# CSCI-GA 3033 Assignment 2

#### Francis Williams N14044150

 $March\ 20,\ 2017$ 

### Part 1



Figure 1: Constraints for the bunny-1000.off model

## Part 2



Figure 2: Grid values for the bunny-1000.off model

### Part 3

The reconstructed models can be found in data/reconstructed. The number in the file name refers to one more than the interpolant degree.



Figure 3: Reconstructed bunny-1000.off model



Figure 4: Reconstructed cat.off model

#### Theory Question

*Proof.* Let S be the (manifold) implicit surface defined by  $f(\mathbf{x}) = 0$ , and p be a point on S(f(p) = 0).

Since we assume S is manifold, there must exist linearly independent vectors  $v_1$  and  $v_2$  tangent to S at p. We can then define the normal as  $\bar{n} = v_1 \times v_2$ .

And since S is the level set of f at 0,  $\nabla_v f = 0$ , where  $\nabla_v = v \cdot \nabla f$  is the directional derivative along the vector v tangent to S.

Thefore, 
$$\nabla_{v_1} f = \nabla_{v_2} f = 0 \Leftrightarrow \nabla f \propto v_1 \times v_2 \Leftrightarrow \nabla f \propto \bar{n}$$
.



Figure 5: Reconstructed horse.off model



Figure 6: Reconstructed hound.off model



Figure 7: Reconstructed luigi.off model



 $\label{eq:Figure 8: Reconstructed sphere.off} \ \mathrm{model}$