UNIVERSITE LIBANAISE FACULTE DE GENIE

Examen d'entrée 2009-2010

Physique

Durée: 2 heures 12 juillet 2009

I- [20 pts] Détermination des caractéristiques (L, r) d'une bobine

Dans le but de déterminer les caractéristiques r et L d'une bobine, on réalise le circuit schématisé ci-contre comportant la bobine (L, r), un conducteur ohmique de résistance R=2,5 Ω , un générateur de f.é.m constante E=6 V et de résistance négligeable et un interrupteur K.

À la date $t_0 = 0$, on ferme l'interrupteur K. À une date t, le circuit est parcouru par un courant d'intensité i.

(La solution de cette équation est de la forme: $i=I_0(1-e^{-\frac{\iota}{\tau}})$, où I_0 et τ sont des constantes.

- i) Déterminer, en fonction des données, les expressions de I₀ et τ.
- ii) Donner, en fonction du temps, l'expression de la tension u_{MQ}.
- 2. Les variations des tensions u_{NQ} et u_{MQ} , en fonction du temps, sont données par l'oscillogramme ci-contre.
 - a) Préciser, en le justifiant, la courbe qui donne l'évolution de u_{MQ} en fonction du temps.
 - b) Déterminer la valeur de r et celle de I₀.
- 3. a) Montrer que l'équation de la tangente à la courbe (2) en un point d'abscisse t' est donnée par:

$$u = - \; \frac{RI_0}{\tau} \; e^{-\frac{t'}{\tau}}(t - t') - RI_0(1 - e^{-\frac{t'}{\tau}}). \label{eq:u}$$

- b) i) Montrer que cette tangente coupe l'asymptote à cette courbe en un point d'abscisse $t=t'+\tau$.
 - ii) En déduire la valeur de τ et celle de L.
- 4. Pour s'assurer des valeurs de r et L, on s'arrange pour obtenir la tension u_S , avec $u_S = u_{NQ} + u_{MQ}$.
 - a) Donner l'expression de us en fonction des données.
 - b) Déterminer, en utilisant la figure 3, la valeur de us à la date $t = \tau$.
 - c) En déduire la valeur de L et celle de r.

Les quinze isotopes connus de plutonium sont radioactifs alpha sauf le plutonium 241 qui est émetteur bêta; les isotopes 239 et 241 sont également 0 fissiles. Le plutonium 238 a des applications commerciales et militaires.

Données: Extrait de la classification périodique: ${}_{92}\text{U}$; ${}_{93}\text{Np}$; ${}_{94}\text{Pu}$; ${}_{95}\text{Am}$; ${}_{96}\text{Cm}$; $c=2,9979\times10^8$ m/s $1 \text{ MeV} = 1,6022\times10^{-13}$ J; $1 \text{ u} = 1,66054\times10^{-27}$ kg = $931,5 \text{ MeV/c}^2$; $m_n = 1,0087$ u; $m_P = 1,0073$ u.

Masse molaire atomique du plutonium 238: $M = 238 \text{ g} \cdot \text{mol}^{-1}$; constante d'Avogadro: $N_A = 6,022 \times 10^{23} \text{ mol}^{-1}$.

A. Le plutonium 238 radioactif α

UNIVERSITE LIBANAISE FACULTE DE GENIE

Un stimulateur cardiaque contient m = 130 mg de l'isotope 238 de plutonium Pu dont la demi-vie vaut $t_{1/2} = 87,8$ ans. L'énergie libérée par chaque désintégration permet au stimulateur de produire de l'énergie électrique.

- 1. a) En précisant les lois de conservation utilisées, écrire l'équation de la désintégration d'un noyau de plutonium 238.
 - b) Cette réaction est accompagnée par l'émission d'un rayonnement gamma. À quoi est due cette émission?
- 2. a) Calculer le nombre de noyaux N₀ initialement présents dans le stimulateur.
 - b) Déduire l'activité initiale A₀ de ce stimulateur.
 - c) Le stimulateur fonctionne correctement tant que son activité reste supérieure ou égale à 5,76×10¹⁰ Bq. Calculer sa durée de fonctionnement normal dans ces conditions.

B. Le plutonium 239 fissile

Le plutonium 239, sous l'impact d'un neutron, peut subir une réaction de fission nucléaire. L'équation de cette réaction s'écrit: ${}_{0}^{1}$ n + ${}_{94}^{239}$ Pu $\longrightarrow {}_{52}^{135}$ Te + ${}_{2}^{102}$ Mo + y ${}_{0}^{1}$ n

Le tableau ci-contre donne les énergies de liaison E_ℓ des trois noyaux.

 Noyaux
 $^{239}_{94}$ Pu
 $^{135}_{52}$ Te
 $^{102}_{Z}$ Mo

 E_{ℓ} (MeV)
 1,79×10³
 1,12×10³
 8,64×10²

- 1. Trouver les valeurs de y et Z.
- 2. a) Écrire l'expression donnant l'énergie de liaison E_ℓ d'un noyau A_ZX en fonction du défaut de masse et de c.
 - b) Donner l'expression de la masse de chacun des trois noyaux ci-dessus en fonction de son énergie de liaison E_{ℓ} , de la masse m_n d'un neutron, de la masse m_P d'un proton et de c.
- 3. Déterminer, en MeV, l'énergie libérée par cette réaction.
- 4. a) Calculer l'énergie de liaison par nucléon E/A pour chacun des trois noyaux.
 - b) Tracer l'allure de la courbe d'Aston donnant les variations de E//A en fonction de A.
 - c) Indiquer l'emplacement approximatif des trois noyaux sur cette courbe.

III- [20 pts] Oscillateur-Accéléromètre

A- L'oscillateur horizontal

Un oscillateur horizontal, formé d'un mobile de masse $m = 2.5 \text{ mg} (2.5 \times 10^{-6} \text{ kg})$, est lié à deux points fixes par l'intermédiaire de deux ressorts identiques, chacun de longueur à vide ℓ_0 et de raideur k = 0.25 N/m. À l'équilibre, la longueur de chaque ressort est $\ell_0 + \Delta \ell$.

Le centre d'inertie G du mobile peut se déplacer sur l'axe horizontal (O; \vec{i}), O étant la position de G à l'équilibre. L'oscillateur, initialement au repos, est mis en

oscillation à partir de la date $t_0 = 0$. À un instant t, la position de G est repérée par son abscisse x. Au cours du mouvement, les ressorts restent toujours étirés et les frottements sont négligeables. (Fig. 1)

- 1. a) Montrer qu'à la date t, l'énergie potentielle élastique a pour expression: $E_{Pe} = k\Delta \ell^2 + kx^2$.
 - b) Établir l'équation différentielle qui décrit les variations de x.
 - c) En déduire la valeur de la pulsation propre ω_0 de cet oscillateur.
- 2. À l'aide d'un système approprié, on enregistre les variations de la mesure algébrique de l'accélération \ddot{x} en fonction de x (fig. 2).
 - a) Montrer que ce graphique est en accord avec l'équation différentielle obtenue.
 - b) Déterminer, à partir du graphique, la valeur expérimentale ω_{exp} de la pulsation propre.

UNIVERSITE LIBANAISE FACULTE DE GENIE

B- Accéléromètre

Un camion, de masse 19 000 kg circulant à 90 km.h⁻¹, est heurté à l'arrière par une voiture de masse 15μg kg circulant à 130 km.h⁻¹. Le choc est complètement inélastique (choc mou) et les deux véhicules sont équipés d'airbags.

- 1. Montrer que la valeur V de la vitesse de l'ensemble juste après le choc vaut V = 25.8 m/s.
- 2. Sachant que la durée du choc est de 40 ms, déterminer:
 - a) l'accélération, supposée constante, de chaque véhicule;
 - b) la force qu'exerce le camion sur la voiture.
- 3. Le fonctionnement d'un airbag est commandé par un accéléromètre (A), qui n'est autre que l'oscillateur déjà vu, capable de détecter toute accélération subie par le véhicule, c'est-à-dire toute variation de capacité ΔC d'un groupement de condensateurs convenablement branchés; le déclenchement de (A) se fait quand ΔC , et par suite la valeur de l'accélération, dépasse un certain seuil ($\Delta C_{seuil} = 3 \times 10^{-12} \, F$). La grandeur ΔC s'écrit sous la

forme $\Delta C = 2 \times 10^{-4} \text{ x}^2$ où x est l'abscisse de G. Le tableau ci-contre donne une estimation sur les éventuelles conséquences d'une collision sur les passagers d'un véhicule, chaque passager utilisant la ceinture de sécurité.

a) Que va être l'état d	e chaque conducteur?
-------------------------	----------------------

b) Dire, en le justifiant,	si l'airbag va s'ouvrir.
----------------------------	--------------------------

accélération	Estimation d'éventuelles
acceleration	
	conséquences sur les pas <mark>sager</mark> s
100 m/s^2	Supportable pour des jeunes en
	bonne santé
150 m/s^2	Risque d'hémorragie interne
	avec lésions
200 m/s^2	aucune chance de survie

UNIVERSITE LIBANAISE FACULTE DE GENIE

Examen d'entrée 2009-2010

Solution de physique

Durée: 2 heures 12 juillet 2009

I- [20 pts] Détermination des caractéristiques (L, r) d'une bobine

	etermination des caracteristiques (L, r) d'une bobine	1
Partie de la Q.	Corrigé	Note
1.a	$u_{NM} = u_{NQ} + u_{QM}$; $= u_{NQ} = ri + L\frac{di}{dt}$; et $u_{QM} = Ri$.	2.00
	$\Rightarrow E = Ri + ri + L\frac{di}{dt}; \Rightarrow E = (R + r)i + L\frac{di}{dt}$ $\frac{di}{dt} = \frac{I_0}{\tau} e^{-\frac{t}{\tau}}; \Rightarrow E = (R + r)I_0(1 - e^{-\frac{t}{\tau}}) + L\frac{I_0}{\tau} e^{-\frac{t}{\tau}}. \text{ Identification:}$	
1.b.i		3.00
	$\Rightarrow E = (R + r) I_0 \Rightarrow I_0 = \frac{E}{R + r} \text{ et } r + R = \frac{L}{\tau} \Rightarrow \tau = \frac{L}{r + R}$	
1.b.ii	u_{MQ} . = - Ri = - RI ₀ (1 - $e^{-\frac{t}{\tau}}$)	1.00
2.a	À la date $t_0=0$, $(u_{MQ})_0=0$ et à partir de 5τ $(u_{MQ})_{5\tau}=-RI_0<0$, c'est la courbe (2), ou bien	1.00
2.b	U_{NQ} = ri + L $\frac{di}{dt}$, À partir de 5τ (u_{NQ}) _{5τ} = rI ₀ = 3 V; or (u_{MQ}) _{5τ} = -3 V	2.50
	$\Rightarrow rI_0 = -(-RI_0) \Rightarrow r = R = 2.5 \Omega \text{ et } I_0 = \frac{E}{R+r} = \frac{6}{2.5+2.5} = 1.2 \text{ A}$	A
3.a	La pente de la tangente est donnée par: $\frac{du_{MQ}}{dt} = -R\frac{di}{dt} = -\frac{RI_0}{\tau}e^{-\frac{t}{\tau}}$,	2.50
	À la date t', elle vaut: $\frac{du_{MQ}}{dt} = -\frac{RI_0}{\tau} e^{-\frac{t'}{\tau}}$	1
	$u = at + b$, équation de la tangente; $u = -\frac{RI_0}{\tau}e^{-\frac{t'}{\tau}t} + b$	
	Pour $t = t'$: $u = -RI_0(1 - e^{-\frac{t'}{\tau}})$. En remplaçant: $-RI_0(1 - e^{-\frac{t'}{\tau}}) = -\frac{RI_0}{\tau}e^{-\frac{t'}{\tau}}t' + b$	
	Ainsi $b = \frac{RI_0}{\tau} e^{-\frac{t'}{\tau}} t' - RI_0 (1 - e^{-\frac{t'}{\tau}}) \Rightarrow u = -\frac{RI_0}{\tau} e^{-\frac{t'}{\tau}} t + \frac{RI_0}{\tau} e^{-\frac{t'}{\tau}} t' - RI_0 (1 - e^{-\frac{t'}{\tau}})$	
	et par suite: $u = -\frac{RI_0}{\tau} e^{-\frac{t'}{\tau}} (t - t') - \frac{RI_0(1 - e^{-\frac{t'}{\tau}})}{r}$	
3.b.i	Avec l'asymptote, $u = -RI_0$; $\Rightarrow -RI_0 = -\frac{RI_0}{\tau} e^{-\frac{t'}{\tau}} (t - t') - RI_0 (1 - e^{-\frac{t'}{\tau}})$	1.50
	$\Rightarrow 1 = \frac{1}{\tau} e^{-\frac{t'}{\tau}} (t - t') + 1 - e^{-\frac{t'}{\tau}} \Rightarrow \frac{1}{\tau} e^{-\frac{t'}{\tau}} (t - t') - e^{-\frac{t'}{\tau}} = 0; \Rightarrow t = t' + \tau.$	
3.b.ii	D'après le graphique $\tau = 20 \text{ ms} = 0.02 \text{ s}.$	2.00

UNIVERSITE LIBANAISE FACULTE DE GENIE

	Mais $\tau = \frac{L}{r+R} \implies L = \tau(r+R) = 0.02 \times 5 = 0.1 \text{ H}$	
4.a	$u_S = u_{NQ} + u_{MQ} = -Ri + ri + L\frac{di}{dt} ; \Rightarrow u_S = L\frac{di}{dt}.$	1.50
4.b	À la date $t = \tau$, $u_S = 2.2 \text{ V}$	1.00
4.c	De la figure 2: à $t = \tau$, $i = 1,9/2,5 = 0,76$ A.	2.00
	$E = (R + r)i + L\frac{di}{dt} \Rightarrow E = \frac{L}{\tau}i + u_S; \text{ donc: } 6 = \frac{L}{0,02} \times 0.76 + 2.2$	
	\Rightarrow L = 0,1 H.	
	De même: $6 = (2.5 + r)0.76 + 2.2 \Rightarrow r = 2.5 \Omega$.	
		20

II- Le plutonium

Partie de la Q.	Corrigé	Note
A.1.a	$_{94}^{238}$ Pu \longrightarrow $_{Z}^{A}X + _{2}^{4}$ He	2.00
	Loi de conservation de Z: $94 = Z + 2 \Rightarrow Z = 92$;	
	Loi de conservation de A: $238 = A + 4 \Rightarrow A = 234$.	
	C'est un noyau d'uranium: ²³⁴ ₉₂ U	
A.1.b	Le noyau uranium est né dans un état excité. L'émission de γ est due à la désexcitation du noyau fils.	1.00
A.2.a	Formule, le nombre de noyaux $N_0 = (130 \times 10^{-3}/238) \times 6,022 \times 10^{23} = 3,289 \times 10^{20}$ noyaux	1.50
A.2.b	La constante radioactive $\lambda = \frac{\ln 2/t_{1/2}}{1/2} = 0.693/87.8 \times 365 \times 24 \times 3600) = 2.5 \times 10^{-10} \text{ s}^{-1}$. L'activité initiale: $A_0 = \lambda N_0 = 2.5 \times 10^{-10} \times 3.289 \times 10^{20} = 8.23 \times 10^{10} \text{ Bq}$	2.00
A.2.c	A = $A_0e^{-\lambda t}$; $\lambda t = \ln(A_0/A) = \frac{\ln(8,23 \times 10^{10}/5,76 \times 10^{10})}{100} = 0,357$ $\Rightarrow t = 0,357/2,5 \times 10^{-10} = 1,43 \times 10^9 \text{ s} = 45,3 \text{ ans.}$	2.50
B.1	${}^{1}_{0}n + {}^{239}_{94}Pu \longrightarrow {}^{135}_{52}Te + {}^{102}_{Z}Mo + y {}^{1}_{0}n$	2.00
	1. Loi de conservation de Z: $94 = 52 + Z + 0 \Rightarrow Z = 40$;	
	Loi de conservation de A: $239 + 1 = 135 + 102 + y \Rightarrow y = 3$.	
	${}_{0}^{1}n + {}_{94}^{239}Pu \longrightarrow {}_{52}^{135}Te + {}_{42}^{102}Mo + 3 {}_{0}^{1}n$	
B.2.a	$E_{\ell} = [Zm_P + (A-Z)m_n - m_X]c^2$	1.00
B.2.b	$m(^{239}_{94} Pu) = 94m_P + 145m_n - E_{\ell}(Pu)/c^2;$	1.50
	$m(_{52}^{135}\text{Te}) = 52m_P + 83m_n - E_{\ell}(\text{Te})/c^2;$	
	$m(^{102}_{42} Mo) = 42 m_P + 60 m_n - E_\ell(Mo)/c^2$	
B.3	$E = \Delta mc^2 = [m({}^1_0n) + m({}^{239}_{94}Pu) - [m({}^{135}_{52}Te) + m({}^{102}_{40}Mo) + 3 m({}^1_0n)]c^2$	3.00
	$E = [(94 - 52 - 42)m_P + (1 + 145 - 83 - 60 - 3) \ m_n - E_\ell(Pu)/c^2 + E_\ell(Te)/c^2 + E_\ell(Mo)/c^2]c^2$	

B.4.a	$\begin{split} E &= E_{\ell}(Te) + E_{\ell}(Mo) - E_{\ell}(Pu) \\ E &= 1,12 \times 10^3 + 8,64 \times 10^2 - 1,79 \times 10^3 = 194 \text{ MeV} \\ \frac{E_{\ell}}{A}(Pu) &= 1790/239 = 7,49 \text{ MeV/nucl\'eon;} \end{split}$	1.50
1//	$\frac{E_{\ell}}{A}$ (Mo) = 864/102 = 8,47 MeV/nucléon; $\frac{E_{\ell}}{A}$ (Te) = 1120/135 = 8,30 MeV/nucléon;	
B.4.b B.4.c	voir figure Euergie de liaison par nucléons A Nombre de nucléons A	2.00
		20

UNIVERSITE LIBANAISE FACULTE DE GENIE

III-

II-		
Partie de la Q.	Corrigé	Note
A.1.a	$E_{Pe} = \frac{1}{2}k(\ell - \ell_0)^2; E_{Pe} = \frac{1}{2}k(\Delta \ell + x)^2 + \frac{1}{2}k(\Delta \ell - x)^2 = k\Delta \ell^2 + kx^2$	1.50
A.1.b	Frottement négligeable, conservation de l'énergie mécanique de l'oscillateur: $Em = \frac{1}{2}mv^2 + kx^2 = constante$. Dérivée par rapport au temps: $mv\dot{v} + 2kx\dot{x} = 0$; $\Rightarrow m\ddot{x} + 2kx = 0$ et par suite on obtient l'équation différentielle: $\ddot{x} + \frac{2k}{m}x = 0$	2.50
A.1.c	Cette équation est de la forme $\ddot{x} + \omega_0^2 x = 0$, avec $\omega_0^2 = \frac{2k}{m}$ $\Rightarrow \omega_0 = \sqrt{\frac{0.5}{2.5 \times 10^{-6}}} = 447.2 \text{ rd/s}$	2.00
A.2.a	La courbe est portée par une droite de pente négative; ceci montre que \ddot{x} est une fonction linéaire de x, c'est à dire: $\ddot{x} = -\lambda x$ qui est en accord avec l'équation différentielle. $\ddot{x} = -\frac{2k}{m}x$	1.50
A.2.b	$-\lambda = \frac{\Delta \ddot{x}}{\Delta x} = -2 \times 10^5 = -\omega_{\rm exp}^2 \implies \omega_{\rm exp} = 447.2 \text{ rd/s}.$	2.00
B.1	Conservation de la quantité de mouvement: $m_C \vec{V}_C + m_v \vec{V}_v = (m_C + m_v) \vec{V}'$ Après projection: $m_C V_C + m_v V_v = (m_C + m_v) V \Rightarrow V = 25,83 \text{ m/s}$	2.50
B.2.a	$a_{C} = \frac{\Delta V}{\Delta t}$ Pour le camion l'accélération $a_{C} = \frac{\Delta V}{\Delta t} = \frac{25,83-25}{40\times 10^{-3}} = 20,325 \text{ m/s}^{2} \approx 20,3 \text{ m/s}^{2}.$ Pour la voiture l'accélération $a_{v} = \frac{\Delta V}{\Delta t} = \frac{25,83-25}{40\times 10^{-3}} = -257,5 \text{ m/s}^{2}$	2.50
B.2.b	Bilan des forces, $\sum \vec{F} = \frac{d\vec{P}}{dt}$; projection la force $F = \frac{\Delta P_v}{\Delta t} = m_v \frac{\Delta V_v}{\Delta t} = -3,86 \times 10^5 \text{ N}$	2.00
B.3.a	On a: $\Delta C_{seuil} = 2 \times 10^{-4} \text{ x}^2 = 3 \times 10^{-12} \Rightarrow x_{seuil} = 1,225 \times 10^{-4} \text{ m}.$ L'accélération seuil: $a_{seuil} = \ddot{x}_{seuil} = -\omega_0^2 x = -2 \times 10^5 \times 1,22 \times 10^{-4} = -24,5 \text{ m/s}^2.$ Pour le conducteur du camion, il se peut que rien ne lui arrive, tandis que le conducteur de la voiture il court un risque de mort.	2.50
B.3.b	L'airbag va s'ouvrir dans la voiture car $a_v > a_{seuil}$ et rien ne se passe dans le camion	1.00
		20