

5.0 Introduction to Classification and Model Evaluation

Eugene Rex L. Jalao, Ph.D.

Associate Professor

Department Industrial Engineering and Operations Research
University of the Philippines Diliman

@thephdataminer

Module 1 of the Business Intelligence and Analytics Track of UP NEC and the UP Center of Business Intelligence

Module 1 Outline

- 1. Intro to Business Intelligence
 - Case Study on Selecting BI Projects
- 2. Data Warehousing
 - Case Study on Data Extraction and Report Generation
- 3. Descriptive Analytics
 - Case Study on Data Analysis
- 4. Visualization
 - Case Study on Dashboard Design
- 5. Classification Analysis
 - Case Study on Classification Analysis
- 6. Regression and Time Series Analysis
 - Case Study on Regression and Time Series Analysis
- 7. Unsupervised Learning and Modern Data Mining
 - Case Study on Text Mining
- 8. Optimization for BI

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

Dataset Structure

Attributes/Columns/Variables (p + 1)

Refund **Marital Taxable** Cheat **Status** Income Yes Single 125K No Married 100K 2 No No No Single 70K 3 No Yes Married 120K 4 No 95K 5 No Divorced Yes 6 No Married 60K No Yes 220K Divorced No 85K Yes 8 No Single Married 75K No 9 No 10 No Single 90K Yes

Rows/ Instances /Tuples /Objects (n)

Predictor Variables/Independent Variables/Control Variables

Response Variable/
Dependent Variable/
Class Variable/ Label
Variable/ Target Variable

Introduction to Classification

Definition 5.1: Classification

- Given a collection of records
 - Multiple **predictor variables** usually $x_1, x_2, ... x_p$
 - One categorical response variable usually y
- Find a model for predicting the class variable from the predictor variables.
 - Use historical "training data" to build the model
- Goal: previously unseen records should be predicted a class as accurately as possible.
 - Use "testing data" to test the accuracy of the model

Introduction to Classification

Figure 5.1: A Classification Task

Introduction to Classification

- Some Classification Techniques
 - Decision Tree and Rule-Based Methods
 - Similarity Based Reasoning
 - Neural Networks
 - Support Vector Machines
 - Ensembles

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

Definition 5.2: Decision Trees

- Decision tree builds classification models in the form of a tree structure.
- It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed.
- The final result is a tree with decision nodes and leaf nodes.
 A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a classification or decision.

Example 5.1: Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Example 5.1 (Cont.): Example of a Decision Tree

Definition 5.3: Prediction Confidence

- Prediction Confidence: Level of Confidence we get for each prediction rule
- Usually computed on every classification algorithm

Example 5.2 Calculating Prediction Confidence

- IF Refund = No and Marital Status = Married THEN Cheat= No (10/3)
- The rule is correct 10/13 times
 - There are 13 people that have profile: Refund = No and Marital Status =
 Married
 - Out of the 13 people that have profile Refund = No and Marital Status = Married, 10 of them have Cheat = No and 3 have Cheat = Yes

- We always predict the majority
 - 100 yes, 0 no = Prediction is Yes
 - 10 yes, 9 no = Prediction is Yes
 - 10 yes, 10 no = toss coin, Decision Tree is no good in predicting class

- Decision Tree Generation Algorithms
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

- Importing Data
- Learn a Decision Tree from the Data
- Interpret the Results
 - Bank Data.csv
 - Independent Variables
 - Age, region, income, sex, married, children, car, save_act, current_act, and mortgage
 - Response
 - did the customer buy a PEP (Personal Equity Plan) after the last mailing (YES/NO)?

- A leading bank's marketing department would like to profile its clients to know which factors lead to the purchase of one of its flagship products: PEP (Personal Equity Plan)
- 600 Clients where gathered from the company's various databases each having variables such as: age, region, income, sex, married, children, car, save_act, current_act, and mortgage

Figure 5.3: Classification Modelling Workflow

Figure 5.4: Classification Application Workflow

Type the following lines of code in RStudio and run.


```
> J48Model
J48 pruned tree
children <= 1
    children <= 0
        married = NO
            mortgage = NO: YES (48.0/3.0)
            mortgage = YES
                save\_act = NO: YES (12.0)
                save\_act = YES: NO (23.0)
        married = YES
            save\_act = NO
                mortgage = NO
                    income \leq 21506.2
                         age \leq 41: NO (11.0/1.0)
                         age > 41: YES (5.0/1.0)
                    income > 21506.2: NO (20.0)
                mortgage = YES: YES (25.0/3.0)
            save_act = YES: NO (119.0/12.0)
    children > 0
        income \leq 15538.8
            age \leq 41: NO (22.0/2.0)
            age > 41: YES (2.0)
        income > 15538.8: YES (111.0/5.0)
children > 1
    income \leq 30404.3: NO (124.0/12.0)
    income > 30404.3
        children \leq 2: YES (51.0/5.0)
       children > 2
            income \leftarrow 44288.3: NO (19.0/2.0)
            income > 44288.3: YES (8.0)
Number of Leaves :
                        15
Size of the tree :
                         29
```


To export the plot, click on Export —>Save as Image

- Set the Width to 2000 and Height to 1000.
- Click on Save.
- An image of the plot is saved in the working directory.

20

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

- Rule Based Methods
- Support Vector Machines
- Ensembles

Definition 5.3: Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

ERLJalao Copyright for UP Diliman

Application of Rule-Based Classifier:

- A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Type the following lines of code in RStudio and run.

- Rule Based Methods
- Support Vector Machines
- Ensembles

Definition 5.4: Support Vector Machine

 A Support Vector Machine (SVM) performs classification by finding a plane that maximizes the margin between the two classes. The vectors (cases) that define the plane are the support vectors.

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- Most popular optimization algorithms for SVMs use decomposition methodologies
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

Business Scenario: Credit Scoring

- Credit scoring is the practice of analyzing a persons background and credit application in order to assess the creditworthiness of the person
- The variables *income* (yearly), *age*, *loan* (size in euros) and *LTI*(the loan to yearly income ratio) are available.
- The goal is to devise a model which *predicts*, whether or not a default will occur within 10 years.

http://www.r-bloggers.com/using-neuralnetworks-for-credit-scoring-a-simpleexample/

Business Scenario: Credit Scoring

Type the following lines of code in RStudio and run.

Business Scenario: Credit Scoring

>	> creditsettestSMO					
	income	age	loan	LTI	default10yr	predictions
1	42710	46	6104	0.143	<na></na>	0
2	66953	19	8770	0.131	<na></na>	1
3	24904	57	15	0.001	<na></na>	0

- Rule Based Methods
- Support Vector Machines
- Ensembles

Definition 5.5: Ensembles

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
- Wisdom of the Crowd

Definition 5.6: Parallel Ensembles

- Parallel: Combines approximately independent, diverse base learners
 - Different learners should make different errors
 - Ensemble can outperform any one of its components
 - Variance reduction method useful for unstable, high-variance learners (such as trees)
 - Bagging, Random Forest (RF) examples

Definition 5.7: Random Forests

- The random forest (<u>Breiman</u>, 2001) is an ensemble of decision trees
- Trees are combined by average (regression) or voting (classification)
- RF injects additional randomness
- Averaging minimizes overfitting (no prunning)
- Tree provides a class probability estimates so that weighted votes can be used

- The Random Forests Algorithm
 - For some number of trees T
 - Sample N cases at random with replacement to create a subset of the data at each node:
 - For some number p, p predictor variables are selected at random from all the predictor variables.
 - The predictor variable that provides the best split, according to some objective function, is used to do a binary split on that node.
 - At the next node, choose another p variables at random from all predictor variables and do the same.

Figure 5.6: Random Forest Model

- ullet Selecting p variables randomly reduces correlation between trees
 - Random splitter selection: p = 1
 - Breiman's bagger: p = total number of predictor variables
 - Random forest: p << number of predictor variables. Brieman suggests three possible values for m: $\frac{1}{2}\sqrt{p}$, \sqrt{p} , and $2\sqrt{p}$

Business Scenario: Income Data

Type the following lines of code in RStudio and run.

Some Notes on Choosing Classification Models

- Need to go back to the initial problem/objective
- If problem is to find rules for data summarization
 - Use Decision Trees, Rule Classifiers
 - Weakness: Relative weak predictive power
- If problem is to predict accurately
 - Use SVM or Random Forests
 - Weakness: Black box

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

Definition 5.8: Model Evaluation

 Model Evaluation is a methodology that helps to find the best model that represents our data and how well the chosen model will work in the future.

Figure 5.7: Model Evaluation Workflow

Definition 5.9: Error

Error: if predicted class is not equal to actual class

$$e(t) = 1 if f(x) \neq y \tag{5.1}$$

- Re-substitution errors:
 - error on training data
- Generalization errors:
 - error on unseen data

Figure 5.8: Re-Substitution Errors

Figure 5.9: Generalization Errors

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Figure 5.15: Confusion Matrix

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	c (FP)	d (TN)	

Most widely-used metric:

- Limitation of Accuracy
 - Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Figure 5.16: Cost Matrix

Example 5.4: Cost Example

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
OLAGO	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
OLAGO	-	60	250

Model M ₂	PREDICTED CLASS		
		+	•
ACTUAL CLASS	+	250	45
CLASS	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

ERLJalao Copyright for UP Diliman Cost = 4255 eljalao@up.edu.ph

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Holdout
 - Reserve 2/3 for training and 1/3 for testing

Generalization errors: error on unseen data

Type the following lines of code in RStudio and run.

```
bankdata = read.csv("bankdata.csv")
sample <- floor(0.67 * nrow(bankdata))</pre>
set.seed(123)
train_ind <- sample(seq_len(nrow(bankdata)),
                     size = sample)
bankdatatrain <- bankdata[train_ind, ]</pre>
bankdatatest <- bankdata[-train_ind, ]</pre>
J48ModelHoldout <- J48(pep ~ age + sex+ region + income
                + married + children + car
                + save_act+ current_act+ mortgage
                 , data=bankdatatrain)
evaluate_Weka_classifier(J48ModelHoldout,
                          newdata = bankdatatest)
```

```
> evaluate_Weka_classifier(J48ModelHoldout,
                           newdata = bankdatatest)
=== Summary ===
Correctly Classified Instances
                                       177
                                                          89.3939 %
Incorrectly Classified Instances
                                         21
                                                          10.6061 %
Kappa statistic
                                         0.7812
Mean absolute error
                                         0.1677
Root mean squared error
                                          0.3201
Relative absolute error
                                         34.3219 %
Root relative squared error
                                        64.7738 %
Total Number of Instances
                                        198
=== Confusion Matrix ===
       b <-- classified as
 106 8 |
             a = NO
      71 I
             b = YES
```

6

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

Case Study

- ChurnData.xlsx
- Generate a Classification Process that can predict if the customer will churn(y) or not (n)
- Identify business rules that to profile subscribers to minimize churn.

Outline for this Session

- Introduction to Classification
- Decision Trees
- Software Use
- Alternative Classification Models
- Model Evaluation and Validation
- Case Study

References

- Tan et al. Intro to Data Mining Notes
- Runger, G. IEE 520 notes
- C4.5 Data: UCI Data Repository

