Problem 1: (7.1.1) Let G be such graph. We know that each face is bounded by exactly 3 edges. Consider a subset of the dual graph of G, where an edge exists between two vertices in the dual graph G' if the edge between their corresponding faces in G have different labels.

With this construction, a vertex in G' can only have degree 0 (the face is bounded by 3 vertices of different labels), 2 (there are two vertices with one label and one vertex with another), or 3 (all three vertices have different labels).

By, hand shake lemma, there can only be an even number of vertices in a graph with odd degree. So, there must be an even number of vertices of degree 3. Thus, there are an even number of faces with three labels.

Problem 2: (7.2.1)

(a) We can partition \mathcal{N} into two sets \mathcal{N}_1 and \mathcal{N}_2 . We define

$$\mathcal{N}_1 = \{ N \in \mathcal{N} \text{ s.t. } M \subseteq N \text{ for some } M \in \mathcal{N} \}$$

$$\mathcal{N}_2 = \mathcal{N} \setminus \mathcal{N}_1$$

Note that $|\mathcal{N}| = |\mathcal{N}_1| + |\mathcal{N}_2|$.

We claim that \mathcal{N}_1 and \mathcal{N}_2 are both independent systems of X.

 \mathcal{N}_2 is an independent system by construction.

Let $A, B \in \mathcal{N}_1$ where $A \neq B$. We want to show that $A \nsubseteq B$.

Assume that $A \subseteq B$. We know there exists some $M \in \mathcal{N}$ such that $M \subseteq A$. Note that $M \neq B$ since $A \neq B$. So, M, A, B are different subsets but $M \subseteq A \subseteq B$. This contradicts the fact that \mathcal{N} is semi-independent.

Hence, $A \not\subseteq B$.

Since \mathcal{N}_1 and \mathcal{N}_2 are both independent systems, we can use Sperner's lemma to bound both of them. So, $|\mathcal{N}_1| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ and $|\mathcal{N}_2| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Thus, $\mathcal{N} \leq 2\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

(b) If n is odd, $\binom{n}{\frac{n-1}{2}} = \binom{n}{\frac{n+1}{2}}$?

Problem 3: (7.2.6)

(a) Let $\mathcal{M} = \{I \subseteq \{1, ..., n\} \mid -1 < \sum_{i \in I} a_i - \sum_{j \notin I} a_j < 1\}$. We want to show that \mathcal{M} is an independent system. If we do, it follows the conclusion follows from Sperner's Lemma.

We can assume that all a_i are non negative (since we can just flip the corresponding ϵ_i to correct the sign).

Let $A, B \in \mathcal{M}$ where $A \neq B$ and $A \subseteq B$.

Let $C = B \setminus A$. So,

$$S_A = \sum_{i \in A} a_i - \sum_{j \notin A} a_j$$
$$S_B = \sum_{i \in A} a_i + \sum_{k \in C} a_k - \sum_{l \notin B} a_l$$

Notice that

$$\sum_{j \notin A} a_j = \sum_{k \in C} a_k + \sum_{l \notin B} a_l$$

So,

$$S_A - S_B = -2\sum_{k \in C} a_k$$

We know that $C \neq \emptyset$ and each $|a_k| > 1$. So, $\sum_{k \in C} a_k \geq 2 |C| \geq 2$. Hence, both $-1 < S_A < 1$ and $-1 < S_B < 1$ cannot both happen. Thus, $A \not\subset B$ and \mathcal{M} is an independent system.

- (b) Let $a_1 = 1$, $a_2 = 1$, $a_3 = 1$, $a_4 = 1$ (a sequence of only 1s). Choosing two out of 4 to be positive makes $\binom{4}{2} = \binom{4}{\lfloor \frac{4}{2} \rfloor}$
- **Problem 4:** (7.2.7) By definition, n must only have prime factors. So, $n = p_1 p_2 p_3 ... p_k$ We know that $k \leq \log_2(n)$. So, our system \mathcal{M} would be subsets of $\{p_1, p_2, ..., p_k\}$. Using Sperner's lemma, $|\mathcal{M}| \leq {k \choose \lfloor \frac{\log_2(n)}{2} \rfloor}$

Problem 5: (7.3.5bc)

(b) Case 1: $x, y \le 1$. Then $f(\lambda x + (1 - \lambda)y) = 0 \le \lambda f(x) + (1 - \lambda)f(y) = 0$ Case 2: $x \le 1, y > 1$. if $\lambda x + (1 - \lambda)y \le 1$ then $f(\lambda x + (1 - \lambda)y) = 0 \le (1 - \lambda)\frac{y(y-1)}{2}$

Otherwise, we need to check that $\frac{(\lambda x + (1-\lambda)y)(\lambda x + (1-\lambda)y - 1)}{2} \le (1-\lambda)\frac{y(y-1)}{2}$.

With some algebraic manipulation, we can conclude this.

Case 3: x > 1, y > 1. The second derivative of $\frac{x(x-1)}{2} = 1 > 0$ for all x > 1. Thus, f(x) is convex.

(c) Note that $m = |E(G)| = \frac{1}{2} \sum_{v \in V} deg(v)$. So $2m = \sum_{v \in V} deg(v)$. From part a and b,

$$f(\frac{1}{n}\sum_{v\in V}deg(v)) \le \frac{1}{n}\sum_{v\in V}f(deg(v))$$

So,

$$nf(\frac{2m}{n}) \le \sum_{v \in V} f(deg(v))$$

From before, we know that for deg(v) > 1, $f(deg(v)) = {deg(v) \choose 2}$. Since G cannot contain $K_{2,2}$,

$$\sum_{v \in V} \binom{deg(v)}{2} \leq \binom{n}{2}$$

Hence, $nf(\frac{2m}{n}) \leq {n \choose 2}$.

Expanding this out, we get

$$n \cdot \frac{\frac{2m}{n}(\frac{2m}{n} - 1)}{2} \le \frac{n(n-1)}{2}$$

Simplifying, we eventually get $4m^2 - 2mn \le n^3 - n^2$.

Solving for m, we get that $m \leq \frac{1}{2}(n^{\frac{3}{2}} + n)$

Problem 6: (7.3.6) Let $f(x) = \frac{x(x-1)(x-2)}{6}$. On x > 2 if we take the second derivative, we can see that is clearly postive (1) for all x > 2. Hence, f is convex.

Using a similar argument,

$$nf(\frac{2m}{n}) \le \sum_{v \in V} \binom{deg(v)}{3} \le \binom{n}{3}$$

Expanding this out we get

$$2m^3 - 6mn^2 + 6mn^2 \le n^3(n-1)(n-2)$$

Taking the cubed root, we get $m \leq O(n^{\frac{5}{3}})$ as desired.