Assignment 9

1. (Barber Exercise 23.3)

Consider an HMM with three states (K = 3) and two output symbols (M = 2), with a left-to-right state transition matrix

$$\mathbf{A} = \begin{pmatrix} 0.5 & 0.0 & 0.0 \\ 0.3 & 0.6 & 0.0 \\ 0.2 & 0.4 & 1.0 \end{pmatrix}$$

where $\mathbf{A}_{ij} := P(h_{t+1} = i \mid h_t = j)$, emission matrix

$$\mathbf{B} = \left(\begin{array}{ccc} 0.7 & 0.4 & 0.8 \\ 0.3 & 0.6 & 0.2 \end{array}\right)$$

where $\mathbf{B}_{ij} := \mathrm{P}(v_t = i \mid h_t = j)$, and initial state probability vector $\mathbf{a} = (0.9 \ 0.1 \ 0.0)^{\top}$. Suppose the observed symbol sequence is $v_{1:3} = (1, 2, 1)$.

- (a) Compute $P(v_{1:3})$.
- (b) Compute $P(h_1 | v_{1:3})$.
- (c) Find the most probable hidden state sequence, i.e. solve $\operatorname{argmax}_{h_{1:3}} P(h_{1:3} \mid v_{1:3})$.

2. (Correction Smoothing)

In this question we will see an alternative method to compute the smoothed distribution. This method of calculating the smoothed distribution is called *correction* smoothing and it requires the α -recursion to be completed first. This is in contrast to the parallel smoothing algorithm that we described in class.

- (a) Show how $P(h_t | h_{t+1}, v_{1:t})$ can be quickly computed after the α -recursions have been completed.
- (b) Let $\gamma(h_t) := P(h_t | v_{1:T})$. Write $\gamma(h_t)$ in terms of $\gamma(h_{t+1})$ and hence derive a recursion for calculating $\gamma(h_t)$ efficiently.

3. (Barber Exercise 23.5)

Show that if an HMM transition matrix **A**, emission matrix **B** and initial distribution are initialized to uniformly constant values, then the EM algorithm fails to update the parameters meaningfully.

4. (The EM Algorithm with (Mixture of) Gaussian Emissions)

- (a) Consider a HMM with Gaussian emissions. In particular, conditional on $h = h_k$, we assume the observation $\mathbf{v} \in \mathbb{R}^d$ has a multivariate normal distribution with mean μ_k and variance-covariance matrix, Σ_k . Derive the EM updates for this problem.
- (b) Without doing any explicit calculations, is there any difficulty in extending the EM algorithm to the case where the emission distribution is a mixture of Gaussians? Justify your answer. (A mixture of Gaussians is used in many applications for the emission distribution.)

5. (Extra-Credit: the N-Max Product Algorithm)

Write out the details of an algorithm that determines the N most likely hidden paths of a HMM given the observations $v_{1:T}$.

Hint: Adapt the Viterbi algorithm which solves the problem for the case where N = 1. In the first phase of the algorithm you work backwards from time T and then at each time and state pair, (t, h_t) say, you need to store **two** $N \times 1$ vectors which can be used to determine the N most likely paths starting from (t, h_t) .

In the "back-tracking" or second phase of the algorithm you begin at time 1 and work forwards using your knowledge from the first phase. In particular at any time t in the second phase you should know the N most likely paths from time 1 up to time t. When you move on to the next time period, t+1, you need to be careful!