	these data points are drawn in dynardently from
	the distribution, we obtain the Johnson enpressions
	TO T
	of the adjustable paramiters wand & is
	the Joan
	plt(x, w, B) = TTN(tn w Tp(sen), B")
	n=1
	Toking the bogasthan of the likeli hove justion, and
4	Crausian, we have
	Craussian, mi have
	N .
-	h [p(t) M, B)) = > ln N(tn/NT d(8n), B)
-	
	N ln p. N ln (2+1) - BEp(N)
J	
	2
	When the sum-of- 5 quares error junction is
	Where the sum-oj-5 quares error junction is defined by
	Where the sum-oj-5 quares error junction is defined by
	When the sum-of- 5 quares error junction is
	Where the sum-of-5 quares error junction is defined by $E_D(w) = \frac{1}{2} \sum_{n=1}^{\infty} J_{+n} - w^T \phi(x_n)^2$
	Where the sum-of-squared error junction is defined by $E_0(w) = \frac{1}{2} \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} t_n - w^T \phi(x_n)^2$ We use maximum likelihood to determine w and
	Where the sum-of-squared error junction is defined by $E_{D}(M=1) = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} t_n - w^{T} \phi(x_n)^{2}$ We use maximum likeli'hood to determine w and By comilder host the maximization with wedget
	Where the sum-of-squared error junction is defined by $E_{D}(M=1) = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} t_n - w^{T} \phi(x_n)^{2}$ We use maximum likeli'hood to determine w and By comilder host the maximization with wedget
	Where the sum-of-squared error junction is defined by $E_{D}(M=1) = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} t_n - w^{T} \phi(x_n)^{2}$ We use maximum likeli'hood to determine w and By comilder host the maximization with wedget
	Where the sum-of-squared error function is defined by Eolm=1 \(\sum_{n=1}^{\infty} = \text{dt}_n - w^T \phi(\alpha_n)^2 \) We use maximum likeli'hood to determine w and Be consider frost the maximization with inferent to w. As observed already we see maximization or likeli hood junction under anditional gaussian poise distribution for a linear model is
	Where the sum-of-squared error junction is defined by $E_{D}(M=1) = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} t_n - w^{T} \phi(x_n)^{2}$ We use maximum likeli'hood to determine w and By comilder host the maximization with wedget

