AC32008 Theory of Computation Tutorial Sheet 6 - Partially and Totally Decidable Languages.

- 1. Consider the Turing Machine M_i defined using the standard encoding. Which is the smallest value of i for which:
 - (a) M_i has a transition?
 - (b) M_i accepts some string, i.e., $L(M_i)$ is non-empty?
- 2. Show that any regular language is totally decidable.
- 3. Construct a TM M which has input alphabet $\{0,1\}$ and accepts the language $\{0^n \mid n \geq 0\}$. [The TM should be of the special type for coding with states q_1, \ldots, q_n for some n, where q_1 is the initial state and $F = \{q_2\}$, and the tape alphabet is $\{0,1,B\}$]. Let w = 010. Calculate $\langle M, w \rangle$. Is $\langle M, w \rangle \in L_u$?
- 5. Show that some language over the alphabet $\Sigma = \{0\}$ is not partially decidable.
- 6. Show that there are infinitely many languages over $\Sigma = \{0, 1\}$ which are not partially decidable. [Hint: Consider the strings w_2, w_4, w_6, \ldots , and use a diagonal argument similar to that used to construct L_d .]