CSC236H Exercise 1

Sample Solutions

Winter 2016

1. Use induction to prove that $3^{2n} - 1$ is divisible by 8, for all $n \in \mathbb{N}$.

Solution: Let P(n) denote the assertion that $3^{2n} - 1$ is divisible by 8.

Base Case: Let k = 0.

Then $3^{2k} - 1 = 3^0 - 1 = 0$. Since 0 is divisible by any natural number, including 8, we can conclude that P(0) is true.

Induction Step: Let $k \in \mathbb{N}$. Suppose P(k) is true, i.e., $3^{2k} - 1$ is divisible by 8. **[IH]** WTP: P(k+1) holds, i.e., $3^{2(k+1)} - 1$ is divisible by 8.

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

= $3^{2k}3^2 - 1$
= $(3^{2k} - 1 + 1)3^2 - 1$ # added and subtracted 1
= $(3^{2k} - 1)3^2 + 3^2 - 1$ # distributed 3^2 over $(3^{2k} - 1 + 1)$

By IH, $3^{2k}-1$ is divisible by 8, so there must exists $j \in \mathbb{N}$ such that $3^{2k}-1=8j$. Then we have

$$3^{2(k+1)} - 1 = 8j \times 3^2 + 9 - 1$$
$$= 8(9j + 1)$$

Therefore, $3^{2(k+1)} - 1$ is divisible by 8, and so P(k+1) holds.

2. Assume $x \in \mathbb{R}$ and $(x + \frac{1}{x}) \in \mathbb{Z}$. Use induction to prove that for all $n \in \mathbb{N}$

$$(x^n + \frac{1}{x^n}) \in \mathbb{Z}.$$

Solution: Let P(n) denote the assertion that $x^n + \frac{1}{x^n}$ is an integer.

Base Case: Let k = 0. Then $x^n + \frac{1}{x^n} = x^0 + \frac{1}{x^0} = 1 + 1 = 2$. Therefore, P(0) holds.

Notice that in the problem statement, P(1) is given as an assumption.

Induction Step: Let $k \in \mathbb{N}$ and $k \ge 1$. Suppose for all $j \in \mathbb{N}$, $0 \le j \le k$, P(j) is true, i.e., $x^j + \frac{1}{x^j}$ is an integer. **[IH]**

1

(Note that we need to include the condition $k \geq 1$ in the IH because in the inductive step we go to k-1.)

WTP: P(k+1) holds, i.e., $x^{k+1} + \frac{1}{x^{k+1}}$ is an integer.

By IH, we know that $x + \frac{1}{x}$ and $x^k + \frac{1}{x^k}$ are both integers. Since integer numbers are closed under multiplication, $(x + \frac{1}{x})(x^k + \frac{1}{x^k})$ is also an integer.

$$(x + \frac{1}{x})(x^k + \frac{1}{x^k}) = x^{k+1} + \frac{1}{x^{k-1}} + x^{k-1} + \frac{1}{x^{k+1}}$$
$$= (x^{k-1} + \frac{1}{x^{k-1}}) + (x^{k+1} + \frac{1}{x^{k+1}})$$

Since $(x + \frac{1}{x})(x^k + \frac{1}{x^k})$ is an integer, we have $\left((x^{k-1} + \frac{1}{x^{k-1}}) + (x^{k+1} + \frac{1}{x^{k+1}})\right) \in \mathbb{Z}$.

On the other hand, by IH , we know that $x^{k-1} + \frac{1}{x^{k-1}} \in \mathbb{Z}$ (We can apply the IH for k-1 since $k \geq 1$, and so $0 \leq k-1 \leq k$). Therefore, $(x^{k+1} + \frac{1}{x^{k+1}})$ must also be an integer.