Further Mathematics and Algorithms

Lesson 18: Know Your Graph Algorithms

Weighted graph algorithms, Minimum spanning tree, Prim, Kruskal, shortest path, Dijkstra

Outline

1. Minimum Spanning Tree

- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

- We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does **not** mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

- We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does **not** mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

- We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does **not** mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

- We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does not mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

- We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does **not** mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

Minimum spanning tree

 A minimal spanning tree is the shortest tree which spans the entire graph

Minimum spanning tree

 A minimal spanning tree is the shortest tree which spans the entire graph

- We consider two algorithms for solving the problem
 - * Prim's algorithm (discovered 1957)
 - * Kruskal's algorithm (discovered 1956)
- Both algorithms use a greedy strategy
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

- We consider two algorithms for solving the problem
 - ★ Prim's algorithm (discovered 1957)
 - ★ Kruskal's algorithm (discovered 1956)
- Both algorithms use a greedy strategy
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

- We consider two algorithms for solving the problem
 - ★ Prim's algorithm (discovered 1957)
 - ★ Kruskal's algorithm (discovered 1956)
- Both algorithms use a greedy strategy
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

- We consider two algorithms for solving the problem
 - ★ Prim's algorithm (discovered 1957)
 - ★ Kruskal's algorithm (discovered 1956)
- Both algorithms use a greedy strategy
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

- We consider two algorithms for solving the problem
 - ★ Prim's algorithm (discovered 1957)
 - ★ Kruskal's algorithm (discovered 1956)
- Both algorithms use a greedy strategy
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree


```
PRIM(G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM(G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
       d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i\leftarrow 1 to |\mathcal{V}|-1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \setminus k is a neighbours of node
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

Prim's Algorithm in Detail

	0	1	2	3	4	5	6	7
d[]	∞							

Prim's Algorithm in Detail

	0	1	2	3	4	5	6	7
d[]	0	∞						

node=0

neighbours of node 0 added to PQ

node=0 PQ
$$(27, (0,6))$$
 $(42, (0,4))$

node=0 PQ
$$(27, (0,6))$$
 nearest node=6 $(42, (0,4))$

add edge (0,6) to MST

$$node=6$$

PQ (42, (0,4))

neighbours of node 6 added to PQ

node=6 PQ
$$(17, (6,3))$$
 $(42, (0,4))$ $(40, (6,4))$ $(48, (6,7))$

neighbours of node 3 added to PQ

node=3 PQ
$$(33, (3,7))$$
 $(48, (6,7))$ $(42, (0,4))$

neighbours of node 7 added to PQ

node=7 PQ
$$(34, (7,5))$$
 $(48, (6,7))$ $(55, (7,2))$ $(42, (0,4))$

node=5 PQ (40, (6,4)) (48, (6,7)) (55, (7,2))

neighbours of node 5 added to PQ

node=5 PQ
$$(24, (5,1))$$
 $(26, (5,2))$ $(55, (7,2))$ $(42, (0,4))$ $(48, (6,7))$

	0	1	2	3	4	5	6	7	
d[]	0	24	26	0	40	0	0	0	

add edge (5,1) to MST

neighbours of node 1 added to PQ

node=1 PQ
$$(26, (5,2))$$
 $(40, (6,4))$ $(48, (6,7))$ $(55, (7,2))$ $(42, (0,4))$

add edge (5,2) to MST

neighbours of node 2 added to PQ

node=2 PQ
$$(40, (6,4))$$
 $(42, (0,4))$ $(48, (6,7))$ $(55, (7,2))$

add edge (6,4) to MST

Finished MST

- Clearly Prim's algorithm produces a spanning tree
 - ★ It is a tree because we always choose an edge to a node not in the tree
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

- Clearly Prim's algorithm produces a spanning tree
 - * It is a tree because we always choose an edge to a node not in the tree
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

- Clearly Prim's algorithm produces a spanning tree
 - ★ It is a tree because we always choose an edge to a node not in the tree
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

- Clearly Prim's algorithm produces a spanning tree
 - ★ It is a tree because we always choose an edge to a node not in the tree
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

- Clearly Prim's algorithm produces a spanning tree
 - ★ It is a tree because we always choose an edge to a node not in the tree
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- ullet To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree
- ullet To prove the inductive case we assume that T_i is part of the minimum spanning tree
- We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

Loop Counting

```
PRIM (G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 0 to |\mathcal{V}|
        d_i \leftarrow \infty
    endfor
    \mathcal{E}_T \leftarrow \emptyset
    PO.initialise()
    node \leftarrow v_1
    for i \leftarrow 1 to |\mathcal{V}| - 1
                                                               // loop 1 O(|\mathcal{V}|)
        d_{node} \leftarrow 0
         for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} // inner loop O(|\mathcal{E}|/|\mathcal{V}|)
             if ( w_{node,k} < d_k )
                 d_k \leftarrow w_{node,k}
                 PQ.add( (d_k, (node,k)) ) /\!/\,Oig(\log(|\mathcal{E}|)ig)
             endif
        endfor
        do
              (a\_node, next\_node) \leftarrow PQ.qetMin()
        until (d_{next\_node} > 0)
        \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(\text{node, next\_node})\}
        node ←next node
    endfor
    return \mathcal{E}_T
```

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right)$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- ullet Thus the worst case time complexity is $|\mathcal{E}|\log(|\mathcal{V}|)$

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right)$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- ullet Thus the worst case time complexity is $|\mathcal{E}|\log(|\mathcal{V}|)$

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right)$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- ullet Thus the worst case time complexity is $|\mathcal{E}|\log(|\mathcal{V}|)$

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right)$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- ullet Thus the worst case time complexity is $|\mathcal{E}|\log(|\mathcal{V}|)$

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right)$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- Thus the worst case time complexity is $|\mathcal{E}| \log(|\mathcal{V}|)$

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path


```
KRUSKAL (G=(\mathcal{V},\mathcal{E},oldsymbol{w}))
   PQ.initialise()
    for edge \in |\mathcal{E}|
       PQ.add( (w_{edge}, edge) )
    endfor
   \mathcal{E}_T \leftarrow \emptyset
   noEdgesAccepted \leftarrow 0
   while (noEdgesAccepted < |\mathcal{V}| - 1)
        edge \leftarrowPQ.getMin()
        if \mathcal{E}_T \cup \{\text{edge}\} is acyclic
           \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\}
           noEdgesAccepted ←noEdgesAccepted +1
        endif
    endwhile
    return \mathcal{E}_T
```

```
KRUSKAL (G=(\mathcal{V},\mathcal{E},oldsymbol{w}))
    PQ.initialise()
    for edge \in |\mathcal{E}|
       PQ.add( (w_{edge}, \text{ edge}) )
    endfor
    \mathcal{E}_T \leftarrow \emptyset
    noEdgesAccepted \leftarrow 0
    while (noEdgesAccepted < |\mathcal{V}| - 1)
        edge \leftarrowPQ.getMin()
        if \mathcal{E}_T \cup \{\text{edge}\} is acyclic
           \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\}
            noEdgesAccepted ←noEdgesAccepted +1
        endif
    endwhile
    return \mathcal{E}_T
```

```
KRUSKAL (G=(\mathcal{V},\mathcal{E},oldsymbol{w}))
   PQ.initialise()
    for edge \in |\mathcal{E}|
       PQ.add( (w_{edge}, edge) )
    endfor
   \mathcal{E}_T \leftarrow \emptyset
   noEdgesAccepted \leftarrow 0
   while (noEdgesAccepted < |\mathcal{V}| - 1)
        edge \leftarrowPQ.getMin()
        if \mathcal{E}_T \cup \{\text{edge}\} is acyclic
           \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\}
           noEdgesAccepted ←noEdgesAccepted +1
        endif
    endwhile
    return \mathcal{E}_T
```

```
KRUSKAL (G=(\mathcal{V},\mathcal{E},oldsymbol{w}))
   PQ.initialise()
    for edge \in |\mathcal{E}|
       PQ.add( (w_{edge}, edge) )
    endfor
   \mathcal{E}_T \leftarrow \emptyset
   noEdgesAccepted \leftarrow 0
   while (noEdgesAccepted < |\mathcal{V}| - 1)
        edge \leftarrowPQ.getMin()
        if \mathcal{E}_T \cup \{\text{edge}\} is acyclic
           \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\}
           noEdgesAccepted ←noEdgesAccepted +1
        endif
    endwhile
    return \mathcal{E}_T
```

```
KRUSKAL (G=(\mathcal{V},\mathcal{E},oldsymbol{w}))
   PQ.initialise()
    for edge \in |\mathcal{E}|
       PQ.add( (w_{edge}, edge) )
    endfor
   \mathcal{E}_T \leftarrow \emptyset
   noEdgesAccepted \leftarrow 0
   while (noEdgesAccepted < |\mathcal{V}| - 1)
        edge \leftarrowPQ.getMin()
        if \mathcal{E}_T \cup \{\text{edge}\} is acyclic
           \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\}
           noEdgesAccepted ←noEdgesAccepted +1
        endif
    endwhile
    return \mathcal{E}_T
```

- Kruskal's algorithm looks much simpler than Prim's
- The sorting takes most of the time, thus Prim's algorithms is $O(|\mathcal{E}|\log(|\mathcal{E}|)) = O(|\mathcal{E}|\log(|\mathcal{V}|))$
- We can sort the edges however we want—we could use quick sort rather than heap sort using a priority queue
- But we haven't specified how we determine if the added edge would produce a cycle

- Kruskal's algorithm looks much simpler than Prim's
- The sorting takes most of the time, thus Prim's algorithms is $O(|\mathcal{E}|\log(|\mathcal{E}|)) = O(|\mathcal{E}|\log(|\mathcal{V}|))$
- We can sort the edges however we want—we could use quick sort rather than heap sort using a priority queue
- But we haven't specified how we determine if the added edge would produce a cycle

- Kruskal's algorithm looks much simpler than Prim's
- The sorting takes most of the time, thus Prim's algorithms is $O(|\mathcal{E}|\log(|\mathcal{E}|)) = O(|\mathcal{E}|\log(|\mathcal{V}|))$
- We can sort the edges however we want—we could use quick sort rather than heap sort using a priority queue
- But we haven't specified how we determine if the added edge would produce a cycle

- Kruskal's algorithm looks much simpler than Prim's
- The sorting takes most of the time, thus Prim's algorithms is $O(|\mathcal{E}|\log(|\mathcal{E}|)) = O(|\mathcal{E}|\log(|\mathcal{V}|))$
- We can sort the edges however we want—we could use quick sort rather than heap sort using a priority queue
- But we haven't specified how we determine if the added edge would produce a cycle

- For a path to be a cycle the edge has to join two nodes representing the same subtree
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

- For a path to be a cycle the edge has to join two nodes representing the same subtree
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

- For a path to be a cycle the edge has to join two nodes representing the same subtree
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

- For a path to be a cycle the edge has to join two nodes representing the same subtree
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

- For a path to be a cycle the edge has to join two nodes representing the same subtree
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets $\mathcal{S}_1, \mathcal{S}_2, \ldots$
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

Union-Find

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union(int root1, int root2) { /* Union */}

    private:
        int[] s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union(int root1, int root2) { /* Union */}

    private:
        int[] s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union(int root1, int root2) { /* Union */}

    private:
        int[] s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

$$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -2 & 5 & -1 & -1 & -1 \ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -2 & 5 & -1 & -1 & -1 \ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -2 & 5 & -2 & 7 & -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(3),find(6))

$$\begin{bmatrix} -1 & | -1 & | -1 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(2),find(6))

$$\begin{bmatrix} -1 & | -1 & | -1 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(2),find(6))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(8))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(8))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(3))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(3))

union(find(3),find(4))

union(find(3),find(4))

-1	-1	5	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(0),find(1))

-1	-1	5	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(0),find(1))

-2	0	15	7	7	7	15	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(1),find(2))

-2	0	15	7	7	7	5	-3	7	7
0									

union(find(1),find(2))

7	0	7	7	7	7	15	-3	7	7
0	1	2	3	4	5	6	7	8	9

find(6)

$$find(6)=7$$

7	0	7	7	7	7	7	-3	7	7
0									

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<s.length; i++)</pre>
                                      // roots are negative number
        s[i] = -1;
void DisjointSets::union(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
        s[root1] = root2; // make root2 the root
    } else {
        if (s[root1]==s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
                       -A
sП
                                           root2
                       root1
```

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<s.length; i++)</pre>
                                      // roots are negative number
        s[i] = -1;
void DisjointSets::union(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
                          // make root2 the root
        s[root1] = root2;
    } else {
        if (s[root1] == s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
                       -A
s[]
                                            root2
                       root1
```

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for (int i=0; i<s.length; i++)</pre>
        s[i] = -1;
                                       // roots are negative number
void DisjointSets::union(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
        s[root1] = root2; // make root2 the root
    } else {
        if (s[root1] == s[root2])
                                      // update height if same
            s[root1]--;
                                       // make root1 new root
        s[root2] = root1;
                       -A
s[]
                                            root2
                       root1
```

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

	1		0	4
0		2	3	$\mid 4 \mid$
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
		37		
40	41	42	43	$\overline{44}$
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
		37		
40	41	42	43	44
45	46	47	48	49

- \bullet If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- ullet Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \leq 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- ullet Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(10^{80}) = 265.75$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(10^{80})) = 8.0539$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(10^{80}))) = 3.0097$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(10^{80}))) = 1.5896$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(\log_2(10^{80})))) = 0.66868$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(\log_2(10^{80})))) = 0.66868$$

• The proof of this time complexity is rather involved

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

- We can efficiently compute the shortest path from one vertex to any other vertex
- This defines a spanning tree, but where the optimisation criteria is that we choose the vertex that are closest to the source
- To find this spanning tree we use Dijkstra's algorithm where we successively add the nearest node to the source which is connected to the subtree built so far
- This is very close to Prim's algorithm and has the same complexity

- We can efficiently compute the shortest path from one vertex to any other vertex
- This defines a spanning tree, but where the optimisation criteria is that we choose the vertex that are closest to the source
- To find this spanning tree we use Dijkstra's algorithm where we successively add the nearest node to the source which is connected to the subtree built so far
- This is very close to Prim's algorithm and has the same complexity

- We can efficiently compute the shortest path from one vertex to any other vertex
- This defines a spanning tree, but where the optimisation criteria is that we choose the vertex that are closest to the source
- To find this spanning tree we use Dijkstra's algorithm where we successively add the nearest node to the source which is connected to the subtree built so far
- This is very close to Prim's algorithm and has the same complexity

- We can efficiently compute the shortest path from one vertex to any other vertex
- This defines a spanning tree, but where the optimisation criteria is that we choose the vertex that are closest to the source
- To find this spanning tree we use Dijkstra's algorithm where we successively add the nearest node to the source which is connected to the subtree built so far
- This is very close to Prim's algorithm and has the same complexity


```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
       d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
              \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PQ.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

```
DIJKSTRA(G=(\mathcal{V},\mathcal{E},oldsymbol{w}), source) {
   for i \leftarrow 0 to |\mathcal{V}|
      d_i \leftarrow \infty \\ Minimum 'distance' to source
   endfor
   \mathcal{E}_T \leftarrow \emptyset
               \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node ←source
   d_{node} \leftarrow 0
   for i \leftarrow 1 to |\mathcal{V}| - 1
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
          if (w_{node,k} + d_{node} < d_k)
             d_k \leftarrow w_{node,k} + d_{node}
             PO.add( (d_k, (node, k)))
          endif
       endfor
       do
           (a\_node, next\_node) \leftarrow PQ.qetMin()
       while next node not in subtree
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
   return \mathcal{E}_T
```

Compare to Prim's Algorithm

```
PRIM(G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
    for i \leftarrow 1 to |\mathcal{V}|
       d_i \leftarrow \infty \\ Minimum 'distance' to subtree
   endfor
   \mathcal{E}_T \leftarrow \emptyset
                \\ Set of edges in subtree
   PQ.initialise() \\ initialise an empty priority queue
   node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
    for i \leftarrow 1 to |\mathcal{V}| - 1
       d_{\text{node}} \leftarrow 0
       for k \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\}
           if ( w_{
m node,k} < d_{
m k} )
              d_k \leftarrow w_{\text{node},k}
              PQ.add( (d_k, (node, k)))
           endif
       endfor
       do
            (a\_node, next\_node) \leftarrow PQ.qetMin()
       until (d_{\text{next\_node}} > 0)
       \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_node, next\_node)\}
       node ←next node
   endfor
    return \mathcal{E}_T
```

- Dijkstra is very similar to Prim's (it differs in the distances that are used)
- It has the same time complexity
- It can be viewed as using a greedy strategy
- It can also be viewed as using the dynamic programming strategy (see lecture 22)

- Dijkstra is very similar to Prim's (it differs in the distances that are used)
- It has the same time complexity
- It can be viewed as using a greedy strategy
- It can also be viewed as using the dynamic programming strategy (see lecture 22)

- Dijkstra is very similar to Prim's (it differs in the distances that are used)
- It has the same time complexity
- It can be viewed as using a greedy strategy
- It can also be viewed as using the dynamic programming strategy (see lecture 22)

- Dijkstra is very similar to Prim's (it differs in the distances that are used)
- It has the same time complexity
- It can be viewed as using a greedy strategy
- It can also be viewed as using the dynamic programming strategy (see lecture 22)

- There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute
- Dijkstra's algorithm is one of the classics

- There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute
- Dijkstra's algorithm is one of the classics

- There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute
- Dijkstra's algorithm is one of the classics

- There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute
- Dijkstra's algorithm is one of the classics

- There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute
- Dijkstra's algorithm is one of the classics