

SOCCER RATINGS

Data mining and machine learning

Giuseppe Martino

INTRODUCTION

- Soccer Ratings is an application intended to evaluate players performances in a match, assigning them a rating from 1 to 5 entering as input some statistical data
- The application is also able to help a coach suggesting a team's **best formation** for the next match based on the ratings given to each player in the last 5 matches.
- Newspapers and sports magazines are used to evaluate the performances of footballers after a match assigning them a rating
- Different criteria may be used by each evaluator to decide whether a footballer has played well or not

DATASET

- 50652 instances and 63 attributes
- 789 different matches across 4 different competitions between 2016 and 2018
- Ratings are taken from 6 different sport magazines and specialized websites

competition	date	match 🛦	team	pos	pos_role	player	rater	original_rating	goals	assists	shots_ontarget	shots_offtarget	shotsblocked
Bundesliga 2017-18	04/11/2017	Augsburg - Bayer Leverkusen, 1 - 1	Bayer Leverkusen	MF	AML	Julian Brandt	Kicker	4.0	0	0	0	0	0
Bundesliga 2017-18	04/11/2017	Augsburg - Bayer Leverkusen, 1 - 1	Bayer Leverkusen	MF	AML	Julian Brandt	WhoScored	6.71	0	0	0	0	0
Bundesliga 2017-18	04/11/2017	Augsburg - Bayer Leverkusen, 1 - 1	Bayer Leverkusen	MF	AML	Julian Brandt	Bild	4.0	0	0	0	0	0
Bundesliga 2017-18	04/11/2017	Augsburg - Bayer Leverkusen, 1 - 1	Bayer Leverkusen	MF	AMC	Kai Havertz	Kicker	3.0	0	0	0	1	0
Bundesliga 2017-18	04/11/2017	Augsburg - Bayer Leverkusen, 1 - 1	Bayer Leverkusen	MF	AMC	Kai Havertz	WhoScored	7.98	0	0	0	1	0

•

Ratings distribution for each magazine

- 1 to 6 scale in 0.5-size steps
- descending order of goodness of performance
- rating is discrete

- 1 to 10 scale
- ascending order of goodness of performance
- rating is discrete

- 1 to 6 scale
- descending order of goodness of performance
- rating is discrete

- 1 to 10 scale
- ascending order of goodness of performance
- rating is continuous

- 1 to 10 scale
- ascending order of goodness of performance
- rating is discrete

- 1 to 10 scale
- ascending order of goodness of performance
- rating is continuous

- Where necessary the ratings have been changed to be in an ascending scale
- **Discretization** into 5 bins for each rater using a **clustering approach**
 - sklearn function KBinsDiscretizer (n_bins = 5, strategy = 'kmeans') has been used

Classes distribution of the whole dataset after the discretization:

Conversion of categorical data:

pos_FW

0

pos_GK

0

0

0

0

pos_MF

- One-hot encoding

	pos_AMF	pos_DF	pos_DMF
	1	0	0
	0	0	0
Values of attribute position ('pos_role'):	0	0	0
	1	0	0
GK (Goalkeeper) ———→GK (Goalkeeper)	0	0	0
DR (Defender Right) DC (Defender Center) DL (Defender Left) DMR (Difensive Midfielder Right) DML (Difensive Midfielder Left) MR (Midfielder Right) ML (Midfielder Left) AMR (Attacking Midfielder Right) AMC (Attacking Midfielder Center) AML (Attacking Midfielder Left) FR (Foreward Right) FC (Foreward Center) FL (Foreward Left) FW (Foreward) FL (Foreward Left)	,		

Pre processing Dealing with missing values

The player substituted another one during the game

Creation of a new binary attribute called 'starter'

- 'Sub' does not correspond to a role: lack of information about the player's role.
- Treated as a missing value
 - Filled using the mode calculated on the group of instances of the same player.
 - Some have been filled by hand
 - Some were deleted in case it was not possible to establish the role

Removing irrelevant attributes

- competition
- > date
- > match
- > rater
- > team

Removing duplicates and inconsistencies

Since there are several ratings for each performance, assigned by different newspapers, there are 2 situations:

- Agreement across different raters ——— duplicated instances
- Disagreement across different raters instances with all attributes equal except class (rating)

Normalization

Z-score normalization when algorithms that need feature scaling were tested

function StandardScaler from scikit-learn

After pre processing

- 6676 instances
- 60 attributes

Classes are imbalanced!

Classification

Evaluation metrics:

• Focus mainly on macro averaged mean absolute error (provided in the *imbalanced-learn* python library), most suitable for **ordinal classification** problems where the target values are **imbalanced** [1]

All the classifiers have been evaluated with a 10-fold cross validation

Given the imbalanced classes, performances of classifiers were tested also after having applied over-sampling techniques for rebalancing (SMOTE and RandomOverSampler).

The models have been evaluated also after **feature selection**.

Tried methods for feature selection from both scikit-learn and weka:

- SelectKBest (scoring function = fclassif)
- SelectFromModel (estimator = LogisticRegression, threshold = median)
- CfsSubsetEval + BestFirst

[1] S. Baccianella, A. Esuli, F. Sebastiani, Evaluation measures for ordinal regression, in: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications, ISDA'09, 2009, pp. 283–287

Tested models

- KNN
- Support Vector Machine
- XGBClassifier
- Random Forest
- Logistic Regression
- OrdinalClassifier (implementation of the approach proposed in [2] specifically for ordinal classification)

For each classifier was performed the hyperparameters tuning using the *GridSearchCV* algorithm

Ordinal classification

Pr(y=1) = 1-Pr(Target > 1) Pr(y=2) = Pr(Target > 1)-P(Target > 2) Pr(y=3) = Pr(Target > 2)-P(Target > 3) Pr(y=4) = Pr(Target > 3)-P(Target > 4)Pr(y=5) = Pr(Target > 4)

The used classifiers must be able to estimate output class **probability.**

The predicted value is the one associated with the highest probability.

Images source: https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c

so the predicted ratings is 4

Results

	Attribute selection	Num. features selected	Resampling	Macro avg	Avg Precision	Avg Recall	Avg F1 score	Avg Accuracy	Prediction Time
Logistic Regression	SelectFromModel	30	RandomOversampler	0.305	0.637	0.704	0.657	0.653	0.023
Logistic Regression	None	59	RandomOversampler	0.306	0.643	0.704	0.663	0.66	0.021
SVM	SelectFromModel	30	SMOTE	0.307	0.651	0.703	0.667	0.659	0.172
Logistic Regression	None	59	None	0.314	0.728	0.694	0.706	0.684	0.025
SVM	None	59	None	0.316	0.724	0.693	0.705	0.68	0.251
Logistic Regression	SelectFromModel	30	None	0.317	0.72	0.691	0.702	0.678	0.021
SVM	SelectFromModel	30	None	0.319	0.721	0.691	0.701	0.679	0.143
XGBClassifier	SelectFromModel	30	RandomOversampler	0.336	0.678	0.677	0.674	0.653	0.031
XGBClassifier	None	59	RandomOversampler	0.342	0.686	0.673	0.676	0.652	0.031
XGBClassifier	SelectKBest	28	SMOTE	0.348	0.702	0.67	0.682	0.655	0.031
XGBClassifier	CfsSubsetEval + BestFirst	11	None	0.348	0.611	0.671	0.633	0.601	0.02
Logistic Regression	SelectKBest	35	None	0.35	0.718	0.667	0.686	0.658	0.021
Random Forest	SelectFromModel	30	RandomOverSampler	0.353	0.699	0.662	0.674	0.65	0.05
OrdinalClassifier + DecisionTree	CfsSubsetEval + BestFirst	11	None	0.358	0.532	0.663	0.553	0.541	0.007
Random Forest	None	59	RandomOversampler	0.365	0.704	0.649	0.669	0.651	0.048
KNN	CfsSubsetEval + BestFirst	11	None	0.371	0.575	0.654	0.602	0.578	0.292

STATISTICAL SIGNIFICANCE

Student's t-test on macro-avg MAE and F1 score $\alpha = 0.05$

Chosen model for the application: *Logistic Regression* ("SelectFromModel without resampling" version)

	Macro	avg MAE		F1 score
Logistic regression	0.314		0.706	
w/o attribute selection				
		0.740		0.000
		p = 0.718		p = 0.388
Logistic regression	0.317		0.702	
Attr. Selection = SelectfromModel (30	0.017		<i></i> • -	
attr. selected)				
Logistic regression				
SelectfromModel + Resampling	0.305		0.657	
		p = 0.065		p = 0.001
		p = 0.003		ρ – 0.001
Logistic regression				
	0.317		0.702	
Attr. Selection = <i>SelectfromModel (30 attr. selected)</i>				
XGBClassifier				
Attr. Selection = <i>CfssubsetEval +</i>	0.348		0.633	
BestFirst (11 attr. Selected)	0.546		0.033	
		p = 0.02		<i>p</i> = 1.23e-05
Logistic regression	0.04=		0.700	
Attr. Selection = SelectfromModel (30	0.317		0.702	
attr. selected)				

The application

Functional requirements

A User can:

- Login
- Create his own team and modify it, adding new player or removing others
- Rate a player entering statistical information about a player's performance in a match
- See the best formation for the next match suggested by the application
- See the player's ratings history series through a graph.

Non-functional requirements

- The application must be user-friendly and easy to use through a clear user interface.
- The application must provide fast responses to users requests

UML Use case diagram

Login/registration

Select the player to delete -

Rate a player

View a player's ratings history series

View the starting lineup

Insert new player

Delete a player

Insert new players to your team:

Select a role -

Select the player —

	N	Marco Verratti —	
Select the date of the match 4/11/22 V	Goals	Assists	Key passes
Dribblings	Touches	Accurated passes	Accurated crosses
Accurated long passes	Stopped shots	Ground duels won	Aerials won
Possession lost	Clearances	Interceptions	Tackles
Shots on target	Own goals	# actions in which player is involved	# total actions of team
☐ Red Cards	□ Win	# actions which end with a shot where player is involved	

Select the player

View a player's ratings history series

