

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO				
Disciplina:				Códig	o da Disciplina:	
Sistemas de Controle				E	ECM303	
Course:				!		
Control Systems						
Materia:						
Sistemas de Control						
Periodicidade: Semestral	Carga horária total:	80	Carga horária sem	nanal: 02 -	00 - 02	
Curso/Habilitação/Ênfase:	-	,	Série:	Período:		
Engenharia de Computação			3	Diurno		
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação	
Vanderlei Cunha Parro	Engenheiro Eletricista Doutor					
Professores:		Titulação - Graduaç	ção		Pós-Graduação	
Vanderlei Cunha Parro	Engenheiro Eletricista Doutor					

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 Análise do erro estacionário em regime permanente para sistemas lineares estáveis;
- C2 Análise e projeto de controladores PID e de avanço/atraso;
- C3 Análise e projeto de controladores pelo método do lugar das raízes, e de compensadores através da resposta na frequência de sistemas lineares;
- C4 Programação e solução de problemas de controle utilizando o ambiente MATLAB;
- C5 Utilização do MATLAB Simulink como ferramenta de simulação e controle;
- C6 Amostragem, transformada Z, e representação de sistemas discretos;
- C7 Projeto de controladores e filtros digitais;
- C8 Implementação de sistemas de controle digitais utilizando aquisição de dados;
- C9 Análise experimental de plantas de controle de processos.

Habilidades:

- H1 Analisar o comportamento transitório e de regime permanente de sistemas dinâmicos;
- H2 Projetar controladores analógicos e digitais para o controle de sistemas industriais;
- H3 Utilizar o MATLAB para resolver e simular problemas de controle de sistemas industriais.

Atitudes:

- Al- Desenvolver uma visão mais generalizada para o tratamento de problemas de controle.
- A2 Adquirir conhecimentos visando a implementação prática de sistemas de controle.

2020-ECM303 página 1 de 8

EMENTA

Análise do erro estacionário em regime permanente. Projeto de controladores tipo PID, avanço-atraso. Método do lugar das raízes. Diagrama de Bode e Nyquist. Teorema da amostragem. Transformada Z. Sistemas em tempo discreto. Análise de estabilidade e da resposta temporal de sistemas discretos. Transformação de filtros analógicos em digitais. Projeto de controladores no domínio de tempo discreto. Laboratório: utilização do Matlab e Simulink, simulação e controle de sistemas lineares e não-lineares, aquisição de dados, identificação de parâmetros de sistemas, implementação prática de sistemas de controle.

SYLLABUS

Analysis of the stationary error in permanent regime. Project of PID and similar controllers using root locus. Project using Nyquist and Bode method. Z-Transform and sampling theorem. Analysis of stability of discrete time systems. Project of controllers in discrete time domain. Laboratory: utilization of the Matlab and Simulink, simulation and control of nonlinear and linear systems, systems parameters estimation, practical implementation of control systems.

TEMARIO

El análisis del error inmóvil en permanente régimen. El proyecto de PID y controladores semejantes utilizando Root locus. Proyecte utilizando Nyquist y Bode. Z-transform y Sampling Theorem. El análisis de la estabilidad de sistemas discretos. El proyecto de controladores en el dominio discreto. El laboratorio: utilización del Matlab y Simulink, la simulación y el control de sistemas no lineales y lineales, estimación de parámetros de sistemas, implementación práctica de controla sistemas.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Não

Aulas de Laboratório - Não

METODOLOGIA DIDÁTICA

- 1. Aulas expositivas discutidas;
- 2. Aulas expositivas e práticas em laboratório utilizando softwares como o MATLAB e LabView em bancadas experimentais com sistemas de controle de processos a serem controlados;
- 3. Aulas de exercícios.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Noções de programação;
- Princípios básicos de eletrônica analógica e digital;
- Modelagem e Análise de Sistemas Dinâmicos;
- Conceitos básicos de controle, tais como representação por funções de transferência e espaço de estados, análise de resposta temporal e análise de estabilidade de sistemas dinâmicos;
- Máquinas elétricas Acionamento de motores DC.

2020-ECM303 página 2 de 8

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina Sistemas de Controle apresenta um estudo detalhado de ferramentas de análise e técnicas de projeto e síntese de sistemas de controle analógicos e digitais. As informações capacitam o aluno a aplicar a melhor estratégia de controle e obter o desempenho conforme especificado. As experiências de laboratório permitem obter noções práticas para agir de forma eficiente na solução de problemas de controle em engenharia. Além disso, a disciplina tem como objetivo fornecer uma visão sistêmica das atuais tecnologias utilizadas na automação e controle de processos apresentando plantas de controle de processos e equipamentos de controle.

BIBLIOGRAFIA

Bibliografia Básica:

CASTRUCCI, Plínio de Lauro; BITTAR, Anselmo; SALES, Roberto Moura. Controle automático. Rio de Janeiro, RJ: LTC, 2011. 476 p. ISBN 9788521617860.

DORF, Richard C; BISHOP, Robert H. Sistemas de controle modernos. Trad. de Bernardo Severo da Silva Filho. 8. ed. Rio de Janeiro, RJ: LTC, 2001. 659 p.

NISE, Norman. Engenharia de sistemas de controle. [SILVA FILHO, Bernardo Severo da Silva]. 3 ed. São Paulo: LTC, 2002. 695 p. ISBN 85352216855.

OGATA, Katsuhiko. Discrete-time control systems. 2. ed. New Jersey: Prentice Hall, 1995. 745 p. ISBN 0-13-034281-5.

Bibliografia Complementar:

GOLTEN, Jack; VERWER, Andy. Control system design and simulation. London: McGraw-Hill, 1992. 388 p.

HANSELMAN, Duane; LITTLEFIELD, Bruce. MATLAB 5: versão do estudante, guia do usuário. São Paulo, SP: Makron Books, 1999. 413 p. ISBN 85-346-1058-4.

OGATA, Katsuhiko. Engenharia de controle moderno. [Título original: Modern control engineering]. Trad. Heloísa Coimbra de Souza, rev. téc. Eduardo Aoun Tannuri. 5. ed. São Paulo, SP: Pearson, 2010. 809 p. ISBN 9788576058106.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-ECM303 página 3 de 8

Disciplina semestral, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 k_2: 1,0$

Peso de $MP(k_{D})$: 0,7 Peso de $MT(k_{D})$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

- 1. As notas dos trabalhos se referem às atividades de laboratório, sendo que cada nota corresponde a média do bimestre. Esta média considera a participação, implementação e documentação destas atividades.
- 2. Serão necessários os seguintes materiais e equipamentos para o desenvolvimento da disciplina: 8 computadores em bom estado de funcionamento contendo: Matlab & Simulink; Labview; sistema de posicionamento e controle de temperatura.
- 3. As experiências desenvolvidas ao longo do ano estão listadas no programa da disciplina.
- 4. É permitido o reaproveitamento de nota de laboratório pelos alunos que realizam dependência.
- 5. As atividades de laboratório poderão ser feitas por trabalhos práticos com entrega programada em comum acordo com os alunos ou com provas. A opção será feita pelos alunos no primeiro bimestre. Isto inclui a substituição de experiências que demonstrem afinidade com o trabalho escolhido.

2020-ECM303 página 4 de 8

OUTRAS INFORMAÇÕES

Sobre diversidade:
O desenvolvimento das atividades desta disciplina compõe um processo de aprendizagem onde você será tratado com respeito. São bem-vindos indivíduos de todas as idades, origens, crenças, etnias, gêneros, identidades de gênero, expressões de gênero, origens nacionais, afiliações religiosas, orientações sexuais e outras diferenças visíveis e não visíveis. Espera-se que todos os matriculados nesta disciplina contribuam para um ambiente respeitoso, acolhedor
e inclusivo para todos.

2020-ECM303 página 5 de 8

_	SOFTWARES NECESSÁRIOS PARA A DISCIPLINA									
MATLAB laborat		io e	sala	de	aula	teórica)	е	LAbView	(exclusivamente	no

2020-ECM303 página 6 de 8

2020-ECM303 página 7 de 8

	PROGRAMA DA DISCIPLINA
Nº da	Conteúdo
semana	
22 T	Discussão acerca de sistemas de controle com foco no projeto de controladores.
22 L	Discussão acerca de sistemas de controle com foco no projeto de controladores
	envolvendo simulação e validação. Introdução ao SW Matlab.
23 T	Resposta dos sistemas de controle por realimentação. Erro estacionário ou
	permanente.
23 L	Introdução ao SW Matlab.
24 T	Projeto Algébrico pela malha fechada.
24 L	Introdução ao SW Labview.
25 T	O método do lugar geométrico das raízes.
25 L	Modelagem - Motor CC
26 T	Compensação por meio do lugar das raízes.
26 L	Modelagem e validação - Motor CC
27 T	Diagramas de Bode.
27 L	Análise do erro estacionário.
28 T	Semana de Provas.
28 L	Semana de Provas.
29 T	Análise e interpretação de sistemas dinâmicos do ponto de vista do diagrama de
	Bode. Margens de estabilidade.
29 L	Controle de velocidade.
30 T	Projeto de Compensadores de avanço e atraso através da análise na frequência.
30 L	Controle de posição.
31 T	Controladores PID.
31 L	Identificação no domínio da frequência.
32 T	Introdução aos sistemas de controle digital e amostragem de sistemas.
32 L	Controlador avanço de fase
33 T	Reconstrução de Sinais.
33 L	Controlador atraso de fase
34 T	Transformada Z e sua inversa. Propriedades da transformada z.
34 L	Identificação do modelo do sistema de temperatura
35 T	Transformação de controladores analógicos em digitais.
35 L	Controle PID do sistema de temperatura
36 T	Semana de Provas.
36 L	Semana de Provas.
Legenda	: T = Teoria, E = Exercício, L = Laboratório

2020-ECM303 página 8 de 8