Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1,5-0,5)\cdot 3-2\cdot 0,5=1\cdot 3-1=$	3 p
	=3-1=2	2 p
2.	f(a) = 2a - 3	2p
	2a-3=9, de unde obținem $a=6$	3 p
3.	3x-1=5	3 p
	x = 2, care convine	2 p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $5n \le 22$ sunt $0, 1, 2, 3$ și 4 , deci sunt 5 cazuri	
	favorabile, de unde obținem $p = \frac{5}{10} = \frac{1}{2}$	3 p
5.	$x_M = \frac{-2+6}{2}$, $y_M = \frac{1+3}{2}$, unde M este mijlocul segmentului AB	3p
	$x_M = 2, \ y_M = 2$	2p
6.	AB = 3	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{3 \cdot 4}{2} = 6$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 1 =$	3 p
	=6-1=5	2p
b)	$2A - B(2) = \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix} - \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix}2&0\\0&2\end{pmatrix}=2B(0)$	2p
c)	$B(1) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow B(x) \cdot B(1) - (x+1)A = \begin{pmatrix} 2 & x+2 \\ x+2 & x+4 \end{pmatrix} - \begin{pmatrix} 2x+2 & x+1 \\ x+1 & 3x+3 \end{pmatrix} = \begin{pmatrix} -2x & 1 \\ 1 & 1-2x \end{pmatrix}$	3 p
	și $\det(B(x) \cdot B(1) - (x+1)A) = 4x^2 - 2x - 1$, pentru orice număr real x	
	$4x^2 - 2x - 1 = 1 \Leftrightarrow 2x^2 - x - 1 = 0$, de unde obţinem $x = -\frac{1}{2}$ sau $x = 1$	2p
2.a)	$1 \circ 1 = 1 + 1 - 6 \cdot 1 \cdot 1 =$	3 p
	=2-6=-4	2p
b)	$0 \circ x = 0 + x - 6 \cdot 0 \cdot x = 0 + x - 0 = x$, pentru orice număr real x	2p
	$x \circ 0 = x + 0 - 6 \cdot x \cdot 0 = x + 0 - 0 = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție " \circ "	3 p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

c)	$m \circ (3-m) = 3-6m(3-m)$, pentru orice număr întreg m	2p	1
	$3-6m(3-m)<3 \Leftrightarrow m(m-3)<0$ şi, cum m este număr întreg, obținem $m=1$ şi $m=2$	3p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 2 \cdot 3x^2 - 3 \cdot 4x^3 =$	3 p
	$=6x^2-12x^3=6x^2(1-2x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) + 3x^4}{x^3 + 4} = \lim_{x \to +\infty} \frac{2x^3 + 2}{x^3 + 4} = \lim_{x \to +\infty} \frac{x^3 \left(2 + \frac{2}{x^3}\right)}{x^3 \left(1 + \frac{4}{x^3}\right)} =$	2p
	$= \lim_{x \to +\infty} \frac{2 + \frac{2}{x^3}}{1 + \frac{4}{x^3}} = 2$	3p
c)	$f'(x) = 0 \Rightarrow x = 0$ sau $x = \frac{1}{2}$; $f'(x) \ge 0$, pentru orice $x \in \left[0, \frac{1}{2}\right] \Rightarrow f$ este crescătoare pe $\left[0, \frac{1}{2}\right]$ și $f'(x) \le 0$, pentru orice $x \in \left[\frac{1}{2}, 2\right] \Rightarrow f$ este descrescătoare pe $\left[\frac{1}{2}, 2\right]$	2 p
	$f(0) = 2$, $f(\frac{1}{2}) = \frac{33}{16}$ și $f(2) = -30$, deci $-30 \le f(x) \le \frac{33}{16}$, pentru orice $x \in [0,2]$, de unde obținem $-32 \le 2x^3 - 3x^4 \le \frac{1}{16}$, pentru orice $x \in [0,2]$	3 p
	$\int_{2}^{\sqrt{y(x)}} \int_{2}^{\sqrt{y(x)}} \int_{2}^{y(x$	3p 2p
b)	$\int_{0}^{1} x(f(x)-2x)dx = \int_{0}^{1} 3xe^{x}dx = 3xe^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 3e - 0 - 3e + 3 = 3$	3p 2p
c)	$= 3e - 0 - 3e + 3 = 3$ $\int_{0}^{1} \frac{f'(x) - x}{2f(x) - x^{2}} dx = \frac{1}{2} \int_{0}^{1} \frac{\left(2f(x) - x^{2}\right)'}{2f(x) - x^{2}} dx = \frac{1}{2} \ln\left 2f(x) - x^{2}\right \left _{0}^{1} = \frac{1}{2} \ln\left(e + \frac{1}{2}\right)$	3p
	$\frac{1}{2}\ln\left(e+\frac{1}{2}\right) = a\ln\left(e+\frac{1}{2}\right), \text{ de unde obținem } a = \frac{1}{2}$	2p