

### Progetto di gruppo: Turbulent flow around a square cylinder: a comparison of RNG $k-\varepsilon$ and STD $k-\omega$ models

Studenti: Marta Di Ridolfi

Ludovica D'Incà

Biagio Torsello

September 21, 2023

Professor Luca Bruno





#### **Indice**

- Introduzione;
- Modelli di turbolenza;
- Risultati numerici: paramentri integrali;
- Risultati numerici: distribuzioni medie e risultati fasi-dipendenti;
- Conclusioni.

#### Introduzione

Nello studio eseguito è stato considerato il flusso turbolento incidente su di un cilindro a sezione rettangolare con l'obiettivo di confrontare due modelli di turbolenza: RNG  $k-\varepsilon$  e  $k-\omega$  standard. Nelle simulazioni:

- B/D = 1;
- griglia computazionale fissata;
- lacksquare angolo di incidenza lpha= 0;
- *Re* = 22000;
- It = 2% (cfr. Lyn e Rodi [LR94]);
- $L_T = 0.5B$ .





#### Modelli di turbolenza, I

Flusso modellato attraverso le equazioni RANS tamite l'ipotesi di Boussinesq:

$$\overline{u_{i}'u_{j}'} = \nu_{T} \left( \frac{\partial \bar{u}_{i}}{\partial x_{j}} + \frac{\partial \bar{u}_{j}}{\partial x_{i}} \right) \quad ,$$

$$u_T = C_\mu \frac{k^2}{\varepsilon}$$
 oppure  $u_T = \frac{k}{\omega}$ 

Al fine di chiudere il problema, sono necessarie due equazioni aggiuntive. Modelliamo:

- k: energia cinetica turbolenta;
- uno tra
  - ullet  $\varepsilon$ : tasso dissipazione energia cinetica;
  - $lue{\omega}$ : dissipazione specifica.





#### Modelli di turbolenza, II

#### Equazione di trasporto per k:

$$\underbrace{\frac{\partial k}{\partial t}}_{I-T_k} + \underbrace{\frac{\partial (\bar{u}_j k)}{\partial x_j}}_{II-C_k} = \underbrace{-\frac{u'_i u'_j}{\partial x_j}}_{III-P_k} - \underbrace{\frac{\partial}{\partial x_j}}_{III-P_k} \underbrace{\begin{bmatrix} \underbrace{\frac{\partial}{\rho' u'_j}}{\rho} + \underbrace{\frac{\partial}{\partial u'_i u'_i u'_i}}_{\rho} + \underbrace{\frac{\partial}{\partial k}}_{\partial x_j} \\ \underbrace{\frac{\partial}{\partial u'_i u'_i u'_i}}_{IV-D_k} + \underbrace{\underbrace{\frac{\partial}{\partial u'_i u'_i u'_i}}_{\partial x_j} - \underbrace{\frac{\partial}{\partial u'_i u'_i u'_i}}_{V-\varepsilon} } (1)$$

$$\frac{\partial k}{\partial t} + \frac{\partial \bar{u}_{j}k}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left[ \left( \frac{\nu_{T}}{\sigma_{k}} + \nu \right) \frac{\partial k}{\partial x_{i}} \right] + P_{k} - \varepsilon$$





#### Modelli di turbolenza, III

 $k - \varepsilon \text{ RNG}$ :

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial \bar{u}_{j}\varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[ \left( \frac{\nu_{T}}{\sigma_{\varepsilon}} + \nu \right) \frac{\partial \varepsilon}{\partial x_{j}} \right] + \frac{\varepsilon}{k} C_{\varepsilon 1} \nu_{T} \left( \frac{\partial \bar{u}_{i}}{\partial x_{j}} + \frac{\partial \bar{u}_{j}}{\partial x_{i}} \right) \frac{\partial \bar{u}_{i}}{\partial x_{j}} - \frac{\varepsilon}{k} C_{\varepsilon 2}^{*} \varepsilon$$
 (2)

 $k-\omega$  standard:

$$\frac{\partial \omega}{\partial t} + \frac{\partial \bar{u}_{j}\omega}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[ \left( \frac{\nu_{t}}{\sigma_{\omega}} + \nu \right) \frac{\partial \omega}{\partial x_{j}} \right] + \frac{\omega}{k} C_{\omega 1} \cdot \left( \frac{\partial \bar{u}_{i}}{\partial x_{j}} + \frac{\partial \bar{u}_{j}}{\partial x_{i}} \right) \frac{\partial \bar{u}_{i}}{\partial x_{j}} - C_{\omega 2} \omega^{2}$$

$$\omega = \frac{1}{\beta^{*}} \frac{\varepsilon}{k}$$



#### Risultati numerici, I

#### Parametri integrali

| Modelli di turbolenza                                                        |                       |                     |                         |
|------------------------------------------------------------------------------|-----------------------|---------------------|-------------------------|
|                                                                              | RNG $k - \varepsilon$ | standard $k-\omega$ | Esperimenti/LES         |
| St                                                                           | 0.138                 | 0.136               | Lyn [LR94]: 0.135       |
| $\bar{C}_D$                                                                  | 1.902                 | 2.018               | Lyn [LR94]: 2.05 — 2.23 |
| $\begin{array}{c} \operatorname{St} \\ \bar{C}_D \\ \tilde{C}_L \end{array}$ | 0.988                 | 1.379               | Murakami [MM95]: 1.60   |
| $\tilde{C}_D$                                                                | 0.0394                | 0.136               | Murakami [MM95]: 0.13   |

Table: Parametri integrali

## Per $\bar{C}_D$ , $\tilde{C}_L$ , $\tilde{C}_D$ :

- sottostima di  $k-\varepsilon$
- lacksquare miglior approssimazione di  $k-\omega$

rispetto ai dati presenti in letteratura.



#### Risultati numerici, II

Confronto parametrico con i dati in letteratura di Ohtzuki [Oht78], Lee [Lee97], Bearman [BO82] e Pocha [Poc71].



Figure: Valor medio in tempo del coefficiente di pressione



Figure: Deviazione standard del coeffieciente di pressione.





#### Risultati numerici, III

Confronto parametrico con i dati in letteratura di Lyn [LR94] e Durao [DHP88].



Figure:  $U_x$  medio lungo la linea y = 0



Figure:  $U_x$  istantanea rispetto alla retta x = 1.





#### Risultati numerici, IV



Energia cinetica media:  $k - \varepsilon \ VS \ k - \omega$ .



Isolinee dell'energia cinetica per  $k-\varepsilon$ , fase 1.



Isolineee dell'energia cinetica per  $k-\omega$ , fase 1.



#### Conclusioni

- Comportamento aerodinamico rispettato;
- Produzione di energia cinetica turbolenta per il modello  $k-\varepsilon$  nella regione di stagnazione e sottostima in scia da entrambi i modelli;
- $\blacksquare$  Sottostima dei parametri integrali rispetto alla letteratura per quanto riguarda il modello  $k-\varepsilon$ .



#### Fonti I



- DFG Durao, MV Heitor, and JCF Pereira, *Measurements of turbulent and periodic flows around a square cross-section cylinder*, Experiments in fluids **6** (1988), no. 5, 298–304.
- Sangsan Lee, *Unsteady aerodynamic force prediction on a square cylinder using k-*  $\varepsilon$  *turbulence models*, Journal of Wind Engineering and Industrial Aerodynamics **67** (1997), 79–90.
- DA Lyn and W Rodi, *The flapping shear layer formed by flow separation from the forward corner of a square cylinder*, Journal of fluid Mechanics **267** (1994), 353–376.



#### Fonti II

- Shingo Murakami and Akashi Mochida, *On turbulent vortex shedding flow past 2d square cylinder predicted by cfd*, Journal of Wind Engineering and Industrial Aerodynamics **54** (1995), 191–211.
- Y Ohtsuki, Wind tunnel experiments on aerodynamic forces and pressure distributions of rectangular cylinders in a uniform flow, Proc. 5th Symp. on Wind effects on structures, 1978, pp. 169–175.
- Jehangir Jimmy Pocha, *On unsteady flow past cylinders of square cross-section*, Ph. D. Thesis, Department of Aeronautics, Queen Mary College (1971).



# Thank you for your attention

