Lecture Notes for Neural Networks and Machine Learning

Fully Convolutional Learning

Logistics and Agenda

- Logistics
 - Lab one grading...
- Agenda
 - Town Hall
 - Paper Presentation: Group Normalization
 - Segmentation
 - Semantic (this time)
 - Object (partially this time, maybe)
 - Instance (next time)

Types of Fully Convolutional Problems

- Semantic Segmentation
- Object Detection
- Instance Segmentation

medium.con

Semantic Segmentation

Karandeep Singh @kdpsinghlab · 10h · · · Statistician: Do you ever use statistics?

ML researcher: Nope. Never.

Statistician: What about when reading a

paper?

ML: Nope. Never.

Statistician: Ok. So if you're reading an ML paper comparing lots of models, how do you know which one is the best?

ML: Bold font.

Semantic Segmentation

 Given a set of pixels, classify each pixel according to what instance it belongs

Popular Semantic Segmentation Datasets

COCO http://cocodataset.org/

Early Training Methods (Pre 2018)

- Init Encoder with traditional CNN (like VGG or DarkNet)
- Freeze encoder and train decoder with segmented image maps
- Unfreeze encoder and fine tune
 - Repeat tuning as needed

Aside: Integer Upsampling via Interpolation

Aside: Image Upsampling, Integer Factor

- Insert Zeros
- Convolve

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

•	

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

0.25	0.5	0.25
0.5	1	0.5
0.25	0.5	0.25

Bilinear Filtering

Aside: Image Upsampling, Integer Factor

Nearest Neighbor

Bilinear

Bicubic

https://www.cs.toronto.edu/~guerzhoy/320/lec/upsampling.pdf

Semantic Segmentation

Max Pooling Remember which element was max! 1 2 6 3 3 5 2 1 1 2 2 1 7 3 4 8 Rest of the network

Max Unpooling Use positions from pooling layer

ling layer	0	0	2	0
2	 0	1	0	0
4	0	0	0	0
	3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

3

Output: 4 x 4

Some knucklehead started calling this **deconvolution**. If you use that term in this class, **you fail**.

This is unpooling and then convolution, but **now the** interpolation filters are learned!!

14

What about transpose convolution?

15

Transpose Convolution: Strides

Strided Convolution as Matrix Multiplication

Transpose

16

Stride=2

Χ

Aside: Convolution after zero insertion

Kernel size should be a symmetric multiple of the stride

Bias needs to account for both when different numbers of pixels overlap with the kernel

Multiple of stride ensures that same number of active pixels overlap the kernel.

Stride = 2

Putting it all together

Self Test:

Does it change the architecture if the Image input size changes?

Putting it all together

Some Examples

Pyramid Scene Parsing Network (PSPNet)

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

Dilated Convolution (Atrous)

Outputs of convolution are the same size, except for edge effects! But have advantage of processing at a different scale.

https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5

21

DeepLabV3+

https://github.com/tensorflow/models/tree/master/research/deeplab

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

22

Gated-SCNN (Gate Shape CNN)

Shape stream employs Traditional Uses activations to "gate" the Image Processing for edge detection (image gradients) image gradient. $\sigma(A) \odot I_{grad}$ Regular Stream **Fusion Module** seamentation **ASPP** comv conv conv gradients 1x1dualtask loss Residual Block conv Gated Conv Laver

Figure 2: **GSCNN** architecture. Our architecture constitutes of two main streams. The regular stream and the shape stream. The regular stream can be any backbone architecture. The shape stream focuses on shape processing through a set of residual blocks, Gated Convolutional Layers (GCL) and supervision. A fusion module later combines information from the two streams in a multi-scale fashion using an Atrous Spatial Pyramid Pooling module (ASPP). High quality boundaries on the segmentation masks are ensured through a Dual Task Regularizer.

2

Also uses Labeled Boundaries in BCE Edge Loss Function

Merges segmentation with edges for finer masks. Concatenate + atrous convolution

3

edge

Shape Stream

Performance

Figure 3: Illustration of the crops used for the distance-based evaluation.

Figure 4: Predictions at diff. crop factors.

Figure 5: **Distance-based evaluation**: Comparison of mIoU at different crop factors.

Method	road	s.walk	build.	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
LRR [18]	97.7	79.9	90.7	44.4	48.6	58.6	68.2	72.0	92.5	69.3	94.7	81.6	60.0	94.0	43.6	56.8	47.2	54.8	69.7	69.7
DeepLabV2 [9]	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
Piecewise [32]	98.0	82.6	90.6	44.0	50.7	51.1	65.0	71.7	92.0	72.0	94.1	81.5	61.1	94.3	61.1	65.1	53.8	61.6	70.6	71.6
PSP-Net [58]	98.2	85.8	92.8	57.5	65.9	62.6	71.8	80.7	92.4	64.5	94.8	82.1	61.5	95.1	78.6	88.3	77.9	68.1	78.0	78.8
DeepLabV3+ [11]	98.2	84.9	92.7	57.3	62.1	65.2	68.6	78.9	92.7	63.5	95.3	82.3	62.8	95.4	85.3	89.1	80.9	64.6	77.3	78.8
Ours (GSCNN)	98.3	86.3	93.3	55.8	64.0	70.8	75.9	83.1	93.0	65.1	95.2	85.3	67.9	96.0	80.8	91,2	83.3	69.6	80.4	80.8

Table 1: Comparison in terms of IoU vs state-of-the-art baselines on the Cityscapes val set.

mIoU == mean Intersection over Union = Area of Overlap

Area of Union

Lecture Notes for Neural Networks and Machine Learning

FCN Learning

Next Time:

Fully Convolutional Objects

Reading: None

