

Description

Image

Caption

1. Wine bottles. © iStockphoto 2. Building windows. © John Fernandez 3. Building windows. © John Fernandez

The material

Soda lime glass is the glass of windows, bottles and light bulbs, used in vast quantities, the commonest of them all. The name suggests its composition: 13-17% NaO (the "soda"), 5-10% CaO (the "lime") and 70-75% SiO2 (the "glass"). It has a low melting point, is easy to blow and mold, and it is cheap. It is optically clear unless impure, when it is typically green or brown. Windows today have to be flat and that was not - until 1950 - easy to do; now the float-glass process, solidifying glass on a bed of liquid tin, makes 'plate' glass cheaply and quickly.

Composition (summary)

73% SiO2/1% Al2O3/17% Na2O/4% MgO/5% CaO

General properties

Density	2.44e3	-	2.49e3	kg/m^3
Price	* 1.41	-	1.66	USD/kg
Date first used	-3500			

Mechanical properties

68	-	72	GPa
		. –	Oi a
28	-	29.5	GPa
39.8	-	41.9	GPa
0.21	-	0.22	
* 30	-	35	MPa
31	-	35	MPa
* 360	-	420	MPa
0			% strain
439	-	484	HV
* 29.4	-	32.5	MPa
* 0.55	-	0.7	MPa.m^0.5
	39.8 0.21 * 30 31 * 360 0 439 * 29.4	39.8 - 0.21 - * 30 - 31 - * 360 - 0 439 - * 29.4 -	39.8 - 41.9 0.21 - 0.22 * 30 - 35 31 - 35 * 360 - 420 0 439 - 484 * 29.4 - 32.5

Mechanical loss coefficient (tan delta)	7.5e-4 - 8.8e-4
Thermal properties	
Glass temperature	442 - 592 ℃
Maximum service temperature	170 - 400 ℃
Minimum service temperature	-273 °C
Thermal conductor or insulator?	Poor insulator
Thermal conductivity	* 0.7 - 1.3 W/m.℃
Specific heat capacity	* 850 - 950 J/kg.℃
Thermal expansion coefficien	9.1 - 9.5 μstrain/℃
Electrical properties	
Electrical conductor or insulator?	Good insulator
Electrical resistivity	7.94e17 - 7.94e18 µohm.cm
Dielectric constant (relative permittivity)	7 - 7.6
Dissipation factor (dielectric loss tangent)	0.007 - 0.01
Dielectric strength (dielectric breakdown)	* 12 - 14 1000000 V/m
Optical properties	
Transparency	Optical Quality
Refractive index	1.5 - 1.52
Critical Materials Risk	
High critical material risk?	No
Dragonahility	
Processability Castability	3 - 4
Moldability	5
Weldability	3 - 4
vveidability	3 - 4
Durability: water and aqueous solutions	
Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent
Devok iliter opida	
Durability: acids	
Acetic acid (10%)	Excellent
	Excellent Excellent
Acetic acid (10%)	

Hydrochloric acid (36%)	Excellent
Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Excellent
Nitric acid (70%)	Excellent
Phosphoric acid (10%)	Excellent
Phosphoric acid (85%)	Excellent
Sulfuric acid (10%)	Excellent
Sulfuric acid (70%)	Excellent

Durability: alkalis

Sodium hydroxide (10%)	Acceptable
Sodium hydroxide (60%)	Limited use

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Limited use

5 EDUPITUR	
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Excellent
Durability: built environments	
Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent
Durability: flammability	
Flammability	Non-flammable
Durability: thermal environments	
Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable
Geo-economic data for principal compone Annual world production, principal component	8e7 - 8.2e7 tonne/yr
Reserves, principal component	* 1e10 - 1.1e10 tonne
Primary material production: energy, CO2 a	and water
Embodied energy, primary production	* 10.1 - 11.1 MJ/kg
CO2 footprint, primary production	* 0.72 - 0.796 kg/kg
Water usage	* 13.6 - 15.1 l/kg
Eco-indicator 95	50.5 millipoints/kg
Eco-indicator 99	75.7 millipoints/kg
Material processing: energy	
Glass molding energy	* 7.82 - 9.46 MJ/kg
Grinding energy (per unit wt removed)	* 25.6 - 28.3 MJ/kg
containing error gry (per anni reconstruction)	200 200
Material processing: CO2 footprint	
Glass molding CO2	* 0.625 - 0.757 kg/kg
Grinding CO2 (per unit wt removed)	* 1.92 - 2.12 kg/kg
Material recycling: energy, CO2 and recycle	e fraction
Recycle	✓
Embodied energy, recycling	* 7.81 - 8.64 MJ/kg

* 0.614	-	0.679	kg/kg
22	-	26	%
✓			
×			
✓			
×			
Non-toxio	5		
×			
	22 X X X	22 - X X	22 - 26 ✓ × ✓

Environmental notes

Silica, the prime ingredient of glass, is the commonest compound in the earths crust, though it is harder to find it in a form sufficiently pure to make glass. Nonetheless, the ingredients of glass are ubiquitous, and the material is readily recycled at the end of its life.

Supporting information

Design guidelines

Soda lime glass is an exceptionally versatile material. It is easily cast, rolled, blow-molded, pressure molded or drawn to a great variety of shapes. It can be cut, polished, and toughened. It is an exceptionally durable material, surviving weathering and normal handling with no trace of degradation, sometimes for hundreds of years.

Typical uses

Windows, bottles, containers, tubing, lamp bulbs, lenses and mirrors, bells, glazes on ceramics.

Links

Reference			
ProcessUniverse			
Producers			