

GPU-ISLE

March 13, 2021 | Marcel, Stefan, Johann, Jan-Lukas | JSC, JSC, Uni Bonn, ESS

GPU-ISLE TEAM

Marcel Rodekamp

Stefan Krieg

Johann Ostmeyer

Jan-Lukas Wynen

Gonzalo Brito

Jayesh Badwaik

SIMULATING CARBON NANO SYSTEMS

- Lattices of carbon atoms
- Various geometries
- High technical interest
 - Improved semiconductors
 - Filtering techniques
- Simulating behaviour: Quantum Field Theory
 - System description with Energy functional (Hamiltonian)
 - Generation of many states (Configurations)
 - Evaluating physical quantities

Figure: Graphical representation of a C_{60} (Buckminsterfullerene) system. Each node represents a carbon atom and each edge the bond between two atoms.

SIMULATING CARBON NANO SYSTEMS

- Lattices of carbon atoms
- Various geometries
- High technical interest
 - Improved semiconductors
 - Filtering techniques
- Simulating behaviour: Quantum Field Theory
 - System description with Energy functional (Hamiltonian)
 - 2. Generation of many states (Configurations)
 - Evaluating physical quantities

Figure: Graphical representation of a C_{60} (Buckminsterfullerene) system. Each node represents a carbon atom and each edge the bond between two atoms.

THE HYBRID MONTE CARLO ALGORITHM

- Building Markov Chain
- Iteratively updating previous configuration
- Update by Molecular Dynamics
 - Integrate Hamilton equations
 - Leapfrog
 - Requires: Matrix inversion
 - Requires: Matrix, vector operations
- Dimension $N_{\tau} \times \mathcal{O}(N_{\sigma})$
 - $C_{60}: N_{\tau} \times \mathcal{O}(60)$

ISLE

Current State

- C++: Heavy math
- Python: Interface
- Build upon
 - Blaze
 - Lapack

Goal

- Port of Molecular Dynamics
 - Leapfrog
 - Matrix inverter
 - Matrix, vector operations
- Hybridization of Infrastructure (CPU,GPU)
- C++ with CUDA
- Blaze: CUDA Managed Pointer
- Utilize CUDA Math Libraries

