FÍSICA - FORMULARIO

Unidad 4

→ Onda armónica

Describe una función sinusoidal

$$y(x,t) = A sink(x \pm vt)$$

Propagación de una onda:

Función que depende de la dirección del avance y el tiempo $\rightarrow y = f(y, t)$

Energía transmitida por una onda:

$$\Delta E = 2\mu \Delta x \pi^2 f^2 A^2$$

Parámetros de una onda:

- Longitud λ
- Período T
- Frecuencia $f = \frac{1}{T}$
- Velocidad de propagación $v = \frac{\lambda}{T}$ Número de onda $k = \frac{2\pi}{\lambda} = \frac{\omega}{v}$

Índice de refracción:

$$n = \frac{c}{v}$$
 \rightarrow Velocidad de la luz en el vacío \rightarrow Velocidad de la luz en el medio material

n aire = 1

Ángulo de refracción: $n_1 sin(i) = n_2 sin(j)$

Difracción:

Fenómeno por el cual una onda modifica su dirección al encontrarse con aberturas u obstáculos.

Superposición de ondas:

- y(x,t) = A sink(wt kx)
- $y(x,t) = A sink(wt kx + \delta)$

Fórmula:

$$y = (2A\cos(\frac{\delta}{2}))\sin(kx - \omega t - \frac{\delta}{2})$$

Diferencia de fase entre 2 puntos:

$$(wt - kx_1) - (wt - kx_2) = k\Delta x$$

$$(wt_1 - kx) - (wt_2 - kx) = w\Delta t$$