

Introduction to the GPU architecture

Directive Based GPU Programming: OpenACC and OpenMP Vasileios Karakasis, CSCS 29–31 May 2017

Schedule of the course

	Monday, 29 May
10:15–12:15	Introduction to the GPU architecture and the Piz Daint environment
13:15–14:45	Basics of accelerator directive models
15:15–17:00	Profiling and debugging
17:00–17:30	Visit to the machine room
Tuesday, 30 May	
09:00–10:30	Hands-on session 1: Directives basics
10:45–12:15	Hands-on session 2: Directives basics (cont'd)
13:15–14:45	Hands-on session 3: OpenACC + MPI
15:15–17:00	Hands-on session 4: Interoperability with CUDA
Wednesday, 31 May	
09:30–10:30	OpenACC 2.5/2.6 and future roadmap
cscs ¹ 2:45–12:15	Advanced topics (Loop scheduling and asynchronicity) Directive Based GPU Programming: OpenACC and OpenMP 2

Overview

1. GPUs in HPC

- Clock frequency vs. on-node parallelism
- Differences with CPUs
- Challenges for HPC applications

2. Basics of the GPU architecture

- Execution model
- Memory model

GPUs in HPC

Why GPUs?

There is a trend towards more parallelism node

- Multi-core CPUs get more cores and wider vector lanes
 - 18-core 2 thread Broadwell processors from Intel
 - 12-core 8 thread Power8 processors from IBM
- Many-core Accelerators with many highly-specialized cores and high-bandwidth memory
 - NVIDIA P100 GPUs with 3582 cores
 - Intel KNL with 64 cores × 4 threads

A Piz Daint node

MPI and the free lunch

HPC applications were ported to use the message passing library MPI in the late 90s and early 2000s at great cost and effort

- Individual nodes with one or two CPUs
- Break problem into chunks/sub-domains
- Explicit message passing between sub-domains

The free lunch was the regular speedup in codes as CPU clock frequencies increased and as the number of nodes in systems increased

- With little/no effort, each new generation of processor bought significant speedups
- ...but there is no such thing as a free lunch

The Moore's Law

Transistor density doubles every 18 months.

The Power Wall

 $power \propto frequency^3$

The Power Wall

Floating point performance per core is not keeping up

How to speed up an application

There are three ways to increase performance:

- 1. Increase clock speed
- 2. Increase the number of operations per clock cycle:
 - Vectorization (SIMD)
 - Instruction-level parallelism (ILP)
 - Thread-level parallelism (TLP)
- 3. Don't stall
 - e.g., increase cache reuse to avoid waiting on memory requests
 - e.g., branch prediction to avoid pipeline stalls

Clock frequency won't increase

In fact, clock frequencies have been going down as the number of cores increases

- A 4-core Haswell processor at 3.5 GHz (4×3.5=14 Gops/s) has the same power consumption as a 12-core Haswell at 2.6 GHz $(12 \times 2.6 = 31 \text{ Gops/s})$
- A P100 GPU with 3582 CUDA cores runs at 1.1 GHz

It is not reasonable to compare directly a CUDA core and an X86 core.

Parallelism will increase

- The number of cores in both CPUs and accelerators will continue to increase
- The width of vector lanes in CPUs will increase
 - Currently 4 doubles for AVX2
 - Increase to 8 double for AVX512 (KNL and Skylake)
- The number of threads per core will increase
 - Intel Haswell: 2 threads/core
 - Intel KNI · 4 threads/core
 - IBM Power8: 8 threads/core

Low latency or high throughput

CPU

- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

GPU

- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation

DRAM

© NVIDIA Corp. 2010

GPUs are throughput devices

- CPU cores are optimized to minimize latency between operations
- GPUs aim to minimize latency between operations by scheduling multiple warps (thread bundles).

Current applications not designed for many-core

- Exposing sufficient fine-grained parallelism for multi- and many-core processors is hard
- New programming models are required
- New algorithms are required
- Existing code has to be rewritten or refactored

Current applications not designed for many-core

- Exposing sufficient fine-grained parallelism for multi- and many-core processors is hard
- New programming models are required
- New algorithms are required
- Existing code has to be rewritten or refactored
- ...and compute nodes are under-utilized
 - Users are not getting the most out of allocations
 - The amount of parallelism on-node is only going to increase!

Understanding the GPU architecture

Architecture overview

The P100 GPU (Pascal architecture)

© NVIDIA Corp. 2016

The SM architecture

- Multiple lightweight single-threaded cores (64 on P100)
- Synchronous execution on groups of 32 threads/cores
 - All 32 cores execute the same instruction
- Very large register file partitioned per core (256 KB)
- Warp scheduler
 - Picks up the next ready warp
 - Very fast warp switching
- User-managed shared fast memory (64 KB on P100)

© NVIDIA Corp. 2012

Host-directed execution

- CPU sets up and launches kernels on the GPU
- CPU manages the memory on the GPU
 - Allocations, transfers in and out of the GPU

Host-directed execution

- CPU sets up and launches kernels on the GPU
- CPU manages the memory on the GPU
 - Allocations, transfers in and out of the GPU

Unified memory between CPU and GPU

- Virtual address space shared between CPU and GPU
- The CUDA driver and the hardware take care of the page migration
- Introduced with Kepler, significantly improved with Pascal

How this huge parallelism is managed on the GPU?

- An application launches kernels to be executed on the GPU
- Each kernel comprises several blocks of threads
- A thread block may only run on a single SM
- Multiple thread blocks might be accommodated in a single SM, if...
 - there are enough registers,
 - there is enough shared memory or
 - hardware limits are not reached (active warps)
- Warps of any active block may be scheduled to run on the SM cores

Implications

- Lots of parallelism is needed to cover execution latencies
 - Enough warps must be available for scheduling
- Global synchronization is not possible
 - Not all the blocks of a kernel run simultaneously
 - Synchronization is only possible within the threads of a block
- If program's control flow diverges within a warp → redundant execution
 - Both branches are executed by the warp redundantly

Memory model

Memory hierarchy

- 1. Global high bandwidth memory (558 GB/s on P100)
 - Accessible from all SMs.
- 2. L1 cache/Shared memory
 - Shared within an SM.
 - One-cycle access latency (best case)
 - User or hardware managed
 - No cache coherency across SMs
 - No sequential consistency → enforced by synchronization primitives
- 3. L2 cache
 - Hardware managed, shared across all SMs

How to program the GPUs?

CUDA

- C/C++ language extensions
- Low-level, lots of code
- Requires a good understanding of the GPU architecture
- Using directives OpenACC/OpenMP
 - Easy to use and productive
 - High-level, non-intrusive changes in the code
 - More on it, after lunch...

Thank you for your attention