Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

ECGI'24

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

Goal: optimize expensive-to-

evaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian process prior

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

x: hyperparameter/configuration

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-to-

evaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian y process prior

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

x: hyperparameter/configuration

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian process prior

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

x: hyperparameter/configuration

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian process prior

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

x: hyperparameter/configuration

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian process prior

Applications:

Hyperparameter tuning Drug/material discovery Experiment design

x: hyperparameter/configuration

Objective: optimize best observed value at time *T*

$$\sup_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

$$t=3$$

$$t=4$$

:

$$t = T$$

Evaluation costs handling

uniform

heterogeneous

Continuous search domain

$$t=3$$

$$t=4$$

:

$$t = T$$

Evaluation costs handling

uniform

heterogeneous

⇒ Optimal policy unknown!

$$t=4$$

:

$$t = T$$

Evaluation costs handling

uniform

heterogeneous

Can we convert it to a solvable problem?

Continuous

Correlated

Correlated

Discrete

Correlated

budget

Bayesian Optimization → Pandora's Box

t = 0

Objective: maximize net utility

t = 1

Objective: maximize net utility

 $c(x_1)$

 $c(x_2)$

Objective: maximize net utility

Objective: maximize net utility

$$t = 3$$

 $c(x_1)$

$$c(x_3)$$

 $c(x_2)$

Objective: maximize net utility

Decision: adaptively evaluate a random number of boxes

max (best observed value – total costs)

$$t = 3$$

 $c(x_1)$

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

Decision: adaptively evaluate a random number of boxes

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

 \mathcal{X} : discrete

T: random stopping time

Naïve Greedy policy

Inspection rule: $\operatorname{argmax}_{x} (\operatorname{EI}_{f}(x; y_{\text{best}}) - c(x))$ **Stopping rule:** $\operatorname{EI}_{f}(x; y_{\text{best}}) \leq c(x), \forall x \in \mathcal{X}$

expected improvement - cost

expected improvement \leq cost

 y_{best} : current best observed value

 $EI_f(x;y) := \mathbb{E}[(f(x) - y)^+]$: expected improvement of f(x) over y

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

t = 0 $y_{\text{best}} = 0$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $EI_f(1; 0) - c(1)$
 $= 200 - 198 = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\text{EI}_f(x; 0) - c(x)$$
$$= 2 - 1 = 1$$

Inspection rule: $\operatorname{argmax}_{x} (\operatorname{EI}_{f}(x; y_{\operatorname{best}}) - c(x))$ **Stopping rule:** $\operatorname{EI}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$ $\operatorname{EI}_{f}(x; y) := \mathbb{E}[(f(x) - y)^{+}]$

t = 1 $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\text{EI}_f(x; 200) - c(x)$$
$$= 0 - 1 = -1 < 0$$

Inspection rule: $\operatorname{argmax}_{x} (\operatorname{EI}_{f}(x; y_{\operatorname{best}}) - c(x))$ **Stopping rule:** $\operatorname{EI}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$ $\operatorname{EI}_{f}(x; y) := \mathbb{E}[(f(x) - y)^{+}]$

$$t = 1$$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

Inspection rule: $\operatorname{argmax}_{x} \left(\operatorname{El}_{f}(x; y_{\operatorname{best}}) - c(x) \right)$ **Stopping rule:** $\operatorname{El}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$

Expected utility: $\mathbb{E}[Greedy] = 200 - 198 = 2$

 $t \approx 100$ $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01\\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$

Inspection rule: $x \in \{2, 3, ..., 1000\}$

Stopping rule: $y_{\text{best}} = 200$

Expected utility: $\mathbb{E}[Optimal] = 200 - 100 * 1 = 100$

Gittins policy

Inspection rule: $\alpha^*(x)$ s.t. $\text{El}_f(x; \alpha^*(x)) = c(x)$ **Stopping rule:** $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$

solution to expected improvement = cost

Gittins index \leq current best

 y_{best} : current best observed value

 $EI_f(x;y) := \mathbb{E}[(f(x) - y)^+]$: expected improvement of f(x) over y

$$t = 0$$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $200-? = 198$

Inspection rule:
$$\alpha^*(x)$$
 s.t. $\text{El}_f(x; \alpha^*(x)) = c(x)$ Stopping rule: $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ $\text{El}_f(x; y) := \mathbb{E}[(f(x) - y)^+]$

$$t = 0$$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $\alpha^*(1) = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\alpha^*(x) = 100$$

Inspection rule: argmax_x $\alpha^*(x)$ s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ **Stopping rule:** $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ $\mathbb{E}I_f(x;y) := \mathbb{E}[(f(x) - y)^+]$

t = 1 $y_{\text{best}} = 200 \text{ or } 0$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

 $\alpha^*(1) = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\alpha^*(x) = 100$$

Inspection rule:
$$\alpha^*(x)$$
 s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ Stopping rule: $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ $\text{EI}_f(x; y) := \mathbb{E}[(f(x) - y)^+]$

 $t \approx 100$ $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

 $\alpha^*(1) = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\alpha^*(x) = 100$$

Inspection rule: $argmax_x \alpha^*(x)$ s.t. $El_f(x; \alpha^*(x)) = c(x)$ Stopping rule: $\alpha^*(x) \le y_{best}$, $\forall x \in \mathcal{X}$ Expected utility: $\mathbb{E}[Gittins] = 200 - 100 * 1 = 100$

Bayesian Optimization → Pandora's Box

Optimal policy: Gittins index [Weitzman'79]

Bayesian Optimization ⇒ Pandora's Box

Bayesian Optimization ⇒ Pandora's Box

Bayesian Optimization ⇒ Pandora's Box

s.t. budget constraint

Expected budget constraint \iff Cost per sample

Optimal policy? \iff Optimal policy: Gittins index

max best observed
s.t. budget constraint

 λ_B^* : budget-dependent scaling factor

Expected budget constraint ⇔ Cost per sample

Pandora's box
scaled costs

max best observed
s.t. budget constraint

 \max (best observed – λ_B^* costs))

 λ_B^* : budget-dependent scaling factor

Reward distribution	Reference
finite support	[Aminian, Manshadi, Niazadeh'24]
general support	our work

Optimal policy: Gittins solution to \leftarrow Optimal policy: Gittins index Pandora's box with scaled costs

Extension to [Aminian, Manshadi, Niazadeh'24]

$$\inf_{\lambda \geq 0} \sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) + \lambda \left(B - \mathbb{E} \sum_{t=1}^{I} c(x_t) \right) \right)$$

 λ_B^* : nonzero infimum of $\mathcal{A}(\lambda)$ exists

 $\mathcal{A}(\lambda)$: convex (possibly non-differentiable) in λ

Optimal policy: Gittins solution to \leftarrow Optimal policy: Gittins index Pandora's box with scaled costs

Figure from [Aminian, Manshadi, Niazadeh'24]

Optimal policy: Gittins solution to ← Optimal policy: Gittins index Pandora's box with scaled costs

Figure from [Aminian, Manshadi, Niazadeh'24]

max best observed
s.t. budget constraint

max (best observed – costs)

Hard budget constraint

 \leftarrow

Cost per sample

 $\operatorname{argmax}_{x} \alpha^{*}(x) \text{ s.t. } \operatorname{EI}_{f}(x; \alpha^{*}(x)) = \lambda_{B}^{*} c(x) \iff \operatorname{argmax}_{x} \alpha^{*}(x) \text{ s.t. } \operatorname{EI}_{f}(x; \alpha^{*}(x)) = c(x)$

How to incorporate Gaussian process? ← Optimal policy: Gittins solution to Pandora's box with scaled costs

popular one-step heuristic: EI policy

ratio of EI and cost: EIPC policy

Our Contributions

- How to translate?
- Is Pandora's Box Gittins index (PBGI) good?

Our Contributions

- Develop PBGI policy for cost-aware Bayesian optimization
- Is Pandora's Box Gittins index (PBGI) good?

Our Contributions

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

Experiment Results: PBGI vs Baselines

Conclusions

• Propose easy-to-compute PBGI policy for Bayesian optimization

Conclusions

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments

costs

Conclusions

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments
- Open door for more-complex BO (partial feedback, multi-fidelity, function network, etc.) via Gittins variants (Pandora's nested boxes, "golf"-style Markovian MAB, optional inspection, etc.)

[Dumitriu, Tetali, Winkler'03]

References

- Xie, Qian, Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin. "Cost-aware Bayesian optimization via the Pandora's Box Gittins index." *arXiv preprint arXiv:2406.20062* (2024).
- Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).
- Weitzman, Martin. *Optimal search for the best alternative*. Vol. 78, no. 8. Department of Energy, 1978.
- Aminian, Mohammad Reza, Vahideh Manshadi, and Rad Niazadeh. "Markovian search with socially aware constraints." *Available at SSRN 4347447* (2023).
- Milgrom, Paul, and Ilya Segal. "Envelope theorems for arbitrary choice sets." *Econometrica* 70, no. 2 (2002): 583-601.
- Astudillo, Raul, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, and Peter Frazier. "Multi-step budgeted bayesian optimization with unknown evaluation costs." *Advances in Neural Information Processing Systems* 34 (2021): 20197-20209.