Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

1 point

- Our estimate for $P(y = 1|x; \theta)$ is 0.7.
- Our estimate for $P(y = 0|x; \theta)$ is 0.3.
- Our estimate for $P(y = 0|x; \theta)$ is 0.7.
- Our estimate for $P(y = 1|x; \theta)$ is 0.3.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

1 point

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

1 point

- Our estimate for $P(y = 0|x; \theta)$ is 0.2.
- Our estimate for $P(y = 0|x; \theta)$ is 0.8.
- Our estimate for $P(y = 1|x; \theta)$ is 0.2.
- Our estimate for $P(y = 1|x; \theta)$ is 0.8.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

1 point

\boldsymbol{x}_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2+ heta_4x_1x_2+ heta_5x_2^2)$) could increase how well we can fit the training data.
- igwedge At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$

If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1 point

- $lacksquare heta:= heta-lpharac{1}{m}\sum_{i=1}^m\left(rac{1}{1+e^{- heta T_x(i)}}-y^{(i)}
 ight)x^{(i)}.$
- \square $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(heta^T x y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
- $m{arphi} \; heta := heta lpha rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) y^{(i)}
 ight) x^{(i)}.$
- $igcap heta := heta lpha rac{1}{m} \sum_{i=1}^m \left(heta^T x y^{(i)}
 ight) x^{(i)}.$

Which of the following statements are true? Check all that apply.

1 point

- The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- igwedge The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=0, \theta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

