		model	total cost	percent cost	RSS	Adj. R²	RE	Comments
	baseline*	12.68+3.67*10^-2*d^(5/4)*g				0.989		Baseline result from Fast Multi Parameter Performance Modeling paper.
	normal	+ -23.215 + 6.93207*(d^1) + 0.0135415*(g^1.25)*log2^1(g) + -5.35724e-08*(p^1.5)	43872980.46	100.00	5750.00	0.938	0.196	Result of the old multi parameter modeler.
	Sparse cheap 125	$+\ -23.215 + -5.357 \times 10^{-08*} (p^{1.5}) + 6.932*(d) + 0.014*(g^{1.25})*log_2(g)$	43872980.46	100.00	5747.33	0.938	0.196	Sparse modeler shows the same result as the old modeler with the same points.
Ltimes	Sparse exp 125	+ -14.363 + -0.0491419*log2^1(p) + 1.63868*(d^0.5)*log2^2(d) + 0.02491*(g^0.75)*log2^2(g)	43872980.46	100.00	5480.00	0.941	0.190	Using different base points leads to different models. Maybe we model the behavior of the runtime at larger scales, as the parameters of the expensive points are much bigger.
	sparse cheap base	$+ -2.751 + -1.579 \times 10^{-08*} (p^{1.5}) + 3.553*(d) + 7.930 \times 10^{-03*} (g^{1.25})*log_2(g)$	274923.23	0.63	2.84	0.998	0.020	Same result as with cheap base points and all additional points. Only slightly different coefficients. Looks like for KRIPKE we do not need any additional points for a good model.
	sparse exp base	$+\ -63.432 + 0.059*log_2(p) + 2.456*(d^{0.5})*log_2{}^2(d) + 0.039*(g^{0.75})*log_2{}^2(g)$	21011077.34	47.89	0.57	1.000		Same result as with exp base points and all additional points. This result also indocates that we do not need any additional points. But we are modeling a different behavior.
	sparse cheap +1	$+ \ -2.602 + \ -4.534 \times 10^{-08*} (p^{1.5}) + 3.562*(d) + 7.934 \times 10^{-03*} (g^{1.25})*log_2(g)$	275103.00	0.63	8.14	0.993		An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.
	sparse exp +1	$+ \ -10.485 + -1.486*log_2(p) + 1.925*(d^{0.5})*log_2{}^2(d) + 0.030*(g^{0.75})*log_2{}^2(g)$	21011137.47	47.89	528.38	0.961	0.163	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.

^{*} Basline from Fast Multi Parameter Performance Modeling paper

We use only 125 points for modeling to save the rest for further scaling evaluation etc.

The costs are the same for each kernel off cause, as they are based on the same measurements.

Parameters are the number of processes p, the number of direction-sets d and the number of energy groups g.

Parameter values are p=[8,64,512,4096,32768], d=[2,4,6,8,10], g=[32,64,96,128,160].

		model	total cost	percent cost	RSS	Adj. R²	RE	Comments
LplusTimes	baseline*	9.82 + 9.62 · 10 −3 · d · g 3/2				0.991		Baseline result from Fast Multi Parameter Performance Modeling paper.
	normal	$+\ -23.215 + 6.932^*(d) + 0.014^*(g^{1.25})^*log_2(g) + -5.357 \times 10^{-08*}(p^{1.5})$	43872980.46	100.00		0.938	0.196	Result of the old multi parameter modeler.
	Sparse cheap 125	$+ -39.266 + 14.773*log_2^{-1}(p) + 6.033*(d^{0.666667})*log_2(d) + 6.851x10^{-03*}(g^{1.5})*log_2(g)$	43872980.46	100.00		0.876	0.461	Sparse modeler shows the same result as the old modeler with the same points.
	Sparse exp 125	+ 27.422 + 2.054x10 ^{-04*} log ₂ (p)*(d)*(g ^{1.33333})*log ₂ (g)	43872980.46	100.00		0.597	0.562	Using different base points leads to different models. Maybe we model the behavior of the runtime at larger scales, as the parameters of the expensive points are much bigger.
	sparse cheap base	$+\ 1.975 + -0.410*log_2^{-1}(p) + 2.013*(d^{0.666667})*log_2(d) + 2.341\times10^{-03*}(g^{1.5})*log_2(g)$	274923.23	0.63		0.992	0.028	Same result as with cheap base points and all additional points. Only slightly different coefficients. Looks like for KRIPKE we do not need any additional points for a good model.
	sparse exp base	+ -147.544 + -1.055*log ₂ (p) + 18.319*(d) + 0.026*(g ^{1.33333})*log ₂ (g)	21011077.34	47.89		0.996	0.023	Same result as with exp base points and all additional points. This result also indocates that we do not need any additional points. But we are modeling a different behavior.
	sparse cheap +1	$+\ 1.812 + 1.764 * log_2^{-1}(p) + 1.994 * (d^{0.666667}) * log_2(d) + 2.313 \times 10^{-03*} (g^{1.5}) * log_2(g)$	275103.00	0.63		0.984	0.036	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.
	sparse exp +1	$+ \ -36.682 + \ -4.157* og_2(p) + 13.667*(d) + 0.020*(g^{1.33333})* og_2(g)$	21011137.47	47.89		0.951	0.304	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.

^{*} Basline from Fast Multi Parameter Performance Modeling paper

We use only 125 points for modeling to save the rest for further scaling evaluation etc.

The costs are the same for each kernel off cause, as they are based on the same measurements.

Parameters are the number of processes p, the number of direction-sets d and the number of energy groups g.

Parameter values are p=[8,64,512,4096,32768], d=[2,4,6,8,10], g=[32,64,96,128,160].

		model	total cost	percent cost	RSS	Adj. R²	RE	Comments
	baseline*	4.91 + 4.83 · 10 −3 · p 1/3 · d · g + 0.90 · d · g				0.994		Baseline result from Fast Multi Parameter Performance Modeling paper.
	normal	+ 5.417 + 0.022*(d ^{0.75})*(g ^{0.9})*(p ^{0.333333})	43872980.46	100.00		0.977	0.204	Result of the old multi parameter modeler.
	Sparse cheap 125	+ 5.417 + 0.022*(p ^{0.33333})*(d ^{0.75})*(g ^{0.8})	43872980.46	100.00		0.977		Sparse modeler shows the same result as the old modeler with the same points.
Sweep	Sparse exp 125	+ 12.256 + 2.957x10 ^{-04*} (p ^{0.33333})*(d ^{1.25})*(g ^{0.666667})*log ₂ ²(g)	43872980.46	100.00		0.981	0.303	Using different base points leads to different models. Maybe we model the behavior of the runtime at larger scales, as the parameters of the expensive points are much bigger.
	sparse cheap base	+ -4.112 + 0.633*(p ^{0.333333}) + 1.771*(d ^{0.75}) + 0.143*(g ^{0.8})	274923.23	0.63		1.000	0.011	Same result as with cheap base points and all additional points. Only slightly different coefficients. Looks like for KRIPKE we do not need any additional points for a good model.
	sparse exp base	+ -420.213 + 7.321*(p ^{0.33333}) + 12.014*(d ^{1.25}) + 0.146*(g ^{0.666667})* og ₂ ² (g)	21011077.34	47.89		1.000	6.418*10^-3	Same result as with exp base points and all additional points. This result also indocates that we do not need any additional points. But we are modeling a different behavior.
	sparse cheap +1	+ -4.082 + 0.629*(p ^{0.333333}) + 1.790*(d ^{0.75}) + 0.145*(g ^{0.8})	275103.00	0.63		0.991	0.030	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.
	sparse exp +1	+ 24.349 + 2.658x10 ^{-04*} (p ^{0.33333)} *(d ^{1.25})*(g ^{0,666667})*log ₂ ² (g)	21011137.47	47.89		0.981	0.721	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.

^{*} Basline from Fast Multi Parameter Performance Modeling paper

We use only 125 points for modeling to save the rest for further scaling evaluation etc.

The costs are the same for each kernel off cause, as they are based on the same measurements.

Parameters are the number of processes p, the number of direction-sets d and the number of energy groups g.

Parameter values are p=[8,64,512,4096,32768], d=[2,4,6,8,10], g=[32,64,96,128,160].

		model	total cost	percent cost	RSS	Adj. R²	RE	Comments
MPI_WaitAII	baseline*							
	normal	$+\ 0.133 + 3.362 \times 10^{-05*} (d^3)*log_2(d) + 3.313 \times 10^{-05*} (g^{1.66667}) + -0.430*log_2^{-1}(p)$	43872980.46	100.00		0.806	0.195	Result of the old multi parameter modeler.
	Sparse cheap 125	$+\ 0.133 + -0.430*logz^{-1}(p) + 3.362x10^{-0s*}(d^3)*logz(d) + 3.313x10^{-0s*}(g^{1.66667})$	43872980.46	100.00		0.806	0.195	Sparse modeler shows the same result as the old modeler with the same points.
	Sparse exp 125	$+\ 0.047 + -2.575*(p^{-1})*log_2^{-1}(p) + 2.484x10^{-03}*(d^{0.666667})*log_2^2(d) + 7.118x10^{-05}*(g^{0.75})*log_2^2(g)$	43872980.46	100.00		0.850	0.177	Using different base points leads to different models. Maybe we model the behavior of the runtime at larger scales, as the parameters of the expensive points are much bigger.
MPI_V	sparse cheap base	$+\ 0.107 + -0.141*log_{2}^{-1}(p) + 3.818 \times 10^{-06*}(d^{3})*log_{2}(d) + 8.736 \times 10^{-06*}(g^{1.66667})$	274923.23	0.63		0.955	0.027	Same result as with cheap base points and all additional points. Only slightly different coefficients. Looks like for KRIPKE we do not need any additional points for a good model.
	sparse exp base	$+ -0.139 + -6.631*(p^{-1})*log_2^{-1}(p) + 4.736x10^{-03*}(d^{0.666667})*log_2^2(d) + 1.298x10^{-04*}(g^{0.75})*log_2^2(g) + 1.298x10^{-04*}(g^{0.75})*log_2^2(g^{0$	21011077.34	47.89		0.979	0.020	Same result as with exp base points and all additional points. This result also indocates that we do not need any additional points. But we are modeling a different behavior.
	sparse cheap +1	$+\ 0.107 + -0.142 * log_2^{-1}(p) + 3.914 \times 10^{-06*} (d^3) * log_2(d) + 8.788 \times 10^{-06*} (g^{1.66667})$	275103.00	0.63		0.958	0.026	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.
	sparse exp +1	$+\ 0.062 + -3.005*(p^{-1})*log_2^{-1}(p) + 2.491x10^{-03}*(d^{0.666667})*log_2^2(d) + 7.288x10^{-05}*(g^{0.75})*log_2^2(g)$	21011137.47	47.89		0.693	0.290	An additional point does not seem to increase the accuracy of the model. Therefore, we can save it to further reduce the cost of modeling.

^{*} Basline from Fast Multi Parameter Performance Modeling paper

We use only 125 points for modeling to save the rest for further scaling evaluation etc.

The costs are the same for each kernel off cause, as they are based on the same measurements.

Parameters are the number of processes p, the number of direction-sets d and the number of energy groups g.

Parameter values are p=[8,64,512,4096,32768], d=[2,4,6,8,10], g=[32,64,96,128,160].