

Introdução à Arquitetura de Computadores, Ano Letivo - 2019/20

UNIVERSIDADE DE AVEIRO

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Teste Teórico 2 - 29 de Junho de 2020, PARTE II - Datapath

NOME: MARIANA CABRAL DA SILVA SILVEIRA ROSA № Mec.: 98390

Duração: 1h00m

Notas:

- 1. Justifique todas as respostas.
- 2. Marque as alterações com cores diferentes.
- 3) A Figura II.1 representa uma implementação básica do datapath do MIPS.

Figura II.1 - Datapath single-cycle

a) Adicione à Arithmetic).	Figura II.1 o q	ue falta para que	o <i>datapath</i> supor	te a execução da i	instrução <mark>sra</mark> (<i>Shi</i>	ift Right
b) Assinale to	odos os caminh	os e sinais activos	durante a execu	ção da instrução.		

c) Acrescente à Tabela de Verdade da **Tabela II.1** o valor das entradas e saída $ALUControl_{2:0}$ relativas à instrução **sra**. O valor do $FunCode_{5:0}$ de **sra** é igual a 3. (Sugestão: Use uma das combinações disponíveis para não ter de aumentar o número de bits de saída).

ALUOp _{1:0}	Funct _{5:0}	ALUControl 2:0
00	XXXXXX	010 (Add)
01	XXXXXX	110 (Subtract)
10	100000 (add)	010 (Add)
10	100010 (sub)	110 (Subtract)
10	100100 (and)	000 (And)
10	100101 (or)	001 (Or)
10	101010 (slt)	111 (Slt)

Tabela II.1 - Descodificador da ALU

d) Sendo o $FunCode_{5:0}$ de **sra** igual a 3, preencha todos os campos de bits da **Tabela II.2**, para a instrução "**sra** \$t1, \$t0, 25"; o número dos registos \$t0 e \$t1 é igual a 8 e 9, respetivamente.

31:26	25:21	20:16	15:11	10:6	5:0
000011	01000	011001	01001	00001	000011

Tabela II.2 - Instrução sra rd, rt, shamt

31:26, op, 6 bits que tem o valor 3

25:21, valor do rs, \$t0, que **é** 8 em bin**á**rio

20:16, rt, 25 em binario

10:6 o valor do shamt, shift amount que apenas é usada nas instruções de shift, que é o caso por isso é 1

5:0, 6 bits

Introdução à Arquitetura de Computadores, Ano Letivo - 2019/20

4) A **Figura II.2** representa uma implementação melhorada do *datapath* do MIPS, com suporte para a execução das instruções "jal label" e "jr rs".

Figura II.2 - Datapath single-cycle com Jal e Jr

A instrução "jalr rs" é uma instrução do tipo-R que junta a funcionalidade das instruções jal e jr. Isto é, executa um 'salto' para o endereço especificado no registo rs (como a instrução jr) e guarda no registo \$ra o endereço de retorno (como a instrução jal). O formato da instrução está indicado na Tabela II.3.

31:26	25:21 (rs)	20:16 (rt)	15:11 (rd)	10:6	5:0
0	rs	00000	11111	00000	001001
Tabela II 3 - Instrução intres					

Para que o *datapath* suporte esta instrução, a Unidade de Controlo deve gerar um sinal de controlo, **jalr**, possibilitando o armazenamento, no Banco de Registos, do valor do endereço de retorno (**PC4**) no registo **\$ra** (31).

a) Admitindo que a Unidade de Control gera o sinal jalr, modifique o *datapath* da **Figura II.2**, por forma a que suporte adicionalmente a execução da instrução "jalr rs". Assinale essa modificação na figura.

b) Indique na Tabela II.4, o valor dos sinais de controlo para os códigos de função das instruções jr e jalr.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}	jr	jalr
00	XXXXXX	010 (Add)	0	0
01	XXXXXX	110 (Subtract)	0	0
10	100000 (add)	010 (Add)	0	0
10	100010 (sub)	110 (Subtract)	0	0
10			0	0
10	001000 (jr)			
10	001001 (jalr)			

Tabela II.4 - Descodificador da ALU com suporte para 'jr' e 'jalr'

Introdução à Arquitetura de Computadores, Ano Letivo - 2019/20

5) A **Figura II.3** representa uma implementação do *datapath multicyle* e a **Figura II.4** o diagrama de estados parcial do controlador respetivo.

Figura II.3 - Datapath multicycle

a) Modifique o datapath da Figura II.3 para suportar a execução da instrução xori. Indique os caminhos ativos e o valor dos sinais de controlo relevantes durante a execução. Explique por palavras as ações envolvidas na sequência de estados.

b) Indique, na Tabela II.5, as alterações necessárias.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}
00	XXXXXX	010 (Add)
01	XXXXXX	110 (Subtract)
10	100000 (add)	010 (Add)
10	100010 (sub)	110 (Subtract)
10	100101 (or)	001 (Or)
10	100110 (xor)	100 (Xor)
10	101010 (slt)	111 (Slt)

Tabela II.5 - Descodificador da ALU

c) No diagrama de estados da **Figura II.4** preencha os estados **S9 e S10** com os valores dos sinais de seleção dos *multiplexers* e de *enable*. Use o descodificador da ALU da **Tabela II.5**.

Figura II.4 - Diagrama de Estados do Controlador Principal

