Advanced Linear Algebra Week 18

Jamie Gabe

Recall that $A \in \text{End}(V)$ is nilpotent if $A^k = 0$ for some $k \in \mathbb{N}$.

Theorem (7.4 (slightly different than lecture notes))

Suppose dim $V < \infty$ and let $A \in \text{End}(V)$. TFAE:

- (a) A is nilpotent;
- (b) there exists a basis $\{x_1, \ldots, x_n\}$ for V such that $Ax_1 = 0$ and $Ax_j \in \operatorname{Span}\{x_1, \ldots, x_{j-1}\}$ for $j = 2, \ldots, n$;
- (c) there exists an ordered basis \mathcal{B} for V such that $_{\mathcal{B}}[A]_{\mathcal{B}}$ is strictly upper triangular.

In particular, if A is nilpotent, then its index of nilpotency is at most dim V.

Moreover, (which we saw in the proof) $N = \bigcup_{k \in \mathbb{N}} N(A^k)$ and $R = \bigcap_{k \in \mathbb{N}} R(A^k)$.

Consider the following complex matrices:

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 4 & i \\ 0 & 0 & -2 + i \\ 0 & 0 & 0 \end{pmatrix}$$

Question: Which of the above matrices are nilpotent? (Multiple answers)

Theorem (7.5)

Let V be a finite-dimensional vector space and $A \in \text{End}(V)$.

- (a) There exist (unique) A-invariant subspaces $N, R \subseteq V$ such that $V = N \oplus R$, $A|_N \in \operatorname{End}(N)$ is nilpotent, and $A|_R \in \operatorname{End}(R)$ is invertible;
- (b) If $M \subseteq V$ is an A-invariant subspace for which $A|_M \in \operatorname{End}(M)$ is nilpotent, then $M \subseteq N$;
- (c) If $S \subseteq V$ is an A-invariant subspace for which $A|_S \in \operatorname{End}(S)$ is invertible, then $S \subseteq R$.

Recall: $E_1 \in \operatorname{End}(V)$ is an idempotent if $E_1^2 = E_1$. When this is the case, $V = R(E_1) \oplus R(I - E_1)$ and E_1 is the projection onto $R(E_1)$ along $R(I - E_1)$.

Note that $E_2 := (I - E_1)$ is also an idempotent,

$$E_1E_2 = E_1(I - E_1) = E_1 - E_1^2 = 0$$
, and $E_1 + E_2 = E_1 + (I - E_1) = I$.

Consider $E_1, E_2, E_3 \in \operatorname{End}(\mathbb{C}^3)$ given by

$$E_1 = \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{array}\right) \quad E_2 = \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Then

$$E_3 = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight).$$

$$R(E_1) = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ 0 \end{pmatrix} : \alpha \in \mathbb{C} \right\}, \quad R(E_2) = \left\{ \begin{pmatrix} \alpha \\ -\alpha \\ 0 \end{pmatrix} : \alpha \in \mathbb{C} \right\}$$

$$R(E_3) = \left\{ \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} : \alpha \in \mathbb{C} \right\}.$$

Lemma (6.20 (weak version))

Let $E_1, \ldots, E_k \in \text{End}(V)$ be idempotents and let $U_i := R(E_i)$. Suppose that

$$E_i E_j = 0 \text{ for } i \neq j, \qquad E_1 + E_2 + \cdots + E_k = I.$$

Then

$$V = U_1 \oplus \cdots \oplus U_k$$
.

Theorem (7.7)

Assume $E_1, \ldots, E_k \in \operatorname{End}(V)$ are idempotents such that $E_i E_j = 0$ for $i \neq j$. Let $U_i = R(E_i)$ and $W_i = N(E_i)$ for each i. Then

$$V = U_1 \oplus \cdots \oplus U_k \oplus (W_1 \cap \cdots \cap W_k)$$

with projections E_1, \ldots, E_k and $I - (E_1 + \cdots + E_k)$.

Recall that for $A \in \operatorname{End}(V)$ and $\lambda \in \mathcal{F}$, the generalised eigenspace is

$$M_{\lambda} = \{x \in V : \exists k \in \mathbb{N} \text{ s.t. } (A - \lambda I)^k x = 0\} = \bigcup_{k \in \mathbb{N}} N((A - \lambda I)^k).$$

Note that when dim $V < \infty$, then M_{λ} is the space N in Theorem 7.5 for the endomorphism $A - \lambda I$. So there is a unique $A - \lambda I$ -invariant subspace R so that $V = M_{\lambda} \oplus R$, $(A - \lambda I)|_{R}$ is invertible and $(A - \lambda I)|_{M_{\lambda}}$ is nilpotent.

Theorem ((Main part of) 7.8 - Jordan decomposition)

Assume dim $V < \infty$ and let $A \in \operatorname{End}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the eigenvalues of A. There exists a unique A-invariant subspace $R \subseteq V$ such that

$$V = M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m} \oplus R.$$

Theorem ((Main part of) 7.8 - Jordan decomposition)

Assume dim $V < \infty$ and let $A \in \operatorname{End}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the eigenvalues of A. There exists a unique A-invariant subspace $R \subseteq V$ such that

$$V = M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m} \oplus R.$$

Moreover, $A|_R$ has no eigenvectors.

