Chapter 1

M-Estimators

1.1 Motivation

Let the loss function be $\rho_i(\theta) = \rho(z_i, \theta)$, where z_i is a data vector. The sample criterion is an average of $\rho_i(\theta)$:

$$S_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \rho_i(\theta)$$

The m-estimator minimizes the sample criterion function:

$$\hat{\theta}_n = \arg\min_{\theta \in \Theta} S_n(\theta).$$

The m-estimator includes many examples as special cases. For example, OLS, MLE, NLS, and quantile regressions are all m-estimators.

For simplicity, in this lecture we work with iid data. Let

$$S(\theta) = E[S_n(\theta)] = E[\rho_i(\theta)]$$

be the population criterion function.

Definition 1.1. We say θ is identified if $\theta_0 = \arg\min_{\theta \in \Theta} S(\theta)$ is unique. In other words, for any $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon)$ such that $\inf_{\theta \in \Theta \setminus N_{\delta}(\theta_0)} S(\theta) - S(\theta_0) > \varepsilon$.

1.2 Consistency

Theorem 1.1. If (i) ULLN: $\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)| \stackrel{p}{\to} 0$; (ii) θ_0 is identified, then $\hat{\theta} \stackrel{p}{\to} \theta_0$ as $n \to \infty$.

Proof. We start from the condition of identification.

$$\Pr\left(|\hat{\theta} - \theta| > \delta\right) \leq \Pr\left(S(\hat{\theta}) - S(\theta_0) > \varepsilon\right)$$

$$= \Pr\left(S(\hat{\theta}) - S_n(\hat{\theta}) + S_n(\hat{\theta}) - S_n(\theta_0) + S_n(\theta_0) - S(\theta_0) > \varepsilon\right)$$

$$\leq \Pr\left(S(\hat{\theta}) - S_n(\hat{\theta}) + S_n(\theta_0) - S(\theta_0) > \varepsilon\right)$$

$$\leq \Pr\left(\left|S_n(\hat{\theta}) - S(\hat{\theta})\right| + \left|S(\theta_0) - S_n(\theta_0)\right| > \varepsilon\right)$$

$$\leq \Pr\left(\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)| \geq \frac{\varepsilon}{2}\right) \to 0$$

where the second inequality follows from the definition of the m-estimator that $S_n(\hat{\theta}) \leq S_n\left(\theta_0\right)$

1.3 Asymptotic Normality

We go with a heuristic argument. Define $\bar{\psi}(\theta) = \frac{\partial}{\partial \theta} S_n(\theta)$. Taylor expansion of $\bar{\psi}(\hat{\theta})$ around θ_0 gives

$$0 = \bar{\psi}(\hat{\theta}) = \bar{\psi}(\theta_0) + \frac{\partial^2}{\partial \theta \partial \theta'} S_n \left(\dot{\theta}\right) \left(\hat{\theta} - \theta_0\right)$$

where $\dot{\theta}$ lies in between $\hat{\theta}$ and θ_0 . Rearrange the above inequality,

$$\sqrt{n}\left(\hat{\theta} - \theta\right) = -\left[\frac{\partial^2}{\partial\theta\partial\theta'}S_n\left(\dot{\theta}\right)\right]^{-1}\sqrt{n}\bar{\psi}\left(\theta_0\right)$$

Since $\hat{\theta} \xrightarrow{p} \theta_0$, we also have $\dot{\theta} \xrightarrow{p} \theta_0$. By the continuous mapping theorem:

$$\frac{\partial^{2}}{\partial\theta\partial\theta'}S\left(\dot{\theta}\right) \xrightarrow{p} \frac{\partial^{2}}{\partial\theta\partial\theta'}S\left(\theta_{0}\right) = Q$$

if $\frac{\partial^{2}}{\partial\theta\partial\theta'}S\left(\cdot\right)$ is continuous. In the population, $E\left[\bar{\psi}\left(\theta_{0}\right)\right]=E\left[\psi\left(\theta_{0}\right)\right]=0$, and

$$\sqrt{n}\bar{\psi}\left(\theta_{0}\right)\stackrel{d}{\rightarrow}N\left(0,\Omega\right)$$

where $\Omega = E\left[\psi_{i}\left(\theta_{0}\right)\psi_{i}'\left(\theta_{0}\right)\right]$. As a result,

$$\sqrt{n}\left(\hat{\theta}-\theta_0\right) \stackrel{d}{\to} N\left(0, Q^{-1}\Omega Q^{-1}\right)$$

where the asymptotic variance follows a sandwich form.

Zhentao Shi. Feb 7, 2023. Transcribed by Shu Shen.