Chapter 5: Monte Carlo Methods

5.1 Monte Carlo Prediction

- **First-visit MC method**: the return is taken by the first occurrence of *s* in the episode.
- **Every-visit MC method**: the return is taken by every occurrences of *s* in the episode.

In first-visit MC method, every sample of V(s) are independent with each other.

- 1. Estimates for states are independent. (do not *bootstrap*)
- 2. Ability to learn from actual experience and from simulated experience.
- 3. Its computational expense of estimating the value of a single state is independent of the number of states.

5.2 Monte Carlo Estimation of Action Values

Estimation of action values is useful when the model is not completely known.

Complication (vs estimation for value function): many state–action pairs may never be visited. ⇒ *maintain exploration*

- **Exploring starts**: specifying that the episodes start in a state–action pair, and that every pair has a nonzero probability of being selected as the start.
- Consider only policies that are stochastic with a nonzero probability of selecting all actions in each state.

5.3 Monte Carlo Control

Monte Carlo ES (with exploring starts): alternate between evaluation and improvement on an episode-by-episode basis

5.4 Monte Carlo Control without Exploring Starts

- On-policy methods: to evaluate or improve the policy that is used to make decisions.
- **Off-policy methods**: to evaluate or improve the policy different from the policy that is used to make decisions.

On-policy learning

- arepsilon-soft policy: $\pi(a|s) \geq rac{arepsilon}{|\mathcal{A}(s)|}$ for all states and actions.
- ε -greedy policy: take optimal action with probability 1ε , take random action with probability $\frac{\varepsilon}{|\mathcal{A}(s)|}$ each. (instance of ε -soft policy)
- \tilde{v}_{π} : behave like original policy with probability 1ε , take random action with probability $\frac{\varepsilon}{|\mathcal{A}(s)|}$ each.

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$ Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow$ an arbitrary ε -soft policy $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in A(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S, a \in \mathcal{A}(s)$ Repeat forever (for each episode): Generate an episode following $\pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ (with ties broken arbitrarily) $A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)$ For all $a \in \mathcal{A}(S_t)$: $\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$

5.5 Off-policy Prediction via Importance Sampling

Dilemma: They seek to learn action values conditional on subsequent optimal behavior, but they need to behave non-optimally in order to explore all actions (**Exploration-Exploitation**)

Off-policy learning

- Target policy: the policy being learned about
- Behavior policy: the policy used to generate behavior

Off-policy methods are often of greater variance and are slower to converge.

Can be applied to learn from data generated by a conventional non-learning controller, or from a human expert.

Prediction problem:

both target policy π and behavior policy b are fixed and given, we need to estimate v_{π} or q_{π} .

- Assumption of converge: $\pi(a|s)>0$ shoule imply b(a|s)>0.
- **Importance sampling** ratio: the relative probability of their trajectories occurring under the target and behavior policies

$$egin{aligned} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \ &= \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k) \end{aligned}$$

$$ho_{t:T-1} \doteq rac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k,A_k)}{\prod_{k=t}^{T-1} b(A_k|S_k) p(S_{k+1}|S_k,A_k)} = \prod_{k=t}^{T-1} rac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

Why importance sampling?

In returns (based on behavior policy) the expectation is wrong and thus cannot be averaged to obtain $v_\pi(s)$

$$\mathbb{E}[G_t|S_t=s]=v_b(s)$$

When importance sampling ratio $\rho_{t:T-1}$ is applied:

$$\mathbb{E}[\rho_{t:T-1}G_t|S_t=s]=v_\pi(s)$$

Some notations:

- We can number the time steps continously across the episode boundary in a batch.
- $\mathcal{T}(s)$ all timesteps when s is visited (only first occurrences if first-visit)
- T(t) first termination following timestep t

Ordinary importance sampling:

$$V(s) \doteq rac{\sum_{t \in \mathcal{T}(s)}
ho_{t:T-1} G_t}{|\mathcal{T}(s)|}$$

Weighted importance sampling:

$$V(s) \doteq rac{\sum_{t \in \mathcal{T}(s)}
ho_{t:T-1} G_t}{\sum_{t \in \mathcal{T}(s)}
ho_{t:T-1}}$$

In first-visit methods

- Ordinary importance sampling is unbiased. But its variance is unbounded due to unbounded ratio ρ . This method is useful in approximation methods.
- Weighted imporatance sampling is biased (consider if $\mathcal{T}(s)=1$ the estimate $V(s)=v_b(s)\neq v_\pi(s)$) but the bias converges to 0. Its variance is bounded because the weight of each return is at most 1. And the variance converges to 0 even if $\rho_{t:T-1}$ is infinity. This method is more often preferred.

In every-visit methods both methods are biased and the bias converges to 0. *In practice every-visit methods are preferred* because it need not to keep track of the ocurrance of each state.