AI25BTECH11034 - SUJAL CHAUHAN 2.10.23

question

The vector(s) which is/are coplanar with with the vectors $\hat{i}+\hat{j}+2\hat{k}$ and $\hat{i}+2\hat{j}+\hat{k}$, and perpentdicular to vector $\hat{i}+\hat{j}+\hat{k}$ is/are.

- a) $\hat{\mathbf{j}} \hat{\mathbf{k}}$
- b) $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
- c) $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- d) $\hat{\mathbf{j}} + \hat{\mathbf{k}}$

17. 2.1.1.	11
Variable	Vector
A	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
В	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
C	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Listing Options as vectors $\mathbf{D}_{\mathbf{i}}$

Input	Vector
D_1	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
D_2	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
D_3	$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
D_4	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Checking coplanarity
Let's first check conditions for coplanarity of each vectors

If the given vector $\mathbf{D_i}$ is coplanar with \mathbf{A} and \mathbf{B}

$$[\mathbf{A} \mathbf{B} \mathbf{D_i}] = 0 = (\mathbf{A} \times \mathbf{B})^T \mathbf{D_i}$$
 (1)

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} -3\\1\\1 \end{pmatrix} \tag{2}$$

$$(\mathbf{A} \times \mathbf{B})^T = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \tag{3}$$

Now for checking coplanarity for all four points:

Vector	$(\mathbf{A} imes \mathbf{B})^T \mathbf{D_i}$	Is coplanar
$\mathbf{D_1}$	$\begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 0$	Yes
$\mathbf{D_2}$	$\begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -1$	No
$\mathbf{D_3}$	$\begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = -4$	No
${ m D_4}$	$\begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2$	No

Checking perpendicular to ${\bf C}\,$

If given vector is perpendicular to ${\bf C}$ then :

$$\mathbf{C}^T \mathbf{D_i} = 0 \tag{4}$$

$$\mathbf{C}^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \tag{5}$$

Vector	$\mathbf{C}^T\mathbf{D_i}$	Is perpendicular
$\mathbf{D_1}$		Yes
$ m D_2$	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3$	No
D_3		Yes
${ m D_4}$	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2$	No

Figure 1: 1

Figure 2: 2

Figure 3: 3

Figure 4: 4