PageRank

Random Surfers on the Web Transition Matrix of the Web Dead Ends and Spider Traps Topic-Specific PageRank

Jeffrey D. Ullman
Stanford University

Administrivia – Honor Code

- We've had our first HC cases.
- Please, please, please, before you do anything that might violate the HC, talk to me or a TA to make sure it is legitimate.
- It is much easier to get caught than you might think.

Administrivia – Homeworks

- There were a number of people who failed to upload code or HW answers properly and received no credit.
- Also, some people followed general SCPD directions, which you must not do in the future.
- We made some exceptions, e.g., allowing late code uploads.
- But in the future, please do not expect these sorts of exceptions to be made.

Intuition — (1)

- Web pages are important if people visit them a lot.
- But we can't watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to random surfer model:
 - Start at a random page and follow random out-links repeatedly, from whatever page you are at.
 - PageRank = limiting probability of being at a page.

Intuition — (2)

- Solve the recursive equation: "a page is important to the extent that important pages link to it."
 - Equivalent to the random-surfer definition of PageRank.
- Technically, importance = the principal eigenvector of the transition matrix of the Web.
 - A few fixups needed.

Transition Matrix of the Web

- Number the pages 1, 2,.....
 - Page i corresponds to row and column i.
- M [i, j] = 1/n if page j links to n pages, including page i; 0 if j does not link to i.
 - M [i, j] is the probability we'll next be at page i if we are now at page j.

Example: Transition Matrix

Suppose page *j* links to 3 pages, including *i* but not *x*.

Random Walks on the Web

- Suppose v is a vector whose i th component is the probability that a random walker is at page i at a certain time.
- If a walker follows a link from i at random, the probability distribution for walkers is then given by the vector Mv.

Random Walks - (2)

- Starting from any vector u, the limit M (M (...M (M u) ...)) is the long-term distribution of walkers.
- Intuition: pages are important in proportion to how likely a walker is to be there.
- The math: limiting distribution = principal eigenvector of M = PageRank.
 - Note: because M has each column summing to 1, the principal eigenvalue is 1.
 - Why? If \mathbf{v} is the limit of MM...M \mathbf{u} , then \mathbf{v} satisfies the equations $\mathbf{v} = \mathbf{M}\mathbf{v}$.

Example: The Web in 1839

Solving The Equations

- Because there are no constant terms, the equations v = Mv do not have a unique solution.
- In Web-sized examples, we cannot solve by Gaussian elimination anyway; we need to use relaxation (= iterative solution).
- Works if you start with any nonzero u.

Simulating a Random Walk

- Start with the vector u = [1, 1,..., 1] representing the idea that each Web page is given one unit of importance.
 - Note: it is more common to start with each vector element = 1/n, where n is the number of Web pages.
- Repeatedly apply the matrix M to u, allowing the importance to flow like a random walk.
- About 50 iterations is sufficient to estimate the limiting solution.

Example: Iterating Equations

• Equations $\mathbf{v} = M\mathbf{v}$:

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

y11
$$5/4$$
 $9/8$ $6/5$ a =1 $3/2$ 1 $11/8$... $6/5$ m1 $1/2$ $3/4$ $1/2$ $3/5$

In the Limit ...

The Web Is More Complex Than That

Dead Ends
Spider Traps
Taxation Policies

Real-World Problems

- Some pages are dead ends (have no links out).
 - Such a page causes importance to leak out.
- Other groups of pages are spider traps (all outlinks are within the group).
 - Eventually spider traps absorb all importance.

Example: Effect of Dead Ends

• Equations $\mathbf{v} = M\mathbf{v}$:

$$y = y/2 + a/2$$

 $a = y/2$
 $m = a/2$

$$y$$
 1 1 3/4 5/8 0
a = 1 1/2 1/2 3/8 ... 0
m 1 1/2 1/4 1/4 0

In the Limit ...

M'soft Becomes Spider Trap

Example: Effect of Spider Trap

• Equations $\mathbf{v} = M\mathbf{v}$:

$$y = y/2 + a/2$$

 $a = y/2$
 $m = a/2 + m$

$$y$$
 1 1 3/4 5/8 0
a = 1 1/2 1/2 3/8 ... 0
m 1 3/2 7/4 2 33

Microsoft Becomes a Spider Trap

Microsoft Becomes a Spider Trap

Microsoft Becomes a Spider Trap

In the Limit ...

PageRank Solution to Traps, Etc.

- "Tax" each page a fixed percentage at each iteration.
- Add a fixed constant to all pages.
 - Optional but useful: add exactly enough to balance the loss (tax + PageRank of dead ends).
- Models a random walk with a fixed probability of leaving the system, and a fixed number of new walkers injected into the system at each step.
 - Divided equally among all pages.

Example: Microsoft is a Spider Trap; 20% Tax

• Equations v = 0.8(Mv) + 0.2:

$$y = 0.8(y/2 + a/2) + 0.2$$

 $a = 0.8(y/2) + 0.2$
 $m = 0.8(a/2 + m) + 0.2$

Topic-Specific PageRank

Focusing on Specific Pages
Teleport Sets
Interpretation as a Random Walk

Topic-Specific Page Rank

- Goal: Evaluate Web pages not just according to their popularity, but also by how relevant they are to a particular topic, e.g. "sports" or "history."
- Allows search queries to be answered based on interests of the user.
- Example: Search query [jaguar] wants different pages depending on whether you are interested in automobiles, nature, or sports.

Teleport Sets

- Assume each walker has a small probability of "teleporting" at any tick.
- Teleport can go to:
 - 1. Any page with equal probability.
 - As in the "taxation" scheme.
 - 2. A set of "relevant" pages (teleport set).
 - For topic-specific PageRank.

Example: Topic = Software

- Only Microsoft is in the teleport set.
- Assume 20% "tax."
 - I.e., probability of a teleport is 20%.

Picking the Teleport Set

- Choose the pages belonging to the topic in Open Directory.
- 2. "Learn," from a training set, the typical words in pages belonging to the topic; use pages heavy in those words as the teleport set.

Application: Link Spam

- Spam farmers create networks of millions of pages designed to focus PageRank on a few undeserving pages.
 - We'll discuss this technology shortly.
- To minimize their influence, use a teleport set consisting of trusted pages only.
 - Example: home pages of universities.