SoSe 2014

Prof. Dr. Margarita Esponda

ProInformatik II: Funktionale Programmierung

16. Übungsblatt (17. Tag)

1. Aufgabe

Zeigen Sie, dass folgende Funktionen primitiv-rekursiv sind, indem Sie diese nur unter Verwendung vordefinierter primitiv rekursiver Funktionen definieren.

- a) Exponential function $exp: N^2 \to N$ mit $exp(x, y) = x^y$
- b) $\max : \mathbb{N}^2 \to \mathbb{N}$ mit $\max(x,y) = y$ falls $x \le y$ und $\max(x,y) = x$, falls nicht.

2. Aufgabe

Zeigen Sie, dass die folgende Funktion \boldsymbol{f} primitiv-rekursiv ist, wenn \boldsymbol{g} , \boldsymbol{h} , und \boldsymbol{k} primitivrekursive Funktionen sind.

$$f: \mathbb{N}^3 \to \mathbb{N} \text{ mit } f(x, y, z) = g(x) \cdot h(z, x) + k(y)$$

3. Aufgabe

Zeigen Sie, dass folgende logische Funktionen primitiv-rekursiv sind.

a) $oder: \mathbb{N}^2 \to \mathbb{N}$

logisches Oder

b) $ungleich: \mathbb{N}^2 \to \mathbb{N}$ Test auf Ungleichheit

Die Wahrheitswerte werden mit 0 (False) und 1 (True) dargestellt.

4. Aufgabe

Zeigen Sie, dass folgende Funktionen primitiv-rekursiv sind.

a)
$$f: \mathbb{N}^2 \to \mathbb{N}$$
 mit $f(x, y, z) = x + \frac{(x+z) \cdot (z+y+2)}{2}$

- b) $p: \mathbb{N} \to \mathbb{N}$ mit $p(n) = 2^n 1$
- c) Abstand zwischen zwei natürlichen Zahlen |n-m| , $abst: \mathbb{N}^2 \to \mathbb{N}$

mit
$$abst(n,m) = \begin{cases} (n-m) & wenn & n > m \\ (m-n) & wenn & n \le m \end{cases}$$

d)
$$f: \mathbb{N} \to \mathbb{N}$$
 mit $f(n) = \begin{cases} 1, & \text{wenn} \\ f(n-1) + n, & \text{sonnst} \end{cases}$

5. Aufgabe (8 Punkte)

Testen Sie Ihre Definitionen mit den in Haskell zur Verfügung gestellten Grundfunktionen sowie mit dem Kompositions- und Rekursionsschema.