Nome:	Nr.:	Curso: MIE	EIC
	GRUPO I		
Em cada uma das perguntas seguintes, assi resposta correta vale 1 valor.	nale a resposta correta no quadrado o	correspondente.	Cada
1. Qual das seguintes funções não é contínua	no seu domínio?		
$f(x,y) = \ln(x+y)$			
$g(x,y) = \frac{1}{x^2 + y^2}$			
$h(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$			\bowtie
$j(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$			
Nenhuma das anteriores.			
2. Qual das seguintes equações diferenciais é	satisfeita pela função $f(x,y) = x^2 \exp$	(y^3) ?	
$3y^2xf_x' + f_{xy}'' = 0 \qquad \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$		0 -11 -1	;
$3y^2xf_{x^2}'' - f_{xy}'' = 0$ [X];	3y	$^2xf_y'-f_{xy}''=0$;
Nenhuma das anteriores.			
3. A taxa de variação de uma função f num do vetor \vec{u} :	ponto (x_0,y_0) do seu domínio $D_f\subseteq \mathbb{R}^2$	' é máxima na d	ireção
$ec{u} = (f_x^{'}(x_0, y_0), f_y^{'}(x_0, y_0))$			\times
$\vec{u} = -(f_x'(x_0,y_0),f_y'(x_0,y_0))$			
$\vec{u} = (x_0, y_0)$			
$ec{u}$ perpendicular ao vetor $(f_x'(x_0,y_0),f_y')$	(x_0,y_0)		
Nenhuma das anteriores.			
4. A aproximação linear à função $z=x.\ln(y$	$^2x)$ no ponto $(2,1)$ é:		
L(x,y) = (x-2) + 4(y-1)			
$L(x,y) = (\ln 2 + 1)(x-2) + 4(y-1)$			
$L(x,y) = (x-2) + \ln 2(y-1) + 2 \ln 2$			
$L(x,y) = (\ln 2 + 1)(x - 2) + 4(y - 1) +$	$2 \ln 2$		X
Nenhuma das anteriores.			
5. Qual dos vetores seguintes é perpendicular	ao plano tangente à superfície $z = x^3 y$	$+xy^2$ no ponto ((1, 2)?
(10, 5, -1) [X] ;		(5,10,1)	;
(-1,5,10)		(5, 1, 10)	 ;

Nenhuma das anteriores.

6.	A taxa de variação da funcalcular-se da forma:	ção $f(x,y) =$	$x^2\sin(3y)$ no ponto $(1,0)$ na direção do vetor $\vec{u}=(1,2)$ pode	Э
	$D_{\vec{u}}f(1,0) = (0,3) \cdot (1,2)$;	$D_{\vec{u}}f(1,0)=(0,3)\cdot(1,0)$ [];	
	$D_{\vec{u}}f(1,0) = (0,1) \cdot (1,0)$;	$D_{\vec{u}}f(1,0) = (0,3) \cdot (\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5});$];
	Nenhuma das anteriores.			

7. Considere a função real f(x,y) de duas variáveis reais definida no seu domínio D_f . Qual das seguintes afirmações é verdadeira?

Se
$$f$$
 é contínua em D_f então f é diferenciável em D_f .

Se as derivadas parciais f_x' , f_y' existem em D_f então f é contínua em D_f .

Se as derivadas parciais f_x' , f_y' existem e são contínuas em D_f então f é contínua em D_f .

Nenhuma das anteriores.

GRUPO II

Apresente todos os cálculos efectuados.

- 1. Considere a função real definida em \mathbb{R}^2 , $f(x,y) = \frac{x^3}{y^2}$.
 - (a) Determine o vetor gradiente da função f no ponto (-1,1).

$$f_{\lambda}(n_{1}y) = \frac{3x^{2}}{y^{2}}, f_{y}(n_{1}y) = -2x^{3}$$

$$f_{\lambda}(-1,1) = 3 \qquad f_{y}(-1,1) = \frac{2}{1} = 2$$

$$\widehat{\nabla}_{f}(-1,1) = \left(f_{\lambda}(-1,1), f_{y}(-1,1)\right) = (3,2)$$

(b) Determine as funções $\frac{\partial^2 f}{\partial x \partial y}$ e $\frac{\partial^2 f}{\partial y^2}$.

$$f_{y2}^{11}(x_{1}y) = \frac{6x^{3}}{y^{4}}$$

$$f_{xy}^{11}(x_{1}y) = -6x^{2}$$

(c) Considerando que $x = \cos(tu)$ e $y = h(4t^3)$, onde u e t são variáveis reais e h uma função derivável em \mathbb{R} , determine $\frac{\partial f}{\partial t}$.

em R, determine
$$\frac{\partial f}{\partial t}$$
.

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$= \frac{3x^2}{y^2} \cdot \left(-\text{even}(tex)\right) \cdot \left(-\frac{2x^3}{y^3} \cdot \frac{12t^2 \cdot h}{(4t^3)}\right)$$

$$= -\frac{3!x^2}{y^2} \cdot \text{sen}(tex) - \frac{2y}{y^3} \cdot \frac{12t^2 \cdot h}{(4t^3)} \cdot \frac{h'(4t^3)}{(4t^3)}$$

(b) Qual a taxa de variação da temperatura que o barco observa à medida que navega na direção indicada?

Deceção Nordeste é ne direção do vecto (1,1) li $(0,0) = \sqrt{(0,0)} \circ \frac{1}{(1,0)} = (3,0) \circ \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{3\sqrt{2}}{2}$

$$T_{y}^{2}(0,0) = \sqrt{2}\sqrt{2}$$

$$T_{y}^{2}(0,0) = -4y$$

$$T_{y}^{2}(0,0) = 0$$

(c) Qual a direção (a partir do local de partida) segundo a qual o barco experimentaria um aumento mais rápido da temperatura? Justifique e calcule a taxa de variação nessa direção.

Como $\int_{-\infty}^{\infty} (o_i c) = \left| \left| \int_{-\infty}^{\infty} f(o_i c) \right| \left| \left| \int_{-\infty}^{\infty} f(o_i c) \right| \left| \int_{-\infty}^{\infty} f(o_i c) \left| \int_{$

Somo
$$f_{ii}(0,0) = ||V_{i}f(0,0)||Alle ||. Cos \alpha \text{ and } \alpha = 4 \(0 \frac{1}{4}, \frac{1}{4} \)

\[
e || \frac{1}{12}|| = 1, \text{ tenerse } f_{ii}(0,0) = ||\frac{1}{2}f(0,0)||. \text{ cos \alpha}.
\]

A fexo \[
e \text{ levexitero } \text{ perendo } \text{ cos \alpha} = 1, \quad \text{ is be} \[
e \text{ , que do } \text{ e} = \text{ $\text{ } \text{ } \(6,0 \)}.
\]

\[
\text{ leve} = (3,0) \quad \text{ e resse } \text{ cos se } f_{ii}(0,0) = ||(3,0)|| = 3.
\]$$

3. A potência consumida numa resistência elétrica é dada por $P = \frac{E^2}{R}$ watts. Considere E = 20 volts e R = 8 ohms. Determine o valor aproximado da variação da potência se E é diminuído de 0, 5 volts e R é diminuído de 0, 8 ohm, usando diferenciais.

diminuted de 0,80 min, usando diferenciais.

$$dP = P \cdot dE + P \cdot dR$$

$$P_{E}^{(1)} = \frac{2E}{R} \quad P_{E}^{(2)} = \frac{2E}{R^{2}}$$

$$dP = 5 \cdot dE = 25 dR$$

$$P_{E}^{(2)} = \frac{2E}{R^{2}} \quad P_{E}^{(2)} = \frac{2E}{R^{2}} \quad P_{E}^{(3)} = \frac{-400}{64}$$

Se
$$dE = -0.5$$
 e $dR = -0.8$, teen-se
$$dP = 5 \times (-0.5) - \frac{25}{4} \left(\frac{-0.8}{3} \right) = -\frac{25}{4} + \frac{25}{4} \times \frac{8}{10} = -\frac{5}{2} + \frac{10}{2} = \frac{5}{3}$$

dP=5

4. Considere a função real definida em
$$\mathbb{R}^2$$
, $f(x,y) = \begin{cases} \frac{4y^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

(a) Determine
$$\frac{\partial f}{\partial u}(0,0)$$
.

(b) Determine a função
$$\frac{\partial f}{\partial u}$$
.

$$\frac{(35435)_{5}}{(35435)_{5}} = \frac{(35435)_{5}}{(35435)_{5}} = \frac{(35435)_{5}}{(3545)_{5}} = \frac{(35435)_{5$$

$$f_{y}(y,y) = \int \frac{(3x^{2}+y^{2})^{2}}{(3x^{2}+y^{2})^{2}} = (3x^{2}) + (0,c)$$

$$f_{y}(y,y) = \int \frac{(3x^{2}+y^{2})^{2}}{(3x^{2}+y^{2})^{2}} = (0,c).$$