

NONVOLATILE SEMICONDUCTOR MEMORIES

YUKUN HSIA

许进生

UNIVERSITY OF SANTA CLARA
SANTA CLARA, CA. 95053

MICROPROCESSOR DIVISION
FAIRCHILD/SCHLUMBERGER
450 NATIONAL AVENUE
MOUNTAIN VIEW, CA. 9403

11 MAY, 1984

NONVOLATILE SEMICONDUCTOR MEMORIES

● CLASSIFICATION BY FUNCTION

ROM

PROM

EPROM

E²PROM

● CLASSIFICATION BY TECHNOLOGY

INTERCONNECT DEPENDENT STORAGE

FLOATING GATE STORAGE

GATE INSULATOR STORAGE

Sean P. D. Quinn

The greatest-capacity nonvolatile memories available commercially.

Type	Capacity	Bits per chip	Cost, \$	Cost per bit, \$	Technology	Line width, μm	Average access time, ns	Power dissipation, mW	Manufacturer
ROM	1mb	1048576	—	—	CMOS	2.0	350	70	Hitech Ltd.
PROM	64kb	65536	50	0.000763	Bipolar	4.0	40	120	Fairchild Camera & Instrument Corp.
	64kb	65536	50	0.000763	Bipolar	4.0	40	120	Fairchild Camera & Instrument Corp.
	64kb	65536	50	0.000763	Bipolar	4.0	40	120	Fairchild Camera & Instrument Corp.
	64kb	65536	100	0.001526	Bipolar	5.0	60	180	Fujitsu Ltd.
	64kb	65536	100	0.001526	Bipolar	5.0	60	180	Fujitsu Ltd.
EPROM	256kb	262144	57	0.000332	NMOS	2.0	200	500	Hitachi Corp.
	256kb	262144	564	0.001774	NMOS	2.0	170	320	Advanced Micro Devices
E PROM	64kb	65536	—	—	NMOS	2.7	200	600	Hitachi Corp.

Mark A. Flechette

RECEIVED
DEC 29 1999
FENWICK & WEST

3112

Dynamic ROM architecture.

Simple ROM cell (silicon-gate NMOS) with tied bit lines shown cut away to reveal programming transition.

Basic ROM configuration.

Introduction to MOS LSI design

J. MAJOR, M. A. PAGE, P. S. DENTER

DEPLETION MASK PROGRAMMING OF NOS ROM

Received 12-20-00 10:21am

From-714 038 4146

To-FENWICK & WEST LLP Page 03

Fig. 1. Cell area versus bit density for east rooms in the past 5 years.

An Iota 1980
Fujio Matsuo, Seiji Ariizumi, Taro Inoue, Michihiko Ono, Norio Endo
Toshiro Mifune
Tadashi Yamashita
Toshiro Mifune Corp.

TABLE I—Comparisons of characteristics of new structures

三

Organization	128K words x 8b
Cell size	5.2 x 6.4μm ²
Chip area	7.08 x 7.7mm ²
Address access time	90ns
Cycle time	80ns
Power supply	5V
Active current	8mA at +200m cycle time
Slewing current	0.01μA
Package	20 pin, 400 mil DIP

TABLE I.—Summary of typical characteristics.

(a) The cross section of the SAOL cell structure. The cell consists of a pn-diode contact area covered by a thin SiO_2 layer. (b) The equivalent circuit of the cell.

1000

A NEW CELL FOR HIGH CAPACITY MASK ROM BY THE DOUBLE LOCOS TECHNIQUE
Norio Sato, Takahiro Nawata, and Kunihiko Wada
IC Development Division, Fujitsu Limited

CMOS PROM with Polysilicon Fusible Links

Fig. 1. (a) Layout of the 4-bit cell. (b) Single-bit equivalent circuit.

Fig. 2. Profile of the process.

Fig. 3. SEM photograph of a 4-bit cell.

Fig. 4. Block diagram of the PROM.

TABLE I
TYPICAL DEVICE CHARACTERISTICS

ORGANIZATION	1K WORD X 8 BYT
Die Size	3.00 X 1.62mm
CHANNEL LENGTH	2.95μm
P-CHANNEL	2.95μm
N-CHANNEL	2.95μm
GATE OXIDE	0.8μm
ACTIVE DEPTH	0.75μm
PERIPHERAL	0.25μm
THRESHOLD	-0.7V
N-CHANNEL	-0.7V
P-CHANNEL	+0.7V
CHIP ENABLE ACCESS TIME	10ns
STANDBY POWER DISSIPATION	0.5W
ACTIVE POWER DISSIPATION	10-100mW

Schematic of read path and delay circuit.

The programmable delay.

NETZIGER: 10K CMOS PROM WITH POLYSI POSSIBLE LISTS

Junction-Shorting PROM

६०४

Digitized by srujanika@gmail.com

የኢትዮ-ፋይና-ፋይና-ፋይና

12-29-99 10:21 AM F. 114 838 4146 TD-FENWICK & WEST
SACRAMENTO Page 98

Fig. 2. Partial equimolar circuit and cross section of meadow cell array.
 (a) Combinations of programmable elements ($p-n$ diode) and $p-n-p$ transistor. (b) Cross section.

Fig. 1. Block diagram of a 64 Kbit PROM with an 8192 word \times 8 bit organization.

PULUSTINA ET AL.: 64 KHz ULTRASOUND-SPONTANEOUS PREGNANCY

SCALING DATA FOR THE 256 K ERASABLE PROGRAMMABLE FLASHEROMORY					
Parameter	64 K chip	Constant data writing formula	Nominal 256 K chip	Actual writing formula	Actual 256 K chip
Cell area	180 μm^2	K^{-3}	$40 \mu\text{m}^2$	$-K^{-2}$	$30 \mu\text{m}^2$
Flashing gate width	720 Å	K^{-1}	320 Å	$-K^{-1}$	200 Å
Character gate width	800 Å	K^{-1}	400 Å	K^{-1}	400 Å
Character width	1.5 μm	$K^{1.5}$	1.5 μm	$K^{1.5}$	1.5 μm
Overall density	1.5 μm^{-2}	$K^{1.5}$	1.5 μm^{-2}	$K^{1.5}$	1.5 μm^{-2}
Threshold voltage	1.8 V	$K^{1.8}$	1.8 V	$K^{1.8}$	1.8 V
Cell current	1.5 μA	$K^{1.5}$	1.5 μA	$K^{1.5}$	1.5 μA
Total voltage	1.5 μV	$K^{1.5}$	1.5 μV	$K^{1.5}$	1.5 μV
Program voltage	21 V	$K^{2.1}$	11 V	$K^{2.1}$	11 V

Received/Febuary 24, 1993

EPROM Cross-Section

1304.744

b. Shown: Two-bit EEPROM cell structure. The E-PROM cell
dimensions are 6 by 6 μm . The active channel area, beneath the floating
poly-silicon gate, is just 1 by 1.2 μm . The n⁺ regions are 0.6 μm deep.

By M. Van Beurdt, M. Hader, G. Korth, B. Lee, S. Lin,
D. Teng, Q. Teng, S. Fouts, P. Dang, and W. Fisher, Intel Corp., Santa Clara, CA

Received/Febuary 24, 1989

Wilmott Ip, Telang Chik, Tung Chung NW, Our Partner
SEEQ Technology, Inc.

PRECISE-1-SM helped reduce CMO3 D1010 Nucleopolymer (6)

Physical Characteristics	Electrical Characteristics
Minimum feature size	1.5µm
Cell size	(µm x 6.25µm)
Die size	4.57mm x 4.57mm
Organization	22x 8
	100mA
	100µA
	100mW at 3.6V
	125m (typ.)
	12 to 16V
	0.5ms/byte
	Programming time

TABLE I—Characteristics of 32K CMOS EPROM

EPROM Deprogramming

History

- Recurrent problem with floating-gate EEPROM devices

Impact on Devices

- Previously written memory bits become erased when exposed to high voltages on device control-gate with source and drain grounded or at low potential
- Failure mechanism is also manifested as immediate retention loss or failure to write (program)
- Also as Read-disturb

Impact on Product Yield

- Deprogramming reduces yield

EPROM Device Operational Modes

Operation	Node Voltage	V _S	V _G	V _D
Read		Gnd	5 V	≈ 1.6 V
Selected Device	Write		Gnd	≈ 25 V 16-18 V
Unselected Device	Write Inhibit on Same Word Line		Gnd	≈ 25 V Gnd
	Write Inhibit on Same Bit Line		Gnd	\approx Gnd 16-18 V

EPROM Deprogramming

Deprogramming Model

- Loss of stored charges from floating-gate to control-gate on unselected devices during Write operation

Loss Mechanism

- Asperities or other surface features found on floating-gate polysilicon surface or in the interpoly oxide cause localized enhancement of electric field which promotes Fowler-Nordheim emission of stored charges
- Overly sharp edges on floating-gate poly under control-gate overlap region causing Fowler-Nordheim emission of stored charges

3808 EPROM Poly Profiles

Ideal

Actual

Actual

Ideal

(Drawing courtesy of A. Mecchi)

The Impact of Processing Conditions on EROM Properties and Device Degradation

Yukun Hsia anden Y. C. Mei

EPROM Deprogramming

Potential Processing Solutions

■ Asperity Related

- Poly deposition temperature
- Poly doping temperature
- Increased poly doping level
- Poly anneal
- Pre-oxidation clean
- Higher interpoly oxidation temperature
- HCl interpoly oxidation
- Post-oxidation anneal

■ Edge Effect Related

- Etch slope control through alteration of etch ambient
- Higher interpoly oxidation temperature

Experiment Result Summary

(Exclusive of interpoly oxide temperature and doping level)

Asperity Related

- Lower poly deposition temperature
 - Problem with uniformity control
- Increased poly doping temperature
 - Deprogramming increased
- Poly anneal
 - No effect discernible
- Pre-oxidation RCA clean
 - No effect discernible
- HCl Interpoly oxidation
 - Small improvement observed
- Post-oxidation anneal
 - Not investigated

Edge related

- Etch slope control
 - SF₆ showed small improvement

Summary of Successful Results on Deprogramming Experiments

Interpoly oxide temperature and doping level experiments

Process Variation	Total Wafers	Total Func	Good Func	Good White Ver 1	Good Die	% Yield	512 Bits Sampled	512 Bits Bls	% Depo
IPOX	5 2(2030) 3(2031)	1014 588 58%	269 48% 93%	249 92% 92%	228 95% 95%	216 95% 95%	21 497 1	497 1 0.003	
V/I	5 9(2030)	940 468 50%	225 69% 69%	318 99% 99%	317 99% 99%	317 100% 100%	34 379 0	379 0 0.000	
Control	5 4(2030) 1(2035)	949 471 50%	325 69% 69%	217 67% 67%	81 41% 41%	36 41% 41%	4 364 101	364 101 0.007	

INTEL EEPROM

HUGHES EEPROM

XICOR EEPROM

Cross-Sections of Floating Gate EEPROMs

A 65nm CHOS EEPROM
 Richard Zemke, Chen Ho, Thomas Chiu
 Intel Microelectronics, Inc.

FABRICATION	CHOS FLOATING GATE
TECHNOLOGY	1.5µm
DESIGN RULES	STEPPER
LITHOGRAPHY	
PHYSICAL CHARACTERISTICS	
Die Size	141 x 273 mils
Organization	4K x 8
Package	24 PIN
DC PERFORMANCE	
Op. Operation	FULLY STATIC
Supply Voltage	5 VOLTS
Active Current	5mA
Standby Current	10 ⁻⁶ A (CHOS INPUT LEVEL)
Voltages	TTL
AC PERFORMANCE	
Address Access Time	55 ns
Chip Select Time	40 ns
Write Time	1 ms

TABLE I-Summary performance.

Transistor Type	Operational voltages		Output current (mA)	Program time (ms)	Erase time (ms)
	High voltage	Low voltage			
	5V	0V	0.5	55	300

FIGURE 1-Comparison showing reduced die; the
 16K EEPROM cell uses 3µm design rules; while EEPROM
 cell uses 1.5µm design rules.
 (See form 714-838)

A 64K CHIPS EEPROM with On-Chip ECC

Senior Member, Taiwan-Ching Wu, Ts-Lung Chiu, Guo Pengyu
SECO Technology, Inc.

Process	Newell CH105 on epi
Minimum feature size	1.5 μm
Word pitch	6 μm
Pt to Pt spacing	9 μm
Poly-SI Gate Oxide	410 Å
Poly-SI Cell Oxide-Nitride	400 Å
Tunnel dielectric	85 Å Oxygenide
Cell size	65 × 65 μm
Die size	182 sq. mils
Program time	1ms
>10 ⁶ program/erase cycles	
Erase time	100ms
Access time	20ns
Active current	10mA
Standby current	1μA

TABLE I - Characteristics of 64K CHIPS EEPROM

FIGURE 1-(a)-SEM photograph of a cross-sectional EEPROM cell with bit-line contacts, (b)-cross sectional view of floating poly EEPROM, (c)-spreading resistance measurement under Pt contact/lnit diffusion.

FIGURE 4-High voltage decoding during programming.

FIGURE 5-Schematic of sense amplifiers.

FIGURE 2-Functional block diagram of end-of-chip error detecting and correcting circuits.

FIGURE 3-Functional block diagram of self-timed programming operation.

Fig. 2. Effect of Temperature on the Behavior of Single Lithium Cells. Plotted are V/C Threshold Voltage vs. Number of V/C Cycles.

Fig. 1. Effect of Temperature on Charge Trapping in Caprolactone

HIGH TEMPERATURE AND EXTENDED ENDURANCE CHARACTERISTICS OF ZBROM

Ching S. Jeng, Fiong Wong and Bharati Joshi
SEEQ Technology, Inc., San Jose, Ca
and

Chenaling Wu
University of California, Berkeley, Ca

Fig 1
MNOS Transistor

IEEE STANDARD

84 601-1978

FIGURE 1-The 1-gate memory cell, layout (a), cross section (b).

4V Only 2K EEPROM
David D. Daniels, Edward M. Hanniford, Louis J. Tom
NCR Microelectronics Division

FIGURE 2-Typical data retention endurance curve recorded on a 4K bit chip. Data points are determined by reading the same location with varying the memory program voltage.

PROCESS	SiO ₂ (SILICON-OXIDE) OR Si (SILICON)
OPERATION	FULLY STATIC
ORGANIZATION	4K WORDS X 8 BITS
PAGE SIZE	16 WORDS
PACKAGE	28 PIN
CELL SIZE	29 μm ²
CHIP SIZE	62K μm ² (27mm ²)
ERASE MODES	BULK (4K BYTES) PAGE (16 BYTES)
WRITE MODES	1 TO 16 BYTES
ERASE/WRITE TIME	100 ms / 10 ms
ENDURANCE	10 ⁴ ERASE/WRITE CYCLES
RETENTION	10 YEARS @ 125°C
READ CYCLES	UNLIMITED
ACCESS TIME	300 ns
ACTIVE POWER	450 mW
STANDBY	150 mW
TEMPERATURE RANGE	-65 TO 125°C

TABLE I-Main features of the 2K EEPROM

A DV-Only EEPROM with Internal Program/Erase Control
 Art Linscott, Bob Johnson, Jeff Chris, Gary Teller, David Photon
 Infineon Corp.

FIGURE 1 - Block diagram of the DV-Only EEPROM

(b) PROGRAM/ERASE MODE	
	(i) SPECIFICATIONS
Read/Program/Erase	MIN 200 ms
Write	MAX 10 ms
Program time	100 ms
Erase time	100 ms
Program time (Page Erase)	1 ms
Erase time (Page Erase)	1 ms
Program time (Sector Erase)	1 ms
Erase time (Sector Erase)	1 ms

FIGURE 2 - Program/erase control and specifications

FIGURE 3 - Functional block diagram

© 1991 IEEE International Solid-State Circuits Conference

LEGEND:

----- INTEL "FLOTOX"
W - 10ms @ 20V
E - 10ms @ 20V

— HITACHI MNOS
W - 1ms @ 25V
E - 1ms @ 25V

— MCDONNELL DOUGLAS
MNOS
W - 200μs @ 22V
E - 1ms @ 22V

Figure Comparison of the Effect of Endurance Cycling on Memory Thresholds for the MDC MNOS, Hitachi MNOS and Intel Flotox Nonvolatile Memory Transistors

MNOS Data Retention

Zero-bias retention plot of the MNOS.

Data retention, MNOS array.

MOA: MNOS LSI MEMORY DEVICE

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-24, NO. 5, MAY 1977

MNOS MEMORY DEVICE

United States Patent 4,063,267

Inventor: Yuki Hata, Sankyo Cell Dec. 13, 1977

YUKUN HSIA

K. L. NGAN

MNOS TRAPS AND TAILORED TRAP
DISTRIBUTION GATE DIELECTRIC MNOS

PRESENTED AT THE 1979 INTERNATIONAL CONFERENCE
ON SOLID STATE DEVICES

AUGUST 27-29, 1979, TOKYO, JAPAN

MICROSCOPIC MODEL OF MEMORY TRAPS

CHEMICAL REACTION FOR FILM FORMATION

ELECTRON EXCHANGE TO FORM AMPHOTERIC TRAPS

ELECTRON ENERGY DIAGRAM OF MNOS STRUCTURE

ALL ENERGY VALUES IN EV

PROPERTIES OF NITRIDE APTLY INTERPRETED BY THE MODEL

- ELECTRON AND HOLE TRAPS ARE EQUAL IN NUMBER
- CHARGE TRAPS ARE DISTRIBUTED IN THE NITRIDE BULK
- TRAPS ARE CHARGED
- EXCESS SILICON IN NITRIDE IS OBSERVED WITH SPECTROSCOPY
- LOWER NH_3/SiH_4 RESULTS IN LARGER THRESHOLD WINDOW
- N IMPLANT INCREASES NET POSITIVE FIX CHARGES WITH NEGATIVE SHIFT OF C-V HYSTERESIS
- B IMPLANT INCREASES NET NEGATIVE FIX CHARGES WITH POSITIVE SHIFT OF C-V HYSTERESIS

EFFECT OF HYDROGEN ON MEMORY TRAPS

• $\equiv Si-H$ BONDS ARE OBSERVED IN LOW TEMPERATURE DEPOSITED NITRIDE

• SIMILARLY, DURING ENDURANCE CYCLING, IT IS POSTULATED THAT

AND/OR

MNOS THRESHOLD WINDOW (ΔV_T) VERSUS NH₃:SiH₄
 RATIO USED IN NITRIDE DEPOSITION (770°C NITROGEN
 CARRIER CVD NITRIDE)

NH ₃ :SiH ₄ RATIO	20:1	175:1	125:1	75:1	50:1
V _T IN VOLTS	9.9	10.8	11.7	14.4	15.7

MNOS RETENTION VS SIN COMPOSITION

Yukun Hsia, Eden Mo and Kia L. NOAI

Proceedings of the 14th Conference (1982 International) on Solid State Devices, Tokyo, 1982:
Japanese Journal of Applied Physics, Volume 22 (1983) Supplement 22-1, pp. 89-93

MNOS Retention-Endurance Characteristics
Graded Nitride Dielectric

Yukun Hsu, Eden Ma and Kit L. NGAI

Proceedings of the 14th Conference (1982 International) on Solid State Devices, Tokyo, 1982;
Japanese Journal of Applied Physics, Volume 22 (1983) Supplement 22-1, pp. 89-93

Received 12-29-1988 10:30am From-714 838 4146

To-FENWICK & WEST

Page 032

Photograph of SV-early stage chip micromotors with characteristic metric R AM.

A 4-Volt Single Chip Microcomputer with Removable SRAM
Punto Final: Roberto Fierros / Mtro. de Osborn

CELL CHARACTERISTICS	PHYSICAL CHARACTERISTICS	ELECTRICAL CHARACTERISTICS
• size	• height	• voltage
• shape	• width	• current
• density	• area	• resistance
• porosity	• mass	• power
• surface area	• volume	• energy density
• thickness	• density	• self discharge
• porosity	• surface area	• cycle life
• surface area	• porosity	• cost
• thickness	• density	• safety
• porosity	• surface area	• recyclability
• surface area	• porosity	• environmental impact
• thickness	• density	• disposal
• porosity	• surface area	• availability
• surface area	• porosity	• reliability
• thickness	• density	• performance
• porosity	• surface area	• cost per unit of energy
• surface area	• porosity	• cost per unit of power
• thickness	• density	• cost per unit of weight
• porosity	• surface area	• cost per unit of volume
• surface area	• porosity	• cost per unit of area
• thickness	• density	• cost per unit of energy density
• porosity	• surface area	• cost per unit of power density
• surface area	• porosity	• cost per unit of weight density
• thickness	• density	• cost per unit of volume density
• porosity	• surface area	• cost per unit of area density

TABLE I. Average, standard and percentage characteristics

• ॥४॥ / ॥८॥ धर्मोत्तमः॥ सूक्तं सन् चार्ता दर्शने