## Assignment\_3ML\_B

Harshitha Boyapati

700761387

```
+ Code + Text
Q
    [84] import pandas as pd
             from google.colab import drive
\{X\}
            #Loading the data into the drive
            drive.mount('/drive')
dc = pd.read_csv('/drive/MyDrive/data.csv')
            # Showing basic statistical description of the data using the description() function
            print(dc.describe())
            Drive already mounted at /drive; to attempt to forcibly remount, call drive.mount("/drive", force_remount=True).
                     Duration
                                   Pulse Maxpulse Calories
            count 169.000000 169.000000 169.000000 164.000000
            mean 63.846154 107.461538 134.047337 375.790244 std 42.299949 14.510259 16.450434 266.379919
                                                           375.790244
            min 15.000000 80.000000 100.000000 50.300000 25% 45.000000 100.000000 124.000000 250.925000
                  60.000000 105.000000 131.000000 318.600000
            50%
            75%
                    60.000000 111.000000 141.000000 387.600000
                  300.000000 159.000000 184.000000 1860.400000
    _{	t 0s}^{\checkmark} [86] # Check if the data has null values.
             print('Are there any null values present in data: ',dc.isnull().values.any())
\equiv
             # Replace the null values with the mean
            dc.fillna(dc.mean(),inplace=True)
>_
            print('Are there any null values after using fillna: ',dc.isnull().values.any())
```

```
[99] # Check if the data has null values.
       print('Are there any null values present in data: ',dc.isnull().values.any())
       # Replace the null values with the mean
       dc.fillna(dc.mean(),inplace=True)
       print('Are there any null values after using fillna: ',dc.isnull().values.any())
      Are there any null values present in data: False
      Are there any null values after using fillna: False
      # Select at least two columns and aggregate the data using: min, max, count, mean.
       aggregat = dc.groupby('Duration').agg({'Calories':['mean','min','max','count']})
       aggregat
                  Calories
                  mean
                               min
                                     max
                                           count
        Duration
                    87.000000
           15
                                 50
                                      124
                                                2
           20
                   151.222222
                                 50
                                      229
                                                9
                   244.000000
                                      244
                                244
                   191.812500
           30
                                 86
                                      319
                                               16
           45
                   278.885714
                                100
                                      406
                                               35
 + Code + Text
           45
                   278.885714
                               100
                                    406
                                            35
           60
                   340.797468
                               215
                                    486
                                            79
           75
                   325.000000
                               320
                                    330
                                             2
           80
                   643.000000
                               643
                                    643
                   541.625000
                               466
                                    700
                                             8
                   666.666667
           120
                               500 1000
                                             3
                                                                      ;
                   939.250000
          150
                              816
                                   1115
                                             4
           160
                   943.500000
                               853
                                   1034
                                             2
           180
                  733.333333
                               600
                                    800
                                             3
          210
                  1618.000000 1376 1860
                                             2
          270
                  1729 000000 1729 1729
          300
                  1500.000000 1500 1500
                                             1
[89] # Filter the dataframe to select the rows with calories values between 500 and 1000
       dc[(dc['Calories']>=500) & (dc['Calories']<=1000)]</pre>
             Duration Pulse Maxpulse Calories
        51
                  80
                        123
                                  146
                                          643.1
```



+ Code + Text

√ [89] **102** 500.0 500.4 800.3 500.3

10:

|     | Duration | Pulse | Maxpulse | Calories |
|-----|----------|-------|----------|----------|
| 65  | 180      | 90    | 130      | 800.4    |
| 70  | 150      | 97    | 129      | 1115.0   |
| 73  | 150      | 97    | 127      | 953.2    |
| 75  | 90       | 98    | 125      | 563.2    |
| 99  | 90       | 93    | 124      | 604.1    |
| 103 | 90       | 90    | 100      | 500.4    |
| 106 | 180      | 90    | 120      | 800.3    |
| 108 | 90       | 90    | 120      | 500.3    |

... 00 00 120 000.0

'[92] # Create a new "dc\_modified" dataframe that contains all the columns from df except for "Maxpulse"

dc\_modified = dc[['Duration', 'Pulse', 'Calories']]

dc\_modified

'Pulse'

10:

|     | Duration | Pulse | Calories |
|-----|----------|-------|----------|
| 0   | 60       | 110   | 409.1    |
| 1   | 60       | 117   | 479.0    |
| 2   | 60       | 103   | 340.0    |
| 3   | 45       | 109   | 282.4    |
| 4   | 45       | 117   | 406.0    |
|     |          |       |          |
| 164 | 60       | 105   | 290.8    |
| 165 | 60       | 110   | 300.0    |
| 166 | 60       | 115   | 310.2    |
| 167 | 75       | 120   | 320.4    |
| 168 | 75       | 125   | 330.4    |

169 rows × 3 columns

[93] # Delete the "Maxpulse" column from the main df dataframe
 dc = dc.drop('Maxpulse', axis=1)
 dc

10+

|     | Duration | Pulse | Calories |
|-----|----------|-------|----------|
| 0   | 60       | 110   | 409.1    |
| 1   | 60       | 117   | 479.0    |
| 2   | 60       | 103   | 340.0    |
| 3   | 45       | 109   | 282.4    |
| 4   | 45       | 117   | 406.0    |
|     |          |       |          |
| 164 | 60       | 105   | 290.8    |
| 165 | 60       | 110   | 300.0    |
| 166 | 60       | 115   | 310.2    |
| 167 | 75       | 120   | 320.4    |
| 168 | 75       | 125   | 330.4    |

169 rows × 3 columns

[94] # Convert the datatype of Calories column to int datatype
dc['Calories'] = dc['Calories'].astype('int64')
dc.dtypes

Duration int64
Pulse int64
Calories int64
dtype: object