CS486: Assignment 2

⇔ Status	In progress
Submitted	
m Due	@June 9, 2023 11:59 PM
* Assignee	🔁 Darcy Liu
→ Course	CS486: Introduction to Artificial Intelligence
Σ Days Late	0
# Late Penalty	2%
Priority	
# Raw Score	
# Weighting	10%

PDF:file

 $\frac{\text{https://s3-us-west-2.amazonaws.com/secure.notion-static.com/77630db2-1b4f-4725-96df-1a4deca8882b/CS486_Spring_20}{23_A2.pdf}$

Question 2

a)

- ullet Acc card holder has an account with the merchant for current transaction.
- ullet Fraud current transaction is fraudulent.
- \bullet Trav card holder is currently traveling.
- ullet FP current transaction is a foreign purchase.
- ullet OP current purchase is an online purchase.
- $\bullet\ PT$ previous transaction with the same merchant was made in the past week.

Probabilities:

- ullet P(Fraud|Trav)=0.01: Probability of a fraudulent transaction when the card holder is traveling.
- $P(Fraud|\neg Trav) = 0.004$: Probability of a fraudulent transaction when the card holder is not traveling.
- P(Trav) = 0.05: Probability of the card holder traveling.
- $P(FP|Fraud, \neg Trav) = 0.1$: Probability of a foreign purchase for a fraudulent transaction when the card holder is not traveling.
- P(FP|Fraud, Trav) = 0.9: Probability of a foreign purchase for a fraudulent transaction when the card holder is traveling.

CS486: Assignment 2

- $P(FP|\neg Fraud, \neg Trav) = 0.01$: Probability of a foreign purchase for a legitimate transaction when the card holder is not traveling.
- $P(FP|\neg Fraud, Trav) = 0.9$: Probability of a foreign purchase for a legitimate transaction when the card holder is traveling.
- $P(OP|Acc, \neg Fraud) = 0.6$: Probability of an online purchase when the card holder has an account with the merchant and the transaction is legitimate.
- P(OP|Acc, Fraud) = 0.8: Probability of an online purchase when the card holder has an account with the merchant and the transaction is fraudulent.
- $P(OP|\neg Acc, \neg Fraud) = 0.1$: Probability of an online purchase when the card holder doesn't have an account with the merchant and the transaction is legitimate.
- P(OP|¬Acc, Fraud) = 0.3: Probability of an online purchase when the card holder doesn't have an account with the
 merchant and the transaction is fraudulent.
- P(PT|Acc) = 0.1: Probability of a previous transaction with the same merchant in the past week, given that the card holder has an account with the merchant.
- $P(PT|\neg Acc) = 0.01$: Probability of a previous transaction with the same merchant in the past week, given that the card holder doesn't have an account with the merchant.

Conditional Probability tables

Factor 1: $f_1(Trav)$

P(Trav)	
False	0.95
True	0.05

Factor 2: $f_2(Fraud|Trav)$

Trav	P(Fraud) = False	P(Fraud) = True
False	0.996	0.004
True	0.99	0.01

Factor 3: $f_3(FP|Fraud, Trav)$

Fraud	Trav	$P(\mathit{FP}) = \mathit{False}$	$P(\mathit{FP}) = True$
False	False	0.99	0.01
False	True	0.1	0.9
True	False	0.9	0.1
True	True	0.1	0.9

Factor 4: Pr(PT|Acc)

Acc	P(PT) = False	P(PT)=True
False	0.99	0.01
True	0.9	0.1

Factor 5: Pr(OP|Acc, Fraud)

Acc	Fraud	P(OP)=False	P(OP)=True
False	False	0.9	0.1

CS486: Assignment 2

False	True	0.7	0.3
True	False	0.4	0.6
True	True	0.2	0.8

Factor 6: $f_6(Acc)$

P(Acc)	
False	0.2
True	0.8

2 b)

Prior probability of fraud:

$$\begin{split} P(Fraud) &= P(Fraud|Trav) * P(Trav) + P(Fraud|\neg Trav) * P(\neg Trav) \\ &= (0.01 * 0.05) + (0.004 * (1 - 0.05)) \\ &= 0.0005 + 0.0038 \\ &= 0.0043 \end{split}$$

New factors after the evidence

$$f_{7}(FP=true|Fraud,Trav) \ f_{8}(OP=false|Acc,Fraud) \ f_{9}(PT=true|Acc)$$

2 b)

The table for $f_{
m 10}$

$$f_{10}(Fraud) = \sum_{Trav} f_1(Trav) f_2(Fraud|Trav) f_7(FP=true|Fraud,Trav)$$

Fraud	$f_{10}({ m Fraud})$
0	0.9848656139455163
1	0.015134386054483789

$$f_{11}(Fraud) = \sum_{Acc} f_6(Acc) f_8(OP = false|Acc, Fraud) f_9 = Pr(PT = true|Acc)$$

The table for f_{11}

Fraud	$f_{11}({ m Fraud})$
0	0.6659007352941176
1	0.33409926470588236

$$querry_{final}(Fraud) = f_{10}(Fraud)f_{11}(Fraud)$$

The final table

Fraud	$\operatorname{query}_{\operatorname{factor}}(\operatorname{Fraud})$
0	0.9923489983706452
1	0.007651001629354852

CS486: Assignment 2

$$P(Fraud|FP, \neg OP, PT) = f_{10}(Fraud)f_{11}(Fraud) = querry_{final}(Fraud)$$
 $query_{factor}(\neg Fraud) = 0.007651$

2 c)

If the card holder is not home than travelling is evidence. Thus we need to add Travelling into the evidence list. We are now asking:

What is the probability of fraud GIVEN foreign purchase, online purchase, past purchase and travelling.

The following is the calculations for the probability.

$$f_{12}(Fraud) = \sum_{Acc} f_6(Acc) f_8(OP = false|Acc, Fraud) f_9(PT = true|Acc)$$

Fraud	$f_{12}({ m Fraud})$
0	0.6659007352941176
1	0.33409926470588236

$$P(Fraud|FP, \neg OP, PT, Trav) = query_{factor}(Fraud) = f_1(Trav = true)f_2(Fraud|Trav = true)f_7(FP = true|Fraud|Trav = true|Fraud|Tr$$

Fraud	$\mathrm{query}_{\mathrm{factor}}$
0	0.9949576218285731
1	0.005042378171426986

$$P(Fraud|FP, \neg OP, PT, Trav) = 0.00504...$$

2 c)

From my assumptions there are evidence for an online purchase OP = true.

If I do not care about anything else my probability of fraud is:

$$P(Fraud|OP) = 0.00600966$$

I should not be travelling and I should make a domestic purchase.

I should make an account with a merchant

$$P(Fraud|OP, \neg Trav, \neg FP, Acc, PT) = 0.00484437$$

There are no paths from Past transactions thus

Overall the probability of fraud gets reduced by $0.2\ \mathrm{percent}$

Question 3

- a. Suppose a mechanics would like to know what components may influence the functioning of other components. Answer the following questions and give a bird justification based on the D-separation rules.
 - i. D and G are not independent they are as there exist a direct connection from D and G
 - ii. D and G is not independent given F as there exist a directed connection between them.
 - iii. $\it A$ and $\it G$ is independent as there is no path that connects them

- iv. A and G is not independent given B as evidence to B connects A and C by rule B. C is dependent of B by rule B as evidence as B is not in evidence. Since there is a path connecting B and B is not independent.
- v. A and G is independent as the evidence of C is blocking the path by rule 2
- vi. A and G is independent as the path from C to F,G is blocked according to rule 2,3
- vii. A and G is not independent as the path from A and C is unblocked by rule 3. C and F is blocked and unblocked by rule 2 and 3 however in this case there still one path thus A and G is dependent
- b. We just need to look at D, F. C is dependent on D as there is a direct connection. There is a connection from F to C by rule 3

CS486: Assignment 2 5