

Outline

- What Operating Systems Do
- Computer-System Organization and Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security
- Kernel Data Structures
- Computing Environments
- Open-Source Operating Systems

Objectives

- To describe the basic organization of computer systems.
- To provide a grand tour of the major components of operating systems.
- To give an overview of the many types of computing environments.
- To explore several open-source operating systems.

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Computer System Structure

- The computer system can be divided into four components:
 - Hardware provides basic computing resources
 - CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates the use of the hardware among various applications and users
 - Application programs define how the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
 - Users
 - People, machines, other computers

Four Components of a Computer System

What Operating Systems Do

- Depends on the point of view
- Users want convenience, ease of use, and good performance
 - Don't care about resource utilization
- But shared computers such as mainframe or minicomputers must keep all users happy
- Users of dedicated systems such as workstations have dedicated resources but frequently use shared resources from servers
- Handheld computers are resource-poor, optimized for usability and battery life
- Some computers have little or no user interface, such as embedded computers in devices and automobiles.

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is a good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel.
- Everything else is either
 - a system program (ships with the operating system), or
 - an application program.

Computer Startup

- Bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of the system
 - Loads operating system kernel and starts execution

Computer System Organization

- Computer-system operation
 - One or more CPUs, and device controllers connect through a common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller oversees a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers.
- I/O is the device to the local buffer of the controller.
- Device controller informs CPU that it has finished its operation by causing an interrupt.

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- A trap or exception is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt-driven

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure

- After I/O starts, control returns to the user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing

I/O Structure

- After I/O starts, control returns to the user program without waiting for I/O completion
 - System call request to the OS to allow the user to wait for I/O completion
 - Device-status table contains an entry for each I/O device indicating its type, address, and state
 - OS indexes into I/O device table to determine device status and to modify table entry to include interrupt

Storage Definitions and Notation Review

- Computer storage, along with most computer throughput, is generally measured and manipulated in bytes and collections of bytes.
 - A kilobyte, or KB, is 1,024 bytes
 - a megabyte, or MB, is 1,0242 bytes
 - a gigabyte, or GB, is 1,0243 bytes
 - a terabyte, or TB, is 1,0244 bytes
 - a petabyte, or PB, is 1,0245 bytes
- Computer manufacturers often round off these numbers and say that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.
- Networking measurements are an exception to this general rule; they
 are given in bits (because networks move data a bit at a time).

Storage Structure

- Main memory only large storage media that the CPU can access directly
 - Random access
 - Typically volatile
- Secondary storage an extension of main memory that provides large nonvolatile storage capacity

Storage Structure

- Hard disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer
- Solid-state disks faster than hard nonvolatile
 - Various technologies
 - Becoming more popular

Storage Hierarchy

- Storage systems organized in a hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into a faster storage system; main memory can be viewed as a cache for secondary storage
- Device Driver for each device controller to manage I/O
- Provides a uniform interface between the controller and kernel

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if the information is there
 - If it is, information used directly from the cache (fast)
 - If not, data is copied to the cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than one interrupt per byte

Computer-System Architecture

- Most systems use a single general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types:
 - 1. Asymmetric Multiprocessing each processor is assigned a specie task.
 - 2. Symmetric Multiprocessing each processor performs all tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service that survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
 - Some have distributed lock manager (DLM) to avoid conflicting operations

Clustered Systems

Operating System Structure

• Multiprogramming (Batch system) needed for efficiency

- Single user cannot keep CPU and I/O devices busy at all times
- Multiprogramming organizes jobs (code and data) so the CPU always has one to execute
- A subset of total jobs in the system is kept in memory
- One job selected and run via job scheduling
- When it has to wait (for I/O for example), OS switches to another job

Operating System Structure

- Timesharing (multitasking) is a logical extension in which the CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second
 - Each user has at least one program executing in the memory ⇒ process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, **SWapping** moves them in and out to run
 - Virtual memory allows the execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Types of Operating Systems

- 1. Batch Operating System
- 2. Multi-Programming System
- 3. Multi-Processing System
- 4. Multi-Tasking Operating System
- 5. Time-Sharing Operating System
- 6. Distributed Operating System
- 7. Network Operating System

Batch Operating System

Multi-Programming Operating System

Multiprogramming

Multi-Processing Operating System

Multi-Tasking Operating System

Time-Sharing Operating Systems

Distributed Operating System

Architecture of Distributed OS

Network Operating System

Kernel Data Structures

Many similar to standard programming data structures

• Singly linked list

Doubly linked list

Circular linked list

Kernel Data Structures

- Binary search tree
 - left <= right</pre>
 - Search performance is O(n)
 - Balanced binary search tree is O(lg n)

Kernel Data Structures

Hash function can create a hash map

- Bitmap string of *n* binary digits representing the status of *n* items
- Linux data structures defined in

```
include files <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>
```

Computing Environments - Traditional

- Stand-alone general-purpose machines
- But blurred as most systems interconnect with others (i.e., the Internet)
- Portals provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous even home systems use firewalls to protect home computers from Internet attacks

Computing Environments - Mobile

- Handheld smartphones, tablets, etc
- What is the functional difference between them and a "traditional" laptop?
- Extra feature more OS features (GPS, gyroscope)
- Allows new types of apps like augmented reality
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android

Computing Environments – Distributed

- Distributed computing
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between systems across the network
 - Communication scheme allows systems to exchange messages
 - Illusion of a single system

Computing Environments – Client-Server

- Client-Server Computing
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients
 - Compute-server system provides an interface for client to request services (i.e., database)
 - File-server system provides an interface for clients to store and retrieve files

Computing Environments - Peer-to-Peer

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead, all nodes are considered peers
 - May each act as client, server, or both
 - Node must join P2P network
 - Registers its service with a central lookup service on the network, or
 - Broadcast requests for service and respond to requests for service via discovery protocol
 - Examples include Napster and Gnutella, Voice over IP (VoIP) such as Skype

Computing Environments - Virtualization

- Allows operating systems to run applications within other OSes
 - Vast and growing industry
- Emulation used when source CPU type is different from target type (i.e. PowerPC to Intel x86)
 - Generally slowest method
 - When computer language not compiled to native code Interpretation
- Virtualization OS natively compiled for CPU, running guest OSes also natively compiled
 - Consider VMware running WinXP guests, each running applications, all on native WinXP host OS
 - VMM (virtual machine Manager) provides virtualization services

Computing Environments - Virtualization

- Use cases involve laptops and desktops running multiple OSes for exploration or compatibility
 - Apple laptop running Mac OS X host, Windows as a guest
 - Developing apps for multiple OSes without having multiple systems
 - QA testing applications without having multiple systems
 - Executing and managing compute environments within data centers
- VMM can run natively, in which case they are also the host
 - There is no general-purpose host then (VMware ESX and Citrix XenServer)

Computing Environments - Virtualization

Computing Environments – Cloud Computing

- Delivers computing, storage, and even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for it functionality.
 - Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available across the Internet, pay-based on usage
- Many types
 - Public cloud available via Internet to anyone willing to pay
 - Private cloud run by a company for the company's use
 - **Hybrid cloud** includes both public and private cloud components
 - Software as a Service (SaaS) one or more applications available via the Internet (i.e., word processor)
 - Platform as a Service (PaaS) software stack ready for application use via the Internet (i.e., a database server)
 - Infrastructure as a Service (laaS) servers or storage available over the Internet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

- Cloud computing environments composed of traditional OSes, plus VMMs, and cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

Computing Environments — Real-Time Embedded Systems

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose OS, realtime OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing must be done within the constraint
 - Correct operation only if constraints met

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights Management (DRM)
 movement
- Started by the Free Software Foundation (FSF), which has a "copyleft"
 GNU Public License (GPL)
- Examples include GNU/Linux and BSD UNIX (including the core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows), Virtualbox (open source and free on many platforms - http://www.virtualbox.com)
 - Use to run guest operating systems for exploration

