CSE4203: Computer Graphics Chapter – 3 Raster Images

Mohammad Imrul Jubair

Outline

- Raster and Raster Images
- Display Devices
- Pixel Values
- RGB Color
- Alpha Compositing

Raster (1/1)

- Most computer graphics images are presented on raster display.
 - i.e. television
 - has rectangular array of small light-emitting pixels
 - individually set to different colors to create desired image.

Storing Images (1/2)

Raster Image:

 used to store and process images, as rasters are common in devices

- simply a 2D array
- stores the pixel value for each pixel
- usually a color stored as three numbers (r, g, b)

Storing Images (2/2)

- Vector Image:
 - storing descriptions of shapes
 - areas of color bounded by lines or curves
 - no reference to any pixel grid.

- Need to store instructions for displaying the image rather than the pixels needed to display it.
 - Q: Advantage/ Disadvantage?

Raster Devices (1/1)

Output

- Display
 - Transmissive: liquid crystal display (LCD)
 - Emissive: light-emitting diode (LED) display
- Hardcopy
 - Binary: ink-jet printer
 - Continuous tone: dye sublimation printer

Input

- 2D array sensor:
 - digital camera
- 1D array sensor:
 - flatbed scanner

Display Devices (1/1)

- Transmissive Displays:
 - require a light source to illuminate them
 - backlight behind the array
 - i.e. in a projector, a lamp emits light projected onto the screen after passing through the array.
- Emissive Display:
 - it is its own light source.

Emissive Displays (1/2)

- Emissive Displays:
 - Example: light-emitting diode (LED)
 - Each pixel is composed of one or more LEDs (semiconductor devices)
 - emit light with intensity ← electrical current passing

through them

Emissive Displays (2/2)

Sub-pixel:

- Pixels divided into three independently controlled subpixels (R, G, B)
 - each with own LED (different materials)
 - emit light of different colors

Transmissive Displays (1/2)

- Transmissive Displays:
 - Example: light crystal display (LCD)

- Molecular structure of liquid crystal rotates the polarization of light that passes through it
- LCDs also have sub-pixels.

Transmissive Displays (2/2)

Degree of rotation ← applied voltage

Pixel Values (1/3)

- Coordinate system for raster screen:
 - Convention:

Pixel Values (2/3)

- It is sufficient for pixels to have a bounded range, usually taken to be [0, 1] for simplicity.
 - i.e. possible values in an 8-bit image: {0, 1/255, 2/255,..., 254/255, 1}.
 - high dynamic range (HDR): stored with floatingpoint numbers, allowing a wide range of values.
 - low dynamic range (LDR): fixed-range images that are stored with integers.

Pixel Values (3/3)

Example

RGB Color (1/1)

black = (0, 0, 0), red = (1, 0, 0), green = (0, 1, 0), blue = (0, 0, 1), yellow = (1, 1, 0), magenta = (1, 0, 1), cyan = (0, 1, 1), white = (1, 1, 1)

Alpha Compositing (1/5)

- Partially overwriting the contents of a pixel.
 - Where we have a background and want to insert a foreground image over it.
 - Transparent
 - Opaque (not transparent)
 - Partially Transparent

Alpha Compositing (2/5)

- Partially transparent:
 - when the foreground object only partly covers the pixel
 - Seen through glass
 - or when there are sub-pixel holes
 - between the leaves of a distant tree.

foreground and background must be blended

Alpha Compositing (3/5)

$$c = \alpha c_f + (1 - \alpha) c_b$$

Alpha Compositing (4/5)

Alpha Mask:

– The α values for all the pixels is stored in a separate gray scale image.

Example - 1

Example - 2

Image Source: Internet

Alpha Compositing (5/5)

- Alpha Channel:
 - The α values are stored as a fourth channel in an RGB image
 - i.e. RGBA

Additional Reading

- 3.1.2: Hardcopy Devices.
- 3.2.1: Pixel formats with typical applications.
- 3.2.2: Monitor Intensities and Gamma.
- Frequently Asked Questions

Thank You