Finite Elements

Rick Koster Ruben Termaat February 26, 2018

Contents

1	1D-	case 3
	1.1	Boundary value problem 1D
	1.2	Element matrix
	1.3	Element vector
	1.4	Boundary value problem 1D MATLAB routine
		1.4.1 mesh and elmat code
		1.4.2 Element matrix
		1.4.3 Assemble matrix S
		1.4.4 Element vector MATLAB routine
		1.4.5 Computing S and f
	1.5	Main program
	1.6	Solution for u
	1.7	Experiment
2	2D-	case 11
	${2.1}$	Boundary value problem 2D
	2.2	Element matrix and element vector
	2.3	Boundary matrix and boundary vector
	2.4	Cells within an internal element
	2.5	Generating MATLAB code
	2.6	Assignment 8
	2.7	Assignment 9
	2.8	Assignment 10
\mathbf{A}	1D-	case full script
		•
В		case 20
	B.1	Generate mesh
	B.2	Generate element matrix
	B.3	Generate element vector
	B.4	Generate Boundary matrix
	B.5	Generate boundary element vector:
	B.6	Buildmatrices and vectors
	B.7	Compute u and v_x/v_y
	B.8	Full script

Chapter 1

1D-case

On the 1D interval of x = [0, 1], we consider a steady-state convection-diffusion-reaction equation, with homogeneous Neumann boundary conditions. The following equations apply to this domain:

$$\begin{cases}
-D\triangle u + \lambda u = f(x), \\
-D\frac{du}{dx}(0) = 0, \\
-D\frac{du}{dx}(1) = 0
\end{cases}$$
(1.1)

In this report \triangle denotes the laplacian operator. The function f(x) is a given funtion, where D and ∇ are positive real constants. In order to solve this boundary value problem (BVP), first the interval is divided in n-1 elements(n = positive integer). This results in the domain being divided in elements: $e_i = [x_i, x_{i-1}]$ where i = 1, 2, ..., n.

In order to solve this BVP, the solutions for the given equations will first be calculated and then computed using MATLAB codes.

1.1 Boundary value problem 1D

In order to find the Weakform of the given equations (1.1), both sides are multiplied by a test function $\phi(x)$ and then integrate both sides over the domain Ω . In the equations $\phi(x)$ is written as ϕ

$$\int_{\Omega} \phi(-D\triangle u + \lambda u) d\Omega = \int_{\Omega} \phi f(x) d\Omega \tag{1.2}$$

Now by rewriting and then using partial integration the following equation can be found:

$$\int_{\Omega} (\nabla \cdot (-D\phi \cdot \nabla u) + D\nabla\phi \nabla u + \phi \lambda u) d\Omega = \int_{\Omega} \phi f(x) d\Omega$$
 (1.3)

Applying Gauss on the first term on the left side of equation (1.3):

$$\int_{\Omega} \vec{n} \cdot (-D\phi \nabla u) d\tau + \int_{\Omega} (D\nabla \phi \cdot \nabla u + \phi \lambda u) d\Omega = \int_{\Omega} \phi f(x) d\Omega$$
 (1.4)

Using the boundary conditions from equations (1.1) the boundary integral equals to 0 and then the following weak formulation (WF) is found:

(WF):

$$\begin{cases} \text{find u } \epsilon \sum = \{u \text{ smooth}\} \text{ Such that:} \\ \int_{\Omega} (D\nabla \phi \cdot \nabla u + \phi \lambda u) d\Omega = \int_{\Omega} \phi f(x) d\Omega \\ \forall \phi \in \sum \end{cases}$$
 (1.5)

The next step is to substitute the Galerkin equations into the found differential equation, where u is replaced by $\sum_{j=1}^{n} c_i \phi_j$ and $\phi(x) = \phi_i(x)$ with i = [1, ..., n]. Filling this in equation (1.5) the following equation is found:

$$\sum_{i=1}^{n} c_i \int_0^1 (D\nabla \phi_i \cdot \nabla \phi_j + \lambda \phi_i \phi_j) d\Omega = \int_0^1 \phi_i f(x) d\Omega$$
 (1.6)

Which is of the form of $S\vec{c} = \vec{f}$

1.2 Element matrix

Now the found Galerkin equations can be used to compute S_{ij} the element matrix, over a generic line element e_i .

$$S\vec{c} = \sum_{i=1}^{n} c_i \int_0^1 (D\nabla\phi_i \cdot \nabla\phi_j + \lambda\phi_i\phi_j) d\Omega$$
 (1.7)

$$S_{ij} = \sum_{l=1}^{n-1} S_{ij}^{e_k} \tag{1.8}$$

Now to solve S we solve the following equation, over the internal line element.

$$S_{ij}^{e_k} = -D \int_{e_k} \nabla \phi_i \cdot \nabla \phi_j d\Omega + \lambda \int_{e_k} \phi_i \phi_j dx \tag{1.9}$$

1.3 Element vector

Again the found Galerkin Equations (1.6) are used in order to compute the element vector f_i over a generic line-element.

$$f_i^{e_k} = \int_{e_k} \phi_i f dx \tag{1.10}$$

$$f_i^{e_k} = \frac{|x_k - x_{k-1}|}{(1+1+0)!} f(\vec{x}) = \frac{|x_k - x_{k-1}|}{2} \begin{bmatrix} f_{k-1}^{e_n} \\ f_k^{e_n} \end{bmatrix}$$
(1.11)

1.4 Boundary value problem 1D MATLAB routine

1.4.1 mesh and elmat code

The first step in order to solve the BVP is to write a MATLAB routine that generates an equidistant distribution of points over the given interval of [0, 1] (generate a mesh with n-1 elements).

$$\begin{array}{lll} function & [& x &] & = & GenerateMesh (int \;, \; N_elem) \\ \% GenerateMesh & Creates \; a \; mesh \; for \; 1D \; problems \\ \end{array}$$

$$\begin{array}{l} \% \;\; i\,nt \;\; = \; [\,0\;\;,1\,]\,; \\ \% \;\; N_{elem} \;\; = \; 1\,00\,; \\ \\ x \;\; = \;\; l\,i\,n\,s\,p\,a\,c\,e\,\left(\,i\,nt\,\left(\,1\;\;,1\,\right)\;,\,i\,nt\,\left(\,1\;\;,2\,\right)\;,N_{elem}\,\right)\,; \end{array}$$

Using the codes to generate a mesh and the elmat, it is easier to use this 1D problem and adapt to a higher dimensional problem. The next step is to write a code that generates a two dimensional array, called the elmat.

```
function [ elmat ] = GenerateTopology ( N_{elem} ) %GenerateTopology Creates the topology for a 1D problem given mesh 'x'. % global N_{elem} elmat = zeros(N_{elem}, 2); elmat(i,1) = i; elmat(i,2) = i + 1;
```

1.4.2 Element matrix

Now that the base MATLAB codes are made the element matrix and element vector codes can be written. The first step in this process is, is to compute the element matrix S_{elem} .

```
element\_length = abs(x1-x2);
```

slope = 1/element length;

x2 = mesh(j);

for m = 1:2

```
\begin{array}{lll} & \text{for } n = 1{:}2 \\ & \text{if } m == n \\ & & \text{Selem}\,(m,n) = \text{element\_length*}((-1)^{\hat{}}(abs\,(m\!-\!n)){*}D{*}slope^{\hat{}}2 \\ & & + (2){*}lambda/6); \\ & & \text{else} \\ & & \text{Selem}\,(m,n) = \text{element\_length*}((-1)^{\hat{}}(abs\,(m\!-\!n)){*}D{*}slope^{\hat{}}2 \\ & & + (1){*}lambda/6); \end{array}
```

end end

end

end

1.4.3 Assemble matrix S

To generate a n-by-n matrix S, the sum over the connections of the vertices in each element matrix, over all elements has to be calculated. The following code computes this matrix.

All the previous code will generate a large matrix S, from the element matrices S_{elem} over each element.

1.4.4 Element vector MATLAB routine

end

The next step In order to solve the equation $S\vec{c} = F$ is to create a code to generate the element vector. This element vector provides information about note i and node i+1, which are the vertices of element e_i .

```
function [ felem ] = GenerateElementVector( i, elmat, mesh )
%GenerateElementVector Creates element vector f_ek

felem = [0;0];
k1 = elmat(i,1);
k2 = elmat(i,2);

x1 = mesh(k1);
x2 = mesh(k2);
element_length = abs(x1-x2);
felem = (element_length/2*arrayfun(@functionBVP,[x1,x2]))';
end
```

To generate the vector f, the sum over the connections of the vertices in each element matrix, over all elements $i \in \{1, ..., n-1\}$ has to be calculated.

1.4.5 Computing S and f

Now if the previous matlab codes are run the following happens. Firstly a mesh and 1D topology is build, which is needed for the S matrix and f vector. The second step is to calculate the S matrix and f vector through the found equations of section 1.2 and 1.3. The final step is to use the found matrix and vector to solve the equation $Su = \vec{f}$.

1.5 Main program

The main program is simple written by assembling the previous created matlab code AssembleMatrix and AssembleVector and deviding the vector f by the matrix S.

```
\begin{array}{lll} & function & [ & u & ] & = SolveBVP( & N_elem, int , lambda, D ) \\ & S & = AssembleMatrix( & N_elem, int , lambda, D); \\ & f & = AssembleVector( & N_elem, int , lambda, D); \\ & \% & Calculate & u \\ & x & = linspace(int(1),int(2),100); \\ & u & = S \setminus f; \\ & plot(x,u); \end{array}
```

The result of the plot is shown in figure (1.1).

Figure 1.1: showing the calculated u versus x, with N = 100, f(x) = 1

1.6 Solution for u

The final step is to combine all the codes in a main code to solve $Su = \vec{f}$. This code can be found in Appendix A. Previously the S matrix and f vector were computed for n = 100. Now u will be calculated for f(x) = 1, D = 1, $\nabla = 1$ and N = 100. The result of this is plotted in figure (1.2).

Figure 1.2: showing the calculated u versus x, with N = 100,f(x)=x

1.7 Experiment

The next step is to see what happens when changing f(x) to f(x) = sin(20x) and to see the difference for several values for n (n = 10, 20, 30, 40, 80, 160)

```
legend ('N=100')
title ('Solution for u')
xlabel('x')
ylabel('u')
ax.box='on'
end
hold off
```

Figure 1.3

Figure 1.3: showing the calculated u versus x, with N = $[10\ 20\ 40\ 80\]100\ 160]$, $f(x) = \sin(x)$

Chapter 2

2D-case

The obvious next step after solving a 1 dimensional boundary value problem BVP is to addept the 1D solutions into code to solve a 2 dimensional boundary value problem. To do this a real life problem is going to be solved. In 3rd world countries one of the big issues is the supply of fresh water. One way is to do this is to take square reservoirs, which is a porous medium, with several wells where water is extracted from the subsurface. The water pressure is equal to the hydrostatic pressure. As this is not on an infinite domain, mixed boundary conditions are used. These boundary conditions represent a model for the transfer of the water over the boundary to locations far away. To this extent, a square domain is considered with length 2 in meter: $\Omega = (-1;1)x(-1;1)$ with boundary $d\Omega$. Darcy's law for fluid determins the steady state equilibrium of this BVP, given by equation (2.1):

$$\vec{v} = -\frac{k}{\mu} \nabla p \tag{2.1}$$

where p, k, μ and v, respectively denote the fluid pressure, permeability of the porous medium, viscosity of water and the fluid flow velocity. In this BVP the effect of gravity will not play a part as the problem is looked at in 2D. An accompanying assumption is incompressibility, so the extraction wells are treated as point sinks. This assumption can be made as the well its diameter is much smaller than the dimensions of the square reservoir. The extraction wells extract at the same rate in each direction, leading to the following boundary conditions (2.2).

$$\nabla \cdot \vec{v} = -\sum_{p=1}^{n_{well}} Q_p \delta(\phi(\vec{x} - \phi(\vec{x}_p))) = 0, (x, y) \epsilon \Omega$$
(2.2)

where Q_p denotes the water extraction rate by well k, which is located at x_p . Here x equals (x; y), the spatial coordinates. We use the convention $\mathbf{x} = (\mathbf{x}; \mathbf{y})$ to represent the spatial coordinates. The dirac Delta Distribution is characterized by equation (2.3).

$$\begin{cases} \delta(\vec{x}) = 0, \vec{x} \neq 0\\ \int_{\Omega} \delta(\vec{x}) d\Omega = 1, \text{ where } \Omega \text{ contains the origin.} \end{cases}$$
 (2.3)

For this BVP the following boundary condition is considered:

$$\vec{v} \cdot \vec{n} = K(p - p^H), (x, y) \in \partial\Omega$$
 (2.4)

Here k denotes the transfer rate coefficient of the hormon between the boundary of the domain and its surroundings. The constant p^H represents the hydrostatic pressure. In order to solve this BVP the values needed for all the constants are given in table (2.1).

In this BVP six wells are considered, which are located at:

$$\begin{cases} x_p = 0.6\cos(\frac{2\pi(p-1)}{5}) \\ x_p = 0.6\sin(\frac{2\pi(p-1)}{5}) \end{cases}$$
 (2.5)

Table 2.1: Values of input parameters

Symbol	Value	Unit
Q_p k	50	m^2/s m^2
k	10^{-7}	m^2
μ	$1.002 \cdot 10^{-3}$	$Pa \cdot s$
K	10	m/s Pa
p^H	10^{6}	Pa

2.1 Boundary value problem 2D

The first step to solving these equations using finite elements is to find to find the boundary value problem to solve. This is done by filling in equation (2.1) in both equation 2.2 and the boundary condition (2.4) in order to find the BVP in terms of p:

BVP:

$$\begin{cases} -\frac{k}{\mu} \triangle \vec{p} = -\sum_{p=1}^{n_{well}} Q_p \delta(\vec{x} - \vec{x}_p) = 0, \ (x, y) \in \Omega \\ -\frac{k}{\mu} \nabla \vec{p} \cdot \vec{n} = -\frac{k}{\mu} \frac{dp}{dn} = K(p - p^H), \ (x, y) \in \partial \Omega \end{cases}$$

$$(2.6)$$

The next step is to compute the weak formulation using the previous found BVP(2.6). By multiplying both sides by phi(x) and integrating both sides over the domain Ω the weak formulation can be found.

$$\int_{\Omega} \phi(\vec{x}) \nabla \cdot (-\frac{k}{\mu} \nabla \vec{p}) d\Omega = \int_{\Omega} -\sum_{p=1}^{n_{well}} \phi(\vec{x}) Q_p \delta(\vec{x} - \vec{x}_p)$$
(2.7)

Using integrating by parts on the left side of equation (2.7) results in:

$$\int_{\Omega} \nabla \cdot \phi(\vec{x}) (-\frac{k}{\mu} \nabla \vec{p}) + \frac{k}{\mu} \nabla \phi(\vec{x}) \cdot \nabla p d\Omega = -\int_{\Omega} \sum_{p=1}^{n_{well}} \phi(\vec{x}) Q_p \delta(\vec{x} - \vec{x}_p) d\Omega$$
 (2.8)

Next is to apply Gauss on the first term of the left side.

$$\int_{d\Omega} \vec{n} \cdot (\phi(\vec{x})(-\frac{k}{\mu}\nabla\vec{p}))d\tau + \int_{\Omega} \frac{k}{\mu}\nabla\phi(\vec{x}) \cdot \nabla p d\Omega = -\int_{\Omega} \sum_{n=1}^{n_{well}} \phi(\vec{x})Q_p \delta(\vec{x} - \vec{x}_p)d\Omega$$
 (2.9)

Switching the integral and summation on the right side of equation (2.9) and simplifying terms:

$$\int_{d\Omega} (\phi(\vec{x})(-\frac{k}{\mu}\frac{d\vec{p}}{dn}))\delta\tau + \int_{\Omega} \frac{k}{\mu} \nabla\phi(\vec{x}) \cdot \nabla p d\Omega = -\sum_{p=1}^{n_{well}} \int_{\Omega} \phi(\vec{x})Q_p \delta(\vec{x} - \vec{x}_p) d\Omega$$
 (2.10)

The right side of equation (2.10) can be simplied using the boundary conditions (equation (2.6)) and the following property into equation (2.12):

$$\int_{\Omega} \delta(\vec{x}) f(\vec{x}) d\Omega = f(0) \tag{2.11}$$

$$\int_{d\Omega} \phi(\vec{x}) K(p - p^H) \delta\Gamma + \int_{\Omega} \frac{k}{\mu} \nabla \phi(\vec{x}) \cdot \nabla p d\Omega = -\sum_{p=1}^{n_{well}} \phi(\vec{x}_p) Q_p$$
 (2.12)

Rearranging equation(2.12) so that the variable parts are on the left and the constant parts on the right leads to the following WF:

(WF):

$$\begin{cases} \text{find p } \epsilon \sum = \{p \text{ smooth}\} \text{ Such that:} \\ \int_{d\Omega} \phi(\vec{x}) K p \delta \Gamma + \int_{\Omega} \frac{k}{\mu} \nabla \phi(\vec{x}) \cdot \nabla p d\Omega = -\sum_{p=1}^{n_{well}} \phi(\vec{x}_p) Q_p + \int_{d\Omega} \phi(\vec{x}) K p^H \delta \Gamma \\ \forall \phi \ \epsilon \sum \end{cases}$$
(2.13)

To solve the WF the Galerkin equations are applied, where p is replaced by $\sum_{j=1}^{n} c_i \phi_j$ and $\phi(x) = \phi_i(x)$ with i = [1, ..., n].

$$\sum_{j=1}^{n} c_i \int_{d\Omega} \phi_i K \phi_j d\Gamma + \int_{\Omega} \frac{k}{\mu} \nabla \phi(x) \cdot \nabla \phi_j d\Omega = -\sum_{p=1}^{n_{well}} \phi(x_p) Q_p + \int_{d\Omega} \phi_i K p^H \delta \tau$$
 (2.14)

Equation(2.14) now is of the form $S\vec{c} = \vec{f}$ and like with the 1D problem can be computed. First the element and boundary elements are determined from the Galerkin equations.

2.2 Element matrix and element vector

First the galerkin equation is separated in its element and boundary components. The element matrix $S_{ij}^{e_k}$ and the element vector $f_i^{e_k}$ are given in equations (2.15) and 2.16 respectively.

$$S_{ij}^{e_k} = \int_{e_k} \frac{k}{\mu} \nabla \phi_i \cdot \nabla \phi_j d\Omega = (\beta_i \beta_j + \gamma_i \gamma_j) \frac{k}{\mu} \frac{|\triangle e_k|}{2}$$
 (2.15)

$$f_i^{e_k} = -\sum_{p=1}^{n_{well}} \phi(x_p) Q_p \tag{2.16}$$

2.3 Boundary matrix and boundary vector

The boundary matrix $S_{ij}^{b_l}$ and boundary vector $f_i^{b_l}$ can be found in the following equations:

$$S_{ij}^{be_l} = \int_{b_l} K\phi_i \phi_j dx = K \frac{|be_l|}{6} (1 + \delta_{ij})$$
 (2.17)

$$f_i^{be_l} = Kp^H \int_{b_l} \phi_i dx = Kp^H \frac{|be_l|}{2}$$
 (2.18)

2.4 Cells within an internal element

To solve the BVP in 2D one of the aspects that need to be determined are whether each internal element contains a cell. This is done by determining whether cell with index p and position x_p is contained within element e_k with vertices x_{k1} , x_{k2} and x_{k3} . This is done according the following criterion:

$$|\delta(x_p, x_{k2}, x_{k3})| + |\delta(x_{k1}, x_p, x_{k3})| + |\delta(x_{k1}, x_{k2}, x_p)| : \begin{cases} = |e_k|, x_p \in \vec{e_k} \\ > |e_k|, x_p \notin \vec{e_k} \end{cases}$$

$$(2.19)$$

In the criterion $\delta(x_p, x_q, x_r)$ denotes the triangle with vertices x_p, x_q and x_r , where $|\delta(x_{k1}, x_{k2}, x_{k3})|$ denote its area. The triangular element k is given by $e_k = \delta(x_{k1}, x_{k2}, x_{k3})$ with vertices x_1, x_2 and x_3 and $\vec{e_k}$ includes the boundary of element e_k . To solve this BVP a certan tolerance has to be accounted for in the Matlab code.

2.5 Generating MATLAB code

Similar as with the 1D BVP, code is written in order to generate a mesh, element matrix, element vector, boundary element matrix and boundary element vector. These codes can be found in appendix B.1 through B.6.

2.6 Assignment 8

Now Darcy's law is used to compute the velocity in both directions, by implementing the found WF (equation (2.13)) and the Galerkin equations in the resulting system of linear equations (2.20).

$$M\vec{v_x} = C_x \vec{p}, \quad M\vec{v_y} = C_y \vec{p} \tag{2.20}$$

In order to find $\vec{v_x}$ and $\vec{v_y}$ equations(2.20) need to be solved. First writing out the x and y parts of the velocity gives:

$$\vec{v} = -\frac{k}{\mu} \nabla p \tag{2.21}$$

$$\vec{v}_x = -\frac{k}{\mu} \frac{dp}{dx} \tag{2.22}$$

$$\vec{v}_y = -\frac{k}{\mu} \frac{dp}{dy} \tag{2.23}$$

Equation (2.24) shows the relation between \vec{v} and pressure p.

$$\vec{v} \cdot \vec{n} = k(p - p^H) \text{ on } d\Omega$$
 (2.24)

This relation is used to rewrite equations (2.22 and 2.23):

$$v_x(x = -1) = -k(p - p^H) (2.25)$$

$$v_x(x=1) = k(p - p^H) (2.26)$$

$$v_y(y = -1) = -k(p - p^H) (2.27)$$

$$v_y(y=1) = k(p - p^H) (2.28)$$

The Galerkin approach is used again to solve the equations by approximating v_x .

$$v_x \approx v_x^{(n)} = \sum_{j=1}^n c_j \phi_j \tag{2.29}$$

Here $\phi(\vec{x}) = \phi(\vec{x})_i$. Filling equations (2.29) and $\phi(\vec{x})_i$ in the exuations for v_x

$$\int_{\Omega} \phi v_x d\Omega = -\frac{k}{\mu} \int_{\Omega} \phi \frac{dp}{dx} d\Omega \tag{2.30}$$

Partial integration is applied on the right side term

$$\int_{\Omega} \phi v_x d\Omega = -\frac{k}{\mu} \left\{ \int_{\Omega} \frac{d}{dx} (\phi p) - p \frac{d\phi}{x} d\Omega \right\}$$
 (2.31)

Rewriting the integral:

$$\int_{\Omega} -\frac{k}{\mu} \frac{d\phi p}{dx} dx dy = \int_{-1}^{1} = -\frac{k}{\mu} [\phi p] dy \tag{2.32}$$

Evaluating the right side of equation (2.31) by filling in the previous conditions for specific points (1,1) and (-1,-1):

$$= \int_{-1}^{1} -\frac{k}{\mu} (\phi(x=1,y)p(x=1,y)) - \frac{k}{\mu} (\phi(x=-1)p(x=-1,y)) dy$$
 (2.33)

Simplifying the equation:

$$= \int_{d\Omega_3} -\frac{k}{\mu} \phi p dy + \int_{d\Omega_1} \frac{k}{\mu} \phi p dy \tag{2.34}$$

Now the total combined equation found is:

$$\int_{\Omega} \phi v_x = -\frac{k}{\mu} \left\{ \int_{\Omega} \frac{d}{dx} (\phi p) - p \frac{d\phi}{dx} d\Omega \right\}$$
(2.35)

Find v_x stationary:

$$\int_{\Omega} \phi v_x = \frac{k}{\mu} \left\{ \int_{d\Omega_3} -\phi p dy + \int_{d\Omega_1} \phi p dy + \int_{\Omega} p \frac{\phi_i}{dx} d\Omega \right\}$$
 (2.36)

Again applying the Galerkin equations to (2.36) the following conditions are found (2.38).

$$\phi(\vec{x}) = \phi(\vec{x})_i$$
 $v_x \approx v_x^{(n)} = \sum_{j=1}^n c_j \phi(\vec{x})_j$ (2.37)

on
$$\begin{cases} d\Omega_3 : -v_x = k(p - p^H) \to p = -\frac{v_x}{k} + p^H \\ d\Omega_1 : v_x = k(p - p^H) \to p = \frac{v_x}{k} + p^H \end{cases}$$
 (2.38)

Now writing the equation where v_x is filled in so that an equation is found that depends on p.

$$\int_{\Omega} \phi v_x d\Omega + \int_{d\Omega_3} -\frac{k}{\mu} \frac{1}{k} \phi v_x dy + \int_{d\Omega_1} -\frac{k}{\mu} \frac{1}{k} \phi v_x dy = \int_{d\Omega_3} -\frac{k}{\mu} \phi p^H dy + \int_{d\Omega_1} \frac{k}{\mu} \phi p^H dy + \int_{\Omega} \frac{k}{\mu} p \frac{d\phi}{dx} d\Omega \quad (2.39)$$

For the right side of equation (2.39) the galerkin equations are filled in to find a $\phi(\vec{x}) = \phi(\vec{x})_i$ $v_x \approx \sum_{j=1}^n c_j \phi(\vec{x})_j \quad \phi(\vec{x}) = \alpha_i + \beta_i x + \gamma_i y$

$$\sum_{j=1}^{n} c_{j} \left\{ \int_{\Omega} \phi_{i} \phi_{j} d\Omega + \int_{d\Omega_{3}} -\frac{k}{\mu} \frac{1}{k} \phi_{i} \phi_{j} dy + \int_{d\Omega_{1}} -\frac{k}{\mu} \frac{1}{k} \phi_{i} \phi_{j} dy \right\}$$
 (2.40)

$$\sum_{j=1}^{n} c_{j} \left\{ \int_{d\Omega_{3}} -\frac{k}{\mu} \phi_{i} p^{H} dy + \int_{d\Omega_{1}} \frac{k}{\mu} \phi_{i} p^{H} dy + \int_{\Omega} \frac{k}{\mu} p \frac{d\phi_{i}}{dx} d\Omega \right\}$$
 (2.41)

Applying Newton-Cotes theorem and $\,$, the element matrix(2.42), boundary element matrix(2.43), element vector(2.44) and boundary element vector(2.45) is found.

$$S_{ij}^{e_k} = \int_{e_k} \phi_i \phi_j = \frac{|\triangle_{ek}|}{24} \tag{2.42}$$

$$S_{ij}^{be_l} = \int_{be_l} -\frac{k}{\mu} \phi_i \phi_j dy = \frac{k}{\mu} \frac{1}{k} \frac{|be_l|}{6} (1 + \delta_{ij})$$
 (2.43)

$$f_i^{e_n} = \int_{e_n} \frac{k}{\mu} p \beta_i d\Omega = \frac{k}{\mu} \beta_i \sum_{m = \{k_1, k_2, k_3\}} p(\vec{x}_m) \frac{|\triangle e_n|}{6}$$

$$(2.44)$$

$$f_i^{be_l} = \int_{be_l} \pm \frac{k}{\mu} \phi_i p^H dy = \pm \frac{k}{\mu} p^H \frac{|be_l|}{2}$$
 (2.45)

2.7 Assignment 9

2.8 Assignment 10

What happens if K = 0? Explain the results.

Figure 2.1: caption

Figure 2.2: caption

Figure 2.3: caption

Figure 2.4: caption

Appendix A

1D-case full script

```
clear all
close all
%%Finite Element 1D
%% Parameters
N elem = 100; %Number of elements
int = [0,1]; %Interval
lambda = 1;
D = .1;
% Mesh & Topology
mesh = GenerateMesh(int, N_elem);
elmat = GenerateTopology(N_elem); %1D topology!!
%% Assemble Matrix & Vector
S = AssembleMatrix( N elem, lambda, D, mesh, elmat);
f = Assemble Vector ( N elem, mesh, elmat);
%% Calculate u
x = linspace(int(1), int(2), N_elem);
u = S \setminus f;
hold on
plot(x,u);
legend ('N=100')
title ('Solution for u')
xlabel('x')
ylabel ('u')
ax \cdot box = 'on'
hold off
\% For this part change the function in functionBVP.m to 'f = \sin{(20*x)}'
figure
hold on
for N elem = [10\ 20\ 40\ 80\ 100\ 160]
         mesh = GenerateMesh(int, N elem);
```

```
elmat = GenerateTopology(N_elem);
    S = AssembleMatrix( N_elem, lambda, D, mesh, elmat);
    f = AssembleVector( N_elem, mesh, elmat);
    x = linspace(int(1),int(2),N_elem);
    u = S\f;
    plot(x,u);

end

legend('N=10','N=20','N=40','N=80','N=100','N=160')
title('Solution for u')
xlabel('x')
ylabel('x')
ylabel('u')
ax.box='on'
hold off
\chapter{2D-case full script}
```

Appendix B

2D-case

B.1 Generate mesh

```
clear all
Geometry = 'squareg';
DiffCoeff = 1;
h transfer = 1;
u inf = 1;
\% Geometry = 'squareg'; \% gives square [-1,1] x [-1,1]
% Geometry = 'circleg'; % gives unit circle centered at origin
% Geometry = 'lshapeg'; % gives L—shape
[p,e,t] = initmesh (Geometry);
[p,e,t] = refinemesh (Geometry,p,e,t); % gives gridrefinement
[\,p\,,e\,,t\,]\ =\ refinemesh\,(Geometry\,,p\,,e\,,t\,)\,;\ \%\ gives\ second\ gridrefinement
%[p,e,t] = refinemesh (Geometry,p,e,t); % gives third gridrefinement
pdemesh(p,e,t); % plots the geometry and mesh
x = p(1, :); y = p(2, :);
n = length(p(1,:));
elmat = t (1:3,:);
elmat = elmat ';
elmatbnd = e(1:2,:);
elmatbnd = elmatbnd ';
topology = 3; topologybnd = 2;
```

B.2 Generate element matrix

```
clear xc
clear yc
clear Selem

for index1 = 1:topology
xc(index1) = x(elmat(i,index1));
yc(index1) = y(elmat(i,index1));
end;
```

B.3 Generate element vector

```
clear xc
clear yc
clear felem
for index1=1:topology
xc(index1) = x(elmat(i,index1));
yc(index1) = y(elmat(i,index1));
end;
Delta = det([1 \ xc(1) \ yc(1); 1 \ xc(2) \ yc(2); 1 \ xc(3) \ yc(3)]);
B_{mat} = [1 \ xc(1) \ yc(1); 1 \ xc(2) \ yc(2); 1 \ xc(3) \ yc(3)] \setminus eye(3);
alpha = B mat(1,1:3);
beta = B \text{ mat}(2, 1:3);
gamma = B mat(3, 1:3);
felem = zeros(1, topology);
\% for N = 1:N wells
       Delta 23 = \det([1 xp(N) yp(N); 1 xc(2) yc(2); 1 xc(3) yc(3)]);
       Delta\_13 \, = \, \det \left( \left[ 1 \ xc \left( 1 \right) \ yc \left( 1 \right); 1 \ xp \left( N \right) \ yp \left( N \right); 1 \ xc \left( 3 \right) \ yc \left( 3 \right) \right] \right);
%
%
       Delta_12 = det([1 xc(1) yc(1); 1 xc(2) yc(2); 1 xp(N) yp(N)]);
%
%
        if Delta + epsilon1*Delta >= abs(Delta 23) + abs(Delta 13)
+ abs(Delta 12) \mid \mid Delta - epsilon1*Delta >= abs(Delta 23)
+ abs(Delta 13) + abs(Delta 12);
            N \text{ Test} = N \text{ Test} + 1;
%
            for index1 = 1:topology
%
%
                 felem(index1) = felem(index1) +
                              -Qp*(1-abs(beta(index1))*abs(xc(index1)-
                              xp(index1)) - abs(gamma(index1)) * abs(yc(index1) - yp(index1)));
%
%
            end
%
% % Components of f are zero except for those elements with a well! So no
% % other contributions!
% %
          else
```

```
% %
            for index1 = 1:topology
% %
            global index = elmat(N, index1);
% %
% %
% %
            end
%
      end
% end
if ~exist('u', 'var')
for~N = 1 \colon N\_wells
for index3 = 1:topology
phi p(index3) = alpha(index3) + beta(index3)*xp(N)
+ gamma(index3)*yp(N);
end
if (phi p(1) \le 1) && (phi p(1) >= 0) && (phi p(2) \le 1) && (phi p(2)
>= 0) \&\& (phi p(3) <= 1) \&\& (phi p(3) >= 0);
for index1 = 1:topology
phi\_p
felem(index1) = felem(index1) +
-xp(index1)) - abs(gamma(index1)) * abs(yc(index1)-yp(index1)));
felem
end
i
N \text{ Test} = N \text{ Test} + 1;
% Components of f are zero except for those elements with a well! So no
% other contributions!
%
      else
%
          for index1 = 1:topology
%
          global index = elmat(N, index1);
%
%
%
          end
\quad \text{end} \quad
end
else
switch direction
case 1 % x direction
for index1 = 1:topology
felem(index1) = felem(index1) +
(k/mu)*(abs(Delta)/6)*beta(index1)*(u(elmat(i,1))+u(elmat(i,2))+u(elmat(i,3)));
end
case 2 % y direction
for index1 = 1:topology
felem(index1) = felem(index1) +
(k/mu)*(abs(Delta)/6)*gamma(index1)*(u(elmat(i,1))+u(elmat(i,2))+u(elmat(i,3)));
end
end
end
```

B.4 Generate Boundary matrix

```
clear xc
clear yc
clear BMelem
```

```
for index1 = 1:topologybnd xc(index1) = x(elmatbnd(i,index1)); yc(index1) = y(elmatbnd(i,index1)); end; lek = sqrt((xc(2)-xc(1))^2 + (yc(2)-yc(1))^2); for index1 = 1:topologybnd if exist('u', 'var') BMelem(index1,index1) = K*lek/2; % NC used! not HB!! else BMelem(index1,index1) = -(k/(mu*K))*lek/6; end end;
```

B.5 Generate boundary element vector:

```
clear xc
clear yc
clear bfelem
for index1 = 1:topologybnd
xc(index1) = x(elmatbnd(i,index1));
yc(index1) = y(elmatbnd(i,index1));
end;
lek = sqrt((xc(2)-xc(1))^2+(yc(2)-yc(1))^2;
if ~exist('u', 'var')
for index1 = 1:topologybnd
bfelem (index1) = K*pH*lek/2*u inf; %what is u inf?
end;
else
for index1 = 1:topologybnd
bfelem (index1) = ((k*pH)/mu)*lek/2*u inf;
                                             %what is u inf?
%
          bfelem (index1) = -(k/mu)*lek/6*u(elmat(i,ind1));
end
end
```

B.6 Buildmatrices and vectors

```
for ind 2 = 1: topology
S(elmat(i,ind1),elmat(i,ind2)) = S(elmat(i,ind1),elmat(i,ind2)) + Selem(ind1,ind2);
end;
end;
GenerateElementVector; % felem
for ind1 = 1:topology
f(elmat(i,ind1)) = f(elmat(i,ind1)) + felem(ind1);
end:
end;
% Next the boundary contributions
for i = 1:length(elmatbnd(:,1)); % for all boundary elements extension of mass matrix M
GenerateBoundaryElementMatrix; % BMelem
for ind1 = 1:topologybnd
for ind 2 = 1: topologybnd
S(elmatbnd(i,ind1),elmatbnd(i,ind2)) = S(elmatbnd(i,ind1),elmatbnd(i,ind2)) + BMelem(ind
end;
end;
GenerateBoundaryElementVector; % bfelem
for ind1 = 1:topologybnd
f(elmatbnd(i,ind1)) = f(elmatbnd(i,ind1)) + bfelem(ind1);
end;
end;
else
Sx
                = sparse(n,n); % stiffness matrix
fx
                = zeros(n,1); \% right-hand side vector
left nodes = find (p(1,:) == -1);
top nodes = find(p(2,:) == 1);
right nodes = find(p(1,:) == 1);
bottom nodes = find (p(2,:) == -1);
bnd1 nodes = ismember(elmatbnd, left nodes);
bnd1 = find(bnd1 nodes(:,1) == 1 & bnd1 nodes(:,2) == 1);
bnd2 nodes = ismember(elmatbnd, top nodes);
bnd2 = find(bnd2 \ nodes(:,1) == 1 \& bnd2 \ nodes(:,2) == 1);
bnd3 nodes = ismember(elmatbnd, right_nodes);
bnd3 = find(bnd3\_nodes(:,1) == 1 \& bnd3\_nodes(:,2) == 1);
bnd4 nodes = ismember(elmatbnd, bottom nodes);
bnd4 = find(bnd4 \ nodes(:,1) == 1 \& bnd4 \ nodes(:,2) == 1);
direction = 1;
for i = 1: length (elmat (:,1)) % for all internal elements
GenerateElementMatrix; % Selem
for ind1 = 1: topology
for ind2 = 1:topology
if \ elmat(i, ind1) = elmat(i, ind2)
Sx(elmat(i,ind1),elmat(i,ind2)) = Sx(elmat(i,ind1),elmat(i,ind2)) + 2*Selem(ind1,ind2);
```

```
else
Sx(elmat(i,ind1),elmat(i,ind2)) = Sx(elmat(i,ind1),elmat(i,ind2)) + Selem(ind1,ind2);
end;
end;
GenerateElementVector; % felem
for ind1 = 1: topology
fx(elmat(i,ind1)) = fx(elmat(i,ind1)) + felem(ind1);
end;
end;
% Next the boundary contributions
for j = 1:length(bnd1); % left boundary
i = bnd1(j);
GenerateBoundaryElementMatrix; % BMelem
for ind1 = 1:topologybnd
for ind 2 = 1: topologybnd
if elmatbnd(i,ind1) = elmatbnd(i,ind2)
Sx\left(\left.elmatbnd\left(i\right.,ind1\right),elmatbnd\left(i\right.,ind2\right)\right) \;=\; Sx\left(\left.elmatbnd\left(i\right.,ind1\right),elmatbnd\left(i\right.,ind2\right)\right) \;+\; 2*BMelender (1)
else
Sx(elmatbnd(i,ind1),elmatbnd(i,ind2)) = Sx(elmatbnd(i,ind1),elmatbnd(i,ind2)) + BMelem(i,ind2)
end;
\operatorname{end}
end;
GenerateBoundaryElementVector; % bfelem
for ind1 = 1:topologybnd
fx(elmatbnd(i,ind1)) = fx(elmatbnd(i,ind1)) + bfelem(ind1);
end;
end;
for j = 1:length(bnd3); % right boundary
i = bnd3(j);
GenerateBoundaryElementMatrix; % BMelem
for ind1 = 1:topologybnd
for ind 2 = 1: topologybnd
if elmatbnd(i,ind1) = elmatbnd(i,ind2)
Sx\left(\left.elmatbnd\left(i\right.,ind1\right),elmatbnd\left(i\right.,ind2\right)\right) \;=\; Sx\left(\left.elmatbnd\left(i\right.,ind1\right),elmatbnd\left(i\right.,ind2\right)\right) \;+\; 2*BMelender (1)
Sx(elmatbnd(i,ind1),elmatbnd(i,ind2)) = Sx(elmatbnd(i,ind1),elmatbnd(i,ind2)) + BMelem(i
end;
end
end;
GenerateBoundaryElementVector; % bfelem
for ind1 = 1:topologybnd
fx(elmatbnd(i,ind1)) = fx(elmatbnd(i,ind1)) - bfelem(ind1);
end;
end;
direction = 2;
Sy
                   = sparse(n,n); % stiffness matrix
                   = zeros(n,1); \% right-hand side vector
fу
for i = 1: length (elmat (:,1)) % for all internal elements
```

```
GenerateElementMatrix; % Selem
for ind1 = 1:topology
for ind 2 = 1: topology
if \ elmat(i,ind1) = elmat(i,ind2)
Sy(elmat(i,ind1),elmat(i,ind2)) = Sy(elmat(i,ind1),elmat(i,ind2)) + 2*Selem(ind1,ind2);
Sy (elmat(i, ind1), elmat(i, ind2)) = Sy (elmat(i, ind1), elmat(i, ind2)) + Selem(ind1, ind2);
_{
m end}
end;
end;
GenerateElementVector; % felem
for ind1 = 1: topology
fy(elmat(i,ind1)) = fy(elmat(i,ind1)) + felem(ind1);
end;
end;
% Next the boundary contributions
for j = 1:length(bnd2); % left boundary
i = bnd2(j);
GenerateBoundaryElementMatrix; % BMelem
for ind1 = 1:topologybnd
for ind 2 = 1: topologybnd
if elmatbnd(i,ind1) = elmatbnd(i,ind2)
Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) = Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) + 2*BMelen
Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) = Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) + BMelem(i
end;
\operatorname{end}
end;
GenerateBoundaryElementVector; % bfelem
for ind1 = 1:topologybnd
fy(elmatbnd(i,ind1)) = fy(elmatbnd(i,ind1)) - bfelem(ind1);
end;
end;
for j = 1:length(bnd4); % right boundary
i = bnd4(j);
GenerateBoundaryElementMatrix; % BMelem
for ind1 = 1:topologybnd
for ind 2 = 1: topologybnd
if elmatbnd(i, ind1) = elmatbnd(i, ind2)
Sy (elmatbnd (i, ind1), elmatbnd (i, ind2)) = Sy (elmatbnd (i, ind1), elmatbnd (i, ind2)) + 2*BMelen
Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) = Sy(elmatbnd(i,ind1),elmatbnd(i,ind2)) + BMelem(i
end;
end
end;
GenerateBoundaryElementVector; % bfelem
for ind 1 = 1: topologybnd
fy(elmatbnd(i,ind1)) = fy(elmatbnd(i,ind1)) + bfelem(ind1);
end;
end;
\operatorname{end}
```

B.7 Compute u and v_x/v_y

```
% Construction of linear problem
BuildMatrices and Vectors;
% Solution of linear problem
u = S \setminus f;
BuildMatrices and Vectors;
vx = Sx \setminus fx;
vy = Sy \setminus fy;
B.8
        Full script
close all
clear all
% 2D Assignment
% Lab Assignment 7
%% Create Mesh
WI4243Mesh
%% Parameters
                       \% [m^2/s]
Qp = 50;
k = 10^{-7};
                       % [m<sup>2</sup>]
mu = 1.002*10^{-3};
                       % [Pa*s]
K = 10000;
                          % [m/s]
                       % [Pa]
pH = 10^6;
N_wells = 6;
                       \% number of wells
epsilon1 = 0.03;
N \text{ Test} = 0;
%% Coordinates of wells
for i = 1: N_wells -1;
xp\,(\,i\,) \;=\; 0.6*cos\,(\,(\,2*pi\,)*(\,i\,-1)\,/\,(\,N_{\_}wells\,-1\,)\,);
yp(i) = 0.6*sin((2*pi)*(i-1)/(N_wells-1));
end
xp(N_wells) = 0;
yp(N_wells) = 0;
clear i;
%% Compute Problem
WI4243Comp
%% Post
WI4243 Post
%% Velocity part
```