Aerospace Engineering
Department
Faculty of Engineering
Cairo University

4th year AER4420

Design of control systems for aeronautical and space vehicles

Task (3)

AIRFRAME MODEL AIRPLANE SIMULATOR PART II

Note: This will be the last part of the simulator you will be using from now on in the course, you have to verify and validate your results in one of two ways:

- Compare results with the simulink simulator you will build.
- Compare results with one of your colleagues.

Task statement

Step 1: Write a code that calculates the (Aerodynamic & Thrust) (Forces & Moments) acting on an Airplane due to pilots input signals ($\delta_{aileron}$, δ_{rudder} , $\delta_{elevator}$, δ_{thrust}) knowing its stability & control derivatives at nominal flight condition.

Consult the following document (<u>NASA CR-2144 AIRCRAFT HANDLING</u> <u>QUALITIES DATA</u>) as a reference for the Airplanes' parameters including the (Stability derivatives, Mass, Inertias) at the Reference Flight conditions. Each team will be assigned an Airplane and a Flight condition.

Step 2: "Combine the (Airframe Model) code with the (RBD solver) you built in the previous task in order to build the complete (Airplane Non-linear Flight Simulator)". The idea is to use the (Pilots inputs) to calculate the Aerodynamic & Thrust (Forces & Moments) acting on the airplane, and then use these calculated Forces & Moments to solve the (RBD) equations to calculate the new states of the airplane in the next time step, and repeat this procedure at each time step.

Note: do not forget to add the (Gravitational Forces) to the (Aerodynamic & Thrust Forces) before using them in the (RBD solver).

Forces:

The following set of **linear** equations represents the **change** in the Aerodynamic & thrust forces & moments, they are function of:

- Stability Derivatives.
- Control Derivatives.
- The perturbation change in the states and the control surfaces deflections from their values at the trim condition.

$$\Delta X = \frac{\partial X}{\partial u} \Delta u + \frac{\partial X}{\partial w} \Delta w + \frac{\partial X}{\partial \delta_e} \Delta \delta_e + \frac{\partial X}{\partial \delta_T} \Delta \delta_T$$

$$\Delta Y = \frac{\partial Y}{\partial v} \Delta v + \frac{\partial Y}{\partial p} \Delta p + \frac{\partial Y}{\partial r} \Delta r + \frac{\partial Y}{\partial \delta_r} \Delta \delta_r$$

$$\Delta Z = \frac{\partial Z}{\partial u} \Delta u + \frac{\partial Z}{\partial w} \Delta w + \frac{\partial Z}{\partial \dot{w}} \Delta \dot{w} + \frac{\partial Z}{\partial q} \Delta q + \frac{\partial Z}{\partial \delta_e} \Delta \delta_e + \frac{\partial Z}{\partial \delta_T} \Delta \delta_T$$

$$\Delta L = \frac{\partial L}{\partial v} \Delta v + \frac{\partial L}{\partial p} \Delta p + \frac{\partial L}{\partial r} \Delta r + \frac{\partial L}{\partial \delta_r} \Delta \delta_r + \frac{\partial L}{\partial \delta_a} \Delta \delta_a$$

$$\Delta M = \frac{\partial M}{\partial u} \Delta u + \frac{\partial M}{\partial w} \Delta w + \frac{\partial M}{\partial \dot{w}} \Delta \dot{w} + \frac{\partial M}{\partial q} \Delta q + \frac{\partial M}{\partial \delta_e} \Delta \delta_e + \frac{\partial M}{\partial \delta_T} \Delta \delta_T$$

$$\Delta N = \frac{\partial N}{\partial v} \Delta v + \frac{\partial N}{\partial p} \Delta p + \frac{\partial N}{\partial r} \Delta r + \frac{\partial N}{\partial \delta_r} \Delta \delta_r + \frac{\partial N}{\partial \delta_a} \Delta \delta_a$$

<u>Note</u>: ΔX , ΔY , ΔZ , ΔL , ΔM , ΔN are the **changes** in the forces & moments, i.e. these are not the absolute values of the forces and moments. They should be added to the reference values at the trim condition X_0 , Y_0 , Z_0 , L_0 , M_0 , N_0 to calculate the absolute values X, Y, Z, L, M, N.

Similarly, Δu , Δv , Δw , ... are the changes in the states values from their values at the reference condition $\Delta u = u - u_0$, $\Delta v = v - v_0$, $\Delta w = w - w_0$, ...

Hence:

Inputs and outputs of the (Airframe Model) are perturbations from the reference values

Inputs and outputs of the RBD are absolute values

So that: "Perturbation values resulting from the (Airframe Model) should be added to the reference values before passing them to the (RBD) and the absolute values resulting from the (RBD) should be converted to perturbation values by subtracting the reference values from them."

The total forces acting on an airplane are:

- Aerodynamic forces.
- Thrust force.
- Gravity force.

$$X - \operatorname{mgsin} \theta = m(\dot{u}^E + qw^E - rv^E)$$

$$Y + \operatorname{mgcos} \theta \sin \phi = m(\dot{v}^E + ru^E - pw^E)$$

$$Z + \operatorname{mgcos} \theta \cos \phi = m(\dot{w}^E + pv^E - qu^E)$$

Equilibrium state

Initially at the reference flight condition the airplane is in an equilibrium state, which means:

$$\sum Forces = 0 \qquad \& \qquad \sum Moments = 0$$

$$X_0 - mg\sin \theta_0 = 0 \rightarrow X_0 = mg\sin \theta_0$$

$$Y_0 - mg\cos \theta_0 \sin \phi_0 = 0 \rightarrow Y_0 = -mg\cos \theta_0 \sin \phi_0$$

$$Z_0 - mg\cos \theta_0 \cos \phi_0 = 0 \rightarrow Z_0 = -mg\cos \theta_0 \cos \phi_0$$

$$\therefore X = X_0 + \Delta X = \Delta X + mg\sin \theta_0$$

$$Y = Y_0 + \Delta Y = \Delta Y - mg\cos \theta_0 \sin \phi_0$$

$$Z = Z_0 + \Delta Z = \Delta Z - mg\cos \theta_0 \cos \phi_0$$

And the total force acting on the airplane (this value is the input which you will give to the RBD)

$$F_{x} = X - mg\sin \theta = \Delta X + mg\sin \theta_{0} - mg\sin \theta$$

$$F_{y} = Y + mg\cos \theta\sin \phi = \Delta Y + mg\cos \theta\sin \phi$$

$$F_{z} = Z + mg\cos \theta\cos \phi = \Delta Z - mg\cos \theta_{0}\cos \phi_{0} + mg\cos \theta\sin \phi$$

$$\begin{cases}
F_{x} \\
F_{y} \\
F_{z} \\
L \\
M \\
N
\end{cases} = \begin{cases}
\Delta X \\
\Delta Y \\
\Delta Z \\
\Delta L \\
\Delta M \\
\Delta N
\end{cases} + \begin{cases}
X_{0} \\
Y_{0} \\
Z_{0} \\
L_{0} \\
M_{0} \\
N_{0}
\end{cases} + \begin{cases}
-mg \sin \theta \\
mg \cos \theta \sin \emptyset \\
mg \cos \theta \cos \emptyset
\end{cases} \\
0 \\
0 \\
0
\end{cases} \\
\begin{cases}
X_{0} \\
M_{0} \\
N_{0}
\end{cases} = \begin{cases}
Mg \sin \theta_{0} \\
-mg \cos \theta_{0} \sin \phi_{0} \\
-mg \cos \theta_{0} \cos \phi_{0}
\end{cases} & & \begin{cases}
L_{0} \\
M_{0} \\
N_{0}
\end{cases} = \begin{cases}
0 \\
0 \\
0
\end{cases}$$

Types of Body axes

Consult "Dynamics of Flight, Bernard Etkin" pages 101-103 to review the concept of the **Body axes** of the airplane and its types (principal axes, stability axes, body axes).

You should note that the stability derivatives & Inertias of an airplane have different values and symbols according to the type of the body axes they are represented in.

Very important: Study the symbols and definitions stated in (NASA CR-2144) appendices **A&B**, then use the tables of the derivatives represented in the (**Body axes**) to extract the derivatives according to your flight condition.

LONGITUDINAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

F/C #	1	2	3	4	5	6	7	8	9	10
н	SL	\$L	SL	SL	20 K	20 K	20 K	40 K	40 K	40 <
۲	.198	.249	-450	.65C	.500	.650	.800	.700	.800	.900
xu +	0 209	0108	00499	00777	00247	00280	00643	.00187	00276	0200
ZU ≄	202	150	0807	126	0679	0832	0941	0696	0650	0424
MU *	.000117	.000181	-000146	000199	.000247	.885E-4	000222	.000259	.000193	5238-4
XW	.122	.106	.0743	.0345	.0782	.0482	.0253	.0 26 3	.0389	•0159
ZW	512	613	736	963	433	539	624	292	317	401
MM	00177	00193	00262	00239	00170	00190	00153	00101	00105	00190
ZWD	.0334	.0338	•0297	.0293	.0157	-0156	.0144	.00704	.00556	.00614
ZÇ	-6.22	-7.58	-10.4	12.8	-6.39	-8.09	-9.99	-4.32	-5.16	-6.71
MHD	000246	000240	000221	000228	000125	000155	000212	905E-4	000116	000160
MQ	357	437	699	925	421	535	653	284	339	401
XDE	.959	.971	1.18	0.	2.02	1.15	0.	1.93	1.44	.781
ZDE	-6.42	-9.73	-21.8	-32.4	-16.9	-26.4	-32.7	-15.1	-17.9	-18.6
MDE	378	574	-1.40	-2.07	-1.09	-1.69	-2.09	970	-1.16	-1.22
XD TH	-570E-4	.570E-4	.50 5E-4	. 5058-4	.505E-4	.505E-4	.505E-4	.505E-4	.505E-4	-505E-4
ZDTH	249 E-5	249E-5	220E-5	220L-5	220E-5	220E-5	220E-5	220 E-5	220E-5	220E-5
MD TH	.310 E-6	.3108-6	. 30 2E-6	.302£-6	•302E-6	.302E-6	.302F-6	.302E-6	-302E-6	• 30 ZE - 6

IATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

				, ,						
F/C +	1	2	3	4	5	6	7	8	9	10
н	S L.	SL	SL	SL	20 K	20 K	20 K	40 K	40 K	40 K
м	-198	.249	.450	-65C	.500	.650	.800	.700	.800	.900
YV	0890	0997	143	197	0822	104	120	0488	0558	0606
YB	-19.7	-27.8	-71.7	-143.	-42.6	-70.4	-99.4	-33.1	-43.2	-52.A
LB.	-1.33	-1.63	-3.19	-5.45	-2.05	-2.96	-4.12	-1.45	-3.05	-1.32
NB *	.168	.247	-810	1.82	.419	.923	1.62	.404	.598	.971
LP'	975	-1.10	-1.12	-1.47	652	804	974	404	465	459
W.D.	lé6	125	0706	0214	0701	0531	0157	0366	0318	.00284
LŔ†	.327	.198	.379	.256	.376	.317	. 292	.312	.388	.280
NR *	217	229	246	344	140	193	232	0963	115	141
Y+CA	0.	0.	0.	0.	0.	с.	0.	0.	0.	0.
L'CA	.227	.318	.229	.372	.128	.210	.310	.0964	.143	.186
Nº GA	.0264	.0300	.0285	.0371	.0177	.0199	.0127	.00875	.00775	00611
Y* CR	.0148	.0182	.0226	.0213	.0131	.0142	.0124	.00777	.00729	.00464
L * CR	.0636	-110	.254 .	.318	.148	-211	.183	.115	.153	.100
Nº CR	151	233	614	970	391	010	922	331	475	442

Note on Lateral-Directional derivatives:

The Lateral-Directional derivatives given in the table are (dashed), these are not the values to be used in the (forces & moments equations), check appendix **B** in the report to find the relation between the (dashed & undashed derivatives) to calculate the (undashed ones).

		,	
Lβ	=	$(L_{\beta} + I_{xz}N_{\beta}/I_{x})G$	1/sec ²
$\mathbf{L}_{\mathbf{p}}^{\bullet}$	=	$(L_p + I_{xz}N_p/I_x)G$	1/sec
$\mathbf{L_{r}^{t}}$	=	$(I_r + I_{XZ}N_r/I_X)G$	1/sec
$\mathtt{L}_{\delta_{\mathbf{r}}^{ \bullet}}$	=	$(I_{\delta_r} + I_{xz}N_{\delta_r}/I_x)G$	1/sec ²
Lδå	=	$(I_{\delta_{\mathbf{a}}} + I_{\mathbf{x}\mathbf{z}}N_{\delta_{\mathbf{a}}}/I_{\mathbf{x}})G$	1/sec ²
Nβ	=	$(N_{\beta} + I_{xz}L_{\beta}/I_{z})G$	1/sec ²
$N_{\mathbf{p}}^{1}$	==	$(N_p + I_{xz}L_p/I_z)G$	1/sec
N _r	=	$(N_r + I_{xz}L_r/I_z)G$	1/sec
$N_{\delta_{\mathtt{r}}^{\prime}}$	=	$(N_{\delta_r} + I_{xz}I_{\delta_r}/I_z)G$	1/sec ²
Noa.	=	$(N_{\delta_a} + I_{xz}I_{\delta_a}/I_z)G$	1/sec ²
G	=	$\frac{1}{1 - \frac{I_{XZ}^2}{I_X I_Z}}$	

Note: writing these equations in matrix form may help you a lot.

Note on pitch angle at equilibrium.

Please do not put the value of $\theta_0 = 0$, as the pitch angle is the summation of the angle of attack and the climb angle or flight path angle γ .

$$\theta = \alpha + \gamma$$
$$\theta_0 = \alpha_0 + \gamma_0$$

You will find the values of $\alpha_0 \& \gamma_0$ in the tables in NASA report in the flight condition table. Also, the initial values of the velocities (u_0, v_0, w_0) should be calculated from the value of the total speed along with the angle of attack and the side slip angle.

F/C #

H(FT)

M(-)

VTO(FPS)

VTO(KTAS)

VIC(KCAS)

W(LBS)

C.G. (MGC)

IX (SLUG-FT SQ)

IY (SLUG-FT SQ)

IZ (SLUG-FT SQ)

IXZISLUG-FT SQ)

EPSILCNIDEG)

Q(PSF)

QC (PSF)

ALPHA (DEG)

GAMMA (DEG)

LXP(FT)

LZP(FT)

1 TH(DEG)

X1 (DEG)

LTH(FT)

Angle of attack and sideslip angle

Validation for B747 FC5

Use the validation_helper.m script to verify the results for B747 FC5 and replicate the document output.

Validation for your plane

Use the Excel_Validation_App.p script to verify the results for your assigned plane and flight condition. **Then generate the plots for your A/C.**

Simulink simulator

Use the 6 DOF Euler angles block in Simulink to solve the above problem and compare the results using plots.

Reminder: Adjust the solver settings for Simulink to match your Matlab solver.

References

- 1) John H. Blakelock Automatic Control of Aircraft and Missiles-Wiley-Interscience (1991)
- 2) Flight Stability and Automatic Control Robert C. Nelson
- 3) Etkin B., Reid L.D. Dynamics of flight_ Stability and control-Wiley (1996)
- 4) NASA CR-2144--Heffley--Aircraft Handling Qualities Data