Topic 2 - Kinematics

1 Basic quantities

Scalar	Vector
Distance, x	$Displacement,\ s$
the total length of path followed by object	The distance moved in a specified direction from
	a reference point
speed, v	velocity, v
instantaneous speed is the rate of change of dis-	instantaneous velocity is the rate of change of dis-
tance wrt time	placement wrt time
$v = \frac{dx}{dt}$	$v = \frac{ds}{dt}$
average speed is the total distance travelled over	average velocity is the total change in displace-
total time taken	ment over total time taken
Λ_{m}	Λ ~
$\langle v \rangle = \frac{\Delta x}{\Delta t}$	$\langle v \rangle = \frac{\Delta x}{\Delta t}$
Δt	Δt
	Acceleration, a
	instantaneous acceleration is the rate of change of
	velocity wrt time
	, costo of wife control
	$a = \frac{dv}{dt}$
	$a = \frac{1}{dt}$
	Average acceleration is the total change in veloc-
	ity over total time
	Λ_{2}
	$\langle a \rangle = \frac{\Delta v}{\Delta t}$
	Δt

Equations for uniformly accelerated motion 2

$$v = u + at \tag{1}$$

$$s = \frac{1}{2}(u+v)t\tag{2}$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$
(3)

$$v^2 = u^2 + 2as \tag{4}$$

3 kinematics of free fall and the effect of air resistance

objects in the uniform gravitational field of earth undergo uniformly accelerated motion downwards, and experience a constant acceleration with magnitude

$$g=9.81ms^{-2}$$

Objects experience air resistance, whose magnitude is proportional to velocity and whose direction is opposite to velocity

• on an object's way up, it experiences air resistance in the direction of downward acceleration due to gravity, hence

$$a_{up} > g$$

• on its way down, it experiences air resistance opposite gravity, hence

$$a_{down} < g$$

4 non-linear motion