מבוא וסדר ראשון

הגדרות כלליות

- . $F(x,y,y',\dots,y^{(n)})=0$ מד"ר: קשר מהצורה ביותר. סדר: סדר הנגזרת הגבוהה ביותר. מעלה: החזקה של הנגזרת מהסדר הגבוה ביותר (לאחר שהמשוואה מעלה: הח פולינומיאלית בנגזרות).
- תנאי התחלה: מד"ר מסדר n דורשת n תנאי התחלה לקביעת פתרון פרטי.
- $a_n(x)y^{(n)} + \cdots + a_0(x)y = R(x)$ לינאריות: אם ניתן לכתוב כ-
- G(x,y)=C) סתום (עם ת"ה), פרטי (עם קבועים), פרטי (סתום סינגולרי (לא נובע מהכללי).
- y'=f(x,y) משפט קיום ויחידות (פיקארד): לבעיית התחלה ulletרציפות פתרון (x_0,y_0), אם f,f_y' אם אם $y(x_0)=y_0$

משוואות פריקות (Separable)

- M(x)dx + N(y)dy = 0 או y' = f(x)g(y) צורה:
- . $\int \frac{dy}{g(y)} = \int f(x) dx + C$ פתרון: בתרון: $y = y_0$ המאפסים הערה חשובה: יש לבדוק בנפרד פתרונות קבועים את $g(y_0)$, שכן ייתכן שהם "הולכים לאיבוד" בחלוקה.

משוואות הומוגניות

.y'=f(y/x) בורה: .y'=z'x+z בורה: המשוואה הופכת • פתרון: הצבה $.\frac{dz}{f(z)-z}=\frac{dx}{x}$ לפריקה:

משוואות "כמעט הומוגניות"

 $(a_1x+b_1y+c_1)dx+(a_2x+b_2y+c_2)dy=0$ צורה.

- מצא נק' חיתוך (x_0,y_0) . הצב ($a_1b_2 \neq a_2b_1$). הצב X, Y - X המשוואה הופכת להומוגנית. $X = X + x_0, y = Y + y_0$
- המשוואה $.t=a_1x+b_1y$ הצב ($a_1b_2=a_2b_1$) המשוואה הופכת לפריקה.

משוואות מדויקות

- M(x,y)dx + N(x,y)dy = 0 צורה: •
- $rac{\partial M}{\partial y} = rac{\partial N}{\partial x}$ אם ורק אם מדויקת •
- הוא הפתרון הוא $\phi(x,y)$ פתרון קיים פוטנציאל אם מדויקת, הדויקת, אם פתרון אם פתרון $.\phi(x,y) = C$
- וחשב: y וחשב: x וחשב: y וחשב: y וחשב: y וחשב: y וחשב: y וחשב:

$$\phi(x,y) = \int M(x,y) dx + \int N(x,y) dy$$

 $\phi(x,y)=C$ התעלם מהאיברים שחוזרים פעמיים. הפתרון הוא (μ) גורם אינטגרציה

מטרה. הופך משוואה לא מדויקת למדויקת.

- $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)\Rightarrow \mu(x)=e^{\int f(x)\,dx}$ אם
- $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=g(y)\Rightarrow \mu(y)=e^{\int g(y)\,dy}$ אם •
- Mx+Ny
 eq 0 אם המשוואה הומוגנית אז $\mu=\frac{1}{Mx+Ny}$ אם המשוואה הומוגנית אז

משוואות לינאריות מסדר ראשון

- y' + P(x)y = Q(x) צורה: •
- $\mu(x) = e^{\int P(x) dx}$:אורם אינטגרציה •
- $y(x) = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) dx + C \right)$ הפתרון הכללי:
 - $y(x) = y_h(x) + y_p(x)$ מבנה:

משוואת ברנולי

- $(t \neq 0, 1)$, $y' + P(x)y = Q(x)y^t$ צורה: •
- הופכת את המשוואה ללינארית: בתרון: הצבה $z=y^{1-t}$ הופכת את המשוואה הצבה .z' + (1-t)P(x)z = (1-t)Q(x)

טכניקות נוספות

נסו y'=f(x,y) אם המשוואה y'=f(x,y) מסובכת, נסו לפתור את עבור $\frac{dx}{dy} = \frac{1}{f(x,y)}$ עבור את לפתור את געור x(y) עבור אינארית ב-x(y)

מד"ר מסדר שני

הורדת סדר (מקרים מיוחדים)

- z'=y'' ,z(x)=y' בורה 1: חסר F(x,y',y'')=0): הצב ulletמתקבלת מד"ר מסדר 1, F(x,z,z')=0 הפתרון הסופי הוא $y(x) = \int z(x)dx + C_2$
- y''=y''=y' הצב (F(y,y',y'')=0), ואז ulletמתקבלת מד"ר מסדר 1, $F(y,z,z\frac{dz}{du})=0$ לאחר מציאת. $z\frac{dz}{du}$ $rac{dy}{dx}=z(y)$ את פותרים, z(y)

מד"ר לינארית, מקדמים קבועים - הומוגנית

.ay'' + by' + cy = 0 צורה.

- $ar^2 + br + c = 0$ משוואה אופיינית: •
- $:r_1,r_2$ הפתרון $y_h(x)$ תלוי בשורשים ullet
- $y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.1 ממשיים ושונים: .1
 - $y_h(x) = (C_1 + C_2 x)e^{rx}$.2. ממשי כפול:
 - :($r=lpha\pm ieta$) מרוכבים צמודים 3
 - $y_h(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$
- הרחבה למשוואה מסדר גבוה יותר: אם למשוואה האופיינית יש שורא ביבור אז הפתרון ההומוגני כולל k איברים מהצורה: r

$$(C_1 + C_2x + \dots + C_kx^{k-1})e^{rx}$$

 e^{rx} הפונקציה את לקחת הש ליש עם ריבוי עם שורש כלומר, עבור כל שורש עם ריבוי אורש בפולינום מדרגה ולשים אותה בפולינום מדרגה ולk-1

מד"ר לינארית, מקדמים קבועים - לא הומוגנית

.ay'' + by' + cy = R(x) צורה.

- $y(x)=y_h(x)+y_p(x)$ פתרון כללי: •
- y_p אמציאת (מקדמים לא ידועים) למציאת שיטת הניחוש שיטת
- בניית קבוצת הניחוש (S): בהתבסס על אגף ימין (R(x), בנה קבוצה .1 הכוללת את כל הפונקציות שמופיעות ב-R(x) וכל הנגזרות Sהבלתי תלויות-לינארית שלהן. השתמש בטבלה הבאה:

1711-1711 171-171 1711 1711 1711 1711 1			
אז קבוצת הניחוש S מכילה את האיברים	מכיל איבר מהצורה $R(x)$		
$\{x^n, x^{n-1}, \dots, x, 1\}$	(פולינום) $P_n(x)$		
$\{e^{\alpha x}\}$	$e^{\alpha x}$		
$\{\sin(\beta x),\cos(\beta x)\}$	$\cos(\beta x)$ או $\sin(\beta x)$		
שילובים (לפי מכפלות)			
$\{x^n e^{\alpha x}, \dots, e^{\alpha x}\}$	$P_n(x)e^{\alpha x}$		
$\{e^{\alpha x}\sin(\beta x), e^{\alpha x}\cos(\beta x)\}$	$e^{\alpha x}\sin(\beta x)$		
$\{x^k \sin(\beta x), x^k \cos(\beta x) \mid k = 1\}$	$P_n(x)\sin(\beta x)$		
$0,\ldots,n$			
$\{x^k e^{\alpha x} \sin(\beta x), x^k e^{\alpha x} \cos(\beta x) \mid$	$P_n(x)e^{\alpha x}\sin(\beta x)$		
$k = 0, \dots, n$			

- כל כל אינוף לינארי אירוף הפרטי הפתרון הפרטי הפתרון הפתרון .2 $(A,B,C\ldots)$ האיברים לא ידועים עם מקדמים בקבוצה האיברים האיברים האיברים
- 3. בדיקת תהודה (Resonance) ותיקון: אם איבר כלשהו בניחוש הראשוני y_p הוא גם פתרון של המשוואה ההומוגנית (y_h), קיימת תהודה. התיקון: יש להכפיל את כל הניחוש ב- x^k , כאשר k היא החזקה השלמה החיובית הנמוכה ביותר שמבטלת את כל החפיפות

שיטת האופרטור המפרק.

• שלב 1: פירוק האופרטור. כותבים את המשוואה כ:

$$(D-r_1)(D-r_2)y = \frac{R(x)}{a}$$

. כאשר $D=rac{d}{dx}$ הם שורשי המשוואה האופיינית.

- שלב 2: פתרון מדורג.
- $g(x) = (D r_2)y$:א)
- ב) הפתרון $g'-r_1g=rac{R(x)}{a}$ ב) מסדר מסדר מסדר אשון: (ב) $.C_1$ יכיל קבוע g(x)
- y(x) הפתרון $y'-r_2y=g(x)$ הפתרון (ג) פתור את המד"ר השנייה: C_2 הוא הפתרון הכללי המבוקש ויכיל קבוע נוסף

משוואת קלרו

- y = xy' + f(y') צורה: •
- y = Cx + f(C) פתרון כלליי: •
- (p=y' פתרון סינגולרי: פתרון המערכת (עם •

$$\begin{cases} y = xp + f(p) \\ x + f'(p) = 0 \end{cases}$$

אינטגרלים נפוצים

אינטגרל	פונקציה	אינטגרל	פונקציה
$x \ln(x) - x$	$\int \ln(x) dx$	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\int x^n dx$
$\frac{1}{a} \arctan\left(\frac{x}{a}\right)$	$\int \frac{dx}{x^2 + a^2}$	$\ln x $	$\int \frac{1}{x} dx$
$\arcsin\left(\frac{x}{a}\right)$	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\frac{1}{a}e^{ax}$	$\int e^{ax} dx$
$\cosh x$	$\int \sinh x dx$	$\frac{a^x}{\ln a}$	$\int a^x dx$
$\sinh x$	$\int \cosh x dx$	$-\frac{1}{a}\cos(ax)$	$\int \sin(ax) dx$
tan x	$\int \sec^2 x dx$	$\frac{1}{a}\sin(ax)$	$\int \cos(ax) dx$
$\ln \sec x + \tan x $	$\int \sec x dx$	$-\ln \cos x $	$\int \tan x dx$
$-\ln \csc x + \cot x $	$\int \csc x dx$	$\ln \sin x $	$\int \cot x dx$

זהויות טריגונומטריות

- $\sin^2(x) + \cos^2(x) = 1 \bullet$
- $\sin^2(x) = \frac{1-\cos(2x)}{2}$ $\cos^2(x) = \frac{1 + \cos(2x)}{2} \bullet$ $\tan^2(x) + 1 = \sec^2(x) \bullet$
 - $\cot^2(x) + 1 = \csc^2(x) \bullet$
 - $\sin(2x) = 2\sin(x)\cos(x) \bullet$
 - $\cos(2x) = \cos^2(x) \sin^2(x) \quad \bullet$
 - $\cos(2x) = 2\cos^2(x) 1 \bullet$
 - $\cos(2x) = 1 2\sin^2(x) \bullet$

שיטות אינטגרציה

• אינטגרציה בחלקים:

$$\int u \, dv = uv - \int v \, du$$

 $\sin(x \pm y) = \sin(x)\cos(y) \pm \bullet$

 $\cos(x \pm y) = \cos(x)\cos(y) \mp \bullet$

 $\cos(x)\sin(y)$

 $\sin(x)\sin(y)$

• שיטת ההצבה (שינוי משתנה):

$$\int f(g(x))g'(x) dx = \int f(u) du, \quad u = g(x)$$

שימושי כאשר חלק מהאינטגרנד הוא נגזרת של ביטוי פנימי.

- $rac{P(x)}{Q(x)}$ אינטגרל של פונקציה רציונלית סלקיים: לחישוב אינטגרל שברים חלקיים: (Q קטנה ממעלת P (כאשר מעלת)
- -או ריבועיים איר ברק את המכנה Q(x) לגורמים לינאריים וQ(x)
 - (ב) רשום את השבר כסכום של שברים חלקיים:

 - $\frac{A}{ax+b}$:- גורם (ax+b) תורם: (ax+b) תורם: $(ax+b)^k$ -- גורם $(ax+b)^k$ תורם: $(ax+b)^k$ -- גורם (ax^2+bx+c) תורם:
- ע"י השוואת מונים או הצבת (ג) מצא את הקבועים ((A,B,\ldots) ע"י השוואת מונים או ערכי ערכי (A,B,\ldots)

מד"ר לינארית, מקדמים כלליים

$$.y'' + P(x)y' + Q(x)y = R(x)$$
 צורה.

 y_1 שלב 1: מציאת פתרון הומוגני •

$$1+P(x)+Q(x)=0 \implies y_1=e^x$$
 אם - $1-P(x)+Q(x)=0 \implies y_1=e^{-x}$ אם -

$$1-P(x)+Q(x)=0 \implies y_1=e^{-x}$$
 $P(x)+xQ(x)=0 \implies y_1=x$ $P(x)+xQ(x)=0$

$$m^2 + mP(x) + Q(x) = 0 \implies y_1 = e^{mx}$$
 אם -

:(מציאת סדר) y_2 מציאת •

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1(x)^2} dx$$

 $y_h = C_1 y_1 + C_2 y_2$ הפתרון ההומוגני הכללי הוא: פרמטרים: פתרון לא-הומוגני (וריאציית פרמטרים: $y_p = u_1 y_1 + u_2 y_2$ הפתרון הפרטי הוא $y_p = u_1 y_1 + u_2 y_2$

$$u_1'(x) = -\frac{y_2 R}{W(y_1, y_2)}$$
 $u_2'(x) = \frac{y_1 R}{W(y_1, y_2)}$

באשר y_1 ו־ y_2 , כלומר: Wronskian הוא ה־ $W(y_1,y_2)$

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2$$

פתרון בעזרת טורים

(נק' רגולרית): $x_0=0$ שיטה. מציאת פתרון סביב

$$y'=\sum_{n=1}^{\infty}na_nx^{n-1}$$
 $y=\sum_{n=0}^{\infty}a_nx^n$:ו. הנחת הפתרון: $y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}$ x^k מעדעה בפן מעדעה ב

- - $a_1=y'(0)$, $a_0=y(0)$.4. מקדמים לפי
- $y(x) = a_0 \cdot y_{\text{even}}(x) + a_1 \cdot y_{\text{odd}}(x)$.5. פתרון כללי:

טורי טיילור שימושיים (סביב 0)

פונקו	ר חזקות	פונקציה טו
$\frac{1}{+x}$	$\sum_{k=0}^{\infty}$	$\frac{x^k}{k!}$ e^x
+x)	$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)^k}$	$\frac{x^{2k+1}}{(x+1)!}$ $\sin(x)$
-x)	$\angle k=0$ (2	$\frac{(k_x)^k x^{2k}}{(2k)!}$ $\cos(x)$
$\frac{\operatorname{an}(x)}{1}$	$\angle k=0$ $\overline{(2k)}$	$\frac{k+1}{(x+1)!}$ $\sinh(x)$
$-x)^{2}$		$\frac{1}{2k}$ $\cosh(x)$
$(-x)^{\alpha}$	$\sum_{k=0}^{\infty} s_k$	x^k $\frac{1}{1-x}$

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} (-1)^k x^k$	$\frac{1}{1+x}$
$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$	ln(1+x)
$-\sum_{k=1}^{\infty} \frac{x^k}{k}$	ln(1-x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$	arctan(x)
$\sum_{k=1}^{\infty} kx^{k-1}$	$\frac{1}{(1-x)^2}$
$\sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$	$(1+x)^{\alpha}$

משוואת אוילר-קושי

- $ax^2y'' + bxy' + cy = R(x)$ צורה כללית:

שלב 1: פתרון ההומוגנית פלב 1: פתרון ההומוגנית נוחש פתרון מהצורה $y=x^m$ ונחשב:

$$y' = mx^{m-1}, \quad y'' = m(m-1)x^{m-2}$$

נציב במשוואה ונקבל את המשוואה העזרית:

$$am(m-1) + bm + c = 0$$

נסמן את שורשי המשוואה ב־ m_1, m_2 , ואז הפתרון ההומוגני הוא:

- $y_h(x) = C_1 |x|^{m_1} + C_2 |x|^{m_2}$.1.
- $y_h(x) = (C_1 + C_2 \ln |x|) |x|^m$ בפול ממשי: .2
- .3 שורשים מרוכבים צמודים: אם $ar{lpha}\pm iar{eta}$ אז:

$$y_h(x) = |x|^{\alpha} \left[C_1 \cos(\beta \ln|x|) + C_2 \sin(\beta \ln|x|) \right]$$

● שלב 2: פתרון פרטי

ננחש פתרון פרטי $y_p(x)$ לפי צורת (למשל פולינום, טריגונומטרי או מעריכי), ונציב במשוואה כדי לקבוע את הפרמטרים.

• שלב 3: פתרון כללי

$$y(x) = y_h(x) + y_p(x)$$

יש ההומוגני, אם R(x) מהצורה x^n ונמצא כבר בפתרון ההומוגני, יש $\ln x$ להכפיל את הניחוש ב־