Actividad No. 1 Valor: 17/Totalactiv

"Las raíces de la educación son amargas, pero la fruta es dulce.. Aristóteles."

Nombre:	Fecha:

Consideremos la siguiente famila de rectas con pendientes m = -1/3, m = 1/2 y m = 1 con la misma ordenada al origen b = 1. Usar el archivo excel anexo para responder las siguientes preguntas.

1. ¿Cúal de ellas es la mejor línea de ajuste (de regresión lineal) a los datos X y Y dados en el archivo excel, considerando el criterio

$$\min_{m,b} \sum \epsilon_i^2 ?.$$

. Dar además el modelo \hat{y} .

Si ahora el criterio es

$$\min_{m,b} \sum_{i=1}^{n} |\epsilon_i|.$$

2. ¿Cúal de ellas es la mejor línea de ajuste y dar el modelo \hat{y} .?

Actividad 2:

Para mentes curiosas: Homework 1. Supongamos que el modelo que deseamos ajustar a la nube de puntos es $\hat{y} = mx + b$, pero ahora b = K es una constante. Además la pendiente la definimos como $m = \tan(\theta)$ con $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, por lo tanto nuestro modelos $\hat{y} = \tan(\theta)x + K$. Si consideramos el criterio OLS, $\sum \epsilon_i^2$, tenemos

$$h(\theta) := \sum_{1}^{n} \epsilon_i^2 = \sum_{1}^{n} \left(y_i - \tan(\theta) x_i - K \right)^2$$

Valor: 17/Totalactiv

- 3. ¿Cúal de ellas es la mejor línea de ajuste?, es decir, el mejor $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
 - **Tips:** Calcular la derivada de h para obtener el mínimo (¡el mejor valor!), es decir, $\frac{dh}{d\theta}(\theta) = 0$.