ECE 4750 PSET 2

Tim Yao (ty252)

Oct 10, 2015

1 PARCv1 Instruction Cache

1.a Categorizing Cache Misses

Addr	Instruction	Iteration 1	Iteration 2
	loop:		
0x108	addiu r1, r1, -1	compulsory	
0x10c	addiu r2, r2, 1		
0x110	j foo	compulsory	conflict
	foo:		
0x218	addiu r6, r6, 1	compulsory	conflict
0x21c	bne r1, r0, loop		

Figure 1: Cache Miss Type

1.b Average Memory Access Latency

Looking at iteration 2, we can see that there are 2 misses out of the 5 instructions. Therefore the miss rate for 64 iterations of the loop is 0.4.

The average memory access latency is:

 $AMAL = (Hit Time) + (Miss Rate \times Miss Penalty)$

 $AMAL = 1 + (0.4 \times 5)$

AMAL = 3 cycles

The AMAL is dominated by conflict misses, as shown by the miss chart above. Compulsory misses only occur on the first iteration of the loop.

1.c Set-Associativity

The cache performance will increase significantly, because there will no longer be conflict misses during the loop. With this new cache microarchitecture, only compulsory misses will be left.

2 Page-Based Memory Translation

2.a Two-Level Page Tables

The 16-bit virtual address is used as the following:

Bits 14-15	Bits 12-13	Bits 0-11
XX	XX	XXXXXXXXXXX
Virtual Pa	age Number	Page Offset
L1 Index	L2 Index	Page Offset

Figure 2: Virtual Address Usage

Page Tables:

-	Page-Table Entr		
Paddr of PTE	Valid	Paddr	
0xffffc	1	0xfffe0	
0xffff8			
0xffff4			
0xffff0	1	0xfffb0	
0xfffec	1	0x05000	
0xfffe8	1	0x07000	
0xfffe4			
0xfffe0			
0xfffdc			
0xfffd8			
0xfffd4			
0xfffd0			
0xfffcc			
0xfffc8			
0xfffc4			
0xfffc0			
0xfffbc	1	0x01000	
0xfffb8	1	0x04000	
0xfffb4	1	0x00000	
0xfffb0			

Figure 3: Contents of Physical Memory with Page Tables

2.b Translation-Lookaside Buffer

				Total				
Transaction		Page		Num Mem	TLB	Way 0	TLB V	Vay 1
${f Address}$	VPN	Offset	\mathbf{m}/\mathbf{h}	Accesses	VPN	PPN	VPN	PPN
0xeff4	0xe	0xff4	m	3	-	-	-	_
0x2ff0	0x2	0xff0	m	3	0xe	0x07	-	_
0xeff8	0xe	0xff8	h	1	0xe	0x07	0x2	0x04
0x2ff4	0x2	0xff4	h	1	0xe	0x07	0x2	0x04
0xeffc	0xe	0xffc	h	1	0xe	0x07	0x2	0x04
0x2ff8	0x2	0xff8	h	1	0xe	0x07	0x2	0x04
0xf000	0xf	0x000	m	3	0xe	0x07	0x2	0x04
0x2ffc	0x2	0xffc	h	1	0xf	0x05	0x2	0x04
0xf004	0xf	0x004	h	1	0xf	0x05	0x2	0x04
0x3000	0x3	0x000	m	3	0xf	0x05	0x2	0x04
0xf008	0xf	0x008	h	1	0xf	0x05	0x3	0x01
0x3004	0x3	0x004	h	1	0xf	0x05	0x2	0x04
0xf00c	0xf	0x00c	h	1	0xf	0x05	0x2	0x04
0x3008	0x3	0x008	h	1	0xf	0x05	0x2	0x04

Figure 4: TLB Contents Over Time

3 Impact of Cache Access Time and Replacement Policy

3.a Miss Rate Analysis

Transaction											
${f Address}$	\mathbf{tag}	idx	\mathbf{m}/\mathbf{h}	L0	L1	L2	L3	L4	L5	L6	L7
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}			0x0					
0x07c	0x0	0x7	\mathbf{m}				0x0				
0x070	0x0	0x7	h								0x0
0x100	0x2	0x0	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}	0x2							
0x204	0x4	0x0	\mathbf{m}		0x2						
0x214	0x4	0x1	\mathbf{m}	0x4							
0x308	0x6	0x0	\mathbf{m}		0x4						
0x110	0x2	0x1	\mathbf{m}	0x6							
0x114	0x2	0x1	h		0x2						
0x118	0x2	0x1	h								
0x11c	0x2	0x1	h								
0x410	0x8	0x1	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}		0x8						
0x510	0xa	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xa						
0x610	0xc	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xc						
0x710	0xe	0x1	\mathbf{m}		0x2						
Number of M	Iisses	= 16									
Miss Rate =	0.8										

Figure 5: Direct-Mapped Cache Contents Over Time

Miss Rate = 0.7

Transaction				Se	t 0	Se	t 1	Se	t 2	Se	t 3
${f Address}$	$_{ m tag}$	idx	\mathbf{m}/\mathbf{h}	Way 0	Way 1						
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
0x07c	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h								
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x14				
0x610	0x18	0x1	\mathbf{m}				0x18				
0x110	0x4	0x1	h								
0x710	0x1c	0x1	\mathbf{m}								
Number of N	Aisses :	= 12									
Miss Rate =	0.6										

Figure 6: Two-Way Set-Associative Cache Contents Over Time with LRU Replacement

Transaction				Set	t 0	Se	t 1	Se	t 2	Se	t 3
${f Address}$	$_{ m tag}$	idx	\mathbf{m}/\mathbf{h}	Way 0	Way 1						
0x024	0x0	0x2	m	=	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
0x07c	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h			0x4					
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14	0x1	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}			0x14					
0x610	0x18	0x1	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}				0x18				
0x710	0x1c	0x1	m								
Number of N	/lisses	$=\overline{14}$									

Figure 7: Two-Way Set-Associative Cache Contents Over Time with FIFO Replacement

3.b Sequential Tag Check then Memory Access

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr}_{\mathrm{reg}}\mathrm{M0}}$	1	1
$tag_decoder$	$3+2\times 2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3+2[\log 2(26)]$	13
tag_and	2-1	1
$data_decoder$	$3+2\times3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		73
$\overline{\mathrm{addr}_{\mathrm{reg}}\mathrm{M0}}$	1	1
$tag_decoder$	$3+2\times 2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3+2[\log 2(26)]$	13
tag_and	2-1	1
$data_decoder$	$3+2\times3$	9
$data_mem$	10 + [(8+128)/16]	19
Total		62

Figure 8: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Serialized Tag Check before Data Access

The reason that the 2-way set-associative microarchitecture is slower than the direct-mapped microarchitecture is the need for the tag check result to go through the data_decoder. It happens that the data_decoder's delay is relatively significant (9τ) .

3.c Parallel Read Hit Path

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr_reg_M0}}$	1	1
$\operatorname{addr}\operatorname{\underline{-}mux}$	$3[\log 2(2)] + [5/8]$	4
$data_decoder$	$3+2\times3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		44

Figure 9: Critical Path and Cycle Time for Direct Mapped Cache with Parallel Read Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$\operatorname{addr}_{\operatorname{mux}}$	$3[\log 2(2)] + [4/8]$	4
$data_decoder$	$3+2\times 2$	7
$data_mem$	10 + [(4+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
way_mux	$3[\log 2(2)] + [32/8]$	7
$rdata_reg_M1$	1	1
Total		49

Figure 10: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Parallel Read Hit

INSERT SOME SHIT HERE

3.d Pipelined Write Hit Path

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr}_{\mathrm{reg}}\mathrm{M0}}$	1	1
$tag_decoder$	$3+2\times3$	9
tag_mem	10 + [(8+26)/16]	13
tag_cmp	$3 + 2[\log 2(25)]$	13
tag_and	2-1	1
wen_and	2-1	1
wen_reg_M1	1	1
Total		39

Figure 11: Critical Path and Cycle Time for Direct Mapped Cache with Pipelined Write Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$tag_decoder$	$3+2\times 2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3+2[\log 2(26)]$	13
tag_and	2-1	1
wen_and	2-1	1
$\text{wen}_\text{reg}_\text{M1}$	1	1
Total		36

Figure 12: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Pipelined Write Hit

INSERT SOME SHIT HERE

3.e Average Memory Access Latency

4 Two-Cycle Pipelined Integer ALU and Multiplier

4.a Part 4.A Control and Data Hazard Latencies

```
Jump Resolution Latency = 2
Branch Resolution Latency = 4
ALU-use Delay Latency = 2
Load-use Delay Latency = 3
```

4.b Resolving Data Hazards with Software Scheduling

```
bne r1, r0, done

lw r5, 0(r2)

lw r6, 0(r3)

addiu r8, r4, 4

nop

addu r7, r5, r6

nop

sw r7, 0(r8)

...

done: addiu r10, r9, 1
```

By swapping the addu and addiu instructions, we can avoid 1 nop for the dependence between the addu and the lw instructions. Regardless of how the addiu and addu instructions are scheduled, there will always be a nop right before the sw instruction due to the dependence.

	Dynamic					Cycle										
	Transaction			1	2	3	4	5	6	7	8	9	10	11	12	13
1	bne	r1,	r0, done	F	D	X0	X1	M	W							
2	lw	r5,	0(r2)		F	D	X0	X1	M	W						
3	lw	r6,	0(r3)			F	D	X0	X1	M	W					
4	addiu	r8,	r4, 4				F	D	X0	X1	M	W				
5	nop							F	D	X0	X1	M	W			
6	addu	r7,	r5, r6						F	D	X0	X1	Μ	W		
7	nop									F	D	X0	X1	M	W	
8	SW	r7,	0(r8)								F	D	X0	X1	М	W

Figure 13: Software Scheduling Pipeline

Instruction 6 (addu)'s D stage depends on instruction 2 (lw)'s M stage and instruction 3 (lw)'s M stage. Instruction 7 (sw)'s D stage depends on instruction 4 (addiu)'s X1 stage and instruction 6 (addu)'s X1 stage.

4.c Resolving Data Hazards with Stalling

	Dynamic					Cycle											
	Transaction			1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	bne	r1,	r0, done	F	D	X0	X1	M	W								
2	lw	r5,	0(r2)		F	D	X0	X1	M	W							
3	lw	r6,	0(r3)			F	D	X0	X1	M	W						
4	addu	r7,	r5, r6				F	D	D	D	X0	X1	M	W			
5	addiu	r8,	r4, 4					F	F	F	D	X0	X1	M	W		
6	SW	r7,	0(r8)								F	F	D	X0	X1	M	W

Figure 14: Hardware Stalling Pipeline

Instruction 6 (addu)'s D stage depends on instruction 2 (lw)'s M stage and instruction 3 (lw)'s M stage. Instruction 7 (sw)'s D stage depends on instruction 4 (addiu)'s X1 stage and instruction 6 (addu)'s X1 stage.

4.d New Stall Signal

```
ostall_load_use_X_rs_D
          val_D && rs_en_D && (val_X0 || val_X1) && (rf_wen_X0 || rf_wen_X1)
       && ((inst_rs_D == rf_waddr_X0) || (inst_rs_D == rf_waddr_X1))
       && ((rf_waddr_X0 != 0) || (rf_waddr_X1 != 0))
       && ((op_X0 == LW) || (op_X1 == LW))
   ostall_load_use_X_rt_D
          val_D && rt_en_D && (val_X0 || val_X1) && (rf_wen_X0 || rf_wen_X1)
       && ((inst_rt_D == rf_waddr_X0) || (inst_rt_D == rf_waddr_X1))
       && ((rf_waddr_X0 != 0) || (rf_waddr_X1 != 0))
       && ((op_X0 == LW) || (op_X1 == LW))
10
   ostall_alu_use_X_rs_D
          val_D && rs_en_D && val_X0 && rf_wen_X0
12
       && (inst_rs_D == rf_waddr_X0)
       && (rf_waddr_X0 != 0)
14
   ostall_alu_use_X_rt_D
15
          val_D && rt_en_D && val_X0 && rf_wen_X0
16
       && (inst_rt_D == rf_waddr_X0)
17
       && (rf_waddr_X0 != 0)
18
   stall_D
19
          val_D && !squash_D
       && ((ostall_load_use_X_rs_D || ostall_load_use_X_rt_D) ||
21
          (ostall_alu_use_X_rs_D || ostall_alu_use_X_rt_D))
```

4.e Resolving Control Hazards with Scheduling and Speculation

	Dynamic					Cycle										
	Transaction				1	2	3	4	5	6	7	8	9	10		
1	bne	r1,	r0,	done	F	D	X0	X1	M	W						
2	lw	r5,	0 (r	2)		F	D	X0	-	-	-					
3	lw	r6,	0 (r	3)			F	D	-	-	-	-				
4	addu	r7,	r5,	r6				F	-	-	-	-	-			
5	addiu	r10,	r9	, 1					F	D	X0	X1	M	W		

Figure 15: Squashing Pipeline

	Dynam	ic	Cycle										
	Transac	ction	1	2	3	4	5	6	7	8	9	10	
1	bne	r1, r0, done	F	D	X0	X1	M	W					
2	lw	r5, 0(r2)		F	D	X0	X1	М	W				
3	lw	r6, 0(r3)			F	D	-	-	-	-			
4	addu	r7, r5, r6				F	-	-	-	-	-		
5	addiu	r10, r9, 1					F	D	X0	X1	M	W	

Figure 16: Branch Delay Slot Pipeline