Sumário

- 1 Introdução ao Processamento de Consultas
- 2 Otimização de Consultas
- 3 Plano de Execução de Consultas
- 4 Introdução a Transações
- 5 Recuperação de Falhas
- 6 Controle de Concorrência
- 7 Fundamentos de BDs Distribuídos
- 8 SQL Embutida

Etapas do Processamento de Consultas

Otimização Algébrica

- Objetivo do passo de Transformação
 - entrada: árvore da consulta inicial
 - saída: árvore da consulta otimizada (pode manter a mesma árvore)
- Base
 - regras de equivalência algébrica
 - devem ser conhecidas pelo otimizador para que possam ser geradas transformações válidas
 - algoritmo de otimização algébrica
 - indica a ordem de aplicação das regras e de outros processamentos de otimização

1. Cascata de Seleções

$$\mathbf{O}_{c1 \wedge c2 \wedge ... cn} (R) \equiv \mathbf{O}_{c1} (\mathbf{O}_{c2} (... (\mathbf{O}_{cn} (R))))$$

2. Comutatividade de Seleções

$$\mathbf{O}_{c1}(\mathbf{O}_{c2}(\mathsf{R})) \equiv \mathbf{O}_{c2}(\mathbf{O}_{c1}(\mathsf{R}))$$

3. Cascata de Projeções

$$\pi_{\text{listaAtributos1}}$$
 (R) $\equiv \pi_{\text{listaAtributos1}}$ ($\pi_{\text{listaAtributos2}}$ (...($\pi_{\text{listaAtributosN}}$ (R))))

- válido em que situação?

4. Comutatividade de Seleções e Projeções

(a)
$$\pi_{a1, a2, ..., an} (\sigma_c(R)) \equiv \sigma_c(\pi_{a1, a2, ..., an}(R))$$
 ou

(b)
$$\pi_{a1, a2, ..., an}(\sigma_c(R)) \equiv \pi_{a1, a2, ..., an}(\sigma_c(\pi_{a1, a2, ..., an, ap, ..., at}(R)))$$

- válidas em quais situações?

5. Comutatividade de Operações Produtórias ("X")

$$R "X" S \equiv S "X" R$$

- por "X" entenda-se: **X** ou **X** θ ou
- a ordem dos atributos e tuplas do resultado não é relevante

6. Comutatividade de Seleções e Operações Produtórias

(a)
$$\mathbf{O}_{c}(R "X" S) \equiv (\mathbf{O}_{c}(R)) "X" S$$
 ou

(b)
$$\mathbf{O}_{c}$$
 (R "X" S) \equiv (\mathbf{O}_{c1} (R)) "X" (\mathbf{O}_{c2} (S))

(c)
$$\mathbf{O}_{c}(\mathbf{R} \text{ "X" S}) \equiv \mathbf{O}_{c3}((\mathbf{O}_{c1}(\mathbf{R})) \text{ "X" } (\mathbf{O}_{c2}(\mathbf{S})))$$

- válidas em quais situações?

7. Comutatividade de Projeções e Operações Produtórias

(a)
$$\pi_{listaAtributos1}$$
 (R "X" S) \equiv ($\pi_{listaAtributos2}$ (R)) "X" S ou

(b)
$$\pi_{\text{listaAtributos1}}$$
 (R "X" S) $\equiv \pi_{\text{listaAtributos1}}$ (($\pi_{\text{listaAtributos2}}$ (R)) "X" S) ou

(c)
$$\pi_{\text{listaAtributos1}}$$
 (R "X" S) $\equiv (\pi_{\text{listaAtributos2}}(R))$ "X" $(\pi_{\text{listaAtributos3}}(S))$ ou

(d)
$$\pi_{\text{listaAtributos1}}$$
 (R "X" S) $\equiv \pi_{\text{listaAtributos1}}$ (($\pi_{\text{listaAtributos2}}$ (R)) "X"

- válidas em quais situações? $(\pi_{listaAtributos3}(S))$

8. Comutatividade de Operações de Conjunto

$$R \cup S \equiv S \cup R$$
 e
 $R \cap S \equiv S \cap R$

- por quê "—" não é comutativa?

9. Associatividade de Operações Produtórias e de Conjunto ("oX")

$$(R \text{ "oX" } S) \text{ "oX" } T \equiv R \text{ "oX" } (S \text{ "oX" } T)$$

- por "oX" entenda-se: **X** ou **X** θ ou ou ∪ ou ∩
- observação: a operação de conjunto deve ser sempre a mesma em cada ocorrência de "oX"; Já a operação produtória pode ser diferente
 por quê "—" não é associativa?

9. Associatividade de Operações Produtórias e de Conjunto ("oX")

$$(R \text{ "oX" } S) \text{ "oX" } T \equiv R \text{ "oX" } (S \text{ "oX" } T)$$

Observação: predicados de junção devem ser devidamente ajustados na associatividade de operações produtórias

Exemplo: seja θ_1 um predicado sobre atributos de R e S, θ_2 um predicado sobre atributos de S e T, e θ_3 um predicado sobre atributos de R e T. Então:

$$(R "X" _{\theta 1} S) "X" _{\theta 2 \wedge \theta 3} T \equiv R "X" _{\theta 1 \wedge \theta 3} (S "X" _{\theta 2} T)$$

10. Comutatividade de Seleção e Operações de Conjunto ("o")

$$\mathbf{O}_{c}(\mathsf{R} \text{ "o" S}) \equiv (\mathbf{O}_{c}(\mathsf{R})) \text{ "o" } (\mathbf{O}_{c}(\mathsf{S}))$$

- atributos a filtrar devem existir em ambas as relações (renomeações de atributos podem ser realizadas)
- por "o" entenda-se: ∪ ou ∩ ou —
- 11. Comutatividade de Projeção e União

$$\pi_{\text{listaAtributos}}(\mathsf{R} \cup \mathsf{S}) \equiv (\pi_{\text{listaAtributos}}(\mathsf{R})) \cup (\pi_{\text{listaAtributos}}(\mathsf{S}))$$

- atributos a projetar devem existir em ambas as relações (renomeações de atributos podem ser realizadas)
- por quê "—" e "∩" não são comutativas?

12. Fusão de Seleções e Operações Produtórias

(a)
$$\mathbf{O}_{c}(R X S) \equiv R X \theta = \sigma_{c} S$$

(b)
$$\sigma_c(R X S) \equiv R \bowtie_c S$$
 ou

(c)
$$R X \theta = \sigma_c S \equiv R$$

válidas em quais situações?

lembrar que dada una peração ()
qualquer tem-se
i) comutatividade: a () b = b () a
ii) associatividade: (a,0) () (0,0) () (0,0)

- Algoritmo de alto (altíssimo!) nível
 - Tenta gerar a árvore mais otimizada possível
- Exemplo de Consulta (BD Clínica)

```
SELECT p.codp, p.nome, c.data

FROM Pacientes p, Consultas c, Medicos m

WHERE m.especialidade = 'ortopedia'

AND m.codm = c.codm

AND p.codp = c.codp

AND c.hora >= '18:00'

AND c.hora <= '22:00'

AND p.idade > 60 Médicos(codm, nome, ic.
```

Médicos(<u>codm</u>, nome, idade, especialidade) Pacientes(<u>codp</u>, nome, doença, idade) Consultas(<u>codm</u>, <u>codp</u>, <u>data</u>, hora)

- Composto de 6 grandes passos
 - cada passo pode aplicar uma mesma regra várias vezes
- Passo 1
 - aplicar a regra 1
 - desmembrar operações de seleção
 - maior flexibilidade para mover seleções
- Passo 2
 - aplicar as regras 2, 4, 6 e 10 (e regra 1 ao final)
 - objetivo
 - mover seleções para níveis inferiores da árvore o máximo possível (e fundi-las novamente, se possível)

Passo 3

- aplicar regra 9
 - mudar de posição sub-árvores envolvidas em operações produtórias
 - objetivos
 - combinar prioritariamente sub-árvores com menor número de dados
 - » investigar sub-árvores com seleções mais restritivas
 - evitar produtos cartesianos
 - » combinações sem atributos de junção
 - como saber quais as seleções mais restritivas?
 - análise do grau de seletividade de um predicado
 - » estatística geralmente mantida no DD

regra 5

 útil apenas para processadores que executam junções cujo laço externo se aplica à relação da esquerda (deve ser a de menor tamanho)

Grau de Seletividade ($GS_{ai}(R)$)

- Definido pela seguinte razão
 - $GS_{ai}(R) = t_p(R) / |R|$, onde $t_p(R)$ é o número de tuplas que satisfazem o predicado aplicado sobre um atributo ai em uma relação R e |R| é o número de tuplas em R $(G_S \in [0,1])$
- GS_{ai} (R) pequeno (≈ 0) ⇒ seleção mais restritiva
- Um atributo chave a_c possui baixo G_s em predicados de igualdade
 - $-GS_{ac}(R) = 1/|R|$
- <u>Simplificação</u>: mantém-se uma estimativa de distribuição uniforme de valores de atributos
 - $-GS_{ai}(R) = (|R| / V(a_i)) / |R| = 1 / V(a_i)$, onde $V(a_i)$ é o número de valores distintos de a_i

Passo 4

- aplicar a regra 12
 - otimizar operações produtórias

Passo 5

- aplicar as regras 3, 4, 7 e 11
 - desmembrar e mover projeções para níveis inferiores da árvore, tanto quanto possível, definindo novas projeções conforme se faça necessário

Passo 6

- identificar sub-árvores que representem grupos de operações que possam ser executados por um único algoritmo
 - defina-os uma única vez (uma única sub-árvore) na "árvore"

Passo 6 - Exemplo

