LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

LÖSNINGAR **ENDIMENSIONELL ANALYS DELKURS B1** 2012 - 10 - 26 kl 08 - 13

- 1. a) $e^{2x} + 4e^x 5 = 0 \iff (e^x 1)(e^x + 5) = 0$ som medför att $e^x = 1$ och alltså
 - b) För $x \le 2$ blir ekvationen -(x-2)-2x=0 som ger en lösning $x=\frac{2}{3}$. För x > 2 blir ekvationen (x-2)-2x = 0 som ger x = -2. Men x = -2 uppfyller inte villkoret x > 2. Så är x = -2 en falsk lösning.
 - c) $\sin 2x = \cos x \iff \cos \left(\frac{\pi}{2} 2x\right) = \cos x$. Så gäller $\frac{\pi}{2}-2x=\pm x+2n\pi$, som medför att $x=\frac{\pi}{6}-\frac{2n\pi}{3}$ eller $x=\frac{\pi}{2}-2n\pi$. Lösningarna är $x=\frac{\pi}{6}-\frac{2n\pi}{3}$ och $x=\frac{\pi}{2}-2n\pi$, där $n=0\pm 1,\pm 2,\ldots$
- 2. a) $\lim_{x \to 0} \frac{e^{2x} 1}{\sin(5x)} = \lim_{x \to 0} \left(\frac{e^{2x} 1}{2x} \cdot \frac{1}{\frac{\sin(5x)}{5x}} \cdot \frac{2}{5} \right) = \frac{2}{5}$, ty $\lim_{x \to 0} \frac{e^{2x} 1}{2x} = 1$ och $\lim_{x \to 0} \frac{\sin(5x)}{5x} = 1$.
 - b) $\lim_{x \to \infty} \frac{e^x 2\ln x}{x^2 + 2e^x} = \lim_{x \to \infty} \frac{1 \frac{2\ln x}{e^x}}{\frac{x^2}{e^x} + 2} = \frac{1}{2}$, ty $\lim_{x \to \infty} \frac{x^2 + \ln x}{e^x} = 0$.

$$\lim_{x \to 0} \frac{(1 - \cos x)^2}{x^4} = \lim_{x \to 0} \frac{\left(1 - \cos(2 \cdot \frac{x}{2})\right)^2}{x^4} = \lim_{x \to 0} \frac{\left(1 - \left(1 - 2\sin^2\frac{x}{2}\right)\right)^2}{x^4}$$
$$= 4\lim_{x \to 0} \frac{\sin^4\frac{x}{2}}{x^4} = \frac{1}{4}\lim_{x \to 0} \left(\frac{\sin\frac{x}{2}}{x/2}\right)^4 = \frac{1}{4}.$$

3. a)
$$\left(x - \frac{2}{x}\right)^8 = \sum_{k=0}^8 {8 \choose k} x^k \left(\frac{-2}{x}\right)^{8-k} = \sum_{k=0}^8 {8 \choose k} (-2)^{8-k} x^{2k-8}$$

Koefficienten för x^6 - termen är $\binom{8}{7}(-2)^{8-7}=-16$. b) Polynomdivision ger $\frac{x^3}{x^2+1}=x+\frac{-x}{x^2+1}$, där $\frac{-x}{x^2+1}\longrightarrow 0$ då $x\to\infty$ eller $x\to-\infty$. Detta medför att y=x är asymptot till kurvan då $x\to\pm\infty$. Eftersom

$$y' = \frac{3x^2(x^2+1) - x^3 \cdot 2x}{(x^2+1)^2} = \frac{x^4 + 3x^2}{(x^2+1)^2} = \frac{x^2(x^2+3)}{(x^2+1)^2} \ge 0,$$

så är funktionen strängt växande med en stationär punkt x=0 som inte är en lokal extrempunkt.

Funktionens graf:

- 4. a) Se boken.
 - b) Eftersom polynomet p(x) har faktorerna x+1 och x-2, så gäller p(-1)=a-b-3=0 och p(2)=4a+2b+6=0, som medför att a=0 och b=-3.
 - c) Det är klart att x=1 inte är en lösning. För $x\neq 1$ gäller likheten $x+x^2+x^3+x^4+x^5+x^6=x\left(1+x+x^2+x^3+x^4+x^5\right)=\frac{x(x^6-1)}{x-1}.$ Så blir olikheten $\frac{x(x^6-1)}{x-1}<0$. Polynomet $x(x^6-1)$ har nollställe 0,-1,1 och polynomet x-1 har nollställe 1. Så blir teckentabellen

x		-1		0		1	
$\frac{x(x^6-1)}{x-1}$	+	0	_	0	+	ej def.	+

Lösningarna är alla x i intervallet]-1, 0[.

- 5. a) och b) Se boken.
 - c) Om kurvan $y=\arctan(x-1)$, där x>0, har $y=\frac{1}{2}x+c$ som tangentlinje i punkten x_0 så gäller $y'(x_0)=\frac{1}{2}$, vilket ger $\frac{1}{1+(x_0-1)^2}=\frac{1}{2}$. Men $x_0>0$ så är $x_0=2$, som ger $y_0=\arctan(x_0-1)=\frac{\pi}{4}$. Eftersom tangentlinjen går genom (x_0,y_0) så gäller $y_0=\frac{1}{2}x_0+c$, dvs $\frac{\pi}{4}=\frac{1}{2}\cdot 2+c$. Alltså $c=\frac{\pi}{4}-1$.
- 6. Om en sträcka med två ändpunkterna $(t,\ 0)$ och $(0,\ s)$ går genom punkten (1,2), enligt tvåpunktsformeln för räta linjens ekvation har vi $\frac{s-0}{2-0}=\frac{0-t}{1-t}$, som medför att $s=\frac{-2t}{1-t}$. Så är sträckans längd lika med

$$\sqrt{(t-0)^2 + (0-s)^2} = \sqrt{t^2 + \frac{4t^2}{(1-t)^2}}$$

och t>1 ty både s och t är positiva. Nu söker vi efter minimum av funktionen

$$f(t) = \sqrt{t^2 + 4\left(\frac{t}{1-t}\right)^2}$$

för t > 1. Vi har

$$f'(t) = \frac{1}{2} \left[t^2 + 4 \left(\frac{t}{1-t} \right)^2 \right]^{-\frac{1}{2}} \left(2t + 8 \cdot \frac{t}{1-t} \cdot \frac{1-t+t}{(1-t)^2} \right)$$
$$= t \left[t^2 + 4 \left(\frac{t}{1-t} \right)^2 \right]^{-\frac{1}{2}} \cdot \frac{(1-t)^3 + 4}{(1-t)^3}.$$

Det finns alltså endast en stationär punkt $t=1+4^{\frac{1}{3}}$ till funktionen. Eftersom f(t) är kontinuerlig i $]1, \infty[$ och $\lim_{t\to 1^+} f(t) = \lim_{t\to\infty} f(t) = \infty$, så är $f(1+4^{\frac{1}{3}}) = \left(1+4^{\frac{1}{3}}\right)^{\frac{3}{2}} = \left(1+2^{\frac{2}{3}}\right)^{\frac{3}{2}}$ den sökta minsta längden.