

Reinforcement Learning and Applications

Seung Hyun Oh

20240305

Outlines

- What is Reinforcement Learning?
- Q-Learning
- DQN/DDPG/PPO
- Recent RL Algorithms(ex : MOPPO, TD3 ...)
- Applications (ex : Vessel) // Vessel Dynamics (Action, State), 적용되는지

Reinforcement Learning

- Find optimal action sequence for expected reward maximization
- The agent starts in a given state within its environment $s_0 \in S$ by gathering an initial observation $\omega_0 \in \Omega$
- At each time step t, The agent has to take an action $a_t \in A$

Q-learning

Behavior policy

Target policy

→ 평가하고 업데이트하고자 하는 policy

▶ 실제로 행동해서 다음 state를 얻는 것

Q-value

$$Q(s, a) \leftarrow (\mathbf{1} - \boldsymbol{\alpha}) Q(s_t, a_t) + \boldsymbol{\alpha}(R_t + \sigma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}))$$

$$= \int_{S_{t+1}a_{t+1}} (R_t + \sigma Q(s_{t+1}, a_{t+1}) p(\boldsymbol{a_{t+1}} | \boldsymbol{s_{t+1}}) p(\boldsymbol{s_{t+1}} | \boldsymbol{s_t}, a_t) ds_{t+1}, a_{t+1}$$
Target Policy
$$R.V$$

$$= Q_N = (1 - \alpha)Q_{N-1} + \alpha(R_t^N + \sigma Q(s_{t+1}^n, a_{t+1}^n))$$

DQN (Deep Q-learning Network)

Classic Q-learning

Deep Q-learning

Q-function

$$Q^*(s,a) = \mathbb{E}_{\substack{\mathbf{s'} \sim \mathcal{E}}} \left[r + \gamma \max_{a'} Q^*(s',a') \middle| s,a \right]$$
 탐험율 감가율

Loss Function & Update (SGD)

$$L_i\left(oldsymbol{ heta_i}
ight) = \mathbb{E}_{s,a\sim
ho(\cdot)}\left[\left(y_i - Q\left(s,a; heta_i
ight)
ight)^2
ight]$$
가중치 미래 보상 추정치 예측값 $y_i = \mathbb{E}_{s'\sim\mathcal{E}}\left[r + \gamma \max_{a'} Q(s',a'; heta_{i-1})|s,a
ight]$

$$\nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_{i})\right) \nabla_{\theta_{i}} Q(s, a; \theta_{i})\right].$$

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity NInitialize action-value function Q with random weights for episode =1,M do
Initialise sequence $s_1=\{x_1\}$ and preprocessed sequenced $\phi_1=\phi(s_1)$ for t=1,T do
With probability ϵ select a random action a_t otherwise select $a_t=\max_a Q^*(\phi(s_t),a;\theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1}=s_t,a_t,x_{t+1}$ and preprocess $\phi_{t+1}=\phi(s_{t+1})$ (Store transition $(\phi_t,a_t,r_t,\phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j,a_j,r_j,\phi_{j+1})$ from \mathcal{D} Set $y_j=\begin{cases} r_j & \text{for terminal }\phi_{j+1} \\ r_j+\gamma\max_{a'}Q(\phi_{j+1},a';\theta) & \text{for non-terminal }\phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j-Q(\phi_j,a_j;\theta))^2$ according to equation 3 end for end for

DDPG(Deep Deterministic Policy Gradient)

DDPG(Deep Deterministic Policy Gradient)

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights for episode =1,M do
Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1,T do
With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)
Execute action a_t in emulator and observe reward r_t and image x_{t+1}
Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1})
(Store transition (\phi_t,a_t,r_t,\phi_{t+1}) in \mathcal{D}
Sample random minibatch of transitions (\phi_j,a_j,r_j,\phi_{j+1}) from \mathcal{D}
Set y_j=\begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j+\gamma\max_{a'}Q(\phi_{j+1},a';\theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
Perform a gradient descent step on (y_j-Q(\phi_j,a_j;\theta))^2 according to equation 3 end for end for
```

- Discrete -> Continuous action
- Simple CNN structure -> Actor & Critic

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s,a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer R for episode = 1, M do

Initialize a random process $\mathcal N$ for action exploration Receive initial observation state s_1 for t=1, T do

Select action $a_t=\mu(s_t|\theta^\mu)+\mathcal N_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t,a_t,r_t,s_{t+1}) in RSample a random minibatch of N transitions (s_i,a_i,r_i,s_{i+1}) from RSet $y_i=r_i+\gamma Q'(s_{i+1},\mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L=\frac{1}{N}\sum_i(y_i-Q(s_i,a_i|\theta^Q))^2$ Update the actor policy using the sampled policy gradient: $\nabla_{\theta^\mu} J \approx \frac{1}{N}\sum_i \nabla_a Q(s,a|\theta^Q)|_{s=s_i,a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s_i}$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

PPO (Proximal Policy Optimization)

Recent RL Algorithms

• <DDPG>에서 <TD3>로 발전 (4)

- PPO 변형 알고리즘
- -> Adaptive PPO (학습 과정 중에 학습률 변경)
- -> MoPPO (Modifed Actor-Critics) (5)

Applications

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} V\cos\psi + C_x(x,y) \\ V\sin\psi + C_y(x,y) \\ r_c \end{bmatrix}$$

Vessel Motion (Action)

$$C_{RB}(
u) = egin{bmatrix} 0 & 0 & -m(x_gr+
u) \ 0 & 0 & mu \ m(x_gr+
u) & -mu & 0 \end{bmatrix}$$

Drag, Interference Coeff (State)

Ship Motion Control

COURSE KEEPING AND ROLL STABILISATION USING RUDDER AND FINS

Tristan Perez

감사합니다.

