Цель работы: построить датчик базовой случайной величины по заданному алгоритму и выполнить тестирование датчика на соответствие основным свойствам базовой случайной величины.

1 Задание

- 1) Построить датчик БСВ с периодом T > 500.
- 2) Оценить математическое ожидание и дисперсию псевдослучайных значений zi и сравнить их с теоретическими значениями M и D.
- 3) Проверить датчик БСВ на равномерность и построить гистограмму распределения относительных частот $p_1, p_2, ... p_K$ на K отрезках интервала [0,1].
- 4) Проверить датчик БСВ на независимость, определяя коэффициент корреляции для разных значений s и T. Построить в одном графическом окне графики зависимости $\hat{R} = f(T)$ для s = 2, s = 5, s = 10.

2 Сравнение теоретических и экспериментальных значений

Математическое ожидание M и дисперсия D базовой случайной величины имеют следующие значения: M(z) = 0.5 и D = 0.083

В ходе выполнения программы, были получены значения

Сравнивая значения, можно сказать, что программа генерирует корректные значения.

3 Гистограмма

Гистограмма распределения относительных частот приведен ниже.

График 1 - Гистограмма

4 Автокорреляция

Обозначим равномерное распределение вероятностей на интервале [0, 1] как R[0,1] и утверждение, что БСВ z имеет распределение R[0,1], запишем в виде $z \sim R[0,1]$.

Проверку $z \sim R[0,1]$ можно выполнить с помощью частотного теста. Последовательность проверки, следующая:

- 1. Интервал [0,1] разбить на K равных отрезков, например, K=10.
- 2. Подсчитать, сколько чисел z_i попало в каждый из K отрезков, то есть число попадания $n_1, \dots n_k$.
 - 3. Найти относительные частоты попаданий в отрезки: p_i , ... p_K .
- 4. Построить гистограмму p_i , ... p_K частот на K отрезках интервала [0,1]. Простейшую проверку статистической независимости БСВ можно осуществить, оценивая линейную корреляцию между числами z_i и z_{i+s} , отстоящими друг от друга в псевдослучайной последовательности на фиксированный шаг $s \ge 1$. Тогда во всей выборке z_1 , ... z_n имеем следующие (n-s) реализаций пар: (z_1, z_{1+s}) , ... (z_{n-s}, z_n) .
- 5. По этим реализациям можно рассчитать оценку \hat{R} коэффициента корреляции для значений БСВ по формуле

$$\hat{R} = 12 \frac{1}{T - s} \left(\sum_{i=1}^{T - s} z_i z_{i+s} \right) - 3.$$

График автокорреляции приведен ниже

График 2 - Автокорреляция

5 Выводы

Посчитанные в ходе эксперимента значения математического ожидания дисперсии совпадают с теоретическими.

По полученной гистограмме можно сделать вывод о том, что распределение близко к равномерному.

График автокорреляции локализуется около 0 и показывает, что между генерируемыми числами слабая зависимость.