PTO/SB/05 (12/97)
Approved for use through 9/30/03. OMB 0651-0032
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

	-	Complete If Known			
CEE TO A NOM	ITTAI	Application Number	10/080,488		
FEE TRANSMITTAL	Filing Date	February 22, 2002 Henry Esmond Butterworth			
Note: Effective October 1,		Group Art Unit	2188		
Patent fees are subject to annu	ual revision.	Examiner Name	Reginald Glenwood Bragdon		
TOTAL AMOUNT OF PAYMENT	TAL AMOUNT OF PAYMENT \$330		GB919990129US1		

METHOD OF PAYMENT (check one)			FEE CALCULATION (continued)								
The Commissioner is hereby authorized to charge		3. ADDITIONAL FEES									
indicated fees and credit any over payments to:			Large Entity Small Entity		Entity						
Deposit Account Number: 09-0466		Fee Code	Fee (\$)	Fee Code	Fee (\$)	Fee Description	Fee Paid/				
Deposit Account Name: IBM CORPORATION		1051	130	2051	65	Surcharge - late filing fee or oath					
Charge Any Additional Fee Required Under In 37 CFR at the Mailing of the Notice of Allowance		1052	50	2052	25	Surcharge - late provisional filing fee or cover sheet					
			1053	130	1053	130	Non-English specification				
5. 5			1812	2520	1812	2520	For filing a request for reexamination				
2. Payment Enclosed:					1804	920*	1804	920*	Requesting publication of SIR prior to Examiner action		
(□ Che	eck	☐ Mor	ney Order 🔲 🤇	Other	1805	1840*	1805	1840*	Requesting publication of SIR after Examiner action	
FEE CALCULATION			1251	110	2251	55	Extension for reply within first month	-			
1. FILI	ING	FEE			*	1252	420	2252	210	Extension for reply within second month	
						1253	950	2253	475	Extension for reply within third month	
Large E	ntity	Small E	ntity			1254	1480	2254	740	Extension for reply within fourth month	
	Fee	Fee	Fee	Fee Descrip	tion Fee Paid	1255	2010	2255	1005	Extension for reply within fifth month	
Code	(\$)	Code	(\$)			1401	330	2401	165	Notice of Appeal	
1001	770	2001	385	Utility filing fee		1402	330	2402	165	Filing a brief in support of an appeal	330
1002	340	2002	170	Design filing fee		1403	290	2403	145	Request for oral hearing	
1003	530	2003	265	Plant filing fee		1451	1510	1451	1510	Petition to institute a public use proceeding	
1004	770	2004	385	Reissue filing fe	е	1452	110	2452	55	Petition to revive -unavoidably	
1005	160	2005	80	Provisional filing		1453	1330	2453	665	Petition to revive - unintentional	
:	SUB	TOTAI	L (1)		\$ 0	1501	1330	2501	665	Utility issue fee	
2. CL/	AIMS	3		Fee 1	from	1502	480	2502	240	Design issue fee	
				Extra below		1503	640	2503	320	Plant issue fee	
Total Clai	ims		-20 =	0 x 9	= 0	1460	130	1460	130	Petitions to the Commissioner	
Ind. Clain	ns [-3 =	0 x 4	3 = 0	1807	50	1807	50	Petitions related to provisional applications	
Multiple C	Dep. Cl	laims		0 x 28	30 = 0	1806	180	1806	180	Submission of Information Disclosure Stmt	
Large E	ntity	Small I	Entity			8021	40	8021	40	Recording each patent assignment per property (times number of properties)	
	Fee (\$)	Fee Code	Fee (\$)	Fee Descrip	tion	1809	770	2809	385	Filing a submission after final rejection (37 CFR 1.129(a))	
1202 1201	18 86	2202 2201	9 43	Claims in excess Independent clai	s of 20 ims in excess of 3	1810	770	2810	385	For each additional invention to be examined (37 CFR 1.129(b))	
1203	290	2203	145	Multiple dependent claim		Other fee (specify)					
1204 86 2204 43 Reissue independent claims over original patent 1205 18 2205 9 Reissue claims in excess of 20 and over original patent		Other fee	e (specify)								
SUBTOTAL (2) 0			*Reduce	d by Basic	Filing Fe	Э	SUBTOTAL (3)	330			

SUBMITTED BY		Complete (if applicable)				
Typed or Printed Name	David J. M	lcKenzie			Reg. Number	46,919
Signature	Dan	for Zin	Date	Sep 13, 2004	Deposit Account User ID	

SEP 1 5 2004 &

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Alexandria, VA. 22313, on September 13, 2004.

Attorney for Applicant

PATENT Client No. GB919990129US1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Henry Esmond Butterworth

Serial No.:

10/080,488

Group Art Unit: 2188

Filed:

02/22/2002

For:

LOG-STRUCTURE ARRAY

Examiner:

Reginald Glenwood Bragdon

APPELLANT'S APPEAL BRIEF

Assistant Commissioner for Patents Alexandria, VA 22313-1450

Sir:

On July 13, 2004, Appellant filed a timely Notice of Appeal from the Final Office Action mailed April 13, 2004. Appellant appeals from the rejection of all pending claims.

This Brief is being filed in triplicate under the provisions of 37 C.F.R. § 1.192. The filing fee set forth in 37 C.F.R. § 1.17(c) of Three Hundred and Thirty Dollars (\$330.00) is now being submitted. The Commissioner is hereby authorized to charge payment of any additional fees associated with this communication, or to credit any overpayment, to Deposit Account No. <u>09-0466</u>.

09/15/2004 HGUTEMA1 00000058 090466 10080488

01 FC:1402

330.00 DA

1. REAL PARTY IN INTEREST

The real party in interest is the assignee, International Business Machines Corporation, Armonk, New York.

2. RELATED APPEALS AND INTERFERENCES

There are no related appeals and interferences.

3. STATUS OF CLAIMS

The Final Office Action, mailed April 13, 2004, rejected Claim 11 under 35 U.S.C. §112, first paragraph for failing to comply with the written description requirement. Claims 1-8, and 12-22 stand rejected under 35 U.S.C. §103(a) as obvious in view of U.S. Patent No. 6,058,489 to Schultz et al. (hereinafter "Schultz") and U.S. Patent No. 5,671,390 to Brady et al. (hereinafter "Brady"). Claims 1-22 stand rejected under 35 U.S.C. §103(a) as obvious in view of U.S. Patent No. 5,758,118 to Choy et al. (hereinafter "Choy") and Brady.

4. STATUS OF AMENDMENTS

Appellant filed an Amendment July 19, 2004 to place the claims in better condition for appeal. An Advisory Action mailed August 16, 2004 indicates that the amendments have not been entered. The Advisory Action did indicate that the Claim 11 rejection can be overcome with the amendment proposed to that claim. Pending a decision on the appealed claims, Appellant is willing to resubmit the acceptable proposed amendment to Claim 11. Therefore, the rejection of Claim 11 will not be addressed. The Examiner asserted that the amendments would require further search and consideration and do not materially reduce or simplify the issues for appeal.

5. SUMMARY OF INVENTION

By way of background, the present invention teaches a Log Structured Array (LSA) for controlling transfer of information between a processor and a plurality of storage devices, and an N+1 array. *Specification*, page 7, lines 5-10. The storage devices store the information in stripes that extend across the storage devices. *Id.* Each stripe is further divided into strips which

store a whole number of logical tracks. *Id.* Each stripe includes a parity strip and a certain number of information/data strips. *Id.* Storing data across devices in a stripe together with a parity strip provides error protection and data protection. Failure of a single device may cause data on a strip to be lost. However, not all the data on the stripe is lost. Furthermore, data on the lost strip may be recreated.

The present invention also manages an LSA directory that is used to locate and reference logical tracks stored in the array (plurality of storage devices). *Id.* The LSA directory maintains the location of each logical track by storing the stripe number for the logical track and an offset of the logical track within the stripe. *Specification*, page 7, lines 10-18.

The organization of the array and data in the array into stripes and strips together with the addressing technique used in the LSA directory, enables the present invention to logically append a storage device to the array. *Specification*, page 7, lines 14-18. The stripes may be logically extended onto the added storage device such that an additional strip may be added to each stripe when a storage device is added. *Specification*, page 8, lines 5-9. Advantageously, the storage device is appended without moving any existing strips or optionally moving a minimal number of strips. *Specification*, page 8, lines 24-27.

The addressing technique used with the LSA directory allows the addition of a storage device without affecting the addresses of other logical tracks indexed within the directory. This overcome the traditional problem of having to re-index an LSA directory when storage device is added because traditional LSA directories use logical block addresses. *Specification*, page 8, lines 11-18. Similarly, a storage device can be readily removed without re-indexing the LSA directory.

6. ISSUES

The following issues are presented for review:

- I. Did the Examiner fail to establish *prima facie* obviousness of Claims 1, 4, 6, 7, and 8 where the limitations included in these claims are not found in the cited prior art?
- II. Did the Examiner fail to establish *prima facie* obviousness of Claim 4 where the Examiner failed to give proper weight to the limitation regarding addressing?
 - III. Did the Examiner fail to establish *prima facie* obviousness of claims 1, 4, 6, 7,

and 8 where the cited prior art references in combination as a whole, do not motivate or suggest the claimed invention?

IV. Did the Examiner fail to establish *prima facie* obviousness of claims 1, 4, 6, 7, and 8 where the teaching to combine the prior art references is only found in the Appellant's disclosure using a hindsight combination?

7. GROUPING OF CLAIMS

The Examiner rejected Claim 11, Claims 1-8 and 12-22, and Claims 1-22 as separate groups. Claims 1-3, 5, 9-14, 16-18, and 20-22 stand or fall as a group based on a determination regarding allowance of the independent Claims 1, 12, 16, and 20. Claims 4, 15, and 19 stand or fall together. Claims 6, 7, and 8 each represent separately patentable features. Therefore, Appellant's arguments will address the issues in relation to Claims 1, 4, 6, 7, and 8 as representative claims for the groups. Arguments why each representative claim is separately patentable are provided in the "Argument" section below.

8. ARGUMENT

I. Claims 1, 4, 6, 7, and 8 are not obvious under 35 U.S.C. § 103 because Schultz, Brady, and Choy do not contain all the limitations of the present invention.

The Prior Art. The three references combined to reject the claims under Section 103 are summarized below.

Schultz. Schultz teaches adding a storage device to a RAID array by moving each stripe to a posting cache and then back to the RAID array configured with the additional storage device. Schultz at col. 2, 41-64, col. 3, 4-10, Figs. 2A-2F. Schultz further teaches expansion or contraction of an array of disks in a RAID array. Schultz at col. 2, 41-43 ("A disk controller according to the present invention performs on-line reconfiguration of RAID 1, RAID 4 or RAID 5 disk arrays in a hard disk drive system."). Schultz teaches reconfiguration of a RAID array by a process of identifying pre-reconfiguration data as a source logical volume and then reconfiguring the data into a destination logical volume configuration. Id. at col. 2, 41-64, col. 3, 4-10, Figs. 2A-2F. Schultz describes in detail the hardware required for a RAID configured disk storage array. Id. at col. 3, 66-col. 8, 8, Fig. 1.

Thus, Schultz addresses the problem of adding a storage device to a RAID array while keeping the RAID array on-line, accessible to a host system. Schultz includes no mention of any other storage disk configuration. As noted by the Examiner, there is specifically no mention of a Log Structure Array (LSA). In addition, there is no mention of an LSA directory, an LSA sub-directory, a garbage collection system, a bitmap detailing valid and invalid data, or any other hardware or software necessary to make an LSA disk storage system workable with the Schultz invention.

Brady. Brady teaches reducing the memory required for using and managing an LSA directory by creating an LSA subdirectory. *Brady* col. 3, lines 51-56, Abstract. Much like traditional memory cache systems, the LSA subdirectory in Brady includes the logical track addresses of the most recently accessed logical tracks. *Id.* There is no teaching of expansion or contraction of the number of disks in an array.

Of particular note are Brady's teachings regarding mappings within an LSA directory and/or LSA subdirectory between a logical track and a physical location. *Brady* col. 7, lines 21-33. Specifically, Brady teaches that an entry in the LSA directory/subdirectory includes a 6-tuple: a logical track address, a track number within a segment, a segment, a segment column, a starting sector, and a number of sectors. *Brady*, col. 6, lines 49-53. Furthermore, three elements of the 6-tuple are specifically identified as indicating the physical address of a logical track. The three elements include segment number X, segment column Ci, starting sector within a [segment] column Si. *Brady*, col. 7, lines 25-33. This addressing technique is discussed in more detail below.

Choy. Choy teaches the addition of a storage device to a RAID array by initializing the added storage device to zero, leaving all of the data and parity data in the locations they were in prior to the addition, and remapping a logical device so some parity locations are designated data and the corresponding new strip is re-designated as parity for the associated stripe. *Choy* at col. 5, 14-16, col. 5, 40-col. 6, 21, Fig. 4. The resultant array leaves the designated parity locations in a non-conventional configuration with parity information not uniformly distributed. *Id.* at Fig. 4.

In a second embodiment, Choy teaches swapping data in strips with "intermediate parity storage, as shown by the Pi notation." *Choy* at col. 9, 22-col. 10, 49 (internal quotes deleted), Fig. 7. The resulting parity data is in a configuration corresponding to a RAID array as it would have been with the added storage device present when the array was first configured. *Id.* at Fig. 7. However, the data in the array is out of order and is no longer sequential. *Id.* To provide sequential data an properly distribute the parity, Choy must change the absolute addresses in the mapping instruction both for location reference and for labeling the data as data or parity data.

Prima Facie Obviousness under 35 U.S.C. § 103 "To establish prima facie obviousness of a claimed invention, all the claim limitations must be taught or suggested by the prior art." MPEP §2143.03. The Federal Circuit has held that "the 'subject matter' that must have been obvious to deny patentability under § 103 is the entirety of the claimed invention," Panduit Corp. v. Dennison Mfg. Co., 810 F.2d 1561, 1576 (Fed. Cir. 1987).

In the present case however, Schultz, Brady, and Choy fail to disclose the entirety of the claimed invention. Specifically, Schultz, Brady, and Choy fail to disclose an LSA "directory which specifies storage locations using relative addresses." *Claims*, Claim 1. The relative addressing enables storage devices to be added or removed without affecting the existing entries in the present invention's LSA directory. This feature of the present invention is expressed in different forms in dependent claims which further establish that the prior art fails to teach or disclose this aspect sufficient to establish a *prima facie* case of obviousness.

Claim 1.

Specifically, Schultz, Brady, and Choy fail to disclose an LSA "directory which specifies storage locations using **relative addresses**." *Claims*, Claim 1. The specification clearly indicates that relative addressing, of which a stripe number and offset is one form, is distinct from Logical Block Addressing (LBA) presently used in the art. *Specification*, page 16, lines 16-19.

LBA.

LBA is an addressing technique used to allow a host to read and write data to addresses (sectors) of a storage device in excess of five-hundred and twenty eight megabytes. See attached definition for logical block addressing taken from a technical definition website. LBA was first introduced to overcome legacy limits of protocols and the like in accessing specific physical locations of large storage devices. Consequently, an LBA facilitates mapping between a specific physical location and a logical address. Therefore, there is a direct relationship between an LBA and a specific location on the storage device. Such a relationship is known in the art as absolute addressing. An absolute address is "an address that directly identifies a storage location without the use of an intermediate reference." See included definition of absolute address.

Relative Address.

In contrast to an absolute address, a relative address is a computed address that requires two pieces of information. First, a base address is required. Second, the distance or number of address locations (also known as an offset) from the base address is required. A relative address is "an address that is expressed as a difference in relation to a base address." *See* included definition of relative address. A base address is "an address that is used as the origin in the calculation of addresses in the execution of a computer program." *See* included definition of base address.

Therefore, an absolute address is the address of the actual physical location on the storage device. By way of analogy, an absolute address is comparable to a street address for a residence. Once the street address is provided no additional information is required to locate the physical location. A relative address represents a physical location using a base address and an offset. Using the same analogy, the same residence can be identified by a relative address such as "the third house from the corner" (assuming houses on one side of the street). Typically, the offset is added or subtracted from the base address. Here the corner is the base address. Moving to the third house represents the offset.

The concept of relative addresses is taught is in relation to a Redundant Array of Inexpensive Disks (RAID) configuration. Specifically, tracks are located using a construct {stripe number, offset}. See Specification page 16, lines 16-19. This is a relative address. The

stripe number represents the base address and the offset is the distance between the base address and the physical location or absolute address. The benefit of using a relative addressing technique is that few, if any, entries in the LSA need to be altered when a storage device is added or removed from the RAID. See Specification page 16, lines 26-29. Because the new storage device includes the same number of stripes, the base address remains the same in each stripe. The difference is that the offset is greater to reach physical locations on the new storage device.

Of course for the offset to properly direct a read/write operation to the proper physical location, the offset must be defined. In one embodiment of the present invention, an LSA segment maps to one RAID stripe, a RAID strip maps to a segment column, and the block offset into a segment is the same as a block offset into a RAID stripe. In this manner, use of an offset in the LSA directory enables a read/write operation to add an offset to the base address, the stripe number, to locate the physical address for a specific block.

Appellant respectfully asserts that the addressing used in Brady is absolute addressing and not relative addressing. The Examiner recites a 3-tuple LSA entry used to identify logical tracks. The Examiner asserts: "The values of X, Ci, and Si represents the claimed "relative address." See Final Office Action, April 13, 2004, page 4. This addressing technique, however, is nothing more than absolute addressing using an address structure having three dimensions, namely a segment number X, a segment column Ci, and a starting sector within a column Si. Together each value is an absolute address, the only difference is that instead of a single dimension address structure, the Brady address structure has three dimensions. By referencing X, Ci, and Si a specific physical storage location is directly identified. See definition of absolute address.

Consider, by way of example, a Cartesian coordinate system having an X, Y axis. Any point in the system can be directly identified or addressed using an X,Y pair. The X and Y values are measured with respect to the axis. However, there is no base address and there is no offset. Appellant also finds no base address or offset in Brady. There is no teaching or suggestion in Brady to add or subtract the X, Ci, and Si. Appellants assert that such teaching is absent because it would contrary to the absolute addressing technique taught in Brady. Therefore, the addressing system of a Cartesian coordinate system is not relative addressing. By direct analogy, the addressing system of Brady that includes segment, segment column, and starting sector is not relative addressing.

The term relative addressing is well known to those of skill in the art and is not confused with direct addressing as used in a Cartesian coordinate system or similarly Brady. Furthermore, the teaching combined with the figures 2-4 provide sufficient teaching and antecedent basis for the term relative addressing. *See* Specification page 16, lines 16-19, Figures 2-4. However, Appellant notes that the actual term relative address is not used in the specification. Appellants respectfully assert that this is not required where Appellant has provided sufficient teaching to define the term that is then used in the claims. Therefore, Appellant respectfully requests that the antecedent basis rejection of Claims 1, 12, 16, and 20 be withdrawn.

Appellant respectfully asserts that Schultz, Brady, and Choy fail to disclose, singly or in combination, an LSA "directory which specifies storage locations using **relative addresses**." Instead, Brady discloses absolute addressing into an address structure having multiple dimensions. Brady teaches directly addressing the physical locations, there is no base address and no offset. Because this addressing technique renders the present invention unobvious, Appellant asserts that claim 1 is allowable.

Claim 4.

Claim 4 depends from claim 1 and should be allowed for all the same reasons stated above regarding claim 1. In addition, claim 4 includes the limitation "...wherein the directory comprises a LSA directory which specifies the location of a logical track in terms of the ID of the stripe to which the track belongs and the offset of the track within the stripe." Claims, claim 4, emphasis added. Appellant submits that Claim 4 as originally drafted recites the novel concept of relative addressing in an LSA directory using RAID storage devices. Claim 4 specifically recites the constructs to be used to implement relative addressing: ID of the stripe and the offset.

As discussed above, Schultz, Brady, and Choy fail to teach or disclose LSA directory entries specifying location using ID of a stripe (stripe number) and an offset. Again, this language is supported in the specification. *See* Specification page 16, lines 16-19, Figures 2-4.

The Examiner rejected Claim 4 initially based on teachings in Brady about LSA directories citing to Brady col. 2, lines 1-7, 30-31. In the Final Office Action, the Examiner cites to column 7, lines 21-33 and column 8, lines 37-43. However, as indicated above, Appellant

finds no teaching in Brady about an offset. The 3-tuple and 6-tuple referred to are multidimensional coordinates of an absolute address. There is no teaching of a base address that would correspond to the ID of the stripe as specifically recited in Claim 4. "All words in a claim must be considered in judging the patentability of that claim against the prior art." *In re Wilson*, 424 F.2d 1382, 1385, 165 USPQ 494, 496 (CCPA 1970). *MPEP* §2143.03. The terms offset and ID of the stripe appear to have received little if any consideration from the Examiner. Therefore, Brady and the other art of record fail to teach, disclose, or suggest LSA directory entry addressing using relative addressing with a base address such as ID of the stripe and an offset.

Furthermore, the Examiner failed to enter an amendment to Claim 1 that would eliminate any antecedent basis concerns regarding the term "relative addresses." The Claim 1 amendment would have changed "relative addresses" to "a construct comprising a stripe number and an offset." The similarities between the Claim 1 amendment and Claim 4 are clear. Still, the Examiner indicated that the Claim 1 amendment would require further search and/or consideration. Appellant respectfully disagrees and submits that the subject matter of Claim 4 provided sufficient opportunity to search and consider the idea of a base address and an offset. Appellant anticipates that the explanation of relative addressing discussed above clarifies the novelty found in Claim 4 and the proposed similar amendment to Claim 1.

Appellants submit that the Examiner's failure to give full weight and consideration to the terms in Claim 4 is reversible error.

Claim 6.

Claim 6 depends indirectly from claim 1 and should be allowed for all the same reasons stated above regarding claim 1. In addition, claim 6 includes the limitation "...the data and parity strips are moved to the additional storage device during normal IO operations to the devices." *Claims*, claim 6. The Examiner asserts that Schultz teaches moving of parity strips during normal I/O operations. *See* Final Office Action page 5.

Appellants submit that Schultz teaches adding a storage device to a RAID array by moving each stripe to a posting cache and then back to the RAID array configured with the additional storage device. *Schultz* at col. 2, 41-64, col. 3, 4-10, Figs. 2A-2F. Schultz teaches that

all the stripes are processed together. Furthermore, the phrase "normal IO operations" as it relates to storage devices is well known by those of skill in the art to refer to normal read and write operations. Appellants respectfully submit that exchanging stripes with a posting cache is time consuming and disruptive and anything but normal I/O operations for one or more storage devices under control of an LSA controller.

In contrast, the present invention teaches that a new storage device may be added and parity strips left in place. Then, as part of normal caching and writing of stripes, the parity bits will be written on to the new storage device as through the storage device was in place when the array was originally configured. *See* Specification page 18, line 8 – page 19, line 5. There is no teaching in Schultz that stripes are written as part of a normal destaging process. To the contrary, Schultz teaches that all the stripes are swapped to the cache and then to the new configuration of the array. Such a process is more time consuming than the claimed invention.

Appellants submit that the lack of a prior art reference teaching the features of Claim 6 renders Claim 6 patentably distinct.

Claim 7.

Claim 7 depends indirectly from Claim 1 and should be allowed for all the same reasons stated above regarding claim 1. In addition, claim 7 teaches that movement of parity strips is performed by a background process. The Examiner cites Schultz which disk array reconfiguration as a background process. *Schultz* Abstract.

As discussed above, each claim term is to be considered. Here, the Examiner has failed to consider that the "background task is defined by the controller." *Claim* 7. In Schultz, the whole disk array reconfiguration process is run by firmware. In contrast, in the claimed invention, the background task is a sub-task of the whole process. Therefore, the background task may be conditionally executed separate from the reconfiguration process depending on certain circumstances such as available processing cycles. Therefore, the claimed invention offers more control over when and how the background process is defined and executed.

Appellant asserts that claim 7 is allowable because the limitations of claim 7 are not disclosed by Schultz as asserted by the Examiner.

Claim 8.

Claim 8 depends indirectly from Claim 1 and should be allowed for all the same reasons stated above regarding claim 1. In addition, claim 8 teaches a bitmap used to track whether the stripe is in an N+1 or N+2 arrangement. In other words, the bitmap tracks whether parity strips have been moved in a particular stripe to meet the RAID 5 protocol.

The Examiner cites a bitmap in Brady. Brady, col. 8, lines 47-67 and figures 5a-5c. However, the teachings of Brady relate to tracking whether a track in cache has been modified. If so, the version of the track on the storage device is invalid and can be consolidated with others to free up storage space. See Brady col. 6, lines 36-45. Such garbage collection tracking is very different from the temporary use of the bitmap in the claimed invention. The temporary bitmap in claim 8 is used until all stripes have been written with the parity strip in the appropriate position. In contrast, the garbage collection bitmap of Brady must be constantly maintained so that the LSA controlled array functions properly. Appellant asserts that Claim 8 is allowable because the bitmap taught in Brady does not relate to whether a parity strip has been repositioned, if necessary.

Claims 2, 3, 5, and 9-22.

As to Claims 2, 3, 5, and 9-22, these claims depend directly or indirectly from independent Claims 1, 12, 16, and 20, and should be allowed for the reasons discussed above. Appellant asserts that these claims are allowable.

II. The Examiner failed to establish prima facie obviousness of Claim 4 where the Examiner failed to give proper weight to the limitation regarding addressing.

Prima Facie Obviousness under 35 U.S.C. § 103 The Federal Circuit has held that "the 'subject matter' that must have been obvious to deny patentability under § 103 is the entirety of the claimed invention," *Panduit Corp. v. Dennison Mfg. Co.*, 810 F.2d 1561, 1576 (Fed. Cir. 1987). MPEP §2143.03.

In the present case, as noted above, Claim 4 specifically recites that the LSA directory identifies the location of logical tracks using the ID of the stripe and an offset of the track within the stripe. See Claim 4. As explained above, the Examiner failed to consider each term in Claim 4. The ID of the stripe and the offset are two aspects that are not taught is disclosed in Brady, Schultz or Choy. Appellant notes that the Examiner cites to Appellants disclosure to assert that the segment column maps to a RAID stripe and block offset into a segment is the same as a block offset into a RAID stripe. Appellant submits however, that these are teaching of the Appellant and relate to the claimed invention, not teachings of the art. Appellant respectfully directs the Examiner and Board to the Specification page 16, lines 19-20, where these mappings are taught to relate to the "present invention." Therefore, these teachings are unavailable as prior art against Claim 4. Therefore, the Examiner failed to consider the "entirety of the claimed invention" with respect to Claim 4.

"All words in a claim must be considered in judging the patentability of that claim against the prior art." *In re Wilson*, 424 F.2d 1382, 1385, 165 USPQ 494, 496 (CCPA 1970). *MPEP* §2143.03. Appellant finds no mention of how or where one of the prior art references teach or disclose the claimed feature of using the ID of the stripe and the offset in LSA directory addressing. As described above, such a distinction is significant as storage devices can be added or removed from the array without affecting the existing LSA directory entries.

Appellants respectfully assert that this oversight by the Examiner has cost the Appellant unnecessary delay and expense in procuring a patent for the claimed invention. Appellants respectfully request that the rejection be overruled.

III. <u>Claims 1, 4, 6, 7, and 8 are not obvious under 35 U.S.C. § 103 because there is</u> no motivation or suggestion to combine the Schultz reference with the Brady and/or Choy references.

The prior art. The Schultz, Brady, and Choy references combined to reject the claims under Section 103 are summarized above.

Prima Facie Obviousness. "It is insufficient that the prior art disclosed the components of the patented device, either separately or used in other combinations; there must be some teaching, suggestion, or incentive to make the combination made by the inventor." Northern Telecom, Inc. v. Datapoint Corp., 908 F.2d 931, 934 (Fed. Cir. 1990) See e.g. Interconnect Planning Corp. v. Feil, 774 F.2d 1132, 1143, 227 USPQ 543, 551 (Fed.Cir.1985). To establish prima facie obviousness, there must be some suggestion or motivation to modify the reference or to combine reference teachings to arrive at the claimed invention. "The teaching or suggestion to make the claimed combination ... must be found in the prior art, not in applicant's disclosure." MPEP 2143, citing In re Vaeck, 947 F.2d 488, 20 USPQ2d 1438 (Fed. Cir. 1991). "The mere fact that references can be combined or modified does not render the resultant combination obvious unless the prior art also suggests the desirability of the combination." See MPEP 2143.01, citing In re Mills, 916 F.2d 680, 16 USPQ2d 1430 (Fed. Cir. 1990).

Appellant has argued above that Schultz, Brady, and Choy do not teach or disclose relative addressing, specifically LSA directory addressing that uses an ID of a stripe and the offset, especially, a construct comprising a stripe number and an offset." See Claim 1, and proposed amendment to Claim 1. However, even if Schultz, Brady, and Choy did teach a relative addressing as recited in the claims, Appellant finds no motivation in the references to combine Schultz, Brady, and Choy or the desirability of such a combination to arrive at the present invention. The cited Schultz, Brady, and Choy references teach certain claim elements not related to LSA and expanding RAID arrays, but fail to disclose, suggest, or motivate modifying any of the references to arrive at the present invention as a whole.

Claim 1.

The Examiner rejected claim 1 by picking and choosing isolated teachings from the

Schultz, Brady, and Choy references and pasting them together to recreate the claims. None of these references suggest nor teach the combination of an LSA controller "which specifies storage locations using relative addresses (or a construct comprising a stripe number and an offset)." *Claims*, Claim 1. Because the Examiner has shown no motivation or suggestion to combine the prior art references relied on in the rejection, Appellant asserts that claim 1 is allowable.

Claims 2-22.

As to claims 2-22, these claims depend directly or indirectly from Claim 1 or related Claims 12, 16, and 20. As the Examiner has shown no motivation or suggestion to combine the references of Schultz, Brady, and Choy, under the rationale discussed above, Appellant asserts that these claims are allowable.

IV. Claims 1-22 are not obvious under 35 U.S.C. § 103 because the teaching to combine the prior art references is only found in the Appellant's disclosure using a hindsight combination.

The prior art. The Schultz, Brady, and Choy references combined to reject the claims under Section 103 are summarized above.

Prima Facie Obviousness. For the present invention to be obvious, the suggestion to make the invention's combination must be found in the prior art. In re Vaeck, 947 F.2d 488, 20 USPQ2d 1438 (Fed. Cir. 1991). It is "impermissible to use the claims as a frame and the prior art references as a mosaic to piece together a facsimile of the claimed invention." Uniroyal v. Rudkin-Wiley, 5 USPQ2d 1434, 1438 (Fed. Cir. 1988) (citing W. L. Gore & Associates v. Garlock, Inc., 220 USPQ 303, 312). Yet, it appears that is what the Examiner has done, citing references with certain the elements of the present invention but lacking all limitations of the present invention or any suggestion or teaching for the combination.

Appellants respectfully assert that if the prior art of record so clearly demonstrates the obviousness of the claimed invention, a single reference would teach more than just one or two elements of the claimed invention. However, the formation of the combinations used in the rejections is indicative of impermissible hindsight analysis by the Examiner. Furthermore, the Examiner cites to Appellants own teaching in rejecting Appellants claims. *See* Final Office Action page 4. As indicated above, this reaching was provided in reference to the "Present"

Invention" and not a reference to the current state of the art. Appellants respectfully assert that because such analysis is improper the rejections should be overturned.

Claim 1.

Appellant respectfully asserts that the teaching or suggestion to make the claimed combination is only found in the Appellant's disclosure. Neither Schultz nor Brady teach a LSA directory that uses relative addressing, specifically, using a stripe ID and an offset. The present invention provides the only suggestion for LSA array addressing using a stripe ID and an offset. Appellant asserts that claim 1 is allowable because the teaching of an LSA directory that uses a stripe ID and an offset to locate logical tracks is only found in the present invention and not in the prior art relied on in the rejection.

Claims 2-22.

As to claims 2-22, these claims depend directly or indirectly from Claims 1, 12, 16, and 20. Appellant asserts that these claims are allowable as only the present invention teaches to combine aspects of the prior art references in the claimed invention.

No Prima Facie Obviousness Established.

In view of the foregoing, the Examiner has not properly established *prima facie* obviousness of claims 1-22. Appellant respectfully requests reversal of the Section 103 rejection and allowance of claims 1-22. Appellant submits that the foregoing arguments further establish the non-obviousness of the present invention. Reversal of the rejections and allowance of the pending claims is respectfully requested.

SUMMARY

In view of the foregoing, each of the claims on appeal has been improperly rejected. Reversal of the Examiner's rejection and allowance of the pending claims 1-22 is respectfully requested.

Respectfully submitted,

David J. McKenzie

Reg. No. 46,919

Attorney for Applicant

Date: September 13, 2004
8 East Broadway, Suite 600
Salt Lake City, UT 84111
Telephone (801) 994-4646
Fax (801) 322-1054

9. APPENDIX

Claims involved in the appeal

- 1. (Previously Amended) A method of adding an information storage device to a plurality of information storage devices in an information processing system in which a processor is connected for communication with the information storage devices by means of a log structured array (LSA) controller in which the information is stored as a plurality of stripes extending across the devices of the array, the LSA controller further defining a directory which specifies storage locations using relative addresses, the method comprising connecting the additional information storage device to the LSA controller and logically appending an additional strip provided to each existing stripe by the additional storage device to the end of each stripe in the directory.
- 2. (Original) The method of claim 1, further comprising configuring the plurality of information storage devices as an N+1 array.
- 3. (Original) The method of claim 1, wherein each stripe comprises N information strips and one parity strip, each information strip storing an integer number of logical tracks.
- 4. (Previously Amended) The method of claim 1, wherein the directory comprises a LSA directory which specifies the location of a logical track in terms of the ID of the stripe to which the track belongs and the offset of the track within the stripe.
- 5. (Previously Amended) The method of claim 1, wherein prior to the addition of the additional storage device, the parity strips are rotated amongst the N+1 information storage devices in accordance with a RAID-5 architecture, the method further comprising moving selected parity strips to the additional information storage device at locations that would have stored parity strips had the array originally comprised N+2 information storage devices.
 - 6. (Original) The method of claim 5, wherein the data and parity strips are moved to

the additional storage device during normal IO operations to the devices.

- 7. (Original) The method of claim 5, wherein a background task is defined by the controller to move the data and parity strips to the additional storage device.
- 8. (Previously Amended) The method of claim 6, wherein a bitmap is defined by the controller, each bit of the bitmap representing an array stripe and indicating whether the data and parity strips of the stripe are located in their original position or in the position appropriate to the plurality of information storage devices including the additional information storage device.
- 9. (Original) The method of claim 1, wherein the additional information storage device is initialised to all binary zeros prior to connection to the controller.
- 10. (Original) The method of claim 1, further comprising connecting a plurality of additional information storage devices to the log-structured array controller and logically appending the additional strips, provided to each existing stripe by the additional storage devices, to the end of each stripe in the LSA directory.
- 11. (Previously Amended) The method of claim 1, wherein connecting the additional information storage device to the LSA controller further comprises:

initializing the new disk to all binary zeroes so that the new disk can be included in the parity calculations without modifying the parity already on disk;

temporarily suspending accesses to a RAID 5 array controlled by the LSA controller and flushing any data cached by the RAID array prior to temporarily suspending access;

adding the new disk as a member of the RAID array; and applying an algorithm to optionally relocate the parity and/or the data.

12. (Previously Amended) A log structured array (LSA) controller comprising a logic device configured to control the transfer of information between a processor and a plurality of information storage devices in which the information is stored as a plurality of stripes extending

across the devices of the array, and further configured upon the addition of a new information storage device to the array, to logically append to the end of each stripe in a directory a new strip provided for the new information storage device, the directory specifying storage locations using relative addresses.

- 13. (Original) The LSA controller of Claim 12, wherein the plurality of information storage devices are configured as an N+1 array.
- 14. (Original) The LSA controller of Claim 12, wherein each stripe comprises N information strips and one parity strip, each information strip storing an integer number of logical tracks.
- 15. (Previously Amended) The LSA controller of Claim 12, wherein the directory further comprises an LSA directory specifying the location of a logical track in terms of the ID of the stripe to which the track belongs and the offset of the track within the stripe.
- 16. (Previously Amended) A log structured array (LSA) controller for adding an information storage device to a plurality of information storage devices in an information processing system in which a processor is connected for communication with the information storage devices by means of a log structured array (LSA) controller in which the information is stored as a plurality of stripes extending across the devices of the array, the LSA controller comprising:

a directory which specifies storage locations using relative addresses;

means for connecting the additional information storage device to the LSA controller; and means for logically appending an additional strip provided to each existing stripe by the additional storage device to the end of each stripe in the directory.

17. (Previously Amended) The log structured array (LSA) controller of claim 16, further comprising means for configuring the plurality of information storage devices as an N+1 array.

- 18. (Previously Amended) The log structured array (LSA) controller of claim 16, wherein each stripe comprises N information strips and one parity strip, each information strip storing an integer number of logical tracks.
- 19. (Previously Amended) The log structured array (LSA) controller of claim 16, wherein the directory comprises a LSA directory which specifies the location of a logical track in terms of the ID of the stripe to which the track belongs and the offset of the track within the stripe.
 - 20. (Previously Amended) An information storage system comprising: a plurality of information storage devices;

a processor connected for communication with the information storage devices by means of a log structured array (LSA) controller in which the information is stored as a plurality of stripes extending across the devices of the array,

an LSA controller comprising a directory which specifies storage locations using relative addresses, the LSA controller configured to connect an additional information storage device to the LSA controller and logically append an additional strip provided to each existing stripe by the additional storage device to the end of each stripe in the directory.

- 21. (Original) The information storage system of claim 20, wherein the plurality of information storage devices comprise an N+1 array.
- 22. (Original) The information storage system of claim 20, wherein each stripe comprises N information strips and one parity strip, each information strip storing an integer number of logical tracks.

Search this site and the Web

earch this site and the web

SmallBizIT

SEARCH Problement Google

HOME NEWS TOPICS TIPS ASK THE EXPERTS WHITE PAPERS PRODUCTS CAREERS SITE MAP

Get the latest news and tips
on securing Windows systems.

Activate your subscription to SearchSmallBizIT.com's Small Business IT Update and receive weekly updates on news, advice and resources. Sign up today!

whatis.com: searchSmallBizIT.com Definitions - logical block addressing

M EMAIL THIS PAGE TO A FRIEND

searchSmallBizIT.com Definitions - powered by whatis.com

BROWSE WHATIS COM DEFINITIONS: A B C D E F G H I J K L M N O P Q R S I U V W X Y Z # BROWSE ALL CATEGORIES

Search whatis.com for:

Search

- OR - Search this site:

Search

logical block addressing

The term you selected is being presented by searchSmallBizIT.com, a TechTarget site for SmallBizIT professionals.

Logical block addressing is a technique that allows a computer to address a hard disk larger than 528 megabytes. A logical block address is a 28-<u>bit</u> value that maps to a specific cylinder-head-sector address on the disk. 28 bits allows sufficient variation to specify addresses on a hard disk up to 8.4 gigabytes in data storage capacity. Logical block addressing is one of the defining features of Enhanced IDE (<u>EIDE</u>), a hard disk interface to the computer <u>bus</u> or data paths.

>> Find products and vendors related to logical block addressing.

RELEVANT SPONSORED LINKS

IDE Information Free White Papers and Reports on Integrated Development Environments www.bitpipe.com

Maxtor 80GB IDE 5400rpm White Label 90 days warranty \$66 www.computerasset.com

IDE

Computer Store Ratings & Reviews. Compare Prices to Get the Best Deal www.bottomdollar.com

WD 80GB HDD \$92
7200RPM & Ultra ATA/100 hard drive
Free Insured Shipping on everything
www.eSystor.com

500 Megabyte Storage. Web Hosting - \$7.95. 20 GB Transfer FTP and Frontpage Access. Affiliate http://lunar.wshops.com

Last updated on: Jul 31, 2001

« Back to previous page Go to whatis.com home page >>

base address

base address: 1. An <u>address</u> that is used as the origin in the calculation of addresses in the execution of a <u>computer program</u> . [From Weik '96] 2. A given address from which an <u>absolute address</u> is derived by combination with a <u>relative address</u> . <i>Note:</i> <u>Base</u> addresses are primarily used by computer programmers rather than by computer users. [From Wei '96]
These definitions were prepared by <u>ATIS Committee T1A1</u> . For more information on the work related to these definitions, please visit the <u>ATIS website</u> .
This HTML version of Telecom Glossary 2K was last generated on February 28, 2001. References can be found in the Foreword.

relative address

relative address: In computer and data processing programming, an address that is expressed as a difference in relation to a base address. [After Weik '96]

This <u>HTML</u> version of <u>Telecom Glossary 2K</u> was last generated on Wed Feb 28 15:39:21 MST 2001. <u>References</u> can be found in the Foreword.

absolute address

·
absolute address: In <u>communications</u> , <u>computer</u> , and <u>data processing</u> systems, an <u>address</u> that directly identifies a <u>storage</u> location without the use of an intermediate reference, <i>e.g.</i> , a <u>base address</u> or a <u>relative address</u> . [After Weik '96
These definitions were prepared by <u>ATIS Committee T1A1</u> . For more information on the work related to these definitions, please visit the <u>ATIS website</u> .
This HTML version of Telecom Glossary 2K was last generated on February 28, 2001. References can be found in the Foreword.