Project Overview

This project demonstrates **automated news topic classification** using NLP techniques. It processes raw newsgroup text, transforms it into structured features, and trains a model to categorize articles into 4 topics:

- 1. comp.graphics (Computer Graphics)
- 2. rec.sport.baseball (Baseball)
- 3. sci.space (Space Science)
- 4. talk.politics.mideast (Middle East Politics)

Key Components Explained

1. Data Source

- Uses the 20 Newsgroups Dataset (via fetch_20newsgroups from scikit-learn).
- Filters 4 specific topics to create a focused classification task.
- Removes metadata (headers, footers, quotes) to force the model to analyze core content.

2. Text Preprocessing

- **Lowercasing**: Standardizes text (text.lower()).
- Punctuation Removal: Eliminates symbols (string.punctuation).
- Tokenization: Splits text into words (word_tokenize).
- **Stopword Removal**: Drops common words (e.g., "the", "and") using NLTK's stopwords.
- Lemmatization: Reduces words to root forms (e.g., "running" → "run")
 via WordNetLemmatizer.
- Output: Cleaned text as space-separated tokens.

3. Feature Engineering

- TF-IDF Vectorization: Converts text to numerical features.
 - Weighs words by importance (frequent in a document but rare across the corpus).
 - Outputs a sparse matrix of TF-IDF scores.

4. Model

- Pipeline: TfidfVectorizer → MultinomialNB (Naive Bayes classifier).
- Why Naive Bayes?
 - Efficient for high-dimensional text data.
 - Works well with TF-IDF features despite feature independence assumptions.

5. Evaluation

- Metrics:
 - Precision/Recall/F1-score per class.
 - Overall accuracy (89.22% in this run).
- Performance Highlights:
 - Best for talk.politics.mideast (F1=0.92).
 - Weakest for sci.space (F1=0.86).

Real-World Use Cases

- News Aggregators: Auto-tag articles for personalized feeds.
- Content Moderation: Flag off-topic/inappropriate content.
- Knowledge Management: Organize internal documents by topic.
- **SEO Optimization**: Analyze topic trends in user-generated content.

Conclusion

This project showcases a **fundamental NLP workflow** for topic classification. It highlights how combining linguistic preprocessing (NLTK) with statistical feature engineering (TF-IDF) and machine learning (Naive Bayes) can solve real-world text categorization problems efficiently. The 89% accuracy demonstrates viability for practical applications, with clear paths for further optimization.

NewsTopicClassifictionUsingNLP

June 1, 2025

```
[1]: import nltk
     import string
     import numpy as np
     import pandas as pd
     from sklearn.datasets import fetch 20newsgroups
     from sklearn.model_selection import train_test_split
     from sklearn.feature extraction.text import TfidfVectorizer
     from sklearn.naive_bayes import MultinomialNB
     from sklearn.pipeline import Pipeline
     from sklearn.metrics import classification_report, accuracy_score
     from nltk.corpus import stopwords
     from nltk.stem import WordNetLemmatizer
     from nltk import word_tokenize
[2]: # Download necessary NLTK data
     nltk.download("punkt")
     nltk.download("stopwords")
     nltk.download("wordnet")
     nltk.download("omw-1.4")
     import nltk
     nltk.download('punkt_tab')
    [nltk_data] Downloading package punkt to
    [nltk_data]
                    C:\Users\itzsh\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package punkt is already up-to-date!
    [nltk_data] Downloading package stopwords to
    [nltk_data]
                    C:\Users\itzsh\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package stopwords is already up-to-date!
    [nltk data] Downloading package wordnet to
    [nltk data]
                    C:\Users\itzsh\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package wordnet is already up-to-date!
    [nltk_data] Downloading package omw-1.4 to
    [nltk_data]
                    C:\Users\itzsh\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package omw-1.4 is already up-to-date!
    [nltk_data] Downloading package punkt_tab to
    [nltk_data]
                    C:\Users\itzsh\AppData\Roaming\nltk_data...
```

```
[2]: True
[3]: # Load 20 Newsgroups Dataset
     categories = ['sci.space', 'rec.sport.baseball', 'comp.graphics', 'talk.
      ⇔politics.mideast']
     newsgroups = fetch_20newsgroups(subset='all', categories=categories,_
      →remove=('headers', 'footers', 'quotes'))
[4]: # Preprocessing function
     lemmatizer = WordNetLemmatizer()
     stop_words = set(stopwords.words('english'))
[5]: def preprocess(text):
         # Lowercase
         text = text.lower()
         # Remove punctuation
         text = text.translate(str.maketrans('', '', string.punctuation))
         tokens = word_tokenize(text)
         # Remove stopwords and lemmatize
         cleaned = [lemmatizer.lemmatize(word) for word in tokens if word not in_{\sqcup}
      ⇔stop_words and word.isalpha()]
         return ' '.join(cleaned)
[6]: # Preprocess all data
     print("Preprocessing texts...")
     cleaned_data = [preprocess(doc) for doc in newsgroups.data]
    Preprocessing texts...
[7]: # Train-test split
     X_train, X_test, y_train, y_test = train_test_split(cleaned_data, newsgroups.
      →target, test_size=0.2, random_state=42)
[8]: # Build a pipeline: TF-IDF + Naive Bayes Classifier
     model = Pipeline([
         ('tfidf', TfidfVectorizer()),
         ('clf', MultinomialNB())
    ])
[9]: # Train the model
     print("Training the model...")
     model.fit(X_train, y_train)
     # Evaluate
     y_pred = model.predict(X_test)
```

Package punkt_tab is already up-to-date!

[nltk_data]

Training the model...

Classification Report:

	precision	recall	f1-score	support
comp.graphics	0.93	0.87	0.90	220
rec.sport.baseball	0.85	0.94	0.89	178
sci.space	0.88	0.84	0.86	189
talk.politics.mideast	0.91	0.93	0.92	192
accuracy			0.89	779
macro avg	0.89	0.89	0.89	779
weighted avg	0.89	0.89	0.89	779

Accuracy: 0.8922