✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

grade 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 point

- $\bigcirc \hspace{0.1in} x^{(i) < j >}$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc x^{(j) < i >}$
- $\bigcirc \ x^{< j > (i)}$

✓ Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1 / 1 point

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

✓ Correct

It is appropriate when every input should be matched to an output.

Speech recognition (input an audio clip and output a transcript)

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct!

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

✓ Correct!

4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- \bigcirc Estimating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- \bigcirc Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- $\bigcirc \ \ \operatorname{Estimating} P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<t>}$.(ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass this selected word to the next time-step.

✓ Correct

Vanishing gradient problem.		
Exploding gradient problem.		
ReLU activation function g(.) used to compute g(z), where z is	too large.	
Sigmoid activation function g(.) used to compute g(z), where z	z is too large.	
Correct		
7. Suppose you are training a LSTM. You have a 10000 word vocabu activations $a^{< t>}$. What is the dimension of Γ_u at each time step?	lary, and are using an LSTM with 100-dimensional	1 / 1 point
○ 1		
100		
○ 300		
10000		
✓ Correct		
Correct, Γ_u is a vector of dimension equal to the number	of hidden units in the LSTM.	
3. Here're the update equations for the GRU.		1/1 point
GRU		
$\tilde{c}^{< t >} = \tanh(W_c[\Gamma_r * c^{< t - 1 >}, x^{< t >}] + b_c)$		
$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$		
$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$		
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$		
$a^{} = c^{}$		
Alice proposes to simplify the GRU by always removing the Γ_u . I.e. removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these mode problems even when trained on very long input sequences?		
\bigcirc Alice's model (removing Γ_u), because if $\Gamma_r\approx 0$ for a timester timestep without much decay.	p, the gradient can propagate back through that	
\bigcirc Alice's model (removing Γ_u), because if $\Gamma_r\approx 1$ for a timestep timestep without much decay.	o, the gradient can propagate back through that	
Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timeste timestep without much decay.	p, the gradient can propagate back through that	
\bigcirc Betty's model (removing $\Gamma_{\rm T}$), because if $\Gamma_u\approx 1$ for a timeste timestep without much decay.	p, the gradient can propagate back through that	
 Correct Yes. For the signal to backpropagate without vanishing, w 	we need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.	
9. Here are the equations for the GRU and the LSTM:		1 / 1 point
GRU	LSTM	
$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$	
$\Gamma_u = \sigma(W_u[c^{< t-1>},x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$	
$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[\alpha^{< t-1>}, x^{< t>}] + b_f)$	
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$	

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$ $a^{< t>} = c^{< t>}$ $a^{< t>} = \Gamma_o * c^{< t>}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the

GRU. What should go in the blanks?	
$lefton \Gamma_u$ and $1-\Gamma_u$	
\bigcap Γ_u and Γ_r	
$igcirc$ $1-\Gamma_u$ and Γ_u	
\bigcap Γ_r and Γ_u	
✓ Correct Yes, correct!	
10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected of for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. She you use a Unidirectional RNN or Bidirectional RNN for this problem?	ed data
Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.	
Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.	
$lacktriangle$ Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{< 36}$	35>
\bigcirc Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.	
✓ Correct	
Yes!	