Points of non-diff: Yitxi 0=1. If this point is entered, I added it to a list and printed it. It tuned out that this point was not entered

pf) Take $\alpha_1 < \alpha_2$ and $\alpha_1 < \alpha_2 < \alpha_3$ Let $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4$ ($\alpha_1 < \alpha_4$) $\alpha_1 < \alpha_4$ Then $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4$ #4. Lemma) — $\log \alpha$ is convex. $(\alpha \in (0, \infty))$.

Then, f(n) = 0, f(n) = 0 and $f(n) = \frac{\log 12 - \log 14}{\ln - 12}$.

Then, f(n) = 0, f(n) = 0 and $f(n) = \frac{\log 12 - \log 14}{\ln - 12}$.

 $f(0) = \frac{1}{\alpha^2} \Rightarrow f'$ increases.

Heuce, t'(nx+(1-m)12)<0 for all Me(0,1).

 $f_{(1)}(x) = \frac{\log(x - \log(x))}{(x - \log(x))} - \log(x) + \log(x) + \log(x)$

M loggy + ((-M) loggs

-c-logatis convex.

Der (programme) = $\mathbb{E}_{i} \left[\log \frac{p_{i}}{g_{i}} \right] = \mathbb{E}_{i} \left[-\log \frac{g_{i}}{p_{i}} \right] \ge \log \mathbb{E}_{i} \left[\frac{g_{i}}{p_{i}} \right] = 0$

for by Lemma of f, log & is strictly convex. Say $X = \frac{P_i}{g_i}$. This is non-nonstant if $1+g_i$ because if $P_i = C$, $g_i = S_i = C g_i$, so C = 1. Then f = g. · Help(18) = tillog &] = tillog &] > logt [&] = 0. $f(a) = \sum_{j=1}^{p} N_j \cdot \sigma(a_j x + b_j).$ $\frac{2f}{2u_1} = \sigma(a_1x + b_1) \rightarrow \nabla u f = \sigma(a_1x + b_1).$ $\frac{2f}{\partial \Omega_{j}} = N_{j} \cdot A \cdot \sigma'(\alpha_{j} + b_{j}) \Rightarrow \nabla \alpha f = \sigma'(\alpha d + b) \odot N_{\lambda}$ $\frac{\partial f}{\partial b_i} = v_i \cdot \sigma(ajAtbi) \rightarrow \nabla_b f = \sigma(aAtbi) \odot u$ uov = diag(u)v. because (ui - up)(ip) = (unip) = uov

#1. It almost matches fx