Addressing and Forwarding

Kameswari Chebrolu

Problem Statement

- Flat Addressing: N hosts needs N entries in the table (MAC addresses)
- Millions of hosts, address lookup in forwarding becomes a bottleneck
- Need a method of reducing entries in the forwarding table for scalability purposes

MAC	
Vijay, son of Ajay, grandson of Sanjay -	Air India flight
Rink, doughte of Pinki, grandaughte of Dinky	Air India flight
India, Mumboi, Powai, B-4, Vijay India, Deshi, Dwarako, D-16, Rinki	India - Air India fligh

Solution: Hierarchical Addressing

- Structure to addresses: Address captures location in the network topology
- IP address (32 bits) consists of two parts: network and host
 - Network part identifies the network to which host is connected
 - Host part uniquely identifies each host in the network
- How does this help?
 - bes this neip?
 - An entire network (in some specific direction) could be represented by a single entry at a router

IP Address

- Size of network and host part are not the same
- Organizations obtain set of addresses of a given class
- Divided into five classes Class A: 0, network(7), host(24); Mask 8
- 31615 Class B: 10, network(14), host(16); Mask 16

- Class C:110, network(21), host(8); Mask 24
 - Class D: 1110, bits-28 (Multicast) Class E: 1111, bits 28 (Reserved)

IP Address

> 117 Bombay

NAT

- Private IP addresses:
 - A: 10.0.0.0 through 10.255.255.255
 - B: 172.16.0.0 through 172.31.0.0
 - C: 192.168.0.0 through 192.168.255.0.
 - 127.0.0.1 is loopback address.

Points to Note

- Every datagram contains <u>IP address of destination</u> host
- Network part of IP address uniquely identifies a single physical network
- All nodes that share the same network part are connected to the same physical network
- Every physical network has at least one <u>router</u> that is connected to at least one other physical network.

Forwarding at Host

- If (NetNum of Dest = my NetNum) then
 - deliver packet to destination directly
 - use ARP to get MAC address corresponding to dest IP address

Else deliver packet to default router

 use ARP to get MAC address corresponding to router IP address

HB+B

Route

Linux Usage

10							
kameswari@aster							
Kernel IP routing table							
Destination 7	Gateway	Genmask	Flags	Metric	Ref	IISA	Iface
	*		_				
10.129.0.0		255.255.0.0	U	1	0		eth0
link-local	*	255.255.0.0	U	1000	0	0	eth0
default	router.it.iitb.	0.0.0.0	UG	0	0	0	eth0
	kameswari@asterix:~\$						
	kameswari@asterix:~\$						
kameswari@aster	kameswari@asterix:~\$ route -n						
Kernel IP routi	Kernel IP routing table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
10 129 0.0	0.0.0.0	255.255.0.0	U	1	0	0	eth0
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0	eth0
	10.129.250.1	0.0.0.0	UG	0	0	0	eth0
kameswari@asterix:~\$							

Windows Usage

	IP∪4 Route Table								
	Active Routes:								
	Network Destination	Netmask	Gateway	Interface	Metric				
	0.0.0.0	0.0.0.0	10.129.250.1	10.129.154.135	40				
ور دا ال	10.129.128.0 سين	255.255.128.0	On-link	10.129.154.135	296				
	→ 10.129.154.135 <i>i</i>	255 . 255 . 255 . 255	On-link	10.129.154.135	296				
	10.129.255.255	255 . 255 . 255 . 255	On-link	10.129.154.135	296				
	127.0.0.0	255.0.0.0	On-link	127.0.0.1	306				
	127.0.0.1	255 . 255 . 255 . 255	On-link	127.0.0.1	306				
	<u></u>	255 . 255 . 255 . 255	On-link	127.0.0.1	306				
ا	224.0.0.0	240.0.0.0	On-link	127.0.0.1	306				
	224.0.0.0	240.0.0.0	On-link	10.129.154.135	296				
	255 . 255 . 255 . 255	255 . 255 . 255 . 255	On-link	127.0.0.1	306				
10	255.255.255.255	255 . 255 . 255 . 255	On-link	10.129.154.135	296				
			=======================================		======				

Obtained via "route print" command

Forwarding at Router

- If (NetNum of <u>Dest</u> = NetNum of one of my interfaces) then
 - deliver packet to destination over that interface

Else if (NetNum of Dest is in my forwarding table) then

deliver packet to NextHop router

Else deliver packet to default router

Summary

- Top concern: Scalability
- Handled via hierarchical addressing
 - IP address has a network and a host part
 - Significantly reduces entries in forwarding table
- Looked at how forwarding is done at host and router based on the addressing scheme
- Ahead: Address assignment inefficiency