Vectors Whiteboard

1.

- a. On a piece of graph paper, draw the vector $\vec{f} = \langle -2,4,0 \rangle$, putting the tail of the vector $\langle -3,0,0 \rangle$. Label the vector \vec{f} .
- b. Calculate the vector $2\vec{f}$, and draw this vector on the graph, putting its tail $\langle -3, -3, 0 \rangle$, so you can compare it to the original vector. Label the vector $2\vec{f}$.
- c. How does the magnitude of $2\vec{f}$ compare to the magnitude of \vec{f} ?
- d. How does the direction of $2\vec{f}$ compare to the direction of \vec{f} ?
- e. Calculate the vector $\vec{f}/2$, and draw this vector on the graph, putting its tail at $\langle -3, -6, 0 \rangle$, so you can compare it to the other vectors. Label the vector $\vec{f}/2$.
- f. How does the magnitude of $\vec{f}/2$ compare to the magnitude of \vec{f} ?
- g. How does the direction of $\vec{f}/2$ compare to the direction of \vec{f} ?
- h. Does multiplying a vector by a scalar change the magnitude of the vector?
- i. The vector $a(\vec{f})$ has a magnitude three times as great as that of \vec{f} , and its direction is opposite to the direction of \vec{f} . What is the value of the scalar factor a?

2.

- a. On a piece of graph paper, draw the vector $\vec{g} = \langle 4,7,0 \rangle$ m. Put the tail of the vector at the origin.
- b. Calculate the magnitude of \vec{q} .
- c. Calculate \hat{g} , the unit vector pointing in the direction of \vec{g} .
- d. On the graph draw \hat{g} . Put the tail of the vector at $\langle 1,0,0 \rangle$ m so you can compare \hat{g} and \vec{g} .
- e. Calculate the product of the magnitude $|\vec{q}|$ times the unit vector $\hat{q}_{i}(|\vec{q}|)(\hat{q})$.