HOCHSCHULE LUZERN

PREN 1 TEAM 10

Julian Bischof Gabriel Buckland Sarangan Gopalachandran Yannick Merz Sandro Mösch Manuel Zihlmann

Abgabe Meilenstein 02

Versionsverlauf

Version	Datum	Verfasser	Änderungen	
1.0	01.11.2024	Team 10	Initiale Version	

Inhaltsverzeichnis

1	Eval	luation der Lösungsprinzipien
	1.1	Morphologischer Kasten Pfandfinder
2	Aus	wahl der optimalen Lösungskombinationen
	2.1	Rote Variante
	2.2	Blaue Variante
	2.3	Grüne Variante
	2.4	Nutzwertanalyse Simulation
		2.4.1 Plattform
		2.4.2 Visualisierung & Auswertung
		2.4.3 Wiederverwendbarkeit
	2.5	Nutzwertanalyse Gerät
3	Risil	komanagement
	3.1	Erfasste Risiken
	3.2	Erfasste Massnahmen

1 Evaluation der Lösungsprinzipien

1.1 Morphologischer Kasten Pfandfinder

Ideen	1	2	3	4	5
Parameter					
Detektieren eines Nodes	Phototransistor- Array	Bilderkennung	Helligkeitssensor- Array	Distanz messen und abzählen	-
Detektieren einer Linie	Phototransistor- Array	Bilderkennung	-	-	-
Unterschied Fliesenfuge, Klebeband	Rolltaster	zweiter Li- niensensor	Bilderkennung	-	-
Erkennung fehlender Lini-	Regelbasiert bestimmen (plau- sible Winkel)	KI-Modell	Probabilistisch (Auswertung Vergangenheit)	ohne	-
Erkennen von Hindernis- gsen	$rac{ ext{gerichteter}}{ ext{LIDAR}}$	Bilderkennung	Lichtschranke	Taster	Ultraschall
sen Sel Erkennen von Pylonen	LIDAR	Bilderkennung	Lichtschranke	-	-
Unterschied Hindernis/- Pylon	Höhendifferenz	Bilderkennung	-	-	-
Bestimmen aktueller Position	Gyroskop (Absolutwinkel zu Erdmagnetfeld)	Fahrwinkel und Distanz seit Start aufzeichnen	GPS	-	-
Kollisionen verhindern	Taster	Lichtschranke	LIDAR	Ultraschall	reine Vorplanung
Controller	Gesamte Regelung auf HLC	Sensorik & Aktorik über uC, Berechnung auf HLC	-	-	-

Tabelle 2: Morphologischer Kasten

Ideen	1	2	3	4	5
Parameter					
Weg durch Netz bestimmen	Wege gewichten	Wege vor- definieren	Brute force	bis zum nächsten Node vor- ausschauen	-
Ansatz der Kartener- kennung	Rein auf auftre- tende Ereignisse reagieren	Bilderkennung und Route vorplanen	Nächsten Node mit LIDAR vorplanen	Probab <mark>i</mark> listisch und Graph aufzei <mark>c</mark> hnen	-
Energiespeicher	Lithium Akku	Ni-Cd Akku	Bleisäure Akku	Kraftstofftank	Druckluft
$\stackrel{\mathfrak{g}}{\Xi}$ Ladestands Anzeige	Mehrere LED's	1 LED	Feedback WebUI	Analog	LCD 32x4
Zielankunft signalisie-	Piezo-Alarm	Lautsprecher-Ton	Optische Anzeige (LED's)	LCD Display	-
Zielerkennung	Bilderkennung (Beschriftung)	Reine Navigation	-	-	-

Tabelle 3: Morphologischer Kasten

Ideen	1	2	3	4	5
Parameter					
Fortbewegungsmittel	Gummiräder	Mecanumräder	4 Beine (gehend)	$\begin{array}{c} \text{Propeller} \\ \text{(fliegend)} \end{array}$	Gummiraupen
Antrieb	DC-Motor	Dampfmaschine	Schrittmotor	Stirlingmotor	Verbrennungsmotor
Fahrwerk Lenkung	2 Rädrig (Achse mittig) mit 2 Kugeln	2 Rädrig mit einer Kugel	3 Rädrig mit lenkendem Einzelrad	4 Rädrig mit lenkender Achse	Panzerlenkung
Hindernis Aufnahmevorrichtung	von oben ohne Winke lausrichtung	von oben mit Winke- lausrichtung	von oben frei rotierend und Arretierung	Hindernis seitlich aufnehmen	durch die mittleren Löcher aufnehmen
Description of the control of the co	Gabelstapler	Klemmgreifer	Saugnapf	Schnappverschluss	-
Hindernis-Handling	Über das Fahrzeug drüber	Um das Fahr- zeug herum	Linearförderung durch das Fahrzeug	Fahrzeug 360° Drehung	Fahrzeug 180° Drehung (symmetrisch)
Hindernis positionie- ren	anhand gefah- render Distanz und Liniensensor	per Kamera		<u>-</u>	-
Z-Positionierung	Roboterarm	Linearmodul	Hebebühne	Pneumatik	Hubmagnet
Notstopp	Buzzer	Taster	-	-	-

Tabelle 4: Morphologischer Kasten

Ideen	n 1	2	3	4	5
Parameter	_				
Betriebssystem	Windows	Linux	MacOS	Alle genann- ten OS	-
Darstellung	2-D	3-D	mixed Reality	2-D mit Sensorfeedback	-
Pfadfindungsalgo	Mehrere Algos	A*-Algorithmus	D*Lite	Partikelfilter	-
Fahrzeugparameter	editierbar	fix	lernfähige Parameter	dynamisch anpassbar	-
Daten-Export	Log-File	CSV	$\operatorname{SQ-Lite}$	JSON	-
Programmiersprache Frontend	JavaScript	Java (JavaFX)	C++(QT)	Python(Tkinter)	-
Programmiersprache Backend	JavaScript	Java	C++	Python	-
UI Technologie	Webapplikation	Desktop App	CLI	3-D Simulation mit Interaction	-
Auswertung	Diagramme in MS Excel	Log-Auswertung im Tool	Live Dashboard mit Updates	-	-
Simulations- geschwindigkeit	Echtzeit	Zeitraffer	Verlangsamte Bewegung	Anpassbar	-
Interaktions- möglichkeiten	Passiv be- obachten	Eingreifen per Klick	Eingreifen via Konsole	Vollinteraktives Umfeld	-
Fahrverhalten	konstant	dynamisch (anpassbar)	lernfähig	-	-

Tabelle 5: Morphologischer Kasten Simulation

2 Auswahl der optimalen Lösungskombinationen

Im folgenden Abschnitt werden die drei Varianten aus dem morphologischen Kasten schriftlich festgehalten.

2.1 Rote Variante

Die rote Variante bahnt sich den Weg durch das Netzwerk, indem diese immer zu den nächsten Nodes vorausschaut. Es ist daher ein probabilistischer Algorithmus, welcher das Netzwerk bei der Fahrt aufzeichnet. Die verschiedenen Nodes sowie die Verbindungslinien können mit einem Liniensensor aus einem Phototransistor-Array detektiert werden. Damit das Fahrzeug auf der Linie bleibt und nicht den Fliesenfugen nachfährt, wird ein zweites Phototransistor-Array als Liniensensor eingebaut. Bevor eine Strecke befahren wird, wird bereits mit einem LIDAR geprüft, ob eine Pylone auf dem nächsten Wegpunkt sein wird. Es wird ebenfalls der Unterschied zwischen einer Pylone und einem Hindernis mit dem LIDAR erkannt. Dafür wird der Höhenunterschied beider Objekte ausgenutzt. Um Kollisionen mit Hindernissen auf der Strecke zu verhindern und diese gleichzeitig gezielt zu lokalisieren, wird eine Lichtschranke verwendet, welche durch das Hindernis unterbrochen wird. Damit die aktuelle Position im Graph möglichst exakt bestimmt werden kann, wird ein Gyroskop für die Winkelbestimmung verwendet, sowie die gefahrene Strecke gemessen. Mit beiden Werten kann der Graph grob nachkonstruiert werden. Somit werden der Graph und die fehlenden Linien probabilistisch bestimmt. Die Antriebe sowie die Sensoren werden auf einem Microcontroller angesteuert. Die Steuersignale werden mit einem High-Level-Controller(HLC), z.B. einem Raspberry Pi, berechnet.

Der Energiespeicher ist ein Lithium-Akku und der Akkustand wird durch eine LCD-Anzeige angezeigt. Wenn das Ziel erreicht wird, wird dies mit einem Piezo-Alarm ausgegeben. Für die Zielerkennung wird eine Kamera eingesetzt, welche die Beschriftung der Nodes erkennen kann.

Das Fahrzeug fährt mit zwei Gummirädern und wird mit Schrittmotoren angetrieben. Einen dritten Auflagepunkt bildet eine nachlaufende Kugel. Die Hindernis-Aufnahmevorrichtung wird mit einem Klemmgreifer, welcher von oben ohne Winkelausrichtung zupackt, realisiert. Bei der Umplatzierung des Hindernisses dreht sich das Fahrzeug um 180 Grad und positioniert es am korrekten Ort anhand der gefahrenen Distanz und des Liniensensors. Nach dem Absetzen des Hindernisses fährt es noch ein Stück rückwärts und dreht sich wieder um 180 Grad zurück. Die Z-Positionierung wird mit einem Linearmodul realisiert. Das Fahrzeug kann im Notfall durch einen Buzzer gestoppt werden.

2.2 Blaue Variante

Die Pfadfindung in der blauen Variante ist ähnlich der roten Variante. Jedoch werden in der blauen Variante die Nodes mittels einer Kamera detektiert. Die Kamera wird ausserdem verwendet, um den Weg durch das Netzwerk zu bestimmen. Hierzu wird am Start ein Bild des Netzwerks erstellt. Mithilfe dieses Bildes wird der Weg entsprechend den gesperrten Wegpunkten, Hindernissen und der Strecke gewichtet und möglichst optimal abgefahren. Der Rest der Umwelterfassung ist identisch mit der roten Variante.

Der Energiespeicher ist ein Lithium-Akku, welcher den Energiestand durch eine LCD-Anzeige angibt. Die Zielerkennung wird durch eine reine Navigation ermöglicht und die Zielankunft wird mit dem Piezo-Alarm mitgeteilt.

Das Fahrzeug wird mit einer mittleren Achse mit zwei Gummirädern gelenkt und hat vorne und hinten je eine Kugel zur Stützung. Für den Antrieb des Fahrzeugs wird ein DC-Motor verwendet. Ein Hindernis wird mit einem Gabelstapler durch die jeweiligen Löcher im Hindernis aufgenommen. Das Fahrzeug hat eine symmetrische Bauform und kann deshalb nach dem Absetzen des Hindernisses Rückwärts weiterfahren. Durch die gefahrene Distanz und durch den Liniensensor weiss das Fahrzeug exakt, wo

es das Hindernis absetzen muss. Die Z-Positionierung wird mit einem Linearmodul ermöglicht. Im Notfall kann das Fahrzeug mit einem Buzzer gestoppt werden.

2.3 Grüne Variante

Bei der grünen Variante wird auf Brute-Force gesetzt, also durch ein rein systematisches Ausprobieren aller möglichen Lösungen soll ein Weg durch das Netzwerk gefunden werden. Die Nodes, Linien und die Fliesenfugen werden mittels Bilderkennung erfasst und unterschieden. Auf ein Detektieren der fehlenden Linien wird verzichtet. Auch die Hindernisse und Pylonen werden mit Bilderkennung erkannt und unterschieden. Die aktuelle Position im Netzwerk wird durch den Fahrwinkel und die gefahrene Strecke laufend berechnet. Um Kollisionen mit einem Hindernis zu verhindern, wird eine Lichtschranke verwendet. Aufgrund der Brute-Force-Taktik wird bei der Kartenerkennung nur auf auftretende Ereignisse reagiert. Weil eine hohe Rechenleistung anfällt, wird die gesamte Regelung auf einem HLC realisiert.

Ein Nickel-Cadmium-Akku versorgt das Fahrzeug mit genug Energie. Der Akku-Stand wird mit mehreren LEDs angezeigt. Die Ankunft im Ziel wird durch die Bilderkennung erkannt und mit einem Lautsprecher ausgegeben.

Damit das Fahrzeug möglichst manövrierfähig ist, werden Mecanumräder mit einer Panzerlenkung verwendet. Als Antrieb werden DC-Motoren genommen. Die Hindernis-Aufnahmevorrichtung ist ein Klemmgreifer, welcher rotierbar ist. Somit wird das Hindernis um das Fahrzeug herumgedreht. Das Hindernis wird mit der Kamera positioniert. Die Z-Positionierung wird mit einer Hebebühne realisiert. Das Fahrzeug kann jederzeit mit einem Buzzer gestoppt werden.

2.4 Nutzwertanalyse Simulation

2.4.1 Plattform

Wie man an der Nutzwertanalyse auf der nächsten Seite erkennen kann, entschied man sich für eine web-basierte Lösung, in welcher die Simulation top-down in einem 2d-Format dargestellt wird. Hauptgrund für das Wählen einer webbasierten Lösung war die plattformübergreifende Verfügbarkeit einer solchen Software, da im Team mit unterschiedlichen Plattformen gearbeitet wird. Dadurch lässt sich nicht-funktionalen Aufwand bei der Entwicklung sparen, der nur dafür gebraucht worden wäre, um die Simulation bei allen aufzusetzen. Zusätzlich ist jedes Teammitglied mit Weboberflächen bestens vertraut und somit in der Lage, den Simulator ohne grosse Einarbeitungszeit zu bedienen.

2.4.2 Visualisierung & Auswertung

Wir waren uns bereits früh in der Planung des Simulators einig, dass die Simulation nur in zwei Dimensionen dargestellt werden soll, da kein offensichtlicher Mehrwert in einer dreidimensionalen Darstellung gesehen wurde. Der verhältnismässig hohe Entwicklungsaufwand für keinen erkennbaren Mehrwert war der ausschlaggebende Grund für diese Entscheidung. Da der Simulator hauptsächlich als Testumgebung für unsere Pfadfindungsalgorithmen funktionieren wird, ist die realitätsnahe Darstellung der Simulation nicht von grosser Bedeutung. Die Bedienbarkeit der Simulation ist jedoch ein wichtiger Faktor, da die zu implementierenden Algorithmen ausgiebig getestet werden sollten und somit viel Zeit mit der Bedienung des Simulators verbracht wird. Deswegen entschied man sich auch, dass die Läufe der Simulation in einem Format gelogged werden sollen, das einen einfachen Export in ein anderes Format ermöglicht. So kann ein Nutzer der Simulation nach einem Lauf der Simulation mit beliebigen externen Tools die Daten weiterverarbeiten, analysieren und gegebenenfalls auch visualisieren.

2.4.3 Wiederverwendbarkeit

Als letzter Punkt der Nutzwertanalyse wurde die Wiederverwendbarkeit der Simulation betrachtet. Mit der Wiederverwendbarkeit ist hauptsächlich gemeint, dass der Code so gestaltet werden soll, dass diser später auch auf der Hardware des Roboters verwenden werden kann. Das Konzept, das hier evaluiert wurde, hätte auf eine Frontend-Backend-Architektur gesetzt, bei welcher das Frontend die Simulation darstellt und das Backend per Request aufruft in welchem wir die eigentliche Logik der Pfadfindungsalgorithmen implementieren. In dieser Lösung wurde aber ein erheblich höherer Entwicklungsaufwand gesehen, wobei nicht einmal sicher ist, ob der geschriebene Code später wirklich wiederverwenden werden kann. Ein nachträgliches Transpilieren des Codes auf eine Sprache, die auf der Hardware des Roboters lauffähig ist, erachten wir nicht als Problem.

	Kriterien	Gewichtung {%}	Punkte {110}	Punkte gewichtet	Punkte {110}	Punkte gewichtet
			Nativ		Web-based	
Plattform	Entwicklungs- aufwand	40	2	8	8	32
	Performance	20	7	14	4	8
	Bedienbarkeit	40	4	16	7	28
	Summe	100		38		68
			3	BD	2	2D
Visualisier-	Entwicklungs- aufwand	40	3	12	8	32
ung	Interaktions- möglichkeit	10	6	6	5	5
	Realitätsnähe	20	8	16	3	6
	Bedienbarkeit	30	5	15	5	15
	Summe	100		49		58
			In-tool		Export + Scrip	
Auswertung	Entwicklungs- aufwand	30	5	15	5	15
	Flexibilität	40	4	16	6	24
	Integration in Dokumentation	30	2	6	8	24
	Summe	100		37		63
Wieder-			Splitting Front-/Backend		Kein S	Splitting
verwendbar- keit	Entwicklungs- aufwand	40	3	12	7	28
	Austauschbar- keit	30	8	24	2	6
	Transpilation	30	8	24	2	6
	Summe	100		60		40
Gesam	tsumme		4	16	57	7.25

Tabelle 6: Nutzwertanalyse Simulation

2.5 Nutzwertanalyse Gerät

	Kriterien	Gewichtung {%}	Punkte {110}	Punkte gewichtet	Punkte {110}	Punkte gewichtet	Punkte {110}	Punkte gewichtet
			rote	Linie	grün	e Linie	blau	e Linie
	Einrichtungsaufwand	15	8	12	5	7.5	6	9
Gesamt-	Entwicklungsaufwand	25	6	15	3	7.5	8	20
system	Geschwindigkeit	20	7	14	5	10	9	18
	Kosten	30	8	24	4	12	6	18
	Nachhaltigkeit	10	5	5	3	3	4	4
	Summe	100		70		40		69
			Schrit	tmotor	DC-	Motor	Schri	ttmotor
	Geschwindigkeit	20	8	16	8	16	8	16
Antrieb	Verhältnis Leistung zu Gewicht	30	4	12	7	21	4	12
	Wendefähigkeit	20	8	16	10	20	8	16
	Genauigkeit	30	7	21	4	12	7	21
	Summe	100		65		69		65

Tabelle 7: Nutzwertanalyse Gerät 1

				reifer ohne usrichtung	Ga	belstapler		eifer mit srichtung
Hindernis- handling	Platziergenauigkeit	25	7	17.5	4	10	8	20
nanding	Sicherheit	45	6	27	7	31.5	6	27
	Robustheit	30	8	24	7	21	6	18
	Summe	100		68.5		62.5		65
			Li	-ion Akku	Ni	-Cd Akku	Li-	ion Akku
Energie-	Laufzeit	40	9	36	7	28	9	36
versorgung	Gewicht	60	9	54	7	42	9	54
	Summe	100		90		70		90
				Lidar	Bild	lerkennung	Bild	erkennung
Umwelt-	Detektion der Fahrlinie	30	9	27	7	21	7	21
detektion	Positionsbestimmung	15	6	9	2	3	8	12
	Detektion der Pylonen / Hindernisse	25	8	20	6	15	6	15
	Abhängigkeit von Umwelteinflüssen	30	8	24	3	9	3	9
	Summe	100		80		48		57
G	esamtsumme			74.7		57.9		69.2

Tabelle 8: Nutzwertanalyse Gerät 2

3 Risikomanagement

Das Risikomanagement wird nach der ALARP-Methode (engl. as low as reasonably possible) durchgeführt. Dafür werden Risiken im ersten Schritt identifiziert und anschliessend durch risikomindernde Massnahmen auf ein Niveau reduziert, das ein angemessenes Mass an Sicherheit bietet. Die Bewertung erfolgt im gesamten Team und basiert auf einer subjektiven Einschätzung zur Erfüllung der Aufgabe. Ziel ist es, möglichst früh im Projektverlauf kritische Punkte zu identifizieren und den Fokus auf diese zu legen.

Eintrittswahrscheinlichkeit (EW)

Die Eintrittswahrscheinlichkeit ist ein Mass für die Wahrscheinlichkeit, mit der ein Ereignis eintreten könnte.

\mathbf{EW}	Bezeichnung	%
6	häufig	> 90%
5	wahrscheinlich	> 70%
4	gelegentlich	> 50%
3	entfernt vorstellbar	> 30%
2	unwahrscheinlich	> 15%
1	unvorstellbar	> 5%

Tabelle 9: Legende Eintrittswahrscheinlichkeit

Schadensausmass (SA)

Das Schadensausmass ist ein Mass dafür, wie fatal ein eintretendes Ereignis für den Projekterfolg ist.

SA	Bezeichnung	Auswirkung
4	katastrophal	Wettbewerb abgebrochen
3	kritisch	Gefährdung für Projekterfolg
2	geringfügig	Minderung des Projekterfolgs
1	unwesentlich	Störung des Projekterfolgs

Tabelle 10: Legende Schadensausmass

Bereichsdefinition

Die entsprechenden Risiken sind mit der folgenden Farbgebung codiert, um die Notwendigkeit von Massnahmen zu kennzeichnen.

Farbcodierung	Bedeutung
	Akzeptabler Bereich
	ALARP-Bereich
	Inakzeptabler Bereich

Tabelle 11: Legende Bereichsdefinition

3.1 Erfasste Risiken

Die nachfolgenden Tabellen zeigen die identifizierten Risiken bis zum aktuellen Zeitpunkt.

Allgemeines

#	Risiko		\mathbf{EW}	Auswirkungen
1.1	Unterschiedliche Erwartungen an den Projekterfolg	2	1	Enttäuschung bei Teammitgliedern, Kommunikationsprobleme
1.2	Verpasste Abgaben aufgrund mangelhaften Zeitmanagements		2	Testate werden nicht erteilt. Unstimmigkeiten zwischen Teammitgliedern
1.3	durchdacht Budget wird knapp, da Aufwände unterschätzt wurden Personeller Ausfall durch Teamwechsel in PREN2 oder Krankheit Kommunikationsprobleme und		2	Probleme treten in PREN 2 auf, die früher hätten erkannt werden können
1.4			3	Es muss an kritischen Stellen gespart werden
1.5			2	Aufgaben müssen umverteilt werden
1.6			2	Missverständnisse, ineffizientes Arbeiten führt zu Zeitverlust
1.7	Vergessene Anforderungen aus der Aufgabenstellung	4	1	Aufgabenstellung wird nicht vollständig erfüllt
1.8	Fehlende Motivation durch unzureichende Teilerfolge bei Konzeption und Prototypen Aufbau	2	1	Stimmung im Team leidet darunter

Tabelle 12: Erfasste Risiken mit Bewertung

Mechanik

#	Risiko	SA	\mathbf{EW}	Auswirkungen
	Fahrzeug kann Hindernis erfassen und	3	4	Punktabzug bei der Bewertung
2.1	aufnehmen, jedoch nicht exakt			
	positionieren.			
2.2	Fahrzeug überschreitet das zulässige	4	3	Disqualifikation
	Gesamtgewicht; 2 kg ist ein enger			
	Rahmen.			

Tabelle 13: Erfasste Risiken im Bereich Mechanik

Elektrotechnik

#	Risiko	SA	\mathbf{EW}	Auswirkungen
0.1	Fahrzeug kann Linie nicht erkennen	4	5	Disqualifikation
3.1	und verlässt daher die Strecke.			
0.0	Fahrzeug wird durch Umwelteinflüsse	3	6	Punktabzug durch Abkommen von
3.2	wie Lichtverhältnisse gestört.			der Linie oder Kollisionen mit
				Hindernissen
2.2	Akku reicht nicht für beide Läufe mit	4	2	Fahrzeug kann das Ziel nicht
3.3	Tests, da aufgrund des Gewichts zu			erreichen.
	knapp dimensioniert.			
9.4	Kommunikation zwischen	3	2	Möglicherweise fehlerhafte oder keine
3.4	verschiedenen Mikrocontrollern und			Steuersignale
	dem Hauptrechner wird durch			
	Umwelteinflüsse gestört.			
2.5	Lastregelung der	2	2	Prozessoren und Sensorik könnten
3.5	Spannungsversorgung unzureichend,			unterversorgt sein und neu starten
	da Leistungselektronik zu viel Strom			müssen
	benötigt.			

Tabelle 14: Erfasste Risiken im Bereich Elektrotechnik

Informatik

	# Risiko		SA	\mathbf{EW}	Auswirkungen	
		Fahrzeug verliert die Orientierung im		5	Fahrzeug benötigt lange, bis es das	
4	4.1	Parcours und erreicht das Ziel nicht.			Ziel zufällig erreicht.	

Tabelle 15: Erfasste Risiken im Bereich Informatik

3.2 Erfasste Massnahmen

Allgemein

Risiko #	Massnahme	Neu EW
1. 4	Kostenpunkte bei jedem Entwicklungsschritt frühzeitig berücksichtigen und als wichtiges Kriterium für Technologieentscheide werten.	1

Tabelle 16: Erfasste Massnahmen für allgemein betreffende Risiken

Abbildung 1 zeigt schematisch, wie die getroffenen Massnahmen entsprechende Risiken für den Projekterfolg reduzieren.

Abbildung 1: Grafische Darstellung der Risikoanalyse Allgemein

Mechanik

Risiko #	Massnahme	Neu
		\mathbf{EW}
2. 1	Höhere Gewichtung auf dieses Detail in der Konzeptbewertung.	3
2. 2	Gewicht der Bauteile frühzeitig überschlagen und bei jedem	1
	Entwicklungsschritt berücksichtigen. Liste für bereits bekannte Gewichte	
	führen und Budget für Baugruppen festlegen.	

Tabelle 17: Erfasste Massnahmen für die Mechanik betreffende Risiken

Abbildung 2 zeigt schematisch, wie die getroffenen Massnahmen entsprechende Risiken für den Projekterfolg reduzieren.

Abbildung 2: Grafische Darstellung der Risikoanalyse Mechanik

Elektrotechnik

Risiko #	Massnahme	Neu EW
3. 1	Frühzeitiges Testen und Optimieren der Genauigkeit der Sensorik.	2
	Möglichkeit bieten, das Fahrzeug nach Fahrzeugwinkel und gefahrenen	
	Strecken zu regeln. Technologieentscheid erst nach ausgiebigem Testen.	
3. 2	Sensorik, die optisch arbeitet, möglichst abgekapselt von der Umwelt	3
	betreiben. Alternativ Wellenlängen, die das sichtbare Licht beinhalten,	
	vermeiden.	
3. 3	Akku doppelt herstellen/einkaufen, Ladestation extern ausführen, um immer	1
	einen vollgeladenen Akku bereit zu haben.	
3. 4	Kommunikationsleitungen mindestens als Twisted-Pairs mit GND – besser	1
	aber geschirmt ausführen.	
3. 5	Genügend Spannungsreserve des Akkus "nach oben" einplanen. Vor der	2
	Spannungsversorgung für High-Level-Controller und Mikrocontroller aktive	
	Filter (z.B. LDO oder ähnliches) vorsehen.	

Tabelle 18: Erfasste Massnahmen für Risikoanalyse

Abbildung 3 zeigt schematisch auf, wie die getroffenen Massnahmen entsprechende Risiken auf den Projekterfolg reduzieren.

Informatik

Risiko #	Massnahme	Neu
		\mathbf{EW}
4. 1	Fallback-Lösung: Fahrzeug fährt immer links.	3

Tabelle 19: Erfasste Massnahmen für Risikoanalyse

Abbildung 4 zeigt schematisch auf, wie die getroffenen Massnahmen entsprechende Risiken auf den Projekterfolg reduzieren.

Abbildung 3: Grafische Darstellung Risikoanalyse Elektrotechnik

Abbildung 4: Grafische Darstellung Risikoanalyse Informatik