1 Polynomial Approximation Theorems

Main goal is to demonstrate proof techniques, results are not too important.

Theorem 1.1 (Bernstein). *Given continuous* $f : [0,1] \to \mathbb{R}$, *define*

$$f_n(x) := \sum_{n=0}^n \binom{n}{m} x^m (1-x)^{n-m} f(m/n), \quad 0 \le x \le 1$$
 (1.1)

(polynomial of degree n).

Then f_n converge uniformly to f i.e.

$$\sup_{x} |f_n(x) - f(x)| \to 0 \tag{1.2}$$

as $n \to \infty$.

Proof. Fix x. Take i.i.d. Bernoulli(x) r.v.s (X_i , $1 \le i < \infty$). Let $S_n := \sum_{i=1}^n X_i \sim \text{Binomial}(n, x)$ and note $f_n(x) = \mathbb{E}f(S_n/n)$.

Want to bound

$$|f_n(x) - f(x)| = |\mathbb{E}f(S_n/n) - f(x)|$$
 (1.3)

$$\leq \mathbb{E}|f(S_n/n) - f(x)| \tag{1.4}$$

Want to apply WLLN $S_n/n \xrightarrow{p} x$, so split

$$\mathbb{E}|f(S_n/n) - f(x)| = \mathbb{E}\left[|f(S_n/n) - f(x)|1_{|S_n/n - x| \le \delta} + |f(S_n/n) - f(x)|1_{|S_n/n - x| > \delta}\right]$$
(1.5)

From analysis, we have

- $M := \sup |f(X)| \le \infty$
- (Uniformly Continuous) $\forall \varepsilon > 0, \exists \delta > 0 : |y_1 y_2| \le \delta \implies |f(y_1) f(y_2)| \le \varepsilon$

Choosing $\varepsilon > 0$ and taking δ from uniform continuity

$$\mathbb{E}\left[|f(S_n/n) - f(x)|1_{|S_n/n - x| \le \delta} + |f(S_n/n) - f(x)|1_{|S_n/n - x| > \delta}\right]$$
(1.6)

$$\leq \varepsilon + 2MP(|S_n/n - x| > \delta|) \tag{1.7}$$

$$\leq \varepsilon \frac{2M}{\delta^2} \operatorname{Var}(S_n/n) \tag{1.8}$$

$$= \varepsilon + \frac{2M}{\delta^2} \frac{x(-x)}{n} \tag{1.9}$$

$$\leq \varepsilon + \frac{M}{2\delta^2} \frac{1}{n} \tag{1.10}$$

$$\leq \varepsilon \quad \text{as } n \to \infty$$
 (1.11)

$$= 0 \quad \text{holds } \forall \varepsilon > 0$$
 (1.12)

2 Backgrounnd for proving a.s. limits

2.1 Axioms

For events B_n , B

- $B_n \uparrow B \implies P(B_n) \uparrow P(B)$
- $B_n \downarrow B$ and $\exists n : P(B_n) < \infty \implies P(B_n) \downarrow P(B)$

Definition 2.1. Event A_n infinitely often $(A_n \text{ i.o.})$ means $\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$. Event A_n ultimately $(A_n \text{ ult.})$ means $\bigcup m = 1^{\infty} \cap n = m^{\infty} A_n$.

Proposition 2.2. *i.o.* and ult. are opposites: $(A_n i.o.)^c = (A_n^c ult.)$

Lemma 2.3 (Weak).

- (i) $P(A_n i.o.) \ge \limsup_n P(A_n)$
- (ii) $P(A_n \ ult.) \ge \liminf_n P(A_n)$

Proof.

$$P(\cup_{n=m}^{Q} A_n) \ge \max_{m \le n \le Q} P(A_n)$$
(2.1)

$$P(\bigcup_{n=m}^{\infty} A_n) \ge \sup_{n > m} P(A_n) \qquad Q \to \infty$$
 (2.2)

$$P(A_n \text{ i.o.}) \ge \limsup_n P(A_n) \qquad m \to \infty$$
 (2.3)

Lemma 2.4 (First Borel-Cantelli). *Events* $(A_n)_{n=1}^{\infty}$, if $\sum_n P(A_n) < \infty$ then $P(A_n i.o.) = 0$. *Proof.*

$$X_n = \sum_{i=1}^n 1_{A_i} = \text{(number of last } n \text{ events that occur)}$$
 (2.4)

$$X_{\infty} = \sum_{i=1}^{\infty} 1_{A_i} = \text{(total number of events that occur)}$$
 (2.5)

$$\mathbb{E}X_{\infty} = \sum_{i=1}^{\infty} P(A_i) \underset{\text{hyp}}{<} \infty \tag{2.6}$$

$$\implies P(X_{\infty} = \infty) = 0 \tag{2.7}$$

Lemma 2.5 (Second Borel-Cantelli). *For* independent *events* $(A_i)_{i=1}^{\infty}$, *if* $\sum_i P(A_i) = \infty$ *then* $P(A_n \ i.o.) = 1$.

(Many variants under alternative assumptions exist)

Proof. Fix m. We will prove $P(\bigcup_{n=m}^{\infty} A_n) = 1$ or prove $P(\bigcap_{n=m}^{\infty} A_n^c) = 0$.

Fact:
$$0 \le x \le 1 \implies 1 - x \le e^{-x}$$
.

By independence

$$P(\cap_{n=m}^q A_n^c) = \prod_{n=m}^q P(A_n^c)$$
(2.8)

$$= \prod_{n=m}^{q} (1 - P(A_n)) \tag{2.9}$$

$$\leq \exp(-\sum_{n=m}^{q} P(A_n)) \tag{2.10}$$

Let $q \uparrow \infty$

$$P(\cap_{n=m}^{\infty} A_n^c) \le \exp(-\sum_{n=m}^{\infty} P(A_n)) = 0$$
(2.11)

Lemma 2.6. Arbitrary \mathbb{R} -valued r.v.s (Y_n) and arbitrary $-\infty < y < \infty$. If $\sum_n P(Y_n \ge y + \varepsilon) < \infty$ for all $\varepsilon > 0$, then $\limsup_n Y_n \le y$ a.s..

Corollary 2.7. If $\sum_{n} P(|Y_n| \ge \varepsilon) < \infty$, each $\varepsilon > 0$, then $Y_n \stackrel{a.s.}{\to} 0$.

Proposition 2.8 (Deterministic fact for real numbers). *For reals* (y_n) *and* y, " $\limsup_n y_n \le y$ " *equivalent to* " $y_n \le y + \varepsilon$ " *ult., each* $\varepsilon > 0$, *equivalent to* " $y_n \le y + 1/j$ " *ult., each* $j \ge 1$.

Proof. By Hyp and B-C 1

$$\implies P(Y_n \le y + 1/j \text{ ult.}) = 1) \tag{2.12}$$

By monotonicity $P(B_j) = 1 \forall j \implies P(B_j \text{ for all } j) = 1 \text{ hence}$

$$\implies P(Y_n \le y + 1/j \text{ ult., each } j \ge 1) = 1$$
 (2.13)

$$\implies P(\limsup_{n} Y_n \le y) = 1 \tag{2.14}$$

Theorem 2.9 (4th moment SLLN (strong law of large numbers)). Let $(X_i, 1 \le i < \infty)$ be i.i.d., $\forall i : \mathbb{E}X_i = 0$, $\mathbb{E}X^4 < \infty$. Then

(i) $\mathbb{E}S_n^4 \leq 3n^2\mathbb{E}X^4$

(ii) $S_n/n \stackrel{a.s.}{\to} 0$ as $n \to \infty$

Proof. (i) $\mathbb{E}S_n^4 = \sum_{i,j,k,l} \mathbb{E}[X_i X_j X_k X_l]$

Note that $\mathbb{E}[\cdot] = 0$ if some index *j* appears only once, e.g.

$$\mathbb{E}[X_4 X_6 X_6 X_6] = \mathbb{E}[X_4] \mathbb{E}[X_6^6] = 0 \tag{2.15}$$

Hence

$$\mathbb{E}S_n^4 = n\mathbb{E}X^4 + \binom{4}{2}\binom{n}{2}\mathbb{E}[X_1^2 X_2^2]$$
 (2.16)

$$= n\mathbb{E}X^4 + 3n(n-1)\underbrace{(\mathbb{E}X^2)^2}_{\leq \mathbb{E}X^4}$$
 (2.17)

$$\leq 3n^2 \mathbb{E} X^4 \tag{2.18}$$

Fix $\varepsilon > 0$.

$$P(|S_n/n| \ge \varepsilon) \le \mathbb{E}|S_n/n|^4/\varepsilon^4$$
 Markov ineq $\phi(x) = x^4$ (2.19)

$$\leq \varepsilon^{-4} n^{-4} \times 3n^2 \mathbb{E} X^4 \tag{2.20}$$

$$\leq 3\varepsilon^{-4} \mathbb{E} X^4 n^{-2} \tag{2.21}$$

$$\implies \sum_{n} P(|S_n/n| \ge \varepsilon) \le \sum_{n} 3\varepsilon^{-4} \mathbb{E} X^4 n^{-2} < \infty$$
 (2.22)

Applying corollary 2.7, $S_n/n \stackrel{\text{a.s.}}{\rightarrow} 0$

Corollary 2.10. If $(A_i)_{i=1}^{\infty}$ independent Bernoulli(p), $S_n = \sum_{i=1}^n 1_{A_i}$, then $S_n/n \stackrel{a.s.}{\to} p$ as $n \to \infty$.

Definition 2.11. Given data real number x_i, \dots, x_n , define:

Empirical distribution Uniform distribution on (x_1, x_n)

Empirical distribution function $G(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{x_i \le x}$

Figure 1: Example empirical distribution function

Theorem 2.12 (Glivenko-Cantelli). $(X_i)_{i=1}^{\infty}$ *i.i.d.*, arbitrary distribution function F, $G_n(\omega, x) = \frac{1}{n} \sum_{i=1}^{n} 1_{X_i(\omega) \leq x}$ is empirical distribution of $(X_1(\omega), X_2(\omega), \cdots, X_n(\omega))$.

For fixed x, events $\{X_i \leq x\}$ are i.i.d. Bern(f(x)).

SLLN for events says

$$G_n(\omega, x) \to G(x) \text{ a.s. as } n \to \infty$$
 (2.23)

for each x.