Série 13

1. A l'aide d'une feuille de carton carrée de côté $\,a\,$, on construit une boîte rectangulaire ouverte en découpant des carrés sur les angles et en pliant les rebords du domaine ainsi obtenu.

Comment faut-il couper la feuille pour que le volume de la boîte soit maximum?

2. On considère le trapèze isocèle décrit cicontre et défini par les grandeurs a > 0et $\alpha \in \left[0, \frac{\pi}{2}\right[$.

La valeur de $\,a\,$ est fixe, mais $\,\alpha\,$ est variable.

Pour quelle valeur de α l'aire du trapèze est-elle maximale ?

3. Déterminer les extrema des fonctions suivantes.

a)
$$a(x) = 2x^3 + 3x^2 - 12x - 4$$
.

d)
$$d(x) = \sqrt[3]{x^2} - \sqrt[3]{x}$$
.

b)
$$b(x) = x + \sqrt{1 - x}$$
,

e)
$$e(x) = \sqrt[3]{x^3 - 6x^2 + 9x}$$
,

c)
$$c(x) = \left| \frac{x-1}{x+1} \right|$$
,

f)
$$f(x) = \sqrt{\left|\frac{x+2}{x-2}\right|}$$
.

4. Trouver sur la courbe d'équation $4x^3 + y^3 = 1$ le point P du premier quadrant tel que l'aire du triangle déterminé par la tangente à la courbe en P et les axes de coordonnées soit minimum.

Réponses de la série 13

- 1. Le volume est maximum lorsque la hauteur de la boîte vaut $h = \frac{a}{6}$.
- 2. L'aire du trapèze est maximale lorsque $\alpha = \frac{\pi}{6}$.
- **3.** a) $D_a = \mathbb{R}$, (-2; 16) maximum à tangente horizontale, (1; -11) minimum à tangente horizontale.
 - b) $D_b =]-\infty; 1], \quad (\frac{3}{4}; \frac{5}{4})$ maximum à tangente horizontale, (1; 1) minimum à demi-tangente verticale (borne de D_b).
 - c) $D_c = \mathbb{R} \{-1\}$, (1; 0) minimum (point anguleux de demi-tangentes de pente $-\frac{1}{2}$ et $\frac{1}{2}$).
 - d) $D_d = \mathbb{R}$, $(\frac{1}{8}; -\frac{1}{4})$ minimum à tangente horizontale, (0; 0) point à tangente verticale (sans extremum).
 - e) $D_e = \mathbb{R}$, $(1; \sqrt[3]{4})$ maximum à tangente horizontale, (3; 0) minimum (point de rebroussement), (0; 0) point à tangente verticale (sans extremum).
 - f) $D_f = \mathbb{R} \{2\}$, (-2; 0) minimum (point de rebroussement).
- **4.** $P\left(\frac{1}{2}; \sqrt[3]{\frac{1}{2}}\right)$.