Examen 3

Álgebra Lineal

Nombre:

Resolver explicando tu respuesta e incluyendo todos los cálculos.

1- Considere la matriz a) Define que es la inversa de una matriz cuadrada y aplica el método de Gauss-Jordan para calcular A^{-1}

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

- a) Calcular los valores propios y vectores propios de A.
- b) Determinar si la matriz es diagonalizable.
- c) Si b) es afirmativa, obtener la base \mathcal{B}' que diagonaliza a la matriz.
- d) Calcular a las matrices tal que $P^{-1}AP$ es una matriz diagonal.
- 2- Si $T:\mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x,y,z) = \begin{pmatrix} x+y+z\\ 2x-y-z\\ x+2y-z \end{pmatrix}$$

- a) Obtener la matriz que representa a T en la base canónica, $\left[T\right]_{\mathcal{C}}$.
- b) Obtener Ker(T) y calcular la nulidad y el rango de la transformación.
- c) Sea $\mathcal{B}' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$. Calcular las matriz cambio de base (o de transición) de $\mathcal{C} \to \mathcal{B}'$ con \mathcal{C} la base canónica de \mathbb{R}^3 . Calcular $\left[T \right] \mathcal{B}'$.
- d) Usando c), si $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, coordenadas en la base canónica. Calcular las coordenadas de $T\mathbf{v}$ con respecto a la base \mathcal{B}' , $\left[T\right]_{\mathcal{B}'}$.
- 3- Sea T la transformación lineal en \mathbb{R}^2 dada por $T\mathbf{v} = A\mathbf{v}$ con $A = \begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix}$.
 - a) Determinar si la transformación es diagonalizable.
 - b) Calcular A^5 .
 - c) Calcular $B = A^{1/3}$ es decir, B es una matriz tal que $B^3 = A$.