第八章磁盘存储器的管理

8.1 外存的组织方式

有效利用外存空间 提高文件访问速度 连续分配、链接分配、索引分配

8.1.1 连续分配

directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

用于早期的文件系统,但在当今的CD-ROM、DVD和其它一些一次性写入的光学存储介质中,有着广泛的应用。

8.1.1 连续分配

- 1 连续分配方式
 - 为每个文件分配一组相邻的盘块
 - 分配给文件的首个物理块的地址登记在目录项
- 2 特点
 - 顺序访问容易
 - 要求有连续的存储空间
 - 必须事先知道文件的长度,不利于动态增长
 - 文件增删会产生碎片,需移动文件以利用碎片 空间

8.1.2 链接分配

• 1. 隐式链接

块结构

指针

数据

8.1.2 链接分配

- 1. 隐式链接
 - -每个盘块中有指向下一个盘块的指针;
 - 目录项有指向链接文件第一个盘块和最后一个 盘块的指针;
 - 文件长度可以动态增长、消除了外部碎片
 - 只适合顺序访问、指针错误导致文件损坏,可 靠性差
 - 每个物理块上的数据存储空间不再是2的整数次幂(指针占用了若干个字节),从而使文件的访问不太方便。

如何改进

• 2. 显式链接

- 把链接指针统一存放在一张表中;
- 表项的序号为物理盘块号,每个表项中存放链接指针;
- 该表整个磁盘设一张,称为文件分配表 File Allocation Table

8.1.3 FAT 和 NTFS

- 文件分配表FAT(File Allocation Table): 文件保存在离散的物理磁盘块上,采用显示链法进行文件组织,每张磁盘设置一张文件分配表,表项的序号为物理盘块号,每个表项中存放链接指针。

FAT12

以盘块(扇区)为基本分 配单位; 最大容量 4096 (FAT表项数目) ×512B (扇区大小) =2M簇 一组连续的扇区,作 为基本单位 容量有限、碎片;8+3格 式文件名

- MS-DOS的文件物理结构
- 文件A: 4、6、11;
- 文件B: 9、10、5;

• FAT16

- FAT表16位
- -最大容量: 216*64(每簇的扇区数)*512=2048MB
- 簇内碎片大

• FAT32

- 簇固定大小为4KB。
- 最大容量: 2³² * 4KB = 2 TB
- FAT大,导致速度慢;不支持小于512M 分区;单个文件不能大于4GB;不能向下兼容

8.1.4 NTFS文件

- 4 NTFS
 - -64位磁盘地址、支持长文件名。
 - -磁盘组织
 - 簇为基本单位
 - 簇大小可选择
 - 文件组织
 - 主控文件表

MFT Record for a Small File or Directory:

8.1.5 索引分配

- 1. 单级索引分配
 - 链接分配方式
 - 1) 不能支持高效的直接存取,要对一个较大的文件 进行直接存取,须首先在FAT中顺序地查找许多盘块 号。
 - (2) FAT需占用较大的内存空间。
 - 基本思想
 - 每个文件有一个索引块(表),将分配给该该文件的所有盘块号都记录在该索引块
 - 索引表的指针记录在文件目录

- 支持直接访问
- 需要外存空间

- 2. 多级索引分配
 - 大文件使用多个索引块,为索引块建立索引

混合索引(增量索引)

8.2 文件存储空间的管理

记录存储空间的使用情况提高对存储空间分配和回收的手段

8.2.1 空闲表法和空闲链表法

- 1. 空闲表法
 - 为文件分配连续的存储空间
 - 类似内存的动态分配方式
 - 系统为外存上的所有空闲区 建立一张空闲表
- 2. 空闲链表法
 - 空闲盘区链接在一起
 - 空闲盘块链
 - 空闲盘区(可能包括若干盘块)链

序号	第一空 闲盘块 号	空闲盘 块数
1	2	4
2	9	3
3	15	5
4		

空闲盘块链

8.2.2 位示图法

• 用一个二进制位来表示磁盘中一个盘块的使用情况

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	1	0	0	0	1	1	1	0	0	1	0	0	1	1	0
2	0	0	0	1	1	1	1	1	1	0	0	0	0	1	1	1
3	1	1	1	0	0	0	1	1	1	1	1	1	0	0.	0	0
4																
:																
16																

6.5.2 位示图法

- 盘块数量: m*n
- 盘块号 b=n(i-1)+j //位示图位置到盘块号
- 位置:

8.2.3 成组链接法

结合使用空闲表法和空闲链表法 适合大型文件, Unix

空闲盘块的成组链接法

8.3 提高磁盘I/O速度的途径

1磁盘高速缓存(Disk Cache)

- 利用內存暂存从磁盘中读出的的信息。
- -高速缓存是一组在逻辑上属于磁盘, 而物理上是驻留在内存中的盘块。

1磁盘高速缓存(Disk Cache)

- 数据交付方式
 - -(1)数据交付。这是直接将高速缓存中的数据, 传送到请求者进程的内存工作区中。
 - (2) 指针交付。只将指向高速缓存中某区域的指针,交付给请求者进程。
 - 所传送的数据量少,节省了数据从磁盘高速缓存存储空间到进程的内存工作区的时间

1 磁盘高速缓存(Disk Cache)

• 置换算法

- 磁盘中盘块数据欲调入高速缓存,如缓存满, 需要将缓存中数据换出(LRU 及类似算法)
- (1) 访问频率低于请求调页的联想存储器
- (2) 可预见性高于请求调页的联想存储器
- (3) 数据的一致性
- 周期性地写回磁盘
 - 程序周期性地强制性地将所有在高速缓存中已 修改的盘块数据写回磁盘,减少风险

2 提高磁盘I/O速度的其它方法

- 1.提前读(Read-Ahead)
 - 顺序访问文件
- 2. 延迟写
- 3. 优化物理块的分布
- 4. 虚拟盘

3廉价磁盘冗余阵列

- Redundant Array of Inexpensive Disk
 - 用一台磁盘阵列控制器统一管理和控制一组磁盘驱动器,组成可靠快速的大容量磁盘系统
- 1. 并行交叉存取
 - 多台磁盘驱动器
 - 每一盘块的数据分为若干个子盘块
 - -每一个子盘块的数据分别存储在不同磁盘
 - 传输某盘块数据到内存时,各盘块中的子盘块同时向内存传输

RAID

- 2. RAID的分级
 - (1)RAID 0级
 - 并行交叉存取
 - (2) RAID 1级
 - 磁盘镜像
 - (3) RAID 3级
 - 一台奇偶校验盘完成数据校验
 - (4) RAID 5级
 - 每个驱动器都有自己独立的数据通路
 - (5) RAID 6级和RAID 7级
 - 设置专用可快速访问的异步校验盘

- 3. RAID的优点
 - -(1) 可靠性高。
 - -(2) 磁盘I/O速度高
 - -(3)性能/价格比高