

Networking & IT Infrastructure Assignment IP Subnetting Proposal

Submitted by

SIM YIZHUN | S10251450

CURLYNN TAN | S10251463

DARYL GOH DA HUI | S10251448

YANN NGEW | \$10251461

of TEAM 01

The pages of this proposal omits the cover page and Table of Contents.

Proposal Page Count: 20

Table of Contents

1.0 Background	1
2.0 Introduction	1
3.0 Network Needs Analysis	1
4.1 The Design and Selection	2
4.2 The Proposed Scalable IP Addressing Scheme For YDC Interior	3
4.3 Subnet IP Address Range	3
4.4 Network Capacity, Bandwidth and Estimated Users	3
4.5 Server Components	4
5.0 IP Address Assignments	4
5.1 Assignments to Appropriate Devices, Router, Switches and End Devices	4 • t 5 7
5.2 Network Addresses, VLANs, Routing Configurations On Networking Devices	11
5.2.1 Final Addressing Table	11
6.0 Enhancements	11
6.1 Enhancement I: Secure Socket Shell	11
6.2 Enhancement II : ACL	12
7.0 Budget Estimate	12
7.1 Cost Benefit Analysis (CBA)	12
7.2 Benefit Analysis	13
7.3 Cost-Benefit Ratio	13
8.0 Conclusion	14
9.0 References	15
10.0 Appendices	15
10.1 Appendix A: Members & Contributions	15
10.2 Appendix B: Packet Tracer Documentation	15

1.0 Background

Our team created this proposal report as part of our module assignment: Networking IT & Infrastructure. This assignment aims to develop a secure networking system that would reduce the risk of cyber-attacks and data theft.

2.0 Introduction

This proposal is for a data communication network to serve a small start-up Interior Design Firm - **YDC Interior**. With collaborations with lead generation companies, the firm intends to upscale on a progressive rate of 15% per annum quarter. Thus, extensive planning should go into a network installation or implementation. As with any project, a need is identified thus, this proposal outlines the steps (or phases) of a structured network design and demonstrates a practical implementation of the steps through Cisco Packet Tracer™ software.

3.0 Network Needs Analysis

The basis for the Network Needs Analysis is based on the extended knowledge that the network system is for an Interior Design company in its early stages of operations. Thereby, the analysis is focused on the core of the firm that essentially needs connectivity to carry daily operational tasks.

S/No	Requirement(s)	Client's Response				
1	A. Number of Users	Accounting Team - 2 Personnel				
	B. Type of Equipment	2. Design Team - 2 Personnel				
		3. Sales Team - 2 Personnel				
2	Service Provider Equipment	Fast and Stable				
3	Number of Printer(s) None. Concrete Plans to acquire one for the Sales To					
4	Reliability and Uptime Expectations	Reliable and consistent network				
5	Security & Privacy Concerns	Secured with restricted access; ability to filter.				
6	Physical Layout	Unavailable.				
7	Application Requirements	365 MSOffice, AutoCAD, 3DMax, Adobe Photoshop, Adobe				
		Illustrator, Sketchup Pro, 1SalesForce Sales Cloud, Wrike,				
		Xero.				
8	Budget Estimate	Value-for-money; Estimated Budget of SGD30,000-40,000/-				
9	Project Growth Number of users and departments will increase overtime					

Figure 1 Table of Requirements

The requirements are narrowed down based on the Figure 1.0 (as shown above) and it is as follows-:

3.1 Functionality

At present, there is no existence of a network system in place, thus, there would be no consideration to input existing devices and integrate with a former network system. The design of the network is to be functionally and physically isolated from access by people not employed by **YDC Interior** so as to minimize the risk of unauthorized use. The integration and updates are to be effortless and versatile, one that enables users to retrieve, process and store ASCII and non-ASCII text, different media mediums from any connected computer and across all existing departments.

3.2 Network Scalability

The design should be scalable so more departments and devices can be added as the business expands without having to redo the installed network while combining the power and capabilities of diverse equipment across the office space to provide a collaborative medium that aids in sharing information and ideas easily, so as to work in a more efficient and productive manner.

3.3 Intended Users

The intended primary users of the network are the sales, accounting and design team of **YDC Interior**, with two users per department as of current. With higher sales volume and project completion turnover rates, LANS and WAN are expected to operate at 99.9% uptime and undiscovered error rate of .01%, in alignment with user expectations and industry standards.

4.0 The Network Diagram Design

The focus on this project is placed on its data flow, data types, and processes that access or change the data while being scalable. As a floor plan is currently not obtainable, a site survey and diagram of the floor plan will be required to indicate size and locations of working spaces.

4.1 The Design and Selection

Figure 2 Design of The Network Diagram simulated on Packet Tracer

The main goal of the project at its initial stages is to design it in a manageable way while taking under serious consideration that it may be easily modified and maintained with ease, thus, creating value of convenience and efficacy. By using the Packet Tracer simulation, it allows one to view the LAN from a documentation perspective and be able to evaluate trade-offs in performance and cost. During the designing phase of the network, weaknesses of the design may be identified and addressed.

In Figure 2, the design of the structural network diagram consists of the two 2911 Router(s), five 2960 Switches, two Server components - a Web Server and File Server; two laptops; four PCs, and one printer allocated to the Sales Team. This is achieved by using the modular concept and dividing it into three prominent networks as per team. Upon approval of this project, a successful prototype is a good indicator of how the network will eventually operate.

4.2 The Proposed Scalable IP Addressing Scheme For YDC Interior

Figure 3.0 depicts the proposed scalable IP Addressing Scheme for YDC Interior with the network determinants calculated as follows-:

Network Determinants / Octet(s) 1st Octet	2nd Octet	3rd Octet	7	6	5	4	3	2	1	0
Plus			2^7=128	2^6=64	2^5=32	2^4=16	2^3=8	2^2=4	N/A	N/A
No. of Host Per Subnet			2^7-2=126	2^6-2=62	2^5-2=30	2^4-2=14	2^3-2=6	2^2-2=2	N/A	N/A
Prefix /CIDR (Classless Inter- Domain Routing (CIDR) is a range of IP addresses a network uses)			/25	/26	/27	/28	/29	/30	N/A	N/A
No. of Subnet			2^1=2	2^ 2 =4	2^3=8	2^ 4 =16	2^ 5 =32	2^ 6 =64	N/A	N/A
Subnet Mask			255.255.255.128	255.255.255.192	255.255.255.224	255.255.255.240	255.255.255.248	255.255.255.252	N/A	N/A
						.11111111.11111111 .11111111.1111000			N/A	N/A
Binary			00	0000	0	0	0	0		

Figure 3 Network Determinants Calculation Table

4.3 Subnet IP Address Range

Devices	Base	# of Hosts	Network	1	Mask	Plus	Max. # Hosts	1st IP	Last IP	Broadcast Address
HQ_SW1, File Server	NetB	28	200.10.1.0	1	27	32	30	200.10.1.1	200.10.1.30	200.10.1.31
BR_SW1, PCB	NetE - Design Team	28	200.10.1.32	1	27	32	30	200.10.1.33	200.10.1.62	200.10.1.63
HQ-SW2, Web Server	NetA	14	200.10.1.64	1	28	16	14	200.10.1.65	200.10.1.78	200.10.1.79
BR_SW2, PCA	NetD - Accounting Team	7	200.10.1.80	1	28	16	14	200.10.1.81	200.10.1.94	200.10.1.95
BR_SW3, LAPTOPC-1, LAPTOPC-2, Printer1	Sales Department	7	200.10.1.96	1	28	16	14	200.10.1.97	200.10.1.110	200.10.1.111
HQ_RTR, BR_RTR	NetC	2	200.10.1.112	1	30	4	2	200.10.1.113	200.10.1.114	200.10.1.115

Figure 4 Table For Network Device Components

The Base Network Address is **200.10.1.0/24**. As shown in Figure 4.0, the range of Subnet IP Addresses are from the 1st IP to the Last Addresses, as shown in Figure 4.

4.4 Network Capacity, Bandwidth and Estimated Users

The transmission speed should be transparent to users, in order for remotely executed applications, file transfers and the like to ideally appear to operate as quickly as processes executed within an end-station. To ascertain the intended users' needs and expectations, using the capabilities of Fast Ethernet and Gigabit Ethernet connectivity.

The bandwidth of the physical interface will be able to support delivery of speeds from 10/100 megabits per second (Mbps) within each internal LAN and 1000 Mbps bandwidth between external LANs respectively. If required, more support will be allocated than needed performance in most cases. This may include activities such as frequent video conferencing and large file sharing to be hindered between departments and their clients.

As depicted in Figure 4, the maximum users hosted on Network E (Design Department) is 30; the maximum users on Network D (Accounting Department) is 30, and Network F (Sales Department) may host a maximum of 14 users.

4.5 Server Components

4.5.1 File Server

The File Server's accessibility caters to the three departments of YDC Interior - Accounting, Design, Sales, to facilitate effective and efficient file sharing, data management, project management across teams or departments.

4.5.2 Web Server

To limit public traffic into the firm's internal file storage systems, the accessibility of Web Server is denied from the File Server.

5.0 IP Address Assignments

This section illustrates the steps taken to achieve the final addressing table (as shown in Section 5.2.1), which consists of the devices and its respective IP Addresses, Sub-masks, Default Gateway and designated interfaces. The documentation of the Packet Tracer implementation process is attached as Appendix B ,for clearer reference.

5.1 Assignments to Appropriate Devices, Router, Switches and End Devices

5.1.1 Step 1.1 IP Address Assignments to Network B - 1st Subnet

The steps of IP Address assigned to Network B as the first Subnet is as follows-:

- Use the first host address for the HQ_RTR interface connected to HQ_SW1 switch, to assign the first Subnet to Network B
- Use the second host address for the HQ_SW1 switch and assign a default gateway address for the switch.
- 3. Use the last host address for **File Server** (FTP Server) and assign a default gateway address for the **Web Server**.

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0			
	G0/1	200.10.1.1	255.255.255.224	N/A
	S0/3/0			
BR_RTR (Router)	G0/0			N/A
	G0/1			N/A
	G0/2			
	S0/3/0			
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1			
BR_SW1 (Switch)	VLAN1			
BR_SW2 (Switch)	VLAN1			
BR_SW3 (Switch)	VLAN1			
PCA-1	NIC			
PCA-2	NIC			
PCB-1	NIC			
PCB-2	NIC			
LaptopC-1	NIC			
LaptopC-2	NIC			
Printer1	NIC			
Web Server	NIC			
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Figure 5 Addressing Table: First Subnet To Network B

Addressing Table for First Subnet Assigned To Network B

The addressing table depicts the IP addresses, subnet masks and default gateways achieved from assigning the first subnet to Network B.

5.1.2 Step 1.2 IP Address Assignments to Network E (Design Department) - 2nd Subnet

The steps of IP Address assigned to Network E (Design Team) is as follows-:

- 1. Use the first host address for the **BR_RTR** interface connected to **BR_SW1** switch.
- 2. Use the second host address for the **BR_SW1 switch** and assign a default gateway address for the **BR_SW1 switch** at this stage.
- 3. Use the last host address for **PC-B1** and assign a default gateway address for the **PC-B2**.

Addressing Table For Second Subnet Assigned To Network E

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0			N/A
	G0/1	200.10.1.1	255.255.255.224	
	S0/3/0			
BR_RTR (Router)	G0/0			N/A
	G0/1	200.10.1.33	255.255.255.224	
	G0/2			
	S0/3/0			
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1			
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33
BR_SW2 (Switch)	VLAN1			
BR_SW3 (Switch)	VLAN1			
PCA-1	NIC			
PCA-2	NIC			
PCB-1	NIC	200.10.1.61	255.255.255.224	200.10.1.33
PCB-2	NIC	200.10.1.62	255.255.255.224	200.10.1.33
LaptopC-1	NIC			
LaptopC-2	NIC			
Printer1	NIC			
Web Server	NIC			
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Figure 6 Addressing Table For Second Subnet Assigned To Network E

The addressing table in Figure 6 depicts the IP addresses, subnet masks and default gateways achieved from assigning the second subnet to Network E.

5.1.3 Step 1.3 IP Address Assignments to Network A - 3rd Subnet

The steps of IP Address assigned to Network A as the third Subnet is as follows-:

1. Use the first host address for the HQ_RTR interface connected to HQ_SW2 switch.

- 2. Use the second host address for the **HQ_SW2 switch** and assign a default gateway address for the **HQ_SW2 switch**.
- 3. Use the last host address and assign a default gateway address for **Web Server**.

Addressing Table for Network A

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0	200.10.1.65	255.255.255.240	
	G0/1	200.10.1.1	255.255.255.224	N/A
	S0/3/0			
BR_RTR (Router)	G0/0			
	G0/1	200.10.1.33	255.255.255.224	N/A
	G0/2			
	S0/3/0			
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1	200.10.1.66	255.255.255.240	200.10.1.65
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33
BR_SW2 (Switch)	VLAN1			
BR_SW3 (Switch)	VLAN1			
PCA-1	NIC			
PCA-2	NIC			
PCB-1	NIC	200.10.1.61	255.255.255.224	200.10.1.33
PCB-2	NIC	200.10.1.62	255.255.255.224	200.10.1.33
LaptopC-1	NIC			
LaptopC-2	NIC			
Printer1	NIC			
Web Server	NIC	200.10.1.78	255.255.255.240	200.10.1.65
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Figure 7 Addressing Table For Assigning Third Subnet To Network A

The addressing table depicts the IP addresses, subnet masks and default gateways achieved from assigning the third subnet to Network A.

5.1.4 Step 1.4 IP Address Assignments to Network D - 4th Subnet

The steps of IP Address assigned to Network D as the fourth Subnet is as follows-:

- 1. Use the first host address for the BR_RTR interface connected to BR_SW2 switch
- 2. Use the second host address and assign a default gateway address for the **BR_SW2 switch**.
- 3. Use the second last host address and assign a default gateway address for **PC-A1** and **PC-A2**.

Addressing Table For Assignment of 4th Subnet to Network D

The addressing table depicts the IP addresses, subnet masks and default gateways achieved from assigning the forth subnet to Network D.

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0	200.10.1.65	255.255.255.240	N/A
	G0/1	200.10.1.1	255.255.255.224	
	S0/3/0			
BR_RTR (Router)	G0/0	200.10.1.81	255.255.255.240	N/A
	G0/1	200.10.1.33	255.255.255.224	
	G0/2			
	S0/3/0			
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1	200.10.1.66	255.255.255.240	200.10.1.65
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33
BR_SW2 (Switch)	VLAN1	200.10.1.82	255.255.255.240	200.10.1.81
BR_SW3 (Switch)	VLAN1			
PCA-1	NIC	200.10.1.93	255.255.255.240	200.10.1.81
PCA-2	NIC	200.10.1.93	255.255.255.240	200.10.1.81
PCA-2 PCB-1	NIC	200.10.1.94	255.255.255.240	200.10.1.81
PCB-2	NIC	200.10.1.61	255.255.255.224	200.10.1.33
LaptopC-1	NIC	200.10.1.02	255.255.255.224	200.10.1.33
LaptopC-2	NIC			
Printer1	NIC			
Web Server	NIC	200.10.1.78	255.255.255.240	200.10.1.65
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Figure 8 Addressing Table For Assignment of Forth Subnet To Network D

5.1.5 Step 1.5 Assigning 5th Subnet To Sales Department

The steps to implementing the assignment of the fifth subnet to the Sales Department is as follows-:

- 1.Use the first host address for the BR_RTR interface connected to BR_SW3 switch
- 2. Use the second host address and assign a default gateway address for the **BR_SW3 switch**.
- 3. Use the third last host address for Printer1.
- 4. Use the second last host address for Laptop-C1.
- 5. Use the second last host address for Laptop-C2.
- 6. Assign a default gateway address for **PC-A1** and **PC-A2**.

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0	200.10.1.65	255.255.255.240	N/A
	G0/1	200.10.1.1	255.255.255.224	N/A
	S0/3/0			
BR_RTR (Router)	G0/0	200.10.1.81	255.255.255.240	
	G0/1	200.10.1.33	255.255.255.224	N/A
	G0/2	200.10.1.97	255.255.255.240	
	S0/3/0			
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1	200.10.1.66	255.255.255.240	200.10.1.65
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33
BR_SW2 (Switch)	VLAN1	200.10.1.82	255.255.255.240	200.10.1.81
BR_SW3 (Switch)	VLAN1	200.10.1.98	255.255.255.240	200.10.1.97
PCA-1	NIC	200.10.1.93	255.255.255.240	200.10.1.81
PCA-2	NIC	200.10.1.94	255.255.255.240	200.10.1.81
PCB-1	NIC	200.10.1.61	255.255.255.224	200.10.1.33
PCB-2	NIC	200.10.1.62	255.255.255.224	200.10.1.33
LaptopC-1	NIC	200.10.1.109	255.255.255.240	200.10.1.97
LaptopC-2	NIC	200.10.1.110	255.255.255.240	200.10.1.97
Printer1	NIC	200.10.1.108	255.255.255.240	200.10.1.97
Web Server	NIC	200.10.1.78	255.255.255.240	200.10.1.65
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Addressing Table for Subnet Setup of Sales Department

The addressing table depicts the IP addresses, subnet masks and default gateways achieved from assigning the fifth subnet to the designated network of the Sales Department.

Figure 9 Addressing Table For Fifth Subnet to Sales Department

5.1.6 Step 1.6 Assigning 6th Subnet To Network C

The steps to assigning the sixth subnet to Network C is as follows-:

- 1. Use the first host address for the **HQ_RTR interface** connected to **BR_RTR**.
- 2. Use the last host address for the BR_RTR to HQ_RTR.

Addressing Table for Network C

The addressing table depicts the IP addresses, subnet masks and default gateways achieved from assigning the sixth subnet to Network C.

Device	Interface	IP Address	Subnet Mask	Default Gateway
HQ_RTR (Router)	G0/0	200.10.1.65	255.255.255.240	
	G0/1	200.10.1.1	255.255.255.224	N/A
	S0/3/0	200.10.1.113	255.255.255.252	
BR_RTR (Router)	G0/0	200.10.1.81	255.255.255.240	
	G0/1	200.10.1.33	255.255.255.224	N/A
	G0/2	200.10.1.97	255.255.255.240	
	S0/3/0	200.10.1.114	255.255.255.252	
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1
HQ_SW2 (Switch)	VLAN1	200.10.1.66	255.255.255.240	200.10.1.65
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33
BR_SW2 (Switch)	VLAN1	200.10.1.82	255.255.255.240	200.10.1.81
BR_SW3 (Switch)	VLAN1	200.10.1.98	255.255.255.240	200.10.1.97
PCA-1	NIC	200.10.1.93	255.255.255.240	200.10.1.81
PCA-2	NIC	200.10.1.94	255.255.255.240	200.10.1.81
PCB-1	NIC	200.10.1.61	255.255.255.224	200.10.1.33
PCB-2	NIC	200.10.1.62	255.255.255.224	200.10.1.33
LaptopC-1	NIC	200.10.1.109	255.255.255.240	200.10.1.97
LaptopC-2	NIC	200.10.1.110	255.255.255.240	200.10.1.97
Printer1	NIC	200.10.1.108	255.255.255.240	200.10.1.97
Web Server	NIC	200.10.1.78	255.255.255.240	200.10.1.65
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1

Figure 10 Addressing Table For Assigning Sixth Subnet To Network C

5.2 Network Addresses, VLANs, Routing Configurations On Networking Devices

5.2.1 Final Addressing Table

Devices	Interface	IP Address	Subnet Mask	Default Gateway	Remarks
HQ_RTR (Router)	G0/0	200.10.1.65	255.255.255.240		
	G0/1	200.10.1.1	255.255.255.224	N/A	
	\$0/3/0	200.10.1.113	255.255.255.252		
BR_RTR (Router)	G0/0	200.10.1.81	255.255.255.240		
	G0/1	200.10.1.33	255.255.255.224	N/A	
	G0/2	200.10.1.97	255.255.255.240		
	SO/3/0	200.10.1.114	255.255.255.252		
HQ_SW1 (Switch)	VLAN1	200.10.1.2	255.255.255.224	200.10.1.1	
HQ_SW2 (Switch)	VLAN1	200.10.1.66	255.255.255.240	200.10.1.65	
BR_SW1 (Switch)	VLAN1	200.10.1.34	255.255.255.224	200.10.1.33	
BR_SW2 (Switch)	VLAN1	200.10.1.82	255.255.255.240	200.10.1.81	
BR_SW3 (Switch)	VLAN1	200.10.1.98	255.255.255.240	200.10.1.97	Follow BR_RTR G0/2 IP Address
PCA-1	NIC	200.10.1.93	255.255.255.240	200.10.1.81	
PCA-2	NIC	200.10.1.94	255.255.255.240	200.10.1.81	
PCB-1	NIC	200.10.1.61	255.255.255.224	200.10.1.33	
PCB-2	NIC	200.10.1.62	255.255.255.224	200.10.1.33	
LaptopC-1	NIC	200.10.1.109	255.255.255.240	200.10.1.97	Follow BR_RTR G0/2 IP Address
LaptopC-2	NIC	200.10.1.110	255.255.255.240	200.10.1.97	Follow BR_RTR G0/2 IP Address
Printer1	NIC	200.10.1.108	255.255.255.240	200.10.1.97	Follow BR_RTR G0/2 IP Address
Web Server	NIC	200.10.1.78	255.255.255.240	200.10.1.65	
File Server	NIC	200.10.1.30	255.255.255.224	200.10.1.1	

Figure 11 Final Addressing Table

Figure 11 depicts that the finalization of Step 1.1 – 1.6 of the IP Addresses Assignments.

6.0 Enhancements

This network design includes Secure Socket Shell (SSH) and ACL additions to the structure network design.

6.1 Enhancement I: Secure Socket Shell

The setup of SSH network communication protocol is enabled in the network design to secure remote login from one computer to another, SSH-5, SSH 1.99 is significant for YDC Interior as the firm requires back and forth file transferring while containing sensitive client data. This is done by implementing a username/password authentication system to establish a secure connection.

Key-name: HQ_Rtr.ccna-lab.com

6.2 Enhancement II: ACL

In this proposal, standard ACLs are being utilized. It provides a basic auto-filter and aid in limiting network traffic to increase network performance, control traffic flow, and provide basic level of security for network access within the radius of the working space. It also enables hosts to permit or deny access to network services and prioritize certain classes of network traffic.

An ACL allows YDC Interior to prevent intentional or unintentional data loss or data exfiltration. This reduces any form of risks of reputational damages to the brand, or loss of customers and revenue.

7.0 Budget Estimate

The Cost Benefit Analysis (CBA) is used to determine if the benefits to be gained outweigh the costs (Hayes, 2021). Devices and cabling are selected based on the brief requirements outlined. The key measures in choosing the devices and cabling for a structural network system are cost, number of ports, speed, expandability and manageability.

7.1 Cost Benefit Analysis (CBA)

Cost Analysis			
Tangible Costs			
Product	Price	Quantity	Total
2911 Router	\$2,500	2	\$5,000
2960 Switches	\$3,000	4	\$12,000
PC(s)	\$2,000	4	\$8,000
Laptop	\$3,000	2	\$6,000
Web Server	\$8,000	1	\$8,000
File Server	\$5,000	1	\$5,000
Printer	\$1,100	1	\$1,100
Subtotal of Tangible Costs			\$45,100
Intangible Costs			
Product	Price	Quantity	Total
Network Down Time (Estimated at 12 hrs/yr)	\$3,000.00	1	\$3,000
Subtotal of Intangible Costs			\$3,000
	al 3-year Cost Analysis	\$144,300	
	Total Annualized Cost	\$48,100	

7.2 Benefit Analysis

Benefit Analysis		
Products		Price
Increased Productivity	\$25,000 / yr	
Decreased Anxiety (from increased reliability)	\$4,000 / yr	
Ease of Record Keeping (i.e. fewer lost files and faster availability)	\$25,000 / yr	
Increased Security		\$25,000 / yr
Increased Staff Morale		\$15,000 / yr
Intangible Benefits		
Increased Staff Morale	\$15,000 / yr	
Increased Brand Reputation	\$25,000 / yr	
Tota	ll Benefit Analysis =	\$134,000/year

7.3 Cost-Benefit Ratio

Cost-Benefit Ratio Table			
Total Cost	Total Benefit	Ratio	
\$48,100/year	\$134,000/year	0.35 (rounded up to next decimal point)	

As calculated in the Cost Benefit Ratio Table, the annual benefit exceeds the annualized cost where the project is expected to pay for itself in 12 months. The projected time to functional obsolescence of equipment is estimated at about 36 months. If the Benefit Cost Ratio (BCR) value is less than 1, then the project cost can be expected to be higher than the returns, and therefore, it should be discarded (Weller, 2016). It is to be noted that the values of intangibles are subjected to interpretation, to which the values of the products and benefits are averaged and accurate at the time this proposal was written.

Given the results shown, it is therefore recommended that the project is essential to implement for higher productivity and efficiency within a progressively growing corporate structure.

8.0 Conclusion

To increase accuracy in this proposal, YDC Interior's business processes should be discussed in greater detail.

The CBA does not include the realistic wiring blueprint of the office space. As such, where a floor plan is currently not obtainable, a site survey and diagram of the floor plan will be required to indicate size and locations of working spaces. It is ideal to make measurements on how cables should be run best and be aware of structural buildings that may affect latency and connectivity. Upon approval of the network design with possible device add-ons, the implementation of the network may then commence.

As part of the requirement discovery and with a higher budget, it is suggested that the network can be built in phases per ¾ of a year. Hence, it does not restrict a Two-tier FTP system, where an administrative tier gain full access to the servers, while the teams have limited access but are still able to access necessary across departments.

9.0 References

References are cited according to APA styling format.

Weller, J. (2016, December 8). *Cost Benefit Analysis: An Expert Guide | Smartsheet*. Smartsheet. https://www.smartsheet.com/expert-guide-cost-benefit-analysis

Hayes, A. (2021, August) *Cost-benefit analysis*. Investopedia. https://www.investopedia.com/terms/c/cost-benefitanalysis.asp

10.0 Appendices

10.1 Appendix A: Members & Contributions

#	Name of Member(s)	Contributions
1	Sim Yizhun	 Packet Tracer Building Structural Design of Network Presentation Creation
2	Daryl Goh Da Hui	 Packet Tracer Building Enhancement Building Presentation Creation
3	Curlynn Tan	 Presentation Creation Proposal Creation Documentation Creation & Compilation
4	Yann Ngew	 Presentation Creation Proposal Creation Documentation Creation & Compilation

10.2 Appendix B: Packet Tracer Documentation

The Excel Spreadsheet labeled as **<Network and IT Infrastructure Assignment>** is provided in the Team01-Submission Folder, for clearer referencing purposes.

Router> outer> Router> Router> Router>en Router#conf t Router#conf t , one per line. End with CNTL/Z. Enter configuration commands, one per line. End with CNTL/Z. outer(config)#hostname HQ_Rti Router(config)#hostname BR_Rtr IQ_Rtr(config)#enable secret Group1Password HQ_Rtr(config)#line console 0 R_Rtr(config)#line console 0 HO Rtr(config-line)#password Group1Password R Rtr(config-line)#password Group1Password HQ Rtr(config-line)#exit BR Rtr(config-line)#exit HQ_Rtr(config)#interface gigabitEthernet 0/0 HQ_Rtr(config-if)#ip address 200.10.1.65 255.255.255.240 HQ Rtr(config-if)#no shutdown % Invalid input detected at " mark HQ_Rtr(config-if)#description LAN connection to HQ_SW2 BR_Rtr(config)#interface gigabitEt 0/0 HQ Rtr(config-if)# BR_Rtr(config)#interface giga %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up 3R_Rtr(config-if)#ip address 200.10.1.81 255.255.255.240 %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up BR Rtr(config-if)#no shutdow R_Rtr(config-if)#description LAN Connection to BR_SW2 HQ Rtr(config-if)#interface gigabitEthernet 0/1 BR Rtr(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up HQ Rtr(config-if)#no shutdown _Rtr(config-if)#description LAN Connection to HQ_SW1 %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up HQ Rtr(config-if)# BR_Rtr(config-if)#interface g BR_Rtr(config-if)#interface gi %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up BR Rtr(config-if)#exit HQ Rtr(config-if)#^Z BR Rtr(config)#int gigabitEthernet 0/1 HQ_Rtr#
%SYS-5-CONFIG_I: Configured from console by console BR_Rtr(config-if)#ip address 200.10.1.33 255.255.255.224 BR_Rtr(config-if)#no shutdowr BR Rtr(config-if)#description LAN Connection to BR SW1 %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up Destination filename [startup-config]? Building configuration... [OK] %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up HQ_Rtr#conf t Enter configuration commands, one per line. End with CNTL/Z. HQ Rtr(config)#interface se BR_Rtr(config)#exit erial 1/0 %SYS-5-CONFIG_I: Configured from console by console %Invalid interface type and number HQ_Rtr(config)#interface serial HQ_Rtr(config)#interface serial 0/3/0 BR_Rtr#conf t HQ_Rtr(config-if)#ip address 200.10.1.113 255.255.255.252 Enter configuration commands, one per line. End with CNTL/Z. HQ_Rtr(config-if)# BR_Rtr(config)#interface s 02:37:37: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial0/3/0 from FULL to DOWN, Neighbor Down: Interface BR Rtr(config)#interface serial 0/3/0 BR_Rtr(config-if)#ip address 200.10.1.114 255.255.255.252 HQ Rtr(config-if)#no shutdo BR Rtr(config-if)#no shutdown HQ_Rtr(config-if)#no shutdown BR Rtr(config-if)#description Serial Connection to HQ Rtr HQ_Rtr(config-if)#description Serial Connection to BR_Rtr BR_Rtr(config-if)# HQ Rtr(config)#ser %Invalid hex value HQ_Rtr(config)#service pas BR_Rtr(config)#interface gigabi HQ Rtr(config)# BR_Rtr(config)#interface gigabitEthernet 0/2 BR_Rtr(config-if)#ip address 200.10.1.97 255.255.255.240 Configure OSPF Routing between Router HQ Rtr#conf t BR Rtr(config-if)#description LAN connection to BR SW3 Enter configuration commands, one per line. End with CNTL/Z. %LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to up HQ Rtr(config)#router ospf %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to up HQ_Rtr(config)#router ospf 1 HQ_Rtr(config-router)#router-id 1.1.1.1 HQ_Rtr(config-router)#do show ip route connected BR_Rtr(config-if)# C 200.10.1.0/27 is directly connected, GigabitEthernet0/1 BR Rtr# C 200.10.1.64/28 is directly connected, GigabitEthernet0/0 %SYS-5-CONFIG_I: Configured from console by cons C 200.10.1.112/30 is directly connected, Serial0/3/0 BR Rtr# HQ Rtr(config-router)#network 200.10.1.0 0.0.0.31 area 0 BR Rtr#cop HQ_Rtr(config-router)#network 200.10.1.64 0.0.0.15 area 0 HQ_Rtr(config-router)#no network 200.10.1.96 0.0.0.3 area 0 BR_Rtr#copy run BR_Rtr#copy running-config st HQ Rtr(config-router)#network 200.10.1.112 0.0.0.3 area 0 R Rtr#copy running HQ_Rtr(config-router)#p Old Config to replace
04:20:20: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial0/3/0 from LOADING to FULL, Loading Done Destination filename [startup-config]? Building configuration.. HQ_Rtr(config-router)#passive int [OK] HQ_Rtr(config-router)#passive int HQ_Rtr(config-router)#passive interfa BR_Rtr# HQ_Rtr(config-router)#passive-HQ_Rtr(config-router)#passive-interface gi

HQ_Rtr(config-router)#passive-interface gigabitEthernet 0/0 HQ_Rtr(config-router)#passive-interface gigabitEthernet 0/1 BR Rtr#conf t HQ Rtr(config-router)#exit Enter configuration commands, one per line. End with CNTL/Z. HQ_Rtr(config)#exit BR Rtr(config)#router ospf 1 HQ_Rtr# BR_Rtr(config-router)#routeruter-id 2.2.2.2 SSH Se BR_Rtr(config-router)#do show ip route co BR_Rtr(config-router)#do show ip route con HQ RTR Setting Up SSH On HQ_Rtr C 200.10.1.32/27 is directly connected, GigabitEthernet0/1 C 200.10.1.80/28 is directly connected, GigabitEthernet0/0 C 200.10.1.96/28 is directly connected, GigabitEthernet0/2 HQ Rtr>en HQ Rtr>enable C 200.10.1.112/30 is directly connected, Serial0/3/0 BR_Rtr(config-router)#network 200.10.1.32 0.0.0.31 area 0 BR_Rtr(config-router)#network 200.10.1.80 0.0.0.15 area 0 Password HQ_Rtr#conf t BR Rtr(config-router)#network 200.10.1.96 0.0.0.3 area 0 BR Rtr(config-router)#network 200.10.1.112 0.0.0.3 area 0 Enter configuration commands, one per line. End with CNTL/Z. BR Rtr(config-router)# 02:13:16: %OSPF-5-ADJCHG: Process 1, Nbr 1.1.1.1 on Serial0/3/0 from LOADING to FULL, Loading Done HQ Rtr(config)#username SSHadmin secret 55Hadm!n HQ_Rtr(config)#crypto key generate rsa BR_Rtr(config-router)# HQ_Rtr(config)#1024 BR_Rtr(config-router)#passi BR_Rtr(config-router)#passive-interface g % Invalid input detected at 'w' marker. BR Rtr(config-router)#passive-interface gigabitEthernet 0/0 HQ_Rtr(config)#ip domain-name ccna-lab.com BR_Rtr(config-router)#pas HQ Rtr(config)#crypto key generate rsa BR Rtr(config-router)#passive-interface gi The name for the keys will be: HQ_Rtr.ccna-lab.com BR Rtr(config-router)#passive-interface gigabitEthernet 0/1 Choose the size of the key modulus in the range of 360 to 2048 for your BR_Rtr(config-router)#passive-interface gigabitEthernet 0/2 General Purpose Keys. Choosing a key modulus greater than 512 may take BR_Rtr# a few minutes SSH Setup How many bits in the modulus [512]: 1024 BR RTR % Generating 1024 bit RSA keys, keys will be non-exportable...[OK] Setting Up SSH On BR_Rtr HQ_Rtr(config)# BR Rtr>en *Mar 1 2:34:11.411: %SSH-5-ENABLED: SSH 1.99 has been enabled HQ_Rtr(config)#line console 0 HQ_Rtr(config-line)#password Group1Password BR Rtr#conf t HQ Rtr(config-line)#login HQ Rtr(config-line)#exect-t Enter configuration commands, one per line, End with CNTL/Z. HQ Rtr(config-line)#exe BR_Rtr(config)#username SSHadmin2 secret 55Hadm!n HQ_Rtr(config-line)#logging sync BR_Rtr(config)#ip domain-name ccna-lab2.com HQ_Rtr(config-line)#logging s BR_Rtr(config)#crypto key generate rsa HQ Rtr(config-line)#exit The name for the keys will be: BR_Rtr.ccna-lab2.com HQ Rtr(config)#line vtv 0 15 Choose the size of the key modulus in the range of 360 to 2048 for your HQ Rtr(config-line)#password Group1Password General Purpose Keys. Choosing a key modulus greater than 512 may take HQ Rtr(config-line)#login local a few minutes HQ_Rtr(config-line)#exect-time w many bits in the modulus [512]: 1024 HQ_Rtr(config-line)#exec HQ_Rtr(config-line)#exec-tin % Generating 1024 bit RSA keys, keys will be non-exportable...[OK] HQ Rtr(config-line)#trans HQ_Rtr(config-line)#transport inp HQ Rtr(config-line)#transport input ssh *Mar 1 2:56:23 79: %SSH-5-ENABLED: SSH 1.99 has been enabled HQ Rtr(config-line)#exit BR Rtr(config-line)#password Group1Pa HQ_Rtr(config)#banner motd "Unauthorized access is strictly prohi BR Rtr(config-line)#login HQ_Rtr(config)# BR Rtr(config-line)#ex HQ_Rtr(config)#service password-encryption BR_Rtr(config-line)#exec HQ_Rtr(config)#end HQ Rtr# BR_Rtr(config-line)#loggin sy %SYS-5-CONFIG I: Configured from console by console BR Rtr(config-line)#logging synchronous HQ Rtr#copy run BR Rtr(config-line)#exit HQ_Rtr#copy running-config st BR_Rtr(config)#line vty 0 15 HQ_Rtr#copy running-o BR_Rtr(config-line)#pas Destination filename [startup-config]? BR_Rtr(config-line)#login local Building configuration... BR Rtr(config-line)#exect-ti [OK] BR_Rtr(config-line)#exec-t HQ Rtr# BR Rtr(config-line)#exec-timeout 6 BR Rtr(config-line)#transport input ssh BR_Rtr(config-line)#exit BR_Rtr(config)#banner motd "Unauthorized access is strictly prohibited" BR_Rtr(config)#service password-encryption BR_Rtr(config)#end BR Rtr# %SYS-5-CONFIG_I: Configured from console by console BR Rtr#copy run BR_Rtr#copy running-config st BR_Rtr#copy running-config startup-config Destination filename [startup-config]? Building configuration... [OK]

BR Rtr#

IQ SW1 Q SW2 R SW1 Switch#configure terminal Switch#configure terminal Switch#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Enter configuration commands, one per line. End with CNTL/Z. Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#interface vlan 1 Switch(config)#interface vlan 1 Switch(config)#hostname BR SW1 Switch(config-if)#ip address 200.10.1.2 255.255.255.224 Switch(config-if)#ip address 200.10.1.66 255.255.255.240 BR_SW1(config)#interface vlan 1 Switch(config-if)#no shutdown Switch(config-if)ffno shutdov BR_SW1(config-if)#ip address 200.10.1.34 255.255.255.224 BR_SW1(config-if)#no shutdown Switch/config-if)# %LINK-5-CHANGED: Interface Vlan1, changed state to up %LINK-5-CHANGED: Interface Vlan1, changed state to up BR_SW1(config-if)# %LINK-5-CHANGED: Interface Vlan1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up Switch(config-if)#exit Switch(config-if)#exit Switch(config)#ip default-gateway 200.10.1.1 Switch(config)#ip default-gateway 200.10.1.65 BR_SW1(config-if)#exit Switch(config)#^Z Switch(config)#^Z BR SW1(config)#ip default-gateway 200.10.1.33 BR_SW1(config)#^Z %SYS-5-CONFIG 1: Configured from console by console %SYS-5-CONFIG I: Configured from console by console BR SW1# %SYS-5-CONFIG_I: Configured from console by console Switch#copy running-config startup-config Switch#copy running-config startup-config Destination filename [startup-config]? Destination filename [startup-config]? BR_SW1#copy running-config startup-config Building configuration Building configuration. Destination filename [startup-config]? [OK] Building configuration... [OK] гокт BR_SW1# Switch#conf terminal Switch#conf terminal Enter configuration comm nds, one per line. End with CNTL/Z. Enter configuration com ands, one per line. End with CNTL/Z. Switch(config)#hostname HQ SW1 Switch(config)#hostname HQ SW2

HQ SW1(config)# HQ SW2(config)# Standard ACL Connectivity Test IQ Rtr File Server SSH into HQ_Rtr PCA SSH into BR_Rtr IQ_Rtr> Cisco Packet Tracer PC Command Line 1.0 Password: HQ_Rtr#conf t C:\>ping 200.10.1.30 Cisco Packet Tracer SERVER Command Line 1.0 Cisco Packet Tracer PC Command Line 1.0 Enter configuration commands, one per line. End with CNTL/Z. Pinging 200.10.1.30 with 32 bytes of data: Asset J SSHadmin 200.10.1.1 C/treeh J SSHedmin2 200 10 1 81 HQ Rtr(config)#ip acce IQ Rtr(config)#ip access-list standard File_Server Restrictions Request timed out. Password: 55Hadmin Password: 55Hadmlr Reply from 200.10.1.30: bytes=32 time=15ms TTL=126 HQ Rtr(config-std-nacl)#permit 200.10.1.93 HQ_Rtr(config-std-nacl)#permit 200.10.1.94 Reply from 200.10.1.30: bytes=32 time=16ms TTL=126 Unauthorized access is strictly prohibited Unauthorized access is strictly prohibited HQ Rtr(config-std-nacl)#permit 200.10.1.61 Reply from 200.10.1.30: bytes=32 time=6ms TTL=126 HQ_Rtr(config-std-nacl)#permit 200.10.1.62 HQ_Rtr> BR_Rtr> Ping statistics for 200.10.1.30: HQ_Rtr(config-std-nacl)#permit 200.10.1.109 HQ_Rtr(config-std-nacl)#permit 200.10.1.110 Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), PCA SSH into BR Rtr HQ Rtr(config-std-nacl)#permit 200.10.1.108 Approximate round trip times in milli-seconds: IQ_Rtr(config-std-nacl)#deny any Minimum = 6ms, Maximum = 16ms, Average = 12ms Web Server SSH into HQ_Rtr Cisco Packet Tracer PC Command Line 1.0 isco Packet Tracer SERVER Command Line 1.0 C.>ssh -I SSHadmin2 200.10.1.33 HQ Rtr(config-std-nacl)#show acc Cisco Packet Tracer SERVER Command Line 1.0 C:\>ssh -I SSHadmin 200.10.1.65 % Invalid input detected at '^' marker. C:\>ping 200.10.1.30 ord: 55Hadmir HQ Rtr# Pinging 200.10.1.30 with 32 bytes of data: Unauthorized access is strictly prohibited %SYS-5-CONFIG_I: Configured from console by console Unauthorized access is strictly prohibited Reply from 200.10.1.30: bytes=32 time<1ms TTL=127 BR Rtr> HQ_Rtr#show acc Reply from 200.10.1.30: bytes=32 time=1ms TTL=127 HQ Rtr> HQ Rtr#show access-lists Reply from 200.10.1.30: bytes=32 time<1ms TTL=127 Reply from 200.10.1.30: bytes=32 time<1ms TTL=127 Standard IP access list File Server Restrictions 10 permit host 200.10.1.93 20 permit host 200.10.1.94 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 30 permit host 200.10.1.61 Approximate round trip times in milli-seconds 40 permit host 200.10.1.62 Minimum = 0ms. Maximum = 1ms. Average = 0ms 50 permit host 200.10.1.109 60 permit host 200.10.1.110 70 permit host 200.10.1.108 Cisco Packet Tracer PC Command Line 1.0 80 deny any C:\>ping 200.10.1.30

Pinging 200 10 1 30 with 32 bytes of data:

Ping statistics for 200.10.1.30:

Reply from 200.10.1.97: Destination host unreachable

Reply from 200.10.1.97: Destination host unreachable.

Reply from 200.10.1.97: Destination host unreachable.

Reply from 200.10.1.97: Destination host unreachable

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

HO Rinifer

HQ_Rtr(config)#interfa

HQ_Rtr(config-if)#

HQ_Rtr#copy ru
HQ_Rtr#copy running-config sta
HQ_Rtr#copy running-config startup-config
Destination filename [startup-config]?

гокт

ling configuration

Rtr(config)#interface Gig0/1

HQ_Rtr(config-if)#ip access-g

Enter configuration commands, one per line. End with CNTL/Z.

%SYS-5-CONFIG_I: Configured from console by console

roup File Server Restrictions out

18

BR_SW2

Switch>enable

Switch#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname BR_SW2

BR_SW2(config)#interface vlan 1

BR_SW2(config-if)#ip address 200.10.1.82 255.255.255.240

BR_SW2(config-if)#no shutdown

BR_SW2(config-if)#

%LINK-5-CHANGED: Interface Vlan1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up

BR_SW2(config-if)#exit

BR_SW2(config)#ip default-gateway 200.10.1.81

BR_SW2(config)#^Z

BR_SW2#

%SYS-5-CONFIG_I: Configured from console by console

BR_SW2#copy running-config startup-config

Destination filename [startup-config]?

Building configuration...

[OK]

BR_SW2#

BR_SW3

Switch>en

Switch>enable

Switch#conf t

Switch#conf terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname BR_SW3

BR_SW3(config)#interfa

BR_SW3(config)#interface vlan 1

BR_SW3(config-if)#ip address 200.10.1.98 255.255.255.240

BR_SW3(config-if)#no shutdown

BR_SW3(config-if)#

%LINK-5-CHANGED: Interface Vlan1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1

, changed state to up

BR_SW3(config-if)#exit

BR_SW3(config)#ip default-gateway 200.10.1.97

٨

% Invalid input detected at '^' marker.

BR_SW3(config)#^Z

BR_SW3#

%SYS-5-CONFIG_I: Configured from console by console

BR_SW3#copy r

BR_SW3#copy running-config star

BR_SW3#copy running-config startup-config

Destination filename [startup-config]?

Building configuration...
[OK]

BR_SW3#

