5.2

Opérations sur les fonctions dérivées

Spé Maths 1ère - JB Duthoit

5.2.1 Dérivée de (u+v)

Propriété (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (u+v) est dérivable sur I et (u+v)'=u'+v'

Exemple

Soit f définie sur \mathbb{R} par $f(x) = x^2 + x^3$. Donner f'(x)

5.2.2 Dérivée de (u-v)

Propriété (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (u-v) est dérivable sur I et (u-v)'=u'-v'.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = x^2 - x^3$. Donner f'(x)

5.2.3 Dérivée de (ku)

Propriété (admise)

Soient u une fonctions définie et dérivable sur un intervalle I, et soit $k \in \mathbb{R}$. Alors la fonction (ku) est dérivable sur I et $(ku)' = k \times u'$.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = 5x^3$. Donner f'(x)

5.2.4 Dérivée de (uv)

Propriété

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (uv) est dérivable sur I et (uv)' = u'v + uv'.

Démonstration 5.5 Soient u et v deux fonctions définies et dérivables sur un intervalle I. Montrer que la fonction (uv) est dérivable sur I et que (uv)' = u'v + uv'.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = (x^2 + 1) \times x^3$. Donner f'(x)

Dérivée de $\frac{1}{n}$ 5.2.5

Propriété (admise)

Soit v une fonction définie et dérivable sur un intervalle I, avec pour tout $x \in I$, $v(x) \neq 0$. Alors la fonction $\left(\frac{1}{v}\right)$ est dérivable sur I et $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Exemple

Soit f définie sur $\mathbb{R} - \left\{-\frac{3}{2}\right\}$ par $f(x) = \frac{1}{2x+3}$. Donner f'(x)

Dérivée de $\frac{u}{v}$ 5.2.6

Propriété (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I, avec, pour tout $x \in I$,

 $v(x) \neq 0$. Alors la fonction $\left(\frac{u}{v}\right)$ est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Exemple

Soit
$$f$$
 définie sur $\mathbb{R} - \left\{-\frac{3}{2}\right\}$ par $f(x) = \frac{x^2}{2x+3}$.
Donner $f'(x)$

5.2.7Dérivée de g(ax + b)

Propriété (admise)

Soient a et b deux réels, et I un intervalle.

Soit J l'intervalle constitué de l'ensemble des valeurs de ax+b lorsque x décrit I. Si g st une fonction dérivable sur J, alors la fonction f définie sur I par f(x) = g(ax + b)est dérivable sur I et $f'(x) = a \times g'(ax + b)$.

Savoir-Faire 5.27

SAVOIR CALCULER UNE FONCTION DÉRIVÉE Calculer la fonction dérivée de chacune des fonctions suivantes :

1.
$$f(x) = 8x^3 + 12x^2 - 5x + 7$$

2.
$$f(x) = (x^2 + 3x)(x^3 - 3x^2 + 7)$$

$$3. \ f(x) = x\sqrt{x}$$

4.
$$f(x) = \frac{2x+3}{x^2+3}$$

$$5. \ f(x) = \frac{1}{3x^2 + 9}$$

$$6. \ f(x) = \frac{17}{2x^2 + 1}$$

7.
$$f(x) = \sqrt{2x+3}$$

7.
$$f(x) = \sqrt{2x+3}$$

8. $f(x) = \sqrt{-2x+1}$

9.
$$f(x) = (2x - 3)^{15}$$