Kuznetsov components, Stability, and Moduli Spaces

Xiaolong Liu

October 13, 2023

Contents

1	Derived Category and Kuznetsov Components	7
	1.1 Basic Definitions	7
	1.1.1 Exceptional Sequences and S.O.Ds	7
	1.2 Kuznetsov Components	10
2	Examples of Fano Manifolds of Calabi-Yau Type	11
3	Examples of Derived Equivalences of Kuznetsov Components with K3s	13
4	Stability Conditions on K3 Categories	15
5	Applications: Mukai's program	17
6	Application to Cubic Fourfolds and Gushel-Mukai Manifolds	19
In	dex	21
Bi	bliography	23

4 CONTENTS

Preface

[1][2]

6 CONTENTS

Derived Category and Kuznetsov Components

1.1 Basic Definitions

Here we follows some definitions and results in [3]. Note that when I working in the derived category, we will omit the \mathbf{R} or \mathbf{L} of the derived functors.

1.1.1 Exceptional Sequences and S.O.Ds

Definition 1.1.1. A full triangulated subcategory $\mathscr{D}' \subset \mathscr{D}$ is called admissible if the inclusion has a right adjoint $\pi : \mathscr{D} \to \mathscr{D}'$

The orthogonal complement of a(an admissible) subcategory $\mathscr{D}' \subset \mathscr{D}$ is the full subcategory \mathscr{D}'^{\perp} of all objects $C \in \mathscr{D}$ such that $\operatorname{Hom}(B,C) = 0$ for all $B \in \mathscr{D}'$.

Definition 1.1.2. An object $E \in \mathcal{D}$ in a k-linear triangulated category \mathcal{D} is called exceptional if

$$\operatorname{Hom}(E, E[\ell]) = \begin{cases} k, & \text{if } \ell = 0, \\ 0, & \text{if } \ell \neq 0. \end{cases}$$

An exceptional sequence is a sequence $E_1, ..., E_n$ of exceptional objects such that $\operatorname{Hom}(E_i, E_j[\ell]) = 0$ for all i > j and all ℓ .

An exceptional sequence is full if \mathcal{D} is generated by $\{E_i\}$.

An exceptional collection $E_1, ..., E_n$ is strong if in addition $\operatorname{Hom}(E_i, E_j[\ell]) = 0$ for all i, j and all $\ell \neq 0$.

Definition 1.1.3. A sequence of full admissible triangulated subcategories $\mathscr{D}_1, ..., \mathscr{D}_n \subset \mathscr{D}$ is semi-orthogonal if for all i > j we have $\mathscr{D}_j \subset \mathscr{D}_i^{\perp}$. Such a sequence defines a semi-orthogonal decomposition (S.O.D.) of \mathscr{D} if \mathscr{D} is generated by the \mathscr{D}_i .

Remark 1.1.4. Some remarks:

- (a) If $E \in \mathcal{D}$ is exceptional, then the objects $\bigoplus_i E[i]^{\oplus j_i}$ form an admissible triangulated subcategory $\langle E \rangle \subset \mathcal{D}$.
- (b) Let $E_1, ..., E_n$ be an exceptional sequence in \mathscr{D} . Then the admissible triangulated subcategories $\langle E_1 \rangle, ..., \langle E_n \rangle$ form a semi-orthogonal sequence. If this sequence is a full exceptional sequence, then this forms an S.O.D. of \mathscr{D} .
- (c) Any semi-orthogonal sequence of full admissible triangulated subcategories $\mathcal{D}_1, ..., \mathcal{D}_n \subset \mathcal{D}$ defines an S.O.D. of \mathcal{D} , if and only if any object $A \in \mathcal{D}$ with $A \in \mathcal{D}_i^{\perp}$ for all i = 1, ..., n is trivial. See Lemma 1.61 in [3].
- (d) If $\mathscr{D}_1,...,\mathscr{D}_n \subset \mathscr{D}$ is an S.O.D., then $D_1 \subset \langle \mathscr{D}_2,...,\mathscr{D}_n \rangle^{\perp}$ is an equivalence. See Exercise 1.62 in [3].

Example 1.1.1 (Projective Bundle). For a smooth projective variety Y we consider the projective bundle $\pi: \mathbb{P}(\mathscr{E}) \to Y$ of locally free sheaf \mathscr{E} of rank r on Y, in the sense of Grothendieck. Then for any $a \in \mathbb{Z}$ we claim that $\pi^*\mathbf{D}^b(Y) \otimes \mathscr{O}(a),..., \pi^*\mathbf{D}^b(Y) \otimes \mathscr{O}(a+r-1)$ is an S.O.D. of $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$. This combined by the following two things: Step 1. For any $E \in \pi^*\mathbf{D}^b(Y) \otimes \mathscr{O}(m)$, $F \in \pi^*\mathbf{D}^b(Y) \otimes \mathscr{O}(n)$, we have $\mathrm{Hom}(E,F) = 0$ for any $r-1 \geq m-n > 0$.

Indeed, we can let m=0 and hence $-r+1 \le n < 0$. Let $E=\pi^*E'$ and $F=\pi^*F' \otimes \mathcal{O}(n)$, hence

$$\operatorname{Hom}(E,F) = \operatorname{Hom}(E', \pi_*(\pi^*F' \otimes \mathscr{O}(n))) = \operatorname{Hom}(E', F' \otimes \pi_*\mathscr{O}(n)).$$

$$\textit{It's well-known that } \mathbf{R}^i \pi_* \mathscr{O}(n) = \begin{cases} \operatorname{Sym}^n \mathscr{E}, \textit{for } i = 0, \\ 0, \textit{for } 0 < i < r - 1, \ \textit{Well done}. \\ \operatorname{Sym}^{-n-r} \mathscr{E}^{\vee}, \textit{for } i = r - 1. \end{cases}$$

Step 2. Categories $\pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a),..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a+r-1)$ generates $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$. Here we generalize the proof for \mathbb{P}^n in [3] Corollary 8.29. Consider

then by the canonical identification

$$H^{0}(\mathbb{P}(\mathscr{E}) \times_{Y} \mathbb{P}(\mathscr{E}), \mathscr{O}(1) \boxtimes \mathscr{Q}^{\vee})$$

$$= H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes p_{*}q^{*}\mathscr{Q}^{\vee})$$

$$= H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes \pi_{1}^{*}\pi_{2,*}\mathscr{Q}^{\vee})$$

$$= H^{0}(Y, \pi_{1,*}\mathscr{O}(1) \otimes \pi_{2,*}\mathscr{Q}^{\vee})$$

$$= H^{0}(Y, \mathscr{E} \otimes \mathscr{E}^{\vee})$$

where $0 \to \mathcal{Q} \to \pi^* \mathcal{E} \to \mathcal{O}(1) \to 0$ is the universal exact sequence. Let s correspond to the $\mathrm{id}_{\mathcal{E}}$, then $Z(s) = \Delta \subset \mathbb{P}(\mathcal{E}) \times_Y \mathbb{P}(\mathcal{E})$. By the Koszul resolution of \mathcal{O}_{Δ} respect to the s, we have an exact sequence:

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.$$

(you can also use the Euler exact sequence instead of the universal exact sequence, just as in [3] Corollary 8.29)

Now there is to way to slove this.

The First Way: for any coherent sheaf $\mathscr{F} \in \mathrm{Coh}(\mathbb{P}(\mathscr{E}))$, tensoring $q^*\mathscr{F}$ we have

$$0 \to \mathscr{O}(-r+1) \boxtimes \bigwedge^{r-1} \mathscr{Q} \otimes \mathscr{F} \to \mathscr{O}(-r+2) \boxtimes \bigwedge^{r-2} \mathscr{Q} \otimes \mathscr{F}$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes (\mathscr{Q} \otimes \mathscr{F}) \to \mathscr{O} \boxtimes \mathscr{F} \to q^* \mathscr{F}|_{\Delta} \to 0.$$

Consider a spectral sequence

$$E_1^{ij} = \mathbf{R}^i p_*(\mathscr{O}(j) \boxtimes \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}) = \mathscr{O}(j) \otimes \mathbf{R}^i p_* q^* \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}$$
$$= \mathscr{O}(j) \otimes \pi_1^* \mathbf{R}^i \pi_{2,*} \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F} \Rightarrow \mathbf{R}^{i+j} p_* q^* \mathscr{F}|_{\Delta}.$$

We know that $\mathbf{R}^{i+j}p_*q^*\mathscr{F}|_{\Delta}=0$ if $i+j\neq 0$ and $\mathbf{R}^{i+j}p_*q^*\mathscr{F}|_{\Delta}=\mathscr{F}$ if i+j=0. Since any E_1^{ij} contained in

$$\left\langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-r+1), ..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(0) \right\rangle$$

so is \mathscr{F} . Hence well done (if you use the Euler exact sequence instead of the universal exact sequence, the similar spectral sequence called the generalized Beilinson spectral sequence as Proposition 8.28 in [3]).

The Second Way: Consider again the Koszul resolution

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.$$

Split it into short exact sequences

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-2} \to 0,$$

$$0 \to M_{r-2} \to \bigwedge^{r-3} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-3} \to 0,$$

$$\cdots,$$

$$0 \to M_1 \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Lambda} \to 0.$$

Tensor product with q^*F and direct image under the first projection p yields distinguished triangles of Fourier-Mukai transforms:

$$\Phi_{M_{i+1}}(\mathscr{F}) \to \Phi_{\bigwedge^{i}(\mathscr{O}(-1)\boxtimes\mathscr{Q})}(\mathscr{F}) \to \Phi_{M_{i}}(\mathscr{F}) \to \Phi_{M_{i+1}}(\mathscr{F})[1].$$

Easy to see that

$$\Phi_{\bigwedge^{i}(\mathscr{O}(-1)\boxtimes\mathscr{Q})}(\mathscr{F}) \in \left\langle \pi^{*}\mathbf{D}^{b}(Y) \otimes \mathscr{O}(-i) \right\rangle.$$

By induction we get $F = \Phi_{\mathcal{O}_{\Delta}}F \in \langle \pi^*\mathbf{D}^b(Y) \otimes \mathcal{O}(-r+1), ..., \pi^*\mathbf{D}^b(Y) \otimes \mathcal{O} \rangle$. Well done.

Fully Exceptional Sequence. By the discussed above, we know that pick any fully exceptional sequence $E_1, ..., E_n$ of Y, the set

$$\{\pi^*E_1 \otimes \mathscr{O}(a), ..., \pi^*E_n \otimes \mathscr{O}(a), ..., \pi^*E_1 \otimes \mathscr{O}(a+r-1), ..., \pi^*E_n \otimes \mathscr{O}(a+r-1)\}$$

is a fully exceptional sequence of $\mathbb{P}(\mathcal{E})$ for any $a \in \mathbb{Z}$.

Example 1.1.2. More general case, such as Grassmann bundle and even the flag bundle has the similar things. We refer [4].

Example 1.1.3 (Blow-Up).

1.2 Kuznetsov Components

Examples of Fano Manifolds of Calabi-Yau Type

Examples of Derived
Equivalences of Kuznetsov
Components with K3s

14CHAPTER 3. EXAMPLES OF DERIVED EQUIVALENCES OF KUZNETSOV COMPONENTS WITH

Stability Conditions on K3 Categories

Applications: Mukai's program

Application to Cubic Fourfolds and Gushel-Mukai Manifolds

20 CHAPTER 6. APPLICATION TO CUBIC FOURFOLDS AND GUSHEL-MUKAI MANIFOLDS

Index

admissible, 7
exceptional element, 7
exceptional sequence, 7

orthogonal complement, 7
semi-orthogonal, 7
semi-orthogonal decomposition, 7

Bibliography

- [1] Tom Bridgeland. Stability conditions on triangulated categories. *Ann. Math.*, 166(2):317–345, 2007.
- [2] Tom Bridgeland. Stability conditions on k3 surfaces. Duke Math. J., 166(2):241–291, 2008.
- [3] D. Huybrechts. Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press, 2006.
- [4] Dmitri Orlov. Projective bundles, monoidal transformations, and derived categories of coherent sheaves. *Izvestiya Mathematics*, 41(1):133–141, 1993.