

STF20NM60D - STP20NM60FD STW20NM60FD

N-channel 600V - 0.26Ω - 20A - TO-220 - TO-220FP - TO-247 FDmesh™ Power MOSFET (with fast diode)

General features

Туре	V _{DSS}	R _{DS(on)}	I _D	Pw
STF20NM60D	600V	<0.29Ω	20A	192W
STP20NM60FD	600V	<0.29Ω	20A	45W
STW20NM60FD	600V	<0.29Ω	20A	214W

- High dv/dt and avalanche capabilities
- 100% Avalanche tested
- Low input capacitance and gate charge
- Low gate input resistancE
- Tight process control and high manufacturing vields

Description

The FDmesh™ associates all advantages of reduced on-resistance and fast switching with an intrinsic fast-recovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters.

Applications

■ Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STF20NM60D	F20NM60D	TO-220FP	Tube
STP20NM60FD	P20NM60FD	TO-220	Tube
STW20NM60FD	W20NM60FD	TO-247	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	9
4	Package mechanical data	0
5	Revision history1	4

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Unit		
Symbol	Parameter	TO-220	TO-220FP	TO-247	Offic
V _{DS}	Drain-source voltage (V _{GS} = 0)		600		V
V_{DGR}	Drain-gate voltage (R_{GS} = 20 kΩ)		600		V
V _{GS}	Gate- source voltage		± 30		V
I _D	Drain current (continuous) at T _C = 25°C	20	20 (1)	20	Α
I _D	Drain current (continuous) at T _C = 100°C	12.6	12.6 ⁽¹⁾	12.6	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	80	80 ⁽¹⁾	80	Α
P _{TOT}	Total dissipation at T _C = 25°C	192	45	214	W
	Derating factor	1.20	0.36	1.42	W/°C
dv/dt (3)	Peak diode recovery voltage slope		20		V/ns
V _{ISO}	Insulation withstand voltage (DC)	-	2500	-	V
T _j T _{stg}	Operating junction temperature Storage temperature	_	65 to 150		°C °C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \le 20A$, $di/dt \le 400A/\mu s$, $V_{DD} = 80\%V_{(BR)DSS}$

Table 2. Thermal resistance

Symbol	mbol Parameter		Value			
Symbol	Faranielei	TO-220	TO-220FP	TO-247	Unit	
Rthj-case	Thermal resistance junction-case Max	0.65	2.8	0.585	°C/W	
Rthj-amb	Thermal resistance junction-ambient Max	(62.5	30	°C/W	
T _I	Maximum lead temperature for soldering purpose		300		°C	

Table 3. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	10	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 35$ V)	700	mJ

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250μA, V _{GS} = 0	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ±30V			±10 0	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_{D} = 10A$		0.26	0.29	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
9 _{fs} (1)	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 10A$		9		S
C _{iss}	Input capacitance			1300		pF
C _{oss}	Output capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		500		pF -
C _{rss}	Reverse transfer capacitance			35		pF
C _{oss eq.} (2)	Equivalent output capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 480V$		190		pF
R_{G}	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20mV open drain		2.7		Ω
Q_g	Total gate charge	$V_{DD} = 480V, I_D = 20A,$		37		nC
Q_{gs}	Gate-source charge	V _{GS} = 10V		10	52	nC
Q_{gd}	Gate-drain charge	(see Figure 17)		17		nC

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

^{2.} $C_{\rm oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{\rm oss}$ when $V_{\rm DS}$ increases from 0 to 80%

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$V_{DD} = 300V$, $I_D = 10A$ $R_G = 4.7\Omega V_{GS} = 10V$ (see Figure 16)		25 12		ns ns
t _{r(Voff)} t _f t _c	Off-voltage rise time Fall time Cross-over time	$V_{DD} = 480 \text{ V}, I_D = 20\text{A},$ $R_G = 4.7\Omega, V_{GS} = 10\text{V}$ (see Figure 16)		8 22 30		ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				20 80	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0			1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, T _i = 25°C		240		ns
Q_{rr}	Reverse recovery charge	di/dt =100A/µs,V _{DD} =60V		1800		nC
I _{RRM}	Reverse recovery current	(see Figure 21)		16		Α
t _{rr}	Reverse recovery time	I _{SD} = 20 A, T _j = 150°C		396		ns
Q_{rr}	Reverse recovery charge	di/dt =100A/µs,V _{DD} =60V		2960		nC
I _{RRM}	Reverse recovery current	(see Figure 21)		20		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area for TO-220

Figure 2. Thermal impedance for TO-220

Figure 3. Safe operating areafor TO-220FP

Figure 4. Thermal impedance for TO-220FP

Figure 5. Safe operating area for TO-247

Figure 6. Thermal impedance for TO-247

Figure 7. Output characterisics

Figure 8. Transfer characteristics

Figure 9. Transconductance

Figure 10. Static drain-source on resistance

Figure 11. Gate charge vs gate-source voltage Figure 12. Capacitance variations

Figure 13. Normalized gate threshold voltage vs temperature

150 T√°C>

Figure 14. Normalized on resistance vs temperature

Figure 15. Source-drain diode forward characteristics

0

50

100

-50

3 Test circuit

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive load test circuit

Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-220 MECHANICAL DATA

DIM.		mm.		inch		
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-247 MECHANICAL DATA

DIM.		mm.		inch			
DIWI.	MIN.	TYP	MAX.	MIN.	TYP. MA		
Α	4.85		5.15	0.19		0.20	
A1	2.20		2.60	0.086		0.102	
b	1.0		1.40	0.039		0.055	
b1	2.0		2.40	0.079		0.094	
b2	3.0		3.40	0.118		0.134	
С	0.40		0.80	0.015		0.03	
D	19.85		20.15	0.781		0.793	
Е	15.45		15.75	0.608		0.620	
е		5.45			0.214		
L	14.20		14.80	0.560		0.582	
L1	3.70		4.30	0.14		0.17	
L2		18.50			0.728		
øΡ	3.55		3.65	0.140		0.143	
øR	4.50		5.50	0.177		0.216	
S		5.50			0.216		

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

5 Revision history

Table 8. Revision history

Date	Revision	Changes	
09-Sep-2004	1	First release	
21-Apr-2006	2	New template	
25-Jul-2006	3	Modified part number	
01-Aug-2006	4	Corrected unit on Table 5.: Dynamic	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com