## → Problem 5 (Chapter 4, Exercise 10)

```
import pandas as pd
weekly = pd.read_csv("Weekly.csv")
weekly.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 1089 entries, 0 to 1088
   Data columns (total 9 columns):
         Column
                       Non-Null Count
    #
        rear 1089 non-null
Lag1 1089 non-null
Lag2 1089 non-null
Lag3 1089 non-null
Lag4 1089 non-null
Lag5 1089 non-null
Volume 1089 non-null
                                            Dtype
                                            int64
    0
    1
                                            float64
    2
                                            float64
    3
                                            float64
    4
                                            float64
    5
                                            float64
    6
                                            float64
    7
         Today
                       1089 non-null
                                            float64
         Direction 1089 non-null
                                            object
   dtypes: float64(7), int64(1), object(1)
   memory usage: 76.7+ KB
```

## ▼ Problem 5(a)

|        | Year        | Lag1        | Lag2        | Lag3        | Lag4        | Lag5        |    |
|--------|-------------|-------------|-------------|-------------|-------------|-------------|----|
| count  | 1089.000000 | 1089.000000 | 1089.000000 | 1089.000000 | 1089.000000 | 1089.000000 | 10 |
| unique | NaN         | NaN         | NaN         | NaN         | NaN         | NaN         |    |
| top    | NaN         | NaN         | NaN         | NaN         | NaN         | NaN         |    |
| freq   | NaN         | NaN         | NaN         | NaN         | NaN         | NaN         |    |
| mean   | 2000.048669 | 0.150585    | 0.151079    | 0.147205    | 0.145818    | 0.139893    |    |
| std    | 6.033182    | 2.357013    | 2.357254    | 2.360502    | 2.360279    | 2.361285    |    |
| min    | 1990.000000 | -18.195000  | -18.195000  | -18.195000  | -18.195000  | -18.195000  |    |
| 25%    | 1995.000000 | -1.154000   | -1.154000   | -1.158000   | -1.158000   | -1.166000   |    |
| 50%    | 2000.000000 | 0.241000    | 0.241000    | 0.241000    | 0.238000    | 0.234000    |    |
| 75%    | 2005.000000 | 1.405000    | 1.409000    | 1.409000    | 1.409000    | 1.405000    |    |
| max    | 2010.000000 | 12.026000   | 12.026000   | 12.026000   | 12.026000   | 12.026000   |    |



|        | Year      | Lag1      | Lag2      | Lag3      | Lag4      | Lag5      | Volume    | Tod                |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------|
| Year   | 1.000000  | -0.032289 | -0.033390 | -0.030006 | -0.031128 | -0.030519 | 0.841942  | -0.0324            |
| Lag1   | -0.032289 | 1.000000  | -0.074853 | 0.058636  | -0.071274 | -0.008183 | -0.064951 | -0.0750            |
| Lag2   | -0.033390 | -0.074853 | 1.000000  | -0.075721 | 0.058382  | -0.072499 | -0.085513 | 0.059 <sup>-</sup> |
| Lag3   | -0.030006 | 0.058636  | -0.075721 | 1.000000  | -0.075396 | 0.060657  | -0.069288 | -0.0712            |
| Lag4   | -0.031128 | -0.071274 | 0.058382  | -0.075396 | 1.000000  | -0.075675 | -0.061075 | -0.0078            |
| Lag5   | -0.030519 | -0.008183 | -0.072499 | 0.060657  | -0.075675 | 1.000000  | -0.058517 | 0.011(             |
| Volume | 0.841942  | -0.064951 | -0.085513 | -0.069288 | -0.061075 | -0.058517 | 1.000000  | -0.0330            |
| Today  | -0.032460 | -0.075032 | 0.059167  | -0.071244 | -0.007826 | 0.011013  | -0.033078 | 1.0000             |

#### ▼ Problem 5(b)

```
print(log_reg.summary())
```

Logit Regression Results

| Dep. Varia<br>Model:<br>Method:<br>Date:<br>Time:<br>converged:<br>Covariance | Fr                                                    | i, 16 Jul 20<br>19:36                                       | git Df Re<br>MLE Df Mo<br>021 Pseud<br>:57 Log-L<br>rue LL-Nu    | o R-squ.:<br>ikelihood:                                     | :                                                                | 1089<br>1082<br>(<br>0.006580<br>-743.18<br>-748.10<br>0.1313 |
|-------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
| =======                                                                       | coef                                                  | std err                                                     | Z                                                                | P> z                                                        | [0.025                                                           | 0.975                                                         |
| const Lag1 Lag2 Lag3 Lag4 Lag5 Volume                                         | 0.2669 -0.0413 0.0584 -0.0161 -0.0278 -0.0145 -0.0227 | 0.086<br>0.026<br>0.027<br>0.027<br>0.026<br>0.026<br>0.037 | 3.106<br>-1.563<br>2.175<br>-0.602<br>-1.050<br>-0.549<br>-0.616 | 0.002<br>0.118<br>0.030<br>0.547<br>0.294<br>0.583<br>0.538 | 0.098<br>-0.093<br>0.006<br>-0.068<br>-0.080<br>-0.066<br>-0.095 | 0.435<br>0.010<br>0.111<br>0.036<br>0.024<br>0.037<br>0.050   |

## ▼ Problem 5(c)

```
print(log_reg.pred_table())
    [[ 54. 430.]
    [ 48. 557.]]

acc = (54 + 557) / (54 + 430 + 48 + 557)
print(acc)
    0.5610651974288338

print(54/(54+430))
print(557/(557+48))
    0.1115702479338843
    0.9206611570247933
```

## ▼ Problem 5(d)

```
weekly1990to2008 = weekly.copy()
weekly1990to2008 = weekly1990to2008[weekly1990to2008['Year'] >= 1990]
weekly1990to2008 = weekly1990to2008[weekly1990to2008['Year'] <= 2008]</pre>
X_train = weekly1990to2008['Lag2']
X train = sm.add constant(X train)
y_train = weekly1990to2008['Direction'].astype('category').cat.codes
log reg = sm.Logit(y train, X train).fit()
   Optimization terminated successfully.
            Current function value: 0.685555
            Iterations 4
weekly2009to2010 = weekly.copy()
weekly2009to2010 = weekly2009to2010[weekly2009to2010['Year'] >= 2009]
weekly2009to2010 = weekly2009to2010[weekly2009to2010['Year'] <= 2010]</pre>
X test = weekly2009to2010['Lag2']
X_test = sm.add_constant(X_test)
y_test = weekly2009to2010['Direction'].astype('category').cat.codes
y pred = (log reg.predict(X test) >= 0.5).astype(int)
import numpy as np
cm = np.zeros((2,2))
for i in range(2):
  for j in range(2):
    cm[i, j] = sum(yt==i and yp==j for yt, yp in zip(y_test, y_pred))
\mathsf{cm}
  array([[ 9., 34.],
          [5., 56.]])
acc = (9 + 56) / (9 + 56 + 5 + 34)
print(acc)
  0.625
print(9/(9+34))
print(56/(5+56))
  0.20930232558139536
  0.9180327868852459
```

#### ▼ Problem 5(e)

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
lda = LDA()
lda.fit(X_train, y_train)
  LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                              solver='svd', store_covariance=False, tol=0.0001)
from sklearn.metrics import confusion_matrix
y_pred = lda.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
   [[ 9 34]
    [ 5 56]]
acc = (9 + 56) / (9 + 56 + 5 + 34)
print(acc)
  0.625
print(9/(9+34))
print(56/(5+56))
  0.20930232558139536
  0.9180327868852459
```

#### ▼ Problem 5(f)

```
y_pred = qda.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
  [[43 0]
   [61 0]]
  /usr/local/lib/python3.7/dist-packages/sklearn/discriminant_analysis.py:715: F
    X2 = np.dot(Xm, R * (S ** (-0.5)))
  /usr/local/lib/python3.7/dist-packages/sklearn/discriminant_analysis.py:715: F
    X2 = np.dot(Xm, R * (S ** (-0.5)))
  /usr/local/lib/python3.7/dist-packages/sklearn/discriminant_analysis.py:718: F
    u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
acc = (43) / (43+61)
print(acc)
  0.41346153846153844
print(43/(43+0))
print(0/(61+0))
  1.0
  0.0
```

#### ▼ Problem 5(g)

```
acc = (21+30) / (21+30+22+31)
print(acc)

0.49038461538461536

print(21/(21+22))
print(30/(31+30))

0.4883720930232558
0.4918032786885246
```

# → Problem 6 (Chapter 5, Exercise 2)

## ▼ Problem 6(g)

```
import matplotlib.pyplot as plt
plt.plot(np.arange(1, 100000), [1-(1-1/n)**n for n in np.arange(1, 100000)])
plt.xlabel("n")
plt.ylabel("P(x_j is in X^b)");
```



## ▼ Problem 6(h)

```
np.random.seed(1)

ctr = 0
for i in range(10000):
    a = np.random.choice(range(100), size=100, replace=True)
    if 4 in a:
        ctr += 1

print(ctr)
6302
```

# Problem 7 (Chapter 5, Exercise 5)

```
default = pd.read_csv("Default.csv")
np.random.seed(1)
```

## ▼ Problem 7(a)

## ▼ Problem 7(b)

## ▼ Problem 7(c)

```
# trial 1
X_train, X_test, y_train, y_test = train_test_split(X, y)
log_reg = sm.Logit(y_train, X_train).fit()
y_pred = (log_reg.predict(X_test) >= 0.5).astype(int)
error = np.mean([yt != yp for yt, yp in zip(y_test, y_pred)])
print(error)
# trial 2
X_train, X_test, y_train, y_test = train_test_split(X, y)
log_reg = sm.Logit(y_train, X_train).fit()
y_pred = (log_reg.predict(X_test) >= 0.5).astype(int)
error = np.mean([yt != yp for yt, yp in zip(y_test, y_pred)])
print(error)
# trial 3
X_train, X_test, y_train, y_test = train_test_split(X, y)
log_reg = sm.Logit(y_train, X_train).fit()
y_pred = (log_reg.predict(X_test) >= 0.5).astype(int)
error = np.mean([yt != yp for yt, yp in zip(y_test, y_pred)])
print(error)
  Optimization terminated successfully.
            Current function value: 0.079030
            Iterations 10
  0.0236
  Optimization terminated successfully.
            Current function value: 0.076866
            Iterations 10
  0.0276
  Optimization terminated successfully.
            Current function value: 0.079056
            Iterations 10
  0.0272
```

#### ▼ Problem 7(d)

## → Problem 8 (Chapter 5, Exercise 6)

```
default = pd.read_csv("Default.csv")
np.random.seed(1)
```

## ▼ Problem 8(a)

#### Logit Regression Results

| Dep. Varia Model: Method: Date: Time: converged: Covariance |                                 | Fri, 16 Jul<br>19:3 | ogit Df<br>MLE Df<br>2021 Pse<br>6:59 Log<br>True LL- | Observation Residuals: Model: udo R-squ.: -Likelihood: Null: p-value: |                             | 1000(<br>999)<br>0.4594<br>-789.48<br>-1460.3<br>4.541e-292 |
|-------------------------------------------------------------|---------------------------------|---------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|
| =======                                                     | coef                            | std err             | z                                                     | P> z                                                                  | [0.025                      | 0.975                                                       |
| const<br>income<br>balance                                  | -11.5405<br>2.081e-05<br>0.0056 | 4.99e-06            | -26.544<br>4.174<br>24.835                            | 0.000                                                                 | -12.393<br>1.1e-05<br>0.005 | -10.688<br>3.06e-0!<br>0.000                                |

Possibly complete quasi-separation: A fraction 0.14 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

#### ▼ Problem 8(b)

```
def boot_fn(default, indices):
    X = default[['income', 'balance']]
    X = X.iloc[indices, :]
    X = sm.add_constant(X)

    y = default['default'].astype('category').cat.codes
    y = y.iloc[indices]

log_reg = sm.Logit(y, X).fit()

return log_reg.params[1:]
```

#### ▼ Problem 8(c)

```
beta_is, beta_bs = [], []
B = 100

for i in range(B):
```

```
beta_i.beta_n (\bar{b}eta_n) (\bar{b}eta_n) (\bar{b}eta_n) (\bar{b}eta_n)
beta bs.append(beta b)
         Current function value: 0.070837
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.075469
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.074056
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.080399
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.079418
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.075494
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.076585
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.078997
          Iterations 10
Optimization terminated successfully.
         Current function value: 0.077621
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.077644
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.078250
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.076597
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.082268
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.079406
          Iterations 10
Optimization terminated successfully.
         Current function value: 0.080869
          Iterations 10
Optimization terminated successfully.
         Current function value: 0.075792
         Iterations 10
Optimization terminated successfully.
         Current function value: 0.079341
          Iterations 10
```

```
upilmization reminared successinity.
                                           Current function value: 0.076661
                                           Iterations 10
          Optimization terminated successfully.
                                           Current function value: 0.086022
                                           Iterations 10
          Optimization terminated successfully.
                                           Current function value: 0.083204
                                           Iterations 10
beta_i_mean = np.mean(beta_is)
                                     = np.sqrt(1/(B-1)*np.sum( [(beta_i - beta_i_mean)**2 for beta_i in bε
beta i se
beta_b_mean = np.mean(beta_bs)
beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_b_mean)**2 for beta_b in beta_b)**2 for beta_b in beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_b_mean)**2 for beta_b)**2 for beta_b in beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_b_mean)**2 for beta_b)**2 for beta_b in beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_b_mean)**2 for beta_b)**2 for beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_b_mean)**2 for beta_b_se = np.sqrt(1/(B-1)*np.sum([(beta_b - beta_
print("beta_income (mean & SE)", beta_i_mean, beta_i_se)
print("beta_balance (mean & SE)", beta_b_mean, beta_b_se)
          beta income (mean & SE) 2.016973494321125e-05 5.4383662396369285e-06
          beta_balance (mean & SE) 0.005677686072213888 0.00022069873134705593
```

## Problem 9 (Chapter 5, Exercise 8)

#### ▼ Problem 9(a)

#### ▼ Problem 9(b)

```
plt.scatter(data.x, data.y)
plt.xlabel("x")
plt.ylabel("y");
```



# ▼ Problem 9(c)

```
np.random.seed(1)
```

```
from sklearn.preprocessing import PolynomialFeatures
X = np.array(data['x']).reshape(-1, 1)
y = np.array(data['y']).reshape(-1, 1)
for k in [1, 2, 3, 4]:
  loocv_errors = []
  for i in range(data.shape[0]):
    X_{loo} = np.delete(X, i).reshape(-1, 1)
    y_loo = np.delete(y, i).reshape(-1, 1)
    pf
           = PolynomialFeatures(degree=k)
    Xp_loo = pf.fit_transform(X_loo)
    lin_reg = sm.OLS(y_loo, Xp_loo).fit()
    y_pred = lin_reg.predict(pf.transform(X[i].reshape(1,1)))
    loocv_error = (y_pred - y[i])**2
    loocv_errors.append(loocv_error)
  loocv_errors = np.array(loocv_errors)
  print("degree %d LOOCV error:" %k, "%+3.2e" %loocv_errors.mean())
  degree 1 L00CV error: +5.89e+00
  degree 2 L00CV error: +1.09e+00
  degree 3 L00CV error: +1.10e+00
  degree 4 L00CV error: +1.11e+00
```

#### ▼ Problem 9(d)

```
np.random.seed(2)
```

```
for k in [1, 2, 3, 4]:
  loocv_errors = []
  for i in range(data.shape[0]):
   X_{loo} = np.delete(X, i).reshape(-1, 1)
   y_loo = np.delete(y, i).reshape(-1, 1)
           = PolynomialFeatures(degree=k)
   pf
   Xp_loo = pf.fit_transform(X_loo)
   lin_reg = sm.OLS(y_loo, Xp_loo).fit()
   y_pred = lin_reg.predict(pf.transform(X[i].reshape(1,1)))
    loocv_error = (y_pred - y[i])**2
    loocv errors.append(loocv error)
  loocv_errors = np.array(loocv_errors)
  print("degree %d LOOCV error:" %k, "%+3.2e" %loocv_errors.mean())
  degree 1 L00CV error: +5.89e+00
  degree 2 L00CV error: +1.09e+00
  degree 3 L00CV error: +1.10e+00
  degree 4 LOOCV error: +1.11e+00
```

#### ▼ Problem 9(f)

```
X = np.array(data['x']).reshape(-1, 1)
y = np.array(data['y']).reshape(-1, 1)

for k in [1, 2, 3, 4]:

   pf = PolynomialFeatures(degree=k)
   Xp = pf.fit_transform(X)

   lin_reg = sm.OLS(y, Xp).fit()
   print(lin_reg.summary())
```

#### OLS Regression Results

```
Dep. Variable:
                                         R-squared:
                                                                            0.010
Model:
                                   0LS
                                         Adi. R-squared:
                                                                           -0.000
Method:
                         Least Squares
                                         F-statistic:
                                                                           0.9616
                                         Prob (F-statistic):
Date:
                      Fri, 16 Jul 2021
                                                                            0.329
                                                                          -226.84
                              19:37:03
                                         Log-Likelihood:
Time:
Nia Obaaniatiana.
```

Df Residuals:

Df Model:

100 AIC:

45/...

462.9

Covariance Type: nonrobust

| =======                             | coef              | std err        | t               | <br>P> t       | [0.025           | 0.975                                        |
|-------------------------------------|-------------------|----------------|-----------------|----------------|------------------|----------------------------------------------|
| const<br>x1                         | -1.8185<br>0.2430 | 0.236<br>0.248 | -7.692<br>0.981 | 0.000<br>0.329 | -2.288<br>-0.249 | -1.349<br>0.73                               |
| Omnibus: Prob(Omnib Skew: Kurtosis: | ous):             | -1.0           | 000 Jarque      | •              | =======          | 2.198<br>2.198<br>20.491<br>3.55e-0!<br>1.00 |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correct OLS Regression Results

| ============      |                  |                                | ========== |
|-------------------|------------------|--------------------------------|------------|
| Dep. Variable:    | у                | R-squared:                     | 0.81       |
| Model:            | 0LS              | Adj. R-squared:                | 0.809      |
| Method:           | Least Squares    | F-statistic:                   | 210.6      |
| Date:             | Fri, 16 Jul 2021 | <pre>Prob (F-statistic):</pre> | 5.10e-36   |
| Time:             | 19:37:03         | Log-Likelihood:                | -143.5!    |
| No. Observations: | 100              | AIC:                           | 293.1      |
| Df Residuals:     | 97               | BIC:                           | 300.9      |

Df Model: 2 Covariance Type: nonrobust

|            | coef             | std err | t           | P> t          | [0.025 | 0.975  |
|------------|------------------|---------|-------------|---------------|--------|--------|
| const      | -0 <b>.</b> 0954 | 0.133   | -0.715      | 0.476         | -0.360 | 0.169  |
| x1         | 0.8996           | 0.113   | 7.961       | 0.000         | 0.675  | 1.124  |
| x2         | -1.8666          | 0.092   | -20.399     | 0.000         | -2.048 | -1.68! |
| Omnibus:   |                  | 1.      | .794 Durbir | <br>n-Watson: |        | 2.236  |
| Prob(Omnib | bus):            | 0.      | 408 Jarque  | e-Bera (JB):  |        | 1.22   |
| Skew:      |                  | -0.     | 183 Prob(3  | JB):          |        | 0.542  |
| Kurtosis:  |                  | 3.      | 399 Cond.   | No.           |        | 2.47   |

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correct OLS Regression Results

| Dep. Variable:    | у                | R-squared:                     | 0.813   |
|-------------------|------------------|--------------------------------|---------|
| Model:            | 0LS              | Adj. R-squared:                | 0.807   |
| Method:           | Least Squares    | F-statistic:                   | 139.1   |
| Date:             | Fri, 16 Jul 2021 | <pre>Prob (F-statistic):</pre> | 8.04e-3 |
| Time:             | 19:37:03         | Log-Likelihood:                | -143.51 |
| No. Observations: | 100              | AIC:                           | 295.(   |
| Df Dociduals:     | ne<br>ne         | DTC.                           | 30E 1   |

→ Problem 10 (Chapter 5, Exercise 9)

```
boston = pd.read_csv("Boston.csv")
```

▼ Problem 10(a)

```
mu_hat = boston['medv'].mean()
print(mu_hat)

22.532806324110698
```

▼ Problem 10(b)

```
SE_mu_hat = boston['medv'].std()/np.sqrt(boston.shape[0])
print(SE_mu_hat)
    0.4088611474975351
```

▼ Problem 10(c)

▼ Problem 10(d)

▼ Problem 10(e)

▼ Problem 10(f)

▼ Problem 10(g)

▼ Problem 10(h)