Reproducible statistical analysis with

David Jorgensen

Adapted from article by Amy Gimma and Thibaut Jombart

Reproducibility

- Ability to reproduce results by a peer (or yourself in the future)
- Requires data, methods and procedures

Barriers to reproducibility

Harris, J. K., Johnson, K. J., Carothers, B. J., Combs, T. B., Luke, D. A., & Wang, X. (2018, September 1). Use of reproducible research practices in public health: A survey of public health analysts. *PLoS ONE*, Vol. 13. https://doi.org/10.1371/journal.pone.0202447

Barriers to reproducibility

Although data privacy is a valid concern in public health, many of the other factors are readily overcome:

- Lack of time ultimately faster for repeated analyses
- Fear of plagiarism unlikely in practice
- Internal work with no need to share reproducibility is still useful for yourself and colleagues

R is able to help overcome one of the main concerns – lack of tools to support reproducibility

Two aspects of reproducibility using R

- Implementing methods as R packages
- Making transparent and reproducible analyses

Literate programming

Let us change our traditional attitude to the construction of programs: instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to humans what we want the computer to do. (Donald E. Knuth, Literate Programming, 1984)

Rmarkdown: R chunks in markdown

```
```{r chunk-title, ...}
a <- rnorm(1000) hist(a, col = terrain.colors(15), border = "white", main = "Normal distribution")</pre>
```

#### Results in:

```
a <- rnorm(1000)
hist(a, col = terrain.colors(15), border = "white", main = "Normal distribution")
```



## Formatting outputs

```
```{r another-chunk-title, ...}

[some R code here]

where ... are options for processing and formatting, e.g:
•eval (TRUE/FALSE): evaluate code?
```

- •echo (TRUE/FALSE): show code input?
- •results ("markup"/"hide"/"asis"): show/format code output
- •message/warning/error: show messages, warnings, errors?
- cache (TRUE/FALSE): cache analyses?

See http://yihui.name/knitr/options for details on all options.

One format, several outputs

rmarkdown can generate different types of documents:

- standardised reports (html, pdf)
- •journal articles. using the rticles package (.pdf)
- handouts (.pdf)
- word documents (.doc)
- slides for presentations (html, pdf)

• ...

See: http://rmarkdown.rstudio.com/gallery.html.

Rules for reproducible statistical analysis in R

1. Data preparation

We recommend the following structure:

- Load packages needed
- Load the raw data
- Clean the raw data
 - standardise data (e.g. linelist::clean_data)
 - convert dates that need converting (e.g. linelist::guess_dates)
 - o fix typos (e.g. linelist::clean_variable_spelling)
- Add new variables (e.g. using mutate)
- Subset entries (rows) of the data (e.g. using filter)
- Define custom colors (e.g. using scale_fill_manual or scale_color_manual)

2. Data analysis

Organise work systematically

- Sub-sections for types of analysis
- General analyses before subsets or stratified analyses

3. Export outputs

If you want to come back to work in the future or use other software on the cleaned data it is important to export your outputs.

- .rds files for future R analysis
- xlsx or .csv files for analysis with other software

4. System info

This is optional, but can be useful for audit purposes, or for diagnosing issues in the results generated. We recommend including the following:

- sys.info(): basic system information
- R.version: version of R
- sessionInfo(): which packages are loaded, and which versions are they?
- params: this list will contain optional parameters passed at compilation time through the
 params argument of compile_report or update_reports

2 Naming convention recommendations

- Use only lower case letters, numbers and _ as separator (use for dates)
- Never use special characters in file or variable names (e.g. éÈçôï\/# %?!&:;,@*^) or blank spaces
- If you need special characters for plots only use when defining labels
- Standard date format in R is yyyy-mm-dd

linelist::clean_data will do this for you on a data.frame or tibble

```
messy <- linelist::messy_data(n = 10) %>% select(1:5)
messy
         'ID Date of Onset. DisCharge.. GENDER Épi.Case définition
     zhpmio
                 2018-01-10 20/01/2018
                                                        suspected
     sckroc
                 2018-01-04 14/01/2018
                                           Male
                                                         not a case
     snwdom
                 2018-01-11 21/01/2018
                                         female
                                                        suspected
      kheaav
                 2018-01-08 18/01/2018
                                           MALE
                                                        suspected
     papdba
                                                        suspected
                 2018-01-11 21/01/2018
                                         Female
     pypdsv
                 2018-01-02 12/01/2018
                                           MALE
                                                        suspected
     cyuiex
                                                        suspected
                 2018-01-05 15/01/2018
                                          Female
      koexkj
                                                          Confirmed
                2018-01-08 18/01/2018
                                           Male
## 9
## 10 n
         clean <- clean_data(messy)</pre>
         clean
                   id date of onset discharge gender epi case definition
              zhpmio
                         2018-01-10 2018-01-20 female
                                                                suspected
              sckroc
                         2018-01-04 2018-01-14 male
                                                                not a case
              snwdom
                         2018-01-11 2018-01-21 female
                                                                suspected
               kheaav
                         2018-01-08 2018-01-18
                                                                suspected
               papdba
                         2018-01-11 2018-01-21 female
                                                                suspected
                                                                suspected
               pypdsv
                         2018-01-02 2018-01-12
               cyuiex
                         2018-01-05 2018-01-15 female
                                                                suspected
                                                                confirmed
               koexkj
                         2018-01-08 2018-01-18
              uulige
                         2018-01-02 2018-01-12 female
                                                               not a case
         ## 10 nugiit
                                                                 probable
                         2018-01-02 2018-01-12
```

```
## load and clean data
mers <- outbreaks::mers korea 2015$linelist %>%
 as_tibble() %>%
 clean_data()
mers
## # A tibble: 162 x 15
                                 place_infect reporting_ctry loc_hosp
              age age class sex
      <chr> <int> <chr>
                            <fct> <fct>
                                                               <fct>
                                               <fct>
                                  middle east south korea
## 1 sk 1
              68 60 69
                                                              pyeongt...
## 2 sk 2
              63 60 69
                                 outside mid... south korea
                                                              pyeongt...
## 3 sk 3
              76 70 79
                                 outside mid... south korea
                                                              pyeongt...
## 4 sk 4
              46 40 49
                                 outside mid... south korea
                                                              pyeongt...
## 5 sk 5
              50 50 59
                          m outside mid... south korea
                                                              365 yeo...
## 6 sk 6
              71 70_79
                                 outside mid... south korea
                                                              pyeongt...
                                 outside mid... south korea
## 7 sk 7
              28 20 29
                                                              pyeongt...
## 8 sk 8
              46 40 49
                                 outside mid... south korea
                                                              seoul c...
## 9 sk 9
              56 50 59
                                 outside mid... south korea
                                                              pyeongt...
## 10 sk 10
             44 40 49
                                 outside mid... china
                                                              pyeongt...
## # ... with 152 more rows, and 8 more variables: dt onset <date>,
     dt report <date>, week_report <fct>, dt_start_exp <date>,
## # dt end exp <date>, dt diag <date>, outcome <fct>, dt death <date>
## define scales for sex and outcome, tweak labels as appropriate
scale_sex <- scale_fill_manual(</pre>
    "Sexe",
   values = c(m = "navy", f = "salmon"),
   labels = c(m = "Homme", f = "Femme"))
scale x outcome <- scale x discrete(</pre>
   labels = c(alive = "Vivant",
              dead = "Décédé"))
## make the plot
ggplot(mers, aes(x = outcome, fill = sex)) +
 geom_bar(position = "dodge") +
 scale sex +
 scale x outcome +
 labs(title = "Issue de la maladie par sexe",
      y = "Nombre de cas")
```

Include special characters in plot without renaming the variables

3 Use descriptive naming

Clarity is improved by giving descriptive names to files and variables

4 Simple, readable code

```
lapply(iris_clean[iris_clean$species$in$c("setosa", "versicolor"), grep("sepal", names(iris_clean))], summary)
```

- Write short lines
- Break up complex code
- Describe code readme and inline comments
- ## for comments better if you want to use code editors other than Rstudio


```
## find rows to keep: species setosa and versicolor
rows_to_keep <- iris_clean$species %in% c("setosa", "versicolor")

## identify columns with 'sepal' in their name
sepal_columns <- grep("sepal", names(iris_clean))

## subset data to analyse
sepals_setosa_versicolor <- iris_clean[rows_to_keep, sepal_columns]

## get summaries
lapply(sepals_setosa_versicolor, summary)</pre>
```

Lintr (optional)

Rstudio plugin which can tell you where your code differs from common style conventions

github.com/jimhester/lintr

5 Avoid messy projects

- 1 project = 1 folder
- Subfolders for data, analyses, figures, manuscripts etc.
- Use Rstudio projects (as in our case study)
- Document projects with README file and inline comments

6 Relative file paths

- X my_file <- 'C:\project1\data\data.csv'</pre>
- setwd('C:\project1') ## project does this
 my_file <- './data/data.csv'</pre>
- ✓✓ my_file <- here('data/data.csv')</pre>

Using an **R project** automatically sets your working directory to the project directory meaning you can share code more efficiently

here works from the project directory even if you open an R script directly rather than via the project. It also translates between windows and unix file structure (good for sharing)

7 Avoid losing work

- Never rely on a single copy of work
- Backups are good, <u>syncing</u> with a server is better (dropbox, sharepoint etc.)
- Use <u>versions</u> to keep track of changes
- For serious coding projects use version control – e.g. git and github

