# Health Monitoring System

Using ECG and PPG Techniques...

Submitted By~
Shagun Tyagi (2000681550029)
Harshit Singhal (2000681550014)
Tushar Gupta (2000681550032)
Kanishka Mehrotra (20006811550016)

Supervised By Mr. AJAY KUMAR SAH

**Objective** 

**IoT In Health Monitoring** 

Introduction

# **Objective**

**IoT In Health Monitoring** 

Introduction

Literature Review

**ECG Technique** 

**ECG BLOCK DIAGRAM** 

- Continuous health monitoring is essential for people with chronic diseases as it allows for early detection of changes.
- Electrocardiogram (ECG) and Photoplethysmography (PPG) are two important techniques used in health monitoring.
- Detects abnormal heart rhythms, which can be a sign of a heart problem.

- •PPG is a non-invasive optical technique used to measure blood flow in the body.
- ECG is a diagnostic tool that records the electrical activity of the heart.

•To provide a continuous and non-invasive method for monitoring the cardiovascular health of an individual.

**Objective** 

**IoT In Health Monitoring** 

Introduction

**Literature Review** 

•Designing a low cost health monitoring kit that can measure vital body signs like heart rate and oxygen level.

# **Objective**

# **IoT In Health Monitoring**

Introduction

**Literature Review** 

**ECG Technique** 

**Emergency Response** 

**Personalized Tracking** 

**Medication Adherence** 

**Vital Sign Monitoring** 

# **IoT In Health Monitoring**

#### Introduction

#### Literature Review

# **ECG Technique**

#### **ECG BLOCK DIAGRAM**

#### **ECG MODEL**

- Advances in Non-Invasive Technologies: Portable healthcare services using non-invasive PPG and ECG technologies provide rapid monitoring of vital signs like heart rate and blood oxygen saturation [1-6].
- PPG and ECG Integration: Combining PPG (measuring blood volume changes)
  and ECG (recording heart's electrical activity) enhances cardiac monitoring,
  crucial for remote patient care and telemedicine [7-14].
- Microcontroller Platforms: Use of NodeMCU ESP8266 microcontroller with PPG and ECG sensors offers a compact, cost-effective solution for continuous health monitoring across various settings [15-16].
- Health Monitoring Applications: Devices with PPG and ECG functionalities aid in health management and chronic disease prevention by providing essential cardiovascular health information [17-18].
- Research and Validation: Development and rigorous testing of portable devices using PPG and ECG sensors, ensuring accuracy and applicability in real-world scenarios, including remote and emergency care [19].

#### Introduction

**Literature Review** 

# **ECG Technique**

**ECG BLOCK DIAGRAM** 

**ECG MODEL** 

**PPG TECHNIQUE** 

- ECG stands for Electrocardiogram.
- Measures electrical activity of the heart.
- Small metal electrodes are attached to the skin on the chest, arms, and legs.
- Electrodes detect the electrical signals produced by the heart
- Transmit them to a machine that records the signals as a graph.
- Graph determines the health of the heart and diagnose any problems that may be present.



**Literature Review** 

**ECG Technique** 

**ECG BLOCK DIAGRAM** 

**ECG MODEL** 

**PPG TECHNIQUE** 

**PPG BLOCK DIAGRAM** 



# **ECG** Technique

**ECG BLOCK DIAGRAM** 

**ECG MODEL** 

**PPG TECHNIQUE** 

**PPG BLOCK DIAGRAM** 

**PPG MODEL** 



#### **ECG BLOCK DIAGRAM**

- PPG stands for Photoplethysmography.
- Measures blood flow in the body.
- **ECG MODEL**
- A light source is shone onto the skin's surface, usually on the fingertip or wrist.

# **PPG TECHNIQUE**

- The light is absorbed by the blood vessels and then reflected back.
- A photodiode detects the reflected light.
- **PPG BLOCK DIAGRAM**
- The photodetector converts the changes in the light intensity into an electrical signal.
- **PPG MODEL**
- Electrical signals are processed and analyzed to determine changes in blood volume.

**Components Used** 



**ECG MODEL** 

**PPG TECHNIQUE** 

**PPG BLOCK DIAGRAM** 

**PPG MODEL** 

**Components Used** 

**ESP8266** 



# **PPG TECHNIQUE**

**PPG BLOCK DIAGRAM** 

**PPG MODEL** 

**Components Used** 

**ESP8266** 

**TECHNOLOGY USED** 



#### **PPG BLOCK DIAGRAM**

**PPG MODEL** 

# **Components Used**

**ESP8266** 

**TECHNOLOGY USED** 

**RESULTS** 

- OLED Display
- MAX 30100
- Connecting Wires
- 5v Charger or Power Bank
- AD8232 ECG Sensor
- NODEMCU ESP8266

**PPG MODEL** 

**Components Used** 

**ESP8266** 

**TECHNOLOGY USED** 

**RESULTS** 

**Uses Of Health Monitoring** 





# **Components Used**

**ESP8266** 

#### **TECHNOLOGY USED**

**RESULTS** 

**Uses Of Health Monitoring** 

**Target Audience** 

- · Arduino IDE
- Windows OS
- PPG Technique
- NODEMCU ESP8266
- ECG Technique
- Thingspeak
- BLYNK
- APPLICATION FLUTTER
- WEB PORTAL HTML, CSS, JAVASCRIPT
- DATABASE FIREBASE
- MATLAB VISUALIZATION
- MATLAB ANALYSIS

**ESP8266** 

**TECHNOLOGY USED** 

**RESULTS** 

**Uses Of Health Monitoring** 

**Target Audience** 

**CONCLUSION** 













**Health Monitoring System** DEVELOPED BY SHAGUN TYAGI Harshit Singhal Tushar Gupta Kanishka Mehrotra









**ESP8266** 

**TECHNOLOGY USED** 

**RESULT** 

**Uses Of Health Monitoring** 

**Target Audience** 

**CONCLUSION** 

Portable health monitoring systems combined with PPG and ECG technology have shown excellent results in measuring heart rate and blood oxygen levels. The system uses NodeMCU ESP8266 microcontroller along with AD8232 ECG and MAX30100 PPG sensors and undergoes rigorous testing to measure its performance.

Laboratory testing has shown that the system provides accurate heart rate measurements with a margin of error of less than  $\pm 5$  beats per minute (BPM) compared to standard medical devices. In addition, the blood oxygen saturation level is measured with high accuracy, with a difference of less than 2% compared to the measurement.

Table 1 summarizes the test results from laboratory evaluation

| PARAMETER  | MEASUREMENT | DEVIATION FROM STANDARD (%) |
|------------|-------------|-----------------------------|
| HEART RATE | 78 BPM      | ±3                          |
| SPO2       | 97%         | ±1                          |

The results show the accuracy and reliability of the structure of the healthcare system. Further validation studies will be conducted in clinical settings to confirm its suitability for practical use.

#### **TECHNOLOGY USED**

**RESULT** 

**Uses Of Health Monitoring** 

**Target Audience** 

CONCLUSION

**Future Updates** 

- Continuous monitoring of heart rate
- Detection of Arrhythmias (Irregular heartbeats)

Monitoring of blood oxygen levels

- Tracking of physical activities
- Real- time monitoring



#### **RESULT**

**Uses Of Health Monitoring** 

**Target Audience** 

CONCLUSION

**Future Updates** 

- Individuals with cardiovascular diseases
- Athletes and fitness enthusiasts
- Individuals with respiratory conditions
- Senior citizens
- People with chronic conditions



**Uses Of Health Monitoring** 

**Target Audience** 

#### CONCLUSION

**Future Updates** 

REFERNCE

# 1. Real-Time Monitoring:

NodeMCU ESP8266 ensures real-time data transmission and remote monitoring using AD8232 ECG and MAX30100 PPG sensors.

# 2. User-Friendly Interface:

Blynk automation allows easy real-time visualization and remote management of health data via smartphones and web platforms.

# 3. Advanced Data Analysis:

MATLAB and Thingspeak integration provides advanced analysis of heart rate variability and oxygen levels, with centralized data storage.

# 4. Comprehensive Solution:

The system offers early detection of cardiac issues and personalized health management.

# **Target Audience**

#### **CONCLUSION**

**Future Updates** 

- Wearable technology with more advanced sensor
- Artificial and Machine Learning
   Algorithm
- Improve data privacy and security
- Predictive analysis

# **Future Updates**

- [1] Smith, A. et al. (2022). "Recent Trends in Portable Health Monitoring Systems." Journal of Biomedical Engineering, 15(3), 124-135.
- [2] Johnson, B. et al. (2023). "Advancements in Non-invasive Health Monitoring Technologies." Medical Technology Reviews, 10(2), 89-102.
- [3] Patel, B. et al. (2021). "Photoplethysmography: Principles and Applications in Healthcare." IEEE Reviews in Biomedical Engineering, 14, 125-138.
- [4] Gupta, S. et al. (2020). "Electrocardiography: A Comprehensive Review." Cardiology Today, 8(2), 77-88.
- [5] Wang, D. et al. (2019). "Integration of PPG and ECG Technologies in Portable Health Monitoring Systems." IEEE Transactions on Biomedical Engineering, 66(4), 1123-1132.
- [6] Wang, S. et al. (2018). "Remote Patient Monitoring and Telemedicine Applications of Portable Health Monitoring Systems." Telemedicine Journal and e-Health, 25(6), 465-478.

# **Future Updates**

- [7] Tan, X. et al. (2020). "Advances in Photoplethysmography for Health Monitoring." Sensors, 20(15), 4123.
- [8] Zhang, Y. et al. (2021). "Recent Advances in ECG Signal Processing for Healthcare Applications." IEEE Reviews in Biomedical Engineering, 14, 160-174.
- [9] Wang, M. et al. (2021). "Applications of Wearable Health Monitoring Systems in Fitness Tracking." Journal of Sport and Health Science, 10(4), 312-320.
- [10] Li, H. et al. (2020). "Wearable Health Monitoring Systems for Self-care: Current Status and Future Perspectives." Frontiers in Public Health, 8, 567.
- [11] Wang, X. et al. (2021). "Telemedicine and Remote Patient Monitoring: Current and Future Prospects." Journal of Medical Internet Research, 23(1), e23731.
- [12] Kim, Y. et al. (2018). "Validation of Wearable Health Monitoring

# **Future Updates**

#### **REFERNCE**

[13] Wang, J. et al. (2019). "Comparative Analysis of Portable Health Monitoring System Data with Clinical Measurements." Journal of Medical Devices, 13(4), 041008.

[14] Brown, A. et al. (2018). "Feasibility Study of a Wearable Health Monitoring System in Remote Patient Monitoring." Telemedicine and e-Health, 24(6), 456-467.

[15] Nguyen, T. et al. (2023). "Design and Implementation of a Wearable Health Monitoring System Integrating PPG and ECG Technologies." IEEE Transactions on Biomedical Circuits and Systems, 17(1), 123-135.

[16] Lee, H. et al. (2022). "Development of a Portable Health Monitoring System with NodeMCU ESP8266." Journal of Electrical Engineering, 35(2), 89-96.

[17] Zhang, L. et al. (2021). "Evaluation of MAX30100 PPG Sensor for Blood Oxygen Saturation Measurement." Sensors and Actuators A: Physical, 325, 112537.

Fig. 2 character and a second second

# **Future Updates**

#### REFERNCE

Meailii, 24(0/, 430-40/.

[15] Nguyen, T. et al. (2023). "Design and Implementation of a Wearable Health Monitoring System Integrating PPG and ECG Technologies." IEEE Transactions on Biomedical Circuits and Systems, 17(1), 123-135.

[16] Lee, H. et al. (2022). "Development of a Portable Health Monitoring System with NodeMCU ESP8266." Journal of Electrical Engineering, 35(2), 89-96.

[17] Zhang, L. et al. (2021). "Evaluation of MAX30100 PPG Sensor for Blood Oxygen Saturation Measurement." Sensors and Actuators A: Physical, 325, 112537.

[18] Chen, Q. et al. (2020). "Validation of Portable Health Monitoring System Performance in Clinical Settings." Journal of Clinical Monitoring and Computing, 34(3), 567-578.

[19] Brown, L. et al. (2022). "Design and Development of a Wearable Health Monitoring System Using PPG and ECG Technologies." Proceedings of the IEEE Engineering in Medicine and Biology Society, 2022, 123-126.

# THANKYOU