УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики

OT4ET

по лабораторной работе №16

«ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ ЗЕМЛИ»

Студент(ка)	
Группа	
Преподаватель	
Дата	

1. Расчетная формула для измеряемой величины

$$B = \frac{I \cdot r \cdot T}{4d^2 \cdot N},$$

r - _____

d - _____

2. Средства измерения и их характеристики

Наименование	Предел	Цена деления	Класс	Предел
средства	измерений	шкалы	точности,	основной
измерения			δ	погрешности,
				$\theta_{ m och}$
Микро-				
амперметр				
Нуль-				
гальванометр				
Секундомер				

Рекомендуемые данные:

где

$$d=(\qquad \pm \qquad)$$
 cm;

 $I_{\Gamma} = \pm MKA;$

 $I_{
m B}=$ \pm MKA; $r_{
m B}=$ \pm

3. Схема электрической цепи

И-____

Ом;

O_M.

 $r_{\Gamma} = \pm$

Γ-____

r - _____

μΑ - _____

K₁ - _____

K₂ - _____

- 3

R - _____

4. Результаты измерений

Определение периода вращения индуктора при изучении горизонтальной составляющей магнитной индукции

Таблица 1

Число оборотов индуктора	Показания секундомера, с	Период вращения индуктора $T_{i\Gamma}$, с	$(T_{i\Gamma}-<\!T_{\Gamma}>)$, c	$(T_{i\Gamma}-\langle T_{\Gamma}\rangle)^2,\mathrm{c}^2$
50				
50				
50				
50				
50				
Средний пе	риод $\langle T_{\Gamma} \rangle =$		$\sum_{i=1}^{5} \left(T_{i\Gamma} - \langle T_{\Gamma} \rangle \right)^2$	=

Определение периода вращения индуктора при изучении вертикальной составляющей магнитной индукции

Таблица 2

Число оборотов индуктора	Показания секундомера, с	Период вращения индуктора $T_{i\mathrm{B}}$, с	$(T_{i\mathrm{B}} - < T_{\mathrm{B}} >)$, c	$(T_{i\mathrm{B}} - < T_{\mathrm{B}} >)^2,\mathrm{c}^2$
50				
50				
50				
50				
50				
Средний пе	риод $\langle T_{\rm B} \rangle =$		$\sum_{i=1}^{5} (T_{iB} - \langle T_{B} \rangle)^{2}$	=

5. Расчет искомой величины:

$$egin{align*} \left\langle B_{\Gamma}
ight
angle &= rac{I_{\Gamma} \cdot r_{\Gamma} \cdot \left\langle T_{\Gamma}
ight
angle}{4d^2 \cdot N} = & & \text{Тл.} \ \\ \left\langle B_{\mathrm{B}}
ight
angle &= rac{I_{\mathrm{B}} \cdot r_{\mathrm{B}} \cdot \left\langle T_{\mathrm{B}}
ight
angle}{4d^2 \cdot N} = & & \text{Тл.} \ \end{aligned}$$

6. Расчет границы относительной погрешности результата измерений

6.1. Для горизонтальной составляющей:

$$\Delta_{I} = \theta_{I} = 1.1 \sqrt{\left(I_{\text{max}} \frac{\delta}{100}\right)^{2} + \left(\frac{C}{2}\right)^{2}} = MKA.$$

$$\Delta_{r} = \theta_{r} = OM.$$

$$\Delta_{d} = CM.$$

$$\varepsilon_{T} = t_{p,n} \cdot \sqrt{\frac{\sum_{i=1}^{n} (T_{i\Gamma} - \langle T_{\Gamma} \rangle)^{2}}{n(n-1)}} = c.$$

$$\Delta_{\langle T \rangle} = \sqrt{\theta_{\langle T \rangle}^2 + \varepsilon_T^2} =$$

$$\gamma_{\scriptscriptstyle B_{\scriptscriptstyle \Gamma}} = \frac{\Delta_{\scriptscriptstyle B_{\scriptscriptstyle \Gamma}}}{\left\langle B_{\scriptscriptstyle \Gamma} \right\rangle} = \sqrt{\left(\frac{\Delta_{\scriptscriptstyle I}}{I}\right)^2 + \left(\frac{\Delta_{\scriptscriptstyle r}}{r}\right)^2 + \left(2\frac{\Delta_{\scriptscriptstyle d}}{d}\right)^2 + \left(\frac{\Delta_{\left\langle T \right\rangle}}{\left\langle T_{\scriptscriptstyle \Gamma} \right\rangle}\right)^2} =$$

6.2. Для вертикальной составляющей:

$$\Delta_{I} = \theta_{I} = 1,1 \sqrt{\left(I_{\text{max}} \frac{\delta}{100}\right)^{2} + \left(\frac{C}{2}\right)^{2}} =$$

$$\Delta_{r} = \theta_{r} =$$

$$Om.$$

$$\Delta_{d} =$$

$$cm.$$

$$\varepsilon_{T} = t_{p,n} \cdot \sqrt{\frac{\sum_{i=1}^{n} (T_{iB} - \langle T_{B} \rangle)^{2}}{n(n-1)}} = c.$$

$$\Delta_{\langle T \rangle} = \sqrt{\theta_{\langle T \rangle}^{2} + \varepsilon_{T}^{2}} = c.$$

$$\Delta_{Rp} = \sqrt{(\Delta_{I})^{2} + (\Delta_{T})^{2} + (\Delta_{I})^{2} + (\Delta_{I})^{2}} = c.$$

$$\gamma_{B_{\rm B}} = \frac{\Delta_{B_{\rm B}}}{\langle B_{\rm B} \rangle} = \sqrt{\left(\frac{\Delta_{I}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{r}\right)^{2} + \left(2\frac{\Delta_{d}}{d}\right)^{2} + \left(\frac{\Delta_{\langle T \rangle}}{\langle T_{\rm B} \rangle}\right)^{2}} = \frac{\Delta_{B_{\rm B}}}{\langle B_{\rm B} \rangle} = \sqrt{\left(\frac{\Delta_{I}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{I}\right)^{2}} = \frac{\Delta_{B_{\rm B}}}{\langle T_{\rm B} \rangle} = \sqrt{\left(\frac{\Delta_{I}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{I}\right)^{2}} = \frac{\Delta_{B_{\rm B}}}{\langle T_{\rm B} \rangle} = \sqrt{\left(\frac{\Delta_{I}}{I}\right)^{2} + \left(\frac{\Delta_{r}}{I}\right)^{2}} = \frac{\Delta_{B_{\rm B}}}{\langle T_{\rm B} \rangle} =$$

7. Расчет границы абсолютной погрешности результата измерений

$$\Delta_{B_{\Gamma}} = \gamma_{B_{\Gamma}} \cdot \langle B_{\Gamma} \rangle =$$
 T_{Π} . $\Delta_{B_{B}} = \gamma_{B_{B}} \cdot \langle B_{B} \rangle =$ T_{Π} .

4

8. Окончательный результат:

$$B_{\Gamma} = \langle B_{\Gamma} \rangle \pm \Delta_{B_{\Gamma}} = \pm$$
 \pm $T_{\Pi}; \qquad P = 0.95.$ $B_{B} = \langle B_{B} \rangle \pm \Delta_{B_{B}} = \pm$ \pm $T_{\Pi}; \qquad P = 0.95.$

9. Выводы.