Práctica 4 - Lenguajes Regulares.

Adrián Portillo Sánchez

Octubre 2015

1 Ejercicio 1.

Dados los alfabetos $A=\{0,1,2,3\}$ y $B=\{0,1\}$ y el homomorfismo f de A^* a B^* dado por: f(0)=00, f(1)=01, f(2)=10, f(3)=11. Resolver las siguientes cuestiones:

a) Sea L_1 el conjunto de palabras de B* tales que no comienzan con la subcadena 10. Construir un autómata finito determinista que acepte $f^{-1}(L_1)$.

Obtenemos la solución para para $L_1 \epsilon B^*$:

Ahora tan solo nos tenemos que fijar en que conjuntos de A^* cumplen que no empiezan en 2:

Minimizando obtenenemos:

b) Construir un autómata finito determinista que acepte el lenguaje $L_2 = \{uu^{-1}/u\epsilon B^*\}.$

Para que el lenguaje se pueda expresar como un AFD, tendrá que ser regular, y para ello primero veremos si cumple el lema de bombeo, ya que si no lo cumple, podremos afirmar directamente que el lenguaje no es regular y ya habremos terminado el ejercicio.

Aplicando la negación del lema de bombeo:

 $\forall n \in \mathbb{N}; \exists z \in L_2 \text{ con } |z| \leq n, z = 0^n 1^2 0^n \text{ tal que para toda descomposición}$ z = uvw se tiene que:

- -|uv| < n
- $-|v| \ge 1$

Entonces, $\exists i \in \mathbb{N}$, tal que $uv^i w \notin L_2$

Al dividir z en uvw tenemos que, siendo

- $u = 0^k$
- $-v=0^l$
- $w = 1^2 0^{k+l}$

Para i=2 tenemos que $z=0^k0^{2l}1^20^{k+l}=0^{k+2l}1^20^{k+l} \not\in L_2$ ya que no cumple que $z=uu^{-1}$. Y, por tanto, el lenguaje L_2 no es regular.

c) Sea L_3 el conjunto de palabras de A* definido como $L_3 = \{0^k 3^k / 1 \le k \le 20\}$. Construir una expresión regular que represente a $f(L_3)$.

 $L_3 \epsilon A^*$ tiene como expresión regular $0(\varepsilon + (0(\varepsilon + (0(...)3))3))3$ hasta llegar a 20 veces, por lo que la expresión regular del conjunto $f(L_3)$ sería la siguiente:

 $00(\varepsilon + (00(\varepsilon + (00(...)11))11))11$. De esta manera hay el mismo número de 00 y 11 hasta llegar a 20 de cada.

2 Ejercicio 2.

Sea L_4 el conjunto de palabras de B* que contienen la subcadena 11. Sea L_5 el conjunto de las palabras de B* de longitud múltiplo de tres. Construir el AFD minimal que acepte el lenguaje $L_4 \cap L_5$.

Los AFDs de los lenguajes L_4 y L_5 respectivamente serán: 0,1

Aplicando las reglas para construir la intersección de dos AFDs sale:

Como tenemos que la tabla del algoritmo de minimalización de AFDs es:

q_1	X]						
$\overline{q_2}$	X	X						
q_3	X	X	X					
q_4	X	X	X	X				
q_5	X	X	X	X	X			
q_6	X	X	X	X	X	X		
q_7	X	X	X	X	X	X	X	
q_8	X	X	X	X	X	X	X	X
	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7

El autómata que ha salido no se puede minimizar más y ya es minimal, por tanto, es el resultado definitivo.

3 Ejercicio 3.

Calcular el AFD Minimal que acepte el mismo lenguaje que el siguiente AFD. Utilizar el algoritmo de minimización visto en clase.

a)

Comenzamos con el algoritmo, primero eliminamos los estados inaccesibles, en este caso tenemos q_2 , ahora vemos para las parejas de estados cual de ellos tienen un camino accesible y uno de ellos es final para ello usamos esta tabla, marcando los estados donde uno es final y el otro no:

q_1				
q_3				
q_4				
q_5	\mathbf{X}	X	X	\mathbf{X}
	q_0	q_1	q_3	q_4

Tomamos cada pareja no marcada y miramos que estados generan:

	0	1		0	1		0	1		0	1		0	1		0	1
q_0	q_1	q_0	q_0	q_1	q_0	q_0	q_1	q_0	q_1	q_3	q_0	q_1	q_3	q_0	q_3	q_4	q_5
q_1	q_3	q_0	q_3	q_4	q_5	q_4	q_4	q_5	q_3	q_4	q_5	q_4	q_4	q_5	q_4	q_4	q_5

Por último, obtenemos lo siguiente:

q_1	X			
q_3	\mathbf{X}	X		
q_4	X	X		
q_5	X	X	X	X
	q_0	q_1	q_3	q_4

Y por tanto se obtiene que $q_3 \equiv q_4$:

b)

Realizamos los mismos pasos para este ejercicio, ya que no hay estados inaccesibles, la primera tabla en este caso será:

q_1								
q_2	\mathbf{X}	X						
q_3	\mathbf{X}	\mathbf{X}						
q_4			X	X				
q_5			X	X				
q_6			X	X				
q_7			X	X				
q_8	X	X			X	X	X	X
	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7

Obteniendo cada pareja no marcada y mirando que estados generan:

	0	1		0	1		0	1		0	1		0	1		0	1
q_0	q_4	q_1	q_1	q_4	q_2												
q_1	q_4	q_2	q_4	q_6	q_5	q_5	q_6	q_7	q_6	q_4	q_7	q_7	q_6	q_8	q_4	q_6	q_5
	0	1		0	1		0	1		0	1		0	1		0	1
q_1	q_4	q_2	q_1	q_4	q_2	q_1	q_4	q_2	q_2	q_2	q_3	q_2	q_2	q_3	q_3	q_2	q_3
q_5	q_6	q_8	q_6	q_4	q_7	q_7	q_6	q_8	q_3	q_2	q_3	q_8	q_6	q_8	q_8	q_6	q_8
	0	1		0	1		0	1		0	1		0	1		0	1
q_4	q_6	q_5	q_4	q_6	q_5	q_4	q_6	q_5	q_5	q_6	q_8	q_5	q_6	q_8	q_6	q_4	q_7
q_5	q_6	q_8	q_6	q_4	q_7	q_7	q_6	q_8	q_6	q_4	q_7	q_7	q_6	q_8	q_7	q_6	q_8

Por tanto, obtenemos lo siguiente:

q_1	X							
q_2	\mathbf{X}	\mathbf{X}						
q_3	X	X						
q_4	\mathbf{X}	X	X	X				
q_5	X	X	X	X	X			
q_6	X	X	X	X		X		
q_7	X	X	X	X	X		X	
q_8	X	X	X	X	X	X	X	X
	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7

Así que como resultado obtenemos que $q_2 \equiv q_3, \; q_4 \equiv q_6$ y $q_5 \equiv q_7$:

