Тема. Степінь з цілим показником.

Мета. домогтися засвоєння учнями змісту означення степеня з цілим від'ємним показником (для цілої та дробової основи степеня); сформувати вміння відтворювати означення степеня та застосовувати його для перетворення степеня з цілим від'ємним показником у дріб, та навпаки, сформувати вміння розв'язувати вправи на обчислення значень числових виразів із застосуванням вивченого означення степеня з цілим показником.

Тип уроку. Засвоєння знань та первинних умінь.

Хід уроку

І. Організаційний етап.

III. Формулювання мети і завдань уроку

IV. Актуалізація опорних знань та умінь

Що називається степенем числа?

Шо означає a^5 , e^3 , 7^{10} ...

Виконання усних вправ

1. Прочитайте вираз, назвавши основу і показник степеня:

1) 5^4 ; 2) $(6,1)^9$; 3) 10^1 ;

4) $(-8)^5$; 5) 0^{17} ; 6) $-(\frac{1}{7})^5$.

2. Піднесіть до квадрата:

1) 4; 2) -3; 3) $\frac{1}{5}$; 4) $\frac{2}{3}$; 5) $-\frac{3}{7}$ 6) 0,9.

3. Піднесіть до куба:

1) 3; 2) -2; 3) $\frac{1}{3}$; 4) $-\frac{2}{5}$; 5) $-\frac{1}{2}$; 6) -0,1.

4. Визначте знак виразу, не виконуючи піднесення до степеня:

1) $(\frac{1}{4})^3$; 2) $-(\frac{1}{4})^7$; 3) $(-\frac{1}{4})^2$; 4) $-(\frac{1}{4})^2$;

5) $(-2)^9$ 6) -2^{10} 7) $(-2)^{10}$; 8) -2^9 ;

5. Укажіть порядок дій в обчисленні значення виразів:

$$15^2 - 3^4$$
; 2 $7^2 - 3$: $\frac{1}{2}^3$; $(3^2 - 2^3)^{20}$.

V. Засвоєння знань

Нагадаємо, що в 7 класі ми вивчали степінь з натуральним показником. За означенням степеня $a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{\text{число і } a^1 = a}$, якщо n > 1, n — натуральне число і $a^1 = a$.

Під час розв'язування задач практичного змісту, наприклад з фізики або хімії, трапляються степені, показник яких нуль або ціле від'ємне число. Степінь з від'ємним показником можна знайти в науковій та довідковій літературі. Наприклад, масу атома гелію, записують так: 6,64·10⁻²⁷ кг. Як розуміти зміст запису 10⁻²⁷?

Розглянемо степені числа 3 з показниками 1, 2, 3, 4...:

$$3^1$$
, 3^2 , 3^3 , 3^4 ... and 3^4 , 9^4 ,

У цьому рядку кожне наступне число у 3 рази більше за попереднє. Продовжимо рядок вліво, зменшуючи кожного разу показник степеня на 1. Дістанемо:

$$\dots 3^{-3}$$
, 3^{-2} , 3^{-1} , 3^{0} , 3^{1} , 3^{2} , 3^{3} , 3^{4} ...

Число 3° повинно бути в 3 рази менше за 3^1 =3. Але в 3 рази меншим за число 3 є число 1, отже, 3^0 = 1. Така сама рівність a^0 = 1 буде виконуватися для будь-якої основи а, відмінної від нуля.

Степінь числа a, яке не дорівнює нулю, з нульовим показником дорівнює одиниці:

$$a^0=1 \ (\textit{skugo} \ a\neq 0).$$

Зліва у рядку від числа $3^0 = 1$ стоїть число 3^{-1} . Це число у 3 рази менше за 1, тобто дорівнює $\frac{1}{3}$. Отже, $3^{-1} = \frac{1}{3} = \frac{1}{3^1}$. Міркуючи далі аналогічно, дістанемо

$$3^{-2} = \frac{1}{9} = \frac{1}{3^2}; 3^{-3} = \frac{1}{27} = \frac{1}{3^3}$$

і т.д. Доцільно прийняти наступне означення степеня з цілим від'ємним показником (-n):

якщо
$$a \neq 0$$
 і n — натуральне число, то $a^{-n} = \frac{1}{a^n}$.

$$a^n = egin{cases} \underbrace{aaa...a,}_{n-pas} & \textit{якщо натуральне число } n > 1; \ a, & \textit{якщо } n = 1; \ 1, & \textit{якщо } n = 0 \ i \ a \neq 0; \ rac{1}{a^{-n}}, & \textit{якщо } n - \ \textit{ціле від'ємне } i \ a \neq 0. \end{cases}$$

Приклад 1. Замінити степінь з цілим від'ємним показником дробом:

1)
$$5^{-7}$$
; 2) x^{-1} ; 3) $(a + b)^{-9}$.

Розв'язання:

1)
$$5^{-7} = \frac{1}{5^7}$$
; 2) $x^{-1} = \frac{1}{x^1} = \frac{1}{x}$; 3) $(a+b)^{-9} = \frac{1}{(a+b)^9}$.

Приклад 2. Замінити дріб степенем з цілим від'ємним показником:

1)
$$\frac{1}{a^2}$$
; 2) $\frac{1}{m-n}$; 3) $\frac{1}{7^{13}}$.

Розв'язання:

1)
$$\frac{1}{a^2} = a^{-2}$$
; 2) $\frac{1}{m-n} = (m-n)^{-1}$; 3) $\frac{1}{7^{13}} = 7^{-13}$.

Приклад 3. Виконати піднесення до степеня: 1) 4^{-2} ; 2) $(-9)^0$; 3) $(-5)^{-3}$. Розв'язання:

1)
$$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$$
; 2) $(-9)^0 = 1$;

3)
$$(-5)^{-3} = \frac{1}{(-5)^3} = \frac{1}{-125} = -\frac{1}{125}$$
.

Розглянемо піднесення до від'ємного цілого степеня дробу $\frac{a}{b}$. Якщо n - натуральне число і а \neq 0, маємо:

$$\left(\frac{a}{b}\right)^{-n} = \frac{1}{\left(\frac{a}{b}\right)^{n}} = 1: \left(\frac{a}{b}\right)^{n} = 1: \frac{a^{n}}{b^{n}} = 1 \cdot \frac{b^{n}}{a^{n}} = \left(\frac{b}{a}\right)^{n}.$$

Отже,
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$

Отже, $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$ Приклад 4. Обчислити: 1) $\left(2\frac{1}{3}\right)^{-2}$; 2) $27 \cdot \left(1\frac{1}{2}\right)^{-4}$. Розв'язання:

1)
$$\left(2\frac{1}{3}\right)^{-2} = \left(\frac{7}{3}\right)^{-2} = \left(\frac{3}{7}\right)^2 = \frac{9}{49} \cdot 2$$

$$27 \cdot \left(1\frac{1}{2}\right)^{-4} = 27 \cdot \left(\frac{3}{2}\right)^{-4} = 27 \cdot \left(\frac{2}{3}\right)^{4} = \frac{27 \cdot 16}{81} = \frac{16}{3} = 5\frac{1}{3}.$$

Відповідь: 1)
$$\frac{9}{49}$$
; 2) $5\frac{1}{3}$.

Означення степеня з цілим від'ємним показником	
1.Якщо: $a \neq 0$, n — натуральне число, то $a^{-n} = \frac{1}{a^n}$	Приклад. 1) $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$;
2. Якщо: $a \neq 0$, n=0; то $a^0=1$	Приклади.1) (-2,6) ⁰ =1; 2) $(\frac{2}{3})^0 = 1$

3. Записи 0 °, 0 - ⁿ не мають змісту	
4. Якщо: $\frac{a}{b} \neq 0$; n — натуральне	Приклад. $(\frac{2}{3})^{-2} = (\frac{2}{3})^2 = \frac{9}{4} = 2\frac{1}{4}$
число, то $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$.	
5.Обчисліть значення виразу:	$\left(\frac{3}{8}\right)^{-1} + 9^{-2} - (-2,6)^0 =$
Крок 1. Замінити степені з	
від'ємними показниками на степені з натуральними показниками:	$= \frac{8}{3} + \frac{1}{9^2} - (-2,6)^0 =$
Крок 2. Виконати піднесення до степеня:	$=\frac{8}{3}+\frac{1}{81}-1=$
Крок 3. Виконати дії з дробами:	$2\frac{2}{3} - 1 + \frac{1}{81} = 1\frac{55}{81}$

VI. Формування умінь

Виконання усних вправ

1. Обчисліть:
$$2^4$$
; $(-3)^2$; $(0,1)^3$; $(-1)^8$; $\frac{1}{3^4}$; $\frac{1}{(-2)^3}$; $(-15)^9$; $0,3^0$; $\frac{1}{2}^0$; 0^0 .

2. Замініть дробом степінь із цілим від'ємним показником. Заповніть пропуски.

$$9^{-2} = \frac{1}{9^{-1}}; \ 15^{-1} = \frac{1}{15^{-1}}; \ 3^{-3} = \frac{1}{...}; \ (-2)^{-4} = \frac{...}{...}$$

3. Замініть дріб степенем із цілим від'ємним показником:

$$\frac{1}{3^2} = 3^{-1}; \frac{1}{7} = 7^{-1}; \frac{1}{4^3} = \dots; \frac{1}{2^9} = \dots$$

Від'ємні показники степеня першим систематично почав вживати І. Ньютон, хоч вони були відомі раніше. У 1667 році він зазначив «як алгебраїсти замість aa, aaa і т.д. пишуть a^2 , a^3 , і т.д. так я замість $\frac{1}{a^2}$, $\frac{1}{a^3}$ пишу, a^{-2} , a^{-3} »

До нашого часу збереглися глиняні плитки з таблицями квадратів і кубів натуральних чисел, зроблені стародавніми вавилонянинами. Згодом учені стали розглядати четвертий, п'ятий та вищі степені.

Степінь з нульовим показником запровадили в V столітті незалежно один від одного самаркандець Аль — Каші і француз Н. Шюке. Француз Н. Шюке також використовував степені з від'ємними показниками. Теорію степенів з від'ємними показниками розробив у XVII столітті англійський математик Джорж Валліс.

Виконання письмових вправ №268, 270, 272

VII. Підсумки уроку Тестові завдання

1. Тотожно рівним виразу 7-3 є вираз:

a) -7^3 ; 6) $\frac{1}{7^3}$; B) $\frac{1}{7 \cdot 3}$ Γ) $\frac{1}{7^{-3}}$.

2. Тотожно рівним дробу $\frac{1}{8}$ є вираз:

a) 2^3 ;

б) 2⁴; в) 4⁻²; г) 2⁻³

3. Значення виразу $2^{-3} + 2^{-2}$ дорівнює:

a) -10; 6) $\frac{3}{8}$; B) $\frac{5}{12}$; Γ) 12.

4. Тотожним до степеня $(\frac{3}{4})^{-2}$ є вираз:

a) $(\frac{4}{3})^{-2}$; 6) $(\frac{4}{3}) \cdot 2$; B) $(\frac{4}{3})^2$; $\Gamma(\frac{3}{4}) \cdot (-2)$

VIII. Домашнє завдання

Повторити властивості степенів з натуральним показником Опрацювати § 9, вивчити правила, формули.

Переглянути навчальне відео

https://www.youtube.com/watch?v=XrcSK8ou170&authuser=1

Виконати завдання за посиланням

https://vseosvita.ua/test/start/rde756

або розв'язати №277, 281