KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS

LELY RIAWATI, ST, MT.

EKSPERIMEN

suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama

CONTOH:

Eksperimen: melempar dadu I kali
 Hasilnya: tampak angka I atau 2 atau 3 atau 4 atau 5 atau 6

RUANG SAMPEL (S)

Himpunan semua hasil (outcome) yang mungkin dalam suatu eksperimen

CONTOH:

Ruang sampel pelemparan dadu I kali
 S = {1, 2, 3, 4, 5, 6}
 n(S) = 6

PERISTIWA (EVENT)

Himpunan bagian dari ruang sampel

CONTOH:

Eksperimen: melempar dadu I kali
 Peristiwa A: Hasil pelemparan dadu berupa angka genap =
 { 2, 4, 6}
 n(A) = 3

PROBABILITAS

 Bila A adalah suatu peristiwa maka probabilitas terjadinya peristiwa A didefinisikan :

$$P(A) = \frac{n(A)}{n(S)} = \frac{banyaknya peristiwa A yg terjadi}{banyaknya ruang sampel}$$

PROBABILITAS

CONTOH:

Eksperimen : melempar dadu | kali

Probabilitas tampak titik genap:

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2} \qquad A = \{2, 4, 6\} \\ S = \{1, 2, 3, 4, 5, 6\}$$

I. $0 \le P(A) \le I \rightarrow \text{karena } 0 \le n(A) \le n(S)$

$$P(\emptyset) = 0$$
 (tidak mungkin terjadi)

$$P(S) = I(pasti terjadi)$$

3. Bila peristiwa A dan B saling berserikat

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4. Bila peristiwa A dan B saling asing / tidak berserikat

$$P(A \cup B) = P(A) + P(B)$$

5.
$$P(A^c) = 1 - P(A)$$

Non A

Karena Max = I

$$P(A) + P(A^c) = 1$$

$$S$$
 A
 (A^c)

6.
$$P(B) = P(A \cap B) + P(B \cap A^c)$$

Probabilitas B di A dan probabilitas B di non A

PROBABILITAS BERSYARAT

Misal, dari polulasi 100 mahasiswa dan mahasiswi

	IP > 2,5	IP ≤ 2,5	Jumlah
Mahasiswa	15	50	65
Mahasiswi	10	25	35
Jumlah	25	75	100

Dipilih seorang secara acak

$$P(A) = \frac{65}{100} = 0,65$$

$$P(B) = \frac{25}{100} = 0,25$$

Bila kebetulan terpilih mahasiswa, berapa probabilitas dia mempunyai IP > 2,5?

PROBABILITAS BERSYARAT

 Karena yang sudah terpilih mahasiswa, maka ruang sampel dibatasi pada sub populasi mahasiswa dan probabilitasnya :

$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{15}{65} = \frac{3}{13}$$

Probabilitas B dengan syarat A

$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{n(A \cap B)/n(S)}{n(A)/n(S)} = \frac{P(A \cap B)}{P(A)}$$

KEJADIAN ATAU PERISTIWA YANG DEPENDEN DAN INDEPENDEN

- Dua peristiwa A dan B dikatakan saling independen bila $P(A \cap B) = P(A)P(B)$
- Karena $P(A \cap B) = \begin{cases} P(B)P(A/B) \\ P(A)P(B/A) \end{cases}$

Maka peristiwa A dan B saling independen bila

$$P(A) = P(A/B) dan P(B) = P(B/A)$$

 Bila peristiwa A tidak dipengaruhi oleh B dan sebaliknya B tidak dipengaruhi A

CONTOH

- Eksperimen: pengambilan I kartu dari I set kartu bridge kemudian dikembalikan lagi, dikocok dan diambil kartu kedua
- A_I = diperoleh kartu As pada pengambilan pertama
- A₂= diperoleh kartu As pada pengambilan kedua
- maka

$$P(A_1 \cap A_2) = \frac{4}{52} \cdot \frac{4}{52} = \frac{1}{13} \cdot \frac{1}{13} = \frac{1}{169} = P(A_1) \cdot P(A_2)$$

A₁ dan A₂ independen

 Jika pengambilan kartu kedua dilakukan tanpa mengembalikan kartu pertama maka

$$P(A_1 \cap A_2) = \frac{4}{52} \cdot \frac{3}{51} = \frac{1}{13} \cdot \frac{1}{17} = \frac{1}{221} = P(A_1) \cdot P(A_2/A_1)$$

A₁ dan A₂ dependen

- Independen: identik dengan pengambilan dengan pengembalian (hasil berikutnya tidak dipengaruhi kejadian sebelumnya)
- Dependen : identik dengan pengambilan tanpa pengembalian

PERMUTASI

Banyaknya susunan yg berbeda yang dapat dibentuk dari k obyek yang diambil dari sekumpulan obyek yang berbeda \rightarrow permutasi k obyek yang berbeda dari n obyek yang berbeda

$$nPk = \frac{n!}{(n-k)!}$$

KOMBINASI

Banyaknya cara memilih k obyek yang berbeda dari sejumlah n obyek tanpa memperhatikan urutannya hombinasi k obyek yang berbeda dari n obyek

$$nCk = \binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{nPk}{k!}$$

DISTRIBUSI PROBABILITAS

I. DISITRIBUSI PROBABILITAS DISKRIT

- distribusi probabilitas binomial, hipergeometrik, poisson

2. DISTRIBUSI PROBABILITAS CONTINUOUS

- o distribusi probabilitas normal, exponential

I.DISTRIBUSI PROBABILITAS BINOMIAL

$$f(k) = P(x = k) = {n \choose k} p^k (1-p)^{n-k}$$

p = P sukses

q = P (gagal) = I - p

k = 0, 1, 2, 3, ..., n

n = banyaknya trial

Dinamakan distribusi binomial dengan parameter n dan p

$$Mean \rightarrow \mu = np$$

$$Variance \rightarrow \sigma^2 = np(1-p)$$

Sifat

- Eksperimen dilakukan dalam n trial
- Tiap trial menghasilkan kejadian sukses dan gagal
- Masing-masing trial identik dan independen
- Untuk tiap trial p = P sukses dan q=P(gagal)= I-p
- Variabel random x menyatakan banyaknya sukses dalam n trial

CONTOH

Terdapat 25 soal ujian dengan pilihan sbb :

Diantara 5 pilihan jawaban soal yang dijawab benar

X = banyaknya soal yang dijawab benar

$$= 0, 1, 2, 3, ..., 25$$

$$P(x = 25) = \frac{25!}{25! \cdot 0!} \left(\frac{1}{5}\right)^{25} = \left(\frac{1}{5}\right)^{25} \approx 0$$

P(semua soal dijawab salah) =

$$P(x=0) = \frac{25!}{0!25!} \left(\frac{4}{5}\right)^{25} = \left(\frac{4}{5}\right)^{25} = 0,0038$$

q = 0

p = 0

P(menjawab benar 10 soal) =

$$P(x = 10) = \frac{25!}{10!15!} \left(\frac{1}{5}\right)^{10} \left(\frac{4}{5}\right)^{15} = 0.0118$$

2. DISTRIBUSI PROBABILITAS HIPERGEOMETRIK

Misal dalam suatu populasi terdiri N dengan :

- a elemen dengan sifat tertentu (kejadian sukses)
- (N-a) elemen tidak mempunyai sifat tertentu (kejadian tidak sukses)
- Bila dari populasi diambil sampel random berukuran n dengan tanpa pengembalian maka :

$$f(k) = P(x = k) = \frac{\binom{a}{k}\binom{N-a}{n-k}}{\binom{N}{n}} \qquad Mean \to \mu = n\frac{a}{N}$$

$$X = 0,1,2,3,...,a \quad bila a < n$$

$$X = 0,1,2,3,...,n \quad bila a > n \quad Variance \to \sigma^2 = n\frac{a}{N} + \frac{N-a}{N} + \frac{N-a$$

Sifat

- Eksperimen dilakukan dalam beberapa trial yang dependen
- Tiap trial menghasilkan kejadian sukses dan gagal
- Probabilitas sukses dalam suatu trial akan dipengaruhi trial sebelumnya
- Variabel random x menyatakan banyaknya sukses dalam n trial dependen
- Distribusi binomial : kejadian sampling dengan pengembalian
- Distribusi Hipergeometrik : kejadian sampling tanpa pengembalian

CONTOH

- Sebuah toko menjual obral 15 radio, bila diantara 15 radio tersebut sebetulnya terdapat 5 radio yang rusak dan seorang pembeli melakukan tes dengan cara mengambil sampel 3 buah radio yang dipilih secara random
- a. Tuliskan distribusi probabilitas untuk x bila x adalah banyaknya radio rusak dalam sampel
- b. Bila pembeli akan membeli semua radio bila dalam sampel yang diperiksa paling banyak I radio rusak, berapa kemungkinan pembeli tsb akan membeli semua radio?

$$N = 15$$

a = 5, N-a = 10

$$n = 3$$

$$X = \{ 0, 1, 2, 3 \}$$

a.
$$P(x = 0) = \frac{\binom{5}{0}\binom{15-5}{3-0}}{\binom{15}{3}} = \frac{\binom{5}{0}\binom{10}{3}}{\binom{15}{3}} = \frac{1x120}{455} = 0,264$$

Contoh perhitungan kombinasi

$$\binom{15}{3} = \frac{15!}{3!(15-3)!} = \frac{15.14.13.12!}{3.2.1.12!} = \frac{2730}{6} = 455$$

$$P(x = 1) = \frac{\binom{5}{1}\binom{10}{2}}{\binom{15}{3}} = \frac{225}{455} = 0,494$$

$$P(x = 2) = \frac{\binom{5}{2}\binom{10}{1}}{\binom{15}{3}} = \frac{100}{455} = 0,220$$

$$P(x = 3) = \frac{\binom{5}{3}\binom{10}{0}}{\binom{15}{3}} = \frac{10}{455} = 0,022$$

Distribusi probabilitas dari x

X	0	T I	2	3
P(x)	0,264	0,494	0,220	0,022

b. Pembeli tersebut akan membeli semua radio (paling banyak I radio rusak)

$$P(x \le I) = P(x=0) + P(x=I) = 0.264 + 0.494$$

= 0.758 = 75.8%

3. DISTRIBUSI PROBABILITAS POISSON

Menggambarkan kejadian yang jarang terjadi

$$P(x = k) = \frac{(np)^k}{k!}e^{-(np)}$$

$$\lambda = np$$
Probabilitas sukses u/ tiap trial

Banyaknya trial

$$Mean \rightarrow \mu = \lambda$$

$$Variance \rightarrow \sigma^2 = \lambda$$

Sifat

- Eksperimen dilakukan dalam n trial (dengan nilai yang besar)
- Tiap trial menghasilkan kejadian sukses dan gagal
- Dalam suatu interval waktu atau area tertentu, rata-rata banyaknya kejadian sukses adalah λ dengan probabilitas sukses yang sangat kecil sekali (menggambarkan kejadian yang jarang terjadi)
- Variabel random x menyatakan banyaknya sukses dalam suatu interval waktu atau area tertentu

CONTOH

- Seseorang memasang lotere sebanyak 1000 kali. Jika kemungkinan dia menang dalam setiap kali pasang adalah 0,0012 tentukan probabilitas bahwa
- a. Dia tidak akan menang sama sekali
- b. Paling sedikit 4 kali menang

$$\lambda = np = 1000 \times 0,0012 = 1,2$$

x = banyaknya kali dia menang ~poisson dengan

$$\lambda = 1.2$$

$$P(x \neq 0) = \frac{(1,2)^0}{0!}e^{-1,2} = e^{-1,2} = 0,301194$$

b. P (paling sedikit 4 kali menang)

$$P(x \ge 4) = 1 - P(x \le 3)$$

$$= 1 - [P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3)]$$

$$= 1 - [\frac{(1,2)^0}{0!}e^{-1,2} + \frac{(1,2)^1}{1!}e^{-1,2} + \frac{(1,2)^2}{2!}e^{-1,2} + \frac{(1,2)^3}{3!}e^{-1,2}$$

$$= 1 - [0,301194 + 0,361433 + 0,21686 + 0,086744]$$

$$= 1-0.966231=0.033769$$

Dari tabel 0,966 (λ =1,2; $x \le 3$)

- Biasanya digunakan dalam menghitung probabilitas yang berkaitan dengan prosedur pengambilan sampel
- Biasanya ukuran banyaknya sampel sekurang-kurangnya 16, ukuran banyaknya populasi sekurang-kurangnya 10 kali ukuran sampel dan probabilitas terjasinya p pada masing-masing percobaan kurang dari 0, l

Misal:

suatu produk sebanyak 300 unit dihasilkan dimana terdapat 2 % kesalahan. Secara acak diambil 40 unit yang dipilih dari 300 unit tersebut sebagai sampel Dari tabel terlihat np=40 (0,02) =0,8 dengan berbagai variasi k seperti pada tabel

	λλχ	0	1	2	3	4	5	6	7	8	9
	0.05 0.10 0.15 0.20	0.951 0.905 0.861 0.819	0.999 0.995 0.990 0.982	1.000 1.000 0.999 0.999	1,000						
	0.25 0.30 0.35 0.40 0.45	0.779 0.741 0.705 0.670 0.638	0.974 0.963 0.951 0.938 0.925	0.998 0.996 0.994 0.992 0.989	1,000 1,000 1,000 0,999 0,999	1.000					
Tabel	0.50 0.55 0.60 0.65 0.70	0.607 0.577 0.549 0.522 0.497	0.910 0.894 0.878 0.861 0.844	0.986 0.982 0.977 0.972 0.966	0.998 0.998 0.997 0.996 0.994	1.000 1.000 1.000 0.999 0.999	1.000				
Distribusi	0.75 0.80 0.85 0.90 0.95	0.472 0.449 0.427 0.407 0.387	0.827 0.809 0.791 0.772 0.754	0.960 0.953 0.945 0.937 0.929	0.993 0.991 0.989 0.987 0.984	0.999 0.999 0.998 0.998 0.997	1.000 1.000 1.000 1.000 1.000				
Poisson	1.0 1.1 1.2 1.3 1.4	0.368 0.333 0.301 0.273 0.247	0.736 0.699 0.663 0.627 0.592	0.920 0.900 0.880 0.857 0.833	0.981 0.974 0.966 0.937 0.946	0.996 0.995 0.992 0.989 0.986	0.999 0.999 0.998 0.998 0.997	1.000 1.000 1.000 1.000 0.999	1.000		
	1.5 1.6 1.7 1.8 1.9	0.223 0.202 0.183 0.165 0.150	0.558 0.525 0.493 0.463 0.434	0.809 0.783 0.757 0.731 0.704	0.934 0.921 0.907 0.891 0.875	0.981 0.976 0.970 0.964 0.956	0.996 0.994 0.992 0.990 0.987	0.999 0.999 0.998 0.997 0.997	1.000 1.000 1.000 0.999 0.999	1.000	
	2.0 2.2 2.4 2.6 2.8	0.135 0.111 0.091 0.074 0.061	0.406 0.355 0.308 0.267 0.231	0.677 0.623 0.570 0.518 0.470	0.857 0.819 0.779 0.736 0.692	0.947 0.928 0.904 0.877 0.848	0.983 0.975 0.964 0.951 0.935	0.995 0.993 0.988 0.983 0.976	0.999 0.998 0.997 0.995 0.992	1.000 1.000 0.999 0.999 0.998	1.000 1.000 0.999

4. DISTRIBUSI PROBABILITAS NORMAL

- Rata-rata μ dan standart deviasi σ
- Berhubungan dengan distribusi frekuensi dan histogramnya
- Apabila sampel yang diambil semakin besar dan lebar setiap sel semakin kecil, maka histogram semakin mendekati kurva yang halus
- N (μ; σ) → Kurva normal dengan rata-rata μ
 dan standar deviasi σ

- I. Harga modus (frekuensi terbesar terletak pada $x = \mu$
- 2. Simetris terhadap sumbu vertikal yang melalui µ (sisi kanan dan kiri simetris)
- 3. Memotong sumbu mendatar secara asimtot
- 4. Luas daerah dibawah kurva = I

DISTRIBUSI PROBABILITAS NORMAL

$$P(a \le x \le b) = P(a < x < b) = P(a \le x < b) = P(a < x \le b) = \int_{a}^{b} f(x) dx$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$Z = \frac{x - \mu_x}{\sigma_x}$$

Suatu variabel random x yang berdistribusi tertentu dapat dianggap mendekati distribusi normal dengan rata-rata µ dan standar deviasi σ bila memenuhi :

$$P[(\mu - \sigma) < x < (\mu + \sigma)] = 0,682 = 68,2 \%$$

 $P[(\mu - 2\sigma) < x < (\mu + 2\sigma)] = 0,954 = 95,4 \%$
 $P[(\mu - 3\sigma) < x < (\mu + 3\sigma)] = 0,997 = 99,7 \%$

TABEL DISTRIBUSI NORMAL STANDARD

- a. $P(0 \le Z \le b)$ Hasil transformasi dari x luas dibawah kurva f(Z) dengan $Z \sim N(0; I)$ dari Z=0 sampai Z=b
- b. P (-∞ ≤ Z ≤ b)
 luas dibawah kurva f(Z) dengan Z ~ N (0;I)
 dari Z= -∞ sampai Z=b

Z berdistribusi normal standard, variabel random Z akan mempunyai rata-rata μ_z =0 dan σ_z = 1

$$Z = \frac{x - \mu_x}{\sigma_x}$$

CONTOH

Diketahui tinggi badan karyawan di perusahaan A mengikuti distribusi Normal dengan rata-rata μ = 160 cm dan standar deviasi σ = 6 cm Berapa % karyawan perusahaan A yang tingginya antara 151 dan 172 cm?

X = tinggi karyawan perusahaan A $\times N(\mu = 160 \text{ cm}, \sigma = 6 \text{ cm})$

$$P(151 \le x \le 172) = \int_{151}^{1/2} \frac{1}{6\sqrt{2\pi}} e^{-\frac{(x-160)^2}{2(36)}} dx$$

$$Z = \frac{x - \mu_x}{\sigma_x}$$

Z~N(0;1) → dikatakan Z berdistribusi Normal Standard

Karyawan perusahaan A yang tingginya antara 151 dan 172 cm

$$P(151 \le x \le 172) = P\left(\frac{151 - 160}{6} \le \frac{x - 160}{6} \le \frac{172 - 160}{6}\right) = P(-1,5 \le Z \le 2)$$

$$= P(0 \le Z \le 2) + P(0 \le Z \le 1,5) = 0,4772 + 0,4332 = 0,9104$$

$$= P(-\infty < Z \le 2) - P(-\infty \le Z \le -1,5) = 0,9772 - 0,0668 = 0,9104$$

$$P(0 < z < b) = luas dibawah kurva normal dari z = 0 sampai z = b$$

Areas Under the Standard Normal Curve

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
		1245	4757	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.5	4332	100000	.4357	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.6	.4452		.4573	.4582	4591	.4599	.4608	.4616	.4625	
1.7	.4554		.4656	.4664	.4671	.4678	.4686	.4693	.4699	
1.8	.4641		5.0000000	.4732	.4738	.4744	.4750	.4756	.4761	.4767
500	4777	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.0	.4772	1000000	.4830	.4834	.4838	.4842	.4846	.4850	.4854	
2.1	.4821		70000000	.4871	.4875	.4878	.4881	.4884	.4887	
2.2	.4861		7/12/5/2		4904			.4911	.4913	
2.3	.4893		4922	.4925	.4927	.4929	The 1800 2002 Co	.4932	.4934	.4930

5. DISTRIBUSI PROBABILITAS EKSPONENSIAL

$$f(x) = \begin{cases} \lambda e^{-\lambda x} ; x \ge 0 \\ 0 ; x \text{ yang lain} \end{cases}$$

 λ adalah paramenetr yang berupa bilangan riil dengan $\lambda > 0$

$$F(k) = P(0 \le x \le k) = \begin{cases} 0 & ; k < 0 \\ 1 - e^{-\lambda k} & ; k \ge 0 \end{cases}$$

$$Rata - rata = E(x) = \frac{1}{\lambda}$$

$$Variance \rightarrow \sigma^2 = \frac{1}{\lambda^2}$$

CONTOH

- Daya tahan lampu yang dihasilkan oleh suatu pabrik berdostribusi eksponensial dengan rata-rata 3000jam
- a. Berapa probabilitas bahwa sebuah lampu yang diambil secara acak akan rusak/mati sebelum dipakai sampai 3000 jam
- b. Berapa probabilitas bahwa sebuah lampu yang diambil secara acak akan mempunyai daya tahan lebih dari 3000 jam?

$$x = daya tahan lampu (dalam jam)$$

X ~ Eksponensial dengan rata-rata 3000 jam

$$\rightarrow \lambda = \frac{1}{3000}$$

$$a.P(x < 3000) = F(3000) = 1 - e^{-\left(\frac{1}{3000}\right)(3000)}$$

= $1 - e^{-1} = 1 - 0.368 = 0.632$

b.
$$P(x > 3000) = 1 - P(x \le 3000) = 1 - F(3000)$$

= $1 - (1 - e^{-(\frac{1}{3000})(3000)}) = e^{-1} = 0,368$