Árvores

PROFA. CRISTIANE IMAMURA

Roteiro

- ·As estruturas que não são árvores
- •Qual a necessidade de outras estruturas?
- •Definição de uma árvore
- Outras terminologias a respeito de árvore
- Árvores Binárias

Estruturas que não são árvores

Vetores e matrizes são estruturas excelentes para acesso rápido, porém devem ter o tamanho limitado em sua definição, assim são inadequadas para prover o armazenamento "justo" dos elementos.

Listas encadeadas são estruturas bastante interessantes por possibilitar o aumento ou diminuição de elementos em tempo de execução, mas podem dificultar o acesso rápido aos elementos e ordenação.

A necessidade de outras estruturas

 Vetores, matrizes, e listas encadeadas, são estruturas lineares.

Não são ideais para representar hierarquias entre elementos, como por exemplo, o exigido em um sistema de diretórios de um computador.

Definição

Árvore é uma estrutura de dados Não Linear nos quais os elementos Possuem uma hierarquia.

Os elementos de uma árvore são denominados nós.

Cada nó pode ser unido a outro através de uma aresta de conexão.

Os nós são acessados de acordo com uma hierarquia.

- Pai se for ancestral de outro nó
 - A é pai de B, C, E
 - B é pai de D e F

- Filho se for descendente de outro nó.
 - B é filho de A
 - G é filho de C

- Raiz da árvore, se for o nó pai do qual se inicia o percurso na árvore
 - A é o nó raiz

- Folha, se não possui nó filho.
 - D, F e G são nós folhas

Na árvore, existem subárvores

- Estruturas que podem ser identificadas isoladamente contendo uma raiz e/ou seus nós descendentes.
 - B, D e F formam uma subárvore
 - C e G formam outra
 - E forma uma subárvore que não possui filhos.

Definição Recursiva

Uma árvore é uma coleção de nós

A coleção pode estar vazia, ou consistir de um nó raiz R;

Existe um arco direcionado de R para a raiz de cada subárvore:

- o a raiz de cada subárvore é chamada de filho de R,
- o da mesma forma R é chamado de pai da raiz de cada subárvore

Definição Recursiva

Exercício 1

Considerando a árvore a seguir, defina:

- A) A raiz da árvore
- B) Os nós folhas
- C) todas as subárvores

- •Grau de um nó:
 - número de subárvores relacionadas com o nó
 - Exemplo: Grau do nó A: 3 Grau do nó B: 2
- •Folha:
 - um nó de grau zero
- •Grau de uma árvore:
 - Grau máximo atingido por seus nós.
 - Neste exemplo será 3.

- Caminho:
 - sequência única de arestas que leva a um nó a partir da raiz
 - Ex.Caminho para F é A-B-F

- Comprimento do Caminho:
 - número de arrestas no caminho.
 - Ex.Comprimento do caminho até F é 2

- Nível de um nó:
 - Comprimento do caminho da raiz até o nó, que é o número de arcos no caminho
 - Ex. Nível de A: 0
 - Nível de B: 1
 - Nível de C: 1
 - Nível de D: 2

- Altura:
 - raiz mais o número máximo de descendentes
 - Caminho entre a raiz e a(s) folhas(s) mais distante(s) + 1
 - Ex. Altura de D: 1
 - Altura de C: 2
 - Altura de A : 3

Exercício 2

Defina para cada nó:

O grau, o nível, a altura, o caminho, o comprimento do caminho

Defina para a árvore a altura

Árvores Binárias

É uma árvore na qual cada nó possui no máximo grau 2.

Definição

- •Uma árvore binária é um conjunto finito de elementos que está vazio ou pode ser particionado em três subconjuntos disjuntos:
 - Raiz,um subconjunto que possui um único elemento
 - Subárvore esquerda, que é uma árvore binária
 - Subárvore direita, que também é uma árvore binária

Definição

Exemplo

Percursos em árvore

Dependendo da aplicação a que se destina a árvore, deve haver a implementação de um tipo de percurso.

O percurso em um árvore é um processo que determina como serão visitados todos nós de uma árvore para construção (descoberta) de um caminho.

Tipos de Percurso

- Percurso em Largura:
 - Primeiro visitam-se todos os nós do menor nível para seguir para os nós do próximo nível.
 - Ex: A B C-D-E-F-G-H-I-J-K-L-M-N-O

Tipos de Percurso

- Percurso em Profundidade:
 - Primeiro visitam-se todos os nós da sub-árvore atual
 - Ex: se estiver na subárvore B, primeiro deve explorar todos os nós dela para depois poder ir para C

Tipos de Percurso em Profundidade

- Pré-ordem
- Pós-ordem
- In-ordem

Percurso em Pré-ordem

- Processo que possui os seguintes passos:
- 1- Visitar a raiz
- 2- Percorrer a sub-árvore esquerda em pré-ordem
- 3- Percorrer a sub-árvore direita em pré-ordem

Percurso resultante:

Visite a raiz

Percurso resultante:

A

Processe em pre ordem a subárvore a esquerda

Percurso resultante:

A-B

Processe em pre ordem a subárvore a esquerda

Percurso resultante:

A-B-D

Processe em pre ordem a subárvore a esquerda

Visite a raiz

Percurso resultante:

A-B-D-H

Processe em pre ordem a subárvore a direita

Visite a raiz

Percurso resultante:

A-B-D -H - I

Processe em pre ordem a subárvore a direita

Percurso resultante:

A-B-D-H-I-E

Processe em pre ordem a subárvore a esquerda

Visite a raiz

Percurso resultante:

A-B-D -H - I- E - J

Processe em pre ordem a subárvore a direita

Visite a raiz

Percurso resultante:

A-B-D-H-I-E-J-K

Processe em pre ordem a subárvore a direita

Percurso resultante:

A-B-D-H-I-E-J-K-C

Processe em pre ordem a subárvore a esquerda

Percurso resultante:

A-B-D-H-I-E-J-K-C-F

Processe em pre ordem a subárvore a esquerda

Percurso resultante:

$$A-B-D-H-I-E-J-K-C-F-L$$

Processe em pre ordem a subárvore a direita

Percurso resultante:

A-B-D-H-I-E-J-K-C-F-L-M

Processe em pre ordem a subárvore a direita

Percurso resultante:

A-B-D-H-I-E-J-K-C-F-L-M-G

Processe em pre ordem a subárvore a esquerda

Percurso resultante:

A-B-D-H-I-E-J-K-C-F-L-M-G-N

Processe em pre ordem a subárvore a direita

Percurso resultante:

A-B-D-H-I-E-J-K-C-F-L-M-G-N-O

Exercício 3

Determine o percurso em pré-ordem da seguinte árvore binária

Percurso em Pós-Ordem

Determina os seguintes passos:

- 1 Percorrer a sub-árvore esquerda em pós-ordem
- 2- Percorrer a sub-árvore direita em pós-ordem
- 3- Visitar a raiz

Percurso resultante:

Percurso resultante:

Percurso resultante:

Percurso resultante:

Percurso resultante:

Percorrer em pós ordem a subarvore a direita

Percurso resultante:

Visitar raiz

Percurso resultante:

Percorrer em pós ordem à direita

Percurso resultante:

Percorrer em pós ordem à esquerda

Percurso resultante:

Percorrer em pós ordem à direita

Percurso resultante:

Visitar a raiz

H-I

Percurso resultante:

Visitar a raiz

H-I-D

Percurso resultante:

Percorrer em pós ordem à direita

H-I-D

Percurso resultante:

Percorrer em pós ordem à esquerda

H-I-D

Percurso resultante:

Visitar raiz

H-I-D-J

Percurso resultante:

Percorrer em pós ordem à direita

H-I-D-J

Percurso resultante:

Visitar a raiz

H-I-D -J-K

Percurso resultante:

Visitar a raiz

H-I-D -J-K - E

Percurso resultante:

Visitar a raiz

H-I-D-J-K-E-B

Percurso resultante:

Percorrer em pós ordem à direita

H-I-D-J-K-E-B

Percurso resultante:

H-I-D-J-K-E-B

Percorrer em pós ordem à esquerda

Percurso resultante:

Percorrer em pós ordem à esquerda

H-I-D-J-K-E-B

Percurso resultante:

H-I-D-J-K-E-B-L

Visitar raiz

Percurso resultante:

H-I-D-J-K-E-B-L

Percorrer em pós ordem à direita

Percurso resultante:

H-I-D-J-K-E-B-L-M

Visitar raiz

Percurso resultante:

Visitar raiz

$$H-I-D-J-K-E-B-L-M-F$$

Percurso resultante:

H-I-D-J-K-E-B-L-M-F

Percorrer em pós ordem à direita

Percurso resultante:

H-I-D-J-K-E-B-L-M-F

Percorrer em pós ordem à esquerda

Percurso resultante:

Percorrer em pós ordem à direita

H-I-D-J-K-E-B-L-M-F-N

Percurso resultante:

$$H-I-D-J-K-E-B-L-M-F-N-O$$

Percurso resultante:

$$H-I-D-J-K-E-B-L-M-F-N-O-G$$

Percurso resultante:

$$H-I-D-J-K-E-B-L-M-F-N-O-G-C$$

Percurso resultante:

Exercício 4

Determine o percurso em pós-ordem da seguinte árvore binária

Percurso In-Ordem

Determina os seguintes passos:

- 1 Percorrer a sub-árvore esquerda em in-ordem
- 2- Visitar a raiz
- 3- Percorrer a sub-árvore direita em in-ordem

Exemplo de Percurso In-Ordem

Determina os seguintes passos:

- 1 Percorrer a sub-árvore esquerda em in-ordem
- 2- Visitar a raiz
- 3- Percorrer a sub-árvore direita em in-ordem

H D I B JEKALFMCNGO

Percurso In-Ordem

Determina os seguintes passos:

- 1 Percorrer a sub-árvore esquerda em in-ordem
- 2- Visitar a raiz
- 3- Percorrer a sub-árvore direita em in-ordem

Exercícios

1- Mostre como fica o percurso em pré e in-ordem:

Exercícios

2- Declare em C uma estrutura capaz de representar um nó de uma arvore binária que seja capaz de armazenar um valor inteiro.

3- Defina como se declara a raiz dessa árvore

Exercícios

4-Faça uma função que dada a raiz da árvore binária que você definiu faça o percurso em pré-ordem.