BÀI TẬP LẦN 3

- **3.1** Trong không gian \mathbb{R}^3 , cho các vecto $u_1=(1,2,2),\ u_2=(1,-1,1),\ u_3=(-1,2,-1),\ u_1'=(1,1,2),\ u_2'=(1,-2,1)$ $u_3'=(2,1,4).$
 - a) Chứng minh các tập hợp $\mathcal{B} = \{u_1, u_2, u_3\}$ và $\mathcal{B}' = \{u'_1, u'_2, u'_3\}$ là các cơ sở của \mathbb{R}^3 .
 - b) Tìm $[u]_{\mathcal{B}}$ biết rằng u = (1, 2, 3).
 - c) Tìm $v \in \mathbb{R}^3$ biết rằng $[v]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$.
 - d) Tìm $[w]_{\mathcal{B}'}$ biết rằng $[w]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$.
 - e) Xác định ma trận chuyển cơ sở $(\mathcal{B} \to \mathcal{B}')$ và $(\mathcal{B}' \to \mathcal{B})$.
- **3.2** Cho W là không gian sinh bởi các vectơ $u_1 = (1, 0, 1, 1), u_2 = (1, 1, 0, 1), u_3 = (1, 1, 1, 0).$
 - a) Chứng minh tập hợp $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của W.
 - b) Cho $u=(a,b,c,d)\in\mathbb{R}^4$. Tìm mối liên hệ giữa a,b,c,d để $u\in W$. Với điều kiện đó, hãy xác định $[u]_{\mathcal{B}}$ theo a,b,c,d.
 - c) Đặt $\mathcal{B}' = \{u_1' = (0, 1, 2, -3), u_2' = (2, 0, 1, 3), u_3' = (0, 1, -2, 1)\}$. Chứng minh \mathcal{B}' là cơ sở của W và xác định $(\mathcal{B} \to \mathcal{B}')$.
- **3.3** Cho W là không gian con của \mathbb{R}^4 sinh bởi các vecto $u_1 = (1, 1, 1, 2), u_2 = (1, 2, 1, -1)$ và $u_3 = (2, 3, 1, 1).$
 - a) Chứng tỏ rằng $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của W.
 - b) Cho $u=(a,b,c,d)\in\mathbb{R}^4$. Tìm điều kiện của a,b,c,d để $u\in W$. Với điều kiện đó, hãy tìm $[u]_{\mathcal{B}}$ theo a,b,c,d.
 - c) Cho $u'_1 = (1, 1, -1, 2), u'_2 = (2, 4, 1, -2), u'_3 = (1, 0, 0, 5).$ Chứng tỏ rằng $\mathcal{B}' = \{u'_1, u'_2, u'_3\}$ là cơ sở của W và xác định ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' và từ \mathcal{B}' sang \mathcal{B} .
- **3.4** Trong không gian \mathbb{R}^4 , cho các vecto $u_1 = (1, 0, 1, -1), u_2 = (1, 1, -1, 2), u_3 = (1, 2, -2, 2)$ và $W = \langle \{u_1, u_2, u_3\} \rangle$.
 - a) Chứng tỏ rằng $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của W.
 - b) Cho $u=(a,b,c,d)\in\mathbb{R}^4$. Tìm điều kiện của a,b,c,d để $u\in W$. Với điều kiện đó, hãy tìm $[u]_{\mathcal{B}}$ theo a,b,c,d.
 - c) Cho $u'_1 = (2, 1, 0, 1), u'_2 = (2, 3, -3, 4), u'_3 = (3, 3, -2, 3).$ Chứng tỏ rằng $\mathcal{B}' = \{u'_1, u'_2, u'_3\}$ là cơ sở của W và xác định ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' và từ \mathcal{B}' sang \mathcal{B} .
 - d) Tìm $[u]_{\mathcal{B}}$ và $[v]_{\mathcal{B}'}$ biết $[u]_{\mathcal{B}'} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ và $[v]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$.

- **3.5** Cho $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của không gian \mathbb{R}^3 có ma trận chuyển cơ sở từ \mathcal{B} sang cơ sở chính tắc của \mathbb{R}^3 là $P = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -3 & -2 \\ -1 & 2 & 1 \end{pmatrix}$.
 - a) Tìm tọa độ $[u]_{\mathcal{B}}$ theo cơ sở \mathcal{B} của vecto u=(2,1,-1).
 - b) Xác định các vecto u_1, u_2, u_3 của cơ sở \mathcal{B} .