

Problem R-09N (C_5H_9DO) Yes, that's a deuterium. Determine the structure from the 200 MHz 1H NMR spectrum.

(a) DBE____ (b) Interpret the multiplets at δ 4.95 and δ 5.95. Report coupling in the standard format ($^{n}J_{x-y}$ = 00 Hz). Show part structure(s) suggested by these peaks

 $\delta \; 4.95$

 δ 5.95

(c) On the Hz scale below sketch what the proton at δ 5.95 would look like in the undeuterated compound (C $_5 H_{10} O)$

(d) Draw the structure of R-09N. If more than one structure is possible, then draw them, but circle the one you prefer.

(e) The boxed inset between δ 5.1 and 5.3 (reproduced below) is an 8x vertical expansion. Suggest what these small impurities might be due to, and assign the peaks..

5

3

7

4

Problem R-09N (C_5H_9DO) Yes, that's a deuterium. Determine the structure from the 200 MHz 1H NMR spectrum.

1 (a) DBE 1 (b) Interpret the multiplets at δ 4.95 and δ 5.95. Report coupling in the standard format ($^{n}J_{x-y} = 00 \text{ Hz}$). Show part structure(s) suggested by these peaks

The protons must be cis on the double bond to give a 10 Hz coupling

²J_{HD} is too small to detect (ca 0.4 Hz)

$$\delta$$
 5.95 d 1:1:1 t, ${}^{3}J_{\text{H-H}}$ = 10.5, ${}^{3}J_{\text{H-D}}$ = 2.5 Hz

The 1:1:1 triplet 2.5 Hz is J_{HD} , $J_{HH} = 2.5 \times 100/15.35 = 16.3 Hz$

 $J_{HH} = J_{HD} \times \gamma_H/\gamma_D$

(c) On the Hz scale below sketch what the proton at δ 5.95 would look like in the undeuterated compound (C₅H₁₀O)

dd, *J* = 16, 10 Hz

(d) Draw the structure of R-09N. If more than one structure is possible, then draw them, but circle the one you prefer.

$$\bigvee_{\mathsf{OH}}^{\mathsf{H}}$$

(e) The boxed inset between δ 5.1 and 5.3 (reproduced below) is an 8x vertical expansion. Suggest what these small impurities might be due to, and assign the peaks..

30 20 10 0 Hz

d, J= 16.5 Hz

H

OH

H

T

OH

H

OH

H

OH

H

OH

H

OH

H

OH

The impurities are a mixture of the undeuterated compund, and the compound with D in the trans position, about 4% of the sample

 $^2J_{\text{H-D}}$ is too small to detect (ca 0.4 Hz)

This is a bit of the undeuterated compound

There is a small H/D isotope shift, with the deuterated compound being slightly upfield of the protio ($\Delta\delta$ 15 ppb)

PLT ex-3-2009-10-gq.plt

