CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 16 NOVEMBRE 2012

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Relativamente a polinomi a coefficienti in un campo K, dare le definizioni di polinomio invertibile (e caratterizzare i polinomi invertibili), di polinomio monico, di polinomio irriducibile, di polinomio nullo, di coppia di polinomi associati.

Stabilire per quali primi p il polinomio $f = \overline{99}x^3 + \overline{144}x^2 + \overline{15}x + \overline{6} \in \mathbb{Z}_p[x]$ è:

- (i) di grado 3;
- (ii) nullo;
- (iii) monico.

Si indichi il minimo primo p > 10 per il quale f abbia grado 3. Fissato questo primo,

- (iv) $\overline{1}$ è radice di f?
- (v) $\overline{2}$ è radice di f?
- (vi) Tenendo presente il fatto che f ha al più una radice, si decomponga f come prodotto di polinomi irriducibili in $\mathbb{Z}_p[x]$.
- (vii) qual è (se esiste) il polinomio monico di $\mathbb{Z}_p[x]$ associato a f?

Esercizio 2. Siano \mathbb{P} l'insieme dei numeri primi positivi e $M = \{n \in \mathbb{N} \mid n \geq 2\}$. Si studino iniettività e suriettività di $f: (p,q) \in \mathbb{P} \times \mathbb{P} \mapsto p+q \in M$ e si calcolino l'immagine $\overline{f}(\{(3,7),(2,11)\})$ e le antiimmagini $\overline{f}(\{18\})$ e $\overline{f}(\{2\})$.

Esercizio 3. Ancora nell'insieme $\mathbb{P} \times \mathbb{P}$ si consideri la relazione d'ordine Σ definita ponendo, per ogni $(a,b),(c,d) \in \mathbb{P} \times \mathbb{P}$,

$$(a,b) \Sigma (c,d) \iff ((a \le c) \land (b \le d)).$$

- (i) $(\mathbb{P} \times \mathbb{P}, \Sigma)$ è totalmente ordinato? Ha minimo? Ha massimo?
- (ii) Determinare, in $(\mathbb{P} \times \mathbb{P}, \Sigma)$ gli insiemi dei minoranti e dei maggioranti di $A = \{(7,5), (2,11)\},$ e determinare, se esistono, inf A e sup A.
- (iii) Sia $X = \{(2,3), (2,5), (3,5), (3,7), (7,11)\}$. Si disegni il diagramma di Hasse di (X,Σ) . (X,Σ) è un reticolo? Se lo è, è distributivo? È complementato?

Esercizio 4. Siano $S = \{n \in \mathbb{N} \mid n \le 6\}$ e $T = \{n \in \mathbb{Z} \mid (|n| < 10) \land (n \text{ è pari})\}$. Si indichino:

- (i) $|S|, |T|, |S \cup T|, |S \cap T|$;
- (ii) il numero delle applicazioni iniettive da S a T e quello delle applicazioni iniettive da T a S;
- (iii) il numero delle parti di T che abbiano cardinalità 3;
- (iv) il numero degli elementi di $\mathcal{P}(S) \cap \mathcal{P}(T)$; come possono essere caratterizzati questi elementi? Infine, sapendo che esistono esattamente 877 partizioni dell'insieme S, quante sono le relazioni di equivalenza in S?

Esercizio 5. Si studi l'operazione binaria \circ definita in $\mathcal{P}(\mathbb{Z})$ ponendo, per ogni $X,Y \subset \mathbb{Z}$,

$$X \circ Y = (X \cap \mathbb{N}) \cup Y$$
.

- (i) Si stabilisca se \circ è associativa, se è commutativa, se ammette elemento neutro.
- (ii) $\mathcal{P}(\mathbb{Z} \setminus \mathbb{N})$ è chiusa rispetto a \circ ? Se lo è, che tipo di struttura è $(\mathcal{P}(\mathbb{Z} \setminus \mathbb{N}), \circ)$? (un semigruppo, un monoide, un gruppo, nessuna di queste, . . . ; commutativa oppure no?)