Cryogenic Refractive Index of Heraeus Homosil Glass

Kevin H. Miller
NASA Goddard Space Flight Center, Optics Branch
August 7th, 2017

Manuel A. Quijada (GSFC Optics Branch)

CHARMS Capabilities

- Absolute minimum deviation refractometer (in vacuum)
- Wavelength coverage: 0.34 to 5.6 μm
- Temperature coverage: 15 K (using LHe) to 340⁺ K (67 C)
- Single measurement ABSOLUTE accuracies as good as 5 x 10⁻⁶ at cryo (depending on material)
- Measures absolute refractive index, $n(\lambda, T)$
- Accurate values of thermo-optic coefficient, dn/dT, and spectral dispersion, dn/dλ, derived from measured n(T)

CHARMS: Operation and Capabilities

CHARMS is a minimum deviation refractometer

• Five simple steps:

1. Measure the apex angle of the prism

2. Establish the condition of min deviation

3. Measure angle of undeviated beam

4. Measure angle of deviated beam

5. Compute deviation angle; compute index

$$n = \frac{\sin(\frac{\alpha + \delta}{2})}{\sin(\frac{\alpha}{2})}$$

CHARMS optical layout

rotating fold flat

sample chamber "shield"

cryo refrigerator

"focus" flat

camera mirror

detector - select mirror

fixed fold flat

collimator

UVIS camera

collimator fold flat

MIR camera (not shown)

Top view of sample chamber

Eye level with prism

Sample Temperature, T

- sample sandwiched between two cryogen-cooled copper plates at essentially same T
- two T sensors on top of prism
- T_{sample} attributed to reading from sensor halfway up side of non-refracting face

Courtesy of S. Scola – NASA LaRC

Wavelength Calibration & Encoder Technology

Laser Driven Plasma Light Source

Energetiq 99

- CW laser heats Xenon plasma
- Electrodeless
- 100 micron plasma size

CHARMS Measurements of Heraeus Homosil

Sellmeier Equation

$$n^{2}(\lambda,T)-1 = \sum_{i=1}^{3} \frac{S_{i}(T) \cdot \lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}(T)}$$

$$S_{i}(T) = \sum_{j=0}^{3} S_{ij} \cdot T^{j}$$

$$\left|\lambda_{i}(T)\right| = \sum_{j=0}^{3} \lambda_{ij} \cdot T^{j}$$

$$AAR = \frac{\sum_{k=1}^{n} |index_{measured} - index_{fit}|}{n}$$

Homosil_AAR =
$$5.07 \times 10^{-6}$$

Derived Properties of Heraeus Homosil

Example of Bookkeeping Error Budget

 uncertainty governed by all eight quantities in the red box for each measurement for a given specimen (green box)

so, a refractometer should <u>not</u> list a single number for accuracy

Measurement Uncertainties

Comparison of Heraeus Catalog with CHARMS

Comparison with other fused silica-based glasses

Backup

Ohara Glasses

