ECE 6270, Spring 2021

Homework #2

Due Thursday, Feb 4, at 11:59pm Suggested Reading: B&V, Sections 2.1-2.4 and 3.1-3.2. You might also want to skim Appendix A.

- 1. Prepare a one paragraph summary of what we talked about in the last week of class. I do not want just a bulleted list of topics, I want you to use complete sentences and establish context (Why is what we have learned relevant? How does it connect with other classes?). The more insight you give, the better.
- 2. Provide feedback to your peers on Homework #1 in Canvas.
- 3. A function $f(\boldsymbol{x}): \mathbb{R}^N \to \mathbb{R}$ is *concave* if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$,

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$
, for all $0 \le \theta \le 1$.

Give a simple yet rigorous argument that

$$f(x)$$
 is concave \Leftrightarrow $-f(x)$ is convex.

- 4. Recall that a norm is a function $\|\cdot\|:\mathbb{R}^N\to\mathbb{R}$ which obeys
 - $\|\boldsymbol{x}\| \ge 0$ and $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$.
 - ||ax|| = |a| ||x|| for all $x \in \mathbb{R}^N$ and scalars $a \in \mathbb{R}$.
 - $\|\boldsymbol{x} + \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$.
 - (a) Suppose that f(x) = ||x||, where $||\cdot||$ denotes any valid norm. Prove that f(x) is convex (using only the properties above).
 - (b) Can f(x) = ||x|| ever be *strictly* convex? If so, give an example of such a norm. If not, provide a proof that no norm can be strictly convex.
- 5. The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set $S_{\alpha} = \{x : f(x) \leq \alpha\}$.
 - (a) Suppose f is convex. Show that S_{α} is convex for all $\alpha \in \mathbb{R}$.
 - (b) Suppose f is convex. Show that the set of global minimizers of f is a convex set.
 - (c) Recall that the unit ball of a norm is the set $\mathcal{B} = \{x : ||x|| \le 1\}$. Show that the unit ball of any norm must be convex.
 - (d) Optional: Suppose S_{α} is convex for all $\alpha \in \mathbb{R}$. Is f convex? Prove or find a counterexample.
- 6. (a) Let $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ be convex functions on \mathbb{R}^N . Show that

$$f(\boldsymbol{x}) = \max \{f_1(\boldsymbol{x}), f_2(\boldsymbol{x})\}\$$

is convex.

- (b) Illustrate the above in \mathbb{R}^1 by making a sketch with affine functions $f_1(x) = a_1x + b_1$ and $f_2(x) = a_2x + b_2$. You may choose a_1, b_1, a_2, b_2 to your liking.
- (c) Is it necessarily true that

$$f(x) = \min \{f_1(x), f_2(x)\}, \quad f_1, f_2 \text{ convex},$$

is convex? Sketch an example in \mathbb{R}^1 that supports your argument.

- 7. Recall that we use \mathbb{S}_+^N to denote the set of $N \times N$ matrices that are symmetric and whose eigenvalues are non-negative.
 - (a) Let $\lambda_{\min}(X)$ be a function that takes a symmetric matrix and returns the smallest eigenvalue (possibly negative) of X. Show that $\lambda_{\min}(X)$ is concave.
 - (b) Use your result from the previous section to show that \mathbb{S}^N_+ is a convex set.
 - (c) Find a set of convex functions $f_1(\mathbf{X}), \ldots, f_M(\mathbf{X})$ that map arbitrary $N \times N$ matrices to scalars $(f_m(\mathbf{X}) : \mathbb{R}^{N \times N} \to \mathbb{R})$ and scalars b_1, \ldots, b_M that specify \mathbb{S}^N_+ , meaning

$$X \in \mathbb{S}^N_+ \quad \Leftrightarrow \quad f_m(X) \le b_m, \text{ for all } m = 1, \dots, M.$$

(Note that if f_m is linear, then f_m is both convex and concave, and so $f_m(\mathbf{X}) = b_m$ can be implemented using the pair of inequalities $f_m(\mathbf{X}) \leq b_m$ and $-f_m(\mathbf{X}) \leq -b_m$.)

- 8. Compute the first and second derivatives of the following functions (remember the product and chain rules).
 - (a) $f(x) = ax^2 + bx + c$, where a, b, c are constants.
 - (b) $f(x) = \sum_{m=1}^{M} \log(1 + e^{-a_m x})$, where a_1, \dots, a_M are constants.
- 9. Compute the gradient and Hessian matrix of the following functions. Note that x is a vector in \mathbb{R}^N in all the problems below.
 - (a) $f(x) = x^T A x + b^T x + c$, where A is an $N \times N$ symmetric matrix (i.e., $A = A^T$), b is an $N \times 1$ vector, and c is a scalar.
 - (b) $f(x) = \sum_{m=1}^{M} \log(1 + e^{-a_m^T x})$, where a_1, \dots, a_M are $N \times 1$ vectors.
- 10. Determine whether the following functions are convex, concave, or neither.
 - (a) $f(x) = e^{x^2}$ on dom $f = \mathbb{R}$.
 - (b) $f(x) = \log(1 + e^x)$ on dom $f = \mathbb{R}$.
 - (c) $f(x_1, x_2) = x_1 x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (d) $f(x_1, x_2) = 1/x_1x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (e) $f(x_1, x_2) = x_1/x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (f) $f(x_1, x_2) = x_1^2/x_2$ on dom $f = \mathbb{R}^2_{++}$.