Эконометрика: доказательства

Борис Демешев 2019-03-13

Оглавление

1	Введение	5
2	Метод главных компонент	7
3	МНК без статистических предпосылок	ğ
4	МНК и дисперсия 4.1 Задача о божественной регрессии	11 11
5	Обозначения	13

4 ОГЛАВЛЕНИЕ

Введение

- 1. Метод главных компонент и кластеризация
- 2. МНК без статистических предпосылок
- 3. МНК и дисперсия
- 4. МНК и нормальные ошибки
- 5. МНК и большие выборки
- 6. Гетероскедастичность
- 7. Эндогенность
- 8. Метод максимального правдоподобия
- 9. Логит и пробит
- 10. Деревья и леса
- 11. Временные ряды
- 12. Немного панельных данных

Метод главных компонент

МНК без статистических предпосылок

Определение.

Кросс-валидация с поочередным выкидыванием отдельных наблюдений.

Leave one out cross validation.

Рассмотрим модель $y = X\beta + u$.

Оценим модель без первого наблюдения. Получим МНК-оценки $\hat{\beta}^{(-1)}$. С помощью этих оценок спрогнозируем первое наблюдение, получим прогноз \hat{y}_1^{CV} и ошибку прогноза \hat{u}_1^{CV} .

Вернём первое наблюдение в выборку и удалим второе наблюдение. Получим МНК-оценки $\hat{\beta}^{(-2)}$. С помощью этих оценок спрогнозируем второе наблюдение, получим прогноз \hat{y}_2^{CV} и ошибку прогноза \hat{u}_2^{CV} .

Поступим так с каждым наблюдением. На выходе получим вектор кросс-валидационных прогнозов \hat{y}^{CV} и вектор кросс-валидационных ошибок прогнозов \hat{u}^{CV} .

Теорема.

Если модель $y = X\beta + u$ оценивается с помощью МНК и проводится кросс-валидации с поочередным выкидыванием отдельных наблюдений, то:

$$\hat{u}_i = (1 - H_{ii}) \cdot \hat{u}_i^{CV},$$

где H — матрица-шляпница $H=X(X'X)^{-1}X',\ \hat{u}$ — остатки регрессии, а \hat{u}^{CV} — кроссвалидационные ошибки прогнозов.

Доказательство.

Оценим модель без последнего наблюдения, $\hat{y}^- = X^- \hat{\beta}^-.$

Создадим вектор y^* , который будет отличаться от y только последним, n-м элементом: вместо настоящего y_n там будет стоять прогноз по модели без последнего наблюдения \hat{y}_n^- .

Раз уж мы добавили новую точку лежащую ровно на выборочной регрессии, то при оценки модели $\hat{y}^* = X \hat{\beta}^*$ мы получим в точности старые оценки $\hat{\beta}^* = \hat{\beta}^-$. Следовательно, и прогнозы эти две модели дают одинаковые, $\hat{y}_i^* = \hat{y}_i^-$.

А теперь посмотрим на последний элемент вектора $v = H(y^* - y)$.

С одной стороны, он равен последней строке матрицы H умножить на вектор (y^*-y) . В векторе (y^*-y) только последний элемент ненулевой, поэтому $v_n=H_{nn}(\hat{y}_n^--y_n)$.

С другой стороны, мы можем раскрыть скобки, и заметить, что $v=Hy^*-Hy$. И окажется, что $v_n=\hat{y}_n^*-\hat{y}_n=\hat{y}_n^--\hat{y}_n$.

Отсюда

$$\hat{y}_{n}^{-} - \hat{y}_{n} = H_{nn}(\hat{y}_{n}^{-} - y_{n})$$

Приводим подобные слагаемые и добавляем слева и справа y_n , получаем как раз то, что нужно:

$$y_n - \hat{y}_n = (1 - H_{ii})(y_n - \hat{y}_n^-)$$

МНК и дисперсия

4.1. Задача о божественной регрессии

Будем работать не с выборкой, как простые смертные, а подобно богам Олимпа подумаем о случайных величинах!

Пусть r — случайная величина, которую мы хотим приблизить с помощью линейной комбинации случайных величин $\beta_1 s_1 + \ldots + \beta_k s_k$.

А именно, мы хотим минимизировать

$$E((r-\beta's)^2) \to \min_{\beta}$$

Если среди случайных величин $s_1, ..., s_k$ есть константа, то можно эту величину-константу убрать и вместо этого минимизировать функцию

$$Var(r-\beta's) \to \min_{\beta}$$

Найдите оптимальный вектор β , достигаемый минимум функции.

Решение:

Теорема Гаусса-Маркова

Модель $y = X\beta + u$ оценивается с помощью МНК.

TODO: дописать оставшуюся часть теоремы и доказательства

Доказательство эффективности МНК-оценок.

Эффективность МНК-оценок — это реинкарнация теоремы Пифагора. Мы докажем, что дисперсия МНК-оценки — это квадрат длины катета, дисперсия альтернативной несмещённой оценки — квадрат длины гипотенузы.

Для примера рассмотрим первый коэффициент бета. Доказательство не меняется ни капли, если рассмотреть произвольную линейную комбинацию коэффициентов бета. У нас есть две оценки, $\hat{\beta}_1$ и $\hat{\beta}_1^{alt}$. Обе они линейны по y, следовательно, $\hat{\beta}_1=a'y$ и $\hat{\beta}_1^{alt}=a'_{alt}y$.

Замечаем, что $Var(\hat{\beta}_1)=\sigma^2a'a$, и $Var(\hat{\beta}_1^{alt})=\sigma^2a'_{alt}a_{alt}$. То есть дисперсии пропорциональны квадратм длин векторов a и a^{alt} . Осталось доказать, что вектор a не длиннее вектора a^{alt} :)

Для этого мы докажем, что a^{alt} — это гипотенуза, а a — катет. То есть нужно доказать, что вектор $a-a^{alt}$ перпендикулярен вектору a.

Разобъём доказательство перпендикулярности a и $a-a^{alt}$ на два шага:

Шаг 1. Вектор $a - a^{alt}$ перпендикулярен любому столбцу матрицы X.

Шаг 2. Вектор a является линейной комбинацией столбцов матрицы X.

TODO: здесь картинка!

Приступаем к шагу 1. Обе оценки несмещённые, поэтому для любых β должно выполняться:

$$E(\hat{\beta}_1) = E(\hat{\beta}_1^{alt})$$

Переносим всё в левую сторону:

$$E((a' - a'_{alt})(X\beta + u)) = 0$$

Получаем, что для любых β должно быть выполнено условие:

$$(a - a_{alt})'X\beta = 0$$

Но это возможно только если вектор $(a-a_{alt})'X$ равен нулю. Следовательно, вектор $(a-a_{alt})$ перпендикулярен любому столбцу X.

Приступаем к шагу 2.

Вспоминаем, что $\hat{\beta}=(X'X)^{-1}X'y$. Следовательно, нужная строка весов a' — это первая строка в матрице $(X'X)^{-1}X'$. Замечаем, что выражение имеет вид $A\cdot X'$.

Вспоминаем из линейной алгебры, что при умножении матриц AB получается матрица C, на которую можно взглянуть двумя способами. Можно считать, что C — это разные линейные комбинации столбцов левой матрицы A, а можно считать, что C — это разные линейные комбинаций строк правой матрицы B.

Применим второй взгляд :) Получаем, что строка a' — линейная комбинация строк матрицы X'. Или, другими словами, столбец a — линейная комбинация столбцов матрицы X.

Обозначения

```
n-количество наблюдений k-количество коэффициентов бета y- вектор зависимой переменной размера (n\times 1) \beta- вектор истинных значений коэффициентов размера (k\times 1) \hat{u}- остатки модели; \hat{u}^{CV}- ошибки прогнозов, полученных с помощью кросс-валидации с поочередным выкидыванием отдельных наблюдений; H- матрица-шляпница, H=X(X'X)^{-1}X'
```