Lecture 18: Empirics of the Q Theory

Juan Herreño UCSD

May 29, 2025

• We saw last lecture that in our simple model

$$\frac{I_t}{K_t} = \frac{q_t - q_t}{\varphi}$$

• We saw last lecture that in our simple model

$$r = \frac{q_t - q_t}{\varphi}$$

And in more general specifications

$$\frac{I_t}{K_t} = h(q_t)$$

• We saw last lecture that in our simple model

$$\frac{I_t}{K_t} = \frac{q_t}{\varphi}$$

And in more general specifications

$$\frac{I_t}{K_t} = h(q_t)$$

- Where q_t is the marginal value of another unit of capital (marginal q)

• We saw last lecture that in our simple model

$$\frac{I_t}{K_t} = \frac{q_t}{q_t}$$

And in more general specifications

$$\frac{I_t}{K_t} = h(q_t)$$

- Where q_t is the marginal value of another unit of capital (marginal q)
- i.e. $\partial V_t/\partial K_{t+1}$, where V is the value of the firm

• We saw last lecture that in our simple model

$$\frac{I_t}{K_t} = \frac{q_t - q_t}{\varphi}$$

And in more general specifications

$$\frac{I_t}{K_t} = h(q_t)$$

- Where q_t is the marginal value of another unit of capital (marginal q)
- i.e. $\partial V_t/\partial K_{t+1}$, where V is the value of the firm
 - If the following assumptions hold:
 - The production function is CRS
 - The adjustment cost function is CRS
 - Markets are competitive
- Then Average Q is equal to marginal q, where

$$\frac{I_t}{K_t} = h(q_t)$$

$$\frac{I_t}{K_t} = h(q_t)$$

• Q-Theory implies that Q is a sufficient statistic for firm investment

$$\frac{I_t}{K_t} = h(q_t)$$

- Q-Theory implies that Q is a *sufficient statistic* for firm investment
- In english: the expected NPV (discounting with *r*) of marginal projects is the only determinant of investment

$$\frac{I_t}{K_t} = h(q_t)$$

- Q-Theory implies that Q is a sufficient statistic for firm investment
- In english: the expected NPV (discounting with r) of marginal projects is the only determinant of investment
- In english: The market value relative to book value of the firm encodes the NPV of the marginal projects

$$\frac{I_t}{K_t} = h(q_t)$$

- Q-Theory implies that Q is a sufficient statistic for firm investment
- In english: the expected NPV (discounting with r) of marginal projects is the only determinant of investment
- In english: The market value relative to book value of the firm encodes the NPV of the marginal projects
- No other variable should explain investment on top of Q

$$\frac{I_t}{K_t} = h(q_t)$$

- Q-Theory implies that Q is a sufficient statistic for firm investment
- In english: the expected NPV (discounting with r) of marginal projects is the only determinant of investment
- In english: The market value relative to book value of the firm encodes the NPV of the marginal projects
- No other variable should explain investment on top of Q
- i.e. cash flows, liquidity, size of the firm should be irrelevant after controlling for Q

What is the alternative to the Q-Theory?
. Breaking several of the assumptions breaks the res

• Breaking several of the assumptions, breaks the result:

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect
 - The internal cost of funds is higher than the external cost of funds

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect
 - The internal cost of funds is higher than the external cost of funds
 - This may happen due to asymmetric information

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect
 - The internal cost of funds is higher than the external cost of funds
 - This may happen due to asymmetric information
 - You are experts on this

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect
 - The internal cost of funds is higher than the external cost of funds
 - This may happen due to asymmetric information
 - You are experts on this
- Another alternative is that adjustment costs are not CRS
 - We will also talk about that extensively

- Breaking several of the assumptions, breaks the result:
 - q is a sufficient statistic
 - $-Q_t = q_t$
- A prominent alternative is that capital markets are not perfect
 - The internal cost of funds is higher than the external cost of funds
 - This may happen due to asymmetric information
 - You are experts on this
- Another alternative is that adjustment costs are not CRS
 - We will also talk about that extensively
- In these cases, investment may be determined by current cash flows
 - Firms that generate large cash flows have more internal funds
 - Lower cost of funds as a result
 - And may invest more

Today:	
 Are departures from the Q Theory economically meaningful? 	

Today:
 Are departures from the Q Theory economically meaningful?
How strongly investment reacts to changes in the cost of capital?

Why are these questions important
What is the effect of tax policy on investment and

GDP growth?

- What is the effect of tax policy on investment and GDP growth?
- How large is the "investment-channel" of monetary policy?

- What is the effect of tax policy on investment and GDP growth?
- How large is the "investment-channel" of monetary policy?
- Do our models capture investment movements correctly?

- What is the effect of tax policy on investment and GDP growth?
- How large is the "investment-channel" of monetary policy?
- Do our models capture investment movements correctly?
- Should we explore other models?

- What is the effect of tax policy on investment and GDP growth?
- How large is the "investment-channel" of monetary policy?
- Do our models capture investment movements correctly?
- Should we explore other models?

We take our model

$$\frac{I_{it}}{K_{it}} = \frac{q_{it} - q_{it}}{\varphi}$$

• We take our model

$$\frac{I_{it}}{K_{it}} = \frac{q_{it} - 1}{\varphi}$$

And run the regression:

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

· We take our model

$$\frac{I_{it}}{K_{it}} = \frac{q_{it} - 1}{\varphi}$$

And run the regression:

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- so $\beta_0 = -\frac{1}{\omega}$, and $\beta_1 = \frac{1}{\omega}$
- Summers (1981) estimated this equation using OLS, finding $\hat{\beta_1} = 0.031$, se $\hat{\beta_1} = 0.005$

· We take our model

$$\frac{I_{it}}{K_{it}} = \frac{q_{it} - 1}{\varphi}$$

And run the regression:

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- so $\beta_0 = -\frac{1}{\omega}$, and $\beta_1 = \frac{1}{\omega}$
- Summers (1981) estimated this equation using OLS, finding $\hat{\beta}_1 = 0.031$, $se_{\hat{\beta}_1} = 0.005$
- Implying $\hat{\varphi} = 32.25$

Research Design

Regression equation

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- Simulateneity problem
 - Higher *q* calls for higher investment rates
 - Higher investment rates increase future capital stocks
 - Reducing future MPKs
 - Reducing q
- Not clear what direction of causality this regression is exploiting
 - Ideally we need exogenous variation in q

• The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe

- The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe
- Economics: Investment does not react to changes in Q

- The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe
- Economics: Investment does not react to changes in Q
- The way of the model to rationalize it is that it is very costly to change the capital stock

- The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe
- Economics: Investment does not react to changes in Q
- The way of the model to rationalize it is that it is very costly to change the capital stock
- What do models that attempt to fit investment rates data say about φ ?

Smell Test

- The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe
- Economics: Investment does not react to changes in Q
- The way of the model to rationalize it is that it is very costly to change the capital stock
- What do models that attempt to fit investment rates data say about φ ?
 - Cooper and Haltiwanger (2006) use $\varphi = 0.049$ using annual data
 - Winberry (2021) use φ = 2.49 using quarterly data
 - Compare to the $\hat{\phi}$ = 32 in Summers (1981) using annual data

Smell Test

- The first issue with the empirics of the $\it Q$ theory is that it requires values of $\it \phi$ that are difficult to believe
- Economics: Investment does not react to changes in Q
- The way of the model to rationalize it is that it is very costly to change the capital stock
- What do models that attempt to fit investment rates data say about φ ?
 - Cooper and Haltiwanger (2006) use $\varphi = 0.049$ using annual data
 - Winberry (2021) use $\varphi = 2.49$ using quarterly data
 - Compare to the $\hat{\varphi}$ = 32 in Summers (1981) using annual data
 - caution: this is a parameter that is not trivial to compare across different time dimensions

the large implied adjustment costs are not the only problem

• the large implied adjustment costs are not the only problem

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

the large implied adjustment costs are not the only problem

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

• Where did ϵ_{it} came from?

the large implied adjustment costs are not the only problem

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- Where did ϵ_{it} came from?
- The Q theory is supposed to hold exactly

the large implied adjustment costs are not the only problem

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- Where did ϵ_{it} came from?
- The Q theory is supposed to hold exactly
- To think about the identification challenges of β we need to think about the sources of variation of ϵ_{it}

• the large implied adjustment costs are not the only problem

$$\frac{I_{it}}{K_{it}} = \beta_0 + \beta_1 Q_{it} + \epsilon_{it}$$

- Where did ϵ_{it} came from?
- The Q theory is supposed to hold exactly
- To think about the identification challenges of β we need to think about the sources of variation of ϵ_{it}
- Key question: Is ϵ_{it} orthogonal to Q_{it} ?

• ϵ_{it} is measurement error of investment rates

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on $\beta_{1}\,$
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter
 - Would this cause bias on β_1 ?

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter
 - Would this cause bias on β_1 ?
 - It would if uncontrolled factors are correlated with Q

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter
 - Would this cause bias on β_1 ?
 - It would if uncontrolled factors are correlated with Q
 - Imagine a factor that determines investment beyond Q

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter
 - Would this cause bias on β_1 ?
 - It would if uncontrolled factors are correlated with Q
 - Imagine a factor that determines investment beyond Q
 - But helps determining Q as well: example (interest rates, current productivity, current cash flow)

- ϵ_{it} is measurement error of investment rates
 - But perhaps the denominator of Q is mismeasured as well?
 - Book value does not capture replacement cost
 - Measurement error would cause attenuation bias on β_1
 - Explaining its low value
- The model is wrong, and other factors beyond Q matter
 - Would this cause bias on β_1 ?
 - It would if uncontrolled factors are correlated with Q
 - Imagine a factor that determines investment beyond Q
 - But helps determining Q as well: example (interest rates, current productivity, current cash flow)
 - The sign of the bias is difficult to predict. Depends on the source of omitted variation

Only Q should matter

- Only Q should matter
- Insight: Compare firms with differential access to financial markets

- Only Q should matter
- Insight: Compare firms with differential access to financial markets
- Why?

- Only Q should matter
- Insight: Compare firms with differential access to financial markets
- Why?
- One prominent economic alternative to the Q theory is that financial access matters to determine investment

- Only Q should matter
- Insight: Compare firms with differential access to financial markets
- Why?
- One prominent economic alternative to the Q theory is that financial access matters to determine investment
- evidence against the null of Q as a sufficient statistic

- Only Q should matter
- Insight: Compare firms with differential access to financial markets
- Why?
- One prominent economic alternative to the Q theory is that financial access matters to determine investment
- evidence against the null of Q as a sufficient statistic
- Is this logic sound enough?

• Imagine we are interested in knowing whether cash flows affect investment on top of Q

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{\kappa_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{\kappa_{it}} + \epsilon_{it}$$

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{K_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

Issue

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{\kappa_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{\kappa_{it}} + \epsilon_{it}$$

- Issue
- Imagine Q is mismeasured ...

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{\kappa_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{\kappa_{it}} + \epsilon_{it}$$

- Issue
- Imagine Q is mismeasured ...
- Cash flows today may be correlated with future profitability or future investment opportunities

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{K_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

- Issue
- Imagine Q is mismeasured ...
- Cash flows today may be correlated with future profitability or future investment opportunities
- then cash flows and Q are correlated

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{K_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

- Issue
- Imagine Q is mismeasured ...
- Cash flows today may be correlated with future profitability or future investment opportunities
- then cash flows and Q are correlated
- β₂ will pick-up variation driven by Q

- Imagine we are interested in knowing whether cash flows affect investment on top of Q
- Simple approach

$$\frac{I_{it}}{K_{it}} = \alpha + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

- Issue
- Imagine Q is mismeasured ...
- Cash flows today may be correlated with future profitability or future investment opportunities
- then cash flows and Q are correlated
- β₂ will pick-up variation driven by Q
- Even when the Q theory holds

Measurement error is really no joke

Fazzari Hubbard Petersen (1988)

• Idea: Use a difference-in-differences strategy to circumvent the cash flow - future profitability correlation problem

Fazzari Hubbard Petersen (1988)

- Idea: Use a difference-in-differences strategy to circumvent the cash flow future profitability correlation problem
- Split firms in groups that capture extent of financial constraints

- Idea: Use a difference-in-differences strategy to circumvent the cash flow future profitability correlation problem
- Split firms in groups that capture extent of financial constraints
 - Firms that pay high versus low dividends

- Idea: Use a difference-in-differences strategy to circumvent the cash flow future profitability correlation problem
- Split firms in groups that capture extent of financial constraints
 - Firms that pay high versus low dividends
- Compare sensitivity to cash-flows across groups

- Idea: Use a difference-in-differences strategy to circumvent the cash flow future profitability correlation problem
- Split firms in groups that capture extent of financial constraints
 - Firms that pay high versus low dividends
- Compare sensitivity to cash-flows across groups
- Identifying assumption
 - Q is not differentially mismeasured across groups

- Idea: Use a difference-in-differences strategy to circumvent the cash flow future profitability correlation problem
- Split firms in groups that capture extent of financial constraints
 - Firms that pay high versus low dividends
- Compare sensitivity to cash-flows across groups
- Identifying assumption
 - Q is not differentially mismeasured across groups
 - Capital adjustment costs are not sorted in the dividend-payment dimension

• The empirical specification is more general

$$\frac{I_{it}}{K_{it}} = \alpha_t + \gamma_i + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

Run regression for each dividend bin separately

• The empirical specification is more general

$$\frac{I_{it}}{K_{it}} = \alpha_t + \gamma_i + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{K_{it}} + \epsilon_{it}$$

- Run regression for each dividend bin separately
- Could have done an interaction term as well

The empirical specification is more general

$$\frac{I_{it}}{\kappa_{it}} = \alpha_t + \gamma_i + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{\kappa_{it}} + \epsilon_{it}$$

- Run regression for each dividend bin separately
- Could have done an interaction term as well
- Sample: 1970-1984
- Firm fixed effects: Captures firm-level differences in investment rates across firms
- Time fixed-effects: Captures whatever aggregate shock that affects all the firms in the same group

The empirical specification is more general

$$\frac{I_{it}}{\kappa_{it}} = \alpha_t + \gamma_i + \beta_1 Q_{it} + \beta_2 \frac{CF_{it}}{\kappa_{it}} + \epsilon_{it}$$

- Run regression for each dividend bin separately
- Could have done an interaction term as well
- Sample: 1970-1984
- Firm fixed effects: Captures firm-level differences in investment rates across firms
- Time fixed-effects: Captures whatever aggregate shock that affects all the firms in the same group
- This regression by group has a triple-difference flavor. β_2 is already a dif-dif.

Table 2. Summary Statistics: Sample of Manufacturing Firms, 1970-84

		Category of firm	
Statistic	Class 1a	Class 2b	Class 3
Number of firms	49	39	334
Average retention ratio	0.94	0.83	0.58
Percent of years with			
positive dividends	33	83	98
Average real sales growth			
(percent per year)	13.7	8.7	4.6
Average investment-			
capital ratio	0.26	0.18	0.12
Average cash flow-			
capital ratio	0.30	0.26	0.21
Average correlations of			
cash flow with investment			
(deviations from trend)d	0.92	0.82	0.20
Average of firm standard			
deviations of investment-			
capital ratios	0.17	0.09	0.06
Average of firm standard			
deviations of cash flow-			
capital ratios	0.20	0.09	0.06
Capital stock (millions of 1982 dolla	ars)		
Average capital stock, 1970	100.6	289.7	1,270.0
Median capital stock, 1970	27.1	54.2	401.6
Average capital stock, 1984	320.0	653.4	2,190.6
Median capital stock, 1984	94.9	192.5	480.8

Source: Authors' calculations based on samples selected from the Value Line data base. See Appendix B. a. Firms with dividend-income ratios of less than 0.1 for at least 10 years.

Source: Fazzari-Hubbard-Petersen (1988)

b. Firms with dividend-income ratios greater than 0.1 but less than 0.2 for at least 10 years.

c. Firms with dividend-income ratios greater than 0.2.

d. Estimated from time series constructed by aggregating the sample data within each category.

Independent variable and summary statistic	Class 1	Class 2	Class 3
		1970–75	
Q_{ii}	-0.0010 (0.0004)	0.0072 (0.0017)	0.0014 (0.0004)
$(CF/K)_{it}$	0.670 (0.044)	0.349 (0.075)	0.254 (0.022)
\overline{R}^{2}	0.55	0.19	0.13
		1970-79	
$Q_{\prime\prime}$	0.0002 (0.0004)	0.0060 (0.0011)	0.0020 (0.0003)
$(CF/K)_{ii}$	0.540 (0.036)	0.313 (0.054)	0.185
\overline{R}^{2}	0.47	0.20	0.14
		1970-84	
Q_{ii}	0.0008 (0.0004)	0.0046 (0.0009)	0.0020 (0.0003)
$(CF/K)_{ii}$	0.461 (0.027)	0.363 (0.039)	0.230 (0.010)
\overline{R}^{2}	0.46	0.28	0.19

Source: Authors' estimates of equation 3 based on a sample of firm data from Value Line data base. See text and Appendix B.

167

a. The dependent variable is the investment-capital ratio (I/K)₂, where I is investment in plant and equipment and K is beginning-of-period capital stock. Independent variables are defined as follows: Q is the sum of the value of equity and debt less the value of inventiories, divided by the replacement cost of the capital stock adjusted for corporate and personal taxes (see Appendix Bi); (CF/K)₁ is the cash flow-capital ratio. The equations were estimated using fixed firm and year effects (one reported). Standard errors appear in parentheses.

- Recap of main results:
 - Low dividend firms have more sensitivity to cash flows
 - $-\beta_1$ very low. Two bad results for the Q theory
- · Main threats to identification

- Recap of main results:
- Low dividend firms have more sensitivity to cash flows
- $-\beta_1$ very low. Two bad results for the Q theory
- Main threats to identification
 - Q differentially mismeasured for low dividend firms

- Recap of main results:
 - Low dividend firms have more sensitivity to cash flows
 - $-\beta_1$ very low. Two bad results for the Q theory
- Main threats to identification
 - Q differentially mismeasured for low dividend firms
 - correlation between well-measured Q and CF higher for low dividend firms

- Recap of main results:
 - Low dividend firms have more sensitivity to cash flows
 - $-\beta_1$ very low. Two bad results for the Q theory
- Main threats to identification
 - Q differentially mismeasured for low dividend firms
 - correlation between well-measured Q and CF higher for low dividend firms
- Ideal experiment
 - Find exogenous variation in cash flows
 - Exogenous to future profitability
- Examples

- Recap of main results:
 - Low dividend firms have more sensitivity to cash flows
 - $-\beta_1$ very low. Two bad results for the Q theory
- Main threats to identification
 - Q differentially mismeasured for low dividend firms
 - correlation between well-measured Q and CF higher for low dividend firms
- Ideal experiment
 - Find exogenous variation in cash flows
 - Exogenous to future profitability
- Examples
 - Changes in tax incentives
 - Effects of HQ shocks on subsidiaries

Temporary Investment Tax Incentives

- Common form of fiscal stimulus in recessions
 - E.g.: 2001-2004, 2008-2011

Temporary Investment Tax Incentives

- Common form of fiscal stimulus in recessions
 - E.g.: 2001-2004, 2008-2011
- · Questions of interest:
 - How effective are these policies as stimulus?
 - What is the response of investment to changes in the cost of capital?
- Large literature: Cummins-Hassett-Hubbard (1994), House-Shapiro (2008), Zwick-Mahon (2017)

• Firms pay taxes on income net of business expenses

- Firms pay taxes on income net of business expenses
- Can fully expense wages, advertising, etc. immediately

- Firms pay taxes on income net of business expenses
- Can fully expense wages, advertising, etc. immediately
- Investment gets expensed over time according to tax depreciation schedules

- Firms pay taxes on income net of business expenses
- Can fully expense wages, advertising, etc. immediately
- Investment gets expensed over time according to tax depreciation schedules
- Bonus depreciation accelerates this depreciation schedule

Table 1—Regular and Bonus Depreciation Schedules for Five-Year Items

192

67.2

96

320

112

160

3

115

40.3

57.5

115

40.3

57.5

5

58

20

20.2

Total

1,000

1.000

350

0

200

600

class lives (https://www.irs.gov/uac/about-publication-946).

remaining $1 - \theta$ according to regular schedule

Table shows bonus depreciation of $\theta = 0.5$

70

Year:

Normal depreciation

Tax benefit ($\tau = 35$ percent)

Bonus depreciation (50 percent)

Deductions (000s)

Deductions (000s)

Source: Zwick-Mahon (2017)

Tax benefit ($\tau = 35$ percent)	210	56	33.6	20.2	20.2	10	350
Notes: This table displays year-by-y							,
year item, depreciable according to					,	, .	
applies during normal times. It refl	-						
balance method ($2\times$ straight line un	til straight li	ne is greater	r). The botto	om schedule	e applies wh	ien 50 perc	cent bonus
depreciation is available.							
Source: Authors' calculations. See	IRS publica	tion 946 for	the recover	ry periods a	and schedul	les applyin	g to other

Bonus depreciation allows firm to deduct a per dollar bonus of θ at the time of investment and the

Frictionless markets view:

Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

Frictionless markets view:

· Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

- D_t allowable deduction in period t per dollar of investment in period 0

Frictionless markets view:

· Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

- D_t allowable deduction in period t per dollar of investment in period 0
- r risk-adjusted discount rate used by firm

Frictionless markets view:

• Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

- D_t allowable deduction in period t per dollar of investment in period 0
- r risk-adjusted discount rate used by firm
- Without discounting $z_0 = 1$ (100%), with discounting $z_0 < 1$

Frictionless markets view:

Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

- D_t allowable deduction in period t per dollar of investment in period 0
- r risk-adjusted discount rate used by firm
- Without discounting $z_0 = 1$ (100%), with discounting $z_0 < 1$
- Bonus raises z_0 by bringing deductions forward in time

Frictionless markets view:

Bonus depreciation only matters due to discounting

$$z^0 = D_0 + \sum_{t=1}^{T} \frac{1}{(1+r)^t} D_t$$

- D_t allowable deduction in period t per dollar of investment in period 0
- r risk-adjusted discount rate used by firm
- Without discounting $z_0 = 1$ (100%), with discounting $z_0 < 1$
- Bonus raises z_0 by bringing deductions forward in time

$$z = \theta + (1 - \theta)z_0$$

- Frictionless markets view:
 - Value of bonus modest for short-lived investments
 - E.g., with r = 0.07, bonus in Table 1 raised z by 2%
 - Value of bonus greater for long-lived investments
- With financial frictions, bonus may have large effect on investment
 - Effect on current cash flow large (\$140,000 in Table 1)

Zwick-Mahon (2017)

- Estimate the effect of bonus on investment
- Bonus occurs in recessions
 - Correlated with other determinants of investment
- Use difference-in-difference identification strategy
 - Bonus more valuable for industries with longer lived investments
 - Compare effect of bonus on industries with differing duration of investments

Zwick-Mahon (2017): Policy Variable

- Main policy variable: z_{N,t}
 - Where N is a 4-digit NAICS industry
- Compute baseline z_N for pre-period (1993-2000)
 - For each firm-year: weighted average of z across duration categories using a 7% discount rate
 - z_N computed as simple average of these firm-year z
- In bonus years adjust z_N for bonus

$$z_{N,t} = \theta_t + (1 - \theta_t)z_N$$

Zwick-Mahon (2017): Specification

Baseline difference-in-difference specification:

$$\log(I_{it}) = \alpha_i + \beta z_{N,t} + \gamma X_{it} + \delta_t + \epsilon_{it}$$

- β is coefficient of interest
- Industry fixed effects: Allow for average differences in industry investment
- Time fixed effects: Take out aggregate effects
- Industry and time fixed effects are what make this a diff-in-diff

Zwick-Mahon (2017): Identification

- Identifying assumption: Parallel trends
 - Industries with long- and short-duration investment patterns would have evolved in parallel absent bonus
- Threat to identification:
 - Durable investment industries more resilient in downturns

Source: Zwick-Mahon (2017)

 $f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$

		LHS \	/ariable is Log	(Eligible Invest	ment)	
	All	CF	Pre-2005	Post-2004	Controls	Trends
$z_{N,t}$	3.69***	3.78***	3.07***	3.02***	3.73***	4.69***
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)
Observations	735341	580422	514035	221306	585914	722262
Clusters (Firms)	128001	100883	109678	63699	107985	124962
R ²	0.71	0.74	0.73	0.80	0.72	0.71
		Lŀ	HS Variable is	Log(Odds Rat	io)	
$z_{N,t}$	3.79**	3.87**	3.12	3.59**	3.99*	4.00***
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)
Observations	803659	641173	556011	247648	643913	803659
Clusters (Industries)	314	314	314	274	277	314
R ²	0.87	0.88	0.88	0.93	0.90	0.90
		LHS Variab	le is Eligible I	nvestment/Lag	ged Capital	
$\frac{1-t_Cz}{1-t_C}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)
Observations	637243	633598	426214	211029	510653	631295
Clusters (Firms)	103890	103220	87939	57343	90145	103565
R ²	0.43	0.43	0.48	0.54	0.45	0.44

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

Source: Zwick-Mahon (2017)

Zwick-Mahon (2017): Effects Are Large

- Average change in z_{N,t}:
 - Early episode: 4.8 cents
 - Later episode: 7.8 cents
- Average change in investment:
 - Early episode: 17.7 log points (3.69 x 0.048 = 0.177)
 - Later episode: 28.8 log points (3.69 x 0.078 = 0.288)

Zwick-Mahon (2017): Effects Are Large

- In simple investment model:
- Elasticity of investment with respect to net of tax rate, $1 \tau z$, equals price and interest elasticity

$$\log(I_{it}) = \alpha + \beta \log(1 - \tau z_{N,t}) + \epsilon_{it}$$

- Zwick-Mahon's regressor is $z_{N,t}$ not $\log(1 \tau z_{N,t})$
- Linear approximation:

$$\log(1 - \tau z_{N,t}) = \log(1 - \tau z_{N}) - \frac{\tau}{1 - \tau z_{N}}(z_{N,t} - z_{N})$$

 Zwick-Mahon results imply price and interest rate elasticities of investment equal to

$$-3.69 \div \frac{\tau}{1-\tau z} \approx -7.2$$

TABLE 6—HETEROGENEITY BY EX ANTE CONSTRAINTS

	Sa	les	Div p	ayer?	Lagge	d cash
	Small	Big	No	Yes	Low	High
$\overline{z_{N,t}}$	6.29 (1.21)	3.22 (0.76)	5.98 (0.88)	3.67 (0.97)	7.21 (1.38)	2.76 (0.88)
Equality test	p =	0.030	p =	0.079	p =	0.000
Observations	177,620	255,266	274,809	127,523	176,893	180,933
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936
R^2	0.44	0.76	0.69	0.80	0.81	0.76

Notes: This table estimates regressions from the baseline intensive margin specification presented in Table 3. We split the sample based on pre-policy markers of financial constraints. For the size splits, we divide the sample into deciles based on the mean value of sales, with the mean taken over years 1998 through 2000. Small firms fall into the bottom three deciles and big firms fall into the top three deciles. For the dividend payer split, we divide the sample based on whether the firm paid a dividend in any of the three years from 1998 through 2000. The dividend split only includes C corporations. The lagged cash split is based on lagged residuals from a regression of liquid assets on a ten-piece spline in total assets and fixed effects for four-digit industry, year, and corporate form. The comparison is between the top three and bottom three deciles of these lagged residuals. All regressions include firm and year fixed effects. Standard errors clustered at the firm level are in parentheses.

Source: Zwick-Mahon (2017)

$$\log(I_{it}) = \alpha_i + \delta_t + \varphi T_{it} + \beta z_{N,t} + \eta T_{it} \times z_{N,t} + \gamma X_{it} + \varepsilon_{it}$$

		LHS Variable is Log(Eligible Investment)					
	All	CF	Pre-2005	Post-2004	Controls	Trends	
Taxable $\times z_{N,t}$	3.83*** (0.79)	3.08*** (0.93)	1.95* (0.92)	6.43*** (1.46)	4.32*** (0.96)	4.15*** (0.82)	
$z_{N,t}$	-0.15 (0.90)	0.60 (1.05)	0.38 (1.06)	-3.03* (1.55)	-0.69 (1.15)	0.88 (0.94)	
$\begin{array}{c} High\;LCF \\ \times\; z_{N,t} \end{array}$							
Observations Clusters (Firms) R ²	735341 128001 0.71	580422 100883 0.74	514035 109678 0.74	221306 63699 0.80	585914 107985 0.73	722262 124962 0.72	

 $T_{it} = 1 \iff$ first dollar of depreciation deduction affects taxes this year

Source: Zwick-Mahon (2017)

Heterogeneity in Effect

- · More liquidity constrained firms have larger effects
- · Effect only exists for firms with immediate tax benefit

- Concern: Firms with neg. earning may have worse growth prospects
 - Redo analysis including only firms close to zero earning

Micro-Foundation for Adjustment Costs

- Adjustment cost function is a black box
- Crucial aspect of the theory, but we don't know what it is
- Some possibilities that explain the ZM results
 - Financial frictions
 - Fixed costs of adjustment