Neural Networks: Perceptrons

BIOE 498/598 PJ

Spring 2021

The artificial neuron

A neuron connects a series on inputs (dendrites) to an output (axon).

The artificial neuron

A neuron connects a series on inputs (dendrites) to an output (axon).

Our model needs to include two processes:

- 1. The cell body (soma) combines all of the n inputs.
- 2. If the combined input exceeds a threshold, the output fires.

Modeling the artificial neuron

Let's model the combined input z as a linear combination of the inputs.

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \mathbf{w} \cdot \mathbf{x}$$

Modeling the artificial neuron

Let's model the combined input z as a linear combination of the inputs.

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \mathbf{w} \cdot \mathbf{x}$$

For now, let's assume the neuron "fires" based on the sign of z:

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Wait, what happened to the intercept?

Our perceptron fires using the rule

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Does this mean the perceptron hyperplane always passes through the origin?

Wait, what happened to the intercept?

Our perceptron fires using the rule

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Does this mean the perceptron hyperplane always passes through the origin?

No. We use a common ML trick to move the *bias* (intercept) into the weight vector and expand x with a dummy dimension containing 1.

$$\mathbf{w} \cdot \mathbf{x} = b \Leftrightarrow \begin{pmatrix} w_1 \\ w_2 \\ -b \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = 0$$

Summary (so far)

- ► A perceptron is a simplistic model of a single neuron.
- ▶ A perceptron can learn to perform simple classification tasks using an update rule.

Summary (so far)

- ► A perceptron is a simplistic model of a single neuron.
- ► A perceptron can learn to perform simple classification tasks using an update rule.
- Imagine what a network of millions of perceptrons can learn!

Any nonlinearity will do

Any nonlinear function can be an activation function.

Sign/step activation

$$\operatorname{sgn}(z) = \begin{cases} +1, & z > 0 \\ -1, & z < 0 \end{cases}$$

$$y \longrightarrow +1$$

Any nonlinearity will do

Any nonlinear function can be an activation function.

Sign/step activation

Sigmoid activation

$$\begin{cases}
-1, & z < 0 \\
y & +1 \\
z
\end{cases}$$

$$sgn(z) = \begin{cases} +1, & z > 0 \\ -1, & z < 0 \end{cases} \qquad \sigma(z) = \frac{1}{1 + e^{-z}}$$

Any nonlinearity will do

Any nonlinear function can be an activation function.

Sign/step activation

$$\operatorname{sgn}(z) = \begin{cases} +1, & z > 0 \\ -1, & z < 0 \end{cases}$$

$$y \longrightarrow +1$$
 z

Sigmoid activation

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Rectified linear unit activation

$$\sigma(z) = \frac{1}{1 + e^{-z}} \qquad \text{ReLU}(z) = \begin{cases} z, & z \ge 0\\ 0, & z < 0 \end{cases}$$

Multi-neuron (wide) perceptrons

Neural networks use multiple neurons to learn different features from the **same inputs**.

Multi-neuron (wide) perceptrons

Neural networks use multiple neurons to learn different features from the **same inputs**.

The outputs of each neuron are collected into a single neuron to predict the final class.

A matrix formalism for perceptrons

Consider a stack of m neurons that are all connected to the same input ${\bf x}.$

$$z_1 = \mathbf{w}_1 \cdot \mathbf{x}$$

 $z_2 = \mathbf{w}_2 \cdot \mathbf{x}$
 \vdots
 $z_m = \mathbf{w}_m \cdot \mathbf{x}$

A matrix formalism for perceptrons

Consider a stack of m neurons that are all connected to the same input ${\bf x}$.

$$z_1 = \mathbf{w}_1 \cdot \mathbf{x}$$

 $z_2 = \mathbf{w}_2 \cdot \mathbf{x}$
 \vdots
 $z_m = \mathbf{w}_m \cdot \mathbf{x}$

The stack can be written as the product of the input x and a weight matrix

$$z = Wx$$

where each row in ${f W}$ contins the weights for a single neuron

$$\mathbf{W} = \begin{pmatrix} \leftarrow \mathbf{w}_1 \to \\ \leftarrow \mathbf{w}_2 \to \\ \vdots \\ \leftarrow \mathbf{w}_m \to \end{pmatrix}.$$

Let's define an elementwise sigmoid activation function

$$\boldsymbol{\sigma}(\mathbf{z}) = \begin{pmatrix} \sigma(z_1) \\ \sigma(z_2) \\ \vdots \\ \sigma(z_n) \end{pmatrix}.$$

Let's define an elementwise sigmoid activation function

$$m{\sigma}(\mathbf{z}) = egin{pmatrix} \sigma(z_1) \\ \sigma(z_2) \\ \vdots \\ \sigma(z_n) \end{pmatrix}.$$

A stack of m neurons can be written as

$$z = Wx$$

 $y = \sigma(z)$

Let's define an *elementwise* sigmoid activation function

$$m{\sigma}(\mathbf{z}) = egin{pmatrix} \sigma(z_1) \\ \sigma(z_2) \\ \vdots \\ \sigma(z_n) \end{pmatrix}.$$

A stack of m neurons can be written as

$$\mathbf{z} = \mathbf{W}\mathbf{x}$$

$$\mathbf{y} = \boldsymbol{\sigma}(\mathbf{z})$$

or, more succinctly as

$$y = \sigma(Wx)$$

Let's define an elementwise sigmoid activation function

$$m{\sigma}(\mathbf{z}) = egin{pmatrix} \sigma(z_1) \ \sigma(z_2) \ dots \ \sigma(z_n) \end{pmatrix}.$$

A stack of m neurons can be written as

$$\mathbf{z} = \mathbf{W}\mathbf{x}$$

$$y = \sigma(z)$$

or, more succinctly as

$$y = \sigma(Wx)$$

where

$$\dim(\mathbf{y}) = m \times 1, \quad \dim(\mathbf{z}) = m \times 1$$

 $\dim(\mathbf{W}) = m \times n, \quad \dim(\mathbf{x}) = n \times 1$

$$y_{1,1} = \sigma(z_{1,1}) \leftarrow z_{1,1} = \mathbf{w}_{1,1} \cdot \mathbf{x}$$

$$y_{1,2} = \sigma(z_{1,2}) \leftarrow z_{1,2} = \mathbf{w}_{1,2} \cdot \mathbf{x}$$

$$y_{1,3} = \sigma(z_{1,3}) \leftarrow z_{1,3} = \mathbf{w}_{1,3} \cdot \mathbf{x} \leftarrow \mathbf{x}$$

$$\vdots$$

$$y_{1,m} = \sigma(z_{1,m}) \leftarrow z_{1,m} = \mathbf{w}_{1,m} \cdot \mathbf{x}$$

$$\mathbf{y}_2 = \boldsymbol{\sigma}(\mathbf{z}_2) \quad \leftarrow \quad \mathbf{z}_2 = \mathbf{W}_2 \mathbf{y}_1 \quad \leftarrow \quad \mathbf{y}_1 = \boldsymbol{\sigma}(\mathbf{z}_1) \quad \leftarrow \quad \mathbf{z}_1 = \mathbf{W}_1 \mathbf{x}$$

$$y_{1,1} = \sigma(z_{1,1}) \leftarrow z_{1,1} = \mathbf{w}_{1,1} \cdot \mathbf{x}$$

$$y_{1,2} = \sigma(z_{1,2}) \leftarrow z_{1,2} = \mathbf{w}_{1,2} \cdot \mathbf{x}$$

$$y_{1,3} = \sigma(z_{1,3}) \leftarrow z_{1,3} = \mathbf{w}_{1,3} \cdot \mathbf{x} \leftarrow \mathbf{x}$$

$$\vdots$$

$$y_{1,m} = \sigma(z_{1,m}) \leftarrow z_{1,m} = \mathbf{w}_{1,m} \cdot \mathbf{x}$$

$$\mathbf{y}_2 = oldsymbol{\sigma}(\mathbf{z}_2) \quad \leftarrow \quad \mathbf{z}_2 = \mathbf{W}_2 \mathbf{y}_1 \quad \leftarrow \quad \mathbf{y}_1 = oldsymbol{\sigma}(\mathbf{z}_1) \quad \leftarrow \quad \mathbf{z}_1 = \mathbf{W}_1 \mathbf{x}$$

$$\mathbf{y}_2 = oldsymbol{\sigma}(\mathbf{W}_2(oldsymbol{\sigma}(\mathbf{W}_1 \mathbf{x})))$$

$$y_{1,1} = \sigma(z_{1,1}) \leftarrow z_{1,1} = \mathbf{w}_{1,1} \cdot \mathbf{x}$$

$$y_{1,2} = \sigma(z_{1,2}) \leftarrow z_{1,2} = \mathbf{w}_{1,2} \cdot \mathbf{x}$$

$$y_{1,3} = \sigma(z_{1,3}) \leftarrow z_{1,3} = \mathbf{w}_{1,3} \cdot \mathbf{x} \leftarrow \mathbf{x}$$

$$\vdots$$

$$y_{1,m} = \sigma(z_{1,m}) \leftarrow z_{1,m} = \mathbf{w}_{1,m} \cdot \mathbf{x}$$

$$\mathbf{y}_2 = \boldsymbol{\sigma}(\mathbf{z}_2) \quad \leftarrow \quad \mathbf{z}_2 = \mathbf{W}_2 \mathbf{y}_1 \quad \leftarrow \quad \mathbf{y}_1 = \boldsymbol{\sigma}(\mathbf{z}_1) \quad \leftarrow \quad \mathbf{z}_1 = \mathbf{W}_1 \mathbf{x}$$

$$\mathbf{y}_2 = \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1 \mathbf{x})))$$

In general, a network with d layers is

$$\mathbf{y}_d = \boldsymbol{\sigma}(\mathbf{W}_d(\boldsymbol{\sigma}(\mathbf{W}_{d-1}(\cdots \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1\mathbf{x})))))).$$

Deep learning with neural networks

$$\mathbf{y}_d = \boldsymbol{\sigma}(\mathbf{W}_d(\boldsymbol{\sigma}(\mathbf{W}_{d-1}(\cdots \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1\mathbf{x})))))))$$

- ▶ The number of neurons in each layer *i* is the *width* of the layer.
 - If the (i-1)th layer has n outputs and the ith layer has m outputs, the weight matrix \mathbf{W}_i has dimensions $m \times n$.
 - ightharpoonup The dimensions of the inputs x and outputs y_d are fixed by the problem.
 - Layer 1 is called the *input layer*, and layer d is the *output layer*.
 - We can use as many nodes as we want in the hidden layers.

Deep learning with neural networks

$$\mathbf{y}_d = \boldsymbol{\sigma}(\mathbf{W}_d(\boldsymbol{\sigma}(\mathbf{W}_{d-1}(\cdots \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1\mathbf{x})))))))$$

- ▶ The number of neurons in each layer *i* is the *width* of the layer.
 - ▶ If the (i-1)th layer has n outputs and the ith layer has m outputs, the weight matrix \mathbf{W}_i has dimensions $m \times n$.
 - ightharpoonup The dimensions of the inputs x and outputs y_d are fixed by the problem.
 - Layer 1 is called the *input layer*, and layer d is the *output layer*.
 - We can use as many nodes as we want in the hidden layers.
- ightharpoonup The number of layers d is the *depth* of the neural network.

Deep learning with neural networks

$$\mathbf{y}_d = \boldsymbol{\sigma}(\mathbf{W}_d(\boldsymbol{\sigma}(\mathbf{W}_{d-1}(\cdots \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1\mathbf{x})))))))$$

- ▶ The number of neurons in each layer *i* is the *width* of the layer.
 - If the (i-1)th layer has n outputs and the ith layer has m outputs, the weight matrix \mathbf{W}_i has dimensions $m \times n$.
 - ightharpoonup The dimensions of the inputs \mathbf{x} and outputs \mathbf{y}_d are fixed by the problem.
 - Layer 1 is called the *input layer*, and layer d is the *output layer*.
 - ▶ We can use as many nodes as we want in the *hidden* layers.
- ightharpoonup The number of layers d is the *depth* of the neural network.
- ▶ Deep learning means d > 2.

The importance of nonlinearity

The nonlinear functions (like σ) sandwiched between the layers are critical to deep learning.

Let's imagine what would happen if we removed them:

$$\begin{aligned} \mathbf{y}_d &= \sigma(\mathbf{W}_d(\sigma(\mathbf{W}_{d-1}(\cdots \sigma(\mathbf{W}_2(\sigma(\mathbf{W}_1\mathbf{x})))))))) \\ &= \mathbf{W}_d(\mathbf{W}_{d-1}(\cdots \mathbf{W}_2(\mathbf{W}_1\mathbf{x}))) \\ &= \mathbf{W}_d\mathbf{W}_{d-1}\cdots \mathbf{W}_2\mathbf{W}_1\mathbf{x} \\ &= \widetilde{\mathbf{W}}\mathbf{x} \end{aligned}$$

The importance of nonlinearity

The nonlinear functions (like σ) sandwiched between the layers are critical to deep learning.

Let's imagine what would happen if we removed them:

$$\begin{aligned} \mathbf{y}_d &= \boldsymbol{\sigma}(\mathbf{W}_d(\boldsymbol{\sigma}(\mathbf{W}_{d-1}(\cdots \boldsymbol{\sigma}(\mathbf{W}_2(\boldsymbol{\sigma}(\mathbf{W}_1\mathbf{x})))))))) \\ &= \mathbf{W}_d(\mathbf{W}_{d-1}(\cdots \mathbf{W}_2(\mathbf{W}_1\mathbf{x}))) \\ &= \mathbf{W}_d\mathbf{W}_{d-1}\cdots \mathbf{W}_2\mathbf{W}_1\mathbf{x} \\ &= \widetilde{\mathbf{W}}\mathbf{x} \end{aligned}$$

Without the activation functions, the entire neural network reduces to a single linear system!

Why do we want deep networks?

- ► The Universal Approximation Theorem states that given enough neurons, a 2-layer (input/output) perceptron can learn any reasonable function.
- ▶ Neural networks are therefore universal function approximators.

Why do we want deep networks?

- ► The Universal Approximation Theorem states that given enough neurons, a 2-layer (input/output) perceptron can learn any reasonable function.
- ▶ Neural networks are therefore universal function approximators.
- Unfortunately, the theorem does not tell us how many neurons we need to approximate a given function.
- ▶ For complicated functions, evidence suggests the number is enormous!

Why do we want deep networks?

- ► The Universal Approximation Theorem states that given enough neurons, a 2-layer (input/output) perceptron can learn any reasonable function.
- ▶ Neural networks are therefore universal function approximators.
- Unfortunately, the theorem does not tell us how many neurons we need to approximate a given function.
- ▶ For complicated functions, evidence suggests the number is enormous!
- Our brains are very deep, so it's reasonable to believe that deep networks learn more efficiently than wide ones.
- In practice this is almost certainly true.
- Deep learning reduces the total number of neurons needed to learn a function since each of the d layers needs fewer than 1/d-times the number of neurons.

We can understand deep networks using examples from feature engineering.

Imagine you wanted to learn a Michaelis-Menten function.

We can understand deep networks using examples from feature engineering.

Imagine you wanted to learn a Michaelis-Menten function.

We can understand deep networks using examples from feature engineering.

Imagine you wanted to learn a Michaelis-Menten function.

We can understand deep networks using examples from feature engineering.

Imagine you wanted to learn a Michaelis-Menten function.

Each layer in the network only needs to improve the features for the next layer.

Summary

- Deep neural networks are built from layers in artificial neurons.
- Each neuron has the power of a linear classifier.
- Layers **must** be separated by nonlinear activation functions.
- Neural networks can learn nearly any function, but deep networks learn more efficiently.
- ► Each layer creates features for the subsequent layers to improve learning.

Summary

- Deep neural networks are built from layers in artificial neurons.
- Each neuron has the power of a linear classifier.
- Layers **must** be separated by nonlinear activation functions.
- Neural networks can learn nearly any function, but deep networks learn more efficiently.
- ► Each layer creates features for the subsequent layers to improve learning.
- ▶ **Next time:** Training a neural network to learn *Q*-factors.