19. Symbolic Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Rest of the module

Lectures

- today: symbolic model checking
- Thursday: probabilistic model checking
- no lectures next week

Assignments & exercises

- Assignment 3 solutions on Canvas (and Q2ii remarked)
- Assignment 4 (SPIN) out now, due Thursday of week 11
- Assignment 5 (extended only) due Thursday
- non-assessed exercise (bounded model checking) online

Module syllabus

- Modelling sequential and parallel systems
 - labelled transitions systems, parallel composition
- Temporal logic
 - LTL, CTL and CTL*, etc.
- Model checking
 - CTL model checking algorithms
 - automata-theoretic model checking (LTL)
- Verification tools: SPIN
- Advanced verification techniques
 - bounded model checking via propositional satisfiability
 - symbolic model checking
 - probabilistic model checking

Overview

Last time

- bounded model checking via SAT (or SMT)
- "symbolic" encoding of model checking problem
- targets falsification up to a finite number of unwindings
- can be made complete, e.g. with k-induction

This lecture

- symbolic model checking
- binary decision diagrams (BDDs)
- exploits regularity to improve scalability of model checking
- i.e. targets state space explosion problem
- well suited to verification (as opposed to falsification)
- applicable much more widely

Model checking implementation

- Overview of the model checking process
 - two phases: model construction, model checking
 - several different logics, multiple algorithms
 - but... they have various aspects/operations in common
 - basic set operations, reachability, strongly connected components, ...
 - manipulation of transition relation and state sets

Explicit vs. symbolic data structures

Symbolic data structures

- usually based on binary decision diagrams (BDDs) or variants
- avoid explicit enumeration of data by exploiting regularity
- potentially very compact/efficient storage (but not always)

Sets of states:

explicit: bit vectors, hashing

symbolic: BDDs

Transition relations:

explicit: sparse adjacency matrix

– symbolic: BDDs

Representations of Boolean formulas

• Propositional formula: $f = (x_1 \lor x_2) \land x_3$

Truth table

x ₁	X ₂	X ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Binary decision diagram

Binary decision trees

- Graphical representation of Boolean functions
 - $f(x_1,...,x_n): \{0,1\}^n \to \{0,1\}$
- Binary tree with two types of nodes
- Non-terminal nodes
 - labelled with a Boolean variable x_i
 - two children: 1 ("then", solid line) and 0 ("else", dotted line)
- Terminal nodes (or "leaf" nodes)
 - labelled with 0 or 1
- To read the value of $f(x_1,...,x_n)$
 - start at root (top) node
 - take "then" edge if $x_i = 1$
 - take "else" edge if $x_i=0$
 - result given by leaf node

Binary decision diagrams

- Binary decision diagrams (BDDs)
 - based on binary decision trees, but reduced and ordered
 - sometimes called reduced ordered BDDs (ROBDDs)
 - actually directed acyclic graphs (DAGs), not trees
 - compact, canonical representation for Boolean functions

Variable ordering

- a BDD assumes a fixed total ordering over its set of Boolean variables
- e.g. $x_1 < x_2 < x_3$
- along any path through the BDD,
 variables appear at most once each
 and always in the correct order

BDD reduction rule 1

• Rule 1: Merge identical terminal nodes

• Example:

BDD reduction rule 2

• Rule 2: Merge isomorphic nodes, redirect incoming nodes

BDD reduction rule 3

• Rule 3: Remove redundant nodes (with identical children)

Example:

Canonicity

- BDDs are a canonical representation for Boolean functions
 - two Boolean functions are equivalent if and only if the BDDs which represent them are isomorphic
 - uniqueness relies on: reduced BDDs, fixed variable ordered

- Important implications for implementation efficiency
 - can be tested in linear (or even constant) time

BDD variable ordering

- BDD size can be very sensitive to the variable ordering
 - example: $f = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee (x_3 \wedge y_3)$
 - two orderings:

•
$$x_1 < y_1 < x_2 < y_2 < x_3 < y_3$$

•
$$x_1 < x_2 < x_3 < y_1 < y_2 < y_3$$

– which is better?

BDDs to represent sets of states

- Consider a state space S and some subset S' ⊆ S
- We can represent S' by its characteristic function $\chi_{S'}$
 - $\chi_{S'}$: $S \rightarrow \{0,1\}$ where $\chi_{S'}(s) = 1$ if and only if $s \in S'$
- Assume we have an encoding of S into n Boolean variables
 - this is always possible for a finite set S
 - e.g. enumerate the elements of S and use a binary encoding
 - (note: there may be more efficient encodings though)
- So $\chi_{S'}$ can be seen as a function $\chi_{S'}(x_1,...x_n): \{0,1\}^n \to \{0,1\}$
 - which is simply a Boolean function
 - which can therefore be represented as a BDD

BDD and sets of states - Example

- State space S: {0, 1, 2, 3, 4, 5, 6, 7}
- Encoding of S: {000, 001, 010, 011, 100, 101, 110, 111}
- Subset S' \subseteq S: $\{3, 5, 7\} \rightarrow \{011, 101, 111\}$

X ₁	X ₂	X ₃	t _B
0	0	0	0
0	0	1	0
0	1 0		0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth table:

BDD: (X₂) (X₃) (0 1

BDDs and transition relations

- Transition relations can also be represented by their characteristic function, but over pairs of states
 - relation: $R \subseteq S \times S$
 - − characteristic function: χ_R : S × S → {0,1}
- For an encoding of state space S into n Boolean variables
 - we have Boolean function $f_R(x_1,...,x_n,y_1,...,y_n)$: {0,1}²ⁿ → {0,1}
 - which can be represented by a BDD
- Row and column variables
 - for efficiency reasons, we interleave the row variables $x_1,...,x_n$ and column variables $y_1,...,y_n$
 - i.e. we use function $f_R(x_1, y_1, ..., x_n, y_n) : \{0, 1\}^{2n} \to \{0, 1\}$

BDDs and transition relations

• Example:

- 4 states: 0, 1, 2, 3

- Encoding: $0 \rightarrow 00$, $1 \rightarrow 01$, $2 \rightarrow 10$, $3 \rightarrow 11$

0	1
2	3

Transition	X ₁	X ₂	y ₁	y ₂	$x_1y_1x_2y_2$
(0,1)	0	0	0	1	0001
(0,2)	0	0	1	0	0100
(1,0)	0	1	0	0	0010
(2,3)	1	0	1	1	1101
(3,1)	1	1	0	1	1011
(3,2)	1	1	1	0	1110

BDDs and transition relations

 We can also think of the transition relation as an adjacency matrix

0	1	1	0
1	0	0	0
0	0	0	1
0	1	1	0

Transition	X ₁	X ₂	y ₁	y ₂	$x_1y_1x_2y_2$
(0,1)	0	0	0	1	0001
(0,2)	0	0	1	0	0100
(1,0)	0	1	0	0	0010
(2,3)	1	0	1	1	1101
(3,1)	1	1	0	1	1011
(3,2)	1	1	1	0	1110

Matrices and BDDs - Recursion

- Descending one level in the BDD (i.e. setting $x_i=b$)
 - splits the matrix represented by the BDD in half
 - row variables (x_i) give horizontal split
 - column variables (y_i) give vertical split

Matrices and BDDs - Recursion

0	1	1	0
1	0	0	0
0	0	0	1
0	1	1	0

Transition	x ₁	X ₂	y ₁	y ₂	$x_1y_1x_2y_2$
(0,1)	0	0	0	1	0001
(0,2)	0	0	1	0	0100
(1,0)	0	1	0	0	0010
(2,3)	1	0	1	1	1101
(3,1)	1	1	0	1	1011
(3,2)	1	1	1	0	1110

Matrices and BDDs - Regularity

Transition	X ₁	X ₂	y ₁	y ₂	$x_1y_1x_2y_2$
(0,1)	0	0	0	1	0001
(0,2)	0	0	1	0	0100
(1,0)	0	1	0	0	0010
(2,3)	1	0	1	1	1101
(3,1)	1	1	0	1	1011
(3,2)	1	1	1	0	1110

Matrices and BDDs - Compactness

- Some simple matrices (or relations) have extremely compact representations as BDDs
 - e.g. the identify matrix or a constant matrix

Flashback: CTL model checking 3U

- Procedure to compute $Sat(\exists (\phi_1 \cup \phi_2))$
 - given $Sat(\phi_1)$ and $Sat(\phi_2)$
- Basic idea: backwards search of the LTS from ϕ_2 -states
 - $T_0 := Sat(\phi_2)$
 - $-T_i := T_{i-1} \cup \{ s \in Sat(\phi_1) \mid Post(s) \cap T_{i-1} \neq \emptyset \}$
 - until $T_i = T_{i-1}$
 - Sat($\exists (\phi_1 \cup \phi_2)$) = T_i
- (i.e. keep adding predecessors of states in T_{i-1})
- Based on expansion law
 - $\exists (\phi_1 \cup \phi_2) \equiv \phi_2 \vee (\phi_1 \wedge \exists \bigcirc \exists (\phi_1 \cup \phi_2))$
 - (can be formulated as a fixed-point equation)

Manipulating BDDs

- Need efficient ways to manipulate Boolean functions
 - while they are represented as BDDs
 - i.e. algorithms which are applied directly to the BDDs
- Basic operations on Boolean functions:
 - negation (\neg) , conjunction (\land) , disjunction (\lor) , etc.
 - can all be applied directly to BDDs
- Key operation on BDDs: Apply(op, A, B)
 - where A and B are BDDs and op is a binary operator over Boolean values, e.g. \land , \lor , etc.
 - Apply(op, A, B) returns the BDD representing function f_A op f_B
 - often just use infix notation, e.g. Apply(\land , A, B) = A \land B
 - efficient algorithm: recursive depth-first traversal of A and B
 - complexity (and size of result) is O(|A|-|B|)
 - where |C| denotes size of BDD C

Apply - Example

Example: Apply(∨, A, B)

Argument BDDs, with node labels: Recursive calls to Apply:

Apply - Example

- Example: Apply(∨, A, B)
 - recursive call structure implicitly defines resulting BDD

Apply - Example

- Example: Apply(∨, A, B)
 - but the resulting BDD needs to be reduced
 - in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up

Implementation of BDDs

- Store all BDDs currently in use as one multi-rooted BDD
 - no duplicate BDD subtrees, even across multiple BDDs
 - every time a new node is created, check for existence first
 - sometimes called the "unique table"
 - implemented as set of hash tables, one per Boolean variable
 - need: node referencing/dereferencing, garbage collection
- Efficiency implications
 - very significant memory savings
 - trivial checking of BDD equality (pointer comparison)
- Caching of BDD operation results for reuse
 - store result of every BDD operation (memory dependent)
 - applied at every step of recursive BDD operations
 - relies on fast check for BDD equality

Operations with BDDs

- Operations on sets of states easy with BDDs
 - set union: $A \cup B$, in BDDs: $A \vee B$
 - set intersection: $A \cap B$, in BDDs: $A \wedge B$
 - set complement: $S \setminus A$, in BDDs: $\neg A$
- Graph-based algorithms (e.g. reachability)
 - need forwards or backwards image operator
 - i.e. computation of all successors/predecessors of a state
 - again, easy with BDD operations (conjunction, quantification)
 - other ingredients
 - set operations (see above)
 - equality of state sets (fixpoint termination) equality of BDDs

Summing up...

- Implementation of model checking
 - graph-based algorithms, e.g. reachability, SCC detection
 - manipulation of sets of states, transition relations
- Binary decision diagrams (BDDs)
 - representation for Boolean functions
 - efficient storage/manipulation of sets, transition relations
 - suits symbolic of (e.g.) CTL model checking