**API e Web Scraping** 

Robson Silva da Silva

#### Resumo

- Requisição de dados via API no portal transparência do Governo Federal;
- Web Scraping no portal do FBI dos EUA;
- Web Scraping no portal de vagas do Nubank.

## Portal Transparência



## Coletando Dados para Requisições

```
In [3]:
         1 #Coletando todas as capitais e colocando numa lista.
         2 capitais = ['Rio Branco', 'Maceió', 'Macapá', 'Manaus', 'Salvador', 'Fortaleza',
                        'Brasília', 'Vitória', 'Goiânia', 'São Luís', 'Cuiabá', 'Campo Grande',
                        'Belo Horizonte', 'Belém', 'João Pessoa', 'Curitiba', 'Recife', 'Teresina',
                        'Rio de Janeiro', 'Natal', 'Porto Alegre', 'Porto Velho', 'Boa Vista',
                        'Florianópolis', 'São Paulo', 'Aracaju', 'Palmas']
         1 # Coletei na internet os códigos das capitais para a requisição e coloquei em um dicionário.
In [4]:
         2 capitaiscodeIBGE = {'Rio Branco': 1200401, 'Maceió': 2704302, 'Macapá': 1600303,
                            'Manaus': 1302603, 'Salvador': 2927408, 'Fortaleza': 2304400,
                            'Brasília': 5300108. 'Vitória': 3205309. 'Goiânia': 5208707.
                            'São Luís': 2111300, 'Cuiabá': 5103403, 'Campo Grande': 5002704,
                            'Belo Horizonte': 3106200, 'Belém': 1501402, 'João Pessoa': 2507507,
                            'Curitiba': 4106902, 'Recife': 2611606, 'Teresina': 2211001,
                            'Rio de Janeiro': 3304557, 'Natal': 2408102, 'Porto Alegre': 4314902,
         9
                            'Porto Velho': 1100205, 'Boa Vista': 1400100, 'Florianópolis': 4205407,
                            'São Paulo': 3550308, 'Aracaju': 2800308, 'Palmas': 1721000}
In [5]: 1 #lista com os padrão de requisição de mês e ano.
         2 month 2018 = [201801, 201802, 201803, 201804, 201805, 201806, 201807, 201808, 201809,
                    201810, 201811, 201812]
         4 month 2019 = [201901, 201902, 201903, 201904, 201905, 201906, 201907, 201908, 201909,
                    201910, 201911, 201912]
```

## Realizando as requisições via Requests

```
#interando por capital e ano. Realizei a contagem para listas month 2018 2019
   index = ['codigoIBGE', 'nomeIBGEsemAcento', 'pais', 'uf', 'id', 'descricao', 'descricaoDetalhada']
   dataFramelist = []
   for i in range(27):
       cod = capitaiscodeIBGE[capitais[i]]
       for j in range(12):
           mon = month 2019[i]
           url = f'http://www.transparencia.gov.br/api-de-dados/\
           bolsa-familia-por-municipio?mesAno={mon}&codigoIbge={cod}&pagina=1'
9
           time.sleep(5)
10
           try:
               df = pd.DataFrame(requests.get(url).json()[0])
               df.drop(index=index, inplace=True)
13
               df.reset index(inplace=True)
14
               dataFramelist.append(df)
15
               print(f'Capital: {capitais[i]} / Mês: {mon} / Restante: {27-i}')
16
           except:
18
               print(f'Mes {mon} nao disponível')
               continue
19
```

Foram 648 requests no portal transparência.

## **Manipulando os DataFrames**

```
bf2019 = pd.concat(dataFramelist,axis=0)

bf2018 = pd.concat(dataFramelist,axis=0)
```

```
1 bf = pd.merge(bf2018,bf2019, how='outer')
1 # Dropando colunas que não me interessam.
2 bf.drop(columns=['Unnamed: 0','index','id','tipo'], inplace=True)
1 #mudando a ordem das colunas
2 bf = bf[['municipio', 'dataReferencia', 'valor', 'quantidadeBeneficiados']]
```

#### **Editando o DataFrame Final**

```
1 # calculando um valor de benefício médio.
2 bf['Valor por Benef'] = bf['valor']/bf['quantidadeBeneficiados']
1 # Coletando a população de cada capital.
2 pop = {'São Paulo': 12252023, 'Rio De Janeiro': 6718903, 'Brasília': 3015268, 'Salvador': 2872347,
          'Fortaleza': 2669342, 'Belo Horizonte': 2512070, 'Manaus': 2182763, 'Curitiba': 1933105,
          'Recife': 1645727, 'Goiânia': 1516113, 'Belém': 1492745, 'Porto Alegre': 1483771,
          'São Luís': 1101884, 'Maceió': 1018948, 'Campo Grande': 895982, 'Natal': 884122,
          'Teresina': 864845, 'João Pessoa': 809015, 'Aracaju': 657013, 'Cuiabá': 612547,
         'Porto Velho': 529544, 'Macapá': 503327, 'Florianópolis': 500973, 'Rio Branco': 407319,
8
         'Boa Vista': 399213, 'Vitória': 362097, 'Palmas': 299127}
1 # Usando os dados acima para adicionar no Data Frame.
2 bf['Pop'] = bf['municipio'].str.title().apply(lambda x: pop[x] )
1 bf['Valor per Habit'] = bf['valor']/bf['Pop']
 1 #Coletando a região de cada capital.
   region = {'São Paulo': 'Sudeste', 'Rio De Janeiro': 'Sudeste', 'Brasília': 'Centro Oeste', 'Salvador': 'Nordeste'
          'Fortaleza': 'Nordeste', 'Belo Horizonte': 'Sudeste', 'Manaus': 'Norte', 'Curitiba': 'Sul',
          'Recife': 'Nordeste', 'Goiânia': 'Centro Oeste', 'Belém': 'Norte', 'Porto Alegre': 'Sul',
          'São Luís': 'Nordeste', 'Maceió': 'Nordeste', 'Campo Grande': 'Centro Oeste', 'Natal': 'Nordeste',
          'Teresina': 'Nordeste', 'João Pessoa': 'Nordeste', 'Aracaju': 'Nordeste', 'Cuiabá': 'Centro Oeste',
          'Porto Velho': 'Norte', 'Macapá': 'Norte', 'Florianópolis': 'Sul', 'Rio Branco': 'Norte',
          'Boa Vista': 'Norte', 'Vitória': 'Sudeste', 'Palmas': 'Norte'}
1 # Usando os dados acima para construir a coluna região.
 2 bf['Regiao'] = bf['municipio'].str.title().apply(lambda x: region[x] )
```

# **DataFrame Final**

|     | municipio  | dataReferencia | valor     | quantidadeBeneficiados | Valor por Benef | Pop    | Valor per Habit | Regiao | % pop.benef |
|-----|------------|----------------|-----------|------------------------|-----------------|--------|-----------------|--------|-------------|
| 0   | RIO BRANCO | 01/01/2018     | 4877303.0 | 23418                  | 208.271543      | 407319 | 11.974160       | Norte  | 5.749302    |
| 1   | RIO BRANCO | 01/02/2018     | 4907869.0 | 23588                  | 208.066347      | 407319 | 12.049202       | Norte  | 5.791038    |
| 2   | RIO BRANCO | 01/03/2018     | 4922561.0 | 23747                  | 207.291911      | 407319 | 12.085272       | Norte  | 5.830074    |
| 3   | RIO BRANCO | 01/04/2018     | 4717363.0 | 22638                  | 208.382498      | 407319 | 11.581495       | Norte  | 5.557806    |
| 4   | RIO BRANCO | 01/05/2018     | 4781556.0 | 22921                  | 208.610270      | 407319 | 11.739094       | Norte  | 5.627285    |
|     | ***        | ***            | ***       |                        | ***             |        |                 |        | ***         |
| 615 | PALMAS     | 01/07/2019     | 2134158.0 | 12333                  | 173.044515      | 299127 | 7.134622        | Norte  | 4.122998    |
| 616 | PALMAS     | 01/08/2019     | 2135159.0 | 12281                  | 173.858725      | 299127 | 7.137968        | Norte  | 4.105614    |
| 617 | PALMAS     | 01/09/2019     | 2078646.0 | 11812                  | 175.977481      | 299127 | 6.949042        | Norte  | 3.948824    |
| 618 | PALMAS     | 01/10/2019     | 2073937.0 | 11752                  | 176.475238      | 299127 | 6.933299        | Norte  | 3.928766    |
| 619 | PALMAS     | 01/11/2019     | 2037836.0 | 11462                  | 177.790612      | 299127 | 6.812611        | Norte  | 3.831817    |
|     |            |                |           |                        |                 |        |                 |        |             |







- Custo do Bolsa Família Nas capitais girou em torno de 4 Bilhões anuais. O projeto prevê o gasto total de de 29 Bilhões de reais;
- STF aprovou em 2018 um orçamento de 708 milhões.

# Portal FBI.gov (Web Scraping)



#### **Coletando os Dados**

```
1 #URL escolhida.
2 url= 'https://www.fbi.gov/wanted/terrorism'
1 #Fazendo a requisição.
2 soup = BeautifulSoup(requests.get(url).content)
1 #Query classe terroristas.
2 query = soup.body.find all('li',{'class':'portal-type-person castle-grid-block-item'})
1 #Criando os links para procura.
2 links = [item.p.a['href'] for item in query]
1 classes = ['wanted-person-remarks', 'wanted-person-details']
2 d = {}
   for i in range(len(links)):
       e = {}
       s2p = BeautifulSoup(requests.get(links[i]).content)
       e['Name'] = str(s2p.h1.text.title())
       get = [item.text for item in s2p.body.find all('td')]
8
       for k in range(0,len(get),2):
9
           try:
10
               e[get[k]] = get[k+1]
11
           except:
12
               e[qet[k]] = np.nan
13
       for j in range(2):
           s = str(s2p.body.find all('div',{'class':classes[j]}))
14
15
           try:
16
               e[lst[j]] = re.findall(r'.*',s)[4]
17
           except:
18
               e[lst[j]] = np.nan
19
       else:
20
           d[i] = e
```

# **Dataset Pronto**

| Name                                | Date(s) of<br>Birth Used | Place of Birth                 | Height  | Build                                         | Complexion | Sex  | wanted-person-<br>remarks                               | wanted-<br>person-<br>details                              | Hair  | Eyes  | Weight                  | Citizenship      | Languages | Scars and<br>Marks | Race | Occupation | Nationality | NCIC |
|-------------------------------------|--------------------------|--------------------------------|---------|-----------------------------------------------|------------|------|---------------------------------------------------------|------------------------------------------------------------|-------|-------|-------------------------|------------------|-----------|--------------------|------|------------|-------------|------|
| Shaykh<br>Aminullah                 | 1961, 1967,<br>1973      | Konar Province,<br>Afghanistan | 5'10"   | Thin,<br>with a<br>large,<br>round<br>stomach | Light      | Male | Aminullah wears<br>thick glasses and a<br>curly, che    | Shaykh<br>Aminullah is<br>wanted for<br>questioning in<br> | NaN   | NaN   | NaN                     | NaN              | NaN       | NaN                | NaN  | NaN        | NaN         | NaN  |
| Faker Ben<br>Abdelazziz<br>Boussora | March 22,<br>1964        | Tunisia                        | 5'7"    | NaN                                           | Olive      | Male | Boussora has<br>predominately<br>protruding ears<br>and | Faker Ben<br>Abdelazziz<br>Boussora is<br>wanted for<br>qu | Black | Dark  | 160 to<br>170<br>pounds | NaN              | NaN       | NaN                | NaN  | NaN        | NaN         | NaN  |
| Abdullah<br>Al-Rimi                 | 1974                     | Ta'iz, Yemen                   | Unknown | Unknown                                       | Olive      | Male | Al-Rimi may be residing in Yemen.                       | Abdullah Al-<br>Rimi is wanted<br>for questioning<br>in    | Black | Black | Unknown                 | Yemeni           | Arabic    | None known         | NaN  | NaN        | NaN         | NaN  |
| Ibrahim<br>Salih<br>Mohammed        | October 16,<br>1966      | Tarut, Saudi Arabia            | 5'4"    | Unknown                                       | Olive      | Male | Al-Yacoub is an alleged member of                       | Not informed                                               | Black | Brown | 150<br>pounds           | Saudi<br>Arabian | Arabic    | None known         | NaN  | NaN        | NaN         | NaN  |

#### Coletando Coordenadas dos locais de nascimento

```
def coordinates(x):
       time.sleep(5)
       try:
           x = str(x).replace(' ', '+')
           print(x)
           url = f'https://nominatim.openstreetmap.org/search?q={x}&format=geojson'
6
           d = requests.get(url).json()
8
           try:
               return (d['features'][0]['geometry']['coordinates'][1], d['features'][0]['geometry']['coordinates']
9
10
           except:
               print(f'Localização <{x}> não obtida!')
               return np.nan
13
       except:
14
           pass
```

```
1 terrorists['Coordinates'] = terrorists['Place of Birth'].apply(lambda x : coordinates(x))
```

```
Konar+Province,+Afghanistan
Tunisia
Ta'iz,+Yemen
Tarut,+Saudi+Arabia
Al+Ihsa,+Saudi+Arabia
Localização <Al+Ihsa,+Saudi+Arabia> não obtida!
Lebanon
Bloomington,+Indiana
```

# **Plotando o Mapa Com Gmaps**

```
#https://console.developers.google.com/
gmaps.configure(api_key='AIzaSyC8dPoiQ0l3VzZguoYgyQxF
')
```



## Página de Carreiras do Nubank

```
# Procurando jobs at Nubank
   jobs name = [item.a.text for item in nu.body.find all('div',{'class':'opening'})]
 2 jobs location = [item.span.text for item in nu.body.find all('div',{'class':'opening'})]
   n = len(jobs name)
   d = \{\}
   for i in range(n):
       e = \{\}
       e['Posicao'] = jobs name[i]
       e['Localidade'] = jobs location[i]
       d[i] = e
  jobsAtnu = pd.DataFrame(d).T
   jobsAtnu['Posicao'].apply(lambda x : re.findall(r'.*[dD]ata.*',x)).sum()
['Data Scientist',
 'Data Scientist (Econometrics/Statistics)',
 'Senior Data Scientist',
 'Senior Data Scientist',
'Data Engineer',
 'Sr. Product Manager, Technical (Platforms - Data)']
```

# Página de Carreiras do Nubank



# FELIZ NATAL!

