CEE 5290/CS 5722/ORIE 5340 Heuristic Methods for Optimization

Homework 7: Statistical Comparisons Assigned: Fri, Oct 10th, 2014 Due: Fri, Oct 17th, 2014 @ noon (free extension to Monday Oct 20th noon due to fall break)

Readings: Class handouts on statistical testing. Also refer to the "Probability and Statistics Review" and "Hypothesis Testing MATLAB" documents under the Course Documents folder on Blackboard

Statistical Comparisons: The table below shows the objective function value for the best solution in each trial for three different algorithms applied to the same problem:

Trial	SA	GA	GS
1	91.94	147.90	47.66
2	77.13	97.88	150.53
3	10.93	39.76	97.04
4	18.6	204.48	82.62
5	28.63	488.83	99.89
6	86.52	113.00	76.52
7	64.58	141.97	87.84
8	22.23	53.76	51.73
9	59.75	408.20	147.51
10	134.11	226.95	115.98
Mean	59.44	192.27	95.73
Std. Dev	39.52	148.35	34.90

- (i). Make a boxplot for the data provided above (Use the Matlab command BOXPLOT). Comment on your plot: How do the means and variances compare for each of the algorithms? Are there any outliers? Which algorithm performed the best in your opinion and why?
- (ii). Plot empirical CDF's for the data above using the plotting position formula provided in class (i/[n+1]). Comment on your plot: Which algorithm appears to perform the best? Is there any evidence of *stochastic dominance*?
- (iii). Perform all pairwise comparisons (three in all) of mean objective function value of best solution using a two-sample t-test. State your hypothesis. Report your test statistic and p-values for each comparison. At $\alpha = 0.05$ what is your conclusion for each test? NOTE: to choose Ha, test if the means are the same at first, then do hypothesis test to see if one mean is higher than the other.
- (iv). If you were told that SA and GS had the same starting solution in each trial would you perform a different test for comparing these two algorithms? Explain why or why not. If you decide to perform another test state your hypothesis and report its p-value and your conclusions at $\alpha = 0.05$. Compare your test results to those in (iii).

- (v). Perform non-parametric comparisons for all pairwise tests performed in (iii). Report your test statistic and p-values for each comparison. At $\alpha = 0.05$ what is your conclusion for each test? Compare your test results to those in (iii). NOTE: P-value is the probability of obtaining the test statistic observed or higher. If P-value is lower than your alpha (rejection region), then you reject the null hypothesis.
- (vi). Summarize your comparisons by different methods. Are your conclusions different in each case? Based on the tests above which algorithm would you pick as the preferable one? Explain your reasons.