Лекция №1. Безусловная оптимизация

Постановка задачи и определения

def: Методы оптимизации — это раздел математики, посвящённый решению (экстремальных) задач, то есть задач на нахождение минимумов и максимумов функций.

Rem: Задачу на нахождение максимума функции "f(x)"можно свести к задаче на нахождение минимума функции " $f_1(x) = -f(x)$ " и наоборот.

Общий вид оптимизационной задачи

Найти экстремум (минимум или максимум) функции $f: X \to R$ определенной на некотором множестве $X \in R^n$ при ограничении $X \in D(D \subset X)$ то есть $f(x) \to extr, X \in D(y$ функции есть экстремум на промежутке D).

В большинстве задач область определения функции "f(x)" $X=R^n$. Ограничение $X\in D$ записывается, как правило, в виде уравнений или неравенств . Если множество D=X, то имеет место задача без ограничений или задача безусловной оптимизации.

При решении оптимизационной задачи находятся как локальные, так и глобальные экстремумы функции.

def: Точка " x^* " является точкой локального минимума (максимума) функции "f(x)" if \exists " ε " - окрестность $\mathcal{U}_{\varepsilon} = \{x : |x - x^*|\} < \varepsilon$. Точка $x^* : f(x^*) \leq f(x) \; (f(x^*) \geq f(x)) \; \forall x \in \mathcal{U}_{\varepsilon}$

Rem: то что пишется в скобках - для максимума, а то что без - для минимума

def: Точка " x^* " является точкой глобального минимума(максимума) функции "f(x)" if $f(x^*) \leq f(x)$ ($f(x^*) \geq f(x)$) $\forall x \in D$

Необходимые и достаточные условия экстремума

def: Точка $X^0=(x_1^0,...,x_n^0)$ называется стационарной точкой дифференцируемой функции $f(x)=f(x_1...x_n)$, если в ней все частные производные равны нулю, то есть $f'(x^0)=0$ или $\frac{\partial f(x^0)}{\partial x_1}=...=\frac{\partial f(x^0)}{\partial x_n}=0$

Необходимые условия экстремума І порядка

Теорема: іf точка $x^* = (x_1^*, ..., x_n^*)$ - точка локального extr дифференцируемой в точке x^* функции $f(x_1, ...x_n) \Rightarrow then \frac{\partial f(x^*)}{\partial x_1} = ... = \frac{\partial f(x^*)}{\partial x_n} = 0$ (1) (то есть - точка x^* - точка локального экстремума \Rightarrow точка x^* - стационарная точка (обратное утверждение неверно))

Доказательство: Рассмотрим функцию одной переменной:

 $\varphi(x_i) = f(x_1^*,...,x_{i-1}^*,x_i^*,x_{i+1}^*,x_n^*)$ точка $x^* = (x_1^*,...,x_n^*)$ - т. локального ехtr функции "f" $\Rightarrow x_i^*$ - т. локального ехtr функции " φ " \Rightarrow по необходимому условию для функции одной переменной (по т. Ферма) 've:

$$\varphi(x_i^*) = 0 \Leftrightarrow \frac{\partial f(x^*)}{\partial x_i} = 0$$
 — что и требовалось доказать :)

Для формулировки достаточных условий extr, позволяющих отобрать среди стационарных точек именно точки локального extr(среди стационарных точек могут быть также точки перегиба, седловые точки и т.д.), рассмотрим матрицу вторых производных функции - матрицу Гессе(гессиан):

$$A = f''(x^*) = (\frac{\partial^2 f(x^*)}{\partial x_i \partial x_j})_{i,j=\overline{1,n}} = (a_{i,j})_{i,j=\overline{1,n}}$$
 (от 1 до n)

def: Матрица "А"называется неотрицательно определённой $(A \ge 0)$, если $\forall h = (h_1, ..., h_n) \in \mathbb{R}^n$ неотрицательной является квадратичная форма:

$$(A*h,h) = \sum_{i,j=1}^{n} a_{ij} h_i h_j \ge 0$$

def: Матрица "А"называется положительно определённой (A>0), если $(A*h,h)>0, \forall h\in R^n(h\neq 0)$

Необходимые и достаточные условия extr II порядка

Теорема: Пусть f(x) - дважды дифференцируема в точке x^* . Необходимые условия условия extr:

іf точка x^* - точка локального минимума (максимума) функции $f(x) \Rightarrow f'(x^*) = 0; (f''(x^*) * h, h) \ge 0 \; ((f''(x^*) * h, h) \le 0) \forall h \in \mathbb{R}^n$

Достаточные условия extr

$$f'(x*)=0; (f''(x^*)*h,h)>0 ((f''(x^*)*h,h)<0) \forall h\in R^n(h\neq 0)\Rightarrow$$
 точка x^* - т. локального минимума (максимума) функции $f(x)$

Доказательство:

Для случая минимума (для максимума аналогично)

По формуле Тейлора 've:

$$f(x^* + h) = f(x^*) + (f'(x^*), h) + \frac{1}{2}(f''(x^*) * h, h) + r(h),$$
 где $r(h) = o(|h|^2).(*)$

1) Необходимость:

Пусть точка x^* - точка локального минимума \Rightarrow по необходимому условию I порядка $f'(x^*) = 0$, а также $f(x^* + \lambda h) \geq f(x^*)$ (при достаточно малых " λ ") \Rightarrow из (*) get (g при малых " λ " и фиксированном "h"):

$$f(x^* + \lambda h) - f(x^*) = 0 + \frac{\lambda^2}{2} (f''(x^*) * h, h) + r(\lambda * h) \ge 0| : \lambda^2$$
 (где $r(\lambda * h) = 0(|\lambda|^2)$). $\frac{1}{2} (f''(x^*) * h, h) + \frac{r(\lambda * h)}{\lambda^2} \ge 0$

При $\lambda \to 0$ ' $ve: (f''(x^*) * h) \ge 0 (\forall h \in \mathbb{R}^n) \Rightarrow$ необходимость доказана

2) Достаточность:

Можно показать, что в \mathbb{R}^n имеет место эквивалентность условий:

$$(A*h,h) > 0 \forall h \in \mathbb{R}^n (h \neq 0) \Leftrightarrow \exists \alpha > 0 : (A*h,h) \geq \alpha * |\mathbb{R}|^2 \ (\forall h \in \mathbb{R}^n)$$

Учитывая, что $f'(x^*) = 0$ и $(f''(x^*) * h, h) \ge \alpha * |h|^2$

По формуле Тейлора 've:

$$f(x^*+h)-f(x^*)=0+\frac{1}{2}(f''(x^*)*h,\frac{h}{3})+r(h)\geq \frac{\alpha}{2}|h|^2+r(h)\geq 0)),$$
 то есть

 $f(x^*+h) \geq f(x^*) \Rightarrow$ точка x^* - точка локального extr функции $f(x) \Rightarrow$ достаточность доказана.

что и требовалось доказать

Rem: Для квадратичной функции

 $Q(x) = \sum_{i,j=1}^n a_{ij} x_i x_j$ условие положительной (отрицательной) определённости матрицы $A = (a_{ij})_{i,j=1}^n > 0$ - это достаточное условие абсолютного минимума (максимума) Q(x) в стационарной точке.

Теорема Вейерштрасса

Теорема:

Непрерывная функция $f: R^n \to R$ на непустом ограниченном замкнутом подмножестве (компакте) множества R^n достигает своих абсолютных минимума и максимума [или 1) в стационарной точке внутри; 2) в граничной точке] - без доказательства

Следствие:

іf функция "f(x)" непрерывна на R^n и $\lim_{|x|\to\infty} f(x)=\infty$ ($\lim_{|x|\to\infty} f(x)=-\infty$) \Rightarrow then она достигается своего абсолютного минимума (максимума) на \forall замкнутом подмножестве и R^n . (без доказательства).

Критерий Сильвестра

Rem: В необходимых и достаточных условиях extr-а II порядка useся знакоопределённость матрицы вторых производных (гессиана) A = f''(x).

Знакоопределённость матрицы устанавливается с помощью критерия Сильвестра.

Теорема:

Пусть А - симметричная матрица

- 1) Матрица "А"положительно определена $(A>0)\Leftrightarrow$ все её последовательные гл. миноры положительны, т.е. $A_{1...k}=\begin{vmatrix} a_{11} & a_{ik} \\ a_{k1} & a_{kk} \end{vmatrix}>0 \ (k=\overline{1,n})$
- 2) Матрица "А"отрицательно определена $(A < 0) \Leftrightarrow$ все её последовательные главные миноры чередуют знак, начиная с отрицательного, т.е. $(-1)^k * A_k > 0 \ (k = \overline{1,n})$
- 3) Матрица "А" неотрицательно определена $(A \ge 0) \Leftrightarrow$ все её гл. миноры (необязательно только последовательные) неотрицательны, т.е. $A_{1...k} = \begin{vmatrix} a_{i_1i_1} & a_{i_1i_k} \\ a_{i_ki_1} & a_{i_ki_k} \end{vmatrix} \ge 0 \ (1 \ge i_1 \ge ... \ge i_k \ge n) (k = \overline{1,n})$
- 4) Матрица "А"неположительно определена $(A \le 0) \Leftrightarrow$ все её последовательные главные миноры чередуют знак, начиная с неположительного, т.е. $(-1)^k * A_{i_1...i_k} \ge 0 \ (k = \overline{1,n})$

(Теорема без доказательства)

Rem:

- 1) Можно показать, что $A>0 (A\geq 0) \Leftrightarrow \forall \lambda_i>0 (\lambda\geq 0),$ где λ_i собственные значения матрицы.
- 2)
- 2.1) $A_{1...k} > 0 \Leftrightarrow A_{i_1...i_k} > 0$
- 2.2) $A_{1...k} \ge 0 \Rightarrow A_{i_1...i_k} \ge 0$ (r.e. $\Rightarrow A \ge 0$)

ex:

 $A = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow$ последовательные главные миноры $A_1 = 0; A_{12} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} = 0$, но A не является неотрицательно определённой, так как $(Ah,h) = ((0;-h),(h,h)) = -h^2 < 0 (\forall h \neq 0)$

Правило решения задачи безусловной оптимизации

1) Найти стационарные точки, то есть точки, удовлетворяющие необх. усл. extr I порядка

$$\begin{cases} \frac{\partial f}{\partial x_1} = 0\\ \frac{\partial f}{\partial x_n} = 0 \end{cases}$$

- 2) Во всех стационарных точках " x^0 " проверяем достаточное условие extr II порядка, то есть проверяем знаки последовательных главных миноров гессиана " $f''(x^0)$ ":
- 2.1) if $A_{1..k} > 0$ (k от 1 до n) \Rightarrow then $x^0 \in locminf$;
- 2.2) if $(-1)^k * A_{1...k} > 0$ (при k от 1 до n) $\Rightarrow then \ x^0 \in locmaxf;$
- 3) Если достаточное условие extr II порядка не выполняется \Rightarrow , то проверяем в стационарной точке необходимое условие extr II порядка, то есть проверяем знаки главных миноров гессиана " $f''(x^0)$ "
- 3.1) іf гессиан $f''(x^0) \ngeq 0$ не является неотрицательным отрезком, то есть не выполняется условие $A_{i1...ik} \ge 0 \Rightarrow then \ x^0 \notin locminf;$
- 3.2) іf гессиан $f''(x^0) \nleq 0$ не является неположительным отрезком, то есть не выполняется условие что все $(-1)^k A_{i1...ik} \geq 0 \Rightarrow then \ x^0 \notin locmax f;$