Q.1 [14 marks]

Fill in the blanks/MCQs using appropriate choice from the given options

Q1.1 [1 mark]

 $\log_3 1 =$

Answer: d. 0

Solution:

For any base $a>0, a\neq 1$: $\log_a 1=0$

Therefore: $\log_3 1 = 0$

Q1.2 [1 mark]

If $f(x) = e^{x-1}$ then f(1) =

Answer: c. 1

Solution:

$$f(x) = e^{x-1}$$

 $f(1) = e^{1-1} = e^0 = 1$

Q1.3 [1 mark]

 $\log_5 125 =$

Answer: b. 3

Solution:

 $\log_5 125 = \log_5 5^3 = 3$ Since $5^3 = 125$

Q1.4 [1 mark]

If $f(x) = x^3 - 7$ then f(-2) =

Answer: c. -15

Solution:

$$f(x) = x^3 - 7$$

 $f(-2) = (-2)^3 - 7 = -8 - 7 = -15$

Q1.5 [1 mark]

Principal period of $\cos x$ is

Answer: c. 2π

Solution:

The cosine function repeats every 2π radians, so its principal period is 2π .

Q1.6 [1 mark]

 $150^{\circ} =$

Answer: a. $\frac{5\pi}{6}$

Solution:

Converting degrees to radians: $150\degree=150 imes \frac{\pi}{180}=\frac{5\pi}{6}$

Q1.7 [1 mark]

 $\sin^{-1} x + \cos^{-1} x =$

Answer: a. $\frac{\pi}{2}$

Solution:

This is a standard identity: $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ for $x \in [-1,1]$

Q1.8 [1 mark]

 $(1,0,0) \times (1,0,0) =$

Answer: d. (0,0,0)

Solution:

Cross product of any vector with itself is zero vector:

$$(1,0,0) \times (1,0,0) = (0,0,0)$$

Q1.9 [1 mark]

If $ec{a}=4\hat{i}-3\hat{j}$ then $|ec{a}|=$

Answer: b. 5

Solution:

$$|\vec{a}| = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

Q1.10 [1 mark]

If a line makes an angle $45\,^\circ$ with positive x-axis then slope of the line is

Answer: c. 1

Solution:

Slope $m= an(45\degree)=1$

Q1.11 [1 mark]

Radius of the circle $x^2+y^2=4$ is

Answer: d. 2

Solution:

Standard form: $x^2 + y^2 = r^2$ Comparing: $r^2 = 4$, so r = 2

Q1.12 [1 mark]

 $\lim_{x o 0}rac{e^x-1}{x}=$

Answer: a. 1

Solution:

This is a standard limit: $\lim_{x o 0} rac{e^x - 1}{x} = 1$

Q1.13 [1 mark]

 $\lim_{x \to 0} \frac{\sin 3x}{x} =$

Answer: d. 3

Solution:

 $\lim_{x o 0}rac{\sin 3x}{x}=\lim_{x o 0}rac{\sin 3x}{3x} imes 3=1 imes 3=3$

Q1.14 [1 mark]

 $\lim_{n o\infty}rac{5n+4}{4n+5}=$

Answer: c. 5/4

Solution:

 $\lim_{n \to \infty} \frac{5n+4}{4n+5} = \lim_{n \to \infty} \frac{5+\frac{4}{n}}{4+\frac{5}{n}} = \frac{5}{4}$

Q.2 (A) [6 marks]

Attempt any two

Q2(A).1 [3 marks]

Find value: $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$

Answer: 0

Solution:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1(5 \times 9 - 6 \times 8) - 2(4 \times 9 - 6 \times 7) + 3(4 \times 8 - 5 \times 7)$$

$$= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$$

= 1(-3) - 2(-6) + 3(-3)
= -3 + 12 - 9 = 0

Q2(A).2 [3 marks]

Prove that: $\log\left(rac{x^p}{x^q}
ight) + \log\left(rac{x^q}{x^r}
ight) + \log\left(rac{x^r}{x^p}
ight) = 0$

Solution:

$$\mathsf{LHS} = \log\left(\frac{x^p}{x^q}\right) + \log\left(\frac{x^q}{x^r}\right) + \log\left(\frac{x^r}{x^p}\right)$$

Using logarithm properties:

$$=\log(x^p)-\log(x^q)+\log(x^q)-\log(x^r)+\log(x^r)-\log(x^p)$$

$$= p \log x - q \log x + q \log x - r \log x + r \log x - p \log x$$

$$=0$$
 = RHS

Q2(A).3 [3 marks]

Find value: $tan(75\degree)$

Answer: $2+\sqrt{3}$

Solution:

$$\tan(75^{\circ}) = \tan(45^{\circ} + 30^{\circ})$$

Using $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$:

$$an(75\degree) = rac{ an 45\degree + an 30\degree}{1 - an 45\degree an 30\degree} = rac{1 + rac{1}{\sqrt{3}}}{1 - 1 imes rac{1}{\sqrt{3}}} = rac{1 + rac{1}{\sqrt{3}}}{1 - rac{1}{\sqrt{3}}}$$

$$=rac{rac{\sqrt{3}+1}{\sqrt{3}}}{rac{\sqrt{3}-1}{\sqrt{3}}}=rac{\sqrt{3}+1}{\sqrt{3}-1}=rac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}=rac{3+2\sqrt{3}+1}{3-1}=rac{4+2\sqrt{3}}{2}=2+\sqrt{3}$$

Q.2 (B) [8 marks]

Attempt any two

Q2(B).1 [4 marks]

Prove that: $rac{1}{\log_{12}120}+rac{1}{\log_{2}120}+rac{1}{\log_{5}120}=1$

Solution:

Using change of base formula: $\frac{1}{\log_a b} = \log_b a$

LHS = $\log_{120} 12 + \log_{120} 2 + \log_{120} 5$

Using logarithm properties:

$$=\log_{120}(12 imes2 imes5)=\log_{120}120=1$$
 = RHS

Q2(B).2 [4 marks]

Solve:
$$\begin{vmatrix} x & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix} = 3$$

Solution:

Expanding along third row:

$$\begin{vmatrix} x & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix} = 3 \begin{vmatrix} x & 1 \\ 1 & 2 \end{vmatrix}$$

$$= 3(2x - 1) = 6x - 3$$

Given:
$$6x - 3 = 3$$

$$6x = 6$$

$$x = 1$$

Q2(B).3 [4 marks]

If
$$f(x)=rac{1-x}{1+x}$$
 prove that: (i) $f(x)+f\left(rac{1}{x}
ight)=0$ (ii) $f(x) imes f(-x)=1$

Solution:

Given:
$$f(x) = \frac{1-x}{1+x}$$

(i)
$$f\left(rac{1}{x}
ight)=rac{1-rac{1}{x}}{1+rac{1}{x}}=rac{rac{x-1}{x}}{rac{x+1}{x}}=rac{x-1}{x+1}=-rac{1-x}{1+x}=-f(x)$$

Therefore:
$$f(x) + f\left(\frac{1}{x}\right) = f(x) + (-f(x)) = 0$$

(ii)
$$f(-x)=rac{1-(-x)}{1+(-x)}=rac{1+x}{1-x}$$

$$f(x) imes f(-x) = rac{1-x}{1+x} imes rac{1+x}{1-x} = 1$$

Q.3 (A) [6 marks]

Attempt any two

Q3(A).1 [3 marks]

Prove that:
$$\frac{\sin(180°-x) + \cos(180°-x) + \tan(180°+x)}{\cos(90°+x) + \sec(90°+x) + \cot(90°+x)} = -3$$

Solution:

Using trigonometric identities:

- $\bullet \ \sin(180^{\circ} x) = \sin x$
- $\langle \csc(180^{\circ} x) = \langle \csc x \rangle$
- $\tan(180^{\circ} + x) = \tan x$
- $\cos(90^\circ + x) = -\sin x$
- $\sec(90^{\circ} + x) = \backslash \csc x$
- $\bullet \cot(90^{\circ} + x) = -\tan x$

Numerator = $\sin x + \langle \csc x + \tan x \rangle$

Denominator =
$$-\sin x - \langle \csc x - \tan x = -(\sin x + \langle \csc x + \tan x \rangle)$$

Therefore:
$$\frac{\sin x + \sqrt{\csc x + \tan x}}{-(\sin x + \sqrt{\csc x + \tan x})} = -1 \neq -3$$

Note: There appears to be an error in the problem statement or expected answer.

Q3(A).2 [3 marks]

Prove that: $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = 45^{\circ}$

Solution:

Using
$$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A+B}{1-AB} \right)$$
:

$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \times \frac{1}{2}}\right)$$

$$=\tan^{-1}\left(\frac{\frac{5}{6}}{1-\frac{1}{6}}\right)=\tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right)=\tan^{-1}(1)=45^\circ$$

Q3(A).3 [3 marks]

Find out equation of the line whose X-intercept is 3 and Y-intercept is 2.

Solution:

Using intercept form:
$$\frac{x}{a} + \frac{y}{b} = 1$$

Where a=3 (x-intercept) and b=2 (y-intercept)

$$\frac{x}{3} + \frac{y}{2} = 1$$

Multiplying by 6: 2x + 3y = 6

Q.3 (B) [8 marks]

Attempt any two

Q3(B).1 [4 marks]

Prove that:
$$\tan(70^\circ) = \frac{\cos(25^\circ) + \sin(25^\circ)}{\cos(25^\circ) - \sin(25^\circ)}$$

Solution:

RHS =
$$\frac{\cos(25^{\circ}) + \sin(25^{\circ})}{\cos(25^{\circ}) - \sin(25^{\circ})}$$

Dividing numerator and denominator by $\cos(25\degree)$:

$$=rac{1+ an(25\degree)}{1- an(25\degree)}$$

Using
$$\tan(45\degree + \theta) = \frac{1+\tan\theta}{1-\tan\theta}$$
:

$$= an(45\degree+25\degree)= an(70\degree)$$
 = LHS

Q3(B).2 [4 marks]

Prove that:
$$\frac{\sin\theta+\sin2\theta+\sin3\theta}{\cos\theta+\cos2\theta+\cos3\theta}=\tan2\theta$$

Solution:

Using sum-to-product formulas:

Numerator: $\sin \theta + \sin 3\theta + \sin 2\theta = 2\sin 2\theta \cos \theta + \sin 2\theta = \sin 2\theta (2\cos \theta + 1)$

Denominator: $\cos \theta + \cos 3\theta + \cos 2\theta = 2\cos 2\theta \cos \theta + \cos 2\theta = \cos 2\theta (2\cos \theta + 1)$

Therefore: $\frac{\sin 2\theta(2\cos \theta+1)}{\cos 2\theta(2\cos \theta+1)} = \frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta$

Q3(B).3 [4 marks]

If
$$ec{a}=(1,2,3)$$
, $ec{b}=(4,0,0)$ and $ec{c}=(2,0,1)$ find $2ec{a}+3ec{b}-5ec{c}$

Solution:

$$2\vec{a} = 2(1,2,3) = (2,4,6)$$

$$3\vec{b} = 3(4,0,0) = (12,0,0)$$

$$5\vec{c} = 5(2,0,1) = (10,0,5)$$

$$2\vec{a} + 3\vec{b} - 5\vec{c} = (2,4,6) + (12,0,0) - (10,0,5)$$

$$=(2+12-10,4+0-0,6+0-5)$$

$$=(4,4,1)$$

Q.4 (A) [6 marks]

Attempt any two

Q4(A).1 [3 marks]

If the vectors $ec{a}=\hat{i}-2\hat{j}+3\hat{k}$ and $ec{b}=2\hat{i}+m\hat{j}-4\hat{k}$ are perpendicular, find m.

Solution:

For perpendicular vectors: $ec{a} \cdot ec{b} = 0$

$$\vec{a} \cdot \vec{b} = (1)(2) + (-2)(m) + (3)(-4) = 2 - 2m - 12 = -10 - 2m$$

Setting equal to zero: -10 - 2m = 0

$$2m = -10$$

$$m = -5$$

Q4(A).2 [3 marks]

Find the direction cosines and direction angles of the vector $ec{a}=5\hat{i}-12\hat{k}$

Solution:

$$ec{a}=5\hat{i}+0\hat{j}-12\hat{k}$$

Magnitude:
$$|ec{a}| = \sqrt{5^2 + 0^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$

Direction cosines:

•
$$l = \frac{5}{13}$$

•
$$m = \frac{0}{13} = 0$$

•
$$n = \frac{-12}{13}$$

Direction angles:

•
$$\alpha = \cos^{-1}\left(\frac{5}{13}\right)$$

•
$$\beta = \cos^{-1}(0) = 90^{\circ}$$

•
$$\gamma = \cos^{-1}\left(\frac{-12}{13}\right)$$

Q4(A).3 [3 marks]

Find out equation of the circle having center at (2,-3) and radius 3.

Solution:

Standard form:
$$(x-h)^2 + (y-k)^2 = r^2$$

Where
$$(h,k)=(2,-3)$$
 and $r=3$

$$(x-2)^2 + (y+3)^2 = 9$$

Expanding:
$$x^2 - 4x + 4 + y^2 + 6y + 9 = 9$$

 $x^2 + y^2 - 4x + 6y + 4 = 0$

Q.4 (B) [8 marks]

Attempt any two

Q4(B).1 [4 marks]

Show that the angle between vectors $ec{a}=\hat{i}+2\hat{j}$ and $ec{b}=\hat{i}+\hat{j}+3\hat{k}$ is $\sin^{-1}\sqrt{rac{46}{55}}$

Solution:

$$ec{a} \cdot ec{b} = (1)(1) + (2)(1) + (0)(3) = 1 + 2 = 3$$

$$|\vec{a}| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$|\vec{b}| = \sqrt{1^2 + 1^2 + 3^2} = \sqrt{11}$$

$$\cos heta = rac{ec{a} \cdot ec{b}}{|ec{a}| |ec{b}|} = rac{3}{\sqrt{5}\sqrt{11}} = rac{3}{\sqrt{55}}$$

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{9}{55} = \frac{46}{55}$$

Therefore:
$$heta=\sin^{-1}\sqrt{rac{46}{55}}$$

Q4(B).2 [4 marks]

Under effect of the forces $2\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3\hat{j}-\hat{k}$ a particle moves from the point (1,2,-3) to the point (5,3,7). Find out work done.

Solution:

Net force:
$$\vec{F} = (2\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 3\hat{j} - \hat{k}) = 3\hat{i} + 4\hat{j}$$

Displacement: $\vec{s} = (5, 3, 7) - (1, 2, -3) = (4, 1, 10)$

Work done: $W = ec{F} \cdot ec{s} = (3)(4) + (4)(1) + (0)(10) = 12 + 4 = 16$ units

Q4(B).3 [4 marks]

Evaluate: $\lim_{x o 0} rac{2^x - 5^x}{x}$

Solution:

Using L'Hôpital's rule or the derivative definition:

$$egin{aligned} \lim_{x o 0} rac{2^x - 5^x}{x} &= \lim_{x o 0} rac{2^x \ln 2 - 5^x \ln 5}{1} \\ &= 2^0 \ln 2 - 5^0 \ln 5 = \ln 2 - \ln 5 = \ln \left(rac{2}{5}
ight) \end{aligned}$$

Q.5 (A) [6 marks]

Attempt any two

Q5(A).1 [3 marks]

Evaluate: $\lim_{x\to 0} \left(1+\frac{3x}{7}\right)^{\frac{1}{x}}$

Solution:

Let
$$y=\left(1+rac{3x}{7}
ight)^{rac{1}{x}}$$

Taking natural log: $\ln y = \frac{1}{x} \ln \left(1 + \frac{3x}{7}\right)$

$$\lim_{x o 0} \ln y = \lim_{x o 0} rac{\ln\left(1+rac{3x}{7}
ight)}{x}$$

Using L'Hôpital's rule: $=\lim_{x o 0}rac{rac{3/7}{1+rac{3x}{T}}}{rac{3}{T}}=rac{3}{7}$

Therefore: $\lim_{x o 0} y = e^{3/7}$

Q5(A).2 [3 marks]

Evaluate: $\lim_{x o 3} rac{x^2 - 5x + 6}{x^2 - 9}$

Solution:

Factoring numerator: $x^2-5x+6=(x-2)(x-3)$

Factoring denominator: $x^2 - 9 = (x - 3)(x + 3)$

$$\lim_{x\to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \lim_{x\to 3} \frac{(x-2)(x-3)}{(x-3)(x+3)} = \lim_{x\to 3} \frac{x-2}{x+3} = \frac{3-2}{3+3} = \frac{1}{6}$$

Q5(A).3 [3 marks]

Evaluate: $\lim_{x o 0} rac{\sqrt{4+x}-2}{x}$

Solution:

Rationalizing the numerator:

$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} \times \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}$$

$$= \lim_{x \to 0} \frac{(4+x)-4}{x(\sqrt{4+x}+2)} = \lim_{x \to 0} \frac{x}{x(\sqrt{4+x}+2)} = \lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{1}{2+2} = \frac{1}{4}$$

Q.5 (B) [8 marks]

Attempt any two

Q5(B).1 [4 marks]

Find out equation of the line passing through points (1,2) and (2,1).

Solution:

Using two-point form:
$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-2}{1-2} = \frac{x-1}{2-1}$$

$$\frac{y-2}{-1} = \frac{x-1}{1}$$

$$y-2 = -(x-1) = -x+1$$

$$x + y = 3$$

Q5(B).2 [4 marks]

Find equation of the line that passes through $\left(-3,2\right)$ and parallel to the line x-2y+1=0

Solution:

The given line x-2y+1=0 has slope $m=\frac{1}{2}$

Since parallel lines have the same slope, required line has slope $m=rac{1}{2}$

Using point-slope form: $y - y_1 = m(x - x_1)$

$$y - 2 = \frac{1}{2}(x - (-3))$$

$$y-2 = \frac{1}{2}(x+3)$$

$$2y - 4 = x + 3$$

$$x - 2y + 7 = 0$$

Q5(B).3 [4 marks]

Find out center and radius of the circle: $x^2+y^2+6x-4y-3=0$

Solution:

Completing the square:

$$x^2 + 6x + y^2 - 4y = 3$$

$$(x^2 + 6x + 9) + (y^2 - 4y + 4) = 3 + 9 + 4$$

$$(x+3)^2 + (y-2)^2 = 16$$

Center: (-3,2) Radius: $r=\sqrt{16}=4$

Formula Cheat Sheet

Logarithms

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(xy) = \log_a x + \log_a y$
- $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$

Trigonometry

- $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
- $\sin(180^{\circ} x) = \sin x$, $\cos(90^{\circ} + x) = -\sin x$

Vectors

- $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$
- For perpendicular vectors: $\vec{a}\cdot\vec{b}=0$

Coordinate Geometry

- Two-point form: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$
- Circle: $(x-h)^2 + (y-k)^2 = r^2$
- Parallel lines have equal slopes

Limits

- $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- $\lim_{x\to 0} \frac{e^x-1}{x} = 1$
- $\lim_{x\to\infty} \frac{ax+b}{cx+d} = \frac{a}{c}$

Problem-Solving Strategies

- 1. **Logarithms**: Use properties to simplify expressions
- 2. Trigonometry: Apply compound angle formulas and identities
- 3. Vectors: Remember dot and cross product properties

Common Mistakes to Avoid

Logarithms

ullet Mistake: Confusing $\log_a b$ with $\log_b a$

• **Solution**: Remember change of base: $\frac{1}{\log_a b} = \log_b a$

Trigonometry

• Mistake: Wrong angle conversions between degrees and radians

• **Solution**: Always use $180\degree=\pi$ radians for conversion

Vectors

• Mistake: Confusing dot product with cross product

• Solution: Dot product gives scalar, cross product gives vector

Limits

• Mistake: Direct substitution in indeterminate forms

Solution: Use algebraic manipulation, L'Hôpital's rule, or standard limits

Determinants

• Mistake: Sign errors in expansion

• **Solution**: Follow the checkerboard pattern carefully

Exam Tips

Time Management

• Q1 (14 marks): 20-25 minutes - Quick calculations

• Q2-Q5: 35-40 minutes each - Show all steps clearly

Strategy

1. Read all questions first - Choose easier OR options

2. Start with Q1 - Build confidence with MCQs

3. Show work clearly - Partial credit is available

4. Use standard formulas - Don't derive unless asked

Key Points to Remember

• Always write the final answer clearly

• Use proper mathematical notation

- Draw diagrams where helpful
- Check units in physics-related problems (work, force)

Calculator Usage

- Scientific calculator allowed
- Use for complex arithmetic only
- Show the setup before calculating
- Round final answers appropriately

Common Formula Applications

Standard Limits (Memory aids)

```
\lim(x\to 0) \sin(x)/x = 1 "Sine over x is one"

\lim(x\to 0) (e^x - 1)/x = 1 "e minus one over x is one"

\lim(x\to 0) (a^x - 1)/x = \ln(a) "General exponential form"
```

Trigonometric Identities (Quick Reference)

Vector Operations (Step-by-step)

- 1. Magnitude: $|ec{a}| = \sqrt{sum\, of\, squares}$
- 2. Dot Product: $ec{a}\cdotec{b}=a_1b_1+a_2b_2+a_3b_3$

3. Angle: $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Circle Equations (Forms)

Form	Equation	When to Use	
Standard	$(x-h)^2+(y-k)^2=r^2$	Given center and radius	
General	$x^2 + y^2 + Dx + Ey + F = 0$	Need to find center/radius	
Complete Square	$(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4$	Converting general to standard	

Problem-Specific Strategies

For Determinant Problems

- 1. Look for zeros to simplify expansion
- 2. Use row/column operations if allowed
- 3. Remember: if two rows/columns are proportional, determinant = 0

For Limit Problems

For Vector Problems

- Step 1: Write vectors in component form
- **Step 2**: Apply required operation (dot/cross product)
- Step 3: Simplify and find magnitude if needed
- Step 4: Check perpendicularity condition ($ec{a}\cdotec{b}=0$)

For Coordinate Geometry

- Line problems: Identify what's given (points, slope, parallel/perpendicular)
- **Circle problems**: Identify center and radius from given information

• Always check your equation by substituting known points

Memory Techniques

Logarithm Properties (MNEMONIC: "PLUS")

• Product: $\log(ab) = \log a + \log b$

• Limit: $\log_a 1 = 0$

• Unity: $\log_a a = 1$

• Subtraction: $\log(a/b) = \log a - \log b$

Trigonometric Values (30°, 45°, 60°)

Angle	sin	cos	tan
30°	1/2	√3/2	1/√3
45°	1/√2	1/√2	1
60°	√3/2	1/2	√3

Memory aid: "1, 2, 3" under square roots for sin values (30° to 60°)

Final Review Checklist

Before submitting your paper:

\square All questions attempted as required
☐ Final answers clearly marked
☐ Units included where applicable
☐ No arithmetic errors in simple calculations
$\hfill\Box$ Proper mathematical notation used
☐ Diagrams labeled clearly (if drawn)

Quick Problem Solving Guide

If you're stuck on a problem:

- 1. Read the problem again Often missed details become clear
- 2. **Try a different approach** Multiple methods usually exist
- 3. Work backwards Start from what you want to prove/find
- 4. **Use elimination** In MCQs, eliminate obviously wrong options
- 5. Move on and return Don't spend too much time on one problem

Last 15 minutes strategy:

- Focus on completing MCQs in Q1
- Check arithmetic in longer problems
- Ensure all final answers are clearly marked
- Review any skipped parts of questions

Remember: This exam tests fundamental concepts. Focus on understanding rather than memorizing, and always show your reasoning clearly for maximum partial credit.