Introduction to Artificial Intelligence

CAI3013-3014

Learning Objectives

☐ At the end of the course, students will be able to:

CO1: Demonstrate fundamental understanding of the history of (AI) and its foundations

CO2: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation and learning.

CO3: Demonstrate proficiency developing applications in an AI language, expert system shell or data mining tool

CO4: Explain proficiency in apply scientific method to models of machine learning.

Bayes net I

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

■ Product rule

$$P(x,y) = P(x|y)P(y)$$

■ Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

Bayes Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

Example:

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Clinical result given

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

Today

- Independence
- Conditional independence
- Bayes nets!

Probabilistic Models

Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

Independence

• Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write:
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	0.5

$$P_2(T,W)$$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

$$P(W)$$
W P
sun 0.6
rain 0.4

$$\forall x, y : P(x, y) = P(x)P(y)$$

Example: Independence

N fair, independent coin flips:

$P(X_1)$		
Н	0.5	
Т	0.5	

TO (X7)

P(X	2)
Н	0.5
Т	0.5

D(X)

$$egin{array}{c|c} P(X_n) & & \\ H & 0.5 \\ \hline T & 0.5 \\ \hline \end{array}$$

$$\forall x, y : P(x|y) = P(x)$$

$$P(X_1,X_2,\ldots X_n)$$
 $2^n \left\{ egin{array}{c} P(X_1,X_2,\ldots X_n) & \cdots & \cdots \\ P(X_1,X_1,\ldots X_n) & \cdots & \cdots \\ P(X_$

CAI3014/188-Introduction to Artificial Intelligence- JJ/Dan Klein

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

- The same independence holds (whether got toothache) if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

```
if and only if:
```

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Hint: What is the common cause? That will be the evidence

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

• Chain rule:

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

Trivial decomposition:

P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

• With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =$$

 $P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position

T: Top square is red

B: Bottom square is red

G: Ghost is in the top

Givens:

D/	[T,B,G]	I = DI	<u>ر</u> ج۱	D/T	rla'	D/	'R I	G	١
Г(ָט,ס,ו	<i>)</i> – F(G	Г(ו ו	,	ע _י	G)	1

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-go	0.16
+t	-b	+g	0.24
+t	-b	-g	0.04
-t	+b	+g	0.04
-t	+b	g ø	0.24
-t	-b	+g	0.06
-t	-b	90	0.06

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Model 2: rain causes traffic

Example: Traffic II

• Let's build a causal graphical model!

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

Variables

• B: Burglary

• A: Alarm goes off

• M: Mary calls

• J: John calls

• E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

• Example: Ghost in the box in the previous example

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$
 results in a proper joint distribution?

- Chain rule (valid for all distributions):
- Assume conditional independences:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$X_n$$

$$P(X_1)$$

h	0.5
t	0.5

D	1	V		١
$\boldsymbol{\varGamma}$	ĺ	Λ	2)

h	0.5
t	0.5

h	0.5
t	0.5

 $P(X_n)$

$$P(h, h, t, h) =$$

Example: Traffic

$$P(+r, -t) =$$

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	<u>.</u>	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)	
+e	0.002	
Ψ	0.998	

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-е	-a	0.999

CAI3014/188-Introduction to Artificial Intelligence- JJ/Dan Klein

Example: Traffic

Causal direction

\boldsymbol{P}	T	٦	Į	3)
1	/ τ	7	1	v

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

1/2
CAI3014/188-Introduction to Artificial Intelligence- JJ/Dan Klein

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

-CAB014/188-Introduction to Artificial Intelligence- JJ/Dan Klein

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets.
So far: how a Bayes' net encodes a joint distribution

- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independent
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Thank you