Assignment Project Exam Help

https://eduassistpro.github.

Add Wechatedu_assist_pr

Induction on Lists

Q. How do we make all finite lists?

A. String (paner) tan be proposed the Following Help the empty list [] is a list (of elements of type A)

• give as with a list the street of the stre

Q. How do we prove a property P(I) for a

A. We (A) dd to Wetch hat sedus abassist pr

- ullet establish that the property holds for [], i.e. P([])
- if as is a list for which P(as) holds, and a is arbitrary, show that P(a:as) holds.

Making and Proving in Lockstep

Suppose we want to establish that P(as) holds for all lists as.

```
Stage 0. as = [].

Assignment Project Exam Help

Stage 1.
```

- * alre https://eduassistpro.github.
- Stage n Add : Whe Chat edu_assist_pr
 - need to establish that P(a:as')
 - ullet already know that P(as') and may use this knowledge

May use the fact that P(as) holds for lists constructed at previous stage

List Induction, Informally

To prove that $\forall as. P(as)$ it suffices to show

Assignment Project Exam Help

- assuming that P(as) holds for all lists as (considered at previous stag
- sho https://eduassistpro.github.

Example.

Artic, 4, Wferws from P([0.3, 4, 7]) follows from P([0.3, 4, 7]) follows from P([0.3, 4, 7]) follows from P([0.3, 4, 7]) by step case

P([7]) follows from P([]) by step case

P([]) holds by base case.

Induction on Structure

Assignment Project Exam Help

Annotat https://eduassistpro.github.

Add Weeshateedu_assist_pr

Standard functions

```
Assignment Project Exam Help
                                                                         length []
                                                                         le
                                                                       mahttps://eduassistpro.github.
map f (x:xs) = f x : map f xs -- (M2)
                                                                          [] Add Weshat edu_assist_property of the control of
```

We read (and use) each line of the definition as equation.

Example. Mapping over Lists Preserves Length

```
Show. Vxs.length (map f xs) = length xs

Assignment Project Exam Help

Need to Gabiish both premises of injuction rule:
```

- *P*([]
- * https://eduassistpro.github.

```
Base Casa Add WeChatedu_assist_property and the state of the state of
```

Both sides are equal by M1: map f [] = [].

Step Case: $\forall x. \ \forall xs. \ P(xs) \rightarrow P(x:xs)$

Induction Hypothesis. Assume for an arbitrary list as that

```
Assignment Project Exam Help
 length (ma
1ength https://eduassistpro.github.
   = 1 + length (map f as) -- by (L2)
   = 1Aclda:WeChat-edu2)assist_pr
```

Formally (using $\rightarrow I$ and $\forall I$)

- this gives $P(as) \rightarrow P(a:as)$
- as both a and as were arbitrary, have $\forall x. \forall xs. P(xs) \rightarrow P(x:xs)$

In terms of Natural Deduction

Fixing arbitrary a and as and assuming P(as), we show P(a:as). That is, Aessignment Project Exam Help

```
https://eduassistpro.github.

Add We Chat edu_assist_prospersion of the state of t
```

Concatenation

- **Show:** length (xs ++ ys) = length xs + length ys
 - statement contains two lists: xs and ys

Assignment Project Exam Help

 \forall

https://eduassistpro.github.

Equivalent Alternative.

As a slogan.

- list induction allows us to induct on one list only.
- the other list is treated as a constant.
- but on which list should we induct?

List Concatenation: Even more Options!

```
Show: length (xs ++ ys) = length xs + length ys
```

Option 1. Do induction on xs

Assignments Project Exam Help

Option 2.

∀https://eduassistpro.github.

Option 3. Fix an arbitrary vs and show, the below, the below, the length vs. Length vs. P(xs)

Option 4. Fix an arbitrary xs and show the below, then use $\forall I$

 $\forall ys.$ length (xs ++ ys) = length xs + length ys.

Choosing the most helpful formulation

Problem. For length (xs ++ ys) = length xs + length ys

• induct on xs (and treat ys as a constant), or

Assignment Project? Exam Help

Clue. Look at the definition of xs ++ ys:

https://eduassistpro.github.

- the list xs (i.e. the first argument of
- the sand dun wife Cyshatinedu_assist_pr

Approach. Induction on xs and treat ys a

```
\forall xs. \underbrace{\forall ys. \text{length (xs ++ ys)} = \text{length xs + length ys}}_{P(xs)}.
```

The Base Case

Given.

```
Assignment Project Exam Help
                             -- (M1)
     https://eduassistpro.github.
     (x:xs) ++ ys = x : (xs ++ ys) -- (A2)
 length ([] ++ ys) = length [] + length ys
 length ([] ++ ys) = length ys -- by (A1)
             = 0 + length ys
```

= length [] + length ys -- by (L1)

Concatenation preserves length: step case

Step Case.Show that $\forall x. \ \forall xs. \ P(xs) \rightarrow P(x:xs)$

```
Assume P(as)
Assignment Project Exam Help

Vys. Length (as ++ ys) = length as + length ys -- (IH)
```

https://eduassistpro.github.

```
For arbitrary ys we have:

length (dds)W+e Chat edu_assist_pr

= length (a : (as ++ ys)) -- by (A2)
```

= 1 + length (as ++ ys) -- by (L2) = 1 + length as + length ys -- by (IH)

= length (a:as) + length ys -- by (L2)

Theorem proved!

A few meta-points:

Assignment Piroject Exam Help

- If you haven't used it, the proof is likely wrong.
- lt's in https://eduassistpro.github.

On rules:

- Only Ase delivery the function definitions

 - the induction hypothesis
 - basic arithmetic

Concatenation Distributes over Map

```
Show: map f(xs ++ ys) = map f xs ++ map f ys
```

```
Which list?
```

Assignments Project Exam Help treat ys as a constant.

Show.

∀https://eduassistpro.github.

```
So let P(xs) be map f(xs) = map f(xs) = map f(xs) + map f(ys)

Base Case: Q. Show correction to edu_assist_property.
 map f ([] ++ ys) = map f [] ++ map f ys.
```

```
map f ([] ++ ys) = map f ys
                                    -- by (A1)
                  = [] ++ map f ys -- by (A1)
                  = map f [] ++ map f ys -- by (M1)
                                   <ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○
```

Concatenation Distributes over Map, Continued

Step Case: $\forall x. \ \forall xs. \ P(xs) \rightarrow P(x:xs)$

Assignment Project Exam Help map f (as ++ ys) = map f as ++ map f ys -- (IH)

```
Prove P https://eduassistpro.github.
```

= map f (a:as) ++ map f ys -- by (M2)

Theorem proved!

Observe a Trilogy

Inductive Definition defines all lists

Assignment Project Exam Help

- Rec f (nttps://eduassistpro.github.
- Prove P([])
 Prove P([])
 Prove P([])
- Each version has a base case and a step case.
- The form of the inductive type definition determines the form of recursive function definitions and the structural induction principle.

Induction on Finite Trees

Andustive Perintine of the Tree a President Perint Perint

2. If 1 de 1 x r is No object https://eduassistpro.github.

Tree Induction. To show that P(t) for all Show that P(u) will Chat edu_assist_pr

- Show that P(Nodelxr) holds whenever both P(1) and P(r) are true.

Induction for Lists and Trees

Natural Numbers.

Assignment Project Exam-Help

```
Lists.
```

```
data https://eduassistpro.github.
```

```
Trees. Add WeChat edu_assist_pr
```

```
P(\text{Nul}) \quad \forall 1. \forall x. \forall r. P(1) \land P(r) \rightarrow P(\text{Nodelxr})
Nıı7
```

 $\forall t. P(t)$ Node (Tree a) a (Tree a)

Why does it Work?

Assignment Project Exam Help

• Step Case: ∀1.∀

https://eduassistpro.github.

Show. P(Node (Node Nul 14 Nul) 22 (Nod

- 1. P(Null) is tiven We Chat edu_assist_production of the production of the productio
- 3. P(Node Nul 11 Nul) follows from P(Nul) and P(Nul)
- 4. P(Node (Node Nul 14 Nul) 22 (Node Nul 11 Nul)) follows from P(Node Nul 14 Nul) and P(Node Nul 11 Nul)

Induction on Structure

Data Type.

Assignment Project Exam Help

Tree Indhttps://eduassistpro.github.

$$\overset{P(Nul)}{\text{Add}}\overset{\forall t_1.\ \forall x.\ \forall t_2.\ P(t_1)\ \land}{\text{Add}}$$

with the following types:

- x::a is of type a
- t_1 :: Tree a and t_2 :: Tree a are of type Tree a.

Standard functions

```
mapT f Nul = Nul -- (M1)

Assignmentflroject. Fxam Help

count Nul = 0 -- (C1)

count (Node til x til troject. Fxam Help

count Nul = 0 -- (C1)
```

Add we count (mapT f t) = count t

holds for all functions f and all trees t.

```
(Analogous to length (map f xs) = length xs for lists)
```

```
Show count (mapT f t) = count t
```

Assignment Project Exam Help

```
Base Cas
```

```
counhttps://eduassistpro.github.
```

Add WeChat edu_assist_pr

Step case

Assignment Project Exam Help

Induction Hypothesis for arbitrary u and u: P(u) P(u) written as

count https://eduassistpro.github.

```
count (mapT f (Node u1 a u2)) = count (Node u1 a u2)
```

←□▶ ←□▶ ← □▶ ← □▶ → □ ♥ ♀ ○

Step case continued

Proof Goal. P(Nodeu1au2), i.e.

Assignment Project Exam2Help

```
Our Reaso

count (Node (mapT f u1) (f x) (mapT f u2)) -- by (M2)

= 1 + count (mapT f u1) + count (mapT f u2) -- by (C2)

= 1 + count (mapT f u1) + count (mapT f u2) -- by (C2)

= 1 + count (mapT f u1) + count (mapT f u2) -- by (C2)
```

Theorem proved!

= count (Node u1 a u2)

Observe the Trilogy Again

There are three related stories exemplified here, now for trees

Assignment Project Exam Help

- Rec
 - ៅ dattps://eduassistpro.github.
- Structural Induction Principle

Prove P(Nul) Prove Crhate edu_assist_prove Prove P(Nul) Prove Prove P(Nul) Prove Prove Prove P(Nul) Prove Pr

Similarities.

- One definition / proof obligation per Constructor
- Assuming that smaller cases are already defined / proved

Flashback: Accumulating Parameters

```
Two version of summing a list:

Assignment Project Exam, Help

sum1 (x:xs) = x + sum1 xs -- (S2)

sum2, https://eduassistpro.github.
```

Crucial Differences. We Chat edu_assist_pr

- one parameter in sum1, two in sum2
- both parameters change in the recursive call in sum2

sum2' acc (x:xs) = sum2' (acc + x) xs

Show: sum1 xs = sum2 xs

```
sum1 [] = 0 --- (S1)

Assignment Project Exam Help

sum2 xs = sum2' 0 xs --- (T1)

sum2' a = ac --- (T2)

sum2' https://eduassistpro.github.
```

Base Case: P([])

Add We Chat edu_assist_pr

```
sum2 [] = sum2' 0 [] -- by (T1)
= 0 -- by (T2)
= sum1 [] -- by (S1)
```

Step case

Step Case: $\forall x. \forall xs. P(xs) \rightarrow P(x:xs)$

Assume:

Assignments Project Exam Help

```
https://eduassistpro.github.
```

-- by (IH) -- by (T1)

Problem.

• can't apply IH: as $0 \neq 0 + a$

= a + sum2 as

= a + sum2' 0 as

can't apply IH: as 0 ≠ 0 + a
 accumulating parameter in sum2 has changed

Proving a Stronger Property

sum1 []

Solution. Prove a property that involved *both* arguments.

```
Assignment Project Exam<sup>2</sup>Help

sum<sup>2</sup> xs = sum<sup>2</sup> 0 xs -- (T1)

sum<sup>2</sup> a = ac -- (T2)

sum<sup>2</sup> https://eduassistpro.github.
```

-- (S1)

```
Formally Average two two chat edu_assist_preserved as the sum of t
```

```
∀xs. ∀acc.sum2' acc xs = acc + sum1 x
```

P(xs)

Base Case: Show P([]), i.e. \forall acc.acc + sum1 [] = sum2' acc []. acc + sum1 [] = acc + 0 = acc -- by (S1) = sum2' acc [] -- by (T2)

Step case

Step Case. $\forall x. \forall xs. P(xs) \rightarrow P(x:xs)$.

Induction Hypothesis

Assignment Project Exam Help

Show.

https://eduassistpro.github.

```
acc + sum1 (a:as) = acc + a + sum1 as -- by (S2)

Add Vs (Aata es U- basis | St D|

= sum2' acc (a:as) -- by (T3)
```

- ullet Our induction hypothesis is \forall acc. . . .
- In (*) we instantiate ∀acc with it acc + a
- ullet acc is absolutely needed in induction hypothesis.

Proving the Original Property

```
We have. \forall xs. P(xs), that is:

ASSIGNMENT Project? Exam Help
  Equival
       <sup>∀</sup>https://eduassistpro.github.
  Instantiation (acc = 0)
       ∀ xs. 0 + sum1 xs = sum2' 0 xs -- by
∀ xA dru xsWe sum2 xs edu_assist_pr
∀ xs. sum1 xs = sum2 xs
```

That is, we have (finally) proved the original property.

When might a stronger property P be necessary?

Alarm Bells.

Assignment Project Exam Help

bot

Progra https://eduassistpro.github.

• to evaluate sum2', need evaluation steps w

Proving ArgedveWeChat edu_assist_pr

• to prove facts about sum2', need inducti

Orthogonal Take.

- sum2' is more capable than sum2 (works for all values of acc)
- when proving, need stronger statement that also works for all acc

Look at proving it for xs = [2, 3, 5]

```
Assignmenter Project Exam Help

0 + sum1 [2,3,5] = sum2, 0 [2,3,5] because

0 + 2 + sum1 [3

0 + 2 + 3 + 5 = (0+2+)

0 + 2 + 3 + 5 = (0+2+)
```

the list gets shorter with every recursive call U_assist_pr

- despite the accumulator getting larger!

Another example

flatten2' Nul acc = acc

```
flatten :: Tree a -> [a]
flatten Nul = [] -- (F1)

Alatten (Node a range of the project (a Exam Help)
flatten2 :: Tree a -> [a]
flatten -- (G)
flatten https://eduassistpro.github.
```

flatten2; (Node 1-3-7) ace hat ed2 hat edU_assist (HD)

Show.

flatten2' t acc = flatten t ++ acc
for all t :: Tree a, and all acc :: [a].

36 / 60

Proof

Proof Goal.

```
Assignment Project Exam Help

Base Case t = Nul. Show that
```

```
https://eduassistpro.github.
```

```
= [] ++ acc -- by (A1)

= flatten Nul ++ acc by (F1)

Step Case: 10 God V1 C Lastine COU ASSIST DI

flatten2' t1 acc = flatten t1 ++ acc -- (IH1)

flatten2' t2 acc = flatten t2 ++ acc -- (IH2)
```

```
Required to Show. For all acc,
```

```
flatten2' (Node t1 y t2) acc = flatten (Node t1 y t2) ++ acc
```

Proof (continued)

Proof (of Step Case): Let a be given (we will generalise a to $\forall acc$)

```
Alatten 22 (Node that 2 Project Examulation Flatten to the flatten
```

- = flatt
- ⁼ flahtttps://eduassistpro.github.
- = flatten (Node t1 y t2) ++ a -- by (F2)

Notes. Add WeChat edu_assist_pr

- in IH1, acc is instantiated with (y : flatten2' t2 a)
- in IH1, acc is instantiated with a

As a was arbitrary, this completes the proof.

General Principle

Assignificant Project Exam Help

Con

Structu • Prohttps://eduassistpro.github.

- Prove $\forall 1. \forall x. \forall r. P(1) \land P(r) \rightarrow P(No)$
- One proof obligation for cach constructor du assist pro-
- May assume property of same type arguments

General Principle: Example

```
Given. Inductive data type definition of type T
```

```
Assignment Project C1Exam-Help

Constructors:

Assignment Project C1Exam-Help

C3 T Int T

C3 :: T -> Int -> T
```

https://eduassistpro.github.

Add WeChat edu_assist_pr

General Principle: Example

Given. Inductive data type definition of type T

```
data T = Constructors:
```

```
Assignment Project C2Exam-Help
```

- A. To sho https://eduassistpro.github.
 - three things (three constructors)
 - all arguments are universitive manufactures of the property of the property
- **More Concretely.** To show $\forall t :: T, P(t)$, need to show
 - \forall n.P(C1 n)
 - $\forall \mathtt{t1.} \forall \mathtt{t2.} P(\mathtt{t1}) \land P(\mathtt{t2}) \rightarrow P(\mathtt{C2}\,\mathtt{t1}\,\mathtt{t2})$
 - $\forall t1. \forall n. \forall t2. P(t1) \land P(t2) \rightarrow P(C3t1nt2)$

Induction on Formulae

Boolean Formulae without negation as Inductive Data Type

```
Assignment Project Exam Help

| Con
| Dis
| Thttps://eduassistpro.github.
```

- Induction Principle. WE NEED P(f) fold du_assist_property (P(f)) fold du_assist_property (P(f
 - $\forall f1. \forall f2. P(f1) \land P(f2) \rightarrow P(Conjf1f2)$
 - $\forall f1. \forall f2. P(f1) \land P(f2) \rightarrow P(Disjf1f2)$
 - $\forall f1. \forall f2. P(f1) \land P(f2) \rightarrow P(Implf1f2)$

Recursive Definition

data NFForm =

Given.

```
Assignment Project Exam Help
    | Conj NFForm NFForm
     Dis
    https://eduassistpro.github.
 Evaluation of a (negation free) formula:
 eval :: Ardd BWe Fehat Bedu_assist_pr
 eval theta TT = True
 eval theta (Var n) = theta n
```

eval theta (Conj f1 f2) = (eval theta f1) && (eval theta f2) eval theta (Disj f1 f2) = (eval theta f1) || (eval theta f2)

eval theta (Impl f1 f2) = (not (eval theta f1)) || (eval theta f2)

Example Proof

```
Theorem. If f is a negation free formula, then f evaluates to True under Assaugnment Project Exam Help
```

More precise formulation. Let theta be defined by theta $_$ = True.

Then, for al

Proof u https://eduassistpro.github.

```
Base Case 1. Show that eval theta TT = True
```

```
eval theta (Var n) = theta n = True
(by definition of eval and definition of theta)
```

Proof of Theorem, Continued

```
Step Case 1. Assume that
```

Assignment Project Exam Help

Show that

• evahttps://eduassistpro.github.

```
eval theta (Conjof1 f2)

= (eval the a f) we eval theta colu-assist_pro-
```

- = True
- rue && True
- = True

- -- defn &&
 - -- dein &&

Wrapping Up

Step Case 2 and Step Case 3. In both cases, we may assume

Assignment Project Exam Help

- and need to s
 - https://eduassistpro.github.

The reasoning is almost identical to that of Step Case 1, and we use

True Addue Whee hat edu_assist_pressure and the state of the state of

Summary. Having gone through all the (base and step) cases, the theorem is proved using induction for the data type NFForm.

Inductive Types: Degenerate Examples

Consider the following Haskell type definition:

```
Assignment Project Exam Help
```

https://eduassistpro.github.

Add WeChat edu_assist_pr

Inductive Types: Degenerate Examples

Consider the following Haskell type definition:

```
data Roo a b =
Assignment Project Exam Help
```

Q. Give

A. It is that the type://eduassistpro.github.

```
• To make an element of Roo a b, can us
```

No of the Certain edu_assist_pr

Let's give this type its usual name:

```
data Pair a b =
  MkPair a b
```

Recursion and Induction Principle

Data Type.

Assignment Project Exam Help

```
Pair Rechttps://eduassistpro.github.
```

we may un Abdothe Wee Chat sedu_assist_pr

Pair Induction. To prove $\forall x :: Pair a b. P(x)$

• show that $\forall x. \forall y. P(MkPair xy)$

just *one* constructor and *no* occurrences of arguments of pair type

Inductive Types: More Degenerate Examples

Consider the following Haskell type definition:

```
data Wombat a b =
```

```
Assignment Project Exam Help
```

Q. Give

https://eduassistpro.github.

Add WeChat edu_assist_pr

Inductive Types: More Degenerate Examples

Consider the following Haskell type definition:

```
data Wombat a b =
```

Assignment Project Exam Help

Q. Give

A. It is that the style of the

- use c
- use the constructor Right: b -> Wombat a b
- No other day to Whe certaint of edu_assist_pr

Let's give this type its usual name:

```
data CoPair a b =
  Left a
| Right b
```

Recursion and Induction Principle

Data Type.

```
Assignment Project Exam Help
```

https://eduassistpro.github.

we have tAiddatWeGthat: eduightassist_pr

Copair Induction. To prove $\forall z$::CoPair a b.P(z)

- show that $\forall x. P(\text{Left } x)$
- show that ∀y.P(Right y)

here: two constructors and no occurrences of arguments of copair type

Limitations of Inductive Proof

Termination. Consider the following (legal) definition in Haskell

Assignment Project Exam Help

Taking https://eduassistpro.github.

$$0 = nt 0 - nt 0 = nt 0 + 1 - nt 0 = 1$$

Add WeChat edu_assist_pr

Limitation 1. The proof principles outlined here only work if *all functions* are terminating.

Limitations, Continued

Finite Data Structures. Consider the following (legal) Haskell definition

Assignment Project Exam Help

and conshttps://eduassistpro.github.

Clearly, length of ink is under that sendu_assist_pressure that the control of th

Limitation 2. The proof principles outlined here only work for all *finite* elements of inductive types.

Addressing Termination

Q. How do we *prove* that a function terminates?

Assignment Project Exam Help

```
length [] = 0
```

len

https://eduassistpro.github.

```
Example 2. Only one argument gets "smaller"?
```

```
length' (x:xs) a = length' xs (a+1)
```

Q. What does "getting smaller" really mean?

Termination Measures

Given. The function f defined below as follows

```
f :: T1 -> T2
```

Assignment Project Exam Help

Q. Whe

A. Need https://eduassistpro.github. Informa

- in every recursive call, the measure m * smallAdd WeChat edu_assist_preserved termination, because natural numbers canno

Formally. A function $m: T1 \rightarrow \mathbb{N}$ is a termination measure for f if

- for every defining equation $f x = \exp$, and
- for every recursive call f y in exp

we have that m y < m x.

Example

List Reversal.

m :: [a] -> N

```
Assignment Project Exam Help
rev (x:xs) = (rev xs) + [x]
```

Termin https://eduassistpro.github.

```
** ** And *WeChat edu_assist_pr
```

Recursive Calls only in the second line of function definition

- Show that m xs < m (x:xs)
- I.e. length xs < length (x:xs) this is obvious.

Termination Measures: General Case

Consider a recursively defined function

```
Assignment Project Exam Help
```

 $f x1 \dots xn = ex$

taking nhttps://eduassistpro.github.

Definition. A termination measure for f i

Add.:WeChat.edu_assist_pr

such that

- for every defining equation f $x1 ext{ ... } xn = exp$, and
- for every recursive call f y1 ... yn in exp

we have that m y1 ... yn < m x1 ... xn.

Termination Proofs

```
Theorem. Let f: T1 \rightarrow \dots \rightarrow Tn \rightarrow T be a function with termination measure m: T1 \rightarrow T2 \rightarrow \dots \rightarrow Tn \rightarrow \mathbb{N}.
```

Assignment Project Exam Help Proof. We show the following statement by induction on $n \in \mathbb{N}$.

Base Cas https://eduassistpro.github.

```
Step Case. Assume that the statement is true for ..., xn beginned the therefore that edu_assist_properties of x1... xn = exp(x1, ..., xn)
```

only contains calls of the form f y1 .. yn for which m y1 .. yn < m x1 ... xn so that these calls terminate by induction hypothesis.

Therefore $f x1 \dots xn$ terminates.

56 / 60

Example

```
sygnment Project Exam Help
```

Termin https://eduassistpro.github. m :: [a] -> [a] -> N

xs ys = length xs

Add WeChat edu_assist_pr

Recursive Calls only in second line of function definition.

- Show that m xs (x:ys) < m (x:xs) ys.
- I.e. length xs < length (x:xs) this is obvious.

Outlook: Induction Principles

More General Type Definitions

Assignment Project Exam Help

```
https://eduassistpro.github.
```

```
Add WeChat edu_assist_pr
```

Induction Principles

Exampl

- for Rose: may assume IH for all list elements
- for TTree: mayh assume IH for all values of f

Outlook: Termination Proofs

```
More Complex Function Definitions
Assignment Project Exam Help

ack 0 y = y+1

ack x 0 = a

ack https://eduassistpro.github.
```

Termination Measures

- · m x A=ddesWelchat | effu_assist_pr
- difficulty: nested recursive calls

Digression. Both induction and termination proofs scratch the surface!

Outlook: Formal Proof in a Theorem Prover

The Coq Theorem Prover https://coq.inria.fr

Assignment of traject Exam Help

Exampl

- Nat https://eduassistpro.github. ((exists x, P x) -> Q) -> forall x, P x -> Q.
- Inducted defs: We Chat edu_assist_pr

```
Lemma len_map {A B: Type} (f: A -> B): forall (1: list A);
length l = length (map f l).
```

(and some other examples)