Mechanics of Materials

Lecture 3 - Strain

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

25 August, 2020

schedule

- 25 Aug Strain, Homework 1 Due
- 27 Aug Mechanical Properties
- 1 Sep Exam Review, Homework 2 Due
- 3 Sep Axial Load (not on Exam 1)
- 4 Sep Project 1 Due
- 8 Sep Exam 1 (online)

outline

- allowable stress design
- limit state design
- strain

allowable stress

- Most of the time, we design structures so the stress is less than some limit
- By setting a conservative allowable stress, we account for some manufacturing tolerances, unintended loads, and variability in mechanical properties

1

factor of safety

 The factor of safety is the failure load divided by the allowable load

$$FS = \frac{F_{fail}}{F_{allow}}$$

 Since load and stress are linearly proportional, we could also define the factor of safety in terms of stress and it would be identical

factor of safety

- Typical values for the factor of safety will vary based on application
- Aircraft and space vehicles might have a factor close to 1 to minimize weight
- Nuclear power plants might have a factor close to 3 since weight is not as important and failure would be catastrophic

simple connections

– We can rearrange the equations $\sigma = N/A$ and $\tau = V/A$ to size components based on some allowable stress

$$A = \frac{N}{\sigma_{allow}} A = \frac{V}{\tau_{allow}}$$

bearing stress

The area of the column base plate B is determined from the allowable bearing stress for the concrete.

embedded shear stress

The embedded length I of this rod in concrete can be determined using the allowable shear stress of the bonding glue.

lap joint shear

The area of the bolt for this lap joint is determined from the shear stress. which is largest between the plates.

limit state design

- Allowable stress design accounts for uncertainty in the applied loading and the material properties in one factor of safety
- Limit state design separates these two into load and resistance factors

1

load factors

- The load factor combines uncertainty in various types of load
- For example, a building can have loading from a few different sources, such as its own weight, people in the building, and snow on top of the building
- Weight is considered a dead load and can usually be determined more precisely than moving things like people

load factors

- In this simple example, we consider a load factor, $\gamma_D = 1.2$ for the dead load, $\gamma_I = 1.6$ and $\gamma_S = 0.5$

$$R = 12D + 16I + 0.5S$$

 These load factors combine the concept of a safety factor with the probability that loads will occur

11

resistance factors

- Resistance factors, ϕ are used to express the probability a material will fail at its limit load
- If we are very confident in the failure stress of a material (i.e. steel has little variability), we might use $\phi=0.9$
- If we are not as confident, (using a new material, or an organic material like wood with higher variability), we might use $\phi=0.7$

design criteria

 If we call the nominal load P, then we can combine load and resistance factors using

$$\phi P > R$$

example 1-12

B 8 in. Single shear Double shear (a) 3 kip

Figure 1: An l-shaped bracket has an 8 inch vertical leg and a 5 inch horizontal leg. A single shear pinned connector holds the

point of the log A in place while a double chear pinned

example 1-15

Figure 2: A 2 meter long beam is supported at the left end with a steel rod connecting vertically. It is subjected to a uniform

load of 2 kilonowtone nor motor and a roller cupport at the

deformation

- When forces are applied to a body, it will change its shape and size
- We call these changes deformation
- Sometimes they are barely noticeable (steel), other times they are very significant (rubber)

- Strain is a more precise measurement of the deformation of a body
- Normal strain is given as the change in length divided by the original length

$$\epsilon = \frac{L - L_0}{L_0}$$

 We can consider the average normal strain (over an entire body) or the local strain (take an infinitely small portion and calculate the strain there)

41

units

- Since we divide length by length, strain is unitless
- However it is customary to use in/in or for stiff specimens to use the phrase microstrain as a unit
- Strain can also sometimes be represented as a percent

shear strain

- Normal strain causes a line segment to expand or contract
- Deformation can also cause two lines to change their relative angle
- The change in angle between two originally perpendicular line segments is called shear strain

$$\gamma = \frac{\pi}{2} - \theta$$

shear strain

Figure 3: Three stages are shown, the first is a rectangular block at rest, with a fixed support on the ground. The second shows the block after it deforms with a horizontal force acting along the top to the right. The third shows the block after it

cartesian components

- If we consider a very small cube/prism with sides of Δx , Δy , and Δz , normal strains will change the side lengths to

$$(1 + \epsilon_x)\Delta x (1 + \epsilon_y)\Delta y (1 + \epsilon_z)\Delta z$$

- And the shear strains will change the shape

$$\frac{\pi}{2} - \gamma_{xy}$$
 $\frac{\pi}{2} - \gamma_{yz}$ $\frac{\pi}{2} - \gamma_{xz}$

small strain

- Most engineering analysis is based on the assumption of small strains
- This is valid for many materials (wood, metal), but not for rubbers and some other polymers
- When strains are small, we assume that the change in angle, $\Delta \theta$ is very small
- $-\sin\Delta\theta \approx \Delta\theta$, $\cos\Delta\theta \approx 1$, $\tan\Delta\theta \approx \Delta\theta$

_

example 2.1

Find the normal strains in the two wires if A moves to A'

example 2.3

Figure 4: A 150 mm square block is constrained along the top, left, and bottom faces, but pushed 2 mm to the left on its right face. AC is the disconstitute going from the top left to the