

REDES NEURAIS COM TENSORFLOW

DIEGO RODRIGUES DSC

INFNET

Agenda

Parte 1: Meta Heurística de Treinamento Robusta II

- Novo ciclo do CRISP
- Regressão / Aproximação
- Tensorflow Time Series Tutorial
- Validação & Figuras de mérito para Regressão

Parte 2 : Prática

Notebook: Regressão Iris

Parte 3: Trabalhos

Escopo & Evolução

Cross
Industry
Process for
Data Mining
(CRISP-DM)

Novo Ciclo CRISP

Algoritmo Preparação Modelagem Validação Representação • 2D • Reta 2 Pontos Nenhuma Reta 2 Pontos Nenhuma • 1 Neurônio • NN 10% VAL • 2D Nenhuma Precisão/Recall • NN 10 Folds • 2D Precisão/Recall Scale • 1 Hidden • PS10 • 4D / 3 Classes • Scale • 1 Hidden Acurácia • PS10 • 7D / 1D • Scale • 1 Hidden MSE Regressão

- Regressão multivariada com uma variável categórica
- Busca nos hiperparâmetros ótimos (# funções de ativação)
- Identificar as variáveis mais relevantes

Paradigmas de Modelagem Estatística

SUPERVISIONADO – CLASSIFICAÇÃO

SUPERVISIONADO – REGRESSÃO

NÃO SUPERVISIONADO

APRENDIZADO POR REFORÇO

O aproximador Universal $Y = F(X) + \varepsilon$

$$Y = F(X) + \varepsilon$$

$$Y = \alpha^T x + \varepsilon$$

$$Y = X\alpha + \varepsilon$$

$$Y = \frac{1}{1 + e^{\alpha^t x + \varepsilon}}$$

$$Y = \varphi(x) + \varepsilon$$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	-
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 201 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Funções de Ativação

Tensorflow Time Series Demo

Treinamento

Erro Médio Quadrático

- Minimização do MSE no conjunto de treino, controlado pelo conjunto de validação.
- Estratégia de busca idêntica a de classificação.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

 y_i the actual value for data point i.

Validação

Dispersão Real vs Previsto

 Queremos os pontos próximo da reta e com distância pra reta constante, independente do Y.

Validação

Dispersão Real vs Previsto

 Modelo Homocedástico / Heterocedástico.

Figuras de Mérito

R Quadrado

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Resíduo Normal de Média Zero e

Variância Constante

Iris Robust Regression

Modelagem

Rede Neural Feed Forward

- Representação: 4 atributos > X atributos mais relevantes
- Hiperparâmetros: PATTERN SEARCH no # de neurônios de cada tipo na camada oculta.
- Treinamento: base de treino completa.
 - MSE
 - Validação Cruzada 10 Folds