	 			~	·		 		 	
	1	1 1		1						
Reg No	1	1 1	- 1	1		1				
Treg. Tio		1 1	1	1	1			1		l

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Third Semester

18AIC202J - DATA STRUCTURE AND ITS APPLICATIONS

(For the candidates admitted during the academic year (2020-2021 & 2021-20222))

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

Tin	ne: 3 Hours	and occasion	Max. N	Marks:	: 100
	PART - A $(20 \times 1 = 20)$ Answer all Questi		Marl	ks BL	СО
1.	at the back efficiently? (A) Array	ts from the front and inserting elements (B) Linked List (D) Queue	1	1	1
2.	What is the time complexity for searching an (A) O(1)		1	. 1	1
3.		-case time complexity? (B) Insertion Sort (D) Selection Sort	1	1	1
4.		(B) AVL Tree (D) Linked Tree	1	1	1
5.	company and a	3 2 4 + - * ? (B) 40 (D) -18	1	1	2
6.	(C) TT 1 C	o the stack when the stack already have ecomes B) Crash D) User flow	1	1	2
7.	Which of the following is not the application of (A) A parentheses balancing program (of stack? B) Tracking of local variables at run time	1	1	2
		D) Data Transfer between two asynchronous			
8.	0, there are no more than 2k nodes in level k	 ct to binary trees? B) Let T be a binary tree with λ levels. Then T has no more than 2λ – 1 nodes D) Let T be a binary tree with N nodes. Then the number of levels is at least floor(log (N + 1)) 	1	1	2
9.	(0) 1 () (0	7	1	1	3

1.0	D tree of order n is a order-n multiway	tree in which each non-root node contains	
10.	D-fiec of order if is a crack in manner	(D) exact $(n-1)/2$ bevis	

(A) at most (n-1)/2 keys

(B) exact (n-1)/2 keys

(C) at least 2n keys

- (D) at least (n-1)/2 keys
- 11. What is the best case height of a B-tree of order n and which has k keys?

1

3

3

(A) $\log n (k+1) - 1$

(B) nk

(C) logk(n+1) - 1

- (D) klogn
- 12. If a simple graph G, contains n vertices and m edges, the number of edges in the 3 Graph G' (Complement of G) is
 - (A) (n*n-n-2*m)/2

(B) (n*n+n+2*m)/2

(C) (n*n+n-2*m)/2

- (D) (n*n-n+2*m)/2
- 13. Given graph G having V vertices and E edges which is connected and has no cycles, which of the following statements is true?
 - (A) V = E

(B) V = E + 1

(C) V = E / 2

- (D) V = E-1
- 14. Time Complexity of Breadth First Search is? (V number of vertices, E number of edges)
 - (A) O(V + E)

(B) O(V)

(C) O(E)

- (D) O(V*E)
- 15. Consider the graph M with 3 vertices. Its adjacency matrix is shown below. Which of the following is correct:

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (A) Graph M has no minimum spanning
- (C) Graph M has 3 distinct minimum spanning trees, each of cost 2
- (B) Graph M has a unique minimum spanning trees of cost 2
- (D) Graph M has 3 spanning trees of different costs
- 16. Consider the graph shown below. Which of the following are the edges in the MST 1 of the given graph?

- (A) (a-c)(c-d)(d-b)(d-b)
- (C) (a-d)(d-c)(d-b)(d-e)

- (B) (c-a)(a-d)(d-b)(d-e)
- (D) (c-a)(a-d)(d-c)(d-b)(d-e)
- 17. Consider a complete graph G with 4 vertices. The graph G has _____ spanning trees.
 - (A) 15

(B) 8

(C) 16

(D) 13

18. What is the weight of the minimum spanning tree using the Prim's algorithm, starting from vertex a?

(A) 23

(B) 28

(C) 11

- (D) 27
- 19. Which of the following is not a technique to avoid a collision? (B) Use the chaining method

- (A) Make the hash function appear random
- (D) Increasing hash table size

(C) Use uniform hashing

- 20. Which of the following is the hashing function for separate chaining? (A) H(x)=(hash(x)+f(i)) mod table size
 - (B) $H(x)=hash(x)+i2 \mod table size$
 - (C) $H(x)=x \mod table size$
- (D) $H(x)=x \mod (table size * 2)$
- PART B $(5 \times 4 = 20 \text{ Marks})$ Answer any 5 Questions

Marks	BL	CO

1

5

- 21. What is a linked list? Describe the suitable routine segments for any four operations.
- 22. List an algorithm to perform the following operations in a doubly linked list. Insert a node at the end of the list
- 1 4 1 2
- 23. What are the two methods to find the time complexity for an algorithm? Give example.
- 3
- 24. Explain the Infix notation and convert the following infix expression to postfix, expression:

- $A^* (B + C) D / E$
- 25. Explain the Binary Tree Traversal Methods. Find In-order, Pre-order, Post-order 3 traversal

26. Illustrate and Explain the Topological sort of the below graph.

27. What is hashing and what are applications of the hashing? What are the challenges in 4 1 5 designing a hash function? Explain with suitable Examples.

PART - C $(5 \times 12 = 60 \text{ Marks})$ Marks BL CO Answer all Ouestions (a) What are the merits and demerits of array implementation over linked lists? 12 1 1 Illustrate with proper codes and examples. (OR) (b) Given a set of marks of 'n' students in a class, write a program to find the median mark of the class. (a) Write a program with a function which takes head pointer and value to be 12 2 inserted as arguments to insert the values in a sorted doubly linked list and display the updated list.

- (OR)

 (b) Storing of sparse matrices need extra consideration-Justify. How are sparse matrices stored efficiently in the computer's memory?
- 30. (a) Explain the AVL Trees and different type of AVL Trees. Construct AVL tree using the following sequence of data: 2, 7, 4, 9, 1, 5, 8, 3, 6.

 (OR)
 - (b) Write an algorithm which does depth first search through an un-weighted connected graph. In an unweighted graph, would breadth first search or depth first search or neither find a shortest path tree from some node? Why? Write the result of DFS for the following graph.

- 31. (a) Write an algorithm for heap sorting and explain with example. Mention the applications of heap sorting.
 - (OR)
 - (b) Write the Kruskal's algorithm to construct minimum spanning tree for the following graph.
- 32. (a) Given the input { 4371, 1323, 6173, 4199, 4344, 9679, 1989 } and a hash function of h(X) = X (mod 10) show the resulting: a. Separate Chaining

(OR)

- (b) For a hash table of size:9 with the hash function $h(x) = x \mod 9$, insert the following elements 5, 28, 19, 15, 20, 33, 12, 17, 10. Illustrate the contents of hash table, how the collisions are resolved using
 - 1. Linear Probing 2. Double hashing, where the second hash function is $h2(x) = 7 (x \mod 7)$.

28.

29.

5