CIRCUITOS DIGITAIS

CONTADORES SÍNCRONOS

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Vantagens

- Implementação mais simples → menos portas lógicas
- Menor consumo de potência

Desvantagens

- Maior atraso de propagação
- Pode apresentar comportamento imprevisível

EXEMPLO: CONTADOR ASSÍNCRONO CRESCENTE DE 3 BITS

SEM ATRASO

Atraso para um flip-flop do mesmo tipo é sempre igual → t_p

N flip-flops → atraso de N x t_p para o último flip-flop

- □ Exemplo: $t_p = 50$ ns e T = 100ns (F = 10 MHz)
- □ Problema → Frequencia de entrada muito alta

Frequencia máxima :

$$T \ge N \times t_p \xrightarrow{} f_{max} = \frac{1}{N \times t_p}$$

T → período

N → número de FFs

t_p → tempo de propagação de um FF

f_{max} → frequencia máxima

No exemplo: t_p = 50ns e 3 estágios de FF

Frequencia máxima :

$$T \ge 3 \times 50 \text{ns} = 150 \text{ns}$$

$$f_{max} = \frac{1}{150ns} = 6,67 \times 10^{-3} \times 10^{9} \approx 6,67MHz$$

- Os Flip-Flops mudam de estado com o mesmo sincronismo
- O mesmo clock é ligado em todos os FFs
- Há um atraso entre as mudanças de estado de cada FF
- O atraso NÃO é propagado de acordo com o número de FF
- Frequencias mais altas

- Usa-se principalmente flip-flop JK ou T
- Também é utilizado o FF tipo D

FLIP-FLOP T COM PRESET E CLEAR

PRE	CLR	Q _{t+1}
0	0	FUNCIONAMENTO NORMAL
0	1	0
1	0	1
1	1	NÃO PERMITIDO

CLK	Т	Q _{t+1}
≠↑	X	Q _t
↑	0	Q _t
1	1	$\overline{\mathbf{Q}_{t}}$

- □ Contador de n bits → n flip-flops
- □ maior número que um de n contador pode contar → 2n 1
- □ Exemplo : Contador de palavras de 2 bits → 2 FFs

Contador de palavras de 2 bits conta até $2^2 - 1 = 3$

- Passo 1 : o clock é conectado em todos flip-flops
- Exemplo : Contador de palavras de 2 bits

Passo 2: as entradas T dos FFs devem ser:

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

$$T_3 = Q_0 \cdot Q_1 \cdot Q_2$$

$$\vdots$$

$$T_n = Q_0 \cdot Q_1 \cdot \ldots \cdot Q_{n-1}$$

- Passo 2
- Exemplo : Contador de palavras de 2 bits

- Passo 3: interligar as entradas CLEAR dos flip-flops para resetar o contador / PRESET fica desabilitado (0)
- Exemplo : Contador de palavras de 2 bits

- Exemplo : Contador de palavras de 2 bits
- □ Antes da contagem → RESETAR o contador

- Exemplo : Contador de palavras de 2 bits
- □ PRESET e CLEAR iguais a 0 → operação normal

- Exemplo : Contador de palavras de 2 bits
- Tabela Verdade :

Pulso de Clock	Q_1	Q_0	
Valor inicial	0	0	
1°	0	1	
2°	1	0	
3°	1	1	
4º (reciclagem)	0	0	

CONTADOR BINÁRIO SÍNCRONO DE 4 BITS

CONTADORES SÍNCRONOS DECRESCENTE

Contador Decrescente : as entradas T dos FFs devem ser:

$$T_0 = 1$$

$$T_1 = \overline{Q_0}$$

$$T_2 = \overline{Q_0} \cdot \overline{Q_1}$$

$$T_3 = \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{Q_2}$$

$$\vdots$$

$$T_n = \overline{Q_0} \cdot \overline{Q_1} \cdot \dots \cdot \overline{Q_{n-1}}$$

CONTADORES SÍNCRONOS DECRESCENTE

CONTADOR SÍNCRONO DECRESC. DE 4 BITS

CONTADOR SÍNCRONO CRESC./DECRESC.

CONTADOR DE DÉCADA SÍNCRONO

CONTADOR DE 3 a 11 SÍNCRONO

Como fazer o seguinte contador?

Pulso de Clock	Q_1	Q_0	Valor decimal	
Valor inicial	0	0	0	
1°	1	0	2	
2°	1	1	3	
3º (reciclagem)	0	0	0	

- □ O contador tem palavras de 2 bits → 2 flip-flops
- As saídas serão Q₁ e Q₀
- □ Precisamos definir os valores de entrada para cada FF (T₁ e T₀)

Podemos representar um contador através de uma máquina de estados:

Pulso de Clock	Q_1	Q_0	
Valor inicial	0	0	
1°	1	0	
2°	1	1	
3º (reciclagem)	0	0 '	

DIAGRAMA DE ESTADOS

- Círculos (vértices) representam um estado
- O valor contido no círculo representa(m) a(s) <u>saída(s)</u> do circuito
- A flecha (arco) em roxo aponta para o estado inicial
- Flechas (arcos) em verde representam transições de estados

Pulso de Clock	Q_1	Q_0	00 10
Valor inicial	0	0	
1º	1	0	
2°	1	1	
3º (reciclagem)	0	0	11
			DIAGRAMA DE ESTADOS

□ 1º PASSO : Construir o diagrama de estados

 2º PASSO: Construir a tabela verdade baseada no diagrama de estados

2º PASSO : Construir a tabela verdade baseada no diagrama de estados

2º PASSO : Construir a tabela verdade baseada no diagrama de estados

	ESTADO	ATUAL	PRÓXIMO ESTADO		
	Q_1 Q_0		Q ₁	Q_0	
	0	0	1	0	
	1	0	1	1	
lack	1	1	0	0	

ESTADO ATUAL		PRÓXIMO	ESTADO	EQUAÇÕES DE ENTRADA		
Q_1	Q_0	Q_1	Q_0	T ₁	T ₀	
0	0	1	0			
1	0	1	1			
1	1	0	0			

2º PASSO : Definir as Equações de Entrada na tabela verdade de acordo com o FF utilizado

ESTADO ATUAL		PRÓXIMO ESTADO		EQUAÇÕES DE ENTRADA	
Q_1	Q_0	Q ₁	Q_0	T ₁	T ₀
0	0	1	0		
1 \	0	1	1		
1	1	0	0		
V					

O valor de Q₁ deve mudar de 0 para 1 no próx. estado, ou seja, inverter seu valor.

Qual o valor de T para que isso aconteça?

CLK	Т	Q _{t+1}
≠↑	X	Qt
1	0	Qt
<u></u>	1	$\overline{\mathbf{Q}_{t}}$

2º PASSO : Definir as Equações de Entrada na tabela verdade de acordo com o FF utilizado

	ESTADO ATUAL		PRÓXIMO ESTADO		EQUAÇÕES DE ENTRADA	
	Q_1	Q_0	Q_1	Q_0	T ₁	T ₀
	0	0	1	0	1	
	1	0	1	1		
	1	/ 1	0	0		
·		$\overline{\hspace{1cm}}$				

O valor de Q_0 deve se manter em 0 no próximo estado.

Qual o valor de T para que isso aconteça?

CLK	Т	Q _{t+1}
≠↑	X	Qt
1	0	Qt
<u></u>	1	$\overline{\mathbf{Q}_{t}}$

	ESTADO ATUAL		PRÓXIMO	ESTADO	EQUAÇÕES DE ENTRADA		
	Q_1	Q_0	Q_1	Q_0	T ₁	T ₀	
	0	0	1	0	1	0	
•	1	0	1	1	0	1	
	1	1	0	0			

	ESTADO ATUAL		PRÓXIMO	ESTADO	EQUAÇÕES DE ENTRADA		
	Q_1	Q_0	Q_1	Q_0	T ₁	T ₀	
	0	0	1	0	1	0	
	1	0	1	1	0	1	
•	1	1	0	0	1	1	

2º PASSO : Definir as Equações de Entrada na tabela verdade de acordo com o FF utilizado

ESTADO ATUAL		PRÓXIMO	ESTADO	EQUAÇÕES DE ENTRADA		
Q_1	\mathbf{Q}_{0}	Q_1 Q_0		T ₁	T ₀	
0	0	1	0	1	0	
1	0	1	1	0	1	
1	1	0	0	1	1	

Equações de Entrada para o FF tipo T:

Se o valor do próximo estado for igual ao estado atual \rightarrow 0

Se o valor do próximo estado for diferente ao estado atual -> 1

□ 3º PASSO : Obter as Equações de Entrada T₁ e T₀ → minimizar se possível

ESTADO	ATUAL	EQUAÇÕES DE ENTRADA		
Q_1	Q_0	T ₁	T ₀	
0	0	1	0	
1	0	0	1	
1	1	1	1	

$$T_1 = \overline{Q_1} \overline{Q_0} + Q_1 \overline{Q_0} = \mathbf{Q_1} \mathbf{XNOR} \mathbf{Q_0}$$

$$T_0 = Q_1 \overline{Q_0} + Q_1 Q_0 = Q_1 (\overline{Q_0} + Q_0) = \mathbf{Q_1}$$

4º PASSO : Construir o circuito

MÁQUINA DE ESTADOS

ESTADO ATUAL		PRÓXIMO ESTADO			EQUAÇÕES DE ENTRADA			
Q_2	Q ₁	$\mathbf{Q_0}$	Q_2	Q_1	\mathbf{Q}_0	T ₂	T ₁	T ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	0	1	0	1
1	1	0	Χ	Χ	Χ	X	Х	X
1	1	1	Χ	Χ	Χ	Х	Х	X

ESTADO ATUAL		PRÓXIMO ESTADO			EQUAÇÕES DE ENTRADA			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T ₂	T ₁	T ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	0	1	0	1
1	1	0	Χ	Χ	Χ	X	X	X
1	1	1	Χ	Χ	Χ	X	X	Χ

LINHAS OPCIONAIS:

ESTADOS NÃO UTILIZADOS PELO CONTADOR

DEFINIÇÃO DE ESTADOS NÃO UTILIZADOS NA TABELA PODE:

- → AJUDAR A REDUZIR A ÁREA DO CIRCUITO (MAIOR SIMPLIFICAÇÃO DAS EQ. BOOLEANAS)
- → TORNAR O CIRCUITO MAIS TOLERANTE A POSSÍVEIS FALHAS (DEFINE O QUE O CIRCUITO FARÁ CASO ENTRE EM UM ESTADO NÃO UTILIZADO)

ESTADO ATUAL			EQUAÇÕES DE ENTRADA			
Q_2	Q_1	Q_0	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	1	0	1	
1	1	0	X	X	X	
1	1	1	X	X	X	

$$T_2 = Q_1Q_0 + Q_2Q_0$$
 $T_2 = Q_0(Q_1 + Q_2)$

COMO FOI DEFINIDO DON'T CARES (X)
PARA OS ESTADOS NÃO UTILIZADOS,
CONSEGUIU-SE UMA EQ. BOOLEANA MAIS
SIMPLIFICADA

	STAD ATUAI		EQUAÇÕES DE ENTRADA			
Q_2	Q_1	Qo	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	1	0	1	
1	1	0	X	Х	X	
1	1	1	X	X	X	

$$T_1 = \overline{Q_2}Q_0$$

	STAD ATUAI		EQUAÇÕES DE ENTRADA			
Q_2	Q_1	Q_0	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	1	0	1	
1	1	0	X	X	X	
1	1	1	X	X	X	

$$T_0 = 1$$

MÁQUINA DE ESTADOS

	ESTADO) ATUAI	-	PF	RÓXIMO	ESTA	00	EQU	IAÇÕES [DE ENTRA	ADA
Q_3	Q_2	Q_1	\mathbf{Q}_0	\mathbf{Q}_3	Q_2	Q_1	Q_0	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	Χ	Χ	Χ	Χ	X	X	X	X
1	0	1	1	Χ	Χ	Χ	Χ	X	Х	X	X
1	1	0	0	Χ	Χ	Χ	Χ	X	X	X	X
1	1	0	1	Χ	Χ	Χ	Χ	Х	Х	Х	Х
1	1	1	0	Χ	Χ	Χ	Χ	X	X	Х	X
1	1	1	1	Χ	Χ	Χ	Χ	Х	X	X	X

ES	TADO) ATU	AL	PRĆ	PRÓXIMO ESTADO			E	QUAÇ ENTR	ÕES D RADA	E
Q_3	Q_2	Q ₁	Q_0	Q_3	Q_2	Q_1	Q_0	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ
1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
1	1	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

LINHAS OPCIONAIS:

ESTADOS NÃO UTILIZADOS PELO CONTADOR

ES	TADO) ATU	AL	E	QUAÇ ENTF		E
Q_3	Q ₂	Q ₁	Q ₀	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
1	0	1	0	Х	Х	Х	Х
1	0	1	1	Х	X	Х	X
1	1	0	0	Х	X	Χ	X
1	1	0	1	Х	X	Х	Х
1	1	1	0	Х	X	Χ	Х
1	1	1	1	Х	Χ	Χ	Х

$$T_3 = \mathbf{Q_2} \mathbf{Q_1} \mathbf{Q_0} + \mathbf{Q_3} \mathbf{Q_0}$$

ES	TADO) ATU	AL	E	QUAÇ ENTF	ÕES D RADA	E
Q_3	Q ₂	Q ₁	Q_0	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
1	0	1	0	X	X	X	X
1	0	1	1	Х	Х	X	X
1	1	0	0	X	X	X	X
1	1	0	1	Х	Х	X	X
1	1	1	0	Х	Х	Х	Х
1	1	1	1	X	Χ	X	X

$$T_2 = \mathbf{Q_1}\mathbf{Q_0}$$

ESTADO ATUAL				E	QUAÇ ENTF		E
Q_3	Q ₂	Q ₁	Q ₀	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	Х	Х	Χ	Х
1	1	0	1	Х	Х	Х	Х
1	1	1	0	Х	Х	Х	Х
1	1	1	1	X	X	Χ	X

$$T_1 = \overline{\mathbf{Q_3}} \mathbf{Q_0}$$

ES	ESTADO ATUAL				QUAÇ ENTF	ÕES D RADA	E
Q_3	Q ₂	Q ₁	Q_0	T ₃	T ₂	T ₁	T ₀
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
1	0	1	0	X	X	X	X
1	0	1	1	Х	Х	X	Х
1	1	0	0	Х	Х	Χ	Х
1	1	0	1	Х	X	X	Х
1	1	1	0	Х	Х	Х	Х
1	1	1	1	Х	Х	X	Χ

$$T_0 = 1$$

$$T_0 = 1$$

$$T_1 = \overline{\mathbf{Q_3}}\mathbf{Q_0}$$

$$T_2 = \mathbf{Q_1}\mathbf{Q_0}$$

$$T_2 = Q_1Q_0$$
 $T_3 = Q_2Q_1Q_0 + Q_3Q_0$

CONTADORES SÍNCRONOS COM FF TIPO D

PRE	CLR	Q _{t+1}
0	0	FUNCIONAMENTO NORMAL
0	1	0
1	0	1
1	1	NÃO PERMITIDO

CLK	D	Q _{t+1}
≠↑	X	Q _t
↑	0	0
↑	1	1

GERA EQUAÇÕES DE ENTRADA MAIS COMPLEXAS QUE O FF T!

PROJETO MAIS SIMPLES QUE O FF T!

CONTADORES SÍNCRONOS COM FF TIPO D

- □ O contador tem palavras de 2 bits → 2 flip-flops
- As saídas serão Q₁ e Q₀
- □ Precisamos definir os valores de entrada para cada FF (D₁ e D₀)

LEMBRANDO:

Equações de entrada para o FF tipo T

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

$$T_3 = Q_0 \cdot Q_1 \cdot Q_2$$

$$\vdots$$

$$T_n = Q_0 \cdot Q_1 \cdot \ldots \cdot Q_{n-1}$$

FF T IMPLEMENTADO A PARTIR DE FF D

$$D = T \oplus Q$$

EQUAÇÕES DE ENTRADA PARA O FF TIPO D

$$D_n = T_n \oplus Q_n$$

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

$$T_3 = Q_0 \cdot Q_1 \cdot Q_2$$

$$\vdots$$

$$T_n = Q_0 \cdot Q_1 \cdot ... \cdot Q_{n-1}$$

$$D_0 = 1 \bigoplus Q_0$$

$$D_1 = Q_0 \bigoplus Q_1$$

$$D_2 = (Q_0 \cdot Q_1) \bigoplus Q_2$$

$$D_3 = (Q_0 \cdot Q_1 \cdot Q_2) \bigoplus Q_3$$

$$\vdots$$

$$\vdots$$

$$D_n = (Q_0 \cdot Q_1 \cdot ... \cdot Q_{n-1}) \bigoplus Q_n$$

CONTADORES SÍNCRONOS COM FF TIPO D

Exemplo : Contador de palavras de 2 bits

Podemos representar um contador através de uma máquina de estados:

Pulso de Clock	Q_1	Q_0	
Valor inicial	0	0	
1°	0	1	
2°	1	1	
3° (reciclagem)	0	0 '	

Exemplo:

ESTADO	ATUAL	PRÓXIMO ESTADO		
Q_1	Q_0	Q_1	Q_0	
0	0	0	1	
0	1	1	1	
1	1	0	0	

Obtenção das equações de entrada:

	ESTADO ATUAL		PRÓXIMO ESTADO		EQUAÇÕES DE ENTRADA	
	\mathbf{Q}_1	Q_0	Q_1	Q_0	D ₁	D_0
lack igg[0	0	0	1		
	0 \	1	/ 1	1		
	1 \	1	0	0		

O valor de Q₁ deve se manter em 0 no próximo estado.

Qual o valor de D para que isso aconteça?

Obtenção das equações de entrada:

Obtenção das equações de entrada:

O valor de Q₀ deve mudar de 0 para 1 no próx. estado

Qual o valor de D para que isso aconteça?

Obtenção das equações de entrada:

Obtenção das equações de entrada:

ESTADO	ESTADO ATUAL		PRÓXIMO ESTADO		EQUAÇÕES DE ENTRADA	
Q_1	Q_0	Q ₁	Q_0	D ₁	D_0	
0	0	0	1	0	1	
0	1	1	1	1	1	
1	1	0	0	0	0	

Para o FF tipo D, a tabela das equações de entrada é igual a tabela do próximo estado!

Obtenção das equações de entrada:

ESTADO	ATUAL	EQUAÇÕES DE ENTRADA		
Q_1	Q_0	D ₁	D_0	
0	0	0	1	
0	1	1	1	
1	1	0	0	

$$D_1 = \overline{\mathbf{Q_1}} \mathbf{Q_0}$$

Obtenção das equações de entrada:

ESTADO	ATUAL	EQUAÇÕES DE ENTRADA		
Q_1	Q_0	D ₁	D_0	
0	0	0	1	
0	1	1	1	
1	1	0	0	

$$D_0 = \overline{Q_1} \overline{Q_0} + \overline{Q_1} Q_0 = \overline{Q_1} (\overline{Q_0} + Q_0)$$

$$D_0 = \overline{Q_1}$$

