Wed, May 11, 2016 12:57 AM

A. Written Questions (50 marks):

OA.1

a) Using the relationship among typical growth-rate functions seen in class, order the following functions in non-decreasing order.

 $2n\log(n^2)$, $5n^6$, 2^{2013} , 2.5^n , 2.2^n , $2n^{6.5}$, $\log(n^{10})$, $4 \cdot \log(n)$, 2^{100} , $n^{1.03}$, 70n, $n\log n$, $8n^6 + 5n^2$

Ans:

 2^{100} , 2^{2013} , $4 \cdot \log(n)$, $\log(n^{10})$, 70n, $n\log n$, $2n\log(n^2)$, $n^{1.03}$, $5n^6$, $8n^6 + 5n^2$, $2n^{6.5}$, 2.2^n , 2.5^n .

b) Indicate those functions that are "big-Theta" of each other.

Ans:

2¹⁰⁰ and 2²⁰¹³ are "big-Theta" of each other $4.\log(n)$ and $\log(n^{10})$ are "big-Theta" of each other $n\log n$ and $2n\log(n^2)$ are "big-Theta" of each other $5n^6$ and $8n^6+5n^2$ are "big-Theta" of each other 2.2" and 2.5" are "big-Theta" of each other

QA.2

What is the big-O (O(n)) and Big-Omega $(\Omega(n))$ time complexity of the Count(A, B, n) algorithm below in terms of n? Show all necessary steps of how you computed the complexity.

Algorithm
$$Count(A,B,n)$$
Input: Arrays A and B of size n , where n is even.

 A, B store integers.

 $i \leftarrow 0$ | $+$
 $sum \leftarrow 0$ | $+$

while $i < \frac{n}{2}$ do $\frac{n}{2}$ +

if $A[i + \frac{n}{2}] < 0$ then

for $j \leftarrow i + \frac{n}{2}$ to n do

 $sum \leftarrow sum + B[j]$ $(\frac{n}{2} + 1)$
 $i \leftarrow i + 1$

return sum

$$rac{rac{n}{2}(rac{n}{2}+1)}{2}=rac{rac{n^2}{4}+rac{n}{2}}{2}=rac{n^2}{2}+n=rac{1}{2}n^2+n\Rightarrow O(n^2) \ since \ n^2 \ is \ the \ highest \ order \ of \ rac{1}{2}n^2+n$$

therefore, the big O is $O(n^2)$ and the big Omega is $\Omega(n^2)$.

In this question part (a) and (b) are independent.

- a) For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is in $\Omega(g(n))$, or f(n) is in $\theta(g(n))$. For each pair, determine which relationship is correct. Justify your answer.
- i) $f(n) = \log n^2$; $g(n) = \log n + 5.$

Ans:

$$\begin{split} f(n) &= 2 \log(n) \quad - \quad O(g(n)) = O(\log(n)) \\ f(n) &= 2 \log(n) \text{ is } O(\log(n)) \text{ if } c > 0 \text{ and } n_0 \geq 1 \text{ such that } 2 \log(n) \leq c \log(n) \\ &\qquad \qquad \text{for } n \geq n_0. \\ &\Rightarrow \text{this is true for } c = 2 \text{ and } n_0 = 2. \\ f(n) &= 2 \log(n) \text{ is } \Omega(\log(n)) \text{ if } c > 0 \text{ and } n_0 \geq 1 \text{ such that } 2 \log(n) \geq c \log(n) \\ &\qquad \qquad \text{for } n \geq n_0. \\ &\Rightarrow \text{this is true for } c = 2 \text{ and } n_0 = 2. \\ \mathbf{f}(\mathbf{n}) &= \mathbf{2} \log(\mathbf{n}) \text{ is } \Theta(\log(\mathbf{n})) \text{ since } \mathbf{f}(\mathbf{n}) \text{ is } \Omega(\log(\mathbf{n})) \text{ and } O(\log(\mathbf{n})). \end{split}$$

Noah Hayek (27080409) | Assignment 1 - COMP 352

Fri, May 13, 2016 10:02 PM

ii) $f(n) = \sqrt{n}$; $g(n) = \log n^2$.

Ans:

$$f(n)=n^{rac{1}{2}} - g(n)=2 \ log(n)$$
 $O(f(n))=O(n^{rac{1}{2}}) - O(g(n))=O(log(n))$ $\Omega(f(n))=\Omega(n^{rac{1}{2}}) - \Omega(g(n))=\Omega(log(n))$ $O(log(n))\subset O(n^{rac{1}{2}}) \ \therefore \ f(n)=n^{rac{1}{2}} \ is \ in \ O(g(n))=O(log(n)).$ $O(log(n))\subset O(n^{rac{1}{2}}) \ but \ they \ have \ different \ orders.$

This means that $\Omega(\log(n)) \not\subset \Omega(n^{\frac{1}{2}})$ since the order of the elements of the Big Ω hierarchy is the reverse of that of Big O. $\therefore f(n)$ is not $\Theta(g(n))$ since f(n) is not in $\Omega(g(n))$.

Ans:

iii) $f(n) = \log^2 n;$ $g(n) = \log n.$

$$O(f(n)) = O(\log^2 n)$$
 – $O(g(n)) = O(\log(n))$

$$\Omega(f(n)) = \Omega(log^2n) - \Omega(g(n)) = \Omega(log(n))$$

To determine the order of $\log^2 n$ let $m = \log(n)$,

this means that $m^2 = (\log(n))^2 = \log^2 n$ and is of higher order than $m = \log(n)$.

$$O(\log(n)) = O(g(n)) \subset O(f(n)) = O(\log^2 n) \text{ and } f(n) \text{ is in } O(g(n)).$$

The order of the elements of the big Ω hierarchy is the reverse of that of big O.

This means that $\Omega(f(n)) = \Omega(\log(n)) \not\subset \Omega(\log^2 n) = \Omega(g(n))$.

 $\therefore f(n) \text{ is not } \Theta(g(n)) \text{ since } f(n) \text{ is not in } \Omega(g(n)).$

Ans:

iv)
$$f(n) = n;$$
 $g(n) = \log^2 n.$

$$O(f(n)) = O(n) - O(g(n)) = O(\log^2 n)$$

 $let \ n = 700000 \ (large \ value) \Rightarrow log^2(700000) \approx 19.41.$

Clearly $g(n) = \log^2 n$ is more efficient then f(n) = n.

$$: O(\log^2 n) \subset O(n) \text{ and } f(n) \text{ is in } O(g(n)).$$

f(n) is not in $\Omega(g(n))$ because the order of the elements of

the Ω hierarchy is the reverse of that of Big O.

 \therefore f(n) is not in $\Omega(g(n))$ and not in $\Theta(g(n))$.

Ans:

$$f(n) = n \log n + n;$$
 $g(n) = \log n.$

$$O(f(n)) = O(n \log(n)) - O(g(n)) = O(\log(n))$$

 $f(n) \text{ is in } O(g(n)) \text{ since } O(\log(n)) \subset O(n \log(n)).$

On the other hand, f(n) is not in $\Omega(g(n))$ since $Omega(log(n)) \not\subset \Omega(n \log(n))$ as the order of the element of the Ω hierarchy is the reverse of that of Big O and based on that, we can conclude that f(n) is not in $\theta(g(n))$.

vi)
$$f(n) = \log n^2$$
; $g(n) = (\log n)^2$.

$$f(n) = 2 log(n)$$

$$O(f(n)) = O(log(n)) \quad - \quad O(g(n)) = O(log^2).$$

$$let \ x = log(n) \Rightarrow x^2 = log^2n; \ O(log^2n) = O(x^2) \not\subset O(x) = (log(n)).$$

 \therefore f(n) is not in O(q(n)) and f(n) is not in $\Theta(q(n))$.

However, $\Omega(log^2) = \Omega(x^2) \subset \Omega(log(n)) = \Omega(x)$ and this indicates that f(n) is in $\Omega(g(n))$.

vii) f(n) = 10; g(n) = log 10.

Ans:

$$O(f(n)) = O(1) - O(g(n)) = O(1),$$

since both f(n) and g(n) are constant functions, they have O(1) and $\Omega(1)$ and $\Theta(1)$.

 $\therefore f(n)$ is in $\Theta(g(n))$ and this inducates that f(n) is also in both O(g(n)) and $\Omega(g(n))$.

Noah Hayek (27080409) | Assignment 1 - COMP 352

Sun, May 15, 2016 12:48 AM

viii) $f(n) = 2^n$; $g(n) = 10n^2$.

Ans:

 $O(f(n)) = O(2^n)$ and $O(g(n)) = O(n^2) \Rightarrow \Omega(f(n)) = \Omega(2^n)$ and $\Omega(g(n)) = \Omega(n^2)$. f(n) is in O(g(n)) since $O(n^2) \subset O(2^n)$. But f(n) is not in $\Omega(g(n))$ since $\Omega(n^2) \not\subset \Omega(2^n)$ and based on that, f(n) is not in $\Theta(g(n))$.

 $g(n) = n \log n$.

 $O(f(n)) = O(n^2) \ and \ O(g(n)) = O(n \ log(n)) \Rightarrow \Omega(f(n)) = \Omega(n^2) \ and \ \Omega(g(n)) = \Omega(n \ log(n))$ f(n) is in O(g(n)) since $O(n \log(n)) \subset O(n^2)$. But f(n) is not in $\Omega(g(n))$ since $\Omega(n \log(n)) \not\subset \Omega(n^2)$ and based on that, f(n) is not in $\Theta(g(n))$.

 $f(n) = 2^n$; $g(n) = 3^{n}$.

Ans:

 $O(f(n)) = O(2^n)$ and $O(g(n)) = O(3^n) \Rightarrow \Omega(f(n)) = \Omega(2^n)$ and $\Omega(g(n)) = \Omega(3^n)$. 2^n and 3^n are two exponential functions with different base numbers and therefore, are not of the same order since $2^n < 3^n$ for n > 0.

Based on that $O(3^n) \not\subset O(2^n)$ and f(n) is not in O(g(n)) and is not in $\Theta(g(n))$. On the other hand, $\Omega(3^n) \subset \Omega(2^n)$ since the Ω hierarchy of elements is the reverse of that of Big O. $\therefore f(n) \text{ is in } \Omega(q(n)).$

 $g(n) = n^n$. $f(n) = 2^n$;

 $O(f(n)) = O(2^n) \ and \ O(g(n)) = O(n^n) \Rightarrow \Omega(f(n)) = \Omega(2^n) \ and \ \Omega(g(n)) = \Omega(n^n).$ f(n) is not in O(g(n)) because n^n is of higher order than 2^n .

This also indicates that f(n) is not in $\Theta(g(n))$.

However, since the hierarchy of elements of Ω is the inverse of that of Big O, $\Omega(2^n)$ is in $\Omega(n^n)$ since $\Omega(n^n) \subset \Omega(2^n)$.

The following run times were obtained when using two different algorithms on a data set of size n. Based on this timing data, guess at the asymptotic complexity of each algorithm as a function of n. Use Big-O notation in its simplest form and briefly explain how you reached your conclusion.

Execution Time (in seconds) \mathbf{n} 1000 0.743 2000 3.021 4000 12.184 8000

O(n), since the execution time increases by a factor of approximately 4 when the value of n is doubled.

Execution Time (in microseconds or millionths of a second) 1000 0.01 1000000 20 30000 1000000000

O(log(n)), since the execution prove that the algorithm is effective.