Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei

PROIECT TEHNICI CAD

INDICATOR DE NIVEL AUDIO

Nume: Mihu Daniel-Florin

Profesori indrumatori

Grupa 2122

Prof. Dr. Ing. Ovidiu Pop

Asist. drd. ing. Elena Ștețco

Cuprins

- 1. Cerinta Proiect
- 2. Specificatii de proiectare
- 3. Schema Bloc
- 4. Schema electrica
- 5. Dimensionarea componentelor
- 6. Simulari
- 7. Bibliografie

1.Cerinta proiect

Să se proiecteze un circuit electronic care să indice pe un afișaj cu leduri nivelul semnalului audio dintr-o bandă de frecvență specificată (VU-metru). Circuitul este alimentat de la tensiunea ±VCC. LED-urile trebuie să fie de culori diferite. Numărul LED-urilor este specificat în coloana "Semnalizări". LED-urile se vor aprinde succesiv la depășirea fiecărui prag audio stabilit de proiectant.

2. Specificatii de proiectare

Amplitudinea semnalului de	720uV
intrare	
Banda de frecvente [HZ]	340-11000
Tensiunea de alimentare[VCC]	15V
Semnalizari	6

3.Schema Bloc

4. Schema electrica

5. Dimensionarea componentelor

1. Cele 3 etaje de amplificare:

Calcule:

$$Av1 = 1 + \frac{R2}{R1}$$

$$Vout = Av1 * Vin$$

$$Av1 = 1 + \frac{27.4k}{1k} = 28.4k$$

$$Vout1 = 28.4 * 720 * 0.0000001 = 0.020V$$

$$Av2 = 28.4$$

$$Vout2 = 28.4 * 0.029 = 0.82V$$

$$Av3 = 1 + \frac{R6}{R5} = 1 + \frac{17.4kk}{1k} = 18.4k$$

$$Vout3 = 18.4k * 0.82V = 15V$$

- ⇒ R1=R3=R6=1k
- \Rightarrow R2=R4=27.4K
- ⇒ R6=17.4K

2.FTB

Adaptor de impedanta

Calcule:

$$C1 = \frac{1}{2 * \pi * Fl * R7} = \frac{1}{2 * 3.14 * 340 * 10000} = 0.047 uF$$

$$C2 = \frac{1}{2 * \pi * Fh * r} = \frac{1}{2 * 3.14 * 11000 * 10000} = 1500 pF$$

3.Comparatoare

Calcule:

$$V1(-) = \frac{R10 + R11 + R12 + R13 + R14 + R15}{R} * VCC; V1(-) = 10$$

$$V2(-) = \frac{R11 + R12 + R13 + R14 + R15}{R} * VCC; V2(-) = 8,33$$

$$V3(-) = \frac{R12 + R13 + R14 + R15}{R} * VCC; V3(-) = 6.66$$

$$V4(-) = \frac{(R13 + R14 + R15)}{R} * VCC; V4(-) - 4.99$$

$$V5(-) = \frac{R14 + R15}{R} * VCC => R14 + R15 = 0.22; V5(-) = 3.32$$

$$V6(-) = \frac{R15}{R} * VCC; V6(-) = 1.65 = > \frac{R15}{R} = 0.11 = > R15 = 0.11R$$

$$R14 + 0.11R = 0.22R => R1R = 0.11R$$

$$\frac{R10 + R11 + R12 + R13 + R14 + R15}{(R9 + R10 + R11 + R12 + R13 + R14 + R15)} = \frac{2}{3} = \frac{10}{5}$$

$$V(-)=10$$

$$2R9 + 2R10 + 2R11 + 2R12 + 2R13 + 2R14 + 2R15$$

= $3R10 + 3R11 + 3R12 + 3R13 + 3R14 + 3R15$

$$=> 2R9 = R10 + R11 + R12 + R13 + R14 + R15$$

 $=> R9 = (R10 + R11 + R12 + R13 + R14 + R15)2$

5. LED-URI

Am modelat aceste led-uri conform "datasheet" al unor modele deja existente.

LED-UL albastru

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
		15.0	28.0	67		I _F =20mA
Radiant Intensity	I _e		120		mW/sr	I _F =100mA Pulse Width≤100μs and Duty≤1%
			1000			I _F =1A Pulse Width≤100µs and Duty≤1%
Peak Wavelength	λр		940		nm	I _F =20mA
Spectral Bandwidth	Δλ		45		nm	I _F =20mA
			1.2	1.5		I _F =20mA
Forward Voltage	VF		1.4	1.7	V	I _F =100mA
			2.6	4.0		I _F =1A Pulse Width ≦100µs and Duty ≦1%
Reverse Current	I _R			10	uA	V _R =5V
View Angle	201/2		20		deg	I _F =20mA

Rank

Condition:I_F=20mA Unit: mW/sr

Bin Number	P	Q	R	S
Min	15.0	21.0	30.0	42.0
Max	24.0	34.0	48.0	67.0

ote

Measurement Uncertainty of Forward Voltage: ±0.1V
Measurement Uncertainty of Luminous Intensity: ±10%
Measurement Uncertainty of Dominant Wavelength ±1.0nm

Activate Windows
Go to Settings to activate Wir

4

Copyright © 2010, Everlight All Rights Reserved. Release Date : Dec.15.2016. Issue No: DIR-0001080.Rev4

www.everlight.com

Dimensionare rezistenta R16

Forward voltage 1.2V

Forward current 20mA

$$R16 = \frac{VCC - Vf}{If} = \frac{15 - 1.2}{100} = 138 \ Ohm$$

Kingbright

Selection Guide

Part No.	Dice	Lens Type	lv (n @ 20		Viewing Angle
		-5.10 1,70	Min.	Тур.	201/2
L-813GD	GREEN (GaP)	GREEN DIFFUSED	18	60	60°

Electrical / Optical Characteristics at T_A=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	Green	565		nm	IF=20mA
λD	Dominate Wavelength	Green	568		nm	Ir=20mA
Δλ1/2	Spectral Line Half-width	Green	30		nm	Ir=20mA
С	Capacitance	Green	15		pF	V _F =0V;f=1MHz
VF	Forward Voltage	Green	2.2	2.5	V	IF=20mA
lR	Reverse Current	Green		10	uA	V _R = 5V

Absolute Maximum Ratings at T_A=25°C

Parameter	Green	Units
Power dissipation	105	mW
DC Forward Current	25	mA
Peak Forward Current [1]	140	mA
Reverse Voltage	5	V
Operating/Storage Temperature	-40°C To +85°C	
Lead Solder Temperature [2]	260°C For 5 Seconds	

- Notes:
 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
 2. 2mm below package base.

Note:
1. 01/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

Green L-813GD

Dimensionare rezistenta R17

Forward voltage 12.5V

Forward current 25mA

$$R17 = \frac{VCC - Vf}{If} = \frac{15 - 2.5}{25} = 0.5 \ kOhm$$

LED-UL portocaliu

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	Units
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{STG}	Storage Temperature	-40 to +100	°C
T _{SOL-I}	Soldering Temperature (Iron) ⁽²⁾⁽³⁾⁽⁴⁾	240 for 5 sec	°C
T _{SOL-F}	Soldering Temperature (Flow)(2)(3)	260 for 10 sec	°C
I _F	Continuous Forward Current	100	mA
V _R	Reverse Voltage	5	V
P _D	Power Dissipation ⁽¹⁾	200	mW

Notes:

- 1. Derate power dissipation linearly 2.67mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron 1/16" (1.6mm) minimum from housing.

Electrical / Optical Characteristics (T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
λ _{PE}	Peak Emission Wavelength	I _F = 20mA		890		nm
TC _λ	Temperature Coefficient			0.2		nm/°C
2⊖ ¹ /2	Emission Angle	I _F = 100mA		16		0
V _F	Forward Voltage	I _F = 100mA, tp = 20ms			1.7	V
TC _{VF}	Temperature Coefficient			-6		mV/°C
I _R	Reverse Current	V _R = 5V			10	μA
I _E	Radiant Intensity QED121	I _F = 100mA, tp = 20ms	16		40	mW/sr
I _E	Radiant Intensity QED122	I _F = 100mA, tp = 20ms	32		100	mW/sr
IE	Radiant Intensity QED123	I _F = 100mA, tp = 20ms	50	70		mW/sr
TCIE	Temperature Coefficient			-0.3		%/°C
t _r	Rise Time	I _F = 100mA		900		ns
t _f	Fall Time			800		ns
Cj	Junction Capacitance	V _R = 0V		11		pF

Dimensionare rezistenta R18

Forward voltage 1.7V

Forward current 100mA

$$R18 = \frac{VCC - Vf}{If} = \frac{15 - 1.7}{100} = 133 \ Ohm$$

Absolute Maximum Ratings at Ta=25 $^{\circ}$ C

Parameters	Symbol	Max.	Unit	
Power Dissipation	PD	65	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100	mA	
Forward Current	IF	25	mA	
Reverse Voltage	VR	5	V	
Operating Temperature Range	Topr	-40℃ to +85℃		
Storage Temperature Range	Tstg	-40℃ to +100℃		
Lead Soldering Temperature [4mm (.157") From Body]	Tsld	260℃ for 5 Seconds		

Electrical Optical Characteristics at Ta=25℃

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	IV	120	210		mcd	IF=20mA (Note 1)
Viewing Angle*	2θ _{1/2}		60		Deg	IF=20mA (Note 2)
Peak Emission Wavelength	λр		592		nm	IF=20mA
Dominant Wavelength	λd		590		nm	IF=20mA (Note 3)
Spectral Line Half-Width	Δλ		15		nm	IF=20mA
Forward Voltage	V _F	1.60	2.00	2.60	V	IF=20mA
Reverse Current	I_R			10	μА	V _R =5V

Notes:

- 1. Luminous Intensity Measurement allowance is \pm 10%.
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

Approved: JoJo

Lucky Light Electronics Co., Ltd.

Checked: Wu

Drawn: Yang

http://www.luckylightled.com

Dimensionare rezistenta R19

Forward voltage 1.7V

Forward current 100mA

$$R19 = \frac{VCC - Vf}{If} = \frac{15 - 1.7}{100} = 133 \ Ohm$$

LED-UL violet

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	Units
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{STG}	Storage Temperature	-40 to +100	°C
T _{SOL-I}	Soldering Temperature (Iron) ⁽²⁾⁽³⁾⁽⁴⁾	240 for 5 sec	°C
T _{SOL-F}	Soldering Temperature (Flow) ⁽²⁾⁽³⁾	260 for 10 sec	°C
IF	Continuous Forward Current	100	mA
V _R	Reverse Voltage	5	V
P _D	Power Dissipation ⁽¹⁾	200	mW
I _{F(Peak)}	Peak Forward Current ⁽⁵⁾	1.5	Α

Notes:

- 1. Derate power dissipation linearly 2.67mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron 1/16" (1.6mm) minimum from housing.
- 5. Pulse conditions; $tp = 100\mu s$, T = 10ms.

Electrical / Optical Characteristics (T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
λ _{PE}	Peak Emission Wavelength	I _F = 20mA		890		nm
TC _λ	Temperature Coefficient			0.2		nm/°C
2Θ ¹ /2	Emission Angle	I _F = 100mA		30		0
V _F	Forward Voltage	I _F = 100mA, tp = 20ms			1.7	V
TC _{VF}	Temperature Coefficient			-6		mV/°C
I _R	Reverse Current	V _R = 5V			10	μA
IE	Radiant Intensity	I _F = 100mA, tp = 20ms	25			mW/sr
TCIE	Temperature Coefficient			-0.3		%/°C
t _r	Rise Time	I _F = 100mA		900		ns
t _f	Fall Time			800		ns
Cj	Junction Capacitance	V _R = 0V		11		pF

Dimensionare rezistenta R20

Forward voltage 5V

Forward current 100mA

$$R20 = \frac{VCC - Vf}{If} = \frac{15 - 5}{100} = 100 \ Ohm$$

— + • ☐ Fage view | A® Read aloud | ■ Add text

DESCRIPTION

TSAL4400 is an infrared, 940 nm emitting diode in GaAlAs, MQW technology with high radiant power molded in a blue-gray plastic package.

FEATURES

- · Package type: leaded
- Package form: T-1
- Dimensions (in mm): Ø 3
- Peak wavelength: λ_p = 940 nm
- High reliability
- · High radiant power
- · High radiant intensity
- Angle of half intensity: $\phi = \pm 25^{\circ}$
- Low forward voltage
- · Suitable for high pulse current operation
- · Good spectral matching with Si photodetectors
- Package matches with detector TEFT4300
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

FREE

GREEN (5-2008)

APPLICATIONS

- · Infrared remote control units
- · Free air transmission systems
- · Infrared source for optical counters and card readers

PRODUCT SUMMARY					
COMPONENT	λ թ (nm)	t _r (ns)			
TSAL4400	36	± 25	940	15	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION						
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM			
TSAL4400	bulk	MOQ: 5000 pcs, 5000 pcs/bulk	T-1			

Note

. MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		lF	100	mA	
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1.5	Α	
Power dissipation		Pv	160	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	-40 to +85	°C	
Storage temperature range		T _{stg}	-40 to +100	°C	
Soldering temperature	t ≤ 5 s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	300	K/W	

Rev. 1.8, 01-Aug-14 1 Document Number: 81006

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Farmend veltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.35	1.6	V
Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	V _F		2.6	3	٧
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		-1.8		mV/K
Reverse current	V _R = 5 V	I _R			10	μА
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj		60		pF
Radiant intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	16	36	80	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	l _e	135	290		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фe		40		mW
Temperature coefficient of ϕ_e	I _F = 20 mA	ΤΚφ _e		-0.6		%/K
Angle of half intensity		φ		± 25		deg
Peak wavelength	I _F = 100 mA	λ _p		940		nm
Spectral bandwidth	I _F = 100 mA	Δλ		25		nm
Temperature coefficient of λ _p	I _F = 100 mA	TKλ _p		0.25		nm/K
Rise time	I _F = 100 mA	t _r		15		ns
Fall time	I _F = 100 mA	t _f		15		ns

BASIC CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

Fig. 3 - Pulse Forward Current vs. Pulse Duration

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Radiant Intensity vs. Forward Current

Fig. 6 - Radiant Power vs. Forward Current

Fig. 7 - Rel. Radiant Intensity/Power vs. Ambient Temperature

Fig. 8 - Relative Radiant Power vs. Wavelength

Fig. 9 - Relative Radiant Intensity vs. Angular Displacement

Dimensionare rezistenta R21

Forward voltage 5V

Forward current 100mA

$$R21 = \frac{VCC - Vf}{If} = \frac{15 - 5}{100} = 100 \ Ohm$$

6.Simulari

1. Analiza in timp pentru:

• verificarea primului prag de amplificare.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2
	X Values	384.852u	0.000	384.852u
CURSOR 1,2	V(R2:2)	19.599m	-405.765u	20.005m

• verificarea celui de al doilea prag de amplificare

Trace Color	Trace Name	Y1	Y2	Y1 - Y2
	X Values	389.060u	0.000	389.060u
CURSOR 2	V(R2:2)	19.905m	-405.765u	20.311m
CURSOR 1	V(U1B:OUT)	563.474m	-11.887m	575.362m

• verificarea celui de al treilea prag de amplificare

Analiza AC SWEEP pentru diagramele bode

Anzaliza pentru a vizualiza comportamentul diodelor in timp.

BIBLIOGRAFIE

- "Proiectare asistată de calculator Aplicații" O.
 Pop, R. Fizeșan, G. Chindriș
- Curs "Circuite electronice fundamentale" Pop Ovidiu Aurel
- Curs "Dispozitive electronice" Pop Ovidiu Aurel
- https://www.tme.eu/ro/katalog/led-uri_100684/?s_order=desc&search=LED&s_field=1000011
- https://www.tme.eu/ro/katalog/rezistente_100299/?
 s_order=desc&search=rezistente&s_field=1000011