

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Math 3068.89

SCIENCE CENTER LIBRARY

FROM

miss F & Curtis

•

SHORT TABLE OF INTEGRALS.

COMPILED BY

B. O. PEIRCE,

HOLLIS PROFESSOR OF MATHEMATICS AND NATURAL PHILOSOPHY IN HARVARD UNIVERSITY.

BOSTON, U.S.A.:
GINN & COMPANY, PUBLISHERS.
1889.

Math 3068.89

/

LIBRARY

Trice F. Cientic

The compiler will be grateful to any person who may send notice of errors in these formulas to

B. O. PEIRCE,

Harvard College, Cambridge.

I. FUNDAMENTAL FORMS.

$$1. \int a\,dx = ax.$$

2.
$$\int af(x)dx = a\int f(x)dx.$$

8.
$$\int \frac{dx}{x} = \log x.$$

4.
$$\int x^m dx = \frac{x^{m+1}}{m+1}$$
, when m is different from -1 .

$$5. \quad \int e^x dx = e^x.$$

6.
$$\int a^x \log a \, dx = a^x.$$

7.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x$$
.

8.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$$
.

9.
$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x$$
.

10.
$$\int \frac{dx}{\sqrt{2x-x^2}} = \text{versin}^{-1}x$$
.

11.
$$\int \cos x \, dx = \sin x.$$

$$12. \int \sin x \, dx = -\cos x.$$

18.
$$\int \cot x \, dx = \log \sin x.$$

14.
$$\int \tan x \, dx = -\log \cos x.$$

15.
$$\int \tan x \sec x \, dx = \sec x.$$

$$16. \quad \int \sec^2 x \, dx = \tan x.$$

$$17. \quad \int \csc^2 x \, dx = -\cot x.$$

In the following formulas, u, v, w, and y represent any functions of x:

18.
$$\int (u+v+w+\text{etc.}) dx = \int u dx + \int v dx + \int w dx + \text{etc.}$$

19a.
$$\int u dv = uv - \int v du.$$

19b.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$$

20.
$$\int f(y) dx = \int \frac{f(y) dy}{\frac{dy}{dx}}.$$

$$\int a^{x} dx = \frac{a^{x}}{\log a}$$

II. RATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving (a + bx).

The substitution of y or z for x, where y = xz = a + bx, gives

21.
$$\int (a+bx)^m dx = \frac{1}{b} \int y^m dy$$
.

22.
$$\int x(a+bx)^m dx = \frac{1}{b^2} \int y^m (y-a) dy.$$

23.
$$\int x^n (a+bx)^m dx = \frac{1}{b^{n+1}} \int y^m (y-a)^n dy.$$

24.
$$\int \frac{x^n dx}{(a+bx)^m} = \frac{1}{b^{n+1}} \int \frac{(y-a)^n dy}{y^m}.$$

25.
$$\int \frac{dx}{x^{n} (a+bx)^{m}} = -\frac{1}{a^{m+n-1}} \int \frac{(z-b)^{m+n-2} dz}{z^{m}}.$$

Whence

$$26. \int \frac{dx}{a+bx} = \frac{1}{b} \log (a+bx).$$

27.
$$\int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)}$$

28.
$$\int \frac{dx}{(a+bx)^3} = -\frac{1}{2b(a+bx)^2}$$

29.
$$\int \frac{x \, dx}{a + bx} = \frac{1}{b^2} [a + bx - a \log(a + bx)].$$

80.
$$\int \frac{x \, dx}{(a+bx)^2} = \frac{1}{b^2} \left[\log (a+bx) + \frac{a}{a+bx} \right]$$

81.
$$\int \frac{x \, dx}{(a+bx)^3} = \frac{1}{b^2} \left[-\frac{1}{a+bx} + \frac{a}{2(a+bx)^2} \right].$$

82.
$$\int \frac{x^2 dx}{a + bx} = \frac{1}{b^2} \left[\frac{1}{2} (a + bx)^2 - 2 a(a + bx) + a^2 \log(a + bx) \right].$$

88.
$$\int \frac{x^2 dx}{(a+bx)^2} = \frac{1}{b^3} \left[a + bx - 2a \log(a+bx) - \frac{a^2}{a+bx} \right]$$

$$84. \int \frac{dx}{x(a+bx)} = -\frac{1}{a} \log \frac{a+bx}{x}.$$

85.
$$\int \frac{dx}{x(a+bx)^2} = \frac{1}{a(a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x}.$$

86.
$$\int \frac{dx}{x^2(a+bx)} = -\frac{1}{ax} + \frac{b}{a^2} \log \frac{a+bx}{x}$$

B. — Expressions Involving $(a + bx^n)$.

87.
$$\int \frac{dx}{c^2 + x^2} = \frac{1}{c} \tan^{-1} \frac{x}{c}$$

88.
$$\int \frac{dx}{c^2 - x^2} = \frac{1}{2c} \log \frac{c + x}{c - x}$$
. or $\int \frac{1}{2c} \log \frac{x + \zeta}{x - \zeta}$.

89.
$$\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \tan^{-1}x \sqrt{\frac{b}{a}}$$
, if $a > 0$, $b > 0$.

40.
$$\int \frac{dx}{a + bx^2} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a} + x\sqrt{-b}}{\sqrt{a} - x\sqrt{-b}}, \text{ if } a > 0, b < 0.$$

41.
$$\int \frac{dx}{(a+bx^2)^2} = \frac{x}{2a(a+bx^2)} + \frac{1}{2a} \int \frac{dx}{a+bx^2}$$

42.
$$\int \frac{dx}{(a+bx^2)^{m+1}} = \frac{1}{2ma} \frac{x}{(a+bx^2)^m} + \frac{2m-1}{2ma} \int \frac{dx}{(a+bx^2)^m}$$

48.
$$\int \frac{x \, dx}{a + bx^2} = \frac{1}{2b} \log \left(x^2 + \frac{a}{b} \right)$$

44.
$$\int \frac{x \, dx}{(a+bx^3)^{m+1}} = \frac{1}{2} \int \frac{dz}{(a+bz)^{m+1}}, \text{ where } z = x^3.$$

45.
$$\int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \log \frac{x^2}{a+bx^2}.$$

46.
$$\int \frac{x^2 dx}{a + bx^2} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + bx^2}$$

47.
$$\int \frac{dx}{x^2(a+bx^2)} = -\frac{1}{ax} - \frac{b}{a} \int \frac{dx}{a+bx^2}$$

48.
$$\int \frac{x^3 dx}{(a+bx^2)^{m+1}} = \frac{-x}{2 mb(a+bx^2)^m} + \frac{1}{2 mb} \int \frac{dx}{(a+bx^2)^m}.$$

49.
$$\int \frac{dx}{x^2(a+bx^2)^{m+1}} = \frac{1}{a} \int \frac{dx}{x^2(a+bx^2)^m} - \frac{b}{a} \int \frac{dx}{(a+bx^2)^{m+1}}.$$

50.
$$\int \frac{dx}{a+bx^3} = \frac{k}{3a} \left[\frac{1}{2} \log \left(\frac{(k+x)^2}{k^2 - kx + x^2} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right],$$

where $bk^3 = a$.

51.
$$\int \frac{x \, dx}{a + bx^3} = \frac{1}{3bk} \left[\frac{1}{2} \log \left(\frac{k^2 - kx + x^2}{(k+x)^2} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right],$$
 where $bk^3 = a$.

52.
$$\int \frac{dx}{x(a+bx^n)} = \frac{1}{an} \log \frac{x^n}{a+bx^n}.$$

58.
$$\int \frac{dx}{(a+bx^n)^{m+1}} = \frac{1}{a} \int \frac{dx}{(a+bx^n)^m} - \frac{b}{a} \int \frac{x^n dx}{(a+bx^n)^{m+1}}.$$

54.
$$\int \frac{x^m dx}{(a+bx^n)^{p+1}} = \frac{1}{b} \int \frac{x^{m-n}}{(a+bx^n)^p} - \frac{a}{b} \int \frac{x^{m-n} dx}{(a+bx^n)^{p+1}}.$$

55.
$$\int \frac{dx}{x^m(a+bx^n)^{p+1}} = \frac{1}{a} \int \frac{dx}{x^m(a+bx^n)^p} - \frac{b}{a} \int \frac{dx}{x^{m-n}(a+bx^n)^{p+1}}.$$

$$\mathbf{56.} \quad \int x^{m-1} (a+bx^n)^p \, dx = \begin{cases} \frac{1}{b(m+np)} \left[x^{m-n} (a+bx^n)^{p+1} - (m-n)a \int x^{m-n-1} (a+bx^n)^p \, dx \right] \\ \frac{1}{m+np} \left[x^m (a+bx^n)^p + npa \int x^{m-1} (a+bx^n)^{p-1} \, dx \right] \\ \frac{1}{ma} \left[x^m (a+bx^n)^{p+1} - (m+np+n)b \int x^{m+n-1} (a+bx^n)^p \, dx \right] \\ \frac{1}{an (p+1)} \left[-x^m (a+bx^n)^{p+1} + (m+np+n) \int x^{m-1} (a+bx^n)^{p+1} \, dx \right] \end{cases}$$

C. — Expressions Involving $(a+bx+cx^2)$.

Let $X = a + bx + cx^2$ and $q = 4ac - b^2$, then

57.
$$\int \frac{dx}{X} = \frac{2}{\sqrt{q}} \tan^{-1} \frac{2 cx + b}{\sqrt{q}}$$
, when $q > 0$. **60.** $\int \frac{dx}{X^3} = \frac{2 cx + b}{q} \left(\frac{1}{2 X^2} + \frac{3c}{qX} \right) + \frac{6c^2}{q^2} \int \frac{dx}{X}$

58.
$$\int \frac{dx}{X} = \frac{1}{\sqrt{-q}} \log \frac{2cx + b - \sqrt{-q}}{2cx + b + \sqrt{-q}}, \text{ when } q < 0.$$
59.
$$\int \frac{dx}{X^3} = \frac{2cx + b}{qX} + \frac{2c}{q} \int \frac{dx}{X}.$$

61.
$$\int \frac{dx}{X^{n+1}} = \frac{2cx+b}{nqX^n} + \frac{2(2n-1)c}{qn} \int \frac{dx}{X^n}.$$
62.
$$\int \frac{xdx}{X} = \frac{1}{2c} \log X - \frac{b}{2c} \int \frac{dx}{X}.$$

68.
$$\int \frac{x dx}{X^2} = -\frac{bx + 2a}{qX} - \frac{b}{q} \int \frac{dx}{X}.$$

64.
$$\int \frac{x \, dx}{X^{n+1}} = -\frac{2 \, a + bx}{nq \, X^n} - \frac{b \, (2 \, n - 1)}{nq} \int \frac{dx}{X^n}.$$

65.
$$\int \frac{x^2}{X} dx = \frac{x}{c} - \frac{b}{2c^2} \log X + \frac{b^2 - 2ac}{2c^2} \int \frac{dx}{X}$$
66.
$$\int \frac{x^2}{X^2} dx = \frac{(b^2 - 2ac)x + ab}{caX} + \frac{2a}{a} \int \frac{dx}{X}$$

67.
$$\int \frac{x^m dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)cX^n} - \frac{n-m+1}{2n-m+1} \cdot \frac{b}{c} \int \frac{x^{m-1} dx}{X^{n+1}} + \frac{m-1}{2n-m+1} \cdot \frac{a}{c} \int \frac{x^{m-2} dx}{X^{n+1}}.$$

68.
$$\int \frac{dx}{xX} = \frac{1}{2a} \log \frac{x^2}{X} - \frac{b}{2a} \int \frac{dx}{X}$$

69.
$$\int \frac{dx}{x^2 X} = \frac{b}{2 a^2} \log \frac{X}{x^2} - \frac{1}{ax} + \left(\frac{b^2}{2 a^2} - \frac{c}{a}\right) \int \frac{dx}{X}.$$

70.
$$\int \frac{dx}{x^{m}X^{n+1}} = -\frac{1}{(m-1)ax^{m-1}X^{n}} - \frac{n+m-1}{m-1} \cdot \frac{b}{a} \int \frac{dx}{x^{m-1}X^{n+1}} - \frac{2n+m-1}{m-1} \cdot \frac{c}{a} \int \frac{dx}{x^{m-2}X^{n+1}}.$$

D. — RATIONAL FRACTIONS.

Every proper fraction can be represented by the general . form:

$$\frac{f(x)}{F(x)} = \frac{g_1 x^{n-1} + g_2 x^{n-2} + g_3 x^{n-3} + \dots + g_n}{x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n}.$$

a, b, c, etc., are the roots of the equation F(x) = 0, so that

$$F(x) = (x-a)^{p} (x-b)^{q} (x-c)^{r} \cdots$$

then
$$\frac{f(x)}{F(x)} = \frac{A_1}{(x-a)^p} + \frac{A_2}{(x-a)^{p-1}} + \frac{A_3}{(x-a)^{p-2}} + \dots + \frac{A_p}{x-a}$$

$$+ \frac{B_1}{(x-b)^q} + \frac{B_2}{(x-b)^{q-1}} + \frac{B_3}{(x-b)^{q-2}} + \dots + \frac{B_q}{x-b}$$

$$+ \frac{C_1}{(x-c)^r} + \frac{C_2}{(x-c)^{r-1}} + \frac{C_3}{(x-c)^{r-2}} + \dots + \frac{C_r}{x-c}$$

$$+ \dots \dots \dots \dots \dots \dots \dots$$

Where the numerators of the separate fractions may be determined by the equations

$$A_{m} = \frac{\phi_{1}^{[m-1]}(a)}{(m-1)!}, \quad B_{m} = \frac{\phi_{2}^{[m-1]}(b)}{(m-1)!}, \text{ etc., etc.}$$

$$\phi_{1}(x) = \frac{f(x)(x-a)^{p}}{F(x)}, \quad \phi_{2}(x) = \frac{f(x)(x-b)^{q}}{F(x)}, \text{ etc., etc.}$$

If a, b, c, etc., are single roots, then $p = q = r = \cdots = 1$, and $\frac{f(x)}{F(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \cdots$

here
$$A = \frac{f(a)}{F'(a)}$$
, $B = \frac{f(b)}{F'(b)}$, etc.

The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the following formulas:

71.
$$\int \frac{h \, dx}{(mx+n)^i} = \int \frac{h \, d(mx+n)}{m \, (mx+n)^i} = \frac{h}{m \, (1-l)(mx+n)^{i-1}}$$
72.
$$\int \frac{h \, dx}{mx+n} = \frac{h}{m} \log (mx+n)$$

If any of the roots of the equation f(x) = 0 are imaginary, the parts of the integral which arise from conjugate roots can be combined together and the integral brought into a real form. The following formula, in which $i = \sqrt{-1}$, is often useful in combining logarithms of conjugate complex quantities:

78.
$$\log(x \pm yi) = \frac{1}{2}\log(x^2 + y^2) \pm i \tan^{-1}\frac{y}{x}$$

III. IRRATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving $\sqrt{a+bx}$.

The substitution of a new variable of integration, $y = \sqrt{a + bx}$, gives

74.
$$\int \sqrt{a+bx} \, dx = \frac{2}{3b} \sqrt{(a+bx)^3}.$$

75.
$$\int x \sqrt{a+bx} \, dx = -\frac{2(2a-3bx)\sqrt{(a+bx)^3}}{15b^2}.$$

76.
$$\int x^2 \sqrt{a + bx} \, dx = \frac{2 \left(8 \, a^2 - 12 \, abx + 15 \, b^2 x^2 \right) \sqrt{(a + bx)^3}}{105 \, b^3}.$$

77.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}$$

78.
$$\int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b}$$

79.
$$\int \frac{x \, dx}{\sqrt{a + bx}} = -\frac{2 (2 a - bx)}{3 b^2} \sqrt{a + bx}.$$

80.
$$\int \frac{x^2 dx}{\sqrt{a+bx}} = \frac{2 \left(8 a^2 - 4 abx + 3 b^2 x^2\right)}{15 b^3} \sqrt{a+bx}.$$

81.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{1}{\sqrt{a}} \log \left(\frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right), \text{ for } a > 0.$$

82.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bx}{-a}}$$
, for $a < 0$.

88.
$$\int \frac{dx}{x^2 \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a} \int \frac{dx}{x \sqrt{a+bx}}$$

84.
$$\int (a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b} \int y^{1\pm n} dy = \frac{2(a+bx)^{\frac{3\pm n}{2}}}{b(2\pm n)}.$$

85.
$$\int x (a + bx)^{\pm \frac{n}{2}} dx = \frac{2}{b^2} \left[\frac{(a + bx)^{\frac{4\pm n}{2}}}{4 \pm n} - \frac{a (a + bx)^{\frac{2\pm n}{2}}}{2 \pm n} \right].$$

86.
$$\int \frac{x^m dx}{\sqrt{a+bx}} = \frac{2x^m \sqrt{a+bx}}{(2m+1)b} - \frac{2ma}{(2m+1)b} \int \frac{x^{m-1} dx}{\sqrt{a+bx}}$$

87.
$$\int \frac{dx}{x^n \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{(n-1)ax^{n-1}} - \frac{(2n-3)b}{(2n-2)a} \int \frac{dx}{x^{n-1}\sqrt{a+bx}}$$

88.
$$\int \frac{(a+bx)^{\frac{n}{2}}dx}{x} = b \int (a+bx)^{\frac{n-2}{2}}dx + a \int \frac{(a+bx)^{\frac{n-2}{2}}}{x}dx.$$

89.
$$\int \frac{dx}{x(a+bx)^{\frac{m}{2}}} = \frac{1}{a} \int \frac{dx}{x(a+bx)^{\frac{m-2}{2}}} - \frac{b}{a} \int \frac{dx}{(a+bx)^{\frac{m}{2}}}$$

89(L)
$$\int \frac{\sqrt{a+b}x}{Expressions}$$
 Involving $\sqrt{x^2 \pm a^2}$ and $\sqrt{a^2 - x^2}$.

90.
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \log \left(x + \sqrt{x^2 \pm a^2} \right) \right].$$

91.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right)$$

92.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log (x + \sqrt{x^2 \pm a^2}).$$

98.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a}$$
.

94.
$$\int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\cos^{-1}\frac{a}{x}$$

95.
$$\int \frac{dx}{x\sqrt{a^2 + x^2}} = -\frac{1}{a} \log \left(\frac{a + \sqrt{a^2 \pm x^2}}{x} \right).$$

96)
$$\int \frac{\sqrt{a^2 \pm x^2}}{x} dx = \sqrt{a^2 \pm x^2} - a \log \frac{a + \sqrt{a^2 \pm x^2}}{x}$$
.

^{*}These equations are all special cases of more general equations given in the next section.

97.
$$\int \frac{\sqrt{x^3 - a^2}}{x} dx = \sqrt{x^3 - a^2} - a \cos^{-1} \frac{a}{x}.$$

98.
$$\int \frac{x dx}{\sqrt{a^2 + x^2}} = \pm \sqrt{a^2 \pm x^2}$$
.

99.
$$\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}$$
.

100.
$$\int x \sqrt{x^2 \pm a^2} \, dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^8}.$$

101.
$$\int x \sqrt{a^2 - x^2} \, dx = -\frac{1}{3} \sqrt{(a^2 - x^2)^3}.$$

102.
$$\int \sqrt{(x^2 \pm a^2)^3} dx$$

$$= \frac{1}{4} \left[x\sqrt{(x^2 \pm a^2)^3} \pm \frac{3a^3x}{2} \sqrt{x^2 \pm a^2} + \frac{3a^4}{2} \log(x + \sqrt{x^2 \pm a^2}) \right].$$

108.
$$\int \sqrt{(a^2 - x^2)^3} dx$$

$$= \frac{1}{4} \left[x\sqrt{(a^2 - x^2)^3} + \frac{3a^2x}{2}\sqrt{a^2 - x^2} + \frac{3a^4}{2}\sin^{-1}\frac{x}{a} \right].$$

104.
$$\int \frac{dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}}$$

$$105. \int \frac{dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}.$$

106.
$$\int \frac{x \, dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{-1}{\sqrt{x^2 \pm a^2}}$$

107.
$$\int \frac{x \, dx}{\sqrt{(a^2 - x^2)^3}} = \frac{1}{\sqrt{a^2 - x^2}}$$

108.
$$\int x\sqrt{(x^2\pm a^2)^3}dx = \frac{1}{5}\sqrt{(x^2\pm a^2)^3}.$$

109.
$$\int x \sqrt{(a^2 - x^2)^3} dx = -\frac{1}{5} \sqrt{(a^2 - x^3)^3}.$$

110.
$$\int x^{2} \sqrt{x^{3} \pm a^{2}} dx$$

$$= \frac{x}{4} \sqrt{(x^{3} \pm a^{2})^{3}} \mp \frac{a^{3}}{8} (x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \log (x + \sqrt{x^{3} \pm a^{2}})).$$
111.
$$\int x^{2} \sqrt{a^{3} - x^{3}} dx$$

$$= -\frac{x}{4} \sqrt{(a^{3} - x^{2})^{3}} + \frac{a^{2}}{8} (x \sqrt{a^{2} - x^{2}} + a^{2} \sin^{-1} \frac{x}{a}).$$
112.
$$\int \frac{x^{2} dx}{\sqrt{x^{3} \pm a^{2}}} = \frac{x}{2} \sqrt{x^{2} \pm a^{2}} \mp \frac{a^{2}}{2} \log (x + \sqrt{x^{2} \pm a^{2}}).$$
113.
$$\int \frac{x^{2} dx}{\sqrt{a^{3} - x^{2}}} = -\frac{x}{2} \sqrt{a^{2} - x^{3}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a}.$$
114.
$$\int \frac{dx}{x^{2} \sqrt{x^{2} \pm a^{2}}} = \pm \frac{\sqrt{x^{2} \pm a^{2}}}{a^{2} x}.$$
115.
$$\int \frac{dx}{x^{2} \sqrt{a^{2} - x^{2}}} = -\frac{\sqrt{a^{2} - x^{3}}}{a^{2} x}.$$
117.
$$\int \frac{\sqrt{a^{2} - x^{2}}}{x^{3}} dx = -\frac{\sqrt{a^{2} - x^{2}}}{x} + \log x + \sqrt{x^{2} \pm a^{2}}).$$
118.
$$\int \frac{x^{2} dx}{\sqrt{(x^{2} \pm a^{2})^{3}}} = \frac{-x}{\sqrt{x^{2} \pm a^{2}}} + \log (x + \sqrt{x^{2} \pm a^{2}}).$$
119.
$$\int \frac{x^{2} dx}{\sqrt{(a^{2} - x^{2})^{3}}} = \frac{x}{\sqrt{a^{2} - x^{2}}} - \sin^{-1} \frac{x}{a}.$$

$$C. - \text{Expressions Involving } \sqrt{a + bx + cx^{2}}.$$

Let $X = a + bx + cx^2$, $q = 4ac - b^2$, and $k = \frac{4c}{q}$. In order to rationalize the function $f(x, \sqrt{a + bx + cx^2})$ we may put $\sqrt{a + bx + cx^2} = \sqrt{\pm c}\sqrt{A + Bx \pm x^2}$, according as c is positive or negative, and then substitute for x a new variable z, such that

$$z = \sqrt{A + Bx + x^2} - x$$
, if $c > 0$.
 $z = \frac{\sqrt{A + Bx - x^2} - \sqrt{A}}{x}$, if $c < 0$ and $\frac{a}{-c} > 0$.
 $z = \sqrt{\frac{x - \beta}{a - x}}$, where a and β are the roots of the equation $A + Bx - x^2 = 0$, if $c < 0$ and $\frac{a}{-c} < 0$.

By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals:

120.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{c}} \log \left(\sqrt{X} + x \sqrt{c} + \frac{b}{2\sqrt{c}} \right), \text{ if } c > 0.$$
121.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{-c}} \sin^{-1} \left(\frac{-2cx - b}{\sqrt{b^2 - 4ac}} \right), \text{ if } c < 0.$$
122.
$$\int \frac{dx}{X\sqrt{X}} = \frac{2(2cx + b)}{q\sqrt{X}}.$$
123.
$$\int \frac{dx}{X^2\sqrt{X}} = \frac{2(2cx + b)}{3q\sqrt{X}} \left(\frac{1}{X} + 2k \right).$$
124.
$$\int \frac{dx}{X^n\sqrt{X}} = \frac{2(2cx + b\sqrt{X} + 2k)}{(2n - 1)qX^n} + \frac{2k(n - 1)}{2n - 1} \int \frac{dx}{X^{n - 1}\sqrt{X}}.$$
125.
$$\int \sqrt{X} dx = \frac{(2cx + b)\sqrt{X}}{4c} + \frac{1}{2k} \int \frac{dx}{\sqrt{X}}.$$
126.
$$\int X\sqrt{X} dx = \frac{(2cx + b)\sqrt{X}}{8c} \left(X + \frac{3}{2k} \right) + \frac{3}{8k^2} \int \frac{dx}{\sqrt{X}}.$$
127.
$$\int X^2\sqrt{X} dx = \frac{(2cx + b)\sqrt{X}}{12c} \left(X^2 + \frac{5X}{4k} + \frac{15}{8k^2} \right) + \frac{5}{16k^3} \int \frac{dx}{\sqrt{X}}.$$
128.
$$\int X^n\sqrt{X} dx = \frac{(2cx + b)X^n\sqrt{X}}{4(n + 1)c} + \frac{2n + 1}{2(n + 1)k} \int \frac{X^n dx}{\sqrt{X}}.$$
129.
$$\int \frac{x dx}{\sqrt{X}} = \frac{\sqrt{X}}{c} - \frac{b}{2c} \int \frac{dx}{\sqrt{X}}.$$

180.
$$\int \frac{x \, dx}{X \sqrt{X}} = -\frac{2 \left(bx + 2 \, a\right)}{q \, \sqrt{X}}.$$

181.
$$\int \frac{x dx}{X^n \sqrt{X}} = -\frac{\sqrt{X}}{(2n-1)c X^n} - \frac{b}{2c} \int \frac{dx}{X^n \sqrt{X}}$$

182.
$$\int \frac{x^2 dx}{\sqrt{X}} = \left(\frac{x}{2c} - \frac{3b}{4c^2}\right) \sqrt{X} + \frac{3b^2 - 4ac}{8c^2} \int \frac{dx}{\sqrt{X}}.$$

188.
$$\int \frac{x^2 dx}{X\sqrt{X}} = \frac{(2b^2 - 4ac)x + 2ab}{cq\sqrt{X}} + \frac{1}{c} \int \frac{dx}{\sqrt{X}}.$$

184.
$$\int \frac{x^2 dx}{X^n \sqrt{X}} = \frac{(2b^2 - 4ac)x + 2ab}{(2n-1)cqX^{n-1}\sqrt{X}} + \frac{4ac + (2n-3)b^2}{(2n-1)cq} \int \frac{dx}{X^{n-1}\sqrt{X}}$$

$$\textbf{185.} \int \frac{x^3 \, dx}{\sqrt{X}} = \left(\frac{x^2}{3 \, c} - \frac{5 \, bx}{12 \, c^3} + \frac{5 \, b^2}{8 \, c^3} - \frac{2 \, a}{3 \, c^2}\right) \sqrt{X} + \left(\frac{3 \, ab}{4 \, c^3} - \frac{5 \, b^3}{16 \, c^3}\right) \int \frac{dx}{\sqrt{X}}.$$

186.
$$\int x \sqrt{X} dx = \frac{X \sqrt{X}}{3c} - \frac{b}{2c} \int \sqrt{X} dx.$$

187.
$$\int x \, X \sqrt{X} dx = \frac{X^2 \sqrt{X}}{5 c} - \frac{b}{2 c} \int X \sqrt{X} dx.$$

188.
$$\int \frac{xX^n dx}{\sqrt{X}} = \frac{X^n \sqrt{X}}{(2n+1)c} - \frac{b}{2c} \int \frac{X^n dx}{\sqrt{X}}$$

189.
$$\int x^2 \sqrt{X} dx = \left(x - \frac{5b}{6c}\right) \frac{X\sqrt{X}}{4c} + \frac{5b^2 - 4ac}{16c^2} \int \sqrt{X} dx$$

140.
$$\int \frac{x^3 X^n dx}{\sqrt{X}} = \frac{x X^n \sqrt{X}}{2(n+1)c} - \frac{(2n+3)b}{4(n+1)c} \int \frac{x X^n dx}{\sqrt{X}} - \frac{a}{2(n+1)c} \int \frac{X^n dx}{\sqrt{X}}.$$

141.
$$\int x^{3} \sqrt{X} dx = \left(x^{2} - \frac{7bx}{8c} + \frac{35b^{2}}{48c^{2}} - \frac{2a}{3c}\right) \frac{X\sqrt{X}}{5c} + \left(\frac{3ab}{8c^{2}} - \frac{7b^{3}}{32c^{3}}\right) \int \sqrt{X} dx.$$

142.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{a}} \log \left(\frac{\sqrt{X} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}} \right), \text{ if } a > 0.$$

148.
$$\int \frac{dx}{x\sqrt{X}} = \frac{1}{\sqrt{-a}} \sin^{-1} \left(\frac{bx + 2a}{x\sqrt{b^2 - 4ac}} \right), \text{ if } a < 0.$$

144.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{2\sqrt{X}}{bx}, \text{ if } a = 0.$$

145.
$$\int \frac{dx}{xX^{n}\sqrt{X}} = \frac{\sqrt{X}}{(2n-1)aX^{n}} + \frac{1}{a} \int \frac{dx}{xX^{n-1}\sqrt{X}} - \frac{b}{2a} \int \frac{dx}{X^{n}\sqrt{X}}$$

146.
$$\int \frac{dx}{x^2 \sqrt{X}} = -\frac{\sqrt{X}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{X}}.$$

$$\sqrt{X} \frac{dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}.$$

148.
$$\int \frac{X^{n} dx}{x \sqrt{X}} = \frac{X^{n}}{(2n-1)\sqrt{X}} + a \int \frac{X^{n-1} dx}{x \sqrt{X}} + \frac{b}{2} \int \frac{X^{n-1} dx}{\sqrt{X}}.$$

149.
$$\int \frac{\sqrt{X} dx}{x^2} = -\frac{\sqrt{X}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} + c \int \frac{dx}{\sqrt{X}}$$

150.
$$\int \frac{x^{m} dx}{X^{n} \sqrt{X}} = \frac{1}{c} \int \frac{x^{m-2} dx}{X^{n-1} \sqrt{X}} - \frac{b}{c} \int \frac{x^{m-1} dx}{X^{n} \sqrt{X}} - \frac{a}{c} \int \frac{x^{m-2} dx}{X^{n} \sqrt{X}}.$$

151.
$$\int \frac{x^{m} X^{n} dx}{\sqrt{X}} = \frac{x^{m-1} X^{n} \sqrt{X}}{(2n+m)c} - \frac{(2n+2m-1)b}{2c(2n+m)} \int \frac{x^{m-1} X^{n} dx}{\sqrt{X}}$$
$$- \frac{(m-1)a}{(2n+m)c} \int \frac{x^{m-2} X^{n} dx}{\sqrt{X}}.$$

152.
$$\int \frac{dx}{x^{m} X^{n} \sqrt{X}} = -\frac{\sqrt{X}}{(m-1) a x^{m-1} X^{n}} - \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1} X^{n} \sqrt{X}} - \frac{(2n+m-2)c}{(m-1)a} \int \frac{dx}{x^{m-2} X^{n} \sqrt{X}}$$

$$\begin{aligned} \textbf{158.} \int & \frac{X^{n} dx}{x^{m} \sqrt{X}} = -\frac{X^{n-1} \sqrt{X}}{(m-1) x^{m-1}} + \frac{(2 n-1) b}{2 (m-1)} \int \frac{X^{n-1} dx}{x^{m-1} \sqrt{X}} \\ & + \frac{(2 n-1) c}{m-1} \int \frac{X^{n-1} dx}{x^{m-2} \sqrt{X}}. \end{aligned}$$

D. - MISCELLANEOUS EXPRESSIONS.

154.
$$\int \sqrt{2 ax - x^2} dx = \frac{x - a}{2} \sqrt{2 ax - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x - a}{a}.$$

155.
$$\int \frac{dx}{\sqrt{2} ax - x^2} = \operatorname{versin}^{-1} \frac{x}{a}.$$

156.
$$\int \frac{dx}{(x+1)\sqrt{x^2-1}} = +\sqrt{\frac{x-1}{x+1}}$$

157.
$$\int \frac{dx}{(x-1)\sqrt{x^2-1}} = -\sqrt{\frac{x+1}{x-1}}.$$

158.
$$\int \sqrt{\frac{1+x}{1-x}} dx = \sin^{-1}x - \sqrt{1-x^2}.$$

159.
$$\int \sqrt{\frac{x+a}{x+b}} dx = \sqrt{(x+a)(x+b)} + (a-b) \log (\sqrt{x+a} + \sqrt{x+b}).$$

160.
$$\int \frac{dx}{\sqrt{(x-a)(\beta-x)}} = 2 \sin^{-1} \sqrt{\frac{x-a}{\beta-a}}$$

161.
$$\int \frac{dx}{\sqrt{(a+bx)(a-\beta x)}} = \frac{2}{\sqrt{b\beta}} \sin^{-1} \sqrt{\frac{\beta(a+bx)}{a\beta+ba}}.$$

162.
$$\int \sqrt[8]{a+bx} dx = \frac{3}{4b} \sqrt[8]{(a+bx)^4}.$$

168.
$$\int \frac{dx}{\sqrt[3]{a+bx}} = \frac{3}{2b} \sqrt[3]{(a+bx)^3}.$$

164.
$$\int \frac{x dx}{\sqrt[3]{a + bx}} = -\frac{3(3a - 2bx)}{10b^2} \sqrt[3]{(a + bx)^2}.$$

$$165. \int \frac{dx}{x\sqrt{x^n-a^2}} = \frac{2}{an} \sec^{-1} \left(\frac{x^n}{a^2}\right).$$

166.
$$\int \frac{dx}{x\sqrt{x^{n}+a^{2}}} = \frac{1}{an} \log \frac{\sqrt{a^{2}+x^{n}}-a}{\sqrt{a^{2}+x^{n}}+a}.$$

IV. TRANSCENDENTAL FUNCTIONS.

167.
$$\int \sin x \, dx = -\cos x.$$
168.
$$\int \sin^2 x \, dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x.$$
169.
$$\int \sin^3 x \, dx = -\frac{1}{8} \cos x \left(\sin^2 x + 2\right).$$
170.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$
171.
$$\int \cos x \, dx = \sin x.$$
172.
$$\int \cos^2 x \, dx = \frac{1}{2} \sin x \cos x + \frac{1}{2} x.$$
173.
$$\int \cos^3 x \, dx = \frac{1}{8} \sin x \left(\cos^2 x + 2\right).$$
174.
$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$$
175.
$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x.$$
176.
$$\int \sin^2 x \cos^2 x \, dx = -\frac{1}{8} \left(\frac{1}{4} \sin 4x - x\right).$$
177.
$$\int \sin x \cos^m x \, dx = -\frac{\cos^{m+1} x}{m+1}.$$
178.
$$\int \sin^m x \cos x \, dx = \frac{\sin^{m+1} x}{m+1}.$$
179.
$$\int \cos^m x \sin^n x \, dx = \frac{\cos^{m-1} x \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x \, dx.$$
180.
$$\int \cos^m x \sin^n x \, dx = -\frac{\sin^{n-1} x \cos^{m+1} x}{m+n} + \frac{n-1}{m+n} \int \cos^m x \sin^{n-2} x \, dx.$$

181.
$$\int \frac{\cos^{m}x \, dx}{\sin^{n}x} = -\frac{\cos^{m+1}x}{(n-1)\sin^{n-1}x} - \frac{m-n+2}{n-1} \int \frac{\cos^{m}x \, dx}{\sin^{n-2}x}.$$
182.
$$\int \frac{\cos^{m}x \, dx}{\sin^{n}x} = \frac{\cos^{m-1}x}{(m-n)\sin^{n-1}x} + \frac{m-1}{m-n} \int \frac{\cos^{m-2}x \, dx}{\sin^{n}x}.$$
183.
$$\int \frac{\sin^{m}x \, dx}{\cos^{n}x} = -\int \frac{\cos^{m}\left(\frac{\pi}{2}-x\right) d\left(\frac{\pi}{2}-x\right)}{\sin^{n}\left(\frac{\pi}{2}-x\right)}.$$
184.
$$\int \frac{dx}{\sin^{m}x \cos^{n}x}$$

$$= \frac{1}{n-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^{m}x \cdot \cos^{n-2}x}$$

$$= -\frac{1}{m-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2}x \cdot \cos^{n}x}.$$
185.
$$\int \frac{dx}{\sin^{m}x} = -\frac{1}{m-1} \cdot \frac{\cos x}{\sin^{m-1}x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2}x}.$$
186.
$$\int \frac{dx}{\cos^{n}x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1}x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2}x}.$$
187.
$$\int \tan x \, dx = -\log \cos x.$$
189.
$$\int \tan^{n}x \, dx = \frac{\tan^{n-1}x}{n-1} - \int \tan^{n-2}x \, dx.$$
190.
$$\int \cot^{n}x \, dx = \log \sin x.$$
191.
$$\int \cot^{n}x \, dx = -\cot x - x.$$
192.
$$\int \cot^{n}x \, dx = -\cot x - x.$$
193.
$$\int \sec^{n}x \, dx = \log \tan \left(\frac{\pi}{n-1} - \int \cot^{n-2}x \, dx.$$
196.
$$\int \sec^{n}x \, dx = \log \tan \left(\frac{\pi}{n-1} - \int \cot^{n-2}x \, dx.$$

 $194. \int \sec^2 x \, dx = \tan x.$

$$195. \int \sec^n x \, dx = \int \frac{dx}{\cos^n x}.$$

196.
$$\int \csc x \, dx = \log \tan \frac{1}{2}x.$$

$$197. \int \csc^2 x \, dx = -\cot x.$$

$$198. \int \csc^n x \, dx = \int \frac{dx}{\sin^n x}.$$

or
$$\frac{1}{\sqrt{b^2 - a^2}} \log \left[\frac{b + a \cos x + \sqrt{b^2 - a^2} \cdot \sin x}{a + b \cos x} \right].$$

$$200. \int \frac{dx}{a+b\cos x + c\sin x}$$

$$= \frac{-1}{\sqrt{a^{2} - b^{2} - c^{2}}} \cdot \sin^{-1} \left[\frac{b^{2} + c^{2} + a \left(b \cos x + c \sin x \right)}{\sqrt{b^{2} + c^{2}} \left(a + b \cos x + c \sin x \right)} \right]$$

$$= \frac{1}{\sqrt{b^{2} + c^{2} - c^{2}}} \cdot \log$$

$$\left[\frac{b^2 + c^2 + a(b\cos x + c\sin x) + \sqrt{b^2 + c^2 - a^2}(b\sin x - c\cos x)}{\sqrt{b^2 + c^2}(a + b\cos x + c\sin x)}\right]$$

$$201. \int x \sin x \, dx = \sin x - x \cos x.$$

202.
$$\int x^2 \sin x \, dx = 2 x \sin x - (x^2 - 2) \cos x.$$

203.
$$\int x^3 \sin x \, dx = (3 \, x^3 - 6) \, \sin x - (x^3 - 6 \, x) \, \cos x.$$

204.
$$\int x^m \sin x \, dx = -x^m \cos x + m \int x^{m-1} \cos x \, dx$$
.

$$205. \int x \cos x \, dx = \cos x + x \sin x.$$

206.
$$\int x^2 \cos x \, dx = 2x \cos x + (x^2 - 2) \sin x.$$

207.
$$\int x^3 \cos x \, dx = (3x^2 - 6) \cos x + (x^3 - 6x) \sin x.$$

208.
$$\int x^{m} \cos x \, dx = x^{m} \sin x - m \int x^{m-1} \sin x \, dx.$$
209.
$$\int \frac{\sin x}{x^{m}} \, dx = -\frac{1}{m-1} \cdot \frac{\sin x}{x^{m-1}} + \frac{1}{m-1} \int \frac{\cos x}{x^{m-1}} \, dx.$$

210.
$$\int \frac{\cos x}{x^m} dx = -\frac{1}{m-1} \cdot \frac{\cos x}{x^{m-1}} - \frac{1}{m-1} \int \frac{\sin x}{x^{m-1}} dx.$$

211.
$$\int \frac{\sin x}{x} dx = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \frac{x^9}{9 \cdot 9!} \cdots$$

212.
$$\int \frac{\cos x}{x} dx = \log x - \frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^8}{6 \cdot 6!} + \frac{x^8}{8 \cdot 8!} \cdots$$

218.
$$\int \sin mx \sin nx \, dx = \frac{\sin (m-n)x}{2(m-n)} - \frac{\sin (m+n)x}{2(m+n)}$$

214.
$$\int \cos mx \cos nx \, dx = \frac{\sin (m-n)x}{2(m-n)} + \frac{\sin (m+n)x}{2(m+n)}$$

215.
$$\int \sin^{-1}x \, dx = x \sin^{-1}x + \sqrt{1 - x^2}.$$

216.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2}.$$

217.
$$\int \tan^{-1}x \, dx = x \tan^{-1}x - \frac{1}{2} \log (1 + x^2).$$

218.
$$\int \cot^{-1}x \, dx = x \cot^{-1}x + \frac{1}{2}\log(1+x^2)$$

219.
$$\int \operatorname{versin}^{-1} x \, dx = (x-1) \operatorname{versin}^{-1} x + \sqrt{2x-x^2}$$
.

220.
$$\int (\sin^{-1}x)^2 dx = x (\sin^{-1}x)^2 - 2x + 2\sqrt{1-x^2} \sin^{-1}x.$$

221.
$$\int x \cdot \sin^{-1}x \, dx = \frac{1}{4} \left[(2x^2 - 1) \sin^{-1}x + x\sqrt{1 - x^2} \right].$$

222.
$$\int x^n \sin^{-1} x \, dx = \frac{x^{n+1} \sin^{-1} x}{n+1} - \frac{1}{n+1} \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}}.$$

228.
$$\int x^n \cos^{-1} x \, dx = \frac{x^{n+1} \cos^{-1} x}{n+1} + \frac{1}{n+1} \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}}.$$

224.
$$\int x^n \tan^{-1} x \, dx = \frac{x^{n+1} \tan^{-1} x}{n+1} - \frac{1}{n+1} \int \frac{x^{n+1} \, dx}{1+x^2}.$$

225.
$$\int \log x \, dx = x \log x - x.$$
226.
$$\int \frac{(\log x)^n}{x} \, dx = \frac{1}{n+1} (\log x)^{n+1}.$$
227.
$$\int \frac{dx}{x \log x} = \log \cdot \log x.$$
228.
$$\int \frac{dx}{x (\log x)^n} = -\frac{1}{(n-1)(\log x)^{n-1}}.$$
229.
$$\int x^m \log x \, dx = x^{m+1} \left[\frac{\log x}{m+1} - \frac{1}{(m+1)^2} \right].$$
230.
$$\int e^{ax} \, dx = \frac{e^{ax}}{a}.$$
231.
$$\int x e^{ax} \, dx = \frac{e^{ax}}{a}.$$
232.
$$\int x^m e^{ax} \, dx = \frac{e^{ax}}{a} (ax-1).$$
232.
$$\int x^m e^{ax} \, dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} \, dx.$$
233.
$$\int \frac{e^{ax}}{x^m} \, dx = -\frac{1}{m-1} \frac{e^{ax}}{x^{m-1}} + \frac{a}{m-1} \int \frac{e^{ax}}{x^{m-1}} \, dx.$$
234.
$$\int e^{ax} \log x \, dx = \frac{e^{ax} \log x}{a} - \frac{1}{a} \int \frac{e^{ax}}{x} \, dx.$$
235.
$$\int e^{ax} \sin x \, dx = \frac{e^{ax} (a \sin x - \cos x)}{a^2 + 1}.$$
236.
$$\int e^{ax} \cos x \, dx = \frac{e^{ax} (a \cos x + \sin x)}{a^2 + 1}.$$

DEFINITE INTEGRALS.

287.
$$\int_{0}^{\infty} \frac{a \, dx}{a^{2} + x^{2}} = \frac{\pi}{2}, \text{ if } a > 0; 0, \text{ if } a = 0; -\frac{\pi}{2}, \text{ if } a < 0.$$
288.
$$\int_{0}^{\infty} x^{n-1} e^{-x} \, dx = \int_{0}^{1} \left[\log \frac{1}{x} \right]^{n-1} \, dx = \Gamma(n).$$

$$\Gamma(n+1) = n \cdot \Gamma(n). \qquad \Gamma(2) = \Gamma(1) = 1.$$

$$\Gamma(n+1) = n!, \text{ if } n \text{ is an integer} \qquad \Gamma(\frac{1}{2}) = \sqrt{\pi}.$$
289.
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} \, dx = \int_{0}^{\infty} \frac{x^{m+1} \, dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$$
240.
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{0}^{\frac{\pi}{3}} \cos^{n} x \, dx$$

$$= \frac{1 \cdot 3 \cdot 5 \cdot \dots (n-1)}{2 \cdot 4 \cdot 6 \cdot \dots (n)} \cdot \frac{\pi}{2}, \text{ if } n \text{ is an even integer.}$$

$$= \frac{2 \cdot 4 \cdot 6 \cdot \dots (n-1)}{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots n}, \text{ if } n \text{ is an odd integer.}$$

$$= \frac{1}{2} \sqrt{\pi} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2}+1)}, \text{ for any value of } n.$$
241.
$$\int_{0}^{\infty} \frac{\sin mx \, dx}{x} = \frac{\pi}{2}, \text{ if } m > 0; 0, \text{ if } m = 0; -\frac{\pi}{2}, \text{ if } m < 0.$$
242.
$$\int_{0}^{\infty} \frac{\sin x \cdot \cos mx \, dx}{x} = 0, \text{ if } m < -1 \text{ or } m > 1;$$

$$\frac{\pi}{4}, \text{ if } m = -1 \text{ or } m = 1; \frac{\pi}{2}, \text{ if } -1 < m < 1.$$
248.
$$\int_{0}^{\infty} \frac{\sin^{2} x \, dx}{x^{2}} = \frac{\pi}{2}.$$
244.
$$\int_{0}^{\infty} \cos(x^{2}) \, dx = \int_{0}^{\infty} \sin(x^{2}) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

$$245. \int_{0}^{\infty} \frac{\cos mx \, dx}{1+x^3} = \frac{\pi}{2} \cdot e^{-m}.$$

$$246. \int_{0}^{\infty} \frac{\cos x \, dx}{\sqrt{x}} = \int_{0}^{\infty} \frac{\sin x \, dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}.$$

$$247. \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{1-k^2 \sin^2 x}}$$

$$= \frac{\pi}{2} \left[1 + (\frac{1}{2})^2 k^2 + \left(\frac{1.3}{2.4} \right)^2 k^4 + \left(\frac{1.3.5}{2.4.6} \right)^2 k^5 + \dots \right], \text{ if } k^2 < 1.$$

$$= K.$$

$$248. \int_{0}^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2 x} \, . \, dx$$

$$= \frac{\pi}{2} \left[1 - (\frac{1}{2})^2 k^2 - \left(\frac{1.3}{2.4} \right)^2 \frac{k^4}{3} - \left(\frac{1.3.5}{2.4.6} \right)^2 \frac{k^5}{5} - \dots \right], \text{ if } k^2 < 1.$$

$$= E.$$

$$249. \int_{0}^{\infty} e^{-ab^2 t} \, dx = \frac{1}{2a} \sqrt{\pi} \cdot = \frac{1}{2a} \Gamma\left(\frac{1}{2} \right).$$

$$250. \int_{0}^{\infty} x^n e^{-ax} \, dx = \frac{\Gamma\left(n+1 \right)}{a^{n+1}} = \frac{n!}{a^{n+1}}.$$

$$251. \int_{0}^{\infty} x^{3n} e^{-ax^3} \, dx = \frac{1.3.5 \dots (2n-1)}{2^{n+1}a^n} \sqrt{\frac{\pi}{a}}.$$

$$252. \int_{0}^{\infty} e^{-ax} \cos mx \, dx = \frac{a}{a^2 + m^2}, \text{ if } a > 0.$$

$$254. \int_{0}^{\infty} e^{-ax} \sin mx \, dx = \frac{m}{a^2 + m^2}, \text{ if } a > 0.$$

$$255. \int_{0}^{\infty} e^{-ax} \cos bx \, dx = \frac{\sqrt{\pi} \cdot e^{-\frac{15a}{4a^3}}}{2a}.$$

$$256. \int_{0}^{1} \frac{\log x}{1-x} \, dx = -\frac{\pi^2}{6}.$$

257. $\int_{0}^{1} \frac{\log x}{1+x} dx = -\frac{\pi^{2}}{12}$

$$258. \int_0^1 \frac{\log x}{1-x^2} dx = -\frac{\pi^2}{8}.$$

259.
$$\int_0^1 \log\left(\frac{1+x}{1-x}\right) \cdot \frac{dx}{x} = \frac{\pi^2}{4}$$
.

260.
$$\int_0^{\infty} \log \left(\frac{e^x + 1}{e^x - 1} \right) dx = \frac{\pi^2}{4}.$$

$$261 \cdot \int_{1}^{1} \frac{dx}{\sqrt{\log\left(\frac{1}{x}\right)}} = \sqrt{\pi} \cdot$$

262.
$$\int_0^1 x^m \log \left(\frac{1}{x}\right)^n dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}$$

263.
$$\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \int_0^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \cdot \log 2.$$

264.
$$\int_0^{\pi} x \cdot \log \sin x \, dx = -\frac{\pi^2}{2} \log 2.$$

AUXILIARY FORMULAS.

The following formulas are sometimes useful in the reduction of integrals:

265.
$$\log u = \log cu + a$$
 constant.

266.
$$\log(-u) = \log u + \text{a constant.}$$

267.
$$\sin^{-1}u = \begin{cases} -\sin^{-1}\sqrt{1-u^2} + \text{a constant.} \\ -\frac{1}{2}\sin^{-1}(2u^2-1) + \text{a constant.} \\ \frac{1}{2}\sin^{-1}2u\sqrt{1-u^2} + \text{a constant.} \end{cases}$$

268.
$$\tan^{-1} u = \begin{cases} -\tan^{-1} \frac{1}{u} + \text{a constant.} \\ \tan^{-1} \frac{u+c}{1-cu} + \text{a constant.} \end{cases}$$

269.
$$\log (x \pm yi) = \frac{1}{2} \log (x^2 + y^2) \pm i \tan^{-1} \frac{y}{x}$$

270.
$$\sin^{-1}u = \cos^{-1}\sqrt{1-u^2} = \tan^{-1}\frac{u}{\sqrt{1-u^2}} = \csc^{-1}\frac{1}{u}$$

271.
$$\cos^{-1}u = \sin^{-1}\sqrt{1-u^2} = \tan^{-1}\sqrt{\frac{1}{u^2}-1} = \sec^{-1}\frac{1}{u}$$

272.
$$\tan^{-1}x \pm \tan^{-1}y = \tan^{-1}\left(\frac{x \pm y}{1 \mp xy}\right)$$

278.
$$\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} \pm y\sqrt{1-x^2}).$$

274.
$$\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}(xy \mp \sqrt{(1-x^2)(1-y^2)})$$
.

275.
$$\sin x = \frac{e^{xi} - e^{-xi}}{2i}$$

276.
$$\cos x = \frac{e^{-x} + e^{-x}}{2}$$
.

277.
$$\sin xi = \frac{1}{2}i(e^x - e^{-x}) = i \sinh x$$
.

278.
$$\cos xi = \frac{1}{2} (e^x + e^{-x}) = \cosh x$$
.

279.
$$\log_{\bullet} x = (2.3025851) \log_{10} x$$
.

29

The Natural Logarithms of Numbers between 1.0 and 9.9.

N.	0	1	2	3	4	5	6	7	8	9
1.	0.000	0.095	0.182	0.262	0.336	0.405	0.470	0.531	0.588	0.642
2.	0.693	0.742	0.788	0.833	0.875			0.993	1.030	1.065
3.	1.099	1.131	1.163	1.194	1.224	1.253	1.281	1.308	1.335	1.361
4.	1.386	1.411	1.435	1.459	1.482	1.504	1.526	1.548	1.569	1.589
5.	1.609	1.629	1.649	1.668	1.686	1.705	1.723	1.740	1.758	1.775
6.	1.792	1.808	1.825	1.841	1.856	1.872	1.887	1.902	1.917	1.932
7.	1.946	1.960	1.974	1.988	2.001	2.015	2.028	2.041	2.054	2.067
8.	2.079	2.092	2.104	2.116	2.128	2.140	2.152	2.163	2.175	2.186
9.	2.197	2.208	2.219	2.230	2.241	2.251	2.262	2.272	2.282	2.293

The Natural Logarithms of Whole Numbers from 10 to 109.

N.	0	1	2	3	4	5	6	7	8	9
1	2.303	2.398	2.485	2.565	2.639	2.708	2.773	2.833	2.890	2.94
2	2.996	3.045	3.091	3.135	3.178	3.219	3.258	3.296	3.332	3.36
2 3	3.401	3.434	3.466	3.497	3.526	3.555	3.584	3.611	3.638	3.66
4	3.689	3.714	3.738	3.761	3.784	3.807	3.829	3.850	3.871	3.89
4 5	3.912	3.932	3.951	3.970	3.989	4.007	4.025	4.043	4.060	4.07
6	4.094	4.111	4.127	4.143	4.159	4.174	4.190	4.205	4.220	4.23
7	4.248	4.263	4.277	4.290	4.304	4.317	4.331	4.344	4.357	4.36
8	4.382	4.394	4.407	4.419	4.431	4.443	4.454	4.466	4.477	4.48
9	4.500	4.511	4.522	4.533	4.543	4.554	4.564	4.575	4.585	4.59
10	4.605	4.615	4.625	4.635	4.644	4.654	4.663	4.673	4.682	4.69

The Values in Circular Measure of Angles which are given in Degrees and Minutes.

1'	0.0003	91	0.0026	30	0.0524	20 °	0.3491	100°	1.7453
2′	0.0006	10'	0.0029	40	0.0698	30°	0.5236	110°	1.9199
3′	0.0009	20'	0.0058	50	0.0873	40°	0.6981	120°	2.0944
41	0.0012	30/	0.0087	6°	0.1047	50°	0.8727	130°	2.2689
5'	0.0015	40'	0.0116	70	0.1222	60°	1.0472	1400	2.4435
6'	0.0017	50'	0.0145	80	0.1396	70°	1.2217	150°	2.6180
7'	0.0020	10	0.0175	90	0.1571	80°	1.3963	160°	2.7925
8′	0.0023	20	0.0349	100	0.1745	900	1.5708	170°	2.9671

TABLES.

NATURAL TRIGONOMETRIC FUNCTIONS.

Angle.	Sin.	Csc.	Tan.	Ctn.	Sec.	Cos.	1
0°	0.000	00	0.000	∞,	1.000	1.000	909
1	0.017	57.30	0.017	57.29	1.000	1.000	89
. 2	0.035	28.65	0.035	28.64	1.001	0.999	88
3	0.052	19.11	0.052	19.08	1.001	0.999	87
4	0.070	14.34	0.070	14.30	1.002	0.998	86
5°	0.087	11.47	0.087	11.43	1.004	0.996	85
6	0.105	9.567	0.105	9.514	1.006	0.995	84
7	0.122	8.206	0.123	8.144	1.008	0.993	83
8	0.139	7.185	0.141	7.115	1.010	0.990	82
9	0.156	6.392	0.158	6.314	1.012	0.988	81
10°	0.174	5.759	0.176	5.671	1.015	0.985	80°
11	0.191	5.241	0.194	5.145	1.019	0.982	79
12	0.208	4.810	0.213	4.705	1.022	0.978	78
13	0.225	4.445	0.231	4.331	1.026	0.974	77
14	0.242	4.134	0.249	4.011	1.031	0.970	76
15°	0.259	3.864	0.268	3.732	1.035	0.966	75°
16	0.276	3.628	0.287	3.487	1.040	0.961	74
17	0.292	3.420	0.306	3.271	1.046	0.956	73
18	0.309	3.236	0.325	3.078	1.051	0.951	72
19	0.326	3.072	0.344	2.904	1.058	0.946	71
20°	0.342	2.924	0.364	2.747	1.064	0.940	70°
21	0.358	2.790	0.384	2.605	1.071	0.934	69
22	0.375	2.669	0.404	2.475	1.079	0.927	68
23	0.391	2.559	0.424	2.356	1.086	0.921	67
24	0.407	2.459	0.445	2.246	1.095	0.914	66
25°	0.423	2.366	0.466	2.145	1.103	0.906	65°
26	0.438	2.281	0.488	2.050	1.113	0.899	64
27	0.454	2.203	0.510	1.963	1.122	0.891	63
28	0.469	2.130	0.532	1.881	. 1.133	0.883	62
29	0.485	2.063	0.554	1.804	1.143	0.875	61
30°	0.500	2.000	0.577	1.732	1.155	0.866	60,
31	0.515	1.942	0.601	1.664	1.167	0.857	59
32	0.530	1.887	0.625	1.600	1.179	0.848	58
33	0.545	1.836	0.649	1.540	1.192	0.839	57
34	0.559	1.788	0.675	1.483	1.206	0.829	. 56
35°	0.574	1.743	0.700	1.428	1.221	0.819	55°
36	0.588	1.701	0.727	1.376 1.327	1.236	0.809	54
37	0.602	1.662	0.754	1.327	1.252	0.799	53
38 39	0.616 0.629	1.624 1.589	0.781 0.810	1.235	1.269 1.287	0.788 0.777	52 51
				1.192	1.305	0.766	
40° 41	0.643	1.556 1.524	0.839 0.869	1.192	1.305	0.766 0.755	50 49
42	0.656 0.669	1.524	0.869	1.111	1.325	0.755	49
43	0.682	1.494	0.933	1.072	1.367	0.731	47
44	0.695	1.440	0.966	1.036	1,390	0.719	46
45°	0.707	1.414	1.000	1.000	1.414	0.707	45°
	Cos.	Sec.	Ctn.	Tan.	Csc.	Sin./	Angle.

Values of the Complete Elliptic Integrals, K and E, for Different Values of the Modulus, k.

sin -1 k	K	E	sin⁻¹ k	K	E	sin⁻¹ <i>k</i>	K	E
0 °	1.5708	1.5708	30°	1.6858	1.4675	60°	2.1565	1.2111
10	1.5709	1.5707	31°	1.6941	1.4608	61°	2.1842	1.2015
2 °	1.5713	1.5703	32°	1.7028	1.4539	62°	2.2132	1.1920
3°	1.5719	1.5697	33°	1.7119	1.4469	63°	2.2435	1.1826
4°	1.5727	1.5689	34°	1.7214	1.4397	64°	2.2754	1.1732
5°	1.5738	1.5678	35°	1.7312	1.4223	65°	2.3088	1.1638
6°	1.5711	1.5665	36°	1.7415	1.4248	66°	2.3439	1.1545
7°	1.5767	1.5649	37°	1.7522	1.4171	67°	2.3809	1.1453
80	1.5785	1.5632	38°	1.7633	1.4092	68°	2.4198	1.1362
9 °	1.5805	1.5611	39°	1.7748	1.4013	69°	2.4610	1.1272
10°	1.5828	1.5589	40°	1.7868	1.3931	70°	2.5046	1.1184
11°	1.5854	1.5564	41°	1.7992	1.3849	71°	2.5507	1.1096
12°	1.5882	1.5537	42°	1.8122	1.3765	72°	2.5998	1.1011
13°	1.5913	1.5507	43°	1.8256	1.3680	73°	2.6521	1.0927
14°	1.5946	1.5476	44°	1.8396	1.3594	740	2.7081	1.0844
15°	1.5981	1.5442	45°	1.8541	1.3506	75°	2.7681	1.0764
16°	1.6020	1.5405	46°	1.8691	1.3418	76°	2.8327	1.0686
17°	1.6061	1.5367	470	1.8848	1.3329	770	2.9026	1.0611
18°	1.6105	1.5326	48°	1.9011	1.3238	78°	2.9786	1.0538
19°	1.6151	1.5283	490	1.9180	1.3147	790	3.0617	1.0468
20°	1.6200	1.5238	50°	1.9356	1.3055	80°	3.1534	1.0401
21°	1.6252	1.5191	51°	1.9539	1.2963	81°	3.2553	1.0338
22°	1.6307	1.5141	52°	1.9729	1.2870	82°	3.3699	1.0278
23°	1.6365	1.5090	530	1.9927	1.2776	830	3.5004	1.0223
24°	1.6426	1.5037	540	2.0133	1.2681	840	3.6519	1.0172
25°	1.6490	1.4981	550	2.0347	1.2587	850	3.8317	1.0127
26°	1.6557	1.4924	56°	2.0571	1.2492	86°	4.0528	1.0086
27°	1.6627	1.4864	570	2.0804	1.2397	87°	4.3387	1.0053
28°	1.6701	1.4803	58°	2.1047	1.2301	88°	4.7427	1.0026
29°	1.6777	1.4740	59°	2.1300	1.2206	89°	5.4349	1.0008

The Common Logarithms of $\Gamma(n)$ for Values of n between 1 and 2.

n	log ₁₀ Γ(n)	ń	log ₁₀ Γ(n)	n	log ₁₀ Γ(n)	n	$\log_{10}\Gamma(n)$	n	log ₁₀ Γ(n)
1.01	1.9975	1.21	ī.9617	1.41	_ 1.9478	1.61	_ 1.9517	1.81	1.9704
1.02	1.9951	1.22	1.9605	1.42	1.9476	1.62	1.9523	1.82	1.9717
1.03	1.9928	1.23	1.9594	1.43	1.9475	1.63	1.9529	1.83	1.9730
1.04	1.9905	1.24	1.9583	1.44	1.9473	1.64	1.9536	1.84	1.9743
1.05	1.9883	1.25	1.9573	1.45	ī.9473	1.65	1.9543	1.85	1.9757
1.06	1.9862	1.26	1.9564	1.46	1.9472	1.66	1.9550	1.86	1.9771
1.07	ī.9841	1.27	1.9554	1.47	1.9473	1.67	ī. 955 8	1.87	1.9786
1.08	1.9821	1.28	1.9546	1.48	1.9473	1.68	1.9566	1.88	1.9800
1.09	1.9802	1.29	1.9538	1:49	1.9474	1.69	1.9575	1.89	1.9815
1.10	1.9783	1.30	1.9530	1.50	1.9475	1.70	1.9584	1.90	1.9831
1.11	1.9765	1.31	1.9523	1.51	1.9477	1.71	1.9593	1.91	1.9846
1.12	1.9748	1.32	1.9516	1.52	1.9479	1.72	1.9603	1.92	1.9862
1.13	1.9731	1.33	1.9510	1.53	1.9 4 82	1.73	1.9613	1.93	1.9878
1.14	1.9715	1.34	1.9505	1.54	1.9485	1.74	1.9623	1.94	1.9895
1.15	1.9699	1.35	1.9500	1.55	ī.9488	1.75	1.9633	1.95	ī 9912
1.16	1.9684	1.36	1.9495	1.56	1.9492	1.76	1.9644	1.96	1.9929
1.17	1.9669	1.37	ī.9491	1.57	1.9496	1.77	1.9656	1.97	1.99 46
1.18	1.9655	1.38	1.9487	1.58	1.9501	1.78	1.9667	1.98	1.9964
1.19	1.9642	1.39	1.9483	1.59	1.9506	1.79	1.9679	1.99	1.9982
1.20	1.9629	1.40	1.9481	1.60	1.9511	1.80	ĩ.9691	2.00	0.0000

This book the Library of stamped below A fine of fit by retaining it beyond the specified time.

Please return promptly.

DEC_30_1943

WY # #37300.

APR 23 53 H

SEP 14-60 H