1. What requirements S must fullfil in order to become a field?

In order to show that S is a field, we'll need to prove the following **binary operator** properties:

- 1. In S, there are two members, zero 0_S and one 1_S
- 2. S supports the addition and multiplication binary operators
- 3. Every member in S can be negated, i.e. for every x there is -x
- 4. For every member in S that is not 0_S , $\exists x^{-1} \in S$, it is called the multiplicative inverse of x

In addition, the mentioned binary operators should satisfy the following properties, referred to as *field axioms*:

1. Associativity of addition(A1) and multiplication(M1):

$$a + (b+c) = (a+b) + c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

2. Commutativity of addition(A2) and multiplication(M2):

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

3. Additive identity(A3) and multiplicative identity(M3)

$$a + 0 = a$$

$$a \cdot 1 = a$$

4. Additive inverse(A4) and multiplicative inverse(M4)

$$a + (-a) = 0$$

$$a \cdot a^{-}1 = 1$$

5. Distributivity(D)

$$a(b+c) = (a \cdot b) + (a \cdot c)$$

2. Prove: ((a+b)+c)+d=(a+b)+(c+d)=a+(b+(c+d))

2.1.
$$((a+b)+c)+d=(a+b)+(c+d)$$
:

let
$$h = (a + b)$$

 $(h + c) + d = ((a + b) + c) + d$
 $(h + c) + d = h + (c + d)$ (A1)
 $h + (c + d) = (a + b) + (c + d)$
 \Downarrow
 $((a + b) + c) + d = (a + b) + (c + d)$

2.2. a + (b + (c + d)) = (a + b) + (c + d):

let
$$h = (c + d)$$

 $a + (b + h) = a + (b + (c + d))$
 $a + (b + h) = (a + b) + h$ (A1)
 $(a + b) + h = (a + b) + (c + d)$
 $\downarrow \downarrow$
 $a + (b + (c + d)) = (a + b) + (c + d)$

3. Prove: $\forall x, y \in F$, x(y-z) = xy - xz

$$x(y-z) = x(y+(-z)) \text{ (A1)}$$

$$x(y+(-z)) = (x \cdot y) + (x \cdot (-z)) \text{ (D)}$$

$$(x \cdot y) + (x \cdot (-z)) = (x \cdot y) + (-x \cdot z)) = (x \cdot y) - (x \cdot z)$$

$$(x \cdot y) - (x \cdot z)) = xy - xz$$

4. Prove: $\forall x, y \in F, (x+y)(x+y) = xx + xy + yx + yy$

let
$$h = (x + y)$$

 $(x + y)(x + y) = h \cdot (x + y)$
 $h \cdot (x + y) = (x \cdot h) + (y \cdot h) = x(x + y) + y(x + y)$ (D)
 $x(x + y) + y(x + y) = xx + xy + yx + yy$ (D)

5. Prove: $\forall x, y \in F$, (x+y)(x-y) = xx - yy

$$(x + y)(x - y) = xx - xy + yx - yy$$
 (ex. 4)
 $xx - xy + yx - yy = xx + (-xy + yx) - yy$ (A1)
 $(-xy + yx) = (-xy + xy)$ (A2)
 $(-xy + xy) = 0$ (A4)
 $\downarrow \downarrow$
 $xx + (-xy + yx) - yy = xx + 0 - yy = xx - yy$ (A3)

6. Prove: $(a = b) \land (c = d) \Rightarrow (a + c = b + d) \land (ac = bd)$

6.1.
$$(a = b) \land (c = d) \Rightarrow a + c = b + d$$
:

$$c = d = x$$

 $a = b$
 $a + x = b + x$ (Consistency with addition)
 $a + x = a + c$ (**x=c**)
 $b + x = b + d$ (**x=d**)
 $\downarrow \downarrow$
 $a + c = b + d$

6.2.
$$(a=b) \land (c=d) \Rightarrow ac=bd$$
:

c = d = x a = b ax = bx (Consistency with multiplication) ax = ac ($\mathbf{x} = \mathbf{c}$) bx = bd ($\mathbf{x} = \mathbf{d}$) \downarrow ac = bd

7.
$$A = \left\{ \begin{pmatrix} 1 \\ a \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$

7.1. Does A have a neutral additive member?

$$\begin{pmatrix} 1 \\ a \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ a+0 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ a+0 \end{pmatrix} = \begin{pmatrix} 1 \\ a \end{pmatrix} (\mathbf{A3})$$
$$\downarrow \downarrow$$
$$0_A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

7.2. Does A have a neutral multiplicative member?

$$\begin{pmatrix} 1 \\ a \end{pmatrix} \odot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ a \cdot 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ a \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 \\ a \end{pmatrix} \quad (M3)$$
$$\downarrow \downarrow$$
$$1_A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

7.3. <u>Is A a field?</u>