Lista de Exercícios 1 – Seleção e Repetição

1) Coordenadas de um Ponto

Leia 2 valores com uma casa decimal (x e y), que devem representar as coordenadas de um ponto em um plano. A seguir, determine qual o quadrante ao qual pertence o ponto, ou se está sobre um dos eixos cartesianos ou na origem (x = y = 0).

Se o ponto estiver na origem, escreva a mensagem "Origem".

Se o ponto estiver sobre um dos eixos escreva "Eixo X" ou "Eixo Y", conforme for a situação.

Entrada

A entrada contem as coordenadas de um ponto.

Saída

A saída deve apresentar o quadrante em que o ponto se encontra.

Exemplo de Entrada	Exemplo de Saída
4.5 -2.2	Q4
0.1 0.1	O 1
0.0 0.0	Origem

2) Sort Simples

Leia 3 valores inteiros e ordene-os em ordem crescente. No final, mostre os valores em ordem crescente, uma linha em branco e em seguida, os valores na sequência como foram lidos.

Entrada

A entrada contem três números inteiros.

Saída

Imprima a saída conforme foi especificado.

Exemplo de Entrada	Exemplo de Saída
	-14
	7
	21
7 21 -14	
	7
	21
	-14
	-14
	7
	21
-14 21 7	
	-14
	21
	7

3) Múltiplos

Leia 2 valores inteiros (A e B). Após, o programa deve mostrar uma mensagem **"Sao Multiplos"** ou **"Nao sao Multiplos"**, indicando se os valores lidos são múltiplos entre si.

Entrada

A entrada contém valores inteiros.

Saída

A saída deve conter uma das mensagens conforme descrito acima.

Exemplo de Entrada Exemplo de Saída 6 24 Sao Multiplos

6 25 Nao sao Multiplos

4) Tipos de Triângulos

Leia 3 valores de ponto flutuante A, B e C e ordene-os em ordem decrescente, de modo que o lado A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

- se $A \ge B+C$, apresente a mensagem: **NAO FORMA TRIANGULO**
- se $A^2 = B^2 + C^2$, apresente a mensagem: **TRIANGULO RETANGULO**
- se $A^2 > B^2 + C^2$, apresente a mensagem: **TRIANGULO OBTUSANGULO**
- se $A^2 < B^2 + C^2$, apresente a mensagem: **TRIANGULO ACUTANGULO**
- se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO
- se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCELES

Entrada

A entrada contem três valores de ponto flutuante de dupla precisão A (0 < A), B (0 < B) e C (0 < C).

Saída

Imprima todas as classificações do triângulo especificado na entrada.

Exemplos de Entrada	Exemplos de Saída
7.0 5.0 7.0	TRIANGULO ACUTANGULO
7.0 3.0 7.0	TRIANGULO ISOSCELES
6.0 6.0 10.0	TRIANGULO OBTUSANGULO
0.0 0.0 10.0	TRIANGULO ISOSCELES
6.0 6.0 6.0	TRIANGULO ACUTANGULO
0.0 0.0 0.0	TRIANGULO EQUILATERO
5.0 7.0 2.0	NAO FORMA TRIANGULO
6.0 8.0 10.0	TRIANGULO RETANGULO

5) Tempo de Jogo

Leia a hora inicial e a hora final de um jogo. A seguir calcule a duração do jogo, sabendo que o mesmo pode começar em um dia e terminar em outro, tendo uma duração máxima de 24 horas.

Entrada

Dois números inteiros representando o início e o fim do jogo.

Saída

Mostre a duração do jogo conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
16 2	O JOGO DUROU 10 HORA(S)
	(/
0.0	O JOGO DUROU 24 HORA(S)
2 16	O JOGO DUROU 14 HORA(S)

6) Números Pares

Timelimit: 1

Faça um programa que mostre os números pares entre 1 e 100, inclusive.

Entrada

Neste problema extremamente simples de repetição não há entrada.

Saída

Imprima todos os números pares entre 1 e 100, inclusive se for o caso, um em cada linha.

Exemplo de Entrada Exemplo de Saída

2

4

6

100

7) Pares, Ímpares, Positivos e Negativos

Leia 5 valores Inteiros. A seguir mostre quantos valores digitados foram pares, quantos valores digitados foram ímpares, quantos valores digitados foram positivos e quantos valores digitados foram negativos.

Entrada

O arquivo de entrada contém 5 valores inteiros quaisquer.

Saída

Imprima a mensagem conforme o exemplo fornecido, uma mensagem por linha, não esquecendo o final de linha após cada uma.

Exemplo de Entrada	Exemplo de Saída
-5	21
0	3 valor(es) par(es)
2	2 valor(es) impar(es)
-3	1 valor(es) positivo(s)
-4	` ' 1
12	3 valor(es) negativo(s)
1 🗸	

8) Tabuada

Leia 1 valor inteiro N (2 < N < 1000). A seguir, mostre a tabuada de N:

$$1 \times N = N$$

$$2 \times N = 2N$$

. . .

 $10 \times N = 10N$

Entrada

A entrada contém um valor inteiro N (2 < N < 1000).

Saída

Imprima a tabuada de N, conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
	$1 \times 140 = 140$
140	$2 \times 140 = 280$
	$3 \times 140 = 420$
	$4 \times 140 = 560$
	$5 \times 140 = 700$
	$6 \times 140 = 840$
	$7 \times 140 = 980$
	$8 \times 140 = 1120$
	$9 \times 140 = 1260$
	$10 \times 140 = 1400$

9) Médias Ponderadas

Leia 1 valor inteiro N, que representa o número de casos de teste que vem a seguir. Cada caso de teste consiste de 3 valores reais, cada um deles com uma casa decimal. Apresente a média ponderada para cada um destes conjuntos de 3 valores, sendo que o primeiro valor tem peso 2, o segundo valor tem peso 3 e o terceiro valor tem peso 5.

Entrada

O arquivo de entrada contém um valor inteiro **N** na primeira linha. Cada **N** linha a seguir contém um caso de teste com três valores com uma casa decimal cada valor.

Saída

Para cada caso de teste, imprima a média ponderada dos 3 valores, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
3 6.5 4.3 6.2 5.1 4.2 8.1 8.0 9.0 10.0	5.7 6.3 9.3

10) Soma de Impares Consecutivos I

Leia 2 valores inteiros X e Y. A seguir, calcule e mostre a soma dos números impares entre eles.

Entrada

O arquivo de entrada contém dois valores inteiros.

Saída

O programa deve imprimir um valor inteiro. Este valor é a soma dos valores ímpares que estão entre os valores fornecidos na entrada que deverá caber em um inteiro.

Exemplo de Entrada	Exemplo de Saída
6	5
-5	3

11) Soma de Ímpares Consecutivos II

Leia um valor inteiro **N** que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de dois inteiros **X** e **Y**. Você deve apresentar a soma de todos os ímpares existentes **entre X** e **Y**.

Entrada

A primeira linha de entrada é um inteiro N que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste em uma linha contendo dois inteiros X e Y.

Saída

Imprima a soma de todos valores ímpares entre X e Y.

Exemplo de Entrada	Exemplo de Saída
7	
4 5	0
	11
13 10	5
6 4	
3 3	0
	0
3 5	0
3 4	U
2.9	12
3 8	