CS 581

Advanced Artificial Intelligence

January 22, 2024

Announcements / Reminders

- Please follow the Week 02 To Do List instructions (if you haven't already)
- Written Assignment #01: to be posted soon
- Programming Assignment #01: to be posted soon
- UPDATED Exam Dates:
 - Midterm:

■ WAS: 02/28/2024 during Wednesday lecture time

■ IS: 02/21/2024 during Wednesday lecture time

Final:

■ WAS: 04/24/2024 during Wednesday lecture time

■ IS: 04/22/2024 during Monday lecture time

Teaching Assistants

Name	e-mail	Office hours
Gawade, Vishal	vgawade@hawk.iit.edu	TBD
Zhou, Xiaoting	xzhou70@hawk.iit.edu	TBD

TAs will:

- assist you with your assignments,
- hold office hours to answer your questions,
- grade your assignments (a specific TA will be assigned to you).

Take advantage of their time and knowledge!

DO NOT email them with questions unrelated to lab grading.

Make time to meet them during their office hours.

Add a [CS581 Spring 2024] prefix to your email subject when contacting TAs, please.

Plan for Today

- Solving problems by Searching
 - A* Algorithm: continued
 - Local Search Algorithms

What Made A* Work Well?

 Straight-line heuristics is admissible: it never overestimates the cost.

 An admissible heuristics is guaranteed to give you the optimal solution

A* Evaluation Function

A* Evaluation Function:

$$f(n) = g(State_n) + h(State_n)$$

where:

- g(n) initial node to node n path cost
- h(n) estimated cost of the best path that continues from node n to a goal node

So:

$$f(n) < C^*$$

where:

C* - optimal path cost

Admissible Heuristic: Proof

An admissible heuristics h() is guaranteed to give you the optimal solution. Why? Proof by contradiction:

- Say: the algorithm returned a suboptimal path (C > C*)
- So: there exist a node n on C* not expanded on C:

```
If so: f(n) > C^*
f(n) = g(n) + h(n) \quad (by \ definition)
f(n) = g^*(n) + h(n) \quad (because \ n \ is \ on \ C^*)
f(n) \le g^*(n) + h^*(n) \quad (if \ h(n) \ admissible: h(n) \le h^*(n))
```

But that would mean that:

```
f(n) \le C^* (contradiction!)
```

What Made A* Work Well?

 Straight-line heuristics is consistent: its estimate is getting better and better as we get closer to the goal

 Every consistent heuristics is admissible heuristics, but not the other way around

A*: Search Contours

How does A* "direct" the search progress?

$$f(n) = g(State_n) + h(State_n)$$

A*: SURELY Expanded Nodes

Nodes INSIDE contours (ellipsoids) have:

 $f(n) = g(State_n) + h(State_n) < contour value$

A*: POSSIBLY Expanded Nodes

Nodes ON contours (ellipsoids) have:

 $f(n) = g(State_n) + h(State_n) = contour value$

A*: NOT Expanded Nodes

Nodes OUTSIDE contours (ellipsoids) have:

 $f(n) = g(State_n) + h(State_n) > contour value$

Dominating Heuristics

We can have more than one available heuristics. For example $h_1(n)$ and $h_2(n)$.

 $h_2(n)$ dominates $h_1(n)$ if and only if

 $h_2(n) > h_1(n)$ for every n

Dominating Heuristics

We can have more than one available heuristics. For example $h_1(n)$ and $h_2(n)$.

Heuristics $h_2(n)$ estimate is closer to actual cost than $h_1(n)$. $h_2(n)$ dominates $h_1(n)$. Use $h_2(n)$.

Dominating Heuristics

We can have more than one available heuristics. For example $h_1(n)$ and $h_2(n)$.

If you have multiple admissible heuristics where none dominates the other: Let $h(n) = \max(h_1(n), h_2(n), ..., h_m(n))$

Domination \rightarrow **Efficiency**

Heuristics $h_2(n)$ estimate is closer to actual cost than $h_1(n)$. $h_2(n)$ dominates $h_1(n)$. Use $h_2(n)$.

Domination -> Efficiency: Why?

A* Evaluation Function:

$$f(n) = g(State_n) + h(State_n)$$

where:

- g(n) initial node to node n path cost
- h(n) estimated cost of the best path that continues from node n to a goal node

So:

$$f(n) < C^*$$

where:

C* - optimal path cost

Domination → Efficiency: Why? With

$$f(n) < C*$$

and

$$f(n) = g(State_n) + h(State_n)$$

We get:

Domination → Efficiency: Why?

$$h_1(State_n) < h_2(State_n)$$

then:

$$h_1(State_n) < h_2(State_n) < C^* - g(State_n)$$

Domination → Efficiency: Why?

$$h_1(State_n) < h_2(State_n)$$

then:

$$h_1(State_n) < h_2(State_n) < C^* - g(State_n)$$

All A* frontier candidates selected using $h_1(n)$ will include AT LEAST all A* frontier candidates selected using $h_2(n)$. Possibly more.

Domination → **Efficiency:** But?

 $h_2(n)$ dominates $h_1(n)$. Always use $h_2(n)$?

Generally yes, but $h_2(n)$ vs. $h_1(n)$ heuristic computation time may be a deciding factor here.

Consider an 8-puzzle game and two admissible heuristics:

- h₁() number of misplaced tiles (not counting blank)
- h₂() Manhattan distance

h₁(Start) = 8 All 8 blocks are out of place

Start State

Goal State

- $-h_1(Start) = 8$
- $h_2(Start) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$

$$h_1(Start) = 8 < h_2(Start) = 18 < C^* = 26$$

Neither heuristic overestimates true solution cost

h() Quality: Effective Branching Factor

h() Quality: Effective Branching Factor

- If the total number of nodes generated is N and the solution depth is d, then
 - b* is the branching factor that a uniform tree of depth
 d would need to have in order to contain N+1 nodes

$$N+1=1+b^*+(b^*)^2+...+(b^*)^d$$

If A* finds a solution at depth 4 using 40 nodes, what is b*?

$$\approx 2.182$$

■ A good heuristic function achieves $b^* \approx 1$

8-puzzle: Heuristics Comparison

	Sea	rch Cost (nodes g	enerated)	Effec	ctive Branching	Factor
d	BFS	$A^*(h_1)$	$A^*(h_2)$	BFS	$A^*(h_1)$	$A^*(h_2)$
6 8 10 12 14 16 18 20 22 24	128 368 1033 2672 6783 17270 41558 91493 175921 290082	24 48 116 279 678 1683 4102 9905 22955 53039	19 31 48 84 174 364 751 1318 2548 5733	2.01 1.91 1.85 1.80 1.77 1.74 1.72 1.69 1.66 1.62	1.42 1.40 1.43 1.45 1.47 1.48 1.49 1.50 1.50	1.34 1.30 1.27 1.28 1.31 1.32 1.34 1.34 1.34
26 28	395355 463234	110372 202565	10080 22055	1.58 1.53	1.50 1.49	1.35 1.36

Where (data are averaged over 100 puzzles for each solution length d = 6 to 28):

- BFS Breadth First Search
- $A^*(h_1) A^*$ using $h_1()$ number of misplaced tiles
- $A^*(h_2) A^*$ using $h_2()$ Manhattan distance

Can We Make A* Even Faster? (Sometimes at a cost!)

Weighted A* Evaluation Function

Weighted A* Evaluation Function:

$$f(n) = g(State_n) + W * h(State_n)$$

where:

- g(n) initial node to node n path cost
- h(n) estimated cost of the best path that continues from node n to a goal node
- W > 1

Here, weight W makes h(State_n) (perhaps only "sometimes") inadmissible. It becomes potentially more accurate = less expansions!

Weighted A*: "Good Enough" Search

Figure 3.21 Two searches on the same grid: (a) an A^* search and (b) a weighted A^* search with weight W=2. The gray bars are obstacles, the purple line is the path from the green start to red goal, and the small dots are states that were reached by each search. On this particular problem, weighted A^* explores 7 times fewer states and finds a path that is 5% more costly.

Search Tree Challenges: Size

What are the possible A* search problems here? PLURAL!

A* Search Challenges: Complexity

Straight-line distance to Goal state					
State	_	Α	В	C	G
h(State)	7	2	3	4	0

INITIAL STATE: I GOAL STATE: G

S.	Parent	С	I	Ι			
Frontier	Node	В	В	Α			
Ţ	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Parent Key/State	 I	I A	C B	l C		

State Space Graph

Frontier / Reached

Search Tree

We need to STORE multiple structures in memory:

- Frontier queue
- Reached table
- search tree

This may be too much too handle...

X Fro

Frontier node

A* Search Challenges: Solutions

Straight-line distance to Goal state					
State	-	Α	В	С	G
h(State)	7	2	3	4	0

INITIAL STATE: I GOAL STATE: G

e	Parent	С	I	Ι			
Frontier	Node	В	В	Α			
Ē	f(Node)	6	7	7	<u> </u>		
þ	Parent		Z .	\checkmark			
Reached	Key/State	ı	A		⟨		
Re	Path cost	0		3	\setminus		

State Space Graph

Search Tree

Frontier / Reached

- A) "Merge" Frontier and Reached data into one structure :
- less memory used, but
- more complex algorithm
- potentially slower algorithm

X Front

Frontier node

A* Search Challenges: Solutions

Straight-line distance to Goal state					
State	-	Α	В	С	G
h(State)	7	2	3	4	0

INITIAL STATE: I GOAL STATE: G

er	Parent	С	Ι	Ι			
Frontier	Node	В	В	Α			
Fr	f(Node)	6	7	7			
b	Parent		I	С	I		
Reached	Parent Key/State	 I	A	C B	C		

State Space Graph

B) Remove nodes from Reached once we can prove that they no longer be needed

ensure that such nodes will not be "touched" again

X From

Frontier / Reached

Frontier node

Can We Remove It From Reached?

State Space graph provides a list of state neighbors.

It can be used to decide if the state will be needed or not.

A* Search Challenges: Solutions

Straight-line distance to Goal state										
State	State I A B C G									
h(State)	h(State) 7 2 3 4 0									

INITIAL STATE: I **GOAL STATE: G**

er	Parent	С	I	I			
Frontier	Node	В	В	Α			
Fr	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Parent Key/State	 I	I A	C B	l C		

State Space Graph

C) Keep reference counts of the number of times a state can be reached.

once a state has been visited reference counts times, it can be removed from Reached

Frontier / Reached

Frontier node

State Space: Reference Counts

State Space graph provides the number of neighbors for each state.

It can be used as a reference count.

A* Search Challenges: Solutions

Straight-line distance to Goal state										
State	State I A B C G									
h(State) 7 2 3 4 0										

INITIAL STATE: I **GOAL STATE: G**

er	Parent	С	I	ı			
Frontier	Node	В	В	Α			
ᇁ	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Key/State	I	Α	В	С		
9	Path cost	0	5	3	2		

State Space Graph

D) Beam Search \rightarrow restrict the size $\not o$ f the Frontier:

- keep k best f()-score elements
- keep only elements with f()-score such that:

f()-score within δ of f()_{hest}

Frontier node

Frontier / Reached

A* Search Challenges: Solutions

Straight-line distance to Goal state										
State	State I A B C G									
h(State) 7 2 3 4 0										

INITIAL STATE: I GOAL STATE: G

er	Parent	С	I	I			
Frontier	Node	В	В	Α			
Fr	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Key/State	I	Α	В	С		
Re	Path cost	0	5	3	2		

State Space Graph

Frontier / Reached

E) Use Iterative-Deepening A* search(IDA*)

Iterative Deepening DFS: Illustration

Iterative Deepening DFS: Illustration

A* Search Challenges: Solutions

Straight-line distance to Goal state										
State	State I A B C G									
h(State) 7 2 3 4 0										

INITIAL STATE: I GOAL STATE: G

ro L	Parent	С	Ι	I			
Frontier	Node	В	В	Α			
프	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Key/State	ı	Α	В	С		
Re	Path cost	0	5	3	2		

State Space Graph

Frontier / Reached

F) Use Recursive Best First Search

- maintain f() limit (best alternative ancestor path f())
- if current node's f() exceeds f() limit, recursion unwinds

Recursive Best First Search

```
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
    solution, fvalue \leftarrow RBFS(problem, NODE(problem.INITIAL), \infty)
 return solution
function RBFS(problem, node, f\_limit) returns a solution or failure, and a new f-cost limit
  if problem.Is-GOAL(node.STATE) then return node
  successors \leftarrow LIST(EXPAND(node))
  if successors is empty then return failure, \infty
  for each s in successors do // update f with value from previous search
      s.f \leftarrow \max(s.\text{PATH-COST} + h(s), node.f))
  while true do
      best \leftarrow the node in successors with lowest f-value
      if best.f > f\_limit then return failure, best.f
      alternative \leftarrow the second-lowest f-value among successors
      result, best.f \leftarrow RBFS(problem, best, min(f\_limit, alternative))
      if result \neq failure then return result, best.f
```

A* Search Challenges: Solutions

Straight-line distance to Goal state										
State	State I A B C G									
h(State)	h(State) 7 2 3 4 0									

INITIAL STATE: I GOAL STATE: G

S.	Parent	С	I	ı			
Frontier	Node	В	В	Α			
Ţ.	f(Node)	6	7	7			
p	Parent		I	С	I		
Reached	Key/State	I	Α	В	С		
Re	Path cost	0	5	3	2		

State Space Graph

Frontier / Reached

Search Tree

G) Use Bidirectional A* Search

(x)

Frontier node

Bidirectional A*

Figure 3.24 Bidirectional search maintains two frontiers: on the left, nodes A and B are successors of Start; on the right, node F is an inverse successor of Goal. Each node is labeled with f = g + h values and the $f_2 = \max(2g, g + h)$ value. (The g values are the sum of the action costs as shown on each arrow; the g values are arbitrary and cannot be derived from anything in the figure.) The optimal solution, Start-A-F-Goal, has cost $G^* = 4 + 2 + 4 = 10$, so that means that a meet-in-the-middle bidirectional algorithm should not expand any node with $g > \frac{G^*}{2} = 5$; and indeed the next node to be expanded would be A or F (each with g = 4), leading us to an optimal solution. If we expanded the node with lowest g = 4 cost first, then B and C would come next, and D and E would be tied with A, but they all have $g > \frac{G^*}{2}$ and thus are never expanded when g = 4 is the evaluation function.

Summary

Environment Assumptions

"Simple Environment":

- Fully observable
- Single agent
- Deterministic
- Static
- Episodic or sequential
- Discrete
- Known to the agent

Defining Search Problem

Before agent searching, formulate a well-formed problem:

- Define a set of possible states: State Space
- Specify Initial State
- Specify Goal State(s) (there can be multiple)
- Define a FINITE set of possible Actions for EACH state in the State Space
- Come up with a Transition Model which describes what each action does
- Specify the Action Cost Function: a function that gives the cost of applying action a in state s

State Space: A Graph

States: Usually Atomic Representation

- Atomic: state representation has NO internal structure
- Factored: state representation includes fixed attributes (which can have values)
- Structured: state representation includes objects and their relationships

Judging Searching Performance

Search algorithms can be judged by:

- Completeness: Is the algorithm guaranteed to find a solution when there is one, and to correctly report failure when there is not?
- Cost optimality: Does it find a solution with the lowest path cost of all solutions?
- Time complexity: How long does it take to find a solution? (in seconds, actions, states, etc.)
- Space complexity: How much memory is needed to perform the search?

UNINFORMED Searching Algorithms

Uninformed search: an agent <u>has no estimate</u>

how far it is from the goal

Informed search: an agent can estimate how far it

is from the goal

INFORMED Searching Algorithms

Uninformed search: an agent has no estimate

how far it is from the goal

Informed search: an agent <u>can estimate</u> how far it

is from the goal

INFORMED Searching Algorithms

- Greedy Best First Search expands nodes with minimal f(n) = h(n)
 - complete, not optimal, but often efficient
- A* Search expands nodes with minimal f(n) = g(n) + h(n)
 - complete and optimal IF h(n) is admissible
 - space complexity an issue
- Bidirectional A* Search is sometimes more efficient than pure A* Search
- Iterative Deepening A* (IDA*) is an iterative deepening version of A*, and thus addresses the space complexity issue

INFORMED Searching Algorithms

- RBFS (Recursive Best First Search) and SMA* (Simplified Memory-Bounded A*) are robust, optimal search algorithms that use limited amounts of memory. Given enough time, they can solve problems for which A* runs out of memory
- Weighted A* Search focuses the search towards the goal and expands fewer nodes at the expense of search optimality
- Beam Search puts a limit on the size of Frontier. That makes it incomplete and suboptimal. Often finds "good enough" solution and is faster than complete search

Finding / Selecting Heuristics

The performance of heuristic-based search depends on the quality of the heuristic function h().

- Dominating heuristic is better but can be costlier to compute
- Ideas for constructing good heuristic:
 - relax problem definition
 - store precomputed solution costs for subproblems in a pattern database
 - define landmarks
 - learn from experience with the problem class

"Hill Climbing" (Greedy Local) Search and Romanian Roadtrip Example

Greedy Local: Evaluation function

Calculate / obtain:

f(n) = ACTION-COST(State_a, toState_n, State_n)

A state n with minimum (or maximum) f(n) should be chosen for expansion

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there or
 - **Infinite loop**

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there
 - Infinite loop

Assumption:

We don't "go" to a repeated state

- We could go to a repeated state end
 - get stuck there
 - **Infinite loop**

Assumption:

We don't "go" to a repeated state

Alternatively:

- We could go to a repeated state end
 - get stuck there or
 - Infinite loop

Search In Complex Environments

Difficult Environment / State Space

Reality: Environment Assumptions

Reality is not simple. What to relax?

- Fully observable?
- Single agent?
- Deterministic?
- Static?
- Episodic or sequential?
- Discrete?
- Known to the agent?

Discrete vs. Continuous Spaces

Local Search Algorithms: Can we not care about the path to the goal?

Local Search Algorithms

If the path to the goal does not matter, we might consider a different class of algorithms.

Local Search Algorithms

- do not worry about paths at all.
- Local search algorithms operate:
 - using a single current state (rather than multiple paths) and generally move only to neighbors of that state.
 - typically, the paths followed by the search are not retained

Local Search Algorithms

Although local search algorithms are not systematic, they have two key advantages:

- they use very little memory—usually a constant amount; and
- they can often find reasonable solutions in large or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

1D State Space Landscape

Local search algorithms are useful for solving pure optimization problems, in which the aim is to find the best state according to an objective function.

Start "Somewhere"

Traverse/Explore Space With "Actions"

Traverse/Explore Space With "Actions"

Hill Climbing Search: Pseudocode

Hill Climbing and Difficult State Spaces / Environments

Hill Climbing (Greedy Local) Search

- The most primitive informed search approach
 - a naive greedy algorithm
 - evaluation function: value of next state
 - does not care about the "bigger picture" (for example: total search path cost)

- Practicalities:
 - does not keep track of search history

"Getting Stuck"

- Local maxima: a local maximum is a peak that is higher than each of its neighboring states, but lower than the global maximum.
 - Hill-climbing algorithms that reach the vicinity of a local maximum will be drawn upwards towards the peak, but will then be stuck with nowhere else to go
- Ridge: ridges result in a sequence of local maxima that is
 - very difficult for greedy algorithms to navigate.
- Plateau: a plateau is an area of the state space landscape where the evaluation function is "flat". It can be a flat local maximum, from which no uphill exit exists, or a shoulder, from which it is possible to make progress.
 - A hill-climbing search might be unable to find its way off the plateau

Hill Climbing Problems: Plateaus

Random Walk

In mathematics, a random walk, sometimes known as a drunkard's walk, is a random process that describes a path that consists of a succession of random steps on some mathematical space.

Source: https://en.wikipedia.org/wiki/Random_walk

Measuring Searching Performance

Search algorithms can be evaluated in four ways:

- Completeness: Is the algorithm guaranteed to find a solution when there is one, and to correctly report failure when there is not?
- Cost optimality: Does it find a solution with the lowest path cost of all solutions?
- Time complexity: How long does it take to find a solution? (in seconds, actions, states, etc.)
- Space complexity: How much memory is needed to perform the search?

Random Walk vs. Hill Climbing

Simulated Annealing: Article

Optimization by Simulated Annealing

- S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi
- *Science* 13 May 1983:
- Vol. 220, Issue 4598, pp. 671-680
- https://science.sciencemag.org/content/220/4598/671