第2章 80x86 编程的硬件基础

本章要点: 80x86 的寄存器的分类、作用以及有关寄存器的特定用法,内存及其分段,逻辑地址和物理地址, I/0 端口地址。

一、单项选择题		
2.1.1 80x86 的寄存器中,8位的寄存器共有	(C) 个。	
A. 4 B. 6	C. 8	D. 10
2.1.2 总是指向下一条要执行的指令,由此等	实现程序的自动执行	的寄存器是(B)。
A. BP B. IP	C. SP	D. IR
2.1.3 标志寄存器用来保存算术逻辑运算的:	结果状态, 其中用于	表示当前运算结果是否
为 0 的标志位是 (D)。		
A. CF B. OF	C. SF	D. ZF
2.1.4 80x86CPU 执行算术运算时,FLAGS 	共有(B) 个标志位	立受影响。
A. 5 B. 6	C. 7	D. 9
<mark>2.1.5</mark> 一个 16 位相对位移的范围是(C)。		
A128~127 B. 0~65535 C.	8000H∼7FFFH D. 8	$8000 ext{H}{\sim} ext{FFFFH}$
2.1.6 如果某一存储单元的物理地址为 1234	5H,则它的逻辑地址	上为(D): 0345H。
А. 12000Н В. 0012Н	C. 0120H	D. 1200H
2.1.7 通常我们所说的 32 位机,是指这种计		
A. 由 32 个运算器组成	B. 包含 32 个寄存器	2
C. 能够同时处理 32 位二进制数	D. 一共有 32 个运算	算器和控制器
2.1.8 下列寄存器组中,用于提供段内偏移均	地址的寄存器组是(B) _°
A. AX, BX, CX, DX C. SP, BP, IP, DX	B. BX, BP, SI, D	I
C. SP, BP, IP, DX	D. CS, DS, ES, S	S
2.1.9 在 80x86 系统中,约定用于形成堆栈。	没数据物理地址的寄	存器有 (B)。
A. DS, DX, BX	B. SS, BP, SP	
A. DS, DX, BX C. SS, BX, BP	D. DS, BP, SP	
2.1.10 在程序的运行过程中,确定下一个指	令的物理地址的计算	表达式是 (C)。
A. DS \times 16+SI B. ES \times 16+DI	C. $CS \times 16 + IP$	D. $SS \times 16 + SP$
二、填空题		
2.2.1 在 80x86 的 16 位寄存器中,可以用5	长指示存储器地址的	有_ 10 个,它们分别是
BX BP SI DI IP SP DS CS ES SS		以用来指示存储器地址
2.2.2 在实模式下,段地址和偏移地址为		
_ <mark>3017A</mark> _H;段地址和偏移地址为 3015:00		-
段地址和偏移地址为 3010:007AH 的存储点	-	_
了什么?_同一物理地址可以由不同的段地:	· · · · · · · · · · · · · · · · · · ·	
2.2.3 设有一个包含 20 个字的数据区,起始		
元的物理地址是 <mark>111A0</mark> H; 末字单元的		
2.2.4 在实模式下,存储器中每一段最多有		字节,在 DEBUG 下用
R 命令所显示的当前各寄存器的内容和各标	志的状态加下:	

AX=0000 BX=0200 CX=0014 DX=0020 SP=0E8C BP=0080 SI=0006 DI=0000

DS=10E4 ES=10F4 SS=21F0 CS=31FF IP=0106 NV UP EI NG ZR NA PE NC 请画出此时存储器分段的示意图,并回答以下问题:

- (1) 当前的下一条指令的物理地址是 320F6 H; 当前栈顶的物理地址是 22D8C H;
- (2) 状态标志 OF、SF、ZF、CF 的当前值 (用 0 或 1 表示) 分别是_**0**_, _**1**_, _**1**_, _**0**;
- 2.2.5 进行下列操作时,通常使用哪个或哪几个16位寄存器来完成?
- (1) 加、减运算: ____AX、BX、CX、SI、DI、BP____;
- (2) 乘法、除法: ____AL、AX、DX_____;
- (3) 循环计数: ______;
- (4) 保存段地址: CS、DS、SS、ES ;
- (5)作为指针使用: ___SI、DI、BX、BP、SP____;
- (6) 存放端口地址: **DX** ;
- *2.2.6 80x86 微机的 I/O 地址空间可达__64____KB,端口地址的范围是 $0000 \sim FFFFH$ 。在输入输出指令中,端口号通常由___DX___寄存器提供,有时也可以在指令中直接指定 $00 \sim FFH$ 的端口号,8 位的端口数共有__256___个。
- *2.2.7 以后进先出的方式工作的存储空间称为___<mark>堆栈</mark>_____;能被计算机直接识别的语言是__<mark>机器</mark>___语言;用指令的助记符、符号地址表示的面向机器的语言称为__汇编__语言;把若干个模块连接起来成为可执行文件的系统程序是___<mark>连接程序(LINK)</mark>_。

三、简答题

2.3.1 80x86 微机的存储器中存放信息如图所示,请写出 30022H 和 30024H 字节单元的内容分别是什么?以及 30021H 和 30022H 字单元的内容分别是什么?

J.// C C C _	,	1 1 / 0 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4
	:	
30020H	12H	
30021H	34H	(30022H) = 0ABH
30022H	0ABH	(30024H) = 56H
30023H	0CDH	(30021H) ≠=0AB34 H
30024H	56H	(30021H) 享-UAB34H
	:	(30022H) _≱ =0CDABH

2.3.2 有两个 16 位字 5EE1H 和 2A3CH 分别存放在 80x86 微机的存储器的 100B0H 和 100B3H 单元中,请用图表示出它们在存储器里的存放情况。

	:
100B0H	E1
100B1H	5E
100B2H	
100B3H	3 C
100B4H	2A
	:

2.3.3 从内存地址 2000H 开始,依次存放着 3 个数: 1(字)、2BH(字节)和 351DH(双字),请用图表示出它们在存储器里的存放情况。

	:
2000H	01
2001H	00
2002H	2B
2003H	1 D
2004H	35
2005H	00
2006H	00
	:

2.3.4 给出下列 8 位二进制数相加后 CF、OF、SF、ZF 的值(用 0 或 1 表示)?如果把它们看作是无符号数相加则如何判断溢出(用 1 表示有,0 表示无)?

		CF	OF	SF	ZF	看作无符号数时的溢出判断
(1)	0FFH + 01H:	1	0	0_	1	;
(2)	0FEH + 01H:	0	0	1_	0	;
(3)	80H + 81H:	1	1_	0_	0	;
(4)	7FH + 02H:	0	_1_	1_	0	;

2.3.5 给出下列 8 位二进制数相减法 CF、OF、SF、ZF 的值(用 0 或 1 表示)?如果把它们看作是无符号数相减则如何判断溢出(用 1 表示有,0 表示无)?

		CF	OF	SF	ZF	看作无符号数时的溢出判断
(1)	09H - 05H:	0	0	0	0_	;
(2)	05H - 09H:	_1_	0	1	0_	;
(3)	80H - 01H:	0	1_	0	0_	;
(4)	7FH – 0FEH:	_1	1	1	0	;