Rover Models

November 19, 2017

Model 1: Model

The input channels for the controller will be denoted $u_1 \in [-\pi, \pi]$ and $u_0 \in [-\pi, \pi]$ for steering and throttle, respectively

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} v_x(\cos\psi - \frac{l_r}{l}\sin\psi\tan\delta) \\ v_x(\sin\psi + \frac{l_r}{l}\cos\psi\tan\delta) \\ \\ \frac{v_x}{l}\tan\delta \\ \\ \frac{F_{rx} - m_o \frac{\tan\delta}{\cos^2\delta}(k_{st}(\delta_{des} - \delta))v_x}{m + m_o \tan^2\delta} \\ \\ k_{st}(\delta_{des} - \delta) \end{bmatrix}$$

where: $\delta_{des} = f(u_1)$

$$F_{rx} = f(u_0, v_x)$$

Model 2: Parameters

2.1 Vehicle Parameters

Param	Value	Unit
m	7.780	kg
m_o	2.972	kg
I_z	0.2120	$kg m^2$
l	0.3302	m
l_r	0.12	m

$$m_o = \frac{m l_r^2 + I_z}{l^2}$$

2.2 Steering Input The map from wheel angle to input can be approximated by a line:

 $\delta_{des} = 0.224314009055080u_1 - 0.008867066788855$

The control gain on the wheel angle is modeled as proportional:

 $k_{st} = 4.300730919846748$

2.3 Longitudinal Tire Force $F_{rx} = c_{m1} + c_{m2}u_0 + c_{m3}v_x + c_{m4}v_xu_0 + c_{m5}v_x^2 + c_{m6}u_0^2 + c_{m7}v_xu_0^2$

Const	Value	Unit
c_{m1}	X	N
c_{m2}	X	N
c_{m3}	X	$\frac{Ns}{m}$
c_{m4}	X	$\frac{\frac{m}{N s}}{m}$
c_{m5}	X	$\frac{m}{N s^2}$
c_{m6}	X	N
c_{m7}	X	$\frac{Ns}{m}$