

Lista de Exercícios 4: F 129

2º Semestre de 2012

R. Urbano/V. Rodrigues

Propagação de Erros e Método dos Mnimos Quadrados

Questão 1 Foram realizados três experimentos distintos para encontrar a posição de um objeto, que resultaram nos valores: $\overline{x}_1 \pm \sigma_{\overline{x}_1}$, $\overline{x}_2 \pm \sigma_{\overline{x}_2}$ e $\overline{x}_3 \pm \sigma_{\overline{x}_3}$. Encontre o valor médio da posição do objeto e o seu erro.

Questão 2 Em um movimento descrito pela expressão: $x(t) = x_0 + v_0 t + \frac{1}{2}at^2$, para encontrarmos a posição x medimos $x_0 = (10 \pm 1) \ m$, $v_0 = (5.0 \pm 0.2) \ m/s$ e $t = (0.40 \pm 0.01) \ s$. Encontre a equação literal para \overline{x} e $\sigma_{\overline{x}}$ e o valor de x usando a igual a aceleração da gravidade $(10 \ m/s^2)$.

Questão 3 Para determinarmos a energia cinética de um objeto, medimos:

- \bullet 5 vezes a massa do objeto: 10.0 kg, 10.0 kg, 11.0 kg, 11.0 kg e 13.0 kg, com um erro instrumental de 0.5 kg.
- 5 vezes a velocidade do objeto: 1.00 m/s, 1.00 m/s, 1.10 m/s, 1.10 m/s e 1.30 m/s, com um erro instrumental de 0.05 m/s.

Obtenha o valor da energia. No cálculo do erro, use a fórmula geral para σ_E

Questão 4 Para determinarmos a constante G na lei de gravitação de Newton (Eq. 1), foram medidos $\overline{F} \pm \sigma_{\overline{F}}$, $\overline{M}_1 \pm \sigma_{\overline{M}_1}$, $\overline{M}_2 \pm \sigma_{\overline{M}_2}$ e $\overline{R} \pm \sigma_{\overline{R}}$. Encontre o erro de G: σ_G .

$$F = -G \frac{M_1 M_2}{R^2} \tag{1}$$

Questão 5 Foi realizado o experimento esquematizado na figura abaixo, onde a esfera 1 com velocidade v_i se choca com a esfera 2 que está em repouso. Apó o choque, as esferas avançam juntas devido a cola exitente na 2. As massas das esferas são: $m_1 = (1.0 \pm 0.1) Kg$ e $m_2 = (2.0 \pm 0.1) Kg$. Foram realizados 10 choques onde foram medidos os valores de v_f para cada v_i escolhido.

n	$v_i \ (m/s)$	$v_f (m/s)$
1	1.0	0.35 ± 0.02
2	2.0	0.65 ± 0.02
3	3.0	1.02 ± 0.02
4	4.0	1.35 ± 0.02
5	5.0	1.65 ± 0.02
6	6.0	2.03 ± 0.02
7	7.0	2.35 ± 0.02
8	8.0	2.69 ± 0.02
9	9.0	3.03 ± 0.02
10	10.0	3.33 ± 0.02

- a Considere o modelo $v_f = kv_i$ e que ocorra conservação de momento linear neste choque. Qual a equação que determina k?
- a Em um gráfico linear de v_i vs v_f , determine k usando a tangente da reta.
- b Determine $k \pm \sigma_k$ usando os valores medidos das massas de 1 e 2.
- c Determine $k \pm \sigma_k$ usando o método da mínimos quadrados.