#### Principe

Enrichissement des items : items généralisés de la forme

$$[X \to \alpha \bullet, L]$$
, avec  $L \subseteq V_T \cup \{\#\}$ 

Dans  $[X \to \alpha_1 \bullet \alpha_2, L]$ , L contient les symboles qui peuvent suivre X à ce stade de l'analyse.

Remarque : pour  $[X \to \alpha \bullet, L]$ ,  $L \subseteq Suivant(X)$ 

## Principe

```
Un analyseur LR(1) réduit par X \to \alpha \ldots
```

dans un état 
$$E$$
 contenant  $[X \to \alpha \bullet, \underline{L}] \dots$ 

seulement si le symbole sous la tête de lecture appartient à L.

## Automate LR(1)

La méthode LR(1) ne repose pas sur l'automate LR-AFD.

Deux items  $[X \to \alpha \bullet \beta, L]$  et  $[X \to \alpha \bullet \beta, L']$  sont considérés comme différents si  $L \neq L'$ .

L'automate fini caractéristique d'un analyseur LR(1) (dit automate LR(1)) est donc beaucoup plus gros que l'automate LR-AFD, ce qui explique sa plus grande puissance.

# Algorithme de construction de l'automate LR(1)

On procède comme pour l'automate LR-AFD :

- on sature les états par expansion;
- ightharpoonup on transite sur chaque symbole Y tel que  $[\cdots 
  ightharpoonup \cdots 
  ightharpoonup Y \dots]$

Mais on modifie la saturation pour calculer *L*.

Plus facile à expliquer si on décompose  $[X \to \alpha, \{x_1, \dots, x_n\}]$  en un ensemble d'items généralisés unitaires :

$$[X \to \alpha, x_1], \ldots, [X \to \alpha, x_n]$$

### Saturation des états LR(1): intuition

On considère l'item généralisé unitaire  $[X \to \alpha \bullet Y\beta, a]$ ;

- ▶ on cherche à saturer pour Y : qui peut suivre Y?
- au moins les  $Premier(\beta)$ ;
- ▶ mais si  $\beta \Rightarrow^* \epsilon$ , alors a, qui peut suivre X, peut aussi suivre Y.
- ▶ Donc Y peut être suivi par  $Premier(\beta a)$ .

# Saturation des états LR(1) : définition

Un ensemble d'items généralisés unitaires E est saturé si :

- ▶ s'il contient l'item généralisé unitaire  $[X \to \alpha \bullet Y\beta, a]$ ;
- ▶ alors pour toutes les productions  $Y \rightarrow \gamma \in P$ ,
- ▶ et pour tout  $b \in Premier(\beta a)$ ,
- ▶ on a  $[Y \to \bullet \gamma, b] \in E$ .

En fin de saturation on reconstruit les items généralisés.

### Algorithme de construction de Q et $\delta$

L'état initial est Saturation( $[S' \rightarrow \bullet S, \{\#\}]$ ).

Ensuite, pour chaque état saturé E et chaque symbole  $Y \in V_T \cup V_N$  (lecture pour  $V_T$ , réduction pour  $V_N$ ) :

▶ si E contient un ensemble de n items enrichis de la forme «• Y» ·

$$\{ [X \rightarrow \alpha_i \bullet Y\beta_i, \underline{L_i}] \mid 1 \leq i \leq n \}$$

▶ alors on calcule

$$E' = \mathtt{Saturation}(\{[X \to \alpha_i Y \bullet \beta_i, \mathsf{L}_i] \mid 1 \le i \le n\})$$

- ▶ si cet état E' n'existe pas, on l'ajoute à Q;
- et on définit  $\delta(E, Y) = E'$ .



#### Exemple de $G_1$

$$S' \rightarrow S$$
  
 $S \rightarrow A \mid xb$   
 $A \rightarrow aAb \mid x$ 

$$Premier(S) = Premier(A) \cup \{x\} = \{a, x\}$$
$$Premier(A) = \{a, x\}$$

## État initial de G1

E0
$$[S' \rightarrow \bullet S, \#]$$

$$[S \rightarrow \bullet A, \#]$$

$$[S \rightarrow \bullet xb, \#]$$

$$[A \rightarrow \bullet aAb, \#]$$

$$[A \rightarrow \bullet x, \#]$$

$$\begin{bmatrix} S' \rightarrow \bullet S, \# \\ [S \rightarrow \bullet A, \#] \\ [S \rightarrow \bullet xb, \#] \\ [A \rightarrow \bullet aAb, \#] \\ [A \rightarrow \bullet x, \#] \end{bmatrix} \text{ ou } \begin{bmatrix} E0 \\ [S' \rightarrow \bullet S, \{\#\}] \\ [S \rightarrow \bullet A, \{\#\}] \\ [S \rightarrow \bullet xb, \{\#\}] \\ [A \rightarrow \bullet aAb, \{\#\}] \\ [A \rightarrow \bullet x, \{\#\}] \end{bmatrix}$$

Transition par x vers  $E3 = Saturation( \begin{vmatrix} [S \rightarrow x \bullet b, \{\#\}] \\ [A \rightarrow x \bullet, \{\#\}] \end{vmatrix})$ 

$$\begin{bmatrix} S \to x \bullet b, \{\#\} \\ [A \to x \bullet, \{\#\}] \end{bmatrix})$$

E3
$$[S \to x \bullet b, \{\#\}]$$

$$[A \to x \bullet, \{\#\}]$$

Conflit au sens LR(1)?

# Conflits au sens LR(1)

Un ensemble d'items généralisés provoque un conflit S/R s'il contient à la fois :

- ▶ un item de la forme  $[Y \rightarrow \cdots \bullet a \dots, L]$ , avec  $a \in V_T$ ;
- ▶ un item de la forme  $[X \to \alpha \bullet, L']$  avec  $a \in L'$

Un ensemble d'items généralisés provoque un conflit R/R s'il contient à la fois :

- ▶ un item de la forme [ $X \to \alpha \bullet, L$ ];
- ▶ un item de la forme  $[Y \to \beta \bullet, L']$  avec  $L \cap L' \neq \emptyset$ .
- $\Rightarrow$  pas de conflit au sens LR(1) en E3 :  $G_1$  est LR(1).

# Automate LR(1) pour $G_1$ , suite



## Automate LR(1) pour $G_1$ , remarque

a éclaté en deux états LR(1) :

 $\Rightarrow$  automate LR(1) plus gros que LR-AFD.

### Exemple de $G_2$

$$S' \to S$$

$$S \to G = D \mid D$$

$$G \to *D \mid i$$

$$D \to G$$



# État initial LR(1) pour $G_2$

$$[S' \rightarrow \bullet S, \#]$$

$$[S \rightarrow \bullet G = D, \#]$$

$$[S \rightarrow \bullet D, \#]$$

$$[G \rightarrow \bullet *D, =]$$

$$[G \rightarrow \bullet i, =]$$

$$[D \rightarrow \bullet G, \#]$$

$$[G \rightarrow \bullet *D, \#]$$

$$[G \rightarrow \bullet i, \#]$$

ou

$$[S' \rightarrow \bullet S, \{\#\}]$$

$$[S \rightarrow \bullet G = D, \{\#\}]$$

$$[S \rightarrow \bullet D, \{\#\}]$$

$$[G \rightarrow \bullet *D, \{=, \#\}]$$

$$[G \rightarrow \bullet i, \{=, \#\}]$$

$$[D \rightarrow \bullet G, \{\#\}]$$

# Automate LR(1) pour $G_2$

Transition  $E0 \xrightarrow{G} E5$ :

$$\begin{bmatrix}
S \to G \bullet = D, \{\#\} \\
[D \to G \bullet, \{\#\}]
\end{bmatrix}$$

Conflit S/R levé au sens LR(1) :  $G_2$  est LR(1).

L'automate LR(1) comporte 14 états, contre 10 pour l'automate LR-AFD.