Implementation of Geographical and Temporal Weighted Regression(GTWR)

Author: jimmg35

(1) Data structure abstract

$$S_t = \{b_{St}, b_{S(t-1)}, \dots, b_{S(t-q)}, b_{Tt}\}$$

(2) Objective function

$$\underset{S_t}{\operatorname{argmin}} \operatorname{\mathit{CV}}(S_t)$$

(3) Kernel function

$$\boldsymbol{\omega_{ijS,T}^t} = \boldsymbol{exp}\left(-\frac{d_{S_{ij}}^2}{b_{S_t}^2}\right) * \boldsymbol{exp}\left(-\frac{d_{t_{ij}}^2}{b_{T_t}^2}\right)$$

(4) Bandwidth optimization algorithm

```
Algorithm 1 spatiotemporal weighted matrix optimization
```

Input: *Lags*, time searching constraint. [0, 1, 2, 3, 4]

Input: Set_{bt}, temporal bandwidth set. [1, 2, 3, 4, 5]

1: **for** *t* in (start_year+1, end year) **do**

2: **for** b_T in Set_{bt} **do**

3: **for** q in Lags **do**

4: **while** $CV_{S(t-q)}$ not converge **do**

5: optimize $\hat{\boldsymbol{b}}_{S(t-q)}$ using data points from time $t \le q$ and fixed previous $\boldsymbol{b}_{S(t-q)}$.

6: **end while** store best $b_{S(t-q)}$ for time t-q.

7: end for

8: optimize CV of b_T

9: **end for** store best b_T and $[b_{St}, b_{S(t-1), ..., b_{S(t-q)}}]$ for t.

10: store constant of weight matrix for t, using bandwidth set obtained above.

11: **end for**

(5) Fitting algorithm

Algorithm 2 GTWR fitting routine

Input: Lags, temporal bandwidth searching constraint.

Input: *Opt*, optimal spatial and temporal bandwidth.

1: **for** t in (start_year+1, end year) **do**

2: retrive bandwidth in $Opt \rightarrow t$.

3: $data\ chunk = \{t, t-1, ..., t-Lags\}.$

4: **for** i(*data chunk*) **in** t **do**

5: compute spatiotemporal weighted matrix with respect to i.

6: compute MLE coefficients with respect to i.

7: end for

8: end for