DSIP – Lecturer 02

Contents

- What is a digital image?
- Image file Formats
- What is digital image processing?
- steps in digital image processing

Steps in Digital Image Processing

Colour Image Processing

What is a Digital Image?

•A digital image is a representation of a twodimensional image as a finite set of digital values, called picture elements or pixels

What is a Digital Image? (cont...)

- •Pixel values typically represent gray levels, colors, heights, opacities etc
- •Remember digitization implies that a digital image is an approximation of a real scene

What is a Digital Image? (cont...)

•Common image formats include:

- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, and Blue)
- 4 samples per point (Red, Green, Blue, and "Alpha", a.k.a.
 Opacity)

se we will focus on grey

Image Files Formats

Vector vs. Raster Images

- Vector images
 - Preserving sharpness after rescaling
 - Not good for natural scenes
 - Hard to construct
- Raster images
 - Contrastively

Vector Images

- Vector images are far more flexible. They are constructed using proportional formulas rather than pixels.
- EPS, AI and PDF are perfect for creating graphics that require frequent resizing.
- The logo and brand graphics are been created as a vector, and always have a master file.

Raster Image

Formed by a digital camera

Pixel Resolution

N pixels high by M pixels wide → M×N

Color Depth

Number of bits for a single pixel

- 1-bit color: black and white

- 8-bit color: gray-scale

24-bit color: true color

File Format

- Header: characteristics of the image
 - Size, color map, compression method,
- Data value:
 - Pixel values, index values
- Common formats
 - BMP, GIF, PNG, JPEG, TIFF

BMP Format

• BMP header format

Name		Size	Description	
Header		14 bytes	Windows Structure: BITMAPFILEHEADER	
	Signature	2 bytes	'BM'	
	FileSize	4 bytes	File size in bytes	
	reserved	4 bytes	unused (=0)	
	DataOffset	4 bytes	File offset to Raster Data	

InfoHeader		40 bytes	Windows Structure: BITMAPINFOHEADER		
Size		4 bytes	Size of InfoHeader =40		
	Width	4 bytes	Bitmap Width		
Ш	Height	4 bytes	Bitmap Height		
	Planes	2 bytes	Number of Planes (=1)		
	BitCount	2 bytes	Bits per Pixel 1 = monochrome palette. NumColors = 1 4 = 4bit palletized. NumColors = 16 8 = 8bit palletized. NumColors = 256 16 = 16bit RGB. NumColors = 65536 (?) 24 = 24bit RGB. NumColors = 16M		
	Compression	4 bytes	Type of Compression 0 = BI_RGB <u>no compression</u> 1 = BI_RLE8 <u>8bit RLE encoding</u> 2 = BI_RLE4 <u>4bit RLE encoding</u>		
	ImageSize 4 bytes		(compressed) Size of Image It is valid to set this =0 if Compression = 0		
	XpixelsPerM 4 bytes		horizontal resolution: Pixels/meter		
	YpixelsPerM	4 bytes	vertical resolution: Pixels/meter		
	ColorsUsed 4 bytes		Number of actually used colors		
ColorsImportant 4 bytes		4 bytes	Number of important colors 0 = all		

(ColorTable	4 * NumColors bytes	present only if Info.BitsPerPixel <= 8 colors should be ordered by importance		
$\ $	Red	1 byte	Red intensity		
	Green	1 byte	Green intensity		
	Blue	1 byte	Blue intensity		
	reserved	1 byte	unused (=0)		
	repeated NumCo	olors times			

BMP Example

Hexadecimal Dumps

Image file is often saved as a binary file.

Binary file can be shown in hexadecimal

dump.

```
Contents:
                                                    ASCII:
                                                      ....L.Exif..II*.
ff d8 ff e1 4c cf 45 78 69 66 00 00 49 49 2a 00
08 00 00 00 0b 00 0e 01 02 00 20 00 00 00 92 00
00 00 0f 01 02 00 05 00 00 00 b2 00 00 00 10 01
02 00 09 00 00 00 b8 00 00 00 12 01 03 00 01 00
00 00 01 00 00 00 1a 01 05 00 01 00 00 00 c2 00
00 00 1b 01 05 00 01 00 00 00 ca 00 00 00 28 01
03 00 01 00 00 00 02 00 00 00 32 01 02 00 14 00
00 00 d2 00 00 00 13 02 03 00 01 00 00 00 02 00
00 00 69 87 04 00 01 00 00 00 02 01 00 00 a5 c4
07 00 1c 00 00 00 e6 00 00 00 06 09 00 00 20 20
20 20 20 20 20 20 20 20
                         20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 00 53 4f
                                                                   .SO
4e 59 00 00 44 53 43 2d 50 32 30 30 00 00 48 00
                                                      NY..DSC-P200..H.
                                                      ......H......20
00 00 01 00 00 00 48 00
                         00 00 01 00 00 00 32 30
                                                     06:12:23 18:16:5
30 36 3a 31 32 3a 32 33
                         20 31 38 3a 31 36 3a 35
           Dr. B. S. Daga Fr.CRCE, Mumbai
```

GIF Format

Name		Name	Size	Description	
S	Signature 6 bytes		6 bytes	'GIF87a' or 'GIF89a'	
G	GlobalDescriptor 7 bytes		7 bytes	global descriptor, always present	
	Width		2 bytes	width in pixels	
			2 bytes	height in pixels	
			1 byte	global descriptor flags	
		GlobalColorMap	bit 7	=1 if GlobalColorMap exists (should be true in almost all cases) =0 if default map is used, or if every image has a LocalColorMap	
		ColorResolutionBits	bits 6-4	+1 = significant bits per color in GlobalColorMap	
		reserved	bit 3	=0	
		PixelBits	bits 2-0	+1 = ColorDepth, NumberOfGlobalColors := 2 ^{ColorDepth}	
	BackgroundColor 1 byte		1 byte	background color number (from GlobalColorMap or default map)	
	AspectRatio		1 byte	usually =0	
GlobalC		balColorMap	NumberOfGlobalColors * 3	global color table, present only when GlobalDescriptor.Flags.GlobalColorMap = 1	
		Red	1 byte	red intensity of color (not necessarily 8 significant bits)	
		Green	1 byte	green intensity of color (not necessarily 8 significant bits)	
		Blue	1 byte	blue intensity of color (not necessarily 8 significant bits)	
repeated NumberOfGlobalColors times					

GIF Example

Address:	Contents: ASC	III:
00000000	47 49 46 38 39 61 3d 00 38 00 77 00 31 21 ff 0b GIF	89a=.8.w.1!
00000010	4d 53 4f 46 46 49 43 45 39 2e 30 0d 00 00 00 01 MS(FFICE9.0
00000020	73 52 47 42 00 de ce 1c e9 00 21 ff 0b 4d 53 4f sR(B!MSO
00000030	46 46 49 43 45 39 2e 30 17 00 00 00 0b 6d 73 4f FF:	CE9.0msO
00000040	50 4d 53 4f 46 46 49 43 45 39 2e 30 42 3c a4 f5 PMS	OFFICE9.0B<
00000050	00 21 ff 0b 4d 53 4f 46 46 49 43 45 39 2e 30 15 .!.	MSOFFICE9.0.
00000060	00 00 00 09 70 48 59 73 00 00 0e 68 00 00 0e 69	pHYshi
00000070	01 e0 5c 1d 2a 00 2c 00 00 00 00 3d 00 38 00 87	·.*.,=.8
00000080	ff d4 26 ff e3 71 fd b1 48 ff de 59 ec 54 34 59	qHY.T4Y
00000090	85 32 a8 8b 07 ff f4 c7 70 8c 31 2a 2a 2a ff d2 .2.	p.1***
000000a0	1b ff e9 92 ff 23 1f 9d 7b 0b 4c 7b 31 ff f1 bb	#{.L{1
000000b0	d8 d2 58 fd cb 39 ff d4 2f f0 29 20 ff e7 85 be	(9/.)
000000c0	c4 60 ff fb e6 69 92 47 ff f8 d8 fe da 43 fd ca	i.GC
000000d0	00 38 70 2e ab b0 54 4d 8a 3f f8 87 4a aa aa aa .8p	TM.?J
000000e0	fe d9 3d 95 a6 50 ff ec a1 e9 bd 32 e0 25 14 ff	P2.%

PNG Format

- LZW (Lempel-Ziv-Welch) algorithm (1978)
- Patents of Sperry, Unisys, and IBM (1983)
- LZW published by Welch (1984)
- GIF announced by CompuServe (1987 & 1989)
- Unisys' patent enforcement (1994)
- "Burn All GIFs" campaign (1999)
- Patents expired (2003-2006)

JPEG Format

- Encoding using DCT (Discrete Cosine Transform)
- A Fourier-related transform
- Fourier transform simulator

Dr. B. S. Daga Fr.CRCE, Mumbai

Steps of JPEG Compression

- Splitting the image into blocks of 8x8 pixels
- Applying DCT to each block
- Storing the magnitudes of the low-frequency components

Example: http://en.wikipedia.org/wiki/JPEG

TIFF Format

- A flexible, adaptable file format for handling images within a single file
- Color space: grayscale, RGB, YCbCr, CMYK,
- Compression: raw data, LZW, JPEG,
- Copyright holder: Aldus → Adobe

TIFF header

Bytes 0-1: The byte order used within the file. Legal values are:

"II" (4949.H)

"MM" (4D4D.H)

In the "II" format, byte order is always from the least significant byte to the most significant byte, for both 16-bit and 32-bit integers This is called *little-endian* byte order. In the "MM" format, byte order is always from most significant to least significant, for both 16-bit and 32-bit integers. This is called *big-endian* byte order.

Bytes 2-3 An arbitrary but carefully chosen number (42) that further identifies the file as a TIFF file.

The byte order depends on the value of Bytes 0-1.

Bytes 4-7 The offset (in bytes) of the first IFD. The directory may be at any location in the file after the header but *must begin on a word boundary*. In particular, an Image File Directory may follow the image data it describes. Readers must follow the pointers wherever they may lead.

The term byte offset is always used in this document to refer to a location with respect to the beginning of the TIFF file. The first byte of the file has an offset of

What is Digital Image Processing?

- Digital image processing focuses on two major tasks
 - Improvement of pictorial information for human interpretation
 - Processing of image data for storage, transmission and representation for autonomous machine perception
- •Some argument about where image processing ends and fields such as image analysis and computer vision start

Image processing Levels

•The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes

Low Level Process	Mid Level Process Input: Image Output: Attributes		High Level Process Input: Attributes Output: Understanding	
Input: Image Output: Image				
Examples: Noise removal, image sharpening	Examples: Object recognition, segmentation		Examples: Scene understanding, autonomous navigation	

In this course we will pr. B. S. Daga Fr.CRCE ,Mumbai here

Summary

•We have looked at:

- What is a digital image from multiple interpretations?
- Key stages in digital image processing
- What is digital image processing?
- Areas of digital image processing

Image Formation and Representation

CS485/685 Computer Vision

Dr. George Bebis

A Simple model of image formation

- The scene is illuminated by a single source.
- The scene reflects radiation towards the camera.
- The camera senses it via solid state cells (CCD cameras)

Image formation (cont'd)

 There are two parts to the image formation process:

(1) The **geometry**, which determines where in the image plane the projection of a point in the scene will be located.

Simple model: f(x,y) = i(x,y) r(x,y)

(2) The physics of light which determines the brightness of a point in the image plane.

Let's design a camera

- Put a piece of film in front of an object do we get a reasonable image?
 - Blurring need to be more selective!