Lattices from group frames and vertex transitive graphs

Lenny Fukshansky Claremont McKenna College

(joint work with Deanna Needell, Josiah Park and Jessie Xin)

Point Distributions Webinar, March 23, 2022

Tight frames

A spanning set $\{f_1, \dots, f_n\} \subset \mathbb{R}^k$, $n \ge k$, is called a **tight frame** if there exists a real constant γ such that for every $\mathbf{x} \in \mathbb{R}^k$,

$$\|\mathbf{x}\|^2 = \gamma \sum_{j=1}^n (\mathbf{x}, \mathbf{f}_j)^2,$$

where (,) stands for the usual dot-product.

Tight frames

A spanning set $\{f_1, \dots, f_n\} \subset \mathbb{R}^k$, $n \ge k$, is called a **tight frame** if there exists a real constant γ such that for every $\mathbf{x} \in \mathbb{R}^k$,

$$\|\mathbf{x}\|^2 = \gamma \sum_{j=1}^n (\mathbf{x}, \mathbf{f}_j)^2,$$

where (,) stands for the usual dot-product.

Tight frame $\mathcal F$ is **rational** if there exists a real number α so that

$$\alpha(\mathbf{f}_i, \mathbf{f}_j) \in \mathbb{Q} \ \forall \ 1 \leq i, j \leq n.$$

Group frames

Let G be a finite subgroup of $\mathcal{O}_k(\mathbb{R})$, the k-dimensional real orthogonal group, then G acts on \mathbb{R}^k by left matrix multiplication. This action is **irreducible** if it has no invariant subspaces except for $\{\mathbf{0}\}$ and \mathbb{R}^k .

Group frames

Let G be a finite subgroup of $\mathcal{O}_k(\mathbb{R})$, the k-dimensional real orthogonal group, then G acts on \mathbb{R}^k by left matrix multiplication. This action is **irreducible** if it has no invariant subspaces except for $\{\mathbf{0}\}$ and \mathbb{R}^k .

Let $\mathbf{f} \in \mathbb{R}^k$ be a nonzero vector, then

$$G\boldsymbol{f}=\left\{ U\boldsymbol{f}:U\in G\right\}$$

is called a **group frame** (or G-frame). If G acts irreducibly on \mathbb{R}^k , $G\mathbf{f}$ is called an **irreducible group frame**. Irreducible group frames are always tight.

Let $\mathcal{F} = \{ \mathbf{f}_1, \dots, \mathbf{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \boldsymbol{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

Let $\mathcal{F} = \{ \boldsymbol{f}_1, \dots, \boldsymbol{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \mathbf{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

When is $L(\mathcal{F})$ a lattice, i.e. a discrete subgroup of \mathbb{R}^k ?

Let $\mathcal{F} = \{ \boldsymbol{f}_1, \dots, \boldsymbol{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \mathbf{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

When is $L(\mathcal{F})$ a lattice, i.e. a discrete subgroup of \mathbb{R}^k ?

Theorem 1 (Böttcher, F., Needell, Park, Xin (2017/2018))

The set $L(\mathcal{F})$ is a full-rank lattice in \mathbb{R}^k if and only if the tight frame \mathcal{F} is rational.

Let $\mathcal{F} = \{ \boldsymbol{f}_1, \dots, \boldsymbol{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \mathbf{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

When is $L(\mathcal{F})$ a lattice, i.e. a discrete subgroup of \mathbb{R}^k ?

Theorem 1 (Böttcher, F., Needell, Park, Xin (2017/2018))

The set $L(\mathcal{F})$ is a full-rank lattice in \mathbb{R}^k if and only if the tight frame \mathcal{F} is rational.

Remark: As we later learned, a similar result was proved in a 2017 paper by T. Sunada.

Let $\mathcal{F} = \{ \boldsymbol{f}_1, \dots, \boldsymbol{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \mathbf{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

When is $L(\mathcal{F})$ a lattice, i.e. a discrete subgroup of \mathbb{R}^k ?

Theorem 1 (Böttcher, F., Needell, Park, Xin (2017/2018))

The set $L(\mathcal{F})$ is a full-rank lattice in \mathbb{R}^k if and only if the tight frame \mathcal{F} is rational.

Remark: As we later learned, a similar result was proved in a 2017 paper by T. Sunada.

What kind of lattices can we get this way?

Let $\mathcal{F} = \{ \boldsymbol{f}_1, \dots, \boldsymbol{f}_n \}$ be a tight (n, k)-frame and define

$$L(\mathcal{F}) := \operatorname{\mathsf{span}}_{\mathbb{Z}} \mathcal{F} = \left\{ \sum_{i=1}^n a_i \mathbf{f}_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

When is $L(\mathcal{F})$ a lattice, i.e. a discrete subgroup of \mathbb{R}^k ?

Theorem 1 (Böttcher, F., Needell, Park, Xin (2017/2018))

The set $L(\mathcal{F})$ is a full-rank lattice in \mathbb{R}^k if and only if the tight frame \mathcal{F} is rational.

Remark: As we later learned, a similar result was proved in a 2017 paper by T. Sunada.

What kind of lattices can we get this way? What kind of lattices do we want to get?

Some properties of lattices

Minimal norm of a lattice L is

$$|L| = \min\{\|\boldsymbol{x}\| : \boldsymbol{x} \in L \setminus \{\boldsymbol{0}\}\},\$$

where $\| \|$ is Euclidean norm. The set of **minimal vectors** of L is

$$S(L) = \{ \mathbf{x} \in L : ||\mathbf{x}|| = |L| \}.$$

From here on, let us write $S(L) = \{x_1, \dots, x_n\}$, where n, the cardinality of the set of minimal vectors of L must be even, and can be smaller or larger than (twice) the rank of the lattice. For example

$$S(\mathbb{Z}^k) = \{\pm \boldsymbol{e}_1, \ldots, \pm \boldsymbol{e}_k\},\,$$

so n = 2k.

Some properties of lattices

Minimal norm of a lattice L is

$$|L| = \min\{\|\boldsymbol{x}\| : \boldsymbol{x} \in L \setminus \{\boldsymbol{0}\}\},\$$

where $\| \|$ is Euclidean norm. The set of **minimal vectors** of L is

$$S(L) = \{ \mathbf{x} \in L : ||\mathbf{x}|| = |L| \}.$$

From here on, let us write $S(L) = \{x_1, \dots, x_n\}$, where n, the cardinality of the set of minimal vectors of L must be even, and can be smaller or larger than (twice) the rank of the lattice. For example

$$S(\mathbb{Z}^k) = \{\pm \boldsymbol{e}_1, \ldots, \pm \boldsymbol{e}_k\},\,$$

so n = 2k. A lattice L is **well-rounded** (WR) if

$$\operatorname{span}_{\mathbb{R}} L = \operatorname{span}_{\mathbb{R}} S(L).$$

Eutaxy and perfection

A lattice $L \subset \mathbb{R}^k$ is called **eutactic** if there exist positive real numbers c_1, \ldots, c_n such that

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i(\mathbf{v}, \mathbf{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$. If $c_1 = \cdots = c_n$, we say that L is **strongly eutactic**.

Eutaxy and perfection

A lattice $L \subset \mathbb{R}^k$ is called **eutactic** if there exist positive real numbers c_1, \ldots, c_n such that

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i(\mathbf{v}, \mathbf{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$. If $c_1 = \cdots = c_n$, we say that L is **strongly eutactic**.

A lattice L is called **perfect** if the set of symmetric matrices

$$\{\boldsymbol{x}_i\boldsymbol{x}_i^{\top}: \boldsymbol{x}_i \in S(L)\}$$

spans the space of $k \times k$ symmetric matrices.

Eutaxy and perfection

A lattice $L \subset \mathbb{R}^k$ is called **eutactic** if there exist positive real numbers c_1, \ldots, c_n such that

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i(\mathbf{v}, \mathbf{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$. If $c_1 = \cdots = c_n$, we say that L is **strongly eutactic**.

A lattice *L* is called **perfect** if the set of symmetric matrices

$$\{\boldsymbol{x}_i\boldsymbol{x}_i^{\top}:\boldsymbol{x}_i\in\mathcal{S}(L)\}$$

spans the space of $k \times k$ symmetric matrices.

Both, eutactic and perfect lattices are necessarily well-rounded. Up to similarity, there are only finitely many eutactic or perfect lattices in a given dimension.

The packing density of a lattice L of rank k is defined as

$$\delta(L) = \frac{\omega_k |L|^k}{2^k \det L},$$

where ω_k is the volume of a unit ball in \mathbb{R}^k .

The packing density of a lattice L of rank k is defined as

$$\delta(L) = \frac{\omega_k |L|^k}{2^k \det L},$$

where ω_k is the volume of a unit ball in \mathbb{R}^k .

Space of full-rank lattices in \mathbb{R}^k is identified with $GL_k(\mathbb{R})/GL_k(\mathbb{Z})$, and δ is a continuous function on this space.

The packing density of a lattice L of rank k is defined as

$$\delta(L) = \frac{\omega_k |L|^k}{2^k \det L},$$

where ω_k is the volume of a unit ball in \mathbb{R}^k .

Space of full-rank lattices in \mathbb{R}^k is identified with $\mathrm{GL}_k(\mathbb{R})/\mathrm{GL}_k(\mathbb{Z})$, and δ is a continuous function on this space.

A lattice is called **extremal** if it is a local maximum of the packing density function in its dimension.

The packing density of a lattice L of rank k is defined as

$$\delta(L) = \frac{\omega_k |L|^k}{2^k \det L},$$

where ω_k is the volume of a unit ball in \mathbb{R}^k .

Space of full-rank lattices in \mathbb{R}^k is identified with $GL_k(\mathbb{R})/GL_k(\mathbb{Z})$, and δ is a continuous function on this space.

A lattice is called **extremal** if it is a local maximum of the packing density function in its dimension.

Theorem 2 (G. Voronoi, 1908)

A lattice is extremal if and only if it is perfect and eutactic.

Strong eutaxy and group frames

These observations emphasize the importance of eutactic and (especially!) strongly eutactic lattices.

Strong eutaxy and group frames

These observations emphasize the importance of eutactic and (especially!) strongly eutactic lattices.

Here is another way to think of strong eutaxy:

a lattice $L \subset \mathbb{R}^k$ is strongly eutactic if and only if its set of minimal vectors S(L) forms a tight frame in \mathbb{R}^k .

Strong eutaxy and group frames

These observations emphasize the importance of eutactic and (especially!) strongly eutactic lattices.

Here is another way to think of strong eutaxy:

a lattice $L \subset \mathbb{R}^k$ is strongly eutactic if and only if its set of minimal vectors S(L) forms a tight frame in \mathbb{R}^k .

Theorem 3 (F., Needell, Park, Xin (2018))

Let G be a group of $k \times k$ real orthogonal matrices and $\mathbf{f} \in \mathbb{R}^k$ be a vector so that $\mathcal{F} = G\mathbf{f}$ is an irreducible rational group frame in \mathbb{R}^k . Then the lattice $L(\mathcal{F})$ is strongly eutactic.

Question 1

How can we construct rational irreducible group frames?

Question 1

How can we construct rational irreducible group frames?

One good source comes from transitive graphs.

Question 1

How can we construct rational irreducible group frames?

One good source comes from transitive graphs.

A graph Γ is called **vertex transitive** if its automorphism group $G = \operatorname{Aut} \Gamma$ acts transitively on the set of vertices $\{v_1, \ldots, v_n\}$.

Question 1

How can we construct rational irreducible group frames?

One good source comes from transitive graphs.

A graph Γ is called **vertex transitive** if its automorphism group $G = \operatorname{Aut} \Gamma$ acts transitively on the set of vertices $\{v_1, \ldots, v_n\}$.

We define the **distance** between two vertices in a graph to be the number of edges in a shortest path connecting them. A connected graph Γ is called **distance transitive** if for any two pairs of vertices i,j and k,l at the same distance from each other there exists an automorphism $\tau \in G$ such that $\tau(i) = k$ and $\tau(j) = l$.

Question 1

How can we construct rational irreducible group frames?

One good source comes from transitive graphs.

A graph Γ is called **vertex transitive** if its automorphism group $G = \operatorname{Aut} \Gamma$ acts transitively on the set of vertices $\{v_1, \ldots, v_n\}$.

We define the **distance** between two vertices in a graph to be the number of edges in a shortest path connecting them. A connected graph Γ is called **distance transitive** if for any two pairs of vertices i,j and k,l at the same distance from each other there exists an automorphism $\tau \in G$ such that $\tau(i) = k$ and $\tau(j) = l$.

Since $G \leq S_n$, we can identify it with its representation in the orthogonal group $\mathcal{O}_n(\mathbb{R})$ and its action extends to \mathbb{R}^n : $\forall \tau \in G$,

$$\tau \boldsymbol{e}_i = \boldsymbol{e}_{\tau(i)},$$

where e_1, \ldots, e_n are standard basis vectors.

Graphs to frames

 Γ = distance transitive graph on n vertices

 $G = \operatorname{Aut} \Gamma$

 $A = adjacency matrix of \Gamma$

 $\lambda = \text{eigenvalue of } A$

 $V_{\lambda}=$ the corresponding eigenspace

Graphs to frames

 Γ = distance transitive graph on n vertices

 $G = \operatorname{Aut} \Gamma$

 $A = adjacency matrix of \Gamma$

 $\lambda = \text{eigenvalue of } A$

 $V_{\lambda}=$ the corresponding eigenspace

Then G acts irreducibly on V_{λ}

Graphs to frames

 Γ = distance transitive graph on n vertices

 $G = \operatorname{Aut} \Gamma$

 $A = adjacency matrix of \Gamma$

 $\lambda = \text{eigenvalue of } A$

 $V_{\lambda}=$ the corresponding eigenspace

Then G acts irreducibly on V_{λ}

Hence, if $f \in V_{\lambda}$, $f \neq 0$, then Gf is an irreducible group frame. Since there are many distance transitive graphs with rational eigenvalues, this becomes a valuable source for our lattice construction, leading to the following result.

Lattices from graphs

Theorem 4 (F., Needell, Park, Xin (2018))

Let Γ be a vertex transitive graph on n vertices and G its automorphism group. Let A be the adjacency matrix of Γ , λ a rational eigenvalue of multiplicity m and V_{λ} the corresponding m-dimensional eigenspace. Let P_{λ} be a rational orthogonal projection matrix of \mathbb{R}^n onto V_{λ} . Then

$$L_{\Gamma,\lambda}:=P_{\lambda}\mathbb{Z}^n$$

is a lattice of full rank in V_{λ} , and its automorphism group contains a subgroup isomorphic to a factor group of G. If Γ is distance transitive, $L_{\Gamma,\lambda}$ is strongly eutactic.

Lattices from graphs

Theorem 4 (F., Needell, Park, Xin (2018))

Let Γ be a vertex transitive graph on n vertices and G its automorphism group. Let A be the adjacency matrix of Γ , λ a rational eigenvalue of multiplicity m and V_{λ} the corresponding m-dimensional eigenspace. Let P_{λ} be a rational orthogonal projection matrix of \mathbb{R}^n onto V_{λ} . Then

$$L_{\Gamma,\lambda}:=P_{\lambda}\mathbb{Z}^n$$

is a lattice of full rank in V_{λ} , and its automorphism group contains a subgroup isomorphic to a factor group of G. If Γ is distance transitive, $L_{\Gamma,\lambda}$ is strongly eutactic.

We will refer to lattices obtained in this way as **lattices generated by graphs**.

Lattices from graphs

Theorem 4 (F., Needell, Park, Xin (2018))

Let Γ be a vertex transitive graph on n vertices and G its automorphism group. Let A be the adjacency matrix of Γ , λ a rational eigenvalue of multiplicity m and V_{λ} the corresponding m-dimensional eigenspace. Let P_{λ} be a rational orthogonal projection matrix of \mathbb{R}^n onto V_{λ} . Then

$$L_{\Gamma,\lambda}:=P_{\lambda}\mathbb{Z}^n$$

is a lattice of full rank in V_{λ} , and its automorphism group contains a subgroup isomorphic to a factor group of G. If Γ is distance transitive, $L_{\Gamma,\lambda}$ is strongly eutactic.

We will refer to lattices obtained in this way as **lattices generated by graphs**. All vertex transitive examples known to us also generate strongly eutactic lattices, but we do not have a proof that this is true in general.

Hadwiger's Principal Theorem

We compare our result to a classical theorem of H. Hadwiger.

Theorem 5

A set $S = \{x_1, ..., x_n\}$ of cardinality n in k-dimensional space V, n > k, is eutactic, i.e. there exist positive real numbers $c_1, ..., c_n$ such that

$$\|\boldsymbol{v}\|^2 = \sum_{i=1}^n c_i(\boldsymbol{v}, \boldsymbol{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$ if and only if it is an orthogonal projection onto V of an orthonormal basis in an n-dimensional space containing V.

Hadwiger's Principal Theorem

We compare our result to a classical theorem of H. Hadwiger.

Theorem 5

A set $S = \{x_1, ..., x_n\}$ of cardinality n in k-dimensional space V, n > k, is eutactic, i.e. there exist positive real numbers $c_1, ..., c_n$ such that

$$\|\boldsymbol{v}\|^2 = \sum_{i=1}^n c_i(\boldsymbol{v}, \boldsymbol{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$ if and only if it is an orthogonal projection onto V of an orthonormal basis in an n-dimensional space containing V.

Our graph construction considers precisely such a projection, namely the set of vectors $\{P_{\lambda}\boldsymbol{e}_i\}_{i=1}^n$ where $\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n$ is the standard basis in \mathbb{R}^n . This set is therefore eutactic by Hadwiger.

Hadwiger's Principal Theorem

We compare our result to a classical theorem of H. Hadwiger.

Theorem 5

A set $S = \{x_1, \dots, x_n\}$ of cardinality n in k-dimensional space V, n > k, is eutactic, i.e. there exist positive real numbers c_1, \ldots, c_n such that

$$\|\boldsymbol{v}\|^2 = \sum_{i=1}^n c_i(\boldsymbol{v}, \boldsymbol{x}_i)^2$$

for every vector $\mathbf{v} \in \mathbb{R}^k$ if and only if it is an orthogonal projection onto V of an orthonormal basis in an n-dimensional space containing V.

Our graph construction considers precisely such a projection, namely the set of vectors $\{P_{\lambda} \boldsymbol{e}_i\}_{i=1}^n$ where $\boldsymbol{e}_1, \dots, \boldsymbol{e}_n$ is the standard basis in \mathbb{R}^n . This set is therefore eutactic by Hadwiger. In our setting these vectors generate a lattice whose set of minimal vectors is strongly eutactic.

Basic properties of this construction

Theorem 6 (F., Needell, Park, Xin (2018))

- The completely disconnected graph 0_n on n vertices generates the integer lattice \mathbb{Z}^n .
- The complete graph K_n generates (a lattice similar to) the root lattice

$$A_{n-1}:=\left\{\boldsymbol{x}\in\mathbb{Z}^n:\sum_{i=1}^nx_i=0\right\}.$$

• If Γ is a disjoint union of k copies of a vertex transitive graph Δ with a rational eigenvalue λ , then λ is also an eigenvalue of Γ and

$$L_{\Gamma,\lambda} = L_{\Delta,\lambda} \perp \cdots \perp L_{\Delta,\lambda}.$$

More properties

If Γ is a vertex transitive graph on n vertices, then its **complement** is the vertex transitive graph Γ' on the same vertices that has no common edges with Γ and their union is the complete graph K_n .

More properties

If Γ is a vertex transitive graph on n vertices, then its **complement** is the vertex transitive graph Γ' on the same vertices that has no common edges with Γ and their union is the complete graph K_n .

Theorem 7 (F., Needell, Park, Xin (2018))

Let Γ be a vertex transitive graph on n vertices of degree k and Γ' its complement. Then for each rational eigenvalue $\lambda \neq k$ of Γ there is a rational eigenvalue $\lambda' = -\lambda - 1$ of Γ' of the same multiplicity and the lattices

$$L_{\Gamma,\lambda} = L_{\Gamma',\lambda'}$$
.

Product graphs

There are three standard commutative product operations on graphs:

• Cartesian product: $\Delta_1 \square \Delta_2$ is the graph whose vertices are pairs (u,v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and (u_1,v_1) and (u_2,v_2) are connected by an edge if and only if either $u_1=u_2$ and v_1,v_2 are connected by an edge in Δ_2 , or $v_1=v_2$ and u_1,u_2 are connected by an edge in Δ_1 .

Product graphs

There are three standard commutative product operations on graphs:

- Cartesian product: $\Delta_1 \square \Delta_2$ is the graph whose vertices are pairs (u, v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and (u_1, v_1) and (u_2, v_2) are connected by an edge if and only if either $u_1 = u_2$ and v_1, v_2 are connected by an edge in Δ_2 , or $v_1 = v_2$ and u_1, u_2 are connected by an edge in Δ_1 .
- **Direct product:** $\Delta_1 \times \Delta_2$ is the graph whose vertices are pairs (u, v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and two vertices (u_1, v_1) and (u_2, v_2) are connected by an edge if and only if both pairs u_1, u_2 and v_1, v_2 are connected by an edge in Δ_1, Δ_2 , respectively.

Product graphs

There are three standard commutative product operations on graphs:

- Cartesian product: $\Delta_1 \square \Delta_2$ is the graph whose vertices are pairs (u, v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and (u_1, v_1) and (u_2, v_2) are connected by an edge if and only if either $u_1 = u_2$ and v_1, v_2 are connected by an edge in Δ_2 , or $v_1 = v_2$ and u_1, u_2 are connected by an edge in Δ_1 .
- **Direct product:** $\Delta_1 \times \Delta_2$ is the graph whose vertices are pairs (u, v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and two vertices (u_1, v_1) and (u_2, v_2) are connected by an edge if and only if both pairs u_1, u_2 and v_1, v_2 are connected by an edge in Δ_1, Δ_2 , respectively.
- **Strong product:** $\Delta_1 \boxtimes \Delta_2$, is the graph whose vertices are pairs (u, v), where u is a vertex of Δ_1 and v is a vertex of Δ_2 , and two vertices (u_1, v_1) and (u_2, v_2) are connected by an edge if and only if u_1, u_2 and v_1, v_2 are either equal or connected by an edge in Δ_1, Δ_2 , respectively.

Products of vertex transitive graphs Δ_1 and Δ_2 are vertex transitive. Further, suppose λ , μ are eigenvalues of Δ_1 , Δ_2 , respectively. Then:

Products of vertex transitive graphs Δ_1 and Δ_2 are vertex transitive. Further, suppose λ , μ are eigenvalues of Δ_1 , Δ_2 , respectively. Then:

Cartesian product:

$$f(\lambda, \mu) = \lambda + \mu$$

is an eigenvalue of $\Delta_1 \square \Delta_2$.

Products of vertex transitive graphs Δ_1 and Δ_2 are vertex transitive. Further, suppose λ , μ are eigenvalues of Δ_1 , Δ_2 , respectively. Then:

Cartesian product:

$$f(\lambda, \mu) = \lambda + \mu$$

is an eigenvalue of $\Delta_1 \square \Delta_2$.

• Direct product:

$$f(\lambda, \mu) = \lambda \mu$$

is an eigenvalue of $\Delta_1 \times \Delta_2$.

Products of vertex transitive graphs Δ_1 and Δ_2 are vertex transitive. Further, suppose λ , μ are eigenvalues of Δ_1 , Δ_2 , respectively. Then:

Cartesian product:

$$f(\lambda, \mu) = \lambda + \mu$$

is an eigenvalue of $\Delta_1 \square \Delta_2$.

• Direct product:

$$f(\lambda, \mu) = \lambda \mu$$

is an eigenvalue of $\Delta_1 \times \Delta_2$.

• Strong product:

$$f(\lambda, \mu) = (\lambda + 1)(\mu + 1) - 1$$

is an eigenvalue of $\Delta_1 \boxtimes \Delta_2$.

Lattices from product graphs

Theorem 8 (F., Needell, Park, Xin (2018))

Let Δ_1, Δ_2 be vertex transitive graphs on m_1 , m_2 vertices, respectively, and let Γ be a product graph $\Gamma = \Delta_1 * \Delta_2$ on m_1m_2 vertices, where * stands for \square , \times , or \boxtimes . Let ν be an eigenvalue of Γ and (λ_i, μ_i) for $1 \leqslant i \leqslant k$ pairs of eigenvalues of Δ_1, Δ_2 respectively so that $\nu = f(\lambda_i, \mu_i)$ for all $1 \leqslant i \leqslant k$ for the appropriate f. Let L_{Δ_1,λ_i} and L_{Δ_2,μ_i} for each $1 \leqslant i \leqslant k$ be the corresponding lattices. Then $L_{\Gamma,\nu}$ is the orthogonal projection of $\mathbb{Z}^{m_1m_2}$ onto the space spanned by

$$(L_{\Delta_1,\lambda_1} \otimes_{\mathbb{Z}} L_{\Delta_2,\mu_1}) \perp \cdots \perp (L_{\Delta_1,\lambda_k} \otimes_{\mathbb{Z}} L_{\Delta_2,\mu_k}),$$

where \bot is the orthogonal direct sum. In particular, if k=1 then

$$L_{\Gamma,\nu} = L_{\Delta_1,\lambda_1} \otimes_{\mathbb{Z}} L_{\Delta_2,\mu_1},$$

And now examples!

Graph ┌	# of ver- tices	Eig. λ	Mult. of λ	Lattice $L_{\Gamma,\lambda}$
Cube Q ₃	(8)	1	(3)	A_3^* , dual of A_3
Hamming $H(2,3)$	(9)	1	(4)	$A_2 \otimes_{\mathbb{Z}} A_2$
Petersen graph	(10)	-2	(4)	A_4^* , dual of A_4
Petersen graph	(10)	1	(5)	Coxeter lattice A_5^2
Petersen line graph	(15)	-1	(5)	A_4^* , dual of A_4
Petersen line graph	(15)	-2	(5)	Coxeter lattice A_5^3
Clebsch graph	(16)	-3	(5)	D_5^* , dual of D_5
Shrikhande graph	(16)	2	(6)	D_6^+
Schläfli graph	(27)	4	(6)	E_6^* , dual of E_6
Gosset graph	(56)	9	(7)	E_7^* , dual of E_7

Examples of strongly eutactic lattices from vertex transitive graphs

(**Dual:**
$$L^* := \{ \boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z} \text{ for all } \boldsymbol{y} \in L \}$$
)

Lattices E_8 , E_7 , E_6

For each $n \ge 2$,

$$D_n := \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \equiv 0 \pmod{2} \right\}.$$

Lattices E_8 , E_7 , E_6

For each $n \ge 2$,

$$D_n := \left\{ \boldsymbol{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \equiv 0 \pmod{2} \right\}.$$

For even n,

$$D_n^+ := D_n \cup \left(\frac{1}{2}\sum_{i=1}^n \mathbf{e}_i + D_n\right).$$

Lattices E_8 , E_7 , E_6

For each $n \ge 2$,

$$D_n := \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \equiv 0 \pmod{2} \right\}.$$

For even *n*.

$$D_n^+ := D_n \cup \left(\frac{1}{2}\sum_{i=1}^n \boldsymbol{e}_i + D_n\right).$$

Then $E_8 := D_8^+$, and

$$E_7 := \{ \boldsymbol{x} \in E_8 : x_7 = x_8 \}, \ E_6 := \{ \boldsymbol{x} \in E_8 : x_6 = x_7 = x_8 \}.$$

Their duals are

$$E_7^* = \{ \boldsymbol{x} \in \operatorname{span}_{\mathbb{R}} E_7 : (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z} \ \forall \ \boldsymbol{y} \in E_7 \},$$

$$E_6^* = \{ \boldsymbol{x} \in \operatorname{span}_{\mathbb{R}} E_6 : (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z} \ \forall \ \boldsymbol{y} \in E_6 \}.$$

Schläfli graph

 Γ is the complement of the intersection graph of the 27 lines on a cubic surface. It is a strongly regular graph on 27 vertices with parameters $k=16,\ \ell=10,\ m=8$ and has eigenvalue 4 of multiplicity 6: $L_{\Gamma,4}=E_6^*$.

Gosset graph

 Γ has 56 vertices corresponding to the set of edges of two copies of the complete graph K_8 . Two vertices from the same copy of K_8 are connected by an edge if they correspond to disjoint edges of K_8 ; two vertices from different copies of K_8 are are connected by an edge if they correspond to edges that meet in a vertex. Γ has eigenvalue 9 of multiplicity $T: L_{\Gamma,0} = F^*$

Contact polytope

Contact polytope of a lattice *L* is

$$C(L) = Conv\{S(L)\}.$$

Its vertices are points on the sphere centered at the origin in the sphere packing associated to L at which neighboring spheres touch it. Hence the number of vertices of C(L) is the kissing number of L.

Contact polytope

Contact polytope of a lattice *L* is

$$C(L) = Conv\{S(L)\}.$$

Its vertices are points on the sphere centered at the origin in the sphere packing associated to L at which neighboring spheres touch it. Hence the number of vertices of C(L) is the kissing number of L.

Sometimes C(L) is represented as a **diplo-polytope**. The prefix "diplo" means double: for a polytope Π a diplo- Π polytope is a polytope whose vertices are vertices of Π and its opposite $-\Pi$.

Contact polytope

Contact polytope of a lattice *L* is

$$C(L) = Conv\{S(L)\}.$$

Its vertices are points on the sphere centered at the origin in the sphere packing associated to L at which neighboring spheres touch it. Hence the number of vertices of C(L) is the kissing number of L.

Sometimes C(L) is represented as a **diplo-polytope**. The prefix "diplo" means double: for a polytope Π a diplo- Π polytope is a polytope whose vertices are vertices of Π and its opposite $-\Pi$.

The **skeleton graph** of the polytope C(L), skel(C(L)) is the graph consisting of vertices and edges of C(L).

A curious duality

Let $L=E_6^*$. The contact polytope of E_6^* has 54 vertices, split into 27 \pm pairs: it is a diplo-Schläfli polytope. The Schläfli polytope, has 27 vertices corresponding to the 27 lines on a cubic surface. Its skeleton is the Schläfli graph Γ , which has an eigenvalue 4 of multiplicity 6, and $L_{\Gamma,4}=E_6^*$.

A curious duality

Let $L=E_6^*$. The contact polytope of E_6^* has 54 vertices, split into 27 \pm pairs: it is a diplo-Schläfli polytope. The Schläfli polytope, has 27 vertices corresponding to the 27 lines on a cubic surface. Its skeleton is the Schläfli graph Γ , which has an eigenvalue 4 of multiplicity 6, and $L_{\Gamma,4}=E_6^*$.

Let $L=E_7^*$, its contact polytope is the Gosset polytope (also called Hess polytope), which has 56 vertices. Its skeleton is the Gosset graph Γ , which has an eigenvalue 9 of multiplicity 7, and $L_{\Gamma,9}=E_7^*$.

A curious duality

Let $L=E_6^*$. The contact polytope of E_6^* has 54 vertices, split into 27 \pm pairs: it is a diplo-Schläfli polytope. The Schläfli polytope, has 27 vertices corresponding to the 27 lines on a cubic surface. Its skeleton is the Schläfli graph Γ , which has an eigenvalue 4 of multiplicity 6, and $L_{\Gamma,4}=E_6^*$.

Let $L=E_7^*$, its contact polytope is the Gosset polytope (also called Hess polytope), which has 56 vertices. Its skeleton is the Gosset graph Γ , which has an eigenvalue 9 of multiplicity 7, and $L_{\Gamma,9}=E_7^*$.

Let $L=A_3^*$. Its contact polytope is a cube (which is a diplo-simplex), whose skeleton graph Q_3 has eigenvalue 1 (and -1) of multiplicity 3, and $L_{Q_3,1}=A_3^*$.

Reference

L. Fukshansky, D. Needell, J. Park, Y. Xin. *Lattices from tight frames and vertex transitive graphs*, Electronic Journal of Combinatorics, vol. 26 no. 3 (2019), P3.49, 30 pp.

Preprint is available at:

http://math.cmc.edu/lenny/research.html

Reference

L. Fukshansky, D. Needell, J. Park, Y. Xin. *Lattices from tight frames and vertex transitive graphs*, Electronic Journal of Combinatorics, vol. 26 no. 3 (2019), P3.49, 30 pp.

Preprint is available at:

http://math.cmc.edu/lenny/research.html

Thank you!