LOAN PREDICTION USING LOGISTIC REGRESSION

INTRODUCTION:

Banks and financial institutions play a very important role in stabilizing our nation's economy. They facilitate lending borrowing mechanism to ensure financial stability. Since, banks play a big role in ensuring financial stability they must ensure that they lend/supply deposits with utmost care. Here, we implement a machine learning technique to predict the basis on which customers can be sanctioned a loan. Several machine learning techniques can be leveraged to predict the loan status of a customer. Most popular techniques are Linear Regression, Logistic Regression, Support Vector Machine etc.

POTENTIAL CUSTOMERS/CLIENTS:

Banks and financial institutions.

PROBLEM STATEMENT:

Predict if a customer can be sanctioned loan based on his personal information.

DATA SET:

Variable Name	Description	Type	Example
Loan ID	Gives unique identification number	Character	AX1234
Gender	Male or Female	Character	Male
Dependents	Number of person(s) dependent on	Character	3+
	the client/customer		
Education	Whether the customer is	Character	Yes
	literate/illiterate		
Self Employed	Whether is employed or self	Character	Yes
	Employed		
Applicant's Income	Income/Remuneration of the client	Integer	
			342242(Rs)
Co Applicant's Income	Income/Remuneration of client's	Integer	
	family member		235211(Rs)
Loan Amount	Loan Amount to be sanctioned	Integer	232421(Rs)
Loan Amount Term	Duration(Time) sanctioned	Integer	360
Credit History	t History Guidelines met earlier		1
Property Area	Property Area Type of human settlement area		
Loan Status	Character	Y	

METHODLOGY:

Basically any machine learning technique follows 5 basic steps

DATA COLLECTION

- collect data from known source

DATA PREPROCESSING

- -Feature Scaling:- Normalize data
- -Feature Engineering- Add/Delete columns
- -Handling Missing Values/Complex data.
- -Splitting Train/Test data

MODEL BUILDING

-Identifying correct model for the given case.

SVM/Linear/Logistic/Naive Bayes/KNN

MODEL PREDICTION

-Predict the given model given the explanatory variables

SUMMARY AND EVALUATION

- Summarize data using confusion matrix to check for accuracy

ASSUMPTIONS:

- 1. Only these 12 variables are considered for the prediction.
- 2. Logistic model is perfect for the given scenario.

DATA COLLECTION:

Here, for sample lets collect data for 12 samples and consider first 9 columns

Loan_ID *	Gender	Married *	Dependents	Education	Self_Employed *	ApplicantIncome	CoapplicantIncome	LoanAmount
LP001002	Male	No	0	Graduate	No	5849	0	NA
LP001003	Male	Yes	1	Graduate	No	4583	1508	128
LP001005	Male	Yes	0	Graduate	Yes	3000	0	66
LP001006	Male	Yes	0	Not Graduate	No	2583	2358	120
LP001008	Male	No	0	Graduate	No	6000	0	141
LP001011	Male	Yes	2	Graduate	Yes	5417	4196	267
LP001013	Male	Yes	0	Not Graduate	No	2333	1516	95
LP001014	Male	Yes	€ -	Graduate	No	3036	2504	158
LP001018	Male	Yes	2	Graduate	No	4006	1526	168
LP001020	Male	Yes	1	Graduate	No	12841	10968	349
LP001024	Male	Yes	2	Graduate	No	3200	700	70
LP001027	Male	Yes	2	Graduate		2500	1840	109

DATA PREPROCESSING:

Here, we have data with Missing and NA values. We preprocess the data to make changes. This is done to ensure uniformity in data. Similarly, we have complex data's like 3+ in the dependents column. Such data's need to be handled with care. Further, we split data into train and test (80:20)

WAYS TO HANDLE MISSING VALUES AND COMPLEX DATA:

- 1.Replace data with either Average or Mode values depending on the circumstance.Here we have modified ID LP001014 sample.Dependents which contain 3+ are being replaced as 4.
- 2. In the Loan Amount column we replace the NA values by Average value. This is done because average can give a central representation of the loan amount.
- 3. Another way to handle to handle missing values is to delete them.

MODIFIED DATA:

^	Loan_ID [‡]	Gender [‡]	Married [‡]	Dependents [‡]	Education [‡]	Self_Employed	ApplicantIncome	CoapplicantIncome [‡]	LoanAmount
1	LP001002	1	0	0	1	0	5849	0	146.4°
2	LP001003	1	1	1	1	0	4583	1508	128.00
4	LP001006	1	1	0	0	0	2583	2358	120.00
7	LP001013	1	1	0	0	0	2333	1516	95.00
8	LP001014	1	1	4	1	0	3036	2504	158.00
9	LP001018	1	1	2	1	0	4006	1526	168.00
12	LP001027	1	1	2	1	1	2500	1840	109.00
13	LP001028	1	1	2	1	0	3073	8106	200.00
14	LP001029	1	0	0	1	0	1853	2840	114.00
16	LP001032	1	0	0	1	0	4950	0	125.00
17	LP001034	1	0	1	0	0	3596	0	100.00
18	LP001036	1	0	0	1	0	3510	0	76.00

Here we have made the data relatively cleaner because the dependents have been changed to 4 instead of 3+ which is obscure to handle.

SAMPLE CODE:

Here, we replace NA values in Loan Amount by Average value of the column

MODEL BUILDING:

Logistic Regression:

Logistic Regression is a model used to predict a certain class of objects which linear regression fails to achieve. For example in rain prediction, there are only 2 classes. Yes and No. Hence, logistic regression is used in scenarios where classifying the data becomes the sole objective.

Basically logistic regression plots a Sigmoid/logit function curve. It determines the probability in which a certain class of objects lie.

$$\ell = \log_b rac{p}{1-p} = eta_0 + eta_1 x_1 + eta_2 x_2$$

$$rac{p}{1-p}=b^{eta_0+eta_1x_1+eta_2x_2}$$
 .

where ℓ is the log-odds, b is the base of the logarithm, and β s are parameters of the model determined from the train data.

These equations are used to predict the probability of loan prediction. Consider example below for test data, where

Applicant Income= Rs. 3036

Co Applicant Income = Rs. 2504

Credit History = 0

Dependents= 4

Property Area = 1

Substituting in the above equation we get,

 $\frac{p}{1-p}$ = 0.124. Hence p = 0.11.Assuming threshold of 0.5.We reject the loan sanction if p<0.5.Here the concerned person cannot be sanctioned loan because p = 0.11.This result is verified below.

PREDICTED TEST RESULTS:

```
33
                                         16
                                                    17
                                                                21
                                                                                      35
                                                                                                  38
0.75021552 0.11588597 0.84928120 0.76478023 0.73996732 0.06732068 0.67343288 0.66848434 0.86453867
       44
                   47
                                         56
                                                                                                 108
                              51
                                                    65
                                                                67
                                                                           69
                                                                                      80
0.86090480 0.73956040 0.86399637 0.92175647 0.12996167 0.06284721 0.75617352 0.85622751 0.70176091
      110
                 114
                             120
                                        129
                                                   132
                                                               133
                                                                          134
                                                                                     142
                                                                                                 160
0.86230313 0.85390072 0.76376784 0.05217037 0.75310095 0.87046372 0.87037767 0.76469372 0.84659577
      161
                 165
                             192
                                        194
                                                   196
                                                              197
                                                                          206
                                                                                     212
                                                                                                 219
0.86644181 0.76396933 0.86938234 0.87033132 0.84296270 0.67363434 0.87026740 0.12037186 0.21411096
                 234
                                                   250
                                                               252
                                                                                                 265
      228
                             236
                                        245
                                                                          255
                                                                                     258
0.92015864 0.86981047 0.66356936 0.85210858 0.75353314 0.85600177 0.06676750 0.75652453 0.87017926
                  276
                             313
                                        325
                                                   328
                                                               330
                                                                          340
                                                                                     342
```

Now we convert them only into discrete forms(binary) in 1's and 0's

OBSERVATIONS:

Coefficients:				
(Intercept)) ApplicantIncome	Credit_History	Dependents0	Dependents1
-2.803e+00	-1.030e-06	3.805e+00	1.822e-01	4.754e-02
Dependents2	2 Dependents4	Property_Area0	Property_Area1	CoapplicantIncome
7.840e-01	1.372e-01	-3.209e-01	7.237e-01	-3.467e-05

MODEL CODE:

```
#Fit appropriate mode|
seat_glm = glm(Loan_Status ~ ApplicantIncome|-Dependents+Property_Area+CoapplicantIncome, family = "binomia
summary(seat_glm)
```

Here, We have assumed Applicant income, Dependents and Property Area and Coapplicants to be the explanatory variables.

RESULTS&SUMMARY:

```
Predicted_output
Actual 0 1
0 2 24
1 0 96

Accuracy : 0.8033
95% CI : (0.7216, 0.8697)
No Information Rate : 0.9836
P-Value [Acc > NIR] : 1

Kappa : 0.1159

Mcnemar's Test P-Value : 2.668e-06

Sensitivity : 1.00000
Specificity : 0.80000
```

OPTIMIZATION:

We achieved an accuracy of 80.33% We can further optimize our model by applying few techniques like Parameter Tuning, Controlling Train/Testsplit and by changing the probability threshold. Here, we will try to optimize our model by selecting right set of explanatory variables. To achieve this, we need to find explanatory variables that impact our output significantly. This can be done by viewing summary.

This table shows that Intercept, Credit_History are 99.9% significantly important to explain the dependent variable. Married and Property Area are 99 percent significantly important in explaining the dependent variable. Hence these explanatory variables cannot be excluded.

OPTIMIZED MODEL CODE:

Here we have included Credit History, Married, Loan Amount and education in addition to the existing explanatory variables

SUMMARY AND OBSERVATIONS:

```
predicted
Actual 0 1
0 14 12
1 0 96

Accuracy: 0.9016
95% CI: (0.8345, 0.9481)
No Information Rate: 0.8852
P-Value [Acc > NIR]: 0.346322

Kappa: 0.6474

Mcnemar's Test P-Value: 0.001496

Sensitivity: 1.0000
Specificity: 0.8889
```

Here, we infer that our accuracy has been increased from 0.80 to 0.90 by tweaking with the explanatory variables. We can also tweak the Threshold value of 0.5 and try to optimize further. To tweak the threshold value, one needs to plot graph between True Positive and Flase Positive.

OPTIMIZED MODEL CODE BY TWEAKING THRESHOLD:

Our accuracy has further increased from 90.16 to 90.98% by tweaking the threshold

SUMMARY:

- 1. We have basically incorporated Logistic Regression model to predict Loan Status of a customer.
 - We have taken the most important explanatory variables to explain the output variable more efficiently.
- 2. We have optimized our model and increased its accuracy from **80.33 to 90.98%.**This was achieved because of Optimization.Further, sensitivity of the model is kept 1.This ensures that the model correctly predicts "Yes" to the customers who truly deserve the loan.
- 3. Optimization of the logistic regression can be carried out in two ways. One, by tuning the parameters and other by changing the threshold value.
- 4. By changing the combination of explanatory variables our accuracy improved from 80.33 to 90.16%. This shows that Credit_History is the most important explanatory variable.
- **5.** By altering the threshold value from 0.5 to 0.55 using ROC curve our accuracy further increased from **90.16 to 90.98.**

REFERENCES:

- https://www.youtube.com/results?search_query=logistic+regression+fundam
 entals
- https://www.researchgate.net/publication/303326261_Machine_Learning_Project
- https://www.andrewng.org/