Tut 7 & Review

Jingyu Li

Definition. $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

Claim:
$$a \equiv b \pmod{n} \Leftrightarrow a \mod n = b \mod n$$

Theorem. If gcd(k,n)=1, then have k' such that $k \cdot k' \equiv 1 \pmod{n}$,

where k' is an inverse of k (mod n).

Theorem. Let p be a prime and gcd(k,p) = 1. Then $k^{p-1} \equiv 1 \pmod{p}.$

Theorem. p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

$$\begin{array}{l} x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{array}$$
Set $x = 5 \cdot 7 \cdot a + 3 \cdot 7 \cdot b + 3 \cdot 5 \cdot c$

Then the first (second, third) term is determined by the first (second, third) equation.

Now we just need to solve the following equations separately.

$$35a \equiv 2 \pmod{3}$$
, $21b \equiv 4 \pmod{5}$, $15c \equiv 6 \pmod{7}$.
 $\Rightarrow 2a \equiv 2 \pmod{3}$, $b \equiv 4 \pmod{5}$, $c \equiv 6 \pmod{7}$.
 $\Rightarrow a \equiv 1 \pmod{3}$, $b \equiv 4 \pmod{5}$, $c \equiv 6 \pmod{7}$.

Then $x = 35a + 21b + 15c \equiv 35\cdot 1 + 21\cdot 4 + 15\cdot 6 \pmod{3\cdot 5\cdot 7} \equiv 209 \pmod{105}$.

Since Han Xin (韓信) knew that $1000 \le x \le 1100$, he concluded that x = 1049.

faster method.

 $x = 3a + 2 (a \in 2)$ $3a + 2 = 4 \pmod{5}$ $3a = 2 \pmod{5}$ $2 - 3a = 2 - 2 \pmod{5}$ $a = 4 \pmod{5}$ $a = 4 \pmod{5}$ $a = 5b + 4 \pmod{5}$ $a = 5b + 4 \pmod{5}$ $a = 3a + 2 = 3(5b + 4) + 2 = \cdots$

Question

Find the smallest positive three consecutive integers such that they are

divisible by 4,9,25 respectively. (a-1) (a-2)Assume the largest int a. b=4+9c (CEZ)

 $\begin{array}{l}
\alpha \equiv 0 \pmod{25} \\
\alpha \equiv 1 \pmod{9} \\
\alpha \equiv 2 \pmod{4}
\end{array}$ a=25(4+9c)=100+225c (000+275C=2 (mod 4) C=2 (mod 4)

a=25b (bEZ) C=4d+2[dez) 25b=1(mod9)=)7b=1(mod9)

a=100+22514d+2) 7.45=4(mod9) => b=4(mod9) 900d +550 (dez)

$$\begin{cases}
\alpha \equiv 0 \pmod{25} \\
\alpha \equiv 1 \pmod{9} \\
\alpha \equiv 2 \pmod{4}
\end{cases}$$

(1)
$$362 \equiv 0 \pmod{3}$$
 (2) $225x \equiv 2 \pmod{4}$
 $2 \equiv 0 \pmod{25}$ $x \equiv 2 \pmod{4}$

(2)
$$225X = 2 \pmod{4}$$

 $x = 2 \pmod{4}$

(3)
$$\frac{1009}{9} = (cmod 9)$$

 $y = 1 \pmod{9}$
 $a = (2x5 \times 2 + x5 \times 4 \times 1 + 9 \times 4 \times 0) - 100$

$$\alpha = 530 + 9000$$
 If

Prove that a number is divisible by 11 if and only if the sum of its digits, where every other one is negated, is divisible by 11.

Example:

$$3-7+2-7+3-7+6-1+2-6+1=-11$$

 $37273761261=11\times3388523751$

121

Assume
$$n = \frac{1}{4} \frac$$

Question

Let $a \in \mathbb{Z}^+$, $b \in \mathbb{Z}^+$ be such that $\gcd(a,b) = 1$. Prove that there exists $n \in \mathbb{Z}^+$ such that $a^n \equiv 1 \pmod{b}$.

$$gcd = SPC \quad Satb = 1 \quad Sa-1 = =tb$$
Lemma. If $a = c \pmod{n}$, and $b = d \pmod{n}$ then $\exists S.t \in \mathbb{Z}$, $\circ \quad Sa = 1 \pmod{b}$

$$ab = cd \pmod{n}.$$

If $a \equiv c \pmod{n}$, and if $m \ge 0$ is an integer, then (i) $a^m \equiv c^m \pmod{n}$,

pick
$$n=k-j$$
 $(S^n \equiv 1 \text{imod } b)$ $S^{k,j} = 1 \text{imod } b)$

$$\alpha^n \equiv \alpha^n \cdot 1^n \equiv \alpha^n \cdot S^n \text{ (mod } b)$$

$$(S\alpha)^n \equiv 1 \text{ (mod } b)$$

$$\alpha^n \equiv 1 \text{ (mod } b)$$

$$\beta^n \equiv 1 \text{ (mod } b)$$

$$\beta^n \equiv 1 \text{ (mod } b)$$

b
$$S^{rj}$$
- I
 S^{rj} = $I(mod b)$
 $Idea$
 $S^{n}a^{n}$ = $I(mod b)$
 $I(mod b)$

Question

Let $a \in \mathbb{Z}^+$, $b \in \mathbb{Z}^+$ be such that gcd(a,b) = 1. Prove that there exists $n \in \mathbb{Z}^+$ such that $a^n \equiv 1 \pmod{b}$.

There are only b results for (a' mod b) (ieZ⁺).

$$\exists k, j \in Z^{+}, k \ge j$$
:
 $\alpha^{k} \equiv \alpha^{j} \pmod{b}$
 $\alpha^{i} \cdot \alpha^{kj} \equiv \alpha^{j} \pmod{b}$ (gcd(α^{j}, b)=1)
 $\alpha^{kj} \equiv 1 \pmod{b}$
 $n = |k-j|$

What we have learned...

roll 90+

- 1. Logic and Set
- 2. Proof I (basic, Invariant method, WOP)
- 3. Proof II (Mathematical induction)
- 4. Recursion
- 5. Greatest common divisors
- 6. Modular arithmetic (CRT)

lec. (tut. FQ. asg)
real problems

Summarize

1. Logic and Set

(i)
$$\begin{array}{c} (p \lor q) \to \neg r \\ p \to \neg q \\ \neg q \to p \\ \hline \vdots \quad \neg r \end{array}$$

valid/invalid

2. (18 points) Suppose that you are given two "NOT"s, two "AND"s, and two "OR"s of the following electronic components:

Type of Gate	Symbolic Representation	Action		
NOT		Input		Output
	P NOT R	P		R
		1		0
		0		1
AND	P AND R	Input		Outpu
		P	Q	R
		1.	1	1
		1	0	0
		0	-1	0
		0	0	0
OR	P OR R	Input		Outpu
		P	Q	R
		1	1	1
	0 000	1	0	- 1
		0	1	- 1
		0	0	0

Ρ	Q	R	output	
1	1	1	0	
1	1	0	1	
1	0	1	1 1	
1	0	0	0	
0	1	1	0	
0	1	0	1	
0	0	1	1	
0	0	0	1	

logical formula

2. Proof I (basic, Invariant method, WOP)

contradiction

2. (12 points) For all integers $n \geq 4$, use Well Ordering Principle to prove that

Initial configuration

Target configuration

3. Proof II (Mathematical induction)

6. (18 points) A confectionery company is designing an assorted pack of confectionery consisting of chocolate (15g/bag), marshmallow (6g/bag) and toffee (10g/bag). Show that for any pack with an integer weight at least 61g (i.e., 61g, 62g, 63g, etc), there is always a way to mix these three kinds of confectionery so that the pack contains some (≥ 1 bag) of each confectionery.

normal/strong

4. Recursion — lec slides

- **3.** (19 points) Consider the set of all strings of a's, b's and c's. Let r_n be the number of strings of a's, b's and c's of length n that do not contain the patterns aa and ab. $(n \in \mathbb{Z}^+)$
 - (a) Find the values of r_1, r_2, r_3 by enumerating the strings. [6 marks]
 - (b) Find the recurrence relation for $\{r_n\}$. [5 marks]
 - (c) Find the closed form for r_n . [8 marks]

$$\hat{\Omega}_{n} = 3\Omega_{n} - 2\Omega_{n} - 2$$

$$\chi^{2} = 3\chi - 2$$

$$\Omega_{n} = C_{1} + D_{1} + D_{2} + 2$$

5. Greatest common divisors

proof = gcd(a.b)=1 a/mb/n => ab/n

1. (11 points) Find
$$gcd(2019! + 1, 2020! + 1)$$
.

6. Modular arithmetic (CRT)

4. (24 points) Find the smallest positive integer x satisfying the following:

$$\begin{cases} 95x \equiv 5 \pmod{40} \\ 21x \equiv -9 \pmod{60} \\ 2x \equiv 152 \pmod{75} \end{cases}$$