

Course of Numerical Methods for Engineering Lab 11

Luca Bonaventura, Tommaso Benacchio

MOX - Politecnico di Milano

PHYS-ENG, A.Y. 2020-21 23-24/11/2020

Topic of this session:

Overdetermined systems

Linear systems of the form

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$
 \dots
 $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m$

with a number of equations m different from the number of unknowns n are called underdetermined if m < n, and overdetermined if m > n.

Least square solution

Definition

Let A be an $m \times n$ matrix, $x \in R^n$ and $b \in R^m$. The vector $x^* \in R^n$ is called a least square solution of Ax = b if it is such that

$$\|Ax^* - b\|_2 = \min_{x \in R^n} \|Ax - b\|_2.$$

For overdetermined systems with full rank, the normal equation matrix A^TA is symmetric and positive definite, so the solution of the normal equations exists and is unique.

QR factorization

Definition

A generic $m \times n$ matrix A has a QR factorization if there are a unitary $m \times m$ matrix Q and an $m \times n$ matrix R with all the elements below the main diagonal are zero which satisfy

$$A = QR$$
.

Theorem

(QR factorization for full rank rectangular matrices) For any $m \times n$ full rank matrix A with m > n, there are a $m \times m$ unitary matrix Q and a unique $n \times n$ upper triangular matrix \tilde{R} such that \tilde{R} is invertible and

$$\mathsf{A} = \mathsf{Q}\mathsf{R} \quad \ \mathsf{Q}^{\mathsf{T}}\mathsf{Q} = \mathsf{Q}\mathsf{Q}^{\mathsf{T}} = \mathsf{I} \quad \ \mathsf{R} = \left[\begin{array}{c} \tilde{\mathsf{R}} \\ \mathsf{0} \end{array} \right].$$

Singular value decomposition

Definition

A generic $m \times n$ matrix A has a singular value decomposition (SVD) if there are a unitary $m \times m$ matrix U, a unitary $n \times n$ matrix V and an $m \times n$ matrix Σ such that all the elements out of the main diagonal are zero and all the elements σ_i on the main diagonal are non negative which satisfy

$$A = U\Sigma V^T$$
.

The numbers σ_i are are called singular values of A.

Theorem

(Existence of SVD for square invertible matrices) The singular value decomposition exists and is unique for any invertible square matrix A. The singular values σ_i are the square roots of the eigenvalues of A^TA .

Pseudo-inverse

Definition

For any $m \times n$ matrix A, its pseudoinverse or Moore-Penrose inverse is defined by

$$A^{\dagger} = V \begin{bmatrix} S^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^{T}.$$

In Octave/MATLAB, the pinv command can be used to compute the pseudo-inverse.

Definition

Let A be an $m \times n$ matrix, $x \in R^n$ and $b \in R^m$. The vector $x^* \in R^n$ is called a minimum norm least square solution of Ax = b if it is such that

$$||Ax^* - b||_2 = \min_{x \in R^n} ||Ax - b||_2$$

and $\|x^*\|_2 \le \|y\|_2$ for any other y that may minimize the least square error.

Theorem

For any $m \times n$ A the minimum norm least square solution of the associated linear system Ax = b is given by

$$x^* = A^{\dagger}b.$$

Build the overdetermined linear system arising from the least square fitting of the paraboloid $z=f(x,y)=\frac{x^2}{10}+\frac{y^2}{5}-1$ with a plane $\alpha x+\beta y+\gamma$ where the data consist of the values of f at the points

$$(0,0), (0,0.1), (0.1,0), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2), (0.2,0.1), (0.2,0).$$

Check that the resulting matrix is of full rank. Solve the system:

- (a) with the Octave/MATLAB command \
- (b) solving the normal equations by the Cholesky method
- (c) using the QR decomposition approach
- (d) using the SVD decomposition approach
- (e) using the Octave/MATLAB command pinv.

Compare all the numerical solutions obtained with the reference solution obtained with the Octave/MATLAB command \setminus by computing relative I_2 and I_∞ errors.

Repeat the previous exercise in the case in which the data consist of the values of f at the points

$$(0,0.2), (0.1,0.2), (0.2,0.2), (0.3,0.2), (0.4,0.2), (0.5,0.2), (0.6,0.2), (0.7,0.2), (0.8,0.2).$$

Explain what are the differences with respect to the previous case.

Build the 20×20 matrix \tilde{A} that has elements equal to 2 on the main diagonal and -1 on the first super and subdiagonal and the vector $\tilde{b} = [1,1,\dots,1,1]^T \in R^{20}$. Build then the 200×20 matrix A which contains 10 blocks equal to \tilde{A} and the vector $b\in R^{200}$ which contains 10 blocks equal to \tilde{b} multiplied by the integers $1,\dots,10$. Check that the resulting matrix A is of full rank. Solve the system Ax = b:

- (a) with the Octave/MATLAB command \
- (b) solving the normal equations by the Cholesky method, after representing the corresponding matrix in sparse format
- (c) using the QR decomposition approach
- (d) using the SVD decomposition approach
- (e) using the Octave/MATLAB command pinv.

Compare all the numerical solutions obtained with the reference solution obtained with the Octave/MATLAB command \setminus by computing relative l_2 and l_∞ errors. Compare the time required to compute the solution by each method.

Build the $N \times N$ matrix \tilde{A} that has elements equal to 4 on the main diagonal, -1 on the first super and subdiagonal and -1/2 in the positions (1,N) and (N,1). Build the vector $\tilde{b} = [1,1,\ldots,1,1]^T \in R^N$. Build then the $10N \times N$ matrix A which contains 10 blocks equal to \tilde{A} and the vector $b \in R^{10N}$ which contains 10 blocks equal to \tilde{b} multiplied by the integers $1,\ldots,10$. Check that the resulting matrix A is of full rank. Solve the system Ax = b for N = 300 and N = 1000:

- (a) with the Octave/MATLAB command \setminus to obtain the reference solution x_i ;
- (b) using the QR decomposition approach;
- (c) solving the normal equations by the Cholesky method, after representing the corresponding matrix in sparse format;
- (d) solving the normal equations with pcg, after representing the corresponding matrix in sparse format (use as tolerance the 2-norm of the residual for the Cholesky solution, and $x_{\backslash}+10$ as an initial guess);

Compare all the numerical solutions with x_{\setminus} by computing relative l_2 and l_{∞} errors. Compare the time required to compute the solution by each method. Check what happens trying to employ the SVD method in this case.