Flight Price Prediction

Data Source: https://www.kaggle.com/datasets/shubhambathwal/flight-price-prediction

importing the primary libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

(1) Data Loading

```
flight_data=pd.read_csv('/content/drive/MyDrive/Clean_Dataset.csv')
```

```
# reading the 1st 3 rows of the dataset
flight_data.head(3)
```

	Unnamed:	airline	flight	source_city	departure_time	stops	arrival_time	desti
0	0	SpiceJet	SG- 8709	Delhi	Evening	zero	Night	
4	,	<u> </u>	SG-	5 ".				•

As the column Unnmed: 0 is not needed, it is dropped

```
flight_data=flight_data.drop(columns=['Unnamed: 0'])
```

Reading the dataset

```
# reading the 1st 3 rows of the dataset
flight_data.head(3)
```

	airline	flight	source_city	departure_time	stops	arrival_time	destination_cit
0	SpiceJet	SG- 8709	Delhi	Evening	zero	Night	Mumba
1	SpiceJet	SG- 8157	Delhi	Early_Morning	zero	Morning	Mumba
4							•

reading the last 3 rows of the dataset
flight_data.tail(3)

	airline	flight	source_city	departure_time	stops	arrival_time	destinatio
300150	Vistara	UK- 832	Chennai	Early_Morning	one	Night	Нус
300151	Vistara	UK- 828	Chennai	Early_Morning	one	Evening	Hyc

(2) Data Preprocessing

Dimensions of the dataset

Checking the data types for each column

flight_data.dtypes

```
airline object
flight object
source_city object
departure_time object
stops object
```

1/5/24, 1:11 PM

arrival_time object
destination_city object
class object
duration float64
days_left int64
price int64
dtype: object

Checking for null, missing or duplicate values in the dataset.

```
print('Null values:',flight_data.isnull().any().sum())
print('NaN values:', flight_data.isna().any().sum())
print('duplicates:',flight_data.duplicated().any().sum())

Null values: 0
NaN values: 0
duplicates: 0
```

(3) Exploratory Data Analysis

a. Checking for no.of distinct values in each column in the dataset

```
flight_data.nunique()
```

airline	ϵ
flight	1561
source_city	6
departure_time	6
stops	3
arrival_time	6
destination_city	6
class	2
duration	476
days_left	49
price	12157
dtype: int64	

b. No.of flights per class - Economy and Business

```
sns.set(font_scale=0.7)
cl={'Economy':'green','Business':'blue'}
c=sns.countplot(data=flight_data,x='class',palette=cl)
for label in c.containers:
    c.bar_label(label)
```


c. Total number of flights under each Airline and class

```
sns.set(font_scale=0.6)
plt.figure(figsize=(6,4))
col={'Economy':'red','Business':'green'}
a=sns.countplot(data=flight_data,x='airline',hue='class',palette=col)
for l in a.containers:
   a.bar_label(1)
plt.title('Flight counts per airline')
plt.xlabel('Airline')
plt.ylabel('Total number of flights')
```

Text(0, 0.5, 'Total number of flights')

- 1. Among the six airlines, only Vistara and Air India have both classes Economy and Business
- 2. And the airline Vistara has the highest no.of flights from both classes
- 3. Spicejet is the airline which has lowest no.of flights

d. Plotting No. of flights per cities and class category

```
sns.set(font_scale=0.5) # setting the font scale
plt.figure(figsize=(10,8)) # setting the chart size
plt.subplot(1,2,1) # 1st plot in the subplot
col={'Economy':'purple','Business':'green'}
ax=sns.countplot(data=flight_data,x='source_city',hue='class',palette=col)
plt.title('No.of flights per source city')
plt.xlabel('Source Cities')
plt.ylabel('No.of flights')
for label in ax.containers:
    ax.bar_label(label) # adding label to the bars
plt.subplot(1,2,2) # 2nd plot in the sub plot
col={'Economy':'purple','Business':'green'}
bx=sns.countplot(data=flight_data,x='destination_city',hue='class',palette=col)
\verb"sns.move_legend(bx,"right")"
plt.title('No.of flights per destination city')
plt.xlabel('Destination Cities')
plt.ylabel('No.of flights')
for c in bx.containers:
 bx.bar_label(c)
plt.show()
```


From both charts,

- Economy class:- Delhi has the highest number, and
- Business class:- Mumbai is the city with highest no.of flights

e. Statistical info of the dataset

flight_data.describe()

	duration	days_left	price	
count	300153.000000	300153.000000	300153.000000	ılı
mean	12.221021	26.004751	20889.660523	
std	7.191997	13.561004	22697.767366	
min	0.830000	1.000000	1105.000000	
25%	6.830000	15.000000	4783.000000	
50%	11.250000	26.000000	7425.000000	
75%	16.170000	38.000000	42521.000000	
max	49.830000	49.000000	123071.000000	

f. Viewing ticket price by each airline and class

flight_data[['airline','price','class']].sort_values(by='price',ascending=False)

	airline	price	class			
261377	Vistara	123071	Business	ılı		
216096	Vistara	117307	Business			
215859	Vistara	116562	Business			
277345	Vistara	115211	Business			
270999	Vistara	114705	Business			
204375	AirAsia	1105	Economy			
204376	GO_FIRST	1105	Economy			
206598	Indigo	1105	Economy			
206599	Indigo	1105	Economy			
205024	Indigo	1105	Economy			
300153 rows × 3 columns						

Among the various airlines, Vistara charges highest price under the business class.

g. Ticket price vs class based on different airlines

```
sns.set(font_scale=0.7)
plt.figure(figsize=(9,9))
x=sns.barplot(data=flight_data,x='class',y='price',hue='airline',errorbar=None)
for i in x.containers:
    x.bar_label(i)
plt.xlabel('Class')
plt.ylabel('Ticket Price')
plt.title('Flight ticket price vs class based on each airline')
```

Text(0.5, 1.0, 'Flight ticket price vs class based on each airline')

The ticket price charged by Vistara is the highest under both classes, and AirAsia offers the lowest under Economy class.

h. Plotting No. of flights per class under different departure and arrival time.

```
sns.set(font_scale=0.7)
plt.figure(figsize=(8,6))

plt.subplot(2,1,1)
cl=sns.countplot(data=flight_data,x='departure_time',hue='class')
for l in cl.containers:
    cl.bar_label(1)

plt.subplot(2,1,2)
cl=sns.countplot(data=flight_data,x='arrival_time',hue='class')
for l in cl.containers:
    cl.bar_label(1)
```


This graph shows that, more morning flights are departed as well as more night flights arrive at the airport.

i. Analysing ticket price vs destination and source cities base on each class

```
sns.set(font_scale=0.7)
plt.figure(figsize=(8,6))

plt.subplot(2,1,1)
cl=sns.barplot(data=flight_data,x='destination_city',y='price',hue='class')
for l in cl.containers:
    cl.bar_label(1)

plt.subplot(2,1,2)
cl=sns.barplot(data=flight_data,x='source_city',y='price',hue='class')
for l in cl.containers:
    cl.bar_label(1)
```


Kolkata's flight is the costliest

j. Analysing duration of flights

flight_data['duration'].describe()

count	300153.000000	
mean	12.221021	
std	7.191997	
min	0.830000	
25%	6.830000	
50%	11.250000	
75%	16.170000	
max	49.830000	
Name.	duration dtyne:	f1

Name: duration, dtype: float64

(4) Feature Engineering

1. Checking for outliers in price column

sns.boxplot(data=flight_data,x='price')

