Chapter 2

Transformations And Expectations

2.1

(a) Y = X³ , f_X(x) =
$$42x^5(1-x)$$
, $0 < x < 1$, $g^{-1}(y) = X^{\frac{1}{3}}$ $f_y = 42x^{\frac{5}{3}}(1-x^{\frac{1}{3}})$ * $\frac{-1}{3}x^{\frac{-4}{3}}$, On integration it comes to 1 (b) $g^{-1}(y) = \frac{Y-3}{4}$, $f_X(x) = 7e^{-7x} \Rightarrow f_y = 7e^{-7\frac{y-3}{4}}$ $Y = (3 < y < \infty)$ (c) Y = X², f_X(x) = $30x^2(1-x)^2$, $0 < x < 1$ $g^{-1}(y) = X^{\frac{1}{2}}$ $f_y = 20x(1-x^{\frac{1}{2}})$ * $\frac{-1}{2}x^{\frac{-3}{2}}$, On integration it comes to 1

2.2

(a)
$$Y = X^2 \Rightarrow g^{-1}(x) = x^{\frac{1}{2}} f_y = \frac{1}{2} x^{\frac{-1}{2}}$$

(b) $Y = -\log(X) \Rightarrow g^{-1}(x) = e^{-x} \Rightarrow \frac{(n+m+1)!}{n!m!} e^{-xn} (1 - e^{-x})^m * (-e^{-x})$
(c) $Y = e^x \Rightarrow f_y = \frac{1}{\sigma^2} x^{\frac{-(\log y/\sigma)^2}{2}} * \frac{\log y}{y}$

2.3

$$f_X(x) = \frac{1}{3}(\frac{2}{3})^x \Rightarrow f_X(y) = \frac{1}{3}(\frac{2}{3})^{\frac{y}{1-y}} Y \to \{0, \frac{1}{2}, \frac{2}{3} \dots \}$$

$$\text{(a) } f(x) = \begin{cases} \frac{1}{2} \lambda e^{-\lambda x} for x \ge 0 \\ \\ \frac{1}{2} \lambda e^{\lambda x} for x \le 0 \end{cases}$$

$$\int_{-\infty}^{0} \frac{1}{2} \lambda e^{-\lambda x} + \int_{0}^{\infty} \frac{1}{2} \lambda e^{\lambda x} = \frac{1}{2} + \frac{1}{2} = 1$$
(b)
$$\int_{-\infty}^{t} \frac{1}{2} \lambda e^{-\lambda x} + \int_{t}^{\infty} \frac{1}{2} \lambda e^{\lambda x} = \frac{t}{2}$$

$$f(x) = \begin{cases} \frac{1}{2} \lambda e^{\lambda t} fort \ge 0 \\ 1 - \frac{1}{2} \lambda e^{-\lambda t} fort \le 0 \end{cases}$$
(c)
$$P(|X| < t) = 0 \text{ for } t \le 0 \text{ and } 1 - e^{-\lambda t} \text{ for } t > 0$$

answer =
$$\frac{1}{\pi} \frac{1}{\sqrt{Y(1-Y)^2}}$$

2.6

(a)
$$f_y = \frac{1}{2}e^{-|Y|^{\frac{1}{3}}}\frac{1}{3}Y^{\frac{-2}{3}}$$

(b) $f_Y(y) = \frac{3}{8}(1-y)^{\frac{-1}{2}} + \frac{3}{8}(1-y)^{\frac{1}{2}}, 0 < y < 1$
(c) $f_Y(y) = \frac{3}{16}(1-(1-y)^{\frac{1}{2}})^2(1-y)^{\frac{-1}{2}} + \frac{3}{8}(2-y)^2$

2.7

(a),(b)
$$f_y(y) = \begin{cases} \frac{2}{9} \frac{1}{\sqrt{y}} & \text{if } y < 1\\ \frac{1}{9} + \frac{1}{9} \frac{1}{\sqrt{y}} & \text{if } y \ge 1 \end{cases}$$

(a)
$$F_x^{-1}(y) = -\ln(1-y)$$

(b) $F_x^{-1}(y) = \begin{cases} \ln 2y & 0 < y < \frac{1}{2} \\ \frac{1}{2} & y = \frac{1}{2} \\ 1 - \ln(2 - 2y) & 0 < y < \frac{1}{2} \end{cases}$
(c) $F_x^{-1}(y) = \begin{cases} \ln 4y & 0 < y \le \frac{1}{4} \\ -\ln(4 - 4y) & \frac{3}{4} < y < 1 \end{cases}$

Figure 2.1:

Logically cdf
$$F_x(x) \sim \text{Uniform}(0,1) \ F_x^{-1}(x) = \begin{cases} 0 & -\infty < x \le 1 \\ \frac{(x-1)^2}{4} & 1 < x < 3 \\ 1 & 3 \le \infty \end{cases}$$

2.10

Refer to figure 2.1 logically $P(Y > y) \ge P([U > y])$ $P(Y < y) \le P([U < y])$

for some $x=x_0$ P(Y>y)=P([U>y]) but at next point $\epsilon,$ P(Y>y) will be stagnant since its a discrete probability. But P([U>y]) will eventually be lifted some points up. So the two cases are justified

(a)
$$f_X(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\mathbf{x}^2/2}$$

 $\int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\mathbf{x}^2/2} d\mathbf{x}$

$$\begin{array}{l} \Rightarrow {\rm Y} = {\rm X}^2 \\ f_y(y) = 2(\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}|\frac{1}{\sqrt{2\pi y}}|) \\ {\rm Integrating \ gives \ 1} \\ {\rm (b)} f_X({\rm x}) = \frac{1}{\sqrt{2\pi}}{\rm e}^{-{\rm x}^2/2} \ {\rm EY} = \frac{2}{\pi} \ {\rm EY}_2 = 1 \\ {\rm (EY)} = 1 - \frac{2}{\pi} \end{array}$$

skipping

2.13

$$\begin{array}{l} f_X(X) = = \mathrm{p}(1\text{-}\mathrm{p})^{\mathrm{x}} + (1\text{-}\mathrm{p})\mathrm{p}^{\mathrm{x}} \\ \mathrm{EX} = \mathrm{p}(1\text{-}\mathrm{p})[\frac{1}{p^2} + \frac{1}{(1-p)^2}] \end{array}$$

2.14

(doubt) EX =
$$\int_0^\infty x f_X(x)$$
 Integration by parts EX = $[xF_X(x)]_0^\infty$ - $\int_0^\infty F_X(x) dx$ Now let say the identity is true $\int_0^\infty [1-F_X(x)] dx = \int_0^\infty dx$ - $\int_0^\infty F_X(x) dx$ So $1^{\rm st}$ term doesn't make any sense

2.15

$$\int_{-\infty}^{\infty} x f_1(x) dx + \int_{-\infty}^{\infty} x f_2(x) dx = \int_{-\infty}^{\infty} x (f_1(x) + f_2(x)) dx = \int_{-\infty}^{\infty} x (min(f_1(x), f_2(x)) + max(f_1(x), f_2(x))) dx = (X \vee Y) + (X \wedge Y) = X + Y$$
 Hence by rearranging we get the equation

2.16

$$\int_0^\infty ae^{-\lambda t} + (1-a)e^{-\mu t} = \frac{a}{\lambda} + \frac{1-a}{\mu}$$

- (a) $m = 2^{\frac{1}{3}}$
- (b) m = 0

E|X-a| =
$$\int_{-\infty}^{\infty} |x-a| f(x) = \int_{-\infty}^{a} (-x+a) f(x) + \int_{a}^{\infty} (x-a) f(x)$$
. On differentiating,
$$\frac{dE|x-a|}{da} = \int_{-\infty}^{a} f(x) - \int_{a}^{\infty} f(x) = 0 \Rightarrow \int_{-\infty}^{a} f(x) = \int_{a}^{\infty} f(x)$$

2.19

$$E|X-a|^2=\int_{-\infty}^{\infty}(x-a)^2f(x)dx=\frac{dE}{dx}=\int_{-\infty}^{\infty}2(x-a)f(x)dx\Rightarrow\int_{-\infty}^{\infty}xf(x)=a\int_{-\infty}^{\infty}f(x)dx=a(1)\Rightarrow EX=a$$

2.20

$$EX = \sum_{k=0}^{k=\infty} k(1-p)^k p = \frac{1}{p^2}$$

2.21

$$Eg(X) = \int_{-\infty}^{\infty} g(X) f_X(x) dx = \int_{-\infty}^{\infty} y f_X(g^{-1}y) |\frac{dg^{-1}(y)}{dy}| dy = \int_{-\infty}^{\infty} y f_y(y) dy = EY$$

2.22

- (a) Integration leads to 1. (b) EX = $\frac{2\beta}{\sqrt{\pi}}$, Var(X) = $\beta^2(\frac{3}{2} \frac{4}{\pi})$

2.23

$$f_y(y) = \frac{1}{2}y^{\frac{-1}{2}}$$

 $EY = \frac{1}{3}$
 $EY^2 = \frac{1}{5}$
 $Var(y) = \frac{4}{45}$

2.24

(a), (b), (c) same as above

Let A =
$$\int_0^X f_X(x) dx$$
 Now $\int_0^{-X} f_X(x) dx \Rightarrow Y = -X \Rightarrow dY = -dX \Rightarrow \int_{-X}^0 f_X(x) dx \Rightarrow -\int_Y^0 f_Y(y) dy = A$ Hence symmetrical

2.26

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

$$M_X(-t) = \int_{-\infty}^{\infty} e^{-tx} f_X(x) dx \Rightarrow \int_{-\infty}^{\infty} e^{t(-x)} f_X(-x) dx. Let j = -x \Rightarrow dj = -dx - \int_{-\infty}^{\infty} e^{tj} f_X(j) dj = M_x(t)$$

2.27

- (a) gaussian, $|\mathbf{x}|$, \mathbf{x}^2 (b) $\int_{-\infty}^a f_X(x) = \int_a^\infty f_X(x) \Rightarrow x = a y \Rightarrow \int_0^\infty f_X(a y) dy = \int_{-\infty}^a f_X(a y) dy \Rightarrow$ a is the median

(c) Wrong sol
$$\int_{-\infty}^{\infty} x f_X(x) dx = \int_{-\infty}^a x f_X(x) dx + \int_a^{\infty} x f_X(x) dx$$
 let for first part $x \to a$ - x and second part $x \to x - a$ $-\int_0^0 ((a-x)f_X(a-x))dx + \int_0^{\infty} ((x-a)f_X(x-a)dx) = \int_0^{\infty} ((a-x)f_X(a-x))dx + \int_0^{\infty} ((x-a)f_X(x-a)dx) = \int_0^{\infty} ((x-a)f_X(a-x))dx + \int_0^{\infty} ((x-a)f_X(a-x))dx + \int_0^{\infty} ((x-a)f_X(a-x))dx = 0$ symmetric function

- (d) It has a monotonic slope. Hence it cant have a symmetric pdf
- (e) EX = 1, m median = ln2

2.28

- (a) Gaussian distribution
- (b) uniform distribution
- (c) Let assume that the point of symmetry is not the modial point. Since the function is symmetric there will be another x for which the mode value will be same. This is in contradiction as our function is unimodal. Hence its symmetric about the mode.
- (d) for a > x > y where a = 0 and f(0) > x > y.

- (a) Let think logically x-a will shift the ath to zero. Hence symmetrical.
- (b) $\alpha_3 = 2$

(c) (i)
$$\alpha_4 = 3$$
 (ii) $\alpha_4 = \frac{9}{5}$ (iii) $\alpha_4 = 6$

(a) EX² = n(n-1)p² + np. EX = np So E(X(X-1)) = n(n-1)p² (binomial) EX² =
$$\lambda^2$$
 + λ EX = λ E(x(x-1)) = λ^2

- (b) $Var(binomial) = n(n-1)p^2 np^2 Var(binomial) = \lambda^2 + \lambda \lambda^2 = \lambda$
- (c) I wont be able to solve

2.31

(a)
$$M_X(t) = \frac{e^(tx)-1}{ct}$$

(b) $M_X(t) = \frac{2}{c^2}((c-1)e^c - c + 1)$
(c) $M_X(t) = \frac{4e^{\alpha t}}{4-\beta^2t^2}$
(d) $P(X = x) = \sum_{x=0}^{x=\infty} {r + x - 1 \choose x} p^r (1-p)^x dx \Rightarrow$
 $M^X(t) = \sum_{x=0}^{x=\infty} e^{tx} {r + x - 1 \choose x} p^r (1-p)^x dx \Rightarrow \sum_{x=0}^{x=\infty} e^{tx} {r + x - 1 \choose x} p^r (1-p)^x dx \Rightarrow p^r (1-p)^x dx$

2.32

 $M_X(0) = 0$, $ButM_X(0) = 1$ as the distribution of pmf should be 1. So no

2.33

 $\frac{d}{dt}S(t) = \frac{M_X^{'}(t)}{M_X(t)}Puttingt = 0wegetM_X(0) = 1, M_X^{'} = EX,$ Same go by differentiating divide rule and you will $(M_X^t)^2 \Rightarrow EX^2 - (EX)^2$

2.34

(a) $M_X(x) \sum_{x=0}^{x=\infty} \frac{e^{tx}e^{-\lambda}\lambda^x}{x!}$ Using Taylor series $e^{-\lambda} * e^{\lambda e^t}$ Hence we derive the $M_X(t)$. (Rest is Maths) $\mathrm{EX} = \lambda \; \mathrm{EX}^2 = \lambda^2 + \lambda \; \mathrm{Var}(x) = \lambda$ (b) $M_X(X) \sum_{x=0}^{x=\infty} p(1-p)_x$ (Think in terms of Geometric Mean.) $M_X(t) =$

$$EX = \frac{1-p}{p}, EX^2 = \frac{p(1-p)+2(1-p)^2}{p^2} Var(x) = \frac{1-p}{p^2}$$

EX = $\frac{1-p}{p}$, EX² = $\frac{p(1-p)+2(1-p)^2}{p^2}$ Var(x) = $\frac{1-p}{p^2}$ (c) Yes its an mgf (Some complicated mathematics) EX = μ EX² = μ ² + σ ².

 $Var(x) = \sigma^2$

2.35

- (a) $\int_{\infty}^{\infty} x^r * \frac{1}{\sqrt{2\pi}x} * e^{-(\log x)^2/2} = e^{r^2/2}$ (b) $e^{r^2/2 2\pi^2}$

2.36

$$\int_0^\infty \frac{e^{tx}}{\sqrt{2\pi}x} e^{-(\log^2/2)} dx$$

$$=\lim_{x\to\infty}e^{tx-log^2(x)}$$

$$\lim_{x\to\infty} \frac{e^{tx}}{e^{\log^2(x)}}$$
 Taking log

 $\begin{array}{l} \int_0^\infty \frac{e^{tx}}{\sqrt{2\pi x}} e^{-(\log)^2/2} dx \\ = \lim_{x \to \infty} e^{tx - \log^2(x)} \\ \lim_{x \to \infty} \frac{e^{tx}}{e^{\log^2(x)}} \text{Taking log} \\ = \lim_{x \to \infty} \frac{tx}{\log^2(x)} \text{ On solving } \lim_{x \to \infty} tx/2 \to \infty \end{array}$

2.37

- (a)
- (b)

(c) (i)
$$M_X(t) = e^{K_1}$$

ii $M_X(t) = e^{K_2}$

ii
$$M_X(t) = e^{K_2}$$

(d) make transformation e^x

2.38

- (a) $M_X(t)=[p/(1-(1-p)e^t)]^r$ (b) $M_X(t)=[p/(1-(1-p)e^2pt)]^r$ On solving $[\frac{1}{1-2t}]^r$

- (a) $e^{-\lambda x}$ (b) $\frac{-1}{\lambda^2}$ (c) $\frac{-1}{t^2}$ (d) $\frac{1}{(1-t)^2}$

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5: