Networks and Distributed Systems

Lecture 3 – Physical layer

Outline

- Perspectives on Connecting nodes
- Encoding
- Framing
- Error Detection
- Reliable Transmission
- Ethernet and Multiple Access Networks
- Wireless Networks

Perspectives on Connecting

An end-user's view of the Internet

Link Capacity and Shannon-Hartley Theorem

- Gives the upper bound to the capacity of a link in terms of bits per second (bps) as a function of signal-to-noise ratio of the link measured in decibels (dB).
- $C = Blog_2(1+S/N)$
 - Where B = 3300 300 = 3000Hz, S is the signal power, N the average noise.
 - The signal to noise ratio (S/N) is measured in decibels is related to $dB = 10 \times log_{10}(S/N)$. If there is 30dB of noise then S/N = 1000.
 - Now C = $3000 \times \log_2(1001) = 30$ kbps.
 - How can we get 56kbps?

- All practical links rely on some sort of electromagnetic radiation propagating through a medium or, in some cases, through free space
- One way to characterize links, then, is by the medium they use
 - Typically copper wire in some form (as in Digital Subscriber Line (DSL) and coaxial cable),
 - Optical fiber (as in both commercial fiber-to-the home services and many long-distance links in the Internet's backbone), or
 - Air/free space (for wireless links)

- Another important link characteristic is the frequency
 - Measured in hertz, with which the electromagnetic waves oscillate
- Distance between the adjacent pair of maxima or minima of a wave measured in meters is called wavelength
 - Speed of light divided by frequency gives the wavelength.
 - Frequency on a copper cable range from 300Hz to 3300Hz;
 Wavelength for 300Hz wave through copper is speed of light on a copper / frequency
 - \bullet 2/3 x 3 x 10⁸ /300 = 667 x 10³ meters.
- Placing binary data on a signal is called encoding.
- Modulation involves modifying the signals in terms of their frequency, amplitude, and phase.

Electromagnetic spectrum

Service	Bandwidth (typical)
Dial-up	28–56 kbps
ISDN	64–128 kbps
DSL	128 kbps-100 Mbps
CATV (cable TV)	1–40 Mbps
FTTH (fibre to the home)	50 Mbps-1 Gbps

Common services available to connect your home

Signals travel between signaling components; bits flow between adaptors

NRZ encoding of a bit stream

Problem with NRZ

- Baseline wander
 - The receiver keeps an average of the signals it has seen so far
 - Uses the average to distinguish between low and high signal
 - When a signal is significantly low than the average, it is 0, else it is 1
 - Too many consecutive 0's and 1's cause this average to change, making it difficult to detect

Problem with NRZ

- Clock recovery
 - Frequent transition from high to low or vice versa are necessary to enable clock recovery
 - Both the sending and decoding process is driven by a clock
 - Every clock cycle, the sender transmits a bit and the receiver recovers a bit
 - The sender and receiver have to be precisely synchronized

NRZI

- Non Return to Zero Inverted
- Sender makes a transition from the current signal to encode 1 and stay at the current signal to encode 0
- Solves for consecutive 1's

- Manchester encoding
 - Merging the clock with signal by transmitting
 Ex-OR of the NRZ encoded data and the clock
 - Clock is an internal signal that alternates from low to high, a low/high pair is considered as one clock cycle
 - In Manchester encoding
 - 0: low → high transition
 - 1: high → low transition

- Problem with Manchester encoding
 - Doubles the rate at which the signal transitions are made on the link
 - Which means the receiver has half of the time to detect each pulse of the signal
 - The rate at which the signal changes is called the link's baud rate
 - In Manchester the bit rate is half the baud rate

Different encoding strategies

4B/5B encoding

- Insert extra bits into bit stream so as to break up the long sequence of 0's and 1's
- Every 4-bits of actual data are encoded in a 5-bit code that is transmitted to the receiver
- 5-bit codes are selected in such a way that each one has no more than one leading 0(zero) and no more than two trailing 0's.
- No pair of 5-bit codes results in more than three consecutive 0's

4B/5B encoding

 $0000 \rightarrow 11110$

 $0001 \rightarrow 01001$

 $0010 \rightarrow 10100$

. .

. .

 $1111 \rightarrow 11101$

16 left

11111 – when the line is idle

00000 - when the line is dead

00100 - to mean halt

13 left: 7 invalid, 6 for various control signals

- We are focusing on packet-switched networks, which means that blocks of data (called *frames* at this level), not bit streams, are exchanged between nodes.
- It is the network adaptor that enables the nodes to exchange frames.

Bits flow between adaptors, frames between hosts

- When node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the node's memory. This results in a sequence of bits being sent over the link.
- The adaptor on node B then collects together the sequence of bits arriving on the link and deposits the corresponding frame in B's memory.
- Recognizing exactly what set of bits constitute a frame—that is, determining where the frame begins and ends—is the central challenge faced by the adaptor

- Byte-oriented Protocols
 - To view each frame as a collection of bytes (characters) rather than bits
 - BISYNC (Binary Synchronous Communication) Protocol
 - Developed by IBM (late 1960)
 - DDCMP (Digital Data Communication Protocol)
 - Used in DECNet

- BISYNC sentinel approach
 - Frames transmitted beginning with leftmost field
 - Beginning of a frame is denoted by sending a special SYN (synchronize) character
 - Data portion of the frame is contained between special sentinel character STX (start of text) and ETX (end of text)
 - SOH : Start of Header
 - DLE : Data Link Escape
 - CRC: Cyclic Redundancy Check

BISYNC Frame Format

- Recent PPP which is commonly run over Internet links uses sentinel approach
 - Special start of text character denoted as Flag
 - 0 1 1 1 1 1 1 0
 - Address, control : default numbers
 - Protocol for demux : IP / IPX
 - Payload : negotiated (1500 bytes)
 - Checksum: for error detection

PPP Frame Format

- Byte-counting approach
 - DDCMP
 - count: how many bytes are contained in the frame body
 - If count is corrupted
 - Framing error

DDCMP Frame Format

- Bit-oriented Protocol
 - HDLC: High Level Data Link Control
 - Beginning and Ending Sequences

01111110

HDLC Frame Format

HDLC Protocol

- On the sending side, any time five consecutive 1's have been transmitted from the body of the message (i.e. excluding when the sender is trying to send the distinguished 01111110 sequence)
 - The sender inserts 0 before transmitting the next bit

- HDLC Protocol
 - On the receiving side
 - 5 consecutive 1's
 - Next bit 0 : Stuffed, so discard it
 - 1: Either End of the frame marker
 - Or Error has been introduced in the bitstream

Look at the next bit

If 0 (01111110) \rightarrow End of the frame marker

If 1 (011111111) → Error, discard the whole frame

The receiver needs to wait for next 01111110 before it can start

receiving again

- Bit errors are introduced into frames
 - Because of electrical interference and thermal noises
- Detecting Error
- Correction Error
- Two approaches when the recipient detects an error
 - Notify the sender that the message was corrupted, so the sender can send again.
 - If the error is rare, then the retransmitted message will be error-free
 - Using some error correct detection and correction algorithm, the receiver reconstructs the message

- Common technique for detecting transmission error
 - CRC (Cyclic Redundancy Check)
 - Used in HDLC, DDCMP, CSMA/CD, Token Ring
 - Other approaches
 - Two Dimensional Parity (BISYNC)
 - Checksum (IP)

- Basic Idea of Error Detection
 - To add redundant information to a frame that can be used to determine if errors have been introduced
 - Imagine (Extreme Case)
 - Transmitting two complete copies of data
 - Identical → No error
 - Differ → Error
 - Poor Scheme ???
 - n bit message, n bit redundant information
 - Error can go undetected
 - In general, we can provide strong error detection technique
 - k redundant bits, n bits message, k << n</p>
 - In Ethernet, a frame carrying up to 12,000 bits of data requires only 32bit CRC

- Extra bits are redundant
 - They add no new information to the message
 - Derived from the original message using some algorithm
 - Both the sender and receiver know the algorithm

Sen	der	Rece	eiver
m	r	m	r

Receiver computes *r* using *m* If they match, no error

Two-dimensional parity

- Two-dimensional parity is exactly what the name suggests
- It is based on "simple" (one-dimensional) parity, which usually involves adding one extra bit to a 7-bit code to balance the number of 1s in the byte. For example,
 - Odd parity sets the eighth bit to 1 if needed to give an odd number of 1s in the byte, and
 - Even parity sets the eighth bit to 1 if needed to give an even number of 1s in the byte

Two-dimensional parity

- Two-dimensional parity does a similar calculation for each bit position across each of the bytes contained in the frame
- This results in an extra parity byte for the entire frame, in addition to a parity bit for each byte
- Two-dimensional parity catches all 1-, 2-, and 3bit errors and most 4-bit errors

Two-dimensional parity

Two Dimensional Parity

- Not used at the link level
- Add up all the words that are transmitted and then transmit the result of that sum
 - The result is called the checksum
- The receiver performs the same calculation on the received data and compares the result with the received checksum
- If any transmitted data, including the checksum itself, is corrupted, then the results will not match, so the receiver knows that an error occurred

- Consider the data being checksummed as a sequence of 16-bit integers.
- Add them together using 16-bit ones complement arithmetic (explained next slide) and then take the ones complement of the result.
- That 16-bit number is the checksum

- In ones complement arithmetic, a negative integer -x is represented as the complement of x;
 - Each bit of x is inverted.
- When adding numbers in ones complement arithmetic, a carryout from the most significant bit needs to be added to the result.

- Consider, for example, the addition of -5 and -3 in ones complement arithmetic on 4-bit integers
 - +5 is 0101, so -5 is 1010; +3 is 0011, so -3 is 1100
- If we add 1010 and 1100 ignoring the carry, we get 0110
- In ones complement arithmetic, the fact that this operation caused a carry from the most significant bit causes us to increment the result, giving 0111, which is the ones complement representation of -8 (obtained by inverting the bits in 1000), as we would expect

