Solution for HW 7

1. (a) and (b). Note that $\{\min(S,T) \leq n\} = \{S \leq n\} \cup \{T \leq n\} \in \mathcal{F}_n \text{ and } \{\max(S,T) \leq n\} = \{S \leq n\} \cap \{T \leq n\} \in \mathcal{F}_n.$ (c). We have $\{S+T \leq n\} = \bigcup_{k=0}^n \{S = k\} \cap \{T = n-k\} \in \mathcal{F}_n.$ 2. (a). The identity is not true in general. Consider X_i i.i.d s.t. $\mathbb{P}(X_i = 0) = \mathbb{P}(X_i = 1) = \frac{1}{2}$ and the stopping time T s.t. T = 1 if $X_1 = 0$ and T = 2 if $X_1 = 1$. Simple computations lead to $VarX_1 = \frac{1}{4}$, $\mathbb{E}T = \frac{3}{2}$ and $VarS_T = \frac{8}{11}$. Observe that $VarS_T \neq VarX_1\mathbb{E}T$. (b). When $\mathbb{E}T = 0$, the identity holds true. Suppose that T is bounded by m. $VarS_T = \mathbb{E}S_T^2 = \mathbb{E}\sum_{n=1}^m S_n^2 1_{T=n} = \mathbb{E}\sum_{n=1}^m X_n^2 1_{T\geq n} + 2\mathbb{E}\sum_{1\leq i < j \leq n} X_i X_j 1_{T\geq j}$. Note that $\{T \geq n\} \in \mathcal{F}_{n-1}$, which is independent of X_n . Thus $\mathbb{E}\sum_{n=1}^m X_n^2 1_{T\geq n} = \mathbb{E}X_n^2 \mathbb{E}\sum_{n=1}^m 1_{T\geq n} = VarX_1 \mathbb{E}T$. In addition, for $1 \leq i < j \leq n$, $\{T \geq j\} \in \mathcal{F}_{j-1}$ is independent of X_j . Therefore, $\mathbb{E}\sum_{1\leq i \neq j < n} X_i X_j 1_{T=n} = 0$.

Remark: The identity in the question is known as Wald's identity. The result still holds if we only suppose that $\mathbb{E}T < \infty$ (by dominated convergence theorem).

- 3. (i). For fixed m, $\{X_n \to 0\} = \{X_{m+n} \to 0\} \in \mathcal{G}_m$. Thus $\{X_n \to 0\} \in \cap_{m=1}^{\infty} \mathcal{G}_m = \mathcal{T}$. (ii). For fixed m, $\{S_n \text{ converges}\} \in \{S_n S_{m-1} \text{ converges}\} \in \mathcal{G}_m$. Thus $\{S_n \text{ converges}\} \in \mathcal{G}_m$. Thus $\{S_n \text{ converges}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$ and $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$ for all $\{X_n > b_n \text{ i.o.}\} \in \mathcal{G}_m$. Thus $\{X_n > b_n \text{ i.o.}\} \notin \mathcal{T}$. (v). Remark that for fixed $\{X_n > b_n \text{ i.o.}\} \notin \mathcal{T}$. (v). Remark that for fixed $\{X_n > b_n \text{ i.o.}\} \notin \mathcal{T}$. (v). The event is in $\{X_n > b_n \text{ i.o.}\} \notin \mathcal{T}$. Thus $\{X_n > b_n \text{ i.o.}\} \in \mathcal{T}$.
- **4.** (a). The moment generating function for exponential distributed random variable is $\phi(\theta) = \frac{1}{1-\theta}$. Note that $\frac{\phi'(\theta_a)}{\phi(\theta_a)} = a \Leftrightarrow \theta_a = 1 = \frac{1}{a}$. For a > 1, $\theta_a \in (0,1)$. By large deviation principle, $n^{-1} \log \mathbb{P}(n^{-1}S_n \geq a) \to \log \phi(\theta_a) a\theta_a = \log a a + 1$. (b). Observe that $\mathbb{P}(n^{-1}S_n \leq a) = \mathbb{P}(-n^{-1}S_n \geq -a)$. A similar argument as in (a) permits to conclude that $\mathbb{P}(n^{-1}S_n \leq a) \to \log a a + 1$.
- **5.** By definition of H_d , $H_d leq \sum_{i=1}^d \min(X_i^{up}, X_i^{right})$ where X_i^{up} and X_i^{right} 's are i.i.d. exponential distributed random variables. According to strong law of large numbers, $d^{-1} \sum_{i=1}^d \min(X_i^{up}, X_i^{right}) \to \frac{1}{2}$ a.s. since the minimum of two independent exponential(1) random variables is exponential $(\frac{1}{2})$. Thus, $c \leq \frac{1}{2}$. On the other hand, $\mathbb{P}(\frac{H_d}{d} \leq a) = \mathbb{P}(\exists \pi^*, \frac{S_{\pi^*}}{d} \leq a) \leq 2^d \mathbb{P}(\frac{\sum_{i=1}^n X_i}{d} \leq a)$. According to $\mathbf{Q4}$ (b), $d^{-1} \log \mathbb{P}(\frac{H_d}{d} \leq a) \leq d^{-1} \log 2^d \mathbb{P}(\frac{\sum_{i=1}^n X_i}{d} \leq a) \to \log 2a a + 1$. Therefore, $c > c_0$ where c_0 is the solution of $\log 2a a + 1 = 0$. Numerically, $c_0 = 0.23$.