FPGA Implementations of the Hummingbird Cryptographic Algorithm

Xinxin Fan and Guang Gong E&CE Department, University of Waterloo, CANADA

Ken Lauffenburger

Aava Technology LLC, USA

Troy Hicks
Revere Security Corporation, USA

Introduction

The widespread deployment of various wireless networks such as mobile ad-hoc networks, sensor networks, mesh networks, personal area networks and radio frequency identification (RFID) systems is making possible a world of pervasive computing a reality. While the wireless communication technology and devices under development are enabling our march toward the era of pervasive computing, the **security** and **privacy** concerns in pervasive computing remains a serious impediment to widespread adoption of emerging technolo-Employing lightweight cryptographic primitives that can perform strong authentication and encryption on resource-constrained smart devices is a promising solution to overcome those concerns in the era of pervasive computing.

Figure 1: A World of Pervasive Computing.

Hummingbird in a Nutshell

Hummingbird is a rotor machine and has a hybrid structure of block cipher and stream cipher with 16-bit block size, 256-bit key size as well as 80-bit internal state.

- 4 identical block ciphers with 16-bit input and 16-bit output
- 4 16-bit registers acting as 4 rotors
- A 16-bit linear feedback shift register (LFSR)
- Simple arithmetic and logic operations $(\oplus, \boxplus, \boxminus, \ll)$

Description of Hummingbird Cryptographic Algorithm

Speed Optimized Hummingbird Encryption Core

- 16-bit block cipher is implemented using a loop-unrolled architecture
- 119 I/O pins and 273 slices on the Spartan-3 FPGA
- 20 clock cycles for the initialization process
- 4 clock cycles for encrypting one 16-bit plaintext block

Speed Optimized Hummingbird Encryption/Decryption Core

- 143 I/O pins and 558 slices on the Spartan-3 FPGA
- 20 clock cycles for the initialization process
- 4 clock cycles for encrypting/decrypting one 16-bit plaintext block

Performance Comparisons

Cipher	Key	Block	Total Occupied	Max. Freq.	Throughput	Efficiency
	Size	Size	Slices	(MHz)	(Mbps)	(Mbps/# Slices)
Hummingbird	256	16	273	40.1	160.4	0.59
PRESENT [Poschmann'09]	80	64	176	258	516	2.93
	128	64	202	254	508	2.51
PRESENT [Guo et al.'08]	80	64	271	_	_	_
XTEA [Kaps'08]	128	64	254	62.6	36	0.14
			9,647	332.2	20,645	2.14
ICEBERG [Standaert et al.'08]	128	64	631	_	1,016	1.61
SEA [Mace et al.'08]	126	126	424	145	156	0.368
AES [Chodowiec & Gaj'03]	128	128	522	60	166	0.32
AES [Good & Benaissa'05]			17,425	196.1	25, 107	1.44
			264	67	2.2	0.01
AES [Rouvroy et al.'04]			1,214	123	358	0.29
AES [Bulens et al.'08]			1,800	150	1700	0.9

Conclusions and Outlook

- The first efficient FPGA implementations of the ultra-lightweight cipher Hummingbird
- 20 clock cycles for initialization and 4 clock cycles for encryption/decryption
- Hummingbird can achieve larger throughput with smaller area requirement, when compared to other lightweight FPGA implementations of block ciphers in the literature
- Hummingbird is an ideal cryptographic primitive for resource-constrained environments
- Future work: low power ASIC implementations for low-cost RFID tags

References

- [1] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, "Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices", to appear in the proceedings of *The 14th International Conference on Financial Cryptography and Data Security FC 2010*, Berlin, Germany: Springer-Verlag, 2010.
- [2] X. Fan, H. Hu, G. Gong, E. M. Smith and D. Engels, "Lightweight Implementation of Hummingbird Cryptographic Algorithm on 4-Bit Microcontrollers", *The* 1st International Workshop on RFID Security and Cryptography 2009 (RISC'09), pp. 838-844, 2009.

Acknowledgements

This work is supported by an NSERC Discovery Grant and an NSERC Strategic Project Grant.