

SYCL GPU Best Practices

Ben Ashbaugh (Intel)

Occupancy

Give the GPU enough work!

SYCL_w

GPU != CPU

- CPUs: Optimized for latency
 - Fewer fancier processors

- GPUs: Optimized for throughput
 - Many simpler processors

Fetch/Decode ALU Registers Simpler Processor x 2 Fetch/Decode ALU Registers Simpler Processor x 2 Fetch/Decode Registers Fetch/Decode Registers Registers

Figure 15-2. GPU processors are simpler, but there are more of them

GPUs need lots of data!

- Graphics and games requires processing millions of pixels per second
- GPUs prefer many work-items for general-purpose computation
- Many work-items keeps GPU execution resources busy (occupied)!

Bad: Not Enough Parallelism

```
h.single_task([=]() {
  for (int m = 0; m < M; m++) {
    for (int n = 0; n < N; n++) {
        T sum = 0;
        for (int k = 0; k < K; k++)
            sum += matrixA[m * K + k] * matrixB[k * N + n];
        matrixC[m * N + n] = sum;
    }
}
</pre>
```

Figure 15-3. A single task matrix multiplication looks a lot like CPU host code

Figure 15-4. A single task kernel on a GPU leaves many execution resources idle

Better: More Parallelism

```
h.parallel_for(range{M}, [=](id<1> idx) {
  int m = idx[0];

for (int n = 0; n < N; n++) {
  T sum = 0;
  for (int k = 0; k < K; k++)
     sum += matrixA[m * K + k] * matrixB[k * N + n];
  matrixC[m * N + n] = sum;
}
});</pre>
```

Figure 15-5. Somewhat-parallel matrix multiplication

Figure 15-6. Somewhat-parallel kernel keeps more processor resources busy

More Parallelism is Even Better!

```
h.parallel_for(range{M, N}, [=](id<2> idx) {
  int m = idx[0];
  int n = idx[1];

T sum = 0;
  for (int k = 0; k < K; k++)
    sum += matrixA[m * K + k] * matrixB[k * N + n];
  matrixC[m * N + n] = sum;
});</pre>
```

Figure 15-7. Even more parallel matrix multiplication

Why is so much parallelism important?

- In addition to keeping processing elements busy...
- Many GPU processors operate on multiple data elements simultaneously:
- Many GPU processors use multiple threads to hide latency:

Figure 15-9. Executing a somewhat-parallel kernel on SIMD processors

Figure 15-13. Switching instruction streams to hide latency

Memory

Keep the GPU fed and happy!

Beware the Costs of Offload

- Moving data to or from a GPU is not free
- Moving an algorithm to or from a GPU is not always profitable

Figure 15-16. Typical differences between device memory, remote memory, and host memory

Accessing Memory in Kernels

- Maximize performance by maximizing locality
- Typically means organizing data structures efficiently
- Or, choosing the right dimension to parallelize
- Not sure which dimension is best? Try both and profile!

Bad: Strided Memory Accesses

```
h.parallel for(range{M}, [=] (id<1> idx) {
   int m = idx[0];

   for (int n = 0; n < N; n++) {
      T sum = 0;
      for (int k = 0; k < K; k++)
        sum += matrixA[m * K + k] * matrixB[k * N + n];
      matrixC[m * N + n] = sum;
   }
});</pre>
```

Figure 15-5. Somewhat-parallel matrix multiplication

Figure 15-17. Accesses to matrixA are highly strided and inefficient

Good: Contiguous Memory Accesses

```
// This kernel processes columns of the result matrix in parallel.
h.parallel for(N, [=] (item<1> idx) {
   int n = idx[0]

   for (int m = 0; m < M; m++) {
      T sum = 0;
      for (int k = 0; k < K; k++)
        sum += matrixA[m * K + k] * matrixB[k * N + n];
      matrixC[m * N + n] = sum;
}
});</pre>
```

Figure 15-18. Computing columns of the result matrix in parallel, not rows

Figure 15-19. Accesses to matrixB are consecutive and efficient

Local Memory

- Beyond the scope of this talk
- Know that local memory supports more access patterns efficiently than global memory!

Figure 15-20. Possible performance for different access patterns, for global and local memory

Compute

Cater to GPU strengths!

Optimizing for GPU Compute

- GPUs are traditionally optimized for graphics tasks
- Typically, 32-bit floating-point math on vertices or pixels

GPU Compute Best Practices

- Prefer smaller data types, 32-bits or less
- Some 64-bit data types may be slow or unsupported (e.g., double)
- Watch for 64-bit address arithmetic, use of 64-bit size_t
- 16-bit or smaller data types may be faster (e.g., half-precision fp16)
- Use MAD or FMA, don't disable contractions
- Trade precision for performance using sycl::native math functions
- Trade portability for performance using vendor-specific extensions

[•] Special operations found in various devices, including GPUs: **MAD** = multiply-add; **FMA** = Fused multiply add There use can change the results slightly (typically more accurate, but also different); they are generally are much faster than using the individual instructions.

Summary and Recap

Summary

- GPUs are massively parallel throughput devices
 - Important to give a GPU lots of work, thousands or millions of work-items
- Optimize Memory First
 - Monitor and minimize data transfer costs to or from the GPU
 - Improve performance by rearrange data or computation for locality
- Optimize Compute Next
 - Prefer smaller data types, trade precision for performance
- Thank you!

ben.ashbaugh@intel.com, @bashbaug

