Exercice 1. Trouver l'équation de la droite qui approxime le mieux l'ensemble de points

$$\{(0,0),(0,1),(0,2),(1,3)\}.$$

Faire un dessin.

Exercice 2. Soient $A, B \in M_{n \times n}(\mathbb{R})$ des matrices orthogonales, et $C \in M_{n \times n}(\mathbb{R})$ une matrice non orthogonale. La matrice AB est-elle orthogonale? La matrice AC est-elle orthogonale?

Exercice 3. Déterminer α, β, γ et δ de sorte que la matrice

$$A = \frac{1}{5} \begin{pmatrix} 3 & 4 & \gamma \\ \alpha & -3 & 0 \\ 0 & \beta & \delta \end{pmatrix}$$

 $soit\ orthogonale.$

Exercice 4. Les matrices suivantes sont-elles orthogonales? Si oui, trouver leur inverse.

$$A = \frac{1}{7} \begin{pmatrix} 2 & 5 & 2 & 4 \\ -5 & 2 & -4 & 2 \\ -2 & 4 & 2 & -5 \\ -4 & -2 & 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{3}} \\ 1 & 0 & 0 & -\frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Exercice 5. On munit \mathbb{R}^4 du produit scalaire euclidien usuel.

Soit A la matrice

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 1. Montrer que les colonnes de A forment une famille orthogonale de \mathbb{R}^4 .
- 2. Construire la matrice U formée en normalisant les vecteurs colonnes de A.

Exercice 6. Soit

$$A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$$

Diagonaliser A par un changement de base orthonormée (pour une matrice de changement de base orthogonale).

Ensuite faire de même pour la matrice

$$B = \begin{pmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{pmatrix},$$

étant donné que ses valeurs propres sont 1 5 et 9.

Exercice 7. Soit
$$B = \begin{pmatrix} 9 & 20 & 12 \\ -12 & 15 & -16 \\ -20 & 0 & 15 \end{pmatrix}$$
.

1. Montrer que les colonnes de B forment un ensemble orthogonal.
2. Calculer la norme de chaque colonne de B.
3. En utilisant (a) et (b), écrire B^TB .
4. En utilisant (c), déduire B^TBB^T .
5. Est-ce que $BB^T = B^T B$?
6. Si U est la matrice obtenue en normalisant les colonnes de B , sans calculer U , trouver U^TU .
Exercice 8. 1. Montrer que si U est une matrice orthogonale, alors la transposée U^T est aussi une matrice orthogonale. Autrement dit si les colonnes de U sont orthonormées, alors les lignes de U sont orthonormées.
2. Si U est orthogonale et λ est une valeur propre réelle de U, montrer que $\lambda = \pm 1$.
3. Soit $U = \frac{1}{100} \begin{pmatrix} 36 & 48 & -80 \\ -80 & 60 & 0 \\ 48 & 64 & 60 \end{pmatrix}$. Montrer que U est orthogonale et que 1 est valeur propre. Quelle est la dimension de l'espace propre E_1 ?
4. Soit U une matrices orthogonale de taille $n \times n$ et soit $(\overrightarrow{u}_1, \ldots, \overrightarrow{u}_n)$ une base orthogonale de \mathbb{R}^n . Montrer que $(U\overrightarrow{u}_1, \ldots, U\overrightarrow{u}_n)$ est aussi une base orthogonale de \mathbb{R}^n .
Exercice 9. Choix Multiple.
a. Soit $A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & 0 & -5 \\ 3 & 1 & 3 \end{pmatrix}$.
\square Alors les lignes de A sont orthogonales. \square Alors les colonnes de A sont orthonormées. \square Alors A^TA est une matrice diagonale. \square Alors AA^T est une matrice diagonale.
b. Soit W un sous-espace de \mathbb{R}^7 de dimension 4 et $T: \mathbb{R}^7 \to \mathbb{R}^7$ l'application qui envoie un vecteur de \mathbb{R}^7 sur sa projection orthogonale dans W.
\Box L'image par T d'un vecteur de W^{\perp} est l'opposé de ce vecteur. \Box L'application T est linéaire. \Box L'application T est injective. \Box L'application T est surjective.
c. Soit A une matrice carrée de taille $n \times n$ dont les colonnes sont non nulles.
\square Si les colonnes de A sont orthogonales, alors les lignes aussi. \square Si les colonnes de A sont orthogonales, alors KerA est nul. \square Si les lignes de A sont orthonormées, alors A est la matrice I_n . \square Si l'image de A est \mathbb{R}^n , alors les lignes de A sont orthogonales.
Exercice 10. Choix multiples.
a. On considère la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 1 & 2 \end{pmatrix}$.

a. On considère la matrice
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

 \square Le noyau de A est non nul.

 $square\ La\ matrice\ A\ est\ orthodiagonalisable.$

 \square La matrice A représente une application linéaire qui transforme la base canonique en une nouvelle $base\ orthogonale,\ mais\ pas\ orthonorm\'ee.$

 \square La matrice A représente une application linéaire qui transforme la base canonique en une nouvelle $base\ orthonorm\'ee.$

- b. Soit A la matrice du point a. Laquelle des affirmations suivantes est fausse?
 - \square Le nombre 6 est valeur propre de A.
 - \Box Le nombre 6 est valeur propre de A. \Box La matrice A représente une application linéaire qui transforme le vecteur $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ en $\begin{pmatrix} x+2y+3z \\ 2x+3y+z \\ 3x+y+2z \end{pmatrix}$.
 - \square Le polynôme caractéristique de A est un produit de facteurs linéaires. square Les valeurs propres de A sont des nombres entiers.
- c. Soit A la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. Alors une solution \hat{x} au sens des moindres carrés de l'équation

- $\square \ \hat{x}_1 = 0$
- $\square \ \hat{x}_2 = 4/3$
- $\square \ \hat{x}_1 = 4/3$
- $\square \ \hat{x}_2 = 1/3$
- d. Soit $A, P \in M_{3\times 3}(\mathbb{R})$, avec P orthogonale, telles que $P^TAP = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{pmatrix}$. Alors:
 - \square A est diagonalisable, mais pas orthodiagonalisable.
 - \square A est symétrique.
 - \square A est orthodiagonalisable.
 - \square A est orthogonale.

Exercice 11. Soit $U \in M_{n \times m}(\mathbb{R})$. Vrai ou Faux?

- 1. Si les colonnes de U forment une liste orthonormale, alors les lignes de U aussi.
- 2. Si U est une matrice carrée, et les colonnes de U forment une liste orthonormale, alors les lignes de U aussi.
- 3. Si U est une matrice orthogonale, U est symétrique.
- 4. Si U est une matrice symétrique, U est orthogonale.