# Neural Machine Translation with Joint Representation

李炎洋1, 王强1, 肖桐1, 刘彤冉2, 朱靖波1

东北大学 自然语言处理实验室<sup>1</sup>



中国科学院 心理研究所2



### Neural Machine Translation (NMT)





- Existing NMT models are based on the Encoder-Decoder framework
  - Encoder converts the source sentence to a continuous representation
  - Decoder converts the continuous representation to the target sentence



### Limitations





- Existing NMT models are based on the Encoder-Decoder framework
  - Encoder converts the source sentence to a continuous representation
  - Decoder converts the continuous representation to the target sentence
- But it processes the source and target sentences separately



### Limitations





- Existing NMT models are based on the Encoder-Decoder framework
  - Encoder converts the source sentence to a continuous representation
  - Decoder converts the continuous representation to the target sentence
- But it processes the source and target sentences separately
- Attention that bridges the encoder and decoder has alleviated this issue



### Limitations





- Existing NMT models are based on the Encoder-Decoder framework
  - Encoder converts the source sentence to a continuous representation
  - Decoder converts the continuous representation to the target sentence
- But it processes the source and target sentences separately
- Attention that bridges the encoder and decoder has alleviated this issue
- But it only models the relations of one target word to the source sentence
  - Fail to model those of the target sentence to the source one



### Joint Representation







 The natural idea is to extend the raw representation from one source (S) or target (T) temporal dim

### Joint Representation







0

- The natural idea is to extend the raw representation from one source (S) or target (T) temporal dim
- To two temporal dims  $S \times T$  (Joint Representation)
- Which assigns one representation for each sourcetarget token combination

### Joint Representation













- The natural idea is to extend the raw representation from one source (S) or target (T) temporal dim
- To two temporal dims  $S \times T$  (Joint Representation)
- Which assigns one representation for each sourcetarget token combination

How to construct input embeddings for the joint representation?

### Construct Initial Representation





- In principle, we need  $V^2$  embeddings
- Each represents one possible source-target token combination



### Construct Initial Representation







- In principle, we need  $V^2$  embeddings
- Each represents one possible source-target token combination
- Without the context, words are almost independent,
   allowing us to decompose such embeddings to 2V

$$embed_{ij} = embed_i + embed_i$$

### Construct Initial Representation







- In principle, we need  $V^2$  embeddings
- Each represents one possible source-target token combination
- Without the context, words are almost independent, allowing us to decompose such embeddings to 2V

$$embed_{ij} = embed_i + embed_j$$

How to perform the attention on the joint representation?







#### Training

 Target attention: performs the attention along the target dim

SepAttn(
$$Q, K, V$$
) = [split<sub>1</sub>, ..., split<sub>S</sub>]  
where split<sub>i</sub> = Attention( $Q_i, K_i, V_i$ )



fine

am





#### Training

- Target attention: performs the attention along the target dim
- 2. Source attention: performs the attention along the source dim

SepAttn
$$(Q, K, V) = [\text{split}_1, ..., \text{split}_T]$$
  
where split<sub>i</sub> = Attention $(Q_i, K_i, V_i)$ 









#### Training

- . Target attention: performs the attention along the target dim
- Source attention: performs the attention along the source dim

#### Decoding (*T*-th step)

1. Target attention: only attends the previous T-1 target tokens for the T-th input









#### Training

- . Target attention: performs the attention along the target dim
- Source attention: performs the attention along the source dim

#### Decoding (*T*-th step)

- 1. Target attention: only attends the previous T-1 target tokens for the T-th input
- 2. Source attention: only attends all source tokens in the *T*-th input













#### General Structure

Construct the joint representation embeddings







- Construct the joint representation embeddings
- Pass through a stack of identical layers







- Construct the joint representation embeddings
- Pass through a stack of identical layers
- Reduce the source dim of joint representation







- Construct the joint representation embeddings
- Pass through a stack of identical layers
- Reduce the source dim of joint representation
- Predict the target sentence







- Construct the joint representation embeddings
- Pass through a stack of identical layers
  - Reduce the source dim of joint representation
  - Predict the target sentence
- Layer
  - Perform target attention







#### General Structure

- Construct the joint representation embeddings
- Pass through a stack of identical layers
  - Reduce the source dim of joint representation
  - Predict the target sentence

#### Layer

- Perform target attention
- Apply the non-linear transformation







- Construct the joint representation embeddings
- Pass through a stack of identical layers
  - Reduce the source dim of joint representation
  - Predict the target sentence

#### Layer

- Perform target attention
- Apply the non-linear transformation
- Perform source attention
- Apply the non-linear transformation again











#### General Structure

- Construct the joint representation embeddings
- Pass through a stack of identical layers
- Reduce the source dim of joint representation
  - Predict the target sentence

#### Reduction

 A feature-wise attention, similar to the source attention but with a learnable query W

$$Reduction(x) = [head_1, ..., head_E]$$

where head<sub>i</sub> = softmax(
$$W_i x^T$$
) $x_i$ 

\*E: the embedding size







- This gives us Reformer-base
  - It enjoys the best theoretical soundness
  - Accesses any token with O(1) path length
  - But not done ...
- Two efficiency downsides
  - Duplicate computation
  - Computation allocation

| Layer Type          | Complexity | Path Length          |
|---------------------|------------|----------------------|
| Separable Attention | $O(n^3d)$  | O(1)                 |
| Self-Attention      | $O(n^2d)$  | O(l)                 |
| Recurrent           | $O(nd^2)$  | O(l+n)               |
| Convolution         | $O(knd^2)$ | $O(l + n \log_k(n))$ |







#### Duplicate Computation

- Start from the embeddings at each step
- Recompute the abstract (source) information

| Layer Type          | Complexity | Path Length          |
|---------------------|------------|----------------------|
| Separable Attention | $O(n^3d)$  | O(1)                 |
| Self-Attention      | $O(n^2d)$  | O(l)                 |
| Recurrent           | $O(nd^2)$  | O(l+n)               |
| Convolution         | $O(knd^2)$ | $O(l + n \log_k(n))$ |







#### Duplicate Computation

- Start from the embeddings at each step
- Recompute the abstract (source) information

#### Computation Allocation

- Each step: #Source tokens >> #Target tokens
- Require more source-side operations

| Layer Type          | Complexity | Path Length          |
|---------------------|------------|----------------------|
| Separable Attention | $O(n^3d)$  | O(1)                 |
| Self-Attention      | $O(n^2d)$  | O(l)                 |
| Recurrent           | $O(nd^2)$  | O(l+n)               |
| Convolution         | $O(knd^2)$ | $O(l + n \log_k(n))$ |







#### Duplicate Computation

- Start from the embeddings at each step
- Recompute the abstract (source) information

#### Computation Allocation

- Each step: #Source tokens >> #Target tokens
- Require more source-side operations

Both require to stack more high-complexity separable attention

| Layer Type               | Complexity                                         | Path Length          |
|--------------------------|----------------------------------------------------|----------------------|
| Separable Attention      | $\begin{pmatrix} O(n^3d) \\ O(n^2d) \end{pmatrix}$ | O(1)                 |
| Self-Attention Recurrent | $O(n^2a)$ $O(nd^2)$                                | $O(l) \ O(l+n)$      |
| Convolution              | $O(knd^2)$                                         | $O(l + n \log_k(n))$ |







• Reformer-fast







#### • Reformer-fast

PreNet processes the source embeddings first







#### Reformer-fast

- PreNet processes the source embeddings first
- Then the output is used as the original source embeddings in Reformer-base









#### Reformer-fast

- PreNet processes the source embeddings first
- Then the output is used as the original source embeddings in Reformer-base

#### Pros & Cons

- PreNet reduces #Separable-Attention & has low complexity
- But increase the path length from O(1) to O(L) for accessing any source token

### A Larger Model





- How to increase the model capacity?
  - Enlarging both the embedding size and hidden dims as Transformer-big does not work in Reformer

### A Larger Model





- How to increase the model capacity?
  - Enlarging both the embedding size and hidden dims as Transformer-big does not work in Reformer
  - Obtaining a larger model is equal to perform gradient descent with the step size  $\alpha$  on both the network height l and width w to optimize the validation set performance  $\mathcal L$  with the constraint  $\beta$  on the number of parameters P

$$\max_{\alpha} \mathcal{L}(l + \alpha \mathcal{L}'_l, w + \alpha \mathcal{L}'_w)$$

s. t. 
$$\frac{P(l + \alpha \mathcal{L}'_l, w + \alpha \mathcal{L}'_w)}{P(l, w)} \approx \beta$$

• We estimate the gradient  $\mathcal{L}'$  by its definition (take height l as the example)

$$\mathcal{L}'_{l} = \lim_{\delta \to 0} \frac{\mathcal{L}(l+\delta, w) - \mathcal{L}(l, w)}{\delta} \approx \frac{\mathcal{L}(l+\epsilon, w) - \mathcal{L}(l, w)}{\epsilon}$$

 $oldsymbol{\epsilon}$  is a small number that is manually defined





#### Setup

- Corpus: IWSLT15 (Vi-En), IWSLT14 (De-En, En-De) and NIST12 (Zh-En)
- Baseline: Transformer-small/base, 256/512 embedding size, 1024/2048 hidden dim, 6 layers
- Ours: similar to the baseline, except 7/5 layers for Reformer-base/fast





#### Setup

- Corpus: IWSLT15 (Vi-En), IWSLT14 (De-En, En-De) and NIST12 (Zh-En)
- Baseline: Transformer-small/base, 256/512 embedding size, 1024/2048 hidden dim, 6 layers
- Ours: similar to the baseline, except 7/5 layers for Reformer-base/fast

#### Results

- Both Reformer-base & fast outperform the baseline in all test sets
- Reformer-base and Reformer-fast are of similar performances

| System        | Vi-     | Vi-En   |       | De-En |       | En-De |       | Zh-En |       |  |
|---------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|--|
| System        | tst2012 | tst2013 | valid | test  | valid | test  | MT06  | MT05  | MT08  |  |
| baseline      | 24.70   | 27.53   | 34.44 | 33.63 | 28.19 | 27.54 | 49.63 | 48.23 | 43.10 |  |
| Reformer-base | 24.42   | 27.18   | 35.87 | 34.92 | 29.42 | 28.32 | 50.00 | 48.72 | 45.04 |  |
| Reformer-fast | 24.98   | 28.26   | 35.87 | 34.87 | 29.31 | 28.36 | 50.82 | 49.29 | 44.64 |  |





- Ablation Study
  - Dropout 1/2d improves the generalization
  - PreNet improves efficiency

| System        | PPL  | BLEU  | Params | Speed                                                                                         |
|---------------|------|-------|--------|-----------------------------------------------------------------------------------------------|
| baseline      | 5.39 | 34.44 | 16M    | $ \begin{array}{c} 1 \times \\ 0.47 \times \\ 0.52 \times \\ \hline 0.73 \times \end{array} $ |
| Reformer      | 5.00 | 35.16 | 16M    |                                                                                               |
| +Dropout 1/2d | 4.82 | 35.87 | 16M    |                                                                                               |
| +PreNet       | 4.89 | 35.87 | 17M    |                                                                                               |





- Ablation Study
  - Dropout 1/2d improves the generalization
  - PreNet improves efficiency
- Larger Models
  - Reformer-fast always add 2 layers and 50% hidden dim with  $\beta=2$
  - Reformer-fast outperforms Transformer-big
     with ~50% fewer parameters

| System        | PPL  | BLEU  | Params | Speed                                                   |
|---------------|------|-------|--------|---------------------------------------------------------|
| baseline      | 5.39 | 34.44 | 16M    | $1 \times \\ 0.47 \times \\ 0.52 \times \\ 0.73 \times$ |
| Reformer      | 5.00 | 35.16 | 16M    |                                                         |
| +Dropout 1/2d | 4.82 | 35.87 | 16M    |                                                         |
| +PreNet       | 4.89 | 35.87 | 17M    |                                                         |

| System        | De    | e-En   | Zh-En |        |  |
|---------------|-------|--------|-------|--------|--|
| System        | test  | Params | MT08  | Params |  |
| baseline      | 33.63 | 16M    | 43.10 | 101M   |  |
| +scaling      | 34.41 | 42M    | 44.60 | 291M   |  |
| Reformer-fast | 34.87 | 17M    | 44.64 | 105M   |  |
| +scaling      | 35.11 | 27M    | 46.66 | 146M   |  |

- Analysis
  - Our models tend to produce long translations
  - Our models perform better for long sentences











#### Analysis

- Our models tend to produce long translations
- Our models perform better for long sentences
- Our models have higher accuracies than the baseline







#### Analysis

- Our models tend to produce long translations
- Our models perform better for long sentences
- Our models have higher accuracies than the baseline
- The case study shows the attention distribution varies if it conditions on different source/target tokens





Accuracy

### Conclusion





- Propose two attention-based models built on top of joint representation.
- They outperform the Transformer baseline in either the base or the big setup in various datasets.
- These models are still primitive and we expect more future work on them.
- The code is publicly available at <a href="https://github.com/lyy1994/reformer">https://github.com/lyy1994/reformer</a>.

## Thank you:)

#### 东北大学自然语言处理实验室

Natural Language Processing Laboratory at Northeastern University



