0.500 0.500 0.500 0.500 0.500 0.500 0.461 0.500 0.50

0.426 0.425

0.117 0.110 0.106

0.0

0.1 0.463 0.463 0.462 0.462 0.462 0.461

0.2 0.427

0.3

0.4 0.358 0.355 0.353 0.352 0.351

0.5 0.326 0.322 0.295 0.290 0.287 0.285 0.284 0.283 0.281 0.280 0.27

0.6

8.0 0.241 0.234

0.9 0.217 0.210 0.205 0.201 0.199 0.197 0.195 0.193

1.0 0.196 0.187 **n 182** 0.161 0.157 0.154 0.152 0.149 0.146 0.14

1.1 1.2 0.176 0.167

1.3 1.4 0.142 0.132 0.125 0.121 0.117 0.102 0.100 0.096 0.093 0.09

1.5 1.6 1.7 1.8 1.9

2.0 2.1 2.2

2.3 2.4

2.5

2.6 2.7 2.8 2.9

3.0

3.1 3.2

3.4

3.5 3.7 3.8

3.9

4.0

0.500

0.392

0.267 0.261 0.258 0.255

0.158 0,148 0.142 0.138 0.135 0 132 N 179

0.128

Areas of the Standard Normal Distribution

The entries in this table are the probabilities that a random variable with a standard normal distribution assumes a value between 0 and z; the proba-bility is represented by the shaded area under the curve in the accompanying figure. Areas for negative values of a are obtained by synunetry.

	Second Decimal Place in z									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	- 0.07	80.0	0.08
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0396	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293.	0.1331	0.1366	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	. 0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0,2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.370B	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0,3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	D.4394	0.4406	0.4418	0.4429	0.4441
1.6	0,4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1,8	0,4641	0,4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0,4699	6.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2,0	0.4772	0,4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4806	0.4812	0.4817
2.1	0.4821	0,4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	D,4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	D.4949	0.4951	0.4952
2.6	0.4953	0.4955	0,4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0,4967	0.496B	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0,4980	0,4981
2.9	0.4981	0,4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0,4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3,1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	D.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4989
3.0 3.7	0.4998	0.4550	0.4000	0.4000	0.4000	0.4000	0,400	0.4000	0.7000	0.7000
s./ 4.0	0.4999									
	0.49997									
4.5										
i.0	0.4999997									

For specific details about using this table to find: probabilities, see page 274; confidence coefficients, page 351; p-values, pages 376, 377, 379; cm-

Critical Values of χ^2 ("Chi-Square") Distribution

The entries in this table, χ^2 (df, α), are the critical values for the χ^2 distribution for which the area under the curve to the right is a.

					Area	to the Ri	ght					:	
	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	B.01	0.005
		Arno in	Left-hand Ta	il.			Median		Are	a in Rig	ht-hand 1	Tail	
if	0.005	0.01	0.025	0.05	8.10	0.25	0.50	0.25	0.10	0.05	0.025	0.01	0.005
	0.0000393	0.000157	0.000982	0.00393	0.0158	0,101	0.455	1,32	2.71	3.84	5.02	6.63	7.88
Į .	0.0000333	0.0201	0.0506	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
!	0.0100	0.0201	0.216	0.352	0.584	1.21	2.37	4.11	6.25	7.82	9.35	11.3	12.8
3		D.297	0.484	0.711	1.06	1.92	3,36	5.39	7.78	9.49	11.1	13.3	14.9
i	0.207 0.412	0.554	0.454	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.8
;	0.676	0.872	1,24	1.64	2,20	3.45	5.35	7.84	10.6	12.6	14.5	16.8	18.6
	0.990	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3
,	1.34	1.65	2.18	2.73	3,49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0
	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6
) 0	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	. 23.2	25.2
1	2.60	3.05	3.82	4.57	5.58	7.5B	10.34	13.7	17.3	19.7	21.9	24.7	26.8
2	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.8	18.5	21.0	23.3	26.2	28.3
	3.57	4.11	5.01	5.89	7.04	9.30	12.34	16.0	19.8	22.4	24.7	27.7	29.8
3	4.07	4.66	5.63	6.57	7.79	10,2	13.34	17.1	21.1	23.7	26:1	29.1	31.3
4 5	4.60	5.23	6.26	7,26	8.55	11.0	14.34	18.2	22.3	25.0	27.5	30.6	32.8
16	5.14	5.81	6.91	7.96	9.31	11.9	15.34	19.4	23.5	26.3	28.8	32.0	34.3
7	5.70	6.41	7.56	8.67	10.1	12.8	16.34	20.5	24.8	27,6	30.2	33.4	35.7
8	6.26	7.01	8.23	9.39	10.9	13.7	17.34	21.6	26.0	28.9	31.5	34.8	37.2
9	6.84	7.63	8.91	10.1	11.7	14.6	18.34	22.7	27.2	30.1	32.9	36.2	3B.6
20	7.43	8.26	9.59	10.9	12.4	15.5	19.34	23.8	28.4	31.4	34.2	37.6	40.0
21	8.03	8.90	10.3	11.6	13.2	16.3	20.34	24.9	29.6	32.7	35.5	38.9	41.4
22	8.64	9.54	11.0	12.3	14.0	17.2	21.34	26.0	30.8	33.9	36.B	40.3	42.8
23	9.26	10.2	11.7	13.1	14.8	18.1	22.34	27.1	32.0	35.2	[38.1]	41.6	44.2
24	9.89	10.9	12.4	13.8	15.7	19.0	23.34	28.2	33.2	36.4	39.4	43.0	45.6
24 25	10.5	11.5	13.1	14.6	16.5	19.9	24.34	29.3	34.4	37.7	40.6	44.3	46.9
26	11.2	12.2	13.8	15.4	17.3	20.8	25.34	30.4	35.6	38.9	41.9	45.6	48.3
27	11.B	12.9	14.6	16.2	18.1	21.7	26.34 ·	31.5	36.7	40.1	43.2	47.0	49.6
28	12.5	13.6	15.3	16.9	18.9	22.7	27.34	32.6	37.9	41.3	44.5	48.3	51.0
29	13.1	14.3	16.0	17.7	19.8	23.6	28.34	33.7	39.1	42.6	45.7	49.6	52.3
30	13.8	15.0	16.8	18.5	20.6	24.5	29.34	34.8	40.3	43.8	47.0	50.9	53.7
40	20.7	22.2	24.4	26.5	29.1	33.7	39.34	45.6	51.8	55.8	59.3	63.7	66.8
50	28.0	29.7	32.4	34.B	37.7	42.9	49.33	56.3	63.2	67.5	71.4	76.2	79.5
60	35.5	37.5	40.5	43.2	46.5	52.3	59.33	67.0	74.4	79.1	83.3	88.4	92.0
70	43.3	45.4	48.8	51.7	55.3	61.7	69.33	77.6	85.5	90.5	95.0	100.0	104.
80	51.2	53.5	57.2	60.4	64.3	71.1	79.33	88.1	96.6	102.0	107.0	112.0	116.
90	59.2	61.8	65.6	69.1	73.3	80.6	89.33	98.6	108.0	113.0	118.0	124.0	128.
100	57.3	70.1	74.2	77.9	82.4	90.1	99.33	109.0	118.0	124.0	130.0	136,0	140.

Probability-Values for Student's t-distribution

6

0.424

D.178 0.175

0.388 0.387 0.386 0.386 0.385 0.385

0.319 0.317 0.316 0.315 0.314 0.313 0.31

0.230 0.227 0.225

למח ח ก กลว n ngg 0.086 0.082

The entries in this table are the p-values related to the right-hand the calculated $r\star$ value for the t-distribution of df degrees of free

0.424 0.423

0.350

0.252 0.253

0.223 0.221 0.220 N 21

0.173 0.170 0.169

0.115 0,111

0.250 0.249

-	ail for m.		_		1	p-value
	18	21	25	29	35	df ≥ 4!
0	0.500	0.500	0.500	0.500	0.500	0.500
1	0.461	0.461	0.461	0.461	0.460	0.460
2	0.422	0.422	0.422	0.421	0.421	0.421
4	0.384	0.384	0.383	0.383	0.383	0.383
7	0.347	0.347	0.346	0.346	0.346	0.346
2	0.312	0.311	0.311	0.310	0.310	0.310
9	0.278	0.277	0.277	0.277	0.276	0.276
7	0.246	0.246	0.245	0.245	0.244	0.244
8	0.217	0.216	0.216	0.215	0.215	0.214
11	0.190	0.189	0.188	0.188	0.187	0.186
7	0.165	0.164	0.163	0.163	0.162	0.161
4	0.143	0.142	0.141	0.140	0.139	0.139
4	0.123	0.122	0.121	0.120	0.119	0.118
7	0.105	0.104	0.103	0.102	0.101	0.100
11	0.089	880.0	0.087	0.086	0.085	0.084
7 .	0.075	0.074	0.073	0.072	0.071	0.070
5	0.064	0.062	0.061	0.060	0.059	0.058
55	0.053	0.052	0.051	0.050	0.049	0.048
16	0.044	0.043	0.042	0.041	0.040	0.039
00	0.007	מכח ת	0.095	0.034	U U33	0.032

0.115	0.104	0.097	0.092	บ.นอฮ	0.000	0.002	0.000	0.077	0.0.0				0.000	0.050
0.104	0.092	0.085	0.080	0.077	0.074	0.070	0.068	0.065	0.064	0.062	0.061	0.060	0.059	0.058
0.094	0.082	0.075	0.070	0.066	0.064	0.060	0.057	0.055	0.053	0.052	0.051	0.050	0.049	0.048
0.085	0.073	0.066	0.061	0.057	0.055	0.051	0.049	0.046	0.044	0.043	0.042	0.041	0,040	0.039
0.077	0.065	0.058	0.053	0.050	0.047	0.043	0.041	0.038	0.037	0.036	0.035	0.034	0.033	0.032
				0.040	0.040	0.037	0.034	0.032	0.030	0.029	0.028	0.027	0.027	0.026
0.070	0.058	0.051	0.046	0.043	0.040		0.029	0.032	0.025	0.024	0.023	0.022	0.022	0.021
0.063	0.052	0.045	0.040	0.037	0.034	0.031	0.025		0.023	0.024	0.019	0.018	0.017	0.016
0.058	0.046	0.040	0.035	0.032	0.029	0.026		0.022	0.027	0.026	0.015	0.014	0.014	
0.052	0.041	0.035	0.031	0.027	0.025	0.022	0.020				0.013	0.012	0.011	0.010
0.048	0.037	0.031	0.027	0.024	0.022	0.019	0.017	0.015	0.014	0.013	0.012	0.012		
0.044	0.033	0.027	0.023	0.020	0.018	0.016	0.014	0.012	0.011	0.010	0.010	0.009	0.009	0.008
0.040	0.030	0.024	0.020	0.018	0.016	0.013	0.012	0.010	0.009	0.008	0.008	0.007	0.007	0,006
0.037	0.027	0.021	0.018	0.015	0.014	0.011	0.010	0.008	0.007	0.007	0.006	0.006	0.005	0.005
0.034	0.024	0.019	0.016	0.013	0.012	0.009	0.008	0.007	0.006	0.005	0.005	0.005	0.004	0.004
0.031	0.022	0.017	0.014	0.011	0.010	0.008	0.007	0.005	0.005	0.004	0.004	0.004	0.003	0.003
							0.000	0.004	0.004	0.003	0.003	0.003	0.002	0.002
0.029	0.020	0.015	0.012	0.010	0.009	0.007	0.006	0.004			0.003	0.003	0.002	0.002
0.027	0.018	0.013	0.011	0.009	0.007	0.006	0.005	0.004	0.003	0,003	0.002	0.002	0.002	0.001
0.025	0.016	0.012	0.009	0.008	0.006	0.005	0.004	0.003	0.002	0.002			0.001	0.001
0.023	0.015	0.011	0.008	0.007	0.005	0.004	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.001
0.021	0.014	0.010	0.007	0.006	0.005	0,003	0.003	0.002	0.002	0.001	0.001	0.001	0.001	
0.020	0.012	0.009	0.006	0,005	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001
0.020	0.012	0.003	0.006	0.004	0.004	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0+	0÷
0.017	0.010	0.007	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0+	0+	0+
	0.010	0.007	0.003	0.003	0.003	0.002	0.001	0.001	0.001	0.001	0+	0+	0+	0+
0.016	0.009	0.006	0.004	0.003	0.002	0.001	0.001	0.001	0.001	0+	0+	0+	0+	9+
0.015	0.008	•			-,					•		0÷	D+	0+
A 014	O OOR	0.005	D 004	0.003	0.002	N NN1	0.001	0.001	0+	0+	0+	U+	UT	• • • • • • • • • • • • • • • • • • • •

0.001

Degrees of Freedom 10 12 15

0.461 0.46

0.422 0.47

0.348 0.349

> 0.080 0.07

0.38

0.34

0.19

0.12 0.127

Critical Values of r When $\rho = 0$ TABLE 11

The entries in this table are the critical values of r for a two-tailed test at α . For simple correlation, df = n - 2, where n is the number of pairs of data in the sample. For a one-tailed test, the value of a shown at the top of the table is double the value of α being used in the hypothesis test.

0.001 0+

0.014 0.008 0.005 0.004 0.003 0.002 0.001

	1		•	
di	0.10	0.05	0.02	0.01
1	0.988	0.997	-1.000	1.000
2	0.900	0.950	0.980	0.990
3	0.805	0.878	0.934	0.959
4	0.729	0.811	0.882	0.917
5	0.669	0.754	0.833	0.874
6	0.621	0.707	0.789	0.834
7	0.582	0.666	0.750	0.798
8	0.549	0.632	0.716	0.765
9	0.521	0,602	0.685	0.735
10	. 0.497	0.576	0.658	0.708
11	0.476	0.553	0.634	0.684
12	0.458	0.532	0.612	0.661
13	0.441	0.514	0.592	0.641
14	0.426	0.497	0.574	0.623
15	0.412	0.482	0.558	0.606
16	0.400	0.468	0.542	0.590
· 17	0.389	0.456	0.528	0.575
18	0.378 ·	0.444	10.516	0,561
19	0.369	0.433	0.503	0.549
20	0,360	0.423	0.492	0.537
25	0.323	0.381	0.445	0.487
30	0.296	0.349	0.409	0.449
35	0.275	0.325	0.381	0.418
40	0.257	0.304	0.358	0.393
45	0.243	0.288	0.338	0.372
50	0.231	0.273	0.322	0.354
60	0.211	0.250	0.295	0.325
70 ·	0.195	0,232	0.274	0.302
80	. 0.183	0.217	0.256	0.283
90	0.173	0,205	0.242	0.267
100	0.164	0.195	0.230	0.254
		** ** ** **		

From E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, vol. 1 (1962), p. 138. Reprinted by permission of the Biometrika Trustees.

For specific details about using this table to find: p-values, see page 615; critical values, page 615.