Многообразие задач, в которых необходимо распознавать образы путем их классификации, требует различных подходов к их решению. Рассмотрим несколько возможных типов задач, представления исходных данных в них и применения понятия «расстояния» для решения задачи классификации объектов.

4.1 Классификация объектов с бинарными признаками

Пусть некоторый образ X_i представляется в виде вектора $\overline{X}_i = \{x_{i1}, x_{i2}, ... x_{ik} ... x_{in}\}$, где первый индекс — это номер объекта, а второй индекс — номер признака. Образ можно записать в виде последовательности двоичных символов в соответствии с правилом: если i-ый объект обладает κ -ым признаком, то $x_{ik}=1$, иначе $x_{ik}=0$.

Рассмотрим пример, в котором исходные данные для классификации представлены в следующей таблице

Объект	Вектор	Желтый	Красный	Есть се- мечки	Есть кос- точки
Вишня	X_1	x ₁₁ =0	x ₁₂ =1	x ₁₃ =0	x ₁₄ =1
Яблоко	X ₂	x ₂₁ =1	x ₂₂ =1	x ₂₃ =1	x ₂₄ =0
Банан	X ₃	x ₃₁ =1	x ₃₂ =0	x ₃₃ =0	x ₃₄ =0

Эту таблицу можно представить как класс C, а множество векторов — X= $\{X_1, X_2, X_3\}$. В данном случае класс фруктов состоит из объединения непересекающихся подмножеств, каждое из которых включает в себя единственный объект. Поэтому такая классификация является тривиальной. Можно провести более тонкую классификацию, если для каждой пары объектов последовательно установить степень их сходства и различия. Тогда таблицу соответствия двух объектов X_i и X_j представим следующим образом

X_{j}	X_{i}	
	1	0
1	a	h
0	g	ь

где а — число случаев, когда X_i и X_j имеют один и тот же признак

$$a = \sum_{k=1}^{n} x_{ik} x_{jk},$$

 ${\bf b}$ – число случаев, когда X_i и X_j не имеют никаких общих признаков

$$b = \sum_{k=1}^{n} (1 - x_{ik}) (1 - x_{jk}),$$

h – число случаев, когда X_i не имеет часть признаков, присущих X_i

$$h = \sum_{k=1}^{n} (1 - x_{ik}) x_{jk},$$

 ${
m g}$ – число случаев, когда X_i имеет признаки, отсутствующие у X_j

$$g = \sum_{k=1}^{n} x_{ik} (1 - x_{jk}).$$

Следовательно, чем больше сходств между объектами X_i и X_j , тем больше должен быть коэффициент a и тем больше отличаться от других коэффициентов. Можно ввести функцию сходства с набором свойств.

- 1. Функция возрастает в зависимости от a.
- 2. Функция симметрична относительно g и h.
- 3. Функция убывает в зависимости от b.

Подобную функцию, для которой, в зависимости от требований в поставленной задаче, известно несколько различных вариантов вычисления, называют двоичным расстоянием. Ниже приведено несколько способов вычисления функции сходства.

$$S_1(X_i, X_j) = \frac{a}{n}, \quad S_2(X_i, X_j) = \frac{a}{n-b}, \qquad S_3(X_i, X_j) = \frac{a}{2a+h+g},$$

$$S_4(X_i, X_j) = \frac{a}{a + 2(g + h)}, \qquad S_5(X_i, X_j) = \frac{a + b}{n},$$

$$S_6(X_i, X_j) = \frac{a}{a+h}, \quad S_7(X_i, X_j) = \frac{1}{2} \left[\frac{a}{a+q} + \frac{a}{a+h} \right],$$

$$S_8(X_i,X_j) = \frac{a}{\sqrt{(a+h)(a+b)}}, S_9(X_i,X_j) = \frac{ab-gh}{ab+gh}.$$

n — число признаков объектов.

В зависимости от используемых коэффициентов каждая из функций отражает те или иные признаки распознаваемых объектов. Так, функция $S_6 \rightarrow \infty$; S_2 , S_4 , S_5 , S_8 , $S_9 = 1$; $S_3 = 0.5$.

Введя функцию сходства, применим ее для классификации фруктов.

 X_1 =(0,1,0,1); X_2 =(1,1,1,0); X_3 =(1,0,0,0). Найдем сходства между каждой парой объектов: X_1 и X_2 , X_1 и X_3 , X_2 и X_3 . Ниже приведены таблицы с вычисленными значениями переменных a, b, h, g.

X ₂	X_1	
	1	0
1	1	2
0	1	0

X_3	X_1	
	1	0
1	0	1
0	2	1

X3	X ₂		
	1	0	
1	1	0	
0	2	1	

Поскольку в данной задаче наобходимо определить максимальное сходство между объектами, воспользуемся для его определения функцией S_6 , так как в ней не используется переменная b, отражающая различия объектов.

$$S_6(X_1, X_2) = \frac{a}{g+h} = \frac{1}{1+2} = 0.333,$$

$$S_6(X_1, X_3) = \frac{a}{a+h} = \frac{0}{1+2} = 0,$$

$$S_6(X_2, X_3) = \frac{a}{a+h} = \frac{1}{0+2} = 0.5.$$

В соответствии с выбранными признаками объектов и критериями отбора получаем, что объекты X_2 и X_3 больше всего схоже между собой.

4.2 Расстояние между списками

В некоторых задачах сходство между объектами базируется на мере сравнения порядка следования элементов в объектах-списках.

Пусть имеется два объекта, представленные следующими списками:

$$\bar{X}_i = (x_{i1}, x_{i2} \dots x_{in}); \ \bar{X}_j = (x_{j1}, x_{j2} \dots x_{jn}).$$

Для их сравнения используются коэффициенты, которые определяются следующим образом:

Расстояние в этом случае вычисляется по формуле:

$$d(\bar{X}_i, \bar{X}_j) = 1 - \frac{2}{n(n-1)} \sum_{l < k} \Delta^j_{lk} \, \Delta^i_{lk}.$$

Если компоненты обоих списков упорядочены однотипно, то $\Delta_{lk}^i = \Delta_{lk}^j \ \forall l,k$. Расстояние между объектами в этом случае равно 0, что соответствует максимальному сходству между ними.

Рассмотрим пример. Даны два вектора X_1 ={0.5, 1, 2}, X_2 ={1, 3, 8}, требуется определить расстояние между ними предложенным выше способом. Вычисляются коэффициенты Δ_{lk}^i для каждого из векторов.

$$\Delta_{1,2}^1 = \Delta_{1,3}^1 = \Delta_{2,3}^1 = -1; \ \Delta_{1,2}^2 = \Delta_{1,3}^2 = \Delta_{2,3}^2 = -1.$$

Тогда расстояние между объектами будет равно

$$d(\bar{X}_1, \bar{X}_2) = 1 - \frac{2}{3(3-1)}[1 \times 1 + 1 \times 1 + 1 \times 1] = 0.$$

Максимальное расстояние между списками достигается, когда они упорядочены противоположно.

Рассмотри еще один способ определения расстояния между списками, связанный со «стоимостью» суммарного преобразования одного списка в другой. Чем меньше стоимость, тем меньше расстояние между списками и больше сходств между ними.

Пусть заданы два списка: $\bar{X}_i = (x_{i1}, x_{i2}...x_{in}); \bar{X}_j = (x_{j1}, x_{j2}...x_{jm}), m$ и n могут быть не равны. Задача состоит в нахождении функции, которая выражала бы степень сходства двух списков. Преобразование одного списка в другой выполняется с помощью трех операций, приведенных ниже. Также в преобразованиях используется пустой символ λ .

SUB (подстановка) $x_i \to x_j SUB(x_i, x_j)$.

DES (уничтожение) $x \to \lambda \ DES(x, \lambda)$.

CRE (создание) $\lambda \rightarrow x \ CRE(\lambda, x)$.

Каждой операции соответствует своя стоимость C. Для оценки расстояния между двумя списками вводят понятие полной стоимости последовательности преобразований от исходного списка к конечному. Процесс перехода от одного списка к другому может включать в себя все три операции.

Пусть имеется два списка $\overline{X}_i = (x_{i1}, x_{i2}...x_{i5}); \overline{X}_j = (x_{j1}, x_{j2}, x_{j3})$ и установлены цены на каждую операцию преобразования одного элемента в другой:

$$c(\lambda, x_{jk}) = 1 \ \forall k;$$
 $c(x_{il}, \lambda) = 0.5 \ \forall l;$
 $c(x_{il}, x_{jk}) = 0 \ \forall l, k \ \text{при } x_{il} = x_{jk};$
 $c(x_{il}, x_{jk}) = 1 \ \forall l, k \ \text{при } x_{il} \neq x_{jk}.$

Рассмотрим пример определения сходства двух списков, выполнив преобразование первого списка во второй и оценив суммарную стоимость преобразования. $X_i = \{a,a,b,a,c\}; X_j = \{a,b,d\}$. Тогда один из возможных путей преобразования следующий:

- 1. $a \rightarrow a = 0$.
- 2. $a \rightarrow \lambda = 0.5$
- 3. $b \to b = 0$.
- 4. $a \to d = 1$.
- 5. $c \rightarrow \lambda = 0.5$

Суммарная стоимость преобразований равна 2.

4.3 Метод динамического программирования

Отличие данного метода от способов нахождения расстояния между списками заключается в том, что в этой процедуре одному элементу первого списка могут соответствовать несколько элементов второго списка. Пустые места в списках отсутствуют. Задача состоит в оценке сходств двух списков посредством нахождения расстояния между ними.

Даны два списка X и Y, состоящие из элементов:

$$X(l) = a_1, a_2, ..., a_l ...; Y(k) = b_1, b_2, ..., b_k$$

Список X называется опорным, а Y — подлежащим сравнению (кандидатом). Количество значений списка X=n, Y=m. В общем случае $m \neq n$.

Метод динамического программирования может найти практическое применение в ситуациях, когда требуется распознать несколько реализаций какого-либо объекта или явления, при этом содержания у всех реализаций одинаковые, а внешние представления — разные. Например, при записи одного и того же слова, произнесенного с различной скоростью каждый раз; при анализе фотоснимков объекта, выполненных при разных увеличениях или условиях. Информационное содержание в каждом из случаев остается неизменным.

Решение задачи методом динамического программирования начинается с установления оптимального соответствия между двумя списками. Схема этого процесса приведена на рисунке 1.

Рисунок 1 – Схема метода динамического программирования

Согласование опорного и предъявляемого списков выполняется с помощью функции g, связывающей l и k, l=g(k). Примем $g(1)=1;\ g(m)=n$. В качестве первого приближения можно принять линейную зависимость $l=g(k)=(k-1)\frac{n-1}{m-1}+1$. Более качественный способ согласования можно

представить так $D^* = \min_{g(k)} [\sum_{k=1}^m d(b(k), a[g(k)])]$, где $b(k) - \kappa$ -ая составляющая вектора Y, которой соответствует g(k)-я составляющая вектора X.

Расстояние между этими составляющими вычисляется по одной из формул для расстояния. Функция g(k) должна обеспечивать возможность минимизации в целом расстояния D_c между двумя списками. После того как оба списка исчерпаны, получают величину D^* , позволяющую оценить

нормализованное расстояние между списками: $\delta(X,Y) = \frac{D^*}{n+m} = \frac{D_c(n,m)}{n+m}$.

Ранее делается предположение, что D^* дает оптимальный результат. Фактически целью данного метода является определение пар точек из каждого списка, находящихся на минимальном расстоянии друг от друга.

Выражение для D_c означает, что $D_c(l,n) = d(a_l,b_k) + \min_{\substack{q \leq k}} [D_c(l-1),q)],$

т.е. $D_c(l, k)$ — текущее расстояние, накапливаемое от точки l=k=1 до точки с координатами (k, l) (рисунок 1).

Сначала l=1, k=1. $D(1,1)=2d(1,1)=d(1,1)+\min(D_c(1,1))$. Затем l=l+1 и находится min расстояние от l до κ , т.е. просматриваются все возможные значения κ на отрезке от l до κ . Можно одновременно исследовать не всю плоскость, а некоторую ее часть (рисунок 2), положив условие $k-r \le l \le k+r$, где r выбирается заранее. Тогда сужается пространство значений κ , которые нужно проверять для каждого конкретного l.

Рисунок 2 — Полоса области, выделенная для исследования