Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Parametertests im Gaußmodell

Gegeben sei in diesem Abschnitt immer das zweiparametrige Gauß'sche Produktmodell

$$(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n),\prod N(m,v):m\in\mathbb{R},v>0)$$

Parametertests im Gaußmodell

Modell beschreibt zum Beispiel *n*-maliges unabhängiges Messen einer Messgröße (z.B. Temperatur) mit einem Sensor mit unbekannter Qualität.

Parametertests im Gaußmodell - Chiquadrat-Test

Wir möchten für das Testproblem der Varianz v

$$H_0: v \le v_0$$
 gegen $H_1: v > v_0$

mit der Entscheidungsfunktion eine geeignete Statistik T und die Konstanten c finden, so dass der Test optimal ist und ein Signifikanzniveau von α besitzt.

Parametertests im Gaußmodell - Chiquadrat-Test

Zum Beispiel möchte man testen, ob ein Sensor eine bestimmte Qualität hat (wenig streut).

Student's Satz

Gegeben sei das Gauß'sche Produktmodell und die Schätzer $M = \frac{1}{n} \sum_{i=1}^{n} X_i$ und $V* = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - M)^2$ für Erwartungswert und Varianz. Dann gilt:

- M und V^* sind stoch. unabhängig.
- M hat die Verteilung $N(m, \frac{v}{n})$.
- V^* hat die Verteilung χ^2_{n-1} (Chiquadrat-Verteilung).
- $T_m := \frac{\sqrt{n}(M-m)}{\sqrt{V^*}}$ hat die Verteilung t_{n-1} (Student'sche t-Verteilung).

Figure: Quelle: Wikipedia

Beispiel-Beweis: Quadrat einer Standardnormalverteilten Zufallsvariable

Sei $\phi_{0,1}$ die Dichte der Standardnormalverteilung. Aus Symmetriegründen hat |X| die Dichte $2\phi_{0,1}$ auf $\mathcal{X}=(0,\infty)$ (den Fall X=0 kann man ignorieren, da er mit Wahrscheinlichkeit 0 auftritt). Durch Substitution $\varphi(x)=x^2$ mit Umkehrfunktion $\varphi(y)^{-1}=\sqrt{y}$ hat $X^2=\varphi(|X|)$ die Dichte

$$\rho_{X^2}(y) = 2\phi_{0,1}(\sqrt{y})\frac{1}{2}y^{-\frac{1}{2}} = \frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}}y^{-\frac{1}{2}} = \frac{\Gamma(\frac{1}{2})}{\sqrt{\pi}}\gamma_{\frac{1}{2},\frac{1}{2}}(y)$$

Chiquadrat-Test

Für den Schätzer $V^* = \sum_{i=1}^n (X_i - M)^2$ der Varianz ist der Test mit dem Ablehnungsbereich $\{\sum_{i=1}^n (X_i - M)^2 > v_0 \chi_{n-1;1-\alpha}^2 \}$, wobei $\chi_{n-1;1-\alpha}^2$ ein α -Fraktil der χ_{n-1}^2 -Verteilung ist, ein bester Test zum Signifikanzniveau α .

Chiquadrat-Test

Für den Schätzer $M=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ für den Erwartungswert ist der Test mit dem Ablehnungsbereich $\{\frac{M-m_{0}}{\sqrt{\frac{n}{V^{*}}}}>t_{n-1;1-\alpha}\}$, wobei $t_{n-1;1-\alpha}$ ein α -Frakitl der t_{n-1} -Verteilung ist, ein bester Test zum Signifikanzniveau α .