Institute for Analysis and Scientific Computing

Lothar Nannen, Conrad Gößnitzer, Michael Innerberger

Numerik von Differentialgleichungen - Kreuzlübung 12

Ubungstermin: 24.6.2020 16. Juni 2020

Dies ist die letze Übung. Zur Erinnerung: Sie benötigen insgesamt 24 erfolgreich bearbeitete Übungsaufgaben, um die Übung positiv zu bestehen. Dies entspricht 40% aller Übungsaufgaben. Die Übungsnote setzt sich aus der Anzahl der erfolgreich bearbeiteten Aufgaben und der Qualität der Abgaben bzw. des Vortrages zusammen.

Aufgabe 56:

Formulieren Sie, basierend auf dem Newton-Verfahren, einen Algorithmus für das Mehrzielverfahren (Ende Abschnitt 7.2 des Vorlesungsskriptes). Orientieren Sie sich dabei an Alg. 7.4 für das einfache Schießverfahren. Geben Sie auch die benötigte Jacobi Matrix an.

Aufgabe 57:

Gesucht ist die Lösung u des Poisson Problems

$$-\partial_x \left(k(x)\partial_x u(x) \right) = \cos(x), \qquad x \in (0, 2\pi) \tag{1}$$

mit $u(0) = u(2\pi) = 1$ und gegebenen Wärmeleitkoeffizienten k. Sie beschreibt die Temperaturvereilung in einem dünnen Stab.

- a) Lösen Sie das Problem exakt bei konstanten $k(x) = k_0$ für alle $x \in [0, 2\pi]$.
- b) Lösen sie das gleiche Problem numerisch mit Hilfe des Finite-Differenzen Verfahrens und untersuchen Sie für unterschiedliche h die Größe des Fehlers.
- c) Wie könnte man (1) interpretieren, wenn der Wärmeleitkoeffizient nur stückweise konstant ist, d.h. wenn z.B. $k(x) = k_1$ für $x \in [0, \pi)$ und $k(x) = k_2 \neq k_1$ für $x \in (\pi, 2\pi]$? Berechnen Sie wiederum die analytische Lösung und schlagen Sie ein geeignetes Diskretisierungsverfahren vor.

Aufgabe 58:

Wir betrachten das zweidimensionale Poisson Problem mit homogenen Dirichlet-Randbedingungen, siehe (7.19) des Vorlesungsskriptes. Geben Sie die Diskretisierungsmatrix A_h und die rechte Seite g_h des entstehenden linearen Gleichungssystems an, wenn dieses Problem mit Finiten Differenzen der Schrittweite $h_1 = h_2 = h > 0$ diskretisiert wird. Beginnen Sie der Einfachheit halber mit dem Gitter aus Abb. 1. Dazu sollten Sie die Unbekannten $y_{j,k} \approx y(x_{j,k})$ wie folgt ordnen

$$y_{1,1}, \dots, y_{1,N_2-1}, \quad y_{2,1}, \dots, y_{2,N_2-1}, \quad y_{3,1}, \dots$$
 (2)

Aufgabe 59:

In der Vorlesung wurde für hinreichend glatte Funktionen bewiesen, dass gilt

$$u''(x) = \frac{1}{h^2} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} u(x) + \mathcal{O}(h^2)$$

Abbildung 1: Finite Differenzen Gitter in 2D

mit dem Differenzenstern $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} u(x) := 1u(x-h) - 2u(x) + 1u(x+h)$. Konstruieren Sie eine Approximation der Form

$$u''(x) = \frac{1}{h^2} \begin{bmatrix} c_{-2} & c_{-1} & c_0 & c_1 & c_2 \end{bmatrix} u(x) + \mathcal{O}(h^4)$$

mit geeigneten Konstanten $c_{-2}, \ldots, c_2 \in \mathbb{R}$ und dem Differenzenstern

$$\begin{bmatrix} c_{-2} & c_{-1} & c_0 & c_1 & c_2 \end{bmatrix} u(x) := \sum_{i=-2}^{2} c_i u(x+ih).$$

Aufgabe 60:

Ziel dieser Aufgabe ist die Konstruktion eines Differenzenverfahrens für krumme Ränder. Sei dazu $E=(x_i,y_j)\in\mathbb{R}^2\in\Omega$ ein Gitterpunkt im Inneren von Ω , sodass die Gitterpunkte links (x_i-h,y_j) und unterhalb (x_i,y_j-h) von E im Gebiet Ω liegen aber die Gitterpunkte rechts (x_i+h,y_j) und oberhalb (x_i,y_j+h) von E nicht mehr in Ω liegen. Konstruieren Sie analog zu Aufgabe 59 einen 5-Punkt Differenzenstern für $\Delta u(E)$, welcher E, die in Ω liegenden Nachbarpunkte (x_i-h,y_j) und (x_i,y_j-h) sowie die Randpunkte $(x_i+\delta_x h,y_j), (x_i,y_j+\delta_y h)\in\partial\Omega$ mit $\delta_x,\delta_y\in(0,1)$ verwendet (siehe Abb. 2). Welche Ordnung kann man erreichen?

Abbildung 2: Differenzenstern für krumme Ränder