

Sčítačka pro nezáporná čísla

 $S = A + B \dots$ jen někdy $A = \dots a_2 a_1 a_0$ $B = \dots b_2 b_1 b_0$

2008-Kubátová

Y36SAP-aritmetický hardware

Sčítačka pro nezáporná čísla

- p_i přenos do řádu icarry
- q_i.... přenos z řádu i
- $M = 8 = 2^3 = 1000_2 = (111 + 1)_2$

$$S = \begin{cases} A + B & \text{je-li } q^* = 0 \\ A + B - M & \text{je-li } q^* = 1 \end{cases}$$

• zde: q*2.... přeplněníoverflow

2008-Kubátová

Y36SAP-aritmetický hardware

3

Odčítání pro nezáporná čísla -

opakování

pozorování na příkladu M=1000, ε=1:

$$B + \overline{B} = 111 = 1000 - 1 = M - 1$$

$$-B = \overline{B} + 1 - M$$

Abychom dostali správný výsledek
– musíme mít možnost odečíst modul
Musí vyjít přenos !!

2008-Kubátová

Y36SAP-aritmetický hardware

5

Odčítačka pro nezáporná čísla

R = A - B, je-li $q^* = 1$

p*= 1 horká jednička
 hot one

2008-Kubátová

Y36SAP-aritmetický hardware

6

Odčítání

- sčítání přenos q*carry
- odčítání výpujčka v*borow

$$\overline{q}^* = v^*$$

$$q^* = 1 \iff v^* = 0 \iff A - B \ge 0$$

 $q^* = 0 \iff v^* = 1 \iff A - B < 0$

2008-Kubátová

Y36SAP-aritmetický hardware

7

Sčítačka-odčítačka pro nezáporná čísla

- složitější řízení, protože detekce přeplnění záleží na operaci
- sčítání ... přeplnění (zde přenos) pro q*=1
- odčítání přeplnění (zde výpůjčka) pro v*=1, q*=0
- nakreslit na tabuli

2008-Kubátová

Y36SAP-aritmetický hardware

8

Operace s čísli se znaménkem

- Nejpoužívanější číselné kódy:
 - přímý
 - aditivní
 - doplňkový
- přímý kód zpracovává se zvlášť znaménko a zvlášť absolutní hodnota nezáporné číslo

2008-Kubátová

Y36SAP-aritmetický hardware

9

10

Sčítání a odčítání v přímém kódu sčítání odčítání A + B, A - B,

- výsledek ulož do A
- kde

 $A \sim (zA, aA),$

 $B \sim (zB, aB)$

z – znaménko

a – absolutní hodnota

vývojový diagram ... sekvence řídících signálů ... sekvenční obvod ... řadič

2008-Kubátová

Y36SAP-aritmetický hardware

Rozšíření řádové mřížky v doplňkovém kódu

$$\mathcal{D}(X) = \left\{ \begin{array}{ll} X \\ X+M \end{array} \right. \qquad \mathcal{D}'(X) = \left\{ \begin{array}{ll} X \\ X+N \end{array} \right.$$

M a N ... moduly řádových mřížek: M < N

$$\mathcal{D}'(X) = \mathcal{D}(X) + \left\{ \begin{array}{ll} \mathbf{0} & \text{pro } X \geq \mathbf{0} \\ N - M & \text{pro } X < \mathbf{0} \end{array} \right.$$

znaménkové rozšíření sign extension

$$M = 2^m$$
, $N = 2^n \implies N - M = 2^n - 2^m$
 $N - M = (2^{n - m} - 1) \cdot 2^m$

Příklad

 $M=1000_2\dots 3$ bitová čísla $N=1000000_2\dots 6$ bitová čísla $N-M=111000_2$

2008-Kubátová

Y36SAP-aritmetický hardware

25

Posuvy

Problémy:

 $A \times 2^{k} = A << k$ $A : 2^{k} = A >> k$

- vypadávají některé bity (číslice)
- co uložit na uvolněná místa
- logický posuv ... ignoruje se/nuly
- cyklický posuv ... vypadávající číslice se ve stejném pořadí nasunou na uvolněná místa
- aritmetický posuv ... detekce přeplnění nebo ztráty přesnosti/výsledek má odpovídat přísl. násobení nebo dělení

2008-Kubátová

Y36SAP-aritmetický hardware

26

Desítkové kódy

zobrazení desítkových číslic k-bitové kódy ... $2^k >= 10 ... k>=4$

	BCD	+3	2421	8,4,-2,-1
0	0000	0011	0000	0000
1	0001	0100	0001	0111
2	0010	0101	0010	0110
3	0011	0110	0011	0101
4	0100	0111	0100	0100
5	0101	1000	1011	1011
6	0110	1001	1100	1010
7	0111	1010	1101	1001
8	1000	1011	1110	1000
9	1001	1100	1111	1111

2008-Kubátová

Y36SAP-aritmetický hardware

37

sčítačka v kódu BCD (jednomístná desítková)

a,b .. číslice sčítanců

s ... číslice součtu

p .. přenos s nižšího řádu

q .. přenos do vyššího řádu

označme **y=a+b+p** ... pak pro **y>=10** má být **q=1**

hledáme vztah mezi y a s ... korekce -10 pro q=1

-10 = -16 + 6

Př. 3+2+0 ... 05 ... 0 0101

5+6+1 ...12 ... 0 1100+<mark>0110</mark> ... 1 0010

8+9+0 ...17 ...1 0001+0110 ... 1 0111

2008-Kubátová

Y36SAP-aritmetický hardware

38

