Data Preprocessing

COSC 757: Spring 2016

Types of Data Sets

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
 - Road network

- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: points, lines, polygons
 - Image data:
 - Video data:

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countable infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

Why do we preprocess data?

- Raw data is often unprocessed, incomplete, or noisy
- Likely to contain
 - Obsolete/redundant fields
 - Missing values
 - Outliers
 - Data in form not suitable for data mining
 - Values not consistent with policy or common sense

Why do we preprocess data?

- For data mining purposes, database values must undergo data cleaning and data transformation
- Data from legacy databases
 - Not looked at in years
 - Expired
 - No longer relevant
 - Missing
- Minimize GIGO
- Effort for data preparation = 10% to 60% of data mining process...

Can you find the problems in this dataset?

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	75000	С	M	5000
1002	J2S7K7	F	-40000	40	W	4000
1003	90210		10000000	45	S	7000
1004	6269	\mathbf{M}	50000	0	S	1000
1005	55101	F	99999	30	D	3000

Handling Missing Data

- Missing values pose problems to data analysis methods
- More common in databases containing a large number of fields
- Absense of information rarely beneficial to task of analysis
- Having more data is always better
- Careful analysis is required to handle missing data

Consider the Following Dataset

	mpg	cubic inches	hp	brand
1	14.000	350	165	US
2	31.900		71	Eurpoe
3	17.000	302	140	US
4	15.000	400	150	
5	37.000	89	62	Japan

Which of the following is the best option?

- 1. Delete records containing missing values.
- 2. Replace missing values with a constant specified by the analyst.
- 3. Replace missing values with mode or mean.
- 4. Replace missing values with random values.

Data Imputation Methods

- Imputation of Missing Data What is the likely value, given records other attribute values?
- Example: From two samples on the previous slide,
 American cars would be expected to have a higher horse power and cubic inches
- Tools like multiple regression and classification can be used for this purpose (more on that later).

Identifying Misclassifications

- Check classification labels, to verify values valid and consistent
- Example: Table below Frequency distribution for origin of manufacture of automobiles
 - Frequency distribution shows five classes: USA, France, US, Europe, and Japan
 - Count for USA = 1 and France = 1?
 - Two records classified inconsistently with respect to origin of the manufacture
 - Maintain consistency by labeling USA → US, and France → Europe

Brand	Frequency
USA	1
France	1
US	156
Europe	46

Identifying Outliers

- Outliers are extreme values that go against the trend of the remaining data
- Outliers may represent errors in data entry
- Even if valid data point, certain statistical methods are very sensitive to outliers and may produce unstable results

Outliers: Graphical Methods

Method 1 - Histogram

Outliers: Graphical Methods

Method 2 – 2D Scatter Plot

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

- · Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

• Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - · Unimodal, bimodal, trimodal
 - Empirical formula:

$$mean-mode = 3 \times (mean-median)$$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- · Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ Q₁
 - Five number summary: min, Q₁, median, Q₃, max

- Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation distance of observations from the mean
 - Variance: (algebraic, scalable computation)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

• Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Normal Distribution Curve

- The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it

Data Transformation

- Variables tend to have ranges different from each other
- For example:
 - Batting average [0.0,0.400]
 - Home runs [0,70]
- Some data mining algorithms are adversely affected by differences in variable ranges
- Variables with greater ranges tend to have larger influence on data model results
- Standardizing scales the effect each variable has on results
- Neural Networks and other algorithms that make use of distance measures benefit from normalization
- Two of the prevalent methods will be reviewed

Min-Max Normalization

- Determines how much greater field value is than minimum value for field
- Scales this difference by field's range

$$X^* = \frac{X - \min(X)}{\operatorname{range}(X)} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Find Min-Max normalization for cars weighing 1613, 3384 and 4997 pounds, respectively

Where: min(X) = 1613 and max(X) = 4997

Car	Weightlbs	Formula	Result	Comments
Ultra-light vehicle	X = 1613	$X^* = \frac{1613 - 1613}{4997 - 1613}$	X* = 0	Represents the minimum value in this variable, and has min-max normalization of zero.
Mid-range vehicle	X = 3384	$X = \frac{3884 - 1613}{4997 - 1613}$	X* = 0.5	Weight exactly half-weight between the ligthest and the heaviest vehicle, and has min-max normalization of 0.5.
Heaviest vehicle	X = 4997	$X = \frac{4997 - 1613}{4997 - 1613}$	X* = 1	Heaviest vehicle of the dataset has min-max normalization of one.

Z-Score Standardization

- Widely used in statistical analysis
- Takes difference between field value and field value mean
- Scales this difference by field's standard deviation

$$X^* = \frac{X - \text{mean}(X)}{\text{SD}(X)}$$

Find Z-scode standardization for cars weighing 1613, 3384 and 4997 pounds, respectively

Where: mean(X) = 3005.49 and SD(X) = 852.65

Car	Weightlbs	Formula	Result	Comments
Ultra-light vehicle	X = 1613	$X^* = \frac{1613 - 3005.49}{852.646}$	X* ≈ -1.63	Data values below the mean will have negative Z-score standardization.
Mid-range vehicle	X = 3384	$X = \frac{3884 - 3005.49}{852.646}$	X* ≈ 0	Values falling exactly on the mean will have zero (0) Z-score
Heaviest vehicle	X = 4997	$X = \frac{4997 - 3005.49}{852.646}$	X* ≈ 2.34	Data values about the mean will have a negative Z-score standardization

Decimal Scaling

- Ensures that normalized values lies between -1 and 1
- Defined as:

$$X^* = \frac{X}{10^d}$$

where *d* represents the number of digits in the data value with the largest absolute value.

- For the weight data, the largest absolute value is |4997|=4997, with d=4 digits
- Decimal scaling for the minimum and maximum weights are:

$$Min: X_{decimal}^* = \frac{1613}{10^4} = 0.1613$$

$$Max: X_{decimal}^* = \frac{4997}{10^4} = 0.4997$$

- Some data mining algorithms and statistical methods require normally distributed variables
- Normal distribution
 - Continuous probability distribution known as the 'bell curve' (symmetric)
 - Centered and mean μ (myu) and spread given by σ (sigma)

Standard normal Z-distribution with μ =0 and σ =1

- Misconception Z-score standardization results in a normally distribution
- Z-score standardized variables do have μ =0 and σ =1, but the distribution may be skewed (not symmetric)

Measuring Skewness

Statistics for measuring the skewness of a distribution:

$$Skewness = \frac{3(mean - median)}{standard\ deviation}$$

- Right-skewness data Is positive, as mean is greater than the median
- Left skewness data Mean is smaller than the median, generating negative values
- Perfectly symmetric data mean, median and mode are equal, so skewness is zero

- To eliminate skewness, we must apply a transformation to the data
 - This makes the data symmetric and makes it "more normally distributed"
- Common transformations are:

Natural Log	Square Root	Inverse Square Root
ln(weight)	\sqrt{weight}	$rac{1}{\sqrt{weight}}$

Example #1: Apply SQRT and LN transformations to weight data

Skewness(sqrt(weight)) =
$$\frac{3(54.280 - 53.245)}{7.709} \approx 0.40$$

Skewness(sqrt(weight)) =
$$\frac{3(7.968 - 53.245)}{0.284} \approx 0.19$$

• Example #2: Apply inverse square root transformation to weight data

For INVERSE_SQRT(weight):

Skewness(sqrt(weight)) =
$$\frac{3(0.019 - 0.019)}{0.003} = 0$$

Important: There is nothing special about the inverse square root transformation. It just worked with the skewness in the weight data

Histogram for inv_sqrte(weight) with normal distribution curve overlay

Notice that while we have achieved symmetry, we have not reached normality (the distribution does not match the normal curve)

Checking for Normality

- After achieving symmetry, we must also check for normality
- The Normal Probability Plot
 - Plots the quantiles for a particular distribution against the quantiles of the standard normal distribution
 - Similar to percentile, pth quantile of a distribution is value xp, such that p% of the distribution values are less than or equal to xp
 - If the bulk of the points fall on a straight line, the distribution is normal; systematic deviations indicate nonnormality
- As expected, the normal probability plot for the inverse_sqrt(weigth) indicates nonnormality
- While normality was not achieved, algorithms requiring normality usually do fine when supplied with data that is symmetric and unimodal

Normal probability plots

- Detransformation After completing the analysis, it is required to "de-transform" the data
- Example for the Inverse Square Root:

Transformation
$$\Rightarrow y = \frac{1}{\sqrt{x}}$$
De-transformation $\leftarrow x = \frac{1}{v^2}$

 Results provided by algorithm in the transformed scale would have to be converted back using the detransformation formula

Numerical Methods for Identifying Outliers

- Using Z-score Standardization to Identify Outliers
 - Outliers are Z-score Standardization values either less than -3, or greater than 3
 - Values much beyond range [-3, 3] require further investigation to determine their validity
 - Should not automatically omit outliers from analysis
 - For example, on the vehicle weight dataset:
 - Vehicle with minimum weight, 1613 pounds: Z-score = -1.63
 - Vehicle with maximum weight, 4997 pounds: Z-score = 2.34
 - Neither z-score is outside the [-3, 3] range, conclude no outliers among vehicle weights
 - However, Mean and Standard Deviation are both sensitive to the presence of outliers
 - μ and σ are both part of the formula for z-score standardization
 - If an outlier is added or deleted from the dataset, μ and σ will be affected
- When selecting a method for evaluating outliers, should not use measures which are themselves sensitive to outliers

Numerical Methods for Identifying Outliers

- Using Interquartile Range (IQR) to Identify Outliers
 - Robust statistical method and less sensitive to presence of outliers
 - Data divided into four quartiles, each containing 25% of data
 - First quartile (Q1) 25th percentile
 - Second quartile (Q2) 50th percentile (median)
 - Third quartile (Q3) 75th percentile
 - Fourth quartile (Q4) 100th percentile
 - IQR is measure of variability in data

Numerical Methods for Identifying Outliers

- IQR = Q3 Q1 and represents spread of middle 50% of the data
- Data value defined as outlier if located:
 - 1.5 x (IQR) or more below Q1; or
 - 1.5 x (IQR) or more above Q3
- For example, set of test scores have 25th percentile (Q1) = 70, and 75th percentile (Q3) = 80
- 50% of test scores fall between 70 and 80 and Interquartile Range (IQR) = 80 70 = 10
- Test scores are identified as outliers if:
 - Lower than Q1 1.5 x (IQR) = 70 1.5(10) = 55; or
 - Higher than Q3 + 1.5 x (IQR) = 80 + 1.5(10) = 95

Flag Variables

- Some numerical methods require predictor to be numeric
 - Regression requires recoding categorical variable into one or more flag variables
- Flag variables (aka dummy or indicator variable) is a categorical variable with onle two values: 0 or 1
- Example: Categorical variable sex can be converted as:

```
If sex = female, then sex_flag = 0;
If sex = male, then sex_flag = 1
```

- If category has $k \geq 3$ possible values, then define k-1 dummy variables
 - The unassigned category (the one for which no flag is created) is taken as the reference category

Flag Variables

- For example, for a variable region having k=4 possible values (north, east, south, west
- Define the following k 1 = 3 flag variables

Flag name	IF region=	then	otherwise
north_flag	north	north_flag=1	north_flag=0
east_flag	east	east_flag=1	east_flag=0
south_flag	south	south_flag=1	south_flag=0

- Variable for west is not needed, since region = west is identified when all three flag variables are zero (0).
 - Inclusion of fourth flag variables will cause some algorithms to fail because of the singularity of the matrix regression, for instance.
 - Unassigned category becomes the reference category
 - For example: if in a regression the coefficient for north_flag equals \$1000, then the estimated income for region = north is \$1000 greater than for region = west when all other predictors are held constant

Transforming Categorical Variables into Numerical Variables

• Why not transforming the categorical variable region into a single numerical variable? For

example:

Region	Region_num	
North	1	
East	2	
South	3	
West	4	

- This is a common and hazardous error. The algorithm now assumes that:
 - The four regions are ordered
 - West > South > East > North
 - West is three times closer to South compared to north, etc.
- This practice should be avoided, except with categorical variables that are clearly ordered, such as with a variable survey_response with values always, usually, sometimes, never
- Still, careful consideration should be given to the actual values. Should never, sometimes, usually, always be numbered as:
 - 1, 2, 3 and 4; or 0, 1, 2 3, since 0 actually means never
 - But what if there relative distance between categorical values is not constant?

Binning Numerical Variables

- Some algorithms require categorical predictors
- Continuous predictors are partitioned as bins or bands
 - Example: House value numerical variable partitioned into: low, medium or high
- Four common methods:

Method	Description	Notes
1. Equal width binning	Divides predictor into k categories of equal width, where k is chosen by client/analyst	Not recommended, since width of bins can be affected by presence of outliers
2. Equal frequency binning	Divides predictor into k categories, each having k/n records, where n is the total number of records	Assumes that each category is equally likely, which is not warranted
3. Binning by clustering	Uses clustering algorithm, like <i>k-means clustering</i> (Chapter 10) to automatically calculate "optimal" partitioning	Methods 3 and 4 are preferred
4. Binning based on predictive value	Methods 1 to 3 ignore the target variable; this method partitions numerical predictor based on the effect each partition has on the value of the target variable (see Chapter 3)	

Binning Numerical Variables

• Example: Discretize $X = \{1,1,1,1,1,2,2,11,11,12,12,44\}$ into k=3 categories

Method	Low	Medium	High
a. Equal Width	0 ≤ X < 15 Contains all values except one	15 ≤ X < 30 Contains no data	30 ≤ X < 45 Contains single outlier
b. Equal Frequency	First four data values {1,1,1,1}	Next four data values {1,2,2,11}	Last four data values {11,12,12,44}
c. k-means Clustering	{1,1,1,1,2,2}	11,11,12,12	{44}

- How is that in Equal Frequency, values {1,1,1,1,1} are split into two categories? Equal values should belong to the same category
- As illustrated in image below, k-means clustering identifies apparently intuitive partitions

Reclassifying categorical variables

- Equivalent of binning numerical variables
- Algorithms like Logistic Regression and C4.5 decision tree are suboptimal with too many categorical values
- Used to reduce the number of values in a categorical field
- Example:
 - Variable state {50 values} → Variable region {Northeast, Southeast, NorthCentral, Southwest, West}
 - Instead of 50 values, analyst/algorithm handle only 5 values
 - Alternatively, could convert state into economic_level, with values {richer states, midrange states, poorer states}
- Data analyst should select reclassification that fir business/research problem

Adding and index field

- Adding Index field is recommended
- Tracks the sort order of the records in the database
- Data mining data is partitioned at least once
 - Index helps to rebuild dataset in original order
- In IBM/SPSS Modeler, use @Index function in Derive node to create an index field

Removing variables that are not useful

- Some variables will not help the analysis
 - Unary variables Take only a single value (a constant).
 - Example In an all-girls private school, variable sex will always be femaly, thus not having any effect in the data mining algorithm
 - Variables which are very nearly unary Some algorithms will treat these as unary. Analyst should consider whether removing.
 - Example In a team with 99.9% females and 0.05% males, the variable sex is nearly unary.

Variables that should probably not be removed

Variables with 90% or more missing values

- Consider that there may be a pattern in missingness
- Inputation becomes challenging
- Example: Variable donation_dollars in self-reported survey
 - Top 10% donors might report donations, while others do not the 10% is not representative
 - Preferable to construct a flag variable, donation_flag, since missingness might have predictive power
 - If there is reason to believe that 10% is representative, then proceed to imputation using regression or decision tree (chapter 13)

Variables that should probably not be removed

Strongly correlated variables

- Important information might be discarded when removing correlated variables
- Example: Variables *precipitation* and 'attendance at the beach' are negatively correlated
 - This might double-count an aspect of the analysis or cause instability in model results – prompting analyst to remove one variable
 - Should perform Principal Component analysis instead, to convert into a set of uncorrelated principal components

Removal of duplicate records

- Records might have been inadvertly copied, creating duplicates
 - Duplicate records lead to overweighting of their data values – therefore, they should be removed
- Example If ID field is duplicated, then remove it
- But, consider genuine duplicates
 - When the number of records is higher than all possible combination of field values, there will be genuine duplicates

A word about ID fields

- ID fields have different value for each record
- Might be hurtfull, with algorithm finding spurious relationships between ID field and target
- Recommendation: Filter ID fields from data mining algorithm, but do not remove them from the data, so that analyst can still differentiate the records