Biomedical Decision Support System academic year 2023/2024

Prof. Pietro Sala Department of Computer Science University of Verona pietro.sala@univr.it

Project 3.a: Timeseries Pattern Tree

Context

A time-series ts is any sequence in \mathbb{R}^* . A supervised dataset of timeseries Ts is a multiset of pairs in $\mathbb{R}^* \times L$ where L is a finite set of class labels, i.e., $L = \{0, \dots, C-1\}$, that is the first C natural numbers.

A time-series pattern pts, a pattern from now on, is an element of $(\mathbb{R} \times \{+, -\})^*$. A time-series ts is said to contain a pattern pts, written $ts \models pts$ if there exists a subsequence $ts' \sqsubseteq ts$ such that |ts'| = |pts| and for every $0 \le i < |ts'|$ we have $ts'[i] \ge pts[i][0]$ if pts[i][1] = + and $ts'[i] \le pts[i][0]$ otherwise.

A time-series pattern rule, a rule from now on, is a pair rpts = (pts, i) where pts is a pattern with $|pts| \geq 2$ and i is an index 0 < i < |pts|. Its association rule may be graphically represented as:

$$pts[0:i] \rightarrow pts[i:]$$

A time-series pattern rule tree, a tree from now on, is a labelled rooted-tree $(T = (V, E = E_{\perp} \cup E_{\top}), r, \mathcal{V}, \mathcal{C})$ with root r where $E_{\perp} \cap E_{\perp}$ and for every $v \in V$ we have $|\{v': (v, v') \in E_x\}| \leq 1$ for each $x \in \{\top, \bot\}$, since they are both unique we denote with v_{\top} the unique successor (if any) of v in E_{\top} and with v_{\perp} the unique successor (if any) of v in E_{\perp} . Each node v is labeled with a pattern $rpts_v = \mathcal{V}(v)$ and a class label $\mathcal{C}_v = \mathcal{C}(v)$.

Assignment

Given a supervised dataset of timeseries Ts, a threshold $0 \le \epsilon \le$ 1, and a mapping $\mathcal{B}: \mathbb{M} \to \mathbb{I}(\mathbb{R} \cup \{-\infty, +\infty\})$ from interesting measures for rules to an interval oin the reals a loss function $\mathcal{L}: (\mathcal{L} \to \mathbb{N}^2) \to \mathbb{R}$ implement a function rpts-tree $(Ts, \mathcal{M}, \mathcal{L})$ builds a tree T recursively as follows (function begins with $E_{\top} = E_{\perp} = \emptyset$):

- 1. v is a fresh node with $\mathcal{L}(r) = \emptyset$ and $\mathcal{C}(r) = \emptyset$;
- 2. let $Ts_v = Ts$;
- 3. let $C(v) = \arg \max_{c \in L} \sum_{(ts,c) \in Ts_v} Ts(ts,c)$;
- 4. if $\{(ts,c')\in\mathcal{C}(v)\}=\emptyset$ then return v;
- 5. let $RPTS_v = \{rpts : \forall im \in \mathbb{M}(im(Ts, rpts) \in \mathcal{B}(im))\}$
- 6. let $rpts_v$ be the rule that satisfies

$$\arg\max_{RPTS_v} \mathcal{L}\left(\left\{c \mapsto \left(\sum_{ts \models rpts} Ts(ts,c), \sum_{ts \not\models rpts} Ts(ts',c)\right) : c \in L\right\}\right)$$

- 7. let $\mathcal{V}(v) = \dot{rpts}_v$
- 8. let $Ts_{v_{\top}} = \{(ts, c) \in Ts : ts \models rpts_v\}$
- 9. let $Ts_{v_{\perp}} = \{(ts, c) \in Ts : ts \not\models rpts_v\}$ $(E_{\top} \cup \{(v, rpts\text{-}tree(Ts_{\top}, \mathcal{M}, \mathcal{L}))\})$ 10. $E = \bigcup$

 - $(E_{\perp} \cup \{(v, rpts-tree(Ts_{\perp}, \mathcal{M}, \mathcal{L}))\})$
- 11. return v.

Implement the function rpts-tree with the satandard parameters max_height and min_samples. As loss function Information Gain may be considered. For interesting measures at least support and confidence should be considered.

Note

Candidates for $RPTS_v$ (step 5) may be generated with the following approach for avoid computationally expensive search space exploration:

- 1. set I to \emptyset ;
- 2. set r to \emptyset ;
- 3. pick a random ts from Ts_v and a random $i \notin I$ such that $0 \le i < |ts|$, add i to I;
- 4. pick a random ts' from Ts_v ;
- 5. add (ts[i], ts'[i] >= ts[i], i) to r;
- 6. let $sorted(I) = i_1 < \ldots < i_k$ and pts be the pattern $[(ts[i_j]^*):(ts[i_j],*,i_j)\in r, i_jinsorted(I)];$
- 7. if |pts| is less than 2 then go to step 3;
- 8. else if |pts| is greater than 2 and pts is supported;
- 9. if there exists i such that $pts[0:i] \rightarrow pts[i:]$ satisfy the interesting measures let i for which such a condition hold then rpts = (pts, i);
- 10. if the previous condition does not hold return rpts.

Datasets

There are available dataset at [1].

Project 3.b: Sequence Boosting

Context

Given a dataset of $L = \{-1, +1\}$ labelled sequences, $Z \subseteq$ $(A^+ \times L)$ on any finite alphabeth A

Assignment

proceed by implementing the following boosting classifier:

$$sgn(\alpha_1(h^1, l^1) + \ldots + \alpha_n(h^n, l^n))$$

where $h_i \in A^+$, $l \in L$ are sequences and α_i are the weights of the boosting scoring polynomial. The boosting algorithm is as follows:

- 1. set t = 1, $w_i^t = \frac{1}{|L|}$ for each $1 \le i \le |L|$;
- 2. find the best sequence h^t, l^t that minimizes the error rate:

$$h^{t}, l^{t} = \arg\min_{(h,l) \in A^{+} \times L} \begin{pmatrix} \sum_{(x_{i},y_{i}) \in Z, h \sqsubseteq x \wedge y \neq l} w_{i}^{t} \\ + \\ \sum_{(x_{i},y_{i}) \in Z, h \not\sqsubseteq x \wedge y = l} w_{i}^{t} \end{pmatrix}$$

$$3. \text{ set } \epsilon^{t} = \sum_{(x_{i},y_{i}) \in Z, h_{i} \sqsubseteq x \wedge y \neq l_{i}} w_{i}^{t} + \sum_{(x_{i},y_{i}) \in Z, h \not\sqsubseteq x \wedge y = l} w_{i}^{t};$$

3. set
$$\epsilon^t = \sum_{(x_i, y_i) \in Z, h_i \sqsubseteq x \land y \neq l_i} w_i^t + \sum_{(x_i, y_i) \in Z, h \not\sqsubseteq x \land y = l} w_i^t;$$

4. set

$$\alpha^t = \frac{1}{2} \log \frac{1 - \epsilon^t}{\epsilon^t}$$

where ϵ^t is the error rate of the classifier h^t ;

5. for each i we have

$$w_i^{t+1} = \begin{cases} \frac{w_i^t}{\sum\limits_{(h^t, l^t) \models (x_j, y_j)} w_j^t} & \text{if } (h^t, l^t) \models (x_i, y_i) \\ \frac{w_i^t}{2\sum\limits_{(h^t, l^t) \not\models (x_j, y_j)} w_j^t} & \text{otherwise} \end{cases}$$

where $(h^t, l^t) \models (x_j, y_j)$ is true if and only if either $h^t \sqsubseteq x_j \wedge l^t = y_j$ or $h^t \not\sqsubseteq x_j \wedge l^t \neq y_j$;

- 6. set t = t + 1.
- 7. repeat until $H = sgn(\alpha_1(h^1, l^1) + \ldots + \alpha_n(h^n, l^n))$ classify correctly all the sequences in Z or the error of H on Z is less than a given threshold δ .

Datasets

Sequence Dataset are available at [3], from the paper [2].

References

- [1] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Choti-rat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
- [2] Zengyou He, Ziyao Wu, Guangyao Xu, Yan Liu, and Quan Zou. Decision tree for sequences. *IEEE Transactions on Knowledge and Data Engineering*, 35(1):251–263, 2023.
- [3] Ziyao Wu. Seqdt, April 2020. https://github.com/ZiyaoWu/SeqDT/tree/master/data.