ЛЕКЦИЯ № 5.

Линейные операторы и их матрицы.

Понятие линейного оператора. Его свойства и примеры. Матрица линейного оператора. Преобразование матрицы линейного оператора при замене базиса.

1. Понятие линейного оператора. Его свойства и примеры

Пусть L-линейное пространство;

Определение. $\hat{A}: L \to L$ называется отображением в линейном пространстве L, если каждому вектору $\vec{x} \in L$ ставится в соответствие единственный вектор $\vec{y} \in L$;

Тогда $\vec{y} = \hat{A}(\vec{x}); \vec{y}$ - образ вектора $\vec{x}; \vec{x}$ - прообраз \vec{y} .

Определение. Отображение \hat{A} , действующее в L, называется **линейным оператором**, если выполняются следующие условия:

1)
$$\hat{A}(\vec{x} + \vec{y}) = \hat{A}\vec{x} + \hat{A}\vec{y}$$
; $\forall \vec{x}, \vec{y} \in L$

2)
$$\hat{A}(\alpha \vec{x}) = \alpha \hat{A} \vec{x}; \forall \vec{x} \in L, \forall \alpha \in \mathbb{R}$$

Свойства линейного оператора.

 $\forall \ \vec{x}, \vec{y} \in L; \ \alpha; \beta \in \mathbb{R}.$

- 1) $\hat{A}(\vec{0}) = \vec{0}$
- 2) $\hat{A}(\alpha \vec{x} + \beta \vec{y}) = \alpha \hat{A} \vec{x} + \beta \hat{A} \vec{y}$
- 3) $\hat{A}(-\vec{x}) = -\hat{A}\vec{x}$
- 4) $\hat{A}(\alpha \vec{x} \beta \vec{y}) = \alpha \hat{A} \vec{x} \beta \hat{A} \vec{y}$
- 5) \hat{A} переводит линейно-зависимые векторы в линейно-зависимые.
- \blacktriangleleft Пусть векторы \overline{x}_1 ; ... \overline{x}_n линейно зависимы, тогда существует их нетривиальная линейная комбинация ($\exists \alpha_i \neq 0$), $\sum_{i=1}^n \alpha_i \overline{x}_i = \overline{0}$; $\alpha_i \in \mathbb{R}$. Подействуем линейным оператором: $\hat{A}\left(\sum_{i=1}^n \alpha_i \overline{x}_i\right) = \hat{A}(\overline{0}) = \overline{0}$; с другой стороны $\hat{A}\left(\sum_{i=1}^n \alpha_i \overline{x}_i\right) = \sum_{i=1}^n \alpha_i \hat{A} \overline{x}_i = \sum_{i=1}^n \alpha_i \hat{A} \overline{x}_i = \overline{0} = >$ получили нетривиальную линейную комбинацию образов векторов, равную нулевому вектору => образы линейно-зависимых векторов линейно -зависимы. ▶

Линейный оператор будем сокращенно обозначать л.о.

Примеры линейных операторов:

1) Нулевой оператор $\hat{\mathbf{0}}: L \to L$, отображающий любой вектор пространства L в нулевой вектор этого пространства: $\hat{\mathbf{0}}\vec{x} = \vec{0} \ \forall \ \vec{x} \in L$. Действительно,

$$\widehat{\boldsymbol{o}}(\vec{x} + \vec{y}) = \vec{0} = \widehat{\boldsymbol{o}}\vec{x} + \widehat{\boldsymbol{o}}\vec{y}$$
$$\widehat{\boldsymbol{o}}(\alpha \vec{x}) = \vec{0} = \alpha \widehat{\boldsymbol{o}}\vec{x}$$

- 2) Тождественный оператор $\hat{I}: L \to L$, отображающий любой вектор пространства L в себя: $\hat{I}\vec{x} = \vec{x} \ \forall \ \vec{x} \in L$ является линейным оператором (доказать самостоятельно)
- 3) В V_2 (пространстве свободных векторов на плоскости) поворот вектора на заданный угол φ против часовой стрелки;

Рисунок 7

4) В P_n (линейном пространстве многочленов степени не выше n) — оператор дифференцирования : $\hat{A}\big(p(t)\big) = p'(t)$

$$\hat{A}: P_n \to P_n; (p_1(t) + p_2(t))' = (p_1(t))' + (p_2(t))'$$

$$(\alpha p(t))' = \alpha(p(t))'$$

5)
$$\hat{A}$$
: $R^n \to R^n$ – гомотетия с коэффициентом k: $\hat{A}\vec{x} = k\vec{x}$ $\hat{A}(\vec{x} + \vec{y}) = k(\vec{x} + \vec{y}) = k\vec{x} + k\vec{y} = \hat{A}\vec{x} + \hat{A}\vec{y}$; $\hat{A}(\alpha\vec{x}) = k(\alpha\vec{x}) = \alpha k\vec{x} = \alpha\hat{A}\vec{x}$;

Не является линейным оператором:

$$\hat{A}$$
: $R^n \to R^n$, $\hat{A}\vec{x} = \vec{x} + \vec{a}$; $\hat{A}(\vec{x} + \vec{y}) = \vec{x} + \vec{y} + \vec{a} \neq \hat{A}\vec{x} + \hat{A}\vec{y}$ – не выполняется свойство линейности;

2. Матрица линейного оператора.

Пусть L - конечномерное линейное пространство.

Определение. Матрицей линейного оператора $\widehat{A}L \to L$, действующего в *п*-мерном линейном пространстве L с базисом $S = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ называется матрица, составленная из координат образов базисных векторов, записанных по столбцам.

Т.е., если в L существует некоторый базис $S=\{\overrightarrow{e_1}, ... \overrightarrow{e_n}\}$, и

$$\widehat{A}\vec{e}_{1} = a_{11}\vec{e}_{1} + \cdots + a_{n1}\vec{e}_{n}$$
 ,

$$\widehat{\mathbf{A}}\vec{e}_2 = a_{12}\vec{e}_1 + \dots + a_{n2}\vec{e}_n$$

$$\widehat{A}\overrightarrow{e}_n = a_{1n}\overrightarrow{e}_1 + \cdots + a_{nn}\overrightarrow{e}_n$$
.

To A=
$$\begin{pmatrix} a_{11} & ... & a_{1n} \\ ... & ... & ... \\ a_{n1} & ... & a_{nn} \end{pmatrix}$$

Примеры:

1. Нулевой оператор $\widehat{\boldsymbol{o}}: L \to L$, dim $L = n \Rightarrow$

$$\widehat{\boldsymbol{o}}\vec{e}_1 = \overrightarrow{0} = (0, \dots, 0),$$

$$\widehat{\boldsymbol{o}}\vec{e}_n = \vec{0} = (0, \dots, 0)$$

$$A = \begin{pmatrix} 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 0 \end{pmatrix}$$

2. Тождественный оператор $\hat{I}: L \to L$, dim $L = n \Rightarrow$

3. Оператор $\widehat{A}: V_3 \to V_3$ - гомотетия с коэффициентом k, dim $V_3 = 3 \Rightarrow$

$$\widehat{A}\vec{e}_{1} = k\vec{e}_{1} = (k, 0, 0),$$

$$\widehat{A}\vec{e}_{2} = k\vec{e}_{2} = (0, k, 0)$$

$$\widehat{A}\vec{e}_{3} = k\vec{e}_{3} = (0, 0, k)$$

$$A = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}$$

4. Оператор $\widehat{A}: P_2 \to P_2$ - оператор дифференцирования, dim $P_2 = 3 \Rightarrow$

$$\widehat{A}\vec{e}_{1} = \widehat{A}(1) = (1)' = \mathbf{0} = (\mathbf{0}, \mathbf{0}, \mathbf{0})$$

$$\widehat{A}\vec{e}_{2} = \widehat{A}(t) = (t)' = 1 = (1,0,0)$$

$$\widehat{A}\vec{e}_{3} = \widehat{A}(t^{2}) = (t^{2})' = 2t = (0,2,0)$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Теорема 1. Если $A = \begin{pmatrix} a_{11} & ... & a_{1n} \\ ... & ... & ... \\ a_{n1} & ... & a_{nn} \end{pmatrix}$ - матрица линейного оператора $\widehat{A}: L \to a_{nn}$

L в базисе $S=\{\vec{e}_1,\vec{e}_2,\dots,\vec{e}_n\}$, $\dim L=n$, то $\vec{y}=\widehat{A}\vec{x}$ и координаты образа \vec{y} произвольного вектора $\vec{x}\in L$ находятся по формуле:

$$\begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

или

$$Y = AX$$

где $Y = \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}$ - вектор-столбец координат вектора \vec{y} в базисе S =

 $\{\vec{e}_1,\vec{e}_2\,,\dots,\vec{e}_n\,\},\,X=egin{pmatrix} x_1\\ \dots\\ x_n \end{pmatrix}$ - вектор-столбец координат вектора \vec{x} в это же

базисе. Таким образом, действие линейного оператора \hat{A} на вектор \vec{x}

сводиться к умножению некоторой матрицы $\mathbf{A} = \begin{pmatrix} a_{11} & ... & a_{1n} \\ ... & ... & ... \\ a_{n1} & ... & a_{nn} \end{pmatrix}$ на вектор-

столбец $X=\begin{pmatrix} x_1\\ \dots\\ x_n \end{pmatrix}$, составленный из координат вектора \vec{x} в базисе $S=\{\vec{e}_1$, ... , \vec{e}_n }.

 \blacksquare Т.к. $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ - базис в L, то \forall вектор \in L разложим по базису. Пусть $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n$ и $\vec{y} = y_1 \vec{e}_1 + y_2 \vec{e}_2 + \dots + y_n \vec{e}_n \Rightarrow \vec{y} = \hat{A}\vec{x} = \hat{A}(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n) = x_1 \hat{A}\vec{e}_1 + x_2 \hat{A}\vec{e}_2 + \dots + x_n \hat{A}\vec{e}_n = x_1(a_{11}\vec{e}_1 + \dots + a_{n1}\vec{e}_n) + x_2(a_{12}\vec{e}_1 + \dots + a_{n2}\vec{e}_n) + x_2(a_{11}\vec{e}_1 + \dots + a_{n1}\vec{e}_n) = (x_1a_{11} + x_2a_{12} + \dots + x_na_{1n})\vec{e}_1 + x_2a_{12} + \dots + x_na_{1n})\vec{e}_1 + x_2a_{12} + \dots + x_na_{1n})\vec{e}_1 + x_2a_{12} + \dots + x_na_{1n}$ $\vec{e}_1 + y_2\vec{e}_2 + \dots + y_n\vec{e}_n \Rightarrow y_1 = x_1a_{11} + x_2a_{12} + \dots + x_na_{2n}$

Следовательно,

$$\begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n} \\ x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n} \\ \dots \\ x_1 a_{n1} + x_2 a_{n2} + \dots + x_n a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \Rightarrow Y = AX . \blacktriangleright$$

 $y_n = x_1 a_{n1} + x_2 a_{n2} + \dots + x_n a_{nn}$

Замечание. Матрица линейного оператора полностью характеризует линейный оператор. Кроме того, любая квадратная матрица порядка n определяет линейный оператор n-мерного линейного пространства L.

Теорема 2. (без доказательства)

Пусть в л.п. L (dim L=n) отражение $\vec{y} = \hat{A}\vec{x}$ задается формулой $\begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$, где $\vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ и $\vec{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$ - координаты векторов в базисе

 $S,\ A$ — некоторая матрица размера nxn, Тогда \hat{A} — линейный оператор и его матрица в базисе S совпадает с матрицей A.

<u>Пример.</u> Найти матрицу линейного оператора $\widehat{A}: V_2 \to V_2$ поворот на угол φ против часовой стрелки и образ вектора $\vec{x} = (1; -1)$ при повороте на угол $\varphi = \frac{\pi}{4}$.

$$\widehat{A}\vec{i} = \cos\varphi \, \vec{i} + \sin\varphi \, \vec{j}$$

$$\widehat{A}\vec{j} = -\sin\varphi\,\vec{\imath} + \cos\varphi\,\vec{j}$$

 $A=\begin{pmatrix} cos \phi & -sin \phi \\ sin \phi & cos \phi \end{pmatrix}$ - матрица линейного оператора — поворот на угол угол ϕ против часовой стрелки.

При
$$\varphi = \frac{\pi}{4}$$
, $A = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$;

Координаты образа вектора $\vec{x} = (1; -1)$ найдем по формуле Y = AX:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} == \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix} \Rightarrow$$

$$\vec{y} = \widehat{A}\vec{x} = \left(\sqrt{2}; 0\right)$$

<u>Задача.</u> Оператор \hat{A} действует в пространстве R^3 , $\overrightarrow{x} = (x_1, x_2, x_3) \in R^3$. Проверить, является ли оператор \hat{A} линейным. В случае линейности записать матрицу оператора \hat{A} в каноническом базисе пространства R^3 .

a)
$$\widehat{A}\vec{x} = (x_1 + 2x_2 - 3x_3, 2x_1 + 3x_2 - x_3, -x_2 + 2x_3)$$

6)
$$\hat{B}\vec{x} = (x_1 + 2x_2 - 3x_3, 2x_1 + 3x_2 - x_3, -x_2 + 2)$$

c)
$$C\vec{x} = (x_1 + x_2 - x_3^2; 4x_2; 2x_2 - x_3^3)$$

- а) $\widehat{A}: R^3 \to R^3$, т.е \widehat{A} вектор из R^3 переводит в R^3 . Проверим линейность оператора
 - 1. $\hat{A}(\vec{x} + \vec{y}) = (x_1 + y_1 + 2(x_2 + y_2) 3(x_3 + y_3), 2(x_1 + y_1) + 3(x_2 + y_2) (x_3 + y_3), -(x_2 + y_2) + 2(x_3 + y_3)) =$ $= (x_1 + 2x_2 3x_3, 2x_1 + 3x_2 x_3, -x_2 + 2x_3) +$ $(y_1 + 2y_2 3y_3, 2y_1 + 3y_2 y_3, -y_2 + 2y_3) = \hat{A} \vec{x} + \hat{A} \vec{y};$

2.
$$\widehat{A}(\alpha \vec{x}) = (\alpha x_1 + 2\alpha x_2 - 3\alpha x_3, 2\alpha x_1 + 3\alpha x_2 - \alpha x_3, -\alpha x_2 + 2\alpha x_3) =$$

= $\alpha (x_1 + 2x_2 - 3x_3, 2x_1 + 3x_2 - x_3, -x_2 + 2x_3) = \alpha \widehat{A}\vec{x}$

Условия линейности выполняются $=> \widehat{A} - линейный оператор.$

Найдем матрицу линейного оператора в каноническом базисе.

$$\begin{split} \vec{e}_1 &= (1,0,0); \ \vec{e}_2 = (0,1,0); \ \vec{e}_3 = (0,0,1) \\ \widehat{A} \ \vec{e}_1 &= (1,2,0) \\ \widehat{A} \ \vec{e}_2 &= (2,3,-1) \\ \widehat{A} \ \vec{e}_3 &= (-3,-1,2) \end{split}$$

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

б) $\hat{B}: R^3 \to R^3$, т.е \hat{B} вектор из R^3 переводит в R^3 .

Проверим линейность оператора \widehat{B} :

$$\hat{B}(\vec{x} + \vec{y}) = (x_1 + y_1 + 2(x_2 + y_2) - 3(x_3 + y_3), 2(x_1 + y_1) + 3(x_2 + y_2) - (x_3 + y_3), -(x_2 + y_2) + 2);$$

$$\begin{split} \widehat{B}\vec{x} + \widehat{B}\vec{y} = & (x_1 + 2x_2 - 3x_3, 2x_1 + 3x_2 - x_3, -x_2 + 2) + (y_1 + 2y_2 - 3y_3, 2y_1 + 3y_2 - y_3, y_2 + 2) = (x_1 + y_1 + 2(x_2 + y_2) - 3(x_3 + y_3), 2(x_1 + y_1) + 3(x_2 + y_2) - (x_3 + y_3), -(x_2 + y_2) + 4) \neq \widehat{B}(\vec{x} + \vec{y}) \end{split}$$

Условие линейности оператора не выполняется, $=> \hat{B}$ не является линейным оператором.

с) \hat{C} : $R^3 \to R^3$, оператор $C\vec{x} = (x_1 + 7x_2 - x_3^2; 4x_2; 2x_2 - x_3^3)$ вектор из R^3 переводит в вектор из R^3 .

Проверим линейность оператора С:

$$\hat{C}(\vec{x} + \vec{y}) = ((x_1 + y_1) + 7(x_2 + y_2) - (x_3 + y_3)^2; 4(x_2 + y_2); 2(x_2 + y_2) - (x_3 + y_3)^3) = (x_1 + y_1 + 7x_2 + y_2 - x_3^2 - 2x_3y_3 - y_3^2; 4x_2 + 4y_2; 2x_2 + 2y_2 - x_3^3 - 3x_3^2y_3 - 3x_3y_3^2 - y_3^3)$$

С другой стороны:

$$\hat{C}\vec{x} + \hat{C}\vec{y} = (x_1 + 7x_2 - x_3^2; 4x_2; 2x_2 - x_3^3) + (y_1 + 7y_2 - y_3^2; 4y_2; 2y_2 - y_3^3) =
= (x_1 + 7y_1 + x_2 + 7y_2 - x_3^2 - y_3^2; 4x_2 + 4y_2; 2x_2 + 2y_2 - x_3^3 - y_3^3) \Rightarrow
\hat{C}(\vec{x} + \vec{y}) \neq \hat{C}(\vec{x}) + C(\vec{y}).$$

Условие линейности оператора не выполняется \Rightarrow \hat{C} не является линейным оператором.

3. Преобразование матрицы линейного оператора при замене базиса

Пусть в линейном пространстве L заданы два базиса $S_1 = \{\vec{e}_1, ..., \vec{e}_n\}$ и $S_2 = \{\vec{f}_1, ..., \vec{f}_n\}$ и $\widehat{A}: L \to L$ – линейный оператор. Справедлива следующая теорема.

Теорема 3. Матрицы A и A'линейного оператора $\widehat{A}: L \to L$, записанные в базисах S_1 (старый базис) и S_2 (новый базис) соответственно, связаны формулой:

$$A'=P^{-1}AP,$$

где P - матрица перехода от старого базиса S_1 к новому базису S_2 .

•

Пусть
$$\vec{y} = \hat{A} \vec{x}$$
.

В координатах в базисе
$$S_1$$
: $\begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}_{S_1} = A \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}_{S_1}$
В координатах в базисе S_2 : $\begin{pmatrix} \dot{y_1} \\ \cdots \\ \dot{y_n} \end{pmatrix}_{S_2} = A' \begin{pmatrix} \dot{x_1} \\ \cdots \\ \dot{x_n} \end{pmatrix}_{S_2}$.

Координаты вектора в разных базисах связаны формулой: X = PX' =

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}_{s_1} = P \begin{pmatrix} \dot{x_1} \\ \dots \\ \dot{x_n} \end{pmatrix}_{s_2} ; \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}_{s_1} = P \begin{pmatrix} \dot{y_1} \\ \dots \\ \dot{y_n} \end{pmatrix}_{s_2}$$

Тогда $P\begin{pmatrix} \dot{y_1} \\ ... \\ \dot{y_n} \end{pmatrix}_{s_2} = A \cdot P\begin{pmatrix} \dot{x_1} \\ ... \\ \dot{x_n} \end{pmatrix}_{s_2}$ Умножим полученное равенство слева на матрицу р-1.

$$P^{-1}P \begin{pmatrix} \dot{y_1} \\ \dots \\ \dot{y_n} \end{pmatrix}_{s_2} = P^{-1}AP \begin{pmatrix} \dot{x_1} \\ \dots \\ \dot{x_n} \end{pmatrix}_{s_2} = > \begin{pmatrix} \dot{y_1} \\ \dots \\ \dot{y_n} \end{pmatrix}_{s_2} = P^{-1}AP \begin{pmatrix} \dot{x_1} \\ \dots \\ \dot{x_n} \end{pmatrix}_{s_2}, \text{ так как } P^{-1}P = E; =>$$

$$A' = P^{-1} \cdot A \cdot P : \text{ T.e. }$$

$$A' = P^{-1} \cdot A \cdot P$$

Утверждение. Определитель матрицы линейного оператора не зависит от выбора базиса.

◄ $\det(P^{-1} \cdot A \cdot P) = \det P^{-1} \cdot \det A \cdot \det P = \det A$, $\mathsf{T}. \, \mathsf{K}. \, \det P^{-1} \cdot \det P = 1$ ►

Задача. Линейный оператор \widehat{A} в базисе $S = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ имеет матрицу

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 4 & -1 \\ -1 & 1 & -2 \end{pmatrix}$$
. Найти матрицу оператора в базисе $S' = \{\vec{f}_1, \vec{f}_2, \vec{f}_3\}$, если $\vec{f}_1 = \vec{e}_1 - 2\vec{e}_3, \ \vec{f}_2 = -\vec{e}_1 + \vec{e}_2 + \vec{e}_3, \ \vec{f}_3 = -2\vec{e}_1 + 2\vec{e}_2 + 3\vec{e}_3.$

<u>Решение:</u> Выпишем матрицу перехода от старого базиса S к новому S', записав координаты нового базиса в старом $\vec{f_1} = (1;0;-2), \vec{f_2} = (-1;1;1), \vec{f_3} = (-2;2;3)$ в столбцы матрицы:

$$P_{S \to S'} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix}$$

Найдем обратную матрицу $P_{S \to S'}^{-1}$:

$$\Delta = |P_{S \to S'}| = \begin{vmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ -2 & 1 & 3 \end{vmatrix} = 3 + 4 + 0 - 4 - 0 - 2 = 1 \neq 0 \Rightarrow$$

$$P_{S \to S'}^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{23} \end{pmatrix}$$

BM-2

$$A_{11} = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1; \qquad A_{21} = -\begin{vmatrix} -1 & -2 \\ 1 & 3 \end{vmatrix} = 1; \qquad A_{31} = \begin{vmatrix} -1 & -2 \\ 1 & 2 \end{vmatrix} = 0;$$

$$A_{12} = -\begin{vmatrix} 0 & 2 \\ -2 & 3 \end{vmatrix} = -4; \qquad A_{22} = \begin{vmatrix} 1 & -2 \\ -2 & 3 \end{vmatrix} = -1; \qquad A_{32} = -\begin{vmatrix} 1 & -2 \\ 0 & 2 \end{vmatrix} = -2;$$

$$A_{13} = \begin{vmatrix} 0 & 1 \\ -2 & 1 \end{vmatrix} = 2; \qquad A_{23} = -\begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} = 1; \qquad A_{33} = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$$

$$P_{S \to S'}^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -4 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}.$$

$$A' = P_{S \to S'}^{-1} A P_{S \to S'} = \begin{pmatrix} 1 & 1 & 0 \\ -4 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 1 & 4 & -1 \\ -1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 1 \\ -7 & -2 & -3 \\ 4 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix}.$$

$$OTBET: A' = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix} - \text{матрица оператора } \widehat{A} \text{ в базисе } S' = \{\overrightarrow{f_1}, \dots, \overrightarrow{f_n}\}.$$

Задача. \widehat{A} в V_2 - оператор проектирования на прямую y = x. Составить матрицу линейного оператора в удобном базисе и в базисе $\{i, j\}$.

Решение:

базис канонический S_2 : {i, j} удобный базис S_1 : $\overline{e}_1 = i + j = (1,1)_{S_2}$; $\overline{e}_2 = -i + j = (-1,1)_{S_2}$

$$\begin{split} P_{S_2 \to S_1} = & \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}; \ P_{S_1 \to S_2} = P_{S_2 \to S_1}^{} = \begin{pmatrix} 0.5, & 0.5 \\ -0.5 & 0.5 \end{pmatrix}; \\ A_{S_1} = & \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \text{ так как } \hat{A}\overline{e}_1 = (1,0)_{S_1}; \hat{A}\overline{e}_2 = (0,0)_{S_1} \end{split}$$

$$A_{S_2} = (P_{S_1 \to S_2})^{-1} A_{S_1} P_{S_1 \to S_2} = P_{S_2 \to S_1} A_{S_1} (P_{S_1 \to S_2})^{-1} =$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0,5, & 0,5 \\ -0,5 & 0,5 \end{pmatrix} = \begin{pmatrix} 0,5, & 0,5 \\ 0,5 & 0,5 \end{pmatrix}$$