Local explainability with SHAP

EXPLAINABLE AI IN PYTHON

Fouad Trad

Machine Learning Engineer

Global vs. local explainability

Global explainability

- Overall model behavior
- Doesn't explain individual instances

- Explains prediction for specific data point
- Crucial for sensitive applications

¹ Images generated by DALL-E

Local explainability

Heart disease dataset

age	sex	chest_pain_type	blood_pressure	ecg_results	thalassemia	target
52	1	0	125	1	3	0
53	1	0	140	0	3	0
70	1	0	145	1	3	0
61	1	0	148	1	3	0
62	0	0	138	1	2	0

knn: KNN classifier predicting risk of heart disease

Local explainability with SHAP

```
explainer = shap.KernelExplainer(knn.predict_proba, shap.kmeans(X, 10))

test_instance = X.iloc[0, :]

shap_values = explainer.shap_values(test_instance)

print(shap_values.shape)
```

(6, 2)

SHAP waterfall plots

• Shows how features increase or decrease model's prediction

SHAP waterfall plots

• Shows how features increase or decrease model's prediction

SHAP waterfall plots

• Shows how features increase or decrease model's prediction

Creating waterfall plots

```
shap.waterfall_plot(
    shap.Explanation(
        values=shap_values[:,1],
        base_values=explainer.expected_value[1],
        data=test_instance,
        feature_names=X.columns
)
)
```

Waterfalls for several instances

Let's practice!

EXPLAINABLE AI IN PYTHON

Local explainability with LIME

EXPLAINABLE AI IN PYTHON

Fouad Trad

Machine Learning Engineer

- LIME → Local Interpretable Model-Agnostic Explanations
- Explains predictions of complex models
- Works on individual instances
- Agnostic to model type

Tailored to different kinds of data

Tailored to different kinds of data

- Tailored to different kinds of data
- Generates perturbations around a sample
- Sees effect on model's output
- Constructs simpler model for explanation

- Tailored to different kinds of data
- Generates perturbations around a sample
- Sees effect on model's output
- Constructs simpler model for explanation

Admissions dataset

GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Chance of Admit	Accept
337	118	4	4.5	4.5	9.65	0.92	1
324	107	4	4	4.5	8.87	0.76	1
316	104	3	3	3.5	8	0.72	1
322	110	3	3.5	2.5	8.67	0.8	1
314	103	2	2	3	8.21	0.45	0

- regressor : predicts chance of admit
- **classifier**: predicts acceptance
- Features in X

Creating tabular explainer

Regression

```
from lime.lime_tabular import LimeTabularExplainer
instance = X.iloc[1,:]
explainer_reg = LimeTabularExplainer(
 X.values,
 feature_names=X.columns,
 mode='regression'
explanation_reg = explainer_reg.explain_instance(
 instance.values,
 regressor.predict
```

Classification

```
from lime.lime_tabular import LimeTabularExplainer
instance = X.iloc[1,:]
explainer_class = LimeTabularExplainer(
 X.values,
 feature_names=X.columns,
 mode='classification'
explanation_class = explainer_class.explain_instance(
 instance.values,
  classifier.predict_proba
```

Visualizing explanation

Regression

explanation_reg.as_pyplot_figure()

Classification

explanation_class.as_pyplot_figure()

SHAP vs. LIME

SHAP

shap.waterfall_plot(...)

LIME

explanation_class.as_pyplot_figure()

Let's practice!

EXPLAINABLE AI IN PYTHON

Text and image explainability with LIME

EXPLAINABLE AI IN PYTHON

Fouad Trad

Machine Learning Engineer

Text-based models

- Process and interpret written language
- Example: Sentiment analysis
- Black box models
- LimeTextExplainer explains such models
 - Finds how each word impacts prediction

LIME text explainer

```
from lime.lime_text import LimeTextExplainer
text_instance =
"This product has great features but a poor design."
def model_predict(instance):
  return class_probabilities
explainer = LimeTextExplainer()
exp = explainer.explain_instance(
 text_instance,
 model_predict
exp.as_pyplot_figure()
```


Image-based models

- Highly complex
- Interpret visual data
- Example: Food classification
- LimeImageExplainer explains such models
 - Finds which parts of image impact predictions

LIME image explainer

```
from lime.lime_image import LimeImageExplainer
explainer = LimeImageExplainer()
explanation = explainer.explain_instance(
  image,
 model_predict,
  num_samples=50
temp, _ = explanation.get_image_and_mask(
  explanation.top_labels[0],
  hide_rest=True
```


LIME image explainer

```
from lime.lime_image import LimeImageExplainer
explainer = LimeImageExplainer()
explanation = explainer.explain_instance(
  image,
 model_predict,
  num_samples=50
temp, _ = explanation.get_image_and_mask(
  explanation.top_labels[0],
  hide_rest=True
plt.imshow(temp)
```


Let's practice!

EXPLAINABLE AI IN PYTHON

