Load Required modules

```
In [1]: import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  import warnings
  warnings.filterwarnings("ignore")
```

Load the required dataset

In [2]: df = pd.read_csv("C:/Users/ADMIN/Desktop/Data Science/Datasets/Bank Customer Churn

View the dataset

In [3]: df.head(10)

Out[3]:		customer_id	credit_score	country	gender	age	tenure	balance	products_number
	0	15634602	619	France	Female	42	2	0.00	1
	1	15647311	608	Spain	Female	41	1	83807.86	1
	2	15619304	502	France	Female	42	8	159660.80	3
	3	15701354	699	France	Female	39	1	0.00	2
	4	15737888	850	Spain	Female	43	2	125510.82	1
	5	15574012	645	Spain	Male	44	8	113755.78	2
	6	15592531	822	France	Male	50	7	0.00	2
	7	15656148	376	Germany	Female	29	4	115046.74	4
	8	15792365	501	France	Male	44	4	142051.07	2
	9	15592389	684	France	Male	27	2	134603.88	1
	4 (>

Structure of the dataset

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 12 columns):
    Column
                     Non-Null Count Dtype
--- -----
                     -----
0
    customer_id
                     10000 non-null int64
1
    credit_score
                     10000 non-null int64
 2
    country
                     10000 non-null object
 3
                     10000 non-null object
    gender
4
                     10000 non-null int64
    age
 5
    tenure
                     10000 non-null int64
                     10000 non-null float64
    balance
                     10000 non-null int64
 7
    products_number
    credit_card
                     10000 non-null int64
    active member
                     10000 non-null int64
10 estimated_salary 10000 non-null float64
                     10000 non-null int64
11 churn
dtypes: float64(2), int64(8), object(2)
memory usage: 937.6+ KB
```

Check for missing values

```
In [5]:
        df.isnull().sum()
Out[5]: customer_id
                             0
         credit score
         country
         gender
         age
         tenure
         balance
         products_number
         credit_card
         active_member
         estimated_salary
                             0
         churn
         dtype: int64
```

Check for duplicates

```
In [6]:
        df.duplicated().sum()
```

Out[6]: 0

Data Preprocessing

Removing unnecessary columns

```
In [7]: df = df.drop(columns = ["customer_id"])
```

Checking for Outliers

```
In [8]: numeric_cols = df.select_dtypes(include = ["float64", "int64"])
        numeric_cols.boxplot(figsize = (10, 8))
```


One hot encoding

```
In [18]: ## Load the required module
    from sklearn.preprocessing import LabelEncoder

## Select categorical columns
    categorical_cols = df.select_dtypes(include = ["object"]).columns

## Initialize the Label encoder
label_encoder = LabelEncoder()

## Apply Label encooding to selected columns
for col in categorical_cols:
    df[col] = label_encoder.fit_transform(df[col])
```

Exploratory Data Analysis

Summary Statistics

```
In [20]: df.describe()
```

Out[20]:

	credit_score	country	gender	age	tenure	balanc
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
mean	650.528800	0.746300	0.545700	38.921800	5.012800	76485.88928
std	96.653299	0.827529	0.497932	10.487806	2.892174	62397.40520
min	350.000000	0.000000	0.000000	18.000000	0.000000	0.00000
25%	584.000000	0.000000	0.000000	32.000000	3.000000	0.00000
50%	652.000000	0.000000	1.000000	37.000000	5.000000	97198.54000
75%	718.000000	1.000000	1.000000	44.000000	7.000000	127644.24000
max	850.000000	2.000000	1.000000	92.000000	10.000000	250898.09000

Plotting histograms and kde plots for numeric variables

```
In [21]:
    numeric_col = df.select_dtypes(include = ["float64", "int64"])
    for col in numeric_col:
        plt.figure(figsize = (8, 4))
        sns.histplot(df[col], kde = True, bins = 15, color = "violet")
        plt.title(f'Histogram and KDE for {col}')
        plt.xlabel(col)
        plt.ylabel("Frequency")
        plt.show()
```


Histogram and KDE for churn 8000 7000 6000 5000 Frequency 4000 3000 2000 1000 0 0.2 0.4 0.0 0.6 0.8 1.0 churn

Correlation Analysis

```
In [22]: plt.figure(figsize = (20, 12))
    corr = numeric_col.corr()
    mask = np.triu(np.ones_like(corr, dtype = bool))
    sns.heatmap(corr, mask = mask, linewidths = 1, annot = True, fmt = ".2f")
    plt.show()
```


Distribution of the study variable

```
In [23]: freq_table = df['churn'].value_counts()
         percent_table = df['churn'].value_counts(normalize=True) * 100
         result = pd.DataFrame({'Frequency': freq_table, 'Percentage': percent_table.round(2
         print(result)
               Frequency Percentage
        churn
        0
                    7963
                               79.63
        1
                    2037
                               20.37
          sns.countplot(x = "churn", data = df)
In [24]:
          plt.title('Distribution of Customers based on churn')
          plt.ylabel("Frequency")
          plt.xlabel("Churn")
          plt.xticks([0, 1], labels = ["False", "True"])
          plt.show()
```


Define the X and y features

```
In [25]: X = df.drop(columns = ["churn"])
y = df["churn"]
```

Handling Class imbalance

Oversampling of the minority class

```
In [26]: ## Load the required module
    from imblearn.over_sampling import RandomOverSampler

## Initialize the RandomOverSampler
    ros = RandomOverSampler(random_state = 42)

## Apply the RandomOverSampler
    X_resampled, y_resampled = ros.fit_resample(X, y)

## Print the oversampled data
    dict(zip(*np.unique(y_resampled, return_counts = True)))
Out[26]: {0: 7963, 1: 7963}
```

Splitting the data into training and testing sets

```
In [27]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_
```

Feature Scaling

```
In [28]: from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

1. Logistic Regression

```
In [29]: ## Load the required modules
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import classification_report,confusion_matrix
         from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
         ## Initialize the model
         reg = LogisticRegression()
         ## Fit the model
         reg.fit(X_train, y_train)
         ## Make predictions
         lr_pred = reg.predict(X_test)
         ## Print the evaluation metrics
         print("Classification Report is:\n",classification_report(y_test,lr_pred))
         print("\n F1:\n",f1_score(y_test,lr_pred))
         print("\n Precision score is:\n",precision_score(y_test,lr_pred))
         print("\n Recall score is:\n",recall_score(y_test,lr_pred))
         print("\n Confusion Matrix:\n")
         ## Print the accuracy score
         reg_score = accuracy_score(y_test, lr_pred)
```

```
Classification Report is:
               precision
                          recall f1-score
                                                support
                             0.70
           0
                   0.70
                                       0.70
                                                  1633
           1
                   0.68
                             0.68
                                       0.68
                                                  1553
    accuracy
                                       0.69
                                                  3186
                             0.69
                                       0.69
   macro avg
                   0.69
                                                  3186
weighted avg
                   0.69
                             0.69
                                       0.69
                                                  3186
 F1:
 0.6812479897073014
 Precision score is:
 0.6805912596401028
 Recall score is:
 0.68190598840953
 Confusion Matrix:
```

2. Random Forest

```
In [30]: ## Load the required modules
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import classification_report,confusion_matrix
         from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
         from sklearn.model_selection import RepeatedStratifiedKFold
         from sklearn.model_selection import GridSearchCV
         ## Initialize the model
         RF = RandomForestClassifier()
         ## Define the hyperparameters
         n estimators = [1800]
         max_features = ['sqrt', 'log2']
         ## Define grid search
         grid = dict(n_estimators=n_estimators,max_features=max_features)
         cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
         grid_search = GridSearchCV(estimator=RF, param_grid=grid, n_jobs=-1, cv=cv, scoring
         ## Fit the model using grid search
         best_model = grid_search.fit(X_train, y_train)
         ## Make predictions
         rf_pred = best_model.predict(X_test)
         ## Print the accuracy score
         RF_score= accuracy_score(y_test, rf_pred)
         ## Print the evaluation matrix
         print("Classification Report is:\n",classification_report(y_test,rf_pred))
         print("\n F1:\n",f1_score(y_test,rf_pred))
```

```
print("\n Precision score is:\n",precision_score(y_test,rf_pred))
print("\n Recall score is:\n",recall_score(y_test,rf_pred))
Classification Report is:
```

```
recall f1-score
               precision
                                               support
          0
                   0.98
                             0.92
                                       0.95
                                                 1633
                   0.92
                             0.98
                                       0.95
                                                 1553
    accuracy
                                       0.95
                                                 3186
                   0.95
                             0.95
                                       0.95
                                                 3186
  macro avg
weighted avg
                   0.95
                             0.95
                                       0.95
                                                 3186
```

F1: 0.950625 Precision score is: 0.9234972677595629

Recall score is: 0.9793947198969736

3. Support Vector Machines

```
In [31]: ## Load the required modules
         from sklearn.model_selection import RepeatedStratifiedKFold, GridSearchCV
         from sklearn.svm import SVC
         from sklearn.metrics import classification_report, confusion_matrix, f1_score, prec
         import seaborn as sns
         import matplotlib.pyplot as plt
         ## Define model and parameter grid
         svm = SVC()
         kernel = ['poly', 'rbf']
         C = [50, 10, 1.0, 0.1, 0.01]
         gamma = ['scale']
         grid = dict(kernel=kernel, C=C, gamma=gamma)
         ## Setup cross-validation and GridSearch
         cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
         grid_search = GridSearchCV(estimator=svm, param_grid=grid, n_jobs=-1, cv=cv, scorin
         ## Fit the model
         grid_result = grid_search.fit(X_train, y_train)
         ## Predict class labels on test data
         svm_pred = grid_result.predict(X_test)
         svm_score = accuracy_score(y_test, svm_pred)
         ## Evaluate performance
         print("Classification Report:\n", classification_report(y_test, svm_pred))
         print("F1 Score:", f1_score(y_test, svm_pred, average='macro'))
         print("Precision:", precision_score(y_test, svm_pred, average='macro'))
         print("Recall:", recall_score(y_test, svm_pred, average='macro'))
         print("Accuracy:", svm_score)
```

```
Best Parameters: {'C': 50, 'gamma': 'scale', 'kernel': 'rbf'}
Classification Report:
              precision
                           recall f1-score
                                             support
          0
                  0.85
                            0.79
                                     0.82
                                               1633
                  0.79
                            0.85
                                     0.82
                                               1553
                                     0.82
                                               3186
   accuracy
                                     0.82
                                               3186
                  0.82
                            0.82
  macro avg
weighted avg
                  0.82
                            0.82
                                     0.82
                                               3186
```

F1 Score: 0.8204362283717523 Precision: 0.8219068926051922 Recall: 0.8212976168835855 Accuracy: 0.8204645323289391

4. XG Boost Classifier

```
In [32]: ## Load the required module
         from xgboost import XGBClassifier
         ## Intialize the model
         xgb = XGBClassifier()
         ## Fit the model
         xgb.fit(X_train, y_train)
         ## Make predictions
         xgb_pred = xgb.predict(X_test)
         ## Print the accuracy score
         xgb_score = xgb.score(X_test, y_test)
         ## Evaluate performance
         print("Classification Report:\n", classification_report(y_test, xgb_pred))
         print("F1 Score:", f1_score(y_test, xgb_pred))
         print("Precision:", precision_score(y_test, xgb_pred))
         print("Recall:", recall_score(y_test, xgb_pred))
         print("Accuracy:", accuracy_score(y_test, xgb_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.87	0.90	1633
1	0.87	0.93	0.90	1553
accuracy			0.90	3186
macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.90	3186 3186

F1 Score: 0.8987577639751553 Precision: 0.8680263947210558 Recall: 0.9317450096587251 Accuracy: 0.8976773383553045

5. K Nearest Neighbors

```
In [33]: ## Load the required libraries
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import RepeatedStratifiedKFold
         from sklearn.metrics import classification report,confusion matrix
         from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
         from sklearn.model_selection import GridSearchCV
         ## List Hyperparameters to tune
         knn= KNeighborsClassifier()
         n neighbors =range(15,25)
         weights = ['uniform', 'distance']
         metric = ['euclidean', 'manhattan']
         ## convert to dictionary
         hyperparameters = dict(n_neighbors=n_neighbors, weights=weights, metric=metric)
         ## Making model
         cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=42)
         grid_search = GridSearchCV(estimator=knn, param_grid=hyperparameters, n_jobs=-1, cv
         best_model = grid_search.fit(X_train, y_train)
         ## Making Predictions
         knn_pred = best_model.predict(X_test)
         ## Print the evaluation metrics
         Knn_score = accuracy_score(y_test, knn_pred)
         print("Classification Report is:\n",classification_report(y_test,knn_pred))
         print("\n F1:\n",f1_score(y_test,knn_pred))
         print("\n Precision score is:\n",precision_score(y_test,knn_pred))
         print("\n Recall score is:\n",recall_score(y_test,knn_pred))
        Classification Report is:
                       precision recall f1-score
                                                       support
                   0
                           0.98
                                   0.76
                                               0.86
                                                         1633
                   1
                           0.80
                                     0.99
                                               0.88
                                                         1553
                                               0.87
                                                         3186
            accuracy
           macro avg
                           0.89
                                     0.88
                                               0.87
                                                         3186
                                     0.87
        weighted avg
                          0.89
                                               0.87
                                                         3186
         F1:
         0.8828102505038872
         Precision score is:
         0.7984375
         Recall score is:
         0.9871216999356085
```

6. Gradient Boosting Machines

```
In [34]: ## Load the required modules
         from sklearn.ensemble import GradientBoostingClassifier
         ## Initialize the softwares
         gbc = GradientBoostingClassifier()
         ## Define the hyperparameters
         parameters = {
             'loss': ['deviance', 'exponential'],
             'learning_rate': [0.001, 0.1, 1, 10],
             'n_estimators': [100, 150, 180, 200]
         ## Fit the model with the best hyperparameters
         grid_search_gbc = GridSearchCV(gbc, parameters, cv = 5, n_jobs = -1, verbose = 1)
         grid_search_gbc.fit(X_train, y_train)
         ## Make predictions
         gbc_pred = grid_search_gbc.predict(X_test)
         ## Evaluate performance
         gbc_score = accuracy_score(y_test, gbc_pred)
         print("Classification Report:\n", classification_report(y_test, gbc_pred))
         print("F1 Score:", f1_score(y_test, gbc_pred))
         print("Precision:", precision_score(y_test, gbc_pred))
         print("Recall:", recall_score(y_test, gbc_pred))
         print("Accuracy:", accuracy_score(y_test, gbc_pred))
```

Fitting 5 folds for each of 32 candidates, totalling 160 fits Classification Report:

	precision	recall	f1-score	support
0	0.90	0.83	0.87	1633
1	0.84	0.91	0.87	1553
accuracy			0.87	3186
macro avg	0.87	0.87	0.87	3186
weighted avg	0.87	0.87	0.87	3186

F1 Score: 0.8714462299134734 Precision: 0.8377896613190731 Recall: 0.9079201545396007 Accuracy: 0.869428750784683

7. Ada Boost Classifier

```
In [35]: ## Load the required modules
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.tree import DecisionTreeClassifier

## Define the model
    base_estimator = DecisionTreeClassifier(max_depth = 1)
    ada = AdaBoostClassifier(estimator = base_estimator, n_estimators=180, learning_rat
    ## Fit the model
```

```
ada.fit(X_train, y_train)

## Make predictions
ada_pred = ada.predict(X_test)

## Evaluate performance
ada_score = accuracy_score(y_test, ada_pred)
print("Classification Report:\n", classification_report(y_test, ada_pred))
print("F1 Score:", f1_score(y_test, ada_pred))
print("Precision:", precision_score(y_test, ada_pred))
print("Recall:", recall_score(y_test, ada_pred))
print("Accuracy:", accuracy_score(y_test, ada_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.78	0.79	0.79	1633
1	0.77	0.77	0.77	1553
accuracy			0.78	3186
macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78	3186 3186
0 0				

F1 Score: 0.7736943907156673 Precision: 0.7746933505487411 Recall: 0.77269800386349 Accuracy: 0.7796610169491526

8. Voting Classifier

```
In [36]: ## Load the required module
         from sklearn.ensemble import VotingClassifier
         ## Define the base classifiers
         classifiers = [('Logistic Regression', reg), ('K Nearest Neighbours', knn), ('Suppo')
         ## Initialize the model
         vc = VotingClassifier(estimators = classifiers)
         ## Fit the model
         vc.fit(X train, y train)
         ## Make predictions
         vc_pred = vc.predict(X_test)
         ## Evaluate performance
         vc_score = accuracy_score(y_test, vc_pred)
         print("Classification Report:\n", classification_report(y_test, vc_pred))
         print("F1 Score:", f1_score(y_test, vc_pred))
         print("Precision:", precision_score(y_test, vc_pred))
         print("Recall:", recall_score(y_test, vc_pred))
         print("Accuracy:", accuracy_score(y_test, vc_pred))
```

Classification Report: precision recall f1-score support 0.76 0.79 0 0.81 1633 1 0.77 0.81 0.79 1553 0.79 accuracy 3186 0.79 0.79 0.79 3186 macro avg 3186 weighted avg 0.79 0.79 0.79

F1 Score: 0.7878787878787878 Precision: 0.7651699029126213 Recall: 0.8119768190598841 Accuracy: 0.7868801004394225

Model Comparison

```
Out[37]: Model Score
```

```
    Random Forest Classifier 0.950408
    xgboost 0.897677
    KNN 0.872254
    Gradient Boosting Classifier 0.869429
    SVM 0.820465
    Voting Classifier 0.786880
    Ada Boost Classifier 0.779661
    Logistic Regression 0.688952
```

```
In [38]: ## Lets save our model using pickle
import pickle as pkl
pkl.dump(grid_search, open("bank_customer_chrun.sav","wb"))
```