Tema 3 Universalidad

Modelos de Computación

Modelos de Computación - Universidad de Cádiz

Contenidos

- Codificación
- 2 Codificación de Programas
- 3 El Problema de la Parada
- 4 Universalidad
- 5 Conjuntos Recursivamente Enumerables y Recursivos
- 6 Autoreferencia

Definición (Codificación de Programas)

 $\#_{\mathscr{P}}: \operatorname{Prog} \to \mathbb{N}.$

Definición (Codificación de Variables)

Ordenamiento de la lista de variables: $y, x_1, z_1, x_2, z_2, x_3, z_3...$

$$\#_V: \mathscr{V}ar \to \mathbb{N},$$

 $\#_V(V)$ = posición de V en la lista ordenada de variables.

Ejemplo (Codificación de Variables)

$$\#_V(y) = 1, \quad \#_V(x_2) = 4.$$

Definición (Codificación de Etiquetas)

Ordenamiento de la lista de etiquetas: $A, B, C, D, E, A_2, B_2, C_2, D_2, E_2...$

$$\#_L: \mathscr{L}ab \to \mathbb{N},$$

 $\#_L(L)$ = posición de L en la lista ordenada de etiquetas.

Ejemplo (Codificación de Etiquetas)

$$\#_L(C_1) = 3, \qquad \#_L(B_2) = 7.$$

Definición (Codificación de Instrucciones)

$$\#_I: I \to \mathbb{N}, \qquad \#_I(I) = \langle a, \langle b, c \rangle \rangle.$$

Reglas de Codificación (1)

- Elementos a considerar:
 - 1 La variable (c).
 - 2 Tipología (b).
 - 3 Etiquetado (a).
- Si I está etiquetada, $a = \#_L(L)$. Si no lo está, a = 0.
- Si V es la variable que aparece en I, entronces $c = \#_V(V) 1$.

Reglas de Codificación (2)

• Si I es del tipo de instrucción:

Tipo	Valor de b		
V ← V	0		
V ← V + 1	1		
V ← V - 1	2		
IF V \neq GOTO L	$2 + \#_L(L)$		

Ejemplo (Codificación de Instrucciones)

Instrucción	а	Ь	С	#1
Y ← Y	0	0	0	$\langle 0, \langle 0, 0 \rangle \rangle$
$X_1 \leftarrow X_1 + 1$	0	1	1	$\langle 0, \langle 1, 1 \rangle \rangle$
$[A_2] X_1 \leftarrow X_1 + 1$	6	1	1	$\langle 6, \langle 1, 1 \rangle \rangle$
IF $Z_3 \neq 0$ GOTO A_2	0	8	6	$\langle 0, \langle 8, 6 \rangle \rangle$
[B ₁] IF $Z_3 \neq 0$ GOTO A_2	2	8	6	$\langle 2, \langle 8, 6 \rangle \rangle$

Definición (Decodificación de Instrucciones)

Dado un $z \in \mathbb{N}$, se decodifica como sigue:

- Si I(z) = 0, entonces no hay etiqueta. En otro caso, la etiqueta es la I(z)-ésima en la lista de etiquetas.
- La variable codificada es la r(r(z)) + 1-ésima en la lista de variables.
- Dado b = I(r(z)),
 - Si b = 0, entonces la instrucción es de la forma $V \leftarrow V$.
 - Si b = 1, entonces la instrucción es de la forma $V \leftarrow V + 1$.
 - Si b=2, entonces la instrucción es de la forma $V \leftarrow V 1$.
 - Si b>2, entonces la instrucción es de la forma IF V \neq 0 GOTO L, y L es la (b-2)-ésima etiqueta en la lista ordenada.

Codificación de Programas

Definición

$$\#_P: P \to \mathbb{N}, \quad \#_P(\mathscr{P}) = \mathsf{C\'odigo} \mathsf{ de } \mathscr{P}.$$

Dado $P \in \mathcal{P}$, si $I_1, I_2, ..., I_n$ son las instrucciones de P, entonces

$$\#_P(P) = [\#_I(I_1), \#_I(I_2), ..., \#_I(I_n)].$$

Criterio

No se permite que Y \leftarrow Y sea la última instrución de un programa.

El Problema de la Parada

Definición

Se define el predicado $Para: \mathbb{N} \times \mathbb{N} \to \{0,1\}$ dado por

 $Para(x, y) \Leftrightarrow \text{el programa n}^{\circ} y \text{ para y ofrece un resultado sobre el input } x.$

Teorema

El predicado Para(x, y) no es computable.

Universalidad

Definición (Funciones Universales)

Para cada n > 0 se define la función universal dada por la siguiente expresión:

$$\phi^{(n)}(x_1, x_2, ..., x_n, y) = \psi_P^{(n)}(x_1, x_2, ..., x_n),$$

siendo $y = \#_P(P)$.

Cambiar el parámetro y es programar la función universal.

Teorema (de la Universalidad)

Para cada n > 0, la función $\phi^{(n)}(x_1, x_2, ..., x_n, y)$ es parcialmente computable.

Almacenamiento del Intérprete

• Memoria del programa interpretado:

$$S \leftarrow \prod_{i=1}^{n} (P_{2i})^{x_i}.$$

• Programa a interpretar codificado:

$$Z \leftarrow X_{n+1}+1$$
.

• Contador de programa:

Criterio de Parada del Intérprete

[C] IF
$$R = Lt(Z)+1 \lor R=0$$
 GOTO F.

Determinando la Instrucción Actual

$$U \leftarrow r((Z)_k),$$

$$P \leftarrow P_{r(U)+1}.$$

Filtro de Codificación

Instrucción tipo dummy:

IF
$$l(U)=0$$
 GOTO N.

• Instrucción tipo incremento:

IF
$$l(U)=1$$
 GOTO A.

• Instrucción tipo IF V ≠ 0 GOTO L:

IF
$$\neg$$
(P|S) GOTO N.

• Instrucción tipo decremento:

IF
$$1(U)=2$$
 GOTO M.

Núcleo del Intérprete

[M]
$$S \leftarrow [S/P]$$

 $GOTO N$
[A] $S \leftarrow S \cdot P$
[N] $K \leftarrow K+1$
 $GOTO C$

Intérprete Completo

Predicado Contador

Definición (Predicado Contador)

Para cada n > 0, se define

 $STP^{(n)}(x_1, x_2, ..., x_n, y, t) \Leftrightarrow$ el programa número y para sobre el input $(x_1, x_2, ..., x_n)$ en t o menos pasos de cálculo.

Proposición

Para cada n > 0, $STP^{(n)}(x_1, x_2, ..., x_n, y, t)$ es computable.

Conjuntos Recursivamente Enumerables y Recursivos

```
B \subseteq \mathbb{N} \left\{ \begin{array}{l} \text{Recursivos} & \left\{ \begin{array}{l} P_B \text{ es computable.} \\ \text{La pertenencia es decidible.} \end{array} \right. \\ \text{Recursivos Enumerables} & \left\{ \begin{array}{l} f(x) \text{ es parcialmente computable.} \\ \text{La pertenencia es semidecidible.} \end{array} \right. \end{array} \right.
```

Definición (Función Característica)

Sea $B \subseteq \mathbb{N}$, se define la función caractetística P_B como

$$P_B: \mathbb{N} \to \{0,1\}, \qquad P_B(x) = \left\{ \begin{array}{ll} 1 & \text{si } x \in B \\ 0 & \text{en otro caso.} \end{array} \right.$$

Ejemplo

Sea $B \subseteq \mathbb{N}$ y dado por $B = \{x \in \mathbb{N} : x \equiv 0 \mod 7\}$.

Definición (Conjunto Recursivamente Enumerable)

Dado $B\subseteq \mathbb{N}$, se dice que B es recursivamente enumerable si existe una función parcialmente computable $f:\mathbb{N}\to\mathbb{N}$ tal que

$$B = \{x \in \mathbb{N} : f(x) \downarrow \}.$$

Proposición

Si $B \subseteq \mathbb{N}$ es recursivo, entonces es recursivo enumerable.

Teorema

Dado $B \subseteq \mathbb{N}$, B es recursivo si y solo si B y \overline{B} son recursivos enumerables.

Teorema

Sean $B, C \subseteq \mathbb{N}$, ambos recursivos enumerables. Entonces $B \cup C$, $B \cap C$ son también recursivos enumerables.

Autoreferencia

Definición

Para cada n > 0, sea $W_n = \{x \in \mathbb{N} : \phi(x, n) \downarrow \}$.

Teorema (de Enumeración)

 $B \subseteq \mathbb{N}$ es recursivo enumerable \Leftrightarrow existe $n \in \mathbb{N}$ tal que $B = W_n$.

Autoreferencia

Definición

Se define

$$k = \{n \in \mathbb{N} : \phi(n, n) \downarrow\}.$$

Teorema

k es recursivo enumerable pero no es recursivo.