UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 3. INDUCCION

Problema 1.-Demuestre mediante inducción matemática que: (En práctica (b) o (e))

- (a) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}, \ \forall n \in \mathbb{N}.$
- (b) $\sum_{k=1}^{n} [k \cdot k!] = (n+1)! 1, \ \forall n \in \mathbb{N}.$
- (c) $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n 1, \ \forall n \in \mathbb{N}.$
- (d) $\sum_{k=1}^{n} k \cdot 2^k = 2 + (n-1)2^{n+1}, \ \forall n \in \mathbb{N}.$
- (e) Si $x \ge -1$, entonces $(1+x)^n \ge 1 + nx$, $\forall n \in \mathbb{N}$. (Designaldad de Bernoulli)

Problema 2.- Demuestre por inducción que:

(En práctica (b) y (g))

- (a) $7^n 6^n 1$ es divisible por 6, para todo $n \in \mathbb{N}$.
- (b) $x^{2n} 1$ es divisible por x + 1, $x \neq -1$, para todo $n \in \mathbb{N}$.
- (c) $x^{2n+1} y^{2n+1}$ es divisible por x y, $x \neq y$, para todo $n \in \mathbb{N}$.
- (d) Si para cada $n \in \mathbb{N}$ $n^2 + n + 4$ es divisible por 2, entonces $n^3 + 11n$ es divisible por 6, para cada $n \in \mathbb{N}$.
- (e) $\sum_{k=1}^{n} s_k = 2\sqrt{3} \left[(n-1) + \frac{1}{2^n} \right], \ \forall n \in \mathbb{N}; \text{donde } s_1 = \sqrt{3} \text{ y } s_{n+1} = \sqrt{3} + \frac{1}{2} s_n, \ \forall n \geq 1.$
- (f) Para $n \in \mathbb{N}$, con n > 10; $n 2 < \frac{n^2 n}{12}$.
- (g) Para $n \in \mathbb{N}$, con n > 3; $2^n < n!$.
- (h) $1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}, \ \forall n \in \mathbb{N}.$

Problema 3.- Se definen los coeficientes binomiales por

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}, \ n \ge k, \ n, k \in \mathbb{N}.$$

Verifique que

$$\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right);$$

y demuestre que:

(En práctica (a))

(a)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n, \forall n \in \mathbb{N}.$$

(b)
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}, \forall n \in \mathbb{N}.$$

Problema 4.- Considere las siguientes igualdades

(En práctica)

(a)
$$1^2 + 0^2 = 1^2$$
; $3^2 + 4^2 = 5^2$; $5^2 + 12^2 = 13^2$; $7^2 + 24^2 = 25^2$; $9^2 + 40^2 = 41^2$; $11^2 + 60^2 = 61^2$.

(b)

$$\begin{array}{rcl}
1 & = & 1 \\
2+3+4 & = & 1+8 \\
5+6+7+8+9 & = & 8+27 \\
10+11+12+13+14+15+16 & = & 27+64.
\end{array}$$

Conjeture la fórmula general.

Problema 5.- Para la resolución aproximada de ecuaciones diferenciales parciales (tema que conocerá en segundo año en el curso Complementos de Cálculo), se utiliza habitualmente el siguiente procedimiento geométrico: se divide inicialmente una región del plano en un número finito de triángulos disjuntos (formando así lo que se llama una triangulación), y luego se generan sucesivamente nuevas triangulaciones uniendo los puntos medios de los triángulos que constituyen la triangulación anterior. De este modo, cada triángulo da origen a 4 nuevos triángulos.

- (a) Si una región consta inicialmente de 6 triángulos, ¿cuántas triangulaciones deben realizarse de modo que la última de ellas tenga al menos 2000 triángulos?
- (b) ¿Cuántos triángulos (a lo más) debe tener la triangulación inicial para que, al cabo de N triangulaciones, la suma del número de triángulos de todas ellas sea inferior a 15.000?

FCHH/fchh.-