

목차

- ❖ 인공지능이란
- ❖ 인공지능의 역사
- ❖ 연구분야 및 기술요소
- ❖ 응용분야 및 최근동향
- ❖ 인공지능의 영향

들어가기 전에 - 인공지능/머신러닝/딥러닝 비교

■ 인공지능 (Artificial Intelligence, AI) : 인간의 학습, 추리, 추론능력 등을 컴퓨터를 통해 구현하는 것

'튜링테스트'

들어가기 전에 - 인공지능/머신러닝/딥러닝 비교

들어가기 전에 - 인공지능/머신러닝/딥러닝 비교

[인공지능]

[머신러닝]

[딥러닝]

■ 딥러닝 (Deep Learning)

: 더 높은 학습 효율을 위해 다층 구조 형태의 심층 신경망 (Deep Neural Network)을 통해 학습하는 것

Extreme Tech - 'Deepfake Tech Can Now Anonymize Your Face to Protect Privacy' Analytic Vidhya - 'The connection between deep learning and real life learning'

인공지능이란?

- ❖ 지능(intelligence)
 - 한 개인이 문제에 대해 합리적으로 사고하고 해결하는 **인지적인 능력**과 학습 능력을 포함하는 총체적인 능력 [심리학 용어사전]

❖ 영화 속의 인공지능

인공지능이란?

- ❖ 인공지능(Artificial Intelligence)
 - 다트머스 회의(Dartmouth Conference, 1956)
 - 존 매카시(John McCarthy)가 AI 용어 제안

(1927-2011)

Al@50 conference (2005): 모어(Trenchard More), 매카시(John McCarthy), 민스키(Marvin Minsky, 1927-2016), 셀프리지 (Oliver Selfridge, 1926-2008), 솔로모노프(Ray Solomonoff, 1926-2009).

인공지능 관련 용어

- . 인공지능
 - Human Intelligence Exhibited by Machines
 - . 기계를 지능적으로 만드는 것
- . 머신 러닝(Machine Learning)
 - An Approach to Achieve Artificial Intelligence
 - . 프로그래밍하지 않고 컴퓨터에게 학습할 수 있는 능력을 부여하는 것 (Arthur Samuel, 1959)
- . 딥러닝(Deep Learning)
 - A Technique for Implementing Machine Learning
 - . 컴퓨터가 스스로 학습할 수 있게 하기 위해서 심층 신경망(DNN)으로 이루어진 기계학습

강한 인공지능과 약한 인공지능

- ❖ 강한 인공지능 (strong Al)
 - 사람과 같은 지능
 - **마음**을 가지고 사람처럼 느끼면서 지능적으로 행동하는 기계
 - 추론, 문제해결, 판단, 계획, 의사소통, 자아 의식(self-awareness), 감정(sentiment), 지혜(sapience), 양심(conscience)
 - 튜링 테스트
- ❖ 약한 인공지능 (weak AI, narrow AI)
 - 특정 문제를 해결하는 지능적 행동
 - 사람의 지능적 행동을 **흉내** 낼 수 있는 수준
 - 대부분의 인공지능 접근 방향
 - 중국어 방 사고실험(Chinese room thought experiment)

강한 인공지능과 약한 인공지능

❖ 튜링 테스트 (Turing test)

- 기계인지 사람인지를 판별하는 시험
 - 지능의 조작적 정의 (operational definition)
 - * 조작적 정의 : 측정할 수 있는 조건으로 어떤 속성을 기술

Alan Mathison Turing (1912.6~1954.6)

튜링 상(Turing Award)

ACM에서는 매년 컴퓨터 분야의 기여가 큰 연구자에게 시상. \$250,000 (Intel, Goolge 후원)

강한 인공지능과 약한 인공지능

❖ 튜링 테스트 최초 통과 프로그램

- Eugene Goostman
 - 13세인 우크라이나 소년 캐릭터의 챗봇(chatbot)
 - 튜링 사망 60주년을 기념하여 진행한 이벤트에서 튜링 테스트 통과 (2014.6)
 - 30명의 검사자가 5분씩 대화: 33%가 사람으로 판정
 - 제한적 상황에 대한 통과

Scott: Which is bigger, a shoebox or Mount Everest?

Eugene: I can't make a choice right now. I should think it out later. And I forgot to ask you where you are from...

Scott: How many legs does a camel have?

Eugene: Something between 2 and 4. Maybe, three? :-))) By the way, I still don't know your specialty - or, possibly, I've missed it?

- . 자연어 처리(natural language processing)
 - . 사람이 사용하는 **일반 언어**로 작성된 **문서**를 **처리**하고 **이해**하는 분야

친구에게서: 친구(명사) + 에게(조사) + 서(조사)

Do you have a time? yes

[자베르]인명 경감이 [장발장]인명과 [1832]날짜년 [파리]지명에서 마주쳤다

- 형태소 분석, 구문분석, 품사 태깅, 의미분석
- . 언어모델, 주제어 추출, 개체명 인식
- . 문서 요약
- . 기계번역(machine translation)
- . 질의 응답

❖ 음성 인식

 사람의 음성 언어를 컴퓨터가 해석해 그 내용을 문자 데이터로 전환하는 처리

- ❖ 음성 인식 cont.
 - 음성인식 스피커

	아마존 에코	구글 흠	애플 홈팟	SK텔레콤 누구	네이버 프렌즈	카카오미니
제품 사진					8	
인공지능 플랫폼	알렉사	구글 어시스턴트	시리	누구	클로바	카카오아이
출시일	2014년 1월	2016년 10월	2018년 2월	2016년 9월	2017년 10월	2017년 11월
특징	아마존 쇼핑몰, 3만 여 개 파트너사	안드로이드 탑재, 한국 출시 계획	IOS와 맥OS 탑재, 고품질 사운드	국내 첫 스마트 스피커, 11번가와 연계 쇼핑 가능, 스마트 홈 기능 탑재	생활 정보 검색 및 영어 대화 가능, 배달의 민족 주문 가능, 스마트 홈 기능 탑재	카톡과 보이스톡 이용 가능 카카오톡 읽어주기 기능괴 음성번역 기능 추가 예정
가격	79,99달러 (8만6000원)	99달러 (10만7000원)	349달러 (약 37만7000원)	14만9000원 누구 미니 4만9900원	12만9000원 프렌즈 미니 9만9000원	4만9000원

Google Pixel Buds 40개 언어 통시 통역 이어폰 출시

- ❖ 컴퓨터 비전(computer vision)
 - 컴퓨터를 이용하여 시각 기능을 갖는 기계장치를 만들려는 분야

- ❖ 컴퓨터 비전(computer vision)
 - 특징을 추출하는 알고리즘을 통해 스타일만 변경하는 style transfer

• 이미지 생성 알고리즘으로 만들어낸 가상의 얼굴

❖ 딥페이크

 영상인식 및 패턴분석과 이미지 처리 기술을 응용해 얼굴을 합성하거나 새로운 얼굴을 만들어낼 수 있다.

https://www.youtube.com/watch?v=YNjmK47bMj0

- . 로보틱스(robotics)
 - . 로봇에 관련된 기술 분야로서 기계공학, 센서공학, 마이크로 일렉트로닉스, 인공지능 기술 등을 종합적으로 활용
 - 지능 로봇(intelligent robots)
 - 인공지능 기술을 활용하는 로봇

Image: http://www.dailymail.co.uk/

- . 보스턴 다이나믹스의 로봇
 - . 로봇에 관련기술과 강화학습을 응용하여, 인간의 동적인 동작도 학습하여 따라할 수 있다.

현대자동차, 보스턴 다이나믹스(Boston Dynamics)와 첫 협력 프로젝트 공개

광명 기아차 공장 내 '공장 안전 서비스 로봇' 도입해 시범 운행 중 윤소원 기자입력: 2021-10-05 10:58:09

□ 확대 │ □ 기본 │ □ 축소

현대자동차그룹과 보스턴 다이내믹스가 첫 번째 협력 프로젝트를 공개했다(사진, 현대자동차).

군수용 인공지능

■ 로봇개, 현재 감시 순찰용...미래엔 대테러작전용

로봇개는 전·평시에 두루 걸쳐 다양한 방면에서 활용할 수 있다는 의견이 우세하다. 류태웅 동신대 군사학과 교수는 "사람이 접근하기 어려운 험로, 지형에 로봇개를 투입하는 등 작전 뷔대를 지원하고, 경계 초소 순찰을 맡기고 야간 투시 및 촬영기능을 추가해 24시간 경계 작전도 가능할 것"이라고 설명했다.

실제 로봇개는 미군에서 순찰용으로 도입되고, 국내에서는 대테러작전용으로 개발되고 있다.

미국 지디넷에 따르면, 미 우주군은 지난달 말 고스트로보틱스의 4족 보행 로봇 '비전(Vision) 60 Q-UGV'을 기지 순찰용으로 시연했다. 비전 60은 소형 무선 통신 장치를 탑재해 기존 통신 사각지대에서도 투입할 수 있다. 꼬리를 동력 장치 삼아 수중 투입도 가능하다.

인공지능의 영향

- - 자동화 ⇒ 생산성 향상
 - 일자리 문제
 - 블루칼라 일자리 축소
 - 화이트칼라 일자리 축소
 - 금융 및 법률 분야 : 복잡한 데이터 분석 수행
 - 언론 분야 : 로봇 저널리즘
 - 의료 분야 : 진단 및 처방
 - 신규 직업 출현 기대
 - 노동력 잉여 발생
 - 사회적 문제 초래
 - 고용 및 일자리, 기회의 불평등, 양극화 등

인공지능의 영향

- - **마음**이 없는 인공지능
 - 살상용 자율무기(LAWS: Lethal Autonomous Weapon Systems)
 - 인간의 개입없이 스스로 표적을 찾아내고 제거하는 무기
 - 잘못된 판단의 문제
 - 인명 살상을 위한 프로그래밍

National Robotics Engineering Center of Carnegie Mellon University

http://www.briefreport.co.uk/news/taranis-uk-armed-drone-prototype-revealed-2218569.html

인공지능의 영향

- ❖ 인공지능의 윤리 cont.
 - **자율주행 자동차**의 **돌발 상황**에 대한 프로그래밍
 - 모든 가능한 상황에 대한 고려 필요
 - 돌발상황에서 희생자를 선택하는 프로그래밍 요구

그림 1.13 자율주행 자동차의 의사결정 상황.

(a) 다수의 무단횡단자와 한명의 보행자 상황. (b) 한명의 무단횡단자. (c) 다수의 무단횡단자.

머신러닝 개념

머신러닝(machine learning)

- 경험을 통해서 나중에 유사하거나 같은 일(task)를 더 효율적으로 처리할 수 있도록 시스템의 구조나 파라미터를 바꾸는 것
- 컴퓨터가 데이터로부터 특정 문제해결을 위한 지식을 자동으로 추출해서 사용할 수 있게하는 기술

경험	일	효율(성능)
필기문자 이미지, 글자	문자 판독(인식)	정확도
사진, 얼굴영역	사진에서 얼굴영역 식별	정확도
이메일, 스팸여부	스팸 이메일 판단	정확도
풍경 사진	유사한 풍경 사진 식별	유사도
바둑 대국	바둑두는 방법	승률

머신러닝 개념

일반 프로그래밍 방식

머신러닝 개념 (예시를 통한 이해)

필기문자 인식

- 직접 만든 규칙이나 휴리스틱(heuristics)
 - 복잡
 - 불충분한 성능
- 기계학습 방법
 - . 자동으로 분류 규칙이나 프로그램 생성
 - 괄목할 만한 성능

머신러닝의 종류

- 지도학습 (supervised learning)
 - 입력(문제) 출력(답)의 데이터들로 부터 새로운 입력에 대한 출력을 결정할 수 있는 패턴 추출
 - 비지도학습 (unsupervised learning, 자율학습)
 - 출력에 대한 정보가 없는 데이터로 부터 필요한 패턴 추출

- 강화학습 (reinforcement learning)
 - 출력에 대한 정확한 정보를 제공하지는 않지만, 평가정보(reward)는 주어지는 문제에 대해 각 상태에서 행동(action)을 결정

- 지도학습(supervised learning)
 - 주어진 (입력, 출력)에 대한 데이터 이용 : 학습(training) 데이터

$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

새로운 입력이 있을 때 결과를 결정할 수 있도록 하는 방법을 찾아내는 것

$$y = f(x)$$

- 분류(classification)
 - 출력이 정해진 부휴(class, category) 중의 하나로 결정
- 회귀 분석(regression)
 - 출력이 연속인 영역(continuous domain)의 값 결정

분류(classification)

데이터들을 정해진 몇 개의 부류(class)로 대응시키는 문제

분류 문제의 학습

- **학습 데이터**를 잘 **분류**할 수 있는 **함수**를 찾는 것
- 함수의 <mark>형</mark>태는 **수학적 함수**일 수도 있고, **규칙**일 수도 있음

▶ 분류기(classifer)

학습된 함수를 이용하여 데이터를 분류하는 프로그램

- 분류(classification) 분류기 학습 알고리즘
 - K-근접이웃 (K-nearest neighbor, KNN) 알고리즘
 - 결정트리(decision tree) 알고리즘
 - 다층 퍼셉트론 신경망
 - 딥러닝(deep learning) 알고리즘
 - 에이다부스트(AdaBoost)
 - . 랜덤 포리스트(ramdom forest)
 - 확률 그래프 모델(probablistic graphical model)

머신러닝의 종류 - 지도학습 예시

- . 분류(classification) 대표적인 분류 데이터
 - Cifar 10(10 클래스, 5만개 학습 데이터, 1만개 테스트 데이터)

Imagenet(1000 클래스, 1400만장의 학습 이미지, 130만 장을 분류하는 대회)

머신러닝의 종류 - 지도학습 예시

- 비지도학습(unsupervised learning)
- **정답이 없는 데이터**들에 대해서 특정 **패턴**을 찾는 것
 - ☑ 데이터에 **잠재한 구조**(structure), 계층구조(hierarchy)를 찾아내는 것
 - 숨겨진 사용자 집단(hidden user group)을 찾는 것
 - **문서들을 주제**에 따라 구조화하는 것
 - 로그(log) 정보를 사용하여 **사용패턴**(usage pattern)을 찾아내는 것
 - 비지도 학습의 활용예
 - 군집화<mark>(c</mark>lustering)
 - 이상치(outlier) 탐지
 - 차원축소(dimensionality reduction)

군집화(clustering)

군집화(clustering) : 유사성에 따라 데이터를 분할하는 것

군집화(clustering)

- 일반 군집화(hard clustering)
 - ╱데이터는 하나의 군집에만 소속 ex. k-means 알고리즘
 - 퍼지 군집화(fuzzy clustering)
 - 데이터가 여러 군집에 부분적으로 소속
 - 소속정도의 합은 1이됨 ex. fuzzy k-means 알고리즘

용도

- 데이터에 내재된 구조(underlying structure) 추정
- 데이터의 전반적 구조 통찰
- 가설 <mark>설정</mark>, 이상치(anomaly, outlier) 감지
- 데이터 압축 : 동일 군집의 데이터를 같은 값으로 표현 데이터 전처리(preprocessing) 작업

성능

군집내의 분산과 군집간의 거리

군집화(clustering)

넷플릭스, 유튜브는 내 취향을 어떻게 알까?

- . 이상치 (outlier) <mark>탐지</mark>
 - 이상치 (outlier)
 - 다른 데이터와 크게 달라서 다른 메커니즘에 의해 생성된 것이 아닌지 의심스러운 데이터
- 잡음(noise)
 - · 관측 오류, 시스템에서 발생하는 무작위적인 오차
 - 관심이 없는 제거할 대상
- . 신규성 탐지(novelty detection)와 관련

- 이상치 (outlier) 탐지 활용예
 - 부정사용감지 시스템(fraud detection system, FDS)
 - 이상한 거래 승인 요청 시에 카드 소유자에게 자동으로 경고 메시지 전송
 - 침입탐지 시스템(intrusion detection system, IDS)
 - 네트워크 트래픽을 관찰하여 이상 접근 식별
 - 시스템의 고장 진단
 - 임상에서 질환 진단 및 모니터링
 - 공공보건에서 유행병의 탐지
 - 스포츠 통계학에서 특이사건 감지
 - 🏸 관측 오류의 감지

- 차원축소(Dimension Redution)
 - 주성분 분석(PCA, Principal Component Analysis)
 - 원 데이터의 분포를 최대한 보존하면서 고<mark>차원 공</mark>간의 데이터를 저차원 공간으로 변환하는 것
- ┈ K-평균(K-Means)
 - K개의 클러스터로 묶는 알고리즘으로 각 클러스트와 거리 차이의 분산을 최소화하는 방식으로 동작

머신러닝의 종류 – 강화학습

강화학습 (Reinforcement Learning)

현재의 상태에서 어떤 행동(Action)을 취하는 <mark>것이</mark> 최적인지 학습하는것

특징

- 환경에 대한 사전직식이 없는 상태로 학습 진행
- 보상을 통하여 학습
- 보상을 최대한 많이 얻도록 하는 행동을 유도하도록 학습 진행

종류

- Q-Learning
- DQN(구글 딥마인드)

데이터 종류

데이터의 구분

- 학습 데이터(training data)
 - 분류기를 학습하는데 사용하는 데이터 집합
 - 학습데이터가 많을 수록 유리
- 테스트 데이터(test data)
 - 학습된 모델의 성능을 평가하는데 사용하는 데이터 집합 학습에 사용되지 않은 데이터이어야 함.
- 검증 데이터(validation data)
 - 학습 과정에서 학습을 중단할 시점을 결정하기 위해 사용하는 데이터 집합

과적합과 부적합

분류(classification) - 과적합과 부적합

- 과적합(overfitting)
 - 학습 데이터에 대해서 지나치게 잘 학습된 상태
 - 학습 데이터에 대해 매우 높은 성능을 보이더라도 학습되지 않은 데이터에 대해 좋지않은 성능을 타나내는 현상
 - (사유: 데이터는 오류나 잡음을 포함할 개연성이 크기 때문)

부적합(underfitting)

학습 데이터를 충분히 학습하지 않은 상태

부적합(underfitting)

정적합(good fitting)

과적합(overfitting)

확인 문제

- 1. 인공지능, 머신러닝, 딥러닝의 차이를 서술하시오.
- 2. 지도 학습과 비지도 학습의 차이점은 무엇인가?
- 3. 과접합(Overfitting)과 부적합(Underfitting)의 차이점은 무엇인가?
- 4. 학습(Training) 횟수를 무작정 늘리는 것이 좋은가?

