СОДЕРЖАНИЕ

Ol	IPE/	ЦЕЛЕНИЯ	2
ВВЕДЕНИЕ			4
1	р-Ад	цические числа	5
	1.1	р-Адическая норма	5
	1.2	р-Адические числа	6
	1.3	Пространство р-адических чисел \mathbb{Q}_p	7
2	р-Адический анализ в \mathbb{Z}_p		
	2.1	<i>p</i> -адическая дифференцируемость	10
3	р-Адические автоматы		12
	3.1	Основные определения и обозначения	15
	3.2	Основная теорема о детерминированных функциях	17
	3.3	Построение автомата для функции вида $f(x) = cx \dots$	19
ЗА	КЛН	ОЧЕНИЕ ЗИНЗРО	22
CI	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		

ОПРЕДЕЛЕНИЯ

- 1. \mathbb{Z} кольцо целых рациональных чисел
- 2. \mathbb{Z}_{+} множество натуральных чисел \mathbb{N}
- 3. $N_0 = \{0, 1, \dots\}$
- 4. \mathbb{P} множество простых чисел
- 5. Сепарабельное пространство топологическое пространство, в котором можно выделить счётное всюду плотное подмножество
- 6. Плотное множество подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства.
- 7. Счётное множество бесконечное множество, элементы которого возможно пронумеровать натуральными числами.
- 8. Хаусдорфово пространство топологическое пространство, удовлетворяющее сильной аксиоме отделимости T_2 .
- 9. Множество из \mathbb{R}^n называется компактом, если из любой последовательности его точек можно выделить сходящуюся подпоследовательность, предел которой принадлежит этому множеству.
- 10. Локально компактное пространство топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно.
- 11. Размерностью полного метрического пространства X называется наименьшее целое число n такое, что для любого покрытия пространства X существуют вписанное в него подпокрытие кратности n+1.
- 12. Конечный автомат абстрактный автомат, число возможных внутренних состояний которого конечно.
- 13. Абстрактный автомат с выделенным начальным состоянием называется инициальным автоматом. [1]
- 14. Автомат Мили конечный автомат, выходная последовательность которого зависит от состояния автомата и входных сигналов. Это означает, что в графе состояний каждому ребру соответствует некоторое значение (выходной символ). В вершины графа автомата записываются выходящие сигналы, а дугам графа приписывают условие перехода из одного состояния в другое, а также входящие сигналы. [1]

15. Автомат Мура (абстрактный автомат второго рода) - конечный автомат, выходное значение сигнала в котором зависит лишь от текущего состояния данного автомата, и не зависит напрямую, в отличие от автомата Мили, от входных значений. [1]

ВВЕДЕНИЕ

Со времен Ньютона и Лейбница вещественные числа применялись как основной математический объект, который казалось бы отлично подходил для описания окружающего мира. В большинстве практических задач обычно составлялись уравнения и в последствии искалось числовое решение над полем действительных чисел \mathbb{R} . Обоснования почему в качестве описательного элемента выбрали именно поле \mathbb{R} даже не стоял. В качестве пространства стандартом де-факто долгое время являлось пространство \mathbb{R}^3 , а уже после открытий Римана и Эйнштейна \mathbb{R}^4 .

С течением времени и наращиванием математического аппарата представление о том, что пространство \mathbb{R}^3 является наиболее подходящим для описания реального мира все усиливалось, но надо понимать, что евклидово пространство \mathbb{R}^3 не более чем удачно выбранная модель описания реального физического пространства.

Так как реальный мир построен на евклидовой геометрии, то получается, что и она очень хорошо описывается вещественными числами, но в случае если бы мы могли отказаться от использования данной геометрии для изучения реального мира мы бы могли отказаться и от вещественной числовой системы. Но какую выбрать систему в данном случае? На этот ответ лучше всего отвечает теория p-адического исчисления, которая является с математической точки зрения более подходящей для описания тех объектов, с которыми приходиться работать в задачах физики, биологии и криптографии. [2]

Целью данной курсовой работы является построение p-адического автомата для функции $f: \mathbb{Z}_p \to \mathbb{Z}_p$ вида f(x) = cx, где $c = \frac{n}{m}, n, m \in \mathbb{Z}$. В первых двух разделах будет приведен обзор на инструменты p-адического анализа, а в третьем разделе будет описана основная теорема[3] для детерминированных функций и непосредственно пошаговое построение автомата для функции f(x) = cx.

1 р-Адические числа

1.1 р-Адическая норма

Определение 1. Пусть M - некоторое непустое множество, и пусть $d: M \times M \to \mathbb{R}_{\geq 0}$ - функция двух переменных, определенная на этом множестве и принимающая значения во множестве действительных неотрицательных чисел. Функция d называется метрикой (а множество M - метрическим пространством), если d удоволетворяет трем условиям:

- 1. Для каждой пары $a,b\in M$ справедливо: d(a,b)=0 тогда и только тогда, когда a=b.
- 2. Для каждой пары $a, b \in M$ справедливо равенство d(a, b) = d(b, a).
- 3. Для каждой тройки $a,b,c\in M$ справедливо неравенство $d(a,b)\leq d(a,c)+d(c,b).$

Пример 1. Множество \mathbb{R} всех действительных чисел есть метрическое пространство с метрикой d(a,b) = |a-b|, где |.| есть абсолютная величина.

Определение 2. Функция $\|.\|$, определенная на произвольном коммутативном кольце R и принимающая значения в $\mathbb{R}_{\geq 0}$ называется нормой (также, абсолютной величиной), если она удовлетворяет следующим условиям:

- 1. Для любого $a \in R$ справедливо, что $\|a\| = 0$ тогда и только тогда, когда a = 0.
- 2. Для каждой пары $a, b \in R$ справедливо равенство $||a \cdot b|| = ||a|| \cdot ||b||$.
- 3. Для каждой пары $a,b \in R$ справедливо неравенство треугольника: $\|a+b\| \leq \|a\| + \|b\|$

Из определения следует, что если положить $d(a,b) = \|a-b\|$, то фактически будет задана метрика d на кольце R. Данная метрика называется метрикой, индуцированной нормой $\|.\|$.

Определение 3. Пусть $p \in \mathbb{P}$ – некоторое простое число. В поле \mathbb{Q} введем другую норму $\|.\|_p$ по правилу:

- 1. $||0||_p = 0$,
- 2. $||n||_p = p^{-ord_p n}$,

где n>0 некоторое натуральное число, а ord_pn показатель степени, в которой число p входит в это произведение. В этом случае норма $\|.\|_p$ называется p-адической нормой.

Норма $\|.\|_p$ удовлетворяет всеми характерными свойствами нормы даже в более сильной форме, а именно:

- 1. $||x||_p \ge 0$, причем $||x||_p = 0$ если x = 0.
- $2. \|xy\|_p = \|x\|_p \cdot \|y\|_p.$
- 3. $||x + y||_p \le \max(||x||_p, ||y||_p)$ [4]

Заметим, что норма $\|x\|_p$ может принимать лишь счетное число значений p^{-ord_pn} .

Также, норма $\|x\|_p$ определяет ультраметрику на \mathbb{Q} . Данная норма неархимедова, так как $\|nx\|_p \leq \|x\|_p \, \forall n \in \mathbb{Q}_+$.

Теорема 1. Нормы $\|.\| u \|.\|_p \ \forall p = 2, 3, \dots$ исчерпывают все нетривиальные неэквивалентные нормы поля рациональных чисел \mathbb{Q} .

1.2 р-Адические числа

Определение 4. Пополнение поля \mathbb{Q} по p-адической норме образует поле \mathbb{Q}_p p-адических чисел. Поле \mathbb{Q}_p аналогично полю $\mathbb{R} = \mathbb{Q}_{\infty}$ вещественных чисел, получаемых пополнение поля \mathbb{Q} по норме $\|x\| = \|x\|_{\infty}$.

Определение 5. Любое p-адическое число $x \neq 0$ однозначно представляется в каноническом виде

$$x = p^{\gamma} \cdot (x_0 + x_1 \cdot p + x_2 \cdot p^2 + \dots \tag{1}$$

где $\gamma = \gamma(x) \in \mathbb{Z}$ и x_j – целые числа такие, что $0 \le x_j \le p-1, x_0 > 0,$ $(j=0,1,\dots).$

Представление (1) аналогично разложению любого вещественного числа x в бесконечную десятичную дробь:

$$x = \pm 10^{\gamma} \cdot (x_0 + x_1 \cdot 10^{-1} + x_2 \cdot 10^{-2} + \dots),$$

$$\gamma \in \mathbb{Z}, x_j = 0, 1, \dots, 9, x_0 > 0,$$

и доказывается аналогично.

Помимо разложения, представление (1) дает рациональные числа тогда и только тогда, когда, начиная с некоторого номера числа $x_j, j=0,1,\ldots$ образуют периодическую последовательность.

Определение 6. Поле \mathbb{Q}_p является коммутативно-ассоциативной группой по сложению;

Определение 7. Поле $\mathbb{Q}_p^* = \mathbb{Q}_p \setminus \{0\}$ является коммутативно-ассоциативной группой по умножению;

Определение 8. Поле \mathbb{Q}_p^* называется мультипликативной группой поля $\mathbb{Q}_p[5];$

Определение 9. p-адические числа x, для которых $||x||_p \le 1$ (т.е. $\gamma(x) \ge 0$ или $\{x\}_p = 0$), называются целыми p-адическими числами, и их множество обозначается \mathbb{Z}_p . Множество \mathbb{Z}_p является подкольцом кольца \mathbb{Q}_p ; \mathbb{Z}_+ плотно в \mathbb{Z}_p . Целые числа $x \in \mathbb{Z}_p$, для которых $||x||_p = 1$, называютсяются единицами в \mathbb{Z}_p . [6]

Совокупность элементов x из \mathbb{Z}_p , для которых $\|x\|_p < 1$ (т.е. $\gamma(x) \geq 0$ или $\|x\|_p \leq \frac{1}{p}$) образуют главный идеал кольца \mathbb{Z}_p ; Данный идеал имеет вид $p\mathbb{Z}_p$. Поле вычетов $\mathbb{Z}_p \setminus p\mathbb{Z}_p$ состоит из p элементов. В мультипликативной группе поля $\mathbb{Z}_p \setminus p\mathbb{Z}_p$ существует единица $\eta \neq 1$ порядка p-1 такая, что элементы $0, \eta, \eta^2, \ldots, \eta^{p-1} = 1$ образуют полный набор представителей классов вычетов поля $\mathbb{Z}_p \setminus p\mathbb{Z}_p$.

1.3 Пространство р-адических чисел \mathbb{Q}_p

В силу свойств p-адической нормы норма в поле \mathbb{Q}_p удовлетворяет неравенству треугольника:

$$||x + y||_p \le \max(||x||_p, ||y||_p) \le ||x||_p + ||y||_p, x, y \in \mathbb{Q}_p.$$

Следовательно в \mathbb{Q}_p можно ввести метрику:

$$\rho(x,y) = ||x - y||_{p}. \tag{2}$$

При этом \mathbb{Q}_p становится полным метрическим пространством. Из представления (1) следует сепарабельность \mathbb{Q}_p .

Определение 10. $B_{\gamma}(a)$ – круг радиуса p^{γ^p} с центром в точке $a \in \mathbb{Q}_p$:

$$B_{\gamma}(a) = \left\{ x : \|x - a\|_{p} \le p^{\gamma} \right\}, \gamma \in \mathbb{Z}$$
(3)

Определение 11. $S_{\gamma}(a)$ – граница радиуса p^{γ^p} .

$$S_{\gamma}(a) = \left\{ x : \|x - a\|_p = p^{\gamma} \right\}, \gamma \in \mathbb{Z}$$
 (4)

Лемма 1. Если $b \in B_{\gamma}(a)$, то $B_{\gamma}(b) = B_{\gamma}(a)$.

Замечание 1. Круг $B_{\gamma}(a)$ и окружность $S_{\gamma}(a)$ – открыто-замкнутые множества в \mathbb{Q}_p .

Замечание 2. Всякая точка круга $B_{\gamma}(a)$ является его центром.

Замечание 3. Любые два круга в \mathbb{Q}_p либо не имеют общих точек, либо один содержится в другом.

Замечание 4. Всякое открытое множество в \mathbb{Q}_p есть объединение не более чем счетного числа кругов без общих точек.

Лемма 2. Если множество $M \subset \mathbb{Q}_p$ содержит две различные точки а и $b, a \neq b,$ то его можно представить в виде объединения непересекающихся открыто-замкнутых (в M) множеств M_1, M_2 таких, что $a \in M_1, b \in M_2$.

Лемма (2) утверждает, что всякое множество пространства \mathbb{Q}_p , состоящее из более чем одной точки, несвязно. Другими словами, связная компонента любой точки совпадает с самой точкой. Из этого следует, что \mathbb{Q}_p является вполне несвязным пространством.

Если рассматривать лемму для случая, когда множество M состоит только из двух точек a и b, убеждаемся, что существует непересекающиеся окрестности этих точек. Из этого можно сделать вывод, что пространство \mathbb{Q}_p хаусдорфово.

Лемма 3. Для того чтобы множество $K \subset \mathbb{Q}_p$ было компактом, необходимо и достаточно, чтобы оно было замкнутым и ограниченным в \mathbb{Q}_p

Замечание 5. Всякий круг $B_{\gamma}(a)$ является и окруженость $S_{\gamma}(a)$ компакты.

Замечание 6. Пространство \mathbb{Q}_p локально компактное.

Замечание 7. Всякий компакт можно покрыть конечным числом кругов фиксированного радиуса без общих точек.

Замечание 8. В пространстве \mathbb{Q}_p справедлива лемма Гейне-Бореля: из кажедого бесконечного покрытия компакта K можно выбрать конечное покрытие K.

Теорема 2. Размерность пространства \mathbb{Q}_p равна 0.

$\mathbf{2}$ р-Адический анализ в \mathbb{Z}_p

Так как компакт \mathbb{Z}_p есть пополнение множества \mathbb{N}_0 по метрике $d_p(x,y) = \|x-y\|_p$, то любое число из \mathbb{Z}_p есть предел последовательности чисел из \mathbb{N}_0 .

Определение 12. p-адическое целое z является пределом последовательности $\{z_i\}_{i=0}^{\infty}$, если если для любого $\epsilon>0$ найдется N такое, что $\|z_i-z\|_p<\epsilon$ как только i>N. [7]

Определение 13. p-адическое целое z есть предел последовательности $\{z_i\}_{i=0}^{\infty}$, если для любого (достаточно большого) положительного рационального целого K найдется N такое, что $z_i \equiv z \pmod{p}^K$ при всех i > N. [7]

Замечание 9. По определению р-адической метрики $||z_i - z||_p \le p^{-K}$ тогда и только тогда, когда $z_i \equiv z \pmod{p}^K$. [7]

Определение 14. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется непрерывной в точке $z \in \mathbb{Z}_p$, если для любого (достаточно большого) положительного рационального целого M найдется положительное рациональное целое L такое, что $f(x) \equiv f(z) \pmod{p}^M$ как только $x \equiv z \pmod{p^L}$. [7]

Определение 15. Функция f называется равномерно непрерывной на \mathbb{Z}_p , если f непрерывна в каждой точке $z \in \mathbb{Z}_p$, и L зависит только от M и не зависит от z.[8]

2.1 р-адическая дифференцируемость

Определение 16. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется дифференцируемой в точке $z \in \mathbb{Z}_p$, если существует p-адическое число $f'(x) \in \mathbb{Q}_p$ такое, что для любого $M \in \mathbb{N}$ справедливо

$$\left\| \frac{f(x+h) - f(x)}{h} - f'(x) \right\|_{p} \le \frac{1}{p^{M}},\tag{5}$$

если h достаточно мало, т.е. когда $\|h\|_p \leq p^{-K}$, где K = K(M) достаточно велико.

Определение 17. Функция f называется равномерно дифференцируемой (на \mathbb{Z}_p), если неравенство (5) выполняется одновременно для всех $x \in \mathbb{Z}_p$ как только h достаточно мало. [9]

Лемма 4. Если совместимая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ дифференцируема в точке $x \in \mathbb{Z}_p$, то $f'(x) \in \mathbb{Z}_p$.

Определение 18. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется дифференцируемой в точке $x \in \mathbb{Z}_p$, если существует p-адическое число $f'(x) \in \mathbb{Q}_p$ такое, что для любого $M \in \mathbb{N}$ справедливо

$$f(x+h) \equiv f(x) + h \cdot f'(x) \pmod{p}^{M + ord_p h} \tag{6}$$

Определение 19. Функция f называется равномерно дифференцируемой (на \mathbb{Z}_p), если неравенство (6) выполняется одновременно для всех $x \in \mathbb{Z}_p$ как только h достаточно мало, т.е. когда $ord_ph \geq K = K(M)$ для достаточно большого $K \in \mathbb{N}$.

Замечание 10. Правила дифференцирования не зависят от метрики: для вычисления производных суммы, частного и сложной функции в p-адическом анализе используются те же формулы, что и в действительном.

Замечание 11. Между действительным и p-адическим анализом существует резкое различие например в том, что в и в том, и в в другом случае производная константы равна 0, однако в p-адическом анализе в отличии от действительного равенство нулю производной некоторой функции не означает, что эта функция константа.

3 р-Адические автоматы

В данном разделе мы будем заниматься построением автомата для функции вида f(x)=cx, где $c=\frac{n}{m}, n, m\in\mathbb{Z}$. Перед тем как рассматривать построение автомата, рассмотрим основные определения [10] и основную теорему, которая говорит о том, что для каждой совместимой функции $f:\mathbb{Z}_p\to\mathbb{Z}_p$ можно построить соответствующий ей автомат.

Зафиксируем простое число p. Если рассматривать стандартный алгоритм сложения столбиком двух многоразрядных чисел в p-адической системе счисления, то видно, что эта операция может быть реализована с помощью конечного автомата Мили Σ_p , называемого последовательным сумматором, у которого два p-ичных входа и один p-ичный выход.

Рисунок 1 — Автомат Σ_p

Рисунок 2 — Диаграмма переходов автомата Σ_p

Как видно из диаграммы переходов автомата Σ_p на рис. 2, у автомата два состояния, соответствующие наличию и отсутствию переноса на данный момент вычисления, а его состоянием является состояние с отсутствием переноса. Внутри каждого состояния указана соответствующая функция выхода, а на стрелках - условия при которых происходит данный переход.

Автомат Σ_p реализует ограниченно-детерминированную функцию $\Sigma_p(x,y)$, которую можно отождествить со сложением x+y в кольце \mathbb{Z}_p , если рассмат-

ривать сверхслова $x_0x_1\cdots$ над алфавитом $E_p=\{0,1,\cdots,p-1\}$ как элементы $\sum_{i\geq 0}x_ip^i$ кольца \mathbb{Z}_p . Такое отождествление позволяет рассматривать любую детерминированную функцию $f(x_1,\cdots,x_n)$, определенную и принимающую свои значения на множестве сверхслов над алфавитом E_p , как функцию $f:\mathbb{Z}_p^n\to\mathbb{Z}_p$.

Такая интерпретация детерминированных функций рассматривалась Лунцем в его работе [11], где такие функции назывались p-адическими автоматами. При этом выделяется класс p-адических автоматов, являющихся линейными однородными функциями вида:

$$f(x_1, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n,$$

где $c_1, \dots, c_n \in Q \cap \mathbb{Z}_p$, и показано, что это в точности все линейные однородные функции, реализуемые конечными автоматами. Отметим также, что p-адическая интерпретация детерминированных функций позволяет изучать их свойства, привлекая аппарат теории динамических систем [12] и радического анализа [13].

Рассмотрим автоматы реализующие функцию вида f(x) = cx, где $c \in Q \cap \mathbb{Z}_p$. Множество таких автоматов образует кольцо $Z_{(p)}$ относительно операции сложения, определенной с помощью автомата Σ_p (рис. 3), и операции умножения, определенной как суперпозиция двух автоматов (рис.4).

Рисунок 3 — Сложение автоматов ax и bx

Рисунок 4 – Умножение автоматов *ах* и *bx*

Данное кольцо, изоморфно кольцу $Q \cap \mathbb{Z}_p$, состоящему из рациональных чисел, знаменатели которых не делятся на p. В этом примере как элементы, так и операция сложения реализуется с помощью конечных автоматов, которые могут быть получены из единственного автомата Σ_p при помощи операций суперпозиции и обратной связи. Для того чтобы в этом убедиться, достаточно показать, что любой автомат, реализующий функцию $f(x) = \frac{n}{m}x$, где $m,n\in\mathbb{Z}$ и p не является делителем m, можно получить из Σ_p . Действительно, функция f(x)=nx, где $n\in\mathbb{N}$, реализуется при помощи суперпозиции из n-1 экземплярова автомата Σ_p , поскольку $nx=\underbrace{x+\dots+x}_n$. Заметим, что автомат соответствующий функции px, является единичной задержкой, поскольку

$$p(x_0 + x_1p + \cdots) = x_0p + x_1 + p^2 + \cdots,$$

и сверхслово $x_0x_1\cdots$ переходит под его действием в сверхслово $0x_0x_1\cdots$. Из работы [11] вытекает то, что мы уже умеем строить автоматы реализующие функции ax и bx. Тогда, используя суперпозицию, построим функцию двух переменных g(x,y)=ax+pby и, применив к ней операцию обратной связи по переменной y (рис. 5), получим функцию $h(x)=\frac{a}{1-pb}x$. Корректность построенной функции вытекает из уравнения ax+pby=y и того факта, что g(x,y) зависит от переменной y с задержкой. Если взять a=p-1 и b=1, то h(x)=-x.

Рисунок 5 – Автомат, реализующий функцию $h(x) = \frac{a}{1-pb}x$

Тогда, используя суперпозицию, сможем выразить функцию -nx=(-nx), где $n\in\mathbb{N}$, а так же константную функцию 0=x+(-x). Таким образом, мы можем реализовать любую функцию ax, где $a\in\mathbb{Z}$. Покажем, реализацию функции $\frac{1}{n}x$, где $n\in\mathbb{N}$ и p не является делителем n. Поскольку числа n и p взаимно простые, всегда найдутся такие целые числа a и b, что na+pb=1. Тогда, используя эти a и b в конструкции (рис. 5, получим $h(x)=\frac{a}{1-pb}x=\frac{a}{na}=\frac{1}{n}x$. Заметим, что мы можем реализовать функцию $\frac{n}{m}x=n(\frac{1}{m}x)$ как суперпозицию функций. Таким образом, все функции вида f(x)=cx, где $c\in Q\cap\mathbb{Z}_p$, могут быть построены из Σ_p .

3.1 Основные определения и обозначения

Зафиксируем простое число p. Сопоставим каждому слову $\alpha = a(1) \cdots a(l)$ в алфавите $E_p = \{0, 1, \cdots, p-1\}$ целое неотрицательное число $[\alpha] = a(1) + a(2)p + \cdots + a(l)p^{l-1}$. Договоримся, что пустому слову Λ будет соответсвовать число 0. Таким образом, слово $\alpha = a(1)a(2) \cdots a(l)$ является обращением записи $(a(1)a(2) \cdots a(l))_p$ числа $[\alpha]$ в p-ичной системе счисления [14, 15].

Определение 20. [16] Сверхсловом в алфавите A называется проивзольная бесконечная последовательность $\alpha = a(1)a(2)\cdots$ элементов алфавита A. Сверхслова $\alpha = a(1)a(2)\cdots$ над алфавитом E_p можно отождествлять с элементами $a(1) + a(2)p + \cdots$ множества \mathbb{Z}_p целых p-адических чисел.

Определение 21. [16] Будем обозначать через $A|_l$ префикс $a(1)a(2) \dots a(l)$ длины l, а через $a \downarrow_l$ соотвествующий бесконечных суффикс $a(l+1)a(l+2) \dots a(l)$ сверхслова α .

Определение 22. A^{ω} - множество всех сверхслов над алфавитом A.

Определение 23. Функция $f: A^{\omega} \to B^{\omega}$ является детерминированной если для любых двух сверхслов $\alpha_1, \alpha_2 \in A^{\omega}$ и натурального l из $\alpha_1|_l = \alpha_2|_l$ следует $f(\alpha_1)|_l = f(\alpha_2)|_l$.

Определение 24. Для каждой детерминированной функции $f: A^{\omega} \to B^{\omega}$ и слова $\alpha \in A^*$ введем функцию $f_{\alpha}(x) := f(\alpha x) \downarrow_{|\alpha|}$, которую будем называть остаточной функцией для f, соответствующую слову α .

Определение 25. Детерминированную функцию $f: A^{\omega} \to B^{\omega}$, имеющую конечное число различных остаточных функций, назовем ограниченно-детерминированной функцией.

Известно[17], что класс всех ограниченно-детерминированных функций совпадает с классом всех конечно-автоматных функций, реализуемых конечными инициальными детерминированными автоматами Мили.

Определение 26. Детерминированную функцию $f: A^{\omega} \to B^{\omega}$ назовем обратимой, если она биективна, и, тем самым, для нее существует обратное отображение $f^{-1}: B^{\omega} \to A^{\omega}$, такое, что $f \circ f^{-1} = id_{A^{\omega}}$, $f \circ f^{-1} = id_{B^{\omega}}$.

Поскольку все остаточные функции f_{α} у обратимой функции f так же обратимы, то у инициального автомата, реализующего f, в каждом состоянии q функция выхода $\psi_q(x) = \psi(q,x)$ является биекций. В тоже время несложно показать, что любой обратимый автомат с таким свойством реализует обратимую ограниченно-детерминированную функцию. Для обратимой ограниченно-детерминированной функции f функция f^{-1} тоже является ограниченно-детерминированной функцией, причем с тем же весом, что и у f. Для того, чтобы в этом убедиться, достаточно рассмотреть диаграмму Мура автомата \mathfrak{A} с начальным состоянием q_0 , реализующего f и каждую стрелку $q \xrightarrow{a/b} q'$ в ней заменить на $q \xrightarrow{b/a} q'$. Видно, что в результате получилась диаграмма некоторого нового автомата \mathfrak{A}^{-1} , и если в нем в качестве начального состояния выбрать опять q_0 , то соответствующая ему ограниченнодетерминированная функция будет равна f^{-1} . В качестве примера можно посмотреть на рисунок 6, где изображен обратимый автомат. Обратный к нему автомат показан на рисунке 7. Он получается путем изменения a/b на b/a на всех его переходах.

Рисунок 6 – Диаграмма автомата \mathfrak{A}_3

Рисунок 7 — Диаграмма автомата $\mathfrak{A}_{\frac{1}{2}}$

3.2 Основная теорема о детерминированных функциях

Теорема 3. [3] Детерминированная функция $f_{\mathfrak{A}}(s_0): \mathbb{Z}_p \to \mathbb{Z}_p$ соответствующая автомату $\mathfrak{A}(s_0) = \langle \mathbb{F}_p, \mathcal{S}, \mathbb{F}_p, S, O, s_0 \rangle$, совместима, т.е. удовлетворяет р-адическому условию Липшица с константой 1. Обратно, для каждой совместимой функции $f: \mathbb{Z}_p \to \mathbb{Z}_p$ существует автомат $\mathfrak{A}(s_0) = \langle \mathbb{F}_p, \mathcal{S}, \mathbb{F}_p, S, O, s_0 \rangle$ такой, что $f = f_{\mathfrak{A}(s_0)}$.

Доказательство. Действительно, поскольку каждый i-й выходной символ $\psi_i = O(s_i, \chi_i)$ автомата зависит только от i-го состояния s_i и от i-го входного символа χ_i , и поскольку состояние $s_i = S(s_{i-1}, \chi_{i-1})$ зависит только от s_{i-1} и от χ_{i-1} , и т.д. Таким образом, каждый выходной символ $\psi_i = \psi_i(\chi_0, \dots, \chi_i) \in \mathbb{F}_p$, $i = 0, 1, 2, \dots$, зависит только от входных символов $\chi_0, \dots, \chi_i \in \mathbb{F}_p$ и не зависит от символов $\chi_{i+1}, \chi_{i+2}, \dots$ Следовательно, детерминированная функция $f = f_{\mathfrak{A}}: \mathbb{Z}_p \to \mathbb{Z}_p$ имеет вид:

$$f: x = \sum_{i=0}^{\infty} \chi_i p^i \mapsto f(x) = \sum_{i=0}^{\infty} \psi_i(\chi_0, \dots, \chi_i) p^i$$
 (7)

Другими словами, каждой детерминированной функции f соответствует единственная последовательность отображений $\psi_i: \mathbb{F}_p^n \to \mathbb{F}_p$. Однако каждая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$, имеющая вид (7), очевидно совместима, т.е. удовлетворяет p-адическому условию Липшица с константой 1.

Обратно, пусть дана совместимая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$; тогда ее можно представить в виде (7). Построим автомат $\mathfrak{A}(s_0) = \langle \mathbb{F}_p, \mathcal{S}, \mathbb{F}_p, \mathcal{S}, O, s_0 \rangle$ такой

что $f_{\mathfrak{A}}(s_0) = f$. Возьмем множество \mathbb{F}_p^* всех непустых конечных слов над алфавитом \mathbb{F}_p , рассмотрим эти слова как представления натуральных чисел $\mathbb{N} = \{1, 2, 3, \ldots\}$ в системе счисления с основанием p и перенумеруем слова в лексикографическом порядке в соответствии с естественным порядком на \mathbb{N} . Таким образом мы установим взаимнооднозначное соответствие между всеми непустыми словами w над алфавитом \mathbb{F}_p и числами $i = 1, 2, 3, \ldots : w \leftrightarrow \nu(w), i \leftrightarrow \omega(i)(\nu(w) \in \mathbb{N}, \omega(i) \in \mathbb{F}_p^*)$. Заметим, что $\nu(\omega(i)) = i, \omega(\nu(w)) = w$ для всех $i \in \mathbb{N}$ и всех непустых слов $w \in \mathbb{F}_p^*$. Будем считать, что $\omega(0)$ есть пустое слово.

В качестве множества S всех состояний автомата $\mathfrak A$ возьмем множество $N_0=\{0,1,2,3,\ldots\}$, и возьмем $s_0=0$ в качестве начального состояния. Зададим функцию перехода S следующим образом: $S(i,r)=\nu(r\omega(i))$, где $i=0,1,2,\ldots r\in \mathbb F_p$; т.е. S(i,r) равна номеру слова $r\omega(i)$, которое есть результат конкатенации слова $\omega(i)$ (с номером i) в качестве префикса (начала) с однобуквенным словом r в качестве суффикса (окончания). Зададим функцию выхода следующим образом: $O(i,r)=\psi_{|\omega(i)|}(r\omega(i))$, где символом |w| обозначается длина слова w (длина пустого слова равна 0). Отображение $\psi_i: F_p^{i+1} \to \mathbb F_p$ может рассматриваться как отображение множества всех слов длины i+1 над алфавитом $\mathbb F_p$ во множество всех однобуквенных слов $\mathbb F_p, i=0,1,2,\ldots$ Отметим, что при необходимости здесь и далее мы будем использовать без дополнительных оговорок естественное соответствие между словами длины n и элементами кольца вычетов m $\mathbb Z/p^n\mathbb Z$, также как и соответствие между множеством всех бесконечных слов $\mathbb F_p^\infty$ и кольцом $\mathbb Z_p$.

Поскольку f удовлетворяет p-адическому условию Липшица с константой 1, она непрерывна относительно p-адической метрики, а потому чтобы доказать, что $f = f_{\mathfrak{A}(s_0)}$ достаточно показать, что $f_{\mathfrak{A}(s_0)}(w) \equiv f(w) \pmod{p}^{\lambda(w)}$ для всех непустых слов $\omega \in \mathbb{F}_p^*$: действительно, если это так, то если дано бесконечное слово $w \in \mathbb{F}_p^\infty$, то последовательность $w \pmod{p^n}$, $n = 1, 2, 3, \ldots$, состоящая из конечных слов, сходится p-адически к w, т.е. $f(w) \pmod{p^n}$ сходится p-адически к f(w) при p стремящимся к бесконечности.

Индукцией по n докажем, что если входное слово w имеет длину n>0, то $f_{\mathfrak{A}(s_0)}(w)\equiv f(w)\pmod{p^n}$. Если n=1, то $w\in\mathbb{F}_p$, и после того, как w подано на вход, автомат \mathfrak{A} перейдет в состояние $S(0,w)=\nu(w)$ и подаст на выход символ $O(0,w)=\psi_0(w)=f(w)\pmod{p}$, см. (7).

Предположим, что утверждение верно для всех n < k и докажем, что оно верно и при n = k. Рассмотрим слово w длины n; тогда w = rv, где $r \in \mathbb{F}_p, |v| = n-1$ (т.е. w состоит из префикса v и суффикса r). По предположению индукции, после того как слово v будет подано на вход, автомат перейдет в состояние $\nu(v)$ и подаст на выход слово $v' = f(v) \pmod{p^{n-1}}$. Следовательно, после того как на вход будет подан символ r, автомат подаст на выход символ $O(\nu(v), r) = \psi_{|\omega(\nu(v))|}(r\omega(\nu(v))) = \psi_{|v|}(rv)$. Стало быть, если подать на вход слово w, то автомат подаст на выход слово $v'' = (\psi_{|v|}(rv))v'$, которое есть результат конкатенации слова $v' = f(v) \pmod{p^{n-1}}$ в качестве префикса с однобуквенным словом $\psi_{|v|}(rv) \in \mathbb{F}_p$ в качестве суффикса. Однако $v'' = f(w) \pmod{p^n}$. (7). Этим завершается доказательство утверждения и теоремы. \square

3.3 Построение автомата для функции вида f(x) = cx

Для любого рационального числа $c=\frac{n}{m}$, где $n,m\in\mathbb{Z}$ и где p не является делителем m, существует ограниченно-детерминированная функция $f:\mathbb{Z}_p\to\mathbb{Z}_p$ такая, что f(x)=cx. Обозначим через \mathfrak{A}_c соотвествующий приведенный конечный автомат. Легко видеть, что для любой детерминированной функции $f:\mathbb{Z}_p\to\mathbb{Z}_p$ и слова $\alpha=a(1)a(2)\dots a(l)\in E_p^l$ для соответствующей остаточной функции $f_{\alpha}(x)$ выполняется следующее соотношение:

$$f([\alpha] + p^l x) = [\beta] + p^l f_{\alpha}(x) \tag{8}$$

где $\beta = b(1)b(2)\dots b(l) = f(\alpha) \in E_p^l$:

$$\underbrace{a(1)\dots a(l)}_{\alpha}\underbrace{x(1)x(2)\dots}_{x} \to \underbrace{f} \to \underbrace{b(1)\dots b(l)}_{\beta}\underbrace{x(1)x(2)\dots}_{x}$$
(9)

Из соотношения 8 непосредственно следует формула для $f_{\alpha}(x)$:

$$f_{\alpha}(x) = \frac{f([\alpha] + p^l x) - [\beta]}{p^l}.$$
(10)

Для начала опишем автомат \mathfrak{A}_n , где $n \in \mathbb{N}$. Применив формулу 10 к функции f(x) = nx, получим:

$$(nx)_{\alpha} = \frac{n([\alpha] + p^{l}x) - [\beta]}{p^{l}} = nx + \frac{n[\alpha] - [\beta]}{p^{l}},$$
 (11)

где $[\beta]=n[\alpha]\pmod{p^l}$ (так как $f(\alpha)=\beta$). Следовательно, $n[\alpha]-[\beta]$ делится на p^l , и мы получаем более короткое представление:

$$(nx)_{\alpha} = nx + q, \tag{12}$$

где $q=\left[\frac{n[\alpha]}{p^l}\right]\in\{0,\ldots,n-1\}$, так как $n[\alpha]=p^lq+[\beta]$ и $[\alpha],[\beta]\in[0,p^l)$. Покажем, что $\forall q\in\{0,\ldots,n-1\}\quad \exists \alpha:\alpha\in E_p^l$, что $q=\frac{n[\alpha]}{p^l}$.

Действительно, последнее эквивалентно следующему выражению:

$$p^l q \le n[\alpha] < p^l q + p^l. \tag{13}$$

Возьмем теперь достаточно больше l так, чтобы выполнялось неравенство $p^l>n$, и положим $\alpha\in E_p^l$ равным p-ичной зависи числа $\left[\frac{p^lq}{n}\right]$, т.е. $\left[\alpha\right]=\left[\frac{p^lq}{n}\right]$. Тогда:

$$\frac{p^l q}{n} \le [\alpha] < \frac{p^l q}{n} + 1 \Rightarrow p^l q \le n[\alpha] < p^l q + n \Rightarrow p^l q \le n[\alpha] < p^l q + p^l. \tag{14}$$

Следовательно, слово α удовлетворяет условию (4) и $q=\left[\frac{n[\alpha]}{p^l}\right]$. Таким образом, показано что остаточные функции для f(x)=nx полностью исчерпываются функциями $f^{(q)}(x)=nx+q$, где $q\in\{0,\ldots,n-1\}$. Более того, все эти функции различны, поскольку $f^{(q)}(0)\neq f^{(q')}(0)$ при $q\neq q'$.

Такое наблюдение позволяет выбрать в качестве множества состояний приведенного автомата \mathfrak{A}_n , реализующего ограниченно-детерминированная функцию nx, множество $Q = \{0, \ldots, n-1\}$. Опишем функцию переходов и функцию выходов автомата \mathfrak{A}_n . Применив формулу 10 к функции $f^{(q)}(x) = nx + q$ и однобуквенному слову $\alpha = a$, получим:

$$(nx+q)_{\alpha} = \frac{n(px+a) + q - b}{p} = nx + \frac{q + na - b}{p}$$
 (15)

где $b=na+q\pmod p$. Тогда $(nx+q)_{\alpha}=nx+q'$, где $q'=\frac{q+na-b}{p}$, и в автомате \mathfrak{A}_n переход $q\stackrel{a/b}{\longrightarrow} q'$ существует тогда и только тогда, когда выполнено

равенство:

$$q + na = pq' + b \tag{16}$$

Так как $q^{'} \in [0,n)$ и $b \in [0,p)$, то из равенства 16 следует, что

$$q' = p^{-1}(q - a) \pmod{n}, b = n^{-1}(a - q) \pmod{p}$$
 (17)

где p^{-1} - это обратный элемент для p в кольце целых чисел по модулю n, а n^{-1} - это обратный элемент для элемента n в кольце целых чисел по модулю p. Оба элемента существуют, поскольку n и p - взаимно простые числа.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был рассмотрен метод построения автомата для функции f(x) = cx, где $c = \frac{n}{m}, n, m \in \mathbb{Z}$. В дальнейшей научной работе планируется формализовать метод и расширить его для того, чтобы было возможно в виде автомата представлять любую полиномиальную функцию.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 В.Б., Кудрявцев. Элементы теории автоматов / [Кудрявцев В.Б., Алешин С.В., Подколзин А.С.] : М.: Изд-во МГУ, 1978. 2016 с.
- 2 Козырев, С. В. Методы и приложения ультраметрического и р-адического анализа: от теории всплесков до биофизики / С. В. Козырев // Совр. пробл. матем. 2008. Т. 12. С. 3–168.
- 3 Анашин, В.С. Методы неархимедовой алгебраической динамики в криптографии [Электронный ресурс]. URL: https://istina.msu.ru/media/courses/course/f66/226/7102110/SYMB_COMPUT.PDF (дата обращения: 03.04.2019).
- 4 И.В., Волович. р–Адическая математическая физика: основные конструкции, применения к сложным и наноскопическим системам / [Волович И.В., Козырев С.В.] : Самара, 2009. 30 с.
- 5 Baker, A. An Introduction to p-adic Numbers and p-adic Analysis / [A. Baker] : University of Glasgow, 2017. 64 p.
- 6 Владимиров, В.С. р-Адический анализ и математическая физика / [В.С. Владимиров, Волович И.В., Зеленов Е.И.] : М.:Физматлит, 1994. 352 с.
- 7 Анашин, В.С. Введение в прикладной р-адический анализ.
- 8 Ciocan, N. P-adic Functions Part 1 . 2011.
- 9 Anashin, V. The p-adic ergodic theory and applications / [V. Anashin] : Moscow, 2014. 221 p.
- 10 Balodis, Kaspars. Unconventional Finite Automata and Algorithms: Ph. D. thesis / Kaspars Balodis; [University of Latvia]: Riga, 2016.
- 11 Лунц, А.Г. р-адический аппарат в теории конечных автоматов / А.Г. Лунц // Пробл. кибернетики. 1965. Т. 14. С. 17–30.
- 12 V., Anashin. Automata finiteness criterion in terms of van der Put series of automata functions / Anashin V. // p-Adic Numbers, Ultrametric Analysis and Applications. 2012. Vol. 4:2. P. 151–160.
- 13 V., Anashin. Applied Algebraic Dynamics / Anashin V., Khrennikov A. Berlin: W. de Gruyter, 2009. 533 p.
- 14 Tyapaev, L. B. Automata as *p*-adic Dynamical Systems [Электронный ресурс]. 2017. arXiv:1709.02644.

- 15 Tyapaev, L. B. Non-Archimedean dynamics of the complex shift / L. B. Tyapaev // [Компьютерные науки и информационные технологии]: Издательский центр «Наука», 2018. Р. 406–412.
- 16 Klapper, A. Feedback shift registers, 2-adic Span, and combiners with memory / A. Klapper // Journal of Cryptology. 1997. Vol. 10(2). P. 111–147.
- 17 В.Б., Кудрявцев. Введение в теорию автоматов / [Кудрявцев В.Б., Алешин С.В., Подколзин А.С.] : М.: Наука, 1985. 320 с.