achon (Acide-Base)

Tab
ω
0
2
: tableau
récapitulati
fdes
des réactions de
9
caractérisation
9
différents i
ions 1

-					
	Cu ²⁺ 3 D.5 3 E.8	Ca ²⁺ 3 F.14	Ba ²⁺ 3 D.4	Ag [†] 3 F.9	anion
	dépôt rouge (Cu) sur clou en fer	avec C ₂ O ₄ ²⁻ ; CaC ₂ O ₄ , H ₂ O & b	avec CrO ₄ ²⁻ : (tampon acétate)	avec CrO ₄ ²⁻ : \$\times \text{r} Ag_2CrO_4\$	autre réaction
	B 4 1€	r – or	v påle		couleur flamme
				b AgCl noircit à la lumière []	CIT
		, i	o ^{ye}	ø b − j AgBr noircit à la lumière [i]	Br
	∜ br (Cu ₂ I ₂ + I ₂) ﴿			∯ j Agl noircit à la lumière []	-1
The second secon	¢ bl cl gélatineux Cu(OH)₂	Ø b Ca(OH)₂ filtrat = eau de chaux		# br (Ag ₂ O, H ₂ O)	Н0-
		CaCO ₃	∯ b BaCO₃	123 <u>€</u>	CO ₃ ²⁻ PO ₄ ³⁻
				Ag _s PO ₄	PO43-
	Cus © n			Ag ₂ S	S2-
	10	[2] Q. [20] P. gr	BaSO. B	Ag ₂ SO ₄	\$0, ²
	Bleu céleste [M]			redissout le précipité de AgCl 🗒	NH _{3(aq)}

- $\boxed{1}: \mathbf{AgCl} \text{ soluble dans } \mathbf{NH_{3(u_0)}} \text{ et } \mathbf{S}_2\mathbf{O}_3^{2-}{}_{(u_0)}, \mathbf{AgBr}: \text{insoluble dans } \mathbf{NH_{3(u_0)}} \text{ soluble dans } \mathbf{S}_2\mathbf{O}_3^{2-}{}_{(u_0)}, \mathbf{AgI}: \text{insoluble dans } \mathbf{NH_{3(u_0)}} \text{ et } \mathbf{S}_2\mathbf{O}_3^{2-}{}_{(u_0)}, \mathbf{AgBr}: \mathbf{S}_2\mathbf{O}_3^{2-}{}_{(u_0)}, \mathbf{AgB$
- 2 : Ag₂CO₃ donne Ag₂O, brun par chauffage. 3: cf. 1.10, p. 30. A : les autres ions susceptibles de réagir sont masqués par ajout de solution d'edi
- 3: BaSO4 précipité lourd, colle au fond du tube. [6]: CaSO4, 2H2O. La prise du plâtre, 2 CaSO4, H2O, (hémihydrate), correspond à sa réhydratation en gyps
- 🗟 : le test peut être effectué aussi bien avec un fil de cuivre qu'avec un fil de platine décapé et trempé dans la solution d'ions Cu²⁺ 🛚 : CaSO₄, 2H₂O, le gypse, est un exemple de composé à solubilité rétrograde (cf. 3 D.5, p. 146) : ne pas essayer de faire disparaître le précipité par chauffage
- g): par oxydo-réduction interne. La coloration est due à la présence de l2.
- II : la suspension de CuSO4 et CaCO3 constitue la bouillie bourguignonne, alors que la bouillie bordelaise est une suspension de CuSO4 et Ca(OH)2
- [I]: cf. 3 C.1, p. 95 et 3 D. 7.

tent aux réactions caractéristiques ; nous avons cependant ajouté quelques caractères analytiques des différents cations

de actérisation de différents ions (suite)

- 1 (J. 3 F. 14, p. 255
- [J] of 3D 6, p 154 of 3 F.9 p. 234
- [14]: le réactif de Nessler est le tétraiodomercurate(II) de potassium, K.[Hg(I+)], obtenu par reduscitation du précipité d'ochare de mercure(II) dans un juste suffisant d'iodure de potassium. Réaction avec NH₁₆, dégagé par chauffage du sel d'ammontum. Coloration ou précipité j-er à br de NH₂Hg.I. ig recristallise en paillettes blanches [1] recrustalise on partieties jaures d'or « pluve d'or »
- is constituait un pigment. soluble dans un excès par formation de $\{Pb^HO_2\}^3$
- soluble dans un excès par formation de [ZnⁿO₂]²

- \$\frac{1}{2}\$: Noticet an papear a l'accitate de plomb, of 3 C 5, p. 105
- trouble l'eau de chaux : CO₂₆₁ + (Ca², 2HOT_{hett}) -+ CaCO₁₆₁ + H₂O, cf. 3 C.4, p. 103