Lógica para Computação Propriedades da Dedução Natural

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- 2 Teorema da Dedução
- O Definição de Teorema
- 4 Equivalência Sintática
- Regras Derivadas
 - Modus Tollens
 - Introdução da Dupla Negação
 - Prova por Contradição
 - Lei do Terceiro Excluído

Introdução

- Vamos mostrar que $p \vdash p$
- Vamos mostrar que $\vdash p \rightarrow p$

Teorema da Dedução

Teorema da Dedução

Seja Γ um conjunto de fórmulas e ϕ uma fórmula. $\Gamma \cup \{\phi\} \vdash \psi$ se e somente se $\Gamma \vdash (\phi \rightarrow \psi)$.

ullet Vamos mostrar que p,p o qdash q

- Vamos mostrar que $p, p \rightarrow q \vdash q$
- ullet Podemos mostrar que p dash (p o q) o q pelo Teorema da Dedução

- Vamos mostrar que $p, p \rightarrow q \vdash q$
- ullet Podemos mostrar que p dash (p o q) o q pelo Teorema da Dedução
- Aplicando novamente, é o mesmo que mostrar que $\vdash p \rightarrow ((p \rightarrow q) \rightarrow q)$

Teorema

Definição

Fórmulas φ tal que $\vdash \varphi$ são chamadas de teoremas.

Exemplo de Teorema

• Vamos mostrar que $(q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ é um teorema.

Exemplo de Teorema

1.	p o r	suposição
2.	eg q o eg p	suposição
3.	p	suposição
4.		¬¬i 3
5.	$ \neg \neg q$	MT 2,4
6.		¬¬e 5
7.	r	ightarrow e 1,6
8.	p o q	→ i 3-7
9.	$(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)$	\rightarrow i 2-8
10.	$(q ightarrow r) ightarrow ((\lnot q ightarrow \lnot p) ightarrow (p ightarrow r))$	ightarrow i 1-9

Equivalência Sintática

Definição

Duas fórmulas φ e ψ são sintaticamente equivalentes se e somente se $\varphi \vdash \psi$ e $\psi \vdash \varphi$. Usamos a notação $\varphi \dashv \vdash \psi$ para dizer que φ e ψ são sintaticamente equivalentes.

$$\bullet \ (p \land q) \rightarrow r \dashv \vdash p \rightarrow (q \rightarrow r)$$

Regras Derivadas

- Podemos construir outras regras a partir das regras existentes
- Inclusive algumas regras que vimos podem ser obtidas a partir das outras regras
- As regras que já vimos e que podem ser derivadas são: MT e ¬¬i
- Essas regras construídas a partir de outras podem ser vistas como abreviações

Tópicos

- Introdução
- 2 Teorema da Dedução
- Operation de Teorema
 3 Definição de Teorema
- 4 Equivalência Sintática
- Regras Derivadas
 - Modus Tollens
 - Introdução da Dupla Negação
 - Prova por Contradição
 - Lei do Terceiro Excluído

Modus Tollens

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi}$$
 MT.

- ullet Podemos obter a regra Modus Tollens a partir do $ightarrow e, \lnot i, \lnot e$
- Podemos trocar a aplicação da regra MT por uma combinação das três regras
- Todas as deduções em que aplicamos a regra MT podem ser modificadas com essa combinação de regras

Modus Tollens

1	$\phi o \psi$	premise
2	$ eg\psi$	premise
3	ϕ	assumption
4	ψ	\rightarrow e 1,3
5	上	$\neg e 4, 2$
6	$\neg \phi$	$\neg i 3-5$

Tópicos

- Introdução
- 2 Teorema da Dedução
- Operation de Teorema
 3 Definição de Teorema
- 4 Equivalência Sintática
- Regras Derivadas
 - Modus Tollens
 - Introdução da Dupla Negação
 - Prova por Contradição
 - Lei do Terceiro Excluído

$\neg \neg i$

- Podemos obter a regra $\neg \neg i$ a partir do $\neg i, \neg e$
- Podemos trocar a aplicação da regra ¬¬i por uma combinação das duas regras
- Todas as deduções em que aplicamos a regra ¬¬i podem ser modificadas com essa combinação de regras

$\neg \neg i$

$$\frac{\phi}{\neg \neg \phi} \neg \neg i.$$

 $\begin{array}{cccc}
1 & \phi & \text{premise} \\
2 & \neg \phi & \text{assumption} \\
3 & \bot & \neg e \ 1, 2 \\
4 & \neg \neg \phi & \neg i \ 2-3
\end{array}$

Tópicos

- Introdução
- 2 Teorema da Dedução
- Operation de Teorema
 3 Definição de Teorema
- 4 Equivalência Sintática
- Regras Derivadas
 - Modus Tollens
 - Introdução da Dupla Negação
 - Prova por Contradição
 - Lei do Terceiro Excluído

Prova por Contradição

- Se fizermos uma suposição de que $\neg \phi$ é verdade e conseguirmos chegar em uma contradição?
- $\neg \phi$ é falso e ϕ tem que ser verdade

PBC

- \bullet A regra PBC pode ser obtida a partir das regras $\rightarrow i, \rightarrow e, \neg i, \neg \neg e$
- ullet Existe uma dedução partindo de $eg\phi$ que chega em \perp
- ullet Podemos supor $\neg \phi$ e chegar em ot
- Podemos usar a \rightarrow i para obter $\neg \phi \rightarrow \bot$
- Depois aplicar as outras regras da seguinte forma:

PBC

1	$\neg \phi \rightarrow \bot$	given
2	$\neg \phi$	assumption
3		\rightarrow e 1, 2
4	$ eg - \phi$	$\neg i 2-3$
5	ϕ	¬¬е 4

Tópicos

- Introdução
- 2 Teorema da Dedução
- O Definição de Teorema
- 4 Equivalência Sintática
- Regras Derivadas
 - Modus Tollens
 - Introdução da Dupla Negação
 - Prova por Contradição
 - Lei do Terceiro Excluído

Lei do Terceiro Excluído

- \bullet ϕ é verdadeiro ou falso.
- \bullet No caso em que ϕ é falso temos que $\neg \phi$ tem que ser verdade
- Logo temos que $\phi \lor \neg \phi$ é sempre verdade

1	$\neg(\phi \lor \neg\phi)$	assumption
2	ϕ	assumption
3	$\phi \lor \neg \phi$	$\vee i_1 \ 2$
4	上	¬e 3, 1
5	$\neg \phi$	¬i 2−4
6	$\phi \lor \neg \phi$	$\vee i_2$ 5
7	上	¬e 6, 1
8	$\neg\neg(\phi \lor \neg\phi)$	$\neg i 1-7$
9	$\phi \lor \neg \phi$	¬¬е 8

• Vamos mostrar que $p o q \vdash \neg p \lor q$

1	$p \to q$	premise
2	$\neg p \vee p$	LEM
3	$\neg p$	assumption
4	$\neg p \lor q$	$\vee i_1 \ 3$
5	p	assumption
6	q	\rightarrow e 1, 5
7	$\neg p \lor q$	$\forall i_2 \ 6$
8	$\neg p \lor q$	$\vee e \ 2, 3-4, 5-7$