「超伝導量子コンピュータの物理」の誤り訂正

神楽坂基礎研究所 Squary[†]

2018年10月14日

本書内に誤りがございました。下記の通りお詫びして訂正致します。

1 初版

次ページ以降に記載の補足と合わせてご確認下さい。

1.1 正誤表

表 1 正誤表(初版)

該当箇所		誤	正	
4ページ	15-16 行	高いしきい値や多くの量子ビット	しきい値や必要な量子ビット数	
5ページ	12-13 行	一般化座標 p_i と一般化運動量 q_i	一般化座標 q_i と一般化運動量 p_i	
12ページ	脚注 3	(脚注の式を利用していないため削除)		
24 ページ	式 3.36	$e^{i\hat{\phi}} = \sum_{n} n\rangle\langle n+1 ,$ $e^{-i\hat{\phi}} = \sum_{n} n+1\rangle\langle n $	$e^{i\hat{\phi}} = \sum_{n} n+1\rangle\langle n ,$ $e^{-i\hat{\phi}} = \sum_{n} n\rangle\langle n+1 $	
27 ページ	式 3.43	$\sigma_y = \cdots = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\sigma_y = \dots = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	
29 ページ	式 3.55	$\hat{\phi} = -\left(\frac{2E_c}{E_J}\right)^{1/4} \sigma_y$	$\hat{\phi} = \left(\frac{2E_c}{E_J}\right)^{1/4} \sigma_y$	
30 ページ	式 3.56	$-4E_c n_g \left(\frac{E_J}{2E_c}\right) \sigma_x$	$-4E_cn_g\left(rac{E_J}{2E_c} ight)^{1/4}\sigma_x$	
33 ページ	脚注 14	$\sigma_{\pm} = (\sigma_x \pm \sigma_y)/2$	$\sigma_{\pm} = (\sigma_x \pm i\sigma_y)/2$	
35 ページ	式 3.86	(以下の公式を脚注として追加)		
		[AB, CD] = A[B, C]D + AC[B, D] + [A, C]DB + C[A, D]B		
37 ページ	式 3.98	$-rac{E_c}{2}(b^\dagger b)^4$	$-rac{E_c}{2}(b^\dagger b)^2$	
40 ページ	式 4.6	$R_y(\theta) = e^{-i\theta\sigma_x/2}$	$R_y(\theta) = e^{-i\theta\sigma_y/2}$	
45 ページ	式 4.31	(i eq j であることを追記)		
45 ページ	式 4.33	$\mathcal{H}_0 + \frac{1}{2}\hbar g_1 g_2 \cdots$	$\mathcal{H}_0' + rac{1}{2}\hbar g_1g_2\cdots$	
		(補足 1 参照)		

(次ページに続く)

[†] https://squarylium.github.io/

該当箇所		誤	正
46 ページ	1 行	量子ビットを直接した	量子ビットを結合した
46 ページ	式 4.41	$e^{-i\omega t\sigma_z/2}\sigma_{\pm}e^{i\omega t\sigma_z/2}$ $=\cdots=e^{\mp i\omega t}\sigma_{\pm}$	$e^{i\omega t\sigma_z/2}\sigma_{\pm}e^{-i\omega t\sigma_z/2}$ $=\cdots=e^{\pm i\omega t}\sigma_{\pm}$
46 ページ	式 4.42	$e^{-i(\omega_{q1}-\omega_{q2})t}\sigma_{+1}\sigma_{-2} \\ +e^{i(\omega_{q1}-\omega_{q2})t}\sigma_{-1}\sigma_{+2}$	(補足 2 参照) $e^{i(\omega_{q1}-\omega_{q2})t}\sigma_{+1}\sigma_{-2} \\ +e^{-i(\omega_{q1}-\omega_{q2})t}\sigma_{-1}\sigma_{+2}$
47 ページ	式 4.45		(補足 3 参照)
47 ページ	式 4.47	$\sigma_{+} = 1\rangle\langle 0 , \sigma_{-} = 0\rangle\langle 1 $	$\sigma_{+} = 0\rangle\langle 1 , \sigma_{-} = 1\rangle\langle 0 $
		(補足 4 参照)	
50 ページ	式 4.62	$\frac{1}{2}\omega_1\sigma_{z1} + \frac{1}{2}\omega_2\sigma_{z2}$	$\tfrac{1}{2}\hbar\omega_1\sigma_{z1} + \tfrac{1}{2}\hbar\omega_2\sigma_{z2}$
50 ページ	式 4.66	$\sigma_{+1}[\sigma_{z2},\sigma_{+2}]$	$\sigma_{-1}[\sigma_{z2},\sigma_{+2}]$
51 ページ	式 4.68	(補足 5 参照)	
52 ページ	式 4.74	$\sigma_{z1}\sigma_{+}$	$\sigma_{z1}\sigma_{+2}$
52 ページ	式 4.76	$-\sin((\tilde{\omega}_1 - \tilde{\omega}_2)t)$	$+\sin((\tilde{\omega}_1-\tilde{\omega}_2)t)$
53 ページ	7 行	iSWAP ゲートや CNOT ゲート	交換相互作用の iSWAP ゲートや CZ ゲート
68 ページ	6 行	第1項と第2項は調和振動子	第1項と第3項は調和振動子
68 ページ	式 A.33	$-rac{E_c}{2}(b^\dagger b)^4$	$-rac{E_c}{2}(b^\dagger b)^2$

1.2 補足1(45ページ式4.33)

正誤表に記載の \mathcal{H}_0' は共振器との結合により少し変化した Hamiltonian であり具体的な表式は、

$$\mathcal{H}'_{0} = \hbar \left(\omega_{r} + \frac{g_{1}^{2}}{\omega_{q1} - \omega_{r}} \sigma_{z1} + \frac{g_{2}^{2}}{\omega_{q2} - \omega_{r}} \sigma_{z2} \right) a^{\dagger} a$$

$$+ \frac{1}{2} \hbar \left(\omega_{q1} + \frac{g_{1}^{2}}{\omega_{q1} - \omega_{r}} \right) \sigma_{z1} + \frac{1}{2} \hbar \left(\omega_{q2} + \frac{g_{2}^{2}}{\omega_{q2} - \omega_{r}} \right) \sigma_{z2},$$
(1)

となります。

なお上式から明らかですが、共振器の周波数 ω_r は σ_{z1} , σ_{z2} の両方に依存して(実効的に)変化します。この共振器で分散読み出しを行うことで、複数の量子ビットを一つの共振器で読み出すことが可能です。

1.3 補足2(46ページ式4.41)

式 4.41 は式 3.70 (33 ページ) と同様になります。

1.4 補足3(47ページ式4.45)

交換相互作用、

$$A = \sigma_{+1}\sigma_{-2} + \sigma_{-1}\sigma_{+2},\tag{2}$$

は正則ではありません。このため当然 $A^2 \neq I$ であり、行列指数関数の計算に付録 A.9 の手法を直接利用することはできません。

一方でこの演算子は、

$$A^3 = A, (3)$$

という(冪等のような)性質を持つため、

$$\begin{split} e^{-igtA} &= \sum_{k} \frac{1}{k!} (-igtA)^{k} \\ &= I + \sum_{k} \frac{1}{(k+1)!} (-igtA)^{k+1} \\ &= I + A \sum_{k} \frac{1}{(k+1)!} (-igt)^{k+1} A^{k} \\ &= I + A \sum_{k} \left[\frac{1}{(2k+1)!} (-igt)^{2k+1} A^{2k} + \frac{1}{(2k+2)!} (-igt)^{2k+2} A^{2k+1} \right] \\ &= I + A \sum_{k} \left[-i \frac{(-1)^{k}}{(2k+1)!} (gt)^{2k+1} I + \frac{(-1)^{k+1}}{(2k+2)!} (gt)^{2k+2} A \right] \\ &= I - i \sin(qt) A + (\cos(qt) - 1) A^{2}, \end{split}$$

として行列指数関数を展開できます。

1.5 補足 4 (47 ページ 式 4.47)

該当箇所においては抽象化した Hamiltonian を扱っており、量子ビットの周波数 ω_q は正の値を想定しています。このとき量子ビットの Hamiltonian の固有状態と固有値(エネルギー)は、

$$\langle 0|\frac{1}{2}\hbar\omega_q\sigma_z|0\rangle = \frac{1}{2}\hbar\omega_q, \quad \langle 1|\frac{1}{2}\hbar\omega_q\sigma_z|1\rangle = -\frac{1}{2}\hbar\omega_q, \quad (5)$$

となり |1) 状態が基底状態となります。このため昇降演算子は、

$$\sigma_{+} = |0\rangle\langle 1|, \quad \sigma_{-} = |1\rangle\langle 0|,$$
 (6)

となります。この表記は量子ビットの状態ベクトル、

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, \tag{7}$$

及び33ページ脚注14(前記の正誤表も参照下さい)の昇降演算子の定義、

$$\sigma_{\pm} = \frac{1}{2}(\sigma_x \pm i\sigma_y),\tag{8}$$

と整合します。なお第 4.4 節において昇降演算子は $\sigma_{+1}\sigma_{-2} + \sigma_{-1}\sigma_{+2}$ のように対称的に現れるため、この訂正は本書の議論には影響しません。

1.6 補足 5 (51 ページ 式 4.68)

一部で係数が誤っていました。正しい計算は以下の通りです。

$$[\mathcal{H}_{i}, S] = -\frac{\hbar g^{2}}{\delta} [\sigma_{+1}\sigma_{-2} + \sigma_{-1}\sigma_{+2}, \sigma_{+1}\sigma_{-2} - \sigma_{-1}\sigma_{+2}]$$

$$= -\frac{\hbar g^{2}}{\delta} (-[\sigma_{+1}\sigma_{-2}, \sigma_{-1}\sigma_{+2}] + [\sigma_{-1}\sigma_{+2}, \sigma_{+1}\sigma_{-2}])$$

$$= \frac{2\hbar g^{2}}{\delta} [\sigma_{+1}\sigma_{-2}, \sigma_{-1}\sigma_{+2}]$$

$$= \frac{2\hbar g^{2}}{\delta} (\sigma_{+1}\sigma_{-1}[\sigma_{-2}, \sigma_{+2}] + [\sigma_{+1}, \sigma_{-1}]\sigma_{+2}\sigma_{-2})$$

$$= \frac{2\hbar g^{2}}{\delta} \left[-\frac{1}{2} (\sigma_{z1} + 1)\sigma_{z2} + \frac{1}{2}\sigma_{z1}(\sigma_{z2} + 1) \right]$$

$$= \frac{\hbar g^{2}}{\delta} (\sigma_{z1} - \sigma_{z2}),$$
(9)

なお式 4.69 の訂正の必要はありません。

1.7 詳細な正誤表

誤植や表記統一等に関わる詳細な正誤表を以下に掲載致します。

表 2 詳細な正誤表(初版)

該当箇所		誤	正
5ページ	4 行	Langrangian	Lagrangian
6ページ	6 行	正準変数 p_i,q_i	正準変数 q_i, p_i
6ページ	11 行	交換可能ではない $(AB eq BA)$ であること	交換可能ではない $(AB eq BA)$ こと
7ページ	脚注 1	物理では	物理学では
8ページ	8 行	2 量子ビットを考えると、これらは 4 つの状態	2 量子ビットのときには 4 つの状態
9ページ	12 行	通常テンソル積の記号	テンソル積の記号
10 ページ	8 行	状態が a_i	状態が $ a_i angle$
12 ページ	式 2.41	$\hbar\omega\left(\hat{n}+rac{1}{2} ight)$	$\hbar \omega \hat{n}$
13 ページ	25 行	â 状態	n angle 状態
13 ページ	式 2.51	$ \hat{n} angle$, $\langle\hat{n} $	$ n angle \ , \ \langle n $
20 ページ	脚注 3	校正	構成
21 ページ	13 行	二つ	2つ
22 ページ	2 行	transmon	トランズモン
24 ページ	4 行	正準変数 q,ϕ	正準変数 ϕ,q
26 ページ	7 行	Hailtonian	Hamiltonian
31 ページ	7 行	Lgendre	Legendre
31 ページ	式 3.63	$\sqrt{rac{\hbar}{2}\omega_r C_r}(a+a^\dagger)$	$\sqrt{rac{\hbar}{2}\omega_r C_r}(\hat{a}+\hat{a}^\dagger)$
33 ページ	23-24 行	Jayens-Cummings モデル	Jaynes-Cummings モデル
34 ページ	式 3.80	$rac{\hbar \omega_q}{2} \sigma_z$	$rac{1}{2}\hbar\omega_q\sigma_z$
34 ページ	式 3.81	(追加)	$\gamma = rac{g}{\omega_q - \omega_r}$
35 ページ	式 3.84	$\gamma rac{\hbar \omega_q}{2}$	$rac{1}{2}\gamma\hbar\omega_q$
35 ページ	式 3.85	$rac{\hbar \omega_q}{2} \sigma_z, \;\; rac{\gamma \hbar g}{2}$	$\frac{1}{2}\hbar\omega_q\sigma_z$, $\frac{1}{2}\gamma\hbar g$
36 ページ	式 3.87	$rac{\hbar \omega_q}{2}\sigma_z,\;\;rac{\gamma \hbar g}{2},\;\;rac{\hbar}{2}$	$\frac{1}{2}\hbar\omega_q\sigma_z$, $\frac{1}{2}\gamma\hbar g$, $\frac{1}{2}\hbar$
36 ページ	式 3.87	(定数項を除いたことを明記)	
36 ページ	脚注 17	読み出しとか	読み出しや
36 ページ	式 3.89	$\frac{\hbar}{2}$	$rac{1}{2}\hbar$
37 ページ	式 3.93	(不要なため)	削除)
37 ページ	式 3.95	$\hat{m{n}},~\hat{m{\phi}}$	$n,\;\phi$
38 ページ	式 3.104	$a\sigma_+ + a^\dagger\sigma$	$a^{\dagger}\sigma_{-} + a\sigma_{+}$
41 ページ	式 4.11	$U^\dagger \mathcal{H} U$	$\mathcal{H}_{ ext{rot}}$
41 ページ	式 4.12	$U^{\dagger}\mathcal{H}U$	$\mathcal{H}_{ ext{rot}}$
41 ページ	式 4.13	$U^\dagger \mathcal{H} U$	$\mathcal{H}_{ ext{rot}}$

(次ページに続く)

該当箇所		誤	正
44 ページ	式 4.26	ω_q^i	ω_{qi}
44 ページ	式 4.26	$(\gamma_i$ に関する式を別行の数式として分離)	
44 ページ	11 行	及び	及び、
45 ページ	式 4.29	$\hbar\gamma_1,\hbar\gamma_2$	$\gamma_1\hbar, \gamma_2\hbar$
45 ページ	式 4.32	$\hbar \cdots \gamma_1, \ \hbar \cdots \gamma_2$	$\gamma_1\hbar\cdots,\ \gamma_2\hbar\cdots$
45 ページ	脚注 4	(論文* ¹ を追加)	
47 ページ	式 4.44	$-irac{\mathcal{H}'}{\hbar}t$	$-rac{i}{\hbar}\mathcal{H}'t$
51 ページ	19 行	この系のドライブ項と呼ばれる	(削除)
55 ページ	1 行	界の様々な	世界の様々な
55 ページ	3 行	IMB	IBM
66 ページ	式 A.16	$\sum_i i+1 angle \langle i $	$\sum_{m} m+1\rangle\langle m $
66 ページ	式 A.17		
65-67 ページ	A.3-4	(順序の変更)	
66-67 ページ		(全ての E_C を E_c に書き換え)	
67 ページ	12-13 行	(式番号の追加)	
70 ページ	式 A.49	$\left(e^{tA}[A,B]e^{-tA}\right),$	$\left(e^{tA}[A,B]e^{-tA}\right)$
73 ページ	7 行	508 , 500 (2014).	Nature 508 , 500 (2014).

 $^{^{*1}}$ J. Majer $et\ al.,$ "Coupling superconducting qubits via a cavity bus," Nature 449, 443 (2007). DOI:10.1038/nature06184.