

Main results

Maria Danie

Probability Neighting

Ergodic

Estimatio

- 1 generic inverse-S shape can be explained by difference in uncertainty
- process of estimation of this uncertainty generates inverse-S shape

Main Result

Ergodicit Question

Estimation

(TverskyKahneman1992)

Defining Probability Weighting (PW)

- overestimation of rare events \rightarrow underestimation of common events
- stable empirical pattern: inverse-S shape

Received wisdom:

 PW = maladaptive irrational cognitive bias

In search of a mechanism

- → How does this pattern emerge?

Set up : A Thought Experiment

Main Result Probability Weighting

Ergodicity Question

Estimation

Disinterested Observer (DO)

DO has a model of the random variable X, e.g. payout of a gamble probabilities p(x) CDF $F_p(x)$

Decision Maker (DM)

DM has a different model of the same random variable X with greater uncertainty decision weights w(x) CDF $F_w(x)$

Types of Different Uncertainties

MAI DO D

Probability

Ergodicity

mark and

. . .

The Simplest Case: Different Scales

Main Result Probability

Ergodicity Question

Estimation

Numerical procedure applies to arbitrary distributions:

- construct a list of values for the CDF assumed by the DO, $F_p(x)$
- 2 construct a list of values for the CDF assumed by the DM, $F_w(x)$
- 3 plot $F_w(x)$ vs. $F_p(x)$

The Simplest Case: Different Scales

Main Result

Ergodicity Question

Estimation

0.4 = a(d) 0.3 = a(d) 0.0 = a(d)

0.1

Different Scales

Numerical procedure applies to arbitrary distributions:

- construct a list of values for the CDF assumed by the DO, $F_p(x)$
- 2 construct a list of values for the CDF assumed by the DM, $F_w(x)$
- 3 plot $F_w(x)$ vs. $F_p(x)$

Applying the Procedure to the Uncertainty Types

Main Result

Probability Weighting

Ergodicity

Estimation

Interim conclusion

Main Result

Probability Weighting

Ergodicit Question

Estimation Conclusion

- greater scale reproduces inverse-S shape
- differences in location and scale reproduce asymmetric inverse-S shape
- inverse-S shape arises for all unimodal distributions
- Probability Weighting is the effect of a difference in uncertainty

Job done. Thank you for your attention;)

► Functional Forms

Asking the Ergodicity Question

Main Result

Probability

Ergodicity

Estimatio

Conclusio

DO's concern

What happens on average to the ensemble of subjects?

DM's concern

What happens to me on average over finite time?

Extra Uncertainty is Part of DM's Inference Problem I

Main Danula

Probability Weighting

Ouestic

Estimatio

DM's adaptive rationality: err on the side of caution:

- DM has no control over the experiment,
- DM's incomplete comprehension of the experiment/decision problem,
- DM needs to trust the DO
- uncertain outcome is consequential only to the DM,
- . . .

Extra Uncertainty is Part of DM's Inference Problem II

Maria Davida

Probability

Ergodicit

Estimatio

Conclusi

- "probability" is polysemous (Gigerenzer1991; Gigerenzer2018; HertwigGigerenzer1999)
- probabilities are not observable, but
- DM observes counts of (rare) events along his life trajectory through time
- \hookrightarrow **DM's inference problem:** estimate probability p(x) from counts

Main Result

Probability Weighting

Ergodicit Question

Estimation

Rare Event

- p(x) = 0.0001
- 10000 observations
- \sim 99.5% of such time series will contain 0 or 1 events
- Naïve estimation: $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.0001$
- either impossible or ten times (over)estimation

Common Event

- p(x) = 0.1
- 10000 observations
- \sim 99.5% of time series would contain between 50 and 150 events,

 \hookrightarrow much smaller relative error in $\hat{p}(x)$

- \hookrightarrow the smaller p(x) the smaller the count of it in a finite time series
- \hookrightarrow the bigger the relative estimation error

Relative Estimation Error is Larger for Rarer Events

Main Result Probability Weighting Ergodicity Question

Asymptotic probability	Most likely count	Standard error in count	Standard error in probability	Relative error in probability
0.1	1000	32	0.003	3%
0.01	100	10	0.001	10%
0.001	10	3	0.0003	30%
0.0001	1	1	0.0001	100%

Table: $T=10\,000$, assuming Poisson statistics, relative estimation errors $\sim 1/\sqrt{count}$

Using the count n(x) to form the best estimate and add to it the uncertainty about best estimate

$$w(x) \approx \frac{n(x)}{T\delta x} \pm \frac{\sqrt{n(x)}}{T\delta x}$$
 (1)

$$w(x) \approx \hat{\rho}(x) \pm \varepsilon \left[\hat{\rho}(x)\right]$$
 (2)

with the standard error expressed in terms of the estimate itself

$$\varepsilon \left[\hat{\rho}(x) \right] \equiv \frac{\sqrt{n(x)}}{T\delta x} = \sqrt{\frac{\hat{\rho}(x)}{T\delta x}} \tag{3}$$

$$\lim_{T \to \infty} w(x) \to p(x) \tag{4}$$

Conclusion

Main Result

Probability Weighting

Ergodio Questio

Estimatio

Ergodicity Economics explains probability weighting

- inverse-S shape as a neutral indicator of a difference in opinion
- reported observations are consistent with DM's extra uncertainty
- relative uncertainty arises out of the situation of the DM over time
- reproduce the right type of uncertainty, i.e. relative errors are larger for rare events
- → Probability weighting is rational cautious behaviour under uncertainty over time
 - See full paper at bit.ly/lml-pw-r1
 - links to play with the code are inside

Back Up

Thank you for your attention!

I'm looking forward to the discussion Comments & questions are very welcome, here or to

WE NEED YOU!

Submit an open peer review to this paper on bit.ly/lml-pw-r1

BACK UP

Probability Weighting as an Estimation Issue

"It is important to distinguish overweighting, which refers to a property of decision weights, from the overestimation that is commonly found in the assessment of the probability of rare events. [...] In many real-life situations, overestimation and overweighting may both operate to increase the impact of rare events." (KahnemanTversky1979)

- → distinguish between
 - uncertainty estimation and
 - "weighting"

we analyse the former and find very good agreement with the empirical inverse-S pattern

→ How big is the residual "probability weighting" after accounting for uncertainty estimation?

Estimation Error Explains 99% of Probability Weighting

- similar fits of Gaussian & t-distributed model
- → How big is the residual "probability weighting" after accounting for estimation errors?

◀ Main Results

TverskyKahneman1992

$$\tilde{F}_{w}^{TK}\left(F_{\rho};\gamma\right) = \left(F_{\rho}\right)^{\gamma} \frac{1}{\left[\left(F_{\rho}\right)^{\gamma} + \left(1 - F_{\rho}\right)^{\gamma}\right]^{1/\gamma}} \tag{5}$$

LattimoreBakerWitte1992

$$\tilde{F}_{w}^{L}\left(F_{p};\delta,\gamma\right) = \frac{\delta F_{p}^{\gamma}}{\delta F_{p}^{\gamma} + (1 - F_{p})^{\gamma}}\tag{6}$$

We derive decision weight as a function of probability with $(\alpha\sigma)^2$ as the DM's scale

$$w(p) = p^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} , \qquad (7)$$

which is a power law in p with a pre-factor to ensure normalisation

Linking Probability Weighting to Relative Uncertainties

Decision weight w is the normalised sum of the probability p(x) and its uncertainty $\varepsilon[p(x)]$

$$w(x) = \frac{p(x) + \varepsilon \left[p(x) \right]}{\int_{-\infty}^{\infty} \left(p(s) + \varepsilon \left[p(s) \right] \right) ds} . \tag{8}$$

This can be expressed as

$$w(x) = p(x) \left(\frac{1 + \frac{\varepsilon[p(x)]}{p(x)}}{\int_{-\infty}^{\infty} p(s) \left\{ 1 + \frac{\varepsilon[p(s)]}{p(s)} \right\} ds} \right) , \tag{9}$$

where $\frac{\varepsilon[p(x)]}{p(x)}$ is the relative error, which is large (small) for small (large) probabilities In the long-time limit $w(x) \to p(x)$

References I

Back U