Cryptology 6

Ryan Kellar

April 2024

1 Problem 1

1.1 a)

```
\gcd(51,89) = \gcd(89,51)
89x + 51y = 1
89 = 1 * 51 + 38
51 = 1 * 38 + 13
38 = 13 * 2 + 12
13 = 1 * 12 + 1
12 = 1 * 12 + 0
Therefore, \gcd(51,89) = 1
```

1.2 b)

```
\gcd(102,202) = \gcd(202,102)
202x + 102y = 1
202 = 102 * 1 + 100
102 = 100 * 1 + 2
100 = 50 * 2 + 0
Therefore, \gcd(102,202) = 2
```

1.3 c)

```
\gcd(666,1414) = \gcd(1414,666)
1414x + 666y = 1
1414 = 666 * 2 + 82
666 = 82 * 8 + 10
82 = 10 * 8 + 2
10 = 2 * 5 + 0
Therefore, \gcd(666,1414) = 2
```

2 Problem 2

2.1 a)

```
\begin{aligned} 1 &= 13 - 12 * 1 \\ &= 13 - (38 - 13 * 2) * 1 \\ &= 13 - (38 - (51 - 38 * 1) * 2) * 1 \\ &= 13 - (38 - (51 - (89 - 51 * 1) * 1) * 2) * 1 \end{aligned}
```

2.2 b)

$$2 = 102 - 100 * 1$$

 $2 = 102 - (202 - 102 * 1) * 1$

2.3 c)

```
2 = 82 - 10 * 8

2 = 82 - (666 - 82 * 8) * 8

2 = 82 - (666 - (1414 - 666 * 2) * 8) * 8
```

3 Problem 3

```
50x + 127y = 1
127 = 50 * 2 + 27
50 = 27 * 1 + 23
27 = 23 * 1 + 4
23 = 4 * 5 + 3
4 = 3 * 1 + 1
3 = 1 * 3 + 0
```

Therefore, gcd(50, 127) = 1 Using extended:

```
1 = 4 - 3 * 1
= 4 - 3 * 1
= 4 - (23 - 4 * 5) * 1
= 4 * 6 - 23 * 1
= 27 * 6 - 23 * 7
27 * 6 - 7 * (50 - 27 * 1)
= (127 - (50 * 2)) * 13 - 50 * 7
= 127 * 13 - 50 * 33
= 94 \text{ Height, this, we can prove that } 3
```

= 94 Using this, we can prove that the modular inverse $50 \mod 127 = 94$

4 Problem 4

To find the decoding number, D, we need to find the modular inverse of the encoding number, $E \mod (p-1)(q-1)$.

```
After plugging in the values, we need to find the modular inverse of 5 mod 192.
```

 $\gcd(5, 192) = 5x + 192y = 1$

192 = 5 * 38 + 2

5 = 2 * 2 + 12 = 2 * 1 + 0

Using extended euclidean algorithm, we find the modular inverse to be 77.

This means that the decoding number D = 77.

5 Problem 5

5.1 a)

 $\gcd(9876543210, 123456789) = 9$

5.2 b)

5.3 c)

 $\gcd(45666020043321, 73433510078091009) = 3$

6 Problem 6

6.1 a)

 $\gcd(9876543210, 123456789) = 9$

6.2 b)

6.3 c)

 $\gcd(45666020043321, 73433510078091009) = 3$

7 Problem 7

7.1 a)

Euler's theorem says that for any number $\forall a | a \in \mathbb{Z}, a^{\phi(m)} \equiv 1 \mod m$. In this case of this problem, that means that $2^{\phi(97)} \equiv 1 \mod 97 \implies 2^{96} \equiv 1 \mod 97$.

We can cleverly rewrite this to show that $2^{95} * 20 \equiv 1 \mod 97$, which is exactly how the modular inverse is defined.

In other words, 2^{95} is the modular inverse of 20 in mod 97.

Now all we have to do is restrict 2^{95} to the domain of \mathbb{Z}_{97} . After this simplification, we indeed get that 34 is the modular inverse of 20 in mod 97.

7.2 b)

Using Euler's theorem would require that you do likely hundreds and hundreds of coprimality calculations, depending on what your a and m values are. Each of these singular coprimality calculations require a gcd computation of their own, so it's much much more computationally expensive since it's essentially repeating a similar process to the basic/extended euclidea algorithm hundreds of times just to calculate Euler's totient function, $\phi(m)$.