

Stochastic Models & Adaptive Algorithms

Balázs Csanád Csáji

SZTAKI: Institute for Computer Science and Control 13-17 Kende utca, Budapest, Hungary, 1111

Ph.D. Course, BME & ELTE, Semester: 2020/21/1

Main Parts of the Course

I. STATISTICAL LEARNING (40 %)

From linear regression to kernel methods. Performance guarantees. This part mainly addresses regression and classification problems.

II. REINFORCEMENT LEARNING (40 %)

Learning via interactions with an uncertain, dynamic environment. Markov decision processes and model-free online learning methods.

III. STOCHASTIC APPROXIMATION (20%)

A general theory of recursive methods working with uncertain data. E.g., stochastic optimization, acceleration techniques, consistency.

Assumed Mathematical Background

Linear Algebra

Positive (semi-) definite matrices, QR decomposition, eigenvalues, eigenvectors, pseudoinverse, matrix norms, range and null space.

MATHEMATICAL ANALYSIS

Convex functions, gradient vector, Hessian matrix, Lagrange multipliers, Hilbert spaces, Riesz representation theorem.

PROBABILITY & STATISTICS

Central moments, convergence concepts (a.s., in distribution, etc.) bias (of an estimator), Fisher information, statistical efficiency.

"One must learn by doing the thing; for though you think you know it, you have no certainty, until you try." (Sophocles)

Numerical Experiments

PART I: LINEAR REGRESSION

Numerical Exercise I.1

- Generate a sample of size n, $\{(x_i, y_i)\}_{i=1}^n$, where $\{x_i\}$ are i.i.d. random variables having a uniform distribution on [0,1]; let $y_i = f(x_i) + \varepsilon_i$, where $f(x) = x \sin(cx)$, e.g., with c = 16, and the noises, $\{\varepsilon_i\}$, are zero-mean i.i.d. Gaussian random variables.
- Construct linear regression estimates with d basis functions using the least-squares criterion. Experiment with different types of basis functions, such as $f_i(x) = x^{i-1}$ and $f_i(x) = \exp(-\|x-\mu_i\|^2/\sigma_i^2)$; e.g., one can use $\mu_i = (i-1)/(d-1)$ and a fixed constant σ^2 for σ_i^2 .
- Calculate the LS estimate with QR decomposition or with SVD.
- Apply the recursive formulation of LS for increasing sample sizes.
- Also make experiments for the least-norm problem, i.e., if d > n.
- Plot the observations, the original function, and the resulting regression functions for various sample sizes and basis choices.

Numerical Exercise 1.2

Consider the scalar AR (auto-regressive) time-series model,

$$y_t = a \cdot y_{t-1} + b \cdot y_{t-2} + \varepsilon_t,$$

where $\{\varepsilon_t\}$ are i.i.d. standard normal; a and b are parameters (constants) with b<1+a, b<1-a and b>-1 (for stability).

- This system can be written in a linear regression form as

$$y_t = \varphi_t^{\mathrm{T}} \theta^* + \varepsilon_t,$$

where $\varphi_t = (y_{t-1}, y_{t-2})^T$, the rows of Φ , and $\theta^* = (a, b)^T$.

- The error of the LS estimates is asymptotically Gaussian, that is

$$\sqrt{n}(\hat{\theta}_n - \theta^*) \stackrel{d}{\longrightarrow} N(0,\Gamma)$$
 as $n \to \infty$,

where $\hat{\theta}_n$ is the LS estimate for sample size n, " $\stackrel{d}{\longrightarrow}$ " denotes convergence in distribution and $N(0,\Gamma)$ is the normal distribution.

Numerical Exercise 1.2

- The asymptotic covariance matrix Γ is $\sigma_0^2 \mathbb{E}[\varphi_0 \varphi_0^T]$, where σ_0^2 is the variance of the noises, $\{\varepsilon_t\}$ (i.e., one for standard normal), and φ_0 has the stationary distribution of the regressors, $\{\varphi_t\}$.
- Assuming $\sigma_0^2=1$, this can be estimated by (cf. ergodic theorem)

$$\sigma_0^2 \mathbb{E}[\varphi_0 \varphi_0] \approx \Gamma_n = \frac{1}{n} \sum_{t=1}^n \varphi_t \varphi_t^{\mathrm{T}}.$$

- Choose an appropriate θ^* , some initial conditions (y_0, y_{-1}) and simulate a trajectory of size n=100. Then, plot the LS estimate with its confidence ellipsoids for probabilities $p=0.9,\,0.95,\,0.98$.
- Of course, one should build the ellipsoids by using the fact that

$$n(\hat{\theta}_n - \theta^*)^{\mathrm{T}} \Gamma_n^{-1} (\hat{\theta}_n - \theta^*) \sim \chi^2(\dim(\theta^*)),$$

where $\chi^2(d)$ is the χ^2 distribution with d degrees of freedom.

Requirements

- Perform the experiments using Matlab or Python. Adequately structure and comment your codes, to make them easily readable.
- Use matrix manipulating functions for QR decomposition, SVD, inverse, etc.; but do not use existing functions for pseudoinverse or model fitting, such as the backslash operator of Matlab for LS.
- Write a short, 1-3 pages, report with figures which describes and illustrates your experiments. Make the report in LATEX or Jupyter.
- Send the codes and the report in email to csaji@sztaki.hu.
- Hint 1: if a square matrix A is badly conditioned, a simple way to decrease its condition number is to replace it with $A + \lambda I$, where I is the identity matrix and λ is a tiny scalar (cf. ridge regression).
- Hint 2: one can look up the inverse CDF values of $\chi^2(d)$ from a table, but there are also functions in Matlab and Python to do it.

"I hear, I forget;
I see, I remember;
I do, I understand."

(Chinese proverb)

NUMERICAL EXPERIMENTS

PART II: KERNEL METHODS

Numerical Exercise II.1

- Consider a binary classification problem on the plane, \mathbb{R}^2 , where the data are generated as follows: for each observation, for both classes, there is a 0.5 probability of getting the observation from that class; and the classes have multivariate normal distributions.
- The means of the distributions should be different (mandatory),
 and their covariance matrices could also be different (optional).
- Generate datasets and implement the following linear classifiers: soft margin SVC, LS-SVC and nearest centroid classifier (NCC).
- For the first two cases, use and solve the primal form of the corresponding optimization problems (do not use SVM libraries).
- Plot the datasets and the obtained classification boundaries (for SVC, LS-SVC and NCC) for various regularization parameters (λ) and various datasets (generated by different means/covariances).

Numerical Exercise II.2

- Consider a binary classification problem on the plane, \mathbb{R}^2 , where one of the classes mostly concentrates in a compact area, while the other class surrounds the previous class (with potential overlaps).

- First, design an algorithm to generate such classification datasets.
- Implement the nonlinear (kernelized) soft margin SVC method using the Gaussian kernel, namely, $k(x,y) = \exp(-\|x-y\|^2/\sigma^2)$.
- For this, the Wolfe dual of soft margin SVC should be solved by a convex optimization tool (do not directly use SVM libraries).
- Plot the datasets and the obtained SVC classification boundaries for various regularization parameters (λ) and kernel widths (σ).

Requirements

- Perform the experiments using Matlab or Python. Adequately structure and comment your codes, to make them easily readable.
- Use a convex optimization library, e.g., cvx in Matlab or cvxpy in Python, to implement the corresponding primal or dual problems.
- Important: do not use existing methods dedicated to SVMs, such as the ones provided by the LibSVM library in Matlab and Python.
- The aim is to implement SVC based on mathematical optimization tools and not to simply use an existing SVM library for that.
- Also, do not copy SVC from a source code found on the internet.
- Write a short, 1-3 pages, report with figures which describes and illustrates your experiments. Preferably, make the report in LATEX. (you can also make the documentation in Jupyter notebook).
- Send the codes and the report in email to csaji@sztaki.hu.

"Being a student is easy.
Learning requires actual work."

(William Crawford)

Numerical Experiments

Part III: Reinforcement Learning

Numerical Exercise III.1

- Consider a small-scale Markov Decision Process (MDP), such as the gambler's problem, cliff walking or even a randomly generated MDP (e.g., see Examples 4.3 and 6.6 of Sutton and Barto's book: "Reinforcement Learning: An Introduction", 2nd. edition, 2018).
- Implement the following model-based MDP solution algorithms:
 value iteration (VI), policy iteration (PI), linear programming (LP).
- Compute the optimal value function of the selected MDP with LP.
- Then, plot its distance (using Euclidean distance, i.e., $\|\cdot\|_2$) from the value functions calculated by the VI and PI algorithms.
- The comparison should be per iteration (hence, the x-axis of the figure should show the iteration number, while the y-axis should present the distances of VI and PI from the optimal solution).

Numerical Exercise III.2

- Consider the same small-scale MDP as in the first experiments.
- Implement the model-free Q-learning using a totally (uniformly) random, an ε -greedy and a Boltzmann (semi-greedy) base policy.
- Thus, you should simulate the environment using a base policy and iteratively learn the optimal action-value function by applying Watkins' Q-learning on the obtained state-action-cost trajectories.
- Hints: ε could be 0.1 or 0.05, while τ could be 0.1, 1, and 10.
- Let V^* be the optimal value function (computed by LP in the first experiments) and let $V_t(x) \doteq \min_a Q_t(x,a)$ be the value function induced by a Q-learning algorithm (for iteration t). Plot the distances ($\|\cdot\|_2$) of V^* and V_t for the three Q-learning approaches.
- Also plot (on a different figure) the gathered costs/rewards during the learning process for the case of all three base policies above.

Requirements

- Perform the experiments using Matlab or Python. Adequately structure and comment your codes, to make them easily readable.
- Use a convex optimization library, e.g., cvx in Matlab or cvxpy in Python, to implement the resulting linear programming problem.
- Important: it is allowed to use existing RL environments for the MDPs, but not for the solution algorithms. Do not use existing methods dedicated to RL, implement the RL algorithms yourself.
- The aim is to understand the fundamental RL approaches by implementing them, and not simply to apply RL codes of others.
- Write a short, 1-3 pages, report with figures which describes and illustrates your experiments. Preferably, make the report in LATEX. (you can also make the documentation in Jupyter notebook).
- Send the codes and the report in email to csaji@sztaki.hu.

"The true method of knowledge is experiment."
(William Blake)

Numerical Experiments

PART IV: STOCHASTIC APPROXIMATION

Numerical Exercise IV.1

- Consider the Q-learning algorithm implemented in Num. Ex. III.2
 (any of the three base policies could be used for this exercise).
- Study the extension of Q-learning with momentum acceleration and Polyak averaging. If γ_n and β_n are the stepsizes of Q-learning and the momentum term, resp., consider using $\gamma_n = c_1/n(x,a)$ and $\beta_n = c_2/n(x,a)$, where n(x,a) is the number of visits to (x,a).
- Important: when calculating the momentum terms and the Polyak averages of the estimates, the $Q_n(x,a)$ values should be treated as different stochastic approximation processes for each (x,a).
- Namely, only those $Q_n(x, a)$ values should be taken into account for the momentum or averages, where that (x, a) pair was visited.
- Compare the standard Q-learning with variants using momentum acceleration (study different c_i 's). For both approaches, also make the comparison if one applies Polyak averaging using a fix window.

Requirements

- Perform the experiments using Matlab or Python. Adequately structure and comment your codes, to make them easily readable.
- Use the MDP studied in Numerical Exercise III, therefore, it is allowed to use existing RL environments for the MDP model.
- Extend your implementation of Q-learning from Num. Ex. III.2. Do not use existing RL libraries, implement the methods yourself.
- Write a short, 1-3 pages, report with figures which describes and illustrates your experiments. Preferably, make the report in LATEX. (you can also make the documentation in Jupyter notebook).
- It should also contain plots of iterations vs distances from V^* , as in Num. Ex. III.2, for the algorithms (Q-learning, QL with momentum, and Polyak averages of both; preferably for various (c_1, c_2) pairs).
- Send the codes and the report in email to csaji@sztaki.hu.

INFO FOR THE EXAM OVERVIEW OF THE KEY CONCEPTS

Question Groups for the Exam

- Deterministic linear regression: normal equations, orthogonal projections, recursive LS, least-norm problem, pseudoinverse, SVD
- Stochastic linear regression: Gauss-Markov theorem, ML vs LS, strong consistency, limiting distribution, PCA, ridge regression
- Nonlinear optimization: Lagrangian, weak and strong duality,
 Karush-Kuhn-Tucker conditions, Slater's condition, Wolfe duality
- Statistical learning theory: classification, true vs empirical risk,
 Bayes classifier, VC dim., ERM vs SRM, hard/soft margin SVM
- Kernel methods: Wolfe dual of SVMs, RKHS, representer theorem
- Markov decision processes: value functions, Bellman operators, value and policy iteration, linear programming, policy gradient
- Reinforcement learning: Monte Carlo, TD(λ), SARSA, Q-learning
- Stochastic approximation: Robbins-Monro, Kiefer-Wolfowitz, SPSA, momentum acceleration, Polyak averaging, Lyapunov functions

Thank you for your attention!

www.sztaki.hu/~csaji ⊠ csaji@sztaki.hu