(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 2 August 2001 (02.08.2001)

PCT

(10) International Publication Number WO 01/55437 A2

(51) International Patent Classification⁷: C12P 19/34

(21) International Application Number: PCT/US01/02623

(22) International Filing Date: 25 January 2001 (25.01.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/491,404

25 January 2000 (25.01.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

ÙS

09/491,404 (CIP)

Filed on

25 January 2000 (25.01.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14, San Jose, CA 95117 (US). DRMANAC, Rodje, T. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with declaration under Article 17(2)(a); without abstract;
 title not checked by the International Searching Authority

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

10

15

20

25

30

35

3180-X30

WO 01/55437 PCT/US01/02623

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-236 and 473-708. The polypeptides sequences are designated SEQ ID NO: 237-472 and 709-944. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

5

10

15

20

25

30

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-236 and 473-708 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-236 and 473-708. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-236 and 473-708 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-236 and 473-708. The sequence information can be a segment of any one of SEQ ID NO:1-236 and 473-708 that uniquely identifies or represents the sequence information of SEQ ID NO:1-236 and 473-708.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing

full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-236 and 473-708 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-236 and 473-708 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

5

10

15

20

25

30

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-236 and 473-708; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1-236 and 473-708; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO:1-236 and 473-708. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-236 and 473-708; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO:237 – 472 or 709-944; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-236 and 473-708; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

5

10

15

20

25

30

35

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

THIS PAGE BLANK (USPTO)

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

10

15

20

25

30

35

5

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS.

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady

and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

35

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30

PCT/US01/02623 WO 01/55437

nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-20.

5

10

15

20

25

30

35

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-236 and 473-708. The sequence information can be a segment of any one of SEQ ID NO:1-236 and 473-708 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-236 and 473-708. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 420 possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteenmer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3 x 25). The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

5

10

15

20

25

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

5

10

15

20

25

30

35

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

35

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

5

10

15

20

25

30

35

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

5

10

15

20

25

30.

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-236 and 473-708; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:237-472 and 709-944; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:237-472 and 709-944. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO:1-236 and 473-708; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO:237-472 and 709-944; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO:237-472 and 709-944. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and

substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

5

10

15

20

25

30

35

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-236 and 473-708 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-236 and 473-708 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-236 and 473-708 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-236 and 473-708, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can

15

differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

5

10

20

25

30

35

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-236 and 473-708, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO:1-236 and 473-708 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-236 and 473-708, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations

16

will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

5

10

15

20

25

30

35

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-236 and 473-708, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-236 and 473-708 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-236 and 473-708 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are

provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

5

10

15

20

25

30

35

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for

transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-236 and 473-708, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO:237-472 and 709-944 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-236 and 473-708 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

5

10

15

20

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-236 and 473-708), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, 25 inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, 30 queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the 35

inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

35

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-236 and 473-708). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in

which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

5

10

15

20

25

30

35

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA

portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

15

20

25

30

35

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express

the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in coamplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

20

25

30

35

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK,

HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the

protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

35

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO:237-472 and 709-944 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO:1-236 and 473-708 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-236 and 473-708 or (b) polynucleotides encoding any one of the amino acid sequences set forth

.

as SEQ ID NO:237-472 and 709-944 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:237-472 and 709-944 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:237-472 and 709-944.

5

10

15

20

25

30

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

5

10

15

20

25

30

35

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:237-472 and 709-944.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP- HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

15

20

25

30

35

5

10

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to

another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.

Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for

example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

10

15

20

25

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in

the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are

added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous

promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the

polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

35

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

5

10

15

20

25

30

35

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient

confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

15

20

25

30

35

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober,

Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder

41

layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

5

10

15

20

25

30

35

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds*. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell

sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells 5 with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of 10 stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

15

20

25

30

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

PCT/US01/02623 WO 01/55437

5

10

20

25

30

35

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the 15 . treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine,

kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

20

25

30

5

10

15

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

35

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue

transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial

immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

15

20

25

30

35

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β₂ microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J.

PCT/US01/02623 WO 01/55437

Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al.,

Proc. Nat. Acad Sci. USA 88:7548-7551, 1991. 35

5

10

15

20

25

30

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

5

10

15

20

25

35

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

35

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine.

Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cisDDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin,
Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl,
Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

15

20

30

35

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions

and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1- 7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

5

10

15

20

25

30

35

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening

utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

5

10

15

20

25

30

35

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

5

10

15

20

25

30

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

5

10

15

20

35

Leukemias and related disorders may be treated or prevented by administration of a
therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see
Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of

therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

5

10

15

20

25

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
 - (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
 - (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
 - (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
 - (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular
 neurotoxins; and
 - (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

(i) increased survival time of neurons in culture;

5

10

15

20

25

30

35

- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape);

effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or

absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

5

10

15

20

25

30

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 **EXAMPLE**

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

5

10

15

20

25

30

35

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth

factor (PDGF), transforming growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other

hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

5

10

15

20

25

30

35

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers

5

10

15

20

25

30

35

comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

5

10

15

20

25

30

35

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral

67

administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other

sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically

acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

5

10

15

20

25

30

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

5

10

15

20

25

30

35

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired

patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

20

25

30

15

5

10

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

25

30

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

5

10

15

20

25

30

35

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 237, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will

indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

5.13.1 Polyclonal Antibodies

5

10

15

20

25

30

35

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

10 5.13.2 Monoclonal Antibodies

5

15

20

25

30

35

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal. The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for

example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5.13.2 Humanized Antibodies

5

10

15

20

25

30

35

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigenbinding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

5.13.3 Human Antibodies

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein.

Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al., (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the

immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)/2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)/2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

30

5

10

15

20

25

5

10

15

20

25

30

35

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., <u>Science</u> 229:81 (1985) describe a procedure

wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on

a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

5.13.6 Heteroconjugate Antibodies

5

10

15

20

25

30

35

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of

bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled

artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO:1-236 and 473-708 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO:1-236 and 473-708 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the

computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

5

10

15

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which

methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

5

10

15

20

25

30

35

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary.

Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One

skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

10 4.18 SCREENING ASSAYS

5

15

20

25

30

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-236 and 473-708, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

5

10

15

20

25

30

35

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560

(1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

35

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-236 and 473-708. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-236 and 473-708 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to

known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

5

10

15

20

25

30

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the

5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

5

10

15

20

25

30

35

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook et al. (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer et al. (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, CviJI, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation

of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease CviJI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (CviJI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviJI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane.

Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 EXAMPLES

5

10

15

20

25

30

5.1.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems

(ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

5.1.2 EXAMPLE 2

5

10

15

20

25

30

Assemblage of Novel Nucleic Acids

The contigs or nucleic acids of the present invention, designated as SEQ ID NO: 473-708 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 114, gb pri 114, and UniGene version 101) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

A polypeptide was predicted to be encoded by each of SEQ ID NO:473-708 as set forth below. The polypeptides was predicted using a software program called FASTY (available from http://fasta.bioch.virginia.edu) which selects a polypeptides based on a comparison of translated novel polynucleotide to known polynucleotides (W.R. Pearson, Methods in Enzymology, 183:63-98 (1990), herein incorporated by reference. The predicted polypeptides are shown in Table 7.

5.2.2 EXAMPLE 3

Novel Nucleic Acids

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), a full length gene cDNA sequence and its corresponding protein sequence were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTY and/or BLAST against Genbank (i.e. dbEST version 117, gb pri 117, UniGene version 117, Genpept release 117). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, edext and gc-zip-2 (Hyseq, Inc.). The full-length nucleotide, including splice variants resulting from these procedures are shown in the Sequence Listing as SEQ ID NOS:1-217.

Table 1 shows the various tissue sources of SEQ ID NO: 1-217.

The nearest neighbor results for SEQ ID NO: 1-217 were obtained by a BLASTP version 2.0al 19MP-WashU search against Genpept release 120 and Geneseq October 12, 2000 release 21 (Derwent), using BLAST algorithm. The nearest neighbor result showed the closest homologue for SEQ ID NO: 1-217 from Genpept. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologs with identifiable functions for SEQ ID NO: 1-217 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), all the sequences were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) all the polypeptide sequences were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determine from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et as reference, was obtained for the polypeptide sequences. Table 5 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

5.3.2 EXAMPLE 4

5

10

15

20

25

30

Novel Nucleic Acids

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), a full length gene cDNA sequence and its corresponding protein sequence were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTY and/or BLAST against Genbank (i.e., dbEST version 118, gb pri 118, UniGene version 118, Genpept release 118). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, edext and gc-zip-2 (Hyseq, Inc.). The full-length nucleotide, including splice variants resulting from these procedures are shown in the Sequence Listing as SEQ ID NOS: 218-236.

Table 1 shows the various tissue sources of SEQ ID NO: 218-236.

The homology results for SEQ ID NO: 218-236 were obtained by a BLASTP version 2.0al 19MP-WashU search against Genpept release 120 and Geneseq October 12, 2000 release

5

10

15

20

25

21 (Derwent), using BLAST algorithm. The nearest neighbor result showed the homologs for SEQ ID NO: 218-236 from Genpept. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologues with identifiable functions for SEQ ID NO: 218-236 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), all the sequences were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) all the polypeptide sequences were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determine from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et as reference, was obtained for the polypeptide sequences. Table 5 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

Table 6 is a correlation table of all of the sequences and the SEQ ID NOS.

TABLE 1

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:
adult brain	<u> </u>		3 15 19 74 88 174
			212-213 229
adult brain	GIBCO	ABD003	1-4 14 33 44 57 73-74
			78 88 108 145 148
			174 196 209-213 215
			218 235
adult brain	Clontech	ABR001	8 118 145 155 174
			192 208
adult brain	Clontech	ABR006	2 25 35-36 214 220
adult brain	Clontech	ABR008	1 4 13-14 16 25 33
			35-36 41-43 45 50 56
			65 80 86 88 95 108
			110-112 118 129 141
			145 158-159 162 164
			169-171 173-174 189
			196 208-211 215 218-
			220 222-223 228
adult brain	Clontech	ABR011	211
adult brain	Invitrogen	ABR013	48 109 121 158-159
			199
adult brain	Invitrogen	ABT004	3-4 14 35-36 88 145
			174 196 210-211 222
			224 228
cultured preadipocytes	Strategene	ADP001	2 6-8 13 69 73 193
			210 212-213 225 229
adrenal gland	Clontech	ADR002	3-4 7-8 12-14 21 33
			38 48 54 74 81 86-87
,			145 158-159 163 208 211-213 221 229 235
adult heart	GIBCO	AHR001	1-2 9 11 14-15 33 37
adult ficalt	GIBCO	Ankovi	39-41 61-62 73-75
			102 145-146 148 187
			196 210-213 218 222
			224-225 235
adult kidney	GIBCO	AKD001	1-4 8 10 12 14-15 33-
			34 37 39-40 43-48 54
			59 73-74 79-80 88
			107-108 118 121 138
			145 159 163 169-171
			173-174 186 196 209-
			215 224 229 235
adult kidney	Invitrogen	AKT002	1 8 12 14 35-36 47-48
			86 118 130 148 158-
			159 196 210 222-223
			225 235
adult lung	GIBCO	ALG001	12 16 37 56 73 88 96-
			99 106 114 145 148
			155 164 216-217 228-
	<u> </u>		229

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:
lymph node	Clontech	ALN001	12 41 47-48 94 96-99
•			107-109 121 145 158-
			159 172 191
young liver	GIBCO	ALV001	3 8 14 39-40 48 58 64
•			66 86 104 108 140
			145 158-160 169-171
			174 189 211-214 216-
	į	_	217 229 235
adult liver	Invitrogen	ALV002	4 16 37 39-40 66 73
			86 105 145 169-171
			173 189 192 194-196
			209 211 214 222 224
			228
adult liver	Clontech	ALV003	214
adult ovary	Invitrogen	AOV001	1 3-4 7 11-16 18 20
•			34-37 39-40 42-45 48
		1	57-59 70-74 76 78 80
		}	88 96-99 102 108 118
		į	140-141 145-148 155
			157-160 162-164
			172-175 182 187 196
		Į.	209-213 220-222 225
			228-229 235
adult placenta	Invitrogen	APL001	14 45 222
placenta	Invitrogen	APL002	55 138
adult spleen	GIBCO	ASP001	2-4 8 11-12 33 39-40
•			44 47-48 74 80 96-99
		,	107-110 121 145 155
•			158-159 164 172 174
			191 211-213 216-217
	·		222 229 235
testis	GIBCO	ATS001	2 35-37 39-40 175
			196 212-213 235
adult bladder	Invitrogen	BLD001	5 7-8 14 73 138 141
			159 196 235
bone marrow	Clontech	BMD001	2 4 7 12 19 39-40 47-
			48 57 63 74 80 94 96-
i			99 103 107-108 118
			121 140 145 149 156
			158-160 169-172 186
			191 210 212-213 215
			229
bone marrow	Clontech	BMD002	1 4 12 14 33 35-36 41
			44-45 47-48 74 88
			96-99 107-108 110
			118 158-160 173 190-
			191 209 212-213 223
bone marrow	Clontech	BMD004	7 48 96-99 158-159
			212-213
adult colon	Invitrogen	CLN001	2 11-12 80 96-99 140
•			191

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:	
adult cervix	BioChain	CVX001	1-2 12 14-15 26 33	
			35-36 39 42-43 47 54	
			73 80 88 95 107 129-	
	,		137 150 196 212-213	
	·		220-221 224 227-229	
			235	
endothelial cells	Strategene	EDT001	2 4 8 14 33-36 39-40	
			42-43 56 67-69 73-74	
			80 88 95 108-109 116	
			121 132 140 145 163	
			173 209 211-213 223	
			225 228-229	
Genomic clones from	Genomic DNA from	EPM001	206-207	
the short arm of	Genetic Research			
chromosome 8				
Genomic clones from	Genomic DNA from	EPM003	207	
the short arm of	Genetic Research			
chromosome 8	Conous resources			
Genomic clones from	Genomic DNA from	EPM004	207	
the short arm of	Genetic Research			
chromosome 8	Genetic recount.			
fetal brain	Clontech	FBR006	2 4 8 25 41 74 111-	
Total Oralli	Cionton		112 141 143 162 187	
			196 210-213 215-217	
			219-220 222-223 228	
fetal brain	Invitrogen	FBT002	4 14 16 18 35-36 65	
Total orani	in the Bon		74 78 80 111-112 139	
			157 173-174 196 209-	
			211 220-221	
fetal kidney	Clontech	FKD001	7 33 46 65 108 211-	
Total Interior			213	
fetal kidney	Clontech	FKD002	80 212-213	
fetal lung	Clontech	FLG001	108 118 155	
fetal lung	Invitrogen	FLG003	3 39-40 145 211 222	
fetal liver-spleen	Columbia University	FLS001	1-4 7-8 10 14-17 22	
Total II voi opioon			28 33-40 42-44 48	
			52-53 60 66 68 74 88	
			96-99 102 108 110-	
			112 117 136 138 140	
			143 145 148 154 158-	
· ·			159 163 169-172 174	
			181 191 196 201 209-	
			217 220 222-224 228-	
			229 231 235	
fetal liver-spleen	Columbia University	FLS002	1-2 7-8 11 14-15 27-	
l service opinion			28 33-37 39-40 44 53	
			60 68 73-75 80 86 91	
			95 108 110 115 122-	
	•		128 138 140 143 145	
‡	1	Į.	154-155 164 169-172	
			134-133 104 107-172	

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:	
113340 0118		 	200-205 209 212-214	
			216-217 220 222-225	
			230-231 235	
fetal liver-spleen	Columbia University	FLS003	214 223-224	
fetal liver	1		3 8 41 66 73-74 80 88	
1011111101			95 108 110 145 148	
			154 169-171 173 196	
			211 214	
fetal liver	Clontech	FLV004	7	
fetal muscle	Invitrogen	FMS001	7 11 14 37 43 79 139	
2000.			196 211 224-225 228	
fetal muscle	Invitrogen	FMS002	7	
fetal skin	Invitrogen	FSK001	7-8 14 33 35-37 39 74	
1000.	3		88 108 142 162 172-	
			175 196 210-213 215	
			220 222	
fetal skin	Invitrogen	FSK002	7 196 235	
fetal spleen	BioChain	FSP001	8 96-99	
umbilical cord	BioChain	FUC001	7 13-14 20 37 56 102	
			108 113 145 148 160	
	1		176-180 199 209 212-	
			213 222	
fetal brain	GIBCO	HFB001	2 13-15 37 42-43 57	
			73 88 108 111-112	
			118 129 163 174 192	
			196 199 208-213 215	
			224-225 229 235	
macrophage	Invitrogen	HMP001	44	
infant brain	Columbia University	IB2002	1 8 14 16 31 37 57 64	
			77 80 88 108 111-112	
			151 162 174 192 196	
			210-213 215 223 225	
			229	
infant brain	Columbia University	IB2003	7 31 57 88 94 148	
			162 174 196-198 210-	
	į	IBM002	213 215 224-225	
infant brain	brain Columbia University		8	
infant brain	Columbia University	IBS001	31 42-43 111-112 196	
			211	
Lung, fibroblast	Strategene	LFB001	4 73 174 196 199 222	
lung tumor	Invitrogen	LGT002	2-3 5 7-9 11-12 14 22	
	ļ		24 37 39-40 42-44	
			47-48 57 73 86 102	
			106 109-110 121 140	
			145 148 155 158-160	
			162 164-166 169-171	
			186 196 209-213 216-	
			218 220 222-223 228	
lymphocytes	ATCC	LPC001	13 30 39-40 42-44	
			119 153 158-159 186-	
			188 209 211 222 226	

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:
	-		232-234 236
leukocyte	GIBCO	LUC001	4-5 11 13 16 29-30 32
•			34 39-41 44 47-51 57
			74 80 88 96-99 107-
			110 116 121 129 145
			148 152-155 158-160
			163-164 172 186 190-
			191 196 210-213 216-
			217 219 229 235
leukocyte	Clontech	LUC003	109 121 145 155 160
			212-213 235
melanoma from cell line ATCC #CRL 1424	Clontech	MEL004	2 4 22 33 140 192 199 211-213 222 228
mammary gland	Invitrogen	MMG001	1-2 4 7-8 12 14 22
, 0			35-37 39-40 42-44
			47-48 51 59 73-74 80
			88 96-99 107 109 116
•			121 138 145 148 162
			167-174 191-192 196
			209-213 215 218 221-
			222 224-225 228
induced neuron cells	Strategene	NTD001	163 192 209 224
retinoid acid induced neuronal cells	Strategene	NTR001	211-213 223
neuronal cells	Strategene	NTU001	2 8 14 39-40 209 211
			215 224
placenta	Clontech	PLA003	145
prostate	Clontech	PRT001	4 8 14 211 218 229 235
rectum	Invitrogen	REC001	12 14 48 73 96-99
			143 158-159 169-171
			174 196 211 224-225
salivary gland	Clontech	SAL001	4 12 37 47-48 70 74
			107 109 114 121 144
			158-159 174 196 212-
		GDIOOI	213 220
small intestine	Clontech	SIN001	12 39-40 47 74 82-83 89-90 96-99 107 117-
			118 173 191 222 224
			229 235
skeletal muscle	Clontech	SKMs04	88
spinal cord	Clontech	SPC001	1 4 14 27 88 91-92
spinai colu	Cioniccii	SECOUL	108 119-120 145 174
			212-213 220 235
adult spleen	Clontech	SPLc01	158-159 219 229 235
stomach	Clontech	STO001	4 37 48 93-95 115
			138 159 216-217
thalamus	Clontech	THA002	37 94 125 139 174
thymus	Clontech	THM001	8 12 22 25 39-40 84
			118 149 160 172 174

Tissue Origin	RNA Source	Library Name	SEQ ID NOS:	
			191 212-213 222	
thymus	Clontech	THMc02	4-5 14 33 42-44 48 50	
			57 59 73-74 78 96-99	
			109 121 141 145 148	
			155-162 172 187 191	
			210 212-213 219 223	
			228	
thyroid gland	Clontech	THR001	4 8-9 14 23 37 39-40	
,			48 54 57 74 86 100-	
		•	101 107 118 140 159	
			169-171 196 209-211	
			225 229 235	
trachea	Clontech	TRC001	11 37 48 85 95-99	
			114 118 159 172 191	
			212-213	
uterus	Clontech	UTR001	8 102-103 227 235	

105

TABLE 2

SEQ	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
ID NO:	NUMBER			WATERMAN SCORE	IDENTITY
1	AJ222644	Arabidopsis thaliana	asparaginyl-tRNA synthetase	659	50
2	Y57899	Homo sapiens	Human transmembrane protein HTMPN-23.	2044	99
3	Y20291	Homo sapiens	Human apolipoprotein E wild type protein fragment 1.	1080	91
4	D42138	Homo sapiens	PIG-B	3001	100
5	AF148145	Mus musculus	putative thymic stromal co-transporter TSCOT	1459	78
6	X68657	Rattus norvegicus	granzyme-like protein II	1138	89
7	Z74615	Homo sapiens	prepro-alpha1(I) collagen	8216	99
8	D13623	Rattus sp.	p34 protein	1482	94
9	Y94263	Homo sapiens	Human phospholipid binding protein 2, PLBP2.	1185	99
11	Y29939	Homo sapiens	Human retinol dehydrogenase type II homologue.	1663	100
12	Y14738	Homo sapiens	immunoglobulin lambda light chain	1144	91
13	AF156549	Mus musculus	putative E1-E2 ATPase	4825	79
14	Y00815	Homo sapiens	put. LAR preprotein (AA -16 to 1881)	9947	99
19	Y11584	Homo sapiens	Human 5' EST secreted protein SEQ ID NO:236.	192	100
25	Y70210	Homo sapiens	Human TANGO 130 protein.	991	95
31	D26093	Gallus gallus	VMO-I	463	52
32	AE000658	Homo sapiens	TCRAV4S1	558	100
33	W64542	Homo sapiens	Human stomach cancer cell clone HP10071 protein.	483	100
34	Y87342	Homo sapiens	Human signal peptide containing protein HSPP- 119 SEQ ID NO:119.	690	100
35	AL049795	Homo sapiens	dJ622L5.8.1 (novel protein (isoform 1))	399	96
36	AL049795	Homo sapiens	dJ622L5.8.1 (novel protein (isoform 1))	458	100

106

SEQ	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
ID NO:	NUMBER			WATERMAN SCORE	IDENTITY
37	Y44273	Homo	Human Metabotropic	2458	99
		sapiens	Glutamate Receptor-like		
			protein, MGRcm.		
39	AF111713	Homo	junctional adhesion	1544	100
		sapiens	molecule		
40	AF154005	Homo	junction adhesion	1333	100
		sapiens	molecule		
41	Y35960	Homo	Extended human secreted	500	98
		sapiens	protein sequence, SEQ ID NO. 209.		
42	AF247174	synthetic	RP6-alkaline	140	36
		construct	phosphatase hybrid		
			protein		
43	AF179415	Dendroides canadensis	antifreeze protein 11	132	30
44	W01049	Homo	Product of 200 gene	1580	99
		sapiens	differentially expressed		
		1	in T helper cells.		
45	AL121929	Homo	bA416N2.2 (similar to	5039	100
		sapiens	murine FISH (an SH3		1
		_	and PX domain-		
	}		containing protein, and		
			Src substrate))		<u> </u>
47	X57816	Homo	immunoglobulin lambda	1212	100
		sapiens	light chain	21.62	06
48	W88464	Homo	Monoclonal antibody	2162	86
		sapiens	4B5 heavy chain variable		
50	17000500	<u> </u>	region.	280	54
50	AE003523	Drosophila	CG7510 gene product	280	34
		melanogaste			
54	AF231128	Danio rerio	Donth	165	42
55	AB047612	Macaca	Dap1b hypothetical protein	330	98
33	AB047012	fascicularis	hypothetical protein	330	
56	Y41701	Homo	Human PRO708 protein	1070	99
		sapiens	sequence.		
65	Y73351	Homo	HTRM clone 1484257	104	39
	1,000	sapiens	protein sequence.		
66	AF188285	Homo	bone morphogenetic	2266	100
		sapiens	protein 9		
73	AE002038	Deinococcu	ribosomal protein L20	202	41
		s	1	}	
		radiodurans			
74	AF157321	Homo	30 kDa protein	1252	99
		sapiens	_		
79	AC004522	Homo	gap junction protein;	482	93
		sapiens	similar to P36383		
			(PID:g544117)		

SEQ	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
ID NO:	NUMBER	·		WATERMAN SCORE	IDENTITY
80	AL355715	Homo sapiens	PCD9	2075	100
86	Y76140	Homo sapiens	Human secreted protein encoded by gene 17.	692	97
88	AL020993	Homo sapiens	dJ5O6.2 (novel protein similar to C. elegans F40E10.6 (isoform 1))	1545	100
91	AC004896	Homo sapiens	similar to contactin associated protein; similar to U87223 (PID:g1857708)	157	58
92	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	124	54
94	Y27593	Homo sapiens	Human secreted protein encoded by gene No. 27.	248	58
95	Y92507	Homo sapiens	Human OXRE-4 with identity to 3-oxo-5-alphasteroid dehydrogenase.	1715	100
96	AJ006112	Homo sapiens	anti-(ED-B) scFV	1238	100
97	AF174012	Homo sapiens	immunoglobulin heavy chain variable region precursor	692	91
98	AJ006111	Homo sapiens	anti-(ED-B) scFV	1166	93
99	AJ006112	Homo sapiens	anti-(ED-B) scFV	1046	84
102	AF137378	Homo sapiens	integrin alpha 11 subunit precursor	6224	99
106	W62068	Homo sapiens	Human lung tissue gene LU103 protein.	333	97
107	X57802	Homo sapiens	immunoglobulin lambda light chain	1160	95
108	Y41697	Homo sapiens	Human PRO700 protein sequence.	1441	100
109	M12886	Homo sapiens	T-cell receptor beta chain	1590	98
110	U71383	Homo sapiens	OB binding protein-2	2913	99
111	AB035356	Homo sapiens	neurexin I-alpha protein	4390	76
112	L14851	Rattus norvegicus	neurexin III-alpha	5614	97
114	X60660	Rattus rattus	potential ligand-binding protein	382	27
116	L03785	Homo sapiens	myosin regulatory light chain	873	100
118	Y58637	Homo	Protein regulating gene	246	30

SEQ ID NO:	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
		sapiens	expression PRGE-30.		
121	M12886	Homo sapiens	T-cell receptor beta chain	1536	96
129	AL031985	Homo sapiens	dJ228H13.3 (zinc finger protein)	2364	100
138	Y59664	Homo sapiens	Secreted protein 108- 004-5-0-E8-FL.	973	98
139	AF139980	Homo sapiens	LW-I	2275	100
140	Y28279	Homo sapiens	Human G-protein coupled receptor GRIR-1.	742	100
141	AF287892	Homo sapiens	sialic acid binding immunoglobulin-like lectin 8 long splice variant	1320	96
145	X00699	Homo sapiens	precursor	1400	98
146	AB036849	Ciona intestinalis	fibrinogen-like protein	184	40
148	W78169	Homo sapiens	Human secreted protein encoded by gene 44 clone HETFJ05.	2114	98
154	AF109683	Homo sapiens	leukocyte-associated Ig- like receptor 1b	174	25
155	W99070	Homo sapiens	Human PIGR-1.	434	53
158	AF184764	Homo sapiens	IgG1 heavy chain	939	79
159	Y14737	Homo sapiens	immunoglobulin lambda heavy chain	2559	100
160	AF043171	Homo sapiens	T cell receptor alpha chain	1479	100
162	AB000199	Rattus norvegicus	CCA2 protein	822	87
163	AF186273	Homo sapiens	leucine-rich repeats containing F-box protein FBL3	251	32
164	AF227924	Homo sapiens	sialic acid-binding lectin Siglec-9	2459	99
167	AF098807	Homo sapiens	lipoma HMGIC fusion partner	713	63
168	AF098807	Homo sapiens	lipoma HMGIC fusion partner	443	57
169	Y66706	Homo sapiens	Membrane-bound protein PRO1129.	2786	99
170	Y66706	Homo sapiens	Membrane-bound protein PRO1129.	1733	98

SEQ ID	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	% IDENTITY
NO:				SCORE	
171	Y66706	Homo sapiens	Membrane-bound protein PRO1129.	1058	93
173	W67898	Homo sapiens	Human secreted protein encoded by gene 16 clone HE9DG49.	838	95
174	Y06115	Homo sapiens	Human organic cation transporter OCT-3.	1876	100
182	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	262	59
186	AE003652	Drosophila melanogaste r	CG17996 gene product	115	66
187	AF166350	Homo sapiens	ST7 protein	4716	100
189	AF202889	Homo sapiens	regeneration associated protein 3	1864	100
191	AF090418	Homo sapiens	scFV anitbody V-region	1010	85
192	AJ010231	Homo sapiens	RET finger protein-like 2	1522	100
193	U65579	Homo sapiens	mitochondrial NADH dehydrogenase- ubiquinone Fe-S protein 8, 23 kDa subunit precursor	981	89
196	AF161444	Homo sapiens	HSPC326	1467	96
199	D26179	Rattus norvegicus	V-1 protein	479	100
208	L22031	Glycine max	hydroxyproline-rich glycoprotein	99	34
209	AF201931	Homo sapiens	DC1	1662	99
210	W74882	Homo sapiens	Human secreted protein encoded by gene 154 clone HE6FL83.	480	100
211	U53925	Mus musculus	transcription factor C1 (HCF)	297	31
212	AJ251914	Sus scrofa	putative RNA helicase	2199	100
213	AJ251914	Sus scrofa	putative RNA helicase	1571	100
214	X04494	Homo sapiens	precursor polypeptide	1903	100
215	Y66699	Homo sapiens	Membrane-bound protein PRO1108.		100
216	AJ130710	Homo sapiens	QA79 membrane protein, allelic variant airm-1b	2473	100
217	AJ130711	Homo sapiens	QA79 membrane protein, splice product airm-2	1969	100

SEQ	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
ID	NUMBER			WATERMAN	IDENTITY
NO:				SCORE	1.00
218	AF233523	Homo	beta V spectrin	18612	99
		sapiens			126
219	AF127481	Homo	non-ocogenic Rho	743	36
		sapiens	GTPase-specific GTP exchange factor		
220	Y71066	Homo	Human membrane	2378	99
		sapiens	transport protein, MTRP-		
			11.		
221	AF132730	Homo	unknown	1899	100
		sapiens		1004	100
223	W54097	Homo	Homo sapiens B223	1834	99
		sapiens	sequence.	1017	100
224	Y99449	Homo	Human PRO1760	1017	100
	1	sapiens	(UNQ833) amino acid sequence SEQ ID		
			NO:376.		
225	Y92368	Homo	G protein-coupled	2293	100
223	1 92300	sapiens	receptor protein 8.		
227	Y99436	Homo	Human PRO1474	464	100
		sapiens	(UNQ745) amino acid		
		1	sequence SEQ ID		}
			NO:334.		
228	AK024825	Homo	unnamed protein product	1375	99
		sapiens			
229	G03186	Homo	Human secreted protein,	307	96
		sapiens	SEQ ID NO: 7267.		1
235	AB025606	Arabidopsis	contains similarity to	753	46
		thaliana	GTPase activating		
	<u> </u>	<u> </u>	protein~gene_id:F6N7.7]

111

TABLE 3

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
1	PF00152	tRNA synthetases class II.	PF00152D 21.30 8.364e-28 422-461 PF00152C 28.03 9.250e-21 220-257 PF00152B 15.67 2.658e-13 159-184 PF00152A 19.68 5.714e-11 44-67
2	PR00237	RHODOPSIN-LIKE GPCR SUPERFAMILY SIGNATURE	PR00237F 13.57 5.263e-09 158-183
3	PD02807	APOLIPOPROTEIN E PRECURSOR APO-E GLYCOPROTEIN PLAS.	PD02807B 8.27 1.000e-40 64-103 PD02807C 8.91 1.000e-40 139-188 PD02807D 7.99 1.000e-40 188-238 PD02807A 12.43 6.143e-25 27-48 PD02807C 8.91 5.645e-09 95-144
5	PD01572	PHOTOSYSTEM II REACTION CENTRE T PROTEIN PHOTOS.	PD01572 8.77 6.917e-09 213-243
6	BL00134	Serine proteases, trypsin family, histidine proteins.	BL00134A 11.96 2.125e-15 50-67 BL00134B 15.99 7.618e-13 195-219
7	DM01418	352 FIBRILLAR COLLAGEN CARBOXYL- TERMINAL.	DM01418A 20.83 1.000e-40 1252-1300 DM01418B 22.51 1.000e-40 1351-1393 DM01418C 20.48 5.500e-40 1422-1464
8	BL00224	Clathrin light chain proteins.	BL00224B 16.94 1.082e-09 166-219
9	BL01220	Phosphatidylethanolamine- binding protein family proteins.	BL01220B 16.65 6.774e-23 85-126 BL01220C 14.75 5.857e-17 130-158
11	PR00081	GLUCOSE/RIBITOL DEHYDROGENASE FAMILY SIGNATURE	PR00081C 15.13 5.846e-11 151-168
12	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 1.529e-14 159-182 BL00290B 13.17 9.000e-12 219-237
13	PR00121	SODIUM/POTASSIUM- TRANSPORTING ATPASE SIGNATURE	PR00121D 16.72 2.694e-12 113-135
14	PR00700	PROTEIN TYROSINE PHOSPHATASE SIGNATURE	PR00700B 16.80 1.500e-24 1420-1441 PR00700D 12.47 4.214e-22 1543-1562 PR00700B 16.80 4.240e-21 1709-1730 PR00700D 12.47 7.158e-20 1834-1853 PR00700C 13.17 5.800e-18 1504-1522 PR00700C 13.17 7.353e-17 1793-1811 PR00700E 17.57 4.000e-14 1865-1881 PR00700F 11.18 7.353e-13 1590-1601 PR00700F 11.18 1.429e-12 1881-1892 PR00700E 17.57 5.304e-12 1574-1590 PR00700A 6.96 8.714e-11 1404-1412
31	PD02382	RECEPTOR CHAIN PRECURSOR	PD02382B 4.60 7.000e-09 105-112

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
		TRANSME.	
37	BL00979	G-protein coupled receptors family 3 proteins.	BL00979L 20.63 2.485e-09 150-191
39	DM00179	w KINASE ALPHA ADHESION T-CELL.	DM00179 13.97 1.000e-11 102-112
40	DM00179	w KINASE ALPHA ADHESION T-CELL.	DM00179 13.97 1.000e-11 62-72
45	BL50002	Src homology 3 (SH3) domain proteins profile.	BL50002B 15.18 3.000e-09 953-967
47	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 1.529e-14 150-173 BL00290B 13.17 9.000e-12 210-228
48	DM00031	IMMUNOGLOBULIN V REGION.	DM00031A 16.80 9.775e-36 20-68 DM00031B 15.41 7.600e-21 84-118 DM00031C 12.79 8.929e-10 131-142
56	BL00523	Sulfatases proteins.	BL00523C 12.64 4.000e-13 314-325 BL00523A 13.36 7.300e-13 222-239 BL00523B 8.64 6.114e-11 268-280
65	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 4.115e-11 204-221
66	BL00250	TGF-beta family proteins.	BL00250A 21.24 3.000e-24 327-363 BL00250B 27.37 1.000e-15 393-429
73	PR00062	RIBOSOMAL PROTEIN L20 SIGNATURE	PR00062C 16.68 7.245e-15 82-109 PR00062B 16.66 2.658e-11 49-79
79	BL00407	Connexins proteins.	BL00407E 22.17 8.820e-23 169-214 BL00407B 14.23 6.311e-20 39-70 BL00407C 14.61 1.164e-18 70-98 BL00407A 18.57 6.250e-13 2-39 BL00407D 17.61 5.790e-12 131-161
96	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 3.520e-10 281-304
97	DM00031	IMMUNÔGLOBULIN V REGION.	DM00031A 16.80 1.000e-40 20-68 DM00031B 15.41 1.000e-36 84-118 DM00031C 12.79 1.600e-15 127-138
98	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 3.520e-10 286-309
99	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290B 13.17 4.000e-12 341-359 BL00290A 20.89 3.520e-10 280-303
102	PR00453	VON WILLEBRAND FACTOR TYPE A DOMAIN SIGNATURE	PR00453A 12.79 9.719e-13 163-181 PR00453B 14.65 1.818e-12 200-215 PR00453C 12.26 3.769e-10 265-274
107	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 1.563e-15 151-174 BL00290B 13.17 9.000e-12 211-229
108	BL00194	Thioredoxin family proteins.	BL00194 12.16 2.565e-13 46-59 BL00194 12.16 3.348e-13 179-192

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
109	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 8.200e-12 160-183
111	DI 00064	Syndecans proteins.	BL00964B 12.05 2.604e-10 981-1024
111	BL00964	Syndecans proteins. Syndecans proteins.	BL00964B 12.05 2.604e-10 1011-1054
112	BL00964	LBP / BPI / CETP family	BL00400D 23.26 7.222e-12 251-288
114	BL00400	proteins.	
116	BL00018	EF-hand calcium-binding	BL00018 7.41 1.391e-09 43-56
116	BLOODIS	domain proteins.	BE00010 7.41 1.5710.07 43 30
121	BL00290	Immunoglobulins and	BL00290A 20.89 8.200e-12 159-182
121	BE00290	major histocompatibility complex proteins.	BE002901120.09 0.2000 12 109 102
129	BL00028	Zinc finger, C2H2 type,	BL00028 16.07 8.875e-15 347-364
		domain proteins.	BL00028 16.07 6.824e-14 207-224
			BL00028 16.07 7.353e-14 403-420
			BL00028 16.07 8.650e-13 235-252
	1		BL00028 16.07 8.435e-12 319-336
			BL00028 16.07 3.077e-11 291-308 :
			BL00028 16.07 3.769e-11 263-280
		1	BL00028 16.07 5.154e-11 179-196
	1		BL00028 16.07 4.000e-10 375-392
132	PR00836	SOMATOTROPIN	PR00836B 16.59 8.347e-09 3-22
		HORMONE FAMILY	
		SIGNATURE	
139	PR00056	HEAT SHOCK FACTOR (HSF) DOMAIN SIGNATURE	PR00056C 14.47 7.823e-12 153-166
140	PR00245	OLFACTORY	PR00245A 18.03 7.300e-19 82-104
140	1 K00243	RECEPTOR SIGNATURE	
145	PF00969	Class II histocompatibility	PF00969B 9.97 1.000e-40 58-94
		antigen, beta domain	PF00969C 27.72 1.000e-40 97-147
		proteins.	PF00969E 11.49 1.000e-39 212-247
	1		PF00969A 22.07 3.520e-38 12-55
			PF00969D 14.02 4.789e-36 154-184
146	BL00514	Fibrinogen beta and	BL00514C 17.41 2.579e-24 181-218
		gamma chains C-terminal	BL00514G 15.98 9.111e-12 262-292
1.55	D) (01 (00	domain proteins.	DM01688B 15.06 3.628e-09 82-130
155	DM01688	2 POLY-IG RECEPTOR.	DM01688B 15.06 3.628e-09 82-130 DM00031A 16.80 1.000e-40 20-68
158	DM00031	IMMUNOGLOBULIN V	DM00031A 16.80 1.000e-40 20-68 DM00031B 15.41 5.865e-25 86-120
		REGION.	DM00031B 13.41 3.8636-23 86-120 DM00031C 12.79 4.429e-10 129-140
150	D) (00001	IMMUNOGLOBULIN V	DM00031C 12.79 4.4296-10 129-140 DM00031A 16.80 1.000e-40 20-68
159	DM00031	REGION.	DM00031A 16.80 1.000e-40 20-68 DM00031B 15.41 1.000e-40 84-118
		REGION.	DM00031B 13.41 1.000e-40 84-118 DM00031C 12.79 1.600e-15 134-145
160	DM00031	IMMUNOGLOBULIN V	DM00031B 15.41 6.294e-12 85-119
		REGION.	
162	PF01073	3-beta hydroxysteriod	PF01073A 18.01 9.206e-22 140-193
		dehydrogenase/isomerase	PF01073B 12.26 6.831e-19 222-267
160	DIOCOCC	family.	PF01073C 10.62 2.645e-17 322-370
169	BL00086	Cytochrome P450 cysteine	BL00086 20.87 3.813e-24 480-512

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
		heme-iron ligand proteins.	
170	BL00086	Cytochrome P450 cysteine	BL00086 20.87 3.813e-24 502-534
.,,		heme-iron ligand proteins.	
171	BL00086	Cytochrome P450 cysteine	BL00086 20.87 3.813e-24 363-395
171	BECOOL	heme-iron ligand proteins.	
173	BL00453	FKBP-type peptidyl-prolyl	BL00453B 23.86 3.000e-20 87-121
173	DE00433	cis-trans isomerase	BL00453A 15.57 9.379e-10 63-78
		proteins.	
174	BL00216	Sugar transport proteins.	BL00216B 27.64 4.900e-10 240-290
187	BL01209	LDL-receptor class A	BL01209 9.31 5.500e-11 470-483
10/	BLU1209	(LDLRA) domain proteins.	BL01209 9.31 2.212e-10 395-408
		(LDLKA) domain proteins.	BL01209 9.31 6.365e-10 433-446
			BL01209 9.31 8.962e-10 239-252
	DD01733	APOLIPOPROTEIN	PD01733B 20.44 6.600e-14 109-164
189	PD01733		PD01753B 20.44 0.000C-14 107-104
		PLASMA LIPID	
		TRANSPORT H.	PR00237E 13.03 8.412e-09 15-39
190	PR00237	RHODOPSIN-LIKE	PR0023/E 13.03 8.412e-09 13-39
		GPCR SUPERFAMILY	
		SIGNATURE	D) (00001 + 1 (00 1 000 + 40 (1 100
191	DM00031	IMMUNOGLOBULIN V	DM00031A 16.80 1.000e-40 61-109
		REGION.	DM00031B 15.41 1.000e-40 125-159
			DM00031C 12.79 1.600e-15 174-185
			DM00031B 15.41 9.544e-09 245-279
192	PF00622	Domain in SPla and the	PF00622B 21.00 8.250e-11 161-183
		RYanodine Receptor.	
193	BL00198	4Fe-4S ferredoxins, iron-	BL00198 10.43 5.263e-12 152-164
		sulfur binding region	BL00198 10.43 1.346e-10 113-125
		proteins.	
199	PF00023	Ank repeat proteins.	PF00023A 16.03 8.000e-12 90-106
208	BL00127	Pancreatic ribonuclease	BL00127C 31.49 7.288e-09 33-77
		family proteins.	
210	BL01310	ATP1G1/PLM/MAT8	BL01310 14.74 2.432e-29 71-107
İ		family proteins.	
212	BL00039	DEAD-box subfamily	BL00039D 21.67 5.000e-26 340-386
		ATP-dependent helicases	BL00039A 18.44 6.114e-17 64-103
1		proteins.	BL00039B 19.19 3.681e-11 104-130
213	BL00039	DEAD-box subfamily	BL00039D 21.67 5.000e-26 314-360
		ATP-dependent helicases	BL00039A 18.44 6.114e-17 64-103
		proteins.	BL00039B 19.19 3.681e-11 104-130
214	BL00280	Pancreatic trypsin inhibitor	BL00280 24.61 6.727e-38 238-282
'	1	(Kunitz) family proteins.	BL00280 24.61 1.514e-30 294-338
216	PF00064	Neuraminidases.	PF00064D 17.65 8.830e-09 11-50
217	PF00064	Neuraminidases.	PF00064D 17.65 8.830e-09 11-50
218	BL00019	Actinin-type actin-binding	BL00019D 15.33 7.585e-21 196-226
210	DEVIVITY	domain proteins.	BL00019D 13:35 7:3636-21 136 226 BL00019C 14.66 9.143e-20 128-164
		domain proteins.	BL00019A 12.56 5.408e-12 56-67
	1		BL00019A 12.30 3.408c-12 30-07 BL00019B 13.34 9.795e-12 83-106
210	DD00104	TROPOMYOCRI	PR00194D 9.57 1.240e-10 391-415
219	PR00194	TROPOMYOSIN SIGNATURE	TRUUT74D 7.37 1.2406-10 371-413
<u></u>		SIGNATURE	

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
220	BL00594	Aromatic amino acids permeases proteins.	BL00594A 16.75 4.743e-09 56-100
222	BL00415	Synapsins proteins.	BL00415N 4.29 8.695e-10 335-379
223	PR00217	43 KD POSTSYNAPTIC PROTEIN SIGNATURE	PR00217C 10.91 7.725e-09 302-318
225	PD02918	AMINOGLYCOSIDE N3'- ACETYLTRANSFERASE III.	PD02918A 18.79 3.621e-09 345-385
227	BL00282	Kazal serine protease inhibitors family proteins.	BL00282 16.88 4.717e-18 45-68
235	PR00356	TYPE II ANTIFREEZE PROTEIN SIGNATURE	PR00356G 10.80 8.644e-09 536-550

^{*} results include in order: accession number subtype, raw score; p-value; position of signature in amino acid sequence.

TABLE 4

SEQ	PFAM NAME	DESCRIPTION	p-value	PFAM
D D	A A A AATA A 14 AATAAA			SCORE
10:				
10.	tRNA-synt_2	tRNA synthetases class II (D, K and	1.1e-84	294.8
		N)		
3	Apolipoprotein	Apolipoprotein A1/A4/E family	7.3e-91	315.3
5	trypsin	Trypsin	2.9e-59	189.2
, 7	Collagen	Collagen triple helix repeat (20	4.1e-290	977.2
,	Collagell	copies)		
8	LRR	Leucine Rich Repeat	2.9e-13	57.5
9	PBP	Phosphatidylethanolamine-binding	1.4e-17	71.9
,	1.51	protein		
11	adh_short	short chain dehydrogenase	7e-43	155.9
12		Immunoglobulin domain	2.1e-14	51.4
14	ig Y_phosphatase	Protein-tyrosine phosphatase	4.8e-299	1006.8
25	SH3	SH3 domain	0.026	5.2
23 32		Immunoglobulin domain	1.8e-09	35.6
32 37	ig 7tm 3	7 transmembrane receptor	7.2e-09	29.0
37 39		Immunoglobulin domain	1.4e-20	71.3
39 40	ig	Immunoglobulin domain	2.6e-15	54.4
40 45	ig SH3	SH3 domain	1.4e-42	154.9
45 47		Immunoglobulin domain	2.5e-16	57.7
	ig	Immunoglobulin domain	1.6e-24	84.1
48 65	ig zf-C2H2	Zinc finger, C2H2 type	2.7e-06	34.3
66 66	TGF-beta	Transforming growth factor beta like	6.9e-64	197.9
		Ribosomal protein L20	2e-22	74.0
73	Ribosomal_L20 connexin	Connexin	1.6e-50	181.3
79		Immunoglobulin domain	2.5e-26	89.9
96	ig	Immunoglobulin domain	1.5e-08	32.6
97	ig	Immunoglobulin domain	3.6e-25	86.1
98	ig	Immunoglobulin domain	7.6e-33	110.9
99	ig	FG-GAP repeat	6.9e-66	232.3
102	FG-GAP	Immunoglobulin domain	1.3e-16	58.6
107	ig	Thioredoxin	2.8e-79	267.1
108	thiored	Immunoglobulin domain	2.9e-16	57.5
109	ig		4.6e-13	47.1
110	ig	Immunoglobulin domain Laminin G domain	2.4e-63	223.9
111	laminin_G		2.4e-63	223.9
112	laminin_G	Laminin G domain	2.4e-03	-2.4
114	LBP_BPI_CETP	LBP / BPI / CETP family	1.1e-14	62.2
116	efhand	EF hand	4.8e-12	53.5
118	SAP	SAP domain		57.5
121	ig	Immunoglobulin domain	2.9e-16 1.7e-64	227.7
129	zf-C2H2	Zinc finger, C2H2 type		22.3
139	HSF_DNA-bind	HSF-type DNA-binding domain	1.7e-05	
140	7tm_1	7 transmembrane receptor (rhodopsin family)	1.1e-15	52.0
141	+;	Immunoglobulin domain	9.4e-09	33.3
	ig MHC II beta	Class II histocompatibility antigen,	2.7e-29	110.7
145	MHC_II_beta	beta		1

=	PFAM NAME	DESCRIPTION	p-value	PFAM
	PFAINI NAINIE	DESCIAI HON	P	SCORE
D				
NO:	<u>Cl.</u> : C	Fibrinogen beta and gamma chains,	1.3e-35	125.6
146	fibrinogen_C	C-term		
	•	Immunoglobulin domain	6.7e-05	20.8
154	ig	Immunoglobulin domain	0.00022	19.2
155	ig	Immunoglobulin domain	7e-19	65.9
158	ig	Immunogioouiii domain	3.5e-28	95.9
159	ig	Immunoglobulin domain	2.4e-06	25.5
160	ig	Immunoglobulin domain	1e-199	676.9
162	3Beta_HSD	3-beta hydroxysteroid	16-199	070.9
		dehydrogenase/isomera	2.1e-09	35.3
164	ig	Immunoglobulin domain	8.9e-141	481.1
169	p450	Cytochrome P450		450.0
170	p450	Cytochrome P450	2.1e-131	1
171	p450	Cytochrome P450	1.7e-112	387.1
173	FKBP	FKBP-type peptidyl-prolyl cis-trans	5.1e-27	89.2
		isomeras		1.50 -
174	sugar_tr	Sugar (and other) transporter	0.014	-120.6
187	CUB	CUB domain	2.2e-56	200.7
189	Apolipoprotein	Apolipoprotein A1/A4/E family	1.6e-06	34.6
191	ig	Immunoglobulin domain	1.7e-24	84.0
192	SPRY	SPRY domain	6.2e-13	56.4
193	fer4	4Fe-4S binding domain	1.6e-13	58.4
199	ank	Ank repeat	2.7e-09	44.3
209	zf-DHHC	DHHC zinc finger domain	4.6e-24	93.4
210	ATPIGI_PLM_MAT8		9.3e-22	85.7
211	Kelch	Kelch motif	0.02	20.8
212	DEAD	DEAD/DEAH box helicase	2.8e-52	168.3
213	DEAD	DEAD/DEAH box helicase	2.8e-52	168.3
214	Kunitz BPTI	Kunitz/Bovine pancreatic trypsin	3.7e-47	148.6
214	Kunte_Bi ii	inhibito		l
215	Acyltransferase	Acyltransferase	0.0023	4.4
216		Immunoglobulin domain	1.7e-10	38.9
	ig	Immunoglobulin domain	1.1e-08	33.1
217	ig	Spectrin repeat	0	1209.7
218	spectrin PH	PH domain	5.3e-08	33.6
219		Transmembrane amino acid	1.5e-21	85.0
220	Aa_trans	transporter protein		
202	-C0211C4	Zinc finger, C3HC4 type (RING	7.7e-07	26.4
223	zf-C3HC4		1 0	
	15.	finger)	0.00022	28.0
224	PA	PA domain	5.6e-13	56.6
227	kazal	Kazal-type serine protease inhibitor	3.06-13	30.0
		domain	4.7e-45	163.1
235	TBC	TBC domain	14.76-43	103.1

TABLE 5

SEQ ID NO:	POSITION OF SIGNAL IN AMINO ACID SEQUENCE	MaxS (MAXIMUM SCORE)	MeanS (MEAN SCORE)
1	1-16	0.907	0.635
2	1-45	0.970	0.723
3	1-31	0.970	0.770
4	1-25	0.929	0.655
5	1-28	0.990	0.860
6	1-18	0.977	0.916
7	1-22	0.990	0.921
8	1-45	0.973	0.605
9	1-22	0.991	0.915
10	1-18	0.910	0.637
11	1-20	0.997	0.915
12	1-21	0.967	0.949
13	1-22	0.985	0.949
14	1-29	0.932	0.690
15	1-15	0.933	0.831
16	1-19	0.985	0.932
17	1-21	0.996	0.951
18	1-18	0.942	0.764
19	1-18	0.954	0.725
20	1-29	0.891	0.625
21	1-31	0.992	0.895
22	1-18	0.974	0.820
23	1-16	0.994	0.917
24	1-32	0.983	0.865
26	1-22	0.975	0.874
27	1-19	0.943	0.723
28	1-21	0.971	0.925
30	1-31	0.970	0.770
31	1-26	0.958	0.844
32	1-19	0.959	0.930
34	1-41	0.958	0.553
	1-11	0.888	0.610
35	1-29	0.888	0.611
36	1-32	0.917	0.567
38	1-32	0.978	0.895
39		0.929	0.655
40	1-25	0.972	0.946
44	1-21	0.972	0.806
46	1-28		0.892
47	1-19	0.985	0.892
48	1-19	0.981	0.675
49	1-21	0.977	0.920
52	1-23	0.976	0.920
53	1-19	0.988	
55	1-15	0.901	0.782 0.772
58	1-24	0.953	
59	1-32	0.992	0.943

SEQ ID NO:	POSITION OF SIGNAL IN AMINO ACID SEQUENCE	MaxS (MAXIMUM SCORE)	MeanS (MEAN SCORE)
61	1-19	0.896	0.566
52	1-37	0.915	0.693
66	1-22	0.978	0.889
57	1-24	0.922	0.563
68	1-18	0.962	0.763
69	1-31	0.990	0.773
70	1-21	0.902	0.802
70 71	1-31	0.922	0.604
72	1-22	0.932	0.645
74	1-32	0.947	0.669
75	1-20	0.973	0.832
73 76	1-24	0.933	0.597
70 77	1-42	0.964	0.719
79	1-45	0.973	0.605
82	1-18	0.975	0.870
83	1-25	0.990	0.919
85	1-18	0.946	0.753
87	1-20	0.976	0.854
89	1-27	0.990	0.907
90	1-23	0.890	0.717
92	1-40	0.881	0.660
93	1-36	0.886	0.568
95	1-41	0.994	0.804
96	1-19	0.975	0.901
97	1-19	0.975	0.901
98	1-19	0.975	0.901
99	1-19	0.975	0.901
100	1-18	0.990	0.955
101	1-36	0.998	0.907
102	1-22	0.932	0.756
103	1-15	0.928	0.793
104	1-45	0.992	0.911
105	1-20	0.988	0.926
107	1-19	0.985	0.892
109	1-15	0.983	0.953
110	1-16	0.969	0.894
113	1-19	0.941	0.828
114	1-20	0.989	0.973
115	1-23	0.960	0.786
117	1-22	0.886	0.663
119	1-18	0.960	0.820
120	1-16	0.924	0.582
121	1-16	0.987	0.929
122	1-22	0.992	0.956
123	1-23	0.929	0.588
126	1-41	0.968	0.792
127	1-34	0.930	0.665

SEQ ID NO:	POSITION OF SIGNAL IN AMINO	MaxS (MAXIMUM SCORE)	MeanS (MEAN SCORE)
	ACID SEQUENCE	, 55514	,
128	1-42	0.957	0.653
130	1-21	0.897	0.632
131	1-25	0.983	0.845
132	1-13	0.947	0.915
133	1-13	0.930	0.824
134	1-22	0.947	0.857
135	1-25	0.978	0.936
137	1-17	0.960	0.878
141	1-16	0.983	0.952
142	1-23	0.945	0.798
145	1-29	0.979	0.884
146	1-25	0.922	0.765
147	1-37	0.928	0.786
148	1-28	0.981	0.890
150	1-20	0.986	0.965
151	1-20	0.987	0.886
152	1-18	0.922	0.809
153	1-19	0.887	0.607
154	1-16	0.964	0.790
155	1-17	0.984	0.973
156	1-21	0.929	0.692
157	1-21	0.937	0.836
158	1-19	0.897	0.722
159	1-19	0.985	0.932
160	1-21	0.978	0.833
161	1-20	0.940	0.632
165	1-20	0.954	0.696
167	1-20	0.988	0.963
168	1-20	0.986	0.952
169	1-8	0.983	0.634
170	1-8	0.983	0.634
171	1-40	0.994	0.888
173	1-27	0.982	0.925
174	1-17	0.989	0.945
176	1-21	0.987	0.919
177	1-21	0.950	0.596
178	1-22	0.986	0.949
179	1-18	0.942	0.764
181	1-16	0.917	0.618
182	1-23	0.963	0.889
183	1-25	0.992	0.968
184	1-19	0.945	0.638
185	1-31	0.964	0.709
186	1-37	0.978	0.830
187	1-27	0.947	0.799
190	1-41	0.972	0.836
193	1-16	0.900	0.664

SEQ ID NO:	POSITION OF	MaxS (MAXIMUM	MeanS (MEAN
	SIGNAL IN AMINO	SCORE)	SCORE)
	ACID SEQUENCE		
194	1-35	0.988	0.912
195	1-16	0.944	0.837
196	1-28	0.925	0.626
197	1-20	0.962	0.811
198	1-21	0.947	0.701
199	1-20	0.945	0.854
200	1-34	0.967	0.718
201	1-32	0.994	0.956
203	1-18	0.953	0.786
204	1-24	0.968	0.728
205	1-32	0.920	0.623
206	1-27	0.974	0.843
208	1-31	0.986	0.878
209	1-29	0.997	0.854
214	1-19	0.986	0.967
215	1-37	0.981	0.952
216	1-18	0.974	0.820
217	1-18	0.974	0.820
218	1-21	0.937	0.819
219	1-31	0.914	0.554
224	1-21	0.981	0.945
225	1-25	0.938	0.890
227	1-22	0.965	0.891
230	1-23	0.884	0.746
231	1-14	0.885	0.675
232	1-20	0.930	0.729

TABLE 6

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number corresponding	in U.S.S.N.
length	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence		
1	237	473	709	785CIP2B_1	10
2	238	474	710	785CIP2B_2	449
3	239	475	711	785CIP2B_3	1376
4	240	476	712	785CIP2B_4	1425
5	241	477	713	785CIP2B_5	1472
6	242	478	714	785CIP2B_6	1503
7	243	479	715	785CIP2B_7	1513
8	244	480	716	785CIP2B_8	1518
9	245	481	717	785CIP2B_9	1525
10	246	482	718	785CIP2B_10	1533
11	247	483	719	785CIP2B_11	1537
12	248	484	720	785CIP2B_12	1542
13	249	485	721	785CIP2B_13	1549
14	250	486	722	785CIP2B_14	1560
15	251	487	723	785CIP2B 15	1715
16	252	488	724	785CIP2B 16	1731
17	253	489	725	785CIP2B 17	1757
18	254	490	726	785CIP2B 18	1791
19	255	491	727	785CIP2B 19	1809
20	256	492	728	785CIP2B 20	1818
21	257	493	729	785CIP2B 21	1857
22	258	494	730	785CIP2B_22	1869
23	259	495	731	785CIP2B 23	1905
24	260	496	732	785CIP2B_24	1910
25	261	497	733	785CIP2B_25	1917
26	262	498	734	785CIP2B_26	1924
27	263	499	735	785CIP2B_27	1937
28	264	500	736	785CIP2B 28	1965
29	265	501	737	785CIP2B_29	2033
30	266	502	738	785CIP2B_30	2035
31	267	503	739	785CIP2B_31	2194
32	268	504	740	785CIP2B_32	2195
33	269	505	741	785CIP2B_33	2197
34	270	506	742	785CIP2B_34	2199
35	271	507	743	785CIP2B 35	2201
36	272	508	744	785CIP2B 36	2201
37	273	509	745	785CIP2B 37	2253
38	274	510	746	785CIP2B 38	2257
39	275	511	747	785CIP2B 39	2264
40	276	512	748	785CIP2B 40	2264
41	277	513	749	785CIP2B 41	2266
42	278	514	750	785CIP2B 42	2272
43	279	515	751	785CIP2B 43	2272
44	280	516	752	785CIP2B 44	2274
L	200	1310	1.52		1

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number_corresponding	in U.S.S.N.
ength	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence		1
45	281	517	753	785CIP2B 45	2283
46	282	518	754	785CIP2B 46	2285
47	283	519	755	785CIP2B 47	2289
48	284	520	756	785CIP2B 48	2294
49	285	521	757	785CIP2B 49	2295
50	286	522	758	785CIP2B 50	2297
51	287	523	759	785CIP2B 51	2301
52	288	524	760	785CIP2B 52	2312
53	289	525	761	785CIP2B 53	2313
54	290	526	762	785CIP2B 54	2324
55	291	527	763	785CIP2B 55	2337
56	292	528	764	785CIP2B 56	2338
57	293	529	765	785CIP2B 57	2345
58	294	530	766	785CIP2B 58	2359
59	295	531	767	785CIP2B 59	2361
60	296	532	768	785CIP2B 60	2369
61	297	533	769	785CIP2B 61	2379
62	298	534	770	785CIP2B 62	2382
63	299	535	771	785CIP2B 63	2389
64	300	536	772	785CIP2B 65	2400
65	301	537	773	785CIP2B 66	2411
66	301	538	774	785CIP2B 67	2422
67	302	539	775	785CIP2B 68	2425
68	304	540	776	785CIP2B 69	2426
69	305	541	777	785CIP2B 70	2428
	306	542	778	785CIP2B 71	2431
70 71	307	543	779	785CIP2B 72	2440
72	308	544	780	785CIP2B 73	2443
73	309	545	781	785CIP2B 74	2451
74	310	546	782	785CIP2B 75	2458
75	311	547	783	785CIP2B_76	2462
76	312	548	784	785CIP2B 77	2470
		549	785	785CIP2B 78	2487
77	313	550	786	785CIP2B 79	2497
78 79		551	787	785CIP2B 80	2504
80	315	552	788	785CIP2B 81	2510
81	317	553	789	785CIP2B 82	2513
82	317	554	790	785CIP2B 83	2519
		555	790	785CIP2B 84	2520
83	319	556	791	785CIP2B_85	2524
84		I	793	785CIP2B_86	2528
85	321	557	794	785CIP2B_80	2531
86	322	558	794	785CIP2B_87	2558
87	323	559	l	785CIP2B_88	2567
88	324	560	796 797	785CIP2B_89 785CIP2B_90	2584
	325	561	1/9/	1 /83CIPZB 90	12304

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number_corresponding	in U.S.S.N.
length	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence	1	
91	327	563	799	785CIP2B 92	2594
92	328	564	800	785CIP2B 93	2596
93	329	565	801	785CIP2B 94	2599
94	330	566	802	785CIP2B 95	2601
95	331	567	803	785CIP2B 96	2603
96	332	568	804	785CIP2B 97	2604
97	333	569	805	785CIP2B 98	2604
98	334	570	806	785CIP2B 99	2604
99	335	571	807	785CIP2B 100	2604
100	336	572	808	785CIP2B 101	2610
101	337	573	809	785CIP2B 102	2612
102	338	574	810	785CIP2B 103	2626
103	339	575	811	785CIP2B 104	2629
104	340	576	812	785CIP2B 105	2630
105	341	577	813	785CIP2B 106	2631
106	342	578	814	785CIP2B 107	2639
107	343	579	815	785CIP2B 108	2651
108	344	580	816	785CIP2B 109	2652
109	345	581	817	785CIP2B 110	2661
110	346	582	818	785CIP2B 111	2662
111	347	583	819	785CIP2B 112	2677
112	348	584	820	785CIP2B 113	2677
113	349	585	821	785CIP2B 114	2680
114	350	586	822	785CIP2B 115	2688
115	351	587	823	785CIP2B 116	2693
116	352	588	824	785CIP2B 117	2716
117	353	589	825	785CIP2B 118	2720
118	354	590	826	785CIP2B 119	2721
119	355	591	827	785CIP2B 120	2724
120	356	592	828	785CIP2B 121	2725
121	357	593	829	785CIP2B 122	2727
122	358	594	830	785CIP2B 123	2739
123	359	595	831	785CIP2B 124	2740
124	360	596	832	785CIP2B 125	2747
125	361	597	833	785CIP2B 126	2748
126	362	598	834	785CIP2B 127	2752
127	363	599	835	785CIP2B 128	2755
128	364	600	836	785CIP2B_129	2764
129	365	601	837	785CIP2B 130	2773
130	366	602	838	785CIP2B 131	2778
131	367	603	839	785CIP2B_131	2779
132	368	604	840	785CIP2B_132 785CIP2B_133	2780
133	369	605	841	785CIP2B_133	2780
134	370	606	842	785CIP2B_134 785CIP2B_135	2786
135	370	607	843	785CIP2B_133	2790
136	372	608	844	785CIP2B_136 785CIP2B_137	2790
130	312	000	044	/83CIFZB_13/	2/91

WO 01	133437		_		
SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number_corresponding	in U.S.S.N.
ength	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence		
137	373	609	845	785CIP2B_138	2795
138	374	610	846	785CIP2B_139	2801
139	375	611	847	785CIP2B_140	2802
140	376	612	848	785CIP2B_141	2804
141	377	613	849	785CIP2B_142	2811
142	378	614	850	785CIP2B_143	2820
143	379	615	851	785CIP2B_144	2825
144	380	616	852	785CIP2B_145	2836
145	381	617	853	785CIP2B_146	2841
146	382	618	854	785CIP2B_147	2843
147	383	619	855	785CIP2B_148	2844
148	384	620	856	785CIP2B_149	2845
149	385	621	857	785CIP2B_150	2849
150	386	622	858	785CIP2B_151	2850
151	387	623	859	785CIP2B_152	2866
152	388	624	860	785CIP2B_153	2873
153	389	625	861	785CIP2B_154	2874
154	390	626	862	785CIP2B_155	2878
155	391	627	863	785CIP2B_156	2882
156	392	628	864	785CIP2B_157	2888
157	393	629	865	785CIP2B_158	2894
158	394	630	866	785CIP2B_159	2899
159	395	631	867	785CIP2B 160	2899
160	396	632	868	785CIP2B 161	2903
161	397	633	869	785CIP2B_162	2905
162	398	634	870	785CIP2B 163	2913
163	399	635	871	785CIP2B 164	2920
164	400	636	872	785CIP2B 165	2927
165	401	637	873	785CIP2B 166	2938
166	402	638	874	785CIP2B 167	2952
167	403	639	875	785CIP2B 168	2954
168	404	640	876	785CIP2B 169	2954
169	405	641	877	785CIP2B 170	2958
170	406	642	878	785CIP2B 171	2958
171	407	643	879	785CIP2B 172	2958
172	408	644	880	785CIP2B 173	2959
173	409	645	881	785CIP2B 174	2961
174	410	646	882	785CIP2B 175	2978
175	411	647	883	785CIP2B 176	2981
176	412	648	884	785CIP2B 177	2996
177	413	649	885	785CIP2B 178	2997
178	414	650	886	785CIP2B 179	3001
178	415	651	887	785CIP2B 180	3006
180	416	652	888	785CIP2B 181	3007
	417	653	889	785CIP2B 182	3010
181	417	654	890	785CIP2B 183	3034

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number corresponding	in U.S.S.N.
length	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence		
183	419	655	891	785CIP2B 184	3058
184	420	656	892	785CIP2B 185	3060
185	421	657	893	785CIP2B 186	3061
186	422	658	894	785CIP2B 187	3078
187	423	659	895	785CIP2B 188	3081
188	424	660	896	785CIP2B 189	3083
189	425	661	897	785CIP2B 190	3086
190	426	662	898	785CIP2B 191	3090
191	427	663	899	785CIP2B 193	3102
192	428	664	900	785CIP2B 194	3110
193	429	665	901	785CIP2B 195	3117
194	430	666	902	785CIP2B 196	3118
195	431	667	903	785CIP2B 197	3121
196	432	668	904	785CIP2B 198	3124
197	433	669	905	785CIP2B 199	3131
198	434	670	906	785CIP2B 200	3132
199	435	671	907	785CIP2B 201	3135
200	436	672	908	785CIP2B 202	3143
201	437	673	909	785CIP2B 203	3145
202	438	674	910	785CIP2B 204	3156
203	439	675	911	785CIP2B 205	3160
204	440	676	912	785CIP2B 206	3163
205	441	677	913	785CIP2B 207	3167
206	442	678	914	785CIP2B 208	3170
207	443	679	915	785CIP2B 209	3174
208	444	680	916	785CIP2B 210	3176
209	445	681	917	785CIP2B 211	3178
210	446	682	918	785CIP2B 212	3180
211	447	683	919	785CIP2B 213	3791
212	448	684	920	785CIP2B 215	3793
213	449	685	921	785CIP2B 216	3793
214	450	686	922	785CIP2B 217	3794
215	451	687	923	785CIP2B 218	3795
216	452	688	924	785CIP2B 219	3796
217	453	689	925	785CIP2B 220	3796
218	454	690	926	785CIP2C_1	145
219	455	691	927	785CIP2C 3	639
220	456	692	928	785CIP2C 4	652
221	457	693	929	785CIP2C 5	753
222	458	694	930	785CIP2C 6	754
223	459	695	931	785CIP2C 7	1258
224	460	696	932	785CIP2C 8	1316
225	461	697	933	785CIP2C 9	1343
226	462	698	934	785CIP2C 11	1499
227	463	699	935	785CIP2C 12	1659
228	464	700	936	785CIP2C_12	2024
220	דטד	L,00	730	103CIF2C_13	2024

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Priority docket	SEQ ID NO:
NO: of full-	NO: of	NO: of	NO: of	number_corresponding	in U.S.S.N.
length	full-length	contig	contig	SEQ ID NO: in priority	09/491,404
nucleotide	peptide	nucleotide	peptide	application	
sequence	sequence	sequence	sequence		
229	465	701	937	785CIP2C_15	2114
230	466	702	938	785CIP2C_16	2119
231	467	703	939	785CIP2C_17	2126
232	468	704	940	785CIP2C_19	2137
233	469	705	941	785CIP2C_20	2143
234	470	706	942	785CIP2C_21	2145
235	471	707	943	785CIP2C_22	2853
236	472	708	944	785CIP2C_24	3076

128

TABLE 7

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
709	465	301	MGKSLASQFPITLIFSAFSSTFCLLDGLFISCPCT
			STELPKVNSLLSRPESATT*
710	1181	1345	MLALSSSFLVLSYLLTRWCGSVGFILANCFNM
			GIRITQSLCFIHRYYRRSPHRPL
711	186	701	MKVLWAALLVTFLAGCQAKVEQAVETEPEPE
ŀ			LRQQTEWQSGQRWELALGRFWDYLRWVQTLS
			EQVQEELLSSQVTQELRALMDETMKELKAYKS
			ELEEQLTPVAEETRARLSKELQAAQARLGADM
			EDVCGRLGAVTAVMVQGHARPEQPRSCGWRV
			RLPPAQAGVSGSLR*
712	3917	4081	MFRRLTFAQLLFATVLGIAGGVYIFQPVFEQYA
			KDQKELKEKMQLVQESEEKKS*
713	26	1123	MSLLGFLLSRLGLLLKVLLDWPVEVLYGAAAL
			NGLFGGFSAFWSGVMALGSLGSSEGRRSVRLIL
			IDLMLGLAGFCGSMASGHLFKQMAGHSGQGLI
			LTACSVSCASFALLYSLLVLKVPESVAKPSQEL
			PAVDTVSGTVGTYRTLDPDQLDQQYAVGHPPS
			PGKAKPHKTTIALLFVGAIIYDLAVVGTVDVIPL
1			FVLREPLGWNQVQVGYGMAAGYTIFITSFLGV
			LVFSRCFRDTTMIMIGMVSFGSGALLLAFVKET
			YMFYIARAVMLFALIPVTTIRSAMSKLIKGSSY
			GKVFVILQLSLALTGVVTSTLYNKIYQLTMDM FGGSCFALSSFLSFLAIIPISIVAYKQVPLSPYGDI
			IEK*
714	39	431	MFLFLFFLVAILPVNTEGGEIIWGTESKPHSRPY
/14		171	MAFIKFYDSNSEPHHCGGFLVAKDIVMTAAHC
			NGRNIKVTLGAHNIKKQENTQVISVVKAKPHE
			NYDRDSHFNDIMLLKLERKAQLNGCCEDYCPS
			*
715	970	1755	MLVLLVLRVSLAALVKMELLVRWAPVACLVR
			EVALEPLALLVLVEMMVLLVLPGPLVPPAPLV
			LLASLVLLVLRVKLVPKGPEALKVPRVCVVSL
			APLALLVLLALLETLVLRESLVLKVPMVLLVLL
			VLLASLVPEAPLDPRAPAALLVPRVTAVNLVLL
			AAKETLVLRESLALLVFKDPLALLERKESEELE
			VNPDPLACPDPLASVVDLVAVVSLAQMVLLVP
			RVPLVNVVLLALLAPKDLLVKLVVPVKLVCLV
			PRV*
716	3060	2899	MMLLVSLHILFPFMPFSYGLESNNSKPQCLMKL
			TLQNLQKQVAFEVFSHTKYN*
717	70	618	MGWTMRLVTAALLLGLMMVVTGDEDENSPC

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
NO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	1	1
	1	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino acid residue of	M=Methionine, N=Asparagine, P=Proline,
	to first amino		Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
			AHEALLDEDTLFCQGLEVFYPELGNIGCKVVPD
			CNNYRQKITSWMEPIVKFPGAVDGATYILVMV
		·	DPDAPSRAEPRQRFWRHWLVTDIKGADLKEGK
			IQGQELSALPGSLPHRHTVAFHRYQVLCLSSGR
			EKSSLSFPRKTKLEALGKWTDF*
718	79	342	MRRSFWTVMRTAWRCSCSSVDRALSHQAGLQ
	1		GQCLSACLLGNLGYPPFISPPAQVLCAARASCH
			LGSLMAHFETLVHSKDWSCVILK*
719	382	1326	MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFI
			TGCDSGFGNLAARTFDKKGFHVIAACLTESGST
			ALKAETSERLRTVLLDVTDPENVKRTAQWVK
		·	NQVGEKGLWGLINNAGVPGVLAPTDWLTLED
			YREPIEVNLFGLISVTLNMLPLVKKAQGRVINV
			SSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDM
			KAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIW
			EQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNM
			DLSPVVECMDHALTSLFPKTHYAAGKDAKIFW
			IPLSHMPAALQDFLLLKQKARAG*
720	875	516	MSVPTMAWMMLLLGLLAYGSGVESQTVVTQE
			PSLSVSPGGTVTLTCGLTSGSVSTSFYPSWYQQ
			TPGQAPRTLIYSTNTRSSGVPGRFSGSILGSKAA
			LTITGAQADDESDYYCVLICR*
721	431	3643	MNCDVLWCVLLLVCMSLFSAVGHGLWIWRY
			QEKKSLFYVPKSDGSSLSPVTAAVYSFLTMIIVL
			QVLIPISLYVSIEIVKACQVYFINQDMQLYDEET
			DSQLQCRALNITEDLGQIQYIFSDKTGTLTENK
		<u> </u>	MVFRRCTVSGVEYSHDANAQRLARYQEADSE
			EEEVVPRGGSVSQRGSIGSHQSVRVVHRTQSTK
			SHRRTGSRAEAKRASMLSKHTAFSSPMEKDITP
			DPKLLEKVSECDKSLAVARHQEHLLAHLSPELS
			DVFDFLIALTICNTVVVTSPDQPRTKVRVRFEL
			KSPVKTIEDFLRRFTPSCLTSGCSSIGSLAANKSS
			HKLGSSFPSTPSSDGMLLRLEERLGQPTSAIASN
			GYSSQADNWASELAQEQESERELRYEAESPDE
			AALVYAARAYNCVLVERLHDQVSVELPHLGR
			LTFELLHTLGFDSVRKRMSVVIRHPLTDEINVY
		1	TKGADSVVMDLLQPCSSVDARGRHQKKIRSKT
			QNYLNVYAAEGLRTLCIAKRVLSKEEYACWLQ
			SHLEAESSLENSEELLFQSAIRLETNLHLLGATG
			IEDRLQDGVPETISKLRQAGLQIWVLTGDKQET
			AVNIAYACKLLDHDEEVITLNATSQEACAALL
			DQCLCYVQSRGPQRAPEKTKGKVSMRFSSLCP
ŀ			PSTSTASGRRPSLVIDGRSMAYALEKNLEDKFL

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
1	sequence	sequence	deletion, \=possible nucleotide insertion
	1		FLAKQCRSVLCCRSTPLQKSMVVKLVRSKLKA
			MTLAIGDGANDVSMIQVADVGVGISGQEGMQ
			AVMASDFAVPKFRYLERLLILHGHWCYSRLAN
			MVLYFFYKNTMFVGLLFWFQFFCGFSASTMID
			QWYLIFFNLLFSSLPPLVTGVLDRDVPANVLLT
			NPQLYKSGQNMEEYRPRTFWFNMADAAFOSL
			VCFSIPYLAYYDSNVDLFTWGTPIVTIALLTFLL
			HLGIETKTWTWLNWITCGFSVLLFFTVALIYNA
			SCATCYPPSNPYWTMQALLGDPVFYLTCLMTP
			VAALLPRLFFRSLQGRVFPTQLQLARQLTRKSP
i			RRCSAPKETFAQGRPXEGLGNRGTHQGGQSRP
			LCPCPSLLGTHSSRSAPWRPAGSPAQWT*
722	3616	1673	MLWVTGPVLAVILIILIVIAILLFKRKRTHSPSSK
			DEQSIGLKDSLLAHSSDPVEMRRLNYQTPGMR
			DHPPIPITDLADNIERLKANDGLKFSQEYESIDP
			GQQFTWENSNLEVNKPKNRYANVIAYDHSRVI
			LTSIDGVPGSDYINANYIDGYRKQNAYIATQGP
			LPETMGDFWRMVWEQRTATVVMMTRLEEKS
			RVKCDQYWPARGTETCGLIQVTLLDTVELATY
ļ			TVRTFALHKSGSSEKRELRQFQFMAWPDHGVP
•			EYPTPILAFLRRVKACNPLDAGPMVVHCSAGV
			GRTGCFIVIDAMLERMKHEKTVDIYGHVTCMR
			SQRNYMVQTEDQYVFIHEALLEAATCGHTEVP
}			ARNLYAHIQKLGQVPPGESVTAMELEFKLLASS
			KAHTSRFISANLPCNKFKNRLVNIMPYELTRVC
			LQPIRGVEGSDYINASFLDGYRQQKAYIATQGP
			LAESTEDFWRMLWEHNSTIIVMLTKLREMGRE
			KCHQYWPAERSARYQYFVVDPMAEYNMPQYI
			LREFKVTDARDGQSRTIRQFQFTDWPEQGVPK
			TGEGFIDFIGQVHKTKEQFGQDGPITVHCSAGV
	ļ		GRTGVFITLSIVLERMRYEGVVDMFQTVKTLRT
			QRPAMVQTEDQYQLCYRAALEYLGSFDHYAT
			*
723	484	765	MIWIYFAFIFQRLHLIPGKSSARQVSGFSLLSFNP
		j	SNTIFVKLDWWCFIQLIYSAYLFEKRLLEIDDVF
			VPVILKVVGARIEFHSGIGFGSGL*
724	846	983	MLIAVIACICYLSLLHSYDILFGHFSVLSQGLDK
			HCLTLFLSLGG*
725	154	513	MVIINCSPRFWFLFPFTIQHTCKCPLGVRYHTRH
			LEQIAANKKHCPYPYEVHYNSSYWRAGIILHTL
			HAYLTSYPHYYSFFFFFGKGVPFCPQGGGAGK
7 0 :			GSGLMGSHRGTKPKSFLKKK
726	709	566	MERHGFFLDVCLILGLIPLSIKYSLQKRGKNSA

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	1	V-Vallie, W-Hyptophan, 1=1 yrosine,
	sequence	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
727	175	242	ADNAGWSDLSLGQN*
121	1/3	342	MYMNTCLYLHVYVLTCSGCNVDMCSRLFLST
728	109	264	KLKAHVQIVLYWVFLWSRGNNFLT*
128	109	264	MVILDVLELYHMWFLGILYDAIFYCFVHAINA
720	66		DKFFGLKLTKSATVSQNSQ*
729	56	220	MYDFLLLLSFIFIVASYWSFLSTIFLDVVCSILHC
730	50.5		PVKPQTLLKSCLHVDCKST*
/30	735	1235	MVGLGGMSQLLLASLLPPVPQGSPTRRKLPASL
			LVSTALISPVCVRGWMWQNLQNRIHGSHTSAR
		<u>,</u>	RVPSLPGAGQVGVRWEAGPACRTQPSPQNLAP
			RPHPSAAQLIENAALRSAMSGERLFPEGQEHLG
			PLVAPRVPMGGALCPPLPSLSCAICKVGAAREA
# 2.1	100		GGR*
731	109	303	MKPYCMYPFLSGLLSSLLFWVESLMLLCVQMV
700			LFLMLCVLDYRIYCIKIYVSIILLMSIWIISI*
732	165	359	MCYFYNTIILTLQGSLMFLLFSVVTLYLFSHSHP
			TPISIFSDVFNMYPWIYMYSYMVFSVNLYK*
733	7	279	MAAAPGLLVWLLVLRLPWRVPGQLDPSTGRR
			FSEHKLCADDECSMLMYRGEALEDFTGPDCRF
70.1			VNFKKGDPVYVYYKLARGWPEVWAGSK*
734	81	275	MPGYVPLLLLLLLRCSQRGGGVNFGEKDAKV
	· ·		PGTWRDGVRVPGEGASWDSDRASPERRYGIGE
			*
735	207	419	MKFLLMSLPYRHLFCITQAILSEIAEGIRNDPFK
			FYLYSVLALFLHYYMYVFVSRFSIYYLKLLRIF
			KFS*
736	233	457	MRQIAVFQRFMFPFLLPWLSCIFSSSQNSIYYVS
		•	TFIKCLALKSIIKRQRSEINSGFLAIYHALRNQVT
			RCGGL*
737	39	251	MPRRTRGGLWLCNAHKSCQKYLSSLKLSTLLS
			PLLVLPFYTPSLKGWGIFVLRFYFMVIIADCNLF
			KIII*
738	155	313	MFTHWLGPPVYIKQFIVMIVSILTLFPVLQGML
			RNFLYLNIMFVVALLKAIL*
739	60	272	MERGAGAKLLPLLLLRATGFTCAQADGRNG
			YTAVIEVTSGGPWGDWAWPEMCPDGFFASGFS
			LKVGAQA*
740	49	360	MTQVERVIVFLTLSTLSLAKTTQPIFMDSYEGQ
ł			EVNITCSHNNIVTNDYITWYQQFPSQGPRFIIQG
İ			YQKKVTNEVAFLCIPADRKSITLNLPRVSLEDT
			GGK*
741	47	325	MTKLAQWLWGLAILGSTWVALTTGALGLELP
			LSCQEVLWPLPAYLLVSAGCYALGTVGYRVAT
			, -= -=

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
110.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	
	acid residue	1	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
		amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
			FHDCEDAARELQSQIQEARADLARRGLRF*
742	301	438	MSVGLAGAVGRRCHLALAVLHDPLCHHGSLA
742	175	412	TICKQPEVCLFTIV*
743	165	413	MPFLLNQCGSLLYYLTLASTDLTLAVPICNSLAI
			IFTLIVGKALGEDIGGKRAVAGMVLTVIGISLCI
			TSSVSKTQGQQSTL*
744	165	413	MPFLLNQCGSLLYYLTLASTDLTLAVPICNSLAI
	ļ		IFTLIVGKALGEDIGGKRAVAGMVLTVIGISLCI
			TSSVSKTQGQQSTL*
745	923	1618	MALIYVMLLLLGAFLGAWPALCGRYKRWRKH
			GVFVLLTTATSVAIWVVWIVMYTYGNKQHNS
			PTWDDPTLAIALAANAWAFVLFYVIPEVSQVT
			KSSPEQSYQGDMYPTRGVGYETILKEQKGQSM
			FVENKAFSMDEPVAAKRPVSPYSGYNGQLLTS
			VYQPTEMALMHKVPSEGAYDIILPRATANSQV
			MGSANSTLRAEDMYSAQSHQAATPPKDGKNS
			QVFRNPYVWD*
746	14	370	MVKTDAHLKNPPFAPFRVYTLTLSLLLKLSHYS
			CLWVKKDFKDSSFYNSNNNSNSNHCKSLLSTH
}			YMPGAVISNLCLISCKVSSSPIKQTHGISMLQM
			KRLKHTLARLAPGTHGGSQN*
747	103	1002	MGTKAQVERKLLCLFILAILLCSLALGSVTVHS
			SEPEVRIPENNPVKLSCAYSGFSSPRVEWKFDQ
			GDTTRLVCYNNKITASYEDRVTFLPTGITFKSV
			TREDTGTYTCMVSEEGGNSYGEVKVKLIVLVP
			PSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYT
			WFKDGIVMPTNPKSTRAFSNSSYVLNPTTGELV
			FDPLSASDTGEYSCEARNGYGTPMTSNAVRME
			AVERNVGVIVAAVLVTLILLGILVFGIWFAYSR
			GHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSS
			FLV*
748	103	1002	MGTKAQVERKLLCLFILAILLCSLALGSVTVHS
			SEPEVRIPENNPVKLSCAYSGFSSPRVEWKFDQ
			GDTTRLVCYNNKITASYEDRVTFLPTGITFKSV
		ļ	TREDTGTYTCMVSEEGGNSYGEVKVKLIVLVP
			PSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYT
			WFKDGIVMPTNPKSTRAFSNSSYVLNPTTGELV
			FDPLSASDTGEYSCEARNGYGTPMTSNAVRME
			AVERNVGVIVAAVLVTLILLGILVFGIWFAYSR
			GHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSS
			FLV*
749	970	1263	MPSSFFLLLRFFLRIDGVLIRMNDTRLYHEADK
			TYMLREYTSRESKISSLMHVPPSLFTEPNEISQY

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
110.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	Li-Uistiding I-Isalassias K. I
	1	to first amino	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	to first amino		M=Methionine, N=Asparagine, P=Proline,
		acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
1	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
	100		LPIKEAVCEKLIFPERIDPNPADSQKSTQVE
750	1207	887	MYTRELLAWIQGLYTWELLAWIQHLNTWELL
			PWIRRLNSWILLVCPKLLHLWVFGKTMEIFVLV
			KDMMPFLYKKELCLVPEVISLLIFSHLDTSKELS
			IYGLTQLI*
751	1207	887	MYTRELLAWIQGLYTWELLAWIQHLNTWELL
		·	PWIRRLNSWILLVCPKLLHLWVFGKTMEIFVLV
			KDMMPFLYKKELCLVPEVISLLIFSHLDTSKELS
		L	IYGLTQLI*
752	43	948	MFSHLPFDCVLLLLLLLTRSSEVEYRAEVGON
			AYLPCFYTPAAPGNLVPVCWGKGACPVFECGN
			VVLRTDERDVNYWTSRYWLNGDFRKGDVSLT
			IENVTLADSGIYCCRIQIPGIMNDEKFNLKLVIK
			PAKVTPAPTLQRDFTAAFPRMLTTRGHGPAET
			QTLGSLPDINLTQISTLANELRDSRLANDLRDSG
			ATIRIGIYIGAGICAGLALALIFGALIFKWYSHSK
1			EKIQNLSLISLANLPPSGLANAVAEGIRSEENIYT
			IEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFA
			MP*
753	2350	2180	MGGVAFLLWLTVFSAWTRLSIFSRLSDLPSFCL
ľ		,	PLAGTVSSSLPEGSGCSFSSSTK*
754	369	707	MCHWQNSFLCQSFLTFGSILALLAGKACYPESE
			SIRELFMWALELYSLPFYLFFKLSPLNLPGKLGL
			IETLSTCWGQKLDPVLETLQRVRSMASLIANFF
			VPFIQKKGQLIT*
755	847	149	MAWIPLFLGVLAYCTGSVASYELTQPPSVSVSP
			GQTASITCSGDNLGNKYVAWYQQKAGQSPVL
			VIYQDDKRPSEIPERFSGSNSGNTATLTISGTQA
			MDEADYYCQAWDSSTAVMFGGGTKLTVLGQP
			KAAPSVTLFPPSSEELQANKATLVCLISDFYPGA
			VTVAWKADSSPVKAGVETTTPSKQSNNKYAA
			SSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV
			APTECS*
756	1726	1869	MGAGCTPVVLGAALWLWRWFSRWGLGGLCW
		2	RPCTCTPCHSASPGAGR*
757	167	310	MLGICLCSICVLRLCLEKSKIFPPPRTSDHSLEGS
	- 1	-	VTPVENAARSGM*
758	335	778	MSITRLFPALLECFVIVLCGYIAGRANVITSTQA
			KGLGNFVSRFALPALLFKNMVVLNFSNVDWAF
			LYSILIAKASVFFIVCVLTLLVASPDSRFSKAGLF
			PIFATQSNDFALGYPIGKLIFIFQVFKKFNFNLFR
			HLLVTDSYSHI*
759	102	419	MWLGQAFWAWLSFMNRWHSKFLMVRSRGEC
			THE ALM MAN TOLIMINK MUSKLTMAKSKOEC

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
	sequence		GAQRQLLCVFVFRDSLREGMPRRNMVSSEAHG
			CLLRTAVFYATYPCTSYAKETKPSACLFPLLIIG
	l		KWMLWSFKN*
760	27	371	MSSWFLRAGHGLIWVLFFRIGQAAVGVSAGPG
700	21	371	GSPKAHLGRVASQHPHGAESRACLLARGLPKA
			LSSMLAVDCRPRSGPLHRAAHIMAASLISKPVR
			GCLSEDDIPSPLSDSAY*
561	400	685	
761	428	083	MGWDSKLLFLFTCLSCVTTCSVSTCFQAPLGSS
			SFAPSGIHGTLEFPVVRGAHKNFLPMGPMYLFP
260	003	<u> </u>	ITAGQPLTLFVKTQSAGRN*
762	293	3	MCHVHCCWKFIVELLQCVIQGIRCLYFGNICNG
			TCFLESCFFGMSFQGANFLFFGNSHSSSFYCRR
7.0		205	MSPFPRGEQVLHFICHSVCQCQCQCWCSGG*
763	38	385	MLLWVFLQLNYKIQAIPTYETVMTFFKSFPENC
			CFLDRDIGQSLRPLFLCLRLHGITKGKDXEVLR
			HLNFFPESWLDQVTVNHYHALENGGDMVHLK
			DLNTQAVRFGLLFNQENTT
764	508	1374	MLAMGALAGFWILCLLTYGYLSWGQALEEEE
			EGALLAQAGEKLEPSTTSTSQPHLIFILADDQGF
			RDVGYHGSEIKTPTLDKLAAEGVKLENYYVQP
			ICTPSRSQFITGKYQIHTGLQHSIIRPTQPNCLPL
			DNATLPQKLKEVGYSTHMVGKWHLGFYRKEC
			MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMC
		į	GYDLYENDNAAWDYDNGIYSTQMYTQRVQQI
			LASHNPTKPIFLYIAYQAVHSPLQAPGRYFEHY
			RSIININRRRYAAMLSCLDEAINNVTLALK
765	660	875	MRSYKPNPLLFPKLQILIFLTSYLIFTLRYLPGVF
			NILFKTVLLVFFLQDYSLLISANSSSFQVLSVKT
			YN*
766	316	456	MDLYVVIFWLVYIFSTYIITYIKGNVGLCFQILF
			QLSFERRPKSVR*
767	231	584	MSFPIHLRFFSLFFLHWLLLSGFSSLLPWASAFV
			QYSRCPEHTPSLCPGGANNPLLQAPTQMLPPLG
			CLLCALPASPSPYLCWHLLYHAFRNLLIPLISGA
			PCGSGIPKFSKCLSVS*
768	135	305	MKNLLMVHLWGICTLYLEFSAVSAISFLNHISV
			KTYFPNSSSFYRATPMVLDFILH*
769	231	401	MLGWQIWRLRPQLLSFHTQDRCHWSITSQCSK
			PESQESFLSTIHLLEGAQEGTPTE*
770	141	314	MRETGILLCFLSALNYITLVTSQKLILSKKMHV
			NHYLPKKTISKFLYFVKVFHDLVL*
771	55	276	MKQLIYWFSLFFCCSCCHLNRHGNRLHTTEIFP
		•	SLFHLVCCADPLPWMPAHSFGSPFWSLFSTYPG
	L	l	

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	
	acid residue	1	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
		amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
550			RNSRGCQ*
772	139	354	MLLFSLNFFFWKIVMFHKNVIFILTCNGFIIVTF
			KWIDKFILNISILISNTVNVNSHNPHKQKFFGDL
			SNF*
773	269	457	MQLKFSQLTTSSLSFSSALWLLAFSRVFLLADS
			NLFVKPSSDLGSDTCSADFCDFRKLSFFR*
774	96	1385	MCPGALWVALPLLSLLAGSLQGKPLQSWGRGS
	-		AGGNAHSPLGVPGGGLPEHTFNLKMFLENVKV
	<u> </u>		DFLRSLNLSGVPSQDKTRVEPPQYMIDLYNRYT
			SDKSTTPASNIVRSFSMEDAISITATEDFPFQKHI
			LLFNISIPRHEQITRAELRLYVSCQNHVDPSHDL
			KGSVVIYDVLDGTDAWDSATETKTFLVSQDIQ
			DEGWETLEVSSAVKRWVRSDSTKSKNKLEVT
		ļ	VESHRKGCDTLDISVPPGSRNLPFFVVFSNDHSS
			GTKETRLELREMISHEQESVLKKLSKDGSTEAG
1			ESSHEEDTDGHVAAGSTLARRKRSAGAGSHCO
			KTSLRVNFEDIGWDSWIIAPKEYEAYECKGGCF
}			FPLADDVTPTKHAIVQTLVHLKFPTKVGKACC
			VPTKLSPISVLYKDDMGVPTLKYHYEGMSVAE
			CGCR*
775	187	354	MFGMIKRRVRRAVFVGRTVLCGSCNSGIIMHR
			GKTPPLKMVCRFEESFSCLFLNS*
776	22	168	MGFLFLLDSALMQTWVTVIDVSLHHVEIKAPRI
		100	RLMWSLPLRRQKYTM*
777	37	357	MLATLACMAIPWTHLGCSCLLACLPFSHHLGL
' ' '	3,	337	
			SEDIISSEKPSVTMLSKILQHFSHPLSHYSAFSET
			LVLPETYLFTCLASFLPHYHVSFLRVRDLVRDN HCILRV*
778	85	225	<u></u>
,,,		223	MHTPHLPNIIVYFILLYICSQYLYLLTIRHNHLT
779	187	396	QSLFYNKLLSVL*
' '	10/	370	MPVTPDPSAVSLFVTPWPLLLCLPWPHRVPGQS
			HPGLHSRAPVHRLKPGPPARLQLPAAHRNLRH
780	9	210	LSIF*
/00	ן ד	218	MSWYTCQCLFFLSNTLRNGATSCHWYCSPDD
			MQMVDFSSTYERIFRPFVFKIKGPDSFRIDMSPI
701	200	100	PEDI*
781	398	192	MARSARTFLLSSTWHLTKFPMSAGYFSPCSWL
	İ		AAVIRLIQRVLMFFFFRYRALVHFTKARITVLT
500		· · · · · · · · · · · · · · · · · · ·	ANL*
782	216	791	MAGPELLLDSNIRLWVVLPIVIITFFVGMIRHYV
			SILLQSDKKLTQEQVSDSQVLIRSRVLRENGKYI
			PKQSFLTRKYYFNNPEDGFFKKTKRKVVPPSP
			MTDPTMLTDMMKGNVTNVLPMILIGGWINMT

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
.NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
İ	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
	sequence		FSGFVTTKVPFPLTLRFKPMLQQGIELLTLDAS
			WVSSASLGTSPMVFGLRSIYSSDSGPR*
783	285	440	MLFVVLPLLIIVFNIPMREAVFDFLFMIKIIKVLK
			VFYCIACFIIKQALVF*
784	277	471	MVTYFIKCFHYEVSFLLWFAVVRNDVDRPVSL
			SLFSSYSLFSTYPDTCPLFKLPTHLLCCLEEI*
785	256	429	MAVPIMLFYFSLLYKSLAFFESYSFAEYHPPTSG
			RQGCVKDILKRLIWFLIHLHLDAG
786	412	672	MAVKNVALVITWAYGFVKVTLSLLVFCVYCM
			YVILHLRMYITHKGACRHMSASWLATNCLWP
		<u>-</u>	WGCHSTFHLEIENNNTIILLELCA*
787	778	975 .	MFGVSGFCLLFTFLELVLLGLGRWWRTWKHK
			SSSSKYFLTSESTRRHKKATDSLPVVETKEQFQ
			EA
788	15	1334	MAAARCWRPLLRGPRLSLHTAANAAATATET
			TCQDVAATPVARYPPIVASMTADSKAARLRRIE
		•	RWQATVHAAESVDEKLRILTKMQFMKYMVYP
			QTFALNADRWYQYFTKTVFLSGLPPPPAEPEPE
			PEPEPEPALDLAALRAVACDCLLQEHFYLRRRR
			RVHRYEESEVISLPFLDQLVSTLVGLLSPHNPAL
			AAAALDYRCPVHFYWVRGEEIIPRGHRRGRID
			DLRYQIDDKPNNQIRISKQLAEFVPLDYSVPIEIP
			TIKCKPDKLPLFKRQYENHIFVGSKTADPCCYG
			HTQFHLLPDKLRRERLLRQNCADQIEVVFRAN
	:		AIASLFAWTGAQAMYQGFWSEADVTRPFVSQ
			AVITDGKYFSFFCYQLNTLALTTQADQNNPRK
			NICWGTQSKPLYETIEDNDVKGFNDDVLLQIVH
		•	FLLNRPKEEKSQLLEN*
789	680	880	MGLFAIHISSWLLRACFLIIENFESVLYISNTHPFI
			YMGLHRFFSQPSVWILLFLTGPLNTKSYYH*
790	85	315	MFKVVFCFGLVWFCFQRAHKPIRFEKHNFTINE
			GNLFSMNIPIVTIRSHHRTSCYHKLITCEQQTVF
	·		TNIKRHSKL*
791	112	273	MNLYLFAVLFFYVFLHIKIIFICFATKWHNLFSK
			FSYFCILHVKALSLNLGSG*
792	142	297	MYSLSLQLPVLCVLKSFKAYSLLWGVSTGVKE
700	105		GFAGRTIVNHESYYLRIVW*
793	127	315	MCTLFMHLLFCHLQSIQLKQELRLNYLTLTQF
			WQRCYSEMIFFCLSKVFLHVFQDGLEHHLE*
794	1401	1553	MFATTLGVMGLWSGIIICTVFQAVCFLGFIIQLN
			WKKACQQGALKTLKEF*
795	181	390	MHLTLSLLLFSLHFPTYIIRVNFCLVSNLFQRMR
			STKLLRLIDLDFSFTFSLLDLPPVNEYDMYIRNF

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	Sequence	deletion, \=possible nucleotide insertion
	Sequence		GK
796	849	1322	MVKSVIFLSFWQGMLLAILEKCGAIPKIHSARV
7,70	647	1322	SVGEGTVAAGYQDFIICGEMFFAALALRHAFT
			YKVYADKRLDAQGRCAPMKSISSSLKETMNPH
			DIVQDAIHNFSPAYQQYTQQSTLEPGPTWRGG
			AHGLSRSHSLSGARDNEKTLLLSSDDEF*
797	80	271	MGKKVTLLLQKCAWLLLVCCLFTGIKYLNKCF
131	00	271	ITDRELLRDVHNALNILRHNFYVNWASLNTF*
798	249	518	MVQLFIPILKFQLGYSVLSLCNHVLEFLFPSSLS
130	247	310	GIFSSSLPLLLPFPLSLPSLPPSLFPSLRVLLCHPH
			WSVASNSWAVAILLPQPPE*
799	481	651	MYLLILLSTKFSCISSLPGLDYRQDSMLCQGISL
133	701	051	APTLLIIHLFMCIMIKYKPLIR*
800	148	288	MCVHPYVCTCACMHVCVCLCAWCLSQPGGLG
600	140	200	GFSEEVTSLPRPRAL*
801	154	510	MLFLKKIQFLKCNKVFRSLDFCVALPLLFSSSA
1 601	1134	1310	VLQITPVDTFSDPHLVLTLVKLLMNILNIAVISL
		·	TFPGEYEVSLAFENILMYTHAFIICFCNRQWLFK
ł			SNSESNLSSNVNLFDSC*
802	99	434	MOLHGKGSQDPSTKGHIKALQTVTSFLLLCAIY
552		""	FLSMIISVCNFGRLEKQPVFMFCQAIIFSYPSTHP
			FILILGNKKLKQIFLSVLRHVRYWVKDRSLRLH
			RFTRGALCVF*
803	1189	233	MAPWAEAEHSALNPLRAVWLTLTAAFLLTLLL
			QLLPPGLLPGCAIFQDLIRYGKTKCGEPSRPAAC
			RAFDVPKRYFSHFYIISVLWNGFLLWCLTQSLF
			LGAPFPSWLHGLLRILGAAQFQGGELALSAFLV
			LVFLWLHSLRRLFECLYVSVFSNVMIHVVQYC
			FGLVYYVLVGLTVLSQVPMDGRNAYITGKNLL
			MQARWFHILGMMMFIWSSAHQYKCHVILGNL
			RKNKAGVVIHCNHRIPFGDWFEYVSSPNYLAE
			LMIYVSMAVTFGFHNLTWWLVVTNVFFNQAL
			SAFLSHQFYKSKFVSYPKHRKAFLPFLF*
804	92	1246	MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQ
			PGGSLRLSCAASGFTFSSYAMSWVRQAPGKGL
			EWVSGLSGSGGSSTYYADSVKGRFTISRDNSK
	1		GTLYLQMNSLRADDTARYYCAKGGVELASTK
			PSSIWRLNPIRYWYFDLWGQGTLVTVSSGDGSS
	1		GGSGGASTGEIVLTQSPGTLSLSPGERATLSCRA
	1		SQSVSSSYLAWYQQKPGQAPRLLIYGASSRAT
			GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ
			YGSSPTTFGQGTKVDIKRTVAAPSVFIFPPSDEQ
			LKSGTASVVCLLNNFYPREAKVQWKVDNALQ

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
}	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
ļ	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	soquence	deletion, \=possible nucleotide insertion
	sequence		SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
			HKVYACEVTHQGLSSPVTKSFNRGEC*
805	92	1246	MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQ
003	1 22	1240	PGGSLRLSCAASGFTFSSYAMSWVRQAPGKGL
			EWVSGLSGSGGSSTYYADSVKGRFTISRDNSK
	}		GTLYLQMNSLRADDTARYYCAKGGVELASTK
			PSSIWRLNPIRYWYFDLWGQGTLVTVSSGDGSS
			GGSGGASTGEIVLTQSPGTLSLSPGERATLSCRA
	1		SQSVSSSYLAWYQQKPGQAPRLLIYGASSRAT
			GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ
			YGSSPTTFGQGTKVDIKRTVAAPSVFIFPPSDEQ
			LKSGTASVVCLLNNFYPREAKVQWKVDNALQ
			SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
			HKVYACEVTHQGLSSPVTKSFNRGEC*
806	92	1246	MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQ
800	172	1240	PGGSLRLSCAASGFTFSSYAMSWVRQAPGKGL
			EWVSGLSGSGGSSTYYADSVKGRFTISRDNSK
			GTLYLQMNSLRADDTARYYCAKGGVELASTK
			PSSIWRLNPIRYWYFDLWGQGTLVTVSSGDGSS
			GGSGGASTGEIVLTQSPGTLSLSPGERATLSCRA
			SQSVSSSYLAWYQQKPGQAPRLLIYGASSRAT
}			GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ
<u> </u>			YGSSPTTFGQGTKVDIKRTVAAPSVFIFPPSDEQ
	}		LKSGTASVVCLLNNFYPREAKVQWKVDNALQ
			SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
			HKVYACEVTHQGLSSPVTKSFNRGEC*
807	92	1246	MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQ
007	92	1240	1
			PGGSLRLSCAASGFTFSSYAMSWVRQAPGKGL EWVSGLSGSGGSSTYYADSVKGRFTISRDNSK
			GTLYLQMNSLRADDTARYYCAKGGVELASTK
	:		PSSIWRLNPIRYWYFDLWGQGTLVTVSSGDGSS
			GGSGGASTGEIVLTQSPGTLSLSPGERATLSCRA
			SQSVSSSYLAWYQQKPGQAPRLLIYGASSRAT
			GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ
			YGSSPTTFGQGTKVDIKRTVAAPSVFIFPPSDEQ
			LKSGTASVVCLLNNFYPREAKVQWKVDNALQ
			SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
000	62	202	HKVYACEVTHQGLSSPVTKSFNRGEC*
808	63	203	MFPPYFSLILLLFTFASKFFLSLNLKKSNIVKARI
900	157	207	ESTKTVISKRC*
809	157	387	MQSVIRKQFTALAGFCFWFCLFTLAVLSLTLLI
			CKLRIMPFKLEGLFQELNKSWHMKLLSQDRELI
			NMLLLLMGRS*

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
ŀ	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
<u> </u>	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
Ì	sequence	5-4	deletion, \=possible nucleotide insertion
810	50	3616	MDLPRGLVVAWALSLWPGFTDTFNMDTRKPR
0.0		3010	VIPGSRTAFFGYTVQQHDISGNKWLVVGAPLET
			NGYQKTGDVYKCPVIHGNCTKLNLGRVTLSNV
			SERKDNMRLGLSLATNPKDNSFLACSPLWSHE
			CGSSYYTTGMCSRVNSNFRFSKTVAPALQRCQ
			TYMDIVIVLDGSNSIYPWVEVQHFLINILKKFYI
			GPGQIQVGVVQYGEDVVHEFHLNDYRSVKDV
			VEAASHIEQRGGTETRTAFGIEFARSEAFQKGG
			RKGAKKVMIVITDGESHDSPDLEKVIQQSERDN
			VTRYAVAVLGYYNRRGINPETFLNEIKYIASDP
		Ì	DDKHFFNVTDEAALKDIVDALGDRIFSLEGTNK
			NETSFGLEMSQTGFSSHVVEDGVLLGAVGAYD
1			WNGAVLKETSAGKVIPLRESYLKEFPEELKNH
			GAYLGYTVTSVVSSRQGRVYVAGAPRFNHTG
			KVILFTMHNNRSLTIHQAMRGQQIGSYFGSEITS
			VDIDGDGVTDVLLVGAPMYFNEGRERGKVYV
		1	YELRONRFVYNGTLKDSHSYQNARFGSSIASV
			RDLNQDSYNDVVVGAPLEDNHAGAIYIFHGFR
			GSILKTPKQRITASELATGLQYFGCSIHGQLDLN
			EDGLIDLAVGALGNAVILWSRPVVQINASLHFE
			PSKINIFHRDCKRSGRDATCLAAFLCFTPIFLAP
1			HFQTTTVGIRYNATMDERRYTPRAHLDEGGDR
		ŀ	FTNRAVLLSSGQELCERINFHVLDTADYVKPVT
			FSVEYSLEDPDHGPMLDDGWPTTLRVSVPFWN
			GCNEDEHCVPDLVLDARSDLPTAMEYCQRVLR
			KPAQDCSAYTLSFDTTVFIIESTRQRVAVEATLE
			NRGENAYSTVLNISQSANLQFASLIQKEDSDGSI
1			ECVNEERRLQKQVCNVSYPFFRAKAKVAFRLD
			FEFSKSIFLHHLEIELAAGSDSNERDSTKEDNVA
			PLRFHLKYEVDVLFTRSSSLSHYEVKPNSSLER
			YDGIGPPFSCIFRIQNLGLFPIHGMMMKITIPIAT
			RSGNRLLKLRDFLTDEANTSCNIWGNSTEYRPT
			PVEEDLRRAPQLNHSNSDVVSINCNIRLVPNQEI
	·		NFHLLGNLWLRSLKALKYKSMKIMVNAALQR
			QFHSPFIFREEDPSRQIVFEISKQEDWQVPIWIIV
			GSTLGGLLLLALLVLALWKLGFFRSARRREP
811	261	410	GLDPTPKVLE*
011	201	419	MALNIINPVWFCHCLTCTIHIDFHILFIKIFKHM
013	140	1202	FFRSLWSSWLSHQLDHI*
812	49	282	MAIFPLWKGVNVLVCIFSSFIMLNIYCTLLIWKF
			IYSAFFCYITSLMIFPFSFFCSFFLDLLKVIVYIFF
012	1147	202	LYLYSSR*
813	147	293	MGYLLWLVLSILVCTELGLGRLTFPLDSESPRT

SEQ ID Predicted beginning nucleotide location corresponding to first amino NO: Predicted end heginning nucleotide location corresponding to first amino Amino acid segment containing (A=Alanine C=Cysteine, D=A E=Glutamic Acid, F=Phenylal H=Histidine, I=Isoleucine, K= M=Methionine, N=Asparaging	Aspartic Acid,
nucleotide location E=Glutamic Acid, F=Phenylal location corresponding to first amino M=Methionine, N=Asparaging	
location corresponding H=Histidine, I=Isoleucine, K= corresponding to first amino M=Methionine, N=Asparagine	lanine, G=Glycine,
corresponding to first amino M=Methionine, N=Asparagine	
to first amino acid residue of Q=Glutamine, R=Arginine, S=	•
acid residue amino acid V=Valine, W=Tryptophan, Y=	
of amino acid sequence X=Unknown, *=Stop codon, /	
sequence deletion, \=possible nucleotide	e insertion
SYKVRPWVVLEAWVW*	
814 418 155 MCLSHLVSLFPAATAFLIN	KVPLPVDKLAPLPL
DNILPFMDPLKLLLKTLGIS	SVEHLVEGLRKCVN
ELGPEASEAVKKLLEALSH	ILV*
815 32 742 MAWIPLFLGVLAYCTGAV	
GQTASITCSGDRLGDKIAC	
HQDTKRPSGIPERFSGSNSG	
DEADYYCQAWDSSSYVAF	
AAPSVTLFPPSSEELQANKA	
TVAWKADSSPVKAGVETT	
YLSLTPEQWKSHRSYSCQV	-
TEYLLRVY*	VIIIEGSIVERIVAF
	LL CCCCCODDD DDD
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PAAAAAAGGQLLGDGGS	` `
GFLYRRLKTQEKREMQKE	
GLQQPQPPALRQQEEQQQQ	
KSAPLFMLDLYNALSADNI	
WPHEAASSSQRRQPPPGAA	
GSGGASPLTSAQDSAFLND	
DKEFSPRQRHHKEFKFNLS	
YKDCVMGSFKNQTFLISIY	
LLDTRVVWASKEGWLEFD	DITATSNLWVVTPQH
NMGLQLSVVTRDGVHVHF	PRAAGLVGRDGPYD
KQPFMVAFFKVSEVHVRT	TRSASSRRRQQSRN
RSTQSQDVARVSSASDYNS	SSELKTACRKHELY
VSFQDLGWQDWIIAPKGYA	AANYCDGECSFPLN
AHMNATNHAIVQTLVHLM	INPEYVPKPCCAPT
KLNAISVLYFDDNSNVILKI	KYRNMVVRACGCH
*	
817 7 942 MGCRLLCCAVLCLLGAVP	METGVTOTPRHLV
MGMTNKKSLKCEQHLGHN	
LELMFVYNFKEQTENNSVE	
LHLHTLQPEDSALYLCASS	
TRLTVLEDLKNVFPPEVAV	
TLVCLATGFYPDHVELSWY	~ 1
DPQPLKEQPALNDSRYCLS	
RNHFRCQVQFYGLSENDEV	WICHDARDUTOIVE
AEAWGRADCGFTSESYQQ	
818 1355 1672 MALLCICLCLIFFLIVKARR	
in the contract of the contrac	KQAAGKPEKMDDE
DPIMGTITSGSRKKPWPDSF	PODQASPPGDAPPL
EEQKELHYASLSFSEMKSR	EPKDQEAPSTTEYS
EIKTSK*	

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	1		
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
819	3461	3685	MVVGIVAAAALCILILLYAMYKYRNRDEGSYQ
			VDETRNYISNSAQSNGTLMKEKQQSSKSGHKK
			QKNKDREYYV*
820	3461	3685	MVVGIVAAAALCILILLYAMYKYRNRDEGSYQ
		1	VDETRNYISNSAQSNGTLMKEKQQSSKSGHKK
			QKNKDREYYV*
821	129	272	MGSLMPLRPLALHTALGAALNFSLPCEWSTLPS
			ASEAGRLWGPPSFQ*
822	98	1474	MAWASRLGLLLALLLPVVGASTPGTVVRLNK
			AALSYVSEIGKAPLQRALQVTVPHFLDWSGEA
	,		LQPTRIRILNVHVPRLHLKFIAGFGVRLLAAANF
			TFKVFRAPEPLELTLPVELLADTRVTQSSIRTPV
			VSISACSLFSGHANEFDGSNSTSHALLVLVQKHI
			KAVLSNKLCLSISNLVQGVNVHLGTLIGLNPVG
			PESQIRYSMVSVPTVTSDYISLEVNAVLFLLGKP
			IILPTDATPFVLPRHVGTEGSMATVGLSQQLFDS
			ALLLLQKAGALNLDITGQLRSDDNLLNTSALG
			RLIPEVARQFPEPMPVVLKVRLGATPVAMLHT
			NNATURLQPFVEVLATASNSAFQSLFSLDVVVN
			LRLQLSVSKVKLQGTTSVLGDVQLTVASSNVG
			FIDTDQVRTLMGTVFEKPLLDHLNALLAMGIA
			LPGVVNLHYVAPEIFVYEGYVVISSGLFYQS*
823	177	377	MKLVLLRKTSLSVFTTLFSVSSSQYPVLSTSICN
023	*′′	377	TPVFSTLFLEACSVNPLPSTVFLVLLYSVACL*
824	1629	1123	MIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQ
024	102)	1125	QGEDPLDWTVSLLLMAGLCTFFSCILAVFFHTP
			YRRLQAESGEPPSTRNAVGSQTQGRVWTEGEA
Ī			RKGLGSWGPARRIPELHGEGGASLRGPQEGHG
			SPHPACHRATPRAQGPAATDAPFPPGQTRRQGP
825	381	572	SVQVY*
623	301	372	MLLAKRYAKYFIYFIFFNPVLIPILQRRILRLGEI
926	750	610	HIAGQCRAGSLQSLPLPANLHSILDILA*
826	758	618	MLLCLHLIIICLVFCIISAIPWVLNQCLIFRLYFLC
027	104	260	QKKLAMSLEN*
827	184	360	MLIGSGYLCFCALQWTELGNVCVCAHICRCTH
000	140	1	MQVSGITSPVHVHIHRVLSCLIHFTS*
828	140	355	MHLLVSHAFLPFPLHGYSGRQRGAKQWRCHP
			ARASRERPSEDNLSPAVKEESGFVVSEHLAALH
			RKLRGCH*
829	21	956	MLLLLLLGLAGSGLGAVVSQHPSWVICKSGT
			SVKIECRSLDFQATTMFWYRQFPKQSLMLMAT
			SNEGSKATYEQGVEKDKFLINHASLTLSTLTVT
			SAHPEDSSFYICSAGADSGTQETQYFGPGTRLT
			

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
1,0.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
,	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
	3cquerice		VLEDLKNVFPPEVAVFEPSEAEISHTQKATLVC
			LATGFYPDHVELSWWVNGKEVHSGVSTDPQP
			LKEQPALNDSRYCLSSRLRVSATFWQNPRNHF
ļ			RCQVQFYGLSENDEWTQDRAKPVTQIVSAEA
			WGRADCGFTSESYQQGVLSATILYEILLGKATL
			YAVLVSALVLMAMVKRKDSRG*
830	134	292	MSVGLHLGFLAWFLPFLIPTSPLPLLFQLGALPN
050	134	292	ESLALYAWLRDCFWENIT*
831	58	258	MSSPCFQCFHLCCTIKVWPLCHHLQKAFPDFSI
651	30	236	HVFSESDLSSFCEVQLLKICLQKYFLGSLMHCS*
832	68	259	MIKLCHOLYNVYVCFFHLIVLGDIAIDYIIVPNIS
632	08	239	
833	290	430	YLSISIPFVVTNIRGRDIFHPCNVALVM*
833	290	430	MFYENKRREYLQDMLLSYRLLVAILVLLKKLT
834	112	267	ELNTITLICKSIIF*
834	112	267	MNIVFVILLFKDMQVLEVFVLLNVLTTLTIIAA
835	50	240	GILCTSFCCKPFIYINPL*
833	58	240	MIRFALPWFSQIWLSKQTWTRLTHLAFLLQEC
836	30	206	NSMFYPKVSRTTVFGCLFNPLSSRVCFE*
630	30	296	MTNFFHLLLPLLPSLFSPSSKTHSFNIHKIIIILFF
			NSIFLYPRDYLKIRNWLQSNTLEREIEWITSIRCL
837	1089	062	CNSGTTFIFPLTTKST*
837	1089	952	MLYLLEFPGVSYLRSLFLGRPIGPGITSDFTLILF
838	500	(70	SNLLDSWPLS*
828	300	670	MPCSVPETLFSLLWLAPSHHSGFSSNEASLRTD
839	0.4	061	LLFATAILYSLWHPPYYFLYNTS*
839	84	251	MLFTSFVYGLIFILFDFYFLSFVERDVKIFNCNG
040	00	245	EIVLFPFNSVHFCLICLYIHI*
840	99	245	MILNLSSLTLVFAWNYPLHLMISLNVSCSCYSD
041	00	005	DISGIYRSVLRQKLG*
841	82	297	MCLILVIWKIHYAELIMLNKRVVNKCRSCLIQK
İ			CLSTCHSTVIVLYQCREEEAVMLIKLNFKMKIQ
			RTICI*
842	36	275	MNLKRLLLFLAKMFSAIFSLPTHPSHFPISIYDNI
İ			GHWPQSPKVRRKEGNEYLLNPNMCQTLDLTLL
			GIGDYLTSITSP*
843	165	437	MAPLPSLTLRPWCVLMLLDLWAAFGTITPSLK
			HFHHLPSGTQHSLVFVLSLTLHSQLSLLMGTSA
			VCLSACFSSLSTFPGWLLIICTLMI*
844	322	462	MFLLDLCLGSLSVFIDTHPCMHGGFKCSQDWC
			SPAKLLLSAFTKTR*
845	182	358	MLSLVKLLLLCIIHDHSINFCIAIQVGLLPSAYR
ļ			VPGIVLSLENTALIRQTPCSNRAN*
846	98		

SEQ ID NO:	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion PDAPLSSAAYSIRSIGERPVLKAPVPKRQKCDH WTPCPSDTYAYRLLSGGGRSKYAKICFEDNLL MGEQLGNVARGINIAIVNYVTGNVTATRCFDM YEGDNSGPMTKFIQSAAPKSLLFMVTYDDGST RLNNDAKNAIEALGSKEIRNMKFRSSWVFIAA KGLELPSEIQREKINHSDAKNNRYSGWPAEIQIE
847	1608	1805	GCIPKERS* MLPFCHLWVPVTLVAAGAAQPAASMVMFPHL PALHHHCPHSHRTSQYMPASDGPQAYPDYAD
848	386	592	QST* MNPCFCGFLVLLSCCLSLLDSQLHNLIALQITCF KDVEIPNFFCDPSQLPHHACCDTFTNNIVMYFP AA
849	1074	2294	MLLLLLLPLLWGTKGMEGDRQYGDGYLLQV QELVTVQEGLCVHVPCSFSYPQDGWTDSDPVH GYWFRAGDRPYQDAPVATNNPDREVQAETQG RFQLLGDIWSNDCSLSIRDARKRDKGSYFFRLE RGSMKWSYKSQLNYKTKQLSVFVTDPPWNLT MTVFQGDATASTALGNGSSLSVLEGQSLRLVC AVNSNPPARLSWTRGSLTLCPSRSSNPGLLELP RVHVRDEGEFTCRAQNAQGSQHISLSLSLQNE GTGTSRPVSQVTLAAVGGAGATALAFLSFCIIFI IVRSCRKKSARPAAGVGDTGMEDAKAIRGSAS QGPLTESWKDGNPLKKPPPAVAPSSGEEGELH YATLSFHKVKPQDPQGQEATDSEYSEIKIHKRE TAETQACLRNHNPSSKEVRG*
850	100	318	MYYTLCNFVFFTLHMILFPKSLNILLSNQIRSAI VHLKQRTSCIKNQPEPYQRADAMNTNHSLVAV PYVNLI*
851	328	549	MFWMVKILTPKASTFQVTTSVSVPLTSATGAA CSGSCFHSTGCAGRPQTHAGAPCASEQNSRNE VMQTSTNEM*
852	162	440	MHCRQLKEVLQLPLTCSSCCVCTMTVAFPSVQ QVWMETVLTLGGLDAAQDEIQAVRLILLPESSP QGPHGNLAPCSAKPFFLPQVMPLGTAP*
853	39	839	MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDT RPRFLEYSTSECHFFNGTERVRFLDRYFYNQEE YVRFDSDVGEFRAVTELGRPDEEYWNSQKDFL EDRRAAVDTYCRHNYGVVESFTVQRRVHPKV TVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWF RNGQEEKTGVVSTGLIHNGDWTFQTLVMLETV PRSGEVYTCQVEHPSVTSPLTVEWRARSESAQS KMLSGVGGFVLGLLFLGAGLFIYFRNQKGHSG

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
NO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	1	1 11	X=Unknown, *=Stop codon, /=possible nucleotide
	of amino acid	sequence	deletion, \=possible nucleotide insertion
	sequence		LOPRGFLS*
054		1024	1
854	54	1034	MMSPSQASLLFLNVCIFICGEVVQGNCVHHSTD
	Į		SSVVNIVEDGSNAKDESKSNDTVCKEDCEESC
1			DVKTKITREEKHFMCRNLQNSIVSYTRSTKKLL
			RNMMDEQQASLDYLSNQVNELMNRVLLLTTE
	ļ		VFRKQLDPFPHRPVQSHGLDCTDIKDTIGSVTK
			TPSGLYIIHPEGSSYPFEVMCDMDYRGGGWTVI
			QKRIDGIIDFQRLWCDYLDGFGDLLGDAFRGL
			KKEDNQNAMPFSTSDVDNDGCRPACLVNGQS
			VKSCSHLHNKTGWWFNECGLANLNGIHHFSG
			KLLATGIQWGTWTKNNSPVKIKSVSMKIRRMY
			NPYFK*
855	124	336	MRTWSKVIPSLWLKFSRGFIILRFHFLMIIWPDIP
			SSMYICMSFITAFKNLFMFGINRIKKISVVSRNT
			L*
856	159	1028	MGLCVPFAVTTSFLSLGLEWDLNVRLHGQHLV
			QQLVLRTVRGYLETPQPEKALALSFHGWSGTG
!			KNFVARMLVENLYRDGLMSDCVRMFIATFHFP
	•		HPKYVDLYKEQLMSQIRETQQLCHQTLFIFDEA
]	EKLHPGLLEVLGPHLERRAPEGHRAESPWTIFL
			FLSNLRGDIINEVVLKLLKAGWSREEITMEHLE
			PHLQAEIVETIDNGFGHSRLVKENLIDYFIPFLPL
			EYRHVRLCARDAFLSQELLYKEETLDEIAQMM
			VYVPKEEQLFSSQGCKSISQRINYFLS*
857	182	334	MKSSNIFSLFLFLVTFIFLTSIASILFSSWCPFSLIK
			CNQDLYYSGNGAS*
858	35	172	MLCSLFHILIVTLLLAISFGMSSRNTLNMVNSKI
	,		KEHSLHRKLEI*
859	6	215	MFWTLVQGMSLLCLTDVFQALPSICIANSEIYY
037	"	213	TVLTLMQFNCLWMVLSGKKVIFSSELMVRKGR
•			RSWK*
860	204	350	MYLKPLIYFSILIFLSQRSKLSLPYNVHNCMNIG
800	204	330	EDRRPQKVQLLQLY*
861	263	412	MLPLALIVDLIYPWVQVRGPEDPNHGTTERKR
001	203	712	
962	160	970	EEVTCLGAARLSLEAAR*
862	169	879	MTAEFLSLLCLGLCLGYEDEKKNEKPPKPSLHA
			WPSSVVEAESNVTLKCQAHSQNVTFVLRKVND
1			SGYKQEQSSAENEAEFPFTDLKPKDAGRYFCA
			YKTTASHEWSESSEHLQLVVTDKHDELEAPSM
			KTDTRTIFVAIFSCISILLLFLSVFIIYRCSQHSSSS
			EESTKRTSHSKLPEQEAAEADLSNMERVSLSTA
			DPQGVTYAELSTSALSEAASDTTQEPPGSHEYA
			ALKV*
	.i.	L	1

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
1	sequence	sequence	deletion, \=possible nucleotide insertion
863	114	1031	MPLLTLYLLFWLSGYSIATQITGPTTVNGLER
003	114	1031	GSLTVQCVYRSGWETYLKWWCRGAIWRDCKI
			LVKTSGSEQEVKRDRVSIKDNQKNRTFTVTME
			DLMKTDADTYWCGIEKTGNDLGVTVQVTIDP
			ASTPAPTTPTSTTFTAPVTQEETSSSPTLTGHHL
			DNRHKLLKLSVLLPLIFTILLLLLVAASLLAWR
			MMKYQQKAAGMSPEQVLQPLEGDLCYADLTL
			QLAGTSPQKATTKLSSAQVDQVEVEYVTMASL
			PKEDISYASLTLGAEDQEPTYCNMGHLSSHLPG
			RGPEEPTEYSTISRP*
864	64	435	MRISCPWCLWNLSLEVGGTVATTAQQHIAEVC
			RSSQAGRGFLHCLHPALGTSGCHPVPCSSSLVG
			FGWRGYSGEASWGRASSRPAAPTPPMPANVQ
			AGWEQSVRLLCHSWLRLAALHVTHEES*
865	391	528	MSQQSWFTVYLFYLLRSNIWLEMGIPKYVKEV
			ELRSLDFTSNYFS*
866	46	612	MDWTWRFLFVVAAATGVQSQVQLVQSGAEV
			KKPGSSVKVSCKASGGTFSTYAISWVRQAPGQ
			GLEWMGGIIPIFGTANYAQKFQGRVTITADEST
			STAYMELSSLRSEDTAVYYCARVWGGSGSYYS
			IVSTIGATTTVWMSGAREPWSPSPQPPPRAHRS
			SPWHPPPRAPLGAQRPWAAWSRTTSPNR*
867	46	612	MDWTWRFLFVVAAATGVQSQVQLVQSGAEV
1			KKPGSSVKVSCKASGGTFSTYAISWVRQAPGQ
			GLEWMGGIIPIFGTANYAQKFQGRVTITADEST
			STAYMELSSLRSEDTAVYYCARVWGGSGSYYS
			IVSTIGATTTVWMSGAREPWSPSPQPPPRAHRS
			SPWHPPPRAPLGAQRPWAAWSRTTSPNR*
868	133	960	MACPGFLWALVISTCLEFSMAQTVTQSQPEMS
			VQEAETVTLSCTYDTSESDYYLFWYKQPPSRQ
İ			MILVIRQEAYKQQNATENRFSVNFQKAAKSFSL
1			KISDSQLGDAAMYFCAYRSGRDDKIIFGKGTRL
	}		HILPNIQNPDPAVYQLRDSKSSDKSVCLFTDFDS
			QTNVSQSKDSDVYITDKTVLDMRSMDFKSNSA
			VAWSNKSDFACANAFNNSIIPEDTFFPSPESSCD
1			VKLVEKSFETDTNLNFQNLSVIGFRILLLKVAG
			FNLLMTLRLWSS*
869	164	310	MVLRLPWWGVLAYGNDVGFGFYSFLCYQINP
			PTCPILWLWEVLTVGKS*
870	959	1252	MEFLGPCGLRLVGARPLLPYWLLVFLAALNAL
""		1 - 2 - 2	LQWLLRPLVLYAPLLNPYTLAVANTTFTVSTD
	}		KAQRHFGYEPPFSWEDSRTRTILWVQAATGSA
			Q*
L			<u> </u>

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
110.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	
	to first amino	acid residue of	M=Methionine, N=Asparagine, P=Proline,
		i	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
871	52	828	MPRPRRVSQLLDLCLWCFMKNISRYLTDIKPLP
			PNIKDRLIKIMSMQGQITDSNISEILHPEVQTLDL
			RSCDISDAALLHLSNCRKLKKLNLNASKGNRV
		•	SVTSEGIKAVASSCSYLHEASLKRCCNLTDEGV
			VALALNCQLLKIIDLGGCLSITDVSLHALGKNC
	†		PFLQCVDFSATQVSDSGVIALVSGPCAKKLEEI
			HMGHCVNLTDGAVEAVLTYCPQIRILLFHGCP
			LITDHSREVLEQLVGPNKLKQVTWTVY*
872	313	1704	MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQ
<u> </u>			EGLCVHVPCSFSYPSHGWIYPGPVVHGYWFRE
			GANTDQDAPVATNNPARAVWEETRDRFHLLG
Ì			DPHTENCTLSIRDARRSDAGRYFFRMEKGSIKW
			NYKHHRLSVNVTALTHRPNILIPGTLESGCPQN
}			LTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
			SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTV
	1		HLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
			SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGL
			TLCPSQPSNPGVLELPWVHLRDEDEFTCRAQNP
			LGSQQVYLNVSLQSKATSGVTQGAVGGAGAT
		İ	ALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGI
			EDANAVRGSASQGPLTEPWAEDSPPDQPPPAS
			ARSSVGEGELQYASLSFQMVKPWDSRGQEATD
			TEYSEIKIHR*
873	590	766	MLFGLALQLILDLKLTTVNQRESDVARVATAE
			EYSKKGLLGQETLHAGSQTRMQILIS*
874	206	418	MLKLLCAAEVTNVLFNCVFDYGCPKTFCHPWT
			IFVLFWSSLEGGFIISYKTLTGALECRFLITLEIVT
			SE*
875	241	957	MRSSLTMVGTLWAFLSLVTAVTSSTSYFLPYW
			LFGSQMGKPVSFSTFRRCNYPVRGEGHSLIMVE
			ECGRYASFNAIPSLAWQMCTVVTGAGCALLLL
			VALAAVLGCCMEELISRMMGRCMGAAQFVGG
			LLISSGCALYPLGWNSPEIMQTCGNVSNQFQLG
			TCRLGWAYYCAGGGAAAAMLICTWLSCFAGR
			NPKPVILGGKHHEENHFLCYGAWPLPSTLELRK
			EDRGGRATGKQVTP
876	241	957	MRSSLTMVGTLWAFLSLVTAVTSSTSYFLPYW
3.0	- · ·	,,,	LFGSQMGKPVSFSTFRRCNYPVRGEGHSLIMVE
			, ,
į			ECGRYASFNAIPSLAWQMCTVVTGAGCALLLL
			VALAAVLGCCMEELISRMMGRCMGAAQFVGG
		·	LLISSGCALYPLGWNSPEIMQTCGNVSNQFQLG
			TCRLGWAYYCAGGGAAAAMLICTWLSCFAGR
	<u> </u>		NPKPVILGGKHHEENHFLCYGAWPLPSTLELRK

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
1.10.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
ļ	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
ļ	sequence		EDRGGRATGKQVTP
877	136	1710	MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLA
0//	130	1710	RILAWTYAFYNNCRRLQCFPQPPKRNWFWGH
			LGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIP
1			FIVLCHPDTIRSITNASAAIAPKDNLFIRFLKPWL
			GEGILLSGGDKWSRHRRMLTPAFHFNILKSYITI
			FNKSANIMLDKWQHLASEGSSCLDMFEHISLM
			TLDSLQKCIFSFDSHCQERPSEYIATILELSALVE
		İ	KRSQHILQHMDFLYYLSHDGRRFHRACRLVHD
			FTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFI
			DVLLLSKDEDGKALSDEDIRAEADTFMFGGHD
			TTASGLSWVLYNLARHPEYQERCRQEVQELLK
			DRDPKEIEWDDLAQLPFLTMCVKESLRLHPPAP
			FISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNP
			TVWPDPEVYDPFRFDPENSKGRSPLAFIPFSAGP
			RNCIGQAFAMAEMKVVLALMLLHFRFLPDHTE
070	126	1710	PRRKLELIMRAEGGLWLRVEPLNVSLQ*
878	136	1710	MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLA
	,		RILAWTYAFYNNCRRLQCFPQPPKRNWFWGH
			LGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIP
			FIVLCHPDTIRSITNASAAIAPKDNLFIRFLKPWL
			GEGILLSGGDKWSRHRRMLTPAFHFNILKSYITI
1			FNKSANIMLDKWQHLASEGSSCLDMFEHISLM
		·	TLDSLQKCIFSFDSHCQERPSEYIATILELSALVE
		-	KRSQHILQHMDFLYYLSHDGRRFHRACRLVHD
			FTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFI
			DVLLLSKDEDGKALSDEDIRAEADTFMFGGHD
			TTASGLSWVLYNLARHPEYQERCRQEVQELLK
			DRDPKEIEWDDLAQLPFLTMCVKESLRLHPPAP
			FISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNP
			TVWPDPEVYDPFRFDPENSKGRSPLAFIPFSAGP
			RNCIGQAFAMAEMKVVLALMLLHFRFLPDHTE
970	126	1710	PRRKLELIMRAEGGLWLRVEPLNVSLQ*
879	136	1710	MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLA
		1	RILAWTYAFYNNCRRLQCFPQPPKRNWFWGH
			LGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIP
			FIVLCHPDTIRSITNASAAIAPKDNLFIRFLKPWL
			GEGILLSGGDKWSRHRRMLTPAFHFNILKSYITI
			FNKSANIMLDKWQHLASEGSSCLDMFEHISLM
			TLDSLQKCIFSFDSHCQERPSEYIATILELSALVE
			KRSQHILQHMDFLYYLSHDGRRFHRACRLVHD
			FTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFI
	<u> </u>	<u></u>	DVLLLSKDEDGKALSDEDIRAEADTFMFGGHD

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
	•		TTASGLSWVLYNLARHPEYQERCRQEVQELLK
			DRDPKEIEWDDLAQLPFLTMCVKESLRLHPPAP
			FISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNP
			TVWPDPEVYDPFRFDPENSKGRSPLAFIPFSAGP
			RNCIGQAFAMAEMKVVLALMLLHFRFLPDHTE
			PRRKLELIMRAEGGLWLRVEPLNVSLQ*
880	856	257	MRLSLPLLLLLGAWAIPGGLGVMAPLTATAP
000	830	251	EVDDEEMYSAHMPAHLRCDACRAVAYQECGP
			KTLAKAETKLHTSNSGGRRDVSELVYTDVLDR
			SCSRNWQDYGVREVDQVKRLTGPGLSEGPEPS
			ISVMVTGGPWHTRLSRTCLHYLGEFGEDQIYE
			AHQQGRGALEALLCGGPPGGLLREGVSHKRRA
			LVLDSTLL*
001	700	1222	MTLRPSLLPLHLLLLLLSAAVCRAEAGLETES
881	782	1222	PVRTLQVETLVEPPEPCAEPAAFGDTLHIHYTG
			SLVDGRIIDTSLTRDPLVIELGQKQVIPGLEQSLL
			DMCVGEKRRAIIPSHLAYGKRGFPPSVPGTKDN
	-	0040	LMRPPGMTSSSQ*
882	940	2040	MALRFLLGFLLAGVDLGVYLMRLELCDPTQRL
			RVALAGELVGVGGHFLFLGLALVSKDWRFLQ
			RMITAPCILFLFYGWPGLFLESARWLIVKRQIEE
			AQSVLRILAERNRPHGQMLGEEAQEALQDLEN
		İ	TCPLPATSSFSFASLLNYRNIWKNLLILGFTNFIA
			HAIRHCYQPVGGGGSPSDFYLCSLLASGTAALA
			CVFLGVTVDRFGRRGILLLSMTLTGIASLVLLG
			LWDYLNEAAITTFSVLGLFSSQAAAILSTLLAA
			EVIPTTVRGRGLGLIMALGALGGLSGPAQRLH
			MGHGAFLQHVVLAACALLCILSIMLLPETKRK
			LLPEVLRDGELCRRPSLLRQPPPTRCDHVPLLA
			TPNPAL*
883	133	306	MVKRKSWTKWCGWLTVVRFLARGFEMHLKS
			CSRLLFSELAAFAFFEFSLKTVTLRAF*
884	196	357	MCLMKQIIYLLYVGLCSILTAFLFTPHHVLERY
	1	, ·	RYYCPDFREIKKLGQGYTTN*
885	252	560	MKEALLKCSRLARGLLLCLDCANDHRSPVERN
			AQTTLILHSSLYSLSLGNQLQGGGEMATTGGST
			QQAKTYGGLFQIGAMEPALFLLFIFLLASFWVH
			RAIE*
886	46	189	MLETFLFKLFLFFTLLVNLFITNDQLSVGSIFLSF
			QLPAFFLDMAEF*
887	68	208	MTFLLHVLVTALSSHSTGRRGTNCFMLLSSGN
30,		-00	HPIPCGSLTPYPHL*
888	214	399	MVYLPVSLNGLRLACFSYVLAPIKVKPGGGSET
000	1 417	1 377	1414 TEL VOLINGEIGENCE DE VENERNA NEI OCOSET

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
NO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
		to first amino	M=Methionine, N=Asparagine, P=Proline,
ļ	corresponding	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	to first amino		V=Valine, W=Tryptophan, Y=Tyrosine,
	acid residue	amino acid	X=Unknown, *=Stop codon, /=possible nucleotide
]	of amino acid	sequence	X=Unknown, *=Stop codon, /-possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
			RDGFRIPESTPSLKAGYCDHKHFLPTIHL
889	50	214	MTLLNLYYLNSFLLYSKRFEGISFCVQKVSIILCI
			HYLRSTTIWNKLFFRDVSA*
890	158	700	MHFPVNCFFKSLHIFLLLQVFLATFLRKKLSKV
			AFSCLVEFFYYCYYFLDFASSVSFLFCFVLLLRQ
	1		SLTLSPRLECSDTILAHCNLRLPGSRYSSASTSR
1			VAGITGVHHHTYVNFVWTVQKAVHCVGQAS
			WELLTSRDPPTLASHRAGITGMSHRTWAKVFL
			KRVIFLNREYDLTMFCFL
891	133	333	MLVPTFLSLVCDFSLFVLLLLGCLSFLLPPHLPC
ļ			TSFPLHLWRLLSPFISFLDLLLLLSYKMNCII*
892	71	295	MLPLFKHSPVRIFLFCLNTQHLSVRNNFVFNCV
			SPGILPISLCLAFNHDRSTFFFSIILLLKALIILSSL
			LQTK*
893	95	331	MKPILLVLSSITRALLLQISSVSWQSCMWRAMP
0,5			DCLQTDYPISLGFHQRTRLLDALCPVTQCHHSA
			WPCVCQGAQTPI*
894	182	418	MCCELLAVVIATLIIKIGLVVLLYFIKLLIHIEFIK
,			RHSILKCESIFNLNVGIRMYPGQVNFCETLQML
	Ì		DGFGRIFQTK
895	104	2683	MACRWSTKESPRWRSALLLLFLAGVYGNGAL
0,3	10,	2003	AEHSENVHISGVSTACGETPEQIRAPSGIITSPG
	İ		WPSEYPAKINCSWFIRANPGEIITISFQDFDIQGS
		•	RRCNLDWLTIETYKNIESYRACGSTIPPPYISSQ
1			DHIWIRFHSDDNISRKGFRLAYFSGKSEEPNCA
	·		CDOFRCGNGKCIPEAWKCNNMDECGDRSDEEI
-			CAKEANPPTAAAFQPCAYNQFQCLSRFTKVYT
			CLPESLKCDGNIDCLDLGDEIDCDVPTCGQWL
			KYFYGTFNSPNYPDFYPPGSNCTWLIDTGDHR
			KVILRFTDFKLDGTGYGDYVKIYDGLEENPHK
			LLRVLTAFDSHAPLTVVSSSGQIRVHFCADKVN
			AARGFNATYQVDGFCLPWEIPCGGNWGCYTE
		İ	OQRCDGYWHCPNGRDETNCTMCQKEEFPCSR
			NGVCYPRSDRCNYQNHCPNGSDEKNCFFCQPG
			NGVC TPRSDRCM TQMTC NGSDERIVETT EQTO NFHCKNNRCVFESWVCDSQDDCGDGSDEENC
			PVIVPTRVITAAVIGSLICGLLLVIALGCTCKLYS
			LRMFERRSFETQLSRVEAELLRREAPPSYGQLI
			AQGLIPPVEDFPVCSPNQASVLENLRLAVRSQL
		†	GFTSVRLPMAGRSSNIWNRIFNFARSRHSGSLA
			LVSADGDEVVPSQSTSREPERNHTHRSLFSVES
		1	DDTDTENERRDMAGASGGVAAPLPQKVPPTTA
			VEATVGACASSSTQSTRGGHADNGRDVTSVEP
L			PSVSPARHQLTSALSRMTQGLRWVRFTLGRSSS

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
NO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
		to first amino	M=Methionine, N=Asparagine, P=Proline,
	corresponding to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
		•	
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	·	deletion, \=possible nucleotide insertion
			LSQNQSPLRQLDNGVSGREDDDDVEMLIPISDG
,			SSDFDVNDCSRPLLDLASDQGQGLRQPYNATN
			PGVRPSNRDGPCERCGIVHTAQIPDTCLEVTLK
			NETSDDEALLLC*
896	230	391	MSNRTRIRTHVNLCCFCRYTTPKMSFSSACVSL
			CLMLLFCSPPLLLLLSSFV*
897	47	1147	MASMAAVLTWALALLSAFSATQARKGFWDYF
1			SQTSGDKGRVEQIHQQKMAREPATLKDSLEQD
			LNNMNKFLEKLRPLSGSEAPRLPQDPVGMRRQ
			LQEELEEVKARLQPYMAEAHELVGWNLEGLR
			QQLKPYTMDLMEQVALRVQELQEQLRVVGED
		ļ	TKAQLLGGVDEAWALLQGLQSRVVHHTGRFK
			ELFHPYAESLVSGIGRHVQELHRSVAPHAPASP
	1	1	ARLSRCVQVLSRKLTLKAKALHARIQQNLDQL
			REELSRAFAGTGTEEGAGPDPQMLSEEVRQRL
			QAFRQDTYLQIAAFTRAIDQETEEVQQQLAPPP
			PGHSAFAPEFQQTDSGKVLSKLQARLDDLWED
			ITHSLHDQGHSHLGDP*
898	493	636	MFIGLGISFLNCPSLFAHFILFCPLPLFGIFISYWF
			VRLLSINRGWK*
899	92	1195	MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQ
			PGGSLRLSCAASGFTFSSYAMSWVRQAPGKGL
		•	EWVSGFTGSGGSGGSTYYADSVKGRFTISRDN
			SKNTLFLQMNSLRAEDTAVYYCAKGLLPPRW
			AYRVYEDSGIFFDYWGQGTLVTVSSSDIQMTQ
			SPSTLSASVGDRVTITCRASQSISSWLAWYQQK
			PGKAPKLLIYKASSLQSGVPSRFSGSGSGTDFTL
]			TISSLQPDDFATYYCQQLSTYVWTFGQGTKVDI
			KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF
	İ		YPREAKVQWKVDNALQSGNSQESVTEQDSKD
			STYSLSSTLTLSKADYEKHKVYACEVTHQGLSS
			PVTKSFNRGEC*
900	948	1115	MLCGNTQLLFTVAIILLYVTCLLHWTFLHLEW
			RVSEGRHHDPLSTTLMHEKMNDN*
901	722	84	MYRLSSSMLLRALAQAMRTGHLIGQSLHSSAV
		• '	AATYKYVNKKEQESEVDMKSETDNAARILMW
			TELIRGLGMTLRYLFREPATINYPFEKGPLSPRF
			RGEHALRRYPSGEERCIACKLCEAICPAQAITIE
			AEPRADGSRRTTRYDIDMTKCIYCGFCQEACPV
			DAIVEGPNFEFSTETHEELLYNKEKLLNNGDK
002	50	250	WEAEIAANIQADYLYR*
902	1 20	259	MIELAFASFLKCASFSLLILFSFSFPLWFFLSCFA
			CSYSFSCLLSRISILSPFCHLLPRQSHDLCTNDL*

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
110.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	Sequence	deletion, \=possible nucleotide insertion
903	194	382	MSVLIWCLIFFPLEYSRPKRGLKVDNVCFSTVA
303	194	302	LSTGSRISNWSNCETCLLAEMFFLDLGFS*
904	44	1000	MAAAAVSGALGRAGWRLLQLRCLPVARCRQA
7U T	1 77	1000	LVPRAFHASAVGLRSSDEQKQQPPNSFSQQHSE
			TQGAEKPDPESSHSPPRYTDQGGEEEEDYESEE
			QLQHRILTAALEFVPAHGWTAEAIAEGAQSLG
			LSSAAASMFGKDGSELILHFVTQCNTRLTRVLE
]		EEOKLVOLGOAEKRKTDOFLRDAVETRLRMLI
			PYIEHWPRALSILMLPHNIPSSLSLLTSMVDDM
			WHYAGDQSTDFNWYTRRAMLAAIYNTTELVM
			MQDSSPDFEDTWRFLENRVNDAMNMGHTAK
			QVKSTGEALVQGLMGAAVTLKNLTGLNQRR*
905	127	297	MGHLLCVWGFTYILPCISLRHSPLQPPGWEGFC
703	127	257	RNVSFPLLRASLAPHHRRKDGFI*
906	233	484	MHVLIRTPCSLILCLANSSHASLPGFSASSFLFK
700	255	101	ESCRLLINSSFLINGLEILSGAIAGQCNSFCLFSI
			SQGSLSFNASCPLP*
907	572	787	MTLLWPHTAACLSVTLYLPASSAKYFKRGEGR
			EKFITNPTTRKKKLFWRRGKRNHDQAFTGIPDQ
			VSLFPF*
908	259	552	MYLHVLVLSHRILLSPYIPSFKSVPPPVFSILQM
	Ì		APMSILDIDHPRSLGGDSSHFFSSVAQALTFCPF
	-	İ	ALRPFNNYSLQRPVFQKAPAFHHFLVKKF*
909	99	371	MFLVFCNIITVITMTSLFLILLSCIFILITCCYKCR
		İ	YISFSFTFSVTPSGFFVSILQYLAHILLLITLQFHF
			RVCYVNIITLIPLAQIFL*
910	102	278	MQLWGFLNLNFPCSSLCFWALGSRGFTLVLAV
			TPINSTGWAAHLPQHVKMRLFSIQLF*
911	142	360	MLMVLKLVICSIFIGKEGHFVISYLPSFSLNIQDT
			LKSVHQPCSALSGYNMPEKPEECSIKERHPYSQ
			RLFLE
912	191	481	MGISCKLLLLTRVCYLITPLDLERFPFPNTEQVT
			FPERRVSVFLLPLSWCLDTRLPREPGCRCRHSSP
			QDVVGGSHLVTTTLLSLPAREFWTSCIL*
913	256	393	MILFHCEKLYALRSFDFWFMLELLSTWPRALG
1			LLCPGLAIEAHEG*
914	29	265	MKTLKIFTYYFLSLSNIFILTIGLTCASGPLDFTP
			VFLLGKGSLKCKYGPVAHLPPEALESGPQIPSG
			CNWKEIPTSS*
915	79	339	MWLFCAWVSTWGQGCPPGRGQMIYASHHLSV
			HTTSPHHWLSAWALQGGAVFPELAHGASSASS
			GQADDSTCSFCSPWRVSAEHKSLT
916	57	1163	MWPALLLSHLLPLWPLLLLPLPPPAQDSSSSPR

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
110.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid		X=Unknown, *=Stop codon, /=possible nucleotide
	1	sequence	deletion, \=possible nucleotide insertion
	sequence		TPPAPARPPCARGGPSAPRHVCVWERAPPPSRS
			I i
			PRVPRSRRQVLPGTAPPATPSGFEEGPPSSQYP
			WAIVWGPTVSREDGGDPNSANPGFLDYGFAAP
			HGLATPHPNSDSMRGDGDGLILGEAPATLRPFL
			FGGRGEGVDPQLYVTITISIIIVLVATGIIFKFCW
			DRSQKRRPSGQQGALRQEESQQPLTDLSPAG
	,		VTVLGAFGDSPTPTPDHEEPRGGPRPGMPHPKG
			APAFQLNRSLSGQRFLHTLPLMCVSRPDVVVV
			CGVLTLSLMNTHPPRFRSPCMLLQRWVGGELG
			APWALIGHGLVPFHTICFSVSPSYSKDAGITLRA
			PPWEMG*
917	427	1461	MDFLVLFLFYLASVLMGLVLICVCSKTHSLKGL
			ARGGAQIFSCIIPECLQRAMHGLLHYLFHTRNH
			TFIVLHLVLQGMVYTEYTWEVFGYCQELELSL
			HYLLLPYLLLGVNLFFFTLTCGTNPGIITKANEL
			LFLHVYEFDEVMFPKNVRCSTCDLRKPARSKH
			CSVCNWCVHRFDHHCVWVNNCIGAWNIRYFL
			IYVLTLTASAATVAIVSTTFLVHLVVMSDLYQE
			TYIDDLGHLHVMDTVFLIQYLFLTFPRIVFMLG
		}	FVVVLSFLLGGYLLFVLYLAATNQTTNEWYRG
			DWAWCQRCPLVAWPPSAEPQVHRNIHSHGLR
			SNLQEIFLPAFPCHERKKQE*
918	251	538	MELVLVFLCSLLAPMVLASAAEKEKEMDPFHY
			DYQTLRIGGLVFAVVLFSVGILLILSRRCKCSFN
İ			QKPRAPGDEEAQVENLITANATEPQKAEN*
919	1355	1507	MGRRKFLPPPLLSLLSSSLPLPICHPPAPLTPGLG
			IPPCGVVGREVFSVL*
920	588	292	MRAVLLQHLFILLDRQTTKKNSNLDIGHVFREA
			LIFLADLKSQLPSVTHHQYRHLPSNWLQLLQCG
			QDKHCCLSHARLGLAQDIHSQNGLRDALMLDF
921	588	292	MRAVLLQHLFILLDRQTTKKNSNLDIGHVFREA
		1	LIFLADLKSQLPSVTHHQYRHLPSNWLQLLQCG
			QDKHCCLSHARLGLAQDIHSQNGLRDALMLDF
			*
922	288	1346	MRSLGALLLLLSACLAVSAGPVPTPPDNIQVQE
			NFNISRIYGKWYNLAIGSTCPWLKKIMDRMTV
	1		STLVLGEGATEAEISMTSTRWRKGVCEETSGA
			YEKTDTDGKFLYHKSKWNITMESYVVHTNYD
			EYAIFLTKKFSRHHGPTITAKLYGRAPQLRETLL
			QDFRVVAQGVGIPEDSIFTMADRGECVPGEQEP
		1	EPILIPRVRRAVLPQEEEGSGGGQLVTEVTKKE
			DSCQLGYSAGPCMGMTSRYFYNGTSMACETF
	<u> </u>	1	200 Q20 TOTAL ONIONTOKIT THOTOMACETE

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
ļ	sequence		OYGGCMGNGNNFVTEKECLQTCRTVAACNLPI
1			VRGPCRAFIQLWAFDAVKGKCVLFPYGGCQG
1			NGNKFYSEKECREYCGVPGDGDEELLRFSN*
923	510	1880	MFLLLPFDSLIVNLLGISLTVLFTLLLVFIIVPAIF
923	310	1000	GVSFGIRKLYMKSLLKIFAWATLRMERGAKEK
İ			NHQLYKPYTNGIIAKDPTSLEEEIKEIRRSGSSK
			ALDNTPEFELSDIFYFCRKGMETIMDDEVTKRF
			SAEELESWNLLSRTNYNFQYISLRLTVLWGLG
			VLIRYCFLLPLRIALAFTGISLLVVGTTVVGYLP
			NGRFKEFMSKHVHLMCYRICVRALTAIITYHD
			i i
			RENRPRNGGICVANHTSPIDVIILASDGYYAMV
			GQVHGGLMGVIQRAMVKACPHVWFERSEVKD
			RHLVAKRLTEHVQDKSKLPILIFPEGTCINNTSV
			MMFKKGSFEIGATVYPVAIKYDPQFGDAFWNS
			SKYGMVTYLLRMMTSWAIVCSVWYLPPMTRE
			ADEDAVQFANRVKSAIARQGGLVDLLWDGGL
024	56	1460	KREKVKDTFKEEQQKLYSKMIVGNHKDRSRS*
924	56	1459	MLLLLLPLLWGRERVEGQKSNRKDYSLTMQS
			SVTVQEGMCVHVRCSFSYPVDSQTDSDPVHGY
			WFRAGNDISWKAPVATNNPAWAVQEETRDRF
			HLLGDPQTKNCTLSIRDARMSDAGRYFFRMEK
			GNIKWNYKYDQLSVNVTALTHRPNILIPGTLES
			GCFQNLTCSVPWACEQGTPPMISWMGTSVSPL
			HPSTTRSSVLTLIPQPQHHGTSLTCQVTLPGAG
			VTTNRTIQLNVSYPPQNLTVTVFQGEGTASTAL
			GNSSSLSVLEGQSLRLVCAVDSNPPARLSWTW
			RSLTLYPSQPSNPLVLELQVHLGDEGEFTCRAQ
	1		NSLGSQHVSLNLSLQQEYTGKMRPVSGVLLGA
		1	VGGAGATALVFLSFCVIFIVVRSCRKKSARPAA
			DVGDIGMKDANTIRGSASQGNLTESWADDNPR
			HHGLAAHSSGEEREIQYAPLSFHKGEPQDLSGQ
005	ļ	1460	EATNNEYSEIKIPK*
925	56	1459	MLLLLLPLLWGRERVEGQKSNRKDYSLTMQS
			SVTVQEGMCVHVRCSFSYPVDSQTDSDPVHGY
			WFRAGNDISWKAPVATNNPAWAVQEETRDRF
			HLLGDPQTKNCTLSIRDARMSDAGRYFFRMEK
			GNIKWNYKYDQLSVNVTALTHRPNILIPGTLES
		·	GCFQNLTCSVPWACEQGTPPMISWMGTSVSPL
			HPSTTRSSVLTLIPQPQHHGTSLTCQVTLPGAG
		1	VTTNRTIQLNVSYPPQNLTVTVFQGEGTASTAL
			GNSSSLSVLEGQSLRLVCAVDSNPPARLSWTW
			RSLTLYPSQPSNPLVLELQVHLGDEGEFTCRAQ
			NSLGSQHVSLNLSLQQEYTGKMRPVSGVLLGA

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
IVO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
	corresponding	to first amino	M=Methionine, N=Asparagine, P=Proline,
	to first amino	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence	sequence	deletion, \=possible nucleotide insertion
}	sequence	<u> </u>	VGGAGATALVFLSFCVIFIVVRSCRKKSARPAA
			DVGDIGMKDANTIRGSASQGNLTESWADDNPR
			HHGLAAHSSGEEREIQYAPLSFHKGEPQDLSGQ
		1	EATNNEYSEIKIPK*
926	167	403	MRMLLTLGGLPQMCLKFHGTPLTCPQGVPCPH
920	107	403	DSQRIQGIPKAPTGREFLAGPQRVPFPWLRSPA
		1	, , ,
927	161	415	HVRGQPSPGGPTPG MLCWKTTSGRLKDILAILLTDVLLLLQEKDQK
921	101	413	
			YVFASVDSKPPVISLQKLIVREVANEEKAMFMI
928	159	365	SASLQGPECIAAAREDPSKQ
928	139	303	MQQPEVKTWGGVVTAAMVIALAVYMGTGICG
			FLTFGAAVDPDVLLSYPSEDMAVAVARALIILS
000	1277	1007	VLTCI
929	1377	1237	MQMWWLGAQSAGRCWLRARTATSWWTCSW
020	1.504	1673	KRLVRGCCGRKTSSLVW*
930	1524	1673	MRNLSQRVTFRMVFAACSRYSRNMQPCCVLIF
00:	10.6		LKILLCLFYQSVGQFAN*
931	126	413	MSLCLAFLLHWGHFRTCPLSHVEMHLYPKRCP
			QRNAESRWSPALVHCSRHIVQVSPSSSSIEAEGS
022	10		RGSDFWGDGCLGRVLPPSIHVTSCSAETPA
932	49	615	MVPGAAGWCCLVLWLPACVAAHGFRIHDYLY
			FQVLSPGDIRYIFTATPAKDFGGIFHTRYEQIHL
]			VPAEPPEACGELSNGFFIQDQIALVERGGCSFLS
			KTRVVQEHGGRAVIISDNAVDNDSFYVEMIQD
			STQRTADIPALFLLGRDGYMIRRSLEQHGLPWA
			IISIPVNVTSIPTFELLQPPWTFW*
933	1444	1632	MACCLPCRAFPAYPTGVWPTTWLWCWAVLPI
1			PWPASWPWVCCAGPWQGWAASLCWACSVGA
			T*
934	442	143	MDWNLQFSLLLWATADISDQLFQPPQKFSWDP
			LESALCLYSSGSAKDLKGEMQSFWYPARKSPP
			LHLPALQLFYFGELPCKFLPALVVPGSTLPPSRP
			L*
935	52	309	MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSI
			YKKYPVVAIPCPITYLPVCGSDYITYGNECHLC
			TESLKSNGRVQFLHDGSC*
936	26	1057	MWAAAGGLWRSRAGLRALFRSRDAALFPGCE
			RGLHCSAVSCKNWLKKFASKTKKKVWYESPS
			LGSHSTYKPSKLEFLMRSTSKKTRKEDHARLR
	<u>.</u>		ALNGLLYKALTDLLCTPEVSQELYDLNVELSK
	i		VSLTPDFSACRAYWKTTLSAEQNAHMEAVLQ
			RSAAHMRHLLMSQQTLRNVPPIVFVQDKGNA
			ALAELDQLLAVADFGPRDERDNFVQNDFRDPD

SEQ ID	Predicted	Predicted end	Amino acid segment containing signal peptide
NO:	beginning	nucleotide	(A=Alanine C=Cysteine, D=Aspartic Acid,
NO.	nucleotide	location	E=Glutamic Acid, F=Phenylalanine, G=Glycine,
	location	corresponding	H=Histidine, I=Isoleucine, K=Lysine, L=Leucine,
		to first amino	M=Methionine, N=Asparagine, P=Proline,
	corresponding	acid residue of	Q=Glutamine, R=Arginine, S=Serine, T=Threonine,
	to first amino		
	acid residue	amino acid	V=Valine, W=Tryptophan, Y=Tyrosine,
	of amino acid	sequence	X=Unknown, *=Stop codon, /=possible nucleotide
	sequence		deletion, \=possible nucleotide insertion
			APQPCGTTEPTTSSSLCGIDHEALNKQIMEYKR
			RKDKGLGGLVWQGQVAELTTQMQKGRKRAK
			PRLEQDSSLKSYLSGEEVEDDLDLVGAPEYECY
			APDTEELEAERGGGRTEDGHSCGASRE*
937	271	98	MTAQHHSIAVLLLNLEVTCECMEYNKVFYSGS
			FASTSFLIGYCSSSSGFYFVQPSRP*
938	140	370	MLAHLSFERSLILHLIFSGIAVSIKALTKTWMPP
			EMGSSPVYKAFSLLQCRLSAQKWGSCHSQNTL
}			HWPVWGPQTTL
939	100	411	MALLHICVGHPLLSFPKAGDFSFSSQDDPSELT
			AGAKDKEFSCLLVICLQPAPSTRSLFSWQLFLLS
			FSLVSFTLIYRGEFKKSGEAKDYLTQVQGPIDC
			GKLL
940	111	386	MFRSNPGFFFFCCCKSCILAISLGEIPRNEFTEN
1			MSLRESEDLKPDLSAFKSSALYTDVSSPVFFTY
			QNSRTLPEKPGRYCSTPVSCFSPG*
941	92	328	MCRLYSCARMPLFSTVLFSNVYINDFLLQKPEN
' ''	1-		TTSQPLSNQRVVEVAIPHVGKFMIESKEGGYDD
			EVPFTALCTIAT*
942	143	481	MGIQWTCEWPSSLSPGWKFIACLWFSMWGSRP
742	143	101	PLSQAMSHKQWPMLCSSISNPEASGTELFTYHF
			HMMGYIERFWPTEELAQRCSLHKELPCTVFTE
			KHCSCTFLMVFGVCT*
943	956	1558	MQGMKTQLIQLSTLLRLLDSGFCSYLESQDSGY
743	930	1336	LYFCFRWLLIRFKREFSFLDILRLWEVMWTELP
			CTNFHLLLCCAILESEKQQIMEKHYGFNEILKHI
			NELSMKIDVEDILCKAEAISLQMVKCKELPQAV
		1	CEILGLQGSEVTTPDSDVGEDENVVMTPCPTSA
			FOSNALPTLSASGARNDSPTQIPVSSDVCRLTPA
			*
044	122	210	MGASLALGFTEVVLVLGFTVKLGAHLTLLPPL
944	23	319	
			GGHLSPYCAAQAWEGVKQLMCNCSSYPLQCII CCIYATPGCYNLSFGILSSCEGIFVYEWLFEMLL
			CCITATPGCTNLSFGILSSCEGIFVTEWLFEMILL
			<u> </u>

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO:1-236 and 473-708, a mature protein coding portion of SEQ ID NO:1-236 and 473-708, an active domain coding portion of SEQ ID NO:1-236 and 473-708, and complementary sequences thereof.
- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:

(a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

- (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-236 and 473-708.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:

 a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10; in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO:1-236 and 473-708, a mature protein coding portion of SEQ ID NO:1-236 and 473-708, an active domain coding portion of SEQ ID NO:1-236 and 473-708, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO:1-236 and 473-708, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO:237-472 and 709-944, the mature protein portion thereof, or the active domain thereof.

- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO:1-236 and 473-708.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computerreadable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

SEQUENCE LISTING

	<1		Hyse Tang													
	<1	20>	Nove	l Nu	clei	c Ac	ids	and	Poly	pept	ides				•	
	<1	30>	2127	2-01	7 (7	85)										
	<1	40>	not	yet	assi	gned										
	<1	41>	2001	-01-	25											
	<1	50>	09/4	91,4	04											
	<1	51>	2000	-01-	25											
			09/6													
	<1	51>	2000	-07-	17											
			09/6													
	<1	51>	2000	-08-	03											
			09/6													
	<1	51>	2000	-09-	15											
	<1	60>	944													
	<1	70>	Fast	SEQ	for	Wind	ows	Vers	ion	3.0		. •				
		10>														
		11> 12>	2226													
			Homo	sap	iens											
	-2	20>										•				
		20> 21>	CDS													
			(110) (1516)										
	<4	00>	ì													
taa	gctt	gcg	gccg	cgga	ag g	ggag	cagc	t ga	gaaa	ggag	ggc	cgct	gca	ggcg	gggttc	60
gaa	ccgt	ggg (gtct	gggc	tg c	tccc	gcgg	a gg	gcct	gggc	gga	cgcg	gg		g ctg	115
															t Leu 1	
~~~			<b>.</b>													
Gly	Val	Arg	Cys	Leu	Leu	Arg	Ser	gtg Val	Arq	Phe	Cys	Ser	Ser	gcc Ala	ccc Pro	163
		5	_				10		•		•	15				
ttc	ccc	aag	cac	aaa	cct	tca	gcc	aaa	ctg	agc	gtg	cgg	gac	qct	ctc	211
Phe	Pro 20	Lys	His	Lys	Pro	Ser	Ala	Lys	Leu	Ser	Val	Arg	Asp	Āla	Leu	
	20					25					30					
ggg	gct	cag	aac	gcg	agt	999	gag	cgc	att	aag	atc	cag	gga	tgg	att	259
35	NIG.	GIII	ASII	Ala	40	GIY	GIU	Arg	TTE	Lys 45	Ile	Gin	GIY	Trp	11e 50	
cat	tot	ata		+												
Arg	Ser	Val	Arq	Ser	Gln	Lvs	Glu	gtc Val	ten	Phe	ctg Leu	Cat	gta Val	aat Aen	gat	307
_			•	55		1 =			60					65		
<b>9</b> 99	tca	tct	ttg	gaa	agc	ctt	caq	qtt	qtt	qca	gat	tca	gac	ctt	gac	355
Gly	Ser	Ser	Leu	Glu	Ser	Leu	Gln	Val	Val	Ala	Asp	Ser	Gly	Leu	Asp	,,,
			70					75					80			

WU	01/5	3437													C 170.	301/02023
agt Ser	aga Arg	gaa Glu 85	tta Leu	act Thr	ttt Phe	Gly ggg	agt Ser 90	tct Ser	gtg Val	gaa Glu	gta Val	caa Gln 95	GJA aaa	cag Gln	ctg Leu	403
ata Ile	aaa Lys 100	agt Ser	cca Pro	tcc Ser	aaa Lys	agg Arg 105	caa Gln	aat Asn	gtg Val	gaa Glu	ctg Leu 110	aag Lys	gca Ala	gaa Glu	aaa Lys	451
att Ile 115	aaa Lys	gtt Val	att Ile	gga Gly	aat Asn 120	tgt Cys	gat Asp	gcc Ala	aag Lys	gat Asp 125	ttc Phe	ccc Pro	atc Ile	aaa Lys	tat Tyr 130	499
aaa Lys	gag Glu	agg Arg	cat His	cct Pro 135	ctg Leu	gag Glu	tac Tyr	ctg Leu	cga Arg 140	caa Gln	tat Tyr	cct Pro	cac His	ttt Phe 145	agg Arg	547
tgt Cys	agg Arg	act Thr	aac Asn 150	gtt Val	ctg Leu	ggt Gly	tct Ser	ata Ile 155	Leu	agg Arg	att Ile	cgc Arg	agt Ser 160	gaa Glu	gcg Ala	595
					tct Ser											643
					aca Thr											691
					tca Ser 200											739
					ttc Phe											787
					ttt Phe											835
			Asn		cag Gln			Arg								883
		Ala			tct Ser							Asp				931
-	Ile		_	_	ttc Phe 280	Lys	_				Met					979
_		-	_	_	gaa Glu		_			Phe					Gln	1027
				Glu	cat His				Asn					Ile		1075
			Ala		gag Glu			Lys					Asn		acc Thr	1123

WO 01/55437 PCT/US01/0	2623
ttt acc cca gag tgg ggt gct gac cta cgg act gaa cat gaa aag tac Phe Thr Pro Glu Trp Gly Ala Asp Leu Arg Thr Glu His Glu Lys Tyr 340 345 350	1171
ctg gtg aag cac tgt ggc aac ata cct gtc ttc gtt att aat tat cca Leu Val Lys His Cys Gly Asn Ile Pro Val Phe Val Ile Asn Tyr Pro 355 360 365 370	1219
tta aca ctc aag cct ttc tac atg agg gat aat gaa gat ggc cct cag Leu Thr Leu Lys Pro Phe Tyr Met Arg Asp Asn Glu Asp Gly Pro Gln 375 380 385	1267
cac acg gtt gct gct gtt gat ctt ctg gtt cct gga gtt ggg gaa ctc His Thr Val Ala Ala Val Asp Leu Leu Val Pro Gly Val Gly Glu Leu 390 395 400	1315
ttt gga gga ggc ctc aga gaa gaa cga tac cat ttc tta gag gag cgc Phe Gly Gly Gly Leu Arg Glu Glu Arg Tyr His Phe Leu Glu Glu Arg 405 410 415	1363
tta gcc agg tat ctg gac ctt cgt cga ttt gga tct gtg cca cat gga Leu Ala Arg Tyr Leu Asp Leu Arg Arg Phe Gly Ser Val Pro His Gly 420 425 430	1411
ggt ttt ggg atg gga ttt gaa cgc tac ctg cag tgc atc ttg ggt gtt Gly Phe Gly Met Gly Phe Glu Arg Tyr Leu Gln Cys Ile Leu Gly Val 435 440 445	1459
gac aat atc aaa gat gtt atc cct ttc cca agg ttt cct cat tca tgc Asp Asn Ile Lys Asp Val Ile Pro Phe Pro Arg Phe Pro His Ser Cys 455 460 465	1507
ctt tta tag ctggaag attggttaag gaaaagcacc ccccatggca gagacactgc Leu Leu *	1563
acatgattgt gcatacagca gaatgcatgt ttggatttta gaaatgcaga tttcaatatg	1623
taattgttgt gccataagat atcatagaaa aaatataagt ggttgtgatt ttcttagaaa	1683
gttgagggta tttcacgtaa ggatgagctc ccgcaagaag aggtacttat agcaagggga	1743
ctctcaaatc cattacctca attaagaaat gaagaaattg aattagtctc aaagtttctt	1803
ttaaactcta aaacagaatg agataatgta ttttacgttg tctataatca ttaaatcact	1863
ccctgtgtaa tttgtgagaa ccatctagta gctcgaaata aaataatgtt gcatcttttc	1923
tocottgoca tatactttgt gataaatoot tatotoattt toagtactto attaaacatt	1983
gcagaaaaaa atatteetta aggtettaat tgatttaaag aagtagetat tetgaattga	2043
aatctccttt cattgaactg gatgaaaaaa tcatgtttaa taactgttgc ttttcaattt	2103
tcaaagctgt tgagatatta cattaagtat ttcaactctt taatcactgt tgttataatt	2163
tgtttatatt tgatgtttat aatttgtcta ataaaataga tttttttaat agaaaaaaaa	2223
aaa	2226

<211> 1992 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (102)..(1727) <400> 2 atcgaacgta tgcggtaccg gtccggaatt cccgggtcga cccacgcgtc cgaacggagt ggcggcggca tttcctggtg tctgagcctg gcgcggaggc t atg ggc agc cag 113 Met Gly Ser Gln 161 Glu Val Leu Gly His Ala Ala Arg Leu Ala Ser Ser Gly Leu Leu Leu cag gtg ttg ttt cgg ttg atc acc ttt gtc ttg aat gca ttt att ctt 209 Gln Val Leu Phe Arg Leu Ile Thr Phe Val Leu Asn Ala Phe Ile Leu 30 cgc ttc ctg tca aag gaa atc gtt ggc gta gta aat gta aga cta acg 257 Arg Phe Leu Ser Lys Glu Ile Val Gly Val Val Asn Val Arg Leu Thr 40 45 ctg ctt tac tca acc acc ctc ttc ctg gcc aga gag gcc ttc cgc aga 305 Leu Leu Tyr Ser Thr Thr Leu Phe Leu Ala Arg Glu Ala Phe Arg Arg 55 gea tgt etc agt ggg gge acc cag ega gac tgg age cag acc etc aac 353 Ala Cys Leu Ser Gly Gly Thr Gln Arg Asp Trp Ser Gln Thr Leu Asn 70 75 ctg ctg tgg cta aca gtc ccc ctg ggt gtg ttt tgg tcc tta ttc ctq 401 Leu Leu Trp Leu Thr Val Pro Leu Gly Val Phe Trp Ser Leu Phe Leu 85 ggc tgg atc tgg ttg cag ctg ctt gaa gtg cct gat cct aat gtt gtc Gly Trp Ile Trp Leu Gln Leu Leu Glu Val Pro Asp Pro Asn Val Val 105 cct cac tat gca act gga gtg gtg ctg ttt ggt ctc tcg gca gtg gtg 497 Pro His Tyr Ala Thr Gly Val Val Leu Phe Gly Leu Ser Ala Val Val 120 125 gag ctt cta gga gag ccc ttt tgg gtc ttg gca caa gca cat atg ttt 545 Glu Leu Leu Gly Glu Pro Phe Trp Val Leu Ala Gln Ala His Met Phe 140 gtg aag ctc aag gtg att gca gag agc ctg tcg gta att ctt aag agc 593 Val Lys Leu Lys Val Ile Ala Glu Ser Leu Ser Val Ile Leu Lys Ser gtt ctg aca gct ttt ctc gtg ctg tgg ttg cct cac tgg gga ttg tac 641 Val Leu Thr Ala Phe Leu Val Leu Trp Leu Pro His Trp Gly Leu Tyr 175 att ttc tct ttg gcc cag ctt ttc tat acc aca gtt ctg gtg ctc tgc 689 Ile Phe Ser Leu Ala Gln Leu Phe Tyr Thr Thr Val Leu Val Leu Cys 190 tat gtt att tat ttc aca aag tta ctg ggt tcc cca gaa tca acc aag 737

																•••••
Tyr	Val	Ile	Tyr 200	Phe	Thr	Lys	Leu	Leu 205	Gly	Ser	Pro	Glu	Ser 210	Thr	Lys	
			ctt Leu		_					_	-					785
			gga Gly													833
			aaa Lys													881
			atg Met													929
gtg Val	tat Tyr	gat Asp	ata Ile 280	gtg Val	aat Asn	aat Asn	ctt Leu	ggc Gly 285	tcc Ser	ctt Leu	gtg Val	gcc Ala	aga Arg 290	tta Leu	att Ile	977
			ata Ile													1025
			aag Lys													1073
gct Ala 325	gct Ala	gca Ala	gtc Val	ttg Leu	gag Glu 330	tcc Ser	ctg Leu	ctc Leu	aag Lys	ctg Leu 335	gcc Ala	ctg Leu	ctg Leu	gcc Ala	ggc Gly 340	1121
ctg Leu	acc Thr	atc Ile	act Thr	gtt Val 345	ttt Phe	ggc	ttt Phe	gcc Ala	tat Tyr 350	tct Ser	cag Gln	ctg Leu	gct Ala	ctg Leu 355	gat Asp	1169
atc Ile	tac Tyr	gga Gly	360 360	acc Thr	atg Met	ctt Leu	agc Ser	tca Ser 365	gga Gly	tcc Ser	ggt Gly	cct Pro	gtt Val 370	ttg Leu	ctg Leu	1217
cgt Arg	tcc Ser	tac Tyr 375	tgt Cys	ctc Leu	tat Tyr	gtt Val	ctc Leu 380	ctg Leu	ctt Leu	gcc Ala	atc Ile	aat Asn 385	gga Gly	gtg Val	aca Thr	1265
gag Glu	tgt Cys 390	ttc Phe	aca Thr	ttt Phe	gct Ala	gcc Ala 395	atg Met	agc Ser	aaa Lys	gag Glu	gag Glu 400	gtc Val	gac Asp	agg Arg	tac Tyr	1313
aat Asn 405	ttt Phe	gtg Val	atg Met	ctg Leu	gcc Ala 410	ctg Leu	tcc Ser	tcc Ser	tca Ser	ttc Phe 415	ctg Leu	gtg Val	tta Leu	tcc Ser	tat Tyr 420	1361
ctc Leu	ttg Leu	acc Thr	cgt Arg	tgg Trp 425	tgt Cys	ggc Gly	agc Ser	gtg Val	ggc Gly 430	ttc Phe	atc Ile	ttg Leu	gcc Ala	aac Asn 435	tgc Cys	1409
ttt Phe	aac Asn	atg Met	ggc Gly 440	att Ile	cgg Arg	atc Ile	acg Thr	cag Gln 445	agc Ser	ctt Leu	tgc Cys	ttc Phe	atc Ile 450	cac His	cgc Arg	1457
tac	tac	cga	agg	agc	ccc	cac	agg	ccc	ctg	gct	ggc	ctg	cac	cta	tcg	1505

Tyr Tyr Arg Arg Ser Pro His Arg Pro Leu Ala Gly Leu His Leu Ser 460 455 cca qtc ctq ctc ggg aca ttt gcc ctc agt ggt ggg gtt act gct gtt 1553 Pro Val Leu Leu Gly Thr Phe Ala Leu Ser Gly Gly Val Thr Ala Val 475 470 tog gag gta tto ctc tgc tgt gag cag ggc tgg cca gcc aga ctg gca 1601 Ser Glu Val Phe Leu Cys Cys Glu Gln Gly Trp Pro Ala Arg Leu Ala 490 495 cac att gct gtg ggg gcc ttc tgt ctg gga gca act ctc ggg aca gca 1649 His Ile Ala Val Gly Ala Phe Cys Leu Gly Ala Thr Leu Gly Thr Ala 1697 ttc ctc aca gag acc aag ctg atc cat ttc ctc agg act cag tta ggt Phe Leu Thr Glu Thr Lys Leu Ile His Phe Leu Arg Thr Gln Leu Gly gtg ccc aga cgc act gac aaa atg acg tga c ttcagggaag cctggacacc 1748 Val Pro Arg Arg Thr Asp Lys Met Thr * cgaggcacct ggaccageta tgggtagttc tgtgggtgga acacattctg tgtaagagcc 1808 ccactgaggg ctctgcagcg gagtgacagc aaccccagag atgaggcacc agagagtgcc 1868 actgcatgag acacctgtga ccattcgaag tctgaaatgc ggggggggag tttcattttt 1928 aagtgaagac caaaagccct ttaaaaaataa tagtttttta tcattttata gtaaaaaaaa 1988 1992 aaaa

<210> 3 <211> 1279 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (81) .. (911) attgaacgcc tgcggtaccg gtccggaatt cccgggtcga cccacgcgtc cgggtgagaa 60 atg agc tca ggg gcc tct aga aag agc tgg 110 gcgcagtcgg gggcacgggg Met Ser Ser Gly Ala Ser Arg Lys Ser Trp gac cet ggg aag eee tgg eet eea gae tgg eea ate aca gge agg aag 158 Asp Pro Gly Lys Pro Trp Pro Pro Asp Trp Pro Ile Thr Gly Arg Lys atg aag gtt ctg tgg gct gcg ttg ctg gtc aca ttc ctg gca gga tgc 206 Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys cag gcc aag gtg gag caa gcg gtg gag aca gag ccg gag ccc gag ctg 254 Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu

50

45

PCT/US01/02623

	0 2, 0															501.02040
cgc (	cag Gln 60	cag Gln	acc Thr	gag Glu	tgg Trp	cag Gln 65	agc Ser	ggc Gly	cag Gln	cgc Arg	tgg Trp 70	gaa Glu	ctg Leu	gca Ala	ctg Leu	302
ggt o Gly i 75																350
gtg ( Val (																398
ctg a	_	-			_	_	-	_	_	_			_	_	_	446
gag g Glu (																494
aag g Lys (		_	_		_	_	_		-			_	-		-	542
gtg t Val ( 155																590
ggc o	cag Gln	agc Ser	acc Thr	gag Glu 175	gag Glu	ctg Leu	cgg Arg	gtg Val	cgc Arg 180	ctc Leu	gcc Ala	tcc Ser	cac His	ctg Leu 185	cgc Arg	638
aag o																686
ctg g Leu A	Ala	gtg Val 205	tac Tyr	cag Gln	gcc Ala	GJA aaa	gcc Ala 210	cgc Arg	gag Glu	ggc Gly	gcc Ala	gag Glu 215	cgc Arg	ggc Gly	ctc Leu	734
agc g Ser A																782
gcg g Ala G 235																830
Gly E	ccc Pro	agg Arg	cct Pro	999 Gly 255	gcg Ala	agc Ser	ggc Gly	tgc Cys	gcg Ala 260	cgc Arg	gga Gly	tgg Trp	agg Arg	aga Arg 265	tgg Trp	878
gca g Ala A	gcc Ala	gga Gly	ccc Pro 270	gcg Ala	acc Thr	gcc Ala	tgg Trp	acg Thr 275	agg Arg	tga *	agga	gcca	ggt	gggc	:gga	929
ggtgc	gcg	сс а	agct	ggag	g ag	rcagg	ссса	gca	gata	cgc	ctgo	aggo	cg a	ggco	ttcca	a 989
ggccc	gcc	tc a	agag	gctg	g tt	cgag	cccc	tgg	tgga	aga	catg	cago	gg c	cagt	gggg	1049
ccggg	ıctg	gt g	gaga	aggt	g ca	ıggct	gccg	tgg	gcac	cag	cgcc	gccc	ct g	tgcc	cago	g 1109
acaat	cac	tg a	acgc	cgaa	g co	tgca	gcca	tgo	gacc	cca	cgcc	acco	cg t	gcct	cctgo	1169

<210> 4 <211> 2761 <212> DNA <213> Homo sapiens <220>

<221> CDS

<222> (860)..(2521)

<400> 4

tttttaatat ggagteteag tegettgeea gtetgaagtg cagtggtgea gteteggete
actgeaacet etgetteetg ggtteaagea atteteetge etcageetee egagtaagtg
ggattacagg ggtgetetae cacacetgge taatttttgt attttagta cagacagggt

120 ggattacagg ggtgctctac cacacctggc taatttttgt atttttagta cagacagggt 180 ttcaccatgt tggtcaggct ggcctcgaac tcctgacctc gtgatccacc cgcctcggcc 240 teccaaaqtq etqqqattac aggeatgage caetgegeea ggeetaaete catgtagtat 300 caactaatct totottotga ttottgtacc aactgcatct tttottttaa ttoottotga 360 totttggcat actgttcaaa tactggttga aaaatatata ctcctccagc aattccaagg 420 acagtggcaa aaagcagttg tgcaaaagtc aatctcctaa acattgctgc aacaaataca 480 gctcaaqqaa aagctggttt tggaaagtca cactccacac ccaggaaatc tcttcaaatc 540 teegactgtt etgegeetge teeacgteac taaacteget accgeetget eccetecaga 600 gaccggggc cttccagcag ttttcggacc cccgagcaca gagaccgcca agccaaaggc 660 gagtagcaat ccctcggttc ggaaacggcg aaaggaaacc gcaaggaggc caccacgtcg 720° ggtqqqaqet acqaaqttqc ccqttcccgg ttacttccqq gcttqcqaqc qacqactqct 780 ctcaaaggcc aaacttaatg gatggacgag cagcgcgcta ctgcagcttt cttccgcctt 840

60

aggaaggtgg cggccaggg atg agg ccc cta agc aag tgc gga atg gag 892 Met Arg Arg Pro Leu Ser Lys Cys Gly Met Glu 1 5 10

ccg ggg ggc gga gat gcc agc ctc act ttg cat ggt ctc cag aac cgc 940 Pro Gly Gly Asp Ala Ser Leu Thr Leu His Gly Leu Gln Asn Arg 15 20 25

tcc cac ggc aag ata aag ctg cga aag aga aag tct acc ttg tac ttc

988
Ser His Gly Lys Ile Lys Leu Arg Lys Arg Lys Ser Thr Leu Tyr Phe
30

35

40

aat att tat ctg ctc ttg ttt acc ata gct tta cga ata tta aac tgc 1084
Asn Ile Tyr Leu Leu Leu Phe Thr Ile Ala Leu Arg Ile Leu Asn Cys
60 65 70 75

ttt Phe	tta Leu	gtg Val	cag Gln	aca Thr 80	agt Ser	ttt Phe	gtt Val	cca Pro	gat Asp 85	gaa Glu	tac Tyr	tgg Trp	cag Gln	tct Ser 90	ctt Leu	1132
						gtt Val										1180
						agt Ser										1228
						ctt Leu 130										1276
						gcc Ala										1324
						atg Met										1372
						cag Gln										1420
Cys	Thr	Arg 190	Thr	Leu	Thr	aac Asn	Thr 195	Met	Glu	Thr	Val	Leu 200	Thr	Ile	Ile	1468
Ala	Leu 205	Phe	Tyr	Tyr	Pro	ttg Leu 210	Glu	Gly	Ser	Lys	Ser 215	Met	Asn	Ser	Val	1516
Lys 220	Tyr	Ser	Ser	Leu	Val 225	gca Ala	Leu	Ala	Phe	11e 230	Ile	Arg	Pro	Thr	Ala 235	1564
Val	Ile	Leu	Trp	Thr 240	Pro	ttg Leu	Leu	Phe	Arg 245	His	Phe	Cys	Gln	Glu 250	Pro	1612
Arg	Lys	Leu	Asp 255	Leu	Ile	cta Leu	His	His 260	Phe	Leu	Pro	Val	Gly 265	Phe	Val	1660
Thr	Leu	Ser 270	Leu	Ser	Leu	atg Met	Ile 275	Asp	Arg	Ile	Phe	Phe 280	Gly	Gln	Trp	1708
Thr	Leu 285	Val	Gln	Phe	Asn	ttt Phe 290	Leu	Lys	Phe	Asn	Val 295	Leu	Gln	Asn	Trp	1756
Gly 300	Thr	Phe	Tyr	Gly	Ser 305	cat His	Pro	Trp	His	Trp 310	Tyr	Phe	Ser	Gln	Gly 315	1804
ttt Phe	cca Pro	gtt Val	atc Ile	ttg Leu 320	ggt Gly	act Thr	cac His	tta Leu	ccc Pro 325	ttc Phe	ttt Phe	att Ile	cat His	ggc Gly 330	tgc Cys	1852

						tac Tyr										1900
						atg Met										1948
						tgt Cys 370										1996
						aaa Lys										2044
						tat Tyr										2092
						att Ile										2140
						ttt Phe										2188
						tgc Cys 450										2236
-		-				aaa Lys	-				_	-	_	-	-	2284
						aac Asn				_				_	_	2332
-		_				ttg Leu				_		_	_		_	2380
						tca Ser										2428
ttc Phe	cac His 525	act Thr	cac His	ttg Leu	cca Pro	gag Glu 530	ggt Gly	cga Arg	att Ile	gga Gly	agt Ser 535	cac His	ata Ile	tat Tyr	gtc Val	2476
tat Tyr 540	gaa Glu	cgg Arg	aag Lys	tta Leu	aaa Lys 545	GJA aaa	aaa Lys	ttc Phe	aac Asn	atg Met 550	aag Lys	atg Met	aaa Lys	ttc Phe	tga	2524
act	ttcc	tag	ataa	atta	ac a	ttgc	tggg	t gg	aaat	attc	aga	tgct	gct	taaa	tacttc	2584
ggt	aaac	act	gggt	aaga	tt c	atgg	aact	t ag	aaaa	aagc	tgt	atga	act	gctt	taccaa	2644
ata	tcac	tac	tgag	gaaa	tg t	ataa	aata	c ca	cata	gtat	aaa	atta	cat	gtta	atacaa	2704
tgc	caga	ttt	taaa	taaa	ga c	cttt	agtt	t tc	ctca	caga	aạa	aaga	aaa	aaaa	aaa	2761

<210> 5 <211> 1260 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (63)..(1160) <400> 5 teactgeegt accgeteegg aatteeeggg tegacgattt egteegaaag ateteeatet 60 107 Met Ser Leu Leu Gly Phe Leu Leu Ser Arg Leu Gly Leu Leu Leu aag gtg ctg ctg gac tgg cca gtg gag gtg ctg tac ggg gcg gcg gcg 155 Lys Val Leu Leu Asp Trp Pro Val Glu Val Leu Tyr Gly Ala Ala Ala ctg aac ggg cta ttc ggc ggc ttc tcc gcc ttc tgg tcc ggg gtc atg 203 Leu Asn Gly Leu Phe Gly Gly Phe Ser Ala Phe Trp Ser Gly Val Met geg ctg gga teg ctg ggc tec tec gag ggc cgc cgc tet gtg cgc etc 251 Ala Leu Gly Ser Leu Gly Ser Ser Glu Gly Arg Arg Ser Val Arg Leu 55 atc ctc att gac ctg atg ctg ggc ttg gcg ggg ttc tgc ggg agc atg 299 . Ile Leu Ile Asp Leu Met Leu Gly Leu Ala Gly Phe Cys Gly Ser Met 70 gct tcc ggg cat ctc ttc aag cag atg gct ggg cac tct ggg cag ggc 347 Ala Ser Gly His Leu Phe Lys Gln Met Ala Gly His Ser Gly Gln Gly 80 85 90 ctg ata ctg acg gcc tgc agc gtg agc tgt gcc tcg ttt gcc ctg ctc 395 Leu Ile Leu Thr Ala Cys Ser Val Ser Cys Ala Ser Phe Ala Leu Leu 100 tac agc ctt ttg gtg cta aag gtc cct gag tcg gtg gcc aaa ccc agc 443 Tyr Ser Leu Leu Val Leu Lys Val Pro Glu Ser Val Ala Lys Pro Ser 115 cag gag ctc ccc gcc gtg gat acc gtg tct ggc acg gtt ggc aca tac 491 Gln Glu Leu Pro Ala Val Asp Thr Val Ser Gly Thr Val Gly Thr Tyr 130 135 cgc act ctg gat cct gat cag ttg gac caa cag tat gca gtg ggg cac 539 Arg Thr Leu Asp Pro Asp Gln Leu Asp Gln Gln Tyr Ala Val Gly His 150 cct cca tct cct gga aaa gca aaa ccc cat aaa acc acc att gcc ttg 587 Pro Pro Ser Pro Gly Lys Ala Lys Pro His Lys Thr Thr Ile Ala Leu 165 170 ctc ttt gtg ggt gct atc ata tat gac ctg gcg gtg gtg ggc aca gtg 635 Leu Phe Val Gly Ala Ile Ile Tyr Asp Leu Ala Val Val Gly Thr Val 180 185

		-														
	gtg Val															683
gtg Val	cag Gln	gtg Val 210	ggc Gly	tat Tyr	ggt Gly	atg Met	gct Ala 215	gca Ala	gjå aaa	tac Tyr	acc Thr	atc Ile 220	ttc Phe	atc Ile	acc Thr	731
	ttc Phe 225															779
atg Met 240	atc Ile	atg Met	att Ile	gly ggg	atg Met 245	gtc Val	tcc Ser	ttt Phe	Gly 333	tca Ser 250	gga Gly	gcc Ala	ctc Leu	ctc Leu	ttg Leu 255	827
-	ttt Phe	-					_				_	_	-	_	_	875
_	ttt Phe	-				_				_		_	_			923
	ata Ile	_						_			_		_	_	-	971
	ttg Leu 305															1019
	cag Gln			_	_						_		_			1067
	ttt Phe															1115
	caa Gln	-		_					-					tga *	aga	1163
tgc	ttac	ctg	cagg	aact	ga a	aaca	tcag	c ca	tggc	cagg	ccc	ccag	aag	acaa	aagaag	1223
gga	ccgg	gga	actg	gtga	cc t	aagc	aacc	c ac	tgct	t						1260

```
<210> 6
<211> 891
<212> DNA
<213> Homo sapiens
```

<221> CDS <222> (39)..(782)

									•							
			gtg Val												Ile	101
ata Ile	tgg Trp	ggt Gly	aca Thr 25	gag Glu	tcc Ser	aaa Lys	ccc Pro	cac His 30	tcc Ser	cgg Arg	ccc Pro	tac Tyr	atg Met 35	gca Ala	ttc Phe	149
			tat Tyr													197
			aaa Lys													245
aat Asn 70	Ile	aaa Lys	gta Val	acc Thr	tta Leu 75	ggt Gly	gct Ala	cac His	aat Asn	atc İle 80	aag Lys	aaa Lys	caa Gln	gaa Glu	aac Asn 85	293
acc Thr	cag Gln	gtt Val	atc Ile	tct Ser 90	gtt Val	gta Val	aaa Lys	gcc Ala	aaa Lys 95	cct Pro	cac His	gag Glu	aac Asn	tat Tyr 100	gac Asp	341
			cat His 105													389
			aat Asn													437
gac Asp	tgg Trp 135	gtg Val	aaa Lys	cct Pro	gly aaa	cag Gln 140	gtg Val	tgc Cys	aca Thr	gtg Val	gca Ala 145	ggt Gly	tgg Trp	gga Gly	cgc Arg	485
ttg Leu 150	gcc Ala	aat Asn	tgt Cys	act Thr	tcg Ser 155	tct Ser	aac Asn	aca Thr	ctt Leu	caa Gln 160	gaa Glu	gtg Val	aat Asn	cta Leu	gaa Glu 165	533
gtt Val	cag Gln	aaa Lys	ggc Gly	cag Gln 170	aag Lys	tgc Cys	caa Gln	gac Asp	atg Met 175	tcc Ser	gaa Glu	gac Asp	tac Tyr	aac Asn 180	gac Asp	581
tcc Ser	atc Ile	cag Gln	ctt Leu 185	tgt Cys	gtg Val	gga Gly	aac Asn	ccc Pro 190	agc Ser	gag Glu	ggg ggg	aag Lys	gct Ala 195	act Thr	ggt Gly	629
aag Lys	gga Gly	gac Asp 200	tca Ser	gly ggg	ggt Gly	ccc Pro	ttt Phe 205	gtg Val	tgc Cys	gat Asp	gga Gly	atg Met 210	gcc Ala	cca Pro	gly aaa	67 <b>7</b>
cat His	tgg Trp 215	cag Gln	tta Leu	tcg Ser	gct Ala	tgg Trp 220	gta Val	ctg Leu	gga Gly	aca Thr	ctt Leu 225	tct Ser	cga Arg	gaa Glu	ttt Phe	725
ccc Pro 230	cag Gln	aat Asn	ctc Leu	cag Gln	ctt Leu 235	tta Leu	tac Tyr	cgg Arg	gga Gly	ttt Phe 240	aga Arg	aaa Lys	cca Pro	atg Met	aaa Lys 245	773
ggc Gly	cct Pro	taa *	caat	tcc	taga	aacc	ca a	aacc	ctgg	g to	ttgc	ggcc	aat	ggcc	cca	829

889

ccatcectgg gggaatgggg ttaatttgag ggcctcaaaa aagaaaaccc ttttcccgcc

891 cg <210> 7 <211> 4770 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (140) .. (4531) <400> 7 aagetggtac geetgeaggt accggteegg aatteeeggg tegaceeacg egteegggea 60 egeggaqtqt qaggecacge atgageggac qetaaceece teeccageca caaagagtet 120 acatgtctag ggtctagac atg ttc agc ttt gtg gac ctc cgg ctc ctg ctc 172 Met Phe Ser Phe Val Asp Leu Arg Leu Leu Leu cte tta geg gee ace gee etc etg acg cac gge caa gag gaa gge caa 220 Leu Leu Ala Ala Thr Ala Leu Leu Thr His Gly Gln Glu Glu Gly Gln 15 gte gag gge caa gac gaa gac ate eea eea ate aee tge gta eag aac 268 Val Glu Gly Gln Asp Glu Asp Ile Pro Pro Ile Thr Cys Val Gln Asn ggc ctc agg tac cat gac cga gac gtg tgg aaa ccc gag ccc tgc cgg 316 Gly Leu Arg Tyr His Asp Arg Asp Val Trp Lys Pro Glu Pro Cys Arg 50 atc tgc gtc tgc gac aac ggc aag gtg ttg tgc gat gac gtg atc tgt 364 Ile Cys Val Cys Asp Asn Gly Lys Val Leu Cys Asp Asp Val Ile Cys gac gag acc aag aac tgc ccc ggc gcc gaa gtc ccc gag ggc gag tgc 412 Asp Glu Thr Lys Asn Cys Pro Gly Ala Glu Val Pro Glu Gly Glu Cys 85 tgt ccc gtc tgc ccc gac qqc tca qaq tca ccc acc gac caa gaa acc 460 Cys Pro Val Cys Pro Asp Gly Ser Glu Ser Pro Thr Asp Gln Glu Thr 100 acc ggc gtc gag gga ccc aag gga gac act ggc ccc cga ggc cca agg 508 Thr Gly Val Glu Gly Pro Lys Gly Asp Thr Gly Pro Arg Gly Pro Arg 110 115 gga ccc gca ggc ccc cct ggc cga gat ggc atc cct gga cag cct gga 556 Gly Pro Ala Gly Pro Pro Gly Arg Asp Gly Ile Pro Gly Gln Pro Gly 130 ett eee gga eee eee gga eee eee gga eet eee gga eee eet gge ete 604 Leu Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Leu 140 gga gga aac ttt gct ccc cag ctg tct tat ggc tat gat gag aaa tca 652 Gly Asn Phe Ala Pro Gln Leu Ser Tyr Gly Tyr Asp Glu Lys Ser

WO 01/55437				PCT/US01/02623
	160	16	5	170
Thr Gly Gly I			g ggt ccc tct ggt t Gly Pro Ser Gly 185	•
ggt ctc cct g Gly Leu Pro G 190	gc ccc cct g lly Pro Pro G	gt gca cct gg ly Ala Pro Gly 195	t ccc caa ggc ttc y Pro Gln Gly Phe 200	caa ggt 748 Gln Gly
	lu Pro Gly G		t tca ggt ccc atg a Ser Gly Pro Met 215	
			gga gat gat ggg n Gly Asp Asp Gly 230	
gga aaa cct g Gly Lys Pro G	gt cgt cct g lly Arg Pro G 240	gt gag cgt ggg ly Glu Arg Gly 245	g cet cet ggg cet y Pro Pro Gly Pro	cag ggt 892 Gln Gly 250
Ala Arg Gly L			c cct gga atg aag 1 Pro Gly Met Lys 265	
			g gga gat gct ggt s Gly Asp Ala Gly 280	
ggt cct aag g Gly Pro Lys G 285	ly Glu Pro G	gc agc cct ggt ly Ser Pro Gl _l 90	gaa aat gga gct Glu Asn Gly Ala 295	cct ggt 1036 Pro Gly
cag atg ggc c Gln Met Gly P 300	cc cgt ggc c ro Arg Gly L 305	eg oot ggt gag eu Pro Gly Glu	g aga ggt cgc cct 1 Arg Gly Arg Pro 310	gga gcc 1084 Gly Ala 315
			ggt gct act ggt Gly Ala Thr Gly	
Gly Pro Pro G	gt ccc acc g ly Pro Thr G 35	ge eee get ggt ly Pro Ala Gly 340	c dct cct ggc ttc Pro Pro Gly Phe 345	cct ggt 1180 Pro Gly
gct gtt ggt g Ala Val Gly A 350	ct aag ggt g la Lys Gly G	aa get ggt eed lu Ala Gly Pro 355	c caa ggg ccc cga o Gln Gly Pro Arg 360	ggc tct 1228 Gly Ser
gaa ggt ccc c Glu Gly Pro G 365	ln Gly Val A	gt ggt gag cet gg Gly Glu Pro 70	ggc ccc cct ggc Gly Pro Pro Gly 375	cct gct 1276 Pro Ala
ggt gct gct g Gly Ala Ala G 380	gc cet get ge ly Pro Ala G 385	ga aac cct ggt .y Asn Pro Gly	gct gat gga cag Ala Asp Gly Gln 390	cct ggt 1324 Pro Gly 395
gct aaa ggt g Ala Lys Gly A	cc aat ggt go la Asn Gly Ai 400	et cct ggt att a Pro Gly Ile 405	gct ggt gct cct e Ala Gly Ala Pro	ggc ttc 1372 Gly Phe 410
cct ggt gcc c Pro Gly Ala A	ga ggc ccc to rg Gly Pro Se	t gga ccc cag r Gly Pro Gln	ggc ccc ggc ggc (	cct cct 1420 Pro Pro

415 420 425

			415					420					425			
ggt Gly	ccc Pro	aag Lys 430	ggt Gly	aac Asn	agc Ser	Gly	gaa Glu 435	cct Pro	ggt Gly	gct Ala	cct Pro	ggc Gly 440	agc Ser	aaa Lys	gga Gly	1468
gac Asp	act Thr 445	ggt Gly	gct Ala	aag Lys	gga Gly	gag Glu 450	cct Pro	ggc Gly	cct Pro	gtt Val	ggt Gly 455	gtt Val	caa Gln	gga Gly	ccc Pro	1516
cct Pro 460	ggc Gly	cct Pro	gct Ala	gga Gly	gag Glu 465	gaa Glu	gga Gly	aag Lys	cga Arg	gga Gly 470	gct Ala	cga Arg	ggt Gly	gaa Glu	ccc Pro 475	1564
gga Gly	ccc Pro	act Thr	ggc Gly	ctg Leu 480	ccc Pro	gga Gly	ccc Pro	cct Pro	ggc Gly 485	gag Glu	cgt Arg	ggt Gly	gga Gly	cct Pro 490	ggt Gly	1612
agc Ser	cgt Arg	ggt Gly	ttc Phe 495	Pro	ggc Gly	gca Ala	gat Asp	ggt Gly 500	gtt Val	gct Ala	ggt Gly	ccc Pro	aag Lys 505	ggt Gly	ccc Pro	1660
gct Ala	ggt Gly	gaa Glu 510	Arg	ggt Gly	tct Ser	cct Pro	ggc Gly 515	cct Pro	gct Ala	ggc Gly	ccc Pro	aaa Lys 520	gga Gly	tct Ser	cct Pro	1708
ggt Gly	gaa Glu 525	gct Ala	ggt	cgt Arg	ccc Pro	ggt Gly 530	gaa Glu	gct Ala	ggt Gly	ctg Leu	cct Pro 535	ggt Gly	gcc Ala	aag Lys	ggt Gly	1756
ctg Leu 540	act Thr	gga Gly	ago Ser	cct Pro	ggc Gly 545	agc Ser	cct Pro	ggt Gly	cct Pro	gat Asp 550	Gly	aaa Lys	act Thr	ggc	ccc Pro 555	1804
ect Pro	ggt Gly	ccc Pro	gcc Ala	ggt Gly 560	Gln	gat Asp	ggt Gly	cgc Arg	ccc Pro 565	Gly	ccc Pro	cca Pro	Gly	cca Pro 570	Pro	1852
ggt Gly	gcc	e cgt Arg	ggt Gly 575	, Gln	gct Ala	ggt Gly	gtg Val	atg Met 580	Gly	ttc Phe	cct Pro	gga Gly	cct Pro 585	Lys	ggt	1900
gct Ala	gct Ala	gga Gl ₃ 590	y Glu	g ccc u Pro	ggc gly	aag Lys	gct Ala 595	Gly	gag Glu	cga Arg	ggt Gly	gtt Val 600	Pro	gga Gly	ccc Pro	1948
cct	ggc Gly 605	/ Ala	t gto a Val	c ggt l Gly	cct Pro	gct Ala 610	Gly	aaa / Lys	gat Asp	gga Gly	gag Glu 619	ı Ala	gga Gly	gct Ala	cag Gln	1996
gga Gly 620	Pro	o pro	t gge o Gl	c cct y Pro	gct Ala 625	a Gly	ccc Pro	c gct o Ala	ggo Gly	gag Glu 630	ı Arç	ggt Gly	gaa Glu	a caa 1 Glr	ggc Gly 635	2044
ect Pro	gct Ala	gg a Gl	c tc y Se	c cco r Pro 640	o Gly	a tto y Phe	caç Glr	g ggt n Gly	Cto Let 649	ı Pro	t ggt o Gly	cct Pro	gct Ala	ggt a Gly 650	cct Pro	2092
cca Pro	a ggt o Gly	t ga y Gl	a gc u Al 65	a Gl	c aaa y Lys	a cct s Pro	ggt Gly	t gaa y Glu 660	ı Glı	g ggt n Gly	t gti y Val	t cct l Pro	gg 66!	y Ası	c ctt p Leu	2140
gg Gl	gc Ala	c cc a Pr	t gg o Gl	c cc y Pr	c tci o Se:	t gga r Gly	.gca / Ala	a aga a Arq	a ggo	gaq y Gl	g aga u Ar	a ggi g Gl	t tto y Pho	e er	ggc Gly	2188

670 . 675 . 680

		670					675					680				
gag Glu	cgt Arg 685	ggt Gly	gtg Val	caa Gln	ggt Gly	ccc Pro 690	cct Pro	ggt Gly	cct Pro	gct Ala	ggt Gly 695	ccc Pro	cga Arg	gly aaa	gcc Ala	2236
aac Asn 700	ggt Gly	gct Ala	ccc Pro	ggc Gly	aac Asn 705	gat Asp	ggt Gly	gċt Ala	aag Lys	ggt Gly 710	gat Asp	gct Ala	ggt Gly	gcc Ala	cct Pro 715	2284
gga Gly	gct Ala	ccc Pro	ggt Gly	agc Ser 720	cag Gln	ggc	gcc Ala	cct Pro	ggc Gly 725	ctt Leu	cag Gln	gga Gly	atg Met	cct Pro 730	ggt Gly	2332
gaa Glu	cgt Arg	ggt Gly	gca Ala 735	gct Ala	ggt Gly	ctt Leu	cca Pro	999 Gly 740	cct Pro	aag Lys	ggt Gly	gac Asp	aga Arg 745	ggt Gly	gat Asp	2380
											aaa Lys					2428
ggt Gly	ctg Leu 765	acc Thr	ggc Gly	ccc Pro	att Ile	ggt Gly 770	cct Pro	cct Pro	ggc Gly	cct Pro	gct Ala 775	ggt Gly	gcc Ala	cct Pro	ggt Gly	2476
											ggt Gly					2524
											ccc Pro					2572
		_					_	_			cct Pro					2620
											ggt Gly					2668
											aat Asn 855					2716
gga Gly 860	gcc Ala	aaa Lys	ggt Gly	gct Ala	cgc Arg 865	ggc Gly	agc Ser	gct Ala	ggt Gly	ccc Pro 870	cct Pro	ggt Gly	gct Ala	act Thr	ggt Gly 875	2764
			_	_		_	_				ggc Gly					2812
_									_		aaa Lys	-				2860
		-						-		-	cct Pro		-	_		2908
							-				gga Gly				-	2956

925 930 935

	•																
gat Asp 940	ggt Gly	cct Pro	gct Ala	ggt Gly	gct Ala 945	cct Pro	ggt Gly	act Thr	ccc Pro	950 950	cct Pro	caa Gln	ggt Gly	att Ile	gct Ala 955	3	3004
gga Gly	cag Gln	cgt Arg	ggt Gly	gtg Val 960	gtc Val	ggc Gly	ctg Leu	cct Pro	ggt Gly 965	cag Gln	aga Arg	gga Gly	gag Glu	aga Arg 970	ggc Gly	3	3052
ttc Phe	cct Pro	ggt Gly	ctt Leu 975	cct Pro	ggc	ccc Pro	tct Ser	ggt Gly 980	gaa Glu	cct Pro	ggc Gly	aaa Lys	caa Gln 985	ggt Gly	ccc Pro	3	3100
tct Ser	gga Gly	gca Ala 990	agt Ser	ggt Gly	gaa Glu	cgt Arg	ggt Gly 995	ccc Pro	cct Pro	ggt Gly	Pro	atg Met L000	ggc Gly	ccc Pro	cct Pro	:	3148
Gly	ttg Leu 1005	gct Ala	gga Gly	ccc Pro	Pro	ggt Gly 1010	gaa Glu	tct Ser	gga Gly	Arg	gag Glu 1015	Gly ggg	gct Ala	cct Pro	ggt Gly		3196
gcc Ala 1020	gaa Glu	ggt Gly	tcc Ser	Pro	gga Gly 1025	cga Arg	gac Asp	ggt Gly	Ser	cct Pro 1030	ggc Gly	gcc Ala	aag Lys	Gly	gac Asp 1035		3244
cgt Arg	ggt Gly	gag Glu	Thr	ggc Gly 1040	ccc Pro	gct Ala	gga Gly	ccc Pro	cct Pro L045	ggt Gly	gct Ala	cct Pro	Gly	gct Ala 1050	cct Pro		3292
Gly	Ala	Pro	Gly 1055	Pro	Val	Gly	Pro	gct Ala 1060	Gly	Lys	Ser	Gly	Asp 1065	Arg	Gly	-	3340
gag Glu	Thr	ggt Gly 1070	Pro	gct Ala	ggt Gly	Pro	gcc Ala 1075	ggt Gly	cct Pro	gtc Val	Gly	cct Pro 1080	gtt Val	ggc	gcc Ala		3388
		Pro			Pro		Gly	ccc Pro		Gly							3436
	Glu	_		Asp	-	Gly		aag Lys	Gly		Arg			Ser			3484
Leu	Gln	Gly	Pro	Pro 1120	Gly	Pro	Pro		Ser 1125	Pro	Gly	Glu	Gln	Gly 1130	Pro		3532
				Gly				ccc Pro 1140				Pro		Ser			3580
	Ala		Gly		_			aac Asn			Pro		Pro				3628
		Gly		-	Gly	_	Thr	ggt		Ala		Pro					3676
								ccc Pro							ggt Gly		3724

WO 01/55437			PCT/US01/02623
1180	1185	1190	1195
ttc gac ttc Phe Asp Phe	agc ttc ctg ccc cag cca c Ser Phe Leu Pro Gln Pro 1 1200	cct caa gag aag gct cac Pro Gln Glu Lys Ala His 205 1210	a Asp
Gly Gly Arg	tac tac cgg gct gat gat g Tyr Tyr Arg Ala Asp Asp i 1215 1220	gcc aat gtg gtt cgt gad Ala Asn Val Val Arg Asp 1225	c cgt 3820 o Arg
gac ctc gag Asp Leu Glu 1230	gtg gac acc acc ctc aag a Val Asp Thr Thr Leu Lys ! 1235	agc ctg agc cag cag ato Ser Leu Ser Gln Gln Ilo 1240	gag 3868 Glu
aac atc cgg Asn Ile Arg 1245	agc cca gag ggc agc cgc a Ser Pro Glu Gly Ser Arg 1 1250	aag aac ccc gcc cgc acc Lys Asn Pro Ala Arg Th 1255	c tgc 3916 c Cys
cgt gac ctc Arg Asp Leu 1260	aag atg tgc cac tct gac Lys Met Cys His Ser Asp 1265	tgg aag agt gga gag ta Trp Lys Ser Gly Glu Ty: 1270	e tgg 3964 c Trp 1275
att gac ccc Ile Asp Pro	aac caa ggc tgc aac ctg of Asn Gln Gly Cys Asn Leu 1280	gat gcc atc aaa gtc tt Asp Ala Ile Lys Val Ph 285	e Cys
aac atg gag Asn Met Glu	act ggt gag acc tgc gtg Thr Gly Glu Thr Cys Val 1295 1300	tac ccc act cag ccc ag Tyr Pro Thr Gln Pro Se 1305	t gtg 4060 r Val
gcc cag aag Ala Gln Lys 1310	aac tgg tac atc agc aag Asn Trp Tyr Ile Ser Lys 1315	aac ccc aag gac aag ag Asn Pro Lys Asp Lys Ar 1320	g cat 4108 g His
gtc tgg ttc Val Trp Phe 1325	ggc gag agc atg acc gat Gly Glu Ser Met Thr Asp 1330	gga ttc cag ttc gag ta Gly Phe Gln Phe Glu Ty 1335	t ggc 4156 r Gly
ggc cag ggc Gly Gln Gly 1340	tcc gac cct gcc gat gtg Ser Asp Pro Ala Asp Val 1345	gcc atc cag ctg acc tt Ala Ile Gln Leu Thr Ph 1350	c ctg 4204 e Leu 1355
cgc ctg atg Arg Leu Met	tcc acc gag gcc tcc cag Ser Thr Glu Ala Ser Gln 1360 1	aac atc acc tac cac tg Asn Ile Thr Tyr His Cy 365 137	s Lys
aac agc gtg Asn Ser Val	gcc tac atg gac cag cag Ala Tyr Met Asp Gln Gln 1375 1380	act ggc aac ctc aag aa Thr Gly Asn Leu Lys Ly 1385	g gcc 4300 s Ala
	cag ggc tcc aac gag atc Gln Gly Ser Asn Glu Ile 1395		
	acc tac agc gtc act gtc Thr Tyr Ser Val Thr Val 1410		
gga gcc tgg Gly Ala Trp 1420	ggc aag aca gtg att gaa Gly Lys Thr Val Ile Glu 1425	tac aaa acc acc aag ac Tyr Lys Thr Thr Lys Th 1430	c tcc 4444 r Ser 1435
cgc ctg ccc Arg Leu Pro	atc atc gat gtg gcc ccc Ile Ile Asp Val Ala Pro	ttg gac gtt ggt gcc cc Leu Asp Val Gly Ala Pr	a gac 4492 o Asp

1440 1445 1450

cag gaa ttc ggc ttc Gln Glu Phe Gly Phe				4541
1455	14	160		
ccatcccaac ctggctcc	t cccacccaac	caactttccc	cccaacccgg aaacagacaa	4601
gcaacccaaa ctgaaccc	c ccaaaagcca	aaaaatggga	gacaatttca catggacttt	4661
ggaaaatatt tttttcct	t gcattcatct	ctcaaactta	gtttttatct ttgaccaacc	4721
gaacatgacc aaaaacca	a agtgcattca	accttaccaa	aaaaaaaa	4770

<210> 8

<211> 3331

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (630) .. (1553)

<400> 8 atgcggatcc tgagagcgat cccaggtaag caattgcccc ggtggaacgc cttgccagag 60 cagcatgtgg caggcccca tggaggatca acgcagtggc tgaacaccag gaaggaactg 120 gcacttggag tccagacatc tgaaacttgg gccttagaac tgatgaccca gtacgttaac 180 aactggaact gggtctacga caacataata gatcaggatg aaagcgaatt gactgggttg 240 ttaggaaata ctcaagaact cagcccagct ctagaactca cctctgagca tgaaggcaat 300 gttgggcacg ctggtaaagg accactagaa tecagcaget cggacceett tetttgtget 360 egggaaaagg ggtgeaggae tgetaeateg eceateteag tggtegegga aggtgaegtg 420 gacacggaag tggtcgtcgt cgcggcaccg gtgggagcta ggcgcgaggc tcggagtgcg 480 gccagcgggc ggaggcggtc tcgcatcggc ggcgacggag ggctcaggcg tcgtcgtttg 540 ggtggggggc cgctgaactg acaagcgaca tttcagctcc tttcacccgc cggaaccccg 600 653 gageegggge eegeteagee ggegttace atg ace aag gee ggt age aag gge Met Thr Lys Ala Gly Ser Lys Gly ggg aac ctc cgc gac aag ctg gac ggc aac gaa ctg gac ctg agc ctc 701 Gly Asn Leu Arg Asp Lys Leu Asp Gly Asn Glu Leu Asp Leu Ser Leu 10 15 age gae etg aat gag gte eeg gtg aag gag etg gee ett eea aag 749 Ser Asp Leu Asn Glu Val Pro Val Lys Glu Leu Ala Ala Leu Pro Lys 25 30 gcc acc atc ctg gat ctg tct tgt aat aaa ctg act act cta ccg tcg 797

50

845

Ala Thr Ile Leu Asp Leu Ser Cys Asn Lys Leu Thr Thr Leu Pro Ser

gat the tgt gge etc aca cae etg gtg aag eta gae etg agt aag aad

45

WC	01/5	343/													CITO	501,02020
Asp	Phe	Cys	Gly 60	Leu	Thr	His	Leu	Val 65	Lys	Leu	Asp	Leu	Ser 70	Lys	Asn	
aag Lys	ctg Leu	cag Gln 75	cag Gln	ctg Leu	cca Pro	gca Ala	gac Asp 80	ttt Phe	ggc Gly	cgt Arg	ctg Leu	gtc Val 85	aac Asn	ctc Leu	cag Gln	893
cac His	ctg Leu 90	gat Asp	ctc Leu	ctc Leu	aac Asn	aac Asn 95	aag Lys	ctg Leu	gtc Val	acc Thr	ttg Leu 100	cct Pro	gtc Val	agc Ser	ttt Phe	941
gct Ala 105	cag Gln	ctc Leu	aag Lys	aac Asn	ctg Leu 110	aag Lys	tgg Trp	ttg Leu	gac Asp	ctg Leu 115	aag Lys	gat Asp	aac Asn	ccc Pro	ctg Leu 120	989
gat Asp	cct Pro	gtc Val	ctg Leu	gcc Ala 125	aag Lys	gtg Val	gca Ala	ggt Gly	gac Asp 130	tgc Cys	ttg Leu	gat Asp	gag Glu	aag Lys 135	cag Gln	1037
tgt Cys	aag Lys	cag Gln	tgt Cys 140	gca Ala	aac Asn	aag Lys	gtg Val	tta Leu 145	cag Gln	cac His	atg Met	aag Lys	gcc Ala 150	gtg Val	cag Gln	1085
gca Ala	gat Asp	cag Gln 155	gag Glu	cgg Arg	gag Glu	agg Arg	cag Gln 160	cgg Arg	cgg Arg	ctg Leu	gaa Glu	gta Val 165	gaa Glu	cgt Arg	gag Glu	1133
gca Ala	gag Glu 170	aag Lys	aag Lys	cgt Arg	gag Glu	gct Ala 175	aag Lys	cag Gln	cga Arg	gct Ala	aag Lys 180	gaa Glu	gct Ala	cag Gln	gag Glu	1181
					cgg Arg 190											1229
					ctc Leu											1277
					aat Asn											1325
ccc Pro	cgc Arg	aag Lys 235	cca Pro	cca Pro	ccc Pro	cgg Arg	aag Lys 240	cac His	act Thr	cgt Arg	tcc Ser	tgg Trp 245	gct Ala	gtg Val	ctg Leu	1373
aag Lys	ctg Leu 250	Leu	ctg Leu	ctg Leu	ctg Leu	ctg Leu 255	cta Leu	ttt Phe	ggt Gly	gtg Val	gcg Ala 260	gga Gly	GJ y	ctg Leu	gtt Val	1421
_	Cys				gag Glu 270	Leu	-	-	-		Leu	_				1469
					aat Asn											1517
					cag Gln							gct	t gt	eccc	agca	1567
cct	gctg	cct	ccca	gcct	tg g	agtt	tgga	t tc	ctat	ggaa	ttg	ggtt	ctg	ctgg	acaca	a 1627

cctcttttta qcatcaqacc tacctgccat catcaaatgq ctgcagattq qtacatgaga 1687 cctcctcttt gtaggacttc ttcattcctt agtcagggtt ccctgaagga atgaggagaa 1747 1807 atgqqaqqtq qcggggggc gtggggggca gttacctgca tgcctaaagg agtaggcttg ggggtgggga gagagaaaac atagcctttt ctagttgtta tataaagctg tgtaaaggca 1867 aggetegttt etaetaaatg gteagetgte actacattta taettttgta tgeeacaaac 1927 cctttcattc ctccctggga atcagggtag atcaggagga actggggggg actagaacac 1987 cacgeteagt aaateeagte taaactggga ggtaggggta tteetgtttt etttaggace 2047 2107 tcagagatgt aagcatttta gcagccacac aaaatctctg gctatgaaag ggacttcatg accatccagt ccaatataac acttgcagac agagaaactg aggtcttcca tgacttgcct 2167 agteteecag etagtttgag geaaaactgg atteceacte tggtattett tetteeettt 2227 acatcatttt ccctccttta taatgtcctg agagaccaga actcacacca gaatcgatta 2287 ttcctcaggt gaagcataga ctctttcatg gtagacagat ttcacgactc agagatagaa 2347 atctcttgct atcatcaggt cacgggcagc tcctgtggag tcctgcccaa cttatgtggc 2407 ttecataaaa tggcaacagt ccaggeteet tgcctaattt tagageatta acteectaat 2467 tgccagtaag caaggaggtg gatctctgca aacctacact gtctatgaca gctctagttg 2527 tacttggtgt gactaaatac ctcaaaggca acctgcttct gcaggttttg aagtgtcagc 2587 ttcataagac actgaggttt agaattgttt gattctagat cataactgaa gggcataaat 2647 ggaaacagga tatgaaggga aacaagtagc atcatggagc tgaaaagtgg tgcatcaccc 2707 aatgggctag cacaaacaag gatcacactg tecattetet tgtetgetaa attaagcatt 2767 ttcttgcctc ctttggcttc atcttttcac aacagctgga tagagggatc agaaatgact 2827 gtgtcatggt gctcattcac tgcaaactcc cagttgcaag ctccttggct cccccggagg 2887 gagcaagaat ctcatagttc agagacacag agggcctttt agccctaatg accttttgga 2947 tgggactgca actcatgact atcctgatat taaaagaaag gactttgtta atcttctccc 3007 ccatagetet getgegtagg tetacatett acteagaate actacacatt cetttagtet 3067 tcctccaagc tccagagcca ttggtacaaa tgctttattg aaactaaata cataatacac 3127 acaatgagat gaagacaata tagaagtccg catagtcatc ataatcccgt tccttggccg 3187 gttgaggcag ctcagtggct gagcccagtc aagccaaccc gcagcttcac tcacgacttc 3247 aagatttgat gctaattctt ttggatttct acagttatta aataagtgtc tgagtggaaa 3307 aaaaaaaaa aaaaaaaaaa aaaa 3331

<210> 9 <211> 972

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (168) . . (839)

<400> 9 ttttqaattq tataccgaga cccaagctgg ctagcgttta aacttaagct tggtaccgag 60 120 ctcqqatcca ctagtccagt gtggtggaat tccgggtggt ggactggatt agctgcggag 176 ccctggaagc tgcctgtcct tctccctgtg cttaaccaga ggtgccc atg ggt tgg Met Gly Trp aca atg agg ctg gtc aca gca gca ctg tta ctg ggt ctc atg atg gtg 224 Thr Met Arg Leu Val Thr Ala Ala Leu Leu Gly Leu Met Met Val 10 272 gtc act gga gac gag gat gag aac agc ccg tgt gcc cat gag gcc ctc Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His Glu Ala Leu 320 ttg gac gag gac acc ctc ttt tgc cag ggc ctt gaa gtt ttc tac cca Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val Phe Tyr Pro 368 gag ttg ggg aac att ggc tgc aag gtt gtt cct gat tgt aac aac tac Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys Asn Asn Tyr aga cag aag atc acc tcc tgg atg gag ccg ata gtc aag ttc ccg ggg 416 Arg Gln Lys Ile Thr Ser Trp Met Glu Pro Ile Val Lys Phe Pro Gly gcc gtg gac ggc gca acc tat atc ctg gtg atg gtg gat cca gat gcc 464 Ala Val Asp Gly Ala Thr Tyr Ile Leu Val Met Val Asp Pro Asp Ala 85 cct agc aga gca gaa ccc aga cag aga ttc tgg aga cat tgg ctg gta 512 Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His Trp Leu Val 100 aca gat atc aag ggc gcc gac ctg aag gaa ggg aag att cag ggc cag 560 Thr Asp Ile Lys Gly Ala Asp Leu Lys Glu Gly Lys Ile Gln Gly Gln 120 gag tta tca gcc tac cag gct ccc tcc cca ccg gca cac agt ggc ttc 608 Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His Ser Gly Phe 135 cat cgc tac cag ttc ttt gtc tat ctt cag gaa gga aaa gtc atc tct 656 His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys Val Ile Ser 150 155 ctc ctt ccc aag gaa aac aaa act cga ggc tct tgg aaa atg gac aga 704 Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys Met Asp Arg 170 ttt etg aac ege tte cac etg gge gaa eet gaa gea age ace eag tte 752 Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser Thr Gln Phe 185 190

atg acc cag aac tac cag gac tca cca acc ctc cag gct ccc aga gga Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala Pro Arg Gly 200 205 210	800
agg gcc agc gag ccc aag cac aaa acc agg cag aga tag ctgcctgcta Arg Ala Ser Glu Pro Lys His Lys Thr Arg Gln Arg * 215 220	849
gatageegge tttgecatee gggeatgtgg ceacactget caccacegae gatgtgggta	909
tggaaccccc tetggataca gaaccccttc ttttccaaat taaaaaaaaa aatcatccag	969
gaa	972

<210> 10 <211> 886 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (114)..(365)

<400> 10
acgtgcggga attccccggt cgacccacgc gtccgctccc ttcccgctgt gtggctccag

caagttteet eccaecteag gtetgggttt ecaggeatta agtgacaaag tgg atg 116

cga cgc tcc ttc tgg act gta atg cgc act gcg tgg aga tgt tcg tgt
Arg Arg Ser Phe Trp Thr Val Met Arg Thr Ala Trp Arg Cys Ser Cys

5 10 15

tcc agt gta gac agg gcg ttg tca cat cag gca gga cta cag gga caa 212 Ser Ser Val Asp Arg Ala Leu Ser His Gln Ala Gly Leu Gln Gly Gln 20 25 30

tgt ttg tca gcc tgt ctt ctg ggc aac ttg ggg tat cct ccc ttt ata 260
Cys Leu Ser Ala Cys Leu Leu Gly Asn Leu Gly Tyr Pro Pro Phe Ile
35 40 45

tea cet cet gee cag gtg ete tge gee gee aga gea tea tgt eat ttg

Ser Pro Pro Ala Gln Val Leu Cys Ala Ala Arg Ala Ser Cys His Leu

50 65

gga tcc ctg atg gca att ttg aga ctt tgg ttc aca gta aag att ggt 356 Gly Ser Leu Met Ala Ile Leu Arg Leu Trp Phe Thr Val Lys Ile Gly 70 75 80

cct gtg tga tcttaaa gtaatgtggc ttaaaaacaa atggctgtca gggaattgta 412 Pro Val *

aatcaaagca aacaccgatg agaatggccc aaatccagga cactcagcac caaatgcgag 472
ggaggatgtg aagccacagg aagcctcact cactgctggg gggaacgcaa aacagtacag 532
ccaccttgga agacagtttg acaaatcctt agaaagctaa acacactttt accctgtgat 592
ccaacaatca tgctccttga tatttaccca gaggagttaa aaaaacttat gtccacacta 652

24

aaaacctgca catgggggga aataagagac tttatttcgg ataatttata aacaactgga 712
teettaaagg taaacaaaag tttteetett egcaaccaac aaccaaaaac ttacetggeg 772
gtgeececa aacaatggga aaatttttac eeegeeeett aaaaaacata egeeeggat 832
gagteetata gaaaaatttt etteeeggaa actetettte gegatttgtg agee 886

<210> 11

<211> 2779

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1408) . . (2367)

<400> 11

atgacagatg tttttattga ctacgacgtt gagttacaag aactccagat tccaggaaaa 60 gcatgtgtga ataacaccat tgtatggact aacagttccc tcaaccagaa catgacaaat 120 ggaacacgtt gtggctttgt ggctgtggct ggtgatccac ttgatcttaa cccttccatc 180 tgtaatggga atttcatgaa caggctgcat tactttgagt gcaggtgctg ttatccacag 240 ctgcaagaac tgaagacaga tcacatcaca ggactctttg cagactcttg ccagtaccag 300 cccagagcct ggttgctgaa catcgagagc gaaatgatca aatttgccag ttactatgct 360 ggaattgctg tcgcagtact tatcacagga tatattcaaa tatgcttttg ggtcattgcc 420 gcagctcgtc agatacagaa aatgagaaaa ttttacttta ggagaataat gagaatggaa 480 atagggtggt ttgactgcaa ttcagtgggg gagctgaata caagattctc tgatgatatt 540 aataaaatca atgatgccat agctgaccaa atggcccttt tcattcagcg catgacctcg 600 accatctgtg gtttcctgtt gggatttttc aggggttgga aactgacctt ggttattatt 660 tetgteagee eteteattgg gattggagea gecaecattg gtetgagtgt gteeaagttt 720 acggactatg agctgaaggc ctatgccaaa gcaggggtgg tggctgatga agtcatttca 780 tcaatgagaa cagtggctgc ttttggtggt gagaaaagag aggttgaaag gtatgagaaa 840 aatcttgtgt tcgcccagcg ttggggaatt agaaaaggaa tagtgatggg attctttact 900 ggattegtgt ggtgteteat etttttgtgt tatgeaetgg eettetggta eggeteeaea 960 cttgtcctgg atgaaggaga atatacacca ggaacccttg tccagatttt cctcagtgtc 1020 atagtaggag ctttaaatct tggcaatgcc tctccttgtt tggaagcctt tgcaactgga 1080 cgtgcagcag ccaccagcat ttttgagaca atagacagga aacccatcat tgactgcatg 1140 tcagaagatg gttacaagtt ggatcgaatc aagggtgaaa ttgaattcca taatgtgacc 1200 ttccattatc cttccagacc agaggtgaag cccctcttcc ttccggccag ggtggcacaa 1260

• •	0 017	00407													PC1/050	01/02623
ctc	ttcc	ttc	cccg	tgca	ca g	cagg	aaag	c tg	ccat	cago	tga	gcaa	gtc	cacc	aacagt	1320
ttc	tgtg	tcc	cact	tcat	ct t	taat	aagg	a ca	ccat	cttc	ttg	tatt	ata	caag	aaagga	1380
gtg	tacc	tat	caca	caca	aa a	ggaa	aa	Me	g ct t Le 1	c tt u Ph	t tg e Tr	g gt p Va	g ct l Le 5	a gg u Gl	c ctc y Leu	1431
cta Leu	ato Ile 10	Leu	tgt Cys	ggt Gly	ttt Phe	ctg Leu 15	tgg Trp	act Thr	cgt Arg	aaa Lys	gga Gly 20	' Lys	cta Leu	aag Lys	att Ile	1479
gaa Glu 25	Asp	atc Ile	act Thr	gat Asp	aag Lys 30	Tyr	att Ile	ttt Phe	atc Ile	act Thr 35	gga Gly	tgt Cys	gac Asp	tcg Ser	ggc Gly 40	1527
ttt Phe	gga Gly	aac Asn	ttg Leu	gca Ala 45	Ala	aga Arg	act Thr	ttt Phe	gat Asp 50	aaa Lys	aag Lys	gga Gly	ttt Phe	cat His 55	gta Val	1575
atc Ile	gct Ala	gcc Ala	tgt Cys 60	ctg Leu	act Thr	gaa Glu	tca Ser	gga Gly 65	tca Ser	aca Thr	gct Ala	tta Leu	aag Lys 70	gca Ala	gaa Glu	1623
acc Thr	tca Ser	gag Glu 75	aga Arg	ctt Leu	cgt Arg	act Thr	gtg Val 80	ctt Leu	ctg Leu	gat Asp	gtg Val	acc Thr 85	Asp	cca Pro	gag Glu	1671
aat Asn	gtc Val 90	aag Lys	agg Arg	act Thr	gcc Ala	cag Gln 95	tgg Trp	gtg Val	aag Lys	aac Asn	caa Gln 100	gtt Val	gly aaa	gag Glu	aaa Lys	1719
ggt Gly 105	ctc Leu	tgg Trp	ggt Gly	ctg Leu	atc Ile 110	aat Asn	aat Asn	gct Ala	ggt Gly	gtt Val 115	ccc Pro	ggc	gtg Val	ctg Leu	gct Ala 120	1767
ccc Pro	act Thr	gac Asp	tgg Trp	ctg Leu 125	aca Thr	cta Leu	gag Glu	gac Asp	tac Tyr 130	aga Arg	gaa Glu	cct Pro	att Ile	gaa Glu 135	gtg Val	1815
aac Asn	ctg Leu	ttt Phe	gga Gly 140	ctc Leu	atc Ile	agt Ser	gtg Val	aca Thr 145	cta Leu	aat Asn	atg Met	ctt Leu	cct Pro 150	ttg Leu	gtc Val	1863
aag Lys	aaa Lys	gct Ala 155	caa Gln	gly aaa	aga Arg	gtt Val	att Ile 160	aat Asn	gtc Val	tcc Ser	agt Ser	gtt Val 165	gga Gly	ggt Gly	cgc Arg	1911
ctt Leu	gca Ala 170	atc Ile	gtt Val	gga Gly	gjå aaa	ggc Gly 175	tat Tyr	act Thr	cca Pro	tcc Ser	aaa Lys 180	tat Tyr	gca Ala	gtg Val	gaa Glu	1959
ggt Gly 185	ttc Phe	aat Asn	gac Asp	agc Ser	tta Leu 190	aga Arg	cgg Arg	gac Asp	atg Met	aaa Lys 195	gct Ala	ttt Phe	ggt Gly	gtg Val	cac His 200	2007
gtc Val	tca Ser	tgc Cys	att Ile	gaa Glu 205	cca Pro	gga Gly	ttg Leu	ttc Phe	aaa Lys 210	aca Thr	aac Asn	ttg Leu	gca Ala	gat Asp 215	cca Pro	2055
gta Val	aag Lys	gta Val	att Ile 220	gaa Glu	aaa Lys	aaa Lys	ctc Leu	gcc Ala 225	att Ile	tgg Trp	gag Glu	cag Gln	ctg Leu 230	tct Ser	cca Pro	2103

WO 01/55437	PCT/US01/02623
gac atc aaa caa caa tat gga gaa ggt tac att gaa aaa a Asp Ile Lys Gln Gln Tyr Gly Glu Gly Tyr Ile Glu Lys S 235 240 245	
aaa ctg aaa ggc aat aaa tcc tat gtg aac atg gac ctc t Lys Leu Lys Gly Asn Lys Ser Tyr Val Asn Met Asp Leu S 250 255 260	
gta gag tgc atg gac cac gct cta aca agt ctc ttc cct a Val Glu Cys Met Asp His Ala Leu Thr Ser Leu Phe Pro I 265 270 275	•
tat gcc gct gga aaa gat gcc aaa att ttc tgg ata cct c Tyr Ala Ala Gly Lys Asp Ala Lys Ile Phe Trp Ile Pro I 285 290	<del>-</del>
atg cca gca gct ttg caa gac ttt tta ttg ttg aaa cag a Met Pro Ala Ala Leu Gln Asp Phe Leu Leu Leu Lys Gln I 300 305	
ctg gct aat ccc aag gca gtg tga ctcagctaac cacaaatgtc Leu Ala Asn Pro Lys Ala Val * 315 320	c tectecagge 2397
tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcc	ct tatctgctcc 2457
aacctggact catttagatc gtgcttattt ggattgcaaa agggagtco	cc accategetg 2517
gtggtatece agggteeetg etcaagtttt etttgaaaag gagggetgg	ga atggtacatc 2577
acataggcaa gteetgeect gtatttagge tttgeetget tggtgtgat	g taagggaaat 2637
tgaaagactt gcccattcaa aatgatettt accgtggcct gccccatgo	et tatggteece 2697
agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaata	at taaaagataa 2757
gtcaaacatt aaaaaaaaa aa	2779

<210> 12 <211> 912 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (54)..(776) <400> 12 ccatgatacc atagtccagt gtggtggaat tcgcctgaga acacttagcc ttc 56 atg Met agt gtc ccc acc atg gcc tgg atg atg ctt ctc ctc gga ctc ctt gct 104 Ser Val Pro Thr Met Ala Trp Met Met Leu Leu Gly Leu Leu Ala tat gga tca gga gtg gat tct gag acc gtg gtg acc cag gag cca tcg Tyr Gly Ser Gly Val Asp Ser Glu Thr Val Val Thr Gln Glu Pro Ser 152 25 ttc tca gtg tcc cct gga ggg aca gtg act ctc act tgt ggc ttg aat 200

we	O 01/5	5437												]	PCT/US01/0	2623
Phe	Ser 35	Val	Ser	Pro	Gly	Gly 40	Thr	Val	Thr	Leu	Thr 45	Cys	Gly	Leu	Asn	
			gtc Val													248
			cct Pro													296
			tct Ser 85													344
			atc Ile													392
tgt Cys	gta Val 115	ctc Leu	tac Tyr	atg Met	ggc	aat Asn 120	gac Asp	att Ile	tcg Ser	ctg Leu	ttc Phe 125	ggc Gly	gga Gly	GJA aaa	aca Thr	440
			gtc Val													488
			tcc Ser													536
tgt Cys	ctc Leu	ata Ile	agt Ser 165	gac Asp	ttc Phe	tac Tyr	ccg Pro	gga Gly 170	gcc Ala	gtg Val	aca Thr	gtg Val	gcc Ala 175	tgg Trp	aag Lys	584
gca Ala	gat Asp	agc Ser 180	agc Ser	ccc Pro	gtc Val	aag Lys	gċg Ala 185	gga Gly	gtg Val	gag Glu	acc Thr	acc Thr 190	aca Thr	ccc Pro	tcc Ser	632
			aac Asn													680
			tgg Trp													728
gaa Glu	Gly ggg	agc Ser	acc Thr	gtg Val 230	gag Glu	aag Lys	aca Thr	gtg Val	gcc Ala 235	cct Pro	aca Thr	gaa Glu	tgt Cys	tca Ser 240	tag *	776
gtt	cccaa	act o	ctaac	ccca	ac co	cacgo	gago	e etg	ggago	tgc	agga	tcc	ag g	ggag	ggggt	836
ctc	tacto	ccc a	accc	caagg	gc at	caag	gccct	tet	ccct	gca	ctca	ataa	ac c	cctca	acaaa	896
tat	tetea	att g	gtcaa	at												912

<210> 13 <211> 6116 <212> DNA <213> Homo sapiens

<220>
<221> CDS
<222> (464)..(4048)

<400> 13 geteegeaat teeegggteg acceaegegt eegaaaaaaa geataacata teeecattqt aacatttgga aactaggaaa atggaaagga gcaaaagcaa aaattctttg aatagtacct 120 caacccaaaq cettettet tggcacggta gtgtatttet ttecattteq ttetecacaq 180 240 aggaagtaag attaatttta aaccotgott ttttgaccaa gottotcaco taagcaccao 300 tgaatggcag catggaattc cctccacgcc atccatgcag ctggtccctt agctccagtc 360 tetgaettge catgtetett tgteeteece gacaggacat gaaaccaagg etetgetgaa 420 caacagtggg cecegetaca agegeageaa getggagagg cag atg aac tqc gac 475 Met Asn Cys Asp gtg ctc tgg tgt gtc ctg ctc ctt gtt tgc atg tct ctg ttt tca qca 523 Val Leu Trp Cys Val Leu Leu Leu Val Cys Met Ser Leu Phe Ser Ala gtc gga cat gga ctg tgg ata tgg cgg tat caa gag aag aag tca tta 571 Val Gly His Gly Leu Trp Ile Trp Arg Tyr Gln Glu Lys Lys Ser Leu 30 ttt tat gtc ccc aag tct gat gga agc tcc tta tcc cca gtc aca gct 619 Phe Tyr Val Pro Lys Ser Asp Gly Ser Ser Leu Ser Pro Val Thr Ala 40 gca gtt tac tca ttt tta aca atg ata ata gtt ctg cag gtt ttg atc 667 Ala Val Tyr Ser Phe Leu Thr Met Ile Ile Val Leu Gln Val Leu Ile 55 60 cca att tcc tta tac gtt tcc att gaa att gtt aaa gca tgc caa gtg 715 Pro Ile Ser Leu Tyr Val Ser Ile Glu Ile Val Lys Ala Cys Gln Val 70 tac ttc att aac cag gac atg cag ttg tat gac gaa gaa aca gac tcg 763 Tyr Phe Ile Asn Gln Asp Met Gln Leu Tyr Asp Glu Glu Thr Asp Ser cag ctg cag tgc cga gct ctg aac atc acg gaa gac tta gga cag ata 811 Gln Leu Gln Cys Arg Ala Leu Asn Ile Thr Glu Asp Leu Gly Gln Ile 105 cag tac att ttc tca gat aaa act ggc act ttg aca gag aat aag atg 859 Gln Tyr Ile Phe Ser Asp Lys Thr Gly Thr Leu Thr Glu Asn Lys Met 120 gtt ttc cga aga tgc act gtg tct ggt gta gaa tat tct cat gat gca 907 Val Phe Arg Arg Cys Thr Val Ser Gly Val Glu Tyr Ser His Asp Ala 135 aat gcg cag cgt ctg gcc agg tac caa gag gca gac tcg gag gag gag 955 Asn Ala Gln Arg Leu Ala Arg Tyr Gln Glu Ala Asp Ser Glu Glu Glu 150 155 160

																0001,02020
gag Glu 165	Val	gtg Val	g ccc l Pro	aga Arg	g ggg g Gly 170	, Gly	tcg Ser	gtg Val	s tcc Ser	Gln 175	Arg	g ggo	ago Ser	: ato	ggc Gly 180	1003
agc Ser	cac His	cag Glr	g agt n Ser	gto Val 185	. Arg	gtg Val	gtg Val	cac His	aga Arg	Thr	cag Glr	g ago n Ser	acc Thr	aag Lys 195	tcc Ser	1051
cac His	egg Arg	Arg	acg Thr 200	Gly	agc Ser	cgg Arg	gcc	gag Glu 205	Ala	aag Lys	agg	g gcc g Ala	ago Ser 210	Met	ctg Leu	1099
tcc Ser	aag Lys	His 215	Thr	gcc Ala	ttc Phe	agc Ser	ago Ser 220	Pro	atg Met	gag Glu	aag Lys	g gat S Asp 225	Ile	acg Thr	ccc	1147
gac Asp	cca Pro 230	Lys	ctg Leu	ctg Leu	gag Glu	aag Lys 235	gtg Val	agt Ser	gag Glu	tgt Cys	gac Asp 240	aag Lys	agc Ser	cta Leu	gcc Ala	1195
gtg Val 245	gcg Ala	agg Arg	cat His	cag Gln	gag Glu 250	His	ctg Leu	ctg Leu	gcc Ala	cac His 255	ct c Leu	tcg Ser	ccc Pro	gag Glu	ctg Leu 260	1243
tct Ser	gac Asp	gtc Val	ttt Phe	gat Asp 265	Phe	ttc Phe	atc Ile	gca Ala	ctc Leu 270	acc Thr	ato	tgc Cys	aac Asn	aca Thr 275	gtc Val	1291
gtc Val	gtc Val	acg Thr	tcc Ser 280	ccg Pro	gat Asp	cag Gln	cca Pro	cga Arg 285	aca Thr	aag Lys	gtg Val	agg Arg	gtg Val 290	agg Arg	ttt Phe	1339
gag Glu	ctg Leu	aag Lys 295	tcc Ser	ccg Pro	gtg Val	aag Lys	acg Thr 300	ata Ile	gaa Glu	gac Asp	ttc Phe	ctg Leu 305	cgg Arg	agg Arg	ttc Phe	1387
aca Thr	ccc Pro 310	agc Ser	tgc Cys	ctg Leu	acc Thr	tca Ser 315	ggc Gly	tgc Cys	agc Ser	agc Ser	atc Ile 320	gjå aaa	agc Ser	ctg Leu	gcc Ala	1435
gcc Ala 325	aac Asn	aag Lys	tcc Ser	agc Ser	cac His 330	aag Lys	ttg Leu	ggc Gly	tcc Ser	agc Ser 335	ttc Phe	ccg Pro	tcc Ser	acc Thr	ccg Pro 340	1483
tcc Ser	agc Ser	gac Asp	ggc Gly	atg Met 345	ctt Leu	ctc Leu	agg Arg	ctg Leu	gag Glu 350	gag Glu	agg Arg	ctg Leu	ggc Gly	cag Gln 355	ccc Pro	1531
acc Thr	tcg Ser	gcc Ala	atc Ile 360	gcc Ala	agc Ser	aac Asn	ggc Gly	tac Tyr 365	agc Ser	agc Ser	cag Gln	gcg Ala	gac Asp 370	aac Asn	tgg Trp	1579
gcc Ala	tcg Ser	gag Glu 375	ctt Leu	gct Ala	cag Gln	gag Glu	cag Gln 380	gag Glu	tca Ser	gag Glu	cgc Arg	gag Glu 385	ctg Leu	cgg Arg	tac Tyr	1627
gag Glu	gcg Ala 390	gag Glu	agc Ser	ccg Pro	gat Asp	gag Glu 395	gcc Ala	gca Ala	ctg Leu	Val	tat Tyr 400	gcg Ala	gcc Ala	aga Arg	gcc Ala	1675
tac Tyr 405	aac Asn	tgc Cys	gtg Val	ctt Leu	gtg Val 410	gag Glu	cgg Arg	ctg Leu	His	gac Asp 415	caa Gln	gtg Val	tca Ser	gtg Val	gag Glu 420	1723

	** (	, 01/3	3437											,	CITOSOIT	02020
	-			-	ggc Gly 425						-			_		1771
					cgc Arg											1819
					aac Asn											1867
					ccc Pro											1915
					agc Ser											1963
					acc Thr 505											2011
					tgg Trp											2059
					gag Glu											2107
					tta Leu											2155
					act Thr										att Ile 580	2203
					ggt Gly 585											2251
	_	_		_	ctg Leu	-		_		 _			_		_	2299
•					gcg Ala											2347
		_		_	ggc Gly		-	_	_		_		_			2395
		_	_		ttc Phe							-			_	2443
					ccc Pro 665											2491

***	<b>,</b> 0 11 5	5457														
gct Ala	ctc Leu	gag Glu	aaa Lys 680	aac Asn	ctg Leu	gag Glu	gac Asp	aaa Lys 685	ttc Phe	ctc Leu	ttc Phe	ctt Leu	gcc Ala 690	aag Lys	cag Gln	2539
tgc Cys	cgc Arg	tcc Ser 695	gtc Val	ctc Leu	tgc Cys	tgt Cys	cgg Arg 700	Ser	acg Thr	cct Pro	ctg Leu	cag Gln 705	aag Lys	agc Ser	atg Met	2587
gtg Val	gtg Val 710	aag Lys	ctg Leu	gtg Val	cgg Arg	agc Ser 715	aag Lys	ctc Leu	aag Lys	gcc Ala	atg Met 720	acc Thr	ctg Leu	gcc Ala	ata Ile	2635
ggt Gly 725	gat Asp	gga Gly	gcc Ala	aat Asn	gat Asp 730	gtc Val	agc Ser	atg Met	atc Ile	cag Gln 735	gtg Val	gca Ala	gat Asp	gtg Val	ggt Gly 740	2683
gtg Val	gga Gly	atc Ile	tcc Ser	ggc Gly 745	cag Gln	gag Glu	ggt Gly	atg Met	cag Gln 750	gca Ala	gtg Val	atg Met	gcc Ala	agc Ser 755	gac Asp	2731
ttt Phe	gca Ala	gtg Val	ccg Pro 760	aaa Lys	ttc Phe	cga Arg	tac Tyr	ctg Leu 765	gag Glu	agg Arg	ctc Leu	ttg Leu	att Ile 770	ctt Leu	cac His	2779
gja gag	cat His	tgg Trp 775	tgc Cys	tac Tyr	tcc Ser	cga Arg	ctt Leu 780	gcc Ala	aac Asn	atg Met	gtg Val	ctg Leu 785	tac Tyr	ttc Phe	ttc Phe	2827
tac Tyr	aaa Lys 790	aac Asn	aca Thr	atg Met	ttc Phe	gtg Val 795	ggc	ctc Leu	ctg Leu	ttt Phe	tgg Trp 800	ttc Phe	cag Gln	ttt Phe	ttc Phe	2875
	Gly		tct Ser								Trp					2923
			ctc Leu		Ser										Leu	2971
			gtg Val 840						Leu					Leu		3019
			cag Gln					Tyr					Phe			3067
		Ala	gac Asp				Gln					Phe			cct Pro	3115
	Leu	_			_	Ser			-	_	Phe				acc Thr 900	3163
					Ala	_				Leu					att	3211
				Trp					Trp					Phe	agt Ser	3259

WC	01/5	5437												]	PCT/US	S01/02623
		_	ttt Phe				-	_						_	-	3307
_	_		cct Pro	-							_		-			3355
			gtg Val													3403
			aga Arg													3451
		Leu	cag Gln L000				Gln					Ser				3499
	Ser		ccc Pro			Thr					Arg					3547
Ser			gag Glu		Ser					۷al						3595
			cct Pro	Ser					Gln					Leu		3643
_	_		gag Glu		_			Asp	_	_	_		Val	-		3691
		Leu	ctg Leu 1080				Ser					Met				3739
	Gly		gct Ala			Arg					Cys					3787
Lys			gct Ala		Ser					Thr						3835
	_	_	cct Pro	Thr		_			Asn					Trp	_	3883
			agg Arg					Leu					Thr			3931
		Asp	gga Gly 1160				Arg					Gln				3979
	Arg		gga Gly			Gly		_		-	Leu				-	4027

tet tea agg egg tea eag tga aa acettgaaat ggeetttttt aatatatata 4080 Ser Ser Arg Arg Ser Gln * aataaatgtt aatattattt atgtttatta tttgcacaga agagttctag ggagatgtat 4140 ttctaaatgt ttcccaggct aatacaggaa acaagaggta ccaaaaaaga aagtttattt 4200 tttaaaattc taagtagagt atattgaaaa gaaaaagaag agccttaaca tatataaaag 4260 tttaaagaag agtaacactt gaaaagtgtg tttagattta ttttttcatc tcatttttaa 4320 gaacaagcag tacgatttgt tttcttcaac atgtgtgact gcgcactgag tacaaatgtg 4380 tgactgctca tggttaatgc aggcaggtgt gaacatgggg gaacaatgag cagagatggc 4440 agagggcaga gcacatggcc cccagaggct tccagtctca ctgacacagg agggctgggc 4500 tccacttcat ccagatgaag gaaaggaaga cctcaagaaa aattcacagt tgagtgcatc 4560 ccagcattct gttccgggca ggcatttcag gaagaccgcc ttgtaggtat tacatccctg 4620 gtgtcgtatt ttgcctgtta aatcgtaaca agcaataaac aactttcact ttgcaaagac 4680 agtgtgtcca gttaccactg gtgtatgaaa tgattaatac ctgacctcac agagtatgat 4740 ctgagggcac ttccgtaagg caagtccttt tagaggctat gaagaaaaca gctgcatggc 4800 acataccaaa getgetgeac ageeggeeac catggeacce tgeaccagge cateaqeacc 4860 acgtgccaag gagctcagcg gtcttcaggc atttttgtaa tgagccatta gttctgtccc 4920 tctaaaacta gaaaaggaag ggcaggaaat gataacaacc caaggcaatg atatggcatg 4980 tcatcttctg agccettett tetaetttgt caaacagtte ttagttgetg getetgeteg 5040 gcaccggggc tgtgaagggt gtactccctg ctgtgtggga gggacctagg gcctctttgg 5100 atgctgtctt cgaggacagc aatgcagaga gggcatagga tctgaggaca aggaaattcc 5160 tcagcatggc gtatcaggaa agcatggctc attctgcaat gagccatgag tgtgggccat 5220 cgcaagtcac agaaattgca cctcattcca gtcaagcaga aaaacaggca caggctcagt 5280 gtaggtccca agagagggtg cctggactca gcaactcgga cctgggcttt tctcccagct 5340 ttcagggaca gctttgtcct gagtctgcct ctgttcacgg ggatgcttgg ctggagtcac 5400 ccccaggact tatccatgca tcactattca gaagacacag agggcccctc tctccacatt 5460 ccaaacagag tcctggtttc ctcagcctca ccctgcatag cttgcacaac atcctcagaa 5520 ccattcactg gcaaatggag gggaacgtgc tgactgggac tcccagctgg agctgggagg 5580 agaggtecae tteeettaga acaeetgage tgetgeatga gtggaegtea gaagaatete 5640 tatgccctgt taaatgggga gacaaagggg tggtgggggc ttcagccagt gatttcggac 5700 cgaaggtgac agccgtccca accctgccca gcctgatgcc acctcctctg ttcttggaac 5760 aacgcatagg aaaagaatct cctttggaag gtgacactgc tccctgaatt aaggtaatgg 5820 ttgcgagcac caagtacaag gactagacgc atatttacct gcgtatctga gagttccaga 5880

34

ttcccagett ccagatgate ettgcacaga caacetacet tetttccaga ggatgtettt 5940
ctcctctgga gagtagatge ttgctettgg gaaacggaat gacettggeg etggettcag 6000
gaatatgcat eccacageca gtttagagaa atacatgttg taaatggcat tgacagetge 6060
tetttaggat ggggagtatt atggaaatee acaataacaa tetatggcaa geaact 6116

<210> 14 <211> 7741 <212> DNA <213> Homo sapiens

<220>

<221> CDS

<222> (339)..(6062)

<400> 14 60 gqtaccggtc cggaattccc gggtcgacga tttcgtggac ggggaataga gagcaaagcc 120 tggaggcgcc ggagcaccct gagcacaggg gagacagagc ggaaggagga gaggattgat gactgattgg acagtggtgc aggagggaag gtctctgcat gtcagtgatt aaattgctga 180 agatgccact gcctgagacg ggcagtattg aaggaaggag tggaggccct ggtgcccggc 240 300 ccttggtgct gagtatccag caagagtgac cggggtgaag aagcaaagac tcggttgatt atg gcc cct gag cca gtcctgggct gtggctggct gtggagctag agccctgg 353 Met Ala Pro Glu Pro gcc cca ggg agg acg atg gtg ccc ctt gtg cct gca ctg gtg atg ctt 401 Ala Pro Gly Arg Thr Met Val Pro Leu Val Pro Ala Leu Val Met Leu

Ala Pro Gly Arg Thr Met Val Pro Leu Val Pro Ala Leu Val Met Leu

10
15
20

ggt ttg gtg gca ggc gcc cat ggt gac agc aaa cct gtc ttc att aaa 449 Gly Leu Val Ala Gly Ala His Gly Asp Ser Lys Pro Val Phe Ile Lys 25 30 35

gtc cct gag gac cag act ggg ctg tca gga ggg gta gcc tcc ttc gtg 497 Val Pro Glu Asp Gln Thr Gly Leu Ser Gly Gly Val Ala Ser Phe Val 40 45 50

tgc caa gct aca gga gaa ccc aag ccg cgc atc aca tgg atg aag aag 545 Cys Gln Ala Thr Gly Glu Pro Lys Pro Arg Ile Thr Trp Met Lys Lys

ggg aag aaa gtc agc tcc cag cgc ttc gag gtc att gag ttt gat gat 593 Gly Lys Lys Val Ser Ser Gln Arg Phe Glu Val Ile Glu Phe Asp Asp 70 75 80 85

ggg gca ggg tca gtg ctt cgg atc cag cca ttg cgg gtg cag cga gat 641 Gly Ala Gly Ser Val Leu Arg Ile Gln Pro Leu Arg Val Gln Arg Asp 90 95 100

gaa gcc atc tat gag tgt aca gct act aac agc ctg ggt gag atc aac 689
Glu Ala Ile Tyr Glu Cys Thr Ala Thr Asn Ser Leu Gly Glu Ile Asn
105 110 115

act agt gcc aag ctc tca gtg ctc gaa gag gaa cag ctg ccc cct ggg 737

***	, 01,5	5457												•	CITO	001/02020
Thr	Ser	Ala 120	Lys	Leu	Ser	Val	Leu 125	Glu	Glu	Glu	Gln	Leu 130	Pro	Pro	Gly	
						999 Gly 140										785
						tgt Cys										833
						ttc Phe										881
						cgt Arg										929
						aag Lys										977
						cct Pro 220										1025
						atc Ile										1073
						aca Thr										1121
tac Tyr	gtg Val	aag Lys	tgg Trp 265	atg Met	atg Met	gly aaa	gcc Ala	gag Glu 270	gag Glu	ctc Leu	acc Thr	aag Lys	gag Glu 275	gat Asp	gag Glu	1169
atg Met	cca Pro	gtt Val 280	ggc Gly	cgc Arg	aac Asn	gtc Val	ctg Leu 285	gag Glu	ctc Leu	agc Ser	aat Asn	gtc Val 290	gta Val	cgc Arg	tct Ser	1217
gcc Ala	aac Asn 295	tac Tyr	acc Thr	tgt Cys	gtg Val	gcc Ala 300	atc Ile	tcc Ser	tcg Ser	ctg Leu	ggc Gly 305	atg Met	atc Ile	gag Glu	gcc Ala	1265
aca Thr 310	gcc Ala	cag Gln	gtc Val	aca Thr	gtg Val 315	aaa Lys	gct Ala	ctt Leu	cca Pro	aag Lys 320	cct Pro	ccg Pro	att Ile	gat Asp	ctt Leu 325	1313
gtg Val	gtg Val	aca Thr	gag Glu	aca Thr 330	act Thr	gcc Ala	acc Thr	agt Ser	gtc Val 335	acc Thr	ctc Leu	acc Thr	tgg Trp	gac Asp 340	tct Ser	1361
gly ggg	aac Asn	tcg Ser	gag Glu 345	cct Pro	gta Val	acc Thr	tac Tyr	tat Tyr 350	ggc Gly	atc Ile	cag Gln	tac Tyr	cgc Arg 355	gca Ala	gcg Ala	1409
ggc Gly	acg Thr	gag Glu 360	ggc Gly	ccc Pro	ttt Phe	cag Gln	gag Glu 365	gtg Val	gat Asp	ggt Gly	gtg Val	gcc Ala 370	acc Thr	acc Thr	cgc Arg	1457
tac	agc	att	ggc	ggc	ctc	agc	cct	ttc	tcg	gaa	tat	gcc	ttc	cgc	gtg	1505

wo	01/5	5437												I	PCT/US01/0	)2623
Tyr	Ser 375	Ile	Gly	Gly	Leu	Ser 380	Pro	Phe	Ser	Glu	Tyr 385	Ala	Phe	Arg	Val	
ctg Leu 390	gcg Ala	gtg Val	aac Asn	agc Ser	atc Ile 395	gly ggg	cga Arg	ggg Gly	ccg Pro	ccc Pro 400	agc Ser	gag Glu	gca Ala	gtg Val	cgg Arg 405	1553
gca Ala	cgc Arg	acg Thr	gga Gly	gaa Glu 410	cag Gln	gcg Ala	ccc Pro	tcc Ser	agc Ser 415	cca Pro	ccg Pro	cgc Arg	cgc Arg	gtg Val 420	cag Gln .	1601
gca Ala	cgc Arg	atg Met	ctg Leu 425	agc Ser	gcc Ala	agc Ser	acc Thr	atg Met 430	ctg Leu	gtg Val	cag Gln	tgg Trp	gag Glu 435	cct Pro	ccc Pro	1649
gag Glu	gag Glu	ccc Pro 440	aac Asn	ggc Gly	ctg Leu	gtg Val	cgg Arg 445	gga Gly	tac Tyr	cgc Arg	gtc Val	tac Tyr 450	tat Tyr	act Thr	ccg Pro	1697
gac Asp	tcc Ser 455	cgc Arg	cgc Arg	ccc Pro	ccg Pro	aac Asn 460	gcc Ala	tgg Trp	cac His	aag Lys	cac His 465	aac Asn	acc Thr	gac Asp	gcg Ala	1745
ggg Gly 470	ctc Leu	ctc Leu	acg Thr	acc Thr	gtg Val 475	ggc Gly	agc Ser	ctg Leu	ctg Leu	cct Pro 480	ggc Gly	atc Ile	acc Thr	tac Tyr	agc Ser 485	1793
ctg Leu	cgc Arg	gtg Val	ctt Leu	gcc Ala 490	ttc Phe	acc Thr	gcc Ala	gtg Val	ggc Gly 495	gat Asp	ggc	cct Pro	ccc Pro	agc Ser 500	ccc Pro	1841
acc Thr	atc Ile	cag Gln	gtc Val 505	aag Lys	acg Thr	cag Gln	cag Gln	gga Gly 510	gtg Val	cct Pro	gcc Ala	cag Gln	ccc Pro 515	gcg Ala	gac Asp	1889
ttc Phe	cag Gln	gcc Ala 520	gag Glu	gtg Val	gag Glu	tcg Ser	gac Asp 525	acc Thr	agg Arg	atc Ile	cag Gln	ctc Leu 530	tcg Ser	tgg Trp	ctg Leu	1937
ctg Leu	ccc Pro 535	cct Pro	cag Gln	gag Glu	cgg Arg	atc Ile 540	atc Ile	atg Met	tat Tyr	gaa Glu	ctg Leu 545	gtg Val	tac Tyr	tgg Trp	gcg Ala	1985
gca Ala 550	gag Glu	gac Asp	gaa Glu	gac Asp	caa Gln 555	cag Gln	cac His	aag Lys	gtc Val	acc Thr 560	ttc Phe	gac Asp	cca Pro	acc Thr	tcc Ser 565	2033
tcc Ser	tac Tyr	aca Thr	cta Leu	gag Glu 570	gac Asp	ctg Leu	aag Lys	cct Pro	gac Asp 575	aca Thr	ctc Leu	tac Tyr	cgc Arg	ttc Phe 580	cag Gln	2081
_	_	_	_	_	gat Asp	_				_						2129
gag Glu	gcc Ala	cgc Arg 600	aca Thr	gcc Ala	cag Gln	tcc Ser	acc Thr 605	ccc Pro	tcc Ser	gcc Ala	cct Pro	ccc Pro 610	cag Gln	aag Lys	gtg Val	2177
atg Met	tgt Cys 615	gtg Val	agc Ser	atg Met	ggc Gly	tcc Ser 620	acc Thr	acg Thr	gtc Val	cgg Arg	gta Val 625	agt Ser	tgg Trp	gtc Val	ccg Pro	2225
ccg	cct	gcc	gac	agc	cgc	aac	ggc	gtt	atc	acc	cag	tac	tcc	gtg	gcc	2273

wo	01/55	5437												F	CT/US	01/02623
Pro 630	Pro	Ala	Asp	Ser	Arg 635	Asn	Gly	Val	Ile	Thr 640	Gln	Tyr	Ser	Val	Ala 645	
tac Tyr	gag Glu	gcg Ala	gtg Val	gac Asp 650	ggc Gly	gag Glu	gac Asp	cgc Arg	999 Gly 655	cgg Arg	cat His	gtg Val	gtg Val	gat Asp 660	ggc	2321
atc Ile	agc Ser	cgt Arg	gag Glu 665	cac His	tcc Ser	agc Ser	tgg Trp	gac Asp 670	ctg Leu	gtg Val	ggc Gly	ctg Leu	gag Glu 675	aag Lys	tgg Trp	2369
acg Thr	gag Glu	tac Tyr 680	cgg Arg	gtg Val	tgg Trp	gtg Val	cgg Arg 685	gca Ala	cac His	aca Thr	gac Asp	gtg Val 690	ggc Gly	ccc Pro	ggc Gly	2417
ccc Pro	gag Glu 695	agc Ser	agc Ser	ccg Pro	gtg Val	ctg Leu 700	gtg Val	cgc Arg	acc Thr	gat Asp	gag Glu 705	gac Asp	gtg Val	ccc Pro	agc Ser	2465
ggg Gly 710	cct Pro	ccg Pro	cgg Arg	aag Lys	gtg Val 715	gag Glu	gtg Val	gag Glu	cca Pro	ctg Leu 720	aac Asn	tcc Ser	act Thr	gct Ala	gtg Val 725	2513
cat His	gtc Val	tac Tyr	tgg Trp	aag Lys 730	ctg Leu	cct Pro	gtc Val	ccc Pro	agc Ser 735	aag Lys	cag Gln	cat His	ggc Gly	cag Gln 740	atc Ile	2561
cgc Arg	ggc Gly	tac Tyr	cag Gln 745	gtc Val	acc Thr	tac Tyr	gtg Val	cgg Arg 750	ctg Leu	gag Glu	aat Asn	ggc	gag Glu 755	ccc Pro	cgt Arg	2609
gga Gly	ctc Leu	ccc Pro 760	Ile	atc Ile	caa Gln	gac Asp	gtc Val 765	atg Met	cta Leu	gcc Ala	gag Glu	gcc Ala 770	Gln	tgg Trp	cgg	2657
cca Pro	gag Glu 775	Glu	tcc Ser	gag Glu	gac Asp	tat Tyr 780	Glu	acc Thr	act Thr	atc Ile	agc Ser 785	ggc Gly	ctg Leu	acc	ecg Pro	2705
gag Glu 790	Thr	acc Thr	tac Tyr	tcc Ser	gtt Val 795	Thr	gtt Val	gct Ala	gcc	tat Tyr 800	Thr	acc Thr	aag Lys	ggg Gly	gat Asp 805	2753
					Pro			gtc Val		Thr					Pro	2801
ggo Gly	cgg Arg	Pro	acc Thr 825	Met	atg Met	ato Ile	ago Ser	Thr	Thr	gcc	atg Met	aac Asn	act Thr 835	Ala	ctg Leu	2849
	_		His			-	_	ı Leu				-	Leu		tac Tyr	2897
		Glr					Asp					Asr			gat Asp	2945
	Gly					His					Gly				999 Gly 885	2993
aco	acc	tac	ato	: ttc	cgg	r ctt	gct	gcc	aac	aac	cgg	gct	ggo	: ttg	g ggt	3041

WC	01/5	543/												-	01,0001	
Thr	Thr	Tyr	Ile	Phe 890	Arg	Leu	Ala	Ala	Lys 895	Asn	Arg	Ala	Gly	Leu 900	Gly	
gag Glu	gag Glu	ttc Phe	gag Glu 905	aag Lys	gag Glu	atc Ile	agg Arg	acc Thr 910	ccc Pro	gag Glu	gac Asp	ctg Leu	ccc Pro 915	agc Ser	ggc Gly	3089
ttc Phe	ccc Pro	caa Gln 920	aac Asn	ctg Leu	cat His	gtg Val	aca Thr 925	gga Gly	ctg Leu	acc Thr	acg Thr	tct Ser 930	acc Thr	aca Thr	gaa Glu	3137
ctg Leu	gcc Ala 935	tgg Trp	gac Asp	ccg Pro	cca Pro	gtg Val 940	ctg Leu	gcg Ala	gag Glu	agg Arg	aac Asn 945	gly ggg	cgc Arg	atc Ile	atc Ile	3185
agc Ser 950	tac Tyr	acc Thr	gtg Val	gtg Val	ttc Phe 955	cga Arg	gac Asp	atc Ile	aac Asn	agc Ser 960	caa Gln	cag Gln	gag Glu	ctg Leu	cag Gln 965	3233
aac Asn	atc Ile	acg Thr	aca Thr	gac Asp 970	acc Thr	cgc Arg	ttt Phe	acc Thr	ctt Leu 975	act Thr	ggc Gly	ctc Leu	aag Lys	cca Pro 980	gac Asp	3281
acc Thr	act Thr	tac Tyr	gac Asp 985	atc Ile	aag Lys	gtc Val	cgc Arg	gca Ala 990	tgg Trp	acc Thr	agc Ser	aaa Lys	ggc Gly 995	tct Ser	ggc Gly	3329
cca Pro	Leu	agc Ser 1000	ccc Pro	agc Ser	atc Ile	Gln	tcc Ser 1005	Arg	acc Thr	atg Met	Pro	gtg Val 1010	gag Glu	caa Gln	gtg Val	3377
Phe	gcc Ala 1015	aag Lys	aac Asn	ttc Phe	Arg	gtg Val 1020	gcg Ala	gct Ala	gca Ala	Met	aag Lys 1025	acg Thr	tct Ser	gtg Val	ctg Leu	3425
ctc Leu 1030	agc Ser	tgg Trp	gag Glu	Val	ccc Pro 1035	gac Asp	tcc Ser	tat Tyr	Lys	tca Ser 1040	Ala	gtg Val	ccc Pro	Phe	aag Lys 1045	3473
att Ile	ctg Leu	tac Tyr	Asn	ggg Gly 1050	Gln	agt Ser	gtg Val	Glu	gtg Val 1055	Asp	gj A aaa	cac His	tcg Ser	atg Met 1060	Arg	3521
aag Lys	ctg Leu	Ile	gca Ala 1065	Asp	ctg Leu	cag Gln	ccc Pro	aac Asn 1070	Thr	gag Glu	tac Tyr	tcg Ser	ttt Phe 1075	Val	ctg Leu	3569
atg Met	Asn	cgt Arg 1080	Gly	ago Ser	agc Ser	Ala	999 Gly	Gly	ctg Leu	cag Gln	cac His	ctg Leu 1090	Val	tcc Ser	atc Ile	3617
Arg	aca Thr 1095	Ala	e ccc Pro	gac Asp	cto Leu	ctg Leu 1100	Pro	cac His	aag Lys	Pro	ctg Leu 1105	Pro	gcc Ala	tct Ser	gcc Ala	3665
tac Tyr 1110	Ile	gag Glu	gac Asp	ggc Gly	cgc Arg	Phe	gat Asp	ctc Leu	tcc Ser	atg Met 1120	Pro	cat His	gtg Val	caa Gln	gac Asp 1125	3713
ccc Pro	tcg Ser	ctt Leu	gto Val	agg Arg	Trp	tto Phe	tac Tyr	att Ile	gtt Val	Val	gta Val	ccc Pro	att Ile	gac Asp 1140	cgt Arg	3761
gtg	ggc	999	ago	atg	ctg	acg	cca	agg	tgg	ago	aca	ccc	gag	gaa	ctg	3809

PCT/US01/02623

PC 1/0501/02	2023
WO 01/55437  Val Gly Gly Ser Met Leu Thr Pro Arg Trp Ser Thr Pro Glu Glu Leu 1155 1145	
	3857
cgg cgg cgg cgg cag gca gaa cgt ctg aag cca tat gtg gct gct Arg Arg Arg Arg Gln Ala Glu Arg Leu Lys Pro Tyr Val Ala Ala 1175 1180 1185	3905
caa ctg gat gtg ctc ccg gag acc ttt acc ttg ggg gac aag aag aac Gln Leu Asp Val Leu Pro Glu Thr Phe Thr Leu Gly Asp Lys Lys Asn 1205	3953
tac cgg ggc ttc tac aac cgg ccc ctg tct ccg gac ttg agc tac cag  Tyr Arg Gly Phe Tyr Asn Arg Pro Leu Ser Pro Asp Leu Ser Tyr Gln  1210  1215  1220	4001
tgc ttt gtg ctt gcc tcc ttg aag gaa ccc atg gac cag aag cgc tat Cys Phe Val Leu Ala Ser Leu Lys Glu Pro Met Asp Gln Lys Arg Tyr 1225 1230 1235	4049
gcc tcc agc ccc tac tcg gat gag atc gtg gtc cag gtg aca cca gcc Ala Ser Ser Pro Tyr Ser Asp Glu Ile Val Val Gln Val Thr Pro Ala	4097
cag cag cag gag gag ccg gag atg ctg tgg gtg acg ggt ccc gtg ctg Gln Gln Glu Glu Pro Glu Met Leu Trp Val Thr Gly Pro Val Leu  1260 1265	4145
gca gtc atc ctc atc ctc att gtc atc gcc atc ctc ttg ttc aaa Ala Val Ile Leu Ile Leu Ile Val Ile Ala Ile Leu Leu Phe Lys	4193
agg aaa agg acc cac tct ccg tcc tct aag gat gag cag tcg atc gga Arg Lys Arg Thr His Ser Pro Ser Ser Lys Asp Glu Gln Ser Ile Gly 1290 1295 1300	4241
ctg aag gac tcc ttg ctg gcc cac tcc tct gac cct gtg gag atg cgg Leu Lys Asp Ser Leu Leu Ala His Ser Ser Asp Pro Val Glu Met Arg 1305 1310 1315	4289
agg ctc aac tac cag acc cca ggt atg cga gac cac cca ccc atc ccc Arg Leu Asn Tyr Gln Thr Pro Gly Met Arg Asp His Pro Pro Ile Pro 1320 1325 1330	4337
atc acc gac ctg gcg gac aac atc gag cgc ctc aaa gcc aac gat ggc  Ile Thr Asp Leu Ala Asp Asn Ile Glu Arg Leu Lys Ala Asn Asp Gly  1335  1340  1345	4385
ctc aag ttc tcc cag gag tat gag tcc atc gac cct gga cag cag ttc Leu Lys Phe Ser Gln Glu Tyr Glu Ser Ile Asp Pro Gly Gln Gln Phe 1350 1355 1360 1365	4433
acg tgg gag aat tca aac ctg gag gtg aac aag ccc aag aac cgc tat acg tgg gag aat tca aac ctg gag gtg aac aag ccc aag aac cgc tat Thr Trp Glu Asn Ser Asn Leu Glu Val Asn Lys Pro Lys Asn Arg Tyr 1370 1375 1380	4481
gcg aat gtc atc gcc tac gac cac tct cga gtc atc ctt acc tct atc Ala Asn Val Ile Ala Tyr Asp His Ser Arg Val Ile Leu Thr Ser Ile 1385 1390 1395	4529
gat ggc gtc ccc ggg agt gac tac atc aat gcc aac tac atc gat ggc	4577

PCT/US01/02623 WO 01/55437 Asp Gly Val Pro Gly Ser Asp Tyr Ile Asn Ala Asn Tyr Ile Asp Gly 1405 tac ege aag cag aat gee tac ate gee aeg cag gge eec etg eec gag 4625 Tyr Arg Lys Gln Asn Ala Tyr Ile Ala Thr Gln Gly Pro Leu Pro Glu 1420 acc atg ggc gat ttc tgg aga atg gtg tgg gaa cag cgc acg gcc act 4673 Thr Met Gly Asp Phe Trp Arg Met Val Trp Glu Gln Arg Thr Ala Thr 1440 1435 1430 gtg gtc atg atg aca cgg ctg gag gag aag tcc cgg gta aaa tgt gat 4721 Val Val Met Met Thr Arg Leu Glu Glu Lys Ser Arg Val Lys Cys Asp 1450 cag tac tgg cca gcc cgt ggc acc gag acc tgt ggc ctt att cag gtg 4769 Gln Tyr Trp Pro Ala Arg Gly Thr Glu Thr Cys Gly Leu Ile Gln Val 1465 acc ctg ttg gac aca gtg gag ctg gcc aca tac act gtg cgc acc ttc 4817 Thr Leu Leu Asp Thr Val Glu Leu Ala Thr Tyr Thr Val Arg Thr Phe 1485 1480 gca ctc cac aag agt ggc tcc agt gag aag cgt gag ctg cgt cag ttt 4865 Ala Leu His Lys Ser Gly Ser Ser Glu Lys Arg Glu Leu Arg Gln Phe 1505 1495 cag ttc atg gcc tgg cca gac cat gga gtt cct gag tac cca act ccc 4913 Gln Phe Met Ala Trp Pro Asp His Gly Val Pro Glu Tyr Pro Thr Pro 1520 1515 1510 ate ctg gcc ttc cta cga cgg gtc aag gcc tgc aac ccc cta gac gca 4961 Ile Leu Ala Phe Leu Arg Arg Val Lys Ala Cys Asn Pro Leu Asp Ala 1535 1530 ggg ccc atg gtg gtg cac tgc agc gcg ggc gtg ggc cgc acc ggc tgc 5009 Gly Pro Met Val Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Cys 1550 1545 ttc atc gtg att gat gcc atg ttg gag cgg atg aag cac gag aag acg 5057 Phe Ile Val Ile Asp Ala Met Leu Glu Arg Met Lys His Glu Lys Thr 1565 1560 gtg gac atc tat ggc cac gtg acc tgc atg cga tca cag agg aac tac 5105 Val Asp Ile Tyr Gly His Val Thr Cys Met Arg Ser Gln Arg Asn Tyr 1585 1580 atg gtg cag acg gag gac cag tac gtg ttc atc cat gag gcg ctg ctg 5153 Met Val Gln Thr Glu Asp Gln Tyr Val Phe Ile His Glu Ala Leu Leu 1600 1595 gag gct gcc acg tgc ggc cac aca gag gtg cct gcc cgc aac ctg tat 5201 Glu Ala Ala Thr Cys Gly His Thr Glu Val Pro Ala Arg Asn Leu Tyr 1615 gee cac ate cag aag etg gge caa gtg eet eea ggg gag agt gtg ace 5249 Ala His Ile Gln Lys Leu Gly Gln Val Pro Pro Gly Glu Ser Val Thr 1630 gec atg gag etc gag ttc aag ttg etg gec age tee aag gec eac aeg 5297 Ala Met Glu Leu Glu Phe Lys Leu Leu Ala Ser Ser Lys Ala His Thr 1640 tee ege tte ate age gee aac etg eec tge aac aag tte aag aac egg 5345

La Santa de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caración de la Caraci

WO 01/55437	CT/US01/02623
Ser Arg Phe Ile Ser Ala Asn Leu Pro Cys Asn Lys Phe Lys Asn 1655 1660 1665	Arg
ctg gtg aac atc atg ccc tac gaa ttg acc cgt gtg tgt ctg cag Leu Val Asn Ile Met Pro Tyr Glu Leu Thr Arg Val Cys Leu Gln 1670 1675 1680 1	ccc 5393 Pro 685
atc cgt ggt gtg gag ggc tct gac tac atc aat gcc agc ttc ctg Ile Arg Gly Val Glu Gly Ser Asp Tyr Ile Asn Ala Ser Phe Leu 1690 1695 1700	gat 5441 Asp
ggt tat aga cag cag aag gcc tac ata gct aca cag ggg cct ctg Gly Tyr Arg Gln Gln Lys Ala Tyr Ile Ala Thr Gln Gly Pro Leu 1705 1710 1715	gca 5489 Ala
gag age ace gag gac tte tgg ege atg eta tgg gag eac aat tee Glu Ser Thr Glu Asp Phe Trp Arg Met Leu Trp Glu His Asn Ser 1720 1725 1730	acc 5537 Thr
atc atc gtc atg ctg acc aag ctt cgg gag atg ggc agg gag aaa Ile Ile Val Met Leu Thr Lys Leu Arg Glu Met Gly Arg Glu Lys 1735 1740 1745	tgc 5585 Cys
cac cag tac tgg cca gca gag cgc tct gct cgc tac cag tac ttt His Gln Tyr Trp Pro Ala Glu Arg Ser Ala Arg Tyr Gln Tyr Phe 1750 1755 1760	gtt 5633 Val 1765
gtt gac ccg atg gct gag tac aac atg ccc cag tat atc ctg cgt Val Asp Pro Met Ala Glu Tyr Asn Met Pro Gln Tyr Ile Leu Arg 1770 1775 1780	gag 5681 Glu
ttc aag gtc acg gat gcc cgg gat ggg cag tca agg aca atc cgg Phe Lys Val Thr Asp Ala Arg Asp Gly Gln Ser Arg Thr Ile Arg 1785 1790 1795	cag 5729 Gln
ttc cag ttc aca gac tgg cca gag cag ggc gtg ccc aag aca ggc Phe Gln Phe Thr Asp Trp Pro Glu Gln Gly Val Pro Lys Thr Gly 1800 1805 1810	gag 5777 Glu
gga ttc att gac ttc atc ggg cag gtg cat aag acc aag gag cag Gly Phe Ile Asp Phe Ile Gly Gln Val His Lys Thr Lys Glu Gln 1815 1820 1825	ttt 5825 Phe
gga cag gat ggg cct atc acg gtg cac tgc agt gct ggc gtg ggc Gly Gln Asp Gly Pro Ile Thr Val His Cys Ser Ala Gly Val Gly 1830 1835 1840	cgc 5873 Arg 1845
acc ggg gtg ttc atc act ctg agc atc gtc ctg gag cgc atg cgc Thr Gly Val Phe Ile Thr Leu Ser Ile Val Leu Glu Arg Met Arg 1850 1855 1860	Tyr
gag ggc gtg gtc gac atg ttt cag acc gtg aag acc ctg cgt aca Glu Gly Val Val Asp Met Phe Gln Thr Val Lys Thr Leu Arg Thr 1865 1870 1875	cag 5969 Gln
cgt cct gcc atg gtg cag aca gag gac cag tat cag ctg tgc tac Arg Pro Ala Met Val Gln Thr Glu Asp Gln Tyr Gln Leu Cys Tyr 1880 1885 1890	
gcg gcc ctg gag tac ctc ggc agc ttt gac cac tat gca acg taa Ala Ala Leu Glu Tyr Leu Gly Ser Phe Asp His Tyr Ala Thr * 1895 .1900 1905	cta 6065
cegeteceet etecteegee acceeegeeg tggggeteeg gaggggaeee aget	cctctg 6125

## PCT/US01/02623 WO 01/55437

agccataccg	accatcgtcc	agccctccta	cgcagatgct	gtcactggca	gagcacagcc	6185
cacggggatc	acagcgtttc	aggaacgttg	ccacaccaat	cagagagcct	agaacatccc	6245
tgggcaagtg	gatggcccag	caggcaggca	ctgtggccct	tctgtccacc	agacccacct	6305
ggagcccgct	tcaagctctc	tgttgcgctc	ccgcatttct	catgcttctt	ctcatggggt	6365
ggggttgggg	caaagcctcc	ttttaatac	attaagtggg	gtagactgag	ggattttagc	6425
ctcttccctc	tgatttttcc	tttcgcgaat	ccgtatctgc	agaatgggcc	actgtagggg	6485
ttggggttta	tttgtttg	tttttttt	tcttgagttc	actttggatc	cttattttgt	6545
atgacttctg	ctgaaggaca	gaacattgcc	ttcctcgtgc	aaagctgggg	ctgccagcct	6605
gagcggaggc	tcggccgtgg	gccgggaggc	agtgctgatc	cggctgctcc	tccagccctt	6665
cagacgagat	cctgtttcag	ctaaatgcag	ggaaactcaa	tgtttttta	agttttgttt	6725
tccctttaaa	gcctttttt	aggccacatt	gacagtggtg	ggcggggaga	agatagggaa	6785
cactcatccc	tggtcgtcta	tcccagtgtg	tgtttaacat	tcacagccca	gaaccacaga	6845
tgtgtctggg	agageetgge	aaggcattcc	tcatcaccat	cgtgtttgca	aaggttaaaa	6905
caaaaacaaa	aaaccacaaa	aataaaaaac	aaaaaaaaca	aaaaacccaa	gaaaaaaaa	6965
aagagtcagc	ccttggcttc	tgcttcaaac	cctcaagagg	ggaagcaact	ccgtgtgcct	7025
ggggttcccg	agggagetge	tggctgacct	gggcccacag	agcctggctt	tggtccccag	7085
cattgcagta	tggtgtggtg	tttgtaggct	gtggggtctg	gctgtgtggc	caaggtgaat	7145
agcacaggtt	agggtgtgtg	ccacacccca	tgcacctcag	ggccaagcgg	gggcgtggct	7205
ggcctttcag	gtccaggcca	gtgggcctgg	tagcacatgt	ctgtcctcag	agcaggggcc	7265
agatgatttt	cctccctggt	ttgcagctgt	tttcaaagcc	cccgataatc	gctcttttcc	7325
actccaagat	gccctcataa	accaatgtgg	caagactact	ggacttctat	caatggtact	7385
ctaatcagtc	cttattatcc	cagcttgctg	aggggcaggg	agagcgcctc	ttcctctggg	7445
cagcgctatc	tagataggta	agtgggggcg	gggaagggtg	catagetgtt	ttagctgagg	7505
gacgtggtgc	cgacgtcccc	aaacctagct	aggctaagtc	aagatcaaca	ttccagggtt	7565
ggtaatgttg	gatgatgaaa	cattcatttt	taccttgtgg	atgctagtgc	tgtagagttc	7625
actgttgtac	acagtctgtt	ttctatttgt	taagaaaaac	tacagcatca	ttgcataatt	7685
cttgatggta	ataaatttga	ataatcagat	ttcttacaaa	ccaggaaaaa	aaaaaa	7741

<220>

<210> 15 <211> 1309

<212> DNA

<213> Homo sapiens

<221> CDS <222> (484)..(765)

<400> 15 cgacccacgc gtccgatgtc attactatat ttcaatgcat catgcttgta acaggcattt 60 catttataat aagaatgagt tattcatttg taagccgttc agtaatttat ctactattcc taaattggca taatgttaga taatctattt tgaatcacct ttaattacat gtcagaatgc 180 cttaactacc ctaacttgac aaaacagaat tctttggtag acgcggtggg ggcggggtgg 240 ggggtctgga cggagtctct atttaaggag aaatcatcat gctatgataa aacacagaag 300 catgagtggc aagtggcggg gtatttattt tgcacaaact atttgcagtc tctgtgtatt 360 taaaaagtaa agaaagttgc atccagaagg gttttgttag aatgaataca tttatattag 420 gactgacaac ttcagctctt ttgtttaggt tttcaattat ttttggtaag agtatgtagc 480 ctt atg atc tgg ata tat ttt gca ttc att ttc caa cgc cta cat tta 528 Met Ile Trp Ile Tyr Phe Ala Phe Ile Phe Gln Arg Leu His Leu att cet ggt aag age agt get egt caa gtt tet ggt tit tet etg ete 576 Ile Pro Gly Lys Ser Ser Ala Arg Gln Val Ser Gly Phe Ser Leu Leu 20 624 tca ttt aac ccg tca aac aca atc ttt gta aag cta gat tgg tgg Ser Phe Asn Pro Ser Asn Thr Ile Phe Val Lys Leu Asp Trp Trp Cys 40 35 ttt ata caa ctt att tac tca gct tac ctt ttt gag aaa cga ttg tta 672 Phe Ile Gln Leu Ile Tyr Ser Ala Tyr Leu Phe Glu Lys Arg Leu Leu 50 720 gaa att gac gat gtg ttt gtt cca gtg ata ctg aaa gta gtg ggg gca Glu Ile Asp Asp Val Phe Val Pro Val Ile Leu Lys Val Val Gly Ala 65 aga att gag ttt cac agt gga att ggc ttt gga tct ggc cta tag att 768 Arg Ile Glu Phe His Ser Gly Ile Gly Phe Gly Ser Gly Leu * 80 agtgacataa aatattttct ctattttccc ctgttctttt tgtgttatgc acttaatttt 828 atgactgccg ggggggtcag ctggagtgct gcttaacaag tatctctcct actctcagtg 888 gtcagaggct gtgttggacc catagtagaa ttttccaggt cacagaccca agcttccatg 948 ggttgttact gtgctgtacc acttggtggg tctgattctg aacctgatgt gtgtgttaat 1008 tatattttaa gcaacacaca cacacacaca cgcctcatgt aatggacttt tataacaaaa 1068 gaaaaaattt ggatttetaa tttacaaatg gcaaattatt tatccctctc tggatgcacc 1128 aaagaccagt aaagtttata gcttttccat ctatatttat aaagcaatac tgtattataa 1188 aaatcaatat ttttatcaca tgcttgaaat ttttattttg ttgttttaaa atgtgcactc 1248 taaacatatc agaaccttat ttcttcctat gaacttaagc tgcctgcgca caaaaaaaaa 1308 1309

<210> 16 <211> 1600 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (242)..(589) <400> 16 60 120 ggggccgcgg cggaaggcca ggagtttgca gccagggcgc cgggtttgtg gtctgcagtg tcgtgaggct gaggtgcagc atgtctagac tgggagccct gggtggtgcc cgtgccgggc 180 tgggactgtt gctgggtacc gccgccggcc ttggattcct gtgcctcctt tacagccagc 240 286 atg gaa acg gac cca gcg tca tgg ccg cag cca gag cct gcc caa Met Glu Thr Asp Pro Ala Ser Trp Pro Gln Pro Glu Pro Ala Gln 1 334 ctc cct gga cta tac gca gac ttc aga tcc cgg acg cca cgt gat gct Leu Pro Gly Leu Tyr Ala Asp Phe Arg Ser Arg Thr Pro Arg Asp Ala 20 382 cet geg gge tgt eee agg tgg gge tgg aga tge ete agt get gee cag Pro Ala Gly Cys Pro Arg Trp Gly Trp Arg Cys Leu Ser Ala Ala Gln 430 cet tee acg gga agg aca gga gaa ggt get gga eeg eet gga ett tgt Pro Ser Thr Gly Arg Thr Gly Glu Gly Ala Gly Pro Pro Gly Leu Cys 55 50 478 get gac cag cet tgt ggc get geg geg gga ggt gga gga get gag aag Ala Asp Gln Pro Cys Gly Ala Ala Ala Gly Gly Gly Ala Glu Lys 526 cag cct gcg agg gct tgc ggg gga gat tgt tgg gga ggt ccg atg cca Gln Pro Ala Arg Ala Cys Gly Gly Asp Cys Trp Gly Gly Pro Met Pro 80 25 cat gga aga gaa cca gag agt ggc tcg gcg gcg aag gtt tcc gtt tgt 574 His Gly Arg Glu Pro Glu Ser Gly Ser Ala Ala Lys Val Ser Val Cys 105 ccg gga gag gag tga ctccactggc tccagctctg tctacttcac ggcctcctcg 629 Pro Gly Glu Glu ggagccacgt tcacagatgc tgagagtgaa ggggggtgag ttgtctctct tggaggcagt tatggctaca gccaggttgt gttttgtaaa agtattatca atggaaaatt caaaccaagc 749 809 tgctgcaaat gatttttgga acaggtaaga gtataataaa tacagaagag ttgaaacaaa aaacccatcc aatttatgtc attcagacaa atgtagatgt taatagcagt tattgcttgc atctqttatc ttaqtttatt acatagttat gatatattat ttgggcattt ttctgtctta 929 tcacaaggac ttgataagca ttgtttgact ttgttccttt ccttgggtgg ctgagctggt

atacggagat gtctaagcac gaagcatgct cctccctgqg agtcaccctc ttcccacagq 1049 ggagcettge etgtgatect ttgcattttt acaggtggga ggtggatgte etgagttete 1109 agtggcccag gagggctgac gataggcctt tctgtgaggc ggggcagctg gcacgagtct 1169 ggtggacacc ctcctccaag cctggccatg ttaacggtgc ccttaccccc aaaccccctt 1229 accacccett ttcaccccct ccccccaccg cctcccaccc taactctaca ccttcaccct 1289 ecgececag agtecacact caacetecet ecceatecee ecaatecett tacegeteae 1349 cctctccccc ggcccccca ctcaggccca gcttcccccc cctgaccctc cactctactg 1409 ettecetace agreecettt cetgecettt etcaccetet cacceetete eceteegtee 1469 gccactgete ecceteteet eccacaceat etateegtea acetteaate egeetetgae 1529 gtaacccacc gattcaccac ctcacccttc agtcctctct catcgcggac cccgtatcct 1589 ccgataaatc c 1600

<210> 17

<211> 735

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (402)..(482)

<400> 17 ettttttecc ecceeegca aatttttte eettttaaa ggttttgggg ggttaaaaaa 60 aaaaagggtt ccccccggg tttttggtgg ctccccccc tccccqttaa acccqqqqtt 120 attctaaaaa ggttttaggc ccgttagggc cccttccaat ttgttttaaa aaattcaatt 180 eeggeeecc ttttttttt tttttteaga aaggattttg gttttgteec eeggtgggag 240 cccattaacc cagatccttt ccccgccccc ccccctggg ggcaaaaggg gacccctttt 300 ccaaaaaaaa aaaaaaaaa agaataataa tgtgggtatg atgtgagata cgcatgcaaa 360 gtatgtaata taatgcctgc cctccagtag ctgctattgt a atg tac ttc ata 413 Met Tyr Phe Ile tgg ata ggg aca gtg ttt ctt att tgc tgc tat ctg ttc caa gtg tct 461 Trp Ile Gly Thr Val Phe Leu Ile Cys Cys Tyr Leu Phe Gln Val Ser 15 agt gtg gta cct aac acc taa tg ggcacttaca tgtgtgttga atagtgaaag 514 Ser Val Val Pro Asn Thr * ggaaaaggaa ccagaatcta ggagaacagt taattattac cattctcct cattcctctt 574 catctcagtt ttaggtgaaa taggcaaaag aatttcacta cttaaacaat ttgaagtgag 634

agccag <b>t</b> tct	cgtgccgaat tcttggcctc gagggccaaa t	735
<210> <211>	<del></del>	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	CDS	
<222>	(133)(264)	
<400>		
cgtaccactg	tggtgtaatt ccgggaagga cggacggaga gtggatcctc caggtggtgg	60
gaaaagctta	acageetggt gecagttace etgegatggg agaggggca geceecatag	120
aagcacgggc	tt atg gga ccc ggg ttc ctt cag tgc tca ccc acg aag Met Gly Pro Gly Phe Leu Gln Cys Ser Pro Thr Lys 1 5 10	168
aag ggc tcc Lys Gly Se:	c caa acg gcc cca ctc gac ggc tca ccg gag gat ggt cct r Gln Thr Ala Pro Leu Asp Gly Ser Pro Glu Asp Gly Pro 20 25	216
	g gtg ttt gtt gaa cag ata aga gac aac aaa aca gac taa p Val Phe Val Glu Gln Ile Arg Asp Asn Lys Thr Asp  * 35	264
gaagaggcct	gttctatgaa ccggggaaag tgaaggaatc acaaagagcg gctcgcctta	324
gggcaatcct	ggggaaaaga tggagaggca tggatttttc ttggatgtgt gcctcatcct	384
ggggctcatc	cctctgagca tcaaatattc attgcaaaag agggggaaaa actctgctgc	444
ggacaatgct	ggatggtetg ateteteeet tggeeagaat taacggggea atteetaace	504
cctgttggtc	ctcagaatca cctggcctat gcacactccc gctaaaccac tgaagtccaa	564
tttctgggag	ctcagccagg gaatgtgtat ttttaaacaa gccccctagg ttactctgat	624
aagtgcaaag	teagagageg etgeteteat geactgagee tgageactet tetattaata	684
aaaaaggaga	ggagaateet gggttgggtg ceettegeet tetggeggea gaagageaga	744
gccaggctct	aagcacctgc acccaccgct gggctcagga gctgcgctgg agaatagaag	804
ggctaattta	gtcattcatg cctttttaga gcaaattaca tgtggagagg gtggggcaca	864
ctgaatttta	ttttagccaa atgcccctta tctccttatg caattgatat ttttatattg	924

ggtgagaaat aagagagaaa atgcaaggaa gaaaaaactg tgtgacgtct tctatgtaca

PCT/US01/02623

694

1031

<210> 19 <211> 780

WO 01/55437

47

aacattagag gattggtcat ttgtcatcaa gtcgtctgta atacagaaaa cgataaatac 984

aacctaacag ttcaaacatg acgagttaaa taaatgatgg ttaaaaa

<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (271)(435)	
<400> 19 agogtgtaga tatacctatc tattcgacga tgaagatacc ccaccaaacc caaaaaaaga	60
gatototoga ggatoogaat togoggoogo gtogacotoo aaaccacott toactotoag	120
aaaatgagac cacaaaggag tatgctataa atcaaatttg ccaaccaatt atgtagatat	180
tactcattct aggactaatg atgatggtaa agaagttgcc agtgttatgg caatgaaaat	240
ttcagaaagg aggagttgat gatcttctag atg tat atg aac acc tgt cta Met Tyr Met Asn Thr Cys Leu 1 5	291
tat ctg cat gta tat gtt ttg acc tgc agt ggt tgc aat gtt gat atg Tyr Leu His Val Tyr Val Leu Thr Cys Ser Gly Cys Asn Val Asp Met 10 15 20	339
tgt tca aga tta ttc ctg tct aca aaa ctg aag gcc cat gtt caa att Cys Ser Arg Leu Phe Leu Ser Thr Lys Leu Lys Ala His Val Gln Ile 25 30 35	387
gtt ctt tat tgg gtg ttt tta tgg tca cgt ggt aac aat ttt ctt acc Val Leu Tyr Trp Val Phe Leu Trp Ser Arg Gly Asn Asn Phe Leu Thr 40 45 50	435
taacctacaa aaggttctct tgatgaacat ttttatttat atttactaat ctttttaaaa	495
aaaagctttc atagcattat ataatcagat gaagaaagcc cagtagaata aaaaaaaaat	555
tcattagcct agcctatatt atgttttctg tcaaaggaaa acaaattctc aaataggaat	615
tctaaaaata tttactaaag taaaataact acttaaaatg ttttattcca gttggaagga	675
aggtacaggg agaaatcgca attatttagg ggagaagtat atttattata agatggtgtc	735
ctcaaattag cctaccatgg cacgtagggg cagcagctat attag	780
<210> 20 <211> 644	
<212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (66)(221)	
<400> 20	
ggaattcata ttgcatgtcc atattttcca aaaagagtta agatagcaag ctactgttta	60
ggatt atg gta att ctg gat gtc ctt gaa ctg tat cac atg tgg ttt Met Val Ile Leu Asp Val Leu Glu Leu Tyr His Met Trp Phe 1 5 10	107
ctt ggc ata tta tat gat gca att ttt tat tgc ttt gtc cat gca ata	155

ļ

WO 01/55437 PCT/US01/	02623
Leu Gly Ile Leu Tyr Asp Ala Ile Phe Tyr Cys Phe Val His Ala Ile 15 20 25 30	
aac gct gat aaa ttt ttc ggt tta aaa ttt acc aag tct gct act gta Asn Ala Asp Lys Phe Phe Gly Leu Lys Phe Thr Lys Ser Ala Thr Val 35 40 45	203
tcc cag aat tct caa tga aagaaa atatttacag tttttaacat tacaggtaga Ser Gln Asn Ser Gln * 50	257
aaaaggatca aagtgatttt ottattttto tatotaatto atggaaaaaa gaacacaggo	317
agggagggte tttgeteetg tteeccaatt ttetttgtee aaatggetea geettgaatt	377
caagaggagt ggtgcaggat ttaattgctc ccacttgtct tccttgtgca aaactgcagc	437
tagaagagca aatgataagt tgagaatatt taacactcag caacaatacc aggaacttgt	497
tcaaactttg tttttgaagc ttcttgacct tccaatgatt tatttcttcc acacatgggt	557
tcattagaac ttcacttgga gaagaagaga aatagcatat aacaacattc ttcatctata	617
accagaatat tccaagcett tccaaag	644
<210> 21 <211> 825 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (113)(277)  <400> 21	
attgaagccc tcgttggaag caccggaccg gaattcccgg gtcgacccac gcgtccgaaa	60
atgttaaaga actatctttc caaaacgtaa acactgcctt ccctttactt aa atg Met 1	115
tac gat ttt ctt ttg ctc ttg agt ttt att ttc ata gtg gca tct tac Tyr Asp Phe Leu Leu Leu Ser Phe Ile Phe Ile Val Ala Ser Tyr 5 10 15	163
tgg tct ttc ctt tcc acc ata ttt ttg gat gtt gtg tgt tcc att tta Trp Ser Phe Leu Ser Thr Ile Phe Leu Asp Val Val Cys Ser Ile Leu 20 25 30	211
cat tgc cca gtt aaa cca cag aca ctc ctg aag tca tgt tta cat gtg His Cys Pro Val Lys Pro Gln Thr Leu Leu Lys Ser Cys Leu His Val 35 40 45	259
gac tgc aag tca acc tag ttggca tgttgatcta agctacaaat tgcactgctg Asp Cys Lys Ser Thr * 50 55	313
ttttgccgaa cccaacagtc ggtttcttgc cattatttgc ggtattttaa cttaaaactc	373
acggtaatcc ttctcacccc atctagtttg ttttaattga tctaacaaac actgcttgtt	433

... ......

tgaattcaaa tggaggatce atggaagete teecacecea eeetttgata ettgataagg 493
ggtcaaacag tacttettt aaattcagat aattetttga atgaactatg aaatacttca 553
gagggaaagg aaatatcgat tetgagatgg agagtaaaag aacaaggaga tatteattac 613
tgttgcagat aatteettge aatgaaagga aaaaattaga egttggatat tettggttgt 673
ggtggttgta tagtgaggat aggtggacaa tagaaaaate teeettgggg attgaagtte 733
taaatctaga acttaatett gaagetggca eetttacttg gacageceae tatgggaggg 793
aatetaaaaa cetacetttg attagaaace tg 825

<210> 22

<211> 1702

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (709) . . (966)

<400> 22 cgatcattgc gctcggagtg aggtaaaaaa gttagtggat ggaagggcat gaacacccgg 60 tacacggaaa aaaataatgg tttaaataaa tgaattatgt ggggaatttc ctgcaggaga 120 caccetatet gggtgteeet aaacaggggt gtgggagete aggeatgggg geegggettt 180 aagcacette ecagaceeca agaceetetg teageageag etgtgeecea aageeeagge 240 tcactgtgta aatcccaacc ccatgagccc caggccacac cagaccccct ctgcaggccg 300 ctgtgagcat tctccattga gaaacatctg ccccactaga caccggcccc tccccctgca 360 geeteetgee eecattagea eetgaattge ageaaatgtg acceagaaae accgeetggt 420 ggatgcagcc agcgggtgga gcgtggagag ggatggggtg gccatgtgaa cccctcactc 480 agececatte caaggeetga agtecegtea cetteeteca geeteeetgg eggeeeecae 540 600 tttacagatg gcacaactga gacttgggag tggagggcac agggctcctc ccatggggac cctgggagcc accagaggcc ccagatgctc ctgcccctct gggaacagtc tttccccaga 660 717 cattgcacte etcaaagetg cattttcaat taactgtgce getgaggg atg tgg eet Met Trp Pro ggg tgc cag gtt ttg agg gct ggg ctg agt cct gca ggc agg gcc cgc 765 Gly Cys Gln Val Leu Arg Ala Gly Leu Ser Pro Ala Gly Arg Ala Arg 10 ttc cca ccg gac acc tac ctg ccc agc ccc agg cag gga ggg aac cct 813 Phe Pro Pro Asp Thr Tyr Leu Pro Ser Pro Arg Gln Gly Gly Asn Pro 20 gcg tgc aga tgt gtg act gcc atg aat gcg gtt ttg caa gtt ttg cca 861 Ala Cys Arg Cys Val Thr Ala Met Asn Ala Val Leu Gln Val Leu Pro 45 40

		-		-			-		-					gac Asp		909
														cac		957
	cag Gln 85	taa *	gcts	ggcc	aac	agaag	get g	gacto	catgo	ee e	ccaa	accc	c ac	catao	caga	1013
tgt	ggaaa	act .	aaggo	ccaga	g g	gaca	gagca	a gc	ctcc	cacg	tcct	-9999	gtg	aaca	ccaca	c 1073
agga	atcag	gtg	gcct	ccgcg	ga c	ggct	ggtag	g gag	gggaa	agta	ggca	aagga	aga :	gaggg	gatgt	a 1133
ctca	atct	gga	tggga	atggo	c a	ctgc	cttco	caç	gacto	gtcc	caaç	gctt	<b>3</b> 99	acati	ctga	t 1193
ccc	cctgo	cag	tccc	cagga	aa g	cggag	geet	aga	agtc	ctct	ggct	tcta	agt	ccct	cctgc	a 1253
ggc	cctg	gga	tggci	teet	ca t	ggaga	aaaco	ag	gttc	ccag	tcc	ccgg	ctg	ggca	cagat	g 1313
gta	ccggg	gat	ggct	gaggo	cc a	tgac	cctad	2 00	ctgt	gagg	ggca	acago	ctc	aaagg	gete	t 1373
ggc	ctcal	tcc	cctga	ataco	ca a	ccac	catgo	a aa	ttaai	teet	<b>ggg</b>	gtcgg	gtg	aatta	aggga	a 1433
agc	caggi	tag	cctc	tggg	a g	caca	agcca	a gga	agca	ctac	tgt	cctat	tgg ·	gttag	ggaga	g 1493
gcc	9999	gga	gtgg	gtgc	ca g	accg	gggca	a gc	atcto	cctc	ctac	cca	gct	agcc	egaaa	g 1553
ctg	gtga	acc	gtgt	gcaco	ec t	cccc	attgo	c to	cggta	aaag	ggad	cagat	tgc	ccct	gccag	c 1613
CCC	agga	gag	cacci	tagto	eg e	gcac	acgga	a gt	cccc	aggc	acad	cctc	tga	agggg	ggaat	t 1673
cca	ccgc	act	ggac	taato	gt t	catc	aagg									1702

```
<210> 23
    <211> 629
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> CDS
    <222> (109)..(303)
    <220>
    <221> misc_feature
    <222> (1) ... (629)
    <223> n = a,t,c or g
    <400> 23
aacatttcca gaaccagaca gcatcctcac ttgtacccac taaaggtaac tactagtgtg
                                                                     60
acttctatct ttgttggttg gttgtatcca ttcttgtaca tcataaag atg aaa cca
                                                                     117
                                                     Met Lys Pro
                                                       1
tat tgt atg tat cct ttt ctg tct ggc ctc ctt agc tcc tta tta ttt
                                                                     165
Tyr Cys Met Tyr Pro Phe Leu Ser Gly Leu Leu Ser Ser Leu Leu Phe
                         10
```

														ttt Phe			213
														tat Tyr 50			261
					_	_				att Ile				gact	tatt		310
ttga	atac	caa 1	tact	gtaa	at to	gteti	gtto	ata	atcat	tgtg	ttca	aacat	at	gcact	tact	:c	370
ctaa	agaga	agg a	aattt	gtag	gg to	catag	ggata	a tg	tgtai	tgat	cago	cttgg	ggt .	ataca	actac	c	430
agti	ttct	.cc 1	tgtca	aacca	ag go	catga	agaaa	a to	taatı	tgcc	ctat	tgtg	ctg .	acta	aaaca	it	490
gaaa	attg	gga g	ggcct	tctaa	at to	ctaa	cccti	ct	ggaga	aggg	ccc	cccc	ccc	cccci	tgggg	19	550
<b>a</b> aa	ggccı	ntc (	cccc	ccca	cc c	gnng	33331	n na	attt	taaa	ataa	aagto	egt	ggtta	aagtt	:a	610
taga	attt	tt 1	taaaa	aaati	Ė												629

<210> 24 <211> 757 <212> DNA

<213> Homo sapiens <220> <221> CDS <222> (165)..(359) <220> <221> misc_feature <222> (1) ... (757) <223> n = a,t,c or g<400> 24 tatagagace actagteeaa gtggaggaat tecteceete tageeecett cettacetgg 60 taagtcaaat gaaccaaatg tcaaacagtt tggaaaggag agttgaagca gaaggaaact 120 teettetgee eetttgaatt tgttaetttt tetteeaatt aaaa atg tgt tat ttt 176 Met Cys Tyr Phe 1 tac aat acc att ata ttg aca ttg caa ggg tcc ctg atg ttt tta ttg 224 Tyr Asn Thr Ile Ile Leu Thr Leu Gln Gly Ser Leu Met Phe Leu Leu 10 ttt tet gtt gtc act ttg tat etc ttc tec cat tec cat ecc act ecc 272 Phe Ser Val Val Thr Leu Tyr Leu Phe Ser His Ser His Pro Thr Pro att age ate the tet gat gtg tht aat atg tat eet tgg ata tat atg 320 Ile Ser Ile Phe Ser Asp Val Phe Asn Met Tyr Pro Trp Ile Tyr Met tat tet tac atg gtg ttt tet gta aat tta tat aaa tag tattacatga 369

Tyr Ser Tyr Met Val Phe Ser Val Asn Leu Tyr Lys * 55 60 65

taatteteat tetgateett tetteattta aaactatgtt teteagttet getggtgttg 429
tgtttatatg gtgettttag eeactgeatt gtattetat tgetetgtet actgegtett 489
atttgeetgt teecetaagt gacagacace ttatttgtte teeetgtace acaaacaatg 549
ettetgtgggt atagtggete acaettatag geteagatet ttggggagga tgacgcagaa 609
agategettg ageecaggag ttteaaacca aacegggeaa tgagacecaa aceteatete 669
tgecacaaat taaaaactta attgagcaca ttggeattgt geteeceee cancinette 729
acagactggg gaagaaaaac catteace 757

<210> 25

<211> 884

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (137)..(715)

15

<400> 25

ggacttcccg ggtcggcctg ggctgctcgt ctggctgctc gtgctccggc tgccttggcg 60
ggtgccgggc cagctggacc ccagcactgg ccggcggttc tcggagcaca aactctgcgc 120
ggacgacgaa tgcagc atg tta atg tac cgc ggt gag gct ctt gaa gat Met Leu Met Tyr Arg Gly Glu Ala Leu Glu Asp
1 5 10

ttc aca ggc ccg gat tgt cgt ttt gtg aat ttt aaa aaa ggt gat cct
Phe Thr Gly Pro Asp Cys Arg Phe Val Asn Phe Lys Lys Gly Asp Pro

gta tat gtt tac tat aaa ctg gca aga gga tgg cct gaa gtt tgg gct 265 Val Tyr Val Tyr Tyr Lys Leu Ala Arg Gly Trp Pro Glu Val Trp Ala 30 35 40

25

gga agt gtt gga cgc act ttt gga tat ttt cca aaa gat tta atc cag 313 Gly Ser Val Gly Arg Thr Phe Gly Tyr Phe Pro Lys Asp Leu Ile Gln 45 50 55

gta gtt cat gaa tat acc aaa gaa gag cta caa gtt cca aca gat gag
Val Val His Glu Tyr Thr Lys Glu Glu Leu Gln Val Pro Thr Asp Glu
60 70 75

aat gta gaa gaa ctt tta ggg ttt ttg gaa ctg tac aat tct gca gct 457 Asn Val Glu Glu Leu Gly Phe Leu Glu Leu Tyr Asn Ser Ala Ala 95 100 105

aca gat tot gag aaa got gta gaa caa act tta cag gat atg gaa aaa 505 Thr Asp Ser Glu Lys Ala Val Glu Gln Thr Leu Gln Asp Met Glu Lys

WO 01/55437		PCT/	US01/02623
, 110	115	120	
aac cct gaa tta tct aat gaa Asn Pro Glu Leu Ser Asn Glu 125	ı Arg Glu Pro Glu	cct gaa cca gta g Pro Glu Pro Val G 135	aa 553 lu
gcc aac tca gag gaa agt gat Ala Asn Ser Glu Glu Ser Asp 140 145	agt gta ttc tca Ser Val Phe Ser 150	Glu Asn Thr Glu A	at 603 sp 55
ctt cag gaa cag ttt aca act Leu Gln Glu Gln Phe Thr Thr 160	tca aag cac cac Ser Lys His His 165	tcc cat ggc aac a Ser His Gly Asn A 170	gg 649 rg
caa gca aat tat gct tca gga Gln Ala Asn Tyr Ala Ser Gly 175			
gaa atg ctg caa gaa taa aat Glu Met Leu Gln Glu * 190	aaa agtgcccgaa aq	gtggaaacc accaacco	gg 751
cataagtett aggteteeaa aggad	cggaa aagaatgatg	gctattaact tttgaa	aaaa 81
aaaagactct tgaattggaa aacca	aattg gcttacagcc	gaagcacttt tatttt	gatg 87
<pre>&lt;210&gt; 26   &lt;211&gt; 1070   &lt;212&gt; DNA   &lt;213&gt; Homo sapiens  &lt;220&gt;   &lt;221&gt; CDS   &lt;222&gt; (111) (305)  &lt;400&gt; 26</pre>			884
egcaattccc gggtcgaccc acgcc			
aaaaggtgtc ctggctagca ccatc		Met 1	Pro
ggc tac gtc ccc ctt ctg ctc Gly Tyr Val Pro Leu Leu Leu 5	Leu Leu Leu Leu 10	Leu Arg Cys Ser G	ln
cgg ggt gga gga gtt aat ttt Arg Gly Gly Gly Val Asn Phe 20	Gly Glu Lys Asp	gca aaa gtc ccc gg Ala Lys Val Pro G 30	gg 212 ly
acc tgg aga gat gga gtc agg Thr Trp Arg Asp Gly Val Arg 35 40	gtc cct gga gaa Val Pro Gly Glu 45	Gly Ala Ser Trp As	ac 260 sp 50
tca gac agg gcc agt cct gag Ser Asp Arg Ala Ser Pro Glu 55	cga agg tac gga Arg Arg Tyr Gly 60	ata ggt gag tga ad Ile Gly Glu * 65	cc 308

ttgggaactc cggaccctgt tatctaccct caatcacctg ccacagggag gcagggaccc

cagegtettt eteatateee ettttaagga aatgetetge ttttgatttt gegeatttta 428 tttaagaatc tttgtttcaa ctttcctgga gaaatgaaaa atttggcact cctctaatcc 488 cagcgctttg ggaggctgag aaggagtggg atcccttgag cccaggagtt tgagacaagc 548 ctgggcgaca taatgagaca ccatctctac aaataccaga aaaatcatcc aggcgtggta 608 gcccatgcct gtattctaat ctactcggga ggctgaagtg ggaggatcac ttgatgccat 668 gaggccaagg tgcattgagc cctgaatggg ctaacgaact ttaacctgat tcacagaaaa 728 gaacctgggg ccaataagag agtatggaca caacaaacat aggcgggccg ccttataaga 788 tacaaagttt atacccctgt tggaaaaaaa ttatttttt tagtggcacc agatcactct 848 gatecegega ttttacagea gegteaggge aaacetette taageaetee etteaceeae 908 gtcgtatctt caacttccta tgatacatca accagtaaat accgccgtcc taacatcgaa 968 ctgaatgcta gttactactt ctacagctgc taacaccttc ataatatcga ctccgtctct 1028 1070 tttacattag actttgtagg tcaagcttta atctgcatct cc

<210> 27 <211> 917

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (254) .. (466)

<400> 27 ccctgcaggt accggtccgg aattcccggg tcgacccacg cgtccgggat tagtttaaat 60 tatcataaaa gtgcttgaaa atctttaact tgcatgtaaa tttggaattc tgaaaaattc 120 ataaataccc tgccagtatc tatgaaagga aaagctgcag atccgactat ataccaataa 180 tecattttte taaaagttea gagaaaetet gtageteatt atteetggga tataaggtaa 240 atg aaa ttt ctt ctc atg tct ctt ccc tat aga cat 289 tcctqqctgg gtt Met Lys Phe Leu Leu Met Ser Leu Pro Tyr Arg His ctc ttt tgt atc act cag gct att ctt tct gaa ata gct gaa ggt att 337 Leu Phe Cys Ile Thr Gln Ala Ile Leu Ser Glu Ile Ala Glu Gly Ile 20 15 385 aga aac gat cca ttc aaa ttt tat ctt tat tct gtt ctt gcc ctt ttc Arg Asn Asp Pro Phe Lys Phe Tyr Leu Tyr Ser Val Leu Ala Leu Phe ctc cac tat tat atg tat gtt ttt gtt tca agg ttc agt atc tac tac 433 Leu His Tyr Tyr Met Tyr Val Phe Val Ser Arg Phe Ser Ile Tyr Tyr 50 tta aag tta ctt aga att ttt aag ttt tcc taa tataaaca agcatttgaa 484 Leu Lys Leu Leu Arg Ile Phe Lys Phe Ser *

65 70

agaaactact ttaattytta tyatyactaa acttytetea aaccaaaaat atgegetaaa 544
cactacytay taagaatgay accaycetyy geaacataye aagaceettt etetacaaaa 604
aaaaytttaa aaattatety gyeytyyy cacacaceety tyyteetaye taetyyyayy 664
cygaagyatt yettyageee agyayttya yyetyeatty yyetyyate acacaceyty 724
geactecaay etyyyeyata gaayyaayat eyeteetae aaataaatae ataaatacaa 784
tttgaaaaya aacyyyayt yyyaaceetty teaayyyyy caactactay agaayeeatt 844
tttaactatt atteeataey tyaacaacee agyeeyayat yeeeeee 2904
gyyatyeaaa cae 904

<210> 28

<211> 703

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (285)..(509)

<400> 28

atacgactca ctatagggaa tttggccctc gaggccaaga attcggcacg agggctatta 60
catagaaatt ttgtagaatc taataagata aactagaaac atgacatgtt cagctgtttt 120
ctctacgaat aaacaaattg gcgctaaaac tggtcttgct atctagattt ctagttatat 180
ctcagttatc ttttccccac atgggatgtg aaagtaatgt tatatgcttt cttatgtacg 240
tacttttgac ttaggtcagt ctccacactg cattaaaatt acta atg aga caa att 296
Met Arg Gln Ile
1

gca gtt ttc cag agg ttc atg ttt cca ttt ctc ctt cct tgg ctt tcc 344
Ala Val Phe Gln Arg Phe Met Phe Pro Phe Leu Leu Pro Trp Leu Ser
5 10 15 20

tgc att ttt agc tcc agt caa aat tct att tat tat gta tca act ttt

392
Cys Ile Phe Ser Ser Ser Gln Asn Ser Ile Tyr Tyr Val Ser Thr Phe

25
30
35

ata aaa tgc ttg gct ttg aaa agt ata att aaa aga caa aga tct gaa 440 Ile Lys Cys Leu Ala Leu Lys Ser Ile Ile Lys Arg Gln Arg Ser Glu 40 45

att aat agg ggg ttt tta gct atc tat cat gca tta aga aat caa gtg 488 Ile Asn Arg Gly Phe Leu Ala Ile Tyr His Ala Leu Arg Asn Gln Val 55 60

acc agg tgt ggt ggc ctg taa tc ctagcacttt gggaggctga agtgggagga 541 Thr Arg Cys Gly Gly Leu * 70 75

ccacttgagc tcaggagttc aagaccagcc tgggcaacat agcaagaccc tgtctctact 601

aaaaataaaa aaaattgacc agggggggg tgcatgcctg tagttccagc tacttgggac 661

gctaaagggg gaagactgct ttaacccccc ggggcgggag ac	703
<210> 29	
<211> 373 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> (75)(287)	
<pre>&lt;400&gt; 29 actegecegt aattaceggg gegacecaeg egteeggaga actgtttgtg gaaaacattg</pre>	60
gttcttaaca ggac atg cat agc agg aca aga atc aga ttg tgt ctg tgt  Met His Ser Arg Thr Arg Ile Arg Leu Cys  1 5 10	110
aat gcc aag aag agt tgc cag aag tac tta tca tct ttg aaa tta tcc	158
Asn Ala Lys Lys Ser Cys Gln Lys Tyr Leu Ser Ser Leu Lys Leu Ser  15 20 25	130
act ttq tta tcc cct ttq ctq ttt ttg cct ttt tat acc cca tct ctt	206
Thr Leu Leu Ser Pro Leu Leu Phe Leu Pro Phe Tyr Thr Pro Ser Leu 30 35 40	
aaa gga tgg ggc att ttt gtt ttg agt ttt tat ttt atg tta att ata	254
Lys Gly Trp Gly Ile Phe Val Leu Ser Phe Tyr Phe Met Leu Ile Ile 45 50 55 60	
gcc gac tgt aac ctg ttc aaa ata att tag gagctctt ctagagttgg	305
Ala Asp Cys Asn Leu Phe Lys Ile Ile Ile * 65 70	
gaatgctgag aatttttaaa aattactaaa acttggaata gctttttcaa atgccaaagc	365
agatttgg	373
<210> 30	
<211> 665 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (408)(566)	
<400> 30 Shangahan garahtanan gatananan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagatagan gagata	60
gtaccgetee ggaatteeeg ggtegaeeea egegteegeg gaegegtggg eggaegegtg	60
ggeggaegeg tgggetgaeg ttettgtgat gtttteecat gcataaacat gecacateca	120
tgttcttggg tcatcttttt tgccctttca tggagtcata aattttccca actgaagtct	180
tgtatattct gttagattaa ttcctatttc tagttgctgt aaatgatatc ttatgtttta	240

ttac	cattt	ct a	aatag	ggata	at go	gtgti	tggtg	g aaa	atgt	taac	cct	ctca	tta q	gatc	cactag	300
ttta	accto	gtt q	gatto	ctatt	g to	gttti	tctai	gta	aaat	gatt	ttgi	cag	cta	taaai	taataa	360
catt	ttat	tt 1	tctct	ttco	et to	gcaat	tacci	t ato	gata	attt	atti	ttt	Me	-	acc Thr	416
			gjå aaa			_				_			_	_		464
			ctt Leu													512
ttt Phe	ctt Leu	tat Tyr	tta Leu	aac Asn 40	att Ile	atg Met	ttt Phe	gtt Val	gta Val 45	gcc Ala	ttg Leu	tta Leu	aag Lys	gct Ala 50	att Ile	560
tta Leu		ttt	ttaci	ag a	aata	attti	tg a	catti	tatt	g gg:	attti	ttt	cta	tctc	caa	616
tcta	attga	aga 1	taggo	cacat	et co	ettti	tgtc	ca	ctcc	atta	taaa	aggg:	ag			665
		LO> :														
		L1> ' L2> 1														
	<23	L3 > 1	Homo	sapi	iens											
	<22	20>														
		21> ( 22>	CDS (61)	. (66	59)											
		00> :		(	,,											
gcal				attac	g co	caago	cttgg	g cad	gag	gcc	tgat	tca	cag a	acgci	acagg	60
atg	gag	cgg	ggc	gca	gga	gcc	aag	ctg	ctg	ccg	ctg	ctg	ctg	ctt	ctq	108
			Gly													
cgg Arg	gcg Ala	act Thr	ggt Gly 20	ttc Phe	aca Thr	tgt Cys	gca Ala	cag Gln 25	gca Ala	gat Asp	ggc Gly	cgg Arg	aac Asn 30	ggc Gly	tac Tyr	156
acg Thr	gcg Ala	gtc Val 35	atc Ile	gaa Glu	gtg Val	acc Thr	agc Ser 40	gly aaa	ggt Gly	ccc Pro	tgg Trp	ggc Gly 45	gac Asp	tgg Trp	gcc Ala	204
tgg Trp	cct Pro 50	gag Glu	atg Met	tgt Cys	ccc Pro	gat Asp 55	gga Gly	ttc Phe	ttc Phe	gcc Ala	agc Ser 60	gly aaa	ttc Phe	tcg Ser	ctc Leu	252
aag Lys 65	gtt Val	gag Glu	cct Pro	ccc Pro	caa Gln 70	ggc	att Ile	cct Pro	ggc Gly	gac Asp 75	gac Asp	act Thr	gca Ala	ctg Leu	aat Asn 80	300
ggg Gly	atc Ile	agg Arg	ctg Leu	cac His	tgc Cys	gcg Ala	cgc Arq	gly	aac Asn	gtc Val	cta Leu	ggc Glv	aat Asn	acg Thr	cac His	348

wo	VO 01/55437														PCT/US01/02623		
				85					90					95			
	_			_									gag Glu				396

105

tgg tgt cgc ggc ggc gcc tac cta gtg gct ttc tcg ctt cgc gtg gag

Trp Cys Arg Gly Gly Ala Tyr Leu Val Ala Phe Ser Leu Arg Val Glu

115 120 125

110

gca ccc acg acc ctc ggt gac aac aca gca gcg aac aac gtg cgc ttc 492 Ala Pro Thr Thr Leu Gly Asp Asn Thr Ala Ala Asn Asn Val Arg Phe 130 135 140

cgc tgt tca gac ggc gag gaa ctg cag ggg cct ggg ctg agc tgg gga 540
Arg Cys Ser Asp Gly Glu Glu Leu Gln Gly Pro Gly Leu Ser Trp Gly
145 150 155 160

gac ttt gga gac tgg agt gac cat tgc ccc aag ggc gcg tgc ggc ctg 588
Asp Phe Gly Asp Trp Ser Asp His Cys Pro Lys Gly Ala Cys Gly Leu
165 170 175

cag acc aag atc cag gga cct aga ggc ctc ggc gat gac act gcg ctg 636 Gln Thr Lys Ile Gln Gly Pro Arg Gly Leu Gly Asp Asp Thr Ala Leu 180 185 190

aac gac gcg cgc tta ttc tgc tgc cgc agt tga acggcgcc gtcgccgccg 687 Asn Asp Ala Arg Leu Phe Cys Cys Arg Ser *

ctctctcccg ggccaggagg ctagtcccac ctcttgctat taaagcttct ctgagttgaa 747

aaaaaaaaa 756

<210> 32 <211> 545 <212> DNA

100

<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(336)

<400> 32
atg agg caa gtg gcg aga gtg atc gtg ttc ctg acc ctg agt act ttg
Met Arg Gln Val Ala Arg Val Ile Val Phe Leu Thr Leu Ser Thr Leu
1 5 10 15

agc ctt gct aag acc acc cag ccc atc tcc atg gac tca tat gaa gga 96 Ser Leu Ala Lys Thr Thr Gln Pro Ile Ser Met Asp Ser Tyr Glu Gly 20 25 30

caa gaa gtg aac ata acc tgt agc cac aac aat gct aca aat gat 144 Gln Glu Val Asn Ile Thr Cys Ser His Asn Asn Ile Ala Thr Asn Asp

tat atc acg tgg tac caa cag ttt ccc agc caa gga cca cga ttt att

Tyr Ile Thr Trp Tyr Gln Gln Phe Pro Ser Gln Gly Pro Arg Phe Ile

50 55 60

att caa gga tac aag aca aaa gtt aca aac gaa gtg gcc tcc ctg ttt 240

WO 01/55437 PCT/US01/02623 Ile Gln Gly Tyr Lys Thr Lys Val Thr Asn Glu Val Ala Ser Leu Phe atc cct gcc gac aga aag tcc agc act ctg agc ctg ccc cgg gtt tcc 288 Ile Pro Ala Asp Arg Lys Ser Ser Thr Leu Ser Leu Pro Arg Val Ser ctg agc gac act gct gtg tac tac tgc ctc gtg ggt gac aca cag tga 336 Leu Ser Asp Thr Ala Val Tyr Tyr Cys Leu Val Gly Asp Thr.Gln * 100 qacagatggg cetgeacetg tgecgtttte etetgtgggg tgggagteac agectagaaa 396 gaagtccaaa agtgctttct aaaattttta ttttcaaaag gtattagcaa atttatgtat 456 tettetaeta tttgcaaaat caatettatt tatttttaa ataggtattt caettatgtg atctaaaatt aaaaagtat aaaagggaa 545 <210> 33 <211> 493 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (31) .. (414) <400> 33 attgagggct gtgttataac tatctattcg atg atg aag ata ccc cac caa 51 Met Met Lys Ile Pro His Gln acc caa aaa aag aga tot oto gag gat oog aat tog ogg oog ogt oga 99 Thr Gln Lys Lys Arg Ser Leu Glu Asp Pro Asn Ser Arg Pro Arg Arg 10 ccg cgc ggg gaa ggg gag acg tgg ggt aga gtg acc atg acg aaa tta 147 Pro Arg Gly Glu Gly Glu Thr Trp Gly Arg Val Thr Met Thr Lys Leu gcg cag tgg ctt tgg gga cta gcg atc ctg ggc tcc acc tgg gtg gcc 195 Ala Gln Trp Leu Trp Gly Leu Ala Ile Leu Gly Ser Thr Trp Val Ala ctg acc acg gga gcc ttg ggc ctg gag ctg ccc ttg tcc tgc cag gaa 243 Leu Thr Thr Gly Ala Leu Gly Leu Glu Leu Pro Leu Ser Cys Gln Glu 60 gtc ctg tgg cca ctg ccc gcc tac ttg ctg gtg tcc gcc ggc tgc tat 291 Val Leu Trp Pro Leu Pro Ala Tyr Leu Leu Val Ser Ala Gly Cys Tyr gcc ctg ggc act gtg ggc tat cgt gtg gcc act ttt cat gac tgc gag 339 Ala Leu Gly Thr Val Gly Tyr Arg Val Ala Thr Phe His Asp Cys Glu 90 gac gcc gca cgc gag ctg cag agc cag ata cag gag gcc cga gcc gac 387 Asp Ala Ala Arg Glu Leu Gln Ser Gln Ile Gln Glu Ala Arg Ala Asp 105

115.

tta gcc cgc agg ggg ctg cgc ttc tga cagcc taaccccatt cctgtgcgga Leu Ala Arg Arg Gly Leu Arg Phe * 125 cagecettee teccatttee cattaaagag ceagtttatt ttetaaaaaa aaaa 493 <210> 34 <211> 1900 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (314)..(709) <220> <221> misc_feature <222> (1) ... (1900) <223> n = a,t,c or g<400> 34 60 atttggccct cgaggccaag aattcggcac gagcataagg ttgtagtagc aggagccctc tatettttgt tegggnneat ggaaggggte eteanagenn nngagaetea gaetgatett gettacttgg cetttatece ettggettte etagaceetg gettgegeag etggatgeag 180 acaacatccc cccaccaccc aagagggagg gtagetette egecaccagg ggcaagcaca tttgtatcgg catttcacca acacgettat tttggcagtg gcagcatcca ttgtgtttat 300 349 atg aag ttc aga ata gtg aca tgt cag tcg gac tgg catctggaca acc Met Lys Phe Arg Ile Val Thr Cys Gln Ser Asp Trp 397 cgg gag ctg tgg gta gac gat gcc atc tgg cgc ttg ctg ttc tcc atg Arg Glu Leu Trp Val Asp Asp Ala Ile Trp Arg Leu Leu Phe Ser Met 15 20 445 atc ctc ttt gtc atc atg gtt ctc tgg cga cca tct gca aac aac cag Ile Leu Phe Val Ile Met Val Leu Trp Arg Pro Ser Ala Asn Asn Gln 30 493 agg ttt gcc ttt tca cca ttg tct gag gaa gag gag gat gaa caa Arg Phe Ala Phe Ser Pro Leu Ser Glu Glu Glu Glu Glu Asp Glu Gln 50 45 aag gag cct atg ctg aaa gaa agc ttt gaa gga atg aaa atg aga agt 541 Lys Glu Pro Met Leu Lys Glu Ser Phe Glu Gly Met Lys Met Arg Ser 65 589 acc aaa caa gaa ccc aat gga aat agt aaa gtt aac aaa gca cag gaa Thr Lys Gln Glu Pro Asn Gly Asn Ser Lys Val Asn Lys Ala Gln Glu 80 85 gat gat ttg aag tgg gta gaa gag aat gtt cct tct tct gtg aca gat 637 Asp Asp Leu Lys Trp Val Glu Glu Asn Val Pro Ser Ser Val Thr Asp 100 gta gca ctt cca gcc ctt ctg gat tca gat gag gaa cga atg atc aca 685

Val Ala Leu Pro Ala Leu Leu Asp Ser Asp Glu Glu Arg Met Ile Thr

L10	115	120

His Phe Glu Arg Ser I	aaa atg gag taaggaatgg gaagatttgc agttaaagat Lys Met Glu 130	73
ggctaccatc agggaagaga	a tcagcatctg tgtcagtctt ctgtacggct ccatgggatt	799
aaaggaagca atgacatcc	t gatetgttee ttgatetttg ggeattggag ttggegagag	859
gtgtcagaac aaagagaac	a tottaotgaa aacaagttoa taagatgaga aaaatotaog	919
agcttcttat ttacaacac	t getgeeeet tteeteeeag actetgacat ggatgtteat	979
gcaacttaag tgtgttgtt	c ctgaactttc tgtaatgttt cattttttaa atctgacaaa	1039
ctaaaaagtt taacgtctto	c taaaagattg tcatcaacac cataatatgt aatctccagg	1099
agcaactgcc tgtaatttt	t atttatttag ggagttacat aggtgatggg ggaaattgtt	1159
aactaccttt cattttccts	g ggaagtcaag gttacatctt gcagaggttg ttttgagaaa	1219
aaagggccct tctgagttaa	a ggagccatag ttctatcaat gatcaaaaga aaaaaaaaaa	1279
aaagagaaac tgttacagta	a tgattcagat catttaaaaa agcaaaatca agtgcaattt	1339
tgtttacaaa tggtgtata	t taaagatttt totatttoag atgtacttta aagagaaata	1399
ttagcttaac tcttttgaca	a tetgetattg tgacacatee cattgetgge aatgtggtge	1459
acacteegaa aettttaaet	t actgttttgt aageeteeaa gggtggeatt geagggteet	1519
taggcaatgt tttgtttgco	c tttatgcaga gaggtgctcc aagtgctgtg attgagcacc	1579
gtgctagagg aactgtaatg	g cttcagaagt tgtagcttat acaaaggaaa caggtcctgc	1639
tggcttaatt taaacagtta	a ttgcatgaag tagcgtggag gccctggact gctgctcgtt	1699
ctttaggatg gactgttctg	g gtatetggta ttggtttaga gaetgttaat aagggaeate	1759
acaaggtgat gggattcatt	t tgaagcactc tatttctgtt ttaatggttt tátccaattt	1819
tgccttccca agatttttgt	t totacataaa aagttoatgo cactttttaa tataaaaaaa	1879
tttaacaaaa aaaaaaaaaa	a a	1900

<210> 35

<211> 1105

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (238)..(591)

<400> 35

tttgatagca gtaccattgt atatcgagac ccaagctggc tagcgtttaa acttaagctt 60 ggtaccgagc teggatccac tagtccagtg tggtggaatt cggcgtctct gggggcaggtg 120 ttggctctgg tgctggtgg cgctctgtgg ggtggcacgc agccgctgct gaagcgggcc 180

tccg	ccgg	gec 1	tgcag	geggg	gt to	catga	agccg	g acc	etggg	JCCC	agca	agtt	gct a	acago	gag	237
atg	aag	acc	ctc	ttc	ttg	aat	act	gag	tac	ctg	atg	ccc	ttt	ctc	ctc	285
Met	Lys	Thr	Leu	Phe	Leu	Asn	Thr	Glu	Tyr	Leu	Met	Pro	Phe	Leu	Leu	
1				5					10					15		
																222
														aca		333
Asn	Gin	GIA	-	Ser	Leu	Leu	ıyr	25	Leu	Thr	ьeu	AId	30	Thr	ASP	
			20					25					30			
ata	200	cta	act	ata	CCC	atc	tat	aac	tct	cta	act	atc	atc	ttc	aca	381
														Phe		
		35					40					45				
ctg	att	gtt	999	aag	gcc	ctt	gga	gaa	gat	att	ggt	gga	aaa	cga	gca	429
														Arg		
	50					55					60					
gtt	gct	ggc	atg	gtg	ctc	acc	gtg	ata	gga	att	tca	ctc	tgc	atc	aca	477
	Ala	Gly	Met	Val		Thr	Val	He	Gly		Ser	Leu	Cys	Ile		
65					70					75					80	
		~++		+~~	201	~~~	<b>~</b> 33	ctc	a24	cta	cat	<b>a</b> a =	220	ggc	cac	525
														Gly		723
Ser	261	vai	FIO	85	1111	ALG	GIU	ДСи	90	Deu		017	<b>-</b> 275	95	0111	
				0.5												
cta	cag	act	tta	agc	caq	aaa	tac	aaa	cqq	qaq	qcc	tct	qqq	act	cag	573
														Thr		
			100			•	•	105	_				110			
tca	gag	cgc	ttt	ggc	tga	atga	agg g	ggtg	gaac	cg ag	ggga	agaa	ggt	agaga	agct	627
Ser	Glu	Arg	Phe	Gly	*											
		115														
gtg	agcc	cca	gccc	cacci	tg a	ctcca	agca	c ac	ctgg	gag	tagi	tagc	tgt	caata	aaatct	687
2+~	****		~~~~		<b>~</b> ~ ~ ~	*+ <i>~</i> ~	2200		- 2 (2 2	* +	~~~	~~~~	-~-	~+ = + <i>(</i>	raccea	747
acy	jcaa	aca	yaca	ayayı	ya y	grage	aayy	c ca	Laca	yaat	yyaş	geeg	Lya y	gcac	ggccag	/4/
ccto	ccag	ata	ticago	ccago	a o	at.cc	ccaa	e ee	caago	gaag	gaag	gaaa	eta (	gaaai	ttagga	807
			• • • • • • • • • • • • • • • • • • •		J~ J:	,				,~~_	J		5	9		
acto	actt	cct	catti	taaca	aa qo	qtqc	ttati	t tt	catq	gat	gage	qccci	tqt (	gaaga	aaggga	867
•	•				٠.				_	_	J J.	•	-	-		
cag	gatai	tac	agac	39999	gc ag	gctg	gaga	c ag	ttate	gatg	agt	gccg	gct	ttgt	gtctga	927
gcat	ttct	gct	cccat	tggad	ca t	cccc	aaca	a ca	gcag	ggac	caa	ccta	tgt i	cact	gtcaaa	987
aaa	cagc	tga	gaga	ggcci	tg ag	3ccc	cagg	g ac	ccct	cacc	tga	tggg	aat 9	gagag	gtgtgg	1047
		<del>-</del>					<b></b>				a + -	~~-	~~~	~	~a++	1100
gga	gett	gct	cctt	get	ga at	rggt	ctgc	c 999	gcc	-ggc	acag	gaaa	gca (	gatg	JCCC	1105

```
<210> 36
<211> 1379
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
```

<221> CDS <222> (439)..(720)

<400> 36
tttcgtgcca tggcggcgtc tctgagtagg tagccggccc cgcccttcca tggatttccc 60

gaccetegee tegaatteat tteetgetee acatgeacee tetaaceeeg acceetgeta	120
caaceceaga ggeeggaete etggatteat etecetaget teeetgggee tgeettagee	180
gccagtcgca gccgaggcga agagagcgaa ggagggaagt gggggcggct agctggggct	240
agaaggccag gagagggcgg ggtgggcggc cgtttggggt gggggtcagg gtgactcact	300
egtetgeatt cagggeaggt gttggetetg gtgetggtgg cegetetgtg gggtggeaeg	360
cagoogotgo tgaagogggo otoogooggo otgoagoggg ttoatgagoo gacotgggoo	420
cagcagttgc tacaggag atg aag acc ctc ttc ttg aat act gag tac ctg  Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu  1 5 10	47]
atg ccc ttt ctc ctc aac cag tgt gga tcc ctt ctc tat tac ctc acc Met Pro Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr 15 20 25	519
ttg gca tcg aca gat ctg acc ctg gct gtg ccc atc tgt aac tct ctg Leu Ala Ser Thr Asp Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu 30 35 40	567
gct atc atc ttc aca ctg att gtt ggg aag gcc ctt gga gaa gat att Ala Ile Ile Phe Thr Leu Ile Val Gly Lys Ala Leu Gly Glu Asp Ile 45 50 55	615
ggt gga aaa cga gca gtt gct ggc atg gtg ctc acc gtg ata gga att Gly Gly Lys Arg Ala Val Ala Gly Met Val Leu Thr Val Ile Gly Ile 60 65 70 75	663
tca ctc tgc atc aca agc tca gtg agt aag acc cag ggg caa cag tct Ser Leu Cys Ile Thr Ser Ser Val Ser Lys Thr Gln Gly Gln Gln Ser 80 85 90	711
acc ett tga gtgggee gaacceaett ceagetetge tgeeteeagg aageeeetgg Thr Leu *	767
gccatgaagt gctggcagtg agcggatgga cctagcactt cccctctctg gccttagctt	827
ceteetetet tatggggata acagetaeet catggateae aataagagaa caagagtgaa	887
agagttttgt aaccttcaag tgctgttcag ctgcggggat ttagcacagg agactctacg	947
ctcaccetca geaacettte tgeeccagea getetettee tgetaacate teaggeteee	1007
agcccagcca ccattactgt ggcctgatct ggactatcat ggtggcaggt tccatggact	1067
gcagaactce agetgcatgg aaagggccag ctgcagactt tgagecagaa atgcaaacgg	1127
gaggcetetg ggaeteagte agagegettt ggetgaatga ggggtggaae egagggaaga	1187
aggtgcgtcg gagtggcaga tgcaggaaat gagctgtcta ttagccttgc ctgccccacc	1247
catgaggtag gcagaaatcc tcactgccag cccctcttaa acaggtagag agctgtgagc	1307
cccagcccca cctgactcca gcacacctgg cgagtagtag ctgtcaataa atctatggta	1367
aacagacaaa aa	1379

<210> 37 <211> 2084 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (215)..(1672) <400> 37 aagetggtae geetgeaggt aeeggteegt aatteeeggg tegaeeeaeg egteeggtee 60 eccaeggaga egegeeaagg tageeeegeg egtgteegta ggegegetet etggaagaeg 120 cggtgggggg tgcgcagggc tgcaccctca caccaattgc cccggcgaag gccgagccca 180 gaaagtgagt gcgcgtgagt gtgcgcgcgc ccgc atg cgg ggg cgt ggc agt 232 Met Arg Gly Arg Gly Ser caa cag caa caa ccc aca cgc cgg cag ggc cag aaa ctc cca tct ccc 280 Gln Gln Gln Gln Pro Thr Arg Arg Gln Gly Gln Lys Leu Pro Ser Pro tca cca gcc gga aag tac gag tcg gct cag cct gga ggg acc caa cca 328 Ser Pro Ala Gly Lys Tyr Glu Ser Ala Gln Pro Gly Gly Thr Gln Pro 376 gag cet gge etg gga gee agg atg gee ate cae aaa gee ttg gtg atg Glu Pro Gly Leu Gly Ala Arg Met Ala Ile His Lys Ala Leu Val Met 45 tgc ctg gga ctg cct ctc ttc ctg ttc cca ggg gcc tgg gcc cag ggc 424 Cys Leu Gly Leu Pro Leu Phe Leu Phe Pro Gly Ala Trp Ala Gln Gly 60 cat gtc cca ccc ggc tgc agc caa ggc ctc aac ccc ctg tac tac aac 472 His Val Pro Pro Gly Cys Ser Gln Gly Leu Asn Pro Leu Tyr Tyr Asn 75 80 ctg tgt gac cgc tct ggg gcg tgg ggc atc gtc ctg gag gcc gtg gct 520 Leu Cys Asp Arg Ser Gly Ala Trp Gly Ile Val Leu Glu Ala Val Ala 90 ggg gcg ggc att gtc acc acg ttt gtg ctc acc atc atc ctg gtg gcc 568 Gly Ala Gly Ile Val Thr Thr Phe Val Leu Thr Ile Ile Leu Val Ala 105 110 age etc ecc ttt gtg cag gac acc aag aaa egg age etg etg ggg acc 616 Ser Leu Pro Phe Val Gln Asp Thr Lys Lys Arg Ser Leu Leu Gly Thr 120 125 cag gta tto tto ett etg ggg acc etg ggc etc tte tge etc gtg ttt 664 Gln Val Phe Phe Leu Leu Gly Thr Leu Gly Leu Phe Cys Leu Val Phe 135 140 gee tgt gtg gtg aag eee gae tte tee ace tgt gee tet egg ege tte 712 Ala Cys Val Val Lys Pro Asp Phe Ser Thr Cys Ala Ser Arg Arg Phe 155 160 ctc ttt ggg gtt ctg ttc gcc atc tgc ttc tct tgt ctg gcg gct cac 760 Leu Phe Gly Val Leu Phe Ala Ile Cys Phe Ser Cys Leu Ala Ala His

170 175 180

			170					175					180			
								cgg Arg								808
								ctg Leu								856
					_			acc Thr	-	-			-			904
						_	-	gca Ala			_		_			952
								gtc Val 255								1000
								Gly ggg							ggc '	1048
								gjå aaa								1096
								gtg Val								1144
ggc Gly	aac Asn	aag Lys	cag Gln	cac His 315	aac Asn	agt Ser	ccc Pro	acc Thr	tgg Trp 320	gat Asp	gac Asp	ccc Pro	acg Thr	ctg Leu 325	gcc Ala	1192
								gcc Ala 335								1240
ccc Pro	gag Glu	gtc Val 345	tcc Ser	cag Gln	gtg Val	acc Thr	aag Lys 350	tcc Ser	agc Ser	cca Pro	gag Glu	caa Gln 355	agc Ser	tac Tyr	cag Gln	1288
GJÀ aaa	gac Asp 360	atg Met	tac Tyr	ccc Pro	acc Thr	cgg Arg 365	ggc Gly	gtg Val	ggc	tat Tyr	gag Glu 370	acc Thr	atc Ile	ctg Leu	aaa Lys	1336
gag Glu 375	cag Gln	aag Lys	ggt Gly	cag Gln	agc Ser 380	atg Met	ttc Phe	gtg Val	gag Glu	aac Asn 385	aag Lys	gcc Ala	ttt Phe	tcc Ser	atg Met 390	1384
gat Asp	gag Glu	ccg Pro	gtt Val	gca Ala 395	gct Ala	aag Lys	agg Arg	ccg Pro	gtg Val 400	tca Ser	cca Pro	tac Tyr	agc Ser	ggg Gly 405	tac Tyr	1432
aat Asn	Gly aaa	cag Gln	ctg Leu 410	ctg Leu	acc Thr	agt Ser	gtg Val	tac Tyr 415	cag Gln	ccc Pro	act Thr	gag Glu	atg Met 420	gcc Ala	ctg Leu	1480
								gct Ala								1528

PCT/US01/02623 WO 01/55437

430

					gcc Ala			1576
					cag Gln 465			1624

435

1912

aaa gac ggc aag aac tot cag gtc ttt aga aac ccc tac gtg tgg gac 1672 Lys Asp Gly Lys Asn Ser Gln Val Phe Arg Asn Pro Tyr Val Trp Asp

475 480 tgagtcageg gtggcgagga gaggcggtcg gatttgggga gggccctgag gacctggccc 1732

egggeaaggg actetecagg etectectee ceetggeagg eccageaaca tgtgeeceag 1792

atgtggaagg geeteeetet etgeeagtgt ttgggtgggt gteatgggtg teeecaceca 1852

ggtcacactc cagccaaata gtgttctcgg ggtggtggct gggcagcgcc tatgtttctc 1972

ctcctcaqtg tttgtggagt cgaggagcca accccagcct cctgccagga tcacctcggc

tggagattcc tgcaacctca agagacttcc caggcgctca ggcctggatc ttgctcctct 2032

gtgaggaaca agggtgccta ataaatacat ttctgcttta ttaaaaaaaa aa 2084

<210> 38 <211> 484 <212> DNA <213> Homo sapiens <220>

425

<221> CDS <222> (39)..(392)

<400> 38 53 atttggccct cgaggccaag aattcggcac gagcttat atg gtt aaa aca gac Met Val Lys Thr Asp

gca cac cta aaa aac cct ccc ttt gct ccc ttt agg gtt tat aca ttg 101 Ala His Leu Lys Asn Pro Pro Phe Ala Pro Phe Arg Val Tyr Thr Leu 10 15

acc cta tca ttg tta ttg aaa ttg tca cat tac tct tgt ctt tgg gtt 149 Thr Leu Ser Leu Leu Leu Lys Leu Ser His Tyr Ser Cys Leu Trp Val 25

aaa aaa gac ttt aaa gac tcc tcg ttt tac aat agc aat aat aat agc 197 Lys Lys Asp Phe Lys Asp Ser Ser Phe Tyr Asn Ser Asn Asn Asn Ser 40 45

aat agc aat cat tgt aaa tct tta ttg agc act cac tat atg cca ggc 245 Asn Ser Asn His Cys Lys Ser Leu Leu Ser Thr His Tyr Met Pro Gly 55

gct gta att agt aat tta tgc ctt atc tca tgt aaa gtt tcc agc agc 293 Ala Val Ile Ser Asn Leu Cys Leu Ile Ser Cys Lys Val Ser Ser Ser 70 75 80

cct att aag cag aca cat ggc att tcc atg tta cag atg aag aga ctg Pro Ile Lys Gln Thr His Gly Ile Ser Met Leu Gln Met Lys Arg Leu 90 95 100	341
aaa cac aca tta gct cgc ctt gcc cca ggg aca cat ggt ggg agc cag Lys His Thr Leu Ala Arg Leu Ala Pro Gly Thr His Gly Gly Ser Gln 105 110 115	389
aac tagg agttgageee aggeataetg atgeetggtg caettggaeg etgetgtaea Asn	446
gccactccag gtgtggatga gcaggaaaca cattgaag	484
<210> 39 <211> 2259 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (182)(1078)	
<pre>&lt;400&gt; 39 ggcggagttt taatcgaggg ctctctaatg taagccttgc gaaccgcccc ggaaatcccg</pre>	60
ggtcgaccca cgcgtccggg ttccacctgg cggctggctc tcagtcccct cgctgtagtc	120
geggagetgt gtetgtteec aggagteett eggeggetgt tgtgteagtg geetgatege	180
g atg ggg aca aag gcg caa gtc gag agg aaa ctg ttg tgc ctc ttc Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe 1 5 10	226
ata ttg gcg atc ctg ttg tgc tcc ctg gca ttg ggc agt gtt aca gtg Ile Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val 20 25 30	274
Cac tot tot gaa cot gaa gto aga att cot gag aat aat cot gtg aag His Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys 35 40 45	322
ttg tcc tgt gcc tac tcg ggc ttt tct tct ccc cgt gtg gag tgg aag Leu Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys 50 55 60	<b>370</b>
ttt gac caa gga gac acc acc aga ctc gtt tgc tat aat aac aag atc Phe Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile 65 70 75	418
aca gct tcc tat gag gac cgg gtg acc ttc ttg cca act ggt atc acc Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr 80 85 90 95	466
ttc aag tcc gtg aca cgg gaa gac act ggg aca tac act tgt atg gtc Phe Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val 100 105 110	514

115 120 125

115 120 125	
gtg ctt gtg cct cca tcc aag cct aca gtt aac atc ccc tcc tct gcc Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala 130 135 140	610
acc att ggg aac cgg gca gtg ctg aca tgc tca gaa caa gat ggt tcc Thr Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser 145 150 155	658
CCA CCT tCT gaa tac acc tgg ttc aaa gat ggg ata gtg atg cCT acg Pro Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr 160 165 170 175	706
aat ccc aaa agc acc cgt gcc ttc agc aac tct tcc tat gtc ctg aat Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn 180 . 185 . 190	754
ccc aca aca gga gag ctg gtc ttt gat ccc ctg tca gcc tct gat act Pro Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr 195 200 205	802
gga gaa tac agc tgt gag gca cgg aat ggg tat ggg aca ccc atg act Gly Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr 210 215 220	850
tca aat gct gtg cgc atg gaa gct gtg gag cgg aat gtg ggg gtc atc Ser Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile 225 230 235	898
gtg gca gcc gtc ctt gta acc ctg att ctc ctg gga atc ttg gtt ttt Val Ala Ala Val Leu Val Thr Leu Ile Leu Gly Ile Leu Val Phe 240 245 250 255	946
ggc atc tgg ttt gcc tat agc cga ggc cac ttt gac aga aca aag aaa Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys 260 265 270	994
ggg act tcg agt aag aag gtg att tac agc cag cct agt gcc cga agt Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser 275 280 285	1042
gaa gga gaa ttc aaa cag acc tcg tca ttc ctg gtg tgag cctggtcggc Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 290 295	1092
teacegeeta teatetgeat ttgeettaet eaggtgetae eggaetetgg eccetgatgt	1152
ctgtagtttc acaggatgcc ttatttgtct tctacacccc acagggcccc ctacttcttc	1212
ggatgtgttt ttaataatgt cagctatgtg ccccatcctc cttcatgccc tccctcctt	1272
tectaceact getgagtgge etggaacttg tttaaagtgt ttatteecca tttetttgag	1332
ggatcaggaa ggaatcctgg gtatgccatt gacttccctt ctaagtagac agcaaaaatg	1392
gcgggggtcg caggaatctg cactcaactg cccacctggc tggcagggat ctttgaatag	1452
gtatcttgag cttggttctg ggctctttcc ttgtgtactg acgaccaggg ccagctgttc	1512
tagagcggga attagaggct agagcggctg aaatggttgt ttggtgatga cactggggtc	1572
ettecatete tggggeeeae tetettetgt etteceatgg gaagtgeeae tgggatecet	1632

ctgccctgtc ctcctgaata caagctgact gacattgact gtgtctgtgg aaaatgggag 1692 ctcttqttqt qqaqaqcata gtaaattttc agagaacttq aaqccaaaaq gatttaaaac 1752 cgctgctcta aagaaaagaa aactggaggc tgggcgcagt ggctcacgcc tataatccca 1812 gaggetgagg caggeggate acctgaggte gggagtteaa gateageetg accaacatgg 1872 aqaaaccta ctgaaaatac aaagttagcc aggcatggtg gtgcatgcct gtagtcccag 1932 1992 qaaagctgga getggtgget taggeeatea eeetteeett ggetggaact aetggacaga 2052 cccttttgag atgtgcctgt ggtgctgtgg agatgtgtgt agtggtctta gctctttgtt 2112 gagettgtgt gtgtgttgtg tagtettage tgtatgetga aattgggegt gtgttggagg 2172 qcttcttagc tctttggtga gattgtattt ctatgtgttt gtatcagctg aatgttgctg 2232 gaaataaaac cttggtttgt caagaaa 2259

<210> 40 <211> 777 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (1)..(777)

<400> 40

atg ggg aca aag gcg caa gtc gag agg aaa ctg ttg tgc ctc ttc ata Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Cys Leu Phe Ile ttg gcg atc ctt cct gag aat aat cct gtg aag ttg tcc tgt gcc tac 96 Leu Ala Ile Leu Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr

48

teg gge ttt tet eet eet egt gea get tee tat gag gae egg gtg ace 144 Ser Gly Phe Ser Ser Pro Arg Ala Ala Ser Tyr Glu Asp Arg Val Thr

tte ttg cca act ggt atc acc tte aag tee gtg aca egg gaa gae act 192 Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr 50

ggg aca tac act tgt atg gtc ttt gag gaa ggc ggc aac agc tat ggg 240 Gly Thr Tyr Thr Cys Met Val Phe Glu Glu Gly Gly Asn Ser Tyr Gly

gag gtc aag gtc aag ctc atc gtg ctt gtg cct cca tcc aag cct aca 288 Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr 85

gtt aac atc ccc tcc tct gcc acc att ggg aac cgg gca gtg ctg aca 336 Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu Thr 105

tgc tca gaa caa gat ggt tcc cca cct tct gaa tac acc tgg ttc aaa

Cys	Ser	Glu 115	Gln	Asp	Gly	Ser	Pro 120	Pro	Ser	Glu	Tyr	Thr 125	Trp	Phe	Lys	
gat Asp	999 Gly 130	ata Ile	gtg Val	atg Met	cct Pro	acg Thr 135	aat Asn	ccc Pro	aaa Lys	agc Ser	acc Thr 140	cgt Arg	gcc Ala	ttc Phe	agc Ser	432
aac Asn 145	tct Ser	tcc Ser	tat Tyr	gtc Val	ctg Leu 150	aat Asn	ccc Pro	aca Thr	aca Thr	gga Gly 155	gag Glu	ctg Leu	gtc Val	ttt Phe	gat Asp 160	480
ccc Pro	ctg Leu	tca Ser	gcc Ala	tct Ser 165	gat Asp	act Thr	gga Gly	gaa Glu	tac Tyr 170	agc Ser	tgt Cys	gag Glu	gca Ala	cgg Arg 175	aat Asn	528
gjå aaa	tat Tyr	GJ Å 333	aca Thr 180	ccc Pro	atg Met	act Thr	tca Ser	aat Asn 185	gct Ala	gtg Val	cgc Arg	atg Met	gaa Glu 190	gct Ala	gtg Val	576
			gtg Val													624
			atc Ile													672
cac His 225	ttt Phe	gac Asp	aga Arg	aca Thr	aag Lys 230	aaa Lys	gj aaa	act Thr	tcg Ser	agt Ser 235	aag Lys	aag Lys	gtg Val	att Ile	tac Tyr 240	720
			agt Ser													768
	ctg Leu															777
	<21 <21	.0> 4 .1> 1 .2> E	.683	sapi	ens											
		1> C	:DS 515)	(1	.333)											·
tgct		0> 4 tt t		tgca	a tg	ggaa	gcct	ctc	ctca	.ctc	tggg	gaga	tc t	aato	caggt	60
tggg	aaga	tg g	gact	gcag	a gg	ccag	ctgc	ctc	tatg	ctg	ccct	attc	ga c	ttcc	aatca	120
gcca	gctg	cc _. t	ctac	actg	c cc	tatt	cgac	ttc	caat	cag	ccag	ctgc	gt c	taca	ctgcc	180
ctat	tcga	ct t	ccaa	tcag	с са	gctg	cctc	tac	actg	ccc	tatt	cgtc	tt c	caat	cagec	240

PCT/US01/02623

WO 01/55437

agetgegtet acactgeeet attegaette caatcageea getgeeteta cactgeeeta 300

ttcgacttcc aatcagccag ctgcgtctac actgccctat tcgacttcca atcagccagc 360

tgcctctaca ctgccctatt cgacttccaa tcagccagct gcgtctacac cggaagccta	420
ggaggctggg ccggagggag gcggaggaac cggtgttcgc cgccgccgct gcttcagctt	480
attccttgtg gcctctgcgg gtcctgcctc agcc atg atg atc cac ggc ttc Met Met Ile His Gly Phe  1 5	532
cag age age cae egg gat the tge the ggg eee tgg aag etg acg geg Gln Ser Ser His Arg Asp Phe Cys Phe Gly Pro Trp Lys Leu Thr Ala 10 15 20	580
tcc aag acc cac atc atg aag tcg gcg gat gtg gag aaa tta gcc gat Ser Lys Thr His Ile Met Lys Ser Ala Asp Val Glu Lys Leu Ala Asp 25 30 35	628
gaa tta cat atg cca tct ctc cct gaa atg atg ttt gga gac aac gtt Glu Leu His Met Pro Ser Leu Pro Glu Met Met Phe Gly Asp Asn Val 40 45 50	676
tta aga atc cag cat ggg tct ggc ttt gga att gag ttc aat gct aca Leu Arg Ile Gln His Gly Ser Gly Phe Gly Ile Glu Phe Asn Ala Thr 55 60 65 70	724
gat gcg tta aga tgt gta aac aac tac caa gga atg ctt aaa gtg gcc Asp Ala Leu Arg Cys Val Asn Asn Tyr Gln Gly Met Leu Lys Val Ala 75 80 85	772
tgt gct gaa gag tgg caa gaa agc agg acg gag ggt gaa cac tcc aaa Cys Ala Glu Glu Trp Gln Glu Ser Arg Thr Glu Gly Glu His Ser Lys 90 95 100	820
gag gtt att aaa cca tat gat tgg acc tat aca aca gat tat aag gga Glu Val Ile Lys Pro Tyr Asp Trp Thr Tyr Thr Thr Asp Tyr Lys Gly 105 110 115	868
acc tta ctt gga gaa tct ctt aag tta aag gtt gta cct aca aca gat Thr Leu Leu Gly Glu Ser Leu Lys Leu Lys Val Val Pro Thr Thr Asp 120 125 130	916
cat ata gat aca gaa aaa ttg aaa gcc aga gaa cag att aag ttt ttt His Ile Asp Thr Glu Lys Leu Lys Ala Arg Glu Gln Ile Lys Phe Phe 135 140 145 150	964
gaa gaa gtt ctc ctt ttt gag gat gaa ctt cat gat cat gga gtt tca Glu Glu Val Leu Leu Phe Glu Asp Glu Leu His Asp His Gly Val Ser 155 160 165	1012
agc ctg agt gtg aag att aga gta atg cct tct agc ttt ttc ctg ctg Ser Leu Ser Val Lys Ile Arg Val Met Pro Ser Ser Phe Phe Leu Leu 170 175 180	1060
ttg cgg ttt ttc ttg aga att gat ggg gtg ctt atc aga atg aat gac Leu Arg Phe Phe Leu Arg Ile Asp Gly Val Leu Ile Arg Met Asn Asp 185 190 195	1108
acg aga ctt tac cat gag gct gac aag acc tac atg tta cga gaa tat Thr Arg Leu Tyr His Glu Ala Asp Lys Thr Tyr Met Leu Arg Glu Tyr 200 205 210	1156
acg tca cga gaa agc aaa att tct agt ttg atg cat gtt cca cct tcc Thr Ser Arg Glu Ser Lys Ile Ser Ser Leu Met His Val Pro Pro Ser 215 220 225 230	1204

Ctc ttc acg gaa cct aat gaa ata tcc cag tat tta cca ata aag gaa Leu Phe Thr Glu Pro Asn Glu Ile Ser Gln Tyr Leu Pro Ile Lys Glu 235 240 245	1252
gca gtt tgt gag aag cta ata ttt cca gaa aga att gat cct aac cca Ala Val Cys Glu Lys Leu Ile Phe Pro Glu Arg Ile Asp Pro Asn Pro 250 255 260	1300
gca gac tca caa aaa agt aca caa gtg gaa taa aatgtgat acaacatata Ala Asp Ser Gln Lys Ser Thr Gln Val Glu * 265 270	1351
ctcactatgg aatctgactg gacaccttgg ctatttgtaa ggggttattt ttattatgag	1411
aattaattgc cttgtttatg tacagatttt ctgtagcctt aaaggaaaaa aaaataaaga	1471
togttacagg caggtttcac toaactgotg tttgtactgt ctgtcttcac attcatattc	1531
cagatttata ttttctggag ttaaatttgg atgatttcta aattatcaca aagtgggacc	1591
tcagcagtag tgatgtgtt gtctcatgag cagtgagcac agtctgcatt catcatgaaa	1651
cactatette taccaggagg aggttaatgt aa	1683

<210> 42 <211> 2010 <212> DNA <213> Homo sapiens <220>

<221> CDS

<222> (351)..(1058)

<400> 42 cttgacagtc ctccagtaag agtgagtaga cccgctgtcg aatgggacgg taaatgaagg 60 cctggctggg taaggcctgg tcaagctcat cttctagggt gttgctgcat tcaatctctc 120 cactgeteat gatgttgtac accaggtage tttctgettg gacgtgatgt gttctageaa 180 cctttaagat ttcagtgtct gaaaccatgg ttacttgttg ctttacttca ggccccacat 240 ttgtggggtc ttcttgttta atttcagggt ttgtacacat gagagcttct agcttaaatt 300 caaaatctgt tgctacaggt aatttttgat tgatttcagc gtgtgtacac atg gag 356 Met Glu tet tet tgc ttg gat ata gga tet gta eet atg gga aet tee tgt ttg 404 Ser Ser Cys Leu Asp Ile Gly Ser Val Pro Met Gly Thr Ser Cys Leu gat toa tgg cot gta cac ata att tot tgc cta gat toa ggg tot gto 452 Asp Ser Trp Pro Val His Ile Ile Ser Cys Leu Asp Ser Gly Ser Val cgt att aaa act tct tgc ctg gat tca ggg cct gta tac atg gga act 500 Arg Ile Lys Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met Gly Thr 40 45

****	11,554	<i>3</i>													2,0001	02020
	tgc Cys	_	_						_					_		548
tca Ser	gag Glu	cct Pro	gta Val 70	tac Tyr	atg Met	gga Gly	act Thr	tct Ser 75	tgc Cys	ctg Leu	ggt Gly	tca Ser	gag Glu 80	tct Ser	gta Val	596
	atg Met															644
	tgc Cys 100															692
	GJA aaa															740
	atg Met															788
	tgc Cys	_					-						_	_		836
	gaa Glu		Val		_				_	_	_				-	884
	atg Met 180				-	-	-		-		_		_			932
	tcc Ser	_		-						-	Ile		-			980
	gtt Val				Leu								_		-	1028
	ggt Gly			Tyr							aaaa	agag	c tt	tgtt	tggt	1079
ccc	agag	gta	atat	ctct	tc t	aatt	ttt	c tc	acct	tgat	aca	agta	aag	aact	ttcgai	1139
ata	tggt	ctg	acac	agct	aa t	atga	tgtt	a cc	tttt	ttgt	caa	agtt	ctc	tttt	acaga	1199
gtg	tagg	acg	ataa	gcat	tt g	tacc	taaa	g ct	ttca	aaca	tgc	cctc	tgg	gatt	atgtc	g 1259
ttg	ccaa	gga	ggca	ggcc	ag a	agag	gaag	g tc	ggcc	acac	aga	ggcc	cag	actc	tcaca	g 1319
ago	ttct	ctc	tgca	gage	at g	acgg	tgtc	c ag	gctc	tcta	ggc	agag	ctc	gcta	attgaa	a 1379
aag	tagg	gac	aagt	gtca	ta g	atta	ggta	a tc	agtg	tctt	ccc	ccag	aat	ccca	agaca	1439
tta	tgct	gga	ggcc	atag	ga a	gcta	cctc	a ta	atct	gctt	cct	gcaa	gga	acac	aaagti	1499
tcc	tggc	cca	gtgt	cttt	ag a	gcaa	atcg	t gt	aaac	acag	cta	gccc	tga	<b>aaaa</b>	atgaag	1559

1619 aacatatttc tgcctggctg ctccttgtgt gacttgatgt aatgaaaaat cctggatatc 1679 tecetgttgt tettgageet tegttteace catteatete tettateetg etceaceatg ccatcaaaga agaatatcaa cttgatccca gctgccgtaa aagttttaac aaaatctcgc 1739 aaagcagaaa agtatteteg ccaetggeca cegeagatee aagattetgg agtataceaa 1799 1859 tatctgagac aacacatggc atcaaccaca atggtagggg tacatccagg atacttgctt cggtggtgct ctgccagttc tttgaaattt actactgtac atatatgtgg gcaggtactt 1919 cccacaaatc cttgcaaacc tctcacaccc ataactgaac tccgggaaag gatcaagctc 1979 2010 tgtgctggct gctgcaggcc caggagagcc c

<210> 43

<211> 2253

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (533)..(1204)

<400> 43

traggracts gggetgcggc agraacatsc getgacracs gccatcette tstetettt 60 ctctctccac tgctgtggac ctggaatggt catctgcagc ggcctgacga ggtccgggtg 120 cctcagtggg ttcccaggat acacaaacca ctccttgaca gctaggcagg tgctggtgac 180 atottgacag tootocagta agagtgagta gacccgctgt cgaatgggac ggtaaatgaa 240 ggcctggctg ggtaaggcct ggtcaagctc atcttctagg gtgttgctgc attcaatctc 300 360 tecaetgete atgatgttgt acaecaggta getttetget tggaegtgat gtgttetage aacctttaag atttcagtgt ctgaaaccat ggttacttgt tgctttactt caggccccac 420 atttgtgggg tettettgtt taattteagg gtttgtacac atgagagett etagettaaa 480 ttcaaaatct gttgctacag gtaatttttg attgatttca gcgtgtgtac ac atg 535 Met 583 gag tot tot tgc ttg gat ata gga tot gta cat atg gga act toc tgt Glu Ser Ser Cys Leu Asp Ile Gly Ser Val His Met Gly Thr Ser Cys ttg gat tca tgg cct gta cac ata att tct tqc cta qat tca qqq tct 631 Leu Asp Ser Trp Pro Val His Ile Ile Ser Cys Leu Asp Ser Gly Ser 20 25 30 gtc cgt att aaa act tct tgc ctg gat tca ggg cct gta tac atg gga 679 Val Arg Ile Lys Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met Gly 35 40 act tot tgc ctg gat toa ggg cot gta tac atg gga act tot tgc ctg Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met Gly Thr Ser Cys Leu 50 55 60

ggt tca gag cct gta tac atg gga act tct tgc ctg ggt tca gag t Gly Ser Glu Pro Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu S 70 75 80	
gta tac atg gga act tct tgc ctg ggt tca gag tct gta tac atg g Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu Ser Val Tyr Met G 85 90 95	gga 823 Gly
act tot tgc ctg gct toa ggg cot gta cac atg gga act tot tgc of the Ser Cys Leu Ala Ser Gly Pro Val His Met Gly Thr Ser Cys 100 105 110	
ggt tca ggg tct gaa cac atg gga act tct cgc ctg gat tca ggg Gly Ser Gly Ser Glu His Met Gly Thr Ser Arg Leu Asp Ser Gly 115 120 125	
gta cac gtg gga act tct tgc ctg ggt tca ggg tct gaa cac atg g Val His Val Gly Thr Ser Cys Leu Gly Ser Gly Ser Glu His Met of 130 140	
act tot tgo otg ggt toa gaa tot gta tac acg gga act tot ogo Thr Ser Cys Leu Gly Ser Glu Ser Val Tyr Thr Gly Thr Ser Arg 150 155 160	
gat toa ggg cot gta cac atg gga act tot tgc ctg gat toa gca Asp Ser Gly Pro Val His Met Gly Thr Ser Cys Leu Asp Ser Ala 165 170 175	
gaa cac atg gga act tot too otg gat tog gog tot gaa oto gtg Glu His Met Gly Thr Ser Ser Leu Asp Ser Ala Ser Glu Leu Val 180 185 190	
att act tgt ttg tcc aaa gtt att aca cct ttg ggt ttt tgg aaa Ile Thr Cys Leu Ser Lys Val Ile Thr Pro Leu Gly Phe Trp Lys 195 200 205	
cat gga gat ttt tgt cct ggt aaa aga tat gat gcc att cct tta His Gly Asp Phe Cys Pro Gly Lys Arg Tyr Asp Ala Ile Pro Leu 210 215 220	taa 1207
aaaagagett tgtttggtee eagaggtaat atetetteta attttttete acett	gatac 1267
aagtaaagaa ctttcgatat atggtctgac acagctaata tgatgttacc ttttt	tgtca 1327
aagttetett ttacagaggt gtaggaegat aageatttgt aeetaaaget tteaa	acatg 1387
ccctctggga ttatgtcgtt gccaaggagg caggccagaa gaggaaggtc ggcca	cacag 1447
aggcccagac tetcacagag ettetetetg cagagcatga eggtgtecag getet	ctagg 1507
cagagetege taattgaaaa gtagggacaa gtgteataga ttaggtaate agtgt	ettee 1567
cccagaatcc caagacagtt atgctggagg ccataggaag ctacctcata atctg	cttcc 1627
tgcaaagaac acaaagtttc ctggcccagt gtctttagag caaatcgtgt aaaca	cagct 1687
agccctgagg ggatgaagaa catatttctg cctggctgct ccttgtgtga cttga	itgtaa 1747
tgaaaaatcc tggatatctc cctgttgttc ttgagccttc gtttcaccca ttcat	ctctc 1807
ttatcctgct ccaccatgcc atcaaagaag aatatcaact tgatcccagc tgccg	rtaaaa 1867
gttttaacaa aatetegeaa ageagaaaag tattetegee aetggeeace geaga	itccaa 1927

•	gattetggag	tataccaata	tetgagacaa	cacatggcat	caaccacaat	ggtaggggta	1987
,	catccaggat	acttgcttcg	gtggtgctct	gccagttctt	tgaaatttac	tactgtacat	2047
	atatgtgggc	aggtacttcc	cacaaatcct	tgcaaacctc	tcacacccat	aactgaactc	2107
	cgggaaagga	tctagagatg	cgccaacacc	agccgcagac	gcgcccgctg	caccctaggc	2167
	ccaaccgcct	cagccaccgc	cacacgaaat	cgtcgacccg	ggaattccgg	accggtgcgt	2227
•	gcaggcgtac	agctatcagt	cgaggg				2253

<210> 44 <211> 1800 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (144)..(1046) <400> 44 gtggccctac cctgacgtcc tcgcgcactg cccggaattc ccgggtcgac ccacgcgtcc 60 ggttggaaga agtacccagt ccatttggag agttaaaact gtgcctaaca gaggtgtcct 120 ctgacttttc ttctgcaagc tcc atg ttt tca cat ctt ccc ttt gac tgt 170 Met Phe Ser His Leu Pro Phe Asp Cys gtc ctg ctg ctg ctg cta cta ctt aca agg tcc tca gaa gtg gaa 218 Val Leu Leu Leu Leu Leu Leu Leu Thr Arg Ser Ser Glu Val Glu 10 15 20 tac aga gcg gag gtc ggt cag aat gcc tat ctg ccc tgc ttc tac acc 266 Tyr Arg Ala Glu Val Gly Gln Asn Ala Tyr Leu Pro Cys Phe Tyr Thr cca gcc gcc cca ggg aac ctc gtg ccc gtc tgc tgg ggc aaa gga gcc 314 Pro Ala Ala Pro Gly Asn Leu Val Pro Val Cys Trp Gly Lys Gly Ala 45 tgt cct gtg ttt gaa tgt ggc aac gtg gtg ctc agg act gat gaa agg 362 Cys Pro Val Phe Glu Cys Gly Asn Val Val Leu Arg Thr Asp Glu Arg gat gtg aat tat tgg aca tcc aga tac tgg cta aat ggg gat ttc cgc 410 Asp Val Asn Tyr Trp Thr Ser Arg Tyr Trp Leu Asn Gly Asp Phe Arg aaa gga gat gtg tcc ctg acc ata ggg aat gtg act cta gca gac agt 458 Lys Gly Asp Val Ser Leu Thr Ile Gly Asn Val Thr Leu Ala Asp Ser ggg atc tac tgc tgc cgg atc caa atc cca ggc ata atg aat gaa 506 Gly Ile Tyr Cys Cys Arg Ile Gln Ile Pro Gly Ile Met Asn Asp Glu 115

554

aaa ttt aac ctg aag ttg gtc atc aaa cca gcc aag gtc acc cct gca

Lys Phe Asn Leu Lys Leu Val Ile Lys Pro Ala Lys Val Thr Pro Ala

125 130 135

125 130 135	
Ccg act ctg cag aga gac ttc act gca gcc ttt cca agg atg ctt accPro Thr Leu Gln Arg Asp Phe Thr Ala Ala Phe Pro Arg Met Leu Thr140145	602
acc agg gga cat ggc cca gca gag aca cag aca ctg ggg agc ctc cct Thr Arg Gly His Gly Pro Ala Glu Thr Gln Thr Leu Gly Ser Leu Pro 155 160 165	650
gat ata aat cta aca caa ata tcc aca ttg gcc aat gag tta cgg gac Asp Ile Asn Leu Thr Gln Ile Ser Thr Leu Ala Asn Glu Leu Arg Asp 170 175 180 185	698
tct aga ttg gcc aat gac tta cgg gac tct gga gca acc atc aga ata Ser Arg Leu Ala Asn Asp Leu Arg Asp Ser Gly Ala Thr Ile Arg Ile 190 195 200	746
ggc atc tac atc gga gca ggg atc tgt gct ggg ctg gct ctg gct ctt Gly Ile Tyr Ile Gly Ala Gly Ile Cys Ala Gly Leu Ala Leu Ala Leu 205 210 215	794
atc ttc ggc gct tta att ttc aaa tgg tat tct cat agc aaa gag aag Ile Phe Gly Ala Leu Ile Phe Lys Trp Tyr Ser His Ser Lys Glu Lys 220 225 230	842
ata cag aat tta agc ctc atc tct ttg gcc aac ctc cct ccc tca gga Ile Gln Asn Leu Ser Leu Ile Ser Leu Ala Asn Leu Pro Pro Ser Gly 235 240 245	890
ttg gca aat gca gta gca gag gga att cgc tca gaa gaa aac atc tat Leu Ala Asn Ala Val Ala Glu Gly Ile Arg Ser Glu Glu Asn Ile Tyr 250 255 260 265	938
acc att gaa gag aac gta tat gaa gtg gag gag ccc aat gag tat tat Thr Ile Glu Glu Asn Val Tyr Glu Val Glu Glu Pro Asn Glu Tyr Tyr 270 275 280	98 <b>6</b>
tgc tat gtc agc agc agg cag caa ccc tca caa cct ttg ggt tgt cgc Cys Tyr Val Ser Ser Arg Gln Gln Pro Ser Gln Pro Leu Gly Cys Arg 285 290 295	1034
ttt gca atg cca tag atccaaccac cttatttttg agcttggtgt tttgtctttt Phe Ala Met Pro 300	1089
tcagaaacta tgagetgtgt cacetgactg gttttggagg ttctgtccac tgctatggag	g 1149
cagagttttc ccattttcag aagataatga ctcacatggg aattgaactg ggacctgca	c 1209
tgaacttaaa caggcatgtc attgcctctg tatttaagcc atcagagtta cccaaccca	g 1269
agactgttaa tcatggatgt tagagctcaa acgggctttt atatacacta ggaattett	g 1329
acgtggggtc tctggagctc caggaaattc gggcacatca tatgtccatg aaacttcag	a 1389
taaactaggg aaaactgggt gctgaggtga aagcataact tttttggcac agaaagtct	a 1449
aaggggccac tgattttcaa agagatetgt gateeetttt tgttttttgt ttttgagat	g 1509
gagtettget etgttgeeca ggetggagtg caatggeaca atettggete aetgeaage	t 1569
ccgcctcctg ggttcgagcg attcttctgc ctcagcctcc tgagtggctg ggattacag	g 1629

WO 01/55437				PCT/US01/02	2623
catgcaccac catgcccage	taatttgttg	tatttttggt	agagacaggg	tttcaccatg	1689

ttggccagtg tggtctcaaa ctcctgacct catgatttgc ctgcctcggc ctcccaaagc 1749
actgggatta caggcgtgag ccaccacatc cagccagtga tccttaagag a 1800

<210> 45 <211> 5588 <212> DNA <213> Homo sapiens

<221> CDS <222> (386)..(3292)

<400> 45 60 cacaaatotg tgattacotg gogggtgaac ogotooggtg goggggagag ogggetooca gcgctgggta ggggccgggt tccggcgagc gccatcccgg agcgtcagtt tcccagtttg 120 ggaagtgagg agaacctgcc tcgcccttcc ccgccaaggc ttagggaagg gactatggca 180 gttccaagag gaaatcaggg tctcgctctg ttgctcaggc tggattgcag tggcgtgatc 240 atgecteact geagectega cetecetggg etcaageaat ceteceactt cagectecag 300 360 agtggctggg accacagtgt ggctgtccag ctgggctgag tcgcccaaga aggacgtgac 412 aggtgccgac gccaccgccg agccc atg atc ctg gaa cag tac gtg gtg gtg Met Ile Leu Glu Gln Tyr Val Val Val 460 tcc aac tat aag aag cag gag aac tcg gag ctg agc ctc cag gcc ggg Ser Asn Tyr Lys Lys Gln Glu Asn Ser Glu Leu Ser Leu Gln Ala Gly 15 508 gag gtg gtg gat gtc atc gag aag aac gag agc ggc tgg tgg ttc gtg Glu Val Val Asp Val Ile Glu Lys Asn Glu Ser Gly Trp Trp Phe Val 35 556

age act tet gag gag cag gge tgg gte cet gee ace tac etg gag gee

Ser Thr Ser Glu Glu Gln Gly Trp Val Pro Ala Thr Tyr Leu Glu Ala

45

50

556

Cag aat ggt act egg gat gae tee gae ate aae ace tet aag act gga
Gln Asn Gly Thr Arg Asp Asp Ser Asp Ile Asn Thr Ser Lys Thr Gly

60

65

70

gaa gtg tcc aag aga cgc aag gcc cat ctg cgg cgc ctg gat cgc cgg 652 Glu Val Ser Lys Arg Arg Lys Ala His Leu Arg Arg Leu Asp Arg Arg 75 80 85

tgg acc ctg ggc ggg atg gtc aac agg cag cac agc cga gag gag aag

Trp Thr Leu Gly Gly Met Val Asn Arg Gln His Ser Arg Glu Glu Lys

90 95 100 105

tat gtc acc gtg cag cct tac acc agc caa agc aag gac gag att ggc
Tyr Val Thr Val Gln Pro Tyr Thr Ser Gln Ser Lys Asp Glu Ile Gly
110 115 120

ttt gag aag ggc gtc aca gtg gag gtg atc cgg aag aat ctg gaa ggc 796

														- `		1,02020
Phe	Glu	Lys	Gly 125	Val	Thr	Val	Glu	Val 130	Ile	Arg	Lys	Asn	Leu 135	Glu	Gly	
				_		_								gca Ala		844
														aac Asn		892
														aac Asn		940
														gaa Glu 200		988
				~			_	_	_			_	_	ccc Pro		1036
	-		_				_	_			_		_	agg Arg		1084
														gcc Ala		1132
														cca Pro		1180
														gag Glu 280		1228
														tcg Ser		1276
att Ile	tcc Ser	gat Asp 300	ggc Gly	atc Ile	agc Ser	ttt Phe	cgg Arg 305	ggt Gly	gga Gly	cag Gln	aag Lys	gca Ala 310	gag Glu	gtc Val	att Ile	1324
gat Asp	aag Lys 315	aac Asn	tca Ser	ggt Gly	ggc Gly	tgg Trp 320	tgg Trp	tac Tyr	gtg Val	cag Gln	atc Ile 325	ggt Gly	gag Glu	aag Lys	gag Glu	1372
ggc 330	tgg Trp	gcc Ala	ccc Pro	gca Ala	tca Ser 335	tac Tyr	atc Ile	gat Asp	aag Lys	cgc Arg 340	aag Lys	aag Lys	ccc Pro	aac Asn	ctg Leu 345	1420
agc Ser	cgc Arg	cgc Arg	aca Thr	agc Ser 350	acg Thr	ctg Leu	acc Thr	cgg Arg	ccc Pro 355	aag Lys	gtg Val	ccc Pro	ccg Pro	cca Pro 360	gca Ala	1468
ccc Pro	ccc Pro	agc Ser	aag Lys 365	ccc Pro	aag Lys	gag Glu	gcc Ala	gag Glu 370	gag Glu	ggc Gly	cct Pro	acg Thr	ggg Gly 375	gcc Ala	agt Ser	1516
gag	agc	cag	gac	tcc	ccg	cgg	aag	ctc	aag	tat	gag	gag	cct	gag	tat	1564

<b>WO</b> 01	1/5543	<b>57</b>												PC"	170801/0	2623
Glu	Ser	Gln 380	Asp	Ser	Pro	Arg	Lys 385	Leu	Lys	Tyr	Glu	Glu 390	Pro	Glu	Tyr	
														gag Glu		1612
														ccc Pro		1660
cgg Arg	ccc Pro	tcg Ser	ccg Pro	gcc Ala 430	tct Ser	tct Ser	ctg Leu	cag Gln	cgg Arg 435	gcc Ala	cgc Arg	ttc Phe	aag Lys	gtg Val 440	ggt Gly	1708
														gag Glu		1756
														ggc Gly		1804
tcc Ser	ggg Gly 475	gac Asp	agc Ser	gac Asp	tcc Ser	cca Pro 480	ggc Gly	agc Ser	tcc Ser	tcg Ser	ctg Leu 485	tcc Ser	ctg Leu	acc Thr	agg Arg	1852
														cta Leu		1900
	_	_		_		_	_	_	-	_				cac His 520		1948
	-												_	tgc Cys		1996
								_				_		gac Asp	_	2044
														aag Lys		2092
														tgt Cys		2140
	-	_		_	_			-					_	gca Ala 600		2188
														cag Gln		2236
_						-				_			-	agt Ser		2284
gat	tcg	gag	ctg	ccc	ccg	cag	acg	gcc	tcc	gag	gct	ccc	agt	gag	<b>9</b> 99	2332

	02,00.	•												IC	1/0301/020	) <i>23</i>
As	9 Ser 635	Glu	Leu	Pro	Pro	Gln 640	Thr	Ala	Ser	Glu	Ala 645	Pro	Ser	Glu	Gly	
te: Se: 65	t agg r Arg O	aga Arg	agc Ser	tca Ser	tcc Ser 655	gac Asp	ctc Leu	atc Ile	acc Thr	ctc Leu 660	cca Pro	gcc Ala	acc Thr	act Thr	ccc Pro 665	2380
Pr	a tgt o Cys	ccc Pro	acc Thr	aag Lys 670	aag Lys	gaa Glu	tgg Trp	gaa Glu	999 Gly 675	cca Pro	gcc Ala	acc Thr	tcg Ser	tac Tyr 680	atg Met	2428
ac: Th:	a tgc r Cys	agc Ser	gcc Ala 685	tac Tyr	cag Gln	aag Lys	gtc Val	cag Gln 690	gac Asp	tcg Ser	gag Glu	atc Ile	agc Ser 695	ttc Phe	ccc Pro	2476
Ala	g ggc	gtg Val 700	gag Glu	gtg Val	cag Gln	gtg Val	ctg Leu 705	gag Glu	aag Lys	cag Gln	gag Glu	agc Ser 710	Gly ggg	tgg Trp	tgg Trp	2524
ta: Ty:	t gtg r Val 715	agg Arg	ttt Phe	G1y aga	gag Glu	ctg Leu 720	gag Glu	ggc Gly	tgg Trp	gcc Ala	cct Pro 725	tcc Ser	cac His	tat Tyr	ttg Leu	2572
gte Va: 73	g ctg l Leu D	gat Asp	gag Glu	aac Asn	gag Glu 735	caa Gln	cct Pro	gac Asp	ccc Pro	tct Ser 740	ggc Gly	aaa Lys	gag Glu	ctg Leu	gac Asp 745	2620
aca Th	a gtg r Val	ccc Pro	gcc Ala	aag Lys 750	ggc Gly	agg Arg	cag Gln	aac Asn	gaa Glu 755	ggc Gly	aag Lys	tca Ser	gac Asp	agc Ser 760	ctg Leu	2668
ga Gl	ı Lys	atc Ile	gag Glu 765	agg Arg	cgc Arg	gtc Val	caa Gln	gca Ala 770	ctg Leu	aac Asn	acc Thr	gtc Val	aac Asn 775	cag Gln	agc Ser	2716
aag Ly:	g aag s Lys	gcc Ala 780	acg Thr	ccc Pro	ccc Pro	atc Ile	ccc Pro 785	tcc Ser	aaa Lys	cct Pro	ccc Pro	999 Gly 790	ggc Gly	ttt Phe	ggc ggc	2764
Ly	g acc Thr 795	Ser	Gly	Thr	Pro	Ala 800	Val	Lys	Met	Arg	Asn 805	Gly	Val	Arg	Gln	2812
Va. 810		Val	Arg	Pro	Gln 815	Ser	Val	Phe	Val	Ser 820	Pro	Pro	Pro	Lys	Asp 825	2860
Ası	aac Asn	ctg Leu	tcc Ser	tgc Cys 830	gcc Ala	ctg Leu	cgg Arg	agg Arg	aat Asn 835	gag Glu	tca Ser	ctc Leu	acg Thr	gcc Ala 840	act Thr	2908
gat Asp	ggc Gly	ctc Leu	cga Arg 845	ggc Gly	gtc Val	cga Arg	cgg Arg	aac Asn 850	tcc Ser	tcc Ser	ttt Phe	agc Ser	act Thr 855	gct Ala	cgc Arg	2956
tco Sei	gct Ala	gçc Ala 860	gcc Ala	gag Glu	gcc Ala	aag Lys	ggc Gly 865	cgc Arg	ctg Leu	gcc Ala	gaa Glu	cgg Arg 870	gct Ala	gcc Ala	agc Ser	3004
cag Glr	ggt Gly 875	tca Ser	gac Asp	tca Ser	ccc Pro	cta Leu 880	ctg Leu	ccc Pro	gcc Ala	cag Gln	cgc Arg 885	aac Asn	agc Ser	atc Ile	ccc Pro	3052
gts	tec	cct	gtg	cgc	ccc	aag	ccc	atc	gag	aag	tct	cag	ttc	atc	cac	3100

WO 01/55437 PCT/US01/026	523
Val Ser Pro Val Arg Pro Lys Pro Ile Glu Lys Ser Gln Phe Ile His 890 895 900 905	
aat aac ctc aaa gat gtg tac gtc tct atc gca gac tac gag ggg gat Asn Asn Leu Lys Asp Val Tyr Val Ser Ile Ala Asp Tyr Glu Gly Asp 910 915 920	3148
gag gag aca gca ggc ttc cag gag ggg gtg tcc atg gag gtt ctg gag Glu Glu Thr Ala Gly Phe Gln Glu Gly Val Ser Met Glu Val Leu Glu 925 930 . 935	3196
agg aac cct aat ggc tgg tgg tac tgc cag atc ctg gat ggt gtg aag Arg Asn Pro Asn Gly Trp Trp Tyr Cys Gln Ile Leu Asp Gly Val Lys 940 945 950	3244
CCC ttc aaa ggc tgg gtg cct tcc aac tac ctt gag aaa aag aac tag Pro Phe Lys Gly Trp Val Pro Ser Asn Tyr Leu Glu Lys Lys Asn * 955 960 965	3292
cagagggeet gggetettee ageeteagtg tgeetetetg geegeeeact ggatgagegg	3352
tgagacgaac aaaagggaaa ggaaaaaatg ggggtggggg gtggggggtg gacaacattc	3412
aacactgcag aatgggtgac ctcaaagatg ccccctgtcc aagccatccc acagctggaa	3472
ggtaggggat gggggtgccc acactgagtg aggaagggaa tggaccaggg agtcccaggc	3532
ctgggaccca gagccaagta agctgagata tcctgtgcac catagggact tcaccaatgg	3592
attacatgcc atctgggaca ggccatgtgg gagaccccag ttgtgccttt gctacagatc	3652
tggaaaagac aaggtcatgg gggcctccag tgtcctgccc ctgcttggcc cagttttgat	3712
tgctggcatc ttgccacccc aggtatccct ggtattgtcc taagctgtat ttgtgaattg	3772
tgctggtttc ctgggcattg ccacgcctac cacaggtggg tacattagaa gccaccactg	3832
gctttcaggc ttgggggtgt cttctgagct caagcctgct tctgggccag gccattgtca	3892
ctgttagttg aagaaaaagc agttcccagg tgccagcaaa gaccatcttt cataactgtc	3952
actgtettgg cettgagaag agageeeget eteegtgggg caccecatgg aggacacagt	4012
accagagttt acagagaggg tgggcgaagc caccggtctc ttcctaatct gcacagacta	4072
ttttgggtat ttctgggcgg gcagttcctt tgcatgtttc gggagaggtt tgttgatttg	4132
gggcttatat gtcaggcctt tggtttgcgt cttattttag gggttgtttg ggggcctggg	4192
tggtcggcct cacatgggaa ggagatgggt agtggatggg gtttctgttg tatcttgtgg	4252
gcgggtgatt ttgcttttgt ttttgtttca cattcttccc cctccacaag ccaaagtcgt	4312
ttcatttggt ttccactgtg tggactgtgc tggagcttgg cgcctgccag aaaaatttgg	4372
ggctaggcaa gccccaggtt gcagacatgg tgaagcagag aaactgttct tctggttcct	4432
gcacaacctc agaggggcaa aaaccctccc caggaaggag gagggtgttc aggagccaga	4492

4552

4612

4672

cttttggaga gaaggcagct cccagcctgc tgggtgaccg ccattctgcg tgtgttcccc

agctgggcag ggctggaagc cttacgtatg aagcatggag aagcagccat tgtccccact

atgggcagag gggggacccg gctggcccct tgggtcagac tggagccaac accgccagcc

accecetety quetyctyce aatgecacay gtgcccaaga agatggagga tecetytyce 4732 aqqaqccaac ctqqtcttcc cgagggtcag tgccccagtg aagacagaag cgagagaata 4792 aagttocotg taggtoctot gtoacotttg ggttgtgttt ttoaattgtt gacatttoag 4852 aggggaccet ccagaageee ageeggette ecceaaggae tecceetteg etgggagtgg 4912 atttccacac qtqcctttga tttcggacag attqqqcctc acagccaccg attcagctgc 4972 cagggtccct ggactggggg ttggtgtttt ctatagagga ggaaaggccc tccctcaccc 5032 tgctccccac ccaggcaggg cagcatggga cccagtgtct cagtgccttc aaaacccacc 5092 cccacccta ccctaccca ccacaccca tcccagaggc cttgcctggg caaccctaag 5152 cccctgtccc tcgccataca ctgatgcctg gcagctagag caaatggctc gtgttctttg 5212 tcgaaggcct gtggtgagat tgttttgttt ccttttgttt tgtgagtttg tttaaaattg 5272 aaattagtta ttttcttctg ctggacagta ttaaatagag caggatgttg agttaatctg 5332 ctagattgca gtactaatgg tagtggttta gtgtcttcat gttaatatta tttgtactta 5392 tttgaacaat aatgataaag aagtggttca ttattttta attaatgcac tttaaataag 5452 gtagaatgga aaaaacccag agagcaaagt gcattactta aagatgcagt atatactttt 5512 ctcattttta aacagcacat atttattaag agaaaaaaag taatttatga ctatttaaaa 5572 taaaatttaa aagtag 5588

<210> 46 <211> 754

<211> /54 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (194)..(532)

<400> 46

ttcatgatgt atataactat ctattcgatg atgaagatac cccaccaaac ccaaaaaaaa 60
agatctctcg aggatccgaa ttcgcggccg cgtcgaccac tactctgtta aattcctcaa 120
acttgtaatg ccccaaggct tgatttttc cagataatgg ctctatcgtt gcacataccc 180
tgattctgtc agt atg tgt cat tgg caa aat agc ttt ctc tgc caa agc 229
Met Cys His Trp Gln Asn Ser Phe Leu Cys Gln Ser
1 5 10

ttt ctg acc ttt ggc tcc atc tta gct ttg tta gca gga aag gcc tgc
Phe Leu Thr Phe Gly Ser Ile Leu Ala Leu Leu Ala Gly Lys Ala Cys

15 20 25

tac cca gag tca gag tca atc aga gaa ttg ttc atg tgg tcc tta gaa 325 Tyr Pro Glu Ser Glu Ser Ile Arg Glu Leu Phe Met Trp Ser Leu Glu 30 35 40

PCT/US01/02623 WO 01/55437 ctt tac tee tta eee ttt tat ett tte ttt aaa ett teg eet eta aat Leu Tyr Ser Leu Pro Phe Tyr Leu Phe Phe Lys Leu Ser Pro Leu Asn 55 45 ctg cca ggg aaa ttg gga ctt ata gaa acc ttg tca act tgt ttg ggt 421 Leu Pro Gly Lys Leu Gly Leu Ile Glu Thr Leu Ser Thr Cys Leu Gly 70 65 469 caa aaa tta gat cct gtg tta gaa act ctg caa aga gtg aga tcc atg Gln Lys Leu Asp Pro Val Leu Glu Thr Leu Gln Arg Val Arg Ser Met 80 gca tca ttg atc gcc aac ttc ttt gtt cct ttc atc cag aag aaa ggt 517 Ala Ser Leu Ile Ala Asn Phe Phe Val Pro Phe Ile Gln Lys Lys Gly 105 cag etc att acg taa gaaactttte atcaggaaaa geagacaace gataaaaaac 572 Gln Leu Ile Thr * 110 632 agaaactaag tattctgcaa ggaaacctgg tttaaggaga atgtattgaa actggatatg cetgtteett tttacteete cetttggeat tteettttt tttetgtaag ataateatag 692 aaatttaggt aatggcggga ctacaaagat cacatggctt tatgggcccg cctattatgc 752 754 .tg <210> 47 <211> 859 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (23)..(715) <400> 47 cagcategga ggtegeteag ee atg gea tgg ate eet ete tte ete gge gte 52 Met Ala Trp Ile Pro Leu Phe Leu Gly Val ctt gct tac tgc aca gga tcc gtg gcc tcc tat gag ctg act cag cca 100 Leu Ala Tyr Cys Thr Gly Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro cec tea gtg tee gtg tee eea gge aag aca gee age ate ace tge tet 148 Pro Ser Val Ser Val Ser Pro Gly Lys Thr Ala Ser Ile Thr Cys Ser 30 196 gga gat aaa ttg ggg gat aaa tat gct tcc tgg tat cag cag aag gca Gly Asp Lys Leu Gly Asp Lys Tyr Ala Ser Trp Tyr Gln Gln Lys Ala 45 ggc cag tcc ccc gtg ctg gtc atc tat cga cat agc aag cgg ccc tca 244 Gly Gln Ser Pro Val Leu Val Ile Tyr Arg His Ser Lys Arg Pro Ser 60 65 ggg atc cct gag cga ttc tct ggc tcc aat tct ggg aac aca gcc act 292 Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr

80

ctg Leu	acc Thr	atc Ile	agt Ser	95 95	acc Thr	cag Gln	gtc Val	atg Met	gat Asp 100	gag Glu	gct Ala	gac .Asp	tat Tyr	tac Tyr 105	tgt Cys	340
cag Gln	gcg Ala	tgg Trp	gac Asp 110	agc Ser	agc Ser	atc Ile	gtg Val	gtg Val 115	ttc Phe	ggc	gga Gly	gly aaa	acc Thr 120	aag Lys	ttg Leu	388
acc Thr	gtc Val	cta Leu 125	ggt Gly	cag Gln	ccc Pro	aag Lys	gct Ala 130	gcc Ala	ccc Pro	tcg Ser	gtc Val	act Thr 135	ctg Leu	ttc Phe	ccg Pro	436
ccc Pro	tcc Ser 140	tct Ser	gag Glu	gag Glu	ctt Leu	caa Gln 145	gcc Ala	aac Asn	aag Lys	gcc Ala	aca Thr 150	ctg Leu	gtg Val	tgt Cys	ctc Leu	484
ata Ile 155	Ser	gac Asp	ttc Phe	tac Tyr	ccg Pro 160	gga Gly	gcc Ala	gtg Val	aca Thr	gtg Val 165	Ala	tgg Trp	aag Lys	gca Ala	gat Asp 170	532
agc Ser	agc Ser	ccc Pro	gtc Val	aag Lys 175	gcg Ala	gga Gly	gtg Val	gag Glu	acc Thr 180	Thr	aca Thr	ccc Pro	tcc Ser	aaa Lys 185	Gln	580
ago Ser	aac Asn	aac Asn	aag Lys 190	Tyr	gcg Ala	gcc Ala	agc Ser	agc Ser 195	Tyr	ctg Leu	ago Ser	ctg Leu	acg Thr 200	Pro	gag Glu	628
cag Gln	tgg Trp	aag Lys 205	Ser	cac	aga Arg	ago Ser	tac Tyr 210	Ser	tgc Cys	cag Gln	gto Val	acg Thr 215	His	gaa Glu	ggg	676
ago Ser	acc Thr	Val	gag Glu	aag Lys	aca Thr	gtg Val	Ala	cct Pro	aca Thr	gaa Glu	tgt Cys 230	Ser	tag	gtto	tca	725
acc	cctca	ccc	ccca	ccac	aa a	agac	taga	ıg ct	gcag	gato	cca	rada a	agg	ggto	tctcct	785
cco	cacco	caa	gcat	caag	cc c	ttct	ccct	g ca	ctca	ataa	acc	ectca	ata	aata	ttctca	845
tt	gtcaa	atga	ggto	:												859
		210> 211>	48 1612	2												
			DNA Homo	sat	oiens	5										
		220>														
	<:	221>								•						
	<:	222>	(43)	) (2	L464)	)										
tt		400> ggga		cagg	get 1	tcat	tttc	tg t	cctc	cacc	a tc				ca acc er Thr	54
Al	c ate a Ile 5	c ct e Le	c gc	e cto a Leo	c cto u Leo 1	u Le	g gc u Al	t gt a Va	t ct	g ca u Gl: 1	n Gl	a gt y Va	c tg 1 Cy	t gc s Al	t gag a Glu 20	102

WC	01/5	5437												I	CITUS	01/020	23
gtg Val	cag Gln	ctg Leu	gtg Val	cag Gln 25	tct Ser	gga Gly	gca Ala	gag Glu	gtg Val 30	aaa Lys	aag Lys	ccc Pro	Gly ggg	gag Glu 35	tct Ser	1	.50
gtg Val	aag Lys	att Ile	tcc Ser 40	tgt Cys	aag Lys	ggc Gly	tct Ser	gga Gly 45	tac Tyr	agc Ser	ttt Phe	agc Ser	gac Asp 50	tac Tyr	tgg Trp	1	.98
gtc Val	gcc Ala	tgg Trp 55	gtg Val	cgc Arg	cag Gln	tcg Ser	ccc Pro 60	gac Asp	aaa Lys	ggc Gly	ctg Leu	gcg Ala 65	tgg Trp	atg Met	GJÀ āāā	2	46
atc Ile	atc Ile 70	tat Tyr	cct Pro	ggt Gly	gac Asp	tct Ser 75	gat Asp	acc Thr	agg Arg	tac Tyr	agc Ser 80	ccg Pro	tcc Ser	ttc Phe	caa Gln	2	94
ggc Gly 85	cag Gln	gtc Val	acc Thr	atc Ile	tca Ser 90	gcc Ala	gac Asp	aag Lys	tcc Ser	atc Ile 95	agc Ser	acc Thr	gcc Ala	tac Tyr	ctg Leu 100	3	342
cag Gln	tgg Trp	agt Ser	agc Ser	ctg Leu 105	aag Lys	gac Asp	tcg Ser	gac Asp	acc Thr 110	gcc Ala	atg Met	tat Tyr	tat Tyr	tgt Cys 115	gcg Ala	3	390
aga Arg	ggt Gly	gcc Ala	cga Arg 120	gga Gly	acc Thr	gcg Ala	ccc Pro	tcc Ser 125	tac Tyr	cac His	tac Tyr	tac Tyr	ggt Gly 130	tta Leu	gac Asp	4	138
gtc Val	tgg Trp	ggc Gly 135	aga Arg	gjà ààà	acc Thr	tcg Ser	gtc Val 140	acc Thr	gtc Val	tcc Ser	tca Ser	gcc Ala 145	tcc Ser	acc Thr	aag Lys	4	186
ggc Gly	cca Pro 150	tcg Ser	gtc Val	ttc Phe	ccc Pro	ctg Leu 155	gca Ala	ccc Pro	tcc Ser	t <u>c</u> c Ser	aag Lys 160	agc Ser	acc Thr	tct Ser	GJÀ āāā	5	534
ggc Gly 165	Thr	gcg Ala	gcc Ala	ctg Leu	ggc Gly 170	Cys	ctg Leu	gtc Val	aag Lys	gac Asp 175	Tyr	ttc Phe	ccc Pro	gaa Glu	ccg Pro 180		582
gtg Val	acg Thr	gtg Val	tcg Ser	tgg Trp 185	Asn	tca Ser	ggc Gly	gcc Ala	ctg Leu 190	acc Thr	agc Ser	ggc	gtg Val	cac His 195	Thr	(	630
´ttc Phe	ccg Pro	gct Ala	gtc Val 200	Leu	cag Gln	tcc Ser	tca Ser	gga Gly 205	Leu	tac Tyr	tcc Ser	cto Leu	agc Ser 210	Ser	gtg Val	(	678
gtg Val	acc Thr	gtg Val 215		tcc Ser	agc Ser	ago	Leu 220	Gly	acc Thr	cag Gln	acc Thr	Tyr 225	Ile	tgc Cys	aac Asn	,	726
gtg Val	aat Asn 230	His	aag Lys	ccc Pro	ago Ser	Asn 235	Thr	aag Lys	gtg Val	gac	aag Lys 240	Arg	gtt Val	gag Glu	Pro		774
	Ser					His					Суз				gaa Glu 260		822
cto	ctg Leu	ggg ggg	g gga / Gly	ccg Pro 265	Ser	gtc Val	tto Phe	ctc Leu	ttc Phe 270	Pro	cca Pro	aaa Lys	ccc Pro	aag Lys 275	Asp		870

W	0 01/5	5437												]	PCT/US	801/02623
acc Thr	ctc Leu	atg Met	atc Ile 280	tcc Ser	cgg Arg	acc Thr	cct Pro	gag Glu 285	gtc Val	aca Thr	tgc Cys	gtg Val	gtg Val 290	gtg Val	gac Asp	918
gtg Val	agc Ser	cac His 295	gaa Glu	gac Asp	cct Pro	gag Glu	gtc Val 300	aag Lys	ttc Phe	aac Asn	tgg Trp	tac Tyr 305	gtg Val	gac Asp	ggc Gly	966
gtg Val	gag Glu 310	gtg Val	cat His	aat Asn	gcc Ala	aag Lys 315	aca Thr	aag Lys	ccg Pro	cgg Arg	gag Glu 320	gag Glu	cag Gln	tac Tyr	aac Asn	1014
agc Ser 325	acg Thr	tac Tyr	cgt Arg	gtg Val	gtc Val 330	agc Ser	gtc Val	ctc Leu	acc Thr	gtc Val 335	ctg Leu	cac His	cag Gln	gac Asp	tgg Trp 340	1062
ctg Leu	aat Asn	ggc Gly	aag Lys	gag Glu 345	tac Tyr	aag Lys	tgc Cys	aag Lys	gtc Val 350	tcc Ser	aac Asn	aaa Lys	gcc Ala	ctc Leu 355	cca Pro	1110
gcc Ala	ccc Pro	atc Ile	gag Glu 360	aaa Lys	acc Thr	atc Ile	tcc Ser	aaa Lys 365	gcc Ala	aaa Lys	gly ggg	cag Gln	ccc Pro 370	cga Arg	gaa Glu	1158
cca Pro	cag Gln	gtg Val 375	tac Tyr	acc Thr	ctg Leu	ccc Pro	cca Pro 380	tcc Ser	cgg Arg	gag Glu	gag Glu	atg Met 385	acc Thr	aag Lys	aac Asn	1206
cag Gln	gtc Val 390	agc Ser	ctg Leu	acc Thr	tgc Cys	ctg Leu 395	gtc Val	aaa Lys	ggc Gly	ttc Phe	tat Tyr 400	ccc Pro	agc Ser	gac Asp	atc Ile	1254
gcc Ala 405	gtg Val	gag Glu	tgg Trp	gag Glu	agc Ser 410	aat Asn	gly aaa	cag Gln	ccg Pro	gag Glu 415	aac Asn	aac Asn	tac Tyr	aag Lys	acc Thr 420	1302
acg Thr	cct Pro	ccc Pro	gtg Val	ctg Leu 425	gac Asp	tcc Ser	gac Asp	ggc	tcc Ser 430	ttc Phe	ttc Phe	ctc Leu	tat Tyr	agc Ser 435	aag Lys	1350
ctc Leu	acc Thr	gtg Val	gac Asp 440	aag Lys	agc Ser	agg Arg	tgg Trp	cag Gln 445	cag Gln	gly ggg	aac Asn	gtc Val	ttc Phe 450	tca Ser	tgc Cys	1398
tcc Ser	gtg Val	atg Met 455	cat His	gag Glu	gct Ala	ctg Leu	cac His 460	aac Asn	cac His	tac Tyr	acg Thr	cag Gln 465	aag Lys	agc Ser	ctc Leu	1446
tcc Ser	ctg Leu 470	tcc Ser	ccg Pro	ggt Gly	aaa Lys	tgag	jtg d	gacg	gccg	ıg ca	agco	cccg	cto	cccc	333	1500
ctct	cgcg	gt c	gcac	gagg	ga tg	cttg	gcac	gta	cccc	gtc	taca	tact	tc c	cagg	cacco	: 1560
agcatggaaa taaagcaccc accactgccc tgggcccctg caaaaaaaaa aa												1612				

<210> 49 <211> 664 <212> DNA <213> Homo sapiens

PCT/US01/02623 WO 01/55437

<220>

<221> CDS

<222> (205)..(348) <400> 49 gtcgaggtcc ggaattcccg ggtcgaccca cgcgtccgac caggaataca aagatgagtt 60 tgagcatcat cctttcggga aatgtaaata cctaaagcaa aggattctag ggcaactgtt 120 tttcttcccc attatcaact ccataaagag tcttttctga cttctttttc aattgtcccc 180 231 tcctggcctt ttaataacat agat atg ctg ggt atc tgt tta tgt tct ata Met Leu Gly Ile Cys Leu Cys Ser Ile tgt gta ctt aga ctt tgt tta gaa aag agt aag att ttt cca cct cca 279 Cys Val Leu Arg Leu Cys Leu Glu Lys Ser Lys Ile Phe Pro Pro 15 20 10 aga acc agt gat cac tcc ctt gag ggc tct gtc acc cct gtg gag aat 327 Arg Thr Ser Asp His Ser Leu Glu Gly Ser Val Thr Pro Val Glu Asn 35 gca gca cgg tca ggc atg taa aa gggtctctta ccgggtcctc tttcaggtgg 380 Ala Ala Arg Ser Gly Met * 45 gggacttaga ttagtagata atcetteetg ggccaeggge etcatgactg gteagtagtg 440 500 ttgccagatt tcacaaactg tatatataga atgtccagtt aaacttgaat ttcagacaaa 560 caaatccttt tttaagtaaa agtatgtcct atgccatatt tagacatcgt ttgttgtatc tggcaatgct acttgtaagg atcctactct tctgaggata gaaagtgcac ttcccattaa 620 664 qtaaqaattt tcattaacaq gaagaacgtg agcctccatt taat

<210> 50

<211> 1001

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (257)..(805)

<400> 50

ggtaccggtt cggaattccc gggtcgacga tttcgtgctg acagggccgc atcggcttac 60 120 cccaccttac tttatctgaa cgcgcctaag ctgctgcagc tggcacccgg ttgcgctcgg cgaagagggc tgggggggg agatgacggt ggtcttttcc ctgcttggca ccctgcgagc 180 240 accatetece tttttetege caetecaagg ttgcagacga agcatagate tggttggagt atg aat tot aat tta oot goa gag aac tta too 289 togagggtga gagaaa Met Asn Ser Asn Leu Pro Ala Glu Asn Leu Ser

att gca gtc aat atg acc aag act ttg cct aca gca gta acg cat gga 337 Ile Ala Val Asn Met Thr Lys Thr Leu Pro Thr Ala Val Thr His Gly

			15					20					25				
		tcc Ser 30															385
		tta Leu															433
		gcc Ala		_						-						•	481
		tcc Ser															529
		aat Asn															577
		aaa Lys 110															625
		agt Ser															673
ttt Phe 140	gct Ala	aca Thr	caa Gln	agt Ser	aat Asn 145	gac Asp	ttt Phe	gca Ala	ttg Leu	gga Gly 150	tac Tyr	cct Pro	ata Ile	ggt Gly	aag Lys 155		721
tta Leu	att Ile	ttt Phe	att Ile	ttt Phe 160	caa Gln	gtg Val	ttt Phe	aaa Lys	aaa Lys 165	ttc Phe	aat Asn	ttt Phe	aat Asn	tta Leu 170	ttt Phe		769
agg Arg	cat His	ttg Leu	tta Leu 175	gta Val	aca Thr	gat Asp	tct Ser	tac Tyr 180	tct Ser	cat His	atc Ile	taag	j aag	jttt	tca 5	*	819
ttt	tttt	ctc a	aata	atgto	et ta	ıggat	gaat	cat	agtt	ttt	ccta	aact	tc a	ıgagt	ttgag	ſ	879
gatcetttaa acatetaeet aaaataaaeg ggeatattet										aataaccccc tgtgaacagg 93							
cccaaattgg aatttttttc ttcccgggaa gcacatatga									aaag	gaago	ctt a	tatt	tttta	ι	999		

<210> 51

ga

<211> 499

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (182)..(499)

<400> 51

gettaccett agggtttggt gggtagetca attettgaag etceataaca tecatttee

1001

tattatgagc agaggaaata aacatgcaga tggcttggtt tccttcgcat aacttgtaca	120										
ggggtaggta gcataaaaga cagccgttct caagaggcaa ccatgcgcct cactacttac											
c atg ttc ctg cgg ggc atc ccc tcc cgt agg gag tct ctg aaa aca Met Phe Leu Arg Gly Ile Pro Ser Arg Arg Glu Ser Leu Lys Thr 1 5 10 15	226										
aac aca cac aga agt tgg cgg tgg gca cca cat tct cct ctt gac cta. Asn Thr His Arg Ser Trp Arg Trp Ala Pro His Ser Pro Leu Asp Leu 20 25 30	274										
acc atc agg aat ttg ctg tgc cat ctg ttc ata aaa ctt agc cag gcc Thr Ile Arg Asn Leu Leu Cys His Leu Phe Ile Lys Leu Ser Gln Ala 35 40 45	322										
cag aaa gct tgt ccc aac cac atg cta aga gcc aag cag atg gaa cag Gln Lys Ala Cys Pro Asn His Met Leu Arg Ala Lys Gln Met Glu Gln 50 55 60	370										
aag ctc ccc caa gct gct ggc tcc cac tat ggc tgg gat gaa gca aga Lys Leu Pro Gln Ala Ala Gly Ser His Tyr Gly Trp Asp Glu Ala Arg 65 70 75	418										
acc tgg gcc cac aca ggc tgc aag gca gcg gac gcg tgg gtc gac ccg Thr Trp Ala His Thr Gly Cys Lys Ala Ala Asp Ala Trp Val Asp Pro 80 85 90 95	466										
gga gtt ccg gag cag gac ctt cca gcg ttc aat Gly Val Pro Glu Gln Asp Leu Pro Ala Phe Asn 100 105	499										
<210> 52											
<211> 738 <212> DNA											
<213> Homo sapiens											
<220>											
<221> CDS <222> (52)(393)											
<400> 52											
atttggccct cgaggccaag aattcggcac gagcgggaac cacgcacggt t atg agc Met Ser 1	57										
tca tgg ttt ctg agg gcc ggg cat ggc ctc atc tgg gtc ctc ttc ttc Ser Trp Phe Leu Arg Ala Gly His Gly Leu Ile Trp Val Leu Phe Phe 5 10 15	105										
agg att ggt cag gct gca gtc gga gtg tca gct ggg cct ggg ggg tca Arg Ile Gly Gln Ala Ala Val Gly Val Ser Ala Gly Pro Gly Gly Ser 20 25 30	153										
ccc aag gcc cac ctg ggg aga gtg gct tcc cag cac cct cat ggg gca Pro Lys Ala His Leu Gly Arg Val Ala Ser Gln His Pro His Gly Ala 35 40 45 50	201										

WO 01/55437	PCT/US01/02623
Glu Ser Arg Ala Cys Leu Leu Ala Arg Gly Le 55 60	u Pro Lys Ala Leu Ser 65
tcc atg ctg gct gtt gac tgc agg cca cgc tc Ser Met Leu Ala Val Asp Cys Arg Pro Arg Se 70 75	a ggg cct ctc cat cgg 29° r Gly Pro Leu His Arg 80
gcg gct cac atc atg gca gca agc ctc atc aga Ala Ala His Ile Met Ala Ala Ser Leu Ile Se 85 90	c aag cca gtg aga ggg 34: r Lys Pro Val Arg Gly 95
tgc cta tcc gag gat gat att cca tca cct ctc Cys Leu Ser Glu Asp Asp Ile Pro Ser Pro Let 100 105	g tca gat tct gct tac 39: u Ser Asp Ser Ala Tyr 110
tagtcagtcc ccaggcccag gccactcgca aggggagga	c attacaggag gcgtgagtat 453
aggtggtgtg atctgtgggg accggcgcat aggctgccca	a ccacatgggg ttaaaaccta 513
taaaacttcg aagctgaatt taattatttt cgaacactag	g gaaataaata aggategetg 573
tttctggcct tcccagaaca ctatagggtg ggattggata	a ctatattccc ccttaatttt 633
gtaaaagggg aaagcatgcc ctttcgatgc caacaattca	a cggggcctta cagggaaacc 693
ttccaacccc ccacgggagg gcttttactt cccatccggt	gcgcg 738
<210> 53 <211> 748 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (461)(616) <400> 53	
atttggccct cgaggccaag aattcggcac gagctctggc	agacgagcat aagaatccac 60
attttaaaca agcattccag gtgattctga tgcaaggtga	tttggggtct tgaagcctca 120
cacttacaga aactgctctc ttttgcattt atgaacctgg	r ctgttgaagg cttcagatca 180
catgettggg gatggtagat actagtgggg atcatetgac	tccagactgg gaatettete 240
gttacaggat gaccccaatc acttaggttt acttctggat	cttgataatt ccttgatagt 300
cetettttae tgatgtetet taeggeeett aagaaggeag	agaaggggtt aactgaggcc 360
acagaataga gagagtgaag gaactgaagg gtcattttac	agagtgactg gggtgtggcc 420
cagtecteca gtaggtgeee agagecagte caaaattaga	atg ggg tgg gat tca 475 Met Gly Trp Asp Ser 1 5
aaa ctg ctt ttc cta ttc act tgc ctt tca tgt Lys Leu Leu Phe Leu Phe Thr Cys Leu Ser Cys 10	gta acc aca tgc agt 523 Val Thr Thr Cys Ser 20

gtg tca aca tgc ttt cag gcg cca tta ggc agc agc agt ttt gct ccc Val Ser Thr Cys Phe Gln Ala Pro Leu Gly Ser Ser Ser Phe Ala Pro

WO 01/55437 PCT/US01/02623 25 30 35 tot ggg tto atg gac got tgg tat too tgt tat gtg ttg got tag aat 619 Ser Gly Phe Met Asp Ala Trp Tyr Ser Cys Tyr Val Leu Ala * 40 45 50 agetetgege tetggggete tgageattgt ceattaacte tttcageace agecetttga 679 gatgctaagg gcttttgaat gaaatgtaat aaccaccacg ccgagcccta tgcagtctca 739 748 aaaaaaaa <210> 54 <211> 539 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (48)..(368) <400> 54 atteageete cagageacea geaetggeae tggeaetgge acaeget atg gea aat 56 Met Ala Asn 104 gaa gtg caa gac ctg ctc tcc cct cgg aaa ggg gga cat cct cct gca Glu Val Gln Asp Leu Leu Ser Pro Arg Lys Gly Gly His Pro Pro Ala 10 gta aaa gct gga gga atg aga att tcc aaa aaa caa gaa att ggc acc 152 Val Lys Ala Gly Gly Met Arg Ile Ser Lys Lys Gln Glu Ile Gly Thr 200 ttg gaa aga cat acc aaa aaa aca gga ttc gag aaa aca agt gcc att Leu Glu Arg His Thr Lys Lys Thr Gly Phe Glu Lys Thr Ser Ala Ile gca aat gtt gcc aaa ata cag aca ccg gat gcc ctg aat gac gca ctg 248 Ala Asn Val Ala Lys Ile Gln Thr Pro Asp Ala Leu Asn Asp Ala Leu gag aag ctc aac tat aaa ttt cca gca aca gtg cac atg gcg cat caa 296 Glu Lys Leu Asn Tyr Lys Phe Pro Ala Thr Val His Met Ala His Gln aaa ccc aca cct gct ctg gaa aag gtt gtt cca ctg aaa agg atc tac 344 Lys Pro Thr Pro Ala Leu Glu Lys Val Val Pro Leu Lys Arg Ile Tyr 90 att att cag cag cct cga aaa tgt taageetgga tttaaaacac ageegtetgg 398 Ile Ile Gln Gln Pro Arg Lys Cys 100 105

458

518

539

ccagctgcct cgaatatctg acagcttagc aaaaagggcc aaagctttcc ataggcgtgc

tgcacttgct tggtaaatta agcagctttt gtatcttccc ctttgacttt aggtaataaa

gcatccaaac ttgtaaatct g

```
<210> 55
     <211> 558
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (212)..(499)
     <400> 55
gccctgaaga acctctacat gagtgaggtg gagattaact tggaagacct actgggagtg
                                                                       60
ctggcttccg cccacatcct ccagttcagt ggcctgtttc aaaggtgcgt ggatgtgatg
atagccagac tcaagccaag caccatcaag aaattctacg aggccggctg caaggttatt
                                                                      180
tacctttagt gaattccatc ttctgaaaac a
                                     atg ctt ttg tgg gtc ttc ttg
                                                                      232
                                     Met Leu Leu Trp Val Phe Leu
caa ctg aac tac aag att cag gca att ccg act tat gaa acc gtg atg
                                                                      280
Gln Leu Asn Tyr Lys Ile Gln Ala Ile Pro Thr Tyr Glu Thr Val Met
         10
                             15
                                                 20
aca ttt ttt aag agc ttt cct gag aac tgt tgc ttt ctg gac cgg gac
                                                                      328
Thr Phe Phe Lys Ser Phe Pro Glu Asn Cys Cys Phe Leu Asp Arg Asp
     25
ata gga cag age ttg agg ccg ctc ttc ctc tgc ttg cgt ctg cac ggc
                                                                      376
Ile Gly Gln Ser Leu Arg Pro Leu Phe Leu Cys Leu Arg Leu His Gly
                     45
                                         50
atc acc aaa ggc aag gat ctg agg tgc tgc ggc acc tta act tct tcc
Ile Thr Lys Gly Lys Asp Leu Arg Cys Cys Gly Thr Leu Thr Ser Ser
cag agt cat ggc tcg acc agg tta cag tca acc att acc acg cac tgg
                                                                      472
Gln Ser His Gly Ser Thr Arg Leu Gln Ser Thr Ile Thr Thr His Trp
aga atg ggg gcg aca tgg tcc acc tga aagat cttaacaccc aggctgtgag
                                                                      524
Arg Met Gly Ala Thr Trp Ser Thr
         90
atttgggctg ctctttaacc aggagaatac aact
                                                                      558
```

```
<210> 56
<211> 1340
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(1098)

<220>
<221> misc_feature
<222> (1)...(1340)
<23> n = a,t,c or g
```

	< 40	0> 5	6													
atg Met 1	ttg Leu	tat	tqq	gtg Val	Val	ata Ile	cat	tto Phe	ggc Gly	, Ala	agg Arg	Gly gg9	r ccc	gga Gly 15	. GJA aaa	48
cgc Arg	cga Arg	aaa Lys	cgg Arg 20	cga Arg	acg Thr	aca Thr	aac Asn	999 Gly 25	gag Glu	ggc Gly	cgg Arg	aat Asn	gcg Ala 30	gca Ala	agg Arg	96
cac His	gcc Ala	35 Gly ggg	aaa Lys	gag Glu	gga Gly	aac Asn	ccg Pro 40	cga Arg	aag Lys	ccc Pro	acg Thr	ggc Gly 45	aac Asn	gcc Ala	caa Gln	144
acc Thr	ccc Pro 50	atg Met	gac Asp	cca Pro	agg Arg	aaa Lys 55	cgt Arg	aaa Lys	aag Lys	gga Gly	agt Ser 60	ctg Leu	acc Thr	ccg Pro	gga Gly	192
cca Pro 65	aat Asn	aga Arg	cgc Arg	caa Gln	cag Gln 70	gaa Glu	agc Ser	gag Glu	ggc Gly	gca Ala 75	agg Arg	aga Arg	caa Gln	tcg Ser	cga Arg 80	240
cgg Arg	gga Gly	gag Glu	aac Asn	999 Gly 85	agc Ser	gaa Glu	gca Ala	gcc Ala	cag Gln 90	agc Ser	ccc Pro	agc Ser	cgg Arg	gga Gly 95	acg Thr	288
gaa Glu	cgg Arg	aag Lys	gca Ala 100	acc Thr	aag Lys	agg Arg	gtg Val	aaa Lys 105	aga Arg	aag Lys	caa Gln	gac Asp	gtc Val 110	acc Thr	glà aaa	336
aat Asn	gac Asp	cca Pro 115	cat His	agc Ser	cct Pro	tct Ser	ttg Leu 120	tct Ser	tcg Ser	gga Gly	ggt Gly	ccc Pro 125	atc Ile	cat His	aaa Lys	384
gcc Ala	aac Asn 130	Thr	tcc Ser	gga Gly	aga Arg	tta Leu 135	aag Lys	gtg Val	tcg Ser	gac Asp	agg Arg 140	Gly 999	aca Thr	gct Ala	gag Glu	432
agg Arg 145	Arg	gga Gly	gga Gly	ttt Phe	ctt Leu 150	gcc Ala	agg Arg	tgg Trp	aga Arg	gtc Val 155	Phe	acc Thr	gtc Val	tgt Cys	tgg Trp 160	480
gtg Val	cag Gln	gcc Ala	tgt Cys	gtc Val 165	Cys	cct Pro	gga Gly	aag Lys	atg Met 170	Leu	gca Ala	atg Met	gly aaa	gcg Ala 175	ctg Leu	528
gca Ala	gga Gly	ttc Phe	tgg Trp 180	Ile	ctc Leu	tgc Cys	ctc Leu	ctc Leu 185	Thr	tat Tyr	ggt Gly	tac Tyr	ctg Leu 190	Ser	tgg Trp	576
ggc	cag Gln	gcc Ala 195	Leu	gaa Glu	gag Glu	gag Glu	gaa Glu 200	ı Glu	ggg Gly	gcc Ala	tta Leu	cta Leu 205	Ala	caa Gln	gct Ala	624
gga Gly	gag Glu 210	Lys	cta Leu	gag Glu	cec Pro	ago Ser 215	Thr	act Thr	tcc Ser	acc Thr	Ser 220	Gln	ccc Pro	cat His	ctc Leu	672
att Ile 225	Phe	ato Ile	cta Leu	gcg Ala	gat Asp 230	Asp	cag Glr	gga Gly	ttt Phe	aga Arg 235	Asp	gtg Val	ggt Gly	tac Tyr	cac His 240	720
gga Gl	tct Ser	gag Glu	att Ile	aaa Lys	aca Thr	cct Pro	act Thr	ctt Leu	gac Asp	aag Lys	cto Leu	gct Ala	gcc Ala	gaa Glu	gga Gly	768

	245	250	255
gtt aaa ctg gag Val Lys Leu Glu 260	Asn Tyr Tyr Val (	cag cct att tgc aca Gln Pro Ile Cys Thr 265	cca tcc agg 816 Pro Ser Arg 270
agt cag ttt att Ser Gln Phe Ile 275	act gga aag tat o Thr Gly Lys Tyr o 280	cag ata cac acc gga Gln Ile His Thr Gly 289	Leu Gln His
tct atc ata aga Ser Ile Ile Arg 290	cct acc caa ccc a Pro Thr Gln Pro 2 295	aac tgt tta cct ctg Asn Cys Leu Pro Leu 300	g gac aat gcc 912 1 Asp Asn Ala
acc cta cct cag Thr Leu Pro Gln 305	aaa ctg aag gag Lys Leu Lys Glu 310	gtt gga tat tca acg Val Gly Tyr Ser Thi 315	g cat atg gtc 960 c His Met Val 320
gga aaa tgg cac Gly Lys Trp His	ttg ggt ttt tac Leu Gly Phe Tyr 325	aga aaa gaa tgc atg Arg Lys Glu Cys Mei 330	g ccc acc aga 1008 E Pro Thr Arg 335
aga gga ttt gat Arg Gly Phe Asp 340	Thr Phe Phe Gly	tcc ctt ttg gga ag Ser Leu Leu Gly Se 345	t ggg gat tac 1056 r Gly Asp Tyr 350
tat aca cac tac Tyr Thr His Tyr 355	aaa tgg gac agt Lys Trp Asp Ser 360	ccc tgg gat gtg tg Pro Trp Asp Val Tr 36	o Leu
tatganaacg acca	tgctgc ctgggactat	gacaatggca tatact	tcac acagatgtac 1165
actcagagag gaca	agccaat cctagctttc	cataacccca caaggc	ctaa aattttaaaa 1225
atggccatcc aago	egggtca tttcccactg	ggaggteeet gggagg	gatt tcgaacactt 1285
accgggccct tatt	caacat taaggggggg	g gaggattggg cccccc	cccc ccccc 1340

<210> 57

<211> 1786

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1044)..(1382)

<400> 57

tagggagaag tgccaacata tttgcagttt attttcaaat ggttcagagg ctgtctgtgt 60
acatgagaag acaaagataa ggcaaatgca gcaaaattgt aataattggt gaatccaggt 120
gaagggacta tggctggtct ttgtactttt ttttccaact tttctgtagg tttaaaattt 180
tcaaaataaa aaatgggaaa tactttaaaa attgtaatca aagacattag tacagaaact 240
ttcataatgt attttattt tacagtaaaa ttaatttatg taaattgata gaattttact 300
aatttcactc ccaagttaca ttaaaaggct tacatatgtt tgataatagc atatgtaaac 360
tagaactctg aatgatatcc attggtcata atacgtacta tgtagcggta atggtgactt 420

•	
ttgtgattgc acaagtctag agatgcccca aatgacattg acttagacat ctggttattc	480
taaggotgaa actgaagttg aatagaaggt tttagtcaaa tactgagatg aaaactgagg	540
cagtcctggc ggggggggt gagtgtgtgt gtatatatac acacatagac atcatgcttc	600
taaacattta cagaaagaaa gggtagatta tctacaaaaa aataagaatc agactgatat	660
gagatettae aaacetaace ceettetett teetaaacte cagattetea tatttetgae	720
ttcctatttg atatttacac ttcgatattt accaggagtc ttcaacattt tgttcaaaac	780
agtactettg gttttettee tecaagacta eteettaete atateageaa atageagete	840
ttttcaagtg ctcagtgtaa aaacctacaa ttaatccttg atttctcttt cagtcagcct	900
atactaaatc aatttcattt aaaatatctc ggctactact ctgcatctcc actgctacca	960
toggeotete cagteacatt etceaagage actetatete atttaaaaga caaaatetet	1020
gcagtggcct gtgatgctcc tta atg gcc tac ata atc cag ccc tca agc Met Ala Tyr Ile Ile Gln Pro Ser Ser 1 5	1070
acc tcc gtg atc tct gta aaa ctt tcc ctt ggt cac tgt gct tca gcc Thr Ser Val Ile Ser Val Lys Leu Ser Leu Gly His Cys Ala Ser Ala 10 15 20 25	1118
aca tta acc agc ttg cat att tct cac att cac caa gct tgt tcc tgc Thr Leu Thr Ser Leu His Ile Ser His Ile His Gln Ala Cys Ser Cys 30 35 40	1166
ctt ggg gcc ttt gta ctt acc atg ttc tgt tct gag aat act ctg cct Leu Gly Ala Phe Val Leu Thr Met Phe Cys Ser Glu Asn Thr Leu Pro 45 50 55	1214
caa gat atc cta caa cta tct tac tgt att cag ctc tct gct caa gta Gln Asp Ile Leu Gln Leu Ser Tyr Cys Ile Gln Leu Ser Ala Gln Val 60 65 70	1262
tta act gat gaa acc tgt cat ccc tac tcc act cca tgt tct gct tta Leu Thr Asp Glu Thr Cys His Pro Tyr Ser Thr Pro Cys Ser Ala Leu 75 80 85	1310
ctt aac agc aat tgc aca tat ggc ccc ctg aat aat ata cat tta gtc Leu Asn Ser Asn Cys Thr Tyr Gly Pro Leu Asn Asn Ile His Leu Val 90 95 100 105	1358
act tat ttt tac tta tct gct aat taaaatgtag actttttcta ttctgtttac Thr Tyr Phe Tyr Leu Ser Ala Asn 110	1412
tgctgtattc ccagcatgtt ttatccgaat gtgcagtggt ttcttttctt	1472
gtgggaagtg atgtgcacaa atacacataa tggagcctga atgtcatatt gctttcatac	1532
ctgtgtgaat tttggtaaga aaggaaaagt agcgattgac aggtaatata attacattaa	1592
gtcactctca tagttagctg tttattgctt tcctgctctt attctcagtc cccaggacca	1652
aatgttgacc actaccttcc cccacatata attaggttat ttaccgaacg ccatgcaggt	1712
ggctgttaaa aggaagatat atacttacaa tataaacaca acttttccct gttgtctttc	1772

1786

tgtctcacac gaaa

<210> 58 <211> 665 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (370)(510)	
<400> 58	
tttagatacg cetgeggtae eggteeggaa tteeegggte gacceaegeg teegcatttt	60
tttgtgttgt cagtaatttc cttataaaga tagtaatttt ctctaaatca aatcttatca	120
tgacttctaa cattctgtaa aataatttga gagtactagt taactaattc acaaacttta	180
aattagtagt ttattttcag ttaagcacac aagaaagaaa tatacagtct atctataatg	240
aaatcttagt tgactagatg ggttgtggtg tcttaaaaat tcccataact gatcacatgg	300
ettttaaaat aggaagtetg agatttttt gtttteetea actatateet ttttaacaag	360
ttctatttt atg gat ctt tat gta gtg att ttt tgg tta gta tac ata Met Asp Leu Tyr Val Val Ile Phe Trp Leu Val Tyr Ile 1 5 10	408
ttc tct act tac ata atc aca tat ata aaa ggt aat gtg gga ctg tgt Phe Ser Thr Tyr Ile Ile Thr Tyr Ile Lys Gly Asn Val Gly Leu Cys 15 20 25	456
ttt caa atc tta ttt cag cta agt ttt gag aga aga cca aaa tca gta Phe Gln Ile Leu Phe Gln Leu Ser Phe Glu Arg Arg Pro Lys Ser Val 30 35 40 45	504
agg taa gctgagaact aagagtagaa agtttaaact agagcagggg ccaagtttag Arg *	560
gagcagccac aacttttctt gcacatcaac ttagttgtaa caatttagtt tgaaagaaaa	620
totggaacat aatactcagt ttgtaaaatt gaagttggta gaatt	665
<210> 59	
<211> 968 <212> DNA	
<212> DNA <213> Homo sapiens	
<220>	
<221> CDS	
<400> 59	
ccccaaacac ttagctggct ccccatgact taagtgtgtt ctcttgtgtc ctatggaatc	60
cagttetgaa gaggtggggg aggacaactg tgggaaaage eetgggggee eeteecaagg	120

ccccatcagt gctctgagta ggctgtcatc agaacaaagg gctccactgc tgacaaggtt	180
tgagaactgc tggcttgagg tgagaacccc tttaacctct gcgggacagc atg tct Met Ser 1	236
ttc cct atc cac ctt cga ttc ttt tct ctt ttt ttt ctt cat tgg ctc Phe Pro Ile His Leu Arg Phe Phe Ser Leu Phe Phe Leu His Trp Leu 5 10 15	284
ctt ctt agt gga ttc tct tct cta ctg ccc tgg gct tca gcc ttt gtg Leu Leu Ser Gly Phe Ser Ser Leu Leu Pro Trp Ala Ser Ala Phe Val 20 25 30	332
cag tac tct cga tgc cct gaa cac aca cct tcc ctt tgc cca ggc ggt Gln Tyr Ser Arg Cys Pro Glu His Thr Pro Ser Leu Cys Pro Gly Gly 35 40 45 50	380
gca aac aat cca ctt ctt caa gct cca aca caa atg ctg cct cct tta Ala Asn Asn Pro Leu Leu Gln Ala Pro Thr Gln Met Leu Pro Pro Leu 55 60 65	428
gga tgc ctg ctc tgt gct ctc cct gcc tcc cct agc cca tac ctc tgc Gly Cys Leu Leu Cys Ala Leu Pro Ala Ser Pro Ser Pro Tyr Leu Cys 70 75 80	476
tgg cac ctt ctg tac cat gcc ttc aga aac ctt ctt atc ccc ctc atc Trp His Leu Leu Tyr His Ala Phe Arg Asn Leu Leu Ile Pro Leu Ile 85 90 95	524
Ser Gly Ala Pro Cys Gly Ser Gly Ile Pro Lys Phe Ser Lys Cys Leu 100 105 110	572
tca gta agc tgatggt acatgcattt tctaaaatag agctgggact tcccatgggg Ser Val Ser 115	628
cccacatetg acctggcage ccatgtatte eggecattag ggatgggaag ccatgaggae	688
ctggccttct gcccgaccca ggcagccatt caaggtgagc aatggccact tccaagactc	748
aagtgcacct ggaccctgcc caacaggccc ccccaggaaa aacaggctgt ccctggcggc	808
agtaagtagc aggcggccca aggtttctgg agctcttggt tttggcccaa ccccccacc	868
caaaatactg ggttaggaca ggggacttgt agctccccct cagtgacctt tggccctggg	928
gccaagcccc ctggattggg attcggggaa cgctccagtc	968

```
<210> 60
<211> 762
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (522)..(635)
```

<220>

<221> misc_feature <222> (1)...(762) <223> n = a,t,c or g

ggcccaaaaa aaaaaatacc ccccgctgtt ttgtggggtg tnttcttntg nggggaagac 60 120 agggtttccc ttttttttgc ccccggggtg gaaggccaaa gggcaatttc ccccaggaac ccctgcccct cccgggggcc aagggtattc ttcccacctc agcctcttga gtagttaaga 180 aggacaggtt taagcgccca tgccaagcta attttggtat ttgtatagaa gacgaggtct 240 cattatette cetaggettt tettgaaagt eetgagetea agttaatetg eetgeeteag 300 cctcccaaag tattgggatt acagatgtaa gccaccacac ttggccaatt atggtaattt 360 tqtaaqttaa aqtatacctg taaagctttg ttcccttcag gtaattggct tgaatttgat 420 tttgttagtg aaggatgaag tcaaggacca ttggggttgc tctgtaaaat gaggagctgt 480 533 atg gca gac aca ttqqqaaata qgtcttaaca ctaatgtgat tcaagaagga a Met Ala Asp Thr gca gaa aac tca aga tat aat gtg cat att ccc cac aga tgg acc atc 581 Ala Glu Asn Ser Arg Tyr Asn Val His Ile Pro His Arg Trp Thr Ile aac aag ttt ttc att tta atg cag tca tct ctt tcc tat tca tgt ctc 629 Asn Lys Phe Phe Ile Leu Met Gln Ser Ser Leu Ser Tyr Ser Cys Leu 25 30 tat tat taaatctctg gtattggggt tcctcaaaga atagccttct gagctctatg 685 Tyr Tyr ggetgatete atcactaact cetatageag ttaggataat cactetegtg cegaattett 745 ggcctcgagg gccaaat 762

<210> 61 <211> 805 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (264)..(434)

<400> 61
gttcagcact cccgggtcga cccacgcgtc cggtctttag tatatataat attaaaaatg 60
gctatatatg gaattctatc tgagaattat tatatggtta aattcaaatc ctggctctct 120
tcctttgtct tagtagatgg gtccttcttt tattataact agagttttaa gttttctttt 180
attagggcat ttgaataaaa aacaatcatt gtagaagtat aattaattaa taactagtaa 240
tcttatgtca tcttgaggga atc atg ctg gga tgg caa atc tgg aga ctg 290
Met Leu Gly Trp Gln Ile Trp Arg Leu

1 5

agg Arg 10	cca Pro	caa Gln	ctc Leu	ctc Leu	tcc Ser 15	ttc Phe	cat His	aca Thr	cag Gln	gac Asp 20	aga Arg	tgt Cys	cac His	tgg Trp	tct Ser 25	3	38
			caa Gln													3	86
			cta Leu 45													4	34
ctat	tcaa	ac a	attt	ctta	a ag	raata	tgca	atg	cata	ata	aggg	gttg	gag a	ataca	gaatg	4	94
ctac	ttta	ict a	aaat	acta	ıc ag	rtgta	agaa	tgt	atag	jaaa	aaag	caca	itg o	tttg	gagac	5	54
ttaa	aggo	ct ç	ggta	ıtgaa	ıt ca	tggc	tctg	aca	ttaa	ıcaa	acct	cacc	tc o	tett	taaaa	6:	14
gagt	aata	at ç	gattg	gtat	c to	attg	agct	ccg	rtaaa	icta	aaaa	ctac	ag a	ıgtaa	gaagg	6	74
gggg	gccc	tt a	ıcaaa	agct	t tg	gagg	ggga	caa	acct	gcg	gctg	agto	at g	gcto	tgact	· 7:	34
ttat	ctcc	ca t	cacc	gcct	c to	taaa	agat	aaa	aagg	att	gttt	ggca	tg ç	agct	tttta	79	94
ttag	gaaa	iga a	ι				•									80	05

<210> 62 <211> 800 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (126)..(341) <220> <221> misc_feature <222> (1)...(800) <223> n = a,t,c or g<400> 62 ccggaattcc cgggtcgacc cacgcgtccg aaaagaaggt aataaattaa aaagatcatt 60 tacagagata gcctggggtg ataagagttt aaagttttga tctttttgtt catcttaaaa 120 atg ata tat gta ttc tct cta gct cac agt ctt ctc att ttc aaatt 167 Met Ile Tyr Val Phe Ser Leu Ala His Ser Leu Leu Ile Phe aaa atg aga gaa aca ggg ata cta tta tgt ttc tta tca gca tta aat 215 Lys Met Arg Glu Thr Gly Ile Leu Leu Cys Phe Leu Ser Ala Leu Asn 20 tat ata acc ctt gtg aca tcc caa aaa ttg att cta tcc aaa aaa atg 263 Tyr Ile Thr Leu Val Thr Ser Gln Lys Leu Ile Leu Ser Lys Lys Met 35 cat gtt aat cat tat ttg cca aaa aag aca atc tcc aaa ttt ctt tat 311 His Val Asn His Tyr Leu Pro Lys Lys Thr Ile Ser Lys Phe Leu Tyr

WO 01/55437	PCT/US01/02623
50 55	60
ttt gta aaa gta ttc cat gac cta gtc cta t agagcaggtg Phe Val Lys Val Phe His Asp Leu Val Leu 65 70	aatattggag 362
attgttttct ctgtaacttt actatcatct acctatcttc gtattttg	gt gagagatcat 422
gaaaccctct atcaaactct ctttatgcag taagttataa caaattagc	ca ctggcttata 482
aagatatatc aaattagagt aaaatgcaac tgaaaatatc ataaatca	tt cggtaattaa 542
tgttttctta aattcttggg gnaagtacaa gagaagaaat tggagatg	tg cagactttaa 602
atgacctaaa cagtcttaca caggagtttt tgcagtatgg taagaagga	ag gtggctactt 662
atgttttcaa aaagcacatg acctcatgaa aagtatgcaa ggctatac	tg tegaeggtag 722
aaaaacgaga gacagagaat aatttaaaga accttcccat gttaggcg	tg aaaatgaaaa 782
ggcttaaatt taggtgcc	800
<210> 63 <211> 524 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (249)(425)  <400> 63	
cggccgcgtc gacaaacaaa acaaatgaaa aattcacatc tcaaaatgt	tc tggggcaggg 60
cattetgaet etgageteaa catagettet ecetteaett agecettet	tc agttcaaccc 120
aaaagctata cacagaaaag ctgcttaatt tataacattt tttgaaagc	ca ggtcactgaa 180
ttactactga cagecaegtg aatttetgee agggtaagtg gaaaaaagt	ng accaaaaggg 240
agaaccaa atg agt gtg cag gca tcc agg gga gcg ggt cag Met Ser Val Gln Ala Ser Arg Gly Ala Gly Gln 1 5 10	cac agc aca 290 His Ser Thr
cta gat gaa aaa ggc tcg gaa aga tct ctg tcg tgt gca g Leu Asp Glu Lys Gly Ser Glu Arg Ser Leu Ser Cys Ala I 15 20 25	Jac ggt ttc 338 Asp Gly Phe 30
cat gtc tgt tta aat gac aac acg aac agc aga aaa ata g His Val Cys Leu Asn Asp Asn Thr Asn Ser Arg Lys Ile 0	gag aaa acc 386 Glu Lys Thr 45

agt aaa toa gtt got toa tot coa toa tac ogo gag gto tgactacott Ser Lys Ser Val Ala Ser Ser Pro Ser Tyr Arg Glu Val

tatttcaagg aatcagttga atcagtcgac geggeegega atteggatee tegagagate

tettttttg ggtgtggtgg ggtatette

```
<210> 64
     <211> 480
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (27)..(347)
     <400> 64
tgccgggagg gtttttttga aaccgt atg tcg tac tcc act cca gct tgg cac
                                                                       53
                             Met Ser Tyr Ser Thr Pro Ala Trp His
gag gga tgt agg tac gag aat aca gaa tac ggg tgt ttt cta tta agc
                                                                      101
Glu Gly Cys Arg Tyr Glu Asn Thr Glu Tyr Gly Cys Phe Leu Leu Ser
                     15
aca cac att aca gag att tgc aaa aat gtt aca atg ctg ctc ttc tca
Thr His Ile Thr Glu Ile Cys Lys Asn Val Thr Met Leu Leu Phe Ser
                                     35
cta aac ttt ttc ttt tgg aaa ata gtc atg ttt cat aaa aat gta ata
                                                                      197
Leu Asn Phe Phe Phe Trp Lys Ile Val Met Phe His Lys Asn Val Ile
                                 50
ttt ata tta aca tgt aat ggg ttt att att gtt act ttt aaa tgg att
                                                                      245
Phe Ile Leu Thr Cys Asn Gly Phe Ile Ile Val Thr Phe Lys Trp Ile
         60
gat aaa ttt att tta aat att tct att tta att tct aac aca gta aat
                                                                      293
Asp Lys Phe Ile Leu Asn Ile Ser Ile Leu Ile Ser Asn Thr Val Asn
     75
gtt aat agc cat aat cca cat aaa caa aag ttc ttt ggg gat ctc agt
Val Asn Ser His Asn Pro His Lys Gln Lys Phe Phe Gly Asp Leu Ser
aat ttt taacagogta aaggggtoot gagaccaaaa agtttgagaa otgotgcaat
                                                                      397
Asn Phe
caactataaa gagtaagttt gccctgaact gcattaactg gtatactttt tctctgtctt
tgatcaataa gggcttaaat atg
                                                                     480
```

```
<210> 65
<211> 1013
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (82)..(765)
<220>
<221> misc_feature
<222> (1)...(1013)
<223> n = a,t,c or g
```

<400> 65												
atggaccetg ttgetaceca cagetgecat etgetecage aactgeatga geagegaate												
caaggcctgc tttgtgactg t atg ttg gtg gta aaa gga gtc tgc ttt aaa Met Leu Val Val Lys Gly Val Cys Phe Lys 1 5 10	111											
gcg cat aag aat gtc ctg gca gca ttc agc cag tat ttt agg aat gtt Ala His Lys Asn Val Leu Ala Ala Phe Ser Gln Tyr Phe Arg Asn Val 15 20 25	159											
cag cag atg cac agc aga aca aaa cgt tgg atg aat cgc atc cgc atg Gln Gln Met His Ser Arg Thr Lys Arg Trp Met Asn Arg Ile Arg Met 30 35 40	207											
ctt cac cat cag tta atc gtc atc act ccg cag gtg aaa tct caa aac Leu His His Gln Leu Ile Val Ile Thr Pro Gln Val Lys Ser Gln Asn · 45 50 55	255											
aag ctc ctg ata ctt cag atg gca gct gca cag aac tgc ctt tca aac Lys Leu Leu Ile Leu Gln Met Ala Ala Ala Gln Asn Cys Leu Ser Asn 60 65 70	303											
agc caa att act att aca aac tca gaa act ttt aca cct gtg aat gac Ser Gln Ile Thr Ile Thr Asn Ser Glu Thr Phe Thr Pro Val Asn Asp 75 80 85 90	351											
tct gcc cca cac cct gag tca gac gcc aca tgc caa caa cct gtc aag Ser Ala Pro His Pro Glu Ser Asp Ala Thr Cys Gln Gln Pro Val Lys 95 100 105	399											
cag atg agg ctc aaa aag gcc att cat ctg aag aag ctc aat ttc ctg Gln Met Arg Leu Lys Lys Ala Ile His Leu Lys Lys Leu Asn Phe Leu 110 120	447											
aag toa cag aaa tac goa gag caa gta tot gaa ooc aag toa gat gat Lys Ser Gln Lys Tyr Ala Glu Gln Val Ser Glu Pro Lys Ser Asp Asp 125 130 135	495											
ggt ttg aca aag agg ttg gaa tct gct agt aaa aat acc cta gag aaa Gly Leu Thr Lys Arg Leu Glu Ser Ala Ser Lýs Asn Thr Leu Glu Lys 140 145 150	543											
gct agc agc caa agt gct gaa gaa aaa gaa agt gaa gaa gtc gtc agt Ala Ser Ser Gln Ser Ala Glu Glu Lys Glu Ser Glu Glu Val Val Ser 155 160 165 170	591											
tgt gag aat ttt aat tgc att agt gag acg gag agg cct gaa gac ccg Cys Glu Asn Phe Asn Cys Ile Ser Glu Thr Glu Arg Pro Glu Asp Pro 175 180 185	639											
gct gcc ctg gaa gac cag tcc cag aca ctt cag tcc cag aga caa tac Ala Ala Leu Glu Asp Gln Ser Gln Thr Leu Gln Ser Gln Arg Gln Tyr 190 195 200	687											
gcg tgt gaa tta tgc ggg aaa cct ttt aaa cac cca agc aac ttg gag Ala Cys Glu Leu Cys Gly Lys Pro Phe Lys His Pro Ser Asn Leu Glu 205 210 215	735											
ctt cac aaa cgg tct cat aca ggt aac tga t tcagtaccca caggcagaag Leu His Lys Arg Ser His Thr Gly Asn * 220 225	786											

PCT/US01/02623 WO 01/55437 ggaaggacgt aatgcggatg ctcagacacc actggctctt cttgtttttg taagaagttt 846 tgctgttgtt tgatgtcatt gatgatttta aacgtcgacg cggccgcgaa ttcggatcct 906 966 cgagagatct ctttttttgg gtttggtggg gtatcttcat catcgaatag atagttatat acatcatege enngeaatte caaannence eccetettt aannteg 1013 <210> 66 <211> 3283 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (180)..(1469) <400> 66 60 tgcggatgcc ccccaattga acgccttcag gtagagcgcc gtaaggcacc ggcccggaat tecegggteg acceaegegt ceggagatge eggacegete etteceaget ceteeeegtg 120 179 ctcqctaaca caqcacqqcc gcctgcagtc tcctctctgg gagatcgcgc gggcctaag 227 Met Cys Pro Gly Ala Leu Trp Val Ala Leu Pro Leu Leu Ser Leu Leu get gge tee eta cag ggg aag eea etg dag age tgg gga ega ggg tet 275 Ala Gly Ser Leu Gln Gly Lys Pro Leu Gln Ser Trp Gly Arg Gly Ser 25 gct ggg gga aac gcc cac agc cca ctg ggg gtg cct gga ggt ggg ctg 323 Ala Gly Gly Asn Ala His Ser Pro Leu Gly Val Pro Gly Gly Leu 35 40 cct gag cac acc ttc aac ctg aag atg ttt ctg gag aac gtg aag gtg 371 Pro Glu His Thr Phe Asn Leu Lys Met Phe Leu Glu Asn Val Lys Val 50 gat ttc ctg cgc agc ctt aac ctg agt ggg gtc cct tcg cag gac aaa 419 Asp Phe Leu Arg Ser Leu Asn Leu Ser Gly Val Pro Ser Gln Asp Lys 65 acc agg gtg gag ccg ccg cag tac atg att gac ctg tac aac agg tac 467 Thr Arg Val Glu Pro Pro Gln Tyr Met Ile Asp Leu Tyr Asn Arg Tyr 90 acq tcc gat aag tcg act acg cca gcg tcc aac att gtg cgg agc ttc 515 Thr Ser Asp Lys Ser Thr Thr Pro Ala Ser Asn Ile Val Arg Ser Phe 563 age atg gaa gat gee ate tee ata act gee aca gag gae tte eec tte Ser Met Glu Asp Ala Ile Ser Ile Thr Ala Thr Glu Asp Phe Pro Phe 120 cag aag cac atc ttg ctc ttc aac atc tcc att cct agg cat gag cag 611 Gln Lys His Ile Leu Leu Phe Asn Ile Ser Ile Pro Arg His Glu Gln 130 135 659 atc acc aga gct gag ctc cga ctc tat gtc tcc tgt caa aat cac gtg Ile Thr Arg Ala Glu Leu Arg Leu Tyr Val Ser Cys Gln Asn His Val

CT/US01/02623
ľ

MOOI	/3343	,												PCI	/U201	/02623
145					150					155					160	
								_		gtc Val						707
_			_	_			_			gag Glu		_				755
		-	•		_	-				gag Glu		_	_	-		803
_	-		_	_		_			_	tcc Ser		_	_			851
_	_	_					_			aag Lys 235		-	_	_	_	899
										ctg Leu						947
			_		-	_			-	gag Glu			_		_	995
_		_		-		_			_	gtg Val		_	_	_		1043
										agt Ser						1091
										gcc Ala 315					_	1139
										tcc Ser						1187
										gca Ala						1235
										ccc Pro						1283
acg Thr	ccg Pro 370	acg Thr	aaa Lys	cac His	gct Ala	atc Ile 375	gtg Val	cag Gln	acc Thr	ctg Leu	gtg Val 380	cat His	ctc Leu	aag Lys	ttc Phe	1331
										ccc Pro 395						1379
atc Ile	tcc Ser	gtc Val	ctc Leu	tac Tyr	aag Lys	gat Asp	gac Asp	atg Met	gly aaa	gtg Val	ccc Pro	acc Thr	ctc Leu	aag Lys	tac Tyr	1427

405 410 415

cat tac gag ggc atg agc gtg gca gag tgt ggg tgc agg tag tatctgc 1476 His Tyr Glu Gly Met Ser Val Ala Glu Cys Gly Cys Arg * ctgcggggct ggggaggcag gccaaagggg ctccacatga gaggtcctgc atgcccctgg 1536 gcacaacaag gactgattca atctgcatgc cagcctggag gaggaaaggg agcctgctct 1596 ccetccccac accccaccca aagcatacac cgctgagctc aactgccagg gaaggctaag 1656 gaaatgggga tttgagcaca acaggaaagc ctgggagggt tgttgggatg caaggaggtg 1716 atgaaaagga gacaggggga aaaataatcc atagtcagca gaaaacaaca gcagtgagcc 1776 agaggagcac aggcgggcag gtcactgcag agactgatgg aagttagaga ggtggaggag 1836 gccagetege tecaaaacce ttggggagta gagggaagga gcaggeegeg tgtcacacce 1896 atcattgtat gttatttccc acaacccagt tggaggggca tggcttccaa tttagagaca 1956 taaaacacag gcagatcaag tagcattgat caatggcatg attccaactc agatttgtgg 2016 gacaccaaag cccaggatct tcccaagtgc cctgctgcag tttagcaggt cctctccagc 2076 2136 teagteacag gtgtgaetgg getgettgte acacacaggg egtggtetgg ecactgttge 2196 cagtgeteae teageggeea aatgettttt aatatgaeee etgaggeaet gaaaaataae 2256 cccaggccaa ctgcaggata gagagagagg tcaggacagc agccctgtgg gctgcatgat 2316 acactgtggc tggagttatt gtgaccccct ggtgcagtgc tcccacggcc agtggtgcac 2376 acagggccat tcactgtcca tagactgaaa ccatgtgacc atttgagagg gccgggcaca 2436 ettteeeetg agggatgggg cageetgtgg ceageacete tgeagttaet etgeatagee 2496 ageteaceag catgeeatge eeagggtgee ceecagtgae aaceteatgg gagaegggee 2556 tggatttgaa tttgttggaa ttaaatgtgc tctggctttg gtctttgaaa catatctatt 2616 tttatteett ggtgacatgt eettaagtga caagaeteea geetteetgg gegaggeete 2676 tccagcctcg gaagagctgc agtccttatc ggcgatcact ggctctgcct gcatttgccg 2736 gctctcttga gtcacgtgca tcccagcacc ccgcctgggc tcggactgtg ggaccagact 2796 cageeteece gaacacaagg gaagataagg ettecatttg etetgtgttt caceetetee 2856 tetgtetete caggecacae atggaacggg geggtatgag gaagagtetg aaagtggtga 2916 agagtgcacc tatggccctc tgacctccag ccagagcagg gcctagggga ggcttagaga 2976 ggccagggcc teteceegtg gttgaagete ceatttattt aagaaaaagt ggggggtggg 3036 gaaaacgtta tgttaaatgt ttacatggaa ccaatgaaca actttaacac acaaatacaa 3096 cgaaacattc ttgtttaatt actggcgtta tagaaaatat gaattcctgc tacatgccgg 3156 gcagtgtagt gttacaatgc tattccaagt tgggtgttga gcatcttctt tcagtcctgg 3216

WO 01/55437 PCT/US01/02623

tggtgtgctt ctgtgcctgc ttgaaaattt cactaggaaa taaagtcaaa tgtctaaaaa 3276

aaaaaaa 3283

<210> 67 <211> 1327 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (187) . . (354) <220> <221> misc_feature <222> (1)...(1327)  $\langle 223 \rangle$  n = a,t,c or g <400> 67 gacttcggca cgagaatagc tgagtttaca aagatgcatt aaatagaaat agaacgcaaa 60 ggaaatccca gccattacca tgaacaaaat ggtaagttac ttctactaga actttactga 120 180 ctttaaqcta gagagaaaga gaaagagaga ggtaaaacaa aaatcaaaaa ggaaaaggct atg ttc ggc atg atc aag agg ggc aga aga gct gtt ttt 228 cagatc Met Phe Gly Met Ile Lys Arg Arg Val Arg Arg Ala Val Phe 1 276 gtg ggc cgc acc gtg ctc tgt gga tct tgt aac tct ggg att att atg Val Gly Arg Thr Val Leu Cys Gly Ser Cys Asn Ser Gly Ile Ile Met 15 20 25 324 cac cgt ggc aag act cca ccc ctg aag atg gtc tgc cga ttt gaa gaa His Arg Gly Lys Thr Pro Pro Leu Lys Met Val Cys Arg Phe Glu Glu 375 tea ttt tet tee tta ttt tta aac tet taa a gacagggaaa aagaetgaag Ser Phe Ser Cys Leu Phe Leu Asn Ser gaqcctaaat qctqtqqttt cctcaaacca ttattqttqt aaatcctatq ggtcctgaaq 435 taactcacta ttcctgaagt ttcaaactgc ctcacgactc agaagccttg gcagttgaaa 495 qqqaaattat taqcttcttc cttgaaacgt tgtcactaag gttaaagggg gacaaaaggt 555 615 ggtgaatgtg gggaatttca aaagtaaact acctttttta tagaaaatcc atagctcttt acagaacttt gaggttttca aatacttagt tggggtgaaa acacattatt ttacaccagt 675 aggeettaca gaaattaaat attacaataa tggatteeat tatetatgge cacattacca 735 gaagcctgga cgtttacctt ggggcacgtt cgctttatat gctaggagtg cctgcggaat 795 tgatccttgg gcttgacgga aacgagcgat tatagctccg ctatcgcgga aaaacgcctg 855 egeggeggee egegeeeace egegtgeett taatgeggge geteaegege gteetetege 915 975 cgccgcgtag acgcgtgccc ttccgcgggg aaatcgcccc cgggctcccg cgtcactccc

WO 01/33437	
teegtnttgt gegggtgggt egegeteteg teegtgteeg geggaacatg teegeeeggg	1035
ggggteeege egeegggaet ngeggegetg gettgeegge gttegteate eageeaegee	1095
gtgcgntaat ggacgccgcg catcgctcac cacgcgcatc gcngcngcnc cgcttactgt	1155
geggtteece cegecetege neegatacag aaagaaeeeg acceeeeeg etatattgte	1215
gttgtetgge tegaegtgee gaegtgttee geeeeeegea agegtegggt tgaeaetaeg	1275
ctegetaett gtggaaaegg eggegegtgg gtgteeetee getegeegeg et	1327
<210> 68 <211> 580	
<211> 580 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> (22)(168)	
<pre>&lt;400&gt; 68 ataacagggc aagtcacagc c atg gga ttc ctt ttc ctt ctg gat tct gcc Met Gly Phe Leu Phe Leu Leu Asp Ser Ala 1 5 10</pre>	51
ctc atg cag act tgg gtt aca gta ata gat gta agt ctg cat cat gta Leu Met Gln Thr Trp Val Thr Val Ile Asp Val Ser Leu His His Val 15 20 25	99
gag atc aaa gcc cca aga ata agg ctc atg tgg tcc cta ccc ttg agg Glu Ile Lys Ala Pro Arg Ile Arg Leu Met Trp Ser Leu Pro Leu Arg 30 35 40	147
aga caa aaa tat acg atg tag at ggacagetge attatgeaca cagateeatt Arg Gln Lys Tyr Thr Met  * 45	200
tcaatataac atggtgggct actetgggaa cacteetget ecacaaggag cagtataaaa	260
aaataaatta atcaaatttt aaaaaagcaa catggtagat cctgggcgct tagagagtac	320
tgetcaagtg ctatgagaac aettgggeag agatatetae eeagaeatgg gagtgaegtg	380
gttgagaaat ctgatcctac actgctaaca cctctgtctg gagaagttgc tggaggcttc	440
caagatgggg cctgtgggat aaacaaactt taccgaatgg aaaagatgaa aaggaattgg	500
aggccaagag aacagcaagt acaaagacac agagttttaa gtacttcctc gtgccgaatt	560
cttggcctcg agggccaaat	580

PCT/US01/02623

<210> 69

WO 01/55437

<211> 1391 <212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (162)..(482)

<400> 69 aatteggeac gageageage catggeeace tgeatgeeag teettegtgt attgetgegt 60 atgagegeee tteettggat gtggatttee atgacatgge ettteteace tteettaett 120 atg cta gcc aca 173 cetgtcctgc tatgtattgt gtcctaccat gaattcactc c Met Leu Ala Thr ttg gcc tgt atg gct att cct tgg aca cac cta gga tgt tct tgc ctc 221 Leu Ala Cys Met Ala Ile Pro Trp Thr His Leu Gly Cys Ser Cys Leu tta get tgc eta eet tte tet eat eat ttg gge ete age gag gat ate 269 Leu Ala Cys Leu Pro Phe Ser His His Leu Gly Leu Ser Glu Asp Ile 35 atc tcc tca gag aag cct tct gtg acc atg cta tct aaa ata ctc cag 317 Ile Ser Ser Glu Lys Pro Ser Val Thr Met Leu Ser Lys Ile Leu Gln 45 40 cac ttc agt cac cct tta tcc cat tac tct gct ttt tca gaa aca ttg 365 His Phe Ser His Pro Leu Ser His Tyr Ser Ala Phe Ser Glu Thr Leu 55 gtg ctc cct gaa aca tat ttg ttt act tgc tta gtg tct ttt ctc ccg 413 Val Leu Pro Glu Thr Tyr Leu Phe Thr Cys Leu Val Ser Phe Leu Pro 70 cac tac cat gta age tto ttg agg gtt agg gac ctt gtt agg gat aac 461 His Tyr His Val Ser Phe Leu Arg Val Arg Asp Leu Val Arg Asp Asn 85 cac tgt atc ctt aga gtg tga ca catagtaggt tctcaataca tatttttgaa 514 His Cys Ile Leu Arg Val * 105 actctaccct gatgcaaaag agatatcaaa taattatagt ttttgcatta taaatgtctt 574 tggtgaaatc cctggcacaa aactaataat aaagaaataa acagataatg gtgagttctg 634 ggcctgcaaa cctaactctt taaagcagtc acagtaaatg tgtcattgga tccatagaac 694 ttgggaagtc agcatatttt attgggaaaa gcatgaactt caaagtaaaa cttatggtca aateteatta etggtgegtt ettaagteat ttaaeetttg agecacaagg tacacaaatg 814 tgaaattaga ggaataatag tgactccata agaccctcaa gaaaaggaaa taaggtattg tagecegatg atcettatea catggetaac aaattagggg gtetaaaatt etggtatggg 934 cataccegga aacaegteac geatgtaggg geetactaag aaaagaggtt cettgagteg 994 ggaccaggga cgttatgcga aatggcggga actggaggcc gcgggggatgg gccacgtcga 1054 gcattcgccg gcatcgggga ttgggggaac ccgggcggtt cgtgcgcggg gggcgggaac 1114 ggggggggg tgagcgaaga gggagcatcg gcggctacgg cgcgcaaccg ggcgagcagc 1174 accggcagtg gcgcaatata cgcggagcag ctcccatgta acggcgcagt ttgtgcgcat 1234

WO 01/55437 PCT/US01/02623 ccggcggaag tagggcgaag accacgtcgg tgcgcgggaa actcgccggc actcgccggc gacaacggca cgggcaccgc cggactaggg ggccaccgcg cggtgcacct gctggctcgt 1354 cggcgagaac gcgggcggat aattcgcgga ccgagcc 1391 <210> 70 <211> 684 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (122)..(262) <400> 70 atgactetea ttgattacae etgtetetae aacgacteat etatagggaa agetggtaeg 60 cctgcacgta ccggtttcta attcccgggt cgacccacgc gtccgctgta atgaattaaa 120 atg cat aca cct cat cta cca aat atc ata gtg tat ttt atc cta 166 Met His Thr Pro His Leu Pro Asn Ile Ile Val Tyr Phe Ile Leu ctc tac ata tgc tca caa tac tta tat tta ctt aca att agg cat aat 214 Leu Tyr Ile Cys Ser Gln Tyr Leu Tyr Leu Leu Thr Ile Arg His Asn 25 cat cta aca caa agc cta ttt tat aat aaa tta ttg agt gtc ttg taa 262 His Leu Thr Gln Ser Leu Phe Tyr Asn Lys Leu Leu Ser Val Leu * 40 tttattgaat getgtaegtt gtgacaaaat tgcaatggtt tggcaccate ataaatttgg 322 aaaatcattt agtggaacct tcataagttg ggaactgttt gtatacctat aagtggaatt 382 atteggteat agagtatgeg tatetteaac ttgagtagat ttgcaaatgg ttttecaaag 442 tggctatacc aggttatatc aatttacatt ctaaccagca gtgtttaaga gttctggtgc 502 tecacatete aaacatatat atatatgtgt atagagggag agagagaggg agagegagag 562 ccacagagag cgcatgtttt catatgtccc tgctaactct ttcttgcaga atgactgatc

<210> 71 <211> 545 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (187)..(396) <400> 71

gt

attttttcta attgatatgt aagatttctt tgtatatctc caaatcaata acctttatgg

622

682

684

WO 01/55437 PCT/US01	/02623
ctagagageg tggggaatte caggattgee caettgggae eetgaetatg aagggteaag	6
atageceatt etgececage acteagagee etattaceaa ggeceetaet ecaagaatee	12
accatcaaaa ccggggccct gccagtgcct tcccagtgtt caggcctagg gaagaatagc	18
cccatt atg cct gtt act cct gat cct tct gca gtc tct ctc ttt gtg Met Pro Val Thr Pro Asp Pro Ser Ala Val Ser Leu Phe Val 1 5 10	22
acc cca tgg cct ttg ctg cta tgt ctg ccc tgg ccc cac aga gtg cca Thr Pro Trp Pro Leu Leu Cys Leu Pro Trp Pro His Arg Val Pro 15 20 25 30	276
ggt cag agc cac cct ggc cta cat agc agg gcc ccg gtt cac agg cta Gly Gln Ser His Pro Gly Leu His Ser Arg Ala Pro Val His Arg Leu 35 40 45	324
aaa cct ggg cct cct gcc agg ctg caa ctc cca gct gca cac cgc aac Lys Pro Gly Pro Pro Ala Arg Leu Gln Leu Pro Ala Ala His Arg Asn 50 55 60	372
ctg aga cat ctc agc ata ttc tag gaactagtaa tggggacgct tccgactcgc Leu Arg His Leu Ser Ile Phe * 65 70	426
tggggaaggg agatgagggc ctctagctct ccatgcccag tctctcatca tcaaagtcat	486
ttaaggcccc agcgacccca gggttcagca gcatcctgtt catcatgagc aagagggtg	545
<210> 72 <211> 471 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (34)(243)	
<pre>&lt;400&gt; 72 tccctagtcc agtgtggtgg aattcaaaac atc atg tca tgg tat act tgt cag</pre>	54
tgt ctc ttc ttt ctc agc aac aca tta agg aat ggt gct act tct tgc Cys Leu Phe Phe Leu Ser Asn Thr Leu Arg Asn Gly Ala Thr Ser Cys 10 15 20	102
cat tgg tat tgt agc cct gat gac atg cag atg gtt gat ttc agc tca His Trp Tyr Cys Ser Pro Asp Asp Met Gln Met Val Asp Phe Ser Ser 25 30 35	150
aca tac gaa agg att ttc agg cca ttt gtg ttc aag ata aaa ggg cct Thr Tyr Glu Arg Ile Phe Arg Pro Phe Val Phe Lys Ile Lys Gly Pro 45 50 55	198
gac agc ttt agg ata gac atg agc ccc atc cct gaa gac att taa tca Asp Ser Phe Arg Ile Asp Met Ser Pro Ile Pro Glu Asp Ile * 60 65 70	246
caatctagac aagctcttgt tgtaaatgag ctcaagtatc agatttggaa gtgaatgatc	306

ttttacattt ttgtcaagot tgaggttcgt gaacttggat ccaacctctt attttttgca 366
gataagaaaa caaggatcac accagttgag agatttctcc gaagtcagac atctcattag 426
agctagagag gccagactag catgtctccc atgatccagt ctgaa 471

<210> 73 <211> 856 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (118)..(567) <220> <221> misc feature <222> (1)...(856)  $\langle 223 \rangle$  n = a,t,c or g <400> 73 aggaggtttc tncattgaac gccttcggta ccggtccgga attcccgggt cgacccacgc 60 gtccggcggc gctgcgcgtg cgttgttgag tgttcgggac gccggcctgc aggcgcc 117 atg gtc ttc ctc acc gcg cag ctc tgg ctg cgg aat cgc gtc acc gac 165 Met Val Phe Leu Thr Ala Gln Leu Trp Leu Arg Asn Arg Val Thr Asp cgc tac ttt cgg atc cag gag gtg ctg aag cac gcc agg cac ttc cgg 213 Arg Tyr Phe Arg Ile Gln Glu Val Leu Lys His Ala Arg His Phe Arg 20 gga agg aaa aat cgc tgc tac agg ttg gcg gtc aga acc gtg att cga 261 Gly Arg Lys Asn Arg Cys Tyr Arg Leu Ala Val Arg Thr Val Ile Arg gcc ttt gtg aaa tgc acc aaa gcc cga tac ctg aag aaa aag aac atg 309 Ala Phe Val Lys Cys Thr Lys Ala Arg Tyr Leu Lys Lys Lys Asn Met agg acc ctc tgg att aat cga att aca gct gct agc cag gaa cat gga 357 Arg Thr Leu Trp Ile Asn Arg Ile Thr Ala Ala Ser Gln Glu His Gly ctg aag tat cca gcg ctc att ggg aat tta gtt aag tgc cag gtg gag 405 Leu Lys Tyr Pro Ala Leu Ile Gly Asn Leu Val Lys Cys Gln Val Glu ctc aac agg aaa gtc cta gcg gat ctg gcc atc tac gag cca aag act 453 Leu Asn Arg Lys Val Leu Ala Asp Leu Ala Ile Tyr Glu Pro Lys Thr 105 ttc aaa tct ttg gct gcc ttg gcc agt agg agg cga cac gaa gga ttt 501 Phe Lys Ser Leu Ala Ala Leu Ala Ser Arg Arg Arg His Glu Gly Phe get get gee ttg ggg gat ggg aag gaa eet gaa gge att ttt tee aga 549 Ala Ala Ala Leu Gly Asp Gly Lys Glu Pro Glu Gly Ile Phe Ser Arg 130 135

gtg gtg cag tac cac tga ggactg ttgctgtatt gattaggaaa agagacagag Val Val Gln Tyr His * 145 150	603
taatttgcag tttgtttgat ttatactttt gtttatctac aacccaataa cagacatgag	663
ggatggccct gtctctctgg gacagagcct caaagatgat gtccatgttt tgtgtgaatg	723
aaactcaaac actetteagt ttttagagte attttetggt ategagegae cacacegagg	783
agcacaccct gettecaagg etgetgeett etgacacagt ggggggatee ecacecacce	843
tggctcccct caa	856
<210> 74 <211> 1155 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (251)(1084)	
<400> 74 catcgaaggt cgatgatcta actatctatt cgatgatgaa gataccccac caaacccaaa	60
aaaagagate tetegaggat eegaattege ggeegegteg aegtaagete ggeteacagt	120
cgcaggagag ttctggggta cacgggcaaa ggggcttgag aaggcccgga ggcgaagccg	180
aagagaagca actgtgcccc ggagaagaga agctcgccca ttccagactg ggaaccagct	240
ttcagtgaag atg gca ggg cca gaa ctg ttg ctc gac tcc aac atc cgc Met Ala Gly Pro Glu Leu Leu Asp Ser Asn Ile Arg 1 5 10	289
ctc tgg gtg gtc cta ccc atc gtt atc atc act ttc ttc gta ggc atg Leu Trp Val Val Leu Pro Ile Val Ile Ile Thr Phe Phe Val Gly Met 15 20 25	337
atc cgc cac tac gtg tcc atc ctg ctg cag agc gac aag aag ctc acc  Ile Arg His Tyr Val Ser Ile Leu Leu Gln Ser Asp Lys Lys Leu Thr  30 35 40 45	385
cag gaa caa gta tct gac agt caa gtc cta att cga agc aga gtc ctc Gln Glu Gln Val Ser Asp Ser Gln Val Leu Ile Arg Ser Arg Val Leu 50 55 60	433
agg gaa aat gga aaa tac att ccc aaa cag tct ttc ttg aca cga aaa Arg Glu Asn Gly Lys Tyr Ile Pro Lys Gln Ser Phe Leu Thr Arg Lys 65 70 75 .	481
tat tat ttc aac aac cca gag gat gga ttt ttc aaa aaa act aaa cgg Tyr Tyr Phe Asn Asn Pro Glu Asp Gly Phe Phe Lys Lys Thr Lys Arg 80 85 90	529
aag gta gtg cca cct tct cct atg act gat cct act atg ttg aca gac Lys Val Val Pro Pro Ser Pro Met Thr Asp Pro Thr Met Leu Thr Asp	577

atg atg aaa ggg aat gta aca aat gtc ctc cct atg att ctt att ggt 625

105

100

w	01/5	5437												]	PCT/U	S01/02623
Met 110	Met	Lys	Gly	Asn	Val 115	Thr	Asn	Val	Leu	Pro	Met	Ile	Leu	Ile	Gly 125	
				-				ggc Gly		-			-	-		673
		_			-		_	cct Pro 150	_		_					721
				_	_			gtg Val	•		_					769
								att Ile								817
								atg Met								865
-	-	_	_	_		_	_	aca Thr			-		-			913
	_	-	-		_	_	-	cac His 230	-		-			_	-	961
								cct Pro								1009
				_				ttg Leu	_			_			-	1057
					agt Ser 275	_		taa *	ccti	g ta	aactt	tgtl	tgg	gaget	ggc	1109
acctcttgaa ataaaaagga ggatgcacga gctgggaaaa aaaaaa 11											1155					
	<2: <2:	10> ' 11> ' 12> 1 13> I	749	sap	iens											
	<22	20> 21> ( 22>	CDS (285)	) (4	140)											
taa		00> 3 gtt g		ataaq	gg ct	tact	ttta	ı tta	ittt	gaat	atgg	rtaat	ta t	gtaa	attate	c 60
															ıcata	

ttatcttatt taagcctcgt agaaatctta tgagcaaaat gttactcggt acacttaaag

WO 01/55437	PCT/US01/02623
tacaggtaac tgaggcttaa agatgtaaaa taatttgtcc	accacagtgc ttttaaaaga 24
tgetegtaae caetatattg taattteaaa eeetgattee	atta atg ctt ttt gtt 29 Met Leu Phe Val 1
gtg ttg cct tta ctg ata att gtg ttc aat att Val Leu Pro Leu Leu Ile Ile Val Phe Asn Ile 5 10	Pro Met Arg Glu Ala
gtc ttt gac ttt tta ttt atg ata aag att att Val Phe Asp Phe Leu Phe Met Ile Lys Ile Ile 25 30	aaa gtg ctt aaa gtt 39 Lys Val Leu Lys Val 35
ttt tat tgt ata gcg tgt ttt atc atc aag cag Phe Tyr Cys Ile Ala Cys Phe Ile Ile Lys Gln 40 45	gtt tta gtt ttt taa 44 Val Leu Val Phe * 50
ggtaaactga tcaaaaataa taaaaggtga tgggtttatg	acacttgggt ttgagagaac 50
tttaattgga gcaatatttc aagaaaatcc ttcttactgt	ttttcgaaac tggtgagggg 56
cagagatgcc ccaagaacac ttctaggttt attggttcga	aagaaaggac taccgggagt 62
ggttttaggc gcccctcggg caagaattaa taagggcaag	aattcccgga agatttctaa 68
gggtttggge eggggaeegg etgggggaae gagaeeeee	ccggcccttg tggttgcaac 74
etgeeceet	74
<210> 76 <211> 778 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (272)(466)	
<pre>&lt;400&gt; 76 gcggtggaat tcgcacacac acacgtagta caaagaaata</pre>	ctatcagtga atggaggcaa 60
gtcattgagt tctgtaatct tgatagtcca gagaaaggga	tgaatctgcc agatcagagg 120
ageteetgat gtettettea teaggttaag gatatttet	tttatatcta atttaattca 180
tctaagaacg actcattaaa ttacgtataa ttctttacta	cataaatgaa gttccctctt 24(
attoctattt tactttttt ttaaattagg a atg gtt Met Val 1	act tat ttt atc aaa 292 Thr Tyr Phe Ile Lys 5
tgc ttt cat tat gag gtt tct ttt ctt ctt tgg Cys Phe His Tyr Glu Val Ser Phe Leu Leu Trp 10	Phe Ala Val Val Arg 20
aat gat gta gac agg cca gtc tcc ctg tca ctc Asn Asp Val Asp Arg Pro Val Ser Leu Ser Leu 25	Phe Ser Ser Tyr Ser 35
tta ttc tca aca tat cca gac aca tgt ccc ttg	ttc aaa ctc ccc acc 436

WO 01/55437 PCT/US01/	02623
Leu Phe Ser Thr Tyr Pro Asp Thr Cys Pro Leu Phe Lys Leu Pro Thr 40 45 50 55	
cac tta ctg tgt tgt tta gag gaa ata taa a tgtccttatt ataactgaca His Leu Leu Cys Cys Leu Glu Glu Ile * 60 65	487
aggccctacc ctgttcaatc ttactacttt tctgcctaat ctacttctct ctctctatct	547
aactcatcct actcagtcat cttggctttc ttgatgttcc tggaatatac tggacatgtt	607
ccctttacag agccttttca gttgctcgtc tccttacctt ggatgtattt ccatcccaca	667
tcaccacact tagttagatc cctcacagac ttcagatctt tactcaaagg tcaccttttt	727
taggagacet teettggtea ecetttteta aaggteatee eatettgeet t	778
<210> 77	
<211> 476	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> (280)(420)	_
(222) (200)(120)	
<400> 77	60
ttgaaaccct gataacgttt gacctgcact acgccaagct tggcacgagg ggaacatttt	60
ctgagettet ttetagetet tacatgetgg gggtetgtga attetttgee tteteaaaga	120
tttcagaaaa ttaactctca ttgagtggca ttttctgact ccgggaataa aggatttttt	180
ttctaagatt gttttcttaa aattagaaga ctgatgttgt attattaaaa acaaccaact	240
caccatgctt cagggtagag attcttttgt ctattgcta atg gag gat gtt aga Met Glu Asp Val Arg 1 5	294
gag aag gtc atg gct gta cct att atg ctg ttc tat ttc agc cta ctc Glu Lys Val Met Ala Val Pro Ile Met Leu Phe Tyr Phe Ser Leu Leu 10 15 20	342
tat aat tot ctg ctt ttt ttg aat cct att ctt ttg ctg agt acc acc Tyr Asn Ser Leu Leu Phe Leu Asn Pro Ile Leu Leu Leu Ser Thr Thr 25 30 35	390
cac cta ctt ctg gga gac aag gct gtg tga a agacatcctc agacgtctca His Leu Leu Gly Asp Lys Ala Val $\star$ 40 $\star$ 45 .	441
tetgetttet catecatetg cacetggatg etggg	476

<210> 78 <211> 835 <212> DNA <213> Homo sapiens

WO 01/55437 PCT/US01	/02623
<220> <221> CDS <222> (370)(672)	
<400> 78 ggaattettt tgggaatagg taattatagt cacatggttt aaaatteaaa agttacaagg	60
ggatataaat gtctccctcc caccttgtcc ccagaggtgg ctgtttcgat cagagccttg	120
tttctagacg tgtgtgtgt tatgtgtacg catgtgtgtg tatgcacaag tagttttggg	180
ttototttto ttggtggtgt acagaagggt agtcaaagco cgactcatga tccctaacto	240
gagtetttta atgggattgt gteetaaetg caaaaeeege eteaeeaaet ttgttataaa	300
ctccccgggt ttatagggac agtcatctac tgtcccttcc taacagcatg gtgcagaaac	360
actccataa atg agt ctt gtg ttg aat cag att gaa tta agt gag aaa Met Ser Leu Val Leu Asn Gln Ile Glu Leu Ser Glu Lys 1 5 10	408
gga atg gcg gtg aaa aat gtg gct tta gtc atc aca tgg gcc tac ggg Gly Met Ala Val Lys Asn Val Ala Leu Val Ile Thr Trp Ala Tyr Gly 15 20 25	456
ttt gtg aaa gta aca ttg agt ctc ctt gtg ttc tgt gtg tac tgc atg Phe Val Lys Val Thr Leu Ser Leu Leu Val Phe Cys Val Tyr Cys Met 30 35 40 45	504
tat gtc atc ttg cat cta agg atg tat att acc cat aaa gga gca tgc Tyr Val Ile Leu His Leu Arg Met Tyr Ile Thr His Lys Gly Ala Cys 50 55 60	552
aga cac atg agt gca tot tgg ott gco act aac tgo otg tgg oot tgg Arg His Met Ser Ala Ser Trp Leu Ala Thr Asn Cys Leu Trp Pro Trp 65 70 75	600
ggc tgt cac tca act ttt cat ctg gaa att gag aat aat aat act att Gly Cys His Ser Thr Phe His Leu Glu Ile Glu Asn Asn Asn Thr Ile 80 85 90	648
atc ctt ctg gaa ttg tgt gca taa atgcacaggg cctggctcat aaaaagtact Ile Leu Leu Glu Leu Cys Ala * 95 100	702
cagtgaggge caggegeggt ggegeaegee tgtaateeea geaetttggg aggeegaggg	762
gtgcagatta cgaggtcaag agatcgagac catectgget aacacggtga aaccetgtet	822
ctactaaaaa tac	835

<210> 79
<211> 1193
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (282)..(1193)
<400> 79

WO 01/55437

atcetecete tgtggtggte accagecace aggeeceagg agaaaagaag aaactgaagt 60 geetggeeta egaettetac ecagggaaaa ttgatgtgea etggaetegg geeggegagg 120 tgcaggagee tgagttaegg ggagatgtte tteacggtgg aaacggeaet tacetgaeet 180 ggttgttggt geatgtgee ecgeaggaea eageeceeta eteetgeeae gtgeageaea 240 geageetgge ecageecete gtggtgeeeg gggaggeeag g atg tgt gge agg 293

ttc ctg cgg cgg ctg ctg gcg gag gag agc cgg cgc tcc acc ccc gtg

Phe Leu Arg Arg Leu Leu Ala Glu Glu Ser Arg Arg Ser Thr Pro Val

5 10 15 20

Met Cys Gly Arg

ggg cgc ctc ttg ctt ccc gtg ctc ctg gga ttc cgc ctt gtg ctg ctg
Gly Arg Leu Leu Pro Val Leu Leu Gly Phe Arg Leu Val Leu Leu
25
389

gct gcc agt ggg cct gga gtc tat ggt gat gag cag agt gaa ttc gtg 437 Ala Ala Ser Gly Pro Gly Val Tyr Gly Asp Glu Gln Ser Glu Phe Val 40 45 50

tgt cac acc cag cag ccg ggc tgc aag gct gcc tgc ttc gat gcc ttc

Cys His Thr Gln Gln Pro Gly Cys Lys Ala Ala Cys Phe Asp Ala Phe

55 60 65

cac ccc ctc tcc ccg ctg cgt ttc tgg gtc ttc cag gtc atc ttg gtg

His Pro Leu Ser Pro Leu Arg Phe Trp Val Phe Gln Val Ile Leu Val

70 75 80

gct gta ccc agc gcc ctc tat atg ggt ttc act ctg tat cac gtg atc

Ala Val Pro Ser Ala Leu Tyr Met Gly Phe Thr Leu Tyr His Val Ile

85 90 95 100

tgg cac tgg gaa tta tca gga aag ggg aag gag gag acc ctg atc . 629
Trp His Trp Glu Leu Ser Gly Lys Gly Lys Glu Glu Glu Thr Leu Ile
105 110 115

cag gga cgg gag ggc aac aca gat gtc cca ggg gct gga agc ctc agg 677 Gln Gly Arg Glu Gly Asn Thr Asp Val Pro Gly Ala Gly Ser Leu Arg 120 125 130

ctg ctc tgg gct tat gtg gct cag ctg ggg gct cgg ctt gtc ctg gag 725 Leu Leu Trp Ala Tyr Val Ala Gln Leu Gly Ala Arg Leu Val Leu Glu 135 140 145

ggg gca gcc ctg ggg ttg cag tac cac ctg tat ggg ttc cag atg ccc 773
Gly Ala Ala Leu Gly Leu Gln Tyr His Leu Tyr Gly Phe Gln Met Pro
150
150
160

agc tcc ttt gca tgt cgc cga gaa cct tgc ctt ggt agt ata acc tgc 821 Ser Ser Phe Ala Cys Arg Arg Glu Pro Cys Leu Gly Ser Ile Thr Cys 165 170 175 180

aat ctg tcc cgc ccc tct gag aag acc att ttc cta aag acc atg ttt

Asn Leu Ser Arg Pro Ser Glu Lys Thr Ile Phe Leu Lys Thr Met Phe

gga gtc agc ggt ttc tgt ctc ttg ttt act ttt ttg gag ctt gtg ctt 917 Gly Val Ser Gly Phe Cys Leu Leu Phe Thr Phe Leu Glu Leu Val Leu 200 205 210

WO 01/55437	PCT/US01/02623

										tcc Ser		965
					_	-	_		_	aaa Lys	_	1013
										gaa Glu		1061
										atg Met 275		1109
	_		_			_		_		ttg Leu		1157
gca Ala	_	_	_									1193

<210> 80 <211> 1726 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (247)..(1413)

<400> 80 attegaaatg gatgatgtat ataactatet attegatgat gaagataece caccaaacce 60 aaaaaaagag atctctcgag gatccgaatt cgcggccgcg tcgacgccag gtgttggagg 120 cetttgetac geggteegag gettteattg cacacegegg etaatgeege egecaegget 180 acagaaacga cctgccaaga cgtcgcggcg acccccgtcg cgcggtaccc gccgattgtg 240 atg aca gcc gac agc aaa gct gca cgg ctg cgg cgg atc gag 288 gcctcc Met Thr Ala Asp Ser Lys Ala Ala Arg Leu Arg Arg Ile Glu cgc tgg cag gcg acg gtg cac gct gcg gag tcg gta gac gag aag ctg 336 Arg Trp Gln Ala Thr Val His Ala Ala Glu Ser Val Asp Glu Lys Leu 15 20 cga atc ctc acc aag atg cag ttt atg aag tac atg gtt tac ccg cag 384 Arg Ile Leu Thr Lys Met Gln Phe Met Lys Tyr Met Val Tyr Pro Gln 35 40 acc ttc gcg ctg aat gcc gac cgc tgg tac cag tac ttc acc aag acc 432 Thr Phe Ala Leu Asn Ala Asp Arg Trp Tyr Gln Tyr Phe Thr Lys Thr 50 55 gtg ttc ctg tcg ggt ctg ccg ccc cca gcg gag ccc gag ccc gag 480 Val Phe Leu Ser Gly Leu Pro Pro Pro Pro Ala Glu Pro Glu Pro Glu

W O 01/33437			
65	70	75	

		65					70					75				
ccc Pro	gaa Glu 80	ccc Pro	gaa Glu	cct Pro	gaa Glu	cct Pro 85	gcg Ala	ctg Leu	gac Asp	ctc Leu	gcg Ala 90	gcg Ala	ctg Leu	cgt Arg	gcg Ala	528
gtc Val 95	gcc Ala	tgc Cys	gac Asp	tgc Cys	ctg Leu 100	ctg Leu	cag Gln	gag Glu	cac His	ttc Phe 105	tac Tyr	ctg Leu	cgg Arg	cgc Arg	agg Arg 110	576
cgg Arg	cgc Arg	gtg Val	cac His	cgt Arg 115	tac Tyr	gag Glu	gag Glu	agc Ser	gag Glu 120	gtc Val	ata Ile	tct Ser	ttg Leu	ccc Pro 125	ttc Phe	624
ctg Leu	gat Asp	cag Gln	ctg Leu 130	gtg Val	tca Ser	acc Thr	ctc Leu	gtg Val 135	ggc Gly	ctc Leu	ctc Leu	agc Ser	cca Pro 140	cac His	aac Asn	672
ccg Pro	gcc Ala	ctg Leu 145	gcc Ala	gct Ala	gcc Ala	gcc Ala	ctc Leu 150	gat Asp	tat Tyr	aga Arg	tgc Cys	cca Pro 155	gtt Val	cat His	ttt Phe	720
tac Tyr	tgg Trp 160	gtg Val	cgt Arg	ggt Gly	gaa Glu	gaa Glu 165	att Ile	att Ile	cct Pro	cgt Arg	ggt Gly 170	HIS	cga Arg	aga Arg	ggt Gly	768
cga Arg 175	Ile	gat Asp	gac Asp	ttg Leu	cga Arg 180	tac Tyr	cag Gln	ata Ile	gat Asp	gat Asp 185	Lys	cca Pro	aac Asn	aac Asn	cag Gln 190	816
att Ile	cga Arg	ata Ile	tcc Ser	aag Lys 195	Gln	ctc Leu	gca Ala	gag Glu	ttt Phe 200	vai	Pro	ttg Leu	gat Asp	tat Tyr 205	261	864
gtt Val	cct Pro	ata Ile	gaa Glu 210	Ile	ccc Pro	act Thr	ata Ile	aaa Lys 215	Cys	aaa Lys	cca Pro	gac Asp	aaa Lys 220	Let	cca Pro	912
tta Leu	tto Phe	: aaa : Lys 225	Arg	cag Glr	, tat Tyr	gaa Glu	aac Asn 230	His	ata Ile	ttt Phe	gtt Val	ggc L Gly 235	Ser	aaa Lys	act Thr	960
gca Ala	a gat a Asp 240	Pro	tgo Cys	tgt Cys	tac Tyr	ggt Gl _y 245	His	acc Thr	cag Glr	ttt Phe	cat His 25	s Lev	g tta 1 Leu	cct Pro	gac Asp	1008
aaa Lys 25	s Let	a aga 1 Arg	a agg g Arg	g gaa g Glu	a agg u Arg 260	, Le	ttg Leu	g aga n Arg	a caa g Glr	a aad n Asi 26!	а Су	t gci s Ala	gat a Asp	caq Gli	g ata n Ile 270	1056
ga: Gl:	a gti u Val	t gt l Va	t ttt 1 Phe	aga Arg 27	g Ala	aat Asi	gct Ala	att a Ile	gca Ala 280	a Se	c ct r Le	t tt u Ph	t gci e Ala	t tgg a Trj 28	g act p Thr 5	1104
G1	a gca y Ala	a ca a Gl	a gci n Ala 29	a Me	g tat t Ty	c caa	a gga n Gly	29!	e Tr	g ag p Se	t ga r Gl	a gc u Al	a ga a As 30	p Va	t act l Thr	1152
cg Ar	a cc g Pr	t tt o Ph 30	e Va	c tc l Se	c caç r Glı	g gc	t gtg a Val	l Il	c ac	a ga r As	t gg p Gl	a aa y Ly 31	s Ty	c tt r Ph	t tcc e Ser	1200
tt Ph	t tt e Ph	c tg e Cy	c ta	c ca r Gl	g cta n Le	a aa u As	t act	t tt	g gc u Al	a ct a Le	g ac u Th	t ac	a ca r Gl	a gc n Al	t gat a Asp	1248

WO 01/55437		PCT/U	JS01/02623
320	325	330	
caa aat aac cct cgt aaa Gln Asn Asn Pro Arg Lys 335 340	Asn Ile Cys Trp Gly		1296
ctt tat gaa aca att gag Leu Tyr Glu Thr Ile Glu 355			1344
gtt cta ctt cag ata gtt Val Leu Leu Gln Ile Val 370	<del>-</del>	<del>-</del>	
aaa tca cag ctg ttg gaa Lys Ser Gln Leu Leu Glu 385		ttgattgag aactgtggga	1445
atatttaaat tttactgaag g	aacaataat gatgagattt	gtaactgtca actattaa	at 1505
acattgattt ttgagacaaa t	atttcttat gtcaacctgt	tattagatct cttactct	gc 1565
tcaaattcat cactgaaaga t	ttaatttta gttacctttt	gttgatttaa aaataatt	gc 1625
atttgtatat tgctaactga t	aagacaaat tgagttattg	agctattaaa tgcacatt	tt 1685

1726

<210> 81

<211> 1111

<212> DNA

<213> Homo sapiens

aatataaatg cagaaatccc aaataaaatg ctaacatact g

<220>

<221> CDS

<222> (879)..(1052)

<400> 81

60 agttacgcgg tggtacagag tatagtggcg gccgcatagg aacagtgaaa ctagagtagg tacttaggac actatattga gctgagagga ctggccacgt acagtaaaag agcgacgttt gtgtcacgga gcgaatagtc gattgaaact gatgcgttga gtaggtcggc caaggaagta 180 240 gagactaaag ttagggtggg ggagatgaag tgcatcaatg ataatagctt ttggtattta 300 aaggcccggt taagaaaagt aaaatccaaa cgctgggctg ggagaaaaat ctgtgtaatc ccatatatat aaatggatgg gtatttgaaa tatataatac actctcaaag ttttcaataa 360 taagaaaaca ggcacgcaat aaccaggaag atatatggat ggcaaataag cccatgaaaa 420 tattcttaac attattaatt ataagtgaca tgcaatttaa aactgatgag atattatccc 480 tgatctataa aaagagcaaa aatttaaata tgtgaccata ccaactatta atgaggatgt 540 agagtaactg aacttettea tgeattggtg ttgagaatgt gaaaaaaaac aacaactttg 600 gaaaataatg tggcagtttt ctaaaaagtt aaatataaac ctaccataag atccaattat 660 tctactcctt ggtgttagta ccaaataaaa tgaaagtatg tgcctacata cagactcata 720

cacaaatgtg ttcagaagtt ttacttgtga tagcaaaaat taaaaacaag tcgacttttc	780
atcaacagat aaatatgaaa acacattatg atatatgcat acaataaatt ccactctaca	840
ataaaaaaat aatacatttg gtacattcca ctacacga atg agt ctc aaa aga Met Ser Leu Lys Arg 1 5	893
att att ctg aga aaa gat tta aga ttt aaa aaa agt atc aca ctg cat Ile Ile Leu Arg Lys Asp Leu Arg Phe Lys Lys Ser Ile Thr Leu His 10 15 20	941
gaa caa ttt cat gta ttt aaa ttc tac aaa aag aca caa acc agt agc Glu Gln Phe His Val Phe Lys Phe Tyr Lys Lys Thr Gln Thr Ser Ser 25 30 35	989
gtg att gtt gag ggg agg aga aga ggg agg tat tac aaa ggg aca tgt Val Ile Val Glu Gly Arg Arg Arg Gly Arg Tyr Tyr Lys Gly Thr Cys 40 45 50	1037
gaa aac ttt ttg gag tgatgcatat atatataatg tatttattat ggtgattatg Glu Asn Phe Leu Glu 55	1092
atgggacgcg gttccgaac	1111
•	
<210> 82 <211> 659 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (120)(350)	
<220> <221> misc_feature <222> (1)(659) <223> n = a,t,c or g	
<400> 82 ccggtccgga attcccgggt cgacccacgc gtccgatttt aaagtgtttc tttttagtaa	60
aagattgatc ctcaaactgg gttttacaaa tgtagcaggt aagaggtagt gactgtcaa atg ttc aaa gtt gtg ttt tgt ttt ggt ttg gtt tgg ttt tgc ttt caa Met Phe Lys Val Val Phe Cys Phe Gly Leu Val Trp Phe Cys Phe Gln 1 5 10	119 167
agg gca cac aaa cca atc cga ttt gaa aaa cac aac ttt aca ata aat Arg Ala His Lys Pro Ile Arg Phe Glu Lys His Asn Phe Thr Ile Asn 20 25 30	215
gaa gga aac ctg ttc tct atg aat atc cca att gta acg att agg tct Glu Gly Asn Leu Phe Ser Met Asn Ile Pro Ile Val Thr Ile Arg Ser 35 40 45	263
cac cac agg aca agt tgc tac cac aaa tta atc aca tgt gaa cag caa His His Arg Thr Ser Cys Tyr His Lys Leu Ile Thr Cys Glu Gln Gln	311

PCT/US01/02623 WO 01/55437 . 360 act gtc ttt acg aac ata aag agg cat tct aag ttg tag cagacgcctg Thr Val Phe Thr Asn Ile Lys Arg His Ser Lys Leu * ctctacgaga cattaatgga gtaaaatcct ggagtattac agataaacag ttaaagtgat 420 gaacaagggc tttatggttt gtataaacag aaatataaac aattttgtat ttttctcaat 480 tatatgtaat taaataacgt ttcagggtaa caaagtattg ggtccctttt tttaccagct 540 tattctaaag aggctttgaa taaaggaaat tttgtttctt gcctccaaga aagagccccc 600 eccecece tecaaatttt gatagaaaaa aaatttgnee agageetega eeeeeeeee 659 <210> 83 <211> 653 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (147) .. (308) <400> 83 ccggtccgga attcccgggt cgacccacgc gtccgatttc ctaaaacttt attcctctaa 60 acatettete aatteeceag atettgtttt agttgtagag geecaaagta gageteteta 120 aacaaaggct teeteagtge tgtaaa atg aat ttg tat ete ttt get gtt ete 173 Met Asn Leu Tyr Leu Phe Ala Val Leu 1 221 ttc ttt tat gta ttt cta cat ata aaa atc atc ttt att tgt ttt gct Phe Phe Tyr Val Phe Leu His Ile Lys Ile Ile Phe Ile Cys Phe Ala 15 10 269 act aaa tgg cat aat tta ttt tcg aaa ttc agt tat ttt tgt att ttg Thr Lys Trp His Asn Leu Phe Ser Lys Phe Ser Tyr Phe Cys Ile Leu 30 cat gtt aag gct cta agc ctt aac tta ggg tct ggg taa atatgaactc 318 His Val Lys Ala Leu Ser Leu Asn Leu Gly Ser Gly * caagacteet egaaaatagt gtagaaataa tagcaaaatt aaagatgttt gtatteeetg 378 438 tgaatttatt ttttctttca ttcaacacag aatgtgtatc tagtacgtgc taggcattat aaatttagca gtgaacaaag atgataaaat ctcagctctc ctggagccaa cgttctagtg 498 558 aaaaatttot otttottota otttttotgt tgacattoat atgggotaac aatgtaccco gagggctggg gattataaag gagaagaaag gtgggggacc cggctcagct ggtaaaatgg 618

<210> 84 <211> 915

gaatggaatg accecettaa eccagaaace ttett

653

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (166) .. (357) <400> 84 tttgattgee tgtacgcccg cggtaccggt ccggaattee cgggtcgacc cacgcgtccg 60 cccacgcgtc cgctgagctg aaaagttgga tgtgccaaag tgtaaaaaca ctgatagtgt 120 atg aag att 174 teettgetge agataactge agtaaaccat gtetttaget teatt Met Lys Ile 1 get tet tte ttg etg eag aat aac ggt atg tat tet ete tea etg eag 222 Ala Ser Phe Leu Leu Gln Asn Asn Gly Met Tyr Ser Leu Ser Leu Gln 10 ctc cca gtg ctc tgt gtc tta aaa tca ttt aaa gcc tat agc ttg ctt 270 Leu Pro Val Leu Cys Val Leu Lys Ser Phe Lys Ala Tyr Ser Leu Leu 25 tgg gga gtt agt aca ggg gtt aag gaa ggc ttt gcc gga aga aca att 318 Trp Gly Val Ser Thr Gly Val Lys Glu Gly Phe Ala Gly Arg Thr Ile 50 gta aat cat gag agt tac tac ttg cgc att gtg tgg tag tctctttaat 367 Val Asn His Glu Ser Tyr Tyr Leu Arg Ile Val Trp * 55 60 gcataatggt cctttttaat accaaaaatt aattaataaa ggaaatgatt acattgtcca 427 aataactgtt aaacatgaca gatctgtttt atgatactgt gtttgacagt taaacattaa 487 gtaaacattt aattgacttt aagcttgaaa tgttcagaat gctctaaccc ttgctacaga 547 atcttttctg cagcaagtta agtattttgt gtgttttttc ccacctgtag cttatcaggc ccggtccaaa gccttctagc agaggggatt gatcctgtca ggggttgctg ccaagacatc 667 ggaaggattt ttgaccaagg ttttcaaaag ctcagtgtca catctgccat ttgataaaag 727 aaagattttg gatgcagaac ctggcattta ttggcctttg cggcgctggg atggtcggtt 787 tgccctccgg cactctacaa aatgagcccg gctcacactt aattttaaat gggggggcgg 847 getetatatt taccegacea tgteacgteg caaaaacaaa gteggeteae agggaettet 907 915 caaccccc

<210> 85 <211> 707 <212> DNA <213> Homo sapiens <220> <221> CDS

<pre>&lt;400&gt; 85 ccgaaattcc cgggtcgacc cacgcgtccg ctcatattgg tgtaaaaatt ttatatcact</pre>	60 120
	120
gtaggetaaa ettacetetg cacaeteete catgteeaet gageatetge tgaagtetge	
tttttcttca ttttttatgg aatgtaaagc tcatcc atg tgt aca tta ttc atg Met Cys Thr Leu Phe Met 1 5	174
cat tta ctt ttc tgc cac ctc caa agc att caa tta aag cag gaa tta His Leu Leu Phe Cys His Leu Gln Ser Ile Gln Leu Lys Gln Glu Leu 10 15 20	222
agg ctc aac tat ctt act tta aca cag ttt tgg cag aga tgt tac agt Arg Leu Asn Tyr Leu Thr Leu Thr Gln Phe Trp Gln Arg Cys Tyr Ser 25 30 35	270
gag atg att ttt ttc tgt ctg tca aag gtg ttt ctt cat gtt ttc caa Glu Met Ile Phe Phe Cys Leu Ser Lys Val Phe Leu His Val Phe Gln 40 45 50	318
gat ggt cta gaa cat cat tta gag taa atttt cattttggag gaaattttta Asp Gly Leu Glu His His Leu Glu * 55 60	370
tgaaaagtct ctgtaggtat ctcctgtgaa tagaggtttt aaaaagaaaa agaaggggaa	430
aaaagcccaa agggaaaaaa taagtttctt actctgactt tcacacatac tgtgttctat	490
ttgctccctt catatgtccc agagctaact cctcttcact gagaacgagg gcttaatttg	550
aatggtttta atgcctttta accttttaaa atttttatgg acaatttaac tggcattttt	610
acteceacee accagtataa aactteatgt tggtaagaaa eecaacaaaa atetttggaa	67
ccctgcaaaa atgttttacg ttacaatttg acccctc	70

<210> 86

<211> 1828

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (633)..(1553)

<400> 86

gaaaaaaat ctgaaccct ctcagttcta cttgcggaac cgcccggaat tcccgggtcg 60
acccacgcgt ccggtaccca ctgccggcct ccgcgctttc tggccgcagt gtgcgagtca 120
catggaagct cctgaggagc ccgcgccagt gcgcggaggc ccggaggcca cccttgaggt 180
ccgtgggtcg cgctgcttgc ggctgtccgc cttccgagaa gagctgcggg cgctcttggt 240
cctggctggc cccgcgttct tggttcagct gatggtgtc ctgatcagct tcataagctc 300
cgtgttctgt ggccacctgg gcaagctgga gctggatgca gtcacgctgg caatcgcggt 360
tatcaatgtc actggtgtct cagtgggatt cggcttatct tctgcctgtg acaccctcat 420

WO 01/55437	PCT/US01.	/02623
	gaa gcacgtgggc gtgatcctgc agcggagtgc	480
	ctg ctgggcgctt tttctaacac tttcacatcc	540
	tgt ccaggettae ccagaeetat gteacgatet	600
tcattccagc tcttcctgca acctttc		653
Leu Asn Gln Gly Ile Val Leu P	ecc cag atc gta act gga gtt gca gcc Pro Gln Ile Val Thr Gly Val Ala Ala 15 20	701
aac ctt gtc aat gcc ctc gcc a Asn Leu Val Asn Ala Leu Ala A 25	aac tat ctg ttt ctc cat caa ctg cat Asn Tyr Leu Phe Leu His Gln Leu His 35	749
ctt ggg gtg ata ggc tct gca c Leu Gly Val Ile Gly Ser Ala I 40 45	ctg gca aac ttg att tcc cag tac acc Leu Ala Asn Leu Ile Ser Gln Tyr Thr 50	797
ctg gct cta ctc ctc ttt ctc t Leu Ala Leu Leu Leu Phe Leu 7 60	tac atc ctc ggg aaa aaa ctg cat caa Tyr Ile Leu Gly Lys Lys Leu His Gln 65	845
Ala Thr Trp Gly Gly Trp Ser 1 75	ctc gag tgc ctg cag gac tgt gcc tcc Leu Glu Cys Leu Gln Asp Cys Ala Ser 80 85	893
ttc ctc cgc ctg gcc atc ccc of Phe Leu Arg Leu Ala Ile Pro	agc atg ctc atg ctg tgc atg gag tgg Ser Met Leu Met Leu Cys Met Glu Trp 95	941
tgg gcc tat gag gtc ggg agc Trp Ala Tyr Glu Val Gly Ser 105	ttc ctc agt ggc atc ctc ggc atg gtg Phe Leu Ser Gly Ile Leu Gly Met Val 115	989
gag ctg ggc gct cag tcc atc Glu Leu Gly Ala Gln Ser Ile 120 125	gtg tat gaa ctg gcc atc att gtg tac Val Tyr Glu Leu Ala Ile Ile Val Tyr 130 135	1037
atg gtc cct gca ggc ttc agt Met Val Pro Ala Gly Phe Ser 140 .	gtg gct gcc agt gtc cgg gta gga aac Val Ala Ala Ser Val Arg Val Gly Asn 145	1085
gct ctg ggt gct gga gac atg Ala Leu Gly Ala Gly Asp Met 155	gag cag gca cgg aag tcc tct acc gtt Glu Gln Ala Arg Lys Ser Ser Thr Val 160 165	1133
tcc ctg ctg att aca gtg ctc Ser Leu Leu Ile Thr Val Leu 170	ttt gct gta gcc ttc agt gtc cta ctg Phe Ala Val Ala Phe Ser Val Leu Leu 175 . 180	1181
tta agc tgt aag gat cac gtg Leu Ser Cys Lys Asp His Val 185 190	ggg tac att ttt act acc gac cga gac Gly Tyr Ile Phe Thr Thr Asp Arg Asp 195	1229
atc att aat ctg gtg gct cag Ile Ile Asn Leu Val Ala Gln 200 205	gtg gtt cca att tat gct gtt tcc cac Val Val Pro Ile Tyr Ala Val Ser His 210 215	1277
ctc ttt gaa gct ctt gct tgc Leu Phe Glu Ala Leu Ala Cys	e acg agt ggt ggt gtt ctg agg ggg agt Thr Ser Gly Gly Val Leu Arg Gly Ser	1325

gga aat cag aag gtt gga gcc att gtg aat acc att ggg tac tat gtg 1373 Gly Asn Gln Lys Val Gly Ala Ile Val Asn Thr Ile Gly Tyr Tyr Val 235 get ggc etc ecc ate ggg ate geg etg atg ttt gea acc aca ett gga 1421 Ala Gly Leu Pro Ile Gly Ile Ala Leu Met Phe Ala Thr Thr Leu Gly 250 255 gtg atg ggt ctg tgg tca ggg atc atc atc tgt aca gtc ttt caa gct 1469 Val Met Gly Leu Trp Ser Gly Ile Ile Ile Cys Thr Val Phe Gln Ala 265 270 gtg tgt ttt cta ggc ttt att att cag cta aat tgg aaa aaa gcc tgt 1517 Val Cys Phe Leu Gly Phe Ile Ile Gln Leu Asn Trp Lys Lys Ala Cys 285 290 1567 Gln Gln Gly Ala Leu Lys Thr Leu Lys Glu Phe * 300 aagacaggcg agcctcagtc agatcagcag atgcgccaag aagaaccttt gccggaacat 1627 ccacaggacg gcgctaaatt gtccaggaaa cagctggtgc tgcggcgagg gcttctgctc 1687 ctgggggtct tcttaatctt gctggtgggg attttagtga gattctatgt cagaattcag tgacgtggta ggaaagaaag tcaggtcaag tgatgctttt gagcttacac acaattcgca 1807 ggccgaatta cgccactctt t 1828

<210> 87 <211> 1042 <212> DNA <213> Homo sapiens

<221> CDS <222> (181)..(501)

<220>

<220>

<221> misc_feature

<222> (1)...(1042)

<223> n = a,t,c or g

<400> 87

cgacccacgc gtccgcacac atgaggttcg tgacacacac acgaggcagt cggggagcag 60 aatcaccaaa tgccaaggtc acacaccagg ttcccacgac tgtctactac tcagttattt 120 ttaacagctg ttaaatatct cagactcacc ccagcctgaa gctaggtttc tgacaataac 180 atg cat tta act cta agt tta ctt ctg ttc tcc cta cac ttc ccc acg 228 Met His Leu Thr Leu Ser Leu Leu Leu Phe Ser Leu His Phe Pro Thr tat att att cga gtt aat ttt tgt ctt gtt tcc aat tta ttt caa agg Tyr Ile Ile Arg Val Asn Phe Cys Leu Val Ser Asn Leu Phe Gln Arg 276 20

WO 01/55437 PCT/US01/0	2623
atg cga agt aca aaa ctg ctt cgg ctc att gac tta gat ttt tca ttt Met Arg Ser Thr Lys Leu Leu Arg Leu Ile Asp Leu Asp Phe Ser Phe 35 40 45	324
act ttc tct ctc ttg gat cta cca cca gta aat gaa tat gac atg tat Thr Phe Ser Leu Leu Asp Leu Pro Pro Val Asn Glu Tyr Asp Met Tyr 50 55 60	372
atc aga aac ttt gga aaa aaa aaa agg ggg ggc cgt ttt aaa gga Ile Arg Asn Phe Gly Lys Lys Lys Lys Arg Gly Gly Arg Phe Lys Gly 65 70 75 80	420
tcc agg ttt acg aac gcg ggc tgg caa cgt aaa agt ttt ttt atg ggg Ser Arg Phe Thr Asn Ala Gly Trp Gln Arg Lys Ser Phe Phe Met Gly 85 90 95	468
ccc cct aaa tcc att cca ggg gcc ggg gtt taa caacgggg ggacgggaaa Pro Pro Lys Ser Ile Pro Gly Ala Gly Val * 100 105	519
aaaannnnne nntneeeeee eeeeeeaeee anaaaneeea enettttta ageeeegeae	579
ttttccactc cccccacttt ttaaaaccta atttaaaaaa actcntattc cctcatatcc	639
acttataaac acaaataaaa tetttatnea eecaeeeeta atataetett taeeeaaaae	699
coccetttt ttttatcace caaacttate teeceeettt atecteteae eneteecaet	759
ncaaaaatca ttacatttne ceenacnace aaaatecace teteceetee ccaatnnnee	819
cactacactn caccecteca ecttecatte ttaacacace nttectecce tetcaaacee	879
coccactot catotoaact aatectacet totocccact tacacataat ccactttoot	939
tactaaattc cccccaattc tttacacact acctcccttc accaaaatca tctcttcccc	999
cttcacactt ttacctccca cacctttcta aaaaaccaac ccc	1042
<210> 88 <211> 3551 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (140)(1363)	
<400> 88 gtccggacat tcccgggtcg acgatttcgt ccggctgccg cgcatcgtcc gcagacgccg	60
ccaccgccat gggctcctga ggctagcttg tcactttctg caaaggtttc cctcagggag	120
cctcctgctg ccaggcacc atg aca gtg agg ggg gat gtg ctg gcc ccg gat  Met Thr Val Arg Gly Asp Val Leu Ala Pro Asp  1 5 10	172

cca gcg tcg ccc acg acc gca gca gcc tcg ccc agc gtc tcc gtg atc Pro Ala Ser Pro Thr Thr Ala Ala Ala Ser Pro Ser Val Ser Val Ile

ccc gag ggc agc ccc act gcc atg gag cag cct gtg ttc ctg atg aca

WO 01/55437 PCT/US01/02623 Pro Glu Gly Ser Pro Thr Ala Met Glu Gln Pro Val Phe Leu Met Thr act ged get dag ged atd tet ggd ttd ttd gtg tgg acg ged etg etc 316 Thr Ala Ala Gln Ala Ile Ser Gly Phe Phe Val Trp Thr Ala Leu Leu atc aca tgc cac cag atc tac atg cac ctg cgc tgc tac agc tgc ccc 364 Ile Thr Cys His Gln Ile Tyr Met His Leu Arg Cys Tyr Ser Cys Pro aac gag cag cgc tac atc gtg cgc atc ctc ttc atc gtg ccc atc tac 412 Asn Glu Gln Arg Tyr Ile Val Arg Ile Leu Phe Ile Val Pro Ile Tyr ged ttt gad ted tgg etc age etc etc ttc ttc acc aac gad cag tac 460 Ala Phe Asp Ser Trp Leu Ser Leu Leu Phe Phe Thr Asn Asp Gln Tyr 100 tac gtg tac ttc ggc acc gtc cgc gac tgc tat gag gcc ttg gtc atc 508 Tyr Val Tyr Phe Gly Thr Val Arg Asp Cys Tyr Glu Ala Leu Val Ile 115 tat aat ttc ctg agc ctg tgc tat gag tac cta gga gga gaa agt tcc 556 Tyr Asn Phe Leu Ser Leu Cys Tyr Glu Tyr Leu Gly Gly Glu Ser Ser 130 atc atg tcg gag atc aga gga aaa ccc att gag tcc agc tgt atg tat 604 Ile Met Ser Glu Ile Arg Gly Lys Pro Ile Glu Ser Ser Cys Met Tyr 140 150 ggc acc tgc tgc ctc tgg gga aag act tat tcc atc gga ttt ctg agg 652 Gly Thr Cys Cys Leu Trp Gly Lys Thr Tyr Ser Ile Gly Phe Leu Arg 170 ttc tgc aaa cag gcc acc ctg cag ttc tgt gtg gtg aag cca ctc atg 700 Phe Cys Lys Gln Ala Thr Leu Gln Phe Cys Val Val Lys Pro Leu Met 175 gcg gtc agc act gtg gtc ctc cag gcc ttc ggc aag tac cgg gat ggg 748 Ala Val Ser Thr Val Val Leu Gln Ala Phe Gly Lys Tyr Arg Asp Gly 195 gac ttt gac gtc acc agt ggc tac ctc tac gtg acc atc atc tac aac 796 Asp Phe Asp Val Thr Ser Gly Tyr Leu Tyr Val Thr Ile Ile Tyr Asn 210 atc tcc gtc age ctg gcc ctc tac gcc ctc ttc ctc ttc tac ttc gcc 844 Ile Ser Val Ser Leu Ala Leu Tyr Ala Leu Phe Leu Phe Tyr Phe Ala 230 acc egg gag etg etc age ecc tac age ecc gte etc aag tte tte atg 892 Thr Arg Glu Leu Leu Ser Pro Tyr Ser Pro Val Leu Lys Phe Phe Met 245 gtc aag tcc gtc atc ttt ctt tcc ttc tgg caa ggc atg ctc ctg gcc 940 Val Lys Ser Val Ile Phe Leu Ser Phe Trp Gln Gly Met Leu Leu Ala 255

988

1036

atc ctg gag aag tgt ggg gcc atc ccc aaa atc cac tcg gcc cgc gtg

Ile Leu Glu Lys Cys Gly Ala Ile Pro Lys Ile His Ser Ala Arg Val

tog gtg ggc gag ggc acc gtg gct gcc ggc tac cag gac ttc atc atc

W	J U1/5	543/												1	PCT/US0	1/02623
Ser	Val 285	Gly	Glu	Gly	Thr	Val 290	Ala	Ala	Gly	Tyr	Gln 295	Asp	Phe	Ile	Ile	
tgt Cys 300	gtg Val	gag Glu	atg Met	ttc Phe	ttt Phe 305	gca Ala	gcc Ala	ctg Leu	gcc Ala	ctg Leu 310	cgg Arg	cac His	gcc Ala	ttc Phe	acc Thr 315	1084
tac Tyr	aag Lys	gtc Val	tat Tyr	gct Ala 320	gac Asp	aag Lys	agg Arg	ctg Leu	gac Asp 325	gca Ala	caa Gln	ggc Gly	cgc Arg	tgt Cys 330	gcc Ala	1132
ccc Pro	atg Met	aag Lys	agc Ser 335	atc Ile	tcc Ser	agc Ser	agc Ser	ctc Leu 340	aag Lys	gag Glu	acc Thr	atg Met	aac Asn 345	ccg Pro	cac His	1180
gac Asp	atc Ile	gtg Val 350	cag Gln	gac Asp	gcc Ala	atc Ile	cac His 355	aac Asn	ttc Phe	tca Ser	cct Pro	gcc Ala 360	tac Tyr	cag Gln	cag Gln	1228
tac Tyr	acg Thr 365	cag Gln	cag Gln	tcc Ser	acc Thr	ctg Leu 370	gag Glu	cct Pro	ggg ggg	ccc Pro	acc Thr 375	tgg Trp	cgt Arg	ggt Gly	ggc Gly	1276
gcc Ala 380	cac His	ggc Gly	ctc Leu	tcc Ser	cgc Arg 385	tcc Ser	cac His	agc Ser	ctc Leu	agt Ser 390	ggc	gcc Ala	cgc Arg	gac Asp	aac Asn 395	1324
gag Glu	aag Lys	act Thr	ctc Leu	ctg Leu 400	ctc Leu	agc Ser	tct Ser	gat Asp	gat Asp 405	gaa Glu	ttc Phe	tag *	gtgo	.ggg	tg	1373
cagt	ggcg	ıga a	gtgo	tggc	g co	atag	ccac	ggt	cagg	rctg	tgcc	ccac	ct o	ccago	ctcac	1433
cacc	aggo	ca g	gagg	cago	t gg	caca	gtgc	tca	cgcc	gcc	ttta	ttta	tt g	gacc	agaaa	1493
cact	caca	tg t	cact	tcca	g ag	gaac	.aaaa	gac	agco	agg	ctcg	ccca	tg g	gcct	tcagg	1553
aata	ttta	ta c	atgg	ссса	g co	tgca	ctgo	ccg	ggcg	agg	gcag	agga	ca c	tggg	agcaa	1613
ggct	tatg	cc c	ctgc	tgcc	c gt	cctg	tgct	<b>a</b> aa	ggca	tgc	tggg	acca	gc c	gcac	ccagg	1673
cccc	aatg	ct t	gtgt	gtgg	a co	agcg	gctg	cag	cctt	cta	gccc	ctcc	tc c	ccgc	gagac	1733
tctc	aggc	tg a	ggtc	ggca	a go	cgtg	gctc	ccc	caca	cac	cgtg	caat	ac c	ctgt	ctgac	1793
ctgg	gctc	tt c	ccgc	ctgc	a to	cctc	ccct	gtc	cacc	ttt	gtcc	agtg	ct a	gatt	cacct	1853
cacc	ccgg	gc a	ggag	tggg	g at	gtgg	gcgc	tct	gtgg	tcc	tccc	ctcc	tg a	ccca	ggcct	1913
ctgt	ggca	tg c	tgca	agga	t ca	gagc	caga	cac	cagg	agt	caca	ggcc	cc a	.ccca	ggaag	1973
ggca	ttca	aa a	cccc	tggg	c ac	cạct	tctg	ttg	aagc	agg	ggct	tctg	gg c	ccct	gggta	2033
tccc	cacc	tg t	cgtg	gcca	c ac	ctct	gcct	gcc	tcat	gcc	cctt	cccc	ct g	gcct	accaa	2093
ggac	agcc	ca c	agcc	cgca	c tg	ccgg	ctca	ctt	gggt	cct	tect	cgat.	ag c	tttg	ggcag	2153
agcc	cttg	ct t	cctg	gctg	c tt	cagg	gctc	agg	ggct	ccc	agcc	ctcc	tt c	ccag	gctga	2213
tgct	gggt	cc t	ctct	ctct	t tg	gggc	ttct	ccc	tccc	gtt	tcag	ggga	aa g	gtct	gagtc	2273
tcca	cgtti	tc a	gacca	agcti	t ct	gggg!	gaag	gca	gtcc	ggc	aggg	agac	cg g	gagg	ggtgg	2333
ccac	acagi	tg g	ggago	ctggg	g ag	gtgg	<b>3</b> 333	aat	ggtc	cca	gact	cctc	tc g	gggc	cccta	2393

tccacacaqq qcctggtgtt ctaccccatc tggcccctgg cccatctctt ctgtgcctta 2453 gtcacatatg aaagegeeee teectggete eccatetgte ecacaegete eetggggete 2573 ttagttcage tgctggcact cgcaggatee tgcagtgctg ggcccagage cettggacag geoteaggag tggteaggae caccaagece etectetece ectecacace tetagacetg 2633 gggcctccgg aacccccagc aggctgggct tatactagct cctgacttag gaagagcctc 2693 gtgtcacaac acgtgtccct acaggcaaag tgtcctggca tttaaaaccc agattatccc 2753 tqqqtttqqq ctqcaqtcac ctggagaagc tggtagggta agggagaggg accctgccgg 2813 2873 tgttcactgg ggattctttc ttttggtcct tcctggaatg aacaggttcc ctccctgcca cctgtgagga gagttggggc ccageegtet teetggeete etteetttee tegtggeaga 2933 ggcctgcatg tgggtgccag aggccagete teeceeteca tettgggggg geggagcagt 2993 tgggcccaag ctgcccggga gggtgggtgc agacacaggc tgaggaccag ccctggccct 3053 qecceqceat etgettteae caagetgtet etceacegtg getteeette teectecagg 3113 ccaaagtgct gctgattccc actcccttgg ttttcgcctg cccagcgttg ctgtttgcgt 3173 ggaggtggg gggagctcag tggcagggaa tcagcggtcc gtggggtcgt ggggacggga 3233 acatgigece gacegeteea teceeteete eteettagga tgcataacet acettgtett 3293 ttttttttta aattttcttt ccaggtagag tagctctttg tacataaaga atacttgaaa aattaattgt atgatgtatg agaagacaga gtctcctagt tttgtatctt gttgtatgac 3413 tgccatgagt tccaccagaa agccactcta ttttggtctc tgtgacattt taaatgcgtg acagaagtga gcaaataaag tgaggaagaa atctatatat gagataatat agattgtatt 3533 gaaatctcaa aaaaaaaa 3551

Gly Lys Lys Val Thr Leu Leu Gln Lys Cys Ala Trp Leu Leu Leu
5 10 15

WO 01/55437 PCT/US01/02623 gtt tgc tgc cta ttc act ggc att aag tac ctg aac aaa tgt ttt atc Val Cys Cys Leu Phe Thr Gly Ile Lys Tyr Leu Asn Lys Cys Phe Ile 25 aca gac agg gaa ctg ttg agg gat gtt cac aat gca ttg aac atc ctt 262 Thr Asp Arg Glu Leu Leu Arg Asp Val His Asn Ala Leu Asn Ile Leu 40 agg cat aat ttt tat gtg aac tgg gca tcc tta aat aca ttc tga ctc 310 Arg His Asn Phe Tyr Val Asn Trp Ala Ser Leu Asn Thr Phe * 55 catgatcaga ttaccagaaa gtgcaggtcc cactcactat cttgattcag catctcccat 370 ctggccaaag ttgaatttta cattgagttg gatggtgata aatatgctta gcaaaagtat 430 attcgttgtt tctgaagttc tctgtgctga taaacactgg ctgggactag ggaagtgggc 490 cccaaataaa acaatagcaa taatccccaa actggttggg gaagggcagg ctttatttt 550 gtgcactctt aaggggaaat gtaagttaaa ctttccaccc ccccccaaag gtttttgctt gtttggaggg ccccaacctt tgggggcccc tcccaatgcc ttaatt 656 <210> 90 <211> 646 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (263)..(553) <400> 90 ccggtccgga attcccgggt cgacccacgc gtccgcaact atcttatttc cttatcatgc 60 acaagttaaa tgttagactg aggagtaggt gagttatccc caaggaagta aaatgatgtt 120 aattttcttg aggtcacatg aattgtgagt agctgaatgc tactgtgaat tctgggcagc 180 ccgaccacag agcctgaact cttaaatatt atactgtatt aacttgacat gtttataaaa 240 gtaacaatta catgetacet ga atg eec tea gta gtt ttg aac atg gtg caa 292 Met Pro Ser Val Val Leu Asn Met Val Gln ctg ttt atc cct ata cta aaa ttc caa tta ggc tat tct gtt ttg agt 340 Leu Phe Ile Pro Ile Leu Lys Phe Gln Leu Gly Tyr Ser Val Leu Ser 15 ctt tgt aat cat gtt tta gaa ttt ttg ttt cct tcc tca ttg tca ggc 388 Leu Cys Asn His Val Leu Glu Phe Leu Phe Pro Ser Ser Leu Ser Gly 30 35 ate tit tet tee tee ett eec ete ett ett eec tie eet ett tet ett 436 Ile Phe Ser Ser Leu Pro Leu Leu Pro Phe Pro Leu Ser Leu 50 ecc tet ett ecc ect tet ett tet ect tet ett aga gte ttg ete tge 484 Pro Ser Leu Pro Pro Ser Leu Phe Pro Ser Leu Arg Val Leu Leu Cys

cac cca cac tgg agt gta gcc tca aac tcc tgg gct gta gcc atc ctc His Pro His Trp Ser Val Ala Ser Asn Ser Trp Ala Val Ala Ile Leu 75 80 85 90	532
cta cct cag cct cct gag tag ct gggactgcaa gtgtatacca ctatgcctgg Leu Pro Gln Pro Pro Glu * 95	585
ctaatttaaa aaaatttaaa atttttttt ttttggaaaa acaaaagcct cctttgttgc	645
c	646
<210> 91 <211> 1126 <212> DNA <213> Homo sapiens	
<220> , <221> CDS	
<222> (126)(434)	
<220> <221> misc feature	
<222> (1) (1126)	
<223> n = a,t,c or g	
<400> 91 acatccaaca tttgaatgta ttttgactag gtaatttttt tctcctttgt taataaaaat	60
the thirty and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the	
agatttaatt ttttaaatgt catttttctt gcatctcatc aaatatactt tcatacacta	120
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa  Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys  1 5 10	120 167
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys	
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa  Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys  1 5 10  tgc aaa cct ttg gac act gac tca aca tct gga gat att ttt tct ggt Cys Lys Pro Leu Asp Thr Asp Ser Thr Ser Gly Asp Ile Phe Ser Gly	167
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys  1 5 10  tgc aaa cct ttg gac act gac tca aca tct gga gat att ttt tct ggt Cys Lys Pro Leu Asp Thr Asp Ser Thr Ser Gly Asp Ile Phe Ser Gly 15 20 25 30  tct tat ggc tgg tgt tct cct aca gct ctc tac gag cag tct tgt gaa Ser Tyr Gly Trp Cys Ser Pro Thr Ala Leu Tyr Glu Gln Ser Cys Glu	167 215
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys 1 5 10  tgc aaa cct ttg gac act gac tca aca tct gga gat att ttt tct ggt Cys Lys Pro Leu Asp Thr Asp Ser Thr Ser Gly Asp Ile Phe Ser Gly 15 20 25 30  tct tat ggc tgg tgt tct cct aca gct ctc tac gag cag tct tgt gaa Ser Tyr Gly Trp Cys Ser Pro Thr Ala Leu Tyr Glu Gln Ser Cys Glu 35 40 45  gcc cac aag cac cga ggg aac cca tcc ggg ctt tac tat att gat gca Ala His Lys His Arg Gly Asn Pro Ser Gly Leu Tyr Tyr Ile Asp Ala	167 215 263
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys 1 5 10  tgc aaa cct ttg gac act gac tca aca tct gga gat att ttt tct ggt Cys Lys Pro Leu Asp Thr Asp Ser Thr Ser Gly Asp Ile Phe Ser Gly 15 20 25 30  tct tat ggc tgg tgt tct cct aca gct ctc tac gag cag tct tgt gaa Ser Tyr Gly Trp Cys Ser Pro Thr Ala Leu Tyr Glu Gln Ser Cys Glu 35 40 45  gcc cac aag cac cga ggg aac cca tcc ggg ctt tac tat att gat gca Ala His Lys His Arg Gly Asn Pro Ser Gly Leu Tyr Tyr Ile Asp Ala 50 55 60  gat gga agt ggc ccc ctg gga cca ttt ctt gtg tac tgc aat atg aca Asp Gly Ser Gly Pro Leu Gly Pro Phe Leu Val Tyr Cys Asn Met Thr	167 215 263 311
taaaa atg atg ttg ggt cat atg tat cac atg tct gta att cag aaa Met Met Leu Gly His Met Tyr His Met Ser Val Ile Gln Lys 1 5 10  tgc aaa cct ttg gac act gac tca aca tct gga gat att ttt tct ggt Cys Lys Pro Leu Asp Thr Asp Ser Thr Ser Gly Asp Ile Phe Ser Gly 15 20 25 30  tct tat ggc tgg tgt tct cct aca gct ctc tac gag cag tct tgt gaa Ser Tyr Gly Trp Cys Ser Pro Thr Ala Leu Tyr Glu Gln Ser Cys Glu 35 40 45  gcc cac aag cac cga ggg aac cca tcc ggg ctt tac tat att gat gca Ala His Lys His Arg Gly Asn Pro Ser Gly Leu Tyr Tyr Ile Asp Ala 50 55 60  gat gga agt ggc ccc ctg gga cca ttt ctt gtg tac tgc aat atg aca Asp Gly Ser Gly Pro Leu Gly Pro Phe Leu Val Tyr Cys Asn Met Thr 65 70 75  ggt atg ttg ata atc gtt aga tgc ata gat cag aat aga cca agg aga Gly Met Leu Ile Ile Val Arg Cys Ile Asp Gln Asn Arg Pro Arg Arg	167 215 263 311

atttettett tgeetgggtt ggattatagg caagatteaa tgetetgeea aggeatetet: ctagetecta eactecteat aatacatetg tteatgtgea teatgataaa atacaaacet ctgattcggt gatttacatg ctttctgtat ttagaaaaaa cagaggtgtt taaaaaatgct 699 759 aaqaaataac ataqatatgt taatgttcta tgtgcatctt aaataattta gtgattttta tgtcatataa ttttttcata accaaagaaa cttgattatt tctcgtgctt tagatattag 819 879 aaatgaacac tgcttgggct gcgcatggtg gctcgcgcct gtaatctcag cactttggga ggccgaggcg ggcggatcgc gagatcgaga gatcgagacc atcctggcca atgtggtgaa 939 999 accocgtoto tactgaaaat gcaaaaatta gctgggcatg gtggcgcccg cacctgtagt cccagctact tgggaggctg aggcgggagg atcccttgaa ccanggaggn cgaggttgca 1059 gtgagccagg attgcgccat tgcactccag cctggtgaca gagcaagact gcatctcaaa 1119 1126 aaaaaaa

<210> 92 <211> 904 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (137) .. (322) <220> <221> misc feature <222> (1)...(904) <223> n = a,t,c or g<400> 92 60 cgctccggaa ttcccgggtc gacccacgcg tccgcagggg taagccaccg cacccagccc cgtaaatatt tettgaggat etactgegtg ceaggeettg tgetgggtte caggagetga 120 169 atg aaa aaa gga gtg ggg tgt acg tgt gta tcc ttcagagagt gcagag Met Lys Lys Gly Val Gly Cys Thr Cys Val Ser gtg tgt cca tgc atg tgt gtg cat ccg tat gtg tgc aca tgt gca tgc 217 Val Cys Pro Cys Met Cys Val His Pro Tyr Val Cys Thr Cys Ala Cys 15 265 atg cat gtg tgt gtg tgt ctg tgt gct tgg tgc ctc tct cag cct ggt Met His Val Cys Val Cys Leu Cys Ala Trp Cys Leu Ser Gln Pro Gly ggc ctg gga ggc ttc tca gaa gag gtc aca tct ctg cca aga cca agg 313 Gly Leu Gly Gly Phe Ser Glu Glu Val Thr Ser Leu Pro Arg Pro Arg gca ctg taa ggcagcc agatgagagg gaggggaaga gagatgggag ggaggctggg 369

Ala Leu *

ctgagggtac acagtgtggc tgctgcctgg tgccctgtga gggagcaggg tcccttctag 489 ctqqqaqcaa tqgcgcatgc ctgtaatcct agcactttgg gaggctgagg caggagtatc gettgagete aggagttega gaccageetg gacaacatga egaaaceeca tetetaennn 609 669 tttttaaaaa acacaatttt ttcccggggg gtgagaaaaa ttatttttt tttttgggg ccctaaaatt tttttctggg ggccgctttt tttacacggg gggggagggg gaaagnnncg 729 789 ngngggcett egttgeegeg ggeegngtgg egeegggeeg ggtettgtte gttggggggg cetgettett tttettteg etgtggetee ggeggttgtg ggegggnege gttggeeegg 849 904 gagttggggt ggccacgact ggtaaattgg tcgggaggag acctctatgg ggctg

<210> 93 <211> 897 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (188)..(544)

<400> 93 cccccggaa ttcccgggtc gacccacgcg tccgcggacg cgtgggcttt aaaaatacaa 60 aaataatagc cttgtcttct taacctgcaa aagtaatttt cctgcataat ttaatgtttt 120 180 catgtggaac aaatgagaat gctttagaaa gcacattgta cactgtaaac ttctatacaa cgtggtg atg tta ttt tta aag aaa ata caa ttc tta aag tgt aac aag 229 Met Leu Phe Leu Lys Lys Ile Gln Phe Leu Lys Cys Asn Lys gtg ttt aga tcc ctg gat ttt tgc gta gcc cta cct tta ttg ttc tca 277 Val Phe Arg Ser Leu Asp Phe Cys Val Ala Leu Pro Leu Leu Phe Ser 15 20 tot tot got gtt tta cag ata act cot gta gat aca ttt tot gat coc 325 Ser Ser Ala Val Leu Gln Ile Thr Pro Val Asp Thr Phe Ser Asp Pro 373 cac tta gtt cta acc tta gtt aag ctg ctt atg aac att tta aat att His Leu Val Leu Thr Leu Val Lys Leu Leu Met Asn Ile Leu Asn Ile 50 gea gtt att agt etg act tte eet gga gaa tat gaa gtt tet tta gee 421 Ala Val Ile Ser Leu Thr Phe Pro Gly Glu Tyr Glu Val Ser Leu Ala ttt gaa aat att ctc atg tat act cat gca ttc ata atc tgt ttc tgt 469

517

Phe Glu Asn Ile Leu Met Tyr Thr His Ala Phe Ile Ile Cys Phe Cys

aac aga cag tgg ctt ttt aaa agt aat agt gaa agt aat ctt agt agc

Asn Arg Gln Trp Leu Phe Lys Ser Asn Ser Glu Ser Asn Leu Ser Ser

WO 01/55437			PCT/US01/02623
95	100	105	110
aat gtt aat tta ttt Asn Val Asn Leu Phe 115		tttc aggtacgcaa	aaggaggaga 569
tgatttcctt taaaaact	ca gctttgaata gtto	gtgtta tctggtata	t ctgaaatatt 629
cagaaatgtt aaaacagt	tt ttgtttgcct ttgo	etgttaa gtttgaaac	c tcttagtgct 689
ttcaattgat aatcctgg	aa accaacctca gtat	tgtagt attacatag	a ttattggagt 749
tttatagtct tgaaaata	aa gggctaatag ccat	agatat atcgctgac	a ctaaaatagc 809
caattgtggt taaaggaa	ca ttcagggaat ttca	aaaaac ttggaaacg	g aaggaactgg 869
ggttgacagt tttggagg	gg agattccc		897
<210> 94 <211> 931 <212> DNA <213> Homo sap	iens		
<220> <221> CDS <222> (124)(	456)		·
<220> <221> misc_fea <222> (1)(9 <223> n = a,t,	31)		
<400> 94 attgatggcg ctcgcctg	ca ggcaccggtc cgg	aatteee gggtegaee	c acgcgtccgc 60
ctcactctga ccctgata			
aag atg cag ctc ca Met Gln Leu Hi 1	t ggc aaa gga tct s Gly Lys Gly Ser 5	caa gat ccc agc Gln Asp Pro Ser 10	acc aag ggc 168 Thr Lys Gly 15
cac ata aaa gct ttg His Ile Lys Ala Leu 20	Gln Thr Val Thr	tcc ttt ctt ctg t Ser Phe Leu Leu L 25	ta tgt gcc 216 eu Cys Ala 30
att tac ttt ctg tcc Ile Tyr Phe Leu Ser 35			
gaa aag caa cct gtc Glu Lys Gln Pro Val 50			
cct tca acc cac cca Pro Ser Thr His Pro 65			

cag att ttt ctt tca gtt ttg cgg cat gtg agg tac tgg gtg aaa gac Gln Ile Phe Leu Ser Val Leu Arg His Val Arg Tyr Trp Val Lys Asp 80 85 90 95

456
516
576
636
696
756
816
876
931

<210> 95 <211> 1278 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (50)..(1003)

atttggccct cgaggccaag aattcggcac gagggcgggc acgcgggcc

<400> 95

Met Ala ccc tgg gcg gag gcc gag cac tcg gcg ctg aac ccg ctg cgc gcg gtg 103 Pro Trp Ala Glu Ala Glu His Ser Ala Leu Asn Pro Leu Arg Ala Val 10 tgg ctc acg ctg acc gcc gcc ttc ctg ctg acc cta ctg ctg cag ctc 151 Trp Leu Thr Leu Thr Ala Ala Phe Leu Leu Thr Leu Leu Gln Leu etg eeg eee gge etg ete eeg gge tge geg ate tte eag gae etg ate 199 Leu Pro Pro Gly Leu Leu Pro Gly Cys Ala Ile Phe Gln Asp Leu Ile ege tat ggg aaa ace aag tgt ggg gag eeg teg ege eee gee gee tge 247 Arg Tyr Gly Lys Thr Lys Cys Gly Glu Pro Ser Arg Pro Ala Ala Cys 60 cga gcc ttt gat gtc ccc aag aga tat ttt tcc cac ttt tat atc atc 295 Arg Ala Phe Asp Val Pro Lys Arg Tyr Phe Ser His Phe Tyr Ile Ile tca gtg ctg tgg aat ggc ttc ctg ctt tgg tgc ctt act caa tct ctg 343 Ser Val Leu Trp Asn Gly Phe Leu Leu Trp Cys Leu Thr Gln Ser Leu 85 ttc ctg gga gca cct ttt cca agc tgg ctt cat ggt ttg ctc aga att 391 Phe Leu Gly Ala Pro Phe Pro Ser Trp Leu His Gly Leu Leu Arg Ile

atg gct

ctc ggg Leu Gly 115	gcg gca Ala Ala	a cag a Gln	ttc Phe 120	cag Gln	gga Gly	Gly ggg	gag Glu	ctg Leu 125	gca Ala	ctg Leu	tct Ser	gca Ala	ttc Phe 130	439
tta gtg Leu Val	cta gta Leu Va	a ttt l Phe 135	ctg Leu	tgg Trp	ctg <b>Le</b> u	cac His	agc Ser 140	tta Leu	cga Arg	aga Arg	ctc Leu	ttc Phe 145	gag Glu	487
tgc ctc Cys Leu	tac gt Tyr Va 15	l Ser	gtc Val	ttc Phe	tcc Ser	aat Asn 155	gtc Val	atg Met	att Ile	cac His	gtc Val 160	gtg Val	cag Gln	535
tac tgt Tyr Cys	ttt gg Phe Gl	a ctt y Leu	gtc Val	tat Tyr	tat Tyr 170	gtc Val	ctt Leu	gtt Val	ggc Gly	cta Leu 175	act Thr	gtg Val	ctg Leu	583
agc caa Ser Gln 180	gtg cc Val Pr	a atg o Met	gat Asp	ggc Gly 185	agg Arg	aat Asn	gcc Ala	tac Tyr	ata Ile 190	aca Thr	Gly aaa	aaa Lys	aat Asn	631
cta ttg Leu Leu 195	atg ca Met Gl	a gca n Ala	cgg Arg 200	tgg Trp	ttc Phe	cat His	att Ile	ctt Leu 205	gly ggg	atg Met	atg Met	atg Met	ttc Phe 210	679
atc tgg Ile Trp	tca tc Ser Se	t gcc r Ala 215	cat His	cag Gln	tat Tyr	aag Lys	tgc Cys 220	cat His	gtt Val	att Ile	ctc Leu	ggc Gly 225	aat Asn	727
ctc agg Leu Arg	aaa aa Lys As 23	n Lys	gca Ala	gga Gly	gtg Val	gtc Val 235	att Ile	cac His	tgt Cys	aac Asn	cac His 240	agg Arg	atc Ile	775
cca ttt Pro Phe	gga ga Gly As 245	c tgg p Trp	ttt Phe	gaa Glu	tat Tyr 250	gtt Val	tct Ser	tcc Ser	cct Pro	aac Asn 255	tac Tyr	tta Leu	gca Ala	823
gag ctg Glu Leu 260	atg at Met Il	c tac e Tyr	gtt Val	tcc Ser 265	atg Met	gcc Ala	gtc Val	acc Thr	ttt Phe 270	Gly	ttc Phe	cac His	aac Asn	871
tta act Leu Thr 275	tgg tg Trp Tr	g cta p Leu	gtg Val 280	gtg Val	aca Thr	aat Asn	gtc Val	ttc Phe 285	ttt Phe	aat Asn	cag Gln	gcc Ala	ctg Leu 290	919
tct gcc Ser Ala	ttt ct Phe Le	c ago u Ser 295	His	caa Gln	ttc Phe	tac Tyr	aaa Lys 300	agc Ser	aaa Lys	ttt Phe	gtc Val	tct Ser 305	tac Tyr	967
ccg aag Pro Lys		g Lys					Phe				g tt	aacc	tcag	1017
tcatgaa	gaa tgc	aaacc	ag g	tgat	ggtt	t ca	atgc	ctaa	gga	cagt	gaa	gtct	ggagtc	1077
caaagta	cag ttt	cagca	aa g	ctgt	ttga	a ac	tctc	catt	cca	tttc	tat	accc	cacaag	1137
ttttcac														1197
agaataa	ata cta	atggo	ag a	tctg	cctc	g tg	ccga	attc	gaa	tcga	tgg	gatc	ctgcaa	1257
aaagaac	aag tag	cttgt	at t											1278

<210> 96 <211> .1721 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (162)..(1085) <400> 96 tggtgttatg ttgagtccgg ttattgaggc cgtagtaata accatctatt cgatgatgaa gataccccac caaacccaaa aaaagagatc totogaggat cogaattogc ggccgcgtcg 120 actttcattt ggtggtgagg actgaacgga gagaactcac c atg gag ttt ggg Met Glu Phe Gly ctg age tgg ctt ttt ctt gtg get att tta aaa ggt gte cag tgt gag 221 Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly Val Gln Cys Glu gtg cag ctg ttg gag tct ggg gga ggc ttg gta cag cct ggg ggg tcc 269 Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttt agc agt ttt tcg 317 Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe Ser atg age tgg gtc cgc cag get cca ggg aag ggg ctg gag tgg gtc tca 365 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser 60 tot att agt ggt agt tog ggt acc aca tac tac gca gac toc gtg aag 413 Ser Ile Ser Gly Ser Ser Gly Thr Thr Tyr Tyr Ala Asp Ser Val Lys 75 ggc cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctq tat ctq 461 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 90 95 caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt gcg 509 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 115 aaa ccg ttt ccg tat ttt gac tac tgg ggc cag gga acc ctg gtc acc 557 Lys Pro Phe Pro Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 120 gtc tcg agt ggc gat ggg tcc agt ggc ggt agc ggg ggc gcg tcg act 605 Val Ser Ser Gly Asp Gly Ser Ser Gly Gly Ser Gly Gly Ala Ser Thr 140 ggc gaa att gtg ttg acg cag tct cca ggc acc ctg tct ttg tct cca 653 Gly Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro ggg gaa aga gcc acc ctc tcc tgc agg gcc agt cag agt gtt agc agc 701 Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser 170 175

WO 01/55437	PCT/US01/02623
age tac tta gee tgg tac cag cag aaa eet gge cag Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 185	gct ccc agg ctc 749 Ala Pro Arg Leu 195
ctc atc tat ggt gca tcc agc agg gcc act ggc atc Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile 200 205	cca gac agg ttc 797 Pro Asp Arg Phe 210
agt ggc agt ggg tct ggg aca gac ttc act ctc acc Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 215	atc agc aga ctg 845 Ile Ser Arg Leu 225
gag cct gaa gat ttt gca gtg tat tac tgt cag cag Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln 230 235 240	Thr Gly Arg Ile
ccg ccg acg ttc ggc caa ggg acc aag gtg gaa atc Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 245 250 255	aaa cga act gtg 941 Lys Arg Thr Val 260
gct gca cca tct gtc ttc atc ttc ccg cca tct gat Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 265 270	gag cag ttg aaa 989 Glu Gln Leu Lys 275
tct gga act gcc tct gtt gtg tgc ctg ctg aat aac Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 280 285	ttc tat ccc aga 1037 Phe Tyr Pro Arg 290
gag gcc aaa gta cag tgg aag gtg gat aac gcc ctc Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu 295 300	cca atc ggg taa 1085 Pro Ile Gly * 305
ctcccaggag agtgtcacag agcaggacag caaggacagc acc	tacagee teageageae 1145
cctgacgctg agcaaagcag actacgagaa acacaaagtc tac	gcctgcg aagtcaccca 1205
tcagggcctg agctcgcccg tcacaaagag cttcaacagg gga	gagtgtt agagggagaa 1265
gtgcccccac ctgctcctca gttccagcct gaccccctcc cat	cetttgg cetetgacec 1325
tttttccaca ggggacctac ccctattgcg gtcctccagc tca	tetttea ecteacece 1385
ctcctcctcc ttggctttaa ttatgctaat gttggaggag aat	gaataaa taaagtgaat 1445
ctttgcacct gtggtttctc tctttcctca tttaataatt att	atctgtt gttttaccaa 1505
ctactcaatt totottataa gggactaaat atgtagtcat oot	aaggcgc ataaccattt 1565
ataaaaatca toottoatto tattttacco tatcatooto tgo	caagacag teeteeetea 1625
aacccacaag ccttctgtcc tcacagtccc ctgggccatg gta	aggagaga cttgcttcct 1685
tgttttcccc tcctcagcaa gccctcatag tccttt	1721

<210> 97 <211> 1741 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (162) . . (641)

<400> 97 tqqtqttatq ttqaqtccgg ttattgaggc cgtagtaata accatctatt cgatgatgaa 60 gataccccac caaacccaaa aaaagagatc tetegaggat cegaattege ggeegegteg 120 173 actttcattt ggtggtgagg actgaacgga gagaactcac c atg gag ttt ggg Met Glu Phe Gly ctg age tgg ctt ttt ctt gtg get att tta aaa ggt gte eag tgt gag 221 Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly Val Gln Cys Glu gtg cag ctg ttg gag tct ggg gga ggc ttg gta cag cct ggg ggg tcc 269 Val Gln Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 30 25 317 ctq aga ctc tcc tgt gca gcc tct gga ttc acc ttt gac agc tat gcc Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Ser Tyr Ala 45 atg age tgg gte ege cag get eea ggg aag ggg etg gat tgg gte tea 365 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Asp Trp Val Ser 55 60 get gtt agt ggt ggt ggt age aca tac tac gea gac tee gtg aag 413 Ala Val Ser Gly Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys gge egg tte ace ate tee aga gae aac gee aag age acg atg tat etg 461 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Thr Met Tyr Leu 85 509 caa atg aac agt ctg aga gct gag gac acg gcc atg tat tac tgt gca Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Met Tyr Tyr Cys Ala 105 aaa gat aat tac gat ttt tgg agt ggt acc ttt gac tac tgg ggc cag 557 Lys Asp Asn Tyr Asp Phe Trp Ser Gly Thr Phe Asp Tyr Trp Gly Gln 120 605 gga acc etg gte acc gte tee tea get tee acc aag gge eea teg gte Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val gta gcg ggg gcg cgt cga ctg gcg aaa ttg tgt tga cgca gtctccaggc 655 Val Ala Gly Ala Arg Arg Leu Ala Lys Leu Cys * accetatett tateteeaga agaaagagee acceteteet geagageeag teagagtatt 715 agcagcaget acttageetg gtaccageag aaacetggee aggeteecag geteeteate tatggtgcat ccagcagggc cactggcatc ccagacaggt tcagtggcag tgggtctggg 835 acagactica cicicaccat cagcagactg gagccigaag attitigcagt gtattactgt 895 cagcagacgg gtcgtattcc gccgacgttc ggccaaggga ccaaggtgga aatcaaacga 955 actgtggctg caccatctgt cttcatcttc ccgccatctg atgagcagtt gaaatctgga 1015 actgcctctq ttqtgtgcct qctqaataac ttctatccca qaqaqqccaa aqtacagtgg 1075

aaggtggata acgccctccc aatcgggtaa ctcccaggag agtgtcacag agcaggacag 1135 1195 caaggacage acetacagee teageageae cetgacgetg ageaaageag actacgagaa acacaaagtc tacgcctgcg aagtcaccca tcagggcctg agctcgcccg tcacaaagag 1255 1315 cttcaacagg ggagagtgtt agagggagaa gtgcccccac ctgctcctca gttccagcct gaccccctcc catcctttgg cctctgaccc tttttccaca ggggacctac ccctattgcg 1375 gteetecage teatetttea ecteacece etectectee ttggetttaa ttatgetaat 1435 gttggaggag aatgaataaa taaagtgaat ctttgcacct gtggtttctc tctttcctca 1495 tttaataatt attatctgtt gttttaccaa ctactcaatt tctcttataa gggactaaat 1555 atgtagtcat cctaaggcgc ataaccattt ataaaaatca tccttcattc tattttaccc 1615 tatcatecte tgcaagacag tecteectea aacceacaag cettetgtee teacagteee 1675 ctgggccatg gtaggagaga cttgcttcct tgttttcccc tcctcagcaa gccctcatag 1735 1741 tccttt

<210> 98

<211> 1736

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (162) .. (1100)

<400> '98 tggtgttatg ttgagtccgg ttattgaggc cgtagtaata accatctatt cgatgatgaa

55

gataccccac caaacccaaa aaaagagatc tctcgaggat ccgaattcgc ggccgcgtcg 120 atq gag ttt ggg 173 actttcattt ggtggtgagg actgaacgga gagaactcac c Met Glu Phe Gly ctg agc tgg ctt ttt ctt gtg gct att tta aaa ggt gtc cag tgt gag 221 Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly Val Gln Cys Glu 15 gtg cag ctg ttg gag tct ggg gga ggc ttg gta cag cct ggg ggg tcc 269 Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser ctg aga ctc tcc tgt gca gcc act gga ttc act ttt agc agc tat gcc 317 Leu Arg Leu Ser Cys Ala Ala Thr Gly Phe Thr Phe Ser Ser Tyr Ala 50 45 atg agc tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtc tca 365 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser

60

gaa att att agt agc ggt ggt acc aca tac tac gca gac tcc gtg aag 413 Glu Ile Ile Ser Ser Gly Gly Thr Thr Tyr Tyr Ala Asp Ser Val Lys

WO 01/55437				PCT/US01/02623
70	75		80	
			aac acg ctg tat Asn Thr Leu Tyr	
			ata tat tac tgt Ile Tyr Tyr Cys 115	
Lys Asp Ile I			gac tac tgg ggc Asp Tyr Trp Gly 130	
	-		tcc agt ggc ggt Ser Ser Gly Gly 145	-
			cag tot coa ggo Gln Ser Pro Gly 160	
			tcc tgc agg gcc Ser Cys Arg Ala	•
			cag cag aaa cct Gln Gln Lys Pro 195	
Gln Ala Pro A		<del>_</del>	agc agg gcc act Ser Arg Ala Thr 210	
			aca gac ttc act Thr Asp Phe Thr 225	
-			gtg tat tac tgt Val Tyr Tyr Cys 240	-
			ggg acc aag gtg Gly Thr Lys Val	~ <u>.</u>
			atc ttc ccg cca Ile Phe Pro Pro 275	
Asp Glu Gln L	tg aaa tct gga eu Lys Ser Gly 80	act gcc tct gtt Thr Ala Ser Val 285	gtg tgc ctg ctg Val Cys Leu Leu 290	aat 1037 Asn
aac ttc tat c Asn Phe Tyr P 295	ecc aga gag gcc ro Arg Glu Ala	aaa gta cag tgg Lys Val Gln Trp 300	aag gtg gat aac Lys Val Asp Asn 305	gcc 1085 Ala

acctacagee teageageae ectgaegetg ageaaageag actacgagaa acacaaagte 1200

ctc cca atc ggg taa ctcccaggag agtgtcacag agcaggacag caaggacagc

Leu Pro Ile Gly *

tacgcctgcg aagtcaccca tcagggcctg agetcgcccg tcacaaagag cttcaacagg 1260 ggagagtgtt agagggagaa gtgcccccac ctgctcctca gttccagcct gaccccctcc 1320 catectttgg cctctgaccc tttttccaca ggggacctac ccctattgcg gtcctccagc 1380 tcatctttca cctcaccccc ctcctcctcc ttggctttaa ttatgctaat gttggaggag 1440 aatgaataaa taaagtgaat etttgeacet gtggtttete tettteetea tttaataatt 1500 attatetgtt gttttaccaa ctactcaatt tetettataa gggactaaat atgtagtcat 1560 cctaaggcgc ataaccattt ataaaaatca tccttcattc tattttaccc tatcatcctc 1620 tgcaagacag tecteectea aacceacaag cettetgtee teacagteee etgggeeatg 1680 gtaggagaga cttgcttcct tgttttcccc tcctcagcaa gccctcatag tccttt 1736

<210> 99 <211> 1710 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (162)..(1253)

tggtgttatg ttgagtccgg ttattgaggc cgtagtaata accatctatt cgatgatgaa 120 gataccccac caaacccaaa aaaagagatc tetegaggat cegaattege ggeegegteg atg gag ttt ggg 173 actttcattt ggtggtgagg actgaacgga gagaactcac c Met Glu Phe Gly ctg agc tgg ctt ttt ctt gtg gct att tta aaa ggt gtc cag tgt gag 221 Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly Val Gln Cys Glu gtg cag ctg ttg gag tct ggg gga ggc ttg gta cag cct ggg ggg tcc 269 Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 25 ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttt agc agt ttt tcg 317 Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe Ser 45 365 atg agc tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtc tca Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser 413 tot att agt ggt agt tog ggt acc aca tac tac gca gac toc gtg aag

Ser Ile Ser Gly Ser Ser Gly Thr Thr Tyr Tyr Ala Asp Ser Val Lys

ggc cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu

caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt gcg

90

95

461

***	<i>J</i> 01/3	3437													C 1/U	301/02023
Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val	Tyr	Tyr	Cys 115	Ala	
	ccg Pro									-			_	_		557
	tcg Ser															605
_	gac Asp 150		_	_		_					_		-		-	653
	gac Asp															701
	ctg Leu	_			_	-					_		_		_	749
	tat Tyr	-	_				_	_		_					_	797
	agt Ser															845
	gat Asp 230	_		-				_	_			_			-	893
	act Thr															941
	cca Pro		-				_			_		-	_			989
gga Gly	act Thr	gcc Ala	tct Ser 280	gtt Val	gtg Val	tgc Cys	ctg Leu	ctg Leu 285	aat Asn	aac Asn	ttc Phe	tat Tyr	ccc Pro 290	aga Arg	gag Glu	1037
	aaa Lys															1085
cag Gln	gag Glu 310	agt Ser	gtc Val	aca Thr	gag Glu	cag Gln 315	gac Asp	agc Ser	aag Lys	gac Asp	agc Ser 320	acc Thr	tac Tyr	agc Ser	ctc Leu	1133
agc Ser 325	agc Ser	acc Thr	ctg Leu	acg Thr	ctg Leu 330	agc Ser	aaa Lys	gca Ala	gac Asp	tac Tyr 335	gag Glu	aaa Lys	cac His	aaa Lys	ctc Leu 340	1181
tac Tyr	gcc Ala	tgc Cys	gaa Glu	gtc Val 345	acc Thr	cat His	cag Gln	ggc Gly	ctg Leu 350	agc Ser	tcg Ser	ccc Pro	gtc Val	aca Thr 355	aag Lys	1229
agc	ttc	aac	agg	gga	gag	tgt	tag	agg	gagaa	agg	tgcc	ccac	ct g	tcct	cagto	1283

## PCT/US01/02623 WO 01/55437

Ser Phe Asn Arg Gly Glu Cys * 360

1343 cagootgood cotocoatod titiggootot goodtitito cacaggggad cicocotati geggeeteca geteatettt aceteaeece ecteeeette ettggettta attatgetaa 1403 1463 tgttggagga gaatgaataa ataaagtgaa tetttgcace tgtggtttet etettteete atttaataat tattatetgt tgttttacca actactcaat ttetettata agggactaaa 1523 1583 tatgtagtca tectaaggeg cataaceatt tataaaaate ateetteatt etatttaee ctatcatcct ctgcaagaca gtcctccctc aaacccacaa gccttctgtc ctcacagtcc 1643 cctgggccat ggtaggagag acttgcttcc ttgttttccc ctcctcagca agccctcata 1703 1710 gtccttt

<210> 100 <211> 481

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (136)..(276)

<400> 100

15

gegececcea ttgattegaa getgtaegee tgeaggtaee ggteeggaat teeegggteg 60 acccacgcgt ccgctatatc cctaaactca aagggacatc cagtgctatc aagacaccca 120 171 attgaacata cacat atg ttc ccc cct tac ttt tct ctt att tta ctt cta Met Phe Pro Pro Tyr Phe Ser Leu Ile Leu Leu ttc act ttt gct tcg aaa ttc ttt ctg tct ctg aac ctg aaa aaa agc 219 Phe Thr Phe Ala Ser Lys Phe Phe Leu Ser Leu Asn Leu Lys Lys Ser

267 aac ata qtt aaa qca aqa att qaq aqt aca aag aca gtg ata tca aag Asn Ile Val Lys Ala Arg Ile Glu Ser Thr Lys Thr Val Ile Ser Lys 35

20

aga tgt taa teeteea cacagtetgg etgeattgag gatatttete tttgtgeagt 323 Arg Cys * 45

agaaaactgg aaatagctaa gtctattgga actcttcttt ctcaaattct attgaactga 383 443 agagtaggaa atttagaaac agtaagacgt gggagataat ttaactgaat tcactacttt

481 tgtgacaagg atatccagag gaactcaggg acttgccc

<210> 101

<211> 708

<212> DNA

WO 01/35437	301/02023										
<213> Homo sapiens											
<220> <221> CDS <222> (218)(454)											
<400> 101 ccgcgcttca ttgaagtcgt cgcctgcagg taccggagcg gaattcccgg gtcgaccca	.c 60										
gcgtccgcac ttcttcatca ttccatcaga accttataat gaatttgatg cagattgct	t 120										
ttgaggggtt tatctctcag tcctaaacat ataggggcat gttagaaaat ttgggattc	t 180										
aggtgtgatg cctgaaaagg gactgatata actgagc atg gct atg cag tct gtg  Met Ala Met Gln Ser Val  1 5											
ata aga aaa caa ttc aca gct cta gct ggc ttc tgc ttc tgg ttc tgt Ile Arg Lys Gln Phe Thr Ala Leu Ala Gly Phe Cys Phe Trp Phe Cys 10 15 20	283										
ctc ttt acc tta gca gtc ctg agt ctc acc ttg ctt atc tgc aaa ctg Leu Phe Thr Leu Ala Val Leu Ser Leu Thr Leu Leu Ile Cys Lys Leu 25 30 35	331										
agg ata atg cca ttt aaa ctt gaa ggt ttg ttt caa gaa tta aat aaa Arg Ile Met Pro Phe Lys Leu Glu Gly Leu Phe Gln Glu Leu Asn Lys 40 45 50	379										
tca tgg cat atg aag ctc ttg tca caa gat agg gag tta ata aat atg Ser Trp His Met Lys Leu Leu Ser Gln Asp Arg Glu Leu Ile Asn Met 55 60 65 70	427										
ctg ttg ctc tta atg ggc agg tcc taa gtgat ggcttagaaa cctaagattg Leu Leu Leu Met Gly Arg Ser * 75	479										
gaaggcatct tggagatgtt ctggctcaac ctcctaacaa tgcaaaagtt tgtcctaga	ia 539										
cacteetgga agatggatet ttaggetete attagataac ecagggatee cactgtete	:a 599										
aaaggcägte tgtgcatatt tttggtcagg tetaattett aatgataata acacacatt	t 659										
tatttgtggg ttacgaaatg cttttacgtc atttatttaa cttgactgt	708										
<210> 102 <211> 3969 <212> DNA <213> Homo sapiens											
<220> <221> CDS <222> (52)(3618)											

ctg ccc agg ggc ctg gtg gtc tgg gcg ctc agc ctg tgg cca ggg 105 Leu Pro Arg Gly Leu Val Val Ala Trp Ala Leu Ser Leu Trp Pro Gly 5 10 15

		,					10										
ttc Phe	acg Thr 20	gac Asp	acc Thr	ttc Phe	aac Asn	atg Met 25	gac Asp	acc Thr	agg Arg	aag Lys	ccc Pro 30	cgg Arg	gtc Val	atc Ile	cct Pro		153
ggc Gly 35	tcc Ser	agg Arg	acc Thr	gcc Ala	ttc Phe 40	ttt Phe	ggc Gly	tac Tyr	aca Thr	gtg Val 45	cag Gln	cag Gln	cac His	gac Asp	atc Ile 50		201
agt Ser	ggc Gly	aat Asn	aag Lys	tgg Trp 55	ctg Leu	gtc Val	gtg Val	ggc Gly	gcc Ala 60	cca Pro	ctg Leu	gaa Glu	acc Thr	aat Asn 65	ggc Gly		249
tac Tyr	cag Gln	aag Lys	acg Thr 70	gga Gly	gac Asp	gtg Val	tac Tyr	aag Lys 75	tgt Cys	cca Pro	gtg Val	atc Ile	cac His 80	Gly ggg	aac Asn		297
tgc Cys	acc Thr	aaa Lys 85	ctc Leu	aac Asn	ctg Leu	gga Gly	agg Arg 90	gtc Val	acc Thr	ctg Leu	tcc Ser	aac Asn 95	gtg Val	tcc Ser	gag Glu	•	345
cgg Arg	aaa Lys 100	gac Asp	aac Asn	atg Met	cgc Arg	ctc Leu 105	ggc Gly	ctt Leu	agt Ser	ctc Leu	gcc Ala 110	acc Thr	aac Asn	ccc Pro	aag Lys		393
gac Asp 115	aac Asn	agc Ser	ttc Phe	ctg Leu	gcc Ala 120	tgc Cys	agc Ser	ccc Pro	ctc Leu	tgg Trp 125	tct Ser	cat His	gag Glu	tgt Cys	999 Gly 130		441
agc Ser	tcc Ser	tac Tyr	tac Tyr	acc Thr 135	aca Thr	Gly	atg Met	tgt Cys	tca Ser 140	aga Arg	gtc Val	aac Asn	tcc Ser	aac Asn 145	ttc Phe		489
agg Arg	ttc Phe	tcc Ser	aag Lys 150	acc Thr	gtg Val	gcc Ala	cca Pro	gct Ala 155	ctc Leu	caa Gln	agg Arg	tgc Cys	cag Gln 160	acc Thr	tac Tyr		537
											agc Ser						585
											aaa Lys 190						633
											tat Tyr						681
							_				gta Val		-				729
											aca Thr						777
											ttc Phe						825
											aca Thr						873

260 265 270

	260					265					270					
	gac Asp															921
aac Asn	gta Val	aca Thr	aga Arg	tat Tyr 295	gcg Ala	gtg Val	gcc Ala	gtc Val	ctg Leu 300	ggc	tac Tyr	tac Tyr	aac Asn	cgc Arg 305	agg Arg	969
gjà aaa	atc Ile	aat Asn	cca Pro 310	gaa Glu	act Thr	ttt Phe	cta Leu	aat Asn 315	gaa Glu	atc Ile	aaa Lys	taç Tyr	atc Ile 320	gcc Ala	agt Ser	1017
gac Asp	cct Pro	gat Asp 325	gac Asp	aag Lys	cac His	ttc Phe	ttc Phe 330	aat Asn	gtc Val	act Thr	gat Asp	gag Glu 335	gct Ala	gcc Ala	ttg Leu	1065
_	gac Asp 340		-	_	_	_		-	-			_	_	_		1113
	aac Asn															1161
	tcc Ser															1209
	tat Tyr															1257
-	att Ile			_				_								1305
_	aac Asn 420			_		_				_		_	_			1353
	agg Arg															1401
_	ggc Gly	_	_		_								-			1449
	cac His	_	_	_			_	_							_	1497
gaa Glu	atc Ile	acc Thr 485	tcg Ser	gtg Val	gac Asp	atc Ile	gac Asp 490	ggc Gly	gac Asp	ggc Gly	gtg Val	act Thr 495	gat Asp	gtc Val	ctg Leu	1545
	gtg Val 500															1593
	tac Tyr	-			_	_	_				_				_	1641

WO 01/55437					PCT/US01/0262	23
515	520			525	. 530	
cta aag gat Leu Lys Asp	tca cac agt Ser His Ser 535	tac cag Tyr Gln	aat gcc Asn Ala 540	cga ttt ggg Arg Phe Gly	tcc tcc att 16 Ser Ser Ile 545	89
gcc tca gtt Ala Ser Val	cga gac cto Arg Asp Let 550	aac cag Asn Gln	gat tcc Asp Ser 555	tac aat gac Tyr Asn Asp	gtg gtg gtg 17 Val Val Val 560	37
gga gcc ccc Gly Ala Pro 565	ctg gag gad Leu Glu Asp	aac cac Asn His 570	gca gga Ala Gly	gcc atc tac Ala Ile Tyr 575	atc ttc cac 17 Ile Phe His	85
ggc ttc cga Gly Phe Arg 580	ggc agc ato Gly Ser Ile	ctg aag Leu Lys 585	aca cct Thr Pro	aag cag aga Lys Gln Arg 590	atc aca gcc 18 Ile Thr Ala	133
tca gag ctg Ser Glu Leu 595	gct acc ggc Ala Thr Gly 600	Leu Gln	tat ttt Tyr Phe	ggc tgc agc Gly Cys Ser 605	atc cac ggg 18 Ile His Gly 610	81
caa ttg gac Gln Leu Asp	ctc aat gag Leu Asn Gla 615	gat ggg 1 Asp Gly	ctc atc Leu Ile 620	gac ctg gca Asp Leu Ala	gtg gga gcc 19 Val Gly Ala 625	29
ctt ggc aac Leu Gly Asn	gct gtg at Ala Val Il 630	ctg tgg Leu Trp	tcc cgc Ser Arg 635	cca gtg gtt Pro Val Val	cag atc aat 19 Gln Ile Asn 640	977
gcc agc ctc Ala Ser Leu 645	cac ttt ga His Phe Gl	g cca tcc ı Pro Ser 650	aag atc Lys Ile	aac atc ttc Asn Ile Phe 655	cac aga gac 20 His Arg Asp	25
tgc aag cgc Cys Lys Arg 660	agt ggc ag Ser Gly Ar	g gat gcc g Asp Ala 665	acc tgc Thr Cys	ctg gcc gcc Leu Ala Ala 670	ttc ctc tgc 20 Phe Leu Cys	73
ttc acg ccc Phe Thr Pro 675	atc ttc ct Ile Phe Le 68	u Ala Pro	cat ttc His Phe	caa aca aca Gln Thr Thr 685	act gtt ggc 21 Thr Val Gly 690	121
atc aga tac Ile Arg Tyr	aac gcc ac Asn Ala Th 695	c atg gat r Met Asp	gag agg Glu Arg 700	Arg Tyr Thr	ccg agg gcc 21 Pro Arg Ala 705	169
cac ctg gac His Leu Asp	gag ggc gg Glu Gly Gl 710	g gac cga y Asp Arg	ttc acc Phe Thr 715	aac aga gcc Asn Arg Ala	gta ctg ctc 22 Val Leu Leu 720	217
tcc tcc ggc Ser Ser Gly 725	Gln Glu Le	c tgt gag u Cys Glu 730	Arg Ile	aac ttc cat Asn Phe His 735	Val Leu Asp	265
act gct gac Thr Ala Asp 740	tac gtg aa Tyr Val Ly	g cca gtg s Pro Val 745	acc tto Thr Phe	tca gtc gag Ser Val Glu 750	tat tcc ctg 2: Tyr Ser Leu	313
gag gac cct Glu Asp Pro 755	gac cat gg Asp His Gl 76	y Pro Met	ctg gad Leu Asp	gac ggc tgg Asp Gly Trp 765	Pro Thr Thr 770	361
ctc aga gtc Leu Arg Val	tcg gtg co Ser Val Pr	c ttc tgg o Phe Trp	aac ggc Asn Gly	tgc aat gag Cys Asn Glu	gat gag cac 20 Asp Glu His	409

WO 01/55437 PCT/US01/02623 775 780 tgt gtc cct qac ctt qtq ttg gat gcc cgg agt qac ctq ccc acq gcc 2457 Cys Val Pro Asp Leu Val Leu Asp Ala Arg Ser Asp Leu Pro Thr Ala 795 790 atg gag tac tgc cag agg gtg ctg agg aag cct gcg cag gac tgc tcc 2505 Met Glu Tyr Cys Gln Arg Val Leu Arg Lys Pro Ala Gln Asp Cys Ser 805 810 gca tac acg ctg tcc ttc gac acc aca gtc ttc atc ata gag agc aca 2553 Ala Tyr Thr Leu Ser Phe Asp Thr Thr Val Phe Ile Ile Glu Ser Thr 825 820 ege cag ega gtg geg gtg gag gee aca etg gag aac agg gge gag aac 2601 Arg Gln Arg Val Ala Val Glu Ala Thr Leu Glu Asn Arg Gly Glu Asn 835 **B40** 845 gcc tac agc acg gtc cta aat atc tcg cag tca qca aac ctg cag ttt 2649 Ala Tyr Ser Thr Val Leu Asn Ile Ser Gln Ser Ala Asn Leu Gln Phe 855 ged agd ttg atd dag gag gad tda gad ggt agd att gag tgt gtg 2697 Ala Ser Leu Ile Gln Lys Glu Asp Ser Asp Gly Ser Ile Glu Cys Val 875 870 aac gag. gag agg agg ctc cag aag caa gtc tgc aac gtc agc tat ccc 2745 Asn Glu Glu Arg Arg Leu Gln Lys Gln Val Cys Asn Val Ser Tyr Pro 890 ttc ttc cgg gcc aag gcc aag gtg gct ttc cgt ctt gat ttt gag ttc 2793 Phe Phe Arg Ala Lys Ala Lys Val Ala Phe Arg Leu Asp Phe Glu Phe 905 age aaa tee ate tte eta cae cae etg gag ate gag ete get gea gge 2841 Ser Lys Ser Ile Phe Leu His His Leu Glu Ile Glu Leu Ala Ala Gly 920 925 agt gac agt aat gag cgg gac agc acc aag gaa gac aac gtg gcc ccc 2889 Ser Asp Ser Asn Glu Arg Asp Ser Thr Lys Glu Asp Asn Val Ala Pro 935 940 tta cgc ttc cac ctc aaa tac gag gct gac gtc ctc ttc acc agg agc 2937 Leu Arg Phe His Leu Lys Tyr Glu Ala Asp Val Leu Phe Thr Arg Ser 950 955 age age etg age cae tat gag gte aag eee aac age teg etg gag aga 2985 Ser Ser Leu Ser His Tyr Glu Val Lys Pro Asn Ser Ser Leu Glu Arg 965 tac gat ggt atc ggg cct ccc ttc agc tgc atc ttc agg atc cag aac 3033 Tyr Asp Gly Ile Gly Pro Pro Phe Ser Cys Ile Phe Arg Ile Gln Asn 985 ttg ggc ttg ttc ccc atc cac ggg atg atg atg aag atc acc att ccc 3081 Leu Gly Leu Phe Pro Ile His Gly Met Met Lys Ile Thr Ile Pro

3129

3177

atc gcc acc agg agc ggc aac cgc cta ctg aag ctg agg gac ttc ctc

Ile Ala Thr Arg Ser Gly Asn Arg Leu Leu Lys Leu Arg Asp Phe Leu

acg gac gag gcg aac acg tcc tgt aac atc tgg ggc aat agc act gag

Thr Asp Glu Ala Asn Thr Ser Cys Asn Ile Trp Gly Asn Ser Thr Glu

TTIO 04/55 425	PCT/US01/02623
WO 01/55437	PC.1/USU1/02023

WO 01/55437	PCT/US01/02623
1030 1035 1040	
tac egg eec acc eca gtg gag gaa gac ttg egt egt get eea ea Tyr Arg Pro Thr Pro Val Glu Glu Asp Leu Arg Arg Ala Pro Gl 1045 1050 1055	g ctg 3225 n Leu
aat cac agc aac tct gat gtc gtc tcc atc aac tgc aat ata cg Asn His Ser Asn Ser Asp Val Val Ser Ile Asn Cys Asn Ile Ar 1060 1065 1070	
gtc ccc aac cag gaa atc aat ttc cat cta ctg ggg aac ctg tg Val Pro Asn Gln Glu Ile Asn Phe His Leu Leu Gly Asn Leu Tr 1075 1080 1085	
agg tcc cta aaa gca ctc aag tac aaa tcc atg aaa atc atg gt Arg Ser Leu Lys Ala Leu Lys Tyr Lys Ser Met Lys Ile Met Va 1095 1100 110	l Asn
gca gcc ttg cag agg cag ttc cac agc ccc ttc atc ttc cgt gag Ala Ala Leu Gln Arg Gln Phe His Ser Pro Phe Ile Phe Arg Gl 1110 1115 1120	g gag 3417 u Glu
gat ccc agc cgc cag atc gtg ttt gag atc tcc aag caa gag ga Asp Pro Ser Arg Gln Ile Val Phe Glu Ile Ser Lys Gln Glu As 1125 1130 1135	
cag gtc ccc atc tgg atc att gta ggc agc acc ctg ggg ggc ct Gln Val Pro Ile Trp Ile Ile Val Gly Ser Thr Leu Gly Gly Le 1140 1145 1150	c cta 3513 u Leu
ctg ctg gcc ctg ctg gtc ctg gca ctg tgg aag ctc ggc ttc tt Leu Leu Ala Leu Leu Val Leu Ala Leu Trp Lys Leu Gly Phe Ph 1155 1160 1165	
agt gcc agg cgc agg agg gag cct ggt ctg gac ccc acc ccc aa Ser Ala Arg Arg Arg Glu Pro Gly Leu Asp Pro Thr Pro Ly 1175 1180 118	s Val
ctg gag tga ggctcca gaggagactt tgagttgatg ggggccagga cacca Leu Glu *	gtcca 3665
ggtagtgttg agacccaggc ctgtggcccc accgagctgg agcggagagg aag	ccagctg 3725
getttgeact tgaceteate tecegageaa tggegeetge teceteeaga atg	gaactca 3785
agetggtttt aagtggaact geectactgg gagactggga cacetttaac aca	gacccct 3845
agggatttaa agggacaccc ctacacacac ccaggcccac gccaaggcct ccc	tcaggct 3905

<210> 103

tctc

<211> 735

<212> DNA

<213> Homo sapiens

<220> <221> CDS

ctgtggaggg catttgctgc cccagctact aaggtgctat gaattcgtaa tcatccccat 3965

<222> (305)..(463)

<400> 103 gtgatgatac ccgtccggaa ttcccgggtc gacccacgcg tccgctaatt tctaattctt 60 ctgtagcatt tattaagaaa agttaaaata actgcttaat ttgagatgaa attaacacat 120 gagaacttca ctcattaggt ggtatgttct gtgactgttg tttaatgtgt attttatggc 180 240 agttttqact qccattttgt catttgagaa aggtgaaatg aagtactatt ttgggctgcg aaacctgaag ttgtagggaa acctgtgttt gaagaccatt aagaagttgt tttgcatact 300 aaga atg gca ctg aac atc att atc aat cct gtg tgg ttt tgc cac tgc 349 Met Ala Leu Asn Ile Ile Ile Asn Pro Val Trp Phe Cys His Cys ttg act tgc aca att cac att gat ttt cat att tta ttc att aaa att 397 Leu Thr Cys Thr Ile His Ile Asp Phe His Ile Leu Phe Ile Lys Ile 20 25 445 ttt aaa cac atg ttt ttt agg tcg ctt tgg tca tct tgg ctt agc cat Phe Lys His Met Phe Phe Arg Ser Leu Trp Ser Ser Trp Leu Ser His 40 caa ctt gat cac ata tga tgatcg cttcaacctg aaaagtattg aggagcagct 499 Gln Leu Asp His Ile * 50 qqqaacaqaa attaaaccta ttccgagcaa cattgataag agcctgtatg tggcagaata 559 ccacagegag cetgtagaag atgagaaace ttaacaagca tgtacgteec tgacagaaca 619 gctaagagga acctttaaat gagggaaatc aaaatcttct ttcctggtgg aaatttgatg 735 gcacaccata tataatagca atataagggc ggactccccc ctagcataaa tgacag

<210> 104 <211> 633 <212> DNA <213> Homo sapiens

<221> CDS <222> (48)..(281)

<400> 104
gaccageggc cacceaegeg teeggtetga atettattee titigtag atg gee att

Met Ala Ile

1

ttt cct ctt tgg aag ctc ttg aat gtt ttg gta tgc ata ttt tcc tca

Phe Pro Leu Trp Lys Leu Leu Asn Val Leu Val Cys Ile Phe Ser Ser

5

10

15

56

ttc atc atg ctg aat att tac tgt acc ctt ttg atc tgg aaa ttt att

Phe Ile Met Leu Asn Ile Tyr Cys Thr Leu Leu Ile Trp Lys Phe Ile

20 35 35

tat tca gct ttt ttc tgt tat att act tct ttg atg att ttc ccc ttt

Tyr Ser Ala Phe Phe Cys Tyr Ile Thr Ser Leu Met Ile Phe Pro Phe

WO 01/55437 PCT/US01/0262	23
40 45 50	
agt ttt ttc tgt tct ttc ttt cta gac ctt ctt aaa gtc ata gtt tat Ser Phe Phe Cys Ser Phe Phe Leu Asp Leu Leu Lys Val Ile Val Tyr 55 60 65	24
atc ttc ttc ctt tat ctg tac tcc tca aga taa atgctaga agttggttaa 2 Ile Phe Phe Leu Tyr Leu Tyr Ser Ser Arg * 70 75	29
gccaggactt aaacccagct tgtagcttta taagctgggt tttgaacctc agttttctag 3	35:
ttagtaaagt gatcatgaga ataacgacct caaaggatat catgaggatt aaattagatt 4	11:
tttttaaagt ccttagcact atgcccagta catacagcat tcaataatgt taggaattgt 4	17
tgctgtcatg ttcactatta atttatttaa caaatattta ttgaatgcta atacaaatgt 5	539
gccatgctct tctaggtgac ccccagtaag gtagaggact aagaagacat gagatttatg 5	9
tgaaaaagca tttttaaaga agaccattgg caat 6	33
<210> 105	
<211> 810 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> (147)(293)	
<400> 105 gtacactgcg gtggaattce cgctttttga ggcctcagtt ttcctcatct gcaaaaccag	60
tctaatgatg ctatagagtt gttatagaaa gttgaatctt tgtcatctat tgaatgcttg 1	.20
aaatttagct aaaagtgtct caggag atg ggc tac ctt ctg tgg tta gta ctg 1 Met Gly Tyr Leu Leu Trp Leu Val Leu 1 5	.73
tct atc ttg gtg tgt aca gaa ttg gga ctt ggc agg ttg acc ttc cct Ser Ile Leu Val Cys Thr Glu Leu Gly Leu Gly Arg Leu Thr Phe Pro 10 15 20 25	21
ctg gat tca gaa agc ccc agg act tct tat aaa gtt agg cca tgg gtc Leu Asp Ser Glu Ser Pro Arg Thr Ser Tyr Lys Val Arg Pro Trp Val 30 35 40	65
gtc ttg gag gct tgg gtc tgg taa ataattgagc ctgagctcac aatcctgccc 3: Val Leu Glu Ala Trp Val Trp * 45	23
ctgggtccag gtggctggtc tgctgccccc aaaagcctga ccttcttggt cctgtgggtc 3	83

443

503

563

623

tgtcagtaag gcaggtagcc atagctggag agagacagcc accaggctgg gatcttggac

agtecetaca tttetgtgta ateetggaet aggeagggea tggagtagat ggaaaatgge

ggccatcttg gaaatgtgcc ataacaactc acttttcaag accgtcccct agaggagaaa

agtaccgccc tgggtagctc aattaacgaa ttttcaagac ccaggccttg gcgctccttg

ceeggagate caacggagac titagteega egecagagtg gateacagag eggacaggga 683
tacactgaaa aaaaacggte aggagggacg titgegeeeee egetiggtag aacaggacga 743
eegetiggeet egeggagtig aggecaataa eeeegeggae eeeatgiiga eeeggaagag 803
gaggeee 810

<210> 106 <211> 746 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (324)..(734)

<400> 106

<400> 106 ctgtggtgga attccagttg taggcatggg tgcattagcg aaaaaacaca cattccttqt 60 tctcatggag cctccattct aatgagaaaa taaagacaat aaaaacagca aatgaagagt 120 tgcttttttt aggtaatggt aagaaaaaat aaatgacgga gagtgactat ggccattgca 180 ggcttctccg aggaggtaat atttgaagag agaccaaata atgtgagaaa gaaaqgtaag 240 tagctagcta aggaaaaaaa gttctaggga gatggaacag caggtgcaaa gggccagagg tagaagtttt caatggaagt aag atg agt gga tct gga atg gag cta ttg 350 Met Ser Gly Ser Gly Met Glu Leu Leu atg gac aca ggg aaa gaa gat gag gtc ata gtc tgg gcc cag atg tgc 398 Met Asp Thr Gly Lys Glu Asp Glu Val Ile Val Trp Ala Gln Met Cys 15 20 ctg tct cac ctg gtt tct ctt ttt cct gca gct act gcc ttc ctc atc 446 Leu Ser His Leu Val Ser Leu Phe Pro Ala Ala Thr Ala Phe Leu Ile aac aaa gtg ccc ctt cct gtt gac aag ttg gca cct tta cct ctg gac 494 Asn Lys Val Pro Leu Pro Val Asp Lys Leu Ala Pro Leu Pro Leu Asp 45 aac att ctt ccc ttt atg gat cca tta aag ctt ctt ctg aaa act ctg 542 Asn Ile Leu Pro Phe Met Asp Pro Leu Lys Leu Leu Lys Thr Leu 60 ggc att tot gtt gag cac ott gtg gag ggg ota agg aag tgt gta aat 590 Gly Ile Ser Val Glu His Leu Val Glu Gly Leu Arg Lys Cys Val Asn 80 gag ctg cga cca gag gct tct gaa gct gtg aag aaa ctg ctg gta acc 638 Glu Leu Arg Pro Glu Ala Ser Glu Ala Val Lys Lys Leu Leu Val Thr

115

aca gct tgg gag gct aat ctg cca aag ggg agg cat act cac cct gaa

Thr Ala Trp Glu Ala Asn Leu Pro Lys Gly Arg His Thr His Pro Glu

100

686

95

tgt cta gct cct ctt ctt gtc cct tgt aaa tgt gca ttt cca ctt tac
Cys Leu Ala Pro Leu Leu Val Pro Cys Lys Cys Ala Phe Pro Leu Tyr
125 130 135

tgattatatt ct 734

<210> 107
<211> 930
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (81)..(779)

<400> 107
ttqqaaaacc atttgacgcc cgcggtaccg gaccggaatt cccgggtcga cccacgcgtc 60

cgatcggagg tgcctcagcc atg gca tgg atc cct ctc ttc ctc ggc gtc 110

Met Ala Trp Ile Pro Leu Phe Leu Gly Val

1 5 10

ctt gct tac tgc aca gga tcc gtg gcc tcc tat gag ctg act cag cca
Leu Ala Tyr Cys Thr Gly Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro

20
25

ccc tca gtg tcc gtg tcc cca gga cag aca gcc agc atc acc tgc tct
Pro Ser Val Ser Val Ser Pro Gly Gln Thr Ala Ser Ile Thr Cys Ser
30 35 40

gga gat aaa ttg ggg gat aaa tat gct tgc tgg tat cag cag aag cca 254
Gly Asp Lys Leu Gly Asp Lys Tyr Ala Cys Trp Tyr Gln Gln Lys Pro
45 50 55

ggc cag tcc cct gtg ctg gtc atc tat caa gat agc aag cgg ccc tca

Gly Gln Ser Pro Val Leu Val Ile Tyr Gln Asp Ser Lys Arg Pro Ser

60 65 70

ggg atc cct gag cga ttc tct ggc tcc aac tct ggg aac aca gcc act
Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr
75 80 85 90

ctg acc atc agc ggg acc cag gct atg gat gag gct gac tat tac tgt

198

Leu Thr Ile Ser Gly Thr Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys

100

105

cag gcg tgg gac agc act ctt tat gtc ttc gga act ggg acc aag
Gln Ala Trp Asp Ser Ser Thr Leu Tyr Val Phe Gly Thr Gly Thr Lys
110 115 120

gtc acc gtc cta ggt cag ccc aag gcc aac ccc act gtc act ctg ttc 494
Val Thr Val Leu Gly Gln Pro Lys Ala Asn Pro Thr Val Thr Leu Phe
125 130 135

ccg ccc tcc tct gag gag ctc caa gcc aac aag gcc aca cta gtg tgt
Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys
140
145
150

ctg atc agt gac ttc tac ccg gga gct gtg aca gtg gcc tgg aag gca
Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala
155 160 165 170

Asp Gly Ser Pro Val Lys Ala Gly Val Glu Thr Thr Lys Pro Ser Lys 175 180 185	638
cag agc aac aac aag tac gcg gcc agc agc tac ctg agc ctg acg cct Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro 190 195 200	686
gag cag tgg aag tcc cac aga agc tac agc tgc cag gtc acg cat gaa Glu Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu 205 210 215	734
ggg agc acc gtg gag aag aca gtg gcc cct aca gaa tgt tca tag gtt Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser * 220 225 230	782
ctaaaccctc acctcccccc acgggagact agagctgcag gatcccaggg gaggggtctc	842
tecteccace ecaaggeate aagecettet ecetgeacte aataaaceet caataaatat	902
teteattgte aateaaaaa aaaagteg	930
<210> 108 <211> 3133 <212> DNA <213> Homo sapiens	
<220> <221> CDS	
<2225 CDS <222> (219)(1028)	
<400> 108	
geggtttggt geatgagegt eeggacegga atteeegggt egaceeaege gteegggaag	60
	60 120
geggtttggt geatgagegt eeggaeegga atteeegggt egaeeeaege gteegggaag	
geggtttggt geatgagegt eeggacegga atteeegggt egacecaege gteegggaag atgeeaaagt etatgtgget aaagtggaet geaeggeeca eteegaegtg tgeteegeee	120
atgccaaagt ctatgtgget aaagtggact gcacggccca ctccgacgtg tgctccgccc agggggtgcg aggatacccc accttaaagc ttttcaagcc aggccaagaa gctgtgaagt accagggtcc tcgggacttc cagacactgg aaaactgg atg ctg cag aca ctg Met Leu Gln Thr Leu	120 180
atgccaaagt ctatgtgget aaagtggact gcacggccca ctccgacgtg tgctccgccc agggggtgcg aggatacccc accttaaagc ttttcaagcc aggccaaagaa gctgtgaagt accagggtcc tcgggacttc cagacactgg aaaactgg atg ctg cag aca ctg Met Leu Gln Thr Leu 1 5  aac gag gag cca gtg aca cca gag ccg gaa gtg gaa ccg ccc agt gcc Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu Pro Pro Ser Ala	120 180 233
atgccaaagt ctatgtggct aaagtggact gcacggccca ctccgacgtg tgctccgccc  agggggtgcg aggatacccc accttaaagc ttttcaagcc aggccaagaa gctgtgaagt  accagggtcc tcgggacttc cagacactgg aaaactgg atg ctg cag aca ctg Met Leu Gln Thr Leu 1 5  aac gag gag cca gtg aca cca gag ccg gaa gtg gaa ccg ccc agt gcc Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu Pro Pro Ser Ala 10 15 20  ccc gag ctc aag caa ggg ctg tat gag ctc tca gca agc aac ttt gag Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser Ala Ser Asn Phe Glu	120 180 233 281
atgccaaagt ctatgtggct aaagtggact gcacggccca ctccgacgtg tgctccgccc agggggtgcg aggatacccc accttaaagc ttttcaagcc aggccaagaa gctgtgaagt accagggtcc tcgggacttc cagacactgg aaaactgg atg ctg cag aca ctg Met Leu Gln Thr Leu 1 5  aac gag gag cca gtg aca cca gag ccg gaa gtg gaa ccg ccc agt gcc Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu Pro Pro Ser Ala 10 15 20  ccc gag ctc aag caa ggg ctg tat gag ctc tca gca agc aac ttt gag Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser Ala Ser Asn Phe Glu 25 30 35  ctg cac gtt gca caa ggc gac cac ttt atc aag ttc ttc gct ccg tgg Leu His Val Ala Gln Gly Asp His Phe Ile Lys Phe Phe Ala Pro Trp	120 180 233 281

WO 01/55	437											I	CT/US	01/02623
70			75					80					85	
cag cac t	tat ga Tyr Gl	aa ctc lu Leu 90	tgc Cys	tcc Ser	gga Gly	aac Asn	cag Gln 95	gtt Val	cgt Arg	ggc Gly	tat Tyr	ccc Pro 100	act Thr	521
ctt ctc t Leu Leu 1	rrp Pi	tc cga he Arg 05	gat Asp	Gly 333	aaa Lys	aag Lys 110	gtg Val	gat Asp	cag Gln	tac Tyr	aag Lys 115	gga Gly	aag Lys	569
cgg gat t Arg Asp I	ttg ga Leu Gi 120	ag tca lu Ser	ctg Leu	agg Arg	gag Glu 125	tac Tyr	gtg Val	gag Glu	tcg Ser	cag Gln 130	ctg Leu	cag Gln	cgc Arg	617
aca gag a Thr Glu 1	act go Thr G	ga gcg ly Ala	acg Thr	gag Glu 140	acc Thr	gtc Val	acg Thr	ccc Pro	tca Ser 145	gag Glu	gcc Ala	ccg Pro	gtg Val	665
ctg gca g Leu Ala i 150	get ga Ala G	ag ccc lu Pro	gag Glu 155	gct Ala	gac Asp	aag Lys	ggc Gly	act Thr 160	gtg Val	ttg Leu	gca Ala	ctc Leu	act Thr 165	713
gaa aat a Glu Asn a	aac t Asn P	tc gat he Asp 170	gac Asp	acc Thr	att Ile	gca Ala	gaa Glu 175	gga Gly	ata Ile	acc Thr	ttc Phe	atc Ile 180	aag Lys	761
ttt tat o	Ala P	ca tgg ro Trp 85	tgt Cys	ggt Gly	cat His	tgt Cys 190	aag Lys	act Thr	ctg Leu	gct Ala	cct Pro 195	act Thr	tgg Trp	809
gag gaa Glu Glu	ctc to Leu S 200	ct aaa er Lys	aag Lys	gaa Glu	ttc Phe 205	cct Pro	ggt Gly	ctg Leu	gcg Ala	999 Gly 210	gtc Val	aag Lys	atc Ile	857
gcc gaa Ala Glu 215	gta g Val A	ac tgc sp Cys	act Thr	gct Ala 220	gaa Glu	cgg Arg	aat Asn	atc Ile	tgc Cys 225	agc Ser	aag Lys	tat Tyr	tcg Ser	905
gta cga Val Arg 230	ggc t Gly T	ac ccc yr Pro	acg Thr 235	tta Leu	ttg Leu	ctt Leu	ttc Phe	cga Arg 240	gga Gly	999 Gly	aag Lys	aaa Lys	gtc Val 245	953
agt gag Ser Glu	cac a His S	gt gga er Gly 250	ggc	aga Arg	gac Asp	ctt Leu	gac Asp 255	tcg Ser	tta Leu	cac His	cgc Arg	ttt Phe 260	Val	1001
ctg agc Leu Ser	Gln A	cg aaa la Lys 65	gac Asp	gaa Glu	ctt Leu	tag * 270	gaa	ca ca	agtt	ggag	g tc	acct	ctcc	1053
tgcccagc	tc cc	gcaccc	tg c	gttt	agga	g tt	cagt	ccca	cag	aggc	cac	tggg	ttccca	1113
gtggtggc	tg tt	cagaaa	gc a	gaac	atac	t aa	gcgt	gagg	tat	cttc	ttt	gtgt	gtgtgt	1173
tttccaag	cc aa	cacact	ct a	caga	ttct	t ta	ttaa	gtta	agt	ttct	cta	agta	aatgt	1233
taactcat	gg to	actgtg	ta a	acat	tttc	a gt	ggcg	atat	atc	ccct	ttg	acct	tctcti	1293
gatgaaat	tt ac	atggtt	tc c	tttg	agac	t aa	aata	gcat	tga	ggga	aat	gaaa	ttgctg	1353
gactattt	gt gg	ctcctg	ag t	tgag	tgat	t tt	ggtg	aaag	aaa	gcac	atc	caaa	gcataç	1413
tttacctg	cc ca	cgagtt	ct g	gaaa	ggtg	g cc	ttgt	ggca	gta	ttga	cgt	tcct	ctgat	1473

WO 01/55437 PCT/US01/02623
ttaaggtcac agttgactca atactgtgtt ggtccgtagc atggagcaga ttgaaatgca 1533

ttaaggtcac agttga	actca atactgtgtt	ggtccgtage	atggagcaga	ttgaaatgca	1533
aaaacccaca cctctg	ggaag ataccttcac	ggeegetget	ggagcttctg	ttgctgtgaa	1593
tacttctctc agtgtg	gagag gttagccgtg	g atgaaagcag	cgttacttct	gaccgtgcct	1653
gagtaagaga atgcto	gatge cataaettta	tgtgtcgata	cttgtcaaat	cagttactgt	1713
teaggggate ettets	gttte teaeggggtg	g aaacatgtct	ttagttcctc	atgttaacac	1773
gaagccagag cccaca	atgaa ctgttggatg	f tcttccttag	aaagggtagg	catggaaaat	1833
tccacgaggc tcatto	ctcag tatctcatta	actcattgaa	agattccagt	tgtatttgtc	1893
acctggggtg acaaga	accag acaggettte	ccaggcctgg	gtatccaggg	aggetetgea	1953
gccctgctga agggcc	cctaa ctagagttct	agagtttctg	attctgtttc	tcagtagtcc	2013
ttttagagge ttgeta	tact tggtctgctt	caaggaggtc	gaccttctaa	tgtatgaaga	2073
atgggatgca tttgat	ctca agaccaaaga	cagatgtcag	tgggetgete	tggccctggt	2133
gtgcacggct gtggca	agetg ttgatgecag	f tgtcctctaa	ctcatgctgt	ccttgtgatt	2193
aaacacctct atctcc	cttg ggaataagca	catacaggct	taagctctaa	gatagatagg	2253
tgtttgtcct tttacc	catcg agetaettee	cataataacc	actttgcatc	caacactctt	2313
cacccacctc ccatac	gcaa ggggatgtgg	atacttggcc	caaagtaact	ggtggtagga	2373
atcttagaaa caagac	cact tatactgtct	gtctgaggca	gaagataaca	gcagcatctc	2433
gaccagcctc tgcctt	aaag gaaatcttta	ttaatcacgt	atggttcaca	gataattett	2493
tttttaaaaa aaccca	acct cctagagaag	cacaactgtc	aagagtcttg	tacacacaac	2553
ttcagctttg catcac	gagt cttgtattco	aagaaaatca	aagtggtaca	atttgtttgt	2613
ttacactatg atactt	tcta aataaactct	ttttttaaa	aagtctggtc	tttccttcaa	2673
tgttacagca aaacag	gatat aaaatagaca	ataaattata	gtttatattt	acaaaaaaag	2733
ctgtaagtgc aaacag	rttgt agattataaa	tgtattattt	aatcagttta	gtatgaaatt	2793
gccttcccag tacatg	gattg tgaaaaagac	atttagaaaa	tattctaaaa	tttaatctga	2853
gcctcacttt ctacaa	ggga aatcatgatt	tccgttcata	aacagcatgc	tcatccccct	2913
aacaccattc ttataa	gctg ggcaccctca	ttttattttc	ttcgttggtt	ctaaccctgt	2973
ggcgtggtat gctgta	tagt aaaaaggcag	agatcccctt	tactgaaaag	gtactagagc	3033
cggcagtcca gaagtt	aatg tgctggtcaa	agaaccggac	gcgtgggtcg	acccgggaat	3093
tccggaccgg tacctg	cagg cgtacggctt	caaagaggga			3133

<210> 109

<211> 1471

<212> DNA

<213> Homo sapiens

PCT/US01/02623 WO 01/55437

<220>

<221> CDS

<222> (92)..(1024) <400> 109 gacgcctgca ggtaccggtc cggaattccc gggtcgacga tttcgtgtca caactctccc 60 atg ctg ctt ctg ctg ctt 112 cagagaaggt ggtgtgtggc catcacggaa g Met Leu Leu Leu Leu Leu ctg ggg cca ggc tcc ggg ctt ggt gct gtc gtc tct caa cat ccg agc Leu Gly Pro Gly Ser Gly Leu Gly Ala Val Val Ser Gln His Pro Ser agg gtt atc tgt aag agt gga acc tct gtg aag atc gag tgc cgt tcc 208 Arg Val Ile Cys Lys Ser Gly Thr Ser Val Lys Ile Glu Cys Arg Ser ctg gac ttt cag gcc aca act atg ttt tgg tat cgt cag ttc ccg aaa 256 Leu Asp Phe Gln Ala Thr Thr Met Phe Trp Tyr Arg Gln Phe Pro Lys cag agt ctc atg ctg atg gca act tcc aat gag ggc tcc aag gcc aca 304 Gln Ser Leu Met Leu Met Ala Thr Ser Asn Glu Gly Ser Lys Ala Thr 65 tac gag caa ggc gtc gag aag gac aag ttt ctc atc aac cat gca agc 352 Tyr Glu Gln Gly Val Glu Lys Asp Lys Phe Leu Ile Asn His Ala Ser 80 400 ctg acc ttg tcc act ctg aca gtg acc agt gcc cat cct gaa gac agc Leu Thr Leu Ser Thr Leu Thr Val Thr Ser Ala His Pro Glu Asp Ser 95 age tte tae ate tge agt get aga gag teg aet age gat eea aaa aat 448 Ser Phe Tyr Ile Cys Ser Ala Arg Glu Ser Thr Ser Asp Pro Lys Asn 110 gag cag tto tto ggg cca ggg aca cgg cto acg gto aca gag gao ctg 496 Glu Gln Phe Phe Gly Pro Gly Thr Arg Leu Thr Val Thr Glu Asp Leu 120 125 aaa aac gtg ttc cca ccc gag gtc gct gtg ttt gag cca tca gaa gca 544 Lys Asn Val Phe Pro Pro Glu Val Ala Val Phe Glu Pro Ser Glu Ala gag atc tcc cac acc caa aag gcc aca ctg gtg tgc ctg gcc aca ggc 592 Glu Ile Ser His Thr Gln Lys Ala Thr Leu Val Cys Leu Ala Thr Gly 160 155 ttc tac ccc gac cac gtg gag ctg agc tgg tgg gtg aat ggg aag gag 640 Phe Tyr Pro Asp His Val Glu Leu Ser Trp Trp Val Asn Gly Lys Glu 175 gtg cac agt ggg gtc agc aca gac ccg cag ccc ctc aag gag cag ccc 688 Val His Ser Gly Val Ser Thr Asp Pro Gln Pro Leu Lys Glu Gln Pro 190 gcc ctc aat gac tcc aga tac tgc ctg agc agc cgc ctg agg gtc tcg 736 Ala Leu Asn Asp Ser Arg Tyr Cys Leu Ser Ser Arg Leu Arg Val Ser 210 205 784 gcc acc ttc tgg cag aac ccc cgc aac cac ttc cgc tgt caa gtc cag

wo	01/55	5437												ı	CT/USU	1/02623
Ala T	Thr	Phe	Trp	Gln 220	Asn	Pro	Arg	Asn	His 225	Phe	Arg	Cys	Gln	Val 230	Gln	
ttc t Phe T	cac Tyr	gjy ggg	ctc Leu 235	tcg Ser	gag Glu	aat Asn	gac Asp	gag Glu 240	tgg Trp	acc Thr	cag Gln	gat Asp	agg Arg 245	gcc Ala	aaa Lys	832
cct g Pro V	/al															880
ggc t Gly E																928
ctc t Leu 1 280																976
agt g Ser A	_			_	_	-	_	_	_	-	_	_		_		1024
tagct	tcca	aa a	accai	tecea	ag gt	catt	ctto	c ato	cctca	accc	agga	attcı	cc 1	tgtad	ectget	1084
cccaa	atct	gt	gttc	ctaaa	aa gt	gatt	ctca	cto	etget	tct	cato	etect	ac 1	ttaca	atgaat	1144
actto	ctct	ct t	tttt	tctg	tt to	cccts	gaaga	a ttg	gaget	ccc	aaco	ccca	aag 1	tacga	aatag	1204
gctaa	aacc	aa t	taaaa	aaati	tg to	gtgtt	ggg	ctg	ggttg	gcat	ttca	aggag	gtg 1	tctg	ggagt	1264
tctg	ctca	itc a	actg	accta	at c	tate	gatti	t agg	ggaaa	agca	gcat	tec	ett (	ggac	atctga	1324
agtga	acag	icc (	ctcti	ttct	et co	cacco	caato	g cto	gctti	cctc	ctgt	tcat	ccc 1	tgate	ggaagt	1384
cctca	aaac	ac o	catt	tccat	ta co	ccago	gcatt	t cts	gggto	ccc	acto	ggagg	ggt 1	tagto	ctgaag	1444
ggcaa	atgg	jat (	gggc	tttg	ga aa	acca	ag									1471

<210> 110 <211> 1759 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (79)..(1734)

tcg gtg acg gtg cag gag ggc ctg tgc gtc ctt gtg ccc tgc tcc ttc 207 . Ser Val Thr Val Gln Glu Gly Leu Cys Val Leu Val Pro Cys Ser Phe

30 . 35 40

		50					33					••				
														gtc Val		255
tgg Trp 60	ttc Phe	cgg Arg	gac Asp	Gly aaa	gag Glu 65	atc Ile	cca Pro	tac Tyr	tac Tyr	gct Ala 70	gag Glu	gtt Val	gtg Val	gcc Ala	aca Thr 75	303
aac Asn	aac Asn	cca Pro	gac Asp	aga Arg 80	aga Arg	gtg Val	aag Lys	cca Pro	gag Glu 85	acc Thr	cag Gln	ggc Gly	cga Arg	ttc Phe 90	cgc Arg	351
														gga Gly		399
_	_	_		_	_		_				-			aga Arg		447
	-	-			_			-		-	_		_	gag Glu		495
	_	_					-				_			ctg Leu		543
														tgt Cys 1'70		591
														agc Ser		639
_	-					_		-						ccc Pro		687
		-							_	~	-		-	caa Gln		735
														tat Tyr		783
	_										_			atc Ile 250	-	831
														cgg Arg		879
	_	_	_		-				_		_	_		ttc Phe	_	927
			-	_		_								atc Ile	_	975

WO 01/55437				PCT/US01/02623
285	-	290	295	
gag ctt cgt c	ga gta agg	tct gca gaa g	aa gga ggc ttc ac	c tgc cgc 1023

act	caq	cac	ccq	ctq	qqc	tcc	ctq	caa	att	ttt	ctq	aat	ctc	tca	gtt	1071
_	_		-	_			_				Leu				_	
				320	_				325					330		

Glu Leu Arg Arg Val Arg Ser Ala Glu Glu Gly Gly Phe Thr Cys Arg

tac	tcc	ctc	cca	cag	ttg	ctg	ggc	CCC	tcc	tgc	tcc	tgg	gag	gct	gag	1119
Tyr	Ser	Leu	Pro	Gln	Leu	Leu	Gly	Pro	Ser	Cys	Ser	Trp	Glu	Ala	Glu	
_			225					340					345			

atg	gat	gat	gaa	gac	ccc	att	atg	ggt	acc	atc	acc	tcg	ggt	tcc	agg	1551
Met	Asp	Asp	Glu	Asp	Pro	Ile	Met	Gly	Thr	Ile	Thr	Ser	Gly	Ser	Arg	
				480					485					490		

aag Lys																1599
цуs	uys	FIU	TTD	FLO	nap	Der	PLO	GTÅ	ASP	GIII	Ara	Ser	Pro	Pro	GIY	
			495					500					ENE			

gat	gcc	cct	CCC	ttg	gaa	gaa	caa	aag	gag	ctc	cat	tat	gcc	tcc	ctt	1647
															Leu	
		510					515					520				

agt Ser	ttt Phe	tct Ser	gag Glu	atg Met	aag Lys	tcg Ser	agg Arg	gag Glu	cct Pro	aag Lys	gac Asp	cag Gln	gag Glu	gcc Ala	cca Pro	1695
	525					530				•	535					

agc	acc	acg	gag	tac	tcg	gag	atc	aag	aca	agc	aag	tga	ggatttgccc	174	44
Ser	Thr	Thr	Glu	Tvr	Ser	Glu	Tle	Lvs	Thr	Ser	Laze	*			

PCT/US01/02623 WO 01/55437

545 540 550

1759 agagttcagt cctgg

ccatgaaagc gtacgcacga cgaccggacc ggaattcccg ggtcgacgat ttcgtacagg

60

120

<210> 111

<211> 4205

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (548)..(3733)

<400> 111

actggagggc ttgaggaatg tggtggtccc tctcttcgtt gtttctgccc cctgaggttg tgctttctca gggatatgca ctctgcactt ccattcctgc agtgaaatta actcgagctt 180 ggcagetega gaggagaatg tggccaettt ccgaggetea gagtatetgt getacgaeet 240 gtotcagaac cogatocaga gcagcagtga tgaaatcacc ctctccttta agacctggca 300 gcgtaacggc ctcatcctgc acacgggcaa gtcggctgac tatgtcaacc tggctctgaa 360 ggatggtgcg gtctccttgg tcattaacct ggggtccggg gcctttgagg ccattgtgga 420 gccagtgaat ggaaaattca acgacaacgc ctggcatgat gtcaaagtga cacgcaacct 480 ccggcaggtg acaatctctg tggatggcat tcttaccacg acgggctaca ctcaagagga 540 ctatacc atg ctg ggc tcg gac gac ttc ttc tat gta gga gga agc cca 589 Met Leu Gly Ser Asp Phe Phe Tyr Val Gly Gly Ser Pro agt acc gct gac ttg cct ggc tcc cct gtc agc aac aac ttc atg ggc 637 Ser Thr Ala Asp Leu Pro Gly Ser Pro Val Ser Asn Asn Phe Met Gly 15 tgc ctt aaa gag gtt gtt tat aag aat aat gac atc cgt ctg gag ctg 685 Cys Leu Lys Glu Val Val Tyr Lys Asn Asn Asp Ile Arg Leu Glu Leu tet ege etg gee egg att geg gae ace aag atg aaa ate tat gge gaa 733 Ser Arg Leu Ala Arg Ile Ala Asp Thr Lys Met Lys Ile Tyr Gly Glu 50 gtt gtg ttt aag tgt gag aat gtg gcc aca ctg gac ccc atc aac ttt 781 Val Val Phe Lys Cys Glu Asn Val Ala Thr Leu Asp Pro Ile Asn Phe gag acc cca gag get tac atc agc ttg ccc aag tgg aac act aaa cgt 829 Glu Thr Pro Glu Ala Tyr Ile Ser Leu Pro Lys Trp Asn Thr Lys Arg atg ggc tcc atc tcc ttt gac ttc cgc acc aca gag ccc aat ggc ctq 877 Met Gly Ser Ile Ser Phe Asp Phe Arg Thr Thr Glu Pro Asn Gly Leu 100 105 atc ctc ttc act cat gga aag ccc caa gag agg aag gat gct cgg agc 925

WC	) 01/5	5437												j	PC 1/U	501/02023
Ile	Leu	Phe	Thr	His 115	Gly	Lys	Pro	Gln	Glu 120	Arg	Lys	Asp	Ala	Arg 125	Ser	
cag Gln	aag Lys	aat Asn	aca Thr 130	aaa Lys	gta Val	gac Asp	ttc Phe	ttt Phe 135	gcc Ala	gtg Val	gaa Glu	ctc Leu	ctc Leu 140	gat Asp	ggc Gly	973
						gac Asp										1021
gcc Ala	act Thr 160	cag Gln	aag Lys	aaa Lys	gcc Ala	aat Asn 165	gat Asp	GJÀ aaa	gaa Glu	tgg Trp	tac Tyr 170	cat His	gtg Val	gac Asp	att Ile	1069
						ggt Gly										1117
			-	_		gag Glu	_			-	_	_	-		_	1165
_		_			_	ccg Pro			_	_						1213
						atg Met										1261
						ggg Gly 245										1309
						ggt Gly										1357
_	_	_	_	_	_	tac Tyr		_	_			_		_		1405
						atc Ile										1453
						gag Glu										1501
_		_	-			atg Met 325		_	_	_				_		1549
-				-		atg Met		_		_			_	_		1597
					Asp	tct Ser	-	-		-	_	-		_	-	1645
ggg	<b>3</b> 99	cgt	gtc	aag	ctc	atg	gtt	aac	tta	gac	tgt	atc	agg	ata	aac	1693

WC	01/5	5437												1	PCT/US	801/02623
Gly	Gly	Arg	Val 370	Lys	Leu	Met	Val	Asn 375	Leu	Asp	Cys	Ile	Arg 380	Ile	Asn	
					gga Gly											1741
aat Asn	gac Asp 400	aac Asn	gag Glu	tgg Trp	cac His	acc Thr 405	gtt Val	cgg Arg	gtg Val	gtg Val	cgg Arg 410	aga Arg	gga Gly	aaa Lys	agc . Ser	1789
ctt Leu 415	aag Lys	tta Leu	acc Thr	gtg Val	gat Asp 420	gat Asp	gat Asp	gtg Val	gct Ala	gag Glu 425	ggt Gly	aca Thr	atg Met	gtg Val	gga Gly 430	1837
gac Asp	cat His	acc Thr	cgt Arg	ttg Leu 435	gag Glu	ttc Phe	cac His	aac Asn	att Ile 440	gaa Glu	acg Thr	gga Gly	atc Ile	atg Met 445	act Thr	1885
					tcc Ser											1933
_	-		_		aat Asn						-					1981
ggt Gly	gac Asp 480	att Ile	gat Asp	tat Tyr	tgt Cys	gag Glu 485	ctg Leu	aag Lys	gct Ala	cgt Arg	ttt Phe 490	gga Gly	ctg Leu	agg Arg	aac Asn	2029
		-	_		gtc Val 500			_		_	_					2077
	_			_	gct Ala				_					_		2125
_					gat Asp							_		-		2173
	-				gtc Val			_	_			_				2221
	-				ggt Gly								_	-		2269
					cag Gln 580											2317
-				_	ctg Leu			-			_	_		_	-	2365
					aat Asn											2413
ggt	ctg	gcc	caa	ggc	atg	tac	agc	aac	ctc	cca	aag	ctc	gtg	gcc	tct	2461

""	01,0															
Gly	Leu	Ala 625	Gln	Gly	Met	Tyr	Ser 630	Asn	Leu	Pro	Lys	Leu 635	Val	Ala	Ser	
cga Arg	gat Asp 640	ggc Gly	ttt Phe	cag Gln	ggc Gly	tgt Cys 645	cta Leu	gca Ala	tca Ser	gly ggg	gac Asp 650	ttg Leu	aat Asn	gga Gly	cgc Arg	2509
ctg Leu 655	cca Pro	gac Asp	ctc Leu	atc Ile	aat Asn 660	gat Asp	gct Ala	ctt Leu	cat His	cgg Arg 665	agc Ser	gga Gly	cag Gln	atc Ile	gag Glu 670	2557
cgt Arg	ggc Gly	tgt Cys	gaa Glu	gga Gly 675	ccc Pro	agt Ser	acc Thr	acc Thr	tgc Cys 680	cag Gln	gaa Glu	gat Asp	tca Ser	tgt Cys 685	gcc Ala	2605
aac Asn	cag Gln	gly aaa	gtc Val 690	tgc Cys	atg Met	caa Gln	caa Gln	tgg Trp 695	gag Glu	ggc Gly	ttc Phe	acc Thr	tgt Cys 700	gat Asp	tgt Cys	2653
tct Ser	atg Met	acc Thr 705	tct Ser	tat Tyr	tct Ser	gga Gly	aac Asn 710	cag Gln	tgc Cys	aat Asn	gat Asp	cct Pro 715	ggc Gly	gct Ala	acg Thr	2701
tac Tyr	atc Ile 720	ttt Phe	gly aaa	aaa Lys	agt Ser	ggt Gly 725	g1y ggg	ctt Leu	atc Ile	ctc Leu	tac Tyr 730	acc Thr	tgg Trp	cca Pro	gcc Ala	2749
aat Asn 735	gac Asp	agg Arg	ccc Pro	agc Ser	acg Thr 740	cgg Arg	tct Ser	gac Asp	cgc Arg	ctt Leu 745	gcc Ala	gtg Val	ggc Gly	ttc Phe	agc Ser 750	2797
					ggc Gly											2845
					cag Gln				Glu							2893
gtc Val	ttc Phe	aac Asn 785	Ile	ggc Gly	aca Thr	gtt Val	gac Asp 790	Ile	tcc Ser	atc Ile	aaa Lys	gag Glu 795	gag Glu	aga Arg	acc Thr	2941
cct Pro	gta Val 800	Asn	gac Asp	ggc	aaa Lys	tac Tyr 805	cat His	gtg Val	gta Val	cgc Arg	ttc Phe 810	Thr	agg Arg	aac Asn	ggc Gly	2989
	Asn				cag Gln 820	Val					Val					3037
					Leu					Thr						3085
			_	Asp			-		Phe					Ser	gly	3133
			Asp		_		_	Leu		_		_	Glu		aac Asn	3181
ccc	aat	att	aaa	ato	aat	gga	agt	gtt	cgg	ctg	gtt	gga	gaa	gto	cca	3229

WO 01/35457	,02020
Pro Asn Ile Lys Ile Asn Gly Ser Val Arg Leu Val Gly Glu Val Pro 880 885 890	
tca att ttg gga aca aca cag acg acc tcc atg cca cca gaa atg tct Ser Ile Leu Gly Thr Thr Gln Thr Thr Ser Met Pro Pro Glu Met Ser 895 900 910	3277
act act gtc atg gaa acc act act aca atg gcg act acc aca acc cgt Thr Thr Val Met Glu Thr Thr Thr Thr Met Ala Thr Thr Thr Thr Arg 915 920 925	3325
aag aat cgc tct aca gcc agc att cag cca aca tca gat gat ctt gtt Lys Asn Arg Ser Thr Ala Ser Ile Gln Pro Thr Ser Asp Asp Leu Val 930 935 940	3373
tca tct gct gaa tgt tca agt gat gat gaa gac ttt gtt gaa tgt gag Ser Ser Ala Glu Cys Ser Ser Asp Asp Glu Asp Phe Val Glu Cys Glu 945 950 955	3421
ccg agt aca gca aac ccc acg gag ccg gga atc aga cgg gtt ccg ggg Pro Ser Thr Ala Asn Pro Thr Glu Pro Gly Ile Arg Arg Val Pro Gly 960 965 970	3469
gcc tca gag gtg atc cgg gag tcg agc agc aca aca ggg atg gtc gtc Ala Ser Glu Val Ile Arg Glu Ser Ser Ser Thr Thr Gly Met Val Val 975 980 985 990	3517
ggc att gtg gct gct gcc gcc ctc tgc atc ttg atc ctc ctg tac gcc Gly Ile Val Ala Ala Ala Leu Cys Ile Leu Ile Leu Leu Tyr Ala 995 1000 1005	3565
atg tac aag tac agg aac agg gac gag ggg tcc tat caa gtg gac gag Met Tyr Lys Tyr Arg Asn Arg Asp Glu Gly Ser Tyr Gln Val Asp Glu 1010 1015 1020	3613
acg cgg aac tac atc agc aac tcc gcc cag agc aac ggc acg ctc atg Thr Arg Asn Tyr Ile Ser Asn Ser Ala Gln Ser Asn Gly Thr Leu Met 1025 1030 1035	3661
aag gag aag cag cag agc tcg aag agc ggc cac aag aaa cag aaa aac Lys Glu Lys Gln Gln Ser Ser Lys Ser Gly His Lys Lys Gln Lys Asn 1040 1045 1050	3709
aag gac agg gag tat tac gtg taa acatgcgaac actgctcaca cgcgagtttt Lys Asp Arg Glu Tyr Tyr Val * 1055 1060	3763
cacagttatt tctatccacg cctatgaatc tttggacggt gagatctcac agatgtcaga	3823
actgctggaa ctatgaaatg gggtatataa ccacgactct ggtggggaaa accgtttttt	3883
aaaggacaca cacacacaca gegatgeate tetetetaaa geteageeae ggetgeggea	3943
aggtcccagc ggtcgctggg agacagaagg ttttgtgccc tgctgtatca taaagcacac	4003
acttageget etggageegg aeggtggete caecaettee geaggeetag aaactteett	4063
ctccggagga ccttttacta aaaggtagaa gacttcatgg cttacttgtt ccataactcc	4123
aagtgagtct gtaatgtttg tgaagcttga ctgtaaccat gttttttctg tttaattatg	4183
taaaaaacaa aactacaaca ac	4205

<210> 112

<211> 4295 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (548) .. (3823) <400> 112 ccatgaaagc gtacgcacga cgaccggacc ggaattcccg ggtcgacgat ttcgtacagg 60 actggagge ttgaggaatg tggtggteec tetettegtt gtttetgeec cetgaggttg 120 tgctttctca gggatatgca ctctgcactt ccattcctgc agtgaaatta actcgagctt 180 qqcaqctcqa gaggagaatg tggccacttt ccgaggctca gagtatctgt gctacgacct 240 gtotcagaac cogatocaga gcagcagtga tgaaatcacc ctctccttta agacctggca 300 gegtaacggc ctcatcctgc acacgggcaa gtcggctgac tatgtcaacc tggctctgaa 360 ggatggtgcg gtctccttgg tcattaacct ggggtccggg gcctttgagg ccattgtgga 420 gccagtgaat ggaaaattca acgacaacgc ctggcatgat gtcaaagtga cacgcaacct 480 ccggcaggtg acaatctctg tggatggcat tcttaccacg acgggctaca ctcaagagga 540 ctatacc atg ctg ggc tcg gac gac ttc ttc tat gta gga gga agc cca 589 Met Leu Gly Ser Asp Asp Phe Phe Tyr Val Gly Gly Ser Pro agt acc gct gac ttg cct ggc tcc cct gtc agc aac aac ttc atg ggc 637 Ser Thr Ala Asp Leu Pro Gly Ser Pro Val Ser Asn Asn Phe Met Gly 20 25 685 tgc ctt aaa gag gtt gtt tat aag aat aat gac atc cgt ctg gag ctg Cys Leu Lys Glu Val Val Tyr Lys Asn Asn Asp Ile Arg Leu Glu Leu 40 733 tet ege etg gee egg att geg gae ace aag atg aaa ate tat gge gaa Ser Arg Leu Ala Arg Ile Ala Asp Thr Lys Met Lys Ile Tyr Gly Glu 50 55 60 gtt gtg ttt aag tgt gag aat gtg gcc aca ctg gac ccc atc aac ttt 781 Val Val Phe Lys Cys Glu Asn Val Ala Thr Leu Asp Pro Ile Asn Phe 65 70 gag acc cca gag gct tac atc agc ttg ccc aag tgg aac act aaa cgt 829 Glu Thr Pro Glu Ala Tyr Ile Ser Leu Pro Lys Trp Asn Thr Lys Arg 80 85 atg ggc tcc atc tcc ttt gac ttc cgc acc aca gag ccc aat ggc ctg 877 Met Gly Ser Ile Ser Phe Asp Phe Arg Thr Thr Glu Pro Asn Gly Leu 100 atc ctc ttc act cat gga aag ccc caa gag agg aag gat gct cgg agc 925 Ile Leu Phe Thr His Gly Lys Pro Gln Glu Arg Lys Asp Ala Arg Ser 115 120 cag aag aat aca aaa gta gac ttc ttt gcc gtg gaa ctc ctc gat ggc 973 Gln Lys Asn Thr Lys Val Asp Phe Phe Ala Val Glu Leu Leu Asp Gly

130 135 140

			130					133					140			
aac Asn	ctg Leu	tac Tyr 145	ttg Leu	ctg Leu	ctt Leu	gac Asp	atg Met 150	ggc Gly	tct Ser	ggc Gly	acc Thr	atc Ile 155	aaa Lys	gtg Val	aaa Lys	1021
gcc Ala	act Thr 160	cag Gln	aag Lys	aaa Lys	gcc Ala	aat Asn 165	gat Asp	ggg Gly	gaa Glu	tgg Trp	tac Tyr 170	cat His	gtg Val	gac Asp	att Ile	1069
cag Gln 175	cga Arg	gat Asp	ggc Gly	aga Arg	tca Ser 180	ggt Gly	act Thr	ata Ile	tca Ser	gtg Val 185	aac Asn	agc Ser	agg Arg	cgc Arg	acg Thr 190	1117
cca Pro	ttc Phe	acc Thr	gcc Ala	agt Ser 195	Gly 999	gag Glu	agc Ser	gag Glu	atc Ile 200	ctg Leu	gac Asp	ctg Leu	gaa Glu	gga Gly 205	gac Asp	1165
atg Met	tac Tyr	ctg Leu	gga Gly 210	Gly 999	ctg Leu	ccg Pro	gag Glu	aac Asn 215	cgt Arg	gct Ala	ggc Gly	ctt Leu	att Ile 220	ctc Leu	ccc Pro	1213
acc Thr	gag Glu	ctg Leu 225	tgg Trp	act Thr	gcc Ala	atg Met	ctc Leu 230	aac Asn	tat Tyr	ggc Gly	tac Tyr	gtg Val 235	ggc Gly	tgc Cys	atc Ile	1261
ege Arg	gac Asp 240	cta Leu	ttc Phe	att Ile	gat Asp	999 Gly 245	cgc Arg	agc Ser	aag Lys	aac Asn	att Ile 250	cga Arg	cag Gln	ctg Leu	gca Ala	1309
gag Glu 255	atg Met	cag Gln	aat Asn	gct Ala	gcg Ala 260	ggt Gly	gtc Val	aag Lys	tcc Ser	tcc Ser 265	tgt Cys	tca Ser	cgg Arg	atg Met	agt Ser 270	1357
gcc Ala	aag Lys	cag Gln	tgt Cys	gac Asp 275	agc Ser	tac Tyr	ccc Pro	tgc Cys	aag Lys 280	aat Asn	aat Asn	gct Ala	gtg Val	tgc Cys 285	aag Lys	1405
gac Asp	ggc Gly	tgg Trp	aac Asn 290	cgc Arg	ttc Phe	atc Ile	tgc Cys	gac Asp 295	tgc Cys	acc Thr	ggc Gly	acc Thr	gga Gly 300	Tyr	tgg Trp	1453
gga Gly	aga Arg	acc Thr 305	Cys	gaa Glu	agg Arg	gag Glu	gca Ala 310	Ser	atc Ile	ctg Leu	agc Ser	tat Tyr 315	Asp	ggt Gly	agc Ser	1501
atg Met	tac Tyr 320	Met	aag Lys	atc Ile	atc Ile	atg Met 325	Pro	atg Met	gtc Val	atg Met	cat His 330	Thr	gag Glu	gca Ala	gag Glu	1549
gat Asp 335	Val	Ser	ttc Phe	cgc	ttc Phe 340	Met	tcc Ser	cag Gln	cga Arg	gct Ala 345	tat Tyr	Gly	ctg Leu	ctg Leu	gtg Val 350	1597
gct Ala	acg Thr	acc Thr	tcc Ser	agg Arg 355	Asp	tct Ser	gcc	gac Asp	acc Thr 360		cgt Arg	ctg Leu	gag Glu	ctg Leu 365	Asp	1645
Gly	gly ggg	cgt Arg	gtc Val 370	Lys	ctc Leu	atg Met	gtt Val	aac Asn 375	Leu	gac Asp	tgt Cys	ato Ile	agg Arg 380	Ile	aac Asn	1693
tgt Cys	aac Asn	tco Ser	ago Ser	aaa Lys	gga Gly	cca Pro	gag Glu	acc Thr	ttg Leu	tat Tyr	gca Ala	Gly	cag Gln	aag Lys	ctc Leu	1741

385 390 395 .

		385					390					395				•
aat Asn	gac Asp 400	aac Asn	gag Glu	tgg Trp	cac His	acc Thr 405	gtt Val	cgg Arg	gtg Val	gtg Val	cgg Arg 410	aga Arg	gga Gly	aaa Lys	agc Ser	1789
ctt Leu 415	aag Lys	tta Leu	acc Thr	gtg Val	gat Asp 420	gat Asp	gat Asp	gtg Val	gct Ala	gag Glu 425	ggt Gly	aca Thr	atg Met	gtg Val	gga Gly 430	1837
gac Asp	cat His	acc Thr	cgt Arg	ttg Leu 435	gag Glu	ttc Phe	cac His	aac Asn	att Ile 440	gaa Glu	acg Thr	gga Gly	atc Ile	atg Met 445	act Thr	1885
Glu	aaa Lys	Arg	Tyr 450	Ile	Ser	Val	Val	Pro 455	Ser	Ser	Phe	Ile	Gly 460	His	Leu	1933
Gln	agc Ser	Leu 465	Met	Phe	Asn	Gly	Leu 470	Leu	Tyr	Ile	Asp	Leu 475	Cys	Lys	Asn	1981
Gly	gac Asp 480	Ile	Asp	Tyr	Суѕ	Glu 485	Leu	Lys	Ala	Arg	Phe 490	Gly	Leu	Arg	Asn	2029
Ile 495		Ala	Asp	Pro	Val 500	Thr	Phe	Lys	Thr	Lys 505	Ser	Ser	Tyr	Leu	Ser 510	2077
Leu	gcc Ala	Thr	Leu	Gln <b>51</b> 5	Ala	Tyr	Thr	Ser	Met 520	His	Leu	Phe	Phe	Gln 525	Phe	2125
aag Lys	acc Thr	acc Thr	tca Ser 530	Pro	gat Asp	ggc	ttc Phe	att Ile 535	Leu	ttc Phe	aat Asn	agt Ser	ggt Gly 540	Asp	ggc	2173
aat Asr	gac n Asp	tto Phe 545	lle	gca Ala	gtc Val	gag Glu	Ctt Leu 550	Val	aag Lys	Gly 999	tat Tyr	ata Ile 555	His	tac Tyr	gtt Val	2221
ttt Phe	gac Asp 560	Let	gga Gly	aac Asn	ggt Gly	Pro 565	Asn	gtg Val	ato Ile	aaa Lys	ggd Gly 570	Asn	agt Ser	gac Asp	cgc Arg	2269
Pro 57	o Leu	g aat 1 Asr	gac n Asp	aac Asr	cag Gln 580	Trp	cac His	aat Asn	gto Val	gto Val 585	. Ile	act Thr	cgg	gac Asp	aat Asn 590	2317
agi Se:	t aad r Asr	e act	cat His	ago Ser 595	: Leu	aaa Lys	gtg Val	g gad L Asp	t acc	: Lys	gtg Val	gto Val	act Thr	Glr G05	gtt Val	2365
ate Ile	c aat e Ası	ggt Gly	gco Ala 610	Lys	a aat s Asn	: ctg ı Lev	gat 1 Asp	ttg Lev 615	ı Lys	ggt Gl	gat Asp	t cto	tat Tyr 620	Met	gct Ala	2413
gg gg	t cto y Le	g gco 1 Ala 62	a Glr	a ggo a Gly	ato Met	tac Tyr	ago Sei 630	c Asr	cto Le	c cca	a aag o Lys	g cto Let 635	ı Val	g gco L Ala	tct a Ser	2461
cg.	a gat g As	gg Gl	c ttt y Phe	caq e Gl	g ggo n Gly	tgt Cys	cta Lei	a gca ı Ala	a tca a Sei	a ggg	g gad Y Asp	tto Lei	g aat ı Ası	gga Gly	a cgc / Arg	2509

640 645 650

ctg Leu 655	cca Pro	gac Asp	ctc Leu	atc Ile	aat Asn 660	gat Asp	gct Ala	ctt Leu	cat His	cgg Arg 665	agc Ser	gga Gly	cag Gln	atc Ile	gag Glu 670	2557
cgt Arg	ggc Gly	tgt Cys	gaa Glu	gga Gly 675	ccc Pro	agt Ser	acc Thr	acc Thr	tgc Cys 680	cag Gln	gaa Glu	gat Asp	tca Ser	tgt Cys 685	gcc Ala	2605
aac Asn	cag Gln	gly aaa	gtc Val 690	tgc Cys	atg Met	caa Gln	caa Gln	tgg Trp 695	gag Glu	ggc Gly	ttc Phe	acc Thr	tgt Cys 700	gat Asp	tgt Cys	2653
tct Ser	atg Met	acc Thr 705	tct Ser	tat Tyr	tct Ser	gga Gly	aac Asn 710	cag Gln	tgc Cys	aat Asn	gat Asp	cct Pro 715	ggc Gly	gct Ala	acg Thr	2701
tac Tyr	atc Ile 720	ttt Phe	gjå aaa	aaa Lys	agt Ser	ggt Gly 725	Gly 999	ctt Leu	atc Ile	ctc Leu	tac Tyr 730	acc Thr	tgg Trp	cca Pro	gcc Ala	2749
aat Asn 735	gac Asp	agg Arg	ccc Pro	agc Ser	acg Thr 740	cgg Arg	tct Ser	gac Asp	cgc Arg	ctt Leu 745	gcc Ala	gtg Val	ggc Gly	ttc Phe	agc Ser 750	2797
acc Thr	act Thr	gtg Val	aag Lys	gat Asp 755	ggc Gly	atc Ile	ttg Leu	gtc Val	cgc Arg 760	atc Ile	gac Asp	agt Ser	gct Ala	cca Pro 765	gga Gly	2845
ctt Leu	ggt Gly	gac Asp	ttc Phe 770	ctc Leu	cag Gln	ctt Leu	cac His	ata Ile 775	gaa Glu	cag Gln	Gly ggg	aaa Lys	att Ile 780	gga Gly	gtt Val	2893
gtc Val	ttc Phe	aac Asn 785	att Ile	ggc Gly	aca Thr	gtt Val	gac Asp 790	atc Ile	tcc Ser	atc Ile	aaa Lys	gag Glu 795	gag Glu	aga Arg	acc Thr	2941
cct Pro	gta Val 800	aat Asn	gac Asp	ggc	aaa Lys	tac Tyr 805	cat His	gtg Val	gta Val	cgc Arg	ttc Phe 810	acc Thr	agg Arg	aac Asn	ggc Gly	2989
ggc Gly 815	aac Asn	gcc Ala	acc Thr	ctg Leu	cag Gln 820	gtg Val	gac Asp	aac Asn	tgg Trp	cca Pro 825	gtg Val	aat Asn	gaa Glu	cat His	tat Tyr 830	3037
cct Pro	aca Thr	ggc	aac Asn	act Thr 835	gat Asp	aat Asn	gaa Glu	cgc Arg	ttc Phe 840	caa Gln	atg Met	gta Val	aaa Lys	cag Gln 845	aaa Lys	3085
			aaa Lys 850													3133
ggc Gly	cgg Arg	cag Gln 865	tta Leu	acc Thr	atc Ile	ttc Phe	aac Asn 870	act Thr	cag Gln	gcg Ala	caa Gln	ata Ile 875	gcc Ala	att Ile	ggt Gly	3181
		Asp	aaa Lys													3229
tat Tyr	gat Asp	ggt Gly	ttg Leu	aaa Lys	gta Val	ctg Leu	aac Asn	atg Met	gcg Ala	gct Ala	gag Glu	aac Asn	aac Asn	ccc Pro	aat Asn	3277

WO 01/55437 PCT/US01/0	2623
895 900 905 910	
att aaa atc aat gga agt gtt cgg ctg gtt gga gaa gtc cca tca att Ile Lys Ile Asn Gly Ser Val Arg Leu Val Gly Glu Val Pro Ser Ile 915 920 925	3325
ttg gga aca aca cag acg acc tcc atg cca cca gaa atg tct act act Leu Gly Thr Thr Gln Thr Thr Ser Met Pro Pro Glu Met Ser Thr Thr 930 935 940	3373
gtc atg gaa acc act act aca atg gcg act acc aca acc cgt aag aat Val Met Glu Thr Thr Thr Met Ala Thr Thr Thr Arg Lys Asn 945 950 955	3421
cgc tct aca gcc agc att cag cca aca tca gat gat ctt gtt tca tct Arg Ser Thr Ala Ser Ile Gln Pro Thr Ser Asp Asp Leu Val Ser Ser 960 965 970	3469
gct gaa tgt tca agt gat gat gaa gac ttt gtt gaa tgt gag ccg agt Ala Glu Cys Ser Ser Asp Asp Glu Asp Phe Val Glu Cys Glu Pro Ser 975 980 985 990	3517
aca gca aac ccc acg gag ccg gga atc aga cgg gtt ccg ggg gcc tca Thr Ala Asn Pro Thr Glu Pro Gly Ile Arg Arg Val Pro Gly Ala Ser 995 1000 1005	3565
gag gtg atc cgg gag tcg agc agc aca aca ggg atg gtc gtc ggc att Glu Val Ile Arg Glu Ser Ser Ser Thr Thr Gly Met Val Val Gly Ile 1010 1015 1020	3613
gtg gct gct gcc gcc ctc tgc atc ttg atc ctc ctg tac gcc atg tac Val Ala Ala Ala Leu Cys Ile Leu Ile Leu Leu Tyr Ala Met Tyr 1025 1030 1035	3661
aag tac agg aac agg gac gag ggg tcc tat caa gtg gac gag acg cgg Lys Tyr Arg Asn Arg Asp Glu Gly Ser Tyr Gln Val Asp Glu Thr Arg 1040 1045 1050	3709
aac tac atc agc aac tcc gcc cag agc aac ggc acg ctc atg aag gag Asn Tyr Ile Ser Asn Ser Ala Gln Ser Asn Gly Thr Leu Met Lys Glu 1055 1060 . 1065 1070	3757
aag cag cag agc tcg aag agc ggc cac aag aaa cag aaa aac aag gac Lys Gln Gln Ser Ser Lys Ser Gly His Lys Lys Gln Lys Asn Lys Asp 1075 1080 1085	3805
agg gag tat tac gtg taa acatge gaacaetget cacaegegag ttttcacagt Arg Glu Tyr Tyr Val  * 1090	3859
tatttctatc cacgcctatg aatctttgga cggtgagatc tcacagatgt cagaactgct	3919
ggaactatga aatggggtat ataaccacga ctctggtggg gaaaaccgtt ttttaaagga	3979
cacacacaca cacagogatg catotototo taaagotoag coacggotgo ggcaaggtoo	4039
cagcggtcgc tgggagacag aaggttttgt gccctgctgt atcataaagc acacacttag	4099 4159
egetetggag eeggaeggtg geteeaceae tteegeagge etagaaaett eetteteegg aggaeetttt actaaaaggt agaagaette atggettaet tgtteeataa eteeaagtga	4219
gtctgtaatg tttgtgaagc ttgactgtaa ccatgttttt tctgtttaat tatgtaaaaa	4279

acaaaactac aacaac 4295

<210> 113 <211> 689 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (183)..(323) <400> 113 60 attggaattc gaagctgtac gcctgcaggt accggtccgg aattcccggg tcgaggctga qqcccacqtt tttaccccag cttgaggctg aggtgggctc tgtgctcctg gtgctgccaa 120 gecettgeet getatecaca ggeetgaggt geaggeetee eteagacagt gaegggttae 180 atg ggg tcc ctg atg cca ctc aga ccc ctg gca ctc cac act gcc 227 Met Gly Ser Leu Met Pro Leu Arg Pro Leu Ala Leu His Thr Ala ett ggg get get etg aac tte tee ttg eet tgt gag tgg tea aca etg 275 Leu Gly Ala Ala Leu Asn Phe Ser Leu Pro Cys Glu Trp Ser Thr Leu 25 20 ccc agt qca agt gag gct gga agg ctt tgg gga cct cca agt ttt cag 323 Pro Ser Ala Ser Glu Ala Gly Arg Leu Trp Gly Pro Pro Ser Phe Gln 40 taaccetgtg ttaccecaag ggaattgttt tgcccacaga ttttagcagg ttggagettt 383 caatctqtcc tqttttgggg gtttgtggct tagatqctgg gatqaqagaa gccacctaaa 443 tccaaaggaa ggagtttgca gcgtgttgca tcagccagcc agcagacacc cagctgtcat 503 ttqcattctc agcaacaaaa gccttggccc ctcatgacta tgggtgtcac ctgccctgtg tggcccaggg ccaggtggaa gccatccatg actgagtaaa atcagagtag catcctgctc 623 tgctctcctg tttgcaaggg taggagttgg ctgaaaacca gctgaagagt ggcaagtgtg 683 689 aatgct

<210> 114 <211> 1822 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (118)..(1494)

WC	01/5	5437													C1/05	01/02025
Met 1	Ala	Trp	Ala	Ser 5	Arg	Leu	Gly	Leu	Leu 10	Leu	Ala	Leu	Leu	Leu 15	Pro	
gtg Val	gtc Val	ggt Gly	gcc Ala 20	tcc Ser	acg Thr	cca Pro	ggc	acc Thr 25	gtg Val	gtc Val	cga Arg	ctc Leu	aac Asn 30	aag Lys	gca Ala	213
gca Ala	ttg Leu	agc Ser 35	tac Tyr	gtg Val	tct Ser	gaa Glu	att Ile 40	gjå aaa	aaa Lys	gcc Ala	cct Pro	ctc Leu 45	cag Gln	cgg Arg	gcc Ala	261
ctg Leu	cag Gln 50	gtc Val	act Thr	gtc Val	cct Pro	cat His 55	ttc Phe	ctg Leu	gac Asp	tgg Trp	agt Ser 60	gga Gly	gag Glu	gcg Ala	ctt Leu	309
cag Gln 65	ccc Pro	acc Thr	agg Arg	atc Ile	cgg Arg 70	att Ile	ctg Leu	aat Asn	gtc Val	cat His 75	gtg Val	ccc Pro	cgc Arg	ctc Leu	cac His 80	357
ctg Leu	aaa Lys	ttc Phe	att Ile	gct Ala 85	ggt Gly	ttc Phe	gga Gly	gtg Val	cgc Arg 90	ctg Leu	ctg Leu	gca Ala	gca Ala	gct Ala 95	aat Asn	405
ttt Phe	act Thr	ttc Phe	aag Lys 100	Val	ttt Phe	cgc Arg	gcc Ala	cca Pro 105	gag Glu	ccc Pro	ctg Leu	gag Glu	ctg Leu 110	acg Thr	ctg Leu	453
cct Pro	gtg Val	gaa Glu 115	Leu	ctg Leu	gct Ala	gac Asp	acc Thr 120	Arg	gtg Val	acc Thr	cag Gln	agc Ser 125	Ser	atc Ile	agg Arg	501
acc Thr	cct Pro 130	Val	gtc Val	agc Ser	atc Ile	tct Ser 135	gcc Ala	tgc Cys	tct Ser	tta Leu	ttc Phe 140	tcg Ser	ggc	cac His	gcc Ala	549
aac Asn 145	Glu	ttt Phe	gat Asp	ggc Gly	agt Ser 150	Asn	ago Ser	acc Thr	tcc Ser	cac His	Ala	ctg Leu	ctg Leu	gtc Val	Leu 160	597
gtg Val	g cag Gln	aag Lys	g cac His	att Ile 165	Lys	gct Ala	gto Val	ttg Leu	agt Ser 170	Asn	aag Lys	ctg Leu	tgo Cys	Leu 175	agc Ser	645
ato Ile	tcc Ser	aac Asr	c ctg 1 Leu 180	ı Val	cag Gln	ggt Gly	gto Val	aat Asn 185	Val	cac His	ctg Lev	ggc Gly	acc Thr	Lev	att Ile	693
GJ7 ggc	cto Lev	aac Asr 195	ı Pro	gtg Val	ggt Gly	cct Pro	gag Glu 200	ı Ser	cag Glr	ato lle	cgc Arg	tat Tyr 205	Ser	atg Met	gtc Val	741
agt Sei	gtg Val	Pro	e act	gto Val	acc Thr	agt Ser 219	: Asp	tac Tyr	att Ile	tco Ser	Lev 220	ı Glı	a gto ı Val	aat Asr	gct Ala	789
	l Leu					/ Lys					ı Pro				acc Thr 240	837
					Arg					r Glu					c acc a Thr	885
gt	g ggd	cto	c to	c cas	g cag	gctg	g tti	t gad	tct	t gc	gcto	cte	g ctg	gctg	g cag	933

PCT/US01/02623 WO 01/55437 Val Gly Leu Ser Gln Gln Leu Phe Asp Ser Ala Leu Leu Leu Gln 265 981 aag gcc ggt gcc ctc aac ctg gac atc aca ggg cag ctg agg tcg gat Lys Ala Gly Ala Leu Asn Leu Asp Ile Thr Gly Gln Leu Arg Ser Asp 280 1029 gac aac ctg ctg aac acc tct gct ctg ggc cgg ctc atc ccg gag gtg Asp Asn Leu Leu Asn Thr Ser Ala Leu Gly Arg Leu Ile Pro Glu Val 290 1077 gcc cgc cag ttt ccc gag ccc atg cct gtg gtg ctc aag gtg cgg ctg Ala Arg Gln Phe Pro Glu Pro Met Pro Val Val Leu Lys Val Arg Leu 305 310 ggt gcc aca cct gtg gcc atg ctc cac aca aac aac gcc acc ctg cgg 1125 Gly Ala Thr Pro Val Ala Met Leu His Thr Asn Asn Ala Thr Leu Arg 330 325 ctg cag ccc ttc gtg gag gtc ctg gcc aca gcc tcc aac tcg gct ttc 1173 Leu Gln Pro Phe Val Glu Val Leu Ala Thr Ala Ser Asn Ser Ala Phe 345 cag tee etc tee etg gat gtg gta gtg aac ttg aga etc cag etc 1221 Gln Ser Leu Phe Ser Leu Asp Val Val Val Asn Leu Arg Leu Gln Leu 360 1269 tct gtg tcc aag gtg aag ctt cag ggg acc acg tct gtg ctg ggg gat Ser Val Ser Lys Val Lys Leu Gln Gly Thr Thr Ser Val Leu Gly Asp 375 gtc cag ctc acg gtg gcc tcc tcc aac gtg ggc ttc att gat aca gat 1317 Val Gln Leu Thr Val Ala Ser Ser Asn Val Gly Phe Ile Asp Thr Asp 390 395 cag gtg cgc aca ctg atg ggc acc gtt ttt gag aag ccc ctg ctg gac 1365 Gln Val Arg Thr Leu Met Gly Thr Val Phe Glu Lys Pro Leu Leu Asp 405 1413 cat etc aat get etc ttg gec atg gga att gec etc eet ggt gtg gte His Leu Asn Ala Leu Leu Ala Met Gly Ile Ala Leu Pro Gly Val Val 420 1461 aac etc cae tat gtt gee eet gag ate ttt gte tat gag gge tae gtg Asn Leu His Tyr Val Ala Pro Glu Ile Phe Val Tyr Glu Gly Tyr Val 440 gtg ata tcc agt gga ctc ttc tac cag agc tga ggcaagac cactgggagg 1512 Val Ile Ser Ser Gly Leu Phe Tyr Gln Ser * 450 455 cctgagagtg ggccagctcg ctgctcaggc gaatttctca tttcaagcca ctggggaaac 1572 tgaggcaaaa ccatacttag tcatcaccaa caagctggac tgcttagctg ggctgtttta 1632 tettecetga gtgcctgggt etecetecet caettetgee etttecette etecteetet 1692 totoctccct cttccctcat ctcccccctc cttcctctgc cccaccccag gggggagcag 1752 actgetecte caggetgtat agacetgece tettgeatta aacaaettet ettgagetge 1812 aaaaaaaaa 1822

<210> 115 <211> 674 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (190)(390)	
<400> 115 acccacgcgt ccgcccacgc gtccgcccac gcgtccgttc acgcgtccgg ttgaactcat	60
gataggtgca gaaatttcag taaaaataat gtgacatcgg cagagctgtc atagatctgg	120
gatatggctg gaaggacata gagtaaatga teggtetggt teategetaa aggagaetta	180
ggaacctag atg aag ttg gta ctt ctg aga aag aca tct ctt tct gtt Met Lys Leu Val Leu Leu Arg Lys Thr Ser Leu Ser Val 1 5 10	228
ttc act act cta ttc tca gta tcc agt tct cag tac cca gtt ctc agt Phe Thr Thr Leu Phe Ser Val Ser Ser Ser Gln Tyr Pro Val Leu Ser 15 20 25	276
acc tot att tgt aat act cot gta ttt agt act ttg ttt tta gtg toc Thr Ser Ile Cys Asn Thr Pro Val Phe Ser Thr Leu Phe Leu Val Ser 30 35 40 45	324
tgt tct gtt aac cct ctt cct agt acc gta ttt tta gta ctg cta tac Cys Ser Val Asn Pro Leu Pro Ser Thr Val Phe Leu Val Leu Leu Tyr 50 55 60	372
tca gtt gcc tgt ctg tag tacccc tgtacgtagt actcttttct tacaactctg Ser Val Ala Cys Leu * 65	426
ttcccagtac ccctatgttt agtcccttgt tctcatgttc tcactacccc aatacttaat	486
atactttgtt ctcagtatcc ttgttgttag taccctgttc tcactacccc ttttcttagt	546
acccctgagg ggggaaaaaa aggatgataa tggggtataa gtctcaaaaa acttttggat	606
tgtttgattt gaactgagtc aaaggtaaaa ccagtgttct ggagttcgac ttctgggtgc	666
aaatccct	674
<210> 116 <211> 1029	
<212> DNA <213> Homo sapiens	
·	
<220> <221> CDS	
<222> (461)(982)	
<400> 116	60
gacagacaga gtgtgcttgg cagaagcccg gtgaccagct gcagtcaccc acagcagcgt	90

tgtgcaaatc tagaaaaagt gccccttcct ctggctcctg cagttccagg gtgcccaggc 120

ccccagccaa gagcgtgtac aggtggccct gctgacacac agaatccttg ggagaacaaa	180
gcctccccgg ggttcgggga caggtggatg ggaggtagtc ctggccagag gtatctgggg	240
aggctggggg ccttgcgggg tgaggcaggg caagggtgtg agtcactgcc aggctgccaa	300
ageteactet geagetgtee agteecetgg ggtageecea ageetgteet tgtagggagt	360
ggcagccgga gtctgaactg tcctggggga ccaagcagga gcttaagatg ggcaagacct	420
ggggccctgg gcagacgcat caaagcaggc agaagcaggc atg gcc agc agg aag Met Ala Ser Arg Lys 1 5	475
acc aag aag gaa ggg ggt gcc ctc cgg gcc cag aga gcc tca tcc Thr Lys Lys Glu Gly Gly Ala Leu Arg Ala Gln Arg Ala Ser Ser 10 15 20	523
aat gtc ttc tcc aac ttt gag cag act cag atc cag gag ttc aag gag Asn Val Phe Ser Asn Phe Glu Gln Thr Gln Ile Gln Glu Phe Lys Glu 25 30 35	571
gca ttc aca ctc atg gat cag aac cga gat ggc ttc att gac aag gag Ala Phe Thr Leu Met Asp Gln Asn Arg Asp Gly Phe Ile Asp Lys Glu 40 45 50	619
gac ctg aag gac acc tat gcc tcc ctg ggc aag acc aac gtc aag gac Asp Leu Lys Asp Thr Tyr Ala Ser Leu Gly Lys Thr Asn Val Lys Asp 55 60 65	667
gac gag ctg gac gcc atg ctc aaa gag gcc tcg ggg ccc atc aac ttc Asp Glu Leu Asp Ala Met Leu Lys Glu Ala Ser Gly Pro Ile Asn Phe 70 75 80 85	715
acc atg ttt ctg aac ctg ttt ggg gag aag ctg agc ggt acc gac gcc Thr Met Phe Leu Asn Leu Phe Gly Glu Lys Leu Ser Gly Thr Asp Ala 90 95 100	763
gag gag acc att ctt aac gcc ttc aag atg ctg gac ccg gac ggg aaa Glu Glu Thr Ile Leu Asn Ala Phe Lys Met Leu Asp Pro Asp Gly Lys 105 110 115	811
ggg aaa atc aac aag gag tac atc aag cgt ctg ctg atg tcc cag gct Gly Lys Ile Asn Lys Glu Tyr Ile Lys Arg Leu Leu Met Ser Gln Ala 120 125 130	859
gac aag atg acg gcg gaa gag gtg gac cag atg ttc cag ttc gcc tcc Asp Lys Met Thr Ala Glu Glu Val Asp Gln Met Phe Gln Phe Ala Ser 135 140 145	907
atc gat gtg gcg ggc aac ctg gac tac aag gcg ctc agc tac gtg atc  Ile Asp Val Ala Gly Asn Leu Asp Tyr Lys Ala Leu Ser Tyr Val Ile  150 160 165	955
acc cac ggg gag gag aag gag gag tga gaccc agccgggtca ataaacctgg Thr His Gly Glu Glu Lys Glu Glu * 170	1007
acgcttggaa aaaaaaaaa aa	1029

<210> 117 <211> 878 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (382)..(573) <400> 117 cacttttegg gtcgacacac gcgcgcgcga gcagtagcct atctgtagac agttctcatg 60 120 aagagetgte tggccatett etttgaacag atgegtgtgg etgeeetgee gggatgatta cagcactatg gaactaatat tetttgaatg atgegetett attatttgaa aaatcaggag 180 gcctggtctt caggattccc ctcctcttcc actccccatc ctccttgaga gcagtatata 240 ctgggaatge ctgteaggeg acettteact tacageceat ggeagetgat ageattteta 300 gtcgattttg gtccataatt gaggcaaata taagtggggc aggaccttga agaatgatat 360 aattagttag tegagtgttt t atg ttg tta get aag ege tat get aag tat 411 Met Leu Leu Ala Lys Arg Tyr Ala Lys Tyr tte att tat ttt atc ttc ttt aat cct gtt tta atc ccc att cta caa 459 Phe Ile Tyr Phe Ile Phe Phe Asn Pro Val Leu Ile Pro Ile Leu Gln aga agg atc ctg aga ctt ggt gag atc cat att gct ggc cag tgc aga 507 Arg Arg Ile Leu Arg Leu Gly Glu Ile His Ile Ala Gly Gln Cys Arg 555 get ggg tee ete cag tet etg eet tta eet gee aac etg eat age ate Ala Gly Ser Leu Gln Ser Leu Pro Leu Pro Ala Asn Leu His Ser Ile 45 50 609 ctg gat att ctt gca tag ccacat agacatttgt ttgtactttt agtatgtgtt Leu Asp Ile Leu Ala * 60 gggtacagtg catgttttta gctattttct caagcatctg ggaagttcta actctgtttt 669 attgatgagg aaactgggtc ttgaaatcca ggcctatacc tgtctgaatg taacgccccg 729 caggaaagtg ggacattgag aaagagccac aggtgggaaa ccctaatacc tcggattgga tactggctct accgtgaacc aacccttggg attttggaca agcggctata accctgttgg 849 gccttaactt tcttgatcaa aaaaagaac 878

<210> 118 <211> 1656 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (89)..(1051)

WO 01/55437	72023
<400> 118 gcggccgccg aggcctgggt ggaagttggc gctgctgccg ccgccctgca gcccactcgc	60
tgcctcggca gcgcgctgct cttctaag atg gct gcc gct acc ggt gcg gtg Met Ala Ala Thr Gly Ala Val 1 5	112
gca gcc tcg gcc tcg ggt cag gcg gaa ggt aaa aag atc acc gat Ala Ala Ser Ala Ala Ser Gly Gln Ala Glu Gly Lys Lys Ile Thr Asp 10 15 20	160
ctg cgg gtc atc gat ctg aag tcc gag ctg aag cgg cgg aac tta gac Leu Arg Val Ile Asp Leu Lys Ser Glu Leu Lys Arg Arg Asn Leu Asp 25 30 35 40	208
atc acc gga gtc aag acc gtg ctc atc tcc cga ctc aag cag gct att Ile Thr Gly Val Lys Thr Val Leu Ile Ser Arg Leu Lys Gln Ala Ile 45 50 55	256
gaa gag gaa gga ggc gat cca gat aat att gaa tta act gtt tca act Glu Glu Glu Gly Gly Asp Pro Asp Asn Ile Glu Leu Thr Val Ser Thr 60 65 70	304
gat act cca aac aag aaa cca act aaa ggc aaa ggt aaa aaa cat gaa Asp Thr Pro Asn Lys Lys Pro Thr Lys Gly Lys Gly Lys Lys His Glu 75 80 85	352
gca gat gag ttg agt gga gat gct tct gtg gaa gat gat gct ttt atc Ala Asp Glu Leu Ser Gly Asp Ala Ser Val Glu Asp Asp Ala Phe Ile 90 95 100	400
aag gac tgt gaa ttg gag aat caa gag gca cat gag caa gat gga aat Lys Asp Cys Glu Leu Glu Asn Gln Glu Ala His Glu Gln Asp Gly Asn 105 110 115	448
gat gaa cta aag gac tct gaa gaa ttt ggt gaa aat gaa gaa aat Asp Glu Leu Lys Asp Ser Glu Glu Phe Gly Glu Asn Glu Glu Asn 125 130 135	496
gtg cat tcc aag gag tta ctc tct gca gaa gaa aac aag aga gct cat Val His Ser Lys Glu Leu Leu Ser Ala Glu Glu Asn Lys Arg Ala His 140 145 150	544
gaa tta ata gag gca gaa gga ata gaa gat ata gaa aaa gag gac atc Glu Leu Ile Glu Ala Glu Gly Ile Glu Asp Ile Glu Lys Glu Asp Ile 155 160 165	592
gaa agt cag gaa att gaa gct caa gaa ggt gaa gat gat acc ttt cta Glu Ser Gln Glu Ile Glu Ala Gln Glu Gly Glu Asp Asp Thr Phe Leu 170 175 180	640
aca gcc caa gat ggt gag gaa gaa gaa aat gag aaa gaa g	688
gct gag gct gat cac aca gct cat gaa gag atg gaa gct cat acg act Ala Glu Ala Asp His Thr Ala His Glu Glu Met Glu Ala His Thr Thr 205 210 215	736
gtg aaa gaa gct gag gat gac aac atc tcg gtc aca atc cag gct gaa Val Lys Glu Ala Glu Asp Asp Asn Ile Ser Val Thr Ile Gln Ala Glu 220 225 230	784
gat gcc atc act ctg gat ttt gat ggt gat gac ctc cta gaa aca ggt	832

PCT/US01/02623 WO 01/55437 Asp Ala Ile Thr Leu Asp Phe Asp Gly Asp Asp Leu Leu Glu Thr Gly 240 aaa aat gtg aaa att aca gat tgt gaa gca agt aag cca aaa gat ggg 880 Lys Asn Val Lys Ile Thr Asp Cys Glu Ala Ser Lys Pro Lys Asp Gly 255 250 cag ggc gcc att gca cag agg ccg gat aag gaa agc aag gat tat gag 928 Gln Gly Ala Ile Ala Gln Arg Pro Asp Lys Glu Ser Lys Asp Tyr Glu 275 265 270 atg aat gcg agc cat aaa gat ggt aag aag gaa gac tgc gtg aag ggt 976 Met Asn Ala Ser His Lys Asp Gly Lys Lys Glu Asp Cys Val Lys Gly 285 gac cct gtc gag aag gaa gcc aga gaa agt tct aag aaa gca gaa tct 1024 Asp Pro Val Glu Lys Glu Ala Arg Glu Ser Ser Lys Lys Ala Glu Ser 305 300 1076 gga gac caa aga aaa gga tta ctt tga agaaa gggccctcgt ctactggggc Gly Asp Gln Arg Lys Gly Leu Leu 315 ctctggtcaa gcaaagagct cttcaaagga atctaaagac agcaagacat catctaaaga 1136 tgacaaagga agtacaagta gtactagtgg tagcagtgga agctcaacta aaaatatctg 1196 ggttagtgga ctttcatcta ataccaaagc tgctgatttg aagaacctct ttggcaaata 1256 tggaaaggtt ctgagtgcaa aagtagttac aaatgctcga agtcctgggg caaaatgcta 1316 tggcattgta actatgtett caageacaga ggtgtecagg tgtattgeae atetteateg 1376 cactgagetg catggacage tgatttetgt tgaaaaagta aaaggtgate cetetaagaa 1436 agaaatgaag aaagaaaatg atgaaaagag tagttcaaga agttctggag ataaaaaaaa 1496 tacgagtgat agaagtagca agacacaagc ctctgtcaaa aaagaagaga aaagatcgtc 1556 tgagaaatct gaaaaaaaag aaagcaagga tactaagaaa atagaaggta aagatgagaa 1616 1656 gaatgataat ggagcaagtg gccaaacatc agaatcgatt <210> 119 <211> 906 <212> DNA

<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (221)..(397)

<400> 119
accgccccgg aattcccggg tcgacccacg cgtccggatg cctgtccaga ctttgccaat 60
aggagcacct ttaagctggc atgtggttgt aacagcctaa cccgtctttt ttagagtgat 120
aggccatgct aatcttactc tctgctccag ccttgaaact ggccatttt tcaaggagcc 180
agggttcttt ttctttggga acagttacca gcatctgagt atg ctc atc gtt tcg
Met Leu Ile Val Ser

PCT/US01/02623 WO 01/55437

ggg tat ctc tgc ttc tgt gcc ctt cag tgg act gag cta gga aat gta 283 Gly Tyr Leu Cys Phe Cys Ala Leu Gln Trp Thr Glu Leu Gly Asn Val tgt gtg tgt gca cac ata tgc cgt tgc aca cac atg cag gtt tca ggg 331 Cys Val Cys Ala His Ile Cys Arg Cys Thr His Met Gln Val Ser Gly 30 atc aca agt ecg gtc cat gtc cac atc cat agg gtt ctt tct tgc ctt 379 Ile Thr Ser Pro Val His Val His Ile His Arg Val Leu Ser Cys Leu 45 atc cat ttc acc tct tag agcaga ggactttcac catttctatt gaacatgagt 433 Ile His Phe Thr Ser * 55 ataatatgta gtccttacct aagaggattc tgtggatctt ctctggggtt ctcaggggcc 493 atggaacatg tcagagcaaa tgttggaatg gattacccag aatgtgagta gtgtgagtgg 553 ggcactgttg gactcagtcc caacccccta acgcgagttt gcatgaaaaa ttcatatctt 613 673 acttagggcc atcctaactt tcttgcttcc caaagggagg gtagatcaaa acataaggga aaggaggggt cataaacttg ttttgaaggt acccggggga accctaaaca ttataggggt 733 ctagtctatg gccgactagt cgcgactata aacgaagcct tcatcatagg gaaaaaggtg 793 caggactttc ttacacatgg ctagtagaac gggtctaggc tagcatgaga ccttccatgc 853

906

accagccagc atcctgtctt gtactactga agccttttcc tctagaaaac acg

<210> 120 <211> 862 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (140)..(355)

<400> 120

catqqtaqqc actcaqtqqa taccaqtggt ggaaggtgga ggcaaagagc ccttttataa 60 aacaacaagg ttaggaactc ctctggcagg agccaagttc ctccgagttt agatcacttc 120 acataatqtq cecttqcta atq cat ttq ctq gtt tct cac gcc ttc ctg cct 172 Met His Leu Leu Val Ser His Ala Phe Leu Pro

ttt cct ctc cat ggt tac tct ggg agg cag aga ggt gct aag caa tgg 220 Phe Pro Leu His Gly Tyr Ser Gly Arg Gln Arg Gly Ala Lys Gln Trp 20

268 agg tgt cat ccg gcc cgc gca tct agg gaa cgt cct tca gag gac aac Arg Cys His Pro Ala Arg Ala Ser Arg Glu Arg Pro Ser Glu Asp Asn 35

ttg tca cca gcc gtc aaa gaa gag agt ggc ttt gtg gtc tct gaa cat 316

WU 01/33437	
Leu Ser Pro Ala Val Lys Glu Glu Ser Gly Phe Val Val Ser Glu His 45 50 55	
ctg gca gcg ctg cac agg aag ctg agg ggg tgt cat taa ttgtgatgaa Leu Ala Ala Leu His Arg Lys Leu Arg Gly Cys His * 60 65 70	365
ataatttaaa ccatcaggaa taaatgaggc tgttaagcta agttcagatt ccatttgcca	425
tgcacatgtg tctagcagcc tgtgtgcagt taaaagaaat tgaattatat tagctcatga	485
gtagaagtga aacagatact gtaaatgaaa caagttgctg tatagcgatg acatcgtgtt	545
gaaccatttc acagagttac agtttgtatg atcactgtat caaaagtggt atattattta	605
atgaattttt atattataaa acattcctac ggtatggagt atagtaagga ccagtggttt	665
atgggtaggt agagaggatg tgagctggat gggcagaaca aaacaatcca caggttacgg	725
gccttgaagg gagtgggagg gaaatcacgc gtcattggag cccagttgcc ctgttagagc	785
ccgaacggag tccacatcac gccgcctgca cttgggcata cgcgatcacg ggaacgctcc	845
agtggatcca gatcgac	862
<210> 121	
<211> 1113 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> (24)(956)	
<pre>&lt;400&gt; 121 gtggtgtgag gccatcacgg aag</pre>	50
cca gca ggc tcc ggg ctt ggt gct gtc tct caa cat ccg agc agg Pro Ala Gly Ser Gly Leu Gly Ala Val Val Ser Gln His Pro Ser Arg 10 15 20 25	98
gtt atc tgt aag agt gga acc tct gtg aag atc gag tgc cgt tcc ctg Val Ile Cys Lys Ser Gly Thr Ser Val Lys Ile Glu Cys Arg Ser Leu	146

acc ttg tcc act ctg aca gtg acc agt gcc cat cct gaa gac agc agc
Thr Leu Ser Thr Leu Thr Val Thr Ser Ala His Pro Glu Asp Ser Ser

WO 01/55437 PCT/USO	01/02623
90 95 100 105	
ttc tac atc tgc agt gct agt ggt atg aga cgc aca gat acg cag tat Phe Tyr Ile Cys Ser Ala Ser Gly Met Arg Arg Thr Asp Thr Gln Tyr 110 115 120	386
ttt ggc cca ggc acc cgg ctg aca gtg ctc gag gac ctg aaa aac gtg Phe Gly Pro Gly Thr Arg Leu Thr Val Leu Glu Asp Leu Lys Asn Val 125 130 135	434
ttc cca ccc gag gtc gct gtg ttt gag cca tca gaa gca gag atc tcc Phe Pro Pro Glu Val Ala Val Phe Glu Pro Ser Glu Ala Glu Ile Ser 140 145 150	482
cac acc caa aag gcc aca ctg gtg tgc ctg gcc aca ggc ttc tac ccc His Thr Gln Lys Ala Thr Leu Val Cys Leu Ala Thr Gly Phe Tyr Pro 155 160 165	530
gac cac gtg gag ctg agc tgg tgg gtg aat ggg aag gag gtg cac agt Asp His Val Glu Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser 170 175 180	578
ggg gtc agc aca gac ccg cag ccc ctc aag gag cag ccc gcc ctc aat Gly Val Ser Thr Asp Pro Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn 190 195 200	626
gac tee aga tae tge etg age age ege etg agg gte teg gee ace tte Asp Ser Arg Tyr Cys Leu Ser Ser Arg Leu Arg Val Ser Ala Thr Phe 205 210 215	674
tgg cag aac ccc cgc aac cac ttc cgc tgt caa gtc cag ttc tac ggg Trp Gln Asn Pro Arg Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly 220 225 230	722
ctc tcg gag aat gac gag tgg acc cag gat agg gcc aaa cct gtc acc Leu Ser Glu Asn Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr 235 240 245	770
cag atc gtc agc gcc gag gcc tgg ggt aga gca gac tgt ggc ttc acc Gln Ile Val Ser Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr 250 265	818
tcc gag tct tac cag caa ggg gtc ctg tct gcc acc atc ctc tat gag Ser Glu Ser Tyr Gln Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu 270 275 280	866
atc ttg cta ggg aag gcc acc ttg tat gcc gtg ctg gtc agt gcc ctc Ile Leu Leu Gly Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu 285 290 295	914
gtg ctg atg gcc atg gtc aag aga aag gat tcc aga ggc tag ctccaaa Val Leu Met Ala Met Val Lys Arg Lys Asp Ser Arg Gly * 300 305 310	963
accateceag gteattette atceteacce aggattetee tgtacetget eccaatetgt	1023
gttcctaaaa gtgattctca ctctgcttct catctcctac ttacatgaat acttctctct	1083
tttttctgtt tccctgaaga ttgagctccc	1113

<210> 122

```
<211> 767
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> CDS
    <222> (167)..(325)
    <220>
    <221> misc_feature
     <222> (1)...(767)
     <223> n = a,t,c or g
     <400> 122
atttggccct cgaggccaag aattcggcac gaggggagtt gaaggccact ttcttggttg
                                                                      60
geoctaagtg gttgagagtt cacaaacacc actecetece tgaggactaa cagecattga
                                                                     120
ctactggtct gcttgttaac tgactctcca gagctcccca tgagct
                                                     atg agt gtg
                                                                     175
                                                     Met Ser Val
gga ctt cac ctg gga ttt ctt gct tgg ttt ctt ccc ttt cta att ccc
                                                                     223
Gly Leu His Leu Gly Phe Leu Ala Trp Phe Leu Pro Phe Leu Ile Pro
                         10
                                             15
act tet eee ett eee tta eta ttt eaa etg gga gea ett eet aat gaa
                                                                     271
Thr Ser Pro Leu Pro Leu Leu Phe Gln Leu Gly Ala Leu Pro Asn Glu
tea ett gea ett tat get tgg ete agg gat tge tte tgg gag aac ata
                                                                      319
Ser Leu Ala Leu Tyr Ala Trp Leu Arg Asp Cys Phe Trp Glu Asn Ile
                                     45
acc taa aatgtccaac aataaggaac agttaatgac atccatccaa cacaatatcc
                                                                     375
Thr *
tttggctgtt aagaacctat ctctgaagaa aacttaaaga catggtaata cattctggat
                                                                      435
atatcttaac tggaaaaaag tatggcataa ttaactatgt aaaaattata cacaggcaca
                                                                     495
aattatocag gtgtggtggc gggtgcttgt actgccagct acttgggagg ctgaggcagg
                                                                     555
agaatggcgt gaacccagga ggcggagctt gcagtgagcc gagatcccac cactggactc
cattetggcg aaagagcaga gactegteec aaaaaaaaga aaaaaaaggt tgtttttgag
                                                                     675
gggccggcgg tttttccttt tggggggtaa aattattggg cctgqqcqqq qtttaaaacq
gggggggaa aaaacngntt ttcccnaaaa aa
                                                                      767
```

```
<210> 123
<211> 814
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
```

<222> (124)..(324)

<400> 123 acctgatgac caatttaata cgactcacta tagggaattt ggccctcgag gccaagaatt 60 eggeacgagt ctatetgeag agetacetet acattttaac ttaggttagt tgttteeett 120 168 qqa atg tct tct ccg tgt ttt caa tgt ttt cac cta tgt tgt acc att Met Ser Ser Pro Cys Phe Gln Cys Phe His Leu Cys Cys Thr Ile 5 216 aag gtc tgg ccc ctg tgc cac cac cta cag aaa gcc ttt cct gat ttc Lys Val Trp Pro Leu Cys His His Leu Gln Lys Ala Phe Pro Asp Phe 20 tot att cat gtc ttc tct gaa agg gat ctt tct tct ttc tgt gaa gtc 264 Ser Ile His Val Phe Ser Glu Arg Asp Leu Ser Ser Phe Cys Glu Val 35 caa ctt tta aaa ata tgt tta caa aaa tac ttc tta gga tca tta atg 312 Gln Leu Leu Lys Ile Cys Leu Gln Lys Tyr Phe Leu Gly Ser Leu Met 55 cat tgt tcc taa gtc agagttetet gtgaatttat tetatacaat ettetagtge 367 His Cys Ser 65 tagtatataa actccttaag aacaagaatt tgctcatgat agtagtcccc tgcagtgtgt 427 agattacata agtgttgagt aaatcttgga gatcaggtat cctcattcaa gaggaaaatg 487 aataagagat ccagttcaga gacctacagt gagtgctctc cgctgcaggc agggattgat 547 gagetgette aactettace acceaceact etcaatecta tactetaact aatgaactet 607 getcacegtt gtccaagtga gttgaccett tggcctttcc atgccgaggc ctgtgcacet 667 ttctgaactt ggaatgeett tactttttgg aaaaaaataa geetetggge egaaaaagge 727 787 cctggttctt tgtgggtccc tggggtgggg aaaaaaatgg tcctttttt tttccccggg 814 ggcgggggaa acccccaaca aaaggtt

```
<211> 784
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (77)..(292)
     <220>
     <221> misc_feature
     <222> (1) ... (784)
     <223> n = a,t,c or g
     <400> 124
atttggccct cgaggccaag aattcggcac gagtcttttt ttcatttttg cttatttatt
                                                                        60
                                                                       109
tctattcttt gttgat
                     atg gaa aaa tat ttt cac aca gtt atg atc aag
                     Met Glu Lys Tyr Phe His Thr Val Met Ile Lys
                                        5
                                                           10
```

<210> 124

ttg tg Leu Cy	c cat s His	caa Gln 15	ctt Leu	tat Tyr	aac Asn	gta Val	tat Tyr 20	gtg Val	tgc Cys	ttt Phe	ttc Phe	cat His 25	tta Leu	att Ile	157
gtt tt Val Le	g gga u Gly 30	Asp	att Ile	gct Ala	ata Ile	gac Asp 35	tac Tyr	att Ile	att Ile	gtt Val	ccc Pro 40	aat Asn	att Ile	tcc Ser	205
tac ct Tyr Le 4	u Ser	ata Ile	tct Ser	ata Ile	ccc Pro 50	ttt Phe	gta Val	gtt Val	act Thr	aac Asn 55	att Ile	aga Arg	ggt Gly	aga Arg	253
gat at Asp Il 60	t tto e Phe	cac His	ccc Pro	tgt Cys 65	aat Asn	gtg Val	gcc Ala	ttg Leu	gtc Val 70	atg Met	tga *	ctt	ggaa	tgt	302
tagtag	ttct	gatgi	tgcad	ca g	aggc	tgta	c at	ggac	tttc	agc	attg	ggt	ttac	tetete	362
gggttt	ctgc	tgtt	tccat	ta c	aaag	aatg	t ac	cctg	ggtg	gcc	cacc	agc	cact	gagata	a 422
tgtgaa	tcca	actt	gaaci	tc a	actc	atgg	c ct	ggag	ccaa	gtt	ccac	cag	tcct	aactag	482
cttago	caaa	atcc	agct	ga t	ctga	aagt	g ca	tgaa	tgag	aaa	taaa	agc	ttat	tattt	542
ttttan	nann	aann	annn	aa a	aaaa	aaag	a ct	tttt	ttta	<b>a</b> aa	aaaa.	<b>9</b> 99	gggt	tttcto	602
cttttc	gagg	3 <b>3</b> 33	aaat	ta a	taaa	atga	g tg	gcgc	cccc	ctc	ttcc	ctt	gcgc	gaggg	g 662
gtaaaa	ıggcc	cggn	nnnn	nn c	cggc	cccc	c cc	ccgc	cccc	ccc	cccc	ggc	ggaa	agccgg	722
aaaagg	nggg	<b>a</b> aaa	ggng	gg g	ngaa	gtgg	g gt	gtcc	cccc	ccc	cacc	ccc	cccc	ccacta	a 782
at															784

<210> 125

<211> 597

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (314)..(463)

<400> 125

tac ctc caa gac atg ctg ctt tct tat aga tta tta gtt gca atc tta

Tyr Leu Gln Asp Met Leu Leu Ser Tyr Arg Leu Leu Val Ala Ile Leu

WO 01/55437 PCT/US01/	02623
15 20 25	·
gtt ttg ctg aag aaa tta aca gaa ctt aat aca att act ctt att tgc Val Leu Leu Lys Lys Leu Thr Glu Leu Asn Thr Ile Thr Leu Ile Cys 30 40	445
aag tot ata att tto taa acotaa ototgatgoa gtootactoo taatatttao Lys Ser Ile Ile Phe * 45 50	499
aaggcctaga acaagagtat ataaatggca gcccacattc tacgggtcta aatatataca	559
agttataaac caagtcagca aaataaaatg ccatgtat	597
<210> 126 <211> 580 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (163)(318)	
<400> 126 tacgactcac tatagggaat ttggccctcg aggccaagaa ttcggcacga gatggcttat	60
ttaaaaagta gaatgtttat gtatttaaac agataaaatt tagaatgatt ttaattccag	120
ggtaaaatct gctccgacca gagagaaaaa actaattcat at atg aat ata gta Met Asn Ile Val 1	174
ttt gta atc ctc ttg ttt aaa gac atg caa gtt cta gaa gta ttt gta Phe Val Ile Leu Leu Phe Lys Asp Met Gln Val Leu Glu Val Phe Val 5 10 15 20	222
ctg ctt aat gtt tta aca act cta aca ata ata gca gcg ggc ata ctt Leu Leu Asn Val Leu Thr Thr Leu Thr Ile Ile Ala Ala Gly Ile Leu 25 30 35	270
tgt acc agt ttt tgc tgt aag cct ttt ata tat att aat cct ctt taa Cys Thr Ser Phe Cys Cys Lys Pro Phe Ile Tyr Ile Asn Pro Leu * 40 45 50	318
aaccacccta tcaagtacaa gataataatt tgatatggtt gatgaagcaa ctgatgggaa	378
aaaagagagg ttaaataatt tgccccaaat cttattaagt gatgtagcca gcatctgaac	438
ccaatcagac tgtagactag agcctcctcc caaccactca gctttgctgc ttcccacata	498
ctagttacat aactactgta tgactataga ggtcaggtta tcagccttct agaatcagta	558
atgttttctg tcaaaaaaaa aa	580

<210> 127 <211> 821 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (91)..(273) <400> 127 atttggccct cgaggccaag aattcggcac gagctggtac tagaactcac agaactgcca 60 cagaaggetg aacagteetg ggetttteac atg atc agg ttc gca ctt cca 111 Met Ile Arg Phe Ala Leu Pro tgg ttc tcc caa ata tgg ctt tct aaa caa act tgg act agg ctc act 159 Trp Phe Ser Gln Ile Trp Leu Ser Lys Gln Thr Trp Thr Arg Leu Thr 10 15 cac ttg gca ttt ctc ctg cag gaa tgc aac tca atg ttc tat cca aag 207 His Leu Ala Phe Leu Leu Gln Glu Cys Asn Ser Met Phe Tyr Pro Lys 25 30 gtt tca aga acg aca gtt ttt gga tgt tta ttt aat cet etc tca age 255 Val Ser Arg Thr Thr Val Phe Gly Cys Leu Phe Asn Pro Leu Ser Ser 40 45 309 cgt gtt tgt ttt gaa taa atggca aatgtgatta gtaaatggaa cattcatttt Arg Val Cys Phe Glu * 60 gttagactgc ctctaaactc cagatataaa tgggctggat tttacagctt attttaacat 369 ttcctttttc ctataccctt tctctgatca gctcttcaac ggtgatataa tttcttttaa tgcaaatgta caaaacaatg ttagtcctga cttttggcaa gcagttcaca agtttgggtg 489 aaaagacatt getettgaaa aacaggteat ttttagtttt getatgtett teetteteac 549 taggacatat tgtgctgatg cacaacaatg gagctaagga ggtctttagc ttgtcttgca 609 tetateacaa eteageagea ettteetett tgaeggteea tgetattgge tacaatettt 669 geeetteeg ceateceact etatagteec ceaatteace cetegeettg egggtegact 729 cacgacacte gggccaggce gcctacaace agctacegae tacateacee eccettegee 789 821 ttgagaccac tttgccgact ccgggcccac cc <210> 128 <211> 412 <212> DNA <213> Homo sapiens <220> <221> CDS

<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (63)..(329)

<400> 128
atttggccct cgaggccaag aattcggcac gagctatttt gagttctaga ttccagtctt 60

ag atg acc aac ttc ttt cat ctt tta cta cca ctt cta cca tct ctc
Met Thr Asn Phe Phe His Leu Leu Pro Leu Leu Pro Ser Leu
1 5 10 15

ttt Phe																	155
atc Ile																	203
ctt Leu			Arg														251
gaa Glu	tgg Trp 65	atc Ile	acc Thr	tct Ser	ata Ile	agg Arg 70	tgc Cys	tta Leu	tgt Cys	aac Asn	tct Ser 75	gga Gly	act Thr	acg Thr	ttt Phe		299
ata Ile 80								aca Thr		g to	cata	cttai	t tt	ttate	gtet		350
cagg	cta	cta a	aaat	agaa	ca t	gttc	tctag	g agg	gaga	aċat	caa	ggag	ttc 1	tttta	atttgt	=	410
cg																	412

<210> 129

<211> 2412

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (979)..(2277)

<400> 129 cccgcgatct cagacttcct agactccaga actgtaagaa ataaatctct gtttgttata 60 aattaccaag totcagatat totattatag cagtacacta acgttcacgt gcattttccc 120 ageggaggaa agatggttgt tetteateag agtetgggge ecaagaaege aggeteeate 180 240 tectecegea ggagecagge tgatgatget egeagggate ggataetggg ageceetgaa cgcagccaac ccggcgcgca ccggtggggg cgtctgcgct ggcggagcgg ctccccggga 300 360 ggacgetggg aaccatgete tagecageeg etgegeagge geactgggee eegactgeee geegeagege taegtgggag ettggeegeg cagtgeegga acceggetge ageggtggga 420 aggegggge gtgeeggeee ageggggaga ggeatetgea ggggetgetg agagtaaata 480 cttggcgcct ccagctgctg gccaaggaga cagatggagc tcaagttggg agatacgccc 540 600 tgagagccga tgatagacac aagtccagat ctcggatttt gatactgtat gttccctggg ttcctgagag aggacattga ggagtaggag tcggcgatta aggagatcgg tacaattggg 660 aagcctcctg tcagagcttc cagcaatttc ctcatcagag gtggacaagc cctatgggct 720 780 aagacagagg gtcctcagaa aggagtgcgg acgccgtcat gctgcagcag ctcctgatca

WO 01/55437				C 17 0301/02023
ccctgcccac cgaggccag	c acctgggtga	agttgcgtca	tccaaaggcg gccacg	ggagc 840
gggtggccct gtgggagga	it gtgactaaga	tgtttaaagc	agaaggaact gttaad	ectte 900
aaggacgtat ctgtggact	t cactcaggag	gagtgggggc	agetggeeee tgetea	accgg 960
aatctgtacc gggaggtg	atg ctg gag Met Leu Glu 1	g aac tat ggg n Asn Tyr Gly 5	g aac ctg gtc tca / Asn Leu Val Ser 10	gtg 1011 Val
gga tgt cag ctt tcc Gly Cys Gln Leu Ser 15	aaa cct ggc Lys Pro Gly	gtg att tcc Val Ile Ser 20	cag ttg gag aaa g Gln Leu Glu Lys G 25	gga 1059 Gly
gaa gaa cca tgg ctg Glu Glu Pro Trp Leu 30	atg gag aga Met Glu Arg 35	gat att tca Asp Ile Ser	gga gtt cca agt Gly Val Pro Ser 40	tca 1107 Ser
gac ttg aag agc aaa Asp Leu Lys Ser Lys 45	aca aaa acc Thr Lys Thr 50	aaa gag tca Lys Glu Ser	gcc tta cag aat Ala Leu Gln Asn 55	gat 1155 Asp
att tcg tgg gaa gaa Ile Ser Trp Glu Glu 60	cta cat tgt Leu His Cys 65	ggc cta atg Gly Leu Met 70	atg gaa aga ttt Met Glu Arg Phe	aca 1203 Thr 75
aaa gga agc agc atg Lys Gly Ser Ser Met 80	tat tcc acc Tyr Ser Thr	ttg gga aga Leu Gly Arg 85	atc tcc aaa tgt Ile Ser Lys Cys 90	aat 1251 Asn
aag cta gaa agc caa Lys Leu Glu Ser Gln 95	caa gag aac Gln Glu Asn	caa aga atg Gln Arg Met 100	ggt aag ggg caa Gly Lys Gly Gln 105	atc 1299 Ile
ccc ctg atg tgc aag Pro Leu Met Cys Lys 110	aaa aca ttc Lys Thr Phe 115	Thr Gln Glu	aga ggc caa gag Arg Gly Gln Glu 120	tct 1347 Ser
aat aga ttt gag aaa Asn Arg Phe Glu Lys 125	aga att aat Arg Ile Asn 130	gtg aag tca Val Lys Ser	gaa gtt atg cca Glu Val Met Pro 135	gga 1395 Gly
cca ata ggt ctt cca Pro Ile Gly Leu Pro 140	aga aaa aga Arg Lys Arg 145	Asp Arg Lys	Tyr Asp Thr Pro	gga 1443 Gly 155
aag aga agc aga tac Lys Arg Ser Arg Tyr 160	Asn Ile Asp	tta gtt aat Leu Val Asn 165	cat tca agg agt His Ser Arg Ser 170	tat 1491 Tyr
aca aaa atg aaa acc Thr Lys Met Lys Thr 175	ttt gag tgt Phe Glu Cys	aat att tgt Asn Ile Cys 180	gaa aaa atc ttc Glu Lys Ile Phe 185	aaa 1539 Lys
cag ctt att cac ctt Gln Leu Ile His Leu 190		Met Arg Ile		
cct ttc aga tgt aag Pro Phe Arg Cys Lys 205				
ctt att ccg cat cag Leu Ile Pro His Glr				

WO 01/55437				PCT/US01/02623				
220	225		230	235				
aag gag tgt ggg Lys Glu Cys Gly	aaa acc ttc Lys Thr Phe 240	aga cat cct Arg His Pro 245	tca tcg ctt act Ser Ser Leu Thr	caa cat 1731 Gln His 250				
gtt aga att cat Val Arg Ile His 255	acc ggg gaa Thr Gly Glu	aag ccc tat Lys Pro Tyr 260	gaa tgt agg gta Glu Cys Arg Val 265	tgt gag 1779 Cys Glu				
aaa gcc ttc agc Lys Ala Phe Ser 270	Gln Ser Ile	gga ctg atc Gly Leu Ile 275	cag cat ttg aga Gln His Leu Arg 280	act cat 1827 Thr His				
gtt aga gag aaa Val Arg Glu Lys 285	cct ttt aca Pro Phe Thr 290	tgc aaa gac Cys Lys Asp	tgt gga aaa gcg Cys Gly Lys Ala 295	ttt ttc 1875 Phe Phe				
cag att aga cac Gln Ile Arg His 300	ctt agg caa Leu Arg Gln 305	cat gag att His Glu Ile	att cat act ggt Ile His Thr Gly 310	gtg aaa 1923 Val Lys 315				
ccc tat att tgt Pro Tyr Ile Cys	aat gta tgt Asn Val Cys 320	agt aaa acc Ser Lys Thr 325	ttc agc cat agt Phe Ser His Ser	aca tac 1971 Thr Tyr 330				
cta act caa cac Leu Thr Gln His 335								
aag gaa tgt ggg Lys Glu Cys Gly 350	aaa gcc ttt Lys Ala Phe	agc cag aga Ser Gln Arg 355	ata cat ctt tct Ile His Leu Ser 360	atc cat 2067 Ile His				
cag aga gtc cat Gln Arg Val His 365	act gga gta Thr Gly Val 370	aaa cct tat Lys Pro Tyr	gaa tgc agt cat Glu Cys Ser His 375	tgt ggg 2115 Cys Gly				
			aaa cat cag aga Lys His Gln Arg 390					
act gga gaa aaa . Thr Gly Glu Lys	cct tat gat Pro Tyr Asp 400	tgt aat gag Cys Asn Glu 405	tgt gga aaa gcc Cys Gly Lys Ala	ttc agc 2211 Phe Ser 410				
			aca cat tta aga Thr His Leu Arg 425					
ttc agc aat gtt Phe Ser Asn Val 430		ta ctaaacato	a aagaatctat gtt	eggagcac 2313				
aagattctaa atcag	tggtt ccctga	tccc tcaaaaa	itcc atttgttttt g	ggatttccaa 2373				
aaacgaacat taaaaaaaaa tggtttggca aaaaaaaaa								

<210> 130 <211> 905 <212> DNA

PCT/US01/02623

60

120

180

240

300

360

420

480

536

584

WO 01/55437 <213> Homo sapiens <220> <221> CDS <222> (537)..(707) <400> 130 taccggtccg gaattcccgg gtcgacccac gcgtccgagt tgttacacca tctaccctaa ttcctgaatt ccaaaacctt ggagtettet ttgatttett tetcatgtte tccacgttag taggecetge tgettteect ceteagtgta tgetaaacte atttaacttt etecattttt actgacaatg cacaccatca tactctgtca tctatgccac tgtaacacat tcttaaatgg tecetetgtt caactgttge ceetgeaatt cattetatat gtagtggtga aagtgaatae atataaacac aaatcaagtt ttgttacttg atggaaaccc tccaataatc attcactatg aataaaatcc agaccttttg ctatgaccct caagacccca tgtgacctgg tccttgccta cctctctggc cttggctctc acaattctgt ctgtactgat attcaccagt catattggtt gtetettttt teetaaatta ageaetetaa aeteatttet getteagaga etgeag atg cca tgc tct gtg ccg gaa act ctc ttt tcc ctt ctc tgg tta gct

cct tcc cat cat tca ggt ttc agt tca aat gag gct tct ctg agg act 632 Pro Ser His His Ser Gly Phe Ser Ser Asn Glu Ala Ser Leu Arg Thr

Met Pro Cys Ser Val Pro Glu Thr Leu Phe Ser Leu Leu Trp Leu Ala

gat cta tta ttt gcc aca gcc att ctt tat tct cta tgg cat cct cca 680 Asp Leu Leu Phe Ala Thr Ala Ile Leu Tyr Ser Leu Trp His Pro Pro 40

tat tat ttt ctt tat aat act tct taa tgtgt gaataattac tgtgtggatg 732 Tyr Tyr Phe Leu Tyr Asn Thr Ser 50 55

acttocttac atagttattt atttgttaat gttcttgctt acatttcatt gtcagcttct 792 agaagaagag ctctttaaga gcagtgaccc tgtctgtctt gatcatggaa caaagactgg 852 tatatccaga tgttcaataa atattttcct gtatgaatac atgactatgt ttt 905

<210> 131 <211> 1069

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (141) .. (308)

<400> 131

taccattgtc cgcctgcagg taccgqtccq gaattcccgg gtcqacccac qcqtccqccc 60 acgcgtccga ccatttgaac ttgtaaagaa catgtgttct gcagttttta ggtgttcttt 120 atatattaag ggggttgata atg ttg ttc aca tca ttt gtg tat ggg ctg

Met Leu Phe Thr Ser Phe Val Tyr Gly Leu att ttt att ttg ttt gat ttt tat ttt cta tca ttt gtt gaa agg gat 218 Ile Phe Ile Leu Phe Asp Phe Tyr Phe Leu Ser Phe Val Glu Arg Asp 15 gtt aaa atc ttc aac tgt aat ggt gaa ata gta ttg ttt cca ttt aat 266 Val Lys Ile Phe Asn Cys Asn Gly Glu Ile Val Leu Phe Pro Phe Asn 30 tot gtt cat ttt tgc ctg ata tgt ctt tat ata cac att taa gattatg 315 Ser Val His Phe Cys Leu Ile Cys Leu Tyr Ile His Ile * 45 50 55 tetteetgat gagttgtgaa ttagaacatt atgaaatgtt atteteeggg aatattatte 375 teteettaca gtetatttta eteaatattg atatageaac teeateettt atataettae 435 tgtttacatg gtgtgccttt tcagaagcat ttactttcaa ttatagatag catatagatg 495 agacttgttt ttttttaaat ctattctgaa aatttctgat tttattatta ggaatattta 555 ggggaaatgt ttaataaatt aatattttgg gtttttcttt ctgccatttt tcatatttat ccctcctcct cccccaggaa aaattcaaaa ctcttttctt caaactagta cgaaggataa 675 aaatacgctt ccccaccact cgtgggctcc tctctcatcg tcaccctttc ttacaactct 735 caaaccccc ttacataata tcctctggac cctcaacctc tcatqtqctq caattcqccq 795 acaactttct gtctcccgcc atttcacctt ccatctcctg ccaacctgaa gcctccgctc 855 getateactt ttgctatate acctettete aacctaceta etatacagte cagettetet 915 tcattaggta gattcttcaa tatatactcc tcgctaaacc tacaccctag cgccctgaac 975 tactccccc gcatcccact ccaagctccg cacctatcct ctccacgact aatacgctat 1035

1069

gaccacctcc ataacctccc gctctcgtta ttcc

10

<210> 132

15

Ser Ser Leu Thr Leu Val Phe Ala Trp Asn Tyr Pro Leu His Leu Met

ata tot ota aat gto agt tgt ago tgt tao tot gat gat ata agt gga 209 Ile Ser Leu Asn Val Ser Cys Ser Cys Tyr Ser Asp Asp Ile Ser Gly 259 ata tac aga agc gta ctt aga caa aag tta ggt taa tatc tgaactactt Ile Tyr Arg Ser Val Leu Arg Gln Lys Leu Gly * cctccttgtg tatttaagag aatattgact taagtttcta gaatcctcaa ctaatcctaa 319 gtttattttc tttgtctaga atactatgct gtttttgttt ttggaaggaa gagatatagg 379 catagtttcc tgctctcaag gagcttcaaa ggctgtacca gtggggatgc cattggtatt 439 tttaqctqqa taqttqttat tcagaaaagc aggacaagta attatgattc ctggtccgta 499 cctggtaatg ccagtaatgt taactctagc tggttgttga catctggtca tttagttggc 559 aatctttctt ttttttttt ggcgtatggg gaaaaggttt agagcttcaa agacggcccg 619 ggtaaagtca acgcagggcc tccacagggg tggcgttact ccgggtttcc cgcgctgagc 679 gggttacaga ctgattttgt ggcgcgaccg aggccgggcc ccggcagcgg ggattgcatc geggegeeeg acegggggg agetegeeac cegetgeegt ceggaacegg ggcacacece 799 cgcggacgca cggagccggg gctctcgggg ccccccgcc aggagccgcc caacacacgc 859 gggcgcgacg tcacgcgggg ggccgacgcc ggcacgggtg ggcgacgcgt tattcggcgc 919 gtegeggeee egegegggeg etgeeteagt acegggegae egeeteegeg gegaeteete 979 cogotagete cocototogo gtacacegae gogoggaaag ggogggooge gggcacetea 1039 tagtcgcgca cggcgtgaac tgcgggaaca ccgacaccgc gcggctggat agagcgaact 1099 egeegageae tegegtgeeg geggggegag atatgeggte agagggteta agegegegeg 1159 tgcgcgaagg ggggcgggag tgccgcgggc ttcgcgcgcg cccagccacc tgccgtgggg 1219 cgctattgtg cataggcggg ggcgtatacc cacgggcaaa cgtggcc 1266

```
<210> 133
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (129)..(344)
<220>
<221> misc_feature
<222> (1)...(495)
<223> n = a,t,c or g
```

<400> 133
tcctcgcagg taccggtccg gaattcccgg gtcgacccac gcgtccgcc acgcgtccga 60
agaatggttt ccttactaaa tgagaaaagt tgagcccttt ccactaaaat ggttaaaata 120

WO 01/55437 PCT/US01/02	623
aaaacttc atg tgt tta att ctg gtt atc tgg aaa att cac tat gca gaa Met Cys Leu Ile Leu Val Ile Trp Lys Ile His Tyr Ala Glu 1 5 10	170
ctt ata atg tta aat aaa cga gtt gtt aat aaa tgt aga tca tgt ctt Leu Ile Met Leu Asn Lys Arg Val Val Asn Lys Cys Arg Ser Cys Leu 15 20 25 30	218
atc caa aaa tgc cta tct aca tgt cat agt aca gtc att gtt tta tat Ile Gln Lys Cys Leu Ser Thr Cys His Ser Thr Val Ile Val Leu Tyr 35 40 45	266
caa tgc aga gag gaa gaa gct gtg atg tta ata aag ttg aat ttt aaa Gln Cys Arg Glu Glu Glu Ala Val Met Leu Ile Lys Leu Asn Phe Lys 50 55 60	314
atg aaa atc caa aga act ata tgt ata tag g ccaaataaaa agttacttga Met Lys Ile Gln Arg Thr Ile Cys Ile * 65 70	365
ttacttaata atatggatta aaatgagtaa tcactgtaat tcatatattc aagaagtttt	425
cttttcaagt taacatttta agtcctgcca tgccattccc tgtccataaa aatccnnnnn	485
aaaaaaaaaa	495
<210> 134 <211> 792 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (75)(323)  <400> 134	
tgcacctgcg gtaccggtcc ggaattcccg ggtcgaccca cgcgtccgct tacatcagtt	60
taaaatgagt tacc atg aac aat atg aac tta aag aga ctt tta cta ttt Met Asn Asn Met Asn Leu Lys Arg Leu Leu Phe 1 5 10	110
ttg gct aaa atg ttt agc gca atc ttt tcc tta cct act cat cct tct Leu Ala Lys Met Phe Ser Ala Ile Phe Ser Leu Pro Thr His Pro Ser 15 20 25	158
cat ttc ccc att tcc att tat gac aac att ggt cat tgg cct cag tca His Phe Pro Ile Ser Ile Tyr Asp Asn Ile Gly His Trp Pro Gln Ser 30 35 40	206
ccg aaa gtc agg agg aag gaa gga aat gaa tat tta ttg aac ccc aat Pro Lys Val Arg Arg Lys Glu Gly Asn Glu Tyr Leu Leu Asn Pro Asn 45 50 55 60	254
atg tgc cag acc ctg gat tta aca ctt tta ggg ata gga gat tat tta Met Cys Gln Thr Leu Asp Leu Thr Leu Leu Gly Ile Gly Asp Tyr Leu 65 70 75	302
acc tca ata acc tct ccc tga gg gcaggaagtg gatttataga tgcggaaaca Thr Ser Ile Thr Ser Pro * 80	355 ·

gaggttctgc	aaagtcaatt	gactttgcct	ggtaagaggc	aaaaccagca	tcctttattt	415
aggcaatcca	agtgatgttc	atgtcctctg	gaacttaaat	ttttaaaaca	aaaatttaaa	475
cagaaacata	ttacaaaaga	acaactttat	gcatgtgacc	ttttgggttc	tttaggaagc	535
cagctagcca	tctttatttt	aataactaga	aggtgagacc	tttcctacac	catgtaattt	595
taaggcgtct	catacttaaa	aaataaatga	aacacctttt	tttttcctgc	ctcccttcta	655
gatcctacag	cctgcccata	acacccctgg	caaccacccg	tccccaccgc	gcccacccac	715
gcccattccc	gtcctcaacc	tttcttagct	gcccgctggc	gccactcctc	accccccca	775
cggccccacc	cccctc					792

<210> 135 <211> 788 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (211)..(483)

<400> 135 60 geotgeaggt accggteegg aatteeeggg tegaceeaeg egteegeea egegteegat ttgttggaga aaagetgeta ttataaagee tgatgtggae ttttttcate agtgtcaete 120 aagcaagttg gcctttaaag acagtttttt actgcttaat atataggagt tttcttgttt 180 atg gct cct ctt cct agc ctc tatttgttca ttttcctaat tgaacaaatt 231 Met Ala Pro Leu Pro Ser Leu 279 act cta aga cct tgg tgt gtc ctc atg tta ctg gac ctg tgg gct gca Thr Leu Arg Pro Trp Cys Val Leu Met Leu Leu Asp Leu Trp Ala Ala 10 327 ttt ggc aca att act ccc tcc ttg aag cac ttt cat cac ctg cct tcc Phe Gly Thr Ile Thr Pro Ser Leu Lys His Phe His His Leu Pro Ser 25 30 ggg aca cag cac too ctg gtt ttt gtc ctg tct ctg act ctt cat tct Gly Thr Gln His Ser Leu Val Phe Val Leu Ser Leu Thr Leu His Ser 40 45 50 cag ttg tct ttg ctg atg ggc acc tca gct gtc tgt ctt tct gcc tgt 423

ttt tet tet et et eage act tre eet ggg tgg ttg ett ate ate tge aca
471
Phe Ser Ser Leu Ser Thr Phe Pro Gly Trp Leu Leu Ile Ile Cys Thr
75 80 85

ctg atg att taa aca tagagttttt geetgtatet etcecectaa gtetaggett
Leu Met Ile *

Gln Leu Ser Leu Leu Met Gly Thr Ser Ala Val Cys Leu Ser Ala Cys

90

60

PCT/US01/02623 WO 01/55437 atatatetaa etgeetgete agtaceteta titggatgti taataggeat ticaaattgg aatccaacct tttgttccta cctctgcagc cctggtccaa aacaccatca tctcttggcc 646 706 agettattac acctgtagtt accttccatc tggtcttccc acttccatac tttgcccctc 766 caqcttqtta ttataqttqc gatagggatc gcttccacaa tttgctcctg cctacctgtc 788 atgataatca gactatacct tt <210> 136 <211> 774 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (400)..(534) <400> 136 aattcccggg tcgacccacg cgtccggtaa gcatgcccca cactaagtat aactaatata 60 120 tagtaaaact tgcaatatag ttagcataac tagatattta tccctgttgg gatttcacag ttgcaccttg cctgttattt atattttcct aaattattag aagattttag aaaaagattc 180 tgtgttatga atgcccaggt gagagttaat tactgtatgc attttgacac ctatgctgtt 240 aaaaagctgt tgttgatagc tgaaccaaga attggtcttt gaccttctgg gcacagttaa 300 tgagetacta atettgtagg geatgtttet gttggacete tgeetggget cattgteagt 360 atttattgac actcatccat gtatgcatgg agggtttaa atg cag tca aga ctg 414 Met Gln Ser Arg Leu gtg ttc tcc agc caa gct gtt gct ttc agc att cac aaa aac aag gta 462 Val Phe Ser Ser Gln Ala Val Ala Phe Ser Ile His Lys Asn Lys Val 10 gaa agg aga cct gga caa caa gca cag gca ctt gga ctt tta aaa att 510 Glu Arg Arg Pro Gly Gln Gln Ala Gln Ala Leu Gly Leu Leu Lys Ile 25 30

att tta ttt tct gtt ttc ccc tga tatgataaat agtggtctaa agacctcaga

tttcctttat tcatatatgg gtttcctttt taaaaatatt attttcagtg gatttgctta

tggacacatt tattaccagt tttattcaaa aattaaacat ttgttcagca tttgtgtcct

aagctgacag gtcttaaatc ttatttttca aagttatatt ggaagttata ttagaagaag

<210> 137 <211> 764

Ile Leu Phe Ser Val Phe Pro *

aaccggcttc ctaggcccag acatatctgc

40

684

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (212)..(388)

<400> 137

ccggaattcc cgggtcgacc cacgcgtccg cccacgcgtc cgcccacgcg tccgccacg 60
cgtccggggt ttttataaaa atggattcag ggtctgctga aataaatttt ttttaaaaat 120
ttcagtccat aaaccaaaca aaaatatctg tcctggaatg tgatcaggaa caaaccagaa 180

aactgtgaac atctgatctt gatactggct t atg ttg tct ctt gtt aag ctt 232 Met Leu Ser Leu Val Lys Leu 1 5

ttg ctt ctt tgc att att cat gac cat tca att aat ttt tgt ata gcc 280 Leu Leu Cys Ile Ile His Asp His Ser Ile Asn Phe Cys Ile Ala 10 15 20

ata cag gta gga tta tta cca agt gcc tac cgt gta cca gga ata gtt

11e Gln Val Gly Leu Leu Pro Ser Ala Tyr Arg Val Pro Gly Ile Val

25

30

328

cta agc ctt gag aat aca gca cta ata agg cag act ccc tgc tca aat

376
Leu Ser Leu Glu Asn Thr Ala Leu Ile Arg Gln Thr Pro Cys Ser Asn

40

50

55

aga gcc aac taa tga aaaatcgata aaatagagac taaagagaga teettagttg 431 Arg Ala Asn *

aaggggggcc cgttttaaag aatcaaattt tacaaccggg ggctggaaag gaattacttt 551

ttttataggg cccccaaatt caatttccgg ggccgtgttt taacaagggg ggactgggga 611

aaaaatctgg ttgtcctccg taacacctgc gataagacga tcgacggtag gtctatatcg 671

acgaaccacc cetecaacat etcacategt tagaacgagg atatettgga egeeggeteg 731

ggggacacat tgattagact atcccaactc atc 764

<210> 138

<211> 1126

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (144)..(707)

<400> 138

gateceagea ggaaagaeee gggagetgeg egeeagggae eagaacageg aggagaagte 60

accagaccag aceteaeggg eteegetgge tgeggtegee tgggagetge egeeagggee 120

aggaggggag cggcacctgg aag atg cgc cca ttg gct ggt gct cca gtc

Met Arg Pro Leu Ala Gly Ala Pro Val

1 5	rio var
ccc aaa agg caa aaa tgt gac cac tgg act ccc tgc cca tct g Pro Lys Arg Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser A 10 15 20	ac acc 218 sp Thr 25
tat gcc tac agg tta ctc agc gga ggt ggc aga agc aag tac g Tyr Ala Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr A 30 35	
atc tgc ttt gag gat aac cta ctt atg gga gaa cag ctg gga a Ile Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly A 45 50 55	at gtt 314 sn Val
gcc aga gga ata aac att gcc att gtc aac tat gta act ggg a Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly A 60 65 70	at gtg 362 sn Val
aca gca aca cga tgt ttt gat atg tat gaa ggc gat aac tct g Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser G 75 80 85	ga ccg 410 lly Pro
atg aca aag ttt att cag agt gct gct cca aaa tcc ctg ctc t Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu Leu P 90 95 100	tc atg 458 The Met 105
gtg acc tat gac gac gga agc aca aga ctg aat aac gat gcc a Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn Asp Ala L 110 115	
gcc ata gaa gca ctt gga agt aaa gaa atc agg aac atg aaa t Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg Asn Met Lys P 125 130 135	tc agg 554 The Arg
tct agc tgg gta ttt att gca gca aaa ggc ttg gaa ctc cct t Ser Ser Trp Val Phe Ile Ala Ala Lys Gly Leu Glu Leu Pro S 140 145 150	cc gaa 602 Ser Glu
att cag aga gaa aag atc aac cac tct gat gct aag aac aac a Ile Gln Arg Glu Lys Ile Asn His Ser Asp Ala Lys Asn Asn A 155 160 165	
tct ggc tgg cct gca gag atc cag ata gaa ggc tgc ata ccc a Ser Gly Trp Pro Ala Glu Ile Gln Ile Glu Gly Cys Ile Pro I 170 175 180	aaa gaa 698 ays Glu 185
cga agc tga cactgca gggtcctgag taaatgtgtt ctgtataaac aaat Arg Ser *	gcagct 754
ggaatcgctc aagaatctta tttttctaaa tccaacagcc catatttgat ga	gtattttg 814
ggtttgttgt aaaccaatga acatttgcta gttgtatcaa atcttggtac gc	cagtatttt 874
tataccagta ttttatgtag tgaagatgtc aattagcagg aaactaaaat ga	aatggaaat 934
tettaaaggg aatgatgtga tteaagetgg aaagagggtt gggagaaaca ge	cttgtccag 994
gtggagctat gttatgatca gatcgaagtg tgacccctgt gtggtccaga ca	agccctgca 1054
gagagaaaac etttattega ttateaceaa geaceteeta gttteegaea gt	catctcct 1114
tctgctggga at	1126

<210> 139 <211> 1897

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (534)..(1805) <400> 139 cggcatctgc gtgctgggga ccgacagtgt gggtgtgtta ggaggatctg tatttagcac 60 atttttgcct ctggctagga caggggggaa agggtggcgt ggctacagcc tgaccgatgg 120 geaccgtcct accetttgtt ctgtgcttcc gagtgtcata catgtgctgg ggtctgtggg 180 cccatgactc agacggtgag ctctgacctt cctgagccag ggctttgctg tagttgtgcc 240 tggctcaaga gctctaggac aaggggaccg ctccaggtct gcatctacgg tgtggcaggg 300 360 cccttcqqca ctcttgtgca ctagtgtcat ctttcccatt gaaatgactg tgaggaccag aatgtgcaca tgcagatggg cagctacttg tctgccttgg ccctttatta cacaacttgc 420 tgggggtgga gatgccaccc cccggcagtc agagcccctt tatgatgtca tggggctggt tacatgactg ccaaggggtg ctgctggcca cactgcacta gcaagtttgc cag atg 536 Met 584 gag gac aag cga tca ttg agt atg gct cgc tgt gaa gaa aga aat tcg Glu Asp Lys Arg Ser Leu Ser Met Ala Arg Cys Glu Glu Arg Asn Ser 632 aga gga cag gat cat ggc ttg gaa agg gtg cct ttc cct ccc cag ttg Arg Gly Gln Asp His Gly Leu Glu Arg Val Pro Phe Pro Pro Gln Leu 20 25 680 caq tea qaq acc tac ett cac eca gea gat eet tee eet gee tgg gae Gln Ser Glu Thr Tyr Leu His Pro Ala Asp Pro Ser Pro Ala Trp Asp 35 40 gac ecg ggg tee act ggg age eet aac ttg agg etg etg aca gaa gaa 728 Asp Pro Gly Ser Thr Gly Ser Pro Asn Leu Arg Leu Leu Thr Glu Glu 50 55 ate get tte caa eet etg gee gag gaa get teg tte aga agg eeg cae 776 Ile Ala Phe Gln Pro Leu Ala Glu Glu Ala Ser Phe Arg Arg Pro His cet gae ggt gae gte eeg eee eag gga gaa gat aat ete ete tee ete 824 Pro Asp Gly Asp Val Pro Pro Gln Gly Glu Asp Asn Leu Leu Ser Leu 872 ccc ttt cca cag aaa ctg tgg aga ctg gtc agc agc aac cag ttt tcg Pro Phe Pro Gln Lys Leu Trp Arg Leu Val Ser Ser Asn Gln Phe Ser 105 tcc atc tgg tgg gat gac agt ggg gct tgt aga gtg atc aat caa aaa 920 Ser Ile Trp Trp Asp Asp Ser Gly Ala Cys Arg Val Ile Asn Gln Lys

115 120 125

	113					120					1.2.3					
														gtg Val		968
gcc Ala	aca Thr	act Thr	tcg Ser	ata Ile 150	aag Lys	agc Ser	ttc Phe	ttc Phe	cgc Arg 155	cag Gln	cta Leu	aac Asn	ttg Leu	tat Tyr 160	ggc Gly	1016
														att Ile		1064
														tac Tyr		1112
					_	_								atg Met	-	1160
_	_			_	_				_		_	_		gac Asp	-	1208
														caa Gln 240		1256
_		-		_				-	-	-		_		cac His		1304
														cca Pro		1352
_				_			_		-			_	-	aac Asn	-	1400
			_	_	_							_	_	gct Ala		1448
														ttc Phe 320		1496
														gtg Val		1544
														aca Thr		1592
														ccg Pro		1640
														gtc Val		1688

WO 01/55437		PCT/US01/02623
370 375	380	385
	ctg cac cac cat tgc ccc cac Leu His His His Cys Pro His 395	
	get age gat ggg eee eag geg Ala Ser Asp Gly Pro Gln Ala 410	
	tag ag ggcagcattt gggcagaata *	tgtgctggtc 1837
aataaatgtg tcagaaaatg ag	taatttte tgaetgeaca aaaagtet	tc atggtctcca 1897
<210> 140 <211> 1156 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (150)(584) <400> 140		
	ttcggcac gagtgaaagc attagaag	ac aattgagtct 60
gtcagaactg caaaatattg ctg	gagtgtgg attgctctga aatctgaa	aa cattacttgt 120
gaattgette tatteaaaat gea	agacaca atg cca ggt gtt ggt Met Pro Gly Val Gly 1 5	Leu Leu Val
tcc cat ttt tca acc ctc o Ser His Phe Ser Thr Leu 10	gtt tct agg caa agg tgt cca Val Ser Arg Gln Arg Cys Pro 15 20	aat tat gca 221 Asn Tyr Ala
gac cca cag aat cta aca q Asp Pro Gln Asn Leu Thr i 25	gat gtc tct ata ttc ctc ctc Asp Val Ser Ile Phe Leu Leu 35	cta gaa gtc 269 Leu Glu Val 40
tca ggg gat cca gaa ctg ( Ser Gly Asp Pro Glu Leu ( 45	cag cca gtc ctt gct ggg ctg Gln Pro Val Leu Ala Gly Leu 50	ttc ctg tcc 317 Phe Leu Ser 55
atg tgc ctg gtc acg gtg 6 Met Cys Leu Val Thr Val 1 60	ctg ggg aac ctg ctc atc atc Leu Gly Asn Leu Leu Ile Ile 65	ctg gcc atc 365 Leu Ala Ile 70
age ect gae tee cae ete e Ser Pro Asp Ser His Leu F 75	cac acc ccc atg tac ttc ttc His Thr Pro Met Tyr Phe Phe 80 85	ctc tcc aac 413 Leu Ser Asn
ctg tcc ttg cct gac atc c Leu Ser Leu Pro Asp Ile ( 90	ggt ttc acc tcc acc acg gtc Gly Phe Thr Ser Thr Thr Val 95 100	ccc aag atg 461 Pro Lys Met
att gtg gac atc cag tct of fle Val Asp Ile Gln Ser I	cac agc aga gtc atc tcc tat His Ser Arg Val Ile Ser Tyr 115	gca ggc tgc 509 Ala Gly Cys 120

ctg act cag atg tct ctc ttt gcc att ttt gga ggc atg gaa gag aga Leu Thr Gln Met Ser Leu Phe Ala Ile Phe Gly Gly Met Glu Glu Arg 125 130 135	557
cat gct cct gag tgt gat ggc cta tga ctggt ttgtagccat ctgtcacccg His Ala Pro Glu Cys Asp Gly Leu * 140 145	609
ctatateatt caccateatg aaccegtgtt tetgtgeett tetagttttg ttgtettttt	669
ttttctcagt cttttagact cccagctgca caacttgatt gccttacaag tgacctgctt	729
caaggatgtg gaaattccta atttcttctg tgacccttct caactctccc atcttgcatg	789
ttgtgacacc ttcaccaata agataatcat gtatttccct gctgccatat ttggttttct	849
teccatetea gggaccettt tetettaete taaaattgtt teetecatte tgagggttte	909
atcatcaggt gggaagtata aagcettete cacetgtggg teteacetgt cagttgtttg	969
ctgagtttat ggaacaggcg ttggaggtta cctcagttca gatgatgtgt catcttcccc	1029
cagaaagggt gcagtggcct cagtgatgta cacggtggtc acccccatgc tgaacccctt	1089
catctacage etgagaaaca gggatatgaa aagtgteetg eggeggeege atggeageae	1149
agtctaa	1156

<210> 141

<211> 2898

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1074)..(2294)

<400> 141

ageacacett ccacageact ggtetetect etcagaactg tgttteccae acaggeteac 60 gggctcccaa ggggatacgg ctgcttgcgg tgactgagct ccctcctcac agcagagctg 120 aggtotgggo tocaggtoco cagtggagto cotogoagac agaaatagco gagaccatac 180 aaccaaccaa atacacccct aacaagctta agcgacaaat actcaaaaaac ataaaaccca 240 300 gtaaagagga aacaccacca cctacacaga caccaaacga cggccacttc cagttttcct gtgaagtete tgtgatgete eeetggagea getgeageae ggagagaaca ateegeegga 360 cagetegeaa acceegacag egeataaace geateetggg etegtggtea aaacateetg 420 tagcaaggag ggtcaatgct tacatgatga agatgatgca gaaggacagg aaggccaggg 480 ctgtggctcc agctcccccg actgctgcca gtgtcacttg tgatacagac ctgccccccg 540 gggccccaca gtgctcagtt gaagggggtc ccggggaccg cagcctccgc ttccgctgct 600 egtggeeegg eggggeeeet getgeeteee tgeagtteea gggteteeee gaaggeatee 660

WO 01/5	5 <b>45</b> 1									_		
gegeeggg	cc agtgt	cctct gt	gctgctgg	g cgg	ccgtc	cc	cgcc	cacc	cc c	ggct	cageg	720
gcgtcccc	at cacct	gcctt go	ctcgccac	tgg1	tggco	cac	gcgt	acct	gc a	cagt	cacgc	780
cggggagg	cc cctg	gctcca g	gaggcggga	a gtc	gcctg	gcg	gctc	agtc	aa g	gatgg	gcgga	840
aactccac	at cggc	acttc ag	gcctggati	ggg:	accto	999	aaat	tact	cc g	tgct	gtgca	900
gtgggccg	at gggt	getgge g	gtgaccaga	a tca	cctgo	cat	tgtg	agaa	aa a	gtctc	tagag	960
tgcgattg	ca gcac	tattct t	gcgccgaa	a aga	gtctt	ga	gacc	tcag	tt t	ctga	ıgagaa	1020
gaaccctg	gag gaac	agacgt t	ccctggcgg	g ccc	tggcg	gcc	ttca	aacc	ca g	gac	atg Met 1	1076
			ctg ccc Leu Pro									1124
gag gga Glu Gly	gac aga Asp Arg 20	caa tat Gln Tyr	ggg gat Gly Asp 25	ggt Gly	tac ( Tyr 1	ttg Leu	ctg Leu	caa Gln 30	gtg Val	cag Gln	gag Glu	1172
ctg gtg Leu Val 35	acg gtg Thr Val	cag gag Gln Glu	ggc ctg Gly Leu 40	tgt Cys	gtc ( Val 1	cat His	gtg Val 45	ccc Pro	tgc Cys	tcc Ser	ttc Phe	1220
			tgg act Trp Thr									1268
tgg ttc Trp Phe	cgg gca Arg Ala	gga gac Gly Asp 70	aga cca Arg Pro	tac Tyr	caa Gln 75	gac Asp	gct Ala	cca Pro	gtg Val	gcc Ala 80	aca Thr	1316
		Arg Glu	gtg cag Val Gln									1364
•			agc aac Ser Asn 105	Asp	_		-					1412
gcc agg Ala Arg 115	aag agg Lys Arg	gat aag Asp Lys	ggg tca Gly Ser 120	tat Tyr	ttc Phe	ttt Phe	cgg Arg 125	cta Leu	gag Glu	aga Arg	gga Gly	1460
			aaa tca Lys Ser									1508
_	• -		gac cct Asp Pro				_		-		-	1556
		Ala Thr	gca tco Ala Ser		_	_				Ser		1604
			cag tct Gln Ser 185	Leu								1652

WO 01/3	55437												1	PCT/US01/	02623
agc aat Ser Asn 195	Pro	cct q Pro i	gcc Ala	agg Arg	ctg Leu 200	agc Ser	tgg Trp	acc Thr	cgg Arg	999 Gly 205	agc Ser	ctg Leu	acc Thr	ctg Leu	1700
tgc ccc Cys Pro 210	tca Ser	cgg ( Arg (	tcc Ser	tca Ser 215	aac Asn	cct Pro	Gly ggg	ctg Leu	ctg Leu 220	gag Glu	ctg Leu	cct Pro	cga Arg	gtg Val 225	1748
cac gtg His Val		Asp (													1796
ggc tcc Gly Ser	Gln												Gly		1844
ggc acc Gly Thr															1892
gct gga Ala Gly 275															1940
ata gtg Ile Val 290	agg	tcc t Ser (	Cys	agg Arg 295	aag Lys	aaa Lys	tcg Ser	gca Ala	agg Arg 300	cca Pro	gca Ala	gcg Ala	ggc Gly	gtg Val 305	1988
ggg gat Gly Asp	aca (	Gly N	atg Met 310	gaa Glu	gat Asp	gca Ala	aag Lys	gcc Ala 315	atc Ile	agg Arg	ggc Gly	tcg Ser	gcc Ala 320	tct Ser	2036
cag gga Gln Gly	Pro 1	ctg a Leu 1 325	act Thr	gaa Glu	tcc Ser	tgg Trp	aaa Lys 330	gat Asp	ggc Gly	aac Asn	ccc Pro	ctg Leu 335	aag Lys	aag Lys	2084
cct ccc Pro Pro	Pro 2	get g Ala V	gtt Val	gcc Ala	ccc Pro	tcg Ser 345	tca [.] Ser	gjå aaa	gag Glu	gaa Glu	gga Gly 350	gag Glu	ctc Leu	cat His	2132
tat gca Tyr Ala 355	acc o	ctc a Leu S	agc Ser	Phe	cat His 360	aaa Lys	gtg Val	aag Lys	cct Pro	cag Gln 365	gac Asp	ccg Pro	cag Gln	gga Gly	2180
cag gag Gln Glu 370	gcc a Ala 1	act g Thr A	lsp	agt Ser 375	gaa Glu	tac Tyr	tcg Ser	gag Glu	atc Ile 380	<b>aag</b> Lys	atc Ile	cac His	aag Lys	cga Arg 385	2228
gaa act Glu Thr	gca g Ala (	3lu T	hct Thr 190	cag Gln	gcc Ala	tgt Cys	Leu	agg Arg 395	aat Asn	cac His	aac Asn	ccc Pro	tcc Ser 400	agc Ser	2276
aaa gaa Lys Glu	Val A			tga *	ttct	ca c	agaa	caag	a ac	cctc	taga	gcc	ccat	gct	2330
atgcagta	agg to	cacca	ıggg	c tc	cctc	ctcc	tgt	ctaa	cca	aaac	ttgg	ac c	aatg	tctcc	2390
cctttccc															2450
tctcgaco															2510
ttgcctct	ct gt	gtgt	ggct	t ca	tttt	acac	aaa	aaaa	tat	cccc	tagg	tt c	atcc	atgtt	2570 ′

PCT/US01/02623 WO 01/55437 ctctcaaatg acagaatcaa gcactgaata tttttttttc tttgagagat ggagtttcgc tetgttgeec aggetggagt geagtggtte aatetetget eactgeaace teeaceteet 2690 gggttcaaac gattctcctg cctcagcttc ccaagtagct ggtactacag gcgtgtgtca 2750 ccacgcccag ctaatttttg tattttttag tagagacggg gtttcactat aagtgggcca 2810 ggctagtctc aaactcctga cctcaagtga tctgcctgcc ttggcctccc aaagtgctgg 2870 2898 gatttcaggc atgagccacc gcacccag <210> 142 <211> 478 <212> DNA <213> Homo sapiens . <220> <221> CDS <222> (138)..(356) <400> 142 ataccgctcc ggaattcccg ggtcgaccca cgcgtccgta ctactcagaa gaaatcagag 60 ttaatatttt agtgtaaatt ttttatctat gaagtaaaca attttaaaag ctaaatatag 120 atg tat tat acc ttg tgt aat ttt gta ttc ttt agtctcattt agaaaat Met Tyr Tyr Thr Leu Cys Asn Phe Val Phe Phe 5 aca ctt cac atg ata ttg ttt ccc aag tca tta aat att ctt cta agt 218 Thr Leu His Met Ile Leu Phe Pro Lys Ser Leu Asn Ile Leu Leu Ser 15 20 266 aac cag att aga tca gca ata gtt cac tta aaa cag cga aca agc tgc Asn Gln Ile Arg Ser Ala Ile Val His Leu Lys Gln Arg Thr Ser Cys 30 314 att aaa aac caq cca gaq cct tac caa aga gct gat gct atg aat acc Ile Lys Asn Gln Pro Glu Pro Tyr Gln Arg Ala Asp Ala Met Asn Thr 50 363 aat cat agc tta gtt gct gtt cca tat gtt aat tta att tga cagagta Asn His Ser Leu Val Ala Val Pro Tyr Val Asn Leu Ile * agagtetttg aagteetaat tetettttge atecaataaa eeagttttta tagtgegtga 423 acttttagac atcagectge agetaaacte atgtegggaa gttgecatga ggtea 478 <210> 143 <211> 1322 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (328)..(549)

<220>
<221> misc_feature
<222> (1)...(1322)
<223> n = a,t,c or g

<400> 143 aacggtcgac gatatcgttc tgtgtgtcag ccttcctgga aggcacttaa atgagttcac 60 agaaggcaaa gtgaaggaca tacgtaggtg actcgagtgt ccaccatcga cctgttctgc 120 aacccagctg tcaaaatcct gccccaagct ctttgacata agggtacttc tggtagaatt 180 tttttaaaac ttaattactt cctgcaggct tcagaatgtt tgagcatgaa aacaaatgga 240 agcaggetta etttegatgt ettattaagg tetttaceat gateaatgtt acetttatga 300 351 atg ttt tgg atg gta aaa atc ctg caagetteat atgeettgtt aggeaga Met Phe Trp Met Val Lys Ile Leu 399 act ccc aaa gca tca aca ttc caa gta act act tca gtt tca gtt ccg Thr Pro Lys Ala Ser Thr Phe Gln Val Thr Thr Ser Val Ser Val Pro ctc acc agt gct aca gga gca gcg tgc agc ggg tcc tgc ttc cat tcg 447 Leu Thr Ser Ala Thr Gly Ala Ala Cys Ser Gly Ser Cys Phe His Ser act ggc tgt gca gga cgg cca caa aca cac gca ggt gca ccc tgc gct 495 Thr Gly Cys Ala Gly Arg Pro Gln Thr His Ala Gly Ala Pro Cys Ala 50 tot gag cag aac tot ogg aat gaa gta atg cag acg too aca aat gag 543 Ser Glu Gln Asn Ser Arg Asn Glu Val Met Gln Thr Ser Thr Asn Glu atg tga tttcactgag ggaggctgat ttttagcagt tgttcctttt ttaacagata 599 Met 659 qtctataaqt qqaaactgac ctgaaacatt cagctctaaa gaaataatca caaagcacct cggtgcctga tttttgcaag gcagtccttg ccggaggatc gggcattcgt gcacattcac 719 779 ccqqaqaccq tgctgtccac ttccaqaagg ggaggaaggg cagcgctcag aagcacgccc agactgtete cagecetget geceeetget gaggeeatet egeetgetea geeeecaagt 839 899 tececcacag tecatgicee igggitatga atgicacetg gigietgica gatececace ccattgttct tgtcaatgag caggagtggg gtggacctgc catcctgcga atcctttaca 959 1019 gcctgcagcg ctgcctgcca actcttcaca accattagca cccactaaca atccatttcc cetggagete tteactetaa agatagaaga eeaaaaaata gaagtgteet eattteteae 1079 agtactacag gaggaggtga gaaccgatgc atccgtgcat cttaggagaa tctcatttca 1139 gacctcggct ttgagtgcgc ctcctgctca gtcagccctc tccctcgctg caggttgacg 1199 1259 tgggtcagga cagtgcgcag tcaggcagcc ttgattttcg gttctggggt ttggtccaag gattgaccgg gttccntttt gttcattgcc ccttcntgtt gcaacccctg ggtttgtttt 1319

1322 ggc

<210> 144 <211> 672 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (224)(502)	
<400> 144 aagctggtac geetgeaggt aceggteegg aatteeeggg tegacceaeg egteegget	g 60
cctccacccg aggggtectg agccctatcc tggtttgttg ccggaccccc aagagcatt	.c 120
caagcaaatc aacactgaca cattcatgat ctaatgctca gattcattca gctttctct	g 180
actotoogot gatgoootto atgootaago atgotooogg too atg cac tgo aga · Met His Cys Arg 1	
cag tta aag gaa gtg ctg cag ctt cct tta acc tgc agc agc tgc tgt Gln Leu Lys Glu Val Leu Gln Leu Pro Leu Thr Cys Ser Ser Cys Cys 5 10 15 20	283
gtc tgt acc atg acc gtg gca ttt ccc agc gtc cag cag gtg tgg atg Val Cys Thr Met Thr Val Ala Phe Pro Ser Val Gln Gln Val Trp Met 25 30 35	331
gag act gtg ctg act ctg ggt ggg ctt gat gct gct cag gat gag atc Glu Thr Val Leu Thr Leu Gly Gly Leu Asp Ala Ala Gln Asp Glu Ile 40 45 50	379
cag gcg gtg agg ctc att ctc ctc cct gag tcc tct cct cag ggg cca Gln Ala Val Arg Leu Ile Leu Leu Pro Glu Ser Ser Pro Gln Gly Pro 55 60 65	427
cat ggg aac ctg gct ccc tgt tct gca aag ccc ttc ttc ctt ccc caa His Gly Asn Leu Ala Pro Cys Ser Ala Lys Pro Phe Phe Leu Pro Gln 70 75 80	475
gtc atg ccc ttg ggc aca gcc cct tag ggcta ggggcettca ccctcaggca Val Met Pro Leu Gly Thr Ala Pro * 85 90	527
ggctgaccca cccctgcagg ccaggatggc tgagtccctg ctggggtgga gcacgcct	gg 587
gcctgcctct acgaaccgaa gcacaggtta gacctcaggc ccgatgaaga ccggcgtt	ac 647
cccggcacaa ccaaaaggac gcccc	672

<210> 145 <211> 1229

<212> DNA

<213> Homo sapiens

PCT/US01/02623 WO 01/55437

<220>

<221> CDS <222> (103)..(903) <400> 145 togootgogg tacoggtoog gaattooogg gtogaccoac gogtoogogg acgogtgggo 60 114 atg gtg tgt ctg ttgcctgctg ctctggcccc tggtcctgtc ctgttctcca gc Met Val Cys Leu agg ctc cct gga ggc tcc tgc atg gca gtt ctg aca gtg aca ctg atg Arg Leu Pro Gly Gly Ser Cys Met Ala Val Leu Thr Val Thr Leu Met gtg ctg agc tcc cca ctg gct ttg gct ggg gac acc aga cca cgt ttc 210 Val Leu Ser Ser Pro Leu Ala Leu Ala Gly Asp Thr Arg Pro Arg Phe ttg gag tac tct acg tct gag tgt cat ttc ttc aat ggg acg gag cgg 258 Leu Glu Tyr Ser Thr Ser Glu Cys His Phe Phe Asn Gly Thr Glu Arg gtg cgg ttc ctg gac aga tac ttc tat aac cag gag gag tac gtg cgc 306 Val Arg Phe Leu Asp Arg Tyr Phe Tyr Asn Gln Glu Glu Tyr Val Arg 60 ttc gac agc gac gtg ggg gag ttc cgg gcg gtg acg gag ctg ggg cgg 354 Phe Asp Ser Asp Val Gly Glu Phe Arg Ala Val Thr Glu Leu Gly Arg 75 cct gat gcg gag tac tgg aac agc cag aag gac ctc ctg gag cag aag 402 Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys 90 cgg ggc cgg gtg gac aac tac tgc aga cac aac tac ggg gtt gtg gag Arg Gly Arg Val Asp Asn Tyr Cys Arg His Asn Tyr Gly Val Val Glu 105 ago tto aca gtg cag cgg cga gto cat cot aag gtg act gtg tat cot Ser Phe Thr Val Gln Arg Arg Val His Pro Lys Val Thr Val Tyr Pro 120 tca aag acc cag ccc ctg cag cac cac aac ctg ctg gtc tgt tct gtg 546 Ser Lys Thr Gln Pro Leu Gln His His Asn Leu Leu Val Cys Ser Val 140 agt ggt ttc.tat cca ggc agc att gaa gtc agg tgg ttc cgg aat ggc 594 Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp Phe Arg Asn Gly 642 cag gaa gag aag act ggg gtg gtg tee aca gge etg ate eac aat gga Gln Glu Glu Lys Thr Gly Val Val Ser Thr Gly Leu Ile His Asn Gly 170 175 gac tgg acc ttc cag acc ctg gtg atg ctg gaa aca gtt cct cgg agt 690 Asp Trp Thr Phe Gln Thr Leu Val Met Leu Glu Thr Val Pro Arg Ser 738 gga gag gtt tac acc tgc caa gtg gag cac cca agc gtg aca agc cct Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser Val Thr Ser Pro 200 205 ctc aca gtg gaa tgg aga gca cgg tct gaa tct gca cag agc aag atg 786

Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala Gln Ser Lys Met	
215	
ctg agt gga gtc ggg ggc ttt gtg ctg ggc ctg ctc ttc ctt ggg gcc Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu Phe Leu Gly Ala 230 235 240	834
ggg ctg ttc atc tac ttc agg aat cag aaa gga cac tct gga ctt cag Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His Ser Gly Leu Gln 245 250 250 260	882
cca aga gga ttc ctg agc tga ag tgcagatgac acattcaaag aagaactttc Pro Arg Gly Phe Leu Ser * 265	935
tgccccagct ttgcaggatg aaaagctttc cctcctgggc tgttattctt ccacaagaga	995
gggctttctc aggacctggt tgctactggt tcagcaactg cagaaaatgt cctcccttgt	1055
ggetteetea geteetgtte ttggeetgaa geeccacage tttgatggea gegeeteate	1115
ttcaactttt gtgctcccct ttgcctaaac cctatggcct cctgtgcatc tgtactcacc	1175
ctgtaccaca aacacattac attattaaat gtttctcaaa gatggagtta aaaa	1229
<210> 146 <211> 1651 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (54)(1031)	
<400> 146	5.5
	56
<400> 146 ggtcgaccca cgcgtccgat ttgaagaagt gttttcatct atccaagaaa aat atg Met	56 104
<pre>&lt;400&gt; 146 ggtcgaccca cgcgtccgat ttgaagaagt gttttcatct atccaagaaa aat atg Met</pre>	
<pre> &lt;400&gt; 146 ggtcgaccca cgcgtccgat ttgaagaagt gttttcatct atccaagaaa aat atg Met  1  atg tct cca tcc caa gcc tca ctc tta ttc tta aat gta tgt att ttt Met Ser Pro Ser Gln Ala Ser Leu Leu Phe Leu Asn Val Cys Ile Phe</pre>	104
<pre></pre>	104 152
c400> 146 ggtcgaccca cgcgtccgat ttgaagaagt gttttcatct atccaagaaa aat atg Met  atg tct cca tcc caa gcc tca ctc tta ttc tta aat gta tgt att ttt Met Ser Pro Ser Gln Ala Ser Leu Leu Phe Leu Asn Val Cys Ile Phe  5 10 15  att tgt gga gaa gtt gta caa ggt aac tgt gta cat cat tct acg gac Ile Cys Gly Glu Val Val Gln Gly Asn Cys Val His His Ser Thr Asp  20 25 30  tct tca gta gtt aac att gta gaa gat gga tct aat gca aaa gat gaa Ser Ser Val Val Asn Ile Val Glu Asp Gly Ser Asn Ala Lys Asp Glu  35 40 45  agt aaa agt aat gat act gtt tgt aag gaa gac tgt gag gaa tca tgt Ser Lys Ser Asn Asp Thr Val Cys Lys Glu Asp Cys Glu Glu Ser Cys	104 152 200

85 90 95

			85					90					95			
cta Leu	agg Arg	aat Asn 100	atg Met	atg Met	gat Asp	gag Glu	caa Gln 105	caa Gln	gct Ala	tcc Ser	ttg Leu	gat Asp 110	tat Tyr	tta Leu	tct Ser	392
aat Asn	cag Gln 115	gtt Val	aac Asn	gag Glu	ctc Leu	atg Met 120	aat Asn	aga Arg	gtt Val	ctc Leu	ctt Leu 125	ttg Leu	act Thr	aca Thr	gaa Glu	440
gtt Val 130	ttt Phe	aga Arg	aaa Lys	cag Gln	ctg Leu 135	gat Asp	cct Pro	ttt Phe	cct Pro	cac His 140	aga Arg	cct Pro	gtt Val	cag Gln	tca Ser 145	488
cat His	ggt Gly	tta Leu	gat Asp	tgc Cys 150	act Thr	gat Asp	att Ile	aag Lys	gat Asp 155	acc Thr	att Ile	ggc Gly	tct Ser	gtc Val 160	acc Thr	536
aaa Lys	aca Thr	ccg Pro	agt Ser 165	ggt Gly	tta Leu	tac Tyr	ata Ile	att Ile 170	cac His	cca Pro	gaa Glu	gga Gly	tct Ser 175	agc Ser	tac Tyr	584
cca Pro	ttt Phe	gag Glu 180	gta Val	atg Met	tgt Cys	gac Asp	atg Met 185	gat Asp	tac Tyr	aga Arg	gga Gly	ggt Gly 190	gga Gly	tgg Trp	act Thr	632
gtg Val	ata Ile 195	cag Gln	aaa Lys	aga Arg	att Ile	gat Asp 200	gjå aaa	ata Ile	att Ile	gat Asp	ttc Phe 205	cag Gln	agg Arg	ttg Leu	tgg Trp	680
tgt Cys 210	gat Asp	tat Tyr	ctg Leu	gat Asp	gga Gly 215	ttt Phe	gga Gly	gat Asp	ctt Leu	cta Leu 220	ggt Gly	gat Asp	gca Ala	ttc Phe	cgg Arg 225	728
ggt Gly	ctc Leu	aaa Lys	aaa Lys	gaa Glu 230	gat Asp	aat Asn	caa Gln	aat Asn	gca Ala 235	atg Met	cct Pro	ttt Phe	agc Ser	aca Thr 240	tca Ser	776
gat Asp	gtt Val	gat Asp	aat Asn 245	gat Asp	Gly 999	tgt Cys	cgc Arg	cct Pro 250	gca Ala	tgc Cys	ctg Leu	gtc Val	aat Asn 255	ggt Gly	cag Gln	824
tct Ser	gtg Val	aag Lys 260	agc Ser	tgc Cys	agt Ser	cac His	ctc Leu 265	cat His	aac Asn	aag Lys	acc Thr	ggc Gly 270	tgg Trp	tgg Trp	ttt Phe	872
							Leu							tct Ser		920
	_		_							_	-			aac Asn		968
														atg Met 320		1016
	cca Pro				taa	tctc	att	taac	attg	ta a	tgca	agtt	c ta	caat	gata	1071
ata	tatt	aaa	gatt	ttta	aa a	gttt	atct	t tt	cact	tagt	gtt	tcaa	aca	tatt	aggcaa	1131

PCT/US01/02623 WO 01/55437 aatttaactg tagatggcat ttagatgtta tgagtttaat tagaaaactt caattttgta 1191 gtattctata aaagaaaaca tggcttattg tatgttttta cttctgacta tattaacaat 1251 atacaatgaa atttgtttca agtgaactac aacttgtctt cctaaaattt atagtgattt 1311 taaaggattt tgccttttct ttgaagcatt tttaaaccat aatatgttgt aaggaaaatt 1371 gaagggaata ttttacttat ttttatactt tatatgatta tataatctac agataatttc 1431 tactgaagac agttacaata aataacttta tgcagattaa tatataagct acacatgatg 1491 taaaaacctt actatttcta ggtgatgcca taccatttta aaagtagtaa gagtttgctg 1551 cccaaatagt ttttcttgtt ttcatatcta atcatggtta actattttgt tattgtttgt 1611 1651 

<210> 147 <211> 737 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (124)..(336) agcgtggtgg aattcctcag ccaagatgaa gcatgccttt tcaaaaagaa caccccaaaa 60 taagtatttt accattatct aaaagactac ttttgctggg ttttattttt taatctattg 120 aac atg aga aca tgg tca aaa gtc ata cct tcc tta tgg ttg aaa ttt 168 Met Arg Thr Trp Ser Lys Val Ile Pro Ser Leu Trp Leu Lys Phe tct aga ggt ttt ata ata ttg aga ttt cat ttt tta atg ata att tgg 216 Ser Arg Gly Phe Ile Ile Leu Arg Phe His Phe Leu Met Ile Ile Trp cct gac ata cct tcc agt atg tac att tgt atg agt ttt atc aca gca 264 Pro Asp Ile Pro Ser Ser Met Tyr Ile Cys Met Ser Phe Ile Thr Ala 312 Phe Lys Asn Leu Phe Met Phe Gly Ile Asn Arg Ile Lys Lys Ile Ser 55 366 gta gtt tct aga aat act tta tag tgacagtttt gttttttagt cttccagatt Val Val Ser Arg Asn Thr Leu * 65 426 gttgatatta atgcaaacaa tattaagctt atatcacaaa aatattttca gtaaagcgta ttttttataa actgtgttag gcactgggaa taatacaaaa atgataaata aagcctgtcc cttgcctgat gtcacagtcg ggctacagct gccagaaaca aggccagcaa aattaggata 546

cagcttgcga atgtagtgtg aagaaaggcc ttcggaatac caaagaaaat tctagggtca gggaaagctt tgaagagaag gtgatgttca gctatgtttg aagaatgggg agggctcatc 606

PCT/US01/02623 WO 01/55437

agcg	atag	aa c	atto	taga	t ag	gttt	ggaa	gca	tgag	agc	atgg	agca	at t	.ggga	aaacc	726
caat	atgo	cc 9	ī													737
	<21 <21	.0> 1 .1> 1 .2> I	.255 NA	sapi	.ens											
		1> 0		(121	.7)											
cc	ato	Ala	ago	tcg Ser	. GJ ⁷	Pro	g gcc Ala	atg Met	g ctt	cgo Arg	g Gly	ccg Pro	tgg Tr	g cgc o Arg	ttt Phe 15	47
ttt Phe	tgg Trp	ctc Leu	ttt Phe	ctc Leu 20	ctg Leu	ctg Leu	ctg Leu	ctc Leu	ccg Pro 25	ggc Gly	gcg Ala	ccc Pro	gac Asp	cca Pro 30	cgc Arg	95
gtc Val	cgc Arg	tcc Ser	agg Arg 35	ccg Pro	tgg Trp	gag Glu	gga Gly	acc Thr 40	gac Asp	gag Glu	ccg Pro	ggc Gly	tcg Ser 45	gcc Ala	tgg Trp	143
gcc Ala	tgg Trp	ccg Pro 50	ggc Gly	ttc Phe	cag Gln	cgc Arg	ctg Leu 55	cag Gln	gag Glu	cag Gln	ctc Leu	agg Arg 60	gcg Ala	gcg Ala	ggt Gly	191
gcc Ala	ctc Leu 65	tcc Ser	aag Lys	cgg Arg	tac Tyr	tgg Trp 70	acg Thr	ctc Leu	ttc Phe	agc Ser	tgc Cys 75	cag Gln	gtg Val	tgg Trp	ccc Pro	239
gac Asp 80	gac Asp	tgt Cys	gac Asp	gag Glu	gac Asp 85	gag Glu	gag Glu	gca Ala	gcc Ala	acg Thr 90	Gly aaa	ccc Pro	ctg Leu	ggc Gly	tgg Trp 95	287
cgc Arg	ctt Leu	cct Pro	ctg Leu	ttg Leu 100	ggc Gly	cag Gln	cgg Arg	tac Tyr	ctg Leu 105	gac Asp	ctc Leu	ctg Leu	acc Thr	acg Thr 110	tgg Trp	335
tac Tyr	tgc Cys	agc Ser	ttc Phe 115	aaa Lys	gac Asp	tgc Cys	tgc Cys	cct Pro 120	aga Arg	GJ À GGA	gat Asp	tgc Cys	aga Arg 125	atc Ile	tcc Ser	383
					tta Leu											43]
					cag Gln											479
					gaa Glu 165											527
tct Sér	ggc Gly	aca Thr	ggc Gly	aag Lys	aac Asn	ttc Phe	gtg Val	gca Ala	cgg Arg	atg Met	ctg Leu	gtg Val	gag Glu	aac Asn	ctg Leu	575

180 185 623

tat cgg gac ggg ctg atg agt gac tgt gtc agg atg ttc atc gcc acg Tyr Arg Asp Gly Leu Met Ser Asp Cys Val Arg Met Phe Ile Ala Thr 200

ttc cac ttt cct cac ccc aaa tat gtg gac ctg tac aag gag cag ctg 671 Phe His Phe Pro His Pro Lys Tyr Val Asp Leu Tyr Lys Glu Gln Leu 215

atg age cag atc cgg gag acg cag cag ctc tgc cac cag acc ctg ttc 719 Met Ser Gln Ile Arg Glu Thr Gln Gln Leu Cys His Gln Thr Leu Phe 230

atc ttc gat gaa gcg gag aag ctg cac cca ggg ctg ctg gag gtc ctt 767 Ile Phe Asp Glu Ala Glu Lys Leu His Pro Gly Leu Leu Glu Val Leu 250 245

ggg cca cac tta gaa cgc cgg gcc cct gag ggc cac agg gct gag tct 815 Gly Pro His Leu Glu Arg Arg Ala Pro Glu Gly His Arg Ala Glu Ser 260

cca tgg act atc ttt ctg ttt ctc agt aat ctc agg ggc gat ata atc 863 Pro Trp Thr Ile Phe Leu Phe Leu Ser Asn Leu Arg Gly Asp Ile Ile 280 275

aat gag gtg gtc cta aag ttg ctc aag gct gga tgg tcc cgg gaa gaa 911 Asn Glu Val Val Leu Lys Leu Leu Lys Ala Gly Trp Ser Arg Glu Glu 295

att acg atg gaa cac ctg gag ccc cac ctc cag gcg gag att gtg gag 959 Ile Thr Met Glu His Leu Glu Pro His Leu Gln Ala Glu Ile Val Glu 310

1007 acc ata gac aat ggc ttt ggc cac agc cgt ctt gtg aag gaa aac ctg Thr Ile Asp Asn Gly Phe Gly His Ser Arg Leu Val Lys Glu Asn Leu 325 330

att gac tac ttc atc ccc ttc ctg cct ttg gag tac cgt cac gtg agg 1055 Ile Asp Tyr Phe Ile Pro Phe Leu Pro Leu Glu Tyr Arg His Val Arg 340

ctg tgt gca cgg gat gcc ttc ctg agc cag gag ctc ctg tat aaa gaa 1103 Leu Cys Ala Arg Asp Ala Phe Leu Ser Gln Glu Leu Leu Tyr Lys Glu 360 355

gag aca ctg gat gaa ata gcc cag atg atg gtg tat gtc ccc aag gag 1151 Glu Thr Leu Asp Glu Ile Ala Gln Met Met Val Tyr Val Pro Lys Glu 375 370

gaa caa ctc ttt tct tcc cag ggc tgc aag tct att tcc cag agg att 1199 Glu Gln Leu Phe Ser Ser Gln Gly Cys Lys Ser Ile Ser Gln Arg Ile 390 385

aac tac ttc ctg tca tga aggeta gaggaagact tcctggaact gcctttcttc 1253 Asn Tyr Phe Leu Ser * 405 400

1255 ca

PCT/US01/02623 WO 01/55437 <211> 474 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (293)..(409) <400> 149 60 gccaggccgc gaattcccgg gtcgacccac gcgtccgggg aaattaaaag atttaattgt taaatgtaag ttgggaaatt aaaagtctgt gtaattagtc ctgtttttgc cacctgtgat 120 aaaataataa ggcttctatt tatctaagaa gacccgggca tacacaacag tggtttttaa 180 aaatttaccg tcaacttgaa gtattttcct ttctcttcca tgaagagcag taacattttt 240 tctcttttct tatttttagt aacttttatc ttcctgactt ccatagccag ca tct 295 Met 1 tat ttt ctt ctt ggt gtc ctt ttt ccc tta tca aat gta acc agg atc 343 Leu Ala Met Glu Val Arg Lys Ile Lys Val Thr Lys Asn Lys Lys Arg 10 ttt att ata gtg gaa atg ggg cca gtt gat gaa gtc taa tat gaa acg 391 Glu Lys Met Leu Leu Phe Met Glu Glu Lys Gly Lys Tyr Phe Lys 25 aat att tta act ttc aaa tgcaga agagctaagt tgcaaagata gcagaactgt 445 Leu Thr Val Asn Phe * 35 474 ccaatctgtc taccttcaca gcagtgctg <210> 150 <211> 836 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (73)..(210) <400> 150 gaccggtccg gaattcccgg gtcgacccac gcgtccggga atcttgttaa gggttggctg 60 108 ggatacattt at atg ctt tgc agt ctc ttc cat ata tta ata gtt aca Met Leu Cys Ser Leu Phe His Ile Leu Ile Val Thr 1 tta ttg ctg gcc atc tca ttt ggg atg tct tct agg aat act ctg aat 156 Leu Leu Leu Ala Ile Ser Phe Gly Met Ser Ser Arg Asn Thr Leu Asn 15 204 atg gtc aat tca aag att aaa gag cat tca ctc cat aga aaa ctt gaa Met Val Asn Ser Lys Ile Lys Glu His Ser Leu His Arg Lys Leu Glu 35

ata tga aatcttatag ctcagatatg aaggaaactt agcagtttcc ccagatttga

4	5

caattctaaa aattacatgg tgctactaat acatagttga ggatgtaaaa gaagcctcta 320 taaactgcca aaaagaaaaa taaaaaggga ttttccatta aaaatgtatg tgctatgtaa 380 440 ttgcccaggc tggagtgtaa tggggccatc tcggcttgct gcaacctcca cctcctgggt 500 560 tcaagcgatt ctccagcctc agcctcccaa gtggctgaga ttgcaggcac cgccaccacc cccgcaaaat tttggaattt taagaagata gggggttcca cattttggcc cggctgggtc 620 taaacttcct gatccaccaa cttaaccctc caaagggcgt ggataacagg gggagccacc 680 cgccctgcca gaatatgaat ttttaaatgg atgtttggag gcacactaca tatttcctag 740 actacttccg atatttttt acggggaacc tatattttac ccattggaaa taaaaaaaaa 800 836 atattttatt ttaaaaagga ggattggccc ctgggc

<210> 151 <211> 871 <212> DNA <213> Homo sapiens

<221> CDS

<222> (33)..(242)

<400> 151

ccatcgatta cgccaagctt ggcacgagga tt atg ttt tgg acc ctg gtt cag 53

Met Phe Trp Thr Leu Val Gln

1 5

ggg atg tcc tta ctg tgt cta act gat gtg ttt cag gct ctt cct tca

Gly Met Ser Leu Leu Cys Leu Thr Asp Val Phe Gln Ala Leu Pro Ser

10 15 20

ata tgt att gcg aat agt gag att tat tac aca gtc cta aca ttg atg 149

Ile Cys Ile Ala Asn Ser Glu Ile Tyr Tyr Thr Val Leu Thr Leu Met

30 35

cag ttt agt tgc ttg tgg atg gtg ttg tca gga aaa aag gta ata ttt 197 Gln Phe Ser Cys Leu Trp Met Val Leu Ser Gly Lys Lys Val Ile Phe 40 45 50 55

tct tct gaa ctc atg gtt aga aag ggc agg aga agc tgg aag taa gat 245 Ser Ser Glu Leu Met Val Arg Lys Gly Arg Arg Ser Trp Lys *

atcetecate etcettagae atatttacat eacetettee aggittigeat attigettaca 305 atcaatacag agaagagaaa acaaaggaaa tatgigataa gitgataaat tactgetaca 365 aaatttaaat tetggeeeta aageaataae aaagtagaae atagigaaae aagtacacaa 425 aagatttaaa actggggata eagaagttee aaageaagga gaaaaaagga aattattata 485 actggaetta aaatteaaaa aaatggtatt tagaactaag aaattaattt gagigaaatt 545

aatgttagaa	taaaaataaa	attgaaatca	acatgaggga	agagtctaaa	gcatgcatat	605
atgattgaaa	gagcaagaca	actcacagga	aaagctaaaa	atcaagtaga	agcaagattt	665
tgactggaaa	gaagcagcac	gagtgaatgg	atggaaatga	aaaaaagatc	tacagagata	725
tccactgcaa	gaggagtttt	catcgccagg	gcaccagctt	ctccagttac	cttcccctgt	785
aagtgggacc	acaggccctt	cctgtggaag	agccctcagt	gactaaacag	catactctgg	845
cttttctcat	ttcttcctta	ggggcg				871

<210> 152 <211> 650 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (238)..(381)

cgtccggaat tcccgggtcg acccacgcgt ccggttagac ctaaggtgat atgagaatat 60

aatgtatgtc catcaagaaa aggatatatt tgttgagtaa actttaaaat taggaagggg 120

atcatctatg atacattaac atatatctga tgatacatta gctgatgata tatgctatga 180

tatattagca tattctaatt agcatatatc atcagcatat atgggaatgt cattggc 237

atg tat ttg aag ccc tta ata tac ttt tct att ttg ata ttt ttg agt 285

Met Tyr Leu Lys Pro Leu Ile Tyr Phe Ser Ile Leu Ile Phe Leu Ser 1 5 10 15

caa agg agt aaa tta tcc ctt ccc tac aat gtt cac aat tgt atg aat

Gln Arg Ser Lys Leu Ser Leu Pro Tyr Asn Val His Asn Cys Met Asn

20 25 30

ata ggt gaa gat agg cga ccc cag aaa gta cag ctg ctt cag ttg tac

Ile Gly Glu Asp Arg Arg Pro Gln Lys Val Gln Leu Leu Gln Leu Tyr

35 40 45

taataagtaa tcatcatcct gcaagaagta tgttgtgact tctcctacaa ttaactatca 441

gcaaggatta gattgcaata attattatat ttataatttc tagcatgttt ggggggggga 561
ccatttgagg ttcctaaacc aatggggcgg gttttttaaa aaccaaaacc ttcccacaaa 621
aatttttagg ctttaacctt aaaaaaggc 650

tataqtttaa tatatgttta atattattat aaaaagtaga aaaataaaat ttatttagaa

501

<210> 153 <211> 518 <212> DNA <213> Homo sapiens

<220>

<221> CDS <222> (347)..(496)

<400> 153 aacattgcgg aaccgccccg gaatttccgg gtcgacccac gcgtccggcc cgcctgggcc 60 tectaaagtg ettggattae agttgtgage caccaegeee ggeegaetat tttetettat 120 ttcaaaatta catattctta tacactatgg aacttggaaa ataagggaaa gcataaagaa 180 aatttaaatc acccataatt tcacaaacca gagatgaaac cactgctaac agttgctgta 240 300 atttetteca gtetetttte tacagtgaga tetgtattte tagetggeta cacatagtat 355 aaatctaggt ttagaatcaa gtagaaatag ctctaaagtg ctgccg atg ctg cca Met Leu Pro 1 ttg gct ctg ata gtg gat ctc att tat ccc tgg gtc cag gtg aga ggt 403 Leu Ala Leu Ile Val Asp Leu Ile Tyr Pro Trp Val Gln Val Arg Gly 10 5 cct gag gac cca aat cat ggg aca aca gag aga aaa aga gaa gag gtg 451 Pro Glu Asp Pro Asn His Gly Thr Thr Glu Arg Lys Arg Glu Glu Val 30 20 acc tgc cta ggg gcg gcc cgg ctg agt ttg gaa gcc gca agg tga act 499 Thr Cys Leu Gly Ala Ala Arg Leu Ser Leu Glu Ala Ala Arg 50 45 518 ccctccatgg gagaaagct

<210> 154 <211> 1016 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (169)..(879)

<400> 154
gaaactgcaa gagtggggca gagaaccaga gtgtcagagc aaaacctcct ctatctgcac 60
atcctgggga cgaaccgggc agccggagag ctgcggccgg cccagtcccg ctccgccttt 120
gaagggtaaa acccaaggcg gggccttggt tctggcagaa gggacgct atg acc gca Met Thr Ala 1

gaa ttc ctc tcc ctg ctt tgc ctc ggg ctg tgt ctg ggc tac gaa gat 225
Glu Phe Leu Ser Leu Leu Cys Leu Gly Leu Cys Leu Gly Tyr Glu Asp
5 10 15

gag aaa aag aat gag aaa ccg ccc aag ccc tcc ctc cac gcc tgg ccc
Glu Lys Lys Asn Glu Lys Pro Pro Lys Pro Ser Leu His Ala Trp Pro
20 25 30 35

age teg gtg gtt gaa get gag age aat gtg ace etg aag tgt eag get

Ser Ser Val Val Glu Ala Glu Ser Asn Val Thr Leu Lys Cys Gln Ala

40

45

50

PCT/US01/02623 WO 01/55437

				gtg Val												369
tac Tyr	aag Lys	cag Gln 70	gaa Glu	cag Gln	agc Ser	tcg Ser	gca Ala 75	gaa Glu	aac Asn	gaa Glu	gct Ala	gaa Glu 80	ttc Phe	ccc Pro	ttc Phe	417
acg Thr	gac Asp 85	ctg Leu	aag Lys	cct Pro	aag Lys	gat Asp 90	gct Ala	Gly 999	agg Arg	tac Tyr	ttt Phe 95	tgt Cys	gcc Ala	tac Tyr	aag Lys	465
				cat His												513
gtg Val	gtc Val	aca Thr	gat Asp	aaa Lys 120	cac His	gat Asp	gaa Glu	ctt Leu	gaa Glu 125	gct Ala	ccc Pro	tca Ser	atg Met	aaa Lys 130	aca Thr	561
				ata Ile												609
				tca Ser												657
				gaa Glu												705
				gcc Ala												753
	_	_	_	gac Asp 200							-					801
_	_	_		gag Glu	-	_		_			_					849
		-		gcg Ala	, —	-			tag *	c a	aaaa	gaca	g cc	ctgg	ccac	900
taa	agga	ggg (	ggga	tcgt	gc t	ggcc	aagg	t ta	tegga	aaat	ctg	gaga	tgc (	agat	actgtg	960
ttt	cctt	gct (	cttc	gtcc	at a	tcaa	taaa	a tt	aagt	ttct	cgt	ctta	aaa a	aaaa	aa	1016

<210> 155 <211> 1414

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (114)..(1028)

<400> 155 tttcgtgagg aagttcaagg gcgagagtga gtaccagcag aaggctggga gtctgtagtt	60.
tgttcctgct gccaggctcc actgagggga acggggacct gtctgaagag aag atg Met 1	116
ccc ctg ctg aca ctc tac ctg ctc ctc ttc tgg ctc tca ggc tac tcc Pro Leu Leu Thr Leu Tyr Leu Leu Leu Phe Trp Leu Ser Gly Tyr Ser 5 10 15	164
att gtc act caa atc acc ggt cca aca aca gtg aat ggc ttg gag cgg Ile Val Thr Gln Ile Thr Gly Pro Thr Thr Val Asn Gly Leu Glu Arg 20 25 30	212
ggc tcc ttg acc gtg cag tgt gtt tac aga tca ggc tgg gag acc tac Gly Ser Leu Thr Val Gln Cys Val Tyr Arg Ser Gly Trp Glu Thr Tyr 35 40	260
ttg aag tgg tgg tgt cga gga gct att tgg cgt gac tgc aag atc ctt Leu Lys Trp Trp Cys Arg Gly Ala Ile Trp Arg Asp Cys Lys Ile Leu 50 65	308
gtt aaa acc agt ggg tca gag cag gag gtg aag agg gac cgg gtg tcc Val Lys Thr Ser Gly Ser Glu Gln Glu Val Lys Arg Asp Arg Val Ser 70 75 80	356
atc aag gac aat cag aaa aac cgc acg ttc act gtg acc atg gag gat Ile Lys Asp Asn Gln Lys Asn Arg Thr Phe Thr Val Thr Met Glu Asp 85 90 95	404
ctc atg aaa act gat gct gac act tac tgg tgt gga att gag aaa act Leu Met Lys Thr Asp Ala Asp Thr Tyr Trp Cys Gly Ile Glu Lys Thr 100 105 110	452
gga aat gac ctt ggg gtc aca gtt caa gtg acc att gac cca gcg tcg Gly Asn Asp Leu Gly Val Thr Val Gln Val Thr Ile Asp Pro Ala Ser 115 120 125	500
act cct gcc ccc acc acg cct acc tcc act acg ttt aca gca cca gtc Thr Pro Ala Pro Thr Thr Pro Thr Ser Thr Thr Phe Thr Ala Pro Val 130 145	548
acc caa gaa gaa act agc agc tcc cca act ctg acc ggc cac cac ttg Thr Gln Glu Glu Thr Ser Ser Pro Thr Leu Thr Gly His His Leu  150 160	596
gac aac agg cac aag ctc ctg aag ctc agt gtc ctc ctg ccc ctc atc Asp Asn Arg His Lys Leu Leu Lys Leu Ser Val Leu Leu Pro Leu Ile 165 170 175	644
ttc acc ata ttg ctg ctg ctt ttg gtg gcc gcc tca ctc ttg gct tgg Phe Thr Ile Leu Leu Leu Leu Val Ala Ala Ser Leu Leu Ala Trp 180 185 190	692
agg atg atg aag tac cag cag aaa gca gcc ggg atg tcc cca gag cag Arg Met Met Lys Tyr Gln Gln Lys Ala Ala Gly Met Ser Pro Glu Gln 195 200 205	740
gta ctg cag ccc ctg gag ggc gac ctc tgc tat gca gac ctg acc ctg Val Leu Gln Pro Leu Glu Gly Asp Leu Cys Tyr Ala Asp Leu Thr Leu 210 225	788

WO 01/55437 PCT/US01/02	2623
cag ctg gcc gga acc tcc ccg cga aag gct acc acg aag ctt tcc tct Gln Leu Ala Gly Thr Ser Pro Arg Lys Ala Thr Thr Lys Leu Ser Ser 230 235 240	836
gcc cag gtt gac cag gtg gaa gtg gaa tat gtc acc atg gct tcc ttg Ala Gln Val Asp Gln Val Glu Val Glu Tyr Val Thr Met Ala Ser Leu 245 250 255	884
ccg aag gag gac att tcc tat gca tct ctg acc ttg ggt gct gag gat Pro Lys Glu Asp Ile Ser Tyr Ala Ser Leu Thr Leu Gly Ala Glu Asp 260 265 270	932
cag gaa ccg acc tac tgc aac atg ggc cac ctc agt agc cac ctc ccc Gln Glu Pro Thr Tyr Cys Asn Met Gly His Leu Ser Ser His Leu Pro 275 280 285	980
ggc agg ggc cct gag gag ccc acg gaa tac agc acc atc agc agg cct Gly Arg Gly Pro Glu Glu Pro Thr Glu Tyr Ser Thr Ile Ser Arg Pro 290 295 300 305	1028
tagcctgcac tecaggetec ttettggace ecaggetgtg ageacactee tgeetcateg	1088
accgtctgcc ccctgctccc ctcatcagga ccaacccggg gactggtgcc tctgcctgat	1148
cagccagcat tgcccctage tctgggttgg gcttggggcc aagtctcagg gggcttctag	1208
gagttggggt tttctaaacg tcccctcctc tcctacatag ttgaggaggg ggctagggat	1268
atgctctggg gctttcatgg gaatgatgaa gatgataatg agaaaaatgt tatcattatt	1328
atcatgaagt accattatca taatacaatg aacctttatt tattgcctac cacatgttat	1388
gggctgaata atggccccca aagata	1414

<213> Homo sapiens <220> <221> CDS <222> (85)..(456) <400> 156 ctcggtaccg gcccgcaatt cccggttcga cgggaggcac gaggggagtc tcactaaacc 60 atg agg att agt tgc cct tgg tgc ttg Met Arg Ile Ser Cys Pro Trp Cys Leu ttccttggct ggagtcagcc atac 111 tgg aat etc tee ttg gaa gtg gga gge act gtg geg ace act gee eag 159 Trp Asn Leu Ser Leu Glu Val Gly Gly Thr Val Ala Thr Thr Ala Gln 15 cag cac ata gca gag gtg tgc aga agc agc cag gca ggg aga ggt ttt 207 Gln His Ile Ala Glu Val Cys Arg Ser Ser Gln Ala Gly Arg Gly Phe ctc cac tgt ttg cac cca gca ctg ggc act tct gga tgc cac cct gtt 255 Leu His Cys Leu His Pro Ala Leu Gly Thr Ser Gly Cys His Pro Val 45 50

<210> 156 <211> 842 <212> DNA

cct Pro	tgc Cys	agc Ser 60	agc Ser	tcc Ser	ctg Leu	gtg Val	ggc Gly 65	ttt Phe	gga Gly	tgg Trp	agg Arg	ggc Gly 70	tac Tyr	tca Ser	gga Gly	303
gaa Glu	gcc Ala 75	agc Ser	tgg Trp	gly ggg	agg Arg	gcc Ala 80	agc Ser	agc Ser	cgg Arg	cca Pro	gca Ala 85	gcc Ala	ccc Pro	act Thr	cct Pro	351
ccc Pro 90	atg Met	cca Pro	gcc Ala	aac Asn	gta Val 95	cag Gln	gcc Ala	gga Gly	tgg Trp	gaa Glu 100	cag Gln	tct Ser	gtg Val	agg Arg	ctt Leu 105	399
ttg Leu	tgc Cys	cac His	tcc Ser	tgg Trp 110	ctg Leu	cgc Arg	ttg Leu	gca Ala	gct Ala 115	ctg Leu	cat His	gtc Val	aca Thr	cat His 120	gag Glu	447
	tcc Ser		gtc	tcaa	aat	ggcc	cag (	gaat	ccag	ca t	gagc	tgtg	c ta	ggag	tcaa	503
gag	gttt	gcc	acga	ctgg	gc t	tggt	tcct	t gt	tcat	gagc	gag	cacg	tcc	ctca	gtctat	563
cca	tcta	gct	ggtg	acgt	tt c	ctga	acac	c ag	ggga	gacc	agg	ctct	gtt	ctag	gcacgg	623
gca	gcag	tga	ggaa	gact	gc a	cggc	ccct	g aa	gcta	gtgc	tgg	ggga	cag	ggtt	ggggtg	683
gca	tggc	cct	cato	acca	gc c	gcct	gcga	g tc	tgtg	ccag	agc	agat	tgg	ggtg	acaaca	743
gac	tgca	ctg	tgtg	gggt	ga g	gggc	agca	t gt	ggct	ggcc	ccc	aaat	gag	ggga	gatatg	803
gtt	aggg	agg	cacc	ttgg	cc t	gttg	gcaa	t gg	gtgg	gaa						843

<210> 157 <211> 877 <212> DNA <213> Homo sapiens

<221> CDS

<220>

<222> (391)..(528)

<400> 157 agtgcccctg atcacccaag ttggccagag accctggtgt ggggctgatt ctgtctggat 60 atacggggag gggtaagcat gaggaaagga agcaggtcct gacaggtact ttgcactaaa cageteetta taaggttete aatttgeetg eteaatttet acagacattt gtgggaceae 180 accagtacat tgtaaaagca ggaaacaatt gagaaaaacc tgagttttat gttggtagga 240 gaaatgccta tggaatatgg caaatcgttt ctctgagact tcctccctag taattacata 300 tttgttctca aaaacaaatg ccagaaggaa gaagcagatt taatagtgca ttttacaagg 360 caccattaat ctctaagaag aacaattaaa atg tct cag caa tca tgg ttc 411 Met Ser Gln Gln Ser Trp Phe act gta tat ctt ttc tat ctt ctt aga agt aat ata tgg ctg gaa atg 459

Thr Val Tyr Leu Phe Tyr Leu Leu Arg Ser Asn Ile Trp Leu Glu Met

WO 01/55437			P	CT/US01/02623
10	15		20	
ggc ata cca aaa t Gly Ile Pro Lys 7 25	at gtc aag gaa Tyr Val Lys Glu 30	Val Glu Leu Ar	gt tca tta gat rg Ser Leu Asp 35	ttc 507 Phe
acc agt aat tat t Thr Ser Asn Tyr I 40		cacagatct ctct	tteettg ettgtte	ttg 560
agagcgaggc ttttt	agtag gaagagaaat	tgtctaaaac ga	attaataac cacaa	attca 620
ccaaactatt ttggg	aagt ccctctattt	ctctaggtct a	aagctagga ataag	agtca 680
ttctcatata atgta	ctgtc ccagaaaggg	cattatatta gi	tctgttttc acgct	gctga 740
taaagacata teegg	gattg ggtgatgtat	ttaaaaaaag ag	ggtttaatg gactc	acagt 800
tccacatgcc tgggg	agget teacaateat	ggaggaaggt ga	aaaggcaca tctta	catgg 860
tggcagacaa gacag	aa			877
<210> 158 <211> 793 <212> DNA <213> Homo <220> <221> CDS <222> (49) <400> 158				
aatteettgt tegae	gattt cgccacgact	gaacagagag g	actcaac atg gag Met Glu l	ttt 57 Phe
ggg ctg agc tgc Gly Leu Ser Cys 5	att ttc ctt gct Ile Phe Leu Ala 10	Ala Ile Leu L	aa ggt gtc cag ys Gly Val Gln 15	tgt 105 Cys
gag gtg cag ctg Glu Val Gln Leu 20	gtg gag tct ggc Val Glu Ser Gly 25	gga ggc ttg g Gly Gly Leu V 30	ta aag ccg ggg al Lys Pro Gly	ggg 153 Gly 35
tct ctt agg ctc Ser Leu Arg Leu				
tac atg aac tgg Tyr Met Asn Trp 55				
ggc cgc att aaa Gly Arg Ile Lys 70				
ccc gtg aaa ggc Pro Val Lys Gly 85		Ser Arg Asp A		

tta cat ctg caa ctg aac agc ctg aaa acc gaa gac aca ggc ata tat

PCT/US01/02623 WO 01/55437 Leu His Leu Gln Leu Asn Ser Leu Lys Thr Glu Asp Thr Gly Ile Tyr 105 110 tat tgt tgt aca gac ccc acc tgg tac gcg gct gtg ggt ggc tcc tac 441 Tyr Cys Cys Thr Asp Pro Thr Trp Tyr Ala Ala Val Gly Gly Ser Tyr 125 120 tgg ggc cag gga acc ctg gtc acc gtc tcc tca gcc tcc acc aag ggc 489 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 140 cca tcg gtc ttc ccc ctg gca ccc tcc tcc aag agc acc tct ggg ggc 537 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 155 aca geg gec etg ggc tgc etg gtc aag gae tac ttc ecc gaa ecg gtg 585 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val acg gtg tcg tgg aac tca ggc gcc ctg acc agc ggc gtg cac acc ttc 633 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 190 185 ceg get gte eta cag tee tea gga ete tae tee ete age age gtg gtg 681 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 200 205 acc gtg ccc tcc agc agc ttg ggc acc cag acc tac atc tgc aac gtg 729 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 220 215 780 aat cac aag cct gta ttg cgg gcg ctc tag a ggatcaagct tacgtacgcg Asn His Lys Pro Val Leu Arg Ala Leu * 230 793 tgataggcct atc <210> 159 <211> 1644 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (66)..(1499) <400> 159 agcccagcac tagaagtcgg cggtgtttcc attcggtgat cagcactgaa cacagaggac 60 107 atg gag ttt ggg ctg agc tgg gtt ttc ctc gtt gct ctt tta tcacc Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu aga ggt gtc cag tgt cag gtg cag ctg gtg gag tct ggg gga ggc gtg 155 Arg Gly Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val 203 gte cag cet ggg agg tee etg aga ete tee tgt gea geg tet gga tte Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe

***	, 01,0													_		
		_			ggc Gly	_			-	_	-	_				251
ggg Gly	ctg Leu	gag Glu 65	tgg Trp	gtg Val	gca Ala	gct Ala	ata Ile 70	tgg Trp	tat Tyr	gat Asp	gga Gly	agt Ser 75	aat Asn	aaa Lys	tac Tyr	299
tat Tyr	gca Ala 80	gac Asp	tcc Ser	gtg Val	aag Lys	ggc Gly 85	cga Arg	ttc Phe	acc Thr	atc Ile	tcc Ser 90	aga <b>Arg</b>	gac Asp	aat Asn	tcc Ser	347
aag Lys 95	aac Asn	acg Thr	ttg Leu	tat Tyr	atg Met 100	caa Gln	atg Met	aac Asn	agc Ser	ctg Leu 105	aga Arg	gcc Ala	gag Glu	gac Asp	acg Thr 110	395
gct Ala	gtg Val	tat Tyr	tat Tyr	tgt Cys 115	gcg Ala	aga Arg	gag Glu	ggt Gly	cgg Arg 120	tgg Trp	gta Val	cga Arg	tat Tyr	act Thr 125	acg Thr	443
					tac Tyr											491
					gcc Ala											539
					agc Ser											587
					ttc Phe 180											635
					ggc Gly											683
					ctc Leu											731
_	~ ~		_		tac Tyr		_					_		_		779
	_		_	-	aga Arg	_					-	-			_	827
	_		_	-	cca Pro 260	_		_		-			_		-	875
					aaa Lys		_	-			_	_			_	923
					gtg Val											971

gtc Val	aag Lys	ttc Phe 305	aac Asn	tgg Trp	tac Tyr	gtg Val	gac Asp 310	ggc Gly	gtg Val	gag Glu	gtg Val	cat His 315	aat Asn	gcc Ala	aag Lys	1019
aca Thr	aag Lys 320	ccg Pro	cgg Arg	gag Glu	gag Glu	cag Gln 325	tac Tyr	aac Asn	agc Ser	acg Thr	tac Tyr 330	cgt Arg	gtg Val	gtc Val	agc Ser	1067
gtc Val 335	ctc Leu	acc Thr	gtc Val	ctg Leu	cac His 340	cag Gln	gac Asp	tgg Trp	ctg Leu	aat Asn 345	ggc Gly	aag Lys	gag Glu	tac Tyr	aag Lys 350	1115
tgc Cys	aag Lys	gtc Val	tcc Ser	aac Asn 355	aaa Lys	gcc Ala	ctc Leu	cca Pro	gcc Ala 360	ccc Pro	atc Ile	gag Glu	aaa Lys	acc Thr 365	atc Ile	1163
tcc Ser	aaa Lys	gcc Ala	aaa Lys 370	Gly 999	cag Gln	ccc Pro	cga Arg	gaa Glu 375	cca Pro	cag Gln	gtg Val	tac Tyr	acc Thr 380	ctg Leu	ccc Pro	1211
cca Pro	tcc Ser	cgg Arg 385	gag Glu	gag Glu	atg Met	acc Thr	aag Lys 390	aac Asn	cag Gln	gtc Val	agc Ser	ctg Leu 395	acc Thr	tgc Cys	ctg Leu	1259
gtc Val	aaa Lys 400	Gly	ttc Phe	tat Tyr	ccc Pro	agc Ser 405	Asp	atc Ile	gcc Ala	gtg Val	gag Glu 410	Trp	gag Glu	agc Ser	aat Asn	1307
999 Gly 415	Gln	ccg Pro	gag Glu	aac Asn	aac Asn 420	Tyr	aag Lys	acc Thr	acg Thr	CCt Pro 425	Pro	gtg Val	ctg Leu	gac Asp	tcc Ser 430	1355
gac	ggc Gly	tco Ser	ttc Phe	ttc Phe 435	Leu	tat Tyr	ago Ser	aag Lys	Ctc Leu 440	Thr	gtg Val	gac Asp	aag Lys	agc Ser 445	agg Arg	1403
tgg Trp	g cag o Gln	caç Glr	999 Gly 450	Asn	gto Val	ttc Phe	tca Ser	tgc Cys 455	Ser	gtg Val	atg Met	cat His	gag Glu 460	Ala	ctg Leu	1451
cac His	aac Asn	cac His	tac Tyr	acg Thr	cag Glr	aag Lys	ago Ser 470	Leu	tcc Ser	ctg Lev	tcc Ser	e ccg Pro 475	Gly	aaa Lys	tga *	1499
gto	gcgac	ggc	cggc	aago	ec c	eget	ccc	g gg	jctct	cgcg	gto	gcac	gag	gatg	cttggc	1559
acg	gtaco	ccg	tcta	cata	ict t	ccca	ıggca	ac cc	cagca	atgga	aat	aaag	ıcac	ccac	cactgc	1619
cct	gggc	ccc	tgcg	jaaaa	ıaa a	aaaa	ì									1644

<210> 160 <211> 1093 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(876) <220> <221> misc_feature

<222> (1)...(1093) <223> n = a,t,c or g

225

<400> 160 atg gec atg etc etg ggg gea tea gtg etg att etg tgg ett eag eea 48 Met Ala Met Leu Leu Gly Ala Ser Val Leu Ile Leu Trp Leu Gln Pro gac tgg gta aac agt caa cag aag aat gat gac cag caa gtt aag caa 96 Asp Trp Val Asn Ser Gln Gln Lys Asn Asp Asp Gln Gln Val Lys Gln 25 aat toa coa too ctg ago gto cag gaa gga aga att tot att ctg aac 144 Asn Ser Pro Ser Leu Ser Val Gln Glu Gly Arg Ile Ser Ile Leu Asn 40 192 tgt gac tat act aac agc atg ttt gat tat ttc cta tgg tac aaa aaa Cys Asp Tyr Thr Asn Ser Met Phe Asp Tyr Phe Leu Trp Tyr Lys Lys 55 50 240 tac cct gct gaa ggt cct aca ttc ctg ata tct ata agt tcc att aag Tyr Pro Ala Glu Gly Pro Thr Phe Leu Ile Ser Ile Ser Ser Ile Lys 65 gat aaa aat gaa gat gga aga ttc act gtt ttc tta aac aaa agt gcc 288 Asp Lys Asn Glu Asp Gly Arg Phe Thr Val Phe Leu Asn Lys Ser Ala 90 aag cag tto tot otg cac att gtg coc toc cag cot gga gac tot gca 336 Lys Gln Phe Ser Leu His Ile Val Pro Ser Gln Pro Gly Asp Ser Ala 110 100 105 384 gtg tac ttc tgt gca gca agc agc ccc ttt tcg tat tca gga gga ggt Val Tyr Phe Cys Ala Ala Ser Ser Pro Phe Ser Tyr Ser Gly Gly 120 432 get gae gga etc ace ttt gge aaa ggg act cat eta atc atc cag ecc Ala Asp Gly Leu Thr Phe Gly Lys Gly Thr His Leu Ile Ile Gln Pro 135 480 tat atc cag aac cct gac cct gcc gtg tac cag ctg aga gac tct aaa Tyr Ile Gln Asn Pro Asp Pro Ala Val Tyr Gln Leu Arg Asp Ser Lys 155 tec agt gac aag tet gte tge eta tte ace gat ttt gat tet caa aca 528 Ser Ser Asp Lys Ser Val Cys Leu Phe Thr Asp Phe Asp Ser Gln Thr aat gtg tca caa agt aag gat tct gat gtg tat atc aca gac aaa act Asn Val Ser Gln Ser Lys Asp Ser Asp Val Tyr Ile Thr Asp Lys Thr 185 190 gtg cta gac atg agg tct atg gac ttc aag agc aac agt gct gtg gcc Val Leu Asp Met Arg Ser Met Asp Phe Lys Ser Asn Ser Ala Val Ala 195 200 tgg agc aac aaa tct gac ttt gca tgt gca aac gcc ttc aac aac agc Trp Ser Asn Lys Ser Asp Phe Ala Cys Ala Asn Ala Phe Asn Asn Ser 210 215 att att cca gaa gac acc ttc ttc ccc agc cca gaa agt tcc tgt gat 720 Ile Ile Pro Glu Asp Thr Phe Phe Pro Ser Pro Glu Ser Ser Cys Asp

230

WO 01/55437

gtc aag ctg gtc gag aaa agc ttt gaa aca gat acg aac cta aac ttt 768

Val Lys Leu Val Glu Lys Ser Phe Glu Thr Asp Thr Asn Leu Asn Phe
245 250 250 255

caa aac ctg tca gtg att ggg ttc cga atc ctc ctc ctg aaa gtg gcc 816 Gln Asn Leu Ser Val Ile Gly Phe Arg Ile Leu Leu Leu Lys Val Ala 260 265 270

ggg ttt aat ctg ctc atg acg ctg cgg ctg tgg gtc cag ctg aga tct 864
Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Val Gln Leu Arg Ser
275 280 285

gca aga ttg taa gga cagcetgtge teeetegete etteetetgg cattgeecet 919
Ala Arg Leu *
290

cttctccctc tccaaacaga gggggaactt cttccttacc cccaagggag ggtgaaagct 979 ggcttaccca cttttgtggc ccccccggg caattgccac ccaattgggt tccttacccc 1039

gantttatgg nttaagggnt tgttggaaga ggttgnccaa acattggttg gcca 1093

<210> 161 <211> 683 <212> DNA <213> Homo sapiens

<220> <221> CDS <222> (179)..(322)

20

<400> 161
ctactcgcct ccggaattcc cgggtcgacg atttcgtata tattctaat gattgggctt 60
tagctttaaa aacattaggc tagatgcctc cctattttt gtggcatgat ttagctgtaa 120
ctagcctgga ggcaataaca atactaaatg accttttgta gtcacattaa acattgaa 178
atg gta ctg aga ctg cct tgg tgg gga gtt ttg gcc tat ggg aat gat 226
Met Val Leu Arg Leu Pro Trp Trp Gly Val Leu Ala Tyr Gly Asn Asp 1 5 10
gtg ggt ttt ggt ttc tac tcc ttt ctc tgt tat cag ata aat cct cct
Val Gly Phe Gly Phe Tyr Ser Phe Leu Cys Tyr Gln Ile Asn Pro Pro

aca tgt ccc att ctc tgg ctc tgg gaa gta ctg aca gta ggg aaa agt 322
Thr Cys Pro Ile Leu Trp Leu Trp Glu Val Leu Thr Val Gly Lys Ser
35 40 45

tagtacactc atctcattgt tcagatcaag tttcctgggt gcggttttgc aaaactttct 382
acaagagctg actcaagagt tctcttctat tgtggagatg atcctgctct tatatgtcat 442
actaatttat atccttgaaa ctgtgagcag catcatttgc atgtgttaag ttgggaatga 502
ataaagtgaa aatatttca cacattcctt gagaaaaggg ttccttttgc tgtgcaaatc 562
aacgctccct agatgctgtg gctaaaaagt gaagaattct aggccaacat tttttaccc 622
ctttcatttt ctttactttg tttttttag aagaggtgcg aggtcctggg ccccagaggt 682

a 683

<210> 162 <211> 1833 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (143)..(1252) <400> 162 gaattcccgg gtcgacgatt tcgtcaggag ggagaaggag gagccagcgg aaggacggtg 60 tgcgggccgg ccagccctgg acgaaagaag agggcccctc caggccagtc tgggcaccct 120 gggatagegg etgeageeag ge atg gee gae tet gea eag gee eag aag etg 172 Met Ala Asp Ser Ala Gln Ala Gln Lys Leu gtg tac ctg gtc aca ggg ggc tgt ggc ttc ctg gga gag cac gtg gtg 220 Val Tyr Leu Val Thr Gly Gly Cys Gly Phe Leu Gly Glu His Val Val cga atg ctg ctg cag cgg gag ccc cgg ctc ggg gag ctg cgg gtc ttt 268 Arg Met Leu Leu Gln Arg Glu Pro Arg Leu Gly Glu Leu Arg Val Phe gac caa cac ctg ggt ccc tgg ctg gag gag ctg aag aca ggg cct gtg 316 Asp Gln His Leu Gly Pro Trp Leu Glu Glu Leu Lys Thr Gly Pro Val 364 agg gtg act gcc atc cag ggg gac gtg acc cag gcc cat gag gtg gca Arg Val Thr Ala Ile Gln Gly Asp Val Thr Gln Ala His Glu Val Ala 60 65 gca gct gtg gcc gga gcc cat gtg gtc atc cac acg gct ggg ctg gta Ala Ala Val Ala Gly Ala His Val Val Ile His Thr Ala Gly Leu Val 75 gac gtg ttt ggc agg gcc agt ccc aag acc atc cat gag gtc aac gtg 460 Asp Val Phe Gly Arg Ala Ser Pro Lys Thr Ile His Glu Val Asn Val 100 95 caq qqt acc cqq aac qtq atc qag gct tgt gtg cag acc gga aca cgg 508 Gln Gly Thr Arg Asn Val Ile Glu Ala Cys Val Gln Thr Gly Thr Arg tte etg gte tac ace age age atg gaa gtt gtg ggg eet aac ace aaa 556 Phe Leu Val Tyr Thr Ser Ser Met Glu Val Val Gly Pro Asn Thr Lys 130 ggt cac ccc ttc tac agg ggc aac gaa gac acc cca tac gaa gca gtg 604 Gly His Pro Phe Tyr Arg Gly Asn Glu Asp Thr Pro Tyr Glu Ala Val 145 652 cac agg cac ccc tat cct tgc agc aag gcc ctg gcc gag tgg ctg gtc His Arg His Pro Tyr Pro Cys Ser Lys Ala Leu Ala Glu Trp Leu Val 160 700 ctg gag gcc aac ggg agg aag gtc cgt ggg ggg ctg ccc ctg gtg acg

WO 01/.	33431												•	CITOL	J01/02 <b>02</b> J
Leu · Glu	Ala	Asn	Gly 175	Arg	Lys	Val	Arg	Gly 180	Gly	Leu	Pro	Leu	Val 185	Thr	
tgt gcc Cys Ala		_		_					_	-		_			748
agg gac Arg Asp															796
gcc atc Ala Ile 220	Pro														844
gcc tgg Ala Trp 235															892
ctg atg Leu Met															940
agc tac Ser Tyr															988
ctg gtg Leu Val		Ala													1036
gct gcc Ala Ala 300	Leu														1084
tac gca Tyr Ala 315															1132
ttc acc				Asp											1180
ctg tto Leu Phe			Glu					Arg							1228
gcc gct Ala Ala		Gly					cgg	tggg	gct	gggg	cctg	ga g	gccc	agata	1282
cagcaca	tcc	accc	aggt	cc c	gagc	cctc	a ca	ccct	ggac	aaa	aagg	gac	agct	gcatt	c 1342
cagagca	ıgga	ggca	gggc	tc t	<del>9</del> 999	ccag	a at	ggct	gtcc	ttg	tcgt	aga	gccc	tccac	a 1402
ttttctt	ttt	cttt	tttg	ag a	cagg	gtct	t gc	tctg	tcac	cca	gact	gga	gtgc	agtgg	t 1462
gtgatca	tag	ctca	ctgc	ac c	ctca	acct	c ct	gggt	tcaa	gca	atcc	tcc	tgcc	tcagc	c 1522
tcctgaa									•				-	_	
agagaca								•							
tcccacg	ıtgg	gcct	ccca	aa a	cgct	ggaa	c ta	caag	tgtg	agc	cacc	gcg	ccct	ggccc	a 1702

agecetecae attiticaate caggaageet tgagtetgtg ttgtgteetg acacetecaa 1762
gttetaaggg cegteaggae aacggggagg gtttggggae agagtgteet teetetgtee 1822
teteateeca g 1833

<210> 163 <211> 1777 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (299)..(1042) · <220> <221> misc_feature <222> (1)...(1777) <223> n = a,t,c or g<400> 163 agcaacgact cottogtcag tgagattgca gcatotttto aaagaagott cgtgtaggta 60 tgaacaagat gaagccacag cttttattcc ttctgaagtt acagaaactc ggttcccttt 120 180 tgaagcattt aaatttaatt tottoagttt totacagtta gacaggtgca ggagagcagc atctgatata tcgcagetee gtagatetag agtttggaet teaggatgta aaateteaet 240 298 tatatttgaa totgttatot gtocotgcat actoattatt ttaatcagto tgtotttt atg ttg gga ggc aaa ggc tta atg tct gtg aga tat ctg gaa ata ttc 346 Met Leu Gly Gly Lys Gly Leu Met Ser Val Arg Tyr Leu Glu Ile Phe 10 394 ttc atg aag cct ttg cct ccc aac ata aaa gac aga ctg att aaa ata Phe Met Lys Pro Leu Pro Pro Asn Ile Lys Asp Arg Leu Ile Lys Ile 25 20 442 atg agt atg cag gga cag ata aca gat tca aat ata agt gag att tta Met Ser Met Gln Gly Gln Ile Thr Asp Ser Asn Ile Ser Glu Ile Leu 40 490 cat cct gaa gtc caa act cta gat cta cgg agc tgc gat ata tca gat His Pro Glu Val Gln Thr Leu Asp Leu Arg Ser Cys Asp Ile Ser Asp 60 538 get get etc etg cae etg tet aac tgt aga aaa etg aag aaa tta aat Ala Ala Leu Leu His Leu Ser Asn Cys Arg Lys Leu Lys Lys Leu Asn 65 586 tta aat gct tca aaa ggg aac cga gtt tct gta act tca gaa gga ata Leu Asn Ala Ser Lys Gly Asn Arg Val Ser Val Thr Ser Glu Gly Ile 90 85 aaa gct gtg gct tca tct tgt tca tac cta cac gaa gct tct ttg aaa 634 Lys Ala Val Ala Ser Ser Cys Ser Tyr Leu His Glu Ala Ser Leu Lys 105 100 682 aga tgc tgc aat ctc act gac gaa gga gtc gtt gct ctt gca ctc aat Arg Cys Cys Asn Leu Thr Asp Glu Gly Val Val Ala Leu Ala Leu Asn

wo	01/5	5437												F	CT/US01/0	2623
		115					120					125				
tgc Cys	cag Gln 130	ctg Leu	cta Leu	aag Lys	atc Ile	atc Ile 135	gat Asp	tta Leu	ggt Gly	ggc Gly	tgc Cys 140	tta Leu	agt Ser	att Ile	act Thr	730
gat Asp 145	gtg Val	tcc Ser	tta Leu	cat His	gca Ala 150	tta Leu	gga Gly	aaa Lys	aac Asn	tgc Cys 155	cca Pro	ttt Phe	ttg Leu	cag Gln	tgt Cys 160	778
gtc Val	gac Asp	ttt Phe	tca Ser	gct Ala 165	act Thr	cag Gln	gta Val	tct Ser	gac Asp 170	agt Ser	ggt Gly	gtg Val	att Ile	gca Ala 175	ctt Leu	826
gtt Val	agt Ser	gga Gly	cct Pro 180	tgt Cys	gcg Ala	aag Lys	aaa Lys	tta Leu 185	gag Glu	gag Glu	att Ile	cat His	atg Met 190	gga Gly	cat His	874
tgt Cys	gta Val	aat Asn 195	ctg Leu	act Thr	gat Asp	Gly aaa	gct Ala 200	gtc Val	gaa Glu	gct Ala	gtc Val	ctt Leu 205	act Thr	tac Tyr	tgt Cys	922
cct Pro	caa Gln 210	Ile	cgt Arg	ata Ile	tta Leu	ctc Leu 215	Phe	cat His	gga Gly	tgc Cys	ccc Pro 220	ttg Leu	ata Ile	aca Thr	gat Asp	970
cat His 225	Ser	cga Arg	gaa Glu	gtg Val	ttg Leu 230	Glu	caa Gln	tta Leu	gta Val	ggc Gly 235	Pro	aac Asn	aaa Lys	cta Leu	aag Lys 240	1018
caa Gln	gtg Val	aca Thr	tgg Trp	act Thr 245	· Val	tat Tyr	tga *	tgc	tttt	ttg	aaga	tgat	ca a	tgct	aggaa	1072
agc	ttat	caa	aact	actt	tc c	cago	aaac	c at	ctat	ag <b>a</b> g	att	tgca	ttc	tact	taatgt	1132
taa	.cact	att	ttta	atta	itt t	tatt	gtct	t aa	ıgtta	taac	tct	caga	gaa	ttag	ctaagt	1192
ctt	ggta	tat	acat	ggtt	tg t	gctt	tact	c tt	aaac	atct	tta	aagt	gct	atta	ttctat	1252
ato	tgtt	gga	tgaç	gtcat	ta t	ttt	gaaa	at ga	taat	ccta	gca	tgaa	ctc	tgat	ctatgg	1312
tgt	tgga	attc	tgtt	tctt	aa a	taad	ettta	aa aa	attaa	ctgt	ttt	ccct	tga	gatt	tectte	1372
tcc	etate	gtag	gtat	ttga	agc t	att	ttct	ta ag	gttta	acctg	, taa	igtat	aaa	cctt	gggaga	1432
ato	ctaaç	gtaa	acat	attt	ct a	aaaq	gcata	ag ti	cacct	tcct	att	ttet	ggc	tctt	accttc	1492
ttg	gag	tatt	taaa	atgc	cca t	ttg	ccaaa	aa go	caga	cctga	a aca	atcaa	gcc	tggt	taattc	1552
nto	caaa	gaat	ttag	3333	att 9	gtti	tece	cg ga	aaatq	ggagt	ga(	ettat	tag	ccat	ttcagcg	1612
gta	atta	ggaa	taca	agag	get (	ttg	ccca	ge e	acat	ccant	c cca	attgi	nttt	taa	ggggact	1672
cct	ccc	aggt	aca	tttt	aag g	gcac	cggt	ag cı	nttc	cctc	c cta	aggca	aaat	tgc	atccnaa	1732
agg	gngg	taaa	aag	gggn	aat a	acng	gata	tc c	ctcn	3333	c tg	gtt				1777

<210> 164 <211> 1939 <212> DNA

PCT/US01/02623 WO 01/55437 <213> Homo sapiens <220> <221> CDS <222> (1)..(1704) <400> 164 atg gat tot ata otg att oot oca ott act aag agg ttg aaa atg ggo 48 Met Asp Ser Ile Leu Ile Pro Pro Leu Thr Lys Arg Leu Lys Met Gly aag toa ott tac etc tet gtg eeg cag ttt eet get tgt aac ace tac 96 Lys Ser Leu Tyr Leu Ser Val Pro Gln Phe Pro Ala Cys Asn Thr Tyr 20 age tge tee etg aac etc aga gat gee aat gag geg gat aca ggg acg 144 Ser Cys Ser Leu Asn Leu Arg Asp Ala Asn Glu Ala Asp Thr Gly Thr tac ttc ttt cag gtg gag aga ggt tat tac atg aaa tac agt tac gga 192 Tyr Phe Phe Gln Val Glu Arg Gly Tyr Tyr Met Lys Tyr Ser Tyr Gly 55 aat gag aag ttg ttc ttg cat gtg aca agg cct cct cta agt ctt gag 240 Asn Glu Lys Leu Phe Leu His Val Thr Arg Pro Pro Leu Ser Leu Glu ccc gca gtt cct gag aga aga acc ctg agg aac aga cgt tcc ctc gcg 288 Pro Ala Val Pro Glu Arg Arg Thr Leu Arg Asn Arg Arg Ser Leu Ala 90 ged etg gea eet eta acc eea gae atg etg etg etg etg eec etg 336 Ala Leu Ala Pro Leu Thr Pro Asp Met Leu Leu Leu Leu Pro Leu ctc tgg ggg agg gag agg gcg gaa gga cag aca agt aaa ctg ctg acg Leu Trp Gly Arg Glu Arg Ala Glu Gly Gln Thr Ser Lys Leu Leu Thr 115 atg cag agt tcc gtg acg gtg cag gaa ggc ctg tgt gtc cat gtg ccc 432 Met Gln Ser Ser Val Thr Val Gln Glu Gly Leu Cys Val His Val Pro 135 130 480 tgc tcc ttc tcc tac ccc tcg cat ggc tgg att tac cct ggc cca gta Cys Ser Phe Ser Tyr Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val gtt cat ggc tac tgg ttc cgg gaa ggg gcc aat aca gac cag gat gct 528 Val His Gly Tyr Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala 170 cca gtg gcc aca aac aac cca gct cgg gca gtg tgg gag gag act cgg 576 Pro Val Ala Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg 180 185 gac eqa tte cae etc ett ggg gac eca cat ace gag aat tge ace etg 624 Asp Arg Phe His Leu Leu Gly Asp Pro His Thr Glu Asn Cys Thr Leu 200

agc atc aga gat gcc aga aga agt gat gcg ggg aga tac ttc ttt cgt Ser Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg

atg gag aaa gga agt ata aaa tgg aat tat aaa cat cac cgg ctc tct

210

672

WU	01/3	3431												-	-, -,	002,0202
Met 225	Glu	Lys	Gly	Ser	Ile 230	Lys	Trp	Asn	Tyr	Lys 235	His	His	Arg	Leu	Ser 240	
				gcc Ala 245												768
acc Thr	ctg Leu	gag Glu	tcc Ser 260	ggc Gly	tgc Cys	ccc Pro	cag Gln	aat Asn 265	ctg Leu	acc Thr	tgc Cys	tct Ser	gtg Val 270	ccc Pro	tgg Trp	816
gcc Ala	tgt Cys	gag Glu 275	cag Gln	gjå aaa	aca Thr	ccc Pro	cct Pro 280	atg Met	atc Ile	tcc Ser	tgg Trp	ata Ile 285	Gly ggg	acc Thr	tcc Ser	864
gtg Val	tcc Ser 290	ccc Pro	ctg Leu	gac Asp	ccc Pro	tcc Ser 295	acc Thr	acc Thr	cgc Arg	tcc Ser	tcg Ser 300	gtg Val	ctc Leu	acc Thr	ctc Leu	912
atc Ile 305	cca Pro	cag Gln	ccc Pro	cag Gln	gac Asp 310	cat His	ggc Gly	acc Thr	agc Ser	ctc Leu 315	acc Thr	tgt Cys	cag Gln	gtg Val	acc Thr 320	960
ttc Phe	cct Pro	Gly 999	gcc Ala	agc Ser 325	gtg Val	acc Thr	acg Thr	aac Asn	aag Lys 330	acc Thr	gtc Val	cat His	ctc Leu	aac Asn 335	gtg Val	1008
tcc Ser	tac Tyr	ccg Pro	cct Pro 340	cag Gln	aac Asn	ttg Leu	acc Thr	atg Met 345	act Thr	gtc Val	ttc Phe	caa Gln	gga Gly 350	gac Asp	ggc Gly	1056
aca Thr	gta Val	tcc Ser 355	Thr	gtc Val	ttg Leu	gga Gly	aat Asn 360	ggc	tca Ser	tct Ser	ctg Leu	tca Ser 365	ctc Leu	cca Pro	gag Glu	1104
				cgc Arg								Val				1152
	Pro			ctg Leu												1200
										Leu					ctg Leu	1248
									Ala						tct Ser	1296
_	_	_	Tyr	_				Leu	_	_			Thr		gga Gly	1344
		Gln					Gly					Ala			ttc Phe	1392
	Ser					Phe					Ser				aaa Lys 480	1440
tcg	gca	agg	r cca	. gca	gcg	ggc	gtg	gga	gat	acg	ggd	ata	gag	gat	gca	1488

Ser Ala Arg Pro Ala Ala Gly Val Gly Asp Thr Gly Ile Glu Asp Ala 485 490 495	
aac gct gtc agg ggt tca gcc tct cag ggg ccc ctg act gaa cct tggAsn Ala Val Arg Gly Ser Ala Ser Gln Gly Pro Leu Thr Glu Pro Trp500505	1536
gca gaa gac agt ccc cca gac cag cct ccc cca gct tct gcc cgc tcc Ala Glu Asp Ser Pro Pro Asp Gln Pro Pro Pro Ala Ser Ala Arg Ser 515 520 525	1584
tca gtg ggg gaa gga gag ctc cag tat gca tcc ctc agc ttc cag atg Ser Val Gly Glu Gly Glu Leu Gln Tyr Ala Ser Leu Ser Phe Gln Met 530 535 540	1632
gtg aag oot tgg gac tcg cgg gga cag gag gcc act gac acc gag tac Val Lys Pro Trp Asp Ser Arg Gly Gln Glu Ala Thr Asp Thr Glu Tyr 545 550 555 560	1680
tcg gag atc aag atc cac aga tga gaaactgcag agactcaccc tgattgaggg Ser Glu Ile Lys Ile His Arg * 565	1734
atcacagece etecaggeaa gggagaagte agaggetgat tettgtagaa ttaacagece	1794
tcaacgtgat gagctatgat aacactatga attatgtgca gagtgaaaag cacacaggct	1854
ttagagteaa agtateteaa acetgaatee acaetgtgee etceetttta ttttttaac	1914
taaaagacag acaaattcct acctc	1939

<210> 165 <211> 792 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (590)..(766)

<400> 165 ctgatctaga taatttatgt gtatacaagg ttcattaaaa atagtttctt ataatttttc 60 cctgatgaca aaagcaaaaa aaaaattttt cctgaattga tacattttca gattaatatt 120 atgaatctca cttataattt atgaaaaatt ctaaggtatt aatatatacg gaaagaacag 180 tagtttgatt tgaccaattt tctaacatct gaaataaaca cttcaaataa aatattagaa 240 taaaatatat gtactgccaa atggaaagtt aattcatttt cttaatctat aatatatata 300 gacagagatg aagaaaatgt gataattaca aaaaagatga tgaggaaacg cagtgactgt 360 ctgtaaaacc aactttttat tcacacctta gcatcatgct gaagcccact gaatgtaaag 420 gaaatacttt tcccatgtgt atccatattt ctcaagtaaa ctgaggagtc cgtatattat 480 cgacttcagt ctgtgtacat ctaaaggggg ctactcttgg cttacaagtc aatttttaag 540 atacctgggg ctttgccttc tttaacagcc cttttgctca gaatgttct atg ctg 595 Met Leu

WO 01/55437 PCT/US01/02623 ttt ggg ctt gcc ttg caa ttg atc ctc gat ttg aaa ctg aca act gtg 643 Phe Gly Leu Ala Leu Gln Leu Ile Leu Asp Leu Lys Leu Thr Thr Val

aac cag cga gaa agt gat gtg gca aga gtt gcc acg gct gaa gaa tat 691 Asn Gln Arg Glu Ser Asp Val Ala Arg Val Ala Thr Ala Glu Glu Tyr 25

tca aag aaa ggt ctg ctt gga cag gaa aca ctt cat gct gga tca cag 739 Ser Lys Lys Gly Leu Leu Gly Gln Glu Thr Leu His Ala Gly Ser Gln 40

aca aga atg cag att ctt atc tcc tga gaccc cttgaattcc accgcaagtg 791 Thr Arg Met Gln Ile Leu Ile Ser *

g 792

<210> 166 <211> 797 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (206)..(418)

<400> 166

aattotooot aaagttoaga aaataacata atttggotta tttggtacaa aaatcatata 60 ggaagcattg tcaaatatga aatggtgttg ggtttttgag ggctgcattt ttaaaatatg 120

ttattagtat gtgttccaaa attatgggaa attcctataa ttctatataa ctcagtgtac 180

attatcagta ataatcataa tigit atg tta aaa tta tig igt gcc gca gag 232 Met Leu Lys Leu Leu Cys Ala Ala Glu

gta aca aat gtc ctt ttc aac tgt gtt ttt gac tat ggc tgt cct aaa 280 Val Thr Asn Val Leu Phe Asn Cys Val Phe Asp Tyr Gly Cys Pro Lys 10 15 20

act tit tgt cat cca tgg aca att tit gtc tig tit tgg tcc tct tia 328 Thr Phe Cys His Pro Trp Thr Ile Phe Val Leu Phe Trp Ser Ser Leu 30

gaa ggt ggc ttt ata atc agc tac aaa act cta aca ggt gct ctt gaa 376 Glu Gly Gly Phe Ile Ile Ser Tyr Lys Thr Leu Thr Gly Ala Leu Glu 50

tgc agg ttt ctg ata act ttg gag att gtg aca tca gaa tag aggaaaa 425 Cys Arg Phe Leu Ile Thr Leu Glu Ile Val Thr Ser Glu *

65 actttcagga ctcatggaga gctataaaat attcatgagt atcaagcaga acaggaatta 485 actgcatgga ctgaactgat ctttttgact ttttgcttaa aaagttgctg atctttttgt ttgcttttca gagccttaaa acttttcttt tgagctattg gcagctttta acaatttacg

atacttccat aaacaaaget, tgcagcctat ttgttgctct ttaactgact tctgccgaat 665
tcgcacacta ttcgctcgca ctccctactc atcggccctc cggcaatacc ccacccggcc 725
ccaccaatcc tgtgctcctc gatacctaga cccctactgg gcgcacctgc gttcgcctac 785
caccgagtgg cg 797

<210> 167 <211> 1056 <212> DNA <213> Homo sapiens <220>

<221> CDS

<222> (241)..(1050)

<400> 167 tgcctgtatg tctgaggctg ggtttgaagc ctccagcgtg tttggagtta atccccatta 60 ggttggactc cgcccctttc tcccaaaggt aaagcaaggt tttcaggcat cactgcaaag 120 ggcagctagt attcccatcc ttgtctaaca agctgtaagg agaagttgtt tctgagatct 180 qaqcctgaag agagggaaca agtcagtcag ccttcgtggt cagaagagaa acctgtgacc 240 atg agg agc agc ctg acc atg gtg gga acc ctc tgg gcc ttc ctg tcc 288 Met Arg Ser Ser Leu Thr Met Val Gly Thr Leu Trp Ala Phe Leu Ser ctt gtt act gct gtg acc agt tct acc agt tac ttc cta cct tac tgg 336 Leu Val Thr Ala Val Thr Ser Ser Thr Ser Tyr Phe Leu Pro Tyr Trp 384 ctc ttt gga tcc cag atg ggg aag cca gtg tca ttc agc aca ttc cgg Leu Phe Gly Ser Gln Met Gly Lys Pro Val Ser Phe Ser Thr Phe Arg 40 agg tgc aac tac cct gtg cgg gga gag gga cac agt ctg atc atg gtg 432 Arg Cys Asn Tyr Pro Val Arg Gly Glu Gly His Ser Leu Ile Met Val gaa gaa tgt ggg cgc tat gcc agc ttc aat gcc atc cca agc ctg gcc 480 Glu Glu Cys Gly Arg Tyr Ala Ser Phe Asn Ala Ile Pro Ser Leu Ala 528 tgg cag atg tgc aca gtg gtg aca ggt gcc ggc tgt gct ctg ctc Trp Gln Met Cys Thr Val Val Thr Gly Ala Gly Cys Ala Leu Leu Leu 85 ctg gtg gca cta gct gct gtc ctg ggt tgc tgc atg gag gag ctc atc 576 Leu Val Ala Leu Ala Ala Val Leu Gly Cys Cys Met Glu Glu Leu Ile 105 tee aga atg atg gga egt tge atg gga gea geg eag ttt gtt gga ggg 624 Ser Arg Met Met Gly Arg Cys Met Gly Ala Ala Gln Phe Val Gly Gly 120

ctg ctg ata agc tca ggc tgt gcc tta tac cct tta gga tgg aat agc Leu Leu Ile Ser Ser Gly Cys Ala Leu Tyr Pro Leu Gly Trp Asn Ser

130 135 140 ccg gag ata atg caa aca tgt ggg aat gtc tcc aat caa ttt cag tta 720 Pro Glu Ile Met Gln Thr Cys Gly Asn Val Ser Asn Gln Phe Gln Leu 150 768 ggt acc tgt cgg ctt ggc tgg gcc tat tac tgt gct gga ggt gga aca Gly Thr Cys Arg Leu Gly Trp Ala Tyr Tyr Cys Ala Gly Gly Gly Thr 165 cct gca gcc atg ttg atc tgc ccc tgg ctc tct tgc ttt gct gga aga 816 Pro Ala Ala Met Leu Ile Cys Pro Trp Leu Ser Cys Phe Ala Gly Arg 185 aac ccc cag cct gtc ata ttg ggg ggg aag cac cat gag.gaa aac cac Asn Pro Gln Pro Val Ile Leu Gly Gly Lys His His Glu Glu Asn His 200 195 ttc tta tgc tat gga gct tgg cca ttg ccc tca acc ctt gag ctt cga 912 Phe Leu Cys Tyr Gly Ala Trp Pro Leu Pro Ser Thr Leu Glu Leu Arg aaa gaa gac cgg ggg ggg cgg gca aca ggg aag caa gtg acc ccc caa 960 Lys Glu Asp Arg Gly Gly Arg Ala Thr Gly Lys Gln Val Thr Pro Gln 230 cca ctt aga ttc cat gtc tct act tgg atg tct agt aga ctt gac aga 1008 Pro Leu Arg Phe His Val Ser Thr Trp Met Ser Ser Arg Leu Asp Arg 245 gtg tac ata tcc ata acc aag atc caa atc ttc caa tcc taa acccat 1056 Val Tyr Ile Ser Ile Thr Lys Ile Gln Ile Phe Gln Ser * 260 265

<210> 168
<211> 958
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (73)..(858)

<220>
<221> misc_feature
<222> (1)...(958)
<223> n = a,t,c or g

<400> 168
gcgatc tgagcctgaa gagg

taacgcgatc tgagcctgaa gagagggaac aagtcagtca gccttcgcgg acattttatt

tatcctgtga cc atg aag agc ctg acc gtg gtg gga acc ctc tgg 108

Met Lys Ser Ser Leu Thr Val Val Gly Thr Leu Trp

1 5 10

60

ged ttd ctg ted ctt gtt act get gtg acc agt tet acc agt tac ttd 156
Ala Phe Leu Ser Leu Val Thr Ala Val Thr Ser Ser Thr Ser Tyr Phe
15 20 25

cta cct tac tgg ctc ttt gga tcc cag atg ggg aag cca gtg tca ttc 204

WO 01/55437	01/02023
Leu Pro Tyr Trp Leu Phe Gly Ser Gln Met Gly Lys Pro Val Ser Phe 30 40	
age aca tte egg agg tge aac tae eet gtg egg gga gag gga eac agt Ser Thr Phe Arg Arg Cys Asn Tyr Pro Val Arg Gly Glu Gly His Ser 45 50 55 60	252
ctg atc atg gtg gaa gaa tgt ggg cgc tat gcc agc ttc aat gcc atc Leu Ile Met Val Glu Glu Cys Gly Arg Tyr Ala Ser Phe Asn Ala Ile 65 70 75	300
cca agc ctg gcc tgg cag atg tgc aca gtg gtg aca ggt gcc ggc tgt Pro Ser Leu Ala Trp Gln Met Cys Thr Val Val Thr Gly Ala Gly Cys 80 85 90	348
gct ctg ctg ctc ctg gag tca cta gct gct gtc ctg ggt tgc tgc atg Ala Leu Leu Leu Glu Ser Leu Ala Ala Val Leu Gly Cys Cys Met 95 100 105	396
gag gag ctc atc tcc aga atg atg gga cgt tgc atg gga gca gcg cag Glu Glu Leu Ile Ser Arg Met Met Gly Arg Cys Met Gly Ala Ala Gln 110 115 120	444
ttt gtt gga ggt cca atg cag ccc ttc tgt gaa gcc ttc cct gat cta Phe Val Gly Gly Pro Met Gln Pro Phe Cys Glu Ala Phe Pro Asp Leu 125 130 135 140	492
ctt ttg aca tct tta gca gat atg aac gat cct gta act cca aga gga Leu Leu Thr Ser Leu Ala Asp Met Asn Asp Pro Val Thr Pro Arg Gly 145 150 155	540
ata tgg ggt aga atg aat ggc ggg ggc tgg ggg ggt ggg ctg ctg ata Ile Trp Gly Arg Met Asn Gly Gly Gly Trp Gly Gly Gly Leu Leu Ile 160 165 170	588
age tea gge tgt gee tta tae eet tta gga tgg aat age eeg gag ata Ser Ser Gly Cys Ala Leu Tyr Pro Leu Gly Trp Asn Ser Pro Glu Ile 175 180 185	636
atg caa aca tgt ggg aat gtc tcc aat caa ttt cag tta ggt acc tgt Met Gln Thr Cys Gly Asn Val Ser Asn Gln Phe Gln Leu Gly Thr Cys 190 200	684
cgg ctt ggc tgg gcc tat tac tgt gct gga ggt gga gca gct gca gcc Arg Leu Gly Trp Ala Tyr Tyr Cys Ala Gly Gly Gly Ala Ala Ala Ala 205 210 215 220	732
atg ttg atc tgc acc tgg ctc tct tgc ttt gct gga aga aac ccc aag Met Leu Ile Cys Thr Trp Leu Ser Cys Phe Ala Gly Arg Asn Pro Lys 225 230 235	780
cct gtc ata ttg gtg gag agc atc atg agg aat acc aat tct tat gct Pro Val Ile Leu Val Glu Ser Ile Met Arg Asn Thr Asn Ser Tyr Ala 240 245 250	828
atg gag ctt gac cat tgc ctc aaa cct tga g ctttgaaaga agattggaga Met Glu Leu Asp His Cys Leu Lys Pro * 255 260	879
gggttgggaa nggggaagga gggagccctg aaaaagaagg tacntagggt ttaaggccat	939
tttntcaacc tgacttttt	958

<210> 169 <211> 1906 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (108)..(1748) <400> 169 aegectgaeg taeeggteeg gaatteeegg gtegaegatt tegteaggge tqqaaqqtee tggcctggga tgaagagggg actgcctaag gctggggtgg ctccaag atg ccg gca 116 Met Pro Ala tgg gaa act ggg ggt ttc ctg gta act gga ctc cta gca aac tcc caa 164 Trp Glu Thr Gly Gly Phe Leu Val Thr Gly Leu Leu Ala Asn Ser Gln gga ttc agg atg tcg ctg ctg agc ctg ccc tgg ctg ggc ctc aga ccg Gly Phe Arg Met Ser Leu Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro gtg gca acg tcc cca tgg cta ctc ctg ctg ctg gtt gtg ggc tcc tgg 260 Val Ala Thr Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp 45 cta ctc gcc cgc atc ctg gct tgg acc tat gcc ttc tat aac aac tgc 308 Leu Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys 55 60 cgc cgg ctc cag tgt ttc cca cag ccc cca aaa cgg aac tgg ttt tgg 356 Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe Trp ggt cac ctg ggc ctg atc act cct aca gag gag ggc ttg aag aac tcg 404 Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys Asn Ser 85 acc cag atg teg gee acc tat tee cag gge ttt acg ata tgg etg ggt 452 Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Ile Trp Leu Gly 105 110 ecc ate ate ecc tte ate gtt tta tge eac ect gae acc ate egg tet 500 Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp Thr Ile Arg Ser 125 atc acc aat gcc tca gct gcc att gca ccc aag gat aat ctc ttc atc 548 Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys Asp Asn Leu Phe Ile agg ttc ctg aag ccc tgg ctg gga gaa ggg ata ctg ctg agt ggc ggt 596 Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly Ile Leu Leu Ser Gly Gly 155 gac aag tgg agc cgc cac cgt cgg atg ctg acg ccc gcc ttc cat ttc 644 Asp Lys Trp Ser Arg His Arg Arg Met Leu Thr Pro Ala Phe His Phe 165 170 aac atc ctg aag tcc tat ata acg atc ttc aac aag agt gca aac atc 692 Asn Ile Leu Lys Ser Tyr Ile Thr Ile Phe Asn Lys Ser Ala Asn Ile

W	01/5	5437													PC 17U	S01/02623
180					185			•		190					195	
_		-	_		_			-				agc Ser	_	_		740
												agt Ser				788
												ccc Pro 240				836
	-			_			_	_				aaa Lys	_	_		884
			-		_	_		_				tcc Ser		_		932
	-				_	_	_	_			_	ttc Phe	-		-	980
												ggt Gly				1028
			-		_	-		_		_	_	ttc Phe 320				1076
												tca Ser				1124
	-	_	-	-				_				cat His	_		-	1172
_	-					-	_					agg Arg			_	1220
			_	_	_	-						ctg Leu	-	_	_	1268
												ctg Leu 400				1316
												cca Pro				1364
												gat Asp				1412
						_			_			gjà aaa	_			1460

PCT/US01/02623 WO 01/55437

WO 01/55437 PCT/US01	02623
440 445 450	
Asn Pro Thr Val Trp Pro Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe 455 460 465	1508
gac cca gag aac agc aag ggg agg tca cct ctg gct ttt att cct ttc Asp Pro Glu Asn Ser Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe 470 475 480	1556
tcc gca ggg ccc agg aac tgc atc ggg cag gcg ttc gcc atg gcg gag Ser Ala Gly Pro Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu 485 490 495	1604
atg aaa gtg gtc ctg gcg ttg atg ctg ctg cac ttc cgg ttc ctg cca Met Lys Val Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro 500 505 510 515	1652
gac cac act gag ccc cgc agg aag ctg gaa ttg atc atg cgc gcc gag Asp His Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu 520 525 530	1700
ggc ggg ctt tgg ctg cgg gtg gag ccc ctg aat gta agc ttg cag tga Gly Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Ser Leu Gln * 535 540 545	1748
etttetgace catecacetg tttttttgca gattgtcatg aataaaaegg tgctgtcaaa	1808
aaaaaaaaag ggggggccct ttaaagggat caaagtttaa tacccggggc ggggaagggt	1868
aaatetttt atagggggee eeaaaattaa ateteggg	1906
<210> 170 <211> 1882 <212> DNA <213> Homo sapiens	
<221> CDS <222> (108)(1814)	
<400> 170 acgcctgacg taccggtccg gaattcccgg gtcgacgatt tcgtcagggc tggaaggtcc	60
tggcctggga tgaagagggg actgcctaag gctggggtgg ctccaag atg ccg gca Met Pro Ala 1	116
tgg gaa act ggg ggt ttc ctg gta act gga ctc cta gca aac tcc caa Trp Glu Thr Gly Gly Phe Leu Val Thr Gly Leu Leu Ala Asn Ser Gln 5 10 15	164

Gly Phe Arg Met Ser Leu Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro

gtg gca acg tcc cca tgg cta ctc ctg ctg ctg gtt gtg ggc tcc tgg

Val Ala Thr Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp

cta ctc gcc cgc atc ctg gct tgg acc tat gcc ttc tat aac aac tgc

WO	01/5	5437												-	01.00	•
Leu	Leu	Ala	Arg 55	Ile	Leu	Ala	Trp	Thr 60	Tyr	Ala	Phe	Tyr	Asn 65	Asn	Cys	
cgc Arg	cgg Arg	ctc Leu 70	cag Gln	tgt Cys	ttc Phe	cca Pro	cag Gln 75	ccc Pro	cca Pro	aaa Lys	cgg Arg	aac Asn 80	tgg Trp	ttt Phe	tgg Trp	356
ggt Gly	cac His 85	ctg Leu	ggc Gly	ctg Leu	atc Ile	act Thr 90	cct Pro	aca Thr	gag Glu	gag Glu	ggc Gly 95	ttg Leu	aag Lys	aac Asn	tcg Ser	404
acc Thr 100	cag Gln	atg Met	tcg Ser	gcc Ala	acc Thr 105	tat Tyr	tcc Ser	cag Gln	ggc Gly	ttt Phe 110	acg Thr	ata Ile	tgg Trp	ctg Leu	ggt Gly 115	452
ccc Pro	atc Ile	atc Ile	ccc Pro	ttc Phe 120	atc Ile	gtt Val	tta Leu	tgc Cys	cac His 125	cct Pro	gac Asp	acc Thr	atc Ile	cgg Arg 130	tct Ser	500
atc Ile	acc Thr	aat Asn	gcc Ala 135	tca Ser	gct Ala	gcc Ala	att Ile	gca Ala 140	ccc Pro	aag Lys	gat Asp	aat Asn	ctc Leu 145	ttc Phe	atc Ile	548
agg Arg	ttc Phe	ctg Leu 150	Lys	ccc Pro	tgg Trp	ctg Leu	gga Gly 155	gaa Glu	Gly	ata Ile	ctg Leu	ctg Leu 160	agt Ser	ggc Gly	ggt Gly	596
gac Asp	aag Lys 165	tgg Trp	agc Ser	cgc Arg	cac His	cgt Arg 170	cgg Arg	atg Met	ctg Leu	acg Thr	ccc Pro 175	gcc Ala	ttc Phe	cat His	ttc Phe	644
aac Asn 180	atc Ile	ctg Leu	aag Lys	tcc Ser	tat Tyr 185	Ile	acg Thr	atc Ile	ttc Phe	aac Asn 190	Lys	agt Ser	gca Ala	aac Asn	atc Ile 195	692
atg Met	ctt Leu	gac Asp	aag Lys	tgg Trp 200	Gln	cac His	ctg Leu	gcc Ala	tca Ser 205	Glu	ggc	agc Ser	agt Ser	tgt Cys 210	Leu	740
gac Asp	atg Met	ttt Phe	gag Glu 215	His	atc Ile	agc Ser	Leu	atg Met 220	Thr	ttg Leu	gac Asp	agt Ser	cta Leu 225	GIN	aaa Lys	788
tgc Cys	atc Ile	tto Phe 230	Ser	ttt Phe	Asp	Ser	His	Cys	Glr	Glu	Arc	pro 240	Ser	gaa Glu	tat Tyr	836
att Ile	gcc Ala 245	Thi	ato Ile	ttg Lev	g gag 1 Glu	cto Leu 250	Sex	gcc Ala	ctt Lei	gta Val	gag Glu 259	ı Lys	aga Arg	ago Ser	cag Gln	884
cat His 260	: Ile	c cto	cag ıGlr	cac His	atg Met 265	Asp	ttt Phe	t cto	g tat ı Tyr	tac Tyr 270	Lei	tco Ser	cat His	gac Asp	999 Gly 275	932
cgg Arg	j ėgo į Arg	tto Phe	c cac e His	agg Arg 280	g Ala	tgo Cys	cgc Arg	ctq Let	g gtg 1 Val 289	His	gad S Ası	tto Phe	aca Thi	gac Asp 290	gct Ala	980
gto Val	ato L Ile	cgg Arg	g gag g Glv 295	a Arg	g egt	cgo g Arg	aco Thi	c cto Let 300	ı Pro	c act	caq c Gl	g ggt n Gly	: att / Ile 309	As <u>r</u>	gat Asp	1028
ttt	tte	c aa	a gad	aaa	a gc	aag	g tc	c aaq	g act	ttg	g ga	t tto	att	; gat	gtg	1076

***	, 01,0													_		
Phe	Phe	Lys 310	Asp	Lys	Ala	Lys	Ser 315	Lys	Thr	Leu	Asp	Phe 320	Ile	Asp	Val	
	_	-	-	_	-	-	-	gly ggg	_	_			_			1124
								atg Met								1172
								aag Lys								1220
			_			_	-	ggc Gly 380					_			1268
								gag Glu								1316
								aaa Lys								1364
_	_	_			-		_	tgc Cys		-		_	-			1412
			_					cga Arg	_	_		_	-		-	1460
		-		-	-			aaa Lys 460				-			-	1508
			-					act Thr			_	_			-	1556
	-	Pro	Phe	Arg	Phe	-	Pro	gag Glu	Asn	Ser	_	Gly				1604
_	Āla						_	gly ggg				_				1652
								gtg Val								1700
								act Thr 540								1748
								ctt Leu								1796
aat	gta	ggc	ttg	cag	tga	ctt	tot (	gacc	catc	ca c	ctgt	tttt	t tg	caga	ttgt	1850

Asn Val Gly Leu Gln * 565

catgaataaa	acggtgctgt	caaaaaaaa	aa	188	2
------------	------------	-----------	----	-----	---

<210> 171 <211> 1547 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (100)(1389)	
<400> 171 gcaccaccgc gccggaattc ccgcgacgac gatttcgtag ctccctgaga ct	ttccctgg 60
gcctcaggat ctcaccctcc atcctgtctg ccctgcagg atg ccg cag Met Pro Gln 1	
ctg tcc tgg ctg ggc ctc ggg cag gtg gca gca ttc ccg tgg c Leu Ser Trp Leu Gly Leu Gly Gln Val Ala Ala Phe Pro Trp L 10 15	etg ctc 162 Leu Leu 20
ctg ctg ctg gct ggg gcc tcc cgg ctc ctg gcc ggc ttc ctg g Leu Leu Leu Ala Gly Ala Ser Arg Leu Leu Ala Gly Phe Leu A 25 30 35	cc tgg 210 la Trp
acc tat gcc ttc tat gac aac tgc cgc cgc ctt cag tac ttt c Thr Tyr Ala Phe Tyr Asp Asn Cys Arg Arg Leu Gln Tyr Phe P 40 45 50	ca caa 258 Pro Gln
CCC CCa aaa cag aaa tgg ttt tgg ggt caa cca gga cct cct g Pro Pro Lys Gln Lys Trp Phe Trp Gly Gln Pro Gly Pro Pro A 55 60 65	gct att 306 Ala Ile
gcg ccc aag gat gat ctc tcc atc agg ttc ctg aag ccc tgg c Ala Pro Lys Asp Asp Leu Ser Ile Arg Phe Leu Lys Pro Trp L 70 75 80	etg gga 354 Leu Gly 85
gaa ggg ata ctg ctg agt ggc ggt gac aag tgg agc cgc cac c Glu Gly Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His A 90 95	cgt cgg 402 Arg Arg L00
atg ctg acg ccc gcc ttc cat ttc aac atc ctg aaa ccc tat a Met Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Pro Tyr I 105 110 115	ata aag 450 Ile Lys
atc ttc aac agg agt gtg aac atc atg cac gac aag tgg cag c Ile Phe Asn Arg Ser Val Asn Ile Met His Asp Lys Trp Gln H 120 125 130	cac ctg 498 His Leu
gcc tca gag ggc agc agt cgt ctg gac atg ttt gag cac atc a Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile S 135 140 145	
atg acc ttg gac agt ctg cag aaa tgc atc ttc agc ttt gac a Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe Asp S 150 155 160	agc cat 594 Ser His 165

W	) 01/5	5437												I	PCT/US	S01/02623
tgt	cag	gag	agg	ccc	agt	gaa	tat	att	gct	acc	atc	ttg	gag	ctc	agt	642
Cys	Gln	Glu	Arg	Pro	Ser	Glu	Tyr	Ile	Ala	Thr	Ile	Leu	Glu	Leu	Ser	

															CI/U	301/02023
tgt Cys	cag Gln	gag Glu	agg Arg	ccc Pro 170	agt Ser	gaa Glu	tat Tyr	att Ile	gct Ala 175	acc Thr	atc Ile	ttg Leu	gag Glu	ctc Leu 180	agt Ser	642
gcc Ala	ctt Leu	gta Val	gaa Glu 185	aaa Lys	aga Arg	aac Asn	cag Gln	cat His 190	atc Ile	ctc Leu	cag Gln	cac His	atg Met 195	gac Asp	ttt Phe	690
ctg Leu	tat Tyr	tac Tyr 200	ctc Leu	tcc Ser	cat His	gac Asp	999 Gly 205	tgg Trp	cgc Arg	ttc Phe	cgc Arg	agg Arg 210	gcc Ala	tgc Cys	cgc Arg	738
ctg Leu	gtg Val 215	cac His	gac Asp	ttc Phe	aca Thr	gat Asp 220	gcc Ala	gtc Val	atc Ile	cag Gln	gag Glu 225	cgg Arg	cgc Arg	cat His	acc Thr	786
ctt Leu 230	ccc Pro	act Thr	cag Gln	ggc Gly	cat His 235	gac Asp	acc Thr	aca Thr	gcc Ala	agt Ser 240	ggt Gly	ctc Leu	tcc Ser	tgg Trp	gtc Val 245	834
ctg Leu	tac Tyr	aac Asn	ctc Leu	gcg Ala 250	agg Arg	cac His	cca Pro	gaa Glu	tac Tyr 255	cag Gln	gag Glu	cac His	tgc Cys	cgg Arg 260	cag Gln	882
gag Glu	gtg Val	caa Gln	gag Glu 265	ctt Leu	ctg Leu	aag Lys	gac Asp	cgc Arg 270	gat Asp	cct Pro	aaa Lys	gag Glu	att Ile 275	gaa Glu	tgg Trp	930
gac Asp	gac Asp	ctg Leu 280	gcc Ala	cag Gln	ctg Leu	ccc Pro	ttc Phe 285	ctg Leu	acc Thr	atg Met	tgc Cys	gtg Val 290	aag Lys	gag Glu	agc Ser	978
ctg Leu	agg Arg 295	tta Leú	cat His	ccc Pro	cca Pro	gct Ala 300	ccc Pro	ttc Phe	atc Ile	tcc Ser	cga Arg 305	tgc Cys	tgc Cys	acc Thr	cag Gln	1026
gac Asp 310	att Ile	gtt Val	ctc Leu	cca Pro	gat Asp 315	ggc Gly	cga Arg	gtc Val	atc Ile	ccc Pro 320	aaa Lys	ggc Gly	att Ile	acc Thr	tgc Cys 325	1074
ctc Leu	atc Ile	gat Asp	att Ile	ata Ile 330	gjå aaa	gtc Val	cat His	cac His	aac Asn 335	cca Pro	act Thr	gtg Val	tgg Trp	ccg Pro 340	gat Asp	1122
cct Pro	gag Glu	gtc Val	tac Tyr 345	gac Asp	ccc Pro	ttc Phe	cgc Arg	ttt Phe 350	gac Asp	cca Pro	gag Glu	aac Asn	agc Ser 355	aag Lys	GJ A aaa	1170
agg Arg	tca Ser	cct Pro 360	ctg Leu	gct Ala	ttt Phe	att Ile	cct Pro 365	ttc Phe	tcc Ser	gca Ala	gly ggg	ccc Pro 370	agg Arg	aac Asn	tgc Cys	1218
atc Ile	999 Gly 375	cag Gln	gcg Ala	ttc Phe	gcc Ala	atg Met 380	gcg Ala	gag Glu	atg Met	aaa Lys	gtg Val 385	gtc Val	ctg Leu	gcg Ala	ttg Leu	1266
atg Met 390	ctg Leu	ctg Leu	cac His	ttc Phe	cgg Arg 395	ttc Phe	ctg Leu	cca Pro	gac Asp	cac His 400	act Thr	gag Glu	ccc Pro	cgc Arg	agg Arg 405	1314
aag Lys	ctg Leu	gaa Glu	ttg Leu	atc Ile 410	atg Met	cgc Arg	gcc Ala	gag Glu	ggc Gly 415	gjå aaa	ctt Leu	tgg Trp	ctg Leu	cgg Arg 420	gtg Val	1362

WO 01/55437 PCT/US01/	/02623
gag ccc ctg aat gta agc ttg cag tga ctttc tgacccatcc acctgttttt Glu Pro Leu Asn Val Ser Leu Gln *	1414
425 430	
ttgcagattg tcatgaataa aacggtgctg tcaaaaaaaa aaaagggggg gccctttaaa	1474
gggatcaaag tttaataccc ggggcgggga agggtaaatc tttttatagg gggccccaaa	1534
attaaatctc ggg	1547

<210> 172 <211> 1005 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (257)..(400) <220> <221> misc_feature <222> (1) ... (1005)  $\langle 223 \rangle$  n = a,t,c or g <400> 172 60 gggtctgccc tcgaccgccn nnncttcgac gggctgatgt atataactat ctattcgatg atgaagatac cccaccaaac ccaaaaaaag agatctctcg aggatccgaa ttcgcggccg 120 cgtcgaccac ttgctgaact ggctcctggg gccatgaggc tgtcactgcc actgctgctg 180 ctgctgctgg gagcctgggc catcccaggg ggcctcgggg acagggcgcc actcacagcc 240 acagececae aactgg atg atg agg aga tgt act cag ccc aca tgc ccg 289 Met Met Arg Arg Cys Thr Gln Pro Thr Cys Pro 337 ctc acc tgc gct gtg atg cct gca gag ctg tgg ctt acc aga tgt ggc Leu Thr Cys Ala Val Met Pro Ala Glu Leu Trp Leu Thr Arg Cys Gly aaa atc tgg caa agg cag aga cca aac ttc ata cct caa act ctg ggg 385 Lys Ile Trp Gln Arg Gln Arg Pro Asn Phe Ile Pro Gln Thr Leu Gly ggc ggc ggg agc tga gcgagttggt ctacacggat gtcctggacc ggagctgctc 440 Gly Gly Gly Ser * 45 ceggaactgg caggactacg gagttegaga agtggaccaa gtgaaacgte teacaggeee 500 aggaettage gaggggeeag agecaageat cagegtgatg gteacagggg geceetggee 560 taccaggete tecaggaeat gtttgeacta ettgggggag tttggagaag accagateta 620 tgaagcccac caacaaggcc gaggggctct ggaggcattg ctatgtgggg gaccccaggg ggcctgctca gagaaggtgt cagccacaag agaagagctc tagtcctgga ctctaccctc 740 ctctgaaaga agctggggct tgctctgacg gtctccactc ccgtctgcag gcagccagga 800

gggcaggaag cccttgctct gtgctgccat cctgcctccc tcctccagcc tcagggcact 860
cgggcctggg tgggagtcaa cgccttcccc tctggactca aataaaacgt cgacgcggcc
gcgaattcgg atcctcgaga gatctcttt tttgggtttg gtggggtatc ttcatcatcg 980
aatagatagt tatatacatc agccc 1005

<210> 173

<211> 1406

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (782)..(1327)

<400> 173

60 tttcqtatta cqtqtqctqc cctttqaqaa qtttqttqat qaaaggaqaa aggaaatagt agcaccagag gaaaagagca gggatttacc ctgttcttac aggataacag ctccttgctc 120 180 ttttcagcta gcttttcaaa ggacagggat aggacagccc cctgccttat ttcggatact 240 tggatctata acctccagaa attcaagctg aagtagctgg aggtcggaga ggaatgagaa ctgcctgggt ggggtctgcc agccagacac tgccaggata gccacaagga gacaacttgg 300 aagaacagac agcaaccacg ttggactcag gcagtcctgg gtttgaatcc tgtctctgtc 360 420 accacctage etgatgacet tgggcacate etgagcacee tgtgcettat etgtaaaatg 480 gaaacaatca tgccgacctt tcagggtggt tttgaggatt agagactagc tcctgacaca cagtaggtaa tcgtaaatgg gtgctattat ttggcccgac ccacgttata ggacagaacg 540 tctaacggat gcgtcagaac ctgcgccctc cggatcttgg agggtacaga gggcgcccct 600 660 cggcctcctc cctttcggag gtggggacaa ggtggaggaa gggctgcagg aggaggagct 720 ctagcatege gaccegeece gtecegteea gtetggeetg ggegeegegg gaacgetgte 780 ctagetgeeg ccaecegaac ageetgteet ggtgeeeegg eteeetgeee egegeeeagt atg acc ctg cgc ccc tca ctc ctc ccg ctc cat ctg ctg ctg 826 Met Thr Leu Arg Pro Ser Leu Leu Pro Leu His Leu Leu Leu 874 ctg ctc agt gcg gcg gtg tgc cgg gct gag gct ggg ctc gaa acc Leu Leu Leu Ser Ala Ala Val Cys Arg Ala Glu Ala Gly Leu Glu Thr 20 gaa agt ccc gtc cgg acc ctc caa gtg gag acc ctg ggg gag ccc cca 922 Glu Ser Pro Val Arg Thr Leu Gln Val Glu Thr Leu Gly Glu Pro Pro aaa cca tgt gcc gag ccc gct gct ttt gga gac acg ctt cac ata cac 970 Lys Pro Cys Ala Glu Pro Ala Ala Phe Gly Asp Thr Leu His Ile His 50 55 tac acg gga agc ttg gta gat gga cgt att att gac acc tcc ctg acc 1018

							ם	CT/US01/0	2623
WO 01/55437 Tyr Thr Gly	Sar Lau V	/al Asn	Glv Ara	Tle Tle	Asp Thr	Ser	-		,2020
65	Set Dea v	70	0 <u>-</u> 73	220 220	75				
aga gac cct	ctg gtt a	ata gaa	ctt ggc	caa aag	cag gtg	att	cca	ggt Gly	1066
Arg Asp Pro	Leu Val I	85	ren Già	90	GIII VAI	. 116	110	95	
ctg gag cag	agt ctt o	ctc gac	atg tgt	gtg gga	gag aag	cga	agg	gca	1114
Leu Glu Glr	Ser Leu I 100	Leu Asp	Met Cys	Val Gly 105	Glu Lys	Arg	Arg 110	Ala	
atc att cct	tct cac t	ttg gcc	tat gga	aaa cgg	gga ttt	cca	cca	tct	1162
Ile Ile Pro	Ser His I	Leu Ala	Tyr Gly	Lys Arg	Gly Phe	Pro 125	Pro	Ser	
gtc cca gcg	gat gca g	ata ata	cag tat	gac gtg	gag ct	, att	gca	cta	1210
Val Pro Ala	Asp Ala	Val Val	Gln Tyr	Asp Val	Glu Let	lle	Ala	Leu	
ate ega ge		taa cta		r ata aaa	ggc at	: ttq	cct	ctg	1258
Ile Arg Ala	Asn Tyr	Trp Leu 150	Lys Let	Val Lys	Gly Il	Leu	Pro	Leu	
145				act aca		- taa	αt a	tca	1306
gta ggg ate Val Gly Me	: Ala Met '	Val Pro	Thr Pro	Pro Gly	Pro Hi	Trp	Val	Ser 175	
160		165		170		<b>-</b>			1359
cct ata ca Pro Ile Gl			ac ccaa	agtete e	aaaaaga	ag ct	caag	gaag	1337
	180								1406
agaaacgaaa	caagagcaa	a aagaa	ataat aa	aataataaa	tttaa	a			1400
<210>	174								
<211> <212>									
<213>	Homo sapi	.ens							
<220> <221>	CDS								
	(937)(2	2037)							
<400> gaccaaggag	174	ra ctaca	naact a	cadadedd	atctct	tega	acta	tctqtq	60
									120
teegggeage									180
agggcccctg									
ggcgggggcg									240
gtegggaeee									300
cgggagggg	agggagag	, aaaa	arcase a	gactgggc	a dcadco	tate	acta	raccata	360
ccccaggco	ccctcagct	tt tgagg	gegetg c	tcgcccag	g tggggg	leget	gggc	ggcggc	420
ccccaggcc	ccctcagct	tt tgagg	gegetg c	tcgcccag	g tggggg	leget	gggc	ggcggc	

teggacecea tetteaeget ggegeeeeeg etgeattgee actaegggge etteeeeeet

***	01,50	,														
aatg	cctc	tg g	ctgg	gagc	a gc	ctcc	caat	gcc	agcg	gcg	tcag	cgtc	gc c	agcg	ctgcc	600
ctag	cage	ca g	cgcc	gcca	g cc	gtgt	cgcc	acc	agta	ccg	accc	ctcg	tg c	agcg	gcttc	660
gcc	cgcc	gg a	cttc	aacc	a tt	gcct	caag	gat	tggg	act	ataa	tggc	ct t	cctg	tgctc	720
acco	ccaa	.cg c	cato	ggcc	a gt	.ggga	tctg	gtg	tgtg	acc	tggg	ctgg	ca g	gtga	tcctg	780
gago	agat	.cc t	cttc	atct	t gg	gctt	tgcc	tcc	ggct	acc	tgtt	cctg	gg t	tacc	ccgca	840
gaca	agatt	tg g	ccat	.cgcg	g ga	ttgt	gctg	ctg	acct	tgg	ggct	ggtg	igg c	ccct	gtgga	900
gtag	gagg	igg c	tgct	gcag	ıg ct	cctc	caca	ggc	gtc		Ala				ctc Leu	954
ttg Leu	ggc Gly	ttt Phe	ctg Leu 10	ctt Leu	gcc Ala	ggt Gly	gtt Val	gac Asp 15	ctg Leu	ggt Gly	gtc Val	tac Tyr	ctg Leu 20	atg Met	cgc Arg	1002
ctg Leu	gag Glu	ctg Leu 25	tgc Cys	gac Asp	cca Pro	acc Thr	cag Gln 30	agg Arg	ctt Leu	cgg Arg	gtg Val	gcc Ala 35	ctg Leu	gca Ala	glà aaa	1050
gag Glu	ttg Leu 40	gtg Val	Gly ggg	gtg Val	gga Gly	999 Gly 45	cac His	ttc Phe	ctg Leu	ttc Phe	ctg Leu 50	ggc	ctg Leu	gcc Ala	ctt Leu	1098
gtc Val 55	tct Ser	aag Lys	gat Asp	tgg Trp	cga Arg 60	ttc Phe	cta Leu	cag Gln	cga Arg	atg Met 65	atc Ile	acc Thr	gct Ala	ccc Pro	tgc Cys 70	1146
atc Ile	ctc Leu	ttc Phe	ctg Leu	ttt Phe 75	tat Tyr	ggc Gly	tgg Trp	cct Pro	ggt Gly 80	ttg Leu	ttc Phe	ctg Leu	gag Glu	tcc Ser 85	gca Ala	1194
cgg Arg	tgg Trp	ctg Leu	ata Ile 90	gtg Val	aag Lys	cgg Arg	cag Gln	att Ile 95	gag Glu	gag Glu	gct Ala	cag Gln	tct Ser 100	gtg Val	ctg Leu	1242
agg Arg	atc Ile	ctg Leu 105	gct Ala	gag Glu	cga Arg	aac Asn	cgg Arg 110	ccc Pro	cat His	ggg Gly	cag Gln	atg Met 115	ctg Leu	gly aaa	gag Glu	1290
						cag Gln 125										1338
gca Ala 135	Thr	tcc Ser	tcc Ser	ttt Phe	tcc Ser 140	ttt Phe	gct Ala	tcc Ser	ctc Leu	ctc Leu 145	aac Asn	tac Tyr	cgc Arg	aac Asn	atc Ile 150	1386
						ctg Leu										1434
				Tyr		cct Pro										1482
			Cys			ctg Leu							Leu			1530

wo	01/5	5437												I	CT/US01	/02623
gtc Val	ttc Phe 200	ctg Leu	ggg ggg	gtc Val	acc Thr	gtg Val 205	gac Asp	cga Arg	ttt Phe	ggc Gly	cgc Arg 210	cgg Arg	ggc Gly	atc Ile	ctt Leu	1578
ctt Leu 215	ctc Leu	tcc Ser	atg Met	acc Thr	ctt Leu 220	acc Thr	ggc	att Ile	gct Ala	tcc Ser 225	ctg Leu	gtc Val	ctg Leu	ctg Leu	ggc Gly 230	1626
ctg Leu	tgg Trp	gat Asp	tat Tyr	ctg Leu 235	aac Asn	gag Glu	gct Ala	gcc Ala	atc Ile 240	acc Thr	act Thr	ttc Phe	tct Ser	gtc Val 245	ctt Leu	1674
Gly 999	ctc Leu	ttc Phe	tcc Ser 250	tcc Ser	caa Gln	gct Ala	gcc Ala	gcc Ala 255	atc Ile	ctc Leu	agc Ser	acc Thr	ctc Leu 260	ctt Leu	gct Ala	1722
gct Ala	gag Glu	gtc Val 265	atc Ile	ccc Pro	acc Thr	act Thr	gtc Val 270	cgg Arg	ggc Gly	cgt Arg	ggc Gly	ctg Leu 275	ggc Gly	ctg Leu	atc Ile	1770
atg Met	gct Ala 280	Leu	Gly 333	gcg Ala	ctt Leu	gga Gly 285	gga Gly	ctg Leu	agc Ser	ggc Gly	ccg Pro 290	gcc Ala	cag Gln	cgc Arg	ctc Leu	1818
cac His 295	Met	ggc Gly	cat His	gga Gly	gcc Ala 300	ttc Phe	ctg Leu	cag Gln	cac His	gtg Val 305	gtg Val	ctg Leu	gcg Ala	gcc Ala	tgc Cys 310	1866
gcc Ala	ctc Leu	ctc Leu	tgc Cys	att Ile 315	ctc Leu	agc Ser	att Ile	atg Met	ctg Leu 320	Leu	ccg Pro	gag Glu	acc Thr	aag Lys 325	Arg	1914
aag Lys	ctc Leu	ctg Leu	ccc Pro	Glu	gtg Val	ctc Leu	cgg Arg	gac Asp 335	Gly	gag Glu	ctg Leu	tgt Cys	cgc Arg 340	Arg	cct Pro	1962
t co Ser	ctg Leu	ctg Lev 345	ı Arg	cag Gln	cca Pro	ccc Pro	cct Pro	Thr	cgc Arg	tgt Cys	gac Asp	cac His	Val	ccg Pro	ctg Leu	2010
		Thr		aac Asn			Leu		gcg	gc c	tctg	agta	.c cc	tggc	ggga	2062
ggo	tggc	cca	caca	ıgaaa	ıgg t	.ggca	agaa	g at	.cggg	aaga	ctg	agta	ggg	aagg	cagggc	2122
tgo	eccaç	gaag	tctc	agag	ıgc a	ccto	acgo	c ag	ccat	cgcg	gag	agct	cag	aggg	ccgtcc	2182
cca	accct	gcc	tcct	ccct	gc t	gctt	tgca	t to	actt	cctt	ggo	caga	gtc	aggg	gacagg	2242
gag	gagag	gete	caca	ctgt	aa c	cact	gggt	c tg	ggct	ccat	cct	gcgc	:cca	aaga	catcca	2302
cco	cagao	cctc	atta	tttc	ett g	ctct	atca	t to	tgtt	tcaa	taa	agac	att	tgga	ataaac	2362
gag	gcata	atca	taaa	aaaa	aa a	ì										2383

<210> 175 <211> 378

<212> DNA

<213> Homo sapiens

WO 01/55437 PCT/US01/02623 <220> <221> CDS <222> (32) . . (286) <400> 175 aacaataaaa gaaaaaacgt tagaccaaac a atg cgg ccg acc aac agt ggt 52 Met Arg Pro Thr Asn Ser Gly 1 ccg acc tct agc ccg agg gtt caa aac gcc ctc aaa gta acc gtc ttt 100 Pro Thr Ser Ser Pro Arg Val Gln Asn Ala Leu Lys Val Thr Val Phe aaa ctg aac tca aag aat gca aaa gcg gca agt tca gaa aat aaa agg 148 Lys Leu Asn Ser Lys Asn Ala Lys Ala Ala Ser Ser Glu Asn Lys Arg cga gaa cag gac ttt aag tgc att tca aac cca cgg gcc aga aat cgt 196 Arg Glu Gln Asp Phe Lys Cys Ile Ser Asn Pro Arg Ala Arg Asn Arg 45 50 ace ace gtc aac cag ceg cac cat ttg gtc caa gat ttc ctc ttc acc 244 Thr Thr Val Asn Gln Pro His His Leu Val Gln Asp Phe Leu Phe Thr 65 att ctg aaa ctg ggt tta tcc aac aca ctg ata cat tca taa aatttgg 293 Ile Leu Lys Leu Gly Leu Ser Asn Thr Leu Ile His Ser * 75 aagagtcagt ggaagtcaca aggaccgaat atttgcactc tttcagtgaa tgccagcaaa 353 tctgttattc cataaataaa aaagt 378 <210> 176 <211> 662 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (222)..(383) <400> 176 ctgcaggtac cggtccggaa ttcccgggtc gacccacgcg tccgcactqt qtqcacaaqa 60 gagcgataag cactetggat catttaaagg aaaaggagat gegacteeta cetteagaag 120 gttataatgg acttattata atggacttat tatacggaca aacaaatgaa cagttacaca 180 catgcaaagc tacagcagta caagatagta tgtcatgagt g atg tgc tta atg 233 Met Cys Leu Met aaa cag atc ata tat ctg ctg tat gta ggg ctc tgt tca att ctc aca 281 Lys Gln Ile Ile Tyr Leu Leu Tyr Val Gly Leu Cys Ser Ile Leu Thr 10 gca ttc tta ttt act cct cac cat gtc ctt gag agg tat agg tat tat 329

30

Ala Phe Leu Phe Thr Pro His His Val Leu Glu Arg Tyr Arg Tyr Tyr

WO 01/55437 PCT/US01/02	623
tgt cct gat ttt aga gag att aag aaa ctt ggt caa ggc tat aca act Cys Pro Asp Phe Arg Glu Ile Lys Lys Leu Gly Gln Gly Tyr Thr Thr 40 45 50	377
aat tag tagaagaatt aaaattcaat ootaagtotg totgaccoca aagcocatga Asn *	433
atactettaa eteetatget gtaaatataa aaagaetgaa egggggeeag aegtggtgge	493
tcatgcctgt aatcccagca ctttgggagg atggtttgag cccaggagtt caagaccagc	553
ctgggcacta tagtgagacc ctgtctccat tcaaaaaaaa aaaaaagggg gggcctctta	613
aaaggctcaa ttttacttac cgcgtgctgg aaagttatat gtttttatc	662
<210> 177 <211> 659 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (274)(591) <400> 177	
ctgaggcacc gcgccggaat tcccgggtcg acccacgcgt ccggtagaat aatatttgtt	60
aatcctgatg ctgccccata ttaattctgt gaattcgggc aaatgactta gtttgtctaa	120 180
acctcaatta totoatotat aaaaggcago tagatottaa otoactgggt totogtgagg	240
attaaatgag atagtgcccc taaggtttct ggt atg aag gag gca ctc ctt aaa Met Lys Glu Ala Leu Leu Lys 1 5	294
tgt tcg aga ctt gcc aga ggg ctt ctt ctc tgt ctg gac tgt gct aat Cys Ser Arg Leu Ala Arg Gly Leu Leu Cys Leu Asp Cys Ala Asn 10 15 20	342
gac cac aga tcc ccg gtt gag agg aat gcc cag acc aca ctc atc cta Asp His Arg Ser Pro Val Glu Arg Asn Ala Gln Thr Thr Leu Ile Leu 25 30 35	390
Cac tca tcc cta tac tca ttg tcc ctt ggg aac caa ctg cag gga gga His Ser Ser Leu Tyr Ser Leu Ser Leu Gly Asn Gln Leu Gln Gly Gly 40 45 50 55	438
ggg gaa atg gcc acc act gga ggg agt act cag cag gcc aag act tat Gly Glu Met Ala Thr Thr Gly Gly Ser Thr Gln Gln Ala Lys Thr Tyr 60 65 70	486
ggg gga ctc ttc caa att ggg gcc atg gaa ccg gca cta ttt cta ctc Gly Gly Leu Phe Gln Ile Gly Ala Met Glu Pro Ala Leu Phe Leu Leu 75 80 85	534
ttt att ttc ctt ttg gca tcc ttt tgg gtt cac ccg agc tat aga ata Phe Ile Phe Leu Leu Ala Ser Phe Trp Val His Pro Ser Tyr Arg Ile 90 95 100	582

Thr Tyr * 105	030
gcccaagcca tgtgaatggg c	659
<210> 178 <211> 664 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (91)(234)	
<400> 178 cctgcaggca ccggtccgga attcccgggt cgacccacgc gtccgtttt cccaataatt	60
acttcaactc acagttagtt aaagcataac atg ttg gaa act ttc ttg ttt Met Leu Glu Thr Phe Leu Phe 1 5	111
aaa ctc ttc cta ttc ttc acc tta ttg gtt aat tta ttt att acc aat Lys Leu Phe Leu Phe Phe Thr Leu Leu Val Asn Leu Phe Ile Thr Asn 10 15 20	159
gac caa ctc agt gtg ggt agt att ttt ctc agc ttc cag ctc cca gct Asp Gln Leu Ser Val Gly Ser Ile Phe Leu Ser Phe Gln Leu Pro Ala 25 30 35	207
ttc ttt ctt gat atg gct gaa ttt tga gatac tcaaagcaag cagaccataa Phe Phe Leu Asp Met Ala Glu Phe * 40 45	259
agagagacag ataaaactgg acctgggtgt tcatatgtgt atgtgtgatt gtgtgttgga	319
gggttattat ccctttttaa agaactactt ataggatggt ggcaggacct ttgaaattgc	379
aggotgaatt gattattago atatgtaaat ttgggtaagt tattaagoaa otttcaaagt	439
gtttttggtt tetettetgt aaaagtagga ggataataat atetaatgat ettgttgtag	499
attaaatgat gaaaagcacc ttacacagtg agtgttacgt agtaagtaga caataaatgg	559
taacatgact attatcatca tgctgctgct atcgtggata tttgcatttt atagctttgg	619
caaactgaaa actteetttt gttgtgaaat atettgatga aegea	664

<210> 179 <211> 415 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (105)..(245)

<pre>&lt;400&gt; 179 atcgctccgg aattcccggg tcgacccacg cgtccggtga acttggggtg ttgattcagc</pre>	60
atcacttgcc atgaccccca agccctcctc tcagctttct ctcc atg act ttt ctc  Met Thr Phe Leu  1	116
tta cac gtt ctg gtg aca gct ctg tcc tct cat tcc act ggg cgt agg Leu His Val Leu Val Thr Ala Leu Ser Ser His Ser Thr Gly Arg Arg 5 10 15 20	164
ggt act aac tgc ttc atg tta ctt tcc tca ggg aat cat cct atc cct Gly Thr Asn Cys Phe Met Leu Leu Ser Ser Gly Asn His Pro Ile Pro 25 30 35	212
tgt ggt tcc ctg aca ccc tac cca cac ctt tga aaatggag cctttattac Cys Gly Ser Leu Thr Pro Tyr Pro His Leu * 40 45	263
atactcctcg ggtctccccc tactaaagtg ggccgtctct ttcctgttga agcattgact	323
gatacactgg cgaaagggaa caccctgcct gcccttcacc ccctcccaag agcctaaaga	383
gacttctgag cttcaggaag aatctgccgt ga	415
<210> 180 <211> 669 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (299)(421) <400> 180	
ctgaggcacc gggccggaat tcccgggtcg acccacgcgt ccgctcaaat attctataga	60
ctgtttaaat ataaaccaaa ctaaactatt taagttccag gatattagtg actttttacc	120
tgagatactt geteagatta tetatetgtt gtgaacteca ttttaaaaage aceteactat	180
accatgettg aagteaggta gtetgtagae tteateaeag eccetttata tataattaet	240
tototoacgg aggagtatgg tgtatttacc tgtatctttg aatggottaa gattagca tgc ttc agc tat gtt ctt gct cct atc aaa gtg aaa cct ggg ggt ggc Met Leu Ile Leu Ser His Ser Lys Ile Gln Val Asn Thr Pro Tyr Ser 1 5 10 15	298 346
tca gag aca cgt gac ggg ttt aga atc cca gag agc aca ccc tca cta Ser Val Arg Glu Val Ile Ile Tyr Lys Gly Ala Val Met Lys Ser Thr 20 25 30	394
aag gcc ggt tac tgc gac cat aaa cac ttett gcccacaatt catetttta Asp Tyr Leu Thr Ser Ser Met Val * 35 40	446
aaatttttcg tttcagaaaa tgtgatgttc tgaatcgtgg attttcaggt tacaatacca	506
ggtgggccaa aattateett ccaagattaa tcaggaaagg aaacagtttg gacateecag	566

tagcagttac aattttcttt ggggccaatg acagtgcact aaaagatgag aatcccaagc

PCT/US01/02623

agcacattcc cctggaggag	tacgctgcga	acctaaagag	cat	569

<210> 181 <211> 616 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (83)(247)	
<400> 181 atttggccct cgaggccaag aattcggcac gagaatttga agtatattta aagtcaataa	60
gcaaacattc aaaaacactt gt atg act ctc cta aat ctt tat tat tta aat Met Thr Leu Leu Asn Leu Tyr Tyr Leu Asn 1 5 10	112
agt ttt cta ttg tac tcg aaa aga ttt gaa ggt ata tcc ttc tgt gtc Ser Phe Leu Leu Tyr Ser Lys Arg Phe Glu Gly Ile Ser Phe Cys Val 15 20 25	160
caa aag gtc agt ata ata tta tgt ata cat tat ctt cgt agc aca act Gln Lys Val Ser Ile Ile Leu Cys Ile His Tyr Leu Arg Ser Thr Thr 30 35 40	208
att tgg aat aag ctt ttc ttc aga gat gta tcg gca taa aggagctctg Ile Trp Asn Lys Leu Phe Phe Arg Asp Val Ser Ala * 45 50 55	257
atttgtttaa atattttaaa aggtattaaa atatattttc atttgagaac ctcccctata	317
tactcaggaa agctcacctt ttcaaaacct gagtgttaac tctttccaaa cgttctgtaa	377
tgtttatcaa aaacaaaaaa taatgaaaag aggtgaacat tattttggag agcctcattg	437
gcttcatcta ctcagatcat ccacaatcac tggagaggag gcagaatttt gtcactggga	497
cagcagtcac ttgacccaga atcetetacc gattecetec agggageeet teccattgge	557
tettteetag aaattteatg tttttgggtt aaceteagat aaaaetttgg eettaacae	616

<210> 182

<211> 993

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (158)..(703)

<400> 182

gattggactt atttcccaca ttttttcaag ctctggatat taccacactt ttcactattt 60
acctatctgg aaaagcaaat atctttatat ttaaattttt ataacctcaa tcatcagtga 120
aaacatttct aatgtttata tcacttgctt gtaaatc atg cat ttt cct gtg aac 175

## Met His Phe Pro Val Asn 1 5

										1	L			-	5	
tgt Cys	ttc Phe	ttc Phe	aag Lys 10	tca Ser	tta Leu	cat His	att Ile	ttt Phe 15	ctt Leu	tta Leu	cta Leu	cag Gln	gtt Val 20	ttt Phe	ctt Leu	223
gcc Ala	act Thr	ttt Phe 25	ttg Leu	aga Arg	aaa Lys	aaa Lys	tta Leu 30	agt Ser	aag Lys	gta Val	gcc Ala	ttc Phe 35	agt Ser	tgt Cys	ctt Leu	271
gtt Val	gaa Glu 40	ttt Phe	ttc Phe	tac Tyr	tat Tyr	tgt Cys 45	tat Tyr	tat Tyr	ttt Phe	tta Leu	gac Asp 50	ttt Phe	gct Ala	agt Ser	agt Ser	319
gtt Val 55	tct Ser	ttt Phe	ttg Leu	ttt Phe	tgt Cys 60	ttt Phe	gtt Val	ttg Leu	ctt Leu	ttg Leu 65	aga Arg	cgg Arg	agt Ser	ctt Leu	act Thr 70	367
ctg Leu	tca Ser	ccc Pro	agg Arg	ctg Leu 75	gag Glu	tgc Cys	agt Ser	gac Asp	acg Thr 80	atc Ile	ttg Leu	gct Ala	cac His	tgc Cys 85	aac Asn	415
ctt Leu	cgc Arg	ctc Leu	ccg Pro 90	ggt Gly	tca Ser	cgc Arg	tat Tyr	tct Ser 95	tct Ser	gcc Ala	tca Ser	acc Thr	tcc Ser 100	cga Arg	gta Val	463
gct Ala	gly ggg	att Ile 105	aca Thr	ggt Gly	gtg Val	cac His	cac His 110	cac His	acc Thr	tat Tyr	gta Val	aat Asn 115	ttt Phe	gta Val	tgg Trp	511
aca Thr	gta Val 120	cag Gln	aag Lys	gcg Ala	gtt Val	cac His 125	tgt Cys	gtt Val	ggc Gly	cag Gln	gct Ala 130	agc Ser	tgg Trp	gaa Glu	ctc Leu	559
ctg Leu 135	Thr	tca Ser	agg Arg	gat Asp	cca Pro 140	ccc Pro	acc Thr	ttg Leu	gcc Ala	tcc Ser 145	cac His	agg Arg	gct Ala	gly aaa	att Ile 150	. 607
aca Thr	ggc	atg Met	agc Ser	cac His 155	cgc Arg	acc Thr	tgg Trp	gca Ala	aaa Lys 160	gtg Val	ttc Phe	ctt Leu	aaa Lys	aga Arg 165	gtg Val	655
att Ile	ttt Phe	cta Leu	aat Asn 170	aga Arg	gaa Glu	tac Tyr	gat Asp	ttg Leu 175	Thr	atg Met	ttt Phe	tgc Cys	ttt Phe 180	Leu	aaa Lys	703
tag	acat	act	catc	tctg	ac t	gtta	ttct	a ag	gatt	aagt	gct	atat	aaa	gcac	agcaaa	763
taa	ttt	gcc	agat	gcaa	ta g	aaat	tagt	t tc	ttga	ggaa	tgt	gtca	ata	tcta	gcaatt	823
tta	cata	ggc	attt	accc	tt t	gaac	caga	a ac	ttca	ctta	tag	aaat	cta	tect	aaagac	883
aca	cagt	caa	aaat	tcaa	ga c	gggc	atgg	t gg	ctca	tggc	tgc	aatc	cca	gcac	tttagg	943
aga	caga	gga	ggag	gttg	ca g	aatt	ccac	c ac	actg	acta	tgg	actc	gaa			993

<210> 183

<211> 628

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (133) .. (333) <400> 183 ttcgagettc tettcaatac ccatatgtat etcaaagtaa tgtaatcage aaattagcag 60 tgtaaaaatg ctagataact tattctgaaa tccacttccg aaatcatttg agcagctaag 120 168 atg ttg gta cca aca ttt ctc tct tta gtg tgt gat tttgaaaaac tc Met Leu Val Pro Thr Phe Leu Ser Leu Val Cys Asp 10 ttt tcc ctt ttt gtg ctt ctc ctc ctt ggc tgt ctc tcc ttt ctc ctt 216 Phe Ser Leu Phe Val Leu Leu Leu Gly Cys Leu Ser Phe Leu Leu 20 264 ccc cct cac tta cct tgc act tcc ttc cct ctc cat ctc tgg agg ctt Pro Pro His Leu Pro Cys Thr Ser Phe Pro Leu His Leu Trp Arg Leu 35 30 ctc tct cct ttt ata tct ttt ctg tac tta ctg ctg ctt ctt agt tat 312 Leu Ser Pro Phe Ile Ser Phe Leu Tyr Leu Leu Leu Leu Ser Tyr 55 365 aaa atg aat tgt ata att taa ac tgtttaataa atggactttg gtatttggaa Lys Met Asn Cys Ile Ile * ttttcaagtc gggtactaaa acctttataa ccttagcccc ccctccttga accctctaga 425 attaacacaa tcatgttaag gtttatatag caagtccttg tgatatactt tttgttgata 485 ttgctaggca aatatgctct taacaagtaa ttgcctgagg caggaggaat gcttgagccc 545 aagaatccga gtttgcaggg agctgggatc accactggac tctattctgg acaacagagc 628 cggacactgt gtcaaaaaaa aaa <210> 184 <211> 717 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (71) .. (295) <400> 184 ctcaggetgc ctgctttttg tttgccatag ctggtcctgt tacctctcat tttcctccct 60 atg ttg cct cta ttt aag cac tca cca gtc aga atc ttc 109 qqaqqcaqtt Met Leu Pro Leu Phe Lys His Ser Pro Val Arg Ile Phe 10 cta ttc tqc tta aat acc caa cat ttq tca qta aga aat aat ttt gta 157

205

Leu Phe Cys Leu Asn Thr Gln His Leu Ser Val Arg Asn Asn Phe Val

ttt aat tgt gta tcc cca gga att ttg ccc att tct ctt tgc ctt gct

Gln Leu Lys Gln Glu Leu Arg Leu Asn Tyr Leu Thr Leu Thr Gln Phe
20
Trp Gln Arg Cys Tyr Ser Glu Met Ile Phe Phe Cys Leu Ser Lys Val
35
Phe Leu His Val Phe Gln Asp Gly Leu Glu His His Leu Glu *
50

Leu Ser Lys Val
62

<210> 322 <211> 307 <212> PRT <213> Homo sapiens

<400> 322 Met Leu Gln Val Lys Tyr Leu Leu Asn Gln Gly Ile Val Leu Pro Gln 10 Ile Val Thr Gly Val Ala Ala Asn Leu Val Asn Ala Leu Ala Asn Tyr 20 25 Leu Phe Leu His Gln Leu His Leu Gly Val Ile Gly Ser Ala Leu Ala 35 40 Asn Leu Ile Ser Gln Tyr Thr Leu Ala Leu Leu Leu Phe Leu Tyr Ile 50 55 Leu Gly Lys Lys Leu His Gln Ala Thr Trp Gly Gly Trp Ser Leu Glu 70 Cys Leu Gln Asp Cys Ala Ser Phe Leu Arg Leu Ala Ile Pro Ser Met 85 90 95 Leu Met Leu Cys Met Glu Trp Trp Ala Tyr Glu Val Gly Ser Phe Leu 100 105 110 Ser Gly Ile Leu Gly Met Val Glu Leu Gly Ala Gln Ser Ile Val Tyr 115 120 125 Glu Leu Ala Ile Ile Val Tyr Met Val Pro Ala Gly Phe Ser Val Ala 130 .135 140 Ala Ser Val Arg Val Gly Asn Ala Leu Gly Ala Gly Asp Met Glu Gln 145 150 155 Ala Arg Lys Ser Ser Thr Val Ser Leu Leu Ile Thr Val Leu Phe Ala 165 170 175 Val Ala Phe Ser Val Leu Leu Ser Cys Lys Asp His Val Gly Tyr 180 185 190 Ile Phe Thr Thr Asp Arg Asp Ile Ile Asn Leu Val Ala Gln Val Val 195 200 205 Pro Ile Tyr Ala Val Ser His Leu Phe Glu Ala Leu Ala Cys Thr Ser 215 220 Gly Gly Val Leu Arg Gly Ser Gly Asn Gln Lys Val Gly Ala Ile Val 230 235 Asn Thr Ile Gly Tyr Tyr Val Ala Gly Leu Pro Ile Gly Ile Ala Leu
245 250 255 245 250 Met Phe Ala Thr Thr Leu Gly Val Met Gly Leu Trp Ser Gly Ile Ile 260 270 265 Ile Cys Thr Val Phe Gln Ala Val Cys Phe Leu Gly Phe Ile Ile Gln 275 280 285 Leu Asn Trp Lys Lys Ala Cys Gln Gln Gly Ala Leu Lys Thr Leu Lys 295 300 Glu Phe * 305 306

<210> 323

<211> 107

<212> PRT

<213> Homo sapiens

<211> 77

<212> PRT

<213> Homo sapiens

<400> 318

<210> 319

<211> 54

<212> PRT

<213> Homo sapiens

<400> 319

<210> 320

<211> 64

<212> PRT

<213> Homo sapiens

<400> 320

<210> 321

<211> 63

<212> PRT

<213> Homo sapiens

<400> 321

Met Cys Thr Leu Phe Met His Leu Leu Phe Cys His Leu Gln Ser Ile
1 5 10 15

Leu Ser Gly Leu Pro Pro Pro Pro Ala Glu Pro Glu Pro Glu Pro Glu 70 75 Pro Glu Pro Glu Pro Ala Leu Asp Leu Ala Ala Leu Arg Ala Val Ala 85 90 Cys Asp Cys Leu Leu Gln Glu His Phe Tyr Leu Arg Arg Arg Arg 105 110 Val His Arg Tyr Glu Glu Ser Glu Val Ile Ser Leu Pro Phe Leu Asp 120 125 115 Gln Leu Val Ser Thr Leu Val Gly Leu Leu Ser Pro His Asn Pro Ala 130 135 140 Leu Ala Ala Ala Leu Asp Tyr Arg Cys Pro Val His Phe Tyr Trp 150 155 Val Arg Gly Glu Glu Ile Ile Pro Arg Gly His Arg Arg Gly Arg Ile 170 175 Asp Asp Leu Arg Tyr Gln Ile Asp Asp Lys Pro Asn Asn Gln Ile Arg 180 185 190 Ile Ser Lys Gln Leu Ala Glu Phe Val Pro Leu Asp Tyr Ser Val Pro 200 205 195 Ile Glu Ile Pro Thr Ile Lys Cys Lys Pro Asp Lys Leu Pro Leu Phe 215 220 Lys Arg Gln Tyr Glu Asn His Ile Phe Val Gly Ser Lys Thr Ala Asp 230 235 Pro Cys Cys Tyr Gly His Thr Gln Phe His Leu Leu Pro Asp Lys Leu 245 250 255 Arg Arg Glu Arg Leu Leu Arg Gln Asn Cys Ala Asp Gln Ile Glu Val 260 265 270 Val Phe Arg Ala Asn Ala Ile Ala Ser Leu Phe Ala Trp Thr Gly Ala 275 280 285 Gln Ala Met Tyr Gln Gly Phe Trp Ser Glu Ala Asp Val Thr Arg Pro 295 300 Phe Val Ser Gln Ala Val Ile Thr Asp Gly Lys Tyr Phe Ser Phe Phe 310 315 Cys Tyr Gln Leu Asn Thr Leu Ala Leu Thr Thr Gln Ala Asp Gln Asn 325 330 Asn Pro Arg Lys Asn Ile Cys Trp Gly Thr Gln Ser Lys Pro Leu Tyr 340 345 Glu Thr Ile Glu Asp Asn Asp Val Lys Gly Phe Asn Asp Asp Val Leu 360 365 Leu Gln Ile Val His Phe Leu Leu Asn Arg Pro Lys Glu Glu Lys Ser 370 375 380 Gln Leu Leu Glu Asn 385 389

<210> 317 <211> 58 <212> PRT <213> Homo sapiens

<400> 317

<210> 318

<211> 304

<212> PRT

<213> Homo sapiens

<400> 315 Met Cys Gly Arg Phe Leu Arg Arg Leu Leu Ala Glu Glu Ser Arg Arg 10 Ser Thr Pro Val Gly Arg Leu Leu Leu Pro Val Leu Leu Gly Phe Arg 25 Leu Val Leu Leu Ala Ala Ser Gly Pro Gly Val Tyr Gly Asp Glu Gln 35 40 45 Ser Glu Phe Val Cys His Thr Gln Gln Pro Gly Cys Lys Ala Ala Cys 55 60 Phe Asp Ala Phe His Pro Leu Ser Pro Leu Arg Phe Trp Val Phe Gln 65 70 75 80 Val Ile Leu Val Ala Val Pro Ser Ala Leu Tyr Met Gly Phe Thr Leu 85 90 95 Tyr His Val Ile Trp His Trp Glu Leu Ser Gly Lys Gly Lys Glu Glu 105 Glu Thr Leu Ile Gln Gly Arg Glu Gly Asn Thr Asp Val Pro Gly Ala 120 115 125 Gly Ser Leu Arg Leu Leu Trp Ala Tyr Val Ala Gln Leu Gly Ala Arg 130 135 140 Leu Val Leu Glu Gly Ala Ala Leu Gly Leu Gln Tyr His Leu Tyr Gly 150 155 Phe Gln Met Pro Ser Ser Phe Ala Cys Arg Arg Glu Pro Cys Leu Gly 165 170 175 Ser Ile Thr Cys Asn Leu Ser Arg Pro Ser Glu Lys Thr Ile Phe Leu 180 185 Lys Thr Met Phe Gly Val Ser Gly Phe Cys Leu Leu Phe Thr Phe Leu 195 200 205 Glu Leu Val Leu Leu Gly Leu Gly Arg Trp Trp Arg Thr Trp Lys His 215 220 Lys Ser Ser Ser Lys Tyr Phe Leu Thr Ser Glu Ser Thr Arg Arg 230 235 His Lys Lys Ala Thr Asp Ser Leu Pro Val Val Glu Thr Lys Glu Gln 245 250 Phe Gln Glu Ala Asp Gly Lys Leu Pro Val Pro Asn Lys Ser Gly Cys 260 265 Leu Gln Met Ser Leu Pro Leu Gln Leu Arg Asn Phe Phe Leu Ala Ser 275 280 285 Asp Trp Leu Leu Ser Ala Lys His Glu Leu Ala Lys Gly Lys Leu Leu 295 300

<210> 316 <211> 389 <212> PRT <213> Homo sapiens

<400> 316

 Met
 Thr
 Ala
 Asp
 Ser
 Lys
 Ala
 Ala
 Arg
 Leu
 Arg
 Arg
 Ile
 Glu
 Arg
 Trp

 Gln
 Ala
 Thr
 Val
 His
 Ala
 Ala
 Glu
 Asp
 Glu
 Lys
 Leu
 Arg
 Ile

 20
 25
 30
 30
 Ala
 Ala
 Ala
 Ala
 Lys
 Tyr
 Met
 Val
 Tyr
 Pro
 Gln
 Thr
 Phe

 Ala
 Leu
 Asn
 Ala
 Asp
 Arg
 Trp
 Tyr
 Gln
 Tyr
 Phe
 Thr
 Lys
 Thr
 Val
 Phe

 50
 55
 55
 60
 60
 Arg
 Trp
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala

<210> 312 <211> 65 <212> PRT <213> Homo sapiens

<210> 313 <211> 47 <212> PRT <213> Homo sapiens

<210> 314 <211> 101 <212> PRT <213> Homo sapiens

(213) HOMO Sapiens

<400> 314 Met Ser Leu Val Leu Asn Gln Ile Glu Leu Ser Glu Lys Gly Met Ala 10 Val Lys Asn Val Ala Leu Val Ile Thr Trp Ala Tyr Gly Phe Val Lys 25 Val Thr Leu Ser Leu Leu Val Phe Cys Val Tyr Cys Met Tyr Val Ile 35 40 Leu His Leu Arg Met Tyr Ile Thr His Lys Gly Ala Cys Arg His Met 55 60 Ser Ala Ser Trp Leu Ala Thr Asn Cys Leu Trp Pro Trp Gly Cys His · 75 Ser Thr Phe His Leu Glu Ile Glu Asn Asn Asn Thr Ile Ile Leu Leu 90 Glu Leu Cys Ala 100

<210> 315

```
<210> 310
<211> 278
<212> PRT
<213> Homo sapiens
```

<400> 310 Met Ala Gly Pro Glu Leu Leu Leu Asp Ser Asn Ile Arg Leu Trp Val 5 10 Val Leu Pro Ile Val Ile Ile Thr Phe Phe Val Gly Met Ile Arg His 20 25 Tyr Val Ser Ile Leu Leu Gln Ser Asp Lys Leu Thr Gln Glu Gln 35 40 Val Ser Asp Ser Gln Val Leu Ile Arg Ser Arg Val Leu Arg Glu Asn 60 Gly Lys Tyr Ile Pro Lys Gln Ser Phe Leu Thr Arg Lys Tyr Tyr Phe 70 75 Asn Asn Pro Glu Asp Gly Phe Phe Lys Lys Thr Lys Arg Lys Val Val 85 90 Pro Pro Ser Pro Met Thr Asp Pro Thr Met Leu Thr Asp Met Met Lys 105 100 110 Gly Asn Val Thr Asn Val Leu Pro Met Ile Leu Ile Gly Gly Trp Ile 115 120 125 Asn Met Thr Phe Ser Gly Phe Val Thr Thr Lys Val Pro Phe Pro Leu 135 140 Thr Leu Arg Phe Lys Pro Met Leu Gln Gln Gly Ile Glu Leu Leu Thr 150 155 160 Leu Asp Ala Ser Trp Val Ser Ser Ala Ser Trp Tyr Phe Leu Asn Val 165 170 175 Phe Gly Leu Arg Ser Ile Tyr Ser Leu Ile Leu Gly Gln Asp Asn Ala 180 185 190 Ala Asp Gln Ser Arg Met Met Gln Glu Gln Met Thr Gly Ala Ala Met 195 200 205 Ala Met Pro Ala Asp Thr Asn Lys Ala Phe Lys Thr Glu Trp Glu Ala 210 215 220 Leu Glu Leu Thr Asp His Gln Trp Ala Leu Asp Asp Val Glu Glu 225 230 235 Leu Met Gly Gln Arg Pro Pro Leu Arg Arg His Val Gln Lys Gly Ile 245 250 255 Thr Asp Leu Tyr Phe Leu Lys Thr Glu Gln Gly Leu Ala Val Ser Gly 270 260 265 Thr Trp Ser Cys Thr * 275 277

<210> 311 <211> 52 <212> PRT <213> Homo sapiens

PCT/US01/02623 WO 01/55437

<213> Homo sapiens

<400> 307 Met Pro Val Thr Pro Asp Pro Ser Ala Val Ser Leu Phe Val Thr Pro 10 Trp Pro Leu Leu Cys Leu Pro Trp Pro His Arg Val Pro Gly Gln 20 25 Ser His Pro Gly Leu His Ser Arg Ala Pro Val His Arg Leu Lys Pro 35 40 Gly Pro Pro Ala Arg Leu Gln Leu Pro Ala Ala His Arg Asn Leu Arg 50 55 His Leu Ser Ile Phe * 65 69

<210> 308 <211> 70 <212> PRT <213> Homo sapiens

<400> 308 Met Ser Trp Tyr Thr Cys Gln Cys Leu Phe Phe Leu Ser Asn Thr Leu 10 Arg Asn Gly Ala Thr Ser Cys His Trp Tyr Cys Ser Pro Asp Asp Met Gln Met Val Asp Phe Ser Ser Thr Tyr Glu Arg Ile Phe Arg Pro Phe 35 40 Val Phe Lys Ile Lys Gly Pro Asp Ser Phe Arg Ile Asp Met Ser Pro 50 55 Ile Pro Glu Asp Ile * 65 (69

<210> 309 <211> 150 <212> PRT

<213> Homo sapiens

<400> 309 Met Val Phe Leu Thr Ala Gln Leu Trp Leu Arg Asn Arg Val Thr Asp 10 Arg Tyr Phe Arg Ile Gln Glu Val Leu Lys His Ala Arg His Phe Arg 20 25 Gly Arg Lys Asn Arg Cys Tyr Arg Leu Ala Val Arg Thr Val Ile Arg 35 40 Ala Phe Val Lys Cys Thr Lys Ala Arg Tyr Leu Lys Lys Lys Asn Met 55 60 Arg Thr Leu Trp Ile Asn Arg Ile Thr Ala Ala Ser Gln Glu His Gly 70 75 Leu Lys Tyr Pro Ala Leu Ile Gly Asn Leu Val Lys Cys Gln Val Glu 85 90 Leu Asn Arg Lys Val Leu Ala Asp Leu Ala Ile Tyr Glu Pro Lys Thr 100 105 Phe Lys Ser Leu Ala Ala Leu Ala Ser Arg Arg Arg His Glu Gly Phe 120 125 Ala Ala Ala Leu Gly Asp Gly Lys Glu Pro Glu Gly Ile Phe Ser Arg 135 140 Val Val Gln Tyr His * 145 149

<210> 304 <211> 49 <212> PRT <213> Homo sapiens

<210> 305 <211> 107 <212> PRT <213> Homo sapiens

<400> 305 Met Leu Ala Thr Leu Ala Cys Met Ala Ile Pro Trp Thr His Leu Gly 1 5 10 15 Cys Ser Cys Leu Leu Ala Cys Leu Pro Phe Ser His His Leu Gly Leu 20 25 30 Ser Glu Asp Ile Ile Ser Ser Glu Lys Pro Ser Val Thr Met Leu Ser 35 40 45 Lys Ile Leu Gln His Phe Ser His Pro Leu Ser His Tyr Ser Ala Phe 55 60 Ser Glu Thr Leu Val Leu Pro Glu Thr Tyr Leu Phe Thr Cys Leu Val 65 70 75 Ser Phe Leu Pro His Tyr His Val Ser Phe Leu Arg Val Arg Asp Leu 85 90 Val Arg Asp Asn His Cys Ile Leu Arg Val 100 105 106

<210> 306 <211> 47 <212> PRT <213> Homo sapiens

<210> 307
<211> 70
<212> PRT

```
Asp Phe Leu Arg Ser Leu Asn Leu Ser Gly Val Pro Ser Gln Asp Lys
                 70 75
Thr Arg Val Glu Pro Pro Gln Tyr Met Ile Asp Leu Tyr Asn Arg Tyr
             85
                        90
Thr Ser Asp Lys Ser Thr Thr Pro Ala Ser Asn Ile Val Arg Ser Phe
         100
                  105
                                         110
Ser Met Glu Asp Ala Ile Ser Ile Thr Ala Thr Glu Asp Phe Pro Phe
   115 120
                                       125
Gln Lys His Ile Leu Leu Phe Asn Ile Ser Ile Pro Arg His Glu Gln
           135
                                  140
Ile Thr Arg Ala Glu Leu Arg Leu Tyr Val Ser Cys Gln Asn His Val
               150
                               155
Asp Pro Ser His Asp Leu Lys Gly Ser Val Val Ile Tyr Asp Val Leu
          165
                  170
Asp Gly Thr Asp Ala Trp Asp Ser Ala Thr Glu Thr Lys Thr Phe Leu
        180
                   185
Val Ser Gln Asp Ile Gln Asp Glu Gly Trp Glu Thr Leu Glu Val Ser
    195
                      200
Ser Ala Val Lys Arg Trp Val Arg Ser Asp Ser Thr Lys Ser Lys Asn
                   215
                            220
Lys Leu Glu Val Thr Val Glu Ser His Arg Lys Gly Cys Asp Thr Leu
              230 235 240
Asp Ile Ser Val Pro Pro Gly Ser Arg Asn Leu Pro Phe Phe Val Val
            245
                             250
Phe Ser Asn Asp His Ser Ser Gly Thr Lys Glu Thr Arg Leu Glu Leu
       260
                          265
Arg Glu Met Ile Ser His Glu Gln Glu Ser Val Leu Lys Lys Leu Ser
    275
                      280
                                      285
Lys Asp Gly Ser Thr Glu Ala Gly Glu Ser Ser His Glu Glu Asp Thr
                   295
                                  300
Asp Gly His Val Ala Ala Gly Ser Thr Leu Ala Arg Arg Lys Arg Ser
              310
                       315
Ala Gly Ala Gly Ser His Cys Gln Lys Thr Ser Leu Arg Val Asn Phe
            325
                            330
Glu Asp Ile Gly Trp Asp Ser Trp Ile Ile Ala Pro Lys Glu Tyr Glu
        340
                 345
Ala Tyr Glu Cys Lys Gly Gly Cys Phe Phe Pro Leu Ala Asp Asp Val
    355 360
                               365
Thr Pro Thr Lys His Ala Ile Val Gln Thr Leu Val His Leu Lys Phe
                   375
                                 380
Pro Thr Lys Val Gly Lys Ala Cys Cys Val Pro Thr Lys Leu Ser Pro
              390
                       395 400
Ile Ser Val Leu Tyr Lys Asp Asp Met Gly Val Pro Thr Leu Lys Tyr
            405
                          410
His Tyr Glu Gly Met Ser Val Ala Glu Cys Gly Cys Arg *
         420
                         425
```

<210> 303 <211> 56 <212> PRT <213> Homo sapiens

<400> 303

 Phe Ile Ile Val Thr Phe Lys Trp Ile Asp Lys Phe Ile Leu Asn Ile
 65
 70
 75
 80

 Ser Ile Leu Ile Ser Asn Thr Val Asn Val Asn Ser His Asn Pro His
 85
 90
 95

 Lys Gln Lys Phe Phe Gly Asp Leu Ser Asn Phe
 105
 107

<210> 301
<211> 228
<212> PRT
<213> Homo sapiens

<400> 301

Met Leu Val Val Lys Gly Val Cys Phe Lys Ala His Lys Asn Val Leu 10 Ala Ala Phe Ser Gln Tyr Phe Arg Asn Val Gln Gln Met His Ser Arg 20 25 Thr Lys Arg Trp Met Asn Arg Ile Arg Met Leu His His Gln Leu Ile 40 Val Ile Thr Pro Gln Val Lys Ser Gln Asn Lys Leu Leu Ile Leu Gln 60 50 55 Met Ala Ala Ala Gln Asn Cys Leu Ser Asn Ser Gln Ile Thr Ile Thr 65 70 75 Asn Ser Glu Thr Phe Thr Pro Val Asn Asp Ser Ala Pro His Pro Glu 90 95 85 Ser Asp Ala Thr Cys Gln Gln Pro Val Lys Gln Met Arg Leu Lys Lys 100 105 110 Ala Ile His Leu Lys Lys Leu Asn Phe Leu Lys Ser Gln Lys Tyr Ala 125 115 120 Glu Gln Val Ser Glu Pro Lys Ser Asp Asp Gly Leu Thr Lys Arg Leu 135 140 Glu Ser Ala Ser Lys Asn Thr Leu Glu Lys Ala Ser Ser Gln Ser Ala 150 155 Glu Glu Lys Glu Ser Glu Glu Val Val Ser Cys Glu Asn Phe Asn Cys 165 170 Ile Ser Glu Thr Glu Arg Pro Glu Asp Pro Ala Ala Leu Glu Asp Gln 180 185 190 Ser Gln Thr Leu Gln Ser Gln Arg Gln Tyr Ala Cys Glu Leu Cys Gly 195 200 205 Lys Pro Phe Lys His Pro Ser Asn Leu Glu Leu His Lys Arg Ser His 215 Thr Gly Asn * 225 ·227

<210> 302 <211> 430 <212> PRT <213> Homo sapiens

<400> 302

 Met
 Cys
 Pro
 Gly
 Ala
 Leu
 Trp
 Val
 Ala
 Leu
 Pro
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu</th

 Met Leu Gly Trp Gln Ile Trp Arg Leu Arg Pro Gln Leu Leu Ser Phe

 1
 5
 10
 15

 His Thr Gln Asp Arg Cys His Trp Ser Ile Thr Ser Gln Cys Ser Lys

 20
 25
 30

 Pro Glu Ser Gln Glu Ser Phe Leu Ser Thr Ile His Leu Leu Glu Gly
 45

 Ala Gln Glu Gly Thr Pro Thr Glu *
 55
 56

<210> 298 <211> 72 <212> PRT <213> Homo sapiens

<210> 299 <211> 59 <212> PRT <213> Homo sapiens

<210> 300 <211> 107 <212> PRT <213> Homo sapiens

<211> 47 <212> PRT <213> Homo sapiens

<210> 295 <211> 117 <212> PRT <213> Homo sapiens

<400> 295 Met Ser Phe Pro Ile His Leu Arg Phe Phe Ser Leu Phe Phe Leu His Trp Leu Leu Ser Gly Phe Ser Ser Leu Leu Pro Trp Ala Ser Ala 20 25 Phe Val Gln Tyr Ser Arg Cys Pro Glu His Thr Pro Ser Leu Cys Pro 35 40 45 45 Gly Gly Ala Asn Asn Pro Leu Leu Gln Ala Pro Thr Gln Met Leu Pro 50 55 60 Pro Leu Gly Cys Leu Leu Cys Ala Leu Pro Ala Ser Pro Ser Pro Tyr 70 75 80 65 Leu Cys Trp His Leu Leu Tyr His Ala Phe Arg Asn Leu Leu Ile Pro 85 90 95 Leu Ile Ser Gly Ala Pro Cys Gly Ser Gly Ile Pro Lys Phe Ser Lys 100 105 Cys Leu Ser Val Ser 115 117

<210> 296 <211> 38 <212> PRT <213> Homo sapiens

<210> 297 <211> 57 <212> PRT <213> Homo sapiens

<400> 297

Glu Arg Lys Ala Thr Lys Arg Val Lys Arg Lys Gln Asp Val Thr Gly 105 Asn Asp Pro His Ser Pro Ser Leu Ser Ser Gly Gly Pro Ile His Lys 115 120 125 Ala Asn Thr Ser Gly Arg Leu Lys Val Ser Asp Arg Gly Thr Ala Glu 135 140 Arg Arg Gly Gly Phe Leu Ala Arg Trp Arg Val Phe Thr Val Cys Trp 150 155 Val Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu 170 175 Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser Trp 185 Gly Gln Ala Leu Glu Glu Glu Glu Gly Ala Leu Leu Ala Gln Ala 195 205 200 Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln Pro His Leu 215 Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp Val Gly Tyr His 230 235 Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys Leu Ala Ala Glu Gly 245 250 Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro Ile Cys Thr Pro Ser Arg 270 265 Ser Gln Phe Ile Thr Gly Lys Tyr Gln Ile His Thr Gly Leu Gln His 275 280 285 Ser Ile Ile Arg Pro Thr Gln Pro Asn Cys Leu Pro Leu Asp Asn Ala 295 Thr Leu Pro Gln Lys Leu Lys Glu Val Gly Tyr Ser Thr His Met Val 310 315 Gly Lys Trp His Leu Gly Phe Tyr Arg Lys Glu Cys Met Pro Thr Arg 330 Arg Gly Phe Asp Thr Phe Phe Gly Ser Leu Leu Gly Ser Gly Asp Tyr 340 345 350 Tyr Thr His Tyr Lys Trp Asp Ser Pro Trp Asp Val Trp Leu 360

<210> 293 <211> 113 <212> PRT <213> Homo sapiens

<400> 293

Met Ala Tyr Ile Ile Gln Pro Ser Ser Thr Ser Val Ile Ser Val Lys 10 Leu Ser Leu Gly His Cys Ala Ser Ala Thr Leu Thr Ser Leu His Ile 20 25 Ser His Ile His Gln Ala Cys Ser Cys Leu Gly Ala Phe Val Leu Thr 35 40 45 Met Phe Cys Ser Glu Asn Thr Leu Pro Gln Asp Ile Leu Gln Leu Ser 55 60 Tyr Cys Ile Gln Leu Ser Ala Gln Val Leu Thr Asp Glu Thr Cys His 70 75 Pro Tyr Ser Thr Pro Cys Ser Ala Leu Leu Asn Ser Asn Cys Thr Tyr 85 90 Gly Pro Leu Asn Asn Ile His Leu Val Thr Tyr Phe Tyr Leu Ser Ala 113

<210> 294

<211> 107 <212> PRT <213> Homo sapiens

<400> 290 Met Ala Asn Glu Val Gln Asp Leu Leu Ser Pro Arg Lys Gly Gly His 10 15 5 Pro Pro Ala Val Lys Ala Gly Gly Met Arg Ile Ser Lys Lys Gln Glu 25 20 Ile Gly Thr Leu Glu Arg His Thr Lys Lys Thr Gly Phe Glu Lys Thr 45 40 35 Ser Ala Ile Ala Asn Val Ala Lys Ile Gln Thr Pro Asp Ala Leu Asn 60 55 50 Asp Ala Leu Glu Lys Leu Asn Tyr Lys Phe Pro Ala Thr Val His Met 75 70 Ala His Gln Lys Pro Thr Pro Ala Leu Glu Lys Val Val Pro Leu Lys 85 90 Arg Ile Tyr Ile Ile Gln Gln Pro Arg Lys Cys 105 107 100

<210> 291 <211> 96 <212> PRT <213> Homo sapiens

<400> 291 Met Leu Leu Trp Val Phe Leu Gln Leu Asn Tyr Lys Ile Gln Ala Ile 5 10 Pro Thr Tyr Glu Thr Val Met Thr Phe Phe Lys Ser Phe Pro Glu Asn 20 25 Cys Cys Phe Leu Asp Arg Asp Ile Gly Gln Ser Leu Arg Pro Leu Phe 4.5 35 40 Leu Cys Leu Arg Leu His Gly Ile Thr Lys Gly Lys Asp Leu Arg Cys 55 60 Cys Gly Thr Leu Thr Ser Ser Gln Ser His Gly Ser Thr Arg Leu Gln 75 70 Ser Thr Ile Thr Thr His Trp Arg Met Gly Ala Thr Trp Ser Thr * 90

<210> 292 <211> 366 <212> PRT <213> Homo sapiens

<400> 292 Met Leu Tyr Trp Val Val Ile His Phe Gly Ala Arg Gly Pro Gly Gly 5 10 Arg Arg Lys Arg Arg Thr Thr Asn Gly Glu Gly Arg Asn Ala Ala Arg 20 25 His Ala Gly Lys Glu Gly Asn Pro Arg Lys Pro Thr Gly Asn Ala Gln 45 40 35 Thr Pro Met Asp Pro Arg Lys Arg Lys Lys Gly Ser Leu Thr Pro Gly 60 55 Pro Asn Arg Arg Gln Glu Ser Glu Gly Ala Arg Arg Gln Ser Arg 75 70 Arg Gly Glu Asn Gly Ser Glu Ala Ala Gln Ser Pro Ser Arg Gly Thr 90

<400> 287 Met Phe Leu Arg Gly Ile Pro Ser Arg Arg Glu Ser Leu Lys Thr Asn 10 Thr His Arg Ser Trp Arg Trp Ala Pro His Ser Pro Leu Asp Leu Thr 20 25 Ile Arg Asn Leu Leu Cys His Leu Phe Ile Lys Leu Ser Gln Ala Gln 35 40 Lys Ala Cys Pro Asn His Met Leu Arg Ala Lys Gln Met Glu Gln Lys 55 60 Leu Pro Gln Ala Ala Gly Ser His Tyr Gly Trp Asp Glu Ala Arg Thr 70 75 Trp Ala His Thr Gly Cys Lys Ala Ala Asp Ala Trp Val Asp Pro Gly 85 90 Val Pro Glu Gln Asp Leu Pro Ala Phe Asn 100

<210> 288 <211> 114 <212> PRT <213> Homo sapiens

<400> 288 Met Ser Ser Trp Phe Leu Arg Ala Gly His Gly Leu Ile Trp Val Leu 10 Phe Phe Arg Ile Gly Gln Ala Ala Val Gly Val Ser Ala Gly Pro Gly 20 25 Gly Ser Pro Lys Ala His Leu Gly Arg Val Ala Ser Gln His Pro His 35 40 45 Gly Ala Glu Ser Arg Ala Cys Leu Leu Ala Arg Gly Leu Pro Lys Ala 55 60 Leu Ser Ser Met Leu Ala Val Asp Cys Arg Pro Arg Ser Gly Pro Leu 70 75 His Arg Ala Ala His Ile Met Ala Ala Ser Leu Ile Ser Lys Pro Val 85 90 Arg Gly Cys Leu Ser Glu Asp Asp Ile Pro Ser Pro Leu Ser Asp Ser 105 Ala Tyr 114

<210> 289 <211> 52 <212> PRT <213> Homo sapiens

<210> 290

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 435 440 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 455 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 465 470 474

<210> 285 <211> 48 <212> PRT <213> Homo sapiens

<400> 285 Met Leu Gly Ile Cys Leu Cys Ser Ile Cys Val Leu Arg Leu Cys Leu 10 15 1 5 Glu Lys Ser Lys Ile Phe Pro Pro Pro Arg Thr Ser Asp His Ser Leu 20 25 Glu Gly Ser Val Thr Pro Val Glu Asn Ala Ala Arg Ser Gly Met * 35 40 45 47

<210> 286 <211> 183 <212> PRT

<213> Homo sapiens

<400> 286 Met Asn Ser Asn Leu Pro Ala Glu Asn Leu Ser Ile Ala Val Asn Met 5 10 Thr Lys Thr Leu Pro Thr Ala Val Thr His Gly Phe Asn Ser Thr Asn 20 25 Asp Pro Pro Ser Met Ser Ile Thr Arg Leu Phe Ser Ala Leu Leu Glu 35 40 Cys Phe Gly Ile Val Leu Cys Gly Tyr Ile Ala Gly Arg Ala Asn Val 55 60 Ile Thr Ser Thr Gln Ala Lys Gly Leu Gly Asn Phe Val Ser Arg Phe 65 70 75 Ala Leu Pro Ala Leu Leu Phe Lys Asn Met Val Val Leu Asn Phe Ser 85 90 95 Asn Val Asp Trp Ala Phe Leu Tyr Ser Ile Leu Ile Ala Lys Ala Ser 100 105 Val Phe Phe Ile Val Cys Val Leu Thr Leu Leu Val Ala Ser Pro Asp 120 Ser Arg Phe Ser Lys Ala Gly Leu Phe Pro Ile Phe Ala Thr Gln Ser 135 140 Asn Asp Phe Ala Leu Gly Tyr Pro Ile Gly Lys Leu Ile Phe Ile Phe 145 150 155 160 Gln Val Phe Lys Lys Phe Asn Phe Asn Leu Phe Arg His Leu Leu Val 165 170 Thr Asp Ser Tyr Ser His Ile 180 183

<210> 287 <211> 106 <212> PRT <213> Homo sapiens

<210> 284 <211> 474 <212> PRT <213> Homo sapiens

<400> 284 Met Gly Ser Thr Ala Ile Leu Ala Leu Leu Leu Ala Val Leu Gln Gly 10 Val Cys Ala Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25 Pro Gly Glu Ser Val Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe 35 40 Ser Asp Tyr Trp Val Ala Trp Val Arg Gln Ser Pro Asp Lys Gly Leu 55 Ala Trp Met Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser 75 Pro Ser Phe Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser 85 90 Thr Ala Tyr Leu Gln Trp Ser Ser Leu Lys Asp Ser Asp Thr Ala Met 100 105 110 Tyr Tyr Cys Ala Arg Gly Ala Arg Gly Thr Ala Pro Ser Tyr His Tyr 115 120 Tyr Gly Leu Asp Val Trp Gly Arg Gly Thr Ser Val Thr Val Ser Ser 130 135 140 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 150 155 160 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 170 165 175 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 185 180 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 195 200 205 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 215 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 230 235 Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 245 250 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 260 265 270 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 275 280 285 Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 290 295 300 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 310 315 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 325 330 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 340 345 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 355 360 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu 375 380 Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 390 395 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 405 410 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 420 425

<210> 282 <211> 113 <212> PRT <213> Homo sapiens

<400> 282 Met Cys His Trp Gln Asn Ser Phe Leu Cys Gln Ser Phe Leu Thr Phe 10 Gly Ser Ile Leu Ala Leu Leu Ala Gly Lys Ala Cys Tyr Pro Glu Ser 20 25 Glu Ser Ile Arg Glu Leu Phe Met Trp Ser Leu Glu Leu Tyr Ser Leu 40 35 Pro Phe Tyr Leu Phe Phe Lys Leu Ser Pro Leu Asn Leu Pro Gly Lys 50 60 Leu Gly Leu Ile Glu Thr Leu Ser Thr Cys Leu Gly Gln Lys Leu Asp 70 75 Pro Val Leu Glu Thr Leu Gln Arg Val Arg Ser Met Ala Ser Leu Ile 90 Ala Asn Phe Phe Val Pro Phe Ile Gln Lys Lys Gly Gln Leu Ile Thr 105

<210> 283 <211> 231 <212> PRT

<213> Homo sapiens

<400> 283 Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 10 Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser 20 25 Pro Gly Lys Thr Ala Ser Ile Thr Cys Ser Gly Asp Lys Leu Gly Asp 35 40 Lys Tyr Ala Ser Trp Tyr Gln Gln Lys Ala Gly Gln Ser Pro Val Leu 50 55 60 Val Ile Tyr Arg His Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe 65 70 75 80 Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr 85 90 95 Gln Val Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser 105 Ile Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 120 125 115 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu 135 140 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro 150 155 160 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala 165 170 175 Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala 180 185 . 190 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg 200 205 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr 215 Val Ala Pro Thr Glu Cys Ser 230 231

Gly Ser Ser Ser Leu Ser Leu Thr Arg Lys Asn Ser Pro Lys Ser Gly Ser Pro Lys Ser Ser Ser Leu Leu Lys Leu Lys Ala Glu Lys Asn Ala Gln Ala Glu Met Gly Lys Asn His Ser Ser Ala Ser Phe Ser Ser Ser Ile Thr Ile Asn Thr Thr Cys Cys Ser Ser Ser Ser Ser Ser Ser Ser Leu Ser Lys Thr Ser Gly Asp Leu Lys Pro Arg Ser Ala Ser Asp Ala Gly Ile Arg Gly Thr Pro Lys Val Arg Ala Lys Lys Asp Ala Asp 565 570 Ala Asn Ala Gly Leu Thr Ser Cys Pro Arg Ala Lys Pro Ser Val Arg Pro Lys Pro Phe Leu Asn Arg Ala Glu Ser Gln Ser Gln Glu Lys Met Asp Ile Ser Thr Leu Arg Arg Gln Leu Arg Pro Thr Gly Gln Leu Arg Gly Gly Leu Lys Gly Ser Lys Ser Glu Asp Ser Glu Leu Pro Pro Gln Thr Ala Ser Glu Ala Pro Ser Glu Gly Ser Arg Arg Ser Ser Ser Asp Leu Ile Thr Leu Pro Ala Thr Thr Pro Pro Cys Pro Thr Lys Lys Glu Trp Glu Gly Pro Ala Thr Ser Tyr Met Thr Cys Ser Ala Tyr Gln Lys Val Gln Asp Ser Glu Ile Ser Phe Pro Ala Gly Val Glu Val Gln Val Leu Glu Lys Gln Glu Ser Gly Trp Trp Tyr Val Arg Phe Gly Glu Leu Glu Gly Trp Ala Pro Ser His Tyr Leu Val Leu Asp Glu Asn Glu Gln 725 730 Pro Asp Pro Ser Gly Lys Glu Leu Asp Thr Val Pro Ala Lys Gly Arg Gln Asn Glu Gly Lys Ser Asp Ser Leu Glu Lys Ile Glu Arg Arg Val Gln Ala Leu Asn Thr Val Asn Gln Ser Lys Lys Ala Thr Pro Pro Ile Pro Ser Lys Pro Pro Gly Gly Phe Gly Lys Thr Ser Gly Thr Pro Ala Val Lys Met Arg Asn Gly Val Arg Gln Val Ala Val Arg Pro Gln Ser Val Phe Val Ser Pro Pro Pro Lys Asp Asn Asn Leu Ser Cys Ala Leu Arg Arg Asn Glu Ser Leu Thr Ala Thr Asp Gly Leu Arg Gly Val Arg Arg Asn Ser Ser Phe Ser Thr Ala Arg Ser Ala Ala Ala Glu Ala Lys Gly Arg Leu Ala Glu Arg Ala Ala Ser Gln Gly Ser Asp Ser Pro Leu Leu Pro Ala Gln Arg Asn Ser Ile Pro Val Ser Pro Val Arg Pro Lys Pro Ile Glu Lys Ser Gln Phe Ile His Asn Asn Leu Lys Asp Val Tyr Val Ser Ile Ala Asp Tyr Glu Gly Asp Glu Glu Thr Ala Gly Phe Gln Glu Gly Val Ser Met Glu Val Leu Glu Arg Asn Pro Asn Gly Trp Trp Tyr Cys Gln Ile Leu Asp Gly Val Lys Pro Phe Lys Gly Trp Val Pro Ser Asn Tyr Leu Glu Lys Lys Asn * 

<213> Homo sapiens

<400> 281 Met Ile Leu Glu Gln Tyr Val Val Val Ser Asn Tyr Lys Lys Gln Glu 10 Asn Ser Glu Leu Ser Leu Gln Ala Gly Glu Val Val Asp Val Ile Glu 20 25 Lys Asn Glu Ser Gly Trp Trp Phe Val Ser Thr Ser Glu Glu Gln Gly 40 Trp Val Pro Ala Thr Tyr Leu Glu Ala Gln Asn Gly Thr Arg Asp Asp 50 55 Ser Asp Ile Asn Thr Ser Lys Thr Gly Glu Val Ser Lys Arg Arg Lys 75 70 Ala His Leu Arg Arg Leu Asp Arg Arg Trp Thr Leu Gly Gly Met Val 90 85 Asn Arg Gln His Ser Arg Glu Glu Lys Tyr Val Thr Val Gln Pro Tyr 110 100 105 Thr Ser Gln Ser Lys Asp Glu Ile Gly Phe Glu Lys Gly Val Thr Val 115 120 125 Glu Val Ile Arg Lys Asn Leu Glu Gly Trp Trp Tyr Ile Arg Tyr Leu 135 140 Gly Lys Glu Gly Trp Ala Pro Ala Ser Tyr Leu Lys Lys Ala Lys Asp 150 155 Asp Leu Pro Thr Arg Lys Lys Asn Leu Ala Gly Pro Val Glu Ile Ile 165 170 Gly Asn Ile Met Glu Ile Ser Asn Leu Leu Asn Lys Lys Ala Ser Gly 185 180 Asp Lys Glu Thr Pro Pro Ala Glu Gly Glu Gly His Glu Ala Pro Ile 195 200 Ala Lys Lys Glu Ile Ser Leu Pro Ile Leu Cys Asn Ala Ser Asn Gly 220 215 Ser Ala Val Gly Val Pro Asp Arg Thr Val Ser Arg Leu Ala Gln Gly 230 235 Ser Pro Ala Val Ala Arg Ile Ala Pro Gln Arg Ala Gln Ile Ser Ser 245 250 255 Pro Asn Leu Arg Thr Arg Pro Pro Pro Arg Arg Glu Ser Ser Leu Gly 265 270 Phe Gln Leu Pro Lys Pro Pro Glu Pro Pro Ser Val Glu Val Glu Tyr 280 Tyr Thr Ile Ala Glu Phe Gln Ser Cys Ile Ser Asp Gly Ile Ser Phe 295 300 Arg Gly Gly Gln Lys Ala Glu Val Ile Asp Lys Asn Ser Gly Gly Trp 310 315 320 Trp Tyr Val Gln Ile Gly Glu Lys Glu Gly Trp Ala Pro Ala Ser Tyr 325 330 335 Ile Asp Lys Arg Lys Lys Pro Asn Leu Ser Arg Arg Thr Ser Thr Leu 340 345 350 Thr Arg Pro Lys Val Pro Pro Pro Ala Pro Pro Ser Lys Pro Lys Glu 355 360 365 Ala Glu Glu Gly Pro Thr Gly Ala Ser Glu Ser Gln Asp Ser Pro Arg 375 380 Lys Leu Lys Tyr Glu Glu Pro Glu Tyr Asp Ile Pro Ala Phe Gly Phe 390 395 Asp Ser Glu Pro Glu Leu Ser Glu Glu Pro Val Glu Asp Arg Ala Ser 405 410 415 Gly Glu Arg Arg Pro Ala Gln Pro His Arg Pro Ser Pro Ala Ser Ser 420 425 Leu Gln Arg Ala Arg Phe Lys Val Gly Glu Ser Ser Glu Asp Val Ala 435 440 445 Leu Glu Glu Glu Thr Ile Tyr Glu Asn Glu Gly Phe Arg Pro Tyr Ala 455 460 Glu Asp Thr Leu Ser Ala Arg Gly Ser Ser Gly Asp Ser Asp Ser Pro 470 475

<210> 280 <211> 301 <212> PRT <213> Homo sapiens

<400> 280 Met Phe Ser His Leu Pro Phe Asp Cys Val Leu Leu Leu Leu Leu Leu 1 5 10 Leu Leu Thr Arg Ser Ser Glu Val Glu Tyr Arg Ala Glu Val Gly Gln 20 25 Asn Ala Tyr Leu Pro Cys Phe Tyr Thr Pro Ala Ala Pro Gly Asn Leu 35 40 45 Val Pro Val Cys Trp Gly Lys Gly Ala Cys Pro Val Phe Glu Cys Gly 55 60 Asn Val Val Leu Arg Thr Asp Glu Arg Asp Val Asn Tyr Trp Thr Ser 70 75 Arg Tyr Trp Leu Asn Gly Asp Phe Arg Lys Gly Asp Val Ser Leu Thr 85 90 95 Ile Gly Asn Val Thr Leu Ala Asp Ser Gly Ile Tyr Cys Cys Arg Ile 100 105 Gln Ile Pro Gly Ile Met Asn Asp Glu Lys Phe Asn Leu Lys Leu Val 115 120 125 Ile Lys Pro Ala Lys Val Thr Pro Ala Pro Thr Leu Gln Arg Asp Phe 130 135 140 Thr Ala Ala Phe Pro Arg Met Leu Thr Thr Arg Gly His Gly Pro Ala 145 150 155 160 Glu Thr Gln Thr Leu Gly Ser Leu Pro Asp Ile Asn Leu Thr Gln Ile 165 170 175 Ser Thr Leu Ala Asn Glu Leu Arg Asp Ser Arg Leu Ala Asn Asp Leu 180 185 Arg Asp Ser Gly Ala Thr Ile Arg Ile Gly Ile Tyr Ile Gly Ala Gly 195 200 Ile Cys Ala Gly Leu Ala Leu Ala Leu Ile Phe Gly Ala Leu Ile Phe 210 215 220 Lys Trp Tyr Ser His Ser Lys Glu Lys Ile Gln Asn Leu Ser Leu Ile 230 235 240 Ser Leu Ala Asn Leu Pro Pro Ser Gly Leu Ala Asn Ala Val Ala Glu 245 250 255 Gly Ile Arg Ser Glu Glu Asn Ile Tyr Thr Ile Glu Glu Asn Val Tyr 260 265 Glu Val Glu Glu Pro Asn Glu Tyr Tyr Cys Tyr Val Ser Ser Arg Gln 280 275 285 Gln Pro Ser Gln Pro Leu Gly Cys Arg Phe Ala Met Pro 295 300 301

<210> 281 <211> 969 <212> PRT

<213> Homo sapiens

<400> 278 Met Glu Ser Ser Cys Leu Asp Ile Gly Ser Val Pro Met Gly Thr Ser 10 Cys Leu Asp Ser Trp Pro Val His Ile Ile Ser Cys Leu Asp Ser Gly 20 25 Ser Val Arg Ile Lys Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met 35 40 Gly Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met Gly Thr Ser Cys 55 Leu Gly Ser Glu Pro Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu 70 75 Ser Val His Met Gly Thr Ser Cys Leu Gly Ser Glu Ser Val His Met 85 90 Gly Thr Ser Cys Leu Ala Ser Gly Pro Val His Met Gly Thr Ser Cys 100 105 110 Leu Gly Ser Gly Pro Val His Met Gly Thr Ser Cys Leu Gly Ser Gly 115 120 125 Ser Glu His Met Gly Thr Ser Arg Leu Asp Ser Gly Pro Val His Val 130 135 140 Gly Thr Ser Cys Leu Gly Ser Gly Ser Glu His Val Gly Thr Ser Cys 150 155 Leu Gly Ser Glu Tyr Val Tyr Thr Gly Thr Ser Arg Leu Asp Ser Gly 165 170 175 Pro Val His Met Gly Thr Ser Cys Leu Asp Ser Ala Ser Glu His Met 190 180 185 Gly Thr Ser Ser Leu Asp Ser Ala Ser Glu Leu Val Asp Ile Thr Cys 195 200 205 Leu Ser Lys Val Ile Thr Pro Leu Gly Phe Trp Lys Asn His Gly Asp 210 215 220 Phe Cys Pro Gly Lys Arg Tyr Asp Ala Ile Pro Leu 230 235 236

<210> 279 <211> 224 <212> PRT <213> Homo sapiens

<400> 279 Met Glu Ser Ser Cys Leu Asp Ile Gly Ser Val His Met Gly Thr Ser 1 5 10 15 Cys Leu Asp Ser Trp Pro Val His Ile Ile Ser Cys Leu Asp Ser Gly 20 25 Ser Val Arg Ile Lys Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met 40 Gly Thr Ser Cys Leu Asp Ser Gly Pro Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu Pro Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu 70 75 Ser Val Tyr Met Gly Thr Ser Cys Leu Gly Ser Glu Ser Val Tyr Met 85 90 95 Gly Thr Ser Cys Leu Ala Ser Gly Pro Val His Met Gly Thr Ser Cys 105 100 Leu Gly Ser Gly Ser Glu His Met Gly Thr Ser Arg Leu Asp Ser Gly 115 120 125 Pro Val His Val Gly Thr Ser Cys Leu Gly Ser Gly Ser Glu His Met 130 135 140 Gly Thr Ser Cys Leu Gly Ser Glu Ser Val Tyr Thr Gly Thr Ser Arg

Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala Val 180 185 190 Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu Ile 195 200 205 Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg Gly 215 220 His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr . 230 235 Ser Gln Pro Ser Ala Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser 250 Phe Leu Val 259

<210> 277 <211> 273 <212> PRT <213> Homo sapiens

<400> 277 Met Met Ile His Gly Phe Gln Ser Ser His Arg Asp Phe Cys Phe Gly 10 Pro Trp Lys Leu Thr Ala Ser Lys Thr His Ile Met Lys Ser Ala Asp Val Glu Lys Leu Ala Asp Glu Leu His Met Pro Ser Leu Pro Glu Met 35 40 45 Met Phe Gly Asp Asn Val Leu Arg Ile Gln His Gly Ser Gly Phe Gly 55 60 Ile Glu Phe Asn Ala Thr Asp Ala Leu Arg Cys Val Asn Asn Tyr Gln 70 75 Gly Met Leu Lys Val Ala Cys Ala Glu Glu Trp Gln Glu Ser Arg Thr 85 90 Glu Gly Glu His Ser Lys Glu Val Ile Lys Pro Tyr Asp Trp Thr Tyr 105 100 Thr Thr Asp Tyr Lys Gly Thr Leu Leu Gly Glu Ser Leu Lys Leu Lys 120 Val Val Pro Thr Thr Asp His Ile Asp Thr Glu Lys Leu Lys Ala Arg 135 140 Glu Gln Ile Lys Phe Phe Glu Glu Val Leu Leu Phe Glu Asp Glu Leu 150 155 His Asp His Gly Val Ser Ser Leu Ser Val Lys Ile Arg Val Met Pro 165 170 175 Ser Ser Phe Phe Leu Leu Leu Arg Phe Phe Leu Arg Ile Asp Gly Val 180 185 Leu Ile Arg Met Asn Asp Thr Arg Leu Tyr His Glu Ala Asp Lys Thr 200 205 Tyr Met Leu Arg Glu Tyr Thr Ser Arg Glu Ser Lys Ile Ser Ser Leu 215 220 Met His Val Pro Pro Ser Leu Phe Thr Glu Pro Asn Glu Ile Ser Gln 230 235 Tyr Leu Pro Ile Lys Glu Ala Val Cys Glu Lys Leu Ile Phe Pro Glu 245 250 Arg Ile Asp Pro Asn Pro Ala Asp Ser Gln Lys Ser Thr Gln Val Glu 265 270 272

<210> 278 <211> 236 <212> PRT

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe 55 Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe 85 90 Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 100 105 110 Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val 125 115 120 Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 140 130 135 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 150 155 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn 170 165 Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 190 185 180 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 200 205 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 215 220 Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 230 235 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 245 250 Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 260 265 270 Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 280 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 295

<210> 276 <211> 259 <212> PRT <213> Homo sapiens

<400> 276 Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile 10 Leu Ala Ile Leu Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr 25 Ser Gly Phe Ser Ser Pro Arg Ala Ala Ser Tyr Glu Asp Arg Val Thr 40 Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr 60 Gly Thr Tyr Thr Cys Met Val Phe Glu Glu Gly Gly Asn Ser Tyr Gly 65 70 75 Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr 90 85 Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu Thr 100 105 110 Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe Lys 115 120 125 Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser 140 135 Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe Asp 150 155 Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn 170 165

Asp Asp Pro Thr Leu Ala Ile Ala Leu Ala Ala Asn Ala Trp Ala Phe 330 325 Val Leu Phe Tyr Val Ile Pro Glu Val Ser Gln Val Thr Lys Ser Ser 340 345 350 Pro Glu Gln Ser Tyr Gln Gly Asp Met Tyr Pro Thr Arg Gly Val Gly 360 Tyr Glu Thr Ile Leu Lys Glu Gln Lys Gly Gln Ser Met Phe Val Glu 370 375 380 Asn Lys Ala Phe Ser Met Asp Glu Pro Val Ala Ala Lys Arg Pro Val 390 395 Ser Pro Tyr Ser Gly Tyr Asn Gly Gln Leu Leu Thr Ser Val Tyr Gln 410 405 415 Pro Thr Glu Met Ala Leu Met His Lys Val Pro Ser Glu Gly Ala Tyr 420 425 430 Asp Ile Ile Leu Pro Arg Ala Thr Ala Asn Ser Gln Val Met Gly Ser 440 Ala Asn Ser Thr Leu Arg Ala Glu Asp Met Tyr Ser Ala Gln Ser His 455 460 Gln Ala Ala Thr Pro Pro Lys Asp Gly Lys Asn Ser Gln Val Phe Arg 465 470 475 Asn Pro Tyr Val Trp Asp 485 486

<210> 274 <211> 118 <212> PRT <213> Homo sapiens

<400> 274

Met Val Lys Thr Asp Ala His Leu Lys Asn Pro Pro Phe Ala Pro Phe Arg Val Tyr Thr Leu Thr Leu Ser Leu Leu Leu Lys Leu Ser His Tyr 25 Ser Cys Leu Trp Val Lys Lys Asp Phe Lys Asp Ser Ser Phe Tyr Asn 35 45 40 Ser Asn Asn Asn Ser Asn Ser Asn His Cys Lys Ser Leu Leu Ser Thr 55 60 His Tyr Met Pro Gly Ala Val Ile Ser Asn Leu Cys Leu Ile Ser Cys 70 75 Lys Val Ser Ser Pro Ile Lys Gln Thr His Gly Ile Ser Met Leu 85 90 Gln Met Lys Arg Leu Lys His Thr Leu Ala Arg Leu Ala Pro Gly Thr 100 105 His Gly Gly Ser Gln Asn 115 118

<210> 275 <211> 299 <212> PRT <213> Homo sapiens

<400> 275

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile 1  $\phantom{0}$  5  $\phantom{0}$  10  $\phantom{0}$  10  $\phantom{0}$  15  $\phantom{0}$  Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His 20  $\phantom{0}$  25  $\phantom{0}$  30  $\phantom{0}$  Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu 35  $\phantom{0}$  45

<400> 272 Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro Phe Leu Leu 5 10 15 Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu Ala Ser Thr Asp 20 25 Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu Ala Ile Ile Phe Thr 40 Leu Ile Val Gly Lys Ala Leu Gly Glu Asp Ile Gly Gly Lys Arg Ala 55 Val Ala Gly Met Val Leu Thr Val Ile Gly Ile Ser Leu Cys Ile Thr 65 70 75 Ser Ser Val Ser Lys Thr Gln Gly Gln Gln Ser Thr Leu 85 90

<210> 273 <211> 486 <212> PRT <213> Homo sapiens

<400> 273

Met Arg Gly Arg Gly Ser Gln Gln Gln Gln Pro Thr Arg Arg Gln Gly
1 5 10 15 Gln Lys Leu Pro Ser Pro Ser Pro Ala Gly Lys Tyr Glu Ser Ala Gln 25 Pro Gly Gly Thr Gln Pro Glu Pro Gly Leu Gly Ala Arg Met Ala Ile 40 His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe Leu Phe Pro 55 60 Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser Gln Gly Leu 75 70 Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala Trp Gly Ile 85 90 95 Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr Phe Val Leu 100 105 110 Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp Thr Lys Lys 115 120 125 Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly Thr Leu Gly 135 140 Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp Phe Ser Thr 150 155 160 Cys Ala Ser Arg Arg Phe Leu Phe Gly Val Leu Phe Ala Ile Cys Phe 165 170 175 Ser Cys Leu Ala Ala His Val Phe Ala Leu Asn Phe Leu Ala Arg Lys 180 185 190 Asn His Gly Pro Arg Gly Trp Val Ile Phe Thr Val Ala Leu Leu 195 200 205 Thr Leu Val Glu Val Ile Ile Asn Thr Glu Trp Leu Ile Ile Thr Leu 215 220 Val Arg Gly Ser Gly Glu Gly Gly Pro Gln Gly Asn Ser Ser Ala Gly 230 235 240 Trp Ala Val Ala Ser Pro Cys Ala Ile Ala Asn Met Asp Phe Val Met 245 250 255 Ala Leu Ile Tyr Val Met Leu Leu Leu Leu Gly Ala Phe Leu Gly Ala 260 265 270 Trp Pro Ala Leu Cys Gly Arg Tyr Lys Arg Trp Arg Lys His Gly Val 285 275 280 Phe Val Leu Leu Thr Thr Ala Thr Ser Val Ala Ile Trp Val Val Trp 295 300 Ile Val Met Tyr Thr Tyr Gly Asn Lys Gln His Asn Ser Pro Thr Trp

Ile Gln Glu Ala Arg Ala Asp Leu Ala Arg Arg Gly Leu Arg Phe * 115 120 125 127

<210> 270 <211> 132 <212> PRT <213> Homo sapiens

<400> 270 Met Lys Phe Arg Ile Val Thr Cys Gln Ser Asp Trp Arg Glu Leu Trp 10 1 Val Asp Asp Ala Ile Trp Arg Leu Leu Phe Ser Met Ile Leu Phe Val 25 20 Ile Met Val Leu Trp Arg Pro Ser Ala Asn Asn Gln Arg Phe Ala Phe 40 Ser Pro Leu Ser Glu Glu Glu Glu Glu Asp Glu Gln Lys Glu Pro Met 50 55 60 Leu Lys Glu Ser Phe Glu Gly Met Lys Met Arg Ser Thr Lys Gln Glu 65 70 75 Pro Asn Gly Asn Ser Lys Val Asn Lys Ala Gln Glu Asp Asp Leu Lys 85 90 Trp Val Glu Glu Asn Val Pro Ser Ser Val Thr Asp Val Ala Leu Pro 100 105 110 Ala Leu Leu Asp Ser Asp Glu Glu Arg Met Ile Thr His Phe Glu Arg 120 115 Ser Lys Met Glu 130 132

<210> 271 <211> 118 <212> PRT <213> Homo sapiens

<400> 271 Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro Phe Leu Leu 1 5 10 Asn Gln Gly Gly Ser Leu Leu Tyr Tyr Leu Thr Leu Ala Ser Thr Asp 20 Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu Ala Ile Ile Phe Thr 40 45 35 Leu Tle Val Gly Lys Ala Leu Gly Glu Asp Ile Gly Gly Lys Arg Ala · 50 55 60 Val Ala Gly Met Val Leu Thr Val Ile Gly Ile Ser Leu Cys Ile Thr 70 75 Ser Ser Val Pro Trp Thr Ala Glu Leu Gln Leu His Gly Lys Gly Gln 90 Leu Gln Thr Leu Ser Gln Lys Cys Lys Arg Glu Ala Ser Gly Thr Gln 100 105 Ser Glu Arg Phe Gly * 115 117

<210> 272 <211> 94 <212> PRT <213> Homo sapiens

Gly Ile Arg Leu His Cys Ala Arg Gly Asn Val Leu Gly Asn Thr His 85 90 Val Val Glu Ser Gln Ser Gly Ser Trp Gly Glu Trp Ser Glu Pro Leu 105 Trp Cys Arg Gly Gly Ala Tyr Leu Val Ala Phe Ser Leu Arg Val Glu 125 120 115 Ala Pro Thr Thr Leu Gly Asp Asn Thr Ala Ala Asn Asn Val Arg Phe 130 135 140 Arg Cys Ser Asp Gly Glu Glu Leu Gln Gly Pro Gly Leu Ser Trp Gly 150 155 Asp Phe Gly Asp Trp Ser Asp His Cys Pro Lys Gly Ala Cys Gly Leu 170 175 Gln Thr Lys Ile Gln Gly Pro Arg Gly Leu Gly Asp Asp Thr Ala Leu 185 190 180 Asn Asp Ala Arg Leu Phe Cys Cys Arg Ser 202 200 195

<210> 268 <211> 112 <212> PRT <213> Homo sapiens

<400> 268 Met Arg Gln Val Ala Arg Val Ile Val Phe Leu Thr Leu Ser Thr Leu 10 15 Ser Leu Ala Lys Thr Thr Gln Pro Ile Ser Met Asp Ser Tyr Glu Gly 25 30 20 Gln Glu Val Asn Ile Thr Cys Ser His Asn Asn Ile Ala Thr Asn Asp 45 40 35 Tyr Ile Thr Trp Tyr Gln Gln Phe Pro Ser Gln Gly Pro Arg Phe Ile 55 Ile Gln Gly Tyr Lys Thr Lys Val Thr Asn Glu Val Ala Ser Leu Phe 65 70 75 80 Ile Pro Ala Asp Arg Lys Ser Ser Thr Leu Ser Leu Pro Arg Val Ser 85 90 Leu Ser Asp Thr Ala Val Tyr Tyr Cys Leu Val Gly Asp Thr Gln * 105

<210> 269 <211> 128 <212> PRT <213> Homo sapiens

<400> 269 Met Met Lys Ile Pro His Gln Thr Gln Lys Lys Arg Ser Leu Glu Asp 10 Pro Asn Ser Arg Pro Arg Arg Pro Arg Gly Glu Gly Glu Thr Trp Gly 20 25 Arg Val Thr Met Thr Lys Leu Ala Gln Trp Leu Trp Gly Leu Ala Ile 45 40 Leu Gly Ser Thr Trp Val Ala Leu Thr Thr Gly Ala Leu Gly Leu Glu 55 Leu Pro Leu Ser Cys Gln Glu Val Leu Trp Pro Leu Pro Ala Tyr Leu 75 70 Leu Val Ser Ala Gly Cys Tyr Ala Leu Gly Thr Val Gly Tyr Arg Val 90 85 Ala Thr Phe His Asp Cys Glu Asp Ala Ala Arg Glu Leu Gln Ser Gln 105 100

Val Ser Thr Phe Ile Lys Cys Leu Ala Leu Lys Ser Ile Ile Lys Arg
35 40 45

Gln Arg Ser Glu Ile Asn Arg Gly Phe Leu Ala Ile Tyr His Ala Leu
50 55 60

Arg Asn Gln Val Thr Arg Cys Gly Gly Leu *

<210> 265 <211> 71 <212> PRT <213> Homo sapiens

<400> 265

<210> 266 <211> 53 <212> PRT <213> Homo sapiens

<400> 266

 Met Phe Thr His Trp Leu Gly Pro Pro Val Tyr Ile Lys Gln Phe Ile
 1
 15

 Val Met Ile Val Ser Ile Leu Thr Leu Phe Pro Val Leu Gln Gly Met
 20
 25
 30

 Leu Arg Asn Phe Leu Tyr Leu Asn Ile Met Phe Val Val Ala Leu Leu
 35
 40
 45

 Lys Ala Ile Leu *
 50
 52
 50
 52

<210> 267 <211> 203 <212> PRT <213> Homo sapiens

<400> 267

Met Glu Arg Gly Ala Gly Ala Lys Leu Leu Pro Leu Leu Leu Leu Leu Leu Leu 15

Arg Ala Thr Gly Phe Thr Cys Ala Gln Ala Asp Gly Arg Asn Gly Tyr
20

Thr Ala Val Ile Glu Val Thr Ser Gly Gly Pro Trp Gly Asp Trp Ala
35

Trp Pro Glu Met Cys Pro Asp Gly Phe Phe Ala Ser Gly Pro Trp Gly Asp Ceu
50

Lys Val Glu Pro Pro Gln Gly Ile Pro Gly Asp Asp Thr Ala Leu Asn
65

<210> 262 <211> 65 <212> PRT <213> Homo sapiens

<210> 263 <211> 71 <212> PRT <213> Homo sapiens

<210> 264 <211> 75 <212> PRT <213> Homo sapiens

<210> 259 <211> 65 <212> PRT <213> Homo sapiens

<400> 259

 Met
 Lys
 Pro
 Tyr
 Cys
 Met
 Tyr
 Pro
 Phe
 Leu
 Ser
 Gly
 Leu
 Ser
 15

 Leu
 Leu
 Phe
 Trp
 Leu
 Glu
 Ser
 Leu
 Met
 Leu
 Cys
 Val
 Gln
 Met
 Val

 Leu
 Phe
 Leu
 Met
 Leu
 Asp
 Tyr
 Arg
 Ile
 Tyr
 Cys
 Ile
 Lys

 Je
 Tyr
 Val
 Ser
 Ile
 Leu
 Met
 Ser
 Ile
 Tyr
 Cys
 Ile
 Lys

 Je
 Tyr
 Val
 Leu
 Leu
 Met
 Ser
 Ile
 Tyr
 Cys
 Ile
 Lys

 Je
 Tyr
 Val
 Leu
 Met
 Ser
 Ile
 Tyr
 Lys
 Lys

 Je
 Tyr
 Val
 Leu
 Met
 Ser
 Ile
 Tyr
 Lys
 Lys
 Lys

 Je
 Tyr</t

<210> 260 <211> 65 <212> PRT <213> Homo sapiens

<210> 261 <211> 193 <212> PRT <213> Homo sapiens

<400> 261 Met Leu Met Tyr Arg Gly Glu Ala Leu Glu Asp Phe Thr Gly Pro Asp 10 Cys Arg Phe Val Asn Phe Lys Lys Gly Asp Pro Val Tyr Val Tyr 20 25 Lys Leu Ala Arg Gly Trp Pro Glu Val Trp Ala Gly Ser Val Gly Arg 35 40 Thr Phe Gly Tyr Phe Pro Lys Asp Leu Ile Gln Val Val His Glu Tyr 55 60 Thr Lys Glu Glu Leu Gln Val Pro Thr Asp Glu Thr Asp Phe Val Cys 70 75 Phe Asp Gly Gly Arg Asp Asp Phe His Asn Tyr Asn Val Glu Glu Leu 85 90 Leu Gly Phe Leu Glu Leu Tyr Asn Ser Ala Ala Thr Asp Ser Glu Lys 100 105 Ala Val Glu Gln Thr Leu Gln Asp Met Glu Lys Asn Pro Glu Leu Ser 120

Leu Lys Ala His Val Gln Ile Val Leu Tyr Trp Val Phe Leu Trp Ser

35 40 45

Arg Gly Asn Asn Phe Leu Thr

50 55

<210> 256 <211> 52 <212> PRT <213> Homo sapiens

<210> 257 <211> 55 <212> PRT <213> Homo sapiens

<210> 258 <211> 86 <212> PRT <213> Homo sapiens

<400> 258 Met Trp Pro Gly Cys Gln Val Leu Arg Ala Gly Leu Ser Pro Ala Gly 10 Arg Ala Arg Phe Pro Pro Asp Thr Tyr Leu Pro Ser Pro Arg Gln Gly 20 25 30 Gly Asn Pro Ala Cys Arg Cys Val Thr Ala Met Asn Ala Val Leu Gln 35 40 45 Val Leu Pro His Pro Ala Pro Asp Thr Asn Arg Ala Asp Glu Gly Cys 55 60 Gly Asp Gln Glu Gly Ser Arg Glu Leu Pro Pro Gly Gly Ala Ala Leu Gly His Arg Gly Gln 85

<213> Homo sapiens

<400> 252 Met Glu Thr Asp Pro Ala Ser Trp Pro Gln Pro Glu Pro Ala Gln Leu 10 Pro Gly Leu Tyr Ala Asp Phe Arg Ser Arg Thr Pro Arg Asp Ala Pro 20 25 30 Ala Gly Cys Pro Arg Trp Gly Trp Arg Cys Leu Ser Ala Ala Gln Pro 40 45 Ser Thr Gly Arg Thr Gly Glu Gly Ala Gly Pro Pro Gly Leu Cys Ala 55 Asp Gln Pro Cys Gly Ala Ala Ala Gly Gly Gly Ala Glu Lys Gln 70 Pro Ala Arg Ala Cys Gly Gly Asp Cys Trp Gly Gly Pro Met Pro His 85 90 Gly Arg Glu Pro Glu Ser Gly Ser Ala Ala Lys Val Ser Val Cys Pro Gly Glu Glu * 115

<210> 253 <211> 27 <212> PRT

<213> Homo sapiens

<210> 254 <211> 44 <212> PRT <213> Homo sapiens

<210> 255 <211> 55 <212> PRT <213> Homo sapiens

 $^{<400>}$  255 Met Tyr Met Asn Thr Cys Leu Tyr Leu His Val Tyr Val Leu Thr Cys 1  5  5  10  6  10  6  15  5 Ser Gly Cys Asn Val Asp Met Cys Ser Arg Leu Phe Leu Ser Thr Lys  20 

Gly Glu Ser Val Thr Ala Met Glu Leu Glu Phe Lys Leu Leu Ala Ser 1635 1640 1645 Ser Lys Ala His Thr Ser Arg Phe Ile Ser Ala Asn Leu Pro Cys Asn 1650 1655 1660 Lys Phe Lys Asn Arg Leu Val Asn Ile Met Pro Tyr Glu Leu Thr Arg 1665 1670 1675 1680 Val Cys Leu Gln Pro Ile Arg Gly Val Glu Gly Ser Asp Tyr Ile Asn 1685 1690 1695 Ala Ser Phe Leu Asp Gly Tyr Arg Gln Gln Lys Ala Tyr Ile Ala Thr 1700 1705 1710 Gln Gly Pro Leu Ala Glu Ser Thr Glu Asp Phe Trp Arg Met Leu Trp 1715 1720 1725 Glu His Asn Ser Thr Ile Ile Val Met Leu Thr Lys Leu Arg Glu Met 1730 1735 1740 Gly Arg Glu Lys Cys His Gln Tyr Trp Pro Ala Glu Arg Ser Ala Arg 1745 1750 1755 1760 Tyr Gln Tyr Phe Val Val Asp Pro Met Ala Glu Tyr Asn Met Pro Gln 1765 1770 1775 Tyr Ile Leu Arg Glu Phe Lys Val Thr Asp Ala Arg Asp Gly Gln Ser 1780 1785 1790 Arg Thr Ile Arg Gln Phe Gln Phe Thr Asp Trp Pro Glu Gln Gly Val 1795 1800 1805 Pro Lys Thr Gly Glu Gly Phe Ile Asp Phe Ile Gly Gln Val His Lys 1810 1815 1820 Thr Lys Glu Gln Phe Gly Gln Asp Gly Pro Ile Thr Val His Cys Ser 1825 1830 1835 1840 Ala Gly Val Gly Arg Thr Gly Val Phe Ile Thr Leu Ser Ile Val Leu 1845 1850 1855 Glu Arg Met Arg Tyr Glu Gly Val Val Asp Met Phe Gln Thr Val Lys 1860 1865 1870 Thr Leu Arg Thr Gln Arg Pro Ala Met Val Gln Thr Glu Asp Gln Tyr 1875 1880 1885 Gln Leu Cys Tyr Arg Ala Ala Leu Glu Tyr Leu Gly Ser Phe Asp His 1890 1895 1900 Tyr Ala Thr 1905 1907

<210> 251

<211> 94

<212> PRT

<213> Homo sapiens

<400> 251

Met Ile Trp Ile Tyr Phe Ala Phe Ile Phe Gln Arg Leu His Leu Ile 1 5 10 Pro Gly Lys Ser Ser Ala Arg Gln Val Ser Gly Phe Ser Leu Leu Ser 20 25 30 Phe Asn Pro Ser Asn Thr Ile Phe Val Lys Leu Asp Trp Trp Cys Phe 35 40 45 Ile Gln Leu Ile Tyr Ser Ala Tyr Leu Phe Glu Lys Arg Leu Leu Glu 50 55 60 Ile Asp Asp Val Phe Val Pro Val Ile Leu Lys Val Val Gly Ala Arg 70 - 75 Ile Glu Phe His Ser Gly Ile Gly Phe Gly Ser Gly Leu 85 90

<210> 252

<211> 116

<212> PRT

Pro His Val Gln Asp Pro Ser Leu Val Arg Trp Phe Tyr Ile Val Val 1125 1130 Val Pro Ile Asp Arg Val Gly Gly Ser Met Leu Thr Pro Arg Trp Ser 1140 1145 1150 Thr Pro Glu Glu Leu Glu Leu Asp Glu Leu Leu Glu Ala Ile Glu Gln 1155 1160 1165 Gly Glu Glu Gln Arg Arg Arg Arg Gln Ala Glu Arg Leu Lys 1175 1180 Pro Tyr Val Ala Ala Gln Leu Asp Val Leu Pro Glu Thr Phe Thr Leu 1190 1195 1200 Gly Asp Lys Lys Asn Tyr Arg Gly Phe Tyr Asn Arg Pro Leu Ser Pro 1205 1210 1215 Asp Leu Ser Tyr Gln Cys Phe Val Leu Ala Ser Leu Lys Glu Pro Met 1225 1220 1230 Asp Gln Lys Arg Tyr Ala Ser Ser Pro Tyr Ser Asp Glu Ile Val Val 1235 1240 1245 Gln Val Thr Pro Ala Gln Gln Glu Glu Pro Glu Met Leu Trp Val 1250 1255 1260 Thr Gly Pro Val Leu Ala Val Ile Leu Ile Ile Leu Ile Val Ile Ala 1270 1275 1280 Ile Leu Leu Phe Lys Arg Lys Arg Thr His Ser Pro Ser Ser Lys Asp 1285 1290 1295 Glu Gln Ser Ile Gly Leu Lys Asp Ser Leu Leu Ala His Ser Ser Asp 1300 1305 Pro Val Glu Met Arg Arg Leu Asn Tyr Gln Thr Pro Gly Met Arg Asp 1315 1320 1325 His Pro Pro Ile Pro Ile Thr Asp Leu Ala Asp Asn Ile Glu Arg Leu 1335 1340 Lys Ala Asn Asp Gly Leu Lys Phe Ser Gln Glu Tyr Glu Ser Ile Asp 1350 1355 Pro Gly Gln Gln Phe Thr Trp Glu Asn Ser Asn Leu Glu Val Asn Lys 1365 1370 1375 Pro Lys Asn Arg Tyr Ala Asn Val Ile Ala Tyr Asp His Ser Arg Val 1380 1385 1390 Ile Leu Thr Ser Ile Asp Gly Val Pro Gly Ser Asp Tyr Ile Asn Ala 1395 1400 1405 Asn Tyr Ile Asp Gly Tyr Arg Lys Gln Asn Ala Tyr Ile Ala Thr Gln 1415 1420 Gly Pro Leu Pro Glu Thr Met Gly Asp Phe Trp Arg Met Val Trp Glu 1425 1430 1435 1440 Gln Arg Thr Ala Thr Val Val Met Met Thr Arg Leu Glu Glu Lys Ser 1450 1445 1455 Arg Val Lys Cys Asp Gln Tyr Trp Pro Ala Arg Gly Thr Glu Thr Cys 1460 1465 1470 Gly Leu Ile Gln Val Thr Leu Leu Asp Thr Val Glu Leu Ala Thr Tyr 1475 1480 1485 Thr Val Arg Thr Phe Ala Leu His Lys Ser Gly Ser Ser Glu Lys Arg 1495 1500 Glu Leu Arg Gln Phe Gln Phe Met Ala Trp Pro Asp His Gly Val Pro 1510 1515 Glu Tyr Pro Thr Pro Ile Leu Ala Phe Leu Arg Arg Val Lys Ala Cys 1525 1530 Asn Pro Leu Asp Ala Gly Pro Met Val Val His Cys Ser Ala Gly Val 1540 1545 1550 Gly Arg Thr Gly Cys Phe Ile Val Ile Asp Ala Met Leu Glu Arg Met 1560 1565 Lys His Glu Lys Thr Val Asp Ile Tyr Gly His Val Thr Cys Met Arg 1575 1580 Ser Gln Arg Asn Tyr Met Val Gln Thr Glu Asp Gln Tyr Val Phe Ile 1585 1590 1595 His Glu Ala Leu Leu Glu Ala Ala Thr Cys Gly His Thr Glu Val Pro 1605 1610 1615 Ala Arg Asn Leu Tyr Ala His Ile Gln Lys Leu Gly Gln Val Pro Pro 1620 1625

Pro Pro Gln Lys Val Met Cys Val Ser Met Gly Ser Thr Thr Val Arg 615 Val Ser Trp Val Pro Pro Ala Asp Ser Arg Asn Gly Val Ile Thr 630 635 Gln Tyr Ser Val Ala Tyr Glu Ala Val Asp Gly Glu Asp Arg Gly Arg 645 650 His Val Val Asp Gly Ile Ser Arg Glu His Ser Ser Trp Asp Leu Val Gly Leu Glu Lys Trp Thr Glu Tyr Arg Val Trp Val Arg Ala His Thr 680 685 Asp Val Gly Pro Gly Pro Glu Ser Ser Pro Val Leu Val Arg Thr Asp 700 695 Glu Asp Val Pro Ser Gly Pro Pro Arg Lys Val Glu Val Glu Pro Leu . 715 710 Asn Ser Thr Ala Val His Val Tyr Trp Lys Leu Pro Val Pro Ser Lys 730 725 Gln His Gly Gln Ile Arg Gly Tyr Gln Val Thr Tyr Val Arg Leu Glu 740 745 Asn Gly Glu Pro Arg Gly Leu Pro Ile Ile Gln Asp Val Met Leu Ala 765 755 760 Glu Ala Gln Trp Arg Pro Glu Glu Ser Glu Asp Tyr Glu Thr Thr Ile 770 775 780 Ser Gly Leu Thr Pro Glu Thr Thr Tyr Ser Val Thr Val Ala Ala Tyr 790 795 Thr Thr Lys Gly Asp Gly Ala Arg Ser Lys Pro Lys Ile Val Thr Thr 805 810 Thr Gly Ala Val Pro Gly Arg Pro Thr Met Met Ile Ser Thr Thr Ala 820 825 830 Met Asn Thr Ala Leu Leu Gln Trp His Pro Pro Lys Glu Leu Pro Gly 835 840 845 Glu Leu Leu Gly Tyr Arg Leu Gln Tyr Cys Arg Ala Asp Glu Ala Arg 855 860 Pro Asn Thr Ile Asp Phe Gly Lys Asp Asp Gln His Phe Thr Val Thr 870 875 Gly Leu His Lys Gly Thr Thr Tyr Ile Phe Arg Leu Ala Ala Lys Asn 890 Arg Ala Gly Leu Gly Glu Glu Phe Glu Lys Glu Ile Arg Thr Pro Glu 905 Asp Leu Pro Ser Gly Phe Pro Gln Asn Leu His Val Thr Gly Leu Thr 915 920 925 Thr Ser Thr Thr Glu Leu Ala Trp Asp Pro Pro Val Leu Ala Glu Arg 940 935 Asn Gly Arg Ile Ile Ser Tyr Thr Val Val Phe Arg Asp Ile Asn Ser 950 955 Gln Gln Glu Leu Gln Asn Ile Thr Thr Asp Thr Arg Phe Thr Leu Thr 965 970 Gly Leu Lys Pro Asp Thr Thr Tyr Asp Ile Lys Val Arg Ala Trp Thr 985 Ser Lys Gly Ser Gly Pro Leu Ser Pro Ser Ile Gln Ser Arg Thr Met 995 1000 1005 Pro Val Glu Gln Val Phe Ala Lys Asn Phe Arg Val Ala Ala Met 1010 1015 1020 Lys Thr Ser Val Leu Leu Ser Trp Glu Val Pro Asp Ser Tyr Lys Ser 1030 1035 Ala Val Pro Phe Lys Ile Leu Tyr Asn Gly Gln Ser Val Glu Val Asp 1045 1050 1055 Gly His Ser Met Arg Lys Leu Ile Ala Asp Leu Gln Pro Asn Thr Glu 1060 1065 1070 Tyr Ser Phe Val Leu Met Asn Arg Gly Ser Ser Ala Gly Gly Leu Gln 1080 1085 His Leu Val Ser Ile Arg Thr Ala Pro Asp Leu Leu Pro His Lys Pro 1095 1100 Leu Pro Ala Ser Ala Tyr Ile Glu Asp Gly Arg Phe Asp Leu Ser Met 1110 1115

Arg Val Gln Arg Asp Glu Ala Ile Tyr Glu Cys Thr Ala Thr Asn Ser Leu Gly Glu Ile Asn Thr Ser Ala Lys Leu Ser Val Leu Glu Glu Glu Gln Leu Pro Pro Gly Phe Pro Ser Ile Asp Met Gly Pro Gln Leu Lys Val Val Glu Lys Ala Arg Thr Ala Thr Met Leu Cys Ala Ala Gly Gly Asn Pro Asp Pro Glu Ile Ser Trp Phe Lys Asp Phe Leu Pro Val Asp Pro Ala Thr Ser Asn Gly Arg Ile Lys Gln Leu Arg Ser Gly Ala Leu Gln Ile Glu Ser Ser Glu Glu Ser Asp Gln Gly Lys Tyr Glu Cys Val Ala Thr Asn Ser Ala Gly Thr Arg Tyr Ser Ala Pro Ala Asn Leu Tyr Val Arg Val Arg Val Ala Pro Arg Phe Ser Ile Pro Pro Ser Ser Gln Glu Val Met Pro Gly Gly Ser Val Asn Leu Thr Cys Val Ala Val Gly Ala Pro Met Pro Tyr Val Lys Trp Met Met Gly Ala Glu Glu Leu Thr Lys Glu Asp Glu Met Pro Val Gly Arg Asn Val Leu Glu Leu Ser Asn Val Val Arg Ser Ala Asn Tyr Thr Cys Val Ala Ile Ser Ser Leu Gly Met Ile Glu Ala Thr Ala Gln Val Thr Val Lys Ala Leu Pro Lys Pro Pro Ile Asp Leu Val Val Thr Glu Thr Thr Ala Thr Ser Val Thr Leu Thr Trp Asp Ser Gly Asn Ser Glu Pro Val Thr Tyr Tyr Gly Ile Gln Tyr Arg Ala Ala Gly Thr Glu Gly Pro Phe Gln Glu Val Asp Gly Val Ala Thr Thr Arg Tyr Ser Ile Gly Gly Leu Ser Pro Phe Ser Glu Tyr Ala Phe Arg Val Leu Ala Val Asn Ser Ile Gly Arg Gly Pro Pro Ser Glu Ala Val Arg Ala Arg Thr Gly Glu Gln Ala Pro Ser Ser Pro Pro Arg Arg Val Gln Ala Arg Met Leu Ser Ala Ser Thr Met Leu Val Gln Trp Glu Pro Pro Glu Glu Pro Asn Gly Leu Val Arg Gly Tyr Arg Val Tyr Tyr Thr Pro Asp Ser Arg Arg Pro Pro Asn Ala Trp His Lys His Asn Thr Asp Ala Gly Leu Leu Thr Thr Val Gly Ser Leu Leu Pro Gly Ile Thr Tyr Ser Leu Arg Val Leu Ala Phe Thr Ala Val Gly Asp . Gly Pro Pro Ser Pro Thr Ile Gln Val Lys Thr Gln Gln Gly Val Pro Ala Gln Pro Ala Asp Phe Gln Ala Glu Val Glu Ser Asp Thr Arg Ile Gln Leu Ser Trp Leu Leu Pro Pro Gln Glu Arg Ile Ile Met Tyr Glu Leu Val Tyr Trp Ala Ala Glu Asp Glu Asp Gln Gln His Lys Val Thr Phe Asp Pro Thr Ser Ser Tyr Thr Leu Glu Asp Leu Lys Pro Asp Thr Leu Tyr Arg Phe Gln Leu Ala Ala Arg Ser Asp Met Gly Val Gly Val Phe Thr Pro Thr Ile Glu Ala Arg Thr Ala Gln Ser Thr Pro Ser Ala . 605

Thr Phe Trp Phe Asn Met Ala Asp Ala Ala Phe Gln Ser Leu Val Cys 870 875 Phe Ser Ile Pro Tyr Leu Ala Tyr Tyr Asp Ser Asn Val Asp Leu Phe 885 890 Thr Trp Gly Thr Pro Ile Val Thr Ile Ala Leu Leu Thr Phe Leu Leu 905 His Leu Gly Ile Glu Thr Lys Thr Trp Thr Trp Leu Asn Trp Ile Thr 915 920 925 Cys Gly Phe Ser Val Leu Leu Phe Phe Thr Val Ala Leu Ile Tyr Asn 930 935 940 Ala Ser Cys Ala Thr Cys Tyr Pro Pro Ser Asn Pro Tyr Trp Thr Met 950 955 Gln Ala Leu Leu Gly Asp Pro Val Phe Tyr Leu Thr Cys Leu Met Thr 965 970 Pro Val Ala Ala Leu Leu Pro Arg Leu Phe Phe Arg Ser Leu Gln Gly 980 985 990 Arg Val Phe Pro Thr Gln Leu Gln Leu Ala Arg Gln Leu Thr Arg Lys 995 1000 1005 Ser Pro Arg Arg Cys Ser Ala Pro Lys Glu Thr Phe Ala Gln Gly Arg 1010 1015 1020 Leu Pro Lys Asp Ser Gly Thr Glu His Ser Ser Gly Arg Thr Val Lys 1030 1035 Thr Ser Val Pro Leu Ser Gln Pro Ser Trp His Thr Gln Gln Pro Val 1045 1050 1055 Cys Ser Leu Glu Ala Ser Gly Glu Pro Ser Thr Val Asp Met Ser Met 1060 1065 1070 Pro Val Arg Glu His Thr Leu Leu Glu Gly Leu Ser Ala Pro Ala Pro 1075 1080 1085 Met Ser Ser Ala Pro Gly Glu Ala Val Leu Arg Ser Pro Gly Gly Cys 1090 1095 1100 Pro Glu Glu Ser Lys Val Arg Ala Ala Ser Thr Gly Arg Val Thr Pro 1105 1110 1115 1120 Leu Ser Ser Leu Phe Ser Leu Pro Thr Phe Ser Leu Leu Asn Trp Ile 1125 1130 1135 Ser Ser Trp Ser Leu Val Ser Arg Leu Gly Ser Val Leu Gln Phe Ser 1140 1145 1150 Arg Thr Glu Gln Leu Ala Asp Gly Gln Ala Gly Arg Gly Leu Pro Val 1155 1160 1165 Gln Pro His Ser Gly Arg Ser Gly Leu Gln Gly Pro Asp His Arg Leu 1170 1175 Leu Ile Gly Ala Ser Ser Arg Arg Ser Gln * 1190 1194

<210> 250 <211> 1908 <212> PRT <213> Homo sapiens

<400> 250

Met Ala Pro Glu Pro Ala Pro Gly Arg Thr Met Val Pro Leu Val Pro 10 Ala Leu Val Met Leu Gly Leu Val Ala Gly Ala His Gly Asp Ser Lys 25 20 Pro Val Phe Ile Lys Val Pro Glu Asp Gln Thr Gly Leu Ser Gly Gly 35 40 Val Ala Ser Phe Val Cys Gln Ala Thr Gly Glu Pro Lys Pro Arg Ile 55 60 Thr Trp Met Lys Lys Gly Lys Lys Val Ser Ser Gln Arg Phe Glu Val 70 75 Ile Glu Phe Asp Asp Gly Ala Gly Ser Val Leu Arg Ile Gln Pro Leu 90

Leu Gly Gln Pro Thr Ser Ala Ile Ala Ser Asn Gly Tyr Ser Ser Gln Ala Asp Asn Trp Ala Ser Glu Leu Ala Gln Glu Gln Glu Ser Glu Arg Glu Leu Arg Tyr Glu Ala Glu Ser Pro Asp Glu Ala Ala Leu Val Tyr 3.90 Ala Ala Arg Ala Tyr Asn Cys Val Leu Val Glu Arg Leu His Asp Gln Val Ser Val Glu Leu Pro His Leu Gly Arg Leu Thr Phe Glu Leu Leu His Thr Leu Gly Phe Asp Ser Val Arg Lys Arg Met Ser Val Val Ile Arg His Pro Leu Thr Asp Glu Ile Asn Val Tyr Thr Lys Gly Ala Asp Ser Val Val Met Asp Leu Leu Gln Pro Cys Ser Ser Val Asp Ala Arg Gly Arg His Gln Lys Lys Ile Arg Ser Lys Thr Gln Asn Tyr Leu Asn Val Tyr Ala Ala Glu Gly Leu Arg Thr Leu Cys Ile Ala Lys Arg Val Leu Ser Lys Glu Glu Tyr Ala Cys Trp Leu Gln Ser His Leu Glu Ala Glu Ser Ser Leu Glu Asn Ser Glu Glu Leu Leu Phe Gln Ser Ala Ile Arg Leu Glu Thr Asn Leu His Leu Leu Gly Ala Thr Gly Ile Glu Asp Arg Leu Gln Asp Gly Val Pro Glu Thr Ile Ser Lys Leu Arg Gln Ala Gly Leu Gln Ile Trp Val Leu Thr Gly Asp Lys Gln Glu Thr Ala Val Asn Ile Ala Tyr Ala Cys Lys Leu Leu Asp His Asp Glu Glu Val Ile Thr Leu Asn Ala Thr Ser Gln Glu Ala Cys Ala Ala Leu Leu Asp Gln Cys Leu Cys Tyr Val Gln Ser Arg Gly Pro Gln Arg Ala Pro Glu Lys Thr Lys Gly Lys Val Ser Met Arg Phe Ser Ser Leu Cys Pro Pro Ser Thr Ser Thr Ala Ser Gly Arg Arg Pro Ser Leu Val Ile Asp Gly Arg Ser Leu Ala Tyr Ala Leu Glu Lys Asn Leu Glu Asp Lys Phe Leu Phe Leu Ala Lys Gln Cys Arg Ser Val Leu Cys Cys Arg Ser Thr Pro Leu Gln Lys Ser Met Val Val Lys Leu Val Arg Ser Lys Leu Lys Ala Met Thr Leu Ala Ile Gly Asp Gly Ala Asn Asp Val Ser Met Ile Gln Val Ala Asp Val Gly Val Gly Ile Ser Gly Gln Glu Gly Met Gln Ala Val Met Ala Ser Asp Phe Ala Val Pro Lys Phe Arg Tyr Leu Glu Arg Leu Leu Ile Leu His Gly His Trp Cys Tyr Ser Arg Leu Ala Asn Met Val Leu Tyr Phe Phe Tyr Lys Asn Thr Met Phe Val Gly Leu Leu Phe Trp Phe Gln Phe Phe Cys Gly Phe Ser Ala Ser Thr Met Ile Asp Gln Trp Tyr Leu Ile Phe Phe Asn Leu Leu Phe Ser Ser Leu Pro Pro Leu Val Thr Gly Val Leu Asp Arg Asp Val Pro Ala Asn Val Leu Leu Thr Asn Pro Gln Leu Tyr Lys Ser Gly Gln Asn Met Glu Glu Tyr Arg Pro Arg 

<210> 249 <211> 1195 <212> PRT <213> Homo sapiens

<400> 249 Met Asn Cys Asp Val Leu Trp Cys Val Leu Leu Val Cys Met Ser 10 Leu Phe Ser Ala Val Gly His Gly Leu Trp Ile Trp Arg Tyr Gln Glu 20 25 Lys Lys Ser Leu Phe Tyr Val Pro Lys Ser Asp Gly Ser Ser Leu Ser 35 Pro Val Thr Ala Ala Val Tyr Ser Phe Leu Thr Met Ile Ile Val Leu 55 60 Gln Val Leu Ile Pro Ile Ser Leu Tyr Val Ser Ile Glu Ile Val Lys 70 75 80 Ala Cys Gln Val Tyr Phe Ile Asn Gln Asp Met Gln Leu Tyr Asp Glu 85 90 Glu Thr Asp Ser Gln Leu Gln Cys Arg Ala Leu Asn Ile Thr Glu Asp 105 100 110 Leu Gly Gln Ile Gln Tyr Ile Phe Ser Asp Lys Thr Gly Thr Leu Thr 115 120 125 Glu Asn Lys Met Val Phe Arg Arg Cys Thr Val Ser Gly Val Glu Tyr 135 140 Ser His Asp Ala Asn Ala Gln Arg Leu Ala Arg Tyr Gln Glu Ala Asp 150 155 Ser Glu Glu Glu Val Val Pro Arg Gly Gly Ser Val Ser Gln Arg 165 170 175 Gly Ser Ile Gly Ser His Gln Ser Val Arg Val Val His Arg Thr Gln 180 185 190 Ser Thr Lys Ser His Arg Arg Thr Gly Ser Arg Ala Glu Ala Lys Arg 195 200 205 Ala Ser Met Leu Ser Lys His Thr Ala Phe Ser Ser Pro Met Glu Lys 215 220 Asp Ile Thr Pro Asp Pro Lys Leu Leu Glu Lys Val Ser Glu Cys Asp 235 Lys Ser Leu Ala Val Ala Arg His Gln Glu His Leu Leu Ala His Leu 245 250 Ser Pro Glu Leu Ser Asp Val Phe Asp Phe Phe Ile Ala Leu Thr Ile 260 265 270 Cys Asn Thr Val Val Val Thr Ser Pro Asp Gln Pro Arg Thr Lys Val 280 Arg Val Arg Phe Glu Leu Lys Ser Pro Val Lys Thr Ile Glu Asp Phe 290 295 300 Leu Arg Arg Phe Thr Pro Ser Cys Leu Thr Ser Gly Cys Ser Ser Ile 310 315 Gly Ser Leu Ala Ala Asn Lys Ser Ser His Lys Leu Gly Ser Ser Phe 325 330 Pro Ser Thr Pro Ser Ser Asp Gly Met Leu Leu Arg Leu Glu Glu Arg 340 345

Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro Leu Val Lys Lys Ala Gln Gly Arg Val Ile Asn Val Ser Ser Val Gly Gly Arg Leu Ala Ile Val Gly Gly Tyr Thr Pro Ser Lys Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala Ile Trp Glu Gln Leu Ser Pro Asp Ile Lys Gln Gln Tyr Gly Glu Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala Leu Gln Asp Phe Leu Leu Lys Gln Lys Ala Glu Leu Ala Asn Pro Lys Ala Val * 

<210> 248 <211> 241 <212> PRT <213> Homo sapiens

<400> 248

Met Ser Val Pro Thr Met Ala Trp Met Met Leu Leu Gly Leu Leu Ala Tyr Gly Ser Gly Val Asp Ser Glu Thr Val Val Thr Gln Glu Pro Ser Phe Ser Val Ser Pro Gly Gly Thr Val Thr Leu Thr Cys Gly Leu Asn Ser Gly Ser Val Ser Asp Ser Phe Tyr Pro Ser Trp His Gln Gln Thr Pro Gly Gln Pro Pro Arg Thr Leu Ile Tyr Asn Thr His Ile Arg Ala Ser Gly Val Ser Asp Arg Phe Ser Gly Ser Ile Val Gly Asn Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln Ala Asp Asp Glu Cys Val Tyr Tyr Cys Val Leu Tyr Met Gly Asn Asp Ile Ser Leu Phe Gly Gly Gly Thr Arg Leu Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu 145 150 Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp 

Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val 40 Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys 60 Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu Pro Ile Val Lys 70 Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr Ile Leu Val Met Val Asp 90 95 85 Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His · 105 100 110 Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys Glu Gly Lys Ile 120 125 Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His 135 140 Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys 150 155 Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys 165 170 Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser 185 190 Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala 195 200 205 Pro Arg Gly Arg Ala Ser Glu Pro Lys His Lys Thr Arg Gln Arg * 215 220

<210> 246 <211> 84 <212> PRT <213> Homo sapiens

<210> 247 <211> 320 <212> PRT <213> Homo sapiens

83

```
<210> 244
<211> 308
<212> PRT
<213> Homo sapiens
```

<400> 244 Met Thr Lys Ala Gly Ser Lys Gly Gly Asn Leu Arg Asp Lys Leu Asp 10 Gly Asn Glu Leu Asp Leu Ser Leu Ser Asp Leu Asn Glu Val Pro Val 20 25 Lys Glu Leu Ala Ala Leu Pro Lys Ala Thr Ile Leu Asp Leu Ser Cys 35 40 Asn Lys Leu Thr Thr Leu Pro Ser Asp Phe Cys Gly Leu Thr His Leu 50 55 60 Val Lys Leu Asp Leu Ser Lys Asn Lys Leu Gln Gln Leu Pro Ala Asp 70 Phe Gly Arg Leu Val Asn Leu Gln His Leu Asp Leu Leu Asn Asn Lys 90 Leu Val Thr Leu Pro Val Ser Phe Ala Gln Leu Lys Asn Leu Lys Trp 100 105 110 Leu Asp Leu Lys Asp Asn Pro Leu Asp Pro Val Leu Ala Lys Val Ala 115 120 125 Gly Asp Cys Leu Asp Glu Lys Gln Cys Lys Gln Cys Ala Asn Lys Val 135 140 Leu Gln His Met Lys Ala Val Gln Ala Asp Gln Glu Arg Gln 150 155 Arg Arg Leu Glu Val Glu Arg Glu Ala Glu Lys Lys Arg Glu Ala Lys 165 170 Gln Arg Ala Lys Glu Ala Gln Glu Arg Glu Leu Arg Lys Arg Glu Lys 180 185 190 Ala Glu Glu Lys Glu Arg Arg Lys Glu Tyr Asp Ala Leu Lys Ala 205 200 195 Val Lys Arg Glu Gln Glu Lys Lys Pro Lys Lys Glu Ala Asn Gln Ala 210 215 220 Pro Lys Ser Lys Ser Gly Ser Arg Pro Arg Lys Pro Pro Pro Arg Lys 225 230 240 His Thr Arg Ser Trp Ala Val Leu Lys Leu Leu Leu Leu Leu Leu 250 255 Phe Gly Val Ala Gly Gly Leu Val Ala Cys Arg Val Thr Glu Leu Gln 260 265 270 Gln Gln Pro Leu Cys Thr Ser Val Asn Thr Ile Tyr Asp Asn Ala Val 275 280 · 285 Glm Gly Leu Arg Arg His Glu Ile Leu Gln Trp Val Leu Gln Thr Asp 290 295 Ser Gln Gln * 305 307

```
<210> 245
<211> 224
<212> PRT
<213> Homo sapiens
```

<400> 245
Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Leu Gly Leu
1 5 10 15
Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His
20 25 30

Val Gly Leu Pro Gly Gln Arg Gly Glu Arg Gly Phe Pro Gly Leu Pro 965 970 Gly Pro Ser Gly Glu Pro Gly Lys Gln Gly Pro Ser Gly Ala Ser Gly 985 Glu Arg Gly Pro Pro Gly Pro Met Gly Pro Pro Gly Leu Ala Gly Pro 995 1000 1005 Pro Gly Glu Ser Gly Arg Glu Gly Ala Pro Gly Ala Glu Gly Ser Pro 1010 1015 1020 Gly Arg Asp Gly Ser Pro Gly Ala Lys Gly Asp Arg Gly Glu Thr Gly 1030 1035 Pro Ala Gly Pro Pro Gly Ala Pro Gly Ala Pro Gly Ala Pro Gly Pro 1045 1050 Val Gly Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Thr Gly Pro Ala 1065 1060 1070 Gly Pro Ala Gly Pro Val Gly Pro Val Gly Ala Arg Gly Pro Ala Gly 1075 1080 1085 Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Gln Gly Asp 1090 1095 1100 Arg Gly Ile Lys Gly His Arg Gly Phe Ser Gly Leu Gln Gly Pro Pro 1115 1110 Gly Pro Pro Gly Ser Pro Gly Glu Gln Gly Pro Ser Gly Ala Ser Gly 1125 1130 Pro Ala Gly Pro Arg Gly Pro Pro Gly Ser Ala Gly Ala Pro Gly Lys 1145 1150 1140 Asp Gly Leu Asn Gly Leu Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg 1155 1160 1165 Gly Arg Thr Gly Asp Ala Gly Pro Val Gly Pro Pro Gly Pro Pro Gly 1175 1180 Pro Pro Gly Pro Pro Gly Pro Pro Ser Ala Gly Phe Asp Phe Ser Phe 1190 1195 1200 Leu Pro Gln Pro Pro Gln Glu Lys Ala His Asp Gly Gly Arg Tyr Tyr 1205 1210 1215 Arg Ala Asp Asp Ala Asn Val Val Arg Asp Arg Asp Leu Glu Val Asp 1220 1225 1230 Thr Thr Leu Lys Ser Leu Ser Gln Gln Ile Glu Asn Ile Arg Ser Pro 1235 1240 1245 Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Lys Met 1250 1255 1260 Cys His Ser Asp Trp Lys Ser Gly Glu Tyr Trp Ile Asp Pro Asn Gln 1265 1270 1275 1280 Gly Cys Asn Leu Asp Ala Ile Lys Val Phe Cys Asn Met Glu Thr Gly 1285 1290 Glu Thr Cys Val Tyr Pro Thr Gln Pro Ser Val Ala Gln Lys Asn Trp 1300 1305 1310 Tyr Ile Ser Lys Asn Pro Lys Asp Lys Arg His Val Trp Phe Gly Glu 1315 1320 1325 Ser Met Thr Asp Gly Phe Gln Phe Glu Tyr Gly Gly Gln Gly Ser Asp 1330 1335' 1340 Pro Ala Asp Val Ala Ile Gln Leu Thr Phe Leu Arg Leu Met Ser Thr 1350 1355 1360 Glu Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Val Ala Tyr 1365 1370 Met Asp Gln Gln Thr Gly Asn Leu Lys Lys Ala Leu Leu Gln Gly 1380 1385 1390 Ser Asn Glu Ile Glu Ile Arg Ala Glu Gly Asn Ser Arg Phe Thr Tyr 1395 1400 1405 Ser Val Thr Val Asp Gly Cys Thr Ser His Thr Gly Ala Trp Gly Lys 1415 1420 Thr Val Ile Glu Tyr Lys Thr Thr Lys Thr Ser Arg Leu Pro Ile Ile 1430 1435 Asp Val Ala Pro Leu Asp Val Gly Ala Pro Asp Gln Glu Phe Gly Phe 1445 1450 Asp Val Gly Pro Val Cys Phe Leu 1460 1464

Gly Glu Pro Gly Pro Val Gly Val Gln Gly Pro Pro Gly Pro Ala Gly Glu Glu Gly Lys Arg Gly Ala Arg Gly Glu Pro Gly Pro Thr Gly Leu Pro Gly Pro Pro Gly Glu Arg Gly Gly Pro Gly Ser Arg Gly Phe Pro Gly Ala Asp Gly Val Ala Gly Pro Lys Gly Pro Ala Gly Glu Arg Gly Ser Pro Gly Pro Ala Gly Pro Lys Gly Ser Pro Gly Glu Ala Gly Arg Pro Gly Glu Ala Gly Leu Pro Gly Ala Lys Gly Leu Thr Gly Ser Pro Gly Ser Pro Gly Pro Asp Gly Lys Thr Gly Pro Pro Gly Pro Ala Gly Gln Asp Gly Arg Pro Gly Pro Pro Gly Pro Pro Gly Ala Arg Gly Gln Ala Gly Val Met Gly Phe Pro Gly Pro Lys Gly Ala Ala Gly Glu Pro Gly Lys Ala Gly Glu Arg Gly Val Pro Gly Pro Pro Gly Ala Val Gly Pro Ala Gly Lys Asp Gly Glu Ala Gly Ala Gln Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly Glu Arg Gly Glu Gln Gly Pro Ala Gly Ser Pro Gly Phe Gln Gly Leu Pro Gly Pro Ala Gly Pro Pro Gly Glu Ala Gly Lys Pro Gly Glu Gln Gly Val Pro Gly Asp Leu Gly Ala Pro Gly Pro Ser Gly Ala Arg Gly Glu Arg Gly Phe Pro Gly Glu Arg Gly Val Gln Gly Pro Pro Gly Pro Ala Gly Pro Arg Gly Ala Asn Gly Ala Pro Gly Asn Asp Gly Ala Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly Ser Gln Gly Ala Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Ala Ala Gly Leu Pro Gly Pro Lys Gly Asp Arg Gly Asp Ala Gly Pro Lys Gly Ala Asp Gly Ser Pro Gly Lys Asp Gly Val Arg Gly Leu Thr Gly Pro Ile Gly Pro Pro Gly Pro Ala Gly Ala Pro Gly Asp Lys Gly Glu Ser Gly Pro Ser Gly Pro Ala Gly Pro Thr Gly Ala Arg Gly Ala Pro Gly Asp Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Phe Ala Gly Pro Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Pro Gly Asp Ala Gly Ala Lys Gly Asp Ala Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly Pro Pro Gly Pro Ile Gly Asn Val Gly Ala Pro Gly Ala Lys Gly Ala Arg Gly Ser Ala Gly Pro Pro Gly Ala Thr Gly Phe Pro Gly Ala Ala Gly Arg Val Gly Pro Pro Gly Pro Ser Gly Asn Ala Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu Gly Gly Lys Gly Pro Arg Gly Glu Thr Gly Pro Ala Gly Arg Pro Gly Glu Val Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Glu Lys Gly Ser Pro Gly Ala Asp Gly Pro Ala Gly Ala Pro Gly Thr Pro Gly Pro Gln Gly Ile Ala Gly Gln Arg Gly Val . 955

<210> 243 <211> 1464 <212> PRT <213> Homo sapiens

<400> 243 Met Phe Ser Phe Val Asp Leu Arg Leu Leu Leu Leu Leu Ala Ala Thr 1 5 10 Ala Leu Leu Thr His Gly Gln Glu Gly Gln Val Glu Gly Gln Asp 25 Glu Asp Ile Pro Pro Ile Thr Cys Val Gln Asn Gly Leu Arg Tyr His 35 40 Asp Arg Asp Val Trp Lys Pro Glu Pro Cys Arg Ile Cys Val Cys Asp 55 60 Asn Gly Lys Val Leu Cys Asp Asp Val Ile Cys Asp Glu Thr Lys Asn 65 70 75 80 Cys Pro Gly Ala Glu Val Pro Glu Gly Glu Cys Cys Pro Val Cys Pro 90 Asp Gly Ser Glu Ser Pro Thr Asp Gln Glu Thr Thr Gly Val Glu Gly 105 Pro Lys Gly Asp Thr Gly Pro Arg Gly Pro Arg Gly Pro Ala Gly Pro 115 120 125 Pro Gly Arg Asp Gly Ile Pro Gly Gln Pro Gly Leu Pro Gly Pro Pro 135 140 Gly Pro Pro Gly Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala 145 150 155 160 Pro Gln Leu Ser Tyr Gly Tyr Asp Glu Lys Ser Thr Gly Gly Ile Ser 165 170 Val Pro Gly Pro Met Gly Pro Ser Gly Pro Arg Gly Leu Pro Gly Pro 185 Pro Gly Ala Pro Gly Pro Gln Gly Phe Gln Gly Pro Pro Gly Glu Pro 195 200 205 Gly Glu Pro Gly Ala Ser Gly Pro Met Gly Pro Arg Gly Pro Pro Gly 215 220 Pro Pro Gly Lys Asn Gly Asp Asp Gly Glu Ala Gly Lys Pro Gly Arg 230 235 Pro Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Ala Arg Gly Leu Pro 245 250 Gly Thr Ala Gly Leu Pro Gly Met Lys Gly His Arg Gly Phe Ser Gly 260 265 Leu Asp Gly Ala Lys Gly Asp Ala Gly Pro Ala Gly Pro Lys Gly Glu 280 285 Pro Gly Ser Pro Gly Glu Asn Gly Ala Pro Gly Gln Met Gly Pro Arg 295 300 Gly Leu Pro Gly Glu Arg Gly Arg Pro Gly Ala Pro Gly Pro Ala Gly 310 315 Ala Arg Gly Asn Asp Gly Ala Thr Gly Ala Ala Gly Pro Pro Gly Pro 325 330 335 Thr Gly Pro Ala Gly Pro Pro Gly Phe Pro Gly Ala Val Gly Ala Lys 345 350 Gly Glu Ala Gly Pro Gln Gly Pro Arg Gly Ser Glu Gly Pro Gln Gly 355 360 365 Val Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Ala Ala Gly Pro 375 380 Ala Gly Asn Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Ala Asn 390 395 Gly Ala Pro Gly Ile Ala Gly Ala Pro Gly Phe Pro Gly Ala Arg Gly 410 415 Pro Ser Gly Pro Gln Gly Pro Gly Pro Pro Gly Pro Lys Gly Asn 425 430 Ser Gly Glu Pro Gly Ala Pro Gly Ser Lys Gly Asp Thr Gly Ala Lys

440

Gln Val Gly Tyr Gly Met Ala Ala Gly Tyr Thr Ile Phe Ile Thr Ser 215 220 Phe Leu Gly Val Leu Val Phe Ser Arg Cys Phe Arg Asp Thr Thr Met 230 235 Ile Met Ile Gly Met Val Ser Phe Gly Ser Gly Ala Leu Leu Leu Ala 245 250 Phe Val Lys Glu Thr Tyr Met Phe Tyr Ile Ala Arg Ala Val Met Leu 265 Phe Ala Leu Ile Pro Val Thr Thr Ile Arg Ser Ala Met Ser Lys Leu 275 280 285 Ile Lys Gly Ser Ser Tyr Gly Lys Val Phe Val Ile Leu Gln Leu Ser 290 295 300 Leu Ala Leu Thr Gly Val Val Thr Ser Thr Leu Tyr Asn Lys Ile Tyr 310 315 Gln Leu Thr Met Asp Met Phe Val Gly Ser Cys Phe Ala Leu Ser Ser 325 330 335 Phe Leu Ser Phe Leu Ala Ile Ile Pro Ile Ser Ile Val Ala Tyr Lys 340 345 Gln Val Pro Leu Ser Pro Tyr Gly Asp Ile Ile Glu Lys * 360

<210> 242 <211> 248 <212> PRT <213> Homo sapiens

<400> 242 Met Phe Leu Phe Leu Phe Leu Val Ala Ile Leu Pro Val Asn Thr 5 10 Glu Gly Gly Glu Ile Ile Trp Gly Thr Glu Ser Lys Pro His Ser Arg 20 25 Pro Tyr Met Ala Phe Ile Lys Phe Tyr Asp Ser Asn Ser Glu Pro His 40 His Cys Gly Gly Phe Leu Val Ala Lys Asp Ile Val Met Thr Ala Ala 55 60 His Cys Asn Gly Arg Asn Ile Lys Val Thr Leu Gly Ala His Asn Ile 70 Lys Lys Gln Glu Asn Thr Gln Val Ile Ser Val Val Lys Ala Lys Pro 85 His Glu Asn Tyr Asp Arg Asp Ser His Phe Asn Asp Ile Met Leu Leu 105 110 Lys Leu Glu Arg Lys Ala Gln Leu Asn Gly Val Val Lys Thr Ile Ala 115 120 125 Leu Pro Arg Ser Gln Asp Trp Val Lys Pro Gly Gln Val Cys Thr Val 135 140 Ala Gly Trp Gly Arg Leu Ala Asn Cys Thr Ser Ser Asn Thr Leu Gln 150 155 Glu Val Asn Leu Glu Val Gln Lys Gly Gln Lys Cys Gln Asp Met Ser 170 175 Glu Asp Tyr Asn Asp Ser Ile Gln Leu Cys Val Gly Asn Pro Ser Glu 180 185 190 Gly Lys Ala Thr Gly Lys Gly Asp Ser Gly Gly Pro Phe Val Cys Asp 195 200 Gly Met Ala Pro Gly His Trp Gln Leu Ser Ala Trp Val Leu Gly Thr 215 · 220 Leu Ser Arg Glu Phe Pro Gln Asn Leu Gln Leu Leu Tyr Arg Gly Phe 230 235 Arg Lys Pro Met Lys Gly Pro * 245 247 -

Arg Tyr Arg Ile Leu Leu Val Thr Val Leu Trp Thr Leu Leu Val Tyr 340 345 Ser Met Leu Ser His Lys Glu Phe Arg Phe Ile Tyr Pro Val Leu Pro 360 Phe Cys Met Val Phe Cys Gly Tyr Ser Leu Thr His Leu Lys Thr Trp 375 380 Lys Lys Pro Ala Leu Ser Phe Leu Phe Leu Ser Asn Leu Phe Leu Ala 390 395 Leu Tyr Thr Gly Leu Val His Gln Arg Gly Thr Leu Asp Val Met Ser 405 410 His Ile Gln Lys Val Cys Tyr Asn Asn Pro Asn Lys Ser Ser Ala Ser 420 425 430 Ile Phe Ile Met Met Pro Cys His Ser Thr Pro Tyr Tyr Ser His Val 435 440 His Cys Pro Leu Pro Met Arg Phe Leu Gln Cys Pro Pro Asp Leu Thr 450 455 460 Gly Lys Ser His Tyr Leu Asp Glu Ala Asp Val Phe Tyr Leu Asn Pro 465 470 475 Leu Asn Trp Leu His Arg Glu Phe His Asp Asp Ala Ser Leu Pro Thr 485 490 His Leu Ile Thr Phe Ser Ile Leu Glu Glu Glu Ile Ser Ala Phe Leu 500 505 Ile Ser Ser Asn Tyr Lys Arg Thr Ala Val Phe Phe His Thr His Leu 515 520 525 Pro Glu Gly Arg Ile Gly Ser His Ile Tyr Val Tyr Glu Arg Lys Leu 535 Lys Gly Lys Phe Asn Met Lys Met Lys Phe 545 550

<210> 241 <211> 366 <212> PRT <213> Homo sapiens '

<400> 241

Met Ser Leu Leu Gly Phe Leu Leu Ser Arg Leu Gly Leu Leu Lys 10 Val Leu Leu Asp Trp Pro Val Glu Val Leu Tyr Gly Ala Ala Ala Leu 20 25 Asn Gly Leu Phe Gly Gly Phe Ser Ala Phe Trp Ser Gly Val Met Ala 40 Leu Gly Ser Leu Gly Ser Ser Glu Gly Arg Arg Ser Val Arg Leu Ile 50 55 Leu Ile Asp Leu Met Leu Gly Leu Ala Gly Phe Cys Gly Ser Met Ala 75 Ser Gly His Leu Phe Lys Gln Met Ala Gly His Ser Gly Gln Gly Leu 90 Ile Leu Thr Ala Cys Ser Val Ser Cys Ala Ser Phe Ala Leu Leu Tyr 100 105 Ser Leu Leu Val Leu Lys Val Pro Glu Ser Val Ala Lys Pro Ser Gln 115 120 125 Glu Leu Pro Ala Val Asp Thr Val Ser Gly Thr Val Gly Thr Tyr Arg 135 140 Thr Leu Asp Pro Asp Gln Leu Asp Gln Gln Tyr Ala Val Gly His Pro 150 155 Pro Ser Pro Gly Lys Ala Lys Pro His Lys Thr Thr Ile Ala Leu Leu 165 170 Phe Val Gly Ala Ile Ile Tyr Asp Leu Ala Val Val Gly Thr Val Asp 180 185 Val Ile Pro Leu Phe Val Leu Arg Glu Pro Leu Gly Trp Asn Gln Val 200

Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg Leu Ala Val Tyr Gln Ala 200 Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu Ser Ala Ile Arg Glu Arg 215 220 Leu Gly Pro Leu Val Glu Gln Gly Pro Arg Ala Gly Arg His Cys Gly 230 235 Leu Pro Gly Pro Ala Ser Arg Tyr Arg Ser Gly Pro Arg Pro Gly Ala 245 250 Ser Gly Cys Ala Arg Gly Trp Arg Arg Trp Ala Ala Gly Pro Ala Thr 260 265 Ala Trp Thr Arg 275 276

<210> 240 <211> 554 <212> PRT <213> Homo sapiens

<400> 240

Met Arg Arg Pro Leu Ser Lys Cys Gly Met Glu Pro Gly Gly Asp Ala Ser Leu Thr Leu His Gly Leu Gln Asn Arg Ser His Gly Lys Ile 25 Lys Leu Arg Lys Arg Lys Ser Thr Leu Tyr Phe Asn Thr Gln Glu Lys 40 45 Ser Ala Arg Arg Gly Asp Leu Leu Gly Glu Asn Ile Tyr Leu Leu 60 . 55 Leu Phe Thr Ile Ala Leu Arg Ile Leu Asn Cys Phe Leu Val Gln Thr 70 75 Ser Phe Val Pro Asp Glu Tyr Trp Gln Ser Leu Glu Val Ser His His 90 Met Val Phe Asn Tyr Gly Tyr Leu Thr Trp Glu Trp Thr Glu Arg Leu 100 105 110 Arg Ser Tyr Thr Tyr Pro Leu Ile Phe Ala Ser Ile Tyr Lys Ile Leu 115 120 125 His Leu Leu Gly Lys Asp Ser Val Gln Leu Leu Ile Trp Ile Pro Arg 130 135 140 Leu Ala Gln Ala Leu Leu Ser Ala Val Ala Asp Val Arg Leu Tyr Ser 145 150 155 Leu Met Lys Gln Leu Glu Asn Gln Glu Val Ala Arg Trp Val Phe Phe 170 Cys Gln Leu Cys Ser Trp Phe Thr Trp Tyr Cys Cys Thr Arg Thr Leu 180 185 190 Thr Asn Thr Met Glu Thr Val Leu Thr Ile Ile Ala Leu Phe Tyr Tyr 195 200 205 Pro Leu Glu Gly Ser Lys Ser Met Asn Ser Val Lys Tyr Ser Ser Leu 210 215 220 Val Ala Leu Ala Phe Ile Ile Arg Pro Thr Ala Val Ile Leu Trp Thr 230 235 Pro Leu Leu Phe Arg His Phe Cys Gln Glu Pro Arg Lys Leu Asp Leu 245 250 255 Ile Leu His His Phe Leu Pro Val Gly Phe Val Thr Leu Ser Leu Ser 260 265 270 Leu Met Ile Asp Arg Ile Phe Phe Gly Gln Trp Thr Leu Val Gln Phe 275 280 Asn Phe Leu Lys Phe Asn Val Leu Gln Asn Trp Gly Thr Phe Tyr Gly 295 300 Ser His Pro Trp His Trp Tyr Phe Ser Gln Gly Phe Pro Val Ile Leu 315 310 Gly Thr His Leu Pro Phe Phe Ile His Gly Cys Tyr Leu Ala Pro Lys 325 330

Ala Lys Val Leu Glu Arg Gly Lys Asp Ala Thr Leu Gln Lys Gln Glu Asp Val Ala Val Ala Ala Val Leu Glu Ser Leu Leu Lys Leu Ala Leu Leu Ala Gly Leu Thr Ile Thr Val Phe Gly Phe Ala Tyr Ser Gln Leu Ala Leu Asp Ile Tyr Gly Gly Thr Met Leu Ser Ser Gly Ser Gly Pro Val Leu Leu Arg Ser Tyr Cys Leu Tyr Val Leu Leu Leu Ala Ile Asn Gly Val Thr Glu Cys Phe Thr Phe Ala Ala Met Ser Lys Glu Glu Val Asp Arg Tyr Asn Phe Val Met Leu Ala Leu Ser Ser Ser Phe Leu Val Leu Ser Tyr Leu Leu Thr Arg Trp Cys Gly Ser Val Gly Phe Ile Leu Ala Asn Cys Phe Asn Met Gly Ile Arg Ile Thr Gln Ser Leu Cys Phe Ile His Arg Tyr Tyr Arg Arg Ser Pro His Arg Pro Leu Ala Gly Leu His Leu Ser Pro Val Leu Leu Gly Thr Phe Ala Leu Ser Gly Gly Val Thr Ala Val Ser Glu Val Phe Leu Cys Cys Glu Gln Gly Trp Pro Ala Arg Leu Ala His Ile Ala Val Gly Ala Phe Cys Leu Gly Ala Thr Leu Gly Thr Ala Phe Leu Thr Glu Thr Lys Leu Ile His Phe Leu Arg Thr Gln Leu Gly Val Pro Arg Arg Thr Asp Lys Met Thr * 

<210> 239 <211> 277 <212> PRT <213> Homo sapiens

<400> 239

Met Ser Ser Gly Ala Ser Arg Lys Ser Trp Asp Pro Gly Lys Pro Trp Pro Pro Asp Trp Pro Ile Thr Gly Arg Lys Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu Val Gln Ala Met Leu Gly Gln Ser Thr Glu Glu

Leu Arg Val Arg Leu Ala Ser His Leu Arg Lys Leu Arg Lys Arg Leu 

Lys Tyr Leu Val Lys His Cys Gly Asn Ile Pro Val Phe Val Ile Asn 360 365 Tyr Pro Leu Thr Leu Lys Pro Phe Tyr Met Arg Asp Asn Glu Asp Gly 375 380 Pro Gln His Thr Val Ala Ala Val Asp Leu Leu Val Pro Gly Val Gly 390 395 Glu Leu Phe Gly Gly Gly Leu Arg Glu Glu Arg Tyr His Phe Leu Glu 405 410 Glu Arg Leu Ala Arg Tyr Leu Asp Leu Arg Arg Phe Gly Ser Val Pro 425 420 His Gly Gly Phe Gly Met Gly Phe Glu Arg Tyr Leu Gln Cys Ile Leu 435 440 445 Gly Val Asp Asn Ile Lys Asp Val Ile Pro Phe Pro Arg Phe Pro His Ser Cys Leu Leu * 468

<210> 238 <211> 542 <212> PRT <213> Homo sapiens

<400> 238

Met Gly Ser Gln Glu Val Leu Gly His Ala Ala Arg Leu Ala Ser Ser 10 Gly Leu Leu Gln Val Leu Phe Arg Leu Ile Thr Phe Val Leu Asn 20 25 Ala Phe Ile Leu Arg Phe Leu Ser Lys Glu Ile Val Gly Val Val Asn 40 Val Arg Leu Thr Leu Leu Tyr Ser Thr Thr Leu Phe Leu Ala Arg Glu 55 Ala Phe Arg Arg Ala Cys Leu Ser Gly Gly Thr Gln Arg Asp Trp Ser 70 Gln Thr Leu Asn Leu Leu Trp Leu Thr Val Pro Leu Gly Val Phe Trp 85 90 Ser Leu Phe Leu Gly Trp Ile Trp Leu Gln Leu Leu Glu Val Pro Asp 100 105 Pro Asn Val Val Pro His Tyr Ala Thr Gly Val Val Leu Phe Gly Leu 120 125 Ser Ala Val Val Glu Leu Leu Gly Glu Pro Phe Trp Val Leu Ala Gln 135 Ala His Met Phe Val Lys Leu Lys Val Ile Ala Glu Ser Leu Ser Val 150 155 Ile Leu Lys Ser Val Leu Thr Ala Phe Leu Val Leu Trp Leu Pro His 170 165 Trp Gly Leu Tyr Ile Phe Ser Leu Ala Gln Leu Phe Tyr Thr Thr Val 185 190 180 Leu Val Leu Cys Tyr Val Ile Tyr Phe Thr Lys Leu Leu Gly Ser Pro 200 Glu Ser Thr Lys Leu Gln Thr Leu Pro Val Ser Arg Ile Thr Asp Leu 215 220 Leu Pro Asn Ile Thr Arg Asn Gly Ala Phe Ile Asn Trp Lys Glu Ala 230 235 Lys Leu Thr Trp Ser Phe Phe Lys Gln Ser Phe Leu Lys Gln Ile Leu 245 250 Thr Glu Gly Glu Arg Tyr Val Met Thr Phe Leu Asn Val Leu Asn Phe 265 Gly Asp Gln Gly Val Tyr Asp Ile Val Asn Asn Leu Gly Ser Leu Val 280 285 Ala Arg Leu Ile Phe Gln Pro Ile Glu Glu Ser Phe Tyr Ile Phe Phe 295

WO 01/55437

ctattctgac attitactaa catcactcti cctatttaac tittaaatat gatgaagtca 629

ctcccttgct taaaaaatct gatgccatcc catcittcaa aataaaaggc aagcccttac 689

ctccaacctc caagactcca catgatctag cccctacact tgtctagcti tictccaact 749

ctccccgcta ggtacttgca ticcaatcat attaatcttg cittititit aatgcagatc 809

tacatgctca cacatgaagt cittigticta gctattccat ctgcatagat acagcggccg 869

ctctagagga tccaagctta cgtcg 894

<210> 237 <211> 469 <212> PRT <213> Homo sapiens

340

<400> 237 Met Leu Gly Val Arg Cys Leu Leu Arg Ser Val Arg Phe Cys Ser Ser 10 Ala Pro Phe Pro Lys His Lys Pro Ser Ala Lys Leu Ser Val Arg Asp Ala Leu Gly Ala Gln Asn Ala Ser Gly Glu Arg Ile Lys Ile Gln Gly 40 45 Trp Ile Arg Ser Val Arg Ser Gln Lys Glu Val Leu Phe Leu His Val 55 Asn Asp Gly Ser Ser Leu Glu Ser Leu Gln Val Val Ala Asp Ser Gly 70 75 Leu Asp Ser Arg Glu Leu Thr Phe Gly Ser Ser Val Glu Val Gln Gly 85 90 Gln Leu Ile Lys Ser Pro Ser Lys Arg Gln Asn Val Glu Leu Lys Ala 100 105 Glu Lys Ile Lys Val Ile Gly Asn Cys Asp Ala Lys Asp Phe Pro Ile 115 120 125 Lys Tyr Lys Glu Arg His Pro Leu Glu Tyr Leu Arg Gln Tyr Pro His 135 140 Phe Arg Cys Arg Thr Asn Val Leu Gly Ser Ile Leu Arg Ile Arg Ser 150 155 Glu Ala Thr Ala Ala Ile His Ser Phe Phe Lys Asp Ser Gly Phe Val 165 170 His Ile His Thr Pro Ile Ile Thr Ser Asn Asp Ser Glu Gly Ala Gly 180 185 Glu Leu Phe Gln Leu Glu Pro Ser Gly Lys Leu Lys Val Pro Glu Glu 195 200 Asn Phe Phe Asn Val Pro Ala Phe Leu Thr Val Ser Gly Gln Leu His 215 220 Leu Glu Val Met Ser Gly Ala Phe Thr Gln Val Phe Thr Phe Gly Pro 230 235 Thr Phe Arg Ala Glu Asn Ser Gln Ser Arg Arg His Leu Ala Glu Phe 245 250 Tyr Met Ile Glu Ala Glu Ile Ser Phe Val Asp Ser Leu Gln Asp Leu 260 265 270 Met Gln Val Ile Glu Glu Leu Phe Lys Ala Thr Thr Met Met Val Leu 275 280 285 Ser Lys Cys Pro Glu Asp Val Glu Leu Cys His Lys Phe Ile Ala Pro 295 300 Gly Gln Lys Asp Arg Leu Glu His Met Leu Lys Asn Asn Phe Leu Ile 310 315 Ile Ser Tyr Thr Glu Ala Val Glu Ile Leu Lys Gln Ala Ser Gln Asn · 325 330

Phe Thr Phe Thr Pro Glu Trp Gly Ala Asp Leu Arg Thr Glu His Glu

345

tttaaaatta attgcttgta acctcacttt actaataatg tttattatct ttcctaataa 2971
tgcattaact gattaatcag gtgtttaaat ttttataaaa tactcttgca aaaagtttat 3031
ttgaaaaatt tctagatggt ctcatgagtt tcaaaataat aatttttgtg tatgaacaaa 3091
gctgttgttt ttaccatgca gtattgcatg attttaagtt atgtggaatt aacataactg 3151
attttgttt aattgtaagt tgttaactcc tgtatatatc attaaaataa atctgaagtt 3211
g

<210> 236 <211> 894 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (204)..(548) <400> 236 gagateetta tggaettgea etggtgtetg catatttgaa gaagtagtea eetteecagt 60 ctttacagag gagetttaac ataggaagec etttaccagt cageetgtee agagatteeg 120 gacagcatgg ctggcatagt ccatgagcag gcttgctgcc tgacttctcc agcaggctag 180 cctcagttac tggatccgca agg atg ggt ctg gag act ggt tct gtg gga 230 Met Gly Leu Glu Thr Gly Ser Val Gly tet gge etg gtg eet ggg tee atg ggt gee age etg gea etg ggg tte 278 Ser Gly Leu Val Pro Gly Ser Met Gly Ala Ser Leu Ala Leu Gly Phe act gag gtg gtt cta gtg ctg ggg ttc aca gta aag tta ggg gct cac 326 Thr Glu Val Val Leu Val Leu Gly Phe Thr Val Lys Leu Gly Ala His 35 ttg act ctc ctt cct cca ctt gga ggg cat cta tct cca tac tgt gct 374 Leu Thr Leu Leu Pro Pro Leu Gly Gly His Leu Ser Pro Tyr Cys Ala 50 gca cag gct tgg gaa ggg gtg aaa caa tta atg tgc aac tgt agt tcc 422 Ala Gln Ala Trp Glu Gly Val Lys Gln Leu Met Cys Asn Cys Ser Ser tat cct ctt caa tgc atc att tgt tgt atc tat gct aca ccc ggg tgc 470 Tyr Pro Leu Gln Cys Ile Ile Cys Cys Ile Tyr Ala Thr Pro Gly Cys 75 tac aat cta tca ttt gga atc ctt agc tct tgt gaa ggt att ttt gtc 518 Tyr Asn Leu Ser Phe Gly Ile Leu Ser Ser Cys Glu Gly Ile Phe Val 90 105 tat gag tgg tta ttc gaa atg ctt ctg tga a gaaacaaatg ctgaaaacta 569 Tyr Glu Trp Leu Phe Glu Met Leu Leu *

115

110

WO 01/55437 PCT/US01/0	)2623
Phe Ser Phe Leu Asp Ile Leu Arg Leu Trp Glu Val Met Trp Thr Glu 525 530 535	
Cta CCa tgt aca aat ttc cat ctt ctc tgt tgt gct att ctg gaa Leu Pro Cys Thr Asn Phe His Leu Leu Cys Cys Ala Ile Leu Glu 540 545 550	1743
tca gaa aag cag caa ata atg gaa aag cat tat ggc ttc aat gaa ata Ser Glu Lys Gln Gln Ile Met Glu Lys His Tyr Gly Phe Asn Glu Ile 555 560 565 570	1791
ctt aag cat atc aat gaa ttg tcc atg aaa att gat gtg gaa gat ata Leu Lys His Ile Asn Glu Leu Ser Met Lys Ile Asp Val Glu Asp Ile 575 580 585	1839
ctc tgc aag gca gaa gca att tct cta cag atg gta aaa tgc aag gaa Leu Cys Lys Ala Glu Ala Ile Ser Leu Gln Met Val Lys Cys Lys Glu 590 595 600	1887
ttg cca caa gca gtc tgt gag atc ctt ggg ctt caa ggc agt gaa gtt Leu Pro Gln Ala Val Cys Glu Ile Leu Gly Leu Gln Gly Ser Glu Val 605 610 615	1935
aca aca cca gat tca gac gtt ggt gaa gac gaa aat gtt gtc atg act Thr Thr Pro Asp Ser Asp Val Gly Glu Asp Glu Asn Val Val Met Thr 620 625 630	1983
cct tgt cct aca tct gca ttt caa agt aat gcc ttg cct aca ctc tct Pro Cys Pro Thr Ser Ala Phe Gln Ser Asn Ala Leu Pro Thr Leu Ser 635 640 645 650	2031
gcc agt gga gcc aga aat gac agc cca aca cag ata cca gtg tcc tca Ala Ser Gly Ala Arg Asn Asp Ser Pro Thr Gln Ile Pro Val Ser Ser 655 660 665	2079
gat gtc tgc aga tta aca cct gca tga tcact gttcttgctt tttgggaaga Asp Val Cys Arg Leu Thr Pro Ala *. 670 675	2131
gacactttgt tgcaaccctt tttcaagtac ttgaaagttg aaaatttgaa atcttggtat	2191
tgatcatgct ttaaggttta tgtaaagaaa gtgtactgat gttcttacat taaagcttta	2251
caaagattta aactaattat ttttgtagtt acttctacca aatagccttt ccttttcgat	2311
aacatteete agtattttta tageeaagta cattttattt tettgetgat gaactggaat	2371
tggataaata ttgcaagtgg atgagttgga aattatgcac tttgaaaaac attcactttg	2431
tttaagetta ttgggtttea gatttgatta aattaaatgt ggaggettte tatageatte	2491
taagctgaga agtagattgt tacccagtaa tgaaataaaa aataaaaata aaaggatttt	2551
tttctctatt gtttacgaca gtactcagct taaatattta tgctggtcaa atgtgattta	2611
aattggacat tttcatcaat gcagtctaat gtgtagataa atatttcaac cataataagt	2671
ggattggcag tatatttttt acattgaact tttcttcact tgtatataaa gattatatat	2731
aagtacttat ttatgagtat aagaaaggtt aggcatattt tcattaactg aataaacgac	2791
ttgatttata taacctggtt tatcaaaatt taacatggct tcagtatgag atctttttca	2851
aaactatttt cttaaacatt tatttcatga gattatgttc aaccctgtac ctggtgtaat	2911

WO 01/55437										F	CT/US	01/02623
Ile Pro Gly	Leu Lys 270	Ile A	Asn Gln	Gln 275	Glu	Glu	Pro	Gly	Phe 280	Glu	Val	
atc aca aga Ile Thr Arg 285	att gat Ile Asp	ttg g Leu G	ggg gaa Gly Glu 290	cgc Arg	cct Pro	gtt Val	gtt Val	caa Gln 295	agg Arg	aga Arg	gaa Glu	975
ccg gta tca Pro Val Ser 300	ctg gaa Leu Glu	Glu 3	igg act Trp Thr 305	aag Lys	aaa Lys	att Ile	gat Asp 310	tct Ser	gaa Glu	gga Gly	aga Arg	1023
att tta aat Ile Leu Asn 315	gta gat Val Asp	aat a Asn N 320	atg aag Met Lys	cag Gln	atg Met	ata Ile 325	ttt Phe	aga Arg	gjå aaa	gga Gly	ctt Leu 330	1071
agt cat gca Ser His Ala	ttg aga Leu Arg 335	Lys (	caa gca Gln Ala	tgg Trp	aaa Lys 340	ttt Phe	ctt Leu	ctg Leu	ggt Gly	tat Tyr 345	ttt Phe	1119
ccc tgg gac Pro Trp Asp	agt acc Ser Thr 350	aag g Lys (	gag gaa Glu Glu	aga Arg 355	acc Thr	caa Gln	tta Leu	caa Gln	aag Lys 360	caa Gln	aaa Lys	1167
act gat gaa Thr Asp Glu 365				Leu								1215
gaa caa gag Glu Gln Glu 380	aaa aga Lys Arg	Asn S	tcg agg Ser Arg 385	tta Leu	aga Arg	gat Asp	tat Tyr 390	aga Arg	agt Ser	ctt Leu	atc Ile	1263
gaa aaa gat Glu Lys Asp 395	gtt aad Val Asi	aga a Arg :	aca gat Thr Asp	cga Arg	aca Thr	aac Asn 405	aag Lys	ttt Phe	tat Tyr	gaa Glu	ggc Gly 410	1311
caa gat aat Gln Asp Asn		Leu :				-		-				1359
tgt atg tat Cys Met Tyr	_	_	~~		-			_	_	_		1407
ctt tcc cct Leu Ser Pro 445	Leu Le			Glu								1455
tgc ttt gcc Cys Phe Ala 460		Met 1										1503
atg caa ggc Met Gln Gly 475		·	_		_	_	-				_	1551
ttg tta gac Leu Leu Asp		/ Phe (				-		_	-			1599
tac ctt tat Tyr Leu Tyr	-						_				_	1647
ttt agt ttt	cta gat	att o	ctt cga	tta	tgg	gag	gta	atg	tgg	acc	gaa	1695

we	O 01/5	5437												;	PCT/U	S01/02623
Ile	Ile	Tyr	Glu	Gln 15	Glu	Gly	Val	Tyr	Ile 20	His	Ser	Ser	Cys	Gly 25	Lys	
acc Thr	aat Asn	gac Asp	caa Gln 30	gac Asp	ggc Gly	ttg Leu	att Ile	tca Ser 35	gga Gly	ata Ile	tta Leu	cgt Arg	gtt Val 40	tta Leu	gaa Glu	207
														gca Ala		255
														gtt Val		303
gaa Glu 75	tgg Trp	act Thr	cag Gln	gcc Ala	cca Pro 80	aaa Lys	gaa Glu	aga Arg	ggt Gly	cat His 85	cga Arg	gga Gly	tca Ser	gaa Glu	cat His 90	351
														tca Ser 105		399
aaa Lys	agg Arg	aaa Lys	cca Pro 110	cat His	acc Thr	aat Asn	gga Gly	gat Asp 115	gct Ala	cca Pro	agt Ser	cat His	aga Arg 120	aat Asn	Gly ggg	447
aaa Lys	agc Ser	aaa Lys 125	tgg Trp	tca Ser	ttc Phe	ctg Leu	ttc Phe 130	agt Ser	ttg Leu	aca Thr	gac Asp	ctg Leu 135	aaa Lys	tca Ser	atc Ile	495
aag Lys	caa Gln 140	aac Asn	aaa Lys	gag Glu	ggt Gly	atg Met 145	ggc Gly	tgg Trp	tcc Ser	tat Tyr	ttg Leu 150	gta Val	ttc Phe	tgt Cys	cta Leu	543
aag Lys 155	gat Asp	gac Asp	gtc Val	gtt Val	ctc Leu 160	cct Pro	gct Ala	cta Leu	cac His	ttt Phe 165	cat His	caa Gln	gga Gly	gat Asp	agc Ser 170	591
aaa Lys	cta Leu	ctg Leu	att Ile	gaa Glu 175	tct Ser	ctt Leu	gaa Glu	aaa Lys	tat Tyr 180	gtg Val	gta Val	ttg Leu	tgt Cys	gaa Glu 185	tct Ser	639
cca Pro	cag Gln	gat Asp	aaa Lys 190	aga Arg	aca Thr	ctt Leu	ctt Leu	gtg Val 195	aat Asn	tgt Cys	cag Gln	aat Asn	aag Lys 200	agt Ser	ctt Leu	687
tca Ser	cag Gln	tct Ser 205	ttt Phe	gaa Glu	aat Asn	ctt Leu	ctt Leu 210	gat Asp	gag Glu	cca Pro	gca Ala	tat Tyr 215	ggt Gly	tta Leu	ata Ile	735
caa Gln	aaa Lys 220	att Ile	aaa Lys	aag Lys	gac Asp	ect Pro 225	tat Tyr	acg Thr	gca Ala	act Thr	atg Met 230	ata Ile	gga Gly	ttt Phe	tcc Ser	783
aaa Lys 235	gtc Val	aca Thr	aac Asn	tac Tyr	att Ile 240	ttt Phe	gac Asp	agt Ser	ttg Leu	aga Arg 245	gly	agc Ser	gat Asp	ccc Pro	tct Ser 250	831
aca Thr	cat His	caa Gln	cga Arg	cca Pro 255	cct Pro	tca Ser	gaa Glu	atg Met	gca Ala 260	gat Asp	ttt Phe	ctt Leu	agt Ser	gat Asp 265	gct Ala	879
att	cca	ggt	cta	aag	ata	aat	caa	caa	gaa	gaa	cca	gga	ttt	gaa	gtc	927

WO 01/55437 PCT/US01/	02623												
<220> <221> CDS <222> (182)(520)													
<400> 234 ggtaccgctc cggaattacc gggtcgaccc acgcgtccga aagagctaag ggaatgggga													
agtttcaaca tcatgggact attgaactgt aattcagaag acacagtcaa ataaaactac													
aagtagaage teggagaaaa agetgetgee tteteagetg etacgaggtg aggagteagg													
g atg ggg att caa tgg aca tgt gaa tgg ccg tcg tct ctg tca cct Met Gly Ile Gln Trp Thr Cys Glu Trp Pro Ser Ser Leu Ser Pro 1 5 10	226												
ggg tgg aag ttc ata gca tgt ctc tgg ttc tcc atg tgg ggg tca cgc Gly Trp Lys Phe Ile Ala Cys Leu Trp Phe Ser Met Trp Gly Ser Arg 20 25 30	274												
cct cca ctt tct caa gct atg agt cac aag caa tgg ccc atg ctg tgt Pro Pro Leu Ser Gln Ala Met Ser His Lys Gln Trp Pro Met Leu Cys 35 . 40 . 45	322												
age tee att tet aac eeg gaa get tet gga aeg gaa etg tte ace tae Ser Ser Ile Ser Asn Pro Glu Ala Ser Gly Thr Glu Leu Phe Thr Tyr 50 55 60	370												
cat ttt cat atg atg gga tac att gaa agg ttt tgg ccg aca gaa gaa His Phe His Met Met Gly Tyr Ile Glu Arg Phe Trp Pro Thr Glu Glu 65 70 75	418												
tta gct caa cgc tgt agt ttg cat aaa gag ctg ccc tgc act gtg ttc Leu Ala Gln Arg Cys Ser Leu His Lys Glu Leu Pro Cys Thr Val Phe 80 85 90 95	466												
aca gag aag cac tgc tct tgc act ttc ctc atg gtg ttt ggg gtt tgc Thr Glu Lys His Cys Ser Cys Thr Phe Leu Met Val Phe Gly Val Cys 100 105 110	514												
aca tga gacttagete atgtggetaa geecatgggt tteeaggega aagaaaagge Thr *	570												
<210> 235 <211> 3212 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> (82)(2106)													
<400> 235 tttgacgata gaacgcetta cgtaccgage cggaattece gagtegacce acgegtgege	60												
ccacgcgttc gcgcaggaaa c atg gcg tcg gcg ggt gtt gtg agc ggg aag Met Ala Ser Ala Gly Val Val Ser Gly Lys  1 5 10	111												
att ata tat gaa caa gaa gga gta tat att cac tca tct tgt gga aag	159												

tatcatatgt taaacaatat cccattgttg aagaaaatta cactggaaag cgtaaaatat	648
agettggatg ceacattgag tggae	673
<210> 233 <211> 698	
<212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> (146)(382)	
<400> 233	
cgttggtacc cctgcggtac cgctccggaa ttcccgggtc gacccacgcg tccgatttaa	60
gagtatgtgc ttaaacagtt taatagtgca tgtgcgttgg aacttttaaa aataagtcat	120
atggatacag ggctgctgct taggg atg tgc agg tta tac agt tgt gca agg	172
Met Cys Arg Leu Tyr Ser Cys Ala Arg 1 5	
atg cca ttg ttc tcc act gtt ctc ttt tct aat gtt tat att aat gat	220
Met Pro Leu Phe Ser Thr Val Leu Phe Ser Asn Val Tyr Ile Asn Asp	220
10 15 20 25	
ttc ctt ctg cag aaa cct gaa aat act aca agc caa cca ctt tct aat	268
Phe Leu Leu Gln Lys Pro Glu Asn Thr Thr Ser Gln Pro Leu Ser Asn 30 35 40	
COR COR OTT OTA COR OTA COR OTA COT OTA COR OTA COR	216
cag cga gtt gta gag gtg gcg atc cct cat gta ggg aaa ttt atg att Gln Arg Val Val Glu Val Ala Ile Pro His Val Gly Lys Phe Met Ile	316
45 50 55	
gaa tca aag gag ggg ggg tat gat gac gag gta cct ttt aca gcc ctc	364
Glu Ser Lys Glu Gly Gly Tyr Asp Asp Glu Val Pro Phe Thr Ala Leu 60 65 70	
tgc acc att gct act taa cttttg ctatttaata caaatacttt gggcatgcct	410
Cys Thr Ile Ala Thr *	418
75	
gcaccctcat acttaatgtc tattgccaca taacatacag ctttgccccc tcatagtcca	478
aaattacttt accaattatt aacagaactt tgaatttcaa atgaaaattt aagtagaaaa	538
cttatggaat ttgtcaaaag aattttctgt ttgtggagtt aattctttta tgcagaaata	598
gtaccagttt acttccaggt tggcagatta caataagatt tgtttaatta gtacaaaaat	658
tttttgcatt taaaaataat tttttatatt ccattcttgc	698

PCT/US01/02623

<210> 234 <211> 570 <212> DNA

WO 01/55437

<213> Homo sapiens

WO 01/55437 PCT/US01/0	2623
gcttgtcaat cgcaaccttc cagaagcata gtctccaggc tctcagctgc agctgccagg	576
ccacaggggg cactgtgggt accgcctgga tgcatgctga gtgatgcaga ggcctccact	636
cactcgttca ggggctgatg acgtgggttc tcttttccct gttgtcgtgt gacagggcca	696
tttgaccatc tcactaattc ccaacacgga gttatccaac cagtcttcat atttaccagt	756
ttctggaata cccaagtgcc ttaggacata ggaggtgccc tgtgaaggtt gatgtcatta	816
aaaaatttga aacaccctat ttgatcagag tttatggtca aaaatcagat gtttggggga	876
gaacaggaac ctggctaagt tactgaaata atgaactaaa aattgacctt acttggaaaa	936
atecaagaet tetegtgeeg aattettgge etegagggee aaat	980
<210> 232	
<211> 673 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (153)(428)	
<400> 232 gcaggcaccg gtccggaatt cccgggtcga cccacgcgtc cgatgttacg tgggttgtaa	60
atgtaattgt taatattatt taaaaatttt tgaaaagtga tttttagtgg tggccttatc	120
atatctacat attattactc caccattttg gg atg ttt agg tcg aat cct ggt	173
Met Phe Arg Ser Asn Pro Gly	
ttt ttc ttc ttt tgc tgt tgt aag tca tgt ata ttg gca att agc cta Phe Phe Phe Phe Cys Cys Cys Lys Ser Cys Ile Leu Ala Ile Ser Leu	221
10 15 20	
gga gag att cct aga aat gag ttc act gag aat atg agc tta aga gaa	269
Gly Glu Ile Pro Arg Asn Glu Phe Thr Glu Asn Met Ser Leu Arg Glu 25 30 35	
agt gag gat tta aag cca gat ctg tct gcc ttc aaa tcc agc gct ctt	317
Ser Glu Asp Leu Lys Pro Asp Leu Ser Ala Phe Lys Ser Ser Ala Leu	
40 45 50 55	
	3.55
tat act gat gtg agt tot cot gto ttt ttt acc tat cag aat tot aga	365
tat act gat gtg agt tct cct gtc ttt ttt acc tat cag aat tct aga Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70	365
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70	
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg	413
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70 act ctc cca gag aaa cca ggc aga tac tgc tcc aca ccg gtg agc tgc	
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70  act ctc cca gag aaa cca ggc aga tac tgc tcc aca ccg gtg agc tgc Thr Leu Pro Glu Lys Pro Gly Arg Tyr Cys Ser Thr Pro Val Ser Cys 75 80 85  ttc tca cct ggg tag tctagggtgg tttgctccag aattgtattt ctgcttttc	
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70  act ctc cca gag aaa cca ggc aga tac tgc tcc aca ccg gtg agc tgc Thr Leu Pro Glu Lys Pro Gly Arg Tyr Cys Ser Thr Pro Val Ser Cys 75 80 85	413
Tyr Thr Asp Val Ser Ser Pro Val Phe Phe Thr Tyr Gln Asn Ser Arg 60 65 70  act ctc cca gag aaa cca ggc aga tac tgc tcc aca ccg gtg agc tgc Thr Leu Pro Glu Lys Pro Gly Arg Tyr Cys Ser Thr Pro Val Ser Cys 75 80 85  ttc tca cct ggg tag tctagggtgg tttgctccag aattgtattt ctgcttttc Phe Ser Pro Gly *	413

atcagagtca tetgetttae etgacatgag cacaegttgt catatatttg cacatgcaga

WO 01/55437 PCT/US01.	/02623
Ser Gln Asn Thr Leu His Trp Pro Val Trp Gly Pro Gln Thr Thr Leu	.02020
65 70 75	
cca agt tcc caa gcc agc ttt gtt ggc tgg gcc cat agt cat tcc ccc Pro Ser Ser Gln Ala Ser Phe Val Gly Trp Ala His Ser His Ser Pro 80 85 90	470
ttg gct gtt cct gcg tct tct gac tgt gtc ctc taa atgc cctctggacc	520
Leu Ala Val Pro Ala Ser Ser Asp Cys Val Leu * 95 100 105	320
tggaagtttt tttggacaaa gggctcaggg gcggactcaa agctaccagg ggggggggg	580
gggetettaa etteteeeet etgggacaca ageaeggeac acaegegegt gaaggggget	640
tttattt	647
<210> 231	
<211> 980 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> (133)(453)	
<400> 231	
atttggccct cgaggccaag aattcggcac gagctggcta tctacatgga agggtagggt	60
ttatgacggc aatacacaat agaagatgcc tttggcaaga ccgctgctct ccttagagag	120
aatatcttgc ca atg gct ttg ctt cat atc tgc gtg ggg cac cct ctc  Met Ala Leu Leu His Ile Cys Val Gly His Pro Leu  1 5 10	168
ctt tcc ttc ccc aag gct ggg gac ttt tct ttt tca tct caa gat gac	
	216
Leu Ser Phe Pro Lys Ala Gly Asp Phe Ser Phe Ser Ser Gln Asp Asp 15 20 25	216
15 20 25  ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt	216
15 20 25	
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40	264
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser	
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct	264
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att	264
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60	264 312
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att Trp Gln Leu Phe Leu Leu Ser Phe Ser Leu Val Ser Phe Thr Leu Ile 65 70 75	264 312
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att Trp Gln Leu Phe Leu Leu Ser Phe Ser Leu Val Ser Phe Thr Leu Ile 65 70 75  tat agg ggt gaa ttt aag aaa tct ggt gag gct aag gac tat ttg acc Tyr Arg Gly Glu Phe Lys Lys Ser Gly Glu Ala Lys Asp Tyr Leu Thr	264 312 360
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att Trp Gln Leu Phe Leu Leu Ser Phe Ser Leu Val Ser Phe Thr Leu Ile 65 70 75  tat agg ggt gaa ttt aag aaa tct ggt gag gct aag gac tat ttg acc Tyr Arg Gly Glu Phe Lys Lys Ser Gly Glu Ala Lys Asp Tyr Leu Thr 80 85 90	264 312 360 408
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att Trp Gln Leu Phe Leu Leu Ser Phe Ser Leu Val Ser Phe Thr Leu Ile 65 70 75  tat agg ggt gaa ttt aag aaa tct ggt gag gct aag gac tat ttg acc Tyr Arg Gly Glu Phe Lys Lys Ser Gly Glu Ala Lys Asp Tyr Leu Thr 80 85 90  caa gtc cag gga ccc ata gac tgt ggg aaa ctc tta gct aca tga aaa	264 312 360
ccc tct gag ctg aca gca gga gcc aaa gac aaa gaa ttt tct tgc ctt Pro Ser Glu Leu Thr Ala Gly Ala Lys Asp Lys Glu Phe Ser Cys Leu 30 35 40  ctc gtt atc tgc ctc caa ccc gcc ccg agc act cgt tcc ctc ttc tct Leu Val Ile Cys Leu Gln Pro Ala Pro Ser Thr Arg Ser Leu Phe Ser 45 50 55 60  tgg cag cta ttt ttg ctc agt ttc tct ctg gtt tct ttt act ttg att Trp Gln Leu Phe Leu Leu Ser Phe Ser Leu Val Ser Phe Thr Leu Ile 65 70 75  tat agg ggt gaa ttt aag aaa tct ggt gag gct aag gac tat ttg acc Tyr Arg Gly Glu Phe Lys Lys Ser Gly Glu Ala Lys Asp Tyr Leu Thr 80 85 90	264 312 360 408

PCT/US01/02623 WO 01/55437 aaacaggagc tgaagaaaag aaattettgg aaccageegt aacccagtaa ggaattgtga 1896 agttgtgttt ttattttgtt tcattttttg cagagtatta agaacattat tctggaacat cagaacgttt cccttagacc gatcccagca ggtggcagct cagattgctg cagtgttgta 2016 attataactg attgtactta agttatggat gtagagaata tgtttcattc atttattcag 2076 catgtaaata aaattgatcc tgttgagtta tcataattgc agtttcanca tctgccatga 2136 ttattctttt cacgtatcat tcattctgta catttgtgta cattgagaag tatagcaatc 2196 tatgtaaatg taatcctcag tgaggttcct cagtgctagg tcccatagga ttgtcgttgc 2256 ccttgttaat gaggtttctc tgttcagcgg cttcaatttt tttctctttg tacatctagt 2316 tttgaagatt tacttcaagt ttgaatcttc tagaatgctt gtaagtccag ttttaatttt 2376 tagagtcaat ttgtagttac atgtagttta acttttggga aacgtcttaa cattgttctg 2436 agaataaact tgctaatgag gtcaggtcat ggtacagact gatgcagtca acatgatttc 2496 2556 cacaattcta cataaatttt gacataccat ctaatttata aaaatcaata aaaaaggttt 2616 2627 tggtaaaaaa a

<210> 230 <211> 647 <212> DNA <213> Homo sapiens

<220>
<221> CDS

<222> (192)..(506)

<400> 230 atacgactca ctatagggaa tttggccctc gaggccaaga attcggcacg aggcatcagc 60 tcgtagggac tgagccaggg ttggagtcca gactgacttg ctggatctgc agctttctcc 120 ttttcagcac tgctgggttc tatcgtgaga acagatgggc tcatggccat gacggttagg 180 aggictgeet t atg eta get eat ete tee tit gag egt age etg ate ett 230 Met Leu Ala His Leu Ser Phe Glu Arg Ser Leu Ile Leu cat ctt att ttc tca ggc ata gca gtg tcc ata aag gcc cta aca aag 278 His Leu Ile Phe Ser Gly Ile Ala Val Ser Ile Lys Ala Leu Thr Lys 20 act tgg atg ccc cca gag atg ggg agc tca cca gtc tat aag gct ttc 326 Thr Trp Met Pro Pro Glu Met Gly Ser Ser Pro Val Tyr Lys Ala Phe 35 374 age ett ete eag tge agg ete tet gea eag aaa tgg gge tee tge eac Ser Leu Leu Gln Cys Arg Leu Ser Ala Gln Lys Trp Gly Ser Cys His 50 55 tee caq aac acc ctt cac tgg cct gtg tgg ggt cct cag acc acc ctt 422

WO 01/5543	37									1	CT/U	S01/02623
gtc ttt tt Val Phe Le				-	_	_					_	826
aac tgg ga Asn Trp G					Asp							874
tcc atg to Ser Met Se			Val I									922
atg aag tt Met Lys Le 210					_	_	_	_	_	_		970
gac gaa ti Asp Glu Le 225						_				•	_	1018
gat att ga Asp Ile G												1066
gtc ctt ga Val Leu As	_		-	-	Trp				-			1114
ctg aat gi Leu Asn Va 2			Tyr 1	_	-	-			_			1162
tat agg ga Tyr Arg As 290												1210
aat gaa c Asn Glu Le 305	-		-		_		_	_				1258
cgt gta ao Arg Val Ti												1306
gat gga go Asp Gly A	ca cca la Pro 340	aat aaa Asn Lys	gat o	ctg act Leu Thi 345	Gln	gac Asp	tga *	ctc	t ga	tagto	gtag	1356
cattttccc	t gggg	gagttt t	ggttt	taat ta	gatg	gttc	acta	acca	ctg (	ggtag	gtgcc	a 1416
ttttggccg	g acat	ggttgg g	gtaaco	ccag to	acac	cago	acto	gatto	gga (	ctgc	cctac	a 1476
ccaatcagaa	a gctc	agtgcc c	aatggg	gcca ct	gttt	gac	tcg	gaato	cat	gttgi	gcac	t 1536
atagtcaaa	t gtac	tgtaaa g	tgaaaa	aggg at	gtgc	aaaa	aaat	caaaa	aaa a	aaaca	aacaa	a 1596
aaaagctaad	c cttc	tattag a	aaaggg	ggac ag	ggga	atga	gtaa	acti	tct 1	tttai	tgcg	g 1656
acaaatgtg	c acata	agccgc t	agtaaa	aact ag	recte	aaac	agga	atgci	ca 1	taget	taat	a 1716
ataaaagcto	g tgcaa	aaggcc a	tgaatg	gaat ga	attt	ctg	ttta	attt	cac 1	tgato	gcaca	c 1776
attacctcat	t tgaca	aattca g	aagtaa	aatc ca	acgt	gtgt	tgad	eteti	gg a	aaago	cagca	a 1836

<210> 229 <211> 2627 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (299)..(1342) <220> <221> misc_feature <222> (1)...(2627)  $\langle 223 \rangle$  n = a,t,c or g <400> 229 tattcagact tctgatccag aaaattttca gtctgaagaa cgatcagact cagatgtgaa 60 taatgacagg agtacaagtt cagtggacag tgatattett agetecagte atagcagtga 120 tactttgtgc aatgcagaca atgctcagat ccctttggct aatggacttg actctcacag 180 tatcacaagt agtagaagaa cgaaagcaaa tgaagggaaa aaagaaacat gggatacagc 240 agaagaagac tetggaactg atagtgaata tgatgagagt ggcaagagta ggggagaa 298 atg cag tac atg tat ttc aaa gct gaa cct tat gct gca gat gaa ggt 346 Met Gln Tyr Met Tyr Phe Lys Ala Glu Pro Tyr Ala Ala Asp Glu Gly 10 tct ggg gaa gga cat aaa tgg ttg atg gtg cat gtt gat aaa aga att 394 Ser Gly Glu Gly His Lys Trp Leu Met Val His Val Asp Lys Arg Ile 20 25 act ctg gca gct ttc aaa caa cat tta gag ccc ttt gtt gga gtt ttg 442 Thr Leu Ala Ala Phe Lys Gln His Leu Glu Pro Phe Val Gly Val Leu 35 490 tcc tct cac ttc aag gtc ttt cga gtg tat gcc agc aat caa gag ttt Ser Ser His Phe Lys Val Phe Arg Val Tyr Ala Ser Asn Gln Glu Phe gag ago gto egg etg aat gag aca ett tea tea ttt tet gat gac aat 538 Glu Ser Val Arg Leu Asn Glu Thr Leu Ser Ser Phe Ser Asp Asn aag att aca att aga ctg ggg aga gca ctt aaa aaa gga gaa tac aga 586 Lys Ile Thr Ile Arg Leu Gly Arg Ala Leu Lys Lys Gly Glu Tyr Arg 85 90 gtt aaa gta tac cag ctt ttg gtc aat gaa caa gag cca tgc aag ttt 634 Val Lys Val Tyr Gln Leu Leu Val Asn Glu Gln Glu Pro Cys Lys Phe ctg cta gat gct gtg ttt gct aaa gga atg act gta cgg caa tca aaa 682 Leu Leu Asp Ala Val Phe Ala Lys Gly Met Thr Val Arg Gln Ser Lys 115 gag gaa tta att cct cag ctc agg gag caa tgt ggt tta gag ctc agt 730 Glu Glu Leu Ile Pro Gln Leu Arg Glu Gln Cys Gly Leu Glu Leu Ser 130 135 att gac agg ttt cgt cta agg aaa aaa aca tgg aag aat cct ggc act 778 Ile Asp Arg Phe Arg Leu Arg Lys Lys Thr Trp Lys Asn Pro Gly Thr 145 150 155 160

tac Tyr	tgg Trp	aag Lys	aca Thr 65	acg Thr	ctc Leu	tct Ser	gct Ala	gag Glu 70	cag Gln	aac Asn	gca Ala	cac His	atg Met 75	gag Glu	gct Ala	541
gtc Val	ctg Leu	cag Gln 80	aga Arg	agt Ser	gcc Ala	gcg Ala	cac His 85	atg Met	agg Arg	cac His	ctt Leu	ttg Leu 90	atg Met	tcc Ser	cag Gln	589
cag Gln	acc Thr 95	ctg Leu	agg Arg	aat Asn	gtg Val	cca Pro 100	ccg Pro	ata Ile	gtg Val	ttt Phe	gtt Val 105	caa Gln	gac Asp	aag Lys	gga Gly	637
aat Asn 110	gca Ala	gct Ala	cta Leu	gct Ala	gag Glu 115	ctt Leu	gat Asp	cag Gln	tta Leu	ctg Leu 120	gca Ala	gtc Val	gca Ala	gac Asp	Phe 125	685
gga Gly	ccc Pro	egg Arg	gat Asp	gaa Glu 130	aga Arg	gac Asp	aac Asn	ttt Phe	gta Val 135	caa Gln	aat Asn	gat Asp	ttc Phe	agg Arg 140	gac Asp	733
cct Pro	gat Asp	gcc Ala	cca Pro 145	caa Gln	ccc Pro	tgc Cys	ggc Gly	acc Thr 150	aca Thr	gag Glu	ccg Pro	acc Thr	aca Thr 155	agc Ser	tcc Ser	781
agt Ser	ctg Leu	tgt Cys 160	GJ A BBB	atc Ile	gat Asp	cat His	gag Glu 165	gcg Ala	ctc Leu	cac His	aag Lys	cag Gln 170	att Ile	atg Met	gag Glu	829
tac Tyr	aaa Lys 175	agg Arg	agg Arg	aaa Lys	gat Asp	aaa Lys 180	Gly	ctc Leu	Gly 393	ggc	ctg Leu 185	gtg Val	.tgg Trp	cag Gln	GJÅ aaa	877
			gag Glu													925
aag Lys	ccc Pro	cgc Arg	ctg Leu	gag Glu 210	Gln	gac Asp	agc Ser	tcc Ser	ctc Leu 215	Lys	agt Ser	tac Tyr	ctg Leu	Ser 220	ggc	973
gag Glu	gag Glu	gtt Val	gaa Glu 225	Asp	gac Asp	ctg Leu	gac Asp	Leu 230	Val	ggt Gly	gcc Ala	ccg Pro	gag Glu 235	Tyr	gaa Glu	1021
tgc Cys	tat Tyr	gcc Ala 240	Pro	gac Asp	aca Thr	gag Glu	gag Glu 245	Leu	gag Glu	gca Ala	gag Glu	aga Arg 250	Gly	ggt	ggc	1069
aga Arg	aca Thr 255	Glu	gat Asp	ggc	cac His	ago Ser 260	Cys	gga Gly	gca Ala	agc Ser	agg Arg 265	Glu	tag *	atg	gaga	1118
ggc.	tctg	ccc	atco	caca	tt t	gcag	ggaa	a ag	catt	ggca	cgc	aacg	cag	catg	tggctt	1178
cat	tgag	gca	gttg	atgg	ag t	taaa	.ccat	c tg	ctct	tctg	cta	cttc	aac	attt	tctagc	1238
ttt	tccg	tgt	atct	aaac	ac a	attt	.gcta	c ac	aagt	cact	gtt	tttt	ttt	ccat	gcactg	1298
tgt	gtaa	ttt	aaaa	atta	aa t	ggcc	atct	t at	.caca	aaaa	aaa	aaaa	aaa			1348

WO 01/55437 PCT/US01/0	02 <b>623</b> 210
gct agt ctg tct cca aaa aaa gtg gac tgc agc att tac aag aag tat Ala Ser Leu Ser Pro Lys Lys Val Asp Cys Ser Ile Tyr Lys Lys Tyr 25 30 35	210
cca gtg gtg gcc atc ccc tgc ccc atc aca tac cta cca gtt tgt ggt Pro Val Val Ala Ile Pro Cys Pro Ile Thr Tyr Leu Pro Val Cys Gly 40 45 50	258
tct gac tac atc acc tat ggg aat gaa tgt cac ttg tgt acc gag agc Ser Asp Tyr Ile Thr Tyr Gly Asn Glu Cys His Leu Cys Thr Glu Ser 55 60 65 70	306
ttg aaa agt aat gga aga gtt cag ttt ctt cac gat gga agt tgc taa Leu Lys Ser Asn Gly Arg Val Gln Phe Leu His Asp Gly Ser Cys * 75 80 85	354
attctccatg gacatagaga gaaaggaatg atattctcat catcatcttc atcatcccag	414
gctctgactg agtttctttc agttttactg atgttctggg tgggggacag agccagattc	474
agagtaatct tgactgaatg gagaaagttt ctgtgctacc cctacaaacc catgcctcac	534
tgacagacca gcattttttt tttaacacgt caataaaaaa ataatctccc agaaaaaaaa	594
aaaaaaaa	602
<210> 228 <211> 1348 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (311)(1111) <400> 228	
taccgtagac ccaagcaggc tagcgttgaa acttaagctt ggtaccgagc tcggatccac	60
tagtecagtg tggtggaatt egtgggetge ggegggeggg etgtggeget eeegegeggg	120
teteegggee etgtteegta geegegatge tgegetattt ecaggetgeg ageggggaet	180
tcactgctct gctgtctcct gcaagaactg gctcaagaaa tttgcctcga aaaccaaaaa	240
aaaggtttgg tatgaaagtc cttccttggg ttctcactcg acttacaaac catccaagtt	300
ggaatteete atg agg age ace tea aag aaa ace agg aag gaa gae eat Met Arg Ser Thr Ser Lys Lys Thr Arg Lys Glu Asp His 1 5 10	349
gcg cgc ctg agg gcc ctg aac ggc ctc ctc tat aag gca ctg aca gac Ala Arg Leu Arg Ala Leu Asn Gly Leu Leu Tyr Lys Ala Leu Thr Asp 15 20 25	397
ctg ctg tgt acc cct gaa gtg agt cag gag ctg tat gac ctt aac gtg Leu Leu Cys Thr Pro Glu Val Ser Gln Glu Leu Tyr Asp Leu Asn Val 30 35 40 45	445
gag ctc tcc aag gtt tcc ctg act cca gac ttc tca gcc tgc cga gcg Glu Leu Ser Lys Val Ser Leu Thr Pro Asp Phe Ser Ala Cys Arg Ala 50 55 60	493

WO 01/55437 PCT/US01/	02623											
ttettegeaa aatattaggt tgateaaegg gecaetaaaa taetggtgga tegetttgee	240											
cttggcaagg cttaatttta gacatcttta gcaagggttg gcttaaattt gctattcttt	300											
atagggcaag teteteagtg ttgagatgca gtgettaete etaaaat atg ate ett Met Ile Leu 1												
atg gta ttt cag tgg aaa tat aca agt tta cca agg tct tct acc ttg Met Val Phe Gln Trp Lys Tyr Thr Ser Leu Pro Arg Ser Ser Thr Leu 5 10 15	404											
atg gac tgg aac ttg caa ttc tct ttg cta ctg tgg gca act gct gac Met Asp Trp Asn Leu Gln Phe Ser Leu Leu Leu Trp Ala Thr Ala Asp 20 25 30 35	452											
atc tct gat cag ctc ttt caa cct cca cag aag ttt tcc tgg gat cct Ile Ser Asp Gln Leu Phe Gln Pro Pro Gln Lys Phe Ser Trp Asp Pro 40 45 50	500											
ctg gag agt gcc ctg tgc ttg tac agt tca ggg tca gcc aag gat ttg Leu Glu Ser Ala Leu Cys Leu Tyr Ser Ser Gly Ser Ala Lys Asp Leu 55 60 65	548											
aag gga gaa atg cag agc ttt tgg tac cca gcc cgc aaa tcc cca cca Lys Gly Glu Met Gln Ser Phe Trp Tyr Pro Ala Arg Lys Ser Pro Pro 70 75 80	596											
ctc cat ctc ccc gct ctg cag ctc ttt tat ttt ggg gag ctc cca tgt Leu His Leu Pro Ala Leu Gln Leu Phe Tyr Phe Gly Glu Leu Pro Cys 85 90 95	644											
aaa ttt tta cct gct ctg gtt gtc cca ggc tcc acc ctc cca ccc tcc Lys Phe Leu Pro Ala Leu Val Val Pro Gly Ser Thr Leu Pro Pro Ser 100 105 110 115	692											
agg cca ctg tga aca tctggtgtgt gccatgtctg catccacacg actgaatact Arg Pro Leu *	747											
<210> 227 <211> 602 <212> DNA												

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (97)..(354) <400> 227 taggtacege teeggaatte eegggtegae eeaegegtee geecaegegt eeggtgacaa 60 teteagagea gettetaeae eacageeatt teeage atg aag ate aet ggg ggt 114 Met Lys Ile Thr Gly Gly ctc ctt ctg ctc tgt aca gtg gtc tat ttc tgt agc agc tca gaa gct 162 Leu Leu Leu Cys Thr Val Val Tyr Phe Cys Ser Ser Ser Glu Ala 10 15 20

THIS PAGE BLANK (USPTO)

	UI/J.															
Arg	Leu	Ala	Tyr 310	His	Leu	Ala	Val	Val 315	Leu	Gly	Ser	Ala	Ala 320	Asn	Pro	
ctg Leu	gcc Ala	tgc Cys 325	ttc Phe	ctg Leu	gcc Ala	atg Met	ggt Gly 330	gtg Val	ctg Leu	tgc Cys	agg Arg	tcc Ser 335	ttg Leu	gca Ala	glà ààa	1603
ctg Leu	ggc Gly 340	ggc Gly	ctc Leu	tct Ser	ctg Leu	ctg Leu 345	ggc Gly	gtg Val	ttc Phe	tgt Cys	ggg Gly 350	ggc Gly	tac Tyr	ctg Leu	atg Met	1651
gcg Ala 355	ctg Leu	gca Ala	gtc Val	ctg Leu	agc Ser 360	ccc Pro	tgc Cys	ccg Pro	ccc Pro	ctg Leu 365	gtg Val	ggc Gly	acc Thr	tcg Ser	gcg Ala 370	1699
Gly ggg	gtg Val	gtc Val	ctc Leu	gtg Val 375	gtg Val	ctg Leu	tcg Ser	tgg Trp	gtg Val 380	ctg Leu	tgt Cys	ctt Leu	ggc Gly	gtg Val 385	ttc Phe	1747
tcc Ser	tac Tyr	gtg Val	aag Lys 390	Val	gca Ala	gcc Ala	agc Ser	tcc Ser 395	ctg Leu	ctg Leu	cat His	ggc Gly	999 Gly 400	ggc Gly	cgg Arg	1795
ccg Pro	gca Ala	ttg Leu 405	Leu	gca Ala	gcc Ala	ggc	gtg Val 410	gcc Ala	atc Ile	cag Gln	gtg Val	ggc Gly 415	tct Ser	ctg Leu	ctc . Leu	1843
ggc Gly	gct Ala 420	Val	gct Ala	atg Met	ttc Phe	ccc Pro 425	Pro	acc Thr	agc Ser	atc Ile	tat Tyr 430	His	gtg Val	ttc Phe	cac His	1891
agc Ser 435	Arg	aag Lys	gac Asp	tgt Cys	gca Ala 440	Asp	Pro	tgt Cys	gac Asp	tcc Ser 445	*	gcc	t gg	gcag	gtgg	1941
gga	cccc	gct	cccc	aaca	.cc t	gtct	ttcc	c to	aatg	ctgc	cac	catg	cct	gagt	gcctgc	2001
ago	ccag	gag	gccc	gcac	ac c	ggta	cact	c gt	ggac	acct	aca	cact	.cca	tagg	agatcc	2061
tgg	cttt	.cca	gggt	gggc	aa g	ggca	agga	ıg ca	ggct	tgga	gcc	aggg	acc	agtg	ggggct	2121
gta	gggt	aag	cccc	tgag	raa t	ggga	ccta	ıc at	gtgg	tttg	r cgt	aata	aaa	catt	tgtatt	2181
taa	ıaaaa	ıaaa	aaaa	aa					٠						•	2197
	<2 <2				piens	5										
	<2		CDS (348	•	(704)	)										

WO 01/55437

<400> 226

PCT/US01/02623

60

120

180

gtcataggat cggacaggaa aggtgcgaaa acataaaagt cagtccaatg acaaaggata

aaaggtgtga ttcgtataga cacccaagaa ggcattgcac accaagaacg taaagctcga

aaaaagaatt ttattaaggt aaaggatttg aggttacatg tggaaaggcc tggatattat

wo	01/5:	5437												F	CT/U	S01/02623
Val	Ser	Val	Leu	Val 55	Ala	Leu	Gly	Asn	Leu 60	Gly	Leu	Leu	Val	Val 65	Thr	
ctc Leu	tgg Trp	agg Arg	agg Arg 70	ctg Leu	gcc Ala	cca Pro	gga Gly	aag Lys 75	gac Asp	gag Glu	cag Gln	gtc Val	ccc Pro 80	atc Ile	cgg Arg	835
gtg Val	gtg Val	cag Gln 85	gtg Val	ctg Leu	ggc	atg Met	gtg Val 90	ggc Gly	aca Thr	gcc Ala	ctg Leu	ctg Leu 95	gcc Ala	tct Ser	ctg Leu	883
tgg Trp	cac His 100	cat His	gtg Val	gcc Ala	cca Pro	gtg Val 105	gca Ala	gga Gly	cag Gln	ttg Leu	cat His 110	tct Ser	gtg Val	gcc Ala	ttc Phe	931
tta Leu 115	gca Ala	ctg Leu	gcc Ala	ttt Phe	gtg Val 120	ctg Leu	gca Ala	ctg Leu	gca Ala	tgc Cys 125	tgt Cys	gcc Ala	tcg Ser	aat Asn	gtc Val 130	979
act Thr	ttc Phe	ctg Leu	ccc Pro	ttc Phe 135	ttg Leu	agc Ser	cac His	ctg Leu	cca Pro 140	Pro	cgc Arg	ttc Phe	tta Leu	cgg Arg 145	tca Ser	1027
ttc Phe	ttc Phe	ctg Leu	ggt Gly 150	caa Gln	ggc Gly	ctg Leu	agt Ser	gcc Ala 155	ctg Leu	ctg Leu	ccc Pro	tgc Cys	gtg Val 160	ctg Leu	gcc Ala	1075
cta Leu	gtg Val	cag Gln 165	ggt Gly	gtg Val	ggc Gly	cgc Arg	ctc Leu 170	gag Glu	tgc Cys	ccg Pro	cca Pro	gcc Ala 175	ccc Pro	atc Ile	aac Asn	1123
ggc Gly	acc Thr 180	cct Pro	ggc	ccc Pro	ccg Pro	ctc Leu 185	gac Asp	ttc Phe	ctt Leu	gag Glu	cgt Arg 190	ttt Phe	ccc Pro	gcc Ala	agc Ser	1171
acc Thr 195	ttc Phe	ttc Phe	tgg Trp	gca Ala	ctg Leu 200	act Thr	gcc Ala	ctt Leu	ctg Leu	gtc Val 205	gct Ala	tca Ser	gct Ala	gct Ala	gcc Ala 210	1219
ttc Phe	cag Gln	ggt Gly	ctt Leu	ctg Leu 215	ctg Leu	ctg Leu	ttg Leu	ccg Pro	cca Pro 220	cca Pro	cca Pro	tct Ser	gta Val	ccc Pro 225	aca Thr	1267
glà aaa	gag Glu	tta Leu	gga Gly 230	Ser	ggc	ctc Leu	cag Gln	gtg Val 235	gga Gly	gcc	cca Pro	gga Gly	gca Ala 240	gag Glu	gaa Glu	1315
gag Glu	gtg Val	gaa Glu 245	Glu	tcc Ser	tca Ser	cca Pro	ctg Leu 250	Gln	gag Glu	cca Pro	cca Pro	ago Ser 255	Gln	gca Ala	gca Ala	1363
ggc	acc Thr 260	Thr	cct Pro	ggt Gly	cca Pro	gac Asp 265	Pro	aag Lys	gcc Ala	tat Tyr	cag Gln 270	Leu	cta Leu	tca Ser	gcc Ala	1411
cgc Arg 275	Ser	gcc	tgc Cys	ctg Leu	ctg Leu 280	Gly	ctg Leu	ttg Leu	gcc	gcc Ala 285	Thr	aac Asn	gcg Ala	ctg Leu	acc Thr 290	1459
aat Asn	ggc Gly	gtg Val	ctg Leu	Pro 295	Ala	gtg Val	cag Gln	agc Ser	ttt Phe 300	Ser	tgc Cys	tta Leu	ccc Pro	tac Tyr 305	Gly	1507
cgt	ctg	gcc	tac	cac	ctg	gct	gtg	gtg	ctg	ggc	agt	gct	gco	aat	ccc	1555

PCT/US01/02623 WO 01/55437 cattecagee ataagtgact etgagetggg aaggggaaac ecaggaattt tgetaettgg aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg tttgggcgtt 755 815 ctcatgctac aagaagaggc aagagacagg ccccagggct tctggctaga acccgaaaca 875 aaaqqaqctq aaqqcagqtg gcctgagagc catctgtgac ctgtcacact cacctggctc 935 995 cagecteece tacceagggt etetgeacag tgacetteac ageagttgtt ggagtggttt aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa taaagcttct 1055 1081 catcagggtt aaaaaaaaa aaaaaa

<210> 225

<211> 2197

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (590)..(1927)

<400> 225 60 ggcagaggcc cggaaccgcc acgggtgagt cgggtcgtgg ctgctgccgg gtcctgcgcg ctccggactg aggtggcgtc cctgggccgg acggcggtgt cccggcgtgg cgggaagccg 120 gcactggagc gggagcgcac tgggcgcggg accgggaggc gcagggaccg gacggctccc 180 240 gagtegeeca cetgaeggta eegagagge ggegeecete egageagage egteeeggee 300 acteccetgg gatetgactt ggetettgeg gtegegggea eegtgaagee etggggtgtg egtggeteet cetggtagge gecettteee ggegteegge ttggggtggt ggtggegttg 360 actocagece egectetece tggagaggag ggetecaete getecttegg cetecteece 420 tggggeegea gegaeteggg eeggetteet getteeetge etgeeggegg teeegetgge 480 540 tagaagaagt etteaettee caggagagee aaagegtgte tggeeetagg tgggaaaaga actggctgtg acctttgccc tgacctggaa gggcccagcc ttgggctga atg gca 595 Met Ala gca ecc acg ecc gcc cgt ecg gtg etg acc cac etg etg gtg get etc 643 Ala Pro Thr Pro Ala Arg Pro Val Leu Thr His Leu Leu Val Ala Leu tte gge atg gge tee tgg get geg gte aat ggg ate tgg gtg gag eta 691 Phe Gly Met Gly Ser Trp Ala Ala Val Asn Gly Ile Trp Val Glu Leu cct gtg gtg gtc aaa gag ctt cca gag ggt tgg agc ctc ccc tct tac 739 Pro Val Val Lys Glu Leu Pro Glu Gly Trp Ser Leu Pro Ser Tyr 787 gte tet gtg ett gtg get etg ggg aac etg ggt etg etg gtg gtg acc

<210> 224 <211> 1081 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (55)..(621) <400> 224 57 gcacgagggg gcggcgagag gaaacgcggc gccgggccgg gcccggccct ggag atg Met gtc ccc ggc gcc gcg ggc tgg tgt tgt ctc gtg ctc tgg ctc ccc gcg 105 Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu Pro Ala tgc gtc gcg gcc cac ggc ttc cgt atc cat gat tat ttg tac ttt caa 153 Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu Tyr Phe Gln 25 gtg ctg agt cct ggg gac att cga tac atc ttc aca gcc aca cct gcc 201 Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr Ala Thr Pro Ala 40 aag gac ttt ggt ggt atc ttt cac aca agg tat gag cag att cac ctt 249 Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr Glu Gln Ile His Leu gtc ccc gct gaa cct cca gag gcc tgc ggg gaa ctc agc aac ggt ttc Val Pro Ala Glu Pro Pro Glu Ala Cys Gly Glu Leu Ser Asn Gly Phe 345 ttc atc cag gac cag att gct ctg gtg gag agg ggg ggc tgc tcc ttc Phe Ile Gln Asp Gln Ile Ala Leu Val Glu Arg Gly Gly Cys Ser Phe 90 85 ctc tcc aag act cgg gtg gtc cag gag cac ggc ggg cgg gcg gtg atc 393 Leu Ser Lys Thr Arg Val Val Gln Glu His Gly Gly Arg Ala Val Ile 105 ate tet gae aac gea gtt gae aat gae age tte tae gtg gag atg ate 441 Ile Ser Asp Asn Ala Val Asp Asn Asp Ser Phe Tyr Val Glu Met Ile 120 cag gac agt acc cag cgc aca gct gac atc ccc gcc ctc ttc ctg ctc 489 Gln Asp Ser Thr Gln Arg Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu ggc cga gac ggc tac atg atc cgc cgc tct ctg gaa cag cat ggg ctg 537 Gly Arg Asp Gly Tyr Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu 155 150 585 cca tgg gcc atc att tcc atc cca gtc aat gtc acc agc atc ccc acc Pro Trp Ala Ile Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr 165 ttt gag ctg ctg caa ccg ccc tgg acc ttc tgg tag aaga gtttgtccca 635 Phe Glu Leu Leu Gln Pro Pro Trp Thr Phe Trp * 185 180

gat cag cct gtg ttg ga Asp Gln Pro Val Leu As 745	c atc tgc co p Ile Cys P: 750	ca ttt gag ro Phe Glu	gtg aac cgt Val Asn Arg 755	aac agc Asn Ser	2431
tac ttg gct acc tta ac Tyr Leu Ala Thr Leu Th 760	a gag aag a r Glu Lys M 765	tg gtc cac et Val His	atc tat aag Ile Tyr Lys 770	tgg gag Trp Glu	2479
tgactgtggt ctcgaaacct	tgaaggcatg	ctgctggtta	gatgttgttt	getagegeet	2539
agcagcccca agcaagatcc	ctgtttattg	tetgcagtet	agaacattgg g	gaatcatggt	2599
ttgtttgcat tagtatgatt	ctaggaccct	aggtcactga	gacactacag a	attgtgtatc	2659
tgttatgtcc actaaaagag	taattgatgg	gtactttatc	tacattatcc a	atttcttggg	2719
tttaaagcct tcattaacca	ttattgtatg	ttggaaattc	ttattttctt	tattttctgt	2779
gtgactttct ggaccttaga	gagtgtcctc	tcatcatcta	ggaagtgagt	gggcatcaag	2839
cattttctgg ggaatatgac	atcccatctg	agttgtcctg	tcacttaggt	atccttgaag	2899
ggactaaaca tcgtcttggt	actgatttga	tgcaacgtag	atgtaaaaga	gtattattca	2959
gttgaacaca agagggcact	gtagaacctt	gtgtccggtt	tatttctgac	cttgaaggct	3019
gacaatcttt tagtaacttg	teteatetee	acacaagtgt	gtgatagcac	acctgggtgt	3079
gctttgtggc aataacactt	gtgttccagg	tgtgaagtgc	tgggacattg	gcaggcccag	3139
tgatggaagc agctagtgaa	cgattccctt	tgctaatgcc	tagtgcatta	agttcattgc	3199
tttgcgaaag gtaaggaaag	aggccagttg	tttgagcggt	ggggaagatt	ttgttttttc	3259
tagccagctt aggatctcag	gattggtttt	atccaagcta	gtgctttgaa	gaacactatc	3319
tcttgccagg aaaagatgag	tgataggtca	aagcttttac	ttgagtctcc	cctagtgtca	3379
gagatcagga gaaaagacat	aagagaattt	acaaaagcta	ttcagactgc	tattgaaaac	3439
atgagaagaa cttgtctccc	attttgagag	ttcctatcta	aataaagcca	attcctcaga	3499
ctgaggggct gttcttaagt	gttctttata	cattccagtt	atccagttaa	agcetteece	3559
atgtgaaget gatgtttgat	tccagtttcc	tttgatttgc	ctccctaacc	ttttctaggg	3619
ctcagtttgt atttctttgc	cttgcctcag	actactttgc	caacccactt	ccacaacaga	3679
atatgcttca agatgtgggc	aggtcagtgt	cctgttcatg	ggagaaaatg	gcttaacagt	3739
ctgattttct caaatgatta	ttgaagagtt	gttatcgttt	ttattataaa	acacttctga	3799
cctgtcaatt caagagctgt	ttctaggatc	tttctctccg	gcaaggggtt	gttgcactag	3859
atttccccag agttccaagt	tctagttgtg	ccttttaatg	accctttaat	attttaggac	3919
ataatttttt ccttttttaa	atttttttgt	agaaatagat	gtttcactac	gttgtccagg	3979
ctggtcttgg actcctggcc	tcaagcaatc	ctcccaaccc	catggcctcc	atgacttttt	4039
aaaaaaaaaa acaaaaaaaa	aaaa				4063

atg Met	aag Lys	agc Ser	agt Ser 490	cag Gln	tac Tyr	att Ile	ccg Pro	atg Met 495	cat His	ggc Gly	aaa Lys	cag Gln	atc Ile 500	cgt Arg	gga Gly	1663
ctg Leu	gcg Ala	ttt Phe 505	agc Ser	agt Ser	tac Tyr	ctc Leu	aga Arg 510	ggc Gly	ttg Leu	cta Leu	ctc Leu	tct Ser 515	gct Ala	tcc Ser	cta Leu	1711
gac Asp	aac Asn 520	act Thr	att Ile	aaa Lys	ctg Leu	acc Thr 525	agc Ser	ctg Leu	gag Glu	aca Thr	aat Asn 530	acc Thr	gtg Val	gtc Val	cag Gln	1759
act Thr 535	tat Tyr	aat Asn	gct Ala	gga Gly	cgt Arg 540	cct Pro	gtc Val	tgg Trp	agc Ser	tgt Cys 545	tgc Cys	tgg Trp	tgt Cys	ctt Leu	gat Asp 550	1807
gag Glu	act Thr	aac Asn	tac Tyr	atc Ile 555	tat Tyr	gct Ala	gga Gly	cta Leu	gcc Ala 560	aat Asn	ggt Gly	tca Ser	att Ile	ctg Leu 565	gta Val	1855
tat Tyr	gac Asp	gtg Val	cga Arg 570	aac Asn	acg Thr	agc Ser	agt Ser	cat His 575	gtg Val	cag Gln	gag Glu	tta Leu	gta Val 580	gct Ala	cag Gln	1903
aaa Lys	gcc Ala	aga Arg 585	tgc Cys	cca Pro	ctg Leu	gtc Val	tcc Ser 590	ctg Leu	tca Ser	tac Tyr	atg Met	ccc Pro 595	aga Arg	gct Ala	gcc Ala	1951
tca Ser	gct Ala 600	gca Ala	ttt Phe	cca Pro	tat Tyr	ggt Gly 605	Gly	gtg Val	ctg Leu	gct Ala	gga Gly 610	acc Thr	ttg Leu	gag Glu	gat Asp	1999
gct Ala 615	Ser	ttc Phe	tgg Trp	gaa Glu	cag Gln 620	aaa Lys	atg Met	gac Asp	ttt Phe	tct Ser 625	cat His	tgg Trp	cct Pro	cat His	gtg Val 630	2047
ctg Leu	ccc Pro	ttg Leu	gag Glu	cca Pro 635	GJ y ggg	ggc Gly	tgc Cys	ata Ile	gac Asp 640	ttt Phe	cag Gln	aca Thr	gag Glu	aac Asn 645	agc Ser	2095
tcc Ser	cgg Arg	cac His	tgt Cys 650	Leu	gtg Val	acc Thr	tac Tyr	agg Arg 655	cct Pro	gat Asp	aaa Lys	aat Asn	cac His 660	Thr	acc Thr	2143
ata Ile	cga Arg	agt Ser 665	Val	ctg Leu	atg Met	gaa Glu	atg Met 670	Ser	tac Tyr	cga Arg	ctg Leu	gat Asp 675	Asp	act Thr	gga Gly	2191
aat Asn	cca Pro 680	Ile	tgc Cys	tcc Ser	tgc Cys	cag Gln 685	Pro	gta Val	cat His	aca Thr	Phe 690	Phe	gga Gly	gga Gly	cct Pro	2239
act Thr 695	Cys	aaa Lys	. cta Leu	ttg Leu	acc Thr 700	Lys	aat Asn	gcc Ala	att Ile	Phe	Gln	ago Ser	cca Pro	gag Glu	aat Asn 710	2287
					Val					Glu					gcc Ala	2335
				Ala					Leu					Gln	acc Thr	2383

gca Ala	gag Glu	gaa Glu	tct Ser	gga Gly 235	gct Ala	gtc Val	att Ile	tta Leu	gaa Glu 240	gag Glu	caa Gln	cta Leu	gca Ala	ggt Gly 245	gtc Val	895
tca Ser	gca Ala	gag Glu	caa Gln 250	gaa Glu	gtt Val	aca Thr	tgt Cys	atc Ile 255	gat Asp	gga Gly	ggc Gly	aag Lys	acc Thr 260	ctc Leu	ccc Pro	943
aaa Lys	cag Gln	cca Pro 265	tct Ser	ccc Pro	cag Gln	aag Lys	tct Ser 270	gag Glu	cct Pro	ctg Leu	cta Leu	cct Pro 275	tct Ser	gct Ala	tct Ser	991
atg Met	gat Asp 280	gag Glu	gaa Glu	gaa Glu	gly aaa	gac Asp 285	act Thr	tgt Cys	aca Thr	ata Ile	tgt Cys 290	ctg Leu	gaa Glu	cag Gln	tgg Trp	1039
acc Thr 295	aat Asn	gct Ala	Gly 999	gac Asp	cac His 300	cgg Arg	ctc Leu	tca Ser	gca Ala	tta Leu 305	cgc Arg	tgt Cys	gly ggg	cat His	ctc Leu 310	1087
					att Ile											1135
tgt Cys	ccc Pro	cag Gln	tgc Cys 330	aac Asn	aag Lys	aaa Lys	gcc Ala	agg Arg 335	cac His	agt Ser	gac Asp	att Ile	gtc Val 340	gtc Val	ctt Leu	1183
					aga Arg											1231
		Ser			aag Lys											1279
_	Ser	_	_	_	cga Arg 380			_	-	-			_			1327
act Thr	agg Arg	ctt Leu	caa Gln	agg Arg 395	cgt Arg	gtt Val	cag Gln	gac Asp	ttg Leu 400	caa Gln	aaa Lys	ctt Leu	acg Thr	tca Ser 405	cat His	1375
				Leu	cag Gln				Gly					Val		1423
			Pro					Gln					Tyr		ttc Phe	1471
	-	Thr			-		Gln	-			_	Arg		_	gca Ala	1519
	Cys					Cys		-			Gln				cag Gln 470	1567
					Gly					Met					aac Asn	1615

tgco		00 > 2 ecg 9		gaat	t co	cggg	tcga	ı cga	tttc	gtg	gcag	jttgg	gcg t	aggt	gcatt	-	60
cgga	gtgo	gg o	etgag	gtaa	ic ta	ccga	gtct	tcg	gege	gagg	taac	ctaco	ga g	gtctt	cggcg	1	20
ggct	cgcg	gag (	ccgg	geege	g go	ctgo	tggt	tto	agto		: Ala				atg Met	נ	175
gaa Glu	tat Tyr	gat Asp	gtt Val 10	cag Gln	gtg Val	cag Gln	tta Leu	aat Asn 15	cat His	gcc Ala	gaa Glu	caa Gln	cag Gln 20	cca Pro	gct Ala	2	223
cct Pro	gct Ala	ggc Gly 25	atg Met	gcc Ala	agc Ser	agc Ser	caa Gln 30	gly ggg	gga Gly	cca Pro	gcc Ala	ctc Leu 35	ctc Leu	cag Gln	cct Pro	2	271
gtt Val	cct Pro 40	gct Ala	gat Asp	gtg Val	gtc Val	agc Ser 45	agc Ser	cag Gln	gjà aaa	gta Val	cca Pro 50	tcc Ser	atc Ile	ctc Leu	cag Gln	3	319
cca Pro 55	gct Ala	cct Pro	gct Ala	gag Glu	gtg Val 60	atc Ile	agc Ser	agc Ser	caa Gln	gcg Ala 65	aca Thr	cca Pro	ccc Pro	ctg Leu	ctc Leu 70	3	367
cag Gln	cct Pro	gct Ala	ccg Pro	caa Gln 75	ctg Leu	tct Ser	gtt Val	gac Asp	ctg Leu 80	aca Thr	gaa Glu	gtg Val	gag Glu	gtc Val 85	ttg Leu	4	115
gga Gly	gaa Glu	gac Asp	aat Asn 90	gtg Val	gag Glu	aac Asn	atc Ile	aat Asn 95	cca Pro	aga Arg	act Thr	tca Ser	gaa Glu 100	caa Gln	cat His	4	163
agg Arg	cag Gln	gga Gly 105	tct Ser	gat Asp	ggt Gly	aat Asn	cac His 110	acc Thr	atc Ile	cca Pro	gca Ala	tct Ser 115	tcg Ser	ttg Leu	cat His	5	511
											ctt Leu 130					į	559
											gta Val					•	507
											aga Arg					•	655
_			-	_	_		-	-	-		ttg Leu		_		_	•	703
_		_			-		-	_		-	acc Thr			-		•	751
											gtg Val 210						799
											gly aaa					8	847

wo	01/55	5437												P	CT/US01/	02623
Phe	Tyr	Tyr	Thr	Glu 325	Val	Gln	Leu	Lys	Glu 330	Glu	Ser	Ala	Ala	Ala 335	Ala	
	gct Ala															1174
cca Pro	gct Ala	ccc Pro 355	acc Thr	ccc Pro	agc Ser	atg Met	act Thr 360	ggc Gly	ctg Leu	cct Pro	ctg Leu	tct Ser 365	gct Ala	ctt Leu	cca Pro	1222
	cct Pro 370															1270
	tcc Ser															1318
	tgg Trp															1366
_	atc .Ile		_							-	-	_		-	-	1414
_	ccc Pro		_	_	-				_	_		-		_		1462
_	ttc Phe 450	-			_	_		_			_				-	1510
	gtc Val						-	_	-		_			-	-	1558
	gag Glu	-	-	_	_	_	_								-	1606
_	tgg Trp	_	_		_			_	_	_	_	_	_		-	1654
gac Asp	tga *	gct	gtgc	tgc a	aggti	tcta	ct c	tgtt	cctg	g cc	etge	cggc	agc	cact	gac	1710

<210> 223 <211> 4063 <212> DNA <213> Homo sapiens

<220>

<221> CDS <222> (158)..(2479)

wo	01/5	5437												I	CT/U	S01/02623
Pro 65	Ser	Thr	Ser	Gly	Leu 70	Gln	Gln	Val	Ala	Phe 75	Gln	Pro	Gly	Gln	Lys 80	
gtt Val	tat Tyr	gtg Val	tgg Trp	tac Tyr 85	gjå aaa	ggt Gly	caa Gln	gag Glu	tgc Cys 90	aca Thr	gga Gly	ctg Leu	gtg Val	gag Glu 95	cag Gln	406
cac His	agc Ser	tgg Trp	atg Met 100	gag Glu	ggt Gly	cag Gln	gtg Val	acc Thr 105	gtc Val	tgg Trp	ctg Leu	ctg Leu	gag Glu 110	cag Gln	aag Lys	454
ctg Leu	cag Gln	gtc Val 115	tgc Cys	tgc Cys	agg Arg	gtg Val	gag Glu 120	gag Glu	gtg Val	tgg Trp	ctg Leu	gca Ala 125	gag Glu	ctg Leu	cag Gln	502
ggc	ccc Pro 130	tgt Cys	ccc Pro	cag Gln	gca Ala	cca Pro 135	ccc Pro	ctg Leu	gag Glu	ccc Pro	gga Gly 140	gcc Ala	cag Gln	gcc Ala	ctg Leu	. 550
gcc Ala 145	tac Tyr	agg Arg	ccc Pro	gtc Val	tcc Ser 150	agg Arg	aac Asn	atc Ile	gat Asp	gtc Val 155	cca Pro	aag Lys	agg Arg	aag Lys	tcg Ser 160	598
gac Asp	gca Ala	gtg Val	gaa Glu	atg Met 165	gat Asp	gag Glu	atg Met	atg Met	gcg Ala 170	gcc Ala	atg Met	gtg Val	ctg Leu	acg Thr 175	tcc Ser	646
ctg Leu	tcc Ser	tgc Cys	agc Ser 180	cct Pro	gtt Val	gta Val	cag Gln	agt Ser 185	cct Pro	ccc Pro	Gly 999	acc Thr	gag Glu 190	gcc Ala	aac Asn	694
ttc Phe	tct Ser	gct Ala 195	tcc Ser	cgt Arg	gcg Ala	gcc Ala	tgc Cys 200	Asp	cca Pro	tgg Trp	aag Lys	gag Glu 205	agt Ser	ggt Gly	gac Asp	742
atc Ile	tcg Ser 210	Asp	agc Ser	ggc	agc Ser	agc Ser 215	act Thr	acc Thr	agc Ser	ggt Gly	cac His 220	tgg Trp	agt Ser	Gly	agc Ser	790
agt Ser 225	Gly	gtc Val	tcc Ser	acc Thr	ccc Pro 230	tcg Ser	ccc Pro	ccc Pro	cac His	ccc Pro 235	cag Gln	gcc Ala	agc Ser	ccc Pro	aag Lys 240	838
tat Tyr	ttg Leu	gly	gat Asp	gct Ala 245	ttt Phe	ggt Gly	tct Ser	ccc Pro	caa Gln 250	act Thr	gat Asp	cat His	ggc	ttt Phe 255	gag Glu	886
acc Thr	gat Asp	cct Pro	gac Asp 260	Pro	ttc Phe	ctg Leu	ctg Leu	gac Asp 265	Glu	cca Pro	gct Ala	cca Pro	cga Arg 270	Lys	aga Arg	934
aag Lys	aac Asn	Ser 275	Val	aag Lys	gtg Val	atg Met	tac Tyr 280	Lys	tgc Cys	ctg Leu	tgg Trp	cca Pro 285	Asn	tgt Cys	ggc	982
aaa Lys	gtt Val 290	Leu	cgc Arg	tcc Ser	att Ile	gtg Val 295	Gly	atc Ile	aaa Lys	cga Arg	cac His	Val	aaa Lys	gcc	ctc Leu	1030
cat His 305	Leu	ggg Gly	gac Asp	aca Thr	gtg Val 310	Asp	tct Ser	gat Asp	cag Gln	ttc Phe 315	Lys	cgg Arg	gag Glu	gag Glu	gat Asp 320	1078
tto	tac	tac	aca	gag	gtg	cag	ctg	aag	gag	gaa	tct	gct	gct	gct	gct	1126

WO 01/5543	37 245		250		PCT/US01/02623
agt gag co Ser Glu Pi	cc ttt gtg ro Phe Val 260	caa aaa ctc Gln Lys Leu	tgg gaa c Trp Glu G 265	aa tac atg gat ln Tyr Met Asp 270	gag aag 816 Glu Lys
Asp Glu Ty	ac tta cag yr Leu Gln 75	cag cta aag Gln Leu Lys 280	Gln Glu L	ett ggc ata gaa Leu Gly Ile Glu 285	ctc cat 864 Leu His
gag gaa g Glu Glu Va 290	tg act ctg al Thr Leu	ccc aag ctg Pro Lys Leu 295	cga ggg g Arg Gly G	ggc ctg atg acc Gly Leu Met Thr 300	atc gac 912 Ile Asp
ccc agc c Pro Ser L 305	tg gac aag eu Asp Lys	cag aca gtg Gln Thr Val	Asn Thr T	ac atg agc cag Tyr Met Ser Gln 315	gcc ttc 960 Ala Phe 320

cag ctc cct gag tcg gaa atg cca gag gag ggt gac gag aag gaa gaa 1008 Gln Leu Pro Glu Ser Glu Met Pro Glu Glu Gly Asp Glu Lys Glu Glu 325 330 335

gcc gtg gtg gaa atc ctc cag act gcc ctg gag cgg ctt cag gtg att 1056 Ala Val Val Glu Ile Leu Gln Thr Ala Leu Glu Arg Leu Gln Val Ile 340 345 350

gac atc agg cgt gtg gga cct cga gag cca gag cct gca agc tag 1101
Asp Ile Arg Arg Val Gly Pro Arg Glu Pro Glu Pro Ala Ser *
355 360 365

<210> 222 <211> 1710 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (119)..(1660)

<400> 222

118 atg geg agt gte etg tee ega ege ett gga aag egg tee ete etg gga Met Ala Ser Val Leu Ser Arg Arg Leu Gly Lys Arg Ser Leu Leu Gly gee egg gtg ttg gga eee agt gee teg gag ggg eee teg get gee eea 214 Ala Arg Val Leu Gly Pro Ser Ala Ser Glu Gly Pro Ser Ala Ala Pro 20 30 262 ccc tcg gag cca ctg cta gaa ggg gcc gct ccc cag cct ttc acc acc Pro Ser Glu Pro Leu Leu Glu Gly Ala Ala Pro Gln Pro Phe Thr Thr 35 40 tot gat gac acc ccc tgc cag gag cag ccc aag gaa gtc ctt aag gct 310 Ser Asp Asp Thr Pro Cys Gln Glu Gln Pro Lys Glu Val Leu Lys Ala 50 55 60

358

ccc agc acc tcg ggc ctt cag cag gtg gcc ttt cag cct ggg cag aag

<pre>&lt;400&gt; 221 atg cag ctg cac atg agc acg ctg aag gaa cgg gac caa ttc ttc tct Met Gln Leu His Met Ser Thr Leu Lys Glu Arg Asp Gln Phe Phe Ser 1 5 10 15</pre>	48
gag ctg cag gag atc cag cgc act tcc acg ccg cgg cct gac tgg acc Glu Leu Gln Glu Ile Gln Arg Thr Ser Thr Pro Arg Pro Asp Trp Thr 20 25 30	96
aag tgc aaa gat gtg gtg gct ggg ggc cca gag cgc tgg cag atg ctg Lys Cys Lys Asp Val Val Ala Gly Gly Pro Glu Arg Trp Gln Met Leu 35 40 45	144
gct gag ggc aag aac agc gac cag ctg gtg gac gtg ctc ctg gaa gag Ala Glu Gly Lys Asn Ser Asp Gln Leu Val Asp Val Leu Leu Glu Glu 50 55 60	192
att ggt tcg ggg ctg ctg cgg gag aaa gac ttc ttc cct ggt ctg ggc Ile Gly Ser Gly Leu Leu Arg Glu Lys Asp Phe Phe Pro Gly Leu Gly 65 70 75 80	240
tat ggg gaa gcc atc cct gct ttt ctt cgg ttt gat ggc ctc gtg gag Tyr Gly Glu Ala Ile Pro Ala Phe Leu Arg Phe Asp Gly Leu Val Glu 85 90 95	288
aac aag aag cca agc aag gac gtg gtc aac ctc ctc aag gat gcc Asn Lys Lys Pro Ser Lys Lys Asp Val Val Asn Leu Leu Lys Asp Ala 100 105 110	336
tgg aag gaa cgt ctt gct gag gag cag aaa gag acg ttc cca gat ttc Trp Lys Glu Arg Leu Ala Glu Glu Gln Lys Glu Thr Phe Pro Asp Phe 115 120 125	384
ttc ttc aat ttc ctg gag cat cgc ttt ggg ccc agt gat gcc atg gcc Phe Phe Asn Phe Leu Glu His Arg Phe Gly Pro Ser Asp Ala Met Ala 130 135 140	432
tgg gct tat act att ttt gaa aat atc aag atc ttc cac tcc aac gag Trp Ala Tyr Thr Ile Phe Glu Asn Ile Lys Ile Phe His Ser Asn Glu 145 150 155 160	480
gtt atg agt cag ttc tat gca gtc ttg atg gga aag cgg agt gag aat Val Met Ser Gln Phe Tyr Ala Val Leu Met Gly Lys Arg Ser Glu Asn 165 170 175	528
gtg tat gtc acc cag aag gag aca gta gcc cag ctg ctg aag gag atg Val Tyr Val Thr Gln Lys Glu Thr Val Ala Gln Leu Leu Lys Glu Met 180 185 190	576
aca aat gct gac agt cag aac gag ggg cta cta acc atg gag cag ttc Thr Asn Ala Asp Ser Gln Asn Glu Gly Leu Leu Thr Met Glu Gln Phe 195 200 205	624
aac act gtc ctc aag agt acc ttc cct ctc aag aca gaa gag caa atc Asn Thr Val Leu Lys Ser Thr Phe Pro Leu Lys Thr Glu Glu Gln Ile 210 215 220	672
cag gag ctg atg gag gca ggg ggc tgg cat ccc agc agc agc aat gca Gln Glu Leu Met Glu Ala Gly Gly Trp His Pro Ser Ser Ser Asn Ala 225 230 235 240	720
gac ttg ctc aac tac cgc tca ctg ttt atg gag gat gag gag ggc cag Asp Leu Leu Asn Tyr Arg Ser Leu Phe Met Glu Asp Glu Glu Gly Gln	768

WO 01/55437 PCT/US01/0	2623
Lys Val Ile Ser Val Ile Gly Gly Leu Ala Ala Cys Phe Ile Phe Val 395 400 . 405	
ttc cca ggg ctg tgc ctc att caa gcc aaa ctc tct gag atg gaa gag Phe Pro Gly Leu Cys Leu Ile Gln Ala Lys Leu Ser Glu Met Glu Glu 410 415 420	1659
gtc aaa cca gcc agc tgg tgg gtg ctg gtc agc tac gga gtc ctc ttg Val Lys Pro Ala Ser Trp Trp Val Leu Val Ser Tyr Gly Val Leu Leu 435 430 435 440	1707
gtc acc ctg gga gcc ttc atc ttc ggc cag acc aca gcc aac gcc atc Val Thr Leu Gly Ala Phe Ile Phe Gly Gln Thr Thr Ala Asn Ala Ile 445 450 455	1755
ttt gtg gat ctc ttg gca taa cc actgcctccc agggaacaca aggcctttgc Phe Val Asp Leu Leu Ala * 460	1808
cattggtcgc aggaacccat ctcttagagc tatggggcca ttcttagtcc acgatcattc	1868
caactggtgg gatgacatcc ggacatcctc ttccagggac tggggcaaac tcaggcccca	1928
cacctctgga cagctcaaat ccagtcccct tcctgctccc cagtcctggc agtgccgtgg	1988
atggcggcag gaagteteae atcatagagg accedteete eteteecagt teteaaette	2048
tocatgootg gaatcoacgg gtgaagagag toggtagato toataagaaa gaatcoagto	2108
tgacttccct ctggagaatg actatggaca gaaggccacc atcctccaca gagcaccctg	2168
teetgagtag gggttgtget cattacecca ggccagtggt agetteetca ggageetgge	2228
cacttccaaa ggtagcactg aagtcatgca aatacatagt caggtagatt cagaccttgt	2288
ccacacette etggggcaac ecceaceatg aacetgteag ectettteec atagetaata	2348
gacatttccc aggccttgag gggccccacc ctgtctcttt catcaaacct gatggtccag	2408
gctgggcatc cctctcctcc tccatcccca gacatcacca ggtctaatgt ttacaaacgg	2468
tgccagcccg gctctgaagc caagggccgt cccgtgccac ggtgctgtga gtattcctcc	2528
gttagctttc cccataaggt tgggagtatc tgcttttgtg tctgagatgg gcccctcttt	2588
tcagaggccg cagggtgggt gatggagaag gctgagaacc tttcagaccc tctgtgtggg	2648
ctgggctggt cagaatcagg gtgtacctcc ccgacacctt ctttttcagt gatgttttct	2708
ettetecetg cettteetet geeteeteee etgecageee tagegtgaet acceagagae	2768
aaaaaaaaa aaaaaa	2784

<210> 221 <211> 1101 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1101)

WC	01/3	3437												-	0 2.0	202/02-4
Val	Tyr	Thr	Phe 140	Gly	Thr	Суз	Ile	Ala 145	Phe	Leu	Ile	Ile	Ile 150	Gly	Asp	
cag Gln	cag Gln	gac Asp 155	aag Lys	att Ile	ata Ile	gct Ala	gtg Val 160	atg Met	gcg Ala	aaa Lys	gag Glu	ccg Pro 165	gag Glu	ggg ggg	gcc Ala	891
agc Ser	ggc Gly 170	cct Pro	tgg Trp	tac Tyr	aca Thr	gac Asp 175	cgc Arg	aag Lys	ttc Phe	acc Thr	atc Ile 180	agc Ser	ctc Leu	act Thr	gcc Ala	939
ttc Phe 185	ct <i>c</i> Leu	ttc Phe	atc Ile	ctg Leu	ccc Pro 190	ctc Leu	tcc Ser	atc Ile	ccc Pro	agg Arg 195	gag Glu	att Ile	ggt Gly	ttc Phe	cag Gln 200	987
aaa Lys	tat Tyr	gcc Ala	agc Ser	ttc Phe 205	ctg Leu	agc Ser	gtc Val	gtg Val	ggt Gly 210	acc Thr	tgg Trp	tac Tyr	gtc Val	aca Thr 215	gcc Ala	1035
atc Ile	gtt Val	atc Ile	atc Ile 220	aag Lys	tac Tyr	atc Ile	tgg Trp	cca Pro 225	gat Asp	aaa Lys	gag Glu	atg Met	acc Thr 230	cca Pro	Gly 999	1083
aac Asn	atc Ile	ctg Leu 235	acc Thr	agg Arg	ccg Pro	gct Ala	tcc Ser 240	tgg Trp	atg Met	gct Ala	gtg Val	ttc Phe 245	aat Asn	gcc Ala	atg Met	1131
ccc Pro	acc Thr 250	atc Ile	tgc Cys	ttc Phe	gga Gly	ttt Phe 255	cag Gln	tgc Cys	cac His	gtc Val	agc Ser 260	agt Ser	gtg Val	ccc Pro	gtc Val	1179
ttc Phe 265	aac Asn	agc Ser	atg Met	cag Gln	cag Gln 270	cct Pro	gaa Glu	gtg Val	aag Lys	acc Thr 275	tgg Trp	ggt Gly	gga Gly	gtg Val	gtg Val 280	1227
					ata Ile											1275
					ttt Phe											1323
tec Ser	tat Tyr	ccc Pro 315	Ser	gag Glu	gac Asp	atg Met	gcc Ala 320	gtg Val	gcc Ala	gtt Val	gcc Ala	cga Arg 325	gcc Ala	ttc Phe	atc Ile	1371
		Ser			acc Thr											1419
	Val				ctg Leu 350										gag Glu 360	. 1467
					gag											1515
		_			ctg Leu	_	_	-							_	1563
aag	gtg	atc	tca	gtc	att	gga	ggc	ctg	gcc	gcc	tgc	ttc	atc	ttc	gtc	1611

<210> 220

cgtgtccgag atg 5206

<210> 220	
<211> 2784	
<212> DNA <213> Homo sapiens	
(213) Holid Saptens	
<220>	
<221> CDS	
<222> (388) (1776)	
<400> 220	
gaaccggtcc ggaattcccg ggtccacgat gtttgcgaat cccgcaagct ccatttcatg	60
agtaagcgtg agagccgctc agtttcctcc agctctgctg aagccagcac agaagtagcc	120
caaactcttc cctctgctga cagcaaattt taggcaaagt cttgagaaag aagaaattgg	180
gtccagaaag ggaagtgagg agaatcagat cccagacett tggggagaag gagcaacege	240
ctctggcaca gcccatcagg gagaaagagc aggttgagaa gagtcctaag ctaacagccc	300
caaacaggtg ggtgttgctc agctccctga ggcatgtggt tgtaaggcag aacccacaga	360
ccttgcagga agaaggetet eggggee atg gee eag gte age ate aac aat	411
Met Ala Gln Val Ser Ile Asn Asn	
1 5	
	450
gac tac agc gag tgg gac ttg agc acg gat gcc ggg gag cgg gct cgg Asp Tyr Ser Glu Trp Asp Leu Ser Thr Asp Ala Gly Glu Arg Ala Arg	459
10 15 20	
ctg ctg cag agt ccc tgt gtg gac aca gcc ccc aag agt gag tgg gaa	507
Leu Leu Gln Ser Pro Cys Val Asp Thr Ala Pro Lys Ser Glu Trp Glu 25 30 35 40	
25 30 35 40	
gcc tct cct ggg ggt ctg gac aga ggc acc act tcc aca ctt ggg gcc	555
Ala Ser Pro Gly Gly Leu Asp Arg Gly Thr Thr Ser Thr Leu Gly Ala	
45 50 55	
ate tte ate gte gte aac geg tge etg ggt gea ggg tta ete aac tte	603
Ile Phe Ile Val Val Asn Ala Cys Leu Gly Ala Gly Leu Leu Asn Phe	003
60 65 70	
cca gca gcc ttc agc att gcg ggg ggc gtg gca gca ggc atc gca ctg	651
Pro Ala Ala Phe Ser Ile Ala Gly Gly Val Ala Ala Gly Ile Ala Leu 75 80 85	
7,5	
cag atg ggt atg ctg gtt ttc atc atc agt ggc ctt gtc atc ctg gcc	699
Gln Met Gly Met Leu Val Phe Ile Ile Ser Gly Leu Val Ile Leu Ala	
90 95 100	
tac tgc tcc cag gcc agc aat gag agg acc tac cag gag gtg gta tgg	747
Tyr Cys Ser Gln Ala Ser Asn Glu Arg Thr Tyr Gln Glu Val Val Trp	
105 110 115 120	
get ata tat age sea ata see agt ata ata tat acc ata acc ata act	795
gct gtg tgt ggc aag ctg aca ggt gtg cta tgt gag gtg gcc atc gct Ala Val Cys Gly Lys Leu Thr Gly Val Leu Cys Glu Val Ala Ile Ala	133
125 130 135	
	<b>.</b>
gte tae ace tit gge ace tge att gee tte eta ate ate att gge gae	843

ttaatggaaa gttgagccag aactaaacca gggagctgtc tgaaatcata gcaccccatc 3333 3393 cgggtggcgg ggagatcaac tccgagctgt ttttccgagg cagtgaggaa cggtgccggc tetgcaegga getgaggaca ggacagaeet tgetttgaga aggagetgee ggeeggggee 3453 acgetecaca geogeogege gacagtggag ceaagggtta gggcaccagg aggggecagg 3513 tggcgtcggc agcatctgtc cccagaatca ggcagaatcc acttcccaaa cagagcccca 3573 3633 cgcaggttca ccatgaacct cagggtcagg gaatgagcca ggcacggggg catgggcaga gagggccacg gggcagggcc cactgaggga acatcagtgg ccctccagtc aggttctgtg 3693 3753 ggtttggaag cccatcgtga aaggggctga cctttgcccc tttttacttg gcattggttt 3813 tgaaaccagc tgtttcccaa actctgcttc ccaagggcaa ccgttgctgt tcacacgctc 3873 agcetgtetg ggggageggg cetetagett cagecaggge gggtacacac cetgggcaca gggtcctcag cccccgggaa atgagctccc agggctggcg tcccaccttc caggtggggg 3933 ctggcacatc acagactgtc gagagcgcca tgtcccaggg catgcagagg ttgcacctag 3993 agacgttgca gcaagtggac aagtggccgc tgtgcgggcc cctcgcttgt agtgagctgt 4053 tgcagcttac ggtccgttcc ctggaggggt ggaggaagga ggtgttgggc agcatcaaag 4113 4173 qtqctqggac atcccagggt ggtgagatcc atccacgatc cagctccggt ggagaaaggg cccatgtcaa gccttgttct gcaccccaag cattggtggt aggactgggt cctggctgat 4233 cgtccttgtt cccagtgggg tacatgtgag cccctgccag ggccaagtcc ttctcccgaa 4293 cccagggtcc tgggaactgc agatcccggg gggattcagc ccttctccca ctgtgctggc 4353 agaggcactc ctgtgacgct gaatacagtg aacagggaca ttcccgccac tcggggacag 4413 atgggcacaa gggaggggaa actccatcag gaagtgctcc cctgggcaga ggcgcccact 4473 4533 gggtgctgtg ggctcaggag ggggcggggc aggagctggt gccaaccggg aaccagagcc ccacagecat acageceatt ggtgacaagg teetgagaac acagtggeca ggtgteecca 4593 ggctcctggc ccctccgacg acctcaactc tgcccagccc ggtccctggc catcagcgac 4653 getgteegee eecegteaga teceatgtgt gecatgttta teateagtgt tttgtatttt 4713 4773 tgtactgagt atcggagcac tttacagaag ctgactgtac attcctgttc tgttgtgaag agaacattcc cagaccctgg caccctcctg agccggcgtg tgccggtcca gccctccgag 4833 atgccacaat teettggatg ggggagaagt teaaggaatt tetgetegge cacgeggtgg 4893 gaaccccgcg tccccgccat gtggcagagg ggtctcagtc gtgctaggca tcgggcgca 4953 gegeegacag ceetteeete geeagtgeee eteggeeact eetgggttgg ageeegattt 5013 tatttgtaaa gttgacagtc gagcaaatgt tcctattttc gtgggatctg cacacgtctt 5073 tgtcagttgt ggtcatgatc ttagtcacct gctaattatt tttacaatga ttacaacatt 5133 tecteactge gggatattte tgaccegett tagaacttaa gacetgatte tagcaataaa 5193

wo	01/5:	5437												F	CT/US	501/02623
cag Gln 425	gcc Ala	tac Tyr	cag Gln	cac His	gac Asp 430	ctg Leu	gag Glu	cgg Arg	ctg Leu	cgc Arg 435	gag Glu	gcc Ala	cag Gln	cgt Arg	gcc Ala 440	2549
gtg Val	gag Glu	cgc Arg	gag Glu	cgg Arg 445	gag Glu	cgc Arg	ctg Leu	gag Glu	ctg Leu 450	ctg Leu	cgc Arg	cgc Arg	ctc Leu	aag Lys 455	aag Lys	2597
cag Gln	aac Asn	acc Thr	gcg Ala 460	Pro	ggc Gly	gcg Ala	ctg Leu	ccg Pro 465	ccc Pro	gac Asp	aca Thr	ctg Leu	gcc Ala 470	g <u>ag</u> Glu	gcc Ala	2645
cag Gln	ccc Pro	cca Pro 475	agc Ser	cac His	cct Pro	ccc Pro	agc Ser 480	ttc Phe	aac Asn	GJ Å GGG	gaa Glu	ggg Gly 485	ctg Leu	gag Glu	ggc .Gly	2693
cct Pro	cgg Arg 490	gtg Val	agc Ser	atg Met	ctg Leu	cca Pro 495	tcc Ser	ggc Gly	gtg Val	Gly ggg	cca Pro 500	gag Glu	tac Tyr	gca Ala	gag Glu	2741
cgc Arg 505	ccc Pro	gag Glu	gtg Val	gct Ala	cgc Arg 510	cgg	gac Asp	agc Ser	gcc Ala	ccc Pro 515	acc Thr	gag Gl _u	agc Ser	cgg Arg	ctg Leu 520	2789
gcc Ala	aag Lys	agc Ser	gat Asp	gtg Val 525	ccc Pro	atc Ile	cag Gln	ctg Leu	ctc Leu 530	agc Ser	gcc Ala	acc Thr	aac Asn	cag Gln 535	ttc Phe	2837
cag Gln	agg Arg	cag Gln	gcg Ala 540	Ala	gtg Val	cag Gln	cag Gln	cag Gln 545	atc Ile	ccc Pro	acc Thr	aag Lys	ctg Leu 550	gcg Ala	gcc Ala	2885
tcc Ser	acc Thr	aag Lys 555	Gly	ggc	aag Lys	gac Asp	aag Lys 560	Gly	ggc Gly	aag Lys	agc Ser	agg Arg 565	ggc Gly	tct Ser	cag Gln	2933
ege Arg	tgg Trp 570	Glu	agc Ser	tca Ser	gcg	tcc Ser 575	Phe	gac Asp	ctg Leu	aag Lys	cag Gln 580	Gln	ctg Leu	ctg Leu	ctc Leu	2981
aac Asr 585	Lys	cto Leu	atg Met	ggg Gly	aaa Lys 590	Asp	gag Glu	agc Ser	acc Thr	Ser 595	Arg	aac Asn	cgc Arg	cgc	tcg Ser 600	3029
cto Lev	g ago 1 Ser	cct Pro	ato Ile	ctg Lev 605	Pro	ggc Gly	aga Arg	cac His	ser 610	Pro	gcg Ala	r ccc	cca Pro	eca Pro 615	gac Asp	3077
ect Pro	ggc Gly	tto Phe	e ccc Pro 620	Ala	ccg Pro	ago Ser	Pro	ccg Pro 625	Pro	gct Ala	gac Asp	ago Ser	Pro 630	Ser	gag Glu	3125
gg(	tto Phe	tct Ser 635	Leu	aag Lys	gco Ala	: ggg	ggc Gly 640	Thr	gco Ala	cto Lev	ctg Lev	Pro 645	Gly	e ccc	c cca o Pro	3173
		) Sei					Thi					Lys			gcc Ala	3221
	r Lys			gto Val		Phe			ı aa <u>q</u>	igg (	ecgts	gacto	a ag	gaaa	agttt	3273

***	0113	3437														
cgt Arg	gga Gly 170	ggg ggg	gac Asp	cca Pro	tcc Ser	gag Glu 175	acc Thr	ctg Leu	cag Gln	999 999	gag Glu 180	cta Leu	att Ile	ctc Leu	aag Lys	1781
tcg Ser 185	gcc Ala	atg Met	agc Ser	gag Glu	atc Ile 190	gag Glu	ggc Gly	atc Ile	cag Gln	agc Ser 195	ctg Leu	atc Ile	tgc Cys	agg Arg	cag Gln 200	1829
ctg Leu	ggc Gly	agc Ser	gcc Ala	aac Asn 205	ggc Gly	cag Gln	gcg Ala	gaa Glu	gac Asp 210	gga Gly	ggc Gly	agc Ser	tcc Ser	aca Thr 215	ggc	1877
ccg Pro	ccc Pro	agg Arg	agg Arg 220	gct Ala	gag Glu	acc Thr	ttc Phe	gcg Ala 225	ggc Gly	tac Tyr	gac Asp	tgc Cys	aca Thr 230	aac Asn	agc Ser	1925
ccc Pro	acc Thr	aag Lys 235	aat Asn	ggc Gly	agt Ser	ttc Phe	aag Lys 240	aag Lys	aaa Lys	gtc Val	agc Ser	agc Ser 245	act Thr	gac Asp	ccc Pro	1973
agg Arg	ccc Pro 250	cga Arg	gac Asp	tgg Trp	cga Arg	ggc Gly 255	ccc Pro	cca Pro	aac Asn	agc Ser	ccg Pro 260	gac Asp	ttg Leu	aag Lys	ctc Leu	2021
agt Ser 265	gac Asp	agt Ser	gac Asp	att Ile	cct Pro 270	gly ggg	agc Ser	tct Ser	gag Glu	gaa Glu 275	tcg Ser	ccg Pro	cag Gln	gtg Val	gtg Val 280	2069
gag Glu	gcg Ala	cca Pro	ggc	acg Thr 285	gaa Glu	tcc Ser	gat Asp	ccc	cgt Arg 290	ctg Leu	ccc Pro	acc Thr	gtc Val	ctg Leu 295	gag Glu	2117
tcg Ser	gag Glu	ctt Leu	gtc Val 300	cag Gln	cgg Arg	atc Ile	cag Gln	aca Thr 305	ctg Leu	tcc Ser	cag Gln	ctg Leu	ctc Leu 310	ctg Leu	aac Asn	2165
ctt Leu	cag Gln	gcg Ala 315	Val	atc Ile	gcc Ala	cac His	cag Gln 320	Asp	agc Ser	tat Tyr	gtg Val	gag Glu 325	acg Thr	cag Gln	cgg Arg	2213
gct Ala	gcc Ala 330	Ile	cag Gln	gag Glu	cgg Arg	gag Glu 335	aag Lys	cag Gln	ttc Phe	cgg Arg	ctg Leu 340	Gln	tcg Ser	acg Thr	cgt Arg	2261
ggg Gly 345	aac Asn	ctg Leu	ctg Leu	ctg Leu	gag Glu 350	Gln	gag Glu	cgg Arg	caa Gln	cgc Arg 355	aac Asn	ttc Phe	gag Glu	aag Lys	cag Gln 360	2309
cgg Arg	gag Glu	gag Glu	cgc Arg	gcg Ala 365	Ala	ctg Leu	gag Glu	aag Lys	ctg Leu 370	Gln	ago Ser	cag	ctg Leu	cgg Arg 375		2357
gag	g cag i Gln	cag Glr	g ego Arg 380	Trp	gag Glu	cgc Arg	gag Glu	cgc Arg 385	Gln	tgg Trp	cag Gln	cac His	cag Gln 390	Glu	ctg Leu	2405
gag Glu	g cgt 1 Arg	gcg Ala 399	Gly	gcg Ala	cgg Arg	ctg Leu	Gln 400	Glu	cgc Arg	gag Glu	ggc	gag Glu 405	Ala	cgg Arg	cag Gln	2453
cta Lev	a cgc 1 Arg 410	ς Glι	g cgg L Arg	ctg Leu	gag Glu	cag Gln 415	Glu	cgg Arg	gcc Ala	gag Glu	ctg Lev 420	ı Glu	cgc Arg	cag Glr	cgc Arg	2501

WO 01/55437 PCT/US01/02623

agetgeagtt cageageaag gecattggee geetetteee atgegetgae gaeetgetgg 660

720 agacgcacag ccacttecte geteggetea aggagegeeg ccaggagtee etggaggagg 780 gcagtgaccq qaattatgtc atccagaaaa tcggcgacct cctggttcag cagttttcag gtgaaaatgg ggaaagaaaa aaaaaaaagt acggtgtgtt ttgtagtggc cacaatgaag 840 ctqttaqtca ttacaaqttq ctqcttcagc aaaacaagaa atttcaaaac ttgatcaaga 900 aaattggcaa cttctccatc gtgcggcggc ttggcgtgca ggagtgcatt ctcctggtta 960 cacaacgcat aaccaaatac ccagtgctgg tggagcgcat catccagaac acggaagctg 1020 gcactgagga ctatgaagac ctgacccagg ccttgaacct catcaaagat atcatctcac 1080 aagtggacgc caaggtcagt gagtgtgaga agggccagcg cctcagggag atcgcaggga 1140 agatggacct gaagtettee ageaaactea agaaeggget cacetteege aaggaagaca 1200 tgcctcagcg gcagctccac ctggagggc atg cta tgc tgg aag acc aca tca 1253 Met Leu Cys Trp Lys Thr Thr Ser ggg ege ttg aaa gat ate etg get ate etg etg ace gae gta ett ttg 1301 Gly Arg Leu Lys Asp Ile Leu Ala Ile Leu Leu Thr Asp Val Leu Leu 10 15 ctg cta caa gaa aaa gat cag aaa tac gtc ttt gct tct gtg gac tca 1349 Leu Leu Gln Glu Lys Asp Gln Lys Tyr Val Phe Ala Ser Val Asp Ser aag cca ccc gtc atc tcg tta caa aag ctc atc gtg agg gaa gtg gcc 1397 Lys Pro Pro Val Ile Ser Leu Gln Lys Leu Ile Val Arg Glu Val Ala 50 aac gag gag aaa geg atg ttt etg ate age gee tee ttg eaa ggg eeg 1445 Asn Glu Glu Lys Ala Met Phe Leu Ile Ser Ala Ser Leu Gln Gly Pro 60 65 gag atg tat gaa atc tac acg agc tcc aaa gag gac agg aac gcc tgg Glu Met Tyr Glu Ile Tyr Thr Ser Ser Lys Glu Asp Arg Asn Ala Trp 80 atg gcc cac atc caa agg gct gtg gag agc tgc cct gac gag gag gag 1541 Met Ala His Ile Gln Arg Ala Val Glu Ser Cys Pro Asp Glu Glu Glu 90 95 ggg ccc ttc agc ctg ccc gaa gag gaa agg aag gtg gtc gag gcc cgc 1589 Gly Pro Phe Ser Leu Pro Glu Glu Glu Arg Lys Val Val Glu Ala Arg 105 110 gcc acg aga ctc cgg gac ttt caa gag cgg ttg agc atg aaa gac cag 1637 Ala Thr Arg Leu Arg Asp Phe Gln Glu Arg Leu Ser Met Lys Asp Gln 125 130 ctg atc gca cag agc ctc cta gag aaa cag cag atc tac ctg gag atg 1685 Leu Ile Ala Gln Ser Leu Leu Glu Lys Gln Gln Ile Tyr Leu Glu Met 145 gcc gag atg ggc ggc ctc gaa gac ctg ccc cag ccc cga ggc cta ttc 1733

Ala Glu Met Gly Gly Leu Glu Asp Leu Pro Gln Pro Arg Gly Leu Phe 155 160 165

W	O 01/5	55437									•			1	PCT/US	801/02623
Leu 3620	Phe	Ala	Ala		Ser 3625	Glu	Glu	Gln		Glu 3630	Ser	Trp	Trp	_	Ala 635	
_		_	Thr	_	_	cag Gln	_	Leu	_				Lys	-		11181

cct gtc agc tct ctg aat gag tgc acg acc aag gat gcc cgg cct gga 11229 Pro Val Ser Ser Leu Asn Glu Cys Thr Thr Lys Asp Ala Arg Pro Gly 3655 3660 3665

tgt cta ctc agg tct gat ccc tga ggtgaacccc agtgcaacac caaacttcag 11283 Cys Leu Leu Arg Ser Asp Pro * 3670 3675

gggcacaagc gaggacacat ctaagggacc agaataagac tcagctacag gcaaaagggc 11343
tccttcccgt ggctgcttca acccagttcc ccaggcccag cttctggaat agacagttcc 11403
ttctggttag atgggtccta ccatgtggca ggaaacagcc attgcctggc ctccccctgc 11463
attcctgtct gggtgaagag gagacgtgtt acggcagagc aggtgggcaa ggccagggct 11523
accccaggcc catgtggcct cctccttgct tggaaggggt gactctgagc acaggtagac 11583
gcagacgtgt gcagagaatg tgctcttcgg aggaagaaca ctgatgagcg agctctgtac 11643
cagcccttgt catgtacagc caagagccta gaatgacatg gcccttctca gcagtaataa 11703
cagatggtct cagcgcctca aaaaaaaaaa aaa 11736

<210> 219

<211> 5206

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1230)..(3248)

<400> 219

tgtggacacg ctgcaggcac ccgtccggaa ttcccgggtc gacgatttcg tccggacgga 60 ggcatcggag geggctgcga gagtggttga ggagctggeg gagagcggec tgcgggcgat 120 cgggccgagc ctcgctcaag gagcaccccc ggggcaccct cctgtccgat ggcagcccgg 180 ccctgtccag gaatgtcggt atgacggtct ctcagaaagg gggtccccag ccaacaccga 240 gcccggctgg ccctgggacg caacteggac caatcacagg agagatggat gaagccgatt 300 ctgcgttttt aaaatttaag cagacagctg atgactetet gtcccttaca tetecaaaca 360 ccgagtccat ttttgtagaa gatccctaca ccgcctcgct gaggagtgag attgagtcag 420 acggccacga gtttgaagct gagtcctgga gcctcgccgt ggatgcagcc tacgccaaga 480 agcaaaagag ggaggtggtg aaaagacaag atgtccttta tgagctgatg cagacagagg 540 tgcaccacgt gcggacgctc aagatcatgc tgaaggtgta ctccagggcc ctgcaggagg 600

***************************************				1 C 17 C 50 17 0 2 0 2 5
Arg Glu Cys 1 3365	Arg Leu Gln Al 337	_	Arg Gln Glu Gly 3375	Gln Gln
		e Met Ser Ala	gag gtg aca gag Glu Val Thr Glu 3390	
			gag gag gct tgg Glu Glu Ala Trp	
Arg Trp Gln			ctg cag aag ctt Leu Gln Lys Leu 3425	
			tgc tgg gag gga Cys Trp Glu Gly 3440	
		s Ser Val Ser	gat gtg gag ttg Asp Val Glu Leu 3455	
		u Lys Leu Leu	gca gcc cag gaa Ala Ala Gln Glu 3470	
			cag gag ctc ctg Gln Glu Leu Leu	
Pro Gln Glu			agc tcg ctg aca Ser Ser Leu Thr 3505	
			gga gca cag ctg Gly Ala Gln Leu 3520	
acg agg gac Thr Arg Asp 3525	ccc cag gat go Pro Gln Asp Al 353	a Lys Gly Thr	ccc acc atg gag Pro Thr Met Glu 3535	ggg tct 10845 Gly Ser
ttg gag ttc Leu Glu Phe 3540	aag cag cac ct Lys Gln His Le 3545	eu Leu Pro Gly	ggg agg cag cct Gly Arg Gln Pro 3550	agc tcg 10893 Ser Ser 3555
agc tcc tgg Ser Ser Trp	gac agc tgc cg Asp Ser Cys Ar 3560	ge ggg acc ttg rg Gly Thr Leu 3565	cag ggc agc tct Gln Gly Ser Ser	ctg agc 10941 Leu Ser 3570
Leu Phe Leu .			aaa gta gct tcc Lys Val Ala Ser 3585	
ctc ctt gac Leu Leu Asp 3590	ctc acg gga go Leu Thr Gly Al	cc cgg tgt gag la Arg Cys Glu 3595	agg ctg cgg ggc Arg Leu Arg Gly 3600	ege cac 11037 Arg His
ggc agg aaa Gly Arg Lys 1 3605	cac aca ttc to His Thr Phe Se 361	er Leu Arg Leu	acc agt ggg gca Thr Ser Gly Ala 3615	gag atc 11085 Glu Ile
ctg ttt gca	gca ccg tcc ga	ıa gag cag gct	gag agc tgg tgg	cga gcc 11133

His Gln Leu Glu Arg Glu Thr Leu Leu Leu Asp Ala Trp Leu Thr Thr 3110 3115 3120	
aag geg gee ace gee gag tee eag gae tae ggg eag gae etg gag ggt Lys Ala Ala Thr Ala Glu Ser Gln Asp Tyr Gly Gln Asp Leu Glu Gly 3125 3130 3135	9645
gtc aag gtg ctg gaa gag aag ttt gat gct ttc aga aag gaa gtg cag Val Lys Val Leu Glu Glu Lys Phe Asp Ala Phe Arg Lys Glu Val Gln 3140 3145 3150 3155	9693
agc ctg ggc cag gcc aag gtg tat gcc ctg agg aag ttg gca ggc acc Ser Leu Gly Gln Ala Lys Val Tyr Ala Leu Arg Lys Leu Ala Gly Thr 3160 3165 3170	9741
ctg gag cgg ggt gca ccc agg cgc tat ccc cac atc caa gcc cag agg Leu Glu Arg Gly Ala Pro Arg Arg Tyr Pro His Ile Gln Ala Gln Arg 3175 3180 3185	9789
agc cgc att gag gct gct tgg gag agg ttg gac caa gca ata aaa gcc Ser Arg Ile Glu Ala Ala Trp Glu Arg Leu Asp Gln Ala Ile Lys Ala 3190 3195 3200	9837
cgc aca gag aac ttg gct gca gcc cat gag gtc cac agc ttt cag cag Arg Thr Glu Asn Leu Ala Ala Ala His Glu Val His Ser Phe Gln Gln 3205 3210 3215	9885
gca gca gct gag ctc cag gga agg atg cag gag aag acg gcc ctg atg Ala Ala Ala Glu Leu Gln Gly Arg Met Gln Glu Lys Thr Ala Leu Met 3220 3225 3230 3235	9933
aag ggg gag gac gga ggc cac agc ctg tca tct gtg cgg acc ctg cag Lys Gly Glu Asp Gly Gly His Ser Leu Ser Ser Val Arg Thr Leu Gln 3240 3245 3250	9981
caa cag cac agg cgc ctg gag aga gag ctg gaa gct atg gag aag gag Gln Gln His Arg Arg Leu Glu Arg Glu Leu Glu Ala Met Glu Lys Glu 3255 3260 3265	10029
gtg gca cgg cta cag acg gag gcc tgc cga ctg ggc cag cta cat cct Val Ala Arg Leu Gln Thr Glu Ala Cys Arg Leu Gly Gln Leu His Pro 3270 3275 3280	10077
gca gct ccg ggg ggc ctg gcc aag gtg cag gag gcc tgg gcc acc ctg Ala Ala Pro Gly Gly Leu Ala Lys Val Gln Glu Ala Trp Ala Thr Leu 3285 3290 3295	10125
cag gcg aag gcc cag gag cga ggc cag tgg ctg gcg cag gct gca cag Gln Ala Lys Ala Gln Glu Arg Gly Gln Trp Leu Ala Gln Ala Ala Gln 3300 3315	10173
ggc cat gcc ttc ctc ggg cgc tgc cag gaa ctg cta gca tgg gca cag Gly His Ala Phe Leu Gly Arg Cys Gln Glu Leu Leu Ala Trp Ala Gln 3320 3330	10221
gag agg cag gag ctg gcg tcc tcc gag gag ctg gct gag gac gtg gcg Glu Arg Gln Glu Leu Ala Ser Ser Glu Glu Leu Ala Glu Asp Val Ala 3335 3340 3345	10269
ggg gct gag cag ctc ctt ggg cag cat gaa gag ctg ggg caa gaa atc Gly Ala Glu Gln Leu Leu Gly Gln His Glu Glu Leu Gly Gln Glu Ile 3350 3355 3360	10317
agg gag tgc cgc ctt caa gcc cag gac ctg cgg cag gaa gga cag cag	10365

WO 01/55437	1/02023
Ala Phe Val Arg Glu Gly His Cys Leu Ala Arg Asp Val Glu Gln 2855 2860 2865	
gcc cgg cgg ctg ctt cag agg ttc aag agc ctg agg gag ccc ctg cag Ala Arg Arg Leu Leu Gln Arg Phe Lys Ser Leu Arg Glu Pro Leu Gln 2870 2875 2880	8877
gag cgc agg acg gcc ctg gag gcc cgg agc ctc ctc ttg aag ttc ttc Glu Arg Arg Thr Ala Leu Glu Ala Arg Ser Leu Leu Lys Phe Phe 2885 2890 2895	8925
agg gac gcc gac gag gaa atg gcc tgg gtg cag gag aag ctg cct ctg Arg Asp Ala Asp Glu Glu Met Ala Trp Val Gln Glu Lys Leu Pro Leu 2900 2905 2910 2915	8973
gcc gct gcc cag gac tat ggc cag agc ctg agt gcg gtg cgg cac ctg Ala Ala Ala Gln Asp Tyr Gly Gln Ser Leu Ser Ala Val Arg His Leu 2920 2925 2930	9021
cag gag cag cac cag aac ctg gag agt gag atg agc agc cac gag gct Gln Glu Gln His Gln Asn Leu Glu Ser Glu Met Ser Ser His Glu Ala 2935 2940 2945	9069
ctg acc cgg gtg gtg ctg ggc act ggg tac aag ctg gtg cag gct ggg Leu Thr Arg Val Val Leu Gly Thr Gly Tyr Lys Leu Val Gln Ala Gly 2950 2955 2960	9117
cac ttt gcc gcc cac gag gtg gcc gcc cgg gtg cag cag ctg gag aag His Phe Ala Ala His Glu Val Ala Ala Arg Val Gln Gln Leu Glu Lys 2965 2970 2975	9165
gcc atg gcc cac ctg cgg gca gag gcg cgg agg cgg ctt ctg ctg Ala Met Ala His Leu Arg Ala Glu Ala Ala Arg Arg Arg Leu Leu 2980 2985 2990 2995	9213
cag cag gct cag gag gcc cag cag ttt ctg act gag ctc ctg gag gcg Gln Gln Ala Gln Glu Ala Gln Gln Phe Leu Thr Glu Leu Leu Glu Ala 3000 3005 3010	9261
gga tcc tgg ctg gct gag cgg ggc cat gtc ctg gac agc gag gac atg Gly Ser Trp Leu Ala Glu Arg Gly His Val Leu Asp Ser Glu Asp Met 3015 3020 3025	9309
ggc cac agt gct gaa gcc aca cag gcc ctt ctg cgg cgg ctg gag gcc Gly His Ser Ala Glu Ala Thr Gln Ala Leu Leu Arg Arg Leu Glu Ala 3030 3035 3040	9357
acc aag aga gac ctg gaa gcg ttc agc cca cgc atc gag cgg ctg cag Thr Lys Arg Asp Leu Glu Ala Phe Ser Pro Arg Ile Glu Arg Leu Gln 3045 3050 3055	9405
cag aca gca gca ctc ctg gag agc agg aag aac cca gaa agc ccc aag Gln Thr Ala Ala Leu Leu Glu Ser Arg Lys Asn Pro Glu Ser Pro Lys 3060 3065 3070 3075	9453
gtg cta gcc cag ctg cag gca gtt cgg gag gcc cac gca gag ctg ctg Val Leu Ala Gln Leu Gln Ala Val Arg Glu Ala His Ala Glu Leu Leu 3080 3085 3090	9501
cgg agg gcg gag gcc agg ggg cac ggc ctg cag gag cag ctg cag cta Arg Arg Ala Glu Ala Arg Gly His Gly Leu Gln Glu Gln Leu Gln Leu 3095 3100 3105	9549
cac cag ctg gag cga gag acc ctg ctc ctc gac gcc tgg ctg acc acc	9597

WO 01/3	03437						PC 1/USU1	/02023
Glu Asp		Ala Ser 2600	Glu Gly	Leu Trp 2605	Asp Pro	Leu Ala P 26	ro Met	
			His Lys			gac ctg g Asp Leu G 2625		8109
Gln Ala					Thr Ala	cgc ggc c Arg Gly L 2640		8157
		Pro Glu				agg tgc c Arg Cys G		8205
				Phe Arg		ggg acc c Gly Thr A		8253
	Leu Glu					ctg cag g Leu Gln A 26		8301
			Leu Arg			gtg gcc t Val Ala L 2705		8349
Glu Gly		-		-	Ala Gln	tta cag a Leu Gln L 2720		8397
		Ala Glu				caa cag c Gln Gln G		8445
ctg cag Leu Gln 2740	cgg gag Arg Glu	gga cag Gly Gln 2745	agg ctg Arg Leu	Leu Gln	ggg ggc Gly Gly 2750	cac cca g His Pro A	cc tcg la Ser 2755	8493
	Ile Gln					ctc tgg g Leu Trp G 27		8541
			Lys Lys			cag aag g Gln Lys A 2785		8589
Glu Ala					Glu Leu	gag aac t Glu Asn T 2800		8637
gag ccc Glu Pro 2805	atc gag Ile Glu	Val Glu	ctg aga Leu Arg 810	gcc ccc Ala Pro	act gtg Thr Val 2815	ggc cag g Gly Gln A	cc ctg la Leu	8685
cct ggg Pro Gly 2820	gtg ggc Val Gly	gag ctc Glu Leu 2825	ctg ggc Leu Gly	Thr Gln	agg gag Arg Glu 830	ctg gag g Leu Glu A	ca gca la Ala 2835	8733
	Lys Lys					ggc cag g Gly Gln A 28	la Glu	8781
gcc ttt	gtg agg	gaa ggc	cac tgc	ctt gcc	cga gat	gtg gaa g	ag cag	8829

WO 01/55437				PCT/US01/02623
Ser Gln Leu 2340	Asn Asn Arg Trp 2345		His Gly Asn Leu Le 350	u Arg 2355
tac cag cag Tyr Gln Gln	cag ctc gaa ggg Gln Leu Glu Gly 2360	gcc ttg gag a Ala Leu Glu 1 2365	ata cac gtg ttg tc Tle His Val Leu Se 237	r Arg
Glu Leu Asp	aat gtc acc aag Asn Val Thr Lys 2375	agg att cag g Arg Ile Gln G 2380	gag aag gaa gcc ct Slu Lys Glu Ala Le 2385	g atc 7389 u Ile
cag gcc ctg Gln Ala Leu 2390	Asp Cys Gly Lys	gat ctg gag a Asp Leu Glu S 2395	agc gtg cag agg ct Ger Val Gln Arg Le 2400	g ctg 7437 u Leu
Arg Lys His 2405	Glu Glu Leu Glu 2410	Arg Glu Val F	cac ccc atc cag gc lis Pro Ile Gln Al: 2415	a Gln
Val Glu Ser 2420	Leu Glu Arg Glu 2425	Val Gly Arg I 24	etc tgc caa aga ag Leu Cys Gln Arg Se: 130	r Pro 2435
gag gca gcc Glu Ala Ala	cac ggc ctc agg His Gly Leu Arg 2440	cac agg cag o His Arg Gln G 2445	ag gag gtg gct gag In Glu Val Ala Glu 2450	ı Ser
Trp Trp Gln	ctc cgg agc agg Leu Arg Ser Arg 2455	gcc cag aag c Ala Gln Lys A 2460	ngg agg gag gcg ctg arg Arg Glu Ala Lei 2465	g gat 7629 1 Asp
gcc ttg cac Ala Leu His 2470	Gln Ala Gln Lys	ctc cag gca a Leu Gln Ala M 2475	itg ctg cag gaa tto Met Leu Gln Glu Leo 2480	g ctg 7677 1 Leu
Val Ser Ala 2485	Gln Arg Leu Arg 2490	Ala Gln Met A	gac acg agc ccc`gct Asp Thr Ser Pro Ala 2495	a Pro
cgc agc cct Arg Ser Pro 2500	gtg gaa gcc cgg Val Glu Ala Arg 2505	Arg Met Leu G	gaa gag cat cag gag lu Glu His Gln Glu ilo	g tgc 7773 1 Cys 2515
aag gcc gag Lys Ala Glu	Leu Asp Ser Trp	aca gac agc a Thr Asp Ser I 2525	tc age etg gee ega le Ser Leu Ala Arg 2530	g Ser
Thr Gly Gln	Gln Leu Leu Thr 2535	Ala Gly His F 2540	cc ttc agc tcc gad Pro Phe Ser Ser Asp 2545	) Ile
cgc cag gtg Arg Gln Val 2550	Leu Ala Gly Leu	gaa cag gag c Glu Gln Glu L 2555	etg agc agc ctg gaa eu Ser Ser Leu Gli 2560	ıggg 7917 ıGly
gcc tgg cag Ala Trp Gln 2565	gag cat cag cta Glu His Gln Leu 2570	cag ctg cag c Gln Leu Gln G	ag gcc ctg gag cta In Ala Leu Glu Leu 2575	ı cag 7965 ı Gln
ctg ttt ctg Leu Phe Leu 2580	agc tca gtg gag Ser Ser Val Glu 2585	Lys Met Glu A	gt tgg ctt tgc ago rg Trp Leu Cys Ser 90	aag 8013 Lys 2595
gaa gac tcc	cta gcc agt gag	ggt cta tgg g	ac ccc ttg gcc ccc	atg 8061

Val Glu Gln Leu Ile Arg Lys His Glu Val Phe Leu Lys Val Leu Thr 2085 2090 gcc cag gac aag aag gag gca gcc ctg cgt gag cgg ctg aag acg ctc 6573 Ala Gln Asp Lys Lys Glu Ala Ala Leu Arg Glu Arg Leu Lys Thr Leu 2100 2105 2110 egg ege eee egg gtg egg gae egg ett eee ate etg etg eag ege egg 6621 Arg Arg Pro Arg Val Arg Asp Arg Leu Pro Ile Leu Leu Gln Arg Arg 2125 atg aga gtg aag gag ctg gcg gag agc cgg gga cac gcc ctg cat gcc 6669 Met Arg Val Lys Glu Leu Ala Glu Ser Arg Gly His Ala Leu His Ala 2140 tee etg etg atg gee age tte ace eag gee gea ace eag get gag gae 6717 Ser Leu Leu Met Ala Ser Phe Thr Gln Ala Ala Thr Gln Ala Glu Asp 2150 2155 tgg atc cag gcg tgg gcc cag cag ctg aag gag ccg gtc cct cct ggg 6765 Trp Ile Gln Ala Trp Ala Gln Gln Leu Lys Glu Pro Val Pro Pro Gly gac ctg aga gat aag ctg aag ccc ctg ctg aaa cac cag gcc ttt gag 6813 Asp Leu Arg Asp Lys Leu Lys Pro Leu Leu Lys His Gln Ala Phe Glu 2180 2185 gct gaa gtc cag gcc cat gag gag gtc atg acc tct gtt gcc aag aag 6861 Ala Glu Val Gln Ala His Glu Glu Val Met Thr Ser Val Ala Lys Lys 2200 2205 gga gag gct ctc ctg gca cag agt cac cct cga gcc gga gag gtc tcc 6909 Gly Glu Ala Leu Leu Ala Gln Ser His Pro Arg Ala Gly Glu Val Ser 2220 cag cgg ctg cag ggc ctg cgg aag cac tgg gag gac ctg agg cag gca 6957 Gln Arg Leu Gln Gly Leu Arg Lys His Trp Glu Asp Leu Arg Gln Ala 2235 atg gcc ctc agg ggc cag gag ctg gag gac agg cgg aac ttc ctg gag 7005 Met Ala Leu Arg Gly Gln Glu Leu Glu Asp Arg Arg Asn Phe Leu Glu 2250 ttc ctg cag aga gtg gac ctt gca gag gcc tgg atc cag gag aag gag 7053 Phe Leu Gln Arg Val Asp Leu Ala Glu Ala Trp Ile Gln Glu Lys Glu 2260 2270 2275 gtg aag atg aat gtt ggt gac ctg ggc cag gac ctg gag cac tgc ctg 7101 Val Lys Met Asn Val Gly Asp Leu Gly Gln Asp Leu Glu His Cys Leu 2280 2285 cag etc ega egg egg etc ege gag tte ega gga aac teg gee ggg gae 7149 Gln Leu Arg Arg Arg Leu Arg Glu Phe Arg Gly Asn Ser Ala Gly Asp 2300 aca gtg ggt gat gcc tgc atc agg agc atc agt gac ttg tca ctg cag 7197 Thr Val Gly Asp Ala Cys Ile Arg Ser Ile Ser Asp Leu Ser Leu Gln 2315 ctc aag aac cgg gac cct gag gaa gtc aag atc atc tgc cag cgg cga 7245 Leu Lys Asn Arg Asp Pro Glu Glu Val Lys Ile Ile Cys Gln Arg Arg 2330 age cag etc aac agg tgg geg agt tte cat gge aac ttg etc egg 7293

Ala Arq Gly His Ala Leu Arq Asp Thr Glu Thr Thr Leu Arq Val His 1835 aga gat etc ttg gaa gte etc ace eag gte eag gag aaa gee acg age 5805 Arg Asp Leu Leu Glu Val Leu Thr Gln Val Gln Glu Lys Ala Thr Ser 1850 1855 ctc ccc aac aat gtg gca cgg gac ctg tgt ggg ctg gag gcg cag ctg 5853 Leu Pro Asn Asn Val Ala Arg Asp Leu Cys Gly Leu Glu Ala Gln Leu 1865 aga agc cac cag ggg ctg gag cga gaa ctc gtg ggc acc gag cgg cag 5901 Arg Ser His Gln Gly Leu Glu Arg Glu Leu Val Gly Thr Glu Arg Gln 1880 ctg cag gaa ctg ctg gag act gca ggc agg gtg cag aag ctg tgt ccg 5949 Leu Gln Glu Leu Leu Glu Thr Ala Gly Arg Val Gln Lys Leu Cys Pro 1895 1900 ggg cct cag gcc cat gcg gtg cag cag agg cag caa gct gtg acg cag 5997 Gly Pro Gln Ala His Ala Val Gln Gln Arg Gln Gln Ala Val Thr Gln 1915 geg tgg gea gtg ctg cag cga cgc atg gag cag cgc agg gcc cag ctg 6045 Ala Trp Ala Val Leu Gln Arg Arg Met Glu Gln Arg Arg Ala Gln Leu 1930 gag egg gea ege ete etg gee ege tte ege aeg geg gtg egt gae tat 6093 Glu Arg Ala Arg Leu Leu Ala Arg Phe Arg Thr Ala Val Arg Asp Tyr 1945 1950 gcc tcc tgg gca gcc cgc gtg cgc cag gac ctg cag gtg gag gag agt 6141 Ala Ser Trp Ala Ala Arg Val Arg Gln Asp Leu Gln Val Glu Glu Ser 1960 1965 tcg caa gag cct agc agt ggc ccg ctg aag ctc agt gcc cac cag tgg 6189 Ser Gln Glu Pro Ser Ser Gly Pro Leu Lys Leu Ser Ala His Gln Trp 1975 1980 ctc cgg gcg gag ctg gag gcc cgg gag aag ctg tgg cag cag gcc acc 6237 Leu Arg Ala Glu Leu Glu Ala Arg Glu Lys Leu Trp Gln Gln Ala Thr 1990 1995 cag ctg ggg cag cag gca ctt ctt gct gca ggg aca ccc acc aag gaq 6285 Gln Leu Gly Gln Gln Ala Leu Leu Ala Ala Gly Thr Pro Thr Lys Glu gtc cag gaa gag ctt cga gcc ctg cag gac cag cgg gac cag gtg tat 6333 Val Gln Glu Glu Leu Arg Ala Leu Gln Asp Gln Arg Asp Gln Val Tyr 2025 2030 cag acc tgg gca cgg aag caa gag agg ctg cag gcc gag cag cag gag 6381 Gln Thr Trp Ala Arg Lys Gln Glu Arg Leu Gln Ala Glu Gln Glu Gln Glu 2045 cag etc ttc etc aga gag tgc ggc egc etg gag gag atc etc geg gec 6429 Gln Leu Phe Leu Arg Glu Cys Gly Arg Leu Glu Glu Ile Leu Ala Ala 2055 cag gag gtc tcc ctg aaa acc agt gcc ttg ggg agc tcg gtg gaa gag 6477 Gln Glu Val Ser Leu Lys Thr Ser Ala Leu Gly Ser Ser Val Glu Glu 2070 2075 2080 gta gag cag ttg att cgc aag cac gag gtc ttc ctg aag gtt ctg act 6525

His G		Gln ' 1575	Val Gln	Arg		Leu 1580	Ser	Ser	Gly		Ser 1585	Leu	Ala	
gcc t Ala S	ca ggg er Gly 1590	His	ccc caa Pro Gln	Ala	caa Gln 1595	cac His	atc Ile	gtg Val	Glu	cag Gln 1600	tgc Cys	cag Gln	gag Glu	5037
Leu G			tgg gca Trp Ala					Āla						5085
			cag gct Gln Ala 1625	Val			Gln					Asp		5133
tca g Ser G	ag ctg lu Leu	Glu (	ggc tgg Gly Trp 640	gtg Val	gag Glu	Glu	aag Lys 1645	cgg Arg	ccg Pro	ctg Leu	Val	agc Ser 1650	agt Ser	5181
cgg g Arg A	sp Tyr	ggc a Gly a 1655	aga gac Arg Asp	gag Glu	Ala	gcc Ala 1660	acc Thr	ctc Leu	agg Arg	Leu	att Ile .665	aac Asn	aag Lys	5229
cac c His G	ag gct ln Ala 1670	Leu (	cag gag Gln Glu	Glu	cta Leu 1675	gcc Ala	att Ile	tac Tyr	Trp	agc Ser 1680	tcc Ser	atg Met	gag Glu	527 <b>7</b>
	eu Asp		acg gcc Thr Ala					Gly						5325
cag c Gln G 1700	ag cgt ln Arg	gtg g Val V	gtg cag Val Gln 1705	gag Glu	agg Arg	ctc Leu	Arg	gag Glu 1710	cag Gln	ctg Leu	cgg Arg	Ala	ctg Leu 1715	5373
cag g Gln G	ag ttg lu Leu	Ala A	gcc aca Ala Thr 720	cgg Arg	gac Asp	Arg	gaa Glu 1725	ctg Leu	gag Glu	gly aaa	Thr	ctg Leu .730	agg Arg	5421
ctg c Leu H	is Glu	ttc o Phe I 1735	etg agg Leu Arg	gag Glu	Ala	gag Glu 1740	gac Asp	ctg Leu	cag Gln	Gly	tgg Trp 745	ctg Leu	gca Ala	5469
agc ca Ser G	ag aag ln Lys 1750	cag g Gln A	gca gcc Ala Ala	Lys	gga Gly L755	gly aaa	gag Glu	agc Ser	Leu	gga Gly .760	gag Glu	gac Asp	ccc Pro	5517
gag ca Glu H: 170	is Ala	ctg o	eac ctc His Leu	tgc Cys 1770	acc Thr	aag Lys	ttt Phe	Ala	aag Lys 775	ttt Phe	cag Gln	cac His	caa Gln	5565
gtg ga Val G 1780	ag atg lu Met	ggc a	igc cag Ser Gln 1785	cgg Arg	gtg Val	gcc Ala	Ala	tgc Cys 790	cgg Arg	ctg Leu	ctg Leu	Ala	gag Glu 795	5613
agc ct Ser Le	tg cta eu Leu	Glu A	gt ggg rg Gly	cac His	agt Ser	Ala	ggc Gly 805	ccc Pro	atg Met	gtc Val	Arg	cag Gln 810	agg Arg	5661
cag ca Gln Gl	ln Asp	ctg c Leu G 1815	ag acc	gcc Ala	Trp	tcg Ser 820	gag Glu	ctg Leu	tgg Trp	Glu :	ctg Leu 825	acc Thr	cag Gln	5709
gcc cg	ga ggc	cac g	cg ctc	cga	gac	acc	gag	acc	acc	ctc	aga	gtt	cac	5757

Leu Gln Glu Trp Lys Gln Asp Val Ala Glu Leu Met Gln Trp Met Glu gag aag ggg ctg atg gct gcg cat gag ccc tcc gga gcg cgc aga aac 4269 Glu Lys Gly Leu Met Ala Ala His Glu Pro Ser Gly Ala Arg Arg Asn 1340 1335 atc ctq caq aca ctc aag cgg cac gaa gca gct gag agc gag cta ctc 4317 Ile Leu Gln Thr Leu Lys Arg His Glu Ala Ala Glu Ser Glu Leu Leu 1355 1350 gec acc ege aga cae gtg gag gec etg cag cag gtt ggg aga gag etg 4365 Ala Thr Arg Arg His Val Glu Ala Leu Gln Gln Val Gly Arg Glu Leu 1365 1370 ttg agt agg agg ccc tgt ggc cag gag gac ata cag acc agg ctt caa 4413 Leu Ser Arg Arg Pro Cys Gly Gln Glu Asp Ile Gln Thr Arg Leu Gln 1380 1385 1390 ggc ctg aga agc aag tgg gaa gct ttg aac cgc aag atg act gag cgt 4461 Gly Leu Arg Ser Lys Trp Glu Ala Leu Asn Arg Lys Met Thr Glu Arg 1405 1400 ggg gac gag ctc cag cag gct gga cag cag gag caa ctc ctg agg cag 4509 Gly Asp Glu Leu Gln Gln Ala Gly Gln Glu Gln Leu Leu Arg Gln 1420 ctg cag gat gca aag gag cag ctg gag cag ctc gaa ggg gcc cta cag 4557 Leu Gln Asp Ala Lys Glu Gln Leu Glu Gln Leu Glu Gly Ala Leu Gln 1435 1440 age teg gaa aca ggg cag gae etg ege tee age cag agg etg cag aaa 4605 Ser Ser Glu Thr Gly Gln Asp Leu Arg Ser Ser Gln Arg Leu Gln Lys egg cae caa cag etg gag agt gag age egg ace etg get gee aag atg 4653 Arg His Gln Gln Leu Glu Ser Glu Ser Arg Thr Leu Ala Ala Lys Met 1465 1460 .1470 get ged etc ged ted atg ged dat ggd atg ged ged ted deg ged atc 4701 Ala Ala Leu Ala Ser Met Ala His Gly Met Ala Ala Ser Pro Ala Ile 1480 1485 ctg gaa gag acc cag aag cac ctc cgg agg ctg gag ctt ctg cag ggg 4749 Leu Glu Glu Thr Gln Lys His Leu Arg Arg Leu Glu Leu Leu Gln Gly 1500 cat ctg gcc atc cgg ggc ctg cag ctg cag gcc tca gtg gag ctg cac 4797 His Leu Ala Ile Arg Gly Leu Gln Leu Gln Ala Ser Val Glu Leu His 1515 cag tto tgc cac ctg ago aac atg gag ctc tot tgg gta gcc gag cac 4845 Gln Phe Cys His Leu Ser Asn Met Glu Leu Ser Trp Val Ala Glu His 1530 1535 atg ccc cat ggc agc ccc acc agc tat acc gag tgc ttg aat ggt qcc 4893 Met Pro His Gly Ser Pro Thr Ser Tyr Thr Glu Cys Leu Asn Gly Ala 1540 1555 cag ago ott cac ogo aag cac aag gag oto cag gtg gag gta aaa got 4941 Gln Ser Leu His Arg Lys His Lys Glu Leu Gln Val Glu Val Lys Ala 1560 1565 1570 cac cag ggg cag gtg caa cgg gtg ctg agt tet ggg egg agc etg gea

Val Lys 1060	Val Glu	Glu Pro 1065	Gly Tyr	Ala Gl	u Ser Gl	n Pro Leu	Gln Gly 1075	
cag gtg Gln Val	gag aca Glu Thi	a ctg cag r Leu Gln 1080	ggg ctg Gly Leu	ctg aa Leu Ly 108	s Gln Va	a cag gaa l Gln Glu	caa gtg Gln Val 1090	3501
gcc caa Ala Gln	cgg gcc Arg Ala 1099	a Arg Arg	Gln Ala	gag ac Glu Th 1100	t cag gc r Gln Al	c cgg cag a Arg Gln 1105	agc ttc Ser Phe	3549
Leu Gln		_	_			g agt gtc u Ser Val 1120		3597
		r Lys Glu				c tcg gct a Ser Ala 5		3645
						c cac ctg e His Leu		3693
					r Gln Pr	c atg gca o Met Ala		3741
		Ser Gln	Glu Val			g agg gtc u Arg Val 1185		3789
Gln Gln				-		g agg cag n Arg Gln 1200		3837
_		Leu Glu		-		a gaa gtg g Glu Val 5		3885
						g cac ctg u His Leu		3933
					r Leu Lei	g cag cag ı Gln Gln		3981
		Leu Leu	Ser Thr			g gca gag g Ala Glu 1265		4029
Arg Ala					_	c cca gct s Pro Ala 1280	_	4077
		ı Gln Leu				g tgg acc n Trp Thr		4125
						g gct tcc ı Ala Ser		4173
ctc cag	gag tgg	aag cag	gat gtg	gca ga	g ctg ato	g cag tgg	atg gaa	4221

***	<b>J</b> 01/3	3437												•	C1/0	301,02020
Leu	Glu 805	Glu	Gln	Gly	Arg	Ala 810	Ala	Ser	Ala	Arg	Ala 815	Ser	Leu	Phe	Thr	
			gcc Ala											Pro		2733
			gag Glu													2781
atg Met	gcc Ala	ctc Leu	cca Pro 855	gct Ala	gag Glu	cct Pro	gac Asp	cct Pro 860	gac Asp	ttt Phe	gat Asp	ccc Pro	aac Asn 865	act Thr	ata Ile	2829
			cag Gln													2877
			ctc Leu													2925
			agt Ser													2973
aca Thr	gtg Val	ctg Leu	ctc Leu	caa Gln 920	agg Arg	gtg Val	cag Gln	ccc Pro	cag Gln 925	gct Ala	gac Asp	acc Thr	ctg Leu	gag Glu 930	gtc Val	3021
			aaa Lys 935													3069
			gct Ala													3117
			aac Asn						-	_	-		_	_	_	3165
_	Arg		gj aaa													3213
_	_		agt Ser		-		_	Ser		_	_		Cys			3261
		Val	cag Gln 1015	Leu			Val					Glu				3309
	Gly		tca Ser			Thr					Gln					3357
Lys	_	Leu	gtg Val	_	Glu			-		Phe			_		-	3405
gta	aag	gtc	gag	gag	cca	ggc	tac	gca	gag	agc	cag	cct	ctg	caa	gga	3453

WC	01/5	5437												r	C1/0	301/02023
Gln	Leu	Glu 550	Glu	Leu	Gln	Glu	Pro 555	Ala	Arg	Ser	Thr	Ala 560	Сув	Gly	Gln	
cag Gln	ctg Leu 565	gca Ala	gaa Glu	gtg Val	gtg Val	gag Glu 570	ctg Leu	ctg Leu	cag Gln	agg Arg	cat His 575	gac Asp	ctg Leu	ctg Leu	gag Glu	1965
gct Ala 580	caa Gln	gtc Val	tcg Ser	gcc Ala	cac His 585	gga Gly	gcc Ala	cat His	gtg Val	agc Ser 590	cat His	ctt Leu	gct Ala	cag Gln	cag Gln 595	2013
aca Thr	gca Ala	gag Glu	ctg Leu	gac Asp 600	tcc Ser	tcc Ser	ctg Leu	ggc Gly	acc Thr 605	agt Ser	gtg Val	gag Glu	gtg Val	ctg Leu 610	cag Gln	2061
gcc Ala	aag Lys	gcc Ala	agg Arg 615	aca Thr	ctg Leu	gcc Ala	cag Gln	ctc Leu 620	caa Gln	cag Gln	agc Ser	ctg Leu	gtg Val 625	gct Ala	ctt Leu	2109
gtc Val	agg Arg	gcc Ala 630	cgg Arg	cgg Arg	gcc Ala	ctg Leu	ctg Leu 635	gag Glu	cag Gln	acc Thr	ctg Leu	cag Gln 640	cgg Arg	gca Ala	gag Glu	2157
ttc Phe	ctg Leu 645	cgc Arg	aac Asn	tgt Cys	gag Glu	gag Glu 650	gag Glu	gaa Glu	gcc Ala	tgg Trp	ctg Leu 655	aag Lys	gag Glu	tgc Cys	gga Gly	2205
cag Gln 660	cgg Arg	gtg Val	ggg	aat Asn	gcg Ala 665	gcc Ala	ctg Leu	ggc Gly	cgg Arg	gat Asp 670	ctc Leu	agc Ser	cag Gln	atc Ile	gca Ala 675	2253
ggc Gly	gcc Ala	ctg Leu	cag Gln	aaa Lys 680	cac His	aag Lys	gcc Ala	ctg Leu	gaa Glu 685	gct Ala	gag Glu	gtc Val	cac His	cgc Arg 690	cac His	2301
					gat Asp											2349
cgc Arg	agg Arg	ccc Pro 710	cca Pro	acg Thr	cag Gln	ccg Pro	gat Asp 715	ccc Pro	Gly aaa	gaa Glu	cgg Arg	gca Ala 720	gag Glu	gcc Ala	gtt Val	2397
cag Gln	gga Gly 725	Gly	Trp	Gln	ctg Leu	Leu	Gln	Thr	Arg	Val	Val	Gly	cgg Arg	ggc	gca Ala	2445
cgg Arg 740	Leu	cag Gln	aca Thr	gcc Ala	ctg Leu 745	ctg Leu	gtc Val	ctg Leu	cag Gln	tac Tyr 750	ttc Phe	gcg Ala	gac Asp	gcg Ala	gcg Ala 755	2493
					ctg Leu											2541
					cag Gln											2589
gtg Val	cgg Arg	ctg Leu 790	gag Glu	cgc Arg	gtc Val	ctg Leu	cgc Arg 795	gcc Ala	ttc Phe	gcg Ala	gcc Ala	gag Glu 800	ctg Leu	cgg Arg	cgg Arg	2637
ctg	gag	gag	cag	<b>3</b> 99	cgg	gcg	gcc	tcg	gcc	cgg	gcg	tcg	tta	ttc	acg	2685

WC	01/5	3437													CI/US	01/02023
Arg	Arg	Leu	Thr 295	Lys	Ile	Leu	Leu	Gln 300	Leu	Gln	Glu	Thr	Glu 305	Leu	Leu	
				gag Glu												1197
				cag Gln												1245
-	_		_	cta Leu	_	_	-					-		_		1293
				cta Leu 360												1341
		_		gca Ala			-	_		_				-		1389
			_	ggc Gly		-		_			-		-			1437
		_		gct Ala	-		_	_	_	_	_	-			-	1485
cag Gln 420	ctg Leu	cag Gln	cgg Arg	cta Leu	gaa Glu 425	acc Thr	ctg Leu	gcc Ala	cgg Arg	cgc Arg 430	ttc Phe	cag Gln	cgc Arg	aag Lys	gca Ala 435	1533
				agt Ser 440									Leu			1581
gcc Ala	aga Arg	gcc Ala	ccg Pro 455	cca Pro	gcc Ala	agc Ser	ctg Leu	gcc Ala 460	aca Thr	gtg Val	gag Glu	gca Ala	gcc Ala 465	gtc Val	cag Gln	1629
			Met	ctg Leu		Ala	Gly	Ile	Leu	Pro		Glu	Gly			1677
				gag Glu												1725
agc Ser 500	tgg Trp	gca Ala	gat Asp	gtg Val	gcc Ala 505	cgc Arg	agg Arg	cag Gln	gag Glu	gaa Glu 510	gtt Val	acc Thr	gtg Val	cgc Arg	tgg Trp 515	1773
cag Gln	agg Arg	ctc Leu	ctt Leu	cag Gln 520	cat His	cta Leu	cag Gln	gga Gly	cag Gln 525	agg Arg	aag Lys	cag Gln	gtg Val	gca Ala 530	gac Asp	1821
atg Met	cag Gln	gct Ala	gtg Val 535	ctg Leu	agc Ser	ctg Leu	ctg Leu	cag Gln 540	gag Glu	gtg Val	gag Glu	gct Ala	gcc Ala 545	tcc Ser	cac His	1869
cag	ctg	gag	gag	ctg	cag	gag	ccg	gcc	agg	tcc	acc	gcc	tgt	aaa	cag	1917

Met	Asp	Ser	Gln	Tyr 40	Glu	Thr	Gly	His	Ile 45	Arg	Lys	Leu	Gln	Ala 50	Arg	
								ttc Phe 60								429
	_	_		_				aag Lys				-			_	477
								cgg Arg								525
								ggc Gly								573
		_	_	_	_	_	_	ttc Phe			_				_	621
								gtg Val 140	_		_					669
_					_			ctg Leu	_		_					717
								gcc Ala		-	-	-	_			765
								cag Gln								813
								cga Arg								861
		-				-		agg Arg 220		_	_	_	_			909
					-		-	cac His			-		-		-	957
								gct Ala								1005
gtg Val 260	gca Ala	gcc Ala	gca Ala	cag Gln	cca Pro 265	gat Asp	gag Glu	cgc Arg	tct Ser	atc Ile 270	atg Met	acc Thr	tac Tyr	gtc Val	tcc Ser 275	. 1053
								ctg Leu								1101
agg	aga	ctc	act	aag	atc	ctg	ctt	cag	ctc	cag	gag	aca	gag	ctg	ctg	1149

WO 01/55437 PCT/US01/02623 tot cag ggt aac ctg act gag too tgg gca gat gat aac coo cga cac 1073 Ser Gln Gly Asn Leu Thr Glu Ser Trp Ala Asp Asp Asn Pro Arg His 315 320 cat ggc ctg gct gcc cac tcc tca ggg gag gaa aga gag atc cag tat 1121 His Gly Leu Ala Ala His Ser Ser Gly Glu Glu Arg Glu Ile Gln Tyr gca ccc ctc agc ttt cat aag ggg gag cct cag gac cta tca ggt caa 1169 Ala Pro Leu Ser Phe His Lys Gly Glu Pro Gln Asp Leu Ser Gly Gln 355 gaa gcc acc aac aat gag tac tca gag atc aag atc ccc aag taa gaa 1217 Glu Ala Thr Asn Asn Glu Tyr Ser Glu Ile Lys Ile Pro Lys * 365 370 aatgcagagg ctcgggcttg tttgagggtt cacgacccct ccagcaaagg agtctgaggc 1277 tgattccagt agaattagca gccctcaatg ctgtgcaaca agacatcaga acttattcct 1337 ettgtctaac tgaaaatgca tgcctgatga ccaaactetc cetttcccca tccaatcggt 1397 ccacactece egecetggee tetggtacee accattetee tetgtactte tetaaggatg 1457 actactttag attccgaata tagtgagatt gtaacgtgtt tgtctctctg tgcctqqctt 1517 atttcactca acataacatc ctctaagttc atctgtgttg tttccaatga cagagtaatg 1577 tactgaataa ttcaaaatag ctaaaagaga ggagtttaaa tgttgtcacc aaaaaaaaa 1637 aaaaa 1642

<211> 11736 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (229)..(11253) <400> 218 ggacaatgcc gcctgtgtgc cgtcacccca gcacgctggc tcaaggggag ggctgtggtg 60 cagccctgct ccagccttgg cctctcctga tgtccctctc cctccctcca cagcccctgc 120 tatetgeeat etecateegt eeagetggge egeetetgtg gaacceagge atcaceaagg 180 tttagggagc catccagcag ctcctcatcc ccaaagtctg cagggctg atg gct ggt 237 Met Ala Gly cag ccc cac agt ccc cgg gag ctc ctc ggg gct gca ggg cac cgc agc 285 Gln Pro His Ser Pro Arg Glu Leu Leu Gly Ala Ala Gly His Arg Ser 5 10 15 agg agg ccc agc aca gaa ctc cgg gtc ccg ccc agt cca agt ctc acc 333 Arg Arg Pro Ser Thr Glu Leu Arg Val Pro Pro Ser Pro Ser Leu Thr

<210> 218

20

381

atg gac tot cag tac gag acg ggc cac att cgc aag cta cag gcc cgg

WO 01/5543	7						PC7	T/US01/02623
gac tct gad Asp Ser Asp	cca gtt Pro Val	cat ggc His Gly	tac tgg Tyr Trp 65	Phe Ar	g gca g g Ala G	gg aat ly Asn 70	gat at Asp Il	a 305 e
agc tgg aag Ser Trp Lys	Ala Pro				o Ala T			
gag gaa act Glu Glu Thi 90								
aat tgc acc Asn Cys Thi 105		_	-		t Ser A			3
tac ttc tt! Tyr Phe Phe		Glu Lys				sn Tyr		
gac cag cto Asp Gln Lev			_		_	_	-	•
act gtc tto Thr Val Pho 159	: Gln Gly				r Ala Le			
tca tct ctt Ser Ser Let 170								
gtt gac ago Val Asp Sei 185	aat ccc Asn Pro	cct gcc Pro Ala 190	agg ctg Arg Leu	agc tgg Ser Trp 19	o Thr Ti	g agg	agt cto Ser Leo 20	ı
acc ctg tac Thr Leu Tyn	ccc tca Pro Ser 205	Gln Pro	tca aac Ser Asn	pro Let 210	g gta ct ı Val Le	u Glu	ctg caa Leu Gli 215	a 737
gtg cac cto Val His Lev	ggg gat Gly Asp 220	gaa ggg Glu Gly	gaa ttc Glu Phe 225	acc tgt Thr Cys	t cga go s Arg Al	t cag a Gln 230	aac tci Asn Sei	785
ctg ggt tcc Leu Gly Ser 235	Gln His					n Gln (		
aca ggc aaa Thr Gly Lys 250	atg agg Met Arg	cct gta Pro Val 255	tca gga Ser Gly	gtg ttg Val Leu	g ctg gg Leu Gl 260	gg gcg g .y Ala '	gtc ggg Val Gly	881
gga gct gga Gly Ala Gly 265	gcc aca Ala Thr	gcc ctg Ala Leu 270	gtc ttc Val Phe	ctc tcc Leu Ser 279	Phe Cy	rs Val	atc tto Ile Phe 280	<b>:</b>
att gta gtg Ile Val Val	agg tcc Arg Ser 285	tgc agg Cys Arg	aag aaa Lys Lys	tcg gca Ser Ala 290	a agg co a Arg Pr	o Ala A	gcg gad Ala Asp 295	977

gtg gga gac ata ggc atg aag gat gca aac acc atc agg ggc tca gcc Val Gly Asp Ile Gly Met Lys Asp Ala Asn Thr Ile Arg Gly Ser Ala

														gat Asp		1366
														gaa Glu		1414
														cag Gln		1462
				_	_				-					aag Lys		1510
	aag Lys		gaa	aatg	caga	aggci	tog (	ggcti	tgtti	tg ag	gggti	tcac	gac	ccct	ccag	1566
caa	agga	gtc	tgag	gctg	at t	ccag	taga	a tta	agca	dece	tca	atgci	tgt :	gcaa	caagac	1626
atc	agaa	ctt .	attc	ctct	tg t	ctaa	ctga	a aa	tgca	tgcc	tga	tgac	caa	actc	tccctt	1686
tcc	ccat	cca .	atcg	gtcc	ac a	ctcc	ccgc	c ct	ggcc	tctg	gta	ccca	cca	ttct	cctctg	1746
tac	ttct	cta .	agga	tgac	ta c	ttta	gatt	c cg	aata	tagt	gag	attg	taa	cgtg	tttgtc	1806
tct	ctgt	gcc	tggc	ttat	tt c	actc	aaca	t aa	catc	ctct	aag	ttca	tct	gtgti	tgtttc	1866
caa	tgac	aga	gtaa	tgta	ct g	aata	attc	a aa	atag	ctaa	aa					1908

<211> 1642 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (90)..(1214) <400> 217 eeggaattee egggtegaee eacgegteeg eggaegegtg ggtgaggaae agaegtteee 60 tegeggeeet ggeaceteea acceeagat atg etg etg etg etg eec 113 Met Leu Leu Leu Leu Leu Pro ctg ctc tgg ggg agg gag agg gtg gaa gga cag aag agt aac cgg aag Leu Leu Trp Gly Arg Glu Arg Val Glu Gly Gln Lys Ser Asn Arg Lys 161 gat tac tcg ctg acg atg cag agt tcc gtg acc gtg caa gag ggc atg 209 Asp Tyr Ser Leu Thr Met Gln Ser Ser Val Thr Val Gln Glu Gly Met 30 tgt gtc cat gtg cgc tgc tcc ttc tcc tac cca gtg gac agc cag act 257 Cys Val His Val Arg Cys Ser Phe Ser Tyr Pro Val Asp Ser Gln Thr

<210> 217

						atc Ile									ggc Gly	598
						tgc Cys										646
						tgg Trp										694
				_		tca Ser 200	-						~		-	742
						acc Thr										790
		_				atc Ile									_	838
						ttc Phe										886
						ctt Leu										934
ttg Leu	gtc Val 275	tgt Cys	gct Ala	gtt Val	gac Asp	agc Ser 280	aat Asn	ccc Pro	cct Pro	gcc Ala	agg Arg 285	ctg Leu	agc Ser	tgg Trp	acc Thr	982
tgg Trp 290	agg Arg	agt Ser	ctg Leu	acc Thr	ctg Leu 295	tac Tyr	ccc Pro	tca Ser	cag Gln	ccc Pro 300	tca Ser	aac Asn	cct Pro	ctg Leu	gta Val 305	1030
ctg Leu	gag Glu	ctg Leu	caa Gln	gtg Val 310	cac His	ctg Leu	Gly aaa	gat Asp	gaa Glu 315	gjå aaa	gaa Glu	ttc Phe	acc Thr	tgt Cys 320	cga Arg	1078
gct Ala	cag Gln	aac Asn	tct Ser 325	ctg Leu	ggt Gly	tcc Ser	cag Gln	cac His 330	gtt Val	tcc Ser	ctg Leu	aac Asn	ctc Leu 335	tcc Ser	ctg Leu	1126
caa Gln	cag Gln	gag Glu 340	tac Tyr	aca Thr	ggc Gly	aaa Lys	atg Met 345	agg Arg	cct Pro	gta Val	tca Ser	gga Gly 350	gtg Val	ttg Leu	ctg Leu	1174
gj aaa	gcg Ala 355	gtc Val	gly ggg	gga Gly	gct Ala	gga Gly 360	gcc Ala	aca Thr	gcc Ala	ctg Leu	gtc Val 365	ttc Phe	ctc Leu	tcc Ser	ttc Phe	1222
tgt Cys 370	gtc Val	atc Ile	ttc Phe	att Ile	gta Val 375	gtg Val	agg Arg	tcc Ser	tgc Cys	agg Arg 380	aag Lys	aaa Lys	tcg Ser	gca Ala	agg Arg 385	1270
cca Pro	gca Ala	gcg Ala	gac Asp	gtg Val 390	gga Gly	gac Asp	ata Ile	ggc Gly	atg Met 395	aag Lys	gat Asp	gca Ala	aac Asn	acc Thr 400	atc Ile	1318

wo	01/55	437												P	CT/US0:	1/02623
tacco			gteta	aacg	g gat	gctg	gctg	ggt	gttgo	ega (	cccar	ngac	ja ga	atgco	etttg	2117
tttct						-										2177
ctntt	ccgg	gg ct	taai	ttgg	t tgg	gggaı	natn	ttg	gcca	ttg	gtcti	tgtgo	et ta	anaa	aatgg	2237
cngta	accaa	ag aa	aatc	tttt	t nti	tccaa	aanc	CCC	cttt	tgc	caan	ggati	tt to	ectti	ngggg	2297
gggcr	nggc	ca c	cccc	cttn	t tc											2319
	<21 <21 <21		908 NA omo	sapi	ens				,							
		1> C 2> (		(1	519)											
ttga		0> 2 tt g		cctg	c gg	tacc	ggto	cgg	aatt	ccc	gggt	cgac	cc a	cgcg	tccgg	60
aaga	accc	tg a	ggaa	caga	c gt	tece	tcgc	ggc	cctg	gca	cctc	caac	cc c	agat	atg Met 1	118
ctg Leu	ctg Leu	ctg Leu	ctg Leu 5	ctg Leu	ctg Leu	ccc Pro	ctg Leu	ctc Leu 10	tgg Trp	Gly aaa	agg Arg	gag Glu	agg Arg 15	gtg Val	gaa Glu	166
gga Gly	cag Gln	aag Lys 20	agt Ser	aac Asn	cgg Arg	aag Lys	gat Asp 25	tac Tyr	tcg Ser	ctg Leu	acg Thr	atg Met 30	cag Gln	agt Ser	tcc Ser	214
gtg Val	acc Thr 35	gtg Val	caa Gln	gag Glu	ggc Gly	atg Met 40	tgt Cys	gtc Val	cat His	gtg Val	cgc Arg 45	tgc Cys	tcc Ser	ttc Phe	tcc Ser	262
tac Tyr 50	cca Pro	gtg Val	gac Asp	Ser	cag Gln 55	Thr	Asp	Ser	gac Asp	Pro	gtt Val	cat His	ggc	tac Tyr	tgg Trp 65	310
ttc Phe	cgg Arg	gca Ala	Gly ggg	aat Asn 70	gat Asp	ata Ile	agc Ser	tgg Trp	aag Lys 75	gct Ala	cca Pro	gtg Val	gcc Ala	aca Thr 80	aac Asn	358
aac Asn	cca Pro	gct Ala	tgg Trp 85	gca Ala	gtg Val	cag Gln	gag Glu	gaa Glu 90	act Thr	cgg Arg	gac Asp	cga Arg	ttc Phe 95	cac His	ctc Leu	406
ctt Leu	Gly 999	gac Asp 100	cca Pro	cag Gln	acc Thr	aaa Lys	aat Asn 105	tgc Cys	acc Thr	ctg Leu	agc Ser	atc Ile 110	aga Arg	gat Asp	gcc Ala	454
aga Arg	atg Met 115	agt Ser	gat Asp	gcg Ala	GJ A aaa	aga Arg 120	Tyr	ttc Phe	ttt Phe	cgt Arg	atg Met 125	gag Glu	aaa Lys	gga Gly	aat Asn	502
ata Ile 130	aaa Lys	tgg Trp	aat Asn	tat Tyr	aaa Lys 135	tat Tyr	gac Asp	cag Gln	ctc Leu	tct Ser 140	gtg Val	aac Asn	gtg Val	aca Thr	gcc Ala 145	550

220 225 230

		220					225					230				
	-		_		-					-		-		cat His		1253
														gcc Ala		1301
														gcc Ala 280		1349
	_	_	_			_				_	_	_		aag Lys	-	1397
														aaa Lys		1445
														aat Asn		1493
_		-	_			_		_		_			-	aca Thr	_	1541
		_	-		_		_					_	_	ttc Phe 360		1589
														atg Met		1637
														act Thr		1685
gag Glu	gca Ala 395	gat Asp	gaa Glu	gat Asp	gct Ala	gtc Val 400	cag Gln	ttt Phe	gcg Ala	aat Asn	agg Arg 405	gtg Val	aaa Lys	tct Ser	gcc Ala	1733
														ggc Gly		1781
														aag Lys 440		1829
tac Tyr	agc Ser	aag Lys	atg Met 445	atc Ile	gtg Val	gly ggg	aac Asn	cac His 450	aag Lys	gac Asp	agg Arg	agc Ser	cgc Arg 455	tcc Ser	tga	1877
gcct	gcct	cc a	gctg	gctg	ia aa	rccac	cgtg	cgg	ggtg	jcca	acgo	gcto	cag a	igcto	gagtt	1937
gccg	geege	ccg c	cccc	acto	jc t <u>c</u>	tgto	cttt	. cca	gact	cca	ggg	etcco	cg g	gcto	ctctg	1997
gato	ccag	gga c	ctccg	gctt	t cg	ccga	gccg	r cag	cggg	atc	ccts	tgca	icc c	ggcg	rcagcc	2057

WO 01/55437 PCT/US01/02623
Cagttgcctc ctgtggccgt gtttttctgt cattctgttc ccaggccttc tattcaggcg 36
gttgaagggt gtggactttg gaatggggtt tgctgttctt cgggaacttg cttcctttcc 42
ctggctggcg ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta tggaggcagg 48
tgctggcctg gcctggatct tccacc atg ttc ctg ttg ctg cct ttt gat agc 53 Met Phe Leu Leu Pro Phe Asp Ser · 1 5
ctg att gtc aac ctt ctg ggc atc tcc ctg act gtc ctc ttc acc ctc  Leu Ile Val Asn Leu Leu Gly Ile Ser Leu Thr Val Leu Phe Thr Leu  10 25 25
Ctt CtC gtt ttC atC ata gtg CCa gCC att ttt gga gtC tCC ttt ggt 62: Leu Leu Val Phe Ile Ile Val Pro Ala Ile Phe Gly Val Ser Phe Gly 30 35 40
atc cgc aaa ctc tac atg aaa agt ctg tta aaa atc ttt gcg tgg gct 67 Ile Arg Lys Leu Tyr Met Lys Ser Leu Leu Lys Ile Phe Ala Trp Ala 45 50 55
acc ttg aga atg gag cga gga gcc aag gag aag aac cac ca
aag ccc tac acc aac gga atc att gca aag gat ccc act tca cta gaa 77: Lys Pro Tyr Thr Asn Gly Ile Ile Ala Lys Asp Pro Thr Ser Leu Glu 75 80 85
gaa gag atc aaa gag att cgt cga agt ggt agt agt aag gct ctg gac 82: Glu Glu Ile Lys Glu Ile Arg Arg Ser Gly Ser Ser Lys Ala Leu Asp 90 95 100 105
aac act cca gag ttc gag ctc tct gac att ttc tac ttt tgc cgg aaa 869 Asn Thr Pro Glu Phe Glu Leu Ser Asp Ile Phe Tyr Phe Cys Arg Lys 110 115 120
gga atg gag acc att atg gat gat gag gtg aca aag aga ttc tca gca 91°Gly Met Glu Thr Ile Met Asp Asp Glu Val Thr Lys Arg Phe Ser Ala 125 130 135
gaa gaa ctg gag tcc tgg aac ctg ctg agc aga acc aat tat aac ttc 969 Glu Glu Leu Glu Ser Trp Asn Leu Leu Ser Arg Thr Asn Tyr Asn Phe 140 145 150
cag tac atc agc ctt cgg ctc acg gtc ctg tgg ggg tta gga gtg ctg 1013 Gln Tyr Ile Ser Leu Arg Leu Thr Val Leu Trp Gly Leu Gly Val Leu 155 160 165
att cgg tac tgc ttt ctg ctg ccg ctc agg ata gca ctg gct ttc aca 1063  Ile Arg Tyr Cys Phe Leu Leu Pro Leu Arg Ile Ala Leu Ala Phe Thr  170 180 185
ggg att agc ctt ctg gtg gtg ggc aca act gtg gtg gga tac ttg cca 1109 Gly Ile Ser Leu Leu Val Val Gly Thr Thr Val Val Gly Tyr Leu Pro 190 195 200
aat ggg agg ttt aag gag ttc atg agt aaa cat gtt cac tta atg tgt 1157 Asn Gly Arg Phe Lys Glu Phe Met Ser Lys His Val His Leu Met Cys 205 210 215
tac cgg atc tgc gtg cga gcg ctg aca gcc atc atc acc tac cat gac  Tyr Arg Ile Cys Val Arg Ala Leu Thr Ala Ile Ile Thr Tyr His Asp

W	0 01/5	55437												Ī	PCT/U	S01/02623
gat Asp	tcc Ser 230	tgc Cys	cag Gln	ctg Leu	ggc Gly	tac Tyr 235	tcg Ser	gcc Ala	ggt Gly	ccc Pro	tgc Cys 240	atg Met	gga Gly	atg Met	acc Thr	834
	agg Arg															882
	gly															930
	ctg Leu															978
cgg Arg	Gly	ccc Pro 295	tgc Cys	cga Arg	gcc Ala	ttc Phe	atc Ile 300	cag Gln	ctc Leu	tgg Trp	gca Ala	ttt Phe 305	gat Asp	gct Ala	gtc Val	1026
aag Lys	310 GJA 333	aag Lys	tgc Cys	gtc Val	ctc Leu	ttc Phe 315	ccc Pro	tac Tyr	Gly aaa	ggc Gly	tgc Cys 320	cag Gln	ggc Gly	aac Asn	G1y aaa	1074
aac Asn 325	aag Lys	ttc Phe	tac Tyr	tca Ser	gag Glu 330	aag Lys	gag Glu	tgc Cys	aga Arg	gag Glu 335	tac Tyr	tgc Cys	ggt Gly	gtc Val	cct Pro 340	1122
ggt Gly	gat Asp	ggt Gly	gat Asp	gag Glu 345	gag Glu	ctg Leu	ctg Leu	cgc Arg	ttc Phe 350	tcc Ser	aac Asn	tgad	aac	tggc	cgg	1172
tcto	gcaag	jtc a	gagg	gatgo	jc ca	gtgt	ctgt	ccc	9999	rtcc	tgtg	gcag	ıgc a	gege	caago	1232
aaco	tggg	rtc c	aaat	aaaa	ıa ct	aaat	tgta	aac	tect	gaa	aaaa	aaaa	ı			1280

<213> Homo sapiens <220> <221> CDS <222> (507)..(1874) <220> <221> misc_feature <222> (1) ... (2319) <223> n = a,t,c or g<400> 215 gcgtgacgat ataactatct attcgatgat gaagataccc caccaaaccc aaaaaaagag 60 atetetegag gateegaatt egeggeegeg tegaegeagg acagatttat etgttgaata 120 180 cccccgtcct cactgctcac ttgcacagaa actccatctg gactcggatg cttttactga 240 agacccatet agetteaate atetttagag tecatecatt etggagagae etggegtttg 300

<210> 215 <211> 2319 <212> DNA

<400> 214 atttggccct cgaggccaag aattcggcac gaggggaggc ggtggccctt ctgttgctag	60
accgagcctg tgggatatac caaggcagag gagcccatag cc atg agg agc ctc  Met Arg Ser Leu  1	114
ggg gcc ctg ctc ttg ctg ctg agc gcc tgc ctg gcg gtg agc gct ggc Gly Ala Leu Leu Leu Leu Ser Ala Cys Leu Ala Val Ser Ala Gly 5 10 15 20	162
cet gtg cea acg ceg cec gac aac atc caa gtg cag gaa aac ttc aat Pro Val Pro Thr Pro Pro Asp Asn Ile Gln Val Gln Glu Asn Phe Asn 25 30 35	210
atc tct cgg atc tat ggg aag tgg tac aac ctg gcc atc ggt tcc acc Ile Ser Arg Ile Tyr Gly Lys Trp Tyr Asn Leu Ala Ile Gly Ser Thr 40 45 50	258
tgc ccc tgg ctg aag aag atc atg gac agg atg aca gtg agc acg ctg Cys Pro Trp Leu Lys Lys Ile Met Asp Arg Met Thr Val Ser Thr Leu 55 60 65	306
gtg ctg gga gag ggc gct aca gag gcg gag atc agc atg acc agc act Val Leu Gly Glu Gly Ala Thr Glu Ala Glu Ile Ser Met Thr Ser Thr 70 . 75 80	354
cgt tgg cgg aaa ggt gtc tgt gag gag acg tct gga gct tat gag aaa Arg Trp Arg Lys Gly Val Cys Glu Glu Thr Ser Gly Ala Tyr Glu Lys 85 90 95 100	402
aca gat act gat ggg aag ttt ctc tat cac aaa tcc aaa tgg aac ata Thr Asp Thr Asp Gly Lys Phe Leu Tyr His Lys Ser Lys Trp Asn Ile 105 110 115	450
acc atg gag tcc tat gtg gtc cac acc aac tat gat gag tat gcc att Thr Met Glu Ser Tyr Val Val His Thr Asn Tyr Asp Glu Tyr Ala Ile 120 125 130	498
ttc ctg acc aag aaa ttc agc cgc cat cat gga ccc acc att act gcc Phe Leu Thr Lys Lys Phe Ser Arg His His Gly Pro Thr Ile Thr Ala 135 140 145	546
aag ctc tac ggg cgg gcg ccg cag ctg agg gaa act ctc ctg cag gac Lys Leu Tyr Gly Arg Ala Pro Gln Leu Arg Glu Thr Leu Leu Gln Asp 150 155 160	594
ttc aga gtg gtt gcc cag ggt gtg ggc atc cct gag gac tcc atc ttc Phe Arg Val Val Ala Gln Gly Val Gly Ile Pro Glu Asp Ser Ile Phe 165 170 175 180	642
acc atg gct gac cga ggt gaa tgt gtc cct ggg gag cag gaa cca gag Thr Met Ala Asp Arg Gly Glu Cys Val Pro Gly Glu Gln Glu Pro Glu 185 190 195	690
ccc atc tta atc ccg aga gtc cgg agg gct gtg cta ccc caa gaa gag Pro Ile Leu Ile Pro Arg Val Arg Arg Ala Val Leu Pro Gln Glu Glu 200 205 210	738
gaa gga tca ggg ggt ggg caa ctg gta act gaa gtc acc aag aaa gaa Glu Gly Ser Gly Gly Gln Leu Val Thr Glu Val Thr Lys Lys Glu 215 220 225	786

PCT/US01/02623 WO 01/55437

														gat Asp 245		953
atg Met	gag Glu	atc Ile	ttc Phe 250	gtg Val	gat Asp	gat Asp	gag Glu	acg Thr 255	aag Lys	ttg Leu	acg Thr	ctg Leu	cat His 260	gly ggg	ttg Leu	1001
cag Gln	cag Gln	tac Tyr 265	tac Tyr	gtg Val	aaa Lys	ctg Leu	aag Lys 270	gac Asp	aac Asn	gag Glu	aag Lys	aac Asn 275	cgg Arg	aag Lys	ctc Leu	1049
ttt Phe	gac Asp 280	ctt Leu	ctg Leu	gat Asp	gtc Val	ctt Leu 285	gag Glu	ttc Phe	aac Asn	cag Gln	gtg Val 290	gtg Val	atc Ile	ttt Phe	gtg Val	1097
														gat Asp		1145
														atg Met 325		.1193
														gat Asp		1241
gac Asp	acc Thr	tac Tyr 345	ctg Leu	cat His	cgg Arg	gtg Val	gcc Ala 350	aga Arg	gca Ala	ggc Gly	cgg Arg	ttt Phe 355	ggc Gly	acc Thr	aag Lys	1289
	_	_						_	_		_	_	_	atc Ile		1337
	-		_	_	_			_					_	cct Pro	-	1385
	ata Ile											tag *	aaga	actc	gee	1434
cat	tttg	gaa 1	tgtga	accgi	to to	gtcci	tcaç	g gag	gagga	acac	cag	ggtgg	agg 9	gtgaa	aggaga	1494
cac	tact	gec (	cca	cccc	g a	cagc	ccca	a cco	ccat	ggct	tcc	atcti	tt 9	gcato	caccac	1554
cac	tact	gaa (	cccc	catt	to to	gatti	gtc	a gaa	attt	ttt	ttaa	acaa	aac 1	taaaa	aatgaa	1614
aca	catg	tgt (	ctgt	ggtai	tc ta	ataaa	aaaa	a aaa	aa							1648

<210> 214 <211> 1280 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (103)..(1158)

ccata		rc to	rt ccc	-tatt	- tac	zetet	tet	atta	agaaa	ata (	gtate	cttt	gt ti	ttcc	tttgc	120	<b>,</b>
	-														atcca	180	)
_																233	,
gatco	ccct	it c	cctt	cttc	c cci	tgcc	ggcc	cag	tt	atg Met 1	Ala	gag Glu	aac Asn	Asp 5	Val	233	•
gac a	aat g Asn (	gag Glu	ctc Leu 10	ttg ( Leu )	gac Asp	tat ( Tyr	gaa Glu	gat ( Asp . 15	gat Asp	gag Glu	gtg Val	gag Glu	aca Thr 20	gca Ala	gct Ala	281	L
Gly (	gga ( Gly	gat Asp 25	G1A aaa	gct ( Ala	gag Glu	gcc Ala	cct Pro 30	gcc Ala	aag Lys	aag Lys	gat Asp	gtc Val 35	aag Lys	ggc Gly	tcc Ser	329	9
tat (	gtc Val 40	tcc Ser	atc Ile	cac His	agc Ser	tct Ser 45	ggc Gly	ttt Phe	cgt Arg	gac Asp	ttc Phe 50	ctg Leu	ctc Leu	aag Lys	cca Pro	371	7
gag Glu 55	ttg Leu	ctc Leu	cgg Arg	gcc Ala	att Ile 60	gtc Val	gac Asp	tgt Cys	ggc Gly	ttt Phe 65	gag Glu	cat His	ccg Pro	tca Ser	gaa Glu 70	42!	5
gtc Val	cag Gln	cat His	gag Glu	tgc Cys 75	atc Ile	cct Pro	cag Gln	gcc Ala	att Ile 80	ctg Leu	gga Gly	atg Met	gat Asp	gtc Val 85	ctg Leu	47	3
tgc Cys	cag Gln	gcc Ala	aag Lys 90	tcg Ser	ggc Gly	atg Met	gga Gly	aag Lys 95	aca Thr	gca Ala	gtg Val	ttt Phe	gtc Val 100	ttg Leu	gcc Ala	52	1
aca Thr	ctg Leu	caa Gln 105	cag Gln	ctg Leu	gag Glu	cca Pro	gtt Val 110	act Thr	Gly 939	cag Gln	gtg Val	tct Ser 115	gta Val	ctg Leu	gtg Val	56	9
atg Met	tgt Cys 120	cac His	act Thr	cgg Arg	gag Glu	ttg Leu 125	gct Ala	ttt Phe	cag Gln	atc Ile	agc Ser 130	aag Lys	gaa Glu	tat Tyr	gag Glu	61	.7
cgc Arg 135	ttc Phe	tct Ser	aaa Lys	tac Tyr	atg Met 140	Pro	aat Asn	gtc Val	aag Lys	gtt Val 145	Ala	gtt Val	ttt Phe	ttt Phe	ggt Gly 150	66	55
ggt Gly	ctg Leu	tct Ser	atc ,Ile	aag Lys 155	aag Lys	gat Asp	gaa Glu	gag Glu	gtg Val 160	Leu	aag Lys	aag Lys	aac Asn	tgc Cys 165	Pro	71	L3
cat His	atc Ile	gtc Val	gtg Val 170		act Thr	cca Pro	ggc	cgt Arg 175	Ile	cta Leu	gcc Ala	ctg Lev	gct Ala 180	Arg	aat Asn	76	51
aag Lys	agc Ser	Leu 185	Asn	ctc Leu	aaa Lys	cac His	att 11e	Lys	cac His	ttt Phe	att lle	tto Lev 195	ı Asp	gaa Glu	tgt Cys	80	09
gat Asp	aag Lys 200	Met	ctt Lev	gaa Glu	cag Glr	cto Leu 205	ı Asp	atg Met	g cgt : Arg	cgg Arg	gat J Asp 210	Val	cag LGln	gaa Glu	att i Ile	8	57
ttt Phe 215	Arg	ato Met	aco Thr	c ccc	cac His	3 Glu	aag Lys	g cag s Glr	g gto Nal	ato L Met 225	: Met	tto Phe	e Ser	gct Ala	acc Thr 230	91	05

265		270	275				
ttt gac ctt c Phe Asp Leu I 280	etg gat gtc ctt Leu Asp Val Leu 285	gag ttc aac cag Glu Phe Asn Gln	gtg gtg atc ttt Val Val Ile Phe 290	gtg 1097 Val			
aag tot gtg o Lys Ser Val G 295	cag cgg tgc att Gln Arg Cys Ile 300	gcc ttg gcc cag Ala Leu Ala Gln 305	cta cta gtg gag Leu Leu Val Glu	cag 1145 Gln 310			
aac ttc cca g Asn Phe Pro A	gcc att gcc atc Ala Ile Ala Ile 315	cac cgt ggg atg His Arg Gly Met 320	ccc cag gag gag Pro Gln Glu Glu 325	agg 1193 Arg			
Leu Ser Arg T	tat cag cag ttt Tyr Gln Gln Phe 330	aaa gat ttt caa Lys Asp Phe Gln 335	cga cga att ctt Arg Arg Ile Leu 340	gtg 1241 Val			
gct acc aac o Ala Thr Asn I 345	cta ttt ggc cga Leu Phe Gly Arg	ggc atg gac atc Gly Met Asp Ile 350	gag cgg gtg aac Glu Arg Val Asn 355	att 1289 Ile			
gct ttt aat t Ala Phe Asn 1 360	tat gac atg cct Tyr Asp Met Pro 365	gag gat tot gac Glu Asp Ser Asp	acc tac ctg cat Thr Tyr Leu His 370	cgg 1337 Arg			
gtg gcc aga g Val Ala Arg A 375	gca ggc cgg ttt Ala Gly Arg Phe 380	ggc acc aag ggc Gly Thr Lys Gly 385	ttg gct atc aca Leu Ala Ile Thr	ttt 1385 Phe 390			
gtg tcc gat o	gag aat gat gcc Glu Asn Asp Ala 395	aag atc ctc aat Lys Ile Leu Asn 400	gat gtg cag gat Asp Val Gln Asp 405	cgc 1433 Arg			
Phe Glu Val 1			ata gac atc tcc Ile Asp Ile Ser 420				
tac att gaa o Tyr Ile Glu o 425		aa gactcgccca t	tttggaatg tgaccgt	ctg 1534:			
teetteagga gaggacacea gggtgggggt gaaggagaca etaetgeeee cacceetgae 1594							
agccccacc co	catggette catet	tttgc atcaccacca	ctcctgaacc cccat	ttctg 1654			
atttgtcaga a	tttttttt aacaa	aacta aaaatgaaac	acatgtgtct gtggt	atcta 1714			
taaaaaaaaa a	a			1726			

<210> 213

<211> 1648

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (216)..(1424)

<400> 213

ccgcggtacc ggtccggaat tcccgggtcg acccacgcgt ccgcgtcgct gttgctgccg 60

10 15 20

			20					15					10			
329	tcc Ser	ggc	aag Lys	gtc Val 35	gat Asp	aag Lys	aag Lys	gcc Ala	cct Pro 30	gcc Ala	gag Glu	gct Ala	gjå aaa	gat Asp 25	gga Gly	GJA 333
377							cgt Arg									
425	gaa Glu 70	tca Ser	ccg Pro	cat His	gag Glu	ttt Phe 65	ggc Gly	tgt Cys	gac Asp	gtc Val	att Ile 60	gcc Ala	cgg Arg	ctc Leu	ttg Leu	gag Glu 55
473							att Ile 80									
521							aca Thr									
569							gjå aaa									
617							cag Gln							His		
665	ggt Gly 150	ttt Phe	ttt Phe	gtt Val	gct Ala	gtt Val 145	aag Lys	gtc Val	aat Asn	ccc Pro	atg Met 140	tac Tyr	aaa Lys	tct Ser	Phe	ege Arg 135
713		_		_	_	-	gtg Val 160		-	_	Lys	_			_	
761				_	-		atc Ile	_				Gly		_		
809	_	_	-	_			cac His	Lys					Asn		_	_
857							cgt Arg		Asp					Met		
905			_		_	_	gtc Val	_	_	Glu				_	Arg	
953	cca Pro	_		_		Lys	cgc Arg 240	-	_		Arg				_	
1001	ttg Leu			_		_	Lys	-		_	_	Val				
1049	ctc - Leu								-	-						-

wo	01/5	5437												1	PCT/US0	1/02623
Leu 305	Phe	Gly	Gly	Thr	Ser 310	Pro	Ser	Pro	Glu	Glu 315	Gly	Leu	Gly	Asp	Glu 320	
														agc Ser 335		1186
														cta Leu		1234
_			-			_					_		-	atg Met		1282
		_			_	cgc Arg 375			_					tag *	gag	1330
gaag	jttt	ctg o	ccac	ctcc	cc to	cctga	agcct	gct	gtca	atct	tcad	etge	ecc 1	tgcc	catctg	1390
tcac	ccac	ect g	gata	ettte	ga co	cccto	ggact	tgg	gtata	acct	ccat	gtgg	gag 1	ttgt	gggcg	1450
agag	gtgt	tc t	tctg	tgete	gt ga	atto	agto	<b>a</b> aa	gaget	gta	gcgg	ggts	199 (	ggcta	aggttc	1510
ctcc	ccc	ett 9	gggc	cgage	gg co	cctt	cccc	; ttg	ggtg	gctc	tgt	ccca	atc (	cacct	ccttt	1570
cago	tget	ccc t	tggg	cctca	ag ct	tete	gecea	ggg	gccag	gccc	aggt	tcts	gct (	gggaa	agggaa	1630
ggga	atgg	<b>1</b> 99 a	agaaa	aggga	ag aa	agcaa	agcag	tgt	ctga	agcc	tcas	gaaq	get 1	taca	ctcccc	1690
cttg	goota	atc o	ccct	ccct	c to	gette	gaged	ttg	gagco	cttg	acto	ggag	get q	gaaag	gagtt	1750
gcag	ctgt	tg g	gcate	gagad	cc to	ectto	ctccc	cgt	ctto	<b>3</b> 333	aggt	gggg	gac (	cagca	igataa	1810
atco	caco	cct t	tccti	ttgai	nt gt	cgct	gtac	tct	gaag	gttc	agct	agct	ca	gattt	tataa	1870
aaaa	aaaa	aaa a	a													1881

<210> 212 <211> 1726 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (216)..(1502)

gac aat gag ctc ttg gac tat gaa gat gat gag gtg gag aca gca gct 281 Asp Asn Glu Leu Leu Asp Tyr Glu Asp Asp Glu Val Glu Thr Ala Ala

WC	01/5	5437												ľ	C1/US	01/02023
Phe	Asn 50	Ala	Val	Ser	Leu	Arg 55	Trp	Thr	Lys	Leu	Pro 60	Pro	Val	Lys	Ser	
gcc Ala 65	atc Ile	cgt Arg	gly aaa	caa Gln	gct Ala 70	Pro	gtg Val	gta Val	ccc Pro	tac Tyr 75	atg Met	cgc Arg	tat Tyr	gga Gly	cac His 80	418
tca Ser	acc Thr	gtc Val	ctc Leu	atc Ile 85	gac Asp	gac Asp	aca Thr	gtc Val	ctc Leu 90	ctt Leu	tgg Trp •	ggc Gly	gjå aaa	cgg Arg 95	aat Asn	466
gac Asp	acc Thr	gaa Glu	ggg Gly ggg	gcc Ala	tgc Cys	aat Asn	gtg Val	ctc Leu 105	tat Tyr	gcc Ala	ttt Phe	gac Asp	gtc Val 110	aat Asn	acg Thr	514
cac His	aag Lys	tgg Trp 115	ttc Phe	aca Thr	ccc Pro	cga Arg	gtg Val 120	tca Ser	Gly 999	aca Thr	gtt Val	cct Pro 125	gly aaa	gcc Ala	cgg Arg	562
gat Asp	gga Gly 130	cat His	tca Ser	gcc Ala	tgt Cys	gtc Val 135	cta Leu	ggc Gly	aag Lys	atc Ile	atg Met 140	tac Tyr	att Ile	ttt Phe	Gly 999	610
	Tyr				gcg Ala 150											658
gat Asp	acc Thr	agc Ser	acc Thr	atg Met 165	aca Thr	tgg Trp	act Thr	ctt Leu	atc Ile 170	tgt Cys	aca Thr	aag Lys	ggc Gly	agc Ser 175	cct Pro	706
gca Ala	cgc Arg	tgg Trp	agg Arg 180	Asp	ttc Phe	cac His	tca Ser	gcc Ala 185	aca Thr	atg Met	ctg Leu	gga Gly	agt Ser 190	cac His	atg Met	754
tat Tyr	gtc Val	ttt Phe 195	Gly	ggc	cgt Arg	gcc Ala	gac Asp 200	Arg	ttt Phe	Gl y aaa	cca Pro	ttc Phe 205	cat His	tcc Ser	aac Asn	802
aat Asn	gag Glu 210	Ile	tac Tyr	tgc Cys	aac Asn	cgc Arg 215	Ile	cga Arg	gtc Val	ttt Phe	gac Asp 220	Thr	aga Arg	act Thr	gag Glu	850
	Trp		Asp	Cys		Pro					Pro				cgg Arg 240	898
					Gly					Leu					ggt Gly	946
				Leu					His					Phe	aat Asn	994
			Phe					Ile					Lys		cca Pro	1042
_		Arg		_	_	_	Cys	_		-		Asp	_		gtc Val	1090
cto	ttt	ggg	ggt	acc	agt	сса	tct	cct	gag	gaa	ggo	ctg	gga	gat	gaa	1138

WO 01/55437		PCT/US01	/02623
95	100	105 110	
aag ccc cgg gcc cca Lys Pro Arg Ala Pro 115	Gly Asp Glu Glu Ala	cag gtg gag aac ctc atc Gln Val Glu Asn Leu Ile 125	505
	gag ccc cag aaa gca Glu Pro Gln Lys Ala 135	gag aac tga agtgcagcca Glu Asn *	554
tcaggtggaa gcctctgg	aa cctgaggcgg ctgctt	gaac ctttggatgc aaatgtcgat	614
gcttaagaaa accggcca	ct tcagcaacag cccttte	cccc aggagaagcc aagaacttgt	674
gtgtccccca ccctatcc	cc tctaacacca ttcctc	cacc tgatgatgca actaacactt	734
geeteeceae tgeageet	gc ggtcctgccc acctcc	cgtg atgtgtgtgt gtgtgtgtgt	794
gtgtgtgact gtgtgtgt	tt gctaactgtg gtctttg	gtgg ctacttgttt gtggatggta	854
ttgtgtttgt tagtgaac	tg tggactcgct ttcccag	ggca ggggctgagc cacatggcca	914

tetgeteete eetgeeeetg tgggeeetee ateacettet geteetagga ggetgettgt tgeeegagaa eeageeeeet eeentgattt taggggatgg egtaggggta aggageaagg

ggcagtggtn ttcaagtngt tttnggtt

<210> 211

1034

1062

<211> 1881 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (179)..(1327) <220> <221> misc_feature <222> (1) ... (1881) <223> n = a,t,c or g<400> 211 acgegtacgg cttggctgtg tttatctcgt tggggactaa ggcgtcggtt ggcgcgcaac 60 gggttctagg ctgcaggcag ctcgaggacc cgcggccccg ccccggctcg gcctggcaga 120 tageagagge ageaggeegt geeggggggg catgttgetg taaccagtgg eecagggg 178 atg tta egg tgg aca gtg cac etg gag gge ggg eee ege agg gtg aac 226 Met Leu Arg Trp Thr Val His Leu Glu Gly Gly Pro Arg Arg Val Asn cat gct gca gtg gct gtc ggg cat cgg gta tac tcc ttc ggg ggt tac 274 His Ala Ala Val Ala Val Gly His Arg Val Tyr Ser Phe Gly Gly Tyr tgc tct ggt gaa gac tat gag aca ctg cgt cag ata gat gtg cac att Cys Ser Gly Glu Asp Tyr Glu Thr Leu Arg Gln Ile Asp Val His Ile ttc aat gca gtg tcc ttg cgt tgg aca aag ctg ccc ccg gtg aag tct 370

WO 01/55437		PCT/US01/02623
aga ggt gac tgg gcc tgg tgc c Arg Gly Asp Trp Ala Trp Cys G 295	ln Arg Cys Pro Leu Val	
tcc gtc agc aga gcc cca agt c Ser Val Ser Arg Ala Pro Ser P 310 3		
tcg gag caa cct tca aga gat c Ser Glu Gln Pro Ser Arg Asp L 325 330	_	J J
gaggaagaaa caagaatgac aagtgta	tga ctgcctttga gctgtagt	tc ccgtttattt 1364
acacatgtgg atcctcgttt tccaaga	aaa aaaaaa	1400

<210> 210 <211> 1062 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (128)..(544) <220> <221> misc_feature <222> (1)...(1062)  $\langle 223 \rangle$  n = a,t,c or g <400> 210 gcacgaggcg gatggggaaa caattgagat tgagggaggc aggcagagcg gagcgaaaac 6.0 aggaggacag aaatagcgaa gcaaggccaa gatcgggacc cccaccaggg aggtgcccag 120 tacagac atg aaa gta agg cgg gga agc agc tca agc ctc acc cac cgc 169 Met Lys Val Arg Arg Gly Ser Ser Ser Ser Leu Thr His Arg cet gec eec age eec gec act eec agg etc etc ggg act egg egg gte 217 Pro Ala Pro Ser Pro Ala Thr Pro Arg Leu Leu Gly Thr Arg Arg Val 15 etc etg gga gte teg gag ggg ace gge tgt gea gae gee atg gag ttg 265 Leu Leu Gly Val Ser Glu Gly Thr Gly Cys Ala Asp Ala Met Glu Leu 35 40 gtg ctg gtc ttc ctc tgc agc ctg ctg gcc ccc atg gtc ctg gcc agt 313 Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met Val Leu Ala Ser gca gct gaa aag gag aag gaa atg gac cct ttt cat tat gat tac cag 361 Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe His Tyr Asp Tyr Gln 70 acc ctg agg att ggg gga ctg gtg ttc gct gtg gtc ctc ttc tcg gtt 409 Thr Leu Arg Ile Gly Gly Leu Val Phe Ala Val Val Leu Phe Ser Val 85 ggg atc ctc ctt atc cta agt cgc agg tgc aag tgc agt ttc aat cag 457 Gly Ile Leu Leu Ile Leu Ser Arg Arg Cys Lys Cys Ser Phe Asn Gln

													_		
													cag Gln 50		440
				Leu									cac His		488
													gag Glu		536
													ttg Leu		584
			-			_	_		 -		_		ttt Phe		632
													aat Asn 130		680
													cca Pro		728
													tcc Ser		776
	-	-		_			_		_		-		cac His	_	824
_					-			_					ttc Phe		872
													att Ile 210		920
				_									tac Tyr		968
				•	•					-	•	•	acg Thr	_	1016
			-		_		_					-	ttc Phe	_	1064
					_	_	_		_				ctg Leu	_	1112
													tgg Trp 290		1160

WO 01/55437 PCT/US01/	02623
ccc cct tgg gaa tgg ggt agt gag gcc cca gac ttc acc ccc agc cca Pro Pro Trp Glu Trp Gly Ser Glu Ala Pro Asp Phe Thr Pro Ser Pro 370 375 380	1211
ctg cta aaa tct gtt ttc tga ca gatgggtttt ggggagtcgc ctgctgcact Leu Leu Lys Ser Val Phe * 385	1264
acatgagaaa gggactccca tttgcccttc cctttctcct acagtccctt ttgtcttgtc	1324
tgtcctgggc tgtctgtgtg tgtgccattc tctggacttc agagccccct gagccagtcc	1384
tecettecca geeteeettt gggeeteeet aacteeaeet aggetgeeag ggaeeggagt	1444
cagetggtte aaggecateg ggagetetge etccaagtet accetteeet teeeggaete	1504
cetectgtee cetectttee tecetectte ettecaetet cetteetttt getteeetge	1564
cotttecce tecteaggtt etteceteet teteactggt ttttecacet tecteettee	1624
cttcttccct ggctcctagg ctgtgatata tatttttgta ttatctcttt cttctttg	1684
tggtgatcat cttgaattac tgtgggatgt aagtttcaaa attttcaaat aaagcctttg	1744
caagataaaa aaaaaaaaa	1763

<210> 209 <211> 1400 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (288)..(1301) <220> <221> misc_feature <222> (1)...(1400) <223> n = a,t,c or g<400> 209 ggtctatagc atcacgctac ccgntctttt tgnaagatcc catcgattcg aattcggcac 60 gaggtcacga gcccgcaaga agtctcgtat cgcgcccggg aggcgccgga gcccagcggc tggcgccaga tccaggctcc tggaagaacc atgtccggca gctactggtc atgccaggca 180 cacactgctg cccaagagga gctgctgttt gaattatctg tgaatgttgg gaagaggaat 240 gccagagctg ccggctgaaa attacccaac caagagaaat ctgcagg atg gac ttt 296 Met Asp Phe ctg gtc ctc ttc ttg ttc tac ctg gct tcg gtg ctg atg ggt ctt gtt 344 Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met Gly Leu Val ctt atc tgc gtc tgc tcg aaa acc cat agc ttg aaa ggc ctg gcc agg 392 Leu Ile Cys Val Cys Ser Lys Thr His Ser Leu Lys Gly Leu Ala Arg 25 30

W	0 01/3	53437													PC 1/C	301/02023
			_	_	-			_			tct Ser	_				443
	_	_				-					ctc Leu	-				491
											Gly aaa					539
											999 Gly 170					587
											atc Ile					635
											tgc Cys					683
cag Gln	aag Lys	cga Arg	cgc Arg 210	aga Arg	ccc Pro	tca Ser	gly aaa	cag Gln 215	caa Gln	ggt Gly	gcc Ala	ctg Leu	agg Arg 220	cag Gln	gag Glu	731
											gct Ala					779
											cct Pro 250					827
ccc Pro 255	cga Arg	gjå aaa	gga Gly	ccc Pro	cgg Arg 260	cct Pro	gjå aaa	atg Met	ccc Pro	cac His 265	ccc Pro	aag Lys	gjà aaa	gct Ala	cca Pro 270	875
gcc Ala	ttc Phe	cag Gln	ttg Leu	aac Asn 275	cgc Arg	tca Ser	ctc Leu	agt Ser	ggt Gly 280	cag Gln	cgt Arg	ttc Phe	ctg Leu	cac His 285	act Thr	923
tta Leu	cct Pro	ctc Leu	atg Met 290	tgc Cys	gtt Val	tcc Ser	cgg Arg	cct Pro 295	gat Asp	gtt Val	gtg Val	gtg Val	gtg Val 300	tgc Cys	ggc Gly	971
gtg Val	ctc Leu	act Thr 305	ctc Leu	tcc Ser	ctc Leu	atg Met	aac Asn 310	acc Thr	cac His	cca Pro	cct Pro	cgt Arg 315	ttc Phe	cgc Arg	agc Ser	1019
ccc Pro	tgc Cys 320	atg Met	ctg Leu	ctc Leu	cag Gln	agg Arg 325	tgg Trp	gtg Val	gga Gly	ggt Gly	gag Glu 330	ctg Leu	gly ggg	gct Ala	cct Pro	1067
tgg Trp 335	gcc Ala	ctc Leu	atc Ile	ggt Gly	cat His 340	ggt Gly	ctc Leu	gtc Val	cca Pro	ttc Phe 345	cac His	acc Thr	att Ile	tgt Cys	ttc Phe 350	1115
tct Ser	gtc Val	tcc Ser	cca Pro	tcc Ser 355	tac Tyr	tcc Ser	aag Lys	gat Asp	gcc Ala 360	ggc Gly	atc Ile	acc Thr	ctg Leu	agg Arg 365	gct Ala	1163

acg tgg tgt gaa ctg aga ggt gat gag atg cgt aga tca tct gcc ccc Thr Trp Cys Glu Leu Arg Gly Asp Glu Met Arg Arg Ser Ser Ala Pro 30 35 40	509
tgc ctg gtg ggc agc cct ggc ccc acg tgc tga cccaggca cagaaaagcc Cys Leu Val Gly Ser Pro Gly Pro Thr Cys * 45 50	560
acatacgtgt actgggcacg ctctatggaa gaacggtgaa ttgttgctct ggcaaataat	620
atccagcaga gatcagtggg cccagggtgc actggtaaga aatgggttcc agtcgattcc	680
tgtgtggttt tgaggatcat ggtgagctag gatctaccaa agcagctgtt tacaaagtgg	740
tgaccatgct gacagcagac tcaagagagg gtgtggggcc gggtgcggtg gctcacgcct	800
gtaateettg geettgggag geeaaggegg getgategee gggtaeegag ategaattgg	860
gaa	863
<210> 208	

<211> 1763 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (66)..(1232)

<400> 208
acggaattcc cgggtcgacg atttcgtgct gaaaatctgg gtcacagctg aggaagacct

cagac atg gag tcc agg atg tgg cct gcg ctg ctg tcc cac ctc 107

Met Glu Ser Arg Met Trp Pro Ala Leu Leu Leu Ser His Leu

1 5 10

60

ctc cct ctc tgg cca ctg ctg ttg ctg ccc ctc cca ccg cct gct cag
Leu Pro Leu Trp Pro Leu Leu Leu Pro Leu Pro Pro Pro Ala Gln
15 20 25 30

gac tot toa toe toe cot oga acc coa coa goo coa goo coc cog
Asp Ser Ser Ser Ser Pro Arg Thr Pro Pro Ala Pro Ala Arg Pro Pro
35
40
45

tgt gcc agg gga ggc ccc tcg gcc cca cgt cat gtg tgc gtg tgg gag 251 Cys Ala Arg Gly Gly Pro Ser Ala Pro Arg His Val Cys Val Trp Glu 50 55 60

cga gca cct cca cca agc cga tct cct cgg gtc cca aga tca cgt cgg 299
Arg Ala Pro Pro Pro Ser Arg Ser Pro Arg Val Pro Arg Ser Arg Arg
65 70 75

caa gtc ctg cct ggc act gca ccc cca gcc acc cca tca ggc ttt gag
Gln Val Leu Pro Gly Thr Ala Pro Pro Ala Thr Pro Ser Gly Phe Glu
80
85
90

gag ggg ccg ccc tca tcc caa tac ccc tgg gct atc gtg tgg ggt ccc
Glu Gly Pro Pro Ser Ser Gln Tyr Pro Trp Ala Ile Val Trp Gly Pro
95 100 105 110

w	01/5	5437												]	PCT/US	501/02623
	tat Tyr 10										_	_			_	100
_	tgt Cys	_					-						_			148
_	ggc		_	_	_					_	_		_			196
_	gct Ala	_	_	_								_			_	244
	att Ile						tc (	cagco	gagg	aa a	gttc	ccac	c acq	gati	tee	297
ttt	cagg	ggc [†] t	tccca	attgo	a tt	act	ggaca	a act	tota	aact	atte	gaaa	att 1	ttcca	attggg	357
agaa	attct	cc g	gtgt	gtcai	ct tt	tete	gtagt	tec	att	aat	gcas	gtgat	ag t	tati	tttta	417
tctt	cctgt	gt t	tttc	cta	ct to	cctga	attaa	a att	atga	acct	cct	caaat	gg a	aaggg	gcaata	a 477
taaa	actca	att t	tatti	tta	t at	ccca	acagt	aat	tgto	cagg	ctca	agact	tc t	ctgt	gagca	a 537
tcad	ccgad	ctg a	acca	gggta	ac cg	gctgg	gctgg	g gat	gtta	acat	ggag	gcagt	tta d	cacta	agcatt	597
ttag	gttt	caa a	atgga	atgca	ag at	tcag	gc									624

<210> 207 <211> 863 <212> DNA <213> Homo sapiens <220>

<222> (387)..(542)

<400> 207

<221> CDS

ccaggtgagg cacaggtggg tctgcaaggc cccttgagct ccaagcacct gcatgtgtct 60
aggcaaaacc tccagcacat cggtattccc ttgtgaagta cgtaaagcca cagattaagt 120
ggggatggat ctctcgcctc tgcgttcaag ggggcaaatc tccaggataa atgccccctt 180
ttcctacacc attttccacc agccttggag agtcagcttc ccatggcttc cttccaacgg 240

aagçaggaga aagggctggg ctagttaaac cgcagcactt tcagttttag ggtgtgtcgt 300

gtaggttagt gatttgtgct ctgcagagac tctccaggga gagcaaaaag agcaggtgga 360

atcatcaget tggccagaag acgcag atg acg ccc cgt gag cca gct cag gaa 41

Met Thr Pro Arg Glu Pro Ala Gln Glu

aga cgg ccc cac ctt gaa ggg ccc acg ctg aaa gcc agt gat ggg gag Arg Arg Pro His Leu Glu Gly Pro Thr Leu Lys Ala Ser Asp Gly Glu 10 25

<211> 809 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (284) .. (421) <400> 205 atttggccct cgaggccaag aattcggcac gagagtcata atatatctgt ctggaacata 60 gtagattett aataaatatt ggaatgaaag tttaatgett tgaaaaagge ttettttaeg 120 tctactaaag ttctagctca ggatactgta ggggttttat ttactttttt ttcctcttca 180 tgaaaatcta gactcttaaa atccagtatc tttagtagat aatttgcatt tatttattat 240 ccaagtttta catcttggcg tttttccagc agtgatacct ctc atg att ctg ttc 295 Met Ile Leu Phe cac tgt gag aaa tta tat gca ctt aga agc ttt gat ttc tgg ttc atg 343 His Cys Glu Lys Leu Tyr Ala Leu Arg Ser Phe Asp Phe Trp Phe Met 10 15 tta gaa ctt ctc agt aca tgg ccc agg gct ttg ggg ctg ctg tgt cct 391 Leu Glu Leu Leu Ser Thr Trp Pro Arg Ala Leu Gly Leu Leu Cys Pro 25 30 ggt ctg gcc att gag gct cat gaa ggc tga g gcctctgggc ctgcctccca 442 Gly Leu Ala Ile Glu Ala His Glu Gly 40 catgcagagg aggcaggtga gagctggagg gcctccctgc tgggcaaggt gaccagtaca 502 cagcattttc cttcccatga ggattaaaca atcactggga aacattccta tatctaagga 562 attatgeett attaaaggaa tetttagtaa gtaeteaget teatgageag atgateeaaa 622 aagatgactc tgaattaaat tttttattcc tgagggcctt attaaatacc agtgcagcgt 682 . atgagcaaca gggcatagca gctttttttg ggtgatatta tttggttaaa tcaattacta 742 ataccagact actggattcc ttaataatgg tttgggggaa ggcaggtacc ttggggagtg 802 gcttggg 809 <210> 206 <211> 624 <212> DNA <213> Homo sapiens <220>

<221> CDS

<222> (29)..(265)

ctggaagagc	ccgccccttg	aatctatgga	gaaaagcggg	ctaggccccc	tegggttett	779
cccccccca	ggggggttt	tggcgacatc	C			810

<210> 204 <211> 743 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (224)(514)	
<400> 204 atttggccct cgaggccaag aattcggcac gaggaatatt cettttttaa aacataettt	61
aaaaaatctt ttcttacctg tgaaagctta tggcacatag taggcattta gcaaatgttg	120
gtttccttcc ttttagaccg acatttggtt gggactggtt ttaactacct tgaggacttt	180
tettatetea eccateteaa atgteteete eeetgtaggg tgt atg gge ate age Met Gly Ile Ser 1	239
tgc aag ttg ctt ctt ctg act aga gtc tgc tac ctg atc acc ccg tta Cys Lys Leu Leu Leu Thr Arg Val Cys Tyr Leu Ile Thr Pro Leu 5 10 15 20	283
gat ctt gag agg ttt ccc ttc cca aac act gag cag gtg aca ttt ccg Asp Leu Glu Arg Phe Pro Phe Pro Asn Thr Glu Gln Val Thr Phe Pro 25 30 35	33:
gaa cgc aga gtt agc gtc ttc ctg ctg cct ctg agc tgg tgt ttg gac Glu Arg Arg Val Ser Val Phe Leu Leu Pro Leu Ser Trp Cys Leu Asp 40 45 50	379
aca agg ctg ccc aga gag cct ggc tgc agg tgt cga cac agc tct cca Thr Arg Leu Pro Arg Glu Pro Gly Cys Arg Cys Arg His Ser Ser Pro 55 60 65	427
cag gac gtg gtt ggc ggc agt cac ctg gtc acc aca act ctt cta agc Gln Asp Val Val Gly Gly Ser His Leu Val Thr Thr Thr Leu Leu Ser 70 75 80	475
ctc cca gct cgg gaa ttc tgg acc tct tgc atc ctc taa attggatgct Leu Pro Ala Arg Glu Phe Trp Thr Ser Cys Ile Leu * 85 90 95	524
gtotgatatt tocaaaagga taccatgott gatgagatca aaggaggaga ggatgactca	584
gaaaagaccc agaagagete acagtgetet tageaggatg ettagtgaca tggagteete	644
tgacagcaat agtgcttgga gacattttta cacctatggc cacagggccc atgcatacac	704
ccccccccc ccccacaca aaacctggtg accaaaggg	743

<210> 205

WO 01/55437 PCT/US01/02	2623
gca caa aag caa aga gaa gaa cag ggg aag ttt aaa ttc aaa aaa ccc Ala Gln Lys Gln Arg Glu Glu Gln Gly Lys Phe Lys Phe Lys Pro 40 45 50	679
cat agc tgc ata aag aag tct agg aac ctg agt tct aga ctt tgt gaa His Ser Cys Ile Lys Lys Ser Arg Asn Leu Ser Ser Arg Leu Cys Glu 55 60 65	727
aat tat gta tgt tgg aaa ctg gtc tct agc cct aga ctt gga caa aag Asn Tyr Val Cys Trp Lys Leu Val Ser Ser Pro Arg Leu Gly Gln Lys 70 75 80	775
tagaactage tetteceteg tgeegaatte ttggeetega gggeeaaat	824
<210> 203 <211> 810 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (175)(405)	
<400> 203 atttggccct cgaggccaag aattcggcac gagactactt tgccgctaca cattcttagt	60
gaatageete ettggeatgt ttttgaaaac ttaaatgttg etggtaatea tgteacagea	120
atctccttgg agagcctttg tgtcctgttc tcagaagaaa tatgccgttt ttcc atg Met 1	177
tta atg gtt ttg aaa tta gtg att tgc tct att ttc att gga aag gaa Leu Met Val Leu Lys Leu Val Ile Cys Ser Ile Phe Ile Gly Lys Glu 5 10 15	225
ggt cac ttt gtg att tcc tac ctt ccc tca ttt tct ctg aac att cag Gly His Phe Val Ile Ser Tyr Leu Pro Ser Phe Ser Leu Asn Ile Gln 20 25 30	273
gat act ctt aag tca gtt cat cag cca tgc agt gca ctg tct ggt tat Asp Thr Leu Lys Ser Val His Gln Pro Cys Ser Ala Leu Ser Gly Tyr 35 40 45	321
aac atg cct gaa aag cca gag gaa tgt tct atc aaa gag cgg cat ccc Asn Met Pro Glu Lys Pro Glu Glu Cys Ser Ile Lys Glu Arg His Pro 50 55 60 65	369
tat tot dag aga otg tto tta gaa tto aaa gtg taa agat otaactdaga Tyr Ser Gln Arg Leu Phe Leu Glu Phe Lys Val * 70 75	419
gaggaaagtt cctggacaga ccattattgc cattttttt cccgtttcag tcactgaccg	479
cettggattg tecatteatt ggteteatta gagaaggetg tgeteeccae gtattaagee	539
tctcacagag gacatttaaa aatcctttct gaagcagatt cactcatgta aaactaaggt	<b>599</b>
cagacttatg gatcctggac cagcattaat gacgcagaac tctgtgggaa cagaaagacg	659
totagocatt ctcagttott tggggggggt cccccaaatt tagggccctg ggggttcccc	719

cta ctt att act ctt caa ttc cat ttc aga gtc tgt tac gtg aac ata 301 Leu Leu Ile Thr Leu Gln Phe His Phe Arg Val Cys Tyr Val Asn Ile 65 att acc ctt atc cct ctt gca caa atc ttt ctt taa tctg ttggatgact 351 Ile Thr Leu Ile Pro Leu Ala Gln Ile Phe Leu * 85 80 ctgaaaggat tagtttcagt ttggggcttg agctgtgtcc agacacacaa ctgctattag 411 ttoctaccat agttctacct gggtcagaag aatgagaaaa ataatcctta ctttttcctc 471 ctctatgagc aggaggtgct tactttttac tgatttgacc agctgaacat tttaagataa 531 tattcagcac tgtagatgaa gattagaaat tactgcgcaa actttaagtg agaataaaag 591 aatttgtggc gttctacgag actctaaaca cactatcttc cctattgtct ccttaattca 651 aacaagcatt tgggcttttt tetteattee actegaceee teecegaage teacegeeet 711 togecetee eegegteece cettecacce tetee 746

<210> 202

<211> 824

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (527)..(775)

<400> 202 gggctcgcgc gggggccggt gtagaggggg aagggcgaga aggggggggg gggagtgaag 60 caatggggga gatggcgagg cggtgcagtg ggtggggagg ccggctggtg ggcgcggtgg 120 ggcgaggaaa gggaagggg gtcaggaggg gtggggtgag ggggcaaggg cagggggtgt 180 240 300 gagggatggc ggcaggtgtt ggggttgggc agttgcgatg ggggtgtggt catgtggcag tgaaaagtag agggagaaag atctcggcgc ttggcaaagg cgctggtaac tagttttcta 360 gtagtctgtg cactgtgctt tcatagagcc atctgtaatc tatcttttct tggcatctgt 420 gacgctgggg ttattttctc cccacacttt gtctgctctg acccttataa tgaaaccaaa 480 535 ggttaaatgt agactcactc aacacccaca acattaaaac aattgg atg gaa aat Met Glu Asn

aat ctc atc ttg aca tgc tgg ggg aga tgt gct gca cac cca gta gag 583 Asn Leu Ile Leu Thr Cys Trp Gly Arg Cys Ala Ala His Pro Val Glu 5 10 15

tta atg gga gtt aca gcc aaa acc aag gtg aag cet ctg ctc cca agg Leu Met Gly Val Thr Ala Lys Thr Lys Val Lys Pro Leu Leu Pro Arg 20 25 30 .35

WO 01/55437 PCT/US01/0	2623
ctaattttgg ttatattatg cggccttgga taaggaagtt tcttaggctt tcatattcca	60
aattattgga ctattctaaa aacattttta agtattttga tggatgtagt ctattctaat	120
ataatgtett teaagtgttt gaaagttact acttatteaa aacteaactg tetggeaget	180
tttcttatcc tgaactctgt gaagaacttc agggacagga ggtaaa atg tct ttg Met Ser Leu 1	235
aag agt aag aaa too aaa act toa tgt att tac atg tto tgg tot tgt Lys Ser Lys Lys Ser Lys Thr Ser Cys Ile Tyr Met Phe Trp Ser Cys 5 10 15	283
ctc ata gga ttc ttc ttt ctc ctt aca tac cct cct tta aat ccg tac Leu Ile Gly Phe Phe Phe Leu Leu Thr Tyr Pro Pro Leu Asn Pro Tyr 20 25 30 35	331
ctc ccc cgg tct tct cca tct tgc aaa tgg cac caa tgt cca tcc tag Leu Pro Arg Ser Ser Pro Ser Cys Lys Trp His Gln Cys Pro Ser 40 45 50	379
acattgatca tcccagaagt ctaggagttg attcttctca tttttttagt tctgttgcgc	439
aagccctcac cttttgcccg tttgccctca ggccttttaa caactattcc ttacagagac	499
cggttttcca aaaggccccc gcattccatc atttcctggt gaaaaaattt taatgggatc	559
etcaccccct ctggatggtt taacccctcg agacccccgg gaatgttgcc ttgccttgcc	619
ttctgtttta attcgaaaaa ccttgcttcc ctcagacggg gggggaataa aagttttggg	679
ggccccccc cccccccc ccct	703
<210> 201 <211> 746 <212> DNA <213> Homo sapiens  <220> <221> CDS <222> (65)(337)  <400> 201	·
atttggccct cgaggccaag aattcggcac gaggatttga ccttcttaaa tgtgaacatt	60
tcat atg ttc ctt gtg ttt tgt aat ata att act gtc atc acc atg aca Met Phe Leu Val Phe Cys Asn Ile Ile Thr Val Ile Thr Met Thr 1 5 10	109
tet tta ttt ett att ett etc tea tgt ata ttt att ttg ata ace tgt Ser Leu Phe Leu Ile Leu Leu Ser Cys Ile Phe Ile Leu Ile Thr Cys 20 25 30	157
tgc tat aaa tgt aga tac att tct ttc tcc ttt aca ttt tcc gtc aca Cys Tyr Lys Cys Arg Tyr Ile Ser Phe Ser Phe Thr Phe Ser Val Thr 35 40 45	205
ccc tcc ggt ttc ttt gtt agc atc ctc cag tat ctt gcc cac att ctc Pro Ser Gly Phe Phe Val Ser Ile Leu Gln Tyr Leu Ala His Ile Leu 50 55 60	253

WO 01/55437 PCT/US01/02623 <400> 199 gacggaggtg cgccaaggat ccccgtggcc at atg gcg cgt ccg act agc agt 53 Met Ala Arg Pro Thr Ser Ser cta tgc ctg ctt ctc tac ttc tct act ggt aaa agc gtg cct gta 101 Leu Cys Leu Leu Leu Tyr Phe Phe Ser Thr Gly Lys Ser Val Pro Val tcc atc tta ccc ggc gtt gtg cgc atg ctg ctg cca ccg cct cct cat 149 Ser Ile Leu Pro Gly Val Val Arg Met Leu Leu Pro Pro Pro Pro His 30 ctt etg ece gge caa eeg gee tge eee get gea gtg atg tge gae aag 197 Leu Leu Pro Gly Gln Pro Ala Cys Pro Ala Ala Val Met Cys Asp Lys gag ttc atg tgg gcc ctg aaa aac gga gac ttg gat gag gtg aaa gac 245 Glu Phe Met Trp Ala Leu Lys Asn Gly Asp Leu Asp Glu Val Lys Asp 65 tat gtg gcc aag gga gaa gat gtc aac cgg aca cta gaa ggt gga agg 293 Tyr Val Ala Lys Gly Glu Asp Val Asn Arg Thr Leu Glu Gly Gly Arg 80 75 aaa cct ctt cat tat gca gca gat tgt ggg cag ctt gaa atc ctg gaa 341 Lys Pro Leu His Tyr Ala Ala Asp Cys Gly Gln Leu Glu Ile Leu Glu 90 95 ttt ctg ctg ctg aaa gga gca gat att aat gct cca gat aaa cat cat 389 Phe Léu Leu Lys Gly Ala Asp Ile Asn Ala Pro Asp Lys His His 105 110 att act cct ctt ctg tct gct gtc tat gag ggt cat gtt tcc tgt gtg 437 Ile Thr Pro Leu Leu Ser Ala Val Tyr Glu Gly His Val Ser Cys Val 125 aaa ttg ctt ctg tca aag tga gc tccagtgctg tgaatctctg cttaaagcac 490. Lys Leu Leu Ser Lys 140 catatgacat tcacctgtaa tcccagcact tcgaaaggcc aaggcgggag gatcaattga 550 gcagcctggg caacataggg agacctcatc tctacaaaaa ataaaaataa attagccagg 610 tatggtggtg catgcctggn gtcccagcca ctactcaggt ggttgagttg agaggattgc 670

<210> 200 <211> 703 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (227)..(376)

gtgacagagt gagaccctct ctctaannaa aaaaa

<400> 200

ttgagcccac ggaattgagg ctgcagcgag tggtgatcac accactgcac tccagcctgg

730

<223> n = a,t,c or g

<400> 198 * tgattcactg gccggcggga ctgggagaac attgtttatt ctattgacaa tactttccca	60
ccacgagggc aataccette tgagtacttg accaatgete tttgaattte agggetteee	120
aatttgaata gttttcaaat ctcagtttta ccagtccagt	180
ctactcatct tttcagctgg tttttcattt gattttatac catttcctca c atg cat Met His 1	237
gta ctg atc aga act ccc tgc tct cta ata ctc tgc ctg gca aac tct Val Leu Ile Arg Thr Pro Cys Ser Leu Ile Leu Cys Leu Ala Asn Ser 5 10 15	285
age cae get agt eta eet gga tte tet get tea tet ttt eta ttt aag Ser His Ala Ser Leu Pro Gly Phe Ser Ala Ser Ser Phe Leu Phe Lys 20 25 30	333
gag tot tgc aga oto ott otg aat tot too ttt otg otg cat ggc ota Glu Ser Cys Arg Leu Leu Leu Asn Ser Ser Phe Leu Leu His Gly Leu 35 40 45 50	381
gaa att ctc tca ggg gca att gca ggc aaa tgc aac tca ttt tgt ttg Glu Ile Leu Ser Gly Ala Ile Ala Gly Lys Cys Asn Ser Phe Cys Leu 55 60 65	429
ttt tcc atc tct cag gga tca ctg tcc ttc aat gcc tca tgc ccg ttg Phe Ser Ile Ser Gln Gly Ser Leu Ser Phe Asn Ala Ser Cys Pro Leu 70 75 80	477
cct tga aaaccattgt ttaatatatt catctggact tttaggtgtg ggcattggaa Pro *	533
agataaatct agccccccgg gattccctct tgggccgaga gcagagattc tgccacatat	593 [.]
tggtgaaacc ctttttgggg ggggcgccgc gcgattgtac aaaccactag gcgcgtcaca	653
acaacgagaa gagggaactc tgtgggatct gagtcgcggg gnngcgaccc cgcgagccga	713
ccccacccg ggccggcccc gcgcgtcctc cacgacacat ggagcaggcg acgggtagct	773
agtgcgacgg gcacatatgg cccgaggagg acgacggcga c	814

<210> 199
<211> 765
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (33)..(458)

<220>
<221> misc_feature
<222> (1)...(765)

 $\langle 222 \rangle$  (1)...(765)  $\langle 223 \rangle$  n = a,t,c or g

<213> Homo sapiens <220> <221> CDS <222> (127) . . (294) <400> 197 60 tatogtogta aacatcacta ogcotagott ggcacgagoc taatacagac octatotcaa aaacaaacaa aaagagattg ctcattggca cttggtccct gaatgtgcta atgagatgtg 120 atg ggc cat ctg ctg tgt gtg tgg ggt ttt aca tac atc ctt 168 Met Gly His Leu Leu Cys Val Trp Gly Phe Thr Tyr Ile Leu 216 cct tgt ata tcc tta agg cat tca cct ctt cag cct cca gga tgg gaa Pro Cys Ile Ser Leu Arg His Ser Pro Leu Gln Pro Pro Gly Trp Glu 20 25 ggt ttt tgc agg aat gta tct ttt cct ctc ttg agg gcc tca ctt gct 264 Gly Phe Cys Arg Asn Val Ser Phe Pro Leu Leu Arg Ala Ser Leu Ala 35 40 cet cac cat agg agg aag gac gga ttt atc t gattggagag actgtaaata 315 Pro His His Arg Arg Lys Asp Gly Phe Ile 50 aagactgact ggaacatatg gaccaggggc gggtctgctg catggacgtt gggctgtgtg 375 ggttgctcac tctcctgccc tcttcttgcc tatgcagaac tgatttctca cctctgcctt 435 cctgtctgtt cctggtgggt taggaacgta caggagagaa gggatgaaga ttagtttctc 495 ttaccccctg aagcattatt tttcacaggg cctctccacc tgttcagtgt tgagtaagtg 555 ctgaatgagt ggacagggaa acageettgg aaaagettae tateeegcae ateeetaeta 615 agtgatggca atgaatcagg ggagccgggt gtccacaccc caagcgccca cccttggtgg 675 gttgtaagaa tcccctggtt agggaggca tgacggtaaa catctccctc cgggttattc 735 cctgccatct ggctggtttg atcccccttc taatccccct ggggggggtt ccccccttcc 795 aatcaggett gggggaccac aggggeeett tggtttacta aectgggeee tggeeacaac 855 cgttatttta tggggacccc cgaagccatg gggcccaacc cttttgggcc ctcttttct 915 caacattcat atgcgtgcc 934

```
<210> 198
<211> 814
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (232)..(483)
<220>
<221> misc_feature
<222> (1)...(814)
```

WO 01/55437 PCT/US01/0	)2623
aag aca gac cag ttc ctg agg gat gca gtg gaa acc aga ctg aga atg Lys Thr Asp Gln Phe Leu Arg Asp Ala Val Glu Thr Arg Leu Arg Met 180 185 190	635
ctg atc cca tac att gag cac tgg ccc cgg gcc ctc agc atc ctc atg Leu Ile Pro Tyr Ile Glu His Trp Pro Arg Ala Leu Ser Ile Leu Met 195 200 205	683
ctc cct cac aac atc ccg tcc agc ctg agc ctg ctc acc agc atg gtg Leu Pro His Asn Ile Pro Ser Ser Leu Ser Leu Leu Thr Ser Met Val 210 215 220	731
gat gac atg tgg cat tac gct ggg gac cag tcc act gat ttt aac tgg Asp Asp Met Trp His Tyr Ala Gly Asp Gln Ser Thr Asp Phe Asn Trp 225 230 235 240	779
tac acc cgc cga gcc atg ctg gct gcc atc tac aac aca aca gag ctg Tyr Thr Arg Arg Ala Met Leu Ala Ala Ile Tyr Asn Thr Thr Glu Leu 245 250 255	827
gtg atg atg cag gac tcc tct cca gac ttt gag gac act tgg cgc ttc Val Met Met Gln Asp Ser Ser Pro Asp Phe Glu Asp Thr Trp Arg Phe 260 265 270	875
ctg gaa aac cgg gtt aat gat gca atg aac atg ggc cac act gcc aag Leu Glu Asn Arg Val Asn Asp Ala Met Asn Met Gly His Thr Ala Lys 275 280 285	923
cag gta aag tcc aca gga gag gca ctg gtg caa gga ctc atg ggt gca Gln Val Lys Ser Thr Gly Glu Ala Leu Val Gln Gly Leu Met Gly Ala 290 295 300	971
gca gtg acg ctc aag aac ttg aca ggt cta aac cag cgt cgg tga gag Ala Val Thr Leu Lys Asn Leu Thr Gly Leu Asn Gln Arg Arg * 305 310 315	1019
gaaggggtat aagctacaat gcctagaaga gaatgagcgg acagattgaa agagctttga	1079
aaagtataag gtgccatcca cataacctgg tgttcacgag aacacactaa aggactcctg	1139
agtcactacc acagccacct ggaaaccaca aggcatttga tgctaccgtt ctggtcaggg	1199
attgggctgc ttcttcagtt cctaatacca gaccaagcct cctgatgcct ttctgcactg	1259
tgtccctgtc acaatctcat gggcaccttg atcatgtctt aaccttccct taaccttggg	1379
gctcccaage cagagtcaag gtctgacgcc acctcaaggt gacagctcat ctccagcaca	1439
gcacaggcgt gtgcacacag aggtgttcct tgcagcccc tccctctcag gtgtcctgag	1499
atgetgetee tgggageece etcagaaaac tgeetcaeet gagacaagtg eetgetggae	1559
agaggtgtga ttccaggcct ggtgtcacat gacaccagca tgcattgcag gattattagt	1619
gtattttgag tctgtaaaaa taataaatat gtttgaagta gtaaaaaaaa	1672

<210> 197 <211> 934 <212> DNA

cactgagggaggcaaagtgcagcaggaattataacttgaattccaaacccagactatgcc729tagagcaagggttctccaccctggatgtgtcacaagccagcaggatgctttcacccccc789ccagcaacaccaagggaccccccccaaccaccagtggcacccatcaagcccccc844

<210> 196 <211> 1672 <212> DNA <213> Homo sapiens <220>

<221> CDS <222> (60) .. (1016) <400> 196 cctgcggtac cggtccggaa ttcccgggtc gacccacgcg tccggtgccc gcttccaaa 59 107 atg gcg gcg gcg gta tct ggt gcg ctt ggc cgg gcg ggc tgg agg Met Ala Ala Ala Val Ser Gly Ala Leu Gly Arg Ala Gly Trp Arg 1 ctc ctg cag ctg cga tgc ctg ccc gtg gcc cgt tgc cga caa gcc ctg 155 Leu Leu Gln Leu Arg Cys Leu Pro Val Ala Arg Cys Arg Gln Ala Leu 20 203 gtg ccg cgt gcc ttc cat gct tca gct gtg ggg cta agg tct tca gat Val Pro Arg Ala Phe His Ala Ser Ala Val Gly Leu Arg Ser Ser Asp 40 251 gag cag aag cag cct ccc aac tca ttt tct cag cag cat tct gag Glu Gln Lys Gln Gln Pro Pro Asn Ser Phe Ser Gln Gln His Ser Glu 60 aca cag ggg gca gaa aaa cct gat cca gag tct tct cat tca ccc ccc 299 Thr Gln Gly Ala Glu Lys Pro Asp Pro Glu Ser Ser His Ser Pro Pro 70 347 agg tat aca gac cag ggc ggc gag gag gag gag gac tat gaa agt gag Arg Tyr Thr Asp Gln Gly Glu Glu Glu Glu Asp Tyr Glu Ser Glu 85 395 gag cag ttg cag cac cgc atc ctg acg gca gcc ctt gag ttt gtg ccc Glu Gln Leu Gln His Arg Ile Leu Thr Ala Ala Leu Glu Phe Val Pro 100 105 443 gcc cac ggg tgg aca gca gag gcg att gca gaa gga gcc cag tct ctg Ala His Gly Trp Thr Ala Glu Ala Ile Ala Glu Gly Ala Gln Ser Leu 120 491 ggt ctc tcc agt gca gcc agc atg ttc ggg aag gat ggc agt gag Gly Leu Ser Ser Ala Ala Ala Ser Met Phe Gly Lys Asp Gly Ser Glu 135 539 cta ata ctg cat ttt gtg acc cag tgc aat acc cgg ctc aca cgt gtg Leu Ile Leu His Phe Val Thr Gln Cys Asn Thr Arg Leu Thr Arg Val 155 150 587 cta gaa gag gag cag aag ctg gta cag ttg ggc cag gcg gag aag agg Leu Glu Glu Glu Gln Lys Leu Val Gln Leu Gly Gln Ala Glu Lys Arg

gcaccetgte atacegeatg agecaceaga cegteatget etgtgaettg tetgtetgee 485 caattotatt ttgagottot tgagggcagg gatotoattt tttatototg tatottoagt 545 ggccggcaca ttgagcctgc tcaatgaatg cgtgagagaa tggaagtacg gaagaagagc 605 gacageetga cagegeecca aatgttgete ettaetetaa ggeetgetga teacaeceae 665 caaaaactca tqaggcccgt cgaaatgggt ctagccctga caaggggact ttttaattca 725 coggogoace coatetegee etecaggaeg gaeggatgat egeacetece eceteteggg 785 ctggcaccca acgggcttta cgcctggtcg tgcacccaac atcctatgtc ccgcccccc 845 ccgcggcatt tcccccccc gcagacccc 874

<210> 195 <211> 844 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (209)..(397) <400> 195 cccgcggtgg aattcattag aggaactcat taaatctttt ggaccaagag ctaacactga 60 accetagaac tacetggttt catgaatgee aaaagagata tttttagttt cacatttgtt 120 taatgaacac aggccctgga accatcatct gagtatagta atttgagata taattttaag 180 attactggaa gacagtgtaa taggcttg atg tet gtc etc atc tgg tgt ttg 232 Met Ser Val Leu Ile Trp Cys Leu ata tto ttt oot ott gag tat too agg ooc aag aga ggo ttg aaa gtt 280 Ile Phe Phe Pro Leu Glu Tyr Ser Arg Pro Lys Arg Gly Leu Lys Val 10 15 gat aat gtg tgt ttt tcc act gtt gcc ctt tca aca ggg tct aga att 328 Asp Asn Val Cys Phe Ser Thr Val Ala Leu Ser Thr Gly Ser Arg Ile 25 tee aac tgg tet aac tgt gaa act tgt ett ett get gaa atg ttt tte 376 Ser Asn Trp Ser Asn Cys Glu Thr Cys Leu Leu Ala Glu Met Phe Phe 45 ctt gat ttg ggg ttt tct tga aa ttattgccaa agtcatatga cataaattgt 429 Leu Asp Leu Gly Phe Ser 60 aaatgccaca aaatttattc tgctattctt gagataaaac atggaaatct gaaagttgaa 489 ggctaggact tgggaagaga acttaagaag ctaccatttc aaaatcctta atgaagggat 549 tatattacct gottgetttg accttgaaag tetettgaat gatettgtte atetgteaga 609

669

caatccctgc gtcaatgatt aataaaaaca ctctagcctg agggtgggct tgtgctgaaa

gct gag cca aga gca gat ggc agc cgc cgg act aca cgc tat gac att Ala Glu Pro Arg Ala Asp Gly Ser Arg Arg Thr Thr Arg Tyr Asp Ile 135 140 145	489
gac atg acc aag tgt atc tac tgt ggt ttc tgc cag gaa gcc tgc cct Asp Met Thr Lys Cys Ile Tyr Cys Gly Phe Cys Gln Glu Ala Cys Pro 150 155 160	537
gtt gac gct atc gtg gag ggc ccc aac ttt gag ttc tcc acc gag acg Val Asp Ala Ile Val Glu Gly Pro Asn Phe Glu Phe Ser Thr Glu Thr 165 170 175	585
cat gag gag ttg ctg tac aac aag gag aag cta ctc aac aat ggt gac His Glu Glu Leu Leu Tyr Asn Lys Glu Lys Leu Leu Asn Asn Gly Asp 180 185 190 195	633
aag tgg gag gcc gag atc gcg gcc aac atc cag gct gac tac ctg tat Lys Trp Glu Ala Glu Ile Ala Ala Asn Ile Gln Ala Asp Tyr Leu Tyr 200 205 210	681
cgg tga ccgggccacc ggtgaccttg ccacctggcc agccttgtgg cccctatagc Arg *	737
ccataaagaa actctgatcc caaaaaaaaa aaaaaaaaa	775
<210> 194 <211> 874 <212> DNA	
<213> Homo sapiens	
<213> Homo sapiens  <220> <221> CDS <222> (60)(269)	
<220> <221> CDS <222> (60)(269) <400> 194	EQ.
<220> <221> CDS <222> (60)(269)	59 107
<pre>&lt;220&gt;   &lt;221&gt; CDS   &lt;222&gt; (60)(269)    &lt;400&gt; 194  tacgtccaga gtggaggaat tecettttea teettgtett ettggattet ttggegett atg ata gag ttg get ttt gee tea tte tta aaa tgt get tea ttt tet Met Ile Glu Leu Ala Phe Ala Ser Phe Leu Lys Cys Ala Ser Phe Ser</pre>	
<pre></pre>	107
<pre></pre>	107 155
<pre></pre>	107 155 203
<pre></pre>	107 155 203 251

tacttgggtg ggtagactta ggaacactct acttcgtaaa agcattatac aaagtcacgg 1259
gagaaaaata tgggacattt cttgattata cttaatctaa tttgattaga ttatagagtc 1319
ctaagtatta attattgcca ccatcaaact cattgagtcc tatggttcac atcttgtttc 1379
ctatagaaat gtcctgtatt ctgggatcaa tttccaaatg ctttactttt ttatttctgc 1439
aagttcaaat taatgtctta tagaagttat gagttaaata aggtatggaa tatcaaaa 1497

<210> 193 <211> 775 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (49)..(687) <220> <221> misc_feature <222> (1)...(775)  $\langle 223 \rangle$  n = a,t,c or g <400> 193 gagaactetg aggaatnteg necangnaeg gegeegeage aettegag atg tat ege 57 Met Tyr Arg ctq agc tca tca atg ctg tta cgg gct ttq gcc caq gcc atg cgc aca 105 Leu Ser Ser Ser Met Leu Leu Arg Ala Leu Ala Gln Ala Met Arg Thr 10 gga cat ctt att gga caa agc ctt cat agc agc gca gtg gcg gca acg 153 Gly His Leu Ile Gly Gln Ser Leu His Ser Ser Ala Val Ala Ala Thr 20 25 3.0 tac aag tat gtg aat aag aag gaa cag gag tot gag gtg gac atg aag 201 Tyr Lys Tyr Val Asn Lys Lys Glu Gln Glu Ser Glu Val Asp Met Lys 45 tee gaa act gae aat gea get egg att etg atg tgg aca gaa ete ate 249 Ser Glu Thr Asp Asn Ala Ala Arg Ile Leu Met Trp Thr Glu Leu Ile cga gga ctg ggc atg acc cta aga tac ctc ttt cga gag cct gcc acc 297 Arg Gly Leu Gly Met Thr Leu Arg Tyr Leu Phe Arg Glu Pro Ala Thr ate aac tac eec ttt gag aag gge eea etg agt eeg ege tte egt ggg 345 Ile Asn Tyr Pro Phe Glu Lys Gly Pro Leu Ser Pro Arg Phe Arg Gly 90 gag cat gca ctg cgc cgc tac ccg tct ggg gag gag cgt tgc atc gcc 393 Glu His Ala Leu Arg Arg Tyr Pro Ser Gly Glu Glu Arg Cys Ile Ala 100 105 110 tgc aag etc tgt gag gee atc tgt ect gea cag gee atc ace att gag 441 Cys Lys Leu Cys Glu Ala Ile Cys Pro Ala Gln Ala Ile Thr Ile Glu

gag Glu	gat Asp 75	ctg Leu	ctt Leu	tgc Cys	tgt Cys	tac Tyr 80	tct Ser	tcc Ser	atg Met	gtc Val	tct Ser 85	cgg Arg	aag Lys	aac Asn	aaa Lys	472
atc Ile 90	agg Arg	cgc Arg	aat Asn	cgg Arg	cag Gln 95	cta Leu	gag Glu	agg Arg	ctg Leu	gct Ala 100	tcc Ser	cac His	atc Ile	aag Lys	gaa Glu 105	520
ctg Leu	gag Glu	ccc Pro	aag Lys	ctg Leu 110	aag Lys	aag Lys	att Ile	ctg Leu	cag Gln 115	atg Met	aac Asn	cca Pro	agg Arg	atg Met 120	cgg Arg	568
aag Lys	ttc Phe	caa Gln	gtg Val 125	gat Asp	atg Met	acc Thr	ttg Leu	gat Asp 130	gcc Ala	aac Asn	aca Thr	gcc Ala	aac Asn 135	aac Asn	ttc Phe	616
ctc Leu	ctc Leu	att Ile 140	tct Ser	gac Asp	gac Asp	ctc Leu	agg Arg 145	agc Ser	gtc Val	cga Arg	agt Ser	ggg Gly 150	cgc Arg	atc Ile	aga Arg	664
cag Gln	aat Asn 155	cgg Arg	caa Gln	gac Asp	ctt Leu	gcc Ala 160	gag Glu	aga Arg	ttt Phe	gac Asp	gtg Val 165	tcc Ser	gtt Val	tgc Cys	atc Ile	712
ctg Leu 170	Gly	tcc Ser	cct Pro	cgc Arg	ttt Phe 175	acc Thr	tgt Cys	ggc Gly	cgc Arg	cac His 180	tgc Cys	tgg Trp	gag Glu	gtg Val	gac Asp 185	760
gtg Val	gga Gly	aca Thr	agc Ser	aca Thr 190	gaa Glu	tgg Trp	gac Asp	ctg Leu	gga Gly 195	gtc Val	tgc Cys	aga Arg	gaa Glu	tct Ser 200	gtt Val	808
cac His	cgc Arg	aaa Lys	999 Gly 205	Arg	atc Ile	cag Gln	ctg Leu	acc Thr 210	aca Thr	gag Glu	ctt Leu	gga Gly	ttc Phe 215	tgg Trp	act Thr	856
gtg Val	agt Ser	Leu 220	Arg	gat Asp	gga Gly	ggc	cgc Arg 225	Leu	tct Ser	gcc Ala	agc Ser	acc Thr 230	gtg Val	ccg Pro	ctg Leu	904
act Thr	tto Phe 235	Lev	ttc Phe	gta Val	gac Asp	cgc Arg 240	Lys	tta Leu	cag Gln	cga Arg	gtg Val 245	Gly	att Ile	ttt Phe	ctg Leu	952
gat Asp 250	Met	ggc Gly	atg Met	cag Gln	aac Asn 255	Val	Ser	ttt Phe	ttt Phe	gat Asp 260	Ala	gaa Glu	ggt Gly	ggt	tcc Ser 265	1000
cat His	gto Val	tat Tyi	aca Thr	tto Phe 270	Arg	ago Ser	gta Val	tct Ser	gct Ala 279	Glu	gag Glu	cca Pro	ctg Leu	tgc Cys 280	cca Pro	1048
ttt Phe	ttg Lev	g gct 1 Ala	cct Pro 285	Sex	att : Ile	cca Pro	cct Pro	aat Asr 290	Gly	gat Asp	caa Glr	ggt Gly	gto Val 295	Lev	agc Ser	1096
ato Ile	c tgt e Cys	cct Pro	Leu	g atg i Met	aac Asn	tca Ser	gg ( Gl _y 309	Thr	act Thi	gat Asp	gct Ala	cca Pro	val	cgt Arg	cct Pro	1144
		ı Ala	c aaa a Lys		gcc	ctca	ctc	caaa	aaaa	ac a	ıaaaa	acag	ıg gt	aaga	aaat	1199

WO 01/55437	PCT/US01/02623
cta cgt gga cgt tcg gcc aag gga cca agg tg Leu Arg Gly Arg Ser Ala Lys Gly Pro Arg Tr 285 290	
tgg ctg cac cat ctg tct tca tct tcc cgc cat Trp Leu His His Leu Ser Ser Ser Ser Arg His 300 305	
aatctggaac tgcctctgtt gtgtgcctgc tgaataact	t ctatcccaga gaggccaaag 1024
tacagtggaa ggtggataac gccctccaat cgggtaact	c ccaggagagt gtcacagagc 1084
aggacagcaa ggacagcacc tacagcctca gcagcaccc	t gacgctgagc aaagcagact 1144
acgagaaaca caaagtctac gcctgcgaag tcacccatc	a gggcctgage tegecegtea 1204
caaagagctt caacagggga gagtgttaga gggagaagt	g cccccacctg ctcctcagtt 1264
ccagcettga ccccctccca teetttggge ettttgace	c ttttttccac agggggacct 1324
tacccctatt tgcggtnctt ccaggttcat cttttcaac	t tnaaccccct tettnettet 1384
tgggttttat ttattgttaa tgtttggagg aggattgat	t aaattaagtg aatttttttg 1444

1458

canctgttaa aaaa

<210> 192 <211> 1497 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (206)..(1159) <400> 192 gccatgtcac tggctcaggc tcagctgctg ggtcaccagg agaatggacg cttcctccac 60 ctcagctcag agcacagtga tgattcgtga ctttcccaat agaacttcaa atctctgaag 120 acggggggtg gggggatgtg cttgagtgtt tgtactcatg gtcttattct cggagtgaca 180 aagctggaac acaatacctc tatgc atg aaa agg ttg tca ctt gtc aca act 232 Met Lys Arg Leu Ser Leu Val Thr Thr aac agg ctt tca cct cat gga aat ttt ttt acc ttg tgt act ttt ccc 280 Asn Arg Leu Ser Pro His Gly Asn Phe Phe Thr Leu Cys Thr Phe Pro 10 15 ctg gca gtg gac atg gct gca ctc ttc caa gaa gca agc agc tgt ccc 328 Leu Ala Val Asp Met Ala Ala Leu Phe Gln Glu Ala Ser Ser Cys Pro 35 gtc tgc tca gac tat ctg gaa aaa cca atg tcc ctg gag tgt gga tgc 376 Val Cys Ser Asp Tyr Leu Glu Lys Pro Met Ser Leu Glu Cys Gly Cys 45 gcc gtc tgc ctc aag tgc att aat tca ctg cag aag gag ccc cat ggg 424 Ala Val Cys Leu Lys Cys Ile Asn Ser Leu Gln Lys Glu Pro His Gly 60 65 70

***	J 01/5	5457														1501/02025
								act Thr 35								148
								ctt Leu								196
								tct Ser								244
								gca Ala								292
								cag Gln								340
	_		_		_		_	ggt Gly 115		_				_	-	388
								tcc Ser								436
								aga Arg								484
	_					_		tat Tyr			_	_	_			532
				-				cag Gln			_	-		_		580
	_	_		_	_		_	tct Ser 195				Leu		_		628
								tgc Cys								676
	-	_				-	-	aaa Lys				_		_		724
								gaa Glu								772
								ttc Phe								820
_		-	_		-			tac Tyr 275	_		_			_		868

tet tae tgg ttt gta aga ett ett tet att aat aga ggt tgg aaa tag 682 Ser Tyr Trp Phe Val Arg Leu Leu Ser Ile Asn Arg Gly Trp Lys  $\,\,$   $\,$ 35 cagttatcta ggtttttaat gttggtttga taaacactga attttactta gtttgcatta 742 gagagettae tgttaactet taaacattta aatteeetgt teteagttet aatttteagt 802 gtgaaatcag gtaagataca tttgcaggtg aaaaagtttg aaatgtaaaa agataaccaa 862 attaatttaa tatttoottg ggaatttgat tactttttot gggagaggag ttotgggcaa 922 caacataaat actgttattt gtggatattt gcaggttacg tttggtcttc aaataagtca 982 acattatttt ctttcacaaa acttggtttt ctggctttct ataatttccc aattaacatt 1042 taaataaaag accaaattaa acaattaaac tttatttaat ttggtctttt gtttaaatgc 1102 tttgtggcta cctagcttac cttttcagct tttaaggaaa aaaaaaatca gaacttttta 1162 ttttggttcg gtcggagaca gcctcactct ggcacccagc ctgcaatgca agcgcgtgat 1222 cttagettae tggcaectet cettecaggg teaaaaaaat ceeettgeet aagtteeeee 1282 cctaccccat cattgggatt atagccaccg gcgccagccc agctaatttt gggtaccagg 1342 tttctcattt ccttctggtg gcgcgaaccc cggccctaag acctccctct ccggcgctaa 1402 cggggggatc cgcgacctct ccctccttgg cggccctccc cccgtctacg tctccataag 1462 tgctgcctgc ttgcgcggcc cggccgcccc acagctctgc tcccctctgg cgcgctgggc 1522 cccgtcccac tagaccgtat accttcttcc ctcgccgcct ggccctcaca ccgatcacca 1582 teccegeetg tecgegeege tgtgegeegt tetecateta etcatecee ectetetece 1642 ctattcacgc gcacggctca gtatc 1667

PCT/US01/02623

WO 01/55437

<210> 191 <211> 1458 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (23)..(961) <220> <221> misc feature <222> (1)...(1458) <223> n = a,t,c or g<400> 191 totgtatata actatotatt og atg atg aag ata ooc cac caa acc caa aaa 52 Met Met Lys Ile Pro His Gln Thr Gln Lys aag aga tot oto gag gat oog aat tog ogg oog ogt oga ogg att tto 100 Lys Arg Ser Leu Glu Asp Pro Asn Ser Arg Pro Arg Arg Ile Phe 15 20

1257

gac cag ggc cac agc cat ctg ggg gac ccc t gaggatctac ctgcccaggc

Asp Gln Gly His Ser His Leu Gly Asp Pro 395 ccattcccag ctccttgtct ggggagcctt ggctctgagc ctctagcatg gttcagtcct 1317 tqaaaqtgqc ctqttqqqtg gagggtqqaa qqtcctgtgc aggacaggga ggccaccaaa 1377 ggggctgctg tctcctgcac atccagcctc ctgcgactcc ccaatctgga tgcattacat 1437 tcaccagget ttgcaaaccc agecteccag tgeteatttg ggaatgetea tgagttacte 1497 cattcaaggg tgagggagta gggagggaga ggcaccatgc atgtgggtga ttatctgcaa 1557 geotgtttge egtgatgetg gaageetgtg ecactacate etggagtetg acaetgagee 1617 cetgegagtg acceptgagea cacagtteeg tageggggee catacgagae tegacgegeg 1677 1737 cgcaccacga ggtcccgagg gaggacactc gacggacacg agtgacggga aatgtgcatc tacactageg egegacaget agagegatga eggegaggae gtetegeage etaceageaa 1797 cqcqaaqacg tgcctcccgg cgtcgtatgg attaacaagc tccaagtagg gtgtacaacg 1857 1877 ccgcagcatg aactcccagg

<210> 190

<211> 1667

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (539)..(682)

<400> 190

ccgtgcccgg cctgtagaag atgcacatgt aagaaaaatc tgattaggta agaaaaaata 60 aaaagacaaa acaagcctgc cacccagaga cgtacaacaa aatgcgaact gtagttattt 120 ttctagacct ttggatagcc attaatatgg ttccacgtta ataacagtgg aaccatactg 180 tatgttetgt ttgtgtttte agtggaaaaa cattacagaa atactetgaa caacettetg 240 tcaagtaaat ttttcgagaa cttatatgat tatagatctg aactaattta tttaatcaat 300 ctggtatttg ccttcctttt tattttctag gttctggctt ttataaacat tgaaaatatc 360 ctcataggtc agtctttgag tgttcttatt ttcttgggat aaagtgaatt gctgagtcaa 420 aagaatttgc tcattttcaa tgcatttgat acatactacc acattgcttt cagaaaagtt 480 atgctagttt tcccaaccag cgtttgatgg gcaaaaaaaa cctggtgaga ttgaattt 538 atg ttt att ggg ctt ggt att tct ttt tta aat tgc ccc tcg ctt ttt 586 Met Phe Ile Gly Leu Gly Ile Ser Phe Leu Asn Cys Pro Ser Leu Phe 10 get cat tit att etc tit ige eea tig eec etc tit ggg ata tit ate 634 Ala His Phe Ile Leu Phe Cys Pro Leu Pro Leu Phe Gly Ile Phe Ile 20 25 30

W	01/5	5437												I	PCT/U	S01/02623
					cgc Arg 140											486
					ttg Leu			_		_		-	_			534
					gag Glu											582
gag Glu	cag Gln	ttg Leu 185	cgc Arg	gtg Val	gtg Val	ej aaa	gaa Glu 190	gac Asp	acc Thr	aag Lys	gcc Ala	cag Gln 195	ttg Leu	ctg Leu	Gly aaa	630
ggc	gtg Val 200	gac Asp	gag Glu	gct Ala	tgg Trp	gct Ala 205	ttg Leu	ctg Leu	cag Gln	gga Gly	ctg Leu 210	cag Gln	agc Ser	cgc Arg	gtg Val	678
					cgc Arg 220											726
					atc Ile											774
	_	_		-	ccc Pro	_	_		-	_		_	_			822
_					aag Lys		_		-	-	-		_			870
	_	Gln	-		ctg Leu	_	-	_	_	_			_		-	918
	Ala				act Thr 300											966
					cgc Arg											1014
					gcc Ala											1062
					ctg Leu											1110
gcc Ala	cca Pro 360	Glu	ttt Phe	caa Gln	caa Gln	aca Thr 365	gac Asp	agt Ser	ggc Gly	aag Lys	gtt Val 370	ctg Leu	agc Ser	aag Lys	ctg Leu	1158
	Ala				gac Asp 380											1206

agttggccag	ttctttgata	ctgagctgta	acaatcacca	tccttgcttg	aagaagtcct	553
tgcttctttg	aatctctcat	ttggcttgac	atcaaagctg	aaaaaggtta	ctgatgacgg	613
tatggacctt	ttcaatatgc	aaattatgta	atggtacaaa	cgactttata	tcagtataat	673
aaagtgctta	acgattcatt	tttattgctg	cctgtccata	ccggaagctg	taaaatagaa	733
taatttaatt	tatgggaacg	actcacatct	tggaaaatga	agggggaaaa	acctgaattc	793
cctagtggcc	acctctgcca	ttagcctggg	cacttcctgg	gggacagagg	tggaaccccg	853
gcgggaaagg	cttccccggc	ttctacaccg	gcccgcctgc	aggttaacc		902

<210> 189 <211> 1877 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (37)..(1236)

10

ctg cac tca aag agc tct cgg att cat caa caa att att gtg cag tta 102 Leu His Ser Lys Ser Ser Arg Ile His Gln Gln Ile Ile Val Gln Leu

gat agc ctc cct cca cct gtc ttc tca gag cag gta atg gca agc atg
Asp Ser Leu Pro Pro Pro Val Phe Ser Glu Gln Val Met Ala Ser Met
25
30
35

gct gcc gtg ctc acc tgg gct ctg gct ctt ctt tca gcg ttt tcg gcc 198
Ala Ala Val Leu Thr Trp Ala Leu Ala Leu Ser Ala Phe Ser Ala
40 45 50

acc cag gca cgg aaa ggc ttc tgg gac tac ttc agc cag acc agc ggg
Thr Gln Ala Arg Lys Gly Phe Trp Asp Tyr Phe Ser Gln Thr Ser Gly
55 60 65 70

gac aaa ggc agg gtg gag cag atc cat cag cag aag atg gct cgc gag 294
Asp Lys Gly Arg Val Glu Gln Ile His Gln Gln Lys Met Ala Arg Glu
75 80 85

ccc gcg acc ctg aaa gac agc ctt gag caa gac ctc aac aat atg aac
Pro Ala Thr Leu Lys Asp Ser Leu Glu Gln Asp Leu Asn Asn Met Asn
90 95 100

aag ttc ctg gaa aag ctg agg cct ctg agt ggg agc gag gct cct cgg 390 Lys Phe Leu Glu Lys Leu Arg Pro Leu Ser Gly Ser Glu Ala Pro Arg 105 110 115

ctc cca cag gac ccg gtg ggc atg cgg cag ctg cag gag gag ttg
Leu Pro Gln Asp Pro Val Gly Met Arg Arg Gln Leu Gln Glu Glu Leu
120
125
130

845 850 855 860

gtacgaatca cataagggag attgtataca agttggagca atatccattt attattttgt 2775 aactttacag ttaaactagt tttagtttaa aaagaaaaaa tgcagggtga tttcttatta 2835 2895 ttatatgtta gcctgcatgg ttaaattcga caacttgtaa ctctatgaac ttagagttta ctattttaqc aqctaaaaat gcatcacata ttcatattgt tcaataatgt cctttcattt 2955 3015 qtttctqatt qttttcatcc tgatactgta gttcactgta gaaatgtggc tgctgaaact catttgattg tcatttttat ctatcctatg ttaaatggtt tgtttttaca aaataatacc 3075 3135 ttattttaat tqaaacgttt atgcttttgc caacacatct tgtaacttaa tatactagat gttaaggttg ttaatgtaca aaaaaaaaa accettatac tcacetgcgt tttcatttgt 3195 ttgacatttg tctattattg gatatcatta tcatatgaac ttgtcagtgg gaaacaaact 3255 qtctaaaaat ttatctctta cgtttaacat acaatcatgt gagatttagg cagagttcga 3315 taaattactg gcaaaaacaa aactcattta taaagatttt ctaatgttga ctttaatact 3375 3405 ctaacatggt acaaaccana tggtaaaatc

<210> 188 <211> 902

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (257)..(430)

<400> 188

taccgctccg gaattcccgg gtcgacccac gcgtccggca ttcagctaat ttggggctac 60 cagaaaatgc tetgecagge etectggata aatggggagt cageegtgae agetgeeget 120 tgcaagtgtc ttcattgtgc cagtegetec teacacatec tttcatttaa teeteacatt 180 atgaggtgta atgtetttaa taagettatt ttatgggtag gaaattaggg ttatgaggtt 240 289 atg aca aag cta atg agt aat aga acc agg att aaatatcttg tcctag Met Thr Lys Leu Met Ser Asn Arg Thr Arg Ile 337 aga acc cat gta aat ctt tgc tgt ttc tgc cgc tac acc act ccc aag Arg Thr His Val Asn Leu Cys Cys Phe Cys Arg Tyr Thr Thr Pro Lys atg agt ttc tca tct gca tgt gtg agc ctc tgc tta atg ctg ctg ttt 385 Met Ser Phe Ser Ser Ala Cys Val Ser Leu Cys Leu Met Leu Leu Phe 35 433 tgt tct cct cca ctc ctg ctt ttg ctc ctg tcc tca ttt gtt taa tga Cys Ser Pro Pro Leu Leu Leu Leu Leu Ser Ser Phe Val * 45 50 55 ctgggttcat ttccttgatc atatttttt ttccttctcc tatttgaatg atgggggcac 493

	590					595					600					
_			aat Asn		-	-		-					_	-	_	1995
			gat Asp													2043
gaa Glu	cct Pro	gag Glu	aga Arg 640	aat Asn	cat His	act Thr	cac His	aga Arg 645	agt Ser	ttg Leu	ttt Phe	tcc Ser	gtg Val 650	gag Glu	tct Ser	2091
_	_		gac Asp		_			_	-	_	_	_		_		2139
Gly			gca Ala													2187
_	_		aca Thr	_		-	-	_	_				_	_		2235
-			cat His	_	_				_			_		_		2283
			agt Ser 720													2331
			gjå aaa													2379
Ser			cag Gln													2427
			gaa Glu													2475
			tca Ser													2523
gat Asp																.2571
aca Thr	aat Asn	cct Pro 815	gga Gly	gta Val	agg Arg	cca Pro	agt Ser 820	aat Asn	cga Arg	gat Asp	ggc Gly	ccc Pro 825	tgt Cys	gag Glu	cgc Arg	2619
tgt Cys	ggt Gly 830	att Ile	gtc Val	cac His	act Thr	gcc Ala 835	cag Gln	ata Ile	cca Pro	gac Asp	act Thr 840	tgc Cys	tta Leu	gaa Glu	gta Val	2667
aca f	ctg Leu	aaa Lys	aac Asn	gaa Glu	acg Thr	agt Ser	gat Asp	gat Asp	gag Glu	gct Ala	ttg Leu	tta Leu	ctt Leu	tgt Cys	tag *	2715

ccc tgt gga ggt aac tgg ggg tgt tat act gag cag cag cgt tgt gat
Pro Cys Gly Gly Asn Trp Gly Cys Tyr Thr Glu Gln Gln Arg Cys Asp
385
390
395

Phe Asn Ala Thr Tyr Gln Val Asp Gly Phe Cys Leu Pro Trp Glu Ile

370

ggg tat tgg cat tgc cca aat gga agg gat gaa acc aat tgt acc atg
Gly Tyr Trp His Cys Pro Asn Gly Arg Asp Glu Thr Asn Cys Thr Met
400
405
410

tgc cag aag gaa gaa ttt cca tgt tcc cga aat ggt gtc tgt tat cct 1419
Cys Gln Lys Glu Glu Phe Pro Cys Ser Arg Asn Gly Val Cys Tyr Pro
415 420 425

cgt tct gat cgc tgc aac tac cag aat cat tgc cca aat ggc tca gat
Arg Ser Asp Arg Cys Asn Tyr Gln Asn His Cys Pro Asn Gly Ser Asp
430
440

gaa aaa aac tgc ttt ttt tgc caa cca gga aat ttc cat tgt aaa aac 1515 Glu Lys Asn Cys Phe Phe Cys Gln Pro Gly Asn Phe His Cys Lys Asn 450 455 460

aat cgt tgt gtg ttt gaa agt tgg gtg tgt gat tct caa gat gac tgt 1563 Asn Arg Cys Val Phe Glu Ser Trp Val Cys Asp Ser Gln Asp Asp Cys 465 470 475

ggt gat ggc agc gat gaa gaa aat tgc cca gta atc gtg cct aca aga 1611 Gly Asp Gly Ser Asp Glu Glu Asn Cys Pro Val Ile Val Pro Thr Arg 480 485 490

gtc atc act gct gcc gtc ata ggg agc ctc atc tgt ggc ctg tta ctc 1659
Val Ile Thr Ala Ala Val Ile Gly Ser Leu Ile Cys Gly Leu Leu Leu
495 500 505

gtc ata gca ttg gga tgt act tgt aag ctt tat tct ctg aga atg ttt 1707
Val Ile Ala Leu Gly Cys Thr Cys Lys Leu Tyr Ser Leu Arg Met Phe
510 520

gaa aga aga tca ttt gaa aca cag ttg tca aga gtg gaa gca gaa ttg 1755 Glu Arg Arg Ser Phe Glu Thr Gln Leu Ser Arg Val Glu Ala Glu Leu 525 530 540

tta aga aga gaa gct cct ccc tcg tat gga caa ttg att gct cag ggt
Leu Arg Arg Glu Ala Pro Pro Ser Tyr Gly Gln Leu Ile Ala Gln Gly
545
550
555

tta att cca cca gtt gaa gat ttt cct gtt tgt tca cct aat cag gct
Leu Ile Pro Pro Val Glu Asp Phe Pro Val Cys Ser Pro Asn Gln Ala
560
565
570

tct gtt ttg gaa aat ctg agg cta gcg gta cga tct cag ctt gga ttt
Ser Val Leu Glu Asn Leu Arg Leu Ala Val Arg Ser Gln Leu Gly Phe
575 580 585

act tca gtc agg ctt cct atg gca ggc aga tca agc aac att tgg aac 1947 Thr Ser Val Arg Leu Pro Met Ala Gly Arg Ser Ser Asn Ile Trp Asn

80 85 90

			00					0,5					-				
cag Gln	gat Asp	ttt Phe 95	gat Asp	att Ile	caa Gln	gga Gly	tcc Ser 100	aga Arg	agg Arg	tgc Cys	aat Asn	ttg Leu 105	gac Asp	tgg Trp	ttg Leu	459	
aca Thr	ata Ile 110	gaa Glu	aca Thr	tac Tyr	aag Lys	aat Asn 115	att Ile	gaa Glu	agt Ser	tac Tyr	aga Arg 120	gct Ala	tgt Cys	ggt Gly	tcc Ser	507	
aca Thr 125	att Ile	cca Pro	cct Pro	ccg Pro	tat Tyr 130	atc Ile	tct Ser	tca Ser	caa Gln	gac Asp 135	cac His	atc Ile	tgg Trp	att Ile	agg Arg 140	555	
ttt Phe	cat His	tcg Ser	gat Asp	gac Asp 145	aac Asn	atc Ile	tct Ser	aga Arg	aag Lys 150	ggt Gly	ttc Phe	aga Arg	ctg Leu	gca Ala 155	tat Tyr	603	
ttt Phe	tca Ser	gly aaa	aaa Lys 160	tct Ser	gag Glu	gaa Glu	cca Pro	aat Asn 165	tgt Cys	gct Ala	tgt Cys	gat Asp	cag Gln 170	ttt Phe	cgt Arg	651	
Cys	Gly	Asn 175	Gly	Lys	tgt Cys	Ile	Pro 180	Glu	Ala	Trp	Lys	Сув 185	Asn	Asn	Met	699	
gat Asp	gaa Glu 190	tgt Cys	gga Gly	gat Asp	agt Ser	tcc Ser 195	gat Asp	gaa Glu	gag Glu	atc Ile	tgt Cys 200	gcc Ala	aaa Lys	gaa Glu	gca Ala	747	
					gct Ala 210											795	
•	_			_	ttt Phe			_								843	
					aac Asn											891	
					aca Thr											939	
					aat Asn			-						_		987	
					gac Asp 290											1035	
		_			ctt Leu	_						_		_		1083	
					gag Glu											1131	
					cat His											1179	

100 105 110

gca ttg aaa gaa tgt cta act gct taa tacct gaaggaaaat atctctgaga 629 Ala Leu Lys Glu Cys Leu Thr Ala * 115 120 cttcctccag ccttgtgatt tgttggatta atataattta actcctagaa agttgagata 689 aatcgtatgg atgataaaaa gctataatga tccagccttt tatgaagaat gcaaaatgga 749 atacctgaag gaaagggaag aattcagaaa aactggaatt cctacaaaga aaaggctaca 809 869 gaagetteca acaageatgt aggeagatac teaaatgaca tteaggaact etaatattea tggaagtcat tttatagtcc ttaaataatg gactcaagca tatatgtttg ctttacctta 929 attatggaaa tattaacttt atctgaaata aatattttat ttgtaaacgc ggccgcgaat 989 teggateete gagagatete tttttttggg tttggtgggg tatetteate gteg 1043

<210> 187 <211> 3405 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (136)..(2715)

<221> misc_feature <222> (1)...(3405) <223> n = a,t,c or g

<400> 187 caggtcccgg tccggaattc ccgggtcgac gatttcgtgc ggcggcggcg gcggcgtcgg 60 egteggegte gtetacetee agetteteet eceteeteet eegteteete etetetete 120 ccatctgctg tggtt atg gcc tgt cgc tgg agc aca aaa gag tct ccg cgg 171 Met Ala Cys Arg Trp Ser Thr Lys Glu Ser Pro Arg tgg agg tet geg ttg ete ttg ett tte ete get ggg gtg tae gga aat 219 Trp Arg Ser Ala Leu Leu Leu Phe Leu Ala Gly Val Tyr Gly Asn ggt gct ctt gca gaa cat tct gaa aat gtg cat att tca gga gtg tca 267 Gly Ala Leu Ala Glu His Ser Glu Asn Val His Ile Ser Gly Val Ser 30 35 act get tgt gga gag act eea gag eaa ata ega gea eea agt gge ata 315 Thr Ala Cys Gly Glu Thr Pro Glu Gln Ile Arg Ala Pro Ser Gly Ile ate aca age cea gge tgg cet tet gaa tat eet gea aaa ate aac tgt 363 Ile Thr Ser Pro Gly Trp Pro Ser Glu Tyr Pro Ala Lys Ile Asn Cys 65 70

411

age tgg tte ata agg gea aac eea gge gaa ate att aet ata agt ttt

Ser Trp Phe Ile Arg Ala Asn Pro Gly Glu Ile Ile Thr Ile Ser Phe

aggtgtcaga ctgcaggaaa ggagctcact ctgctggggt ggatatctga ggcagagatc 481
tgctggtata ggggaccaac tggctaagta agtttcccca agactcacgg aatttccaca 541
acaggtgatt taggatctga aaacctgaca attatgggta cacatgaggg gggcagcctg 601
cacaatgttc tccaggtgag gagactggtg gttgagttgc cctttgaaag gggtgggtag 661
ccccctgggt tttcttcca cacacccgga ctgggagctc cctggggggg agcaggggaa 721
tcccctttct gggcccccgg c 742

<210> 186
<211> 1043
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (245)..(604)

<220>
<221> misc_feature
<222> (1)...(1043)
<223> n = a,t,c or g

aag att ggt tta gtt gtt ctg ttg tac ttc atc aaa ttg ttg att cac Lys Ile Gly Leu Val Val Leu Leu Tyr Phe Ile Lys Leu Leu Ile His att gaa ttt atc aaa cgt cat tct att cta aaa tgt gaa agt att ttt 385 Ile Glu Phe Ile Lys Arg His Ser Ile Leu Lys Cys Glu Ser Ile Phe aac tta aat gta gga att cgc atg tat cca gga caa gta aat ttt tgt 433 Asn Leu Asn Val Gly Ile Arg Met Tyr Pro Gly Gln Val Asn Phe Cys gaa aca ttg cag atg tta gat gga ttt ggg aga att ttc caa act aag 481 Glu Thr Leu Gln Met Leu Asp Gly Phe Gly Arg Ile Phe Gln Thr Lys 70 tgg acg aac tta tat agc tac ata aat agt aat ttt acc aaa tgt tgc 529 Trp Thr Asn Leu Tyr Ser Tyr Ile Asn Ser Asn Phe Thr Lys Cys Cys 85 aag aac tot gga gtt ott atg gta gta aaa tgo ogg aaa gaa aat tot 577

Lys Asn Ser Gly Val Leu Met Val Val Lys Cys Arg Lys Glu Asn Ser

PCT/US01/02623 WO 01/55437 Phe Asn Cys Val Ser Pro Gly Ile Leu Pro Ile Ser Leu Cys Leu Ala ttc aat cat gat aga agc acc ttt ttc ttt tca ata ata tta ttg tta 253 Phe Asn His Asp Arg Ser Thr Phe Phe Phe Ser Ile Ile Leu Leu Leu 50 55 302 aaa gcc tta att att ttg tct tct ctg ctt caa act aag taa ttctgac Lys Ala Leu Ile Ile Leu Ser Ser Leu Leu Gln Thr Lys * 65 362 ttccttaatc ttttatcaca ggctctgttc tccaaacttt cagtcttttc tgttggtcca tattccattq qtttctcctc ctactcattc agaggcaaat taaggtggtt ttttaagttt 422 482

taggetegtag actatgtegt tatgtgagaa atttacttta ggtetgtatt gecaacecca 482
tagcacaage caggetactta atttaggeat tagteagtga tatagattga atatttgtee 542
ctgegeaaat eteatgetga attgeaatee ceagtgetgg gggtggeget tggtggaagg 602
cgaaaggate aaggegaceg geggeeecea eeeetegggg gettetetta aeggetgtgg 662
aaattttgtg eeeeeecee caaaaaaaa ggtgggggaa aegtteeee eett 717

<210> 185 <211> 742 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (128)..(361)

<400> 185 atttqqccct cgaggccaag aattcggcac gaggccttgt tttgtaacaa atgtgaggac 60 120 tcaaaggaac acccagecta ectetetggt etcagetttt eccagteatg aggageteac ttetece atg aag eec ate etg etg gte etc age tet ate ace egt gee 169 Met Lys Pro Ile Leu Leu Val Leu Ser Ser Ile Thr Arg Ala ctc ctt ctq caq ata tca aqt qtq tct tqq cag tcc tgc atg tgg agg 217 Leu Leu Gln Ile Ser Ser Val Ser Trp Gln Ser Cys Met Trp Arg 265 gca atg cct gat tgt ctc cag act gat tac ccc ata agc ctt ggc ttt Ala Met Pro Asp Cys Leu Gln Thr Asp Tyr Pro Ile Ser Leu Gly Phe 313 cat caa aga aca agg ctt cta gat gct ctc tgc cca gtc act caa tgc His Gln Arg Thr Arg Leu Leu Asp Ala Leu Cys Pro Val Thr Gln Cys 50 cat cac tot goo tgg coc tgt gtt tgc cag gga gca cag aca coc atc 361 His His Ser Ala Trp Pro Cys Val Cys Gln Gly Ala Gln Thr Pro Ile

421

tgaggaatcc atgccatgag gagtttatgg tctgtgaaga atacaggcag gaatttgaga