Intro to Proofs

Aamod Varma

 MATH - 2106, Fall 2024

Contents

Real Numbers

Definition 0.1 (Properties of real numbers). Properties of $\mathbb R$ are

- (d). \exists an order on $\mathbb R$ which means $\forall x,y\in\mathbb R, x< y$ or ,x>y, or x=y Ordering follows the following properties,
 - (1). $x < y, y < z \Rightarrow x < z$ (transitivity)
 - (2). $x < y \Rightarrow x + z < y + z, \forall z \in \mathbb{R}$
 - (3). $x < y, z > 0 \Rightarrow xz < yz$

Theorem 0.2. $xy = 0 \Leftrightarrow x = 0 \text{ or } y = 0$

Proof. \Leftarrow Without loss of generality take, x = 0 Then we get,

0y.

We can write this as,

$$(0+0)y = 0y + 0y.$$

So,

$$0y = 0y + 0y.$$

Or, m

 \Rightarrow

Assume the contrary that, $x \neq 0$ and $y \neq 0$ We have, xy = 0. Without loss of generality we take the multiplicative inverse of x so,

$$\frac{xy}{x} = \frac{0}{x}.$$

We showed that 0(k) = 0 so y = 0

Which contradicts our assumption, hence our assumptoin must be wrong and x=0 or y=0

Theorem 0.3. (-)x = -x

Proof. We start with (-1)x and add x to both sides so,

$$(-1)x + x = x(1-1) = 0x = 0.$$

So we showed that (-1)x is the additive identity of x. We know that the additive identity is unique for any x. Therefore, (-1)x = -x

Theorem 0.4. $\forall x < y, z < 0$

xz > yz.

Theorem 0.5. $\forall x \in \mathbb{R}, x^2 \geq 0$ and if $x \neq 0$ then $x^2 > 0$

Theorem 0.6. $x^2 = -(-x^2)$

Case 1, x > 0:

$$x \times x > x$$

$$x \times x > 0x$$

$$x^2 > 0$$

Case 2, x < 0:

Example. $\forall a, b > 0$

$$\frac{a+b}{2} \ge \sqrt{ab}$$

 \Diamond

Proof.

$$0 \le (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{ab} + b.$$

Example. $x^2 - x + 1$

 \Diamond

Theorem 0.7. $\forall x, y \in \mathbb{R}$ we have,

$$|x| \ge x$$
 and $|x+y| \le |x| + |y|$.

Proof.

Proof related to Sets

Theorem 0.8.

$$A \cup B \backslash (A \cap B) = (A \backslash B) \cup (B \backslash A).$$

Proof. We need to show that,

$$A \cup B \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A).$$

and.

$$(A \backslash B) \cup (B \backslash A) \subseteq A \cup B \backslash (A \cap B).$$

Theorem 0.9. $A \subseteq B \Leftrightarrow A \cup B = B$

Proof. \Rightarrow Take $\forall x \in A \cup B$, so either

Case 1, $x \in A$:

We know that by deifnition if, $A \subseteq B$ then for $x \in A, x \in B$ so $x \in B$

Case 2, $x \in B$: If $x \in B$ then we don't need to go further.

So we get $\forall x \in A \cup B, x \in B$

 $\forall x \in A \Rightarrow x \in A \cup B = B$

So, $x \in B$ which means that, $A \subseteq B$

Disproofs

If we need to show existence, $\exists x.P(x)$. We can show using,

- 1. Direct constructions
- 2. Indirectly (contradiction). For instance we can show that, $\forall x, \mathcal{P}(x)$ is false

Example.
$$\exists a, b, c \in R - Q \text{ s.t. } a^{bc} \in Q$$

Example. Pigeonhole principle

Suppose there are m balls in n boxes, $m > n \ge 1$ then, \exists a box where there are at least, $\frac{m}{n} + 1$ balls

Proof. Assume pigeonhole is false.

Then, there are at most $\frac{m}{n}$ balls in each box. In case 1 where $\frac{m}{n} \notin N \Rightarrow$ total balls $\leq n[\frac{m}{n}] = \frac{nm}{n} = m$ which is a

In case 2 where $\frac{m}{n} \in N$ there are at most $\frac{m}{n} - 1$ balls in each box. So total number of balls are $\frac{nm}{n} - n = m - n$ which is contradictory.

To disprove $\forall x P(x)$ we can show that, $\exists P(x)$

Example. 100 can't be written as the sum of two even integers and an odd integer.

Proof. Suppose it's false $\Rightarrow \exists a,b,c \in Z \text{ s.t. } 2|a,2|b,2 \not | c \text{ and } 100 = a+b+c$ But, $2|a,2|b \Rightarrow 2|a+b \text{ but } 2 \not | c \Rightarrow 2 \not | (a+b)+c = 100$ So we get, $2 \not | 100 \text{ which is a contradiction.}$ Which means that the original statmeent is true.

Example. $\not\exists$ the smallest positive real number

The smallest positive real number is defined as $x \in R$ s.t. x > 0 and $\forall y > 0, x \le y$

Proof. Let's assume it is true which mean that $\exists x \in R \text{ s.t. } x > 0$ and $\forall y > 0, x \leq y$

We know that $x > 0 \Rightarrow \frac{x}{2} > 0$ So if we set $y = \frac{x}{2}$ then we get

$$x \le \frac{x}{2}$$
.

Which is a contradiction.

Hence it cannot be the case that there exists the smalest positive number.

Example. $\not\exists f(x)$: a polynomial with integer coefficients s.t. $\forall n, f(n)$ is prime \diamond

Proof.

Example. Let $f(x) = x^3 + 2x - 5$ then \exists unique $x_0 \in [1, 2]$ s.t. $f(x_0) = 0$

Proof. Using intermediate value theorem.

$$f(1) = -2$$

$$f(2) = 7$$

To show unique we need to show its strictly increasing.