Na₂SO₄

$$\mathbf{Na^{+}} - \begin{bmatrix} :0: \\ | \\ :\ddot{0} - \ddot{S} - \ddot{0}: \\ | \\ :0: \end{bmatrix}^{2-} \mathbf{Na^{+}}$$

Na → Na⁺ + e (산화, oxidation)

SO₄ +2e → SO₄²⁻ (환원, reduction)

• Ca(OH)₂

Na₂SO₄

$$\mathbf{Na^{+}} - \begin{bmatrix} :0: \\ | \\ :\ddot{0} - \ddot{S} - \ddot{0}: \\ | \\ :0: \end{bmatrix}^{2-} \mathbf{Na^{+}}$$

Na → Na⁺ + e (산화, oxidation)

SO₄ +2e → SO₄²⁻ (환원, reduction)

• 산화-환원 반응

$$2 \text{ Ca} + \text{O}_2 + 4 \text{ e}^- \longrightarrow 2 \text{ Ca}^{2+} + 2 \text{ O}^{2-} + 4 \text{ e}^-$$

$$2 \text{ Ca} + \text{O}_2 \longrightarrow 2 \text{ Ca}^{2+} + 2 \text{ O}^{2-}$$

$$2 \text{ Ca}^{2+} + 2 \text{ O}^{2-} \longrightarrow 2 \text{ CaO}$$

• 산화-환원 반응

$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$
 산화

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}(s)$$

산화 반쪽 반응식:
$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
 환원 반쪽 반응식: $Cu^{2+} + 2e^{-} \longrightarrow Cu$

환원제와 산화제

환원제: 화학 반응 중에 자신은 산화되면서 다른 물질을 환원시키는 물질산화제: 화학 반응 중에 자신은 환원되면서 다른 물질을 산화시키는 물질

■ 원소의 활동도 서열

활동도(activity) - 원소가 산화가 되려는 경향

반응식 1(진행 가능)
$$Fe(s) + Cu^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cu(s)$$
 반응식 2(진행 불가능) $Fe^{2+}(aq) + Cu(s) \longrightarrow Fe(s) + Cu^{2+}(aq)$

표 6.5 대표적인 원소들의 활동도 서열

증가

Li
$$\longrightarrow$$
 Li⁺ + e⁻

K \longrightarrow K⁺ + e⁻

Ba \longrightarrow Ba²⁺ + 2 e⁻

Ca \longrightarrow Ca²⁺ + 2 e⁻

Na \longrightarrow Na⁺ + e⁻

Mg \longrightarrow Mg²⁺ + 2 e⁻

Al \longrightarrow Al³⁺ + 3 e⁻

Zn \longrightarrow Zn²⁺ + 2 e⁻

Cr \longrightarrow Cr³⁺ + 3 e⁻

Fe \longrightarrow Fe²⁺ + 2 e⁻

Cd \longrightarrow Cd²⁺ + 2 e⁻

Ni \longrightarrow Ni²⁺ + 2 e⁻

Sn \longrightarrow Sn²⁺ + 2 e⁻

Pb \longrightarrow Pb²⁺ + 2 e⁻

H₂ \longrightarrow 2H⁺ + 2 e⁻

Cu \longrightarrow Cu²⁺ + 2 e⁻

Hg \longrightarrow Hg²⁺ + 2 e⁻

Hg \longrightarrow Hg²⁺ + 2 e⁻

Au \longrightarrow Au³⁺ + 3 e⁻

• 산화-환원 반응

그림 6.6 아연과 구리 원소 사이의 산화–화원 과정의 예(화학 전지)

• 산화수

• 중요 문제

• 연습 6.4 다음 반응이 일어날 수 있으면 가능, 불가능으로 쓰고, 이유도 쓰시오. (p.164 표 6.5 참고)

(a)
$$2H^+$$
 (aq) + Pt (s) \rightarrow H₂ (g) + Pt³⁺ (aq)

(b)
$$Ca^{2+}$$
 (aq) + Mg (s) \rightarrow Ca (s) + Mg²⁺ (aq)

(c)
$$Hg^{2+}$$
 (aq) + Zn (s) \rightarrow Hg (s) + Zn^{2+} (aq)

(d)
$$2H^+$$
 (aq) + Cu (s) \rightarrow H₂ (g) + Cu²⁺ (aq)

표 6.5 대표적인 원소들의 활동도 서열

기

증가

Li
$$\longrightarrow$$
 Li⁺ + e⁻
K \longrightarrow K⁺ + e⁻
Ba \longrightarrow Ba²⁺ + 2 e⁻
Ca \longrightarrow Ca²⁺ + 2 e⁻
Na \longrightarrow Na⁺ + e⁻
Mg \longrightarrow Mg²⁺ + 2 e⁻
Al \longrightarrow Al³⁺ + 3 e⁻
Zn \longrightarrow Zn²⁺ + 2 e⁻
Cr \longrightarrow Cr³⁺ + 3 e⁻
Fe \longrightarrow Fe²⁺ + 2 e⁻
Cd \longrightarrow Cd²⁺ + 2 e⁻
Ni \longrightarrow Ni²⁺ + 2 e⁻
Sn \longrightarrow Sn²⁺ + 2 e⁻
Pb \longrightarrow Pb²⁺ + 2 e⁻
Cu \longrightarrow Cu²⁺ + 2 e⁻
Ag \longrightarrow Ag⁺ + e⁻
Hg \longrightarrow Hg²⁺ + 2 e⁻
Pt \longrightarrow Pt²⁺ + 2 e⁻

 $Au \longrightarrow Au^{3+} + 3e^{-}$

• 산화수

산화수 정하는 규칙

- (1) 자유 원소(즉, 화합물 상태가 아닌)의 각 원자는 산화수가 0이다. H_2 , Br_2 , Na, Be, Fe, O_2 , P_4 의 각 원자들은 같은 산화수를 가지므로 산화수는 0이다.
- (2) 한 원자를 포함하는 이온(즉, 단원자 이온)에서 산화수는 이온의 하전수와 같다. Li⁺은 산화수가 +1, Ba²⁺은 +2, Fe³⁺은 +3, I⁻은 -1, O²⁻은 -2이다. 모든 화합물에서 알칼리 금속은 산화수가 +1이고, 모든 알칼리 토금속의 산화수는 +2이다. 알루미늄은 모든 화합물에서 산화수가 +3이다.
- (3) 중성 분자에서, 모든 원자들의 산화수의 합은 0이어야 하며, 다원자 이온이나 분자 화합물에 있는 원자의 산화수는 일반적으로 그것이 단원자 이온일 때의 산화수와 같다.

- (4) 대부분의 화합물에서 산소의 산화수는 -2이다(예를 들어, $MgO와 H_2O$). 그러 나 과산화 수소(H_2O_2)와 같이 과산화 이온(O_2^{2-})과 결합한 화합물에서 O의 산화수는 -1이다.
- (5) 수소가 이성분 화합물에서 금속과 결합하는 것을 제외하고는 수소의 산화수는 +1이다. 금속 화합물(예를 들어, LiH, NaH, CaH₂)에서 수소의 산화수는 -1이다.
- (6) 플루오린은 모든 화합물에서 산화수가 -1이다. 다른 할로젠(CI, Br 및 I)은 화합물에서 할로젠화 이온인 경우의 산화수는 음(-)이나, 산소산이나 산소 음이온과 같이 산소와 결합할 때의 산화수는 양(+)이다.
 - 할로젠 원소의 산화수가 -인 경우의 예: H<u>Cl</u>, H<u>I</u>, Na<u>Br</u> -1 -1 -1
 - 할로젠 원소의 산화수가 +인 경우의 예: HClO, HClO₂, HClO₃ +3 +5 +7
- (7) 산화수는 정수만 갖는 것이 아니다. 예를 들어, 초과산화 이온 (O_2^-) 에서 O의 산화수는 $-\frac{1}{2}$ 이다.

• 산화수

그림 6.7 원소의 산화수

예제 6.8

다음 각 화합물에서 각 원소의 산화수를 정하시오.

(a) $KMnO_4$ (b) $H_2C_2O_4$ (c) $VOCl_2$ (d) $Na_2Cr_2O_7$

예제 6.9 다음 반응식 중 산화-환원 반응 여부를 밝히고 그 이유를 설명 하시오.

(a) NaCl (aq) + AgNO₃ (aq)
$$\rightarrow$$
 NaNO₃ (aq) + AgCl (s)

(b)
$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

(c)
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

(d)
$$H^+$$
 (aq) + OH^- (aq) $\rightarrow H_2O$ (l)

예제 6.10

다음 반응식 중 산화제와 환원제를 각각 쓰시오.

(a)
$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

(b)
$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$$

6.4 수용액 반응의 화학량론

예제 6.11

 $0.100 \,\mathrm{M\,AgNO_3}$ 용액 $1.50 \,\mathrm{L}$ 에 들어 있는 모든 $\mathrm{Ag^+}$ 이온을 AgCl 형태로 침전시키는데 필요한 $\mathrm{NaCl}\,(\mathrm{s})$ 의 질량을 계산하시오.

6.4 수용액 반응의 화학량론

예제 6.12

이양성자산 시료 $6.50 \,\mathrm{g}$ 을 완전히 반응시키는 데, $0.750 \,\mathrm{M}$ NaOH 용액 $137.5 \,\mathrm{mL}$ 가 필요하다. 이 산의 몰질량은 얼마인가?

6.4 수용액 반응의 화학량론

예제 6.13

표 6.5 대표적인 원소들의 활동도 서열

 $Li \longrightarrow Li^+ + e^ K \longrightarrow K^+ + e^-$ Ba \longrightarrow Ba²⁺ + 2 e⁻ $Ca \longrightarrow Ca^{2+} + 2e^{-}$ $Na \longrightarrow Na^+ + e^ Mg \longrightarrow Mg^{2+} + 2 e^{-}$ $A1 \longrightarrow A1^{3+} + 3 e^{-}$ $Zn \longrightarrow Zn^{2+} + 2 e^{-}$ $Cr \longrightarrow Cr^{3+} + 3 e^{-}$ $Fe \longrightarrow Fe^{2+} + 2e^{-}$ $Cd \longrightarrow Cd^{2+} + 2e^{-}$ $Co \longrightarrow Co^{2+} + 2 e^{-}$ $Ni \longrightarrow Ni^{2+} + 2e^{-}$ $\operatorname{Sn} \longrightarrow \operatorname{Sn}^{2+} + 2 e^{-}$ $Pb \longrightarrow Pb^{2+} + 2 e^{-}$ $H_2 \longrightarrow 2H^+ + 2 e^ Cu \longrightarrow Cu^{2+} + 2 e^{-}$ $Ag \longrightarrow Ag^{+} + e^{-}$ $Hg \longrightarrow Hg^{2+} + 2 e^{-}$ Pt \longrightarrow Pt²⁺ + 2 e⁻ $Au \longrightarrow Au^{3+} + 3e^{-}$

다음과 같이 황산 구리(II) 가 철과 반응할 때, 비커에 0.500 M 황산 구리 (II) 용액 87.7 mL 를 넣고, 여기에 2.00 g 의 철을 넣으면 고체 구리 몇 g 을 얻을 수 있는가?

• 산-염기 적정

산 수용액(미지 농도의 산) 속의 H⁺의 몰수= 염기 수용액(표준 용액) 속의 OH⁻의 몰수

그림 6.8 산-염기 적정에서 자주 사용되는 페놀프탈레인은 당량점에서 분홍색으로 변한다.

산-염기 적정에서의 당량점

산-염기 적정에서 당량점이란 적정하기 위해서 혼합해 준 산 용액과 염기용액 중의 H+와 OH-의 몰수가 정확히 일치하는 지점이고, 중화점과 같은의미이다.

• 산-염기 적정

산 수용액(미지 농도의 산) 속의 H⁺의 몰수= 염기 수용액(표준 용액) 속의 OH⁻의 몰수

산과 염기의 가수

아레니우스 산 또는 염기 1몰이 낼 수 있는 H^+ 의 몰수(n')

1가 산: HCI, CH₃COOH

2가 산: H₂SO₄, H₂CO₃

3가 산: H₃PO₄

1가 염기: NaOH, KOH

2가 염기: Ca(OH)2, Ba(OH)2

3가 염기: Al(OH)₃

예제 6.14

0.427 M KOH 용액 60.2 mL 를 중화하는데 필요한 1.28 M H₂SO₄ 용액의 부피는 몇 mL 인가?

환 원
세
기
증 가

$Li \longrightarrow Li^{+} + e^{-}$ $K \longrightarrow K^{+} + e^{-}$ $Ba \longrightarrow Ba^{2+} + 2 e^{-}$
$Ca \longrightarrow Ca^{2+} + 2 e^{-}$ $Na \longrightarrow Na^{+} + e^{-}$
Mg \longrightarrow Mg ²⁺ + 2 e ⁻ Al \longrightarrow Al ³⁺ + 3 e ⁻ Zn \longrightarrow Zn ²⁺ + 2 e ⁻ Cr \longrightarrow Cr ³⁺ + 3 e ⁻ Fe \longrightarrow Fe ²⁺ + 2 e ⁻ Cd \longrightarrow Cd ²⁺ + 2 e ⁻
Co \longrightarrow Co ²⁺ + 2 e ⁻ Ni \longrightarrow Ni ²⁺ + 2 e ⁻ Sn \longrightarrow Sn ²⁺ + 2 e ⁻ Pb \longrightarrow Pb ²⁺ + 2 e ⁻
$H_2 \longrightarrow 2H^+ + 2 e^-$
Cu \longrightarrow Cu ²⁺ + 2 e ⁻ Ag \longrightarrow Ag ⁺ + e ⁻ Hg \longrightarrow Hg ²⁺ + 2 e ⁻ Pt \longrightarrow Pt ²⁺ + 2 e ⁻ Au \longrightarrow Au ³⁺ + 3 e ⁻

• 산화-환원 적정

그림 6.9 산화-환원 적정 과정에 의한 변색

환원제가 잃는 전자의 몰수 = 산화제가 잃는 전자의 몰수

- 환원제가 잃는 전자의 몰수 $=m \times ($ 환원제 수용액의 농도. M)×(화원제 수용액의 부피, V)
- 산화제가 얻는 전자의 몰 $\phi = n \times ($ 산화제 수용액의 농도, M') \times (산화제 수용액의 부피, V')

$$mMV = nM'V' (6.3)$$