STAT 24300 - Numerical Linear Algebra Assignment 7: Spectral Linear Algebra

Question 1: Matrix norms

In class, we defined the matrix norm of a matrix $A_{m \times n}$ as

$$||A|| = \max_{x \in \mathbb{R}^n} \frac{||Ax||}{||x||}.$$

Prove that $||A|| = \sigma_1$, where σ_1 is the largest singular value of A.

Hint: First prove that ||Qx|| = ||x|| for any orthonormal matrix Q.

Question 2: Frobenious norm and SVD

Show that the Frobenious norm $||A||_{Fro}^2 = \sum_{j=1}^r \sigma_j^2$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ denote the singular values of the matrix $A_{m \times n}$ whose rank is r.

Hint: First prove that $||A||_{Fro}^2 = \operatorname{Trace}(A^{\top}A)$. Then show that $\operatorname{Trace}(AB) = \operatorname{Trace}(BA)$ for matrices $A_{m \times n}, B_{n \times m}$.

Question 3: SVD and fundamental subspaces

Suppose $A_{m\times n} = U\Sigma V^{\top}$ is an SVD of A. Denote the rank of A by r. Prove that

- 1. range(A^{\top})=span(v_1, \dots, v_r), i.e, the span of the first r columns of V.
- 2. $\operatorname{null}(A^{\top}) = \operatorname{span}(u_{r+1}, \dots, u_m)$, i.e, the span of the last m-r columns of U.

Question 4: Least squares

Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} .$$

- 1. Find the pseudo-inverse of A.
- 2. Find the minimium norm solution to the least squares problem

$$\min_{x \in \mathbb{R}^3} \|Ax - b\|,\,$$

where A is as above and

$$b = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} .$$

Question 5: Stability and conditioning

Suppose

$$A = \frac{1}{25} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} \beta & 0 \\ 0 & 1/\beta \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}, \quad \beta > 1$$

- 1. Compute the SVD of A.
- 2. Solve for x such that Ax = b when $b = \frac{1}{25} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$. Call the solution as x_1 .
- 3. Solve for x such that Ax = b when $b = \frac{1}{25} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Call the solution as x_2 .
- 4. Compare your answers in parts 2 and 3, for instance by computing the relative norm $||x_1-x_2||/||x_1||$. Explain the behaviour of the solutions as β varies.