Wydział	Dzien/godzina		Nr. zespołu
EiTI	Wtorek 8.15-11.00		2
	Data: 25.10.2011		
Nazwisko i Imię	Ocena z przygotowania	Ocena ze sprawozdania	Ocena
1. Król Jakub			
2. Obszański Grzegorz			
3. Zawiśla Mateusz			
Prowadzący		Podpis prowadzącego	
Imię i nazwisko			

1 Wstęp

Temat:

Pomiar długości fal elektromagnetycznych metodami interferencyjnymi.

Cel ćwiczenia:

Pomiar długości fal elektromagnetycznych za pomoca 4 metod: satki dyfrakcyjnej, interferometru Fabry-Perota, interferometru optycznego oraz interferometru Michelsona. Stwierdzenie która z metod jest najdokładniejsza i dlaczego.

2 Siatka dyfrakcyjna

2.1 Schemat pomiarów

Rysunek 1: Siatka dyfrakcyjna - schemat pomiarów

2.2 Wyniki pomiarów

Mierzona wielkość	Zmierzona wartość
Odległość miedzy krawędziami	$8830mm \pm 2mm$
skrajnych przysłon	
Liczba szczelin	12
Kąt dla którego nastąpiło pierw-	$\alpha_L = 25^{\circ} \pm 2^{\circ}$
sze wzmocnienie fal z lewej stro-	
ny	
Kąt dla którego nastąpiło pierw-	$\alpha_P = 26^{\circ} \pm 2^{\circ}$
sze wzmocnienie fal z prawej	
strony	

Tabela 1: Siatka dyfrakcyjna - wyniki pomiarów

2.3 Obliczenia

$$stała siatki = \frac{\text{odległość między krawędziami skrajnych przysłon}}{\text{liczba szczelin}}$$
 (1)

$$d = \frac{8830mm \pm 2mm}{12} = 73,84mm \pm 0,17mm \tag{2}$$

Obliczenie fługości fali elektromagnetycznej wykonujemy przy pomocy wzoru

$$\lambda = d \cdot \sin \alpha \tag{3}$$

gdzie:

d - stała siatki dyfrakcyjnej

 α - kąd obrotu detektora

Zatem ostatecznie:

$$\lambda_{sd} = 31,79mm \pm 2mm \tag{4}$$

3 Interferometr Fabry-Perota

3.1 Schemat pomiarów

Rysunek 2: Interferometr Fabry-Perota - schemat pomiarów

3.2 Wyniki pomiarów

Mierzona wielkość	Zmierzona wartość
Zmiana odległości miedzy zwier-	$575mm \pm 5mm$
ciadłem a płytką półprzepusz-	
czalną (Δx)	
Liczba maksymalnych wzmoc-	35
nień obserwowanych w detekto-	
rze (m)	

Tabela 2: Interferometr Fabry-Perota - wyniki pomiarów

3.3 Obliczenia

Obliczenie długości fali elektromagnetycznej wykonujemy przy pomocy wzoru

$$\lambda = \frac{2\Delta x}{m} \tag{5}$$

gdzie:

m – Liczba maksymalnych wzmocnień obserwowanych w detektorze Δx - zmiana odległości miedzy zwierciadłem a płytką półprzepuszczalną Zatem ostatecznie:

$$\lambda_{fp} = 32,86mm \pm 0,42mm \tag{6}$$

4 Interferometr Michelsona

4.1 Schemat pomiarów

Rysunek 3: Interferometr Michelsona - schemat pomiarów

4.2 Wyniki pomiarów

Położenie Zwierciadła 2	Liczba wzmocnień
δ	m
$33\text{mm} \pm 2\text{mm}$	0
$48\text{mm} \pm 2\text{mm}$	1
$63\text{mm} \pm 2\text{mm}$	2
$79 \text{mm} \pm 2 \text{mm}$	3
$94\text{mm} \pm 2\text{mm}$	4
$110 \text{mm} \pm 2 \text{mm}$	5
$126 \text{mm} \pm 2 \text{mm}$	6
$141 \text{mm} \pm 2 \text{mm}$	7
$157 \mathrm{mm} \pm 2 \mathrm{mm}$	8
$173 \text{mm} \pm 2 \text{mm}$	9
$188 \text{mm} \pm 2 \text{mm}$	10
$203 \text{mm} \pm 2 \text{mm}$	11
$219 \text{mm} \pm 2 \text{mm}$	12
$235 \text{mm} \pm 2 \text{mm}$	13
$251 \text{mm} \pm 2 \text{mm}$	14
$267 \text{mm} \pm 2 \text{mm}$	15
$282 \text{mm} \pm 2 \text{mm}$	16
$298 \text{mm} \pm 2 \text{mm}$	17

Tabela 3: Interferometr Michelsona - wyniki pomiarów

Rysunek 4: Interferometr Michelsona - wykres

4.3 Obliczenia

$$\Delta\delta = 265mm \pm 2mm$$

$$\lambda = \frac{2\Delta\delta}{m} = 2* \text{ współczynnik kierunkowy wykresu 4}$$
 (7)

Zatem ostatecznie:

$$\lambda_M = 2 \cdot 15, 62 = 31, 24mm \pm 0, 12mm \tag{8}$$

5 Interferometr Optyczny

5.1 Schemat pomiarów

Rysunek 5: Interferometr optyczny - schemat pomiarów

5.2 Wyniki pomiarów

Zmiana położenia zwierciadła	Liczba wzmocnień
δ	m
$63\mu\mathrm{m} \pm 1\mu\mathrm{~m}$	200

Tabela 4: Interferometr optyczny - wyniki pomiarów

5.3 Obliczenia

$$\Delta \delta = 63 \mu m \pm 1 \mu m$$

$$\lambda = \frac{2 \Delta \delta}{m} \approx 0.63 \mu m m \pm 0,005 \mu m$$
(9)

Zatem ostatecznie:

$$\lambda_O = 0.63\mu m \pm 0,005\mu m \tag{10}$$

6 Wnioski

Metoda	Wynik obliczeń
Siatka dyfrakcyjna	$\lambda_{sd} = 31,79mm \pm 2mm$
Interferometr Fabry-Perota	$\lambda_{fp} = 32,86mm \pm 0,42mm$
Interferometr Michelsona	$\lambda_M = 31,24mm \pm 0,12mm$
Interferometr Optyczny	$\lambda_O = 0.63\mu m \pm 0,005\mu m$

Tabela 5: Zestawienie metod

Jednoznacznym wnioskiem, jaki możemy wyciągnąć z obliczeń jest to, że najdokładniejszą metodą pomiaru długości fal elektromagnetycznych jest metoda z użyciem Interferometru Optycznego. Została

ona uznana za najbardziej precyzyjną, ponieważ jej niepewność pomiarowa jest znacznie mniejsza w porównaniu z innymi metodami.

Niedokładności pomiarowe wynikały z:

- Obecności wielu źródeł promieniowania w jednym pomieszczeniu
- Niewielkiego doświadczenia osób wykonujących pomiar
- Niewielkich rozmiarów pomieszczenia w którym odbywał się pomiar
- Ograniczonej dokładności pomiarowej przyrządu