Contents

1	概述	
	1.1	统计学习三要素
		1.1.1 模型
		1.1.2 策略
		1.1.3 算法
	1.2	模型评估与模型选择
		1.2.1 训练误差与测试误差
	1.0	1.2.2 过拟合与模型选择
	1.3	正则化与交叉验证
		1.3.1 正则化
	1.4	1.3.2 交叉验证
	1.4	泛化能力
		1.4.1 泛化误差
	1.5	1.4.2
	1.6	立成映画の内が映画では、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
	1.7	标注问题
	1.8	
2	感知机	Л
•	I- \CA	N7:+
3	k 近邻	
4	朴素贝叶斯法	
5	决策树	
6	logistic 回归与最大熵模型	
7	支持向	
8	提升力	方法
9	EM ‡	算法及其推广
10	隐马が	了可夫模型 第一种
11	余件的	道机场
12	附录	
		矩阵
	12.2	优化
		12.2.1 拉格朗日乘子法
		12.2.2 梯度下降
		12.2.3 牛顿法
		12.2.4 拟牛顿法
	12.3	拉格朗日对偶性

1 概述

1.1 统计学习三要素

1.1.1 模型

监督学习中,模型是要学习的条件概率分布或决策函数。

1.1.1.1 模型的假设空间

假设空间是所有可能的条件概率分布或决策函数

1.1.1.1.1 定义 1

可以定义为决策函数的集合:

$$\mathcal{F} = \{ f | Y = f(X) \}$$

- X 和 Y 是定义在 \mathcal{X} 和 \mathcal{Y} 上的变量
- \mathcal{F} 是一个参数向量决定的函数族:

$$\mathcal{F} = \{ f | Y = f_{\theta}(X), \theta \in \mathbb{R}^n \}$$

参数向量 θ 取值于 n 维欧式空间 R^n , 称为参数空间

1.1.1.1.2 定义 2

也可以定义为条件概率的集合:

$$\mathcal{F} = \{P|P(Y|X)\}$$

- X 和 Y 是定义在 \mathcal{X} 和 \mathcal{Y} 上的随机变量
- \mathcal{F} 是一个参数向量决定的条件概率分布族:

$$\mathcal{F} = \{P|P_{\theta}(Y|X), \theta \in \mathbb{R}^n\}$$

1.1.2 策略

1.1.2.1 损失函数与风险函数

损失函数 (loss function) 或代价函数 (cost function) : 度量预测值 f(X) 与真实值 Y 的误差程度 , 记为 L(Y,f(X)) , 是个非负实值函数。损失函数越小,模型越好。

• 0-1 损失函数:

$$L(Y, f(X)) = \begin{cases} 0 & Y \neq f(X) \\ 1 & Y = f(X) \end{cases}$$

• 平方损失函数:

$$L(Y, f(X)) = (Y - f(X))^2$$

• 绝对损失函数:

$$L(Y, f(x)) = |Y - f(X)|$$

• 对数损失函数 (logarithmic loss function)/对数似然损失函数 (log-likelihood loss function):

$$L(Y, P(Y|X)) = -logP(Y|X)$$

风险函数 (risk function) 或期望损失 (expected loss) : X 和 Y 服从联合分布 P(X,Y) , 理论上模型 f(X) 关于联合分布 P(X,Y) 的平均意义下的损失 :

$$R_{exp}(f) = E_P[L(Y, f(X))] = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(x)) P(x, y) dx dy$$

学习的目标:选择期望风险最小的模型。但联合分布 P(X,Y) 是未知的,所以无法直接计算 $R_{exp}(f)$ 。所以监督学习是病态问题 (ill-formed problem):一方面需要联合分布,另一方面联合分布是未知的。

给定训练集:

$$T = \{(x_1, y_1), ...(x_N, y_N)\}\$$

经验风险 (expirical risk)/经验损失 (expirical loss): 模型 f(X) 关于训练集的平均损失

$$R_{emp}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$

根据大数定律,当样本容量 N 趋向无穷时,经验风险 R_{emp} 趋于期望风险 $R_{exp}(f)$ 。

1.1.2.2 经验风险最小化与结构风险最小化

经验风险最小化(empirical risk minimization, ERM): 经验风险最小的模型就是最优模型。所以需要求解的最优化问题是:

$$min_{f \in \mathcal{F}} R_{erm} = min_{f \in \mathcal{F}} \frac{1}{N} L(y_i, f(x_i))$$

当满足以下两个条件时,经验风险最小化就等价于极大似然估计(maximum likelihood estimation):

- 模型是条件概率分布
- 损失函数是对数损失函数

当样本量足够大时, ERM 能有很好的效果, 但样本量不够多时, 为了防止过拟合, 需要用下面的方法。

结构风险最小化(structual risk minimization, SRM): 结构风险 = 经验风险 + 表示模型复杂度的正则化项 (regularizer) 或罚项 (penalty term)。结构风险定义如下:

$$R_{srm}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

J(f) 是模型的复杂度,模型越复杂,J(f) 越大。 $\lambda \geq 0$ 是用于权衡经验风险和模型复杂度的系数。

当满足以下 3 个条件时,结构化风险最小化等价于) 贝叶斯估计中的最大后验概率估计 (maximum posterior probability estimation, MAP):

- 模型是条件概率分布
- 损失函数是对数损失函数
- 模型复杂度由模型的先验概率表示

所以结构风险最小化就是求解优化问题:

$$min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

1.1.3 算法

算法指的是学习模型的具体方法,即使用什么计算方法求解最优模型。

因为统计学习问题归结为最优化问题,所以统计学习的算法就是求解最优化问题的算法。

- 如果有显式的解析解,此最优化问题就比较简单
- 如果没有,需要用数值计算方法求解,需要考虑如何保证找到全局最优解,并使求解过程高效

- 1.2 模型评估与模型选择
- 1.2.1 训练误差与测试误差
- 1.2.2 过拟合与模型选择
- 1.3 正则化与交叉验证
- 1.3.1 正则化
- 1.3.2 交叉验证
- 1.4 泛化能力
- 1.4.1 泛化误差
- 1.4.2 泛化误差上界
- 1.5 生成模型与判别模型
- 1.6 分类问题
- 1.7 标注问题
- 1.8 回归问题
- 2 感知机
- 3 k 近邻法
- 4 朴素贝叶斯法
- 5 决策树
- 6 logistic 回归与最大熵模型
- 7 支持向量机
- 8 提升方法
- 9 EM 算法及其推广
- 10 隐马尔可夫模型
- 11 条件随机场
- 12 附录

证明:

对于任意 x_1 , 根据二阶泰勒展开 , 有

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + \frac{1}{2}f''(x_0)(x_1 - x_0)^2 + \dots + R_n(x_1)$$

因为 $f''(x_0)>0$ 且 $f'(x_0)=0$,所以 ,不论 $x_1>x_0$ 还是 $x_1< x_0$,总有 $f(x_1)>f(x_0)$,也就是周围的函数值都比 $f(x_0)$ 大,而 x_0 又是极值点,所以是极小点。

12.2.4 拟牛顿法

12.3 拉格朗日对偶性