Sistemas Digitais

1º Ano de Engenharia Informática

Conversor BCD–Decimal Conversor BCD–Sete segmentos	
Conversor BCD-sete segmentos	
Grupo	
Diogo António Costa Medeiros	n.° <u>70633</u>
	n.°
	n.°

Objectivos

- Usar o código **BCD**
- Verificar experimentalmente as características dos displays de sete segmentos
- Estudar o funcionamento dos descodificador BCD-Decimal
- Estudar o funcionamento dos descodificador BCD-Display de sete segmentos

Referências

- TAUB, Herbert, "Circuitos Digitais e Microprocessadores", McGraw-Hill
- Texas Instruments online [http://www.ti.com/]

Material

- Placa RH21
- Display de sete segmentos cátodo comum (preferencialmente)
- 10 LEDs
- 10 resistências de 330Ω
- CI 74LS48 Descodificador BCD/Sete segmentos
- CI 7445 Descodificador BCD/Decimal

Números decimais codificados em binário

Em muitos sistemas digitais a representação de um número decimal na forma binária é conseguido usando técnicas de (des)codificação de decimal em binário (**BCD** — *Binary-Coded Decimal*). Isto é feito substituindo cada dígito de um número decimal pelo seu equivalente binário com quatro dígitos.

Exemplo:

O número 9056 é codificado em BCD da seguinte forma:

Decimal:	9			0			5				6					
Pesos:	8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1
BCD:	1	0	0	1	0	0	0	0	0	1	0	1	0	1	1	0

Com os quatro dígitos binários o número máximo de representações é de dezasseis, por isso existem **seis representações não usadas**¹, são elas: 1010, 1011, 1100, 1101, 1110 e 1111. Se qualquer destes números aparecer à entrada de um sistema usando **código BCD 8421**, existem um erro.

Trabalho Prático n.º 4

_

¹ O que equivale a uma **redundância** de 37.5%.

1. Descodificador BCD-Decimal

Para determinar o equivalente decimal de um número BCD, convertemos um "dígito" decimal (isto é, uma *frame* de quatro bits) de cada vez. Ou seja, para cada algarismo decimal necessitamos de um dispositivo de quatro entradas (correspondentes aos quatro dígitos binários) e de dez saídas (correspondente aos dez dígitos decimais existentes). Um dispositivo com estas características é conhecido como descodificador BCD–Decimal (ver figura 1).

Figura 1. Descodificador BCD-Decimal.

Estude as folhas de dados do CI '45. Note na tabela de verdade que a linha de saída é activada quando está no **nível lógico 0** (H \equiv nível alto, *off*; L \equiv nível baixo, *on*). Neste caso, a saída quando activada 'afunda' para a terra uma corrente de até 80 mA.

1.1 Verifique o funcionamento do '45, completando a tabela de verdade ao lado:

		Entr	adas		Saídas			
n	D	C	В	A	On	Off		
0	0	0	0	0	0	1 - 9		
1	0	0	0	1	1	0,2-9		
1 2 3	0	0	1	0	2	0 - 1, 3 - 9		
3	0	0	1	1	3	0 - 2, 4 - 9		
4	0	1	0	0	4	0 - 2, 4 - 9 0 - 3, 5 - 9		
5	0	1	0	1	5	0 - 4, 6 - 9		
6	0	1	1	0	6	0 - 5, 7 - 9		
4 5 6 7 8	0	1	1	1	7	0 - 6, 8 - 9		
8	1	0	0	0	8	0 - 7, 9		
9	1	0	0	1	9	0 - 8		
Ι	1	0	1	0		0 - 9		
L	1	0	1	1		0 - 9		
Е	1	1	0	0		0 - 9		
L E G A	1	1	0	1		0 - 9		
A	1	1	1	0		0 - 9		
L	1	1	1	1		0 - 9		

Trabalho Prático n.º 4

1.2. O que ocorre se uma das combinações ilegais é aplicada à entrada do '45? Todas as saídas encontram-se off (em nível alto).

1.3. Consulte as folhas de dados e indique a máxima corrente requerida pelo chip à fonte.

1.4. Diga em que condições I_{CC} foi medido.

VCC = Max, T = 25 °C (típica). Inputs ligadas a GND e outputs abertas.

2. Descodificador BCD-Display de sete segmentos

O descodificador BCD-Display de sete segmentos é um dispositivo que pode ser usado para conduzir um display de sete segmentos. Existem dois tipos de descodificadores para duas configurações de display: display de cátodo comum e de ânodo comum.

Cada descodificador tem quatro entradas (para o código binário) e sete saídas (uma para cada segmento LED, a a g). Os esquemas lógicos para cada um destes tipos é mostrado na figura 2.

Figura 2. Descodificador '47 (a) e '48 (b) conduzindo os respectivos displays.

O transístor da figura 2.(a) deve estar On para que o segmento do display se ilumine, enquanto que o transístor da figura 2.(b) deve estar Off para que o mesmo aconteça. Em qualquer dos casos são necessárias sete resistências para fornecer a corrente aos LEDs. No caso do '48, essas resistências estão incluídas no CI e este pode ser ligado directamente ao display de sete segmentos.

A identificação dos segmentos encontra-se na figura 3 (ao lado).

3 Trabalho Prático n.º 4

2.1. Determine o tipo de display que <u>realmente</u> possui. O desejável é o de **cátodo comum**, mas também pode trabalhar com um de ânodo comum. Tipo de display: <u>cátodo comum</u>.

2.2. Examine as folhas de dados do '48. Os pinos de entrada \overline{LT} (*Lamp Test*) e $\overline{BI}/\overline{RBO}$ (*Blank Input / Ripple Blank Output*) servem para teste do integrado. Assim, leve à terra \overline{LT} e aplique V_{CC} a $\overline{BI}/\overline{RBO}$ e verifique se todos os segmentos se iluminam. Caso não se iluminem, ou o integrado está mal ligado ou danificado, ou o display tem alguns segmentos danificados (raramente tem todos), ou não é de cátodo comum.

O que aconteceu? Todos os segmentos se iluminam.

- **2.3.** Preencha a tabela de verdade da página seguinte. Na coluna da saída deverá esboçar o aspecto do display.
 - **2.4.** O que acontece se uma das combinações ilegais é aplicada à entrada do '48?

 Certo segmentos iluminam-se, sem formarem nenhum número.

2.6. Diga em que condições I_{CC} foi medido.

VCC = Max, T = 25 °C (típica). Inputs a 4.5V e outputs abertas.

2.7. A situação em que nenhuma das entradas D, C, B e A estão ligadas (ficam todas em aberto) corresponde a algum dos estados ilegais de entrada?

Não. Corresponde ao dígito 0 no display de sete segmentos.

Nota:

Duas das configurações habituais de displays:

Trabalho Prático n.º 4

	En	trada	s Da	dos	Con	trolo		Saída	
N	D	C	В	A	\overline{LT}	RBI	$\overline{BI}/\overline{RBO}$	(display)	
0	0	0	0	0	1	0	aberto		
0	0	0	0	0	1	1	1		
1	0	0	0	1	1	×	1		
2	0	0	1	0	1	×	1		
3	0	0	1	1	1	×	1		
4	0	1	0	0	1	×	1		
5	0	1	0	1	1	×	1		
6	0	1	1	0	1	×	1		
7	0	1	1	1	1	×	1		
8	1	0	0	0	1	×	1		
9	1	0	0	1	1	×	1		
I	1	0	1	0	1	×	1		
L	1	0	1	1	1	×	1		
Е	1	1	0	0	1	×	1		
G	1	1	0	1	1	×	1		
A	1	1	1	0	1	×	1		
L	1	1	1	1	1	×	1		
	×	×	×	×	×	×	0		

Nota: O sinal 'x' denota uma situação em que é indiferente se a entrada em questão fica a '0' ou a '1'.

Trabalho Prático n.º 4 5