Funciones trigonométricas inversas

Cuando tratamos de encontrar las funciones trigonométricas inversas, tenemos una pequeña dificultad: debido a que las funciones trigonométricas no son uno a uno, no tienen funciones inversas. La dificultad se supera mediante la restricción de los dominios de estas funciones para que sean uno a uno.

Puede verse en la figura 17 que la función seno, $y = \operatorname{sen} x$, no es uno a uno (utilice la prueba de la recta horizontal). Pero la función $f(x) = \operatorname{sen} x$, $-\pi/2 \le x \le \pi/2$, es uno a uno (figura 18). La función inversa de la función seno restringida f existe y se denota por sen^{-1} o arcsen. Se llama **función seno inverso** o **función arco seno**.

FIGURA 17

FIGURA 18 $y = \text{sen } x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Dado que la definición de una función inversa indica que

$$f^{-1}(x) = y \iff f(y) = x$$

tenemos

$$\operatorname{sen}^{-1} x = y \iff \operatorname{sen} y = x \quad y \quad -\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$$

Por tanto, $-1 \le x \le 1$ es el número entre $-\pi/2$ y $\pi/2$ cuyo seno es x.

EJEMPLO 12 Evalúe a) $\operatorname{sen}^{-1}\left(\frac{1}{2}\right)$ y b) $\operatorname{tan}\left(\operatorname{arcsen}\frac{1}{3}\right)$.

SOLUCIÓN

a) Tenemos que

$$\operatorname{sen}^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

porque el sen $(\pi/6) = \frac{1}{2}$ y $\pi/6$ se encuentra entre $-\pi/2$ y $\pi/2$.

b) Sea $\theta= \arcsin\frac{1}{3}$, por lo que el sen $\theta=\frac{1}{3}$. Entonces, podemos dibujar un triángulo rectángulo con un ángulo θ como en la figura 19 y deducir por el teorema de Pitágoras que el tercer lado del triángulo tiene una longitud de $\sqrt{9-1}=2\sqrt{2}$. Esto nos permite leer que

$$\tan\left(\arcsin\frac{1}{3}\right) = \tan\,\theta = \frac{1}{2\sqrt{2}}$$

FIGURA 19

Las ecuaciones de cancelación para las funciones inversas resultan ser, en este caso,

$$\operatorname{sen}^{-1}(\operatorname{sen} x) = x \quad \operatorname{para} -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\operatorname{sen}(\operatorname{sen}^{-1}x) = x \quad \operatorname{para} - 1 \le x \le 1$$

FIGURA 20 $y = \text{sen}^{-1} x = \text{arcsen } x$

La función inversa del seno, sen⁻¹, tiene dominio [-1, 1] y rango $[-\pi/2, \pi/2]$, y su gráfica, que se muestra en la figura 20, se obtiene a partir de la función seno restringido (figura 18), mediante la reflexión sobre la recta y = x.

La **función coseno inverso** se maneja en forma similar. La función coseno restringida $f(x) = \cos x$, para $0 \le x \le \pi$, es uno a uno (figura 21) y, por tanto, tiene una función inversa denotada por \cos^{-1} o arccos.

$$\cos^{-1} x = y \iff \cos y = x \quad y \quad 0 \le y \le \pi$$

FIGURA 21 $y = \cos x, 0 \le x \le \pi$

FIGURA 22 $y = \cos^{-1} x = \arccos x$

Las ecuaciones de cancelación son

$$\cos^{-1}(\cos x) = x$$
 para $0 \le x \le \pi$
 $\cos(\cos^{-1}x) = x$ para $-1 \le x \le 1$

La función coseno inverso, \cos^{-1} , tiene dominio [-1, 1] y rango $[0, \pi]$. Su gráfica se muestra en la figura 22.

La función tangente puede hacerse uno a uno mediante la restricción de que el intervalo sea $(-\pi/2, \pi/2)$. Así, la **función tangente inversa** se define como la inversa de la función $f(x) = \tan x, -\pi/2 < x < \pi/2$. (Véase la figura 23), y se denota por tan⁻¹ o arctan.

$$\tan^{-1} x = y \iff \tan y = x \quad y \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

EJEMPLO 13 Simplifique la expresión $\cos(\tan^{-1} x)$.

SOLUCIÓN 1 Sea $y = \tan^{-1} x$. Tenemos que, $\tan y = x$ y $-\pi/2 < y < \pi/2$. Queremos encontrar cos y, pero, ya que tan y es conocida, es más fácil encontrar primero sec y:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

 $\sec y = \sqrt{1 + x^2}$ (ya que $\sec y > 0$ para $-\pi/2 < y < \pi/2$)

FIGURA 23 $y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$

FIGURA 24

SOLUCIÓN 2 En lugar de utilizar las identidades trigonométricas como en la solución 1, es quizá más fácil usar un diagrama. Si $y = \tan^{-1} x$, entonces $\tan y = x$, y podemos leer en la figura 24 (que ilustra el caso y > 0) que

$$\cos(\tan^{-1} x) = \cos y = \frac{1}{\sqrt{1 + x^2}}$$

La función tangente inversa, tan⁻¹ = arctan, tiene dominio \mathbb{R} y rango $(-\pi/2, \pi/2)$. Su gráfica se muestra en la figura 25.

FIGURA 25 $y = \tan^{-1} x = \arctan x$

Sabemos que las rectas $x = \pm \pi/2$ son asíntotas verticales de la gráfica de tan. Dado que la gráfica de tan⁻¹ se obtiene reflejando la gráfica de la función tangente restringida, sobre la recta y = x, se deduce que las rectas $y = \pi/2$ y $y = -\pi/2$ son asíntotas horizontales de la gráfica de tan⁻¹.

El resto de las funciones trigonométricas inversas no se utilizan con tanta frecuencia y se resumen aquí.

FIGURA 26

 $y = \sec x$

11
$$y = \csc^{-1} x (|x| \ge 1) \iff \csc y = x \quad y \quad y \in (0, \pi/2] \cup (\pi, 3\pi/2]$$

$$y = \sec^{-1} x (|x| \ge 1) \iff \sec y = x \quad y \quad y \in [0, \pi/2) \cup [\pi, 3\pi/2]$$

$$y = \cot^{-1} x (x \in \mathbb{R}) \iff \cot y = x \quad y \quad y \in (0, \pi)$$

La elección de los intervalos para y en las definiciones de csc⁻¹ y sec⁻¹ no es aceptada universalmente. Por ejemplo, algunos autores utilizan $y \in [0, \pi/2) \cup (\pi/2, \pi]$ en la definición de sec-1. (Puede verse en la gráfica de la función secante en la figura 26 que tanto esta opción como la que se encuentra en 11 funcionan.)

Ejercicios 1.6

- 1. a) ¿Qué es una función uno a uno?
 - b) ¿Cómo puede decirse, a partir de la gráfica de una función, que es uno a uno?
- **2.** a) Supongamos que f es una función uno a uno con dominio A y rango B. ¿Cómo se define la función inversa f^{-1} ? ¿Cuál es el dominio de f^{-1} ? ¿Cuál es el rango de f^{-1} ?
 - b) Si se le da una fórmula para f, ¿cómo encuentra una fórmula para f^{-1} ?
 - c) Si se le da la gráfica para f, ¿cómo encuentra la gráfica de f^{-1} ?
- 3-14 Una función viene dada por una tabla de valores, una gráfica, una fórmula o una descripción verbal. Determine si es uno a uno.

3.	х	1	2	3	4	5	6
	f(x)	1.5	2.0	3.6	5.3	2.8	2.0

4.	x	1	2	3	4	5	6
	f(x)	1.0	1.9	2.8	3.5	3.1	2.9

