Description

A fun exercise for children to work on their mental arithmetic is to make them evaluate large polynomial expressions (without calling them that). Being no longer a child, this is not a fun exercise for me and I would rather have this process automated for my convenience.

In fact, I am so lazy that I am willing to give up some accuracy so that my eyes need only look at the remainder of the answer modulo some number m of my choosing. Can you do this for me?

That is, given a polynomial f with integer coefficients, an integer x, and a positive integer m you should compute $f(x) \mod m$.

Input

The first line will contain three space-separated integers d, x, m. The value $0 \le d \le 100\,000$ will be the degree of the polynomial, $0 \le x \le 2^{15} - 1$ will be the value at which I want to evaluate my polynomial, and $1 \le m \le 2^{15} - 1$ will be the modulus to ease my eyes.

The second line will consist of a space-separated list of (d+1) coefficients a_0, a_1, \ldots, a_d each digit a_k satisfying $0 \le a_k \le 2^{15} - 1$. These describe my degree-d polynomial

$$f(x) = \sum_{k=0}^{d} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d$$

Output

You must print out a single line, containing the result of computing $f(x) \mod m$ at my specified value x.

Sample Input 1

2 4 100 5 3 1

Sample Output 1

33

Explanation:

The first polynomial is $f(x) = 5 + 3x + x^2$, for which $f(4) = 5 + 3 \cdot 4 + 4^2 \equiv 33 \mod 100$.

Sample Input 2

5 1 8 3 2 5 4 6 6

Sample Output 2

2

Explanation:

The second polynomial is $f(x) = 3 + 2x + 5x^2 + 4x^3 + 6x^4 + 6x^5$, for which $f(1) = 26 \equiv 2 \mod 8$.

Sample Input 3

1 3 10 3 1

Sample Output 3

6

Explanation:

The third polynomial is f(x) = 3 + x, for which $f(3) \equiv 6 \mod 10$.