UNIK 4490 - Obligatorisk oppgave 1

David Kolden, davidko

5. oktober 2017

1

1.a

Finner poler ved å løse $s(1+T_Ms)=0$ som gir polene s=0 og $s=-\frac{1}{T_M}$. Systemet er stabilt for alle positive verdier av T_M .

1.b

Figur 1 viser blokkskjema for $\frac{X(s)}{U(s)} = H(s) = \frac{1}{s(1+T_Ms)}$

Figur 1: Blokkskjema for H(s)

1.c

H(s) har to poler og er derfor et andreordens system.

Setter
$$U(s) = K(1+T_Ds)E(s)$$
, $E(s) = R(s)-X(s)$, $U(s) = K(1+T_Ds)(R(s)-X(s))$ sammen med $H(s)$:

$$X(s) = H(s)U(s) = H(s)K(1 + T_D s)(R(s) - X(s))$$

$$X(s) = H(s)K(1 + T_D s)R(s) - H(s)K(1 + T_D s)X(s)$$

$$X(s)(1 + H(s)K(1 + T_D s)) = H(s)K(1 + T_D s)R(s)$$

$$\frac{X(s)}{R(s)} = H_C(s) = \frac{H(s)K(1 + T_D s)}{1 + H(s)K(1 + T_D s)}$$

$$H_C(s) = \frac{K(1 + T_D s)}{\frac{1}{H(s)} + K(1 + T_D s)}$$

Setter inn for H(s):

$$H_C(s) = \frac{K(1 + T_D s)}{s(1 + T_M s) + K(1 + T_D s)}$$

$$H_C(s) = \frac{K(1 + T_D s)}{s^2 T_M + s + K T_D s + K}$$

$$H_C(s) = \frac{(1 + T_D s)}{s^2 \frac{T_M}{K} + s(\frac{1}{K} + T_D) + 1}$$

Ser at systemet med kontroller fortsatt er et andreordens system.

1.d

Figur to viser blokkskjema for systemet med kontroller $(H_C(s))$

Figur 2: Blokkskjema for $H_C(s)$

1.e

 $H_C(s)$ har ett nullpunkt og to poler. Nullpunktet finnes ved å sette telleren i $H_C(s)$ til null, mens man finner polene ved å sette nevneren til null. Polene kan dermed finnes med uttrykket

$$s = \frac{-(\frac{1}{K} + T_D) \pm \sqrt{(\frac{1}{K} + T_D)^2 - 4\frac{T_M}{K}}}{2\frac{T_M}{K}}$$

mens nullpunktene finnes med uttrykket

$$s = -\frac{1}{T_D}$$

Ved å sette inn for $T_M=2$ og $T_D=1$ får vi til slutt et nullpunkt i s=-1 og to poler i

$$s = \frac{-(\frac{1}{K} + 1) \pm \sqrt{(\frac{1}{K} + 1)^2 - 4\frac{2}{K}}}{2\frac{2}{K}}$$

Figur 3: Locusplot av H_C

Med $K \approx 0.17$, så er systemet

2

Et system kan verifiseres som stabilt for en kandidatfunksjon V(x,y) hvis

•
$$V(x,y) > 0$$
 $\forall x \neq 0, y \neq 0$

- V(x,y) = 0 x = y = 0
- $V(x,y) \to \infty$ $x \to \infty, y \to \infty$
- $\dot{V}(x,y) < 0$

Med en kandidatfunksjon

$$V(x,y) = x^2 + y^2$$

ser vi at kravene fra første, andre og tredje punkt er godkjente ettersom begge uttrykkene er kvadratiske.

Med systemet

$$\dot{x} = -y - x^3$$

$$\dot{y} = x - y^3$$

kan systemet verifiseres ved å finne $\dot{V}(x,y)$.

$$\dot{V}(x,y) = 2x\dot{x} + 2y\dot{y}$$

$$\dot{V}(x,y) = 2x(-y - x^3) + 2y(x - y^3)$$

$$\dot{V}(x,y) = -2xy - 2x^4 + 2xy - 2y^4$$

$$\dot{V}(x,y) = -x^4 - y^4$$

Vi ser at $\dot{V}(x,y)$ er godkjent i forhold til det siste kravet ettersom x^4 og y^4 ikke kan bli negative.

3

3.a

En PD-kontroller med gravitasjonskompensasjon består av et proporsjonalledd, et derivatledd og et ledd som kompenserer for gravitasjonskreftene på manipulatoren. Proporsjonalleddet forsterker avviket mellom ønsket leddposisjon q_d og faktisk leddposisjon q. Derivatleddet forsterker leddhastighetene til manipulatoren og trekker det fra pådraget. Gravitasjonskreftene forandrer seg som funksjon av leddposisjonene. Det fulle uttrykket for kontrolleren er

$$u = K_P(q_d - q) - K_D \dot{q} + g(q)$$

hvor

$$\bullet \ K_P = \begin{bmatrix} k_{p1} & 0 \\ 0 & k_{p2} \end{bmatrix}$$

$$\bullet \ K_D = \begin{bmatrix} k_{d1} & 0 \\ 0 & k_{d2} \end{bmatrix}$$

$$\bullet \ q_d = \begin{bmatrix} \vartheta_{d1} \\ \vartheta_{d2} \end{bmatrix}$$

$$\bullet \ q = \begin{bmatrix} \vartheta_1 \\ \vartheta_2 \end{bmatrix}$$

$$\bullet \ \dot{q} = \begin{bmatrix} \dot{\vartheta}_1 \\ \dot{\vartheta}_2 \end{bmatrix}$$

•
$$g(q) = \begin{bmatrix} (m_{l1}l_1 + m_{m2}a_1 + m_{l2}a_1)gcos(\vartheta_1) + m_{l2}l_2gcos(\vartheta_1 + \vartheta_2) \\ m_{l2}l_2gcos(\vartheta_1 + \vartheta_2) \end{bmatrix}$$

hvor

 $-m_{l1}=50$ kg og er massen til $link_1$.

 $-m_{l2} = 50 \text{ kg og er massen til } link_2.$

 $-m_{m2}=5$ kg og er massen til $motor_2$.

 $-l_1 = 0.5$ m og er avstanden fra starten av $link_1$ til $link_1$ s tyngdepunkt.

 $-\ l_2 = 0.5 \ \mathrm{m}$ og er avstanden fra starten av $link_2$ til $link_2$ s tyngdepunkt.

 $-a_1=1$ m og er lengden til $link_1$.

 $-a_2 = 1$ m og er lengden til $link_2$.

 $- \vartheta_1$ er vinkelen til $ledd_1$.

 $- \vartheta_2$ er vinkelen til $ledd_2$.

 $-q = 9.81 \ m/s^2$.

Dette gir følgende uttrykk for pådraget u:

$$u = \begin{bmatrix} k_{p1} & 0 \\ 0 & k_{p2} \end{bmatrix} \begin{bmatrix} \vartheta_{d1} - \vartheta_1 \\ \vartheta_{d2} - \vartheta_2 \end{bmatrix} - \begin{bmatrix} k_{d1} & 0 \\ 0 & k_{d2} \end{bmatrix} \begin{bmatrix} \dot{\vartheta_1} \\ \dot{\vartheta_2} \end{bmatrix} + \begin{bmatrix} (m_{l1}l_1 + m_{m2}a_1 + m_{l2}a_1)gcos(\vartheta_1) + m_{l2}l_2gcos(\vartheta_1 + \vartheta_2) \\ m_{l2}l_2gcos(\vartheta_1 + \vartheta_2) \end{bmatrix}$$

3.b

Blokkskjema for kontroller og manipulator gis i figur 4 og figur 5.

Figur 4: Blokkskjema for PD-kontroller med gravitasjonskompensasjon

Figur 5: Blokkskjema for maniplator. Matrisen B er funksjon av q, C er funksjon av q og \dot{q} , mens vektoren g er funksjon av q.

3.c

 K_P og K_D ble satt til 2400I og 1300I. Figur 6 viser sprangrespons for ϑ_1 , $ledd_1$, figur 7 viser sprangrespons for ϑ_2 , $ledd_2$.

Figur 6: Plot av ϑ_1 s (gult) respons på spranget i ϑ_{d1} (hvitt).

Figur 7: Plot av ϑ_2 s (blått) respons på spranget i ϑ_{d2} (hvitt).

3.d

Med invers dynamikkontroll vil vi ha et pådrag u slik at

$$u = B(q)y + n(q, \dot{q})$$

hvor $n(q,\dot{q}) = C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q)$. Målet er å ende opp med $y = \ddot{q}$.

Representerer y med

$$y = -K_P q - K_D \dot{q} + r$$

og setter

$$r = \dot{q_d} + K_D \dot{q_d} + K_P q_d$$

Setter representasjonen av rinn i yog får

$$y = \ddot{q_d} + K_D \dot{\tilde{q}} + K_P \tilde{q}$$

hvor $\tilde{q} = q_d - q$.

Setter y inn i uttrykket for u og får

$$u = B(q)(\ddot{q}_d + K_D\dot{\tilde{q}} + K_P\tilde{q}) + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q)$$

3.e

3.f

3.g

3.h