Teoremario de Topología

Wilfredo Gallegos

30 de mayo de 2023

1. Contenido

Definición 1.1. Sea $X \neq \emptyset$ una clase τ de subconjuntos de X es una Topología sobre X si cumple:

- 1. \emptyset , $X \in \tau$
- 2. La unión de una clase arbitraria de conjuntos en τ es un miembro de τ
- 3. La intersección de una clase finita de miembres de τ está en τ Los miembros de τ son los abiertos de X

Nota:

- 1. El par (X, τ) es un espacio topologíco
- 2. a los elementos de X se le llaman puntos

Nota: Un Espacio Metrizable es un espacio topol'ogico X con la propiedad que existe una m'etrica que genera los abiertos de la topolog'ia dada.

prop: Si τ_1 y τ_2 son topolog'ias sobre X, entonces $\tau_1 \cap \tau_2$ es topolog'ia sobre X

Definición 1.2. Sea A un subconjunto no vacio del espacio topol'ogico (X, τ) . Considere la clase

$$\tau_A = \{A \cap G : G \in \tau esabiertodeX\}$$

a τ_A se le llama topolog'ia relativa sobre A

Definición 1.3. 1. Sean X y Y espacios topol'ogicos y f un mapeo entre X y Y. Se dice que f es continua si $f^{-1}(G)$ es un abierto de X para cada abierto G de Y

2. Se dice que el mapeo es abierto si para cada abierto G de X se cumple que f(G) es abierto de Y

Nota: Una Propiedad topol'ogica es una propiedad que si la tiene el espacio X, la tiene tambien cualquier espacio homeomorfo a X.

Definición 1.4. Sea (X,τ) un esp. top. Un subconjunto $A \subset X$ es cerrado ssi $A^c \in \tau$

VER DEFINICIONES DEL 18/01/23

Definición 1.5. 1. un punto p de X es interior de $A \subseteq X$ si existe un abierto $G \ni p \in G \subset A$

2. El interior de A denotado como int(A) o A° es el conjunto de todos los puntos interiores de A

Definición 1.6. Un punto forntera de $A \subset X$ es un punto tal que cada vecindad del punto intersecta a A y a A^c

Definición 1.7. Una base abierta para el espacio topologico (X, τ) es una clase de abiertos de X talque cada abierto en τ puede escribirse como uniones de miembros de la clase

Teorema 1.1. Los enunciados siguientes so nequivalentes

- 1. Una familia β de subconjuntos abiertos del espacio topológico (X, τ) es una base para τ si cada abierto de τ es unión de miembros de β
- 2. $\beta\subset \tau$ es una base para $\tau,$ ssi $\forall G\in \tau,\ \forall p\in G\exists B_p\in\beta\ni p\in B_p\subset G$

Nota: Recordar: X es T_1 ssi $\forall x,y \in X, \ x \neq y \exists$ abiertos U y V \ni

$$x \in U \ y \ x \not \in V$$

$$y\not\in U\ y\ y\in V$$

2. Teoremas-Lemas-Corolarios

Teorema 2.1. Los enunciados siguientes so nequivalentes

- 1. Una familia β de subconjuntos abiertos del espacio topológico (X, τ) es una base para τ si cada abierto de τ es unión de miembros de β
- 2. $\beta \subset \tau$ es una base para τ , ssi $\forall G \in \tau$, $\forall p \in G \exists B_p \in \beta \ni p \in B_p \subset G$

Teorema 2.2. Sea β una familia de subconjuntos de un conjunto no vacio X. Entonces β es una clase para una topología τ sobre X ssi se cumplen

- 1. $X = \bigcup_{b \in \beta} B$
- 2. $\forall B, B^* \in \beta$ se tiene que $B \cap B^*$ la unión de miembros de $\beta \Leftrightarrow \text{si p} \in B \cap B^* \exists B_p \in \beta \ni p \in B_p \subset B \cap B^*$

Teorema 2.3. Sea X cualquier conjunto no vacío y sea S una clase arbitriaria de subconjuntos de X, Entonces S puede construirse en la subbase abierta para una topología sobre X en el sentido que las intersecciones finitas de los miembros de S producen una base para dicha topología.

Lema 2.1. Si S es subbase de las topologías τ y τ^* sobre $X \Rightarrow \tau = \tau^*$

Teorema 2.4. Sea X un subconjunto no vacio y sea S una clase de subconjuntos de X. La topología τ sobre X, generado por S, y la intersección de todoas las topologías sobre X que contienen a S.

Teorema 2.5. Lindelof Sea X un espacio segundo contable si un abierto no-vacio G de X se puede representar como unión de una clase $\{G_1\}$ de abiertos de X \Rightarrow G puede representarse como unión contable de los G_i

Teorema 2.6. Todo espacio m'etrico es de Hausdorff

Teorema 2.7. Si X es un espacio de Hausdorff, entonces cada sucesión de puntos (X_n) en X converga a lo más a un punto de X.

Teorema 2.8. Cada subconjunto finito A⊂X en un Hausdorff es cerrado

Teorema 2.9. Composición de mapeos continuos es un mapeo continuo

Teorema 2.10. un mapeo $f: X \to Y$ entre espacios topológicos es continuo esi es continuo en cada punto de X.

Teorema 2.11. Sea $\{f_i: X \to (Y_i, \tau_i)\}$ una colección de mapeos definidos sobre un conjunto no vacío X sobre los espacios topológicos (Y_i, τ_i) , sea

$$S = \bigcup_{i} \{ f^{-1}(H) : H \in \tau_i \}$$

y definimos τ como la topología sobre X generada por S, entonces:

- 1. Todas las f_i son continuas con respecto a τ
- 2. Si τ^* es la intersección de todas las topologías sobre X con respecto a las cuales las f_i son continuas, entonces $\tau = \tau^*$
- 3. τ es la topología menos fina sobre X tales que las f_i son continuas
- 4. S es una subbase para τ

Compactos

Teorema 2.12. Todo subespacio cerrado de un espacio compacto es compacto

Teorema 2.13. Cualquier imagen continua de un espacio compacto es compacto

Teorema 2.14. Los enunciados siguientes son equivalentes

- 1. X es un espacio compacto
- 2. Para cada clase $\{F_i\}$ de cerrados de X $\ni \cap_i F_i = \emptyset$, se cumple que $\{F_i\}$ contiene una subclase finita $\{F_{i_1},...,F_{i_m}\} \ni F_{i_1} \cap ... \cap F_{i_m} = \emptyset$

En el teorema anterior, la contrapuesta de (2) es: Para toda clase de cerrados de X, $\{F_{i_1}\}$ \ni cada subclase finita tiene interseicción no vacia, entonces $\cap_i F_i \neq \emptyset$

- Teorema 2.15. X es un espacio compacto ssi cada clase de cerrados de X que tiene la Pif tiene intersección no vacía
- Teorema 2.16. Un espacio topológico es compacto si cada cubierta abierta básica tiene una subcubierta finita
- Teorema 2.17. Un espacio topológico es compacto si cada cubierta abierta subbásica tiene una subcuierta finita
- **Teorema 2.18.** Sea X un espacio T_2 , cualquier punto y un subespacio disjunto y compacto, pueden separarse por abiertos, en el sentido que tienen vecindades disjuntas

AGREGAR FIGURA

- Teorema 2.19. Cada subespacio compacto de un T_2 es cerrado
- **Teorema 2.20.** Un mapeo biyectivo y continuo de un espacio compacto en un espacio de Hausdorff es un homeomorfismo AGREGAR FIGURA

Separación

- **Teorema 2.21.** Un esapcio topológico es T_1 ssi los unitarios son cerrados
- Teorema 2.22. Cada subespacio de un T_1 es un T_1
- **Teorema 2.23.** Si X es $T_3 \Rightarrow X$ es T_2
- Teorema 2.24. Los enunciados siguietnes son equivalentes
 - 1. X es normal
 - 2. Si H es un superconjunto abierto del cerrado F, entonces existe un abierto G, ∋

$$F\subset G\subset \overline{G}\subset H$$

- Teorema 2.25. Metrizaacion de Urysohn Si X es un espacio @do contable, normal y T_1 , entonces X es Metrizable
- **Teorema 2.26.** Sea D el conjunto de fracciones diádicas en [0,1], entonces $\overline{D} = [0,1]$
- Lema 2.2. Urysohn Sean F_1 y F_2 cerrados disjuntos de un espacio normal X, entonces existe la función continua

$$f: X \to [0,1] \ni$$

$$f(F_1) - \{0\} \ y \ f(F_2) = \{1\}$$

- **Teorema 2.27.** Un esapcio topológico e s T_1 ssi $\forall x \in X$ la sucesión x,x,x,... converga a x y solo a x
- **Teorema 2.28.** Un espacio topológico es T_2 ssi cada sucesión convergente tiene límite único

Redes

Teorema 2.29. Sea (Y_i, τ_i) un espacio topológico y sea $A \subseteq X$, entonces $x \in \overline{A}$ ssi existe una red w en $A \ni w \to x$

Filtros

- **Teorema 2.30.** Sea $X \neq \emptyset$ y $\mathcal{F}_{\alpha} \in F(x)$, $\alpha \in I$. Entonces $\cap_i \mathcal{F}_{\alpha} \in F(x)$
- **Teorema 2.31.** Sea X un conjunto y U(x) ina colección de filtros sobre X. Si para cualquier $\mathcal{F}_1, \mathcal{F}_2 \in U(x)$ se tiene que $\mathcal{F}_1 \subset \mathcal{F}_2$ o $\mathcal{F}_2 \subset \mathcal{F}_1 \Rightarrow \cup U(x)$ es filtro

Lema 2.3. Zorn So X es un conjunto no vacio y parcialmente ordenado \ni cada cadena en X tiene cota superior, entonces X tiene un elemento maximal

Teorema 2.32. Tarski Sea X un conjunto y \mathcal{F} un filtro sobre X. Entonces existe un ultrafiltro U sobre $x \ni \mathcal{F} \subset U$

Teorema 2.33. Sea X un conjunto y U un filtro sobre X. Entonces los enunciados soguietnes son equivalentes:

- 1. U es ultrafiltro
- 2. Par acualquier $E \subset U \ni E \cap F \neq \emptyset$, $\forall F \in U$ se tiene que $E \in U$
- 3. Si $E \subset X \Rightarrow E \in U$ o $X E \in U$
- 4. Si $A, B \in X$ y $A \cap B \in U \Rightarrow A \in U$ o $B \in U$

Teorema 2.34. Una familia β de subconjuntos no vacios de X es base de algún filtro sobre X ssi $\forall B_1, B_2 \in \beta \exists B_3 \in \beta \ni B_3 \subset B_1 \cap B_2$

Teorema 2.35. Sean X un espacio topológico y \mathcal{F} un filtro sobre X. Entonces a familia $\beta = \{\overline{F} \ni F \in \mathcal{F}\}$ es una base de filtros

Teorema 2.36. Sean X, Y espacios topológicos, $\overline{\mathcal{F}}$ un filtro sobre X y un mapeo $f: X \to Y$. Entonces $\beta_{f(\overline{\mathcal{F}})} = \{f(F): F \in \mathcal{F}\}$

Teorema 2.37. Sean X, Y espacios topológicos, \mathcal{F} un filtro sobre Y y un mapeo $f: X \to Y$. Si $\forall F \in \mathcal{F}$ se tiene que $f^{-1}(F) \neq \emptyset$, entonces $\beta = \{f^{-1}(F): F \in \mathcal{F}\}$

Teorema 2.38. Sea $X \neq \emptyset$, \mathcal{F} un filtro sobre X y $E \subset X$. Si $B = \{F \cap E : F \in \mathcal{F}\}$ y $B' = \{F \cap (X - E) : F \in \mathcal{F}\}$ entonces

- 1. Si $F \cap E \neq \emptyset, \forall F \in \mathcal{F} \Rightarrow \beta$ es base de filtro sobre X
- 2. Si $\exists F \in \mathcal{F} \ni F \cap E = \emptyset \Rightarrow B'$ es base de filtro sobre X

Teorema 2.39 (Teorema 32). Sea X un conjunto y U un filtro sobre X. Entonces los enunciados siguietnes son equivalentes:

- 1. U es ultrafiltro
- 2. Par acualquier $E \subset U \ni E \cap F \neq \emptyset$, $\forall F \in U$ se tiene que $E \in U$
- 3. Si $E \subset X \Rightarrow E \in U$ o $X E \in U$
- 4. Si $A, B \in X$ y $A \cap B \in U \Rightarrow A \in U$ o $B \in U$

Teorema 2.40. Sean (X, τ) un espacio topológico, \mathcal{F} es filtro sobre X y $x \in X$. Entonces $F \to x$ s $\forall V \in N(x) \exists F \in \mathcal{F} \ni F \subset V$

Teorema 2.41. Sea X un espacio topológico. $x \in X$ y \mathcal{F} un filtro sobre $X \ni F \to x$. Si G es un filtro sobre $X \ni F \subset G \Rightarrow G \to x$ **Notación:** $\mathcal{F} \succ x$

Teorema 2.42. Sean X un espacio topológico, \mathcal{F} un filtro sobre X, β una base de filtro para \mathcal{F} y $x \in X$. Entonces $\mathcal{F} \to x$ ssi $\beta \to x$

Teorema 2.43. Sean X un espacio topológico, $x \in X$ y \mathcal{F} un filtro sobre X. Los enunciados siguientes son equivalentes:

- 1. xes un punto de acumulación de \mathcal{F} i.e. $\mathcal{F} \succ x$
- 2. Existe un filtro G en x $\ni \mathcal{F} \subset G$ y $G \to x$
- 3. $x \in \overline{F}, \forall F \in \mathcal{F}$. Es decir, $x \in \bigcap_{F \in \mathcal{F}} \overline{F}$

Teorema 2.44. Sea X un espacio topológico, U un ultrafiltro sobre x y $x \in X$ entonces $U \succ x$ ssi $U \to x$

Teorema 2.45. Sea X un espacio topológico $x \in X$ y $A \subset X$. Entonces, $x \in \overline{A}$ ssi existe un filtro \mathcal{F} sobre $X \ni F \to x$ y $A \in \mathcal{F}$

Teorema 2.46. Sean X,Y espacios topológicos, $x \in X$ y $f: X \to Y$ una función. Entonces f es continua en x ssi la base de filtros $B_{f(N(x))} = \{f(V) : V \in N(x)\}$ converge a f(x)

Teorema 2.47. Sea $I \neq \emptyset$ y $\{X_i, \tau_i\} \ni i \in I$ una colección de espacios topológicos. Sean $(\prod_{i \in I} x_i, \tau_p)$ el espacio producto y \mathcal{F} un filtro sobre $\prod_{i \in I} x_i$. Entonces $\mathcal{F} \to x$ ssi $\prod_i (\mathcal{F}) \to \prod_i (x)$ en $(X_i, \tau_i) \forall i \in I$

Teorema 2.48. Sea X un espacio topológico. Los enunciados siguientes son equivalentes:

- 1. X es compacto
- 2. Toda colección **A** de conjuntos cerrados no vacios con la PIF, cumple que $\cap A \neq \emptyset$
- 3. Para todo filtro \mathcal{F} sobre $X \exists x \in X \ni \mathcal{F} \succ x$
- 4. Todo ultrafiltro sobre X converge

Teorema 2.49. Tikonov Sea $I \neq \emptyset$ y $\{X_i, \tau_i\} \ni i \in I$ una colección de espacios topológicos. Entonces $(\prod_{i \in I} x_i, \tau_p)$ es compacto ssi x_i es compacto $\forall i \in I$

Lema 2.4. Sean X y Y espacios topológicos, $f: X \to Y$ un mapeo y U un ultrafiltro sobre X. Entonces F(U) *Filtro generado por $\beta = \{f(F): F \in U\}^*$ es un ultrafiltro sobre Y

Teorema 2.50. Si X y Y son espacios topológicos y $f: X \to Y$ es un mapeo continuo sobre yectivo y abierto o cerrado, la topología τ de Y es la topología Cociente τ_f

Teorema 2.51. Sea Y un espacio topológico dotado de la topologia cociente, inducida por el mapeo $f: X \to Y$. Entonces un mapeo arbitrario $g: Y \to Z$ es continuo ssi $g \circ f: X \to Z$ es continuo

Teorema 2.52. 1. U es una topología para X/G

- 2. Si X/G tiene la topología cociente, entonces p es continua. * $p: X \to X/G \ni p(x) = [x]^*$
- 3. Si V es una topología para $X/G \ni p$ es continua, entoncres $V \subset U$
- 4. Si X/G tiene la topología cociente y su $A \subset X/G \ni p^{-1}(A)$ es cerrado de X \Rightarrow A es cerrado en X/G

Clase virtual 26-05-23

Lema 2.5. $\forall A \subset Y, \Phi_f^{-1}(A) = p(f^{-1}(A))$

Lema 2.6. $\forall B \subset X / G_f$, $\Phi_f(B) = f(p^{-1}(B))$

Teorema 2.53. Sean $f: X \to Y$ continua y sobreyectiva y X / G_f dotado de la topología cociente. Entonces $\Phi_f: X / G_f \to Y$ es continua

Teorema 2.54. Suponga que $f: X \to Y$ es continua y sobreyectiva. Si f es abierta o cerrada, entonces

$$\Phi / G_f \to Y$$

es un homeomorfismo

Teorema 2.55. Si X es compacto, el espacio Y es Hausdorff y $f: X \to Y$ es continua y sobreyectiva, $\Rightarrow \Phi_f: X / G_f \to Y$ es homeomorfismo

Teorema 2.56. Los enunciados siguientes son equivalentes:

- 1. X es regular
- 2. Si U es un abierto de X y si $x \in U$ entonces existe un abierto V de $x \ni x \in V$ y $\overline{V} \subset U$
- 3. Cada $x \in X$ tiene una base de vecindades que consiste de cerrados