1 - Load the patient data from "ML HW Data Patients.csv" file.

```
import libraries
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import statsmodels.formula.api as smf
import statsmodels.api
import statsmodels.api as sm
import scipy.stats as stats
import pylab
import matplotlib.pyplot as plot

#Load dataset
Pt_data=pd.read_csv("ML_HW_Data_Patients.csv")
#print top 5 rows of dataset
print(Pt_data.head())
```

2 - Use variables Age, Gender, Height, Weight, Smoker, Location, SelfAssessedHealthStatus to build a linear regression model to predict the systolic blood pressure.

```
#Extracting variables to be used in linear regression

Extvar_Model= Pt_data[["Age", "Gender",
"Height", "Weight", "Smoker", "Location", "SelfAssessedHealthStatus", "Systolic"
]]
print(Extvar_Model.head())

#scale the numerical columns uniformly
#Using StandardScaler/Zscaler to uniformly scale the numerical columns.

BP_scaler = StandardScaler()
Extvar_Model[['Age', 'Height', 'Weight']] =
BP_scaler.fit_transform(Extvar_Model[['Age', 'Height', 'Weight']])
print(Extvar_Model.head())

#create dummy variables for Categorical columns and drop first category
Extvar_Model = pd.get_dummies(Extvar_Model, drop_first=True)
print(Extvar_Model.head())

#Rename column names which are long
Extvar_Model.rename(columns = {"Gender_'Male'":"Male", "Location_'St. Mary's
Medical Center'": "Loc_StMaryMedCtr", "Location_'VA Hospital'":
"Loc_VAHosp", "SelfAssessedHealthStatus_'Fair'":
"HealthStat_Fair", "SelfAssessedHealthStatus_'Good'":
```

```
"HealthStat_Good", "SelfAssessedHealthStatus_'Poor'": "HealthStat_Poor" },
inplace = True)
print(Extvar_Model.head())

# creating formula for regression model .
Formula = 'Systolic ~ Age + Height + Weight + Smoker + Male +
Loc_StMaryMedCtr + Loc_VAHosp + HealthStat_Fair + HealthStat_Good +
HealthStat_Poor'

#Fitting Linear Regression model and displaying the coefficients.
model = smf.ols(formula= Formula, data = Extvar_Model).fit()
model.params.sort_values()
print(model.params.sort_values())
```

3 – What are the regression coefficients (thetas).

Variables θ (Theta)

HealthStat_Fair	t_Fair -2.750968		
Loc_VAHosp	-1.734841		
Male	-1.479391		
Loc_StMaryMedCtr	-0.856501		
Weight	-0.354757		
HealthStat_Poor	0.459343		
Age	0.576204		
HealthStat_Good	0.586379		
Height	1.325387		
Smoker	9.673087		
Intercept	121.161481		

4 - How do you interpret those numbers in thetas?

For Numeric Variable (Age, Weight, height) – Presence of numerica variables means how much blood pressure is going to change when we add or subtract 1 unit in from these variables. Since we have normalized the numeric columns, we use the standard deviation as a unit.

Example: If age goes by 1 unit, or one standard deviation, their systolic blood pressure will go up by +0. 576204.

For Categorical Variable (Health Status, Location, Gender, Smoker) – Categorical variable represents whether something is true or not. When categorical variables are presents, theta factor will affect the blood pressure.

Example: if a patient smokes, his/her blood pressure will go up by **+9. 673087** if we compare it to a person who does not smoke.

5 - If you need to identify one or few useless features (independent variables or predictors), which one(s) will you choose? Why do you reach this conclusion?

Ans: To check which variable or feature is useless, we can use theta and p value of variables.

print(model.summary())

High P-value (> 0.05): The feature is not significant and we can remove.

Low P-value (≤ 0.05): The feature is significant.

- We can see that Weight **coefficient** has the lowest value **-0.354757**
- Weight has the highest **p-value 0.819.** It has minimal effect and can be removed from systolic blood pressure prediction.

=======================================	======= coef	:======:: std err	======== t	======= P> t	:======= [0.025	0.975]	
Intercept	121.1615	1.851	65.449	0.000	117.483	124.840	
Male[T.True]	-1.4794	3.266	-0.453	0.652	-7.968	5.010	
Loc_StMaryMedCtr[T.True]	-0.8565	1.298	-0.660	0.511	-3.436	1.723	
Loc_VAHosp[T.True]	-1.7348	1.133	-1.531	0.129	-3.987	0.517	
HealthStat_Fair[T.True]	-2.7510	1.511	-1.821	0.072	-5.753	0.251	
HealthStat_Good[T.True]	0.5864	1.178	0.498	0.620	-1.755	2.928	
HealthStat_Poor[T.True]	0.4593	1.676	0.274	0.785	-2.871	3.790	
Age	0.5762	0.481	1.198	0.234	-0.380	1.532	
Height	1.3254	0.717	1.850	0.068	-0.098	2.749	
Weight	-0.3548	1.543	-0.230	0.819	-3.421	2.712	
Smoker	9.6731	1.046	9.249	0.000	7.595	11.751	