INTRODUÇÃO AOS SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS

Curso: ENGENHARIA DE COMPUTAÇÃO Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS Professor: KLAUSNER VIEIRA GONÇALVES

EVOLUÇÃO

De 1945 a 1985

- Computadores de grande porte e alto custo
- Trabalhavam de modo independente não havia confiabilidade na comunicação

De 1985 em diante

• Microcomputadores com maior poder computacional

- Redes de alta velocidade
 - Local Area Network LAN
 - Wide Area Network WAN

DEFINIÇÃO

Definição de Tanenbaum, aperfeiçoada por Mullender:

- Um sistema distribuído é aquele que se apresenta aos seus usuários como um sistema centralizado, mas que, na verdade, funciona em diversas CPUs independentes;
- Além disso, um sistema distribuído não deve ter pontos críticos de falha, ou seja, se um componente do mesmo quebrar, isto não deve fazer com que o sistema como um todo falhe;
- Essa característica de estabilidade é uma de suas principais vantagens em relação a um sistema centralizado.

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

DEFINIÇÃO

Coulouris enfatiza:

- Devem estar conectados através de uma rede
- Não precisam estar localizados em uma única sala, ou mesmo próximos entre si
- Não há limite para a área abrangida por um sistema desse tipo;
- Computadores devem estar equipados com software de sistemas distribuídos
- Usuários veem o sistema como uma entidade única, integrada
- Embora esteja funcionando em computadores diferentes, situados em locais diversos.

CARACTERÍSTICAS

- Comunicação por Trocas de Mensagens
- Modelo de Falhas
- Sincronismo
- Segurança
- Heterogeneidade
- Desempenho
- Custo
- Distribuição Geográfica
- Compartilhamento de Recursos
- Capacidade de Expansão (Scalability)
- Disponibilidade
- Concorrência
- Transparência

CARACTERÍSTICAS

Comunicação por Trocas de Mensagens

- Utilização de meios de comunicação introduz características diferentes no modelo de comunicação;
- A comunicação fica sujeita a um conjunto de fatores que podem afetar sua confiabilidade => perdas/interferências;
- Protocolos
 - Garantir confiabilidade e ordem das mensagens

- Interligação de várias redes
 - Atraso
 - Falha na Transmissão
 - Tempo máximo de espera por uma mensagem

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Modelo de Falhas

- Maior probabilidade de falhas => maior quantidade de equipamentos
- Falhas individuais não podem afetar o sistema como um todo

- Algoritmos de detecção e recuperação de falhas
- Replicações, Redundâncias
- Fatores que levam a falhas
 - Elementos de interligação
 - Interferências, cabeamento mal estruturado, intempéries naturais)
 - Nodos (Nós) do sistema
 - Falhas de software e Falhas físicas (equipamentos)

CARACTERÍSTICAS

Sincronismo

- F
- Sistema centralizado
 - Sistema de sinciónismo concentrado em um único núcleo com regras
- Sistema Distribuído
 - Informação está necessariamente dividida por diversas máquinas e discos;
- Problemas com cada Nodo do sistema
 - Não compartilham relógio globar => não possuem mesmos "horários"
 - Disputa por recursos => algoritmos mais complexos e que podem ser afetados pela comunicação entre os processadores

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Segurança

- Vulnerabilidade de Redes
 - Observação das Mensagens => sniffing
 - Ataques => DoS, DDoS, Buffer Overflow
- Validação da identidade dos usuários
 - · Usuário válido
 - Credenciais para utilizar recursos
- Interligação de serviços públicos e privados
 - Internet
 - Políticas de segurança diversas (níveis de acesso)
 - Sistemas Heterogêneos

CARACTERÍSTICAS

Heterogeneidade =

- Sistema amplo
- Variedade de Arquiteturas
 - CISC, RISC, Vetoriais
 - 32, 64 bits
 - Intel, Mac, Sparc, Mainframes, etc
- Variedade de Sistemas Operacionais
 - Linux, Windows, MacOS, Solaris, AIX, HP-UX, BSD

Curso: ENGENHARIA DE COMPUTAÇÃO Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Desempenho

- Desempenho de um Sistema Distribuído deve ser compatível com um Sistema Centralizado
- Divisão do processamento entre os diversos nós
- Custo da comunicação
- Com Sistema Distribuído é possível atingir desempenhos jamais imagináveis com Sistemas Centralizados

CARACTERÍSTICAS

Custo

- Pode-se obter um Sistema Distribuído com a mesma quantidade de processadores de um Sistema Centralizado com um custo muito menor
- Utilização de múltiplos processadores de baixo custo interligados em rede
- Capacidade de se obter um desempenho muito maior com o mesmo investimento do que em um Sistema Centralizado

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Distribuição Geográfica

- Componentes fisicamente distantes uns dos outros
- F
- Aplicações Inerentemente Distribuídas
 - Venda de passagens aéreas
 - Sistema integrado de gestão empresarial
 - Internet...

CARACTERÍSTICAS

Compartilhamento de Recursos

- Periféricos de alto custo
 - Impressoras laser coloridas, discos RAID com interface
- Dados em um ambiente centralizado
 - Bases de dados de transações financeiras
- Problema
 - Controle de acesso e concorrência

• Mecanismos mais complexos

Curso: ENGENHARIA DE COMPUTAÇÃO Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Capacidade de Expansão (Scalability)

- Sistema Centralizado
 - Limite físico para o número máximo de processadores
 - Limite para discos, memória
- Sistema Distribuído
 - Necessidade de mais desempenho => acoplar mais máquinas
 - Em função da demanda, aumenta-se o número de nós do sistema
 - Problema => interligação => congestionamento

CARACTERÍSTICAS

Disponibilidade

- Tempo em que o sistema é "utilizável"
- Desejável = 100%
- Máquinas independentes podem continuar mantendo o sistema em operação no caso de falhas em outras máquinas
- Sistema deve ser projetado para tal
- Exemplos
 - Sistema bancário
- 厚
- Web Servers
- Garantia de Disponibilidade
 - Redundância (software, hardware)
 - Algoritmos de recuperação

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS

Concorrência 😑

- Mais complexo do que em um Sistema Centralizado
- Mecanismos de controle de concorrência devem ser revistos (semáforos, mutexes)
- Maior número de máquinas => maior concorrência
- Rede influencia o acesso aos recursos

CARACTERÍSTICAS

Transparência

- Localização: o usuário não precisa saber onde estão os recursos
- Replicação: não é necessário saber quantas cópias do recurso existem
- Migração: recursos podem mudar de lugar sem a alteração de nomes
- Concorrência: recursos podem ser disputados sem conhecimento do usuário
- Paralelismo: várias atividades podem ocorrer simultaneamente sem o conhecimento dos usuário

Curso: ENGENHARIA DE COMPUTAÇÃO
Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS
Professor: KLAUSNER VIEIRA GONÇALVES

CARACTERÍSTICAS [

Transparência	Descrição
Acesso	Oculta diferenças na representação de dados e no modo de acesso a um recurso
Localização	Oculta o lugar onde o recurso está localizado
Migração	Oculta que um recurso pode ser movido para outra localização
Realocação	Oculta que um recurso pode ser movido para outra localização enquanto ele está sendo usado
Replicação	Oculta que um recurso é replicado
Concorrência	Oculta que um recurso pode ser compartilhado por diversos usuários
Falhas	Oculta a falha e a recuperação de um recurso

VANTAGENS (1/1)

- Compartilhamento de dados: base de dados comum;
- Compartilhamento de dispositivos: acesso compartilhado a periféricos;
- Comunicação: torna-se mais simples e mais rápida a comunicação entre pessoas. Além disso, é possível: transferência de arquivos entre nós, login remoto, etc;
- Flexibilidade: dividir a carga de trabalho entre os nós da rede;

Curso: ENGENHARIA DE COMPUTAÇÃO Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS Professor: KLAUSNER VIEIRA GONÇALVES

VANTAGENS (2/2)

- Confiabilidade: se um nó falha os demais poderão continuar operando;
- Velocidade de computação: maior poder computacional obtido através de concorrência. Há a possibilidade de distribuir uma computação particionada a vários nós para executarem concorrentemente;
- Performance a baixo custo: preço baixo dos PCs;
- Escalabilidade: aumentar o número de nós.

DESVANTAGENS

Software

- Falta de experiência
- Mudança de Paradigma
- Conhecimento sobre a distribuição
- Quanto deve ser feito pelo sistema e quanto pelo usuário?

Rede

- Perda de mensagens
- Sobrecarga na comunicação
- Dimensionamento da rede

Segurança

• Autenticação, credenciais, bloqueios 📃

Curso: ENGENHARIA DE COMPUTAÇÃO Disciplina: SISTEMAS COMPUTACIONAIS DISTRIBUÍDOS Professor: KLAUSNER VIEIRA GONÇALVES

CONCEITOS DE SOFTWARE

Acoplamento

- Grau de dependência entre os diversos componentes do sistema
- Também define como o usuário vê o sistema

Fortemente Acoplados

• Os diversos processadores cooperam na execução de uma tarefa (processamento paralelo)

Exemplo: Processamento de imagens

Fracamente Acoplados

 Máquinas independentes, com sua própria memória, HD, processador que se comunicam quando necessário

Exemplo: Um grupo de computadores pessoais, cada um com a sua própria CPU, memória, disco rígido e S.O, compartilhando alguns recursos através de uma rede

SISTEMA DISTRIBUÍDO

- Software Fortemente Acoplado
- Hardware Fracamente Acoplado
- Cada usuário tem a mesma imagem do sistema.
- Impressão de um único processador Virtual
- Um mecanismo de comunicação interprocesso único e global qualquer processo pode se comunicar com qualquer outro;
- Gerenciamento de processos precisa ser o mesmo no sistema
- todo (criação, destruição, começo, interrupção de processos);
- Único conjunto de chamadas de sistema;
- Sistema de arquivo também precisa ter as mesmas características;
- Cópias idênticas do kernel executam em todas as CPUs do sistema (escalonamento, swapping, paginação, etc).