In [2]: pip install pandas

Requirement already satisfied: pandas in c:\users\sanka\anaconda3\lib\site-pa ckages (1.1.3)Note: you may need to restart the kernel to use updated package s.

Requirement already satisfied: numpy>=1.15.4 in c:\users\sanka\anaconda3\lib \site-packages (from pandas) (1.19.2)

Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\sanka\anaco nda3\lib\site-packages (from pandas) (2.8.1)

Requirement already satisfied: pytz>=2017.2 in c:\users\sanka\anaconda3\lib\s ite-packages (from pandas) (2020.1)

Requirement already satisfied: six>=1.5 in c:\users\sanka\anaconda3\lib\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)

In [3]: pip install numpy

Requirement already satisfied: numpy in c:\users\sanka\anaconda3\lib\site-pac kages (1.19.2)

Note: you may need to restart the kernel to use updated packages.

In [4]: import pandas as pd from pandas import read_csv import numpy as np import seaborn as sns import matplotlib as plt %matplotlib inline

In [5]: df=pd.read_csv("IRISS.csv") df

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
	•••				
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [6]: df.shape #structure od dataset
```

Out[6]: (150, 5)

In [7]: df.tail()

Out[7]:

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

In [8]: df.head() #displays first 5 rows

Out[8]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [9]: df.info() #provide summary of dataframe

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
	6- / - \		

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [10]: df.describe()
```

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [12]: df["sepal_length"].count()
```

Out[12]: 150

```
In [19]: #creating subsets
df1 = df[['sepal_length','petal_length']].loc[0:15]
df1
```

Out[19]:

	sepal_length	petal_length
0	5.1	1.4
1	4.9	1.4
2	4.7	1.3
3	4.6	1.5
4	5.0	1.4
5	5.4	1.7
6	4.6	1.4
7	5.0	1.5
8	4.4	1.4
9	4.9	1.5
10	5.4	1.5
11	4.8	1.6
12	4.8	1.4
13	4.3	1.1
14	5.8	1.2
15	5.7	1.5

```
trans=df.transpose()
In [20]:
          trans
Out[20]:
                            0
                                         2
                                                       4
                                                                                   8
                                   1
                                                3
                                                              5
                                                                     6
                                                                            7
                                                                                          9 ...
                                 4.9
                                        4.7
                                                       5
                                                                            5
                                                                                  4.4
           sepal length
                          5.1
                                               4.6
                                                             5.4
                                                                    4.6
                                                                                         4.9
            sepal_width
                                   3
                          3.5
                                        3.2
                                               3.1
                                                      3.6
                                                             3.9
                                                                    3.4
                                                                           3.4
                                                                                  2.9
                                                                                         3.1 ...
            petal_length
                                        1.3
                                                             1.7
                          1.4
                                 1.4
                                               1.5
                                                      1.4
                                                                    1.4
                                                                           1.5
                                                                                  1.4
                                                                                         1.5 ...
            petal width
                          0.2
                                 0.2
                                        0.2
                                               0.2
                                                      0.2
                                                             0.4
                                                                    0.3
                                                                           0.2
                                                                                  0.2
                                                                                         0.1 ...
                          Iris-
                                 Iris-
                                        Iris-
                                               Iris-
                                                     Iris-
                                                            Iris-
                                                                   Iris-
                                                                          Iris-
                                                                                 Iris-
                                                                                        Iris-
               species
                        setosa
                              setosa setosa setosa setosa setosa setosa setosa setosa ...
                                                                                                virç
          5 rows × 150 columns
                                                                                                 >
          df['sepal_length'].unique()
In [22]:
Out[22]: array([5.1, 4.9, 4.7, 4.6, 5., 5.4, 4.4, 4.8, 4.3, 5.8, 5.7, 5.2, 5.5,
                  4.5, 5.3, 7., 6.4, 6.9, 6.5, 6.3, 6.6, 5.9, 6., 6.1, 5.6, 6.7,
                  6.2, 6.8, 7.1, 7.6, 7.3, 7.2, 7.7, 7.4, 7.9
In [23]: |df['petal_length'].unique()
Out[23]: array([1.4, 1.3, 1.5, 1.7, 1.6, 1.1, 1.2, 1., 1.9, 4.7, 4.5, 4.9, 4.,
                  4.6, 3.3, 3.9, 3.5, 4.2, 3.6, 4.4, 4.1, 4.8, 4.3, 5., 3.8, 3.7,
                  5.1, 3., 6., 5.9, 5.6, 5.8, 6.6, 6.3, 6.1, 5.3, 5.5, 6.7, 6.9,
                  5.7, 6.4, 5.4, 5.2])
In [24]:
          df.isnull().sum() # checking missing values
Out[24]: sepal_length
                            0
          sepal_width
                            0
          petal_length
                            0
          petal_width
                            0
          species
                            0
          dtype: int64
```

In [25]: df.describe().style.background_gradient(cmap="Greens")

Out[25]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [28]: df.describe(include="all")

Out[28]:

species	petal_width	petal_length	sepal_width	sepal_length	
150	150.000000	150.000000	150.000000	150.000000	count
3	NaN	NaN	NaN	NaN	unique
Iris-virginica	NaN	NaN	NaN	NaN	top
50	NaN	NaN	NaN	NaN	freq
NaN	1.198667	3.758667	3.054000	5.843333	mean
NaN	0.763161	1.764420	0.433594	0.828066	std
NaN	0.100000	1.000000	2.000000	4.300000	min
NaN	0.300000	1.600000	2.800000	5.100000	25%
NaN	1.300000	4.350000	3.000000	5.800000	50%
NaN	1.800000	5.100000	3.300000	6.400000	75%
NaN	2.500000	6.900000	4.400000	7.900000	max

In [32]: import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
df.hist('sepal_length') #histogram
plt.show()

In [34]: # Scatter plot
 df.plot(kind='scatter', x='sepal_length', y='petal_length')
 plt.show()

In [36]: # Scatter plot for numerical columns
 df.plot(kind='scatter', x='sepal_width', y='petal_width')
 plt.show()

In [39]: sns.distplot(df['petal_length']).set_title('Petal length Distribution')

C:\Users\sanka\anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[39]: Text(0.5, 1.0, 'Petal length Distribution')

In [41]: sns.jointplot(x = 'sepal_width', y = 'petal_width', data = df)

Out[41]: <seaborn.axisgrid.JointGrid at 0x23d7a086160>

In [42]: df.corr()

Out[42]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.871754	-0.420516	1.000000	0.962757
petal width	0.817954	-0.356544	0.962757	1.000000

In [43]: sns.pairplot(df)

Out[43]: <seaborn.axisgrid.PairGrid at 0x23d79c399d0>


```
from sklearn.datasets import load_iris
In [45]:
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import classification_report, confusion_matrix, accuracy_
         # Load the dataset
         iris = load iris()
         df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
         df['species'] = iris.target
         df['species'] = df['species'].map({0: 'setosa', 1: 'versicolor', 2: 'virginica
         print(df.head())
            sepal length (cm) sepal width (cm) petal length (cm)
                                                                      petal width (cm)
         0
                                                                 1.4
                           5.1
                                              3.5
                                                                                    0.2
         1
                           4.9
                                              3.0
                                                                 1.4
                                                                                    0.2
         2
                           4.7
                                             3.2
                                                                 1.3
                                                                                    0.2
         3
                           4.6
                                             3.1
                                                                 1.5
                                                                                    0.2
         4
                           5.0
                                             3.6
                                                                 1.4
                                                                                    0.2
           species
         0 setosa
         1 setosa
            setosa
         3
            setosa
         4 setosa
         print(df.describe())
In [46]:
                 sepal length (cm)
                                    sepal width (cm)
                                                       petal length (cm)
         count
                        150.000000
                                           150.000000
                                                              150.000000
         mean
                          5.843333
                                             3.057333
                                                                3.758000
         std
                          0.828066
                                             0.435866
                                                                1.765298
         min
                          4.300000
                                             2.000000
                                                                1.000000
         25%
                          5.100000
                                             2.800000
                                                                1.600000
         50%
                          5.800000
                                             3.000000
                                                                4.350000
         75%
                          6.400000
                                                                5.100000
                                             3.300000
                          7.900000
                                             4.400000
                                                                6.900000
         max
                 petal width (cm)
                       150.000000
         count
         mean
                         1.199333
         std
                         0.762238
         min
                         0.100000
         25%
                         0.300000
         50%
                         1.300000
         75%
                         1.800000
         max
                         2.500000
```

```
sns.pairplot(df, hue='species')
In [47]:
           plt.show()
               8
             sepal length (cm)
              4.5
              4.0
            sepal width (cm)
              3.5
              3.0
              2.0
                                                                                                    species
                                                                                                     versicolor
                                                                                                     virginica
             petal length (cm)
               3
              2.5
              2.0
            petal width (cm)
              1.0
              0.5
              0.0
                                                                                 petal width (cm)
                     sepal length (cm)
                                         sepal width (cm)
                                                             petal length (cm)
In [48]:
           # Feature and target separation
           X = df.drop('species', axis=1)
           y = df['species']
In [49]:
           #Standardize the features
           scaler = StandardScaler()
           X_scaled = scaler.fit_transform(X)
In [50]: X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2)
In [51]:
           # Initialize and train the RandomForestClassifier
           model = RandomForestClassifier(random_state=42)
           model.fit(X_train, y_train)
Out[51]:
                       RandomForestClassifier
            RandomForestClassifier(random_state=42)
```

```
In [52]:
         # Make predictions
         y_pred = model.predict(X_test)
In [53]: # Evaluation metrics
         print("Confusion Matrix:")
         print(confusion_matrix(y_test, y_pred))
         Confusion Matrix:
         [[10 0 0]
          [0 9 0]
          [ 0 0 11]]
In [54]:
         print("\nClassification Report:")
         print(classification_report(y_test, y_pred))
         Classification Report:
                       precision
                                   recall f1-score
                                                       support
               setosa
                            1.00
                                      1.00
                                                1.00
                                                            10
           versicolor
                            1.00
                                      1.00
                                                1.00
                                                             9
            virginica
                            1.00
                                      1.00
                                                1.00
                                                            11
                                                1.00
                                                            30
             accuracy
            macro avg
                            1.00
                                      1.00
                                                1.00
                                                            30
         weighted avg
                            1.00
                                      1.00
                                                1.00
                                                            30
In [55]:
         print("\nAccuracy Score:")
         print(accuracy_score(y_test, y_pred))
```

1.0

```
In [57]: # Visualizing feature importance
importances = model.feature_importances_
feature_names = iris.feature_names
sns.barplot(x=importances, y=feature_names)
plt.title('Feature Importance')
plt.show()
```



```
In [ ]:
```