Replacement Analysis

Keasons for reflacement are

Wear a tear of assets increases maintenance cost 1) Deterioration:

Advancement in rechnology Causes value loss of 2) Obsolescence: machinery

Besent equipments or machinery may be insufficient to meet densed demand/level of production 3) Lhadeghaly:

4. Workeng Conditions: Present machinery may be hozardous leading to accidents, making environment noisy and smoley.

The existing machinery has ontlived its effective life and not economical for firsther use. 5. Economy:

Reflacement reduces maintenance cost. It is a miscuncephon that Equipments should not be reflaced until these are worn out Comfletely. On the centiony, these must be Continuously reviewed.

Keflacement of items that deteriorate with time a) without Considering time value of money

b) Considering time rathe of money.

Reflacement of items that fail suddenly and completely

1) a Reflacement of items that deteriorate with time

without Considering time value of meney.

Maintenance cost g(t) can be either disesete or Continuous Cummulative Maintenance copt after n no. of years

M(n) = & g(t) when t is disusele

M(n) 2 # Sg(t) dt, when t is continuous.

istal Cost = C+ M(n)	- S'(n)	Averge cost: Ct	M(n)-s(n)	
Ca Cost y ilona			, (
M(n) - Rad maintenance cost in period n				
5 (n) = Scorp value in penod n				
Rob it manufactures from The part records finds the Costs associated				
with machine having buying cost of Ressor are as follows:				
Year(to) 1 2 3	4	5 6	7 8	
Running) 1500 1600 1800	Ilm	2500 2910	3400 4	מטי
Maintenance				
cont g(t) 2500 2500 1700	1200	1000 500	500	OUT
	M(n)	C+M(n)	G(n)	$\theta(n)/n$
Year S(t) C-S(n) 9(t)	B)		C+M(n)-8 7=6=1	1-1-1-1-1-1-1-1
1 35m 15m 15m	1500	3000	3000	(Manginal Cost CMC)
2 2500 2500 1600	3100	5600	2800	= ATC of ATC
3 17m 33m 18m	4900	8200	2733-33	cost either with output
4 1200 3800 2100	700	10800	2700	maintenance sunning
5 1m 4000 (25n)	9500	13500	(2700)	cost is marginal cost.
6 500 4500 <u>2900</u>	12400	16900	2816.67	Ignoung Scoapralue.
7 Sin 45in 3400	15800	20300	2900	When Mc < Ac, it Pulls Acdonnwoods,
8 SOD 4500 4000	19800	24300	3037.5	When Mc > AC, it
Deersian Rule G(n) *< 9 (1)	1 of the	is point, the main	tenance	Pulls Achpwards. McCuts Acatib
and g(n) < G(n-1)	Cost	1 5th year (2501) i	i len than	minimum point
Reflace the Hem, When next years	Incord	ur fear's (4th fr)	POULS	Ac=C C:TC
maintenance cost is more than	1 001	2700) and next y tenance cost (290	og 6thyr)	Mc= a(c)
select year's Average cost and select	, lible	is than Average ((2700)	XX x,dc - c
year's maintenance cost is less than previous year's Average cost. Or	1 0 /	telect year 15th tea	1).	$\frac{\partial (C)}{\partial x} = \frac{x \cdot \partial C}{x^2} = 0$
in other words, When Average Cost		IVI		$=\frac{1}{x}\left(\frac{y}{y}-\frac{c}{x}\right)=0$
is at its minimum, In the present	Cost			= 1 (MC-AC)=0
example, Reflacement period is 5	jeons		9	tuillbe minimum where
200		output	1	MC=AC.