חישוביות וסיבוכיות שיעור 3- רדוקציות

המחלקות R ו-R (תזכורת)

• קבוצת השפות שקיימת עבורן מכונת טיורינג **שמקבלת** אותן:

 $RE = \{L \subseteq \Sigma^* | \text{ there exists a turing mechine } M \text{ such that } L(M) = L\}$

• קבוצת השפות שקיימן עבורן מכונת טיורינג **המכריעה** אותן:

 $R = \{L \subseteq \Sigma^* | \text{ there exists a turing mechine } M \text{ such that } L(M) = L \text{ and } M \text{ halts on every input.} \}$

תזכורת

- אז HP-אז המצגת הקודמת, הראנו שאם קיים אלגוריתם מכריע ל L_D היה אפשר להשתמש בו כדי להכריע את השפה L_D (בסתירה לכך שהיא לא כריעה).
 - מכך הסקנו שגם השפה HP איננה ב-R•
 - במילים אחרות, הראנו <mark>קשר בין השפות.</mark>
 - L_D קשה לפחות כמו HP ניתן לומר:
 - בשקפים הבאים נחקור את הקשר הזה בין השפות.

רדוקציה

הגדרה:

 $L_1,L_2\subseteq\Sigma^*$ תהינה

:נאמר ש L_2 -ל במילים: L_1 ניתנת לרדוקציה ל L_2 - ניתנת $L_1 \leq L_2$ -עם

:איימת פונקציה $\Sigma^* o \Sigma^*$ שהיא

- מלאה (כלומר, מוגדרת לכל קלט) •
- ניתנת לחישוב (כלומר קיימת מכונת טיורינג שיכולה לחשב אותה)
 - $\forall x \in \Sigma^* : x \in L_1 \iff f(x) \in L_2$ תקפה •

תקפות של פונקצית רדוקציה (בציור):

 $\forall x \in \Sigma^* : x \in L_1 \iff f(x) \in L_2$

אופן השימוש

ברדוקציה:

$$L_1 \leq L_2$$

משפט הרדוקציה

 $L_1 \leq L_2$ אז:

 $L_1 \in R$ אז גם

 $L_2 \in R$ אם

 $L_1 \in RE$ אז גם

 $L_2 \in RE$ אם \bullet

 $L_1 \in coRE$ אז גם $L_2 \in coRE$ אם

רעיון ההוכחה (בציור) •

משפט הרדוקציה - הוכחה

(נוכיח עבור R, ועבור שתי המחלקות הנוספות ההוכחה דומה.) הוכחה $L_1 \in R$ אז $L_2 \in R$ וגם $L_1 \leq L_2$

 $L_2 \in R$ -וגם ש $L_1 \leq L_2$ וניח ש:

 L_2 אזי קיימת מכונת טיורינג M_f המחשבת את פונקציית הרדוקציה מ L_1 ל L_2 אזי קיימת מכונת טיורינג M_2 המכריעה את השפה L_2 נתאר מכונה מכריעה לשפה L_1

<u>:x על קלט M₁</u>

- (x על הקלט M_f על ריצת f(x) על הקלט f(x).
 - .מריצה את M_2 על f(x) ועונה כמוה.

משפט הרדוקציה - הוכחה

נכונות המכונה נובעת ישירות מהתכונות של פונקציית הרדוקציה.

- מכיוון שהפונקציה מלאה וניתנת לחישוב, השלב הראשון תמיד יעבור בהצלחה.
- $f\left(x
 ight)$ מכיוון שהפונקציה תקפה, התשובה של M_2 בנוגע לשייכות של L_1 זהה לתשובה הדרושה בנוגע לשייכות של L_2 -ל
- התנאים בנוגע למתי המכונה M_1 עוצרת ומתי לא, זהים עבור המכונה M_2

משפט הרדוקציה – ניסוח שקול (ושימושי יותר)

 $L_1 \leq L_2$ אז:

- $L_2 \notin R$ אז גם $L_1 \notin R$ אם •
- $L_2 \notin RE$ אז גם $L_1 \notin RE$ אם •
- $L_2 \notin coRE$ אז גם $L_1 \notin coRE$ אם •

ניזכר בהוכחה בסוף של מצגת 2, למעשה הוכחנו שיש רדוקציה • $L_D \leq HP$

 $.HP \notin R$ -ואז, מכיוון ש $R - L_D \notin R$, לפי משפט הרדוקציה נובע ש

נוכיח כעת שנית את אותה הוכחה. נראה כי $HP \notin R$ (שראינו בסוף המצגת הקודמת) אך הפעם נעשה זאת במבנה הוכחה של רדוקציה.

$HP \notin R$:טענה

הוכחה: נוכיח ע"י בניית רדוקציה $HP \leq HP$, ואז לפי משפט הרדוקציה נקבל שמכיוון ש- $L_D \notin R$ אז גם $HP \notin R$

$$f(\langle M \rangle) = \langle M', \langle M \rangle \rangle$$

פונקציית הרדוקציה:

:y על קלט M' כאשר

- y על M על מסמלצת את ריצת M
- אם M קיבלה גם M' מקבלת. ואם M דחתה, M' נכנסת ללולאה אינסופית. ullet

כעת, צריך להוכיח שהפונקציה <u>מלאה, ניתנת לחישוב ותקפה</u>.

הפונציה מלאה וניתנת לחישוב מכיוון שמכל מכונה M שנתונה לנו, ניתן לבנות את המכונה M', ובנוסף, למדנו שכל מכונת טיורינג ניתנת לקידוד כמחרוזת.

הערה- מספיק להראות זאת בנוגע לקלט תקין.

הפונקציה תקפה:

 $(x \notin L_1 \rightarrow f(x) \notin L_2$ וגם $x \in L_1 \rightarrow f(x) \in L_2$ (מבנה ההוכחה:

12

הפונקציה תקפה:

$$(x \notin L_1 \to f(x) \notin L_2$$
 וגם $x \in L_1 \to f(x) \in L_2$ מבנה ההוכחה:

- $\langle M \rangle \in L_D \rightarrow M \ accepts \langle M \rangle$
- \rightarrow M'also accepts < M >
- $\rightarrow f(\langle M \rangle) = \langle M', \langle M \rangle \in HP$
- $\langle M \rangle \notin L_D \rightarrow M \ rejects \langle M \rangle \ or \ doesn't \ stops$
- \rightarrow M' enters infinite loop on < M >
- $\rightarrow f(\langle M \rangle) = \langle M', \langle M \rangle \notin HP$

 L_u בשפה HP בשפה אם נחליף את השפה L_u בשפה $L_u \notin R$ בכלומר, הפונקציה הזו מתאימה גם אם נחליף את השפה f(x) = < M', x > .

בציור:

 $\overline{L_1} \leq \overline{L_2}$ אז גם $L_1 \leq L_2$ אם •

הוכחה: זוהי תוצאה ישירה של התקפות של הרדוקציה.

האם אפשר להשתמש באותה הפונקציה?

 $\overline{L_1} \leq \overline{L_2}$ אז גם $L_1 \leq L_2$ אם •

הוכחה: זוהי תוצאה ישירה של התקפות של הרדוקציה.

האם אפשר להשתמש באותה הפונקציה?

היחס \geq הוא **רפלסקיבי**.

 $L \leq L$ מתקיים בלומר: לכל שפה

רעיון ההוכחה: פונקציית <mark>הזהות</mark>

 $\overline{L_1} \leq \overline{L_2}$ אז גם $L_1 \leq L_2$ אם •

הוכחה: זוהי תוצאה ישירה של התקפות של הרדוקציה.

האם אפשר להשתמש באותה הפונקציה?

היחס \geq הוא **טרנזיטיבי**. •

 $L_2 \leq L_3$ כלומר: אם $L_1 \leq L_2$ אם

 $L_1 \leq L_3$ אז

רעיון ההוכחה: <mark>הרכבת פונקציות.</mark>

היחס \geq הוא **רפלסקיבי**.

 $L \leq L$ מתקיים L כלומר: לכל שפה

רעיון ההוכחה: פונקציית <mark>הזהות</mark>

. היחס \geq אינו סימטרי

 $L_2 \leq L_1$ אז לא בהכרח מתקיים ש $L_1 \leq L_2$ כלומר: אם

: ניקח את השפות HP ו- Σ^* . אפשר לחשוב על רדוקציה Σ^* למשל HP דוגמא: ניקח את השפות

$$f(x) = \langle M_{stam}, x \rangle$$

מצד שני $\Sigma^* \leq H$ לא מתקיים, כי אז לפי משפט הרדוקציה היינו מקבלים כי גם $R \leq \Sigma^*$ ב-R.

תרגיל 1 – שאלה לדוגמה

 $L = \{ < M > | |L(M)| \ge 4 \}$ נתונה השפה

, קבעו $oldsymbol{x}$. האם L ב-RE? הוכיחו את תשובותיכם

פתרון:

:L בוכיח ע"י תיאור מכונת טיורינג RE, נוכיח ע"י תיאור מכונת טיורינג.

נצטרך פה הרצה מבוקרת "חזקה", שיכולה (תיאורטית) לעבור על כל המילים בסיגמא כוכבית.

 w_1, w_2, w_3, \ldots נשתמש בסידור לקסיקוגרפי (אינסופי) של סיגמא כוכבית

 $i \in N \setminus \{0\}$ לכל

 $0 < j \le i$ לכל

. על המילה w_i למשך i צעדים M את המכונה M

הרצה מבוקרת חזקה:

<u>דוגמת הרצה:</u>

על w_1 למשך צעד בודד. M על i=1 •

על w_1, w_2 למשך 2 צעדים כל אחת (אחת אחרי M על M על M אחרי וואס אחרי M אחרי השניה).

... מריצים את M על w_1, w_2, w_3 למשך 3 צעדים כל אחת i=3 •

... מריצים את M על w_1, w_2, w_3, w_4 למשך 4 צעדים כל אחת i=4

וכן הלאה...•

תרגיל 1 א

 $L = \{ < M > | |L(M)| \ge 4 \}$

:L א. השפה ב-RE, נוכיח ע"י תיאור מכונת טיורינג מקבלת לשפה :< M > U א. המכונה :< M > U

 w_1, w_2, w_3, \ldots בהינתן סידור לקסיקוגרפי (אינסופי) של סיגמא כוכבית

- עצור וקבל. c=4 אתחל קאונטר c=0 בכל שלב אם -c=0
 - i = 1,2,3,....
 - j = 1, 2, ..., i לכל
 - .על המילה w_i למשך אעדים M צעדים
 - c++, אם M קיבלה
 - .c אפס את •

תרגיל 1 א

$$L = \{ < M > | |L(M) \ge 4 \}$$

המשך- נוכיח שהמכונה U מקבלת את השפה :L השלימו)

תרגיל 1 ב

 $L = \{ < M > || L(M)| \ge 4 \}$ נתונה השפה R - L ב-R - R הוכיחו את תשובתכם. פתרון:

 $HP \le L$ נוכיח זאת ע"י רדוקציה.R. נוכיח זאת איננה ב- $f(< M, x >) = < M_x >$

y על קלט M_x באשר

- (!y על x (מתעלמת מהקלט M!) על M
 - (y את את •

תרגיל 1 ב

הפונקציה מלאה וניתנת לחישוב, לכל קידוד של מכונה וקלט נתונים, ניתן לבנות את המכונה M_χ , וכל מכונת טיורינג ניתנת לקידוד כמחרוזת.

הפונקציה תקפה: (השלימו)

$$\langle M, \chi \rangle \in Hp$$

```
L_2 = \{ < M > | M \ stops \ for \ every \ input \ x \in \Sigma^* \} . ועים לב שהרדוקציה האחרונה שראינו, מתאימה גם לשפה הזו L_2 \notin coRE , לכן L_2 \notin R (בנוסף, L_2 \notin coRE). נוכיח תקפות (השלימו):
```

תמונת העולם עד כה

coRE-ננסה למצוא דוגמאות לשפות <mark>שאינן שייכות לRE ולא ל</mark>

coRE-רוב השפות לא שייכות לRE-ולא לי

- כל מ"ט מורכבת משביעייה •
- כל איבר בשביעייה מכיל קבוצה שגודלה הוא בן מניה
- מ"ט מורכבת ממכפלה קרטזית של 7 קבוצות בנות מניה
 - RE לכן יש מספר בן מניה של שפות ב

coRE-רוב השפות לא שייכות לRE-ולא ל

- ניתן להציג כל פונקציה ע"י טבלה כזו:
- לכל אחד מה- $f(x_i)$, יש ל δ_0 אפשרויות. לכן עוצמת קבוצת $f(x_i)$ הפונקציות הינה ל δ_0 אפשרויות. לכן עוצמת קבוצת הפונקציות הינה ל δ_0 אפשרויות. לכן עוצמת קבוצת

x	f(x)
<i>x</i> 1	f(x1)
<i>x</i> 2	f(x2)
<i>x</i> 3	f(x3)
<i>x</i> 4	f(x4)

כסRE-ולא ל-RE רוב השפות לא שייכות ל

נוכיח משיקולי עוצמות:

- co-RE היא בת מניה וכן RE , \sum לכל א"ב לא טריוויאלי-
- י קבוצת כל מכונות הטיורינג היא בת מניה –לכל מכונה M מתאים באופן חח"ע קידוד פרוזת כל מחרוזת סופית, וכן קבוצת המחרוזות הסופיות מעל א"ב סופי היא בת מניה.
 - . שפה בRE מתקבלת ע"י מכונת טיורינג. לכן RE היא בת מניה RE
 - וזו coRE שקולה ל-coRE כי לכל שפה ב-RE מתאימה השפה המשלימה ב-coRE, וזו התאמה חח"ע ועל.
 - . מכאן גם האיחוד של RE ו-coRE הוא בן מניה
 - עוצמת קבוצת השפות מעל Σ היא עוצמת הרצף. ($P(\Sigma^*)$) -עוצמת קבוצת השפות מעל RE ולא ל-CORE

\overline{RE} ערגיל 3: דוגמא לשפה ששייכת ל-3 דוגמא לשפה

$$L_{\infty} = \{ \langle M \rangle | |L(M)| = \infty \}$$

אינטואיציה: גם אם נצליח לוודא שהמכונה מקבלת המון קלטים, כל כמות שנצליח לבדוק היא בהכרח סופית...

$$L_{\infty} \in \overline{RE \cup coRE}$$
 :טענה

ההוכחה תהיה בשני שלבים:

$$L_{\infty} \notin coRE$$
-ממשפט הרדוקציה נובע ש- $HP \leq L_{\infty}$.1

$$L_{\infty} \notin RE$$
-ממשפט הרדוקציה נובע ש- $\overline{HP} \leq L_{\infty}$.2

$$L_{\infty} = \{ \langle M \rangle | |L(M)| = \infty \}$$

 $L_{\infty} \in \overline{\mathit{RE} \cup \mathit{coRE}}$ טענה

(... מו קודם כמו (זאת שוב אותה רדוקציה כמו קודם $HP \leq L_{\infty}$

$$f(\langle M, x \rangle) = \langle M_x \rangle$$

:y על קלט M_{χ} באשר

- (y-מתעלמת מ-M על x (מתעלמת מ- \bullet
 - מקבלת

(השלימו את הוכחת הנכונות)

$$L_{\infty} = \{ \langle M \rangle | |L(M)| = \infty \}$$

 $L_{\infty} \in \overline{\mathit{RE} \cup \mathit{coRE}}$ טענה

 $\overline{HP} \leq L_{\infty}$ (2) הוכחה:

$$f(< M, x >) = < M'_{x} >$$

y על קלט M'_x צל

- על x למשך |y| צעדים x מריצה את M
 - לא עצרה בשלב 1 -קבל. M
 - . אחרת M עצרה -דחה.

הרדוקציה מלאה וניתנת לחישוב כי בהינתן כל מכונה וקלט עבורה ניתן לבנות את המכונה $M'_{\,x}$. בנוסף, ראינו כי כל מכונת טיורינג ניתנת לקידוד למחרוזת.

תקפות הרדוקציה:

(2 המשך תרגיל) L_2

 $L_2 = \{ \langle M \rangle | M \text{ stops for every input } x \in \Sigma^* \}$

?RE-ראינו ש $L_2 \notin R$ מה לגבי שייכות ל

 L_2 אפשר לשנות מעט את הרדוקציה שראינו $\overline{HP} \leq L_\infty$ כדי להתאים לשפה

 $L_2 \notin RE$:טענה

 $\overline{HP} \leq L_2$ הוכחה: נראה כי

$$\overline{HP} \leq L_2$$

• $L_2 = \{ \langle M \rangle | M \text{ stops for every input } x \in \Sigma^* \}$

$$f(\langle M, x \rangle) = \langle M'_{x} \rangle$$

:w על קלט M'_x באשר

- על x למשך |w| צעדים x מריצה את M
 - . אם M לא עצרה בשלב 1-קבל.
- עצרה) לולאה אינסופית. M

תקפות הרדוקציה:

תרגיל 4- שפה נוספת

$$L_{\Sigma^*} = \{ < M > | L(M) = \Sigma^* \}$$

 $L_{\Sigma^*} \in \overline{RE \cup coRE}$:טענה

 $\overline{HP} \leq L_{\infty}$, $HP \leq L_{\infty}$ אבחנה, שתי פונקציות הרדוקציה שראינו עבור L_{Σ^*} מתאימות גם עבור השפה

(השלימו את ההוכחה).

תרגיל 5: דוגמא נוספת

```
L_{eq} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}
```

 $L_{eq} \in \overline{RE \cup coRE}$:טענה

<u>הוכחה</u>: אפשר להוכיח ע"י שתי רדוקציות, כמו קודם.

תרגיל 5: דוגמא נוספת

$$L_{eq} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

 $L_{eq} \in \overline{\mathit{RE} \cup \mathit{coRE}}$:טענה

<u>הוכחה</u>: אפשר להוכיח ע"י שתי רדוקציות, כמו קודם.

קיצור דרך: אפשר להוכיח ע"י רדוקציה משפה שאנחנו כבר יודעים עליה שהיא

 $.\overline{RE \cup coRE}$ -⊃

$$L_{\Sigma^*} \leq L_{eq}$$
 הוכחה: נראה זאת ע"י רדוקציה

• הפונקציה מלאה וניתנת לחישוב (יש כאן בסה"כ שרשור של מחרוזת קבועה בסוף הקלט)

• נוכיח תקפות: (השלימו)

שפות שלמות

הגדרה: **שפה שלמה ב- RE**

:שפה L היא **שלמה** ב-RE אם"ם היא מקיימת

- $L \in RE \bullet$
- $\forall (L' \in RE): L' \leq L \bullet$

 $L \in RE-complete$ נסמן

RE-באשר RE היא מחלקת השפות השלמות ב

שפות שלמות

באופן דומה ניתן להגדיר שפות שלמות עבור **מחלקות נוספות**, למשל: שפה היא **שלמה ב-R** אם"ם:

- $L \in R$ •
- $\forall (L' \in R): L' \leq L \bullet$

 $(L \in R - complete$ נסמן)

RE-דוגמא לשפה שלמה ב-RE

RE-טענה: השפה $L_u = \{ < M, w > | w \in L(M) \}$ היא שפה שלמה ב

RE-דוגמא לשפה שלמה ב-RE

.RE-טענה: השפה $L_u = \{ < M, w > | w \in L(M) \}$ היא שפה שלמה ב-nהוכחה:

- $L_u \in RE$ -א. הוכחנו בשיעורים קודמים
- L_{u} אל RE-ב. נראה רדוקציה מ**כל** שפה ב

RE-דוגמא לשפה שלמה ב-RE

.RE-טענה: השפה $L_u = \{ < M, w > | w \in L(M) \}$ היא שפה שלמה ב- $L_u = \{ < M, w > | w \in L(M) \}$ הוכחה:

- $L_u \in RE$ -א. הוכחנו בשיעורים קודמים
- L_u אל RE-ב. נראה רדוקציה מ**כל** שפה ב

L' אזי קיימת עבורה מכונת טיורינג M' המקבלת את ג' $L' \in RE$ תהי שפה $L' \leq L_u$ אזי פונקציית הרדוקציה עבור M' > 1 היא: f(x) = < M', x >

תרגיל 6 - המשך

$$f(x) = \langle M', x \rangle$$

הפונקציה מלאה וניתנת לחישוב (שרשור של מחרוזת קבועה למילה הנתונה) הפונקציה תקפה:

?RE-ב אם יש עוד שפות שלמות ב

 $L \in RE-complete$ נתונה שפה

 $L^* \in RE$ ונתונה שפה נוספת

 $L^* \in RE-complete$ נסיק שגם $L \leq L^*$ -אז אם מתקיים ש

(למה זה נכון?)

.RE- מסקנה: השפה HP היא גם שלמה

 $f(\langle M, x \rangle) = \langle M', x \rangle : L_{y} \leq HP$:רעיון הרדוקציה

.כך שM' זהה למכונה M, רק שאם M דוחה, M' נכנסת ללולאה אינסופית M'

(השלימו את ההוכחה)

שיטה להוכחת שלמות של שפה

 $L \in RE-complete$ נתונה שפה

 $L^* \in RE$ ונתונה שפה נוספת

 $L^* \in RE-complete$ אז נסיק שגם $L \leq L^*$ אז אם מתקיים ש

 $HP \leq L_{\infty}$ תזכורת: בשיעור הקודם ראינו רדוקציה

?RE-שאלה: האם זה אומר ש L_{∞} גם היא שלמה ב

תשובה, לא! כי היא לא שייכת ל-RE.

R-שאלה 7: האם יש שפות שלמות ב

R-ב שפות שלמות ב-

R-תשובה: כן, כמעט כולן! יש בדיוק 2 שפות שלא יכולות להיות שלמות ב

 $R-complete=R\setminus\{\Sigma^*,oldsymbol{\phi}\}$ טענה:

הוכחה: ראשית, נשים לב שלא יכולה להיות קיימת רדוקציה משפה כלשהי L שאינה טריוויאלית אל אחת מהשפות הטריויאליות:

R-שאלה 7: האם יש שפות שלמות ב

 $R-complete=R\setminus\{\Sigma^*,oldsymbol{\phi}\}$ טענה:

המשך ההוכחה:

 $L_1 \leq L_2$ מתקיים ש $L_1 \in R, L_2 \in R \setminus \{\Sigma^*, \phi\}$ נוכיח שבהינתן שתי שפות כלשהן

 $L_1 \in R, L_2 \in R \setminus \{\Sigma^*, \phi\}$ תהיינה

 L_1 מכונת טיורינג המכריעה את השפה M_1

(?האם אפשר לבחור) $x \in L_2$ אפשר לבחור) $x \in L_2$

 $:L_1 \leq L_2$ נתאר מכונה לחישוב פונקציית הרדוקציה

:w על קלט M_f

מסמלצת את ריצת M_1 על הקלט w, אם M_1 קיבלה – מחזירה את x , אם M_1 דחתה – מחזירה את M_1 .

R-שאלה 7: האם יש שפות שלמות ב

המשך ההוכחה: הפונקציה מלאה וניתנת לחישוב – תיארנו את האלגוריתם של המכונה שמחשבת את הפונקציה.

תחזיר M_f , Σ^* -מכריעה את L_1 , כך שלכל מילה, M_1 עוצרת. לכן לכל מילה מ L_1 , כך שלכל מילה, פלט.

הפונקציה תקפה: (השלימו)

R-שאלה 2: האם יש שפות שלמות ב-

המשך ההוכחה: הפונקציה מלאה וניתנת לחישוב – תיארנו את האלגוריתם של המכונה שמחשבת את הפונקציה.

הפונקציה תקפה: