POSITIVE HAHN-BANACH SEPARATION THEOREMS IN OPERATOR ALGEBRAS

IKHAN CHOI

ABSTRACT.

1. Introduction

In this paper, we prove the following theorem.

Theorem. Let M be a von Neumann algebra, and let A be a C^* -algebra.

- (1) If F is a σ -weakly closed convex hereditary subset of M^+ , then for any $x \in M^+ \setminus F$ there exists $\omega \in M^+$ such that $\omega(x) > 1$ and $\omega(x') \le 1$ for all $x' \in F$.
- (2) If F_* is a norm closed convex hereditary subset of M_*^+ , then for any $\omega \in M_*^+ \setminus F_*$ there exists $x \in M^+$ such that $\omega(x) > 1$ and $\omega'(x) \le 1$ for all $\omega' \in F_*$.
- (3) If F is a norm closed convex hereditary subset of A^+ , then for any $a \in A^+ \setminus F$ there exists $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega(a') \le 1$ for all $a' \in F$.
- (4) If F^* is a weakly* closed convex hereditary subset of A^{*+} , then for any $\omega \in A^{*+} \setminus F^*$ there exists $a \in A^+$ such that $\omega(a) > 1$ and $\omega'(a) \le 1$ for all $\omega' \in F^*$.

Here the result (1) was proved by Haagerup in 1975 and it plays a major role in the proof of that σ -weakly lower semi-continuous weight of a von Neumann algebra is given by the pointwise supremum of a set of positive normal linear functionals. However, we give a different proof to motivate the idea of the proof of (4). Haagerup heavily used the σ -strong topology and the strong continuity of continuous bounded functions to prove (1), but such a nice dual topology of the σ -weak topology for von Neumann algebras has no analogy in the dual of C*-algebras. In this background, we give a proof of (1) only using the σ -weak topology, and extend it to prove (4) with the weak* topology.

Contents to write...

- definition and properties of $f_{\delta}(t) := (1 + \delta t)^{-1} t$
- commutant Radon-Nikodym, completely positive map $\theta:\pi_{\psi}(M)'\to M_*$ for $\psi\in A^{*+}$ or $\psi\in M_*^+$
- Jordan decomposition and absolute value of linear functionals $[\omega]$
- Mazur lemma

Definition 1.1 (Hereditary subsets). Let E be a partially ordered real vector space. We say a subset F of the positive cone E^+ is *hereditary* if $0 \le x \le y$ in E and $y \in F$ imply $x \in F$, or equivalently $F = (F - E^+)^+$, where $F - E^+$ is the set of all positive elements of E bounded above by an element of F. When E has a locally convex topology, we define

the *positive polar* of a subset *F* of *E* as the positive part of the real polar

$$F^{r+} := F^r \cap E^{*+} = \{x^* \in E^{*+} : \sup_{x \in F} x^*(x) \le 1\}.$$

The following lemma is for the approximation of the functional calculus f_{δ} in the σ -weak or the weak* topology. Each part will be used in the proof of (1) and (4) respectively.

Lemma 1.2. Let $\varepsilon, \delta, r > 0$. Suppose $t \in \mathbb{R}$ satisfies $1 + \delta t > 0$.

- (1) If $|t| \le r$ and $\delta \le (\varepsilon/4r^2)^2 \le (2r)^{\frac{3}{2}}$, then $t \le f_{\delta}(t) + (\varepsilon/2)\delta^{\frac{1}{2}}$.
- (2) If $|t| \le \delta^{-\frac{1}{6}}$ and $\delta \le (\varepsilon/8)^6 \le 2^{-\frac{6}{5}}$, then $t \le f_{\delta}(t) + (\varepsilon/4)\delta^{\frac{1}{2}}$.

Proof. Observe that our inequalities are equivalent, since $1 + \delta t > 0$, to

$$\delta^{\frac{1}{2}}(-t)^2 + \delta(\varepsilon/(2 \text{ or } 4))(-t) - (\varepsilon/(2 \text{ or } 4)) \le 0.$$

Putting the maximum value of -t, the condition for δ can be computed as

$$(\varepsilon/2r)\delta + \delta^{\frac{1}{2}} \le (\varepsilon/2r^2), \qquad (\varepsilon/4)\delta^{\frac{5}{6}} + \delta^{\frac{1}{6}} \le (\varepsilon/4),$$

for each case respectively, then we can see $\delta \le (\varepsilon/4r^2)^2 \le (2r)^{\frac{3}{2}}$ and $\delta \le (\varepsilon/8)^6 \le 2^{-\frac{6}{5}}$ give sufficient conditions.

2. Positive Hahn-Banach separation theorems

Theorem 2.1. Let M be a von Neumann algebra, and consider the dual pair (M^{sa}, M^{sa}_*) . If F is a σ -weakly closed convex hereditary subset of M^+ , then $F = F^{r+r+}$. In particular, if $x \in M^+ \setminus F$, then there is $\omega \in M^+_*$ such that $\omega(x) > 1$ and $\omega(x') \le 1$ for $x' \in F$.

Proof. Since the positive polar is represented as the real polar

$$F^{r+} = F^r \cap M_*^+ = F^r \cap (-M^+)^r = (F \cup -M^+)^r = (F - M^+)^r,$$

the positive bipolar can be written as $F^{r+r+} = (F - M^+)^{rr+} = (\overline{F - M^+})^+$ by the usual real bipolar theorem, where the closure is for the σ -weak topology. Because $F = (F - M^+)^+ \subset (\overline{F - M^+})^+$, it suffices to prove the opposite inclusion $(\overline{F - M^+})^+ \subset F$.

In the proof of (1), we will always consider the interval $\{m^{-1}: m \in \mathbb{Z}_{>0}\}$ for the domain of δ . Define

$$G:=\left\{ \begin{aligned} &\text{for any } \varepsilon>0, \text{ there is a sequence } y_\delta\in F\\ &x\in M^{sa}: &\text{indexed on } \delta\leq (1+\|x\|)^{-1} \text{ such that}\\ &\|y_\delta\|\leq \delta^{-1} \text{ and } f_\delta(x)\leq y_\delta+\varepsilon\delta^{\frac{1}{2}} \end{aligned} \right\}.$$

Note that for $x \in G$ the functional calculus $f_{\delta}(x)$ is well-defined because $||x|| < \delta^{-1}$. If $x \in G^+$, then because the sum of closed set and a compact set is closed, we have a decreasing sequence of σ -weakly closed convex hereditary subsets $F_{\delta} := F + \{x' \in M^+ : x' \le \delta^{\frac{1}{2}}\}$ of M^+ that satisfies $f_{\delta'}(x) \in F_{\delta}$ for each $\delta' \le \delta$, where we let $\varepsilon = 1$. It implies that the σ -weak limit x of $f_{\delta}(x)$ as $\delta \to \infty$ is contained in the intersection $\bigcap_{\delta} F_{\delta}$, so if we write $x = y'_{\delta} + x'_{\delta}$ for $y'_{\delta} \in F$ and $0 \le x'_{\delta} \le \delta^{\frac{1}{2}}$, then since $x'_{\delta} \to 0$ in norm of M, we have $y'_{\delta} \to x$ in norm of M, and $x \in F$. This means that $G^+ \subset F$, so it suffices to show $G = \overline{F - M^+}$ to prove $(\overline{F - M^+})^+ \subset F$.

First we can check $F-M^+\subset G$ since if $x\in F-M^+$ with $y\in F$ such that $x\leq y$, then $y_\delta:=f_\delta(y)$ satisfies the conditions in the definition of G independently of the value of $\varepsilon>0$, and we also have $G\subset \overline{F-M^+}$ because $f_\delta(x)-\delta^{\frac{1}{2}}\in F-M^+$ in the definition of G for $\varepsilon=1$ converges to x σ -weakly as $\delta\to 0$. It means that we are enough to show that G is σ -weakly closed.

Let $x_i \in G$ be a net such that $x_i \to x$ σ -weakly. By the Krein-Šmulian theorem, we may assume that $\|x_i\| \le r$ for some r > 0. Assume $\varepsilon \le (2r)^{\frac{3}{2}}$ and let $\delta_0 := \min\{(\varepsilon/4r^2)^2, (1+r)^{-1}\}$. For $\delta \in (0,\delta_0]$, then since $\delta \le \inf_i (1+\|x_i\|)^{-1}$, we can take sequences $y_{i,\delta} \in F$ following the definition of G such that $f_\delta(x_i) \le y_{i,\delta} + (\varepsilon/2)\delta^{\frac{1}{2}}$ for all δ and i. Define y_δ by the limit of a σ -weakly convergent subnet of $y_{i,\delta}$. Note that the choice of a subnet depends on δ , but it is not an imporant issue. We clearly have $\|y_\delta\| \le \delta^{-1}$. Since $\|x_i\| \le r$ and $\delta \le (\varepsilon/4r^2)^2 \le (2r)^{\frac{3}{2}}$, we have

$$x_i \le f_{\delta}(x_i) + (\varepsilon/2)\delta^{\frac{1}{2}} \le y_{i,\delta} + \varepsilon\delta^{\frac{1}{2}},$$

so the weak* limit for the subnet gives $f_{\delta}(x) \leq x \leq y_{\delta} + \varepsilon \delta^{\frac{1}{2}}$. For $\delta \in (\delta_0, (1 + ||x||)^{-1}]$, since $x \leq y_{\delta_0} + \varepsilon \delta_0^{\frac{1}{2}}$, if we define $y_{\delta} := f_{\delta - \delta_0}(y_{\delta_0}) \in F$, then $||y_{\delta}|| \leq \delta^{-1}$ and

$$f_{\delta}(x) \leq f_{\delta}(y_{\delta_0} + \varepsilon \delta_0^{\frac{1}{2}}) \leq f_{\delta - \delta_0}(y_{\delta_0}) + \varepsilon \delta^{\frac{1}{2}} = y_{\delta} + \varepsilon \delta^{\frac{1}{2}}.$$

Therefore, $x \in G$.

Theorem 2.2. Let M be a von Neumann algebra, and consider the dual pair (M_*^{sa}, M^{sa}) . If F_* is a norm closed convex hereditary subset of M_*^+ , then $F_* = F_*^{r+r+}$. In particular, if $\omega \in M_*^+ \setminus F_*$, then there is $x \in M^+$ such that $\omega(x) > 1$ and $\omega'(x) \le 1$ for $\omega' \in F_*$.

Proof. It is enough to prove $(\overline{F_* - M_*^+})^+ \subset F_*$, where the closure is for the weak topology or equivalently in norm by the convexity of $F_* - M_*^+$, so we begin our proof by fixing $\omega \in (\overline{F_* - M_*^+})^+$. Let $\omega_n \in F_* - M_*^+$ be a sequence such that $\omega_n \to \omega$ in norm of M_* , and take $\varphi_n \in F_*$ such that $\omega_n \leq \varphi_n$ for all n. By modifying ω_n into $\omega - (\omega - \omega_n)_+ = \omega_n - (\omega_n - \omega)_+ \in F_* - M_*^+$ and taking a rapidly convergent subsequence, we may assume $\omega_n \leq \omega$ and $\|\omega - \omega_n\| \leq 2^{-n}$ for all n because $\|(\omega_n - \omega)_+\| \leq \|\omega_n - \omega\| \to 0$. Consider the Gelfand-Naimark-Segal representation $\pi: M \to B(H)$ associated to a positive normal linear functional

$$\psi := \sum_n (\omega - \omega_n) + \omega + \sum_n 2^{-n} \frac{\varphi_n}{1 + \|\varphi_n\|}$$

on M and the commutant Radon-Nikodym derivatives h, h_n , and k_n in $\pi(M)'$ with respect to ψ , defined such that

$$\omega = \theta(h), \qquad \omega_n = \theta(h_n), \qquad \varphi_n = \theta(k_n),$$

where $\theta:\pi(M)'\to M_*$ is the commutant Radon-Nikodym map for ψ . Since $-1\le h_n\le h$ is bounded, the weak convergence $\omega_n\to\omega$ implies $h_n\to h$ in the weak operator topology of $\pi(M)'$. By the Mazur lemma, we can take a net h_i in the convex hull of h_n such that $h_i\to h$ strongly in $\pi(M)'$, and the corresponding k_i can be defined such that $\omega_i:=\theta(h_i)$ and $\varphi_i:=\theta(k_i)$ satisfy $\omega_i\le\varphi_i$ with $\varphi_i\in F_*$ by the convexity of F_* . In fact,

the net h_i can be taken to be a sequence because $\pi(M)'$ is σ -finite by the existence of the separating vector, but it is not necessary in here. For each i and $0 < \delta < 1$, define

$$\omega_{\delta} := \theta(f_{\delta}(h)), \qquad \omega_{i,\delta} := \theta(f_{\delta}(h_i)), \qquad \varphi_{i,\delta} := \theta(f_{\delta}(k_i)),$$

where the functional calculus $f_{\delta}(h_i)$ is well-defined because $-1 \leq h_i$ for all i. Define k_{δ} as the σ -weak limit of a σ -weakly convergent subnet of $f_{\delta}(k_i)$, and let $\varphi_{\delta} := \theta(k_{\delta})$. Note that the choice of a subnet depends on δ , but it is not an imporant issue as in the proof of Theorem 2.1. Since $f_{\delta}(h_i) \to f_{\delta}(h)$ strongly in $\pi(M)'$ by the strong continuity of f_{δ} , and since we may assume $f_{\delta}(k_i) \to k_{\delta}$ σ -weakly, we have $\omega_{i,\delta} \to \omega_{\delta}$ and $\varphi_{i,\delta} \to \varphi_{\delta}$ weakly in M_* for each δ . Then, $0 \leq \varphi_{i,\delta} \leq \varphi_i$ implies $\varphi_{i,\delta} \in F_*$, and the weak convergence $\varphi_{i,\delta} \to \varphi_{\delta}$ in M_* implies $\varphi_{\delta} \in F_*$. On the other hand, $\omega_i \leq \varphi_i$ implies $\omega_{i,\delta} \leq \varphi_{i,\delta}$ by the operator monotonicity f_{δ} , and it implies $0 \leq \omega_{\delta} \leq \varphi_{\delta}$ by taking the weak limit on i, so $\omega_{\delta} \in F_*$. This is a fact that hold independently of the choice of subnet, so the weak convergence $\omega_{\delta} \to \omega$ in M_* as $\delta \to 0$ implies $\omega \in F_*$, and we can finally get $(\overline{F_* - M_*^+})^+ \subset F_*$.

Theorem 2.3. Let A be a C^* -algebra, and consider the dual pair (A^{sa}, A^{*sa}) . If F is a norm closed convex hereditary subset of A^+ , then $F = F^{r+r+}$. In particular, if $a \in A^+ \setminus F$, then there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega(a') \le 1$ for $a' \in F$.

Proof. We directly prove the separation without invoking the arguments of positive bipolars. Denote by F^{**} the σ -weak closure of F in the universal von Neumann algebra A^{**} . We first show that F^{**} is hereditary subset of A^{**+} . Suppose $0 \le x \le y$ in A^{**} and $y \in F^{**}$. Then, there is $z \in A^{**}$ such that $x^{\frac{1}{2}} = zy^{\frac{1}{2}}$. Take bounded nets b_i in F and c_i in A such that $b_i \to y$ and $c_i \to z$ σ -strongly* in A^{**} using the Kaplansky density theorem. We may assume the indices of these two nets are shared by considering the product directed set. Since both the multiplication and the involution of a von Neumann algebra on bounded parts are continuous in the σ -strong* topology, and since the square root on a positive bounded interval is strongly continuous, we have the σ -strong* limit

$$x = y^{\frac{1}{2}} z^* z y^{\frac{1}{2}} = \lim_{i} b_i^{\frac{1}{2}} c_i^* c_i b_i^{\frac{1}{2}},$$

so we obtain $x \in F^{**}$ from $b_i^{\frac{1}{2}} c_i^* c_i b_i^{\frac{1}{2}} \in F$. Thus, F^{**} is hereditary in A^{**+} .

Let $a \in A^+ \setminus F$. If $a \in F^{**}$, then we have a net a_i in F such that $a_i \to a$ σ -weakly in A^{**} , which means that $a_i \to a$ weakly in A, and by the weak closedness of F in A we get a contradiction $a \in F^{**} \cap A = F$. It implies $a \in A^{**+} \setminus F^{**}$, so by Theorem 2.1, there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega(a') \le 1$ for all $a' \in F \subset F^{**}$, and we are done. \square

Theorem 2.4. Let A be a C^* -algebra, and consider the dual pair (A^{*sa}, A^{sa}) . If F^* is a weakly* closed convex hereditary subset of A^{*+} , then $F^* = (F^*)^{r+r+}$. In particular, if $\omega \in A^{*+} \setminus F^*$, then there is $a \in A^+$ such that $\omega(a) > 1$ and $\omega'(a) \le 1$ for $\omega' \in F^*$.

Proof. As same as above, our goal is to prove $(\overline{F^*-A^{*+}})^+ \subset F^*$, where the bar will always mean the weak* closure throughout the whole proof. From now on, we only

consider $\delta \in \{2^{-m} : m \in \mathbb{Z}_{>0}\}$. Let

$$G^* := \left\{ \begin{array}{c} \text{for any } \varepsilon > 0 \text{, there are sequences } \psi_\delta \in A^{*+} \text{ and } \varphi_\delta \in F^* \\ \text{indexed on } \delta \leq (1+4\|\omega\|)^{-6} \text{ such that} \\ \omega \in A^{*sa} : \text{ the following five conditions are satisfied:} \\ |\omega(a)| \leq \delta^{-\frac{1}{6}} \psi_\delta(a) \text{ for all } a \in A^+, \, \|\psi_\delta\| \leq 1, \, \|\varphi_\delta\| \leq \delta^{-1}, \\ \omega_\delta \leq \varphi_\delta + \varepsilon \delta^{\frac{1}{2}} \psi_\delta, \text{ and } \omega_\delta \to \omega \text{ weakly* in } A^* \text{ as } \delta \to 0 \end{array} \right\},$$

where $\omega_{\delta} := \theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\omega)))$, and here θ_{δ} denotes the commutant Radon-Nikodym map associated to ψ_{δ} . Note that the first condition $|\omega(a)| \leq \delta^{-\frac{1}{6}}\psi_{\delta}(a)$ for all $a \in A^+$ implies ω belongs to the image of θ_{δ} , and the functional calculus $f_{\delta}(\theta_{\delta}^{-1}(\omega))$ in the definition of ω_{δ} is well-defined since $\|\theta_{\delta}^{-1}(\omega)\| \leq \delta^{-\frac{1}{6}} \leq \delta^{-1}$. If $\omega \in G^{*+}$, with sequences $\psi_{\delta} \in A^{*+}$ and $\varphi_{\delta} \in F^{*}$ such that the five conditions hold for $\varepsilon = 1$, and if we let

$$F_{\delta}^* := F^* + \left\{ \omega' \in A^{*+} : \omega' \le \sum_{\delta' < \delta} {\delta'}^{\frac{1}{2}} \psi_{\delta'} \right\}$$

be the non-increasing sequence of weakly* closed convex hereditary subsets of A^{*+} indexed on $\delta \leq (1+4\|\omega\|)^{-6}$, then $\omega \geq 0$ implies $\omega_{\delta'} \in F_\delta^*$ for $\delta' \leq \delta$, which deduces $\omega \in \bigcap_\delta F_\delta^*$ from the weak* limit $\omega_\delta \to \omega$. If we write $\omega = \varphi_\delta' + \omega_\delta'$ with $\varphi_\delta' \in F^*$ and $0 \leq \omega_\delta' \leq \sum_{\delta' \leq \delta} {\delta'}^{\frac{1}{2}} \psi_{\delta'}$ for each $\delta \leq (1+4\|\omega\|)^{-6}$, then since $\omega_\delta' \to 0$ in norm of A^* as $\delta \to 0$ so that $\varphi_\delta' \in F^*$ converges to ω in norm of A^* , we have $\omega \in F^*$. It means that $G^{*+} \subset F^*$, so we claim $G^* = \overline{F^* - A^{*+}}$ to prove $(\overline{F^* - A^{*+}})^+ \subset F^*$.

Since every element $\omega \in G^*$, letting $\varepsilon = 1$, has a sequence $\omega_{\delta} - \delta^{\frac{1}{2}} \psi_{\delta} \in F^* - A^{*+}$ convergent to ω weakly* as $\delta \to 0$, we have $G^* \subset \overline{F^* - A^{*+}}$. For the other direction, suppose first $\omega \in F^* - A^{*+}$ and take any $\varphi \in F^*$ such that $\omega \leq \varphi$. Fix $\varepsilon > 0$, and for each $\delta \leq (1 + 4\|\omega\|)^{-6}$ let

$$\psi_{\delta} := \frac{[\omega]}{1 + \|\omega\|} + \frac{\varphi}{(1 + \|\omega\|)(1 + \|\varphi\|)}, \qquad \varphi_{\delta} := \theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\varphi))).$$

The first two conditions are easily checked, and if we denote by Ω_{δ} the canonical cyclic vector of the Gelfand-Naimark-Segal representation of A associated to ψ_{δ} , then the third condition follows as

$$\|\varphi_{\delta}\| = \varphi_{\delta}(1_{A^{**}}) = \langle f_{\delta}(\theta_{\delta}^{-1}(\varphi))\Omega_{\delta}, \Omega_{\delta} \rangle \leq \delta^{-1}\|\Omega_{\delta}\|^{2} = \delta^{-1}\|\psi_{\delta}\| \leq \delta^{-1}.$$

If we let $\omega_{\delta}:=\theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\omega)))$ as in the definition of G^* , then the positivity of θ_{δ} and the operator monotonicity of f_{δ} give the fourth condition $\omega_{\delta} \leq \varphi_{\delta} \leq \varphi_{\delta} + \varepsilon \delta^{\frac{1}{2}} \psi_{\delta}$, and since ψ_{δ} is independent of δ so that $f_{\delta}(\theta_{\delta}^{-1}(\omega)) \to \theta_{\delta}^{-1}(\omega)$ strongly as $\delta \to 0$, we have the fifth condition $\omega_{\delta} \to \omega$ weakly* in A^* . Thus we have $F^* - A^{*+} \subset G^*$, so it is enough to show G^* is weakly* closed to prove the claim.

Let $\omega_i \in G^*$ be a net satisfying $\omega_i \to \omega$ weakly* in A^* , which may be assumed to be bounded by the Krein-Šmulian theorem. Let $\|\omega_i\| \le r$ for some r > 0, and in order to show $\omega \in G^*$, we fix $\varepsilon > 0$ and aim to construct an appropriate pair of sequences ψ_δ and φ_δ . Assume $\varepsilon \le 2^{\frac{14}{5}}$ so that $(\varepsilon/8)^6 \le 2^{-\frac{6}{5}}$, and let $\delta_0 := \min\{(\varepsilon/8)^6, (1+4r)^{-6}\}$.

Let $\delta \in (0, \delta_0]$. Since $\delta < \inf_i (1 + 4\|\omega_i\|)^{-6}$, we can take $\psi_{i,\delta} \in A^{*+}$ and $\varphi_{i,\delta} \in F^*$ for each i and δ following the definition of G^* such that the fourth condition is given

by $\omega_{i,\delta} \leq \varphi_{i,\delta} + (\varepsilon/4)\delta^{\frac{1}{2}}\psi_{i,\delta}$, where $\omega_{i,\delta} := \theta_{i,\delta}(f_{\delta}(\theta_{i,\delta}^{-1}(\omega)))$, and the commutant Radon-Nikodym map $\theta_{i,\delta}$ is for $\psi_{i,\delta}$. Because $\psi_{i,\delta}$ and $\varphi_{i,\delta}$ are bounded nets for each δ , by replacing ω_i to a diagonal subnet of ω_i for iteratively taken nested subnets of ω_i along with the countably many steps of δ , we may assume the nets $\psi_{i,\delta}$ and $\varphi_{i,\delta}$ are weakly* convergent for all δ . See the remark in the below for the detail of this diagonal subnet. We define $\psi_{\delta} \in A^{*+}$ and $\varphi_{\delta} \in F^{*}$ as the weak* limits in A^{*} of them respectively. Be cautious that we have the weak* convergence $\omega_i \to \omega$ by the initial assumption, but $\omega_{i,\delta}$ may not weakly* converge to $\omega_{\delta} = \theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\omega)))$. Considering the limits for the three weakly* convergent nets $\omega_i \to \omega$, $\psi_{i,\delta} \to \psi_{\delta}$, and $\varphi_{i,\delta} \to \varphi_{\delta}$ in A^{*} for each δ , we can see that the first three conditions for ω easily follow. Before the check of fourth and fifth conditions, observing that the first conditions for ω_i and ω_i imply $\|\theta_{i,\delta}^{-1}(\omega_i)\| \leq \delta^{-\frac{1}{6}}$ and $\|\theta_{\delta}^{-1}(\omega)\| \leq \delta^{-\frac{1}{6}}$, take a note that $\delta \leq (\varepsilon/8)^6 \leq 2^{-\frac{6}{5}}$ implies

$$\omega_i \leq \omega_{i,\delta} + (\varepsilon/4)\delta^{\frac{1}{2}}\psi_{i,\delta}, \qquad \omega \leq \omega_{\delta} + (\varepsilon/4)\delta^{\frac{1}{2}}\psi_{\delta}.$$

Combining with $\omega_{i,\delta} \leq \omega_i$ and $\omega_{\delta} \leq \omega$, we also have

$$|(\omega_{\delta} - \omega_{i,\delta})(a)| \le |(\omega - \omega_{i})(a)| + (\varepsilon/4)\delta^{\frac{1}{2}} \max\{\psi_{i,\delta}(a), \psi_{\delta}(a)\}, \quad a \in A^{+}.$$

Then, by taking the weak * limit for i on

$$\omega_i \leq \omega_{i,\delta} + (\varepsilon/4)\delta^{\frac{1}{2}}\psi_{i,\delta} \leq \varphi_{i,\delta} + (\varepsilon/2)\delta^{\frac{1}{2}}\psi_{i,\delta},$$

we obtain the fourth condition $\omega_{\delta} \leq \omega \leq \varphi_{\delta} + (\varepsilon/2)\delta^{\frac{1}{2}}\psi_{\delta} \leq \varphi_{\delta} + \varepsilon\delta^{\frac{1}{2}}\psi_{\delta}$ for ω . On the other hand, if we fix i such that $|(\omega_i - \omega)(a)| < \varepsilon$ which is independent of δ , then

$$\begin{split} |(\omega_{\delta} - \omega)(a)| &\leq |(\omega_{\delta} - \omega_{i,\delta})(a)| + |(\omega_{i,\delta} - \omega_{i})(a)| + |(\omega_{i} - \omega)(a)| \\ &\leq |(\omega_{i,\delta} - \omega_{i})(a)| + 2|(\omega_{i} - \omega)(a)| + (\varepsilon/2)\delta^{\frac{1}{2}} \max\{\psi_{i,\delta}(a), \psi_{\delta}(a)\} \\ &\leq |(\omega_{i,\delta} - \omega_{i})(a)| + 2\varepsilon + (\varepsilon/2)\delta^{\frac{1}{2}} ||a||, \end{split}$$

so taking the limit superior $\delta \to 0$ and the limit $\varepsilon \to 0$ in order on the above estimate, we obtain the weak* convergence $\omega_{\delta} \to \omega$ as $\delta \to 0$, the fifth condition for ω .

Let $\delta \in (\delta_0, (1+4\|\omega\|)^{-6}]$. Recall that we have $\omega \leq \varphi_{\delta_0} + (\varepsilon/2)\delta_0^{\frac{1}{2}}\psi_{\delta_0}$. Define

$$\psi_{\delta} := \delta^{\frac{1}{6}}[\omega] + 4^{-1}\delta_0\varphi_{\delta_0} + 2^{-1}\psi_{\delta_0}, \qquad \varphi_{\delta} := \theta_{\delta}(f_{\delta - (\delta_0/4)}(\theta_{\delta}^{-1}(\varphi_{\delta_0}))).$$

We do not need to check the fifth condition in the range of δ we consider. If we denote $h:=\theta_{\delta}^{-1}(\omega),\,k_{\delta_0}:=\theta_{\delta}^{-1}(\varphi_{\delta_0}),\,$ and $l_{\delta_0}:=\theta_{\delta}^{-1}(\psi_{\delta_0}),\,$ then since $\|k_{\delta_0}\|\leq (\delta_0/4)^{-1}$ and $\|l_{\delta_0}\|\leq 2$, we have

$$f_{\delta}(h) \leq f_{\delta}(k_{\delta_0} + (\varepsilon/2)\delta_0^{\frac{1}{2}}l_{\delta_0}) \leq f_{\delta}(k_{\delta_0} + \varepsilon\delta_0^{\frac{1}{2}}) \leq f_{\delta - (\delta_0/4)}(k_{\delta_0}) + \varepsilon\delta^{\frac{1}{2}},$$

and it implies the fourth condition $\omega_{\delta} \leq \varphi_{\delta} + \varepsilon \delta^{\frac{1}{2}} \psi_{\delta}$. The first three conditions are clear. Therefore, $\omega \in G^*$, proving that G^* is weakly* closed, hence the claim $G^* = \overline{F^* - A^{*+}}$ follows.

Remark 2.5. The ideas of the term diagonal argument in analysis are roughly divided into two different situations. Let (X,d) be a metric space. One diagonal argument considers a sequence $x_n \in A$ in a subset $A \subset X$ such that $x_n \to x$ as $n \to \infty$, together

with a sequence of sequences $x_{nm} \in B$ in a subset $B \subset A$ such that $x_{nm} \to x_n$ as $m \to \infty$ for each n. If we assume the error estimate $d(x_{nm}, x_n) < m^{-1}$ does not depend on m by taking subsequences, then we can conclude $x_{nn} \to x$ as $n \to \infty$.

The other diagonal argument considers a sequence $x_n \in X$ and a sequence of properties P_m for subsequences of x_n that has an inheritance property in the sense that for each m if a subsequence x_{n_k} of x_n satisfies P_m , then any eventual subsequence $x_{n_{k_j}}$ of x_{n_k} also satisfies P_m . If for each m every subsequence of x_n has a further subsequence satisfying P_m , then we can construct a subsequence of x_n satisfying P_m for all m, by taking a diagonal sequence from an iteratively taken sequence of subsequences.

For convenience, we will call the former by the *diagonal sequence argument*, and the latter by the *diagonal subsequence argument*. The net version of the diagonal sequence argument is famous. For a topological space X, if $I \to X : i \mapsto x_i$ is a net convergent to $x \in X$ and $J_i \to X : j \mapsto x_{ij}$ is a net convergent to $x_i \in X$ for each $i \in I$, then the monotone final function $I \times \prod_{i \in I} J_i \to X : (i, (j_i)_{i \in I}) \mapsto x_{ij}$ is a net convergent to x.

What we want in the proof of Theorem 2.4 is a generalized version of the diagonal subsequence argument for nets, which is surprisingly not well-known, and recently there has been an arXiv article. According to this article, for a net $I \to X : i \mapsto x_i$ and a sequence $(P_m)_{m=1}^{\infty}$ of properties for subnets of x_i satisfying the same inheritance property as above, if we first consider a consecutive sequence of nested subnets

$$\cdots \to I_m \to \cdots \to I_1 \to I \to X$$

such that $I_m \to X$ satisfies $P_{m'}$ for all $m' \le m$, then we can construct a desired subnet

$$\coprod_{m}\prod_{m'\leq m}I_{m'}\to I\to X$$

that satisfies P_m for all m. The number of properties P_m cannot be uncountable. The proof seems to be not hard, but I have not read it seriously yet.

Other remarks....

- The restriction of the range $\delta \leq (1 + ||x||)^{-1}$ is for the well-definedness of the functional calculus $f_{\delta}(x)$.
- The small perturbation $\varepsilon \delta^{\frac{1}{2}}$ is introduced , The exponent $\frac{1}{2}$ is set because we need p < 1 to use $x \leq f_{\delta}(x) + (\varepsilon/2)\delta^p$ for arbitrarily small $\varepsilon > 0$, provided even though ||x|| is bounded.
- For the first condition $|\omega| \leq \delta^{-\frac{1}{6}} \psi_{\delta}$, the coefficient needs to grow linearly along with the size of ω because we set ψ_{δ} to be always bounded by one, but we have to remove the explicit contribution of the norm $\|\omega\|$ from the coefficient to make the weak* limits $\omega_i \to \omega$ and $\psi_{i,\delta} \to \psi_{\delta}$ preserve the inequality for each fixed δ .
- There are four remarks for the bounded range $\delta \leq (1 + 4\|\omega\|)^{-6}$. (1) The necessity of a bound for δ is for the well-definedness of the functional calculus $f_{\delta}(h)$. (2) The dependence of the bound for δ on the norm $\|\omega\|$ is needed

to fix $\delta > 0$ uniformly on the index i of a bounded net ω_i when we consider limit $\omega_{i,\delta} \to \omega_{\delta}$ with the Krein-Šmulian. (3) To use $h \le f_{\delta}(h) + (\varepsilon/4)\delta^{\frac{1}{2}}$ for the growing norm of $\|h\|$ as $\delta \to 0$, it needs to have a sufficiently slow growth rate at least $\|h\| \le \delta^{-\frac{1}{4}}$, but the value $-\frac{1}{6}$ is used because $-\frac{1}{4}$ is not enough to cover the arbitrarily small $\varepsilon > 0$. (4) The number 4 in front of $\|\omega\|$ can be technically any constant greater than 1, and it is introduced to define ψ_{δ} such that $\|l_{\delta_0}\|$ is uniformly bounded for $\delta \ge \delta_0$.

3. Applications to weight theory

The positive Hahn-Banach separation theorem implies a generalization of the theorems of Combes and Haagerup on normal or lower semi-continuous subadditive weights.

Corollary 3.1. Let M be a von Neumann algebra. Then, there is a one-to-one correspondence

$$\left\{ \begin{array}{c} \text{normal subadditive} \\ \text{weights of } M \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{norm closed convex} \\ \text{hereditary subsets of } M_*^+ \end{array} \right\}$$

$$\varphi \qquad \qquad \mapsto \qquad \left\{ \omega \in M_*^+ : \omega \leq \varphi \right\}$$

Let φ be a completely additive weight.

$$\varphi(\sum_i p_i) = \sum_i \varphi(p_i).$$

We always have $\varphi(\sum_i p_i) \ge \sum_i \varphi(p_i)$.

 $\varphi(x) \le 1$ if and only if $\sup_{\omega \in F_n} \omega(x) \le 1$?

 $p_i \omega p_i \to \omega$ in norm since $\|\omega - p\omega p\| \le 2\omega (1-p)^{\frac{1}{2}}$, but we do not have $p_i \omega p_i \le \omega$. $\|\omega - p\omega p\|^2 \le 4\omega (1) - 4\omega (p)$

$$4\omega(1) \lesssim 4\omega(p)$$

For a normal weight φ , if we find a small closed F_* such that $F_*^{r+} = \{x : \varphi(x) \le 1\}$, then it means that for every ω , $\omega \le \varphi$ implies $\omega \in F_*$...

For $m \in \widehat{M}^+$, $F_* := \{\omega : \omega(m) \le 1\}$ is norm closed. Its positive polar is $\{x : x \le m\}$, and its positive polar is... So $\omega(m) = \sup_{x \le m} \omega(x)$ for any $\omega \in M_*^+$.

$$\varphi(m) = ?$$