

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : A61K 43/00		A1	(11) International Publication Number: WO 87/05517 (43) International Publication Date: 24 September 1987 (24.09.87)
(21) International Application Number: PCT/US87/00549 (22) International Filing Date: 13 March 1987 (13.03.87)			(74) Agent: WHITE, John, P.; Cooper, Dunham, Griffin & Moran, 30 Rockefeller Plaza, New York, NY 10112 (US).
(31) Priority Application Numbers:	840,419 019,474 023,666		(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).
(32) Priority Dates:	14 March 1986 (14.03.86) 26 February 1987 (26.02.87) 9 March 1987 (09.03.87)		
(33) Priority Country:	US	Published <i>With international search report.</i>	
(71) Applicant:	BIO-TECHNOLOGY GENERAL CORP. [US/US]; 375 Park Avenue, New York, NY 10152 (US).		
(72) Inventors:	NIMROD, Abraham ; 8 Eisenberg Street, Rehovot (IL). GREENMAN, Benjamin ; 13 S. Ben-Zion Street, Rehovot (IL).		

(54) Title: HEAVY METAL SALTS OF HYALURONIC ACID USEFUL AS ANTIMICROBIAL AGENTS

(57) Abstract

Heavy metal salts of hyaluronic acid have been prepared. In particular, this invention is directed to silver, gold, cerium and tungsten salts of hyaluronic acid. These heavy metal salts of hyaluronic acid are useful as antimicrobial agents. Gold hyaluronate may also be used to treat arthritis. This invention also concerns methods of making the silver salt of hyaluronic acid as well as compositions containing silver hyaluronate or gold hyaluronate. The invention also concerns composition containing heavy metal salts having radioactively labelled hyaluronate moieties.

SLOW RELEASE OF Ag⁺ FROM Ag₂HA

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria
AU Australia
BB Barbados
BE Belgium
BG Bulgaria
BJ Benin
BR Brazil
CF Central African Republic
CG Congo
CH Switzerland
CM Cameroon
DE Germany, Federal Republic of
DK Denmark
FI Finland

FR France
GA Gabon
GB United Kingdom
HU Hungary
IT Italy
JP Japan
KP Democratic People's Republic
of Korea
KR Republic of Korea
LI Liechtenstein
LK Sri Lanka
LU Luxembourg
MC Monaco
MG Madagascar

ML Mali
MR Mauritania
MW Malawi
NL Netherlands
NO Norway
RO Romania
SD Sudan
SE Sweden
SN Senegal
SU Soviet Union
TD Chad
TG Togo
US United States of America

HEAVY METAL SALTS OF HYALURONIC ACID
USEFUL AS ANTIMICROBIAL AGENTS

5 This application is a continuation-in-part of Serial
No. 840,419, filed March 14, 1986, the contents of
which are hereby incorporated by reference into the
present application.

10 BACKGROUND OF THE INVENTION

Throughout this application various publications are
referenced by arabic numerals with parentheses. Full
citations for these references may be found at the end
15 of the specification immediately preceding the claims.
The disclosures of these publications in their entire-
ties are hereby incorporated by reference into this
application in order to more fully describe the state
of art as known to those skilled therein as of the date
20 of the invention described and claimed herein.

This invention concerns the heavy metal salts of hyalu-
ronic acid.

25 Hyaluronic acid is present in various connective tis-
sues of animals, such as skin and cartilage. Some
organs are specifically rich in hyaluronic acid, such
as the umbilical cord, synovial fluid, the vitreous
humor and rooster combs. In addition, hyaluronic acid
30 is produced by various microorganisms, such as strepto-
cocci Type A and C.

In skin and cartilage, the role of hyaluronic acid is
to bind water and retain the tonicity and elasticity of

- 2 -

the tissue. In joint fluids, the viscous hyaluronic acid solution serves as a lubricant to provide protective environment to the cells. A solution of ultrapure hyaluronic acid from rooster combs has been in use for several years as a supportive medium in ophthalmic 5 surgery, see U.S. Patent No. 4,141,973 of E.A. Balazs (1979). A similar preparation has been shown to be beneficial in the treatment of inflamed knee joints of race horses. Another use of hyaluronic acid results from its highly hydrophilic nature, making it an ideal 10 constituent of moisturization lotions for cosmetic use, U.S. Patent No. 4,303,676 of E. Balazs (1981).

Hyaluronic acid has been isolated from the various biological sources, as described above, including microbial broth. The isolation and characterization of 15 hyaluronic acid has been described by Meyer et al., J. Biol. Chem. 107, 629 (1934); J. Biol. Chem. 114, 689 (1936), and has recently been reviewed in Methods in Enzymol. 28, 73 (1972). The structure of hyaluronic 20 acid was elucidated by Weissman et al., J. Am. Chem. Soc. 76, 1753 (1954) and Meyer, Fed. Proc. 17, 1075 (1958). Other publications such as, U.S. Patent No. 4,141,973, February 27, 1979 by E.A. Balazs, concerned 25 the production and purification of hyaluronic acid from the sources such as animal connective tissue.

Radioactively labelled hyaluronic acid and sodium salt thereof has been produced by growing streptococcus in fermentation broth containing radioactively labelled 30 glucose. (3)

Numerous silver compounds having a wide range of uses are known. These include silver acetate and silver chlorate which may be used as oxidizing agents; silver

- 3 -

bromide and silver oxalate which are used in photography; silver difluoride for use in the flourination of hydrocarbons; silver chloride and silver cyanide for use in silver plating; and silver chromate (VI) and silver oxide which may be employed as catalysts, to 5 name just a few.

The silver ion has also been shown to be an effective antimicrobial agent. It is not associated with significant side effects, is not an allergen, and is only 10 rarely associated with the induction of resistant strains of bacteria. Many silver salts are useful as topical anti-infectives or as antiseptics. These include: silver flouride, silver iodide, silver lactate, mild silver protein and silver nitrate. Silver lactate 15 and silver nitrate may also be employed as astringents and silver picrate and silver sulfadiazine may be used as antimicrobial or antibacterial agents.

It is believed that silver compounds produce their 20 antimicrobial effects by the time-dependent release of silver ions and their effectiveness is directly related to the constant presence of the free ions in the tissues. The use of simple silver salts, such as silver nitrate, as an antibacterial agent has been limited by 25 the requirement of frequent applications to achieve effective concentrations of the silver ions (10-20 ug/ml).

Although the use of silver sulfadiazine, a more complex 30 silver compound, results in a more sustained release of the silver metal ions, the use of both silver nitrate and silver sulfadiazine is often accompanied by adverse side-effects due to the anion part of the salts, namely nitrate and sulfadiazine. For example,

- 4 -

sulfadiazine has such side effects as leucopenia and immunosuppression activity. Other silver preparations, such as foils and silver nylon, have recently been offered for use, but their release of silver ions is limited and do not result in high enough concentrations. The use of salts is important because complexes may not provide the steady release ions needed to obtain optimal concentrations.

Thus, the need for a silver compound providing sustained release of the silver metal ion, but having no adverse side effects is apparent.

Rheumatoid arthritis is characterized by severe inflammation of the joints which is followed by the appearance of degraded hyaluronic acid in the joint fluid. In severe cases, anti-inflammatory agents such as corticosteroids and gold salts, e.g. gold sodium thiomalate or gold sodium thiosulfate are administered intra-articularly. However these agents are active for only a short duration, and there is a need to sustain their action. Thus, the invention of an anti-inflammatory agent having sustained action would meet a long felt need and be a significant advance in the anti-inflammatory art.

25

The present invention is directed to heavy metal salts of hyaluronic acid, including silver hyaluronate, gold hyaluronate, cerium hyaluronate, and tungsten hyaluronate.

30

The invention is also directed to methods of inhibiting microbial growth utilizing these heavy metal salts.

- 5 -

The present invention concerns methods of producing silver hyaluronate, compositions containing silver hyaluronate, and the treatment of wounds, burns and infections, especially soft-tissue infections and gonococcal ophthalmological infections, with silver hyaluronate.

5

The invention further concerns a method for treating keratitis with silver hyaluronate and optionally in conjunction with antibiotics.

10

The invention further provides for incorporation of heavy metal hyaluronate salts into deodorants and into cosmetic creams, lotions and sprays.

15 The invention also concerns treating arthritis and joint inflammation with gold hyaluronate.

Finally, this invention is directed to compositions containing radioactively labelled heavy metal salts
20 e.g. ^{14}C AgHA, which compositions may be used for diagnostic purposes.

25

30

35

- 6 -

SUMMARY OF THE INVENTION

The invention concerns heavy metal salts of hyaluronic acid, in particular, silver hyaluronate, gold hyaluronate cerium hyaluronate, and tungsten hyaluronate.

5

The invention also concerns methods of making the silver hyaluronate by mixing aqueous sodium hyaluronate (NaHA) solution with a molar excess of aqueous silver nitrate (AgNO_3) solution to form aqueous silver hyaluronate (AgHA) solution, precipitating the silver hyaluronate from the solution and recovering the precipitated silver hyaluronate.

15 These heavy metal salts of hyaluronic acid may be incorporated into compositions, such as pharmaceutical compositions containing an effective amount of the heavy metal salt, e.g., silver hyaluronate or gold hyaluronate, and a pharmaceutically acceptable carrier.

20 These heavy metal salts of hyaluronic acid are useful as antimicrobial agents. In particular, microbial growth may be inhibited by contacting the microbes with an effective amount of silver hyaluronate. Silver hyaluronate may also be used to inhibit microbial growth in infections, by topically applying an effective amount of the silver hyaluronate to the infection.

25 The heavy metal salts are also useful when incorporated into deodorants and may also be used in cosmetic creams, lotions and sprays.

- 7 -

Gold hyaluronate may be used to treat arthritis and joint inflammation by administering an effective amount of the gold hyaluronate intra-articularly to the afflicted subject.

5 This invention also concerns compositions containing heavy metal salts of radioactively labelled hyaluronic acid.

10

15

20

25

30

35

- 8 -

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1: Slow Release of Ag Ions from AgHA

To test the Ag ion release properties of AgHA, a sample
5 containing 1800 ug of Ag ion was dialyzed against dis-
tilled water at room temperature. At points indicated
in Figure 1, the dialysis bag containing AgHA was
transferred to 500 ml fresh distilled water. At each
10 point a sample of the water was removed and the concen-
tration of Ag ions determined by atomic absorption.
The results in Figure 1 show that Ag ions are released
in a slow manner, as 70% of the Ag ion concentration
was retained in the dialysis bag after 48 h.

15

20

25

30

35

- 9 -

DETAILED DESCRIPTION OF THE INVENTION

This invention concerns heavy metal salts of hyaluronic acid. More particularly, the salts encompassed by this invention include the silver, gold, cerium, and tungsten salts of hyaluronic acid.

The invention also concerns methods of making the silver salt of hyaluronic acid by mixing aqueous sodium hyaluronate (NaHA) solution with a molar excess of aqueous silver nitrate (AgNO_3) solution to form aqueous silver hyaluronate (AgHA) solution, precipitating the silver hyaluronate from the solution and recovering the precipitated silver hyaluronate. The silver hyaluronate precipitate may be recovered by separating the silver hyaluronate precipitate from the aqueous silver hyaluronate solution, e.g., by centrifugation, washing the separated precipitate with ethanol and drying the washed precipitate over nitrogen.

Preferably, the silver hyaluronate is prepared in the absence of light and the aqueous sodium hyaluronate and aqueous silver nitrate mixture is shaken for a sufficient period of time, ordinarily several hours, to form aqueous silver hyaluronate solution. The aqueous silver hyaluronate solution is then treated to effect precipitation of the silver hyaluronate which may be recovered by rinsing the silver hyaluronate precipitate with ethanol, drying the rinsed precipitate with nitrogen and further drying the nitrogen-dried precipitate by high vacuum drying.

- 10 -

The other heavy metal salts of hyaluronic acid may be prepared by methods analogous to the preparation of silver hyaluronate.

These heavy metal salts of hyaluronic acid may be combined with carriers to form compositions. The carrier or carriers may be any suitable carrier known to those of ordinary skill in the art. These compositions may be pharmaceutical compositions containing an effective amount of the heavy metal salt of hyaluronic acid, for example, silver hyaluronate, or gold hyaluronate and a pharmaceutically acceptable carrier.

The heavy metal salts of hyaluronic acid and compositions containing same are useful as antimicrobial agents. In particular, microbial growth may be inhibited by contacting the microbes with an effective amount of silver hyaluronate. Silver hyaluronate may also be used for treating burns, wounds, soft tissue infections, for example, gonococcal ophthalmological infections or sepsis by topically applying an effective amount of the silver hyaluronate to the site of the burn, wound, soft tissue infection or infection from which the sepsis stems. Silver hyaluronate compositions are also used for treating keratitis infections.

In another aspect of the invention, heavy metal hyaluronate salts are incorporated into deodorants, cosmetic creams, lotions and sprays.

Gold hyaluronate may also be used for treating arthritis, rheumatoid arthritis, and joint inflammation in a

- 11 -

subject by administering an effective amount of the gold hyaluronate intra-articularly to the subject.

This invention also concerns compositions containing the radioactively labelled heavy metal salts of hyaluronic acid. These include salts wherein the hyaluronate moiety is radioactively labelled, as well as salts wherein the heavy metal is in isotope form. Preferably, the radioactively labelled heavy metal salt is a heavy metal salt of radioactively labelled hyaluronic acid. More preferably, the hyaluronate moiety is radioactively labelled with ^{14}C . Preferably the heavy metal is silver. Most preferably the radioactively labelled heavy metal salt is ^{14}C radioactively labelled silver hyaluronate. These radioactively labelled heavy metal salts and compositions containing them may be used for diagnostic purposes.

As used throughout this application the term "heavy metal" includes any metal in Period 5, 6, or 7 or the 20 4f (Lanthanide) or 5f (Actinide) series of the Periodic Table.

Hyaluronic acid (HA) is a major constituent of connective tissue, body fluids and skin, and hence is absolutely non-immunogenic. Due to their large size (M.W. 25 1.5×10^6 Daltons), HA salts form viscous solutions, and after injection into the tissues the polysaccharide diffuses extremely slowly from the injection site.

30 Naturally occurring hyaluronic acid is a glycosaminoglycan consisting of a linear polymer of molecular weight of 50,000-13,000,000 daltons. It is a polysac-

- 12 -

charide made of a repeating units of glucuronic acid and N-acetyl-glucosamine, bound by alternating 1-3 and 1-4 bonds.

As employed throughout this application the term "hyaluronic acid" includes substantially pure naturally occurring or synthetic hyaluronic acid, hyaluronic acid derivatives, hyaluronic acid cross-linked with itself, and hyaluronic acid cross linked with other substances such as collagen. See WO 86/00079 and WO 86/00912.

15

20

25

30

35

- 13 -

EXPERIMENTAL DETAILS

EXAMPLE 1

PREPARATION OF SILVER HYALURONATE (AgHA)

5

Silver hyaluronate has been prepared as follows:

A. One volume of sodium hyaluronate solution in water (0.5% of purified bacterially-derived sodium hyaluronate, M.W. 2.7×10^6 daltons) was mixed with 1 volume of 0.5 M AgNO_3 in water. Two volumes of ethanol were then added, and the precipitated silver salt was centrifuged, washed with ethanol and dried over nitrogen. The silver content of this hyaluronate salt was found by atomic absorption to be 20% w/w, i.e., corresponding to approximately 92% substitution of the carboxylic ions.

This preparation was found to effectively kill Staphylococci, Pseudomonas, Candida Albicans and Candida Tropicans when applied as a 0.1% solution (1:1, v/v) to cultures containing 10^6 microorganisms per ml.

B. Preliminary studies have indicated that removal of traces of chloride ions is essential for obtaining a relatively stable, pure and clear AgHA product. This has been achieved by ethanolic precipitation of sodium HA from a sodium nitrate solution. The procedure for the production of AgHA, starting with 1 gram of pure clinical grade sodium hyaluronate, is as follows:

- 14 -

1. Pharmaceutical grade NaHA (1 gram) is dissolved in 200 ml of 0.5 M NaNO₃.
2. 300 ml of ethanol is added, and the precipitated NaHA collected and washed thoroughly with 96% ethanol.
- 5 3. The precipitate is redissolved in 200 ml of double distilled water.
4. 200 ml of 0.5 M AgNO₃ is added in the dark and the 10 mixture shaken for several hours. All subsequent operations are performed in relative darkness.
5. Ethanol (600 ml) is added, and the precipitated AgHA is rinsed with 96% ethanol, dried with nitrogen, 15 then followed by high vacuum drying.

Portions of the final material are taken and redissolved in sterile, double-distilled water to give a working solution. A 1% solution gives a viscous, clear 20 liquid with a brownish color.

25

30

35

- 15 -

EXAMPLE 2

PROPERTIES OF AgHA

Several batches of this material have been prepared.

5

Silver Content:

Analysis of the silver content, as determined by atomic absorption, was 82 grams per mole, which is 76% of the theoretical stoichiometrical value, while the concentration of residual sodium ions was 0.5% of the theoretical value.

10

Stability Studies:

15

Some preliminary observations of the stability of the 1% AgHA solutions have been made. Storage in the dark under refrigeration had no effect on the appearance of the material: no changes in viscosity or darkening of the clear solution have developed during 3-4 months. However, exposure of the solution to room temperature and light resulted in gradual browning, development of turbidity and a drop in viscosity within a week to two weeks.

20

Molecular Weight:

25

The various batches of AgHA were prepared from NaHA of M.W. of 3-3.5x10⁶. In order to measure the M.W. of AgHA, the material had to be converted to the Na form. This was done by ethanol precipitation from a concentrated (1 M) solution of NaNO₃. The M.W., as deduced from limiting viscosity measurements with these precipitates, was found to be 1.7-2x10⁶ daltons immediately after preparation of the AgHA solutions. On the shelf, at room temperature and lighting, the M.W. dropped to:

- 16 -

1.27×10^6 daltons after 7 days;
 0.96×10^6 daltons after 29 days.

5

10

15

20

25

30

35

- 17 -

EXAMPLE 3

SLOW RELEASE OF AG IONS FROM AgHA

Slow release of Ag ions is mandatory for a long-lasting effect of the antimicrobial in the form of Ag complex. To test the Ag ion release properties of AgHA, a sample containing 1800 ug of Ag ion was dialyzed against distilled water at room temperature. At points indicated in Figure 1, the dialysis bag containing AgHA was transferred to 500 ml fresh distilled water. At each point a sample of the water was removed and the concentration of Ag ions determined by atomic absorption. The results in Figure 1 show that Ag ions are released in a slow manner, as 70% of the Ag ion concentration was retained in the dialysis bag after 48 h. The calculated dissociation constant of AgHA, assuming 100% dissociation of free HA, is $6.7 \times 10^{-5} M$.

20

25

30

35

- 18 -

EXAMPLE 4

EFFICACY OF AGHA

A. Minimal Inhibitory Concentration. Minimal inhibitory concentration was tested on eight species of bacteria isolated from hospitalized patients. The eight species are *E. coli*; *Seratia*; *Pseudomonas*; *Proteus*; *K. pneumoniae*; *Acinobacter*; *C. albicans*; and *M. morgani*.

AgHA was diluted in 0.25% NaHA to yield final concentration in growth media of 100, 50, 40, 20, 10 ug/ml of silver ion equivalent. The growth media was L broth containing no NaCl and supplemented with NaHA to a final concentration of 0.25%. The latter NaHA concentration was chosen as standard concentration for growth in liquid media because some bacteria did not grow as well at concentration of 0.5% (Table 1). Concentrations of 0.5% NaHA and above slowed the growth rate. This is attributed to the high viscosity of the media which apparently reduced oxygen solubility.

2 ml cultures were inoculated with approximately 10^5 cells and grown on a rotary shaker at 37°C for 72 h. After 24, 48 and 72 hours, cultures were scored for growth. A slight turbidity observed in test tubes was scored as growth and marked in tables with the notation + (plus) (Table 2).

To compare the efficacy of AgHA to that of Ag-Sulfadiazine, L broth media containing concentrations of silver ions identical to those used for AgHA were prepared by serial dilutions. Growth and scoring methodology were

- 19 -

the same as described previously (Table 3). For a control experiment, L broth containing silver nitrate at identical concentrations of silver ions to those used for AgHA and Ag-Sulfadiazine were used (Table 4). The results of these experiments are presented in Table 3 and 5 Table 4. The data obtained indicate that except for C. albicans and K. pneumoniae, all other clinical isolates were inhibited by a concentration of 20 ug/ml silver ions. A concentration of about 40 ug/ml was needed to inhibit growth of C. Albicans and K. Pneumoniae. It is 10 clear that AgHA inhibits microbial growth.

B. Double Agar-Layer Test. Ag compounds are most commonly used as ointments. Ag ions have to be released and reach the target by diffusion. The methodology used to 15 test this aspect of AgHA was adopted from Dettch et al. (2) and modified by using petri plates. AgHA and Ag-Sulfadiazine were mixed with agar separately to yield a calculated concentration of 40 ug/ml silver ions. A layer of 2.2 mm silver containing agar was first poured 20 and after solidification a layer of L-agar of 2.2 or 2.0 mm was poured on top. The plates were aged for 24, 48, 72, and 96 h prior to use. Cultures of bacteria were grown overnight and diluted in L broth media to yield about 10^5 - 10^6 cells. 0.1 ml of diluted cultures were 25 applied to each plate to yield a final concentration of 10^4 - 10^5 cells per plate. No Ag ions were used in the control experiments when determining total viable cells per plate. Table 5 and Table 6 show the results obtained for AgHA and Ag-Sulfadiazine. The results are shown in 30 fraction form as the number of cells which grew on the silver ion plates (numerator) over the number of cells which grew on the control plates containing no silver

- 20 -

(denominator). The fraction is also expressed as a percent. In Table 5 the results correspond to the experiment where the upper layer of L-agar was 2.0 mm. Except for *C. albicans*, more than 99% of the population of the different species were fully inhibited. The surviving fraction was higher in the experiment shown in Table 6 than that shown in Table 5. This is attributed to the fact that the upper L-agar layer was 2.2 mm. Dettch found that each increase of 2 mm in height of the upper agar layer increased survival number tenfold. The increase of 0.2 mm in height of L-agar in our experiments is in agreement with the above finding, as the number of survivals did not exceed 2-3%. No significant difference is observed between plates aged for 24-96 h, indicating that by 24 h the minimum concentration of silver ions has reached the L-agar surface.

20

25

30

35

- 21 -

TABLE I.

Effect of Hyaluronate on Bacterial Growth Rates

5

Growth Time in Different Concentrations of
Hyaluronic Acid Sodium Salt (Minutes)

10

	0	0.050	0.100	0.250	0.500
--	---	-------	-------	-------	-------

15

E. coli	30	28	33	30	50
---------	----	----	----	----	----

Pseudomonas	45	48	48	60	140
-------------	----	----	----	----	-----

20

Serratia	29	30	31	33	30
----------	----	----	----	----	----

25

30

35

TABLE 2

Minimal Inhibitory Concentration in Liquid Medium

Ag-Na

Strain	Conc. of Ag ⁺	100 ug/ml			50 ug/ml			40 ug/ml			20 ug/ml			10 ug/ml		
		Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	
E. coli	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Streptococcus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pseudomonas	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Proteus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acinetobacter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R. Rhodochromoides	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N. asteroides	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C. Tropicalis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C. Albidum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

30
25
20
15
10
5

TABLE 3
Minimal Inhibitory Concentration in Liquid Medium

Ag-Sulfadiazine

Strain	Conc. of Ag ^d			100 ug/ml			50 ug/ml			40 ug/ml			20 ug/ml			10 ug/ml		
	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour
E. Coli	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Serratia	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Proteus	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Achromobacter	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
R. Pneumoniae	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
M. Morganella	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
C. Trachomatis	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
C. Albicans	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55

TABLE 4
Minimal Inhibitory Concentration in Liquid Medium
AgNO₃ - Control

Strain	Conc. of Ag ⁺	100 ug/ml Ag ⁺	50 ug/ml	40 ug/ml	20 ug/ml	10 ug/ml
	Hour	Hour	Hour	Hour	Hour	Hour
E. Coli	24 48 72	24 48 72	24 48 72	24 48 72	24 48 72	24 48 72
Serratia	- - -	- - -	- - -	- - -	- - -	- - -
Pseudomonas aeruginosa	- - -	- - -	- - -	- - -	- - -	- - -
Proteus	- - -	- - -	- - -	- - -	- - -	- - -
Actinobacter	- - -	- - -	- - -	- - -	- - -	- - -
K. pneumoniae	- - -	- - -	- - -	- - -	- - -	- - -
M. Morganii	- - -	- - -	- - -	- - -	- - -	- - -
C. Tropicalis	- - -	- - -	- - -	- - -	- - -	- - -
C. Albicans	- - -	- - -	- - -	- - -	- - -	- - -

Cultures grown in liquid LB (no NaCl).
With concentrations of Ag Iono indicated.

TABLE 5

Efficacy of Agfa and Ag Sulfaflazine as Double Agar Layer
 (Thickness of upper layer - 2.0 mm)

கிராம	Ag Molybdate Acid (அப் மூப்பு/வி ஏடு)		Ag Sulfaflazine (அப் ஸுல்஫ாஃஜைனேயீடு)	
	24 Hour	48 Hour	72 Hour	96 Hour
R. Coli	0	0	0	0
	1.5 x 10 ⁶	1.5 x 10 ⁵	1.0 x 10 ⁵	1.2 x 10 ⁶
Serratia	0	0	0	0
	1.4 x 10 ⁴	1.9 x 10 ³	2.0 x 10 ³	1.0 x 10 ⁴
Pseudomonas	0	0	0	0
	0.6 x 10 ⁴	1.0 x 10 ⁴	7.3 x 10 ⁴	0.5 x 10 ⁴
Proteus	0	0	0	0
	3.2 x 10 ⁴	2.0 x 10 ⁵	2.2 x 10 ⁵	2.0 x 10 ⁵
A. Proteus	0	600	0	0
	1.1 x 10 ⁴	2.3 x 10 ⁵	1.3 x 10 ⁵	7.6 x 10 ⁴
Actinobacter	0	0	0	0
	2.7 x 10 ⁴	2.7 x 10 ⁵	1.0 x 10 ⁵	2.7 x 10 ⁴
C. Albinum	0	100	0	0
	10 ⁴	0.5 x 10 ⁴	2.0 x 10 ⁴	6.5 x 10 ³
H. Morganii	0	100	0	0
	3.5 x 10 ⁴	1.7 x 10 ⁵	2.2 x 10 ⁵	2.5 x 10 ⁵

Results are given in Percent

20

15

10

5

30

25

TABLE 6

Strain	Ag Hyaluronic Acid (40 µg/ml Ag ⁺)			Ag Sulfadiazine (40 µg/ml Ag ⁺)		
	24 hour	48 hour	72 hour	96 hour	24 hour	48 hour
<i>E. coli</i>	0	0	0	0	0	0
	$1.5 \cdot 10^6$	$3.0 \cdot 10^5$	$2.6 \cdot 10^4$	$2.3 \cdot 10^4$	$1.5 \cdot 10^6$	$3.0 \cdot 10^4$
<i>Serratia</i>	0	26	160	2000	0	95
	$1.4 \cdot 10^4$	$3.0 \cdot 10^5$	$2.3 \cdot 10^5$	$1.6 \cdot 10^5$	$1.4 \cdot 10^4$	$3.0 \cdot 10^5$
<i>Pseudomonas</i>	60	253	50	31	0	576
	$0.6 \cdot 10^4$	$1.5 \cdot 10^4$	$3.0 \cdot 10^3$	$1.0 \cdot 10^3$	$0.6 \cdot 10^4$	$1.5 \cdot 10^4$
<i>Proteus</i>	0	1	0	0	0	520
	$3.2 \cdot 10^4$	10^4	$0.61 \cdot 10^4$	$0.6 \cdot 10^4$	$3.2 \cdot 10^4$	10^5
<i>K. pneumoniae</i>	0	24	2000	0	0	4000
	$1.1 \cdot 10^4$	10^4	$8.2 \cdot 10^4$	$4.0 \cdot 10^4$	$1.1 \cdot 10^4$	10^5
<i>Acinetobacter</i>	0	0	32	0	1	12
	$2.7 \cdot 10^4$	$6.5 \cdot 10^4$	$0.02 \cdot 10^4$	$2.4 \cdot 10^4$	$0.004 \cdot 10^4$	$0.2 \cdot 10^4$
<i>C. Albicans</i>	152	600	300	560	130	444
	10^3	$14.2 \cdot 10^3$	$4.0 \cdot 10^3$	$2.1 \cdot 10^3$	$2.4 \cdot 10^4$	$6.5 \cdot 10^3$
<i>M. Morganii</i>	0	0	0	0	3	600
	$3.5 \cdot 10^4$	$2.4 \cdot 10^5$	$5.2 \cdot 10^4$	$4.6 \cdot 10^4$	$3.5 \cdot 10^4$	$2.4 \cdot 10^5$

Results are given in Percent

- 27 -

EXAMPLE 5

ANTIMICROBIAL ACTIVITY OF SILVER HYALURONATE

Antimicrobial activity was tested against *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa* and *Candida albicans*.

The tests were performed using two different methods, a Minimum Inhibitory Concentration (MIC) test (1) where the Ag-hyaluronate was added to a liquid growth medium and an Agar Cup Test (2) where the test substance was filled into small wells punched in agar plates.

The results indicates that a concentration of 1% of the Ag-hyaluronate preparation inhibits the growth of the four test strains. In liquid medium *P. aeruginosa* was inhibited at a concentration of 0.1%.

The Ag-hyaluronate preparation which was used in the tests contained 16 mg/ml of the silver salt.

Antimicrobial Activity of Ag-hyaluronate:

Materials and Methods: Ag-hyaluronate.

Test strains: *Escherichia coli* ATCC 8739; *Pseudomonas aeruginosa* ATCC 9027; *Staphylococcus aureus* ATCC 6538; *Candida albicans* ATCC 102 31.

The microorganisms were grown on Trypticase Soy Broth (TSB) at 35-37°C for 18-24 hours. Dilutions were made in physiological saline solution.

- 28 -

Test method 1. MIC-test:

Ag-hyaluronate was added to TSB to a final concentration of 1.0%. Solutions with Ag-hyaluronate concentrations of 0.1% and 0.01% were made by further dilutions in TSB. Test organisms were added to the medium to a concentration of approximately 10^3 org/ml. The test tubes were then incubated at 35-37°C and inspected for visible signs of growth during a period of one week. A turbid medium was recorded as growth. For *Candida albicans* the presence of a white-colored button at the bottom of the test tube was recorded as growth.

Test method 2. Agar Cup Test:

Overnight cultures of the test strains were diluted in sterile physiological saline. The suspensions were flushed over 14 cm diameter Trypticase Soy Agar plates and excess liquid was removed.

The plates were dried in a laminar air flow unit for 30 minutes. 5 mm diameter wells were punched in the agar. The test solutions were filled in the wells. The plates were incubated at 35-37°C and were inspected after overnight incubation. Clear zones surrounding the wells indicated antimicrobial activity. The diameter of the zones were measured.

25

The following solutions were tested:

Agar Cup Test A:

Ag-hyaluronate (undiluted)

30

Ag-hyaluronate diluted in distilled water 1:1

- 29 -

Ag-hyaluronate diluted in horse serum (S8L) 1:1

0.01% Thiomersal Reference

Agar Cup Test B:

	1 g	in TSB
5 Ag hyaluronate		
□	0.1 g	□
□	0.01 g	□
□	0.001%	□
Thiomersal	0.01 g	□
10 □	0.001%	□

Results are shown in Tables 7, 8 and 9:

15

20

25

30

35

- 30 -

TABLE 7. MIC Test

Test organism	Ag-hyaluronate conc.				
	1%	0.1%	0.01%	0.001%	0%
5 <i>Candida</i> <i>Albicans</i>	-	+	+	+	+
E. Coli	-	+	+	+	+
	-	-	+	+	+
10 <i>P. Aeruginosa</i>	-	-	+	+	+
	-	-	+	+	+
<i>S. Aureus</i>	-	+	+	+	+
15	-	+	+	+	+

+ Growth

- No growth

Duplicate samples

20

25

30

35

- 31 -

TABLE 8. Agar Cup Test, A

		Inhibition zone (mm)			
	Test organism	AgHA undi- luted	AgHA/ water 1:1	AgHA/ serum 1:1	0.01% Thiomer- sal
	S. Aureus	15	13	12	29
5	C. Albicans	16	13	15	40
10	P. Aeruginosa	13	11	11	19
	E. Coli	14	10	10	17

15

20

25

30

35

- 32 -

TABLE 9. Agar Cup Test, B

Test organism	Inhibition zone (mm)			
	AgHA 1%	AgHA 0.1%	AgHA 0.01%	Thiomersal 0.01%
S.aureus	7	5	5	45
C.albicans	9	5	5	22
P.aeruginosa	10	5	5	22
E.coli	11	5	5	33

15

20

25

30

35

- 33 -

Discussion:

The results from the MIC-test in liquid medium indicates that a 1% solution of the test substance in Trypticase Soy Broth inhibits the growth of S. aureus, C. albicans and E. coli. P. aeruginosa is inhibited at a concentration of 0.1%. A 1% solution contains 0.16 mg/ml of Ag-hyaluronate.

The tests with agar cup methodology confirms the results from the tests in liquid medium, though the lowest concentration for inhibition of P. aeruginosa was 1% Ag-hyaluronate.

When the Ag-hyaluronate was mixed with serum before testing with the agar cup method no significant difference could be measured as compared with Ag-hyaluronate mixed with distilled water.

A white-colored precipitate, probably AgCl, appears immediately when the Ag-hyaluronate comes in contact with culture media or serum.

25

30

35

- 34 -

EXAMPLE 6

PREPARATION OF ^{14}C LABELLED HYALURONIC ACID

The biosynthesis of HA by the bacteria involves the utilization of exogenous glucose. The sugar is used mainly as an energy source, while a small portion of it is converted into glucoronic acid and N-acetylglucosamine. These are then incorporated into the HA molecule. Thus, the incorporation of radioactivity can be achieved by feeding carbon-14 labelled glucose into the fermentation broth.

Various experiments were performed, firstly in shake flasks, then in a specially-made pH- and temperature-controlled vessel. It has been found that fermentation in flasks was not efficient resulting both in very low incorporation ratios and low molecular weights. A "mini-fermentor" has been constructed, with a volume of 5 mL of medium, and studies were performed in this system on the rate of glucose incorporation and utilization. It has been found that at the optimal conditions for HA production, about 5% of the exogenous glucose is incorporated into HA. The molecular weight of the HA produced in the mini-fermentor was about 2×10^6 daltons. The system was then used for labelling the HA with ^{14}C -glucose, and in one fermentation about 20 mg of crude ^{14}C -HA was obtained. This material was then purified. The yield of this procedure was about 50%, resulting in a final yield of 10 mg of HA of specific activity of 1 uCi of ^{14}C per mg and a molecular weight of 2.2×10^6 daltons.

- 35 -

The ^{14}C radioactively labelled NaHA so purified may be converted into radioactively labelled AgHA following the procedures described in Example 1.

5

10

15

20

25

30

35

- 36 -

EXAMPLE 7

USE OF SILVER HYALURONATE AGAINST PSEUDOMONAS AERUGINOSA
INFECTION IN A RABBIT EYE MODEL

5 Introduction

Keratitis produced by Pseudomonas aeruginosa is the most rapidly spreading and destructive bacterial disease with which the human cornea can be infected, as well as the 10 most disastrous (Laibson, 1972). The frequency of corneal infections has greatly increased with the use of contact lens. Treatment of early-detected pseudomonas infections with aminoglycosidic antibiotics such as gentamycin usually results in a good therapeutic response. However, the increasing occurrence of antibiotic-resistant bacteria presents a problem, which becomes 15 disastrous when such a situation is detected post-factum. The use of an efficient wide range anti-bacterial agent, such as silver hyaluronate, might overcome this problem.

20

We used a rabbit model for the demonstration of the efficacy of silver hyaluronate for the treatment of an experimentally-induced pseudomonas keratitis (Hyndiuk, 1981).

25

Experimental

Bacteria:

30 A pathogenic hospital isolate of Pseudomonas aeruginosa was used. It has been defined by the pseudomonas reference laboratory at the Rambam Medical Center, Haifa,

35

- 37 -

Israel as a polyagglutinin serotype 6. Overnight cultures were grown in tryptic soy broth without dextrose at 37°C with shaking. In the morning, an aliquot of this culture was diluted 20-fold in fresh broth which was further incubated until a late logarithmic phase was 5 reached (2-3 h.; O.D.₆₆₀ ~ 1.2). The concentration of bacteria was estimated from the optical density at 660 nm (1 O.D. = 2 x 10⁹ cells/ml). The cultures were diluted to the desired density with cold saline. The diluted suspensions were kept at 0 - 4°C until use (1-2 h).

10

Animal treatment:

New Zealand albino rabbits weighing 2-2.5 kg were used. They were anesthetized by intramuscular injection of 15 ketamine hydrochloride (35 mg/kg) and xylazine hydrochloride (3 mg/kg). A 4 mm circular superficial cut was applied on the cornea with a cork borer, then 3 longitudinal parallel scratches were made inside the circle with a 21 gauge needle. The bacterial infection was inflicted 20 by application of 2 drops (at a 10 min. interval) of the diluted bacterial suspension.

Preliminary studies were conducted in order to find the optimal concentration of bacteria needed for infection. 25 We found that suspensions of 8 x 10⁷ bacteria per ml produced 90-100% infection within 30-40 h, whereas a two-fold reduction in bacterial number resulted in lower and variable infection rates. Therefore, all subsequent experiments were performed with suspensions of 8 x 10⁷ 30 bacteria per ml.

- 38 -

Silver Hyaluronate Treatment:

Initial studies were performed with 0.5% w/v of silver hyaluronate in water prepared as described in Example 1. This solution is quite viscous, but its viscosity does not interfere with the drop-wise application into the eye. However, it was found that at this concentration the treated eyes developed a marked irritation of the conjunctive, irrespective of the bacterial infection. Hence, the 0.5% AgHA solution was diluted three-fold with 10 0.5% NaHA aqueous solution (final AgHA concentration 0.17%). A slight irritation response was still apparent, but it was transient and disappeared soon after cessation of treatment with the AgHA preparation.

15 In all experiments, the control eyes were concurrently treated with a 0.5% sodium hyaluronate solution.

Experimental design:

20 In preliminary experiments, AgHA application was initiated 2, 4 and 8 hours after infection. An anti-bacterial effect of the AgHA therapy was clearly evident with the use of the 4 and 2 h intervals. In the early experiments, hourly application of the AgHA solution was continued for 12 to 24 h only. This scheme resulted in a significant protective effect for 24-48 h after infection, but it did not prevent subsequent advancement of bacterial growth and deterioration of the eyes by 72 h. Therefore, a treatment schedule was selected in which 30 hourly application of one drop of the 0.17% AgHA and 0.33% NaHA solution was used, starting 2 h after infection and continuing for 40 h. Treatment was then contin-

- 39 -

ued at 2 h intervals for additional 8-10 h. Two such experiments were performed using 12 or 16 rabbits. In each rabbit, the left eye was treated with the AgRA preparation, while the right eye received 0.5% NaRA and served as a control.

5

Scoring of the results:

The severity of the infection was scored by: (i) macroscopic examination of the eyes; and (ii) counting of 10 bacteria in isolated cornea.

Visual evaluation was performed according to the following scoring system:

15	0 -	No reaction.
	1 -	Leucocyte infiltration associated with the scratches only.
	2 -	Moderate infiltration at the scratches and around them, but not exceeding the 4 mm ring.
20	3 -	Infiltration affecting about 30% of the corneal area.
	4 -	Infiltration and turbidity of about 70% of the corneal area and some cellular infiltration into the anterior chamber.
25	5 -	Heavy infiltration of the total area of the cornea and anterior chamber as well as development of a central corneal abscess.

The eyes were examined 24, 48 and 72 h after infection. 30 Concurrently, rabbits were sacrificed 48 and 72 h after infection and the cornea were removed and homogenized in saline. The homogenates were then serially diluted and

- 40 -

plated on McConkey agar plates for colony counting. Bacteria isolated from the cornea were identified as Pseudomonas aeruginosa by standard biochemical tests and sensitivity to antibiotics.

5 The scoring results were analyzed statistically by the two tailed Wilcoxon rank sum test.

Results:

10 AgHA treatment was found to be highly effective in the prevention of Pseudomonas keratitis in the rabbit eye. Table 10 summarizes the results of two experiments performed with a 0.17% AgHA preparation. As shown, the intensive treatment with the silver salt resulted in a
15 marked inhibition of bacterial growth in the treated eyes. The scores of the control eyes were high as early as 42-45 h after infection (scoring index of 3.4 - 3.6) and increased during the next days to reach a very advanced stage (scoring index of 4.9) by 120 h. In contrast,
20 the mean scores of the treated eyes were significantly lower than those of the control group throughout the experiment (Table 10), and they did not increase beyond 72 h (see Table 10, Experiment I). It should be emphasized that in both experiments, most of the scores
25 of the AgHA treated eyes did not exceed the value of 1. The mean scores shown in Table 10 are somewhat higher than that because in each experiment there were one or two eyes that have escaped AgHA protection.

30 The effectiveness of the AgHA treatment was also apparent from the fact that no bacteria were found in isolated cornea of treated eyes, whereas an abundant num-

- 41 -

ber of pseudomonas microorganisms (10^5 - 10^6 bacteria per corneum; Table 10) were found in the control eyes 42-120 h after infection.

Conclusion:

5

AgHA was shown to have an effective therapeutic effect against the viscous bacteria Pseudomonas aeruginosa, in vivo. The use of such a preparation on its own or in conjunction with the commonly-used antibiotics might 10 prove highly beneficial in the topical treatment of bacterial keratitis.

15

20

25

30

35

- 42 -

TABLE 10

5

**Effect of AgHA Treatment of Infected Rabbit Eyes
on the Scoring Index and Bacteria Count**

Exp. No.	Time After Infection	Scoring Index (mean \pm SEM)		No. of Bacteria/Corneum (Range)		
		Control Eye	Treated Eye	Control Eye	Treated Eye	
10	I	45 h	3.62 \pm 1.11 (N = 12)	1.44 \pm 0.97*** (N = 12)	(a)	(a)
		72 h	4.29 \pm 1.50 (N = 7)	1.79 \pm 1.55* (N = 7)	(b)	(b)
		120 h	4.86 \pm 0.87 (N = 16)	1.86 \pm 1.55** (N = 16)	1.5×10^5 - 2.4×10^6 (N = 4)	$< 10^3$ (N = 3)
15	II	42 h	3.41 \pm 1.70 (N = 16)	0.84 \pm 0.65*** (N = 16)	5×10^5 - 4×10^6 (N = 4)	$< 10^3$ (N = 5)
		66 h	4.22 \pm 1.64 (N = 9)	1.50 \pm 1.20** (N = 9)	3×10^4 - 5×10^6 (N = 6)	$< 10^3$ (N = 6)

* p < 0.05: control vs. treated

** p < 0.01

*** p < 0.001

(a) samples lost

(b) note determined

25

30

35

- 43 -

REFERENCES

1. Carr, H.S., T.J. Wlodkowski and H.S. Rozenkrantz, "Silver Sulfadiazine: In Vitro Antibacterial Activity", *Antimicrob. Agents and Chemotherapy* 4: 585-587 (1973).
- 5
2. Dettch, E.A., A.A. Marino, T.E. Gillespie and J.A. Albright, "Silver-nylon: A New Antimicrobial Agent", *Antimicrob. Agents and Chemotherapy* 23: 356-359 (1982).
- 10
3. Roseman, S. et al, "Biosynthesis of Hyaluronic Acid By Group A Streptococcus", *Biol. Chem.* 203, 212-225 (1953).
- 15
4. Hyndiuk, R.A., "Experimental Pseudomonas Keratitis", *Tr. Am. Ophth. Soc.* 79: 541-624 (1981).
5.
20
Laibson, P.R., "Cornea and Sclera", *Ophthalmol* 88: 553-574 (1972).

25

30

35

- 44 -

WHAT IS CLAIMED IS:

1. A heavy metal salt of hyaluronic acid.
2. A salt in accordance with claim 1, wherein the
5 metal is selected from the group consisting of silver,
gold, cerium, and tungsten.
3. A salt in accordance with claim 2, wherein the
metal is silver.
10
4. A salt in accordance with claim 2, wherein the
metal is gold.
5. A salt in accordance with claim 2, wherein the
15 metal is cerium.
6. A salt in accordance with claim 2, wherein the
metal is tungsten.
20
7. A method of preparing the compound of claim 3
which comprises:
 - (a) admixing aqueous sodium hyaluronate solution
with a molar excess of aqueous silver nitrate solution
25 so as to form aqueous silver hyaluronate solution;
 - (b) treating the aqueous silver hyaluronate
(AgHA) solution so formed to effect precipitation of
the silver hyaluronate; and
 - 30 (c) recovering the precipitated silver hyaluro-
nate.

- 45 -

8. The method in accordance with claim 7, wherein recovering the precipitated silver hyaluronate comprises separating the silver hyaluronate precipitate from the aqueous solution by centrifugation, washing 5 the separated precipitate with ethanol and drying the washed precipitate over nitrogen.

9. A method in accordance with claim 7, wherein the silver hyaluronate is prepared in the absence of light.

10. 10. A method in accordance with claim 9, wherein after admixing, the aqueous sodium hyaluronate and the aqueous silver nitrate mixture is shaken for a sufficient period of time to form aqueous silver hyaluronate.

15. 11. A method in accordance with claim 10, wherein recovering the precipitated silver hyaluronate comprises rinsing the silver hyaluronate precipitate with ethanol, drying the rinsed precipitate with nitrogen 20 and further drying the nitrogen dried precipitate by high vacuum drying.

12. A composition comprising the compound of claim 3 and a carrier.

25. 13. A pharmaceutical composition comprising an effective amount of the compound of claim 3 and a pharmaceutically acceptable carrier.

30. 14. A pharmaceutical composition comprising an effective amount of the compound of claim 4 and a pharmaceutically acceptable carrier.

- 46 -

15. A method of inhibiting microbial growth which comprises contacting microbes with an effective amount of the compound of claim 3.
- 5 16. A method of treating a burn victim which comprises topically applying to the burn an effective amount of the compound of claim 3.
- 10 17. A method of treating a wound victim which comprises topically applying to the wound an effective amount of the compound of claim 3.
- 15 18. A method of treating a subject having soft-tissue infection which comprises topically applying to the infection an effective amount of the compound of claim 3.
- 20 19. A method of treating a subject having gonococcal opthalmological infection which comprises topically applying to the infection an effective amount of the compound of claim 3.
- 25 20. A method of treating a subject having sepsis which method comprises topically applying to the infection causing the sepsis an effective amount of compound of claim 3.
- 30 21. A method of treating a subject having keratitis which method comprises typically applying to the infection causing the keratitis an effective amount of compound of claim 3.

- 47 -

22. A method of claim 21, wherein commonly used antibiotics may optionally be used in conjunction with the compound.

23. A method of treating a subject afflicted with rheumatoid arthritis which comprises administering intra-articularly to the subject an effective amount of the compound of claim 4.

24. A method of treating a subject afflicted with inflammation of the joints which comprises administering intra-articularly to the subject an effective amount of the compound of claim 4.

25. A composition comprising heavy metal salts of radioactively labelled hyaluronic acid.

26. A composition of claim 25, wherein the heavy metal salt of hyaluronic acid is silver hyaluronate.

27. A composition of claim 26, wherein the silver hyaluronate is radioactively labelled with ^{14}C .

25

30

35

FIGURE 1

SLOW RELEASE OF Ag⁺ FROM AgHA

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US87/00549

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ^a

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC4 A61 K 43/00 ; US 514/15

II. FIELDS SEARCHED

Minimum Documentation Searched ^b

Classification System	Classification Symbols
US	514/15, 54, 800, 781, 844, 846, 847, 912, 914; 524/27, 29; 424/1.1, 95, 81, 63, 64, 70, 78; 525/54.2; 433/177; 536/4.1; 623/11, 16.

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ^c

III. DOCUMENTS CONSIDERED TO BE RELEVANT ^d

Category ^e	Citation of Document, ^f with indication, where appropriate, of the relevant passages ^g	Relevant to Claim No. ^h
P, Y	US, A 4,605,691, Published 12 Aug. 1986, (Balazas et al.), 1-25	
Y	US, A 4,487,865, Published 11 Dec. 1984, (Balazas et al.) 12,13,14	
A	US, A 4,211,769, Published 08 July 1980, (Okada et al.) 1-25	
Y	US, A 4,172,128, Published 23 Oct. 1979, (Thiele et al.) 1-11 and 23-25	
A	N, J. Biol. Chem., issued 1956, (Vouras et al.), "The Outer Sphere Association of Chondroitin Sulfate with Polyvalent Complex Cations", pages 792-795.	1-25
X	N, Biochemical and Biophysical Research Communications 74(2), issued 1977, (Figueroa et al.), "Cu-Hyaluronic Acid Complex: Spectrophotometric Detection", pages 460-465.	1,23
Y	N, Connective Tissue Res. 6(2), issued 1978, (Atkins et al.) "Hyaluronic Acid Conformations Observed for Various Salt Forms in the Crystalline Phase, page 116.	12-14

^a Special categories of cited documents: ⁱ

- ^{"A"} document defining the general state of the art which is not considered to be of particular relevance
- ^{"E"} earlier document but published on or after the international filing date
- ^{"L"} document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- ^{"O"} document referring to an oral disclosure, use, exhibition or other means
- ^{"P"} document published prior to the international filing date but later than the priority date claimed

^{"T"} later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

^{"X"} document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

^{"Y"} document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

^{"G"} document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ⁱ

21 May 1987

Date of Mailing of this International Search Report ^j

16 JUN 1987

International Searching Authority ^k

ISA/US

Signature of Authorized Officer ^l

T J Wallen
T J Wallen

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

A

N, Biopolymers 17, issued 1978,(Figueroa et al.), "Circular Dichroism Studies of Copper (II).- Hyaluronic Acid Complex in Relation to Conformation of the Polymer" pages 2415-2426.

1-25

SEE ADDITIONAL PAGE

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹⁰

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter¹² not required to be searched by this Authority, namely:

2. Claim numbers because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out¹³, specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING ¹¹

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the international application for which fees were paid, specifically claim(s):

3. No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional search fees.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No
A	N, Arthritis and Rheumatism 25: (12), issued 1982, (Betts et al.), "Effect of Metal Chelators and Antiinflammatory Drugs on the Degradation of Hyaluronic Acid, pages 1469-1476,	1-25
A	N, Graefe's Arch. Clin. Exp. Ophthalmol. 218, issued 1982, (Schmutz et al.), "Preparation of Gels from Hyaluronate Solutions", pages 311-314.	1-25
A	N, Current Eye Research 3(8), issued 1984, (Liu et al.), "Inhibition of Oxidative Degredation of Hyaluronic Acid by Uric Acid", pp 1049-1053.	1-25

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.