Exercises in Praktikum Machine Learning

0. General information

- The goal of this exercise sheet is to implement in MATLAB the extraction of standard features at each pixel from a given image.
- The functions that are computing a feature vector

$$\mathbf{x}(i,j) = [x_1(i,j), \dots, x_{N_{features}}(i,j)]$$

must return a cell array X of size $1 \times N_{features}$. $X\{k\}$ is an image such that $[X\{k\}](i,j)$ is the value of the feature x_k at the location (i,j).

- The features you are computing must be extracted from a grayscale image of your choice. The value of a given feature over the image can be displayed using the function *imagesc*.
- The size a of patches or kernels must always be an odd number $a = 2\rho + 1$. The centre of the patch/kernel is then clearly defined as the pixel $(\rho + 1, \rho + 1)$.
- Some questions are asked to be solved using a cross-correlation product, generally between an image I of size $n_{rows} \times n_{cols}$ and a kernel K of size $a \times a$ with $a = 2\rho + 1$. As a reminder, the cross-correlation product \star between I and K is the image of size $n_{rows} \times n_{cols}$ defined as

$$[I \star K](i,j) = \sum_{-\rho \le \alpha, \beta \le \rho} I(i+\alpha, j+\beta)K(\alpha, \beta)$$

Up to a symmetry applied to the kernel, it is equivalent to a convolution product *, defined as

$$[I*K](i,j) = \sum_{-\rho \le \alpha, \beta \le \rho} I(i-\alpha, j-\beta)K(\alpha, \beta)$$

We recommend to perform cross-correlation products using the syntax

which automatically pads the image *I* on the boundaries.

1. Bank of filters

This section is dedicated to the extraction of features that can be seen as filters over the image. The value of such a feature $x_k(i, j)$ is a linear combination of the intensities within the neighbourhood of (i, j). More formally, we can write

$$x_k(i,j) = \sum_{-\rho \le \alpha, \beta \le \rho} I(i+\alpha, j+\beta)K(\alpha, \beta)$$

where K, called the *cross-correlation kernel*, defines the coefficients of this linear combination.

- a) Implement a function *standard_filters.m* taking as parameters:
 - the image *I*
 - a cell array \mathcal{F} of strings
 - the side a of the square used as kernel (used for 'mean' and 'std')
 - a standard deviation σ (used for 'gaussian' and 'LoG')

that returns the cell array X giving the feature responses for the filters specified in the cell array \mathcal{F} . The user must be able to choose one or several strings among the following:

• 'straight derivatives': gives the derivative along rows and columns at each pixel. As an example, the derivation along rows can be defined as:

$$\frac{\partial I}{\partial i}(i,j) = \frac{1}{2}(I(i+1,j) - I(i-1,j))$$

- 'diagonal derivatives': gives the derivative along the two diagonals at each pixel.
- 'mean': gives the mean of intensities over the patch of size a.
- 'std': gives the standard deviation of intensities over the patch of size a. Consider applying the mean filter to the squared image.
- 'gaussian' : Gaussian kernel of standard deviation σ . You can choose $6\sigma+1$ as the size of the patch.
- 'LoG': Laplacian-of-Gaussian kernel of standard deviation σ . You can choose $6\sigma + 1$ as the size of the patch.
- 'all': returns all the previous filters for the given a and σ .

Some predefined kernels can be found using *fspecial*. The cell array X contains at most 8 components (if 'all' is selected).

2. Features based on integral images

Integral images are an elegant and fast way to compute the sum (or the mean) of intensities over a rectangle. This section is dedicated to the computation of features based on this principle.

a) From an image I of size $n \times p$, we can define the integral image \tilde{I} of size $(n+1) \times (p+1)$ by

$$ilde{I}(i,1) = 0 ext{ for } i \in \{1, \dots, n+1\}$$
 $ilde{I}(1,j) = 0 ext{ for } j \in \{1, \dots, p+1\}$
 $ilde{I}(i,j) = \sum_{\substack{i' < i \\ j' < j}} I(i',j') ext{ for } i > 1 ext{ and } j > 1$

Implement a function *integral_image.m* taking as input parameter an image I and returning its integral image \tilde{I} . You can use for this the following identity (valid for i > 1 and j > 1)

$$\tilde{I}(i,j) = I(i-1,j-1) + \tilde{I}(i-1,j) + \tilde{I}(i,j-1) - \tilde{I}(i-1,j-1)$$

- b) Implement a function *mean_patch.m* taking as input arguments
 - an integral image \tilde{I}
 - the side of a patch a
 - the coordinates (α, β) of this patch

that returns the mean of intensities of I over the patch of side a centered on (α, β) . For this, you can notice that, in the configuration of the Figure 1, the sum of intensities of I over the gray rectangle is given by

$$\sum_{\substack{x_1 \le x \le x_2 \\ y_1 \le y \le y_2}} I(y, x) = \tilde{I}(y_2 + 1, x_2 + 1) - \tilde{I}(y_2 + 1, x_1) - \tilde{I}(y_1, x_2 + 1) + \tilde{I}(y_1, x_1)$$

Figure 1: The integral image \tilde{I} allows a very fast computation of the sum over the gray rectangle of the intensities of I

- c) We take a patch of side a centered on the pixel (i, j) of interest and we consider its 8 neighbouring patches as described in Figure 2. By using $mean_patch.m$ and a loop over the patch indexes, implement a function $mean_features.m$ taking as input arguments
 - an integral image \tilde{I}
 - the side of the patches a

that returns the feature vector

$$\mathbf{x}(i,j) = [\mu_1(i,j), \mu_2(i,j), \dots, \mu_9(i,j)]$$

as a cell array X of size 1×9 where $\mu_n(i,j)$ is the average of the intensities over the patch $P_n(i,j)$.

- d) With a similar approach, implement a function *lbp.m* (for Local Binary Patterns) taking as input arguments
 - an integral image \tilde{I}
 - the side of the patches a

that extracts the binary feature vector

$$\mathbf{x}(i,j) = [x_1(i,j), \dots, x_4(i,j), x_6(i,j), \dots, x_9(i,j)]$$

as a cell array X of size 1×8 , where $x_n(i,j) = 1$ if $\mu_n(i,j) \ge \mu_5(i,j)$ and $x_n(i,j) = 0$ if $\mu_n(i,j) < \mu_5(i,j)$.

- e) We propose to compute now the same kind of features but on longer range.
 - (i) Implement a function *long_range_offset.m* taking as input arguments
 - an integral image \tilde{I}
 - a side of patches a
 - an offset vector $\mathbf{w} = [u, v]$

that returns the feature vector $\mathbf{x}(i,j) = [x_1(i,j), x_2(i,j)]$ as a cell array \mathcal{X} of size 1×2 where:

- $x_1(i,j) = \mu_w(i,j) \mu_5(i,j)$, where $\mu_w(i,j)$ is the mean over the patch of side a centered on the pixel (i+u,j+v)
- $x_2(i,j)$ is the binarised version of $x_1(i,j)$: if $x_1(i,j) \ge 0$ then $x_2(i,j) = 1$, else $x_2(i,j) = 0$
- (ii) Implement a similar function *long_range_two_offsets.m* taking as input arguments
 - an integral image \tilde{I}
 - a side of patches a
 - a first offset vector $\mathbf{w}_1 = [u_1, v_1]$
 - a second offset vector $\mathbf{w}_2 = [u_2, v_2]$

that returns the difference between the means of the patches centered on $(i+u_1, j+v_1)$ and on $(i+u_2, j+v_2)$, and its binary version. Again, the output is a cell array X of size 1×2 .

Figure 2: A patch of size a=3 centered on the pixel (i,j) of interest and its 8 neighbouring patches