Rotation

Drawing Mathematics with Desmos | Justin Skycak

Setup. Navigate to https://www.desmos.com/calculator. Be sure to sign in so that you can save your graph.

Demonstration - Rotation. Observe the graph as you type each of the following inputs. In general, a graph can be rotated by an angle of θ about the origin by replacing x and y with the following expressions:

$$x \to x \cos \theta + y \sin \theta$$

 $y \to y \cos \theta - x \sin \theta$

Note that $\, heta\,$ should be given in radians, and one can convert degrees to radians by multiplying by the conversion factor $\frac{\pi}{180}$.

$$y\cos\frac{\pi}{6} - x\sin\frac{\pi}{6} = \left(x\cos\frac{\pi}{6} + y\sin\frac{\pi}{6}\right)^2$$

$$\left(\frac{x\cos\frac{\pi}{4} + y\sin\frac{\pi}{4}}{4}\right)^2 + \left(\frac{y\cos\frac{\pi}{4} - x\sin\frac{\pi}{4}}{2}\right)^2 = 1$$

Exercise. Reproduce the graph below by drawing an absolute value function and then rotating it a fifth of a circle counterclockwise.

Exercise. Continue drawing rotated absolute value functions to form a star.

Exercise. Draw a circle which passes through the sharp points of the star.

Exercise. Add a background layer by drawing rotated parabolas.

Exercise. Finally, add non-Euclidean ellipses to the background.

Challenge. Create your own emblem.