Knowledge Representation:

Capturing knowledge in a way suitable for computer manipulation.

Predicate Calculus/Neural Network; - Graph / Tree

Euler's Conclusion:

Unless a graph contained either exactly 0 or 2 nodes of odd degree, a walk over a graph in the manner described by the bridges of Konigsberg problem is impossible.

Graph Terminologies:

Node/Arch/Path/Tree; - Directed/Rooted Graphs; - Parent, Siblings/Ancestor/Descendant State Space Approach Examples:

Tic-Tac-Toe/8-puzzle; – TSP: The number of possible ways to visit N cities, (N-1)!

Backtracking: - Depth-first search for CSPs; - Basic uninformed search for CSPs

Notations:

CS = Current State (the state currently under consideration)

- SL = State List (the list of states in the current path being pursued. If a goal is found, SL contains the ordered list of states on the solution path)

 NSL = New State List (the list of new states contains nodes awaiting evaluation, i.e., nodes whose descendants have not yet been generated and searched) (Unprocessed states) – DE = Dead Ends (the list of states whose descendants have failed to contain a goal node. If these states are encountered again, they will be deleted as elements of DE and eliminated) - CS (Current State) is always equal to the state most recently added to SL and represents

the "frontier" of the solution path currently being explored. Suppose G is the Goal State Backtracking - example

Iteration	CS -size1	SL	NSL	DE
0	A	A	A	
1	В	ВА	BCDA	
2	E	EBA	E F B C D A	
3	Н	HEBA	HIEFBCDA	
4	I	I E B A	I E F B C D A	Н
	E	E B A	E F B C D A	IH
5	F	FBA	FBCDA	EIH
6	J	JFBA	J F B C D A	EIH
	F	FBA	FBCDA	JEIH
	В	ВА	BCDA	FJEIH
7	С	C A	CDA	BFJEIH
8	G	GCA	GCDA	BFJEIH

Breadth-first:

- open states that have been generated but whose children have not been examined. Right in, left out; first-in-first-out. (FIFO)
- closed states that have already been examined. Add from the left.
- Memory used: B^n
 - open = [A]; closed = []
- open = [B,C,D]; closed = [A] 2.
- open = [C,D,E,F]; closed = [B,A]3.
- open = [D,E,F,G,H]; closed = [C,B,A]
- open = [E,F,G,H,I,J]; closed = [D,C,B,A]
- open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]

Depth-first:

- open is maintained as a stack, or last-in-first- out (LIFO) structure. Open is similar to NSL
- closed- states that have already been examined. An union of DE and SL in backtrack
- Memory used: B * n

Depth-First with Iterative Deepening:

Depth bound from 1, and increase by one each time.

Uninformed:

 $\overline{\text{BFS: }b^d,b^d}$; DFS: $b^m,b*m$; IDS: $b^d,b*d$.

b- maximum branching factor of the search tree; d- depth of the least-cost solution; mmaximum depth of the state space (may be unlimited)

Informed: Hill-Climbing, Best-First(Greedy), A*

Heuristic Search:

- Hill-Climbing
- Best-First-Search:

Fig 4.5 Heuristic search of a hypothetical state space with open and closed states highlighted.

The Trace of best-first-search or

Evaluation function f(n)=g(n)+h(n):

 $g(n) = \cos t$ so far to reach n; $h(n) = \operatorname{estimated} \cos t$ to goal from n; $f(n) = \operatorname{estimated} \cot t$ cost of path through n to goal.

When g(n)=0, Greedy Best-First; $-A^*$ search is optimal, when h(n) is admissible. h(n) is always under-estimated/same as the actual cost from n to a goal.

Minimax:

ALPHA-BETA pruning: Directly prune the whole right node.

Association rule:

An association rule is an implication of the form $X \to Y$, where $X \subseteq I$, $Y \subseteq I$, and $X \cap Y = \emptyset$, e.g., {Diaper, Milk} \rightarrow {Beer},

Support
$$(X) = \frac{\sigma(X)}{|T|} = P(X)$$
 Support of itemset X : the Probability of X

Support
$$(X \to Y) = \frac{\sigma(X \cup Y)}{|T|} = P(X \cup Y)$$

 $\begin{aligned} & \text{Support}(X \to Y) = \frac{\sigma(X \cup Y)}{|T|} = P(X \cup Y) \\ & \text{Confidence}(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)} = \frac{P(X \cup Y)}{P(X)} = P(Y \mid X) \text{ There are a total of} \end{aligned}$ $3^d - 2^{d+1} + 1$ possible rules for a dataset containing d items. $2^d - 1$ item sets.

The Apriori Principle:

The Apriori Algorithm—Example 0 minsup = 2

 C_k : candidate k-itemsets $L_{k}^{\hat{}}$: frequent k-itemsets.

The FP-Growth Algorithm:

Starting at the bottom of frequent-item header table in the FP-tree Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed prefix paths of that item to form a conditional pattern

Association Rule Generation:

if $\frac{\sigma(Y)}{\sigma(X)} \geq minconf X \subset Y, X \to Y - X$. If |Y| = k, then there are $2^k - 2$ candidate association rules (ignoring: $Y \to \emptyset$ and $\emptyset \to Y$).

Lift is a simple correlation measure between two item sets X and Y, defined as $\operatorname{Lift}(X,Y) = \frac{\operatorname{Confidence}(X \to Y)}{\operatorname{Support}(Y)} = \frac{P(X \cup Y)}{P(X)P(Y)} = \frac{P(Y \mid X)}{P(Y)}$

where Lift(X, Y) =
$$\begin{cases} 1, & \text{if } X \text{ and } Y \text{ are independent;} \\ > 1, & \text{if } X \text{ and } Y \text{ are positively correlated;} \\ < 1, & \text{if } X \text{ and } Y \text{ are negatively correlated.} \end{cases}$$

Information Gain:

The amount of information in D with m distinct classes can be defined as:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

If attribute A is used to split D into v subsets, $\{D_1, D_2, \dots, D_v\}$, the resulting information is

 $\operatorname{Info}_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times \operatorname{Info}(D_j)$ Information gain is defined as the difference between the original information (before splitting) and the remaining information (after splitting D by A):

 $Gain(A) = Info(D) - Info_A(D)$

$\operatorname{Aum}(H) = \operatorname{Imo}(B) \cdot \operatorname{Imo}_A(B)$,
PID	Fever	Cough	Sore Throat	Tiredness	Flu
1	no	yes	no	yes	-
2	no	yes	no	no	-
3	mild	yes	no	yes	+
4	yes	mild	no	yes	+
5	yes	no	yes	yes	+
6	yes	no	yes	no	-
7	mild	no	yes	no	+
8	no	mild	no	yes	-
9	no	no	yes	yes	+
10	yes	mild	yes	yes	+
11	no	mild	yes	no	+
12	mild	mild	no	no	+
13	mild	yes	yes	yes	+
14	yes	mild	no	no	-

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits}$$

$$\begin{split} Info_{Fever}(D) &= \frac{5}{14} \times \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) \\ &+ \frac{4}{14} \times \left(-\frac{4}{4} \log_2 \frac{4}{4} \right) \\ &+ \frac{5}{14} \times \left(-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right) \\ &= 0.694 \text{ bits} \end{split}$$

Gain(Fever) = $Info(D) - Info_{Fever}(D) = 0.940 - 0.694 = 0.246$ bits

$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \log_2\left(\frac{|D_j|}{|D|}\right)$$

$$GainRatio_A(D) = \frac{Gain(A)}{SplitInfo_A(D)}$$

$$\begin{array}{l} \overline{\operatorname{Gini}(D)} = 1 - \sum_{i=1}^{2} p_{i}^{2} \quad \operatorname{Gini}_{A}(D) = \frac{|D_{1}|}{|D|} \operatorname{Gini}(D_{1}) + \frac{|D_{2}|}{|D|} \operatorname{Gini}(D_{2}) \\ \Delta \overline{\operatorname{Gini}(A)} = \overline{\operatorname{Gini}(D)} - \overline{\operatorname{Gini}_{A}(D)} \end{array}$$

Evaluating Classifier Performance:

predicted class

	1							
SS		Yes	No	Total				
actual class	Yes	TP	FN	P				
	No	FP	TN	N				
	Total	Ρ'	N'	P+N				

Accuracy =
$$\frac{TP+TN}{P+N}$$
 Error rate = $\frac{FP+FN}{P+N}$ = 1 - Accuracy Sensitivity = $\frac{TP}{P}$ Specificity = $\frac{TN}{N}$ Accuracy = Sensitivity × $\left(\frac{P}{P+N}\right)$ + Specificity × $\left(\frac{N}{P+N}\right)$ Precision = $\frac{TP}{TP+FP}$ = $\frac{TP}{P'}$ Recall = $\frac{TP}{TP+FN}$ = $\frac{TP}{P}$ = TPR $\frac{FP}{N}$ = FPR $F = \frac{2\times Precision \times Recall}{Precision + Recall}$

Accuracy = Sensitivity
$$\times \left(\frac{}{P}\right)$$

Accuracy = Sensitivity
$$\times \left(\frac{1}{P+N}\right)$$
 + Specificity $\times \left(\frac{1}{P+N}\right)$

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{P'}$$

ecall =
$$\frac{TP}{TP+FN} = \frac{TP}{P} = TPR$$
 $\frac{FP}{N} = FPR$

$$F = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Precision+Recall Dissimilarity and Similarity Measures:

- 1. Minkowski distance: $d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k y_k|^r\right)^{1/r}$ 2. Manhattan distance (r = 1): $d(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} |x_k y_k|$ 3. Euclidean distance (r = 2): $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k y_k)^2}$ 4. Cosine similarity: $\cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$ 5. Infinity (Sup) Distance: $d(\mathbf{x}, \mathbf{y}) = \max_{1 \le j \le d} |x_j y_j|$

$$y_i = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_i + b). \quad d = \frac{2}{\|\mathbf{w}\|}.$$

$$\begin{aligned} & \min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} & \text{subject to} & y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \ i = 1, 2, \dots, N. \\ & - \text{Dual optimization problem} \\ & \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i, & \sum_{i=1}^N \lambda_i y_i = 0. \\ & y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0. \\ & \underbrace{Neural Network:} \end{aligned}$$

$$\mathbf{v} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i, \quad \sum_{i=1}^{N} \lambda_i y_i = 0$$

Activation Functions:

Linear:
$$\sigma(x) = x$$
 Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-ax}}$ Tanh: $\sigma(x) = \tanh(\gamma x) = \frac{e^{2\gamma x} - 1}{e^{2\gamma x} + 1}$ Sign: $\sigma(x) = \text{sign}(x) = \begin{cases} +1, & x \geq 0 \\ -1, & x < 0 \end{cases}$ ReLU: $\sigma(x) = \begin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{cases} = \max(0, x)$

Leaky ReLU:
$$\sigma(x) = \begin{cases} x, & x \ge 0 \\ ax, & x < 0 \end{cases} = \max(ax, x), \quad \text{where } a \ll 1$$

- Gradient Descent: $\mathbf{w}' = \mathbf{w} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$

- Gradient Descent:
$$\mathbf{w}' = \mathbf{w} - \eta \frac{\partial \mathcal{C}(\mathbf{w})}{\partial \mathbf{w}}$$
- Back propagation Algorithm:
$$E = \frac{1}{2} \sum_{k=1}^{c} (t_k - o_k)^2 \quad \Delta w_{jk} = -\eta_w \frac{\partial E}{\partial w_{jk}} \quad \Delta b_j = -\eta_b \frac{\partial E}{\partial b_j}$$
input layer
input layer
output layer

 $\delta_k = \sigma'(\text{net}_k)(t_k - o_k),$ for output units

 $\delta_j = \sigma'(\text{net}_j) \sum_k \delta_k w_{kj}$, for hidden units

$$\begin{array}{l} \frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial o_k} \cdot \frac{\partial o_k}{\partial \mathrm{net}_k} \cdot \frac{\partial \mathrm{net}_k}{\partial w_{kj}} = \frac{\partial E}{\partial o_k} \cdot \sigma'(\mathrm{net}_k) \cdot \frac{\partial (\sum_j w_{kj} o_j + b_k)}{\partial w_{kj}} = \\ -(t_k - o_k) \cdot \sigma'(\mathrm{net}_k) \cdot o_j = -\delta_k \cdot o_j \\ \frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial o_j} \cdot \frac{\partial o_j}{\partial \mathrm{net}_j} \cdot \frac{\partial \mathrm{net}_j}{\partial w_{ji}} = \frac{\partial E}{\partial o_j} \cdot \sigma'(\mathrm{net}_j) \cdot \frac{\partial \left(\sum_i w_{ji} o_i + b_j\right)}{\partial w_{ji}} = \\ -\left(\sum_k \delta_k w_{kj}\right) \cdot \sigma'(\mathrm{net}_j) \cdot o_i = -\delta_j \cdot o_i \end{array}$$

- Stride: steps per moving. - Zero padding: pads the input with zeros around the border. -Pooling: Max: max one within filter size; Average: average within filter size.

- Regularization: $J'(\mathbf{w}) = J(\mathbf{w}) + \alpha R(\mathbf{w})$

L1 Regularization (LASSO): $R(\mathbf{w}) = \|\mathbf{w}\|_1^2 = \sum_k |w_k|$ L2 Regularization (Ridge): $R(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \sum_{k=1}^{\infty} k(w_k)^2$

Elastic Net Regularization: $R(\mathbf{w}) = \|\mathbf{w}\|_1 + \beta \|\mathbf{w}\|_2^2$ Also can be done by early stopping.

Clustering:

- Use Euclidean Distance: $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$ - K-Means: 1. Initialize K random points as K clusters' centers. 2. Assign every point to its cluster by which center it nearest. 3. Calculate each clusters' average again to set as new center. 4. Repeat 2-3, until no points assignments. Initialization influence results.

- HAC: -Single Linkage: the minimum distance between any pair of two data samples from each cluster. -Complete Linkage: the maximum distance between any pair of two data samples from each cluster. -Average Linkage: the average distance between all pairs of two data samples from each cluster. -Centroid Distance: the distance between the means of data samples (i.e., centroids) from each cluster.

• What is the limitations of K-Means algorithm? Need to choose K. Can stuck at poor local minimum. Need good metric. • What are the limitations of HAC algorithm? Memory- and computationally-intensive.

Regression:

$$\overline{f_{w,b}(\mathbf{x})} = \mathbf{w}^T \mathbf{x} + b$$

Minimize the
$$l_2$$
 loss: $\min_{\mathbf{w},b} \hat{L}(f_{w,b}) = \min_{\mathbf{w},b} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}_i + b - y_i)^2$
Loss function: mean squared error between $\mathbf{w}^T \mathbf{x}_i + b$ and y_i .

Bias and Variance:

Bias: Error caused by the wrong assumptions made in the learning algorithms or models.

- Variance: Error due to the learning sensitivity to small fluctuations in the training set.

Training a classifier $f_{\theta}(x)$

Expected error of a classifier ≈ bias + variance (+noise)

Underfitting: High bias and low variance.

- Overfitting: Low bias and high variance.

- xi (black): the original data.
- ν (red) : PCA subspace.
- $(v^Tx_i)v$ (blue): projected data.
- Green: x_i $(v^Tx_i)v$: projection error (MSE).
- Minimizing MSE <=> Maximizing Projected Variance
 - Blue² + green² = black²
 - · Black is fixed (given data)
- Maximizing blue (variance) is equivalent to Minimizing green (MSE).

$$\begin{aligned} & \underline{\textit{Bayes' Theorem:}} \\ & P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \\ & P(B) = \sum_{i} P(B \mid A_{i})P(A_{i}) \end{aligned}$$

$$\overline{P(a_1,\ldots,a_d\mid v_j)} = P(a_1\mid v_j)\cdots P(a_d\mid v_j) = \prod_{i=1}^d P(a_i\mid v_j)$$