1 List of Problems for Chapter 1

This is a list of problems from Chapter 1 which I left in class as exercises or referred to during proofs. The Homework will be picked from these problems. They are a good practice list for the measure theory part.

- 1. Show that an intersection of an arbitrary (countable or uncountable) family of σ -algebras on E is again a σ -algebra on E. What about unions of σ -algebras?
- 2. Show that if \mathcal{E} is a σ -algebra, then
 - (i) \mathcal{E} is a p-system;
 - (ii) \mathcal{E} is a d-system.
- 3. Let \mathcal{D} be a d-system on E. Fix D in \mathcal{D} and define

$$\widehat{\mathcal{D}} = \{ A \in \mathcal{D}; A \cap D \in \mathcal{D} \}.$$

Prove that $\widehat{\mathcal{D}}$ is a d-system.

- 4. Show that an intersection of an arbitrary (countable or uncountable) family of d-systems on E is again a d-system on E. What about p-systems?
- 5. Let \mathcal{C} be a countable partition of E. Show that every element of $\sigma \mathcal{C}$ is a countable union of elements taken from \mathcal{C} .
- 6. Let $\mathcal{C}, \mathcal{D} \subset 2^E$. Show the following:
 - (i) $\mathcal{C} \subset \mathcal{D} \Rightarrow \sigma \mathcal{C} \subset \sigma \mathcal{D}$;
 - (ii) $\mathcal{C} \subset \sigma \mathcal{D} \Rightarrow \sigma \mathcal{C} \subset \sigma \mathcal{D}$;
 - (iii) If $\mathcal{C} \subset \sigma \mathcal{D}$ and $\mathcal{D} \subset \sigma \mathcal{C}$, then $\sigma \mathcal{C} = \sigma \mathcal{D}$;
 - (iv) $\mathcal{C} \subset \mathcal{D} \subset \sigma \mathcal{C} \Rightarrow \sigma \mathcal{C} = \sigma \mathcal{D}$.
- 7. Show that $\mathcal{B}_{\mathbb{R}}$ can be generated as
 - (i) $\mathcal{B}_{\mathbb{R}} = \sigma\{(-\infty, x]; x \in \mathbb{R}\};$
 - (ii) $\mathcal{B}_{\mathbb{R}} = \sigma\{(-\infty, x); x \in \mathbb{R}\};$
 - (iii) $\mathcal{B}_{\mathbb{R}} = \sigma\{(x, y]; x, y \in \mathbb{R}\};$
 - (iv) $\mathcal{B}_{\mathbb{R}} = \sigma\{(x, \infty); x \in \mathbb{R}\}.$
- 8. Let (E,\mathcal{E}) be a measurable space. Fix D in E and let

$$\mathcal{D} = \mathcal{E} \cap D = \{A \cap D; A \in \mathcal{E}\}.$$

Show that \mathcal{D} is a σ -algebra on D.

- 9. Consider a function $f: E \to F$. Show the following:
 - (i) $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(F) = E$;
 - $(ii)f^{-1}(B\backslash C) = f^{-1}(B)\backslash f^{-1}(C);$
 - (iii) $f^{-1}\left(\bigcup_i B_i\right) = \bigcup_i f^{-1}(B_i);$
 - (iv) $f^{-1}(\bigcap_i B_i) = \bigcap_i f^{-1}(B_i)$, for any $B_i \in 2^E$.
- 10. Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces and consider a function $f : E \to F$. Define $\mathcal{F}_1 = \{B \in \mathcal{F}; f^{-1}(B) \in \mathcal{E}\}$. Show that \mathcal{F}_1 is a σ -algebra on F.
- 11. Let E be a set and (F, \mathcal{F}) a measurable space. Consider a function $f: E \to F$. Define $f^{-1}(\mathcal{F}) = \{f^{-1}(B); B \in \mathcal{F}\}$. Prove that:
 - (i) $f^{-1}(\mathcal{F})$ is a σ -algebra.
 - (ii) $f^{-1}(\mathcal{F})$ is the smallest σ -algebra on E such that f is measurable relative to it and \mathcal{F} .
- 12. Let \mathcal{E} be a σ -algebra and consider the sequence $(A_n)_n \subset \mathcal{E}$. Prove that $\bigcap_{n>1} A_n \in \mathcal{E}$.
- 13. Let \mathcal{D}_0 be the smallest d-system that contain a p-system \mathcal{C} . Prove that \mathcal{D}_0 is a σ -algebra.
- 14. $f: E \to \mathbb{R}$ is measurable if and only if both f^+ and f^- are measurable.
- 15. Let f_n be a sequence of measurable functions. Show that $\inf f_n$ is measurable.
- 16. Let $f: E \to \mathbb{R}$ be a simple function. Show that there is a measurable partition of E such that

$$f = \sum_{k=1}^{m} b_k \mathbf{1}_{B_k}, \quad b_k \in \mathbb{R}, B_k \in \mathcal{E},$$

with $(B_k)_{1 \le k \le m}$ partition of E.

- 17. Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be an increasing function. Show that f is Borel measurable.
- 18. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a continuous function. Show that f is Borel measurable.
- 19. If $\phi(x)$ is a convex function of x from \mathbb{R} to \mathbb{R} and $f(\omega)$ and $\phi(f(\omega))$ are integrable, show that

$$\int_{\mathbb{R}} \phi(f(\omega)) dP \ge \phi \Big(\int_{\mathbb{R}} f(\omega) dP \Big),$$

where P is a probability measure on (E, \mathcal{E}) .

- 20. Let (Ω, \mathcal{H}) , (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. Consider the function $f: \Omega \to E \times F$ with $f = (f_1, f_2)$ such that
 - (i) f_1 is $(\mathcal{H}, \mathcal{E})$ -measurable;

(ii) f_2 is $(\mathcal{H}, \mathcal{F})$ -measurable;

Prove that f is measurable with respect to \mathcal{H} and $\mathcal{E} \otimes \mathcal{F}$. Formulate and prove a converse.

21. Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces and assume there is a subset \mathcal{F}_0 of \mathcal{F} with $\sigma \mathcal{F}_0 = \mathcal{F}$. If $f: E \to F$ is a function such that

$$f^{-1}(B) \in \mathcal{E}, \quad \forall B \in \mathcal{F}_0,$$

prove that f is $(\mathcal{E}, \mathcal{F})$ -measurable.

- 22. Prove that composition of measurable functions is measurable.
- 23. Let $\mathbf{1}_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise.} \end{cases}$ Prove that $\mathbf{1}_A$ is measurable if and only if $A \in \mathcal{E}$.
- 24. Let $f: E \to \mathbb{R}$ be a simple function. Show that there is a partition $\{B_j\}_{j=1,m}$ of E such that

$$f(x) = \sum_{k=1}^{m} b_k \mathbf{1}_{B_k}(x), \qquad b_k \in \mathbb{R}, B_k \in \mathcal{E}.$$

(This is called the canonical form of a simple function).

- 25. Let $f: E \to \mathbb{R}$ be a \mathcal{E} -measurable function taking finitely many real values. Prove that f is a simple function.
- 26. Let f and g be simple functions. Show that $f \wedge g$, $f \vee g$, $f \pm g$, fg and f/g (when it makes sense) are simple functions.
- 27. Let f and g be \mathcal{E} -measurable. Show that $f \wedge g$, $f \vee g$, $f \pm g$, fg are \mathcal{E} -measurable.
- 28. For each $n \ge 1$ consider the function

$$d_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)}(x) + n \mathbf{1}_{[n,\infty)}(x), \qquad x \in \overline{\mathbb{R}}.$$

Prove that $d_n(x)$ is an increasing, right continuous, simple function on $\overline{\mathbb{R}}$, and $d_n(x) \nearrow x$ as $n \to \infty$.

- 29. Let \mathcal{M}_+ be a collection of positive functions on E. Suppose that
 - (a) $1 \in \mathcal{M}_+$
 - (b) $f, g \in \mathcal{M}_+$ and $a, b \in \mathbb{R}$ and $af + bg \ge 0 \Rightarrow af + bg \in \mathcal{M}_+$
 - (c) $(f_n) \subset \mathcal{M}_+, f_n \nearrow f \Rightarrow f \in \mathcal{M}_+.$

Suppose that for some p-system \mathcal{C} generating \mathcal{E} we have $\mathbf{1}_A \in \mathcal{M}_+$ for each $A \in \mathcal{C}$. Prove that \mathcal{M}_+ includes every positive \mathcal{E} -measurable function. (Hint: Read first the proof of Theorem 2.19, page 10).

- 30. If μ_1, μ_2, \cdots are measures, prove that $\sum_{n\geq 1} \mu_n$ is also a measure.
- 31. If μ and λ are measures, is $\mu \lambda$ also a measure? What about $|\mu \lambda|$?
- 32. Prove that every σ -finite measure is Σ -finite (hint: see ex. 3.13 page 18).
- 33. Show that $|f| = f^+ + f^-$.
- 34. Provide a function that is Lebesgue integrable but it is not Riemannian integrable.
- 35. Let $f \in \mathcal{E}$. If $A \cup B = C$, $A \cap B = \emptyset$, show that

$$\int_C f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu.$$

(hint: see page 22).

- 36. (i) If ν is finite, show that $\nu \circ h^{-1}$ is finite.
 - (ii) If ν is Σ -finite, show that $\nu \circ h^{-1}$ is Σ -finite.
- 37. Let (E, \mathcal{E}, μ) be a measure space, and $p \in \mathcal{E}_+$. Define

$$\nu(A) = \int_A p(x) d\mu(x), \quad \forall A \in \mathcal{E}.$$

- (i) Show that ν is a measure on (E, \mathcal{E}) ;
- (ii) Prove that for any $f \in \mathcal{E}_+$ we have

$$\int_{E} f(x) d\nu(x) = \int_{E} f(x)p(x) d\mu(x).$$

- 38. Let μ be a Σ -finite measure on (E, \mathcal{E}) . Show that $\mu = \lambda + \nu$, with λ diffuse measure and ν purely atomic. (Hint: see ex. 3.15, page 18).
- 39. If $(f_n) \subset \mathcal{E}$, $f_n \leq 0$, show that $\mu(\limsup f_n) \geq \limsup \mu f_n$.
- 40. If δ_x denotes the Dirac measure sitting at x, show that $\delta_x f = f(x)$, for any $f \in \mathcal{E}$.