Speaker Recognition

Randall Fowler and Conor King Winter 2024

Speaker Recognition

M*i N i = 1,2,..., floor((L - N + 1)/M)

Methodology

- Feature Extraction Calculating Mel Frequency Cepstrum Coefficients (MFCC)
- Each frame of audio signal will require windowing to remove ringing.
 - Hamming, Hanning, Blackman, and Bartlett
- Mel Frequency Spectrum
 - Apply Frequency Transform and triangular weights to get a Mel-Spectrum.
 - Apply DCT on the Mel-Spectrum to get Cepstrum Coefficients.
 - Number of Coefficients (K) is equal to the number of triangular weights used to get the Mel-Spectrum.
- Resulting data related to an audio file will have length of number of frames and K dimensional.

Codebooks

- To classify speakers in audio files, centroids will be calculated on training data.
- In the data space containing the MFCC, clusters are formed by setting an initial centroid, moving it to the mean, and splitting.

- The number of centroids will be a hyperparameter, but the clustering algorithm will move centroids to the mean of the closest data points.
- Testing audio files can be classified by getting the MFCC data and comparing the distance to the centroids of different codebooks.
 - Prediction will be the codebook with the smallest distance.

Hyperparameter Sweep

Only optimal point in Bartlett

Tests 1 and 2

- Test 1
 - Randall tested, Conor guessed
 - 3/8 correct => 0.375
- Test 2
 - Sampling rate: 12kHz
 - 256 Samples => 21.3 ms.

Tests 3 and 4

Tests 5 and 6

Finding clusters in the FMCCs, and creating centroids.

Tests 7 and 8

Hyperparameters:

N = 256

M = 100

n mfcc = 40

size_codebook = 64

window = Hamming

Accuracy on the given datasets: 8/8 correct = 1.0

Notch at 215: 1.0

440: 1.0 1000: 0.75 6000: 0.875

Tests 9 and 10

- Test 9: Given and 10 random 0s
 - Accuracy: 0.83
- Test 10
 - O Question 1: 12s
 - Accuracy: 1.0
 - Question 2:
 - a) All files
 - Accuracy: 0.886
 - b) Determining "zero" or "twelve"
 - Accuracy: 1.0

Conclusion

Our system is effective at distinguishing voices.

Robust to notch filtering.

Non-homogeneous data (with different sampling rates) causes performance to suffer somewhat.

Improvements: smoothing ambient noise, trimming data ends, normalizing energy