Home Assignment 2

Yu Wang(ndp689)

December 7, 2021

Contents

1	Preprocessing	2
2	Logistic regression 2.1 Cross-entropy error measure	4 5
3	The role of independence	8
	A bound for student's grades How to split a sample	9 10

1 Preprocessing

(a) variance $(x_1) = 1$;

variance
$$(x_2) = D(\sqrt{1 - \epsilon^2}\hat{x}_1) + D(\epsilon\hat{x}_2) = (1 - \epsilon^2)D(\hat{x}_1) + \epsilon^2D(\hat{x}_2) = 1;$$

We can know that $x_2 = \sqrt{1 - \epsilon^2}x_1 + \epsilon \hat{x}_2$. So, x_1 and x_2 are not independent. Then, we have:

$$covariance(x_1, x_2) = \frac{D(x_1 + x_2) - D(x_1) - D(x_2)}{2}$$
$$= \frac{(\sqrt{1 - \epsilon^2} + 1)^2 D(\hat{x}_1) + \epsilon^2 D(\hat{x}_2) - 2}{2}$$
$$= \sqrt{1 - \epsilon^2}$$

(b)

$$f(x) = w_1 x_1 + w_2 x_2$$

= $w_1 \hat{x}_1 + w_2 (\sqrt{1 - \epsilon^2} \hat{x}_1 + \epsilon \hat{x}_2)$
= $(w_1 + \sqrt{1 - \epsilon^2} w_2) \hat{x}_1 + \epsilon w_2 \hat{x}_2$.

If we let $\hat{w}_1 = w_1 + \sqrt{1 - \epsilon^2} w_2$, $\hat{w}_2 = \epsilon w_2$, we have,

$$f(x) = (w_1 + \sqrt{1 - \epsilon^2} w_2) \hat{x}_1 + \epsilon w_2 \hat{x}_2$$

= $\hat{w}_1 \hat{x}_1 + \hat{w}_2 \hat{x}_2$

So, f is linear in x_1, x_2 .

(c) From problem (b), let $\hat{w}_1 = \hat{w}_2 = 1$. So, $w_1 = \frac{\epsilon - \sqrt{1 - \epsilon^2}}{\epsilon}, w_2 = \frac{1}{\epsilon}$. Then,

$$w_1^2 + w_2^2 = \left(\frac{\epsilon - \sqrt{1 - \epsilon^2}}{\epsilon}\right)^2 + \left(\frac{1}{\epsilon}\right)^2$$

$$= 1 + \frac{1 - \epsilon^2}{\epsilon^2} - \frac{2\sqrt{1 - \epsilon^2}}{\epsilon} + \frac{1}{\epsilon^2}$$

$$= \frac{2}{\epsilon^2} - \frac{2\sqrt{1 - \epsilon^2}}{\epsilon}$$
(1)

From equation (1), obviously, $\epsilon \in [-1,0) \cup (0,1]$. So, let $\epsilon = \cos\theta, \theta \in$

 $[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]$. Then, according equation (1), we have,

$$\begin{aligned} w_1^2 + w_2^2 &= \frac{2}{\epsilon^2} - \frac{2\sqrt{1 - \epsilon^2}}{\epsilon} \\ &= 2sec^2\theta - 2tan\theta \\ &= 2(tan\theta - \frac{1}{2})^2 + \frac{3}{2} \\ &\geq \frac{3}{2} \end{aligned}$$

So, minimum value of C is $\frac{3}{2}$

(d) As $\epsilon \to 0$, the minimum $C \to \infty$. So, we need to use a $C \to \infty$ to be able to implement the target function, which is impossible.

2 Logistic regression

2.1 Cross-entropy error measure

(a) We know that we need to maximize the likelihood $\prod_{n=1}^N P(y_n|x_n)$. It is equivalent to maximize $\sum_{n=1}^N \ln(P(y_n|x_n))$, or minimize $-\sum_{n=1}^N \ln(P(y_n|x_n))$. And according to the equation:

$$P(y_n|x_n) = \begin{cases} h(x_n) & y_n = +1\\ 1 - h(x_n) & y_n = -1 \end{cases}$$

We have,

$$E_{in}(w) = -\sum_{n=1}^{N} \ln(P(y_n|x_n))$$

$$= -\sum_{n=1}^{N} ([y_n = +1]] \ln(h(x_n)) + [y_n = -1]] \ln(1 - h(x_n))) \quad (2)$$

$$= \sum_{n=1}^{N} \left([y_n = +1]] \ln \frac{1}{h(x_n)} + [y_n = -1]] \ln \frac{1}{1 - h(x_n)} \right)$$

(b) We know that $h(x) = \theta(w^T x)$, so, $\ln \frac{1}{h(x_n)} = \ln(1 + e^{-w^T x_n})$ and $\ln \frac{1}{(1-h(x_n))} = \ln(1 + e^{w^T x_n})$. Then, according to the equation (2), we

have,

$$E_{in}(w) = \sum_{n=1}^{N} \left([y_n = +1] \ln \frac{1}{h(x_n)} + [y_n = -1] \ln \frac{1}{1 - h(x_n)} \right)$$

$$= \sum_{n=1}^{N} \left([y_n = +1] \ln(1 + e^{-w^T x_n}) + [y_n = -1] \ln(1 + e^{w^T x_n}) \right)$$

$$= \sum_{n=1}^{N} \ln(1 + e^{-y_n w^T x_n})$$

Therefore, minimizing the in-sample error in part (a) is equivalent to minimizing the one in equation (3.9)

2.2 Logistic regression loss gradient

(1) Assuming labels in {-1, 1}

We know that $E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n w^T x_n})$, so, we have the gradient,

$$\nabla E_{in}(w) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n e^{-y_n w^T x_n}}{1 + e^{-y_n w^T x_n}}$$
$$= -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n}{1 + e^{y_n w^T x_n}}$$
$$= \frac{1}{N} \sum_{n=1}^{N} -y_n x_n \theta(-y_n w^T x_n)$$

According to the gradient, we know that if an example is misclassified, $y_n w^T x_n < 0$, so $\theta(-y_n w^T x_n) > 0.5$, while if an example is correctly classified, $y_n w^T x_n > 0$, so $\theta(-y_n w^T x_n) < 0.5$.

So, the contribution of 'misclassified' example is more to the gradient than a correctly classified one.

(2) Assuming labels in $\{0, 1\}$

We can get the $E_{in}(w)$,

$$\nabla E_{in}(w) = -\sum_{n=1}^{N} \ln(P(y_n|x_n))$$

$$= -\sum_{n=1}^{N} ([y_n = +1]] \ln(h(x_n)) + [y_n = 0]] \ln(1 - h(x_n)))$$

$$= -\sum_{n=1}^{N} (y_n \ln(h(x_n)) + (1 - y_n) \ln(1 - h(x_n)))$$

$$= -\sum_{n=1}^{N} (y_n (\ln(h(x_n)) - \ln(1 - h(x_n))) + \ln(1 - h(x_n)))$$

$$= -\sum_{n=1}^{N} \left(y_n \ln \frac{h(x_n)}{1 - h(x_n)} + \ln(1 - h(x_n)) \right)$$

$$= -\sum_{n=1}^{N} \left(y_n w^T x_n - \ln(1 + e^{w^T x_n}) \right)$$

And then, its gradient is,

$$\nabla E_{in}(w) = -\frac{1}{N} \sum_{n=1}^{N} \left(y_n x_n - \frac{x_n e^{w^T x_n}}{1 + e^{w^T x_n}} \right)$$
$$= -\frac{1}{N} \sum_{n=1}^{N} (y_n - \theta(w^T x_n)) x_n$$

According to the gradient, we know that if an example is misclassified, $|y_n - \theta(w^T x_n)|$ is larger, while if an example is correctly classified, $|y_n - \theta(w^T x_n)|$ is lesser.

So, the contribution of 'misclassified' example is more to the gradient than a correctly classified one.

2.3 Log-odds

Let $p = P(Y = 1 \mid X = x) = \sigma(w^T x + b)$, so, 1 - $p = P(Y = 0 \mid X = x)$. Then, we have

$$w^{T}x + b = \ln \frac{p}{1 - p}$$
$$= \ln \frac{\sigma(w^{T}x + b)}{1 - \sigma(w^{T}x + b)}$$

This equals:

$$e^{w^{T}x+b} = \frac{\sigma(w^{T}x+b)}{1-\sigma(w^{T}x+b)} \iff$$

$$1 + e^{w^{T}x+b} = 1 + \frac{\sigma(w^{T}x+b)}{1-\sigma(w^{T}x+b)}$$

$$= \frac{1}{1-\sigma(w^{T}x+b)} \iff$$

$$\frac{1}{1+e^{w^{T}x+b}} = 1 - \sigma(w^{T}x+b) \iff$$

$$\sigma(w^{T}x+b) = \frac{1}{1+e^{-(w^{T}x+b)}}$$

Then, σ is the logistic function.

2.4 Variable importance

1. How many solutions (i.e., optimal values for the coefficients) would the linear regression optimization problem (without regularization) have if the one-hot encoding was used? Why?

We will have infinite solutions.

Reasons:

If we use the one-hot encoding, the model will be like:

$$y = w_0 + w_1 gre + w_2 gpa + w_3 rank_1 + w_4 rank_2 + w_5 rank_3 + w_6 rank_4$$

Where $rank_1 + rank_2 + rank_3 + rank_4 = 1$. So, we cannot avoid the linear dependency and such 4 parameters $(rank_1, ..., rank_4)$ are highly relevant. Then, there will be infinite solutions.

2. Why would it be difficult to interpret the variable importance if the one-hot encoding was used?

Iterations 11										
Results: Logit										
Model:			it	P	seudo R-squared	0.083				
Depende	ent Varia	able: adm	it	A	AIC:	470.5175				
Date:		202	2021-12-07 15:48		BIC:	494.4663				
No. Obs	servation	ns: 400		I	og-Likelihood:	-229.26				
Df Mode	el:	5	5		L-Null:	-249.99				
Df Resi	iduals:	394	394		LR p-value:	7.5782e-08				
Converged:			1.0000		cale:	1.0000				
No. Iterations:										
					[0.025					
const	-3.9054	8947848.53	33 -0.0000	1.0000	-17537464.7699	17537456.9590				
gre	0.0023	0.00	11 2.0699	0.0385	0.0001	0.0044				
gpa	0.8040	0.33	18 2.4231	0.0154	0.1537	1.4544				
rank_1	-0.0846	8947848.53	33 -0.0000	1.0000	-17537460.9490	17537460.7799				
rank_2	-0.7600	8947848.53	33 -0.0000	1.0000	-17537461.6245	17537460.1044				
_					-17537462.2892					
rank 4	-1.6360	8947848.53	33 -0.0000	1.0000	-17537462.5005	17537459.2284				

Figure 1: the model of using the one-hot encoding

From Figure 1, if we use the one-hot encoding, the coefficients of $rank_1$, $rank_2$, $rank_3$ and $rank_4$ may not be true (because their Std.Err. are very large), and from the %5 significance level, they are not statistically significant.

Why C1 variables are used?

Using C-1 variables is enough, because we can use (1, 0, 0), (0, 1, 0) and (0, 0, 1) to express $rank_2$, $rank_3$, $rank_4$ respectively, and then, we can also use (0, 0, 0) to express $rank_1$.

Optimization terminated successfully. Current function value: 0.573147 Iterations 6 Results: Logit											
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: Converged: No. Iterations:		2021-12-07 400 5 394 1.0000	16:54	Log-Likelih	470 494 pod: -229 -249 : 7.5	470.5175 494.4663 -229.26 -249.99					
	Coef.	Std.Err.	z	P> z	[0.025	0.975]					
gre gpa rank_2	0.8040	0.0011 0.3318 0.3165	2.069 2.423 -2.134		0.0001 0.1537 -1.2958 -2.0170	0.0044 1.4544 -0.0551 -0.6634					

Figure 2: the model of using C-1 variables

Besides, from Figure 2, the coefficients of $rank_1, rank_2, rank_3$ and $rank_4$ have high accuracy (because their Std.Err. are very small), and from the %5 significance level, they are statistically significant.

3 The role of independence

Let X_1 be chosen at random. Then, let dependent Bernoulli r.v. $X_1, ..., X_n(i.e., X_i \in 0, 1)$ be a sequence of $X_1 = X_2 = ... = X_n$. So, we have

$$E(X_i) = E(X_1)$$
= 1 * $\frac{1}{2}$ + 0 * $\frac{1}{2}$ = $\frac{1}{2}$

Then,

$$\left| \mu - \frac{1}{n} \sum_{i=1}^{n} X_i \right| = \left| \frac{1}{2} - 1 \right|$$
$$= \frac{1}{2}$$

So,
$$P(|\mu - \frac{1}{n} \sum_{i=1}^{n} X_i| \ge \frac{1}{2}) = 1$$

4 A bound for student's grades

1. Let $\hat{Q} = 100 - \hat{Z}$. Then, the probability of observing $\hat{Z} \leq z$ is

$$P(\hat{Z} \le z) = P(100 - \hat{Z} \ge 100 - z) = P(\hat{Q} \ge 100 - z)$$

$$\le \frac{E(\hat{Q})}{100 - z} = \frac{100 - E(\frac{1}{15} \sum_{i=1}^{15} X_i)}{100 - z}$$

$$= \frac{100 - p}{100 - z} = \frac{40}{100 - z}$$

Where $100 - \hat{Z} > 0$ and 100 - z > 0.

So,
$$\delta(100 - z_{max}) = 40$$
, then $z_{max} = -700$.

2. Let $\hat{Q} = 100 - \hat{Z}$. From the Chebyshev's inequality,

$$P(\hat{Z} \le z) = P(100 - \hat{Z} \ge 100 - z) = P(\hat{Q} \ge 100 - z)$$

$$= P(\hat{Q} - E(\hat{Q}) \ge 100 - z - E(\hat{Q}))$$

$$\le P(|\hat{Q} - E(\hat{Q})| \ge 60 - z)$$

$$\le \frac{Var(\hat{Q})}{(60 - z)^2}$$

Where 60 - z > 0.

Because $\hat{Q} \in [0, 100]$, then, we let a random variable $Y \in \{0, 100\}$, P(Y=0)=0.6, P(Y=100)=0.4, and $\hat{Y}=\frac{1}{15}\sum_{i=1}^{15}Y_i$. So, $E(\hat{Y})=40$, and $Var(\hat{Y})=\frac{1}{15}(E(Y_1^2)-E^2(Y_1))=2400$. From 1, we know that $E(\hat{Q})=40$. Then,

$$P(\hat{Z} \le z) \le P\left(\left|\hat{Q} - E(\hat{Q})\right| \ge 60 - z\right)$$

$$\le \frac{Var(\hat{Q})}{(60 - z)^2}$$

$$\le \frac{Var(\hat{Y})}{(60 - z)^2}$$

So, $\delta(60 - z_{max})^2 = 160$, then $z_{max} \approx 3.43$

3. From the Hoeffding's inequality,

$$P(\hat{Z} \le z) = P(E(\hat{Z}) - \hat{Z} \ge E(\hat{Z}) - z)$$
$$= P(E(\hat{Z}) - \hat{Z} \ge 60 - z)$$
$$\le e^{-\frac{2*15^2(60-z)^2}{15*100^2}}$$

Where 60 - z > 0.

So,
$$e^{-\frac{2*15^2(60-z_{max})^2}{15*100^2}} = 0.05$$
, then, $z_{max} \approx 28.40$

4. The Chebyshev's inequality and the Hoeffding's inequality provide non-vacuous values of z

5 How to split a sample

1. First, we need to prove that $E\left[\hat{L}(\hat{h}_{S^{train}}^*, S^{test})\right] = L(\hat{h}_{S^{train}}^*)$:

$$E\left[\hat{L}(\hat{h}_{S^{train}}^*, S^{test})\right] = E\left[\frac{1}{n^{test}} \sum_{i=i}^{n^{test}} l(\hat{h}_{S^{train}}^*(X_i), Y_i)\right]$$

$$= \frac{1}{n^{test}} \sum_{i=i}^{n^{test}} E\left[l(\hat{h}_{S^{train}}^*(X_i), Y_i)\right]$$

$$= \frac{1}{n^{test}} \sum_{i=i}^{n^{test}} \hat{L}(\hat{h}_{S^{train}}^*)$$

$$= L(\hat{h}_{S^{train}}^*)$$

Next, from the Hoeffding's inequality, we have:

$$P\left(L(\hat{h}_{S^{train}}^*) - \hat{L}(\hat{h}_{S^{train}}^*, S^{test}) \ge \epsilon\right) \le e^{-2n^{test}\epsilon^2}$$

And then, let $\delta=e^{-2n^{test}\epsilon^2}$, so, $\epsilon=\sqrt{\frac{\ln\frac{1}{\delta}}{2n^{test}}}$. We have:

$$P\left(L(\hat{h}_{Strain}^*) - \hat{L}(\hat{h}_{Strain}^*, S^{test}) \ge \sqrt{\frac{\ln\frac{1}{\delta}}{2n^{test}}}\right) \le \delta \iff$$

$$P\left(L(\hat{h}_{Strain}^*) - \hat{L}(\hat{h}_{Strain}^*, S^{test}) \le \sqrt{\frac{\ln\frac{1}{\delta}}{2n^{test}}}\right) \ge 1 - \delta \iff$$

$$P\left(L(\hat{h}_{Strain}^*) \le \sqrt{\frac{\ln\frac{1}{\delta}}{2n^{test}}} + \hat{L}(\hat{h}_{Strain}^*, S^{test})\right) \ge 1 - \delta$$

Then, we have a bound on $L(\hat{h}^*_{Strain})$ in terms of $\hat{L}(\hat{h}^*_{Strain}, S^{test})$ and n^{test} that holds with probability at least $1 - \delta$.

2. Let $H = \{\hat{h}_1^*, \hat{h}_2^*, ..., \hat{h}_m^*\}$ and $\delta_i = \frac{\delta}{m}$, then, we have:

$$\begin{split} P\left(\forall \hat{h}_i^* \in H : L(\hat{h}_i^*) \geq \sqrt{\frac{\ln \frac{1}{\delta_i}}{2n_i}} + \hat{L}(\hat{h}_i^*, S_i^{test})\right) \\ &\leq P\left(\exists \hat{h}_i^* \in H : L(\hat{h}_i^*) \geq \sqrt{\frac{\ln \frac{1}{\delta_i}}{2n_i}} + \hat{L}(\hat{h}_i^*, S_i^{test})\right) \\ &\leq \sum_{\hat{h}^* \in H} P\left(L(\hat{h}_i^*) \geq \sqrt{\frac{\ln \frac{1}{\delta_i}}{2n_i}} + \hat{L}(\hat{h}_i^*, S_i^{test})\right) \\ &\leq \sum_{\hat{h}^* \in H} \delta_i = \sum_{\hat{h}^* \in H} \frac{\delta}{m} = \delta \end{split}$$

This equals:

$$\begin{split} P\left(\forall \hat{h}_i^* \in H : L(\hat{h}_i^*) \geq \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}} + \hat{L}(\hat{h}_i^*, S_i^{test})\right) \leq \delta \iff \\ P\left(\forall \hat{h}_i^* \in H : L(\hat{h}_i^*) \leq \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}} + \hat{L}(\hat{h}_i^*, S_i^{test})\right) \geq 1 - \delta \end{split}$$

Where, we can have a fixed $n_i = \frac{1}{2\epsilon^2} \ln \frac{m}{\delta}$, so all the n_i have the same value.

Then, we have a bound on $L(\hat{h}_i^*)$ in terms of $\hat{L}(\hat{h}_i^*, S_i^{test})$ and n_i that holds for all \hat{h}_i^* simultaneously with probability at least $1 - \delta$.