```
In [28]: library(MASS)
    library(pROC)
    library(ggplot2)
    library(caret)
    options(warn=-1)
    options(scipen = 999)
```

The dataset is from the UC Irvine Machine Learning Repository

Link to the dataset: https://archive.ics.uci.edu/dataset/222/bank+marketing

Moro, S., Rita, P., and Cortez, P.. (2012). Bank Marketing. UCI Machine Learning Repository. https://doi.org/10.24432/C5K306.

The data is from a direct marketing campaign of a Portuguese banking institution. The goal is to predict if the client will subscribe a term deposit. Often more than one contact to the same client was required.

```
In [2]: df = read.csv('bank-full.csv', sep = ';')
In [3]: head(df,10)
```

A data.frame: 10 × 17

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome
	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<chr></chr>
1	58	management	married	tertiary	no	2143	yes	no	unknown	5	may	261	1	-1	0	unknown
2	44	technician	single	secondary	no	29	yes	no	unknown	5	may	151	1	-1	0	unknown
3	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	may	76	1	-1	0	unknown
4	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	92	1	-1	0	unknown
5	33	unknown	single	unknown	no	1	no	no	unknown	5	may	198	1	-1	0	unknown
6	35	management	married	tertiary	no	231	yes	no	unknown	5	may	139	1	-1	0	unknown
7	28	management	single	tertiary	no	447	yes	yes	unknown	5	may	217	1	-1	0	unknown
8	42	entrepreneur	divorced	tertiary	yes	2	yes	no	unknown	5	may	380	1	-1	0	unknown
9	58	retired	married	primary	no	121	yes	no	unknown	5	may	50	1	-1	0	unknown
10	43	technician	single	secondary	no	593	yes	no	unknown	5	may	55	1	-1	0	unknown

- default: whether the customer has credit in default.
- balance: average yearly balance.
- houssing: whether they have housing loan or not.
- loan: whether they have personal loan or not.
- contact: contact communication type (cellular / telephone).
- day_of_week: last contact day of the week.
- month: last contact month of the year.
- duration: last contact duration.
- campaign: number of contacts performed during this campaign.
- pdays: number of days that passed by after the client was last contacted from a pervious campaign.
- previous: number of contacts performed before this campaign for this client.
- poutcome: outcome of previous marketing campaign.
- y: whether the client subscribed to a term deposit or not.

```
In [5]: table(df$job)
              admin.
                       blue-collar entrepreneur
                                                      housemaid
                                                                    management
                5171
                               9732
                                                           1240
                                                                          9458
                                             1487
             retired self-employed
                                                        student
                                                                    technician
                                         services
                2264
                              1579
                                             4154
                                                            938
                                                                          7597
          unemployed
                           unknown
                1303
                                288
In [6]: fact_names = c('job', 'marital', 'education', 'contact', 'month', 'poutcome', 'y')
        for (i in fact_names)
            df[,i] = as.factor(df[,i])
In [7]: summary(df)
```

```
job
                                     marital
                                                      education
    age
Min. :18.00
               blue-collar:9732
                                 divorced: 5207
                                                  primary : 6851
1st Qu.:33.00
               management :9458
                                 married :27214
                                                  secondary:23202
Median :39.00
               technician :7597
                                 single :12790
                                                  tertiary:13301
Mean :40.94
               admin.
                          :5171
                                                  unknown: 1857
3rd Qu.:48.00
               services :4154
Max. :95.00
               retired
                          :2264
               (Other)
                          :6835
  default
                     balance
                                    housing
                                                         loan
                                  Length: 45211
                                                     Length: 45211
Length: 45211
                  Min. : -8019
Class : character
                 1st Qu.:
                             72
                                  Class :character Class :character
Mode :character
                  Median :
                             448
                                   Mode :character Mode :character
                  Mean : 1362
                  3rd Qu.: 1428
                  Max. :102127
                                                   duration
    contact
                      day
                                    month
cellular :29285
                 Min. : 1.00
                                               Min. : 0.0
                                 may
                                        :13766
telephone: 2906
                 1st Qu.: 8.00
                                 jul
                                        : 6895
                                                1st Qu.: 103.0
unknown :13020
                 Median :16.00
                                                Median : 180.0
                                 aug
                                        : 6247
                 Mean :15.81
                                 jun
                                        : 5341
                                                Mean : 258.2
                                                3rd Qu.: 319.0
                 3rd Qu.:21.00
                                        : 3970
                                 nov
                 Max. :31.00
                                        : 2932
                                                Max. :4918.0
                                 apr
                                 (Other): 6060
                                  previous
   campaign
                    pdays
                                                     poutcome
Min. : 1.000
                Min. : -1.0
                               Min. : 0.0000
                                                  failure: 4901
1st Qu.: 1.000
                1st Qu.: −1.0
                               1st Qu.: 0.0000
                                                  other : 1840
Median : 2.000
                Median : -1.0
                               Median : 0.0000
                                                  success: 1511
Mean : 2.764
                Mean : 40.2
                               Mean : 0.5803
                                                  unknown:36959
3rd Qu.: 3.000
                3rd Qu.: −1.0
                                3rd Qu.: 0.0000
Max. :63.000
                Max. :871.0
                               Max. :275.0000
 У
no :39922
```

no:39922 yes: 5289

```
In [8]: nrow(df)
```

45211

```
In [9]: df = df[,!(names(df) %in% c('duration'))]
```

```
In [10]: set.seed(42)
    train_ind = sample(seq_len(nrow(df)), size=floor(0.75*nrow(df)))
    train_df = df[train_ind,]
    test_df = df[-train_ind,]

In [11]: mod_0 = glm('y ~ 1', data=train_df, family=binomial)

In [12]: mod_all = glm('y ~ .', data=train_df, family=binomial)

In [13]: step_select = step(mod_0, direction='both', scope=formula(mod_all), trace=0)

In [14]: step_select$anova
```

A data.frame: 11×6

Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
<l<chr>></l<chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	NA	NA	33907	24385.09	24387.09
+ poutcome	-3	1973.53171	33904	22411.56	22419.56
+ month	-11	1083.11592	33893	21328.44	21358.44
+ contact	-2	393.47478	33891	20934.97	20968.97
+ housing	-1	207.83385	33890	20727.14	20763.14
+ campaign	-1	92.26003	33889	20634.88	20672.88
+ job	-11	100.07382	33878	20534.80	20594.80
+ loan	-1	60.69899	33877	20474.10	20536.10
+ marital	-2	52.35172	33875	20421.75	20487.75
+ education	-3	23.54437	33872	20398.21	20470.21
+ balance	-1	14.25863	33871	20383.95	20457.95

```
In [15]: unique(train_df$education)
```

 $secondary \cdot primary \cdot unknown \cdot tertiary$

► Levels:

```
In [16]: summary(step_select)
```

Call: glm(formula = y ~ poutcome + month + contact + housing + campaign + job + loan + marital + education + balance, family = binomial, data = train_df)

Coefficients:

coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.180687061	0.124557975	-9.479	< 0.00000000000000000000000000000000000	***
poutcomeother	0.271787288	0.093357323	2.911	0.00360	
poutcomesuccess	2.277489476	0.084980480	26.800	< 0.00000000000000000000000000000000000	***
poutcomeunknown	0.062975376	0.059865960	1.052	0.29283	
monthaug	-0.847241346	0.080229252	-10.560	< 0.00000000000000000000000000000000000	***
monthdec	0.559970301	0.182014912	3.077	0.00209	**
monthfeb	-0.379871270	0.086590157	-4.387	0.000011492324600703	***
monthjan	-1.134870476	0.124284835	-9.131	< 0.00000000000000000000000000000000000	***
monthjul	-0.653821032	0.078274620	-8.353	< 0.00000000000000000000000000000000000	***
monthjun	0.073079291	0.093953364	0.778	0.43667	
monthmar	1.030498999	0.128279425	8.033	0.000000000000000949	***
monthmay	-0.543281422	0.073810978	-7.360	0.00000000000183302	***
monthnov	-0.847986662	0.085460043	-9.923	< 0.00000000000000000000000000000000000	***
monthoct	0.614360060	0.111247983	5.522	0.000000033432824714	***
monthsep	0.681163152	0.125037462	5.448	0.000000051033191758	***
contacttelephone	-0.195799113	0.074275920	-2.636	0.00839	**
contactunknown	-1.212126279	0.072333643	-16.757	< 0.00000000000000000000000000000000000	***
housingyes	-0.499003558	0.043994746	-11.342	< 0.00000000000000000000000000000000000	***
campaign	-0.080528814	0.009692875	-8.308	< 0.00000000000000000000000000000000000	***
jobblue-collar	-0.111287651	0.074279618	-1.498	0.13407	
jobentrepreneur	-0.378454431	0.135305080	-2.797	0.00516	**
jobhousemaid	-0.233163702	0.134888048	-1.729	0.08389	
jobmanagement	-0.059603425	0.075813936	-0.786	0.43176	
jobretired	0.419249979	0.090260844	4.645	0.000003402889930066	***
jobself-employed	-0.058123863	0.113150923	-0.514	0.60747	
jobservices	-0.146308989	0.086756186	-1.686	0.09171	
jobstudent	0.297406294	0.112862601	2.635	0.00841	**
jobtechnician	-0.105120391	0.071439235	-1.471	0.14117	
jobunemployed	0.146486277	0.111752431	1.311	0.18992	
jobunknown	-0.135460489	0.237739524	-0.570	0.56882	
loanyes	-0.434720025	0.061542247	-7.064	0.00000000001620497	***
maritalmarried	-0.236832632	0.059139523	-4.005	0.000062111403777477	***
maritalsingle	0.040753363	0.063815846	0.639	0.52308	
educationsecondary	0.220694856	0.065689247	3.360	0.00078	***
educationtertiary	0.359296489	0.076376212	4.704	0.000002547405010813	***
educationunknown	0.272604050	0.106618400	2.557	0.01056	*
balance	0.000019720	0.000005062	3.896	0.000097820700777982	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24385 on 33907 degrees of freedom
Residual deviance: 20384 on 33871 degrees of freedom
AIC: 20458

Number of Fisher Scoring iterations: 6
```

```
g(x) = 0.271787288*poutcomeother + 2.277489476*poutcomesuccess + 0.062975376*poutcomeunknown - 0.847241346*monthau \\ + 0.073079291*month jun + 1.030498999*month mar - 0.543281422*month may - 0.847986662*month nov + 0.614360060*\\ - 0.499003558*housing yes - 0.111287651*jobblue - collar - 0.378454431*jobent repreneur - 0.233163702*jobhouse maid - 0.\\ *jobservices + 0.297406294*jobstudent - 0.105120391*jobtechnician + 0.146486277*jobunem ployed - 0.135460489*jobunk \\ *marital single + 0.220694856*education secondary + 0.359296489*education terriary + 0.2
```

```
\exp 0.271787288*poutcomeother + 2.277489476*poutcomesuccess + 0.062975376*poutcomeunknown - 0.847241346*mon \\ + 0.073079291*month jun + 1.030498999*month mar - 0.543281422*month may - 0.847986662*month nov + 0.61436\\ - 0.499003558*housing yes - 0.111287651*jobblue - collar - 0.378454431*jobent repreneur - 0.233163702*jobhouser \\ * jobservices + 0.297406294*jobstudent - 0.105120391*jobtechnic ian + 0.146486277*jobunem ployed - 0.135460489*\\ \frac{*marital single + 0.220694856*education secondary + 0.359296489*education tertiary + 0.272604050*education unknowned to the poutcomesuccess + 0.062975376*poutcomeunknown - 0.847241346*\\ + 0.073079291*month jun + 1.030498999*month mar - 0.543281422*month may - 0.847986662*month nov + 0.61\\ - 0.499003558*housing yes - 0.111287651*jobblue - collar - 0.378454431*jobent repreneur - 0.233163702*jobho\\ * jobservices + 0.297406294*jobstudent - 0.105120391*jobtechnic ian + 0.146486277*jobunem ployed - 0.1354604\\ * marital single + 0.220694856*education secondary + 0.359296489*education tertiary + 0.272604050*education unknowned terms of the poutcomesus of the poutcomesu
```

In [17]: print(exp(step_select\$coefficients))

(Intercept)	poutcomeother	poutcomesuccess	poutcomeunknown
0.3070677	1.3123078	9.7521666	1.0650006
monthaug	monthdec	monthfeb	monthjan
0.4285956	1.7506205	0.6839494	0.3214638
monthjul	monthjun	monthmar	monthmay
0.5200548	1.0758158	2.8024639	0.5808391
monthnov	monthoct	monthsep	contacttelephone
0.4282763	1.8484733	1.9761750	0.8221774
contactunknown	housingyes	campaign	jobblue-collar
0.2975639	0.6071353	0.9226283	0.8946814
jobentrepreneur	jobhousemaid	jobmanagement	jobretired
0.6849192	0.7920239	0.9421381	1.5208205
${\tt jobself-employed}$	jobservices	jobstudent	jobtechnician
0.9435331	0.8638907	1.3463622	0.9002161
jobunemployed	jobunknown	loanyes	maritalmarried
1.1577590	0.8733137	0.6474459	0.7891234
maritalsingle	educationsecondary	educationtertiary	educationunknown
1.0415952	1.2469429	1.4323214	1.3133801
balance			
1.0000197			

- The log of odds of the client subscribing to a term deposit increases by 2.277489476 if the outcome of a previous campaign was success instead of failure.
 - The chances of a client subscribing to a term deposit is 75.21% more if the client's outcome of the previous campaign was success instead of failure.
- The log of odds of the client subscribing to a term deposit decreases by 1.134870476 if the last contact month of the year changes from april to january.
 - The chances of a client subscribing to a term deposit has 32.14% lesser chances if the last contact month of the year to the client changes from april.
- The log of odds of the client subscribing to a term deposit decreases by 0.195799113 if the client is contacted via telephone instead of cellular.
 - The chances of a client subscribing to a term deposit has 82.21% lesser chances if the client is contacted via telephone instead of cellular.
- The log of odds of the client subscribing to a term deposit decreases by 0.499003558 if the client already has a housing loan.
 - The chances of client subscribing to a term deposit has 60.71% lesser chances if the client has a housing loan.
- The log of odds of the client subscribing to a term deposit decreases by 0.080528814 with unit increase in the number of contacts made during the campaign.
 - The chances of a client subscribing to a term deposit is 92.26% lesser chances for every unit increase in the number of contacts made during the campaign.
- The log of odds of the client subscribing to a term deposit increases by 0.419249979 if the client is retired instead of having an admin job.
 - The chances of a client subscribing to a term deposit is 52.07% more if they are retired instead of having an admin job.
- The log of odds of the client subscribing to a term deposit decreases by 0.434720025 if the client has a personal loan.
 - The chances of a client subscribing to a term deposit decreases by 64.74% if the client has a personal loan.
- The log of odds of the client subscribing to a term deposit increases by 0.040753363 if the client is single instead of divorced / widowed.
 - The chances of a client subscribing to a term deposit is 4.15% more if the client is signle instead of being divorced / widowed.
- The log of odds of the client subscribing to a term deposit increases by 0.359296489 if the client has tertiary education instead of just primary.
 - The chances of a client subscribing to a term deposit is 43.23% more if the client has tertiary education as well instead of just primary.
- The log of odds of the client subscribing to a term deposit increases by 0.000019720 if the average yearly balance increases by 1 unit.
 - The chances of a client subscribing to a term deposit increases by 0.00197% per unit increase is average yearly balance.

```
In [18]: pred_train = ifelse(predict(step_select,type='response')>=0.5,1,0)
In [19]: length(pred_train)
```

33908

```
In [20]: as.factor(train_df$y)
```

► Levels:

In [21]: confusionMatrix(as.factor(pred_train), as.factor(ifelse(train_df\$y=='no',0,1)), mode='everything')

Reference

```
Prediction
                   0 1
                0 29583 3233
                1 380 712
                      Accuracy: 0.8934
                        95% CI: (0.8901, 0.8967)
           No Information Rate: 0.8837
           P-Value [Acc > NIR] : 0.00000006606
                         Kappa : 0.2446
        Mcnemar's Test P-Value : < 0.00000000000000022</pre>
                   Sensitivity: 0.9873
                   Specificity: 0.1805
                Pos Pred Value : 0.9015
                Neg Pred Value : 0.6520
                     Precision: 0.9015
                        Recall : 0.9873
                            F1 : 0.9424
                    Prevalence: 0.8837
                Detection Rate : 0.8724
          Detection Prevalence: 0.9678
             Balanced Accuracy: 0.5839
              'Positive' Class: 0
In [22]: objroc = roc(ifelse(train_df$y=='no',0,1),pred_train)
        objauc = round(auc(ifelse(train_df$y=='no',0,1),pred_train),4)
       Setting levels: control = 0, case = 1
       Setting direction: controls < cases
       Setting levels: control = 0, case = 1
       Setting direction: controls < cases
In [23]: ggroc(objroc,colour='blue',size=2) + ggtitle(paste0('Training Data\n','ROC Curve ','AUC = ',objauc))
```

Training Data ROC Curve AUC = 0.5839 1.00 0.75 0.25-

0.50 specificity 0.25

0.00

0.75

0.00 -

1.00

```
In [24]: pred_test = ifelse(predict(step_select,test_df[,!(names(test_df) %in% c('y'))],type='response')>=0.5,1,0)
In [25]: confusionMatrix(as.factor(pred_test),as.factor(ifelse(test_df$y=='no',0,1)),mode='everything')
```

Reference

```
Prediction 0 1
                0 9833 1111
                1 126 233
                      Accuracy: 0.8906
                        95% CI: (0.8847, 0.8963)
           No Information Rate : 0.8811
           P-Value [Acc > NIR] : 0.0008808
                         Kappa : 0.2353
        Mcnemar's Test P-Value : < 0.00000000000000022</pre>
                   Sensitivity: 0.9873
                   Specificity: 0.1734
                Pos Pred Value : 0.8985
                Neg Pred Value : 0.6490
                     Precision: 0.8985
                        Recall : 0.9873
                            F1 : 0.9408
                    Prevalence: 0.8811
                Detection Rate : 0.8699
          Detection Prevalence: 0.9682
             Balanced Accuracy: 0.5804
              'Positive' Class: 0
In [26]: objroc = roc(ifelse(test_df$y=='no',0,1),pred_test)
         objauc = round(auc(ifelse(test_df$y=='no',0,1),pred_test),4)
       Setting levels: control = 0, case = 1
       Setting direction: controls < cases
       Setting levels: control = 0, case = 1
       Setting direction: controls < cases
In [27]: ggroc(objroc,colour='blue',size=2) + ggtitle(paste0('Test Data\n','ROC Curve ','AUC = ',objauc))
```

Test Data ROC Curve AUC = 0.5804

