Fondamenti di Meccanica del Volo Atmosferico

Sezioni: A - E, E - P, P - Z

Firma:

Docenti: A. Croce, C.E.D. Riboldi, S. Cacciola

AA 2021-2022 PROVA D'ESAME

30 Agosto 2022

Cognome:	Nome:	Codice persona:

- Rispondere alle DOMANDE 1-5 in massimo 1 FOGLIO A4 (fronte/retro). Per le domande 6 e 7 riportare soltanto i risultati sul foglio del testo: NON saranno considerati procedimenti/passaggi nella valutazione delle domande 6 e 7.
- Si consegnano il presente testo e un foglio A4 per le domande 1-5. Non si consegnano brutte o fogli aggiuntivi.
- È consentito l'uso della calcolatrice non programmabile. E' vietato l'uso di smartphone o qualsiasi altro apparecchio elettronico.

COMPITO A

Definizione delle variabili	Settima cifra del codice persone: $X_7 = 0$.	
dipendenti dal codice persona:	Ottava cifra del codice persona: $X_8 = 0$.	

- 1) Definire analiticamente attraverso il valore di opportune variabili caratteristiche una condizione di volo a) orizzontale uniforme rettilineo; b) simmetrico; c) in virata negativa (left turn).
- 2) Definire la manovra di virata corretta. Scrivere poi le equazioni scalari che descrivono la condizione di equilibrio dinamico alle forze in tale manovra.
- 3) Definire analiticamente il criterio di stabilità statica direzionale, specificando l'identità e le convenzioni di segno (direzione di positività) delle quantità coinvolte. Mostrare quindi l'effetto di una deriva posteriore sulla stabilità direzionale del velivolo.
- 4) Disegnare il diagramma di inviluppo di volo in crociera e salita in termini di velocità EAS per un velivolo a getto semplificato, evidenziando accuratamente e motivando alcune caratteristiche sempre presenti.
- 5) Per un velivolo C130 Hercules in configurazione di atterraggio di emergenza si rende necessario il calcolo della velocità di avvicinamento, pari al 125% della sua velocità minima in volo orizzontale. Si riporti la procedura analitica per il calcolo di tale velocità a quota e carico alare noti e sapendo che la polare con carrello estratto e flap estesi al 75% è esprimibile come $C_D = C_{D_0} + k_1 C_L + k_2 C_L^2$, con C_{D_0} , k_1 e k_2 noti. Il valore del $C_{L_{max}}$ è anch'esso noto. La spinta disponibile è esprimibile come $T = T_0 + T_V V_{EAS}^2$, con T_0 funzione della sola quota e T_V costante.

Compito A Pagina 1/2

6) Un deltaplano sperimentale è caratterizzato da corda media aerodinamica $c_{MAC}=2.0~\mathrm{m}$ e carico alare $W/S=2500~\mathrm{N/m^2}$. L'asse longitudinale ha verso positivo in avanti e origine nel bordo d'attacco. Il verso positivo per i momenti in beccheggio è a cabrare. In questo sistema di riferimento il centro aerodinamico si trova al $x_{AC}=-0.46~\mathrm{m}$ (pari al 23% della corda media aerodinamica) e il legame costituivo aerodinamico del velivolo, rispetto all'angolo di incidenza geometrico α e alla deflessione dell'equilibratore $\delta_{\rm E}$, è il seguente:

$$\begin{cases} C_L = 5.10 \ \alpha + (2.0 - 0.05 \ X_7) \delta_{\rm E} \\ C_{M_{\rm AC}} = -(0.50 + 0.02 \ X_7) \ \delta_{\rm E} \end{cases}$$

dove $C_{M_{AC}}$ rappresenta il coefficiente di momento rispetto centro aerodinamico.

Si calcoli quanto segue.

a) Il margine di stabilità per la posizione dimensionale del baricentro $x_{CG}=-(0.16+0.02\,X_8)~\mathrm{m}.$

m. s. = 15%	[%MAC]
--------------------	--------

b) La posizione dimensionale del punto di controllo $x_{\rm C}$ e il valore del parametro di stabilità alla Borri ε , per la stessa posizione del baricentro del punto a).

$x_{\rm C} = $ -0.960 [m] ε	0.600
---	-------

c) La pendenza della curva di portanza trimmata, per la stessa posizione del baricentro del punto a).

$$C_{L_{\alpha}}^{*} =$$
 3.188 [1/rad]

d) Motivando la risposta, indicare che tipo di profilo utilizzato (concavo, simmetrico, reflex, altro).

e) Sempre per la stessa posizione del baricentro indicata al punto a), l'angolo di incidenza $\bar{\alpha}$ e la deflessione dell'equilibratore $\overline{\delta_{\rm E}}$ per l'equilibrio a velocità equivalente $V_{\rm EAS}=(80+3\,X_8)$ m/s.

$$\bar{\alpha}=$$
 11.46 [deg] $\bar{\delta}_{\rm E}=$ **-10.96** [deg]

- 7) Un velivolo a getto ideale è caratterizzato da peso $W=(450+5\,X_7)$ kN, superficie alare $S=92\,m^2$, polare $C_D=(0.03+0.002\,X_7)+(0.032+0.003\,X_8)C_L^2$ e consumo specifico rispetto alla spinta (thrust specific fuel consumption TSFC) $c_T=0.8\,N/(N\,h)$. A partire da una quota con densità dell'aria pari a $\rho_{\rm IN}=0.70$ kg/m³, il velivolo esegue una crociera ad assetto e velocità costanti in condizioni di massima autonomia chilometrica consumando 8000 kg di combustibile. Si calcoli quanto segue.
 - a) La frazione di combustibile ξ_F associata alla crociera.

$$\xi_{\rm F} =$$
 0.1744

b) Il coefficiente di portanza $C_{L_{\mathrm{IN}}}$ e la velocità V_{IN} a inizio crociera.

$C_{L_{\text{IN}}} =$	0.559	$V_{\rm IN} =$	158.1	[m/s]

c) Il coefficiente di portanza $\mathcal{C}_{L_{\mathrm{FI}}}$, la velocità V_{FI} e la densità dell'aria ho_{FI} a fine crociera

$C_{L_{\mathrm{FI}}} =$	0.559	$V_{\rm FI} =$	158.1	[m/s]	$ ho_{ ext{FI}}$	0.578	[kg/m³]
-------------------------	-------	----------------	-------	-------	------------------	-------	---------

d) La durata $\mathcal T$ della crociera

$\mathcal{T} =$	3 [h]	20	[min]	52	[s]
-----------------	--------------	----	-------	----	-----