

CORRECTION PARTIEL ALGÈBRE LINÉAIRE 3, 20 OCTOBRE 2022

Exercice 1. — Question de cours : La matrice de la forme bilinéaire ϕ dans la base $\mathcal C$ est la matrice carré de taille $n \times n$

$$\operatorname{Mat}_{\mathcal{C}}(\phi) = [\phi(f_i, f_j)]_{1 \leq i, j \leq n}.$$

Exercice 2. — 1. On commence par calculer le polynôme caractéristique. Après calculs on trouve

$$\chi_A(X) = X^2(X-2).$$

Par le cours les racines du polynôme caractéristique sont les valeurs propres de A donc l'ensemble des valeurs propres de A est $\{0,2\}$. Déterminons les sous-espaces propres.

Commençons par $E_0(A)$. On résout pour $(x, y, z) \in \mathbb{R}^3$

$$x - y + z = 0$$
$$0 = 0$$
$$x + y + z = 0.$$

Cela équivaut à

$$x + z = 0$$
$$y = 0.$$

Ainsi, $E_0(A) = \text{Vect}\{(1, 0, -1)^T\}.$

Déterminons maintenant $E_2(A)$. On résout pour $(x, y, z) \in \mathbb{R}^3$

$$x - y + z = 2x$$
$$0 = 2y$$
$$x + y + z = 2z.$$

Cela équivaut à

$$x = z$$
$$y = 0.$$

Ainsi, $E_2(A) = \text{Vect}\{(1,0,1)^T\}.$

2. La somme des dimensions des sous-espaces propres de A vaut 1+1=2. Or l'espace ambiant est \mathbb{R}^3 de dimension 3. Comme 2<3, A n'est pas diagonalisable.

Notons μ_A le polynôme minimal de A. Par le cours son polynôme minimal n'est pas scindé simple (comme A n'est pas diagonalisable). De plus par le théorème de Cayley-Hamilton, μ_A divise $\chi_A = X^2(X-2)$. Cela oblige donc $\mu_A = X^2(X-2)$ car les seuls autres possibilités seraient X, X-2 et X(X-2) qui sont scindés simples.

- 3. Le polynôme caractéristique de A est scindé. Par le cours, A est trigonalisable.
- 4. Notons $B=2I_3-A$ et μ_B son polynôme minimal. On constate que le polynôme $P(X):=\mu_A(2-X)$ annule B. En effet

$$P(B) = \mu_A(2I_3 - B) = \mu_A(2I_3 - 2I_3 + A) = \mu_A(A) = 0_{M_3(\mathbb{R})}.$$

Donc par le cours, μ_B divise P et $\deg(\mu_B) \leq \deg(P) = \deg(\mu_A)$. De plus, le polynôme $Q(X) = \mu_B(2-X)$ annule A. En effet

$$Q(A) = \mu_B(2I_3 - A) = \mu_B(B) = 0_{M_3(\mathbb{R})}.$$

Donc par le cours, μ_A divise Q et en particulier $\deg(\mu_A) \leq \deg(Q) = \deg(\mu_B)$.

Si on résume, μ_B divise P, $\deg(\mu_B) \leq \deg(P) = \deg(\mu_A)$ et $\deg(\mu_A) \leq \deg(\mu_B)$. Cela oblige μ_B et P à être proportionnels et comme par définition μ_B est unitaire, on a donc $\mu_B(X) = (X-2)^2 X$.

Mathématiques et Informatique de la Décision et des Organisations

Exercice 3. — On commence par calculer le polynôme caractéristique de B. Après calcul on trouve $\chi_B(X) = (X-1)(X-2)(X-4)$. Par le cours, B l'ensemble des valeurs propres de B est $\{1,2,4\}$. Par le théorème de Cayley-Hamilton, χ_B annule B. Comme χ_B est scindé simple, on a trouvé un polynôme annulateur scindé simple de B et donc B est diagonalisable. On détermine ensuite les sous-espaces propres de B.

Commençons par $E_1(B)$. On résout pour $(x, y, z) \in \mathbb{R}^3$

$$3x + y = x$$
$$x + 3y + z = y$$
$$z = z.$$

Cela équivaut à

$$2x + y = 0$$
$$-3x + z = 0.$$

Ainsi, $E_1(B) = \text{Vect}\{(1, -2, 3)^T\}.$

Déterminons maintenant $E_2(B)$. On résout pour $(x, y, z) \in \mathbb{R}^3$

$$3x + y = 2x$$
$$x + 3y + z = 2y$$
$$z = 2z.$$

Cela équivaut à

$$x + y = 0$$
$$z = 0.$$

Ainsi, $E_2(B) = \text{Vect}\{(1, -1, 0)^T\}.$

Enfin déterminons $E_4(A)$. On résout pour $(x, y, z) \in \mathbb{R}^3$

$$3x + y = 4x$$
$$x + 3y + z = 4y$$
$$z = 4z.$$

Cela équivaut à

$$x = y$$
$$y = 0.$$

Ainsi, $E_4(A) = \text{Vect}\{(1, 1, 0)^T\}.$

On peut maintenant conclure. On définit

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & 1 \\ 3 & 0 & 0 \end{pmatrix} , D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

et on a $B = PDP^{-1}$.

Exercice 4. — On commence par calculer les polynômes caractéristiques. On trouve $\chi_C(X) = \chi_D(X) = (X-1)(X-3)^2$. On compare ensuite les dimensions des sous-espaces propres. On détermine $E_3(C)$ et $E_3(D)$. Après calculs on trouve que $E_3(C) = \text{Vect}\{(1,0,0)^T\}$ et que $E_3(D) = \text{Vect}\{(1,1,0),(0,0,1)^T\}$. Comme deux matrices semblables ont même valeurs propres avec des sous-espaces propres associés de même dimensions, il vient que C et D ne sont pas semblables.

Autre argument : on peut remarquer que comme $\dim(E_3(C)) = 1 < 2$ où 2 est la multiplicité dans le polynôme caractéristique de C, C n'est pas diagonalisable alors que D est diagonalisable car $\dim(E_3(D)) = 2$ et $\dim(E_1(D)) \ge 1$

donc la somme des dimensions des sous-espaces propres est plus grande ou égale à 3 donc égale à 3. Une matrice diagonalisable ne pouvant être semblable à une matrice non diagonalisable, il vient que C et D ne sont pas semblables.

Exercice 5. — 1. On remarque que le polynôme $P(X) := X^3 + 2X^2 + X = X(X+1)^2$ annule A. Or l'ensemble des racines complexes de P est $\{0, -1\}$ donc par le cours, l'ensemble des valeurs propres complexes est inclus dans $\{0, -1\}$. Attention il n'y a pas a priori égalité des deux ensembles car P n'est a priori qu'un polynôme annulateur.

- 2. Les racines complexes de χ_A correspondent aux valeurs propres complexes de A. Or par la question précédente, l'ensemble des valeurs propres complexes de A sont réelles.
- 3. Cette question est faussement facile. Comme A est une matrice réelle, χ_A est un polynôme de $\mathbb{R}[X]$. Comme χ_A est scindé dans $\mathbb{C}[X]$ (par D'Alembert-Gauss) et qu'il n'admet que des racines réelles par la question 2, il est donc scindé dans \mathbb{R} . Par le cours, A est trigonalisable.
- 4. Par la question 3, A est trigonalisable donc il existe une matrice inversible P tel que $B = PTP^{-1}$ avec T une matrice triangulaire supérieure dont les éléments diagonaux sont des éléments de l'ensemble des valeurs propres de A. Or à la question 2, l'ensemble des valeurs propres est inclus dans $\{0, -1\}$. Donc pour tout $i \in \{1, \dots, n\}$, on a $T_{ii} = 0$ ou -1. Il existe donc deux entiers naturels p et k tels que p + k = n et $\text{Tr}(A) = p \cdot 0 + k \cdot (-1) = -k$. Donc, comme $k \in \{0, 1, \dots, n\}$, il vient que $\text{Tr}(A) \in \{0, -1, \dots, -n\}$.
- 5(a). Ici Tr(A)=0. On reprend les notations de la question 4. On voit que cela oblige k=0 et donc p=n. Ainsi -1 n'est pas valeur propre et en utilisant la question 1, l'ensemble des valeurs propres complexes de A est inclus dans $\{0\}$. Or l'ensemble des valeurs propres complexes de A est non vide (par d'Alembert-Gauss appliqué au polynôme caractéristique de A). Ainsi l'ensemble des valeurs propres complexes de A est exactement l'ensemble $\{0\}$. Cela oblige, pour tout $i \in \{1, \dots, n\}$, $T_{ii}=0$ donc T est triangulaire stricte et il vient alors que $\chi_T=X^n$. Comme T et A sont semblables, ils ont même polynôme caractéristique et donc $\chi_A=X^n$.
- 5(b). Notons μ_A le polynôme minimal de A. Par le théorème de Cayley-Hamilton, μ_A divise $\chi_A = X^n$. Or $P(X) = X(X+1)^2$ annule A donc μ_A divise P. μ_A divise donc le pgcd de χ_A et de P donc μ_A divise X. Or le polynôme minimal d'une matrice est toujours de degré supérieure ou égale à 1 (par définition). Cela oblige donc $\mu_A = X$. Enfin $A = \mu_A(A) = 0_{M_n(\mathbb{R})}$. Donc A est nulle.
- 6. Ici, Tr(A) = -1. Notons μ_A le polynôme minimal de A. On reprend les notations de la question 4. On voit que cela oblige k = 1 et donc p = n 1. Donc l'ensemble des valeurs propres complexes de A est exactement $\{0, -1\}$ et $\chi_T = X^{n-1}(X+1)$. Comme T et A sont semblables, ils ont même polynôme caractéristique et donc $\chi_A = X^{n-1}(X+1)$. Or $P(X) = X(X+1)^2$ annule A donc μ_A divise le pgcd de $X^{n-1}(X+1)$ et $X(X+1)^2$ donc μ_A divise X(X+1). Cela oblige μ_A a être scindé simple donc par le cours, A est diagonalisable.

Exercice 6. — 1. Si $A, B \in M_n(\mathbb{R})$ et λ un réel on a, par linéarité de la trace,

$$\Phi(A + \lambda B) = \text{Tr}(A + \lambda B)I_n = \text{Tr}(A)I_n + \lambda \text{Tr}(B)I_n = \Phi(A) + \lambda \Phi(B).$$

Donc Φ est \mathbb{R} -linéaire.

2. Soit $A \in M_n(\mathbb{R})$. On a, comme Tr(A) est un scalaire et que Φ est linéaire,

$$\Phi^{2}(A) = \Phi(\operatorname{Tr}(A)I_{n}) = \operatorname{Tr}(A)\Phi(I_{n}) = \operatorname{Tr}(A) \cdot \operatorname{Tr}(I_{n})I_{n} = (\operatorname{Tr}(A) \cdot n)I_{n} = n\Phi(A).$$

Donc $\Phi^2 = n\Phi$.

3. Notons μ_{Φ} le polynôme minimal de Φ . Par la question précédente, X^2-nX annule Φ donc μ_{Φ} divise X(X-n). De plus, $\Phi(I_n)=\mathrm{Tr}(I_n)I_n=nI_n\neq 0_{M_n(\mathbb{R})}$ donc X n'annule pas Φ . Enfin, si on note $B=(b_{ij})$ avec $b_{ii}=0$ et $b_{ij}=1$ pour tout $i\neq j$, on a $(X-n)(B)=(\Phi-nId_{M_n(\mathbb{R})})(B)=\mathrm{Tr}(B)I_n-nB=0\cdot I_n-nB=-nB\neq 0_{M_n(\mathbb{R})}$ donc X-n n'annule pas Φ . Cela oblige $\mu_{\Phi}=X(X-n)$.

Mathématiques et Informatique de la Décision et des Organisations

- 4. μ_Φ étant scindé à racine simple, Φ est diagonalisable.
- 5. Les racines de μ_{Φ} sont exactement les valeurs propres donc l'ensemble des valeurs propres est $\{0, n\}$.

On constate que $E_0(\Phi) = \{A \in M_n(\mathbb{R}) , \operatorname{Tr}(A) = 0\}.$

Déterminons ensuite $E_n(\Phi)$. On a $\Phi(I_n)=\mathrm{Tr}(I_n)I_n=nI_n$ donc $I_n\in E_n(\Phi)$. De plus si $B\in M_n(\mathbb{R})$,

$$\Phi(B) = nB \iff \operatorname{Tr}(B)I_n = nB \iff B \text{ et } I_n \text{ sont proportionnelles.}$$

Cela oblige $E_n(\Phi) = \text{Vect}\{I_n\}.$

6. Comme Φ est diagonalisable, $\dim(E_0(\Phi)) + \dim(E_n(\Phi)) = \dim(M_n(\mathbb{R})) = n^2$ et comme $\dim(E_n(\Phi)) = 1$, cela oblige $\dim(E_0(\Phi)) = n^2 - 1$.

Comme Φ est diagonalisable la trace de Φ est la somme des valeurs propres comptées avec multiplicité. Ainsi $\text{Tr}(\Phi) = (n^2 - 1) \cdot 0 + 1 \cdot n = n$.