

Time Series Analysis and Forecasting

MGO962

Lab 2: Data visualization in Python

General Structure

The general structure of the code that is used to plot figures is as follows:

```
import matplotlib.pyplot as plt
# Plot
f, ax = plt.subplots(1,1)
# Legend
plt.title('plot')
plt.xlabel('day')
```

We note that the plt.subplots() command enables to specify the figure size.

Basic Plots

Basic Plot Parameters

Command	Description	Use case
hue	Color of a line / point / border	'red'
fill	Color of an area	'red'
size	Size of a line / point	4
linetype	Shape of a line	'dashed'
alpha	Transparency, between 0 and 1	0.3

Additional Plot Elements

Plot Legend

Element Command	
Title / subtitle of the plot	<pre>ax.set_title('text', loc, pad)</pre>
	<pre>plt.suptitle('text', x, y, size, ha)</pre>
Title of the x / y axis	<pre>ax.set_xlabel('text') / ax.set_ylabel('text')</pre>
Title of the size / color	<pre>via ax.get_legend_handles_labels()</pre>
Caption of the plot	<pre>ax.text('text', x, y, fontsize)</pre>

Plot Legend

Plot Legend Position

Plot Legend Position

```
import matplotlib.pyplot as plt
f, ax = plt.subplots(1,1)
l1 = plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0)
l2 = plt.legend(bbox_to_anchor=(1.04,0), loc="lower left", borderaxespad=
13 = plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxesp
l4 = plt.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left",
                mode="expand", borderaxespad=0, ncol=3)
```

```
l6 = plt.legend(bbox_to_anchor=(0.4,0.8), loc="upper right")
```

Australian Beer Production Dataset

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("data/ausbeer.csv")
print(df.head())
```

##		Time	Production
##	0	1956-01-01	284
##	1	1956-04-01	213
##	2	1956-07-01	227
##	3	1956-10-01	308
##	4	1957-01-01	262

Australian Beer Production Plot

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("data/ausbeer.csv")
df.plot()
plt.show()
```

Australian Beer Production Plot

Australian Beer Production Plot > 1992

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/ausbeer.csv")

df.plot()
plt.show()
```

Australian Beer Production Plot > 1992

Electricity Production Dataset

##			Demand	Temperature	Date	Holiday
##	Time					
##	2011-12-31	13:00:00+00:00	4382.825174	21.40	2012-01-01	True
##	2011-12-31	13:30:00+00:00	4263.365526	21.05	2012-01-01	True
##	2011-12-31	14:00:00+00:00	4048.966046	20.70	2012-01-01	True
##	2011-12-31	14:30:00+00:00	3877.563330	20.55	2012-01-01	True
##	2011-12-31	15:00:00+00:00	4036.229746	20.40	2012-01-01	True

Electricity Production Plot

Electricity Production Plot

Australian Tourism Dataset

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("data/tourism.csv").drop(columns=["Unnamed: 0"])
print(df.head())
```

##	Quarter	Region	State	Purpose	Trips
## 0	1998-01-01	Adelaide	South Australia	Business	135.077690
## 1	1998-04-01	Adelaide	South Australia	Business	109.987316
## 2	1998-07-01	Adelaide	South Australia	Business	166.034687
## 3	1998-10-01	Adelaide	South Australia	Business	127.160464
## 4	1999-01-01	Adelaide	South Australia	Business	137.448533

Australian Tourism Total Trips

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/tourism.csv").drop(columns=["Unnamed: 0"])

df = df.groupby("Quarter")

df = df['Trips'].agg(sum)

df.plot(label='Total')
```

Australian Tourism Total Trips

Australian Tourism Trips by Purpose

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/tourism.csv").drop(columns=["Unnamed: 0"])
purposes = df["Purpose"].unique()

for purpose in purposes:
    dfp = df.query('Purpose == "' + purpose + '"')
    dfp = dfp.groupby("Quarter")
    dfp = dfp['Trips'].agg(sum)
    dfp.plot(label=purpose)
```

Australian Tourism Trips by Purpose

Australian Tourism Trips by State

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/tourism.csv").drop(columns=["Unnamed: 0"])
states = df["State"].unique()

for state in states:
    dfp = df.query('State == "' + state + '"')
    dfp = dfp.groupby("Quarter")
    dfp = dfp['Trips'].agg(sum)
    dfp.plot(label=state)
```

Australian Tourism Trips by State

Ansett Airlines Total Trips

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/ansettDate.csv")

dft = df.groupby("Week")

dft = dft['Passengers'].agg(sum)

dft.plot()
```

Ansett Airlines Total Trips

Ansett Airlines Trips by Airport

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/ansettDate.csv")
airports = df["Airports"].unique()

for airport in airports:
    dfs = df.query('Airports == "' + airport + '"')
    dfs = dfs.groupby("Week")
    dfs = dfs['Passengers'].agg(sum)
    dfs.plot(label=airport)
```

Ansett Airlines Trips by Airport

Us Employment Dataset

##		Series_ID	Title	Employed
##	Month			
##	1939-01-01	CEU0500000001	Total Private	25338.0
##	1939-02-01	CEU0500000001	Total Private	25447.0
##	1939-03-01	CEU0500000001	Total Private	25833.0
##	1939-04-01	CEU0500000001	Total Private	25801.0
##	1939-05-01	CEU0500000001	Total Private	26113.0

Us Employment Dataset Retail Plot

```
import pandas as pd
import matplotlib.pyplot as plt
# load the data
df = pd.read_csv("data/usemployment.csv",
                 header=0, parse_dates=True, index_col=0)
dfs = df.guery('Title == "Retail Trade"')
dfs = dfs.loc['1980-01-01':'2020-01-01']
dfs.plot()
plt.grid()
plt.show()
```

Us Employment Dataset Retail Plot

Australian Production Dataset

##	ŧ	Beer	Tobacco	Bricks	Cement	Electricity	Gas	
##	Quarter							
##	1956 Q1	284	5225.0	189.0	465	3923	5	
##	1956 Q2	213	5178.0	204.0	532	4436	6	
##	1956 Q3	227	5297.0	208.0	561	4806	7	
##	1956 Q4	308	5681.0	197.0	570	4418	6	
##	1957 Q1	262	5577.0	187.0	529	4339	5	

Australian Bricks Production Plot

```
import pandas as pd
import matplotlib.pyplot as plt
# load the data
df = pd.read_csv("data/aus_production.csv",
                 header=0, parse_dates=['Quarter'], index_col=0)
dfs = df.loc['1956-01-01':'2005-01-01']
# Total
plt.plot('Bricks', data=df)
plt.grid()
plt.show()
```

Australian Bricks Production Plot

Australian Arrivals Dataset

```
import pandas as pd
df = pd.read_csv("data/arrivals.csv", parse_dates=True)
df.head()
```

```
index
##
                   key
                        value
## 0
     1981-01-01
                        14.763
                 Japan
## 1
     1981-04-01
                 Japan 9.321
     1981-07-01
                        10.166
## 2
                 Japan
     1981-10-01
## 3
                 Japan
                        19.509
     1982-01-01
## 4
                 Japan
                        17.117
```

Australian Arrivals Total Plot

```
import pandas as pd
import matplotlib.pyplot as plt
# load the data
df = pd.read_csv("data/arrivals.csv", parse_dates=True)
# Total
dft = df.groupby("index")
dft = dft['value'].agg(sum)
dft.plot()
plt.grid()
plt.show()
```

Australian Arrivals Total Plot

Australian Arrivals Plot by State

```
import pandas as pd
import matplotlib.pyplot as plt
# load the data
df = pd.read_csv("data/arrivals.csv", parse_dates=True)
# States
states = df["key"].unique()
for state in states:
    dfs = df.query('key == "' + state + '"')
    dfs = dfs.groupby("index")
    dfs = dfs['value'].agg(sum)
    dfs.plot(label=state)
plt.legend()
plt.grid()
plt.show()
```

Australian Arrivals Plot by State

