MATEMÁTICA DISCRETA

Ano Letivo 2021/22 (Versão: 3 de Maio de 2022)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

Capítulo IV Recorrência e Funções Geradoras

PARTE 1

EQUAÇÕES DE RECORRÊNCIA

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

O problema é

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- um disco maior nunca pode fica acima de um disco menor.

Torre de Hanói

O problema é

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- · apenas um disco poderia ser movido por vez, e
- · um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo «Brama» de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

O problema é

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- · um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo «Brama» de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

Temos de preocupar-nós?

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

É mais fácil pensar recursivamente:

• Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.
- Se *n* > 1, então:

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.
- Se n > 1, então:
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.
- Se *n* > 1, então:
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - · mover o último disco de origem para destino; depois

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.
- Se *n* > 1, então:
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - · mover o último disco de origem para destino; depois
 - mover os n-1 discos de auxiliar para destino utilizando origem.

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

É mais fácil pensar recursivamente:

- Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.
- Se n > 1. então:
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - mover o último disco de origem para destino; depois
 - mover os n-1 discos de auxiliar para destino utilizando origem.

Logo, $a_n = a_{n-1} + 1 + a_{n-1} = 2a_{n-1} + 1$.

Os números

Os famosos números de Fibonaccia

1, 1, 2, 3, 5, 8, 13, 21, ...

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

Embora os números de Fibonacci sejam completamente determinados pelos primeiros dois termos $F_{\rm o}$ e $F_{\rm 1}$, não é fácil calcular, por exemplo, $F_{\rm 312493741}$ porque, pela definição, é necessário calcular primeiro $F_{\rm 312493739}$, para isso precisamos de $F_{\rm 312493738}$ e $F_{\rm 312493737}$, ... e assim até $F_{\rm 2}=F_{\rm 1}+F_{\rm o}$.

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

Embora os números de Fibonacci sejam completamente determinados pelos primeiros dois termos $F_{\rm o}$ e $F_{\rm 1}$, não é fácil calcular, por exemplo, $F_{\rm 312493741}$ porque, pela definição, é necessário calcular primeiro $F_{\rm 312493740}$ e $F_{\rm 312493739}$, para isso precisamos de $F_{\rm 312493738}$ e $F_{\rm 312493737}$, ... e assim até $F_{\rm 2}=F_{\rm 1}+F_{\rm o}$.

Estes números aparecem em muitos contextos

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente).

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

 cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

- cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,
- depois de um mês, um coelho jovem passa a ser um coelho adulto, e

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

- cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,
- depois de um mês, um coelho jovem passa a ser um coelho adulto, e
- sendo vegetarianos, os coelhos vivem «eternamente».

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

- cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,
- depois de um mês, um coelho jovem passa a ser um coelho adulto, e
- · sendo vegetarianos, os coelhos vivem «eternamente».

No que se segue, A_n denota o número de pares de coelhos adultos e J_n o número de pares de coelhos jovens no final do mês n. Começando com um par de coelhos jovens, qual é o número $c_n = A_n + J_n$ de pares de coelhos?

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

- cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,
- · depois de um mês, um coelho jovem passa a ser um coelho adulto, e
- · sendo vegetarianos, os coelhos vivem «eternamente».

No que se segue, A_n denota o número de pares de coelhos adultos e J_n o número de pares de coelhos jovens no final do mês n. Começando com um par de coelhos jovens, qual é o número $c_n = A_n + J_n$ de pares de coelhos? Por hipotése, $A_0 = 0$, $J_0 = 1$, $A_1 = 1$, $J_1 = 0$ e, para $n \ge 1$,

$$A_n = A_{n-1} + J_{n-1}$$
 e $J_n = A_{n-1}$.

Uma população de coelhos

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que

- cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês,
- depois de um mês, um coelho jovem passa a ser um coelho adulto, e
- sendo vegetarianos, os coelhos vivem «eternamente».

No que se segue, A_n denota o número de pares de coelhos adultos e J_n o número de pares de coelhos jovens no final do mês n. Começando com um par de coelhos jovens, qual é o número $c_n = A_n + J_n$ de pares de coelhos? Por hipotése, $A_0 = 0$, $J_0 = 1$, $A_1 = 1$, $J_1 = 0$ e, para n > 1,

$$A_n = A_{n-1} + J_{n-1}$$
 e $J_n = A_{n-1}$.

Portanto, para $n \ge 2$, $A_n = A_{n-1} + A_{n-2}$; e $c_n = A_n + J_n$ satisfaz

$$c_0 = 1$$
, $c_1 = 1$, $c_n = c_{n-1} + c_{n-2}$ $(n \ge 2)$.

Quadrados

Acrescentamos um quadrado no lado mais comprido. Qual é o comprimento de um lado do quadrado *n*?

$$a_0 = 1,$$

$$a_1 = 1$$
,

:

Quadrados

Acrescentamos um quadrado no lado mais comprido. Qual é o comprimento de um lado do quadrado *n*?

$$a_0=1,$$

$$a_1 = 1$$
,

$$a_2 = 2$$
,

Quadrados

Acrescentamos um quadrado no lado mais comprido. Qual é o comprimento de um lado do quadrado *n*?

$$a_{o}=1,$$

$$a_1 = 1$$
,

$$a_2 = 2$$
,

$$a_3 = 3$$
,

:

Quadrados

Acrescentamos um quadrado no lado mais comprido. Qual é o comprimento de um lado do quadrado *n*?

$$a_0=1,$$

$$a_1=1,$$

$$a_2=2,$$

$$a_3 = 3$$
,

$$a_4 = 5$$

Quadrados

Acrescentamos um quadrado no lado mais comprido. Qual é o comprimento de um lado do quadrado *n*?

$$a_0 = 1,$$
 $a_1 = 1,$
 $a_2 = 2,$
 $a_3 = 3,$
 $a_4 = 5,$
 \vdots

 $a_{n+2} = a_{n+1} + a_n$

Soma de números de Fibonacci

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Utilizando $F_n = F_{n+1} - F_{n-1}$ (para $n \ge 1$), calculamos

$$\sum_{k=0}^{n-1} F_k = F_0 +$$

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Utilizando $F_n = F_{n+1} - F_{n-1}$ (para $n \ge 1$), calculamos

$$\sum_{k=0}^{n-1} F_k = F_0 +$$

Cálculo auxiliar:

$$+ (F_2 - F_0)$$

 $+ (F_3 - F_1)$
 $+ (F_4 - F_2)$
...
 $+ (F_n + F_{n-2})$

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Utilizando $F_n = F_{n+1} - F_{n-1}$ (para $n \ge 1$), calculamos

$$\sum_{k=0}^{n-1} F_k = F_0 + \sum_{k=2}^{n} F_k - \sum_{k=0}^{n-2} F_k$$

Cálculo auxiliar:

$$+ (F_2 - F_0)$$

 $+ (F_3 - F_1)$
 $+ (F_4 - F_2)$
...
 $+ (F_n + F_{n-2})$

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Utilizando $F_n = F_{n+1} - F_{n-1}$ (para $n \ge 1$), calculamos

$$\sum_{k=0}^{n-1} F_k = F_0 + \sum_{k=2}^{n} F_k - \sum_{k=0}^{n-2} F_k = F_n + F_{n-1} - 1$$

Cálculo auxiliar:

$$+ (F_2 - F_0)$$

 $+ (F_3 - F_1)$
 $+ (F_4 - F_2)$

 $+(F_n+F_{n-2})$

SOMA DE NÚMEROS DE FIBONACCI

Exemplo

Determinamos a soma dos n primeiros números de Fibonacci.

Utilizando $F_n = F_{n+1} - F_{n-1}$ (para $n \ge 1$), calculamos

$$\sum_{k=0}^{n-1} F_k = F_0 + \sum_{k=2}^{n} F_k - \sum_{k=0}^{n-2} F_k = F_n + F_{n-1} - 1 = F_{n+1} - 1.$$

Cálculo auxiliar:

$$+ (F_2 - F_0)$$

 $+ (F_3 - F_1)$
 $+ (F_4 - F_2)$
...
 $+ (F_n + F_{n-2})$

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

As ordens totals em $\{1, 2, ..., n, n + 1\}$ podemos obter de seguinte modo:

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n = 0, então o número a_0 de ordens totais em \emptyset é $a_0 = 1$.

As ordens totals em $\{1, 2, ..., n, n + 1\}$ podemos obter de seguinte modo:

• ordenamos primeiro $\{1, 2, ..., n\}$, denotamos o número de maneiras por a_n ; depois

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n = 0, então o número a_0 de ordens totais em \emptyset é $a_0 = 1$.

As ordens totals em $\{1, 2, ..., n, n + 1\}$ podemos obter de seguinte modo:

- ordenamos primeiro $\{1, 2, ..., n\}$, denotamos o número de maneiras por a_n ; depois
- podemos inserir n + 1, aqui há n + 1 possibilidades.

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n = o, então o número a_o de ordens totais em \emptyset é $a_o = 1$.

As ordens totals em $\{1, 2, ..., n, n + 1\}$ podemos obter de seguinte modo:

- ordenamos primeiro $\{1, 2, ..., n\}$, denotamos o número de maneiras por a_n ; depois
- podemos inserir n + 1, aqui há n + 1 possibilidades.

Pelo princípio da multiplicação, o número a_{n+1} de ordens totais em $\{1,2,\ldots,n,n+1\}$ é

$$a_{n+1} = (n+1)a_n$$
.

ÍNDICE

1. Noções gerais

- 2. Equações de recorrência lineares
- 3. Equações de recorrência lineares homogéneas
- 4. Equações de recorrência lineares em geral
- 5. Equações de recorrência não lineares

Definição

• Uma equação de recorrência^a é uma equação da forma

$$X_n = f(n, X_{n-1}, X_{n_2}, \dots, X_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$.

^aou relação de recorrência

Definição

• Uma equação de recorrência^a é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$.

 A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).

^aou relação de recorrência

Definição

• Uma equação de recorrência^a é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$.

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n \geq k$.

^aou relação de recorrência

Definição

• Uma equação de recorrênciaa é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$.

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n \geq k$.

Nota

Resolver uma relação de recorrência significa determinar todas as suas soluções.

^aou relação de recorrência

Equações de Recorrência

Definição

• Uma equação de recorrência^a é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$.

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n\geq k$.

Nota

Resolver uma relação de recorrência significa determinar todas as suas soluções. Estamos particularmente interessados em descrever as soluções com fórmulas fechadas; ou seja, na forma

 a_n = «uma expressão que apenas envolve a variável n».

aou relação de recorrência

Definição

• Uma equação de recorrência linear (de coeficientes constantes e) de ordem *k* é uma equação da forma

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \cdots + c_k X_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

Definição

• Uma equação de recorrência linear (de coeficientes constantes e) de ordem *k* é uma equação da forma

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \cdots + c_k X_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

• A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.

Definição

• Uma equação de recorrência linear (de coeficientes constantes e) de ordem *k* é uma equação da forma

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$X_n = C_1 X_{n-1} + C_2 X_{n_2} + \cdots + C_k X_{n-k}.$$

Definição

 Uma equação de recorrência linear (de coeficientes constantes e) de ordem k é uma equação da forma

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$X_n = C_1 X_{n-1} + C_2 X_{n_2} + \cdots + C_k X_{n-k}.$$

Exemplo

• $x_n = 3x_{n-1} + 2x_{n-2} + 3n$ é uma equação de recorrência linear (não homogénea) da ordem 2.

Definição

 Uma equação de recorrência linear (de coeficientes constantes e) de ordem k é uma equação da forma

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \cdots + c_k X_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$X_n = C_1 X_{n-1} + C_2 X_{n_2} + \cdots + C_k X_{n-k}.$$

Exemplo

- $x_n = 3x_{n-1} + 2x_{n-2} + 3n$ é uma equação de recorrência linear (não homogénea) da ordem 2.
- $x_n = 3x_{n-1} + 2x_{n-2}$ é a equação homogénea associada.

Exemplo

• A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas não tem coeficientes constantes.

Exemplo

- A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas não tem coeficientes constantes.
- A equação $x_n = 2x_{n-1} x_{n-2}$ ($n \ge 2$) é uma equação de recorrência linear homogénea (de coeficientes constantes).

Exemplo

- A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas não tem coeficientes constantes.
- A equação $x_n = 2x_{n-1} x_{n-2}$ ($n \ge 2$) é uma equação de recorrência linear homogénea (de coeficientes constantes).

Verificamos que a sucessão $(a_n)_{n\in\mathbb{N}}$ definida por

$$a_n = 3n \qquad (n \in \mathbb{N})$$

é solução desta equação.

Exemplo

- A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas não tem coeficientes constantes.
- A equação $x_n = 2x_{n-1} x_{n-2}$ ($n \ge 2$) é uma equação de recorrência linear homogénea (de coeficientes constantes).

Verificamos que a sucessão $(a_n)_{n\in\mathbb{N}}$ definida por

$$a_n=3n \qquad (n\in\mathbb{N})$$

 \acute{e} solução desta equação. De facto, para cada $n \geq$ 2,

$$2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) =$$

 $3(2(n-1) - (n-2)) = 3n = a_n.$

Exemplo

- A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas não tem coeficientes constantes.
- A equação $x_n = 2x_{n-1} x_{n-2}$ ($n \ge 2$) é uma equação de recorrência linear homogénea (de coeficientes constantes).

Verificamos que a sucessão $(a_n)_{n\in\mathbb{N}}$ definida por

$$a_n=3n \qquad (n\in\mathbb{N})$$

 \acute{e} solução desta equação. De facto, para cada $n \geq$ 2,

$$2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) =$$

 $3(2(n-1) - (n-2)) = 3n = a_n.$

Um cálculo semelhante revela que as sucessões

$$(0)_{n\in\mathbb{N}}, \quad (n)_{n\in\mathbb{N}}, \quad (1)_{n\in\mathbb{N}}, \quad (5n+2)_{n\in\mathbb{N}}$$

são soluções da equação acima.

COMO RESOLVER EQUAÇÕES DE RECORRÊNCIA LINEARES?

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea associada à equação (*)

Como resolver equações de recorrência lineares?

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea associada à equação (*)

Nota

Um resultado deste tipo já conhecemos de

- ALGA → resolver equações lineares;
- Cálculo II 😽 resolver equações diferenciais lineares.

Como resolver equações de recorrência lineares?

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea associada à equação (*)

Demonstração.

 Se b é uma solução de (*) e a é uma solução da equação homogénea associada, então a + b é uma solução de (*).

Como resolver equações de recorrência lineares?

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea associada à equação (*)

Demonstração.

- Se b é uma solução de (*) e a é uma solução da equação homogénea associada, então a + b é uma solução de (*).
- Se b_1 e b_0 são soluções de (*), então $b_1 b_0$ é uma solução da equação homogénea associada, e $b_1 = b_0 + (b_1 b_0)$.

Considerações iniciais

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \cdots + c_k X_{n-k}$$
 (*)

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea de ordem k.

Considerações iniciais

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k}$$
 (*)

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea de ordem k.

 O conjunto das soluções de (*) é um subespaço do espaço vetorial de todas as sucessões (reais ou complexos).

Considerações iniciais

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k}$$
 (*)

- $(c_k \neq 0)$ uma equação de recorrência linear homogénea de ordem k.
 - O conjunto das soluções de (*) é um subespaço do espaço vetorial de todas as sucessões (reais ou complexos).
 - Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto,

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k \longrightarrow \{ \text{as soluções de (*)} \}$

$$(a_0, \dots, a_{k-1}) \longmapsto (a_0, \dots, a_{k-1}, c_1 a_{k-1} + \dots + c_k a_0, \dots)$$

é um isomorfismo;

Considerações iniciais

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k}$$
 (*)

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea de ordem k.

- O conjunto das soluções de (*) é um subespaço do espaço vetorial de todas as sucessões (reais ou complexos).
- Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto,

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k\longrightarrow \{ ext{as soluções de (*)}\}$ $(a_0,\ldots,a_{k-1})\longmapsto (a_0,\ldots,a_{k-1},\,c_1a_{k-1}+\cdots+c_ka_0,\ldots)$

é um isomorfismo; logo: $\dim\{as\ soluções\ de\ (*)\} = k$.

Considerações iniciais

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k}$$
 (*)

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea de ordem k.

- O conjunto das soluções de (*) é um subespaço do espaço vetorial de todas as sucessões (reais ou complexos).
- Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto,

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k\longrightarrow \{ ext{as soluções de (*)}\}$ $(a_0,\ldots,a_{k-1})\longmapsto (a_0,\ldots,a_{k-1},\,c_1a_{k-1}+\cdots+c_ka_0,\ldots)$

é um isomorfismo; logo: $dim{as soluções de (*)} = k$.

Conclusão

Para descrever todas as soluções de (*), procuramos *k* soluções de (*) linearmente independente.

A EQUAÇÃO CARATERÍSTICA

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$O = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \dots - c_k X_{n-k} \quad (k \ge 1, \ c_k \ne 0).$$
 (*)

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$O = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \dots - c_k X_{n-k} \quad (k \ge 1, \ c_k \ne 0).$$
 (*)

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções?

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$O = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \dots - c_k X_{n-k} \quad (k \geq 1, \ c_k \neq 0). \tag{*}$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0,

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \cdots - c_k X_{n-k} \quad (k \ge 1, \ c_k \ne 0). \tag{*}$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0, e para $q\neq 0$ temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}),$

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \cdots - c_k X_{n-k} \quad (k \ge 1, c_k \ne 0).$$
 (*)

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0, e para $q\neq 0$ temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}),$

portanto, $(q^n)_{n\in\mathbb{N}}$ é solução de (*) se e somente se

$$O = \underbrace{q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k}_{\text{polinómio em } q \text{ de grau } k}$$

Uma tentativa (mais ou menos) «esperta»

Consideremos a equação de recorrência linear homogénea

$$O = X_n - c_1 X_{n-1} - c_2 X_{n_2} - \cdots - c_k X_{n-k} \quad (k \ge 1, c_k \ne 0).$$
 (*)

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q= 0, e para $q\neq$ 0 temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}),$

portanto, $(q^n)_{n\in\mathbb{N}}$ é solução de (*) se e somente se

$$O = \underbrace{q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k}_{\text{polinómio em } q \text{ de grau } k}$$

A equação acima diz-se equação caraterística de (*).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2). \tag{*}$$

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2).$$
 (*)

A equação caraterística é

$$0 = q^2 - q - 2 =$$

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2).$$
 (*)

A equação caraterística é

$$0 = q^2 - q - 2 =$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes são irracionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2).$$
 (*)

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes são irracionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2).$$
 (*)

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes são irracionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2).$$
 (*)

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0=$ 2 e $q_1=$ -1.

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0=$ 2 e $q_1=$ -1. Verifica-se que as sucessões

$$(2^n)_{n\in\mathbb{N}}$$
 e $((-1)^n)_{n\in\mathbb{N}}$

são linearmente independentesa; portanto,

 $[^]a$ Mais tarde veremos que são vetores próprios associados a valores próprios diferentes.

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0=$ 2 e $q_1=$ -1. Verifica-se que as sucessões

$$(2^n)_{n\in\mathbb{N}}$$
 e $((-1)^n)_{n\in\mathbb{N}}$

são linearmente independentes a ; portanto, todas as soluções (reais) da equação (*) tem a forma

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \quad \alpha, \beta \in \mathbb{R}.$$

^aMais tarde veremos que são vetores próprios associados a valores próprios diferentes.

Exemplo

A solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução da equação de recorrência

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2)$$

que satisfaz também $x_0 = 5$ e $x_1 = 4$ (o número de condições iniciais coincide com a ordem da equação);

Exemplo

A solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução da equação de recorrência

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2)$$

que satisfaz também $x_0 = 5$ e $x_1 = 4$ (o número de condições iniciais coincide com a ordem da equação); ou seja, aquele solução com

$$\alpha + \beta = 5$$
 (o caso $n = 0$) e $2\alpha - \beta = 4$ (o caso $n = 1$).

Exemplo

A solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução da equação de recorrência

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2)$$

que satisfaz também $x_0 = 5$ e $x_1 = 4$ (o número de condições iniciais coincide com a ordem da equação); ou seja, aquele solução com

$$\alpha + \beta = 5$$
 (o caso $n = 0$) e $2\alpha - \beta = 4$ (o caso $n = 1$).

Resolvendo este sistema de duas equações lineares dá $\alpha=3$ e $\beta=2$.

Exemplo

A solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução da equação de recorrência

$$0 = X_n - X_{n-1} - 2X_{n-2} \quad (n \ge 2)$$

que satisfaz também $x_0 = 5$ e $x_1 = 4$ (o número de condições iniciais coincide com a ordem da equação); ou seja, aquele solução com

$$\alpha + \beta = 5$$
 (o caso $n = 0$) e $2\alpha - \beta = 4$ (o caso $n = 1$).

Resolvendo este sistema de duas equações lineares dá $\alpha=3$ e $\beta=2$.

Assim, a solução é a sucessão $(a_n)_{n\in\mathbb{N}}$ com

$$a_n = 3 \cdot 2^n + 2 \cdot (-1)^n$$
, para todo o $n \in \mathbb{N}$.

O PRIMEIRO RESULTADO

Corolário

Consideremos a equação de recorrência linear homogénea

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \cdots + c_k X_{n-k} \quad (k \ge 1, c_k \ne 0).$$
 (*)

Se a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \cdots - c_k$$

de (*) têm as k soluções (diferentes) $q_1, q_2, ..., q_k$, então as soluções de (*) são precisamente as combinações lineares das sucessões^a $(q_1^n)_{n\in\mathbb{N}}$, ..., $(q_k^n)_{n\in\mathbb{N}}$; ou seja, as sucessões da forma

$$(C_1q_1^n + C_2q_2^n + \cdots + C_kq_k^n)_{n \in \mathbb{N}}$$

com constantes C_1, C_2, \ldots, C_k .

^alinearmente independente

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Para resolver a equação de recorrência linear homogénea

$$F_n = F_{n-1} + F_{n-2}$$

consideremos a equação $q^2-q-1=0$ de segundo grau que tem as duas soluções:

$$\psi = \frac{1 - \sqrt{5}}{2}$$
 e $\phi = \frac{1 + \sqrt{5}}{2}$.

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Para resolver a equação de recorrência linear homogénea

$$F_n = F_{n-1} + F_{n-2},$$

consideremos a equação $q^2 - q - 1 = 0$ de segundo grau que tem as duas soluções:

$$\psi = \frac{1 - \sqrt{5}}{2} \qquad \qquad \text{e} \qquad \qquad \phi = \frac{1 + \sqrt{5}}{2}.$$

Portanto, todas as soluções da equação homogénea são combinações lineares das sucessões $(\phi^n)_{n\in\mathbb{N}}$ e $(\psi^n)_{n\in\mathbb{N}}$. Em particular,

$$(F_n)_{n\in\mathbb{N}} = \alpha(\psi^n)_{n\in\mathbb{N}} + \beta(\phi^n)_{n\in\mathbb{N}}.$$

Exemplo

Note-se que $\phi\cdot\psi=$ 1, $\phi+\psi=$ 1 e $\phi-\psi=\sqrt{5}$.

Portanto, para n = 0 e n = 1 obtemos

$$\mathbf{1} = \alpha + \beta, \qquad \qquad \mathbf{1} = \alpha \left(\frac{\mathbf{1} - \sqrt{5}}{\mathbf{2}} \right) + \beta \left(\frac{\mathbf{1} + \sqrt{5}}{\mathbf{2}} \right).$$

^aJacques Philippe Marie Binet (1786 – 1856), matemático francês.

Exemplo

Note-se que $\phi \cdot \psi =$ 1, $\phi + \psi =$ 1 e $\phi - \psi = \sqrt{5}$.

Portanto, para n = 0 e n = 1 obtemos

$$1 = \alpha + \beta, \qquad 1 = \alpha \left(\frac{1 - \sqrt{5}}{2}\right) + \beta \left(\frac{1 + \sqrt{5}}{2}\right).$$

Fazendo redução com a correspondente matriz

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \psi & \phi & \mathbf{1} \end{bmatrix} \leadsto \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \phi - \psi & (\mathbf{1} - \psi) \end{bmatrix}$$

produz
$$\beta = \frac{\mathbf{1} - \psi}{\phi - \psi} = \frac{\phi}{\sqrt{\mathbf{5}}}$$
 e $\alpha = \mathbf{1} - \beta = -\frac{\psi}{\sqrt{\mathbf{5}}}$.

^aJacques Philippe Marie Binet (1786 – 1856), matemático francês.

Exemplo

Note-se que $\phi \cdot \psi =$ 1, $\phi + \psi =$ 1 e $\phi - \psi = \sqrt{5}$.

Portanto, para n = 0 e n = 1 obtemos

$$1 = \alpha + \beta, \qquad 1 = \alpha \left(\frac{1 - \sqrt{5}}{2}\right) + \beta \left(\frac{1 + \sqrt{5}}{2}\right).$$

Fazendo redução com a correspondente matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ \psi & \phi & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & \phi - \psi & (1 - \psi) \end{bmatrix}$$

produz $\beta=\frac{1-\psi}{\phi-\psi}=\frac{\phi}{\sqrt{5}}$ e $\alpha=1-\beta=-\frac{\psi}{\sqrt{5}}$. Portanto, obtém-se a fórmula de Binet^a:

$$F_n = \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}}.$$

^aJacques Philippe Marie Binet (1786 – 1856), matemático francês.

Nota

$$\phi = 1.618033988749894...$$
 é o número de ouro, e

$$\psi = \frac{1}{\phi} = 1 - \phi = -(\phi - 1) = -0.61803988749894\dots$$

Nota

$$\phi = 1.618033988749894...$$
 é o número de ouro, e $\psi = \frac{1}{\phi} = 1 - \phi = -(\phi - 1) = -0.61803988749894...$

Dividir retas

Dividimos uma reta

a

b

em duas partes (com comprimentos $a \geq b >$ o) tal que

$$\frac{a}{b}=\frac{a+b}{a}.$$

Nota

$$\phi = 1.618033988749894...$$
 é o número de ouro, e $\psi = \frac{1}{\phi} = 1 - \phi = -(\phi - 1) = -0.61803988749894...$

Dividir retas

Dividimos uma reta

a

b

em duas partes (com comprimentos $a \ge b > o$) tal que

$$\frac{a}{b}=\frac{a+b}{a}.$$

Denotamos a razão $\frac{a}{b}$ por ϕ , então temos

$$\phi = 1 + \frac{1}{\phi};$$

Nota

$$\phi =$$
 1.618033988749894... é o número de ouro, e $\psi = \frac{1}{\phi} =$ 1 - $\phi =$ - $(\phi -$ 1) = -0.61803988749894...

Dividir retas

Dividimos uma reta

a

b

em duas partes (com comprimentos $a \ge b > o$) tal que

$$\frac{a}{b} = \frac{a+b}{a}$$
.

Denotamos a razão $\frac{a}{b}$ por ϕ , então temos

$$\phi = 1 + \frac{1}{\phi};$$

ou seja, $\phi^2 - \phi - 1 = 0$,

Nota

$$\phi = 1.618033988749894...$$
 é o número de ouro, e $\psi = \frac{1}{\phi} = 1 - \phi = -(\phi - 1) = -0.61803988749894...$

Dividir retas

Dividimos uma reta

a

b

em duas partes (com comprimentos $a \ge b > o$) tal que

$$\frac{a}{b} = \frac{a+b}{a}$$
.

Denotamos a razão $\frac{a}{b}$ por ϕ , então temos

$$\phi = 1 + \frac{1}{\phi};$$

ou seja, $\phi^2-\phi-1=$ o, o que implica $\phi=\frac{1+\sqrt{5}}{2}$ (a única raiz positiva).

LIMITE DA RAZÃO ENTRE NÚMEROS DE FIBONACCI

Nota

Utilizando a fórmula de Binet:

$$\frac{f_n}{f_{n-1}} = \frac{\phi^{n+1} - \psi^{n+1}}{\phi^n - \psi^n} = \phi \frac{1 - \left(\frac{\psi}{\phi}\right)^{n+1}}{1 - \left(\frac{\psi}{\phi}\right)^n} \longrightarrow \phi$$

para $n o \infty$ porque $|\frac{\psi}{\phi}| < 1$.

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Exemplo

• Consideremos $0 = x_n + 2x_{n-1} - x_{n-2} - 2x_{n-3}$ de ordem 3.

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Obter a equação caraterística

$$O = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $o = q^3$

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Obter a equação caraterística

$$O = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $0 = q^3 + 2q^2 q 2$

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Obter a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

• e obter as soluções da equação caraterística: $\cdots = (q-q_1)(q-q_2)\dots(q-q_k).$

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $0 = q^3 + 2q^2 q 2 = (q q)$

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Obter a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

• e obter as soluções da equação caraterística: $\cdots = (q-q_1)(q-q_2)\dots(q-q_k).$

$$\cdots = (q-q_1)(q-q_2)\cdots(q-q_k).$$

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $0 = q^3 + 2q^2 q 2 = (q 1)(q)$

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

• e obter as soluções da equação caraterística:

$$\cdots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $0 = q^3 + 2q^2 q 2 = (q 1)(q + 1)(q + 1)$

RESUMO (RESOLVER EQ. DE RECORRÊNCIA LINEARES HOMOGÉNEAS

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

· Obter a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

• e obter as soluções da equação caraterística:

$$\cdots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

Exemplo

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Equação caraterística: $0 = q^3 + 2q^2 q 2 = (q 1)(q + 1)(q + 2)$.

RESUMO (RESOLVER EQ. DE RECORRÊNCIA LINEARES HOMOGÉNEAS

de ordem k com k raízes diferentes)

Consideremos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

· Obter a equação caraterística

$$0 = q^k - c_1 q^{k-1} - c_2 q^{n-2} - \cdots - c_k$$

• e obter as soluções da equação caraterística:

$$\cdots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

 Se obtemos k soluções diferentes, então todas as soluções da equação de recorrência tem a forma

$$(C_1q_1^n + C_2q_2^n + \cdots + C_kq_k^n)_{n \in \mathbb{N}}$$

com constantes C_1, C_2, \ldots, C_k .

Exemplo

- Consideremos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
 - Equação caraterística: $0 = q^3 + 2q^2 q 2 = (q 1)(q + 1)(q + 2)$.

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$o = q^3$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = d_3 - 3d$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q - 1)(q$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q - 1)(q + 2)(q$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q - 1)(q + 2)(q - 1)$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q-1)(q+2)(q-1) = (q-1)^2(q+2).$$

Exemplo

Consideremos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

A corresponde equação caraterística é

$$0 = q^3 - 3q + 2 = (q-1)(q+2)(q-1) = (q-1)^2(q+2).$$

E agora? Temos apenas as duas soluções independentes

$$(1^n)_{n\in\mathbb{N}}$$
 e $((-2)^n)_{n\in\mathbb{N}}$...

Teorema

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n-2} - \cdots - c_k X_{n-k}$$
 $(k \ge 1, c_k \ne 0)$ (*)

com a equação caraterística

$$0 = q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k} = (q - q_{1})^{n_{1}} \dots (q - q_{l})^{n_{l}}$$

 $com n_1 + \cdots + n_l = k e n_i > 0.$

Teorema

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n-2} - \cdots - c_k X_{n-k}$$
 $(k \ge 1, c_k \ne 0)$ (*)

com a equação caraterística

$$0 = q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k} = (q - q_{1})^{n_{1}} \dots (q - q_{l})^{n_{l}}$$

com $n_1+\cdots+n_l=k$ e $n_i>$ 0. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

$$(q_1^n)_{n\in\mathbb{N}},$$

 $(q_2^n)_{n\in\mathbb{N}},$

 $(q_1^n)_{n\in\mathbb{N}},$

Teorema

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n-2} - \cdots - c_k X_{n-k}$$
 $(k \ge 1, c_k \ne 0)$ (*)

com a equação caraterística

$$o = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_l)^{n_l}$$

com $n_1+\cdots+n_l=k$ e $n_i>$ 0. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

$$(q_1^n)_{n\in\mathbb{N}}, \qquad (n\cdot q_1^n)_{n\in\mathbb{N}},$$

 $(q_2^n)_{n\in\mathbb{N}}, \qquad (n\cdot q_2^n)_{n\in\mathbb{N}},$
...

 $(q_l^n)_{n\in\mathbb{N}}, \qquad (n\cdot q_l^n)_{n\in\mathbb{N}},$

Teorema

Consideremos a equação de recorrência linear homogénea

$$0 = X_n - c_1 X_{n-1} - c_2 X_{n-2} - \dots - c_k X_{n-k} \qquad (k \ge 1, c_k \ne 0) \qquad (*)$$

com a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_l)^{n_l}$$

com $n_1 + \cdots + n_l = k$ e $n_i > 0$. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

$$(q_1^n)_{n\in\mathbb{N}}, \qquad (n\cdot q_1^n)_{n\in\mathbb{N}}, \qquad (n^2\cdot q_1^n)_{n\in\mathbb{N}}, \qquad \dots \qquad (n^{n_1-1}\cdot q_1^n)_{n\in\mathbb{N}},$$

 $(q_2^n)_{n\in\mathbb{N}}, \qquad (n\cdot q_2^n)_{n\in\mathbb{N}}, \qquad (n^2\cdot q_2^n)_{n\in\mathbb{N}}, \qquad \dots \qquad (n^{n_2-1}\cdot q_2^n)_{n\in\mathbb{N}},$

$$(q_l^n)_{n\in\mathbb{N}}, \quad (n\cdot q_l^n)_{n\in\mathbb{N}}, \quad (n^2\cdot q_l^n)_{n\in\mathbb{N}}, \quad \dots \quad (n^{n_l-1}\cdot q_l^n)_{n\in\mathbb{N}}.$$

UM EXEMPLO

Exemplo

Consideremos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

UM EXEMPLO

Exemplo

Consideremos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

A equação caraterística é

$$0 = q^3 - 5q^2 + 8q - 4 = (q-1)(q-2)(q-2) = (q-1)(q-2)^2;$$

portanto, as solução da equação de recorrência são as sucessões da forma (com $lpha, eta, \gamma \in \mathbb{R}$)

$$(\alpha \mathbf{1}^n + \beta \mathbf{2}^n + \gamma n \mathbf{2}^n)_{n \in \mathbb{N}}$$
.

UM EXEMPLO

Exemplo

Consideremos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

A equação caraterística é

$$0 = q^3 - 5q^2 + 8q - 4 = (q - 1)(q - 2)(q - 2) = (q - 1)(q - 2)^2;$$

portanto, as solução da equação de recorrência são as sucessões da forma (com $lpha, eta, \gamma \in \mathbb{R}$)

$$(\alpha \mathbf{1}^n + \beta \mathbf{2}^n + \gamma n \mathbf{2}^n)_{n \in \mathbb{N}}.$$

Considerando os valores iniciais, procuramos $\alpha, \beta, \gamma \in \mathbb{R}$ tais que

$$\alpha + \beta = 0$$
, $\alpha + 2\beta + 2\gamma = 4$, $\alpha + 4\beta + 8\gamma = 18$.

Um exemplo (continuação)

Exemplo

Utilizando a primeira equação, o sistema

$$\alpha+\beta=0,$$

$$\alpha+2\beta+2\gamma=4,$$

$$\alpha+4\beta+8\gamma=18$$

reduz ($\alpha = -\beta$) ao sistema

$$eta+2\gamma=4,$$
 $3eta+8\gamma=18;$

cuja solução é $\gamma=$ 3 e $\beta=$ -2, logo $\alpha=$ 2.

Um exemplo (continuação)

Exemplo

Utilizando a primeira equação, o sistema

$$\alpha+\beta=0,$$

$$\alpha+2\beta+2\gamma=4,$$

$$\alpha+4\beta+8\gamma=18$$

reduz ($\alpha = -\beta$) ao sistema

$$eta+2\gamma=4,$$
 $3eta+8\gamma=18;$

cuja solução é $\gamma=$ 3 e $\beta=$ -2, logo $\alpha=$ 2. Assim, a solução da equação de recorrência com os valores iniciais é a sucessão

$$(2-2\cdot 2^n+3\cdot n\cdot 2^n)_{n\in\mathbb{N}}.$$

Preparação

Consideremos a função linear S «esquecer o primeiro termo» definida por

$$S((x_n)_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.$$

Preparação

Consideremos a função linear S «esquecer o primeiro termo» definida por

$$S((x_n)_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.$$

Então, uma sucessão $a=(a_n)_{n\in\mathbb{N}}$ é solução da equação de recorrência

$$0 = X_n - C_1 X_{n-1} - C_2 X_{n_2} - \cdots - C_k X_{n-k}$$

se e somente se

sucessão nula =
$$S^{n}(a) - c_{1}S^{n-1}(a) - \cdots - c_{k}S^{n-k}(a)$$

= $(S^{n} - c_{1}S^{n-1} - \cdots - c_{k}S^{n-k})(a)$
= $S^{n-k} \circ (S^{k} - c_{1}S^{k-1} - \cdots - c_{k} \operatorname{id})(a)$,

para cada $n \ge k$.

Preparação

Consideremos a função linear S «esquecer o primeiro termo» definida por

$$\mathsf{S}((\mathsf{x}_n)_{n\in\mathbb{N}})=(\mathsf{x}_{n+1})_{n\in\mathbb{N}}.$$

Então, uma sucessão $a=(a_n)_{n\in\mathbb{N}}$ é solução da equação de recorrência

$$O = X_n - C_1 X_{n-1} - C_2 X_{n_2} - \dots - C_k X_{n-k}$$

se e somente se

sucessão nula =
$$S^{n}(a) - c_1 S^{n-1}(a) - \dots - c_k S^{n-k}(a)$$

= $(S^{n} - c_1 S^{n-1} - \dots - c_k S^{n-k})(a)$
= $S^{n-k} \circ (S^{k} - c_1 S^{k-1} - \dots - c_k \operatorname{id})(a)$,

para cada $n \ge k$. Veremos agora quais sucessões a função linear

$$S^k - c_1 S^{k-1} - \cdots - c_k$$
 id

anula.

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > o$)

$$O = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística,

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > 0$)

$$O = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > o$)

$$O = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

«A chave» da prova do teorema é o seguinte lema.

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > 0$)

$$O = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

«A chave» da prova do teorema é o seguinte lema.

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \geq$ 1, a função linear $(S-q\operatorname{id})^m$ anula as sucessões

$$(q^n)_{n\in\mathbb{N}}, \qquad (n\cdot q^n)_{n\in\mathbb{N}}, \qquad (n^2\cdot q^n)_{n\in\mathbb{N}}, \qquad \dots \qquad (n^{m-1}\cdot q^n)_{n\in\mathbb{N}}.$$

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \ge 1$, a função linear $(S - q \operatorname{id})^m$ anula as sucessões $s_1 = (q^n)_{n \in \mathbb{N}}, \quad s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \quad \dots \quad s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}.$

$$s_1=(q^n)_{n\in\mathbb{N}}, \qquad s_2=(n\cdot q^n)_{n\in\mathbb{N}}, \qquad \ldots \qquad s_m=(n^{m-1}\cdot q^n)_{n\in\mathbb{N}}$$

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \ge 1$, a função linear $(S - q \operatorname{id})^m$ anula as sucessões $s_1 = (q^n)_{n \in \mathbb{N}}, \qquad s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \qquad \ldots \qquad s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}.$

Demonstração.

Para m=1: $S((q^n)_{n\in\mathbb{N}})=(q^{n+1})_{n\in\mathbb{N}}=q(q^n)_{n\in\mathbb{N}};$ ou seja

$$(S - q id)(s_1) = a$$
 sucessão nula.

Nota: Portanto, $(q^n)_{n\in\mathbb{N}}$ é um vetor próprio de S com valor próprio q.

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \ge 1$, a função linear $(S - q \operatorname{id})^m$ anula as sucessões $s_1 = (q^n)_{n \in \mathbb{N}}, \qquad s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \qquad \ldots \qquad s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}.$

Demonstração.

Seja agora m>1 e suponhamos que $(S-q\operatorname{id})^{m-1}$ anula s_1,\ldots,s_{m-1} . Logo, $(S-q\operatorname{id})^m$ também anula s_1,\ldots,s_{m-1} .

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \ge 1$, a função linear $(S - q \operatorname{id})^m$ anula as sucessões

$$s_1 = (q^n)_{n \in \mathbb{N}}, \qquad s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \qquad \dots \qquad s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}.$$

Demonstração.

Seja agora m>1 e suponhamos que $(S-q\operatorname{id})^{m-1}$ anula s_1,\ldots,s_{m-1} . Logo, $(S-q\operatorname{id})^m$ também anula s_1,\ldots,s_{m-1} . Calculamos primeiro, para cada $n\in\mathbb{N}$, o termo n de $(S-q\operatorname{id})(s_m)$:

$$(n+1)^{m-1} \cdot q^{n+1} - n^{m-1}q^{n+1} = \left(\sum_{i=0}^{m-1} {m-1 \choose i} \cdot n^i \cdot q^{n+1}\right) - n^{m-1}q^{n+1}$$

$$= \left(\sum_{i=0}^{m-2} q \cdot {m-1 \choose i} \cdot n^i \cdot q^n\right) ;$$

$$combinação linear do termo n de $s_1, \dots, s_{m-1}$$$

Lema

Para $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \ge 1$, a função linear $(S - q \operatorname{id})^m$ anula as sucessões $s_1 = (q^n)_{n \in \mathbb{N}}, \qquad s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \qquad \ldots \qquad s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}.$

Seja agora m > 1 e suponhamos que $(S - q \operatorname{id})^{m-1}$ anula s_1, \ldots, s_{m-1} . Logo, $(S - q \operatorname{id})^m$ também anula s_1, \ldots, s_{m-1} . Calculamos primeiro, para cada $n \in \mathbb{N}$, o termo n de $(S - q \operatorname{id})(s_m)$:

$$(n+1)^{m-1} \cdot q^{n+1} - n^{m-1}q^{n+1} = \left(\sum_{i=0}^{m-1} {m-1 \choose i} \cdot n^{i} \cdot q^{n+1}\right) - n^{m-1}q^{n+1}$$

$$= \underbrace{\left(\sum_{i=0}^{m-2} q \cdot {m-1 \choose i} \cdot n^{i} \cdot q^{n}\right)}_{;};$$

Logo, $(S - q \operatorname{id})(s_m) = \alpha_1 s_1 + \dots + \alpha_{m-1} s_{m-1}$ e por isso

$$(S-q id)^m(s_m) = a$$
 sucessão nula.

combinação linear do termo n de $s_1,...,s_{m-1}$

... E SE AS RAIZES SÃO COMPLEXAS?

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

... E SE AS RAIZES SÃO COMPLEXAS?

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a=(z^n)_{n\in\mathbb{N}}$$

$$b=(\overline{z}^n)_{n\in\mathbb{N}}$$

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a=(z^n)_{n\in\mathbb{N}}$$

$$b=(\overline{z}^n)_{n\in\mathbb{N}}$$

•
$$z = a + ib = r(\cos \varphi + i \sin \varphi)$$

$$\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R} \quad \text{ e } \quad \tan \varphi = \tfrac{b}{a} \quad \text{(se } a \neq \text{o)}.$$

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) + i \sin(\varphi))^n)_{n \in \mathbb{N}},$$

$$b = (\bar{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) - i \sin(\varphi))^n)_{n \in \mathbb{N}}.$$

•
$$z = a + ib = r(\cos \varphi + i \sec \varphi)$$

 $\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R}$ e $\tan \varphi = \frac{b}{a}$ (se $a \neq o$).

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) + i \sin(\varphi))^n)_{n \in \mathbb{N}},$$

$$b = (\bar{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) - i \sin(\varphi))^n)_{n \in \mathbb{N}}.$$

•
$$(\cos \varphi + i \sec \varphi)^n = \cos(n\varphi) + i \sec(n\varphi)$$
.

Abraham de Moivre (1667 – 1754), matemático francês.

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i \sin(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i \sin(n\varphi)))_{n \in \mathbb{N}}.$$

•
$$z=a+ib=r(\cos\varphi+i \sec \varphi)$$

$$\operatorname{com} r=\sqrt{a^2+b^2}\in\mathbb{R} \quad \operatorname{e} \quad \tan\varphi=\frac{b}{a} \quad (\operatorname{se} a\neq \operatorname{o}).$$

•
$$(\cos \varphi + i \sec \varphi)^n = \cos(n\varphi) + i \sec(n\varphi)$$
.

Abraham de Moivre (1667 – 1754), matemático francês.

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (\mathbf{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i \sin(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{\mathbf{z}}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i \sin(n\varphi)))_{n \in \mathbb{N}}.$$

Assim, obtemos as soluções (linearmente independentes)

$$\frac{a+b}{2} = (r^n \cos(n\varphi))_{n \in \mathbb{N}} \quad \text{e} \quad \frac{a-b}{2i} = (r^n \sin(n\varphi))_{n \in \mathbb{N}}.$$

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\bar{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i \operatorname{sen}(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i \operatorname{sen}(n\varphi)))_{n \in \mathbb{N}}.$$

Assim, obtemos as soluções (linearmente independentes)

$$\frac{a+b}{2} = (r^n \cos(n\varphi))_{n \in \mathbb{N}}$$
 e $\frac{a-b}{2i} = (r^n \sin(n\varphi))_{n \in \mathbb{N}}$.

Finalmente, se z e \bar{z} são raízes múltiplas, consideremos

$$\ldots, (r^n n^i \cos(n\varphi))_{n \in \mathbb{N}}, \ldots, (r^n n^i \sin(n\varphi))_{n \in \mathbb{N}}, \ldots$$

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n, \quad n \ge o, \quad com \quad a_o = o, \ a_1 = 1.$$

A correspondente equação caraterística é ${\sf O}=q^{\sf 2}-q+{\sf 1}$,

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n, \quad n \geq 0, \quad com \quad a_0 = 0, \; a_1 = 1.$$

A correspondente equação caraterística é O $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i \frac{\sqrt{3}}{2}$.

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n, \quad n \ge 0, \quad com \quad a_0 = 0, \ a_1 = 1.$$

A correspondente equação caraterística é O $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Portanto,
$$r=1$$
 e $tan(\varphi)=\sqrt{3}$, $logo \varphi=\frac{\pi}{3}$;

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é o $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Portanto, r= 1 e $an(arphi)=\sqrt{3}$, logo $arphi=rac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right) + \beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}} \qquad (\alpha,\beta\in\mathbb{R}).$$

Um exemplo

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é O $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Portanto, r= 1 e $an(arphi)=\sqrt{3}$, logo $arphi=rac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right)+\beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}}\qquad(\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $a_0 = 0$ obtemos $\alpha = 0$,

Um exemplo

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é o $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Portanto, r= 1 e $an(arphi)=\sqrt{3}$, logo $arphi=rac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right)+\beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}}\qquad(\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $a_0=0$ obtemos $\alpha=0$, e com $a_1=1$ obtemos

$$1 = \beta \operatorname{sen}\left(\frac{\pi}{3}\right) = \beta \frac{\sqrt{3}}{2}.$$

Exemplo

Consideremos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é o $=q^2-q+1$, com as soluções

$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 e $\bar{z} = \frac{1}{2} - i \frac{\sqrt{3}}{2}$.

Portanto, r= 1 e $an(arphi)=\sqrt{3}$, logo $arphi=rac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right) + \beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}} \qquad (\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $a_0=0$ obtemos $\alpha=0$, e com $a_1=1$ obtemos

$$1 = \beta \operatorname{sen}\left(\frac{\pi}{3}\right) = \beta \frac{\sqrt{3}}{2}.$$

Portanto, a solução é a sucessão $\left(\frac{2}{\sqrt{3}}\operatorname{sen}\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}}$.

Recordamos

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

todas as soluções da equação homogénea associada à (*)

Recordamos

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

todas as soluções da equação homogénea associada à (*) uma solução particular de (*)

Recordamos

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

todas as soluções da equação homogénea associada à (*) uma solução particular de (*)

Nota

Já sabemos resolver a primeira questão.

Recordamos

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

todas as soluções da equação homogénea associada à (*) uma solução particular de (*)

Nota

- Já sabemos resolver a primeira questão.
- Estudamos agora métodos para obter uma solução particular de (*).

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

(A) Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$

($A \in \mathbb{R}$ a determinar) se p não é solução da equação caraterística

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

(A) Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p não é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

(A) Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p não é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

(B) Se $d_n = \text{um polinómio em } n \text{ de grau } j$: Procuramos uma solução da forma

$$b_n = A_0 + A_1 n + \dots + A_j n^j$$
 ($A_i \in \mathbb{R}$ a determinar)

se 1 <mark>não</mark> é solução da equação caraterística respetivamente

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

(A) Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p não é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

(B) Se $d_n = \text{um polinómio em } n \text{ de grau } j$: Procuramos uma solução da forma

$$b_n = A_0 + A_1 n + \dots + A_j n^j$$
 ($A_i \in \mathbb{R}$ a determinar)

se 1 não é solução da equação caraterística respetivamente

$$b_n = (A_0 + A_1 n + \dots + A_j n^j) \cdot n^m \quad (A_i \in \mathbb{R} \text{ a determinar})$$

se 1 é solução da equação caraterística de multiplicidade m.

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

(A) Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

($A \in \mathbb{R}$ a determinar) se p não é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

(B) Se $d_n = \text{um polinómio em } n \text{ de grau } j$: Procuramos uma solução da forma

$$b_n = A_0 + A_1 n + \dots + A_j n^j$$
 ($A_i \in \mathbb{R}$ a determinar)

se 1 não é solução da equação caraterística respetivamente

$$b_n = (A_0 + A_1 n + \dots + A_j n^j) \cdot n^m$$
 ($A_i \in \mathbb{R}$ a determinar)

se 1 é solução da equação caraterística de multiplicidade m.

Os valores dos parâmetros A, A_i obtém-se substituindo b_n na equação de recorrência dada.

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, ...;$$

$$com x_0 = 0 e x_1 = -2.$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, ...;$$

$$com x_0 = 0 e x_1 = -2.$$

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

Exemplo

Vamos determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, ...;$$

$$com x_0 = 0 e x_1 = -2.$$

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 =$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, ...;$$

$$com x_0 = 0 e x_1 = -2.$$

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1).$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, ...;$$

$$com x_0 = 0 e x_1 = -2.$$

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1).$$

Portanto, a solução geral da equação de recorrência homogénea é a sucessão $(a_n)_{n\in\mathbb{N}}$ dada por

$$a_n = \alpha \cdot \mathbf{1}^n + \beta \cdot \mathbf{2}^n = \alpha + \beta \cdot \mathbf{2}^n$$
 $(n \in \mathbb{N}).$

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n, \quad n = 2, 3, \dots$$

da forma

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n, \quad n = 2, 3, \dots$$

da forma

$$b_n = n \cdot A \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$.

Exemplo

Agora procuramos uma solução de

$$X_n - 3X_{n-1} + 2X_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = n \cdot A \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$.

Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n}$$
,

Exemplo

Agora procuramos uma solução de

$$X_n - 3X_{n-1} + 2X_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = n \cdot A \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$.

Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n}$$
,

o que é equivalente a

$$2 = 2An - 3A(n-1) + A(n-2) = A.$$

Exemplo

Agora procuramos uma solução de

$$X_n - 3X_{n-1} + 2X_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = n \cdot A \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$.

Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n}$$
,

o que é equivalente a

$$2 = 2An - 3A(n-1) + A(n-2) = A.$$

Logo, uma solução da equação de recorrência acima é $(n2^{n+1})_{n\in\mathbb{N}}$.

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots$$

$$\acute{e} dada por (\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}.$$

Exemplo

Assim, sabemos que a solução geral da equação

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, \dots$$

 $\acute{ ext{e}}$ dada por $(\alpha+\beta\,\mathbf{2}^n+n\mathbf{2}^{n+1})_{n\in\mathbb{N}}.$

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$.

Exemplo

Assim, sabemos que a solução geral da equação

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, \dots$$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 obtemos as equações

Exemplo

Assim, sabemos que a solução geral da equação

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, \dots$$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 obtemos as equações

Subtraindo a primeira linha à segunda dá $\beta = -6$ e por isso $\alpha = 6$.

Exemplo

Assim, sabemos que a solução geral da equação

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n, \quad n = 2, 3, \dots$$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 obtemos as equações

Subtraindo a primeira linha à segunda dá $\beta =$ -6 e por isso $\alpha =$ 6.

Portanto, a solução é

$$(6-6\cdot 2^n+n2^{n+1})_{n\in\mathbb{N}}.$$

COMBINAR SOLUÇÕES

Teorema

Seja

$$X_n = c_1 X_{n-1} + c_2 X_{n_2} + \dots + c_k X_{n-k} + d_n^{(1)} + \dots + d_n^{(m)}$$
 (*)

uma equação de recorrência linear e suponhamos que as sucessões $b^{(1)}$, $b^{(2)}$, ..., $b^{(m)}$ são soluções de

$$X_{n} = c_{1}X_{n-1} + c_{2}X_{n_{2}} + \dots + c_{k}X_{n-k} + d_{n}^{(1)},$$

$$X_{n} = c_{1}X_{n-1} + c_{2}X_{n_{2}} + \dots + c_{k}X_{n-k} + d_{n}^{(2)},$$

$$\vdots$$

$$X_{n} = c_{1}X_{n-1} + c_{2}X_{n_{2}} + \dots + c_{k}X_{n-k} + d_{n}^{(m)},$$

respetivamente. Então, a sucessão $b^{(1)}+\cdots+b^{(m)}$ é uma solução de (*).

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

$$com x_0 = 0 e x_1 = -2.$$

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

$$com x_0 = 0 e x_1 = -2.$$

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

 $com x_0 = 0 e x_1 = -2.$

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada,

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

$$com x_0 = 0 e x_1 = -2.$$

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada, $(b_n^{(1)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n$$
, $n = 2, 3, ...$

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

$$com x_0 = 0 e x_1 = -2.$$

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada, $(b_n^{(1)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n$$
, $n = 2, 3, ...,$

e $(b_n^{(2)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + (1+n), \qquad n = 2, 3, \ldots$$

Exemplo

Falta determinar uma solução da equação de recorrência

$$x_n - 3x_{n-1} + 2x_{n-2} = 1 + n$$
, $n = 2, 3, ...$

Exemplo

Falta determinar uma solução da equação de recorrência

$$X_n - 3X_{n-1} + 2X_{n-2} = 1 + n, \quad n = 2, 3, \dots$$

Uma vez que 1+n é um polinómio de grau 1 e 1 é raiz de multiplicidade 1 da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos
$$b_n^{(2)} = (A_0 + A_1 n) n^1 = A_0 n + A_1 n^2$$
.

Exemplo

Falta determinar uma solução da equação de recorrência

$$X_n - 3X_{n-1} + 2X_{n-2} = 1 + n, \quad n = 2, 3, \dots$$

Uma vez que 1 + n é um polinómio de grau 1 e 1 é raiz de multiplicidade 1 da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos $b_n^{(2)}=(A_0+A_1n)n^1=A_0n+A_1n^2$. Substituindo na equação acima, obtemos $b_n^{(2)}=-\frac{7}{2}n-\frac{1}{2}n^2$.

Exemplo

Falta determinar uma solução da equação de recorrência

$$X_n - 3X_{n-1} + 2X_{n-2} = 1 + n$$
, $n = 2, 3, ...$

Uma vez que $\mathbf{1} + n$ é um polinómio de grau $\mathbf{1}$ e $\mathbf{1}$ é raiz de multiplicidade $\mathbf{1}$ da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos $b_n^{(2)}=(A_0+A_1n)n^1=A_0n+A_1n^2$. Substituindo na equação acima, obtemos $b_n^{(2)}=-\frac{7}{2}n-\frac{1}{2}n^2$.

Portanto, a solução geral da equação de recorrência

$$X_n = 3X_{n-1} - 2X_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

é dada por

$$(\alpha+\beta 2^n+n2^{n+1}-\frac{7}{2}n-\frac{1}{2}n^2)_{n\in\mathbb{N}}\quad (\alpha,\beta\in\mathbb{R}).$$

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$.

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 em

$$(\alpha + \beta 2^{n} + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^{2})_{n \in \mathbb{N}}$$

obtemos as equações

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 em

$$(\alpha + \beta 2^n + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2)_{n \in \mathbb{N}}$$

obtemos as equações

logo
$$\beta=$$
 -2 e $\alpha=$ 2.

Mais um exemplo (continuação)

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 em

$$(\alpha + \beta 2^{n} + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^{2})_{n \in \mathbb{N}}$$

obtemos as equações

logo
$$\beta=$$
 -2 e $\alpha=$ 2.

Logo, a solução da equação de recorrência dada com as condições iniciais $x_0 = 0$ e $x_1 = -2$ é

$$(2-2\cdot 2^n+n2^{n+1}-\frac{7}{2}n-\frac{1}{2}n^2)_{n\in\mathbb{N}}.$$

O problema

Nesta parte consideremos equações de recorrência onde x_n não depende da forma linear dos termos $x_{n-1}, ..., x_{n-k}$.

O problema

Nesta parte consideremos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos «linearizar» a equação utilizando um substituição adequada.

O problema

Nesta parte consideremos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos «linearizar» a equação utilizando um substituição adequada.

Exemplo (substituição «simples»)

Consideremos a equação de recorrência não linear

$$X_n^2 = 2X_{n-1}^2 + 1$$
 $(n \ge 1),$

com a condição inicial $x_0 = 2$; aqui suponhamos $x_n \ge 0$, para todo o $n \in \mathbb{N}$.

O problema

Nesta parte consideremos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos «linearizar» a equação utilizando um substituição adequada.

Exemplo (substituição «simples»)

Consideremos a equação de recorrência não linear

$$x_n^2 = 2x_{n-1}^2 + 1$$
 $(n \ge 1),$

com a condição inicial $x_0=2$; aqui suponhamos $x_n\geq 0$, para todo o $n\in\mathbb{N}.$

Escrevendo $y_n = x_n^2$, esta equação de recorrência não linear transforma-se na equação de recorrência linear

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$

com a condição inicial $y_0 = x_0^2 = 4$.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$ $y_0 = 4.$

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$ $y_0 = 4.$

• A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$ $y_0 = 4.$

- A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.
- Como o termo «não homogéneo» é o polinómio 1 de grau zero, e como 1 não é raiz do polinómio caraterístico q-2, sabemos que existe uma solução particular $(b_n)_{n\in\mathbb{N}}$ onde $b_n=A$, para todo o $n\in\mathbb{N}$. Substituindo na equação produz A=2A+1, ou seja, A=-1.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$ $y_0 = 4.$

- A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.
- Como o termo «não homogéneo» é o polinómio 1 de grau zero, e como 1 não é raiz do polinómio caraterístico q-2, sabemos que existe uma solução particular $(b_n)_{n\in\mathbb{N}}$ onde $b_n=A$, para todo o $n\in\mathbb{N}$. Substituindo na equação produz A=2A+1, ou seja, A=-1.
- Consequentemente, as soluções desta equação de recorrência são precisamente as sucessões $(c \cdot 2^n 1)_{n \in \mathbb{N}}$, com $c \in \mathbb{R}$. Tendo em conta a condição inicial $y_0 = 4$, obtemos c = 5; assim, a solução da equação $x_n^2 = 2x_{n-1}^2 + 1$ com $x_0 = 2$ é a sucessão

$$(\sqrt{5\cdot 2^n-1})_{n\in\mathbb{N}}.$$

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ \to \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Exemplo

Consideremos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2} \quad (n \ge 2), \quad x_0 = x_1 = 2.$$

Logo, $x_n > o$ para todo o $n \in \mathbb{N}$.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Exemplo

Consideremos a equação de recorrência não linear

$$X_n = X_{n-1} \cdot X_{n-2}$$
 $(n \ge 2)$, $X_0 = X_1 = 2$.

Logo, $x_n > o$ para todo o $n \in \mathbb{N}$.

Estas equações são equivalentes às equações (para $n \ge 2$)

$$\log_2(X_n) = \log_2(X_{n-1}) + \log_2(X_{n-2}), \quad \log_2(X_0) = \log_2(X_1) = 1.$$

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Exemplo

Consideremos a equação de recorrência não linear

$$X_n = X_{n-1} \cdot X_{n-2}$$
 $(n \ge 2)$, $X_0 = X_1 = 2$.

Logo, $x_n > o$ para todo o $n \in \mathbb{N}$.

Estas equações são equivalentes às equações (para $n \ge 2$)

$$\log_2(X_n) = \log_2(X_{n-1}) + \log_2(X_{n-2}), \quad \log_2(X_0) = \log_2(X_1) = 1.$$

Fazendo $y_n = \log_2(x_n)$ para cada $n \in \mathbb{N}$, obtemos a equação de recorrência linear

$$y_n = y_{n-1} + y_{n-2} \quad (n \ge 2), \quad y_0 = y_1 = 1;$$

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Exemplo

Consideremos a equação de recorrência não linear

$$X_n = X_{n-1} \cdot X_{n-2} \quad (n \ge 2), \quad X_0 = X_1 = 2.$$

Logo, $x_n > 0$ para todo o $n \in \mathbb{N}$.

Estas equações são equivalentes às equações (para $n \ge 2$)

$$\log_2(X_n) = \log_2(X_{n-1}) + \log_2(X_{n-2}), \quad \log_2(X_0) = \log_2(X_1) = 1.$$

Fazendo $y_n = \log_2(x_n)$ para cada $n \in \mathbb{N}$, obtemos a equação de recorrência linear

$$y_n = y_{n-1} + y_{n-2} \quad (n \ge 2), \quad y_0 = y_1 = 1;$$

cuja solução é a sucessão $(F_n)_{n\in\mathbb{N}}$ dos números de Fibonacci.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ é bijetiva e satisfaz

$$\log_a(x\cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Logo, em muitos casos podems «linearizar» passando para o logaritmo.

Exemplo

Consideremos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2} \quad (n \ge 2), \quad x_0 = x_1 = 2.$$

Logo, $x_n > o$ para todo o $n \in \mathbb{N}$.

Portanto, a solução da equação acima com as condições iniciais é $(2^{F_n})_{n\in\mathbb{N}}.$

Exemplo

Consideremos agora a equação de recorrência não linear

$$X_n = \sqrt{X_{n-1} + \underbrace{\sqrt{X_{n-2} + \sqrt{X_{n-3} + \sqrt{\dots \sqrt{X_0}}}}_{X_{n-1}}}$$

com a condição inicial $x_0 = 4$.

Mais um exemplo

Exemplo

Consideremos agora a equação de recorrência não linear

$$X_n = \sqrt{X_{n-1} + \underbrace{\sqrt{X_{n-2} + \sqrt{X_{n-3} + \sqrt{\dots \sqrt{X_0}}}}}_{X_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$,

Exemplo

Consideremos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0 = 4$. Portanto, $x_1 = \sqrt{x_0} = 2$, e para $n \ge 2$ temos

Exemplo

Consideremos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$X_n = \sqrt{X_{n-1} + X_{n-1}} > 0;$$

MAIS UM EXEMPLO

Exemplo

Consideremos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0 = 4$. Portanto, $x_1 = \sqrt{x_0} = 2$, e para $n \ge 2$ temos

$$X_n = \sqrt{X_{n-1} + X_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1} \ (n \ge 2);$

Exemplo

Consideremos agora a equação de recorrência não linear

$$X_n = \sqrt{X_{n-1} + \underbrace{\sqrt{X_{n-2} + \sqrt{X_{n-3} + \sqrt{\dots \sqrt{X_0}}}}}_{X_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$X_n = \sqrt{X_{n-1} + X_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1}$ ($n \ge 2$); o que é equivalente a

$$2\log_2(x_n) = 1 + \log_2(x_{n-1}) \quad (n \ge 2).$$

Exemplo

Consideremos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0 = 4$. Portanto, $x_1 = \sqrt{x_0} = 2$, e para $n \ge 2$ temos

$$X_n = \sqrt{X_{n-1} + X_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1}$ ($n \ge 2$); o que é equivalente a

$$2 \log_2(X_n) = 1 + \log_2(X_{n-1}) \quad (n \ge 2).$$

Fazendo $y_n = \log_2(x_n)$, obtemos a equação de recorrência linear

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \quad (n \ge 2)$$

com a condição inicial $y_1 = 1$.

MAIS UM EXEMPLO (CONTINUAÇÃO)

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \quad (n \ge 2), y_1 = 1 \quad (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

MAIS UM EXEMPLO (CONTINUAÇÃO)

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \quad (n \ge 2), y_1 = 1 \quad (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1 = 1$ obtemos

$$1=c\left(\frac{1}{2}\right)+1;$$

MAIS UM EXEMPLO (CONTINUAÇÃO)

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \quad (n \ge 2), y_1 = 1 \quad (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1 = 1$ obtemos

$$1=c\big(\frac{1}{2}\big)+1;$$

logo, c = 0.

Mais um exemplo (continuação)

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \quad (n \ge 2), y_1 = 1 \quad (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1 = 1$ obtemos

$$1=c\big(\frac{1}{2}\big)+1;$$

logo, c= o. Portanto, para todo o $n\geq$ 1,

$$X_n=2^{y_n}=2,$$

 $e x_0 = 4.$

Exemplo

Finalmente, consideremos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot x_{n-1}$$
 $(n \ge 1)$.

Exemplo

Finalmente, consideremos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot x_{n-1}$$
 $(n \ge 1)$.

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = n \cdot (n-1)! \cdot y_{n-1} = n! \cdot y_{n-1}$$

Exemplo

Finalmente, consideremos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot x_{n-1} \qquad (n \ge 1).$$

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = n \cdot (n-1)! \cdot y_{n-1} = n! \cdot y_{n-1}$$

o que é equivalente a $y_n = y_{n-1}$, para todo o $n \ge 1$.

Exemplo

Finalmente, consideremos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot x_{n-1} \qquad (n \ge 1).$$

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = n \cdot (n-1)! \cdot y_{n-1} = n! \cdot y_{n-1}$$

o que é equivalente a $y_n=y_{n-1}$, para todo o $n\geq$ 1. Portanto, a solução geral da equação acima é dada por

$$(n! \cdot c)_{n \in \mathbb{N}}$$
 $(c \in \mathbb{R}).$