Deadline: 2022/12/29, 17:00.

- 1. If the curve y = f(x), $a \le x \le b$, is rotated about the horizontal line y = c, where $f(x) \le c$, find the formula for the area of the resulting surface.
- 2. (95' Calculus Exam) Prove that the volume of the ellipsoid

$$\frac{(x-a)^2}{A^2} + \frac{(y-b)^2}{B^2} + \frac{(z-c)^2}{C^2} = 1$$

is
$$V = \frac{4}{3}\pi ABC$$
.

3. Prove that the area of the portion of the sphere shown in the below figure is $2\pi rh$.

Remark:

- (i) This shows that the surface area of the band obtained depends only on the distance between two parallel planes, not on their location.
- (ii) We can choose two parallel planes with distance h = 2r apart such that the whole sphere is between these two planes. Hence, the area of the sphere is $4\pi r^2$.
- 4. (83' Calculus Exam) Let C be a curve with the parametric equation

$$\begin{cases} x(t) = t - \sin t, \\ y(t) = 1 - \cos t, \end{cases} \quad 0 \le t \le 2\pi.$$

- (a) Find the slope of the tangent line of the curve when $t = \frac{\pi}{4}$.
- (b) Find the arc length of the curve.
- (c) Find the area of the region which is bounded be the curve and x-axis.

5. (93' Calculus Exam) Find the arc length of the curve

$$\begin{cases} x(t) = \cos t + t \sin t, \\ y(t) = \sin t - t \cos t, \end{cases} \quad 0 \le t \le \pi.$$

6. Find an equation in x and y for the line(s) tangent to the curve

(a)
$$x(t) = \frac{1}{t}$$
, $y(t) = t^2 + 1$ at $t = 1$.

(b)
$$x(t) = e^t$$
, $y(t) = 3e^{-t}$ at $t = 0$.

(c)
$$x(t) = t^3 - t$$
, $y(t) = t \sin(\frac{1}{2}\pi t)$ at the point $(0, 1)$.

7. Find the area of the surface obtained by rotating the curve

$$\begin{cases} x(t) = 3t - t^3, \\ y(t) = 3t^2, \end{cases} \quad 0 \le t \le 1.$$

about the x-axis.

8. Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.

(a)
$$r = 2(1 + \cos \theta)$$
.

(b)
$$r = 2 + \sin 3\theta$$
.

(c)
$$r^2 = \cos 4\theta$$
.

9. Let C be the polar curve $r = 2\sin\theta$, $0 \le \theta \le \pi$.

(a) Find all vertical and horizontal tangent lines of the curve.

(b) Find
$$\frac{d^2y}{dx^2}$$
 in terms of θ . (Use Chain Rule to deduce $\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta}(\frac{dy}{dx})}{\frac{dx}{d\theta}}$.)

(c) Determine the concavity of the curve.

(d) Sketch the curve.

10. Find the area between the curves

(a)
$$r = 2\cos\theta$$
, $r = \cos\theta$ and the rays $\theta = 0$, $\theta = \frac{1}{4}$.

(b) $r = \frac{1}{2} \sec^2(\frac{1}{2}\theta)$ and the vertical line through the origin.

(c)
$$r = e^{\theta}$$
, $0 \le \theta \le \pi$; $r = e^{\theta}$, $2\pi \le \theta \le 3\pi$ and the rays $\theta = 0$, $\theta = \pi$.

(d)
$$r = \tan \theta, \frac{\pi}{6} \le \theta \le \frac{\pi}{3}$$
.

- 11. Find the area of the following regions
 - (a) the region enclosed by one loop of the curve $r^2 = \sin 2\theta$.
 - (b) the region lies inside the curve $r=2+\sin\theta$ and outside the curve $r=3\sin\theta$.
 - (c) the region lies inside both curves $r = a \sin \theta$, $r = b \cos \theta$, a > 0, b > 0.
 - (d) the region between a large loop and the enclosed small loop of the curve $r = 1 + 2\cos 3\theta$.