

Explorando a Eficiência do Python:

Listas, Tuplas e Dicionários

Em Python, a manipulação de dados é uma tarefa central e eficiente. Três estruturas de dados fundamentais para essa manipulação são as listas, tuplas e dicionários. Neste e-book, vamos explorar cada uma dessas estruturas e entender como elas podem ser utilizadas na prática.

As listas são estruturas de dados fundamentais em Python, permitindo armazenar coleções ordenadas de itens. São versáteis e podem conter elementos de diferentes tipos.

Listas

O que são listas?

Listas são conjuntos ordenados de itens em Python. São declaradas usando colchetes [] e os elementos são separados por vírgula.

```
# Criando uma lista com diversos
# tipos de dados
misturado = [1, 'dois', 3.0, True]
```


Tuplas são semelhantes às listas, mas com uma diferença crucial: elas são imutáveis, ou seja, seus elementos não podem ser alterados após a criação.

Tuplas

O que são tuplas?

Tuplas são sequências ordenadas de elementos, semelhantes às listas, mas definidas por parênteses (). São úteis para dados que não devem ser alterados.

Criando uma tupla de valores constantes
cores = ('vermelho', 'verde', 'azul')

Dicionários são estruturas de dados que permitem armazenar pares chave-valor. São eficientes para realizar buscas e associações de dados.

Dicionários

O que são dicionários?

Dicionários são estruturas de dados que mapeiam chaves para valores. São definidos por chaves {} e contêm pares chave-valor separados por vírgulas.

Criando um dicionário de contatos
contatos = {'Alice': 12355, 'Bob': 55123}

O Pandas é uma biblioteca de software em Python usada para manipulação e análise de dados. Ela oferece estruturas de dados e ferramentas de análise de alto desempenho, tornando-a uma escolha popular para cientistas de dados, analistas e desenvolvedores.

Pandas

O Pandas é uma biblioteca open-source que fornece estruturas de dados flexíveis e ferramentas para trabalhar com dados estruturados. Seu principal objetivo é facilitar a manipulação, limpeza e análise de dados em Python.

Por que usar o Pandas?

- Facilita a leitura e escrita de diferentes formatos de dados, como CSV, Excel, SQL, JSON, entre outros.
- Oferece ferramentas poderosas para limpar e preparar dados para análise.
- Permite realizar análises estatísticas e exploratórias de forma eficiente.
- É altamente flexível e extensível, com uma comunidade ativa que contribui com novos recursos e melhorias.

DataFrames são estruturas de dados bidimensionais extremamente poderosas fornecidas pela biblioteca Pandas em Python. São semelhantes a tabelas de banco de dados ou planilhas Excel, permitindo manipulação e análise de dados de forma eficiente.

DataFrames

DataFrames são estruturas de dados tabulares com linhas e colunas rotuladas. São construídos sobre a estrutura de Series do Pandas e são amplamente utilizados para análise e manipulação de dados.

As Séries são estruturas de dados unidimensionais fornecidas pela biblioteca Pandas em Python. Elas são semelhantes a arrays unidimensionais, mas com capacidades adicionais e funcionalidades otimizadas para análise de dados.

Séries

Séries são estruturas de dados unidimensionais rotuladas em Pandas. Elas são construídas sobre a estrutura de arrays NumPy, mas com recursos adicionais, como rótulos de índice e manipulação integrada de dados ausentes.

```
import pandas as pd

# Criando uma Série a partir de uma lista
valores = [10, 20, 30, 40, 50]
serie = pd.Series(valores)

# Exibindo a Série
print(serie)
```


Agradecimentos logo em seguida!

Obrigado por acompanhar está jornada!

Por se tratar de uma obra com fins didáticos, nenhuma validação minuciosa foi realizada, portanto, erros podem acontecer.

Repositório GitHub

Perfil da DIO

