Estadística Inferencial

Capítulo X - Ejercicio 08

Aaric Llerena Medina

En una cuadra viven 100 familias de los cuales r tienen al menos una tarjeta de crédito y el resto no. Para docimar la hipótesis nula $H_0: r = 30$ contra $H_1: r > 30$ se seleccionan al azar a 20 familias. Si en la muestra se encuentran por lo menos 10 familias con por lo menos una tarjeta de crédito se decidirá rechazar H_0 . Calcule la probabilidad de cometer error tipo II cuando r = 40.

Solución 1:

Para calcular la probabilidad de cometer un error tipo II, se asume que la hipótesis alternativa es la verdadera, es decir, en este caso que realmente r = 40. Esto implica que en la población 40 de 100 familias tienen al menos una tarjeta de crédito y según los datos proporcionados:

- N = 100, el tamaño de la población,
- K = 40, el número de familias que tienen al menos una tarjeta de crédito,
- n=20, el tamaño de la muestra seleccionada.

La variable aleatoria X, que denota el número de familias en la muestra que tienen al menos una tarjeta de crédito, sigue una distribución hipergeométrica:

$$X \sim \text{Hypergeom} (N = 100, K = 40, n = 20)$$

Por ello, la función de probabilidad es

$$P(X=x) = \frac{\binom{40}{x} \binom{60}{20-x}}{\binom{100}{20}}, \quad x = 0, 1, \dots, 20$$

La decisión del contraste es rechazar H_0 si se observa que al menos 10 familias tienen tarjeta de crédito; es decir, se rechaza H_0 si $X \ge 10$. Por lo tanto, se NO rechaza H_0 (y se comete un error tipo II) cuando se observa $X \le 9$.

Así, la probabilidad de error tipo II cuando realmente r = 40 es

$$\beta = P(\text{no rechazar } H_0 \mid r = 40) = P(X \le 9 \mid K = 40)$$

Es decir,

$$\beta = \sum_{x=0}^{9} \frac{\binom{40}{x} \binom{60}{20-x}}{\binom{100}{20}}$$

Desarrollando la sumatoria para calcular β :

x	A	В	С	$\frac{A \times B}{C}$
	$\binom{40}{x}$	$\binom{60}{20-x}$	$\binom{100}{20}$	
0	1	4.1918E + 15	5.3598E + 20	7.8208E-06
1	40	2.0448E + 15	5.3598E + 20	1.5260E-04
2	780	9.2503E + 14	5.3598E + 20	1.3462E-03
3	9,880	3.8722E + 14	5.3598E+20	7.1378E-03
4	91,390	1.4961E+14	5.3598E+20	2.5510E-02
5	658,008	5.3194E+13	5.3598E+20	6.5305E- 02
6	3,838,380	1.7346E+13	5.3598E+20	1.2422E-01
7	18,643,560	5.1669E + 12	5.3598E+20	1.7972E-01
8	76,904,685	1.3994E + 12	5.3598E + 20	2.0078E-01
9	273,438,880	3.4270E + 11	5.3598E + 20	1.7483E-01
			Σ	0.7790

Por lo tanto, la probabilidad de cometer error tipo II cuando r=40 es aproximadamente 0.7790.