Práctica 6

BA_3

- Martínez López, Uxía
- Martínez Parrondo, Paula

Índice

Ejercicio 1	2
Ejercicio 2	4
Ejercicio 3	4

Ejercicio 1

1. Con base_datos_BA.sav realiza el contraste de hipótesis para averiguar si la media de altura es 1,65 en la población en la que se ha obtenido la muestra. Siendo α= 0,05.

Estadísticos

Altura(metros)

N	Válido	12
	Perdidos	0
Media		1,6733

Pruebas de normalidad:

Resumen de procesamiento de casos

	Casos					
	Vá	lido	Perc	lidos	To	otal
	N	Porcentaje	N	Porcentaje	N	Porcentaje
Edad	12	100,0%	0	0,0%	12	100,0%
Altura(metros)	12	100,0%	0	0,0%	12	100,0%

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			S	Shapiro-Wilk	
Estadístico gl Sig.			Estadístico	gl	Sig.	
Edad	,460	12	<,001	,552	12	<,001
Altura(metros)	,133	12	,200*	,964	12	,836

^{*.} Esto es un límite inferior de la significación verdadera.

Pruebas T (t de student)

Estadísticas para una muestra

	N	Media	Desv. estándar	Media de error estándar
Altura(metros)	12	1,6733	,07924	,02287

Prueba para una muestra

Valor de prueba = 1.65

			valor de praeba – 1.03					
			Significación			95% de intervalo la dife		
	t	gl	P de un factor	P de dos factores	Diferencia de medias	Inferior	Superior	
Altura(metros)	1,020	11	,165	,330	,02333	-,0270	,0737	

a. Corrección de significación de Lilliefors

Tamaños de efecto de una muestra

		Standardizer ^a	Estimación de puntos	Intervalo de confianza al 95% Inferior Superior		
Altura(metros)	d de Cohen	,07924	,294	-,291	,867	
	corrección de Hedges	,08521	,274	-,270	,806	

a. El denominador utilizado en la estimación de tamaños del efecto.

La d de Cohen utiliza la desviación estándar de muestra.

La corrección de Hedges utiliza la desviación estándar de muestra, más un factor de corrección.

Hipótesis

H0: μ = 1,65; H1: ≠1,65

Supuestos

Con la prueba de normalidad,

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			S	hapiro-Wilk	
Estadístico g			Sig.	Estadístico	gl	Sig.
Altura(metros)	,133	12	,200*	,964	12	,836

^{*.} Esto es un límite inferior de la significación verdadera.

Como Sig. Es mayor que 0,05, se mantiene la normalidad de la población variable de altura.

Estadístico de contraste

Prueba para una muestra

Valor de prueba = 1.65 95% de intervalo de confianza de Significación la diferencia P de dos Diferencia de P de un factor factores Inferior Superior medias Altura(metros) 1,020 11 -,0270 ,0737

T=1,020

Nos fijamos en la T

Distribución muestral

T se distribuye según t11 (Nos hemos fijado en la tabla "Prueba para una muestra" en "t" para obtener este resultado)

Nivel crítico

P= 0,330 (Nos hemos fijado en la tabla "Prueba para una muestra", en "P de los factores" para obtener este resultado)

a. Corrección de significación de Lilliefors

Decisión

Como p> α , se mantiene la hipótesis nula. Por lo tanto, la media de altura en la población será de 1,65.

Ejercicio 2

2. Sintaxis

```
Aplicación de búsqueda
                                            * Encoding: UTF-8.
                                   1
2
3
4
5
6
7
8
9
10
11
12
DATASET ACTIVATE
                                            DATASET ACTIVATE ConjuntoDatos2.
EXAMINE
                                           EXAMINE VARIABLES=altura_metros
T-TEST
                                             /PLOT BOXPLOT STEMLEAF NPPLOT
                                             /COMPARE GROUPS
                                             /STATISTICS DESCRIPTIVES
/CINTERVAL 95
                                             /MISSING LISTWISE
                                          △ /NOTOTAL.
                                   13
14
15
16
17
                                             /TESTVAL=1.65
                                            /MISSING=ANALYSIS
//ARIABLES=altura_metros
                                             /ES DISPLAY(TRUE)
                                             /CRITERIA=CI(.95).
```

Ejercicio 3

3. Crea un repositorio y sube allí la sintaxis, el informe y la base de datos.

(Repositorio Git Hub)