Operational Amplifier

Dr. E. Paul Braineard

Unit 2

• Op-Amp (operational amplifier): Amplifier parameters, controlled source models, classification, the operational amplifier (OP-AMP) as a linear active device, the VCVS model of an op-amp, different amplifier configurations using op-amp (open loop-closed loop), frequency response of op-amp and op-amp based amplifiers. Calculation of CMRR, Gain Band width product. Op-Amp as integrator, differentiator, addition, subtraction etc.

Op-amp

- Direct coupled very high gain voltage amplifier
- Integrated circuit
- Differential input and single output

Direct coupled: the output of one stage of amplifier is connected directly to the input of next stage without any coupling capacitor

Ideal characteristics of op-amp

Open loop gain infinite,

$$A_{OL} = \infty$$

• Input impedance infinite,

$$R_i = \infty$$

Output impedance low,

$$R_0 = 0$$

Bandwidth infinite,

$$BW = \infty$$

• Zero offset, ie, $V_o = 0$ when $V^+ = V^- = 0$

Op-amp circuit symbol

Operational characteristics of op-amp

- Practical op-amp
 - Draws current
 - Inputs respond differently to currents and voltages due to mismatches in transistors
 - Operating point shifts with temperature
- Add error to the DC output voltage

DC non-ideal characteristics of op-amp

- Input bias current
- Input offset current
- Input offset voltage
- Thermal drift

Differential and Common-Mode Signals

CMRR

Common mode rejection ratio

Packages of IC741

Metal can (TO) package, Dual-in-line package, Flat package

IC packages of $\mu A741$

Pin diagram of 741 op-amp

Op-amp terminals

- Primarily
 - Two input terminals
 - Inverting terminal (V⁻)
 - Non-inverting terminal (V⁺)
 - One output terminal
 - Two terminals for power supply

Op-amp circuit symbol

Op-amp manufacturers

Manufacturer	Product number
Fairchild (Original)	μΑ741
National	LM741
semiconductor	
Motorola	MC1741
RCA	CA3741
Texas instruments	SN52741
Signetics	N5741

Op-amp classes

Class	Application	
741	Military grade op-amp (Operating temp. range -55 °C to 125 °C)	
741C	Commercial grade op-amp (Operating temp. range 0 °C to 70/75 °C)	
741A	Improved version of 741	Better electrical
741E	Improved version of 741 C	specifications
741S	Military grade op-amp with higher slew-rate	
741SC	Commercial grade op-amp with higher slew-rate	

Internal circuit diagram of 741

- First two stages, cascaded differential amplifier
 - High gain, high resistance

- Buffer
 - Emitter follower
 - Very high input impedance, to prevent loading to the amplifier
- Level shifter
 - Adjusts DC voltages so that output voltage is zero for zero input voltage

- Output stage
 - To provide low output impedance

Differential amplifier

- Provide high gain to the difference-mode signal
- Cancel common-mode signal

Operations of op-amp

Open loop

- Output is driven into saturation
- Comparator
- Zero crossing detector

Closed loop

- Negative feed back
- Linear output range

Equivalent circuit of the ideal op-amp (VCVS model of op-amp)

Analysis of op-amp

- Assumptions
 - Current entering the op-amp terminals is zero, $I^+ = I^- = 0$
 - Difference voltage is zero, $V^+ V^- = 0$

Non-inverting op-amp

$$i_{1} = i_{2}$$

$$\frac{0 - V_{in}}{R_{1}} = \frac{V_{in} - V_{out}}{R_{2}}$$

$$V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in}$$

Q: why do you require R₁

Inverting op-amp

$$V_{out} = -\frac{R_2}{R_1} V_{in}$$

Inverting summing amplifier

$$V_{out} = -\left(\frac{R_{\rm f}}{R_{\rm 1}} + \frac{R_{\rm f}}{R_{\rm 2}} + \dots + \frac{R_{\rm f}}{R_{\rm n}}\right) V_{in}$$

Difference amplifier

Instrumentation amplifier

$$V_{out} = \left(1 + \frac{2R_1}{R_{gain}}\right) \left(\frac{R_3}{R_2}\right) \left[V_2 - V_1\right]$$

Problem: Superposition theorem

 Use the superposition principle to find the output voltage of the circuit shown in Fig.

$$v_0 = 6v_1 + 4v_2$$

Problem: find V_o

• For the circuit in Fig. find the values of i_I , v_1 , i_1 , i_2 , v_o , i_L , and i_o . Also find the voltage gain v_o/v_I , the current gain i_L/i_I , and the power gain

0; 1 V; 1 mA; 1 mA; 10 V; 10 mA; 11 mA; 10 V/V (20 dB);∞;∞

 P_I/P_I

Assignment B.1

Assignment B.1

Assignment B.2

• $R_1 = 10 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$, $v_i = 1 \text{ V. A load of } 25 \text{ k}\Omega$ is connected to the output terminal. Calculate (1) i_1 (2) v_0 (3) i_L and (4) total current i_0 into the output pin.

Differentiator

Current flowing through capacitor

$$i_C = C \frac{d}{dt} (v_i - v_N) = C \frac{dv_i}{dt}$$

Nodal equation at N

$$C\frac{dv_i}{dt} + \frac{v_o}{R_F} = 0$$

Solving

$$v_o = -R_F C \frac{dv_i}{dt}$$

Integrator

Nodal equation at N

$$\frac{v_i}{R_1} + C_F \frac{dv_o}{dt} = 0$$

$$\frac{dv_o}{dt} = -\frac{1}{R_1 C_F} v_i$$

Integrating on both sides

$$v_o = -\frac{1}{R_1 C_F} \int_0^t v_i(t) dt$$

AC amplifier

- Inverting
- Non-inverting
- To get frequency response

$$V_{o} = -IR_{f} = \frac{V_{i}}{R_{1} + \frac{1}{sC}}R_{f}$$

$$A_{CL} = \frac{V_{o}}{V_{i}} = -\frac{R_{f}}{R_{1}} \frac{s}{s + \frac{1}{R_{1}C}}$$

- Floating load
- Grounded load

Floating load

$$egin{aligned} V_{IN} &= i_{IN} R \ i_{IN} &= rac{V_{IN}}{R} \ i_{L} &= i_{IN} = rac{V_{IN}}{R} \end{aligned}$$

Grounded load

$$\begin{split} V_2 &= V_{I\!N} \\ I_{OUT} &= \frac{V_{CC} - V_{I\!N}}{R} \end{split}$$

Grounded load

$$i_{1} + i_{2} = i_{L}$$

$$\frac{v_{i} - v_{1}}{R} + \frac{v_{o} - v_{1}}{R} = i_{L}$$

$$v_{1} = \frac{v_{i} + v_{o} - i_{L}R}{2}$$
(1)

Non-inverting op-amp

$$v_o = \left[1 + \frac{R}{R} \right] v_1 = 2v_1 \tag{2}$$

From Eqns.(1) & (2)

$$v_i - i_L R = 0$$

$$i_L = \frac{v_i}{R}$$

Current to voltage converter (Transresistance amplifier)

- The output current (proportional to incident radiant energy or light) of a photocell, photodiode and photovoltaic cell can be converted into voltage
- Capacitor serves as filter

$$v_o = -i_s R_f$$

Op-amp circuits using diodes

- Half-wave rectifier
- Full-wave rectifier
- Peak-value detector
- Clipper
- Clamper

Half-wave rectifier

(a) Half-wave rectifier (b) waveforms

Full-wave rectifier

- When $v_i > 0$, (positive half cycle),
 - $-D_1$ -ON, D_2 -OFF

$$-v_{o}=v_{i}$$

- When $v_i < 0$, (negative half cycle),
 - $-D_1$ -OFF, D_2 -ON

$$-v_{o}=v_{i}$$

(a) Full-wave rectifier and (b) its equivalent circuit when V_i > 0

Peak detector

Clipper

- Positive clipper
 - Positive reference
 - Negative reference
- Negative clipper
 - Positive reference
 - Negative reference

Positive clipper

Positive reference

Negative reference

Negative clipper

Negative reference

Positive reference

Clamper

Sample and hold circuit

- Signal to be sampled is applied to drain of the MOSFET
- Control voltage given to the gate of the MOSFET

Sample and hold circuit

- V_c +Ve, MOSFET ON, Capacitor charges to v_i (ON time) $\rightarrow V_o$
- $V_c = 0 \text{ V}$, MOSFET is OFF, Capacitor cannot discharge through A_2 (High impedance of A_2), Capacitor holds the value $\rightarrow V_o$

Log amplifier

$$I_E = I_S \left(e^{\frac{qV_E}{kT}} - 1 \right)$$

Base is grounded,

$$\therefore I_C = I_E = I_S \left(e^{\frac{qV_E}{kT}} - 1 \right)$$

$$e^{\frac{qV_E}{kT}} = \frac{I_C}{I_S} + 1$$

$$e^{\frac{qV_E}{kT}} \approx \frac{I_C}{I_S}$$

Take natural log on both sides

$$V_E = \frac{kT}{q} \ln \left(\frac{I_C}{I_S} \right)$$

Also,

$$V_{E} = -V_{o}$$

$$I_{C} = \frac{V_{i}}{R_{1}}$$

$$\therefore V_{o} = -\frac{kT}{q} \ln \left(\frac{V_{i}}{I_{S}R_{1}} \right)$$

Antilog amplifier

Transfer characteristics of op-amp

Negative saturated region:
$$v_o = -V_{cc}$$
 $A_v(v_p - v_N) < -V_{cc}$

Linear active region:
$$v_o = A_v (v_p - v_N) - V_{cc} < A_v (v_p - v_N) < + V_{cc}$$

Positive saturated region:
$$v_o = +V_{cc}$$
 $A_v(v_p - v_N) > +V_{cc}$

Comparators and waveform generators

- Op-amp in open loop
 - Operates in non-linear fashion
- Open loop applications of op-amp
 - Comparators
 - Detectors
 - Converters etc.

Comparator

- An analog comparator has
 - Two inputs
 - A constant reference voltage
 V_R and other is a
 - Time varying signal v_i
 - One output v_O

$$v_o = -V_{sat}$$
 if $v_i > V_R$
 $v_o = +V_{sat}$ if $v_i > V_R$

NO feedback Inverting comparator

Non-inverting comparator

Applications of comparator

- Zero crossing detector
- Window detector

Zero crossing dectector

Window detector

Three level comparator with LED

Input (V)	LED 3	LED 2	LED 1
< 3			
3 < vi < 6			
> 6			

Regenerative comparator (Schmitt trigger)

- Input is given to inverting terminal
- Feedback voltage is given to noninverting terminal
- Input triggers output every time it exceeds certain voltage levels

- Upper threshold voltage (V_{UT})
- Lower threshold voltage (V_{LT})

Regenerative comparator (Schmitt trigger)

• Let, $v_{out} = +V_{sat}$

Then, voltage at non-inverting terminal is

$$V_{UT} = \frac{R_1}{R_1 + R_2} V_{ref} + \frac{R_2}{R_1 + R_2} V_{sat}$$

As long as
$$V_{in} < V_{UT}$$
, $V_{out} = V_{sat}$

Then, voltage at non-inverting terminal is

$$V_{LT} = \frac{R_1}{R_1 + R_2} V_{ref} - \frac{R_2}{R_1 + R_2} V_{sat}$$

Regenerative comparator (Schmitt trigger)

If sinusoidal input is given, square wave results

Square wave generator (Astable multivibrator)

Square wave generator (Astable multivibrator)

• Let, $v_o = +V_{sat}$

Voltage across the capacitor

$$V_c(t) = V_f + (V_i - V_f)e^{-t/RC}$$

Final value, $V_f = +V_{Sat}$

Initial value, $V_i = -\beta V_{Sat}$

$$\therefore \mathbf{v}_{c}(t) = V_{Sat} - V_{Sat}(1+\beta)e^{-t/RC}$$

At
$$t=T_1$$

$$v_c(T_1) = \beta V_{sat}$$

$$\beta V_{sat} = V_{Sat} - V_{Sat} (1 + \beta) e^{-T_1/RC}$$

Solving

$$T = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

Monostable multivibrator

- For generating single output pulse whose pulse duration can be varied.
- Requires triggering pulse

Output voltage waveform

Monostable multivibrator

- Find the gain of the circuit
- Ans: -8

