Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2010 Lösungen der Klausur 11. Oktober 2010

	Disr	7160	∃ V \	all.	1 201	1611	11101	TVGI	USUII	-0116		
Name			Vorname				Studiengang				Matrikelnummer	
Hörsaal			Reihe				Sitzplatz				Unterschrift	
Code:												
L			1			1			<u> </u>			
			A	llge	meiı	ne H	[inw	eise				
• Bitte fül	llen Sie	obige	Felde	r in I	Druck	buchs	stabei	aus i	und un	terschrei	ben Sie!	
• Bitte scl	nreiben	Sie nie	cht m	it Ble	eistift	oder	in ro	ter/gr	rüner Fa	arbe!		
• Die Arb	eitszeit	beträg	gt 180) Min	uten.							
seiten) d	ler betre enrechn	effende ungen	en Au mac	ıfgabe hen.	en ein Der	zutra Schm	gen. <i>1</i> ierbla	Auf de	m Schn	nierblatt	n (bzw. Rücl bogen könne alls abgegebe	
Hörsaal verla	assen		von		b	is		/	von .	1	ois	
Vorzeitig abg	gegeben		um									
Besondere B	emerku	ngen:										
	A1	A2	A3	A4	A5	A6	A7		Korre	ktor		
Erstkorrektu												
Zweitkorrekt	ur											

Aufgabe 1 (6 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Für jedes nichtleere Ereignis $E \neq \emptyset$ eines Wahrscheinlichkeitsraumes $W = \langle \Omega, \Pr \rangle$ gilt $\Pr[E] \neq 0$.
- 2. Es gibt einen diskreten Wahrscheinlichkeitsraum $W = \langle \Omega, \Pr \rangle$ mit $\Omega = \mathbb{N}$, so dass alle Elementarereignisse gleichwahrscheinlich sind.
- 3. Wir werfen zwei faire, 6-seitige Würfel. Die erhaltenen Augenzahlen seien a und b. Dann sind die Ereignisse a = b und |a + b| = 7 gleichwahrscheinlich.
- 4. Die Funktion $f(s) = \frac{1}{12}(2+s)(3+s)$ ist eine wahrscheinlichkeitserzeugende Funktion, d. h. $G_X(s) = f(s)$ für eine existierende Zufallsvariable X.
- 5. Die Summe zweier unabhängiger Indikatorvariablen X und Y ist binomialverteilt.
- 6. Sei $X \sim \mathcal{N}(2, \frac{1}{2})$, dann gilt $(2X + 1) \sim \mathcal{N}(5, 2)$.

Lösung

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Falsch! Begründung: Jede Erweiterung $\Omega' = \Omega \cup \{e\}$ mit $\Pr[\{e\}] = 0$ ist ebenfalls ein Wahrscheinlichkeitsraum.
- 2. Falsch! Begründung: $1 \neq \sum_{i=1}^{\infty} \Pr[\{i\}]$, wenn $\Pr[\{i\}] = p$ für alle i.
- 3. Wahr! Begründung. Es gibt 6 Ereignisse (x, y) mit x = y. Andererseits gilt $\{(w_1, w_2) \mid w_1 + w_2 = 7\} = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}.$
- 4. Wahr! Die Summe der Koeffizienten von s^i ist gleich 1.
- 5. Falsch! Das gilt nur, wenn beide Variablen die gleiche Verteilung besitzen.
- 6. Wahr! Lineare Transformation Y = aX + b.

Aufgabe 2 (10 Punkte)

Seien $W = \langle \Omega, \Pr \rangle$ ein diskreter Wahrscheinlichkeitsraum und A, B Ereignisse über Ω .

- 1. Man zeige: Falls $\Pr[A] = 1$ und $\Pr[B] = 1$ gelten, dann gilt auch $\Pr[A \cap B] = 1$.
- 2. Man zeige: Falls A und B unabhängig sind und $\Pr[A] = \Pr[B] = \frac{1}{2}$ gilt, dann gilt auch $|\Omega| \ge 4$.
- 3. Wir nehmen $\Pr[B] = \frac{11}{24}$ und die bedingten Wahrscheinlichkeiten $\Pr[B|A] = \frac{3}{4}$ und $\Pr[A|\overline{B}] = \frac{1}{13}$ an.

Berechnen Sie Pr[A|B].

Lösung

1. Aus

$$\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \text{ folgt}$$

$$\Pr[A \cup B] = 1 + 1 - \Pr[A \cap B], \text{ mithin } \Pr[A \cup B] + \Pr[A \cap B] = 2.$$
Wegen
$$\Pr[A \cup B] \le 1 \text{ folgt aus } \Pr[A \cap B] < 1 \text{ ein Widerspruch.}$$
(3 P.)

2.

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B] = \frac{1}{4} \qquad \Longrightarrow \qquad A \cap B \neq \emptyset,$$

$$\Pr[A \cap \overline{B}] = \Pr[A] \cdot \Pr[\overline{B}] = \frac{1}{4} \qquad \Longrightarrow \qquad A \cap \overline{B} \neq \emptyset,$$

$$\Pr[\overline{A} \cap B] = \Pr[\overline{A}] \cdot \Pr[B] = \frac{1}{4} \qquad \Longrightarrow \qquad \overline{A} \cap B \neq \emptyset,$$

$$\Pr[\overline{A} \cap \overline{B}] = \Pr[\overline{A}] \cdot \Pr[\overline{B}] = \frac{1}{4} \qquad \Longrightarrow \qquad \overline{A} \cap \overline{B} \neq \emptyset.$$

$$(2 \text{ P.})$$

Da alle 4 Mengen auf der rechten Seite der Implikationen paarweise disjunkt sind, folgt $|\Omega| \ge 4$. (1 P.)

3. Satz von Bayes:

$$\Pr[B|A] = \frac{\Pr[A|B] \cdot \Pr[B]}{\Pr[A|B] \cdot \Pr[B] + \Pr[A|\overline{B}] \cdot \Pr[\overline{B}]}$$
(2 P.)

Einsetzen:

$$\frac{3}{4} = \frac{\Pr[A|B] \cdot \frac{11}{24}}{\Pr[A|B] \cdot \frac{11}{24} + \frac{1}{13} \cdot \frac{13}{24}}$$
(1 P.)

Auflösung nach Pr[A|B]:

$$\Pr[A|B] = \frac{3}{11}$$
. (1 P.)

Aufgabe 3 (10 Punkte)

Es liegen eine 5-Cent-, eine 10-Cent- und eine 20-Cent-Münze jeweils mit der Rückseite nach oben auf dem Tisch. Wir betrachten einen Zufallsprozess, der in jedem Schritt die Seiten einer Laplace-zufällig aus den 3 Münzen ausgewählten Münze wendet.

Es sei X diejenige diskrete Zufallsvariable, die die Anzahl der Schritte (≥ 1) zählt, bis zum ersten Mal alle Münzen mit der Vorderseite nach oben auf dem Tisch liegen. (Offenbar gilt beispielsweise $\Pr[X=1]=0$.)

- 1. Bestimmen Sie Pr[X=3] (mit Begründung)!
- 2. Bestimmen Sie Pr[X=n] für gerades n (mit Begründung)!
- 3. Nehmen Sie an, dass genau eine der 3 Münzen mit der Vorderseite nach oben auf dem Tisch liegt, während also die anderen beiden Münzen mit der Rückseite nach oben liegen. Wie groß ist die Wahrscheinlichkeit p, dass nach 2 Schritten wiederum genau eine der Münzen mit der Vorderseite nach oben auf dem Tisch liegt?
- 4. Bestimmen Sie die Dichtefunktion f_X .

Lösung

Volle Punktzahl nur mit entsprechender Begründung!

1.
$$\Pr[X=3] = \frac{2}{9}$$
. (2 P.)

2.
$$Pr[X=n] = 0$$
 für gerades n . (2 P.)

3.
$$p = \frac{4}{9} + \frac{1}{3} = \frac{7}{9}$$
. (3 P.)

4. Für alle $n \in \mathbb{N}$ gilt

$$f_X(n) = \begin{cases} \frac{2}{9} \left(\frac{7}{9}\right)^{\frac{n-3}{2}} : n \text{ ungerade und } n > 1 \\ 0 : \text{sonst} \end{cases}$$
 (3 P.)

Aufgabe 4 (10 Punkte)

Wir betrachten eine Markov-Kette M mit der Zustandsmenge $S = \{0, 1, 2\}$ und der Folge $X_0, X_1, X_2, X_3, \ldots$ von Zufallsvariablen, die durch das folgende Übergangsdiagramm in Abhängigkeit eines Parameters p mit 0 gegeben ist:

- 1. Bestimmen Sie die Übergangsmatrix P von M.
- 2. Geben Sie die Wahrscheinlichkeit $Pr[T_{0,2}=3]$ an. Dabei sei $T_{0,2}$ die Zufallsvariable der Übergangszeit von Zustand 0 in den Zustand 2.
- 3. Berechnen Sie die erwartete Übergangszeit $h_{0,2}$. Der Rechenweg muss aus Ihrem Protokoll hervorgehen.
- 4. Berechnen Sie die stationäre Verteilung q^T von M.

Lösung

1.

$$P = \begin{pmatrix} p & 1-p & 0\\ 0 & p & 1-p\\ 1-p & 0 & p \end{pmatrix} . \tag{1 P.}$$

2.
$$\Pr[T_{0,2} = 3] = p(1-p)(1-p) + (1-p)p(1-p) = 2p(1-p)^2$$
. (2 P.)

3.

$$h_{0,2} = 1 + p \cdot h_{0,2} + (1 - p) \cdot h_{1,2}$$

$$h_{1,2} = 1 + 0 \cdot h_{0,2} + p \cdot h_{1,2}$$

$$\Rightarrow h_{1,2} = \frac{1}{1 - p}.$$

$$\Rightarrow h_{0,2} = 1 + p \cdot h_{0,2} + (1 - p) \cdot \frac{1}{1 - p}$$

$$\Rightarrow h_{0,2} = 1 + p \cdot h_{0,2} + (1-p) \cdot \frac{1}{1-p}$$

$$= \frac{2}{1-p} \tag{2 P.}$$

4. Aus $q^T P = q^T$ folgt

$$p \cdot q_0 + (1 - p) \cdot q_2 = q_0$$

$$(1 - p) \cdot q_0 + (1 - p) \cdot q_1 = q_1$$

$$(1 - p) \cdot q_1 + p \cdot q_2 = q_2$$

$$q_1 = q_3$$
(1 P.)

$$q_1 = q_2$$
 (1 P.)
Wegen $q_0 + q_1 + q_2 = 1$ folgt $q^T = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. (1 P.)

Aufgabe 5 (8 Punkte)

Sei X eine diskrete Zufallsvariable und $(X|X \ge t)$ für alle $t \in \mathbb{R}$ die entsprechende bedingte Zufallsvariable mit Dichte $f_{X|X \ge t}(x) = \Pr[X = x \mid X \ge t]$. Wir nehmen stets $\Pr[X \ge t] \ne 0$ und die Existenz entsprechender Erwartungswerte an.

1. Zeigen Sie die folgende Ungleichung für bedingte Erwartungswerte:

$$t \leq \mathbb{E}[X \mid X \geq t]$$
.

2. Wir nehmen zusätzlich $\Pr[X < t] \neq 0$ an. Zeigen Sie mit Benutzung obiger Ungleichung die folgende Verschärfung der Markov-Ungleichung:

$$t \cdot \Pr[X \ge t] \le \mathbb{E}[X] - \mathbb{E}[X \mid X < t] \cdot \Pr[X < t].$$

3. Sei X Poisson-verteilt mit Dichte f_X und $f_X(0)=e^{-1}$ (e ist die Eulersche Zahl). Beweisen Sie durch Anwendung der Chebyshev-Ungleichung

$$\Pr[X \ge 11] \le \frac{1}{100}.$$

Lösung

1.

$$\mathbb{E}[X \mid X \ge t] = \sum_{x \in W_{X \mid X \ge t}} x \cdot \Pr[X = x \mid X \ge t]$$
 (1 P.)

$$\geq t \cdot \sum_{x \in W_{X|X \ge t}} \Pr[X = x \mid X \ge t] . \tag{2 P.}$$

2. Satz für bedingte Erwartungswerte

$$\mathbb{E}[X] = \mathbb{E}[X \mid X < t] \cdot \Pr[X < t] + \mathbb{E}[X \mid X \ge t] \cdot \Pr[X \mid X \ge t] \quad (1 \text{ P.})$$

$$> \mathbb{E}[X \mid X < t] \cdot \Pr[X < t] + t \cdot \Pr[X \mid X > t].$$
 (1 P.)

3. Es gelten $\mathbb{E}[X] = 1$ und Var[X] = 1. (1 P.)

$$\Pr[X \ge 11] \le \Pr[|X - 1| \ge 10]$$

$$= \Pr[|X - \mathbb{E}[X]| \ge 10]$$

$$\le \frac{\operatorname{Var}[X]}{10^2}$$
(1 P.)

Aufgabe 6 (8 Punkte)

Seien X und Y kontinuierliche Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_{X,Y}(x,y) = \begin{cases} 6xy^2 & : & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & : & \text{sonst} \end{cases}$$

- 1. Berechnen Sie die Randdichte $f_X(x)$.
- 2. Bestimmen Sie den Wert der Verteilungsfunktion $F_{X,Y}(\frac{1}{2},\frac{1}{2})$.
- 3. Zeigen Sie die Unabhängigkeit der Variablen X und Y.

Lösung

1. $f_X(x) = 2x$. Berechnung für $0 \le x \le 1$:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

= $\int_{0}^{1} 6xy^2 \, dy$ (2 P.)
= $2x \cdot [y^3]_{0}^{1} = 2x$. (1 P.)

2. $F_{X,Y}(\frac{1}{2},\frac{1}{2}) = \frac{1}{32}$. Berechnung:

$$F_{X,Y}(\frac{1}{2}, \frac{1}{2}) = \int_0^{\frac{1}{2}} \left(\int_0^{\frac{1}{2}} 6xy^2 \, dy \right) dx$$

$$= \int_0^{\frac{1}{2}} 2x \cdot \left[y^3 \right]_0^{\frac{1}{2}} dx \qquad (2 P.)$$

$$= \int_0^{\frac{1}{2}} 2x \cdot \frac{1}{8} \, dx$$

$$= \frac{1}{8} \cdot \left[x^2 \right]_0^{\frac{1}{2}} = \frac{1}{32}. \qquad (1 P.)$$

3. Mit

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

= $\int_{0}^{1} 6xy^2 \, dx$
= $3y^2 \cdot [x^2]_{0}^{1} = 3y^2$. (1 P.)

für alle $0 \le y \le 1$ folgt $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ für alle $0 \le x,y \le 1$.

Ansonsten gilt
$$f_{X,Y}(x,y) = 0 = f_X(x) \cdot f_Y(y)$$
. (1 P.)

Aufgabe 7 (8 Punkte)

Wir betrachten einen Spielautomaten, der in jedem Spiel mit Wahrscheinlichkeit $p \geq \frac{3}{4}$ auf Gewinn für den Betreiber entscheidet. Allerdings kommt es vor, dass der Automat aufgrund einer fehlerhaften Verhaltensänderung dauerhaft nur mit Wahrscheinlichkeit $p \leq \frac{1}{4}$ in einem Spiel auf Gewinn entscheidet. Der Betreiber testet den Automaten mit einer Stichprobe von 12 Spielen und nimmt dabei an, dass die Anzahl T des Auftretens eines Gewinns nach dem Satz von DeMoivre als normalverteilte Zufallsvariable angenähert werden darf.

- 1. Formulieren Sie einen Test zur Überprüfung der Hypothese $H_0: p \geq \frac{3}{4}$, die Sie ablehnen, wenn bei 12 Spielen höchstens 6 Mal Gewinn gemacht wird.
 - Berechnen Sie näherungsweise den Wert des Fehlers 1. Art.
- 2. Bestimmen Sie zu Ihrem Test den Wert des Fehlers 2. Art unter der Annahme, dass $\frac{1}{4} ausgeschlossen werden kann.$

Hinweis: Für die Standardnormalverteilung Φ gilt $\Phi(2) \approx 0.9772$.

Lösung

1. Der Ablehnungsbereich sei $\tilde{K} = \{0, 1, \dots, 6\}.$ (1 P.)

Es sei
$$\tilde{T} = \frac{T - 12p}{\sqrt{12p(1-p)}}$$
. (1 P.)

$$\alpha_1 = \max_{p \ge \frac{3}{4}} \Pr[T \le 6]$$

$$\approx \max_{p \ge \frac{3}{4}} \Phi\left(\frac{6 - 12p}{\sqrt{12p(1-p)}}\right) \tag{1 P.}$$

$$= \Phi\left(\frac{6 - 12 \cdot \frac{3}{4}}{\sqrt{12 \cdot \frac{3}{4} \cdot \frac{1}{4}}}\right)$$
 (1 P.)

$$= \Phi(-2) \approx 1 - 0.9772 = 0.0228. \tag{1 P.}$$

2. Die echte Alternative zu H_0 ist also $H_1: p \leq \frac{1}{4}$. (1 P.)

$$\alpha_2 = \max_{p \le \frac{1}{4}} \Pr[T \notin \tilde{K}]$$

$$= \max_{p \le \frac{1}{4}} (1 - \Pr[T \le 6])$$
(1 P.)

$$\approx 1 - \Phi\left(\frac{6 - 12 \cdot \frac{1}{4}}{\sqrt{12 \cdot \frac{1}{4} \cdot \frac{3}{4}}}\right)$$

$$= 1 - \Phi(2) \approx 1 - 0.9772 = 0.0228.$$
(1 P.)