Module: 6SENG005W Formal Methods

Module Leader: K. Draeger/P Howells

(email: K.Draeger/P.Howells@westminster.ac.uk)

Tutorial Exercises: 3

Subject: Using ProB to Evaluate Set Expressions

Date: 2022/23

1. Using **ProB** to Evaluate Set Expressions

Assuming that:

- 1. The B machine Sets.mch has been syntax & type checked using Atelier B, & there are no errors.
- 2. The Sets.mch machine has been loaded into the **ProB** animator & no errors have occurred.

After loading the Sets.mch machine into **ProB** you can evaluate expressions in two ways.

1. Evaluate expressions by using the *Eval* terminal.

First load & begin the animation of Sets.mch.

You start the *Eval* terminal from **ProB**, using the mouse to *right-click* over the bottom left window.

You can then type the expressions in using the AMN ASCII notation.

A new window will start & then you type expressions at the Eval prompt ">>>>" for example using card & generalised union []:

```
>>> card( AA )
   8
>>> card( AA ) < 10
   TRUE
>>> union( { {1, 2}, { 3, 4 } } )
   {1,2,3,4}
```

For help with **ProB**'s expression syntax, see the help under the "Help > Summary of B Syntax" menu.

2. Evaluate expressions by using the ASSERTIONS machine clause.

You add this clause into the Sets.mch definition using the Atlier B editor.

The ASSERTIONS clause is added after the INITIALISATION clause.

You can try true & false "assertions", for example:

```
ASSERTIONS

EE \/ FF <: { aa, bb, cc, dd, ee, ff, gg };

EE /\ GG = {};

FF /\ GG = { aa }
```

the first two are true & the last is false.

2. Evaluate Expressions

After loading the Sets.mch machine into **ProB**, evaluate the following set, constant & type expressions given below.

2.1 Value Expressions

- 1. homeland
- 2. Benelux
- 3. *AA*
- 4. *BB*
- 5. *CC*
- 6. *DD*
- 7. Even
- 8. *Odd*
- 9. Fives
- 10. card(Benelux)
- 11. $card(\{\})$

- 12. $card(\{1, 2, 3, 4, 5\})$
- 13. card(AA)
- 14. card(BB)
- 15. card(Even)
- 16. card(Odd)
- 17. $AA \cup BB$
- 18. $CC \cup \{aa\}$
- 19. $DD \cup \{pp, aa, uu, ll\}$
- **20.** $card(AA \cup BB)$
- 21. $Even \cup Odd$
- 22. $AA \cap BB$
- 23. $card(AA \cap BB)$
- 24. $AA \cap CC$
- **25**. $BB \cap DD$
- **26.** $Even \cap Odd$
- 27. $AA \setminus BB$
- 28. $DD \setminus BB$
- 29. $CC \setminus \{xx\}$
- 30. $Benelux \setminus \{NL\}$
- 31. $Even \setminus \{ \}$
- 32. $Odd \setminus Odd$
- 33. $\bigcup \{AA, BB, CC, DD\}$
- 34. $\bigcup \{Even, Odd\}$
- 35. $\bigcup \{ \{2,3,4,5\}, \{2,4\}, \{\}\} \}$
- 36. $\bigcap \{Even, Odd\}$

37.
$$\bigcap \{Even, \{2, 3, 4, 5, 6, 7\}\}\$$

38.
$$\bigcap \{ \{2, 3, 4, 5\}, \{2, 4\}, \{\} \} \}$$

2.2 Predicate Expressions

Evaluate these expressions using both approaches:

First use the Eval terminal.

Then use the ASSERTIONS clause method.

- 1. $aa \in AA$
- 2. $zz \in AA$
- 3. $tt \notin BB$
- 4. $yy \notin CC$
- 5. $xx \in (AA \cup CC)$
- 6. $zz \in (AA \cup BB)$
- 7. $tt \notin (CC \cup DD)$
- 8. $ee \notin (BB \cup CC)$
- 9. $BB \subset AA$
- 10. $CC \subset AA$
- 11. $AA \subset AA$
- 12. $AA \subseteq AA$
- 13. $BB \subseteq CC$
- 14. $\{\} \subseteq AA$
- 15. $\{aa, bb, cc\} \subseteq AA$
- 16. $\{xx, yy\} \subset CC$
- 17. $card(AA) \leq 10$
- 18. $card(BB) \leq 3$

- 19. card(CC) = 3
- **20.** card(DD) = 6
- 21. $5 \neq (6+3)$
- 22. 5 = (2+3)
- 23. 7 < (3*4)
- 24. 3 < 6
- **25**. 3 > 6
- **26.** $(3 < 6) \land (2 \le 10)$
- 27. $(3 = 6) \land (2 \le 10)$
- 28. $(3 < 6) \land (2 > 10)$
- 29. $(3 = 6) \lor (2 \le 10)$
- 30. $(3=6) \lor (2=10)$
- 31. $(aa \in AA) \land (\{aa, bb, cc\} \subseteq AA)$
- 32. $(gg \in AA) \lor (gg \in AA)$
- 33. $tt \notin BB$
- 34. $yy \notin CC$