11_8 Samuel L. Peoples, CST, MA-C November 8, 2016

- 30. Let r be a positive integer and let $\phi: \mathbb{R}^* \to \mathbb{R}^*$ be defined by $\phi(x) = x^r$. Do the following:
 - (a) Show that ϕ is a homomorphism.

Observe $\phi(ab) = (ab)^r = (ab)(ab) \dots (rtimes) = a(rtimes) \cdot b(rtimes) = a^r b^r$ Thus ϕ is a homomorphism.

(b) Compute $\ker \phi$.

Observe
$$e=1$$
, thus $ker\phi=\{a\in\mathbb{R}^*\mid \phi(a)=1\}=\{1\}$ $1^r=1$ for all $r\in\mathbb{R}$

(c) Which values of r yield an isomorphism? Explain.

Although ϕ is 1-1 for all r, for ϕ to be onto, where the output is \mathbb{R}^* , r=1.

If r > 1, the output will be missing relatively prime values.

31. Let $\phi: G \to \overline{G}$ be a group homomorphism. Prove ϕ is one-to-one if and only if $\ker \phi = \{e\}$ where e is the identity of G.

Proof.

 \Rightarrow Suppose ϕ is 1-1. Recall $\phi(e) = \overline{e}$.

Let $x \in ker\phi$. Observe $\phi(x) = \overline{e} = \phi(e)(\phi \text{ 1-1, properties of } \phi)$

Therefore $ker\phi = \{e\}$

 \Leftarrow Suppose $ker\phi = \{e\}$, Let $a, b \in G$ and $\phi(a) = \phi(b)$

Observe
$$\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(b)\phi(b^{-1}) = \overline{e}$$

Therefore $\phi(ab^{-1}) \in ker\phi$, a = b, and ϕ is 1 - 1.

Therefore ϕ is one-to-one if and only if $\ker \phi = \{e\}$

32. Show that S_4 is not isomorphic to D_{12} .

Observe that the only orders for which S_4 can take are $\{1, 2, 3, 4\}$.

Because there are elements of order 12 (30 degree rotation, for example) in D_{12} , S_4 is not 1-1 when mapped to D_{12} . Element of order n must be of order n when mapped.

Therefore, S_4 is not isomorphic to D_{12} .

This page intentionally left blank.

$11_{-}29$

Samuel L. Peoples, CST, MA-C November 28, 2016

43. Find all distinct left cosets of $\{1,11\}$ in U(30).

 $U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$, thus there are four distinct left cosets.

 $\{1,11\},7\cdot\{1,11\}=\{7,17\},13\cdot\{1,11\}=\{13.23\}, \text{ and } 19\{1,11\}=\{19,29\}$

44. Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If |K| = 42 and |G| = 420, what are the possible orders of H?

|K| divides |H| (Lagrange's Theorem)

 $|H| = 42k, k > 1, k \in \mathbb{Z}$ (K is proper subgroup of H)

Observe 42k divides 420, so k divides $\frac{420}{42} = 10$. (H proper subgroup of G)

Thus, since 1 < k < 10, |H| = 2(42) = 84 or 5(42) = 210.

- 45. Let H and K be subgroups of a group G.
 - (a) Prove $H \cap K$ is a subgroup of G.

Proof.

Let H, and K be subgroups of a group G.

Observe $\forall a, b \in H, ab \in H \forall a, b \in K, ab \in K$; thus, $\forall a, b \in H \cap K, ab \in H \cap K$.(Closure)

Observe that H and K are subgroups of G, and thus inherit associativity; notice $H \cap K$ is a subgroup of G, and is thus associative.

Because H and K are subgroups of G $e \in H, e \in K$, thus $e \in H \cap K$.(Identity)

Notice that because H and K are subgroups of G, they contain inverses such that $\forall a \in H, \forall a \in K, aa^{-1} = e$, thus $\forall a \in H \cap K, aa^{-1} = e$. (Inverses)

Because $H \cap K$ is closed under the operation of G, contains an identity, and inverse for all elements, and is associative, $H \cap K$ is a subgroup of G.

(b) Is $H \cap K$ a subgroup of H? Briefly justify your answer.

Because $H \cap K$ contains all the properties of H and is a group itself, $H \cap K$ is a subgroup of H

(c) If |H| = 12 and |K| = 35, then find $|H \cap K|$.

Because $H \cap K$ is a subgroup of G, and H and K are subgroups of G, $|H \cap K|$ divides the order of G.

Observe that |H| and |K| divides the order of G.

Thus $|H \cap K|$ must divide 12 and 35, with a GCD of 1.

Thus $|H \cap K| = 1$

46. Let G be a group with |G| = pq, where p and q are prime. Prove that every proper subgroup of G is cyclic.

Proof.

Let G be a group with |G| = pq, where p and q are prime.

By Lagrange's Theorem, the order of each proper subgroup is a divisor of pq, being p, q, and 1.

Notice a subgroup of order 1 is trivially cyclic.

Because the subgroups of order p and q are of prime orders, Lagrange's Theorem gives us that p and q are cyclic.

Therefore, each proper subgroup of G is cyclic.

12_1 Samuel L. Peoples, CST, MA-C December 1, 2016

55. Calculate the number of elements of order 2 in each of \mathbb{Z}_{16} , $\mathbb{Z}_8 \oplus \mathbb{Z}_2$, $\mathbb{Z}_4 \oplus \mathbb{Z}_4$, and $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Do the same for the elements of order 4.

56. Is $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \cong \mathbb{Z}_{60} \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_2$? Is $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \cong \mathbb{Z}_{15} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$? Explain.

Yes. Observe $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_{6} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_{6} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{60} \oplus \mathbb{Z}_{6} \cong \mathbb{Z}_{60} \oplus \mathbb{Z}_{6} \oplus \mathbb{Z}_{2}$.

Yes. Observe $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \cong \mathbb{Z}_5 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \cong \mathbb{Z}_{15} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$

57. Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2.

Notice elements of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ are of the form (a, b, c).

In
$$\mathbb{Z}_2$$
, $(a, b, c)^2 = (a + a, b + b, c + c) = e_{\mathbb{Z}_2}$

Excluding the identity, there are seven elements of order two.

$$(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1),$$
 and $(1,1,1)$

Thus, for each $(a, b, c) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, there exists a subgroup of order $2, \{e, a\}$.

58. The group $S_3 \oplus \mathbb{Z}_2$ is isomorphic to one of the following groups: \mathbb{Z}_{12} , $\mathbb{Z}_6 \oplus \mathbb{Z}_2$, A_4 , D_6 . Determine which one by elimination.

$$|S_3 \oplus \mathbb{Z}_2| = 3! \cdot 2 = 12$$

Observe that no element of S_3 nor Z_2 has an element of order 12, where S_3 is at most 6. Thus, $S_3 \oplus \mathbb{Z}_2$ is not cyclic and we cannot include \mathbb{Z}_{12} .

Notice that $\mathbb{Z}_6 \oplus \mathbb{Z}_2$ is abelian, because both \mathbb{Z}_6 and \mathbb{Z}_2 are abelian. S_3 is not abelian, and we cannot include $\mathbb{Z}_6 \oplus \mathbb{Z}_2$.

From previous notes, we can recall that A_4 is the group of even permutations on four elements; we can also note that there is no element of order six. Thus we cannot include A_4 .

By elimination, and because it has elements of order $6, D_6$ is isomorphic to $S_3 \oplus \mathbb{Z}_2$.

59. Prove or disprove that $\mathbb{Z} \oplus \mathbb{Z}$ is a cyclic group.

For sake of contradiction, suppose $\mathbb{Z} \oplus \mathbb{Z}$ is cyclic.

Thus there must exists integers $m, n, a, b \in \mathbb{Z}$ such that:

$$(0,1) = m \cdot (a,b)$$
 where $a = 0$

$$(1,0) = n \cdot (a,b)$$
 where $b = 0$

Thus (a,b) = (0,0), where (0,0) is not a generator for $\mathbb{Z} \oplus \mathbb{Z} \#$

Therefore, because there is no generator for $\mathbb{Z} \oplus \mathbb{Z}$, the group is not cyclic.

12_{-6}

Samuel L. Peoples, CST, MA-C December 5, 2016

47. In D_4 , consider the subgroups $K = \{R_0, D\}$ and $L = \{R_0, D, D', R_{180}\}$. Show that K is a normal in L and L is normal in D_4 , but K is not normal in D_4 . From this example, we say that normality is not transitive.

Notice K, L are subgroups of D_4 (Closure)

For all $l \in L$ and $k \in K$, $(l \cdot k \cdot l^{-1}) \in K$ from the Normal Subgroup Test:

$$\begin{array}{lll} R_{0} \cdot R_{0} \cdot R_{0} = R_{0} & \in K \\ R_{0} \cdot D \cdot R_{0} = D & \in K \\ D \cdot R_{0} \cdot D = R_{0} & \in K \\ D \cdot D \cdot D = D & \in K \\ D' \cdot R_{0} \cdot D' = R_{0} & \in K \\ D' \cdot D \cdot D' = D & \in K \\ R_{180} \cdot R_{0} \cdot R_{180} = R_{0} & \in K \end{array}$$

 $R_{180} \cdot D \cdot R_{180} = D$

Thus, K is normal in L; where $g \cdot K \cdot g^{-1} = K$.

For normality of L in D_4 , similarly from above, for all $d \in D_4$ and $l \in L$, $d \cdot l \cdot d^{-1} \in L$ from the Normal Subgroup Test.

Notice, for R_{90} , $R_{90}^{-1} = R_{270} \in D_4$, and $D \in K$, $R_{90} \cdot D \cdot R_{270} = D'K$.

Therefore K is not normal in D_4 and normality is not transitive.

48. (a) Let H be a subgroup of G. Prove that if |G:H|=2, then H is normal in G.

Proof.

Let H be a subgroup of G where |G:H|=2

Observe that there are two distinct left cosets $\{H, aH\}$, where aH are all elements in G, but not H.

Notice that, by the *Definition of Normality*, for some $x \in G$;

where $x \in H$, xH = H = Hx and is thus in G

and $x \in aH$ xH = aH = Hx

Thus, for all $x \in G$, xH = Hx

Therefore H is normal in G.

(b) Prove that A_n is a normal subgroup of S_n .

Proof

Recall that from a previous homework problem, A_n is a subgroup of S_n , where $|A_n| = \frac{n!}{2}$, and $|S_n| = n!$

Thus,
$$|S_n:A_n| = \frac{|S_n|}{|A_n|} = 2$$

Recall from above, because $|S_n:A_n|=2$, A_n is a normal subgroup of S_n .

- 49. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ where $i^2 = j^2 = k^2 = -1$, -i = (-1)i, $1^2 = (-1)^2 = 1$, ij = -ji = k, jk = -kj = i, and ki = -ik = j. Do the following:
 - (a) Construct the Cayley table for G.

	-1	1	-i	i	-j	j	-k	k
						-j		
						j		
-i	i	-i	-1	1	k	-k		
i	-i	i	1	-1	-k	k	j	-j
-j	j j	-j	-k			1	i	-i
j	-j	j	k	-k	1	-1	-i	i
-k	k	-k	j	-j	-i	i	-1	1
k	-k	k	-j	j	i	-i	1	-1

(b) Show that $H = \{1, -1\}$ is a normal subgroup of G.

Observe that for all $x \in G$, $1 \cdot x = x$, and $-1 \cdot x = -x$

By the Normal Subgroup Test, $xHx^{-1} = \pm 1 \in H$

Thus, H is normal in G

(c) Construct the Cayley table for G/H.

	Н	-i,i,-j,j,-k,k
H	Н	-i,i,-j,j,-k,k
-i,i,-j,j,-k,k	-i,i,-j,j,-k,k	H

50. Prove that a factor group of an Abelian group is Abelian. That is, if G is an Abelian group and H is a normal subgroup of G, then G/H is Abelian.

Proof.

Recall a group G is abelian if ab = ba for all $a, b \in G$

Suppose G is an Abelian group and H is a normal subgroup of G

Let $aH, bH \in G/H$, where (aH)(bH) = (ab)H by the definition of a factor group.

Because G is abelian, (ab)H = (ba)H = (bH)(aH)

Thus, (aH)(bH) = (bH)(aH)

Therefore, G/H is abelian.

51. Let $\phi: G \to \overline{G}$ be a group homomorphism. Prove that the subgroup ker ϕ is normal in G.

Proof.

Recall that the kernel of a group is a subgroup, where $\phi(\ker \phi) = e_H$

Let $g \in G$, and $h \in \ker \phi$

Observe that $\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g^{-1})$

$$=\phi(g)e_H\phi(g^{-1})$$

$$=\phi(a)\phi(a^{-1})$$

$$= \phi(g)\phi(g^{-1})$$

= $\phi(g)\phi(g)^{-1}$

 $= e_H$

Therefore, by the Normal Subgroup Test, $\ker \phi$ is normal in G.

12_8 Samuel L. Peoples, CST, MA-C December 7, 2016

52. Use the First Isomorphism Theorem to prove that $S_n/A_n \cong \mathbb{Z}_2$.

Proof.

Consider the homomorphism $\phi: S_n \to \mathbb{Z}_2$ defined by $\phi(\alpha) = (a, b)$

Let $\alpha \in S_n$ be even.

Observe that
$$\ker \phi = \{\alpha \in S_n \mid \phi(\alpha) = (e_{\mathbb{Z}_2}, x)\}\$$

= $\{\alpha \in S_n \mid (a, b) = (e_{\mathbb{Z}_2}, x)\}\$
= A_n

Because |(a,b)| = 2 and $|A_n| = 2$, and A_n is normal in S_n .

Observe that $\phi(S_n) = \mathbb{Z}_2$

Therefore, by the First Isomorphism Theorem, $S_n/A_n \cong \mathbb{Z}_2$.

53. Suppose that k is a divisor of n. Prove that $\mathbb{Z}_n/\langle k \rangle \cong \mathbb{Z}_k$.

Proof.

Cosider $\phi: \mathbb{Z}_n \to \mathbb{Z}_k$ defined by $\phi(x) = x \mod k$.

Observe
$$ker\phi = \{a \in \mathbb{Z}_n \mid \phi(a) = 0\}$$

= $\{a \in \mathbb{Z}_n \mid x \mod k = 0\}$
= $\langle k \rangle$

Notice $\phi(\mathbb{Z}) = \mathbb{Z}_k$, thus ϕ is onto.

By the first Isomorphism Theorem $\mathbb{Z}_n/\langle k \rangle \cong \mathbb{Z}_{\kappa_k}$.

54. (a) Let G be a group and let Z(G) be the center of G. Prove that if G/Z(G) is cyclic, then G is Abelian.

Proof.

Recall the center of a group is always normal to the group; thus Z(G) is a normal subgroup of G.

Because G/Z(G) is cyclic, let $G/Z(G) = \langle nZ \rangle$; let $a, b \in G$, and $x, y \in \mathbb{Z}$

For some $i, j \in \mathbb{Z}$, $a \in n^i Z, b \in n^j Z$

Recall that the center commutes for all elements in the group.

Observe
$$ab = (n^i x)(n^j y) = (n^i n^j)(xy) = (n^{i+j})(xy) = (n^{j+i})(yx) = (n^j y)(n^i x) = ba$$

Therefore, $\forall a, b \in G$, $ab = ba$, and G is abelian.

(b) Suppose that G is a non-Abelian group of order p^3 , where p is a prime, and $Z(G) \neq \{e\}$. Prove that |Z(G)| = p.

Proof

Because G is a non-abelian p group, |Z(G)| = p or p^2

Suppose
$$|Z(G)| = p^2$$

This implies that G/Z(G) is cyclic with an order of p, and G is therefore abelian. #

By contradiction,
$$|Z(G)| = p$$
.

60. Let
$$G = \mathbb{Z}_4 \oplus \mathbb{Z}_4$$
, $H = \{(0,0), (2,0), (0,2), (2,2)\}$, and $K = <(1,2)>$.

(a) Is G/H isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$? Justify.

Observe G/H contains 4 elements

H, (1,0) + H, (0,1) + H, (1,1) + H with three cosets of order 2.

By classification, G/H is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$

(b) Is G/K isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$? Justify.

Observe G/K has elements of the form (a, a)

Notice K cosists of the elements $\{(0,0), (1,2), (2,0), (3,2)\}$

Thus
$$|(1,1) + K| = 4 \in G/K$$

G/K is cyclic of order 4 and isomorphic to \mathbb{Z}_4