Easy examples of Higgs Bundles and Hitchin Equations

1 The motivation

We wish to relate three distinct families of objects over a given manifold: representations $\pi_1(S) \to \text{Sl}(2,\mathbb{C})$; harmonic bundles (E,∇,h) ; and Higgs bundles (E,φ) .

2 Setting

Let S connected closed oriented surface $g \geq 2$ and X a Riemann surface over S.

Definition 2.1. A Higgs bundle on X is a pair (E, φ) where $E \to X$ is a rank 2 holomorphic vector bundle with trivial determinant and $\varphi \in H^0(X, K \otimes \operatorname{End}_0(E))$.

Definition 2.2. A Higgs bundle (E, φ) is stable if for any $L \subset E$ such that $\varphi(L) \subset L \otimes K$ we have $\deg(L) < 0$. Such L are called φ invariant. If $E = \bigoplus_{i=1}^{2} (E_i, \varphi_i)$ where the components are stable, then say (E, φ) is polystable.

Theorem 2.3. (Hitchin 87) If (E, φ) is polystable then there exists hermitian metric H on E such that the Chern connection A of H satisfies

$$F_A + [\varphi, \varphi^{*_H}] = 0 \tag{1}$$

(This is the Hitchin equation.)

[[CHERN CONNECTION]] [[H HERMITIAN ON E OR M ?? Whats is *H]]

Remark ... ALGEBRA

Once you have a solution to the Hitchin Equation $\nabla = A + \varphi + \varphi^*$ connection on E .

 (A, φ) solution $\Leftrightarrow \nabla$ is a flat connection.

Get a representation $\text{hol}_{\nabla}: \pi(S) \to \text{SL}(2,\mathbb{C}).$

Moreover the fact that φ is holomorphic is equivalent to H being a harmonic metric.

3 Example 1

 (E,φ) is a stable Higgs bundle iff E is a stable vector bundles.

Solving hitchins equations for (E,0) means finding a metric H such that

$$F_A + [0, 0^*] = 0 (2)$$

$$F_A = 0 (3)$$

The Chern connection is already flat.

We recover Narasimhan-seshadin

$$\{E \text{ rank 2, triv det, stable holom vb}\} \leftrightarrow \{\operatorname{Rep}(\pi_1(S), \operatorname{SU}(2))\}\$$
 (4)

Relating the Moduli space $\mathcal{M}_{0,2}(X)$ the Doulbeuat moduli. Complex structure with a complex compact submanifold.

$$M_{0,2}(X) \to T^* M_{0,2}(X) \xrightarrow{\text{open, dense}} \mathcal{M}_{0,2}$$
 (5)

4 Hyperbolic Geometry and Teichmuller theory

Recall that hyperbolic space $\mathbb{H} = \{(x,y) \in \mathbb{R} | y > 0\}$ has hyperbolic metric $g = \frac{dx \wedge dy}{y^2}$. It has constant sectional curvature -1. The orientation preserving automorphism group is $\operatorname{Aut}^+(\mathbb{H}) = \operatorname{PSL}(2,\mathbb{R})$. How does one construct \mathbb{H} -structures on S.

[[Let
$$\Gamma < \mathrm{PSL}(2, \mathbb{R})$$
]]

We define the following three spaces associated to S. The Fuchisan space $\mathcal{D}F$ is

$$\mathcal{D}F(\pi_1(S), \mathrm{PSL}_2\mathbb{R})) = \tag{6}$$

$$\{\rho: \pi(S) \to \mathrm{PSL}_2(\mathbb{R}) | \text{ injective, discrete}\}/\mathrm{PSL}_2(\mathbb{R})$$
 (7)

The Fricke space $\mathcal{F}(S)$ is

$$\mathcal{F}(S) = \{(Y, h, f) | h \text{ hyperbolic metric } f : S \to Y \} / \text{Diff}_0(S)$$
 (8)

The Teichmuller space $\mathcal{T}(S)$ is

$$\mathcal{T}(S) = \{(X, l) | l : S \to X\} / \text{Diff}_0(S) \tag{9}$$

There are maps relating these three spaces ad the spaces. cf Killing Hopf, Uniformization (Poincare Koebe)

Theorem 4.1. As smooth manifolds $\mathcal{D}F(S) = \mathcal{F}(S) = \mathcal{T}(S) = \mathbb{R}^{6g-6}$

Theorem 4.2. (Wolf) Fix $X \in \mathcal{T}(S)$. Then get homeomorphism

$$\mathcal{F}(S) \to H^0(X, K^2) \tag{10}$$

Fix $X \in \mathcal{T}(S)$ choose a square root of K Take short exact sequence

$$0 \to \mathbb{Z}_2 \to \mathcal{O}^* \to \mathcal{O}^* \tag{11}$$

[WHATS]

Let $E = K^{1/2} \oplus K^{-1/2}$ which is holomorphic of rank 2. Note that this is unstable. $\deg(K^{1/2}) = g - 1 > 0$.

Choose

$$\varphi = \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \in H^0(X, K \otimes \operatorname{End}_0(E)) \tag{12}$$

The only φ -invariant subbundle is $0 \oplus K^{-1/2}$ which has degree 1 - g < 0. Thus (E, φ) is a stable higgs bundle.

Can now apply Hitchins theorem and get H hermitian metric on E, such that the chern connection satisfies $F_A + [\varphi, \varphi^*] = 0$

Remark: E is decomposible.

$$\mathcal{M}_{0,2}(X) \to H^0(X, K^2)$$
 (13)

$$(K^{1/2} \oplus K^{-1/2}, \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}) \mapsto \alpha$$
 (14)