# Goldman Lab Work

Alexandru Tapus

#### Week: 3/14/24-3/21/24

- Simulated a nonlinear autapse neuron
  - Graphed equation r^p/(a+r^p) for varying values of a and p
  - Found the fixed points of a neuron with this nonlinear firing rate
  - Graphed the firing rate over time for a rate model using a form of the graphed nonlinearity
- Predicted the effective time constant given the firing rate over time
  - Fed a linear rate model simulation into a linear regression model
    - X: Delta t from a time t0
    - Y: In(r) at time t0 + deltaT
  - Repeated the aforementioned procedure for synaptic weights from -1 to .99

### Effective Time Constant Over Synaptic Weights (Linear)

Relationship Between Tau Effective and Synaptic Weights



### Graphs of Nonlinear Functions



#### Trends in the functions

- Increasing a decreases slope
- Increasing p increases slope

#### **Nonlinear Function Used**

Sigmoid Function a=0.3 p=1



### Fixed Points and Firing Rate Over Time (Incorrect)



#### **Notes**

#### Notes

- Used external input of arbitrary value of .1 spikes/sec
- Any large r will quickly overrun a=.3 and reach one
  - O However, a larger a value would not change that  $\lim_{r\to inf} (r/(a+r))$  always = 1, it would just approach 1 way slower

#### Week of 3/21/24-3/28/24

Finding Fixed Points of Nonlinear Autapse Neurons

- Found the fixed points of the nonlinear autapse neurons
- Categorized them as stable or unstable
- Drew two representations for representing where the fixed points occur
  - Graph of drdt vs r
  - Graph of decay and input vs r (looking at where they intersect)

Redrew the correct firing rate curves for a nonlinear autapse neuron

### Correct Nonlinear Autapse Neuron Firing Rate

Firing Rate Over Time With Varying Synaptic Weights



# Fixed Points With w=25 and $F(r) = r^2/(20 + r^2)$



Unstable Point: .800801

Stable Point: 24.1241

#### Week 4/8/24

#### Two Recurrently Connected Nonlinear Neurons

- Graphed the firing rates of the two neurons as a function of each other over time. (As well as on the actual r1 r2 graph to see the relationship between the nullclines and the change in firing rate)
- Drew the nullclines for several activation functions.
  - Attempted to have 1, 2, and 3 fixed points.
- Drew the vector field formed by the nullclines showing how the fixed points are approached.

### Two Recurrently Connected Neurons (Nonlinear)

1 Fixed Point



### Two Recurrently Connected Neurons (Nonlinear)

2 Fixed Points



### Two Recurrently Connected Neurons (Nonlinear)

3 Fixed Points



#### **Line Attractor Conditions**

For two recurrently connected neurons.

- The two weight values have to be reciprocals of each other
- More line attractors can be made by allowing shifting with positive and negative external inputs.



#### To Do Next Week

Used the e sigmoid function on an autapse neuron.

Created an animation showing how the nullclines shift with the application of external inputs. (Next Week)

- Quick pulse current (on off)
- Box current
- Trapezoid shift for more gradual change

(Each nullcline is showing the conditions of no change for a given input) (Change the input and don't always make it symmetrical)

### Week 4/22 (Woods Hole Problem Set)

Calculating and proving the eigenvectors for a simple two neuron network

Calculating the amplification constant, effective time constant, and steady state values of the network

Running a simulation to validate the mathematical approach

Discover the weight values for which the neural system integrates the difference between the two neurons

Creating a winner-takes-all network

(If time, creating a model of perceptual rivalry by setting an  $r_{max}$  and slowly decreasing it until the other neuron takes over.  $R_{max}$  is reset when it gets close to 0 again)

## Mathematical Analysis of the Network



 $I_{\text{common}}$ :attenuated

I<sub>different</sub>:amplified

For 
$$w_{self}$$
=.2  $w_{other}$ =-.7

• 
$$1/(1-.5) = \frac{2}{3}$$
  $1/(1-.9) = 10$ 

$$1/(1-.9) = 10$$

$$\tau_{\rm eff} = \tau/(1-\lambda)$$

• 
$$18/(\frac{2}{3}) = 27$$

$$18/10 = 1.8$$

For current of (63Hz, 53Hz):

• 
$$[b_1-b_2,b_1+b_2]=[63,57] => b_1=60, b_2=-3$$

Calculating Steady State Firing Rate

• 
$$60*\frac{2}{3}*[1,1] + -3*10*[1,-1] => [10,70]$$

### Simulation for Provided Weight Values



### Integrating the Difference Between the Neurons

If the sum of the absolute values is 0, the difference is integrated

- (e.g.  $w_{self} = .3$ ,  $w_{other} = -.7$ )
- No current added



#### Creating a Winner-Takes-All Algorithm





#### To Do Next Week

What is the condition that makes the winner neuron go to infinity? (Prove mathematically)

Make a 100 neuron network

Make an eigenvalue spectrum (Real and imaginary components of the network)

Choose the weight matrix to be from a normal distribution N(M=?,SD=?)

Be able to look at any two neurons relative to each other

### Proof of Condition For Going To Infinity

The difference between the two neurons in a winner takes all network is accentuated by an eigenvalue of  $w_{self}$  -  $w_{other}$ .

- When w<sub>self</sub> is small a small positive number and w<sub>other</sub> is a large negative:
  - w<sub>self</sub>- w<sub>other</sub> > 1 and the model experiences exponential growth on that eigenvector.

### 100 Neuron Network Eigenvalue Plot





#### Findings:

- Addition had no predictable effect on eigenvectors but increased the value of the real eigenvalues.
- Division by a constant divided all the eigenvalues by that same constant.
- Eigenvalue of 1 means that the network is an integrator.

#### Plot of Several Neurons in the Network Over Time





#### To Do

Look at the leading eigenvalue of the eigenvector.

Add a pulse of input that corresponds to the eigenvector.

What does the leading eigenvalue represent (dict of eigenvalues and eigenvectors)

Create a matrix with eigenvalue 1+xi, 0+i

Creating a line attractor using a single synaptically connected neuron

#### Finding the Fixed Points of a Recurrent Synaptic Autapse

Finding Fixed Points for a Nonlinear Synaptic Autapse



Finding Fixed Points for a Nonlinear Synaptic Autapse



### Applying Current Along a Real Eigenvector





#### Week 5/13

Proved Euler's Formula Using Taylor Series

Observed complex eigenvector oscillations in a linear recurrent model (2 neurons)

#### Oscillations

Firing Rate Over Time



Weight matrix = [[0,10][-9,0]]

### Taylor Series and Imaginary Numbers



#### To Do

Nonlinear Recruitment Network

### Github Project Files

https://github.com/AlexHackathon/GoldmanTapusWork