Einführung in die Künstliche Intelligenz SS 18

Prof. Dr. J. Fürnkranz, Prof. Dr. K. Kersting

Beispiellösung für das 2. Übungsblatt

Aufgabe 1 Informierte Suchalgorithmen

a) In dem folgenden Graph sind die expandierten Knoten grau markiert und die Reihenfolge, in der sie expandiert werden, ist durch die Nummerierung dargestellt.

1

b) Man kann bei dieser Aufgabe den Algorithmus graphisch durchführen, da der Graph in etwa die tatsächliche geometrische Lage der Städte darstellt, so dass die angegebenen Distanzen und die Heuristiktabelle mit dem Graph bis auf einen Skalierungsfaktor konsistent sind.

Greedy Best First-Search verfährt hier nach folgender Regel: Expandiere den Knoten aus der Kandidatenmenge mit der minimalen Entfernung (im Graph) zu Bucharest. So lassen sich recht schnell nahezu alle Städte überprüfen, ohne einen Blick auf die Heuristiktabelle zu werfen. Ein Fall, bei dem es aus dem Graph eventuell nicht ganz klar ist, tritt bei der Expansion von Mehadia auf, da Lugoj und Drobeta etwa gleich weit entfernt von Bucharest erscheinen.

Für alle Städte findet Greedy Best-First Search eine Verbindung nach Bucharest.

c)	Auch hier lässt sich das Problem schnell graphisch lösen. Für die Städte rechts
	von Bucharest und Giurgiu sind die gefundenen Verbindungen klar die kürzes-
	ten, da keine anderen Verbindungen (ohne mehrfache Benutzung von Kanten)
	existieren.

Die Verbindungen von den restlichen Städte lassen sich mithilfe kleiner Überlegungen ähnlich schnell auf Optimalität prüfen. Hilfreich ist z.B. die notwendige Bedingung, dass jede Teilverbindung einer optimalen Verbindung wieder eine optimale Verbindung sein muss. Zum Beispiel ist die Verbindung von Sibiu nach Bucharest, die Greedy Best-First Search findet (Sibiu, Fagaras, Bucharest), nicht optimal. Somit sind auch die ermittelten Verbindungen von Oradea, Zerind und Arad, die durch Sibiu verlaufen, auch nicht optimal.

Für Timisoara, Arad, Zerind, Oradea und Sibiu findet Greedy Best-First Search nicht die optimale Verbindung.

Aufgabe 2 Heuristiken

a) Eine Heuristik ist konsistent, falls $h(n) \le c(n, a, n') + h(n')$ gilt.

Zunächst ist festzustellen, dass die Kosten für eine Aktion (Zug) hier auf 1 gesetzt sind, d.h. für alle legalen Züge ist c(n, a, n') = 1. Für beide Heuristiken muss also gezeigt werden: $h(n) \le 1 + h(n')$.

Die h_{MIS} Heuristik zählt die Anzahl falsch platzierter Steine. Mit einem Zug kann sich die Anzahl der falsch platzierten Steine um maximal eins verringern, d.h. $h(n') \ge h(n) - 1$.

Die h_{MAN} Heuristik zählt die Anzahl der Felder, die überquert werden müssen, um zur Zielposition zu gelangen (summiert über alle Steine). Mit einem Zug ändert sich die entsprechende Anzahl nur für ein Stein, die nur maximal um eins verringert sein kann.

b) Seien h, h' zwei beliebige admissible Heuristiken bezüglich der wahren Kostenfunktion h^* . Es gilt also: $h(n) \le h^*(n)$ und $h'(n) \le h^*(n)$ für alle n.

Sei g nun die mittels dem Maximum-Operator kombinierte Heuristik von h und h', d.h. g(n) := max(h(n), h'(n)). Es gilt offensichtlich $g(n) \le h^*(n)$, da für beliebige n, die Heuristik g entweder h(n) oder h'(n) zurück liefert, welche beide per Konstruktion nicht größer als $h^*(n)$ sind.

Aufgabe 3 Lokale Suchalgorithmen

- a) Hill Climbing
- b) Simulated Annealing nimmt eine Lösung an, wenn sie besser ist ($\Delta E > 0$), oder mit einer Wahrscheinlichkeit $e^{\Delta E/T}$, wenn sie schlechter ist.
 - Für $\Delta E < 0$ wird die Wahrscheinlichkeit $e^{\Delta E/T}$ sich an 0 annähern, d.h. suboptimale Aktionen werden praktiksch nie durchgeführt werden \rightarrow (ähnlich zu) Hill Climbing
- c) Für $\Delta E < 0$ wird die Wahrscheinlichkeit $e^{\Delta E/T}$ sich an 1 annähern, d.h. suboptimale Aktionen werden praktiksch immer durchgeführt werden \rightarrow (ähnlich zu) Random Walk, eine zufällige Traversierung des Zustandsraumes.