Course Name:Linear Algebra

Course Code: MT 104

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

October 17, 2020

1.8 Introduction to Linear Transformations

- Matrix Transformations
 - Matrix Acting on Vector
 - Matrix-Vector Multiplication
 - Transformation: Domain and Range
 - Examples
 - Applications
 - Computer Graphics
- Linear Transformation
 - Definition
 - Examples
 - Matrix Transformations

Another Way to Vview $A\mathbf{x} = \mathbf{b}$

Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A\mathbf{x}$ or \mathbf{b} .

Example

$$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -8 \\ -12 \\ -4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Matrix Transformations

Suppose A is $m \times n$. Solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all ____ in \mathbf{R}^n which are transformed into vector \mathbf{b} in \mathbf{R}^m through multiplication by A.

multiply by A

transformation "machine"

Transformation

A transformation T from \mathbf{R}^n to \mathbf{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbf{R}^n a vector $T(\mathbf{x})$ in \mathbf{R}^m .

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Terminology

 \mathbf{R}^n : **domain** of T

 \mathbf{R}^m : codomain of T

 $T(\mathbf{x})$ in \mathbf{R}^m is the **image** of \mathbf{x} under the transformation T

Set of all images T(x) is the range of T

Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Define $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

Then if
$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$ and

$$\mathbf{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
. Define a transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

- a. Find an \mathbf{x} in \mathbf{R}^3 whose image under T is \mathbf{b} .
- b. Is there more than one \mathbf{x} under T whose image is \mathbf{b} . (uniqueness problem)
- c. Determine if c is in the range of the transformation T. (existence problem)

Solution: (a) Solve _____ for x, or
$$\begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$$

Augmented matrix:

$$\left[\begin{array}{cccc} 1 & -2 & 3 & 2 \\ -5 & 10 & -15 & -10 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & -2 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

$$x_1 = 2x_2 - 3x_3 + 2$$

 x_2 is free
 x_3 is free

Let
$$x_2 = ---$$
 and $x_3 = ---$. Then $x_1 = ---$.

So
$$\mathbf{x} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

(b) Is there an \mathbf{x} for which $T(\mathbf{x}) = \mathbf{b}$?

Free variables exist

There is more than one \mathbf{x} for which $T(\mathbf{x}) = \mathbf{b}$

(c) Is there an \mathbf{x} for which $T(\mathbf{x}) = \mathbf{c}$? This is another way of

asking if $A\mathbf{x} = \mathbf{c}$ is ______.

Augmented matrix:

$$\left[\begin{array}{cccc} 1 & -2 & 3 & 3 \\ -5 & 10 & -15 & 0 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

c is not in the _____ of *T*.

Matrix transformations have many applications - including computer graphics

Example

Let $A = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix}$. The transformation $T : \mathbf{R}^2 \to \mathbf{R}^2$ defined by

 $T(\mathbf{x}) = A\mathbf{x}$ is an example of a **contraction** transformation. The transformation $T(\mathbf{x}) = A\mathbf{x}$ can be used to move a point \mathbf{x} .

$$\mathbf{u} = \begin{bmatrix} 8 \\ 6 \end{bmatrix} \qquad \qquad T(\mathbf{u}) = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

If A is $m \times n$, then the transformation $T(\mathbf{x}) = A\mathbf{x}$ has the following properties:

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \dots + \dots + \dots$$

and

$$T(c\mathbf{u}) = A(c\mathbf{u}) = \dots A\mathbf{u} = \dots T(\mathbf{u})$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars c.

Linear Transformation

A transformation T is **linear** if:

- ① $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T.
- (a) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Every matrix transformation is a linear transformation.

RESULT

If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$
 and $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Proof:

$$T(\mathbf{0}) = T(0\mathbf{u}) = \dots T(\mathbf{u}) = \dots$$
 $T(c\mathbf{u} + d\mathbf{v}) = T() + T()$

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Suppose $T: \mathbf{R}^2 \to \mathbf{R}^3$ is a linear transformation which maps \mathbf{e}_1 into \mathbf{y}_1 and \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 3\\2 \end{bmatrix}$ and $\begin{bmatrix} x_1\\x_2 \end{bmatrix}$.

Solution: First, note that

$$T\left(\mathbf{e}_{1}\right)=$$
 and $T\left(\mathbf{e}_{2}\right)=$

Also

Then

$$T\left(\left[\begin{array}{c}3\\2\end{array}\right]\right)=T\left(__\mathbf{e}_1+__\mathbf{e}_2\right)=$$
 $__T\left(\mathbf{e}_1\right)+__T\left(\mathbf{e}_2\right)=$

15 / 26

Also

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = T\left(\underline{} \mathbf{e}_1 + \underline{} \mathbf{e}_2\right) =$$

$$\underline{} T\left(\mathbf{e}_1\right) + \underline{} T\left(\mathbf{e}_2\right) =$$

Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(x_1, x_2, x_3) = (|x_1 + x_3|, 2 + 5x_2)$. Show that T is a not a linear transformation.

Solution: Another way to write the transformation:

$$T\left(\left[\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right]\right) = \left[\begin{array}{c} |x_1 + x_3|\\2 + 5x_2 \end{array}\right]$$

Provide a **counterexample** - example where $T(\mathbf{0}) = \mathbf{0}$, $T(c\mathbf{u}) = c\mathbf{T}(\mathbf{u})$ or $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ is violated. A counterexample:

$$T(\mathbf{0}) = T\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} \end{bmatrix} \neq \dots$$

which means that T is not linear.

Another counterexample: Let c=-1 and $\mathbf{u}=\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Then

$$T(c\mathbf{u}) = T\left(\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} |-1+-1| \\ 2+5(-1) \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

and

$$cT(\mathbf{u}) = -1T\begin{pmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \end{pmatrix} = -1\begin{bmatrix} \end{bmatrix}$$

Therefore $T(c\mathbf{u}) \neq \dots T(\mathbf{u})$ and therefore T is

not _____

1.9 The Matrix of a Linear Transformation

- Matrix Transformation: Identity Matrix
- Linear Transformation: Generalized Result
- Matrix of a Linear Transformation
 - Theorem
 - Examples
 - Geometric Linear Transformations of R²

Identity Matrix

 I_n is an $n \times n$ matrix with 1's on the main left to right diagonal and 0's elsewhere. The ith column of I_n is labeled \mathbf{e}_i .

Example

$$I_3 = [\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}] = \begin{bmatrix} \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \end{bmatrix}$$

Note that

Identity Matrix

In general, for **x** in \mathbf{R}^n , $I_n \mathbf{x} = ---$

Linear Transformation

From Section 1.8, if $T: \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, then $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Generalized Result

$$T(c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p)=c_1T(\mathbf{v}_1)+\cdots+c_pT(\mathbf{v}_p).$$

The columns of $I_2=\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$ are $\mathbf{e}_1=\left[\begin{array}{cc} 1 \\ 0 \end{array}\right]$ and $\mathbf{e}_2=\left[\begin{array}{cc} 0 \\ 1 \end{array}\right]$.

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 where

$$T(\mathbf{e}_1) = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$.

Compute
$$T(\mathbf{x})$$
 for any $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: A vector \mathbf{x} in \mathbf{R}^2 can be written as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = ---- \begin{bmatrix} 1 \\ 0 \end{bmatrix} + ---- \begin{bmatrix} 0 \\ 1 \end{bmatrix} = ----\mathbf{e}_1 + ----\mathbf{e}_2$$

Then

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = \dots T(\mathbf{e}_1) + \dots T(\mathbf{e}_2)$$
$$= \dots \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} + \dots \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

Note that

$$T(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

So

$$T(\mathbf{x}) = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \mathbf{x} = A\mathbf{x}$$

To get A, replace the identity matrix $[\mathbf{e}_1 \ \mathbf{e}_2]$ with $[T(\mathbf{e}_2) \ T(\mathbf{e}_2)]$.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbf{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbf{R}^n .

$$A = [T(\mathbf{e}_1) \qquad T(\mathbf{e}_2) \qquad \cdots \qquad T(\mathbf{e}_n)]$$

(standard matrix for the linear transformation)T

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \text{standard matrix of the linear transformation } T$$

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} =$$
 (fill-in)

Find the standard matrix of the linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

$$T\left(\mathbf{e}_{1}
ight) = egin{bmatrix} T\left(\mathbf{e}_{2}
ight) = \ \end{bmatrix}$$

$$T(\mathbf{e}_2) =$$