Úloha 1. (5 bodů) Měřením rozměrů válce bylo zjištěno:

poloměr: $R = (2,05 \pm 0,02)$ cm, výška: $h = (4,37 \pm 0,05)$ cm.

Určete objem a jeho nejistotu.

Řešení: očekávaná hodnota objemu je $\bar{V}=\pi \bar{R}^2 \bar{h}\approx 57,69511~{\rm cm}^3$. Pro určení nejistoty objemu u_V použijeme vztah pro přenos nejistoty:

$$u_V = \sqrt{\left(\frac{\partial V}{\partial R}\right)_{\bar{R},\bar{h}}^2 u_R^2 + \left(\frac{\partial V}{\partial h}\right)_{\bar{R},\bar{h}}^2 u_h^2} = \sqrt{\left(2\pi\bar{R}\bar{h}\right)^2 u_R^2 + (\pi\bar{R}^2)^2 u_h^2} = 1,340158 \text{ cm}^3$$

Výsledek měření objemu je tedy: $V = (57.7 \pm 1.3) \text{ cm}^3$.

Úloha 2. (10 bodů) Měřením dynamické viskozity kapaliny jsme získali hodnoty v tabulce. Měření byla prováděna viskozimetrem se (standardní) chybou 0,005 mPa.s. Zpracujte měření a uveďte výsledek s celkovou standardní nejistotou.

			0
č. měření (i)	$\mu_i \text{ (mPa.s)}$	$\mu_i - \bar{\mu} \text{ (mPa.s)}$	$(\mu_i - \bar{\mu})^2 (10^{-6} \text{ Pa}^2.\text{s}^2)$
1	0,544	-0,0033	0,00001111
2	$0,\!540$	-0,0073	0,00005378
3	$0,\!551$	0,0037	0,00001344
4	$0,\!541$	-0,0063	0,00004011
5	$0,\!548$	0,0007	0,00000044
6	$0,\!560$	0,0127	0,00016044
7	$0,\!554$	0,0067	0,00004444
8	$0,\!553$	0,0057	0,00003211
9	$0,\!542$	-0,0053	0,00002844
10	$0,\!539$	-0,0083	0,00006944
11	$0,\!548$	0,0007	0,00000044
12	$0,\!551$	0,0037	0,00001344
13	0,543	-0,0043	0,00001878
14	$0,\!549$	0,0017	0,00000278
15	$0,\!547$	-0,0003	0,00000011
Pomůcka:	aritmetický průměr: $\bar{\mu} = 0.54733$		
	$\sum_{i} (\mu_i - \bar{\mu})^2 = 0,00048933$		

Řešení: očekávaná hodnota viskozity je rovna aritmetickému průměru z měřených hodnot $\bar{\mu}=0.54733~\text{mPa.\,s.}$ Standardní odchylku jednoho měření určíme podle vztahu:

$$S_{\mu} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\mu_i - \bar{\mu})^2} = \sqrt{\frac{1}{14} 0,00048933} \approx 0,005912 \text{ mPa. s}$$

Zkontrolujeme, že žádná z měřených hodnot neleží dále od střední hodnoty než 3σ (vzhledem k počtu stupňů volnosti 14 tento interval odpovídá $\pm 3,64\sigma = 0,02152$ mPa. s).

Spočítáme standardní odchylku aritmetického průměru:

$$S_{\overline{\mu}} = \frac{S_{\mu}}{\sqrt{15}} \approx 0,001526 \text{ mPa. s}$$

a nejistota typu A je po rozšíření intervalu koeficientem podle studentova t-rozdělení (14 stupňů volnosti):

$$u_A \approx 1,04 S_{\overline{\mu}} \approx 0,00159 \text{ mPa. s}$$

Chyba měřidla, $u_B = 0.005 \text{ mPa. s}$, je uvedena také jako standardní odchylka, takže oba zdroje nejistoty odpovídají srovnatelné hladině pravděpodobnosti a můžeme je rovnou složit do výsledné kombinované standardní nejistoty:

$$u_{\mu} = \sqrt{u_A^2 + u_B^2} \approx 10^{-3} \sqrt{1,59^2 + 5^2} \approx 0,005247 \text{ mPa. s}$$

Výsledná hodnota viskozity se standardní nejistotou je:

$$\mu = (0.547 \pm 0.005)$$
 mPa. s