CS 352: Internet Technology- Midterm 07/19

Exam Content

The exam has been partitioned into 6 sections totaling 114 pts:

- 1. Internetworking ~ 24 pts
- 2. TCP Details ~ 20 pts
- 3. Delay and Transport ~ 20 pts
- 4. Transport Calc ~ 20 pts
- 5. HTTP Protocol ~ 30 pts
- 6. Extra ~ 3 pts

Terms

- Network: Collection of interconnected machines
- Internetwork: Collection of interconnected networks
- Host: Machine running user application
- Channel: Logical line of communication
- Medium: Physical process used (e.g. fiber optics, copper wire, satellite link)
- Network Core: The mesh of packet switches and links that interconnect the Internet's end systems
- EDGE Network: A network which provides for the main or CORE network; companies and organizations with a default route
- CORE Network: ISP tiers with the biggest ISPs in tier 1 and smaller, regional ISPs in tiers 2, 3
- Protocol: Defines the format and the order of messages exchanged between two or more communicating entities, as well as he actions
 taken on he transmission and/or receipt of a message or other event
- Packets: Smaller chunks of data broken off from longer "messages"
- Packet Switching: Group data transmitted over the network into packets which then get transmitted (e.g. routers, link-layer switches)
- Store-And-Forward: Packet sw itch must receive the entire packet to transmit the first bit of packet onto outbound link
- Output Buffer: An output queue that stores the packets that the router is about to send into a link
- Queueing Delays: Variable delays that depend on the level of congestion in the network and occurs when an incoming packet finds the link
 busy with transmission of another packet
- Processing Delay: The time required to examine the packet's header and determine where to direct the packet
- Transmission Delay: Amount of time required to push/transmit all of the packet's bits into the link
- Propagation Delay: The time required to propagate from the beginning to router B
- Packet Loss: The arriving packet or an already-queued packet may be dropped if an arriving packet finds that the buffer is completely full
 with other packets waiting for transmission
- Forwarding Table: Each router has one of these that maps destination address (or portions of it) to that router's outbound links
- Circuit Switching: A circuit-based network that guarantees a constant transmission rate between a sender and receiver. For these
 purposes, a dedicated end-to-end connection exists
- Frequency-Division Multiplexing: The frequency spectrum of a link is divided up among the connections across a link; the link dedicates a frequency band to each connection for the duration of the connection.
- Time-Division Multiplexing: Time is divided into frames of fixed duration, and each frame is divided into a fixed number of time slots. When network establishes a connection across a link, the network dedicates one time slot for the sole use of that connection in every frame to this connection.
- Statistical Multiplexing:
- Encapsulation: The process of passing information through the OSI stack, usually by appending header and payload.
- Client-Server Architecture: An always-on host accepts service requests from incoming clients, but the clients do not directly
 communicate with each other
- **P2P Architecture**: The application exploits direct communication between intermittently connected hosts, or *peers*, without passing through a dedicated server
- **Socket**: The interface between your application and the network; one of the endpoints in a two-way communication link between two programs running on the network
- Round-Trip Time (RTT): Amount of time for a small packet to travel to the server and back; Response Time = 2RTT + FTT
- Maximum Segment Size (MSS): The maximum amount of data that can be grabbed and placed in a segment

Client-Server vs. P2P

a. Client-server architecture

b. Peer-to-peer architecture

HTTP 1.0

Response Codes

Status Code	Response	Meaning
200	OK	Success
304	Not Modified	Redirection
400	Bad Request	Client error
403	Forbidden	Client error
404	Not Found	Client error
408	Request Timeout	Client error
418	I'm a Teapot	For Fun
500	Internal Server Error	Server error
501	Not Implemented	Server error
503	Service Unavailable	Server error
505	HTTP Version Not Supported	Server error

MIME Types

HTTP 1.0 also supports multi-parts and messages

Extension	Kind of Document	MIME Type
.txt	default text file	text/plain
. htm, . html	HTML	text/html
. *	default for all other file types	application/octet-stream
. gif	GIF	image/gif
. jpg	JPEG Images	image/jpeg
. *	Basic Audio Files	audio/basic
.mpeg	MPEG Video	video/mpeg

Delay and Transport (with Calculations)

- Processing, Queueing, Transmission, and Propagation Delays are as defined in the definitions section
- Network: $d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$
- Transport

- Circuit Sw itching: t = C + M/B
 - C: connection setup time (secs)
 - M: message size (bits)
 - B: bandw idth (bits/sec)

- Packet Sw itching: t = t₀ * (P + S)
 - h: header size
 - d: packet data size (payload)
 - t0: time it takes to send one packet = (h+d)/B
 - B: bandw idth (bits/sec)
 - S: no. of stations (hops) going through
 - P: number of packets to send = \(\Gamma M/d \)

- Message Sw itching: $t = t_0 * (1 + S)$
 - h: header size
 - t0: time it takes to send one message = (h+M)/B
 - M: message size (bits)
 - B: bandw idth (bits/sec)
 - S: no. of stations (hops) going through

Useful Comparisons

TCP vs. UDP

PRO/CON	TCP	UDP
connectionless	-	X
faster	-	X
more reliable	X	-
provides ports	-	X
more functionality	X	-
point-to-point	X	-
flow/congestion control	X	-
light weight/less header	-	X
in-order packet delivery	X	-
higher thruput ⁺	-	X

 $[\]ensuremath{^{+}}$ UDP packets are easier to process, esp. the source

HTTP vs. FTP vs. SMTP

FEATURE	НТТР	FTP	SMTP
request/response protocol	X	X	X
connection semantics	-	X	X

Circuit vs. Packet vs. Message Switching

- Header Overhead: Circuit (best) < Packet < Message (w orst)
- Transmission Delay:
 - o Short, Bursty Messages: Packet (best) < Message < Circuit (worst)
 - o Long, Continuous Messages: Circuit (best) < Message < Packet (worst)
- · Circuit vs. Packet
 - o Still (TDM, FDM) vs. Statistical Multiplexing
 - o Less vs. More Users

Go-Back-N vs. Selective Repeat Protocols

- The Go-Back-N (GBN)
 - Allows the sender to transmit multiple available packets without waiting for an acknowledgement but is constrained to have a maximum of N unacknowledged packets in the pipeline
 - o N represents the window size

- The Selective Repeat (SR)
 - o Avoids unnecessary retransmissions by having the sender retransmit only those that it suspects were lost or corrupted at the receiver
 - o A window size of N will again be used to limit unacknow ledged packets in the pipeline
 - o How ever, unlike GBN, the sender will have already received ACKs for some of the packets in the window
 - o The receiver will acknow ledge a correctly received packet regardless of whether it is in order or not
 - o The receiver re-acknowledges already-received packets with certain sequence below the window number
 - o No synchronization between sender and receiver

b. Receiver view of sequence numbers

Flow Control vs. Congestion Control

- Flow Control
 - o How much the user can handle
 - o Makes sure sender does not overload receiver by sending only enough data to accommodate receiver
 - Allows for more efficient bi-directional communication
 - o Initiated by sender
- Congestion Control
 - o How much the network can handle
 - o Makes sure that the network can handle packet load
 - Reduces amount of sent packets to avoid overflowing its buffer/queue
 - o Initiated by router

Exponential Math

Tip: 2^5 = 32 && 2^10 = 1024

Unit	Value
KB	2 ¹⁰
MB	2 ²⁰
GB	2 ³⁰
ТВ	2 ⁴⁰
РВ	2 ⁵⁰