CSI3-CIR3-CNB3

Durée: 3 heures

Sans documents Avec calculatrice 16 décembre 2020

PARTIEL PHYSIQUE QUANTIQUE

Constantes physiques:

Constante de Planck $h = 6.628 \ 10^{-34} \ J.s$

Vitesse de la lumière c = 3 10⁸ m/s

Masse du neutron m=1.67 10⁻²⁷ kg

Charge électrique élémentaire e= 1.6 10⁻¹⁹ C

QCM

A. L'équation d'une onde de champ f se déplaçant dans la direction x à la vitesse v est :

Réponse 1: $\frac{\partial f}{\partial t} - v \frac{\partial f}{\partial r} = 0$

Réponse 2: $\frac{\partial^2 f}{\partial t^2} - v^2 \frac{\partial^2 f}{\partial x^2} = 0$

Réponse 3: $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0$

Réponse 4: $\frac{\partial^2 f}{\partial t^2} - \frac{1}{v^2} \frac{\partial^2 f}{\partial x^2} = 0$

B. Une énergie d'1 eV correspond à :

Réponse 1: l'énergie totale d'un atome d'hydrogène dans son état fondamental

Réponse 2: l'énergie électrostatique d'un électron dans le potentiel du noyau d'un atome H

Réponse 3: l'énergie électrostatique d'un électron dans un potentiel de 1 volt

Réponse 4: l'énergie cinétique d'un électron se déplaçant à la vitesse de 1 m/s

C. La formule de Planck-Einstein « E=hv » signifie :

Réponse 1: Il faut plus d'énergie pour émettre de la lumière de grande longueur d'onde que de la lumière de courte longueur d'onde.

Réponse 2: Il faut plus d'énergie pour exciter une lumière de haute fréquence qu'une lumière de basse fréquence

Réponse 3: Quelle que soit sa couleur, pour émettre de la lumière il faut la même énergie

Réponse 4: Quelle que soit son énergie, une onde électromagnétique garde sa fréquence au cours de la propagation

- D. Quelle différence entre une expérience de fentes d'Young avec de la lumière à 600 nm de longueur d'onde et celle avec des électrons de longueur d'onde associée proche de 0.1 nm.
- Réponse 1: la lumière passe par les 2 fentes en même temps, pas les électrons car ces derniers sont des corpuscules
- Réponse 2: les électrons forment des impacts discrets sur l'écran de visualisation ce que ne font pas les photons du faisceau lumineux
- Réponse 3: l'expérience avec les électrons est plus difficile à réaliser car leur longueur d'onde courte requiert des fentes très étroites.
- Réponse 4: on utilise des fentes de 2µm de large, dans les deux cas on observe des franges d'interférence sur l'écran de visualisation
- E. On mesure le courant produit par effet photo-électrique, quel serait l'effet d'une augmentation de l'intensité lumineuse de la source responsable de l'effet :
- Réponse 1 : le courant reste inchangé.
- Réponse 2 : le courant augmente car les électrons arrachés se déplacent plus vite.
- Réponse 3 : le courant augmente car plus d'électrons sont arrachés.
- F. Louis De Broglie généralise la dualité onde/corpuscule en proposant :
- Réponse 1: à toute particule d'impulsion \vec{p} , on associe une onde dont le vecteur d'onde \vec{k} est donné par $\vec{k}=\hbar\vec{p}$
- Réponse 2: à toute particule d'impulsion \vec{p} , on associe une onde dont le vecteur d'onde \vec{k} est donné par la relation $\vec{p}=\hbar\vec{k}$
- Réponse 3: à toute onde de vecteur d'onde \vec{k} , on associe une particule d'impulsion \vec{p} telle que $\vec{k}=\hbar\vec{p}$
- Réponse 4: à toute onde de vecteur d'onde \vec{k} , on associe une particule d'impulsion \vec{p} définie par $\vec{p}=\hbar\vec{k}$

Exercice – Flux de particules sur puits et barrières

Des électrons arrivent de la gauche avec une énergie cinétique E_{cin}. Ils rencontrent une barrière ou un puits d'énergie potentielle selon la situation. La flèche précise la valeur de l'énergie cinétique incidente des électrons par rapport à l'énergie potentielle rencontrée. R désigne le coefficient de réflexion des électrons sur la structure.

- 1) Quels seraient les coefficients de réflexion de particules **classiques** dans ces quatre situations ?
- 2) Une seule de ces quatre situations a un coefficient de réflexion **quantique** égal au cas « classique ». Laquelle est-ce ?
- 3) Dans la résolution de ces quatre problèmes, des ondes évanescentes vont apparaître dans certaines situations. Donner les situations concernées.
- 4) Quelle situation correspond à ce qu'on appelle l'effet tunnel ? Décrivez l'effet en question.

Problème 1 – Une particule quantique dans une boite

Etats stationnaires

On considère une particule de masse m enfermée dans un puits carré de potentiel, à une dimension, infiniment profond, de largeur L: V(x)=0 pour 0 < x < L et $V(x) = \infty$ pour x < 0 et x > L.

- 1) Ecrire l'équation de Schrödinger indépendante du temps. A partir des conditions aux limites, donner les fonctions d'onde solutions ϕ_n ainsi que les énergies propres E_n . On ne cherchera pas à normer les fonctions d'onde.
- 2) Représenter qualitativement les 2 premières fonctions. Dans chaque cas, représenter aussi la probabilité de présence de l'électron dans le puits.

Mesure d'énergie et valeur moyenne

On suppose maintenant que la particule occupe un état mélangé décrit par le ket : $|\Psi\rangle=\frac{1}{3}\left(|\phi_0\rangle-2|\phi_1\rangle+2|\phi_2\rangle\right)$ où $|\phi_0\rangle$, $|\phi_1\rangle$, $|\phi_2\rangle$ sont les kets associés aux fonctions d'onde ϕ_0 , ϕ_1 et ϕ_2 de la question 1).

- 3) On mesure l'énergie de la particule occupant l'état $|\Psi\rangle$, quels sont les résultats possibles et avec quelles probabilités ?
- 4) Après la mesure d'énergie, quel état occupe la particule ?
- 5) Après la mesure d'énergie, à quelle position a-t-on le plus de chance de trouver la particule (donner la ou les valeurs de x)?
- 6) Calculer en fonction des trois premiers niveaux d'énergie (E_0 , E_1 et E_2), la valeur moyenne <H> de l'énergie dans l'état $|\Psi>$.

Problème 2 – Mesure en physique quantique

On s'intéresse aux mesures de 2 grandeurs physiques représentées par les opérateurs A et B définis par leur matrice dans la base $\{|u_1\rangle, |u_2\rangle\}$:

$$[A] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} et [B] = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- 1) A et B sont-ils hermitiques ? Pourquoi ? En quoi est-ce important pour des opérateurs associés à des grandeurs mesurables ?
- 2) Calculer le produit A.B puis B.A. En déduire le commutateur de A et B : [A,B]=AB-BA
- 3) Existe-t-il une base de vecteurs propres communs à A et B ? Pourquoi ?
- 4) Quels sont les valeurs et vecteurs propres de A?
- 5) Ecrire la matrice de B dans la base des vecteurs propres de A. La matrice de B est-elle diagonale ? Cela vous semble-t-il surprenant ?