AMENDMENTS TO THE CLAIMS

Please amend claim 33 as follows:

1. - 28. (Canceled).

exists.

- 29. (Previously Presented) An optical fiber, comprising:
 - a core comprising a quartz-based material;
 - a cladding comprising the quartz-based material; and
 - a plurality of air holes around the core along an axial direction of the optical fiber,

wherein said air holes in proximity of a connecting end of said optical fiber are filled with a light transparent material made of a UV-curable resin that has a refractive index after curing lower than that of the quartz-based material, and wherein the refractive index after curing is determined such that a mode field diameter of the optical fiber is equal to that of a single mode optical fiber to be connected to the connecting end of the optical fiber.

- 30. (Previously Presented) The optical fiber according to claim 29, wherein:

 said optical fiber comprises a photonic crystal fiber that said air holes are periodically arranged in a hexagonal lattice form from a central portion of the optical fiber, where a crystal defect
- 31. (Previously Presented) The optical fiber according to claim 29, wherein said optical fiber comprises a Holey fiber that comprises, in said core or the cladding thereof, said plurality of air holes extending in an axial direction of the Holey fiber.

- 32. (Previously Presented) The optical fiber according to claim 29, wherein a refractive index after curing of the UV-curable resin is 1.42.
- 33. (Currently Amended) An optical fiber connection method, comprising:

by using a V-groove splicer, connecting end-to-end <u>said</u> optical fiber as defined in claim 29 to a second optical fiber that has a mode field diameter larger than that of said optical fiber as-defined in claim 29 on a V-groove of said V-groove splicer₅.

- 34. (Previously Presented) An optical fiber connector, comprising:
- a ferrule on which said optical fiber as defined in claim 29 is mounted, said optical fiber, being ground at an end face thereof.
- 35. (Previously Presented) A sealing structure of an end portion of an optical fiber, comprising:
 - a high refractive index core; and

a low refractive index cladding formed around said core, said cladding comprising a plurality of air holes extending in an axial direction of said optical fiber,

wherein said air holes are sealed by a sealing portion comprising a melt of a glass powder with a particle diameter of 1 μm or less in said end portion, and

said cladding comprises a portion in which said sealing portion is formed and which comprises a diameter that is the same as that of a portion in which said sealing portion is not formed.

36. (Previously Presented) The sealing structure of the end portion of the optical fiber according to claim 35, wherein:

Docket No. PHCF-04046US

the sealing portion comprises glass that has the same composition as glass composing said optical fiber.

37. (Previously Presented) The sealing structure of the end portion of the optical fiber according to claim 35, wherein:

the sealing portion comprises glass that has a melting point lower than glass composing the optical fiber.

38. (Previously Presented) The sealing structure of the end portion of the optical fiber according to claim 35, wherein:

the optical fiber is mounted and fixed to a connector ferrule.

39. (Withdrawn) A method for sealing an end portion of an optical fiber, comprising:

forming at said end portion of said optical fiber an end face that is substantially at right angles to an axial direction of said optical fiber in said end portion, wherein said optical fiber comprises a high refractive index core and a low refractive index cladding formed around said core, the cladding comprising a plurality of air holes extending in the axial direction;

inserting a glass powder from said end face into said air holes, said glass powder comprising the same composition as glass composing said optical fiber; and

subsequently heating said end portion of said optical fiber to fuse said glass powder and thereby seal said air holes.

40. (Withdrawn) A method for sealing an end portion of an optical fiber, comprising:

forming at said end portion of said optical fiber an end face that is substantially at right angles to an axial direction of said optical fiber in said end portion, wherein said optical fiber comprises a high refractive index core and a low refractive index cladding formed around said core, the cladding comprising a plurality of air holes extending in the axial direction;

inserting a glass powder from said end face into said air holes, said glass powder comprising a melting point lower than glass composing said optical fiber; and

subsequently locally heating a proximity of an end portion of said air holes to fuse said glass powder and thereby seal said air holes.

41. (Withdrawn) A method for sealing an end portion of an optical fiber, comprising:

forming at said end portion of said optical fiber an end face that is substantially at right angles to an axial direction of said optical fiber in said end portion, wherein said optical fiber comprises a high refractive index core and a low refractive index cladding formed around said core, the cladding comprising a plurality of air holes extending in the axial direction; and

subsequently locally heating a proximity of an end portion of said air holes to fuse said glass powder and thereby seal said air holes.

42. (Withdrawn) The method for sealing the end portion of the optical fiber according to claim 40, wherein:

said end portion of said air holes is locally heated and fused by irradiating thereto carbon dioxide gas laser light to seal said air holes.

43. (Withdrawn) The method for sealing the end portion of the optical fiber according to claim 41, wherein:

said end portion of said air holes is locally heated and fused by irradiating thereto carbon dioxide gas laser light to seal said air holes.

44. (Withdrawn) The method for sealing the end portion of the optical fiber according to claim 40, wherein:

said optical fiber is beforehand mounted on and fixed to a connector ferrule.

45. (Withdrawn) The method for sealing the end portion of the optical fiber according to claim 41, wherein:

said optical fiber is beforehand mounted on and fixed to a connector ferrule.

46. (Previously Presented) An optical fiber, comprising:

a high refractive index core and a low refractive index cladding formed around said core, the cladding comprising a plurality of air holes extending in an axial direction of said optical fiber; and a sealing portion formed at an end portion of said plurality of air holes,

wherein said sealing portion comprises:

a quartz-based fine particle that has a refractive index equal to or lower than that of said cladding, and

a diameter of 100 nm or less, and

an optical adhesive that has a refractive index equal to or lower than that of said cladding.

47. (Previously Presented) The optical fiber according to claim 46, wherein: said quartz-based fine particle has a diameter of 30 to 40 nm.

(HIR.168)

48. (Previously Presented) The optical fiber according to claim 47, wherein:
said quartz-based fine particle is doped with an additive that reduces the refractive index thereof.

- 49. (Previously Presented) The optical fiber according to claim 46, wherein: said optical adhesive comprises a UV-curable optical adhesive.
- 50. (Withdrawn) An optical fiber connector, comprising:

 said optical fiber as defined in claim 46 mounted on a ferrule.
- 51. (Withdrawn) A connection portion of an optical fiber, comprising:

 said optical fiber connected to another optical fiber, said optical fiber comprising a plurality
 of air holes in a cladding formed around a core of said optical fiber,

wherein said optical fiber is joined end-to-end to said another optical fiber through a refractive index matching agent that has a refractive index at a minimum temperature in practical use lower than that of said core.

52. (Withdrawn) A connection portion of an optical fiber, comprising:

said optical fiber connected to another optical fiber, said optical fiber comprising a plurality of air holes in a cladding formed around a core of said optical fiber,

wherein said optical fiber is joined end-to-end to said another optical fiber through a refractive index matching agent that has a refractive index at a minimum temperature in practical use lower than that of said cladding.

- 53. (Withdrawn) The connection portion of the optical fiber according to claim 51, wherein: said refractive index matching agent has an optical refractive index of 1.458 or less in a 1.3 to 1.55 μm wavelength band at a temperature of -30 °C, and an average refractive index temperature coefficient of -8.0x10⁻⁴/°C or more and less than 0 /°C in a temperature range of -30 °C to +70 °C.
- 54. (Withdrawn) The connection portion of the optical fiber according to claim 52, wherein: said refractive index matching agent has an optical refractive index of 1.458 or less in a 1.3 to 1.55 μm wavelength band at a temperature of -30 °C, and an average refractive index temperature coefficient of -8.0x10⁻⁴ /°C or more and less than 0 /°C in a temperature range of -30 °C to +70 °C.
- (Withdrawn) An optical fiber splicer, comprising:said connection portion of the optical fiber as defined in claim 51 housed in a chassis.
- 56. (Withdrawn) An optical fiber splicer, comprising:

 said connection portion of the optical fiber as defined in claim 52 housed in a chassis.
- 57. (Withdrawn) A connection portion of an optical fiber, comprising:

 said optical fiber connected to another optical fiber, said optical fiber comprising a plurality

 of air holes in a cladding formed around a core of said optical fiber,

wherein said optical fiber is joined end-to-end to said another optical fiber through a refractive index matching mixture that has a refractive index in a temperature range in practical use not more than that of said cladding, and that comprises a micro-body with an average diameter or length of 100 nm or less.

- 58. (Withdrawn) The connection portion of the optical fiber according to claim 57, wherein: said micro-body comprises a fine particle comprising mainly pure quartz.
- 59. (Withdrawn) The connection portion of the optical fiber according to claim 57, wherein: said refractive index matching mixture comprises a refractive index matching agent with said micro-body mixed therewith, and a mixture weight ratio of said refractive index matching agent and said micro-body is 10:1 to 1:1.
- 60. (Withdrawn) An optical fiber splicer, comprising:

 said connection portion of the optical fiber as defined in claim 57 housed in a chassis.