Math Camp 2025 - Problem Set 1

Read the following problems carefully and justify everything you do. Avoid using calculators or computers.

1. Operations. Simplify the following expressions.

1.
$$\frac{3\times4}{3-2} + \frac{4+3}{7}$$

2.
$$(3 \cdot 4)/(3-2) - (4+3)/7 \cdot (2+10)/3$$

$$3. \quad \sum_{k=1}^{3} \left(9 + \sqrt{9^k}\right)$$

4.
$$\prod_{x=1}^{5} (2x)$$

$$5. \quad \sum_{k=1}^{n} k$$

6.
$$\frac{2g+13}{3g} + \frac{4g-5}{4g}$$

7.
$$\frac{\frac{w^3 z^4}{(w+1)(z-3)}}{\frac{(wz)^3}{(w-2)(z-3)}}$$
 8.
$$\frac{\prod_{i=1}^{100} 2^i}{\prod_{i=2}^{100} 2^i}$$
 9.
$$\sum_{i=1}^{N} (5^i - 5^{i-1}).$$

8.
$$\frac{\prod_{i=1}^{100} 2^i}{\prod_{i=2}^{100} 2^i}$$

9.
$$\sum_{i=1}^{N} (5^{i} - 5^{i-1}).$$

2. Exponents and Logarithms. Simplify the following expressions assuming x, a > 0.

1.
$$x^2x^5 + x^4x^3$$

2.
$$\frac{x^8}{(x^4)^2}$$

3.
$$\frac{x^8}{(x^8)^4}$$

4.
$$\sqrt[3]{1000}$$

5.
$$\sqrt[6]{1000000}$$

6.
$$\sqrt[3]{1000000}$$

7.
$$\log_{10}(2x^35x^8)$$

8.
$$5\log(x) - \log(x^4)$$

9.
$$\log_4(16)$$

10.
$$\log \left(\prod_{i=1}^{n} (ae^{x_i}) \right)$$

3. Class Questions. Go back to the questions in Lecture 1, and make sure you can answer all of them. Write down your answers to 4.4, 5.6, 6 and 7.5.

4. Application. The Cobb-Douglas production function relates labor (L) and capital (K) to production (Y), such that $Y = AK^{\beta}L^{\alpha}$. (The usefulness of such functions extends beyond economics; for example, Butler (2014) utilizes a Cobb-Douglas function when studying Congressional representation.) Consider that regression equations are often specified in a form such as

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

1

where Y is the outcome, β_0 is the intercept, β_1, \ldots, β_k are coefficients, x_1, \ldots, x_k are the independent variables, and ϵ is an error term. Without worrying about the error term, manipulate the Cobb-Douglas production function so that it is in such a form, where β and α are the coefficients.

Hint. A variable in a regression may actually be a "transformed" variable; for example, for various reasons a researcher with one independent variable x_1 may choose to estimate an effect β_1 using $Y = \beta_0 + \beta_1 \sqrt{x_1}$ rather than $Y = \beta_0 + \beta_1 x_1$, though you should note the coefficient's interpretation is changed.