

Architecture technique

- Besoins d'affaires:
 - « Que doit-on faire?»

- Architecture:
 - « Comment allons-nous le faire ? »

La valeur de l'architecture

- Encourage la satisfaction des besoins:
 - Les besoins techniques dérivent des besoins d'affaires;
 - Documents d'architecture.
- Facilite la communication:
 - Illustre les différents rôles au sein du système;
 - Communique la complexité du projet aux cadres supérieurs.
- Aide à la planification:
 - Regroupe tous les détails techniques;
 - Identifie des dépendances et de nouveaux de besoins.
- Flexibilité, productivité et maintenance:
 - Métadonnées, sélection d'outils, etc.

Facteurs à considérer [1/2]

- L'interdépendance informationnelle entre les unités de l'entreprise
 - Ex: bonne intégration (ex: MDM) VS silos de données
- Les sources de données
 - Ex: 1 source VS 10 sources, ERP VS legacy, etc.
- La quantité des données
 - Ex: gigaoctets VS teraoctets
- La latence des données
 - Ex: mise-à-jour hebdomadaire VS temps-réel
- L'urgence d'obtenir une solution fonctionnelle
 - Ex: entrepôt d'entreprise (EDW) VS magasin de données

Facteurs à considérer [2/2]

- Le nombre d'utilisateurs
 - Ex: 10-50 utilisateurs vs 50-200 utilisateurs
- La nature des tâches des utilisateurs finaux
 - Ex: rapports simples VS fouille de données
- Les contraintes sur les ressources
 - Ex: financières, main d'œuvre, biais technologique, etc.
- Les objectifs du projet
 - Ex: stratégique VS opérationnel
- Autres facteurs
 - <u>Ex</u>: politiques, habilités du personnel TI, etc.

Architectures et métadonnées

Métadonnées:

 Définition: « information définissant et décrivant les structures, opérations et le contenu du système de BI ».

Métadonnées techniques:

- <u>ETL</u>: sources et cibles pour les transferts de données, transformations, règles d'affaires, etc.
- Stockage: tables, champs, types, indexes, partitions, dimensions, etc.
- Présentation: modèle de données, rapports, cédules, privilèges d'accès, etc.

Métadonnées d'affaires:

- Décrit le contenu de l'entrepôt dans des termes compréhensibles par les utilisateurs d'affaires;
- <u>Ex</u>: descripteurs de tables et champs.

Métadonnées de processus:

- Décrit le résultat de diverses opérations du système de BI;
- <u>Ex</u>: logs ETL (début, fin, écritures disque, ...), statistiques sur les requêtes, etc.

Architectures et métadonnées

Bénéfices:

- Découple la dépendance entre la technologie et son utilisation (ex: reconfigurer dynamiquement le système ETL pour modifier ou ajouter une source)
- Permet de monitorer l'état et la performance de la solution BI
- Sert de documentation au système
- Permet de déterminer l'impact d'un changement

<u>Idéal:</u>

 Avoir un seul répertoire de métadonnées partagé par toutes les composantes de la solution BI

Architectures et couches de service

Service oriented architectures (SOA):

- Méthode d'intégration et de développement de systèmes dans laquelle les fonctionnalités sont regroupés autour de processus d'affaires et offerts sous la forme de services interopérables;
- Permet la communication entre des systèmes qui n'ont pas été conçus dans cette optique, et leur participation conjointe dans des processus d'affaires.

Dans le contexte des entrepôts de données:

- Mécanisme pour échanger des données d'un système à un autre (ex: d'une application vers un ODS, d'un MDM vers une application, etc.);
- Réduit les dépendances technique permettant une approche « bestof-breed ».

LES COMPOSANTES DE L'ARCHITECTURE

Couche de préparation de données (back-room)

Couche de préparation de données (back-room

Besoins généraux:

- Support à la productivité (ex: environnement de développement)
- Convivialité (ex: interface graphique simple)
- Flexibilité (ex: métadonnées)

Fonctionnalités ETL:

– Extraction:

• Ex: profilage des données, capture des changements, copie des données

Consolidation:

Ex: règles de transformation, résolution d'incohérences, intégration

Livraison:

 <u>Ex</u>: insertion dans les tables de faits/dimensions, gestion des changements (SCD)

Couche de préparation de données (back-roo

Services de gestion ETL:

- Planification de tâches (job scheduler)
- Sauvegarde/restauration
- Sécurité
- etc.
- Comptoir de données ETL (data store):
 - Données temporaires d'extraction (staging area)
 - Historique du processus ETL (métadonnées processus, QA)
 - Sauvegarde des références ETL (métadonnées techniques)
 - etc.

Couche de stockage de données (presentation)

Couche de stockage de données (presentation)

Objectif:

 Fournir un accès un accès simplifié et rapides aux données, pour les utilisateurs (ex: requêtes ad hoc) et applications de BI.

Caractéristiques souhaitées:

- Données provenant des principaux processus d'affaires
- Données atomiques ET agrégées
- Source unique de données à tous les utilisateurs (peu importe l'emplacement physique des données)
- Analyses variées avec les mêmes données

Couche de stockage de données (presentation)

Considérations:

- Tables de dimensions dénormalisées (schéma en étoile)
- Clés artificielles
- Dimensions à évolution lente (SCD 1, 2, 3)
- Dimensions conformes basées sur la matrice en bus de données
- Données atomique au niveau des transactions
- Stratégies d'agrégation (ex: OLAP, ROLAP, etc.)
- Stratégies de performance (ex: index, partitionnement, etc.)
- etc.

Couche de restitution de données (front-room)

Serveur de présentation

- Modèles dimensionnels
- Données atomiques des processus d'affaires
- Dimensions/faits conformes

Application BI

Types d'application

- · Requêtes à accès direct
- Rapport standards
- Applications analytiques
- Tableaux de bord/scorecards
- Modèles de forage de données
- Bl opérationnel
- · Interface du portail BI
- Applications personnalisées
- Interfaces pour plateforme mobile

Services de gestion BI

- Monitoring d'utilisation
- Application de la sécurité
- Application de la conformité
- Gestion des requêtes

- · Reporting d'entreprise
- Reformulation de requêtes
- · Services du portail Web

Comptoirs de données BI

- Rapports stockés
- Caches des serveurs d'application
- BD usager, tableurs, documents et présentations
- Données d'authentification et d'autorisation

Métadonnées processus:

- Statistiques d'exécution de rapports, requêtes, etc.
- Statistiques d'utilisation de la sécurité réseau

Métadonnées de restitution

Métadonnées techniques:

- Couche sémantique Bl
- Définition des rapports / requêtes standards
- Logique applicative
- Paramètres du portail BI

Métadonnées d'affaires:

- Liste des attributs conformes
- Politique des SCD
- Politiques de gestion des valeurs nulles / erreurs
- Documentation utilisateur

Couche de restitution de données (front-room

Objectifs:

- Supporter les besoins analytiques des utilisateurs
 - Ex: rapports, analyse OLAP, fouille de données, etc.
- Offrir des interfaces d'accès simplifiés aux données
 - <u>Ex</u>: portail Web, service SOA
- Offrir une performance adéquate

Services de gestion BI:

- Gestion des requêtes
 - Reformulation/optimisation
 - · Redirection vers la bonne ressource informationnelle
 - Navigation d'agrégation
 - · Gestion de priorité
- Gestion de la sécurité/accès
- Monitoring de la l'utilisation/performance

Couche de restitution de données (front-room)

Comptoirs de données BI:

- Modèles de rapports
- Cache du serveur d'application (performance)
- Magasin de données locaux (attentions aux silos de données)
- etc.

ARCHITECTURES PARTICULIÈRES

Les magasins de données

Caractéristiques:

- Contient une portion du contenu de l'entrepôt de données;
- Se concentre sur 1 sujet d'analyse (ex: les ventes OU les livraisons, mais pas les deux);
- Sert à faire des analyses simples et spécialisées (ex: les fluctuations des ventes par catégorie de produits);
- Nombre de sources limitées, provenant la plupart du temps d'un même département;
- Extraction et transfert de données rudimentaires, souvent fait par transfert de fichier ou du code maison;
- Même processus de conception que les entrepôts de données, mais demande moins de ressources.

Magasins vs entrepôts de données

Caractéristique	Magasin de données	Entrepôt de données (EDW)	
Portée	Un domaine d'analyse	Plusieurs domaines d'analyse	
Temps de développement	Mois	Années	
Coûts de développement	\$ 10,000 à \$ 100,000 +	\$ 1,000,000+	
Complexité de développement	Faible à moyenne	Grande	
Taille des données	Mb à plusieurs Gb	Gb jusqu'à plusieurs Pb	
Horizon des données	Courantes et historiques	La plupart du temps historiques	
Transformation des données	Faible à moyenne	Importante	
Fréquence des mises-à-jour	Horaire, journalier ou hebdomadaire	Peu aller jusqu'à mensuel	
Nombre d'utilisateurs simultanés	Dizaines	Centaines à milliers	
Types d'utilisateur	Analystes dans le domaine spécifique et gestionnaires	Analyste d'entreprise et cadres seniors	
Objectifs d'affaires	Optimisation des activités dans le domaine spécifique	Optimisation inter-fonctionnelle e support à la décision	

Source: E. Turban, R. Sharda, D. Delen et D. King (2010). « Business intelligence: A manegerial approach », Pearson.

Magasins de données opérationnelle

Operational data store (ODS):

 Environnement informationnel et analytique reflétant à tout instant les données intégrées et consolidées provenant de sources hétérogènes.

ODS vs entrepôts de données classiques:

- Contiennent rarement des données historiques;
- Met à jour les données au lieu de les ajouter;
- Effectue les changements presque instantanément au lieu de les faire en lot;

Utilisation des ODS:

- Intégration permet d'avoir des règles d'affaires complexes impliquant des données de plusieurs sources;
- Analyse OLAP.

ODS: Exemple d'utilisation

- Une entreprise bancaire vient de faire l'acquisition d'une compagnie d'enquête de crédit;
- Les comptes, placements, et dossiers de risque des clients sont gérés par des applications différentes;
- Afin d'approuver un nouveau prêt à un client l'entreprise doit s'assurer de la solvabilité de ce client:
- Cette règle d'affaires nécessite l'intégration et la consolidation de données provenant de plusieurs applications;
- Tout changement aux données doit être propagé presque en temps-réel afin d'appliquer la règle d'affaires sur les données actuelles.

TYPES D'ARCHITECTURES DES ENTREPÔTS DE DONNÉES

Les architectures d'entrepôts de données

- Magasins de données indépendants
- 2. Architecture en bus de magasins de données
- Architecture Hub-and-spoke
- 4. Entrepôt de données centralisé
- Architecture fédérée

Magasins de données indépendants

Magasins de données indépendants

Caractéristiques:

- Les datamarts sont développés et opèrent de manière indépendante;
- Les données sont disposées en « silos fonctionnels »;
- Pas de dimensions conformes.

Avantage:

Architecture la plus simple et la moins coûteuse à développer;

Inconvénients:

- Incohérences et redondances entre les datamarts (ex: dimensions, définitions, mesures, types, etc.);
- Il n'y a pas une seule version de la vérité;
- Analyse inter-fonctionnelle difficile ou impossible;
- Vision limitée, pas extensible.

Bus de magasins de données

Bus de magasins de données

- Caractéristiques:
 - Approche bottom-up, proposée par R. Kimball;
 - Datamarts développés par sujet/processus d'affaires, en se basant sur des dimensions conformes;
 - Modélisation dimensionnelle (schéma en étoile), au lieu du diagramme entité-relation;
 - Entrepôt de données conceptuel, formé de magasins de données interreliés à l'aide d'une couche d'intergiciels (middleware).
- Avantages:
 - Intégration des données assurée par les dimensions conformes;
 - Approche incrémentale (processus les plus importants d'abord);
 - Donne des résultats rapidement.
- Inconvénients:
 - Itérations futures difficiles à planifier;
 - Performance sous-optimale des analyses impliquant plusieurs datamarts.

Architecture Hub-and-spoke

(Corporate Information Factory)

Architecture Hub-and-spoke

(Corporate Information Factory)

Caractéristiques:

- Approche top-down, proposée par B. Inmon et al.
- Entrepôt (hub) contient les données atomiques (c.-à-d. le niveau de détail le plus fin) et normalisées (3FN);
- Les datamarts (spokes) reçoivent les données de l'entrepôt;
- Les données des datamarts suivent le modèle dimensionnel et sont principalement résumées (pas atomique);
- La plupart des requêtes analytiques sont faites sur les datamarts.

Avantages:

- Intégration et consolidation complète et des données de l'entreprise;
- Approche itération et facilement extensible.

Inconvénients:

- Peut avoir de la redondance de données entre les datamarts;
- Performance sous-optimale des analyses impliquant plusieurs datamarts.

Entrepôt de données centralisé

Entrepôt de données centralisé

- Caractéristiques:
 - Similaire à Hub-and-spoke, mais sans les datamarts dépendants;
 - Un gigantesque entrepôt de données servant l'entreprise entière;
 - Les données peuvent être atomiques ou résumées.
- Avantages:
 - Les utilisateurs ont accès à toutes les données de l'entreprise;
 - Intégration (ETL) et maintenance facile car les données sont à un seul endroit;
 - Performance optimale (ex: appliance warehouse, Teradata).
- Inconvénients:
 - Long et coûteux à développer;
 - Pas incrémental;
 - Extensibilité limitée ou très coûteuse.

Architecture fédérée

Architecture fédérée

- <u>Caractéristiques</u>:
 - L'entrepôt de données est distribué sur plusieurs systèmes hétérogènes;
 - S'opère de manière transparente (l'utilisateur ne voit pas que les données sont réparties);
 - Les données sont intégrées logiquement ou physiquement à l'aide de méta-données (ex: XML);
 - Complémente plutôt que remplace (selon les experts).
- Avantages:
 - Utile lorsqu'il y a déjà un entrepôt en place (ex: acquisitions ou fusions de compagines);
 - Demande peu de ressources matérielles additionnelles.
- Inconvénients:
 - Très complexe: synchronisation, parallèlisme, concurrence, etc.
 - Peu de contrôle sur les sources et la qualité des données;
 - Faible performance (... mais la technologie s'améliore).

Comparaison entre les architectures

Popularité:

Architecture	Fréquence
Hub-and-spoke	39 %
Bus de datamarts	26 %
Entrepôt centralisé	17 %
Datamarts indépendants	12 %
Entrepôts fédérés	4 %

Source: T. Ariyachandra et H. Watson (2005). « Key factors in selecting a datawarehouse architecture », Business Intelligence Journal, vol. 10, no. 2.

Critères:

- Qualité de l'information (précise, complète, cohérente);
- Qualité du système (flexible, extensible, intégration);
- Impact sur les individus (productivité, décisions, etc.);
- Impact sur l'entreprise (satisfaction des requis, ROI, etc.).

Résultats:

Architecture	Qualité de l'information	Qualité du système	Impact sur les individus	Impact sur l'entreprise
Hub-and-spoke	5.35	5.56	5.62	5.24
Bus de datamarts	5.16	5.60	5.80	5.34
Entrepôt centralisé	5.23	5.41	5.64	5.30
Datamarts indépendants	4.42	4.59	5.08	4.66
Entrepôts fédérés	4.73	4.69	5.15	4.77

24

Approche top-down vs bottom-up

Caractéristique	Top-down (B. Inmon)	Bottom-up (R. Kimball)		
Objectifs	Livrer une solution technologiquement saine basée sur des méthodes et technologies éprouvées des bases de données	Livrer une solution permettant aux usager d'obtenir facilement et rapidement des réponses à leurs requêtes d'analyse		
Complexité de la méthode	Plutôt complexe	Plutôt simple		
Importance de la conception physique	Importante	Peu importante		
Orientation du modèle	Orienté données	Orienté processus d'affaires		
Accessibilité des utilisateurs finaux	Faible	Forte		
Outils de conception	Traditionnels (diagrammes entité- relation et flot de données)	Modélisation dimensionnelle (schéma en étoile)		
Auditoire principal	Professionnels en TI	Utilisateurs finaux		

Source: E. Turban, R. Sharda, D. Delen et D. King (2010). « Business intelligence: A manegerial approach », Pearson.

Entrepôts de données hébergés (cloud)

<u>Caractéristiques</u>:

- L'infrastructure matérielle et informatique réside sur le site d'un fournisseur;
- L'entreprise loue l'infrastructure.

Avantages:

- Minimisent l'investissement dans l'infrastructure;
- Libèrent les ressources matérielles et humaines de l'entreprise;
- Évitent les tâches de mise-à-jour et de maintenance.

Inconvénients:

- Moins rentable à long terme;
- Sécurité et domaine privé des données.

Solutions clé en main

Appliance data warehouse:

- Ensemble intégré de serveurs, dispositifs de stockage,
 DBMS, systèmes d'exploitation et de logiciels pré-installés et pré-optimisés pour l'entreposage de données;
- Utilisent une architecture de traitement massivement parallèle;
- Solution allant du terabyte au petabyte.

Avantages:

- Faibles coûts de mise-en-place et de maintenance;
- Bonnes performance et extensibilité due à l'architecture parallèle;
- Permet d'obtenir rapidement des bénéfices.

PROCESSUS DE DÉVELOPPEMENT DE L'ARCHITECTURE

Questions selon le niveau de détail:

Niveau de détail	Back-room	Front-room		
Besoins d'affaires et audit de données	 Comment obtenir les données nécessaires aux besoins d'affaires ? 	 Comment mesurer, suivre, analyser et faciliter les opportunités d'affaires ? 		
Implications architecturelles et modèles	 Quelles sont les fonctions et composantes nécessaires pour obtenir les données dans la forme, l'endroit et le moment désirés. Quels sont les principaux magasins de données et services et où sont-ils situés ? Quel est la stratégie de métadonnées ? 	 Que requièrent les utilisateurs pour avoir l'information dans une forme utilisable ? Quelle est la stratégie de portail BI ? 		
Modèles détaillées et spécifications	 Quel est le contenu spécifique de chaque magasin de données ? Quel sont les capacités spécifiques de chaque service ? 	 À quoi ressemblent les rapports standards ? Comment ceux-ci seront-ils présentés ? Quel est le design du portail BI ? 		
Sélection de produit et implémentation	 Quels produits fournissent les capacités requises ? Comment ceux-ci seront-ils assemblés ? 	 Quels produits fournissent les capacités requises ? Comment ceux-ci seront-ils assemblés ? 		

Document d'implications architecturelles

Exemple:

Besoins d'affaires	Implication architecturelle	Sous-système	Valeur / priorité	
Améliorer le taux de réponse à l'aide d'une stratégie de vente croisée	Outils d'intégration permettant de coupler les clients avec les produits	ETL	H /8	
	Création de listes de vente croisée et monitoring de base à l'aide d'outils BI	App. BI	Н/7	
	Traitement des offres et suivi des réponses par le système CRM	App BI	N/A	
Améliorer le taux de réponse à la campagne par courriel en fournissant aux analystes des outils pour générer les listes de clients ciblés	Application analytique	App. BI	н/7	
Augmenter la précision des prédictions de vente à l'aide d'une meilleure historique	Application analytique avec prédiction de séries temporelles	App. BI / forage de données	N/A	
de données et de meilleurs modèles analytiques	Extraire de l'information des systèmes externes pour le suivi des ventes	ETL	Н/8	

Document de plan architecturel

Contenu:

- Description sommaire du projet et ses objectifs;
- Méthodologie;
- 3. Besoins et implications architecturelles;
- 4. Survol de l'architecture
 - <u>Ex</u>: modèle haut-niveau, métadonnées, couches de service, etc.
- 5. Composantes architecturelles principales
 - <u>Ex</u>: ETL, applications BI, sources de données, répertoire de métadonnées, infrastructure, etc.
- 6. Processus de développement de l'architecture
 - <u>Ex</u>: phases, preuve de concept, standards et sélection de produits, etc.
- Modèle architecturel.

Modèle architecturel (exemple)

Sélection des produits

Guidée par les besoins d'affaires;

Étapes:

- Comprendre le processus d'achat de l'entreprise;
- Faire une étude de marché:
 - Sources: internet, cours et séminaires, publications du domaine, consultants externes, etc.;
 - Critères: fonctionnalité, performance, productivité, support (technique, documentation, formation), etc.
- 3. Évaluer les solutions les plus prometteuses
 - <u>Ex</u>: rencontres avec les vendeurs, version d'essai, comparaison de prototypes, etc.
- 4. Rédiger un rapport de recommandation de produit;
- 5. Tester le produit retenu durant une période d'essai (ex: 90 jours);
- 6. Négocier le contrat (licences, support, formation, etc.).

Exemple: Matrice d'évaluation de produits

ETL Tool Product Evaluation Worksheet Example						-
	Project Weight	Vendor One	Vendor Two	Vendor Three	Vendor Four	Vendo Five
Core Functionality						
Ease of installation and maintenance	40					
Support for key sources (e.g. DE2, Oracle, SQL Server, ERP)	30		1 0			1
Support for key targets (e.g. SQL Server, MOLAP engine)	10		0 63	- 3		
Full featured scripting language	10		X 8			
Extensible	10		2 2			1
Execute steps across platforms	10					
Uses fast load facilities on target	10					
Core Functionality	120					
T						-
Transformation Functionality	40					-
Slowly changing dimension mgmt (Type 2)			_			_
Data quality screen management	40		-	-		-
Fact table pipeline key substitution		_	-	-		
Late arriving dimension handling	30		0 0	-		
Lookupa/validation against large tables	20		_			_
Surrogate key management	20			_	_	
Late arriving fact handling	20	_				
Complex joins; outer joins	20		4 2	-	_	-
Change data capture & propagation	20	_	-			
Built-in knowledge of ERP system internals	15					
Aggregation build and management	10					0 5
Complex calculations	10			_		
Exception/error row handling	10			-		
Source filtering & validation	10					
Transformation Functionality	295		-	_	_	-
Performance						
Test scores (standard platform and ETL script)	50		0 2	- 0		0 0
Support for parallel execution	50					0 3
Scalability options (add CPUs, clusters, distributed, etc.)	40					
Database drivers tuned for performance	30		× 8	- 8		8 3
Performance management and monitoring	30					
Performance	200		1 1			1 3
Productivity (specific functionality hidden)	170					
Operations and Job Control (specific functionality hidden)	105					
Metadata (specific functionality hidden)	145					
Vendor Info (specific vendor requirements hidden)	190					
TOTAL	6125					