Probability questions

1.a)
$$p(identical\ twin/\ twin) = \frac{p(identical\cap twin)}{p(twin)} = \frac{\frac{5}{17}}{\frac{5}{17} + \frac{1}{2} * \frac{12}{17}} = \frac{5}{11}$$

1.b)
$$p(bowl\ 1/chocolate) = \frac{p(bowl\ 1\cap chocolate)}{p(chocolate)} = \frac{\frac{3}{8}}{\frac{5}{8}} = \frac{3}{5} = 0.6$$

2

$$p((yellow \cap 1994)/1 \text{ yellow and } 1 \text{ green}) = \frac{p((yellow \cap 1994) \cap (1 \text{ yellow and } 1 \text{ green}))}{p(1 \text{ yellow and } 1 \text{ green})} = \frac{\frac{1}{2} * \frac{2}{10} + \frac{1}{2} * \frac{2}{10}}{\frac{1}{2} * \frac{1}{10} + \frac{1}{2} * \frac{2}{10} + \frac{1}{2} * \frac{2}{10} + \frac{1}{2} * \frac{1}{10}}{\frac{1}{2} * \frac{1}{10} + \frac{1}{2} * \frac{2}{10} + \frac{1}{2} * \frac{2}{10} + \frac{1}{2} * \frac{1}{100}} = \frac{5}{8} = 0.625$$

3.a)
$$p(swine\ flu/\ positive) = \frac{p(swine\ flu\cap\ positive)}{p(positive)} = \frac{\frac{1}{10^4}*0.99}{\frac{1}{10^4}*0.99 + \frac{9999}{10^4}*0.01} = \frac{1}{102}$$

3.b)

$$p(swine\ flu/\ positive\ after\ thail and)\ = \frac{p(swine\ flu\cap\ positive\ after\ thail and)}{p(positive\ after\ thail and)}\ = \ \frac{\frac{1}{200}*0.99}{\frac{1}{200}*0.99 + \frac{199}{200}*0.01}\ = \ \frac{99}{298}$$

4) is the same question as 1.a

Questions about random variables

1)

X	+ 6\$	- 3\$	
P(X)	1 3	3	

$$E(X) = 6 * \frac{1}{3} - 3 * \frac{2}{3} = 0$$
\$

2)

X	+ 5\$	0	- 6\$
P(X)	<u>6</u>	<u>4</u>	15
	25	25	25

$$E(X) = 5 * \frac{6}{25} + 0 * \frac{4}{25} - 6 * \frac{15}{25} = -1.68$$

3)
$$mean = \overline{x} = 8 * 0.4 = 3.2$$

$$S = \sqrt{\frac{0.4(1-0.4)}{8}} = \sqrt{\frac{0.24}{8}} = \frac{\sqrt{3}}{10}$$

4)
$$\bar{x} = 26$$
, $\sigma = 2$

$$p(26 < x < 30) = p(x < 30) - p(x < 26) = 0.97725 - 0.5 = 0.47725$$

5)
$$p(x > 3) = \frac{2*0.4}{2} = 0.4$$

6)
$$p(3 \text{ of 4 have children}) = {4 \choose 3} * (0.6)^3 * (0.4) = 0.3456$$

7)

X	-10	-5	0	5	10
P(X)	0.1	0.35	0.1	0.35	0.1

$$E(X) = (-10) * 0.1 - 5 * 0.35 + 0 * 0.1 + 5 * 0.35 + 10 * 0.1 = 0$$