LABORATOR nr. 11 CALCUL NUMERIC

(titular de curs: prof. univ. dr. Bica Alexandru Mihai)

METODA CELOR MAI MICI PATRATE

DREAPTA DE REGRESIE

Algoritmul dreptei de regresie

- I. Date de intrare:
- numarul datelor
- $x_i, \quad i = \overline{0, n},$ valorile marimii x
- $y_i, \quad i = \overline{0, n},$ valorile marimii y
- II. Date de iesire:
- a, b coeficientii din ecuatia carteziana a dreptei de regresie
- III. Pasii algoritmului:

Pasul 1.
$$S1 := 0$$
, $S2 := 0$, $T1 := 0$, $T2 := 0$;

Pentru
$$i = \overline{0, n}$$
 calculeaza $S1 := S1 + x_i$; $S2 := S2 + x_i \cdot x_i$;

$$T1 := T1 + y_i; T2 := T2 + x_i \cdot y_i;$$

Pasul 2. Calculeaza

$$d := (n+1) \cdot S2 - S1 \cdot S1$$

$$d_1 := (n+1) \cdot T2 - S1 \cdot T1$$

$$d_2 := S2 \cdot T1 - T2 \cdot S1$$

Pasul 3. Calculeaza

$$a := \frac{d_1}{d}, \quad b := \frac{d_2}{d}$$

Pasul 4. Tipareste a, b;

Pasul 5. Trasarea dreptei

Calculeaza
$$h = \frac{x_n - x_0}{1000}$$

Calculeaza $h = \frac{x_n - x_0}{1000}$ pentru j = 0, 1000 calculeaza

$$u[j] := x_0 + j \cdot h$$

$$q[j] := a \cdot u[j] + b$$

Traseaza punctul (u[j], q[j]);

Stop.

Exemplu numeric:

Fie tabelul de valori ale functiei y = f(x) cu n=5.

Sa se determine dreapta de regresie de ecuatie y = ax + b ce ajusteaza datele din tabel si sa se traseze. (Se gasesc $a = \frac{95}{281}$ si $b = \frac{399}{281}$).

PARABOLA DE REGRESIE

Algoritmul parabolei de regresie

I. Date de intrare:

numarul datelor

valorile marimii x $x_i, \quad i = \overline{0, n},$

 $y_i, \quad i = \overline{0, n},$ valorile marimii y

II. Date de iesire:

a, b, c coeficientii din ecuatia carteziana a parabolei de regresie

III. Pasii algoritmului:

Pasul 1.
$$S1 := 0$$
, $S2 := 0$, $S3 := 0$, $S4 := 0$, $T1 := 0$, $T2 := 0$, $T3 := 0$;

Pentru $i = \overline{0, n}$ calculeaza $S1 := S1 + x_i$; $S2 := S2 + x_i \cdot x_i$;

$$S3 := S3 + x_i \cdot x_i \cdot x_i; S4 := S4 + x_i \cdot x_i \cdot x_i \cdot x_i;$$

$$T1 := T1 + y_i; T2 := T2 + x_i \cdot y_i; T3 := T3 + x_i \cdot x_i \cdot y_i$$

Calculeaza

$$d:=(n+1)\cdot S2\cdot S4+2\cdot S1\cdot S2\cdot S3-S2\cdot S2\cdot S2-S1\cdot S1\cdot S4-(n+1)\cdot S3\cdot S3$$

$$d_2 := (n+1) \cdot T2 \cdot S4 + S4 + S2 \cdot S3 \cdot T1 + S1 \cdot S2 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S4 \cdot T1 - (n+1) \cdot S3 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S2 \cdot T2 - S1 \cdot S2 \cdot T2 - S1 \cdot S2 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot S2 \cdot T3 - S2 \cdot S2 \cdot T2 - S1 \cdot$$

$$d_3 := S2 \cdot S4 \cdot T1 + S1 \cdot S3 \cdot T3 + S2 \cdot S3 \cdot T2 - S2 \cdot S2 \cdot T3 - S1 \cdot S4 \cdot T2 - S3 \cdot S3 \cdot T1 + S1 \cdot S3 \cdot T3 + S2 \cdot S3 \cdot T3 + S3 \cdot S3 \cdot T3$$

Pasul 2. Calculeaza

$$a := \frac{d_1}{d}, \quad b := \frac{d_2}{d}, \quad c := \frac{d_3}{d}$$

Pasul 3. Tipareste a, b, c;

Pasul 4. Trasarea parabolei

Calculeaza
$$h = \frac{x_n - x_0}{1000}$$

Calculeaza $h = \frac{x_n - x_0}{1000}$ pentru j = 0, 1000 calculeaza

$$u[j] := x_0 + j \cdot h$$

$$q[j] := a \cdot u[j] \cdot u[j] + b \cdot u[j] + c$$

Traseaza punctul (u[j], q[j]);

Stop.

Exemplu numeric:

Fie tabelul de valori ale functiei y = f(x) cu n=6.

							· ·			
x_i :	-3	-2	-1	0	1	2	3			
y_i :	6	4	1	2	3	8	11			

Sa se determine parabola de regresie de ecuatie $y = ax^2 + bx + c$ ce ajusteaza datele din tabel si sa se traseze. (Se gasesc $a = \frac{64}{84}$, $b = \frac{25}{28}$ si $c = \frac{40}{21}$).

FUNCTII SPLINE POLIGONALE

Algoritmul functiei spline poligonale

I. Date de intrare: a, b capetele intervalului

n numarul de subintervale ale diviziunii

 $x[i], i = \overline{0, n}$ nodurile de interpolare

 $y[i], i = \overline{0,n}$ valorile pe noduri

- II. Date de iesire: punctele (u[k],s(k)), $k=\overline{0,1000}$ in care se calculeaza functia spline
 - III. Pasii algoritmului
 - 1. Calculeaza $h=:\frac{b-a}{1000}$. Pentru $i=\overline{1,n}$ calculeaza h[i]=x[i]-x[i-1]
 - 2. Pentru k = 0.1000 calculeaza $u[k] := a + k \cdot h$

Pentru $j = \overline{1, n}$

Daca $x[j-1] \le u[k] \le x[j]$

atunci calculeaza

$$s[k] := y[j-1] + \frac{y[j] - y[j-1]}{h[j]} \cdot (u[k] - x[j-1])$$

4. Pentru $k = \overline{0,1000}$ tipareste (deseneaza) punctele (u[k], s[k]); STOP.

Exemplu numeric:

La momentele 7.5 (adica ora 7^{30}), 10.5 (ora 10^{30}), 13, 15.5 (ora 15^{30}), 18, 21, 24 si 27 (adica ora 3 A. M. a doua zi) s-au masurat valorile glicemiei, obtinanduse 130, 121, 128, 96, 122, 138, 114, 90 (masurate in mg/dl). Sa se aproximeze glicemia acestui pacient de la orele 12, 14, si 23 folosind functia spline poligonala de interpolare.

Datele de intrare sunt: n = 7, a = 7.5, b = 27, valorile sunt date in tabel

$x_i, i = \overline{0, n}: 7.5$	10.5	13	15.5	18	21	24	27
$y_i, i = \overline{0, n} : 130$	121	128	96	122	138	114	90

FUNCTII SPLINE PATRATICE

Algoritmul functiei spline patratice

I. Date de intrare: a, b capetele intervalului

n numarul de subintervale ale diviziunii

 $x[i], i = \overline{0, n}$ niodurile de interpolare

 $y[i], i = \overline{0,n}$ valorile pe noduri

- II. Date de iesire: punctele (u[k], s(k)), $k = \overline{0,1000}$ in care se calculeaza functia spline
 - III. Pasii algoritmului
 - 1. Calculeaza $h =: \frac{b-a}{1000}$. Pentru $i = \overline{1,n}$ calculeaza h[i] = x[i] x[i-1]
 - 2. Calculeaza

$$m[0] := \frac{2 \cdot h[1] + h[2]}{h[1] \cdot (h[1] + h[2])} \cdot (y[1] - y[0]) - \frac{h[1]}{h[1] \cdot (h[1] + h[2])} \cdot (y[2] - y[1])$$

Pentru $i = \overline{1,n}$ calculeaza

$$m[i] = \frac{2}{h[i]} \cdot (y[i] - y[i-1]) - m[i-1]$$

3. Pentru $k=\overline{0,1000}$ calculeaza $u[k]:=a+k\cdot h$ Pentru $j=\overline{1,n}$ Daca $x[j-1]\leq u[k]\leq x[j]$ atunci calculeaza

$$s[k] := \frac{m[j] - m[j-1]}{2h[j]} \cdot (u[k] - x[j-1])^2 + m[j-1] \cdot (u[k] - x[j-1]) + y[j-1]$$

4. Pentru $k=\overline{0,1000}$ tipareste (deseneaza) punctele (u[k],s[k]); STOP. **Exemplu numeric**:

La momentele 7.5 (adica ora 7^{30}), 10.5 (ora 10^{30}), 13, 15.5 (ora 15^{30}), 18, 21, 24 si 27 (adica ora 3 A. M. a doua zi) s-au masurat valorile glicemiei, obtinanduse 130, 121, 128, 96, 122, 138, 114, 90 (masurate in mg/dl). Sa se aproximeze glicemia acestui pacient de la orele 12, 14, si 23 folosind functia spline patratica de interpolare.

Datele de intrare sunt: n = 7, a = 7.5, b = 27, valorile sunt date in tabel

		-)	,)		
$x_i, i = \overline{0, n}: 7.5$							
$y_i, i = \overline{0, n} : 130$	121	128	96	122	138	114	90