Estruturas de Dados Heaps Binários

Universidade Estadual Vale do Acaraú – UVA

Paulo Regis Menezes Sousa paulo_regis@uvanet.br

A estrutura heap

Filas de prioridades

- A estrutura de dados *binary heap* foi inventada em 1964 por John William Joseph Williams.
- A estrutura está no coração do algoritmo Heapsort e é muito útil na a construção de filas de prioridades.

- Suponha dado um vetor $A[0 \dots n-1]$. Onde $n \in 0$ tamanho do vetor.
- Para todo índice *i*, diremos que:
 - o pai do índice i é o índice |(i-1)/2|,
 - 2i + 1 é o filho esquerdo de i,
 - 2i + 2 é o filho direito de i.
- O índice 0 não tem pai;
- Um índice i só tem filho esquerdo se $2i + 1 \le n 1$:
- i só tem filho direito se $2i + 2 \le n 1$.

- Cada caixa abaixo é um nó da árvore binária quase completa A[0...30].
- lacktriangle O número dentro de cada caixa é i e não A[i].

• Cada nível p, exceto talvez o último, tem exatamente 2^p nós.

O nó i pertence ao nível

$$\lfloor \log i \rfloor$$

• Como o conceito de altura é complementar ao conceito de nível. A altura de um nó i em $A[0\dots n-1]$ é o número

$$|\log((n-1)/i)|$$

- Em termos um tanto vagos, um max-heap (ou árvore hierárquica) é uma árvore binária quase completa em que cada pai é maior ou igual que qualquer de seus filhos.
- Um vetor $A[0 \dots n-1]$ é um max-heap se:

$$A\left[\left\lfloor \frac{(i-1)}{2}\right\rfloor\right] \ge A[i]$$

para i = 1, ..., n - 1.

• Em outras palavras, $A[0\dots n-1]$ é um max-heap se $A[j] \geq A[2j+1]$ e $A[j] \geq A[2j+2]$ sempre que os índices não ultrapassam n-1.

- Por que um heap é uma estrutura de dados útil?
 - Se $A[0\dots n-1]$ é um max-heap, é muito fácil encontrar um elemento máximo do vetor: A[0] é o máximo.

- Se $A[0 \dots n-1]$ é um max-heap e se o valor de A[0] for alterado, o max-heap pode ser "consertado" muito rapidamente.
- Por consequência um vetor $A[0\dots n-1]$ arbitrário pode ser transformado em um max-heap rapidamente.

 A principal ferramenta de manipulação de um heap é o algoritmo que discutiremos a seguir. O algoritmo resolve o seguinte pequeno problema:

Problema

Dado um vetor $A[0\ldots n-1]$ e um índice i tal que a subárvore com raiz 2i+1 é um max-heap e a subárvore com raiz 2i+2 é um max-heap, rearranjar o vetor de modo que a subárvore com raiz i seja um max-heap.

- A ideia do algoritmo é simples:
 - 1. se A[i] é maior ou igual que seus filhos então não é preciso fazer nada;
 - 2. senão, troque A[i] com o maior dos filhos e repita o processo para o filho envolvido na troca.

 Em inglês, o algoritmo é conhecido como HEAPIFY, ou SIEVE, ou FIX-DOWN, ou SHAKE-DOWN.

• O algoritmo abaixo recebe um vetor $A[0 \dots n-1]$ e rearranja seus elementos de modo a transformar o vetor em um max-heap.

```
1 constroi_maxheap (A, n)
2 para i \leftarrow \lfloor (n-1)/2 \rfloor decrescendo até 0 faça
3 corrige_descendo(A, n, i)
```


• O seguinte algoritmo supõe que $A[0 \dots m-1]$ é um max-heap e rearranja $A[0 \dots m]$ de modo a transformar o vetor em um max-heap.

- Imagine um conjunto S de números. Os elementos de S são às vezes chamados chaves ou prioridades.
- Uma fila de prioridades é um tipo abstrato de dados que permite executar as seguintes operações sobre S:
 - encontrar um elemento máximo de S,
 - lacksquare extrair um elemento máximo de S,
 - lacktriangle inserir um novo número em S,
 - aumentar o valor de um elemento de S,
 - lacktriangle diminuir o valor de um elemento de S.
- Há uma variante dessa definição em que "máximo" é substituído por "mínimo".
 - A primeira é uma fila de prioridades decrescente (ou "de máximo")
 - e a segunda é uma fila de prioridades crescente (ou "de mínimo").

- Não é difícil imaginar maneiras de implementar uma fila de prioridades.
- Infelizmente, nas implementações mais óbvias, alguma das operações fica rápida mas as outras ficam lentas.
- O desafio está em inventar uma implementação em que todas as operações sejam rápidas.

• Uma maneira muito eficiente de implementar uma fila de prioridades decrescente consiste em manter o conjunto S de chaves em um max-heap.

Máximo

Eis o algoritmo que encontra (e devolve) o valor de um elemento máximo do max-heap $A[0 \dots n-1]$ não vazio (ou seja, com $n \ge 1$):

```
1 encontra_maximo (A, n)
2 retorne A[0]
```

Remoção de máximo

O seguinte algoritmo remove um elemento máximo do max-heap não vazio $A[0\dots n-1]$ e devolve o valor desse elemento:

```
1  remove_maximo (A, n)
2  max \( A \) A[0]
3  A[0] \( A \) A[n-1]
4  n \( \cdot n-1 \)
5  corrige_descendo(A, n, 0)
6  retorne max
```


Inserção

O algoritmo abaixo insere um número c no max-heap $A[0\dots n-1]$ (ou seja, acrescenta um novo elemento, com valor c, ao vetor) e rearranja o vetor para que ele volte a ser um max-heap:

```
1 inserir_na_fila (A, n, c)
2    A[n] ← c
3    n ← n+1
4    corrige_subindo(A, n-1)
```

Aumento do valor de uma chave

- O algoritmo seguinte recebe um max-heap não vazio $A[0 \dots n-1]$, um índice i no intervalo $0 \dots n-1$ e um número $c \geq A[i]$.
- O algoritmo altera para c o valor de A[i] e rearranja o vetor para que ele volte a ser um max-heap:

```
1 aumenta_chave (A, i, c)
2 A[i] \( \tau \) c
3 corrige_subindo(A, i)
```

Redução do valor de uma chave

- O algoritmo abaixo recebe um max-heap não vazio $A[0 \dots n-1]$, um índice i no intervalo $0 \dots n-1$ e um número $c \leq A[i]$.
- O algoritmo altera para c o valor de A[i] e rearranja o vetor para que ele volte a ser um max-heap:

- Os algoritmos anteriores são todos muito rápidos: no pior caso, cada um consome tempo proporcional à altura do heap.
- Como a altura é $\lfloor \log n \rfloor$, o consumo de tempo está em $O(\log n)$ no pior caso.

Problema

Implemente todos os algoritmos da aula e crie um programa de testes para demonstrar sua implementação.