Assignment: Wein's Displacement Law

Using the Planck function in term of wavelength, derive wein's displacement law.

Consider the Planck Function:

$$L(\lambda,T) = \frac{2\ln c^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{2kT}-1}} \quad \text{where in represents Planck's constant, c is the speed of light, and it is Politzmann's constant.}$$

Differentiating with respect to λ :

$$L(3,T) = 2hc^2 \left(\frac{1}{1} \cdot \frac{1}{2} \right)$$

$$L(\lambda,T) = 2hc^{2}\left(\frac{1}{\lambda^{5}} \cdot \frac{1}{e^{hc/\lambda hT}-1}\right)$$

$$\frac{\partial L}{\partial \lambda} = 2hc^{2} \left(\frac{-5}{\lambda^{p}} \cdot \frac{1}{e^{hc/\lambda kT} - 1} + \frac{1}{\lambda^{5}} \cdot \frac{\left(e^{hc/\lambda kT} - 1\right)\left(0\right) - \left(\frac{-hc}{\lambda^{2} kT}\right)\left(1\right)}{\left(e^{hc/\lambda kT} - 1\right)^{2}} \right)$$

$$= 2hc^{2} \left(\frac{\lambda^{6}}{\lambda^{6}} e^{\frac{hc}{\lambda h \tau} - 1} + \frac{\lambda^{5}}{\lambda^{5}} \right) \left(e^{\frac{hc}{\lambda h \tau}} \right)$$

$$= 2hc^{2} \left(\frac{-5}{\lambda^{6} \left(e^{\frac{hc}{\lambda h \tau} - 1} \right)} + \frac{\lambda^{2} h \tau}{\left(e^{\frac{hc}{\lambda h \tau} - 1} \right)^{2}} \right)$$

$$= \frac{2h^2c^3e^{\frac{hc}{\kappa\lambda T}}}{\lambda^7kT(e^{\frac{hc}{\kappa\lambda T}}-1)^2} - \frac{10c^2h}{\lambda^6(e^{\frac{hc}{\kappa\lambda T}}-1)}$$

$$2h^2c^3e^{\frac{hc}{k\lambda_{\perp}}}$$

$$\frac{2h^{2}c^{3}e^{\frac{hc}{N\lambda_{n}T}}}{\lambda^{2}kT(e^{\frac{hc}{N\lambda_{n}T}}-1)^{2}} - \frac{lOc^{2}h}{\lambda^{6}_{mk}(e^{\frac{hc}{N\lambda_{n}T}}-1)} = 0$$

$$\frac{hc}{2kT}\left(\frac{2hc^{2}e^{\frac{hc}{N\lambda_{n}T}}}{\lambda^{6}(e^{\frac{hc}{N\lambda_{n}T}}-1)^{2}}\right) - \frac{lOhc^{2}}{\lambda^{6}(e^{\frac{hc}{N\lambda_{n}T}}-1)} = 0$$

Both terms share a common factor:
$$\frac{hc^2}{\lambda_{\infty}^{6}\left(e^{\frac{hc}{h\sqrt{3}}}-1\right)}$$

$$\frac{hc}{\lambda_{n}kT} \cdot \frac{e^{hc/\lambda_{n}kT}}{e^{hc/\lambda_{n}kT}-1} - 5 = 0$$

Using the approximation
$$x = \frac{nc}{2kT} \gg 1 \longrightarrow \frac{e^x}{e^x - 1} \sim 1$$
 the equation becomes:

$$\frac{xe^x}{e^x-1}-5=0$$

 $\alpha = 5$

$$,1$$
 the

approximating
$$\frac{e^x}{e^x-1}\sim 1$$

factoring constants

combining like terms

distributing

factoring

differentiation of exponentials

product rule

Sub	stitudi	ng back	s in:																	
	= <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>euheti</td><td>itution</td><td></td><td></td></t<>																euheti	itution		
λ _{max}	Υ Τ –																30031	i wigi		
		ng, this hc	s gives :																	
N _{max}	1 =	<u>hc</u> 5K																		
Reco	ul:																			
١	is P	lanck'	s Cons	tount	= 6	. 62	> × 10	-34 .	ls											
→ c	is H	le speed Oltzman	l of ligh	d = 3	r 10 ₈	m/s	-23													
. 2	т.	= (6.6° 5(1.	26E-34)(368) = =	2.89	98 ×	10-3	mK	as	des	ived.								
	mo-%	5(1.	38 E - 2	3)						,										
													٠.							