Sally and Shalika notation:

- k is a local field, \mathcal{O} its ring of integers, \mathfrak{p} its maximal ideal, $q = \|\mathcal{O}/\mathfrak{p}\|$ is assumed odd.
- Normalize the haar measure dx on (k, +) so that \mathcal{O} has measure 1.
- Define the valuation on k via the equations d(ax) = ||a|| dx for $a \in k$. Let $U = \{x \in k : ||x|| = 1\} = \mathcal{O}^{\times}$ and $U_n = 1 + \mathfrak{p}^n = \{x \in U : ||x 1|| \le q^{-n}\}$
- τ denotes a fixed uniformizer of \mathfrak{p} , ε is a fixed generator for the q-1th roots of 1 in U.

For V a quadratic extension of k, we let $\operatorname{Nm}_{V/k}$ denote the norm map. Since k has odd residual characteristic, V is one of $k(\sqrt{\tau})$, $k(\sqrt{\varepsilon\tau})$, or $k(\sqrt{\varepsilon})$. The former two are ramified, and the latter is unramified. We will use θ to represent one of $\tau, \varepsilon\tau$, or ε .

For $V = V_{\theta} = k(\sqrt{\theta})$, we let $C_{\theta} = \ker \operatorname{Nm}_{V/k} \leq V^{\times}$ and \mathfrak{p}_{θ} the prime ideal in V_{θ} . Set, in the unramified case, for $h \geq 1$:

$$C_{\varepsilon}^{h} = (1 + \mathfrak{p}_{\varepsilon}^{h}) \cap C_{\varepsilon}$$

and in either of the ramified cases, for $h \geq 0$:

$$C_{\theta}^{h} = (1 + \mathfrak{p}_{\theta}^{2h+1}) \cap C_{\theta}.$$

Then, in any case, $\{C_{\theta}^h\}$ constitute a neighborhood base about 1 in C_{θ} . For a character $\psi \in \hat{C}_{\theta}$, write $\operatorname{cond}(\psi)$ for the largest subgroup in this filtration on which ψ is trivial. For each θ , C_{θ} has a unique character of order 2 which we denote by $\psi_o = \psi_{o,\theta}$.

Let G = SL(2, k), A = A(k) the diagonal subgroup (a maximal split torus). This subgroup is isomorphic to k^{\times} . We let A_d denote the image of U_d under this identification.

Let T be any compact cartan in G, which must be naturally isomorphic to some C_{θ} . Let T_d denote the image of C_{θ}^d under such an identification.

For a subset S of G, let $S^G = \{gsg^{-1} : g \in G, s \in S\}$, and let S' the subset of S consisting of regular elements (those with distinct eigenvalues).

For $f \in C_c^{\infty}(G)$, define, for γ noncentral, the orbital integral

$$I_f(\gamma) = \int_{G/G_{\gamma}} f(x\gamma x^{-1}) \,\mathrm{d}\dot{x}$$