V		13	C.	1
	100	4		7
	90	E		
	¢	×		
16				10

I. E. S. " SAN ISIDRO

Calificación

11. Halla los ceros de las siguientes funciones y determina sus ordenes:

a) - f(z) = 24+222+1

 $f(z) = 0 \implies z^{4}, 2z^{2}, 1 = 0 \implies \omega^{2}, 2\omega + 1 = 0 \implies (\omega + 1)^{2} = 0$

 $(z^{2}+1)^{2}=0 \Leftrightarrow ((z+i)(z-i))^{2}=0 \Leftrightarrow (z+i)^{2}(z-i)^{2}=0$

=) f(z) = 24+2z2+1 = (z10)2(z-0)2.

Les ceres de la funcion son è y-è y ambos tienen orden 2!

b) f(z) = Z3 cos2

 $f(z)=0 \Leftrightarrow \langle e^{z^3}=0 \Leftrightarrow z=0 \rangle$ $\cos^2 z=0 \Leftrightarrow \cos z=0. \Leftrightarrow z=\frac{\pi}{2}+k\pi \cos k\epsilon z$

Hacemos el desarrollo en serie de Taylor de g.(Z) = cos Z para

Cader KEZ para suber la multiplicided de los ceros de glz)

g(Z) = cos Z

9 ([+ kli) = 0

91)(Z) = -senz

 $9'(\frac{\pi}{2}, \kappa\pi) = 71$

 $\Rightarrow g(z) = \sum_{n=0}^{\infty} \frac{g^n(z)}{n!} \left(z - \left(\frac{11}{z} + 2k\pi \right) \right)^n =$

g3)(Z) = - cosz 93)(Z) = SenZ

g2)/[T+K/]) = 0

 $9^{3}(\frac{\pi}{2}+k\pi)=\pm 1$

= \(\frac{\xi_{n,k}}{n!} \left(\frac{2}{5} + 2k\ldots \right) \right)^n

94) (Z) = cosz

94)/#+411) = 0

donde En a es Osi nes par y til sin impar