- 1. Let K be a subset of a topological space X. Show that the following two statements are logically equivalent:
 - (a) For every family \mathcal{F} of open sets in X:

if
$$K \subseteq \bigcup_{O \in \mathcal{F}} O$$
, then there exists a finite subfamily $\mathcal{F}_0 \subseteq \mathcal{F}$ such that $K \subseteq \bigcup_{O \in \mathcal{F}_0} O$.

- (b) Every family of closed subsets of K enjoying the finite intersection property has a nonempty intersection.
- 2. Prove that the image of a compact set under a continuous function is compact.
- 3. Consider a real-valued function f defined on a convex subset C of \mathbb{R}^n such that for every $x_1, x_2 \in C$, there exists $\alpha \in (0,1)$ for which $f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1 + (1-\alpha)f(x_2)$.
 - (a) Show that the function f is convex if it is continuous.
 - (b) Does the converse of statement (a) also obtain in general? Justify your answer.
- 4. Let Σ be an alphabet. Prove that the family $\mathcal{P}(\Sigma^*)$ of all languages over alphabet Σ is uncountable.

Solution. That the set Σ^* of strings over Σ is countable has been shown during lecture. Accordingly consider a surjection $\phi: \mathbb{N} \longrightarrow \Sigma^*$. Define a mapping $\Phi: \mathcal{P}(\mathbb{N}) \longrightarrow \mathcal{P}(\Sigma^*)$ by setting for each $\mathbb{R} \in \mathcal{P}(\mathbb{N})$:

$$\Phi(R) := \left\{ w \in \Sigma^* : w = \phi(n) \text{ for some } n \in R \right\}.$$

That is, the value of Φ when applied to R is the image of R under ϕ . It is readily verified that Φ is a bijection.

For *reductio ad absurdum*, assume that $\mathcal{P}(\Sigma^*)$ is countable. Then there is a surjection $\Psi: \mathbb{N} \longrightarrow \mathcal{P}(\Sigma^*)$, whereby it follows that the composition $\Phi^{-1} \circ \Psi$ is a surjective mapping from \mathbb{N} onto $\mathcal{P}(\mathbb{N})$, the existence of which is impossible since $\mathcal{P}(\mathbb{N})$ is uncountable, as demonstrated during lecture.

D:20230829001644Z