Can Learned Indexes be Built Efficiently? A Deep Dive into Sampling Trade-offs

Minguk Choi, Seehwan Yoo, Jongmoo Choi Dankook University, South Korea

- Learned index
 - Index structure employs machine learning techniques
 - View the index as a model that predicts the position of a key in sorted array

- Learned index
 - Space-efficient by effectively compressing data distribution through model
 - Pareto optimal in terms of index size and lookup latency in read-only workload
 - No alternative exists that has both a smaller size and lower latency

(Benchmarking Learned Indexes, VLDB '20)

- Limitation of learned index : Long index build time
 - Significantly (up to about 2,000x) longer than traditional indexes

Limitation of learned index : Long index build time

- Not Pareto optimal (build-efficient) for build time and lookup latency
- Still, there are application (e.g., LSM-Tree) where the index build time is crucial

Google
LEVELDB

- Limitation of learned index : Long index build time
 - Significantly (up to 1,950x) longer than traditional indexes

Long build time has been identified as a high priority for future work in various papers

RMI (SIGMOD `18), RadixSpline (aiDM `20), PGM-Index (VLDB `20), SOSD (VLDB `20), Critical-RMI (VLDB `22)

The primary reason for long build time of learned index

 $Index\ build\ time = Per - element\ overhead \times Number\ of\ elements$

- 1) Higher per-element overhead
- 2) Complete traversal and training

- To mitigate per-element overhead
 - Light-weight model: RadixSpline (aiDM `20), Bourbon (OSDI `20)
 - It still shows longer build time than traditional indexes

- Our Approach : Sampling
 - While sampling may seem simple and even naïve, it is indeed complex

Challenges

- 1. Absence of benchmark for sampling applied indexes
- 2. Losing error-bound property due to sampling loss
- 3. Complex trade-offs in terms of model, index, and micro-architecture

2. Background

- Workload : Read-only in-memory
 - Practical beginning point of learned index
 - Dataset (D): Sorted array of unique integer keys without duplicates
 - Lookup: Find the position of a lookup key k in D
 - ① Prediction : Estimate the position of k as p
 - ② Correction : Find the exact position of k based on p

2. Background

- Workload: Read-only in-memory
 - Error-bound property
 - $\forall k \in D$, $Error(k) = |Pred(k) Pos(k)| \le \varepsilon (= error bound)$
 - k exist in correction range (= $[p \varepsilon, p + \varepsilon]$) \rightarrow binary search

- Important for robustness,
 - Especially where correction is expensive
 - E.g., Disk or remote I/O environments

BASIL. Access I-th sample key-value in original dataset

1. Unified sampling algorithm & implementation

- 1) Unified sampling algorithm
 - > Systematic sampling: extract every I^{th} (I = sampling interval) key from 0-th key to the last key
 - ✓ Pros : Simple, universal, no decision/reordering cost
 - ✓ Cons: Not optimal (other methods, e.g., adaptive, should be explored)
- 2) Unified sampling implementation
 - > All indexes access and train only sample key-value data from entire dataset

- EB-PLA (Error-bounded Piece-wise Linear Approximation) model
 - Without sampling, model trains all keys with error-bound $\varepsilon \to Error(k) \le \varepsilon$
 - With sampling, model trains only sample I^{th} keys with error-bound $\varepsilon \nrightarrow Error(k) \le \varepsilon$
 - Losing of the error-bound property, which is learning objective of the model

- Sample EB-PLA algorithm
 - Refine error-bound due to sampling loss ($\varepsilon' = \varepsilon + I 1$)
 - \triangleright In Fig. (c), preserves error-bound property, but cannot guarantee desired error-bound (ε)
 - Replace the learning error-bound to $\delta (= \varepsilon I + 1)$ for desired error-bound (ε)
 - \triangleright In Fig. (d), preserves error-bound (ε) by learning less data with smaller & stricter error bound

- Sample EB-Histogram algorithm
 - Fig (a), Train all with error-bound $\varepsilon \to \forall k \in D, \ k \in [p, p + \varepsilon]$
 - Fig (b), Train sample with error-bound δ (= ε -I+1) $\rightarrow \forall k \in D$, $k \in [p-I+1, p+\delta]$
 - ightharpoonup Preserve Correction length ($\varepsilon + 1 = \delta + I$)

- PLR with Simple Linear Regression
 - Fig. (a), Model itself cannot guarantee an error-bound regardless of sampling
 - > To guarantee error-bound, Measuring all data errors after training causes significant overhead.
 - Fig. (b), Sampling can decrease accuracy(MSE), but error-bound property doesn't change.

3. Internal changes due to sampling

- Depend on segmentation manner
 - 1) Dynamic segmentation (EB-PLA, EB-Histogram)
 - Definition: Dynamically segment key ranges according to the distribution
 - > Trade-off: Decrease build time but aggressive sampling can increase # of segments (bins)

3. Internal changes due to sampling

- Depend on segmentation manner
 - 2) Fixed segmentation (PLR, EB-Histogram)
 - Definition : Segment key ranges into a fixed number of segments
 - > Trade-off: Decrease build time but aggressive sampling can increase # of underfitting segments

4. Evaluation Setup

BASIL (Benchmark of Sampling Applied Learned Indexes)

- Applied sampling to 7 indexes, prefixed with "s"
 - 3 Learned, 2 Histogram, 3 Tree-based indexes

Туре	Index	Internal Model	Correction Search
Learned	sRMI	Simple Linear Regression	Exponential Search
Learned	sPGM / sRS	Sample EB-PLA	Binary Search
Histogram	sCHT	Sample EB-Histogram (Equal-width)	
Histogram	sRT	Sample Histogram (Equal-width)	
Tree-based	sART / sB+-Tree/ sIB-Tree	-	

4. Evaluation Setup

BASIL (Benchmark of Sampling Applied Learned Indexes)

- Datasets: 6 representative datasets with 200 million key-value pairs
- Workload: Lookup uniform random 10 million keys from the dataset.
- Environment: Intel(R) Xeon(R) Gold 6338 CPU 2.00 GHz, 48 MB L3 with 512 GB of main memory

Dataset : History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)

5. Evaluation

1. Sampling Trade-offs

- Index
 - sPGM with Sample EB-PLA
- Metrics
 - Index: (a) Build Time, (b) Size,
 (c) Latency, (f) Pred. latency, (i)
 Corr. latency
 - Model: (d) Height, (g) MSE (Accuracy)
 - Micro-architecture: (e) Pred. Cache Miss, (f) Corr. Cache Miss

Dataset : History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)

- 1. Sampling Trade-offs
- When sampling interval (I) increases, (a) build time decreases by order of magnitude

- 1. Sampling Trade-offs
- Each error-bound has
 threshold interval (I_{TH})
 - mostly $\varepsilon = I^{TH}$

Until threshold interval (I_{TH}),
 (b-i) the rest of metrics
 remain consistent

Dataset : History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)

- 1. Sampling Trade-offs
- After threshold interval I_{TH},
 # of linear segments 1
 - → (b) Size ↑(d) Height ↑
 - \rightarrow (e) Pred. cache miss \uparrow ,
 - (f) Pred. latency 1

Dataset: History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)

- 1. Sampling Trade-offs
- After threshold interval I_{TH} ,
 - # of linear segments 1
 - \rightarrow (g) MSE \downarrow
 - → (h) Corr. cache miss ↓
 - (i) Corr. latency ↓

Without sampling

- 2. Design Space of Learned Indexes
 - Absence of trade-offs between build time, index size, and lookup latency
 - Incur significant build times regardless of size and lookup

- 2. Design Space of Learned Indexes
 - Sampling introduces trade-offs between build-time, size, and lookup latency
 - Broaden design space of learned indexes from 2D to 3D

- 3. Build Speed-up
 - Question. How much can sampling reduce build time without significantly degrading index performance?
 - > Safe Down-sampling where size & lookup latency increase by less than 5%

- 3. Build Speed-up
 - Question. How much can sampling reduce build time without significantly degrading index performance?
 - > Safe Down-sampling where size & lookup latency increase by less than 5%

- 4. Pareto Optimal Analysis
 - Question. Can learned indexes be built efficiently (in terms of build time and lookup latency than traditional indexes through sampling)?
 - Pareto optimal (build-efficient) in terms of build time and average lookup latency
 - > no alternative that has both shorter build time and lower latency

- 4. Pareto Optimal Analysis
 - Question. Can learned indexes be built efficiently (in terms of build time and lookup latency than traditional indexes through sampling)?
 - Pareto optimal (build-efficient) in terms of build time and tail lookup latency
 - no alternative that has both shorter build time and lower latency

6. Conclusion

- 1. Learned indexes are space-efficient, but long build time make it impractical.
- 2. Sampling has 3 challenges: 1) losing error-bound property, 2) absence of benchmark, and 3) complex sampling trade-offs.
- 3. We propose 1) novel sample learning algorithms which preserves error-bound, 2) new benchmark & BASIL, and 3) analysis of sampling trade-offs.
- 4. We show that sampling can 1) expand the design space, 2) reduce build time without significant performance loss, and 3) build learned indexes efficiently.

Thank you