# Complexity Time Complexity

Time complexity is not the time taken by the machine.



It is a mathematical function that tells us how time grows as the size grows.

Note: While determining time complexity, take size → infinity



Therefore, O(constant) < O(log(n)) < O(n).

Time Complexity tells us about the nature of graph (does not depend on constants or less significant terms)

For example:

$$O(3n^3 + 4n^2 + 5n + 6)$$

- $=O(n^3+n^2+n)$  ( ignoring coefficients and constants )
- $=O(n^3)$  ( ignoring less significant terms )

#### **Big O Notation:**

Big O Notation means the complexity is less or equal to n^3.



#### Little O Notation:

Little O Notation means the complexity is less than n^3.

#### **Big Omega Notation:**

Big Omega Notation means the complexity is more or equal to n^3.



#### **Little Omega Notation:**

Little Omega Notation mean the complexity is more than n^3.

#### **Big Theta Notation:**

Big Theta = Big O + Big Omega



### **Space Complexity**

Auxiliary Space is the extra or temporary space used by an algorithm.

Space Complexity is the total space taken by the algorithm with respect to the input size.

#### Space Complexity = Auxiliary Space + Input Size

Note: Auxiliary space is a better criterion than Space Complexity.

For Example:

Merge Sort → O(n) (Auxiliary Space)

Insertion Sort → O(1) (Auxiliary Space)

Heap Sort → O(1) ( Auxiliary Space )

All sorting algorithms use O(n) Space Complexity.

```
Q! for (i = 1; i \le n) }

for (j = 1; j \le k; j++) }

(some operation taking t time)

i = i + k;

i = i + k;

i = k;
```

#### **Recursive Tree**



At any particular point in time, no two function calls can be in the same level while the call of recursion will not be in the stack

at the same time.

## **Types of Recursion:**

#### **Divide & Conquer Recurrence Relation:**

Form: 
$$T(x) = a_1T (b_1x + E_1(n)) + a_2T (b_2x + E_2(n)) + a_1T (b_1x + E_1(n)) + g(n)$$

$$= a_1T (b_1x + E_1(n)) + a_2T (b_2x + E_2(n)) + a_1T (b_1x + E_1(n)) + g(n)$$

$$= a_1T (b_1x + E_1(n)) + a_2T (b_2x + E_2(n)) + a_1T (b_2x + E_2(n)) + g(n)$$

$$= a_1T (b_1x + E_1(n)) + a_2T (b_2x + E_2(n)) + g(n)$$

$$= a_1T (b_1x +$$

$$T(x) = a_1 T(b_1 x + E_1(n)) + a_2 T(b_2 x + E_2(n)) + \ldots + a_k T(b_k x + E_k(n)) + g(n)$$

g(n) is the steps taken to find the answer after the completion of recursion.

Example:

when 
$$a_1 = 1, b_1 = 1/2, E_1(n) = 0, g(x) = C$$
,

we get, 
$$T(n) = T(n/2) + C$$

#### How to actually solve to get time complexity?

- 1. Plug & Chug
- 2. Master's Theorem
- 3. Akra-Bazzi Formula (Best Method)

#### Akra-Bazzi Formula:

$$T(x) = heta(x^p + x^p \int_1^x rac{g(u)du}{u^{p+1}})$$

What is p?

$$-a_1b_1^p + a_2b_2^p + \ldots = 1$$

$$-a_1o_1+a_2o_2+\ldots = 1$$

$$\sum_{i=1}^k a_i b_i^p = 1$$

- NOTE: If  $p < power\ of\ g(x),$  .: ans = g(x)
- 1. Example:

$$T(n)=2T(\frac{n}{2})+(n-1)$$

• Here, 
$$a_1=2, b_1=\frac{1}{2}, g(n)=n-1$$

$$2(\frac{1}{2})^p = 1 \therefore p = 1$$

• By applying Akra Bazzi formula:

$$egin{align} T(x) &= heta(x^1 + x^1 \int_1^x rac{u - 1}{u^2} du) \ &= heta(x + x(\int_1^x rac{du}{u} - \int_1^x rac{du}{u^2})) \ &= heta(x + x(log(u) + rac{1}{u})_1^x \ &= heta(x + x(logx + rac{1}{x} - 1)) \ &= heta(xlog(x) + 1) \ &= heta(xlog(x)) \ \end{cases}$$

2. Example:

$$T(x)=2T(rac{n}{2})+rac{8}{9}T(rac{3n}{4})+n^2$$
• Here,  $a_1=2,b_1=rac{1}{2},a_2=rac{8}{9},b_2=rac{3}{4},g(u)=n^2,$   $2(rac{1}{2})^p+rac{8}{9}(rac{3}{4})^p=1$   $\therefore p=2$ 

• By Applying Akra-Bazzi formula :

$$egin{aligned} T(x) &= heta(x^2 + x^2 \int_1^x rac{u^2}{u^3} du) \ &= heta(x^2 + x^2 log(x)) \ &= heta(x^2 log(x)) \end{aligned}$$

## Linear Recurrence Relation Solving Homogeneous Linear Recurrences:

The form of a recurrence relationship without any operation after recursion like g(x).

$$f(x)=a_1f(x-1)+a_2f(x-2)+\ldots+a_nf(x-n) \ f(x)=\sum_{i=1}^na_1f(x-i)$$

1. Example (Recursion for Fibonacci):

$$f(n) = f(n-1) + f(n-2)$$

• Step 1: Putting  $f(n)=lpha^n$  , where lpha=constant

$$\Rightarrow \alpha^{n} = \alpha^{n-1} + \alpha^{n-2}$$
$$\Rightarrow \alpha^{n} - \alpha^{n-1} - \alpha^{n-2} = 0$$

dividing both sides by  $\alpha^{n-2}$ ,

$$\Rightarrow \alpha^2 - \alpha - 1 = 0$$
$$\Rightarrow \alpha = \frac{1^+ \sqrt{5}}{2}$$

$$\Rightarrow \alpha_1 = \frac{1+\sqrt{5}}{2}, \alpha_1 = \frac{1-\sqrt{5}}{2}$$

• Step 2: If  $\alpha_1$  &  $\alpha_2$  are 2 roots, we can write

$$f(n) = c_1 lpha_1^n + c_2 lpha_2^n$$
 is a solution,

( where  $c_1lpha_1^n=f(n-1),\ c_2lpha_2^n=f(n-2)$  ).

$$\therefore f(n) = c_1(rac{1+\sqrt{5}}{2})^n + c_2(rac{1-\sqrt{5}}{2})^n$$

• Step 3: number of roots = number of answers

So, we have 2 answers already

$$f(0) = 0 \& f(1) = 1$$

for f(0) = 0,

$$c_1(rac{1+\sqrt{5}}{2})^0 + c_2(rac{1-\sqrt{5}}{2})^0 = 0$$
  
 $\Rightarrow c_1 + c_2 = 0$   
 $\Rightarrow c_1 = -c_2$ 

for f(1) = 1,

$$egin{split} c_1(rac{1+\sqrt{5}}{2}) + c_2(rac{1-\sqrt{5}}{2}) &= 1 \ \ \Rightarrow c_1(rac{1+\sqrt{5}}{2}) - c_1(rac{1-\sqrt{5}}{2}) &= 1 \ \ \ \Rightarrow c_1 &= rac{1}{\sqrt{5}} \therefore c_2 &= -rac{1}{\sqrt{5}} \end{split}$$

• Step 4: Putting  $c_1 \& c_2$  in f(n)

$$egin{split} f(n) &= rac{1}{\sqrt{5}} (rac{1+\sqrt{5}}{2})^n - rac{1}{\sqrt{5}} (rac{1-\sqrt{5}}{2})^n \ &\Rightarrow f(n) &= rac{1}{\sqrt{5}} [(rac{1+\sqrt{5}}{2})^n - (rac{1-\sqrt{5}}{2})^n] \end{split}$$

when  $n o \infty$ ,  $(rac{1-\sqrt{5}}{2})^n$  is less-dominating term.

$$\Rightarrow f(n) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n$$

. Time Complexity of Fibonacci with recursive tree is  $O(rac{1+\sqrt{5}}{2})^n = O(1.6180)^n$ .

2. Example ( Equal Roots ):

$$f(n) = 2f(n-1) + f(n-2)$$

• Step 1: Putting  $f(x) = \alpha^n$ , where  $\alpha = constant$ .

$$lpha^n = 2lpha^{n-1} + lpha^{n-2}$$
  
 $\Rightarrow lpha^n - 2lpha^{n-1} - lpha^{n-2} = 0$ 

Dividing both side by  $\alpha^{n-2}$ ,

$$\alpha^2 - 2\alpha - 1 = 0$$

$$\Rightarrow lpha = rac{2_{-}^{+}2\sqrt{2}}{2}$$
 $\Rightarrow lpha = 1_{-}^{+}\sqrt{2}$ 
 $\Rightarrow lpha_{1} = 1 + \sqrt{2}, lpha_{2} = 1 - \sqrt{2}$ 

• Step 2 : If  $\alpha_1$  &  $\alpha_2$  are two roots, we can write.

$$f(n) = c_1 lpha_1^n + c_2 lpha_2^n \ \Rightarrow f(n) = c_1 (1 + \sqrt{2})^n + c_2 (1 - \sqrt{2})^n$$

• Step 3: number of roots = number of answers.

$$f(0) = 0 \& f(1) = 1$$

for f(0) = 0, we get

$$f(0) = c_1 + c_2 = 0$$
$$\Rightarrow c_1 = -c_2$$

for f(1), we get

$$egin{split} f(1) &= c_1(1+\sqrt{2}) + c_2(1-\sqrt{2}) = 1 \ &\Rightarrow c_1(1+\sqrt{2}) - c_1(1-\sqrt{2}) = 1 \ &\Rightarrow 2\sqrt{2}c_1 = 1 \ &\Rightarrow c_1 = rac{1}{2\sqrt{2}}, c_2 = -rac{1}{2\sqrt{2}} \end{split}$$

• Step 4 : putting  $c_1, c_2$  in f(n), we get

$$\Rightarrow f(n) = rac{1}{2\sqrt{2}}(1+\sqrt{2})^n - rac{1}{2\sqrt{2}}(1-\sqrt{2})^n$$

when  $n o \infty$  ,  $rac{1}{2\sqrt{2}}(1-\sqrt{2})^n$  is less-dominating,

$$\Rightarrow f(n) = \frac{1}{2\sqrt{2}}(1+\sqrt{2})^n$$

 $\therefore$  Time Complexity of equal roots is  $T(n) = O(1+\sqrt{2})^n = O(2.141)^n$ .

#### Solving Non-Homogeneous Linear Recurrences:

$$f(x) = a_1 f(x-1) + a_2 f(x-2) + \ldots + a_n f(n-n) + g(n)$$
  $f(x) = \sum_{i=1}^n a_i f(n-i) + g(n)$ 

1. Example:

$$f(n)=4f(n-1)+3^n$$
, Given  $f(1)=1$ 

• Step 1: Homogeneous Solution

$$f(n)=4f(n-1)+3^4$$

when  $n o \infty$ ,  $3^4$  is less dominating,

$$\Rightarrow f(n) = 4f(n-1)$$

Let  $f(n) = \alpha^n$ , we get

$$\alpha^n = 4\alpha^{n-1}$$

Dividing both side by  $\alpha^{n-1}$ ,

$$\Rightarrow \alpha = 4$$

$$\therefore f(n) = c_1 4^n$$

• Step 2: Non-Homogeneous Solution

$$f(n) = 4f(n-1) + 3^n$$
$$\Rightarrow f(n) - 4f(n-1) = 3^n$$

#### How to find f(n) for Non-Homogeneous Linear Recurrences?

- If g(n) is exponential, let  $g(n)=2^n$  try  $f(n)=2^nc$ .
- If  $f(n)=2^nc$  does not work, try  $f(n)=(an+b)2^n$  or try  $f(n)=(an^2+bn+c)2^n$  & keep increasing the degree.
- If g(n) is polynomial, let  $g(n)=n^2-1$ , try  $f(n)=an^2+bn+c$ .
  - For Example :

$$g(n)=2^n+n\Rightarrow f(n)=2^na+(bn+c)$$

Let  $f(n) = c(3)^n$ , we get

$$\Rightarrow c(3)^{n} - 4c(3)^{n-1} = 3^{n}$$

$$\Rightarrow c - \frac{4}{3}c = 1$$

$$\Rightarrow -\frac{1}{3}c = 1$$

$$\Rightarrow c = -3$$

$$\therefore f(n) = -3^{n-1}$$

- Step 3: Adding both Homogeneous and Non-Homogeneous solutions

$$f(n)=c_14^n-3^{n-1}$$
 $\Rightarrow f(1)=4^nc_1-3^2=1$ 
 $\Rightarrow c_1=rac{5}{2}$ 
 $\therefore f(n)=rac{5}{2}4^n-3^{n+1}$