Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		٨	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		^ ¬()
1b			

Step	Algorithm: $[C] := \text{Syr2k_LT_BLK_VAr3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \left(A_L \middle A_R\right), B \to \left(B_L \middle B_R\right), C \to \left(\frac{C_{TL}}{C_{BL}}\middle C_{BR}\right)$
	where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL}} \begin{vmatrix} \hat{C}_{TR} \\ \hat{C}_{BR} \end{vmatrix}\right) $
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \wedge n(A_L) < n(A) $
5a	Determine block size b
	$\left(A_L \middle A_R\right) \rightarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \rightarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \rightarrow$
	$\left(\frac{C_{00} C_{01} C_{02}}{C_{01} C_{02}} \right)$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
	$C_{20} C_{21} C_{22}$ where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$
6	$\begin{pmatrix} C_{00} & C_{01} & C_{02} \\ \hline C_{10} & C_{11} & C_{12} \\ \hline C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00} & 0 & 0 \\ \hline A_1^T B_0 + B_1^T A_0 + \widehat{C}_{10} & \widehat{C}_{11} & 0 \\ \hline A_2^T B_0 + B_2^T A_0 + \widehat{C}_{20} & \widehat{C}_{21} & \widehat{C}_{22} \end{pmatrix}$
	$\left(\overline{C_{20}} C_{21} C_{22} \right) = \left(\overline{A_2^T B_0 + B_2^T A_0 + \widehat{C}_{20}} \widehat{C}_{21} \widehat{C}_{22} \right)$
8	$C_{11} := A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11}$
	$C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$
5b	$\left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \leftarrow$
	$\int C_{00} C_{01} C_{02}$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \end{pmatrix}$
	$C_{20} C_{21} C_{22}$
	$ \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00} & 0 & 0 \\ A_1^T B_0 + B_1^T A_0 + \widehat{C}_{10} A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11} 0 \\ A_2^T B_0 + B_2^T A_0 + \widehat{C}_{20} A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21} \widehat{C}_{22} \end{pmatrix} $
7	$ \left \begin{array}{c c} C_{10} C_{11} C_{12} \\ \hline \end{array} \right = \left \begin{array}{c c} A_1^T B_0 + B_1^T A_0 + C_{10} A_1^T B_1 + B_1^T A_1 + C_{11} 0 \\ \hline \end{array} \right $
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} C_{BR}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix}\right) $
	endwhile
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix} \right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$

$$A \to \left(A_L \middle| A_R\right), B \to \left(B_L \middle| B_R\right), C \to \left(\frac{C_{TL}}{C_{BL}}\middle| C_{BR}\right)$$

where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0

while $n(A_L) < n(A)$ do

Determine block size b

$$\left(A_{L} \middle| A_{R} \right) \to \left(A_{0} \middle| A_{1} \middle| A_{2} \right) , \left(B_{L} \middle| B_{R} \right) \to \left(B_{0} \middle| B_{1} \middle| B_{2} \right) , \left(\frac{C_{TL} \middle| C_{TR}}{C_{BL} \middle| C_{BR}} \right) \to \left(\frac{C_{00} \middle| C_{01} \middle| C_{02}}{C_{10} \middle| C_{11} \middle| C_{12}} \right)$$

where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$

$$C_{11} := A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11}$$

$$C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$$

$$\left(A_{L} \middle| A_{R} \right) \leftarrow \left(A_{0} \middle| A_{1} \middle| A_{2} \right), \left(B_{L} \middle| B_{R} \right) \leftarrow \left(B_{0} \middle| B_{1} \middle| B_{2} \right), \left(\frac{C_{TL} \middle| C_{TR}}{C_{BL} \middle| C_{BR}} \right) \leftarrow \left(\frac{C_{00} \middle| C_{01} \middle| C_{02}}{C_{10} \middle| C_{11} \middle| C_{12}} \right)$$

endwhile

Step	Algorithm: $[C] := \text{Syr}2\text{K_Ltt_BLK_VAr}3(A, B, C)$
1a	$C = \hat{C}$
4	where
2	
3	while do
2,3	\wedge
5a	Determine block size
	where
6	
8	
5b	
7	
2	
	endwhile
2,3	$\wedge \neg ($
۷,0	
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$
1a	$C = \widehat{C}$
4	
2	where $ \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL} \hat{C}_{TR} }{A_R^T B_L + B_R^T A_L + \hat{C}_{BL} \hat{C}_{BR} }\right) $
3	while do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \wedge $
5a	Determine block size
	where
6	
8	
5b	
7	
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix}\right) $
	endwhile
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \land \neg ($
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$
1a	$C = \widehat{C}$
4	
	where
2	$\left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix}\right)$
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL}} \begin{vmatrix} \hat{C}_{TR} \\ \hat{C}_{BR} \end{vmatrix} \right) \wedge n(A_L) < n(A) $
5a	Determine block size
	where
6	
8	
5b	
7	
2	$\left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix}\right)$
	endwhile
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \Big C_{TR}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \Big \widehat{C}_{TR}\right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr2k_lt}_\text{Blk_var3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \begin{pmatrix} A_L A_R \end{pmatrix}$, $B \to \begin{pmatrix} B_L B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix}$ where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL}} \begin{vmatrix} \hat{C}_{TR} \\ \hat{C}_{BR} \end{vmatrix}\right) $
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL} \widehat{C}_{TR}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL} \widehat{C}_{BR}}\right) \wedge n(A_L) < n(A) $
5a	Determine block size
	where
6	
Ü	
8	
5b	
7	
•	
	$\begin{pmatrix} C_{-1} & C_{-2} \end{pmatrix} \begin{pmatrix} A^T B_{-1} + B^T A_{-1} & \hat{C}_{-2} & \hat{C}_{-1} \end{pmatrix}$
2	$ \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL} \widehat{C}_{TR}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL} \widehat{C}_{BR}}\right) $
	endwhile
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr}2k_{-}\operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$
1a	$C = \hat{C}$
4	$A \to \left(A_L \middle A_R\right), B \to \left(B_L \middle B_R\right), C \to \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right)$
	where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0
2	$ \left(\frac{C_{TL}}{C_{BL}} \frac{C_{TR}}{C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR}\right) $
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} C_{BR}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix} \right) \wedge n(A_L) < n(A) $
5a	Determine block size b
	$\left(A_L \middle A_R\right) \rightarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \rightarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL}}{C_{BL}} \middle C_{BR}\right) \rightarrow$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
	$ \begin{pmatrix} C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix} $ where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$
6	
8	
5b	$\left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL}}{C_{BL}} \middle C_{BR}\right) \leftarrow$
	· · · · · · · · · · · · · · · · · · ·
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
	$oxed{C_{20}C_{21}C_{22}}$
7	
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} C_{BR}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL}} \begin{vmatrix} \hat{C}_{TR} \\ \hat{C}_{BR} \end{vmatrix}\right) $
	endwhile
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix} \right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr2k.lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \left(A_L \middle A_R\right), B \to \left(B_L \middle B_R\right), C \to \left(\frac{C_{TL}}{C_{BL}}\middle C_{BR}\right)$
	where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL}} \begin{vmatrix} \hat{C}_{TR} \\ \hat{C}_{BR} \end{vmatrix}\right) $
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix} \right) \wedge n(A_L) < n(A) $
5a	Determine block size b
	$\left(A_L \middle A_R\right) \rightarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \rightarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \rightarrow$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
	$ \begin{pmatrix} \frac{C_{10} C_{11} C_{12}}{C_{20} C_{21} C_{22}} \end{pmatrix} $ where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$
6	$\begin{pmatrix} C_{00} & C_{01} & C_{02} \\ \hline C_{10} & C_{11} & C_{12} \\ \hline C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \hat{C}_{00} & 0 & 0 \\ \hline A_1^T B_0 + B_1^T A_0 + \hat{C}_{10} & \hat{C}_{11} & 0 \\ \hline A_2^T B_0 + B_2^T A_0 + \hat{C}_{20} & \hat{C}_{21} & \hat{C}_{22} \end{pmatrix}$
8	
5b	$\left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \leftarrow$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
7	
2	$ \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \hat{C}_{TL} \hat{C}_{TR}}{A_R^T B_L + B_R^T A_L + \hat{C}_{BL} \hat{C}_{BR}}\right) $
	endwhile
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr2k_LT_BLK_VAr3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \left(A_L \middle A_R\right), B \to \left(B_L \middle B_R\right), C \to \left(\frac{C_{TL}}{C_{BL}}\middle C_{BR}\right)$
	where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix}\right) $
3	while $n(A_L) < n(A)$ do
2,3	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BR} \end{vmatrix} \right) \wedge n(A_L) < n(A) $
5a	Determine block size b
	$\left(A_L \middle A_R\right) \rightarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \rightarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \rightarrow$
	$egin{pmatrix} C_{00} & C_{01} & C_{02} \ \hline C_{10} & C_{11} & C_{12} \ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}$
	$\begin{pmatrix} C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix}$ where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$
6	$\begin{pmatrix} C_{00} & C_{01} & C_{02} \\ \hline C_{10} & C_{11} & C_{12} \\ \hline C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00} & 0 & 0 \\ \hline A_1^T B_0 + B_1^T A_0 + \widehat{C}_{10} & \widehat{C}_{11} & 0 \\ \hline A_2^T B_0 + B_2^T A_0 + \widehat{C}_{20} & \widehat{C}_{21} & \widehat{C}_{22} \end{pmatrix}$
8	
5b	$\left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL}}{C_{BL}} \middle C_{BR}\right) \leftarrow$
	$\int C_{00} C_{01} C_{02}$
	$\overline{C_{10} C_{11} C_{12}}$
	$oxed{C_{20} C_{21} C_{22}}$
	$\left(\frac{C_{00} C_{01} C_{02}}{C_{01} C_{02}} \right) \left(\frac{A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00}}{0} \right) 0 0$
7	$ \begin{pmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00} & 0 & 0 \\ A_1^T B_0 + B_1^T A_0 + \widehat{C}_{10} & A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11} & 0 \\ A_2^T B_0 + B_2^T A_0 + \widehat{C}_{20} & A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21} & \widehat{C}_{22} \end{pmatrix} $
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) $
	endwhile
2	$ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) \land \neg (n(A_L) < n(A)) $
1b	$[C] = \operatorname{Syr2k.lt}(A, B, \widehat{C})$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \text{where} A_{L} \text{ has 0 columns, } B_{L} \text{ has 0 columns, } C_{TL} \text{ is 0} \times 0 \\ \hline 2 \left(\frac{C_{TL}}{C_{TR}} C_{BR} \right) = \left(\frac{A_{L}^{T}B_{L} + B_{L}^{T}A_{L} + \hat{C}_{TL}}{A_{R}^{T}B_{L} + B_{L}^{T}A_{L} + \hat{C}_{BL}} \hat{C}_{BR} \right) \\ \hline 3 \text{while } n(A_{L}) < n(A) \text{ do} \\ \hline 2,3 \left(\frac{C_{TL}}{C_{TR}} C_{TR} \right) = \left(\frac{A_{L}^{T}B_{L} + B_{L}^{T}A_{L} + \hat{C}_{TL}}{A_{R}^{T}B_{L} + B_{L}^{T}A_{L} + \hat{C}_{BL}} \hat{C}_{BR} \right) \wedge n(A_{L}) < n(A) \\ \hline 5a \text{Determine block size } b \\ \left(A_{L} A_{R} \right) \rightarrow \left(A_{0} A_{1} A_{2} \right) , \left(B_{L} B_{R} \right) \rightarrow \left(B_{0} B_{1} B_{2} \right) , \left(\frac{C_{TL}}{C_{TR}} C_{TR} \right) \\ \left(\frac{C_{00}}{C_{01}} C_{02} \right) \\ \left(\frac{C_{10}}{C_{11}} C_{12} \right) \\ \left(\frac{C_{20}}{C_{20}} C_{21} C_{22} \right) \\ \text{where } A_{1} \text{ has } b \text{ columns, } B_{1} \text{ has } b \text{ columns, } C_{11} \text{ is } b \times b \\ \hline 6 \left(\frac{C_{00}}{C_{01}} C_{02} \right) \\ \left(\frac{C_{10}}{C_{11}} C_{12} \right) \\ \left(\frac{C_{20}}{C_{20}} C_{21} C_{22} \right) \\ \left(\frac{A_{1}^{T}B_{0} + B_{1}^{T}A_{0} + \hat{C}_{10}}{A_{1}^{T}B_{0} + \hat{C}_{20}} \hat{C}_{21} \hat{C}_{22} \right) \\ \hline 8 C_{11} := A_{1}^{T}B_{1} + B_{1}^{T}A_{1} + \hat{C}_{11} \\ C_{21} := A_{2}^{T}B_{1} + B_{2}^{T}A_{1} + \hat{C}_{21} \\ \hline 5b \left(A_{L} A_{R} \right) \leftarrow \left(A_{0} A_{1} A_{2} \right) , \left(B_{L} B_{R} \right) \leftarrow \left(B_{0} B_{1} B_{2} \right) , \left(\frac{C_{TL}}{C_{TR}} C_{TR} \right) \leftarrow \\ \left(C_{00} C_{01} C_{02} \right) \\ \hline \end{array}$
$ \begin{array}{c} \text{where } A_L \text{ has 0 columns, } B_L \text{ has 0 columns, } C_{TL} \text{ is 0} \times 0 \\ \hline 2 & \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix} = \begin{pmatrix} A_L^T B_L + B_L^T A_L + \hat{C}_{TL} \hat{C}_{TR} \\ A_R^T B_L + B_L^T A_L + \hat{C}_{BL} \hat{C}_{BR} \end{pmatrix} \\ \hline 3 & \text{while } n(A_L) < n(A) \text{ do} \\ \hline 2,3 & \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix} = \begin{pmatrix} A_L^T B_L + B_L^T A_L + \hat{C}_{TL} \hat{C}_{TR} \\ A_R^T B_L + B_R^T A_L + \hat{C}_{BL} \hat{C}_{BR} \end{pmatrix} \wedge n(A_L) < n(A) \\ \hline 5a & \textbf{Determine block size } b \\ & (A_L A_R) \rightarrow (A_0 A_1 A_2) , (B_L B_R) \rightarrow (B_0 B_1 B_2) , \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix} \rightarrow \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22} \end{pmatrix} \\ & \text{where } A_1 \text{ has } b \text{ columns, } B_1 \text{ has } b \text{ columns, } C_{11} \text{ is } b \times b \\ \hline 6 & \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \hat{C}_{00} & 0 & 0 \\ A_1^T B_0 + B_1^T A_0 + \hat{C}_{10} & \hat{C}_{11} & 0 \\ A_2^T B_0 + B_2^T A_0 + \hat{C}_{20} & \hat{C}_{21} \hat{C}_{22} \end{pmatrix} \\ & 8 & C_{11} := A_1^T B_1 + B_1^T A_1 + \hat{C}_{11} \\ & C_{21} := A_2^T B_1 + B_2^T A_1 + \hat{C}_{21} \\ \hline 5b & (A_L A_R) \leftarrow (A_0 A_1 A_2) , (B_L B_R) \leftarrow (B_0 B_1 B_2) , \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix} \leftarrow \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} \\ & \begin{pmatrix} C_{00} C_{01} C_{02} C_{02} C_{02} \end{pmatrix} \begin{pmatrix} C_{00} C_{01} C_{02} C_{02} C_{02} C_{$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5a Determine block size b $ \begin{pmatrix} A_{L} A_{R}\rangle & \rightarrow & (A_{0} A_{1} A_{2}) & , & (B_{L} B_{R}) & \rightarrow & (B_{0} B_{1} B_{2}) & , & \frac{C_{TL} C_{TR} }{C_{BL} C_{BR}}\end{pmatrix} \rightarrow \\ \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22}\end{pmatrix} & \text{where } A_{1} \text{ has } b \text{ columns, } B_{1} \text{ has } b \text{ columns, } C_{11} \text{ is } b \times b \end{pmatrix} $ $ \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22}\end{pmatrix} = \begin{pmatrix} A_{0}^{T}B_{0} + B_{0}^{T}A_{0} + \hat{C}_{00} & 0 & 0 \\ A_{1}^{T}B_{0} + B_{1}^{T}A_{0} + \hat{C}_{10} & \hat{C}_{11} & 0 \\ A_{2}^{T}B_{0} + B_{2}^{T}A_{0} + \hat{C}_{20} & \hat{C}_{21} \hat{C}_{22}\end{pmatrix} $ $ 8 C_{11} := A_{1}^{T}B_{1} + B_{1}^{T}A_{1} + \hat{C}_{11} $ $ C_{21} := A_{2}^{T}B_{1} + B_{2}^{T}A_{1} + \hat{C}_{21} $ $ 5b (A_{L} A_{R}) \leftarrow (A_{0} A_{1} A_{2}) , (B_{L} B_{R}) \leftarrow (B_{0} B_{1} B_{2}) , (C_{TL} C_{TR}) \leftarrow \begin{pmatrix} C_{TL} C_{TR} C_{TR}$
$ \begin{pmatrix} A_{L} A_{R} \end{pmatrix} \rightarrow \begin{pmatrix} A_{0} A_{1} A_{2} \end{pmatrix}, \begin{pmatrix} B_{L} B_{R} \end{pmatrix} \rightarrow \begin{pmatrix} B_{0} B_{1} B_{2} \end{pmatrix}, \begin{pmatrix} \frac{C_{TL} C_{TR}}{C_{BL} C_{BR}} \end{pmatrix} \rightarrow $ $ \begin{pmatrix} \frac{C_{00} C_{01} C_{02}}{C_{10} C_{11} C_{12}} \\ \frac{C_{20} C_{21} C_{22}}{C_{20} C_{21} C_{22}} \end{pmatrix} $ $ \text{where } A_{1} \text{ has } b \text{ columns, } B_{1} \text{ has } b \text{ columns, } C_{11} \text{ is } b \times b $ $ \begin{pmatrix} \frac{C_{00} C_{01} C_{02}}{C_{10} C_{11} C_{12}} \\ \frac{C_{10} C_{11} C_{12}}{C_{20} C_{21} C_{22}} \end{pmatrix} = \begin{pmatrix} \frac{A_{0}^{T} B_{0} + B_{0}^{T} A_{0} + \hat{C}_{00} 0 0}{A_{2}^{T} B_{0} + B_{2}^{T} A_{0} + \hat{C}_{10} \hat{C}_{11} 0} \\ \frac{A_{2}^{T} B_{0} + B_{2}^{T} A_{0} + \hat{C}_{20} \hat{C}_{21} \hat{C}_{22}}{\hat{C}_{21} \hat{C}_{22}} \end{pmatrix} $ $ 8 \qquad C_{11} := A_{1}^{T} B_{1} + B_{1}^{T} A_{1} + \hat{C}_{11} \\ C_{21} := A_{2}^{T} B_{1} + B_{2}^{T} A_{1} + \hat{C}_{21} $ $ 5b \qquad (A_{L} A_{R}) \leftarrow (A_{0} A_{1} A_{2}) , (B_{L} B_{R}) \leftarrow (B_{0} B_{1} B_{2}) , \begin{pmatrix} C_{TL} C_{TR} \\ C_{BL} C_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} C_{00} C_{01} C_{02} \end{pmatrix} $
$ \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22} \end{pmatrix} $ where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$ $ \begin{pmatrix} C_{00} C_{01} C_{02} \\ C_{10} C_{11} C_{12} \\ C_{20} C_{21} C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \hat{C}_{00} & 0 & 0 \\ A_1^T B_0 + B_1^T A_0 + \hat{C}_{10} & \hat{C}_{11} & 0 \\ A_2^T B_0 + B_2^T A_0 + \hat{C}_{20} & \hat{C}_{21} & \hat{C}_{22} \end{pmatrix} $ $ 8 \qquad C_{11} := A_1^T B_1 + B_1^T A_1 + \hat{C}_{11} $ $ C_{21} := A_2^T B_1 + B_2^T A_1 + \hat{C}_{21} $ $ 5b \qquad (A_L A_R) \leftarrow (A_0 A_1 A_2) , (B_L B_R) \leftarrow (B_0 B_1 B_2) , (C_{TL} C_{TR}) \leftarrow (C_{00} C_{01} C_{02}) $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{pmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0^T B_0 + B_0^T A_0 + \hat{C}_{00} & 0 & 0 \\ A_1^T B_0 + B_1^T A_0 + \hat{C}_{10} & \hat{C}_{11} & 0 \\ A_2^T B_0 + B_2^T A_0 + \hat{C}_{20} & \hat{C}_{21} & \hat{C}_{22} \end{pmatrix} $ $ 8 \qquad C_{11} := A_1^T B_1 + B_1^T A_1 + \hat{C}_{11} \\ C_{21} := A_2^T B_1 + B_2^T A_1 + \hat{C}_{21} $ $ 5b \qquad \left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \leftarrow \begin{pmatrix} C_{00} \middle C_{01} \middle C_{02}\right) $
8 $C_{11} := A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11}$ $C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$ 5b $ \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle A_1 \middle A_2 \right) , \left(B_L \middle B_R \right) \leftarrow \left(B_0 \middle B_1 \middle B_2 \right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}} \right) \leftarrow \left(C_{00} \middle C_{01} \middle C_{02} \right)$
8 $C_{11} := A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11}$ $C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$ 5b $ \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle A_1 \middle A_2 \right) , \left(B_L \middle B_R \right) \leftarrow \left(B_0 \middle B_1 \middle B_2 \right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}} \right) \leftarrow \left(C_{00} \middle C_{01} \middle C_{02} \right)$
8 $C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$ 5b $\left(A_L \middle A_R\right) \leftarrow \left(A_0 \middle A_1 \middle A_2\right) , \left(B_L \middle B_R\right) \leftarrow \left(B_0 \middle B_1 \middle B_2\right) , \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}}\right) \leftarrow \left(C_{00} \middle C_{01} \middle C_{02}\right)$
$C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$ $(A_L A_R) \leftarrow (A_0 A_1 A_2) , (B_L B_R) \leftarrow (B_0 B_1 B_2) , (\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}) \leftarrow (C_{00} C_{01} C_{02})$
$\int C_{00} C_{01} C_{02}$
$oxed{C_{10} C_{11} C_{12}}$
$igg C_{20} C_{21} C_{22} igg $
$\left(\frac{C_{00} C_{01} C_{02}}{C_{00} C_{01} C_{02}}\right) \left(\frac{A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00}}{C_{00} C_{00} C_{00}} = 0\right)$
$ \frac{C_{00} C_{01} C_{02}}{C_{10} C_{11} C_{12}} = \left(\frac{A_0^T B_0 + B_0^T A_0 + \widehat{C}_{00}}{A_1^T B_0 + B_1^T A_0 + \widehat{C}_{10} A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11} 0} - \frac{1}{A_1^T B_0 + B_2^T A_0 + \widehat{C}_{20} A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21} \widehat{C}_{22}} \right) $
$ \frac{2}{C_{TL}} \left(\frac{C_{TR}}{C_{BL}} C_{TR} \right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL}} \widehat{C}_{BR} \right) $
endwhile
$2.3 \left(\frac{C_{TL} \mid C_{TR}}{C_{BL} \mid C_{BR}}\right) = \left(\frac{A_L^T B_L + B_L^T A_L + \widehat{C}_{TL} \mid \widehat{C}_{TR}}{A_R^T B_L + B_R^T A_L + \widehat{C}_{BL} \mid \widehat{C}_{BR}}\right) \land \neg (n(A_L) < n(A))$
1b $[C] = \operatorname{Syr}2k_{-}\operatorname{lt}(A, B, \widehat{C})$

$\left(\frac{C_{TR}}{C_{BR}}\right) \rightarrow$
,
$\left(\frac{C_{TR}}{C_{BR}}\right) \leftarrow$
·

Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}3(A, B, C)$

$$A \to \left(A_L \middle| A_R\right), B \to \left(B_L \middle| B_R\right), C \to \left(\frac{C_{TL}}{C_{BL}}\middle| C_{BR}\right)$$

where A_L has 0 columns, B_L has 0 columns, C_{TL} is 0×0

while $n(A_L) < n(A)$ do

Determine block size b

$$\left(A_{L} \middle| A_{R} \right) \to \left(A_{0} \middle| A_{1} \middle| A_{2} \right) , \left(B_{L} \middle| B_{R} \right) \to \left(B_{0} \middle| B_{1} \middle| B_{2} \right) , \left(\frac{C_{TL} \middle| C_{TR}}{C_{BL} \middle| C_{BR}} \right) \to \left(\frac{C_{00} \middle| C_{01} \middle| C_{02}}{C_{10} \middle| C_{11} \middle| C_{12}} \right)$$

where A_1 has b columns, B_1 has b columns, C_{11} is $b \times b$

$$C_{11} := A_1^T B_1 + B_1^T A_1 + \widehat{C}_{11}$$

$$C_{21} := A_2^T B_1 + B_2^T A_1 + \widehat{C}_{21}$$

$$\left(A_{L} \middle| A_{R} \right) \leftarrow \left(A_{0} \middle| A_{1} \middle| A_{2} \right), \left(B_{L} \middle| B_{R} \right) \leftarrow \left(B_{0} \middle| B_{1} \middle| B_{2} \right), \left(\frac{C_{TL} \middle| C_{TR}}{C_{BL} \middle| C_{BR}} \right) \leftarrow \left(\frac{C_{00} \middle| C_{01} \middle| C_{02}}{C_{10} \middle| C_{11} \middle| C_{12}} \right)$$

endwhile