LECTURE 1:

Lattice Theory

H. Xiao NOVEMBER 2012

1.1 Lattice

Geometrically, a lattice can be defined as the set of intersection point of an infinite, regular, but not necessarily orthogonal n-dimensional grid. For example, the set of integer vectors \mathbb{Z}^n is a lattice. In theoretical computer science, lattices are usually represented by a generating basis.

Definition 1.1 (Lattice) Given m linearly independent vectors $b_1, b_2, \ldots, b_m \in \mathbb{R}^n$, the lattice generated by them is defined as $L(b_1, b_2, \ldots, b_m) = \{\sum x_i b_i | x_i \in \mathbb{Z}\}$. We refer to b_1, b_2, \ldots, b_m as a basis of the lattice. We say that the rank of the lattice is m and its dimension is n. If m = n, the lattice is called a full-rank lattice. A lattice is usually denoted by Λ .

Alternative Definition of Lattices

Definition 1.2 (Lattice) A lattice is a discrete additive subgroup of \mathbb{R}^n generated by all the integer combinations of some basis.

Notice the similarity between the definition of a lattice and the definition of vector space generated by b_1, b_2, \ldots, b_n .

$$span\{b_1, b_2, \dots, b_m\} = \{\sum_{i=1}^{m} x_i b_i | x_i \in \mathbb{R}\}$$

One difference is that in a vector space you can combine the basis vectors with arbitrary real coefficients, while in a lattice only integer coefficients are allowed, resulting in a discrete set of points.

Another difference between lattices and vector spaces is that vector spaces always admit an orthogonal basis. This is not true for lattices.

Given a lattice Λ , there are infinitely many different choices of lattice basis. Let B be a nonsingular matrix with one basis of Λ as the columns of it. One can obtain another basis C by a unimodular transformation(multiplying the basis vectors by a square matrix with integer entries and determinant plus or minus one.), then $|\det B| = |\det C|$. So this number is independent of the choice of the basis, and is called the *determinant* of Λ , denoted by $\det \Lambda$. It is equal to the volume of the parallelepiped $\{x_1b_1 + \cdots + x_nb_n | 0 \le x_i < 1 \text{ for } i = 1, \dots, n\}$

Vector space

Definition 1.3 (Fundamental Parallelepiped) Given m linearly independent vectors $b_1, b_2, \ldots, b_m \in \mathbb{R}^n$, their fundamental parallelepiped is defined as

$$\{\sum_{i=1}^{m} x_i b_i | x_i \in \mathbb{R}, 0 \le x_i < 1\}$$

 $vol = |\det B|$

Theorem 1.4 (Hadamard inequality) det $\Lambda \leq ||b_1|| ||b_2|| \cdots ||b_m||$, where $||\cdot||$ denotes Euclidean norm $(||x|| = \sqrt{x^T x})$.

1.2 Gram-Schmidt

Projection

1.3 LLL lattice basis reduction algorithm

Motivation

1.4 Applications

References

[CW87] D. COPPERSMITH and S. WINOGRAD, "Matrix multiplication via arithmetic progressions," Proceedings of the 19th ACM Symposium on Theory of Computing, 1987, pp. 1–6.