F.Y.	
March	2018

Reg.	No.	
3.7		

116

Part - III CHEMISTRY

Maximum: 60 Scores

Time: 2 Hours

Cool off time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- Use the 'Cool off time' to get familiar with questions and to plan your answers.
- Read the instructions carefully.
- Read the questions carefully before answering.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except nonprogrammable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതു നിർദ്ദേശങ്ങൾ:

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer all questions from question numbers 1 to 7. Each carry one score. $(7 \times 1 = 7)$

- Name the type of smog generally formed during cool and humid climate.
- 2. Predict the shape of XeF_4 molecule, according to VSEPR theory.
- 3. Which is the acidic oxide among the following?
 - a) Cl_2O_7
 - b) Na_2O
 - c) Al₂O₃
 - d) CO
- 4. How many angular nodes are present in a 5f-orbital?
- The allotrope of carbon with the highest thermodynamic stability is

- 1 മുതൽ 7 വരെയുളള എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരമെഴുതുക. ഓരോന്നിനും 1 സ്കോർ വീതം. $(7 \times 1 = 7)$
- സാധാരണയായി, ശീതവും ഈർപ്പവും ഉളള കാലാവസ്ഥയിൽ ഉണ്ടാകുന്ന സ്മോഗ് ഏത് വിഭാഗത്തിൽ പെടുന്നുവെന്ന് എഴുതുക.
- $\mathbf{2.}$ VSEPR സിദ്ധാന്ത പ്രകാരം XeF_4 തന്മാത്രയുടെ ആകൃതി പ്രവചിക്കുക.
- ചുവടെ കൊടുത്തിട്ടുളള ഓക്സൈഡുകളിൽ അസിഡിക് ഓക്സയിഡ് ഏത്?
 - a) Cl_2O_7
 - b) Na_2O
 - c) Al_2O_3
 - d) CO
- 4. ഒരു 5f ഓർബിറ്റലിൽ ഉള്ള ആംഗുലാർ നോഡുകളുടെ എണ്ണം എത്ര?
- തെർമോഡൈനാമിക് സ്ഥിരത ഏറ്റവും കൂടുതലുളള കാർബണിന്റെ രൂപാന്തരമാണ്

6. The critical temperatures of some gases are given in the following table:

311

 ചില വാതകങ്ങളുടെ ക്രിറ്റിക്കൽ താപനിലകൾ പട്ടികയിൽ തന്നിരിക്കുന്നു.

Gas വാതകം	H_2	He	O_2	N_2
Critical temperature (K) കുറിക്കൽ താപനില (K)	33.2	5.3	154.3	126

If the samples of the above given gases are cooled from 298 K, which one will liquify first by applying pressure?

മുകളിൽ സൂചിപ്പിച്ചിട്ടുളള വാതകങ്ങൾ $298~\mathrm{K}$ ൽ നിന്നും തണുപ്പിച്ചുകൊണ്ടിരു ന്നാൽ, മർദ്ദത്തിന്റെ സ്വാധീനത്തിൽ ആദ്യം ദ്രവീകരിക്കപ്പെടുന്നതേതാണ്?

7. The number of oxygen atoms present in 5 moles of glucose $(C_6H_{12}O_6)$ is

Answer any ten from question numbers 8 to 20. Each carries two scores. $(10 \times 2 = 20)$

- 8 മുതൽ 20 വരെയുളള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും10 എണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോന്നിനും 2 സ്കോർ വീതം. (10 imes 2 = 20)
- 8. By using the concept of hybridization, explain the structure of H_2O molecule.
- 8. ഹൈബ്രിഡെസേഷൻ എന്ന ആശയത്തിന്റെ സഹായത്താൽ H_2O തന്മാത്രയുടെ ഘടന വിശദീകരിക്കുക.
- Give the IUPAC names of the following compounds.
- ചുവടെ ചേർത്തിട്ടുളള സംയുക്തങ്ങ ളുടെ IUPAC നാമങ്ങൾ എഴുതുക.

- Write any two applications of green chemistry in day-to-day life.
- 11. Explain the effects of temperature and pressure on the following equilibrium.
- ഒദെനംദിന ജീവിതത്തിൽ ഹരിത രസതന്ത്രത്തിന്റെ ഏതെങ്കിലും രണ്ട് പ്രായോഗിക ഉപയോഗങ്ങൾ എഴുതുക.
- ചുവടെ നൽകിയിട്ടുളള രാസസന്തുലന ത്തിൽ താപനില, മർദ്ദം എന്നിവയുടെ സ്വാധീനം വിവരിക്കുക.

$$2NO_{2(g)} {\ \Longleftrightarrow \ } N_2O_{4(g)}; \ \Delta H = -\,57.2\,\mathrm{kJmol^{-1}}$$

- 12. Draw the structure of orthoboric acid. Why it is not a protonic acid?
- 13. Find the molecular formula of the compound with molar mass, 78 g mol⁻¹ and empirical formula, CH.
- 14. What is meant by entropy of a system? What happens to the entropy during the following changes?
 - a) A gas condenses into liquid.
 - b) $CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$

- 12. ഓർതോബോറിക് ആസിഡിന്റെ ഘടന വരയ്ക്കുക. ഇത് ഒരു പ്രോട്ടോണിക് ആസിഡ് അല്ലാത്തതെന്തുകൊണ്ട്?
- 13. 78 g mol⁻¹ മോളാർമാസും, CH എന്ന എംപിരിക്കൽ സൂത്രവുമുളള സംയുക്തത്തിന്റെ തന്മാത്രാസൂത്രം കണ്ടുപിടിക്കുക.
- 14. ഒരു വ്യൂഹത്തിന്റെ എൻട്രോപ്പി എന്നതുകൊണ്ട് എന്താണ് അർത്ഥമാക്കുന്നത്? താഴെ തന്നിട്ടുളള മാറ്റങ്ങളിൽ എൻട്രോപ്പിക്ക് എന്തു സംഭവിക്കുന്നു.
 - a) ഒരു വാതകം സാന്ദ്രീകരിച്ച് ദ്രാവകമായി മാറുന്നു.
 - b) $CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$

- 15. Represent graphically, the variation of probability density $\left(\psi_{(r)}^2\right)$ as a function of distance (r) of the electron from the nucleus for 1s and 2s orbitals.
- Derive an equation relating molar mass of an ideal gas with its density.
- What is Wurtz reaction? Give an example.
- Define buffer solutions and write one example for an acidic buffer.
- 19. Cycloheptatrienyl Cation is given below:

Is this ion aromatic or not? Justify the answer.

20. Write the thermochemical equation corresponding to the standard enthalpy of formation of benzene.

(Hint: $\Delta_f H^{\Theta}$ of benzene = + 49.0 kJmol⁻¹)

- 15. 1s, 2s എന്നീ ഓർബിറ്റലുകളുടെ പ്രോബബിലിറ്റി സാന്ദ്രത (\(\nu_{(r)}^2\)) യ്ക്ക്, ഇലക്ട്രോണും ന്യൂക്ലിയസും തമ്മിലുളള അകലത്തിന് (r) അനുസരിച്ച് ഉണ്ടാകുന്ന വ്യതിയാനം ഗ്രാഫുകളിലൂടെ പ്രതിനിധീകരിക്കുക.
- ഒരു ആദർശ വാതകത്തിൻെറ മോളാർ മാസും സാന്ദ്രതയും തമ്മിലുള്ള ബന്ധം രൂപീകരിക്കുക.
- 17. എന്താണ് 'വുർട്സ് റിയാക്ഷൻ'? അതിന് ഒരു ഉദാഹരണം എഴുതുക.
- 18. 'ബഫർ ലായനികൾ' എന്തെന്ന് നിർവ്വചിക്കുക. അസിഡിക് ബഫറിന് ഒരു ഉദാഹരണം എഴുതുക.
- സെക്സോഹെപ്റ്റാട്രെഈനൈൽ കാറ്റയോൺ നൽകിയിരിക്കുന്നു.

ഈ അയോൺ ആരോമാറ്റിക് ആണോ? ഉത്തരം സാധൂകരിക്കുക.

20. ബൻസീൻ എന്ന സംയുക്തത്തിന്റെ സ്റ്റാൻഡേർഡ് എൻഥാൽപി ഓഫ് ഫോർമേഷനുമായി ബന്ധപ്പെട്ട തെർമോകെമിക്കൽ സമവാക്യം എഴുതുക.

(സൂചന : ബൻസിൻ-ന്റെ $\Delta_f H^{igotimes} = +49.0~{
m kJmol^{-1}})$

Answer any seven from question numbers 21 to 29. Each carries three scores. $(7 \times 3 = 21)$

- 21. Justify the following:
 - a) 'Ne' has positive value for electron gain enthalpy.
 - b) The electron gain enthalpy of 'F' is lower than that of 'Cl'.
 - c) The size of ' Al^{3+} ' is lower than that of ' F^{-1} .
- 22. Identify X, Y and Z in the following sequence of reactions:

- 21 മുതൽ 29 വരെയുളള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 7 എണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോന്നിനും 3 സ്കോർ വീതം. (7 × 3 = 21)
- ചുവടെ ചേർത്തിട്ടുളള പ്രസ്താവനകൾ സാധൂകരിക്കുക :
 - a) 'Ne'-ന് ധന ഇലക്ട്രോൺ ഗയ്ൻ എൻഥാൽപിയാണുളളത്.
 - b) 'F'-ന്റേ ഇലക്ട്രോൺ ഗയ്ൻ എൻഥാൽപി 'Cl'-ന്റേതിനാക്കാൾ കുറവാണ്.
 - c) ' Al^{3+} '-ന്റെ വലിപ്പം ' F^{-1} -ന്റേ തിനേക്കാൾ കുറവാണ്.
- 22. താഴെ തന്നിട്ടളള പ്രവർത്തന ശൃംഖലയിൽ X, Y, Z എന്നിവ തിരിച്ചറിയുക:

$$CH_3-CH_2-CH_2Br \xrightarrow{\quad \text{Alcoholic } KOH\quad} X \xrightarrow{\quad O_3\quad} Y \xrightarrow{\quad Zn/H_2O\quad} Z+HCHO$$

- 23. Calculate the mass of oxalic acid dihydrate $\left(H_2C_2O_4 \cdot 2H_2O\right)$ required to prepare 0.1M, 250 ml of its aqueous solution.
- 24. Balance the following Redox reaction by ion-electron method or oxidation number method (Acid medium)
- 23. $250 \, \mathrm{ml}, \, 0.1 \mathrm{M}$ ഓക്സാലിക് ആസിഡ് ഡൈഹൈഡ്രേറ്റ് $(H_2 C_2 O_4 \, . \, 2 H_2 O)$ -ന്റെ ജലീയ ലായനി തയ്യാറാക്കാൻ അതിന്റെ എത്ര മാസ് വേണമെന്ന് കണക്കാക്കുക.
- 24. അയോൺ-ഇലക്ട്രോൺ രീതിയോ ഓക്സിഡേഷൻ സംഖ്യാ രീതിയോ ഉപയോഗിച്ച് ചുവടെ ചേർക്കുന്ന റിഡോക്സ് പ്രവർത്തനം സമീകരിക്കുക. (ആസിഡ് മാദ്ധ്യമം)

$$Cr_2O_{7(aq)}^{2-} + SO_{3(aq)}^{2-} \rightarrow Cr_{(aq)}^{3+} + SO_{4(aq)}^{2-}$$

- 25. Explain any one method of preparation and structure of diborane.
- 26. The value of equilibrium constant is useful to predict the extent of reaction and the direction of the reaction at a given stage. Explain.
- 27. Give a reason for the following:
 - a) H_2O_2 is stored in wax-lined glass or plastic vessels in dark. (2)
 - b) Hard water is not suitable for (1) laundry.
- 28. Calculate the total pressure in a mixture of 3.5 g of dinitrogen and 16 g of dioxygen confined in a vessel of 2 dm3 at 270C. $(R = 0.083 \text{ bar dm}^3 \text{ K}^{-1} \text{mol}^{-1}).$
- 29. The reaction of cyanamide (NH, CN) with dioxygen was carried out in a bomb calorimeter and Δu was found to be -742.7kJmol-1, at 298 K. Calculate enthalpy change for the reaction at 298 K.

- 25. ഡൈബോറേൻ എന്ന സംയുക്ത ത്തിന്റെ ഏതെങ്കിലും ഒരു നിർമ്മാണ ഘടനയും രീതിയും അതിന്റെ വിശദീകരിക്കുക.
- 26. ഒരു രാസപ്രവർത്തനം എത്രമാത്രം നടന്നുവെന്നും, തന്നിട്ടുളള അവസ്ഥയിൽ അതിന്റെ ദിശ ഏതാണെന്നും പ്രവചിക്കാൻ സന്തുലന സ്ഥിരാങ്കത്തിന്റെ മൂല്യം സഹായിക്കുന്നു. ഇത് വിശദീകരിക്കുക.
- ചുവടെ ചേർത്തിട്ടുള്ളവയുടെ കാരണം എഴുതുക.
 - a) $H_{o}O_{o}$ സൂക്ഷിക്കുന്നത് മെഴുക് പുരട്ടിയ ഗ്ലാസ്സ് അഥവാ പ്ലാസ്റ്റിക് സംഭരണികളിലാണ്.
 - b) കഠിനജലം തുണി അലക്കുന്നതിന് അനുയോജ്യമല്ല.
- 28. 2 dm3 വ്യാപ്തമുള്ള ഒരു സംഭരണി യിൽ ഉള്ള 3.5 g ഡൈനൈട്രജനും 16g ഡൈഓക്സിജനും ചേർന്ന മിശ്രിതത്തിന്റെ ആകെ മർദ്ദം, 27° C-ൽ എത്രയെന്ന് കണക്കാക്കുക. $(R = 0.083 \text{ bar dm}^3 \text{ K}^{-1}\text{mol}^{-1}).$
- 29. ഒരു ബോംബ് കലോറി മിറ്ററിൽ 298 K താപനിലയിൽ സയനമൈഡ് $(NH_{o}CN)$ ഉം ഡൈഓക്സിജനും തമ്മിൽ പ്രവർത്തിച്ചപ്പോൾ Δu -ന്റെ വില $-742.7 \mathrm{kJmol^{-1}}$ എന്നു കണ്ടെ ത്തി. എങ്കിൽ താഴെ തന്നിട്ടുള്ള പ്രവർത്തനത്തിന്റെ എൻഥാൽപി വൃത്യാസം, 298 K താപനിലയിൽ, എത്രയായിരിക്കുമെന്ന് കണക്കാക്കുക.

$$N H_2 C N_{(g)} + \frac{3}{2} \; O_{2(g)} \to N_{2(g)} + C O_{2(g)} + H_2 O_{(l)}$$

Turn Over

116

Hours inutes

our

elf.

(2)

(1)

in

20

K-450

ver

Answer any three from question numbers 30 to 33. Each carries four scores. $(3 \times 4 = 12)$

- 30. Write the molecular orbital electronic configurations of N_2 and O_2 and calculate their bond orders. Give a comparison of their stability and magnetic behaviour.
- Briefly describe the principles of the following techniques, taking an example in each case.
 - a) Crystallization
 - b) Simple distillation
 - c) Distillation under reduced pressure
 - d) Paper chromatography
- 32. Give the postulates of Bohr model of hydrogen atom. Also write two merits and two limitations of this model.
- 33. Account for the following:
 - a) Blue coloured solutions are obtained when alkali metals are dissolved in liquid ammonia.
 - b) 'Li' and 'Mg' show similar properties.
 - Aqueous solution of Na₂CO₃ is alkaline.
 - d) BeSO₄ and MgSO₄ are readily soluble in water.

30 മുതൽ 33 വരെയുളള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോന്നിനും 4 സ്കോർ വിതം. $(3 \times 4 = 12)$

- N_2, O_2 എന്നിവയുടെ മോളിക്യൂലാർ ഓർബിറ്റൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതി ബോണ്ട് ഓഡറുകൾ കണക്കാക്കുക. അവയുടെ സ്ഥിരത, മാഗ്നറ്റിക് സ്വഭാവം എന്നിവ താരതമ്യം ചെയ്ത് എഴുതുക.
- 31. താഴെ നൽകിയിട്ടുളള സങ്കേതങ്ങളുടെ തത്വങ്ങൾ ഓരോ ഉദാഹരണങ്ങളിലൂടെ ചുരുക്കി വിവരിക്കുക.
 - a) ക്രിസ്റ്റലീകരണം
 - b) ലഘു സ്വേദനം
 - c) കുറഞ്ഞ മർദ്ദത്തിലുള്ള സ്വേദനം
 - d) പേപ്പർ ക്രോമാറ്റോഗ്രാഫി

Sheni blog

- 32. ഹൈഡ്രജൻ ആറ്റത്തിന്റെ ബോർ മാതൃകയുടെ അടിസ്ഥാന തത്വങ്ങൾ എഴുതുക. ഇതിന്റെ രണ്ട് മേന്മകളും രണ്ട് അപാകതകളും എഴുതുക.
- താഴെ തന്നിട്ടുളളവയുടെ കാരണം എഴുതുക.
 - മ) ആൽക്കലി ലോഹങ്ങൾ ദ്രാവക അമോണിയയിൽ ലയിക്കുമ്പോൾ നീല നിറമുള്ള ലായനി ഉണ്ടാകുന്നു.
 - b) 'Li','Mg' എന്നിവ ഒരേ സ്വഭാവങ്ങൾ കാണിക്കുന്നു.
 - c) Na_2CO_3 യുടെ ജലീയ ലായനി ക്ഷാരഗുണം കാണിക്കുന്നു.
 - d) $BeSO_4MgSO_4$ എന്നിവ ജലത്തിൽ, വളരെ എളുപ്പം ലയിക്കുന്നു.