d – Block transition elements (group 3–12)

Electronic configuration: (n-1)d1-10 ns1-2

Exceptions
$$\begin{cases} \textit{Cr} = 4s^{1}3d^{5} \\ \textit{Cu} = 4s^{1}3d^{10}, \textit{Pd} = 5s^{0}4d^{10} \end{cases}$$

Non-typical transition elements Zn,Cd & Ha

- Physical properties:
- -High melting and boiling point

Melting point: s-block metals < d-block metals

Melting point $\begin{vmatrix} 2\pi & 2\pi \\ Cu > Ag \le Au \end{vmatrix}$

-High enthalpies of atomization(Highest for V in 3d, series)

Atomic Radius:

3d series: $Sc > Ti > V > Cr > Mn \ge Fe = Co = Ni \le Cu < Zn$

In a group 3d <4d =5d (Lanthanide contraction)

Density:

s-Block < d-Block

3d series: $Sc < Ti < V < Cr < Mn < Fe < Co \le Ni < Cu > Zn$ In a group 3d < 4d << 5d

- · Ionisation enthalpy:increases from left to right
- · Oxidation states: Variable; higher O.S. stable down the group
- Trends in $E^{\circ}_{M^{2+}/M}$: E° for Mn, Ni and Zn are more negative than expected.
- Trends in E°_{M3+/M}: variable
- Chemical reactivity and E° values: Variable Ti2+, V2+ and Cr2+ are strong reducing agents
- · Magnetic properties : Diamagnetism and paramagnetism. $\mu = \sqrt{n(n+2)}$ BM
- · Formation of coloured ions : due to d d transitions
- Form a large number of complex compounds
- · Forms interstitial compounds: Non stoichiometric and are neither ionic nor covalent.
- · Alloy formation: Due to similar atomic sizes.(15% difference in metallic radius)

Uses

- · In production of iron and steels.
- · TiO in piament industry
- · MnO, in dry battery cells.
- · As catalysts in industry.
- · Ni complexes:polymerization of alkynes and other organic compounds
- AgBr in photographic industry.

Catalysts

Contact process = V_2O_5 Haber process = Fe₂O₃+ Al₂O₃ + K₂O Decomposition of $KCIO_3 = MnO_2$ Ostwald process = Pt/Rh Zeigler Natta catalyst = $TiCl_A + (C_2H_E)_2Al$ Hydrogenation of Alkene = Ni/Pd Wilkinson's catalyst=RhCl(PPh3)3

Compounds of d-block elements

Potassium dichromate K_Cr_O_

Preparation:

4FeCr₂O₄ + 8Na₂CO₃ + 7O₂→8Na₂CrO₄ + 2Fe₂O₃ +8CO₂

2Na,CrO₄ + 2H⁺ → Na,Cr,O₇ + 2Na⁺ + H,O Na₂Cr₂O₇ + 2KCl → K₂Cr₂O₇ + 2NaCl Properties: Strong oxidising agent Cr₂O₂- + 14H+ + 6e- → 2Cr3+ + 7H₂O

Potassium permanganate KMnO

Preparation: 2MnO₂ + 4KOH + O2 - 2KMnO₄ + 2H₂O $3MnO_4^{2^-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$ $2Mn^{2^+} + 5S_2O_8^{2^-} + 8H_2O \rightarrow 2MnO_4^{-} + 10SO_4^{2^-} + 16H^+$

·Intense colour

Paramagnetism

•Strong oxidising agent
MnO₄- + 8H+ + 5e- →Mn²⁺ + 4H₂O

Actinoids

- Electronic configuration : [Rn]5f1-14 6d0-1 7s2
- Ionic sizes: Gradual decrease along the series
- · Oxidation states: Most common is +3. They show O.S. of +4, +5, +6 and +7.
- · General characteristics :
- -Highly reactive metals
- -Irregularities in metallic radii, greater than in Lanthanoids.
- -Magnetic properties more complex than lanthanoids
- Actinoid Contraction > Lanthanoid Contraction

- Electronic configuration: 4f¹⁻¹⁴ 5d⁰⁻¹ 6s² (Gd:4f⁷ 5d¹ 6s²) · Atomic and ionic sizes: Decreases from La to Lu(Eu is the largest)
- · Oxidation states: Most common is +3.
- · Some elements: exhibit +2 and +4.
- · General characteristics
- Silvery white soft metals and tarnish rapidly in air.

Lanthanoids

- Hardness increases with increasing atomic number.
- Metallic structure and good conductors of heat and electricity.
- Variable density
- Trivalent Lanthanoid ions are coloured.
- Ionisation Enthalpies: Low third ionisation enthalpies.
- · Good reducing agents.

MISCH METAL-Alloy of Ln (95%), Fe (5%) & S,C,Ca,Al etc..

The element that usually does not show variable oxidation state is?

a) Cu

c) Sc

- b) Ti
- d) V

Which of the following is not formed when H₂S reacts with acidic K₂Cr₂O₇ solution ?

- a) CrSO,
- b) Cr₂(SO₄)₃
- c) K₂SO₄
- d) 5

d&f BLOCK ELEMENTS