Back Substitution:

1)
$$T(n) = 2T(n - 1) + 1$$
, $T(0) = 1$
 $T(n) = 2T(n - 1) + 1$
 $= 2 (2T(n - 2) + 1) + 1$
 $= 2 * 2 * T(n - 2) + 2^{1} + 1$
 $= 2^{2}T(n - 2) + 2^{1} + 1$
 $= 2^{2}(2T(n - 3) + 1) + 2^{1} + 1$
 $= 2^{2} * 2 * T(n - 3) + 2^{2} + 2^{1} + 1$
 $= 2^{3}T(n - 3) + 2^{2} + 3$
 $= 2^{3}(2T(n - 4) + 1) + 2^{2} + 3$
 $= 2^{4}T(n - 4) + 2^{3} + 2^{2} + 1$

We can see a direct correlation between n and the power 2 is raised through back substitution. Therefore, we can determine the upper bound is: $T(n) = O(2^n)$

2)
$$T(n) = T(n-2) + n^2$$
, $T(0) = 1$

$$T(n) = T(n - 2) + n^{2}$$

$$= T(n - 4) + (n - 2)^{2} + n^{2}$$

$$= T(n - 4) + 2n^{2} - 4n + 4$$

$$= T(n - 6) + 2(n - 4)^{2} - 4(n - 4) + 4$$

$$= T(n - 6) + 2(n^{2} - 8n + 16) - 4n + 16 + 4$$

$$= T(n - 6) + 2n^{2} - 16n + 32 - 4n + 20$$

$$= T(n - 6) + 2n^{2} - 20n + 52$$
...

We can see our largest n value seems to be limiting to n^2 , so therefore we can say our loose upper bound is: $T(n) = O(n^2)$

3)
$$T(n) = T(n - 1) + 1/n$$
, $T(1) = 1$

Consider: Sum of Harmonic Series = $log(n) + H_n$

$$T(n) = T(n - 1) + 1/n, T(1) = 1$$

$$= T(n - 1) + \log(n) + H_n$$

$$= T(n - 2) + \log(\log(n) + H_n) + H_{n-1}$$

$$= T(n - 3) + \log(\log(\log(n) + H_n) + H_{n-1}) + H_{n-2}$$

Since H_n is a constant, we can ignore it in terms of Big O since as n gets sufficiently large, H_n will not make a significant difference. We can see we are logarithmically growing in size, therefore: T(n) = O(log(n))

Master Method:

FORMULA: $T(n) = aT(n/b) + n^d$

$$a < b^d = O(n^d)$$

$$a = b^d = O(n^d \times log(n))$$

$$a > b^d = O(n^{logb(a)})$$

4)
$$T(n) = 2T(n/4) + 1$$
, $T(0) = 1$

$$a = 2, b = 4, d = 0$$

$$2 = 4^{\circ}$$
? FALSE

$$2 > 4^{\circ}$$
? TRUE

We get: $O(n^{log4(2)})$. $log_4(2)$ simplifies to $\frac{1}{2}$

ANSWER: $O(\sqrt{n})$

5)
$$T(n) = 2T(n/4) + \sqrt{n}$$
, $T(0) = 1$

$$a = 2$$
, $b = 4$, $d = \frac{1}{2}$

$$2 < \sqrt{4}$$
 ? FALSE

2 =
$$\sqrt{4}$$
 ? TRUE

ANSWER: $O(\sqrt{n} \times log(n))$

6)
$$T(n) = 2T(n/4) n^2$$
, $T(0) = 1$

$$a = 2, b = 4, d = 2$$

ANSWER: O(n²)

7)
$$T(n) = 10T(n/3) + n^2$$
, $T(0) = 1$

$$a = 10, b = 3, d = 2$$

 $10 < 3^2$? FALSE

 $10 = 3^2$? FALSE

 $10 > 3^2$? TRUE

 $O(n^{log3(10)})$

 $log_3(10) = log_2(10) / log_2(3) = 3.3219280949 / 1.5849625007 = 2.10$ when rounded to 2 decimals

ANSWER: O(n^{2.1})

8)
$$T(n) = 2T(2n/3) + 1$$
, $T(0) = 1$

$$a = 2$$
, $b = 3/2$, $d = 0$

$$2 < \frac{3}{2}$$
 ? FALSE

$$2 = \frac{3}{2}$$
 ? FALSE

$$2 > \frac{3}{2}$$
 ? TRUE

 $O(n^{log\frac{3}{2}(2)})$

 $\log_{\frac{3}{2}}(2) = \log_2(2) / \log_2(1.5) = 1 / 0.5849625007 = 1.71$ when rounded to two decimals

ANSWER: O(n^{1.71})