Power of Ordered Hypothesis Testing

Lihua Lei and William Fithian

Department of Statistics, UC Berkeley

ICML 2016, New York

Table of Contents

Setup

2 Adaptive Seqstep

Power Comparison

Table of Contents

Setup

Adaptive Seqstep

3 Power Comparison

Multiple Testing Problem with FDR Control

- General setup: a sequence of hypotheses H_1, H_2, \dots, H_n ;
- $\mathcal{H}_0 = \{i : H_i \text{ is true}\}\$ be the set of *null* hypotheses;
- $S = \{i : H_i \text{ is rejected}\}\$ be the set of *discoveries*;
- FDP = $\frac{V}{R \vee 1}$ be the False Discovery Proportion with $V = |\mathcal{S}|$ and $R = |\mathcal{S} \cap \mathcal{H}_0|$;
- FDR = EFDP be the *False Discovery Rate*, the target that a procedure should control.
- A procedure that control FDR at level 0.1 produces a rejection set ${\cal S}$ with roughly 90% being the true discoveries.

Ordered Hypothesis Testing

- Domain knowledge might be used to indicate which hypothesis is more "promising", i.e. likely to be rejected;
- Heuristically, more focus should be put on "promising" hypotheses;
- Sort H_1, \ldots, H_n from most "promising" to least "promising" via the prior knowledge;
- A procedure that takes advantage of the ordering is called an ordered hypothesis testing procedure.

Example: GEOquery Data

- GEOquery data¹[LB15] consists of gene expression measurements in response to estrogen in breast cancer cells;
- Consists of n = 22283 genes and two groups (a treatment group and a control group) with 5 trials in each;
- Test H_i : $F_{0i} = F_{1i}$, where F_{0i} and F_{1i} are the distributions of gene expression of gene i in the control group and the treatment group, respectively;
- H_1, \ldots, H_n are ordered by auxiliary data.

Example: GEOquery Data

Table of Contents

Setup

2 Adaptive Seqstep

3 Power Comparison

• Input: p-values p_1, \ldots, p_n . Usually assume $p_i \sim U([0,1])$ for $i \in \mathcal{H}_0$;

- Input: p-values p_1, \ldots, p_n . Usually assume $p_i \sim U([0,1])$ for $i \in \mathcal{H}_0$;
- Rejection Set: a rectangular region indexed by s and k;

- Input: p-values p_1, \ldots, p_n . Usually assume $p_i \sim U([0,1])$ for $i \in \mathcal{H}_0$;
- Rejection Set: a rectangular region indexed by s and k;
- FDP: an estimate of FDP for given rejection region;

- Input: p-values p_1, \ldots, p_n . Usually assume $p_i \sim U([0,1])$ for $i \in \mathcal{H}_0$;
- Rejection Set: a rectangular region indexed by s and k;
- FDP: an estimate of FDP for given rejection region;
- Enlarge k (fix s) as long as $\widehat{\text{FDP}} \leq q$;

- Input: p-values p_1, \ldots, p_n . Usually assume $p_i \sim U([0,1])$ for $i \in \mathcal{H}_0$;
- Rejection Set: a rectangular region indexed by s and k;
- FDP: an estimate of FDP for given rejection region;
- Enlarge k (fix s) as long as $\widehat{\text{FDP}} \leq q$;
- Reject all (red) points in the pink region.

Existing Methods Revisited: Accumulation Test

$$\widehat{\text{FDP}}_{AT} = \frac{C + \sum_{i=1}^{k} h(p_i)}{k+1}$$

- $h \in [0, C], \int_0^1 h(x) dx = 1;$
- Find the maximum k such that $\widehat{\text{FDP}}_{AT} \leq q$;
- ForwardStop[GWCT15]:

$$h(x) = -\log(1-x);$$

Seqstep[BC15]:

$$h(x) = \frac{I(x > \lambda)}{1 - \lambda};$$

HingeExp[LB15]:

$$h(x) = -\frac{I(x > \lambda)}{1 - \lambda} \log(\frac{1 - x}{1 - \lambda}).$$

Existing Methods Revisited: Selective Segstep

$$\widehat{\text{FDP}}_{SS} = \frac{ks}{R(k;s) \vee 1} \cdot \frac{A(k;s) + 1}{k(1-s)} \bullet R(k;s) = |\{i \leq k : p_i \leq s\}|;$$
$$\bullet A(k;s) = |\{i \leq k : p_i > s\}|;$$

- s is pre-fixed;
- Find the maximum k such that $FDP_{SS} < q$.
- Turns out that the blue term should be an approximation of $\pi_{0,k}$,

$$\pi_{0,k} = \frac{|\{1,\ldots,k\} \cap \mathcal{H}_0|}{k};$$

Too conservative for small s.

Existing Methods Revisited: Adaptive Segstep

$$\widehat{\text{FDP}}_{AS} = \frac{ks}{R(k;s) \vee 1} \cdot \frac{A(k;\lambda) + 1}{k(1-\lambda)} \bullet R(k;s) = |\{i \leq k : p_i \leq s\}|; \\ \bullet A(k;\lambda) = |\{i \leq k : p_i > \lambda\}|;$$

Index

- s and λ are is pre-fixed;
- Find the maximum k such that $FDP_{\Delta S} < q$:
- Much less conservative if a large λ , say 0.5, is used.

Adaptive Seqstep: FDR Control

We prove that AS controls FDR in finite samples.

Theorem 1.

Assume that

- $\{p_i: i \in \mathcal{H}_0\}$ are independent of $\{p_i: i \notin \mathcal{H}_0\}$;
- **2** $\{p_i: i \in \mathcal{H}_0\}$ are i.i.d. with distribution function F_0 that stochatically dominates U[0,1].

Then AS controls FDR at level q.

Table of Contents

Setup

2 Adaptive Seqstep

Power Comparison

Heuristic Comparison of Asymptotic Power: AS Versus AT

Heuristic Comparison of Asymptotic Power: AS Versus AT

AS is more robust to ordering than AT.

Heuristic Comparison of Asymptotic Power: AS Versus SS

Heuristic Comparison of Asymptotic Power: AS Versus SS

AS is more robust to weak signals than SS.

Analytical Comparison of Asymptotic Power

By analyzing the formulas of asymptotic power, we conclude that

	Weak Signals	Strong Signals
Bad Ordering	$AS \gg SS$, $AS \gg AT$	$AS > SS$, $AS \gg AT$
Good Ordering	$AS \gg SS$, $AS > AT$	$AS > SS$, $AT \nearrow AS$

Real Data Example: GEOquery Data

References

- Rina Foygel Barber and Emmanuel J Candès. Controlling the false discovery rate via knockoffs. *The Annals of Statistics*, 43(5):2055–2085, 2015.
- Max Grazier G'Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani.
 Sequential selection procedures and false discovery rate control.
 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2015.
- Ang Li and Rina Foygel Barber.

 Accumulation tests for fdr control in ordered hypothesis testing.

 arXiv preprint arXiv:1505.07352, 2015.
- John D Storey, Jonathan E Taylor, and David Siegmund. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 66(1):187–205, 2004.

THANK YOU!