FEATURE SPACES

Prof. Alexander Huth 10/12/2017

REMINDER

- * Homework 1 due Tuesday! (10/17)
- * Office hours Monday 9:30-11am in NHB 3.134

SYSTEM IDENTIFICATION

$$Y = f(X)$$

* What kind of a function is f?

SYSTEM IDENTIFICATION

* Linear model

$$Y = X\beta$$

* Linearized model

$$Y = \mathbb{L}(X)\beta$$

* Nonlinear model

$$Y = \Theta(X)$$

SYSTEM IDENTIFICATION

- * Linear model
 - * cheap, pointless
- * Linearized model
 - * sweet spot, but requires hypothesis!
- * Nonlinear model
 - * wildly expensive, difficult

LINEARIZING TRANSFORMATION

FEATURE SPACE

HYPOTHESIS

LINEARIZED MODELS

LANGUAGE

"Now this is a story all about how my life got flipped-turned upside down..."

what kinds of features?

LANGUAGE

some types of features

Frequency (Hz) or Period (s)

LANGUAGE

"Now this is a story all about how my life got flippedturned upside down..." syntax ▶semantics words *****narrative emotion waveform phonemes intonation spectrum articulation

HOW DO WE GET FEATURES?

- * Linguistics
 - * Parts of speech, thematic roles, etc.
- * NLP / machine learning
 - * Models of syntax, semantics, etc.

SYNTAX PART OF SPECH

```
"Now this is a story all about how my life {adv} {pn} {v} {dt} {n} {adj} {prep} {adv} {pn} {n} got flipped-turned upside down..." {v-p} {v-p} {v-p} adv 10000100
```

parts of speech

adv	1	0	0	0	0	0	1	0	0	
pn	0	1	0	0	0	0	0	1	0	
V	0	0	1	0	0	0	0	0	0	•
dt	0	0	0	1	0	0	0	0	0	
n	0	0	0	0	1	0	0	0	1	
•										

- * We get: a sequence of observed symbols ["now", "this", "is", "a", "story", ...]
- * We think: there are hidden, underlying states

```
[a, b, c, d, e, ...]
```


 $P(x_1|z_1)$ multinomial distribution

 $P(x_1|z_1)$ multinomial distribution

Hidden state transitions

Hidden state transitions θ

Emission (

	z=1	z=2	z=3
x=now	0.7	0.0	0.1
x=this	0.0	0.6	0.0
x=is	0.3	0.0	0.9
x=a	0.0	0.4	0.0

- * Learning time: we know x, what are theta and phi?
- * Put differently: find theta and phi that maximize probability of observed x
- * The easy way: Markov chain Monte Carlo (MCMC)
 - * (Different kind of Markov chain)

- * Inference time: we know x, we know theta, we know phi; what is $P(z \mid x)$?
- * Finally, use inferred state probabilities as features in a linearized model!

NEXT TIME

* Semantics!