Contagem (II)

Princípio da Casa do Pombo, Permutações e Combinações

Aula 8
Gregory Moro Puppi Wanderley

Pontifícia Universidade Católica do Paraná (PUCPR) Bacharelado em Ciência da Computação – 3º Período

Regra do Produto (aula anterior)

Exemplo

- Maria pode escolher um dentre três ovos e uma entre quatro barras de chocolate. Quantos conjuntos diferentes de doces ela pode ter?
 - Duas etapas sequenciais
 - Escolha do ovo: 3
 - Escolha da barra: 4
 - Número de conjuntos diferentes: 3*4 = 12

Regra do Produto (aula anterior)

Definição

"Se existem n₁ possibilidades para um primeiro evento e n₂ possibilidades para um segundo evento, então existem n₁.n₂ possibilidades para a seqüência dos dois eventos".

Regra da Soma (aula anterior)

Exemplo

- João deseja escolher uma sobremesa dentre três tortas e quatro bolos. De quantas formas isso pode ser feito?
 - Dois eventos:
 - Escolher uma torta (três resultados possíveis)
 - Escolher um bolo (quatro resultados possíveis)
 - Não é uma sequência de dois eventos (quer apenas uma sobremesa).
 - Número de opções é 3+4 = 7

Regra da Soma (aula anterior)

Definição

- "Se A e B são eventos disjuntos com n₁ e n₂ possibilidades, respectivamente, então o número total de possibilidades para o evento A ou B é n₁ + n₂".
- Atenção: a regra da soma só pode ser usada se os eventos em questão tiverem conjuntos disjuntos de possibilidades.

Problemas mais complexos (aula anterior)

- Uso das duas regras (soma e produto) combinadas
 - Ex.: Quantos números de quatro dígitos começam com 4 ou
 5?
 Uma forma de escolher o 1º dígito
 - Dois casos disjuntos:
 - Números que começam por 4: 1.10.10.10 = 1000
 - Números que começam por 5: 1.10.10.10 = 1000

10 formas de escolher o 2°, 3°, 4° dígitos

- Regra da soma:
- 1000 + 1000 = 2000 resultados possíveis ao todo.

Princípio da Inclusão-Exclusão (aula anterior)

Exemplo

- Quantas cadeias de bits de comprimento oito começam com o bit 1 ou terminam com os bits 00?
 - 1° bit (fixo em 1) Demais podem ser 0 ou 1
 - Número de cadeias que começam com 1: 1.2.2.2.2.2.2 = 2⁷=128
 - Número de cadeias que terminam com 00: 2.2.2.2.2.1.1 = 2⁶= 64
 - Número de cadeias que começam com 1 e terminam com 00:
 - $1.2.2.2.2.1.1 = 2^5 = 32$
 - Resultado: 128+64-32 = 160

Princípio da Inclusão-Exclusão (aula anterior)

Quando utilizar:

- Um evento pode ser realizado de n₁ ou n₂ maneiras, porém algumas maneiras n₁ são as mesmas de n₂.
- Nesse caso, a regra da soma não pode ser usada: problema na disjunção dos conjuntos.
- Inclusão-Exclusão: Definição
 - Número de maneiras de escolher um elemento de A₁ ou de A₂:
 maneiras de escolher um elemento de A₂
 - $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$ Número de elementos de $A_1 \in A_2$ em comum

maneiras de escolher um elemento de A₁

Diagramas de Árvore (aula anterior)

- Problemas de contagem podem ser resolvidos usando-se diagramas de árvores.
 - Uma aresta (galho) representa cada escolha possível.
 - As saídas (resultados) possíveis são as folhas da árvore.

Diagramas de Árvore (aula anterior)

Exemplo

Quantas cadeias de bits de tamanho quatro não possuem

Continuação de técnicas de contagem...

Plano de Aula

- Princípio da Casa do Pombo
- Permutações
- Combinações
- Exercícios

Exemplo

 Quantas pessoas precisam estar no mesmo quarto para se garantir que pelo menos duas pessoas têm o nome iniciado pela mesma letra?

Exemplo

- Quantas pessoas precisam estar no mesmo quarto para se garantir que pelo menos duas pessoas têm o nome iniciado pela mesma letra?
 - 26 letras (alfabeto)
 - Solução: se existirem 27 pessoas, então haverá 27 letras iniciais (objetos) que devem ser distribuídas entre as 26 casas. Assim, pelo menos uma casa conterá mais de um item.

Ideia

 Se mais do que k pombos pousarem em k casas de pombos, então pelo menos uma casa ficará com mais de um pombo.

- Ideia (cont.)
 - Normalmente:
 - Pombos = números ou objetos.
 - Casas dos pombos = são propriedades que os números/objetos podem possuir.

- Ideia (cont.)
 - Normalmente:
 - Pombos = números ou objetos.
 - Casas dos pombos = são propriedades que os números/objetos podem possuir.
- Definição
 - "Se mais do que k itens são distribuídos entre k caixas, então pelo menos uma caixa conterá mais de um item".

- a) Quantas pessoas precisam estar em um grupo para se garantir que duas pessoas tenham o mesmo aniversário (ignore o ano)?
- b) Prove que se 4 números são escolhidos do conjunto {1, 2, 3, 4, 5, 6}, pelo menos um par precisa somar 7.
- c) Se 12 cartas são tiradas de um baralho convencional, pode-se afirmar que duas têm valores iguais, independentemente do naipe?

Plano de Aula

- Princípio da Casa do Pombo
- Permutações
- Combinações
- Exercícios

- Definição
 - "Permutação é um arranjo ordenado de objetos".

- Definição
 - "Permutação é um arranjo ordenado de objetos".
 - O número de permutações de r objetos distintos escolhidos de n objetos distintos é denotado por P(n, r). Em geral, P(n, r) é dado pela fórmula:

$$P(n,r) = \frac{n!}{(n-r)!}$$
 para $0 \le r \le n$

- Definição
 - "Permutação é um arranjo ordenado de objetos".
 - O número de permutações de r objetos distintos escolhidos de n objetos distintos é denotado por P(n, r). Em geral, P(n, r)é dado pela fórmula:

$$P(n,r) = \frac{n!}{(n-r)!}$$
 para $0 \le r \le n$

- Uso (normalmente):
 - Quando a **ordem é relevante** para o problema.

Exemplo

 Determinar todas as possibilidades para os últimos quatro dígitos de um número telefônico sem repetições. (Atenção: 2815 ≠ 5821).

Exemplo

- Determinar todas as possibilidades para os últimos quatro dígitos de um número telefônico sem repetições. (Atenção: 2815 ≠ 5821).
 - r = 4 objetos distintos escolhidos de n
 - n = conjunto de 10 objetos distintos (dígitos)
 - Solução:
 - P(10, 4) = 10! / (10 4)!
 - \blacksquare => P(10, 4) = 5.040

- a) Quantas palavras de três letras (não necessariamente com sentido) podem ser formadas com as letras da palavra "compilar", se não pudermos repetir letras?
- b) Quantas permutações distintas da palavra TESTE existem?
- c) De quantas maneiras os primeiro, segundo e terceiro prêmios em um concurso de tortas podem ser atribuídos a 15 concorrentes?
- d) De quantos modos seis pessoas podem sentar-se em uma sala com seis cadeiras?

Plano de Aula

- Princípio da Casa do Pombo
- Permutações
- Combinações
- Exercícios

- Definição
 - "Combinações de r objetos distintos escolhidos dentre n objetos distintos".

Definição

- "Combinações de *r* objetos distintos escolhidos dentre *n* objetos distintos".
- O número de combinações de *r* objetos distintos escolhidos de n objetos distintos é denotado por C(n, r). Em geral, C(n, r)é dado pela fórmula:

$$C(n,r) = \frac{n!}{r!(n-r)!}$$
 para $0 \le r \le n$

- Definição
 - "Combinações de r objetos distintos escolhidos dentre n objetos distintos".
 - O número de combinações de r objetos distintos escolhidos de n objetos distintos é denotado por C(n, r). Em geral, C(n, r) é dado pela fórmula:

$$C(n,r) = \frac{n!}{r!(n-r)!}$$
 para $0 \le r \le n$

- Uso (normalmente):
 - Quando a ordem não é relevante para o problema.

Exemplo

 Quantas mãos de pôquer com cinco cartas podem ser sorteadas de um baralho de 52 cartas?

Exemplo

- Quantas mãos de pôquer com cinco cartas podem ser sorteadas de um baralho de 52 cartas?
 - r = 5 objetos distintos escolhidos de n
 - n = 52 objetos distintos (baralho)
 - Solução:
 - C(52, 5) = 52! / 5!(52 5)!
 - => C(52, 5) = 2.598.960

- a) De quantas maneiras podemos escolher um comitê de três pessoas dentre um grupo de 12?
- b) O controle de qualidade deseja testar 25 chips de microprocessadores dentre os 300 que são produzidos diariamente. De quantas maneiras isto pode ser feito?
- c) De quantas maneiras pode ser selecionado um júri de cinco homens e sete mulheres dentre um elenco de 17 homens e 23 mulheres? (dica: utilize em conjunto a regra do produto)

Plano de Aula

- Princípio da Casa do Pombo
- Permutações
- Combinações
- Exercícios

- 1) Uma família tem 12 filhos.
 - a) Prove que pelo menos dois filhos nasceram no mesmo dia da semana.
 - b) Prove que pelo menos dois membros da família (incluindo mãe e pai) nasceram no mesmo mês.
 - c) Supondo que há 4 quartos para os filhos na casa, mostre que há pelo menos 3 filhos dormindo em pelo menos um dos quartos.
- 2) Uma produtora de jogos tem 500 funcionários. Mostre que pelo menos dois deles nasceram no mesmo dia do ano.
- 3) Existem 800.000 árvores numa floresta. Cada árvore não tem mais de 600.000 folhas. Mostre que pelo menos duas árvores têm o mesmo número de folhas.

- 4) Ana, Paula, Carlos, João e Alessandro querem tirar uma foto em que três dos cinco amigos estão alinhados. Quantas fotos diferentes são possíveis?
- 5) De quantas maneiras você pode escolher um presidente, secretário e tesoureiro para um clube de 12 candidatos, se cada candidato é elegível para cada cargo, mas nenhum candidato pode ocupar 2 posições? (dica: a hierarquia dos papéis é relevante).
- 6) De quantas maneiras você pode arrumar 5 livros de matemática em uma prateleira?

- 7) Um comitê de oito estudantes deve ser selecionado de uma turma de 19 calouros e 34 veteranos.
 - a) De quantas maneiras podem ser selecionados três calouros e cinco veteranos?
 - b) De quantas maneiras podem ser selecionados comitês com exatamente um calouro?
 - c) De quantas maneiras podem ser selecionados comitês com no máximo um calouro?
 - d) De quantas maneiras podem ser selecionados comitês com pelo menos um calouro?

- 8) Do pessoal de uma companhia, sete trabalham no projeto, 14 na produção, quatro nos testes, cinco em vendas, dois na contabilidade e três em marketing. Um comitê de seis pessoas deve ser formado para uma reunião com o supervisor.
 - De quantas maneiras podemos formar este comitê, se tiver que haver um membro de cada departamento?
- 9) Uma rede de computadores com 60 nós. De quantas maneiras podem falhar um ou dois nós?

Dúvidas?

Próxima Aula (24/05)

TDE05

 Estudo do conceito de álgebra Boolena, de expressões e de circuitos Booleanos.