GCL: EJEMPLO DE VERIFICACIÓN

Rodrigo Cardoso Enero de 2001

La verificación de ciclos se adelanta de acuerdo con la regla de corrección corrrespondiente. Esta afirma que, para mostrar la corrección de un ciclo

```
{Q}

INIC;

{inv P}

{cota t}

do BB \rightarrow IF od

{R}
```

basta chequear las afirmaciones:

Cuando se trata de ciclos de más de una forma de iterar, las condiciones 3 y 4 deben valer en cada caso posible. Es decir, en cada caso posible el invariante se debe mantener y la cota debe rebajar.

EJERCICIO 2.6.1 [CAR1993]

```
Verificar:
```

```
{Q: b \ge 0}

x,y,z:= a,b,0;

{Inv P: y \ge 0 \land z + x * y = a * b}

do y > 0 \land par.y \rightarrow x,y:= x + x,y \div 2

[] \neg par.y \rightarrow z,y:= z + x,y - 1

od

{R: z = a * b}
```

[1] P vale antes

[2] P sirve

```
BB (y>0 ∧ par.y) ∨ ¬par.y (absorción) y>0 ∨ ¬par.y
```

```
Por tanto:
```

[3] P invariante

```
[a]
       {P \land y > 0 \land par.y} x, y := x + x, y \div 2 {P}
       P \land y>0 \land par.y \Rightarrow P[x,y:=x+x,y+2]
       y \ge 0 \land z + x * y = a * b \land y > 0 \land par.y \Rightarrow y \div 2 \ge 0 \land z + (x + x) * (y \div 2) = a * b
        (1) (2) (3) (4)
                                                         (5)
=
              \langle 1 \Rightarrow 5 : \text{propiedades de} \div
                (4 \Rightarrow y \div 2 = y/2; x+x = 2*x; Cancelacion-*) \Rightarrow 6
       true
[b]
        \{P \land \neg par.y\} \ z, y := z + x, y - 1 \ \{P\}
       P \land \neg par.y \Rightarrow P[z,y:=z+x,y-1]
       y \ge 0 \land z + x * y = a * b \land \neg par. y \Rightarrow y - 1 \ge 0 \land z + x + x * (y - 1) = a * b
                         (2)
                                        (3)
                                                        (4)
             \langle 1 \wedge 3 \Rightarrow 4 : aritmética;
                2 \Rightarrow 5 : aritmética
       true
```

[4] Terminación

Informal: la cota y disminuye efectivamente en cada caso. En el primer caso debe notarse que y es par y positivo, de modo que y/2 < y.

Formal:

[a]
$$\{P \land y>0 \land par.y \land y=y_0\} x,y:= x+x,y+2 \{y =
$$P \land y>0 \land par.y \land y=y_0 \Rightarrow (y =
$$y\geq 0 \land z+x*y = a*b \land y>0 \land par.y \land y=y_0 \Rightarrow y+2 (1) (2) (3) (4) (5) (6)$$$$$$

```
= \langle 3 \land 4 \land 5 \Rightarrow 6: propiedades de \div \rangle true

[b]

{P \( \sigma \text{par.y} \lambda \text{y=y_0} \) z,y:= z+x,y-1 {y<y_0}

= P \( \sigma \text{par.y} \lambda \text{y=y_0} \rightarrow (y<y_0) [z,y:= z+x,y-1]

= y\geq 0 \lambda z+x*y = a*b \lambda \sigma \text{par.y} \lambda \text{y=y_0} \rightarrow y-1<y_0}{(1)}

= \( \lambda 4 \rightarrow 5 : \text{ aritmética} \rightarrow true \)
```