

Integrated Device Technology, Inc.

FAST CMOS 1-OF-8 DECODER WITH ENABLE

IDT54/74FCT138
IDT54/74FCT138A
IDT54/74FCT138C

FEATURES:

- IDT54/74FCT138 equivalent to FAST™ speed
- IDT54/74FCT138A 35% faster than FAST
- IDT54/74FCT138C 40% faster than FAST
- Equivalent to FAST speeds output drive over full temperature and voltage supply extremes
- I_{OL} = 48mA (commercial) and 32mA (military)
- CMOS power levels (1mW typ. static)
- TTL input and output level compatible
- CMOS output level compatible
- Substantially lower input current levels than FAST (5μA max.)
- JEDEC standard pinout for DIP and LCC
- Product available in Radiation Tolerant and Radiation Enhanced versions
- Military product compliant to MIL-STD-883, Class B
- Standard Military Drawing # 5962-87654 is listed on this function. Refer to section 2.

DESCRIPTION:

The IDT54/74FCT138/A/C are 1-of-8 decoders built using an advanced dual metal CMOS technology. The IDT54/74FCT138/A/C accept three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provide eight mutually exclusive active LOW outputs (O₀ - O₇). The IDT54/74FCT138/A/C feature three enable inputs, two active LOW (E₁, E₂) and one active HIGH (E₃). All outputs will be HIGH unless E₁ and E₂ are LOW and E₃ is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four IDT54/74FCT138/A/C devices and one inverter.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

LCC
TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.
FAST is a trademark of National Semiconductor Co.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

MAY 1992

PIN DESCRIPTION

Pin Names	Description
A ₀ -A ₂	Address Inputs
Ē ₁ , Ē ₂	Enable Inputs (Active LOW)
E ₃	Enable Input (Active HIGH)
Ō ₀ -Ō ₇	Outputs (Active LOW)

2581 tbl 05

FUNCTION TABLE

Inputs						Outputs							
Ē ₁	Ē ₂	E ₃	A ₀	A ₁	A ₂	Ō ₀	Ō ₁	O ₂	Ō ₃	Ō ₄	Ō ₅	Ō ₆	Ō ₇
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	L	H	H	H	H
L	L	H	H	L	H	H	H	H	H	L	H	H	H
L	L	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

2581 tbl 06

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc	-0.5 to Vcc	V
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
TSTG	Storage Temperature	-55 to +125	-65 to +150	°C
PT	Power Dissipation	0.5	0.5	W
IOUT	DC Output Current	120	120	mA

NOTES:

2581 tbl 01

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- Inputs and Vcc terminals only.
- Outputs and I/O terminals only.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	6	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	12	pF

2581 tbl 02

1. This parameter is guaranteed characterization data and not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC – 0.2V

Commercial: TA = 0°C to +70°C, VCC = 5.0V ± 5%; Military: TA = –55°C to +125°C, VCC = 5.0V ± 10%

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2.0	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		—	—	0.8	V
IIH	Input HIGH Current	VCC = Max.	VI = VCC	—	—	5	µA
			VI = 2.7V	—	—	5 ⁽⁴⁾	
			VI = 0.5V	—	—	-5 ⁽⁴⁾	
			VI = GND	—	—	-5	
VIK	Clamp Diode Voltage	VCC = Min., IN = -18mA		—	-0.7	-1.2	V
Ios	Short Circuit Current	VCC = Max. ⁽³⁾ , VO = GND		-60	-120	—	mA
VOH	Output HIGH Voltage	VCC = 3V, VIN = VLC or VHC, IOH = -32µA		VHC	VCC	—	V
		VCC = Min. VIN = VIH or VIL	IOH = -300µA	VHC	VCC	—	
			IOH = -12mA MIL.	2.4	4.3	—	
			IOH = -15mA COM'L.	2.4	4.3	—	
VOL	Output LOW Voltage	VCC = 3V, VIN = VLC or VHC, IOL = 300µA		—	GND	VLC	V
		VCC = Min. VIN = VIH or VIL	IOL = 300µA	—	GND	VLC ⁽⁴⁾	
			IOL = 32mA MIL.	—	0.3	0.5	
			IOL = 48mA COM'L.	—	0.3	0.5	

NOTES:

- For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- Typical values are at VCC = 5.0V, +25°C ambient and maximum loading.
- Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- This parameter is guaranteed but not tested.

2581 tbl 03

POWER SUPPLY CHARACTERISTICS

VLC = 0.2V; VHC = VCC – 0.2V

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	VCC = Max. VIN ≥ VHC; VIN ≤ VLC		—	0.2	1.5	mA
ΔIcc	Quiescent Power Supply Current TTL Inputs HIGH	VCC = Max. VIN = 3.4V ⁽³⁾		—	0.5	2.0	mA
Iccd	Dynamic Power Supply Current ⁽⁴⁾	VCC = Max. Outputs Open One Output Toggling 50% Duty Cycle	VIN ≥ VHC VIN ≤ VLC	—	0.15	0.3	mA/MHz
Ic	Total Power Supply Current ⁽⁵⁾	VCC = Max. Outputs Open Toggle E1, E2 or E3 50% Duty Cycle fO = 10MHz One Output Toggling		VIN ≥ VHC VIN ≤ VLC (FCT)	—	1.7	4.5
				VIN = 3.4V VIN = GND	—	2.0	5.5

NOTES:

- For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- Typical values are at VCC = 5.0V, +25°C ambient.
- Per TTL driven input (VIN = 3.4V); all other inputs at VCC or GND.
- This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

2581 tbl 04

$$\begin{aligned} \Delta Icc &= \text{Power Supply Current for a TTL High Input } (VIN = 3.4V) \\ Ic &= I_{\text{QUIESCENT}} + I_{\text{INPUTS}} + I_{\text{DYNAMIC}} \\ Ic &= I_{\text{CC}} + \Delta I_{\text{CC}} D_{\text{HT}} N_{\text{T}} + I_{\text{CD}} (f_{\text{CP}}/2 + f_{\text{NO}}) \end{aligned}$$

Icc = Quiescent Current

ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

D_H = Duty Cycle for TTL Inputs High

N_T = Number of TTL Inputs at DH

Icd = Dynamic Current Caused by an Output Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_O = Output Frequency

NO = Number of Outputs at f_O

All currents are in millamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Condition ⁽¹⁾	IDT54/74FCT138				IDT54/74FCT138A				IDT54/74FCT138C				Unit	
			Com'l.		Mil.		Com'l.		Mil.		Com'l.		Mil.			
			Min. ⁽²⁾	Max.												
tPLH tPHL	Propagation Delay An to \bar{O}_n	CL = 50pF RL = 500Ω	1.5	9.0	1.5	12.0	1.5	5.8	1.5	7.8	1.5	5.1	1.5	6.0	ns	
tPLH tPHL	Propagation Delay \bar{E}_1 or \bar{E}_2 to \bar{O}_n		1.5	9.0	1.5	12.5	1.5	5.9	1.5	8.0	1.5	5.2	1.5	6.1	ns	
tPLH tPHL	Propagation Delay E_3 to \bar{O}_n		1.5	9.0	1.5	12.5	1.5	5.9	1.5	8.0	1.5	5.2	1.5	6.1	ns	

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.

2581 tbl 07

TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Test	Open

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Z_{out} of the Pulse Generator.

2581 tbl 08

SET-UP, HOLD AND RELEASE TIMES

PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

NOTES

2581 drw 04

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate ≤ 1.0 MHz; $Z_0 \leq 50\Omega$; $t_f \leq 2.5$ ns; $t_r \leq 2.5$ ns.

ORDERING INFORMATION

IDT	XX	FCT	X	X	X	
Temperature Range		Device Type		Package	Process	
					Blank	Commercial
					B	MIL-STD-883, Class B
				P		Plastic DIP
				D		CERDIP
				SO		Small Outline IC
				E		CERPACK
				L		Leadless Chip Carrier
			138			1-of-8 Decoder
			138A			Fast 1-of-8 Decoder
			138C			Super Fast 1-of-8 Decoder
	54			54		-55°C to +125°C
	74			74		0°C to +70°C
						2581 drw 03