PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS ENGENHARIA DE SOFTWARE

Gabriella Fernanda Silva Pinto Matheus Brasil Aguiar

Caracterizando a atividade de code review no github

Projeto apresentado à disciplina de Laboratório de Experimentação de Software do curso de Graduação em Engenharia de Software da Pontifícia Universidade Católica de Minas Gerais, como requisito parcial para avaliação da disciplina.

Orientador: Danilo de Quadros Maia Filho

MINAS GERAIS

2025

SUMÁRIO

1.	Int	rodução	03
2.	Qu	iestões de pesquisa (QRs)	03
	2.1.	. Feedback Final das Revisões (Status do PR)	03
	2.2.	Número de Revisões	03
3.	Hip	ooteses Informais (IH)	04
4.	Tec	cnologias e Ferramentas Utilizadas	04
5.	Me	etodologia	04
	5.1.	Criação de Dataset	04
	5.2.	Variáveis analisadas	05
	5.3.	Método de Análise	05
	5.4.	Justificativa para Uso da Mediana	05
6.	Re	esultados e Discussão	06
	0	RQ01 – Relação entre o tamanho dos PRS e o feedback final das	
		revisões	07
	0	RQ02 - Relação entre o tempo de análise dos PRS e o feedback	
		final	09
	0	RQ03 - Relação entre a descrição PRS e o feedback	
		final	10
	0	RQ04 - Relação entre interações (comentários/revisões) e o feedback	
		final	11
	6.1.	. Dimensão A – Feedback Final (resumo)	12
	6.2.	Dimensão B – Número de Revisões	13
7.	Di	scussão Geral	13
8.	Co	onclusão	13
a	R۵	derâncias	1/

1. Introdução

No desenvolvimento colaborativo de software, o processo de *code review* é uma etapa essencial para garantir a qualidade e a confiabilidade do código antes da integração ao projeto principal. No GitHub, esse processo é materializado por meio das *Pull Requests* (PRs), que permitem revisões, comentários e sugestões entre desenvolvedores.

O objetivo deste laboratório é **analisar as atividades de revisão de código em repositórios populares do GitHub**, identificando variáveis que influenciam no *merge* das PRs, considerando fatores como tamanho, tempo de análise, descrição e interações.

A partir dessa análise, busca-se compreender como as características de uma PR impactam sua aceitação, auxiliando na formulação de boas práticas para submissões mais eficazes.

2. Questões de Pesquisa (RQs)

As questões de pesquisa foram organizadas em duas dimensões:

2.1. Feedback Final das Revisões (Status do PR)

- RQ01: Qual a relação entre o tamanho das PRs e o feedback final das revisões?
- RQ02: Qual a relação entre o tempo de análise das PRs e o feedback final das revisões?
- RQ03: Qual a relação entre a descrição das PRs e o feedback final das revisões?
- RQ04: Qual a relação entre as interações nas PRs e o feedback final das revisões?

2.2. Número de Revisões

- RQ05: Qual a relação entre o tamanho das PRs e o número de revisões realizadas?
- RQ06: Qual a relação entre o tempo de análise das PRs e o número de revisões realizadas?
- RQ07: Qual a relação entre a descrição das PRs e o número de revisões realizadas?
- RQ08: Qual a relação entre as interações nas PRs e o número de revisões realizadas?

3. Hipóteses Informais (IH)

IH	Descrição		
IH01	PRs maiores tendem a ser rejeitadas com mais frequência devido à maior complexidade de revisão.		
IH02	Quanto maior o tempo de análise, menor a chance de merge.		
	PRs com descrições mais completas são mais propensas a serem aceitas, mas descrições muito longas podem indicar mudanças complexas e polêmicas, aumentando a chance de rejeição.		
I IH04	Interações (comentários e revisões) influenciam o resultado do PR: mais discussões podem indicar PRs problemáticos.		

4. Tecnologias e Ferramentas Utilizadas

• Linguagem: Python

• Bibliotecas: Pandas, Matplotlib, Seaborn

• APIs: GitHub GraphQL API

• Dependências adicionais: requests, csv, os, datetime, scipy.stats

Essas ferramentas foram utilizadas para coletar, tratar, analisar e visualizar dados das PRs de repositórios do GitHub.

5. Metodologia

5.1. Criação do Dataset

O dataset foi composto por *Pull Requests* (PRs) coletados dos 200 repositórios mais populares do GitHub, filtrados conforme os critérios:

- Pelo menos 100 PRs (MERGED + CLOSED);
- Possuem status MERGED ou CLOSED;
- Têm pelo menos uma revisão registrada;
- Tiveram duração superior a uma hora entre criação e fechamento (para eliminar revisões automáticas).

5.2. Variáveis analisadas

Dimensão	Métrica	Descrição
Tamanho	Arquivos alterados, linhas adicionadas/removidas	Indicam o tamanho da contribuição
Tempo de Análise	Duração entre criação e fechamento	Mede a rapidez do processo de revisão
Descrição	Número de caracteres no corpo do PR	Representa o detalhamento da solicitação
Interações	Número de participantes e comentários	Indica o nível de engajamento na revisão

5.3. Método de Análise

Foi aplicado o **teste de correlação de Spearman** (ρ) para medir relações monotônicas (quando uma variável aumenta, a outra tende a aumentar ou diminuir) entre as variáveis.

A escolha desse teste se deve ao fato de que as variáveis analisadas não seguem uma distribuição normal e são de natureza ordinal ou contínua, o que torna o Spearman mais apropriado que o teste de Pearson.

5.4 Justificativa para o Uso da Mediana

Durante a etapa de análise estatística e visualização dos dados, foi utilizada a **mediana** como medida central nas comparações entre os *Pull Requests* (PRs) com status **MERGED** e **CLOSED**.

Essa decisão foi tomada devido à **natureza não normal e altamente assimétrica** dos dados coletados.

No contexto de desenvolvimento de software, é comum que variáveis como número de linhas adicionadas ou removidas, tempo de análise e quantidade de comentários apresentem valores extremos (outliers), por exemplo, PRs muito grandes, revisões demoradas ou discussões com centenas de interações. Esses valores tendem a distorcer a média aritmética, tornando-a pouco representativa do comportamento típico.

A mediana, por outro lado, é uma **medida robusta**, que representa o valor central do conjunto de dados sem ser influenciada por extremos.

Dessa forma, ela fornece uma visão mais fiel da tendênciaR central, permitindo **comparações justas** entre os grupos de PRs analisados.

Além disso, a escolha pela mediana é **metodologicamente coerente** com o **teste de correlação de Spearman (ρ)** aplicado neste estudo.

Ambos os métodos são **não paramétricos**, ou seja, **não dependem de distribuições normais** e operam com base em **ranks (ordens)**, o que torna a análise mais apropriada para dados com alta variabilidade e assimetria, como os provenientes de repositórios abertos do GitHub.

6. Resultados e Discussão

Os resultados apresentados a seguir foram obtidos a partir das **medianas** de todos os PRs incluídos no *dataset*, conforme os gráficos e análises quantitativas.

RQ01 — Relação entre o tamanho dos PRs e o feedback final das revisões

Descrição técnica: Os gráficos de barras comparam os valores medianos de linhas adicionadas, linhas removidas e arquivos alterados entre PRs *MERGED* e *CLOSED*.

Resultados obtidos:

Linhas adicionadas: ρ = 0.0309

Linhas removidas: ρ = 0.0836

Arquivos alterados: ρ = 0.0633

Interpretação:

A correlação é positiva muito fraca, indicando que PRs levemente maiores têm uma chance marginalmente maior de serem *merged*. Visualmente, isso aparece como barras um pouco mais altas para PRs *MERGED*.

Conclusão parcial: refuta parcialmente a hipótese IH01 — o tamanho não é fator determinante na rejeição

RQ02 — Relação entre o tempo de análise dos PRs e o feedback final

Descrição técnica:

O gráfico mostra a mediana do tempo (em segundos) que uma PR levou entre criação e fechamento/merge.

Resultado obtido:

Correlação de Spearman: ρ = -0.2329

Interpretação:

Correlação **negativa moderada**. PRs analisadas por mais tempo tendem a ser *closed*, ou seja, rejeitadas. No gráfico, a barra de *CLOSED* aparece mais alta, mostrando maior duração média.

Conclusão parcial: confirma IH02 — PRs longas e demoradas têm menor chance de aprovação.

RQ03 — Relação entre a descrição dos PRs e o feedback final

Descrição técnica:

O gráfico mostra o número médio de caracteres da descrição da PR, comparando PRs *MERGED* e *CLOSED*.

Resultado obtido:

Correlação de Spearman: ρ = -0.0278

Interpretação:

Correlação **negativa muito fraca**. PRs com descrições mais longas não têm mais chance de serem aceitas. As barras são praticamente iguais, mostrando impacto desprezível.

Conclusão parcial: contraria IH03 — o tamanho da descrição não afeta significativamente a aprovação.

RQ04 — Relação entre interações (comentários/revisões) e o feedback final

Descrição técnica:

Dois gráficos de barras representam o número de **revisões formais** e **comentários** por status da PR.

Resultados obtidos:

• Revisões formais: ρ = 0.0322

• Comentários: $\rho = -0.1977$

Interpretação:

Revisões formais têm impacto mínimo, mas comentários têm efeito **negativo moderado**. PRs com mais comentários geralmente são CLOSED, sugerindo discussões mais extensas e possíveis divergências.

Conclusão parcial: confirma IH04 — PRs com mais discussões enfrentam maior resistência para aprovação.

Dimensão A — Feedback Final (Resumo)

Variável	ρ (Spearman)	Direção	Força	Interpretação
Tamanho	+0.0309 (linhas adicionadas) +0.0836 (linhas removidas) +0.0633 (arquivos alterados)	Positiva	Muito fraca	PRs ligeiramente maiores tendem a ser merged, mas o efeito é quase irrelevante.
Tempo de análise	-0.2329	Negativa	Moderada	PRs analisadas por mais tempo tendem a ser closed (rejeitadas).
Descrição	-0.0278	Negativa	Muito fraca	O tamanho da descrição não influencia significativamente o resultado da revisão.
Interações	+0.0322 (revisões formais) -0.1977 (comentários)	Negativa (predominante)	Moderada	PRs com muitas discussões e comentários tendem a ser rejeitadas; revisões formais têm efeito mínimo.

Observação: As variáveis tempo de análise e número de comentários apresentaram as correlações mais relevantes, ambas de natureza negativa e intensidade moderada. Isso indica que PRs analisadas por mais tempo ou com muitas discussões tendem a ser rejeitadas. Por outro lado, as métricas de tamanho e descrição exibiram correlações positivas ou negativas muito fracas, sugerindo que esses fatores não influenciam de forma significativa o desfecho da revisão.

Dimensão B — Número de Revisões

Os arquivos CSV indicam que a quantidade média de revisões formais por PR é baixa (entre 1 e 3).

A análise correlacional aponta que o número de revisões aumenta discretamente com o tamanho do PR e o tempo de análise, mas sem efeito relevante (ρ < 0.1 em ambos os casos).

7. Discussão Geral

Os resultados demonstram que o processo de *code review* envolve fatores tanto técnicos quanto sociais, mas que nem todos os aspectos analisados possuem influência prática sobre o resultado final de uma *Pull Request*.

De forma geral, as variáveis **tamanho** e **descrição** apresentaram correlações muito fracas, indicando que a aceitação de uma PR não depende diretamente do volume de código modificado nem do detalhamento textual fornecido pelo autor. Por outro lado, o **tempo de análise** e o **número de comentários** mostraram correlações negativas de intensidade moderada, sugerindo que revisões longas e com muitas discussões estão associadas a uma maior probabilidade de rejeição.

Esses achados indicam que o sucesso de uma *Pull Request* depende mais da **dinâmica da interação entre revisores e autores** do que de características estruturais do código.

Assim, a comunicação clara e a agilidade no processo de revisão parecem ser fatores determinantes para o aceite de contribuições em projetos open source.

8. Conclusão

O presente estudo analisou a atividade de *code review* em repositórios populares do GitHub, buscando identificar variáveis que influenciam o resultado das revisões.

A partir das análises realizadas, conclui-se que:

- O tempo de análise e o volume de comentários são as variáveis mais relevantes, exercendo influência negativa moderada sobre a chance de merge;
- As variáveis tamanho da PR e tamanho da descrição apresentaram correlações estatisticamente significativas, porém de impacto prático muito baixo;
- O teste de Spearman e o uso da mediana mostraram-se adequados para tratar a assimetria dos dados e eliminar distorções causadas por valores extremos.

De modo geral, os resultados reforçam que a qualidade de um processo de revisão está menos relacionada ao tamanho da contribuição e mais ligada à **eficiência e clareza da comunicação** entre os colaboradores.

Como **trabalho futuro**, a recomendação é aprofundar a análise considerando:

- Linguagem de programação dos projetos;
- Tamanho da equipe e popularidade do repositório;
- Uso de aprendizado de máquina para prever a probabilidade de merge.

9. Referências

- GitHub API
- Pandas, Matplotlib, Seaborn