Cálculo das Probabilidades II - Lista 3 - 2021/01

Prof. Hugo Carvalho 08/10/2021

- INSTRUÇÕES - LEIAM ATENTAMENTE! -

- A data limite de entrega da avaliação é domingo 17/10/2021 às 23h59'. Avaliações entregues após esse prazo serão desconsideradas.
- A entrega deve ser feita exclusivamente através do Google Classroom, clicando na caixa "+ Adicionar ou Criar" dentro da postagem dessa lista, para então anexar um arquivo com sua resolução. Após isso, clique em "Entregar" para enviar sua resolução.
 - **Atenção**: Somente anexar a resolução não é suficiente! O envio deve ser feito para que sua resolução de fato seja entregue.
- Você tem a liberdade de escrever sua resolução no computador (usando Word, LATEX, dentre outros), ou manuscrito e depois escanear ou fotografar a sua resolução. Nesse último caso, tome cuidado para que o documento fique legível. No caso de fotografar, opte por utilizar luz natural e tome cuidado com sombras.
- Dica: Se for fotografar sua resolução com um *smartphone* ou *tablet*, utilize o aplicativo próprio da câmera, e evite fotografar através de WhatsApp, Telegram, Messenger, e outros. Os aplicativos de comunicação, ao utilizarem a câmera, fazem uma severa compressão da imagem, incorrendo em uma grande diminuição de sua qualidade. Para transferir a imagem do celular para o computador prefira fazer o envio por e-mail, ou acessando sua galeria de fotos através do Google Photos no computador (caso já utilize esse aplicativo para gerenciar suas fotos no aparelho).
- Independente do modo de escrita, a resolução deve ser entregue em um único documento, no formato PDF, com a resolução em pé (formato retrato). O *layout* da resolução não será levado em consideração na avaliação, porém o texto deve estar legível para ser corrigido.
 - Atenção: Resoluções ilegíveis ou fora desse formato não serão corrigidas e serão desconsideradas.
- A troca de conhecimento na realização da avaliação é permitida e encorajada: ciência se faz com colaboração, e devemos seguir esse espírito aqui. Porém, cada aluno deverá ter a sua própria resolução, e cópias ou outras ilegalidades serão severamente punidas com a anulação da avaliação para o(s) aluno(s) suspeito(s).
- Todos os passos de sua resolução devem ser devidamente justificados.
- Ao entregar essa avaliação, você afirma ter lido e estar de acordo com essas regras, comprometendo-se a cumpri-las.

Questão 1: Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias simétricas em torno de 0 tal que

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq \varepsilon\right) \leq e^{-3n\varepsilon^{2}/2}, \ \forall \varepsilon > 0.$$

Mostre que $\overline{X}_n \stackrel{qc}{\to} 0$.

Dica: Use a definição de convergência quase certa junto com os Lemas de Borel-Cantelli. Como não sabemos se as variáveis aleatórias em questão têm média finita, só podemos usar alguma Lei dos Grandes Números se você demonstrar tal fato a partir das hipóteses da questão.

Questão 2: Seja $(X_n)_{n \in \mathbb{N}}$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas, com distribuição de Bernoulli de parâmetro $0 . Considere, para <math>n \ge 1$, $Y_n = \prod_{i=1}^n X_i$. Faça o que se pede abaixo.

- a) Calcule $\mathbb{P}(Y_n > 0)$ e $\mathbb{E}[Y_n]$.
- b) Verifique se Y_n converge em probabilidade ou quase certamente, identificando a distribuição limite.

Questão 3: +

Seja X_1, X_2, \ldots, X_n variáveis aleatórias independentes e identicamente distribuídas, com distribuíção uniforme contínua no intervalo [-1, 1]. Defina $Y_n = \min(|X_1|, \ldots, |X_n|)$. Mostre que $Y_n \stackrel{p}{\to} 0$. Vale também que $Y_n \stackrel{qc}{\to} 0$?

Questão 4: Assuma que $(X_n)_{n\in\mathbb{N}}$ seja uma sequência de variáveis aleatórias descorrelacionadas, todas com média μ e variância σ^2 . Mostre que \overline{X}_n converge em média quadrática para μ .

Questão 5: A sequência $(X_n)_{n\in\mathbb{N}}$, onde $X_n \sim \mathcal{N}(n, \sigma^2)$ são variáveis aleatórias independentes, converge em distribuição para alguma variável aleatória?

Questão 6: Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas com média 0 e variância 2. Obtenha o limite em distribuição de

$$\frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

Questão 7: Use o Teorema Central do Limite para verificar os resultados abaixo:

- a) A probabilidade de se observar n ou mais vezes o número 6 em 6n lançamentos de um dado honesto converge para $\frac{1}{2}$. à medida que $n \to \infty$.
- b) O valor de $e^{-n}\left(1+\frac{n}{1!}+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}\right)$ converge para $\frac{1}{2}$, à medida que $n\to\infty$.