SC-CUT CRYSTAL RESONATOR

Patent Number:

JP11177376

Publication date:

1999-07-02

Inventor(s):

KOYAMA MITSUAKI; SAITO MIKIO

Applicant(s):

NIPPON DEMPA KOGYO CO LTD

Requested Patent:

☐ JP11177376

Application Number: JP19970362847 19971212

Priority Number(s):

IPC Classification:

H03H9/19

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide an SC-cut crystal resonator with a satisfactory stress sensitivity characteristic to maintain a highly stable oscillation frequency irrespective of the posture of the resonator itself and of a stress from outside by setting the longitudinal direction of a crystal piece to a specified angle from an XX'-axis.

SOLUTION: A crystal piece 11 is obtained by rotating a face orthogonal to the Y-axis of artificial rock crystal with an X-axis as a center and cutting it in an oblong form from an SC board rotated from the rotated position by 22 degrees with a Z-axis as its center. Stress sensitivity characteristic of the crystal piece 11 in the oblong form almost continuously changes in accordance with an intra-face rotation angle and the longitudinal direction of the oblong form becomes maximum on a '+' side by 0 degree from the XX-axis and becomes maximum on a '-' side by 90 degrees. Since the stress sensitivity characteristic crosses an original point and it becomes minimum '0' when the longitudinal direction is between 45 degrees and 135 degrees. For making a frequency change by stress from outside or a posture difference to be minimum, it is desirable to set the longitudinal direction to be the direction of \pm 45 degree from the XX'-axis in the case of an oblong SC-cut crystal piece 11.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-177376

(43)公開日 平成11年(1999)7月2日

(51) Int.Cl.⁶ HO3H 9/19 酸別記号

FΙ H03H 9/19

Α

審査請求 未請求 請求項の数2 FD (全 3 頁)

(21)出願番号

特願平9-362847

(71)出願人 000232483

日本電波工業株式会社

東京都渋谷区西原1丁目21番2号

平成9年(1997)12月12日 (22)出願日

(72) 発明者 小 山 光 明

埼玉県狭山市大字上広瀬1275番地の2 日

本電波工業株式会社狭山事業所内

(72)発明者 斉藤三樹夫

埼玉県狭山市大字上広瀬1275番地の2 日

本電波工業株式会社狭山事業所内

(54) 【発明の名称】 SCカットの水晶振動子

(57)【要約】

[目的] 応力感度特性が良好で、発振器自体の姿勢、 外部からの応力の作用に係わらず高安定な発振周波数を 維持することができるSCカットの水晶振動子を提供す る。

[構成] 水晶の結晶のY軸に直交する面をX軸を中心 にして約33°回転し、この回転した位置からZ軸を中 心にして約22°回転した面から切り出した短冊型のS Cカットの水晶振動子において、水晶片 11の長手方向 をXX'軸から±45°の方向とする。

【特許請求の範囲】

【請求項1】水晶の結晶のY軸に直交する面をX軸を中心にして約33 回転し、この回転した位置からZ軸を中心にして約22 回転した面から切り出した短冊型のSCカットの水晶振動子において、

水晶片の長手方向をXX'軸から±45°の方向とした ことを特徴とするSCカットの水晶振動子。

【請求項2】請求項1に記載のものにおいて、水晶片の表裏板面に相対面して形成した励振電極を水晶片の長手方向の一端部へ導出し、この励振電極の導出端部で水晶片を保持したことを特徴とするSCカットの水晶振動子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、SCカットの水晶振動子に係わり、とくにBモードの副振動の抑圧に関する。

[0002]

【従来の技術】近時、応力感度、熱衝撃特性、位相雑音性能等について優れた性能を有するSCカットの水晶振動子が注目されている。このようなSCカットの水晶振動子は、図3に示すように水晶の結晶のY軸に直交する面をX軸を中心にして約33°回転し、更にこの回転した位置からZ軸を中心にして約22°回転した面から切り出した水晶片1に電極を形成したものである。

【0003】このようなSCカットの水晶振動子の周波数・温度特性は80℃付近に変極点を有する概略3次曲線状となる。一方、高安定度の水晶発振器として、80℃程度の一定温度に加熱して動作させる恒温槽型の水晶発振器が知られている。このような発振器は、加熱用のヒータと、温度制御回路とを有し、ヒータの発熱量を制御することによって一定の温度を維持するようにしている。

【0004】そして恒温槽型の水晶発振器では、水晶振動子を80℃程度の一定温度に維持して安定な発振周波数を得るようにしている。しかして、SCカットの水晶振動子では80℃付近に変極点を有するために恒温槽型の水晶発振器として用いた場合、温度変化に対して発振周波数の変化率のもっとも少ない温度域で使用することになり一層安定な発振周波数を得ることができる。

【0005】しかしながら、このようなSCカットの水 晶振動子を用いた高安定水晶発振器は、10-10~1 0-11程度の安定度を有する周波数基準源として使用 される。このため、応力感度特性の良好なこと、すなわ ち外部の応力に対する周波数の変化の極力少ないことを 要求される。

[0006]

【発明が解決しようとする課題】本発明は上記の事情に 鑑みてなされたもので、応力感度特性が良好で、発振器 自体の姿勢、外部からの応力の作用に係わらず高安定な 発振周波数を維持することができるSCカットの水晶振動子を提供することを目的とするものである。

[0007]

【課題を解決するための手段】本発明の請求項1は、水晶の結晶のY軸に直交する面をX軸を中心にして約33 回転し、この回転した位置からZ軸を中心にして約22 回転した面から切り出した短冊型のSCカットの水晶振動子において、水晶片の長手方向をXX 軸から±45°の方向としたことを特徴とし、請求項2は請求項1に記載のものにおいて、水晶片の表裏板面に相対面して形成した励振電極を水晶片の長手方向の一端部へ導出し、この励振電極の導出端部で水晶片を保持したことを特徴とするものである。

[8000]

【実施例】以下、本発明の一実施例を図1に示す電極を形成した水晶片の平面図を参照して詳細に説明する。図中11は水晶片で、たとえば図3に示すように人工水晶の結晶のY軸に直交する面をX軸を中心にして約33°回転し、さらにこの回転した位置からZ軸を中心にして約22°回転したSC板から短冊状に切り出したものである。

【0009】ここで、短冊型の水晶片の長手方向をX X'軸の方向から10°づつ面内回転させた18種類の サンプルを製作して、それぞれのサンプルについて応力 感度特性を測定した。サンプルの水晶片の共振周波数は 11MHzで、水晶片の表裏板面に相対面して形成した 励振電極を長手方向の一端部へ導出し、この導出端部で 片持ち支持を行うようにした。そして水晶片の長手方向 の他端部を加圧した際の共振周波数の変化を測定した。 【0010】図2は応力感度特性の測定結果を示すグラ フである。このグラフから明らかなように短冊型の水晶 片の応力感度特性は面内回転角度に応じて略連続的に変 化し、短冊の長手方向がXX²軸から0°で+側に最 大、90°で一側に最大となり、その周波数偏差は、そ れぞれ約3ppb/Nである。また、長手方向がXX' 軸から45°及び135°で応力感度特性は原点を横切 るために最小0となる。

【0011】したがって外部からの応力、あるいは姿勢差による周波数変化を最小にするためには短冊型のSCカットの水晶片の場合、長手方向をXX¹軸から45² 叉は135²、すなわち長手方向をXX¹軸から±45²の方向とすることが望ましい。

【0012】このようにすれば、外部からの応力、姿勢差等による周波数の変化を最小にすることができ、たとえば恒温槽型の発振器の場合10-10程度の高安定で外部からの応力、姿勢差による発振周波数の変化の極めて少ない発振出力を得ることができる。

[0013]

【発明の効果】以上詳述したように、本発明によれば、 応力感度特性が良好で外部からの応力、姿勢差による周 波数変化を最小にすることができ共振周波数を高安定度 に維持することができるSCカットの水晶振動子を提供 することができる。

【図面の簡単な説明】

【図1】本発明の一実施例の水晶片の切り出し角度を説明する図である

【図1】

【図2】水晶片の切り出し角度と応力感度との関係を示すグラフである。

【図3】SCカットの水晶片の切り出し角度を説明する図である。

【符号の説明】

11 ・・ 水晶片

【図2】

ZZ' 1 1 XX' XX'

【図3】