Utility functions.

Alexey Osipov, Ph.D.

Sidenis

April 12, 2018

The paradox.

The game.

Toss a coin. In case of **heads** get 2 dollars, in case of **tails** toss again. Each time in case of **heads** the reward is payed (and the game is over), in case of **tails** the reward doubles.

• How much will you pay to participate in this game?

•

$$ER = \sum_{x} R(x)p(x) =$$

$$= 2 \cdot 1/2 + 4 \cdot 1/4 + \dots + 2^{n} \cdot (1/2^{n}) + \dots = +\infty$$

Why Saint Petersburg?

Bernoulli, Commentaries of the Imperial Academy of Science of Saint Petersburg, 1738.

Possible solutions to the paradox.

The game.

Toss a coin. In case of **heads** get 2 dollars, in case of **tails** toss again. Each time in case of **heads** the reward is payed (and the game is over), in case of **tails** the reward doubles.

• How much will you pay to participate in this game?

$$ER = \sum_{x} R(x)p(x) = 1/2 \cdot 2 + 1/4 \cdot 4 + \dots + (1/2^{n}) \cdot 2^{n} + \dots = +\infty$$

- Solution 3. Events with small probability do not exist.
 Answer 9 dollars for probability 0.001.
- **Solution 2.** Infinite capitals do not exist. **Answer** 20.9 dollars if reward of more than 1000000 dollars seems impossible.

Solution with utility functions.

The game.

Toss a coin. In case of **heads** get 2 dollars, in case of **tails** toss again. Each time in case of **heads** the reward is payed (and the game is over), in case of **tails** the reward doubles.

- The more money you have, the less is change of utility of 1 dollar for you!
- Maximize not mathematical expectation of reward, but mathematical expectation of utility of reward.
- Solution 1. Not enough information. The answer should depend on your wealth!

Choosing utility function.

- Utility function U(v), where v is the wealth.
- utility of 2 dollars is more than utility of 1 dollar:

$$U(x) < U(y),$$
 for $x < y$.

• **Desirable:** The more money you have, the less is change in utility when wealth changes by 1 dollar!

• Choice: $U(v) = \ln(v+1)$.

Solution with utility functions.

The game.

Toss a coin. In case of **heads** get 2 dollars, in case of **tails** toss again. Each time in case of **heads** the reward is payed (and the game is over), in case of **tails** the reward doubles.

- Utility function $U(v) = \ln(v+1)$.
- Utility of doing nothing is $U(w) = \ln(w+1)$, where w is initial wealth.
- Calculate mathematical expectation of U(w+R-y) (y is a price of a ticket). If $EU(w+R-y) \ge \ln(w+1)$, then it is reasonable to play a game.
- Find a ticket price y = y(w) such that $EU(w + R y) = \ln(w + 1)$.

$$EU(w+R-y)=\sum_{n\geq 1}\frac{\ln(2^n+w-y+1)}{2^n}<\infty.$$

Three solutions to paradox.

The game.

Toss a coin. In case of **heads** get 2 dollars, in case of **tails** toss again. Each time in case of **heads** the reward is payed (and the game is over), in case of **tails** the reward doubles.

Solutions.

- Solution 1 (utility functions). Answer: it depends on wealth w, if initial wealth w = 50000 dollars, ticket price y = 16.5 dollars.
- Solution 2 (infinite capitals do not exist).
 Answer: y = 20.9 dollars if reward of more than 1000000 dollars is impossible.
- Solution 3 (events with small probability do not exist). Answer: y = 9 dollars if events with probability less than 0.001 just do not occur.

Other types of utility functions

Attitude towards risk is something like

$$\frac{dU}{dv}$$
 or $U(v+1) - U(v)$.

Risk-averse:

- Bernoulli: $U(v) = \ln(v)$ (we used $U(v) = \ln(v+1)$)
- $U(v) = \frac{e^{v\beta}-1}{\beta}$, where $\beta < 0$ is a constant.

Risk-neutral: U(v) = v (we optimize standard mathematical expectation).

Risk-seeking: $U(v) = \frac{e^{v\beta}-1}{\beta}$, where $\beta > 0$ is a constant.

Kelly strategy (1956).

The game.

A series of games on tossing the coin. If your guess is correct and your bet is s dollars, you receive s more dollars. You know that the coin is biased (0.6 is probability of getting heads). Your capital is S dollars, what fraction of the capital should you bet?

Mathematical expectation approach.

Let R be a reward in 1 game on s dollars

$$E(S+R) = 0.6 \cdot (S+s) + 0.4 \cdot (S-s) = S + 0.2s.$$

The more s is, the better it is! You should invest all your money. Not a very good idea.

Kelly strategy (1956).

The game.

A series of games on tossing the coin. If your guess is correct and your bet is s dollars, you receive s more dollars. You know that the coin is biased (0.6 is probability of getting heads). Your capital is S dollars, what fraction of the capital should you bet?

Utility function approach. Let R be a reward in 1 game on s dollars, and let $U(v) = \ln v$ be the utility function.

$$E \ln(S + R) = 0.6 \cdot \ln(S + s) + 0.4 \cdot \ln(S - s).$$

The derivative is equal to:

$$0.6/(S+s) - 0.4/(S-s)$$
.

It is equal to 0, when s=0.2S. Sounds reasonable! In his paper Kelly gave economic reasoning reasoning to maximize logarithm of wealth.

Kelly strategy for more general game (1956).

The game.

A series of games on tossing the coin. If your guess is correct and your bet is s dollars, you receive ks more dollars. You know the probability of getting heads p > 0.5. Your capital is S dollars, what fraction of the capital should you bet?

Solution with utility functions

Similarly one can prove that we should bet:

$$\frac{edge}{odds}S = \frac{kp - q}{k}S$$

In his paper Kelly gave economic reasoning reasoning to maximize logarithm of wealth.

Applications of utility functions.

- first application was in blackjack, Edward O. Thorp, Beat the Dealer, 1966.
- portfolio optimization in finance (now it is one of the standard methods)
- for bet sizing: in **poker** (e.g. Texas holdem), in **betting**.
- used in insurance (the next slide)

Applications in insurance.

To find the risk premium.
 X — losses, w — initial capital, P is the premium, U(x) is the utility function. Find P such that

$$EU(w-X)=U(w-P).$$

We must have seen it somewhere...

- In risk measures: For example, utility based shortfall (J. Maes, Utility based risk measures).
- To construct portfolio (by Kelly method), instead of Efficient frontier.

•

Conclusion

Main messages.

- It may be a good idea to maximize mathematical expectation of an utility function (the most standard is the logarithm).
- Often behavior of different people is modeled by different utility functions, since they have different attitudes towards risk.

Thank you very much for your attention!

