

Determining Sample Size

(a) Hypothesis Test for Whether Less Than 50% Cannot Afford College

Context:

A random sample of 441 adults (none with a college degree and not currently enrolled in school) shows that 38% (sample proportion $\hat{p} = 0.38$) said they did not attend college because they could not afford it. We test whether the true proportion (p) is less than 50% (0.50).

1. State the Hypotheses:

- o Null Hypothesis (H₀): p = 0.50
- o Alternative Hypothesis (H_a): p < 0.50

2. Validate Conditions:

- o Independence:
 - The sample is randomly selected.
 - The sample size (441) is less than 10% of the adult population in question.
- o Success-Failure Condition (Under H₀):
 - Expected successes: $n \times p_0 = 441 \times 0.50 = 220.5$
 - Expected failures: $n \times (1 p_0) = 441 \times 0.50 = 220.5$

(Both values are greater than 10, so the condition is met.)

3. Compute the Test Statistic:

Use the formula:

$$z = (\hat{p} - p_0) / sqrt [p_0 (1 - p_0) / n]$$

3

Where:

- $\hat{p} = 0.38$
- $p_0 = 0.50$
- n = 441

Calculation:

o Compute the standard error (SE):

SE = sqrt [
$$(0.50 \times 0.50) / 441$$
]
= sqrt $(0.25 / 441)$
= sqrt (0.000567)
 ≈ 0.0238

o Calculate the z-value:

$$z = (0.38 - 0.50) / 0.0238$$
$$= (-0.12) / 0.0238$$
$$\approx -5.04$$

4. Find the P-value and Conclusion:

Since the test is one-tailed (p < 0.50), the p-value corresponds to the left-tail probability for z = -5.04. This p-value is extremely small (approximately 0), much less than any standard significance level (e.g., $\alpha = 0.05$).

Conclusion:

Reject H₀. There is strong evidence that the true proportion of adults who did not attend college due to cost is less than 50%.

Size for a 90% Confidence Level with a 1.5% Margin of Error

We want a margin of error (ME) of 0.015 using a 90% confidence level.

1. Margin of Error Formula for a Proportion:

$$ME = z_{0}(\alpha/2) \times sqrt [p(1-p)/n]$$

For maximum variability (worst-case scenario), use p = 0.50.

2. Determine the Critical Value:

For a 90% confidence level, the critical value $z(0.05) \approx 1.645$.

3. Set Up the Equation and Solve for n:

$$0.015 = 1.645 \times \text{sqrt} \left[(0.50 \times 0.50) / n \right]$$

$$0.015 = 1.645 \times \text{sqrt} (0.25 / n)$$

Isolate the square root:

$$sqrt (0.25 / n) = 0.015 / 1.645$$

$$\approx 0.00912$$

Square both sides:

$$0.25 / n = (0.00912)^{2}$$

$$\approx 0.0000832$$

Solve for n:

S

$$n = 0.25 / 0.0000832$$

 ≈ 3005

Recommendation:

A survey should include approximately 3,005 respondents to achieve a 1.5% margin of error at the 90% confidence level.

- Part 2 - Comparing Two Proportions

(a) Constructing a 95% Confidence Interval for the Difference in Proportions

Context:

Two groups are compared:

- Texas residents: $n_1 = 13,270$ with $\hat{p}_1 = 0.07$
- Dallas residents: $n_2 = 4,681$ with $\hat{p}_2 = 0.068$

We want the 95% confidence interval for the difference $(\hat{p}_1 - \hat{p}_2)$.

1. Validate Conditions:

- o Independence:
 - The samples are random and assumed independent.
 - Each sample size is less than 10% of its respective population.
- Success-Failure Condition:

For Texas:

• Successes = $n_1 \times \hat{p}_1 = 13,270 \times 0.07 \approx 929$

• Failures =
$$n_1 \times (1 - \hat{p}_1) = 13,270 \times 0.93 \approx 12,341$$

For Dallas:

• Successes =
$$n_2 \times \hat{p}_2 = 4,681 \times 0.068 \approx 318$$

• Failures =
$$n_2 \times (1 - \hat{p}_2) = 4,681 \times 0.932 \approx 4,363$$

All values exceed 10, so the condition is met.

2. Confidence Interval Formula:

$$(\hat{p}_1 - \hat{p}_2) \pm z(\alpha/2) \times SE$$
, where

SE = sqrt
$$[(\hat{p}_1(1 - \hat{p}_1) / n_1) + (\hat{p}_2(1 - \hat{p}_2) / n_2)]$$

For 95% confidence, $z(0.025) \approx 1.96$.

3. Calculations:

o Point Estimate:

Difference =
$$\hat{p}_1 - \hat{p}_2 = 0.07 - 0.068 = 0.002$$

o Compute Standard Error (SE):

For Texas:

Variance component =
$$(0.07 \times 0.93) / 13,270$$

$$\approx 0.0651 / 13,270$$

$$\approx 4.91\times 10^{-6}$$

For Dallas:

Variance component = $(0.068 \times 0.932) / 4,681$

 $\approx 0.06338 / 4,681$

 $\approx 1.35 \times 10^{-5}$

Sum these components:

Total variance $\approx 4.91 \times 10^{-6} + 1.35 \times 10^{-5} \approx 1.84 \times 10^{-5}$

Then,

SE \approx sqrt (1.84 × 10⁻⁵) \approx 0.00429

Margin of Error (ME):

$$ME = 1.96 \times 0.00429 \approx 0.00841$$

Confidence Interval:

Lower Limit = $0.002 - 0.00841 \approx -0.00641$

Upper Limit = $0.002 + 0.00841 \approx 0.01041$

Thus, the 95% confidence interval is approximately (-0.00641, 0.01041).

Interpretation:

We are 95% confident that the true difference in the proportion of sleep-deprived individuals

(Texas minus Dallas) lies between -0.64% and 1.04%. Since the interval includes 0, there is no

significant difference between the two groups.

Proportions

Objective:

Test whether there is a statistically significant difference in the proportion of insufficient sleep between Texas and Dallas residents at the $\alpha = 0.05$ level.

1. State the Hypotheses:

- o Null Hypothesis (H₀): $p_1 = p_2$ (no difference)
- o Alternative Hypothesis (H_a): $p_1 \neq p_2$ (the proportions differ)

2. Pooled Proportion Calculation:

Since H₀ assumes equal proportions, pool the successes:

Let
$$x_1 = n_1 \times \hat{p}_1$$
 and $x_2 = n_2 \times \hat{p}_2$.

- $x_1 \approx 13,270 \times 0.07 \approx 929$
- $x_2 \approx 4,681 \times 0.068 \approx 318$

Total successes = 929 + 318 = 1247

Total sample size = $n_1 + n_2 = 13,270 + 4,681 = 17,951$

Pooled proportion, \hat{p} pool = 1247 / 17,951 \approx 0.06947

3. Computing Standard Error Using the Pooled Proportion:

$$SE_pool = sqrt [\hat{p}_pool (1 - \hat{p}_pool) (1/n_1 + 1/n_2)]$$

First, calculate: • $1/n_1 \approx 1 / 13,270 \approx 7.53 \times 10^{-5}$

•
$$1/n_2 \approx 1 / 4,681 \approx 0.0002136$$

• Sum
$$\approx 7.53 \times 10^{-5} + 0.0002136 \approx 0.0002889$$

Then, SE_pool = sqrt [
$$0.06944 \times 0.93056 \times 0.0002889$$
]

$$\approx \text{sgrt} (0.06461 \times 0.0002889)$$

$$\approx \text{sqrt}(0.00001867)$$

 $\approx 0.00432\,$

4. Compute the Test Statistic:

$$z = (\hat{p}_1 - \hat{p}_2) / SE_pool$$

$$= (0.07 - 0.068) / 0.00432$$

$$= 0.002 / 0.00432$$

 ≈ 0.46

5. Determine the P-value and Conclusion:

This is a two-tailed test. For $z \approx 0.46$, the area in the upper tail is approximately 0.3228.

Therefore, the p-value = $2 \times 0.3228 \approx 0.6456$.

Since $p \approx 0.646 > \alpha$ (0.05), we fail to reject H₀.

Conclusion:

There is insufficient evidence to conclude that the proportion of sleep-deprived residents is

different between Texas and Dallas.

0