1. IRM - Grupo 1 - Clase de Problemas 1 y 2 - 10/05/21

Ejercicio 1.1. Hallar, analíticamente, los puntos del plano que son intersección de los gráficos de las funciones

$$f(x) = x^3 log_5(3x+6)$$
 y $g(x) = 4x log_5(3x+6)$

Solución Para hallar los puntos de intersección, debemos resolver la ecuación f(x) = g(x), es decir,

$$x^3 log_5(3x+6) = 4x log_5(3x+6).$$

Primero, calculamos el dominio de la ecuación en cuestión. Este es, el conjunto de números reales que satisfacen

$$3x + 6 > 0 \Leftrightarrow 3x > -6 \Leftrightarrow x > -2 \Leftrightarrow x \in (-2, +\infty).$$

Entonces,

$$x^{3}log_{5}(3x+6) = 4xlog_{5}(3x+6) \Leftrightarrow x^{3}log_{5}(3x+6) - 4xlog_{5}(3x+6) = 0 \Leftrightarrow (x^{3}-4x)log_{5}(3x+6) = 0$$

Dado que un producto de números es nulo si y solo si alguno es cero, debemos resolver las ecuaciones

$$x^3 - 4x = 0$$
 y $log_5(3x + 6) = 0$.

Por un lado, factorizando tenemos que

$$0 = x^3 - 4x = x(x^2 - 4) = x(x - 2)(x + 2) \Leftrightarrow x = 0, 2, -2.$$

Por otro lado,

$$log_5(3x+6) = 0 \Leftrightarrow 3x+6 = 1 \Leftrightarrow 3x = -5 \Leftrightarrow x = -5/3.$$

Teniendo en cuenta que el dominio de nuestra ecuación es el intervalo $(-2, +\infty)$, concluimos que los puntos de intersección de f(x) y g(x) son x = -5/3, 0, 2.

Ejercicio 1.2. Sea $f(x) = 3log_2(x^2 - 2x + 5) + 1$. Se sabe que $Im(f) = [7, +\infty)$. Hallar $A, B \in \mathbb{R}$ tales que $f : A \to B$ resulte biyectiva y hallar su inversa $f^{-1} : B \to A$.

Solución Primero calculemos el dominio de la función. Debido a la presencia del logaritmo, debemos pedir

$$x^2 - 2x + 5 > 0$$
.

Estos puntos son el conjunto de positividad de la función cuadrática $x^2 - 2x + 5$. Si aplicamos la fórmula resolvente para hallar sus raíces, vemos que $b^2 - 4ac = 4 - 4.1.5 = -16$ es negativo. Por lo tanto, no posee raíces. Esto nos permite concluir que $x^2 - 2x + 5$ es siempre positivo o siempre negativo. Dado que el coeficiente principal es positivo (o que la ordenada al origen es positiva) concluimos que

$$C_+(x^2-2x+5)=\mathbb{R}.$$

Por lo tanto, $Dom(f) = \mathbb{R}$.

Estudiemos la inyectividad de f(x). Sean $x_1, x_2 \in \mathbb{R}$ tal que $f(x_1) = f(x_2)$.

$$f(x_1) = f(x_2)$$

$$3log_2(x_1^2 - 2x_1 + 5) + 1 = 3log_2(x_2^2 - 2x_2 + 5) + 1$$

$$3log_2(x_1^2 - 2x_1 + 5) = 3log_2(x_2^2 - 2x_2 + 5)$$

$$log_2(x_1^2 - 2x_1 + 5) = log_2(x_2^2 - 2x_2 + 5)$$

$$2^{log_2(x_1^2 - 2x_1 + 5)} = 2^{log_2(x_2^2 - 2x_2 + 5)}$$

$$x_1^2 - 2x_1 + 5 = x_2^2 - 2x_2 + 5$$

Ya sabemos que las funciones cuadráticas no son inyectivas y no vamos a poder concluir que x_1 sea igual a x_2 , a menos que trabajemos sobre uno de los dos intervalos que define la coordenada x del vértice. En este caso, si calculamos el vértice de $x^2 - 2x + 5$, el cual es V = (1,4) obtenemos que si trabajamos sobre $(-\infty,1]$ o $[1,+\infty)$, vamos a poder concluir la inyectividad de f(x), a partir de la inyectividad de la función cuadrática $x^2 - 2x + 5$ sobre dichos intervalos. Para ser más explícito, consideremos $A = [1,+\infty)$ y supongamos que $x_1, x_2 \in A$, entonces dado que la forma canónica de esta cuadrática es $(x-1)^2 + 4$, se tiene que

$$x_1^2 - 2x_1 + 5 = x_2^2 - 2x_2 + 5$$
$$(x_1 - 1)^2 + 4 = (x_2 - 1)^2 + 4$$
$$(x_1 - 1)^2 = (x_2 - 1)^2$$
$$|x_1 - 1| = |x_2 - 1|$$

Como $x_1, x_2 \in [1, +\infty)$, $|x_1 - 1| = x_1 - 1$ y $|x_2 - 1| = x_2 - 1$, de donde concluimos que $x_1 = x_2$.

Por lo tanto, tomamos $A = [1, +\infty)$ y $B = [7, +\infty)$ (Observar que no cambia la imagen de f si la restringimos al conjunto A, ya que no cambia la imagen de una cuadrática si nos restringimos a alguno de los intervalos $(-\infty, x_{\nu}]$ o $[x_{\nu}, +\infty)$).

Calculemos la inversa de f(x).

$$f(x) = y$$

$$3log_2(x^2 - 2x + 5) + 1 = y$$

$$3log_2(x^2 - 2x + 5) = y - 1$$

$$log_2(x^2 - 2x + 5) = \frac{y - 1}{3}$$

$$2^{log_2(x^2 - 2x + 5)} = 2^{\frac{y - 1}{3}}$$

$$x^2 - 2x + 5 = 2^{\frac{y - 1}{3}}$$

$$(x - 1)^2 + 4 = 2^{\frac{y - 1}{3}}$$

$$(x - 1)^2 = 2^{\frac{y - 1}{3}} - 4$$

$$|x - 1| = \sqrt{2^{\frac{y - 1}{3}} - 4}$$

$$x - 1 = \sqrt{2^{\frac{y - 1}{3}} - 4}$$

$$x = \sqrt{2^{\frac{y - 1}{3}} - 4} + 1$$

Por lo tanto,

$$f^{-1}(x) = \sqrt{2^{\frac{x-1}{3}} - 4} + 1$$

Fórmula de interés compuesto: Si una cantidad invertida P_0 con interés anual de n% se puede reinvertir una cantidad c de veces por año, el dinero obtenido es de

$$P(t) = P_0 \left(1 + \frac{n}{100} \frac{1}{c} \right)^{ct}$$

donde t se mide en años, o lo que es lo mismo

$$P(s) = P_0 \left(1 + \frac{n}{100} \frac{1}{c} \right)^s$$

donde s se mide en cantidad de períodos de reinversión. Por ejemplo:

• Si se puede invertir mensualmente, c = 12 y por lo tanto

$$P(t) = P_0 \left(1 + \frac{n}{100} \frac{1}{12} \right)^{12t}$$

con t en años, o lo que es lo mismo

$$P(s) = P_0 \left(1 + \frac{n}{100} \frac{1}{12} \right)^s$$

con s la cantidad de meses invertidos.

• Si se puede invertir trimestralmente c = 4 y por lo tanto

$$P(t) = P_0 \left(1 + \frac{n}{100} \frac{1}{4} \right)^{12t}$$

con t en años, o lo que es lo mismo

$$P(s) = P_0 \left(1 + \frac{n}{100} \frac{1}{4} \right)^s$$

con s la cantidad de trimestres invertidos.

Ejercicio 1.3. Decidir que inversión es mejor luego de 1 año

- 15% de TNA capitalizada mensualmente
- 20% de TNA capitalizada cuatrimestralmente

Solución. Observemos que la respuesta no es inmediata ya que si bien la segunda inversión otorga mayor tasa de interés, con la primer inversión recibimos intereses más frecuentemente y estos se vuelven a invertir.

Dado que un año posee 12 meses, si invertimos un capital *C* con la primer inversión obtenemos un capital final igual a

$$C\left(1+\frac{15}{1200}\right)^{12}=C.1,1607...$$

Si el capital inicial es C y el capital total luego de un año es C.1, 1607..., la inversión tiene un TEA (tasa efectiva anual) del 16,07% Dado que un año posee 3 cuatrimestres, si invertimos un capital C con la primer inversión obtenemos un capital final igual a

$$C\left(1+\frac{20}{3,100}\right)^3=C.1,2136...$$

Si el capital inicial es C y el capital total luego de un año es C.1,2136..., la inversión tiene un TEA (tasa efectiva anual) del 21,36%.

Por lo tanto, la segunda inversión es mejor.

Ejercicio 1.4. Si se invierten \$1000 a una tasa de 5% anual con interés compuesto, ¿cuánto tiempo debe pasar si el inversor pretende tener \$ 1500?

Solución Por lo antes mencionado, si t representa la cantidad de años invertidos,

$$f(t) = 1000 \left(1 + \frac{5}{100}\right)^t = 1000(1,05)^t$$

calcula el capital final luego de invertirlo por *t* años a 5% anual. Para saber cuántos años deben pasar para tener un capital total de \$1500, debemos resolver la ecuación

$$1500 = 1000 \left(1 + \frac{5}{100}\right)^t \Leftrightarrow \frac{3}{2} = \frac{1500}{1000} = \left(1 + \frac{5}{100}\right)^t = (1,05)^t$$

Aplicando la función logaritmo natural, la cual es creciente y satisface la propiedad $ln((1,05)^t) = t.ln(1,05)$, obtenemos que

$$ln(3/2) = ln((1,05)^t) = tln(1,05) \Leftrightarrow t = \frac{ln(3/2)}{ln(1,05)} \sim 8,31...$$

Ejercicio 1.5. Supongamos que un tipo de microorganismo se duplica cada 1 minuto. Si se tiene un cultivo con 100 microorganismos, ¿cuánto tiempo pasará hasta que supere los 5 millones de microorganismos?

Solución. Lo primero que debemos hacer es hallar una función que represente el crecimiento del cultivo a lo largo del tiempo. Hagamos varios ejemplos para entender la situación. Luego de 1 minuto, la colonia se duplica, teniendo un total de

En el minuto 2, la totalidad de microorganismos que habia luego de 1 minuto se vuelven a duplicar, obteniendo un total de

Siguiendo de esta forma, obtenemos el siguiente comportamiento

1 minuto
$$\rightarrow$$
 100.2
2 minuto \rightarrow (100.2).2 = 100.2²
3 minuto \rightarrow (100.2²).2 = 100.2³
4 minuto \rightarrow (100.2³.)2 = 100.2⁴
.....
t minuto \rightarrow 100.2^t

Por lo tanto, la función $f(t) = 100.2^t$ representa la cantidad de microorganismos en el cultivo luego de t minutos. De esta forma, nuestro problema se traduce a resolver la inecuación

$$f(t) > 5000000 = 5.10^6$$
.

Resolvemos esta inecuación,

$$100.2^t > 5.10^6 \Leftrightarrow 2^t > 5.10^4$$
.

Aplicando la función logaritmo natural, la cual es creciente y satisface la propiedad $ln(2^t) = t.ln(2)$, obtenemos que

$$t.ln(2) = ln(2^t) > ln(5.10^4)$$

Como ln(2) > 0, se tiene que

$$t > \frac{\ln(5.10^4)}{\ln(2)} \sim 15,69.$$

Comentario: También se podría haber aplicado la función creciente log_2 . Opte por esta, ya que las cuentas con logaritmo natural las pueden hacer fácilmente con la calculadora.