2108799 Ade Mulyana

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
In [2]: | df = pd.read_csv(r"C:\Users\ACER\Documents\UPI\Semester3\Data_mining_WH\UAS\dataset\pmi.csv")
In [3]: df.head(3)
Out[3]:
                       prov tahun kategori_pmi
                                      TINGGI
         0
                      ACEH
                            2022
         1 SUMATERA UTARA
                            2022
                                      TINGGI
         2 SUMATERA BARAT
                                      TINGGI
                            2022
In [4]: df.shape
Out[4]: (442, 3)
        Untuk menghitung kepadatan penduduk
In [5]: | dfh1 = pd.read_csv(r"C:\Users\ACER\Documents\UPI\Semester3\Data_mining_WH\UAS\dataset\kepadatan_penduduk.csv")
In [6]: dfh1.head()
Out[6]:
                       prov tahun kepadatan_penduduk
         0
                                                 92
                      ACEH
                            2021
                                                205
         1 SUMATERA UTARA
                            2021
         2 SUMATERA BARAT
                            2021
                                                133
         3
                       RIAU
                            2021
                                                75
                     JAMBI 2021
                                                 72
        Untuk melihat persentase penduduk melek huruf di atas 15
In [7]: | dfh2 = pd.read_csv(r"C:\Users\ACER\Documents\UPI\Semester3\Data_mining_WH\UAS\dataset\melek_huruf_diatas15.csv")
```

```
In [8]: dfh2.head()
```

Out[8]:

	prov	tahun	melek_huruf_diatas15
0	ACEH	2022	98.25
1	SUMATERA UTARA	2022	99.11
2	SUMATERA BARAT	2022	99.29
3	RIAU	2022	99.18
4	JAMBI	2022	98.1

Penggabungan data kepadatan penduduk dengan data melek_huruf_diatas15

```
In [9]: dfm = pd.merge(dfh1, dfh2, how='left',on=["prov", "tahun"])
```

In [10]: | dfm.head(5)

Out[10]:

	prov	tahun	kepadatan_penduduk	melek_huruf_diatas15
0	ACEH	2021	92	98.24
1	SUMATERA UTARA	2021	205	99.19
2	SUMATERA BARAT	2021	133	99.26
3	RIAU	2021	75	99.2
4	JAMBI	2021	72	98.08

In [11]: dfm.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 280 entries, 0 to 279
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	prov	280 non-null	object
1	tahun	280 non-null	int64
2	kepadatan_penduduk	280 non-null	object
3	<pre>melek_huruf_diatas15</pre>	210 non-null	object

dtypes: int64(1), object(3)
memory usage: 10.9+ KB

```
In [12]: dfm.describe()
Out[12]:
                     tahun
          count 280.000000
                2016.000000
          mean
            std
                   3.541864
            min 2010.000000
           25% 2013.750000
            50% 2015.500000
           75% 2019.250000
           max 2021.000000
In [13]: | dfm.isna().sum()
Out[13]: prov
                                   0
          tahun
                                   0
         kepadatan_penduduk
                                   0
         melek_huruf_diatas15
                                  70
         dtype: int64
In [14]: dfm.dtypes
Out[14]: prov
                                  object
          tahun
                                   int64
         kepadatan_penduduk
                                  object
         melek_huruf_diatas15
                                  object
         dtype: object
In [15]: dfh3 = pd.read_csv(r"C:\Users\ACER\Documents\UPI\Semester3\Data_mining_WH\UAS\dataset\persen_rumah_menyewa.csv")
In [16]: dfh3.head()
Out[16]:
             tahun persen_rumah_menyewa
                                                  prov
          0
             2021
                                   6.86
                                                  ACEH
             2021
                                  14.13 SUMATERA UTARA
             2021
                                  11.37 SUMATERA BARAT
          2
          3
             2021
                                  11.82
                                                  RIAU
          4 2021
                                   5.95
                                                 JAMBI
In [17]: dfm2 = pd.merge(dfh3, dfm, how='left',on=["tahun"])
```

```
In [18]: dfm2.head()
```

Out[18]:

	tahun	persen_rumah_menyewa	prov_x	prov_y	kepadatan_penduduk	melek_huruf_diatas15
0	2021	6.86	ACEH	ACEH	92	98.24
1	2021	6.86	ACEH	SUMATERA UTARA	205	99.19
2	2021	6.86	ACEH	SUMATERA BARAT	133	99.26
3	2021	6.86	ACEH	RIAU	75	99.2
4	2021	6.86	ACEH	JAMBI	72	98.08

```
In [19]: dfm2.isna().sum()
```

Out[19]: tahun

tahun 0
persen_rumah_menyewa 0
prov_x 0
prov_y 70
kepadatan_penduduk 70
melek_huruf_diatas15 70

dtype: int64

In [20]: dfm2.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6195 entries, 0 to 6194
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	tahun	6195 non-null	int64
1	persen_rumah_menyewa	6195 non-null	float64
2	prov_x	6195 non-null	object
3	prov_y	6125 non-null	object
4	kepadatan_penduduk	6125 non-null	object
5	<pre>melek_huruf_diatas15</pre>	6125 non-null	object

dtypes: float64(1), int64(1), object(4)

memory usage: 338.8+ KB

In [21]: sns.countplot(x="tahun", data=dfm2)

Out[21]: <AxesSubplot:xlabel='tahun', ylabel='count'>


```
In [22]: dfm2[['kepadatan_penduduk','melek_huruf_diatas15']].describe()
Out[22]:
                  kepadatan_penduduk melek_huruf_diatas15
                               6125
                                                  6125
           count
                                131
                                                   144
           unique
                                 9
                                                 98.01
             top
                                245
                                                   140
             freq
         import dataset persen penduduk trampil tik
In [23]: dfh4 = pd.read_csv(r"C:\Users\ACER\Documents\UPI\Semester3\Data_mining_WH\UAS\dataset\persen_penduduk_trampil_tik.csv")
In [24]: dfh4.isna().sum()
Out[24]: tahun
                                          0
          persen_penduduk_trampil_tik
                                          0
                                          0
          prov
          dtype: int64
In [25]: | dfm3 = pd.merge(dfh4, dfm2, how='left',on=["tahun"])
In [26]: dfm3.head()
Out[26]:
             tahun persen_penduduk_trampil_tik
                                             prov persen_rumah_menyewa prov_x
                                                                                         prov_y kepadatan_penduduk melek_huruf_diatas15
          0
             2021
                                       60.21 ACEH
                                                                   6.86
                                                                         ACEH
                                                                                         ACEH
                                                                                                              92
                                                                                                                                98.24
              2021
                                       60.21 ACEH
                                                                   6.86
                                                                         ACEH SUMATERA UTARA
                                                                                                              205
                                                                                                                                99.19
                                                                              SUMATERA BARAT
              2021
                                                                                                              133
                                       60.21 ACEH
                                                                   6.86
                                                                         ACEH
                                                                                                                                99.26
                                                                                                              75
                                                                                                                                99.2
             2021
                                                                         ACEH
                                                                                          RIAU
                                       60.21 ACEH
                                                                   6.86
                                                                        ACEH
                                                                                                              72
          4 2021
                                       60.21 ACEH
                                                                   6.86
                                                                                         JAMBI
                                                                                                                                98.08
         Isi nilai null / kosong dengan median
In [27]: | dfm3['kepadatan_penduduk'] = dfm3['kepadatan_penduduk'].fillna(dfm3['kepadatan_penduduk'].median())
          dfm3['melek_huruf_diatas15'] = dfm3['melek_huruf_diatas15'].fillna(dfm3['melek_huruf_diatas15'].median())
          Drop kolom prov yang merupakan anomali
In [28]: dfm3 = dfm3.drop(['prov'],axis=1)
```

In [29]: dfm3.head()

Out[29]:

	tahun	persen_penduduk_trampil_tik	persen_rumah_menyewa	prov_x	prov_y	kepadatan_penduduk	melek_huruf_diatas15
0	2021	60.21	6.86	ACEH	ACEH	92	98.24
1	2021	60.21	6.86	ACEH	SUMATERA UTARA	205	99.19
2	2021	60.21	6.86	ACEH	SUMATERA BARAT	133	99.26
3	2021	60.21	6.86	ACEH	RIAU	75	99.2
4	2021	60.21	6.86	ACEH	JAMBI	72	98.08

```
In [30]: df_final = pd.merge(dfm3, df, how='left',on=["tahun"])
```

In [31]: df_final.head()

Out[31]:

_	ta	ahun	persen_penduduk_trampil_tik	persen_rumah_menyewa	prov_x	prov_y	kepadatan_penduduk	melek_huruf_diatas15	prov	kategori_pmi
_	0	2021	60.21	6.86	ACEH	ACEH	92	98.24	ACEH	TINGGI
	1 :	2021	60.21	6.86	ACEH	ACEH	92	98.24	SUMATERA UTARA	TINGGI
	2	2021	60.21	6.86	ACEH	ACEH	92	98.24	SUMATERA BARAT	TINGGI
	3	2021	60.21	6.86	ACEH	ACEH	92	98.24	RIAU	TINGGI
	4	2021	60.21	6.86	ACFH	ACFH	92	98 24	JAMBI	TINGGI

In [32]: fig, ax = plt.subplots(figsize=(10, 5)) # atur ukuran chart
sns.countplot(ax=ax, x="tahun", hue="kategori_pmi", data=df_final)

Out[32]: <AxesSubplot:xlabel='tahun', ylabel='count'>

Melihat persentase pmi di tiap tahunnya

```
In [33]: # df_final = df_final.drop(['prov_y'],axis=1
         df_final.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 7372050 entries, 0 to 7372049
         Data columns (total 9 columns):
              Column
                                           Dtype
                                           ----
          0
              tahun
                                           int64
              persen_penduduk_trampil_tik float64
              persen_rumah_menyewa
                                           float64
                                           object
          3
              prov x
          4
              prov y
                                           object
                                           object
              kepadatan penduduk
              melek_huruf_diatas15
                                           object
          7
                                           object
          8
                                           object
              kategori_pmi
         dtypes: float64(2), int64(1), object(6)
         memory usage: 562.4+ MB
In [34]: | df_final['kategori_pmi'] = df_final['kategori_pmi'].astype("category")
         df_final['prov'] = df_final['prov'].astype("category")
         df_final['tahun'] = df_final['tahun'].astype("category")
In [35]: df_final.isna().sum()
Out[35]: tahun
                                            0
         persen_penduduk_trampil_tik
                                            0
         persen_rumah_menyewa
                                            0
                                            0
         prov_x
                                        83300
         prov_y
         kepadatan_penduduk
                                            0
         melek_huruf_diatas15
                                            0
         prov
         kategori_pmi
                                            0
         dtype: int64
In [36]: df_final2 = df_final.copy()
In [37]: | df_final2['kepadatan_penduduk'] = df_final2['kepadatan_penduduk'].fillna(df_final2['kepadatan_penduduk'].median())
         df_final2['melek_huruf_diatas15'] = df_final2['melek_huruf_diatas15'].fillna(df_final2['melek_huruf_diatas15'].median())
```

```
In [38]: df_final2.isna().sum()
Out[38]: tahun
                                               0
                                               0
          persen_penduduk_trampil_tik
          persen_rumah_menyewa
                                               0
                                               0
          prov_x
          prov_y
                                           83300
          kepadatan_penduduk
                                               0
          melek_huruf_diatas15
          prov
                                               0
          kategori_pmi
          dtype: int64
          Penghapusan kolom tahun dengan prov
In [39]: | df_final2 = df_final2.drop(['tahun', 'prov', 'prov_x', 'prov_y'],axis=1)
In [40]: df_final2.head()
Out[40]:
             persen_penduduk_trampil_tik persen_rumah_menyewa kepadatan_penduduk melek_huruf_diatas15 kategori_pmi
           0
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
           2
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
                                                                            92
           3
                                 60.21
                                                        6.86
                                                                                             98.24
                                                                                                        TINGGI
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
In [41]: df_final2.isna().sum()
Out[41]: persen_penduduk_trampil_tik
                                           0
                                           0
          persen_rumah_menyewa
          kepadatan_penduduk
                                           0
          melek_huruf_diatas15
                                           0
          kategori_pmi
                                           0
          dtype: int64
In [43]: df_final2.head()
Out[43]:
             persen_penduduk_trampil_tik persen_rumah_menyewa kepadatan_penduduk melek_huruf_diatas15 kategori_pmi
           0
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
                                 60.21
                                                        6.86
                                                                            92
                                                                                             98.24
                                                                                                        TINGGI
                                                                            92
           2
                                 60.21
                                                        6.86
                                                                                             98.24
                                                                                                        TINGGI
                                                                            92
           3
                                 60.21
                                                        6.86
                                                                                             98.24
                                                                                                        TINGGI
                                                        6.86
                                                                            92
                                 60.21
                                                                                             98.24
                                                                                                        TINGGI
```

Kelas target

```
In [46]: from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(df_final2.kategori_pmi)
Y = le.transform(df_final2.kategori_pmi)
X = df_final2.drop("kategori_pmi",axis=1)
```

In [48]: from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=123)

Lakukan Learning dengan Naive Bayes

```
In [49]:
    from sklearn.naive_bayes import GaussianNB
    from sklearn.metrics import accuracy_score
    clf = GaussianNB()
    clf.fit(X_train, Y_train)
    Y_pred = clf.predict(X_test)
    acc = accuracy_score(Y_test, Y_pred)
    print("Akurasi {}".format(acc))
    print(classification_report(Y_test, Y_pred))
```

Akurasi 0.6203722166832835

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
0 1 2 3	0.00 0.00 0.63 0.61	0.00 0.00 0.56 0.72	0.00 0.00 0.59 0.66	17439 34589 685678 736704
accuracy macro avg weighted avg	0.31 0.60	0.32 0.62	0.62 0.31 0.61	1474410 1474410 1474410

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

DECISION TREE

```
In [50]: from sklearn import tree
    clf = tree.DecisionTreeClassifier()
    clf.fit(X_train, Y_train)
    Y_pred = clf.predict(X_test)
    acc = accuracy_score(Y_test, Y_pred)
    print("Akurasi {}".format(acc))
    print(classification_report(Y_test, Y_pred))
```

Akurasi 0.6512367658927978

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

	precision	recall	f1-score	support
0	0.00 0.00	0.00 0.00	0.00 0.00	17439 34589
2	0.67	0.58	0.62	685678
3	0.64	0.76	0.69	736704
accuracy			0.65	1474410
macro avg	0.33	0.34	0.33	1474410
weighted avg	0.63	0.65	0.64	1474410

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

RANDOM FOREST

```
In [51]: from sklearn.ensemble import RandomForestClassifier
    clf = RandomForestClassifier(n_estimators=10, random_state=123)
    clf.fit(X_train, Y_train)
    Y_pred = clf.predict(X_test)
    acc = accuracy_score(Y_test, Y_pred)
    print("Akurasi {}".format(acc))
    print(classification_report(Y_test, Y_pred))
```

Akurasi 0.6493933166486934

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

	precision	recall	f1-score	support
0 1 2 3	0.00 0.00 0.67 0.63	0.00 0.00 0.58 0.76	0.00 0.00 0.62 0.69	17439 34589 685678 736704
accuracy macro avg weighted avg	0.33 0.63	0.33 0.65	0.65 0.33 0.63	1474410 1474410 1474410

C:\Users\ACER\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))