

Трг Доситеја Обрадовића 6, 21000 Нови Сад, Република Србија Деканат: 021 6350-413; 021 450-810; Централа: 021 485 2000 Рачуноводство: 021 458-220; Студентска служба: 021 6350-763 Телефакс: 021 458-133; e-mail: ftndean@uns.ac.rs

PROJEKAT IZ PRIMENE SENZORA I AKTUATORA

NAZIV PROJEKTA:

Regulator temperature i vlažnosti vazduha

TEKST ZADATKA:

Čitanje i kontrolisanje temperature i vlažnosti vazduha u zatvorenoj sredini.

MENTOR PROJEKTA:

Prof. Jovan Bajić

PROJEKAT IZRADILI:

Vladimir Galović (EE 210/2018) i Stefan Ostojić (EE 216/2016)

DATUM ODBRANE PROJEKTA:

15. april 2024.

Sadržaj

1	$\mathbf{U}\mathbf{vod}$	2
2	Analiza problema	3
3	Hardverska realizacija projekta 3.1 DHT22	6 8 9
4	Softverska realizacija projekta 4.1 Biblioteke	12 13
5	Rezultati testiranja	15
6	Zaključak	16
7	Literatura	17

1 Uvod

Regulacija temperature i vlažnosti vazduha

Ova tema je izabrana zbog interesovanja za rad sa DHT22 senzorom dok su sve ostale funkcionalnosti dodate tokom realizacije projekta. Sa ovim snezorom kao prvom tačkom projekta izabran je problem čitanja i regulisanja temperature i vlažnosti vazduha neke zatvorene sredine poput nekog skadišta gde je održavanje temperature i vlažnosti bitno. Primer za ovakav uređaj je humidor za cigare koji održva konstantnu temperaturu (16-22 °C) i vlažnost (60-75 %) kako bi održao kvalitet cigare (Slika 1).

Zarad brze i lake realizacije kao osnovna kontrolna jedinica izabrana je Arduiono pltforma koja pruža puno fleksibilnosti. Za aktuator je izabran BLDC motor sa ventilatorom koji bi najbrže uticao na regulisanje temperature i vlažnosti. LCD displej i tastatura su dodate radi lakše interakcije sa korisnikom, a uloga zujalice je da upozori korisnika na prevelike ili premale vrednosti vlažnosti vazduha.

Realizacija i upoznavanje sa svim karakteristikama komopnenti je započeta povezivanjem osnovih elemenata na protoboard i Arduino UNO. Pojedinačnim upoznavanjem sa svakom komponentom je smišljen krajni koncept projekta. Kao i ideje za adekvatano testiranje senzora i aktuatora.

Slika 1: humidor za cigare

2 Analiza problema

Regulacija temperature i vlažnosti vazduha neke zatvorene sredine zahteva održanje ove dve vrednosti na prethodno zadatoj konstanti. Humidor održava obe vrednosti veoma precizno čime se kvalitet i ukus cigra ne menja. Da bi to postigao humidor mora imati elemete koji utiču na povećanje i na elemente koji utiču na smanjenje temperature i vlažnosti vazduha.

Za povećanje temperature se koriste grejači, a za povećnje vlažnosti vazduha neki izvor vode ili prskalice. Dok za smanjenje i temperature i vlažnosti vazduha se koriste razne vrste ventilatora koji cirkulacijom vazduha smanjuju ove dve vrednosti. Na smanjenje vlažnsti čak utiče i vrsta drveta od koje je humidor napravlje. Kompleksnost nastaje pri delikatnom balansu ove dve celine, povećavanje i smanjivanje temperature i vlažnosti vazduha. Oba segmenta moraju biti proporcionalno aktivni kako bi održali unutrašnjost konstantnom, bez obzira na promene spoljašnje sredine u kojoj se Humidor nalazio.

Zarad pojednostavljivanja i lakše realizacije fokus se stavlja samo na proces smanjivanja temperature i vlažnosti vazduha. Za ovaj proces je samo potreban jedan aktuator. Koji je u primeru ovog projekta BLDC motor sa ventilatorom. Dok bi u procesu povećanja temperature i vlažnosti vazduha morali da imam bar dva aktuatora. Grejač i neki sistem vodenih pumpi koji bi distribuitao vodu u odgarajućoj meri. Čime bi se obim i kompleksnost ovog projekta znatno povećao. Ovim pojednostaviljanjem dolazi i do promena merenih vrenosti jer bez dodatnih komponenti naša sredina neće održavati temperaturu i vlažnost kao Hunidor nego kao srednju vrednost prostorije. U tabeli 1 može se videti razlika između promena mernih vrednost Humidora i ovog projekta.

	Vlažnost	Temperatura	
Humidor	60 - 75 %	16 - 22 °C	
Srednja vrednost prostorije	30 - 80 %	26 - 30 °C	

Tabela 1: Promea merenih vrednosti

Spajanjem senzora DHT22 i BLDC ventilatora se ostvaruje regulavija temperature i vlažnosti vazduha, iako u suženom obliku. Dok sve ostale komponente doprinose boljoj interakciji korisnika sa uređajom. Regulacija je glavni cilj, dok je interfejs sporedni.

3 Hardverska realizacija projekta

U ovom poglavlju se govori o pojedinačnim komponentama korišćenim u ovom projektu. O njihovim osnovnim karakteristika, prednostima i problemima. Mnoge komponente su izabrane zbog lakoće dostupnosti da bi se u slučaju ponovne realzacije ili kavara lako pronašla zamena. Većina komponenti je povezana sa Arduino platformom koja je idealna za realizaciju ovakvih projekata. Glavne prednosti Arduino pltforme:

- Jednostavnost korišćenja: Arduino je dizajniran da bude jednostavan za upotrebu, čak i za početnike u elektronici i programiranju. Dolazi sa jednostavnom integrisanom razvojnom okolinom (IDE) koja omogućava brzo pisanje, kompajliranje i uploadovanje koda na Arduino mikrokontroler.
- Mala veličina: Arduino je veoma kompaktna platforma, što je čini idealnim za ugradnju u razne uređaje i projekte.
- Niska cena: Arduino pločice su veoma pristupačan, što ga čini odličnim izborom za hobiste, učenike i sve one koji žele da istražuju tehnologiju bez velikih finansijskih ulaganja.
- Širok spektar modela: Postoje različiti modeli Arduino pločica, od osnovnih do naprednih, sa različitim brojem ulazno/izlaznih pinova, radnim naponima i drugim karakteristikama. To omogućava korisnicima da odaberu pločicu koja najbolje odgovara njihovom projektu. Za ovaj projekat izabran je Arduino UNO R3 model.
- Mogućnost proširenja: Arduino pločice imaju mogućnost proširenja putem širokog spektra dodatnih modula, senzora, aktuatora i drugih komponenti koji se lako povezuju putem standardizovanih interfejsa kao što su digitalni i analogni pinovi, I2C, SPI, UART itd.
- Bogata podrška: Arduino ima ogromnu zajednicu korisnika i razvijalaca koji su voljni da dele svoje iskustva, znanje i projekte putem foruma, blogova, YouTube kanala i drugih platformi. Obilje online resursa drastično olakšava učenje i rešavanje mnogih problema.
- Fleksibilnost i prilagodljivost: Arduino se može koristiti za različite svrhe, od jednostavnih projekata poput LED svetla ili automatskog zalivanja biljaka do složenijih projekata kao što su roboti, interaktivne instalacije ili kućna automatizacija.

Pored ovoliko prednosti bilo je lako odlučiti se za Arduino okruženje. Neće se ulaziti dataljnije u rad Arduono UNO R3 uređaja jer je to van okvira ovog projeta.

Slika 2: Arduino UNO R3

3.1 DHT22

Kao što je pomenuto u uvodnom delu komponenta koja je inspirisala ovaj projekat je senzor temperature i vlažnosti vazduha DHT22. Ovo je jedini senzor u ovom projekt i bilo je od velike važnosti da se izabere relativno precizan i pouzdan senzor. Zato nije izabran možda i više zatupljen senzor DHT11 koji ima manju preciznost. Dimenzije senzora iznose 36x16x9mm (DxŠxV). DHT22 poseduje 3 pina: VCC (5V), DAT (D12) pin i GND. Osnovne karakteristike senzora su:

Slika 3: DHT22 senzor i njegov šematik

- Merenje temperature: DHT22 senzor omogućava precizno merenje temperature u opsegu od -40°C do +80°C sa tačnošću od ± 0.5 °C.
- Merenje vlage: Osim temperature, DHT22 senzor takođe meri relativnu vlažnost vazduha u opsegu od 0% do 100% sa tačnošću od $\pm 2\%$.
- Digitalni izlaz (8-bit): DHT22 senzor koristi digitalni interfejs za komunikaciju sa mikrokontrolerom, što olakšava integraciju u različite projekte.
- Jednostavno korišćenje: DHT22 senzor se lako povezuje sa mikrokontrolerima kao što su Arduino ili Raspberry Pi putem samo tri žice (napajanje, zemlja i digitalni signal).
- Pouzdanost: DHT22 senzor je relativno pouzdan i precizan u merenju temperature i vlage, što ga čini popularnim izborom za mnoge aplikacije.

	Uslov	Min	Tpično	Max	Jedinica
Napon	DC	3.3	5	5.5	V
Struja	Merena	1.3	1.5	2.1	mA
Struja	Prosečna	0.5	0.8	1.1	mA
Period kolektovanja	Vreme	1.7		2	Sekunde

Tabela 2: Električne karakteristike DHT22

Mane ovog senzora:

- Brzina odgovora: DHT22 senzor može imati nešto sporiji odgovor u poređenju sa nekim drugim senzorima, što može biti problem u aplikacijama koje zahtevaju brze promene.
- Osetljivost na kondenzaciju: U uslovima visoke vlažnosti, DHT22 senzor može pokazivati greške zbog kondenzacije vode na površini senzora.

3.2 BLDC 5V ventilator

Glavni aktuator ovog projekta je BLDC ventilator od 5V. Motor jednosmerne struje bez četkica (BrushLess DC) je izabran zbog njegovih mnogih prednosti u odnosu na klasičan motor jednosmerne struje sa četkicama. Osnovna namena BLDC ventilatora koji je izabran za ovaj projekat je kao hladnjak za Raspberry Pi platformu. Zbog takve namene idealn je izbor za ovaj projekt. Povezanost sa popularnom i standardizovanom Raspberry Pi pltformom olakšava zamenu ovog ventilatora u slučaju njegovog kvara. Malih je dimenzija zbog čeka se može lako uklopiti u billo kakav prostor sa lakoćom. Osnovne karakteristike ovog modela su:

• Radni napon: 5V

• Snaga: 3.6W

• Konekcija: 2 pina

• Dimenzije: 40x40x10mm

Prednosti BLDC motora:

1. Velika brzina obrtanja

2. Veliki obrtni momenat

3. Odlične startne osobine

4. Velika efikasnost

5. Rad bez varničenja

6. Visoka pouzdanost

7. Dug vek eksploatacije

Slika 4: Ventilator

Jedina mana BLDC motora je složenost elektronske komutacije. Motoru je potrebna i informacija o ugaonom položaju rotora(stalnog magneta) kako bi spoljašnje drajvesko kolo koje vrši komutaciju, donelo odluku kada treba izvršiti preusmeravanje struje kroz namotaje. Praćenje položaja rotor najčešće se vrši primenom Holovih senzora(senzora magnetnog polja).

Glavni način kontrolisanja BLDC ventilatora u ovom projektu je realizovan korišćenjem PWM (Pulse Width Modulation) signala i sa jednim 2N2222A NPN tranzistorom. VCC motora je spojen na 5V a GND motora na kolektor tranzistora. Emiter tranzistora se spaja na GND, a baza na D10 pin Arduina sa kojeg se šalje kontrolni signal. Brzina motora je direktna posledica vrednosti fatkora ispune (odnosom trajanja visokog i niskog naponskog nivoa u toku jedne periode) koji se šalje iz Arduina. Za svaki 1°C povećanja merene vrednost vrednost faktora ispune se povećava za 20% sve dok ne dođe do 100% kada ventilator na maxsimalnoj svojoj brzini.

Slika 5: Primer povećanja faktora ispune u PWM signalu

3.3 Piezo zujalica (MH-FMD)

Ovaj aktuator je dodat kako bi projekat imao još jedan dodatni način inteerakcije sa korisnikom. Princip rada piezoelektrične zujalice je zasnovan na dovođenju struje na piezo-električni diska koji je spojen sa tankom metalnom pločom. Piezo-električni disk osciluje zbog čega dolazi do savijanja metala napred-nazad. To savijanje metala prouzrokuje zvuk. Obično se koristi kao zvični alarm ili uzbuna. Frekvencija je ono što omogućava piezo zujalicu da proizvede zvuk. Evo nekih karakteristika piezo zujalica:

- Što se brže metal savija, to je veći nivo buke koja se proizvodi.
- Ova stopa se zove frekvencija.
- Što je veća frekvencija, to je veća buka koju čujemo
- Opseg radne temperature od -40°C do 85°C
- Opseg frekvencije ulazne 2-5kHz (kvadratni signal)
- Dimenzije: 32x13x13mm

Pasivna zujalica korišćena u ovom projektu poseduje 3 pina: VCC (5V), I/O (D11) pin i GND. Neki od nedostataka su ako je potrbna frfekvencija van opsega zujalice, i nemogućnost zujanja više zujalica u istom trenutku. Zujalica u ovom projektu ima zadatak da upozori korisnika na problematične vrednosti vlažnosti vazduha koju senzor DHT22 meri. U slučaju ovog projekta to su vrednosti od 30% kao donja granica i 80% kao gornja.

Slika 6: Piezo-električna zujalica

3.4 LCD I2C 16x2

Kao osnovni način prezentovanja merenih vrednosti izabran je LCD 16x2. Pošto se broj slobodnih pinova smanjivao kako su se dodavali novi elementi u projekat, broj od 16 pinova potreban za povetivanje LDC displeja je postao problem. Rešenje ovog problema je bilo spajanje na I2C modul koji drastično smanjuje broj potrebnih pinova sa 16 na 4. I2C (Inter-Integrated Circuit) je serijski protokol komunikacije koji omogućava digitalnim uređajima da razmenjuju podatke i komande putem dva voda - Serial Data (SDA) i Serial Clock (SCL). Pinovi ovog modula su GND, VCC (5V), SDA i SCL. Arduiono UNO R3 a4 a5 Dimenzije LCD-a sa I2C modulom iznose 80x36x19.25mm

Slika 7: LCD 16x2 sa I2C modulon

3.5 4x4 tastatura

Poslednji elemenat koji će poboljšati korisničko iskustvo je senzor dodira tj. 4x4 tastatura. Tastatura se sa stoji između dva sloja. Jeden je spoj svih redova, a drugi svih kolini. Pritiskom se pravi kontakt između ova dva sloja čime se i determiniše koji je taster pritisnut. Za sve izabrane funkcionalnosti iskorišćeno je smo prve dve redove i 4 kolone. Tako da od ukupnog broja pinova kojih je 8 ovde se koriste samo 6 (2 za redove i 4 za kolone). Pinovi su spojeni na sledeće portove Arduina C1->D5, C2->D4, C3->D3, C4->D2, R1->D9 i R2->D8.

Šema kola projekta

4 Softverska realizacija projekta

U ovom polavlju se govori u kratkim crtama o kodu koji pokreće hardver projekta. Kod je izrađen u Arduino okruženju, a nalazi se na **Github repozitorijumu**. Kod projekta se nalazi u **code/code.ino**. Evo detaljnog objašnjenja korisničkog interfejsa:

- 1. Tastatura: Korisnik može koristiti tastaturu sa četiri reda i dva stubca za navigaciju i izbor opcija. Na tastaturi su raspoređeni tasteri od 1 do 8 koji imaju različite funkcije:
 - Tasteri od 1 do 4 služe za odabir različitih režima rada sistema, uključujući prebacivanje između prikaza temperature/vlažnosti i brzine ventilatora/stanja zvučnog alarma, kao i testiranje brzine ventilatora i zvučnog alarma.
 - Tasteri 5 i 6 se koriste za uključivanje i isključivanje debug moda i podešavanje prilagođenih parametara za granice vlažnosti i temperature.
 - Taster 8 se koristi za čišćenje LCD ekrana.
- 2. LCD ekran: Na LCD ekranu su prikazane različite informacije o sistemu:
 - Temperatura i vlažnost: Prikazuje se trenutna temperatura u stepenima Celzijusa i vlažnost u procentima.
 - Brzina ventilatora i stanje zvučnog alarma: U ovom režimu se prikazuju informacije o brzini ventilatora (izražene u procentima) i stanju zvučnog alarma (uključen ili isključen).
 - Indikacija Testiranja ventilatora/zvučnog alarma
- Serijal port: Dijagnostički podaci u debug modu: Kada je debug mod aktiviran, prikazuju se dijagnostičke informacije preko serijskog porta, dok na LCD ekranu je ispisana brzina prenosa bita po sekundi.

U daljem nastavku poglavalja, biće nabrojane sve biblioteke, makroi, promenljive i funkcije kao i objšnjenje šta oni rade unutar koda.

4.1 Biblioteke

- **Keypad**: Koristi se za interakciu sa tastaturom. Github stranica do ove biblioteke je na sledećem **linku**.
- LiquidCrystal_I2C: Pomoću nje se kontroliše LCD putem I2C komunikacije. Stranica sajta arduina za preuzimanje biblioteke nalazi se na sledećem linku.
- DHT22: Omogućava čitanje podataka sa DHT22 senzora. Github stranica do ove biblioteke je na sledećem linku.

4.2 Makroi

1. Pinske Definicije Tastature:

- R1, R2: Brojevi pinova za konekciju redova tastature.
- C1, C2, C3, C4: Brojevi pinova za konekciju kolona tastature.

2. Dimenzije Tastature:

• ROWS, COLS: Broj redova i kolona u matrici tastature.

3. LCD Konfiguracija:

- I2C PORT: I2C adresa LCD ekrana.
- TOTAL_COLUMNS, TOTAL_ROWS: Broj kolona i redova na LCD ekranu.

4. Pinovi:

• PWM, BUZZ, DHT: Pinovi za PWM, zvučnik i DHT22 senzor.

5. Koraci Prilagođavanja:

• HUMIDITY_STEP, TEMPERATURE_STEP: Veličine koraka za prilagođavanje granica vlažnosti i temperature.

6. Debug i Vremenski Parametri:

- DEBUG_SERIAL_BAUDRATE: Brzina prenosa bita po sekundi za serijsku komunikaciju u debug režimu.
- DEBOUNCE_TIME: Vreme debaunsa za tastaturu.
- BUZZER_DELAY: Vreme kašnjenja za zvučnik.
- DELAY_IN_SETUP: Kašnjenje na kraju setup() funkcije.
- DHT_UPDATE_INTERVAL: Interval za ažuriranje temperatura i vlažnosti sa DHT22 senzora.
- FAN_SPEED_UPDATE_INTERVAL: Interval za ažuriranje brzine ventilatora na osnovu temperature.

7. Podrazumevane Vrednosti:

• DEFAULT_HUMIDITY_MIN, DEFAULT_HUMIDITY_MAX, DEFAULT_TEMPERATURE_MIN:

Podrazumevane minimalne i maksimalne granice vlažnosti i podrazumevana minimalna granica temperature.

8. Prilagođavanje Vlažnosti i Temperature:

- HUMIDITY_MIN_LOWER_LIMIT, HUMIDITY_MIN_UPPER_LIMIT: Donja i gornja granica za prilagođavanje minimalne granice vlažnosti.
- HUMIDITY_MAX_LOWER_LIMIT, HUMIDITY_MAX_UPPER_LIMIT: Donja i gornja granica za prilagođavanje maksimalne granice vlažnosti.
- TEMPERATURE_MIN_LOWER_LIMIT, TEMPERATURE_MIN_UPPER_LIMIT: Donja i gornja granica za prilagođavanje minimalne granice temperature.

9. Koraci Prilagođavanja:

• HUMIDITY_STEP, TEMPERATURE_STEP: Veličine koraka za prilagođavanje granica vlažnosti i temperature.

4.3 Promenljive

- 1. action state:
 - Tip: Enumeracija
 - Opis: Predstavlja trenutno stanje sistema. Moguća stanja uključuju:
 - NORMAL_DISPLAY: Normalni prikaz za prikazivanje temperatura i vlažnosti vazdiha ili brzinu ventilatora i stanje zvučnika.
 - DEBUG_MODE: Režim za debagiranje za prikaz dijagnostičkih informacija sa DHT22 senzora.
 - FAN_TEST: Režim za testiranje brzine ventilatora.
 - BUZZER_TEST: Režim za testiranje zvučnika.

2. display_state:

- Tip: Logička
- Opis: Kontroliše da li LCD ekran prikazuje očitavanja temperature i vlažnosti (true) ili brzinu ventilatora i stanje zvučnika (false).

3. debug enable:

- Tip: Logička
- Opis: Određuje da li je režim za debagiranje omogućen (true) ili nije (false), što omogućava dijagnostičke informacije sa DHT22 senzora.

4. humidity min, humidity max, temperature min:

- **Tip**: Broj (Unsigned 8-bit integer)
- Opis: Definiše minimalne i maksimalne pragove vlažnosti (humidity_min, humidity_max) i minimalni prag temperature (temperature_min) za sistem.

5. en mill:

- **Tip**: Unsigned long
- Opis: Čuva trenutno vreme u milisekundama za potrebe vremenskog merenja u glavnoj petlji.

4.4 Funkcije

1. buzzControl(humidity):

Proverava da li vlažnost pada ispod minimalnog praga ili prelazi preko maksimalnog praga i aktivira zvučnik prema tome. Vraća true ako je zvučnik aktiviran.

2. dcFanControl(temperature):

Prilagodava brzinu ventilatora na osnovu temperature. Vraća procenat brzine ventilatora.

3. display():

Dobavlja očitavanja temperature i vlažnosti vazduha sa DHT22 senzora, kontroliše brzinu ventilatora i stanje zvučnika, i prikazuje relevantne informacije na LCD ekranu.

4. debugMode():

Prikazuje dijagnostičke informacije sa DHT22 senzora u režimu za debagiranje.

5. action():

Vrši akcije na osnovu trenutnog stanja sistema, uključujući prikaz normalnih informacija, ulazak u režim za debagiranje ili izvođenje testova ventilatora i zvučnika.

6. keypadEvent(key):

Upravlja događajima tastature i izvodi odgovarajuće akcije na osnovu pritisnutog tastera.

7. setParameters():

Omogućava korisnicima postavljanje prilagođenih parametara za pragove vlažnosti i temperature koristeći tastaturu.

8. **setup()**:

Inicijalizuje sistem, uključujući postavljanje pinova, LCD ekrana i inicijalizaciju parametara.

9. **loop()**:

Glavna petlja sistema, gde se akcije vrše periodično na osnovu vremenskih intervala.

5 Rezultati testiranja

6 Zaključak

7 Literatura

[1] Datasheet od DHT22 može se naći na linku: https://cdn-shop.adafruit.com/datasheets/DHT22.pdf