No.	Difficulty	Description
1	Encountering Water Table	When rescuers reach depths where water starts to flow, the risk of drowning increases significantly.
2	Submerged Victim Positioning	Victims are submerged in water, which can limit visibility and access.
3	Rapid Water Inflow	Water rising suddenly into the borewell can trap victims instantly and unexpectedly.
4	Water Pressure Impact	High groundwater pressure compresses bodies, making extraction difficult.
5	Unstable Soil Collapse	Water flow destabilizes soil, which can collapse into the borewell unexpectedly.
6	Accumulated Sludge and Debris	Sludge and dirt near the water table can form blockages, trapping the victim tightly.
7	Weak Borewell Walls	Water erosion compromises borewell walls, which can collapse during extraction efforts.
8	Difficulty in Pumping Water Out	Submersible pumps may fail if they get damaged by debris or water pressure.
9	Suction Device Ineffectiveness	Devices meant to pull victims upward fail due to water-filled borewalls.
10	Oxygen Supply Depletion	Water-filled borewells reduce oxygen availability, posing asphyxiation risks.
11	Risk of Drowning During Extraction	Victims risk drowning during any movement caused by extraction machinery.
12	Water Evacuation Logistics	Removing water takes time and requires specialized tools that may fail or malfunction.
13	Counter Bore Instability	Nearby counter bores contribute to instability, flooding the main borewell unexpectedly.
14	Debris Blocking Vertical Access	Rocks, soil, and debris accumulate, making a straight-line extraction difficult.
15	Difficulty in Stabilizing Equipment	Submersible and extraction tools become less reliable under fluctuating water pressure.

16	Groundwater Interaction Hazards	Changes in groundwater flow patterns during extraction efforts can worsen trapping risks.
17	Survival Time Constraints	Victims have limited survival time due to oxygen depletion and hypothermia risks.
18	Pumps Overheating in Continuous Operation	Continuous use of pumps increases the risk of equipment failure.
19	Complex Layered Water Table Zones	Uneven groundwater layers complicating extraction logistics and stability.
20	Hydraulic Pressure Variations	Pressure differentials cause sudden shifts in soil stability and borewell collapse.
21	Debris-Loaded Water Layers	Layers filled with stones and mud create blockages that extraction tools cannot bypass.
22	Soil Saturation Impact	Water-saturated soil leads to significant instability during any rescue maneuver.
23	Nearby Bore Stability Risk	Borewells in proximity collapse due to water interactions and ground pressure.
24	Lack of Visibility Under Water	Difficulty in camera and sensor deployment to monitor victim positioning underwater.
25	Manual Extraction Ineffectiveness	Reliance on manual methods becomes slow and inefficient under water layers.
26	Sudden Ground Movement	Ground shifts unexpectedly due to changing water pressure and soil interactions.
27	Rescue Tool Submersion Failure	Submersible tools often fail due to prolonged exposure to water and debris.
28	Clogging of Suction Pipes	Suction pipes get clogged with mud and debris, compromising extraction tools.
29	Inadequate Pumping Speed	Slow pumping efforts result in prolonged exposure to hazardous water levels.
30	Fluctuating Groundwater Levels	Groundwater levels rise and fall dynamically, destabilizing rescue operations.
31	Child Size and Narrow Access	Small body size complicates the maneuverability and extraction through narrow borewalls.

32	Breathing Challenges Under Water	Oxygen limitations make survival difficult as drowning risks increase.
33	Multiple Bore Collapse Risk	Nearby borewells collapsing simultaneously due to unstable ground interactions.
34	Obstruction from Vertical Rocks	Large rocks prevent vertical extraction, requiring more complex rescue operations.
35	Mechanical Wear of Equipment	Continuous operation and interaction with debris wear out pumps and machines.
36	Risk of Sudden Cave-In	Borewell walls collapsing unexpectedly due to shifting soil pressures.
37	Limited Insertion of Protective Shields	Shields and safety barriers often fail in water-heavy environments.
38	Asphyxiation Risk due to Oxygen Shortage	Water layers limit fresh air supply, increasing asphyxiation risks.
39	Vertical Entry Angle Issues	Difficult angles of entry reduce the effectiveness of extraction tools.
40	Constant Monitoring Challenges	Continuous changes in water levels require real-time monitoring and adjustments.