Lecture 27 Surfaces

Surface Modeling

Flat surfaces (or piecewise flat)

- polygons, triangles
- meshes

Standard shapes

- cone, cylinder, sphere (ball is volume)
- more complex (surfaces of revolution, generalized cylinders)
- and many more...

Free Form Surfaces

Surface of Revolution

- 1. Define a 2D Shape
- 2. Revolve it around an axis

Generalized Cylinders (1) Tubes

- 1. Define a spine (function of t)
- 2. Give a radius

Generalized Cyliders (2) Cones

- 1. Define a spine (function of t)
- 2. Define a radius (function of t)

Generalized Cylinders (3) Sweeps

- 1. Define a spine
- 2. Define a cross-section shape

Fancy Sweeps

2D Shape interpolation along spine Requires good 3D curves

Lofting and Other Shape Methods

Define surfaces by curves

Interpolate between curves

Free Form Surfaces: Approaches

Same as curves

- ullet Parametric: $(x,y,z)=\mathbf{f}(u,v)$
- Implicit: f(x, y, z) = 0
- Procedural
- Subdivision

Implicit Surfaces

$$f(x,y,z)=0$$

- sphere
- set of spheres
- distance to a set of points

- density (blobs)
 - (falls of to zero quickly)
- model by summing blobs

How to draw an implicit surface?

Need to find points on f(x, y, z) = 0

Why do we like this?

Easy to combine simple units

Free form surfaces

Is there an analog to polynomial curves?

$$f(u) o \mathcal{R}^{eta}$$

Parametric Surfaces:

$$f(u,v) o \mathcal{R}^{eta}$$

Cubic Polynomials

curve: $f(u) = a_0 + a_1 u^1 + a_2 u^2 + a_3 u^3$

surface: f(u, v) = ???

Polynomial in u and v! (tensor product)

$$f(u,v) = a_{00}u^0v^0 + a_{01}u^1v^0 + a_{02}u^2v^0 + a_{03}u^3v^0 + \ a_{10}u^0v^1 + a_{11}u^1v^1 + a_{12}u^2v^1 + a_{13}u^3v^1 + \ a_{20}u^0v^2 + a_{21}u^1v^2 + a_{22}u^2v^2 + a_{33}u^3v^2 + \ a_{30}u^0v^3 + a_{31}u^1v^3 + a_{22}u^2v^3 + a_{33}u^3v^3$$

Tensor Product Surface Patches

16 coefficients (control points)!

$$f(u,v) = a_{00}u^0v^0 + a_{01}u^1v^0 + a_{02}u^2v^0 + a_{03}u^3v^0 + \ a_{10}u^0v^1 + a_{11}u^1v^1 + a_{12}u^2v^1 + a_{13}u^3v^1 + \ a_{20}u^0v^2 + a_{21}u^1v^2 + a_{22}u^2v^2 + a_{33}u^3v^2 + \ a_{30}u^0v^3 + a_{31}u^1v^3 + a_{22}u^2v^3 + a_{33}u^3v^3$$

There are analogs to curve formulations

• Bezier, B-Spline, Interpolating, ...

Tensor Product Surfaces are Hard!

How to connect two patches?

- Continuity
- Stitching together

How to cut a patch?

- Make a Hole?
- Make an edge? (attachment)

How about non-square domains?

- inconvenient stretching?
- different topology?

What do we do instead?

Subdivision Surfaces!

Subdivision: Motivation

Polynomial Surfaces Are Challenging

$$f(u,v) \rightarrow x,y,z$$

- What if the patches aren't square?
- How do we connect them? (for smoothness)
- How do we cut holes in them?
- How do we stitch them together?

Subdivision: Intuitions from 2D

• Start with a set of (points) line segments

- Add new points / move old points
- Divide segments into more segments

- Repeat
 - until good enough
 - infinitely many times

Design so it converges to a smooth curve

Example 1: Dyn/Levin/Gregory

4 point scheme - each new point looks at 4 neighbors

$$[-\frac{1}{16}, \frac{1}{2} + \frac{1}{16}, \frac{1}{2} + \frac{1}{16}, -\frac{1}{16}]$$

more generally [
$$-w$$
, $\frac{1}{2}+w$, $\frac{1}{2}+w$, $-\frac{1}{16}-w$]

Each time it gets smoother...

Infinitely many times?

Converges to a cubic spline!

(you can read the proof)

Note: Interpolation

Original points continue - forever

Example 2: Not interpolating

Chakin Corner Cutting

- each corner -> 2 points (1/4 from edge)
- each segment cut at (1/4, 3/4)

Converges to quadratic B-Spline

In 3D

- Cut each triangle into new triangles
 - place the new vertices
 - move the old vertices (non-interpolating)

Dividing triangles

Standard (4-way) scheme 3-way scheme

Butterfly

$$v = 1/2 a + 1/8 b - 1/16 c$$

Uniform Meshes

Ordinary and Extra-Ordinary Points

Butterfly

C(1) almost everywhere Special rules for extra-ordinary points

$$v = 1/2 a + 1/8 b - 1/16 c$$

Modified Butterfly

$$\mathbf{v} = (1/2-\mathbf{w})\mathbf{a} + (1/8+2\mathbf{w})\mathbf{b} - (1/16-\mathbf{w})\mathbf{c} + \mathbf{w}\mathbf{d}$$

tension parameter w sum over all 10 neighbors

Tension

Butterfly vs. Modified

Initial mesh

Butterfly scheme interpolation

Modified Butterfly interpolation

http://graphics.stanford.odu/courses/cs/69_10_

Loop Scheme

- New points split edges
- Old points moved to smooth

Loop Rules - General (irregular)

Full Loop rules (triangle mesh)

Loop Rules - Boundaries

- new points half way
- old points 1/8 3/4 1/8
- edges only depend on edges

Loop Example

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/10_Subdivision.pdf

In the limit?

- Each iteration it gets smoother
- In the limit its a spline patch
- Can compute where each point will go

Catmull-Clark

Quads (everything is a quad after 1 iteration)

Catmull-Clark Rules

- Face Point = center of polygon
- Edge Point = average 4 neighbors(2 edge, 2 faces)
- Old Points (w/ N edges/faces)
 - $\circ (n-2)/n$ times itself
 - $\circ~1/n^2$ average of N edges
 - $\circ \ 1/n^2$ average of N faces

http://www.holmes3d.net/graphics/subdivision/

http://graphics.stanford.edu/courses/cs/68-10-

Quads Example

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/10_Subdivision.pdf

What About Edges?

Edges depend only on edges:

• causes them to be "regular curves"

Good Tricks (1)

Creases - don't move points for some iterations

Good Tricks (2) ... Cutting and Sewing

Put a curve inside of a surface (hole or edge)

Curves stay curves - on any surface!

Why do we like Catmull-Clark so Much?

- Generalizes Cubic B-Splines
- Allows for stopping at any time
- Can compute exact normals (since B-Splines)
- Much easier than Non-Subdivision
- Not that hard to implement
 - requires mesh data structures for splitting and neighbor finding
- Made Popular by Pixar

(Smooth) Surfaces Review

Surface vs. Solid Vs. Curve

- Not Free-Form
 - primitive shapes
 - o generalized primitives (sweeps, lofts, ...)

47

- Free Form
 - Implicit
 - Parametric (and why not)
 - Subdivision (why and how)