Teoria de la Illiegral y de la Medida. 5	curso de Mate	maticas. U.A.M.	8/01/2020
Apellidos	Nombre	DNI	Grupo _
NI		D Ó 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DDD 7 4 14EG4

0 /01 /0000

No olvides poner tu nombre en la hoja de enunciados; déjala visible sobre la mesa, junto con tu D.N.I. y entrégala al final **TIEMPO: 3 horas.**

1.— Para cada una de las siguientes afirmaciones, demostrarla en caso de que sea cierta o, en caso contrario, dar un contraejemplo que demuestre que es falsa.

- (a) Si las funciones $f_k: [0,1] \to \mathbb{R}, \ k \in \mathbb{N}$, son medibles de Lebesgue y para todo $t \in [0,1]$ se cumple que $\lim_{k\to\infty} f_k(t) = 0$ y además sabemos que existe $\lim_{k\to\infty} \int_{[0,1]} f_k(t) \, dm$, donde m denota la medida de Lebesgue en \mathbb{R} , entonces se cumple que $\lim_{k\to\infty} \int_{[0,1]} f_k(t) \, dm = 0$.
- (b) Si f no es medible, entonces |f| tampoco es medible.
- (c) Si $A, B \subset \mathbb{R}$ son tales que su producto cartesiano $A \times B$ es medible de Lebesgue en \mathbb{R}^2 y B es medible de Lebesgue en \mathbb{R} , entonces A es medible de Lebesgue en \mathbb{R} . ¿Cambia algo si se supone que B tiene medida de Lebesgue positiva?
- (a) **FALSO.** Sea $f_k(x) = k(k+1)\chi_{[1/(k+1),1/k]}(x)$, $0 \le x \le 1$. Se tiene que $\forall t \in [0,1]$, $\lim_{k \to \infty} f_k(t) = 0$ y $\forall k \in \mathbb{N}$, $\int_{[0,1]} f_k(t) dm(t) = 1$, de forma que $\exists \lim_{k \to \infty} \int_{[0,1]} f_k(t) dm(t) = 1 \ne 0$.
- (b) **FALSO.** Sea $A \subset \mathbb{R}$ tal que $A \not\in \mathcal{L}$ y sea $f = \chi_A \chi_{\mathbb{C}A} = \begin{cases} 1 \text{ si } x \in A \\ -1 \text{ si } x \not\in A. \end{cases}$ Entonces f no es medible porque $f^{-1}(1) = A \not\in \mathcal{L}$; pero |f| = 1, constante, que es, desde luego, medible.
- (c) **FALSO.** Hay un caso trivial, que debería ser excluido y es cuando $B = \emptyset$. Tomando $A \notin \mathcal{L}$, tenemos $A \times B = \emptyset \in \mathcal{L}^2$. Un caso más interesante se obtiene tomando $B \in \mathcal{L}$ tal que $\lambda(B) = 0$ y $A \notin \mathcal{L}$. Entonces $A \times B \subset \mathbb{R} \times B$ y, dado que $\lambda^2(\mathbb{R} \times B) = \lambda(\mathbb{R})\lambda(B) = \infty \cdot 0 = 0$ y dado que la medida de Lebesgue λ^2 es completa, resulta que $A \times B \in \mathcal{L}^2$, y, sin embargo, $A \notin \mathcal{L}$. Si $\lambda(B) > 0$; entonces es cierto que $A \times B \in \mathcal{L}^2 \Longrightarrow A \in \mathcal{L}^1$ porque $A = (A \times B)^y \forall y \in B$ y sabemos, por el teorema de Fubini, que para casi todo $y \in B$, en particular, para algún $y \in B$, dado que $\lambda(B) > 0$, $(A \times B)^y \in \mathcal{L}$.

2.— Calcular razonadamente

$$\lim_{n \to \infty} \int_0^\infty \frac{n^n}{(n+x)^n x^{1/n}} \, dx.$$

Observación: Puede ser útil tener en cuenta que, para todo x > 0, la sucesión $\left(1 + \frac{x}{n}\right)^n$ converge de forma monótona creciente a e^x para $n \to \infty$.

$$\lim_{n \to \infty} \frac{n^n}{(n+x)^n x^{1/n}} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{x}{n}\right)^n x^{1/n}} = e^{-x}.$$

Además, para $n \geq 2$, se tiene que

$$\frac{n^n}{(n+x)^n x^{1/n}} = \frac{1}{\left(1 + \frac{x}{n}\right)^n x^{1/n}} \le x^{-1/2} \chi_{[0,1]} + \frac{1}{\left(1 + \frac{x}{2}\right)^2} \chi_{[1,\infty[} \in L^1.$$

Por consiguiente, podemos aplicar el Teorema de Convergencia Dominada y concluir que

$$\lim_{n \to \infty} \int_0^\infty \frac{n^n}{(n+x)^n x^{1/n}} \, dx = \int_0^\infty \lim_{n \to \infty} \frac{n^n}{(n+x)^n x^{1/n}} \, dx = \int_0^\infty e^{-x} dx = 1.$$

3.— Sea (X, \mathcal{M}, μ) un espacio de medida que no contiene átomos (un átomo es un conjunto $A \in \mathcal{M}$ con $\mu(A) > 0$ y tal que para todo $B \subset A$ con $B \in \mathcal{M}$, se cumple que $\mu(B) = 0$ ó $\mu(B) = \mu(A)$). Sea $A \in \mathcal{M}$ con $\mu(A) > 0$. Demostrar que

$$\mu(A) = \sup \{ \mu(B) : B \subset A, \ \mu(B) < \mu(A) \}.$$

Denotamos $\alpha = \sup \{\mu(B) : B \subset A, \ \mu(B) < \mu(A)\}$. Como A no es un átomo, existe $B \subset A$ tal que $0 < \mu(B) < \mu(A)$. De la igualdad

$$\mu(A) = \mu(B) + \mu(A \setminus B) \tag{1}$$

se deduce necesariamente que uno de los dos subconjuntos $B, A \setminus B$ ha de tener medida mayor o igual que $\mu(A)/2$. Por tanto,

$$\mu(A) < 2\alpha$$

pero la desigualdad que nos interesa demostrar es $\mu(A) \leq \alpha$. Vamos a razonar por contradicción suponiendo que $\mu(A) > \alpha$. Consideraremos dos casos distintos, según la medida de A sea finita o infinita.

Caso 1: $\alpha < \mu(A) = \infty$. Para cada $k \in \mathbb{N}$, existe $B_k \subset A$ tal que

$$\alpha - \frac{1}{k} < \mu(B_k) \le \alpha \,. \tag{2}$$

Si definimos $C_n = \bigcup_{k=1}^n B_k$ y $C = \bigcup_n C_n$ es claro que

$$\mu(C) = \lim_{n} \mu(C_n) . \tag{3}$$

Teniendo en cuenta (2) y la definición de C_n

$$\alpha - \frac{1}{n} \le \mu(B_n) \le \mu(C_n) \le \mu(B_1) + \dots + \mu(B_n) < \infty = \mu(A)$$

lo cual implica que, necesariamente.

$$\alpha - \frac{1}{n} \le \mu(C_n) \le \alpha \tag{4}$$

y esto, usando (3), nos lleva a que $\mu(C) = \alpha$. Razonamos ahora con $A \setminus C$: como no es un átomo, existe un subconjunto $D \subset A \setminus C$ tal que $0 < \mu(D) < \mu(A \setminus C)$, y por tanto $0 < \mu(D) < \infty$. Esto último es lo que de verdad importa ya que, por un lado, tendremos $0 < \mu(C \cup D) < \infty$ y, por otro,

$$\mu(C \cup D) = \mu(C) + \mu(D) = \alpha + \mu(D) > \alpha$$

en contra de la definición de α .

Caso 2: $\alpha < \mu(A) < \infty$. La idea para llegar a una contradicción en este caso es menos intuitiva. Consideramos $B \subseteq A$ tal que

$$0 \le \alpha - \frac{\mu(A) - \alpha}{3} < \mu(B) \le \alpha.$$

Un razonamiento similar al realizado antes con A asegura que existe $C \subsetneq A \setminus B$ tal que

$$\mu(C) \ge \frac{\mu(A \setminus B)}{2} = \frac{\mu(A) - \mu(B)}{2} \ge \frac{\mu(A) - \alpha}{2}.$$

Si consideramos el conjunto $B \cup C$ resulta que $B \cup C \subsetneq A$. Además, como $B \cap C = \emptyset$, se tiene

$$\alpha \ge \mu(B \cup C) = \mu(B) + \mu(C)$$

$$\ge \alpha - \frac{\mu(A) - \alpha}{3} + \frac{\mu(A) - \alpha}{2}$$

$$> \alpha.$$

Existe otra estrategia más sencilla y directa que la anterior para resolver el caso $\mu(A) < \infty$, que consiste en buscar en A subconjuntos que tengan medida pequeña. Así, sus complementarios en A tendrán una medida cercana a $\mu(A)$. Para encontrar estos subconjuntos, hay que observar que la igualdad (1) implica también que uno de los dos conjuntos B, $A \setminus B$ tiene medida menor o igual que $\mu(A)/2$. Llamamos a ese conjunto A_1 y razonamos ahora del mismo modo que con A: como A_1 no es un átomo, existe $A_2 \subsetneq A_1$ tal que

$$0 < \mu(A_2) \le \frac{\mu(A_1)}{2} \le \frac{\mu(A)}{2^2}$$
.

Usando inducción, construimos una sucesión $\{A_n\}$ de subconjuntos de A que satisfacen

$$0 < \mu(A_n) \le \frac{\mu(A)}{2^n} \, .$$

De estas dos últimas desigualdades se deduce que

$$\mu(A) > \mu(A \setminus A_n) \ge \left(1 - \frac{1}{2^n}\right)\mu(A).$$

de donde resulta

$$\sup \{\mu(B): B \subset A, \ \mu(B) < \mu(A)\} \ge \mu(A).$$

4.- Sea

$$f(x,y) = \frac{x^5 y^5 \operatorname{sen}(y^4)}{(x^6 + y^6)^{4/3}}$$

para $0 < x < \infty$, $0 < y < \sqrt[4]{5\pi}$. Demostrar que f es integrable en su dominio de definición $(0, \infty) \times (0, \sqrt[4]{5\pi})$ y calcular su integral.

Para ver que |f| es integrable, estimamos

$$|f(x,y)| \le \frac{x^5 y^5}{(x^6 + y^6)^{4/3}}$$

y aplicamos el teorema de Fubini (ya que |f| es una función positiva):

$$\iint |f| \leq \int_0^{\sqrt[4]{5\pi}} y^5 \int_0^\infty \frac{x^5}{(x^6 + y^6)^{4/3}} dx dy$$

$$= -\frac{1}{2} \int_0^{\sqrt[4]{5\pi}} y^5 \left[(x^6 + y^6)^{-1/3} \right]_0^\infty dy$$

$$= \frac{1}{2} \int_0^{\sqrt[4]{5\pi}} y^3 dy < \infty.$$

Para calcular el valor de la integral también aplicamos el teorema de Fubini (podemos hacerlo porque ahora ya sabemos que f es una función integrable):

$$\iint f \leq \int_0^{\sqrt[4]{5\pi}} y^5 \operatorname{sen}(y^4) \int_0^{\infty} \frac{x^5}{(x^6 + y^6)^{4/3}} dx dy
= -\frac{1}{2} \int_0^{\sqrt[4]{5\pi}} y^5 \operatorname{sen}(y^4) \left[(x^6 + y^6)^{-1/3} \right]_0^{\infty} dy
= \frac{1}{2} \int_0^{\sqrt[4]{5\pi}} y^3 \operatorname{sen}(y^4) dy
= -\frac{1}{8} \left[\cos(y^4) \right]_0^{\sqrt[4]{5\pi}} = \frac{1}{4}$$