

Sistemas Operacionais

Sistemas Operacionais

Sistema de Numeração

Conjunto de símbolos alfanuméricos adotados na representação de quantidades Estabelecimento de regras que regem a forma de representação

Cada sistema de numeração

Forma diferente de representação de quantidades

Inalteração das quantidades

Alteração apenas dos símbolos usados para representá-las

Bases e Representações Numéricas

Base

Quantidade igual ao número de algarismos que compõem um sistema de numeração

Representações

Posicional

Não-posicional

Sistemas de Numeração Não Posicionais

Valor atribuído a um símbolo é inalterável, independente da posição em que se encontre no conjunto de símbolos que representam uma quantidade.

Sistema de Numeração Romano

Sistemas de Numeração Posicionais

Valor atribuído a um símbolo dependente da posição em que se encontre no conjunto de símbolos que represente uma quantidade.

Sistema de Numeração **Decimal**

Sistema de Numeração

Sistemas de Numeração Típicos em Interações Usuário-Computador

Decimal

Binário

Octal

Hexadecimal

Exemplos de Sistemas de Numeração

Sistema	Base	Algarismos
Binário	2	0 , 1
Ternário	3	0, 1, 2
Octal	8	0, 1, 2, 3, 4, 5, 6 , 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Duodecimal	12	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Padrões de Representação

Padrões de Representação

Letra após número para indicação da base

Número entre parênteses e base como índice do número

Número e base como índice do número

Exemplo - Sistema *Decimal*

Sistema mais utilizado por seres humanos

Uso de 10 símbolos para a representação de quantidades

Peso

Ponderação em função da posição do algarismo no número Potências da base em função da *unidade* $(1 = 10^0)$ 10^1 unidades - dezena

Exemplo - *3964*

4 unidades, 6 dezenas, 9 centenas e 3 milhares

Montando um número na base decimal

```
Ex.: 328451,52<sub>10</sub> = 3 \times 10^5 + 2 \times 10^4 + 8 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 1 \times 10^0 + 5 \times 10^{-1}
+2 x 10<sup>-2</sup>
= 300000 + 20000 + 8000 + 400 + 50 + 1 + 0,5 + 0,02
= 328451,52_{10}
```

```
Numeração decimal (base 10)
   Símbolos 0, 1,2, 3, 4, 5, 6, 7, 8, 9
   Característica de valor posicional (casa)
      Unidades (1s), dezenas (10s), centenas (100s), milhar (1000s),...
   Exemplo:
   Número 736
      6 \times 1 = 6
      3 \times 10 = 30
       7 \times 100 = 700
       6 + 30 + 700 = 736
```

Posições:

Exemplo:

O número "dois mil quinhentos e oitenta" decimal é obtido: $(2 \times 1000) + (5 \times 100) + (8 \times 10) = 2000 + 500 + 80 = 2580$

Sistema Binário de numeração é o principal sistema dos PCs;

Este sistema de numeração, como o próprio nome sugere, apresenta base 2. Os números 0 e 1 são os dígitos deste sistema;

O sistema binário é de grande importância, pois apresenta correspondência direta com os estados de um sistema digital.

Por exemplo:

Para o dígito 0 pode-se atribuir o valor desligado e para o dígito 1 pode-se atribuir o valor de ligado.

Uso de 2 símbolos para a representação de quantidades

Validade dos conceitos de *peso* e *posição*

Posições não recebem denominações específicas (como no sistema decimal)

Denominação genérica de cada algarismo - Bit (Binary digit)

Destaque para os algarismos extremos dos números

Algarismo mais à esquerda - Most Significative Bit (MSB)

Algarismo mais à direita - Less Significative Bit (LSB)

Numeração **binária** (base **2**)

Símbolos 0, 1

Cada dígito binário é chamado bit

Característica de valor posicional (casa) cada posição vale o dobro da anterior:

Casa dos 1s, casa dos 2s, casa dos 4s, ...

Posições:

Exemplo:

O número "zero, zero, zero, um, zero, zero, um, um" binário é obtido: 16 + 2 + 1 = 19

Fracionários:

Exemplo:

O número "zero, um, um, um, zero, vírgula, um, zero, um" binário é obtido: 8 + 4 + 2 + 0.5 + 0.125 = 14.625

Sistema Octal - Base 8

Uso de 8 símbolos para a representação de quantidades

0 1 2 3 4 5 6 7

Validade dos conceitos de peso e posição

Posições não recebem denominações específicas (como no sistema decimal)

Exemplo – 673₈ (Lê-se seis sete três)

Sistema Octal - Base 8

Exemplos

75310246, (Lê-se sete cinco três um zero dois quatro seis)

34717₈ (Lê-se três quatro sete um sete)

<i>3</i>	4	7	1	7
9408	1792	392	8	7

Sistema Hexadecimal - Base 16

Uso de 10 símbolos numéricos e 6 alfabéticos para a representação de quantidades

0 1 2 3 4 5 6 7 8 9 A B C D E F

Validade dos conceitos de peso e posição

Posições não recebem denominações específicas (como no sistema decimal)

Exemplo – 9FC₁₆ (Lê-se nove efe ce)

Sistema Hexadecimal - Base 16

Exemplos

```
7B3D<sub>16</sub> (Lê-se sete be três de)
```

7 B 3 D

$$7.16^3 | 11.16^2 | 3.16^1 | 13.16^0$$

FFAO₁₆ (Lê-se efe efe a zero)

Conversão entre Sistemas de Numeração

Procedimentos Básicos para Números Inteiros

Divisão

Polinômio

Agrupamento de Bits

Trabalha com divisão inteira + resto $87_{10} = 1010111_2$

```
87/ 2 = 43 resto 1

43/ 2 = 21 resto 1

21/ 2 = 10 resto 1

10/ 2 = 5 resto 0

5/ 2 = 2 resto 1

2/ 2 = 1 resto 0

1/ 2 = 0 resto 1
```

Trabalha com divisão inteira + resto $87_{10} = 1010111_2$

Verificação

$$64 + 16 + 4 + 2 + 1 = 87$$

Conversão de decimal para binário

Nº 23

Regra Prática:

 $10111_2 = 23_{10}$

Conversão DECIMAL fracionário => BINÁRIO

- A conversão da parte fracionária segue a seguinte regra prática:
- Multiplica-se a parte fracionária pelo valor da base;
- O número resultante a esquerda da vírgula é o dígito (0 ou 1) procurado;
- Se o dígito à esquerda for 0 (zero) continuar a multiplicação pela base;
- Se o dígito à esquerda for 1 este é retirado e prossegue-se a multiplicação;
- O processo continua até obter-se 0 (zero) como resultado ou atingir-se a resolução estabelecida,
- no caso de dízima;
- A leitura dos dígitos, ao contrário do caso da parte inteira, é feita de cima para baixo.

Conversão DECIMAL fracionário => BINÁRIO

$$0.375_{10} = 0.011_{2}$$

Conversão DECIMAL fracionário => BINÁRIO

$$0.375_{10} = 0.011_{2}$$

A conversão da parte inteira segue o procedimento já descrito:

$$35_{10} = 100011_2$$

$$0,625_{10} = 0,101_2$$

 $35,625_{10} = 100011,101_2$

Conversão BINÁRIO => DECIMAL

Multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

Ex.:
$$1001101_2 = 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $64 + 0 + 0 + 8 + 4 + 0 + 1$
= 77_{10}

Conversão BINÁRIO => DECIMAL

Ex.:
$$11001101_2 = 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $128 + 64 + 0 + 0 + 8 + 4 + 0 + 1$
= 205_{10}

Conversão BINÁRIO => DECIMAL

$$1101,111_{2} = 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2} + 1x2^{-3}$$

$$= 8 + 4 + 0 + 1 + 0,5 + 0,25 + 0,125$$

$$= 13 + 0,875$$

$$= 13,875_{10}$$

Conversão de números fracionários

Conversão de números fracionários Regra de Formação

Decimal:
$$197,526_{10} = 1x10^{2} + 9x10^{1} + 7x10^{0} + 5x10^{-1} + 2x10^{-2} + 6x10^{-3}$$
 $| + | + | + |$

Binário: $101101,101 = 1x2^{5} + 0x2^{4} + 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $| + | + |$

Sistema OCTAL

A base de um sistema numérico é igual o número de dígitos que ela usa. Portanto, o sistema octal, que apresenta base 8, tem 8 dígitos a saber:

0, 1, 2, 3, 4, 5, 6, 7 (base $N = 8 \rightarrow digitos 0 \rightarrow N1 = 7$).

Sua utilidade nos sistemas digitais vem do fato de que, associando-se os algarismos de um número binário (bits) em grupos de três, obtém-se uma correspondência direta com os dígitos do sistema octal.

Conversão OCTAL => DECIMAL

Conversão de octal em decimal

$$1247,235_8 = ?_{10}$$

$$1 \times 8^3 + 2 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 2 \times 8^{-1} + 3 \times 8^{-2} + 5 \times 8^{-3}$$

$$512 + 128 + 32 + 7 + 2/8 + 3/64 + 5/512$$

$$1247.235_8 \sim 679.306_{10}$$

Conversão de decimal em octal Nº 223

Conversão DECIMAL fracionário => OCTAL

Converter o número fracionário 381,796 da base decimal para octal (4 casas decimais após a vírgula).

$$381,796_{10} = 381_{10} + 0,796_{10}$$

Parte inteira:

Conversão DECIMAL fracionário => OCTAL

Converter o número fracionário 381,796 da base decimal para octal (4 casas decimais após a vírgula).

Conversão OCTAL => BINÁRIO

Para converter um número expresso em uma determinada base é normal convertermos o primeiro para um número na base 10 e, em seguida, fazer a conversão para a base desejada.

No caso do octal para o binário (e vice-versa) podemos fazer a conversão diretamente, sem passar pelo sistema decimal, já que, 8 é terceira potência de 2 e, portanto, são múltiplos e tem correspondência direta um com o outro.

Regra:

Cada dígito octal, a partir da vírgula, é representado pelo equivalente a três dígitos binários.

Conversão OCTAL => BINÁRIO

Tabela de equivalência

Octa	Binário
l	
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

$$175,4328_{8} = 001\ 111\ 101,100\ 011\ 010_{2}$$

Conversão BINÁRIO => OCTAL

Converter binário em octal

Agrega-se os dígitos binários, a partir da vírgula, em grupos de três e convertese para o equivalente em octal.

Caso os dígitos extremos, da direita ou esquerda, não formarem um grupo completo de três, adiciona-se zeros até que isto ocorra.

$$101110,011101_{2} = 101 110 , 011 101 _{2}$$

$$5 6 , 3 5 _{8}$$

$$1011,11101_{2} = 001 011 , 111 010 _{2}$$

$$1 3 , 7 2 _{8}$$

Dica

Converter o número 677₁₀ para binário.

1ª alternativa: dividir 677₁₀ sucessivamente por 2. Solução bastante extensa.
 2ª alternativa: converter 677₁₀ para octal e, em seguida, converter para binário.
 Solução menos trabalhosa).

 $677_{10} = 1245_8 = 1010100101_2$

Sistema HEXADECIMAL

Este sistema apresenta base igual a 16.

Portanto 16 dígitos distintos.

São usados os dígitos:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Como no sistema de numeração octal, o hexadecimal apresenta equivalência direta entre seus dígitos e grupos de quatro dígitos binários.

Tabela

HEXADECIMAL	DECIMAL	OCTAL	В	RIO		
0	0	0	0	0	0	0
1	1	1	0	0	0	1
2	2	2	0	0	1	0
3	3	3	0	0	1	1
4	4	4	0	1	0	0
5	5	5	0	1	0	1
6	6	6	0	1	1	0
7	7	7	0	1	1	1
8	8	10	1	0	0	0
9	9	11	1	0	0	1
Α	10	12	1	0	1	0
В	11	13	1	0	1	1
С	12	14	1	1	0	0
D	13	15	1	1	0	1
Е	14	16	1	1	1	0
F	15	17	1	1	1	1

Conversão HEXADECIMAL => DECIMAL

A regra é a mesma da conversão de qualquer sistema de numeração para o decimal. $AFC0,7D_{16}=?_{10}$ $A \times 16^3 + F \times 16^2 + C \times 16^1 + 0 \times 16^0 + 7 \times 16^{-1} + D \times 16^{-2}$ $10 \times 16^3 + 15 \times 16^2 + 12 \times 16^1 + 0 \times 16^0 + 7 \times 16^{-1} + 13 \times 16^{-2}$ $44992,48828_{10}$

Conversão DECIMAL => HEXADECIMAL

A regra é a mesma da conversão do decimal para qualquer sistema de numeração

$$637,33_{10} = ?_{16}$$

$$637,33_{10} = 637_{10} + 0,33_{10}$$

Parte inteira

Parte Fracionária

 $0.33_{10} \approx 0.547A_{16} (aproximado)$

Conversão HEXADECIMAL => BINÁRIO

Da mesma forma que no sistema octal, não é necessário converter o número para o sistema decimal e depois para binário.

Basta representar cada dígito hexadecimal, a partir da vírgula, em grupos de quatro dígitos binários equivalentes.

A base 16 é a quarta potência da base 2.

A tabela de equivalência é a que foi apresentada mais acima.

 $FACA,CACA_{16} = ?_2$

 $FACA,CACA_{16} = 11111101011001010,1100101011001010_2$

Conversão BINÁRIO => HEXADECIMAL

Como no caso da conversão de binário para octal, agrega-se os dígitos binários, a partir da vírgula, em grupos de quatro e converte-se para o equivalente em hexadecimal.

Caso os dígitos extremos, da direita ou esquerda, não formarem um grupo completo de quatro, adiciona-se zeros até que isto ocorra.

```
100101010,00111_2 = ?_{16}

0001 \ 0010 \ 1010 \ ,0011 \ 1000_2

1 \ 2 \ A \ , \ 3 \ 8_{16}
```

 $100101010,00111_2 = 12A,38_{16}$

ASCII

American Standard Code for Information Interchange

(Código Padrão Americano para o Intercâmbio de Informação)

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	ا Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	100	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	*
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	A	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000		@	112	70	1110000		р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010		r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	s
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110		F	118	76	1110110		v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111		w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		x
25	19	11001	31	[END OF MEDIUM]	73	49	1001001		ï	121	79	1111001		v
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010		i	122	7A	1111010		ž
27	1B	11011	33	(ESCAPE)	75	4B	1001011		ĸ	123	7B	1111011		-
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100		Î.	124	7C	1111100		î.
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101		м	125	7D	1111101		3
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	1111110		~
31	1F		37	[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111		[DEL]
32	20	100000		[SPACE]	80	50	1010000		P					(000)
33	21	100001		1	81	51	1010001		Q					
34	22	100010		•	82	52	1010010		R					
35	23	100011		#	83	53	1010011		S					
36	24	100100		\$	84	54	1010100		Ť					
37	25	100101		%	85	55	1010101		Ü					
38	26	100110		&	86	56	1010110		v					
39	27	100111		7	87	57	1010111		w					
40	28	101000		(88	58	1011000		x					
41	29	101001		1	89	59	1011001		Ŷ					
42	2A	101010		*	90	5A	1011010		ż					
43	2B	101011		1	91	5B	1011011		ř .					
44	2C	101100			92	5C	1011100		,					
45	2D	101101		1	93	5D	1011101		i					
46	2E	101110		-	94	5E	1011110		,					
47	2F	101111		;	95	5F	1011111							
47	41	101111	37	r	95	SF.	1011111	137	-	l				

Endereço IP — BINÁRIO => DECIMAL

Veja na figura os passos para converter um endereço binário para um endereço decimal.

Convertendo um IPv4 de Notação Binária para Notação Decimal Pontuada

No exemplo, o número binário:

10101100000100000000010000010100

é convertido para:

172.16.4.20

Tenha em mente estes passos:

- Divida os 32 bits em 4 octetos.
- Converta cada octeto para decimal.
- Acrescente um "ponto" entre cada decimal

172.16.4.20

Exercícios