

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA CR- 152477

FINAL REPORT

EVALUATION OF NASA SPEECH ENCODER

CONTRACT NA55-23460

(NASA-CR-152477) EVALUATION OF NASA SPEECH
ENCODER Final Report (Southeastern
Scientific Co., Inc.) 79 p HC A05/MF A01

N77-21401

CSCL 14B

Unclassified
24440

G3/35

December 15, 1976

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Goddard Space Flight Center

Greenbelt, Maryland 20771

Southeastern Scientific Company, Inc.

FINAL REPORT

EVALUATION OF NASA SPEECH ENCODER

CONTRACT NAS5-23460

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Goddard Space Flight Center
Greenbelt, Maryland 20771**

Prepared by

**Southeastern Scientific Co., Inc.
P. O. Box 8721
University Station
Knoxville, TN 37916**

December 15, 1976

TABLE OF CONTENTS

	Page
1. INTRODUCTION	1
2. COMPUTER SIMULATION OF VOICE-DECODING SYSTEM	3
2.1 Overview of the Simulation Approach	3
2.2 Operation of the Quantizer	3
2.3 Relationship Between the Number of Quantizer Levels and the Required Sampling Rate	7
2.4 Reconstruction of Signals	10
3. DIGITAL FILTERING	16
4. EXPERIMENTAL RESULTS	23
4.1 Speech Data	23
4.2 Speech Recording, Sampling, and Storage	24
4.3 Formant Filter Settings	25
4.4 Selection and Setting of Quantizer Levels	27
4.5 Processing Results	31
5. CONCLUSIONS AND RECOMMENDATIONS	47
6. REFERENCES	50
7. APPENDIX	52

COMPUTER SIMULATION AND ANALYSIS OF A VOICE DECODING QUANTIZER

1. INTRODUCTION

Over the past twenty-five years man's only direct communication with digital computing systems has been through switches and typewriter keyboards. A significant fraction of the cost incurred in operating modern computing facilities is related to software development and man-machine interaction. The years ahead show promise of direct verbal communication with computers, a capability which would not only improve efficiency of operation, but would also pave the way for truly general utilization of computing systems by a large segment of potential users.

Interaction with computers, although an important area, is not the only application of automatic speech processing. A system capable of breaking down speech into its basic building blocks (i.e., phonemes) would find application in almost every field of voice communication because of the considerable reductions in bandwidth that would be possible with this approach. A system of this nature would also have other social benefits such as helping the deaf to understand the spoken word by developing machines that preprocess speech and output its phoneme content on a portable display. Since deaf

individuals usually have a speaking handicap because they cannot hear themselves, a simpler system could also be developed to teach a deaf person correct pronunciation by using biofeedback procedures.

The techniques which NASA has pioneered for the development of space flight instrumentation are ideally suited for conversion to the task of speech decoding. Donald Lokerson of the NASA-Goddard Space Flight Center recognized this similarity, and he designed a quantizer to decode speech phonemes and sounds using many of the same techniques which he developed for spaceflight electronic equipment (1). This quantizer is a hardware device subject to the variability of electronic components. The purpose of the project reported in the following sections was to simulate the action of the quantizer in a digital computer where such parameters as gain, quantizer levels, thresholds, and filters could be controlled easily and precisely. At this stage of investigation into Lokerson's idea, simulation is a valuable tool because changes in the system can be made at a fraction of the cost required to modify a hardware prototype. After the quantizer was simulated in a computer, its operation was tested with synthesized as well as real speech signals. All results were evaluated by a specialist on speech phonetics.

2. COMPUTER SIMULATION OF VOICE-DECODING SYSTEM

2.1 OVERVIEW OF THE SIMULATION APPROACH

The entire voice-decoding system was simulated in a mini-computer. Figure 1 shows a block diagram of the simulation. Signals were derived from two sources: (1) a phonetician interacting with the computer via a microphone, and (2) computer generated waveforms. The first source was used for on-line evaluation of the system. The second source was used for studying system performance under controlled conditions.

After a signal is digitized, it is processed by three digital filters to produce the three speech formants. The outputs of these filters are then fed into a simulation of Lokerson's decoding quantizer to obtain three trains of pulses. The number of pulses is monitored by software pulse counters. After a given segment of a speech signal has been processed, or after the counter for the second formant output reaches a specified count, the formant ratios F_1/F_2 and F_3/F_2 are computed. These ratios are then used to identify the nature of the input sound. They can be displayed on a two-dimensional plot with F_1/F_2 and F_3/F_2 axes, or tabulated on a printer for later reference.

2.2 OPERATION OF THE QUANTIZER

The objective of the quantizer is to produce trains of pulses which are proportional to the frequency and amplitude

Figure 1. Block diagram of computer simulation

of the three filtered input signals. The operation of the quantizer can be illustrated by means of the simple waveforms shown in Figure 2. Assume the $g_1(t)$, $g_2(t)$ and $g_3(t)$ are the inputs to quantizers 1, 2, and 3, respectively. In this case $g_1(t)$ and $g_3(t)$ are equal. The quantizer requires three parameters: the number of levels, amplitude of the maximum and minimum levels, and specification of a stopping point in time for computation of the formant ratios F_1/F_2 and F_3/F_2 . In the example shown in Figure 2, there are two levels in the positive region and (by symmetry) two levels in the negative region. For the purpose of illustration it is assumed that the maximum quantizer levels are set equal to the maximum signal amplitude. The pulse trains are generated in the following manner: In the positive region, a pulse is initiated whenever a signal enters an odd band (i.e., the bands between levels 0-1, 2-3, 5-6, etc.) and terminated when it enters an even band. The opposite is true for the negative region. Consider, for example, the pulses generated by $g_2(t)$ in Figure 2. The signal starts in band 1, defined by levels 0 and 1. Since this is an odd band, and the signal is in the positive region, a pulse is initiated and continued until $g_2(t)$ enters band 2. As shown in the pulse diagram, the pulse drops for as long as $g_2(t)$ is in this band. When $g_2(t)$ goes back into band 1, a new pulse is started. This pulse is terminated when the signal enters band 1 in the negative region, and restarted when

Figure 2. Example of quantizer operation.

it enters band 2 in that region. Application of this procedure yielded the two train pulses shown in the figure. If, for example, the quantizer were stopped at $t = 4$ sec., we would have the ratios $F_1/F_2 = F_3/F_2 = 0.5$ since there would be twice as many pulses for F_2 than for F_1 or F_3 .

2.3 RELATIONSHIP BETWEEN THE NUMBER OF QUANTIZER LEVELS AND THE REQUIRED SAMPLING RATE

As indicated in the previous section, the number of pulses output by the quantizer is determined by the number of transitions between quantizer bands in a given time period. When a signal is digitized, therefore, it is important that there be at least one sample per band to assure that transitions between bands are properly accounted for. In the following discussion we consider the required sampling rate as a function of the number of levels used in the quantizer.

Let Q be the number of levels used in the positive region of the quantizer[†] and consider a function $g(t) = A\sin 2\pi ft$, where f is the signal frequency in Hz. If this function is sampled at time increments $\Delta t = t_i - t_{i-1}$ we see that the change of $g(t)$ between samples is

$$\begin{aligned}\Delta g &= g(t_i) - g(t_{i-1}) \\ &= A\sin 2\pi f t_i - A\sin 2\pi f t_{i-1}\end{aligned}\quad (1)$$

[†]By symmetry we consider the same number of levels in the negative region so that the total number of levels is $2Q$.

Since the fastest rate of change of a sine function is at the origin, it is of interest to examine the behavior of Δg in the time interval between the origin and the first sample. In this case $t_{i-1} = 0$ and $\Delta t = t_i$. Thus

$$\Delta g = A \sin 2\pi f \Delta t \quad (2)$$

If the levels are spaced uniformly and the maximum level is set at amplitude A , we have that their spacing is A/Q . In order to get at least one sample between any two levels, we then require that

$$\Delta g < \frac{A}{Q} \quad (3)$$

or

$$\frac{1}{Q} > \sin 2\pi f \Delta t \quad (4)$$

Solving for Δt we have that the separation between samples for a sine wave has to be, at least,

$$\Delta t < \frac{1}{2\pi f} \sin^{-1} \left(\frac{1}{Q} \right) \quad (5)$$

where it is assumed that $\sin^{-1}(1/Q)$ is given in radians. If it is given in degrees, we have the simple conversion

$$\Delta t < \frac{1}{2\pi f} \sin^{-1} \left(\frac{1}{Q} \right) \left(\frac{\pi}{180} \right) \quad (6)$$

or

$$\Delta t < \frac{1}{360f} \sin^{-1} \left(\frac{1}{Q} \right) \quad (7)$$

The required sampling rate in samples/sec (or Hz) is simply $1/\Delta t$. Several values of Q with their required sampling rates are shown in Table 1 for $f = 3500$ Hz. It is noted that if $Q = 32$ a sampling rate in excess of 700 KHz is required.

TABLE 1

Q	$\sin^{-1} \left(\frac{1}{Q} \right)$ (deg)	Δt (μsec)	sampling rate (KHz)
32	1.791	1.421	703.6
16	3.583	2.844	351.6
8	7.181	5.699	175.5
4	14.478	11.490	87.0
2	30.000	23.809	42.0
1	90.000	71.429	14.0

Although the foregoing analysis was carried out in terms of a simple sine wave, it is indicative of the large number of samples required for proper operation of the quantizer. In the following section we consider some approaches used in obtaining an approximate solution to this problem.

2.4 RECONSTRUCTION OF SIGNALS

From Nyquist's sampling theorem (2) we have that a signal whose maximum frequency component is f_{\max} can be completely reconstructed from samples whose separation is less than $1/2f_{\max}$ (i.e., a sampling rate greater than $2f_{\max}$). The reconstruction formula is given by

$$f(t) = \frac{W T_s}{\pi} \sum_{n=-\infty}^{\infty} f(nT_s) \frac{\sin W(t - nT_s)}{W(t - nT_s)}, \quad (8)$$

where

$$T_s = 1/f_s, \quad (f_s \text{ is the sampling frequency}),$$

$$W \text{ is a number such that } 2\pi f_{\max} \leq W \leq 2\pi(f_s - f_{\max})$$

$$f(nT_s) \text{ are the samples of } f(t) \text{ spaced by } T_s.$$

The simplest form for the reconstruction formula occurs for $W = \pi/T_s$, which gives

$$f(t) = \sum_{n=-\infty}^{\infty} f(nT_s) \frac{\sin(\pi t/T_s - n\pi)}{\pi t/T_s - n\pi} \quad (9)$$

$$\text{where } 1/T_s = f_s \geq 2f_{\max}.$$

It is of interest from a practical point of view to estimate the number of terms required to give $f(t)$ to within some specified accuracy. If we define $\hat{f}(t)$ to be the value given by the reconstruction formula when truncated to a finite summation, then we require that

$$|f(t) - \hat{f}(t)| < \epsilon, \quad (10)$$

where ϵ is a number we can choose. Since the terms in the series are large when $n = t/T_s$, or when $t = nT_s$, it is useful to write the reconstruction formula for $f(t)$ in the following manner:

$$\hat{f}(t) = \sum_{n=p-N}^{p+N} f(nT_s) \frac{\sin(\pi t/T_s - n\pi)}{\pi t/T_s - n\pi} \quad (11)$$

where p is the closest integer to t/T_s . This truncated series contains $2N + 1$ terms.

As an example, let $f(t) = \sin\pi 7000 t$ so that $f = 3500$ Hz. This may be considered to be the highest required frequency (f_{max}) for voice communication. Thus, f_s must be greater than 7000. Choose $f_s = 10^5/9$, or $T_s = 9 \times 10^{-5}$ as determined by practical considerations. Calculate the required number of terms ($2N+1$) for, (a) $\epsilon = 1/16$, and (b) $\epsilon = 1/32$. The reconstruction formula is

$$\hat{f}(t) = \sum_{n=p-N}^{p+N} \sin(0.063n\pi) \frac{\sin \frac{\pi t \times 10^5}{9} - n\pi}{\frac{\pi t \times 10^5}{9} - n\pi}$$

Results are shown in Table 2. They indicate, as expected, that the largest number of terms is required when interpolating midway between samples. Thus, values of $f(t)$ lying between sample values can be found to any desired accuracy by increasing N . Values so calculated are equivalent to new

TABLE 2

t/T_s	$f(t)$	$\epsilon = 1/16$		$\epsilon = 1/32$	
		No. of Terms	$\hat{f}(t)$	No. of Terms	$\hat{f}(t)$
0.00000	0	1	0	1	0
0.01579	0.03125	1	0	1	0
0.25000	0.47486	13	0.45035	23	0.44864
0.50000	0.83581	19	0.83767	35	0.83179
0.75000	0.99627	7	1.03222	21	0.97374
0.79365	1.00000	7	1.03011	13	0.99041
1.00000	0.91775	1	0.91775	1	0.91775

sample values, and thus the use of the reconstruction formula is equivalent to using a much higher sampling rate. In other words, use of Equation (11) allows a much slower sampling rate for an input speech signal. If Nyquist's sampling criterion is satisfied, we are assured that it is possible to obtain any desired number of interpolated points between the sampled values. The accuracy of the new points is determined by the number of terms used in Equation (11).

All the speech signals processed in this project were lowpass filtered at 3500 Hz prior to sampling in order to avoid aliasing. The sampling rate used was 11 KHz which is well

above the required Nyquist rate of 7 KHz. After sampling, each input signal was filtered into three formant regions, as discussed in Figure 1, and the three resulting signals were reconstructed to a rate specified from the computer keyboard.

Since, as shown in Table 1, the required effective sampling rates are quite high, an approximation was used in the quantizer which allowed utilization of much lower rates. The approximation consisted of treating successive samples as if they were joined by a straight line. In this way erroneous transitions between levels were minimized for signals whose (reconstructed) sampling rates were below those indicated in Table 1.

To illustrate the behavior of this approach, three sine waves of 500, 1000, and 3000 Hz were created in the computer at a sampling rate of 100 KHz. Eighty blocks of data of 128 samples each were generated for each function and fed into the quantizer with and without the straight line approximation. $Q = 32$ was used in both cases which, according to the figures in Table 1, should have required a sampling rate of about 700 KHz for the 3000 Hz sine wave. After processing all 80 blocks without the straight line approximation the formant ratios were $F_1/F_2 = 0.775$ and $F_3/F_2 = 1.15$. With the straight line approximation the results were $F_1/F_2 = 0.501$ and $F_3/F_2 = 2.93$. These latter results are much closer to the ideal values $F_1/F_2 = 0.500$ and $F_3/F_2 = 3.000$. The results

obtained with the straight line approximation were also close for shorter processing blocks. Figure 3 shows the results for signal segments which were 8 blocks long.

BLOCK	F1/F2	F3/F2	CNT FOR F1	CNT FOR F2	CNT FOR F3
8	0. 504	2. 999	0. 3255E+03	0. 6455E+03	0. 1936E+04
16	0. 496	3. 005	0. 3200E+03	0. 6430E+03	0. 1933E+04
24	0. 490	2. 995	0. 3180E+03	0. 6425E+03	0. 1942E+04
32	0. 509	3. 021	0. 3260E+03	0. 6405E+03	0. 1935E+04
40	0. 502	2. 988	0. 3265E+03	0. 6500E+03	0. 1942E+04
48	0. 504	3. 024	0. 3220E+03	0. 6395E+03	0. 1934E+04
56	0. 487	2. 975	0. 3170E+03	0. 6510E+03	0. 1937E+04
64	0. 507	3. 016	0. 3270E+03	0. 6445E+03	0. 1944E+04
72	0. 500	2. 937	0. 3285E+03	0. 6575E+03	0. 1931E+04
80	0. 510	3. 009	0. 3290E+03	0. 6455E+03	0. 1943E+04

Figure 3. Behavior of the quantizer with straight line approximation

3. DIGITAL FILTERING

The concept of digital filtering refers to the process of operating on a given digital signal to produce another digital signal. Figure 4 illustrates this process. The input signal is a sequence of numbers, $\{f_m\} = \{f_0, f_1, f_2, f_3, \dots\}$, generally acquired from an analog-to-digital converter (ADC) or a direct digital input source. This sequence is transformed by the digital filter, a term referring to a computational algorithm performed on the input sequence, to produce an output sequence, $\{g_m\}$. The computational process can correspond to the highpass filtering, lowpass filtering, bandpass filtering, or other desired transformation.

Figure 4. Process of digital filtering.

Digital transformations are most easily represented by linear difference equations. The digital process of Figure 4 is described by the general recursive equation

$$g_m = \sum_{k=0}^K b_k f_{m-k} - \sum_{k=1}^K a_k g_{m-k} \quad (12)$$

in which the coefficient a_k and b_k are the characteristic coefficients of the digital filter. Observe that g_m , the present output of the filter, is computed from the present and past values of the input ($f_m, f_{m-1}, f_{m-2}, \dots, f_{m-K}$) and the past values of the output ($g_{m-1}, g_{m-2}, \dots, g_{m-K}$). For an input sequence which is generated periodically with period T , g_m represents the filter output at $t = mT$ (i.e. $g(mT)$).

In this research, the continuous processes of speech and formant filtering were simulated by digital filtering techniques. Figure 5 describes the simulation of the continuous processes. The speech input is periodically sampled, digitized, and output to the formant filters as a sequence of numbers, $\{f_m\}$. Each of the formant filters was simulated by a digital filter and programmed on a PDP 11/40 digital computer. The computer transformed the speech sequence $\{f_m\}$ by the recursive equation of each formant filter to generate the output sequences $\{g_{1m}\}$, $\{g_{2m}\}$, and $\{g_{3m}\}$ to the quantizer.

Several advantages are offered by this simulation approach. First, a greater flexibility is achieved since the filter characteristics can be altered by simply varying the proper arithmetic coefficients. An arbitrarily high precision is obtained since results are limited only by the number of bits

Figure 5. Digital simulation of speech and formant filtering processes. $[g_{1m}]$, $[g_{2m}]$, and $[g_{3m}]$ are the output sequences from the formant filters and represent the inputs to the quantizer.

used to represent the filter coefficients and by the resolution of the ADC in quantizing the input. Finally, the digital filter simulation does not have the performance limitations of physical components.

A Butterworth bandpass filter was used to approximate the characteristics of the formant filters since the speech and formant filtering processes are bandpass limited. The power gain for the analog filter has the following general form:

$$|H(jw)|^2 = \frac{1}{1 + \left[\frac{w - w_1 w_2}{ww_c} \right]^{2N}} \quad (13)$$

N is the order of the filter and $\frac{N}{2}$ represents the number of filter sections. The roll-off characteristics for the power gain of the filter are given as $6N$ db/octave. w_1 and w_2 are the half-power points of the gain and $w_c = w_2 - w_1$ is the filter bandwidth.

A digital filter is obtained from the analog filter by using the bilinear transformation to effectively transform the analog poles and zeros into digital poles and zeros. The power gain of the digital bandpass filter has the form

$$|H(jw)|^2 = \frac{1}{1 + \left[\frac{\tan^2 \frac{wT}{2} - w_1' w_2'}{w_c' \tan \frac{wT}{2}} \right]^{2N}} \quad (14)$$

where

$$w_1' = \tan \frac{w_1 T}{2} \quad (15)$$

$$w_2' = \tan \frac{w_2 T}{2} \quad (16)$$

and

$$w_c' = w_2' - w_1' \quad (17)$$

T represents the period of the sampling frequency and corresponds to the period at which the input speech is sampled.

The linear difference equation which describes the k^{th} section $k = 1, 2, \dots, \frac{N}{2}$ of the digital filter is presented below.

$$\begin{aligned} g(mT) &= A(k)[f(mT) - 2f(mT-2T) + f(mT-4T)] - B(k)g(mT-T) - C(k)g(mT-2T) \\ &\quad - D(k)g(mT-3T) - E(k)g(mT-4T) \end{aligned} \quad (18)$$

or,

$$\begin{aligned} g_m &= A(k)[f_m - 2f_{m-2} + f_{m-4}] + B(k)g_{m-1} - C(k)g_{m-2} - D(k)g_{m-3} \\ &\quad - E(k)g_{m-4} \end{aligned} \quad (19)$$

A Fortran computer program for the design of digital bandpass filters is shown in Figure 6. The inputs to the subroutine are the half power points f_1 and f_2 in Hz, the sampling interval T in seconds, the number NS of filter sections, and the number NF of the particular formant filter. The output generated by the program is NS sets of filter coefficients, $A(k)$ through $E(k)$ for $k = 1, 2, \dots, N/2$.

After each formant filter was designed and simulated by the above approach, the sampled speech input, f_m , was operated on in parallel by the formant filters to generate the quantizer inputs, g_{1m} , g_{2m} , and g_{3m} . This approach provided a systematic method for determining and evaluating the effects of the filter characteristics on the quantizer output.

```

SUBROUTINE BPDES(F1, F2, T, NS, NF)
COMMON A(10, 10), B(10, 10), C(10, 10), D(10, 10), E(10, 10), GRAF(10, 2, 20)
DIMENSION F1(10), F2(10)
PI=3.1415926536
W1=SIN(F1(NF)*PI*T)/COS(F1(NF)*PI*T)
W2=SIN(F2(NF)*PI*T)/COS(F2(NF)*PI*T)
WC=W2-W1
Q=WC*WC+2.*W1*W2
S=W1*W1*W2*W2
DO 150 K=1, NS
CS=COS(FLOAT(2*(K+NS)-1)*PI/FLOAT(4*NS))
P=-2.*WC*CS
R=P*W1*W2
X=1. +P+Q+R+S
A(NF, K)=WC*WC/X
B(NF, K)=(-4. -2.*P+2.*R+4.*S)/X
C(NF, K)=(6. -2.*Q+6.*S)/X
D(NF, K)=(-4. +2.*P-2.*R+4.*S)/X
150 E(NF, K)=(1. -P+Q-R+S)/X
DO 160 J=1, 2
DO 160 I=1, 10
K=I*(2-J)+(21-I)*(J-1)
GRAF(NF, 2, K)=.01+.98*FLOAT(I-1)/9.
X=(1./GRAF(NF, 2, K)-1. )**(1./FLOAT(4*NS))
SQ=SQRT(WC*WC*X*X+4.*W1*W2)
160 GRAF(NF, 1, K)=ABS(ATAN(.5*(WC*X+FLOAT(2*J-3)*SQ)))/(PI*T)
RETURN
END

```

Figure 6. BPDES: A bandpass Butterworth digital filter design subroutine.

4. EXPERIMENTAL RESULTS

4.1 SPEECH DATA

In addition to sinusoidal data generated in the computer, the speech decoder was tested with speech data generated by two trained phoneticians. The first speaker was a woman with a highly-pitched voice, and the second a man with a deep voice. Two sets of sounds were generated by each speaker. The first set consisted of sustained vowels and the second of short words containing these vowels. The vowels and corresponding words used were

i heed

æ had

a hod

ɔ hawed

u who'd

ɜ heard

In the following discussion we refer to the woman as speaker 1 and the man as speaker 2. The code

X.YZ

will be used to denote the sound, speaker, and sample number, in that order. For example, sample number 1 of the sound "i" spoken by speaker number 2 will be denoted by i.21.

The data in Table 3 will be used as a basis for evaluating system performance. The main points of interest in this table are the formant frequencies for the vowels spoken by men, women, and children. In interpreting the entries in this table the reader should keep in mind that the results were obtained by averaging a number of speakers and also that the approach we have simulated is different from simply obtaining the principal frequency of each formant.

In order to obtain a measure of expected location and separation between vowels, the ratios F_1/F_2 and F_3/F_2 were computed from the data in Table 3 and plotted on the formant space shown in Figure 7. The extremes of each rectangle were established by the extreme values of the formant ratios when men, women, and children were considered. It is important to note that the formant space shown in Figure 7 is divided mainly into five disjoint regions in the F_1/F_2 axis, but only two principal regions in the F_3/F_2 axis.

4.2 SPEECH RECORDING, SAMPLING, AND STORAGE

All the speech sounds described in the previous section were recorded on audio tape. The tape was then played back into the computer analog-to-digital converter for digitization. All signals were lowpass filtered at 3500 Hz (to avoid aliasing) before digitization at 11 KHz. Sixty blocks of data of 256 samples each were generated from each speech sound and stored on computer magnetic tape for further processing.

Table 3. Averages of fundamental frequencies and the first three formant frequencies of vowels produced by seventy-six speakers: thirty-three men, twenty-eight women, fifteen children. [Table from Handbook of Speech Pathology, edited by Lee Edward Travis.] Appleton-Century-Crofts, Educational Division, Meredith Corp., 1957.

		i	e	ɛ	a	ɔ	u	ʊ	ʌ	ə	ɔ̄	
Fundamental Frequencies (Hz)	M	136	135	130	127	124	129	137	141	130	133	
	W	235	232	223	210	212	216	232	231	221	218	
	Ch	272	269	260	251	256	263	276	274	261	261	
Formant Frequencies (Hz)												
	F ₁	M	270	390	530	660	730	670	440	300	640	490
		W	310	430	610	860	850	590	470	370	760	500
		Ch	370	530	690	1010	1030	680	560	430	850	560
	F ₂	M	2290	1990	1840	1720	1090	840	1020	870	1190	1350
		W	2790	2460	2330	2050	1220	920	1160	950	1400	1640
		Ch	3200	2730	2610	2320	1370	1060	1410	1170	1590	1820
	F ₃	M	3010	2550	2480	2410	2440	2410	2240	2240	2390	1690
		W	3310	3070	2990	2850	2810	2710	2680	2670	2780	1960
		Ch	3730	3600	3570	3320	3170	3180	3310	3260	3360	2160

4.3 FORMANT FILTER SETTINGS

The settings for the three formant filters were chosen to span the extremes of all the formant frequencies in Table 3. The filters used were overlapping bandpass filters with settings

F1: 225-1050 Hz

F2: 800-3300 Hz

F3: 2100-3800 Hz

Experiments with nonoverlapping filters covering the same overall range were tested early in the investigation and then discarded because they yielded poor formant-ratio results.

Figure 7. Formant space

4.4 SELECTION AND SETTING OF QUANTIZER LEVELS

Implementation of the quantizer requires a choice on the number of levels as well as the relative setting of the maximum and minimum levels. Experiments were conducted with several sinusoidal and speech signals to determine optimum settings for these parameters. Based on the results obtained with straight-line approximations in the quantizer (see Section 2.3) the outputs of the three formant filters discussed in the previous section were reconstructed to 100 KHz before they were input into the quantizer. Reconstruction was accomplished by using Equation (11) with $N = 10$ so that a total of twenty-one terms were used in calculating each interpolated point. We found this number of terms to be adequate in creating a smooth approximation between speech samples taken at 11 KHz.

Two approaches were investigated for setting the quantizer levels. The first was to set the maximum quantizer level for a segment of data (e.g., 10 msec) equal to the absolute peak value of the signal in the previous segment. The second approach was to set the maximum level equal to the absolute value of the average of the signal in the previous data segment. In both cases the minimum quantizer level was set equal to the negative of the maximum level.

In order to illustrate the relative effects of these settings, sound i.11 was processed with 32, 16, 8, 4, 2 and 1 .

equally-spaced levels on each side of the abscissa. Both approaches were used, with the peak or average values updated every 10 msec. The results are shown in Figure 8 for peak-value settings and in Figure 9 for average-value settings. The ranges spanned by the data for each level setting are enclosed by a labeled rectangle. Two significant improvements are evident in the average-value approach: first, the results in Figure 9 are much closer to the ideal region (inner box) and second, the regions spanned by the data tended to shrink about the ideal region as the number of levels was increased. In the case of Figure 8, on the other hand, a strong tendency to shift left is evident for 1 and 2 levels. Although this effect is also present in Figure 9, the shift is much smaller (note that the axis scales are logarithmic). It has been our experience that eight levels appear to yield results which are consistently very close to 32 levels.

Figure 8

Figure 9

4.5 PROCESSING RESULTS

The vowels and words described in Section 4.1 were processed using eight positive and eight negative quantizer levels. The input speech signals were sampled at 11 KHz and filtered using the filter bandwidths given in Section 4.3. After filtering, the three formant signals were reconstructed to an effective sampling rate of 100 KHz by using Eq.(11) with N=10. The maximum and minimum quantizer levels were set using the averaging procedure described in Section 4.4. Quantization results were output every 16 blocks of reconstructed data, where each block contained 128 samples. A complete tabulation of all results is included in the Appendix.

Figure 10 is a summary of the best ratios obtained for the sustained vowels listed in Section 4.1. The entries shown in this figure are the three sets of ratios which, for each speaker, were closer to their corresponding ideal region. It is noted that for each vowel the location of F1/F2 ratio is quite close to the ideal region. The results are not as close for the F3/F2 ratios. In particular, this ratio was high for the vowel ɔ for both speakers and for the vowel ae for speaker 1. This is not unexpected since, as mentioned earlier, the formant space is divided into only two principal regions on the vertical axis.

As shown in Figure 11, similar results were obtained with the words containing the above vowels. Separation in the F1/F2 axis was as expected for all vowels. Separation in the F3/F2 axis was inadequate for ɔ (both speakers) and u and ae (speaker 1).

Figure 10

Figure 11

Considering that the ideal formant regions in Figures 10 and 11 were obtained by averaging results over many speakers (see Section 4.1), it appears that the quantizer is performing as expected. The discrepancies on the F3/F2 axis require further attention--most likely in the filter settings and length of data blocks processed between results.

Figures 12 through 23 are plots of all the data in the Appendix. The arrow in each of these figures indicates the starting point. The principal features of these plots are the separation between vowels and the overall consistency of results between the man and woman. It is noted, however, that the formant trajectories for the man are much more clustered than those for the woman. Since the ratios were output over the same time increments, these results seem to indicate that it would be desirable to incorporate into the system some procedure for frequency normalization. One possibility is to output the ratios at the end of every pitch segment (i.e., sound burst). Implementation of this procedure would require processing the input signal prior to filtering in order to determine the individual bursts for use in stopping the pulse counters.

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

5. CONCLUSIONS AND RECOMMENDATIONS

The overall conclusion of this investigation is that the quantizer achieved consistent separation with the vowels tested, particularly in the F1/F2 axis of the formant space.

It was found that eight equally-spaced positive and negative quantizer levels yielded results which were close to thirty-two such levels, but represented some improvement over four levels. Thus, it appears that eight levels on either side of the abscissa are quite adequate for processing speech data. Similarly, it was found that setting the maximum quantizer level to the absolute value of the average of the previous block of processed data gave better results than using the peak of the waveform in the previous data block.

Although the performance of the quantizer was reasonably close to the ideal formant regions shown in Figure 7, there are several areas of investigation which, in our opinion, require further attention. These are listed below.

Filter settings: The formant filters were set to encompass the full variation of formant frequencies listed in Table 3 for men, women, and children. It is likely that improved performance could be obtained if the filters were set in an adaptive way to correspond with some (as yet unidentified) characteristics of the input speech.

Computation Interval for Formant Ratios: We feel that a more meaningful approach should be developed to designate the intervals in which the formant ratios are computed. To this effect, we recommend that a procedure to detect the beginning and ending of pitch intervals (i.e., sound bursts) in the input signals be developed. Computation of the formant ratios could then be keyed to these intervals.

Setting of Formant Levels: The maximum (and by symmetry the minimum) formant levels were set independently for each formant. It appears worthwhile to investigate the effects of using one of the formants as a normalization factor to set the levels for the remaining formants. This approach would thus take into account differences in amplitudes between the three formant signals.

It would be of value to incorporate the above features in the existing software system and reprocess the data listed in this report. The objectives of this experiment would be to ascertain whether these changes could improve separation in the F3/F2 axis and also reduce the trajectory scatters for speaker 1.

One of the most time-consuming factors in this investigation was to record, digitize, and preprocess (i.e., reconstruct) speech signals. The quantizer functions discussed in this report could be incorporated in a microprocessor system. Development of such a system would allow on-line

processing of many more speech samples while maintaining the versatility of a prototype in which changes can be made easily by modifying the software. A future task in this area should at least include a definition and cost of such a prototype system for use in further experiments with the speech quantization approach.

REFERENCES

1. Lokerson, D. C. and H. G. Holby, "Techniques for Decoding Speech Phonemes and Sounds: A Concept," NASA Tech Briefs, B 73-10210, May, 1975.
2. Stearns, Samuel D. Digital Signal Analysis, Hyden Book Co., Rochelle Park, New Jersey, 1975.
3. White, George M. "Speech Recognition: A Tutorial Overview," Computer, pp. 49-52, May, 1976.
4. Chapanis, A. "Interactive Human Communication," Scientific American, Vol. 232(3), pp. 36-42, 1975.
5. Yasaki, Edward K. "Voice Recognition Comes of Age," Datamation, pp. 65-68, August, 1976.
6. Schroeder, Manfred R. "Models of Hearing," Proc. of the IEEE, Vol. 63, No. 9, pp. 1332-1350, September, 1975.
7. Flanagan, James L. "Computers that Talk and Listen: Man-Machine Communication by Voice," Proc. of the IEEE, Vol. 64, No. 4, pp. 405-415, April, 1976.
8. Rabiner, Lawrence R. "Scanning the Issue," Proc. of the IEEE, Vol. 64, No. 4, pp. 403-404, April, 1976.
9. Martin, Thomas B. "Practical Applications of Voice Input to Machines," Proc. of the IEEE, Vol. 64, No. 4, pp. 487-501, April, 1976.
10. Reddy, D. R. "Speech Recognition by Machine: A Review," Proc. of the IEEE, Vol. 64, No. 4, pp. 501-531, April, 1976.
11. Rabiner, Lawrence R. and Marvin R. Sambur, "Some Preliminary Experiments in the Recognition of Connected Digits," IEEE Trans. on Acoustics, Speech and Signal Proc., Vol. ASSP-24, No. 2, pp. 170-182, April, 1976.
12. Makhoul, J. "Linear Prediction: A Tutorial Review," Proc. of the IEEE, Vol. 63, No. 4, pp. 561-580, April, 1975.

13. Helmholtz, H. On the Sensation of Tone, New York,
Dover, 1954.
14. Schafer, Ronald W. and Lawrence R. Rabiner, "Digital
Representations of Speech Signals," Proc. of the
IEEE, Vol. 63, No. 4, pp. 662-677, April, 1975.

APPENDIX

Computer Printouts of Processing Results

The following data were generated by the procedure described in Section 4. Speech signals were sampled at 11 KHz and reconstructed to an effective sampling rate of 100 KHz. Eight positive and eight negative levels were used in each of the three quantizers. The quantization results were printed out every 16 blocks of the reconstructed data, with each block containing 128 samples. The maximum positive quantizer levels for each 16-block data segment were set to the absolute value of the data average in the previous 16-block segment. Each formant was scaled separately, and the minimum quantizer levels were set equal to the negative of their respective maximum levels.

APPENDIX A
SPEECH RESULTS

1.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.109	0.929	90.0	827.0	768.0
32	0.119	0.947	82.5	693.0	656.5
48	0.115	1.027	81.5	711.5	731.0
64	0.112	1.081	77.0	687.0	742.5
80	0.111	1.094	82.5	743.0	812.5
96	0.110	1.125	75.0	684.5	770.0
112	0.125	1.241	81.0	647.5	803.5
128	0.112	1.313	76.5	681.5	895.0
144	0.108	1.243	77.0	713.5	887.0
160	0.111	1.072	85.0	763.0	818.0
176	0.121	1.073	90.0	743.0	797.5
192	0.115	1.066	87.0	753.5	803.5
208	0.139	1.336	82.5	593.0	792.5
224	0.223	2.017	78.0	349.0	704.0
240	0.116	1.483	70.0	606.0	899.0
256	0.107	1.434	72.5	678.5	973.0
272	0.103	1.243	67.5	655.5	815.0
288	0.116	1.391	78.0	673.0	936.0
304	0.099	1.185	69.0	695.5	824.0
320	0.111	1.250	74.5	672.0	840.0

heed.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.125	1.274	82.5	657.5	837.5
32	0.107	1.055	82.5	773.0	815.5
48	0.108	1.180	75.5	700.0	826.0
64	0.112	1.141	82.0	730.0	833.0
80	0.108	1.128	80.0	738.0	832.5
96	0.100	1.010	78.5	785.0	792.5
112	0.093	1.011	76.0	814.5	823.5
128	0.102	1.034	75.0	733.0	758.0
144	0.097	1.101	73.5	754.0	830.5
160	0.097	1.038	72.0	742.0	770.5
176	0.124	1.151	84.5	680.5	783.0
192	0.099	1.062	76.0	770.5	818.0
208	0.100	1.066	72.5	722.0	770.0
224	0.135	1.080	74.0	547.0	591.0
240	0.219	0.956	47.5	217.0	207.5
256	0.121	1.559	41.0	339.0	528.5
272	0.175	2.148	64.5	368.0	790.5
288	0.151	1.906	60.5	401.0	764.5
304	0.169	1.992	66.0	391.0	779.0
320	0.224	1.449	126.5	563.5	816.5
336	0.220	1.453	135.0	614.5	893.0
352	0.228	1.277	120.5	527.5	673.5
368	0.282	1.322	133.0	472.0	624.0
384	0.282	1.549	118.5	420.0	650.5
400	0.206	1.389	89.5	435.5	605.0

1.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.198	1.331	96.5	486.5	647.5
32	0.181	1.398	96.0	531.0	742.5
48	0.175	1.417	90.5	517.0	732.5
64	0.165	1.286	90.0	546.5	703.0
80	0.142	1.137	90.0	633.0	720.0
96	0.145	1.167	83.5	576.5	673.0
112	0.152	1.173	89.0	586.0	687.5
128	0.136	1.146	82.5	604.5	693.0
144	0.123	1.146	77.5	628.0	720.0
160	0.123	1.106	78.0	635.0	702.5
176	0.122	1.039	84.0	690.0	717.0
192	0.119	1.115	79.0	664.5	741.0
208	0.123	1.086	77.0	627.5	681.5
224	0.120	1.112	75.5	627.0	697.0
240	0.140	1.049	87.0	623.5	654.0
256	0.136	1.053	93.0	685.0	721.0
272	0.149	1.065	91.5	616.0	656.0
288	0.116	0.966	90.5	777.0	750.5
304	0.175	1.039	83.0	473.5	492.0
320	0.140	1.111	82.0	587.0	652.0
336	0.145	1.187	82.5	569.0	675.5
352	0.127	1.159	79.5	627.0	727.0
368	0.138	1.240	75.5	549.0	680.5
384	0.132	1.279	77.5	585.5	749.0
400	0.157	1.414	78.5	500.5	707.5

heed. 21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.215	1.194	135.5	630.5	753.0
32	0.153	1.176	95.0	620.5	729.5
48	0.214	1.194	127.0	594.0	709.0
64	0.185	1.139	107.0	577.5	657.5
80	0.280	1.422	131.5	469.0	667.0
96	0.149	1.405	82.5	554.0	778.5
112	0.111	1.005	82.5	745.5	749.5
128	0.117	1.057	75.0	642.0	678.5
144	0.119	1.038	75.5	632.0	656.0
160	0.128	1.091	69.0	538.5	587.5
176	0.133	1.033	80.5	606.0	626.0
192	0.195	1.362	95.5	490.0	667.5
208	0.183	1.669	87.0	476.5	795.5
224	0.204	1.436	80.0	393.0	564.5
240	0.123	1.112	79.5	646.5	719.0
256	0.136	1.045	74.0	546.0	570.5
272	0.110	1.127	73.0	663.0	747.0
288	0.114	1.095	69.5	612.0	670.0
304	0.140	1.028	79.5	569.0	585.0
320	0.150	0.992	68.0	453.5	450.0
336	0.143	1.133	83.0	581.5	659.0
352	0.164	1.056	93.0	566.0	597.5
368	0.144	1.087	85.0	589.5	640.5
384	0.142	1.143	60.0	423.0	483.5
400	0.140	1.254	58.5	418.0	524.0

ae.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.530	1.999	184.5	348.0	695.5
32	0.402	1.741	157.0	390.5	680.0
48	0.347	1.778	123.5	356.0	633.0
64	0.324	1.753	116.0	358.5	628.5
80	0.360	1.870	123.5	343.0	641.5
96	0.362	1.851	123.0	340.0	629.5
112	0.405	2.035	135.0	333.0	677.5
128	0.433	2.093	139.5	322.0	674.0
144	0.453	2.244	141.0	311.5	699.0
160	0.470	2.214	139.5	297.0	657.5
176	0.604	2.246	172.0	285.0	640.0
192	0.633	2.230	174.5	275.5	614.5
208	0.548	2.420	160.5	293.0	709.0
224	0.607	2.342	166.0	273.5	640.5
240	0.617	2.203	171.5	278.0	612.5
256	0.629	2.280	176.0	280.0	638.5
272	0.663	2.390	193.5	292.0	698.0
288	0.542	2.130	162.0	299.0	637.0
304	0.452	2.118	138.0	305.0	646.0
320	0.394	1.885	140.0	355.5	670.0
336	0.405	1.885	130.5	322.5	608.0
352	0.376	2.040	126.0	335.0	683.5
368	0.429	2.288	126.0	293.5	671.5
384	0.370	2.532	107.0	289.5	733.0
400	0.278	1.704	122.0	439.5	749.0

had.11

Blk	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.440	1.962	160.0	364.0	714.0
32	0.421	1.869	167.0	396.5	741.0
48	0.448	1.922	172.5	385.0	740.0
64	0.444	1.962	165.5	373.0	732.0
80	0.417	1.921	162.0	388.5	746.5
96	0.419	1.793	170.0	405.5	727.0
112	0.396	1.651	173.0	437.0	721.5
128	0.412	1.819	167.0	405.5	737.5
144	0.463	1.973	171.0	369.5	729.0
160	0.505	2.305	156.5	310.0	714.5
176	0.631	2.519	179.0	283.5	714.0
192	0.642	2.408	173.0	269.5	649.0
208	0.670	2.179	205.5	306.5	668.0
224	0.672	2.076	199.5	297.0	616.5
240	0.703	2.113	196.0	279.0	589.5
256	0.672	2.458	170.0	253.0	622.0
272	0.644	2.587	96.0	149.0	385.5
288	0.191	2.371	26.0	136.0	322.5
304	0.167	1.974	63.5	380.0	750.0
320	0.163	1.865	67.0	411.0	766.5
336	0.172	2.099	65.5	380.5	798.5
352	0.212	1.593	111.0	522.5	832.5
368	0.219	1.488	127.5	583.5	868.5
384	0.248	1.497	129.5	522.0	781.5
400	0.294	1.506	135.5	461.5	695.0

ae. 21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.318	1.453	140.0	440.0	639.5
32	0.327	1.186	137.0	418.5	496.5
48	0.292	1.268	148.0	506.5	642.0
64	0.322	1.285	156.5	486.5	625.0
80	0.382	1.355	159.0	416.5	564.5
96	0.394	1.445	160.5	407.5	589.0
112	0.361	1.510	163.5	453.0	684.0
128	0.446	1.523	178.5	400.0	609.0
144	0.422	1.481	148.0	350.5	519.0
160	0.406	1.653	174.0	428.5	708.5
176	0.528	1.717	165.0	312.5	536.5
192	0.552	1.448	170.5	309.0	447.5
208	0.412	2.120	154.0	374.0	793.0
224	0.416	1.601	142.5	342.5	548.5
240	0.349	1.376	152.5	436.5	600.5
256	0.373	1.407	175.0	469.5	660.5
272	0.429	1.416	172.0	400.5	567.0
288	0.351	1.675	142.0	404.5	677.5
304	0.456	1.425	171.5	376.5	536.5
320	0.519	1.583	160.5	309.0	489.0
336	0.406	1.818	140.5	346.0	629.0
352	0.346	1.783	141.5	408.5	728.5
368	0.346	1.458	153.0	449.5	655.5
384	0.579	1.937	194.0	335.0	649.0
400	0.286	1.524	113.0	395.0	602.0

had.21

B1K	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.359	1.823	126.0	351.0	640.0
32	0.330	1.644	134.0	405.5	666.5
48	0.416	1.492	150.0	360.5	538.0
64	0.434	1.816	143.5	331.0	601.0
80	0.371	1.569	149.5	403.0	632.5
96	0.407	1.441	160.0	393.0	566.5
112	0.418	1.351	166.0	397.0	536.5
128	0.366	1.284	153.5	419.0	538.0
144	0.419	1.445	177.0	422.5	610.5
160	0.552	1.824	179.0	324.5	592.0
176	0.468	1.565	180.5	385.5	603.5
192	0.373	1.508	165.5	444.0	669.5
208	0.394	1.682	155.0	393.0	661.0
224	0.382	1.596	146.5	384.0	613.0
240	0.548	1.369	189.5	345.5	473.0
256	0.424	1.410	172.5	406.5	573.0
272	0.357	1.468	142.0	397.5	583.5
288	0.373	2.145	128.5	344.5	739.0
304	0.197	1.863	68.5	347.0	646.5
320	0.213	1.732	77.0	362.0	627.0
336	0.194	1.876	75.5	388.5	729.0
352	0.194	1.966	74.5	385.0	757.0
368	0.185	1.899	76.5	414.0	786.0
384	0.185	1.861	78.5	425.0	791.0
400	0.225	1.864	82.0	365.0	680.5

a.11

Blk	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.695	2.446	213.5	307.0	751.0
32	0.667	2.207	206.0	309.0	682.0
48	0.726	2.520	223.0	307.0	773.5
64	0.765	2.240	234.0	306.0	685.5
80	0.778	2.343	233.5	300.0	703.0
96	0.743	2.372	223.0	300.0	711.5
112	0.706	2.635	208.5	295.5	778.5
128	0.721	2.515	214.0	297.0	747.0
144	0.746	2.589	217.0	291.0	753.5
160	0.700	2.243	203.0	290.0	650.5
176	0.680	2.552	198.0	291.0	742.5
192	0.656	2.623	196.5	299.5	785.5
208	0.570	2.237	182.5	320.0	716.0
224	0.603	2.305	186.5	309.5	713.5
240	0.600	2.285	195.5	326.0	745.0
256	0.614	2.401	190.5	310.5	745.5
272	0.631	2.320	179.5	284.5	660.0
288	0.596	2.794	161.0	270.0	754.5
304	0.481	2.453	143.0	297.0	728.5
320	0.441	2.412	139.5	316.5	763.5
336	0.471	2.385	139.0	295.0	703.5
352	0.508	2.652	144.5	284.5	754.5
368	0.329	2.616	90.5	275.0	719.5
384	0.239	2.685	68.5	287.0	770.5
400	0.427	2.271	166.0	389.0	883.5

hod.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.538	2.065	173.5	322.5	666.0
32	0.638	2.038	208.0	326.0	664.5
48	0.677	2.036	216.0	319.0	649.5
64	0.652	2.400	203.0	311.5	747.5
80	0.700	1.902	228.0	325.5	619.0
96	0.728	2.092	222.5	305.5	639.0
112	0.712	2.747	205.0	288.0	791.0
128	0.739	2.615	211.0	285.5	746.5
144	0.676	2.631	187.0	276.5	727.5
160	0.650	2.608	185.0	284.5	742.0
176	0.647	2.848	168.0	259.5	739.0
192	0.687	2.424	186.5	271.5	658.0
208	0.569	2.445	167.0	293.5	717.5
224	0.599	2.580	172.0	287.0	740.5
240	0.575	2.551	162.0	281.5	718.0
256	0.567	2.457	162.5	286.5	704.0
272	0.660	2.774	176.5	267.5	742.0
288	0.635	2.914	163.0	256.5	747.5
304	0.610	2.461	150.0	246.0	605.5
320	0.190	2.231	46.5	244.5	545.5
336	0.147	2.112	61.0	414.5	875.5
352	0.218	1.665	95.5	437.5	728.5
368	0.239	2.113	89.5	375.0	792.5
384	0.167	2.148	61.0	365.5	785.0
400	0.377	2.434	135.0	358.0	871.5

a.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.714	3.040	188.5	264.0	802.5
32	0.651	2.593	197.5	303.5	787.0
48	0.632	2.574	186.0	294.5	758.0
64	0.609	2.743	161.0	264.5	725.5
80	0.614	2.138	171.5	279.5	597.5
96	0.631	2.652	166.5	264.0	700.0
112	0.568	2.777	149.0	262.5	729.0
128	0.570	2.334	163.0	286.0	667.5
144	0.698	2.233	205.5	294.5	657.5
160	0.670	2.839	170.5	254.5	722.5
176	0.630	2.779	165.5	262.5	729.5
192	0.768	2.674	204.0	265.5	710.0
208	0.616	2.657	177.0	287.5	764.0
224	0.774	3.253	171.0	221.0	719.0
240	0.634	3.150	180.0	284.0	894.5
256	0.675	2.811	180.0	266.5	749.0
272	0.567	2.800	165.5	292.0	817.5
288	0.770	3.022	214.0	278.0	840.0
304	0.732	3.270	189.5	259.0	847.0
320	0.684	2.666	191.5	280.0	746.5
336	0.729	2.860	192.5	264.0	755.0
352	0.646	2.708	181.5	281.0	761.0
368	0.648	3.022	187.5	289.5	875.0
384	0.797	3.528	196.0	246.0	868.0
400	0.722	2.776	201.0	278.5	773.0

hod.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.777	2.568	226.5	291.5	748.5
32	0.673	2.509	184.5	274.0	687.5
48	0.485	2.454	151.0	311.5	764.5
64	0.643	2.354	199.0	309.5	728.5
80	0.664	2.551	179.0	269.5	687.5
96	0.567	2.326	179.0	315.5	734.0
112	0.605	2.356	172.5	285.0	671.5
128	0.688	2.283	200.5	291.5	665.5
144	0.695	2.312	191.5	275.5	637.0
160	0.710	2.195	198.0	279.0	612.5
176	0.846	2.237	225.0	266.0	595.0
192	0.757	1.674	202.0	267.0	447.0
208	0.694	2.567	172.0	248.0	636.5
224	0.592	2.361	173.0	292.0	689.5
240	0.773	2.229	212.5	275.0	613.0
256	0.719	2.402	181.5	252.5	606.5
272	0.458	1.668	174.5	381.0	635.5
288	0.641	2.051	177.5	277.0	568.0
304	0.326	1.551	150.0	460.0	713.5
320	0.318	1.902	120.5	378.5	720.0

D.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.736	2.342	240.0	326.0	763.5
32	0.771	2.230	251.5	326.0	727.0
48	0.801	2.614	248.0	309.5	809.0
64	0.856	2.468	260.5	304.5	751.5
80	0.820	2.404	248.5	303.0	728.5
96	0.823	2.484	249.0	302.5	751.5
112	0.793	2.408	241.0	304.0	732.0
128	0.741	2.270	236.0	318.5	723.0
144	0.819	2.569	242.5	296.0	760.5
160	0.762	2.429	222.0	291.5	708.0
176	0.724	2.434	206.0	284.5	692.5
192	0.740	2.612	202.0	273.0	713.0
208	0.768	3.596	156.0	203.0	730.0
224	0.697	2.442	150.5	216.0	527.5
240	0.627	3.035	163.0	260.0	789.0
256	0.564	2.612	177.5	314.5	821.5
272	0.590	0.878	154.5	262.0	230.0
288	0.586	3.204	150.5	257.0	823.5
304	0.527	2.989	149.0	282.5	844.5
320	0.488	3.175	128.5	263.5	836.5
336	0.407	3.709	97.0	238.5	884.5
352	0.300	2.964	84.5	281.5	834.5
368	0.265	2.627	77.0	290.5	763.0
384	0.231	2.381	77.0	333.0	793.0
400	0.432	2.471	150.0	347.0	857.5

hawed.11

Blk	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.522	2.055	175.5	336.5	691.5
32	0.569	2.085	187.0	328.5	685.0
48	0.564	2.496	187.5	332.5	830.0
64	0.601	2.625	196.5	327.0	858.5
80	0.597	2.314	197.5	331.0	766.0
96	0.624	2.530	206.0	330.0	835.0
112	0.594	2.391	191.5	322.5	771.0
128	0.564	2.602	182.0	322.5	839.0
144	0.589	2.218	182.5	310.0	687.5
160	0.579	2.413	174.0	300.5	725.0
176	0.485	2.774	141.5	291.5	808.5
192	0.545	2.464	151.0	277.0	682.5
208	0.640	2.836	168.0	262.5	744.5
224	0.592	2.603	156.5	264.5	688.5
240	0.597	3.341	157.5	264.0	882.0
256	0.607	2.906	148.5	244.5	710.5
272	0.504	2.879	137.0	272.0	783.0
288	0.521	3.182	137.5	264.0	840.0
304	0.456	2.525	138.5	304.0	767.5
320	0.348	2.150	119.5	343.0	737.5
336	0.164	2.565	31.0	189.5	486.0
352	0.152	1.956	61.0	402.0	786.5
368	0.158	1.966	62.5	394.5	775.5
384	0.162	1.913	61.5	378.5	724.0
400	0.262	1.653	133.5	510.5	844.0
416	0.262	1.661	127.5	486.5	808.0
432	0.212	1.653	96.5	454.5	751.5

D.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.577	3.217	145.0	251.5	809.0
32	0.598	3.785	139.0	232.5	880.0
48	0.627	2.903	164.5	262.5	762.0
64	0.659	2.710	178.5	271.0	734.5
80	0.644	2.846	169.0	262.5	747.0
96	0.653	3.090	170.5	261.0	806.5
112	0.668	2.941	175.0	262.0	770.5
128	0.678	2.640	168.5	248.5	656.0
144	0.684	3.248	161.5	236.0	766.5
160	0.731	2.825	175.5	240.0	678.0
176	0.747	2.703	171.0	229.0	619.0
192	0.752	2.645	183.0	243.5	644.0
208	0.761	3.885	145.0	190.5	740.0
224	0.641	3.100	154.5	241.0	747.0
240	0.746	3.366	186.5	250.0	841.5
256	0.569	2.560	154.5	271.5	695.0
272	0.645	2.884	172.5	267.5	771.5
288	0.623	2.935	158.0	253.5	744.0
304	0.638	3.407	156.0	244.5	833.0
320	0.642	2.572	168.0	261.5	672.5
336	0.706	3.065	157.5	223.0	683.5
352	0.704	3.118	172.5	245.0	764.0
368	0.788	3.434	154.5	196.0	673.0
384	0.684	3.013	188.0	275.0	828.5
400	0.841	3.813	150.5	179.0	682.5

hawed.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.501	2.566	156.5	312.5	802.0
32	0.551	3.159	156.0	283.0	894.0
48	0.526	3.279	141.5	269.0	882.0
64	0.652	2.644	194.0	297.5	786.5
80	0.739	2.851	198.0	268.0	764.0
96	0.732	2.527	195.0	266.5	673.5
112	0.666	2.544	180.5	271.0	689.5
128	0.687	2.479	182.0	265.0	657.0
144	0.713	2.440	185.5	260.0	634.5
160	0.696	2.543	179.5	258.0	656.0
176	0.677	2.338	159.0	235.0	549.5
192	0.622	2.614	150.0	241.0	630.0
208	0.595	2.616	165.0	277.5	726.0
224	0.607	2.179	166.5	274.5	598.0
240	0.680	2.301	199.0	292.5	673.0
256	0.631	2.845	140.0	222.0	631.5
272	0.579	2.351	176.5	305.0	717.0
288	0.545	2.120	167.5	307.5	652.0
304	0.330	1.750	136.0	412.5	722.0
320	0.436	1.292	163.5	375.0	484.5
336	0.249	1.516	121.0	486.5	737.5
352	0.210	1.526	93.0	443.5	677.0
368	0.213	1.497	73.5	345.0	516.5
384	0.212	1..09	88.5	417.0	737.5
400	0.222	1.814	99.0	446.5	810.0

u.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.204	1.227	117.5	575.0	705.5
32	0.166	1.279	97.5	586.5	750.0
48	0.173	1.328	97.5	562.5	747.0
64	0.166	1.227	86.5	521.0	639.5
80	0.171	1.305	89.0	519.5	678.0
96	0.173	1.399	86.5	499.5	699.0
112	0.178	1.344	92.5	520.0	699.0
128	0.166	1.278	86.5	520.0	664.5
144	0.174	1.357	88.5	509.0	690.5
160	0.147	1.362	77.0	523.0	712.5
176	0.130	1.202	77.0	590.5	709.5
192	0.143	1.192	79.5	557.0	664.0
208	0.226	1.613	89.0	393.0	634.0
224	0.455	2.022	111.5	245.0	495.5
240	0.316	1.925	123.5	391.0	752.5
256	0.303	1.894	124.5	411.5	779.5
272	0.342	1.995	129.0	377.5	753.0
288	0.335	1.967	127.0	379.0	745.5
304	0.328	1.854	122.5	373.5	692.5
320	0.314	2.045	125.0	397.5	813.0
336	0.351	2.344	120.0	341.5	800.5
352	0.318	1.986	121.5	381.5	757.5
368	0.326	2.069	125.5	385.5	797.5
384	0.406	2.280	127.0	313.0	713.5
400	0.358	2.397	123.0	343.5	823.5

whod.11

Blk	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.163	1.194	97.5	596.5	712.5
32	0.246	1.380	91.5	371.5	512.5
48	0.230	1.592	100.0	434.0	691.0
64	0.200	1.319	120.0	601.0	793.0
80	0.236	2.003	90.0	381.5	764.0
96	0.213	1.561	96.0	450.0	702.5
112	0.208	1.460	89.5	430.0	628.0
128	0.234	1.978	86.5	370.0	732.0
144	0.203	1.751	87.5	430.5	754.0
160	0.170	1.502	82.5	485.5	729.0
176	0.157	1.485	82.5	525.0	779.5
192	0.169	1.584	82.5	488.5	774.0
208	0.183	1.400	81.0	443.5	621.0
224	0.177	1.123	80.5	454.5	510.5
240	0.232	1.699	99.0	427.5	726.5
256	0.281	1.688	118.0	420.0	709.0
272	0.246	1.604	109.0	443.5	711.5
288	0.290	1.760	120.5	415.0	730.5
304	0.286	1.695	122.5	429.0	727.0
320	0.256	1.621	116.5	455.0	765.0
336	0.228	1.597	110.0	482.5	770.5
352	0.164	1.665	52.0	317.5	528.5
368	0.151	1.873	53.0	350.5	656.5
384	0.171	2.136	66.5	389.5	832.0
400	0.159	1.948	62.5	393.0	765.5
416	0.301	2.077	115.0	382.0	793.5
432	0.402	2.088	135.0	336.0	701.5

u.21

B1k	P A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.375	3.231	102.5	273.0	882.0
32	0.374	3.040	103.5	276.5	840.5
48	0.357	2.709	97.5	273.0	739.5
64	0.302	2.357	97.0	321.0	756.5
80	0.315	2.390	103.0	327.0	781.5
96	0.330	2.682	96.5	292.0	783.0
112	0.335	2.586	97.5	291.0	752.5
128	0.315	2.970	90.0	285.5	848.0
144	0.303	2.534	91.0	300.5	761.5
160	0.261	2.234	87.5	335.0	748.5
176	0.247	2.130	85.0	343.5	731.5
192	0.271	2.679	87.5	322.5	864.0
208	0.260	2.297	89.0	342.0	785.5
224	0.281	1.996	96.0	342.0	682.5
240	0.268	2.432	93.0	347.0	844.0
256	0.267	2.099	88.0	329.5	691.5
272	0.218	1.941	92.0	422.5	820.0
288	0.215	1.889	82.5	384.5	726.5
304	0.237	2.150	84.5	356.0	765.5
320	0.227	1.984	87.5	385.0	764.0
336	0.236	2.019	93.5	397.0	801.5
352	0.248	2.017	90.0	362.5	731.0
368	0.248	1.956	102.0	412.0	806.0
384	0.262	2.119	95.0	362.0	767.0
400	0.310	2.130	111.0	357.5	761.5

whod.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.360	2.891	94.5	262.5	759.0
32	0.316	2.956	83.5	264.0	780.5
48	0.372	3.279	90.0	242.0	793.5
64	0.365	2.949	96.5	264.5	780.0
80	0.377	3.099	98.5	261.5	810.5
96	0.361	3.189	91.5	253.5	808.5
112	0.376	3.357	87.5	232.5	780.5
128	0.293	3.035	83.5	285.0	865.0
144	0.292	2.596	85.5	293.0	760.5
160	0.294	2.414	85.5	291.0	702.5
176	0.304	3.360	88.5	291.5	979.5
192	0.349	2.530	99.0	284.0	718.5
208	0.177	2.117	66.0	372.5	788.5
224	0.110	1.361	34.0	309.0	420.5
240	0.248	2.059	78.0	314.5	647.5
256	0.238	2.083	91.5	384.0	800.0
272	0.220	1.781	93.0	422.0	751.5
288	0.227	1.893	91.5	403.5	764.0
304	0.257	1.950	106.0	413.0	805.5
320	0.244	1.773	109.0	447.5	793.5
336	0.162	1.210	108.0	667.0	807.0
352	0.195	1.242	100.0	513.0	637.0
368	0.188	1.271	108.5	576.5	732.5
384	0.091	1.319	45.5	500.5	660.0
400	0.216	1.537	99.0	457.5	703.0

3.11

Blk	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.647	2.300	194.0	300.0	690.0
32	0.569	2.126	175.5	308.5	656.0
48	0.533	2.242	165.5	310.5	696.0
64	0.521	2.115	161.0	309.0	653.5
80	0.454	2.111	144.5	318.5	672.5
96	0.467	2.142	148.5	318.0	681.0
112	0.515	2.355	159.5	310.0	730.0
128	0.510	2.240	155.0	304.0	681.0
144	0.548	2.153	166.5	304.0	654.5
160	0.523	2.122	156.5	299.5	635.5
176	0.498	2.191	150.0	301.5	660.5
192	0.505	2.058	148.5	294.0	605.0
208	0.530	1.539	148.5	280.0	431.0
224	0.516	1.451	151.5	293.5	426.0
240	0.402	1.775	151.5	377.0	669.0
256	0.409	1.893	145.5	355.5	673.0
272	0.391	1.794	148.0	378.5	679.0
288	0.405	1.627	158.5	391.5	637.0
304	0.344	1.670	138.0	401.0	669.5
320	0.362	1.782	139.5	385.0	686.0
336	0.326	2.004	112.0	343.5	688.5
352	0.194	1.698	77.5	399.5	678.5
368	0.138	1.623	60.0	436.0	707.5
384	0.137	1.494	64.5	472.5	706.0
400	0.279	1.689	122.0	437.5	739.0

heard.11

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.347	2.003	121.0	348.5	698.0
32	0.355	1.811	123.0	346.0	626.5
48	0.426	2.264	131.5	309.0	699.5
64	0.353	1.989	107.5	304.5	605.5
80	0.348	1.997	105.0	302.0	603.0
96	0.313	1.880	99.0	316.5	595.0
112	0.334	1.927	109.5	328.0	632.0
128	0.294	1.781	109.0	370.5	660.0
144	0.276	1.582	112.5	407.5	644.5
160	0.258	1.354	123.0	476.5	645.0
176	0.223	1.220	116.5	522.5	637.5
192	0.234	1.252	114.0	486.5	609.0
208	0.293	1.350	110.0	375.5	507.0
224	0.332	1.595	115.5	348.0	555.0
240	0.202	1.609	67.0	331.5	533.5
256	0.203	1.788	66.5	328.0	586.5
272	0.156	1.915	60.5	387.0	741.0
288	0.175	2.026	67.0	382.5	775.0
304	0.171	1.956	67.5	395.5	773.5
320	0.183	1.860	76.5	417.5	776.5
336	0.200	1.683	96.0	480.0	808.0
352	0.164	1.571	87.0	530.0	832.5
368	0.147	1.508	71.0	482.0	727.0
384	0.104	1.665	50.0	478.5	796.5
400	0.280	1.538	130.5	466.5	717.5

5.21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.328	2.313	104.0	317.5	734.5
32	0.344	2.661	102.5	298.0	793.0
48	0.359	1.891	123.0	343.0	648.5
64	0.301	1.847	102.5	340.0	628.0
80	0.282	1.823	97.0	344.0	627.0
96	0.278	2.038	97.5	351.0	715.5
112	0.301	2.122	95.0	315.5	669.5
128	0.291	1.637	98.5	339.0	555.0
144	0.321	2.019	111.0	345.5	697.5
160	0.388	1.973	120.0	309.5	610.5
176	0.427	2.253	128.0	300.0	676.0
192	0.390	1.803	125.0	320.5	578.0
208	0.378	2.185	116.5	308.0	673.0
224	0.324	1.569	82.0	253.0	397.0
240	0.310	2.198	100.5	324.0	712.0
256	0.266	2.391	78.0	293.0	700.5
272	0.320	2.173	115.0	359.0	780.0
288	0.290	2.619	83.5	287.5	753.0
304	0.296	2.120	102.5	346.0	733.5
320	0.306	3.093	75.5	246.5	762.5
336	0.301	2.390	102.5	341.0	815.0
352	0.256	1.987	98.5	385.0	765.0
368	0.280	1.937	109.5	391.5	758.5
384	0.337	2.116	105.5	313.5	663.5
400	0.281	2.029	102.0	363.0	736.5

heard. 21

B1k	R A T I O S		C O U N T S		
	F1/F2	F3/F2	F1	F2	F3
16	0.383	1.975	147.0	383.5	757.5
32	0.236	1.913	95.0	403.0	771.0
48	0.301	1.718	124.0	411.5	707.0
64	0.200	1.616	87.5	436.5	705.5
80	0.328	1.745	123.5	377.0	658.0
96	0.370	2.223	125.0	338.0	751.5
112	0.450	2.093	160.5	356.5	746.0
128	0.321	2.218	113.0	351.5	779.5
144	0.381	2.153	130.5	342.5	737.5
160	0.462	1.973	137.0	296.5	585.0
176	0.334	2.054	102.5	306.5	629.5
192	0.367	2.015	121.0	330.0	665.0
208	0.362	2.179	113.0	312.0	680.0
224	0.356	1.087	114.0	320.0	348.0
240	0.308	1.844	109.5	356.0	656.5
256	0.257	1.854	99.5	387.5	718.5
272	0.342	1.954	114.5	335.0	654.5
288	0.313	2.124	113.0	361.5	768.0
304	0.298	2.194	107.0	359.0	787.5
320	0.315	1.960	123.5	392.0	768.5
336	0.306	2.014	110.5	361.0	727.0
352	0.306	1.889	114.0	372.5	703.5
368	0.331	2.440	101.5	307.0	749.0
384	0.219	1.869	95.0	434.5	812.0
400	0.277	2.199	100.0	361.0	794.0