



## (19) RU (11) 2 039 733 (13) C1 (51) Int. Cl. 6 C 07 C 233/18, 233/70, 233/73, 311/17, A 61 K 31/15, 31/18

#### RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

| ADDITACT OF HATEIALION                                                                 |                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (21), (22) Application: 5057522/04, 04.08.1992<br>(46) Date of publication: 20.07.1995 | <ul> <li>(71) Applicant:     Vserossijskij nauchnyj tsentr po     bezopasnosti biologicheski aktivnykh veshchestv</li> <li>(72) Inventor: Skachilova S.Ja.,     Azizov R.G., Zueva Eh.F., Burov     Ju.V., Merkulova T.I.</li> <li>(73) Proprietor:     Vserossijskij nauchnyj tsentr po</li> </ul> |
| (54) DERIVATIVES OF 2-(3,4-DIHYDROXYPHENYL) CAPABILITY TO INHIBIT VIRUS REPLICATION    | bezopasnosti biologicheski aktivnykh veshchestv  ETHYLAMINE SHOWING IMMUNOTROPIC ACTIVITY AND                                                                                                                                                                                                       |
| (57) Abstract: FIELD: organic chemistry. SUBSTANCE:                                    | SO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> -S(O)-O-Ph-Cl; -C(O)-Ad, where                                                                                                                                                                                                        |

product of the formula [2-R  $^1$ O-3-R $^2$ O]Ph-(CH<sub>2</sub>)<sub>2</sub>-NHR $^2$  where R $^1$ R $^2$  a group -C(O)-Ph-NO  $_2$  -C(O)-CH(CH<sub>3</sub>) $_2$  -C(O)-CH(C<sub>3</sub>H<sub>7</sub>) $_2$  -C(O)-CH<sub>2</sub>-C<sub>5</sub>H<sub>9</sub> -C(O)-CH<sub>2</sub>-CI -C(O)-(CH<sub>2</sub>)<sub>3</sub>-CI -C(O)-(CH<sub>2</sub>)<sub>4</sub>-CI

SO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub> -S(O)-O-Ph-Cl; -C(O)-Ad, where Ad 1-adamantyl, or R<sup>1</sup> hydrogen and R<sup>2</sup> as indicated above. Reagent 1: dopamine hydrochloride. Reagent 2: chloroanhydride of corresponding acid. Reaction condition: in pyridine medium, at 5-10 C. Derivatives were in substituted amine chemistry. EFFECT: improved method of synthesis. 3 cl, 6 tbl





### (19) RU (11) 2 039 733 (13) C1

(51) MOK6 C 07 C 233/18, 233/70, 233/73, 311/17, A 61 K 31/15, 31/18

### РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

#### (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5057522/04, 04.08.1992
- (46) Дата публикации: 20.07.1995
- (56) Ссылки: 1. M. Negwer "Organic Chemical drugs and their Synonyms", N 4556, 1987.2. Патент США N 366859, кл. А 61К 27/00, 1972.3. Патент США N 3657452, кл. А 61К 27/00, 1972.4. Химфармжурнал N 4, 1980, с.115-121.
- (71) Заявитель: Всероссийский научный центр по безопасности биологически активных веществ
- (72) Изобретатель: Скачилова С.Я., Азизов Р.Г., Зуева Э.Ф., Буров Ю.В., Меркулова Т.И.
- (73) Патентообладатель: Всероссийский научный центр по безопасности биологически активных веществ

O

တ

œ

(54) ПРОИЗВОДНЫЕ 2-(3,4-ДИГИДРОКСИФЕНИЛ)-ЭТИЛАМИНА, ПРОЯВЛЯЮЩИЕ ИММУНОТРОПНУЮ АКТИВНОСТЬ И ОБЛАДАЮЩИЕ СПОСОБНОСТЬЮ ТОРМОЗИТЬ РЕПЛИКАЦИЮ ВИРУСА

-1-

(57) Реферат:

Использование: в химии замещенных аминов, в частности в качестве веществ, проявляющих иммунотропную активность. Сущность изобретения: продукт ф-лы:  $[2-R^{1}O-3-R^{2}O]Ph-(CH_{2})_{2}-NHR^{2}$  где  $R^{1}R^{2}$  группа:  $-C(O)-Ph-NO_{2}$ ;  $-C(O)-CH(CH_{3})_{2}$ ;  $-C(O)-CH(C_{3}H_{7})_{2}$ ;  $-C(O)-C_{6}H_{11}$ ;

-C(O)-CH  $_2$ -C $_6$ H $_{11}$ ; -C(O)-CH $_2$ -C $_5$ H $_9$ ; -C(O)-CH  $_2$ -Cl; -C(O)-(CH $_2$ ) $_3$ -Cl; -C(O)-(CH $_2$ ) $_4$ -Cl; SO $_2$ C $_6$ H $_4$ CH $_3$ ; -S(O)-O-Ph-Cl; -C(O)-Ad, где Ad 1-адамантил, или R $^1$  водород, а R $^2$  указанные значения. Реагент 1: гидрохлорид дофамина. Реагент 2: хлорангидрид соответствующей кислоты. Условия реакции: в среде пиридина при 5-10 °C. 2 с.п. ф-лы, 6 табл.

Изобретение относится к новым химическим соединениям, конкретно к производным 2-(3,4-дигидроксифенил)этиламина, которые проявляют иммунотропную активность и обладают способностью тормозить репликацию вируса.

Известны структурные аналоги заявляемых соединений, обладающие другими видами активности. Так, препарат ибопамин, обладающий спазмолитическими свойствами, применяется в качестве сердечно-сосудистого средствам этиловый эфир в -фенетилкарбаминовой 3,4-дикарбоксикислоты проявляет антидепрессивную [2] и антипаркинсоническую [3] активность. Иммунотропная активность и способность тормозить репликацию вируса среди аналогов структурных заявляемых

В настоящее время для лечения заболеваний, связанных с иммунными нарушениями, широко применяется препарат левамизол [4] недостатком которого является достаточно высокая токсичность (ЛД 50 составляет 50 мг/кг).

соединений неизвестны.

Целью изобретения являются производные 2-(3,4-дигидроксифенил)этиламина, проявляющие иммунотропную активность, способность тормозить репликацию вируса и обладающие низкой токсичностью.

Поставленная цель достигается производными 2-(3,4-дигидрокси)этиламина общей формулы

 $\begin{array}{llll} R \ ^1 = & R^2 & C(O)C_6H_4NO_2, & -C(O)CH(CH_3)_2, \\ -C(O)C \ _6H_{11}, & -C(O)CH_2C_6H_{11}, & -C(O)CH_2C_5H_9, \\ -C(O)(CH_2)_4CI, & -C(O)(CH_2)_3CI, & -C(O)CH_2CI, \\ -C(O)-CH(C_3H_7)_2, & -SO_2C_6H_4CH_3, & -SO_2C_6H_4CI, \end{array}$ 

R <sup>2</sup> принимает указанные значения.

刀

N

ധ

മ

Указанные соединения получают известным способом по методу Эйнгорна при взаимодействии гидрохлорида дофамина с хлорангидридами кислот в пиридине. Данные температуры элементарного анализа, синтезированных плавления, выходы соединений, параметры ИК-спектров представлены в табл.1.

П р и м е р 1. Получение N-{2-{3,4-бис-(4-нитробензоилокси) фенил]этил} -4-нитробензамида (соединение 1).

В трехгорлую колбу, снабженную мешалкой, капельной воронкой и обратным холодильником, загружают 3 г дофамина и 40 мл пиридина. Реакционную массу охлаждают в бане со льдом до температуры 5±2°С. Затем при перемешивании добавляют 9 г хлорангидрида 4-нитробензойной кислоты. Реакционную массу перемешивают при

5-10 °C в течение 2 ч. Отфильтровывают образовавшийся гидрохлорид пиридина, маточный раствор выливают в охлажденную воду ( ≈ 100 мл). Реакционную смесь перемешивают при комнатной температуре в течение 2-3 выпавший продукт ч, 20 Осадок кристаллизуют N-{2-[3,4-бис-(4-нитробензоилокси)фенил] этил) -4-нитробензамида отфильтровывают, промывают подкисленной водой и спиртом, сушат на воздухе до постоянной массы. Получают 7,5 г белого с желтоватым оттенком кристаллического порошка. Т.пл. 205-208оС. Выход продукта составляет 79,1% на взятый в реакцию дофамина гидрохлорид. Очистку продукта осуществляют перекристаллизацией из диметилформамида или из ацетона. Структура соединения подтверждена элементным анализом, методами ИК- и ПМР-спектроскопии (см. табл.1).

Аналогично получены соединения 2-12.

П р и м е р 2. Получение N-{2-[4-хлорбутилкарбокси)-3-оксифенил}

14-{z-[4-хлороутилкароокси)-э-оксифенил этил} -4-хлорбутилкарбоксамид (соединение 13).

В трехгорлую колбу. снабженную мешалкой, капельной воронкой и обратным холодильником, загружают 3 г дофамина и 40 мл пиридина. Реакционную массу охлаждают до температуры 5±2°СМ. Затем перемешивании добавляют 5.0 хлорангидрида  $\omega$  -хлорвалериановой кислоты. Реакционную массу перемешивают 5-10 °C в течение 2 ч. Отфильтровывают гидрохлорид пиридина, маточный раствор выливают в охлажденную воду (≈ 100 мл) и перемешивают при комнатной температуре в течение 3 ч. Воду декантируют, оставшийся маслянистый осадок сушат в вакууме на масляном насосе до постоянной массы. Продукт очищают на хроматографической колонке (d 2 см) с силикагелем. Элюент хлороформ. Контроль за составом фракции ведут методом ТСХ на пластинах Силуфол УФ-254. Объединяют фракции, имеющие одинаковый состав. Растворитель отгоняют. Получают 0,8 г соединения 7 в виде слегка желтоватого масла и 1,9 г соединения 13 в виде белого с кремоватым оттенком кристаллического порошкам. Выход продуктов составляет 10,0 и 30,3% соответственно (см.

Методом ПМР подтверждено строение вновь синтезированных триацильных (R<sub>1</sub>= R<sub>2</sub>= ацил; соед. 1-12) им диацильных (R<sub>1</sub>=H, R<sub>2</sub>=ацил; соед. 13 им 14) производных Спектры ПМР дофамина. СНЯТЫ ДМСО-d 6 на спектрометре ЯМР "Tesla" BS-587A (80 мГц); внутренний стандарт ТМС; температура образца 303 К. В спектрах ПМР гидрохлорида дофамина регистрируются следующие сигналы поглощения: широкий сигнал поглощения интенсивностью в две протонные единицы при δ 8,82 м. д. принадлежащий протонам гидроксильных групп: широкий сигнал поглощения протонов при четвертичном атоме азота интенсивностью в три протонные единицы при

 $\delta$  8,02 м.д. сигналы поглощения ароматических протонов: H-5, $\partial$ 8 6,69 м.д. I<sub>5,6</sub>= 7,9 Гц; H-2,  $\partial$  8 6,63 м.д. I<sub>2,6</sub> 2,0 Гц; H-6,  $\partial\partial$  8 6,47 м.д. I<sub>5,6</sub> 7,9 Гц.

В области в 2,5-3,0 м.д. регистрируются

неразрешенный мультиплет сигналов поглощения четырех алифатических протонов. В качестве примера рассмотрим спектры производных дофамина и хлорвалериановой кислоты (соед. 7 и 13).

ПМР всех ацильных спектрах производных дофамина сигналы поглощения алифатических протонов ацильной части молекулы представляют собой сложные неразрешенные мультиплеты в области δ= 1.2-3.5 м.д. перекрывающиеся также с сигналами поглощения растворителя ДМСО и сигналом поглощения Н<sub>2</sub>О (примесь в ДМСО). Поэтому, принимая во внимание данные спектра ПМР гидрохлорида дофамина, наиболее информативной областью спектров ПМР, полученных производных дофамина, представляется низкопольная часть этих спектров. В низкопольной части спектров триацильных производных зарегистрирован триплет сигнала поглощения амидного протона при  $\delta$  7,89 м.д. и  $I_{NH1CH2}$  5,4 Гц и неразрешенный мультиплет трех ароматических протонов при 87,00-7,25 м.д. Для этих спектров характерно отсутствие сигналов поглощения гидроксильных протонов. В низкопольной части спектров ПМР диацильных производных дофамина зарегистрирован сигнал поглощения гидроксильного протона при 8 9,47 м.д. триплет сигнала поглощения амидного протона при 8 7,85 м.д. и I<sub>NH1CH2</sub> 5,5 Гц, а также сигналы поглощения ароматических протонов:

H-5, ∂δ 6,88 м.д. I<sub>5,6</sub> 8,1 Гц; H-2,∂∂ δ 6,78 м.д. I<sub>2,6</sub> 1,8 Гц;

双

N

ယ

മ

Н-6, ∂∂8 6,60 м.д. 16,2 1,8 Гц, 15,68,1 Гц.

Таким образом, методом ПМР подтверждено наличие в молекуле производных дофамина трех и двух ацилов соответственно.

Наличие в спектре ПМР диацильного производного дофамина сигнала поглощения протона одной из гидроксильных групп позволяет установить с помощью специальных методик ПМР-спектроскопии положение свободной гидроксильной группы в ароматическом кольце молекулы.

подавлении спин-спинового взаимодействия в -метиленовых протонов дофамина протонами молекулы С ароматического кольца на частоте в -метиленовых протонов поглощения наблюдается сужение сигналов поглощения протонов H-2 H-6. Положение гидроксильной диацильного группы производного установлено на основании изменения интенсивности сигналов поглощения ароматических протонов при применении гомоядерного эффекта Оверхаузера (ЯЭО). В экспериментах по ЯЭО сигнала протона насыщении гидроксильной группы обнаружено заметное возрастание интенсивности сигнала поглощения протона H-2. Это свидетельствует пространственной 0 близости последнего к гидроксильной группе диацильного производного, однозначно доказывающее, что гидроксильная группа находится в м-положении к группировке -CH 2CH2NHR2.

Иммунотропную активность оценивали по способности препаратов изменять:

образование антител к тест-антигенам

(эритроциты барана); реакцию гиперчувствительности замедленного типа;

Исследуемые

реакцию "трансплантат против хозяина"; фагоцитарную активность нейтрофилов; пролиферацию клеток костного мозга; резистентность экспериментальных животных к инфекции.

В экспериментах использовались самцы мышей гибридов (CBAxC57B1)F1, и нелинейных мышей массой 20-25 г. Животные содержались при температуре 20-21оС при 12 ч режиме освещения, доступ к корму ad libitum.

препараты

вводили

внутрибрюшинно или подкожно в виде суспензии в 0,1 мл физиологического раствора, содержащего 0.1% Твин 80 (в отдельных экспериментах использовали 0,17% Твин 80). Контрольным животным вводили равный объем физиологического раствора, содержащего Твин 80. Инъекции проводили по схеме 0,1, 2 и -1, 0,1, где 0 иммунизации. Для индукции антителообразования мышей иммунизировали эритроцитами барабан в дозе 107 клеток на мышь. Через 6 сут иммунизации мышей забивали и определяли титры гемагглютиминов и гемолитическую активность сыворотки спектрофотометрическим методом (А. А. Буркин, А.С.Лосев Хим. фарм. журнал. 1976, N 11, с. 41-45) в микромодификации. При использовании реакции гиперчувствительности замедленного типа сенсибилизировали  $(\Gamma3T)$ мышей внутрибрюшинно клетками Staphylococcus albumen в дозе 5·10<sup>6</sup> клеток на мышь. Через 5 сут в подушечку задней лапы вводили разрешающую дозу клеток Staphylococcus albumen 10<sup>7</sup> клеток в 0,05 мл, через 24 ч измеряли разницу в массах контрольной и воспаленной лап.

В отдельных экспериментах в качестве тест-антигена использовали эритроциты барана, сенсибилизирующая доза 3 ·10<sup>7</sup>, разрешающая доза 10<sup>8</sup>клеток.

При определении влияния исследуемых соединений на фагоцитарную активность нейтрофилов через 24 после внутрибрюшинной инъекции препаратов отбирали кровь в раствор гепарина (конечная концентрация 10 ед/мл). Затем 0,1 мл крови смешивали с 0.05 мл суспензии клеток Staphylococcus albumen, инкубировали 30 мин при 37°C, лизировали эритроциты с помощью 0,83% NH₄CI, делали мазки и фиксировали После окрашивания Рамоновскому-Гимзе подсчитывали число фагоцирующих клеток из 200 нейтрофилов (активность фагоцитоза) и среднее число микробных клеток, поглощенных одним нейтрофилом (фогоцитирующий индекс). При оценке активности нейтрофилов по продукции супероксидного радикала кровь, полученную в указанных условиях, смешивали соотношении 1: 1 с 0,2%-ным раствором нитросинего тетразолия (НСТ), инкубировали 30 мин при 37°C и делали мазки. Мазки окрашивали сафранином и подсчитывали число нейтрофилов, содержащих гранулы восстановленного нитротетразолия из 200 клеток.

При исследовании влияния на

пролиферацию клеток костного мозга мышей забивали цервикальной дислокацией через 24 ч после однократного внутрибрюшинного введения препаратов. Затем в стерильных условиях извлекали большие берцовые кости, из которых с помощью среды 199 вымывали костного мозга. центрифугирования и промывки клетки культивировали в 96-луночных планшетах для иммунологических реакций в течение 16 ч при 37°C во влажной атмосфере с 5% CO<sub>2</sub>. В инкубационную среду добавляли 10% эмбриональный телячьей сыворотки и <sup>3</sup>Н-тимидин (1 мкм на лунку). По истечении времени инкубирования клетки переносили на бумажные фильтры FN-8. Фильтры высушивали, отмывали 2 раза по 5 мин физиологическим раствором, затем 5% ТХУ 24 при 4°C и еще 2 раза по 5 мин 5% ТХУ. засушивания просчитывали После радиоактивность проб в сцинцилляторе ЖС-8 на счетчике.

Реакцию "трансплантат против хозяина" определяли в подколенных лимфатических узлах локальном введении при полуаллогенных клеток. Мышам, гибридам (CBAxC57B1)FI, в подушку задней лапы вводили 2 107 клеток, выделенных из лимфатических узлов (паховых, подколенных, родительского подмышечных, шейных) генотипа линии СВА. В контрлатеральную лапу вводили такое же количество сингенных клеток из лимфатических узлов. Животным опытной группы в течение трех дней вводили исследуемые вещества, начиная за 24 ч до переноса лимфоцитов. На восьмые сутки мышей забивали цервикальной дислокацией, извлекали подколонные лимфатические узлы в раствор Хенкса и определяли их массу.

Реакцию оценивали по индексу реакции -иP:

ИР

#### масса подколенного узла опытной лапы масса подколенного узла контрольной лапы

При изучении влияния препарата на мышей резистентность инфекции K использовали суточную культуру Salmonella enteritidis. Животных заражали подкожной 5·10<sup>8</sup> инъекцией клеток на Исследуемые препараты вводили в течение 4 дней, начиная за сутки до заражения. Эффект препарата оценивали ПО средней продолжительности жизни животных в группе. определении острой токсичности При подсчитывали количество погибших мышей однократной внутрибрюшинной инъекции суспензии исследуемых веществ. В качестве вещества сравнения был выбран известный иммуномодулятор хорошо левамизол. Необходимо отметить, что данные фармакологической активности противоречивы, в зависимости от иммунного статуса, дозы и схемы введения левамизол стимулирует или угнетает иммунитет (В. Renoux, Drugs, 1980 1980, T.19, C. 89-99).

Однако сочли возможным использовать его в качестве вещества сравнения, так как иммуномодуляторы, близкие по структуре и типу действия, отсутствуют и, кроме того, это наиболее изученный препарат. В связи с тем, что левамизол не влиял на пролиферацию клеток костного мозга, в этом эксперименте в качестве вещества сравнения использовали известный препарат

метилурацилстимулятор лейкопоэза. При изучении влияния препаратов на резистентность мышей к инфекциям для сравнения использовали препарат "Бронхомунал" (ЛЕК, Югославия), применяемый для лечения бронхолегочных инфекций

Результаты исследований иммунотропной активности заявляемых соединений представлены в табл.2-5.

Установлено, что производные 2-(3,4-диоксифенил)этиламина способны изменять активность иммунной системы (табл.2, 3). Выраженность и направленность эффекта зависят от заместителя. из испытанных веществ Большинство стимулировало иммунологические реакции, вместе с тем соединение 14 угнетало клеточный иммунитет. Из исследованных наибольшая соединений иммуностимулирующая активность наблюдалась у соединений 1 и 2. Оба вещества выражено стимулируют образование антител тест-антигену К (табл.2), а препарат 1 в некоторой степени реакцию ГЗТ (табл.2). Кроме того, эти вещества нормализуют сниженную реакцию "трансплантат против хозяина" И пролиферацию клеток костного мозга (табл.4,5).

Исследование новых производных 2-(3,4-дигидроксифенил)этиламина на способность тормозить репликацию вируса проводили следующим образом.

CEM-SS клетки выращены в среде RPMI 1640, содержащей 10% инактивированной сыворотки плода коровы, 2 мкМ глютамина и 50 мкг/мл гентамицина. Изолят ВИЧ-1 BRU был размножен путем инфицирования клеток CEM-SS. Начиная с 3 дня инфицирования среду собирали ежедневно и фильтровали на клетках CEM-SS. Штаммы вируса по порциям хранили температуре -80°C. при Размножение ВИЧ-1 BRU в клетках CEM-SS измеряли путем подсчета синциций, продуцированных в течение 4 дней после инфицирования. Клетки CEM-SS были инфицированы 100-200 синциций образующих единиц ВИЧ на 400.000 клеток. После 30-минутной абсорбции отделяли остаточный свободный вирус. Инфицированные клетки ресуспендировали в среде RPMI, содержащей 10% сыворотки плода коровы, и вносили по 0,9 мл (400.000 клеток) в лунки 24-луночных планшетов. Затем добавляли по 0,1 мл различных растворов антивирусных препаратов и культивировали при 37°C. Через 4 сут проводили подсчет синциций методом световой микроскопии. Ингибирование размножения вируса было подтверждено посредством сравнения активности обратной транскриптазы. связанной с частицей вируса, выделенной через 4 дня после инфицирования в присутствии или отсутствии препарата. Цитотоксичность определялась измерением **уменьшения** жизнеспособности неинфицированных клеток в присутствии препарата с помощью метода восстановления MTT.

При испытаниях противовирусной активности использовали серии возрастающих концентраций препаратов. Приведенная в табл.6 величина соответствует максимальной концентрации

исследуемого вещества, используемой в эксперименте. Активность препарата выражалась как минимальная концентрация, вызывающая торможение репликации вируса. В качестве вещества сравнения использовали азидотимидин.

Как видно из данных табл. 6, азидотимидин подавляет репликацию вирусов в концентрации 0,01 мкМ, тогда как соединение 2 в концентрации 0,1 мкМ. Однако азидотимидин значительно токсичнее: в концентрации 0,1 мкМ наблюдается гибель 20% клеток, а соединение 2 даже в концентрации 10 мкМ не проявляет токсичности. Поэтому, учитывая оба эти фактора (активность и токсичность), следует считать эффекты заявляемого соединения 2 и азидотимидина сравнимыми. Исследования производных

2-(3,4-дигидроксифенил)этиламина на анти-ВИЧ-1 анализ свидетельствуют о том, что соединение 2 способно тормозить репликацию вируса.

В результате приведенных исследованных установлено, что производные 2-(3,4-дигидроксифенил)этиламина значительно менее токсичны, чем препарат иммуномодулирующей левамизол. По активности они не уступают препаратам сравнения, а по некоторым показателям превосходят их. Спектр иммунотропной активности этих соединений отличается от спектра активности левамизола. Левамизол, как известно, в основном активирует клеточные реакции, тогда как, например, соединения 1 и 2 более выражено стимулируют гуморальные реакции.

Указанные обстоятельства позволяют рекомендовать производные 2-(3,4-дигидроксифенил)этиламина в качестве потенциальных иммуностимулирующих лекарственных средств для терапии заболеваний, связанных с нарушением функции иммунной системы, а также в качестве средств для снижения побочных иммуносупрессивных влияний других лекарственных препаратов, например цитостатиков, и в качестве противовирусных средств.

#### Формула изобретения:

1. Производные 2-(3,4-дигидроксифенил)-этиламина общей формулы

где  $R_1$   $R_2$  (C(O)  $C_6H_4NO_2$ , C(O)CH(CH<sub>3</sub>)<sub>2</sub>, C(O)CH/(C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>, C(O)C<sub>6</sub>H<sub>11</sub>, C(O)CH<sub>2</sub>C<sub>6</sub>H<sub>11</sub>, C(O)CH<sub>2</sub>C<sub>5</sub>H<sub>9</sub>, C(O)CH<sub>2</sub>CI, C(O) (CH<sub>2</sub>)<sub>3</sub> CI, C(O) (CH<sub>2</sub>)<sub>4</sub>CI, SO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>, SO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CI,

или R<sub>1</sub> H, а R<sub>2</sub> имеет указанные значения, проявляющие иммунотропную активность. 2. N-{

2. IN-{ 2 (3,4-Бис(изобутирилокси)фенил]этил} изобутириламид, обладающий способностью тормозить репликацию вируса.

203

<u>د</u>

45

10

15

25

30

35

40

50

55

60

| O CH CH NHR²        | ļ.               |
|---------------------|------------------|
| R <sup>2</sup> 0-(O | R <sup>1</sup> 0 |

|                    | 71                                                                     | 0,8,0                                                         | īŌ                                                                             |                                                                             | <del>-</del>                                                               |                                                                             |                                                                                 |
|--------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| T. n.n             | 206-207                                                                | 106,5-108,0                                                   | 102-105                                                                        | 79-81                                                                       | 209-211                                                                    | 59-61                                                                       |                                                                                 |
| Брутто-<br>Формула | C29H20N4O11                                                            | C20H29NO5                                                     | C29H41NO5                                                                      | CæH47NO5                                                                    | C41H53NOs                                                                  | C29H41NO5                                                                   | C23H32CI3NO5                                                                    |
| R <sup>2</sup>     | \$- <b>\(\)</b>                                                        | -02<br>CH3½CHCO                                               | <b>√</b>                                                                       | CH <sup>2</sup> -CO                                                         | . , , , , , , , , , , , , , , , , , , ,                                    | ÿ<br>5-2                                                                    | СІ(СН2)АСО                                                                      |
| -R                 | \$ <del>-</del>                                                        | 02H2Z(EH2)                                                    | \$-€                                                                           | CH -CO-                                                                     |                                                                            | ) H H N                                                                     | CI(CH2)4C0                                                                      |
| Соединение         | N-{2-/3,4-бис-(4-нитробензоил-<br>окси)фенил/этил}-<br>4-нитробензамид | N-{2-/3,4-бис-(изобутирилокси)-<br>фенил/-этил}изобутириламид | N-{2-/3,4-бис-{циклогексанкар-<br>бокси)фенил/этил}циклогексан-<br>карбоксамид | N-{2-/3,4-бис-{циклогексилаце-<br>токси)фенил/этил}циклогекси-<br>лацетамид | N-{2-/3,4-бис-(адамактанкарбо-<br>кси)фенил}этил}адамантанкар-<br>боксамид | N-{2-/3,4-бис-{циклопентила-<br>цетокси)фенил/этил}циклопен-<br>тилацетамид | N-{2-/3,4-бис-{4-хлорбутилкар-<br>бокси)фенил]этил}-4-хлорбутил-<br>карбоксамид |
| 2 ° ° °            | -                                                                      | 2                                                             | က                                                                              | 4                                                                           | က                                                                          | 9                                                                           | 7                                                                               |

RU 2039733 C1

r;

3

Продолжение табл. 136,0-136,5 103,5-105,5 53,5-55,0 44,0-44,5 110-112 ۲. اگر 3 65-70 C26H20Cl3S3NO8 C20H26Cl3NO5 C14H14Cl3NO5 C29H29NO8S3 C18H25Cl2N04 C<sub>32</sub>H<sub>53</sub>NO<sub>5</sub> C22H31NO4 формула Брутто-(C3H7)2CHCO CI(CH<sub>2</sub>)3CO CI(CH2)4C0 CICH<sub>2</sub>CO 7 (C3H7)2CHCO CI(CH<sub>2</sub>)<sub>3</sub>CO CICH<sub>2</sub>CO I I ~ сульфокси)фенил]этил}-4-метил-N-{2-{3,4-бис-{2-пропилпентано-илокси)фенил}этил}-2-пропил-N-{2-{4-{4-хлорбутилкарбокси}-3-оксифенил]этил}-4-хлорбутил-N-{2-{3,4-бис-{4-хлорфенилсуль-N-{2-{3,4-бис-{4-хлорбутирилок-N-{2-{3,4-бис-{хлорацетокси)фе-нил]этил}хлорацетамид фонилокси)фенил]этил}-4-хлор-N-{2-{4-{циклопентилацетокси}-3-оксифенил]этил}циклопентиси)-фенил этил - 4-хлорбутира-N-{2-{3,4-бис-{4-метилфенилфенилсульфамид фенилсульфамид карбоксамид Соединение пентанамид лацетамид 2 2 2 2 2 2 5 7 42 13 7 ထ 6

RU 2039733 C1

RU 2039733 C

Выход на дофамин, % 83,6 85,5 80,0 73,0 62,0 0'89 79,1 C=0 эфир 1750 1760 1760 1740 1750 1760 1740 С-N N-H амид II 1520 1540 1550 1540 1540 1540 1540 ИК-спектры C=0 амид 1 1640 1640 1640 1640 1630 1640 1640 N-Н амиды 3280 3340 3320 3440 3340 3330 3300 S ı 1 ł ı 1 20.90 20.97 ರ Элементный анализ <u>Вычислено</u> Найдено 9.33 9.09 3.85 2.90 2.66 2,60 2.19 2,40 2.90 2.92 2,75 8.63 8.63 8.04 8.07 8.56 8,70 9.03 8.88 8.56 8,10 6.34 I 65.09 65.94 72.00 71.90 73.09 72.91 <u>76.96</u> 76,20 72.00 72,20 **54.28 54.06** ပ 원 일 년 വ 8 က 9 4 ~

Продолжение табл. 1

RU 2039733 C1

RU 2039733 C1

Выход на дофамин, % 61,8 63,0 45,7 55,4 30,3 65,7 40,1 С=0 Эфир 1750 1780 1745 1750 1745 1375 1180 1160 810 C-N N-H амид II 1540 1380 1190 1160 820 1540 1550 1560 1560 ИК-спектры -S02-O-R -NH-SO<sub>2</sub>--NH-SO<sub>2</sub>--SO<sub>2</sub>-0-R C=0 амид I 1630 1620 1640 1620 1640 N-Н амиды 3320 3250 3320 3380 3370 15.62 15.50 14.21 14.35 S 1 ţ Ī 22.79 22.79 15.71 15.67 27.80 27.48 18,17 ರ i Элементный анализ Вычислено Найдено 3.05 2.05 1.9.1 3.80 3.80 2,27 2,20 2,64 2,77 3,59 3,75 10,01 5.61 5.64 2.98 2.96 4,75 3.69 6,45 8,36 I 51.46 51,63 46.13 46.06 72,31 43.95 70,45 56.57 56,61 55,39 ပ ₽ 2 1 1 Ξ 7 5 4 5 00 Ġ,

Продолжение табл. 1

RU 2039733 C1

Сводная таблица результатов иммунотропной активности производных  $_{_{y}}$  2-(3,4-дигидроксифенил)этиламина (% к контролю)

| Coe-   | Токсичность, | Доза, | Гуморальный    | Клеточный им-  | Фагоцитоз (ак- |
|--------|--------------|-------|----------------|----------------|----------------|
| дине-  | мг/кг        | мг/кг | иммунитет (об- | мунитет (реак- | тивность, ней- |
| ние    |              | -     | разования ан-  | ция ГЗТ)       | рофилов)       |
| }      |              |       | тител)         |                | ' '            |
| 1      | более        | 10,0  | 189            | 107            | 110            |
|        | 1000         | 100,0 | 709            | 120            | 118            |
| 2      | более        | 10,0  | 211            | 100            | 119            |
| ]      | 1000         | 100,0 | 453            | 95             | 119            |
| 3      | более        | 5,0   | 164            | 128            | 82             |
|        | 1000         | 50,0  | 162            | 83             | 83             |
| 4      | более        | 5,0   | 532            | 95             | 93             |
|        | 1000         | 50,0  | 129            | 101            | 89             |
| 5      | более        | 1,0   | _              | _              | 138            |
| ] -    | 1000         | 10,0  | _              | 78             |                |
|        | -            | 100,0 | 98             | 102            | 97             |
| 6      | 833          | 1,0   | _              | _              | 101            |
|        |              | 10,0  | 71             | 104            | - 1            |
| l      | более        | 100,0 | 88             | 105            | 104            |
| 7      | 1000         | 1,0   | _              | -              | 117            |
|        |              | 10,0  | 145            | 109            | -              |
|        | более        | 100,0 | 50             | 96             | 100            |
| 8      | 1000         | 5,0   | <del>-</del>   | 132            | 117            |
|        |              | 10,0  | 137            | -              | -              |
|        |              | 50,0  | _              | 123            | 105            |
| 1      | более        | 100,0 | 126            | _              | -              |
| 9      | 1000         | 5,0   | 357            | 115            | 114            |
| }      | более        | 50,0  | 135            | 106            | 97             |
| 10     | 1000         | 5,0   | 66             | -              |                |
|        |              | 10,0  |                | 98             | 140            |
|        |              | 50,0  | 74             |                |                |
|        |              | 100,0 | _              | 87             | 132            |
| 11     |              | 10,0  | 83             | 79             | 87             |
| Į.     | •            | 100,0 | 147            | 92             | 116            |
| 12     |              | 10,0  | 121            | 98             | 91             |
| 1      | более        | 100,0 | 98             | 112            | 123            |
| 13     | 1000         | 5,0   | 89             | _              | 100            |
|        | более        | 50,0  | 183            | -              | 110            |
| 14     | 1000         | 5,0   | _              | 43             | 93             |
| 1      | 50           | 50,0  | -              | 40             | 110            |
| 15     |              | 5,0   | 136            | 138            | 150            |
| (Лева- | 1            |       |                |                |                |
| мизол) | 1            |       |                | 1              | <u> </u>       |

Таблица 3

# Влияние соединений 1 и 2 на продолжительность жизни мышей, инфицированных Salmonella enteritidis

N

2039

7

ယ ယ

| Соединение              | Доза,<br>мг/кг | Средняя про-<br>должитель-<br>ность жизни,<br>сут | % к<br>контролю |
|-------------------------|----------------|---------------------------------------------------|-----------------|
| Контроль, физраствор    | <del>-</del>   | 5,9±0,3                                           | 100             |
| Контроль, 0,1 % Твин 80 | _              | 7,3±1,3                                           | 100             |

ယ 9

ယ

| fi Coe  | единение               | Доза,<br>мг/кг | Средняя про-<br>должитель-<br>ность жизни,<br>сут | % к<br>контролю        |
|---------|------------------------|----------------|---------------------------------------------------|------------------------|
| Eno     | 1                      | 50,0<br>3,5    | 9,6±2,0<br>6,7±0,5                                | 131,5<br>114 (по отно- |
|         | нхомунал<br>Югославия) | 3,3            | 0,7 ±0,5                                          | шению к п.1)           |
| Контрол | ь, физраствор          | -              | 5,8±0,5                                           | -                      |
|         | 0,1 % Твин 80          | _              | 4,9±0,2                                           | 100                    |
| 1       | 2                      | 10,0           | 5,4±0,4                                           | 110                    |
| Ле      | вамизол                | 2,5            | 4,6±0,7                                           | 94                     |

Таблица 4

## Влияние исследуемых веществ на реакцию трансплантат против хозяина"

| Соединение              | Доза, | Индекс      | % K      |
|-------------------------|-------|-------------|----------|
|                         | Mr/kr | реакции     | контролю |
| Контроль, физраствор    | -     | 5,64±0,61   | _        |
| Контроль, 0,1 % Твин 80 | _     | 4,83±0,57   | 100      |
| 1 1                     | 10,0  | 5,19±0,63   | 107      |
| 1                       | 100,0 | 6,67±0,615* | 138      |
| 2                       | 10,0  | 6,42 ±0,55* | 138      |
| 2                       | 100,0 | 5,74±0,195  | 119      |
| Левамизол               | 2,5   | 5,66±0,91   | 117      |

Примечание. В каждой группе по 8 мышей

#### Таблица 5

### Влияние соединений 1 и 2 на пролиферацию клеток костного мозга мышей

| Соединение              | Доза,<br>мг/кг | Радиоактивность, число импульсов в минуту | % к<br>контролю |
|-------------------------|----------------|-------------------------------------------|-----------------|
| Контроль, физраствор    | -              | 29470+3270                                | -               |
| Контроль, 0,1 % Твин 80 | _              | 20449+1057                                | 100             |
| 1                       | 10,0           | 31652+1893**                              | 155             |
| 1                       | 100,0          | 30198+4451*                               | 148             |
| 2                       | 10,0           | 26977+4627                                | 132             |
| $\bar{2}$               | 100,0          | 30222+3269*                               | 148             |
| Метилурацил             | 100,0          | 30217+5477                                | 148             |

#### Таблица 6

| Соединени <b>е</b> | Максимальная кон- | Активность, | Токсичность, |
|--------------------|-------------------|-------------|--------------|
|                    | центрация, мкМ    | мкМ (%)     | мкМ (%)      |
| Азидотимидин       | 1 10              | 0,01 (80)   | 1 (20)       |
| 2                  |                   | 0,1 (40)    | 10 (0)       |