Percolation

Andrew Tulloch

Contents

Chapter 1. Random Walks on Graphs	4
1. Percolation	4
2. Coupling	4
3. Oriented/Directed Percolations	5
4. Correlation Inequalities	5
4.1. The BK Inequality	8
5. Influence	9
6. Sharp Threshold	10
7. Back to Percolation	11
8. Percolation in Two Dimensions	12
8.1. Bond percolation on \mathbb{Z}^2 , Site Percolation on \mathbb{T}	12
8.2. Site percolation on Π	13
9. Cardy's Formula	14
Chapter 2. Self Avoiding Walks	15
1. Generating Functions	15
2. Random Clusters Model/FK (Fortun-Kostelyn) Percolation	15
Bibliography	17

Random Walks on Graphs

Our basic setting is the (hyper-)cubic lattice on \mathbb{R}^d , $d \geq 1$. This is the graph with vertex set \mathbb{Z}^d , edges $\langle x, y \rangle \iff \|x - y\|_1 = 1$, and edge set denoted E^d . A lattice is $L^d = (\mathbb{Z}^d, E^d)$.

1. Percolation

Let $0 . Let <math>e \in E^d$, and with probability p independently for each edge, declare e to be **open** else **closed**. Consider $x \leftrightarrow y$ if there exists an open path from x to y. The **open cluster** at x is $C_x = \{y : x \leftrightarrow y\}$.

Theorem 1.1

For a given p, what can be said about the C_x ?

For
$$p = 1$$
, $C_x = Z_d$. For $p = 0$, $C_x = \{x\}$.

DEFINITION 1.2 (Percolation probability). Let $\theta(p) = \mathbb{P}(|C_{\theta}|) = \mathbb{P}_p$. Note that θ is non-decreasing.

Let $p_c = \sup\{p : \theta(p) = 0\}.$

It is known that θ is C^{∞} on $(p_c, 1]$, and that θ is right-continuous on [0, 1].

It is believed that θ is concave on $(p_c, 1]$, and that θ is real-analytic on $(p_c, 1]$, and that $\theta(p_c) = 0$ (known for d = 2, and $d \ge 16$).

DEFINITION 1.3. Probability theorey. Let $\Omega = \{0,1\}^{E^d}$, \mathcal{F} be the σ -filed generated by the finite-dimensional cylinder ... of form . $\{\omega \in \Omega : \omega = \xi \text{ on } \mathcal{F}\} = E_F(\xi)$

Theorem 1.4. For $d \ge 2$, $0 < p_c < 1$.

Consider \mathbb{Z}^d , with $\kappa_n = \mu^{n(1+o(1))}$ as $n \to \infty$, $\mu = \mu(\mathbb{Z}^d)$

We have $\kappa_n \sim An^c\mu^n$ for some A = A(d), c = c(d) where $a_n \sim b_n$ means $\frac{a_n}{b_n} \to 1$.

 c_n is called the **critical exponent**. People are hoping to show that for d=2, $c=\frac{11}{32}$. c is expected to be **universal** in that it depends on d but not each d-dimensional graph.

Fill in lecture

notes from Chap-

ter 3 of Probabil-

ity on Graphs

Fill in from lec-

2. Coupling

Let $L^d = (\mathbb{Z}^d, E^d)$ consider P_p on $\Omega = \{0, 1\}^{E^d}$.

Let $(U_e, e \in E)$ be independent uniform random variables U(0,1).

Let $p \in (0,1)$. Then

$$\mu_p(e) = \begin{cases} 0 & U_e \ge p \\ 1 & U_e$$

if $p_1 \le p_2$ then $\mu_{p_1}(e) \le \mu_{p_2}(e)$.

 $\mu_p: 0 is a coupling of percolations, containing all interesting, "universal" in p.$

THEOREM 1.5. For any increasing function $f: \Omega \to \mathbb{R}$,

$$\mathbb{E}_{p_1}(f) \le \mathbb{E}_{p_2}(f) \tag{1.2}$$

for $p_1 \leq p_2$.

Example 1.6. For example, $u, v \in \mathbb{Z}^d$, $f(u) = \mathbb{I}(u \leftrightarrow v)$. Then $\mathbb{P}_{p_1}(u \leftrightarrow v) \leq \mathbb{P}_{p_2}(u \leftrightarrow v)$.

3. Oriented/Directed Percolations

Consider the standard percolation, and define

$$\overrightarrow{\theta}(p) = \mathbb{P}(\text{there exists an infinite directed path through the origin to } p)$$
. (1.3)

Then $\overrightarrow{p_c} = \sup\{p : \overrightarrow{\theta}(p) = 0\}$. As $\overrightarrow{\theta}(p) \le \theta(p)$, we have $\overrightarrow{p_c} \ge p_c$.

4. Correlation Inequalities

Consider a set E be nonempty and finite, and $\Omega = \{0,1\}^E$. The sample space Ω is partially ordered by $\omega_1 \leq \omega_2$ if $\omega_1(e) \leq \omega_2(e)$ for all $e \in E$.

Event $A \subseteq \Omega$ is called **increasing** if $w \in A$, $w \leq w' \Rightarrow w' \in A$ and decreasing if $\overline{A} = \Omega \backslash A$ is increasing.

DEFINITION 1.7. With two probability measures μ_1, μ_2 , we write $\mu_1 \leq_{st} \mu_2$ if $\mu_1(A) \leq \mu_2(A)$ for all increasing events A.

Equivalently, $\mu_1 \leq_{st} \mu_2$ if and only if $\mu_1(f) = \sum_{\Omega} f(\omega) \mu_1(\omega) \leq \mu_2(f)$ for all increasing functions $f: \Omega \to \mathbb{R}$.

Let $S \subseteq \Omega^2$ given by $S = \{(\pi, \omega) \in \Omega^2 : \pi \leq \omega\}.$

Theorem 1.8 (Strassen). The following are equivalent:

- (i) $\mu_1 \le \mu_2$
- (ii) There exists a probability measure κ on Ω^2 such that
 - (i) $\kappa(S) = 1$
 - (ii) Marginals of κ are μ_1 and μ_2 .

PROOF. From reference in the back.

THEOREM 1.9 (Holley's inequality). Let μ_1, μ_2 be probability measures which are positive (in that $\mu_i(\omega) > 0$ for all i and $\omega \in \Omega$). If

$$\mu_2(\omega_1 \vee \omega_2)\mu_1(\omega_1 \wedge \omega_2) \ge \mu_1(\omega_1)\mu_2(\omega_2) \tag{1.4}$$

for all $\omega_1, \omega_2 \in \Omega$, then $\mu_1 \leq \mu_2$.

The notation is

$$(\omega_1 \vee \omega_2)(e) = \max \omega_1(e), \omega_2(e) \tag{1.5}$$

$$(\omega_1 \wedge \omega_2)(e) = \min \omega_1(e), \omega_2(e) \tag{1.6}$$

PROOF. See Probability and Random Processes (Stirzaker), the section on Markov chains in continuous time for the necessary background.

DEFINITION 1.10 (Markov Chains). $(X_t, t \ge 0)$ taking values in a state space S, which is finite satisfying the Markov property

Definition 1.11 (Markov Property). For all $x, y \in S, x \neq y$,

$$\mathbb{P}(X_{t+h} = y | X_t = x) = hG(x, y) + o(h)$$
(1.7)

as $h \downarrow 0$

The matrix $G = (G(x, y))_{x,y \in S}$ is the **generator** of the Markov chain. The diagonal elements G(x, x) are chosen such that the row sums are all zero,

$$\sum_{y \in S} G(x, y) = 0 \tag{1.8}$$

for all $x \in S$.

DEFINITION 1.12 (Invariant distribution). π on S is an invariant distribution if it satisfies if X_0 has distribution π , then X_t has distribution π for all $t \geq 0$.

LEMMA 1.13. π is invariant if and only if $\pi G = 0$.

DEFINITION 1.14. X is **time reversible** if $\pi(x)G(x,y) = \pi(y)G(y,x)$ for all $x,y \in S$ where π is (say) invariant.

If detailed balance holds for some π then π is invariant.

Let μ be a positive probability measure on Ω .

For $\omega \in \Omega$ and $e \in E$, define the configurations ω^e, ω_e by

$$\omega^{e}(f) = \begin{cases} w(f) & f \neq e \\ 1 & f = e \end{cases}$$
 (1.9)

$$\omega^{e}(f) = \begin{cases} w(f) & f \neq e \\ 0 & f = e \end{cases}$$
 (1.10)

Let $G: \Omega^2 \to \mathbb{R}$ be given by $G(\omega_e, \omega^e) = 1$, $G(\omega^e, \omega_e) = \frac{\mu(\omega_e)}{\mu(\omega^e)}$, for all $\omega \in \Omega$ and $e \in E$. Set G(w, w') = 0 for all other elements (coordinate distance greater than 2), and $G(w, w) = -\sum_{\omega' \neq \omega} G(\omega, \omega')$.

G is the generator for a Markov chain X on Ω . We then have

$$\mu(\omega)G(\omega,\omega') = \mu(\omega')G(\omega',w) \tag{1.11}$$

(trivial from the construction of G).

Thus, μ is invariant for X.

Now, construct a Markov chain $((X_t, Y_t)t \ge 0)$ taking values in $S = \Omega^2$. Let μ_1, μ_2 be positive probability measures on Ω , assumed positive.

Let G be given by

$$G((\pi_e, \omega), (\pi^e, \omega^e)) = 1 \tag{1.12}$$

$$G((\pi, \omega^e), (\pi_e, \omega_e)) = \frac{\mu_2(\omega_e)}{\mu_2(\omega^e)}$$
(1.13)

$$G((\pi^e, \omega^e), (\pi_e, \omega^e)) = \frac{\mu_1(\pi_e)}{\mu_1(\pi_e)} - \frac{\mu_2(\omega_e)}{\mu_2(\omega^e)} \ge 0$$
(1.14)

from the conditions of the theorem.

Defining G(x,y) = 0 otherwise and G(x,x) to satisfy the zero row-sum condition, we have that G is a Markov chain. Thus it has an invariant measure μ . Then X is a Markov chain, having measure μ_1 . Y is a Markov chain, having invariant measure μ_2 .

Then by Strassen's theorem (1.8), $\mu_1 \leq \mu_2$.

Choose μ_1, μ_2 satisfying the condition. Let Z = (X, Y) a Markov chain on Ω^2 , in fact on $S = \{(\pi, \omega) : \pi \leq \omega\}.$

X is a Markov chain with invariant measure μ_1 . Y is a Markov chain with invariant distirbuiton μ_2 .

Then Z has an invariant measure κ on S. Let $f:\Omega\to\mathbb{R}$ be increasing. Then $\mu_1(f)=\kappa(f(\pi))\leq\kappa(f(\omega))=\mu_2(f)$.

This completes the proof. \Box

THEOREM 1.15 (FKG inequality). Let μ be a probability measure on $\Omega = \{0,1\}^E$ with $|E| < \infty$ such that μ is positive and

$$\mu(\omega_1 \vee \omega_2)\mu(\omega_1 \wedge \omega_2) \ge \mu(\omega_1)\mu(\omega_2),\tag{1.15}$$

known as the FKG lattice condition.

Then μ is positively associated in that

$$\mu(fg) \ge \mu(f)\mu(g) \tag{1.16}$$

for all increasing random variables $f, g: \Omega \to \mathbb{R}$ or equivalently,

$$\mu(A \cap B) \ge \mu(A)\mu(B) \tag{1.17}$$

for all increasing events A, B.

Example 1.16. Consider a percolation, with $A = \{x \leftrightarrow \}$, $B = \{u \leftrightarrow v\}$. Then we have

$$\mathbb{P}_p(x \leftrightarrow | u \leftrightarrow v) \ge \mathbb{P}_p(x \leftrightarrow y). \tag{1.18}$$

HISTORY 1.17. When μ is a product measure, this was first proven by Harris (1961) by induction on |E|.

PROOF. Let $\mu_1 = \mu$. Note that (1.16) is invariant under $g \mapsto g + c$, for $c \in \mathbb{R}$. Thus we may assume that g is strictly positive. Then

$$\mu_2(\omega) = \frac{\mu(\omega)g(\omega)}{\sum_{w'} g(\omega')\mu(\omega')}$$
(1.19)

Since g is increasing, $\mu_1 \leq \mu_2$ follows by the FKG lattice condition. By the Holley inequality, $\mu_1(f) \leq \mu_2(f)$ for f increasing. Therefore, $\mu(f) \leq \frac{\mu(fg)}{\mu(g)}$ as required.

4.1. The BK Inequality. Consider $\Omega = \{0,1\}^E, |E| < \infty$. Let $\omega \in \Omega, F \subseteq E$. The consider

$$C(\omega, F) = \{ w' \in \Omega : \omega'(e) = \omega(e) \forall e \in F \} = (w(e) : e \in F) \times \{0, 1\}^{E \setminus F}$$

$$(1.20)$$

Let $A, B \subseteq \Omega$. Then define

$$A \square B = \{ \omega \in \Omega : \exists F \subset E, C(\omega, F) \subset A, C(\omega, \overline{F}) \subset B \} \subset A \cap B.$$
 (1.21)

If A, B are increasing, then $C(\omega, F) \subseteq A$ if and only if $\omega_F \in A$, where

$$\omega_F(e) = \begin{cases} w(e) & e \in F \\ 0 & e \notin F \end{cases}$$
 (1.22)

In this case $A \square B = \{\omega : \exists F \subseteq Es.t.\omega_F \in A, \omega_{E \setminus F} \in B\}.$

5. INFLUENCE 9

THEOREM 1.18 (BK inequality). For increasing subsets For product measure \mathbb{P} (say $\mathbb{P}_{p_e}(w(e) = 1)$ for some given $(p_e, e \in E)$),

$$\mathbb{P}(A \square B) \le \mathbb{P}(A) \,\mathbb{P}(B) \tag{1.23}$$

for all increasing events A, B.

THEOREM 1.19 (Reimer's inequality).

$$\mathbb{P}(A \square B) \le \mathbb{P}(A) \,\mathbb{P}(B) \tag{1.24}$$

for all $A, B \subseteq \Omega$ and product measures \mathbb{P} .

5. Influence

QUESTION 1.20. What is the influence of an individual in an election?

QUESTION 1.21. An increasing event A, a sequence of measures \mathbb{P}_p , and consider $g(p) = \mathbb{P}_p(A)$.

For example, consider a problem from reliability theory - an electrical network has every link cut with probability 1-p, and what is the probability that the network is still connected? This class of theorems are called "S-shaped theorems".

$$\Omega=\{0,1\}^E,\, |E|<\infty,\, |E|=N,\, A\subseteq\Omega.$$

Let $e \in E$.

DEFINITION 1.22. The influence of e on A is

$$I_A(e) = \mathbb{P}_p(\mathbb{I}(A) (\omega^e) \neq \mathbb{I}_A(\omega_e)). \tag{1.25}$$

If A is increasing, then

$$I_A(e) = \mathbb{P}_p(A^e) - \mathbb{P}_p(A_e). \tag{1.26}$$

where

$$A^e = \{\omega : \omega^e \in A\} \tag{1.27}$$

$$A_e = \{\omega : \omega_e \in A\} \tag{1.28}$$

(1.29)

Theorem 1.23 (Kahn-Kalani-Limial, Talagrand). There exists c > 0 such that for all ϵ , A and 0 . Then

$$\sum_{e \in E} I_A(e) \ge c[\mathbb{P}_p(A)\mathbb{P}_p(\overline{A})] \log \frac{1}{\max_{e \in E} I_A(e)}.$$
 (1.30)

PROOF. One uses discrete Fourier analysis (but non-examinable).

THEOREM 1.24. It is interesting if we have uniform upper bound M_p for the $I_A(e)$. Let $m = \max_{e \in E} I_A(e)$. Then we can write

$$mN \ge [\cdots] \log \frac{1}{m} \tag{1.31}$$

$$m \ge \frac{[\cdots]}{N} \log \frac{1}{m} \ge [\cdots]' \frac{\log N}{N}.$$
 (1.32)

Theorem 1.25 (Restatement of KKL). The maximum influence M satisfies

$$m \ge c' \mathbb{P}_p(A) \mathbb{P}_p(\overline{A}) \frac{\log N}{N}$$
 (1.33)

for some universal c' > 0.

The $\frac{\log N}{N}$ is optimal.

Example 1.26 (Tribes). Consider N people partitioned into t tribes, each of size $s = \log N - \log \log N + \alpha$, and let $p = \frac{1}{2}$.

 $Then\ let$

$$A = \{ There \ exists \ a \ tribe \ all \ of \ whose \ elements \ are \ 1 \}$$
 (1.34)

Then

$$I_A(e) \sim c\mathbb{P}(A)\,\mathbb{P}(\overline{A})\,\frac{\log N}{N}$$
 (1.35)

for all e.

THEOREM 1.27 (Symmetric Case). If $I_A(e)$ is a constant for $e \in E$,

$$\sum_{e \in E} I_A(e) \ge c[\mathbb{P}_p(A)\mathbb{P}_p(\overline{A})] \log N. \tag{1.36}$$

6. Sharp Threshold

Let Ω as before, $A \subseteq \Omega$. Then

Theorem 1.28 (Rousseau, Margoulis).

$$\frac{d}{dp}\mathbb{P}_p(A) = \sum_{e \in E} \mathbb{P}_p(A^e) - \mathbb{P}_p(A^e). \tag{1.37}$$

Note this is equal to $\sum_{e \in E} I_A(e)$ if A is increasing.

PROOF. Need to only consider

$$\mathbb{P}_{p}(A) = \sum_{\omega} \mathbb{I}(A) (\omega) p^{|\eta|} (1 - p)^{N - |\eta|}$$
(1.38)

where N = |E|, $\eta = \{e : \omega(e) = 1\}$.

Then

$$\frac{d}{dp}\mathbb{P}_p(A) = \sum_{\omega} \mathbb{I}(A) (\omega) (\frac{|\eta|}{p} - \frac{N - |\eta|}{1 - p}) p^{|\eta|} (1 - p)^{|N - |\eta|}$$
(1.39)

and so

$$p(1-p)\frac{d}{dp}\mathbb{P}_p(A) = \sum_{\omega} \mathbb{I}(A) (\omega)(|\eta| - Np)p^{|\eta|} (1-p)^{N-|\eta|}$$
(1.40)

$$= \mathbb{P}_p(\mathbb{I}(A) (|\eta| - Np)) \tag{1.41}$$

$$= \sum_{e} \mathbb{P}_{p}(\mathbb{I}(A) (\mathbb{I}(e) - p))$$
 (1.42)

$$= \sum_{e} \mathbb{P}_{p}(\mathbb{I}(A)\,\mathbb{I}(e)) - p\mathbb{P}_{p}(A) \tag{1.43}$$

$$= \sum_{e} p \mathbb{P}_{p}(A^{e}) - p(p \mathbb{P}_{p}(A^{e}) + (1-p) \mathbb{P}_{p}(A_{e}))$$
 (1.44)

where $\mathbb{I}(e) = \mathbb{I}(e \text{ open}) = \omega(e)$, so $|\eta| = \sum_{e} \mathbb{I}(e)$.

This completes the proof.

7. Back to Percolation

Let $L^d = (\mathbb{Z}^d, \mathbb{E}^d), 0 , and measure <math>\mathbb{P}_p$. Let N be the number of open clusters. Then

$$\mathbb{P}_{p}(N \ge 1) = \begin{cases} 0 & p < p_{c} \\ 1 & p > p_{c} \end{cases}$$
 (1.45)

Then $\theta(p) = \mathbb{P}_p(0 \in \text{infinite open cluster})$. So

$$\theta = \begin{cases} 0 & p < p_c \\ > 0 & p > p_c \end{cases} \tag{1.46}$$

To show (??) implies (??), we have $\mathbb{P}_p(N \ge 1) \le \sum_{x \in \mathbb{Z}^d} \mathbb{P}_p(x \in \text{infinite open cluster}) = \sum_x 0 = 0$.

To show (??) implies (??), by Kolmogrov's zero-one law, we have $\mathbb{P}_p(N \geq 1) \in \{0,1\}$, but $\mathbb{P}_p(N \geq 1) \geq \theta(p) > 0$ for $p > p_c$.

Theorem 1.29 (Uniqueness of infinite cluster). For all 0 , either

$$\mathbb{P}_p(N=0) = 1 \tag{1.47}$$

or

$$\mathbb{P}_p(N=1) = 1 \tag{1.48}$$

PROOF. Fix $p \in (0,1)$.

LEMMA 1.30 (Part A). There exists $k = k_p \in \{0, 1, 2, \ldots, \} \cup \{\infty\}$ with $\mathbb{P}_p(N = k) = 1$.

PROOF. L^d comes equipped with a shift translation, and the measure is invariant under this shift. Thus $N = N(\omega)$ is invariant under the shift.

This proof requires this lemma.

LEMMA 1.31. Any shift-invariant random variable on $(\Omega, \mathcal{F}, \mathbb{P}_p)$ is almost surely constant.

PROOF. Elementary application of measure theory.

Lemma 1.32 (Part B). $k_p \in \{0, 1, \infty\}$ - the "finite-energy property".

PROOF. Suppose $2 \le k_p < \infty$.

Find n such that $\mathbb{P}_p(\Lambda_n \text{intersections} \geq 2 \text{ infinite open clusters}) > \frac{1}{2}$.

LEMMA 1.33 (Part C). $k_p \neq \infty$.

Proof. Say x is a trifurcation if

- (i) $|C_x| = \infty$.
- (ii) The removal of x breaks C_x into three disjoint infinite clusters.

Then $\tau = \mathbb{P}_p(x \text{ is a trifurcation})$ is independent of x.

We claim $\tau > 0$. To show this, take a large diamond box that intersects with at least three open clusters. Then there exists n such that $\mathbb{P}_p(S_n \text{ intersects } \geq 3 \text{ infinite open clusters}) > \frac{1}{2}$.

Thus $\tau > 0$.

The argument is then that we use the ration between boundary and volume to bound the number of trifurications in A_n , and show that this leads to a contradiction for large n.

N.B. - consider the corresponding proof for site percolation. For $x, y, z \in \partial S$, does there exist open paths to zero?

8. Percolation in Two Dimensions

There are two models, bond percolation on L^2 , and site percolation on Π , the triangular lattice. The triangular lattice is "self-matching", in that the dual construction is on the same lattice as the primal (c.f. the dual of the square lattice).

8.1. Bond percolation on \mathbb{Z}^2 , Site Percolation on \mathbb{T} .

THEOREM 1.34. For bond percolation on \mathbb{Z}^2 , $\Theta(\frac{1}{2}) = 0$.

Follow this argument? p93 in Probability on Graphs

Fill in rest of proof. Required to understand high-level ideas and key steps around the graphs

PROOF (Proof of Zhang). Let $p = \frac{1}{2}$ and suppose $\Theta(\frac{1}{2}) > 0$. Since $\Theta(\frac{1}{2}) > 0$, then the probability there exists an infinite open cluster is one.

Let $T_n = [0, n]^2$. As n goes to infinity, then the probability that T_n intersects with the infinite open cluster tends to one. Thus, find N such that for all n > N, $\mathbb{P}(T_n$ intersects the infinite open cluster) is greater than $1 - \frac{1}{8}^4$.

Consider A^t be the event that the **top** of T_n is joined to the infinite open cluster. Define A^b, A^l, A^r to be the **bottom**, **left**, and **right** analogues. Then $\mathbb{P}(T_n \text{ does not intersects the infinite cluster})$ is $\mathbb{P}(\overline{A^t} \cap \overline{A^b} \cap \overline{A^l} \cap \overline{A^r}) \geq \mathbb{P}(\overline{A^u})^4$ for u = t, b, l, r.

Then we have $\mathbb{P}(A^u) \geq \frac{7}{8}$ by the given result.

Let n = N + 1. Pass to the dual percolation, ...

8.2. Site percolation on Π . Π has the vertex set $\{m\tilde{i}+n\tilde{j}:m,n\in\mathbb{Z}\},\ \tilde{i}=(1,0),\ \tilde{j}=\frac{1}{2}(1,\sqrt{3})$ when embedded into \mathbb{R}^2 .

Now, consider a box in \mathbb{R}^2 , with vertices (0,0) and (a,b) with $a \in \mathbb{N}, b \in \sqrt{32}\mathbb{N}$.

Each site is black with probability $\frac{1}{2}$, and white otherwise. Let $H_{a,b} = \{L \leftrightarrow^{black} R \in R_{a,b} \}$ where L is the left edge and R is the right edge. That is, $H_{a,b}$ is the event that there exits a black path that traverses $R_{a,b}$ from $L(R_{a,b})$ to $R(R_{a,b})$.

Then we have the lemma as follows:

Lemma 1.35 (RSW Lemma).

$$\mathbb{P}(H_{2a,b}) \ge \frac{1}{4} \mathbb{P}(H_{a,b})^2. \tag{1.49}$$

THEOREM 1.36. $p_c(bond, \mathbb{T}) = \frac{1}{2}$

THEOREM 1.37. $p_c \geq \frac{1}{2}$, and in fact $\Theta(\frac{1}{2}) = 0$ for the bond model on \mathbb{Z}^2 .

PROOF. Following p 122 of the book.

We need to prove that $p_c \leq \frac{1}{2}$ - that is $\Theta(p) > 0$ for $p > \frac{1}{2}$.

Let $H_n=H_{16n,n\sqrt{3}}$ be the event that a black crossing of $R_{16n,n\sqrt{3}}$ exists. By the previous lemma,s there exists $\tau>0$ such that $\mathbb{P}_{\frac{1}{2}}(H_n)\geq \tau$ for some $\tau>0$. Let $\frac{1}{2}\leq p\leq \frac{3}{4}$.

Then

$$(1-p)I_{n,p}(x) \le \mathbb{P}_{1-p}(\text{Rad}(C_x) \ge n) \le \mathbb{P}_{\frac{1}{2}}(\text{Rad}(C_0) \ge n) = \nu_n \to 0$$
 (1.50)

where $Rad(C_x) = max\{|y - x| : x \leftrightarrow y\}.$

So we have

$$\frac{d}{dp}\mathbb{P}_p(H_n) \ge c\tau(1 - \mathbb{P}_p(H_n))\log\frac{1}{8\nu_n} \tag{1.51}$$

Fill this in from the Probability on Graphs book Doesn't look too difficult.

Proof on p100-10-

and integrating gives

$$\int_{\frac{1}{2}}^{p} \frac{g'(p)}{1 - g(p)} dp \ge c\tau \log \frac{1}{8\nu_n} (p - \frac{1}{2})$$
 (1.52)

and so $\mathbb{P}_p(H_n) \ge 1 - (1 - \tau)(8\nu_n)^{c\tau(p - \frac{1}{2})} \to 1$ as $n \to \infty$ if $p > \frac{1}{2}$.

...

9. Cardy's Formula

Given a Jordan curve on R^2 , there exists a conformal map from D to the interior of the equilateral triangle T of C with vertices $A=0, B=1, C=e^{\frac{\pi i}{3}}$ and such that ϕ can be extended to the boundary ∂D in such a way that it becomes a homeomorphism from $D\cup \partial D$ to the closed triangle T.

Theorem 1.38 (Cardy's Formula).

$$\mathbb{P}_{\delta}(ac \leftrightarrow bx \ in \ D) \to |BX| \tag{1.53}$$

as $\delta \to 0$.

Fill in the rest of the proof of Cardy's formula.

Fill in rest of proof (block argument)

Self Avoiding Walks

Consider G a graph, with γ is a self avoiding walk which visits each vertex of G at most once. $G_n(v)$ is the number of self avoiding walks with length n. We assume G is transitive. Then G_n is submultiplicative, and we defined

$$K(G) = \lim_{n \to \infty} \sqrt{G_n} n \tag{2.1}$$

For examples K(d-ary-tree)=d-1, and $K(G)\leq \Delta-1$ (exercise).

THEOREM 2.1. $K(H1) = \sqrt{2 + \sqrt{2}}$.

1. Generating Functions

$$Z(z) = \sum_{\gamma SAW}^{z^{|\gamma|}} \sum_{n=1}^{\infty} G_n \cdot z^n$$
 (2.2)

Cauchy-Hadarmad gives the radius of convergence is $\frac{1}{\lim_{n\to\infty}\sqrt{G_n}n} = \frac{1}{K(G)}$

Fill in proof of $\sqrt{2+\sqrt{2}}$

2. Random Clusters Model/FK (Fortun-Kostelyn) Percolation

DEFINITION 2.2. $G = (V, E), \Omega = \{0, 1\}^E$, for $\omega \in \Omega$, $k(\omega)$ is the number of open clusters. The RC measure $p \in [0, 1], q \in (0, \infty)$,

$$\phi_{p,q}(w) = \frac{1}{Z_{p,q}} \prod_{e \in E} p(\omega(e))(1-p)^{1-\omega(e)}) q^{k(w)}$$
(2.3)

- (i) q = 1 is standard percolation,
- (ii) $p, q \to 0$ with $\frac{q}{p} \to 0$ is electrical networks.
- (iii) For q=2, we have the FK Isiing model, where for $\omega \in \{0,1\}^E$, for each open cluster of ω , we set the spins/states of the vertices of it to ± 1 iwht equal probability, so $G \in \{\pm 1\}^V$, with

$$\mu_{\beta}(G) = \frac{1}{Z_{\beta}} \exp(\beta \sum_{x \sim y} G_x G_y)$$
 (2.4)

and $p = 1 - e^{-\beta}$.

Our aim is to define the random cluser measure on (Z^d, E^d) . Let Λ be a a finite box in \mathbb{Z}^d . Let $E_n = \{(u, v) \in E^{d|u, v \in \Lambda} \text{. Let } b = 0, 1, \text{ and } \Omega_{\Lambda}^b = \{\omega \in \Omega = \{0, 1\}^{E^d} | \omega(e) = b \forall e \notin \Lambda\}.$ Let $\phi_{\Lambda, p, q}^b(\omega) = \frac{1}{Z_{\lambda, p, q}} (\prod_{e \in E_n} p^{\omega(e)} (1 - p)^{1 - \omega(e)}) q^{k(\omega, \Lambda)}.$

Bibliography