

[c]][x]
Minimize	the objective function

weighted vertex Cover Problem

for G=(V, E), S \subseteq V is a set such
that each edge has at least

one end = S

wi > 0 for each ieV

w(s) = \subseteq w:
ies

objective: Minimize W(s)

di is a decisió ie V	variable fo	reach m
$\begin{cases} x_i = 0 \\ x_i = 1 \end{cases}$		
	i	j
xi+xj>1	a;	aj

- Linear Programming	ContinuousVarial
in teger	discrete "
- Mixed integ.	both cont. & dix
- non-linear "	

Drop the requirement That $x_i \in \{0,1\}$ and solve the LP in polyntine and
find $\{x_i^*\}$ between 0 & 1Were = $\sum_i w_i x_i^*$ S^* in the opt. vertex corn set $W(S^*)$ weight of the opt. sel.

a3=.5
Wep = Zwini = 1x.5+1.x.5+1.x.5
<u>=1.5</u>
$W(5^*) = 2 \qquad W(5) = 3$

$$x_{i}^{*} = 0 \implies i \notin S$$

$$x_{i}^{*} = 1 \implies i \in S$$

$$Say S_{2} = \left\{ i \notin V : x_{i}^{*} > 1/_{2} \right\}$$

$$x_{i} + x_{j} > 1$$

$$x_{i} = 0 \implies i \notin S$$

$$x_{i} \neq S$$

Ē

multi commodity flor.
fi(e): flow of commadity i over edge e
anit of flow for commodity i'.
we have in commodities
Objective: Maximize profit

maximize \(\sigma_i \frac{1}{2} \) \(\alpha_i \frac{1}{2} \) (e)
in entos
Subject to
<u> </u>
$0 \left(\sum_{i=1}^{n} f(e) \right) \left(C_{e} \right)$ i=1 for each ex 5
file einter file) = 5 file) for each ver
Tiel einter for i-1 tom

d(t) (d(v) + Cxt

d(t) (d(x) + Cxt

d(t) (d(v) + w(u,v) for each

edge (u,v) = E

bjective function

Moximize d(t)

Moximize

Major difference between divide & Conquer & and dynamic programming - Supproblems are independent/ disjoint in divide & Conquer

Find the medians or in general find
the kty smallest element of the array.

- takes O(vrlgn) using sorting
- can we do better!

Randonized algorithms

Two general types:

-> 1- Alg. relies on random nature

of input

2- Algorithm to behaves randomly

the seturn Randomized-Select (

A, P, 9-1, i)

Olse seturn

Randomized select (A, 9+1, r. $\frac{1}{2}i^{-1}i^{$

