PERFORMANCE AND FINAL SUBMISSION PHRASE

Date	10 November 2023
Team ID	Team-591587
Project Name	ASL- Alphabet Image Recognition
Maximum Marks	10 Marks

S.No.	Parameter	Values	Screenshot
1	Metrics	Classification Model: VGG16 model Confusion Matrix, Classification Report & Accuracy ScoresTraining accuracy:- 94.98% Testing accuracy:- 96.26%	Confusion Matrix:

Classification rep	ort:			
1.2.2.0	NI ECT2TOII	LECUIT	11-2001	Suppor c
A	0.99	0.90	0.94	600
В	0.96	0.94	0.95	600
C	0.99	0.99	0.99	600
D	0.99	0.97	0.98	600
E	0.96	0.90	0.93	600
F	1.00	0.96	0.98	600
G	0.95	0.97	0.96	600
н	0.98	0.94	0.96	600
I	0.96	0.94	0.95	600
J	0.96	0.98	0.97	600
K	0.92	0.95	0.93	600
L	0.99	0.99	0.99	600
M	0.81	0.98	0.88	600
N N	0.94	0.87	0.91	600
0	0.96	0.98	0.97	600
P	0.98	0.98	0.98	600
Q.	0.97	0.99	0.98	600
R	0.91	0.89	0.90	600
S	0.84	0.94	0.89	600
T	0.99	0.94	0.96	600
Ü	0.92	0.90	0.91	600
v				600
	0.90	0.89	0.90	
W	0.97	0.95	0.96	600
X	0.90	0.95	0.92	600
Y	0.96	0.97	0.96	600
Z	0.97	0.96	0.96	600
del	0.98	0.97	0.98	600
nothing	0.99	1.00	0.99	600
space	0.98	0.98	0.98	600
accuracy			0.95	17400
accuracy	0.05	0.05		
macro avg	0.95	0.95	0.95	17400
weighted avg	0.95	0.95	0.95	17400
Accuracy Score:				

2. Tune the Model	Hyperparameter Tuning: The model is tuned with following hyper parametersOptimizer - Adam Learning rate - 0.0001 Loss - Categorical cross entropy Batch size - 128 EPOCHS - 10	Hyperparameter Tuning:
		MANNING:abs1:'lr' is deprecated in Keras optimizer, please use 'learning_rate' or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.Adam. Epoch 1:'val_accuracy: improved from a. loss: 1.0512. 2.0162 a.ccuracy: 0.1400 Spoch 1: val_accuracy: improved from a. loss: 1.2611 a.ccuracy: 0.1400 v. val_accuracy: 0.1292 Spoch 2: val_accuracy: improved from a.02923 to 0.75099, saving model to /content/sampl_data/best_model_weights.h5 Sa3/543

Validation Method:

The validation of the model is done through the validation data, which is set to 20% of training data. Data augmentation and callbacks are also used to validate performance. Accuracy is the validation parameter that we have monitored

```
# Configuration
class CFG:
    # Set the batch size for training
    batch_size = 128
    # Set the height and width of input images
    img_height = 32
    img_width = 32
    epochs = 10
    num_classes = 29
    # Define the number of color channels in input images
    img_channels = 3
```

Validation Method:

mode='max',
verbose=1

```
# Split the training set into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(
    data train['image path'],
    data train['label'],
    test size=0.2/0.7, # Assuming you want 20% for validation out of the training set
    random_state=2253,
    shuffle=True,
    stratify=data train['label']
# Create a DataFrame for the validation set
data val = pd.DataFrame({
    'image_path': X_val,
    'label': y_val
})
# Create a ModelCheckpoint callback
checkpoint callback = ModelCheckpoint(
    filepath='/content/sample_data/best_model_weights.h5',
    monitor='val accuracy', # Monitor validation accuracy for saving the best model
    save_best_only=True,
```

CONFUSION MATRIX:

```
136/136 [=========== ] - 25s 177ms/step
tf.Tensor(
[[580 1 1
                           0 0 5 0 0 0 0 0
           5 0
                0
                              0 0 0 1 0 0 0
                           0
                              0 0 0 6 0 2 0
                              0 0 0 8 0 0 1
[ 10
         0 570
                      6
                         0
                           0 0 1 0 1 0 0 0
                      0
                      0
                           0 0 11 0 1 0 0 0
            0 584
                      0
                         0
                           1]
                           0 0 1 0 2 8 0 0
               0 564 10
                      2
                         2
                 4 581
                           0 0 0 0 0 3 1 3
                      0
                           1]
                    0 572
                           3 1 0 1 0 0 0 4
                    3
                           0]
                    4 13 564
                           0 0 0 0 1 0 0 0
                 2 11
                      0
                         0
                           0]
                         0571 1 0 0 1 0 0 3
                     10
         0
            0
                      0
                         0
                           0]
                           0588 0 0 0 0 0 1
  1
                           0 0 559 17 0 0 0 0
                           3]
                           0 0 46 542 4 0 0 0
                           0]
                           0 0 0 0 591 0 0 0
                      0
                         0
                    0
                           0]
                           0 0 0 2 2 586 0 0
                    3
                           1]
[ 1
                      0
                           0 0 1 0 0 6 559 0
                    0
                     31
                           1
                              0 0 1 1 0 0 530
    3
            0
                           0 0 4 0 2 0 0 1
[ 4
                    2
                      2
[ 3 0
                      0
                           0 1 2 0 0 0 0 0
  6 576
0
         0
                      0
                           0 0 0 0 1 0 0 17
                           45
                              0 0 0 0 0 0 14
                           0]
       7 520 11
0
                    0
                      0
                           7 0 0 0 0 0 0 7
       2 19 557
                    0
                      0
                         0
                           1]
[ 3 0
                    0
                      3 0
                           0 3 1 0 1 0 0 10
               0
                 0
 19
    0
       9 0 0 535
                0 12
                     0 0
                           4]
1
         0 0
                    0
                      0 5
                           0
                              2 0 0 0 0 0 0
               1 577
```

CLASSIFICATION REPORT:

	bi ectatori	I CCUTT	11-2C01 E	suppor c
A	0.99	0.90	0.94	600
В	0.96	0.94	0.95	600
C	0.99	0.99	0.99	600
D	0.99	0.97	0.98	600
E	0.96	0.90	0.93	600
F	1.00	0.96	0.98	600
G	0.95	0.97	0.96	600
H	0.98	0.94	0.96	600
I	0.96	0.94	0.95	600
J	0.96	0.98	0.97	600
K	0.92	0.95	0.93	600
L	0.99	0.99	0.99	600
M	0.81	0.98	0.88	600
N	0.94	0.87	0.91	600
0	0.96	0.98	0.97	600
P	0.98	0.98	0.98	600
Q	0.97	0.99	0.98	600
R	0.91	0.89	0.90	600
S	0.84	0.94	0.89	600
T	0.99	0.94	0.96	600
U	0.92	0.90	0.91	600
V	0.90	0.89	0.90	600
W	0.97	0.95	0.96	600
X	0.90	0.95	0.92	600
Υ	0.96	0.97	0.96	600
Z	0.97	0.96	0.96	600
del	0.98	0.97	0.98	600
nothing	0.99	1.00	0.99	600
space	0.98	0.98	0.98	600
accuracy			0.95	17400
macro avg	0.95	0.95	0.95	17400
weighted avg	0.95	0.95	0.95	17400

ACCURACY SCORE:

```
MARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.Adam.
   Epoch 1/10
   Epoch 1: val_accuracy improved from -inf to 0.32923, saving model to /content/sample_data/best_model_weights.h5
   Epoch 2/10
   Epoch 2: val accuracy improved from 0.32923 to 0.75509, saving model to /content/sample data/best model weights.h5
   Epoch 3/10
   543/543 [============ ] - ETA: 0s - loss: 0.5975 - accuracy: 0.8077
   Epoch 3: val accuracy improved from 0.75509 to 0.84929, saving model to /content/sample data/best model weights.h5
   Epoch 4/10
   543/543 [============ ] - ETA: 0s - loss: 0.3997 - accuracy: 0.8808
   Epoch 4: val accuracy improved from 0.84929 to 0.91094, saving model to /content/sample data/best model weights.h5
   Epoch 5/10
   543/543 [============ ] - ETA: 0s - loss: 0.3196 - accuracy: 0.9084
   Epoch 5: val accuracy did not improve from 0.91094
   Epoch 6/10
   543/543 [============ ] - ETA: 0s - loss: 0.2517 - accuracy: 0.9276
   Epoch 6: val accuracy improved from 0.91094 to 0.94410, saving model to /content/sample data/best model weights.h5
   543/543 [===========] - 143s 264ms/step - loss: 0.2517 - accuracy: 0.9276 - val_loss: 0.1956 - val_accuracy: 0.9441
   Epoch 7/10
   543/543 [============= ] - ETA: 0s - loss: 0.2287 - accuracy: 0.9362
   Epoch 7: val accuracy did not improve from 0.94410
   543/543 [===========] - 145s 267ms/step - loss: 0.2287 - accuracy: 0.9362 - val loss: 0.2181 - val accuracy: 0.9393
   Epoch 8/10
   543/543 [============ ] - ETA: 0s - loss: 0.2239 - accuracy: 0.9378
   Epoch 8: val accuracy did not improve from 0.94410
   Epoch 9/10
   543/543 [============] - ETA: 0s - loss: 0.2281 - accuracy: 0.9379
   Epoch 9: val accuracy improved from 0.94410 to 0.95282, saving model to /content/sample data/best model weights.h5
   543/543 [============] - 154s 284ms/step - loss: 0.2281 - accuracy: 0.9379 - val loss: 0.1858 - val accuracy: 0.9528
   Epoch 10/10
   543/543 [============ ] - ETA: 0s - loss: 0.2068 - accuracy: 0.9444
   Epoch 10: val accuracy did not improve from 0.95282
   543/543 [===========] - 145s 267ms/step - loss: 0.2068 - accuracy: 0.9444 - val_loss: 0.1917 - val_accuracy: 0.9506
[13] scores = model.evaluate(test generator)
   print("%s: %2f%%" % ("Evaluate Test Accuracy", scores[1]*100))
```

Evaluate Test Accuracy: 95.172411%

HYPERPARAMETER TUNING:

```
# Compile the model model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
```

```
# Configuration
class CFG:
    # Set the batch size for training
    batch_size = 128
    # Set the height and width of input images
    img_height = 32
    img_width = 32
    epochs = 10
    num_classes = 29
```

VALIDATION METHOD:

```
# Split the training set into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(
    data_train['image_path'],
    data_train['label'],
    test_size=0.2/0.7, # Assuming you want 20% for validation out of the training set
    random_state=2253,
    shuffle=True,
    stratify=data_train['label']
)

# Create a DataFrame for the validation set
data_val = pd.DataFrame({
    'image_path': X_val,
    'label': y_val
})
```

```
# Create a ModelCheckpoint callback
checkpoint_callback = ModelCheckpoint(
    filepath='/content/sample_data/best_model_weights.h5',
    monitor='val_accuracy', # Monitor validation accuracy for saving the best model
    save_best_only=True,
    mode='max',
    verbose=1
)
```