الحصول على حل ابتدائي ممكن باستخدام طريقة M أو باستخدام طريقة المرحلتين (أمثلة)

مثال 1. حل البرنامج الخطى التالى:

$$\max z = 5x_1 + 7x_2$$

$$st \qquad x_1 + x_2 \ge 6$$

$$x_1 \ge 4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

$$\max z = 5x_1 + 7x_2 + 0t_1 + 0t_2 + 0t_3$$

$$st \qquad x_1 + x_2 - t_1 = 6$$

$$x_1 - t_2 = 4$$

$$x_2 + t_3 = 3$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

الحل الابتدائي القاعدي $x_1=0, x_2=0, t_1=-6, t_2=-4, t_3=3$ غير ممكن للمسألة

الطريقة الأولى: طريقة M

$$\max z = 5x_1 + 7x_2 + 0t_1 + 0t_2 + 0t_3 - Mv_1 - Mv_2$$

$$st \qquad x_1 + x_2 - t_1 + v_1 = 6$$

$$x_1 - t_2 + v_2 = 4$$

$$x_2 + t_3 = 3$$

$$x_1, x_2, t_1, t_2, t_3, v_1, v_2 \ge 0$$

الحل القاعدي الابتدائي الممكن هو

 $(x_1, x_2, t_1, t_2, t_3, v_1, v_2)^t = (0, 0, 0, 0, 3, 6, 4)^t$

		max		5	7	0	0	0	-M	-M
	\boldsymbol{B}	C_B	b	x_1	x_2	t_1	t_2	t_3	v_1	v_2
	v_1	-M	6	1	1	-1	0	0	1	0
•	- v ₂	-M	4	1	0	0	-1	0	0	1
	t_3	0	3	0	1	0	0	1	0	0
			0+	5+	7 +	0+	0 +	0+	0+	0+
			10 <i>M</i>	2 <i>M</i> ▲	M	-M	-M	0	0	0
		max		5	7	0	0	0	-M	/
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	v_1	/
•	_ v ₁	-M	2	0	1	-1	1	0	1	/
	x_1	5	4	1	0	0	-1	0	0	/
	t_3	0	3	0	1	0	0	1	0	/
			-20+	0 +	7 +	0+	5+	0+	0+	/
			2 <i>M</i>	0	M	-M	M	0	0	/
1					ļ			I		1
		max		5	7	0	0	0	/	/
	B	C_B	b	x_1	x_2	t_1	t_2	t_3	/	/
	x_2	7	2	0	1	-1	1	0	/	/
	x_1	5	4	1	0	0	-1	0	/	/
•	$-t_3$	0	1	0	0	1	-1	1	/	/
			-34	0	0	7	-2	0	/	/
						ı				
		max		5	7	0	0	0	/	/
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	/	/
	<i>B x</i> ₂		<i>b</i> 3	$\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$	$\frac{x_2}{1}$	t_1	$\frac{t_2}{0}$	<i>t</i> ₃	/	/

الحل المثالي للمسألة هو $\infty+=z$ مسألة غير محدودة

-7

5

0

0

-41

0

0

 t_1

الطريقة الثانية: طريقة المرحلتين

المرحلة الأولى:

		max		0	0	0	0	0	-1	-1
	B	C_B	b	x_1	x_2	t_1	t_2	t_3	v_1	v_2
	v_1	-1	6	1	1	-1	0	0	1	0
•	- v ₂	-1	4	1	0	0	-1	0	0	1
	t_3	0	3	0	1	0	0	1	0	0
			10	2	1	-1	-1	0	0	0

		max		0	0	0	0	0	-1	/
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	v_1	/
•	- v ₁	-1	2	0	1	-1	1	0	1	/
	x_1	0	4	1	0	0	-1	0	0	/
	t_3	0	3	0	1	0	0	1	0	/
			2	0	1♠	-1	1	0	0	/

	max		0	0	0	0	0	/	/
В	C_B	b	x_1	x_2	t_1	t_2	t_3	/	/
x_2	0	2	0	1	-1	1	0	/	/
x_1	0	4	1	0	0	-1	0	/	/
t_3	0	1	0	0	1	-1	1	/	/
	0		0	0	0	0	0	/	/

الحل القاعدي الابتدائي الممكن هو

 $(x_1, x_2, t_1, t_2, t_3)^t = (4, 2, 0, 0, 1)^t$

المرحلة الثانية:

$$z_0 = \sum_{i \in B} c_i b_i$$

$$z_j = \sum_{i \in B} c_i a_{ij} \quad (j = 1, ..., n)$$

		max		5	7	0	0	0
	\boldsymbol{B}	C_B	b	x_1	x_2	t_1	t_2	t_3
	x_2	7	2	0	1	-1	1	0
	x_1	5	4	1	0	0	-1	0
•	$-t_3$	0	1	0	0	1	-1	1
			-34	0	0	7 ♠	-2	0

	max		5	7	0	0	0
В	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3
x 2	7	3	0	1	0	0	1
x_1	5	4	1	0	0	-1	0
t_3	0	1	0	0	1	-1	1
		-41	0	0	0	5	-7

الحل المثالي للمسألة هو $\infty+=z$ (المسألة غير محدودة)

مثال 2. حل البرنامج الخطي التالي:

$$\min z = -x_1 + x_2$$

$$st 2x_1 - x_2 - t_1 = -2$$

$$x_1 - 2x_2 + t_2 = -8$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

بضرب القيدين الاولين بـ 1- نجد

$$\min z = -x_1 + x_2$$

$$st -2x_1 + x_2 + t_1 = 2$$

$$-x_1 + 2x_2 - t_2 = 8$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

أولاً: بطريقة M

$$\min z = -x_1 + x_2 + Mv$$

$$st \qquad -2x_1 + x_2 + t_1 = 2$$

$$-x_1 + 2x_2 - t_2 + v = 8$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3, v \ge 0$$

		min		-1	1	0	0	0	M	
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	v	
•	$-t_1$	0	2	-2	1	1	0	0	0	
	v	M	8	-1	2	0	-1	0	1	
	t_3	0	5	1	1	0	0	1	0	
			0+	1 –	-1+	0	0+	0+	0+	
			8 <i>M</i>	M	2 <i>M</i> ♠		M	0	0	

		min		-1	1	0	0	0	M	
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	ν	
	x_2	1	2	-2	1	1	0	0	0	
	ν	М	4	3	0	-2	-1	0	1	
•	$-t_3$	0	3	3	0	-1	0	1	0	
			2+	-1+	0	1 –	0+	0+	0+	
			4 <i>M</i>	3 <i>M</i> ♠		2 <i>M</i>	-M	0	0	

	min		-1	1	0	0	0	M	
В	C_B	b	x_1	x_2	t_1	t_2	t_3	ν	
x_2	1	4	0	1	1/3	0	2/3	0	
v	M	1	0	0	-1	-1	-1	1	
x_1	-1	1	1	0	-1/3	0	1/3	0	
		3+	0	0	2/3-	0+	1/3+	0+	
	M				M	-M	-M	0	

بما أن v=1 إذا ليس للمسألة حل ممكن

ثانياً: طريقة المرحلتين

$$\min z = v$$

$$st -2x_1 + x_2 + t_1 = 2$$

$$-x_1 + 2x_2 - t_2 + v = 8$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3, v \ge 0$$

		min		0	0	0	0	0	1	
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	v	
•	$-t_1$	0	2	-2	1	1	0	0	0	
	v	1	8	-1	2	0	-1	0	1	
	t_3	0	5	1	1	0	0	1	0	
			8	-1	2	0	-1	0	0	
							ı	ı	T	
		min		0	0	0	0	0	1	
	B	C_B	b	x_1	x_2	t_1	t_2	t_3	ν	
	x_2	0	2	-2	1	1	0	0	0	
	v	1	4	3	0	-2	-1	0	1	
•	$-t_3$	0	3	3	0	-1	0	1	0	
			4	3 🛕	0	-2	-1	0	0	
				l						
		min		0	0	0	0	0	1	
	B	C_B	b	x_1	x_2	t_1	t_2	t_3	ν	
	x_2	0	4	0	1	1/3	0	2/3	0	
	v	1	1	0	0	-1	-1	-1	1	
	x_1	0	1	1	0	-1/3	0	1/3	0	
			1	0	0	-1	-1	-1	0	

بما أن v=1 إذاً ليس للمسألة حل ممكن

مثال 3. حل البرنامج الخطى التالي:

$$\max z = x_1 + 3x_2$$

$$st \qquad x_1 + x_2 + t_1 = 4$$

$$-2x_1 + 3x_2 + t_2 = 12$$

$$2x_1 - x_2 + t_3 = 12$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

		max		1	3	0	0	0
	\boldsymbol{B}	C_B	b	x_1	x_2	t_1	t_2	t_3
•	$ t_1$	0	4	1	1	1	0	0
•	$-t_2$	0	12	-2	3	0	1	0
	t_3	0	12	2	-1	0	0	1
			0	1	3 ♠	0	0	0

t_1 يغادر القاعدة

	max		1	3	0	0	0
B	C_B	b	\boldsymbol{x}_1	x_2	t_1	t_2	t_3
x_2	3	4	1	1	1	0	0
t_2	0	0	-5	0	-3	1	0
t_3	0	16	3	0	1	0	1
		-12	-2	0	-3	0	0

$$x_{1}=0,x_{2}=4,t_{1}=t_{2}=0,t_{3}=16$$
و و $z=12$ هو: الحل المثالي هو

2) t_2 يغادر القاعدة

		max		1	3	0	0	0
	\boldsymbol{B}	C_B	b	x_1	x_2	t_1	t_2	t_3
•	$-t_1$	0	0	5/3	0	1	-1/3	0
	x_2	3	4	-2/3	1	0	1/3	0
	t_3	0	16	4/3	0	0	1/3	1
			-12	3 🛊	0	0	-1	0
	•		•					

	max		1	3	0	0	0
B	C_B	b	\boldsymbol{x}_1	x_2	t_1	t_2	t_3
x_1	1	0	1	0	3/5	-1/5	0
x_2	3	4	0	1	2/5	1/5	0
t_3	0	16	0	0	-4/5	3/5	1
-12			0	0	-9/5	-2/5	0

$$x_1 = 0, x_2 = 4, t_1 = t_2 = 0, t_3 = 16$$
 و $z = 12$ الحل المثالي هو:

ملاحظات

1. في حال وجود متحوليين مرشحيين للدخول إلى القاعدة معاً ، من المفضل اختيار المتحول $s=\min\{i: c_i-z_i>0\}$ أن x_s

بعد أن يتم إعادة ترقيم المتحولات الفائظة أو الفضفاضة للمسألة كإستمرار للمتحولات البنيوية أي:

$$(x_1, x_2, ..., x_n, s_1, s_2, ..., s_m) = (x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m})$$

$$(x_1, x_2, ..., x_n, t_1, t_2, ..., t_m) = (x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m})$$

2. في حال وجود متحوليين مرشحيين للخروج من القاعدة معاً ، نتبع إحدى الطريقتين التاليتين:

طريقة قاعدة بلاند

إذا كان x_p و متحوليين مرشحيين للخروج من القاعدة معاً عندئذ من المفضل اختيار المتحول x_p إذا كان x_p أو اختيار x_p إذا كان x_p إذا كان x_p أو اختيار x_p إذا كان x_p أو اختيار x_p إذا كان x_p أو اختيار x_p أو اختيار x_p إذا كان x_p أو اختيار x_p أو اختيار x_p أو اختيار x_p إذا كان x_p أو اختيار x_p أو اختيار x_p أو اختيار أو اختيار المتحول أو الختيار المتحول أو المتحول أو الختيار أو الختيار

بعد أن يتم إعادة ترقيم المتحولات الفائظة أو الفضفاضة للمسألة كإستمرار للمتحولات البنيوية أي:

$$(x_{1},x_{2},...,x_{n},s_{1},s_{2},...,s_{m}) = (x_{1},x_{2},...,x_{n},x_{n+1},x_{n+2},...,x_{n+m})$$

$$(x_{1},x_{2},...,x_{n},t_{1},t_{2},...,t_{m}) = (x_{1},x_{2},...,x_{n},x_{n+1},x_{n+2},...,x_{n+m})$$

طريقة قاعدة الاضطراب

يتم تبديل العوامل b_i (i=1,...,m) في المسألة ب b_i (i=1,...,m) حيث b_i و صغير جدأ b_i مسبيل المثال) $\varepsilon>0$ على سبيل المثال)

$$b_i+arepsilon_i \ (i=1,...,m)$$
 أو يتم تبديل العوامل $b_i \ (i=1,...,m)$ في المسألة ب $arepsilon_i+arepsilon_i \ (i=1,...,m)$ أن $arepsilon_i+arepsilon_i \ (i=1,...,m)$ أو $b_i+arepsilon_i \ (i=1,...,m)$

عدم وجود قيود في الاشارة على بعض المتغيرات

لناخذ البرنامج الخطى التالى حيث يوجد بعض المتغيرات غير مقيدة في الاشارة

$$\min \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, & i = 1, ..., m \\ x_{j} & unrestricted \ in \ sign, \quad j = 1, ..., k \le n \\ x_{j} \ge 0, \quad j = k + 1, ..., n \end{cases}$$

كيف يمكن تعديل البرنامج الخطى هذا حتى يمكن تطبيق الطريقة المبسطة لحله

الطريقة الأولى:

يمكن كتابة المتغيرات غير المقيدة بالاشارة على شكل فروق بين متغيرات غير سالبة كما يلي:

$$\begin{cases} x_{j} = x_{j}^{'} - x_{j}^{"} \\ x_{j}^{'}, x_{j}^{"} \ge 0 \end{cases}, j = 1, ..., k$$

الطريقة الثانية:

بهدف تخفيض عدد المتحولات غير السالبة المضافة على المسألة ، يتم كتابة المتغيرات غير المقيدة بالاشارة على شكل فروق بين متغيرات غير سالبة على الشكل التالي:

$$\begin{cases} x_{j} = x'_{j} - x'' \\ x'_{j}, x'' \ge 0 \end{cases}, j = 1, ..., k$$

برامج خطية مع وجود متغيرات محدودة

a)
$$x_{i} \ge b_{i} > 0$$

1.
$$x_i - t = b_i > 0$$
, $x_i, t \ge 0$ (اضافة متحول صنعي غير سالب)

$$2. -x_j + t = -b_j < 0, \quad x_j, t \ge 0$$
 (تطبیق خوارزمیة السمبلکس للمرافق و سوف یتم شرحها لاحقا)

3.
$$x_{j}' = x_{j} - b_{j} \ge 0$$
 (تغير متحول)

b)
$$x_{i} \ge b_{i} < 0$$

$$x'_{j} = x_{j} - b_{j} \ge 0$$
 (تغير متحول)

c)
$$x_{i} \le b_{i} > 0$$

$$x'_{j} = b_{j} - x_{j} \ge 0$$
 (Desire $x'_{j} = 0$

$$d) x_i \le b_i \le 0$$

$$x'_{j} = b_{j} - x_{j} \ge 0$$
 (0) $x'_{j} = 0$ (0)

$$x_{i}^{'}=-x_{i}\geq0$$
 عندئذ ($x_{i}\leq0$) $b_{i}=0$ عندما يكون

و) ملاحظات

1. الحالة الأولى عندما يكون $0 \le x_j \le b_j > 0$ عندئذ لايمكن استخدام تقانة تغيير المتحولات و بالتالي يجب اعتبار ها كقيد رياضى اضافى فى البرنامج الخطى

2. الحالة الثانية عندما يكون $x_j^{'} = -x_j^{}$ عندئذ يتم استخدام التحويل التالي $x_j^{'} = -x_j^{}$ لنحصل على الشكل $0 \ge x_j^{'} \ge b_j^{} < 0$ كما هو في الحالة الأولى $0 \le x_j^{'} \le -b_j^{} > 0$

3. الحالة الثالثة عندما يكون $0 \le x_j \le b_j < 0$ أو $0 \le x_j \le b_j > 0$ عندئذ يتم معالجتهما كما في الحالتين الأولى و الثانية على الترتيب

متغيرات بدون قيود على الاشارة (أمثلة)

مثال 1. لنأخذ البرنامج الخطى التالى:

$$\min z = -x_1 + 2x_2$$

$$st \qquad 5x_1 + 3x_2 \ge -30$$

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0$$

$$x_2 \quad w.r.s$$

لنضع

$$x_2 = x_2' - x_2'', \qquad x_2', x_2'' \ge 0$$

بادخال هذه المتغيرات في البرنامج الرياضي السابق نجد أن

$$\min z = -x_{1} + 2x_{2}^{'} - 2x_{2}^{"}$$

$$st \qquad -5x_{1} - 3x_{2}^{'} + 3x_{2}^{"} + t_{1} = 30$$

$$x_{1} - x_{2}^{'} + x_{2}^{"} + t_{2} = 2$$

$$x_{1}, x_{2}^{'}, x_{2}^{"}, t_{1}, t_{2} \ge 0$$

		min		-1	2	-2	0	0
	B	C_B	b	x_1	x_{2}	$x_{2}^{"}$	t_1	t_2
Ī	t_1	0	30	-5	-3	3	1	0
4	- t ₂	0	2	1	-1	1	0	1
			0	1	-2	2 🛦	0	0

	min		-1	2	-2	0	0
B	C_B	b	x_1	x_{2}	$x_{2}^{"}$	t_1	t_2
t_1	0	24	-8	0	0	1	-3
$x_{2}^{"}$	-2	2	1	-1	1	0	1
-4			-1	0	0	0	-2

الحل المثالي هو

$$x_1 = 0, x_2 = x_2 - x_2 = 0 - 2 = -2$$
 $z = -4$

مثال 2. حل البرنامج الرياضي التالي:

min
$$z = -x_1 + 2x_2$$

st $5x_1 + 3x_2 \ge -30$
 $x_1 - x_2 \le 2$
 $x_1, x_2, w.r.s$

الطريقة الأولى: ضع

$$x_1 = x_1' - x_1'', x_2 = x_2' - x_2'', \qquad x_1, x_1'', x_2', x_2'' \ge 0$$

بادخال هذه المتغيرات في البرنامج الرياضي السابق نجد أن

$$\min z = -x_{1}^{'} + x_{1}^{''} + 2x_{2}^{'} - 2x_{2}^{''}$$

$$st \qquad -5x_{1}^{'} + 5x_{1}^{''} - 3x_{2}^{'} + 3x_{2}^{''} + t_{1} = 30$$

$$x_{1}^{'} - x_{1}^{''} - x_{2}^{'} + x_{2}^{''} + t_{2} = 2$$

$$x_{1}^{'}, x_{1}^{''}, x_{2}^{'}, x_{2}^{''}, t_{1}, t_{2} \ge 0$$

		min		-1	1	2	-2	0	0
	В	C_B	b	x_1	$x_1^{"}$	x 2	$x_{2}^{"}$	t_1	t ₂
Ī	t_1	0	30	-5	5	-3	3	1	0
4	· t ₂	0	2	1	-1	-1	1	0	1
			0	1	-1	-2	2	0	0

		min		-1	1	2	-2	0	0
	В	C_B	b	x_1	$x_1^{"}$	x_2	$x_{2}^{"}$	t_1	t_2
•	$-t_1$	0	24	-8	8	0	0	1	-3
	x_2 "	-2	2	1	-1	-1	1	0	1
			-4	-1	1 🛦	0	0	0	-2
					T			<u></u>	

	min		-1	1	2	-2	0	0
В	C_B	b	x_1	$x_1^{"}$	x_2	x_{2}	t_1	t_2
x "	1	3	-1	1	0	0	1/8	-3/8
x "	-2	5	0	0	-1	1	1/8	5/8
	-7		0	0	0	0	-1/8	-13/8

الحل المثالي للمسألة هو

$$x_1 = x_1' - x_1'' = 0 - 3 = -3, x_2 = x_2' - x_2'' = 0 - 5 = -5$$
 $z = -7$

الطريقة الثانية: ضع

$$x_1 = x_1' - x'', x_2 = x_2' - x'', x_1', x_2' \ge 0$$

بادخال هذه المتغيرات في البرنامج الرياضي السابق نجد أن

$$\min z = -x_{1} + 2x_{2} - x''$$

$$st -5x_{1} - 3x_{2} + 8x'' + t_{1} = 30$$

$$x_{1} - x_{2} + t_{2} = 2$$

$$x_{1}, x_{2}, x'', t_{1}, t_{2} \ge 0$$

		min		-1	2	-1	0	0
	В	C_B	b	x_1	x_2	<i>x</i> "	t_1	t_2
	t_1	0	30	-5	-3	8	1	0
•	- t ₂	0	2	1	-1	0	0	1
			0	1 🛉	-2	1	0	0

		min		-1	2	-1	0	0
	B	C_B	b	x_1'	x_{2}	<i>x</i> "	t_1	t_2
•	$-t_1$	0	40	0	-8	8	1	5
	x_1	-1	2	1	-1	0	0	1
			-2	0	-1	1 🛉	0	-1

	min			2	-1	0	0
B	C_B	b	x_1'	x_{2}	x"	t_1	t_2
x "	-1	5	0	-1	1	1/8	5/8
x_1	-1	2	1	-1	0	0	1
	-7			0	0	-1/8	-13/8

الحل المثالي للمسألة هو

$$x_1 = x_1^{'} - x^{''} = 2 - 5 = -3, x_2 = x_2^{'} - x^{''} = 0 - 5 = -5$$
 $z = -7$

مثال 3. حل البرنامج الرياضي التالي:

$$\min z = -x_1 + 2x_2$$

$$st \qquad 5x_1 + 3x_2 \ge -30$$

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0$$

$$x_2 \ge -1$$

ضع

$$x_2 = x_2 - 1, \qquad x_1, x_2 \ge 0$$

بادخال هذه المتغيرات في البرنامج الرياضي السابق نجد أن

$$\min z = -x_1 + 2x_2 - 2$$

$$st -5x_1 - 3x_2 + t_1 = 27$$

$$x_1 - x_2 + t_2 = 1$$

$$x_1, x_2, t_1, t_2 \ge 0$$

		min		-1	2	0	0
	B	C_B	b	x_1	x_2	t_1	t_2
ì	t_1	0	27	-5	-3	1	0
+	- t ₂	0	1	1	-1	0	1
			0	1 🕈	-2	0	0

	min		-1	2	0	0
В	C_B	b	x_1	x_{2}	t_1	t_2
t_1	0	32	0	-8	1	5
x_1	-1	1	1	-1	0	1
		-1	0	-1	0	-1

الحل المثالي للمسألة هو

$$x_1 = 1, x_2 = x_2 - 1 = 0 - 1 = -1$$
 $z = -1$

z=-1-2=-3 و بالتالي تعطى القيمة المثلى النهائية لتابع الهدف على الشكل التالي تعطى ال

مثال 4. حل البرنامج الرياضي التالي:

$$\min z = -x_1 + 2x_2$$

$$st 5x_1 + 3x_2 \ge -30$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \le 0$$

ضع

$$x_1 = -x_1, x_2 = -x_2, \qquad x_1, x_2 \ge 0$$

بادخال هذه المتغيرات في البرنامج الرياضي السابق نجد أن

$$\min z = x_1' - 2x_2'$$

$$st \qquad 5x_1' + 3x_2' + t_1 = 30$$

$$-x_1' + x_2' + t_2 = 2$$

$$x_1', x_2', t_1, t_2 \ge 0$$

	min			1	-2	0	0
	В	C_B	b	x_1	$x_{2}^{'}$	t_1	t_2
	t_1	0	30	-5	3	1	0
•	$-t_2$	0	2	-1	1	0	1
			0	-1	2 🕈	0	0

	min			1	-2	0	0
	В	C_B	b	x_1	x_2	t_1	t_2
•	$-t_1$	0	24	8	0	1	-3
	x_2	-2	2	-1	1	0	1
			-4	1 🛊	0	0	-2

min			1	-2	0	0
В	C_B	b	x_1	x_{2}	t_1	t_2
x_1	1	3	1	0	1/8	-3/8
x_2	-2	5	0	1	1/8	5/8
-7			0	0	-1/8	-13/8

الحل المثالي للمسألة هو

$$x_1 = -x_1' = -3, x_2 = -x_2' = -5$$
 g $z = -7$

مسائل

أوجد الحلول المثالية للمسائل الخطية التالية:

1. $\max z = 0.5x_1 + x_2$ $st \qquad x_1 + x_2 \le 3$ $-x_1 + x_2 \le 1$ $x_1 \le 2$ $x_1, x_2 \ge 0$

3. $\max z = 2x_1 - x_2$ $st \qquad x_1 - x_2 = 3$ $x_1 \le 4$ $x_1, x_2 \ge 0$

7. $\min z = 2x_1 - 3x_2$ $st \quad 3x_1 + 2x_2 \le 6$ $x_1 - x_2 \ge 1$ $2x_1 - x_2 \ge 6$ $x_1, x_2 \ge 0$

 $\max z = -3x_1 - x_2$ $st \qquad x_1 + x_2 \ge 1$ $2x_1 + 3x_2 \ge 2$ $x_1, x_2 \ge 0$

9.

2. $\min z = -x_1 + x_2$ $st 2x_1 - x_2 \ge 2$ $-x_1 + 2x_2 \ge -2$ $x_1 + x_2 \le 5$ $x_1, x_2 \ge 0$

4. $\max z = 2x_1 + 2x_2$ $st \qquad x_1 \le 4$ $x_1 - x_2 \le 3$ $x_1, x_2 \ge 0$

6. $\max z = 2x_1 + 2x_2$ $st \qquad x_1 + x_2 \le 6$ $x_1 \le 4$ $x_2 \le 3$ $x_1, x_2 \ge 0$

8. $\min z = 3x_1 + 2x_2$ $st \qquad x_1 + x_2 \ge 4$ $x_1 + 2x_2 \ge 5$ $x_1 \ge 2$ $x_1, x_2 \ge 0$

10. $\max z = x_1 + x_2$ $st \qquad x_1 + x_2 + x_3 \ge 1$ $x_1 - x_2 + x_3 \le 1$ $-2x_1 + x_2 + x_3 \le 1$ $x_3 \le 1$ $x_1, x_2, x_3 \ge 0$