Big Data Engineering with Distributed Systems

Data Science Dojo

Machine Learning Scaling

Programs	Programming	Cloud	Distributed
• Excel	PythonRSAS	Azure MLAWS MLWatson AnalyticsBig MLCloud Virtual Machines	 Hadoop Spark H20 Revolution R

Excel: Cell Meta Data

	Α	В	С	D	E
1	Sepal.Len _£	Sepal.Widt	Petal.Leng	Petal.Widt	Species
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3	1.4	0.2	setosa

E2 Cell = Application, Address, AllowEdit, Areas, Borders, BottomPadding, Comment, Column, ColumnIndex, Creator Font, FitText, Height, HeightRule, ID, Interior, LeftPadding, NestingLevel, RightPadding, Row, RowIndex, Shading, Tables, TopPadding, VerticalAlignment, Value, Width, WordWrap "Font":{ "Application": "Microsoft Excel", "Background": None, "Bold": True, "Color": 0, "ColorIndex": 5, "Creator": "XCEL", "FontStyle": "Bold Italic", "Italic": True, "Name": "Comic Sans MS", "OutlineFont": True, "Parent": None, "Shadow": False, "Size": 12, "Strikethrough": False, "Subscript": False, "ThemeColor": 12, "ThemeFont:": 2, "TintAndShade": 1, "Superscript": False, "Underline": False,

"Value": "Setosa"

R Limits

- Single core
- Single threaded
- All in memory (RAM)
- Vectors & Matrices capped at 4,294,967,295 elements; 2^32 1

R Limits: RAM

All in memory (RAM)

 $Max\ Data\ Limit = (\ Total\ RAM\ Access\ - Normal\ RAM\ Usage\)\ x\ 80\%$

Phuc's Laptop Example:

 $Max\ Data\ Limit = (5.9gb - 3.2gb)\ x\ 80\%$ $Max\ Data\ Limit = \sim 2.16gb$

R Limits: RAM

INSTANCE	CORES	RAM	DISK SIZES	PRICE
G1	2	28 GB	384 GB	\$0.67/hr (~\$498/mo)
G2	4	56 GB	768 GB	\$1.34/hr (~\$997/mo)
G3	8	112 GB	1,536 GB	\$2.68/hr (~\$1,994/mo)
G4	16	224 GB	3,072 GB	\$5.36/hr (~\$3,988/mo)
G5	32	448 GB	6,144 GB	\$9.65/hr (~\$7,180/mo)

Azure's Biggest Virtual Machine $Max\ Data\ Limit = (448gb - 1gb)\ x\ 80\%$ $Max\ Data\ Limit = \sim 357.6gb$

R Limits: Single Core

- Single core
- Single threaded

Machine Learning Scaling

Programs	Programming	Cloud	Distributed
• Excel	PythonRSAS	Azure MLAWS MLWatson AnalyticsBig MLCloud Virtual Machines	 Hadoop Spark H20 Revolution R

Distributed R Solutions:

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Agenda

From a Data Scientist's Perspective

Goals:

 Teach you how to leverage an existing Hadoop cluster, self-service data query

Not goals:

 Managing or administering a Hadoop cluster

unleash the data scientist in you

Hadoop Engineers

Average Salary of Jobs Matching Your Search

Average Hadoop Engineer salaries for job postings nationwide are 47% higher than average Data Scientist salaries for job postings nationwide.

Average Salary of Jobs Matching Your Search

Average Hadoop Engineer salaries for job postings in Redmond, WA are 47% higher than average Data Scientist salaries for job postings in Redmond, WA.

Source: Ineed.com

Hadoop Implementations

(Vanilla/Base) Hadoop

Processing engine for distributed batch processing.

Turn Back The Clock, The Mainframe

Distributed Computing

Cloud Computing

Scaling Computational Power

- Old Scaling:
- Vertical Scaling, Scaling UP
- High performance computers

- New Scaling:
- Horizontal Scaling, Scaling OUT
- Commodity hardware, distributed

If dogs were servers...

HDFS & MapReduce

Processing: 30 hours

HDFS & MapReduce

Processing: 15 hours

HDFS & MapReduce

datascriencedojo unleash the data scientist in you

Most Cases, Linear Scaling Of Processing Power

Number of Computers	Processing Time (hours)
1	30
2	15
3	10
4	7.5
5	6
6	5
7	4.26
8	3.75
9	3.33

HDFS

HDFS Partitioning

HDFS Redundancy

Limitations with MapReduce

- ~70 lines of code to do anything
- Slow
- Troubleshooting multiple computers
- Good devs are scarce
- Expensive certifications

```
org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
       org.apache.hadoop.conf.Configuration;
       org.apache.hadoop.fs.Path;
       org.apache.hadoop.io.IntWritable;
       org.apache.hadoop.io.Text;
       org.apache.hadoop.mapreduce.Job;
       org.apache.hadoop.mapreduce.Mapper;
       org.apache.hadoop.mapreduce.Reducer;
       org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
```


Ambari: Cluster provisioning, management, and monitoring

Avro (Microsoft .NET Library for Avro): Data serialization for the Microsoft .NET environment

HBase: Non-relational database for very large tables

HDFS: Hadoop Distributed File System

Hive: SQL-like querying

MapReduce and YARN: Distributed processing and resource management

STORM Storm: Real-time processing of fast, large data streams

Zookeeper: Coordinates processes in distributed systems

Hive Jobs

HiveQL Statement Translation & MapReduce Job

Hive Architecture

Unstructured Data

Data File

Structured Data

Semi Structured Data

Self Describing Flat Files

- XML
- JSON
- CSV
- TSV

```
"created_at": "Thu May 07 18:06:23 +0000 2015",
"id":596375540631646210,
"id_str": "596375540631646210",
"text": "Expert usable tips differently the pres:
"source": "<a href=\"http://twitterfeed.com\" rel
"truncated":0,
"in_reply_to_status_id":null,
"in_reply_to_status_id_str":null,
"in_reply_to_user_id":null,
"in_reply_to_user_id_str":null,
```


Why Hive?

- SQL spoken here (HiveQL)
- ODBC driver
- BI Integration
- Supports only Structured Data

Limitations

Structured vs. Unstructured Data Growth

Azure Blob Storage

Blob Storage

Azure Blob Storage

unleash the data scientist in you

When to Use Each

MapReduce

MapReduce, via Playing Cards

Let's count the number of spades, clubs, hearts, and diamonds in a stack of cards, the way map reduce would.

- Each card represents a row of data
- Each suit & number represents an attribute of the data

Using a 2 Data Node Cluster

Mapping: Each Node's HDFS

Mapping: Node Sorting

Mapping: Node Shuffle, Data Transfer

unleash the data scientist in you

Mapping: Node Shuffle, Data Transfer

Word Count, via MapReduce()

Databases

		TMDD
	Rank & Title	Rating
And Andread	1. The Shawshank Redemption (1994)	★ 9.2
Park P	2. The Godfather (1972)	★ 9.2
Popile.	3. The Godfather: Part II (1974)	★ 9.0
	4. The Dark Knight (2008)	★ 8.9
12	5. 12 Angry Men (1957)	★ 8.9

movie	year	rating	director
Aliens	1986	8.2	James (I) Cameron
Animal House	1978	7.5	John (I) Landis
Apollo 13	1995	7.5	Ron Howard
Batman Begins	2005	NULL	Christopher Nolan
Braveheart	1995	8.3	Mel (I) Gibson
Fargo	1996	8.2	Ethan Coen
Fargo	1996	8.2	Joel Coen
Few Good Men, A	1992	7.5	Rob Reiner
Fight Club	1999	8.5	David Fincher

Normalization, joining

Movie Information

SELECT	movie	year	rating	director
m.name AS movie,	Aliens	1986	8.2	James (I) Cameron
m.year AS year,	Animal House	1978	7.5	John (I) Landis
<pre>m.rank AS rating, CONCAT(d.first_name, " ", d.last_name)</pre>	Apollo 13	1995	7.5	Ron Howard
AS director	Batman Begins	2005	NULL	Christopher Nolan
FROM movies AS m	Braveheart	1995	8.3	Mel (I) Gibson
JOIN movies_directors AS md	Fargo	1996	8.2	Ethan Coen
ON m.id = md.movie_id JOIN directors AS d	Fargo	1996	8.2	Joel Coen
ON md.director_id = d.id	Few Good Men, A	1992	7.5	Rob Reiner
;	Fight Club	1999	8.5	David Fincher

Database = Normalization

director

id	first_name	last_name	
24758	David	Fincher	
66965	Jay	Roach	
72723	William	Shatner	

movies

id	name	year	rank
112290	Fight Club	1999	8.5
209658	Meet the Parents	2000	7
210511	Memento	2000	8.7

movie_directors

director_id	movie_id		
24758	112290		
66965	209658		
72723	313398		

Data Warehouse = Denormalization

student	course	grade
Bart	Computer Science 142	B-
Milhouse	Computer Science 142	B+
Bart	Computer Science 143	С
Lisa	Computer Science 143	A+
Milhouse	Computer Science 143	D-
Ralph	Computer Science 143	В
Lisa	Computer Science 154	A+
Nelson	Computer Science 154	D+
Ralph	Informatics 100	D+

Tables:

- Students Table
- Courses Table
- Roster Table

Trade-Offs

unleash the data scientist in you

Costs, Storage vs Processing

US - N. Virginia	US - N.	California	EU - Ireland	
Standard On-Demand I	nstances	Linux/UNI	X Usage	Windows Usage
Small (Default)		\$0.085 per hour		\$0.12 per hour
Large		\$0.34 per hour		\$0.48 per hour
Extra Large		\$0.68 per h	our	\$0.96 per hour

Processing Extra Large

Storage

US - Standard US			
Stor	age		
Tier	Pricing		
First 50 TB / Month of Storage Used	\$0.150 per GB		
Next 50 TB / Month of Storage Used	\$0.140 per GB		
Next 400 TB /	\$0.130 per GB		

- Distributed Machine Learning
- Installed into Hadoop & Spark
- R-like language Implementation

Distributed Random Forest

Distributed Random Forest

Distributed Random Forest

unleash the data scientist in you

Processing Times - Machine Learning

- Large scale systems are only needed for training
- Phones can use models outputted by mahout to predict new data
- After a model is trained, save the model to any IO file type and reload it where you want

In-Memory: 100x

Hadoop times faster than

Hadoop

Spark

3x faster on 10x few machines

Datona GraySort Benchmark: Sort 100 TB of data

Previous World Record: 2014:

- Method: Hadoop
- Yahoo!
- 72 Minutes
- 2100 Nodes

- Method: Spark
- Databricks
- 23 Minutes
- 206 Nodes

Activity in last 30 days

Source: Xiangrui Meng, Data Bricks

Spark SQL

Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark

Technology adoption life cycle

Source: http://carlosmartinezt.com/2010/06/technology-adoption-life-cycle/

QUESTIONS

Enjoying the bootcamp?

We'd love it if you could write a short review of Data Science Dojo!

Switch Up (https://www.switchup.org/bootcamps/data-science-dojo)
Course Report (https://www.coursereport.com/schools/data-science-dojo)

Your reviews help other people find and attend our bootcamp.

