FINAL PROJECT PRESENTATION

By
6231325521 Thanapat Trachu
6231340921 Pongsapak Pulthasthan

OUTLINE

- Examining the effects of weight and slope
 constraint condition in Dynamic Time Warping on
 1-nearest-neighbor classification accuracy
- 2. Shape Averaging Method for multiple time series sequences

1.1) WEIGHTS

$$g(i, j) = \min \begin{cases} g(i, j-1) + a \cdot d(i, j) \\ g(i-1, j-1) + b \cdot d(i, j) \\ g(i-1, j) + c \cdot d(i, j) \end{cases}$$

Symmetric Weight

a = c

Example

$$(a, b, c) = (1, 1, 1), (1, 2, 1)$$

Asymmetric Weight

 $a \neq c$

Example

$$(a, b, c) = (1, 1, 0), (0, 1, 1)$$

MOCK-UP TIME SERIES

Two mock-up time series are generated (simple sinusodial waves with gaussian noise) and calculate DTW using different weights and observe the alignment obtained from calculation.

MOCK UP TIME SERIES

MOCK UP TIME SERIES

TIME SERIES DATASETS

Dataset Name	Number of classes	Size of training set	Size of testing set	Time series Length	Total File Size
Gun-Point	2	50	150	150	484 KB
Lightning-7	7	70	73	319	733 KB
Synthetic Control	6	300	300	60	586 KB
Coffee	2	28	28	286	156 KB
FaceFour	4	24	88	350	629 KB

Total 2.58 MB

WINDOW LENGTH (SAKOE-CHIBA BAND)

To reduce computation time and prevent unreasonable warping in DTW.

We also implement Sakoe-Chiba Band by using window length (r) approximately

7-10% of the time-series length in each dataset.

Dataset	Time series Length	Window Length (r)	width (%)
Gun-Point	150	12	8.00%
Lightning-7	319	24	7.52%
Synthetic Control	60	6	10.00%
Coffee	286	28	9.79%
FaceFour	350	28	8.00%

r = 6 (Synthetic Control Dataset)

1-NN-CLASSIFICATION ACCURACY

	Weight (a, b, c)							
Dataset	Symmetric		;	Asymmetric				
	(1, 1, 1)	(1, 2, 1)	(1, 0.5, 1)	(1, 1, 0)	(0, 1, 1)	(2, 1, 0.5)	(0.5, 1, 2)	
Gun-Point	0.9000	0.9200	0.8467	0.9067	0.9267	0.9133	0.9200	
Lightning-7	0.7808	0.7808	0.8219	0.7534	0.6986	0.8493	0.7260	
Synthetic Control	0.9600	0.9400	0.9567	0.7134	0.9800	0.8133	0.9900	
Coffee	0.8214	0.7857	0.8214	0.6429	0.8571	0.7857	0.7857	
FaceFour	0.8181	0.8409	0.7613	0.4773	0.8409	0.7159	0.8523	

CONCLUSION (WEIGHT)

• Using "0" in a weight is not recommended as this will exclude some feature out from the calculation which result in bad performance.

 It's likely that using asymmetric weight might obtain the optimal accuracy, but we cannot tell which weight works best for each dataset. Grid Search is needed but it may took long time to compute.

 Neither too steep nor too gentle warping path's gradient shouldn't be allowed as it may cause undesirable time-axis warping.

Slope Constraint
Condition (p)

$$p = \frac{n}{m}$$

р	Minimum Slope	Maximum Slope
n/m	m-times	n-times $m-times$

Symmetric DP-Algorithms with Slope Constraint Condition (p = 0, 1/2, 1, 2)

р	Schematic Explanation	DP-equation $g(i,j) =$
0	(i, j)	$ \min \begin{cases} g(i, j-1) + d(i, j) \\ g(i-1, j-1) + 2d(i, j) \\ g(i-1, j) + d(i, j) \end{cases} $
1/2*	(i, j)	$ \min \begin{cases} g(i-1, j-3) + 2d(i, j-2) + d(i, j-1) + d(i, j) \\ g(i-1, j-2) + 2d(i, j-1) + d(i, j) \\ g(i-1, j-1) + 2d(i, j) \\ g(i-2, j-1) + 2d(i-1, j) + d(i, j) \\ g(i-3, j-1) + 2d(i-2, j) + d(i-1, j) + d(i, j) \end{cases} $

Symmetric DP-Algorithms with Slope Constraint Condition (p = 0, 1/2, 1, 2)

$$\min \begin{cases} g(i-1, j-2) + 2d(i, j-1) + d(i, j) \\ g(i-1, j-1) + 2d(i, j) \\ g(i-2, j-1) + 2d(i-1, j) + d(i, j) \end{cases}$$

$$\min \begin{cases} g(i-2, j-3) + 2d(i-1, j-2) + 2d(i, j-1) + d(i, j) \\ g(i-1, j-1) + 2d(i, j) \\ g(i-3, j-2) + 2d(i-2, j-1) + 2d(i-1, j) + d(i, j) \end{cases}$$

MOCK-UP TIME SERIES

Two mock-up time series are sampled from Gun-Point dataset to visualize the difference of the warping path obtained from using diffrent p values.

MOCK UP TIME SERIES

MOCK UP TIME SERIES

100

1-NN-CLASSIFICATION ACCURACY

Detect	Slope Constraint Value (p)						
Dataset	p = 0	p = 1/2	p = 1	p = 2	p = 3		
Gun-Point	0.9200	0.9734	0.9800	0.9800	0.9800		
Lightning-7	0.7808	0.7534	0.7397	0.7260	0.7397		
Synthetic Control	0.9400	0.9567	0.9767	0.9733	0.9733		
Coffee	0.7857	0.7857	0.7857	0.7500	0.7500		
FaceFour	0.8409	0.8295	0.8068	0.8295	0.8636		

CONCLUSION (SLOPE CONSTRAINT)

- When the value of p = 0 (no slope constraint condition is employed), there
 might be a case that the warping path is too steep or too gentle which may
 cause an undesirable time-axis warping which sometimes can result in poor
 performance in classification accuracy
- The preferable value of p should not also be too high. For the reason that if the slope condition is too strict, then the dynamic time warping algorithm might not handle the time fluctuation in time series data
- Try using p around 1/2, 1, 2 is likely to obtain the optimal accuracy in most datasets. This is because the warping path obtained is more sensible and the restriction is not too lax or too strict:).

MOTIVATION

Time Series Classification

One Nearest Neighbor

DTW BARYCENTER AVERAGING

Pivot Time series

Input multiple time series

INITIALIZE PIVOT TIME SERIES

$$T_n = \{T_{n_1}, T_{n_2}, \cdots T_{n_l}\}$$

$$S_n = \sum_{i=1}^l T_{n_i}$$

T1

Pivot

T2

Time series

closest

Mean

T3

S3

Pivot = $\arg\min_{n \in \{1 \cdots k\}} (|\text{mean} - S_n|)$

Input multiple time series

sum of time series

mean of sum

DTW SHAPE AVERAGING

Other	Cost						
5	5.25	9.25	1.25	1.25	0.25	0.25	
4	5.25	5.25	1.25	0.25	1.25	2.25	
3	4.25	4.25	0.25	1.25	1.25	1.25	
2	4.25	0.25	4.25	3.5	6.75	7	
1	0.25	2.25	2.5	2.75	3	3.25	
0	0	4	4	5	5	5	
	0	1	2	3	4	5	Pivot

Pivot	0	2	0	1	0	0
Other	0	0.5	2	0	1	0

Time series

Alignment	[0.5, 0]	[2]	[0]	[1]	[0]	[0]
Result	0.25	2	0	1	0	0

Cost Matrix

Result Time series

EVALUATION

Template

DBA

Time series

Test time series

ONE NEAREST NEIGHBOR ACCURACY

Dataset	DBA	Amplitude Avg
Gun Point	66%	52%
Lighting7	75.71%	41.43%
synthetic control	100%	78%
Coffee	75%	75%

