

ALJABAR LINIER

Operasi Matriks

Muhammad Afif Hendrawan, S.Kom., M.T.

Outlines

- Skalar, Vektor, Matriks, dan Tensor
- Anatomy Matriks
- Penjumlahan dan Perkalian Skalar Pada Matriks
- Perkalian Matriks
- Pangkat dari Matriks
- Transpos dari Matriks

Skalar, Vektor, Matriks, dan Tensor

Skalar

- Direpresentasikan dalam nilai tunggal
- Tidak memiliki arah, hanya besaran
- Notasi matematika $\rightarrow s = 4$
- Contoh: Suhu → 25°C, Bobot → 70kg, Kecepatan → 30km/jam
- Ranking dalam tensor -> Rank 0
- Implementasi dalam kode,

```
s = 5 \# Angka biasa (skalar)
```

Vektor

- Daftar angka dalam 1 dimensi (array 1D) yang memiliki besar dan arah
- Memiliki panjang n
- Notasi matematika,

$$v = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

- Contoh,
 - Kecepatan \rightarrow [3, -2]m/s
 - Warna RGB \rightarrow [255, 128, 64]
- Ranking dalam tensor → Rank 1

```
v = [2, 3, 5] # Daftar (list) sebagai
vektor
import numpy as np
v = np.array([2, 3, 5]) # Vektor NumPy
```

Matriks

- Nilai yang di representasikan dalam baris dan kolom (Array 2D)
- Digunakan dalam transformasi linier, gambar, grafik, dan masih banyak lagi
- Notasi matematika,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- Contoh,
 - Gambar grayscale

```
# Matrix
matrix_python = [[1, 2, 3], [4, 5, 6],
[7, 8, 9]]
matrix_numpy = np.array([[1, 2, 3], [4,
5, 6], [7, 8, 9]])
```

Tensor

- Generalisasi skalar, vektor, dan matriks ke dimensi yang lebih tinggi
- Bisa memiliki 3, 4, atau lebih dimensi
- Notasi matematika,

$$T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix}$$

- Contoh,
 - Tensor 3D (Rank 3) \rightarrow Citra RGB \rightarrow (lebar × tinggi × 3)
 - Tensor 4D (Rank 4) \rightarrow Kumpulan citra RGB \rightarrow (batch \times lebar \times tinggi \times 3)

```
# Tensor (3D array)
tensor_python = [
[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]
]
tensor_numpy = np.array([
[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]
])
```

Anatomi Matriks

Matriks (1)

- Jika A adalah matriks $m \times n$, A memiliki m baris dan n kolom
- Nilai skalar pada baris ke-i dan kolom ke-j dari matriks A di notasikan sebagai a_{ij}
- Sebagai contoh nilai pada (3,2) $\rightarrow a_{32} \rightarrow$ baris ke-3 kolom ke-2
- Setiap kolom dari A adalah daftar (list) dari bilangan riil m yang berupakan sebuah vektor pada $\mathbb{R}^m \to$ biasa ditulis,

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

Matriks (2)

- Nilai-nilai diagonal pada matriks $A, m \times n$ adalah $a_{11}, a_{22}, a_{33}, ...$ dan membentuk diagonal utama pada matriks A
- Matriks diagonal adalah matriks dengan ukuran n × n dimana nilai selain diagonalnya adalah nol. Contoh → Matriks identitas, In
- Matriks $m \times n$ dengan seluruh nilainya adalah 0 disebut sebagai **matriks nol** (**zero matrix**)

Penjumlahan dan Perkalian Skalar

Penjumlahan Pada Matriks

- Dua matriks dikatakan sama (equal) jika memiliki ukuran yang sama (jml. baris dan jml kolom) → Ordo sama
- Jumlah dari A + B dapat didefinisikan jika A + B memiliki ukuran yang sama.
- Contoh,

Diberikan,
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$
Maka, $A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$

A+C tidak valid / tidak terdefinisi karena A dan C tidak memiliki ukuran yang sama / tidak equal

Perkalian Skalar Pada Matriks

- Jika r adalah nilai skalar dan A adalah matriks \rightarrow Perkalian skalar rA adalah matriks dengan nilai "**kolom"** r kali dari setiap kolom pada A
- Pada vektor, -A = (-1)A, A B = A + (-1)B
- Contoh,

Dengan matriks A dan B pada contoh sebelumnya,

$$2B = 2\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$$
$$A - 2B = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ -7 & -7 & -12 \end{bmatrix}$$

Sifat-Sifat Penjumlahan dan Perkalian Skalar

Jika matriks A, B, C, ekual satu sama lain, r dan s adalah nilai skalar,

- A + B = B + A
- (A + B) + C = A + (B + C)
- A + 0 = A
- $\bullet \quad r(A+B) = rA + rB$
- \bullet (r+s)A = rA + sA
- r(sA) = (rs)A

Bagaimana dengan pengurangan?

- Aturan sama! Ukuran sama / Ordo Sama / Equal
- \bullet $A-B \neq B-A$
- (A B) C = A (B C)

Latihan!

Jika
$$A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & 2 & 7 & 0 \end{bmatrix}; B = \begin{bmatrix} 9 & 5 & 2 & 4 \\ -5 & -1 & -3 & 5 \\ 6 & -8 & 11 & 3 \end{bmatrix}; C = \begin{bmatrix} 2 & -1 & 9 \\ 6 & 3 & -5 \\ -2 & 7 & -8 \end{bmatrix}$$

Tentukan (jika mungkin),

- \bullet A+B
- \bullet A-B
- \bullet A+C
- \bullet B-C

Perkalian Matriks

Perkalian Matriks (1)

- Jika A adalah matriks $m \times n$ dan B adalah matriks $n \times p \rightarrow$ Hasil dari AB adalah matriks $m \times p$
- Contoh,

Jika,
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} p & r & t \\ q & s & u \end{bmatrix}$$
, maka AB ,

$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & r & t \\ q & s & u \end{bmatrix} = \begin{bmatrix} ap + bq & ar + bs & at + bu \\ cp + dq & cr + ds & ct + du \end{bmatrix}$$

Perkalian Matriks (2)

Sifa-sifat Perkalian Matriks

Jika A adalah matriks $m \times n$ dan jika B dan C memiliki ukuran untuk proses penjumlahan dan perkalian yang valid, maka,

- \bullet A(BC) = (AB)C
- \bullet A(B+C)=AB+AC
- $\bullet \quad (B+C)A = BA + CA$
- r(AB) = (rA)B = A(rB)
- $\bullet \quad I_m A = A = A I_n$

Perkalian Matriks - Perhatian!!!

- \bullet $AB \neq BA$
- The cancelation law ("coret-coret") tidak berlaku pada perkalian matriks!
 - \circ Jika AB = AC bukan berarti B = C
- Jika hasil dari AB adalah matriks nol, bukan berarti A = 0 atau B = 0

Pangkat dari Matriks

Pangkat dari Matriks

• Jika A adalah matriks $m \times n$, dan k adalah nilai positif integer, maka A^k dinotasikan sebagai hasil dari perkalian A sebanyak k kali

$$A^k = A \dots A$$

- Jika A bernilai selain nol (nonzero) dan jika x anggota $\mathbb{R}^n \to A^k x$ adalah hasil dari *left multiplying* (perkalian baris) x dengan A sebanyak k kali
- Jika $k = 0 \rightarrow A^0 x = x$

Pangkat dari Matriks – Left Multiplying

- Jika A bernilai selain nol (nonzero) dan jika x anggota $\mathbb{R}^n \to A^k x$ adalah hasil dari *left multiplying* (perkalian baris) x dengan A sebanyak k kali
- Contoh -> Tentukan nilai A^2x dimana $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ dan $x = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, maka

$$A^{2} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4+3 & 2+4 \\ 6+12 & 3+16 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 18 & 19 \end{bmatrix}$$

$$A^{2}x = \begin{bmatrix} 7 & 6 \\ 18 & 19 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 35 + 36 \\ 90 + 114 \end{bmatrix} = \begin{bmatrix} 71 \\ 204 \end{bmatrix}$$

Transpos Matriks

Transpos Matriks

- Diberikan matriks $m \times n$, A, transpos dari A adalah matriks $n \times m$, di notasikan dengan A^T
- Contoh,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ maka } A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$B = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$$
 maka
$$B^T = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}$$

Sifat-sifat Transpos Matriks

Jika A dan B merupakan matriks dengan ukuran yang dapat digunakan untuk proses penjumlahan dan perkalian, maka,

- $\bullet \quad (A^T)^T = A$
- $\bullet \quad (A+B)^T = A^T + B^T$
- Untuk semua nilai skalar r, $(rA)^T = rA^T$
- $\bullet \quad (AB)^T = B^T A^T$

Latihan!

• Jika
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} -1 & 2 \\ 3 & -1 \\ 4 & 2 \end{bmatrix}$$

- Tentukan AB
- Tentukan BA

Latihan (Lagi)! ©

Perhatikan matriks-matriks berikut.

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}; B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}; D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}; E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

Tentukan (jika memungkinkan)!

- \bullet D+E
- \bullet D-E
- 5*A*
- \bullet 2B C
- \bullet A-A

Tugas

Jika,

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -3 & 2 \end{bmatrix}; B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix}; C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}; D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}; E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

Tentukan (jika memungkinkan),

- \bullet -2A
- *AC*
- \bullet AD
- 3C E
- \bullet CB
- EB

Jika tidak valid, jelaskan alasannya!

References

- Lay, D.C., Lay, S.R. and McDonald, J. (2021) Linear algebra and its applications.
 Boston: Pearson.
- Kariadinata, R. (2013) Aljabar Matriks Elementer. Bandung: Pustaka Setia.