Secure Electronic Transaction

(SET)

Credit Cards on the Internet

- Problem: communicate credit card and purchasing data securely to gain consumer trust
 - Authentication of buyer and merchant
 - Confidential transmissions
- Systems vary by
 - Type of public-key encryption
 - Type of symmetric encryption
 - Message digest algorithm
 - Number of parties having private keys
 - Number of parties having certificates

Credit Card Protocols

- SSL 1 or 2 parties have private keys
- TLS (Transport Layer Security)
 - IETF version of SSL
- *i* KP (IBM)
- SEPP (Secure Encryption Payment Protocol)
 - MasterCard, IBM, Netscape
- STT (Secure Transaction Technology)
 - VISA, Microsoft
- SET (Secure Electronic Transactions)
 - MasterCard, VISA all parties have certificates

OBSOLETE

VERY SLOW ACCEPTANCE

Secure Electronic Transaction (SET)

- Developed by Visa and MasterCard
- Designed to protect credit card transactions
- Confidentiality: all messages encrypted
- Trust: all parties must have digital certificates
- Privacy: information made available only when and where necessary

Participants in the SET System

SET Business Requirements

- Provide confidentiality of payment and ordering information
- Ensure the integrity of all transmitted data
- Provide authentication that a cardholder is a legitimate user of a credit card account
- Provide authentication that a merchant can accept credit card transactions through its relationship with a financial institution

SET Transactions

SET Transactions

- The customer opens an account with a card issuer.
 - MasterCard, Visa, etc.
- The customer receives a X.509 V3 certificate signed by a bank.
 - X.509 V3
- A merchant who accepts a certain brand of card must possess two X.509 V3 certificates.
 - One for signing & one for key exchange
- The customer places an order for a product or service with a merchant.
- The merchant sends a copy of its certificate for verification.

SET Transaction:

- Customer Opens An Account: Customer obtains a credit card account with a bank that supports electronic payment and SET.
- Customer Receives A Certificate: After suitable verification of identity, the customer receives an X.509v3 digital certificate signed by the bank.
 - It verifies the customer's RSA public key and its expiration date.
- Merchants Have Own Certificates: A merchant who accepts a bank card must be in possession of two certificates for the two public keys owned by the merchant:
 - One for signing messages
 - One for key exchange
 - Merchant has a copy of payment gateway's public-key certificate.
- Customer Places An Order: Customer send a list of items to be purchases to the merchant, who returns an order form containing the list of items to be purchased to the merchant.
 - Merchant returns an order form containing the list of items, their price, a total price, and an order number.
- Merchant is Verified: In addition to the order form, the merchant sends a
 copy of the certificate so that the customer can verify that he or she is
 dealing with a valid store.

SET Transactions

- Order and Payment are Sent: Customer sends both order and payment information to merchant along with customer's certificate.
 - The order confirms the purchase of items in the order form.
 - The payment contains credit card details.
 - The payment information is encrypted so that it cannot be read by the merchant.
 - The customer's certificate enables the merchant to verify the customer.
- Merchant Requests Payment Authorization: Merchant sends the payment information to the payment gateway.
 - This requests authorization that the customer's available credit is sufficient for this purchase.
- Merchant Confirms Order: Merchant sends a confirmation of the order to the customer.
- Merchant Provides Goods or Service: Merchant ships the goods or provides the service to the customer.
- Merchant Requests Payment: Request is sent to payment gateway to handle payment processing

Key Technologies of SET

- · Confidentiality of information: DES
- Integrity of data: RSA digital signatures with SHA-1 hash codes
- Cardholder account authentication: X.509v3 digital certificates with RSA signatures
- Merchant authentication: X.509v3 digital certificates with RSA signatures
- Privacy: separation of order and payment information using dual signatures

Dual Signatures

 Links two messages securely but allows only one party to read each.

Dual Signature for SET

- Concept: Link Two Messages Intended for Two Different Receivers:
 - Order Information (OI): Customer to Merchant
 - Payment Information (PI): Customer to Bank
- Goal: Limit Information to A "Need-to-Know" Basis:
 - Merchant does not need credit card number.
 - Bank does not need details of customer order.
 - Afford the customer extra protection in terms of privacy by keeping these items separate.
- This link is needed to prove that payment is intended for this order and not some other one.

Why Dual Signature?

- Suppose that customers send the merchant two messages:
 - The signed order information (OI).
 - The signed payment information (PI).
 - In addition, the merchant passes the payment information (PI) to the bank.
- If the merchant can capture another order information (OI) from this customer, the merchant could claim this order goes with the payment information (PI) rather than the original.

Dual Signature Operation

- The operation for dual signature is as follows:
 - Take the hash (SHA-1) of the payment and order information.
 - These two hash values are concatenated [H(PI) || H(OI)] and then the result is hashed.
 - Customer encrypts the final hash with a private key creating the dual signature.

$$DS = E_{KRC} [H(H(PI) || H(OI))]$$

DS Verification by Merchant

- The merchant has the public key of the customer obtained from the customer's certificate.
- Now, the merchant can compute two values:

```
H(PIMD || H(OI))
D_{KUC}[DS]
```

Should be equal!

DS Verification by Bank

 The bank is in possession of DS, PI, the message digest for OI (OIMD), and the customer's public key, then the bank can compute the following:

```
H(H(PI) || OIMD)
D_{KUC} [DS]
```

What did we accomplish?

- The merchant has received OI and verified the signature.
- The bank has received PI and verified the signature.
- The customer has linked the OI and PI and can prove the linkage.

SET Supported Transactions

- card holder registration
- merchant registration
- purchase request
- payment authorization
- payment capture
- certificate query
- purchase inquiry

- purchase notification
- sale transaction
- authorization reversal
- capture reversal
- credit reversal

Purchase Request

- Browsing, Selecting, and Ordering is Done
- Purchasing Involves 4 Messages:
 - Initiate Request
 - Initiate Response
 - Purchase Request
 - Purchase Response

Purchase Request: Initiate Request

- Basic Requirements:
 - Cardholder Must Have Copy of Certificates for Merchant and Payment Gateway
- Customer Requests the Certificates in the Initiate Request Message to Merchant
 - Brand of Credit Card
 - ID Assigned to this Request/response pair by customer
 - Nonce

Purchase Request: Initiate Response

- · Merchant Generates a Response
 - Signs with Private Signature Key
 - Include Customer Nonce
 - Include Merchant Nonce (Returned in Next Message)
 - Transaction ID for Purchase Transaction
- In Addition ...
 - Merchant's Signature Certificate
 - Payment Gateway's Key Exchange Certificate

Purchase Request: Purchase Request

- Cardholder Verifies Two Certificates Using Their CAs and Creates the OI and PI.
- Message Includes:
 - Purchase-related Information
 - Order-related Information
 - Cardholder Certificate

Purchase Request

 The cardholder generates a one-time symmetric encryption key, KS,

Merchant Verifies Purchase Request

- When the merchant receives the Purchase Request message, it performs the following actions:
 - Verify the cardholder certificates by means of its CA signatures.
 - Verifies the dual signature using the customer's public key signature.

Merchant Verification (cont'd)

- Processes the order and forwards the payment information to the payment gateway for authorization.
- Sends a purchase response to the cardholder.

Purchase Response Message

- Message that Acknowledges the Order and References Corresponding Transaction Number
- Block is
 - Signed by Merchant Using its Private Key
 - Block and Signature Are Sent to Customer Along with Merchant's Signature Certificate
- Upon Reception
 - Verifies Merchant Certificate
 - Verifies Signature on Response Block
 - Takes the Appropriate Action

Payment Process

- The payment process is broken down into two steps:
 - Payment authorization
 - Payment capture

Payment Authorization

- The merchant sends an authorization request message to the payment gateway consisting of the following:
 - Purchase-related information
 - · PI
 - Dual signature calculated over the PI & OI and signed with customer's private key.
 - The OI message digest (OIMD)
 - The digital envelop
 - Authorization-related information
 - Certificates

Payment Authorization (cont'd)

- Authorization-related information
 - An authorization block including:
 - A transaction ID
 - Signed with merchant's private key
 - Encrypted one-time session key
- Certificates
 - Cardholder's signature key certificate
 - · Merchant's signature key certificate
 - · Merchant's key exchange certificate

Payment: Payment Gateway

- Verify All Certificates
- Decrypt Authorization Block Digital Envelope to Obtain Symmetric Key and Decrypt Block
- Verify Merchant Signature on Authorization Block
- Decrypt Payment Block Digital Envelope to Obtain Symmetric Key and Decrypt Block
- Verify Dual Signature on Payment Block
- Verify Received Transaction ID Received from Merchant Matches PI Received from Customer
- Request and Receive Issuer Authorization

Authorization Response

- Authorization Response Message
 - Authorization-related Information
 - Capture Token Information
 - Certificate

SET Overhead

Simple purchase transaction:

- · Four messages between merchant and customer
- Two messages between merchant and payment gateway
- 6 digital signatures
- 9 RSA encryption/decryption cycles
- 4 DES encryption/decryption cycles
- 4 certificate verifications

Scaling:

· Multiple servers need copies of all certificates