ML Project: Generative modeling

Ricardo Baptista, Suvedei Soyolerdene, Giulio Trigila, and Tanya Wang

Caltech, Baruch College CUNY, and NYU

PolyMathJr Summer Program

June 20, 2025

Probabilistic modeling

- Given data $\{\mathbf{z}^i\}$ sampled from an unknown probability density ρ , we would like to estimate $\rho(\mathbf{z})$
- Example: what is the distribution of the heights among the high school students in NYC?
- A more complicated example: given samples $\{(\mathbf{z}^i, \mathbf{y}^i)\}$ we would like to estimate the conditional probability density $\rho(\mathbf{z}|\mathbf{y})$
- Example: given that New York is located at 40.7128° N, 74.0060° W on the sea level and that tomorrow is June 22 (these are the factors $\mathbf{y}_i \in \mathbb{R}^m$) what is the probability that the temperature (i.e., the outcome $z \in \mathbb{R}$) is going to be 25 degrees Celsius?

We use probabilistic models to describe certain outputs (e.g. from a physical system) and make predictions about the future.

Large-scale probabilistic models

• **Applications**: Numerical weather prediction, GPS tracking, infectious disease spread, financial market analysis, etc.

Figure: Source: NCAR ensemble wind forecast

Figure: Source: Wall Street Journal

Main idea behind Mapping Methods

Most of the work related to Mapping methods is based on KL minimization

$$KL[\rho||\mu] = \int \log(\rho(x)/\mu(x))\rho(x)dx$$

- We want to find a map from ρ , known only through samples $\{x_i\}$, to a reference density $\mu = \mathcal{N}(0, I)$.
- Let $\mu = T_{\#}\tilde{\rho}$ and consider $KL[\rho||\tilde{\rho}| = KL[T] = \int \rho \log(\rho/\tilde{\rho})$
- Parametrize $T = T_{\beta}$, minimize $KL[T_{\beta}] = \text{const} \int \rho \log(\tilde{\rho})$ over the parameters $\beta \Rightarrow \bar{\beta}$
- Use the change of variable formula to estimate ρ :

$$\rho(x) = J^G(x)\mu(G(x))$$
 where $G = T_{\bar{\beta}}$

Baptista, Trigila, Wang

Computational Physics 231.23 (2012): 7815-7850.

^{*}Tabak, Esteban G., and Eric Vanden-Eijnden. "Density estimation by dual ascent of the log-likelihood." Communications in Mathematical Sciences 8.1 (2010): 217-233.

**El Moselhy, Tarek A., and Youssef M. Marzouk. "Bayesian inference with optimal maps." Journal of

Mapping method

- So far we need an a-priori parametrization T_{β} rich enough to map ρ to a reference pdf (standard normal, say)
- Coming up with T_{β} is not an easy task \rightarrow deep neural network
- The task becomes even harder if we want to impose specific characteristics on T_{β} like being optimal (theory of optimal transport) or triangular

Normalizing Flows

Normalizing Flows (NF)

Main idea

Find $T = T_n \circ ... \circ T_1$ as a composition of elementary maps, easier to parametrize $T_k = T_{\beta^k}$

• Find T descending $KL[T(.,t)] = \int \rho \log(\rho/\tilde{\rho}_t)$:

$$\frac{dT(x,t)}{dt} = -\frac{\delta KL[\phi \circ T(.,t)]}{\delta \phi}\bigg|_{\phi=id} \tag{1}$$

where
$$T(x, t = 0) = x$$
 and $\tilde{\rho}_t = J^{T(x,t)} \mu(T(x,t))$

In the end we have that $\tilde{\rho}_{t=0} = \mu$ and $\tilde{\rho}_{\infty} = \rho$

^{*} Tabak, Esteban G., and Cristina V. Turner. "A family of nonparametric density estimation algorithms." Communications on Pure and Applied Mathematics 66.2 (2013): 145-164.

^{**}Rezende, Danilo, and Shakir Mohamed. "Variational inference with normalizing flows." International conference on machine learning. PMLR, 2015.

Introduction: Normalizing Flows (NF)

In practice:

• The flow

$$\frac{dT(x,t)}{dt} = -\frac{\delta KL[\phi \circ T(.,t)]}{\delta \phi}\bigg|_{\phi=id}$$
 (2)

is time discretized: $y^{n+1} = y^n + \phi(y^n, \theta^n)$ where ϕ is a perturbation of the identity map

• The resulting map $T(\cdot, t^n) = \phi^n \circ \phi^{n-1} \circ \dots \circ \phi^1$ is the composition of elementary maps $\phi^k = \phi(\cdot, \theta^k)$

Why it is useful?

- Normalization, positivity constraints, curse of dimensionality and over-resolution make the parametrization of ρ a hard task.
- We don't need to parametrize ρ , we rather parametrize elementary maps that, through composition, form a rich family of one-to-one functions we use to recover ρ .

Optimal transport framework to map PDFs

Problem

How to move a pile of sand to fill a pit of the same volume minimizing a given cost?

Fig. 3.1. Monge's problem of déblais and remblais

Math formulation

Given two probability densities, $\rho(\mathbf{z})$ and $\mu(\mathbf{z})$, $\mathbf{z} \in \mathbb{R}^d$, find a 1-to-1 map $T : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\#\rho} = \mu$ and that minimizes the functional

$$M[T] = \int_{\mathbb{D}^d} c(\mathbf{z}, T(\mathbf{z})) \rho(\mathbf{z}) d\mathbf{z}$$

The minimizer is called an optimal transport map.

Quadratic cost

Consider quadratic cost:

$$M[T] = \int_{\mathbb{R}^d} |\mathbf{z} - T(\mathbf{z})|^2 \rho(\mathbf{z}) d\mathbf{z}$$

If ρ and μ are smooth enough and have finite second moment, the optimal (Brenier) map exists, is unique and is given by the gradient of a convex function $\phi: \mathbb{R}^d \to \mathbb{R}$ satisfying the Monge-Ampere (MA) equation:

$$\rho(\mathbf{z}) = \mu(\nabla \phi(\mathbf{z})) \det(D^2 \phi(\mathbf{z}))$$

One way of finding the optimal map from ρ to μ is to solve the MA equation enforcing convexity of the solution

One idea on OT

We need to impose the convexity of the potential \to we want the map to be the gradient of a convex function. If we build the flow

$$z^{k+1} = z^k + \beta^k \nabla_x F(z^k) = z^0 + \sum_{i=1}^k \nabla_x F(z^i)$$

with $z^0 = x$ the starting position, $\beta \in R$, and F convex, then the convexity of the potential depends on the sign of β .

- When β^i is positive there is no problem (sum of convex functions is still convex)
- If β is negative we need to pay attention
- We only have the value $\sum_{i=1}^k \nabla_x F(z^i)$ at the sample points z^i
- A condition that $\sum_{i=1}^{k} \nabla_x F(z^i)$ should satisfy is that, at least, should interpolate a convex function

Research opportunity

Main goal of this project

Given samples (\mathbf{z}^i) drawn from the unknown $\rho(\mathbf{z})$ we want to build a new generative model that map samples from $\rho_0(\mathbf{z})$ to $\rho(\mathbf{z})$.

Avenues for numerical exploration:

- Implement the data-driven OT flow algorithm with adaptive bandwidth and kernel
- Evaluate convergence when using an improved back-and-forth procedure

Avenues for theoretical exploration:

- Show the equivalence between the data-driven and maximum mean discrepancy flow
- Mathematical understanding of back-and-forth procedure

Delve into applications:

- Evaluation on 2D benchmark problems (banana, checkerboard)
- Image generation and solving Bayesian inference problems

Thank you! Questions?

References

- Marzouk et. al, An introduction to sampling via measure transport, Handbook of UQ, 2016
- Papamakarios et. al, Normalizing Flows for Probabilistic Modeling and Inference, JMLR, 2021
- Santambrogio, Optimal Transport for Applied Mathematicians, Springer, 2015
- Tabak E.G., Trigila G. Data-driven optimal transport, Communications on Pure and Applied Math, 2016
- Galashov, de Bortoli, Gretton, Deep MMD Gradient Flow without adversarial training, 2024