Trabajo práctico IPv6

1)

```
Adaptador de Ethernet Ethernet:

Sufijo DNS específico para la conexión. : fibertel.com.ar
Vínculo: dirección IPv6 local. . . : fe80::d8d3:e274:9b74:d47c%11
Dirección IPv4. . . . . . . . . : 192.168.0.19
Máscara de subred . . . . . . . : 255.255.255.0
Puerta de enlace predeterminada . . . . : 192.168.0.1
```

Podemos ver una dirección IPv6 local, con el prefijo fe80, una dirección IPv4 con máscara /24 y la puerta de enlace predeterminada.

Captura de paquetes

Paquete 1

8912 208.606443	fe80::d8d3:e274:9b7 ff02::16	ICMPv6	90 Multicast Listener Report Message v2
8918 208.618797	fe80::d8d3:e274:9b7 ff02::16	ICMPv6	90 Multicast Listener Report Message v2
8927 208.622397	fe80::d8d3:e274:9b7 ff02::16	ICMPv6	90 Multicast Listener Report Message v2
8929 208.622601	fe80::d8d3:e274:9b7 ff02::16	ICMPv6	90 Multicast Listener Report Message v2

Podemos visualizar varios paquetes desde un mismo origen hacia un mismo hacia un mismo destino, todos con protocolo ICMPv6.

Analizaremos uno de estos paquetes:

Cabecera IPv6

```
✓ Internet Protocol Version 6, Src: fe80::d8d3:e274:9b74:d47c, Dst: ff02::16
    0110 .... = Version: 6
  .... 0000 0000 .... .... ... = Traffic Class: 0x00 (DSCP: CS0, ECN: Not-ECT)
      .... 0000 00..... = Differentiated Services Codepoint: Default (0)
      .... .... 0000 0000 0000 0000 0000 = Flow Label: 0x00000
    Payload Length: 36
    Next Header: IPv6 Hop-by-Hop Option (0)
    Hop Limit: 1
    Source Address: fe80::d8d3:e274:9b74:d47c
    Destination Address: ff02::16

▼ IPv6 Hop-by-Hop Option

      Next Header: ICMPv6 (58)
      Length: 0
      [Length: 8 bytes]

▼ Router Alert

       > Type: Router Alert (0x05)
         Length: 2
         Router Alert: MLD (0)
    ∨ PadN
       > Type: PadN (0x01)
         Length: 0
         PadN: <none>
```

Dentro de los campos que vimos sobre la cabecera IPv6, podemos ver la versión(6), la clase de tráfico, la etiqueta de flujo, la longitud del payload(36); podemos destacar que la cabecera tiene un next header, que es una extensión Hop-by-Hop, la cual apunta un paquete ICMPv6, y también tiene dos opciones, Router Alert la cual indica al router que se necesita procesamiento adicional y PadN utilizado para insertar dos o más bytes de relleno los cuales provienen del router alert, y ambos tienen como acción ignorar y continuar. Luego podemos observar un límite de saltos de uno, la dirección de origen, la cual es mi dirección IPv6 local, y la dirección de destino, la cual es una dirección multicast.

Paquete ICMPv6

```
Tinternet Control Message Protocol v6
    Type: Multicast Listener Report Message v2 (143)
    Code: 0
    Checksum: 0x45cd [correct]
    [Checksum Status: Good]
    Reserved: 0000
    Number of Multicast Address Records: 1

V Multicast Address Record Changed to include: ff02::1:3
        Record Type: Changed to include (3)
        Aux Data Len: 0
        Number of Sources: 0
        Multicast Address: ff02::1:3
```

Dentro de los campos del mensaje ICMPv6 podemos observar el tipo(143), el código(0) y el checksum, el cual es correcto. Podemos observar que no se dio el proceso de Neighbor Discovery.

Analizando la dirección **ff02::1:3** podemos ver que el alcance es enlace hacia todos los nodos.

Paquete 2

10029 614.384643	fe80::c87:42c6:f7b6 ff02::2	ICMPv6	70 Router Solicitation from 10:1c:0c:41:c4:44
10128 619.348063	fe80::c87:42c6:f7b6 ff02::2	ICMPv6	70 Router Solicitation from 10:1c:0c:41:c4:44

Nuevamente podemos visualizar un par de paquetes desde un mismo origen hacia un mismo hacia un mismo destino, ambos con protocolo ICMPv6. Analizaremos uno de estos paquetes:

Cabecera IPv6

Dentro de los campos que vimos sobre la cabecera IPv6, podemos ver la versión(6), la clase de tráfico, la etiqueta de flujo, la longitud del payload(16); podemos destacar que la cabecera tiene un next header, que apunta hacia un paquete ICMPv6. Luego podemos observar un límite de saltos de 255, la dirección de origen, y la dirección de destino, la cual es una dirección multicast.

Paquete ICMPv6

```
Internet Control Message Protocol v6
   Type: Router Solicitation (133)
   Code: 0
   Checksum: 0x079e [correct]
   [Checksum Status: Good]
   Reserved: 00000000

ICMPv6 Option (Source link-layer address : 10:1c:0c:41:c4:44)
   Type: Source link-layer address (1)
   Length: 1 (8 bytes)
   Link-layer address: Apple_41:c4:44 (10:1c:0c:41:c4:44)
```

Dentro de los campos del mensaje ICMPv6 podemos observar el tipo(133), el código(0) y el checksum, el cual es correcto. Observando el tipo, el cual es router solicitation, utilizado con el proceso de Neighbor Discovery, podemos afirmar que este paquete participa de dicho proceso.

(Nota: No apareció ningún otro paquete con tipo distinto a 133 que se involucre en proceso de Neighbor Discovery)

2)

Verificación de la Red

b)

Dispo	sitivo	IPv6 habilitado	Dirección IP Local	Dirección IP Global
Routers0	Fa0/0	Si	FE80::2D0:D3FF:FEB4:1301	2001:DB8:1:0:2D0:D3FF:F EB4:1301
	Fa0/1	Si	FE80::2D0:D3FF:FEB4:1302	2001:DB8:2:0:2D0:D3FF:F EB4:1302
Routers1	Fa0/0	Si	FE80203.3EFF.FE41.001	2001:DB8:3:0:205:5EFF:FE 41:601
	Fa0/1	Si	FE80::205:5EFF:FE41:602	2001:DB8:2:0:205:5EFF:F E41:602

- I. Una dirección IPv6 tiene 128 bits.
- II. Direcciónes a analizar →

2001:DB8:1:0:2D0:D3FF:FEB4:1301

FE80::2D0:D3FF:FEB4:1301

En la estructura de una dirección Unicast Global vimos que los primeros N bits son el prefijo de enrutado global (generalmente son 48), luego sigue el identificador de subred con 64-N bits (generalmente 16) y al final el identificador de interfaz con 64 bits.

Prefijo de enrutado global → 2001:DB8:1

Prefijo de la subred → 0

ID de la interfaz → 2D0:D3FF:FEB4:1301

III. La dirección MAC de la interfaz Fa0/0 del router0 es 2D0:D3:B4:1301 y la relación que tiene con la IPv6 es que insertando FFFE en la MAC generamos el ID de la interfaz.

c)

Tabla de ruteo de router0:

```
Router>show ipv6 route
IPv6 Routing Table - 6 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
      U - Per-user Static route, M - MIPv6
      I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
      ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
      ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
      D - EIGRP, EX - EIGRP external
  2001:DB8:1::/64 [0/0]
    via ::, FastEthernet0/0
  2001:DB8:1:0:2D0:D3FF:FEB4:1301/128 [0/0]
    via ::, FastEthernet0/0
  2001:DB8:2::/64 [0/0]
    via ::, FastEthernet0/1
  2001:DB8:2:0:2D0:D3FF:FEB4:1302/128 [0/0]
    via ::, FastEthernet0/1
  2001:DB8:3::/64 [120/2]
    via FE80::205:5EFF:FE41:602, FastEthernet0/1
  FF00::/8 [0/0]
    via ::, Null0
```

Tabla de ruteo de router1:

```
Router>show ipv6 route
IPv6 Routing Table - 6 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route, M - MIPv6
      II - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
      ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
      ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
      D - EIGRP, EX - EIGRP external
  2001:DB8:1::/64 [120/2]
    via FE80::2D0:D3FF:FEB4:1302, FastEthernet0/1
  2001:DB8:2::/64 [0/0]
     via ::, FastEthernet0/1
  2001:DB8:2:0:205:5EFF:FE41:602/128 [0/0]
    via ::, FastEthernet0/1
  2001:DB8:3::/64 [0/0]
    via ::, FastEthernet0/0
  2001:DB8:3:0:205:5EFF:FE41:601/128 [0/0]
L
    via ::, FastEthernet0/0
   FF00::/8 [0/0]
    via ::, Null0
```

d)

Chequeo de conectividad extremo a extremo entre la PC0 y la PC1

```
Packet Tracer PC Command Line 1.0
C:\>ping 2001:DB8:3:0:201:C9FF:FE63:5AEB

Pinging 2001:DB8:3:0:201:C9FF:FE63:5AEB with 32 bytes of data:

Reply from 2001:DB8:3:0:201:C9FF:FE63:5AEB: bytes=32 time<lms TTL=126
Ping statistics for 2001:DB8:3:0:201:C9FF:FE63:5AEB:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

Creación de flujo de datos desde PC0 a PC1 y Visualización del encabezado de los paquetes enviados entre los dispositivos en la red

