Second Course. December 8

Homework: Sent To JT and ET before Sunday 3th Jennary.

.

Consider à finite number of states.

12

Ex: 4 states.

For i and j, we have one parameter Linj: the jumping from i to j.

Assume the Continuous time Markov Chain is in state 1.

We simulate 3 "fictions" jump times

干さ~ を(人」)
干3~ を(人」)
干3~ を(人」)
干4~ を(人」)

T= Min (T2, T3, T4)

From
$$t \in L(0,T)$$
, $X_t = 1$

At time T^1 , $X_t = 2$

$$4 \quad \text{if} \quad T^2 = T^4$$

Se and jump time

is
$$T^2 = Min(T^3, T^3, T^3)$$
 $\forall t \in [T^2, T^1], X_t = j$

Where $T^3, j = T^2$

Afternative algorithm.

We introduce $r_i = \sum_{j \neq i} x_{i \Rightarrow j}$

 $T^1 \sim \mathcal{E}(\Lambda_i)$

Propositions

1-2-1

Methemetical result is

Consider $Z^1 \sim \mathcal{E}(\lambda_1), \ldots, Z^k \sim \mathcal{E}(\lambda_k)$ Min (Z¹,..., Zh) has an exponential distribution with parameter \(\frac{1}{2}\)\) Now, we have bost the state often the jump. $P\left(X_{T_1} = j\right) = \frac{X_1 + j}{x_1}$

Math. result.

$$Z$$
 and $Z = Z^{i}$ = Z^{i} = $Z^$

Proposition 12 1

Methemetical result is.

Consider $Z^1 \sim \mathcal{E}(\lambda_1)$, $Z^k \sim \mathcal{E}(\lambda_k)$ $Z=Min(Z^1,...,Z^k)$ has an exponential distribution with parameter $\Xi(\lambda_1)$ Summery of the olgo. The Markov Chain is in state is

The first time it jumps is $T^{1} \sim \mathcal{E}\left(\sum_{j=1}^{k} x_{i_{2}} \rightarrow i\right)$. It oftain the position at time T? you simulate a roman variable y (ind. of T1) with distribution $P(Y=j_1)=\frac{\lambda_{i_3}-j_1}{\lambda_{i_3}}$ J+in JA

To outrin a realization of Y $\sim \left| \left| \left| c, 1 \right| \right|$ Example with 3 state.

Assume X, = 1. $T^{*} \sim \mathcal{E}(4)$ $X_{t}=4$ $\left[\ln t \in [0,T^{2}]\right]$ you simulate 2¹ such B(Z=2)=1 $P(Z^{1}=3)=\frac{3}{4}$

Next:
$$T^2 \sim E(T)$$
 $T^2 = T^2 + T^2$
 $T = T^2$

Particular cases of continuous Tine Markou charine are Consters.

E = M N_t = the number of Spikes. I because during the intervel events [0, t]

Nt is a countar

 $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \cdots + \frac{1}{1}$ We set To=0. Process, for 5 Small enough, you have I spike in [1, +.8) with proces 25 Interpretation of the Poisson

The probability to observe espike in [t,++a) is 28

Propertes

1) No=0. EN: (2) this non decreosing. 3) t >> Ni is constant by step (4) the jumps are with size 1. (6) If s < t, Ns and N_{trs}-N_t are independent. have the same law.

* The 6 properties characterize the Boisson Process If you have counter with. O — 6) fulfilled., then K, is a Prisson Process there exist rER+ such that with parameter s. R. In $Z \sim \mathcal{C}(\lambda)$ Reminder

 $X N_{t} \sim S(N_{t})$

$$\mathbb{P}(Z=k)=e^{-\lambda}\frac{\lambda}{k!}$$

Esternation of 12?

We know that the interpokes intervels are i.i.d. random variables with exponential law point parameter. 1.

Story Low of large Numbers $\left(\frac{1}{p} + \frac{1}{1} + \cdots + \frac{1}{p} \right) \xrightarrow{a.s} \mathbb{E}[T^1]$

 $\frac{1}{\lambda} = \mathbb{E}[\mathcal{T}^{\perp}] = \int_{0}^{\infty} \Theta \lambda \exp(-\lambda \theta) d\theta = \left[\log_{\mathbb{R}}(-\lambda \theta) \right]_{0=0}^{0=+\infty} + \int_{0=0}^{+\infty} \exp(-\lambda \theta) d\theta$

$$\frac{\tilde{T}^{1}+\cdots+\tilde{T}^{N_{T}}}{N_{T}} \leq \frac{\tilde{T}^{1}+\cdots+\tilde{T}^{N_{T}}}{N_{T}} + \frac{\tilde{T}^{N_{T}}}{N_{T}}$$

Summery.

Homogeneous Prisson Process is well adopted to count the number of spiker if "everything" is:

i.i.d."

* It is simple to simulate an homogeneous Prisson Process with known parameter s.

 $\pm SI$ ere i.i.d E(r), Say $\tilde{\tau}^{1}$, $---\tilde{\tau}^{n}$, $N_{t} = k$ if $\tilde{\tau}^{2}$, $---\tilde{\tau}^{k}$ $< + < \tilde{\tau}^{2}$, $+ < \tilde{\tau}^{2}$, $+ < \tilde{\tau}^{k}$, $+ < \tilde{\tau}^{k}$

$$P\left(N_{t+8} \neq N_{t}\right) \approx 15$$

$$P\left(N_{t+8} \neq N_{t}\right) \approx 15$$

$$P\left(N_{t+8} \neq N_{t}\right) = 15$$

f) nore peneral model is

The inhomogeneous Poisson Process.

· No = 0.

Définition N, is an inhomogeneous Prisson Process

 $-M_t \in M$

· Constant by step.

· Jumps are of size 1

 $\lim_{\delta \to 0} \frac{1}{\delta} \mathbb{P}(N_{trs} \neq N_t) = r(t)$

where now the jump rate r(t)depends of the aurent time t.

15t elge (Poor and robust) You fix a small time discretization prometer of (not nearly)

You start at time t=0 No=0.

With perometer r(j8) 5N = $\frac{\lfloor \frac{k}{8} \rfloor}{j=0}$

a Bernoulli random variable Z_j $P(Z_j = 1) = r(j\delta) \delta$ $P(Z_j = 0) = 1 - r(j\delta)\delta$

Gobeck- (:> homogeneous Prisson Process. Nh a Hom-general PP with peremeter 1. $N_t^R \sim S(\Lambda t)$ Nour for en inhomageneous Poisson Process, we have, $N_{t} \sim \left(\int_{\mathbb{R}^{2}} t \left(\int_{\mathbb{R}^{2}} r(\theta) d\theta \right) \right)$ $N_{t_2} - N_{t_1} \sim \mathcal{F}\left(\int_{t_2}^{t_2} r(0)d\theta\right)$

$$Z \sim \mathcal{P}(\lambda)$$
 $P(z=k)=e^{-\lambda}$

Question: what is the law of the
$$1^{-1}$$
 spike?
 $\{T^2 > 5\} = \{N_s = 0\}.$

$$1-RF(s)=P(T_{1}>s)=P(N_{s}=0)=e\chi_{p}(-\int_{0}^{s}n(\theta)d\theta)$$

We can prove that
$$T^{2}$$
 is such that
$$\int_{0}^{\infty} r(0) d\theta = -\log U \quad \text{Ushere } U \text{ is a lumbor varioble or } U, \hat{q}$$

Reminder. A is a random variable with annulative shist. function f 26/31 $F(Z) = P(A \le Z)$

Result: F' the inverse of F.

Consider Unl[0,1]

 $F'(U) \stackrel{\text{def}}{=} A.$

In general, finding T^{1} Such that T^{1} Such that T^{1} Such that T^{1} is an issue.

But, we can simulate the jump time exactly with ? rejection procedure.

Rejection procedure.

We assume that r(t) is bounded by some K.

 $\forall \{t>0\}$ $(t) \in K$, then, I can $(t) \in [0, T_{max}]$

Simulate a homogeneous Poisson Process with personeler K

The sesult- is writter as 'fictions' spikking times

 T^1 , T^2 , T^3 ,

(play with the perameter)

2) Choose à rate function n(t) not constant.

Use the "poor and robust" also to simulate an inhomogeneous

Prixson Process with rate r(t)

(b) Some with the rejection procedure

Compare and discuss
the 2 speeds.