PS 4

"Sources Consulted: None"

Problem (a) Qu A Q Q Q Q Q Q Q Q Q When there is a even number of I's in the bits it will give us 0 and a odd number of 15 will give a 1 b) Two Negoting the bit will give us the opposite number c) dutus forta, tolo

By adding each bit, we can evaluate whether the number is 1 or 0. d) (0,400300200,000) (0,402+02+0,400). a.

1 toblem 2 α) (x+y)(x+z)(y+z)(x+v)

satisfiable when x,y,z,v is in order F.F.T.F or F.F.T.T or T.T.F.F

b) zy+(x+y+z) not satisfiable $=\overline{xy}\cdot(\overline{xtytz})$ = xy · (x · y · z)

二 0 . 0 . 独立

= 754 . xyg . xyz

= 0

ム ユームキュー カス ス ナーナー ナーナー ス ス キーナー ナーナー た よ ナーナー ナーナー ナーサー サーサー サーサー サーサー

火 チチチェルチチャナー ナイナイナ ソルドイイイイイキャチャイイイ

Phoblem 3	a) exactly Once $(X1, X2, X3)$ $(X[\Lambda \neg (X2 \Lambda x3)) \lor (x2 \Lambda \neg (X1 \Lambda x3)) \lor (x3 \Lambda \neg (x1 \Lambda x2))$
	$(x_1 \cdot x_2 \cdot x_3) + (x_2 \cdot x_1 \cdot x_3) + (x_3 \cdot x_1 \cdot x_2)$
	b) different Timegats (x1, x2, x3, Y1, Y2, Y3) (x1 => y1) + (x2 =y2) + (x3 =y3)
	() is it Valid(a1, a2, a3, b1, b2, b3, C1, C2, C3, M, d2, d3, C1, e2, e3, f1, f2, f3) (¬(a1, b1) ¬(a2, b2)¬(a3, b3))(¬(a, a3)¬(a2, c2)¬(a3, c3)) (¬(a1, d1)¬(a2, d2)¬(a3, d3))(¬(b, a2)¬(b3, e2)¬(b3, e3)) (¬(c1, e1)¬(c2, e2)¬(c3, e3))(¬(a, d1)¬(c2, d2)¬(c3, d3)) (¬(d1, f1)¬(d2, f2)¬(d3, f3))(¬(B1, AF1)¬(B2, F2)¬(B3, F3))
Problem 4	a) A M Simplification
	o) dvP disjunctive sylogism -d P
C	C) L modus ponens $\frac{L \to W}{W}$ A) $\frac{S}{S \lor b}$ addition
C	d) <u>s</u> addition
C	e) $e \rightarrow \alpha$ Invalid when $e=f$ and $\alpha=1$
-	f) h→e hypothetical syllogism e→m h→m

Roblem 5 a.l) (CAN)	→Ĵ "Sou —	ices Consulted: friend "	
The argument is not valid. When C=T, h=j=F,			
	ne both true and the condus		
a.2) (c, Λh) \rightarrow ;	(cvn) ->;	hy pothesis	
7) 'A	7)	hypothesis	
<u> </u>	- ¬ζcΛh)		
-n	76	Simplication 3	
The argument is valid			
(rn75)V(qn75)	ι (r/n s) ν (α/n-	s) Hypothesis	
¬5→((PΛr)→μ)	2 7SMCrv4)	Distributive law 1	
(J→ (5N¬+)	_ 3 (rvq)	Simplification 2	
∴ P→ q	4 75	Simplification 2	
	5 75->(P/r)->U)	Hypothesis	
	β ((bVL) \Rightarrow V)	Modus porens 4,5	
	n u->(s/n+)	Hypothesis	
	8 ~→(+Λ¬+)	Comptement 14W 4	
	9 U->F	Domination law 8	
	10 7 W	Conditional Identity 9	
	(1 (bvL)→£	Complement law 6,10	
	12 7 (PAr)	Conditional Identity 1	
	B 7PV 7r	De Margunis law 12	
	lは P->つr 15つr->q	Conditional Identify 13	
	16 P->9	Conditional Identify 3 Hypothetical syllegism 14,15	
	10 (7 (· Spoilleile · · · · · · · · · · · · · · · · · · ·	
C) ¬r→¬S	1 71-2-5 hypothesis		
P→U	2 7+>-r hypothesis		
つナ マット 以 から	3 7+>-S Hypothetic	al Syllogiam 1,2	
	4 P-> U hypothesis 5 U-> 5 hypothesis		
<u>+></u> 9 ∴P>9	b P→3 Hypothetic	의 게(면SM 47)	
	r c >+ (entrapos	tive rule 3	
	$9 + \rightarrow 0$ Hypothes	ial Syllogism 6,7	
	10 b>d Habayyeti	al Syllogism 8,9	

- a) {x!|x \in N3\Zt \{0\}, \{x! | x \in N\} can be 0 when Zt cont.
- b) {2;+1|s623 \ \2nm\n,m \in Nn+m} ant be a negative integer.
- () \(\{ -8, 16, -24, 32, -40, -3} \) \(\{ -61)^{i+1} \cdot 8 \) \(\{ \} \) Alternating positive/negative multiples of \(\} \) .
- d) {10:1,000;100,000;10,000,000;1,080,000,000;...}
- e) \(\) \(
- f) $\{0\}$ $\{0\}$ versus (0) $\{0\}$ $\{0\}$ An empty set can be in a set of a empty set. However the empty set should be itself.