Natural Language Generation I

NLG Tasks

- Machine Translation
- Dialogue Systems
- Summarisation
- Data-to-text Generation
- Visual Description

Autoregressive Models

Autoregressive Models

• In autoregressive text generation models, at each time step t, our model takes in a sequence of tokens of text as input $y_{< t}$ and outputs a new token, \hat{y}_t

SOTA Autoregressive Models

Inside These Models

During a Single Step

• At each time step t, our model computes a vector of scores for each token in our vocabulary, $S \in \mathbb{R}^V$:

$$S = f(\{y_{< t}\}, \theta)$$

• Then, we compute a probability distribution P over $w \in V$ using these scores:

$$P(y_t \{y_{< t}\}) = \frac{\exp(S_w)}{\sum_{w' \in V} \exp(S_{w'})}$$

Autoregressive Models

• At each time step t, our model computes a vector of scores for each token in our vocabulary, $S \in \mathbb{R}^V$. Then, we compute a probability distribution P over w

Inference and Training

 At inference time, our decoding algorithm defines a function to select a token from this distribution:

$$\hat{y}_t = g(P(y_t \{y_{< t}\}))$$

 We train the model to minimize the negative loglikelihood of predicting the next token in the sequence:

$$L_t = -\log P(y_t^* \{y_{< t}^*\})$$

Maximum Likelihood Training

Teacher Forcing

• Trained to generate the next word y_t^* given a set of preceding words $\{y^*\}_{< t}$

Decoding

• At each time step t, our model computes a vector of scores for each token in our vocabulary, $S \in \mathbb{R}^V$:

$$S = f(\{y_{< t}\}, \theta)$$

• Then, we compute a probability distribution P over $w \in V$ using these scores:

$$P(y_t \{y_{< t}\}) = \frac{\exp(S_w)}{\sum_{w' \in V} \exp(S_{w'})}$$

Our decoding algorithm defines a function to select a token from this distribution:

$$\hat{y}_t = g(P(y_t \{y_{< t}\}))$$

Greedy Methods

- Argmax Decoding
 - Selects the highest probability token in $P(y_t \ y_{< t})$

Beam Search

Repetition in Greedy Methods

I don't know. I don't know.

Sampling

Sample a token from the distribution of tokens

$$\hat{y}_t \sim P(y_t = w | \{y\}_{< t})$$

Top-k sampling

- Problem: Vanilla sampling makes every token in the vocabulary an option
 - Even if most of the probability mass in the distribution is over a limited set of options, the tail of the distribution could be very long
 - Many tokens are probably irrelevant in the current context
 - Why are we giving them individually a tiny chance to be selected?
 - Why are we giving them as a group a high chance to be selected?
- Solution: Top-k sampling
 - Only sample from the top k tokens in the probability distribution

Top-k sampling

- Only sample from the top k tokens in the probability distribution
- Common values are k = 5, 10, 20 (but it's up to you!)

- Increase k for more diverse/risky outputs
- Decrease k for more generic/safe outputs

Top-k sampling

Top-p (nucleus) sampling

- Problem: The probability distributions we sample from are dynamic
 - ullet When the distribution P_t is flatter, a limited k removes many viable options
 - When the distribution P_t is peakier, a high k allows for too many options to have a chance of being selected
- Solution: Top-p sampling
 - Sample from all tokens in the top p cumulative probability mass (i.e., where mass is concentrated)
 - ullet Varies k depending on the uniformity of P_t

Top-p (nucleus) sampling

Softmax Temperature

• On timestep t, the model computes a prob distribution P_t by applying the softmax function to a vector of scores $s \in \mathbb{R}^{|V|}$

$$P(y_t \{y_{< t}\}) = \frac{\exp(S_w)}{\sum_{w' \in V} \exp(S_{w'})}$$

• You can apply a temperature hyperparameter τ to the softmax to rebalance

$$P_{t}: P(y_{t} \{y_{< t}\}) = \frac{\exp(S_{w}/\tau)}{\sum_{w' \in V} \exp(S_{w'}/\tau)}$$

Softmax Temperature

- Raise the temperature $\tau > 1$: P_t becomes more uniform
 - More diverse output (probability is spread around vocab)
- Lower the temperature τ < 1: P_t becomes more spiky
 - Less diverse output (probability is concentrated on top words)

Re-ranking

- Decode a bunch of sequences
 - 10 candidates is a common number
- Define a score to approximate quality of sequences and re-rank by this score
 - Simplest is to use perplexity
 - Careful! Remember that repetitive methods can generally get high perplexity.

Decoding

- Decoding is still a challenging problem in natural language generation
- Human language distribution is noisy and doesn't reflect simple properties (i.e., probability maximization)
- Different decoding algorithms can allow us to inject biases that encourage different properties of coherent natural language generation
- Some of the most impactful advances in NLG of the last few years have come from simple, but effective, modifications to decoding algorithms

Evaluation

Content Overlap Metrics

Ref: They walked to the grocery store.

Gen: The woman went to the hardware store.

- Compute a score that indicates the similarity between generated and gold-standard (human-written) text
- Fast and efficient and widely used
- Two broad categories:
 - N-gram overlap metrics (e.g., BLEU, ROUGE, METEOR, CIDEr, etc.)
 - Semantic overlap metrics (e.g., PYRAMID, SPICE, SPIDEr, etc.)

Content Overlap Metrics

- They're not ideal for machine translation
- They get progressively much worse for tasks that are more open-ended than machine translation
 - Worse for summarization, where extractive methods that copy from documents are preferred
 - Much worse for dialogue, which is more open-ended that summarization
 - Much, much worse story generation, which is also open-ended, but whose sequence length can make it seem you're getting decent scores!

Model-Based Metrics

Vector Similarity:

Embedding based similarity for semantic distance between text.

- Embedding Average (Liu et al., 2016)
- Vector Extrema (Liu et al., 2016)
- MEANT (Lo, 2017)
- YISI (Lo, 2019)

Word Mover's Distance:

Measures the distance between two sequences (e.g., sentences, paragraphs, etc.), using word embedding similarity matching.

Kusner et.al., 2015; Zhao et al., 2019

BERTSCORE:

Uses pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity.

Zhang et.al. 2020

Human Evaluation

- Ask humans to evaluate the quality of generated text
- Human judgments are regarded as the gold standard
- Humans are inconsistent

Evaluation

- Content overlap metrics provide a good starting point for evaluating the quality of generated text, but they're not good enough on their own.
- Model-based metrics are can be more correlated with human judgment, but behavior is not interpretable
- Human judgments are critical.
 - Only ones that can directly evaluate factuality
 - But humans are inconsistent!

Non-autoregressive models

Non-autoregressive Models

Application	Example Source (S) and target (T) text	Use seq2seq
Machine translation	S: Turing studied at King's College, where he was awarded first-class honours in mathematics. T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.	
Summarization	S: Court members Deborah Poritz and Peter Verniero did not participate in the Nelson case. T: Court members didn't participate in the case.	?
Sentence fusion	S: Turing was born in 1912. Turing died in 1954. T: Turing was born in 1912 <mark>and he</mark> died in 1954.	X
Grammar correction	S: New Zealand have a cool weather. T: New Zealand has cool weather.	X

Non-autoregressive Models

- Most NLP tasks apart from Machine Translation are monolingual
- Sources and targets often overlap
 - Generating the target from scratch is wasteful
 - Can reconstruct most of the target from the source via basic operations like KEEP, DELETE, INSERT

Turing	was	born	in	1912		Turing	died	in	1954	
KEEP	KEEP	KEEP	KEEP	KEEP	DEL INS	PRON	KEEP	KEEP	KEEP	KEEP
Turing	was	born	in	1912	and	he	died	in	1954	

Applications

- Grammatical Error Correction
- Text Simplification
- Sentence fusion
- Style transfer
- Text normalisation
- Text summarisation
- Automatic post-editing for machine translation

Advantages

- Text editing models need less training data
- They are faster at the inference
- They are more faithful
- We can control what model adds or removes
- We can incorporate external knowledge

Conclusion

Conclusion

- Natural Language Generation made a huge progress in the recent years
- NLG tasks cover a vast field of NLP problems (technically, any NLP task can be converted into a text generation!)
- Evaluating NLG models is challenging
- Training a performant NLG model requires a lot of data