Projeto: Coletor SMQ 711 uso integral da DAQ

Produto: Coletor SMQ_711

Justificativas:

- usar todo o range de medição da DAQ (+-10V) melhorando a qualidade do sinal de vibração;

- possibilidade de criarmos versões do coletor para aquisições de outros sinais com maior flexibilidade: corrente, tensão, ultrasom etc;

Objetivo SMART: desenvolver uma nova versão do coletor de dados da Semeq que utilize de todo o range de medição da DAQ melhorando a qualidade do sinal de vibração medido e possibilitando o monitoramento de diversas outras grandezas.

Benefícios:

- melhora na qualidade do sinal
- flexibilização no monitoramento de outras grandezas

Requisitos / Escopo:

- coletor de dados para 2 canais de vibração + 1 canal de tacômetro + monitoramento do nível de bateria;
- eletrônica com range +-10V;
- ganho e filtro nos 2 canais de vibração;
- controle de On/Off;
- duração mínima de bateria de meio expediente;
- uso de bateria recarregável com carregamento externo;
- peso <= coletor SMQ_710;</pre>
- teste de substituição do conector fisher por um mais barato e de compra mais fácil:

Fora do escopo:

- desenvolvimento da mecânica;

Premissas:

- mesma mecânica do coletor SMQ_710;
- mesmo teclado de membrana do coletor SMQ 710;
- uso do mesmo conceito: Raspi + DAQ + LCD HDMI;
- Projeto SMQ_710 ser aprovado;

Equipe:

- Marcos H. Pitoli;
- Amaury;

Riscos:

- não encontrarmos alguns dos componentes eletrônicos para comprar devido a crise dos semicondutores ;
- consumo de bateria ser maior que SMQ 710;
- custo do coletor ser maior que SMQ_710;
- Projeto SMQ_710 necessitar de outras alterações;
- após a fabricação do protótipo o projeto necessitar de alguma alteração devido a algum problema: ruído, duração de bateria etc. Nesse caso ocorrerá novo gasto com Compra de componentes e fabricação de nova PCB além de aumentar o tempo do projeto;

Custos:

Compra componentes: 500 U\$D

Protótipo PCB: 3.000 R\$

Entregas + Linha do tempo

1.1 Pesquisa de componentes - 2 semanas

1.2 Compra de componentes - 1 dia

1.3 Avaliação de componentes - 1 mês

2.1 Desenvolvimento do Hardware - 2 meses //

2.2 Desenvolvimento do Firmware - 2 semanas //

2.3 Testes de validação interno - 1 semana

2.4 Testes de validação externo - 1 semana

3.1 Arquivos e manuais de produção - 2 dias

Total = 4 meses e 3 dias

Recursos - Projeto_Coletor SMQ_711_DAQ_10V			
Pacote de trabalho	Tempo Estimado	Custo estimado	Colaboradores
1.1 Pesquisa de componentes	2 semanas	-	Pitoli
1.2 Compra de componentes	1 dia	500 US\$	Pitoli
1.3 Avaliação de componentes	1 mês	-	Pitoli
2.1 Desenvolvimento do Hardware	2 meses //	3.000 R\$	Pitoli
2.2 Desenvolvimento do Firmware	2 semanas //	-	Amaury
2.3 Testes de validação interno	1 semana	-	Pitoli / Amaury
2.4 Testes de validação externo	1 semana	-	PCB / Amaury / Pitoli
3.1 Arquivos e manuais de produção	2 dias	-	Pitoli

1. Seleção de componentes

- **1.1 Pesquisa de componentes:** conversores DCDC, AmpOps, relés, capacitores etc
 - **1.2 Compra de componentes:** 2 ou 3 modelos para cada item

1.3 Avaliação de componentes:

- 1.2.1 Esboço dos circuitos mínimos necessários;
- 1.2.2 Testes de requisitos: qualidade do sinal, consumo etc;
- 1.2.3 Analise dos tradeoffs entre as opções viáveis: preço, prazo etc;

2. Prototipagem

2.1 Desenvolvimento do Hardware

- 2.1.1 Projeto Eletrônico: alimentações, filtros, ganhos, circuito de OnOff, controle etc;
 - 2.1.2 Design da PCB;
 - 2.1.3 Produção e validação dos circuitos;

2.2 Desenvolvimento do Firmware

2.2.1 Alterar rotina de aquisição dos sinais com o range maior;

2.3 Testes de validação interno

- 2.3.1 Consumo e estimativa de bateria,
- 2.3.2 Teste no motor, bancada, maleta

2.4 Testes de validação externo

- 2.4.1 Duração de bateria,
- 2.4.2 Baixar rota, enviar dados etc;

3. Produção

3.1 Arquivos e manuais de produção

- 3.1.1 Gerbers;
- 3.1.2 Datasheet;
- 3.1.3 Lista de Materiais;
- 3.1.4 Pick and Place;
- 3.1.5 Manual;