6.4: Volume by Shells

Volume by the Shell Method

Let f and g be continuous functions with $f(x) \ge g(x)$ on [a,b]. If R is the region bounded by the curves y = f(x) and y = g(x) between the lines x = a and x = b, the volume of the solid generated when R is revolved about the y-axis is

$$V = \int_{a}^{b} \underbrace{2\pi x}_{\text{shell circumference height}}^{b} \underbrace{(f(x) - g(x))}_{\text{shell circumference height}}^{b} dx.$$

radius X-C want pos

Example. Consider a general region R revolved around the y-axis.

$$\int_{C}^{d} \pi \left(\left(f - 0 \right)^{2} - \left(g - 0 \right)^{2} \right) d\gamma$$

When using the **shell** method, we integrate with respect to $\underline{\chi}$

$$\int_{a}^{b} 2\pi \left(x-o\right) \left(f-g\right) dx$$

$$\geq 0$$

Example. Consider a general region R revolved around the x-axis.

When using the disk/washer method, we integrate with respect to $\underline{\chi}$

When using the **shell** method, we integrate with respect to _______

Example. Consider the region bounded between $y = x^3$, y = 8 and x = 0.

Perpendicular of revolution

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the x-axis.

about the y-axis.

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the line x = -1.

about the line y = 8.

48

Example. Consider the region R bounded by $y = 4 - x^2$, y = 2, and x = 1. Use the shell method to setup the integral that represents the volume of the solid generated by rotating the region R about the indicated axis of rotation.

about x-axis, (y=0) $V = \int_{2}^{3} z \pi \left(y - 0 \right) \left(\sqrt{4 - y} - 1 \right) dy$ $z \pi y \left(\sqrt{4 - y} - 1 \right)$

about y-axis,
$$(x=0)$$

$$\sqrt{z} = \int_{1}^{2\pi i} x \left(4-x^{2}-z\right) dx$$

$$2\pi x (2-x^{2})$$

about the line x = -2,

$$V = \int_{2}^{3} 2\pi \left(y-2 \right) \left(\sqrt{4-y} -1 \right) dy$$

Example. Consider the region bounded by $y = \frac{1}{x+1}$ and $y = 1 - \frac{x}{3}$. Use both the disk/washer method and shell method to find the volume of the solid generated when R

 $U = 1 - \frac{7}{3}$ -3du = dx

Example. Determine if the following statements are true.

When using the shell method, the axis of the cylindrical shells is parallel to the axis of revolution.

If a region is revolved about the y-axis, then the shell method must be used.

If a region is revolved about the x-axis, it is possible to use the disk/washer method and integrate with respect to x.

