A Summary of Sorts

Siddhant Midha

02-03-2022

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Openness

Let $a \in \mathbb{R}^n$. Given $\epsilon > 0$ define,

$$B_a(\epsilon) := \{ x \mid x \in \mathbb{R}^n, |x - a| < \epsilon \}$$

We call this an epsilon ball centered around a.

Open

 $A \subseteq \mathbb{R}^n$ is open if

$$\forall x \in A \exists \epsilon > 0 \text{ s.t. } B_a(\epsilon) \subset A$$

Thus, an open set is one which has all points as interior points.

Closedness

Closed

 $A \subseteq \mathbb{R}^n$ is closed if A^c is open.

We can also define closedness in terms of limit points, refer to the note I shared on teams.

Regions

Let $A \subseteq \mathbb{R}^n$.

- A is connected if it cannot be written as a disjoint union of two non empty subsets A_1 and A_2 such that $A_1 = A \cap U_1$ and $A_2 = A \cap U_2$ such that U_1, U_2 are open in \mathbb{R}^n .
- A is path connected if any two points in A can be joined by a path which lies inside A.
- A is simply connected if A is connected and any simple closed curve lying in A can be contracted to a point in A.

Some (/non) implications

- Path connected ⇒ connected
- ullet Open + Connected \Leftrightarrow Path connected 1

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

What was this again?

Definition

A vector field ${\bf F}$ is conservative if it is a gradient of some scalar function.

$$\mathbf{F} = \nabla f$$

FTC for vector fields

Let $f:D\subset\mathbb{R}^n$ be a differentiable function and let ∇f be continuous on a smooth part \mathbf{c} . Then,

$$\int_{\mathbf{c}} \nabla f = \int_{a}^{b} \nabla f(\mathbf{c}(t)) \mathbf{c}'(t) dt = f(\mathbf{c}(b)) - f(\mathbf{c}(a))$$

8/32

Siddhant Midha A Summary of Sorts 02-03-2022

Some (/non) implications

- Not path independent ⇒ not Conservative
- Not conservative \(\Rightarrow \) Not path independent
- Path independent + Domain is Path connected ⇒ Conservative

Some more implications

Let $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j}$ be a C^1 field on an open $D \subset \mathbb{R}^n$. We take n = 2. Similar results hold for n = 3.

1 Recall the necessary condition.

$$\mathbf{F} = \nabla f \implies \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$$

Recall the sufficient condition. Let D be simply connected. Then,

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \implies \mathbf{F} \text{ is conservative}$$

Note the direction of the implications above.

Siddhant Midha A Summary of Sorts

ls

$$\mathbf{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

a conservative field?

ls

$$\mathbf{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

a conservative field? Answer?

ls

$$\mathbf{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

a conservative field? Answer? The question is not well framed. Why?

ls

$$\mathbf{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

a conservative field? Answer? The question is not well framed. Why? This illustrates that a vector field is not *just* a tuple of two functions.

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Orientation

Definition

The *positive orientation* of a curve C in \mathbb{R}^2 is given by the vector field $\mathbf{k} \times \mathbf{n}$. Where \mathbf{n} is the unit normal vector pointing outward along the curve.

So, given a path in \mathbb{R}^2 , we have the notion of *orientation* of the region enclosed by the path.

Further recall that, for a region with holes, the positive orientation is such that the outer boundary is oriented counter-clockwise, and the inner clockwise.

Green's Theorem

Theorem

- Let D be a bounded region in \mathbb{R}^2 with a positively oriented boundary ∂D consiting of a finite number of non-intersecting simple closed piecewise continuously differentiable curves.
- ② Let Ω be an open set in \mathbb{R}^2 such that $D \cup \partial D \subset \Omega$.
- **3** Let $F_1: \Omega \to \mathbb{R}$, $F_2: \Omega \to \mathbb{R}$ be C^1 functions. Consider the vector field

$$\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j}$$

Then, (finally!)

$$\int_{\partial D} F_1 dx + F_2 dy = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) d(x, y)$$

14/32

Siddhant Midha A Summary of Sorts 02-03-2022

Variants

D is our region, \mathbf{n} is the outward normal, \mathbf{k} is the vector normal to the plane.

Using Div

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{n} ds = \iint_{D} \nabla \cdot \mathbf{F} d(x, y)$$

Using Curl

$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} (\nabla \times \mathbf{F}) \cdot \mathbf{k} d(x, y)$$

(2) is a special case of -?

Applications

 Recall how area is defined. Now, we can apply Green's Theorem and see that,

$$A(D) = \frac{1}{2} \int_{\partial D} x dy - y dx = \int_{\partial D} x dy = -\int_{\partial D} y dx$$

In polar coordinates,

$$A(D) = \frac{1}{2} \int r^2 d\theta$$

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Definitions

Definition

Let $D \subseteq \mathbb{R}^2$ be path connected. A parametrised surface is a **continuous** function $\varphi: D \to \mathbb{R}^3$.

Now, recall the definitions of $\varphi_u(u,v)$ and $\varphi_v(u,v)$. At some point (u,v)these two give us the tangent plane at that point.

Tangent plane

At some point (x_0, y_0, z_0) , the equation of the tangent plane is given by

$$(\varphi_u \times \varphi_v)(u_0, v_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

Area of a Surface

$$Area(arphi) := \iint_D ||arphi_u imes arphi_v|| d(u,v)$$

With the notation $dS = ||\varphi_u \times \varphi_v|| d(u, v)$ we have,

$$Area(\varphi) = \iint_D dS$$

Note that D is the domain of the surface parametrisation.

19 / 32

Siddhant Midha A Summary of Sorts

Oriented Surfaces

Definition

A surface S is said to be *orientable* if there exists a **continuous** vector field $\mathbf{F}: S \to \mathbb{R}^3$ such that for each point P in S, $\mathbf{F}(P)$ is a unit vector normal to the surface S at P.

An oriented parametrised surface φ comes equipped with a vector field of normal unit vectors

$$\mathbf{n} = \frac{\varphi_u \times \varphi_v}{||\varphi_u \times \varphi_v||}$$

Then, given any surface it is either orientation reversing or perserving. Also note that changing the orientation leads to changing the sign of a surface integral.

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Surface Integrals

Scalar Fields

Given a surface φ on the path connected set $E \subseteq \mathbb{R}^2$, its image S, and a bounded function $f: S \to \mathbb{R}$, we define,

$$\iint_{S} f dS := \iint_{E} f(x, y, z) ||\varphi_{u} \times \varphi_{v}|| d(u, v)$$

Surface Integrals

Vector Fields

Given a surface φ on the path connected set $E \subseteq \mathbb{R}^2$, its image S, and a bounded vector field such that its domain consists of S, we define,

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} := \iint_{\mathcal{E}} \mathbf{F}(\varphi(u,v)) \cdot (\varphi_u imes \varphi_v) du dv$$

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Setting up

Recall the orientation of a surface. Now, given such an oriented surface S, an orientation is induced on the *boundary* ∂S . The direction of the same can be found by the right hand rule.

Further, if $\varphi: E \to \mathbb{R}^3$ (E is P.C.) is a smooth, orientation preserving parametrisation of S then the induced orientation of ∂S corresponds to the positive orientation of ∂E w.r.t. E.

Stokes Theorem

Theorem

- Let S be a bounded piecewise smooth oriented surface with non-empty boundary ∂S . Suppose S is closed in \mathbb{R}^3 .
- 2 Let ∂S be a disjoint unionm of simple closed curves each of which is a piecewise non-singular parametrized curve with the induced orientation.
- **3** Let $\mathbf{F} = (F_1, F_2, F_3)$ be a C^1 vector field defined on an open set containing S. Then (finally again!),

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

 Siddhant Midha
 A Summary of Sorts
 02-03-2022
 26 / 32

Consequences

- **1** The surface integral of $\nabla \times \mathbf{F}$ over two different surfaces with the same orientation and the same boundary is the same.
- ② Note that we required $\partial S \neq \emptyset$ before. If it is empty, then the surface integral of the curl is simply zero. But, this was proved separately, not given by the Stokes Theorem.
- Solution of the state of the
- If we have a curl free smooth vector field on open regions, we have path independence. Can we conclude that a suitable potential function must exist?
- No. Moreover,

curl free + domain is simply connected \implies conservative

Sidenote

- curl(grad) = 0
- div(curl) = 0
- \bullet curl = 0 and domain is simply connected \implies field is a grad field

- Some brief topology
- 2 Conservativeness
- Green's Theorem
- 4 Surfaces
- Surface Integrals
- 6 Stokes Theorem
- Gauss' Divergence Theorem

Divergence Theorem

Theorem

- **1** Let W be a simple solid region of \mathbb{R}^3 whose boundary $S = \partial W$ is a closed surface and is positively oriented.
- **2** Let **F** be a smooth vector field on an open subset of \mathbb{R}^3 containing W. Then,

$$\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} \nabla \cdot \mathbf{F} dV$$

Consequences

- Divergence free fields enjoy Zero surface integrals over boundaries of simple solid regions.
- Break up the aforementioned boundary into two surfaces S_1 , S_2 with the same boundary². Then the surface integral of a div-free field is same across both.

 Siddhant Midha
 A Summary of Sorts
 02-03-2022
 31 / 32

²Please note the usage of boundary for surfaces and solid regions, and distinguish appropriately.

The end

Onto the last tutorial.