Author

Year

A benchmark comparison for mantle convection codes	B. Blankenbacht , F. BusseS , U. Christensen, L. Cserepesfl, D. Gunkelf, U. Hansentt, H. Harderg, G. Jarvisff, M. Koch, G. Marquartfly, D. Moore, P. Olson H. Schmeling and T. SchnaubeltS	1989

Title

** Comparison study for convection in the Earth's mantle ** Case Studies -steady isoviscous convection, -variable viscosity convection, -time-dependent convection with internal heating ** Compare Nusselt numbers, velocity, temperature, heat-flow, topography and geoid data

Recommendations	Method	Theory and Key concepts
Grid data obtained for the validation of convection codes in the future	FDM FEM Spectral methods	** 2-D thermal convection of a non-rotating Boussinesq fluid of infinite Prandtl number in rectangular closed cells is considered. ** Data are presented for the upwelling flow at x = 0, i.e at left margin. (to remove non- uniqueness)

Key findings

Other topics

- ** Increased resolution in the boundary layers of high Rayleigh number convection gives better results than equidistant mesh spacing, when the same number of grid points (elements) is used.
- ** Global averages (Nu, u) are usually more accurately determined than local values.
- ** High-resolution studies, together with an extrapolation ** Results of results, allows us to pin down the 'correct' solution with fairly low levels of uncertainty.
- ** Description of benchmark cases provided
- ** Code description

1_blankenbach

Relevance Keywords Link to Paper

1_blankenbach