Index

A	
Algebraic Lyapunov Equation	pp.80 - 82
Asymptotically Stable	pp.7, 61 - 62, 67 - 69, 75
Attractiveness	pp.61,99
B	pp.or, oo
Bendixson's Theorem	pp.25 - 29
Bifurcation	pp.12 - 13
Bifurcation (Fold)	pp.12 - 13,57
Bifurcation (Transcritical)	pp.12 - 15
Bifurcation Diagram	pp.12, 15 - 17
C	,
Carrying Capacity	p.9
Center Manifold Theory	pp.39 - 45
Centers (Equilibrium Point)	pp.22, 26
Characteristic Equation	p.34
Class K (Comparison Functions)	pp.93 - 97, 102 - 112
Class K L (Comparison Functions)	pp.93 - 97, 102 - 112
Class K_{∞} (Comparison Functions)	pp.93 - 96, 105
Comparison Function	pp.93 - 96, 102 - 103
Continuity w.r.t. Initial Conditions	pp.53 - 55
Continuity w.r.t. Parameters	pp.54-55
Continuously Differentiable	pp.48 - 52
Controllability Gramian	p.80
Coordinate Transformation Matrix	pp.18, 20 - 41
D	
Diagonalization	p.79
Differentiable	pp.51 - 52
Differential Lyapunov Equation	pp.121 - 122, 128
Divergence	pp.25 - 29
E	
Equilibrium Point	pp.3-4
Estimation of Constant Parameters	pp.130 - 132
Existence And Uniqueness Theorem	pp.46 - 52,91
F	
Finite Escape Time	pp.9 - 10
Focus Node	pp.22, 33
Fold Bifurcation	pp.12 - 13,57
	00
Geometric Series	p.92
Globally Asymptotically Stable	pp.62,67
Green's Theorem	pp.25 - 27
H	mm 99 - 94
Hartman Grobman Theorem	pp.23 - 24
Homeomorphic Hopf Bifurcation	$p.23 \\ pp.35 - 38$
поргинисанон	pp.30 - 30

		_,
	Huber Function	p.71
	Hurwitz Matrix	pp.81 - 82
	Hyperbolic Equilibrium Point	pp.22 - 24
I		
	Index Theory	p.35
	Infinity Norm	p.61
	Invariant Manifold	pp.42 - 45
	Invariant Set	pp.74 - 77
J	Invariant Set	pp. 11
J	Jacobian	mm 56 59
т	Jacobian	pp.56 - 58
L		
	L1 Norm	p.61
	L2 Norm	p.61
	La Salle's Invariance Principle	pp.74 - 77,85 - 87
	Level Sets	pp.66 - 69
	Limit Cycle	pp.10 - 12,33 - 38
	Linearization at a Fixed Point	pp.5 - 8, 23 - 24, 88
	Lipschitz Continuous Function	pp.49 - 55,91
	Locally Asymptotically Stable	pp.61 - 62,67 - 69
	Logistic Equation	p.9
	Lorenz Attractor	p.12
		-
	Lyapunov Functions	pp.65 - 87
	Lyapunov Stability	pp.59 - 69,106 - 121
M		
	Manifolds, C^k Differentiable	pp.48 - 52
	Metzler Matrix	p.31
N		
	Negative Semidefinite Function	pp.67,74
	Nesterov Acceleration	p.98
	Node	pp.21, 33
0		FF:, 00
	Observability	pp.86 - 87, 127, 130
	Observability Gramian	pp.80 - 87, 127, 130 pp.80, 129
D	Observatility Gramman	pp.80, 129
P	D.W.	0.1
	P Norm	p.61
	Pendulum	pp.7 - 8,63 - 64,72 - 77
	Periodic Orbits	pp.25 - 34
	Phase Portrait	pp.5, 17 - 19
	Pitchfork Bifurcation	pp.12, 15 - 17
	Poincare Bendixson Criterion	pp.32 - 34
	Positive Definite Function	pp.65 - 66
	Positive Definite Matrix	pp.78 - 79
	Positive Invariant Set	pp.21, 29 - 34, 69
	Positive System	p.31
		-
	Predator/prev Model	$nn\ 30 = 31$
D	Predator/prey Model	pp.30 - 31
R	Predator/prey Model Radially Unbounded	pp.30 - 31 $pp.67 - 68, 105 - 107$

Region of Attraction	pp.15, 92 - 93
Routh Hurwitz Criterion	pp.34, 83
S	
Saddle Node	pp.19 - 21
Sector Bounded Nonlinearities	p.72
Sensitivity Function	pp.55 - 58
Sink Node	pp.19, 21
Source Node	pp.19, 21
Stability	pp.5, 98 - 103
Stability Via Linearization	pp.88 - 90
Stable	p.5
State Transition Matrix	pp.105 - 106, 121 - 123
Subcritical Hopf Bifurcation	pp.37 - 38
Subcritical Pitchfork Bifurcation	p.17
Supercritical Hopf Bifurcation	pp.35 - 37
Supercritical Pitchfork Bifurcation	pp.15 - 16
Symmetric Matrix	p.78
T	
Taylor Series Expansion	pp.6, 39 - 40, 44 - 45
Transcritical Bifurcation	pp.12-15
U	
Uniform Observability	pp.129 - 130
Uniformly Asymptotically Stable	pp.100 - 104, 107 - 116
Uniformly Exponentially Stable	pp.103 - 104, 107, 116 - 123
Uniformly Stable	pp.100 - 102, 104, 107 - 114
Unitary Diagonal Coordinate Transformation	p.79
V	
Van Der Pol Oscillator	pp.11 - 12