Clase 21/3: Espacios de probabilidad

Ejercicio 1. Se lanza dos veces una moneda equilibrada.

- a) Exhibir un espacio muestral que describa dicho experimento.
- b) Sean $A, B \vee C$ los eventos

 $A = \{ \text{sale al menos una cara} \}.$

 $B = \{ el \text{ primer tiro es cara} \}.$

 $C = \{ \text{el segundo tiro es ceca} \}.$

Calcular las probabilidades de $A, B, C, A \cap C \setminus A \setminus B$.

Ejercicio 2. Leandro se acaba de comprar dos libros. Con probabilidad 0,5 le va a gustar el primer libro, con probabilidad 0,4 le va a gustar el segundo y con probabilidad 0,3 le van a gustar ambos. ¿Cuál es la probabilidad de que no le guste ningún libro?

Ejercicio 3. Sean P_1 y P_2 probabilidades definidas en (Ω, \mathcal{F}) y sea $0 \le \alpha \le 1$. Probar que la función de conjuntos definida en (Ω, \mathcal{F}) dada por

$$P(A) = \alpha P_1(A) + (1 - \alpha)P_2(A)$$

también es una probabilidad.

Ejercicio 4. En una carrera de caballos participan 6 caballos numerados del 1 al 6. Todos los resultados posibles de la carrera son igualmente probables. Hacen podio los tres primeros caballos en terminar la carrera.

- a) ¿Cuál es la probabilidad de que el caballo con el número 2 salga en primer lugar?.
- b) ¿Cuál es la probabilidad de que el caballo con el número 1 haga podio?.
- c) ¿Cuál es la probabilidad de que ocurra al menos uno de los dos ítems anteriores?.
- d) Una persona hace apuestas sobre el resultado de la carrera. Apuesta que los caballos numerados con 1, 2 y 3 hacen podio. ¿Cuál es la probabilidad de que esta persona gane su apuesta?.

Ejercicio 5. Un bolillero contiene 6 bolillas numeradas desde la 1 hasta la 6. Se extraen sucesivamente y con reposición 3 bolillas. Hallar la probabilidad de que

- a) se extraiga la bolilla 2 en la primer extracción.
- b) se extraiga la bolilla 1.
- c) ocurre al menos uno de los dos ítems anteriores.
- d) el máximo número obtenido sea ≤ 4 .
- e) el máximo número obtenido sea 5.

Ejercicio 6. Se distribuyen 15 bolillas numeradas en 3 urnas distintas. Calcular la probabilidad de que

- a) haya exactamente cinco bolillas en cada urna.
- b) la primer urna contenga exactamente una bolilla.

Ejercicio 7. Se distribuyen 15 bolillas indistinguibles en 3 urnas distintas. Calcular la probabilidad de que

- a) haya exactamente cinco bolillas en cada urna.
- b) la primer urna contenga exactamente una bolilla.

Ejercicio 8. Sea \mathcal{F} una σ -álgebras de Ω y $A \in \mathcal{F}$. Será cierto que si $B \subset A$ entonces $B \in \mathcal{F}$.