Non-linear Hypothesis

Motivations

Neural Networks: Representation

Introduction

- Neutral networks is actually a pretty old idea, but had fallen out of favor for a while.
- But today, it is the state of the art technique for many different machine learning problems.
- So why do we need yet another learning algorithm? We already have linear regression and we have logistic regression, so why do we need neural networks?

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)$$

We have only two features here. What happens if we have much more features?

$$x_1 = size$$

$$x_2 = \# \, \mathsf{bedrooms}$$

$$x_3 = \#$$
 floors

$$x_4 = age$$

. .

$$x_{100}$$

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)$$

$$x_1 = ext{size}$$
 $x_2 = ext{\# bedrooms}$
 $x_3 = ext{\# floors}$
 $x_4 = ext{age}$

rs
$$h=0$$

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)$$

One way is to reduce the number of order of interactions.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

 x_{100}

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)$$

2 10

You cannot cover complex shapes like above...

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)$$

$$\overline{x}_3 = \#$$
 floors $x_4 =$ age \dots

What is this?

You see this:

What is this?

You see this:

What is this?

You see this:

Computer Vision: Car detection

Testing:

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

What is this?

"Non"-Cars

50 x 50 pixel images \rightarrow 2500 pixels n=2500 (7500 if RGB)

$$x = \begin{bmatrix} & \text{pixel 1 intensity} \\ & \text{pixel 2 intensity} \\ & \vdots \\ & \text{pixel 2500 intensity} \\ \end{bmatrix}$$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Andrew Ng

"Non"-Cars

Andrew Ng

pixel 1

Cars"Non"-Cars

Quadratic features ($x_i^{\text{Windows'u Etkinleştir}}$) 1 ≈ 3 e million gidin.

features

Exercise

- Suppose you are learning to recognize cars from 100×100 pixel images (grayscale, not RGB). Let the features be pixel intensity values. If you train logistic regression including all the quadratic terms $(x_i x_j)$ as features, about how many features will you have?
 - 5.000
 - 100.000
 - 50 M
 - 5 B