ML PROGRAMS OUTPUT

Program1 output

```
C Desktop/ML/ML PGMS EXE/ X // program 1 - Jupyter Notebook X // pgms 1.csv - Jupyter Text Editor X // +
                                                                                                                                                                                                           - a ×
 ← → C O localhost:8888/notebooks/Desktop/ML/ML%20PGMS%20EXE/program%201.ipynb
                                                                                                                                                                                            ☆ \varTheta :
                            Jupyter program 1 Last Checkpoint: Last Tuesday at 12:38 AM (autosaved)
                            File Edit View Insert Cell Kernel Widgets Help
                                                                                                                                                                       Trusted Python 3 O
                            집 | + | % 연 회 기 수 ↓ | ► Run | ■ C → Code
                                            hypothesis[j]=?"
else: hypothesis[j]=a[j[j]
print ("Nn For training Example No:[0] the hypothesis is".format(i),hypothesis)
print ("Nn Fhe Maximally specific hypothesis for the training instance is ')
print (hypothesis)
                                             ['sunny', warm', 'normal', 'strong', 'warm', 'same', 'yes']
['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes']
['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no']
['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']
                                             The total number of training instances are : 4
                                             The initial hypothesis is : ['0', '0', '0', '0', '0']
                                             Find-S: Finding maximally specific Hypothesis
                                             For training Example No:0 the hypothesis is [' sunny', 'warm', 'normal', 'strong', 'warm', 'same']
                                              For training Example No:1 the hypothesis is [' sunny', 'warm', 'normal', 'strong', 'warm', 'same']
                                              For training Example No:2 the hypothesis is [' sunny', 'warm', 'normal', 'strong', 'warm', 'change']
                                              For training Example No:3 the hypothesis is [' sunny', 'warm', 'normal', 'strong', 'warm', 'change']
                                              The Maximally specific hypothesis for the training instance is
O # 🔚 🧑 🗯
                                                                                                                                                                                  ② ^ ■ ⊕ □ ENG 18:18
```

Program2 output

Program3 output

Program4 output

Program5 output

Program6 output

Program7 output

Sample instances from the dataset are given below

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
0	63	1	1	145	233	1	2	150	0	2.3	3	
1	67	1	4	160	286	0	2	108	1	1.5	2	
2	67	1	4	120	229	0	2	129	1	2.6	2	
3	37	1	3	130	250	0	0	187	0	3.5	3	
4	41	0	2	130	204	0	2	172	0	1.4	1	

	ca	thal	heartdisease
0	0	6	0
1	3	3	2
2	2	7	1
3	0	3	0
4	0	3	0

Attributes and datatypes int64 age sex int64 int64 trestbps int64 int64 chol fbs int64 int64 restecg thalach int64 exang int64 oldpeak float64 slope int64 object ca thal object heartdisease int64 dtype: object

Inferencing with Bayesian Network:

1.Probability of HeartDisease given evidence=restecg :1

4	
heartdisease	phi(heartdisease)
heartdisease(0)	
heartdisease(1)	•
heartdisease(2)	0.2392
heartdisease(3)	
heartdisease(4)	0.4581

4	L -
heartdisease	phi(heartdisease)
heartdisease(0)	
heartdisease(1)	0.2159
heartdisease(2)	0.1373
heartdisease(3)	0.1537
heartdisease(4)	0.1321
T	r -

Program8 output

Program9 output

Program10 output

