UPPSALA UNIVERSITY

Department of Information Technology

Division of Scientific Computing

Test in Advanced Numerical Methods 2020-09-28

- Time: 2 Hours. Tools: Pocket calculator, Beta Mathematics Handbook.
- Part A concerns well-posedness for initial-boundary-value-problems and the FDM. Below we present the definitions of the first- and second-derivate SBP operators (D_1 and D_2):

$$D_1 = H^{-1}(Q+B), B = -\frac{1}{2}e_1e_1^T + \frac{1}{2}e_me_m^T, H = H^T > 0, (Q+Q^T) = 0$$

$$D_2 = H^{-1}(-M - e_1d_1 + e_md_m), M = M^T \ge 0, d_mv \simeq u_x(x_m), e_m^T = [0, \dots, 0, 1]$$

- Part B concerns the FEM-part.
- All your answers must be well argued and calculations shall be demonstrated in detail. Solutions that are not complete can still be of value if they include some correct thoughts.

Part A, Question 1

Consider the following system of PDE,

$$\mathbf{u}_t + \mathbf{A}\mathbf{u}_x = \mathbf{C}\mathbf{u} + \mathbf{F} \quad , \quad x_l \le x \le x_r, \quad t \ge 0 \\ \mathbf{u} = \mathbf{f} \quad , \quad x_l \le x \le x_r, \quad t = 0 \quad ,$$
 (1)

where $\mathbf{F} = \mathbf{F}(x,t)$ is the forcing function, $\mathbf{f} = \mathbf{f}(x)$ the initial data and

$$\mathbf{A} = \begin{bmatrix} \alpha & 1 \\ 1 & 0 \end{bmatrix} \ , \mathbf{C} = \begin{bmatrix} c_1 & 0 \\ 0 & c_2 \end{bmatrix} \ , \text{where} \ \alpha \ \text{is a constant, and} \ c_{1,\,2} = c_{1,\,2}(x) \ \text{bounded}.$$

- a) Derive necessary conditions such that (1) yields a well-posed Cauchy problem (i.e., ignore boundary terms).
- b) Derive conditions such that (1) yields a well-posed Cauchy problem, that furthermore leads to energy conservation when $\mathbf{F} = \mathbf{0}$.
- c) Derive the correct number of boundary conditions (BC) at each boundary.
- d) Let $\alpha = 2$ and derive a set of well-posed BC that leads to energy decay when $\mathbf{F} = \mathbf{0}$, $\mathbf{C} = \mathbf{0}$. (Show the energy estimate.)
- e) Let $\alpha = 2$ and derive a set of well-posed BC that leads to energy conservation with zero boundary data, when $\mathbf{F} = \mathbf{0}$, $\mathbf{C} = \mathbf{0}$. (Show the energy estimate.)
- f) Write down a consistent SBP-SAT discretization of (1) with the boundary conditions you derived in e). Note: You do not need to show stability.
- g) Show stability for your SBP-SAT discretization in f) by choosing appropriate penalty parameters.
- h) Write down a consistent SBP-Projection discretization of (1) with the boundary conditions you derived in e). Note: You do not need to show stability.
- i) Show stability for your SBP-Projection discretization in h) by choosing appropriate penalty parameters.
- j) Explain how you can verify parts g) and i) by using Matlab.

Part B, Question 1

Good luck! Ken & Murtazo