DEPARTMENT OF CHEMICAL ENGINEERING

MATLAB FOR SCIENTISTS AND ENGINEERS CHO4260

SESSION 2022-2023

ASSIGNMENT-2

Date of Announcement 16/11/2022

Date of Submission- 26/11/2022

1: Write the different steps to solve following simultaneous linear equation in command window:

$$5x = 3y - 2z + 10$$

$$8y + 4z = 3x + 20$$

$$2x + 4y - 9z = 9$$
 [CO-2]

2: Consider the following system of non linear equations

$$F_1(x_1, x_2) = 2x_1^2 - 5x_2^3 - 3 = 0$$

$$F_2(x_1, x_2) = 3x_1^3 + 2x_2^2 - 26 = 0$$

You may take initial guess as $x^{(1)} [1 \ 1]^T$

Elaborate its solution strategy with the help of MATLAB clearly mentioning the commands used. [CO-2]

3:Write program in MATLAB to use the following control structure

for, if, while, switch case.

[CO-2]

4: The Antonie equation for vapour pressure of pure compound is written as:

 $\ln p_{sat} = a - \frac{b}{T+c}$ where a, b and c are constants for that compound, for acetone T (K) and p_{sat} in bar is given in the following table

T(K)	259.2	273.4	290.1	320.5	350.9	390.3	446.4	470.6	508.1
P sat (bar)	0.04267	0.09497	021525	0.74449	2.01571	5.655	17.682	26.628	47

Using the command 'fit' and 'nlinfit' calculate a, b and c for acetone.

[CO-2]

5:The above Antonie equation may be rewritten as:

$$\ln p_{sat} = \left(a - \frac{b}{c}\right) + \left(\frac{a}{c}\right)T - \frac{1}{c}T \ln p_{sat}$$

Use 'regress' and '\' determine the values a, b and c for acetone. Compare this value with the value obtained from question 4. [CO-2]

6: Calculate sin (1.25) and sin (2.75) with the help of **'interp1'** and **'polyfit'**, commands of MATLAB. Data of the attached table may be used.

X	0.0	0.5	1.0	1.5	2.0	2.5
sin(x)	0.00000	0.479426	0.841471	0.997495	0.909297	0.598472

[CO-2]

7: With the suitable example explain 'interp2' and 'diff'. [CO-2]

8: With the help of 'integral' ',quqad' 'dblquad', 'integral2' and 'integral3' calculate the following:

$$\int_0^\infty e^{-x^2} (\ln(x))^2 dx$$
 , $\int_0^2 \frac{1}{x^3 - 2x - c} dx$ where c =4

$$\iint y * \sin(x) + x * \cos(y) dxdy$$
 over pi <= x <= 2*pi, 0 <= y <= pi

$$\iint \frac{1}{\sqrt{x+y}*(1+x+y)^2} dxdy \text{ over the triangle } 0 \le x \le 1, \quad 0 \le y \le 1-x.$$

$$\iiint (y * \sin(x) + z * \cos(x)) dx dy dz \text{ over the region } 0 \le x \le pi, 0$$
 $\le y \le 1, -1 \le z \le 1$

 $\iiint (x * \cos(y) + x^2 * \cos(z)) dx dy dz \text{ over the region xmin } <= x <= x \text{max}, \text{ ymin} <= y <= y \text{max}, \text{ zmin } <= z <= z \text{max}$

$$xmin = -1$$

$$xmax = 1$$

$$ymin = -\sqrt{(1-x^2)}$$

$$ymax = \sqrt{(1 - x^2)}$$

$$zmin = -\sqrt{(1 - x^2 - y^2)}$$

$$zmax = \sqrt{(1 - x^2 - y^2)}$$

[CO-2]