MATH 15910 - Problem Set 8

Sohini Banerjee

November 29, 2023

1

1.1

The accumulation points for (0,1) are $x \in \mathbb{R}$ such that $0 \le x \le 1$

1.2

The accumulation points for [-1,0] are $x \in \mathbb{R}$ such that $\boxed{-1 \le x \le 0}$

1.3

The accumulation points for $\mathbb Q$ are $\mathbb R$ because the rational numbers are dense in the real numbers. From class, we know that for any two real numbers a and b such that a < b, there exists a rational number r such that a < r < b. Now, we need to show that there are infinitely many rational numbers between two real numbers. By the Archimedean property, we know there exists a positive integer N such that $\frac{1}{N} < \epsilon$. Choosing b-r as an arbitrary ϵ , we know there exists a positive integer N such that $\frac{1}{N} < b-r$. We also know $\frac{1}{N+1} < \frac{1}{N}$, so $\frac{1}{N+1} < b-r$. Thus, we get an infinite set of rational numbers $X = \{\frac{1}{N}, \frac{1}{N+1}, \frac{1}{N+2}, \ldots\}$ such that for any $x \in X$, x < b-r or a < r+x < b.

$\mathbf{2}$

2.1

We claim that $\lim_{k\to\infty} 2^{-k} = 0$. We need to show that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|2^{-k} - 0| < \epsilon$. We know that $|2^{-k} - 0| = |2^{-k}| = 2^{-k}$. By the Archimedean property, we know that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that $\frac{1}{N} < \epsilon$. Since $2^N > N$, $\frac{1}{2^N} < \frac{1}{N}$ or $2^{-N} < \frac{1}{N}$. Also, for k > N, $2^{-k} < 2^{-N}$. This means $2^{-k} < 2^{-N} < \frac{1}{N} < \epsilon$, so $2^{-k} < \epsilon$. Thus, we have shown that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|a_k - L| < \epsilon$, where $a_k = 2^{-k}$ and L = 0. This means the sequence 2^{-k} converges, and the limit is $\boxed{0}$.

2.2

We claim that $\lim_{k\to\infty} \frac{k}{k+1} = 0$. We can rewrite $\frac{k}{k+1} = \frac{k+1-1}{k+1} = \frac{k+1}{k+1} - \frac{1}{k+1} = 1 - \frac{1}{k+1}$. We know $\lim_{k\to\infty} \frac{k}{k+1} = \lim_{k\to\infty} (1 - \frac{1}{k+1}) = \lim_{k\to\infty} 1 - \lim_{k\to\infty} \frac{1}{k+1} = 1 - \lim_{k\to\infty} \frac{1}{k+1}$.

We claim that $\lim_{k\to\infty}\frac{1}{k+1}=0$. We need to show that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k>N, $|\frac{1}{k+1}-0|<\epsilon$. We know that $|\frac{1}{k+1}-0|=|\frac{1}{k+1}|=\frac{1}{k+1}$. By the Archimedean property, we know that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that $\frac{1}{N}<\epsilon$. For k>N, $\frac{1}{k+1}<\frac{1}{N+1}<\frac{1}{N}<\epsilon$, so $\frac{1}{k+1}<\epsilon$. Thus, we have shown that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k>N, $|a_k-L|<\epsilon$, where $a_k=\frac{1}{k+1}$ and L=0. This means the sequence $\frac{1}{k+1}$ converges, and the limit is 0. Subsequently, $\lim_{k\to\infty}\frac{k}{k+1}=1-0=1$. This means the sequence $\frac{k}{k+1}$ converges and the limit is 1.

2.3

We claim that $\lim_{k\to\infty}\frac{k}{k^2+1}=0$. We need to show that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k>N, $|\frac{k}{k^2+1}-0|<\epsilon$. We know that $|\frac{k}{k^2+1}-0|=|\frac{k}{k^2+1}|=\frac{k}{k^2+1}$. By the Archimedean property, we know that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that $\frac{1}{N}<\epsilon$. For k>N, $\frac{k}{k^2+1}<\frac{N}{N^2+1}<\frac{N}{N^2}=\frac{1}{N}<\epsilon$, so $\frac{k}{k^2+1}<\epsilon$. Thus, we have shown that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k>N, $|a_k-L|<\epsilon$, where $a_k=\frac{k}{k^2+1}$ and L=0. This means the sequence $\frac{k}{k^2+1}$ converges, and the limit is 0.

3

3.1

By definition, $\lim_{k\to\infty} a_k = A$ means that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|a_k - A| < \epsilon$. We can choose $\frac{\epsilon}{|c|}$ where $c \neq 0$ as an arbitrary ϵ , so $|a_k - A| < \frac{\epsilon}{|c|}$. This is equivalent to $|c| \cdot |a_k - A| < \epsilon$. Furthermore, this means $|c(a_k - A)| < \epsilon$ or $|ca_k - cA| < \epsilon$. If c = 0, we have that $\lim_{k\to\infty} ca_k = \lim_{k\to\infty} 0 = 0$ and cA = 0, so our claim holds for c = 0. In conclusion, we know that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|ca_k - cA| < \epsilon$, or that $\lim_{k\to\infty} ca_k = cA$.

3.2

By definition, $\lim_{k\to\infty} a_k = A$ and $\lim_{k\to\infty} b_k = B$ mean that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|a_k - A| < \epsilon$ and $|b_k - B| < \epsilon$. We can choose $\frac{\epsilon}{2}$ as an arbitrary ϵ , so $|a_k - A| < \frac{\epsilon}{2}$ and $|b_k - B| < \frac{\epsilon}{2}$. Adding these inequalities together, we get that $|a_k - A| + |b_k - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. By the

triangle inequality, we know that $|a_k - A + b_k - B| \le |a_k - A| + |b_k - B|$, so $|a_k - A + b_k - B| \le |a_k - A| + |b_k - B| < \epsilon$ or $|a_k - A + b_k - B| < \epsilon$. Rearranging this, we get $|(a_k + b_k) - (A + B)| < \epsilon$. By definition, this means that for any $\epsilon > 0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k > N, $|(a_k + b_k) - (A + B)| < \epsilon$, or that $\lim_{k \to \infty} (a_k + b_k) = A + B$.

4

We need to show that given that a_k has a lower bound and $a_{k+1} \leq a_k$, the sequence converges. We know that if a sequence has a limit, then it converges. Since the sequence has a lower bound, it must have a greatest lower bound, or infimum. We will use the $\epsilon - N$ definition to check the infimum L of a_k is the limit. By the property of infimum, we know that for any $\epsilon > 0$, there exists a_N in a_k such that $0 \leq a_N - L < \epsilon$. Monotonicity of a_k tells us that for any n > N, $a_n \leq a_{n-1} \leq \ldots \leq a_N$, so $0 \leq a_n - L < \epsilon$ for all $n \geq N$. By the $\epsilon - N$ definition, this shows that $\lim_{k \to \infty} a_k = L$, so the sequence converges.

5

Assume for contradiction that A>B. From the problem, we are given that $a_k\leq b_k$. By definition, $\lim_{k\to\infty}a_k=A$ and $\lim_{k\to\infty}b_k=B$ mean that for any $\epsilon>0$, there exists $N\epsilon\mathbb{Z}_+$ such that for all k>N, $|a_k-A|<\epsilon$ and $|b_k-B|<\epsilon$. We can choose $\epsilon=\frac{A-B}{2}$. Since $|a_k-A|<\epsilon$, we know that $-\epsilon< a_k-A<\epsilon$, so $A-\epsilon< a_k< A+\epsilon$. This means $A-\frac{A-B}{2}< a_k< A+\frac{A-B}{2}$ or $\frac{A+B}{2}< a_k< \frac{3A-B}{2}$. Similarly, since $|b_k-B|<\epsilon$, we know that $-\epsilon< b_k-B<\epsilon$, so $B-\epsilon< b_k< B+\epsilon$. This means $B-\frac{A-B}{2}< b_k< B+\frac{A-B}{2}$ or $\frac{3B-A}{2}< b_k< \frac{A+B}{2}$. Combining these, we get that $\frac{3B-A}{2}< b_k< \frac{A+B}{2}< a_k< \frac{3A-B}{2}$, so $b_k< a_k$. This contradicts our initial assumption that $a_k\leq b_k$, so $A\leq B$ must hold.