# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

'DERWENT-ACC-NO: 1987-285348

09/911836

Page 1 of 2

DERWENT-ACC- 1987-285348

NO:

DERWENT-WEEK: 198741

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Controlling temp. of elements directing analysis gas samples - by maintaining holding cabinet

compartments at different temps.

INVENTOR: LEISTNER, R; SCHMITZ, HO; SIMON, J; SPREHE, J

PATENT-ASSIGNEE: SIEMENS AG[SIEI]

PRIORITY-DATA: 1986DE-3611662 (April 7, 1986)

PATENT-FAMILY:

**PUB-NO** 

PUB-DATE

LANGUAGE PAGES MAIN-IPC

DE 3611662 A October 8, 1987 N/A

011

N/A

**APPLICATION-DATA:** 

PUB-NO

APPL-DESCRIPTOR APPL-NO

APPL-DATE

DE 3611662A N/A

1986DE-3611662 April 7, 1986

INT-CL (IPC): B01D053/00, G01N001/22

ABSTRACTED-PUB-NO: DE 3611662A

## **BASIC-ABSTRACT:**

Between the probes collecting samples of gas, esp. from a combustion fume conduit, and the analysers for gas components, esp. emission detectors for SOX, NOX, CO, CO2 etc. is a portable cabinet contg. elements such as inlet valves, filters, flow pumps and motors, pressure reducers, with their intermediate feed conduits. The cabinet, with necessary operating controls and dials on a front panel, and a removable back panel, is divided into at least two compartments. A first large compartment, heated to e.g. 75 deg.C and insulated to prevent heat loss, holds those

elements wherein gases must be maintained above the dew point: another <u>compartment</u> maintained at e.g. 5-10 deg.C and insulated against incoming heat, holds flow meters etc. for gases which have passed through a cooler.

ADVANTAGE - Element location and connection system ensures effective operation, unhindered by internal corrosion.

CHOSEN-

Dwg.1/5

DRAWING:

TITLE-TERMS:

CONTROL TEMPERATURE ELEMENT DIRECT ANALYSE GAS SAMPLE MAINTAIN HOLD CABINET

COMPARTMENT TEMPERATURE

**DERWENT-CLASS: J04 S03** 

CPI-CODES: J04-C04;

EPI-CODES: S03-E13C;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers:

C1987-121006

Non-CPI Secondary Accession Numbers: N1987-213828

® BUNDESREPUBLIK

DEUTSCHLAND

<sup>®</sup> Off nl gungsschrift
<sup>®</sup> DE 3611662 A1

(5) Int. Cl. 4: G 01 N 1/22

B 01 D 53/00 B 01 D 53/34



DEUTSCHES PATENTAMT

(21) Aktenz ichen: P 36 11 662.9 (22) Anmeldetag: 7. 4. 86

Offenlegungstag: 8. 10. 87



(7) Anmelder:

Siemens AG, 1000 Berlin und 8000 München, DE

(72) Erfinder:

Schmitz, Hans-Otto, Dipl.-Phys.; Sprehe, Josef, Dipl.-Ing., 8510 Fürth, DE; Leistner, Roland, Dipl.-Ing., 8501 Obermichelbach, DE; Simon, Josef, 8551 Heroldsbach, DE

Anordnung einer Baugruppe für Gasaufbereitungsstrecken

Anordnung einer Baugruppe für Gasaufbereitungsstrekken, welche zwischen den Gasanalyse-Meßgeräten und den das Meßgas über Meßgasleitungen liefernden Gasentnahmesonden eingeschaltet ist. Die Baugruppe (GA) besteht - in Richtung der Meßgasströmung gesehen - zumindest aus den folgenden Komponenten: Einlaßventilen (MV11, MV21), Feinstfiltern (F<sub>1</sub>, F<sub>2</sub>), Meßgas-Pumpen (MP1, MP2) mit An-triebsmotoren, Druckreduzierventilen (RV1, RV2), Druckmessern (MM11, MM12; MM21, MM22) und Durchflußmessern (DM1, DM2), ferner aus den Durchflußmessern (DM1, DM2) vorgeschalteten Ausgangs- und Eingangsanschlüssen für Meßgaskühler sowie aus den verbindenden Meßgasleitungen. Die Komponenten und die sie verbindenden Meßgasleitungen sind in einem kastenförmigen Gehäuse (8) mit Frontplatte (8.1) als Träger des Schaltplanes (9) und zugehöriger Instrumente und Bedienungselemente und mit abnehmbarer Rückwand untergebracht. Der Innenraum des Gehäuses (8) ist in wenigstens zwei Kammerräume unterteilt, einen beheizten und gegen Wärmefluß nach außen wärmegedämmten größeren Kammerraum, in welchem die das warme Meßgas führenden Komponenten und Meßgasleitungen angeordnet sind, und in einen demgegenüber abgeschotteten und wärmegedämmten Kammerraum, in welchem die vom Meßgaskühler kommenden und an den außen an der Frontplatte befestigten Durchflußmesser (DM1, DM2) angeschlossenen Meßgasleitungen verlegt sind.



### Patentansprüche

1. Anordnung einer Baugruppe für Gasaufbereitungsstrecken, welche zwischen den Gasanalys - Meßgeräten und den das Meßgas über M ßgasleitungen liefernden Gasentnahmesonden eingeschaltet ist, dadurch gekennzeichnet,

— daß die Baugruppe (GA) — in Richtung der Meßgasströmung gesehen — zumindest aus 10 den folgenden Komponenten besteht:
Einlaßventilen (MV11, MV21), Feinstfiltern (Fi, F2), Meßgas-Pumpen (MP1, MP2) mit Antriebsmotoren, Druckreduzierventilen (RV1, RV2), Druckmessern (MM11, MM12; 15 MM21, MM22) und Durchflußmessern (DM1, DM2), ferner aus den Durchflußmessern (DM1, DM2) vorgeschalteten Ausgangsund Eingangsanschlüssen (T1, T18; T21, T28) für Meßgaskühler sowie aus den verbindenden 20 Meßgasleitungen (M11, M12, M2, M3, M4, M5; M11, M12, M2, M3, M3, M3, M5)

- und daß die Komponenten und die sie verbindenden Meßgasleitungen in einem kastenförmigen Gehäuse (8) mit Frontplatte (8.1) als 25 Träger des Schaltplanes (9) und zugehöriger Instrumente und Bedienungselemente und mit abnehmbarer Rückwand (8.21, 8.22) untergebracht sind, dessen Innenraum in wenigstens zwei Kammerräume unterteilt ist: einen be- 30 heizten und gegen Wärmefluß nach außen wärmegedämmten größeren Kammerraum (K<sub>3</sub>), in welchem die das warme Meßgas führenden Komponenten und Meßgasleitungen angeordnet sind, und in einen demgegenüber 35 abgeschotteten und wärmegedämmten Kammerraum  $K_1$ ,  $K_2$ ), in welchem die vom Meßkühler kommenden und an den außen an der Frontplatte befestigten Durchflußmesser (DM 1, DM 2) angeschlossenen Meßgasleitun- 40 gen verlegt sind.

2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß das kastenförmige metallische Gehäuse (8) aus zwei übereinander angeordneten 45 19"-Einschubeinheiten (10, 11) mit je einer oberen und unteren Rückwand (8.21, 8.22) und einer gemeinsamen Frontplatte (8.1) zusammengesetzt ist. 3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß die untere Rückwand (8.22) mittels 50 Stehbolzen (18) eine Heizplatte (17) trägt, so daß diese mit freien Heizflächen innerhalb der unteren Hälfte des größeren Kammerraumes (K3) angeordnet ist, und daß die untere Rückwand (8.22) an ihrer Außenseite wärmedämmend kaschiert (15b) ist. 4. Anordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die obere Rückwand (8.21) ein Anschlußfeld für die Armaturen externer, beheizter Meßgasleitungen und zugehöriger Heizkabel in Form einer gesonderten, an der Rückwand arre- 60 tierbaren äußeren Anschlußplatine (19) aufweist und daß in Flucht mit der äußeren Anschlußplatine und im Abstand dazu eine innere Anschlußplatine (31) für die Armaturen der gehäuseinternen Meßgasl itungen  $(m_{11}, m_{12}; n_{11}, n_{12}; l_3)$  mitt ls Abstands- 65 haltebolzen (33) an der äußeren Anschlußplatine (19) befestigt ist, daß die Armaturen der beheizten M Bgasleitungen durch Fensteröffnungen (20) der

äußeren Anschlußplatin hindurch und abgedichtet in den beheizten Kammerraum (K<sub>3</sub>) des Gehäuses (8) hineinragen und mit den Armaturen (32) der gehäus internen Meßgasleitungen verbunden sind und daß die Abstandshaltebolz n (33) längsverschieblich in Bohrungen (35, 36) d r Rückwand gelagert sind, so daß bei gelösten Arretiermitteln (34) der äußeren Anschlußplatine (19) letztere zusammen mit der inneren Anschlußplatine (31) an den Abstandshaltebolzen (33) in Richtung nach außen verschiebbar ist.

5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die obere Rückwand (8.21) unterhalb des Anschlußfeldes an ihrer Innenseite die Meßgaspumpe(n) (MP 1, MP 2) trägt, deren Welle(n) oder Antriebsorgane durch die Rückwand mit außen an der Rückwand befestigten Antriebsmotoren gekuppelt ist (sind), wobei letztere zur Wärmeabfuhr von einem Lochlechkasten (24) umgeben und/oder mit Kühlrippengehäusen versehen sind.

6. Anordnung nach einem der Ansprüche 1 bis 5, wobei die Gasentnahmesonde an einen Rauchgaskanal angeschlossen ist, je einen NH<sub>3</sub>-freien und SO<sub>2</sub>-freien Ausgang aufweist und die Gasanalyse-Meßgeräte zur Emissions-Messung dienen, dadurch gekennzeichnet, daß die Baugruppe (GA) zwei zueinander parallel geschaltete Streckenzweige (GA 1, GA 2) aufweist, von denen der eine (GA 1) an den NH<sub>3</sub>-freien Ausgang (T<sub>11</sub>, T<sub>12</sub>) und von denen der andere (GA 2) an den SO<sub>2</sub>-freien Ausgang (T<sub>21</sub>, T<sub>22</sub>) wenigstens einer Gasentnahmesonde angeschlossen ist.

7. Anordnung nach Anspruch 6, mit wenigstens zwei Gasentnahmesonden, dadurch gekennzeichnet, daß der eine Streckenzweig (GA 1) umschaltbar mit einem der mehreren NH<sub>3</sub>-freien Ausgänge (T<sub>11</sub>, T<sub>12</sub>) und der andere Streckenzweig (GA 2) umschaltbar mit einem der mehreren SO<sub>2</sub>-freien Ausgänge (T<sub>21</sub>, T<sub>22</sub>) verbindbar ist.

8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß im Zuge der Gasaufbereitungsstrecken (GA) bzw. ihrer parallelen Zweige (GA 1, GA 2) an der Druckseite der Meßgaspumpen (MP 1, MP 2) jeweils Prüfgaseinspeisventile (MV 13, MV 23) angeschlossen sind.

### Beschreibung

Die Erfindung bezieht sich auf die Anordnung einer Baugruppe für Gasaufbereitungsstrecken, welche zwischen den Gasanalyse-Meßgeräten und den das Meßgas über Meßgasleitungen liefernden Gasentnahmesonden eingeschaltet ist, so wie im Oberbegriff des Anspruchs 1 angegeben.

Dabei sind die Gasentnahmesonden insbesondere Rauchgasentnahmesonden, welche de- und remontabel in Rauchgasentnahmestutzen eines Rauchgaskanals eingebaut sind, und die Gasanalyse-Meßgeräte sind insbesondere Emissions-Meßeinrichtungen, mit welchen der in der Rauchgasentnahmesonde und der darauf folgenden Gasaufbereitungsstrecke aufbereitete Meßgasstrom auf den Gehalt an NH3, NO<sub>X</sub>, SO<sub>X</sub>, CO, CO<sub>2</sub>, O<sub>2</sub> H<sub>2</sub>O usw. analysiert w rden kann. Eine solche Analyse ist zur Überprüfung d retentation der Rückhalteeinrichtungen, insbesonder DENOX- und Rauchgasentschwefelungsanlagen, von vitalem Int resse.

In der älteren Anmeldung P 36 05 158.6 (= VPA 86 P 6 009 DE) derselben Anmelderin ist bereits ein Verfah-

ren zur Reinhaltung der Meßleitungen an Emissions-Meßeinrichtungen, eine Anwendung dieses Verfahrens auf die kondenswasserfreie Filterung von Meßgasen soeine Gasentnahmes nde zur Durchführung des Verfahrens beschrieben. In Figur 1 ist prinzipiell in Gasaufber itungsstreck dargestellt, bestehend aus zwei parallel zueinander geschalteten Streckenzweigen. von denen der eine an einen NH3-freien Ausgangskanal und von denen der andere an einen SO2-freien Ausgangskanal der Gasentnahmesonde angeschlossen ist. 10 Die Streckenzweige sind lediglich vereinfacht und schematisch dargestellt; über die Anordnung bzw. Verlegung ihrer Komponenten und Meßgasleitungen ist nichts Näheres ausgesagt.

Die vorliegende Erfindung geht von der Erkenntnis 15 aus, daß die bisherige Verlegungs- und Anschlußtechnik der Komponenten und Meßgasleitungen von Gasaufbereitsstrecken verbesserungsbedürftig ist, wenn eine kondensatfreie und störunanfällige Führung der Meßgasströme erreicht werden soll; ihr liegt die Aufgabe 20 zugrunde, zur Beherrschung des geschilderten Problems eine übersichtliche, kompakte und kontrollierbar Anordnung einer Baugruppe für Gasaufbereitungsstrecken der gattungsgemäßen Art zu schaffen.

Erfindungsgemäß wird die gestellte Aufgabe bei einer 25 gattungsgemäßen Anordnung durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen sind in den Ansprüchen 2

bis 8 angegeben.

Die Baugruppenanordnung nach der Erfindung kann 30 als ein beheizter und wärmegedämmter Gasaufbereitungsschrank bezeichnet werden, mit dem es möglich ist, mindestens zwei unterschiedliche Temperaturniveaus zu schaffen. Im größeren Kammerraum herrscht eine Temperatur von ca. 75°C: Hier strömt das unter 35 Druck stehende Meßgas, welches seinerseits mittels beheizter Meßgasleitungen an den Schrank angeschlossen ist, wobei sich eine lückenlose Dämmstrecke ohne Kält brücken nach außen ergibt. Nach dem Druckreduzierventil und nach Durchströmen des Meßgaskühlers, vor- 40 zugsweise ein Kompressorgaskühler, welcher unterhalb des Gasaufbereitungsschrankes angeordnet ist, gelangt das Meßgas, nun auf einem Temperaturniveau von ca. 5 bis 10°C, zurück zum Gasaufbereitungsschrank, und zwar zum Eingang von Durchflußmessern, welche mit 45 zugehörigen Meßgasleitungen innerhalb der kleineren, abgeschotteten und gegenüber dem größeren Kammerraum wärmegedämmten kleineren Kammerräumen angeschlossen bzw. angeordnet sind. Die mit der Erfindung erzielbaren Vorteile sind vor allem darin zu sehen, 50 daß die neue Baugruppen-Anordnung für Gasaufbereitungsstrecken einen kompakten Gasaufbereitungsschrank ergibt, der an seiner Frontplatte auf übersichtliche Weise mit dem Schaltplan und den zugehörigen Instrumenten und Bedienungselementen versehen ist, 55 der in seinem Inneren definierte Temperaturzonen für die Meßgasströme enthält und an dessen Rückwand innerhalb entsprechender Anschlußfelder die Meßgasleitungen so angeschlossen werden können, daß sich ein kältebrückenfreier Übergang der beheizten Meßgasleitungen in das Schrankinnere ergibt. Die neue Baugruppen-Anordnung ist hinsichtlich ihrer Funktion erweiterungsfähig; so besteht die Möglichkeit des Anbringens int grierter Feuchtemesser zur Messung der relativen kannten Druckes. In den Gasaufbereitungsschrank kann auch ein Konverter eingebaut werden, der NO2 in NO umformt, sofern sich eine solch Aufgabe von seiten dr

nachgeschalteten Gasanalyse-Meßg räte stellt.

Im folgend n wird anhand eines in der Zeichnung dargestellten Ausführungsbeispiels die Baugruppen-Anordnung nach der Erfindung noch näher erläutert. 5 Darin zeigt

Fig. 1 in Prinzipschaltbild der Baugruppen-An rdnung für Gasaufbereitungsstrecken;

Fig. 2 perspektivisch von der Frontseite her gesehen den Gasaufbereitungsschrank der Baugruppen-Anord-

Fig. 3 den Gegenstand nach Fig. 2 von der Rückseite perspektivisch gesehen;

Fig. 4 eine weitere perspektivische Rückansicht des Gasaufbereitungsschrankes bei geöffneter Rückwand der oberen Schrankhälfte und

Fig. 5 in sogenannter Explosionsdarstellung die Mantelkonstruktion des Gasaufbereitungsschrankes ohne Frontplatte, jedoch mit in ihren Einzelteilen dargestellter Rückwand sowie mit Heizplatte.

Aus Fig. 1 erkennt man zwei zueinander parallel geschaltete Zweige GA 1 und GA 2 der als Ganzes mit GA bezeichneten Gasaufbereitungsstrecke, deren Baugruppen, d. h. Komponenten und Meßgasleitungen, in Form eines kompakten Gasaufbereitungsschrankes angeordnet und zusammen gefaßt sind, wie anhand der Fig. 2 bis 5 noch erläutert wird.

An die Eingangsanschlüsse  $T_{11}$  und  $T_{12}$  des Streckenzweiges GA 1 werden die NH3-freien Meßgasleitungen von zwei (nicht dargestellten) Gasentnahmesonden angeschlossen, welche an unterschiedlichen Meßstellen. zum Beispiel eines Rauchgaskanals, angeordnet sind. An die Eingangsanschlüsse  $T_{21}$  und  $T_{22}$  werden die SO2-Meßgasleitungen der erwähnten Gasentnahmesonden angeschlossen, welch letztere dementsprechend je eine NH3-freies Meßgas und je eine SO2-freies Meßgas führende Meßgas-Ausgangsleitung aufweisen.

Wenn man den Streckenzweig GA 1, beginnend bei den Eingangsanschlüssen T<sub>11</sub> und T<sub>12</sub> in Meßgas-Strömungsrichtung verfolgt, so erkennt man, daß von den beiden Eingangsanschlüssen über die Leitungsabschnitte m11 bzw. m12 das Meßgas einem Dreiwege-Umschaltventil MV11 zugeführt wird und vom Ausgang dieses Ventils in die Meßgas-Hauptleitung m2 gelangt. Das Umschaltventil MV 11 ist insbesondere ein fernbetätigbares Magnetventil, es kann jedoch auch als ein handbetätigtes Umschaltventil ausgeführt sein. Das Meßgas gelangt dann über ein Feinstfilter F<sub>1</sub> zur Saugseite 1 eine insbesondere als Membranpumpe ausgeführten Meßgaspumpe MP1 und wird von dort zur Druckseite 2 gepumpt, wobei eine Teilmenge über eine Bypaßleitung m3 und einen Bypaß-Drosselwiderstand BP 1 im Umlauf gefördert wird, so daß dadurch immer eine Mindestfördermenge gewährleistet ist. Der Bypaß-Drosselwiderstand ist insbesondere ein druckabhängig öffnendes und schließendes Entspannungsventil.

Auf die Meßgaspumpe MP 1 folgt dann in der Hauptleitung m3 ein weiteres Dreiwege-Umschaltventil MV 12 und darauf ein Druckreduzierventil RV 1, wobei der Druck vor dem Druckreduzierventil RV1 mittels des über die Druckmeßleitung m4 angeschlossenen Manometers MM 11 gemessen wird, das beispielsweise den Druck P<sub>11</sub> mißt, und wobei der Druck des Meßgases nach dem Druckreduzierv ntil RV1 mittels des über Druckmeßleitung m5 angeschl ssenen weit r n Mano-Feuchte an einer St lle bekannter Temperatur und be- 65 meters MM 12 (Druck P12) gemess n wird, wobei naturgemäß  $P_{12} < P_{11}$ . Die zugehörigen Anschlußpunkte der Druckmeßleitungen m4 und m5 sind mit 3 bzw. 4 bezeichn t. Hint r dem Druckreduzierventil RV1 strömt

das Meßgas zum Eingangsanschluß T17 eines externen, d. h. unterhalb des Gasaufbereitungsschrankes angeordneten Meßgaskühlers, der insbesondere als Kompressorgaskühler ausgeführt ist (vergleiche die Schaltzeichen GK 1 und GK 2 in Fig. 2), und nach Durchströmen des letzteren gelangt das M Bgas zum Ausgangsanschluß T<sub>18</sub> des Meßgaskühlers und von hier zu einem Durchflußmesser DM1, dessen Ausgangsanschluß  $T_{19}$ zugleich das Ende der Gasaufbereitungsstrecke bzw. der Meßgasleitung  $m_3$  definiert. An diesen Anschluß  $T_{19}$  10 werden dann die MeBgasleitungen angeschlossen, welche zu den Gasanalyse-Meßgeräten führen.

Letztere müssen geeicht bzw. überprüft werden, und zu diesem Zweck dient das Prüfgas-Einspeisventil MV 13. welches ein Mehrwege-Umschaltventil ist, des- 15 sen Ausgangsleitung m<sub>6</sub> mit dem internen Kanal c des in der Hauptleitung m3 sitzenden Umschaltventils MV12 verbunden ist, welches normalerweise auf Durchgang, d. h. Verbindung seiner beiden internen Kanale a und b geschaltet ist, wobei Kanalteil c blockiert ist. Es kann 20 jedoch auch der interne Kanal c mit dem internen Kanal b durchverbunden werden, wobei dann der Kanal a abgesperrt ist, und je nach Stellung des Prüfgas-Einspeisventils MV 13 können verschiedene Prüfgase über die gasleitungsstücke  $m_{13}$  bis  $m_{16}$  in die Prüfgasleitung  $m_6$ eingespeist werden. Auch die Umschaltventile MV 12 und MV 13 sind bevorzugt fernbetätigbare Elektromagnetventile, wenn sie ihre Funktion grundsätzlich auch als handbetätigte Ventile erfüllen können.

Der zweite Streckenzweig GA 2 ist grundsätzlich so aufgebaut wie der soeben beschriebene erste Streckenzweig GA 1; deswegen sind für die Komponenten die gleichen Buchstabenbezeichnungen, allerdings mit geändertem Hauptindex 2 verwendet worden. Die Leitun- 35 gen sind allgemein mit dem kleinen Buchstaben n (anstelle von m), jedoch mit gleichen Indizes bezeichnet. Aus diesem Grunde kann von einer näheren Erläuterung des zweiten Streckenzweiges GA 2 abgesehen werden.

In Fig. 1 ist mit T3 noch ein Eingangsanschluß für Luft zu Testzwecken bezeichnet; die daran angeschlossene Luftleitung  $l_3$  enthält ein Einlaßventil  $V_3$  und gabelt sich über den Knotenpunkt 5 in die beiden Leitungszweige h auf, wobei Leitungszweig h bei 6 an die Hauptleitung m2 und die Zweigleitung h bei 7 an die Hauptleitung n2 angeschlossen ist. Man kann also durch Öffnen des Einlaßventils  $V_3$  und wahlweise Öffnen der Zweigventile  $V_1$ oder V2 zu Tests- oder Prüfzwecken Luft in die Haupt- 50 leitung  $m_2$  oder  $n_2$  einspeisen und kann so die Funktion der Pumpen MP 1, MP 2, der Manometer, der Druckreduzierventile, der Durchflußmesser usw. überprüfen. Die zwischen den Anschlußklemmen  $T_{17}$  und  $T_{18}$  sowie zwischen T27 und T28 gezeichneten gestrichelten Linien 55 symbolisieren den externen Meßgaskühler.

Aus Fig. 2 bis Fig. 5 erkennt man nun, daß die anhand von Fig. 1 erläuterten Komponenten und die sie verbindenden Meßgasleitungen in bzw. an einem kastenförmigen Gehäuse 8 untergebracht sind, welches eine Front- 60 platte 8.1 als Träger des Schaltplanes 9 und der zugehörigen Instrumente und Bedienungselemente aufweist, w lche in Fig. 2 - soweit sie im Schaltplan 9 dargestellt sind — die gleich n Bezugszeichen tragen wi in Fig. 1. Es sind die wesentlichen, d. h. die für das Verständnis der 65 durchzuführenden Schaltoperationen wesentlichen, Komponenten, Instrumente, Bedienungselemente und Meßgasleitungen im vereinfachten Schaltplan 9 darge-

stellt. Das Gehäuse 8 w ist außer der einteiligen Frontplatte 8.1 zwei übereinander angeordnete 19 Zoll-Einschubeinheiten mit j einer oberen und unteren Rückwand 8.21 bzw. 8.22 auf (vergleich Fig. 3), wobei sich der Gehäusemantel der ober n Einschubeinheit 10 aus den beiden Seitenwandteilen 10a, 10b sowie die Deckwand 10c zusammensetzt. Die untere Einschubeinheit 11 weist dementsprechend die beiden Seitenwandteile 11a, 11b und die untere Bodenwand 11c auf, vergleiche hierzu auch die Darstellung in Fig. 5. Die Seitenwände 10a, 10b und 11a, 11b der Einschubeinheiten sind mit Flanschen 12 versehen, an denen die gemeinsame Frontplatte 8.1 festgeschraubt ist (Fig. 2 bis 4) bzw. festgeschraubt werden kann (Fig. 5). Außerdem kann man mit diesen Flanschen die Einschubeinheiten bzw. den gesamten Schrank 8 an den Trägern eines nicht dargestellten Traggestells festschrauben.

Fig. 4 und noch deutlicher Fig. 5 zeigen, daß der Innenraum des Schrankes 8 mittels abgekröpfter Seitenbleche 13a, 13b, welche an den Seitenwänden 10a, 11a bzw. 10b, 11b verschraubt sind, in mehrere Kammerräume unterteilt ist, in den größeren Kammerraum K<sub>3</sub> und in die beiden seitlichen kleineren Kammerräume  $K_1$  und  $K_2$ . Der gesamte Innenmantel des im linken Teil Anschlußklemmen  $T_{13}$  bis  $T_{16}$  und die zugehörigen Prüf- 25 der Fig. 5 ohne Frontplatte und ohne Rückwand dargestellten Schrankes 8 ist mit Wärmedämmschichten 14a, 14b, 14c, 14d ausgekleidet, wobei sich die seitlichen Wärmedämmschichten 14a, 14b außen an den Umfang der kleineren Kammerräume, d. h. an die sie begrenzenden Seitenbleche 13a bzw. 13b anschmiegen und wobei die deckseitige Wärmedämmschicht 14c an der Unterseite der Deckwand 10c angeordnet ist und die bodenseitige Wärmedämmschicht 14d auf der Innenseite der Bodenwand 11c angebracht ist. Diese Wärmedämmschichten 14a bis 14d bestehen vorzugsweise aus Keramikpapier, welches bei geringer Stärke schon einen hohen Dämmwert aufweist. Zur Wärmedämmung des grö-Beren Kammerraumes K3 nach außen ist außerdem auf der Außenseite der oberen und unteren Rückwand 8.21, 8.22 eine Kaschierung aus einer entsprechenden Wärmedämmschicht 15a bzw. 15b angeordnet, und ferner ist auf der Innenseite der Frontplatte 8.1 eine aus Fig. 4

Der größere Kammerraum  $K_3$  ist beheizt, und zwar mit dem Zweigventil V1 und 12 mit dem Zweigventil V2 45 auf eine mittlere Temperatur von etwa 75°C, wogegen die kleineren Kammerräume  $K_1$  und  $K_2$  nicht beheizt sind, sondern nur abgeschottet und wärmegedämmt gegenüber dem größeren Kammerraum K3. In ihnen herrscht deshalb Raumtemperatur von ca. 20°C. Fig. 5 zeigt eine im Grundriß rechteckförmige elektrische Heizplatte 17, die mittels Abstandshalteelementen in Form von an den Ecken eines Befestigungsrechtecks angeordneter Stehbolzen 18 starr mit der unteren Rückwand 8.22 verbunden werden kann, so daß die Heizplatte 17 bei montierter unterer Rückwand 8.22 frei innerhalb der unteren Hälfte des Kammerraumes K3 angeordnet ist und somit in alle Richtungen ihre Wärme abstrahlen kann.

erkennbare Dämmschicht 16 angebracht.

Bei fertig montiertem Gehäuse 8 sind die in Fig. 1 durch eine strichpunktierte Umrißlinie umrandeten Komponenten und Meßgasleitungen innerhalb des grö-Beren Kammerraumes K3 angeordnet und einer Lufttemperatur von ca. 75°C ausgesetzt, wogegen die im unteren Teil d r Fig. 1 gestrichelt umrandeten Komponenten und Meßgasleitungen, also insbes ndere di Durchflußmesser DM 1 und DM 2 mit ihren zugehörigen Meßgasleitungen, in d n kleineren Kammerräumen K1 und K2 angeordnet und von jeweils auf Raumt mperatur befindlichen Luftvolumina umgeb n sind.

Fig. 3 bis 5 zeigen nun, daß die obere Rückwand 8.21 in Anschlußfeld für die Armaturen externer, beheizter Meßgasleitungen und zugehöriger Heizkabel in Form einer gesondert n, an der Rückwand 8.21 arreti rbaren äußeren Anschlußplatine 19 aufweist. Dabei dienen die fünf größeren Fensteröffnungen in Form von Bohrungen 20 zum Hindurchführen der beheizten (nicht dargestellten) Meßgasleitungen, und zwar wird in ihnen jeweils eine Stopfbuchsverschraubung für die Meßgaslei- 10 tungen angebracht, so daß sich an den Durchführstellen keine Kältebrücken ergeben können. Die vier im Durchmesser kleineren Bohrungen 21 dienen als Durchführungen für die Heizkabel, wobei die wendelförmige am Mantel der Meßgasleitungen angeordneten Heiz- 15 drähte mit den Meßgasleitungen zum Schrankinneren hindurchgeführt und von hier wieder zu den zugentlasteten Kabeldurchführungen innerhalb der Bohrungen 21 zurückgeführt werden. Die vier Kabeldurchführungen innerhalb der Anschlußplatine 19 sind aus Fig. 3 20 ersichtlich und mit 22 bezeichnet. Weitere zugentlastete Kabeldurchführungen 23 sind an der oberen Rückwand 8.21 beidseits eines Lochblechkastens 24 angeordnet und dienen paarweise dem elektrischen Anschluß der Pumpen und Magnetventile MP1, MV11 bzw. MP2, 25 MV21 der beiden Streckenzweige GA 1 bzw. GA 2. Die zugehörigen elektrischen Anschlußkabel sind mit 25 bezeichnet. Ein weiteres elektrisches Kabel 26 ist zu einer Anschlußbuchse 27 der Heizplatte 17 (Fig. 5) geführt. Daneben befindet sich eine Anschlußbuchse 28 für 30 eine Meßleitung 29 die zu einem Thermoelement gehört, welches die Temperatur im größeren Kammerraum K3 überwacht. Die letzterwähnten Anschlußbuchsen 27 und 28 sind in der rechten unteren Ecke der unteren Rückwand 8.22 angeordnet, wie es Fig. 3 zeigt.

Auch zu den Heizkabeldurchführungen 22 gehört ein Stopfbuchsverschraubung.

Die in Fig. 5 in der Anschlußplatine 19 angeordnete unterste Reihe von Bohrungen 30 dient zur Aufnahme von Anschlußarmaturen für Thermoelemente, welche, 40 ebenfalls fünf an der Zahl, dazu dienen, die Temperatur der ankommenden beheizten Meßgasleitungen, welche durch die Bohrungen 20 mittels Stopfbuchsverschraubung hindurchgeführt sind, zu messen und zu überwa-

Die Darstellung nach Fig. 4 zeigt, daß in Flucht mit der äußeren Anschlußplatine 19 und im Abstand al dazu eine innere Anschlußplatine 31 für die Armaturen 32 der gehäuseinternen Meßgasleitungen  $m_{11}$ ,  $m_{12}$ ;  $n_{11}$ ,  $n_{12}$  (vergleiche Fig. 1) mittels Abstandshaltebolzen 33 an der 50 das Meßgas in den Meßgaskühler GK 2 gelangt. äußeren Anschlußplatine 19 befestigt ist. Wie bereits erwähnt, werden die von außen herangeführten (nicht dargestellten) Meßgasleitungen durch die Bohrungen 20 mittels Stopfbuchsverschraubung abdichtend hindurchgeführt und mit Überwurfmuttern an ihren Enden an die 55 Anschlußarmaturen 32 der internen Meßgasleitungen gasdicht angeschraubt. Die Heizdrähte der mit den externen Meßgasleitungen integrierten Heizkabel werden von diesen Anschlußstellen der Armaturen 32 zu den zugentlasteten Kabeldurchführungen 22, wie erwähnt, 60 zurückgeführt, wo sie dann mit den externen Heizkabeln (ebenfalls nicht dargestellt) verbunden werden. An den Stellen 34 ist die äußere Anschlußplatine mit d r oberen Rückwand 8.21 fest verschraubt. Werden an d n genannten Stellen die Schraubverbindung n gelöst, so 65 kann die äußere Anschlußplatine 19 zusammen mit der inneren Anschlußplatin 31 mittels der beid Platin n starr miteinand r verbindenden Abstandshaltebolzen

33 etwa um das Stück a1 nach auß n gezogen w rden, weil die Abstandshalt bolz n 33 in ntsprechenden Führungsmuffen 35 (vergleiche Fig. 5), welche in die Durchgangsbohrungen 36 für di Abstandshaltebolzen 33 eingeschraubt sind, präzis in Schubrichtung g führt sind. Mithin kann bei geschlossener oberer Rückwand 8.21 die äußere Anschlußplatine 19 soweit abgezogen werden, daß nun die Anschlußarmaturen 32 der internen Meßgasleitungen, welche in Flucht mit den Fensteröffnungen bzw. Durchgangsbohrungen 20 liegen, von au-Ben gut zugänglich sind. Es können deshalb die notwendigen Anschlußarbeiten, nämlich Anschließen der externen Meßgasleitungen und ihrer Heizdrähte sowie Einfügen der Thermoelemente, leicht durchgeführt werden.

Innerhalb des schon erwähnten Lochblechkastens 24 (Fig. 3, Fig. 4) ist je ein (nicht ersichtlicher) Antriebsmotor für die beiden Meßgaspumpen MP1 und MP2 (vergleiche Fig. 1) angeordnet. Die Wellen der beiden Antriebsmotoren sind mit den Antriebsorganen (insbesondere Schubkurbeltriebe) der beiden Meßgaspumpen (insbesondere Membranpumpen) gekoppelt, deren Gehäuse mit der Innenseite der oberen Rückwand starr verbunden sind (nicht näher dargestellt). Der Lochblechkasten 24 dient der forcierten Wärmeabfuhr. Stattdessen wäre es auch möglich, die Gehäuse der Antriebsmotoren als Kühlrippengehäuse auszuführen.

In Fig. 3 bedeuten noch 37 Anschlußnippel für den von außen ankommende Prüfgasleitungen, 38 einen Anschlußnippel für eine Meßgasleitung, die zum Gaskühler führt. T<sub>18</sub>, T<sub>19</sub> bzw. T<sub>28</sub>, T<sub>29</sub> sind die beiden Anschlußnippelpaare der Durchflußmesser DM1 bzw. DM2 (vergleiche Fig. 1 und Fig. 2).

Die fünf Anschlußnippel 30.1 sind als Anschlußarmaturen für Thermoelemente in die Bohrungen 30 eingesetzt (vergleiche Fig. 5).

Die Temperaturmesser 39, 40, die oberhalb und unterhalb sowie mittig zu den beiden Schauglasdosen der Feinstfilter  $F_1$  und  $F_2$  angeordnet sind, dienen zur Anzeige der Temperatur im größeren Kammerraum K3, in welchen sie mit entsprechenden Temperatur-Meßelementen ragen; der Regelung der Heizleistung der Heizplatte dient das bei 28 angeschlossene (nicht ersichtliche) Thermoelement.

In Fig. 2 ist unterhalb des Schaltzeichens für den 45 schrank-externen Meßgaskühler GK 2 noch ein Schaltzeichen 41 für ein ebenfalls schrank-externes NH3-Meßgerät eingezeichnet, mit welchem der NH3-Gehalt im SO<sub>2</sub>-freien Streckenzweig GA 2 gemessen werden kann, und zwar noch im aufgeheizten Zustand, bevor

- Leerseite -

7. April 1986 Anmeldetag: 3611662 8. Oktob r 1987 Offenl gungstag: 1/6 86 P 6028 **T**11 T<sub>12</sub> **T3** T<sub>22</sub> T<sub>21</sub> m<sub>11</sub>n11 m<sub>12</sub> MV 21 MV11  $m_2$ <sub>m3</sub> n3~ MP2 MP1 太~BP1 BP2-本 m<sub>13</sub> **T23** T13 4 T14 \T<sub>24</sub> GA1 GA2 T<sub>15</sub> **MV12** MV22n<sub>6</sub>) MM21. T<sub>16</sub> T26 m<sub>16</sub>) MV13 MV23 -RV2 RV1-**MM22** MM12 T27 \<sub>T17</sub> GA (T<sub>18</sub> <sub>(</sub>T<sub>28</sub> DM1 DM2 FIG 1

Nummer: Int. Cl.<sup>4</sup>:

G 01 N 1/22



2/6

**86 P 6028** 3611662



FIG 2

86 P 6028

3611662



FIG 3



FIG 4

5/6

86 P 6028



: •



