 | 733.27 | 19711  |
| 16   | 2.28 | 2.03E-03 | 330  | 2.602  | 686.4  | 17414  |
| 18   | 2.28 | 2.15E-03 | 330  | 2.6843 | 646.79 | 15596  |
| 20   | 2.29 | 2.29E-03 | 330  | 2.788  | 612.96 | 14119  |
| 22   | 2.27 | 2.36E-03 | 330  | 2.788  | 583.7  | 12905  |
| 24   | 2.25 | 2.44E-03 | 330  | 2.7464 | 558    | 11884  |
| 26   | 2.24 | 2.52E-03 | 330  | 2.7612 | 535.09 | 11011  |
| 28   | 2.22 | 2.58E-03 | 330  | 2.7056 | 514.62 | 10259  |
| 30   | 2.22 | 2.67E-03 | 330  | 2.7803 | 496.1  | 9599.5 |
| 32   | 2.21 | 2.74E-03 | 330  | 2.7849 | 479.32 | 9021.3 |
| 34   | 2.2  | 2.81E-03 | 330  | 2.7873 | 464.01 | 8508.8 |
| 36   | 2.2  | 2.90E-03 | 330  | 2.788  | 449.85 | 8050.5 |
| 38   | 2.19 | 2.96E-03 | 330  | 2.788  | 436.8  | 7639.9 |
| 40   | 2.19 | 3.05E-03 | 330  | 2.788  | 424.75 | 7268.3 |
| 42   | 2.18 | 3.10E-03 | 330  | 2.788  | 413.54 | 6932   |
| 44   | 2.17 | 3.16E-03 | 330  | 2.788  | 403.05 | 6625.4 |
| 46   | 2.17 | 3.23E-03 | 330  | 2.788  | 393.24 | 6344.1 |
| 48   | 2.16 | 3.28E-03 | 330  | 2.788  | 384.02 | 6086.3 |
| 50   | 2.14 | 3.30E-03 | 330  | 2.788  | 375.39 | 5849.3 |

**Table C.17:** Results for the LG1 27 calibre gun system with M31 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 1.92 | 5.82E-04 | 330  | 1.5762 | 771.21 | 27215  |
| 12   | 1.93 | 6.35E-04 | 330  | 1.5897 | 707.58 | 23013  |
| 14   | 1.93 | 6.79E-04 | 330  | 1.5864 | 657.22 | 19942  |
| 16   | 1.93 | 7.21E-04 | 330  | 1.5856 | 615.45 | 17594  |
| 18   | 1.93 | 7.60E-04 | 330  | 1.5849 | 580.66 | 15740  |
| 20   | 1.93 | 7.97E-04 | 330  | 1.5845 | 551.05 | 14240  |
| 22   | 1.93 | 8.33E-04 | 330  | 1.5842 | 525.47 | 13001  |
| 24   | 1.93 | 8.66E-04 | 330  | 1.5852 | 502.7  | 11961  |
| 26   | 1.93 | 8.98E-04 | 330  | 1.5856 | 482.77 | 11074  |
| 28   | 1.93 | 9.29E-04 | 330  | 1.5864 | 464.89 | 10310  |
| 30   | 1.93 | 9.59E-04 | 330  | 1.5878 | 448.63 | 9644.6 |
| 32   | 1.93 | 9.87E-04 | 330  | 1.5887 | 434    | 9059.8 |
| 34   | 1.93 | 1.01E-03 | 330  | 1.5902 | 420.54 | 8541.9 |
| 36   | 1.93 | 1.04E-03 | 330  | 1.5913 | 408.3  | 8080   |
| 38   | 1.93 | 1.07E-03 | 330  | 1.5929 | 396.9  | 7665.5 |
| 40   | 1.93 | 1.09E-03 | 330  | 1.5947 | 386.32 | 7291.5 |
| 42   | 1.92 | 1.11E-03 | 330  | 1.5748 | 375.96 | 6953   |
| 44   | 1.92 | 1.13E-03 | 330  | 1.5761 | 366.88 | 6643.9 |
| 46   | 1.92 | 1.16E-03 | 330  | 1.5779 | 358.28 | 6361   |
| 48   | 1.92 | 1.18E-03 | 330  | 1.5794 | 350.26 | 6101.3 |
| 50   | 1.92 | 1.20E-03 | 330  | 1.5813 | 342.67 | 5862   |

**Table C.18:** Results for the LG1 27 calibre gun system with M31 propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX   | X@BO   | VMUZ   | AMAX   |
|------|------|----------|--------|--------|--------|--------|
| 10   | 9.4  | 8.26E-04 | 330    | 2.5697 | 001 00 | 26632  |
|      | 2.4  |          |        |        | 801.88 |        |
| 12   | 2.39 | 8.85E-04 | 330    | 2.5804 | 734.92 | 22611  |
| 14   | 2.38 | 9.39E-04 | 330    | 2.5863 | 681.92 | 19645  |
| 16   | 2.4  | 1.01E-03 | 330    | 2.6771 | 638.44 | 17352  |
| 18   | 2.39 | 1.06E-03 | 330    | 2.6779 | 602.14 | 15550  |
| 20   | 2.37 | 1.09E-03 | 330    | 2.645  | 571.04 | 14091  |
| 22   | 2.38 | 1.15E-03 | 330    | 2.7036 | 544.06 | 12874  |
| 24   | 2.37 | 1.18E-03 | 329.99 | 2.6966 | 520.5  | 11855  |
| 26   | 2.36 | 1.22E-03 | 330    | 2.6881 | 499.47 | 10985  |
| 28   | 2.38 | 1.28E-03 | 330    | 2.7792 | 480.71 | 10229  |
| 30   | 2.35 | 1.29E-03 | 330    | 2.6989 | 463.75 | 9578.5 |
| 32   | 2.35 | 1.33E-03 | 330    | 2.7195 | 448.42 | 9001.5 |
| 34   | 2.35 | 1.37E-03 | 330    | 2.74   | 434.35 | 8489.9 |
| 36   | 2.35 | 1.40E-03 | 330    | 2.7599 | 421.44 | 8033.4 |
| 38   | 2.33 | 1.42E-03 | 330    | 2.7067 | 409.53 | 7625.5 |
| 40   | 2.34 | 1.46E-03 | 330    | 2.7617 | 398.46 | 7254.3 |
| 42   | 2.32 | 1.47E-03 | 330    | 2.7052 | 388.22 | 6920.1 |
| 44   | 2.32 | 1.50E-03 | 330    | 2.7221 | 378.62 | 6613.7 |
| 46   | 2.31 | 1.52E-03 | 330    | 2.7005 | 369.69 | 6334.1 |
| 48   | 2.32 | 1.57E-03 | 330    | 2.7545 | 361.25 | 6075.8 |
| 50   | 2.31 | 1.58E-03 | 330    | 2.7318 | 353.32 | 5838.9 |

**Table C.19:** Results for the LG1 52 calibre gun system with LCT propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.57 | 1.17E-03 | 390  | 2.839  | 988.06 | 31288  |
| 12   | 2.59 | 1.28E-03 | 390  | 3.0278 | 905.86 | 26565  |
| 14   | 2.57 | 1.35E-03 | 390  | 3.0304 | 840.83 | 23111  |
| 16   | 2.57 | 1.44E-03 | 390  | 3.1246 | 787.09 | 20440  |
| 18   | 2.56 | 1.51E-03 | 390  | 3.1663 | 742.11 | 18327  |
| 20   | 2.54 | 1.56E-03 | 390  | 3.1445 | 703.75 | 16614  |
| 22   | 2.52 | 1.61E-03 | 390  | 3.1173 | 670.33 | 15194  |
| 24   | 2.53 | 1.69E-03 | 390  | 3.2532 | 640.99 | 13989  |
| 26   | 2.52 | 1.74E-03 | 390  | 3.2737 | 614.92 | 12966  |
| 28   | 2.52 | 1.81E-03 | 390  | 3.352  | 591.58 | 12080  |
| 30   | 2.51 | 1.85E-03 | 390  | 3.3651 | 570.51 | 11310  |
| 32   | 2.49 | 1.89E-03 | 390  | 3.312  | 551.34 | 10633  |
| 34   | 2.48 | 1.93E-03 | 390  | 3.3156 | 533.91 | 10031  |
| 36   | 2.48 | 1.99E-03 | 390  | 3.385  | 517.78 | 9493   |
| 38   | 2.48 | 2.04E-03 | 390  | 3.455  | 502.93 | 9009.4 |
| 40   | 2.47 | 2.08E-03 | 390  | 3.4515 | 489.22 | 8573.7 |
| 42   | 2.46 | 2.11E-03 | 390  | 3.4481 | 476.36 | 8178.3 |
| 44   | 2.45 | 2.15E-03 | 390  | 3.4384 | 464.42 | 7817.7 |
| 46   | 2.45 | 2.20E-03 | 390  | 3.5022 | 453.24 | 7486.7 |
| 48   | 2.44 | 2.23E-03 | 390  | 3.4894 | 442.73 | 7183.4 |
| 50   | 2.44 | 2.27E-03 | 390  | 3.5515 | 432.85 | 6903   |

**Table C.20:** Results for the LG1 52 calibre gun system with JA2 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.47 | 1.87E-03 | 330  | 3.3966 | 954.65 | 26550  |
| 12   | 2.44 | 1.99E-03 | 330  | 3.3532 | 874.76 | 22570  |
| 14   | 2.42 | 2.12E-03 | 330  | 3.3628 | 811.14 | 19621  |
| 16   | 2.4  | 2.23E-03 | 330  | 3.3597 | 758.96 | 17353  |
| 18   | 2.39 | 2.34E-03 | 330  | 3.4228 | 715.16 | 15552  |
| 20   | 2.39 | 2.48E-03 | 330  | 3.5652 | 677.65 | 14086  |
| 22   | 2.38 | 2.58E-03 | 330  | 3.621  | 645.21 | 12875  |
| 24   | 2.36 | 2.66E-03 | 330  | 3.5815 | 616.59 | 11858  |
| 26   | 2.36 | 2.78E-03 | 330  | 3.7196 | 591.18 | 10986  |
| 28   | 2.35 | 2.87E-03 | 330  | 3.761  | 568.41 | 10236  |
| 30   | 2.33 | 2.93E-03 | 330  | 3.6954 | 547.88 | 9582.6 |
| 32   | 2.32 | 3.01E-03 | 330  | 3.7239 | 529.19 | 9006.5 |
| 34   | 2.32 | 3.11E-03 | 330  | 3.8533 | 512.18 | 8494.5 |
| 36   | 2.31 | 3.18E-03 | 330  | 3.8749 | 496.48 | 8038.7 |
| 38   | 2.29 | 3.23E-03 | 330  | 3.7786 | 482.01 | 7630.2 |
| 40   | 2.3  | 3.35E-03 | 330  | 4.0209 | 468.59 | 7258.7 |
| 42   | 2.29 | 3.42E-03 | 330  | 4.0297 | 456.13 | 6923.2 |
| 44   | 2.27 | 3.45E-03 | 330  | 3.9109 | 444.51 | 6618.1 |
| 46   | 2.27 | 3.53E-03 | 330  | 4.0334 | 433.6  | 6337.4 |
| 48   | 2.26 | 3.59E-03 | 330  | 4.0281 | 423.39 | 6080.2 |
| 50   | 2.26 | 3.68E-03 | 330  | 4.1509 | 413.76 | 5842.4 |

**Table C.21:** Results for the LG1 52 calibre gun system with M31 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.67 | 1.00E-03 | 330  | 3.3956 | 886.14 | 26310  |
| 12   | 2.66 | 1.07E-03 | 330  | 3.4415 | 812.27 | 22378  |
| 14   | 2.64 | 1.13E-03 | 330  | 3.4403 | 753.49 | 19475  |
| 16   | 2.64 | 1.20E-03 | 330  | 3.5078 | 705.57 | 17229  |
| 18   | 2.63 | 1.25E-03 | 330  | 3.531  | 665.23 | 15451  |
| 20   | 2.62 | 1.30E-03 | 330  | 3.5482 | 630.87 | 14006  |
| 22   | 2.6  | 1.34E-03 | 330  | 3.5181 | 600.98 | 12811  |
| 24   | 2.6  | 1.39E-03 | 330  | 3.5692 | 574.77 | 11799  |
| 26   | 2.58 | 1.42E-03 | 330  | 3.5289 | 551.55 | 10939  |
| 28   | 2.58 | 1.47E-03 | 330  | 3.5739 | 530.78 | 10193  |
| 30   | 2.57 | 1.51E-03 | 330  | 3.5717 | 511.97 | 9543.3 |
| 32   | 2.56 | 1.54E-03 | 330  | 3.5666 | 494.91 | 8971.6 |
| 34   | 2.55 | 1.58E-03 | 330  | 3.5588 | 479.35 | 8464.5 |
| 36   | 2.56 | 1.63E-03 | 330  | 3.6449 | 465.02 | 8009.5 |
| 38   | 2.54 | 1.65E-03 | 330  | 3.5846 | 451.8  | 7603.9 |
| 40   | 2.55 | 1.70E-03 | 330  | 3.6696 | 439.58 | 7234.6 |
| 42   | 2.53 | 1.71E-03 | 330  | 3.604  | 428.2  | 6902.1 |
| 44   | 2.54 | 1.76E-03 | 330  | 3.688  | 417.6  | 6596.5 |
| 46   | 2.53 | 1.79E-03 | 330  | 3.6696 | 407.63 | 6318.2 |
| 48   | 2.53 | 1.82E-03 | 330  | 3.7015 | 398.31 | 6061.9 |
| 50   | 2.51 | 1.83E-03 | 330  | 3.6273 | 389.53 | 5826.7 |

**Table C.22:** Results for the C3 27 calibre gun system with LCT propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.28 | 9.71E-04 | 390  | 1.9183 | 900.54 | 31544  |
| 12   | 2.27 | 1.04E-03 | 390  | 1.9243 | 825.16 | 26760  |
| 14   | 2.25 | 1.10E-03 | 390  | 1.9005 | 764.77 | 23244  |
| 16   | 2.25 | 1.17E-03 | 390  | 1.9276 | 716.53 | 20533  |
| 18   | 2.23 | 1.22E-03 | 390  | 1.8977 | 674.91 | 18397  |
| 20   | 2.22 | 1.27E-03 | 390  | 1.8939 | 639.78 | 16660  |
| 22   | 2.22 | 1.33E-03 | 390  | 1.9193 | 609.73 | 15220  |
| 24   | 2.21 | 1.37E-03 | 390  | 1.9122 | 582.96 | 14011  |
| 26   | 2.2  | 1.41E-03 | 390  | 1.9048 | 559.09 | 12981  |
| 28   | 2.2  | 1.46E-03 | 390  | 1.9265 | 538.24 | 12089  |
| 30   | 2.19 | 1.50E-03 | 390  | 1.917  | 518.89 | 11314  |
| 32   | 2.18 | 1.54E-03 | 390  | 1.9061 | 501.34 | 10633  |
| 34   | 2.18 | 1.58E-03 | 390  | 1.926  | 485.73 | 10027  |
| 36   | 2.17 | 1.61E-03 | 390  | 1.9143 | 470.84 | 9487.8 |
| 38   | 2.16 | 1.65E-03 | 390  | 1.8991 | 457.29 | 9003.7 |
| 40   | 2.16 | 1.69E-03 | 390  | 1.9192 | 444.92 | 8565.6 |
| 42   | 2.15 | 1.71E-03 | 390  | 1.904  | 433.05 | 8169.1 |
| 44   | 2.15 | 1.75E-03 | 390  | 1.9219 | 422.44 | 7806.8 |
| 46   | 2.14 | 1.78E-03 | 390  | 1.9049 | 412.08 | 7476.1 |
| 48   | 2.14 | 1.81E-03 | 390  | 1.9223 | 402.74 | 7171.5 |
| 50   | 2.13 | 1.84E-03 | 390  | 1.9038 | 393.6  | 6891.5 |

**Table C.23:** Results for the C3 27 calibre gun system with LCT propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.46 | 1.09E-03 | 390  | 2.4399 | 907.72 | 31293  |
| 12   | 2.45 | 1.17E-03 | 390  | 2.4698 | 832.1  | 26580  |
| 14   | 2.45 | 1.25E-03 | 390  | 2.5327 | 772.07 | 23093  |
| 16   | 2.43 | 1.31E-03 | 390  | 2.5159 | 722.84 | 20426  |
| 18   | 2.43 | 1.38E-03 | 390  | 2.5726 | 681.62 | 18303  |
| 20   | 2.4  | 1.42E-03 | 390  | 2.5036 | 646.42 | 16590  |
| 22   | 2.42 | 1.51E-03 | 390  | 2.6414 | 615.84 | 15155  |
| 24   | 2.41 | 1.56E-03 | 390  | 2.6498 | 588.93 | 13956  |
| 26   | 2.4  | 1.61E-03 | 390  | 2.6556 | 565.05 | 12933  |
| 28   | 2.4  | 1.67E-03 | 390  | 2.7072 | 543.55 | 12048  |
| 30   | 2.39 | 1.71E-03 | 390  | 2.7075 | 524.32 | 11278  |
| 32   | 2.39 | 1.77E-03 | 390  | 2.7566 | 506.72 | 10599  |
| 34   | 2.36 | 1.78E-03 | 390  | 2.6524 | 490.69 | 10001  |
| 36   | 2.36 | 1.83E-03 | 390  | 2.6962 | 475.92 | 9463.8 |
| 38   | 2.34 | 1.86E-03 | 390  | 2.6372 | 462.28 | 8983.2 |
| 40   | 2.35 | 1.92E-03 | 390  | 2.7303 | 449.69 | 8546.1 |
| 42   | 2.35 | 1.96E-03 | 390  | 2.773  | 438    | 8150.4 |
| 44   | 2.33 | 1.98E-03 | 390  | 2.705  | 427.02 | 7791.4 |
| 46   | 2.34 | 2.04E-03 | 390  | 2.8012 | 416.79 | 7460.4 |
| 48   | 2.33 | 2.07E-03 | 390  | 2.7855 | 407.12 | 7157.8 |
| 50   | 2.33 | 2.11E-03 | 390  | 2.8247 | 398.12 | 6878.1 |

**Table C.24:** Results for the C3 27 calibre gun system with JA2 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX   | X@BO   | VMUZ   | AMAX   |
|------|------|----------|--------|--------|--------|--------|
| 1.0  | 0.15 | 1 400 00 | 990    | 1 0046 | 060.07 | 00004  |
| 10   | 2.15 | 1.49E-03 | 330    | 1.9246 | 869.87 | 26804  |
| 12   | 2.14 | 1.61E-03 | 330    | 1.9252 | 796.85 | 22719  |
| 14   | 2.13 | 1.72E-03 | 330    | 1.9247 | 739.11 | 19715  |
| 16   | 2.11 | 1.80E-03 | 329.99 | 1.8915 | 690.72 | 17417  |
| 18   | 2.1  | 1.90E-03 | 330    | 1.8903 | 650.78 | 15596  |
| 20   | 2.09 | 1.98E-03 | 330    | 1.8876 | 616.69 | 14119  |
| 22   | 2.08 | 2.06E-03 | 330    | 1.8844 | 587.01 | 12898  |
| 24   | 2.08 | 2.15E-03 | 330    | 1.916  | 561.72 | 11868  |
| 26   | 2.07 | 2.22E-03 | 330    | 1.9111 | 538.46 | 10993  |
| 28   | 2.06 | 2.29E-03 | 330    | 1.9045 | 517.64 | 10239  |
| 30   | 2.05 | 2.35E-03 | 330    | 1.8955 | 498.96 | 9580.6 |
| 32   | 2.05 | 2.43E-03 | 330    | 1.9275 | 482.39 | 9000.8 |
| 34   | 2.04 | 2.49E-03 | 330    | 1.916  | 466.86 | 8488.3 |
| 36   | 2.03 | 2.55E-03 | 330    | 1.9055 | 452.37 | 8031.2 |
| 38   | 2.02 | 2.60E-03 | 330    | 1.892  | 439.14 | 7620.7 |
| 40   | 2.02 | 2.67E-03 | 330    | 1.9224 | 427.24 | 7249.2 |
| 42   | 2.01 | 2.71E-03 | 329.99 | 1.907  | 415.79 | 6913   |
| 44   | 2    | 2.76E-03 | 330    | 1.891  | 405.04 | 6606.8 |
| 46   | 2    | 2.82E-03 | 330    | 1.9188 | 395.48 | 6325.8 |
| 48   | 1.99 | 2.86E-03 | 330    | 1.9012 | 385.96 | 6068.4 |
| 50   | 1.99 | 2.93E-03 | 330    | 1.9288 | 377.5  | 5830.5 |

**Table C.25:** Results for the C3 27 calibre gun system with JA2 propellant (muzzle velocity criterion).

| PRWT            | CHWT                | WEB                  | PMAX | X@BO            | VMUZ   | AMAX          |
|-----------------|---------------------|----------------------|------|-----------------|--------|---------------|
| 10              | 2.35                | 1.72E-03             | 330  | 2.7159          | 878.53 | 26567         |
| 12              | $\frac{2.33}{2.33}$ | 1.72E-03<br>1.84E-03 | 330  | 2.7103 $2.7077$ | 805.22 | 20507 $22557$ |
| $\overline{14}$ | 2.32                | 1.97E-03             | 330  | 2.7484          | 746.64 | 19593         |
| 16              | 2.31                | 2.09E-03             | 330  | 2.7914          | 698.8  | 17317         |
| 18              | 2.31                | 2.21E-03             | 330  | 2.88            | 658.48 | 15511         |
| 20              | 2.28                | 2.28E-03             | 330  | 2.785           | 624.13 | 14056         |
| 22              | 2.27                | 2.38E-03             | 330  | 2.8131          | 594.2  | 12845         |
| 24              | 2.27                | 2.49E-03             | 330  | 2.8971          | 567.96 | 11824         |
| 26              | 2.25                | 2.55E-03             | 330  | 2.8457          | 544.72 | 10957         |
| 28              | 2.24                | 2.63E-03             | 330  | 2.86            | 523.79 | 10207         |
| 30              | 2.23                | 2.71E-03             | 330  | 2.8702          | 504.93 | 9553.2        |
| 32              | 2.22                | 2.78E-03             | 330  | 2.8767          | 487.82 | 8977.9        |
| 34              | 2.22                | 2.87E-03             | 330  | 2.9581          | 472.12 | 8466.9        |
| 36              | 2.21                | 2.94E-03             | 330  | 2.9593          | 457.78 | 8011.8        |
| 38              | 2.21                | 3.03E-03             | 330  | 3.0407          | 444.47 | 7602.3        |
| 40              | 2.2                 | 3.09E-03             | 330  | 3.0377          | 432.17 | 7233.5        |
| 42              | 2.2                 | 3.17E-03             | 330  | 3.111           | 420.77 | 6898          |
| 44              | 2.18                | 3.20E-03             | 330  | 3.0219          | 410.07 | 6593.7        |
| 46              | 2.18                | 3.28E-03             | 330  | 3.111           | 400.11 | 6313.9        |
| 48              | 2.18                | 3.36E-03             | 330  | 3.111           | 390.71 | 6056.7        |
| 50              | 2.18                | 3.44E-03             | 330  | 3.111           | 381.86 | 5819.8        |

**Table C.26:** Results for the C3 27 calibre gun system with M31 propellant (burn-out criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.1  | 6.68E-04 | 330  | 1.9007 | 799.37 | 26869  |
| 12   | 2.1  | 7.23E-04 | 330  | 1.9082 | 733    | 22757  |
| 14   | 2.1  | 7.73E-04 | 330  | 1.9152 | 680.69 | 19737  |
| 16   | 2.09 | 8.14E-04 | 330  | 1.9022 | 636.75 | 17430  |
| 18   | 2.09 | 8.58E-04 | 330  | 1.9092 | 600.81 | 15602  |
| 20   | 2.09 | 8.99E-04 | 330  | 1.9166 | 570.01 | 14120  |
| 22   | 2.08 | 9.32E-04 | 330  | 1.9007 | 542.83 | 12899  |
| 24   | 2.08 | 9.69E-04 | 330  | 1.9072 | 519.46 | 11869  |
| 26   | 2.08 | 1.00E-03 | 330  | 1.9135 | 498.77 | 10992  |
| 28   | 2.08 | 1.04E-03 | 330  | 1.9194 | 480.3  | 10236  |
| 30   | 2.08 | 1.07E-03 | 330  | 1.9261 | 463.45 | 9576.4 |
| 32   | 2.07 | 1.10E-03 | 330  | 1.9074 | 447.82 | 8998.5 |
| 34   | 2.07 | 1.13E-03 | 330  | 1.9134 | 433.9  | 8485.1 |
| 36   | 2.07 | 1.16E-03 | 330  | 1.919  | 421.17 | 8027.3 |
| 38   | 2.07 | 1.19E-03 | 330  | 1.9246 | 409.41 | 7616.1 |
| 40   | 2.06 | 1.20E-03 | 330  | 1.9041 | 398.14 | 7246   |
| 42   | 2.06 | 1.23E-03 | 330  | 1.9096 | 387.98 | 6909.4 |
| 44   | 2.06 | 1.26E-03 | 330  | 1.915  | 378.49 | 6602.7 |
| 46   | 2.06 | 1.28E-03 | 330  | 1.9201 | 369.65 | 6322   |
| 48   | 2.06 | 1.31E-03 | 330  | 1.9253 | 361.34 | 6064.2 |
| 50   | 2.05 | 1.32E-03 | 330  | 1.9034 | 353.14 | 5827.2 |

**Table C.27:** Results for the C3 27 calibre gun system with M31 propellant (muzzle velocity criterion).

| PRWT | CHWT | WEB      | PMAX | X@BO   | VMUZ   | AMAX   |
|------|------|----------|------|--------|--------|--------|
|      |      |          |      |        |        |        |
| 10   | 2.46 | 8.66E-04 | 330  | 2.7404 | 816.2  | 26436  |
| 12   | 2.46 | 9.34E-04 | 330  | 2.7868 | 748.11 | 22445  |
| 14   | 2.45 | 9.91E-04 | 330  | 2.8033 | 694.01 | 19508  |
| 16   | 2.41 | 1.02E-03 | 330  | 2.7154 | 649.78 | 17266  |
| 18   | 2.42 | 1.08E-03 | 330  | 2.7806 | 612.7  | 15465  |
| 20   | 2.42 | 1.13E-03 | 330  | 2.8129 | 581.17 | 14008  |
| 22   | 2.41 | 1.18E-03 | 330  | 2.8111 | 553.64 | 12805  |
| 24   | 2.39 | 1.21E-03 | 330  | 2.7719 | 529.61 | 11795  |
| 26   | 2.38 | 1.24E-03 | 330  | 2.764  | 508.24 | 10930  |
| 28   | 2.4  | 1.30E-03 | 330  | 2.8596 | 489.12 | 10178  |
| 30   | 2.39 | 1.33E-03 | 330  | 2.8489 | 471.89 | 9527.5 |
| 32   | 2.39 | 1.37E-03 | 330  | 2.8732 | 456.21 | 8953.8 |
| 34   | 2.39 | 1.41E-03 | 330  | 2.897  | 441.87 | 8445.3 |
| 36   | 2.37 | 1.43E-03 | 330  | 2.8442 | 428.72 | 7993.7 |
| 38   | 2.37 | 1.46E-03 | 330  | 2.8653 | 416.6  | 7585.9 |
| 40   | 2.37 | 1.50E-03 | 330  | 2.886  | 405.37 | 7217.7 |
| 42   | 2.37 | 1.53E-03 | 330  | 2.9062 | 394.94 | 6883.5 |
| 44   | 2.37 | 1.57E-03 | 330  | 2.9262 | 385.18 | 6579.1 |
| 46   | 2.34 | 1.56E-03 | 330  | 2.8256 | 376.05 | 6302.4 |
| 48   | 2.35 | 1.61E-03 | 330  | 2.8836 | 367.47 | 6045.5 |
| 50   | 2.35 | 1.64E-03 | 330  | 2.9012 | 359.43 | 5809.3 |

This page intentionally left blank.

# **Distribution list**

DRDC Valcartier TM 2007-350

### Internal distribution

- 1 Vincent Tanguay (author)
- 1 DG
- 1 C/ME
- 1 Frank Wong
- 1 Nicolas Hamel
- 1 Louis-Simon Lussier
- 3 Document Library

Total internal copies: 9

#### **External distribution**

### **Department of National Defence**

- Director Research and Development Knowledge and Information Management Constitution Bldg. 305 Rideau St.
  - Ottawa, ON, K1A OK2
- 2 Director Land Requirement 2 Louis St-Laurent Bldg.
  - 555 de la Carrire Blvd.
  - Gatineau, QC, K1A OK2
- Director Science and Technology (Land) 5 Constitution Bldg.

305 Rideau St.

Ottawa, ON, K1A OK2

Total external copies: 5

**Total copies: 14** 

This page intentionally left blank.

|      | DOCUMENT CONTROL DATA  (Security classification of title, body of abstract and indexing annotation must be entered when document is classified)                                                                                                                                                   |                                                                                                                                      |                                              |                                                                               |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| 1.   | ORIGINATOR (The name and address of the organization preparidocument. Organizations for whom the document was prepared, esponsoring a contractor's report, or tasking agency, are entered in                                                                                                      | ng the<br>e.g. Centre                                                                                                                | SECURITY CLA     security classifie          | ASSIFICATION (Overall cation of the document al warning terms if applicable.) |  |  |  |
|      | Defence R&D Canada – Valcartier                                                                                                                                                                                                                                                                   |                                                                                                                                      | UNCLASS                                      | IFIED                                                                         |  |  |  |
|      | 2459 Pie-XI Blvd. North, Qubec, Qubec, Cana<br>G3J 1X5                                                                                                                                                                                                                                            | ada                                                                                                                                  |                                              |                                                                               |  |  |  |
|      | G50 1/3                                                                                                                                                                                                                                                                                           |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 3.   | <ol> <li>TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate<br/>abbreviation (S, C or U) in parentheses after the title.)</li> </ol>                                                                                    |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      | Parametric study on the interior ballistics of 105 and 155 mm artillery guns                                                                                                                                                                                                                      |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 4.   | 4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)                                                                                                                                                                                                                |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      | Tanguay, V.                                                                                                                                                                                                                                                                                       |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 5.   | DATE OF PUBLICATION (Month and year of publication of document.)                                                                                                                                                                                                                                  | 6a. NO. OF I<br>containin<br>Include A<br>Appendid                                                                                   | ng information.<br>Annexes,                  | 6b. NO. OF REFS (Total cited in document.)                                    |  |  |  |
|      | March 2008                                                                                                                                                                                                                                                                                        | 58                                                                                                                                   |                                              | 5                                                                             |  |  |  |
| 7.   | 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)  Technical Memorandum |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 8.   | SPONSORING ACTIVITY (The name of the department project of                                                                                                                                                                                                                                        | ffice or laborator                                                                                                                   | ry sponsoring the resea                      | rch and development –                                                         |  |  |  |
|      | include address.)  Defence R&D Canada – Valcartier                                                                                                                                                                                                                                                |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      | 2459 Pie-XI Blvd. North, Qubec, Qubec, Cana                                                                                                                                                                                                                                                       | ada G3J 1X                                                                                                                           | 5                                            |                                                                               |  |  |  |
| 9a.  | PROJECT NO. (The applicable research and development project number under which the document was written. Please specify whether project or grant.)                                                                                                                                               |                                                                                                                                      | OR CONTRACT NO. (It<br>under which the docum | f appropriate, the applicable<br>ent was written.)                            |  |  |  |
| 10a. | ORIGINATOR'S DOCUMENT NUMBER (The official document number by which the document is identified by the originating activity. This number must be unique to this document.)                                                                                                                         | y the 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be assigned this document either by the originator or by the sponsor.) |                                              |                                                                               |  |  |  |
|      | DRDC Valcartier TM 2007-350                                                                                                                                                                                                                                                                       |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 11.  | DOCUMENT AVAILABILITY (Any limitations on further disseminal classification.)                                                                                                                                                                                                                     | tion of the docur                                                                                                                    | ment, other than those i                     | mposed by security                                                            |  |  |  |
|      | <ul><li>(X) Unlimited distribution</li><li>( ) Defence departments and defence contractors</li></ul>                                                                                                                                                                                              | ; further distr                                                                                                                      | ribution only as ap                          | proved                                                                        |  |  |  |
|      | ( ) Defence departments and Canadian defence c                                                                                                                                                                                                                                                    |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      | <ul><li>( ) Government departments and agencies; further</li><li>( ) Defence departments; further distribution only</li></ul>                                                                                                                                                                     |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      | ( ) Other (please specify):                                                                                                                                                                                                                                                                       |                                                                                                                                      |                                              |                                                                               |  |  |  |
| 12.  | DOCUMENT ANNOUNCEMENT (Any limitation to the bibliograph                                                                                                                                                                                                                                          | ic appouncemen                                                                                                                       | nt of this document. Thi                     | is will normally correspond                                                   |  |  |  |
| 12.  | to the Document Availability (11). However, where further distribut announcement audience may be selected.)                                                                                                                                                                                       |                                                                                                                                      |                                              |                                                                               |  |  |  |
|      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                              |                                                                               |  |  |  |

| 13.      | ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual.)                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | The interior ballistics code IBHVG2 was used to calculate the muzzle velocity and peak acceleration of projectiles ranging in mass from 10 to 50 kg. The simulations were performed with both 105 and 155 mm guns. These were the C3 and LG1 (105 mm) and the M777 (155 mm). For comparison purposes, extended length 52-calibre LG1 and 52-calibre M777 were also considered. Three propellants were investigated: the triple base M31, and two composite propellants, JA2 and the developmental propellant LCT. For every gun-propellant-projectile combination, the propelling charge mass and grain geometry (web) were optimized. The web was optimized to match the maximum breech pressure of the gun, while the charge mass was optimized according to two different criteria: projectile travel at burn-out and peak muzzle velocity. The results provide a good overview of the performance of conventional artillery systems. |
| 14.      | KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)                                                                                                                                                                                                                                                    |
| <u>.</u> | interior ballistics simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | artillery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Defence R&D Canada

Canada's Leader in Defence and National Security Science and Technology

## R & D pour la défense Canada

Chef de file au Canada en matière de science et de technologie pour la défense et la sécurité nationale



www.drdc-rddc.gc.ca

