Oct 17, 202	3
	Today: -
->	A simple fixt-cut model of aggregate time-soil
→	Simplifying the model.
	It simple model of aggregate time series.
	Howseholds: Make consumption, labor supply, investment decisions. indexed by i=1, , I
	Firms that produce consumption goods use capital & basor indexed by $j_c = i,, J_c$
	$c_{jt} \leqslant F_t^{j}(K_{ct}^{j}, N_{ct}^{j}) + j \in \{1,, J_c\}$
	firms that produce investment good
	Firms that produce investment good use capital & labor indexed by $j_x = 1,, J_x$
	$x_{jt} \leq F_t^j \left(\kappa_{xt}^j, \kappa_{xt}^j \right) \forall j \in \{1,, J_x\}$
*	K in both are stuff like machines.

[ê	, time endown	nert]
l.	-> leisure	

	Households
	→ U; (c, l), where c = {ct}, l = {lt}t=0 → U; is strictly increasing, strictly concave → endowments: ko, {\overline{n}}t=0
	-> Ui is smithy increasing smithy concave
	- endowments: ko, { The yes
	ownership khacture {Oi; } i=1, {Oi; } i=1
	share of profit of the in firm Je.
	CF Del' + CF to this environment is S
	CE Def! A CE in this environment in Spet, Pat, We, Te],
	fct, nt, lt, xt, kt 3t=0 - allocations for HH.
	allocation for cons m good firms - {ct, kct, nct } +
	le allocation for investment forms
	le allocation for investment forms {xt, kxt, nxt } =0, st.!-
1)	Given prices allocations for the solve! $Licc, 2) \rightarrow max$ c, l, n, x, k 1.t. $\frac{2}{5} \left(p_{ct} c_t^i + p_{xt} x_t^i \right) \leq \frac{2}{5} \left(x_t k_t^i + w_t n_t^i \right) + \pi_i$
	c, l, n, x, k
	1.t. & (pet ct + pxt xt) < & (rett + wt nt)+ Ti
	$k_{t+1} = (1-8)k_t^i + x_t^i$
	$0 \leq n_t^i + \ell_t^i \leq \overline{n}_t^i$
	+ non-negativity

Given prices, cons. good firm solve

$$\overset{\circ}{\underset{t=0}{\mathbb{Z}}} \left(\operatorname{pet} c_{t}^{j} - w_{t} \operatorname{n}_{ct}^{j} - s_{t} \operatorname{k}_{ct}^{j} \right) \longrightarrow \max_{t \in [j, n] \in \mathbb{N}} \underbrace{\left\{ c_{j}^{j}, n_{j}^{j} + i \right\}_{t=0}^{j}}_{t=0} \\
\text{et. } c_{t}^{j} \leq \operatorname{F}_{t}^{t} \left(\operatorname{K}_{ct}^{j}, \operatorname{n}_{ct}^{j} \right) \\
\text{et. } c_{t}^{j} \leq \operatorname{F}_{t}^{t} \left(\operatorname{K}_{ct}^{j}, \operatorname{n}_{ct}^{j} \right) \\
\text{(Arms don't own any k, rented form titls).}$$

3) Investment firms
$$\overset{\circ}{\underset{t=0}{\mathbb{Z}}} \left(\operatorname{Pet}_{t}^{j} - s_{t} \operatorname{k}_{t}^{j} \right) \longrightarrow \max_{t \in \mathbb{N}} \underbrace{\left\{ c_{t}^{j}, c_{t}^{j} \right\}_{t=0}^{j}}_{t=0} \\
\text{St. } x_{t}^{j} \leq \operatorname{F}_{x_{t}^{j}} \left(\operatorname{K}_{xt}^{j}, \operatorname{n}_{x_{t}^{j}}^{j} - s_{t}^{j} \operatorname{k}_{ct}^{j} \right) + \underbrace{\left\{ c_{t}^{j}, c_{t}^{j} \right\}_{t=0}^{j}}_{t=0} \\
\overset{\circ}{\underset{t=1}{\mathbb{Z}}} \underbrace{\left\{ c_{t}^{j}, c_{t}^{j} \right\}_{t=0}^{j}}_{t=0} \underbrace{\left\{ c_{t}^{j}, c_{t}^{j}, c_{t}^{j} \right\}_{t=0}^{j}}_{t=0} \\
\overset{\circ}{\underset{t=1}{\mathbb{Z}}} \underbrace{\left\{ c_{t}^{j}, c_{t}^{$$

	Simplifying firm side:—
<u> </u>	Assume (RS. \Rightarrow Profits are zero $\forall \lambda > 0$, $f(\lambda k, \lambda n) = \lambda f(k, n)$ f(k, n) = f(k, n) = xk + wn = f(k, n)
2)	Assume representative technology in each sector. It is job for f to

Collapse two scators into one
Fct = Fxt (Potatoes Economy)
New market cleaning: & Ceti + xti) = ++ (k+, n+)
Question for Ved: when can me not make this accumption? what things to keep in mind?
Simplifying the consumer side:
Representative agent (li= lj, koi = kot)
Homothetic Aggregation (need stronger assumptions on >, no need to have the same endowments).
lepresentative Agent:
Remark: strict concavity needed if we want to go with the making came prock (?)
$\sum_{i=1}^{T} \left(c_{i}^{i} + x_{i}^{i} \right) = F_{t} \left(k_{t}, n_{t} \right)$
$I.\left(c_{t}^{1}+x_{t}^{1}\right)=F_{t}\left(k_{t_{1}}n_{t}\right)$
$c_{t}^{1} + x_{t}^{1} = \frac{1}{I} F(k_{t}, n_{t})$
$c_t^1 + x_t^1 = F\left(\frac{k_t}{I}, \frac{n_t}{I}\right)$
$= F(K_t^1, n_t^1)$ (Writing cons problem as one person's).

Side	Note: —
	SPP! U(E1, L1) > max
	s.t. C_{t} $x_{e}^{l} = F(k_{e}^{l}, n_{e}^{l})$
	$k_{11} = (1-8)k_{11} + x_{11} 0 \le n_{11} + l_{11} \le \overline{n}_{11}$
	$k'_{t+1} = (1-8)k_t' + x_t', 0 \le n_t' + l_t' \le \overline{n_t'}$ $k_0' \text{ given} \qquad \forall t$
	flomo Metic Aggregation
	Def: Preferences are homothetic if $H = u = u(x) = u(x) = u(x) = u(x) = u(x)$
	Def: Preferences are homothetic if $\forall x, y = u(x) = u(y) \Leftrightarrow u(x) = u(\lambda y)$; $\lambda > 0$ Alt; $x \sim y \Leftrightarrow (\lambda x) \sim (\lambda y)$
	Thm: If u is homogenous of any degree, then > it
	•
	Proof: $U - homogenous$ of degree η $U(\lambda x, \lambda y) = \lambda^{-\eta} U(x, y)$
	$u(\lambda x, \lambda y) = \lambda \cdot u(x, y)$
	Take 2 pk. (x,y1) & (x2,y2)
	Let u(x1, y1) = u(x2, y2)
	$u(\lambda_x, \lambda_y) = \lambda^{\eta} u(x_1, y_1) = \lambda^{\eta} u(x_2, y_2)$
	$= u(\lambda_{x_2}, \lambda_{y_2}) \square$

We are doing this to understand how to simplify models.