学习汇报

基础的Seq2Seq,输入一个单词(字母序列),模型将返回一个对字母排序后的"单词"。

```
def seq2seq_model(input_data, targets, 1r, target_sequence_length,
                 max target sequence length, source sequence length,
                 source_vocab_size, target_vocab_size,
                 encoder_embedding_size, decoder_embedding_size,
                 rnn size, num layers):
    # 获取encoder的状态输出
    _, encoder_state = get_encoder_layer(input_data,
                                 rnn size.
                                 num layers,
                                 source sequence length,
                                 source_vocab_size,
                                 encoding embedding size)
    # 预处理后的decoder输入
    decoder input = process decoder input (targets, target letter to int, batch size)
    # 将状态向量与输入传递给decoder
   training_decoder_output, predicting_decoder_output = decoding_layer(target_letter_to_int,
                                                                      decoding embedding size.
                                                                     num layers,
                                                                      rnn_size,
                                                                      target_sequence_length,
                                                                      max_target_sequence_length,
                                                                      encoder_state,
                                                                      decoder input)
   return training_decoder_output, predicting_decoder_output
```

```
Epoch 36/60 Batch
                   50/77 - Training Loss: 0.057 - Validation loss: 0.057
                   50/77 - Training Loss: 0.052 - Validation loss: 0.053
Epoch 37/60 Batch
Epoch 38/60 Batch
                   50/77 - Training Loss: 0.047 - Validation loss: 0.049
Epoch 39/60 Batch
                   50/77 - Training Loss: 0.043 - Validation loss: 0.045
                   50/77 - Training Loss: 0.039 - Validation loss: 0.042
Epoch 40/60 Batch
Epoch 41/60 Batch
                   50/77 - Training Loss: 0.036 - Validation loss: 0.039
Epoch 42/60 Batch
                    50/77 - Training Loss: 0.033 - Validation loss: 0.037
Epoch 43/60 Batch
                   50/77 - Training Loss: 0.030 - Validation loss: 0.034
                   50/77 - Training Loss: 0.028 - Validation loss: 0.032
Epoch 44/60 Batch
Epoch 45/60 Batch
                   50/77 - Training Loss: 0.026 - Validation loss: 0.029
Epoch 46/60 Batch
                   50/77 - Training Loss: 0.024 - Validation loss: 0.028
                   50/77 - Training Loss: 0.027 - Validation loss: 0.029
Epoch 47/60 Batch
Epoch 48/60 Batch
                   50/77 - Training Loss: 0.030 - Validation loss: 0.030
                   50/77 - Training Loss: 0.023 - Validation loss: 0.026
Epoch 49/60 Batch
Epoch 50/60 Batch
                   50/77 - Training Loss: 0.021 - Validation loss: 0.024
Epoch 51/60 Batch
                   50/77 - Training Loss: 0.019 - Validation loss: 0.022
                   50/77 - Training Loss: 0.017 - Validation loss: 0.021
Epoch 52/60 Batch
Epoch 53/60 Batch
                   50/77 - Training Loss: 0.016 - Validation loss: 0.020
                   50/77 - Training Loss: 0.015 - Validation loss: 0.019
Epoch 54/60 Batch
                   50/77 - Training Loss: 0.014 - Validation loss: 0.018
Epoch 55/60 Batch
Epoch 56/60 Batch
                   50/77 - Training Loss: 0.013 - Validation loss: 0.018
Epoch 57/60 Batch
                   50/77 - Training Loss: 0.012 - Validation loss: 0.017
Epoch 58/60 Batch
                   50/77 - Training Loss: 0.011 - Validation loss: 0.016
                   50/77 - Training Loss: 0.011 - Validation loss: 0.016
Epoch 59/60 Batch
                   50/77 - Training Loss: 0.010 - Validation loss: 0.015
Epoch 60/60 Batch
Model Trained and Saved
```

原始输入: common

Source

Word 编号: [20, 28, 6, 6, 28, 5, 0]

Input Words: c o m m o n (PAD)

Target

Word 编号: [20, 6, 6, 5, 28, 28, 3]

Response Words: c m m n o o (EOS)

Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models

AAAI 2016

https://xueshu.baidu.com/usercenter/paper/show?paperid=d2ffcde5529ecf0ce24db265fd9ce3dc&site=xueshu_se&hitarticle=1

将分层的递归编码器-解码器神经网络扩展到对话领域,采用分层的seq2seq架构来解决多轮对话问题。

模型:

结果:

Model	Perplexity	Perplexity@U ₃	Error-Rate	Error-Rate@U3
Backoff N-Gram	64.89	65.05	2	-
Modified Kneser-Ney	60.11	54.75	-	-
Absolute Discounting N-Gram	56.98	57.06	-	89 = 3
Witten-Bell Discounting N-Gram	53.30	53.34	-	-
RNN	35.63 ± 0.16	35.30 ± 0.22	$66.34\% \pm 0.06$	$66.32\% \pm 0.08$
DCGM-I	36.10 ± 0.17	36.14 ± 0.26	$66.44\% \pm 0.06$	$66.57\% \pm 0.10$
HRED	36.59 ± 0.19	36.26 ± 0.29	$66.32\% \pm 0.06$	$66.32\% \pm 0.11$
HRED + Word2Vec	33.95 ± 0.16	33.62 ± 0.25	$66.06\% \pm 0.06$	$66.05\% \pm 0.09$
RNN + SubTle	27.09 ± 0.13	26.67 ± 0.19	$64.10\% \pm 0.06$	$64.07\% \pm 0.10$
HRED + SubTle	27.14 ± 0.12	26.60 ± 0.19	$64.10\% \pm 0.06$	$64.03\% \pm 0.10$
HRED-Bi. + SubTle	26.81 ± 0.11	26.31 ± 0.19	$63.93\% \pm 0.06$	$63.91\% \pm 0.09$

Table 2: Test set results computed on $\{U_1, U_2, U_3\}$ and solely on $\{U_3\}$ conditioned on $\{U_1, U_2\}$. Standard deviations are shown for all neural models. Best performances are marked in bold.

Reference (U ₁ , U ₂)	MAP	Target (U ₃)	
U ₁ : yeah, okay.	i 'll see you tomorrow.	yeah .	
U2: well, i guess i'll be going now.			
U_1 : oh . <continued_utterance> oh .</continued_utterance>	i don 't know .	oh .	
U ₂ : what 's the matter, honey?		-:	
U ₁ : it 's the cheapest.	no, it's not.	they 're all good, sir.	
U ₂ : then it 's the worst kind?	*		
U_1 : <person>! what are you doing?</person>	what are you doing here?	what are you that crazy?	
U ₂ : shut up ! c ' mon .	80 (70%)		

Table 3: MAP outputs for HRED-Bidirectional bootstrapped from SubTle corpus. The first column shows the reference utterances, where U_1 and U_2 are respectively the first and second utterance in the test triple. The second column shows the MAP output produced by beam-search conditioned on U_1 and U_2 . The third column shows the actual third utterance in the test triple.

谢谢