WHAT SOCIO-ECONOMIC AND GEOGRAPHICAL FACTORS INFLUENCE HOUSE PRICES IN IRELAND

Marcos Cavalcante Barboza

Ana Julia Righetto

Agenda

Introduction *Motivation*

House prices increased by 167% from 2012 to 2022.

Between 1995 and 2007 home prices in Ireland **increased** by 474% the sharpest increase across countries in the **OECD**.

Government will allocate €4bn annually to build 300,000 homes by end of decade.

"Housing is number one crisis facing young people" – says Irish Prime Minister

Introduction

Motivation

Macro-economic shocks: interest rates, GDP growth, access to credit and exchange rates.

Regional Factors: supply and demand, scarcity of labour, rent legislation and household income.

Geospatial variables: address, proximity to other cities.

Introduction Objectives

Does the presence of **SOCIO- economic** variables **influence** on the prediction of **house prices**?

The variables of focus are **schools**, **universities**, **hospitals**, **public transport**, and **garda stations**.

SCHOOLS AND UNIVERSITIES

GARDA STATIONS

BUS AND TRAIN STOPS

HOUSE CHARACTERISTICS

Overview

Material and Methods Data Collection

- House dataset obtained from Daft.ie property website.
- Socio-economic datasets collected via webscrapping with python scripts and from data.gov.ie data portal.
- Google Maps API was used for enriching datasets.

Dataset	Total Observations
Housing Prices	100327
Bus stops - transport	16225
Train stations - transport	159
Schools - education	3531
Universities – education	22
Hospitals - health	38
Garda stations - security	566

Data Cleaning and Preparation

Data Cleaning

Removal of duplicates: id and URL.

Removal of missing values: price, size (~ 26%) and bathrooms (~ 2%).

Feature Engineering

pricePerSqMeter created from the division between house price and size.

Location: created county and townOrNeighborhood.

Count of hospitals, education centres, transport and garda stations within a given radius.

Final Dataset

- 9009 observations
- 1 target variable price
- 15 features
- **Geospatial variables:** longitude, latitude, county, townOrNeighbourhood.
- Socio-economic variables: nearestHospitals, nearestGardaStations, nearestEducationCentres and nearestPublicTransports.

Variable Name	Description	Data Type
address	A long form of the property address	Character
bathrooms	The number of bathrooms in this property	numeric
bedrooms	The number of bedrooms in this property	numeric
berRating	BER Rating of this property, i.e. A1, B2	factor
county	The county the property is in. Examples: "Co. Wicklow", "Co. Kerry"	factor
latitude	The latitude of the property	numeric
location	A short form of the property address area, i.e., Dublin 1, Co. Dublin	character
longitude	The longitude of the property	numeric
price	The price of the property, in euro €	numeric
propertyType	The type of the property, i.e., Apartment, End of Terrace, Semi-D, Terrace	factor
size	The size of the property in square meters	numeric
pricePerSqMeter	Ratio between price and size of a given house	numeric
nearestHospitals	Count on the number of hospitals within a 10km radius of the house	numeric
nearestGardaStations	Count on the number of garda stations within a 10km radius of the house	numeric
nearestEducationCentres	Count on the number of schools and universities within a 5km radius of the house	numeric
nearestPublicTransports	Count on the number of bus stops and train stations within a 5km radius of the house	numeric

Exploratory Data Analysis (EDA)

Summary statistics

Bivariate plots with ggplot2

Spatial visualisations with **tmap**

Pearson Correlation

Analysis of Variance - ANOVA

Box-plot

Model Selection and Training

Dataset randomly split into: training – 70%, validation - 15% and testing sets – 15%

4 machine learning algorithms:
GLM – linear regression,
regression tree, random forests
and extreme gradient boosting
(XGB)

Hyperparameter tuning via **grid** search and

- 75% of the houses are under €500,000.
- Very few houses above €4 million.
- Dataset seems to be right skewed.

Figure 1: Histograms of the price variable.

- Moderate positive correlation
 between price and size as well as
 price and pricePerSqMeter.
- Weak positive correlation between price and the variables: bathroom, bedroom, nearestHospitals, nearestGardaStations, nearestEducationCentres and nearestPublicTransports.
- Strong positive correlation between bathrooms and bedrooms; and amongst the socio-economic variables.

Figure 2: Correlation matrix of the numeric variables in the dataset.

- The bigger the house, the more expensive it gets.
- A clear outlier in the first graph is the house with 6000 square meters (Size axis) and price under €500,000 (Price axis).

Figure 3: Bivariate graphs of houses under and over €2,000,000 by their size.

Exploratory Data Analysis - EDA

- Apartments, terrace and townhouse property types have the lowest prices.
- Detached, bungalow and duplex property types are usually more expensive and have more outliers.

Appendix: Box plot of prices by property type.

- Counties with the largest cities –
 Dublin, Cork and Galway hold most of the house supply.
- "Neighbouring effect" where the supply of houses in one county impact the supply in adjacent counties.

Figure 7: Density spatial graph of the number of houses per county.

- Clusters of counties that share same mean price per house, especially the counties in the South of the island – Kerry, Cork, Waterford, Kilkenny, and Carlow.
- Counties in the Midlands and North West affect one another and thus are clustering together.

Figure 8: Choropleth Map of Mean House Price per County.

- Properties in county Dublin
 benefit from a much better access
 to public transport.
- Early indication that the houses in the countryside are lacking on access to public transport.

Figure 9: Choropleth Map of Mean Count of Public Transport per County.

Model Selection – GLM – Linear Regression

- Baseline model.
- **Stepwise** procedure was used to find statistically significant predictors.
- Box-Cox transformation found lambda value of -0.1280778.
- Shapiro-Francia (Anderson-Darling) applied to validate errors distribution p-value of 2.2e-16 reject null hypothesis.
- Linear Regression model rejected due to errors not following normal distribution.

$$y = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3 + \dots + \beta_p * x_p$$

GLM - Linear Regression Formula

Model	R-squared	Adjusted R-squared
Linear model	0.8243	0.8227
Linear model Stepwise	0.8225	0.822
Linear model box-cox	0.8722	0.871
Linear model box-cox stepwise	0.872	0.871

Table 5: Results of GLM Linear Models

Model Selection - Regression Tree

- Quite Interpretable and easy to understand variable importance.
- rpart implementation.
- Minimise Sum Squared Errors (SSE).
- Tuning of *minsplit* and *maxdepth* parameters.
- Grid searched across 1008 combinations.
- RMSE (Root Mean Squared Error) of 131472.00, which suggests that the prediction of house price could be off by €131,472.00.

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Sum of the Squared Errors formula

Figure 12: Tuned Regression tree.

Model Selection – Random Forests

- · Similar to regression trees.
- Bootstrapping subsets of the dataset.
- Bagging training multiple decision trees on bootstrapped samples.
- ranger implementation
- Grid search of mtry, node_size and sample_size – total of 972 combinations.
- ntrees (1000), mtry (57) node_size(3)
- **RMSE** of €19,489.01 far better than a regression tree.

Figure 13: Most important variables used by tuned random forest

Model Selection – XGB - eXtreme Gradient Boosting

- Collection shallow / weak trees.
- Grid search on parameters: number of trees, depth of trees (3), learning rate (0.05) and subsampling (0.65) – 2800 rounds.
- 162 combinations.
- Model obtained a RMSE of 14717.2 or €14717.2

Figure 14: Features used by XGBoost on sample from training set.

Discussion

■ Removal of outliers: to get the methods to have a satisfactory performance, some outliers were removed using the z-score method and about 200 observations were removed where their size and price was above 4 deviation standards.

Conclusion

- Access to public transport, such as train stations and bus stops, was among the top 4 most important features used by Random Forest.
- Similarly, having garda stations, hospitals and schools were part of the 10 most important variables used by Random Forest, however to a far less extent than public transport.
- Spatial data proved to be very useful to understand the spatial relationship amongst counties in Ireland and how prices and number of houses on sale influence its neighbours.

Future work

- Investigate Gaussian GLMs
- Create Google Chrome extension to plug on property websites
- Spatial Regression