Towards Better Healthcare with Als Made for Human Validation

Finale Doshi-Velez

In collaboration with the absolutely wonderful

DtAK and DtAK alums: Weiwei Pan, Sonali Parbhoo, Melanie Pradier, Joe Futoma, Michael Hughes, Madhi Pakdaman, Ike Lage, Andrew Ross, Yaniv Yacoby, Jiayu Yao, Beau Coker, Anna Li, Sarah Rathnam, Abhishek Sharma, Eura Shin, Omer Gottesman, Muhammad Arjumand Masood; **Collaborators**: Roy Perlis, Tom McCoy, Taylor Killian, Soumya Ghosh, Xuefeng Peng, David Wihl, Yi Ding, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo Celi, Aniruddh Raghu, Yao Liu, Emma Brunskill, Sam Gershman, Been Kim, Menaka Narayanan, Emily Chen, Jeffrey He, Ofra Amir, and the CS282 2017; **Admins**: Meg Hastings, Michaela Kapp, Jenny Mileski, Ashley Bens, Annalee Mendez, Jill Sussery, Jasmin Ware, Joanne Bourgeois... and **many, many more** supporters and students at SEAS and beyond!

Limited fields; entry errors; patients come when sick; clinician goals unknown

Limited fields; entry errors; patients come when sick; clinician goals unknown What, how to share so humans make good decisions in risky situations

Limited fields; entry errors; patients come when sick; clinician goals unknown What, how to share so humans make good decisions in risky situations

Not all relevant info recorded

Example: Optimizing HIV treatments

Goal: Manage HIV, avoid resistance

Example: Optimizing HIV treatments

Goal: Manage HIV, avoid resistance

Our modeling insight: Combine models with complementary strengths

Patients in clusters may be best modeled by their neighbors

Patients without neighbors may be better modeled with a model

Step 2: **Optimize** Combination Policy

Neighbor Action

Model Action

Actual Action

Patient, Cohort Statistics

Step 3: Validate (It works!!)

- 32,960 patients from EU Resist Database; hold out 3,000 for testing.
- Observations: CD4s, viral loads, mutations
- Actions: 312 drug combos (from 20 drugs)

Approach	DR Reward
Random Policy	-7.31 ± 3.72
Neighbor Policy	9.35 ± 2.61
Model-Based Policy	3.37 ± 2.15
Policy-Mixture Policy	11.52 ± 1.31
Model-Mixture Policy	12.47 ± 1.38

^{*}Mixture chooses POMDP about 30% of the time.

Extension: Transfer from EU cohort to South African cohort

We identified when policies in well-curated EU cohorts to could help patients in less-well curated SA cohorts.

Type	Method	DR	IS	WIS				
Behaviour Policy	5.02 ± 1.18							
Local	Kernel	3.56 ± 1.42	1.27 ± 1.14	1.80 ± 1.07				
	CEIB	3.29 ± 1.13	3.80 ± 2.41	3.76 ± 2.19				
Transfer	Kernel	4.17 ± 1.4	4.18 ± 1.20	4.16 ± 1.71				
	CEIB	6.29 ± 0.14	5.17 ± 0.38	5.27 ± 0.29				
	Mixture-of-Experts	5.28 ± 0.37	3.42 ± 1.39	4.81 ± 1.25				
Local + Transfer	Ours	8.96 ± 0.39	$\textbf{10.64} \pm \textbf{1.2}$	10.62 ± 1.67				

	Physician	Kernel	DQN	MoE_{V_d,Q_d}	MoE_{V_b,Q_b}
non-recurrent encoded	3.76	3.73	4.06	3.93	4.31
recurrent encoded	3.76	4.46	4.23	5.03	5.72

	Physician	Kernel	DQN	MoE_{V_d,Q_d}	MoE_{V_b,Q_b}
non-recurrent encoded	3.76	3.73	4.06	3.93	4.31
recurrent encoded	3.76	4.46	4.23	5.03	5.72

	Physician	Kernel	DQN	MoE_{V_d,Q_d}	MoE_{V_b,Q_b}
non-recurrent encoded	3.76	3.73	4.06	3.93	4.31
recurrent encoded	3.76	4.46	4.23	5.03	5.72

Batch Validation Roadmap

Batch Validation Roadmap

cannot tell you more.

Provide options when the statistics cannot tell you more

Provide options when the statistics cannot tell you more

Displaying Diverse Alternatives

If policies can't be statistically differentiated, give plausible alternatives.

Providing Options

If we can't identify the optimal strategy, suggest some reasonable ones

 $\Pi^* = \operatorname{argmin} \, \mathscr{L}_{\underline{Q}}(\pi_{beh}, \Pi) + \lambda \mathscr{L}_{\underline{D}}(\Pi), \ \, \text{s.t.} \, \pi = \operatorname{safe}_{\pi_{beh}}(\pi), \forall \pi \in \Pi$

A collection of policies π from some class.

Quality: How good is each policy? 1

Diversity:
How
different are
the
policies?
(Use KL)

1

Safety:
Forbid rare
and unseen
actions
(hard
constraint)

Providing Options

If we can't identify the optimal strategy, suggest some reasonable ones (Futoma et al. 2020)

		Setting			Behavior: 37.90	Quantita	tive Metrics		
_	Diversity Term?	Safety Mask?	Quality Term?	# Kept Agents	OPE Est. Value	ESS	Difference from Beh.	Diversity	% Rare Actions
Diverse	Yes	Yes	Yes	3	35.43 ± 1.45	222 ± 102	0.58 ± 0.06	2.05 ± 0.23	0.0 ± 0.0
and Safe	Yes	Yes	No	4	35.86 ± 1.51	311 ± 181	1.39 ± 0.47	3.27 ± 0.00	0.0 ± 0.0
Diverse,	Yes	No	Yes	2	41.74 ± 0.36	235 ± 146	0.92 ± 0.32	2.90 ± 0.00	18.3 ± 7.8
not Safe	Yes	No	No	0	-	-	-	-	-
Safe, not Diverse	No	Yes	Yes	4	36.74 ± 0.08	284 ± 27	0.06 ± 0.00	0.00 ± 0.00	0.0 ± 0.0
Not Safe or Diverse	No	No	Yes	0	-	-	•		

Providing Options

If we can't identify the optimal strategy, suggest some reasonable ones

Batch Validation Roadmap

Finding Errors: Do Explanations Help?

Patient Details:

Susan is a 31 year old woman who is single and works part time. She has a history of diabetes, arrhythmia and hypertensive heart disease. She presents with 14 months of depressed mood. Current medications include amoxicillin, and prior treatment with Paroxetine was ineffective.

Diabetes

High blood pressure

Prior SSRI non-repsonse

OT Prolongation

Contribution

0.16

Patient Details:

Thomas is a 38 year old man who is single and works full time. He has a history of diabetes, hypertensive heart disease, and arrhythmia. He presents with 10 months of depressed mood. Current medications include amoxicillin, and prior treatment with Paroxetine was ineffective.

Top 5 therapies with highest probability for stability:

<u>Therapy</u>	Predicted Stability*		Predicted Dropout Risk**	
Duloxetine		.77		.04
Fluoxetine		.69		.07
Citalopram		.65		.07
Escitalopram		.65		.07
Bupropion		.51		.18

^{*}Stability: continued use of the same medication for at least 3 months

Why are these therapies being recommended?

The following **rules** had the highest contributions to system.16's predictions:

- 1. If concern for QT prolongation, favor Sertraline, avoid Citalopram
- 2. If avoiding weight gain, favor weight loss, favor Bupropion, avoid Mirtazapine
- 3. If concern for increased blood pressure, avoid SNRI's
- 4. If lack of response to Paroxetine, avoid SSRI's

^{**}Dropout: early treatment discontinuation following prescription

Results

- Accuracy increases if the recommendation is correct, decreases if not correct.
- Some awareness of helpfulness w.r.t. the correctness of the explanation.

Within explanations: helpfulness, accuracy anti-correlated

Recommendation incorrect

Recommendation correct

Batch Validation Roadmap

Can We Understand How People Process Examples?

Example: List some gridworld actions

Given:

Test: What happens here?

Can We Understand How People Process Examples?

Example: List some HIV actions

Given:

Test: What happens here?

Finding: Humans use different methods in different scenarios

Batch Validation Roadmap

Small, Interpretable Models

Start: generative model (diseases create data).

Mixture Model

Topic Model

Partially-Observable³⁵ Markov Decision Process

Small, Interpretable Models

- Start: generative model (diseases create data).
- Train to be good at predictions.

predicts outcome

Patient cluster

Mixture Model

Topic Model

Partially-Observable³⁶ Markov Decision Process

Formalizing this notion

Issue: Dimensionality of data, output

Issue: Dimensionality of data, output

Previous Work Claim: Label replication will give good performance

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

A reasonable solution...

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

Note: fitting data distributions isn't best!

A little math

Joint likelihood:

$$p(x,y|\phi,\eta) = \prod_{n} \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n}) p(\theta_{n})$$

Joint likelihood with replication:

$$p(x,y|\phi,\eta) = \prod_{n} \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n})^{R} p(\theta_{n})$$

A little math

Joint likelihood:

$$p(x,y|\phi,\eta) = \prod_{n} \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n}) p(\theta_{n})$$

Joint likelihood with replication:

$$p(x,y|\phi,\eta) = \prod_{n} \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n})^{R} p(\theta_{n})$$

When R is large, large pressure for θ_n to be a perfect predictor of y_n ... but no pressure for x_n to be a predictor of y_n ...

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

Replicating y does not capture the fact that we care about p(y|x) but not p(x|y).

Thought experiment: Let's fit a discriminative mixture of two Gaussians to the following:

Our Solution: Task-Constrained Objective

$$min_{\phi,\eta} - \sum_{n} \log p(x_n | \phi)$$
 Explain the data the best you can

Subject to

$$-\sum_{n} \log p(y_n|x_n,\phi,\eta) < L \qquad \qquad \begin{array}{|c|c|c|c|} \hline & \text{While making} \\ & \text{good predictions} \\ \hline \end{array}$$

Different than label replication!

Label replication:

$$min_{\phi,\eta} - \sum_{n} \log \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n})^{R} p(\theta_{n})$$

Prediction-Constrained Objective

$$\min_{\phi,\eta} - \sum_{n} \log \int_{\theta_{n}} p(x_{n}|\theta_{n},\phi) p(\theta_{n})$$

$$+ \lambda \log \int_{\theta_{n}} p(y_{n}|\theta_{n},\eta) p(\theta_{n}|x_{n})$$

Our task-constrained objective replicates the target task, not the target.

Application: Antidepressant Selection with Small Topic Models

- Inputs: 7,291 common health record codes
- Actions: 10 common antidepressants
- Goal: Identify drugs that will work (stable over 90 days) for each person
- Approach: Reduce dimensionality with topic models, use those topics to recommend actions.

Application: Antidepressant Selection with Small Topic Models

Application: Antidepressant Selection with Small Topic Models

Decision only

BPsLDA +7.7

- 0.60 nortriptyline
- 0.27 nonspecific abnormal findings
- 0.21 other specified local infection
- 0.20 embrionic cyst of the fallopian tube
- 0.18 application of the intervertebrea...
- 0.16 other malignant neoplasm...
- 0.15 amoxicilllin/clarithromycin
- 0.15 need for prophylactic vaccine

Data only

Gibbs -0.6

- 1.0000 bipolar, depressive
- 0.9999 bipolar, unspecified
- 0.9999 schizo-affective schizophrenia
- 0.9999 bipolar, mixed
- 0.9998 electroconvulsive therapy
- 0.9998 anesthesia for ECT
- 0.9997 residual schizophrenia
- 0.9996 other electroshock therapy

Both

PCLDA +3.8

- 0.99 migraine, unspecified, without...
- 0.99 other malaise and fatigue
- 0.99 common migraine...
- 0.99 sumatriptan
- 0.99 asa/butalbital/caffeine
- 0.99 zolmitriptan
- 0.99 migraine, unspecified, with..,
- 0.99 classical migraine, without...
- 0.99 classical migraine, with...

Application: Hypotension Management with Small POMDPs

- Inputs: 9 vitals/labs over 72 hours in ICU for 10K stays
- Actions: discretized fluid, vasopressor administration
- Goal: keep blood pressure in range
- Approach: Learn a small, discrete POMDP to recommend actions.

```
Objective = LogLikelihood( data w.r.t. m )
+ \lambdaOffPolicyValueEstimate( \pi* w.r.t. m )
```

Application: Hypotension Management with Small POMDPs

And only 5 discrete states! Example in the story had 128 continuous states.

Application: Hypotension Management with Small POMDPs

£ 0.075 0.050

Efficient Inference Insight

Label replication:

$$min_{\phi,\eta} - \sum_{n} \log \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n})^{R} p(\theta_{n})$$

Prediction-Constrained Objective:

$$min_{\phi,\eta} - \sum_{n} \log p(x_n|\phi) + \lambda \log p(y_n|x_n,\phi,\eta)$$

No Model:(

Prediction-Focused Objective:

$$\begin{aligned} \min_{\phi,\eta} - \sum_{n} (1-p) \log p(x_{n}|\pi) \\ + p \log p(x_{n}|\phi) \\ + E[\log p(y_{n}|x_{n},\phi,\eta)] \end{aligned}$$

Ren et al. AISTASTS 2020

Efficient Inference Insight

Label replication:

$$min_{\phi,\eta} - \sum_{n} \log \int_{\theta_{n}} p(x_{n}|\phi,\theta_{n}) p(y_{n}|\eta,\theta_{n})^{R} p(\theta_{n})$$

Prediction-Constrained Objective:

$$min_{\phi,\eta} - \sum_{n} \log p(x_n|\phi) + \lambda \log p(y_n|x_n,\phi,\eta)$$

No Model:(

Prediction-Focused Objective:

$$\begin{aligned} \min_{\phi,\eta} - \sum_{n} (1-p) \log p(x_{n}|\pi) \\ + p \log p(x_{n}|\phi) \\ + E[\log p(y_{n}|x_{n},\phi,\eta)] \end{aligned}$$

Ren et al. AISTASTS 2020

More AI to make small models: Models Close to Decision Trees

More AI to make small models: Optimize only when Doctors Disagree

Just two states to optimize; we can build a tiny 2-state MDP!

More AI to make small models: Optimize only when Doctors Disagree

Batch Validation Roadmap

Putting them together

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Setting: Estimating the value of a proposed treatment policy.

Real Data Example (MIMIC)

Batch Validation Roadmap Human-Focused Statistically-Focused (Interpretability) Off-Policy Sensitivity and Local Global **Evaluation** (by feature) Robustness Recognize the limits By Rules By Example

Putting them together

For RL to make an impact in healthcare (and other areas), it's important to take a holistic approach to validation from the start.

For RL to make an impact in healthcare (and other areas), it's important to take a holistic approach to validation from the start.

Would not be possible without: **DtAK and DtAK alums**: Weiwei Pan, Sonali Parbhoo, Melanie Pradier, Joe Futoma, Michael Hughes, Madhi Pakdaman, Ike Lage, Andrew Ross, Yaniv Yacoby, Jiayu Yao, Beau Coker, Anna Li, Sarah Rathnam, Abhishek Sharma, Eura Shin, Omer Gottesman, Muhammad Arjumand Masood; **Collaborators**: Roy Perlis, Tom McCoy, Taylor Killian, Soumya Ghosh, Xuefeng Peng, David Wihl, Yi Ding, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo Celi, Aniruddh Raghu, Yao Liu, Emma Brunskill, Sam Gershman, Been Kim, Menaka Narayanan, Emily Chen, Jeffrey He, Ofra Amir, and the CS282 2017; **Admins**: Meg Hastings, Michaela Kapp, Jenny Mileski, Ashley Bens, Annalee Mendez, Jill Sussery, Jasmin Ware, Joanne Bourgeois... and **many, many more** supporters and students at SEAS and beyond!

Batch Validation Roadmap

Off-Policy Evaluation

Core question: Given data collected under some behavior policy $\pi_{_{\text{b}}}$, can we estimate the value of some other evaluation policy $\pi_{_{\text{e}}}$?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Off-Policy Evaluation

Core question: Given data collected under some behavior policy $\pi_{_{\text{b}}}$, can we estimate the value of some other evaluation policy $\pi_{_{\text{e}}}$?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

One way to ameliorate the issue: "stitch" trajectories with zero weight to get more non-zero weight trajectories.

76

(Sussex et al, ICMLWS 2018)

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

One way to ameliorate the issue: "stitch" trajectories with zero weight to get more non-zero weight trajectories.

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

Off-Policy Evaluation

Core question: Given data collected under some behavior policy $\pi_{_{\text{b}}}$, can we estimate the value of some other evaluation policy $\pi_{_{\text{e}}}$?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Better Models: Designed for Evaluation

Main objective: find a model that will minimize error in individual treatment effects:

$$-(E_{s_0}[V^{\pi}(s_0)]-E_{s_0}[\hat{V}^{\pi}(s_0)])^2$$
 $E_{s_0}[(V^{\pi}(s_0)-\hat{V}^{\pi}(s_0))^2]$

where the value function is estimated via trajectories from an approximated model M. Question: Can we do better than just optimizing M for p(M|data)?

Show this can be optimized via a transfer-learning type objective:

$$L(M) = \sum_{nt} l(M,n,t) + \sum_{nt} \rho_{nt} l(M,n,t) + \dots$$
 "on-policy" loss "reweighted for π_{e} " loss

Better Models: Designed for Evaluation

Main objective: find a model that will minimize error in individual treatment effects:

12.31

31.38

Mean

Individual

$$-(E_{s_0}[V^{\pi}(s_0)]-E_{s_0}[\hat{V}^{\pi}(s_0)])^2 \ E_{s_0}[(V^{\pi}(s_0)-\hat{V}^{\pi}(s_0))^2]$$

where the value approximated moonth optimizing M for

Show this can be

L(M

Long Horizon	RepBM	DR	AM	DR(AM)	AM(π)	MRDR Q	MRDR	IS
Mean Individual	0.4121 1.033	1.359	0.7535 1.313	1.786	41.80 47.63	151.1 151.9	202	194.5
Short Horizon	RepBM	DR	AM	DR(AM)	AM(π)	MRDR Q	MRDR	IS
Mean Individual	0.07836 0.4811	0.02081	0.1254 0.5506	0.0235	0.1233 0.5974	3.013 3.823	0.258	2.86
Table 2: Root MSE for Mountain Car								

141.6

72.61

79.46

135.4

138.1

172.7

149.7

17.15

36.36

135.8

Combining Models

We use RL to bound the long-term accuracy of the value estimate.

Combining Models

We use RL to bound the long-term accuracy of the value estimate.

Bound on the Quality

$$|g_T - \hat{g}_T| \le L_r \sum_{t=0}^T \gamma^t \sum_{t'=0}^{t-1} (L_t)^{t'} \varepsilon_t (t - t' - 1) + \sum_{t=0}^T \gamma^t \varepsilon_r (t)$$

Total return error

Error due to state estimation

Error due to reward estimation

 $L_{t/r}$ - Lipschitz constants of transition/reward functions

 $arepsilon_{t/r}(t)$ - Bound on model errors for transition/reward at time t

T - Time horizon

 γ - Reward discount factor

 $g_T \equiv \sum_{t=0}^T \gamma^t \, r(t)$ - Return over entire trajectory

Toy Example

Possible actions

Example with HIV Simulator

We use RL to bound the long-term accuracy of the value estimate.

Reward Functions

Helping form reward functions

Reward design is a challenging task for humans. RL can

• Extract interpretable rewards that correspond to current behavior for humans to modify (Srinivasan et al. 2020).

Helping form reward functions

Reward design is a challenging task for humans. RL can

- Extract interpretable rewards that correspond to current behavior for humans to modify (Srinivasan et al. 2020).
- Identify rewards that are consistent with human behavior (Prasad et al. 2020).

Helping form reward functions

Reward design is a challenging task for humans. RL can

- Extract interpretable rewards that correspond to current behavior for humans to modify (Srinivasan et al. 2020).
- Identify rewards that are consistent with human behavior (Prasad et al. 2020).

Combining

Demonstration on Simple Domains: Influence Depends on Density

Demonstration on Simple Domains: Influence Depends on Rewards

Four Main Cases (with a 5D cancer simulator)

Stats can determine

GOOD: No transitions are influential!

BAD: Influential transition is a "dead end:" no nearest neighbors to continue

Needs a human

GOOD: Influential transition is typical

BAD: Influential transition is not typical

Local Checks

Experts Check Specific Choices

• Example (HIV): check against standard of care

	NNRTIs	NRTIs	PIs	Fusion/Entry Inhibitors
First-line therapy	12 157	3 054	774	128
Second-line therapy	4 068	8 764	6082	1 042

Example (HIV): Ask panel of experts

	Clinician 1	Clinician 2	Clinician 3
Agree	18	15	13
Partially Agree	10	11	13
Disagree	2	4	4

Experts Check Specific Choices

Example (HIV): check against standard of care

	NNRTIs	NRTIs	PIs	Fusion/Entry Inhibitors
First-line therapy	12 157	3 054	774	128
Second-line therapy	4 068	8 764	6082	1 042

Example (HIV)

Agree
Partially Agr
Disagree

Concern: How do you know if you've checked enough examples?

Maia's Study

Baseline Approach: Summary Only

Patient Details:

Patricia is a 31 year old woman who is married and works full time. She has a history of seizure disorder and lack of appetite, and presents with 11 months of depressed mood. Current medications include Omeprazole and Celecoxib. Prior treatment with Citalopram did not cause a reduction of depression symptoms.

Baseline Approach: Summary + Rec

Patient Details:

Jennifer is a 40 year old woman who is married and works from home. She is diabetic and has a history of hypertensive heart disease and arrhythmia. She presents with 10 months of depressed mood. Current medications include amoxicillin, and prior treatment with Paroxetine had no effect on depressed mood.

Approach: Placebo Explanation

Patient Details:

David is a 43 year old man who is widowed and works full time. He has a history of diabetes, arrhythmia and hypertensive heart disease. He presents with 14 months of depressed mood. Current medications include amoxicillin, and prior treatment with Paroxetine was ineffective.

Discovery: Last decade+ of objectives are label replication!

• Posterior regularization: Choose $q(\theta_n)$ to optimize a lower bound on $p(x_n|\phi)$ with some constraint, for example, $E_q[loss(y_n,\hat{y}_n)]$ bounded.

$$-\sum_{n} E_{q(\theta_{n})}[\log p(x_{n}, \theta_{n}|\phi) + \lambda \log p(y_{n}|x_{n}, \theta_{n}, \eta) - \log q(\theta_{n})]$$

 MED-LDA/Regularized Bayesian Inference introduces a margin constraint.

$$-\sum_{n} L(x_{n}, q, \phi) + C \sum_{n} \log p(E_{q(\theta_{n})}[\hat{y}_{n}])$$

More ways to get small models

Just two states to optimize; we can build a tiny 2-state MDP!