

NOISE

CURL / GRADIENTE

En calculo multivariable, aparece el concepto de curl, gradiente o campo vectorial conservativo, este representa la dirección de mayor cambio para cada punto de una superficie.
 Al calcular la gradiente (∇) para cada pixel (x,y) de la textura (f(x,y)), se resuelve una velocidad que luego es muestreada por la partícula para cambiar su dirección.

NOISE MODULE

Unity ofrece un módulo en Shuriken que permite el muestreo del Curl de varios mapas de Ruido Perlin llamado **Noise.** Con este podemos controlar la frecuencia, amplitud y modo de aplicación del noise sobre cada partícula presente en la simulación

Shuriken ofrece la posibilidad de adjuntar luces a las partículas que genera el sistema, debido a las limitaciones del motor es posible que no todas las partículas emitan luz. Para confirgurar los parametros de iluminacion se utiliza el modulo Lights

- Per pixel lights: luces calculadas por cada pixel, se renderiza el mismo objeto numerosas veces dependiendo de la cantidad de luces que lo afectan (las primeras 4)
- Per vertex lights: luces calculadas por cada vertice (las 4 siguientes)
- Spherical harmonics: información difusa de iluminación codificada en el dominio de la frecuencia (el resto de luces presentes que afectan al objeto)

En URP existen 2 tipos de luces:

- Main light: luz principal (solo 1, puede ser per pixel o per vertex)
- Additional Lights: luces adicionales (Maximo 8, pueden ser per pixel o per vertex)

