Student Information

Full Name: Ozan Akın Id Number: 2309599

Answer 1

a)

p	$\mid q \mid$	$\neg p$	$q \rightarrow \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
F	F	T	T	T	T
F	T	T	T	F	F
T	F	F	T	F	F
T	T	F	F	T	F

b)

p	q	r	$p \lor q$	$p \to r$	$q \rightarrow r$	$(p \lor q) \land (p \to r)$
F	F	F	F	T	T	F
F	F	T	F	T	T	F
F	T	F	T	T	F	T
F	T	T	T	T	T	T
T	F	F	T	F	T	F
T	F	T	T	T	T	T
T	T	F	T	F	F	F
T	T	T	T	T	T	T
1	1	1		_	_	

Answer 2

```
\neg p \to (q \to r) \quad \equiv \quad \neg (\neg p) \lor (q \to r)
                                                 Table 7 first equivalence
                    \equiv p \lor (q \to r)
                                                 Table 6 double negation law
                    \equiv p \lor (\neg q \lor r)
                                                 Table 7 first equivalence
                    \equiv (\neg q \lor r) \lor p
                                                 Table 6 commutative laws
                    \equiv \neg q \lor (r \lor p)
                                                 Table 6 associative laws
                          \neg q \lor (p \lor r)
                                                 Table 6 commutative laws
                    \equiv
                    \equiv \neg(\neg q) \rightarrow (p \lor r)
                                                 Table 7 first equivalence
                    \equiv q \to (p \lor r)
                                                 Table 6 double negation law
```

Answer 3

- a) $\forall x(L(x, Burak))$
- b) $\forall y(L(Hazal, y))$
- c) $\forall x \exists y (L(x,y))$
- d) $\neg \exists x \forall y (L(x,y))$
- e) $\forall y \exists x (L(x,y))$
- f) $\neg \exists x (L(x, Burak) \lor L(x, Mustafa))$
- g) $\exists x \exists y (L(Ceren, x) \land L(Ceren, y) \land \forall z (L(Ceren, z) \rightarrow (z = x \lor z = y)))$
- h) $\exists y \forall x (L(x,y) \land \forall z (L(x,z) \rightarrow y = z))$
- i) $\neg \exists x (L(x,x))$
- j) $\exists x \exists y (L(x,y) \land (x \neq y) \land \forall z (L(x,z) \rightarrow \forall z (z=y)))$

Answer 4

	$p, p \to (r \to q), q \to s \vdash \neg q \to (s \lor \neg r)$	
1.	p	premise
2.	$p \to (r \to q)$	premise
3.	r o q	$\rightarrow e, 1, 2$
4.	$\neg q$	assumption
5.	r	assumption
6.	$ \hspace{.1cm} \hspace{.1cm} q$	$\rightarrow e, 3, 5$
7.		$\neg e, 4, 6$
8.	$\neg r$	$\neg i, 5-7$
9.	$s \vee \neg r$	$\forall i, 8$
10.	$\neg q \to (s \vee \neg r)$	$\rightarrow i, 4-9$

Answer 5

$\forall x(p(x) \to q(x)), \neg \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z r(z), \exists $	$\exists zq($	z)
---	---------------	---	---

$ \forall x(p(x))$	$f(z) \to q(x), \neg \exists z r(z), \exists y p(y) \lor r(a) \vdash f(z)$	$\exists z q(z)$
1.	$ eg \exists z r(z)$	premise
2.	r(a)	assumption
3.	$\exists z r(z)$	$\exists i, 2$
4.	\perp	$\neg e, 1, 3$
5.	$\neg r(a)$	$\neg i, 2-4$
6.	$\exists y p(y) \lor r(a)$	premise
7.	$\exists y p(y)$	$\lor e, 5, 6$
8. z	p(z)	$\exists e, 7$
9.	$\forall x (p(x) \to q(x))$	premise
10. z	$p(z) \to q(z)$	$\forall e, 9$
11.	q(z)	$\rightarrow e, 8, 10$
12.	$\exists z q(z)$	$\exists i, 11$