.

.

Cloud Computing Architecture

Introduction to Relational and NoSQL Databases

.

.

Acknowledgement of Country

We respectfully acknowledge the Wurundjeri People of the Kulin Nation, who are the Traditional Owners of the land on which Swinburne's Australian campuses are located in Melbourne's east and outer-east, and pay our respect to their Elders past, present and emerging.

We are honoured to recognise our connection to Wurundjeri Country, history, culture, and spirituality through these locations, and strive to ensure that we operate in a manner that respects and honours the Elders and Ancestors of these lands.

We also respectfully acknowledge Swinburne's Aboriginal and Torres Strait Islander staff, students, alumni, partners and visitors.

We also acknowledge and respect the Traditional Owners of lands across Australia, their Elders, Ancestors, cultures, and heritage, and recognise the continuing sovereignties of all Aboriginal and Torres Strait Islander Nations.

Introduction to Relational and NoSQL Databases

In this Presentation:

- Relational Databases
- NoSQL Databases
- Comparisons: Relational and NoSQL Databases

Image from: https://www.linkedin.com/pulse/nosql-vs-sql-diponkar-paul

3

Relational Databases

Introduction to Relational and NoSQL Databases: Relational Databases

What are Relational Databases?

Relational Database Model

Image from:

https://www.learncomputerscienceonline.com/relational-database/

When are Relational Databases most useful?

Image from:

https://www.learncomputerscienceonline.com/relational-database/

.

NoSQL Databases

Introduction to Relational and NoSQL Databases: NoSQL Databases

What are NoSQL Databases?

3 Main Characteristics of NoSQL

Schema-agnostic

No up-front schema design required during application development

Non-relational

No forcing of nonrelational data into rows and columns

Inherently distributable

Distributed on commodity hardware for high availability & large-scale data management

Image from: https://thedigitalskye.com/2021/03/09/7-must-know-ideas-about-nosql/

Introduction to Relational and NoSQL Databases: NoSQL Databases

When are NoSQL Databases most useful?

Common Use Cases for NoSQL

Key-value database

Deliver web advertisements Store & retrieve user session data High-speed in-memory data caching

Column-oriented database

Store parse data (i.e. columns don't have a value) Record & analyze log files Build data summaries

Document database

Publish digital content (Content Management System) Manage unstructured data feeds Join data streams

Graph database

Build a web of facts Reconstruct processes Manage social graphs (e.g. social networks, organized crime detection)

Source: NoSQL for Dummies by Adam Fowler

Image from: https://thedigitalskye.com/2021/03/09/7-must-know-ideas-about-nosql/

.

Comparisons: Relational and NoSQL Databases

Introduction to Relational and NoSQL Databases: Comparisons: Relational and NoSQL Databases

	Relational (SQL)				Non-Relational
Data Storage	Rows and columns				Key-value, document, graph
Schemas	Fixed				Dynamic
Querying	U <u>ses S</u> QL				Focuses on collection of documents
Scalability Vertical				Horizontal	
Example	ISBN	Title	Author	Format	{ ISBN: 3111111223439,
	3111111223439	Withering Depths	Jackson, Mateo	Paperback	Title: "Withering Depths", Author: "Jackson, Mateo",
	312222223439	Wily Willy	Wang, Xiulan	Ebook	Format: "Paperback" }

Introduction to Relational and NoSQL Databases: Comparisons: Relational and NoSQL Databases

ACID vs. BASE model

ACID

- SQL
- Atomicity, Consistency, Isolation, and Durability
- → Highly consistent but poorly scalable

BASE

- NoSQL
- Basically Available, Soft state, Eventually Consistent

→ Highly scalable but could be inconsistent at some point

Introduction to Relational and NoSQL Databases: Comparisons: Relational and NoSQL Databases

Image from: https://www.linkedin.com/pulse/nosql-vs-sql-diponkar-paul

.

Want to learn more?

Check out:

AWS Academy – ACF Module 8: Databases

AWS Documentation

