Podstawy elektroniki - Sprawozdanie nr 2

Temat: Twierdzenie Thevenina

Imię i nazwisko	Nr albumu	Grupa
Anita Zielińska		12
Dariusz Max Adamski		12
Damian Jóźwiak		12

- I. Poprawnie sformułowane twierdzenie Thevenina dla badanego obwodu/obwodów
- II. Analitycznie obliczony rozpływ prądów w obwodzie
- III. Tabela z wykresem wartości rezystancji użytych w obwodzie
- IV. Tabela z wynikami pomiarowymi dla twierdzenia Thevenina, gdzie Uth napięcie panujące od strony zacisków AB, Rth - rezystancja zastępcza widziana od strony zacisków AB
- V. Obliczenia zadanego prądu/prądów w gałęzi z rezystorem Rx w oparciu o twierdzenie Thevenina
- VI. Zestawienie w tabeli wyników pomiarowych z wynikami uzyskanymi w drodze obliczeń prądu/prądów obliczanych przez zastosowanie tw. Thevenina
- VII. Wnioski

Obwód 1 b.)

1. $R_{23} = R_{2} + R_{3}$, $R_{A15} = \frac{R_{A} \cdot (R_{2} + R_{3})}{R_{A} + R_{2} + R_{2}}$, $R_{1h} = \frac{R_{1} \cdot (R_{2} + R_{3})}{R_{1} + R_{2} + R_{2}}$

II.

I(Rx)	Wartość
I(R1)	0,00208 A
I(R2)	0,00755 A
I(R3)	-0,00755 A
I(R4)	0,00456 A
I(R5)	0,00091 A

III.

Lp	R	KP	Odczytane z KP	Zmierzona
1	R1	XXX	220 Ω, +/- 5%	218,86 Ω
2	R2	XXX	510 Ω, +/- 5%	501,5 Ω
3	R3	XXX	100 Ω, +/- 5%	100,25 Ω
4	R4	XXX	100 Ω, +/- 5%	99,88 Ω
5	R5	XXX	510 Ω, +/- 5%	499,82 Ω

IV.

Uth	Rth
0,52 V	61,97 Ω

V.

Rth = $61,57 \Omega$ Uth = 0,75 VI(R5) = 0,00134 A

VI.

	Uth	Rth	I(R5)
Obliczone	0,75 V	61,57 Ω	0,00134 A
Zmierzone	0,52 V	61,97 Ω	0,00091 A

Obwód 2 c.)

١.

II.

I(Rx)	Wartość
I(R1)	-0,00308
I(R2)	0,00308
I(R3)	-0,00565
I(R4)	0,00874
I(R5)	0,07236
I(R6)	-0,07802

III.

Lp	R	KP	Odczytane z KP	Zmierzona
1	R1	XXX	100 Ω, +/- 5%	99,88 Ω
2	R2	XXX	100 Ω, +/- 5%	100,25 Ω
3	R3	XXX	510 Ω, +/- 5%	499,82 Ω
4	R4	XXX	510 Ω, +/- 5%	501,5 Ω

5	R5	XXX	100 Ω, +/- 5%	99,62 Ω
6	R6	XXX	100 Ω, +/- 5%	99,87 Ω

IV.

Uth	Rth
5,76 V	146,9 Ω

V.

Rth = 146.71466359206119

Uth = 6.5109815

I(R2) = 0.010044483510940033

VI.

	Uth	Rth	I(R2)
Obliczone	6.51 V	146.71 Ω	0.01004 A
Zmierzone	5,76 V	146,9 Ω	0,00308 A

Obwód 3 b.)

١.

II.

I(Rx)	Wartość
I(R1)	-0,00495
I(R2)	0,00549
I(R3)	-0,00053
I(R4)	0,01523
I(R5)	0,01469
I(R6)	-0,02018

III.

Lp	R	KP	Odczytane z KP	Zmierzona
1	R1	XXX	360 Ω, +/- 5%	359,99 Ω
2	R2	XXX	220 Ω, +/- 5%	218,86 Ω
3	R3	XXX	510 Ω, +/- 5%	501,5 Ω
4	R4	XXX	100 Ω, +/- 5%	99,62 Ω
5	R5	XXX	100 Ω, +/- 5%	99,87 Ω
6	R6	XXX	100 Ω, +/- 5%	99,88 Ω

IV.

Uth	Rth
2,83 V	204,56 Ω

V.

Rth = 204.60 Ω Uth = 2,80 V

I(R1) = 0,00495 A

VI.

	Uth	Rth	I(R1)
Obliczone	2,80 V	204,60 Ω	0,00495 A
Zmierzone	2,83 V	204,56 Ω	0,00495 A

VII. Wnioski

Różnice pomiędzy obliczeniami i pomiarami wynikają z ograniczonej dokładności obliczeń numerycznych. Przyrządy użyte do pomiarów, oraz komponenty także wpłynęły na rozbieżności wyników.

Program użyty do wykonania obliczeń:

```
def obw1b():
  print("Obwód 1b:")
  r1 = 218.86
  r2 = 501.5
  r3 = 100.25
  r4 = 99.88
  r5 = 499.82
  u = 5
  i2 = (u*r4)/(r1*(r2+r4+r3)+r4*(r2+r3))
  r123=(r1*(r2+r3))/(r1+r2+r3)
  rth = (r4*r123)/(r4+r123)
  uth = i2*r1
  i = uth/(r5+rth)
  print("Rth = ", rth)
  print("Uth = ", uth)
  print("I = ", i, "\n")
def obw2c():
  print("Obwód 2c:")
  r1 = 99.88
  r2 = 100.25
  r3 = 499.82
  r4 = 501.5
  r5 = 99.62
  r6 = 99.87
  u1 = 5
  i2 = 0.00308
  r56 = (r5*r6)/(r6+r5)
  rth = ((r56+r3)*(r2+r1))/(r56+r1+r2+r3)
  uth = i2 * (r1+r2) + u1
  i = uth/(rth+r4)
  print("Rth = ", rth)
  print("Uth = ", uth)
  print("I = ", i, "\n")
def obw3b():
  print("Obwód 3b:")
  r1 = 359.99
  r2 = 218.86
  r3 = 501.5
  r4 = 99.62
  r5 = 99.87
  r6 = 99.88
  i2 = (u1)/(r2+r3+r4+r6+((r6+r4)*(r2+r3)/r5))
  i3 = i2*((r2+r3)/r5)
  i1 = i2 + i3
  r46 = (r4*r6)/(r4+r5+r6)
  r56 = (r5*r6)/(r4+r5+r6)
  r45 = (r4*r5)/(r4+r5+r6)
  rz = ((r2+r56)*(r3+r45))/(r2+r3+r45+r56)
  rth = r46 + rz
  uth = i1*r4 + i2*r3
  i = uth/(rth+r1)
  print("Rth = ", rth)
  print("Uth = ", uth)
  print("I = ", i, "\n")
```