Лабораторный журнал к работе 1.1.4 по курсу "Общая физика"

Измерение интенсивности радиационного фона

Баринов Леонид

28.09.2018

Цель работы: Применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении радиационного фона

Оборуднование: Счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком

Теоритические данные:

В данной работе измеряется число частиц, проходящих через счетчик за 10 и 40 секунд. Выбор времен измерения связан с желанием продемнострировать, что при большем времени лучше выполняется нормальное распределние измеряемых величин и гистограмма более симметрична, чем при малых временах, когда при обработке лучше было бы воспользоваться методами, основанными на другом законе распределения случайных величин, который называется законом Пуассона.

Среднеквадратичная ошибка числа отсчетов, измеренного за некоторый интервал времени, равна корню квадратному из среднего числа отсчетов за тот же интервал: $\sigma = \sqrt{n_0}$. Однако истенное среднее значение измеряемой величины неизвестно. Поэтому в формулу для определения стандартной ошибки отдельного измерения приходится подставлять не истинное среднее значение n_0 , а измерение значение n:

$$\sigma = \sqrt{n} \tag{1}$$

Формула (1) показывает, что, как правило (с вероятностью 68%), измеренное число частиц n отличается от искомого среднего не более чем \sqrt{n} . Результат измерений записывается так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

Мы провели серию из N измерений, в результате которых получены числа частиц $n_1, n_2, ..., n_N$. При N измерениях среднее значение числа сосчитанных за одно измерение частиц равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку отдельного измерения можно оценить по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$
(4)

В сооветствии с формулой (1) следует ожидать, что эта ошибка будет близка к $\sqrt{n_i}$, т. е. $\sigma_{\text{отд}} \approx \sigma_i = \sqrt{n_i}$. Ближе всего к значению $\sigma_{\text{отд}}$, определиному по формуле (4), лежит, конечно, величина $\sqrt{\overline{n}}$, т. е.

$$\sigma_{\text{отд}} \approx \sqrt{\overline{n}}$$
 (5)

Теория вероятностей показывает, что стандартная ошибка отклонения \overline{n} от n_0 может быть определена по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$
 (6)

Для рассмотренной серии из N измерений по 10 с относительная ошибка отдельного измерения (т. е. ожидаемое отличие любого из n_i от n_0)

$$\varepsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогичным образом определяется относительная ошибка в определении среднего по всем измерениям значения \overline{n} :

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{\text{отд}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
(8)

Доля случаев ω_n , характеризующая вероятность получить n отсчетов, определяется по формуле:

$$\omega_n = \frac{\text{число случаев с отсчетом } n}{\text{полное число измерений } (N)}$$
(9)

Экспериментальные данные:

Таблица 1: Число срабатываний счетчика за 20с

1аолица 1: Число сраоатывании счетчика за 20с										
№ опыта	1	2	3	4	5	6	7	8	9	10
0										
10										
20										
30										
40										
50										
60										
70										
80										
90										
100										
110										
120										
130										
140										
150										
160										
170										
180										
190										

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счетчика за 10c

Число импульсов n_i	0	1	2	3	4	5
Число случаев						
Доля случаев ω_n						
Число импульсов n_i	6	7	8	9	10	11
Число случаев						
Доля случаев ω_n						
Число импульсов n_i	12	13	14	15	16	17
Число случаев						
Доля случаев ω_n						

Таблица 3: Число срабатываний счетчика за 40с

таолица 5. тисло срабатывании счетчика за 400										
№ опыта	1	2	3	4	5	6	7	8	9	10
0										
10										
20										
30										
40										
50										
60										
70										
80										
90										

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчика за 40c

cpacarbibannin c ici inka	CPACATBIBATION C TOT TINKA 3A 40C								
Число импульсов n_i	17	18	19	20	21	22	23	24	25
Число случаев									
Доля случаев ω_n									
Число импульсов n_i	26	27	28	29	30	31	32	33	34
Число случаев									
Доля случаев ω_n									
Число импульсов n_i	35	36	37	38	39	40	41	42	43
Число случаев									
Доля случаев ω_n									

Таблица 5: Сравнение теоритической и эксперементальной доли случаев

Ошибка	Число случаев	Доля случаев,	Теоретическая
			оценка
$\pm \sigma_1 =$			
$\pm 2\sigma_1 =$			