

Some uses of sorting:

- Problems that become easy once items are in sorted order
 - Searching: Is "Erik Demaine" in the database?
 - Statistics: Identify statistical outliers, or a median
- Non-obvious applications
 - Find closest pair
 - Data compression: sorting finds duplicates
 - Computer graphics: rendering scenes front to back

Today's plan

- Sorting definition
- Two sorting algorithms
 - Insertion Sort
 - Merge Sort
- Solving Recurrences

The problem of sorting

Input: array A[1...n] of numbers.

Output: permutation B[1...n] of A such that $B[1] \le B[2] \le \cdots \le B[n]$

e.g. $A = [7, 2, 5, 5, 9.6] \rightarrow B = [2, 5, 5, 7, 9.6]$

How can we do it efficiently?

Example of insertion sort

8 2 4 9 3 6

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6

Example of insertion sort

Running time:

- Upper bound $O(n^2)$
 - n times through loop
 - at most n swaps in each loop
- Algorithm will need $\Omega(n^2)$
 - E.g. Input in reverse sorted order n, n-1, n-2,...
 - i comparisons and swaps in loop i
 - Total $\Sigma i = \frac{n(n-1)}{2} = \theta(n^2)$

A nice property of insertion sort:

"in place sorting": A gets modified into B without using additional memory!!

An improvement? Binary Insertion sort

Binary-Insertion-Sort (A, n) $\triangleright A[1 ... n]$ for $j \leftarrow 2$ to n

insert key A[j] into the (already sorted) sub-array $A[1 \dots j-1]$. Use binary search to find the right position

Binary search takes only $\Theta(\log n)$ time. But, shifting elements after insertion still takes $\Theta(n)$ time!

Complexity: $\Theta(n \log n)$ comparisons $\Theta(n^2)$ total time

Another approach: Divide and conquer

- Divide input into parts
- Conquer (solve) each part recursively
- Combine results to solve original

Run time:

 $T(n) = divide \ time$ $+T(n_1) + T(n_2) + ... + T(n_k)$ $+ combine \ time$

Meet Merge Sort

MERGE-SORT A[1 ... n]

divide and conquer

- 1. If n = 1, done (nothing to sort).
- 2. Otherwise, recursively sort A[1 cdot n/2] and A[n/2+1 cdot n].
- 3. "Merge" the two sorted sub-arrays.

Key subroutine: MERGE

Merging two sorted arrays

20 12

13 11

7 9

2 1

Merging two sorted arrays

20 12

13

7

Merging two sorted arrays

Time = $\Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

MERGE-SORT
$$A[1 ... n]$$
1. If $n = 1$, done.
2. Recursively sort $A[1 ... \lceil n/2 \rceil]$
and $A[\lceil n/2 \rceil + 1 ... n]$.
3. "Merge" the two sorted lists $\Theta(n)$

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$
$$T(n) = ?$$

Recurrence solving

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Recursion tree method

- Running time represented by sum of nodes
 - Describes where the work happens in the recursive call structure
- Will continually modify the tree in ways that
 - PRESERVE the sum
 - Make it progressively "simpler"
 - Note that "recursive calls" are only at leaves

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n)

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n/2) T(n/2)

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

$$cn/2$$
 $cn/2$ $cn/4$ $cn/4$ $cn/4$ $cn/4$ $cn/4$ $cn/4$ $cn/4$

Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. $h = 1 + \lg n \qquad cn/2 \qquad cn/4 \qquad cn/4 \qquad cn/4$ \vdots $\Theta(1)$

Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. $cn \qquad cn \qquad cn$ $cn/2 \qquad cn/2 \qquad cn$ $cn/4 \qquad cn/4 \qquad cn/4 \qquad cn/4 \qquad cn$ $\vdots \qquad \vdots \qquad \vdots$ $\Theta(1) \qquad \text{#leaves} \qquad \Theta(n)$ $\text{Total} = \Theta(n \lg n)$ Equal amount of work done at each level

Fun fact:

- If level sums "same", total = θ (level sum · number of levels)
- If level sums geometrically decreasing, total = $\theta(top\ level) = \theta(root\ node)$
- If level sums geometrically increasing, total = $\theta(bottom\ level) = \theta(number\ of\ leaves)$

Master theorem

- A recipe for solving a typical form of divide and conquer recurrence
- Formalizes the "fun fact"
- A bit messy to get used to, use with care!

Master Theorem: T(n) = a T(n/b) + f(n)

- Some observations about recursion tree:
 - h = number of levels = $\log_b n = O(\log n)$
 - L = number of leaves = $a^h = a^{n}(\log_b n) = n^{n}(\log_b a)$
- Case 1: Geometrically increasing (e.g. T(n) = 2T(n/2) + c)

If
$$f(n) = O(L^{1-\epsilon}) = O(n^{(\log_b a) - \epsilon})$$

then $T(n) = \theta(L) = \theta(n^{(\log_b a)})$

Master Theorem: T(n) = a T(n/b) + f(n)

- Some observations about recursion tree:
 - h = number of levels = $\log_b n = O(\log n)$
 - L = number of leaves = a^h = $a^{\wedge}(\log_b n) = n^{\wedge}(\log_b a)$
- Case 2: Equal levels (e.g. T(n) = 2T(n/2) + cn)

 If $f(n) = \theta(L) = 0(n^{\circ}(\log_b a))$ then $T(n) = \theta(L \log n) = \theta(n^{\circ}(\log_b a) \cdot \log n)$

Master Theorem: T(n) = a T(n/b) + f(n)

- Some observations about recursion tree:
 - h = number of levels = $\log_b n = O(\log n)$
 - L = number of leaves = a^h = $a^{\wedge}(\log_b n) = n^{\wedge}(\log_b a)$
- Case 3: Geometrically decreasing (e.g. T(n)= $2T(n/2) + cn^2$)

If
$$f(n) = O(L^{1+\epsilon}) = O(n^{\wedge}((\log_b a) + \epsilon))$$
 and $af\left(\frac{n}{b}\right) \le (1-\delta)f(n)$ then $T(n) = \theta(f(n))$

Why does it work?

■ See textbook for proof

Distinction to note:

Running time of algorithm $\theta(n^2)$

v 3.

Time required by a problem

 $O(n \log n)$