Evan Spotte-Smith

Evan Walter Clark Spotte-Smith (they/them/their) Computational Chemist 4327 Essex St.

Emeryville, CA 94608

★ 443-883-6957

⊠ ewcspottesmith@lbl.gov

⊕ espottesmith

ORCID: 0000-0003-1554-197X Web: espottesmith.github.io

Education

2019–2024 **Doctor of Philosophy**, University of California, Berkeley (UC Berkeley).

Materials Science and Engineering

Advisor: Professor Kristin Persson

2019–2021 Master of Science, UC Berkeley.

Materials Science and Engineering
2015–2019 Bachelor of Science, Columbia University.

Major: Materials Science and Engineering

Minor: Sustainable Engineering

Research

2019 – 2024 Graduate Student Researcher, Persson Group, Lawrence Berkeley National Laboratory (LBNL).

- Construct and manage open datasets of molecular properties based on density functional theory (DFT)
- Design and implement methods to explore and analyze chemical reaction networks
- o Explain electrolyte degradation, gas evolution, and interphase formation in Li-ion and Mg-ion batteries
- 2023 Cell Modeling Intern, Tesla Motors.
 - Accelerated prediction of electrolyte transport properties through algorithmic optimization
 - Evaluated electrolyte additives for high-voltage Li-ion cathodes and silicon anodes in terms of gas evolution and electrode passivation
- 2018 2019 Undergraduate Student Researcher, Hacking Materials Group, LBNL.
 - o Performed computational screening studies of Diels-Alder reactions for liquid-phase thermal energy storage
 - o Identified reactions leading to exceptional heat capacity enhancement in aqueous thermal fluids
- 2016 2019 Lead Undergraduate Researcher, Herman Group, Columbia University.
 - o Developed a sample cell architecture to improve small angle x-ray scattering signal from liquid interfaces
 - Revealed an unexpected transport mechanism controlling nanoparticle self-assembly kinetics

Teaching

2022 Graduate Student Instructor, UC Berkeley Department of Chemistry.

General Chemistry and Quantitative Analysis

Evaluation: median 7.0/7.0; mean 6.5/7.0

2020 Instructor, Materials Project Workshop 2020.

Pymatgen Foundations

2018 Course Assistant, Columbia University Department of Applied Physics and Applied Mathematics.

Thermodynamics, Kinetic Theory, and Statistical Mechanics

Mentorship

2022 – 2023 Laura Zichi.

Project: Developing tools to simulate reactivity at dynamic fluid-solid interfaces

2021 - 2022 Thea Petrocelli.

Project: Understanding salt decomposition in batteries from first principles

2021 – 2022 Nikita Redkar.

Project: Learning electrochemical reaction products using natural language processing

2020 – 2022 Aniruddh Khanwale.

Project: Calculation of charge transfer rates through battery interphases

2020 – 2021 Ronald Kam.

Project: Kinetic modeling of lithium-ion solid-electrolyte interphase formation

Honors & Awards

- 2023 1st Prize, Innovation Expo, Berkeley Energy & Resource Collaborative Energy Summit.
- 2022 Battery Student Slam Winner, 241st Electrochemical Society Meeting.
- 2022 Philomathia Graduate Student Fellowship, Kavli Energy Nanoscience Institute.
- 2019, 2020 Honorable Mention, NSF Graduate Research Fellowship Program.
 - 2019 Frank McQuiston Fellowship, UC Berkeley Department of Materials Science and Engineering.
 - 2019 Clarendon Fund Scholarship (declined), University of Oxford.
 - 2019 Magna Cum Laude, Columbia University.
 - 2019 Tau Beta Pi New York Alpha Chapter.
 - 2019 Francis B. F. Rhodes Prize, Columbia University.
 - 2019 King's Crown Leadership Excellence Award for Civic Responsibility, Columbia University.

Resources & Funding

2020 - 2024 Schrodinger, Inc..

Award type: Partnership

Total award amount: In kind, valued at \$5,517,000

2021 - 2023 **High-Performance Computing**, National Renewable Energy Laboratory.

Project: Integrated Modeling and Machine Learning of Solid-Electrolyte Interface Reactions of the Si Anode

Award type: High-performance computing allocation

Total award amount: 5,248,000 node-hours

Energy Research Computing Allocations Process (ERCAP), National Energy Research Su-2020 - 2023 percomputing Center (NERSC).

Award type: High-performance computing allocation

Total award amount: 325,000 node-hours

Peer-Reviewed Publications

(Note: * = Equal Contribution)

Evan Walter Clark Spotte-Smith, Samuel M. Blau, Daniel Barter, Noel J. Leon, Nathan T. Hahn, Nikita S. Redkar, Kevin R. Zavadil, Chen Liao, and Kristin A. Persson. Chemical reaction networks explain gas evolution mechanisms in Mg-ion batteries. Journal of the American Chemical Society, 2023.

Evan Walter Clark Spotte-Smith*, Alexander Rizzolo Epstein*, Maxwell Venetos, Oxana Andriuc, and Kristin A. Persson. Assessing the accuracy of density functional approximations for predicting hydrolysis reaction kinetics. Journal of Chemical Theory and Computation, 2023.

Mingjian Wen, Evan Walter Clark Spotte-Smith, Samuel M. Blau, Matthew J. McDermott, Aditi Krishnapriyan, and Kristin A. Persson. Chemical reaction networks and opportunities for machine learning. Nature Computational Science, 3:12–24, 2023.

Evan Walter Clark Spotte-Smith*, Daniel Barter*, Nikita S. Redkar, Aniruddh Khanwale, Shyam Dwaraknath, Kristin A. Persson, and Samuel M. Blau. Predictive stochastic analysis of massive filter-based electrochemical reaction networks. Digital Discovery, 2(123), 2023.

Evan Walter Clark Spotte-Smith*, Thea Bee Petrocelli*, Hetal D. Patel, Samuel M. Blau, and Kristin A. Persson. Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases. ACS Energy Letters, 8(1):347–355, 2023.

Xiaowei Xie, Noel J. Leon, David W. Small, Evan Walter Clark Spotte-Smith, Chen Liao, and Kristin A. Persson. The reductive decomposition kinetics and thermodynamics that govern the design of fluorinated alkoxyaluminate/borate salts for Mg-ion and Ca-ion batteries. Journal of Physical Chemistry C, 126(49):20773-20785, 2022.

Evan Walter Clark Spotte-Smith*, Ronald Kam*, Daniel Barter, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, and Kristin A. Persson. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy Letters, 7(4):1446-1453, 2022.

Lorena Alzate-Vargas, Samuel Blau, **Evan Walter Clark Spotte-Smith**, Srikanth Allu, Kristin A. Persson, and Jean-Luc Fattebert. Insight into SEI growth in Li-ion batteries using molecular dynamics and accelerated chemical reactions. *Journal of Physical Chemistry C*, 125(34):18588–18596, 2021.

Xiaowei Xie, **Evan Walter Clark Spotte-Smith**, Mingjian Wen, Hetal Patel, Samuel M. Blau, and Kristin A. Persson. Data-driven prediction of formation mechanisms of lithium ethylene monocarbonate with an automated reaction network. *Journal of the American Chemical Society*, 143(33):13245–13258, 2021.

Evan Walter Clark Spotte-Smith*, Samuel M. Blau*, Xiaowei Xie, Hetal D. Patel, Mingjian Wen, Brandon Wood, Shyam Dwaraknath, and Kristin A. Persson. Quantum chemical calculations of lithium-ion battery electrolyte and interphase species. *Scientific Data*, 8(203), 2021.

Samuel M. Blau, Hetal Patel, **Evan Walter Clark Spotte-Smith**, Xiaowei Xie, Shyam Dwaraknath, and Kristin A. Persson. A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation. *Chemical Science*, 12(13):4931–4939, 2021.

Mingjian Wen, Samuel M. Blau, **Evan Walter Clark Spotte-Smith**, Shyam Dwaraknath, and Kristin A. Persson. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules. *Chemical Science*, 12(5):1858–1868, 2021.

Jiayang Hu, **Evan Walter Clark Spotte-Smith**, Brady Pan, Roy Garcia, Carlos Colosqui, and Irving P Herman. Spatiotemporal study of iron oxide nanoparticle monolayer formation at liquid/liquid interfaces by using in-situ small angle x-ray scattering. *The Journal of Physical Chemistry C*, 124(13):23949–23963, 2020.

Evan Walter Clark Spotte-Smith, Peiyuan Yu, Samuel M. Blau, Anubhav Jain, and Ravi S. Prasher. Aqueous Diels-Alder reactions for thermochemical storage and heat transfer fluids identified using density functional theory. *Journal of Computational Chemistry*, 41(24):2137–2150, 2020.

Jiayang Hu, Evan Walter Clark Spotte-Smith, Brady Pan, and Irving P. Herman. Improved small-angle x-ray scattering of nanoparticle self-assembly using a cell with a flat liquid surface. *Journal of Nanoparticle Research*, 21(4):71, 2019.

Other Publications

(Note: * = Equal Contribution)

Evan Walter Clark Spotte-Smith, Samuel M. Blau, Santiago Vargas, Rishabh Guha, and Kristin A. Persson. Diverse datasets of elementary molecular reactions and related trajectories. *In preparation*, 2023.

Mel Soto, Peter J. Weddle, **Evan Walter Clark Spotte-Smith**, Kristin A. Persson, Kae Fink, and Bertrand J. Tremolet de Villers. Solubility of ethylene and carbon dioxide gas in battery electrolytes. *In preparation*, 2023.

Laura Zichi*, Daniel Barter*, Eric Sivonxay*, **Evan Walter Clark Spotte-Smith**, Rohith Srinivaas Mohanakrishnan, Kristin A. Persson, and Samuel M. Blau. RNMC: kinetic Monte Carlo implementations for complex reaction networks. *In preparation*, 2023.

Sudarshan Vijay, Maxwell Venetos, **Evan Walter Clark Spotte-Smith**, Aaron Kaplan, Mingjian Wen, and Kristin A. Persson. CoeffNet: Predicting activation barriers through a constrained, equivariant and chemically-interpretable graph neural network. *In preparation*, 2023.

Evan Walter Clark Spotte-Smith, Orion Cohen, Samuel M. Blau, Jason M. Munro, Ruoxi Yang, Rishabh Guha, Hetal D. Patel, Sudarshan Vijay, Patrick Huck, Ryan Kingsbury, Matthew K. Horton, and Kristin A. Persson. Rich and accessible molecular properties integrated in the Materials Project database. *In preparation*, 2023.

Peter J. Weddle, **Evan Walter Clark Spotte-Smith**, Ankit Verma, Hetal D. Patel, Kar Fink, Bertrand J. Tremolet de Villers, Maxwell C. Schulze, Samuel M. Blau, Kandler A. Smith, Kristin A. Persson, and Andrew M. Colclasure. Continuum-level modeling of Li-ion battery SEI by upscaling atomistically informed reaction mechanisms. *In Review*, 2023.

Samuel Blau*, **Evan Walter Clark Spotte-Smith***, Brandon Wood, Shyam Dwaraknath, and Kristin Persson. Accurate, automated density functional theory for complex molecules using on-the-fly error correction. *ChemRxiv*, 2020. DOI:10.26434/chemrxiv.13076030.v1.

Posters & Presentations

Evan Walter Clark Spotte-Smith, Orion Cohen, Samuel M. Blau, Jason M. Munro, Ryan Kingsbury, Rishabh D. Guha, Hetal D. Patel, Sudarshan Vijay, Ruoxi Yang, Patrick Huck, Matthew K. Horton, and Kristin A. Persson. MPcules: an open and accessible database of molecular properties in the materials project. ACS Fall Meeting, 2023.

Evan Walter Clark Spotte-Smith, Thea Bee Petrocelli, Hetal D. Patel, Samuel M. Blau, and Kristin A. Persson. Revealing the decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases by first-principles simulations. ACS Spring Meeting, 2023.

Evan Walter Clark Spotte-Smith, Daniel Barter, Ronald L. Kam, Chen Liao, Samuel M. Blau, and Kristin A. Persson. Explaining battery electrolyte decomposition with chemical reaction networks. Berkeley Energy & Resources Collaborative Energy Summit, 2023.

Evan Walter Clark Spotte-Smith. Leveraging quantum chemistry and reaction networks to explore electrochemical cascades. Pitzer Center for Theoretical Chemistry Seminar Series, 2022.

Evan Walter Clark Spotte-Smith. Leveraging big data and chemical reaction networks to explore and explain electrochemistry. ChemE Future Faculty Seminar Series, 2022.

Evan Walter Clark Spotte-Smith, Ronald L. Kam, Daniel Barter, Julian Self, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, and Kristin A. Persson. A general mechanistic model of early solid-electrolyte interphase formation in lithium-ion batteries. Gordon Research Conference in Electrochemistry, 2022.

Evan Walter Clark Spotte-Smith, Ronald L. Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, and Kristin A. Persson. Towards a mechanistic explanation for solid electrolyte interphase formation and evolution in lithium-ion batteries. American Conference on Theoretical Chemistry, 2022.

Evan Walter Clark Spotte-Smith, Ronald L. Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, and Kristin A. Persson. Towards a mechanistic explanation for solid electrolyte interphase formation and evolution in lithium-ion batteries. 21st International Meeting on Lithium Batteries (Invited Poster), 2022.

Evan Walter Clark Spotte-Smith, Ronald L. Kam, Daniel Barter, Julian Self, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, and Kristin A. Persson. Towards a mechanistic explanation for solid electrolyte interphase formation in lithium-ion batteries. 241st Electrochemical Society Meeting, 2022.

Evan Walter Clark Spotte-Smith, Samuel M. Blau, and Kristin A. Persson. GPS for the SEI: Charting electrochemical mechanisms with reaction networks. 241st Electrochemical Society Meeting, 2022.

Evan Walter Clark Spotte-Smith, Samuel M. Blau, Xiaowei Xie, Brandon Wood, Hetal Patel, Shyam Dwaraknath, and Kristin A. Persson. Automatic generation of computational reaction networks for unbiased exploration of chemical pathways. 2020 MRS Spring/Fall Meeting & Exhibit, 2020.

Evan Walter Clark Spotte-Smith, Samuel M. Blau, Brandon Wood, Shyam Dwaraknath, and Kristin A. Persson. A robust computational framework for high-throughput density functional theory calculations for electrochemical application. PRiME 2020 (ECS, ECSJ, & KECS Joint Meeting), 2020.

Evan Walter Clark Spotte-Smith, Peiyuan Yu, Anubhav Jain, and Ravi Prasher. Identifying Diels-Alder reactions for aqueous thermal storage using density functional theory. 2019 MRS Spring Meeting and Exhibit, 2019.

	Leadership & Service
2022 - 2023	 UC Berkeley Course Materials and Services Fees Committee. Review policies related to fees for UC Berkeley courses Advise the Chancellor regarding appropriate costs and fees Previous Roles: Graduate Student Representative
2022 - 2023	Chancellor's Advisory Committee on the LGBTQ+ Communities at Cal. o Advise UC Berkeley administration on the needs of queer and trans members of the Berkeley community o Evaluate campus and UC system policies as they relate to LGBTQ+ campus members o Previous Roles: Graduate Student Representative
2022 - 2023	 UC Berkeley Graduate Assembly. Advocate on behalf of materials science graduate students Develop policies and legislation to promote the well-being of UC Berkeley graduate students Previous Roles: Materials Science and Engineering Delegate
2020 - 2023	 UC Berkeley Materials Science and Engineering Graduate Student Council. Advocate to department administration and faculty for issues of importance to graduate students Organize events to build community among materials science graduate students Coordinate anti-racist reading groups in collaboration with UC Berkeley College of Chemistry Previous Roles: Vice-President, Social Chair
2020 - 2021	 CalACS College Application and Professional Support (CAPS). Participate in weekly workshops with high school students to improve professional skills Develop long-term mentoring relationships with low-income, first-generation college applicants Provide one-on-one assistance for college and job applications Previous Roles: Mentor
2020, 2021	 Faculty Search Committee, UC Berkeley Department of Materials Science and Engineering. Succeeded in hiring Xiaoyu (Rayne) Zheng for the position of Assistant Professor

Contributed Reviews

ACS Nano, npj Computational Materials

Interstitials Mentorship Program.

o Previous Roles: Academic Advisor

• Previous Roles: Co-Director

Director of Operations

• Led peer-to-peer mentorship program for materials science community

• Mentored students in order to prepare them for college and careers

Columbia Educational Simulations (CESIMS).

Columbia University Engineers Without Borders (CU-EWB).

• Led lessons and simulations on public speaking, history, and international affairs

o Designed and implemented solar micro-grids for rural communities in the Teso Sub-Region of Uganda o Previous Roles: Engineering Mentor, President, Program Manager, Director of Grants, Program Liaison,

o Trained 25 student delegates at The Brooklyn Latin School for local and regional debate conferences

ACS Energy Letters, The Journal of Open Source Software

2023

2022

2020

2015 - 2018

2016 - 2018