Teoria da Computação Indecidibilidade

Leonardo Takuno {leonardo.takuno@gmail.com}

Centro Universitário Senac

Sumário

- Máquina de Turing Universal
- O problema da Parada
- Método da Diagonalização
- 4 Linguagem Turing-irreconhecível

Sumário

- Máquina de Turing Universal
- O problema da Parada
- Método da Diagonalização
- 4 Linguagem Turing-irreconhecível

Paradoxos

Em uma cidade, existe apenas um barbeiro, do sexo masculino. Todo homem deve se manter barbeado, seja indo ao barbeiro ou fazendo ele mesmo. O barbeiro só faz a barba daqueles que não se barbeiam. Quem barbeia o barbeiro?

Máquina de Turing Universal

Sabemos que as linguagens:

$$A_{AFD} = \{\langle B, w \rangle | B \text{ \'e um AFD que aceita } w\}$$

$$A_{GLC} = \{ \langle G, w \rangle | G \text{ \'e uma GLC que gera } w \}$$

são Turing-decidíveis.

E sobre a linguagem

$$A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT que aceita } w \}.$$

Existe uma máquina de Turing capaz de simular outras Máquinas de Turing ?

Probema de aceitação para Máquinas de Turing

A linguagem

$$A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT que aceita } w\}$$

é chamada de **problema de aceitação para MT** ou **problema da parada** (the halting problem).

Máquina de Turing Universal

Teorema: A linguagem A_{MT} é Turing-reconhecível.

Dada a entrada $\langle M, w \rangle$, onde M é uma MT e w é uma cadeia, podemos simular M sobre w?

Podemos simular via máquina de Turing Universal U.

U = "Sobre a entrada $\langle M, w \rangle$, onde M é uma MT e w é uma cadeia:

- Simule M sobre a entrada w.
- Se M em algum momento entra no seu estado de aceitação, aceite; se M em algum momento entra em seu estado de rejeição, rejeite. "

A existência da máquina de Turing Universal U mostra que

$$A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT que aceita } w \}.$$

é Turing-reconhecível, mas também podemos decidí-lo?

- O problema ocorre nos casos em que M não pára sobre um determinado w.
- Veremos que este é um insuperável problema: em geral, não se pode decidir se uma MT irá parar sobre w ou não, assim A_{MT} é indecidível.

Sumário

- Máquina de Turing Universa
- O problema da Parada
- Método da Diagonalização
- 4 Linguagem Turing-irreconhecível

Teorema 4.11: A linguagem

$$A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT que aceita } w\}$$

é indecidível.

Prova: Por contradição. Assuma que exista um decisor H para a linguagem A_{TM} . Então,

$$H(\langle M, w \rangle) = \begin{cases} \text{ aceite se } M \text{ aceita w} \\ \text{rejeite se não } M \text{ aceita w} \end{cases}$$

Construímos uma nova MT D tal que

D = "Sobre a entrada $\langle Q \rangle$ onde Q é uma MT:

- **1** Execute H sobre a entrada $\langle Q, \langle Q \rangle \rangle$.
- Paça o oposto da saída de H; se H aceita, rejeite e se H rejeita, aceite."

Agora,

$$D(\langle M \rangle) = \begin{cases} \text{aceite se } M \text{ não aceita } \langle M \rangle \\ \text{rejeite se } M \text{ aceita } \langle M \rangle \end{cases}$$

A máquina em uma dada linha aceita a entrada em uma dada coluna.

A entrada i, j é o valor de H sobre a entrada $\langle M_i, \langle M_i \rangle \rangle$.

Agora, adicionamos D. Note que D computa o oposto das entradas na diagonal.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	\underline{aceite}	rejeite	aceite	rejeite		aceite	
M_2	aceite	\underline{aceite}	aceite	aceite		aceite	
M_3	rejeite	rejeite	rejeite	rejeite	• • •	rejeite	
M_4	aceite	aceite	$\overline{rejeite}$	rejeite		aceite	
:		:			٠		
D	rejeite	rejeite	aceite	aceite			
:		:					٠.

O que acontece quando rodamos D com sua própria descrição $\langle D \rangle$ como entrada ? Nesse caso, obtemos

$$D(\langle D \rangle) = \left\{ egin{array}{ll} ext{aceite} & ext{se } D ext{ n\~ao aceita } \langle D
angle \\ ext{rejeite} & ext{se } D ext{ aceita } \langle D
angle \end{array}
ight.$$

- Independentemente do que D faz, ela é forçada a fazer o oposto.
- Isto é uma contradição. Portanto, nem H nem D pode existir e A_{MT} é indecidível.

Problema da Parada

Assista:

https://www.youtube.com/watch?v=92WHN-pAFCs

Sumário

- Máquina de Turing Universa
- O problema da Parada
- Método da Diagonalização
- 4 Linguagem Turing-irreconhecível

Método da Diagonalização

- Veremos agora uma prova construtiva que mostra que algumas linguagens não são computáveis por algoritmos.
- Esta prova mostra que o conjunto de todas as máquinas de Turing é contável ao passo que o conjunto de todas as linguagens é incontável.
- Portanto, existem algumas linguagem que não são reconhecíveis por máquina de Turing.

Conjuntos

- Georg Cantor (1873).
- Medida do tamanho de conjuntos infinitos.
- Se tivermos dois conjuntos infinitos, como podemos dizer se um é maior que o outro ou se eles têm o mesmo tamanho?

Funções

Definição 4.12: Se A e B são conjuntos e uma função $f: A \rightarrow B$, dizemos que:

- $f \in \mathbf{um}$ -para-um se $f(a) \neq f(b)$ sempre que $a \neq b$.
- f é **sobrejetora** se para todo $b \in B$ existe um $a \in A$ tal que f(a) = b.
- *f* é **correspondência** se *f* é tanto um-para-um quanto sobrejetora.

Funções

Funções

Definição: Dois conjuntos A e B são de **mesmo tamanho** se existe uma correspondência $f: A \rightarrow B$.

Definição 4.14: Um conjunto é **contável** se é finito ou tem o mesmo tamanho que $\mathcal N$

Método da Diagonalização

Exemplo: $f: \mathcal{N} \to \mathcal{E}$, onde \mathcal{N} é o conjunto dos números naturais e \mathcal{E} é o conjunto dos naturais pares.

• f(n) = 2n é uma correspondência.

n	f(n)
1	2
2	4
3	6
÷	:

Portanto, declaramos que estes dois conjuntos são do mesmo tamanho.

Método da Diagonalização

Teorema: Seja $Q = \{\frac{m}{n} | m, n \in \mathcal{N}\}$ o conjunto dos números racionais positivos, Q é contável.

Idéia da prova:

Cadeias sobre um alfabeto

Teorema: O conjunto Σ^* é contável, para qualquer Σ .

Prova:

- Seja C_i ∈ Σ* o conjunto de todas as cadeias de comprimento
 i. Note que |C_i| = kⁱ, onde k é o tamanho do alfabeto Σ.
- Faça uma lista que contém os elementos de C_0 seguidos pelos elementos de C_1 , seguidos por elementos de C_2 , assim por diante.
- Faça f(n)= "a (n+1)-ésima cadeia dessa lista" $\forall n\in\mathcal{N}.$
- Note que f é bijetora: duas posições diferentes possuem cadeias diferentes e toda cadeia será listada. □

Cadeias sobre um alfabeto

 $\Sigma = \{0, 1\}$

Máquinas de Turing

Teorema: O conjunto de todas as máquinas de Turing é contável.

Prova

- Qualquer TM M pode ser codificada com uma string (M) sobre um alfabeto Σ.
- Seja $\langle M \rangle^*$ o conjunto de todas as descrições de MT válidas.
- Sabemos que Σ^* é contável e $\langle M \rangle^* \subseteq \Sigma^*$, logo, $\langle M \rangle^*$ é contável. \square

Conjuntos incontáveis

- Alguns conjuntos não podem ser mapeados por bijeção ao conjunto $\mathcal{N}.$
- Tais conjuntos são incontáveis.

Método da Diagonalização

Teorema 4.17: Seja $\mathcal R$ o conjunto dos números reais, $\mathcal R$ é incontável.

Prova:

• Suponha que \mathcal{R} é contável. Então existe uma correspondência f entre \mathcal{N} e \mathcal{R} .

n	f(n)
1	3, 14159
2	55, 55555
3	0, 12345
4	0,500000
:	:

Método da Diagonalização

... continuação

- Agora obtemos um $x \in \mathcal{R}$ que não é pareada com qualquer elemento de \mathcal{N} .
- Escolha o i-ésimo dígito fracionário de x diferente do dígito da i-ésima fração.

n	f(n)
1	3, <u>1</u> 4159
2	55, 5 <u>5</u> 555
3	0, 12 <u>3</u> 45
4	0,500 <u>0</u> 00
:	:

Ex: x = 0,4641... Então, $x \neq f(n)$ para todo n. Logo \mathcal{R} é incontável. \square

Teorema: O conjunto de todas as seqüências binárias infinita é incontável.

Prova: Prova por contradição. Defina uma correspondência $f: \mathcal{N} \to \mathcal{B}$, onde \mathcal{N} são os números naturais e \mathcal{B} é o conjunto de todas as seqüências binárias infinitas. Então,

n	f(n)
1	0100111
2	11111000
3	10110010
:	:
k	0010 0 _k
:	÷

Então,

n	f(n)
1	0100111
2	11111000
3	1011001
:	:
k	0010 0 _k
:	:

Podemos construir uma seqüência binária que difere de todas as seqüências enumeradas pelo menos em 1 bit.

... continuação

n	f(n)
1	<u>0</u> 100111
2	1 <u>1</u> 111000
3	10 <u>1</u> 1001
:	:
k	0010 <u>0</u> _k
:	:

exemplo: x = 100...1...

- Para qualquer valor de k construímos uma sequência que diferen no valor de f(k) no k—ésimo bit.
- Portanto, existem elementos em B que não são imagens de f.
 Isto significa nossa hipótese de que f é uma correspondência incorreta.□

Teorema: O conjunto de todas as linguagens \mathcal{L} sobre o alfabeto $\Sigma_{0,1}$ é incontável.

Prova:

- Mostramos uma correspondência f: L→B, onde L é o conjunto de todas as linguagens e B é o conjunto de sequências binárias infinitas.
- Para cada linguagem $A \in \mathcal{L}$ podemos construir um único elemento em \mathcal{B} .
- Seja $\Sigma^* = \{s_1, s_2, s_3, ...\}$. O *i-ésimo* bit da **seqüência** característica de A é 1 se $s_i \in A$ e 0 se $s_i \notin A$.

Teorema: O conjunto de todas as linguagens $\mathcal L$ sobre o alfabeto $\Sigma_{0,1}$ é incontável.

Exemplo: se A fosse a linguagem de todas as cadeias começando com 0 sobre o alfabeto $\{0,1\}$, sua seqüência característica $\mathcal{X}_{\mathcal{A}}$ seria

A função $f:\mathcal{L}\to\mathcal{B}$, onde f(A) é a seqüência característica de A, é um-para-um e sobrejetora e, portanto, uma correspondência. Conseqüentemente, como \mathcal{B} é incontável, \mathcal{L} também é incontável. \square

Uma prova construtiva

Corolário 4.18: Algumas linguagens não são Turing-reconhecíveis.

Prova: Observe que o conjunto de Máquinas de Turing é contável e da prova anterior segue que o conjunto de todas as linguagens é incontável. Assim, não conseguimos construir uma correspondência entre o conjunto de todas as linguagens e o conjunto de máquinas de Turing.

Portanto, existem algumas linguagens que não são reconhecidas por Máquina de Turing. □

Sumário

- Máquina de Turing Universa
- O problema da Parada
- Método da Diagonalização
- 4 Linguagem Turing-irreconhecível

- A demonstração apresentada anteriormente mostra que A_{MT} é indecidível.
- No entanto, sabemos que A_{MT} é Turing-reconhecível.
- Agora apresentaremos uma linguagem que n\u00e3o \u00e9 sequer Turing-reconhec\u00edvel.
- Segue como consequência do Teorema 4.22, a seguir.

Máquina de Turing Universal O problema da Parada Método da Diagonalização Linguagem Turing-irreconhecível

Linguagem Turing-irreconhecível

Teorema 4.22: Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível

Em outras palavras, uma linguagem é decidível exatamente quando ela e seu complmento são ambas Turing-reconhecíveis.

Teorema 4.22: Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível

Prova:

$$(\Rightarrow)$$

- Se A for decidível, então A e \overline{A} são Turing-Reconhecíveis.
- Qualquer linguagem decidível é Turing-Reconhecível;
- O complemento de uma linguagem decidível é também decidível.

Teorema 4.22: Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível

 (\Leftarrow)

• Se tanto A quanto \overline{A} , fazemos M_1 ser o reconhecedor para A e M_2 o reconhecedor para \overline{A} . Construa M um decisor para A.

M = "Sobre a entrada w:

- 1. Execute M_1 e M_2 , sobre a entrada w em paralelo.
- 2. Se M_1 aceita, aceite; se M_2 aceita, rejeita.

M sempre pára, portanto é um decisor. Logo A é decidível.

Máquina de Turing Universal O problema da Parada Método da Diagonalização Linguagem Turing-irreconhecível

Linguagem Turing-irreconhecível

Corolário 4.23: A linguagem $\overline{A_{MT}}$ não é Turing-reconhecível.

Prova: Por contradição. Observe que A_{MT} é indecidível. Além disso, observe que A_{MT} é Turing-reconhecível. Agora, assuma que that $\overline{A_{MT}}$ é também Turing-reconhecível. Verifique que a string w, ou é um elemento de A_{MT} , ou um elemento de $\overline{A_{MT}}$ podemos contruir o seguinte decisor para A_{MT} .

Seja M1 e M2 reconhecedores para A_{MT} e A_{MT} , respectivamente: M = "Sobre a entrada w, onde w é uma string:

- **1** Execute M1 e M2 em paralelo sobre w.
- 2 Se M1 aceita, aceite; se M2 aceita, rejeite."

Note que esta máquina é um decisor pois irá parar sobre toda entrada w. Note também, que este decisor contradiz nosso teorema que A_{MT} é indecidível. Portanto, nossa hipótese que $\overline{A_{MT}}$ é Turing-reconhecível deve estar errada. Isto mostra que $\overline{A_{MT}}$ não é Turing-reconhecível. \square

Máquina de Turing Universal O problema da Parada Método da Diagonalização Linguagem Turing-irreconhecível

Exercícios

1) Mostre que o conjunto dos números naturais pares $\{2,4,6,\cdots\}$ e o conjunto dos números naturais ímpares $\{1,3,5,\cdots\}$ têm o mesmo tamanho.

Exercícios (Solução)

Basta realizar o seguinte emparelhamento (função bijetora) entre os dois conjuntos:

Pares	Ímpares
0	1
2	3
4	5
6	7
8	9
10	11

A função que mapeia os pares nos ímpares é dada por $f: pares \rightarrow impares, \ f(x) = x+1$ que, claramente, é uma função bijetora (gráfico é uma reta)

Exercícios

2) Mostre que o conjunto dos números inteiros $\mathcal{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ é contável.

Exercícios

2) Mostre que o conjunto dos números inteiros $\mathcal{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ é contável. Prova: Vamos mostrar que

$$f(n) = \begin{cases} \frac{n}{2} & \text{se n \'e par} \\ \frac{-(n+1)}{2} & \text{se n \'e \'impar} \end{cases}$$

é uma bijeção de $\mathcal N$ para $\mathcal Z$ Sejam $m, n \in \mathcal{N}$ com $n \neq m$. Se ambas tem a mesma paridade, claramente $f(n) \neq f(m)$ pois $\frac{n}{2} \neq \frac{m}{2}$ e $\frac{-(n+1)}{2} \neq \frac{-(m+1)}{2}$. Caso contrário, suponha s.p.g. que n é par e m é ímpar. Também claramente $f(n) \neq f(m)$ pois $\frac{n}{2} \neq \frac{-(m+1)}{2}$. (injetora)

Exercícios

... continuação

Seja
$$z \in \mathcal{Z}$$
. Se $z \geq 0$, então $2z$ é um número natural par tal que $f(2z) = z$. Se $z < 0$, então $-(2z+1)$ é um número ímpar tal que $f(-(2z+1)) = z$. (sobrejetora). \square