EEG Mental State Classification

NICOLAS WAGNER
CSC 597 STATISTICAL LEARNING

Epileptic seizures

Electroencephalogram (EEG)

Seizure vs healthy state

Classifying mental states

Introduction

State-Of-The-Art

- Shoeb, A. H., & Guttag, J. V. (2010). Application of machine learning to epileptic seizure detection. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (pp. 975-982).
 - 96% Accuracy (SVM)
- Subasi, A., Kevric, J., & Canbaz, M. A. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31 (1), 317-325.
 - 99% Accuracy (PSO-SVM)
- Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment (Doctoral dissertation, Massachusetts Institute of Technology).
 - 95% Accuracy
- Müller, K. R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. *Journal of neuroscience methods*, 167(1), 82-90.
 - 98% Accuracy

Methods -

Dataset

- Epileptic Seizure Recognition (UCI ML Repository, Kaggle)
- ► Instances: 11,500
- Attributes: 179
- ► Classes: 5 (2,300)

Methods -Algorithms

- KNN Classifier
- LDA
- QDA
- Decision Trees
- Boosting
- Random Forests
- Bagging
- SVC
- SVM

Methods - Evaluation

ACCURACY

COMPARISON ACROSS ALGORITHM PARAMETERS

Results

- ▶ Logistic Regression
- Boosting
- ▶ Higher dimensionality
- Execution times

Conclusion & Future Work

- QDA, RF
- Dealing with high dimensionality
- TBI (Concussions)
- Real-time detection

	KNN	LDA	QDA	DT	Pruned DT	Boosting	RF	Bagging	SVC	SVM
Error	0.4494	0.7463	0.3545	0.6285	0.6284	0.8298	0.2687	0.2723	0.7179	0.5791

Citations

- Stafstrom, C. E., & Carmant, L. (2015). Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harbor perspectives in medicine, 5(6), a022426. https://doi.org/10.1101/cshperspect.a022426
- Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64, 061907
- Shoeb, A. H., & Guttag, J. V. (2010). Application of machine learning to epileptic seizure detection. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (pp. 975-982).
- Subasi, A., Kevric, J., & Canbaz, M. A. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), 317-325.
- Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment (Doctoral dissertation, Massachusetts Institute of Technology).
- Müller, K. R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. *Journal of neuroscience methods*, 167(1), 82-90.

Appendix – KNN Error

Appendix – LDA Error

Appendix – QDA Error

Appendix – Decision Tree

Appendix – Pruned Decision Tree

Appendix – Multinomial Boosting Error

Appendix – RF and Bagging Error

Questions?