

ICE 415 - Digital Image Processing Module 2 Image Preprocessing and Analysis Module 2 Assessment Sheet

Name:	Ronmar John S. Sabado	Year and Section: <u>4B-BTM</u>	_Date: _11/10/2023

Actual image can be accessed thru this link: https://drive.google.com/drive/folders/1cptF6HzkrdKGTzDhMAHtBqrCothJT28P?usp=share link

A. Image color channel statistics

You will be given a typical negative image which is sourced from an analog camera, and is digitized through scanning. Obtain the non-negative image by using the image_negate() in magick library or by using the 1-image in openImageR or imager library. Save the processed image by exporting or by using the write image command(as discussed in Module 1 Lesson 3) using the filename format LASTNAME_ProcessedImageA. It is preferred to use the write image command in magick library: image_write(neg_image,path="LASTNAME_ProcessedImageA1.jpg",format="JPG") because this will save the image excluding the unnecessary background.

As what is covered in this module, obtain the details of the original image (negative image) and processed image (non-negative equivalent) based on the given matrix: (Note: capture/screenshot the result)

Required	Command that you may use	Result (Original Image/negative)	Result (Processed Image/non-negative)
Image	print() in imager and gglot2	SI THE TRANSPORT HIS YEST PROFILED BY AND COMMON CO	15. No. Parage, they bear American
dimension,	library	VVIIMA: - RIPHYVIIMs - RIVHYVIIMA - RIVHYVIIMA - RIPH	WILLYSS WITH THE TAXABLE TO THE TAXA
depth, and	Note: do the print()		2002, 262 PM 2002, 1929 PM
color channels	command after reading the	and make the same of the same	
	image.		
	e.g.		
	library(imager)	Image. Width: 851 pix Height: 414 pix Depth: 1 Colour channels: 3	2 pr (necpos) cive_image)
	library(ggplot2)	> display(ing)	<pre>Image. width: 851 pix Height: 414 pix Depth: 1 Colour channels: 3 > display(positive_image) </pre>

What is your general impression on the differences of both images?

Based on my observation, it appears that the original picture was negative, which is why we applied an inversion to make it appear positive or normal. This inversion was intended to draw attention to the differences between the two pictures. We used a variety of visualization techniques, including summaries, box plots, and cloud representations, to effectively convey the differences. These tools provide a more thorough examination and understanding of the transformation by providing a complete and detailed picture of the changes between the original and inverted photos.

B. Histogram Equalization

Using the processed image in part A, equalize the histogram and save it using the filename format **LASTNAME_ProcessedImageB**. It is preferred you will save the processed image using the command save.image in imager library: save.image(img1,"LASTNAME_ProcessedImageB.jpg")

Complete the matrix:

College of Information and Computing

Output Image

What are your general impressions of both images? Which is better?

I prefer the equalized image as it effectively balances the RGB components, resulting in a clearer and more vibrant representation.

College of Information and Computing

C. Image Hashing (https://cran.r-project.org/web/packages/OpenImageR/vignettes/The_OpenImageR_package.html)

The image hashing functions (average_hash, dhash, phash, invariant_hash, hash_apply) of the OpenImageR package are implemented in the way **perceptual hashing** works. Perceptual hashing is the use of an algorithm that produces a fingerprint of images (in OpenImageR those fingerprints are binary features or hexadecimal hashes). The difference between cryptographic and image hashing is that the latter tries to find similar and not exact matches. In cryptographic hashing small differences of the hashes lead to entirely different output, which is not the case for perceptual hashing. A practical application of image hashing would be to compare a database of already created image hashes with a new hash (image) to find similar images in the database.

Refer to the documentation provided in the link and follow the steps in processing image hashing using the processed images in part A and part B (LASTNAME_ProcessedImageA and LASTNAME_ProcessedImageB).

Complete the matrix: (Average_hash is already done.)

Method	Processed Image A	Processed Image B	Do they have the same value? If no, highlight the different bits/literals and count.
aveg_hash	0177777777477e00	0077777747477e00	0 <mark>0</mark> 777777 <mark>4</mark> 7477e00; 2 literals
aveg_bin	[1] 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 [33] 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1	[1] 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 [33] 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1	[1] 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 [33] 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1
ph_hash	"a3cb9c329873b40f"	"a349dc329873b58b"	"a3 <mark>49d</mark> c329873b <mark>58b</mark> "
ph_bin	[1] 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1	[1] 1100010110010010 001110110100110000 01100111001110101 [52] 0110111010001	$ \begin{bmatrix} 1] 110001011 $
Dhash method – do	not use the gamma correction in	stead use the two processed image	es and compare them directly
dh_hash	"46357717676566e8"	"46357717676566e0"	46357717676566e <mark>0</mark>

College of Information and Computing

مالہ		01100010101011001	011000101010110011	011000101010110011101110
	. hin	11011101110100011	101110111010001110	111010001110011010100110
ar	h_bin	011010100110011[52]	011[52]001100000111	
		[52]0011000010111	0011000000111	

Invariant_hash – using the two processed images, identify the minimum and maximum values for the hamming or the levenshtein distance		
	inv_hash	inv_bin
Min	0.15625	9
Max	0.625	16

Which of the image hashing methods you think better can identify similarities of images? And why? I think it's the PH hash and the Ph bin because they have a lot of different bits.

D. Face Detection

To explore face detection in R, you need to install the image.libfacedetection package which can be found in https://cran.r-project.org/web/packages/image.libfacedetection/index.html, select the appropriate download source based on your operating system. Try the given code using your preferred image with more than one face and save the image with detected faces as LASTNAME_FaceDetection.

```
#https://cran.r-project.org/web/packages/image.libfacedetection/index.html
library(magick)
library(image.libfacedetection)
image <- image_read(file.choose())
faces <- image_detect_faces(image)
faces
plot(faces, image, border = "red", lwd = 7, col = "white")</pre>
```


Deliverables:

- Module 2 Assessment Sheet with answer
- Miscellaneous files (code/s in r and processed images)

A.

```
Source on Save

ibrary(imager)

ibrary(OpenImageR)

ibrary(ggplot2)
img <- load.image(file.choose())
print(img)</pre>
 positive_image <- 255 - img
 save.image(positive_image, "SABADO_ProcessedImageA1.jpg.jpg")
 summary(img)
summary(positive_image)
red_channel_pos <- positive_image[,,1]
green_channel_pos <- positive_image[,,2]
blue_channel_pos <- positive_image[,,3]
 cloud_df_pos <- data.frame(
   Channel = rep(c("ked", "Green", "Blue"), each = prod(dim(positive_image)[i::2])),
   Value = c(as.vector(red_channel_pos), as.vector(green_channel_pos), as.vector(blue_channel_pos))</pre>
 set.seed(42)
 sample_size <- 10000
sampled_data <- cloud_df_pos[sample(nrow(cloud_df_pos), sample_size), ]
print(cloud_plot_pos)
red_channel <- positive_image[,,1]
green_channel <- positive_image[,,2]
blue_channel <- positive_image[,,3]</pre>
 boxplot_df <- data.frame(
   Channel = rep(c(TRed', "Green", "Blue"), each = prod(dim(img)[1:2])),
   Value = c(as.vector(red_channel), as.vector(green_channel), as.vector(blue_channel))</pre>
 \begin{array}{l} \text{plot} \leftarrow \text{ggplot(boxplot\_df, aes(x = Channel, y = Value, fill = Channel))} + \\ \text{geom\_boxplot()} + \\ \text{labs(title = "RGB Boxplot",} \\ \text{x = "Channel",} \\ \text{y = "pixel Value")} + \\ \text{theme\_minimal()} \end{array} 
 print(plot)
```


B.

C.

```
impa <- readImage(file.choose())
impa <- readImage()
impa <-
```


D.

```
library(image.libfacedetection)
image <- image_read(file.choose())
faces <- image_detect_faces(image)
faces
plot(faces,image,border ='red',lwd = 7, col ='White')</pre>
```