

Joint Distributions

• A joint distribution over a set of random variables: $X_1,X_2,\ldots X_n$ specifies a probability for each assignment (or outcome): $P(X_1=x_1,X_2=x_2,\ldots X_n=x_n)$

$$P(x_1,x_2,\dots x_n)$$
 Must obey:
$$P(x_1,x_2,\dots x_n)\geq 0$$

$$\sum_{(x_1,x_2,\dots x_n)} P(x_1,x_2,\dots x_n)=1$$

- $\begin{array}{c|cccc} P(T,W) \\ \hline \mathbf{1} & \mathbf{W} & \mathbf{P} \\ \text{hot} & \sin & 0.4 \\ \text{hot} & \text{rain} & 0.1 \\ \text{cold} & \sin & 0.2 \\ \text{cold} & \text{rain} & 0.3 \\ \hline \end{array}$
- Size of joint distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models - A probabilistic model is a joint distribution over a set of random variables - (Random) variables with domains - Joint distributions: say whether assignments (called outcomer's rate likely - Normalized sum to 1.0 - Ideally: only certain variables directly interact - Constraint satisfaction problems: - Variables with domains - Corstraints: state whether assignments are possible bot sun 0.2 - Ideally: only certain variables directly interact - Ideally: only certain variables directly interact

Events

An event is a set E of outcomes

 $P(E) = \sum_{\substack{(x_1,\dots x_n) \in E}} P(x_1\dots x_n)$ From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T, W)				
T	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

Inference by Enumeration

- P(W)?
- P(W | winter)?
- P(W | winter, hot)?

S	T	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Computational problems?
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the

$$P(y)P(x|y) = P(x,y)$$
 \longrightarrow $P(x|y) = \frac{P(x,y)}{P(y)}$

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1,x_2,x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod P(x_i | x_1 \dots x_{i-1})$$

Independence

Two variables are independent in a joint distribution if:

$$P(X,Y) = P(X)P(Y)$$

$$X \perp \!\!\! \perp Y$$

- $\forall x, y P(x, y) = P(x)P(y)$
- Says the joint distribution factors into a product of two simple ones
 Usually variables aren't independent!

- Can use independence as a modeling assumption

 Independence can be a simplifying assumption

 Empirical joint distributions: at best "close" to independent

 What could we assume for (Weather, Traffic, Cavity)?
- Independence is like something from CSPs: what?

