Listing of Claims

1. (Currently Amended) A method for adjusting a brightness level of a display used in a portable computer system, the method comprising:

separately storing, in a first memory area, brightness control information for a plurality of brightness levels for each of at least two power mode types;

reading out brightness control information in a first power mode for an adjusted one of the levels and in a second power mode for an adjusted one of the levels from the first memory area;

respectively storing, in different locations of a second memory area, the brightness control information read out from the first memory area for the first and second power modes;

confirming a type of power mode currently being used out of said first and second power mode types; and

controlling the brightness level of the display based on the brightness control information independently stored in the different locations of the second memory area for the confirmed power mode.

2. (Original) The method according to claim 1, comprising adjusting the brightness level of a LCD using an input device, wherein the type of power mode currently being used includes at least one of an AC adaptor mode and a supplementary battery mode.

- 3. (Original) The method according to claim 1, wherein when power of the portable computer system is switched to a power on mode from a power off mode, the type of power mode currently being used includes at least one of an AC adaptor mode and a supplementary battery mode.
- 4. (Original) The method according to claim 1, wherein when the power mode type currently being used in the portable computer system is changed to a different power mode type, the changed power mode type includes at least one of an AC adaptor mode and a supplementary battery mode.
- 5. (Currently Amended) The method according to claim 1, wherein when a power supply being confirmed is a supplementary battery, the brightness level of the display is adjusted by using an index information corresponding to the brightness levels in a battery power mode, wherein the index information is read out from the second memory area including at least a microcomputer random access memory (micom RAM) or a system initialization RAM.
- 6. (Currently Amended) The method according to claim 1 [[5]], wherein when a power supply being confirmed is an AC adaptor, the brightness level of the display is adjusted by using an index information corresponding to the brightness levels in an AC adaptor power

Docket No. HI-0182

Serial No. 10/695,753 Amendment dated October 18, 2007

mode, wherein the index information is read out from the second memory area including at least a microcomputer random access memory (micom RAM) or a system initialization RAM.

- 7. (Currently Amended) The method according to claim 1 [[6]], wherein the index information corresponding to the brightness levels in the AC adaptor power mode and the index information corresponding to the brightness levels in the battery power mode are independently and respectively stored in the first memory area.
- 8. (Currently Amended) The method according to claim 1 [[6]], wherein the index information corresponding to the brightness levels in the AC adaptor power mode and the index information corresponding to the brightness levels in the battery power mode are separately stored in a microcomputer memory of the personal computer system and in a system initialization RAM, the microcomputer memory including the first memory area and the system initialization RAM including the second memory area.
- 9. (Original) The method according to claim 1, wherein when a power supply being confirmed is an AC adaptor, the brightness level of the display is adjusted by using an index information corresponding to the brightness levels in an AC adaptor power mode.

10. (Currently Amended) A method, comprising:

independently storing, in a first storage area, brightness level information for a plurality of power supplies in a computer system;

respectively storing, in different locations of a second storage area, brightness level information read out from the first storage area for a first power supply and brightness level information read out from the first storage area for a second power supply;

determining a type of power supply currently being used among the plurality of power supplies in the computer system when a brightness level of a display is adjusted;

selecting brightness level information from the independently stored information in the first storage area, the selected brightness level information corresponding to the determined power supply type for the adjusted brightness level of the display, the determined power supply type corresponding to one of the first or second power supplies;

reading index information corresponding to the selected brightness level information;

driving the adjusted brightness level of the display based on the readout index information; and

updating the second storage area to independently store the index information in the different locations of the second storage area according to the determined type of power supply.

- 11. (Previously Presented) The method according to claim 10, wherein at least one of an index information corresponding to an adjusted brightness level in an AC adaptor power mode and an index information corresponding to an adjusted brightness level in a battery power mode is separately stored in the second storage area.
- 12. (Previously Presented) The method according to claim 10, further comprising: changing from a first power supply being an AC adaptor to a second power supply being a battery, wherein the driving the adjusted brightness level of the display comprises referring to an index information in a battery power mode, and wherein the index information is separately stored in second storage area.
 - 13. (Previously Presented) The method according to claim 12, comprising: changing from the battery to the AC adaptor,

wherein the driving the adjusted brightness level of the display comprises referring to an index information in an AC adaptor power mode, and wherein the index information is separately stored in the second storage area.

- 14. (Currently Amended) The method according to claim 10, comprising:

 turning on power of the computer system after the power was turned off,

 wherein the driving the adjusted brightness level of the display comprises

 confirming the type of power supply currently being used, and reading out of the second storage

 area index information in an AC adaptor power mode or in a battery power mode, wherein the

 index information stored in the second memory is independently stored in the different locations

 according to the AC adaptor power mode or the battery mode.
- 15. (Original) The method according to claim 10, wherein the brightness level of the display is adjusted automatically, periodically or using an input device by a user.
- 16. (Currently Amended) A method for adjusting a brightness level of a display, the method comprising:

independently storing index information in a first storage area for a plurality of brightness levels of the display in each of at least two different power modes;

respectively storing, in different locations of a second storage area, index information read out from the first storage area for one of the brightness levels in a first power mode and index information read out from the first storage area for one of the brightness levels in a second power mode; and

adjusting a brightness of the display using information on a current power mode being used and the index information stored in the different locations of the second storage area for the brightness level of the current power mode when the power mode is changed.

17. (Canceled)

- 18. (Original) The method of claim 16, comprising adjusting the brightness level of a LCD using an input device, wherein the type of power mode currently being used includes at least one of an AC adaptor mode and a supplementary battery mode.
- 19. (Previously Presented) The method of claim 18, wherein the index information stored in the second storage area in the AC adaptor mode corresponds to a brightness level different than a brightness level corresponding to the index information stored in the second storage area in the supplementary battery mode.
- 20. (Previously Presented) An apparatus that controls an inverter pulse width modulation (PWM) frequency of a liquid crystal display (LCD) in a portable computer, comprising:
- a first storage area configured to separately provide LCD brightness level information for a plurality of brightness levels for each of at least two power mode types;

a second storage area configured to respectively store in different locations brightness level information in a first power mode for an adjusted one of the levels and in a second power mode for an adjusted one of the levels read out from the first storage area;

an inverter configured to supply a voltage to the LCD; and

a control circuit for controlling a PWM frequency of the inverter to achieve a designated brightness level based on the LCD brightness level information independently stored in the second storage area for a current power supply mode.

- 21. (Original) The apparatus of claim 20, wherein the LCD brightness level information includes index information.
- 22. (Previously Presented) The apparatus of claim 20, wherein the first and second storage areas are different memories.
- 23. (Currently Amended) The method of claim 1, wherein said respectively storing includes:

simultaneously and independently storing, in the different locations of the second memory area, the brightness control information read out from the first memory area for the first and second power modes, wherein the brightness control information for the first and

second power modes are stored simultaneously in the different locations of the second memory area.

24. (Currently Amended) The method of claim 10, wherein said respectively storing includes:

simultaneously storing, in the different locations of the second storage area, the brightness level information read out from the first storage area for the first power supply and the brightness level information read out from the first storage area for the second power supply, wherein the brightness control information for the first power supply and the second power supply are stored simultaneously in the different locations of the second storage area.

25. (Currently Amended) The method of claim 16, wherein said respectively storing includes:

simultaneously storing, in the different locations of a second storage area, index information read out from the first storage area for one of the brightness levels in a first power mode and index information read out from the first storage area for one of the brightness levels in a second power mode, wherein the index information for the first power mode and the second power mode are stored simultaneously in the different locations of the second storage area.

- 26. (Currently Amended) The apparatus of claim 20, wherein the second storage area simultaneously and independently stores in said different locations the brightness level information in the first power mode for an adjusted one of the levels and in the second power mode for an adjusted one of the levels read out from the first storage area are simultaneously and independently stored in said different locations of the second storage area.
- 27. (Previously Presented) The method of claim 1, wherein the brightness control information stored in the first memory area for the first power mode lies within a first percentage range and the brightness control information stored in a first memory area for the second power mode lies in a second range having a different brightness percentage range.
- 28. (Currently Amended) The method of claim 1, further comprising:

 storing the brightness control information for the first and second power modes in an auxiliary memory; and

transferring transforming the brightness control information stored in the auxiliary memory to the respective different locations in the <u>first second</u> memory area when the computer system is turned on after it has been turned off.

- 29. (New) The method of claim 23, wherein the brightness control information for the first and second power modes is stored simultaneously into locations of a microcomputer random access memory (micom RAM) and a system initialization RAM
- 30. (New) The method of claim 24, wherein the brightness control information for the first power supply and the second power supply is stored simultaneously into locations of a microcomputer random access memory (microm RAM) or a system initialization RAM.
- 31. (New) The method of claim 25, wherein the index information for the first power mode and the second power mode is stored simultaneously into locations of a microcomputer random access memory (micom RAM) or a system initialization RAM.
- 32. (New) The method of claim 26, wherein the brightness control information for the first power mode and the second power mode are stored simultaneously into locations of a microcomputer random access memory (micom RAM) or a system initialization RAM.
- 33. (New) The method of claim 1, further comprising:

 detecting a change in a power mode currently being used; and

 reading out brightness control information corresponding to the changed power

 mode from the second memory, wherein the brightness control information corresponding to

Serial No. 10/695,753 Amendment dated October 18, 2007

the changed power mode is independently stored in different locations of the second memory, which includes at least one of a microcomputer random access memory (micom RAM) or a system initialization RAM.