2.2 (2.3) Изучение спектров атома водорода и молекулы йода

Статкевич Катя Группа Б05-007

Цель работы: изучить сериальные закономерости в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

Теоретическое введение

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где $R=109677.6~{\rm cm^{-1}}$ – константа, называемая постоянной Ридберга, а m и n – целые числа. Мы будем изучать серию Бальмера, линии которой лежат в видимой области. Для неё n=2, а $m=3,\ 4,\ 5,\ 6\dots$ Первые четыре линии обозначаются соответственно $H_{\alpha},\ H_{\beta},\ H_{\gamma},\ H_{\delta}$. Для молекулы йода мы рассматриваем только нулевую серию, энергетическое положение линий поглощения определяется выражением

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2\left(n_2 + \frac{1}{2}\right) - \frac{1}{2}h\nu_1.$$
 (2)

Рис. 1: Линии молекулы йода.

Описание установки

Для наблюдения спектра водорода используется установка, изображённая на Рис. 2А. Источником света для наблюдения служит водородная трубка H-образной формы, в состав газа которой добавлены водные пары для увеличения яркости интересующих нас линий. Источник Л помещается на оптическую скамью вместе с конденсером K, так что свет концентрируется на входной щели 1. Далее через коллиматорный объектив 2 свет попадает на сложную спектральную призму, состояющую из призм Π_1 , Π_2 и Π_3 . Первые две призмы обладают большой дисперсией, а промежуточная Π_3 поворачивает лучи — такое устройство позволяет складывать дисперии Π_1 и Π_2 . После прохождения призмы свет попадает в зрительную трубу 4-5, объектив которой даёт изображение входной щели различных цветов.

Рис. 2: Установки для наблюдения линий А. водорода; Б. йода.

На Рис. 2Б изображена схема установки, используемой для наблюдения спектра йода. Спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр 5 позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

Ход работы

Градуировка спектрометра

Мы настроили прибор, начало отсчета расположено на 0.03 мм. Сначала произведём градуировку монохроматора. Для этого проведём измерения линий спектра неона и ртути, сняв зависимость длины волны наблюдаемого света λ от параметра θ барабана монохроматора. Погрешность измерения θ примем половиной цены деления $\sigma_{\theta} = 5^{\circ}$. Измерения представлены в Таблицах 1 и 2.

Искать зависимость $\lambda = \lambda(\theta)$ будем в виде (дисперсионная формула Гартмана):

$$\lambda = \lambda_0 + \frac{C}{\theta - \theta_0}.$$

Таблица 1: Измерения для градуировки (неон)

λ , Å	5401	5852	5882	5945	6074	6143	6166	6267
θ , °	1890	2150	2171	2203	2259	2291	2300	2342
λ , Å	6305	6334	6383	6507	6533	6599	6929	7032
θ , °	2352	2389	2386	2436	2440	2465	2569	2593

Таблица 2: Измерения для градуировки (ртуть)

λ , Å	5791	5770	5466	4916	4358	4047	6907	6234
θ , $^{\circ}$	2120	2111	1930	1513	852	301	2560	2337

График аппроксимации представлен на Рис. 3, полученные константы:

$$\lambda_0 = 2340 \pm 40 \text{ Å}, \ C = -(62 \pm 1) \cdot 10^5 \text{ Å}, \ \theta_0 = 3930^{\circ} \pm 20^{\circ}.$$

Рис. 3: Зависимость $\lambda = \lambda(\theta)$.

Спектр водорода

Произведём непосредственно измерения для серий водорода. Измеренные значения представлены в Таблице 4.

Построим график зависимости и воспользовавшись формулой (1), рассчитаем константу Ридберга

$$R = (109, 9 \pm 0, 4) * 10^{3} \text{ cm}^{-1}.$$

Таблица 3: Определение линий спектра водорода

Линия спектра	θ , °	$\lambda, \ \mathring{A}$	m	$\frac{1}{n^2} - \frac{1}{m^2}$	$\frac{1}{\lambda}$, $10^{-4} \mathring{A}^{-1}$	$\sigma_{\frac{1}{\lambda}}, 10^{-4} \mathring{A}^{-1}$
H_{α}	2450	6544	3	0.139	1.528	0.046
H_{eta}	1460	4857	4	0.188	2.059	0.062
H_{γ}	846	4347	5	0.211	2.301	0.069
H_{δ}	420	4105	6	0.222	2.436	0.073

Рис. 4: Проверка формулы Бальмера

Спектр йода

Перейдём к измерениям для йода. Определим на монохроматоре параметры, соответствующие самой длинноволновой линии (i=1,0), отстоящей от неё на 6 линии (i=1,5) и границе спектра (i=rp):

Таблица 4: Определение линий спектра йода

i	$\theta_i, {}^{\circ}$	$\lambda_i,\ \mathring{A}$	$ u_i, 10^{14} \Gamma$ ц	$h\nu_i$, эВ
1,0	2402	6365	4.7	1.95
1,5	2292	6110	4.9	2.03
гр	1640	5023	6.0	2.47

Энергии колебательного кванта возбуждённого состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{2} = 0.016 \pm 0.008 \text{ pB}.$$

Учитывая, что $h\nu_1=0.027$ эВ, с помощью формулы (2) рассчитаем энергию перехода

$$h\nu_{\text{эл}} = h\nu_{(1,0)} - \frac{1}{2}h\nu_2 + \frac{3}{2}h\nu_1 = 1.98 \pm 0.03$$
 эВ.

Тогда энергии диссоциации частиц в основном и возбуждённом состоянии, с учётом того, что энергия возбуждения атома $E_A = 0.94$ эВ:

$$D_1 = h\nu_{\rm rp} - E_A = 1.53 \pm 0.03 \text{ 9B},$$

$$D_2 = h\nu_{\rm rp} - h\nu_{\rm эл} = 0.49 \pm 0.05$$
 эВ.

Вывод

В ходе данной лабораторной работы мы изучили спектры водорода и йода. Убедились в справедливости формулы Бальмера, также нашли постоянную Ридберга $R=(109,9\pm0,4)*10^3~{\rm cm}^{-1}$, найденное значение совпало с табличным. Также мы оценили энергит квантов возбужденного состояния молекулы, энергию диссоциации ($D_1=1.49\pm0.03~{\rm sB}, D_2=0.37\pm0.05~{\rm sB}$) и энергию перехода ($h\nu_{\rm sn}=1.92\pm0.03~{\rm sB}$)

