LA II Basics/Kochrezepte

Andreas Mai

13. September 2016

LA Klausur am 16.09.2016 08:00 - 10:00 LA I 11:00 - 13:00 (12:30) LA II

Kein Anspruch auf Vollständigkeit ;) Jetzt Ernsthaft.. Dieses Skript ist nicht ansatzweise fertig

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega_{2} \\ \Omega_{2} \end{bmatrix}$$

Inhaltsverzeichnis

1	Jordan	1
	1.1 Jordan Normalform	1
	1.2 Bestimmung der Basiswechselmatrix S	1
2	Isometrienormalform	2
	2.1 Tipps	
	2.2 Basisswechselmatrix	
	2.3 Gram-Schmidt Verfahren zur Orthonormalbasis	3
3	Drehachse und -winkel	3
	3.1 Vorgehen Drehwinkel	
	3.2 Isometrienormalform aus dem Drehwinkel im $\mathbb{R}^3 \times \mathbb{R}^3$	4
4	Bestimmung von Basiswechselmatrix zu Isometrie	4
5	Skalarproduktbeweis	5
6	Orthogonales Komplement	5
7	Orthogonale Projektion $\pi_U(v)$	5
8	Abstand von Untervetorräumen	5
9	Formeln	5

1 Jordan

Tipp: "Kochen mit Jordan" von Daniel Winkler¹

1.1 Jordan Normalform

Vorgehen:

- Charakteristisches Polynom berechnen (Eigenwerte)
 - Anzahl der Eigenwerte = Anzahl der Jordanblöcke
 - Algebraische VVK = Größe des Jordanblocks des Eigenwertes
 - Geometrische VVK = Anzahl der Jordankästchen im Block
- Wenn mehrere Möglichkeiten Kästchen zu bilden:
 - Index des Hauptraumes herausfinden
 - Matrix hochnehmen bis sie sich nicht mehr ändert (oft Nullmatrix)
 - Index = größtes Jordankästchen im Block
- Per Konvention: größte Jordanblöcke und -kästchen zuerst
- \bullet Minimalpolynom m_p : Wie Charakteristisches Polynom, Potenzen aber wie das größte Jordankästchen zum Eigenwert.

Lösen von Allgemeinen Aufgaben

Zum lösen von allgemeinen Aufgaben ohne konkret gegebene Matrix hilft:

- Größe der Matrix = Größe der JNF (= Dimension???)
- Spur der Matrix = Spur der JNF
- Wenn gegeben: Größe, Eigenwerte, Spur: Jordan**blöcke** ausrechenbar
- Wenn Hauptraumgleichung $\neq 0$, dann Jordan**kästchen** größer als Potenz bsp: $(A I_i)^2 \neq 0 \Rightarrow$ Jordankästchen vom EW $i \geq 3$ (falls Jordanblock > 2)

1.2 Bestimmung der Basiswechselmatrix S

Hauptraum: Kleinste Zahl p, für die gilt: $Kern(A - \lambda I)^p = Kern(A - \lambda I)^{p+1}$

• Nehme Basisvektoren aus $Kern(A - \lambda I)^p$, welche nicht in $Kern(A - \lambda I)^{p-1}$ enthalten sind $\Rightarrow v_1, v_2, ...$

¹http://www.danielwinkler.de/la/jnfkochrezept.pdf

- Die Geordnete Basis ist definiert durch: $v_1, (A \lambda I) \cdot v_1, (A \lambda I)^2 \cdot v_1, \ldots, v_2, (A \lambda I) \cdot v_2, (A \lambda I)^2 \cdot v_2, \ldots$ (jeweils bis $(A \lambda I)^{p-1}$)
- Falls Jordankästchen des EW der Größe p-1existiert, Schritte wiederholen für $p \to p-1$
- Diese Schritte wür alle EW wiederholen
- Falls noch nicht alle Vektoren für die Basis vorhanden: Vektoren aus $Kern(A-\lambda I)$ hinzufügen, welche linear unabhängig sind

2 Isometrienormalform

- Hilfsmatrix $H = A + A^T$ bestimmen
- \bullet Eigenwerte von H bestimmen
- Isometrienormalform erstellen
 - Algebraische VVK des Eigenwerts 2 ist die Anzahl der 1 auf der Hauptdiagonale
 - Algebraische VVK des Eigenwerts -2ist die Anzahl der -1auf der Hauptdiagonale
 - Die anderen Eigenwerte müssen $\in (-2, 2)$ liegen
 - Für die anderen Eigenwerte gilt weiterhin das

Drehkästchen:
$$\begin{pmatrix} \frac{\lambda}{2} & -\sqrt{1-(\frac{\lambda}{2})^2} \\ \sqrt{1-(\frac{\lambda}{2})^2} & \frac{\lambda}{2} \end{pmatrix}$$

Beispiel

$$CP(H) = (2 - \lambda)^2 (-2 - \lambda)^2 (0 - \lambda)$$

$$\Rightarrow D_{\lambda} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & -1 & & \\ & & -1 & \\ & & & 0 & -1 \\ & & & 1 & 0 \end{pmatrix}$$
(Leere Felder sind 0)

2.1 Tipps

Hilfreich, bei allgemeinen Aufgaben ohne konkret gegebene Matrix

• Können Eigenwerte 1 und -1 vorkommen?

- Determinante und Spur von der Matrix und der Isometrienormalform sind identisch
- Beim \mathbb{R}^3 gilt: (siehe nächstes Kapitel)
 - Ein Eintrag mit 1 (entspricht der Drehachse)
 - Ein Drehkästchen

2.2 Basisswechselmatrix

- Für H die Eigenräume von ± 2 berechnen und in Orthonormalbasis umwandeln (ablesbar, oder Gram-Schmidt-Verfahren)
 - \Rightarrow Man erhält die ersten Spalten
- Für die anderen Eigenwerte Eigenräume ausrechnen. Ein v wählen und mit $\tilde{A}v$ orthonalisieren und Normalisieren (Gram-Schmidt) Falls Eigenraum Dimension 2 hat, mit nächstem Eigenraum fortfahren

2.3 Gram-Schmidt Verfahren zur Orthonormalbasis

- gegeben: Basis (b_1, \ldots, b_n) gesucht: Orthonormalbasis (c_1, \ldots, c_n)
- Wähle einen Vektor aus der Basis und normiere ihn $\Rightarrow c_1$
- $c'_2 = b_2 \langle b_2 \cdot c_1 \rangle \cdot c_1$ $c_2 = \frac{1}{|c'_2|} \cdot c'_2 \ (c'_2 \ \text{Normieren})$
- $c'_3 = b_3 \langle b_3 \cdot c_2 \rangle \cdot c_2 \langle b_3 \cdot c_1 \rangle \cdot c_1$ $c_3 = \frac{1}{|c'_3|} \cdot c'_3 \ (c'_3 \ \text{Normieren})$
- und so weiter

3 Drehachse und -winkel

- Drehebene: $[x \Phi(x), y \Phi(y)]$
- Drehachse: Finde einen Vektor v, für den gilt:

$$- \langle x - \Phi(x), v \rangle = 0$$

$$-\langle y - \Phi(y), v \rangle = 0$$

- Drehwinkel: Finde einen Vektor u, für den gilt:
 - Orthgonal zur Drehachse
 - Bild kann berechnet werden
 - $\Rightarrow u$ ist Linear kombination aus x, y, v

3.1 Vorgehen Drehwinkel

- Wähle ein $u \in D$ rehebene
- Berechne $\Phi(u) = a \cdot \Phi(x) + b \cdot \Phi(y) + c \cdot \Phi(v)$ (Da v Drehachse, gilt $\Phi(v) = v$)
- Berechne Winkel zwischen $\Phi(u)$ und u:

$$\cos \alpha = \frac{\langle x, y \rangle}{||x|| \cdot ||y||}$$

3.2 Isometrienormalform aus dem Drehwinkel im $\mathbb{R}^3\times\mathbb{R}^3$

Die Isometrienormalform im \mathbb{R}^3 besteht immer aus:

- Ein Eintrag mit 1
- Ein Drehkästchen
- also: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & D_{\lambda} & \\ 0 & & \end{pmatrix}$
- $D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$
- $\sin = \sqrt{1 \cos^2}$

Merke auch die Matrix D_{λ} unter dem Punkt Isometrienormalform

4 Bestimmung von Basiswechselmatrix zu Isometrie

- Bestimme Eigenräume zu Eigenwerten von $H = A + A^T$
- Bestimme insgesamt ONB aus Eigenräumen
- \bullet Vorletzter Basisvektor b_{n-1} nehmen

 $A \cdot b_{n-1}$ berechnen und als Linearkombination von b_n und b_{n-1} darstellen

- Falls $b_{n-1} = \dots b_{n-1} + \dots b_n$, be happy
- Falls $b_{n-1} = \dots b_{n-1} \dots b_n$, mit –1 Multiplizieren
- $b_1, \dots b_n$ sind die Spalten der Basiswechselmatrix S

5 Skalarproduktbeweis

- Symmetrie Zeigen: $\langle x, y \rangle = \langle y, x \rangle$
- Bilinearform Zeigen:

$$-\langle A_1 + A_2, B \rangle = \langle A_1, B \rangle + \langle A_2, B \rangle$$

$$-\langle c \cdot A, B \rangle = c \cdot \langle A, B \rangle$$

- Positive Definitheit zeigen
 - $-\langle x, x \rangle > 0 \text{ (für } x \neq 0)$
 - $-\ \langle x,x\rangle=0$ (nur für x=0)

6 Orthogonales Komplement

- ullet Vektoren von U horizontal in eine Matrix Schreiben
- Kern der Matrix ausrechnen (Gauß und -1-Trick)
- Kern = Basis von U^{\perp}

7 Orthogonale Projektion $\pi_U(v)$

- Bestimme ONB von $U: b_1, \ldots b_n$
- $\pi_U(v) = \langle v, b_1 \rangle \cdot b_1 + \dots + \langle v, b_n \rangle \cdot b_n$

Abstand $d(v, U) = ||\pi_U(v)||$

8 Abstand von Untervetorräumen

•

9 Formeln

- Winkel zwischen 2 Vektoren $\cos\alpha = \frac{\langle x,y\rangle}{||x||\cdot||y||}$
- 2 Vektoren orthogonal, wenn $\langle x, y \rangle = 0$