27)	Let a set H be open If H=Ho
	Let Qo = empty set (Q is not equal to Qo, not open set)
	A set H is closed if cl (H) = H.
	However, CI(Q)=R (EI(Q) + Q, the set of rational
	numbers is not a closed set either.
	The set of rational numbers is neither open or closed

30) i) Suppose x_0 is a accumplation point E'. Given E>0, there exists $x \in E'$ with $|x-x_0| < \frac{E}{2}$ $|x'-x_0| = |x'+x-x-x_0| \leq |x'-x| + |x-x_0|$ $< \frac{E}{2} + \frac{E}{2} = E$ As such, x_0 is a limit point of E and contained by E' $\Rightarrow E'$ is closed as it contains all its limit points E'If $x \in E$ then $x \in E$ because $E \subseteq E'$ If $x \in E'$ then $x \in E$ because $E \subseteq E'$ $\Rightarrow E \cup E' \leq E' \Rightarrow E \leq E \cup E'$ $x \in E$ $x \in E$

