Course Outline

WEEK No.	TOPICS
0	Introduction to Data Communication & Network Topologies , Subnets , Circuit and Packet
	switching, Layers of Communication Protocol, Connection oriented and Connection less Services
1	Data Link Layer: Framing and Packetization, Error Detection Techniques
2	Data Link Layer: Flow and Error Control , Sliding window protocols
3	Data Link Layer : High Level Data Link Control Protocol , Point to Point Protocol
4	Medium Access Layer: Queuing theory
5	Local Area Networks
6	Network Layer: IP, Flooding & Routing Algorithms
7	Network Layer: Dijkstra Algorithm
8	Network Layer : Distance Vector Routing (RIP)
9	Network Layer: Routing Loops and Count to Infinity Problem, RIP Timers
10	Transport Layer: Quality of Service, Transport Protocol Mechanisms, Flow Control and Congestion Control in TCP, Examples of Transport Protocols (UDP, TCP)

Learning Resources

❖Text Books:

- Data Communications & Networking (4th Edition), Behrouz A. Forouzan -McGraw-Hill
- Data & Computer Communications (8th Edition), William Stallings -Prentice Hall

*Reference Book:

Computer Networking: A Top-Down Approach (7th Edition) James Kurose
 Keith Ross – Pearson

Spring Semester 2021

Course Objectives

- To develop understanding of the fundamental concepts of computer networking.
- To develop an understanding of different components of computer networks, various protocols, modern technologies and their applications.

Course Learning Outcomes

- On successful completion of this course, the student must be able to:
 - Understand basic computer network technology.
 - Understand and explain Data Communications System and its components.
 - Identify the different types of network topologies and protocols.
 - Explain the function(s) of each layer of OSI and TCP/IP reference model.
 - Identify the different types of network devices and their functions within a network.
 - Understand sub-netting and routing mechanisms.
 - Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation.

Spring Semester 2021

A Communication Model

Exchange of data between two parties.

- Key Elements:
 - Source generates data to be transferred
 - Transmitter converts data into transmittable signals
 - Transmission system carries the data
 - Receiver converts received signal into data
 - Destination takes incoming data

Simplified Communication Model

What is a Network?

 Set of devices (often referred to as nodes) connected by communication links, capable of sending and/or receiving data generated by other nodes on the network.

- Fundamental aim of networks:
 - Resource sharing (computing, printers, peripherals, information)
 - Services (Email, video conferencing, DB access, Client/server applications)

Important Tasks in Networking

- Routing identify suitable routes subject to constraints on capacity and allowable delays.
- Congestion control avoid traffic overload situations in specific network areas or at least to react properly to them.
- Flow Control avoid overflowing receiver with data from sender.
- Error Control dealing with errors occurred during transmission

Common Communication Patterns

Unicast

Only two nodes in the network are involved.
One of the node is the sender and the other is receiver.
Nodes can have both roles.

• E.g. Phone connections, viewing a webpage.

Common Communication Patterns

- Broadcast
 - One node as sender, all other nodes as receivers.
- E.g. Radio , TV

Common Communication Patterns

Multicast

Group communication

One of the node is the sender, several ,but not all others as receivers.

• In multicast group, all nodes can act as sender

• E.g. Internet chat phone conferences

receiver

Network Topologies

- Network Topology arrangement of elements in a communication network.
- A simple model of network is a simple communication graph
 - Nodes represent stations/switching elements
 - Edges represent direct communication links
- Four basic topologies are:
 - Mesh
 - Star
 - Bus
 - Ring

Mesh Topology

 Mesh Topology – every device has a dedicated link to every other device.

 Dedicated link carries traffic only between the two devices it connects.

- Total no. of links = $\frac{n(n-1)}{2}$
- Advantages:
 - Robust
 - Privacy or security
- Disadvantages:
 - Increased cost of installation
 - Poor scalability

Star Topology

 Star Topology – every device has a dedicated link to central controller(hub).

 No direct traffic between devices, the hub acts as an exchange.

- Total no. of links = n
- Advantages:
 - Robust
 - Less expensive
- Disadvantages:
 - Hub is the single point of failure

Bus Topology

- Bus Topology every device is connected to a common bus.
- Bus is a broadcast medium.
- Advantages:
 - Ease of installation
- Disadvantages:
 - Difficult to scale
 - Bus is a common point of failure

Ring Topology

- Ring Topology every device has a dedicated connection to the two devices on either side of it.
- Signal is passed along the ring in one direction only, from one device to other, until it reaches the destination.
- Advantages:
 - Ease of installation
- Disadvantages:
 - Difficult to scale
 - A single break in the link can bring entire network down.

Network Coverage Areas

- Local Area Network(LANs)
 - Have limited geographical extension, usually ≤ 1 Km(spans office or building)
 - Controlled by only one owner/ administrative entity
 - Offer a shared transmission medium to multiple stations
- Most common LANs are switched (Ethernet) LAN and wireless LAN.
- E.g.
 - Connect desktop computers to share files, emails
 - Allow several computers to share printers, file servers.

Network Coverage Areas

- Wide Area Network(WANs)
 - Spans large area (countries, continents, world)
 - Controlled by several administrative entities
 - Internet is an example of WAN
- In internet, LANs are an elementary unit.
 - Internet = Network of Networks
 - LANs are attached to Routers, Routers are interconnected via other LANs
- WANs can be implemented using one of the two technologies:
 - Circuit Switching
 - Packet Switching

Circuit Switching

- Circuit Switching Networks— dedicated connection or circuit is established between nodes for the duration of the connection.
- The lifetime of connection has three phases:
 - Connection setup: identify the routes, set aside resources so that they are guaranteed.
 - Connection usage: use the established connection to transmit the data. The prereserved resources guarantee that this connection is not influenced by other connections
 - Connection teardown: free the reserved resources
- Data generated by the source station are transmitted along the dedicated path as rapidly as possible.
- At each node, incoming data are routed or switched to the appropriate outgoing channel without delay.
- Switching elements are called switches.
- Example: The telephone network

Circuit Switching

- A routing decision is made only once (at connection setup) and never/rarely modified.
- A connection has its resources guaranteed.
- Any bandwidth not used by a connection cannot be reused by other connections, this can result in poor utilization.
- Connection setup takes time, if messages are much shorter than the connection setup time then circuit switching is not economical.
- Connection setup may fail when no route or not enough resources are available in the network.
- Admission Control: Switching elements check whether enough resources are available for the new connection without compromising the resources already granted to existing connections.

Event Timing of Circuit Switching

Packet Switching

- Packet Switching Networks Data flows are segmented into small chunks called packets.
- Packets are basic unit of transmission.
- A packet consists of:
 - A packet header containing meta-information about the packet, e.g. address fields
 - The packet payload
 - a packet trailer for error detection / correction
- Packets are transmitted individually and independently from one node to the other.
- At each node, the entire packet is received, stored briefly, and then transmitted to the next node.
- There is no concept of a connection, packets can be sent immediately without having to set up resource reservation in the network.
- Switching elements are called routers.
- Analogy: letter transfer in postal network, envelopes correspond to packet headers.

Example: The Internet.

Packet Switching

- Sequence of packets between the same source destination pair is called a flow.
- Each packet is routed individually, different packets in the same flow can take different routes.
- Each router makes a routing decision for each packet.
- Each packet must include information facilitating routing, e.g. header fields for source and destination addresses.
- Packets do not necessarily arrive in the same order as they have been sent. Packets are reordered at the destination.
- Many flows can share a link, bandwidth not utilized by one flow can be used by others.

Packet Switching

- No guarantee for packet delivery lack of resource reservation.
 - Internet/IP "best effort" service: packet is delivered maybe
- Since flow data rates and routes often cannot be predicted in advance, routers buffer some packets to prevent packet dropping in temporary overload situations.
- Routers only have a finite amount of memory, and when overload situation sustains, packet dropping is inevitable, this is called congestion.
- Which packets to drop?
 - Congestion control schemes either try to avoid congestion or to deal with it.

Event Timing of Packet Switching

Circuit Switching Vs Packet Switching

Circuit-switching:

- Can give guaranteed bandwidths
- No reuse of resources
- Data forwarding is low-complexity operation for switches
- Routing is done only once
- Packet-switching:
 - Cannot give any guarantees
 - Allows reuse of resources
 - Data forwarding is higher-complexity operation for routers
 - Routing is done for every packet