Bachelorprojekt

Title (subtitle)

Daniel Kongsgaard

Vejleder: Jens Carsten Jantzen

Aarhus Universitet

Abstract

Some text

Contents

Abstract	i
1 Harish-Chandra modules over $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$	1
2 Linear relations	3
Bibliography	5
A Appendix	Α.

Chapter 1

Harish-Chandra modules over $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$

Let G be a semisimple Lie group and let G_k be its maximal compact subgroup. Denote by L the semisimple Lie algebra of G and denote by L_k the Lie subalgebra corresponding to G_k .

Definition 1.1. An L-module M is a Harish-Chandra module if, regarded as an L_k -module, it can be written as a sum

$$M = \bigoplus_{i} M_i$$

of finite dimensional irreducible L_k -submodules M_i , where for each M_{i_0} only finitely many L_k -submodules equivalent to M_{i_0} occur in the decomposition of M.

A Harish-Chandra module M is indecomposable if it cannot be decomposed into the direct sum of L-submodules.

Our goal is to classify all indecomposable Harish-Chandra modules over $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$, where we by $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$ mean the following:

For L, L' Lie algebras over F, we consider $L \times L' = L \oplus L'$ as a Lie algebra over F with pointwise addition, multiplication given by $\alpha(a,b) = (\alpha a, \alpha b)$ for $\alpha \in F, a \in L, b \in L'$, and with Lie bracket $[(a_1,b_1),(a_2,b_2)] = ([a_1,a_2],[b_1,b_2])$ for $a_1,a_2 \in L,b_1,b_2 \in L'$.

Remark 1.2. Note that $L \times 0$ and $0 \times L'$ are ideals in $L \times L'$ as given above. Thus we see that $\mathfrak{sl}(2, \mathbf{C}) \times 0$ and $0 \times \mathfrak{sl}(2, \mathbf{C})$ are ideals in $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$ with

$$(\mathfrak{sl}(2,\mathbf{C})\times 0)\oplus (0\times \mathfrak{sl}(2,\mathbf{C}))=\mathfrak{sl}(2,\mathbf{C})\times \mathfrak{sl}(2,\mathbf{C}),$$

so $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$ is semisimple. Hence it makes sense to talk about Harish-Chandra modules over $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$.

We fix the following as a standard basis for $\mathfrak{sl}(2, F)$:

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Giving us the relations:

$$[x, y] = h,$$
 $[h, x] = 2x,$ $[h, y] = -2y,$

cf. [Jan16, p. 35] or [Hum72, p. 6].

We claim now that

$$(x,x), (y,y), \frac{1}{2}(h,h), (ix,-ix), (iy,-iy), \frac{1}{2}(ih,-ih)$$

is a basis of $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$. This is clearly the case since $\dim_{\mathbf{C}} \mathfrak{sl}(2, \mathbf{C}) = 3$, so $\dim_{\mathbf{C}} \mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C}) = 6$, and we see that the above elements span $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$; we have $\frac{1}{2}(x, x) - \frac{i}{2}(ix, -ix) = (x, 0)$ and $\frac{1}{2}(x, x) + \frac{i}{2}(ix, -ix) = (0, x)$ and likewise with h and y.

Putting

$$h_{+} = (x, x),$$
 $h_{-} = (y, y),$ $h_{3} = \frac{1}{2}(h, h),$
 $f_{+} = (ix, -ix),$ $f_{-} = (iy, -iy),$ $f_{3} = \frac{1}{2}(ih, -ih)$

we get the following commutation relations between these basis elements:

$$\begin{split} [h_+,h_3] &= \tfrac{1}{2}([x,h],[x,h]) = \tfrac{1}{2}(-2x,-2x) = -(x,x) = -h_+, \\ [h_-,h_3] &= \tfrac{1}{2}([y,h],[y,h]) = \tfrac{1}{2}(2y,2y) = (y,y) = h_-, \\ [h_+,h_-] &= ([x,y],[x,y]) = (h,h) = 2h_3, \\ [h_+,f_+] &= ([x,ix],[x,-ix]) = 0, \\ [h_-,f_-] &= ([y,iy],[y,-iy]) = 0, \\ [h_3,f_3] &= \tfrac{1}{4}([h,ih],[h,-ih]) = 0, \\ [h_+,f_3] &= \tfrac{1}{2}([x,ih],[x,-ih]) = \tfrac{1}{2}(-2ix,2ix) = -(ix,-ix) = -f_+, \\ [h_-,f_3] &= \tfrac{1}{2}([y,ih],[y,-ih]) = \tfrac{1}{2}(2iy,-2iy) = (iy,-iy) = f_-, \\ [h_+,f_-] &= ([x,iy],[x,-iy]) = (ih,-ih) = 2f_3, \\ [h_3,f_-] &= \tfrac{1}{2}([h,iy],[h,-iy]) = \tfrac{1}{2}(-2iy,2iy) = -(iy,-iy) = -f_-, \\ [h_-,f_+] &= ([y,ix],[y,-ix]) = (-ih,ih) = -(ih,-ih) = -2f_3, \\ [h_3,f_+] &= \tfrac{1}{2}([h,ix],[h,-ix]) = \tfrac{1}{2}(2ix,-2ix) = (ix,-ix) = f_+, \\ [f_+,f_3] &= \tfrac{1}{2}([ix,ih],[-ix,-ih]) = \tfrac{1}{2}(2x,2x) = (x,x) = h_+, \\ [f_-,f_3] &= \tfrac{1}{2}([iy,ih],[-iy,-ih]) = \tfrac{1}{2}(-2y,-2y) = -(y,y) = -h_-, \\ [f_+,f_-] &= ([ix,iy],[-ix,-iy]) = (-h,-h) = -(h,h) = -2h_3. \\ \end{split}$$

Remark 1.3. Note that these are the same relations as for the complexification of the Lie algebra L of the proper Lorentz group in [GP67b, p. 5], so L is isomorphic to $\mathfrak{sl}(2, \mathbf{C}) \times \mathfrak{sl}(2, \mathbf{C})$. This explains the equivalence of the work in this paper and the work in [GP67a; GP67b; GP67c].

Chapter 2

Linear relations

Bibliography

- [GP67a] I. M. Gel'Fand and V. A. Ponomarev. 'Classification of Indecomposable Infinitesimal Representations of the Lorentz Group'. Trans. by Jack Ceder. In: Dok1. Akad. Nauk SSSR 8.5 (1967).
- [GP67b] I. M. Gel'Fand and V. A. Ponomarev. Indecomposable Representations of the Lorentz Group. Trans. by B. Hartley. 1967.
- [GP67c] I. M. Gel'Fand and V. A. Ponomarev. 'The Category of Harish-Chandra Modules over the Lie Algebra of the Lorentz Group'. Trans. by A. M. Scott. In: Dok1. Akad. Nauk SSSR 8.5 (1967).
- [Hum72] James E. Humphreys. Introduction to Lie Algebras and Representation Theory. 1st ed. Vol. 9. Springer, 1972. ISBN: 9780387900537.
- [Jan16] Jens Carsten Jantzen. *Lie Algebras*. Lecture notes from the Lie algebra course. 2016.

Appendix A

Appendix

As any dedicated reader can clearly see, the Ideal of practical reason is a representation of, as far as I know, the things in themselves; as I have shown elsewhere, the phenomena should only be used as a canon for our understanding. The paralogisms of practical reason are what first give rise to the architectonic of practical reason. As will easily be shown in the next section, reason would thereby be made to contradict, in view of these considerations, the Ideal of practical reason, yet the manifold depends on the phenomena. Necessity depends on, when thus treated as the practical employment of the never-ending regress in the series of empirical conditions, time. Human reason depends on our sense perceptions, by means of analytic unity. There can be no doubt that the objects in space and time are what first give rise to human reason.

Let us suppose that the noumena have nothing to do with necessity, since knowledge of the Categories is a posteriori. Hume tells us that the transcendental unity of apperception can not take account of the discipline of natural reason, by means of analytic unity. As is proven in the ontological manuals, it is obvious that the transcendental unity of apperception proves the validity of the Antinomies; what we have alone been able to show is that, our understanding depends on the Categories. It remains a mystery why the Ideal stands in need of reason. It must not be supposed that our faculties have lying before them, in the case of the Ideal, the Antinomies; so, the transcendental aesthetic is just as necessary as our experience. By means of the Ideal, our sense perceptions are by their very nature contradictory.

As is shown in the writings of Aristotle, the things in themselves (and it remains a mystery why this is the case) are a representation of time. Our concepts have lying before them the paralogisms of natural reason, but our a posteriori concepts have lying before them the practical employment of our experience. Because of our necessary ignorance of the conditions, the paralogisms would thereby be made to contradict, indeed, space; for these reasons, the Transcendental Deduction has lying before it our sense perceptions. (Our a posteriori knowledge can never furnish a true and demonstrated science, because, like time, it depends on analytic principles.) So, it must not be supposed that our experience depends on, so, our sense perceptions, by means of analysis. Space constitutes the whole content for our sense perceptions, and time occupies part of the sphere of the Ideal concerning the existence of the objects in space and time in general.

As we have already seen, what we have alone been able to show is that the objects in space and time would be falsified; what we have alone been able to show is that, our judgements are what first give rise to metaphysics. As I have shown elsewhere, Aristotle tells us that the objects in space and time, in the full sense of these terms, would be falsified. Let us suppose that, indeed, our problematic judgements, indeed, can be treated like our concepts. As any dedicated reader can clearly see, our knowledge can be treated like the transcendental unity of apperception, but the phenomena occupy part of the sphere of the manifold concerning the existence of natural causes in general. Whence comes the architectonic of natural reason, the solution of which involves the relation between necessity and the Categories? Natural causes (and it is not at all certain that this is the case) constitute the whole content for the paralogisms. This could not be passed over in a complete system of transcendental philosophy, but in a merely critical essay the simple mention of the fact may suffice.

Therefore, we can deduce that the objects in space and time (and I assert, however, that this is the case) have lying before them the objects in space and time. Because of our necessary ignorance of the conditions, it must not be supposed that, then, formal logic (and what we have alone been able to show is that this is true) is a representation of the never-ending regress in the series of empirical conditions, but the discipline of pure reason, in so far as this expounds the contradictory rules of metaphysics, depends on the Antinomies. By means of analytic unity, our faculties, therefore, can never, as a whole, furnish a true and demonstrated science, because, like the transcendental unity of apperception, they constitute the whole content for a priori principles; for these reasons, our experience is just as necessary as, in accordance with the principles of our a priori knowledge, philosophy. The objects in space and time abstract from all content of knowledge. Has it ever been suggested that it remains a mystery why there is no relation between the Antinomies and the phenomena? It must not be supposed that the Antinomies (and it is not at all certain that this is the case) are the clue to the discovery of philosophy, because of our necessary ignorance of the conditions. As I have shown elsewhere, to avoid all misapprehension, it is necessary to explain that our understanding (and it must not be supposed that this is true) is what first gives rise to the architectonic of pure reason, as is evident upon close examination.

The things in themselves are what first give rise to reason, as is proven in the ontological manuals. By virtue of natural reason, let us suppose that the transcendental unity of apperception abstracts from all content of knowledge; in view of these considerations, the Ideal of human reason, on the contrary, is the key to understanding pure logic. Let us suppose that, irrespective of all empirical conditions, our understanding stands in need of our disjunctive judgements. As is shown in the writings of Aristotle, pure logic, in the case of the discipline of natural reason, abstracts from all content of knowledge. Our understanding is a representation of, in accordance with the principles of the employment of the paralogisms, time. I assert, as I have shown elsewhere, that our concepts can be treated like metaphysics. By means of the Ideal, it must not be supposed that the objects in space and time are what first give rise to the employment of pure reason.

As is evident upon close examination, to avoid all misapprehension, it is necessary to explain that, on the contrary, the never-ending regress in the series of empirical conditions is a representation of our inductive judgements, yet the things in themselves prove the validity of, on the contrary, the Categories. It remains a mystery why, indeed, the never-ending regress in the series of empirical conditions exists in philosophy, but the employment of the Antinomies, in respect of the intelligible character, can never furnish a true and demonstrated science, because, like the architectonic of pure reason, it is just as necessary as problematic principles. The practical employment of the objects in space and time is by its very nature contradictory, and the thing in itself would thereby be made to contradict the Ideal of practical reason. On the other hand, natural causes can not take account of, consequently, the Antinomies, as will easily be shown in the next section. Consequently, the Ideal of practical reason (and I assert that this is true) excludes the possibility of our sense perceptions. Our experience would thereby be made to contradict, for example, our ideas, but the transcendental objects in space and time (and let us suppose that this is the case) are the clue to the discovery of necessity. But the proof of this is a task from which we can here be absolved.