Bootstrap Confidence Intervals

Jialiang Mao

March 29, 2016

Overview

- ▶ What and why?
- ► How?
- ► Always good?

▶ 578 observations

- ▶ 578 observations
- Right-skewed

- ▶ 578 observations
- Right-skewed
- ▶ median=103

Bootstrapping

➤ The saying "to pull oneself up by one's bootstraps" was already in use during the 19th century as an example of an impossible task.

Bootstrapping

- The saying "to pull oneself up by one's bootstraps" was already in use during the 19th century as an example of an impossible task.
- ► Bootstrap as a metaphor, meaning to better oneself by one's own unaided efforts, was in use in 1922.

Suppose we are given a sample (x_1, \ldots, x_n) and we want to construct a bootstrap confidence interval for a statistic T (mean, median,...).

Suppose we are given a sample (x_1, \ldots, x_n) and we want to construct a bootstrap confidence interval for a statistic T (mean, median,...). Take a large number N (for example, N=15000). For 1 < i < N.

Suppose we are given a sample (x_1, \ldots, x_n) and we want to construct a bootstrap confidence interval for a statistic T (mean, median,...). Take a large number N (for example, N=15000). For $1 \le i \le N$,

- 1. Get a bootstrap sample $(x_1^{*(i)}, \ldots, x_n^{*(i)})$ from the original sample;
 - a random sample;

Suppose we are given a sample (x_1, \ldots, x_n) and we want to construct a bootstrap confidence interval for a statistic T (mean, median,...). Take a large number N (for example, N=15000). For $1 \le i \le N$,

- 1. Get a bootstrap sample $(x_1^{*(i)}, \ldots, x_n^{*(i)})$ from the original sample;
 - a random sample;
 - same size;

Suppose we are given a sample (x_1, \ldots, x_n) and we want to construct a bootstrap confidence interval for a statistic T (mean, median,...). Take a large number N (for example, N=15000). For $1 \le i \le N$,

- 1. Get a bootstrap sample $(x_1^{*(i)}, \ldots, x_n^{*(i)})$ from the original sample;
 - a random sample;
 - same size;
 - sample with replacement.
- 2. Calculate the bootstrap statistic $T^{*(i)}$ with the bootstrap sample in the first step.

Then we can use the quantiles of these N bootstrap statistics to construct a bootstrap confidence interval.

central 95% of the bootstrap distribution

- central 95% of the bootstrap distribution
- ► bootstrap confidence interval: (98.0, 110.5)

Always good?

Always good?

your statistic T is not too weird;

Always good?

- your statistic T is not too weird;
- need a representative sample to start;

In class exercise: Simulation study

- ▶ For n = 100, generate $x_1, \ldots, x_n \sim N(\mu, 1)$, $\mu = 1$;
- Use the CLT based method to calculate the 95% CI for μ ;
- ▶ Use the Bootstrap method (N = 5000) to construct a 95% CI for μ ;
- Compare these two Cls;
- ► Change the values of *n* and *N*, re-do the experiment.