北京师范大学 2019~2020 学年第二学期期末考试试卷 (A卷)

课程名称:

数学分析(2) 任课教师姓名:

卷面总分: 100分 考试时长: 120分钟 考试类别: 闭卷

_____ 专业:_____ 年级:___ 院(系):

姓 名: _____ 学号: ____

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总分
成绩																

- 一、计算题(共50分,每题5分)
 - 1. 求 $\lim_{n\to\infty} n^2 \ln\left(n\sin\frac{1}{n}\right)$.
 - 2. 判断 $f(x) = \begin{cases} 0, & x = 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n} & (n \in \mathbb{N}_+) \end{cases}$ 在 [0,1] 上的可积性, 并说
 - 3. 求 $\lim_{n\to\infty} \int_{n}^{2n} \frac{\sin x}{x} dx$.
 - 4. 判断级数 $\sum_{n=2}^{\infty} \frac{n^{\ln n}}{(\ln n)^n}$ 的敛散性.
 - 5. 求幂级数 $\sum_{n}^{\infty} nx^n$ 的和函数.
 - 6. 讨论广义积分 $\int_0^{+\infty} \frac{\sqrt{x \sin x}}{1+x} dx$ 的敛散性 (如果收敛, 是条件收敛还是 绝对收敛).
 - 7. 求函数 f(x) = x + |x| 在区间 $x \in [-l, l]$ 上的 Fourier 级数.
 - 8. 判断含参量积分 $\int_0^{+\infty} x^{\alpha} e^{-tx} \cos x dx$ 在区间 $t \in [t_0, +\infty)$ 上的一致收敛

性, 其中 $t_0 > 0$, $\alpha \ge 0$.

- 9. 利用 Euler 积分计算 $\int_0^1 \sqrt{x-x^2} dx$.
- 10. 求 $\lim_{x \to +\infty} \left[(x+a)^{1+\frac{1}{x}} x^{1+\frac{1}{x+a}} \right]$, 其中 $a \in \mathbb{R}$.
- 二、证明题 (共50分, 每题10分)
 - 11. 设 $f \in C[a, b]$, 且 f(a) < 0, f(b) > 0. 求证: $\exists \xi \in (a, b)$, 使得 $f(\xi) = 0$, 且 $\forall x \in (a, \xi)$, 有 f(x) < 0, 即 ξ 是 f 在 (a, b) 上的最小零点.
- 12. 设函数 f 在 [a,b] 连续, 在 (a,b) 二阶导数连续. 求证: $\exists \xi \in (a,b)$, 使得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(\xi).$$

13. 设 f 是以 2π 为周期的连续函数且导函数 f' 在 $[-\pi,\pi]$ 上常义可积. 证明: f 的 Fourier 级数在 \mathbb{R} 上一致且绝对收敛于 f(x).

14.
$$\mathfrak{P}_n(x) = \frac{1}{n^3} \ln \left(1 + n^2 x^2\right), n = 1, 2, \cdots$$
 $\mathfrak{P}_n(x) = \sum_{n=1}^{\infty} u_n(x).$

- (a) 证明: $\sum_{n=1}^{\infty} u_n(x)$ 在 [0,1] 上一致收敛.
- (b) 讨论其和函数 s(x) 在 [0,1] 上的连续性、可积性和可微性.
- 15. 设 $\{a_n\}$ 为正的单调增数列. 证明: $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} 1\right)$ 收敛当且仅当 $\{a_n\}$ 有界.