5.1 平面向量的线性运算及基本定理(精练)(基础版)

题组一 概念辨析

1	(2022·全国·高三专题练习)	(多选)	下面的命题正确的有()
1.	- (4044 - 中 中 中 中 - フルバントイナナ	$(\nabla \nabla u)$		

- A. 方向相反的两个非零向量一定共线
- B. 单位向量都相等
- C. 若 \dot{a} , \dot{b} 满足 $|\dot{a}| > |\dot{b}|$ 且 $\dot{a} = |\dot{b}|$ 同向,则 $|\dot{a}| > \dot{b}|$
- D. "若 A、B、C、D 是不共线的四点,且 $\stackrel{\text{CLI}}{AB} = \stackrel{\text{CLI}}{DC}$ " \Leftrightarrow "四边形 ABCD 是平行四边形"
- 2. (2022·全国·高三专题练习)(多选)下列说法正确的是()
- A. 对于任意两个向量a,b,若a|b, 若b|, 且a=b同向,则a>b
- B. 已知|a|=6,e为单位向量,若 $< a,e>= \frac{3\pi}{4}$,则a在e上的投影向量为 $-3\sqrt{2}e$
- C. 设m,n为非零向量,则"存在负数 λ ,使得 $m=\lambda n$ "是" $m\cdot n<0$ "的充分不必要条件
- D. \ddot{a} , \dot{b} < 0 , 则 \dot{a} 与 \dot{b} 的夹角是钝角
- 3. $(2022 \cdot 江苏)$ (多选)设 $\frac{1}{a}$ 是已知的平面向量,向量 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 在同一平面内且两两不共
- 线,其中真命题是()
- A. 给定向量 $\frac{1}{b}$, 总存在向量 $\frac{1}{c}$, 使 $q = \frac{1}{b} + \frac{r}{c}$;
- B. 给定向量 $_{b}^{\dagger}$ 和 $_{c}^{\dagger}$, 总存在实数 $_{\lambda}$ 和 $_{\mu}$, 使 $_{a}^{\dagger}=_{\lambda}_{b}^{\dagger}+_{\mu}_{c}^{\dagger}$;
- C. 给定单位向量 $_{b}^{\dagger}$ 和正数 $_{\mu}$,总存在单位向量 $_{c}^{\dagger}$ 和实数 $_{\lambda}$,使 $_{a}^{r}=_{\lambda b}^{\dagger}+_{\mu c}$;
- D. 若|a|=2,存在单位向量b,c和正实数 λ , μ ,使 $a=\lambda b+\mu c$,则 $3^{\lambda}+3^{\mu}>6$.
- 4. $(2022 \cdot 2 = 1)$ (多选)设 $\frac{1}{a}$ 是已知的平面向量且 $\frac{1}{a} \neq 0$,向量 $\frac{1}{b}$, $\frac{1}{c}$ 和 $\frac{1}{a}$ 在同一平面内且两两不共线,关于向量 $\frac{1}{a}$ 的分解,下列说法正确的是(
- A. 给定向量 $_{h}^{1}$, 总存在向量 $_{c}^{1}$, 使 $_{a=h+c}^{1}$;
- B. 给定向量 $_{b}^{\dagger}$ 和 $_{c}^{\dagger}$, 总存在实数 $_{\lambda}$ 和 $_{\mu}$, 使 $_{a}^{\dagger}=_{\lambda b}^{\dagger}+_{\mu c}^{\dagger}$;
- C. 给定单位向量 $_{b}^{\dagger}$ 和正数 $_{\mu}$,总存在单位向量 $_{c}^{\dagger}$ 和实数 $_{\lambda}$,使 $_{a}^{\dagger}=_{\lambda}b+_{\mu}c$;
- D. 给定正数 λ 和 μ ,总存在单位向量 b 和单位向量 c ,使 $a=\lambda b+\mu c$.
- 5. $(2022 \cdot 东莞高级中学)(多选) 关于平面向量<math>a,b,c$,下列说法中错误的是()

- A. 若 $\frac{\mathbf{r}}{a}$ // $\frac{\mathbf{b}}{b}$ 且 $\frac{\mathbf{b}}{b}$ // $\frac{\mathbf{r}}{c}$,则 $\frac{\mathbf{a}}{a}$ // $\frac{\mathbf{c}}{c}$
- B. $(\stackrel{\mathbf{r}}{a} + \stackrel{\mathbf{l}}{b}) \cdot \stackrel{\mathbf{r}}{c} = \stackrel{\mathbf{r}}{a} \cdot \stackrel{\mathbf{r}}{c} + \stackrel{\mathbf{l}}{b} \cdot \stackrel{\mathbf{r}}{c}$
- C. 若 $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$ D. $(\vec{a} \cdot \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \cdot \vec{c})$

6. $(2022 \cdot 全国高三专题练习)(多选)已知<math>a,b,c$ 是三个平面向量,则下列叙述错误的是 ()

- A. 若 $|\overrightarrow{a}| = |\overrightarrow{b}|$, 则 $|\overrightarrow{a}| = +\overrightarrow{b}|$
- B. $\vec{a} \stackrel{\rightarrow}{a \cdot b} = \stackrel{\rightarrow}{b \cdot c} \stackrel{\rightarrow}{,} \quad \vec{b} \stackrel{\rightarrow}{a \neq 0} \stackrel{\rightarrow}{,} \quad \vec{b} \stackrel{\rightarrow}{b = c}$
- C. 若 $\stackrel{\rightarrow}{a}$ // $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{b}$ // $\stackrel{\rightarrow}{c}$, 则 $\stackrel{\rightarrow}{a}$ // $\stackrel{\rightarrow}{c}$
- D. 若 $\overrightarrow{a} \perp \overrightarrow{b}$, 则 $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$

7. $(2022 \cdot 全国 \cdot 高三专题练习)$ 给出下列命题: ①若 $|\overset{\Gamma}{a}|=\overset{1}{b}|$,则 $\overset{\Gamma}{a}=\overset{1}{b}$;②若 $\overset{\Lambda}{a}$ $\overset{R}{b}$ 、 $\overset{C}{b}$ 不共线的四点,则 AB = DC 是四边形 ABCD 为平行四边形的充要条件; ③若 a = b , b = c , 则 $\overset{1}{a}=\overset{1}{c}$; ④ $\overset{1}{a}=\overset{1}{b}$ 的充要条件是 $|\overset{1}{a}|=\overset{1}{b}|$ 且 $\overset{1}{a}//\overset{1}{b}$; ⑤若 $\overset{1}{a}//\overset{1}{b}$, $\overset{1}{b}//\overset{1}{c}$, 则 $\overset{1}{a}//\overset{1}{c}$. 其中正确命 题的序号是 .

题组二 共线定理

1. (2022 • 广东) 已知向量 a 和 b 不共线,向量 AB = a + mb , BC = 5a + 3b , CD = -3a + 3b , 若A、B、D三点共线,则m=(

- A. 3
- B. 2
- C. 1
- D. -2

2. (2022·河南省杞县) 已知向量 e_1 , e_2 不共线, $a = e_1 + 3e_2$, $b = 2e_1 + \lambda e_2$, 若a/b, 则 $\lambda = e_1 + 3e_2$

- 3. $(2021 \cdot 全国)$ 设两个非零向量 $\frac{1}{a}$ 与 $\frac{1}{b}$ 不共线,
- (1) 若AB = a + b, BC = 2a + 8b, CD = 3(a b), 求证: A, B, D三点共线;
- (2) 试确定实数 k,使 ka+b 和 a+kb 共线.

题组三 平面向量的基本定理

1. (2022·黑龙江·哈尔滨三中) VABC中,E是边BC上靠近B的三等分点,则向量AE=

A.
$$\frac{1}{3} \frac{\text{UUI}}{AB} + \frac{1}{3} \frac{\text{UUI}}{AC}$$

B.
$$\frac{1}{3} \frac{\mathbf{u}}{AB} + \frac{2}{3} \frac{\mathbf{u}}{AC}$$

C.
$$\frac{2}{3} \frac{\text{un}}{AB} + \frac{1}{3} \frac{\text{un}}{AC}$$

D.
$$\frac{2}{3}\frac{\mathbf{u}\mathbf{n}}{AB} + \frac{2}{3}\frac{\mathbf{u}\mathbf{n}}{AC}$$

2. (2022·全国·模拟预测) 在平行四边形 ABCD中,设 CB=a , CD=b , E 为 AD 的中点, CE与BD交于F,则AF= ()

B.
$$-\frac{2a+b}{3}$$

A.
$$-\frac{a+2b}{3}$$
 B. $-\frac{2a+b}{3}$ C. $-\frac{a-2b}{3}$ D. $-\frac{2a-b}{3}$

- $3(2022\cdot$ 全国·高三专题练习)如图平面四边形 ABCD中,AD=3AE,BC=3BF,则 EF 可表 示为()

A.
$$\frac{1}{3} \frac{\mathbf{u} \mathbf{u}}{AB} + \frac{1}{3} \frac{\mathbf{u} \mathbf{u}}{DC}$$

B.
$$\frac{2}{3} \frac{\text{un}}{AB} + \frac{2}{3} \frac{\text{un}}{DC}$$

C.
$$\frac{1}{3}AB + \frac{2}{3}DC$$

D.
$$\frac{2}{3} \frac{\text{un}}{AB} + \frac{1}{3} \frac{\text{un}}{DC}$$

4. (2022·山东潍坊·模拟预测) 在平行四边形 ABCD中,M,N分别是 AD,CD 的中点,BM=a

BN = h, $\square BD = ($

A.
$$\frac{3}{4} \frac{r}{a} + \frac{21}{3} \frac{1}{6}$$

B.
$$\frac{2}{3}r + \frac{2}{3}l$$

C.
$$\frac{2}{3} \frac{r}{a} + \frac{3}{4} \frac{r}{b}$$

A.
$$\frac{3}{4}r + \frac{2}{3}r$$
 B. $\frac{2}{3}r + \frac{2}{3}r$ C. $\frac{2}{3}r + \frac{3}{4}r$ D. $\frac{3}{4}r + \frac{3}{4}r$

5. $(2022 \cdot 全国 \cdot 高三专题练习)$ 在VABC中,点 D在边 AB上,BD=2DA. 记 CA=m, CD=n

则 *CB* = ()

A.
$$3m - 2n$$

A.
$$3m - 2n$$
 B. $-2m + 3n$ C. $3m + 2n$ D. $2m + 3n$

C.
$$3m + 2n$$

D.
$$2m + 3n$$

6. (2022·全国·高三专题练习)在等边VABC中,O为重心,D是OB的中点,则AD=(

- A. AB + AC B. $\frac{2}{3}AB + \frac{1}{2}AC$ C. $\frac{1}{2}AB + \frac{1}{4}AC$ D. $\frac{2}{3}AB + \frac{1}{6}AC$

7. (2022·河南) 在 $\triangle ABC$ 中,BD=2DC,M为AD 的中点,BM=xBA+yBC,则x+y=(

- A. $\frac{5}{6}$
- B. $\frac{1}{2}$ C. 1 D. $\frac{2}{3}$

8. (2022·全国·高三专题练习)已知点 P是 VABC 所在平面内一点,且 PA+PB+PC=0,则

- A. $PA = -\frac{1}{3} \frac{UU}{BA} + \frac{2}{3} \frac{UU}{BC}$
- B. $PA = -\frac{2}{3}MA + \frac{1}{3}RC$
- C. $PA = -\frac{1}{3}BA \frac{2}{3}BC$

D. $PA = \frac{2}{3} \frac{\text{UM}}{BA} - \frac{1}{3} \frac{\text{UM}}{BC}$

9. (2022·云南·一模 (理)) 在VABC中,D是直线 AB 上的点.若 $2BD = CB + \lambda CA$,记 $\triangle ACB$ 的面积为 S_1 , $\triangle ACD$ 的面积为 S_2 ,则 $\frac{S_1}{S_2}$ = (

- A. $\frac{\lambda}{6}$
- B. $\frac{\lambda}{2}$ C. $\frac{1}{3}$ D. $\frac{2}{3}$

10. (2022·辽宁沈阳·二模)(多选)如图,在 4×4 方格中,向量 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 的始点和终点均 为小正方形的顶点,则()

A. a = b

B. $\begin{vmatrix} a + b \\ c \end{vmatrix} = \begin{vmatrix} c \\ c \end{vmatrix}$

C. $a \perp b$

D. $a \cdot c \neq b \cdot c$

11. $(2022 \cdot 广东·深圳市光明区高级中学模拟预测)(多选)在VABC中,<math>D$ 为BC中点,且 AE = 2ED,则(

A. $CE = \frac{2}{3}CA + \frac{1}{6}CB$

B. $CE = \frac{1}{3}CA + \frac{1}{3}CB$

C.
$$CE // (CA + CB)$$

D.
$$CE \perp (CA - CB)$$

等分点,G是 BE 的中点,直线 AG 分别与 BD, BC 交于点 F,H 设 AB=a , AC=b ,则

A.
$$AG = \frac{1}{2}a + \frac{1}{3}b$$
 B. $AF = \frac{1}{3}a + \frac{1}{6}b$ C. $EG = \frac{1}{2}a - \frac{1}{3}b$ D. $AH = \frac{3}{5}a + \frac{2}{5}b$

B.
$$AF = \frac{1}{3}r + \frac{1}{6}b$$

C.
$$EG = \frac{1}{2} \frac{r}{a} - \frac{1}{3} \frac{r}{b}$$

D.
$$AH = \frac{3}{5}a + \frac{2}{5}b$$

13. (2022·全国·高三专题练习) 在三角形 ABC中,点 D 在边 BC上,若 BD=2DC, $AD = \lambda AB + \mu AC \left(\lambda, \mu \in \mathbf{R}\right)$,则 $\lambda - \mu =$ _____.

14.(2022·全国·高三专题练习)在边长为4的等边VABC中,已知 $AD = \frac{2}{3}AB$,点 P 在线段 $CD \perp$, $\exists AP = mAC + \frac{1}{2}AB$, $\exists AP = mAC + \frac{1}{2}AB$

15. (2022·浙江·模拟预测) 在平行四边形 ABCD中, AB = 2, $\cos \angle BAD = \frac{1}{2}$, E、 F 是边 BC , CD上的点, $BE = \frac{1}{2}BC$, $CF = \frac{2}{3}CD$,若 $AE \cdot BF = 8$,则平行四边形的面积为_____.

16. (2022·全国·高三专题练习) 等腰直角 VABC 中,点 P 是斜边 BC 边上一点,若 $AP = \begin{bmatrix} 4AB \\ 4B \end{bmatrix}$ + | AC | + **| AC** | ,则 V*ABC* 的面积为_____

17. (2022·全国·高三专题练习)已知 $AM=\frac{1}{4}AB+\frac{3}{4}AC$,则 ΔABM 与 ΔABC 的面积之比为

题组四 数量积

1. (2022·上海市嘉定区第二中学模拟预测) 在VABC中, AB = AC = 3, BD = 2DC. 若 $AD \cdot BC = 4$, $MAB \cdot AC = ($

- A. 3
- B. -3
- C. 2
- D. -2

2. $(2022 \cdot 全国 \cdot 高三专题练习)$ 已知 $\triangle ABC$ 中, $\angle A=60^\circ$,AB=4,AC=6,且 CM=2MB,AN=NB, 则 $AC \cdot NM =$

- A. 12
- B. 14
- C. 16
- D. 18

3. $(2022 \cdot 全国 \cdot 高三专题练习)$ 已知菱形 ABCD 的边长为 a, $\angle ABC = 60^{\circ}$,则 $DB \cdot CD = ($

- A. $-\frac{3}{2}a^2$ B. $-\frac{3}{4}a^2$ C. $\frac{3}{4}a^2$ D. $\frac{3}{2}a^2$

4. $(2022 \cdot 全国 \cdot 高三专题练习)$ 如图,VABC中, $\angle BAC = \frac{\pi}{3}$,AD = 2DB,P为CD上一点,

且满足 $AP=mAC+rac{1}{2}AB$,若 AC=3,AB=4,则 $AP\cdot CD$ 的值为(

- B. $\frac{5}{12}$ C. $\frac{13}{12}$ D. $\frac{12}{13}$

5. (2022·陕西·交大附中) 已知在平行四边形 ABCD中,

 $DE = \frac{1}{2} \frac{UU}{EC} \frac{UU}{BF} = \frac{1}{2} \frac{UU}{FC} \frac{UU}{AE} = 2, |AF| = \sqrt{6}$,则 $AC \cdot DB$ 值为______.

6. (2022·湖南·湘潭一中高三阶段练习) 已知等边VABC的边长为 6,平面内一点 P 满足 $\begin{array}{l} \mathbf{UII} & = \frac{1}{2} \mathbf{UII} + \frac{1}{3} \mathbf{UI} \\ CP & = \frac{1}{2} CB + \frac{1}{3} CA \end{array}, \quad \mathbf{M} \stackrel{\mathbf{UII}}{PA} \cdot PB = \underline{\hspace{1cm}} .$

7. (2022·天津·模拟预测)已知菱形 ABCD 的边长为 4 , E 是 BC 的中点,则 \overrightarrow{AE} . \overrightarrow{ED} = _____.

8. $(2022 \cdot 全国 \cdot 高三专题练习)$ 如图, $AB=1, AC=3, \angle A=90^\circ, CD=2DB$,则 $AD \cdot AB=1$

题组五 取值范围

1. $(2022 \cdot \text{山东烟台} \cdot 三模)$ 如图,边长为2的等边三角形的外接圆为圆O,P为圆O上任一 点,若 AP = xAB + yAC,则 2x + 2y 的最大值为(

- B. 2 C. $\frac{4}{3}$ D. 1
- 2. $(2022 \cdot 全国 \cdot 高三专题练习)$ 边长为 2的正三角形 ABC 内一点 M (包括边界)满足:

 $CM = \frac{1}{3}CA + \lambda CB(\lambda \in R)$, 则 $CA \cdot BM$ 的取值范围是 ()

- A. $\left[-\frac{4}{3}, \frac{2}{3} \right]$ B. $\left[-\frac{2}{3}, \frac{2}{3} \right]$ C. $\left[-\frac{4}{3}, \frac{4}{3} \right]$ D. [-2, 2]

- 3.(2022·全国·高三专题练习)在 $\triangle ABC$ 中,M为边 BC上任意一点,N为 AM中点,且满 足 $AN = \lambda AB + \mu AC$,则 $\lambda^2 + \mu^2$ 的最小值为(
- A. $\frac{1}{16}$ B. $\frac{1}{4}$ C. $\frac{1}{8}$ D. 1

- 4. (2022·全国·高三专题练习) 已知圆O的半径为 2,A为圆内一点, $OA = \frac{1}{2}$,B,C为圆O上任意两点,则 $AC \cdot BC$ 的取值范围是 ()

A.
$$\left[-\frac{1}{8}, 6\right]$$

A.
$$\left[-\frac{1}{8}, 6 \right]$$
 B. $[-1, 6]$ C. $\left[-\frac{1}{8}, 10 \right]$ D. $[1, 10]$

5. (2022·全国·高三专题练习) 已知线段 AB 是圆 $C: x^2 + y^2 = 4$ 的一条动弦,且 $|AB| = 2\sqrt{3}$, 若点P为直线x+y-4=0上的任意一点,则 $\begin{vmatrix} uu & uu \\ PA+PB \end{vmatrix}$ 的最小值为(

A.
$$2\sqrt{2}-1$$

B.
$$2\sqrt{2} + 1$$

C.
$$4\sqrt{2} - 2$$

A.
$$2\sqrt{2}-1$$
 B. $2\sqrt{2}+1$ C. $4\sqrt{2}-2$ D. $4\sqrt{2}+2$

6(2022·全国·高三专题练习)在 ΔABC 中, $A=\frac{\pi}{3}$, AB=2 , AC=1.D 是 BC 边上的动点, 则 AD·BC 的取值范围是(

A.
$$[-3,0]$$

A.
$$[-3,0]$$
 B. $[-\sqrt{3},0]$ C. $[-1,2]$ D. $[-1,\sqrt{3}]$

C.
$$[-1,2]$$

D.
$$\left[-1,\sqrt{3}\right]$$

7. (2022·天津·高三专题练习) 如图,在菱形 ABCD中, AB=2, $\angle BAD=60^{\circ}$, E,F 分别 为BC,CD上的点,CE = 2EB,CF = 2FD,若线段EF上存在一点M,使得

 $\overrightarrow{AM} = k \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AD} (x \in R)$,则 $k = \underline{\hspace{1cm}}$,若点 N 为线段 BD 上一个动点,则 $AN \cdot MN$ 的取 值范围为

8. (2022·广东·金山中学高三阶段练习) 如图,在VABC中, $BD = \frac{1}{3}BC$,点 E 在线段 AD 上

移动(不含端点), 若 $AE = \lambda AB + \mu AC$, 则 $\frac{\lambda}{\mu} =$ ______, $\lambda^2 - \mu$ 的最小值为______.

- 1. $(2022 \cdot$ 全国·高三专题练习) 若 $G \in VABC$ 的各边中线交点, a , b , c 分别是角 A , B , C的对边,若 $\sqrt{3}aGA + \sqrt{3}bGB + cGC = 0$,则角A = 0
- A. 90°
- B. 60°
- C. 45°
- D. 30°
- AB, AC 两边交于 M, N 两点(点 N 与点 C 不重合),设 AB = xAM , AC = yAN ,则 $\frac{1}{x} + \frac{1}{v-1}$ 的最小值为(

- B. $1+\sqrt{2}$ C. $\frac{3}{2}$ D. $2+2\sqrt{2}$
- 3. $(2022 \cdot 江苏省木渎高级中学模拟预测)$ 如图所示,VABC的面积为 $\frac{3\sqrt{3}}{2}$,其中 $AB=2, \angle ABC=60^{\circ}$,AD为 BC 边上的高,M为 AD 的中点,若 $AM=\lambda AB+\mu AC$,则 $\lambda+2\mu$ 的值为(

- 4. $(2022 \cdot 江苏 \cdot 南京师大附中模拟预测)$ 在边长为 2 的等边VABC中, D 为线段 BC 上的动 点, $DE \perp AB$ 且交AB 于点E,DF //AB 且交AC 于点F,则 2BE+DF 的值为(
- A. 1
- B. $\frac{3}{2}$
- C. 2
- 5(2022·全国·高三专题练习)在 $\triangle ABC$ 中,点D满足 $AD = \frac{1}{6}AB + \frac{1}{2}AC$,直线AD = BC交

- A. $\frac{1}{2}$

- B. $\frac{1}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{5}$

6. $(2022 \cdot 2 \times 2 \times 2)$ 全国·高三专题练习)(多选)已知VABC是半径为2的圆O的内接三角形,则下 列说法正确的是(

- A. 若角 $C = \frac{\pi}{3}$,则 $AB \cdot AO = 12$
- B. 若 2*OA* + *AB* + *AC* = 0 ,则 | *BC* |= 4
- C. $\Xi |OA OB| = OA \cdot OB$, 则 OA, OB 的夹角为 $\frac{\pi}{3}$
- D. 若 $(BC+BA)\cdot AC=|AC|^2$,则AB为圆O的一条直径

7. (2022·江苏·高三专题练习)(多选) 若点 <math>O 是线段 BC 外一点,点 P 是平面上任意一点, 且 $OP = \lambda OB + \mu OC(\lambda, \mu \in \mathbb{R})$,则下列说法正确的有(

- A. 若 $\lambda + \mu = 1$ 且 $\lambda > 0$,则点 P 在线段 BC 的延长线上
- B. 若 $\lambda + \mu = 1$ 且 $\lambda < 0$,则点 P 在线段 BC 的延长线上
- D. 若 $\lambda + \mu < 1$,则点 P 在 $\triangle OBC$ 内
- 8. $(2022 \cdot 山西大附中三模(理))$ 如图,已知点E是平行四边形ABCD的边AB的中点,点 $G_n(n \in \mathbb{N}^*)$ 在线段 BD 上,且满足 $G_nD = a_{n+1} \cdot G_nA - 2(2a_n + 3) \cdot G_nE$,其中数列 $\{a_n\}$ 是首项为 1 的 数列,则数列 $\{a_n\}$ 的通项公式为_

5.2 平面向量的数量积及坐标运算(精练)(基础版)

题组一 坐标运算

1. (2022·全国·高三专题练习) 已知向量 $\vec{a} = (3,4), \vec{b} = (1,0), \vec{c} = \vec{a} + t\vec{b}, 若 < \vec{a}, \vec{c} > = < \vec{b}, \vec{c} > ,$ 则

- А. -6
- B. -5
- C. 5
- D. 6

2. (2022·全国·高三专题练习) 已知向量a = (2,1), b = (-2,4),则a - b (

- A. 2
- B. 3
- C. 4
- D. 5

3. (2022·全国·模拟预测)设向量 $\stackrel{!}{a}=(3,2)$, $\stackrel{!}{b}=(m,-2)$,若 $\stackrel{!}{a}\cdot \stackrel{!}{b}=m$,则 $\stackrel{!}{a}+\stackrel{!}{b}=$ (

- A. (1,0)
- B. (2,0)
- C. (4,0)
- D. (5,0)

4. (2022·云南师大附中模拟预测(理))已知向量a = (2t,2),b = (-t-2,-5),若向量a与 向量a+b的夹角为钝角,则t的取值范围为(

A. (-3,1)

B. (-3,-1)U(-1,1)

C. (-1,3)

D. $\left(-1,\frac{1}{2}\right)\cup\left(\frac{1}{2},3\right)$

5. $(2022 \cdot 全国 \cdot 高三专题练习)$ 已知O为坐标原点, $P_1P = -2PP_2$,若 $P_1(1,2)$ 、 $P_2(2,-1)$, 则与OP共线的单位向量为(

A. (3,-4)

B. (3,-4)或(-3,4)

C. $\left(\frac{3}{5}, -\frac{4}{5}\right) \vec{\boxtimes} \left(-\frac{3}{5}, \frac{4}{5}\right)$

D. $\left(\frac{3}{5}, -\frac{4}{5}\right)$

6. (2022·湖北·华中师大一附中模拟预测) 已知向量 $\overset{\cdot}{a}=(m,3)$, $\overset{\cdot}{b}=(1,m)$,若 $\overset{\cdot}{a}$ 与 $\overset{\cdot}{b}$ 反向共 线,则 $\left|a-\sqrt{3}b\right|$ 的值为(

- A. 0
- B. 48
- C. $4\sqrt{3}$ D. $3\sqrt{6}$

7. (2022·内蒙古·满洲里市教研培训中心三模(文))若 $a = (2, -\sqrt{3}), b = (2\sin\frac{\pi}{6}, 2\cos\frac{\pi}{6}),$

下列正确的是() A. $\frac{1}{b} / (a - b)$ B. $b \perp (a-b)$ D. $(a+b)\perp (a-b)$ C. a 在 b 方向上的投影是 $-\frac{1}{2}$ 8. (2022·全国·高三专题练习)已知a=(1,-2), $b=(1,\lambda)$,且a=b的夹角 θ 为锐角,则实 数 λ 的取值范围是 (A. $\left(\frac{1}{2}, +\infty\right)$ B. $\left(-2, \frac{1}{2}\right) \cup \left(\frac{1}{2}, +\infty\right)$ C. $\left(-\infty, \frac{1}{2}\right)$ D. $\left(-\infty, -2\right) \cup \left(-2, \frac{1}{2}\right)$ 9. (2022·河南安阳·模拟预测(文))已知向量 $\stackrel{r}{a}=(1,0)$, $\stackrel{r}{b}=(-1,1)$,则以下与 $\stackrel{r}{a}+2\stackrel{r}{b}$ 垂直 的向量坐标为(B. (2,1) C. (1,-2) D. (2,-1)A. (1,2)10. (2022·广东惠州·高三阶段练习) 已知向量 $a = (2\sqrt{3}, 2)$, 向量 $e = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.则向量a在向 量。上的投影向量为(A. $(\sqrt{3},3)$ B. $(-\sqrt{3},1)$ C. $(1,\sqrt{3})$ D. $(\frac{1}{4},\frac{\sqrt{3}}{4})$ 11. (2022·江西·赣州市第三中学) 已知向量 $\overset{\iota}{a}$ =(1,0), $\overset{\iota}{b}$ =(-1, $\sqrt{3}$).若 $\langle \overset{\mathfrak{r}}{c},\overset{\mathfrak{r}}{a}\rangle$ = $\langle \overset{\mathfrak{r}}{c},\overset{\mathfrak{r}}{b}\rangle$,则 $\overset{\iota}{c}$ 可 能是(A. 2a - bB. a+bD. $\sqrt{3}a + b$ C. 2a+b12. (2022·安徽淮南·二模) 已知公比为 q 的等比数列 $\{a_n\}$ 中, $a_1a_2a_3=3, a_2a_3a_4=24$,平面 向量 $\overset{1}{a}=(1,q)$, $\overset{1}{b}=(2,3q)$,则下列 $\overset{1}{c}$ 与 $2\overset{\Gamma}{a}+\overset{1}{b}$ 共线的是(A. $\dot{c} = (1,4)$ B. c = (1,5) C. c = (5,2) D. c = (2,5)13. (2022·全国·高三专题练习) 若向量a = (2,3), b = (8,m), 则(

B. $\exists m \in \mathbb{Z}, a//b$

A. $\exists m \in \mathbb{Z}, a \perp b$

C.
$$\forall m \in \mathbb{R}, a \cdot b \neq m$$

D.
$$\exists m \in \mathbb{R}, |a| = |b|$$

14. $(2022 \cdot 全国 \cdot 高三专题练习)$ 已知点 A(-1,4), B(2,6), C(3,0),则满足 GA + GB + GC = 0 的 G的坐标为____.

题组二 巧建坐标

1. (2022·全国·高三专题练习) 在矩形 ABCD中, AB=3 , AD=1 ,若 AB=3AE ,则 BD与 CE 的夹角为 ()

- A. 30°
- B. 45°
- C. 60°
- D. 135°

2. (2022·全国·高三专题练习) 在矩形 ABCD中, AB=2, BC=1,点 E 为边 AB 的中点, 点 F 为边 BC 上的动点,则 $DE \cdot DF$ 的取值范围是 (

- A. [2,4]
- B. [2,3]
- C. [3,4] D. [1,4]

3. (2022·山东·德州市教育科学研究院三模) 已知平面向量 $\stackrel{1}{a}=(2,0)$, $\stackrel{1}{b}=(0,1)$,且非零向 量 $_{c}$ 满足(a-2c) $\perp (b-c)$,则|c| 的最大值是(

- A. 1
- B. $\sqrt{2}$
- $C. \sqrt{3}$
- D. 2

4. (2022·重庆·二模)已知平面内一正三角形 ABC 的外接圆半径为 4,在三角形 ABC 中心 为圆心 $r(0 < r \le 1)$ 为半径的圆上有一个动M,则|MA + MB + 3MC|最大值为(

- A. 13
- B. $\sqrt{89}$
- C. $5\sqrt{11}$ D. $\sqrt{11}+6$

5. (2022·全国·高三专题练习) 在VABC中,角 A, B, C 所对的边分别为 a, b, c, 若 b = c = 4, $A=120^{\circ}$,且 D 是 BC 边上的动点(不含端点),则 $\begin{pmatrix} DA+DB \end{pmatrix} \cdot \begin{pmatrix} DA+DC \end{pmatrix}$ 的取值范围是(

- A. [-8,10)
- B. [-16,40)
- C. [-8,40)
- D. [-16,48)

6. $(2022 \cdot 湖南 \cdot 一模)$ 在一个边长为 2 的等边三角形 ABC 中, 若点 P 是平面 ABC (包括边界) 中的任意一点,则 PA·PC 的最小值是(

A.
$$-\frac{5}{2}$$
 B. $-\frac{4}{3}$ C. -1 D. $-\frac{3}{4}$

B.
$$-\frac{4}{3}$$

D.
$$-\frac{3}{4}$$

7. (2022·福建厦门·高三阶段练习)平面四边形 ABCD 中, AB=1, $AC=\sqrt{3}$, $AC\perp AB$, $\angle ADC=1$ $\frac{2\pi}{3}$,则 $\frac{\Delta B}{AD \cdot AB}$ 的最小值为(

A.
$$-\sqrt{3}$$

A.
$$-\sqrt{3}$$
 B. -1 C. $-\frac{\sqrt{3}}{2}$ D. $-\frac{1}{2}$

D.
$$-\frac{1}{2}$$

8. (2022·北京工业大学附属中学三模)已知向量a,b满足|b|=2,a=b的夹角为 60° ,则当 实数 λ 变化时, $|\stackrel{\cdot}{b}-\stackrel{\cdot}{\lambda a}|$ 的最小值为()

A.
$$\sqrt{3}$$

B. 2 C.
$$\sqrt{10}$$
 D. $2\sqrt{3}$

D.
$$2\sqrt{3}$$

9. $(2022 \cdot 宁夏 \cdot 银川 - 中 - 模(文))$ 在直角VABC中, $AB \perp AC$,AB = AC = 2,以BC为 直径的半圆上有一点 M (包括端点),若 $AM = \lambda AB + \mu AC$,则 $\lambda + \mu$ 的最大值为 ()

A. 4

B.
$$\sqrt{3}$$

C. 2

D.
$$\sqrt{2}$$

10. (2022·全国·高三专题练习) 骑行是目前很流行的一种绿色健身和环保出行方式, 骑行 属于全身性有氧活动、能有效地锻炼大脑、心脏等人体器官机能,它带给人们的不仅是简单的 身体上的运动锻炼,更是心灵上的释放.如图是某一自行车的平面结构示意图,已知图中的 圆A (前轮),圆D (后轮)的半径均为 $\sqrt{3}$, $\triangle ABE$, $\triangle BEC$, VECD 均是边长为 4 的等 边三角形.设点P为后轮上一点,则在骑行该自行车的过程中,AC.BP的最小值为(

A. $4\sqrt{3}$

B. 12

C. $12\sqrt{3}$ D. 24

题组三 平面向量与其他知识的综合运用

1.(2022·全国·高三专题练习)在VABC中,若 $AB^2=AB$ gAC+ABgCB+BCgCA,则VABC的形 状是(

- A. 直角三角形
- B. 等腰三角形
- C. 等腰直角三角形
- D. 既非等腰三角形又非直角三角形

2. $(2022 \cdot 全国 \cdot 高三专题练习)$ 在VABC中,设 $AC^2 - AB^2 = 2AM \cdot BC$,那么动点M 的轨迹 必通过VABC的()

A. 垂心

B. 内心

C. 外心

D. 重心

3 (2022·湖南·长沙一中模拟预测)(多选)已知 $a = (\cos \alpha, \sin \alpha), b = (\cos \beta, \sin \beta),$ 其中 $\alpha, \beta \in [0, 2\pi)$,则以下结论正确的是(

- B. 若 $\frac{\mathbf{r}}{a} \perp \frac{1}{b}$, 则 $|\alpha \beta| = \frac{\pi}{2}$ 或 $\frac{3\pi}{2}$
- C. 若 $\vec{a} \cdot \vec{b} = -\frac{1}{2}$, 则 $|\vec{a} + \vec{b}| = 1$
- D. 若 $\left| \stackrel{\mathsf{r}}{a} \stackrel{\mathsf{l}}{b} \right| = \left| \stackrel{\mathsf{r}}{a} \right|$, 则 $\left| \stackrel{\mathsf{r}}{a} \cdot (\stackrel{\mathsf{r}}{a} + b) \right| = \frac{3}{2}$
- 4. $(2022 \cdot 2 \times 1)$ · 百三专题练习)(多选)已知点O为平面直角坐标系原点,角 α, β 的终边分 别与以O为圆心的单位圆交于A,B两点,若 $\sin a > 0$, β 为第四象限角,且 $\cos \beta = \frac{2\sqrt{5}}{5}$,则

()

A.
$$OA \cdot OB = \cos(\alpha + \beta)$$

B.
$$\pm |AB| = \sqrt{2} \text{ ft}$$
, $OA \cdot OB = -1$

- 5. $(2022 \cdot 江西赣州 \cdot 高三期末(文))已知 <math>a$, b, c 分别为VABC的三个内角 A, B, C 的对边,b=9,且 $ac\cos B=a^2-b^2+\frac{1}{3}bc$,O是VABC内一点,且满足为OA+OB+OC=0, $\angle BAO=45^\circ$,则|OA|=_______.
- 6. $(2022 \cdot 广东茂名 \cdot 高三阶段练习)$ 设 $n \in \mathbb{N}^*$, a_1 , a_2 ,L, a_n 是一组平面向量,记 $s_n = a_1 + a_2 + L + a_n$,若向量 $a_n = (4 n, 1)$,且 $a_n \perp s_n$,则 $n = \underline{\hspace{1cm}}$.
- 7. (2022·上海·高三专题练习)A、B是直线y=x上的两个动点,且 $|AB|=2\sqrt{2}$,点 $C(3+\sqrt{2}\cos\theta,-1+\sqrt{2}\sin\theta)$ (其中 $\theta\in[0,2\pi)$),则 $CA\cdot CB$ 的最小值等于______.
- 8. $(2022 \cdot 河南安阳 \cdot)$ 已知向量 $\stackrel{\mathbf{r}}{a} = (-2\sqrt{2}, 4), \stackrel{\mathbf{r}}{b} = \left(1, \cos\frac{\theta}{2}\right),$ 其中 $\theta \in (0, \pi),$ 若 $\stackrel{\mathbf{r}}{a} \perp \stackrel{\mathbf{r}}{b},$ 则 $\sin\theta = \left(1, \cos\frac{\theta}{2}\right)$

5.3 平面向量的应用(精练)(基础版)

题组一 证线段垂直

1. $(2022 \cdot 全国 \cdot 高一课前预习)$ 在平行四边形 ABCD 中,M、N分别在 BC、CD 上,且满足 BC=3MC,DC=4NC,若 AB=4,AD=3,则 $\triangle AMN$ 的形状是(

- A. 锐角三角形
- C. 直角三角形

- B. 钝角三角形
- D. 等腰三角形
- 2. (2022·新疆) 在 $\triangle ABC$ 中,若|AB+AC|=|AB-AC|,则 $\triangle ABC$ 的形状是(
- A. 等腰三角形
- B. 直角三角形 C. 等边三角形
- D. 等腰直角三角形
- 3. (2021·浙江) 在VABC中,若 $AB \cdot AC = BA \cdot BC$,则VABC的形状为(
- A. 等边三角形

B. 等腰三角形

C. 直角三角形

- D. 等腰直角三角形
- 4. (2022·黑龙江) 如图,正方形 ABCD 的边长为 a, E 是 AB 的中点,F 是 BC 的中点,求 证: $DE \perp AF$.

5. (2022·湖南) 如图所示,在等腰直角三角形 ACB中, $\angle ACB$ = 90°, CA = CB, D为 BC的中点, $E \neq AB$ 上的一点, 且 AE = 2EB, 求证: $AD \perp CE$.

6. (2022·浙江) 如图所示, 若 D 是 $\triangle ABC$ 内的一点, 且 AB^2 - AC^2 = DB^2 - DC^2 , 求证: $AD \bot BC$.

7. (2022·浙江)如图,在平行四边形 ABCD 中, AB=1, AD=2, $\angle BAD=60^{\circ}$, BD, AC 相交于点 O, M 为 BO 中点.设向量 AB=a, AD=b.

- (1) 求 $\begin{vmatrix} \mathbf{r} & \mathbf{r} \\ a b \end{vmatrix}$ 的值;
- (2) 用a, b表示BD和AM;
- (3) 证明: *AB* \(\perp BD\).

题组二 夹角问题

1. (2022·云南) VABC中,若 AB = AC = 5, BC = 6,点 E 满足 $CE = \frac{2}{15}CA + \frac{1}{5}CB$,直线 CE 与直线 AB 相交于点 D,则 $\cos \angle ADE = ($

- A. $\frac{\sqrt{10}}{10}$

- C. $-\frac{\sqrt{10}}{10}$ D. $-\frac{3\sqrt{10}}{10}$
- 2. (2022·江西) 已知菱形 ABCD中, $AC = 2\sqrt{2}$,BD = 2,点 E 为 CD 上一点,且 CE = 2ED, 则 $\angle AEB$ 的余弦值为(
- A. $\frac{2\sqrt{5}}{5}$

- B. $\frac{\sqrt{5}}{5}$ C. $\frac{1}{2}$ D. $\frac{\sqrt{3}}{3}$
- 3. (2022·江苏)(多选)已知向量 $\overset{1}{a}=(1,-2),\overset{1}{b}=(\lambda,1)$,记向量 $\overset{1}{a},\overset{1}{b}$ 的夹角为 θ ,则(
- A. $\lambda > 2$ 时 θ 为锐角

B. $\lambda < 2$ 时 θ 为 钝 角

C. $\lambda = 2$ 时 θ 为直角

- D. $\lambda = -\frac{1}{2}$ 时 θ 为平角
- 4. $(2023 \cdot 全国 \cdot 高三专题练习)$ 已知 $\begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} = \sqrt{2}$, $\begin{vmatrix} \mathbf{b} \\ b \end{vmatrix} = 1$, $\begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} = b$ 的夹角为45°,若向量 $\left(2a \lambda b\right)$ 与 $\left(\lambda \overset{\Gamma}{a} - 3\overset{\Gamma}{b}\right)$ 的夹角是锐角,则实数入的取值范围是:_____.
- 5.(2022·四川省平昌中学)已知 $\overset{1}{a}=(\lambda,-1),\overset{1}{b}=(\lambda+2,3)$,且 $\overset{1}{a}=\overset{1}{b}$ 的夹角为钝角,则实数 λ 的 范围
- 6. (2022·全国·期末) 一扇中式实木仿古正方形花窗如图 1 所示,该窗有两个正方形,将这 两个正方形(它们有共同的对称中心与对称轴)单独拿出来放置于同一平面,如图2所示. 已知 AB = 6 分米, FG = 3 分米,点 P 在正方形 ABCD 的四条边上运动,当 $AE \cdot AP$ 取得最大 值时, AE 与 AP 夹角的余弦值为______.

7(2022·福建·厦门一中模拟预测)已知a, b, c均为单位向量,且3a+2b-3c=0,则a与b 夹角的余弦值为_____.

8. (2022·安徽·池州市第一中学) 如图,在VABC中,已知 AB=2, AC=6, $\angle BAC=60$ °, BC=2BM , AC=3AN ,线段 AM, BN 相交于点 P,则 $\angle MPN$ 的余弦值为

9. (2021·湖南)已知平面四边形 ABCD中, $AB\perp AD$, $BC\perp CD$, AB=1 , $BC=\sqrt{3}$, $\angle ABC=150^\circ$,则 $\cos \angle CBD=$.

10. (2022·湖北) 己知 $_{a}^{\prime}=(1, 2), b=(1, \lambda),$ 分別确定实数 $_{a}$ 的取值范围,使得:

- (1) a = b 的夹角为直角;
- (2) a = b 的夹角为钝角;
- (3) a 与 b 的夹角为锐角.

11. $(2022 \cdot 全国 \cdot 高三专题练习)$ 已知 $\triangle ABC$ 的面积为S满足 $\sqrt{3} \le 2S \le 3$,且 $\stackrel{\text{CLM}}{AB} \cdot \stackrel{\text{CLM}}{BC} = 3$, $\stackrel{\text{CLM}}{AB} = 3$, $\stackrel{\text{CLM}}{BC}$ 的夹角为 θ .求 $\stackrel{\text{CLM}}{AB} = 3$, $\stackrel{\text{CLM}}{BC} = 3$, $\stackrel{\text{CLM}}{AB} = 3$ 。

题组三 线段长度

 $1.(2022\cdot$ 全国·高三专题练习)在平行四边形 ABCD 中,点 E , F 满足 DE = 2EC , AE = 2AF ,

且 $DF \perp AE$,设 $|AB| = \lambda |AD|$,则 $\lambda = ($

- A. $\frac{4}{3}$

- B. $\frac{3}{2}$ C. 2 D. $2\sqrt{2}$

 $(2022 \cdot 湖南)(85)$ 引用 $(2022 \cdot 湖南)(85)$ 引用 $(2022 \cdot 湖南)(85)$ 引用 $(2022 \cdot 湖南)(85)$ 引用 $(2022 \cdot 湖南)(85)$ 异面直线 PC 与 AB 所成角的大小为 60° ,则线段 EF 的长为 (

- A. 3
- B. 6
- C. $6\sqrt{3}$ D. $3\sqrt{3}$

3. $(2022 \cdot 全国 \cdot 信阳高中)$ 已知四边形 ABCD 是矩形, AB = 2AD, $DF = \lambda DC$, $BE = \mu BC$,

 $\lambda + \mu = 1$, $AE \perp AF$, $\emptyset \frac{EF}{AD} = ($

- A. $\frac{\sqrt{53}}{3}$ B. $\frac{53}{9}$ C. $\frac{\sqrt{65}}{3}$ D. $\frac{65}{9}$

4. $(2022\cdot$ 山东济宁)已知两点 E,F 分别是四边形 ABCD 的边 AD,BC 的中点,且 AB=3, CD=2, $\angle ABC = 45^{\circ}$, $\angle BCD = 75^{\circ}$,则线段 *EF* 的长为是

 $5(2022 \cdot$ 全国·高三专题练习)如图, E, F 分别是四边形 ABCD 的边 AD, BC 的中点, AB=1, CD=2, $\angle ABC=75^{\circ}$, $\angle BCD=45^{\circ}$, 则线段 EF 的长是 .

6. (2021·上海市市西中学) 空间四边形 *ABCD* 中, *E、F、G、H* 分别是 *AB、BC、CD、DA* 边的中点,且AC = 2,BD = 6,则 $EG^2 + FH^2 =$.

7. $(2022 \cdot 上海理工大学附属中学)$ 如图,定圆C的半径为3,A,B为圆C上的两点,且 | AC+tAB | 的最小值为 2,则 | AB |= _____.

题组四 几何中的最值

- 1. (2022·河南南阳·高一期末) 已知D是VABC的边BC上一点,且BC = 3BD,AD = 2, $\tan \angle BAC = \sqrt{15}$,则 AC + 2AB 的最大值为(
- A. $\frac{12\sqrt{10}}{5}$
- B. $\frac{6\sqrt{10}}{5}$ C. $\frac{12\sqrt{15}}{5}$ D. $\frac{6\sqrt{15}}{5}$
- 2. (2022·湖南张家界)如图,在梯形 ABCD中, AD//BC, $AD = \frac{3}{2}$, BC = 9, AB = 5, $\cos B = \frac{3}{5}$, 若 M, N 是线段 BC 上的动点,且 $\left| \frac{MN}{MN} \right| = 1$,则 $\frac{MN}{DM} \cdot DN$ 的最小值为(

- A. $\frac{13}{4}$
- B. $\frac{13}{2}$
- C. $\frac{63}{4}$ D. $\frac{35}{2}$
- 3. (2022·湖南) 线段 AB 是圆 $O: x^2 + y^2 = 9$ 的一条直径,直线 x 2y + 10 = 0 上有一动点 P , 则 PA·PB 的最小值为(
- A. 9
- B. 10
- C. 11
- D. 12
- 4. (2022·广东广州·) 平面四边形 PABC 中, $\angle APC = \frac{2\pi}{3}$, AB = 2, $AC = 2\sqrt{3}$, $AC \perp AB$,则 uni uni AP·AB 最小值(
- A. -2

- B. -1 C. $-2\sqrt{3}$ D. $-\sqrt{3}$
- 5. (2022·浙江·镇海中学) 已知平面向量a、b、c满足 $\left|2c-a\right|=\left|c-2b\right|=1$,则a-4b与c-2b所成夹角的最大值是(

- A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$ D. $\frac{5\pi}{6}$
- 6. (2022·湖南·周南中学) 已知边长为 2 的菱形 ABCD中,点 F为 BD上一动点,点 E满足

$BE = 2EC$, $AE \cdot BD = -\frac{2}{3}$, 则 $AF \cdot BE$ 的最小值为 ()								
A. 0	B. $\frac{2}{3}$	C. $\frac{4}{3}$	D. 2					
7. (2022·浙江丽水) 已知平面向量 a,b,c ,若 $ a = b =1$, $ a,b =1$, $ c-2(a+b) = a-b $,								
则 $ c - \lambda b (\lambda \in \mathbf{R})$ 的最小值是 ()								
A. $\sqrt{2}-1$	B. $\sqrt{3}-1$	C. $\sqrt{3}$	D. $\sqrt{3} + 1$					
8. (2022·河南) 已知点 P 是圆: $x^2 + y^2 = 4$ 上的动点,点 A, B, C 是以坐标原点为圆心的单位								
圆上的动点,且 AB gBC $=$ 0 ,则 $ PA+PB+PC $ 的最大值为(
A. 5	B. 6	C. 7	D. 8					
斯伯玉 二角的皿式	•							
题组五 三角的四心								
1. (2022·湖北武汉) 在三棱锥 $S-ABC$ 中.作 $SO\perp$ 平面 ABC ,垂足为 O .								
①若三条侧棱 SA 、 SB SC 与底面 ABC 所成的角相等,则 O 是 $VABC$ 的()心;								
②若三个侧面 SAB、SBC SCA 与底面 ABC 所成的二面角相等,则 O是 VABC 的 () 心:								
③若三组对棱 SA 与 BC , SB 与 CA , SC 与 AB 中有两组互相垂直,则 O 是 $VABC$ 的()								
心								
以上三个空依次填()								
A. 外, 垂, 内	B. 内, 外, 垂	C. 垂, 内, 外	D. 外, 内, 垂					
2. $(2022 \cdot 全国 \cdot 专题练习) 若 O 在 \triangle ABC 所在的平面内,a,b,c 是 \triangle ABC 的三边,满足以$								
下条件 $a \cdot OA + b \cdot OB + c \cdot OC = 0$,则 O 是 $\triangle ABC$ 的()								
A. 垂心	B. 重心	C. 内心	D. 外心					
3. $(2022 \cdot$ 重庆市长寿中学校)奔驰定理: 已知 O 是 $VABC$ 内的一点,若 $VBOC$ 、 $\triangle AOC$ 、 $VAOB$								
的面积分别记为 S_1 、 S_2 、 S_3 ,则 S_1 · $OA+S_2$ · $OB+S_3$ · $OC=0$. "奔驰定理"是平面向量中一个								
非常优美的结论,这个定理对应的图形与"奔驰"轿车的 logo 很相似,故形象地称其为"奔驰"。								
定理".如图,已知 O 是 $VABC$ 的垂心,且 $OA + 2OB + 4OC = 0$,则 $\cos B = ($)								

- B. $\frac{1}{3}$
- C. $\frac{2}{3}$ D. $\frac{\sqrt{3}}{3}$
- 4. (2022·重庆市实验中学) 在平面上有VABC及内一点 O满足关系式:

 $S_{\triangle OBC} \cdot OA + S_{\triangle OAC} \cdot OB + S_{\triangle OAB} \cdot OC = 0$ 即称为经典的"奔驰定理",若VABC的三边为 a,b,c,c

现有 $a \cdot OA + b \cdot OB + c \cdot OC = 0$ 则 O为VABC的(

- A. 外心
- B. 内心
- C. 重心 D. 垂心
- 5. (2022·浙江省杭州第二中学) 在VABC中, $A = \frac{\pi}{3}$,G为VABC的重心,若

 $AG \cdot AB = AG \cdot AC = 6$,则VABC外接圆的半径为()

- A. $\sqrt{3}$
- B. $\frac{4\sqrt{3}}{3}$ C. 2 D. $2\sqrt{3}$

6(2022·四川达州)在VABC中,G为重心, $AC=2\sqrt{3}$,BG=2,则 $BA\cdot BC=$

题组六 三角形的面积

- 1.(2022·河南·新密市第一高级中学)若点 M 是 $\triangle ABC$ 所在平面内的一点,且满足 3 $\stackrel{\text{def}}{AM}$ 一 AB - AC = 0,则 $\triangle ABM$ 与 $\triangle ABC$ 的面积之比为()
- A. 1:2
- B. 1:3
- C. 1:4
- D. 2:5
- 2. (2022·江西宜春) 已知 $S_{\triangle ABC} = 3$,点 M 是 $\triangle ABC$ 内一点且 MA + 2MB = CM,则 $\triangle MBC$ 的面积为(

- A. $\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{3}{4}$ D. $\frac{1}{2}$
- $3(2022\cdot$ 广东·东莞市东华高级中学)已知D是VABC内部(不含边界)一点,若

A. $\frac{2}{3}$ B. $\frac{3}{4}$ C. $\frac{7}{12}$ D. 1

4. $(2021 \cdot 安徽·合肥一中)$ 点 P 是菱形 ABCD 内部一点,若 2PA+3PB+PC=0,则 ABCD 的 面积与VPBC的面积的比值是()

A. 6

B. 8

C. 12

D. 15

5. (2022·河北) 设点 O 在 VABC 的内部,且 AB = 4OB + 5OC,则的面积 $S_{\triangle OAB}$ 与 $S_{\triangle OBC}$ 的面 积之比是_____

6. (2022·福建) 点 M 在 $\triangle ABC$ 内部,满足 2MA + 3MB + 4MC = 0,则 $S_{VMAC} : S_{VMAB} = 0$

7.(2022·全国·专题练习)设D、P为VABC 内的两点,且满足 $AD = \frac{1}{5}\begin{pmatrix} uur & uur \\ AB + AC \end{pmatrix}$, $\stackrel{\mbox{\it LMT}}{AP} = \stackrel{\mbox{\it LMT}}{AD} + \frac{1}{10} \stackrel{\mbox{\it LMT}}{BC} \ \ , \ \ \text{ for } \frac{S_{\triangle APD}}{S_{\wedge ABC}} = \ \ __.$

8. $(2022 \cdot 2 + 2022 \cdot 2 + 2022$ VBCE, $\triangle CDE$ 的重心分别为 G_1 , G_2 , G_3 , 那么 $VG_1G_2G_3$ 的面积为 .

9. (2022·福建厦门) 点 P 为 VABC 内一点, $\overrightarrow{PA}+3\overrightarrow{PB}+4\overrightarrow{PC}=\overrightarrow{0}$,则 VAPB, VAPC, VBPC 的面 积之比是____.

10. (2022·江苏)设 O 为 VABC 内一点,且满足关系式 $\vec{O}_{A+2} \vec{O}_{B+3} \vec{O}_{C=3} \vec{A}_{B+2} \vec{B}_{C+1} \vec{C}_{A}$, 则 $S_{VBOC}: S_{VAOB}: S_{VCOA} =$ ____.