Espace localement compact

Exercice 1

Soit X un espace localement compact. On introduit l'espace suivant $\widetilde{X} = X \cup \{\infty\}$ munit de la topologie engendrée par les ouverts de X et les complémentaires de compact de X union le symbole ∞ .

- 1. Montrer que l'espace \widetilde{X} est compact. On l'appelle le compactifié d'Alexandroff de X.
- 2. Montrer de façon géométrique que le compactifié d'Alexandroff de \mathbb{R}^n est la sphère euclidienne \mathbb{S}^n .
- 3. Soit Y un espace localement compact. Soit $f: X \to Y$ une application continue et propre. Montrer que f se prolonge de façon unique en une application continue de \widetilde{X} vers \widetilde{Y} .
- 4. Soit $f: X \to Y$ une bijection continue et propre. Montrer que f est un homéomorphisme.

Espace vectoriel normé, métrique et théorème d'Ascoli

Exercice 2

Soit E un espace de fonctions de classe C^1 de [0,1] dans \mathbb{R} tel que $|f'|_{\infty} \leq |f|_{\infty}$. Montrer que E est de dimension finie.

Exercice 3

Soit E l'espace des fonctions continues de [0,1] dans \mathbb{R} , muni de la norme $|f|_{\infty} = \sup_{t \in [0,1]} |f(t)|$. Soit F l'espace des fonctions de classe C^1 de [0,1] dans \mathbb{R} , muni de la norme $|f|_1 = \sup_{t \in [0,1]} |f(t)| + |f'(t)|$.

- 1. Vérifier que E et F sont des espaces de Banach.
- 2. Montrer que l'application $f \mapsto f$ de F dans E est un opérateur compact, c'est-à-dire, envoie une partie bornée sur une partie relativement compacte.

Exercice 4

On considère l'espace vectoriel $E = C^{\infty}([0;1],\mathbb{R})$. Si f et g sont deux fonctions, on note $d_k(f,g) = \sup |f^{(k)} - g^{(k)}|$. On pose alors $d'_k(f,g) = \min(1,d_k(f,g))$ et

$$d(f,g) = \sum_{k \in \mathbb{N}} \frac{1}{2^{k+1}} d'_k(f,g).$$

On dira qu'une partie B de E est bornée si, pour tout ouvert O contenant 0, il existe un réel λ tel que $\lambda B \subset O$. Dans la suite, B est un fermé bornée de E. Remarquer que E est bornée pour la distance d mais que E n'est pas une partie bornée au sens que l'on vient d'introduire.

- 1. Montrer que (E, d) est un espace métrique complet.
- 2. Montrer que

$$\forall k, \exists M_k, \forall f \in B, \sup |f^{(k)}| \leq M_k.$$

- 3. Soit f_n une suite d'éléments de B. En utilisant le théorème d'Ascoli, montrer qu'il existe une suite extraite de la suite $(f_n^{(k)})_{n\in\mathbb{N}}$ qui converge uniformément.
- 4. À l'aide d'un procédé diagonal, montrer qu'il existe une suite extraite n(p) et une fonction f telle que, pour tout k, la suite $(f_{n(p)}^{(k)})_{p\in\mathbb{N}}$ converge uniformément vers $f^{(k)}$. En déduire que B est compact.
- 5. Montrer que la topologie sur E définie par d ne peut pas être définie par une norme.

Exercice 5

Montrer que tout compact d'un evn est d'intérieur vide.

Connexité

Exercice 6

- 1. Montrer que le complémentaire d'un ensemble fini de points du plan complexe est connexe. Et pour un ensemble dénombrable de points ?
- **2.** Montrer que le groupe $GL_n(\mathbb{C})$ est connexe. (si A et B sont deux matrices de $GL_n(\mathbb{C})$, considérer le polynôme $P(z) = \det(zA + (1-z)B)$).
- **3.** Montrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe.

Exercice 7

Soit E un \mathbb{R} -espace vectoriel normé et F un sous-espace affine fermé de E.

- 1. Si F est de codimension au moins 2, montrer que $E \setminus F$ est connexe.
- **2.** Si F est de codimension 1, montrer que $E \setminus F$ a deux composantes connexes.

Exercice 8 Montrer que le complémentaire d'une boule dans un evn de dimension au moins deux est connexe.

Exercice 9

Soit (X, d) un espace métrique connexe et non borné. Montrer que toute sphère de X est non-vide.

Exercice 10 Connexe ⇒ connexe par arcs

On se place dans le plan \mathbb{R}^2 .

- 1. Montrer que l'adhérence de $\Gamma = \{\left(x,\sin\left(\frac{1}{x}\right)\right), x \in]0,1]\}$ est connexe et n'est pas connexe par arcs.
- **2.** Montrer que la réunion A des sous-ensembles $\{(x,y):x\in\mathbb{R}\setminus\mathbb{Q},y\geq0\}$ et $\{(x,y):x\in\mathbb{Q},y<0\}$ est connexe, non localement connexe et non connexe par arcs. On pourra commencer par déterminer la composante connexe et la composante connexe-par-arcs de n'importe quel point.

Exercice 11

Montrer que l'unique topologie séparée sur un ensemble fini est la topologie discrète, donc non connexe. Nous allons construire une topologie séparée sur \mathbb{N} pour laquelle \mathbb{N} est connexe. Pour cela, on prend la topologie dont une base d'ouverts est donnée par les ensembles $V_{a,b} = \{an+b, n \in \mathbb{N}\}$ avec pgcd(a,b) = 1.

- 1. Montrer que cette topologie est séparée.
- 2. Montrer que si pgcd(a,b) = 1 et pgcd(a',b') = 1 alors $\overline{V_{a,b}} \cap \overline{V_{a',b'}} \neq \emptyset$.
- 3. En déduire que $\mathbb N$ est connexe pour cette topologie.

Exercice 12

Montrer qu'un cantor est un espace topologique totalement discontinue (c'est à dire que la composante connexe de tout point est réduite à un point).