Power Analysis Attacks

Tutorial on Cryptographic and Security Aspects for Information and Communication Systems
At ICIAfS 2016

Dec. 18, 2016

Hasindu Gamaarachchi
Department of Computer Engineering,
University of Peradeniya
hasindu2008@gmail.com

Power analysis

- Use power consumption data as the side channel
- First collect power traces
- Then do mathematical analysis
 - Simple power analysis
 - Differential power analysis
 - Correlation power analysis
 - Mutual information analysis

Target devices for the attack

- Security of embedded devices such as smartcards was completely shattered when power analysis attack was introduced
- But today various countermeasures have been applied

Basic Steps of Power Analysis Attack

Get the cryptosystem

Build the power measurement circuit

Capture power traces during encryption

Run Correlation Power Analysis (CPA) algorithm

Our cryptographic device

- A PIC microcontroller based circuit that mimics the operation of a smartcard
- Programmed to run AES

Basic Steps of Power Analysis Attack

Power Measurement

Power Measurement

Basic Steps of Power Analysis Attack

Oscilloscope (Tektronix MSO2012B)

Connecting the oscilloscope

A power trace

Basic Steps of Power Analysis Attack

CPA Algorithm on CUDA

```
*D:\Hasindu\Documents\university\Semester 7\CO411-Individual Project 1\wave analysis for aes\key dependence\kernel.cu - Notepad++
File Edit Search View Encoding Language Settings Macro Run Plugins Window ?
   [a = 1] The state of the state 
kemel.cu
187
                                                  fscanf(file,"%f",&dat);
188
                                                  if(j<WAVELENGTH*(loops+1) && j>=WAVELENGTH*loops){
 189
                                                                wavedata[i*WAVELENGTH+k]=(double)dat;
 190
                                                                k++;
 191
 192
 193
 194
                        fclose(file);
 195
 196
                        checkCudaError (cudaMemcpy (dev wavedata, wavedata, SAMPLES*WAVELENGTH*sizeof (double), cudaMemcpyHostToDevice
 197
 198
                        \dim 3 \ block 3d(16,16,4);
199
                        dim3 grid3d(KEYBYTES/16, KEYS/16, WAVELENGTH/4);
200
                         //find wave stats
201
                        wavestatkernel<<<qrid3d,block3d>>>(dev wavedata,dev wavestat,dev wavestat2,dev hammingArray);
202
                        checkCudaError(cudaGetLastError());
203
                        //deploy double
 204
205
                        maxCorelationkernel <<< grid, block>>> (dev_corelation, dev_wavestat, dev_wavestat2, dev_hammingstat);
206
                        checkCudaError(cudaGetLastError());
207
 208
                                                                                                                                                                                                                                     Ln:194 Col:22 Sel:0|0
C source file
                                                                                                                                                                              length: 9739 lines: 364
                                                                                                                                                                                                                                                                                                             Dos\Windows
                                                                                                                                                                                                                                                                                                                                            UTF-8 w/o BOM
```


Analysis and the results

	Key byte number																
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Best match	Key value	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10
	Corelation	0.521137	0.448907	0.520267	0.551591	0.508015	0.704521	0.445823	0.423540	0.444697	0.445908	0.661739	0.426426	0.444317	0.430450	0.437648	0.628977
2nd match	Key value	6C	F4	B2	AF	5C	52	17	1A	4E	07	58	6F	3C	9C	0E	96
	Corelation	0.400599	0.380852	0.393687	0.373278	0.387632	0.366003	0.365258	0.365488	0.384889	0.377206	0.361254	0.422964	0.368108	0.360678	0.396348	0.376267
3rd match	Key value	2A	7D	FE	C1	39	B8	DD	88	29	8E	36	61	D2	E8	E8	F7
	Corelation	0.362978	0.373437	0.371296	0.366130	0.378995	0.362108	0.365145	0.360891	0.384421	0.363818	0.353900	0.387495	0.360780	0.357981	0.391313	0.372641
4th match	Key value	94	73	E7	4C	DC	F3	36	F2	DE	51	E2	36	0B	01	AB	B5
	Corelation	0.362593	0.370685	0.368100	0.363095	0.371864	0.361211	0.360876	0.360824	0.378430	0.360141	0.352414	0.368855	0.353642	0.356170	0.370210	0.369261
5th match	Key value	A2	60	F6	C8	B3	E1	D0	B4	DB	17	2B	26	C8	9F	A8	DA
	Corelation	0.360821	0.361709	0.363739	0.358498	0.370971	0.357444	0.354721	0.358538	0.366370	0.357549	0.349865	0.363613	0.347891	0.354794	0.363844	0.367125

Basic Steps of Power Analysis Attack

Theory behind the attack

Computational complexity

Attack each byte separately

Key in AES

128 bits

| Byte |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

- Consists of 16 bytes (let's call byte position)
- > each byte can take values from 0 to 255 (let's call subkey)
- There are 256x16 combinations

Technical approach

Secret key

Dynamic power consumption of CMOS circuits

Measured power traces

Pearson correlation

Power model Eg : Hamming weight

Power consumption of CMOS circuits

Power consumption of a NOT gate

Power model

 If v0 is the initial value and v1 the next value in a register or memory bus

Hamming Distance = Sum of set bits (v0 XOR v1)

If a pre-cleared bus, v0=0

Hamming Weight = Sum of set bits (v1)

Selection function for AES

Statistical comparison in CPA

... Up to n power traces

Real power consumption

Hypothetical power consumption

Statistical analysis

We use Pearson correlation

$$\hat{\rho} = \frac{N \sum_{i=0}^{N} W_{i,j} H_i - \sum_{i=0}^{N} W_{i,j} \sum_{i=0}^{N} H_i}{\sqrt{N \sum_{i=0}^{N} W_{i,j}^2 - (\sum_{i=0}^{N} W_{i,j})^2} \sqrt{N \sum_{i=0}^{N} H_i^2 - (\sum_{i=0}^{N} H_i)^2}}}$$

Correlation vs time for a wrong key guess

Correlation vs time for the correct key guess

Number of traces necessary

For more info

Paper:

Hasindu Gamaarachchi, Harsha Ganegoda and Roshan Ragel, "The A to Z of Building a Testbed for Power Analysis Attacks", 10th IEEE International Conference on Industrial and Information Systems 2015 (ICIIS)

Source codes:

https://github.com/hasindu2008/PowerAnalysis

More Info

Download slides from:

https://tesla.ce.pdn.ac.lk/iciafs/cpa.pdf

Online power analysis program :

https://tesla.ce.pdn.ac.lk/cuda/cpa.php

Questions?

Contact:

hasindu2008@gmail.com