Math 4310 Assignment #11 University of Lethbridge, Fall 2014

Sean Fitzpatrick

November 15, 2014

Due date: Friday, November 21st, by 5 pm.

Please submit solutions to the following problems (except where indicated). As usual, all the textbook exercises are recommended as practice problems if they don't appear as an assigned problem below.

- 1. (a) Let $\gamma:[0,1]\to X$ be a path, and let $\rho:[0,1]\to [0,1]$ be any continuous function such that $\rho(0)=0$ and $\rho(1)=1$. Prove that the paths γ and $\gamma\circ\rho$ are homotopic. Hint: ρ is itself a path from 0 to 1 in [0,1], and all such paths are homotopic in [0,1].
 - (b) Let α, β , and γ be loops based at a point $x_0 \in X$. Write down explicit formulas for $\alpha * (\beta * \gamma)$ and $(\alpha * \beta) * \gamma$.
 - (c) Prove that $[\alpha] * ([\beta] * [\gamma]) = ([\alpha] * [\beta]) * [\gamma].$

Hint: use (a), and try the map
$$\rho(s) = \begin{cases} s/2 & \text{if } 0 \le s \le 1/2 \\ s - 1/4 & \text{if } 1/2 \le s \le 3/4. \\ 2s - 1 & \text{if } 3/4 \le s \le 1 \end{cases}$$

Note: A similar approach can be used to verify the other group axioms as well. For example, let $e_{x_0}: [0,1] \to X$ be the constant map $e_{x_0}(s) = x_0$ for all $s \in [0,1]$, and let $\gamma: [0,1] \to X$ be a loop based at x_0 . Let $e_0: [0,1] \to [0,1]$ be the constant map $e_0(t) = 0$ for all $t \in [0,1]$, and let $i: [0,1] \to [0,1]$ be the identity map. Then $e_0 * i: [0,1] \to [0,1]$ is homotopic to i, and

$$\gamma \circ (e_0 * i) = (\gamma \circ e_0) * (\gamma \circ i) = e_{x_0} * \gamma.$$

If F is a homotopy from $e_0 * i$ to i, then $\gamma \circ F$ is a homotopy from $e_{x_0} * \gamma$ to $\gamma \circ i = \gamma$. Thus, $[e_{x_0}] * [\gamma] = [\gamma]$.

(Here we used the fact that for any paths α and β in a space Y and a map $f: Y \to X$, $f \circ (\alpha * \beta) = (f \circ \alpha) * (f \circ \beta)$ since both are equal to the map given by $f(\alpha(2s))$ for $s \in [0, 1/2]$ and $f(\beta(2s-1))$ for $s \in [1/2, 1]$, and as mentioned in class, if F is a homotopy from α to β in Y, then $G = f \circ F$ is a homotopy from $f \circ \alpha$ to $f \circ \beta$ in X.)

- 2. Let X be a space and let $\alpha, \beta : [0,1] \to X$ be two paths from x_0 to x_1 , for two points $x_0, x_1 \in X$. These paths define isomorphisms $\varphi_{\alpha}, \varphi_{\beta} : \pi_1(X, x_0) \to \pi_1(X, x_1)$, but as noted in class, they may be different isomorphisms. Prove that the isomorphism φ_{β} is the composition of φ_{α} with the inner automorphism of $\pi_1(X, x_1)$ induced by the element $[\beta^{-1} * \alpha]$.
- 3. Prove that the two isomorphisms in the previous problem are the same if and only if $\pi_1(X, x_0)$ is Abelian.
- 4. Given spaces X and Y, let [X,Y] denote the set of homotopy classes of maps $f:X\to Y$.
 - (a) Let I = [0, 1]. Show that for any space X, [X, I] contains a single element.
 - (b) Show that if Y is path connected, then the set [I, Y] contains a single element.
- 5. (**Do not submit**) A space X is called **contractible** if the identity map $i_X : X \to X$ is homotopic to a constant map. (If f is homotopic to a constant map, we say f is **nullhomotopic**.)
 - (a) Show that I and \mathbb{R} are contractible.
 - (b) Show that a contractible space is path-connected.
 - (c) Show that if Y is contractible, then for any set X, the set [X, Y] has a single element.
 - (d) Show that if X is contractible and Y is path-connected, then the set [X, Y] has a single element.
- 6. Let $A \subseteq X$. Recall that a **retraction** of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. If $a_0 \in A$, show that

$$r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$$

is a surjection.