Propositions as Types, by Philip Wadler

Víctor López Juan

The presenter

- Víctor López Juan.
- PhD student at Chalmers
- Programing with dependently types.

```
E-mail/XMPP victor@lopezjuan.com

IRC vlopez on irc.freenode.net

Website lopezjuan.com
```

The author

Philip Wadler

- Haskell
- XQuery for XML
- Java generics
- Theorems for free!: parametricity
- Propositions as types

Propositions and Types (I)

Propositions: A statement, which may be true. If we have a proof for a proposition, then we know the proposition is *true*.

- "Six is an even number." That is, $6 = 2 \times n$ for some 'n'.
- "Five is an even number." That is, $5 = 2 \times n$ for some 'n'.
- "Given a list of numbers, there is a list that contains the same elements in ascending order."

Types: A specification that may or may not be possible to implement. If there is a program that implements a type, we say the type is *inhabited*.

- "The program must return a number 'n' such that $2 \times n = 6$."
- "The program must return a number 'n' such that $2 \times n = 5$."
- "The program must take as input a list, and return a sorted list that contains the same elements."

Propositions and Types (II)

Idea: Propositions are types. Proofs are programs.

This is big huge!

- We can write programs that prove theorems.
- We can take a proof and run it as a program.
- We can teach the computer to check our proofs!

But ...

- What counts as a proof?
- What counts as a program?
- What language/system should propositions, types, proofs and programs written in?
- How do we avoid contradictions?

Paper structure

- 4 History
- A system for proofs: Natural deduction
- A system for programs: The simply typed λ-calculus
- The Curry-Howard correspondence.
- Aliens

Beginnings: Principia Mathematica

Dem.

$$\left[*2.05 \frac{p \vee p, p}{q, r} \right] \vdash :: p \vee p. \supset .p : \supset :.p. \supset .p \vee p : \supset .p \supset p$$
 (1)

[Taut]
$$\vdash : p \lor p . \supset . p$$
 (2)

$$[(1).(2).*1\cdot11] \quad \vdash :. p. \supset . p \lor p : \supset . p \supset p$$
 (3)

$$[*2\cdot07] \qquad \qquad \vdash : p. \supset . p \lor p \tag{4}$$

[(3).(4).*1·11]
$$\vdash . p \supset p$$

Principia Mathematica, Alfred Whitehead and Bertrand Russel, 1910

Hilbert's plan

David Hilbert

Hilbert's Programme (1921)

- A formal system in which to write proofs.
- A proof that no contradiction can be proven in the system.
- A program that, given a proposition, produces a proof in the system.
 - ⇒ A system to describe programs that can be run by a computer^a.

^aA human computer with pen and paper, that is.

Response

Gerhard Gentzen

Proofs: Natural deduction (1934)

Haskell Curry and William Howard

← Curry-Howard isomorphism ⇒ (1969)

Alonzo Church

Programs: Simply typed lambda calculus (1940)

Natural deduction (6.)

$$\frac{A \quad B}{A \& B} \& -I \qquad \frac{A \& B}{A} \& -E_1 \qquad \frac{A \& B}{B} \& -E_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{B}{A \supset B} \supset -I^x \qquad \frac{A \supset B \qquad A}{B} \supset -E$$

Figure 1. Gerhard Gentzen (1935) — Natural Deduction

$$\frac{\left[B \& A\right]^{z}}{A} \& - \text{E}_{2} \qquad \frac{\left[B \& A\right]^{z}}{B} \& - \text{E}_{1}$$

$$\frac{A \& B}{\left(B \& A\right) \supset \left(A \& B\right)} \supset - \text{I}^{z}$$

Figure 2. A proof

Natural deduction — Simplification (6.)

Figure 3. Simplifying proofs

Natural deduction — Example (6.)

Figure 4. Simplifying a proof

The simply-typed lambda calculus (7.)

$$\frac{M:A \qquad N:B}{\langle M,N\rangle:A\times B}\times \text{-I} \qquad \frac{L:A\times B}{\pi_1\,L:A}\times \text{-E}_1 \qquad \frac{L:A\times B}{\pi_2\,L:B}\times \text{-E}_2$$

$$\begin{bmatrix} [x:A]^x \\ \vdots \\ N:B \\ \hline \lambda x.\,N:A\to B \end{bmatrix} \to \text{-I}^x$$

$$\frac{L:A\to B \qquad M:A}{L\,M:B} \to \text{-E}$$

Figure 5. Alonzo Church (1935) — Lambda Calculus

$$\begin{aligned} &\frac{\left[z:B\times A\right]^{z}}{\frac{\pi_{2}\,z:A}{\times\cdot\mathbf{E}_{2}}} &\frac{\left[z:B\times A\right]^{z}}{\pi_{1}\,z:B}{\times\cdot\mathbf{E}_{1}}\\ &\frac{\left\langle\pi_{2}\,z,\pi_{1}\,z\right\rangle:A\times B}{\lambda z.\left\langle\pi_{2}\,z,\pi_{1}\,z\right\rangle:\left(B\times A\right)\to\left(A\times B\right)} \to\cdot\mathbf{I}^{z} \end{aligned}$$

Figure 6. A program

The simply-typed lambda calculus — Evaluation (7.)

Figure 7. Evaluating programs

The simply-typed lambda calculus — Example (7.)

$$\frac{\left[z:B\times A\right]^{z}}{\frac{\pi_{2}\,z:A}{\langle \pi_{2}\,z,\pi_{1}\,z\rangle :A\times B}}\times \cdot \operatorname{E}_{1}}{\frac{\pi_{1}\,z:B}{\langle \pi_{2}\,z,\pi_{1}\,z\rangle :A\times B}}\times \cdot \operatorname{I}_{1}}{\frac{\lambda_{z}.\langle \pi_{2}\,z,\pi_{1}\,z\rangle :(B\times A)\to (A\times B)}{\langle \lambda_{z}.\langle \pi_{2}\,z,\pi_{1}\,z\rangle) \, \langle y,x\rangle :A\times B}}\times \cdot \operatorname{I}_{2}$$

$$\frac{\lambda_{z}.\langle \pi_{2}\,z,\pi_{1}\,z\rangle :(B\times A)\to (A\times B)}{\langle \lambda_{z}.\langle \pi_{2}\,z,\pi_{1}\,z\rangle) \, \langle y,x\rangle :A\times B}} \times \cdot \operatorname{I}_{2}$$

$$\frac{\lambda_{z}.\langle \pi_{z}\,z,\pi_{1}\,z\rangle \, \langle y,x\rangle :A\times B}{\langle \chi_{z}.\langle \pi_{z}\,z,\pi_{1}\,z\rangle \, \langle x,x\rangle :A\times B}}\times \cdot \operatorname{I}_{2}$$

$$\frac{\lambda_{z}.\langle x,x\rangle :B\times A}{\langle x_{z}\,\langle y,x\rangle :A\times B}\times \cdot \operatorname{I}_{2}$$

$$\frac{\lambda_{z}.\langle x,x\rangle :A\times B}{\langle x,x\rangle :A\times B}\times \cdot \operatorname{I}_{2}$$

Figure 8. Evaluating a program

The Curry-Howard isomorphism (3. Propositions as types)

Type	Values	≅	Proposition	Canonical proofs
Empty			Т	
Unit	()		Т	•
$A \times B$	(M,N)		A & B	pf. A and pf. B
$A \rightarrow B$	$\lambda \times \mapsto N$		$A \supset B$	from pf. A, build pf. B
A + B	inl M , inr N		ΑνΒ	pf. A or pf. B (and which one)

Normalization and consistency (2. Gentzen, and the theory of proof)

Proposition

(Strong normalization of the simply typed λ -calculus) All programs in the simply-typed lambda calculus **normalize** to a value.

Proof.

Types and Programming languages, Benjamin C. Pierce, Chapter 12.

Observation

There are no programs of type Empty in the $ST\lambda C$.

Corollary

(Consistency of natural deduction) There are no proofs of \bot in natural deduction.

Universality of logic (8. Conclusion)

"Scientists imagine that in different universes one might encounter different fundamental constants. [...] But [...] it is difficult to conceive a universe where the fundamental rules of logic fail to apply. So we may conclude it would be a mistake to characterise the λ -calculus as a universal language, because calling it universal would be too limiting."

Philip Wadler, Propositions as Types