#### 北京市鲁迅中学初一年级数学期中测试题

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)二部分,其中第Ⅰ卷(选择题)和第Ⅱ 卷共 100 分。另附加题 20 分。考试时间 100 分钟。

第 | 卷 (共 30 分)

选择题: 本大题共 10 小题, 每小题 3 分, 共 30 分. 在每小题的 4 个选项中, 只有一项是符合题 目要求的.

- 1. 以下列各组线段为边,能组成三角形的是( )
- A. 2cm, 3cm, 5cm B. 5cm, 6cm, 10cm
- C. 1cm, 1cm, 3cm D. 3cm, 4cm, 9cm
- 2.如果点 A(x, y) 在第三象限,则点 B(-x, y-1) 在( )
- A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.-8的立方根与4的平方根的和是
  - ( )

卜

- A、0 B、0或4
- C、4 D、0 或-4
- 4.下列各式中,正确的是( )

$$A. \pm \sqrt{\frac{9}{16}} = \pm \frac{3}{4}$$
  $B. \pm \sqrt{\frac{9}{16}} = \frac{3}{4}$ ;  $C. \pm \sqrt{\frac{9}{16}} = \pm \frac{3}{8}$ 

$$B. \pm \sqrt{\frac{9}{16}} = \frac{3}{4}$$

$$C. \pm \sqrt{\frac{9}{16}} = \pm \frac{3}{8}$$

$$D.\sqrt{\frac{9}{16}} = +\frac{3}{4}$$

- 5.下列说法正确的是:
  - A. -5 是 25 的平方根
- B. 25 的平方根是-5
- C. -5 是  $(-5)^2$  的算术平方根 D.  $\pm 5$  是  $(-5)^2$  的算术平方根
- 6.点 P(a,b)在第四象限,则点 P 到 x 轴的距离是(
- B.b
- C. | a |
- 7. 若一个多边形的每个外角都等于 60°,则它的内角和等于( )
  - A. 180° B. 720° C. 1080° D. 540°
- 8. 一个三角形的两边长分别是 3 和 7, 且第三边长为整数,这样的三角形周长最大的值为( )
- A. 15 B. 16 C. 18 D. 19
- 9.同一平面内的四条直线满足  $a \perp b$ , $b \perp c$ , $c \perp d$ ,则下列式子成立的是(
  - A. a//b
- B.  $b \perp d$  C.  $a \perp d$
- D. b//c
- 10. 两架编队飞行(即平行飞行)的两架飞机 A、B 在坐标系中的坐标分别为 A (-1, 2)、 B(-2, 3), 当飞机 A 飞到指定位置的坐标是(2, -1) 时, 飞机 B 的坐标是( ) .
  - A. (1, 5)
- B. (-4, 5) C. (1, 0) D. (-5, 6)

第 || 卷(共 70 分)

- 填空题: 本大题共 10 小题, 每空 2 分, 共 20 分. 把答案填在题中横线上.
- 1.  $\sqrt{36}$  的平方根是 , 81 的算术平方根是 ,
- $\sqrt[3]{1-\frac{7}{8}} =$ \_\_\_\_\_
- 3.  $\pm \sqrt{a-2} + |b^2-9| = 0$ , = 0 ab =
- 4. 已知 a, b, c 是△ABC 的三边,化简: |a+b-c|+|b-a-c|-|c+b-a|=\_\_\_

7. 在平面直角坐标系中,点 A 的坐标为 (-1, 3),线段 AB // X 轴,且 AB=4,则点 B 的坐标为\_\_\_\_\_\_.

8.如果一个多边形的边数增加 1 倍,它的内角和就为 2160°,那么原来那个多边形是\_\_\_\_\_边形.

9.如右图, AB // CD, ∠A=34°, ∠C=70°, 则∠F=\_\_\_\_°



A E B C 第 9 题



第5题

10.如图,直角△ABC 的周长为 2017,在其内部有 5 个小直角三角形,且这 5 个小直角三角形都有一条边与 BC 平行,则这 5 个小直角三角形的周长之和是\_\_\_\_。

# 三、计算题: (每小题5分)

1. (1) 
$$\sqrt{4} + \sqrt{25} - \sqrt{100}$$
 ;

$$(2) \quad \sqrt[3]{\frac{1}{8}} - \frac{5}{2} \sqrt[3]{\frac{1}{125}} - \sqrt[3]{-27}$$

2. 求 x 的值: (1)  $(2x-1)^2 = 25$ ;

(2)  $3(x-4)^3 = -375$ ;

# 四、证明与解答(每题6分)

1、如图, 己知: AB // DE, ∠ABC+∠DEF=180°, 求证: BC // EF。



2. 等腰三角形的两边长 a、b 满足 $|a-4|+(b-9)^2=0$ .求这个等腰三角形的周长.



求:

卜

姓名 世

- (1)△ABC 的面积;
- (2)AD 的长;
- (3)  $\triangle ACE$  和  $\triangle ABE$  的周长的差.



4. 如图,在四边形 ABCD 中, $\angle A = \angle C = 90$ °,BE 平分  $\angle ABC$ ,DF 平分  $\angle ADC$ .则 BE 与 DF 有何位置关系? 试说明理由.



- 5. 如图,在直角坐标系中,A(-1,3),B(3,-2).
  - (1) 求 △ AOB 的面积;
  - (2) 设AB交y轴于点C,求C点的坐标.



#### 附加题: (20分)

1. 如图,在第 1 个 $\triangle ABA_1$ 中, $\angle B$ =40°, $\angle BAA_1$ = $\angle BA_1A$ ,在  $A_1B$  上取一点 C,延长  $AA_1$ 到  $A_2$ ,使得在第 2 个 $\triangle A_1CA_2$ 中, $\angle A_1CA_2$ = $\angle A_1$   $A_2C$ ;在  $A_2C$  上取一点 D,延长  $A_1A_2$ 到  $A_3$ ,使得在第 3 个 $\triangle A_2DA_3$ 中, $\angle A_2DA_3$ = $\angle A_2$   $A_3D$ ;……,按此做法进行下去,第 3 个三角形中以  $A_3$  为顶点的内角的度数为\_\_\_\_\_\_;第 n 个三角形中以  $A_n$  为顶点的内角的度数为\_\_\_\_\_\_.



2.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.



卜

3. 先阅读下面的文字,然后解答问题.

大家知道 $\sqrt{2}$  是无理数,而无理数是无限不循环小数,因此 $\sqrt{2}$  的小数部分我们不可能全部写出来,于是小明用 $\sqrt{2}$  一1 表示 $\sqrt{2}$  的小数部分,你同意小明的表示方法吗?

事实上,小明的表示方法是有道理的,因为 $\sqrt{2}$  的整数部分是 1,将这个数减去其整数部分, 差就是小数部分.

由此我们还可以得到一个真命题:

如果 $\sqrt{2}=x+y$ , 其中x是整数,且0<y<1,那么 $x=1,y=\sqrt{2}-1$ .

请解答下列问题:

- (1) 如果 $-\sqrt{5} = a + b$ ,其中a是整数,且0 < b < 1,那么a = , b = ;
- (2) 已知  $2+\sqrt{5}=m+n$ , 其中 m 是整数, 且 0< n<4, 求  $\left|m-n\right|$  的值.

### 北京市鲁迅中学初一年级数学期中测试题答案及评分标准

一、选择题: 本大题共 10 小题, 每小题 3 分, 共 30 分. 在每小题的 4 个选项中, 只有一项是符 合题目要求的.

| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|----|
| 答案 | В | D | D | A | A | D | В | D | С | С  |

二、填空题: 本大题共 10 小题, 每小题 2 分, 共 20 分.

- 1.  $\pm \sqrt{6}$ ,9
- 2. -4, 1/2 3.  $\pm 6$  4. 3a-b-c
- 5. 54°

- 6.  $\pm 3\sqrt{5}$  7. (-5,3)  $\vec{g}$ (3,3) 8.7 9.36
- 10.2017

## 三、计算题:

1. (本题共4小题,每小题5分)

- (1) **-3** (2) 3
- **2.** (1)  $X_1 = -2, X_2 = 3$  (2) X=-1

四、证明与解答

1.

证明: :AB//DE,

- $\therefore \angle B = \angle BGE_{\perp}$
- $\Sigma : \angle B + \angle E = 180^{\circ}$ 
  - $\therefore$   $\angle$ BGE+ $\_$  $\angle$ E =180
  - ∴BC // EF

2. 解:由题意可知

a-4=0 且 b-9=0

所以 a=4 且 b=9

所以等腰三角形的三边为

4、4、9(舍)或4、9、9

所以周长为 4+9+9=22

- **3.**(1)24 (2)4.8 (3)2
- 4.BE // DF
- **5.**解:分别过 A\B 作 X 轴、Y 轴垂线交于 M 点,连接 OM

$$S_{\Delta aob} = S_{\Delta AMB} - S_{\Delta AMO} - S_{\Delta BMO}$$

$$= \frac{1}{2} AM \cdot BM - \frac{1}{2} AM \cdot ON - \frac{1}{2} BM \cdot OP$$

$$= 10 - \frac{5}{2} - 4$$

$$= \frac{7}{2}$$

※ 条

新型 本