Algoritmy na mřížích

Pavel Příhoda

3. listopadu 2021

Obsah

1	$ m \acute{U}vod$	2
	1.1 Algebraická struktura mříží	
	1.2 Rozložení mříže v \mathbb{R}^n	2
2	2 Výpočetní problémy na mřížích	
3	Lineární algebra nad $\mathbb Z$	4
	3.1 Souřadnice	5

1 Úvod

Definice 1.1. Mříž v *n*-dimenzionálním prostoru je množina $L \subseteq \mathbb{R}^n$ taková, že $\exists b_1, b_2, \dots, b_d \in \mathbb{R}^n$, LN (nad \mathbb{R}) tak, že $L = \mathbb{Z}b_1 + Zb_2 + \dots + \mathbb{Z}b_d = \{z_1b_1 + z_2b_2 + \dots + z_db_d | z_1, \dots z_d \in \mathbb{Z}\}.$

Poznámka 1.2. $\{b_1, b_2, ..., b_d\}$ se nazývá *báze L*. Není určená jednoznačně. $d = \dim \langle L \rangle$, d je hodnost (rank) určená množinou L, $0 \le d \le n$.

1.1 Algebraická struktura mříží

- L je komutativní grupa (podgrupa grupy $(R^n,+)$)
- L je konečně generovaná (báze je množina generátorů)
- L je beztorzní $(\forall z \in \mathbb{Z} \ \forall \underline{l} \in L : z \cdot l = 0 \implies z = 0 \lor l = 0)$

Věta 1.3. Každá beztorzní konečně generovaná komutativní grupa je volná.

Důsledek 1.4. $(L,+) \simeq (\mathbb{Z}^d,+)$

Definice 1.5 (Euklidovská norma v \mathbb{R}^n). Nechť $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$. Potom standradní

skalární součin · definujeme jako $u \cdot v = \sum_{i=1}^{n} u_i v_i = u^T v$. Euklidovskou normu definujeme jako $||u|| := \sqrt{u \cdot u} = \left(\sum_{i=1}^{n} u_i v_i\right)^{\frac{1}{2}}$.

1.2 Rozložení mříže v \mathbb{R}^n

Definice 1.6 (Diskrétní podgrupy $(\mathbb{R}^n,+)$). Podgrupa $G\subseteq (\mathbb{R}^n,+)$ je diskrétní, pokud

$$\forall q \in G \ \exists \varepsilon > 0 : G \cap \{v \in \mathbb{R}^n | ||v - q|| < \varepsilon\} = \{0\}.$$

Pozorování 1.7. $G \subseteq (\mathbb{R}^n, +)$ je diskrétní $\iff \exists \varepsilon > 0 : G \cap \{v \in \mathbb{R}^n | ||v|| < \varepsilon\} = \{0\}$

Důkaz. ⇒ ✓

 \Leftarrow vezmi $\varepsilon > 0$ tak, aby platila pravá strana tvrzení. Zvol $g \in G$ libovolné. Potom pro každé $v \in G$ splňující $||v - g|| < \varepsilon$ platí v = g, neboť $v - g \in G$ a tedy z předpokladu v - g = 0. Celkem tedy $G \cap \{v \in \mathbb{R}^n | ||v - g|| < \varepsilon\} = \{g\}$.

Důsledek 1.8. Je-li $G \subseteq (\mathbb{R}^n, +)$ diskrétní, pak $\forall M \in \mathbb{R}^+ |\{g \in G | ||g|| < M\}| < \infty$.

 $\begin{array}{ll} D\mathring{u}kaz. \ B_M:=\{v\in\mathbb{R}^n|\|v\|< M\}, \ B_\varepsilon:=\{v\in\mathbb{R}^n|\|v\|<\varepsilon\}, \ \mathrm{kde}\ \varepsilon>0\ \mathrm{splňuje}\ B_\varepsilon\cap G=\{0\}.\\ X:=G\cap B_M, \ B_\frac{\varepsilon}{2}:=\{v\in\mathbb{R}^n|\|v\|<\frac{\varepsilon}{2}\}.\ \mathrm{Potom}\ \forall g_1,g_2\in G:g_1\neq g_2 \Longrightarrow (g_1+B_\frac{\varepsilon}{2})\cap (g_2+B_\frac{\varepsilon}{2})=\emptyset, \\ \mathrm{nebof}\ \|g_1-g_2\|\geq \varepsilon. \end{array}$

$$\bigcup_{x \in X}^{\bullet} x + B_{\frac{\varepsilon}{2}} \subseteq B_{M+\varepsilon}$$

$$|X| \cdot \operatorname{vol}(B_{\frac{\varepsilon}{2}}) \le \operatorname{vol}(B_{M+\varepsilon})$$

$$|X| \le \frac{\operatorname{vol}(B_{M+\varepsilon})}{\operatorname{vol}(B_{\frac{\varepsilon}{2}})} < \infty$$

Tvrzení 1.9. Každá n-dimenzionální mříž je diskrétní podgrupa $(\mathbb{R}^n, +)$.

 $D\mathring{u}kaz$. Indukcí dle hodnosti mříže L(d). (Případ d=0 platí, ale vynecháme jej.)

 $\boxed{d=1}$ tj. $\exists_1 \in \mathbb{R}^n, \ b_1 \neq 0, \ L = \mathbb{Z}b_1 \ 0 \neq b \in L \iff l = zb_1, \ z \in \mathbb{Z} \setminus \{0\}.$

 $||l|| = |z| \cdot ||b_1|| \ge ||b_1|| \implies \varepsilon = ||b_1|| \text{ projde.}$

 $\boxed{d > 1}$ $\{b_1, \ldots, b_d\}$ báze L. Definujme $L_0 = \mathbb{Z}b_1 + \mathbb{Z}b_2 + \cdots + \mathbb{Z}b_{d-1}$. To odpovídá bázi $\{b_1, \ldots, b_{d-1}\}$, potom z indukčního předpokladu $\exists \varepsilon_0 > 0$ takové, že $\forall l \in L_0 \setminus \{0\} \ ||l|| \ge \varepsilon_0$. Platí, že $\mathbb{R}^n = \langle L_0 \rangle \oplus \langle L_0 \rangle^{\perp}$. Z toho plyne $\forall v \in \mathbb{R}^n \ \exists v_0, v^{\perp} \in \mathbb{R}^n \ v = v_0 + v^{\perp}, \ v_0 \in \langle L_0 \rangle, \ v^{\perp} \in \langle L_0 \rangle^{\perp}$.

$$0 \neq l = z_1b_1 + z_2b_2 + \dots + z_db_d, \ z_1, \dots, z_d \in \mathbb{Z}$$

- 1. $z_d=0 \implies l \in L_0 \setminus \{0\} \stackrel{\text{I.P.}}{\Longrightarrow} \|l\| \ge \varepsilon_0$ a důkaz je hotov, nebo
- 2. $z_d \neq 0$... $l = l_0 + l^{\perp} \Longrightarrow ||l|| \geq ||l^{\perp}|| = ||z_d b_d^{\perp}||$ $b_d \notin L_0$, nebot b_1, \ldots, b_d jsou LN $\Longrightarrow b_d = b_{d_0} + b_d^{\perp} \Longrightarrow ||l|| \geq ||z_d| \cdot ||b_d^{\perp}|| \geq ||b_d^{\perp}|| > 0$.

Tedy platí, že $||l|| \ge \min\{\varepsilon_0, ||b_d^{\perp}||\}$

2 Výpočetní problémy na mřížích

SVP - shortest vector problem

Definice 2.1 (První postupné minimum). Nechť $0 \neq L \subseteq (\mathbb{R}^n, +)$ je n-dimenzionální mříž. Definujeme první postupné minimum $\lambda_1(L) := \min\{||v|| : 0 \neq v \in L\}$. Toto minimum existuje, neboť $\forall l : 0 \neq l \in L$, $\{v \in L \setminus \{0\} : ||v|| \leq ||l||\}$ je konečná.

Definice 2.2 (Nejkratší vektor L). Nechť $0 \neq L \subseteq (\mathbb{R}^n, +)$ je n-dimenzionální mříž. v je n-gikratší vektor L, pokud $||v|| = \lambda_1(L)$

Poznámka 2.3. v je nejkratší vektor $L \iff -v$ je nejkratší vektor L.

Poznámka 2.4. $L = \mathbb{Z}^2 \subseteq (\mathbb{R}^2, +)$ má tyto nejkratší vektory: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

Definice 2.5 (Formulace SVP).

Vstup: Mříž zadaná bází.

Výstup: Nejkratší vektor L (stačí jeden libovolný).

Věta 2.6 (M. Ajtai, 1998). SVP je NP-hard (NP-těžký).

Definice 2.7 (SVP $_{\gamma}$). (aproximační verze SVP)

Definujeme aproximační faktor $\gamma: \mathbb{N} \to \mathbb{R}^+$.

Vstup SVP_{γ} : n-dimenzionální mříž zadaná bází.

Výstup: $0 \neq v \in L$ takový, že $\forall 0 \neq v \in L : \gamma(n) \cdot ||u|| \ge ||v||$.

Věta 2.8 (A. K. Lenstra, H. W. Lenstra, L. G. Lowász, 1982).

$$\mathrm{SVP}_{2^{\frac{n-1}{2}}}$$

je řešitelný v polynomiálním čase.

Definice 2.9 (Gap SVP $_{\gamma}$). (rozhodovací verze SVP $_{\gamma}$)

 $L\subseteq (\mathbb{R}^n,+)$ mříž, úplná (hodnost = n), víme, že $\lambda_1(L)\le 1$ nebo $\lambda_1(L)\ge \gamma(n)$. Máme rozhodnout, který případ nastává.

Learning with errors: Odvozuje se od BDD_{γ} (bounded distance decoding)

Definice 2.10 (BDD $_{\gamma}$ - bounded distance decoding). $L \subseteq (\mathbb{R}^{n}, +), v \in \mathbb{R}^{n}$. Víme: $dist(v, L) < \frac{\lambda_{1}(L)}{2\gamma(n)}$. Chceme najít vektor $l \in L$, který tuto nerovnost dokazuje, tedy splňuje

$$||v-l|| < \frac{\lambda_1(L)}{2\gamma(n)}$$

.

Poznámka 2.11. $l_1 \neq l_2 \in L$, $||l_1 - l_2|| \geq \lambda_1(L)$ Pak $|\{u \in \mathbb{R}^n : ||u - v|| < \frac{\lambda_1(L)}{2} \cap L\}| \leq 1$

Definice 2.12 (*i*-té postupné minimum). $L \subseteq (\mathbb{R}^n, +)$ mříž hodnosti d. Pro $i \in \{1, ..., d\}$ definujeme *i*-té postupné minimum $\lambda_i(L) = \min\{r \in \mathbb{R} : L$ obsahuje i LN vektorů normy $\leq r\}$

Definice 2.13 (SIVP_{γ} - short independent vectors problem). Dána $L \subseteq (\mathbb{R}^n, +)$ úplná. Chceme nalézt $S = \{s_1, \ldots, s_n\} \subseteq L$ lineárně nezávislé tak, aby $||s_i|| \le \gamma(n) \cdot \lambda_n(L)$.

Definice 2.14 (SIS_{n,q,s,m} - short integer soultion). Necht $q \in \mathbb{N}$. Volíme náhodně $a_1, a_2, \ldots, a_m \in \mathbb{Z}_q^n$. $A := (a_1 | a_2 | \cdots | a_m), \ n \times m \text{ nad } \mathbb{Z}_q$. Chceme najít $0 \neq t \in \mathbb{Z}^m \ ||z|| \leq \beta, Az \equiv 0 \pmod{q}$

Poznámka 2.15. $L = \{n \in \mathbb{Z}^m : An \equiv 0 \pmod{q}\}$ je celočíselná mříž obsahující $q : \mathbb{Z}^m \pmod{q}$ mříž)

Příklad 2.16. $2^m > q^n (m > n \cdot \log(q))$. Vezmeme $f_A : \{0,1\}^m \to \mathbb{Z}_q^n$ $f_A(n) := An \mod q$ $\exists u_1 \neq u_2 \in \{0,1\}^m : f_A(u_1) = f_A(u_2)$ $z = u_1 - u_2 \in \{0,1\}^m, O < ||z|| \le \sqrt{m}, \ Az \equiv 0 \ (\text{mod } q).$ Potom z řeší $\mathrm{SIS}_{n.a.\sqrt{m}.n}$.

Věta 2.17 (M. Ajatai, 1996). Nechť $m = \text{poly}(n), q \ge \beta \operatorname{poly}(n)$. Pokud existuje algoritmus řešící $SIS_{n,q,\beta,n}$ s nezanedbatelnou pravděpodobností, pak existuje srovnatelně efektivní algoritmus, který řeší $SIVP_{\gamma}$ s nezanedbatelnou pravděpodobností pro všechny instance n-dimenzionálních mříží, kde $\gamma = \operatorname{poly}(n) \cdot \beta$.

Příklad 2.18. Necht $2^m > q^n$, $\beta \ge \sqrt{m}$. Díváme se na $\{f_A : A \in M_{n,m}(t_q)\}$ jako na množinu hashovacích funkcí, která má q^n prvků. Hledáme v ní náhodnou kolizi (speciální případ $SIS_{n,q,\beta,m}$). Důkaz obtížnosti $SIVP_{\gamma}$ pro odpovídající γ povede k důkazu obtížností problému hledání kolizí.

3 Lineární algebra nad $\mathbb Z$

Definice 3.1 (volná grupa). konečně generovaná komutativní grupa G je volná, pokud $\exists b_1, b_2, \ldots, b_d \in G$ takové, že $\forall g \in G$ $\exists! z_1, z_2, \ldots, z_d \in \mathbb{Z}$ tak, aby $g = z_1b_1 + z_2b_2 + \cdots + z_db_d$. Množina $\{b_1, b_2, \ldots, b_d\}$ se nazývá volná báze G.

Poznámka 3.2. G = O volná grupa s volnou bází \emptyset $L \subseteq (\mathbb{R}^n, +)$ mříž. Potom báze mříže je volná báze grupy (L, +)

 $(\mathbb{Z}^n,+)$ Potom volná báze např. $\{e_1,e_2,\ldots,e_n\},e_1=\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,e_n=\begin{pmatrix}0\\\vdots\\0\\1\end{pmatrix}$

Tvrzení 3.3. Konečně generovaná volná grupa je izomorfní $(\mathbb{Z}^n,+)$ pro nějaké $n \in \mathbb{N}$.

$$D\mathring{u}kaz$$
. G s volnou bází is $\{b_1, + \dots, b_d\}$ $\varphi : \mathbb{Z}^d \to G$ $\begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \to \sum_{i=1}^d z_i b_i$ je izomorfizmus grup. \square

Tvrzení 3.4. $(\mathbb{Z}^{d_1}, +) \simeq (\mathbb{Z}^{d_2}, +) \Rightarrow d_1 = d_2$

 $D\mathring{u}kaz. \ \varphi: \mathbb{Z}^{d_1} \to \mathbb{Z}^{d_2}$ $\varphi/2\mathbb{Z}^{d_i}: 2\mathbb{Z}^{d_1} \to \mathbb{Z}^{d_2}$

tyto dvě věci implikují:
$$\mathbb{Z}^{d_1}/2\mathbb{Z}^{d_2} \simeq \mathbb{Z}^{d_2}/2\mathbb{Z}^{d_2} \implies 2^{d_1} = 2^{d_2} \implies d_1 = d_2$$
.

Důsledek 3.5. $\{b_1,\ldots,b_d\},\{b_1',\ldots,b_d'\}$ volné báze komutativní volné grupy $G\Rightarrow d=d'$. $(G\simeq$ $(\mathbb{Z}^d,+)\simeq (\mathbb{Z}^{d'},+)$

Definice 3.6 (rank grupy). Rankem volné komutativní grupy G rozumíme počet prvků nějaké její volné báze.

Tvrzení 3.7. $\forall \varphi : (\mathbb{Z}^n, +) \to (\mathbb{Z}^m, +) \ hom. \ \exists ! A \in M_{m,n}(\mathbb{Z}) \ tak, \ \check{z}e \ \varphi(u) = A \cdot u \forall u \in \mathbb{Z}^n.$

$$D\mathring{u}kaz$$
. Pro $i = 1, ..., n$: $\varphi(e_i) =: a_i \in \mathbb{Z}^m$. Dále $A := (a_1|a_2|...|a_n)$. Potom $Au = A \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} =$

$$\sum_{i=1}^{n} u_i a_i = \sum_{i=1}^{n} u_i \varphi(e_i) = \varphi(\sum_{i=1}^{n} u_i e_i) = \varphi(\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}) = \varphi(n).$$

Jednoznačnost: $\varphi(u) = A \cdot u \implies \varphi(e_i) = Ae_i \implies \varphi(e_i)$ musí být *i*-tý sloupec matice A.

3.1 Souřadnice

G konečně generovaná volná komutativní grupa. $B = \{b_1, \ldots, b_d\}$ volná báze G.

Pro
$$g \in G$$
 je $[g]_B = \begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \in \mathbb{Z}^d$, kde $g = \sum_{i=1}^d z_i b_i$, souřadnice g vzhledem k bázi B .

Definice 3.8 (Matice homomorfismu). Necht $0 \neq G, H$ jsou konečně generované volné komutativní grupy, B_G volná báze G, B_H volná báze H.

 $\varphi: G \to H$ homomorfismus $[\varphi]_{B_H}^{B_G}$ je matice $|B_H| \times |B_G|$ nad \mathbb{Z} splňující $[\varphi]_{B_H}^{B_G} \cdot [g]_{B_G} = [\varphi(g)]_{B_H}$ pro každé $g \in G$

Sestrojí se tak, že
$$[\varphi]_{B_H}^{B_G} = ([\varphi(b_1)]_{B_H}|[\varphi(b_2)]_{B_H}|\dots|[\varphi(b_d)]_{B_H}), B_G = \{b_1,\dots,b_d\}$$

Tvrzení 3.9. $\varphi: G \to H, \psi: H \to K, G, H, K$ volné komutativní grupy,

 B_G, B_H, B_K jejich volné báze $[\psi \circ \varphi]_{B_K}^{B_G} = [\psi]_{B_K}^{B_H} \cdot [\psi]_{B_H}^{B_G}$

Důkaz. Stejný důkaz jako v lineární algebře