

Class: Machine Learning

Elements of Local Optimisation

Instructor: Matteo Leonetti

Learning outcomes

- Describe the difference between zero, first, and secondorder optimisation methods.
- Apply gradient descent to a given objective function.
- Choose an appropriate step size for gradient descent.

Find the minimum point of a given function:

The minimum is at 0.39

Local Methods

Gradient descent

First order: gradient descent

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$
 step parameter

Second order: Newton's method

$$f(x_n + \Delta x) \approx f(x_n) + f'(x_n) \Delta x + \frac{1}{2} f''(x_n) \Delta x^2$$

Taylor's expansion

$$\frac{\partial}{\partial \Delta x} f(x_n + \Delta x) = f'(x_n) + f''(x_n) \Delta x = 0$$

Optimal step

$$\Delta x = \frac{-f'(x_n)}{f''(x_n)}$$
 Many dimensions: $x_{t+1} = x_t - H^{-1}|_{x_n} \nabla f$

$$x_{t+1} = x_t - H^{-1}|_{x_n} \nabla f$$

The current point is <1,0>, compute the next point following gradient descent on the function $f(x,y) = x^3 + 2y^2 - y$ with step size 0.1.

Question

We want to compute: $x_{t+1} = \langle 1, 0 \rangle - 0.1 \nabla f(x_t)$

$$\nabla f = \langle 3x^2, 4y - 1 \rangle$$
 Evaluated in <1,0> is <3,-1>

$$x_{t+1} = \langle 1,0 \rangle - 0.1 \cdot \langle 3,-1 \rangle = \langle 0.7,0.1 \rangle$$

$$f(1,0)=1$$

Our solution has improved!

$$f(0.7,0.1) = 0.263$$

In 3D

Step size: 0.1

Conclusion

Sections 9.0, 9.1