

Statistical Testing and Sample Size Calculation Basics Part III

06.03.2024

Christina Abele
Center for Thrombosis and Hemostasis
University Medical Center, Mainz
christina.abele@uni-mainz.de

- Multiple testing
- How to choose the right test
- Recap: Quantities influencing the test result
- How to report test results

- Multiple testing
- How to choose the right test
- Recap: Quantities influencing the test result
- How to report test results

What if you want to test several hypotheses at a time?

- Each time you perform a test, you run the risk of committing an error. So
 the total error risk increases with every additional test.
- Family of k null hypotheses H₀¹, ..., H₀^k: What kind of error do you want to control for?
- You usually want to control for the probability of rejecting any true null hypothesis (FWER: family-wise error rate) ...
 - ... if all null hypotheses are true (FWER in the weak sense) or
 - ... no matter how many null hypotheses are true (FWER in the strong sense)
 - Control of FWER in the strong sense implies control in the weak sense, but not vice versa!
- Exploratory testing: no issue

Bonferroni correction

- Bonferroni inequality: $FWER \le P(H_0^1 \text{ is rejected}) + ... + P(H_0^k \text{ is rejected})$
- So if P (H_0^i is rejected) < α/k for all i, FWER < α Testing all null hypotheses at level α/k leads to FWER control at significance level α in the stong sense.
- But: much too conservative!

Holm-Bonferroni step-down procedure

- Improved Bonferroni correction
- Also controls for FWER in the strong sense
- Permits rejection of all the null hypotheses rejected by Bonferroni correction, and potentially more
- Procedure:
 - Sort hypotheses by p-values: $p^{(1)} \le ... \le p^{(k)}$ with corresponding $H_0^{(1)}$, ..., $H_0^{(k)}$
 - $p^{(1)} < \alpha/k$: reject $H_0^{(1)}$ and go on, $p^{(1)} \ge \alpha/k$: stop
 - $p^{(2)} < \alpha/(k-1)$: reject $H_0^{(2)}$ and go on, $p^{(2)} \ge \alpha/(k-1)$: stop
 - •
 - $p^{(k)} < \alpha$: reject $H_0^{(k)}$ and go on, $p^{(k)} \ge \alpha$: stop
 - After a stop, none of the remaining null hypotheses can be rejected.

Benjamini-Hochberg step-up procedure

- Controls for FWER in the strong sense provided H₀¹, ..., H₀^k are independent or positively correlated
- Permits rejection of all the null hypotheses rejected by the Holm-Bonferroni step-down procedure, and potentially more

Procedure:

- Sort hypotheses by p-values: $p^{(1)} \le ... \le p^{(k)}$ with corresponding $H_0^{(1)}$, ..., $H_0^{(k)}$
- $p^{(k)} < \alpha$: reject $H_0^{(1)}$, ..., $H_0^{(k)}$ and stop, $p^{(k)} \ge \alpha$: don't reject $H_0^{(k)}$ and go on
- $p^{(k-1)} < \alpha/2$: reject $H_0^{(1)}$, ..., $H_0^{(k-1)}$ and stop, $p^{(k-1)} \ge \alpha/2$: don't reject $H_0^{(k-1)}$ and go on
- •
- $p^{(1)} < \alpha/k$: reject $H_0^{(1)}$, $p^{(1)} \ge \alpha/k$: don't reject any null hypothesis

Hierarchical testing

- Controls for FWER in the strong sense
- Permits testing all hypotheses at the full level of α
- Procedure:
 - Fix a sequence of hypotheses $H_0^{(1)}$, ..., $H_0^{(k)}$ in advance depending on importance
 - $p^{(1)} < \alpha$: reject $H_0^{(1)}$ and go on, $p^{(1)} \ge \alpha$: stop
 - $p^{(2)} < \alpha$: reject $H_0^{(2)}$ and go on, $p^{(2)} \ge \alpha$: stop
 - •
 - $p^{(k)} < \alpha$: reject $H_0^{(k)}$ and go on, $p^{(k)} \ge \alpha$: stop
 - After a stop, none of the remaining null hypotheses can be rejected.
- Considerable risk of rejecting hypotheses in spite of low p-values

- Multiple testing
- How to choose the right test
- Recap: Quantities influencing the test result
- How to report test results

How to choose the right test

How to choose the right test

- Multiple testing
- How to choose the right test
- Recap: Quantities influencing the test result
- How to report test results

Recap: Quantities influencing the test result

Sample size N

Inadequate sample sizes increase risk of sampling error

Data variance

High variability in the data increases risk of sampling error

Sampling error

The higher the risk of sampling error, the more likely large deviations are even under H₀

Significance level α

The smaller α , the stricter the criterion for rejection of H_0

Magnitude of effect

Large effects favor large deviations of the observed values from what is expected under H₀

p-value

Test decision: $p < \alpha$?

- Multiple testing
- How to choose the right test
- Recap: Quantities influencing the test result
- How to report test results

How to report test results

CONsolidated **S**tandards **O**f **R**eporting **T**rials checklist:

- Statistical methods used to compare groups for primary and secondary outcomes
- Methods for additional analyses, such as subgroup analyses and adjusted analyses