4.1.15

4.1.**15** Prove Proposition 4.1.2.

Proposition 4.1.2. Let T be the output tree produced by any instance of Tree-Growing in a graph. Then T is an ordered tree with respect to the discovery order of its vertices.

4.2.17

4.2.17 Verify that a preorder traversal of a depth-first search tree recreates the discovery order.

4.2.20

4.2.20 Prove Proposition 4.2.3.

Proposition 4.2.3. When breadth-first search is applied to an undirected graph, the endpoints of each non-tree edge are either at the same level or at consecutive levels.

Proof: The result uses an argument analogous to the one given in the proof of Proposition 4.2.1. \diamondsuit (Exercises)

Proposition 4.2.1. Depth-first search trees have no cross-edges.

Proof: Let T be the output tree produced by a depth-first search, and let e be a non-tree edge whose endpoints x and y satisfy dfnumber(x) < dfnumber(y). At the point when the depth-first search discovered vertex x, edge e became a frontier edge. Since e never became a tree edge, the search had to have discovered vertex y before backtracking to vertex x for the last time. Thus, y is in the subtree rooted at x and, hence, is a descendant of x.

4.3.11

4.3.11 State a sufficient condition to guarantee that a given weighted graph does not have a unique minimum spanning tree. Is the condition also necessary?

4.4.10

4.4.**10** Prove Proposition 4.4.4.

Proposition 4.4.4. Let G be a connected graph. All vertices on a cycle are in the same bridge component of G. \diamondsuit (Exercises)

4.4.15

4.4.**15** Prove Proposition 4.4.13.

Proposition 4.4.13. If there is no freedom room in the maze, Tarry's algorithm will stop after each tunnel is traversed eactly twice once in each direction. \Diamond (Exercises)

4.5.20

4.5.20 Prove that a subgraph of a connected graph G is a subgraph of the relative complement of some spanning tree if and only if it contains no edge-cuts of G.

4.5.21

4.5.21 Prove Proposition 4.5.10.

Proposition 4.5.10. The fundamental edge-cut with respect to an edge e of a spanning tree T consists of e and exactly those edges in the relative complement of T whose fundamental cycles contain e. \diamondsuit (Exercises)

4.6.7

4.6.7 a. Show that the collection $\{\{a,c,d,f\}, \{b,c,e,g\}, \{a,b,h\}\}$ of edge subsets of E_G forms a basis for the cycle space $W_C(G)$ of the graph G shown. b. Find a different basis by choosing some spanning tree and using the associated fundamental system of cycles.

4.6.14

4.6.14 Prove Theorem 4.6.6.

Theorem 4.6.6. Let T be a spanning tree of a connected graph G. Then the fundamental system of edge-cuts associated with T is a basis for the edge-cut space $W_S(G)$. \diamondsuit (Exercises)

4.6.15

4.6.15 Prove Proposition 4.6.9.

Proposition 4.6.9. A subgraph H of a graph G is an element of the edge-cut space of G if and only if it has an even number of edges in common with every subgraph in the cycle space of G. \diamondsuit (Exercises)