Enoncés: M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis

Corrections: F. Sarkis

Sous-variétés

Exercice 1

Pour $\lambda \in \mathbb{R}$, soit $S_{\lambda} = \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_1^2 + x_2^2 - x_3^2 = \lambda\}.$

- 1. Déterminez les $\lambda \in \mathbb{R}$ pour lesquels S_{λ} est une sous-variété de \mathbb{R}^3 . Dessiner S_{λ} en fonction de λ .
- 2. Pour $x, y \in \mathbb{R}^3$, soit $B(x, y) = x_1y_1 + x_2y_2 x_3y_3$. Soit $x \in S_{\lambda}$, exprimer T_xS_{λ} à l'aide de B.

Correction ▼ [002547]

Exercice 2

On muni \mathbb{R}^n de la norme $||x|| = \langle x, x \rangle = \sum_{i=1}^n x_i^2$ où $x = (x_1, ..., x_n)$ et $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Soit $u : \mathbb{R}^n \to \mathbb{R}^n$ linéaire telle que $\langle u(x), y \rangle = \langle x, u(y) \rangle$ et soit $Q = \{x \in \mathbb{R}^n; \langle u(x), x \rangle = 1\}$ Montrez que Q est une sousvariété et déterminez le plan tangent.

Correction ▼ [002548]

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{R}^3$ définie par $f(\theta, \varphi) = (\cos \theta (1 + 1/2 \cos \varphi), \sin \theta (1 + 1/2 \cos \varphi), 1/2 \sin \varphi)$ et soit $T = f(\mathbb{R}^2)$.

- 1. Soit R_{θ} la rotation d'angle θ autour de (0z), et soit $C = \{(1 + 1/2\cos\varphi, 0, 1/2\sin\varphi); \varphi \in \mathbb{R}\}$. Montrer que $f(\mathbb{R}^2) = \bigcup_{\theta \in \mathbb{R}} R_{\theta}(C)$. Dessiner T.
- 2. Montrer que $f(\theta, \varphi) = f(\theta_0, \varphi_0)$ si et seulement si il existe $(k, l) \in \mathbb{Z}^2$ tels que $\theta = \theta_0 + 2k\pi$ et $\varphi = \varphi_0 + 2l\pi$.
- 3. Montrer que pour tout ouvert $U \subset \mathbb{R}^2$, f(U) est un ouvert de T.
- 4. Montrer que T est une sous-variété de \mathbb{R}^3 .

[002549]

Exercice 4

Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ de classe C^{∞} définie par $f(A) = \overline{det(A)}$.

- 1. Montrer que $\lim_{\lambda \to 0} \frac{\det(I + \lambda X) 1}{\lambda} = tr(X)$ (penser au polynôme caractéristique). En déduire $D_{Id_n}f(X)$.
- 2. En remarquant que $\frac{det(A+\lambda X)-det(A)}{\lambda}$ est égal à $det(A)\frac{det(I+\lambda A^{-1}X)-1}{\lambda}$, pour A inversible, calculer $D_A f(X)$ lorsque A est inversible.
- 3. Montrer que $Sl_n(\mathbb{R})$ est une sous-variété de $\mathcal{M}_n(\mathbb{R})$, de dimension $n^2 1$, dont l'espace tangent en Id est $\{X \in M_n(\mathbb{R}); tr(X) = 0\}$.

[002550]

Exercice 5

Soit E l'espace vectoriel des matrices symétriques réelles d'ordre n. Soit $f: \mathcal{M}(\mathbb{R}) \to E$ définie par $f(A) = {}^t AA$.

- 1. Montrer que $D_A f(X) = {}^t AX + {}^t XA$.
- 2. Soit $A \in \mathcal{O}_n(\mathbb{R})$, $S \in E$ et X = 1/2AS. Montrer que $D_A f(X) = S$. En déduire que $\mathcal{O}_n(\mathbb{R})$ est une sous-variété de $\mathcal{M}_n(\mathbb{R})$ de dimension n(n-1)/2, dont l'espace tangent en Id est $\{X \in \mathcal{M}_n(\mathbb{R}); {}^tX = -X\}$.

Exercice 6

Soit E un espace vectoriel de dimension finie, $a \in E$ et $f : E \to E$ un difféomorphisme de classe C^1 . On suppose que $f^n = Id$ et f(a) = a. On pose $A = D_a f$ et $u(x) = \sum_{p=1}^n A^{-p} f^p(x)$ pour $x \in E$.

- 1. Montrer que u est un difféomorphisme local en a tel que $u \circ f = A \circ u$.
- 2. Soit F l'ensemble des points fixes de f. Montrer que F est une sous-variété de E.
- 3. Soit $g: \mathbb{R}^2 \to \mathbb{R}^2$, $g(x,y) = (x,y+y^3-x^2)$. Montrer que g est un difféomorphisme de \mathbb{R}^2 . En déduire que 2/ n'est plus nécessairement vrai si on supprime l'hypothèse $f^n = Id$.

[002552]

Correction de l'exercice 1

- 1. Considérons $F: \mathbb{R}^3 \to \mathbb{R}$ définie par $F(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2 \lambda$. Alors F est de classe C^1 , $JacF(x_1, x_2, x_3) = (2x_1, 2x_2, -2x_3)$ et $S_\lambda = \{(x_1, x_2, x_3) \in \mathbb{R}^3; F(x_1, x_2, x_3) = 0\}$. Si $\lambda \neq 0$, $rang(JacF(x_1, x_2, x_3)) = 1$ (le maximum possible) car sinon x_1, x_2, x_3 seraient tous nuls: impossible car $x_1^2 + x_2^2 x_3^2 = \lambda \neq 0$. Comme $(0,0,0) \notin S_\lambda, \forall a \in S_\lambda$, rangJacF(a) = 1 et donc S_λ est une sous-variété de \mathbb{R}^3 de dimension 2. Si $\lambda = 0$ $T_0(S_\lambda) = \{\text{vecteurs tangents à } S_n \text{ en } 0\}$. Alors T_0S_0 est un cône et donc S_0 n'est pas une sous-variété.
- 2. Soientt $x, y \in \mathbb{R}^3$, $B(x, y) = x_1y_1 + x_2y_2 x_3y_3$ et $x \in S_{\lambda}$. Si $\lambda \neq 0$, $JacF(x) = (2x_1, 2x_2, -2x_3)$ et donc

$$T_x S_{\lambda} = \{ u \in \mathbb{R}^3; DF(x).u = 0 \} = \{ u = (u_1, u_2, u_3); (2x_1, 2x_2, -2x_3). \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = 0 \} = 0 \}$$

$$\{(u_1, u_2, u_3); 2x_1u_1 + 2x_2u_2 - 2x_3u_3 = 0\} = \{(u_1, u_2, u_3); 2B(x, u) = 0\}$$

d'où

$$T_x S_{\lambda} = \{ u \in \mathbb{R}^3; B(x, u) = 0 \}.$$

Correction de l'exercice 2

Cas de \mathbb{R}^2 .

$$u = \left(\begin{array}{cc} u_{11} & u_{12} \\ u_{21} & u_{22} \end{array}\right).$$

L'hypothèse sur *u* implique que $u_{12} = u_{21}$. Si $x = (x_1, x_2)$, on a

$$u(x) = \left(\begin{array}{c} u_{11}x_1 + u_{12}x_2 \\ u_{21}x_1 + u_{22}x_2 \end{array}\right)$$

et

$$\langle u(x), x \rangle = \sum_{i=1}^{2} u_i(x)x_i = (u_{11}x_1 + u_{12}x_2)x_1 + (u_{21}x_1 + u_{22}x_2)x_2 = u_{11}x_1^2 + u_{12}x_1x_2 + u_{21}x_1x_2 + u_{22}x_2^2.$$

Posons $f(x) = \langle u(x), x \rangle - 1$ alors

$$\frac{\partial f}{\partial x_1} = 2u_{11}x_1 + u_{12}x_2 + u_{21}x_2 = 2u_{11}x_1 + 2u_{12}x_2$$

et

$$\frac{\partial f}{\partial x_2} = 2u_{22}x_2 + u_{12}x_1 + u_{21}x_1 = 2u_{21}x_1 + 2u_{22}x_2.$$

Calculons

$$Df(x).x = x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} = 2(u_{11}x_1^2 + u_{12}x_2x_1 + u_{21}x_1x_2 + u_{22}x_2^2) = 2 < u(x), x > 0.$$

Si $x = (x_1, x_2) \in Q$ alors $< u(x), x >= 1 \neq 0$ et donc Df(x) étant non nul, il est de rang au moins 1 et donc de rang maximal. Q est bien une sous-variété de \mathbb{R}^2 de dimension 1.

Déterminons le plan tangent de Q.

$$T_x Q = \{ y \in \mathbb{R}^2; Df(x)(y) = 0 \} = \{ y \in \mathbb{R}^n; \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) y_i = 0 \} = \{ y \in \mathbb{R}^n; 2 < u(x), y > = 0 \}.$$