An Introduction To Bayesian **Statistics**

Simon Thornewill von Essen

Data Analyst, Goodgame Studios

@sthornewillve 🐍

How do we estimate probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By quantifying our uncertainties

Coin Toss: Classical Est.

Dice: Classical Est.

Classical Stats

- Requirements
 - All Outcomes are known
 - Outcomes are assumed to be equally likely
- Advantages
 - Fast Estimation
 - Easy to understand
- Disadvantages
 - Outcomes must be known
 - Often created overly simplified models when applied to complex phenomena

How do we estimate probability?

- Classical
- Frequentist
- Bayesian

- Take measurements over time
- Measurements will eventually approximate the parameter we want to measure

Thermometer Calibration: Frequentist Est.

Check to see if thermometer is properly calibrated

Frequentist Approach:

Take many readings and use the expectation value (mean) and std for sample

Calculate the probability of your data given your data following some parameter.

Thermometer Calibration: Frequentist Est.

Confidence Interval:

- From sample mean and standard deviation, calculate an interval
- Interval contains the true parameter x% of • the time upon repeated experiments

Thermometer Calibration: Frequentist Est.

Confidence Interval:

- Intuition:
 - If you were to bootstrap the confidence interval n times
 - Interval would contain the mean of population 95% of the time

Probability of Rain: Frequentist Est.

P-value:

- Probability of data given a parameter
- "The probability that outcome is due to random chance given that there is no difference between experimental groups"
- $P(X | \mu)$

Thermometer Calibration: Test

If P-value = 0.001 (highly significant), is the probability of getting this result given our data 0.001?

② 2. For a given confidence interval, does the parameter lie within it 95% of the time?

Thermometer Calibration: Test

In If P-value = 0.001 (highly significant), is the probability of getting this result given our data 0.001?

Probability of getting this result given no difference in experimental groups is 0.001

② 2. For a given confidence interval, does the parameter lie within it 95% of the time?

Intervals of repeated experiments will contain the parameter 95% of the time

Thermometer Calibration: Test Learnings

Frequentism expects that parameters exist and are fixed, the probabilities are the likelihood of our data given these expectations

Wait, wasn't this was we were doing with frequentism?"

Thermometer Calibration: Test Learnings

Child doesn't move, your repeated photos contain them 95% of the time

Frequentist Stats

Requirements

- Possibility to perform experiments indefinitely
- Parameters are assumed to be fixed
- Able to estimate params given enough experiments

Advantages

- Works well with simulations
- "Objective"

Disadvantages

- Requires large sample size to be meaningful
- Does not allow for integration of domain knowledge
- P-values and confidence intervals are unintuitive
- Difficult to communicate to non-statisticians

Frequentist Stats Disav. Cont.

What if?

- Amount of data you have is limited?
- You have relevant and applicable prior information
- "Infinite" experiments are not possible? (Cost, feasibility)
- Stakeholders have a hard time understanding frequentist logic?
- Children never stay still and assuming they do is blasphemy

How do we estimate probability?

- Classical
- Frequentist
- Bayesian

Bayes Theorem

Goal: Invert a likelihood

$$p(B \mid A) = rac{p(A \mid B) \ p(B)}{p(A)}$$

Bayes Theorem: Derivation

$$P(A|B) = \frac{P(A \cap B)}{P(A)}$$

Bayes Theorem: Derivation

The Same

$$P(A|B) = \frac{P(A \cap B)}{P(A)} \qquad P(B|A) = \frac{P(B \cap A)}{P(B)}$$

$$\therefore p(B|A) = \frac{p(A|B) p(B)}{p(A)}$$

Bayes Theorem: Alternate View

 θ = Parameter,

X = Data

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

Bayes Theorem: Alternate View

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

- **?** Problem:
 - How to calculate p(X)
 - How to calculate $p(\theta)$

Bayes Theorem: How to Calculate $P(\theta)$?

Create Your Own

2. Take Previous posterior

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

Bayes Theorem: How to Calculate $P(\theta)$?

Problem: Are you Baking your biases into your model?

Bayes Theorem: How to Calculate $P(\theta)$?

Might as well have your explicit and tangible biases.

As the sample size increases, priors get washed out.

- Low Sample Size: Frequentist Stats is börked anyway, so why not?
- High Sample Size: Prior Doesn't matter

Bayes Theorem: How to Calculate P(X)?

- 1. Sum of all possible numerators
- 2. Yes, this can get difficult

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)^{?}}$$

$$p(X) = \sum_{i=0}^{n} p(X|\theta_i)p(\theta_i)$$

$$p(X) = \int p(X|\theta)p(\theta)d\theta$$

Bayes Theorem: How to Calculate P(X)?

You can ignore P(X) if you are comparing posteriors for the same distributions

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)^{?}}$$

- The Monty Hall Problem:
 - You Pick Door 1
 - o Monty opens door 2 to reveal a goat
 - Should you switch to door 3?

Hypothesis i	Prior $p(\theta_i)$
Car Behind 1	1/3
Car Behind 2	1/3
Car Behind 3	1/3

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)
Car Behind 1	1/3	1/2
Car Behind 2	1/3	0.0
Car Behind 3	1/3	1.0

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_{i})	Prior * Likelihood
Car Behind 1	1/3	1/2	1/6
Car Behind 2	1/3	0.0	0.0
Car Behind 3	1/3	1.0	1/3

$$P(X) = \sum_{i=0}^{n} p(X|\theta_i)p(\theta_i) = 1/6 + 0 + 2/6$$
$$= 3/6$$
$$= 1/2$$

^{*} This is the Dot Product of $p(\theta_i)$ and $p(X \mid \theta_i)$

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)	Prior * Likelihood	Posterior
Car Behind 1	1/3	1/2	1/6	1/3
Car Behind 2	1/3	0.0	0.0	0
Car Behind 3	1/3	1.0	1/3	2/3

Key to problem:

Monty does not choose doors at random and so opening a door provides you with information

How!?: Train Analysis

- You see a train labeled 60
- What was the probability of seeing60 given that you saw it?

How!?: Train Analysis

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)	Prior * Likelihood	Posterior
1 Train	1/N	0.0	0.0	post ₁
2 Trains	1/N	0.0	0.0	post ₂
60 Trains	1/1000	1/60	1/(6*10 ⁴)	post ₆₀
1000 Trains	1/1000	1/1000	1/106	post ₁₀₀₀

$$\Sigma = P(Train)$$

How!?: Train Analysis

How!?: Train Analysis

- What if we change priors?
 - Posterior changes

- What if we increase the max number of trains
 - Posterior changes

How!?: Part 1 - Discrete Case Recap

- Remember the table calculation!
- Steps:
 - Pick Prior (Often Uniform)
 - Multiply by Frequentist Likelihood
 - O Divide by Normalisation constant

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{\sum_{i=0}^{n} p(X|\theta_i)p(\theta_i)}$$

- 1. AB Testing Revisited:
 - a. Two variants
 - b. What is the probability of A being better than B?
- 2. Time for Bayesian Statistics!

AB Test:

- For people randomly placed in control/test
- Track conversions (1/0)
- What is our Likelihood?
 - o Bernoulli

$$P(X|\theta) = \theta^{\sum y_i} (1-\theta)^{n-\sum y_i}$$

Prior?:

- Uninformed Prior
- Uniform distribution
- Represented by
 Indicator Function

$$P(\theta) = I_{\{0 \le \theta \le 1\}}$$

$$P(\theta|X) \propto [\theta^{\sum y_i} (1-\theta)^{n-\sum y_i}][I_{\{0 \le \theta \le 1\}}]$$

$$P(\theta|X) = \frac{\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}}}{\int_0^1 \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}} d\theta}$$

$$P(\theta|X) = \frac{\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}}}{A^{-1} \int_0^1 A \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}} d\theta}$$

$$A = \frac{\Gamma(\sum n + 2)}{\Gamma(\sum y_i + 1)\Gamma(\sum n - y_i + 1)}$$

$$P(\theta|X) = A(\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}})$$
$$= Beta(\alpha, \beta)$$

$$P(\theta|X) = Beta(\alpha, \beta)$$

$$\alpha = 1 + \sum y_i,$$

$$\beta = n - 1 + \sum y_i$$

• Steps:

- Pick Prior (Often Uniform)
- Multiply by Frequentist Likelihood
- Divide by Normalisation constant
 - Integral over all possible hypotheses
 - (Tips and tricks may be required)

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{\int p(X|\theta)p(\theta)d\theta}$$

When is it okay not to perform Normalisation?

 When you are comparing two values inside of the same set that creates p(P)

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

Conjugate Priors

- Beta distribution is example of conj.
 Prior
- Use it and you will get the same distribution in posterior
- Once the math is done, never do it again
- Update functions using data as it appears

$$P(\theta|X) = Beta(\alpha, \beta)$$

Conjugate Priors

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$

Conjugate Priors

			2002722	k, θ	$k + \sum_{i=1}^{n} x_i, \frac{\theta}{n\theta + 1}$	k total occurrences in $\frac{1}{\theta}$ intervals	$ ext{NB}(ilde{x} \mid k', heta')$ (negative binomial)
Poisson	λ (rate)		Gamma	$lpha,~eta^{ ext{[note 3]}}$	$\alpha + \sum_{i=1}^n x_i, \; \beta + n$	lpha total occurrences in eta intervals	$\mathrm{NB}\Big(ilde{x} \mid lpha', rac{1}{1+eta'}\Big)$ (negative binomial)
Exponential	λ (rate)	Gamma	α , β [note 3]	$\alpha + n, \ \beta + \sum_{i=1}^n x_i$	α observations that sum t	ο β ^[6]	$\operatorname{Lomax}(ilde{x}\mid eta', lpha')$ (Lomax distribution)

- Estimation of Parameters
- Credible Intervals
- Vary priors to see effects
- Calculate $P(\theta=x \mid X)$
- etc.

$$P(\theta|X) = Beta(\alpha, \beta)$$

Demo: Conjugate Priors

Challenges w/ Freq. AB Tests:

- Test needs to reach pre-defined sample size
- Need to adjust α for multiple tests (Bonferroni Corrections)
- People start accepting null hypotheses
- Can only reject/fail to reject null hypothesis, (leads to p-hacking)
- People peek at tests before tests are over, (moar p-hacking)

Do we calculate P-values now?

- No need, just calculate $P(\theta_2 > \theta_1)$
- Takes some calculation, but the result is nicer

Can we peek or stop at any time?

• Yes!

Bayesian Stats

Advantages

- Incorporation of Domain Knowledge
- Estimation in the case of little data (specific circumstances)
- Allows for models of as little or high complexity as necessary
- Parameters are distributions
- Easier to communicate with more interpretable answers

Disadvantages

- Lots and lots of theory
- Integrals are hard, MCMC methods aren't easy either
- MCMC can be computationally expensive
- Criticisms of being less "objective" due to use of priors
- Point estimates become the same as frequentist estimations with high sample sizes

How do we estimate probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By quantifying our uncertainties

Conclusion and "Call to Action"

- Understanding Bayes vs Freq. is key to understanding a lot of stats
- For scientists: Check my sources as a jump off point
- For decision-makers: Consider these kinds of analyses when little data is available

Resources for further learning

Mathematical Understanding:

```
"Bayesian Stats: From Concept to Data Analysis", U of Santa Cruz
```

Intuition between Bayesianism & Frequentism:

```
"Frequentism and Bayesianism", 
Scipy - Jake Vander Plas
```

Examples of Real World Applications:

```
"Think Bayes",

Allan Downey
```

Further reading into MCMC and pyMC:

```
"Bayesian Methods for Hackers",
Cameron Davidson-Pilon
```

Find Slides on Github

https://cutt.ly/zGqux9

Fin!

•••

@sthornewillve

