Neural Networks & Al

Pablo Maldonado

Artificial intelligence (AI), the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings. Encyclopaedia Britannica, 2018

Al Timeline

Packto

Several alchemists claim to have created mechanical humans 1769:

First chess-playing automaton (The Turk)

Antiquity:

Sacred automatons venerated in Egypt and Greece. 1642:

Blaise Pascal invents the first digital calculating machine

1822-1859:

Charles Babbage and Ada Lovelace work on programmable mechanical calculating machines

Packto

Modern Al Timeline: 1950-1956

The Golden Years (1956-1964)

1958, H. A. Simon and Allen Newell: "within ten years a digital computer will be the world's chess champion" and "within ten years a digital computer will discover and prove an important new mathematical theorem.,

1965, H. A. Simon: "machines will be capable, within twenty years, of doing any work a man can do.,"

1970, Marvin Minsky (in Life Magazine): "In from three to eight years we will have a machine with the general intelligence of an average human being."

50de1

Neural Networks

Packto

Machine Learning

Machine Learning is the study and production of algorithms that can learn from and make predictions on data

Different Types of Learning

Supervised Learning: Estimate a target variable from input data using collected samples.

Unsupervised Learning: Deduce structure within the data.

Reinforcement Learning: Learn from an environment through indirect feedback about the correct choice.

Different Types of Algorithms

Supervised Learning: Linear Regression, Decision Trees, Support Vector Machines, ...

Unsupervised Learning: K-Means, hierarchical clustering, ...

Reinforcement Learning: Q-Learning, Sarsa, Policy Gradients, Evolutionary Computation ...

How much do algorithms matter?

Getting the data in a suitable shape for modelling is time consuming and error prone.

In addition to data reshaping, some higher-level abstraction from those features is often needed. This is also a manual and error-prone task.

Under certain conditions, all that complexity can be removed using more powerful algorithms... enter **Deep Learning**.

Deep Learning

Deep learning algorithms seek to exploit the unknown structure in the input distribution in order to discover good representations, often at multiple levels, with higher-level learned features defined in terms of lower-level features

Yoshua Bengio

Tensorflow Demo

playground.tensorflow.org

Why not "normal" machine learning?

•Deep Learning allows us to learn more complicated relationships between the data.

•The performance of a deep learning model **increases** when you add more data, as opposed to other machine learning algorithms.

Not a silver bullet: Issues will be discussed later.

Different Types of Algorithms Architectures

- •Supervised Learning: Linear Regression, Decision Trees, Support Vector Machines, Multi-Layer Perceptron, Convolutional Neural Networks, Recurrent Neural Networks ...
- •Unsupervised Learning: K-Means, hierarchical clustering, Autoencoders...
- •Reinforcement Learning: Q-Learning, Sarsa, Policy Gradients, Evolutionary Computation, Deep Q-Learning, Deep Cross Entropy Method ...

Neural Network Architectures

Autoencoders

•Autoencoders consist of two parts: an **encoder** and a **decoder** network.

•The goal is to create a model that detects abstract features in the data by projecting to a lower dimensional space, and then decompressing that information.

This can be useful for outlier detection.

50de1

Autoencoders

Original

Reconstructed

Architecture

Convolutional Neural Networks

•ImageNet Project: Largely seen as the project that brought neural networks to the main stage.

- •ImageNet consists of around 14 million URLs of images manually annotated in over 20 thousand ambiguous categories.
- •AlexNet, GoogleNet, VGG and more recently, ResNet.

Convolutional Neural Networks

Stride 1 with Padding

Feature Map

AlexN

Recurrent Neural Networks

Recurrent Neural Networks mimic a distinctive characteristic of intelligence: **memory**.

This allows them to capture long-term dependencies between the data.

Example applications

- Sequence-to-sequence translation
- Text generation
- Automatic caption generation
- Music generation

Soccer Match Prediction

playground.tensorflow.org