

Role of Priors in Bayesian Analysis

Andreas Schwab

Iowa State University

Academy of Management Conference

Based on work in progress with Bill Starbuck, Mark Hansen, and Jeff Dotson

Priors in Bayesian analysis

- What are priors?
 - Prior distributions are predictions about outcome distributions.
- What functions do they serve?
 - Required for Bayesian analysis.
 - Priors are updated using empirical observations.
 - Priors can influence results.
 - Priors should reflect what we already know about effects.

Bayesian Analysis Step 1: Specify Prior Distribution

- How to specify a "prior" probability distribution for parameter values?
- Alternative approaches to specify and justify priors
 - Uninformed priors
 - Priors from previously published empirical studies
 - Priors based on theories
 - Sequential priors
 - Priors from experts and knowledgeable individuals
- Next: Brief outlines of each approach!

(1) Uninformative priors

- Used when researchers nothing or very little about the study phenomenon
- Uniform priors:All outcomes are equally likely
- Weakly informative (locally uniform) priors:
 Centered with large assigned variances
- Currently, uninformative priors are frequently used and default in statistical software [easy option]

Limitations of uninformative priors

- Makes strong assumptions that are frequently unrealistic based on what we already know about the phenomenon [e.g., prior research]
- Use as "defaults" encourages ritualized applications instead of careful analyses and adjustments (software)

Recommendation:

- Use only when very little or no prior knowledge
- Justify distrust in existing evidence and previous research
- Use in cases of data dominance
- Useful benchmark to evaluate impact of "other" priors

(2) Priors derived from published empirical research

- Use results of available empirical studies to estimate priors (= accumulation of knowledge across studies)
- Potential challenges
 - Current lack of exact replications
 - Dissimilarity of prior related studies
 - Trust in prior studies (e.g., replication crisis)
- Recommendation:
 - Aggregate from a few carefully selected studies
 - Meta analyses (Aguinis et al., 2011)

(3) Priors based on theories

- Feasible for quantified theories that provide for uncertainty
- Recommendation:
 - Powerful to incorporate established knowledge
 - but translating abstract and vague management theories into specific outcome distributions often challenging

(4) Sequential priors

- Priors based on data collected in an earlier stage of a sequential data-collection process
 - Bootstrapping of limited data (Singh and Xie, 2010)
 - Markov matrices (Doucet et al., 2000)
- Relevant approach in important emerging empirical contexts
 - Big data
 - Continuous data collections
- Recommendation:
 - Powerful in iterative and multi-stage research designs

(5) Elicit priors from experts and lay people

- Priors based on the intuitions of experts or knowledgeable lay people, not the researchers
- Challenges of capturing individuals' intuitions
 - Recruiting individuals
 - Individuals' perception biases
 - Translating perceptions into probability distributions
- Recommendation:
 - Training of subjects
 - Use graphic computer-based systems
 - Emerging advanced elicitation strategies (O'Hagan et al.)

General Conclusions

- Bayesian analyses foster scientific progress by providing a systematic way to integrate what we already know into analyses of new data.
- "Priors" are an opportunity!
- interpreting data using carefully chosen priors promises more accurate posterior distributions and stronger contributions to theory development.
- "Priors" are an advantageous Bayesian feature!