Name:

1. Given the following AC power system with an ideal transformer, with a load resistance of $R_{load}=2\Omega$, a turns ratio of a=15, and a $R_{line}=36.49\Omega$, answer the following questions:

(a) If we desire the load voltage to be $120V_{\rm rms}$, find the load power and the load current. Since this is a resistor, use real power.

$$I_{load} =$$

(b) Find the voltage and current required on the primary (1) side of the transformer.

$$V_1 =$$

$$I_1 =$$

(c) Determine the system efficiency.

$$\eta =$$

(d) Use KVL to establish the required source voltage.

$$V_s =$$

2.	Assume you want to increase the transmission efficiency of Problem 1 to 97.5% by decreasing $R_{\rm line}$, fin
	the required value.

$R_{line} =$	
--------------	--

3. Assume you want to increase the transmission efficiency of Problem 1 again to 97.5%, this time by changing the turns ratio, a. Find the new turns ratio.

4. Analyze the following power delivery system.

(a) Find the transformer turns ratio (a).

$$a =$$

(b) Find the RMS current drawn from the $115V_{\rm rms}$ bus, then determine the corresponding current drawn from the $460V_{\rm rms}$ bus.

$I_{115} =$	
$I_{460} =$	