vapor pressure- and saturation curve

	Column	1	2	3	4	5	6	7	8	9	10
	Symbol	S	1	D	s/l =R	S/D=W	Dq	q	DP	Р	Ps
Nr.	Material	m		g m*h*kPa		m*h*kPa g	°C	°C	kPa	kPa	kPa
								20.0		1.0519	2.34
	thermal resistance Ri				0.130		0.1	19.9	0.0000	1.0519	2.33
29	Galvanized Steel	0.008	60.000	0.001	0.000	8.00	0.0	19.9	-0.1289	1.1808	2.33
32	PUR insulation	0.2	0.020	0.040	10.000	5.00	4.9	15.0	-0.0806	1.2614	1.74
29	Galvanized Steel	0.008	60.000	0.001	0.000	8.00	0.0	15.0	-0.1289	1.3903	1.74
	T				0.010						
This is	Thermal resistance Ru or Rv for ventilated		0.040	04.00	17						
This line is calculated design thermal resistance and diffusion resistance: 10.170 21.00 Kpa						14// 0					
in This line is the calculated constructions U-Value: 0.098 W/(m²K) transmission loss: 0 W/m²						W/m²					

http://www.correspondence.school.nz/departments/horticulture/ht106_p7.html

http://geography.uwo.ca/research/great_lakes_geographer/GLG_volume8/Schaetzl_Tomczak.pdf

Values retrieved automatic from Moisture Calculation table

$$G \text{ in } = \begin{array}{c} -\frac{P_1 - P_X}{W_1} & *24*225 = & g/m^2 \end{array}$$

G out =
$$\frac{-Px - Pu}{W_2}$$
 *24*225 = g/m^2

accumulation in heat season = g/m²

values for P _{ind} , P _{is} and P _{us} is vagary					
Pindv, Pis, Pus°C	P_{indv}	P _{is}	P _{us}		
12	0.000	0.863	0.863		
input moisture percer	80'	60	60		

$$G_1 = \frac{P_{\text{indv}} - P_{\text{is}}}{W_4}$$
 *24*140 = g/m²

$$G_2 = \frac{P_{indv} - Pus}{W_2}$$
 *24*140 = g/m²

g/m² dryout in summer period =

g/m² yearly moisture accumulation = 0.0

values to tabel diffusion numbers retrieves in the green humidity compendium values got from DS 418 calculation of the buildings heat loss

values transmitted to humidity calculation schedule by enter material number directly in humidity calculation the left-column the other values are transferred automatically

MTR. Material decripsion		permeability	I	
NR.	•	g / m × h × kPa	W/m/K	
		3		
1	Asbestos-cement sheet 700	0.040	0.200	
2	Concrete 2300	0.025	1.600	
		0.110	0.170	
4		0.060	0.800	
5	Calcium sand stone	0.070	0.950	
_		0.040	0.900	
7		0.075	0.130	
8	Hard insulation Against Soil	0.122	0.050	
9		0.500	0.039	
10	Fiberglass A	0.500	0.039	
	Fiberglass B	0.300	0.042	
	Aerated concrete	0.075	0.220	
13	polyurethane,Against Soil	0.250	0.050	
	Foamglas	0.000	0.046	
	chipboard	0.015	0.160	
16	Tile Brick 1800 inner wall	0.068	0.670	
17	Tile brick 1800 external wall	0.072	0.780	
18	Wood	0.010	0.120	
19	woodfiberboard, asfaltimp.	0.031	0.120	
20	Woodfiberboard, semi-hard	0.036	0.120	
21	woodfiberboard, hard	0.031	0.120	
22	Air 50 mm thickness	0.680	0.29	
23	Air 100 mm thickness	0.680	0.29	
24	polystyrene above soil	0.014	0.39	
25	clinker Concrete	0.075	0.13	
	fiberglass lamella roof board	0.350	0.042	
27	Air 20 mm	0.680	0.13	
28	Fiber Glass	0.450	0.039	
29	Galvanized Steel	0.001	60	
30		0.001	17	
31	Polystyrene in soil	0.014	0.34	
32	PUR insulation	0.040	0.02	
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
_	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
	Write new material.			
46	Write new material.			

		_	•
47	Write new material.		
48	Write new material.		
49	Write new material.		
50	Write new material.		
51	Write new material.		
52	Write new material.		
53	Write new material.		
54	Write new material.		
55	Write new material.		
56	Write new material.		
57	Write new material.		
58	Write new material.		
59	Write new material.		
60	Write new material.		
61	Write new material.		
62			
63			
64			
65	Write new material.		
66			
	Write new material		
67			
68	Write new material.		
69	Write new material.		
70	Write new material.		
71	Write new material.		
72	Write new material.		
73	Write new material.		
74			
75			
76			
77			
78	Write new material.		
80	Write new material.		
81	Write new material.		
82	Write new material.		
83	Write new material.		
84	Write new material.		
85	Write new material.		
86	Write new material.		
87	Write new material.		
88	Write new material.		
89	Write new material.		
90	Write new material.		
91	Write new material.		
92	Write new material.		
93	Write new material.		
94	Write new material.		
95	Write new material.		
96			
97			
98	Write new material.		
99	Write new material.		

values f	or table diffusibility receives in The green I	numidity compendium		
	hat there only need to be entered into the t		electing membranes	with I value
	ues are transferred to moisture calculation			
direct in	humidity calculation scheme left column	the other values transfers aut	omatic	
MEMBR	ANE:	diffusibility W		
		m² * h * kPa/		
Mtr.nr.		g g	I	
		9		
300	Al as Karfi	70.0		
	Alum-Kraft	70.0		
	Polyethylenfolio 0.05 mm	35.0 70.0		
	Poluethylenfolio 0,1 mm	1400.0		
	special membranes asphalt layer	140.0		
	Type med latex bag side	0.28		
	Air thigh asphalt cardboard	7.0		
	Vinyl Flooring	28.0		
	Linoleum	7.0		
310	Linolodin	7.0		
	Alkydolipaint	3.6		
	Cementpowderpaint	0.14		
	ChlorkautchukPaint	14.0		
	limewashing	0.14		
	rubberfacadepaint	0.28		
	Oil Emulsionspaint	0.14		
	plastic paint	0.5		
	polyurethane varnish	14.0		
	silicate paint	0.28		
	Mat alkydwallpaint	1.4		
	floor varnish on alkyd basis	21.0		
	write new membrane			
323	Cardboard1	310.0		
324	cardboard2	672.0		
325	Folio	105.0		
326	floor cardboard	4.2		
327	write new membrane			
328	write new membrane			
329	write new membrane			
330	write new membrane			
331	write new membrane			
	write new membrane			
	write new membrane			
_	write new membrane			
-	write new membrane			
_	write new membrane			
	write new membrane			
	write new membrane			
_	write new membrane			
-	write new membrane			
	write new membrane			
	write new membrane			
	write new membrane			
	write new membrane			
-	write new membrane			
	write new membrane			
	write new membrane			
	write new membrane write new membrane			

350 write new membrane

This table lookup only have the desired effect if the cursor if entry is made and placed				
	input field next to outside transition thermal resistance. (Red box)			
TABL	E OVER THERMAL RESISTANCE RV FOR EXTERNAL VENTILATED CLA	ADDING,		
NUM-	CLADDING			
MER	FACADE CLADDING + VENTILATED CAVITY:	m²K/W		
1	Steel- or metal plate.	0.100		
2	Fibercementpanels, ca. 10 mm.	0.200		
	Facing wall tile, calcareous sandstone			
	lightweight concrete.	0.300		
4	wood facing. 25 mm.	0.300		
	ROOFING + VENTILATED ATTIC OR CAVITY:			
	Steel- or metal plate.	0.100		
7	Fibercementslate or plate on lath.	0.200		
	roof tile med fill gaps between bricks with mortar joint on lath.	0.200		
9	roof tile on lath med airthight fill gaps between bricks with mortar.	0.300		
	asphalt on roof boarding of wood, ca. 25 mm.	0.300		
11	tacher roof med airthight fill gaps between bricks with mortar.	2.000		
12				
	TRANSITIONAL THERMAL RESISTANCE FOR WALL, ROOF OR. SIMILA			
14	Constructionpart in other	0.090		
15	Iceland Ru or Rv for ventilated cavity walls or roof cavity	0.000		
16	·			