Reflections for FAIR data at a tomography beamline at SOLEIL

Andrew King PSICHE beamline, SOLEIL

Plan of presentation

- Tomography at SOLEIL / PSICHE
- Particular challenges of FAIR data with tomography
 - Data volumes
 - Data storage and organisation
 - Data analysis
 - User supplied equipment
- Reflections and conclusions

Tomography at SOLEIL

- Multi purpose beamline (30-50% tomo)
 - High pressure (diffraction)
 - Tomography wide range of users
 - Combined experiments: High pressure tomo, tomo plus diffraction, etc

- Dedicated imaging beamline (100% tomo)
 - 200 m long
 - Two microtomography hutches
 - X-ray microscopy
- Ancient materials and cultural heritage
 - X-ray fluorescence instrument
 - Will have a tomography station (50% tomo)

The PSICHE tomograph

- Optimised for *in-situ* materials science
- Fast acquisitions for time resolved experiements
- Fully open 250 mm aperture
 - Space for in-situ sample environments

Example: UToPEC - Fast tomography, high P+T

Volumes of data

A picture is worth a thousand words... but:

1000 words = ~5 KB

A 5 KB tomogram would be 11 x 11 x 11 voxels (without compression...)

Single 2D radiograph can be 24 MB A single 3D tomogram can be 220 GB!

Volumes of data

- Tomography produces very large datasets, and can produce them very quickly
- In-situ experiments
 (4D... 3D plus time)
 are particularly bad for
 this

How to actually make this volume of data available?

Organisation of workflow

- Local reconstruction solutions
- Stay at the beamline, local 10-100 gb/s Ethernet, minimal transfers across site network
- Archive only the raw data and metadata
 - Projections, which must be pretreated using filtered backprojection to create 3D volumes.
 - Acquisition parameters from the instrument
- What we store is not instantly reusable

Time for user analysis

- In tomography, analysis can take a long time, especially for less experienced users.
- Also in materials science, a publication may require multiple beamtimes, certainly multiple samples, techniques, etc
- From the PSICHE publications list
 - Legland 2022 = Girousse Feb 2018
 - Turpin 2022 = Caty Nov 2019
 - Le 2021 = Bornert Mar 2019
 - -> Typically 3-4 years to the first publication

User metadata / in-situ equipment

- Not all metadata can be harvested from the instrument
- This is true of almost all user supplied equipment, but also some of our own equipment.
 - Best case: "Bulky" in-situ traction
 - Motor and load cell interfaced with SOLEIL electronics
 - Typical case: "UToPEC" in-situ extreme conditions
 - Pressure and temperature controlled independently.

How to get the sample metadata?

- How many acquisitions do we have called "sample1_1, sample1_2, ..."?
- A sample name is relatively easy to extract because it is helpful to the user.
- The history of the sample is more difficult how to incentivize a user to fill in a sample passport? And how much of this detail can realistically be obtained?

Summary

- Challenges
 - Volume of data (538 TB and counting for PSICHE...)
 - Raw versus pretreated data
 - Time for users to analyse
 - Sample metadata
 - Metadata from in-situ experiments

Conclusions

- FAIR data is an important and desirable goal
- Tomography beamlines present some specific challenges
- We will be implementing and testing the first developments from our IT group

