INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Lecture #5 - 9/10/2019

CMSC320 Tuesdays and Thursdays 5pm – 6:15pm

ANNOUNCEMENTS

Project 1 is posted!

- Current due date is September 25th (a bit over two weeks)
- https://github.com/cmsc320/fall2019/tree/master/project1

Quiz 2 is due on Thursday at noon

Good practice for the next few lectures, too!

REVIEW OF LAST LECTURES

Shift thinking from:

Imperative code to manipulate data structures

to:

Sequences/pipelines of operations on data

Two key questions:

- 1. Data Representation, i.e., what is the natural way to think about given data
- 2. Data Processing Operations, which take one or more datasets as input and produce

REVIEW OF LAST CLASS

1. NumPy: Python Library for Manipulating nD Arrays

- A powerful n-dimensional array object.
- Homogeneous arrays of fixed size
- Operations like: indexing, slicing, map, applying filters
- Also: Linear Algebra, Vector operations, etc.
- Many other libraries build on top of NumPy

TODAY/NEXT CLASS

- NumPy: Python Library for Manipulating nD Arrays
 Multidimensional Arrays, and a variety of operations including Linear Algebra
- 2. Pandas: Python Library for Manipulating Tabular Data Series, Tables (also called DataFrames) Many operations to manipulate and combine tables/series
- 3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

TODAY'S LECTURE

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL

TABLES

Variables
(also called Attributes, or Columns, or Labels)

Observations, Rows, or Tuples

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

TABLES

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-73/mission-sts-73.html HTTP/1.0" 200 4085

1. SELECT/SLICING

Select only some of the rows, or some of the columns, or a

combination

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

Only columns ID and Age

ID	age
1	12.2
2	11.0
3	15.6
4	35.1

Only rows with wgt > 41

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
3	15.6	65.3	165.3
4	35.1	84.2	185.8

Both

ID	age
1	12.2
3	15.6
4	35.1

2. AGGREGATE/REDUCE

Combine values across a column into a single value

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

SUM			
MAX	35.1	84.2	185.8

232.6

640.0

73.9

SUM(wgt_kg^2 - hgt_cm)

What about ID/Index column?

Usually not meaningful to aggregate across it May need to explicitly add an ID column

14167.66

3. MAP

Apply a function to every row, possibly creating more or fewer columns

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

4. GROUP BY

Group tuples together by column/dimension

ID	A	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

By 'A'

A = foo

ID	В	С
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A = bar

ID	В	C
2	2	4.7
5	1	1.2
6	2	2.5

4. GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

By 'B'

$$B = 1$$

ID	A	C
5	bar	1.2

$$B = 2$$

ID	Α	C
2	bar	4.7
6	bar	2.5

$$B = 3$$

ID	Α	С
1	foo	6.6
4	foo	8.0
8	foo	8.0

$$B = 4$$

ID	A	C
3	foo	3.1
7	foo	2.3

4. GROUP BY

Group tuples together by column/dimension

ID	A	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0
7	foo	4	2.3

By 'A', 'B'

$$A = bar, B = 1$$

ID	С
5	1.2

$$A = bar, B = 2$$

ID	C
2	4.7
6	2.5

$$A = foo, B = 3$$

ID	C
1	6.6
4	8.0
8	8.0

$$A = foo, B = 4$$

ID	C
3	3.1
7	2.3

5. GROUP BY AGGREGATE

Compute one aggregate Per group

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

R	=	1
D	_	- 1

ID	A	С	
5	bar	1.2	

B = 2

ID	Α	C
2	bar	4.7
6	bar	2.5

$$B = 3$$

Group by 'B'

Sum on C

ID	A	С
1	foo	6.6
4	foo	8.0
8	foo	8.0

B = 4

ID	Α	C
3	foo	3.1
7	foo	2.3

B = 1

Sum (C)
1.2

$$B = 2$$

Sum (C)

7.2

$$B = 3$$

Sum (C)

22.6

$$B = 4$$

Sum (C)

5.4

5. GROUP BY **AGGREGATE**

B = 1

Sum (C)

1.2

Final result usually seen

As a table

ID	A	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 2

Sum (C)

7.2

B = 3

Sum (C)

Group by 'B'

Sum on C

2.6	

B = 4

Sum (C)

5.4

В	SUM(C)
1	1.2
2	7.2
3	22.6
4	5.4

6. UNION/INTERSECTION/DIFFERENCE

Set operations – only if the two tables have identical attributes/columns

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Similarly Intersection and Set Difference manipulate tables as Sets

IDs may be treated in different ways, resulting in somewhat different behaviors

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

ID	A	В
1	foo	3
2	bar	2
3	foo	4
4	foo	3

ID	C
1	1.2
2	2.5
3	2.3
5	8 N

ID	A	В	С
1	foo	3	1.2
2	bar	2	2.5
3	foo	4	2.3

What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

Outer joins can be used to "pad" IDs that don't appear in both tables

Three variants: LEFT, RIGHT, FULL

SQL Terminology -- Pandas has these operations as well

ID	Α	В
1	foo	3
2	bar	2
3	foo	4
4	foo	3

ID	A	В	С
1	foo	3	1.2
2	bar	2	2.5
3	foo	4	2.3
4	foo	3	NaN
5	NaN	NaN	8.0

SUMMARY

- Tables: A simple, common abstraction
 - Subsumes a set of "strings" a common input
- Operations
 - Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By
- In a given system/language, the operations may be named differently
 - E.g., SQL uses "join", whereas Pandas uses "merge"
- Subtle variations in the definitions, especially for more complex operations

ID	Α	В	C
1	foo	3	6.6
2	baz	2	4.7
3	foo	4	3.1
4	baz	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Group By 'A'

How many tuples in the answer?

- A. 1
- B. 3
- C. 5
- D. 8

ID	Α	В	С
1	foo	3	6.6
2	baz	2	4.7
3	foo	4	3.1
4	baz	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Group By 'A', 'B'

How many groups in the answer?

A. 1

B. 3

C. 4

D. 6

ID	Α	В
1	foo	3
2	bar	2
4	foo	4
5	foo	3

ID	С
2	1.2
4	2.5
6	2.3
7	8.0

How many tuples in the answer?

A. 1

B. 2

C. 4

D. 6

ID	Α	В
1	foo	3
2	bar	2
4	foo	4
5	foo	3

ID	С
2	1.2
4	2.5
6	2.3
7	8.0

How many tuples in the answer?

Δ 1

B. 4

C. 6

D. 8

FULL OUTER JOIN

All IDs will be present in the answer With NaNs

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases

PANDAS: HISTORY

- Written by: Wes McKinney
 - Started in 2008 to get a high-performance, flexible tool to perform quantitative analysis on financial data
- Highly optimized for performance, with critical code paths written in Cython or C
- Key constructs:
 - Series (like a NumPy Array)
 - DataFrame (like a Table or Relation, or R data.frame)
- Foundation for Data Wrangling and Analysis in Python

PANDAS: SERIES

index values

- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

PANDAS: DATAFRAME

- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns
- Note the use of word "index" for what we called "key"
 - Relational databases use "index" to mean something else
- Non-unique index values allowed
 - May raise an exception for some operations

HIERARCHICAL INDEXES

Sometimes more intuitive organization of the data

Makes it easier to understand and analyze higherdimensional data

e.g., instead of 3-D array, may only need a 2-D array

day		Fri	Sat	Sun	Thur
sex	smoker				
Female	No	3.125	2.725	3.329	2.460
	Yes	2.683	2.869	3.500	2.990
Male	No	2.500	3.257	3.115	2.942
	Yes	2.741	2.879	3.521	3.058

first	second	
bar	one	0.469112
	two	-0.282863
baz	one	-1.509059
	two	-1.135632
foo	one	1.212112
	two	-0.173215
qux	one	0.119209
	two	-1.044236
dtype:	float64	

WRAP UP

Abstraction of Tables and Operations on them

Pandas Basics

Next Class:

Continue with Pandas, and Tidy Data

SQL and Relational Databases

Project 1: Updates?

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases

TIDY DATA

But also:

- Names of files/DataFrames = description of one dataset
- Enforce one data type per dataset (ish)

EXAMPLE

Variable: measure or attribute:

age, weight, height, sex

Value: measurement of attribute:

12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object

A specific person is [12.2, 42.3, 145.1, F]

TIDYING DATA I

Name	Treatment A	Treatment B
John Smith	-	2
Jane Doe	16	11
Mary Johnson	3	1

?????????????

Name	Treatment A	Treatment B	Treatment C	Treatment D
John Smith	-	2	-	-
Jane Doe	16	11	4	1
Mary Johnson	3	1	-	2

????????????

TIDYING DATA II

In a few lectures ...

Name	Treatment	Result
John Smith	Α	-
John Smith	В	2
John Smith	С	<u>-</u>
John Smith	D	-
Jane Doe	Α	16
Jane Doe	В	11
Jane Doe	С	4
Jane Doe	D	1
Mary Johnson	Α	3
Mary Johnson	В	1
Mary Johnson	С	-
Mary Johnson	D	2

MELTING DATA I

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Dont know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovahs Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

MELTING DATA II

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Atheist	\$40-50k	35
Atheist	\$20-30k	37
Atheist	\$10-20k	27
Atheist	\$30-40k	52

Billboard Top 100 data for songs, covering their position on the Top 100 for 75 weeks, with two "messy" bits:

- Column headers for each of the 75 weeks
- If a song didn't last 75 weeks, those columns have are null

year	artist.in verted	track	time	genre	date.ente red	date.pea ked	x1st.wee k	x2nd.we ek	
2000	Destiny's Child	Independent Women Part I	3:38	Rock	2000-09- 23	2000-11- 18	78	63.0	
2000	Santana	Maria, Maria	4:18	Rock	2000-02- 12	2000-04- 08	15	8.0	
2000	Savage Garden	I Knew I Loved You	4:07	Rock	1999-10- 23	2000-01- 29	71	48.0	
2000	Madonn a	Music	3:45	Rock	2000-08- 12	2000-09- 16	41	23.0	
2000	Aguilera, Christina	Come On Over Baby	3:38	Rock	2000-08- 05	2000-10- 14	57	47.0	
2000	Janet	Doesn't Really Matter	4:17	Rock	2000-06- 17	2000-08- 26	59	52.0	

Messy columns!

THEHOT

```
# Keep identifier variables
id vars = ["year",
           "artist.inverted",
           "track",
           "time",
           "genre",
           "date.entered",
           "date.peaked"]
# Melt the rest into week and rank columns
df = pd.melt(frame=df,
             id vars=id vars,
             var name="week",
             value name="rank")
```

Creates one row per week, per record, with its rank

```
[..., "x2nd.week", 63.0] \rightarrow [..., 2, 63]
```

```
# Ignore now-redundant, messy columns
df = df[["year",
         "artist.inverted",
         "track",
         "time",
         "genre",
         "week",
         "rank",
         "date"]]
df = df.sort_values(ascending=True,
 by=["year","artist.inverted","track","week","rank"])
# Keep tidy dataset for future usage
billboard = df
df.head(10)
```

year	artist.in verted	track	time	genre	week	rank	date
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	1	87	2000-02-26
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	2	82	2000-03-04
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	3	72	2000-03-11
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	4	77	2000-03-18
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	5	87	2000-03-25
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	6	94	2000-04-01
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	7	99	2000-04-08
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	1	91	2000-09-02
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	2	87	2000-09-09
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	3	92	2000-09-16

MORE TO DO?

Column headers are values, not variable names?

Good to go!

Multiple variables are stored in one column?

Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?

Good to go!

Multiple types of observational units in the same table?

Good to go! One row per song's week on the Top 100.

A single observational unit is stored in multiple tables?

Don't do this!

Repetition of data?

Lots! Artist and song title's text names. Which leads us to ...

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases

TODAY'S LECTURE

Relational data:

What is a relation, and how do they interact?

Querying databases:

- SQL
- SQLite
- How does this relate to pandas?

Joins

RELATION

Simplest relation: a table aka tabular data full of unique tuples

PRIMARY KEYS

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

ID	Nationality
1	USA
2	Canada
3	Mexico

The primary key is a unique identifier for every tuple in a relation

Each tuple has exactly one primary key

FOREIGN KEYS

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

ID	Nationality
1	USA
2	Canada
3	Mexico

Foreign keys are attributes (columns) that point to a different table's primary key

A table can have multiple foreign keys

SEARCHING FOR ELEMENTS

Find all people with nationality Canada (nat_id = 2):

?????????????

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

INDEXES

Like a hidden sorted map of references to a specific attribute (column) in a table; allows O(log n) lookup instead of O(n)

loc	ID	age	wgt_kg	hgt_cm	nat_id
0	1	12.2	42.3	145.1	1
128	2	11.0	40.8	143.8	2
256	3	15.6	65.3	165.3	2
384	4	35.1	84.2	185.8	1
512	5	18.1	62.2	176.2	3
640	6	19.6	82.1	180.1	1

nat_id	locs
1	0, 384, 640
2	128, 256
3	512

INDEXES

Actually implemented with data structures like B-trees

(Take courses like CMSC424 or CMSC420)

But: indexes are not free

- Takes memory to store
- Takes time to build
- Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free

Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

RELATIONSHIPS

Primary keys and foreign keys define interactions between different tables aka entities. Four types:

- One-to-one
- One-to-one-or-none
- One-to-many and many-to-one
- Many-to-many

Connects (one, many) of the rows in one table to (one, many) of the rows in another table

ONE-TO-MANY & MANY-TO-ONE

One person can have one nationality in this example, but one nationality can include many people.

Person

Nationality

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

ID	Nationality
1	USA
2	Canada
3	Mexico

ONE-TO-ONE

Two tables have a one-to-one relationship if every tuple in the first tables corresponds to exactly one entry in the other

In general, you won't be using these (why not just merge the rows into one table?) unless:

- Split a big row between SSD and HDD or distributed
- Restrict access to part of a row (some DBMSs allow column-level access control, but not all)
- Caching, partitioning, & serious stuff: take CMSC424

ONE-TO-ONE-OR-NONE

Say we want to keep track of people's cats:

Person ID	Cat1	Cat2
1	Chairman Meow	Fuzz Aldrin
4	Anderson Pooper	Meowly Cyrus
5	Gigabyte	Megabyte

People with IDs 2 and 3 do not own cats*, and are not in the table. Each person has at most one entry in the table.

Is this data tidy?

MANY-TO-MANY

Say we want to keep track of people's cats' colorings:

ID	Name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

Cat ID	Color ID	Amount
1	1	50
1	2	50
2	2	20
2	4	40
2	5	40
3	1	100

One column per color, too many columns, too many nulls Each cat can have many colors, and each color many cats

Cat Color

ASSOCIATIVE TABLES

Cats

ID	Name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

Cat ID	Color ID	Amount
1	1	50
1	2	50
2	2	20
2	4	40
2	5	40
3	1	100

Colors

ID	Name
1	Black
2	Brown
3	White
4	Orange
5	Neon Green
6	Invisible

Primary key ??????????

• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s) ??????????

Cat ID and Color ID

ASIDE: PANDAS

So, this kinda feels like pandas ...

And pandas kinda feels like a relational data system ...

Pandas is not strictly a relational data system:

No notion of primary / foreign keys

It does have indexes (and multi-column indexes):

- pandas.Index: ordered, sliceable set storing axis labels
- pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-grained slicing and dicing and viz with pandas

SQLITE

On-disk relational database management system (RDMS)

Applications connect directly to a file

Most RDMSs have applications connect to a server:

- Advantages include greater concurrency, less restrictive locking
- Disadvantages include, for this class, setup time ©

Installation:

- conda install -c anaconda sqlite
- (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)

HOW A RELATIONAL DB FITS INTO YOUR WORKFLOW


```
import sqlite3

# Create a database and connect to it
conn = sqlite3.connect("cmsc320.db")
cursor = conn.cursor()

# do cool stuff
conn.close()
```

Cursor: temporary work area in system memory for manipulating SQL statements and return values If you do not close the connection (conn.close()), any outstanding transaction is rolled back

• (More on this in a bit.)

```
# Make a table
cursor.execute("""
CREATE TABLE cats (
   id INTEGER PRIMARY KEY,
   name TEXT
)""")
```

?????????

id name

cats

Capitalization doesn't matter for SQL reserved words

SELECT = select = SeLeCt

Rule of thumb: capitalize keywords for readability

```
# Insert into the table
cursor.execute("INSERT INTO cats VALUE (1, 'Megabyte')")
cursor.execute("INSERT INTO cats VALUE (2, 'Meowly Cyrus')")
cursor.execute("INSERT INTO cats VALUE (3, 'Fuzz Aldrin')")
conn.commit()
```

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin

```
# Delete row(s) from the table
cursor.execute("DELETE FROM cats WHERE id == 2");
conn.commit()
```

id	name
1	Megabyte
3	Fuzz Aldrin


```
# Read all rows from a table
for row in cursor.execute("SELECT * FROM cats"):
    print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query("SELECT * FROM cats", conn, index_col="id")
```

id	name
1	Megabyte
3	Fuzz Aldrin

index_col="id": treat column with label "id" as an index index_col=1: treat column #1 (i.e., "name") as an index (Can also do multi-indexing.)

JOINING DATA

A join operation merges two or more tables into a single relation. Different ways of doing this:

- Inner
- Left
- Right
- Full Outer

Join operations are done on columns that explicitly link the tables together

INNER JOINS

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit	
1	02-16-2017	
2	02-14-2017	
5	02-03-2017	
	visits	

cats

Inner join returns merged rows that share the same value in the column they are being joined on (id and cat_id).

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
5	Anderson Pooper	02-03-2017

INNER JOINS

LEFT JOINS

Inner joins are the most common type of joins (get results that appear in both tables)

Left joins: all the results from the left table, only some matching results from the right table

Left join (cats, visits) on (id, cat_id) ????????????

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL

RIGHT JOINS

Take a guess!

Right join
(cats, visits)
on
(id, cat_id)
?????????

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit
1	02-16-2017
2	02-14-2017
5	02-03-2017
7	02-19-2017
12	02-21-2017
	visits

cats

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
5	Anderson Pooper	02-03-2017
7	NULL	02-19-2017
12	NULL	02-21-2017

LEFT/RIGHT JOINS

Left join in pandas

```
df cats.merge(df visits, how = "left",
             left on = "id", right_on = "cat_id")
# Left join in SQL / SQLite via Python
cursor.execute("SELECT * FROM cats LEFT JOIN visits ON
                     cats.id == visits.cat id")
# Right join in pandas
df cats.merge(df visits, how = "right",
              left on = "id", right on = "cat id")
# Right join in SQL / SQLite via Python
\odot
```

FULL OUTER JOIN

Combines the left and the right join

??????????

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL
7	NULL	02-19-2017
12	NULL	02-21-2017

GOOGLE IMAGE SEARCH ONE SLIDE SQL JOIN VISUAL

If you "think in SQL" already, you'll be fine with pandas:

- conda install -c anaconda pandasql
- Info: http://pandas.pydata.org/pandas-docs/stable/comparison with sql.html

```
Write the query text
    SELECT
    FROM
        cats
    LIMIT 10;"""
# Store in a DataFrame
df = sqldf(q, locals())
```

NEXT CLASS: EXPLORATORY ANALYSIS

