Állománynév: aramkorok_03lti_analizis24.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

5th Edition, pp. 42-57, 110-231, 249-272.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

3. A KONCENTRÁLT PARAMÉTERŰ LINEÁRIS ÉS IDŐINVARIÁNS HÁLÓZATOK ANALÍZISE

Ne feledd: Az LTI hálózatok matematikai modellje egy <u>állandó együtthatós</u>, <u>lineáris</u>, <u>differenciál egyenlet</u>

Célok: • Az egyenletek felírása előtt az áramkört egyszerűsítése

- Minimális számú ismeretlent adó (differenciál) egyenlet felírása
- Mivel sokszor csak az állandósult állapotbeli viselkedést akarjuk meghatározni, egyszerű (algebrai) módszerek adása az állandósult állapotban mért válasz meghatározására

Áramkör \Longrightarrow Egyszerűsített áramkör		
\		↓ Mérnök
Időtartomány		Transzformált-tartomány
\		\
Lineáris rendszer		Transzformált rendszer
		(Pl. impedancia)
Differenciál egyenlet	\Longrightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
\		↓
Diff. egy. megoldása		Algebrai módszerek
+		
Válaszjel	←	Megoldás a transzformált
	Inverz	tartományban
	transzformáció	

Emlékeztető: A hagyományos módszer a differenciál egyenlet felírására

1. Kirchhoff csomóponti törvénye

$$\sum_{k} i = 0$$

2. Kirchhoff huroktörvénye

$$\sum_{l} v = 0$$

3. Áramköri elemekre vonatkozó egyenletek Például az Ohm törvény

$$v(t) = R i(t)$$

3.1. Hurokáramok módszere

Alapelv:

- Kirchhoff huroktörvényét írjuk fel
- A csomóponti és az áramköri elemekre vonatkozó egyenleteket automatikusan kielégítjük

Módszer:

- Minden független hurokban felveszünk egy ún. hurokáramot ami nem azonos az ágárammal
- Hurokáramok számát addig növeljük amíg minden hurkot lefedtünk
- Minden új hurokáram menjen át legalább egy addig még le nem fedett ágon
- A hálózatnak topológiai értelemben összefüggőnek kell lennie

Minimális számú ismeretlent ad:

- Sok, független áramforrás esetén
- Egy áramgenerátoron egy és csak egy hurokáramot célszerű felvenni

Ellenőrzés:

 Kirchhoff hurokegyenlet felírása egy új korábban fel nem vett hurok mentén

Egyenletek:

$$I_3 = 1 \text{ A}$$

$$\sum_{v} = 0 = -40 + 2(I_1 + I_2) + 10I_1$$

$$\sum_{v} = 0 = -40 + 2(I_1 + I_2) + 9I_2 + 4(I_2 + I_3) = -40 + 2(I_1 + I_2) + 9I_2 + 4(I_2 + 1)$$

A 4-ohmos ellenálláson fizikailag átfolyó áram:

A telepből felvett áram:

$$i_T = I_1 + I_2$$

Ellenőrzés: Kirchhoff hurokegyenlet felírása a középső hurokra

$$\sum_{v} = 0 = ? = -10I_1 + 9I_2 + 4(I_2 + 1)$$

3.2. Csomóponti feszültségek módszere

Alapelv:

- Kirchhoff csomóponti törvényét írjuk fel
- A hurkokra és az áramköri elemekre vonatkozó egyenleteket automatikusan kielégítjük

Módszer:

- Egy csomópontot földelünk, azaz referenciának tekintünk
- ullet Elvileg max. (n-1) független csomópont van, de a számba veendő csomópontok számát a független generátorok csökkentik
- Ha a kapcsolási rajzon szereplő föld nem optimális helyen van akkor az áthelyezhető. Ekkor azonban a kapott csomóponti feszültségeket az eredeti föld szerint át kell számolni!!!

Minimális számú ismeretlent ad:

- Sok, független feszültségforrás esetén, ha azok egy közös ponthoz kapcsolódnak
- Áramköreink rendszerint aszimmetrikusak, azaz van egy közös föld pontjuk

Ellenőrzés:

 A kapcsolási rajzba be kell írni valamennyi csomópont feszültségét és valamennyi ág áramát

Egyenletek:

$$\sum_{i_a} = 0 = \frac{40 - v_a}{2} + \frac{v_b - v_a}{9} - \frac{v_a - 0}{10}$$

$$\sum_{i_b} = 0 = \frac{v_a - v_b}{9} + 1 - \frac{v_b - 0}{4}$$

$$i = \frac{v_a - v_c}{10} = \frac{v_a - 0}{10}$$

A "d" csomópont feszültsége:

$$v_d = v_b + 8 \times 1$$

3.3. Hálózatokra vonatkozó tételek

Az egyenletek felírásának megkezdése előtt az áramkört célszerű egyszerűsíteni azért, hogy minimális számú ismeretlent kapjunk

3.3(a) KÉTPÓLUSOK (EGYKAPUK) EKVIVALENCIÁJA

Két kétpólus (egykapu) ekvivalens, ha azonos a *feszültség-áram* karakterisztikájuk

3.3(b) SOROS ÉS PÁRHUZAMOS KAPCSOLÁSOK ÖSSZEVONÁSA

A replusz művelet

$$\frac{a}{b} \parallel \frac{c}{d} = \frac{ac}{ad + bc}$$

ahol a, b, c és d tetszőleges polinomok, pl. impedanciák is lehetnek

Soros ellenállások eredője: $R_{er} = R_1 + R_2 + \cdots + R_n$

Párhuzamos ellenállások eredője: $R_{er} = R_1 \parallel R_2 \parallel \cdots \parallel R_n$

Soros induktivitások eredője: $L_{er} = L_1 + L_2 + \cdots + L_n$

Párhuzamos induktivitások eredője: $L_{er} = L_1 \parallel L_2 \parallel \cdots \parallel L_n$

Soros kapacitások eredője: $C_{er} = C_1 \parallel C_2 \parallel \cdots \parallel C_n$

Párhuzamos kapacitások eredője: $C_{er} = C_1 + C_2 + \cdots + C_n$

3.3(c) THÈVENIN TÉTEL

A terhelés szempontjából egy tetszőleges, ellenállásokat, független forrásokat és vezérelt generátorokat tartalmazó hálózat (áramkör) az adott kapura nézve helyettesíthető egy V_T feszültségű független feszültségforrás és egy R_T ellenállású ellenállás soros kapcsolásával

A Thèvenin ekvivalens meghatározásának lépései:

$$V_T = V_{OC}$$
 and $I_{SC} = \frac{V_T}{R_T} \implies R_T = \frac{V_T}{I_{SC}} = \frac{V_{OC}}{I_{SC}}$

3.3(d) NORTON TÉTEL

A terhelés szempontjából egy tetszőleges, ellenállásokat, független forrásokat és vezérelt generátorokat tartalmazó hálózat (áramkör) az adott kapura nézve helyettesíthető egy I_N áramú független áramforrás és egy G_N vezetésű admittancia párhuzamos kapcsolásával

A Norton ekvivalens meghatározásának lépései:

$$I_N = I_{SC}$$
 and $G_N = \frac{I_N}{V_{OC}} = \frac{I_{SC}}{V_{OC}}$

3.3(e) HELYETTESÍTŐ KÉPEK EGYMÁS KÖZTI ÁTALAKÍTÁSA

 A Thèvenin és Norton helyettesítő képek egymásba átalakíthatók a következő összefüggések segítségével:

$$I_N = \frac{V_T}{R_T} \qquad V_T = \frac{I_N}{G_N} \qquad G_N = \frac{1}{R_T}$$

- Vedd észre, az elektronikában mindennek megvan a duálja. Elég a tételek felét megtanulni :-) !!!
- Ha egy áramkörben csak egy kapocspár mentén akarjuk a feszültséget/áramot meghatározni, akkor
 - 1. arra a kapocspárra nézve nyitunk egy kaput,
 - 2. a terhelést kiemeljük és
 - 3. a maradék befoglaló áramkört a Thèvenin/Norton helyettesítő képpel helyettesítjük
- Vedd észre, a munkaegyenes/munkapont módszernél a befoglaló hálózatot a Thèvenin helyettesítő képpel írtuk le

3.3(f) FESZÜLTSÉGOSZTÓ TÉTEL

$$V_2 = \frac{R_2}{R_1 + R_2} \, V_1$$

3.3(g) ÁRAMOSZTÓ TÉTEL

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

3.3(h) SZUPERPOZICIÓ TÉTELE

- Kizárólagosan a lineáris áramkörökre és rendszerekre alkalmazható
- A több gerjesztés együttes hatására fellépő válaszjelet megkapjuk ha meghatározzuk az egyes gerjesztésekre külön-külön adott válaszokat, majd azokat összegezzük

$$I_V = \frac{V}{R_1 + R_2} \quad \text{és} \quad I_I = \frac{R_1}{R_1 + R_2} I \quad \text{majd szuperpozicióval:} \quad I_2 = I_V + I_I = \frac{V + I \, R_1}{R_1 + R_2}$$

Figyelem: A generátorok **nem** eltávolítva lettek, hanem I=0 ill. V=0 behelyettesítésekkel a gerjesztéseket nullává tettük!!!

3.3(i) ILLESZTÉS: MAXIMÁLIS TELJESÍTMÉNY KIVÉTELE

Terhelés egy tetszőleges hálózatban

Illesztés meghatározásának modellje

A generátorból kivett (azaz az R_L terhelésen eldisszipált) teljesítmény:

$$P_L = V_L I_L = \frac{V_L^2}{R_L} = \frac{R_L^2}{(R_T + R_L)^2} V_T^2 \frac{1}{R_L} = \frac{R_L}{(R_T + R_L)^2} V_T^2$$

$$\frac{dP_L}{dR_L} = \frac{(R_T + R_L)^2 - R_L 2(R_T + R_L)}{(R_T + R_L)^4} = 0$$

$$(R_T + R_L)^2 - 2(R_T + R_L)R_L = 0 \text{ ahol } (R_T + R_L) \neq 0$$

Az illesztés (max. teljesítménykivétel) feltétele: $R_L = R_T$

3.4. R-L-C áramkörök A rendszerjellemző differenciál egyenlet megoldása

A Kirchhoff egyenletek alapján felírt rendszerjellemző differenciál egyenlet:

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$

ahol x(t) a gerjesztés és y(t) a válaszjel

Vedd észre: Fizikai rendszerben CSAK valós jelek léphetnek fel!

A rendszerjellemző differenciál egyenlet tulajdonságai:

- Lineáris (szuperpozició alkalmazható)
- Állandó együtthatós
- ullet Az egyetlet $oldsymbol{n}$ rendűségét a független (össze nem vonható) energiatároló elemek száma adja meg

Α

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$

differenciál egyenlet teljes megoldása két megoldás összegéből állítható elő:

1. tranziens megoldás

A homogén differenciál egyenlet általános megoldása Karakterisztikus egyenlet, a rendszer stabilitását adja meg Csak az áramkörre jellemző válasz

2. állandósult állapotbeli megoldás

Az inhomogén differenciál egyenlet egy partikuláris megoldása Esetek döntő többségében csak ezt a megoldást kell meghatározni, mivel az ún. bekapcsolási tranziens sokszor nem érdekes

Egyaránt függ az áramkörtől és a gerjesztéstől

Teljes megoldás = Tranziens megoldás + Állandósult állapotbeli megoldás

Hogyan jön össze ez a differenciál egyenlet

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$

az eddig tanulmányozott egyenáramú (DC) áramkörökkel? Ott csak algebrai egyenletek voltak!

Eddig:

- ullet csak DC gerjesztés: amiből következik, hogy $\frac{d^n}{dt^n}x(t)=0$
- ullet állapotú DC áramkör: amiből következik, hogy $\frac{d^n}{dt^n}y(t)=0$

Behelyettesítve:

$$a_0y = b_0x$$

3.4(a) A TRANZIENS VÁLASZ MEGHATÁROZÁSA

(Matematikai megfogalmazással: A homogén differenciál egyenlet általános megoldása)

Elsőrendű (azaz egy energiatároló elemet tartalmazó) rendszer

ahol
$$t_0 = 0$$

Kezdeti feltétel:

$$v_C(0-) = V_0$$

Kirchhoff hurokegyenlete alapján (óramutatóval ellentétes körüljárás), $t \geq 0$

$$\sum v = 0 = v_C - v_R = \frac{1}{C} \int_{-\infty}^t i_C(\tau) d\tau - R i_R = V_0 - \frac{1}{C} \int_0^t i(\tau) d\tau - R i$$

• kisbetű ≡ időfüggvény, nagybetű ≡ DC jel vagy komplex amplitúdó, azaz konstans

Rendszerjellemző differenciál egyenlet, $t \geq 0$

$$RC\frac{di}{dt} + i = 0$$

Az általános megoldás keresése $i = A \exp(st)$ alakban, mivel $\frac{di}{dt} = sA \exp(st)$

Az időállandó és a karakterisztikus (mert csak az áramkörre jellemző) egyenlet definiciója

$$(\underbrace{RC}_{\text{időállandó}}s+1)\underbrace{A\exp(st)}_{i} = \underbrace{(s\tau+1)}_{\text{karakterisztikus egyenlet}}i=0 \quad \text{ahol} \quad i\neq 0$$

A tranziens megoldás a karakterisztikus egyenlet megoldásából adódik

$$s = -\frac{1}{\tau} \implies i = A \exp\left(-\frac{t}{\tau}\right)$$

Vedd észre, a karakterisztikus egyenlet megoldása valós, ami szükséges feltétele annak, hogy megoldásként egy valós időfüggvényt kapjunk

Az A konstans meghatározása a kezdeti feltételből

$$\sum v(0+) = 0 = v_C(0+) - v_R(0+) = V_0 - \frac{1}{C} \int_0^{0+} i(t)dt - Ri(0+)$$

$$i(0+) = \frac{v_C(0+)}{R} = \frac{V_0}{R} \equiv A$$

A tranziens (általános = minden kezdeti feltételre igaz) megoldása $t \geq 0$ -ra

$$i = \frac{V_0}{R} \exp\left(-\frac{t}{\tau}\right) \tag{1}$$

Fizikai jelentés: A kapcsoló zárása után az R ellenálláson keresztül exponenciálisan kisül a C kondenzátor töltése

Másodrendű (két, össze nem vonható energiatároló elem) rendszer

Rezgőkör, minden LC szűrő alapja

ahol
$$t_0 = 0$$

Kezdeti feltételek:

$$v_C(0-) = V_0$$
 és $i(0-) = 0$

Kirchhoff hurokegyenlete alapján (óramutatóval ellentétes körüljárás), $t \ge 0$

$$\sum v = v_C + v_L - v_R = 0$$

$$egin{aligned} m{i} &= -m{i}_C = -m{i}_L = m{i}_R \qquad \text{\'es} \qquad v_C = V_0 + rac{1}{C} \int_0^t m{i}_C \, d au, \quad v_L = L rac{d i_L}{d t}, \quad v_R = R \, i_R \ \\ &\sum v = V_0 - rac{1}{C} \int_0^t m{i} \, d au - L rac{d i}{d t} - R i = 0 \end{aligned}$$

Rendszerjellemző differenciál egyenlet, $t \geq 0$

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$

Az általános megoldás keresése $i = A \exp(st)$ alakban

$$\frac{di}{dt} = sA \exp(st)$$
 és $\frac{d^2i}{dt^2} = s^2A \exp(st)$

A karakterisztikus (csak az áramkörre jellemző) egyenlet

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

A determinánstól függően, karakterisztikus egyenletnek két valós, vagy egy komplex konjugált gyökpár a megoldása

$$s_j = -rac{R}{2L} \pm \sqrt{\left(rac{R}{2L}
ight)^2 - rac{1}{LC}}$$
 ahol j=1,2

A tranziens (általános = minden kezdeti feltételre igaz) megoldás, $t \ge 0$

$$i = A_1 \exp(s_1 t) + A_2 \exp(s_2 t)$$

A lineáris rendszerekre vonatkozó, általános érvényű következtetések:

A

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = 0$$

homogén egyenlet megoldása komplex exponenciálisok lineáris kombinációja

- A tranzienst meghatározó homogén egyenlet csak a rendszertől függ, ezért hívjuk karakterisztikus egyenletnek
- A karakterisztikus egyenlet megoldása valós gyököket vagy komplex konjugált gyökpárokat ad, ami szükséges feltétele annak, hogy megoldásként egy valós időfüggvényt kapjunk
- A karakterisztikus egyenlet megadja a rendszer stabilitását (Vedd észre: Ha egy LTI rendszer stabilis, akkor aszimptotikusan stabilis)

A megoldásban

$$i = A_1 \exp(s_1 t) + A_2 \exp(s_2 t)$$

szereplő A_1 és A_2 konstansok meghatározása a kezdeti feltételekből megy végbe

Két ismeretlen, tehát két kezdeti feltétel kell

Feltétel #1:

$$i_L(0-) = 0 = i_L(0+) = -i(0+) \equiv -(A_1 + A_2)$$
 (1)

Feltétel #2: (Fizikai képből vagy az áramkörre felírt hurokegyenletből) Hurokegyenlet alapján: Ha i(0+)=0, akkor $v_R(0+)=0$ és

$$v_C(0+) + v_L(0+) - v_R(0+) = V_0 - \frac{1}{C} \int_0^{0+} i \, dt - L \frac{di}{dt} \mid_{t=0+} = 0$$

$$\frac{di}{dt} \mid_{t=0+} = \frac{V_0}{L} \equiv A_1 s_1 + A_2 s_2 \tag{2}$$

A másodrendű rendszer tipikus tranziens megoldásai

Két valós gyök esetén

(A) t (s) Komplex konjugált gyökpár esetén

3.4(b) ÁLLANDÓSULT ÁLLAPOTBELI VÁLASZ MEGHATÁROZÁSA

$$ahol t_0 = 0$$

Vedd észre:

Az áramkör tranziens válaszát már meghatároztuk a 3.4(a) pontban a $v_C(0-)=V_0$ kezdeti feltétel mellett

Kirchhoff hurokegyenlet (óramutatóval ellentétes körüljárás), $t \ge 0$

$$v_g + v_C - v_R = v_g + V_0 - \frac{1}{C} \int_0^t \mathbf{i} \, dt - R \, \mathbf{i} = 0$$

$$R \, \frac{di}{dt} + \frac{1}{C} \, \mathbf{i} = \frac{dv_g}{dt}$$

Vedd észre: A tranziens meghatározásánál $v_g=0$, de ez nem jelenti a feszültségforrás eltávolítását, csak a feszültség nullává tételét!!!

IMPEDANCIA KONCEPCIÓ

1. A megoldást formálisan az Ohm törvény

$$R = \frac{V}{I}$$

alakjában keressük

2. Alkalmazott módszer:

Korlátozzuk a gerjesztések osztályát

Megoldás az impedancia koncepcióval: A rendszerjellemző differenciál egyenlet

$$R\frac{di}{dt} + \frac{1}{C}i = \frac{dv_g}{dt}$$

Korlátozuk a gerjesztést a komplex exponenciálisok osztályára:

$$v_g = A_g \exp\left(s_g t\right)$$

Mivel az ún. (komplex) exponenciálisok a differenciál egyenlet sajátfüggvényei, a választ exponenciális függvény alakjában keressük:

$$i(t) = A_i \exp(st) \mid_{s=s_g} \implies \frac{di}{dt} = s i \mid_{s=s_g}$$

A nagy újság: A differencia egyenlet helyett egy algebrai egyenletet kapunk

$$Rsi + \frac{1}{C}i = s\left(R + \frac{1}{sC}\right)i = sv_g$$

Amiből az impedancia az Ohm törvénnyel megegyező formában adódik

$$\frac{v_g}{i} = R + \frac{1}{sC} = Z(s)$$

Az adott gerjesztésre adott válasz meghatározása során az impedanciát a gerjesztés által meghatározott komplex frekvencián kell kiértékelni

$$i = \frac{v_g}{Z(s)|_{s=s_g}} = \frac{A_g \exp(s_g t)}{(R + \frac{1}{sC})|_{s=s_g}} = \frac{s_g C}{1 + s_g R C} A_g \exp(s_g t)$$
 (2)

Vedd észre:

ullet Mind a tranziens, mind az állandósul állapotbeli megoldás $A\exp(st)$ alakban adódik,

DE !!!

- Tranziens esetén s értékét az áramkör, míg
- Állandósult állapot esetén s értékét a gerjesztés határozza meg
- Megkaptunk, amit akartunk

$$V\'{a}lasz = gerjeszt\'{e}s \ (/ \text{ vagy} \times) \ impedancia$$

3.4(c) A TELJES VÁLASZ MEGHATÁROZÁSA

Kezdeti feltétel: $v_C(0-) = V_0$

A teljes válasz a 22. oldalon (1) egyenlettel adott tranziens, és a 30. oldalon (2) egyenlettel leírt állandósult állapotbeli viselkedés összegeként adódik, $t \ge 0$:

$$m{i}(t) = A \exp\left(-rac{t}{RC}
ight) + rac{s_g C}{1 + s_g RC} A_g \exp\left(s_g t
ight)$$

A kezdeti feltétel figyelembe vétele:

$$i(0+) = A + \frac{s_g C}{1 + s_g R C} A_g \equiv \frac{v_R(0+)}{R} = \frac{v_g(0+) + v_C(0+)}{R} = \frac{A_g + V_0}{R}$$

3.5. Az IMPEDANCIA koncepció

• A gerjesztés és válaszjel kapcsolatát megadó differenciál egyenlet

$$a_n \frac{d^n v}{dt^n} + a_{n-1} \frac{d^{n-1} v}{dt^{n-1}} + \dots + a_1 \frac{dv}{dt} + a_0 v = b_m \frac{d^m i}{dt^m} + \dots + b_0 i$$

Vedd észre, az exponenciális függvények speciális tulajdonságát

$$f_{exp}(t) = A \exp(st)$$
 \Longrightarrow $\frac{d^n f_{exp}(t)}{dt^n} = \frac{d^n A \exp(st)}{dt^n} = s^n f_{exp}(t)$

- Az exponenciális függvények a differenciál egyenletek sajátfüggvényei
- A tranziens válasz mindig a komplex exponenciálisok lineáris kombinációjaként adódik
- Korlátozzuk a gerjesztéseket az exponenciális függvények, ill. az azokból előállítható függvények osztályára

Megjegyzések az impedancia koncepcióhoz:

- $s = \sigma + j\omega$ jelöli a komplex frekvenciát
- Mivel a lineáris áramkörökre érvényes a szuperpozició, az impedancia koncepció minden olyan gerjesztésre alkalmazható amely előállítható az exponenciális függvények lineáris kombinációjaként
- ullet A Z(s) impedancia a hálózatra jellemző mennyiség, azt teljesen leírja
- ullet Ennélfogva a Z(s) impedancia tartalmazza a hálózat tranziens válaszát
- ullet Az állandósult állapotbeli viselkedés meghatározásához a Z(s) impedanciát a gerjesztés által meghatározott, ullet komplex frekvencián kell elvégezni

Az impedancia felírása és alkalmazása

- Bevezetve az impedancia koncepciót az egyes áramköri elemekre
 - Ellenállás: $Z_R = \frac{v_R}{i_R} = R \; [\Omega]$
 - Induktivitás: $Z_L = \frac{v_L}{i_L} = sL \; [\Omega]$
 - Kapacitás: $Z_C = \frac{v_C}{i_C} = \frac{1}{sC} \; [\Omega]$
- az impedancia a kapcsolási rajzból közvetlenül felírható
- Az impedanciákkal formálisan ugyanúgy lehet és kell számolni, mint az ellenállásokkal egy DC hálózatban
- Ne feledd, az impedanciák csak exponenciális gerjesztés vagy azok lineáris kombinációja esetén alkalmazhatók
- Az impedancia az s komplex frekvencia polinomja
- Az impedancia az adott hálózatra jellemző függvény
- ullet Az adott gerjesztésre adott válasz meghatározásánál az impedanciát a gerjesztés által meghatározott s komplex frekvencián kell kiértékelni

Példa az áramköri elemek impedanciájának levezetésére

1. lépés: Korlátozzuk a gerjesztést a valós exponenciális függvények osztályára

$$i(t) = Ae^{st}$$
, ahol s valós szám

2. lépés: Felírjuk az induktivitás egyenletét az időtartományban

$$\downarrow^{i_L(t)} \\
\downarrow^{L} \\
\downarrow^{V_L(t)} \\
v_L(t) = L \frac{d i_L(t)}{dt}$$

3. lépés: Az $i_L=i=Ae^{st}$ exponeciális gerjesztés mellett meghatározzuk v_L értékét

$$v_L(t) = L \frac{d i_L(t)}{dt} = L \frac{d i(t)}{dt} = L \frac{d}{dt} \left(A e^{st} \right) = sL \left(A e^{st} \right) = sL i_L(t)$$

4. lépés: Az induktivitás valós exponenciális függvény gerjesztésre érvényes impedanciája

$$Z_L(s) = \frac{v_L(t)}{i_L(t)} = sL$$

Impedancia koncepció alkalmazásának lépései

Lépések:

- 1. Vizsgálandó helyen kaput definiálunk vagy nyitunk (lásd fekete pontokat)
- 2. Adott kapura nézve felírjuk az impedancia függvényt

$$Z(s) = \frac{v_g}{i} = R + \frac{1}{sC} = \frac{1 + sRC}{sC} \quad [\Omega]$$

3. A tranziens válasz meghatározása az impedancia függvényből

$$\frac{v_g}{i} = Z(s) = \frac{Z^{[sz]}(s)}{Z^{[n]}(s)} = \frac{1 + sRC}{sC}$$

$$Z^{[sz]}(s)i = \underbrace{(1+sRC)}_{karakterisztikus\ egyenlet} i \equiv Z^{[n]}(s)v_g = sCv_g$$

Tranziens válasz: $v_g = 0$ de $i \neq 0$

$$1 + sRC = 0 \qquad \Longrightarrow \qquad s = -\frac{1}{RC}$$

Vedd észre: Mivel Z(s) hordozza a karakterisztikus egyenletet, belőle a (i) tranziens válasz és a (ii) hálózat stabilitása meghatározható

4. Az állandósult állapotbeli válasz meghatározása az impedancia függvényből

$$v_g \implies s_g$$

$$i = \frac{v_g}{Z(s)|_{s=s_g}} = \frac{1}{Z(s)}|_{s=s_g} A \exp(s_g t)$$

5. A teljes válasz felírása

$$teljes = tranziens + \'alland\'osult$$

Stabilis hálózat esetén a tranziens (válasz) exponenciálisan eltűnik, azaz lecseng az idő függvényében

Az impedancia általános alakja

I. A gerjesztés és válaszjel kapcsolatát megadó differenciál egyenlet

$$a_n \frac{d^n v}{dt^n} + a_{n-1} \frac{d^{n-1} v}{dt^{n-1}} + \dots + a_1 \frac{dv}{dt} + a_0 v = b_m \frac{d^m i}{dt^m} + \dots + b_0 i$$

II. A gerjesztések korlátozása a (komplex) exponenciális függvények osztályára

Megengedett gerjesztések:

$$i(t) = A_i \exp(st) \implies \frac{d^n i}{dt^n} = s^n i$$

$$a_n s^n v + a_{n-1} s^{n-1} v + \dots + a_1 s v + a_0 v = \left(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 \right) v$$
$$= b_m s^m i + \dots + b_0 i = \left(b_m s^m + \dots + b_0 \right) i$$

III. Formálisan az impedanciát az ohm törvény formájában írjuk fel

$$a_n s^n v + a_{n-1} s^{n-1} v + \dots + a_1 s v + a_0 v = \left(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 \right) v$$
$$= b_m s^m i + \dots + b_0 i = \left(b_m s^m + \dots + b_0 \right) i$$

Ohm törvény formátumának megfelelően átrendezve kapjuk

$$Z(s) = \frac{v}{i} = \underbrace{\frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}}_{\text{karakterisztikus egyenlet}} = \frac{\text{polinom}}{\text{polinom}}$$

Vigyázz, kapcsolás függvénye, hogy a karakterisztikus egyenletet a számláló vagy a nevező hordozza!

Vedd észre: Mivel LTI hálózatról van szó

- a teszőleges gerjesztést (komplex) exponenciálisok lineáris kombinációjaként állítjuk elő, majd
- a szuperpozicó tételét alkalmazzuk

3.6. Állandósult állapotú, szinuszos gerjesztésű (ún. AC) hálózatok analízise

- A 3.5 pontban bevezetett impedancia koncepció kiterjeszthető tetszőleges,
 pl. komplex s-ekre is
- Egyetlen fizikai megkötés: Egy fizikai rendszerben csak valós jel léphet fel

Jelkészlet: • $s \neq 0$ de valós: exponenciálisan csökkenő vagy növekvő jelalak

- s = 0: DC jel
- $s_1=s_2^*$, azaz komplex konjugált: exponenciálisan csökkenő vagy növekvő amplitúdójú szinuszos jelalak
- $s_1=j\omega$ és $s_2=s_1^*=-j\omega$: állandó amplitúdójú szinuszos jelalak

És minden olyan jel, ami ezekből összetehető \implies lásd szuperpozició

Jelek az $s=\sigma+j\omega$ komplex frekvencia és a t időtartományban

Az állandósult állapotú, szinuszos gerjesztésú hálózatok különös jelentőséggel bínak, mert

- sok rendszer ilyen
- a szinuszos mérőjelek könnyen generálhatók
- áramkör tranziens viselkedése sokszor nem érdekes
- bármiféle jel összerakható szinuszos jelekből:
 - periódikus jel: Fourier sor
 - tetszőleges jel: Fourier transzformáció

Lineáris hálózatok tulajdonságai:

- ullet Szuperpozició tétele érvényes, tehát egy szinusz előállítható $s=\pm j\omega$ komplex frekvenciákból
- Így a szinuszos jelek is sajátfüggvények, azaz állandósult állapotban a színuszos jelalak megőrződik
- Konzervatívok a szinuszos gerjesztésekre nézve (nem hoznak létre új frekvenciákat)

Az állandósult állapotú, szinuszos gerjesztésű hálózatok analízisének eszközei

- A számításokat egy transzformált tartományban, a komplex amplitúdók tartományában végezzük el
- Valamennyi (szinuszos) jelet a jelhez rendelt komplex amplitúdóval helyettesítünk
- Valamennyi áramköri elemet annak AC impedanciájával jellemezzünk
- ullet Impedancia csak egy van, az impedancia ω függvénye. Kiértékelni az impedanciát az adott gerjesztő frekvencián kell
- Utána a komplex amplitúdókkal és AC impedanciákkal formálisan mint egy DC áramkörökkel számolunk
- Az eredményül kapott komplex amplitúdókból visszatérünk az időtartományba

Jó hír: Differenciál egyenlet helyett algebrai egyenletet kell megoldani

Rossz hír: Az ár amit fizetni kell az az, hogy komplex mennyiségekkel kell számolni

3.6(a) A komplex amplitúdó definiciója

$$v(t) = V_m \cos(\omega t + heta) = \Re \left\{ \underbrace{\left[V_{eff} \exp\left(j heta
ight)
ight]}_{ ext{komplex amplitúd\'o}} \left[\sqrt{2} \exp\left(j \omega t
ight)
ight]
ight\}$$

ahol az effektív érték $V_{eff} = V_m/\sqrt{2}$

$$i(t) = I_m \cos(\omega t + heta) = \Re \left\{ \underbrace{\left[I_{eff} \exp\left(j heta
ight)
ight]}_{ ext{komplex amplitúd\'o}} \left[\sqrt{2} \exp\left(j\omega t
ight)
ight]
ight\}$$

Az ok amiért a gerjesztő frekvencia(ák) a számítás során a komplex amplítúdóban nem jelennek meg:

 Egy lineáris hálózat konzervatív a gerjesztő frekvenciákra nézve, a gerjesztő frekvencia(ák) nem hordoz(nak) információt

3.6(b) Az AC impedancia

- Az egyes áramköri elemek impedanciája
 - Ellenállás: $Z_R = rac{V_R}{I_R} = R \; [\Omega]$
 - Induktivitás: $Z_L = rac{V_L}{I_L} = j\omega L \; [\Omega]$
 - Kapacitás: $Z_C = rac{V_C}{I_C} = rac{1}{j\omega C} \left[\Omega
 ight]$
- Az impedancia a kapcsolási rajzból közvetlenül felírható
- Az impedanciákkal formálisan mint az ellenállásokkal egy DC hálózatban lehet és kell számolni
- ullet Az AC impedancia az s tartományban felírt impedanciából formálisan az $s=j\omega$ behelyettesítéssel megkapható

$$Z(j\omega) = Z(s)\mid_{s=j\omega}$$

 Az impedanciafüggvény a hálózatot teljesen jellemzi, azt kiértékelni mindig az adott gerjesztő frekvencián kell

Az AC impedancia és admittancia definiciója

Az AC impedanciát a feszültséghez és áramhoz rendelt komplex amplitúdók hányadosaként definiáljuk (lásd Ohm törvény)

$$V = ZI$$

$$oldsymbol{Z} = rac{V}{I} = |Z| \angle heta_Z = R + jX$$

ahol $oldsymbol{Z}=$ impedancia, $oldsymbol{R}=$ ellenállás, $oldsymbol{X}=$ reaktancia

AC admittancia definiciója

$$oldsymbol{Y} = rac{I}{V} = rac{1}{Z} = |Y| \angle heta_Y = G + jB$$

ahol $oldsymbol{Y}=$ admittancia, $oldsymbol{G}=$ vezetés, $oldsymbol{B}=$ szuszceptancia

A komplex amplitúdók és AC impedanciák/admittanciák használata:

- Az impedanciákkal/admittanciákkal formálisan úgy kell számolni mint az ellenállásokkal/vezetésekkel egy DC hálózatban
- Vigyázz, minden komplex (impedancia/admittancia és komplex amplitúdó is)
- Valamennyi áramköri törvény és a 3.3(a)–3.3(h) pontokban felsorolt hálózati tételek igazak a komplex amplitúdókra és impedanciákra/admittanciákra
- ullet A 3.3(i) tétel kiterjesztendő az impedanciákra: Az illesztés feltétele a komplex konjugált lezárás, azaz $Z_L=Z_T^*$
- Az impedancia-/admittanciafüggvények a hálózatot teljesen jellemző függvények, értéküket mindig az adott gerjesztő frekvencián kell meghatározni
- Eltérő frekvenciás gerjesztések esetén szuperpoziciót kell alkalmazni az időtartományban

Vedd észre:

- Azáltal, hogy a jelekhez egy komplex amplitúdót rendeltünk
 Azaz átmentünk egy transzformált tartományba
- Elértük amit akartunk, hiszen a kapcsolási rajzból az impedanciák/admittanciák segítségével algebrai egyenletek alakjában fel tudjuk írni a keresett válasz komplex amplitúdóját
- Amiből a választ az időtartományban inverz transzformációval kapjuk meg
- Jó hír: Differenciál egyenlettel sehol sem találkozunk!!!

Áramkör ->> Egyszerűsített áramkör		
		₩
Időtartomány		Transzformált-tartomány
		₩
		Transzformált rendszer
		 Komplex amplitúdók
		Impedanciák
		↓
		Algebrai egyenlet
		
Válaszjel az	←	Megoldás a transzformált
időtartományban	Inverz transzformáció	tartományban: Válaszjel komplex amplitúdója

Vedd észre: • Differenciál egyenlettel sehol sem találkozunk!!!

• Gerjesztéseket a színuszos (saját) függvényének osztályára korlátoztuk

3.6(c) Frekvenciaválasz-függvény

Egy másodrendű sáváteresztő szűrő kapcsolási rajza

Frekvenciaválasz-függvénye

$$H(j\omega) = rac{V_2}{V_1} = rac{R}{j\omega L + rac{1}{j\omega C} + R} = rac{j\omega rac{R}{L}}{\left(rac{1}{LC} - \omega^2
ight) + j\omega rac{R}{L}} = rac{j\omega rac{R}{L}}{(\omega_0^2 - \omega^2) + j\omega rac{R}{L}}$$

Ez egy ún. rezgőkör, amelynek paraméterei:

- ullet Rezonanciafrekvencia: $oldsymbol{\omega}_0 = rac{1}{\sqrt{LC}}$
- ullet Jósági tényező: $Q=rac{\omega_0 L}{R}$
- ullet Sávszélesség (félteljesítményű pontok között): $\Delta \omega = rac{\omega_0}{Q}$

A frekvenciaválasz-függvény ábrázolása

Összefoglaló: Állandósult állapotú AC áramkörök analízise

Áramkör \Longrightarrow Egyszerűsített áramkör		
		\
ldőtartomány		Transzformált tartomány
		₩
		Transzformált rendszer
		₩
		Impedanciák és transzfer
		függvények $m{j}m{\omega}$ -ban
		+
Gerjesztés az	\Longrightarrow	Komplex amplitúdók
időtartományban	Transzformáció	
		=
Válaszjel az	=	Megoldás a transzformált
időtartományban	Inverz	tartományban: Válaszjel
	transzformáció	komplex amplitúdója

Az analízis lépései

(1) A feladat:

Gerjesztés: $v_1(t) = A\cos(\omega_g t + heta_g)$

Kérdés: $v_2(t) = ?$

(2) Transzformáció a komplex amplitúdók tartományába

$$v_1(t) = A\cos(\omega_g t + heta_g) \implies V_1 = rac{A}{\sqrt{2}}\exp(j heta_g)$$

(3) A frekvenciaválasz- (vagy impedancia) függvény felírása a $j\omega$ tartományban:

(4) A válaszjel komplex amplitúdója

$$egin{aligned} V_2 &= & H_{21}(j\omega)igg|_{\omega=\omega_g} V_1 \ &= & rac{R}{j\omega L + rac{1}{j\omega C} + R}igg|_{\omega=\omega_g} V_1 \ &= & rac{A}{\sqrt{2}}|H_{21}(j\omega_g)|\exp\left(j\left[heta_g + ngle H_{21}(j\omega_g)
ight]
ight) \end{aligned}$$

(5) Inverz transzformáció: A válaszjel az időtartományban

$$v_2(t) = |H_{21}(j\omega_g)|\,A\cos\left[\omega t + heta_g + ngle\,H_{21}(j\omega_g)
ight]$$

Szuperpozició: Hol alkalmazzuk?

Idő és/vagy a komplex amplitúdók tartományában?

Esetleg mindkét helyen? Akkor hogyan?

(1) A feladat

(2) Szuperpozició az időtartományban

- Probléma: Komplex amplitúdók csak egy gerjesztő frekvenciára írhatók fel
- Viszont LTI rendszer, tehát a szuperpozició alkalmazható az időtartományban

$$v_{ki}(t)=v_{ki}^{\omega_{g1}}(t)+v_{ki}^{\omega_{g2}}(t)$$

(3) $v_{ki}^{\omega_{g2}}(t)$ feszültség meghatározása a komplex amplitúdók tartományában

ullet Mivel $v_2(t)$ és $v_3(t)$ gerjesztések frekvenciája azonos, minden módszer használható:

komplex amplitúdókra vonatkoztatott szuperpozició, Kirchhoff törvények, hurokáramok és csomóponti potenciálok módszere, hálózatokra kidolgozott tételek, stb

Vedd észre, ebben az ábrában csak komplex amplitúdók szerepelnek!

3.6(d) Négypólus paraméterek

Lineáris négypólus (NP) jellemzése az impedancia mátrix segítségével

A komplex amplitúdok közti kapcsolat

$$egin{aligned} V_1 &= Z_{11}I_1 + Z_{12}I_2 \ V_2 &= Z_{21}I_1 + Z_{22}I_2 \end{aligned} \quad ext{ahol az impedancia mátrix } \left[\begin{aligned} \begin{al$$

Az impedancia paraméterek meghatározása

$$Z_{11} = rac{V_1}{I_1}\mid_{I_2=0}, ~~ Z_{12} = rac{V_1}{I_2}\mid_{I_1=0}, ~~ Z_{21} = rac{V_2}{I_1}\mid_{I_2=0} ~~$$
 és $Z_{22} = rac{V_2}{I_2}\mid_{I_1=0}$

Lezárt NP paraméterei

Adott lezáráshoz tartozó bemeneti impedancia

$$egin{aligned} Z_{be}\mid_{Z_L} = rac{V_1}{I_1}\mid_{Z_L} = Z_{11} - rac{Z_{12}Z_{21}}{Z_{22} + Z_L} \end{aligned}$$

Adott lezáráshoz tartozó frekvenciaválasz-függvény (feszültség erősítés)

$$A_v\mid_{Z_L} = rac{V_2}{V_1}\mid_{Z_L} = rac{Z_{12}Z_L}{Z_{11}Z_L + Z_{11}Z_{22} - Z_{12}Z_{21}}$$