

Reminders

Topics

- Graph Traversal Algorithms
 - Breadth-First Search
 - Depth-First Search

Graph Traversals

- Traversing a graph is similar to binary tree traversal
- Graph traversal can have cycles, whereas binary trees do not
 - May not be able to traverse the entire graph from a single vertex
 - Therefore, we must keep track of the vertices that have been visited
 - We must traverse the graph from each vertex (that hasn't been visited) of the graph. This ensures that the entire graph is traversed.
- Two common graph traversal algorithms:
 - Breadth-first traversal
 - Depth-first traversal

Graph Traversals

- For simplicity, we assume that when a vertex is visited, its index is output.
- Moreover, each vertex is visited only once.
- We can use a bool array to keep track of the visited vertices.
- The difference between BFS and DFS is the order in which we traverse the graph.
- Graph traversal can start with any node! There is no "root" node as we saw with trees.

Breadth-First Traversal

- Similar to traversing a binary tree level-by-level (the nodes at each level are visited from left to right).
- All the nodes at any level, i, are visited before visiting the nodes at level i + 1.
- Use queues
- Note: we're not using BFS to search for the shortest path!

Breadth-First Traversal

queue: -

queue: **b**

queue: fa

dequeue: **b**

queue: a c g

dequeue: f

queue: c g e

dequeue: a

queue: g e d

dequeue: c

queue: e d h

dequeue: **g**

queue: dh

dequeue: e

queue: h

dequeue: d

queue: -

dequeue: h

Traversal is done!

Depth-First Traversal

- Similar to pre-order traversal of a binary tree
 - Read the data at the node first, then move on to the left subtree, and then to the right subtree.
 - Could use post-order or in-order methods
- Once you start down a path, don't stop until you get to the end (a leaf). Make your way back up (backtrack) and then start on a new path.
- Commonly written using recursion
- Use stacks

Depth-First Traversal

 Remember! The traversal is not done until all vertices are reached.

Depth-First Traversal

Stack: a

Output: a

Stack: a c

Output: a c

Stack: a c d

Output: a c d

Stack: a c d e

Output: a c d e

Stack: a c d f

Output: a c d e f

Stack: a c d r g

Output: a c d e f g

Stack: a

Output: a c d e f g

Stack: a b

Output: a c d e f g

Stack: -

Output: a c d e f g b

Output: c Output: c a

- -b checks a, but a has been visited
- -It moves to d. (see diagram right)

Output: cab

a c d

- -d checks b, but b has been visited
- -d checks c, but c has been visited
- -d checks e, which it visits

Output: cabde

- -e checks b, which has been visited
- -e checks d, which has been visited
- -e can't go anywhere else, backtrack!

Output: cabde

- -d checks f, which it visits
- -Go to diagram on right

- -f checks d, which has been visited
- -f checks g, which it visits

Output: cabdef

Output: cabdefg

- -g checks a, which has been visited
- -g checks c, which has been visited
- -g checks f, which has been visited
- -g can't go anywhere, so backtrack!

- -f backtracks to d
- -d backtracks to b
- -b checks e, which has been visited
- -b backtracks to a
- -a checks c, then g, which were visited
- -a backtracks to c
- -c checks d and g, which were visited

Output: cabdefg

Output: cabdefg

DFS Traversal - Restart

Output: cde

DFS Traversal - Restart

first restart

Output: cdeb

DFS Traversal - Restart

Output: cdeba

Time Complexity

- For BFS, we iterate through a vertex's adjacency list once (i.e. for each vertex, look at its edges/neighboring nodes once).
- If the graph is undirected, an edge appears twice, in two different adjacency lists. If the graph is directed, an edge appears only once.
- So, the time complexity is O(V + E):
 - Visit n nodes (i.e. read data and enqueue children) takes constant time. Each node is visited once so the time to use a BFS is O(n), where n = # of nodes.
 - Number of edges (e) in the adjacency list to be visited.
 - For undirected graph, 2|E|
 - For directed graph, |E|
 - Conclusion: the runtime complexity of BFS graph traversal is O(V+E)
- Time complexity for DFS is also O(V+E)
- Space complexity depends on size of the queue at its worst, which could be up to O(n).

Questions?

