Assignment 18

1

Gaydhane Vaibhav Digraj Roll No. AI20MTECH11002

Abstract—This document solves a problem based on polynomial vector spaces.

Download latex-tikz codes from

https://github.com/Vaibhav11002/EE5609/tree/master/Assignment_18

1 Problem

Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers a_0, a_1, \dots, a_k . For $p \in V$

$$max\{|p(a_j)|: 0 \le j \le k\}$$

defines a norm on V

- 1) only if k < n
- 2) only if $k \ge n$
- 3) if $k + 1 \le n$
- 4) if $k \ge n + 1$

2 Solution

Options 2 and 4 are correct as verified in the table 2

3 Example

The scalar multiplication and triangle inequality properties holds true for all k.

$$max\left\{\left|\alpha p(a_{j})\right|\right\} = \left|\alpha\right| max\left\{\left|p(a_{j})\right|\right\} \tag{3.0.1}$$

$$\max\left\{\left|p(a_i) + p(a_j)\right|\right\} \le \max\left\{\left|p(a_i)\right|\right\} + \max\left\{\left|p(a_j)\right|\right\}$$
(3.0.2)

The positivity property holds true only if $k \ge n$ as more than n roots are possible when,

$$p(x) = 0 \implies \left| p(a_j) \right|_{0 \le j \le k} = 0 \tag{3.0.3}$$

$$\implies max\{|p(a_j)|: 0 \le j \le k\} = 0$$
 (3.0.4)

Properties	Norm $\forall x \in V$
Positivity	$ x \ge 0, x = 0 \iff x = 0$
Scalar Multiplication	$ \alpha x = \alpha x , \alpha \in F$
Triangle Inequality	$ x + y \le x + y $

TABLE 1: Properties of Norm

For $p \in V$ then the norm, $max\{ p(a_j) : 0 \le j \le k\} = 0 \iff p(a_j) _{0 \le j \le k} = 0$		
Conditions	Explanation	
only if $k < n$	A polynomial doesn't necessarily have k distinct real roots,	
	i.e., it may have repeated, complex roots.	
Example:	let p be polynomial of degree $n = 2$ and $k = 1$ given by:-	
	$p(x) = x^2 + 4x + 4 (2.0.1)$	
	$ p(a_j) _{0 \le j \le 1} = 0 \implies a_0 = -2, a_1 = -2$ (2.0.2)	
	but a_0, a_1, \dots, a_k should be distinct real numbers. This contradicts the property of Norm. Thus condition fails.	
only if $k \ge n$	p is a polynomial of degree ≤n,	
	it can't have more than n roots and is only possible when,	
	$p(x) = 0 \implies \left p(a_j) \right _{0 < j < k} = 0$	
	hence p is identically zero. Thus condition satisfies.	
if $k + 1 \le n$	Not a norm for $k < n$. Hence incorrect.	
if $k \ge n + 1$	Norm for $k \ge n$. Hence correct.	

TABLE 2: Verifying Positivity Property of Norm