#### HORNSBY GIRLS HIGH SCHOOL



## Mathematics Extension 2

# Year 12 Higher School Certificate Online Practice Trial Examination Term 3 2021

#### **General Instructions**

- Reading Time 10 minutes
- Working Time 3 hours
- Write using black pen
- NESA-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Clearly label every question and part

Total marks – 100

**Section I** Pages 2-5

10 marks

Attempt Questions 1 - 10

Answer on the Multiple Choice Answer Sheet provided or a separate sheet of paper

**Section II** Pages 6 - 11

90 marks

Attempt Questions 11 - 16

Start each question on a new sheet of paper

| Question | 1-10 | 11  | 12  | 13  | 14  | 15  | 16  | Total |
|----------|------|-----|-----|-----|-----|-----|-----|-------|
| Total    |      |     |     |     |     |     |     |       |
|          | /10  | /15 | /15 | /15 | /15 | /15 | /15 | /100  |

#### **Section I**

#### 10 marks

#### **Attempt Questions 1-10**

#### Allow about 15 minutes for this section

Use the multiple-choice answer sheet or a separate sheet of paper for Questions 1-10

 $1. \qquad \text{Find} \int \frac{2x}{\sqrt{1-x^4}} \, dx$ 

- (A)  $2\sin^{-1} x + c$
- (B)  $\cos^{-1} x^2 + c$
- (C)  $\sin^{-1} x^2 + c$
- (D)  $\frac{1}{2}\sin^{-1}x^2 + c$

2

For a certain complex number z where  $\arg(z) = \frac{\pi}{5}$ ,  $\arg(z^7)$  is:

- (A)  $\frac{-7\pi}{5}$
- (B)  $\frac{-3\pi}{5}$
- (c)  $\frac{2\pi}{5}$
- (D)  $\frac{3\pi}{5}$

- 3. Write down the contrapositive for the statement 'If I like walking, then I do not like cycling'
  - (A) If I dislike cycling, then I do not like walking.
  - (B) If I like cycling, then I like walking.
  - (C) If I dislike cycling, then I like walking.
  - (D) If I like cycling, then I do not like walking.

- 4. Find the radius and centre of the sphere:  $x^2 + y^2 + z^2 + x 3y + 2z + 2 = 0$ 
  - (A) Radius =  $\frac{\sqrt{6}}{2}$  and centre =  $\left(\frac{1}{2}, \frac{3}{2}, 1\right)$
  - (B) Radius =  $\frac{\sqrt{6}}{3}$  and centre =  $\left(\frac{-1}{4}, \frac{3}{2}, -3\right)$
  - (C) Radius =  $\frac{\sqrt{6}}{2}$  and centre =  $\left(\frac{-1}{2}, \frac{3}{2}, -1\right)$
  - (D) Radius =  $\frac{3\sqrt{6}}{4}$  and centre =  $\left(\frac{-1}{3}, \frac{3}{2}, -2\right)$

**5.** 

Which of the following is an expression for  $\int \frac{\sin x \cos x}{4 + \sin x} dx$ ?

- (A)  $-\sin x 4\ln|4 + \sin x| + C$
- (B)  $-4\ln|4 + \sin x| + C$
- (C)  $\sin x 4\ln|4 + \sin x| + C$
- (D)  $4\ln|4 + \sin x| + C$

- 6.  $1 + e^{i(\alpha)} =$ 
  - (A)  $2cos(\alpha/2)e^{i(\alpha/2)}$
  - (B)  $isin(-\alpha/2)$
  - (C)  $cos(\alpha/2)$
  - (D)  $3\cos(\alpha)e^{i(\alpha/2)}$
  - 7. Given that *x* and *y* are natural numbers, which of the following is a FALSE statement?
    - A.  $\forall x \exists y (x y = 0)$
    - B.  $\forall x \exists y (3x y = 0)$
    - C.  $\forall x \exists y (x 3y = 0)$
    - D.  $\exists x \exists y (x + y = 8)$

- **8.** Evaluate  $\int_{0}^{1} x(1-x)^{2021} dx$ 
  - (A)  $\frac{1}{4090506}$
  - (B) 13
  - (C) 786
  - (D) 3 456

9.

Consider the Argand diagram, where z = a + ib.



Which of the following pairs of points in the complex plane could represent the square roots of z?

- A. A and D
- B. B and C
- C. B and E
- D. C and E

**10.** Solve the following quadratic equation:  $ix^2 - 2(i+1)x + 10 = 0$ .

- (A) x = -2 3i or x = 2 + i
- (B) x = -14 3i or x = 3 + 4i
- (C) x = -1 3i or x = 3 + i
- (D) x = -5 3i or x = 5 + i

#### **Mathematics Extension 2**

### **Section II**

90 marks

#### **Attempt Questions 11-16**

#### Allow about 2 hours and 45 minutes for this section

Answer each question on your own writing paper. Start each of Questions 11 - 16 on a new sheet of paper so that they can be scanned/photographed and uploaded as separate questions.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

#### **Question 11** (15 marks)

(a) Find 
$$\int \frac{1}{e^x + e^{-x}} dx$$
.

(b) On separate Argand diagrams sketch the following loci:

(i) 
$$2 \ge |z| \ge 1$$
  
(ii)  $\frac{3\pi}{4} > \arg z > \frac{\pi}{4}$ 

(iii) 
$$3 \ge \text{Re } Z \ge 0$$
 and  $3 \ge \text{Im } Z \ge 1$ 

(c) Find 
$$\int \frac{2x^2 - 2x + 1}{(x - 2)(x^2 + 1)} dx$$
.

(d) (i) Write down the moduli and argument of 
$$-\sqrt{3}+i$$

(ii) Write down the moduli and argument of 
$$4 + 4i$$

(iii) Hence express in modulus/argument form 
$$\frac{-\sqrt{3}+i}{4+4i}$$
.

#### Question 12 (15 marks) (Start a new page)

- (a) For the conditional statement 'If n is divisible by 16 then n is divisible by 4',
  - (i) write the converse statement.

1

- (ii) write the negation statement.
- (b) A particle moves along the x axis with its velocity v (cm/sec) at position x (cm), given by  $v = \sqrt{16x x^2}$ . Find the acceleration of the particle when x = 5
- (c) Using vectors, determine whether the points A(0, 4, 4), B(8, 20, 36) and C(12, 28, 52) are collinear.
- (d) A line passes through the points A(-3, 2, 6) and B(7, 4, -3)
  - (i) Write a vector equation of the line.
  - (ii) Write parametric equations for the line.
  - (iii) Determine if C(-13, 0, 15) lies on the line.
- (e) (i) Show that  $\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$ .
  - (ii) Hence find  $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$

#### Question 13 (15 marks) (Start a new page)

- (a) A, B and C are points defined by the position vectors  $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ ,  $\mathbf{b} = 3\mathbf{i} + \mathbf{j}$  and  $\mathbf{c} = 2\mathbf{i} 2\mathbf{j} \mathbf{k}$ . Find the magnitude of angle ABC, correct to one decimal place.
  - (b) (i) Use the substitution  $u = \frac{1}{x}$  to show that  $\int_{\frac{1}{2}}^{1} \frac{\ln x}{1+x^2} dx = \int_{\frac{1}{2}}^{1} \frac{\ln u}{1+u^2} du$  3
    - (ii) Deduce the value of  $\int_{\frac{1}{2}}^{2} \frac{\ln x}{1+x^2} dx$
- (c)
  (i) Show that, for any integer n,  $e^{in\theta} + e^{-in\theta} = 2\cos n\theta$ .
- (ii) By expanding  $\left(e^{i\theta} + e^{-i\theta}\right)^5$ , show that  $\cos^5 \theta = \frac{1}{16} \left(\cos 5\theta + 5\cos 3\theta + 10\cos \theta\right)$ .
- (iii) Hence, or otherwise, find  $\int_0^{\frac{\pi}{2}} \cos^5 \theta d\theta$ .
- (iv) Using the result of part (ii), solve the equation  $\cos 5\theta + 5\cos 3\theta + 9\cos \theta = 0$  for  $0 \le \theta \le \pi$ . 2

#### Question 14 (15 marks) (Start a new page)

- (a) By considering the scalar product  $a \cdot b$  where  $a = a_1 i + a_2 j + a_3 k$  and  $b = b_1 i + b_2 j + b_3 k$ Prove that  $(a_1b_1 + a_2b_2 + a_3b_3)^2 \le (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$
- (b) Find  $\int e^x \cos x dx$ .
  - (c) 1,  $\omega$  and  $\omega^2$  are the three cube roots of unity.
    - (i) Show that  $1 + \omega + \omega^2 = 0$  where  $\omega$  is a non-real root of unity
    - (ii) Simplify each of the expressions  $(1+3\omega+\omega^2)^2$  and  $(1+\omega+3\omega^2)^2$
    - (iii) Find  $(1+3\omega+\omega^2)^2 + (1+\omega+3\omega^2)^2$
    - (iv) Find the product of  $(1+3\omega+\omega^2)^2$  and  $(1+\omega+3\omega^2)^2$
- (d) Evaluate  $\int_{0}^{\frac{\pi}{6}} \cos x \cdot \sin^{3} x \cdot dx$  2
- (e) Evaluate  $\int_{0}^{\frac{\pi}{4}} \frac{1-\tan x}{1+\tan x} dx$ .

#### Question 15 (15 marks) (Start a new page)

(a) Let  $\overrightarrow{OACB}$  be a parallelogram with  $\overrightarrow{OA} = \underline{a}$  and  $\overrightarrow{OB} = \underline{b}$ . M is a point on OA such that  $|\overrightarrow{OM}| = \frac{1}{5}|\overrightarrow{OA}|$ . P is a point on MB such that  $|\overrightarrow{MP}| = \frac{1}{6}|\overrightarrow{MB}|$ , as shown in the diagram.



(i) Show that P lies on OC.

3

- (ii) State the ratio of lengths *OP*: *PC*.
- (b) A cruise ship needs 24 metres of water to enter a harbour. At low tide the harbour is 16 metres deep and at high tide the depth is 28 metres. Low tide occurs at 10 a.m. and high tide occurs at 4 p.m.

Assume the tide rise and fall in simple harmonic motion, find the earliest time the ship can enter the harbour.

(c) Prove by mathematical induction that for  $n \ge 1$ 

$$1 \cdot \ln \frac{2}{1} + 2 \cdot \ln \frac{3}{2} + \ldots + n \cdot \ln \left( \frac{n+1}{n} \right) = \ln \left( \frac{(n+1)^n}{n!} \right).$$

(d) Evaluate 
$$\int_{0}^{\pi/3} \frac{1}{9-8\sin^2 x} dx$$
.

#### Question 16 (16 marks) (Start a new page)

(a) If 
$$a > 0$$
,  $b > 0$ ,  $c > 0$  and  $d > 0$  show that  $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$ 

(b) Let  $t = \tan \frac{x}{2}$ 

(i) Show that 
$$\frac{dx}{dt} = \frac{2}{1+t^2}$$

- (ii) Without stating *t*-results, show that  $\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \sin x$
- (iii) Hence, show that  $\int_0^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \frac{2}{\sqrt{1-k^2}} \tan^{-1} \sqrt{\frac{1-k}{1+k}}, \text{ where } 0 < k < 1.$ Let  $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^n x}{2+\sin x} dx$ , where n = 0, 1, 2, ...

(iv) Show that 
$$I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$$
.

(v) Hence, or otherwise, find the value of  $I_2$ . Give your answer in the form  $m\pi + 1$ , where m is irrational.

#### **End of examination**

### HORNSBY GIRLS HIGH SCHOOL



### **Mathematics Extension 2**

|                |                 | Year 12          | Trial Exa        | ımınatıon              | Term 3 2021            | Ĺ                       |    |
|----------------|-----------------|------------------|------------------|------------------------|------------------------|-------------------------|----|
|                | STUDENT         | NUMBER:          |                  |                        |                        |                         |    |
|                |                 | Section          | n I – Multip     | ole Choice Ai          | nswer Sheet            |                         |    |
| Allow about    | t 15 minutes fo | or this section  |                  |                        |                        |                         |    |
| Select the alt | ternative A, B, | C or D that best | answers the ques | stion. Fill in the re- | sponse oval complete   | ly.                     |    |
| Sample:        | 2 + 4           | 1 =              | (A) 2            | (B) 6                  | (C) 8                  | (D) 9                   |    |
|                |                 |                  | A <b>O</b>       | В                      | c <b>O</b>             | D <b>O</b>              |    |
| If you think   | you have made   | a mistake, put a | cross through th | e incorrect answer     | and fill in the new an | iswer.                  |    |
|                |                 |                  | A                | В                      | c <b>O</b>             | D 🔿                     |    |
|                |                 | d have crossed o |                  | sider to be the corr   | ect answer, then indic | cate the correct answer | by |
|                |                 |                  |                  | correct                |                        |                         |    |
|                |                 | A                |                  | В                      | c <b>O</b>             | D 🔿                     |    |
| 1.             | A 🔘             | В                | С                | D 🔘                    |                        |                         |    |
| 2              | A 🔿             | n 🔿              | C 🔿              | D 🔿                    |                        |                         |    |

 $A \bigcirc$  $\mathsf{B} \bigcirc$  $C \bigcirc$  $D \bigcirc$  $C \bigcirc$  $A \bigcirc$  $D \bigcirc$ 3.  $B \bigcirc$  $A \bigcirc$  $B \bigcirc$  $C \bigcirc$  $D \bigcirc$ 4. 5.  $A \bigcirc$  $B \bigcirc$  $C \bigcirc$  $D \bigcirc$ 6.  $A \bigcirc$  $C \bigcirc$  $D \bigcirc$  $B \bigcirc$ 7.  $A \bigcirc$  $C \bigcirc$  $D \bigcirc$  $B \bigcirc$ 8.  $A \bigcirc$  $B \bigcirc$  $C \bigcirc$  $D \bigcirc$ 9.  $A \bigcirc$  $C \bigcirc$  $B \bigcirc$  $D \bigcirc$  $A \bigcirc$  $C \bigcirc$ 10.  $B \bigcirc$  $D \bigcirc$