Aceleradores e Deep Learning

André V. Lopes, Carybé, Victor Mayrink

Data: 5 de Julho de 2017

IME-USP

Overview

- 1. O Que é Deep Learning?
- 2. GPGPUs
- 3. FPGAs
- 4. Hardwares Dedicados ASICs
- 5. Go
- 6. Conclusão

O Que é Deep Learning?

O Que é Deep Learning?

Deep Learning é um ramo da área de aprendizado de máquina que envolve a utilização de redes neurais profundas (Deep Neural Networks) e com muitas camadas (>2) de processamento (deep).

- Redes neurais convolucionais (Convolutional Neural networks)
- Redes neurais recorrentes (Recurrent Neural Networks)
- Perceptron de múltiplas camadas (Multilayer perceptron)
- ⊙ Deep Belief Networks

Normalmente são usados em aplicações que envolvem processamento de sinais, imagens, vídeos e etc.

Em geral são modelos de aprendizado de máquina que exigem uma carga computacional extrema.

Exemplos

Mnist é um conjunto de imagens de dígitos manuscritos de o a 9

Outros exemplos (competições Kaggle):

- ⊙ Transforming How We Diagnose Heart Disease (2nd DSB)
- ⊙ Passenger Screening Algorithm Challenge (\$1.5M).

Redes Neurais

Objetivo: fazer com que uma computador seja capaz de realizar tarefas que normalmente são difíceis de se programar seguindo a lógica tradicional:

- Reconhecer os objetos de uma imagem
- ⊙ Identificar a voz de uma pessoa em um sinal de áudio
- ⊙ Dirigir um veículo

Redes Neurais Artificiais são modelos computacionais bio-inspirados que procuram emular a forma como o cérebro humano funciona.

Redes Neurais

Mas afinal, como nós aprendemos?

O processo de aprendizado ocorre quando o indivíduo, após um número suficiente de experiências, é capaz de assimilar e organizar informações para construir e ampliar seu próprio conhecimento

"What we want is a machine that can learn from experience."

— Alan Turing, 1947

Como funciona?

O cérebro é formado por uma rede complexa de células elementares, os neurônios.

A rede neural é estruturada em camadas

(a) Neurônios

(b) Estrutura em camadas

O cérebro humano possui, em média, cerca de 86 bilhões de neurônios. [Frederico et. al., 2009]

Modelo computacional do neurônio

(a) Modelo computacional do neurônio

(b) Deep Neural Network

Custo computacional

Duas fases:

O maior esforço computacional ocorre na fase de treinamento

Uma vez que o modelo está treinado, a **predição** é relativamente simples.

Custo computacional

Agravantes:

- ⊙ Muitas camadas de processamento
- ⊙ Muitos neurônios por camada
- ⊙ Grande volume de dados
- Muitas iterações até a convergência
- ⊙ Cross Validation & Ensemble

Potencial de paralelização

Apesar do grande custo computacional, essas tarefas tem muito potencial de paralelização.

- Os neurônios da rede compreendem blocos elementares de processamento
- As observações da amostra de treinamento podem ser processadas de forma independente (em uma mesma época)

Assim, é possível obter um ganho de desempenho considerável com a utilização de hardwares aceleradores.

GPGPUs

Aceleração para treinamento de redes profundas

- Deep Learning envolve grande quantidade de multiplicação de matrizes e convoluções, as quais podem ser paralelizadas em GPU.
- Deep Neural Networks contém estruturas uniformes, tal que, em uma camada há neurônios de tipos idênticos que fazem o mesmo tipo de computação.
- O algoritmo de treinamento envolve pontos flutuantes.

Nvidia Titan X (6600 GFLOPS) vs. i7-5960x (380 GFLOPS)

CUDA e CuDNN

As ferramentas mais utilizadas são o CUDA e o CuDNN.

CuDNN (NVIDIA CUDA® Deep Neural Network library)

- Biblioteca de funções para o desenvolvimento de redes neurais profundas
- Contém implementações otimizadas de rotinas padrões tal como forward e backward convolution, pooling, normalization, and activation layers
- Faz parte do NVIDIA Deep Learning SDK

NVIDIA Deep Learning SDK

NVIDIA Deep Learning SDK

https://developer.nvidia.com/deep-learning-software

CUDA e cuDNN

O NVIDIA Deep Learning SDK é usado em diversos frameworks, tais quais, TensorFlow, Caffe, CNTK, Theano e Torch.

Há diversas bibliotecas que utilizam Theano como back-end, permitindo uma fácil implementação de redes neurais, entre elas, Keras e Lasagne.

DIGITS

NVIDIA Deep Learning GPU Training System DIGITS permite treinar e criar rapidamente redes neurais profundas (DNN's).

- Criação, treinamento e visualização de DNN's para classificação, segmentação e detecção
- Uso/Download de modelos pre-treinados, assim como AlexNet, GoogleNet e LeNet
- Busca por hiper-parâmetros ótimos de taxa de treinamento e tamanho de mini-batch
- Permite uso de Multi-GPU

https://developer.nvidia.com/digits

DIGITS

http://christopher5106.github.io/big/data/2015/07/16/deep-learning-install-caffecudnn-cuda-for-digits-python-on-ubuntu-14-04.html

Benchmarks - GPU vs GPU vs MultiGPU

TensorFlow Image Classification Training Performance

Dual CPU System: Dual Intel E5-2699 v4 @ 3.6 GHz | GPU-Accelerated System: Single Intel E5-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 (PCIe) | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

TensorFlow Inception v3 Training Scalable Performance on Multi-GPU Node

GPU-Accelerated System: Single Intel E5-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 (PCIe) | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

 $\label{lem:http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-benchmarks.html$

O próximo benchmark compara GPU's e um modelo de CPU no modelo de rede neural VGG19. O modelo VGG19 utiliza:

- 16 camadas convolucionais
- ⊚ 5 camadas de max-pooling
- 3 Camadas conectadas (FeedFoward)

Fonte: github.com/jcjohnson/cnn-benchmarks

GPU	Memory	Architecture	CUDA Cores	FP32 TFLOPS	Release Date
Pascal Titan X	12GB GDDRX5	Pascal	3584	10.16	August 2016
GTX 1080	8GB GDDRX5	Pascal	2560	8.87	May 2016
GTX 1080 Ti	11GB GDDRX5	Pascal	3584	10.6	March 2017
Maxwell Titan X	12GB GDDR5	Maxwell	3072	6.14	March 2015

Há também a comparação com o dual Intel Xeon E5-2630 v3. Dual Intel Xeon E5-2630 v3 (8 cores each plus hyperthreading means 32 threads) and 64GB RAM

GPU	cuDNN	Forward (ms)	Backward (ms)	Total (ms)
Pascal Titan X	5.1.05	48.09	99.23	147.32
GTX 1080 Ti	5.1.10	48.15	100.04	148.19
Pascal Titan X	5.0.05	55.75	134.98	190.73
GTX 1080	5.1.05	68.95	141.44	210.39
Maxwell Titan X	5.1.05	73.66	151.48	225.14
GTX 1080	5.0.05	79.79	202.02	281.81
Maxwell Titan X	5.0.05	93.47	229.34	322.81
Maxwell Titan X	4.0.07	139.01	279.21	418.22
Pascal Titan X	None	121.69	318.39	440.08
GTX 1080	None	176.36	453.22	629.57
Maxwell Titan X	None	215.92	491.21	707.13
CPU: Dual Xeon E5-2630 v3	None	3609.78	6239.45	9849.23

Modelo VGG19 usado na competição ILSVRC-2014

- A GPU Pascal Titan X é 1.31x a 1.43x mais rápida que a GTX 1080
- A pascal TITAN X com cuDNN é 2.2x a 3.0x mais rápida
- A pascal TITAN X com cuDNN é 49x a 74x mais rápida que um dual Xeon E5-2630 v3 CPUs

FPGAs

⊚ *GPFPGAs* são inadequadas e ineficientes

- GPFPGAs são inadequadas e ineficientes
- Assim como ASICs s\u00e3o particularmente adequadas para a etapa de infer\u00e9ncia

- ⊚ *GPFPGAs* são inadequadas e ineficientes
- Assim como ASICs s\(\tilde{a}\) o particularmente adequadas para a etapa de infer\(\tilde{e}\)ncia
- Consomem menos energia, por esse motivo é perfeita para ser empregada em DNNs na robótica e automação.

- ⊚ *GPFPGAs* são inadequadas e ineficientes
- Assim como ASICs s\u00e3o particularmente adequadas para a etapa de infer\u00e9ncia
- Consomem menos energia, por esse motivo é perfeita para ser empregada em DNNs na robótica e automação.
- Algoritmos de DNNs e suas implementações estão constantemente evoluindo

- GPFPGAs s\u00e3o inadequadas e ineficientes
- Assim como ASICs s\u00e3o particularmente adequadas para a etapa de infer\u00e9ncia
- Consomem menos energia, por esse motivo é perfeita para ser empregada em DNNs na robótica e automação.
- Algoritmos de DNNs e suas implementações estão constantemente evoluindo

Solução:

- ⊚ *GPFPGAs* são inadequadas e ineficientes
- Assim como ASICs s\u00e3o particularmente adequadas para a etapa de infer\u00e9ncia
- Consomem menos energia, por esse motivo é perfeita para ser empregada em DNNs na robótica e automação.
- Algoritmos de DNNs e suas implementações estão constantemente evoluindo

Solução:

DNN-specific FPGAs

Deephi

A Deephi é uma empresa recente que produz FPGAs para DNNs e fornecem:

- Compressores de DNNs (permite às FPGAs trabalharem com mais dados)
- Compiladores de Deep Learning, que compilam em minutos ao invés de horas/dias

Hardwares Dedicados - ASICs

Hardwares dedicados - ASICs

Alguns fatores vêm contribuindo para o desenvolvimento de hardwares dedicados:

- Computação intensiva com requisitos específicos
- ⊙ Aplicação extensiva dos algoritmos de IA
- ⊚ Avanços na área de IoT (alto desempenho e baixa potência)

Algumas iniciativas:

- ⊚ Google TPU
- Nervana Engine (Acquired by Intel for \$482M)
- Graphcore IPU (Intelligence Processing Unit)

Tensor Processing Unit

Tensor Processing Unit (TPU) é um hardware desenvolvido pelo Google e otimizado para o TensorFlow Projetado para ser usado na fase de inferência

- Google Search
- ⊚ Google Image Search
- ⊚ Google Photos

- ⊙ Google Cloud Vision API
- ⊙ Google Translate
- ⊚ Google DeepMind

TPU e Servidor Google

Tensor Processing Unit

Diagrama de blocos da TPU

Conjunto de instruções

Modelo CISC otimizado para executar as instruções mais frequentes de redes neurais:

Tabela: Instruções da TPU

TPU Instruction	Function
Read_Host_Memory	Read data from memory
Read_Weights	Read weights from memory
MatrixMultiply/Convolve	Multiply or convolve with the data and weights,accumulate the results
Activate	Apply activation functions
Write_Host_Memory	Write result to memory

Quantização

O TensorFlow utiliza uma estratégia, chamada quantização, para reduzir a precisão dos dados.

- ⊙ Em geral, não compromete a acurácia das previsões
- ⊙ Reduz o esforço computacional
- ⊙ Reduz o consumo de memória e energia

Estratégia de quantização do TensorFlow

Comparação

Name LOC			i	ayers			Nonlinear	Weights	TPU Ops/	TPU Batch	% of Deployed	
Name	FC Conv Vector Pool Total function		function	weights	Weight Byte	Size	TP Us in July 2016					
MLP0	100	5				5	ReLU	20M	200	200	61%	
MLP1	1000	4				4	ReLU	5M	168	168	0170	
LSTM0	1000	24		34		58	sigmoid, tanh	52M	64	64	29%	
LSTM1	1500	37		19		56	sigmoid, tanh	34M	96	96	2970	
CNN0	1000		16			16	ReLU	8M	2888	8	5%	
CNN1	1000	4	72		13	89	ReLU	100M	1750	32	370	

Experimentos realizados

	Die									Benchmarked Servers					
Model	2		MII-	TDP	Measured		TOPS/s		GB/s	On-Chip	Diac	DRAM Size	TDP	Measured	
	mm n		MILL	IDI	Idle	Busy	8b	FP	CD/3	Memory	Dies	DIOIM SIZE	IDI	Idle	Busy
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504W	159W	455W
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W		2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991W
TPU	NA*	28	700	75W	28W	40W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861W	290W	384W

Consumo de memória

Comparação

Resultados obtidos:

Perfomance (pred/s norm.)

Eficiência energética

Outros projetos

Intel Nervana

- ⊙ Startup fundada em 2014 e adquirida pela Intel em 2016
- ⊙ Nervana Engine tem previsão de ser lançado em 2017
- ⊙ 8 ASICs conectados em uma configuração torus
- ⊚ Arquitetura 16 bits
- ⊙ 32 Gb de memória
- ⊙ Velocidade de acesso à memória de até 8 terabits/s
- ⊙ Tecnologia de 28nm, com promessa de redução para 16nm

Outros projetos

GraphCore IPU

- IPU = Intelligence Processing Unit
- ⊙ Entre os investidores estão a Samsung e Dell
- ⊙ Também com previsão de lançamento para 2017
- Promessa de ganho de desempenho da ordem de 10x a 100x em comparação aos melhores sistemas atuais
- Poplar é o framework de desenvolvimento com interface em C++ e Python
- O Promessa de uma linha de IPU's de baixa potência para sistemas embarcados

Go

Go

Go é um jogo simples com apenas 2 regras:

- o Toda pedra precisa ter ao menos uma casa de liberdade
- A configuração do tabuleiro nunca deverá retornar a uma configuração anterior

O número de configurações possíveis para o tabuleiro é da ordem de $10^{171} \gg 10^{82}$ = número de átomos do universo

AlphaGo

Desenvolvido pela Google DeepMind, AlphaGo foi o primeiro programa a derrotar alguns dos campeões mundiais de Go

Em outubro de 2015 uma versão distribuída do AlphaGo (1,202 CPUs and 176 GPUs) derrotou Fan Hui, o campeão europeu de nível 2-dan, por 5-0

Em 15 de março de 2016 outra versão distribuída do AlphaGo (1,920 CPUs and 280 GPUs) derrotou Lee Sedol, um campeão mundial de nível 9-dan, por 4-1

De 29 de dezembro de 2016 a 5 de janeiro de 2017 uma versão alternativa do AlphaGo jogou online contra jogadores profissionais sob as alcunhas *Magist, Magister e Master* acumulando o recorde de 60 vitórias e o derrotas

AlphaGo

Utiliza uma Árvore de Busca de Monte Carlo guiada por uma rede de valor e duas redes de política(uma rápida e imprecisa e outra devagar mas precisa), todas CDNN

Rede de Política: Determina os movimentos mais promissores

Rede de Valor: Avalia o estado atual do jogo

As redes de política foram treinadas com 30 milhões de jogadas de humanos e então foram treinadas jogando entre si através de aprendizado reforçado

Enquanto isso a rede de valor foi treinada com 30 milhões de configurações de tabuleiro

AlphaGo

Configuration and performance

Configuration and perior mance								
Configuration +	Search threads	No. of CPU +	No. of GPU ₊	Elo rating +				
Single ^[9] p. 10-11	40	48	1	2,181				
Single	40	48	2	2,738				
Single	40	48	4	2,850				
Single	40	48	8	2,890				
Distributed	12	428	64	2,937				
Distributed	24	764	112	3,079				
Distributed	40	1,202	176	3,140				
Distributed	64	1,920	280	3,168				

Configuration and strength^[52]

Versions +	Hardwares ÷	Elo rating ÷	Matches +
AlphaGo Fan	Distributed	nearly 3,000	5:0 against Fan Hui
AlphaGo Lee	50 TPUs, distributed	about 3,750	4:1 against Lee Sedol
AlphaGo Master	single machine with TPU v2	about 4,750	60:0 against professional players; Future of Go Summit

Conclusão

Conclusão

- ⊙ O campo de aplicação têm expandido consideravelmente
- O Aplicações que exigem altíssima capacidade computacional
- O Aplicações em sistemas embarcados
- Atualmente a melhor solução para treinamento é com a utilização de GPU's
- Resultados surpreendentes com a utilização de hardware dedicado, tanto em performance quanto em eficiência energética
- ⊙ O único ASIC em operação (TPU) ainda não é comercializado
- ⊚ Grandes players se movimentando para lançar hardwares em um futuro próximo

Referências

Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks

Heaton Research, Inc

ISBN = 1505714346

Year = 2015

Discrete - Time Signal Processing

Prentice Hall Press, 2009

European Broadcasting Union
Specification of the Broadcast Wave Format (BWF)
2011

Norman P. Jouppi et. al.

In-Datacenter Performance Analysis of a Tensor Processing Unit International Symposium on Computer Architecture Junho, 2017