Seaborn visualization_ Youtube学习

Topics to be covered:

- 1. Distribution Plots
 - distplot
 - jointplot
 - pairplot
- 2. Categorical plots
 - barplot
 - countplot
 - boxplot
- 3. Heatmaps
- 4. Facet grids
- 5. Regression plots

Imports

```
In [2]: import matplotlib.pyplot as plt
        import seaborn as sns
In [3]: # Seaborn comes with built-in data sets!
        sns.get_dataset_names()
Out[3]: ['anagrams',
          'anscombe',
          'attention',
          'brain networks',
          'car_crashes',
          'diamonds',
          'dots',
          'exercise',
          'flights',
          'fmri',
          'gammas',
          'geyser',
          'iris',
          'mpg',
          'penguins',
          'planets',
          'taxis',
          'tips',
          'titanic']
In [4]: df = sns.load_dataset('mpg')
```

In [5]: df.head()

Out[5]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	object
8	name	398 non-null	object

dtypes: float64(4), int64(3), object(2)
memory usage: 28.1+ KB

1. distribution plots

```
In [13]: sns.distplot(df['horsepower'],kde=False)
    plt.show()
    # Kde Kernel Density Estimation (KDE) is a way to estimate
    # the probability density function of a continuous random variable.
```

/Users/mac/opt/anaconda3/lib/python3.9/site-packages/seaborn/distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [10]: sns.distplot(df['mpg'],kde=False,bins=20, color="red")
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1fbcd4e6b70>

Out[17]: <AxesSubplot:>


```
In [18]: !pip install tqdm
```

Requirement already satisfied: tqdm in /Users/mac/opt/anaconda3/lib/pytho n3.9/site-packages (4.62.3)

In [19]: df.head()

Out	[1	. 9]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

In [20]: plt.figure(figsize=(10,8))
 sns.scatterplot(x='mpg', y='horsepower', data=df, hue='cylinders',size='wei
 plt.show()

In [16]: sns.jointplot(x='weight',y='mpg',data=df)

Out[16]: <seaborn.axisgrid.JointGrid at 0x7fe19e0b5580>


```
In [22]: sns.jointplot(x='weight',y='mpg',data=df,kind='hex')
```

Out[22]: <seaborn.axisgrid.JointGrid at 0x7fe19d88c070>


```
In [15]: sns.jointplot(x='weight',y='mpg',data=df ,kind='reg')
```

Out[15]: <seaborn.axisgrid.JointGrid at 0x1fbcd637780>

pairplot

pairplot will plot pairwise relationships across an entire dataframe (for the numerical columns) and supports a color hue argument (for categorical columns).

In [23]: df.head(5)

Out[23]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

```
In [24]: df1 = df[['mpg','cylinders','weight']]
    df1.head(5)
```

Out[24]:

	mpg	cylinders	weight
0	18.0	8	3504
1	15.0	8	3693
2	18.0	8	3436
3	16.0	8	3433
4	17.0	8	3449

In [25]: sns.pairplot(df1) # pairplot look at the joint relationship between numeric
plt.show()


```
df1['cylinders'].value_counts()
Out[21]:
                 204
                 103
           6
                  84
           3
           Name: cylinders, dtype: int64
In [23]: sns.pairplot(df1,hue='cylinders',palette='coolwarm')
           # hue is used for categorical variables
           # palette specifies the colors
Out[23]: <seaborn.axisgrid.PairGrid at 0x1fbcfe01b38>
                40
              gg 30
                20
                10
                 8
                     440(010)) (0.0
                                                                             (0.0(00):0(0.0)
                 7
                                                                                          cylinders
              cylinders
                                                                          CC CO D 3:(03 0)
                 5
                                                                                              5
                 4
              5000
              4000
              3000
              2000
                                                                       2000
                        20
                                                                               4000
                                                       6
```

cylinders

weight

2. Categorical plots

```
In [24]: sns.boxplot(x='cylinders', y='mpg', data=df)
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1fbd13e80b8>

Out[25]: <matplotlib.axes. subplots.AxesSubplot at 0x1fbd148c978>

In [26]: sns.countplot(x='cylinders',data=df)

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x1fbd1503dd8>

3. Heatmap

In [27]: df.corr()

Out[27]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	0.579267
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-0.348746
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-0.370164
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-0.306564
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	0.288137
model year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	1.000000

```
In [28]: plt.figure(figsize=(10,8))
    sns.heatmap(df.corr(), cmap='coolwarm',annot=True)
    plt.show()
```


4. Facet grids

In []:

```
In [29]: df.head()
```

Out[29]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

```
In [30]: df['origin'].value_counts()
```

Out[30]: usa 249 japan 79 europe 70

Name: origin, dtype: int64

In [30]: g = sns.FacetGrid(df, col="cylinders",row='origin') # object
g = g.map(plt.scatter, "mpg", "weight") # Apply a plotting function to each


```
In [32]: g = sns.FacetGrid(df, col="cylinders", hue='origin')
g = g.map(plt.scatter, "mpg", "weight").add_legend()

cylinders = 3

cylinders = 5

cylinders = 5

cylinders = 6

cylinders = 6

cylinders = 6

cylinders = 8

isa

japan
europe
```

5. Regression plots

In [33]:	df.head()	
In [33].	ar. nead()	

Out[33]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

In [34]: sns.lmplot(x='weight',y='mpg',data=df)

Out[34]: <seaborn.axisgrid.FacetGrid at 0x1fbd36752b0>


```
In [35]: sns.lmplot(x='weight',y='mpg',data=df, hue='origin', palette='coolwarm')
```

Out[35]: <seaborn.axisgrid.FacetGrid at 0x1fbd36d6780>

Out[36]: <seaborn.axisgrid.FacetGrid at 0x1fbd3759a20>

Check out the seaborn documentation website (https://seaborn.pydata.org/tutorial.html) to explore more examples.