

(+) HEALTHPREDICT+

A DISEASE PREDICTION APP USING MACHINE **LEARNING**

INTRODUCTION

- This project is a web-based disease prediction system designed to assist in early disease detection.
- Early detection plays a crucial role in effective disease management and treatment outcomes. It allows for timely intervention and reduces the risk of complications.
- A web-based platform offers accessibility and convenience for users to access the system from anywhere, enabling early detection and informed decision-making regarding their health.
- With the increasing availability of digital health data and advancements in machine learning, an automated prediction system can efficiently analyze symptoms and provide potential disease predictions

TECHNOLOGY STACK

DATAFLOW

01

USER INTERACTION:

Users interact with the frontend interface by selecting symptoms and submitting the form.

DATA SUBMISSION:

The front end captures the user-selected symptoms and sends a request to the backend.

02

03

BACKEND PROCESSING:

The backend receives the symptom data, preprocesses it if necessary, and passes it to the trained machine learning model.

DISEASE PREDICTION:

The model predicts the potential disease based on the user's symptoms and returns the result to the backend. 04

05

RESULT DISPLAY:

The backend sends the predicted disease result back to the frontend for display to the user.

MODEL DEVELOPMENT

- Multinomial Naive Bayes is a probabilistic classifier based on Bayes' theorem. It assumes that the features (symptoms) are conditionally independent given the class (disease).
- This classifier is suitable for text classification tasks, including disease prediction, where the features (symptoms) can be represented as discrete counts or frequencies.
- Multinomial Naive Bayes calculates the probability of each disease given the symptom inputs and selects the disease with the highest probability as the predicted disease.

TRAINING PROCESS

- The model is trained using a labeled dataset that includes symptom data and corresponding disease labels.
- The dataset is obtained from a study conducted by Columbian University.
- The labeled data is split into training and testing sets, with a portion reserved for evaluating the model's performance.
- During training, the model learns the statistical patterns and relationships between symptoms and diseases.

WORKING

- Import the required packages.
- Create a list (l1) that contains all the symptoms as the CSV file.
- Create another list that contains the diseases.
- Then, create an empty list L2 having the same length as l1 wherein all the elements are initialized to 0

WORKING

- Perform the same steps for both testing and training datasets.
- Using pandas, read the CSV file
- Replace the disease name with the index, this will work as the label.
- Rest of the data will work as the attributes

s1	s2	s3	s4	s 5	•••	prognosis
0	1	0	0	1	•••	0
1	1	0	0	1	•••	1
0	0	1	1	0	•••	2

THANK YOU!!

