PROGRAMAÇÃO DINÂMICA

Principais características:

- (i) <u>Etapas</u> São os diferentes níveis naturais em que se pode dividir um problema. Em cada uma delas estabelece-se um plano de decisões.
- (ii) <u>Estados</u> Cada etapa terá associado um determinado número de estados (finito ou infinito, discreto ou contínuo dependendo da natureza do problema). Em geral os estados são as várias condições possíveis nos quais o sistema se pode apresentar numa dada etapa.
- (iii) <u>Decisões</u> Segundo um determinada plano o seu efeito em cada etapa é transformar o estado corrente num outro estado associado à etapa seguinte. Essa transformação pode eventualmente obedecer a uma distribuição de probabilidade, contudo os casos apresentados são de carácter determinístico e não probabilístico.
- (iv) <u>Princípio de Optimalidade</u> Todo o problema resolúvel por Programação Dinâmica tem de obedecer a este princípio, isto é, as suas características têm de ser tais que o conhecimento do estado corrente do sistema contenha toda a informação à cerca do seu prévio comportamento, necessária à determinação do plano óptimo a partir dele.

- (v) "<u>Backward</u>" O processo de resolução começa por determinar o plano óptimo para cada estado da última etapa até encontrar o plano óptimo para a etapa inicial. Esta é a única maneira correcta de proceder relativamente a problemas cujas as etapas correspondem a períodos de tempo. Se tal não for o caso, o processo de resolução é reversível, ou seja poder-se-á também usar o sentido "Forward".
- (vi) <u>Recursividade</u> É uma relação funcional que identifica o plano óptimo para cada estado na etapa genérica n, dado o plano óptimo da etapa seguinte, isto é, dado o plano óptimo para cada estado da etapa (n+1). Esta relação varia com o problema em causa.

(vii) Notação usual

 x_n - variável de decisão na etapa n (n = 1,...,N);

 s_n - elemento do conjunto de estados da etapa n (n = 1,...,N);

 x_n^* - o valor óptimo de x_n dado s_n ;

 $f_n(s_n,x_n)$ - contribuição das etapas n, n+1,..., N para a função objectivo se o sistema parte de um estado s_n na etapa n e se toma a decisão x_n ;

$$f_n(s_n, x_n^*) = f_n^*(s_n) = opt\{f_n(s_n, x_n)\}$$
 - para todas as decisões admissíveis x_n .

(viii) Em todos os problemas de programação dinâmica usamos uma tabela da forma:

S	$f_n^*(s)$	x_n^*
:	::	

Exemplo 1: Determine o caminho mais curto entre o nó 1 e o nó 10 da seguinte rede orientada:

Formulação em Programação Inteira 0-1:

Sejam V o conjunto de nós da rede e A o conjunto de arcos da rede, isto é:

$$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{(1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7), (4,5), (4,6), (4,7), (5,8), (5,9), (6,8), (6,9), (7,8), (7,9), (8,10), (9,10)\}$$

Se

$$x_{ij} = \begin{cases} 1 \text{ se o arco } (i,j) \text{ pertence ao caminho entre 1 e 10} \\ 0 \text{ caso contrário} \end{cases}, \quad (i,j) \in A.$$

Então o problema pode ser formulado do seguinte modo:

minimize
$$z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

sujeito a

$$\sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = \begin{cases} 1 & \text{se } i = 1 \\ 0 & \text{se } i \in N - \{1,10\} \\ -1 & \text{se } i = 10 \end{cases}$$

$$x_{ij} \in \{0,1\}, \quad (i,j) \in A$$

Formulação em Programação Dinâmica:

Sejam $V_0 = \{1\}$, $V_1 = \{2,3,4\}$, $V_2 = \{5,6,7\}$, $V_3 = \{8,9\}$ e $V_4 = \{10\}$, então o problema pode ser formulado em termos de programação dinâmica do seguinte modo:

Etapas: N = 4;

Estados: s_n é um elemento do conjunto V_{n-1} (n = 1,...,4);

<u>Decisão</u>: x_n é o nó a escolher na etapa n;

Recursividade:

• O custo do caminho mais curto entre o nó s_n e o nó 10

$$f_n^*(s_n) = \min_{x_n \in V_n} \{c_{s_n x_n} + f_{n+1}^*(x_n)\}, n = 4, 3, 2, 1.$$

• O custo do caminho mais curto entre o nó s_n e o nó 10 com passagem por x_n é dado por

$$f_n(s_n,x_n) = c_{s_nx_n} + f_{n+1}^*(x_n)$$

• O custo do caminho mais curto entre o nó 10 e o nó 10 é por definição igual a zero, isto é,

$$f_5^*(\bullet) = 0$$

acordo com a tabela

Resolução:

n = 4 (falta uma etapa para cumprir)

	$f_4(s_4, x_4) = c_{s_4x_4} + f_5^*(\bullet)$		
x_4	10	$f_4^*(s_4)$	x_4^*
→ 8	3	3	10→
9	4	4	10

n = 3 (faltam duas etapas para cumprir)

	$f_3(s_3,x_3) = c_s$	$f_{3}x_{3} + f_{4}^{*}(x_{3})$		
x_3	8	9	$f_3^*(s_3)$	<i>x</i> ₃ *
→ 5	4	8	4	8→
6	9	7	7	9
7	6	7	6	8

n = 2 (faltam três etapas para cumprir)

	$f_2(s_2,x_2)$	$_2) = c_{s_2 x_2}$			
s_2 s_2	5	6	7	$f_2^*(s_2)$	x_2^*
2	11	11	12	11	5 ou 6
→ 3	7	9	10	7	5 →
4	8	8	11	8	5 ou 6

n = 1 (faltam quatro etapas para cumprir)

Solução óptima:

$$1 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 10$$
 ou, $1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 10$ ou, $1 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 10$.

Exemplo 2: Um estudante de Engenharia Informática dispõe de 7 dias para melhorar a sua preparação académica antes dos exames finais a 4 cursos (cadeiras) e quer distribui-los de uma forma eficiente. Sabe que precisa de pelo menos 1 dia para cada curso, quer concentrar-se apenas num curso todo o dia e deseja atribuir 1, 2, 3 e 4 dias a cada curso. Tendo obtido aprovação em Investigação Operacional, decide usar a Programação Dinâmica para encontrar uma distribuição óptima com o fim de maximizar o total de créditos a obter dos cursos, partindo do conhecimento duma estimativa correcta do número de

créditos a obter por cada curso, resultantes do tempo (em dias) dedicados de

nº de dias	curso					
de estudo	1	2	3	4		
1	3	5	2	6		
2	5	5	4	7		
3	6	6	7	9		
4	7	9	8	9		

Formulação em Programação Inteira 0-1:

Seja c_{ij} o número de créditos obtidos quando o estudante dedica i dias ao curso j (i = 1,...,4; j = 1,...,4). Se

$$x_{ij} = \begin{cases} 1 & \text{se o estudante dedica } i \text{ dias ao estudo do curso } j \\ 0 & \text{caso contrário} \end{cases} i, j = 1, ..., 4.$$

Então o problema pode ser formulado do seguinte modo:

$$\begin{aligned} \text{maximize } z &= \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij} x_{ij} \\ \text{sujeito } a & \sum_{j=1}^{4} x_{1j} + \sum_{j=1}^{4} 2 x_{2j} + \sum_{j=1}^{4} 3 x_{3j} + \sum_{j=1}^{4} 4 x_{4j} = 7 \\ & \sum_{i=1}^{4} x_{ij} = 1, \quad j = 1, ..., 4 \\ & x_{ij} \in \{0,1\}, \quad i = 1, ..., 4; \quad j = 1, ..., 4 \end{aligned}$$

Formulação em Programação Dinâmica:

Seja $c_n(x_n)$ o número de créditos obtidos quando o estudante dedica x_n dias ao estudo do curso n, então o problema pode ser formulado em termos de programação dinâmica do seguinte modo:

Etapas: N = 4 (4 decisões interrelacionadas quanto ao número de dias a dedicar a cada curso);

Estados: s_n é o número de dias de estudo ainda disponíveis para as etapas n, n+1,..., N.

<u>Decisões</u>: x_n é o número de dias a dedicar ao curso (etapa) n. Em todas as etapas as decisões possíveis são 1, 2, 3 ou 4.

Recursividade:

• O número de créditos que o aluno obtém da etapa n para a última etapa sabendo que tem disponíveis s_n dias e na etapa n toma a decisão x_n é dado por

$$f_n(s_n, x_n) = c_n(x_n) + max \left(\sum_{i=n+1}^4 c_i(x_i)\right) \text{ com } \sum_{i=n}^N x_i = s_n$$

• O número de créditos que o aluno obtém da etapa n para a última etapa sabendo tem disponíveis s_n dias é dado por

$$f_n^*(s_n) = \max_{x_n = 1, 2, \dots, s_n} f_n(s_n, x_n)$$

• O número de créditos que o aluno obtém na etapa 5 é por definição igual a zero, isto é,

$$f_5^*(\bullet) = 0$$

Nota - Destas relações podemos concluir que:

$$f_n(s_n,x_n) = c_n(x_n) + f_{n+1}^*\underbrace{(s_n - x_n)}_{s_{n+1}}$$

Resolução:

Estados	n = 1		n=2		n = 3		n = 4	
possíveis	f_1^*	x_1^*	f_2^*	x_2^*	f_3^*	<i>x</i> ₃ *	f_4^*	x_{4}^{*}
1	_	_	_	_	_	_	6	1
2	_	_	_	_	8	1	7	2
3	_	_	13	1	10	2	9	3
4	_	_	15	1	13	3	9	4
5	_	_	18	1	14	3 ou 4	_	_
6	_	_	19	1	_	_	_	_
7	23	2	_	_	_	_	_	_

Solução óptima:

$$s_1 = 7$$

 $x_1^* = 2 \Rightarrow s_2 = s_1 - x_1^* = 5$
 $x_2^* = 1 \Rightarrow s_3 = s_2 - x_2^* = 4$
 $x_3^* = 3 \Rightarrow s_4 = s_3 - x_3^* = 1$
 $x_4^* = 1$

O estudante deve dedicar 2 dias ao curso 1, 1 ao curso 2, 3 ao curso 3 e 1 ao curso 4.

Programação Dinâmica Jorge P. J. Santos

Formulação em Programação Dinâmica:

Seja $p_n(x_n)$ a probabilidade de falhar a equipa n se ela tiver x_n novos cientistas, então o problema pode ser formulado em termos de programação dinâmica do seguinte modo:

Etapas: N = 3 (3 decisões interrelacionadas quanto ao número de novos cientistas a atribuir a cada equipa de investigação);

Estados: s_n é o número de novos cientistas ainda disponíveis para as etapas n, n+1,..., N.

<u>Decisões</u>: x_n é o número de novos cientistas colocados na equipa (etapa) n. Em todas as etapas as decisões possíveis são 0, 1 ou 2.

Recursividade:

• A probabilidade de falhanço da etapa n para a última etapa sabendo que tem disponíveis s_n novos cientistas e na etapa n toma a decisão x_n é dada por

$$f_n(s_n, x_n) = p_n(x_n) \times min \left(\prod_{i=n+1}^3 p_i(x_i)\right) \text{ com } \sum_{i=n}^N x_i = s_n$$

• A probabilidade de falhanço da etapa *n* para a última etapa sabendo que existem *s_n* novos cientistas é dada por

$$f_n^*(s_n) = \min_{x_n = 0, 1, \dots, s_n} f_n(s_n, x_n)$$

 A probabilidade de falhanço na etapa 4 é por definição igual a um, isto é,

$$f_4^*(\bullet) := 1$$

Nota - Destas relações podemos concluir que:

$$f_n(s_n,x_n) = p_n(x_n) \times f_{n+1}^* \underbrace{(s_n - x_n)}_{s_{n+1}}$$

Exemplo 3: Um projecto espacial governamental, que conduz investigação num dado problema de engenharia, deverá estar resolvido antes de o homem partir para Marte. Neste momento existem três equipas de investigação a ensaiar três abordagens diferentes de solução. Foram feitas estimativas que sob as circunstâncias actuais dão as probabilidades de não triunfarem:

equipa $1 \rightarrow 0.40$; equipa $2 \rightarrow 0.60$; equipa $3 \rightarrow 0.80$ com uma probabilidade total de falhanço de 0.192 (= $0.40 \times 0.60 \times 0.80$). Fora então tomada a decisão de destinar mais 2 cientistas de craveira ao projecto, entre as três equipas afim de baixar aquela probabilidade de falhar. Como distribuir os dois cientistas por forma a minimizar a probabilidade total de falhanço, sabendo que as novas probabilidades são dadas pela seguinte tabela:

nº de novos cientistas	Equipa 1	Equipa 2	Equipa 3
0	0.40	0.60	0.80
1	0.20	0.40	0.50
2	0.15	0.20	0.30

Formulação em Programação Inteira 0-1:

Seja p_{ij} a probabilidade da equipa j falhar quando é constituída por mais i novos cientistas (i = 0,1,2; j = 1,2,3). Se

$$x_{ij} = \begin{cases} 1 & \text{se a equipa } j \text{ tem } i \text{ novos cientistas} \\ 0 & \text{caso contrário} \end{cases}$$
 $i = 0,1,2; \quad j = 1,2,3.$

Então o problema pode ser formulado do seguinte modo:

minimize
$$z = \prod_{j=1}^{3} \sum_{i=0}^{2} p_{ij} x_{ij}$$

sujeito $a = \sum_{j=1}^{3} x_{1j} + \sum_{j=1}^{3} 2x_{2j} = 2$

$$\sum_{i=0}^{2} x_{ij} = 1, \quad j = 1,2,3$$

$$x_{ij} \in \{0,1\}, \quad i = 0,1,2; \quad j = 1,2,3$$

Resolução:

Estados	n = 1		n=2		n=3	
possíveis	f_1^*	x_1^*	f_2^*	x_2^*	f_3^*	<i>x</i> ₃ *
0	0.192	0	0.48	0	0.80	0
1	0.096	1	0.30	0	0.50	1
2	0.060	1	0.16	2	0.30	2

Solução óptima:

$$s_1 = 2$$

 $x_1^* = 1 \Rightarrow s_2 = s_1 - x_1^* = 1$
 $x_2^* = 0 \Rightarrow s_3 = s_2 - x_2^* = 1$

$$x_3^* = 1$$

Assim, as equipas 1, 2 e 3 devem ter, respectivamente, 1, 0 e 1 novos cientistas.

Exemplo 4: Uma determinada empresa investe determinado capital C na compra de dois tipos de equipamento (I e II). Se x é a quantidade investida na compra de equipamento do tipo I, o lucro correspondente no final de um ano é $g_1(x)$ e o lucro proveniente do investimento de C - x na compra de equipamento de tipo II será de $g_2(C - x)$. A política da empresa consiste em vender esse equipamento ao fim de um ano. O retorno da venda desse equipamento no fim do período t é:

- equipamento I:
$$p_t \times x$$
, $0 \le p_t < 1$;

- equipamento II:
$$q_t \times (C - x)$$
, $0 \le q_t < 1$.

No fim de cada período t (neste caso um ano) a companhia reinveste o dinheiro proveniente das vendas na compra de novo equipamento. Este processo é repetido nos próximos N anos (períodos) com as mesmas funções lucro g_1 e g_2 . Formule e resolva o problema considerando os seguintes dados para N=5.

t	1	2	3	4	5
p_t	0.6	0.9	0.4	0.5	0.9
q_t	0.6	0.1	0.5	0.7	0.5

$$C = 10000 \text{ (u.m.)}, \quad g_1(z) = 0.5z, \quad g_2(z) = 0.7z$$

Formulação em Programação Linear:

Sejam C o capital inicial e C_t o capital disponível para investir no período t (t=1,2,3,4,5). Se representarmos por x_t o capital investido na compra de equipamento I no período t, então o problema pode ser formulado do seguinte modo:

maximize
$$z = \sum_{i=1}^{N} [g_1(x_i) + g_2(C_i - x_i)]$$

sujeito a $C_1 = 10000$
 $C_i = p_{i-1}x_{i-1} + q_{i-1}(C_{i-1} - x_{i-1}), i = 2,3,4,5$
 $0 \le x_i \le C_i, i = 1,2,3,4,5$

Formulação em Programação Dinâmica:

Etapas: N = 5 (5 decisões interrelacionadas correspondentes aos cinco anos de investimento);

Estados: s_n é o capital disponível para investir no inicio da etapa n (n=1,...,5).

$$s_1 = C$$

$$s_n = p_{n-1}(x_{n-1}) + q_{n-1}(s_{n-1} - x_{n-1}), \qquad i = 2,3,4,5$$

<u>Decisões</u>: x_n representa a quantia a investir na compra de equipamento I, em cada etapa n (n=1,....5).

Recursividade para a função Lucro Bruto:

• O Lucro Bruto obtido da etapa n para a última etapa sabendo que estão disponíveis s_n u.m. e na etapa n é investido x_n u.m. no equipamento 1 é dado por

$$f_n(s_n, x_n) = p_n x_n + q_n(s_n - x_n) + g_1(x_n) + g_2(s_n - x_n) +$$

$$+ \max_{x_i} \left(\sum_{i=n+1}^{N} (p_i x_i + q_i(s_i - x_i) + g_1(x_i) + g_2(s_i - x_i)) \right)$$

 O Lucro Bruto obtido da etapa n para a última etapa sabendo que estão disponíveis s_n u.m. é dado por

$$f_n^*(s_n) = \max_{0 \le x_n \le s_n \text{ e } 0 \le x_1 \le C} f_n(s_n, x_n)$$

 O Lucro Bruto obtido da etapa 6 é por definição igual a zero, isto é.

$$f_6^*(\bullet) = 0$$

Nota - Destas relações podemos concluir que:

$$f_n(s_n, x_n) = p_n x_n + q_n(s_n - x_n) + g_1(x_n) + g_2(s_n - x_n) + f_{n+1}^* \underbrace{\left(p_n x_n + q_n(s_n - x_n)\right)}_{S_{n+1}}$$

Recursividade para a função Lucro Líquido:

• O Lucro Líquido obtido da etapa n para a última etapa sabendo que estão disponíveis s_n u.m. e na etapa n é investido x_n u.m. no equipamento 1 é dado por

$$f_n(s_n, x_n) = g_1(x_n) + g_2(s_n - x_n) +$$

$$+ \max_{x_i} \left(\sum_{i=n+1}^{N} (g_1(x_i) + g_2(s_i - x_i)) \right)$$

• O Lucro Líquido obtido da etapa n para a última etapa sabendo que estão disponíveis s_n u.m. é dado por

$$f_n^*(s_n) = \max_{0 \le x_n \le s_n \text{ e } 0 \le x_1 \le C} f_n(s_n, x_n)$$

• O Lucro Líquido obtido na etapa 6 é por definição igual ao capital resultante da venda dos equipamentos no último ano, isto é,

$$f_6^*(\bullet) := p_5 x_5 + q_5 (s_5 - x_5)$$

Nota - Destas relações podemos concluir que:

$$f_n(s_n, x_n) = g_1(x_n) + g_2(s_n - x_n) + f_{n+1}^* \underbrace{(p_n x_n + q_n(s_n - x_n))}_{s_{n+1}}$$

Resolução usando a função Lucro Bruto:

$$n = 5$$

$$f_5(s_5, x_5) = p_5 x_5 + q_5(s_5 - x_5) + g_1(x_5) + g_2(s_5 - x_5) + f_6^*(\bullet)$$

$$= 0.9 x_5 + 0.5(s_5 - x_5) + 0.5x_5 + 0.7(s_5 - x_5) + 0$$

$$= 0.2x_5 + 1.2s_5$$

$$0 \le x_5 \le s_5$$
 com

$$s_{5} = p_{4}x_{4} + q_{4}(s_{4} - x_{4}) = 0.5x_{4} + 0.7(s_{4} - x_{4}) = -0.2x_{4} + 0.7s_{4}$$

$$f_{5}^{*}(s_{5}) = \max_{0 \le x_{5} \le s_{5}} \{f_{5}(x_{5}, s_{5})\} = \max_{0 \le x_{5} \le s_{5}} \{0.2x_{5} + 1.2s_{5}\}$$

$$= 0.2(-0.2x_{4} + 0.7s_{4}) + 1.2(-0.2x_{4} + 0.7s_{4}) = -0.28x_{4} + 0.98s_{4}$$

$$\frac{\partial f_{5}}{\partial x_{5}} > 0$$

Em síntese temos

n	$f_5(s_5,x_5)$	$\frac{\partial f_5}{\partial x_5}$	x_5	x_5^*	$f_5^*(s_5)$
5	$0.2x_5+1.2s_5$	> 0	$[0,-0.2x_4+0.7s_4]$	$-0.2x_4+0.7s_4$	$-0.28x_4+0.98s_4$

n=4

$$f_4(s_4, x_4) = p_4 x_4 + q_4(s_4 - x_4) + g_1(x_4) + g_2(s_4 - x_4) + f_5^*(s_5)$$

$$= 0.5 x_4 + 0.7(s_4 - x_4) + 0.5 x_4 + 0.7(s_4 - x_4) + (-0.28 x_4 + 0.98 s_4)$$

$$= -0.68 x_4 + 2.38 s_4$$

 $0 \le x_A \le s_A \text{ com}$

$$s_{4} = p_{3}x_{3} + q_{3}(s_{3} - x_{3}) = 0.4x_{3} + 0.5(s_{3} - x_{3}) = -0.1x_{3} + 0.5s_{3}$$

$$f_{4}^{*}(s_{4}) = \max_{0 \le x_{4} \le s_{4}} \left\{ f_{4}(x_{4}, s_{4}) \right\} = \max_{0 \le x_{4} \le s_{4}} \left\{ -0.68x_{4} + 2.38s_{4} \right\}$$

$$= 2.38(-0.1x_{3} + 0.5s_{3}) = -0.238x_{3} + 1.19s_{3}$$

$$\frac{\sigma_{4}}{\sigma_{3}} < 0$$

Em síntese temos

i	n	$f_4(s_4,x_4)$	$\frac{\mathcal{J}_4}{\partial x_4}$	x_4	x_4^*	$f_4^*(s_4)$
4	4	$-0.68x_4+2.38s_4$	< 0	$[0,-0.1x_3+0.5s_3]$	0	$-0.238x_3+1.19s_3$

n=3

$$f_3(s_3, x_3) = p_3 x_3 + q_3(s_3 - x_3) + g_1(x_3) + g_2(s_3 - x_3) + f_4^*(s_4)$$

$$= 0.4x_3 + 0.5(s_3 - x_3) + 0.5x_3 + 0.7(s_3 - x_3) + (-0.238x_3 + 1.19s_3)$$

$$= -0.538x_3 + 2.39s_3$$

 $0 \le x_3 \le s_3$ com

$$s_{3} = p_{2}x_{2} + q_{2}(s_{2} - x_{2}) = 0.9x_{2} + 0.1(s_{2} - x_{2}) = 0.8x_{2} + 0.1s_{2}$$

$$f_{3}^{*}(s_{3}) = \max_{0 \le x_{3} \le s_{3}} \{f_{3}(x_{3}, s_{3})\} = \max_{0 \le x_{3} \le s_{3}} \{-0.538x_{3} + 2.39s_{3}\}$$

$$= 2.39(0.8x_{2} + 0.1s_{2}) = 1.912x_{2} + 0.239s_{2}$$

$$\frac{\mathcal{J}_{3}}{\mathcal{A}_{3}} < 0$$

Em síntese temos

n	$f_3(s_3,x_3)$	$\frac{\partial f_3}{\partial x_3}$	<i>x</i> ₃	<i>x</i> [*] ₃	$f_3^*(s_3)$
3	$-0.538x_3+2.39s_3$	< 0	$[0,0.8x_2+0.1s_2]$	0	$1.912x_2 + 0.239s_2$

$$n = 2$$

$$f_2(s_2, x_2) = p_2 x_2 + q_2(s_2 - x_2) + g_1(x_2) + g_2(s_2 - x_2) + f_3^*(s_3)$$

$$= 0.9 x_2 + 0.1(s_2 - x_2) + 0.5 x_2 + 0.7(s_2 - x_2) + (1.912 x_2 + 0.239 s_2)$$

$$= 2.512 x_2 + 1.039 s_2$$

 $0 \le x_2 \le s_2$ com

$$s_{2} = p_{1}x_{1} + q_{1}(s_{1} - x_{1}) = 0.6x_{1} + 0.6(s_{1} - x_{1}) = 0.6s_{1}$$

$$f_{2}^{*}(s_{2}) = \max_{0 \le x_{2} \le s_{2}} \{f_{2}(x_{2}, s_{2})\} = \max_{0 \le x_{2} \le s_{2}} \{2.512x_{2} + 1.039s_{2}\}$$

$$= 2.512(0.6s_{1}) + 1.039(0.6s_{1}) = 2.1306s_{1}$$

$$\frac{df_{2}}{dx_{2}} > 0$$

Em síntese temos

n	$f_2(s_2,x_2)$	$\frac{\partial f_2}{\partial x_2}$	x_2	x_2^*	$f_2^*(s_2)$
2	$2.512x_2+1.039s_2$	> 0	$[0,0.6s_1]$	$0.6s_1$	$2.1306s_1$

n = 1

$$f_1(s_1, x_1) = p_1 x_1 + q_1(s_1 - x_1) + g_1(x_1) + g_2(s_1 - x_1) + f_2^*(s_2)$$

$$= 0.6x_1 + 0.6(s_1 - x_1) + 0.5x_1 + 0.7(s_1 - x_1) + 2.1306s_1$$

$$= -0.2x_1 + 3.4306s_1$$

$$0 \le x_1 \le s_1 \text{ com } s_1 = C = 10000$$

$$f_{1}^{*}(s_{1}) = \max_{0 \le x_{1} \le s_{1}} \{f_{1}(x_{1}, s_{1})\} = \max_{0 \le x_{1} \le s_{1}} \{-0.2x_{1} + 3.4306s_{1}\}$$

$$= 3.4306C$$

$$\frac{\mathcal{J}_{1}}{\partial x_{1}} < 0$$

Em síntese temos

n	$f_1(s_1,x_1)$	$\frac{\partial f_1}{\partial x_1}$	x_1	<i>x</i> ₁ *	$f_1^*(s_1)$
1	$-0.2x_1+3.4306s_1$	< 0	[0,C]	0	3.4306 <i>C</i>

Quadro final para a função Lucro Bruto:

n	$f_n(s_n,x_n)$	$\frac{\mathcal{J}_n}{\partial x_n}$	x_n	x_n^*	$f_n^*(s_n)$
5	$0.2x_5+1.2s_5$	> 0	$[0,-0.2x_4+0.7s_4]$	$-0.2x_4+0.7s_4$	$-0.28x_4+0.98s_4$
4	$-0.68x_4+2.38s_4$	< 0	$[0,-0.1x_3+0.5s_3]$	0	$-0.238x_3+1.19s_3$
3	$-0.538x_3+2.39s_3$	< 0	$[0,0.8x_2+0.1s_2]$	0	$1.912x_2 + 0.239s_2$
2	$2.512x_2 + 1.039s_2$	> 0	$[0,0.6s_1]$	$0.6s_1$	2.1306s ₁
1	$-0.2x_1+3.4306s_1$	< 0	[0,C]	0	3.4306C

Quadro final para a função Lucro Líquido:

Programação Dinâmica	Jorge P. J. Santos
----------------------	--------------------

n	$f_n(s_n,x_n)$	$\frac{\partial f_n}{\partial x_n}$	x_n	x_n^*	$f_n^*(s_n)$
5	$0.2x_5 + 1.2s_5$	> 0	$[0,-0.2x_4+0.7s_4]$	$-0.2x_4+0.7s_4$	$-0.28x_4+0.98s_4$
4	$-0.48x_4 + 1.68s_4$	< 0	$[0,-0.1x_3+0.5s_3]$	0	$-0.168x_3 + 0.84s_3$
3	$-0.368x_3+1.54s_3$	< 0	$[0,0.8x_2+0.1s_2]$	0	$1.232x_2 + 0.154s_2$
2	$1.032x_2 + 0.854s_2$	> 0	$[0,0.6s_1]$	$0.6s_1$	1.1316s ₁
1	$-0.2x_1+1.8316s_1$	< 0	[0,C]	0	1.8316 <i>C</i>

Solução óptima:

$$s_1 = 10000$$

 $x_1^* = 0$ $\Rightarrow s_2 = 0.6s_1 = 6000$
 $x_2^* = 0.6s_1 = 6000$ $\Rightarrow s_3 = 0.8x_2^* + 0.1s_2 = 5400$
 $x_3^* = 0$ $\Rightarrow s_4 = -0.1x_3^* + 0.5s_3 = 2700$
 $x_4^* = 0$ $\Rightarrow s_5 = -0.2x_4^* + 0.7s_4 = 1890$
 $x_5^* = -0.2x_4 + 0.7s_4$

Plano de Investimentos:

	Capital a	Investi	Investimentos					
Anos	investir	Equipamento 1	Equipamento 2	Bruto				
1	10 000	0	10 000	13 000				
2	6 000	6 000	0	8 400				
3	5 400	0	5 400	6 480				
4	2 700	0	2 700	3 780				
5	1 890	1 890	0	2 646				
	25 990			34 306				

No final dos 5 anos temos:

Lucro Bruto = 34 306 Lucro Líquido = 34 306 - 25 990 = 8 316

Exemplo 5: Uma fábrica recebe um pedido para fornecer um produto muito particular com exigência de qualidade e poderá ter que produzir mais do que um

item para obter um aceitável. A probabilidade de produzir um item aceitável é de $\frac{1}{2}$ e a de produzir um defeituoso é de $\frac{1}{2}$. Assim, o número de aceitáveis dum lote de tamanho L terá uma distribuição binomial, isto é, a probabilidade de produzir zero itens aceitáveis num lote de tamanho L é de $\left(\frac{1}{2}\right)^{L}$.

Sempre que a inspecção revela que completado um lote não há ainda um item aceitável, então o processo de produção deve ser recomeçado havendo um custo fixo de 3 u. m. sempre que o processo de produção é iniciado sendo os custos marginais de 1 u. m. por item. Devido a restrições temporais a fábrica não pode executar mais do que três processos produtivos. Se no final do terceiro processo produtivo não for produzido um item aceitável, então o custo para o fabricante por perdas de receitas de vendas e custos de produção é de 16 u. m..

Determine o plano e o respectivo tamanho do lote para cada processo produtivo que minimize o custo total esperado.

Formulação em Programação Dinâmica:

Etapas: N = 3 (os três processos de produção);

Estados: $s_n = \begin{cases} 1 & \text{se não foi encontrado um item aceitável nas etapes } 1, 2, ..., n-1 \\ 0 & \text{caso contrário} \end{cases}$

Decisões: x_n é o tamanho do lote na etapa n.

Recursividade:

• O custo total esperado da etapa n para a última etapa dado s_n e x_n é dado por

$$f_n(1,x_n) = K + x_n + \left(\frac{1}{2}\right)^{x_n} f_{n+1}^*(1) + \left[1 - \left(\frac{1}{2}\right)^{x_n}\right] \underbrace{f_{n+1}^*(0)}_{=0}$$

$$= K + x_n + \left(\frac{1}{2}\right)^{x_n} f_{n+1}^*(1)$$
(por hipótese do problema)
$$f_n(0,\bullet) = 0$$

ullet O custo total esperado da etapa n para a última etapa dado s_n é dado por

• O custo terminal no caso de não ter ocorrido itens aceitáveis é de 16 u. m., isto é,

$$f_4^*(1) = 16$$

Resolução:

<i>n</i> = 3									
s_3 x_3	0	1	 $f_3^*(s_3)$	x_3^*					
0	0							 0	0
1	16	12	9	8	8	8+1/2	9+1/4	 8	3 ou 4

	<i>n</i> = 2		f							
	s_2 x_2	0	1	 $f_2^*(s_2)$	x_2^*					
ĺ	0	0							 0	0
	1	8	8	7	7	7+1/2	8+1/4	9+1/8	 7	2 ou 3

<i>n</i> = 1		J	$r_1(1,x_1)$	=K+2	$x_1 + \left(\frac{1}{2}\right)^2$	$x_1 f_2^*(1)$				
s_1 x_1	0	1	2	3	4	5	6	•••	$f_1^*(s_1)$	x_1^*
1	7	4+7/2	5+7/4	6+7/8	7+1/16	8+1/32	9+1/64	•••	5+7/4	2

Solução óptima: $x_1^* = 2$, $x_2^* = 2$ ou 3, $x_3^* = 3$ ou 4

Esquema de produção:

- Devemos produzir 2 itens no primeiro processo de fabrico.
- Se nenhum é aceitável, devemos produzir 2 ou 3 no segundo processo de fabrico.
- Se nenhum é aceitável, devemos produzir 3 ou 4 no terceiro processo de fabrico.

Exemplo 6 - Problema de Knapsack:

Uma fábrica recebe uma ordem de encomenda de papel de quatro tipos:

- 6 rolos de papel de 2.5 metros a 3.10 u.m. por rolo
- 5 rolos de papel de 4.0 metros a 5.25 u.m. por rolo
- 4 rolos de papel de 3.0 metros a 4.40 u.m. por rolo
- 8 rolos de papel de 2.0 metros a 2.50 u.m. por rolo

Sabe-se que existem apenas 13 metros de papel e que se pode satisfazer parcialmente (em números inteiros) qualquer pedido. Quais os pedidos que devem ser satisfeitos de modo a maximizar a receita total?

Formulação em Programação Inteira:

Sejam r_j (j = 1,...,4) a receita da venda de um rolo do tipo j, q_j (j = 1,...,4) o comprimento de um rolo do tipo j e u o limite superior do papel que eu posso gastar. Se x_j (j = 1,...,4) é o número de encomendas de papel de cada tipo que devem ser satisfeitas, então o problema pode ser formulado do seguinte modo:

maximize
$$z = \sum_{j=1}^{4} r_j x_j$$

sujeito a
$$\sum_{j=1}^{4} q_j x_j \le u$$

$$x_j \text{ inteiros} \quad j = 1,...,4$$

$$x_j \ge 0 \qquad j = 1,...,4$$

Formulação em Programação Dinâmica:

Etapas: N = 4 (as differentes ordens correspondentes als differentes tipos de rolos de papel).

Estados: s_n é a quantidade restante de papel deixada para ser processada da etapa n para a primeira etapa. Assim $s_4 = 13$.

<u>Decisões</u>: x_n é o número de rolos de papel a fabricar em cada etapa n. Deste modo, $0 \le x_n \le u_n$ onde u_n é número de rolos fisicamente possível imposto pela disponibilidade de papel existente, isto é,

$$u_n = \left\lceil \frac{F_n}{L_n} \right\rceil$$

onde F_n é a quantidade de papel disponível e L_n é o comprimento de um rolo de papel do tipo n. Assim,

$$s_{n-1} = s_n - x_n L_n, \qquad n = 1,2,3,4$$

Recursividade no sentido "Forward":

• O lucro da etapa n para a primeira etapa dado s_n e x_n é igual a

$$f_n(s_n, x_n) = r_n x_n + f_{n-1}^* \underbrace{(s_n - x_n L_n)}_{s_{n-1}}, \quad n = 1, 2, 3, 4$$

• O lucro da etapa *n* para a primeira etapa é igual a

$$f_n^*(s_n) = \max_{0 \le x_n \le u_n} f_n(s_n, x_n), \quad n = 1, 2, 3, 4$$

• O lucro na etapa 0 é igual a zero, isto é,

$$f_0^*(\bullet) = 0$$

Resolução:

n = 1		$f_1(s_1, x_1) = 3.10x_1$													
x_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	_	_	_	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	
2 3	_	_	_	_	_	6.20	6.20	6.20	6.20	6.20	6.20	6.20	6.20	6.20	
	_	_	_	_	_	_	_	_	9.30	9.30	9.30	9.30	9.30	9.30	
4	_	_	_	_	_	_	_	_	_	_	12.40	12.40	12.40	12.40	
5	_	_	_	_	_	_	_	_	_	_	_	_	_	15.50	
$f_1^*(s_1)$	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50	
<i>x</i> ₁ *	0	0	0	1	1	2	2	2	3	3	4	4	4	5	

n = 2		$f_2(s_2,x_2) = 5.25x_2 + f_1^*(s_1)$													
x_2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50	
1	_	_	_	_	5.25	5.25	5.25	8.35	8.35	11.45	11.45	11.45	14.55	14.55	
2 3	_	_	_	_	_	_	_	_	10.50	10.50	10.50	13.60	13.60	16.70	
3	l	_	_	_	_	_	_	_	_	_	_	_	15.75	15.75	
$f_2^*(s_2)$	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70	
x_2^*	0	0	0	0	1	0	0	1	2	1	0	2	3	2	

n = 3		$f_3(s_3, x_3) = 4.40x_3 + f_2^*(s_2)$												
x_3	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70
1	_	_	_	4.40	4.40	4.40	7.50	9.65	10.60	10.60	12.75	14.90	15.95	16.80
2 3	_	_	_	_	_	_	8.80	8.80	8.80	11.90	14.05	15.00	15.00	17.25
3	_	_	_	_	_	_	_	_	_	13.20	13.20	13.20	16.30	18.45
4	_	_	_	_	_	_	_	_	_	_	_	_	17.60	17.60
$f_3^*(s_3)$	0	0	0	4.40	5.25	6.20	8.80	9.65	10.60	13.20	14.05	15.00	17.60	18.45
<i>x</i> ₃ *	0	0	0	1	0	0	2	1	1	3	2	2	4	3

<i>n</i> = 4	$f_4(s_4,x_4) = 2.50x_4 + f_3^*(s_3)$													
x_4	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	4.40	5.25	6.20	8.80	9.65	10.60	13.20	14.05	15.00	17.60	18.45
1	_	_	2.50	2.50	2.50	6.90	7.75	8.70	11.30	12.15	13.10	15.70	16.55	17.50
2 3	_	_	_	_	5.00	5.00	5.00	9.40	10.25	11.20	13.80	14.65	15.60	18.20
	_	_	_	_	_	_	7.50	7.50	7.50	11.90	12.75	13.70	16.30	17.15
4	_	_	_	_	_	_	_	_	10.00	10.00	10.00	14.40	15.25	16.20
5	_	_	_	_	_	_	_	_	_	_	12.50	12.50	12.50	16.90
6	_	_	_	_	_	_	_	_	_	_	_	_	15.00	15.00
$f_4^*(s_4)$	0	0	2.50	4.40	5.25	6.90	8.80	9.65	11.30	13.20	14.05	15.70	17.60	18.45
<i>x</i> ₄ *	0	0	1	0	0	1	0	0	1	0	0	1	0	0

Solução óptima:

$$x_4^* = 0 \implies s_3 = s_4 - 2x_4 = 13$$

$$x_3^* = 3 \implies s_2 = s_3 - 3x_3 = 4$$

$$x_2^* = 1 \implies s_1 = s_2 - 4x_2 = 0$$

$$x_1^* = 0 \implies s_0 = s_1 - 2x_1 = 0$$

Lucro total = 18.45

Observações:

- No último quadro só precisamos dos valores da última coluna.
- Se o limite superior para o consumo de papel for qualquer número inferior ou igual que 13, as soluções podem ser obtidas através dos quadros anteriores. Em particular temos

<i>S</i> 4	x_{4}^{*}	<i>x</i> ₃ *	x_2^*	x_1^*	$f_4^*(s_4)$
13	0	3	1	0	18.45
12	0	4	0	0	17.60
11	1	3	0	0	15.70
10	0	2	1	0	14.05