RESUMO DE MEDIDA E INTEGRAÇÃO

1 Aula 1 - Medida e anel

Definição 1.1. Dizemos que uma coleção de subconjuntos \mathcal{S} de Ω é um **semianel**, se:

- $\emptyset \in \mathcal{S}$.
- Se $A, B \in \mathcal{S}$, então $A \cap B \in \mathcal{S}$.
- Se $S_0, S \in \mathcal{S}$, com $S_0 \subset S$, então existem $S_1, S_2, \ldots, S_n \in \mathcal{S}$, tais que $S S_0 = \sum_{i=1}^n S_i$ (o somatório significa que os S_i são 2 a 2 disjuntos).

Exemplo 1.1.

- 1. A coleção de todos os intervalos limitados de \mathbb{R} é um semianel (intervalos limitados são da forma: (a, b), (a, b], [a, b) e [a, b]).
- 2. $S = \{\emptyset, A \mid A \text{ \'e unit\'ario}\}$ é semianel (um conjunto A é unit\'ario se $A \neq \emptyset$ e $\forall x, y \in A$, temos que x = y).

Teorema 1.1. Sejam S_1 e S_2 semianéis de Ω_1 e Ω_2 , respectivamente. Então $S_1 \times S_2$ é um semianel do produto cartesiano do espaço $\Omega_1 \times \Omega_2$.

Corolário 1.1. O conjunto dos "retângulos" limitados de \mathbb{R}^n forma um semianel.

Definição 1.2. Uma função $\mu: \mathcal{S} \to \mathbb{R} \cup \{\infty\}$ é uma medida finitamente aditiva, se:

- i) $\mu(\emptyset) = 0$.
- ii) Se $S, S_1, S_2, ..., S_n \in S$, com $S = \sum_{i=1}^n S_i$, então $\mu(S) = \sum_{i=1}^n \mu(S_i)$.

Dizemos que μ é uma **medida** σ -aditiva, se no lugar de ii) valer:

ii') Se
$$S, S_1, S_2, \ldots, S_n, \cdots \in \mathcal{S}$$
, com $S = \sum_{i=1}^{\infty} S_i$, então $\mu(S) = \sum_{i=1}^{\infty} \mu(S_i)$.

Definição 1.3. Dizemos que uma coleção de subconjuntos \mathcal{A} de Ω é um anel, se:

- $-\emptyset\in\mathcal{A}.$
- Se $A, B \in \mathcal{A}$, então $A \cap B, A \cup B, A \cap B^{\complement} \in \mathcal{A}$.

Teorema 1.2. Sejam S um semianel e A(S) o conjunto formado por todas as uniões finitas e disjuntas de elementos de S. Então:

- a) $\mathcal{A}(\mathcal{S})$ é um anel.
- b) Se $\mu: \mathcal{S} \to \mathbb{R} \cup \{\infty\}$ é uma medida finitamente aditiva em \mathcal{S} , então ela se estende de modo único a todos os elementos de $\mathcal{A}(\mathcal{S})$, segundo a regra $\mu(\sum_{i=1}^n S_i) = \sum_{i=1}^n S_i$, onde $\sum_{i=1}^n S_i \in \mathcal{A}(\mathcal{S})$.

Teorema 1.3. Seja $\mu: \mathcal{S} \to [0, \infty]$ medida finitamente aditiva. Então:

- Se $A, B \in \mathcal{A}(S)$ e $A \subseteq B$, então $\mu(A) < \mu(B)$.
- Se $A_1, \ldots, A_n \in \mathcal{A}(\mathcal{S})$, então $\mu(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mu(A_i)$.

2 Aula 2 - Integral de funções simples

Definição 2.1. Sejam Ω um espaço topológico e \mathcal{S} um semianel de Ω . Dizemos que uma medida $\mu: \mathcal{S} \to [0, \infty]$ finitamente aditiva é **regular**, se para todo $S \in \mathcal{S}$, temos que

$$\mu(S) = \inf \{ \mu(G) \mid \forall G \supset S, G \in \mathcal{S} \text{ aberto} \}$$

= $\sup \{ \mu(K) \mid \forall K \subset S, K \in \mathcal{S} \text{ compacto} \}$

Teorema 2.1. Toda medida regular, finitamente aditiva é σ -aditiva.

Corolário 2.1 (Borel). A medida λ do comprimento dos intervalos de \mathbb{R} é σ -aditiva.

Teorema 2.2. Se $\mu: \mathcal{S} \to [0, \infty]$ é σ -aditiva, então a extensão $\mu: \mathcal{A}(\mathcal{S}) \to [0, \infty]$ também é σ -aditiva.

Teorema 2.3. Sejam $\mu: \mathcal{S} \to [0, \infty]$ σ -aditiva e $A, A_1, A_2, \ldots, A_n, \cdots \in \mathcal{A}(\mathcal{S})$.

- a) Se $A_n \uparrow A$, então $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
- b) Se $A_n \downarrow A$ e $\mu(A_1) < \infty$, então $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
- c) Se $A \subset \bigcup_{n=1}^{\infty} A_n$, então $\mu(A) \leq \sum_{n=1}^{\infty} \mu(A_n)$.

Definição 2.2. Uma função $f: \Omega \to \mathbb{R}$ é \mathcal{S} -simples, se existem $r_1, \ldots, r_n \in \mathbb{R}$ e $S_1, \ldots, S_n \in \mathcal{S}$, 2 a 2 disjuntos, tais que $f(x) = \sum_{i=1}^n r_i \mathbb{1}_{S_i}(x)$, onde

$$\mathbb{1}_A(x) = \left\{ \begin{array}{l} 1, \text{ se } x \in A \\ 0, \text{ se } x \notin A \end{array} \right.$$

Definição 2.3. Sejam $\mu: \mathcal{S} \to [0, \infty]$ uma medida σ -aditiva e $f: \Omega \to \mathbb{R}$ uma função \mathcal{S} -simples. Definimos a **integral de** f **com respeito a** μ , denotado por I(f) ou $\int_{\Omega} f d\mu$, como sendo $\sum_{i=1}^{n} r_{i}\mu(S_{i})$.

Proposição 2.1. Seja $\mathcal{H} = \{f : \Omega \to \mathbb{R} \mid f \in \mathcal{S}\text{-simples}\}$. então \mathcal{H} é um espaço vetorial e $I : \mathcal{H} \to \mathbb{R}$ é um operador linear.

Definição 2.4. Um conjunto de funções $f: \Omega \to \mathbb{R}$, χ , é um **retuculado vetorial** se é um espaço vetorial tal que se $f \in \chi$, então $|f| \in \chi$.

3 Aula 3 - Espaço de medida

Proposição 3.1. Seja $\mu: \mathcal{S} \to [0, \infty)$ uma medida σ -aditiva e h, h_n funções \mathcal{S} -simples.

- 1. Se $h \ge 0$, então $I(h) \ge 0$.
- 2. Se $h_1 \geq h_2$, então $I(h_1) \geq I(h_2)$
- 3. Se $h_n \downarrow 0$, então $\lim_{n \to \infty} I(h_n) = 0$.
- 4. Se $h_n \uparrow h$ (ou $h_n \downarrow h$), então $\lim_{n \to \infty} I(h_n) = I(h)$.
- 5. Se $h \leq \sum_{n=1}^{\infty} h_n$, então $I(h) \leq \sum_{n=1}^{\infty} I(h_n)$.

Definição 3.1. Sejam $\mu: \mathcal{S} \to [0, \infty)$ e $f: \Omega \to [0, \infty]$. Definimos a integral superior de f com respeito à medida μ , como $I^*(f) = \inf\{\sum_{n=1}^{\infty} I(h_n) \mid h_n \in \mathcal{H}, h_n \geq 0 \text{ e } f \leq \sum_{n=1}^{\infty} h_n\}$.

Proposição 3.2. Sejam $f, f_n : \Omega \to [0, \infty]$ e $h \in \mathcal{H}$ e $h \ge 0$. Então:

- 1. $I^*(h) = I(h)$.
- 2. Se $r \geq 0$, então $I^*(rf) = rI^*(f)$.
- 3. Se $f \leq \sum_{n=1}^{\infty} f_n$, então $I^*(f) \leq \sum_{n=1}^{\infty} I^*(f_n)$. Em particular, $I^*(\sum_{n=1}^{\infty} f_n) \leq \sum_{n=1}^{\infty} I^*(f_n)$, ou seja, I^* é σ -subaditiva.

Definição 3.2. Uma coleção \mathcal{A} de subconjuntos de Ω é uma σ -álgebra de Ω , se:

- i) $\emptyset \in \mathcal{A}$.
- ii) Se $A \in \mathcal{A}$, então $A^{\complement} \in \mathcal{A}$.
- iii) Se $A_1, \ldots, A_n, \cdots \in \mathcal{A}$, então $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Se iii) for válida apenas para uniões finitas, dizemos que \mathcal{A} é uma **álgebra**.

Definição 3.3. Um **espaço de medida** é $(\Omega, \mathcal{A}, \mu)$, onde Ω é um conjunto qualquer, \mathcal{A} é uma σ -álgebra de Ω e $\mu : \mathcal{A} \to [0, \infty]$ é uma medida σ -aditiva. Quando $\mu(\Omega) < \infty$, dizemos que $(\Omega, \mathcal{A}, \mu)$ é um **espaço de medida finito**. Em particular, se além de finita $\mu(\Omega) = 1$, dizemos que ele é um **espaço de probabilidades**.

Definição 3.4. Uma σ-álgebra é **completa com respeito à medida** μ , se, para todo $A \in \mathcal{A}$, com $\mu(A) = 0$, temos que todo subconjuto de A pertence à σ-álgebra, isto é, $\forall B \subset A, B \in \mathcal{A}$.

Teorema 3.1 (Existência da σ -álgebra e da medida de Lebesgue). Seja $\mu: \mathcal{S} \to [0, \infty)$ σ -aditiva. Então existe σ -álgebra $\mathcal{A} \supset \mathcal{S}$, tal que:

- a) Se $f = \sum_{n=1}^{\infty} r_n \mathbb{1}_{A_n}$, com $A_n \in \mathcal{A}$ e $r_n \ge 0$ real, então $I^*(f) = \sum_{n=1}^{\infty} r_n I^*(\mathbb{1}_{A_n})$.
- b) Defina $\nu(A) = I^*(\mathbbm{1}_A) : A \to [0, \infty]$. Então (Ω, A, ν) é um espaço de medida completo.
- c) Dado $A \subset \Omega$, temos que $A \in \mathcal{A}$, se para todo $S \in \mathcal{S}$, $A \cap S \in \mathcal{A}$.

4 Aula 4 - Existência da σ -álgebra e medida de Lebesgue

Lema 4.1. Sejam V espaço vetorial seminormado, $W \subset V$ subespaço e $T: W \to \mathbb{R}$ função linear limitada. Então:

- a) \overline{W} é subespaço de V.
- b) Existe $\overline{T}: \overline{W} \to \mathbb{R}$ funcional linear que estende T.

Lema 4.2. Seja $\mathcal{F}_1 = \{f : \Omega \to \mathbb{R} \cup \{\infty\} \mid I^*(|f|) < \infty\}$. Então \mathcal{F}_1 é espaço vetorial seminormado, com a seminorma definida como $||f|| = I^*(|f|)$.

Lema 4.3. $\mathcal{H} \subset \mathcal{F}_1$.

Lema 4.4. $\overline{\mathcal{H}}$ é reticulado vetorial e existe $\overline{I}: \overline{\mathcal{H}} \to \mathbb{R}$ que estende I e $\overline{I}(f) = I^*(f)$, para todo $f \geq 0$.

Lema 4.5. Sejam $(f_n) \in \overline{\mathcal{H}}$, com $f_n \geq 0$, e $f = \sum_{n=1}^{\infty} f_n$. Então:

- a) $I^*(f) = \sum_{n=1}^{\infty} I^*(f_n)$.
- b) Se $I^*(f) < \infty$ e $f(x) \in \mathbb{R}$, para todo $x \in \Omega$, então $f \in \overline{\mathcal{H}}$.

Definição 4.1. $\Lambda_0 = \{ A \subset \Omega \mid \mathbb{1}_A \in \overline{\mathcal{H}} \}.$

Lema 4.6.

- a) Λ_0 é anel.
- b) Se $A = \bigcup_{n=1}^{\infty} A_n$, com $A_n \in \Lambda_0$, para todo n, e $I^*(\mathbb{1}_A) < \infty$, então $A \in \Lambda_0$.

Definição 4.2. $\Lambda = \{A \subset \Omega \mid \forall S \in \mathcal{S}, A \cap S \in \Lambda_0\}.$

Lema 4.7. Λ é uma σ -álgebra.

Lema 4.8. $\Lambda_0 = \{ A \subset \Omega \mid I^*(\mathbb{1}_A) < \infty \}.$

5 Aula 5 - Conjuntos e funções mensuráveis

Proposição 5.1. Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida, ou seja, \mathcal{A} é uma σ -álgebra em Ω e $\mu : \mathcal{A} \to [0, \infty]$ é uma medida σ -aditiva.

- 1. Se $A, B \in \mathcal{A}$, com $A \subset B$, então $\mu(A) \leq \mu(B)$.
- 2. Se (A_n) , $A \in \mathcal{A}$ e $A_n \uparrow A$, então $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
- 3. Se (A_n) , $A \in \mathcal{A}$, $A_n \downarrow A$ e $\mu(A_1) < \infty$, então $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
- 4. Se $(A_n) \in \mathcal{A}$, então $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$.
- 5. Se, para todo n, $\mu(A_n) = 0$, então $\mu(\bigcup_{n=1}^{\infty} A_n) = 0$.

Definição 5.1.

- a) Quando S for o conjunto dos intervalos limitados da reta e $\mu((a,b)) = b a$, denotaremos μ por λ .
- b) Quando $S = \{\emptyset, A \mid A \text{ \'e unit\'ario}\}$ e μ for tal que $\mu(\emptyset) = 0$ e $\mu(A) = 1$, para todo $A \in S \setminus \{\emptyset\}$, então denotaremos μ por #.

Teorema 5.1. Seja \mathcal{C} o conjunto de todos os retângulos abertos de \mathbb{R}^n da forma $\prod_{i=1}^n (a_i, b_i)$, com $a_i, b_i \in \mathbb{Q}$, para todo i. Então

- i) \mathcal{C} é enumerável.
- ii) Para todo G aberto de \mathbb{R}^n , existe $(S_k)_{k=1}^{\infty} \in \mathcal{C}$ tal que $G = \bigcup_{k=1}^{\infty} S_k$ e $\overline{S_k} \subset G$, para todo k.

Corolário 5.1. Seja $(\mathbb{R}^n, \mathcal{A}, \mu)$ um espaço de medida. Então temos que \mathcal{A} contém todos os conjuntos fechados de \mathbb{R}^n .

Exemplo 5.1.

- 1. (Borel) Seja $\mathbb{Q} \cap [0,1] = \{x_1, x_2, \dots\}$. Defina $G_n = (x_n 1/2^{n+2}, x_n + 1/2^{n+2})$ e $G = \bigcup_{n=1}^{\infty} G_n$. Seja $F = G^{\complement} \cap [0,1]$. Então F é compacto, não enumerável, não contém intervalos e tem medida positiva.
- 2. (Cantor) Seja K o conjunto de Cantor, isto é, o conjunto dos pontos que sobram do processo de retirar o terço médio de cada intevalo, começando por [0,1]. Então K é compacto, não enumerável, não contém intervalos e tem medida nula.

Definição 5.2. Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida. Dizemos que $A \subset \Omega$ é um **conjunto mensurável** (ou \mathcal{A} -mensurável), se $A \in \mathcal{A}$. Dizemos que $f : \Omega \to \mathbb{R}$ é uma **função mensurável**, se $(f > r) = f^{-1}((r, \infty]) \in \mathcal{A}$, para todo $r \in \mathbb{R}$ e denotaremos por $f \in \mu(\mathcal{A})$. Quando $(\Omega, \mathcal{A}, \mu)$ for de probabilidade, utilizamos a nomenclatura, **evento** e **variável aleatória**, respectivamente.

Definição 5.3. Seja $f: A \to \mathbb{R}$, com $A \in \mathcal{A}$. Dizemos que f é mensurável, se $(f < r) \in \{B \subset A \mid B \in \mathcal{A}\}$.

Teorema 5.2.

- a) Se f é mensurável, então $f|_A$ é mensurável, para todo $A \in \mathcal{A}$.
- b) Se $\Omega = \bigcup_{n=1}^{\infty} A_n$, com $A_n \in \mathcal{A}$ e $f_n|_{A_n}$ é mensurável, então f é mensurável.

Definição 5.4. Seja $f = (f_1, \ldots, f_n) : \Omega \to \mathbb{R}^n$. Dizemos que f é mensurável, se cada f_i é mensurável.

Teorema 5.3. Seja $f = (f_1, \ldots, f_n) : \Omega \to \mathbb{R}^n$. São equivalentes:

- i) f é mensurável.
- ii) Para todo G aberto de \mathbb{R}^n , $f^{-1}(G) \in \mathcal{A}$.
- iii) Para toda função $\psi: \mathbb{R}^n \to \mathbb{R}$ contínua, $\psi \circ f$ é mensurável.

Teorema 5.4.

- 1. f(x) = c é mensurável, para todo $c \in \overline{\mathbb{R}}$.
- 2. $\mathbb{1}_A \in \mu(\mathcal{A})$, para todo $A \in \mathcal{A}$.
- 3. Se $f, g \in \mu(\mathcal{A})$, então $f + g, fg \in \mu(\mathcal{A})$. Em particular, $\alpha f + \beta g \in \mu(\mathcal{A})$, para todo $\alpha, \beta \in \mathbb{R}$.
- 4. Se $(f_n) \in \mu(\mathcal{A})$, então sup f_n , inf $f_n \in \mu(\mathcal{A})$. Em particular, $f_1 \vee \cdots \vee f_n$ e $f_1 \wedge \cdots \wedge f_n$.
- 5. Se $f \in \mu(\mathcal{A})$, então $f^+, f^-, |f| \in \mu(\mathcal{A})$.
- 6. Se $f_n \in \mu(\mathcal{A})$, para todo n, então $\lim \inf f_n$, $\lim \sup f_n \in \mu(\mathcal{A})$. Em particular, se $\lim f_n = f$, então $f \in \mu(\mathcal{A})$.
- 7. Se $(f_n) \in \mu(\mathcal{A})$, então $f_1 + \cdots + f_n \in \mu(\mathcal{A})$, para todo n, e $\sum_{n=1}^{\infty} f_n \in \mu(\mathcal{A})$.

Teorema 5.5. Seja $f: \Omega \to [0, \infty)$ mensurável. Então existem $r_n \in \mathbb{R}_+$ e $A_n \in \mathcal{A}$, para todo n, tais que $f = \sum_{n=1}^{\infty} r_n \mathbbm{1}_{A_n}$.

6 Aula 6 - Integral de Lebesgue

Definição 6.1. Dizemos que uma proposição $P(x): \Omega \to [v, f]$ é **verdadeira em quase todo ponto**, qtp, se $\{x \in \Omega \mid P(x) = f\} \in \mathcal{A}$ e $\mu(\{x \in \Omega \mid P(x) = f\}) = 0$.

Definição 6.2. Sejam $\mu: \mathcal{S} \to [0, \infty)$ uma medida σ -aditiva e $f: \Omega \to [0, \infty]$ uma função mensurável. Definimos a **integral de Legesgue de** f **com respeito à medida** μ , denotado por I(f) ou $\int_{\Omega} f d\mu$, por $I^*(f)$.

Proposição 6.1. Sejam $f, g, f_n \in \mu(\mathcal{A})$.

- 1. $I(1_A) = \mu(A)$.
- 2. Se $f \leq g$, então $I(f) \leq I(g)$.
- 3. I(rf) = rI(f), para todo $r \ge 0$.
- 4. Se $f = \sum_{n=1}^{\infty} r_n \mathbb{1}_{A_n}$, então $I(f) = \sum_{n=1}^{\infty} r_n \mu(A_n)$
- 5. $I(\sum_{n=1}^{\infty} f_n) = \sum_{n=1}^{\infty} I(f_n)$.

Proposição 6.2. Sejam $f, g \in \mu(A)$.

- 1. Se $f \leq g$ qtp, então $I(f) \leq I(g)$.
- 2. Se f = g qtp, então I(f) = I(g).
- 3. Se I(f) = 0 qtp, então f = 0 qtp.
- 4. Se $I(f) < \infty$, então $\mu(f = \infty) = 0$.

Definição 6.3. Seja $f:\Omega\to[-\infty,+\infty]$ uma função mensurável.

- a) Dizemos que f é **semi-integrável**, se $I(f^+)$ ou $I(f^-)$ são finitos.
- b) Dizemos que f é **integrável**, se $I(f^+)$ e $I(f^-)$ são finitos.
- c) Se f é semi-integrável, definimos a **integral de Lebesgue de** f, denotada por I(f) ou $\int_{\Omega} f d\mu$, como $I(f^+) I(f^-)$

Teorema 6.1. Sejam f, g funções com f = g qtp e f mensurável. Então

- $g \in \mu(\mathcal{A})$.
- I(f) = I(g).

Teorema 6.2. Sejam $f_n \in \mu(\mathcal{A})$, para todo $n \in f = \lim f_n$ qtp. Então f é mensurável.

Teorema 6.3. Seja $f: \Omega \to \overline{\mathbb{R}}$ semi-integrável. Então I(rf) = rI(f), para todo $r \in \mathbb{R}$.

Teorema 6.4. Seja $f \in \mu(\mathcal{A})$. Então, se f é integrável, então |f| é integrável.

7 Aula 7 - Teorema da convergência monótona

Definição 7.1. $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{R}) = \{ f : \Omega \to \mathbb{R} \mid |f| \text{ \'e integrável} \}.$

Teorema 7.1. \mathcal{L}^1 é espaço vetorial e $I:\mathcal{L}^1\to\mathbb{R}$ é funcional linear.

Teorema 7.2. Sejam $f, g \in \mathcal{L}^1$.

- a) Se $f \leq g$ qtp, então $I(f) \leq I(g)$.
- b) Se $f \leq g$ qtp e I(f) = I(g), então f = g qtp.

Teorema 7.3. Sejam $g_1 \leq f \leq g_2$ qtp, com $g_1, g_2 \in \mu(\mathcal{A})$. Se $g_1, g_2 \in \mathcal{L}^1$, então $f \in \mathcal{L}^1$.

Teorema 7.4 (Teorema da Convergência Monótona). Sejam $f, f_n : \Omega \to [0, \infty]$ mensuráveis.

1. Se $f_n \uparrow f$ qtp, então $I(f_n) \uparrow I(f)$.

2. Se $f_n \downarrow f$ qtp e $I(f_1) < \infty$, então $I(f_n) \downarrow I(f)$.

Proposição 7.1. Sejam $f: \Omega \to \overline{\mathbb{R}}$ semi-integrável e $A \in \mathcal{A}$. Então $\mathbb{1}_A f$ é semi-integrável e $I(\mathbb{1}_A f) \in [-I(f^-), I(f^+)]$.

Definição 7.2. $\int_A f d\mu = I(\mathbb{1}_A f) = \int_{\Omega} (\mathbb{1}_A f) d\mu$.

Teorema 7.5. Seja $f:\Omega\to\overline{\mathbb{R}}$ semi-integrável e $A=\sum_{n=1}^\infty A_n,\ \mathrm{com}\ A,A_n\in\mathcal{A}.$ Então $\int_A f=\sum_{n=1}^\infty \int_{A_n} f.$

Definição 7.3. Sejam $f: \Omega \to \overline{\mathbb{R}}$ e μ medida. Definimos integral definida de f com respeito à μ como sendo $\nu: \mathcal{A} \to [-I(f^-), I(f^+)]$, fazendo $\nu(A) = \int_A f d\mu$.

Teorema 7.6.

- a) Se $A_n \uparrow A$, com $A_n, A \in \mathcal{A}$, então $\lim_{A_n} f = \int_A f$.
- b) Se $A \in \mathcal{A}$, com $\mu(A) = 0$, então $\nu(A) = \int_A f d\mu = 0$.

Definição 7.4. Sejam $g: \Omega \to \overline{\mathbb{R}}$ e $A \in \mathcal{A}$. Dizemos que g é semi-integrável, se a função $f: \Omega \to \overline{\mathbb{R}}$, definida como f(x) = g(x), se $x \in A$, e f(x) = 0, se $x \notin A$, for semi-integrável. Nesse caso, $I(g) = \int_A f\mu$.

8 Aula 8 - Riemann \times Lebesgue

Teorema 8.1. Sejam $\mu_i: \mathcal{S}_i \to [0,\infty)$ medida σ -aditiva, para todo $i=1,\ldots,n$. Então definindo $(\mu_1 \times \cdots \times \mu_n): \prod_{i=1}^n \mathcal{S}_i \to [0,\infty)$, como $(\mu_1 \times \cdots \times \mu_n)(I_1 \times \cdots \times I_n) = \mu_1(I_1) \dots \mu_n(I_n)$, temos que $(\mu_1 \times \cdots \times \mu_n)$ é medida σ -aditiva.

Definição 8.1. Seja [a, b] intervalo de \mathbb{R} . Dizemos que o conjunto $\{x_n\}$, com $a = x_0 < x_1 < \cdots < x_n = b$ forma uma **partição pontilhada de** [a, b]. Dizemos que $\mathcal{P} = \{[x_i, x_{i+1}] \mid i = 0, \dots, n-1\}$ é uma **partição de** [a, b]

Teorema 8.2. Sejam $\Omega = \Omega_1 \times \cdots \times \Omega_n$, onde Ω_i é intervalo limitado de \mathbb{R} e $(\mathcal{P}_i)_{i=1}^n$ sequência de partições de Ω_i . Então, definindo $\mathcal{P} = \prod_{i=1}^n \mathcal{P}_i = \{I_1 \times \cdots \times I_n \mid I_j \in \mathcal{P}_j\}$, temos que \mathcal{P} é uma partição de Ω e, se $I, J \in \mathcal{P}$, com $I \neq J$, então $\lambda(I \cap J) = 0$.

Definição 8.2. Sejam $f: \Omega \to \mathbb{R}$ e \mathcal{P} partição de Ω . Para todo $K \in \mathcal{P}$, defina $m_K(f) = \inf\{f(x) \mid x \in K\}$ e $M_K(f) = \sup\{f(x) \mid x \in K\}$. Definimos as **somas de Riemann-Darboux** com sendo $s(\mathcal{P}, f) = \sum_{K \in \mathcal{P}} m_K \lambda(K)$ e $S(\mathcal{P}, f) = \sum_{K \in \mathcal{P}} M_K \lambda(K)$.

Definição 8.3. Seja $f: \Omega \to \mathbb{R}$. Definimos a integral superior de Riemann como sendo inf $\{S(\mathcal{P}, f) \mid \mathcal{P} \text{ \'e partição de } \Omega\}$ e a denotamos por $\bar{\int}_{\Omega} f dx$ ou simplesmente por $\bar{\int} f$. Analogamente, definimos a integral inferior de Riemann como sup $\{s(\mathcal{P}, f) \mid \mathcal{P} \text{ \'e partição de } \Omega\}$ e a denotamos por $\bar{\int}_{\Omega} f dx$ ou simplesmente por $\bar{\int} f$. Quando $\bar{\int} f = \bar{\int} f$, dizemos que f \bar{f} Riemann integrável sendo seu valor $\bar{f} f = f$, denotado por f f ou, somente, f f.

Teorema 8.3. Seja $f:\Omega\to\mathbb{R}$ Riemann integrável. Então f é Lebesgue integrável e sua integral de Lebesgue $I(f)=\int_\Omega fd\lambda$ será igual a integral de Riemann $\int_\Omega fdx$.

Definição 8.4. Seja $\Omega = \prod \Omega_i$ retângulo de \mathbb{R}^n (não necessariamente limitado). Dizemos que $f: \Omega \to \mathbb{R}$ tem **integral imprópria de Riemann**, se para todo $(\Gamma_n)_n$, onde Γ_n é compacto de \mathbb{R}^n , com $\Gamma_n \uparrow \Omega$ e $f|_{\Gamma_n}$ é Riemann integrável. Além disso, a integral imprópria é definida como $II(f) = \lim_{n \to \infty} \int_{\Gamma_n} f dx$.

Teorema 8.4. Se $f: \Omega \to \mathbb{R}$ tem integral imprópria de Riemann, então f é Lebesgue mensurável. Além disso, se f for semi-integrável (a Lebesgue), então $I(f) = \int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Gamma_n} f dx$.

9 Aula 9 - Teorema da Convergência Dominada

Definição 9.1. Seja $f: \Omega \to V$, onde $V = \mathbb{R}^n$ ou $V = \mathbb{C}$. Note que $f = (f_1, \ldots, f_n)$, no primeiro caso e $f = f_1 + if_2$, no segundo, com $f_i: \Omega \to \mathbb{R}$. Dizemos que f é mensurável, se (f_i) for mensurável. para cada i.

Definição 9.2. $\mathcal{L}^1(\Omega, \mathcal{A}, V) = \{f : \Omega \to V \mid |f| \text{ \'e integrável}\}. \text{ Note que } |f| = \sqrt{\sum_i |f_i|^2} : \Omega \to \mathbb{R}.$

Definição 9.3. f é integrável, se f_i for integrável, para todo i. Assim, $I(f) = (I(f_1), \dots, I(f_n))$, se $V = \mathbb{R}^n$ e $I(f) = I(f_1) + iI(f_2)$, se $V = \mathbb{C}$.

Proposição 9.1. a) $\mathcal{L}^1(\Omega, \mathcal{A}, V)$ é espaço vetorial (real, se $V = \mathbb{R}$, ou complexo, se $V = \mathbb{C}$) seminormado, onde a seminorma é $||f||_1 = \int_{\Omega} |f| d\mu$.

b) $I: \mathcal{L}^1 \to V$ é transformação linear.

Teorema 9.1 (Lema de Fatou). Sejam $(f_n): \Omega \to [0, \infty]$ mensuráveis. Então $I(\liminf f_n) \le \liminf I(f_n)$.

Corolário 9.1. Se $f_n \to f$ qtp, então $I(f) \le \liminf I(f_n)$.

Teorema 9.2 (Teorema da Convergência Dominada). Sejam $f_n, f: \Omega \to V$ ($V = \mathbb{R}^n$ ou \mathbb{C}) mensuráveis tais que $f = \lim_n f_n$ x-qtp. Se existe uma função $g: \Omega \to \overline{\mathbb{R}}$ integrável tal que $g(x) \geq |f_n(x)|$ x-qtp, para todo n, então f_n e f são integráveis e $I(f) = \lim_n I(f_n)$.

Corolário 9.2. Sejam $(\Omega, \mathcal{A}, \mu)$ espaço de medida finito, $(f_n), f : \Omega \to \mathbb{R}$ mensuráveis, com $f = \lim_{n \to \infty} f_n$ qtp e f_n uniformemente limitadas qtp (isto é, existe c > 0 tal que $|f(x)| \le c$. x-qtp e para todo n). Então vale o teorema da convergência dominada.

Teorema 9.3. Seja $F: \Omega \times Y \to V \ (V = \mathbb{R}^n \text{ ou } \mathbb{C})$, onde Y é um espaço métrico, tal que:

- i) para todo $y \in Y$ fixo, a função F(x, y) é mensurável;
- ii) x-qtp, a função F(x,y) é contínua;
- iii) existe uma função $g: \Omega \to \mathbb{R}$ integrável tal que |F(x,y)| < g(x), para todo y e x-qtp.

Então:

- a) para todo y, a função F(x,y) é integrável;
- b) a função $\int_{\Omega} F(x,y) d\mu(x)$ é contínua.

10 Aula 10 - Primeira prova

Foi realizada a primeira prova.

11 Aula 11 - σ -álgebra de Borel

Teorema 11.1. Seja $F: \Omega \times J \to \mathbb{R}$, onde J é intervalo de \mathbb{R} tal que:

- i) para todo $y \in J$, $x \mapsto F(x, y)$ é integrável;
- ii) para todo $(x,y) \in \Omega \times J$, existe $\frac{\partial F}{\partial y}(x,y)$;
- iii) existe $g:\Omega \to [0.\infty]$ integrável tal que $g(x) \geq \left|\frac{\partial F}{\partial y}(x,y)\right|, \, \forall \, (x,y) \in \Omega \times J$.

Então:

- a) a função $y \mapsto \int_{\Omega} F(x,y) d\mu(x)$ é diferenciável;
- b) para todo $y \in J$, $x \mapsto \frac{\partial F}{\partial y}(x,y)(x,y)$ é integrável;
- c) vale que $\frac{d}{dy}\int F(x,y)d\mu(x) = \int \frac{\partial F}{\partial y}(x,y)d\mu(x)$.

Teorema 11.2. Sejam Ω um conjunto qualquer e \mathcal{C} uma coleção qualquer de subconjuntos de Ω . Então existe a menor σ -álgebra que contém todos os elementos de \mathcal{C} . Chamamos essa σ -álgebra de σ -álgebra gerada por \mathcal{C} . Notação: $\sigma(\mathcal{C})$.

Definição 11.1. Seja Ω um espaço topológico. Definimos a σ -álgebra de Borel (ou borelianos de Ω) como sendo a menor σ -álgebra que contém todos os abertos de Ω , isto é, $\sigma(A \mid A$ é aberto de Ω).

Proposição 11.1.

- a) Todo intervalo real é boreliano.
- b) Seja \mathcal{S} o conjunto dos retângulos de \mathbb{R}^n . Então $\sigma(\mathcal{S})$ é a σ -álgebra de Borel.
- c) Todo conjunto Borel mensurável é Lebesgue mensurável.

Definição 11.2. Seja \mathcal{S} um semianel. Definimos $\mathcal{S}_{\sigma} = \{ \bigcup_{i=1}^{\infty} S_i \mid S_i \in \mathcal{S} \}$. Note que $\mathcal{S}_{\sigma} \subset \sigma(\mathcal{S})$.

Proposição 11.2. Sejam $(S_n) \in \mathcal{S}_{\sigma}$. Então:

- a) $\bigcup_{n=1}^{\infty} S_n \in \mathcal{S}_{\sigma}$.
- b) $\cap_{n=1}^k S_n \in \mathcal{S}_{\sigma}, \forall k$.

Teorema 11.3. Para todo $A \in \Lambda$, vale $\mu(A) = \inf \{ \mu(B) \mid B \supset A, B \in \mathcal{S}_{\sigma} \}$. Em particular, se não existe $B \supset A, B \in \mathcal{S}_{\sigma}$, então $\mu(A) = \infty$.

12 Aula 12 - Completamento e Funções Borel Mensuráveis

Teorema 12.1. Para todo $A \in \Lambda$, com $\mu(A) < \infty$, existe $\tilde{A} \in \sigma(S)$, com $\tilde{A} \supset A$ e $\mu(\tilde{A} \setminus A) = 0$. Além disso, existe (B_n) , com $B_n \in S_\sigma$ e $\mu < \infty$, tal que $B_n \downarrow \tilde{A}$.

Corolário 12.1. Se $A \in \Lambda$, com $\mu(A) = 0$, então $\exists \tilde{A} \in \sigma(S)$ tal que $\tilde{A} \supset A$ e $\mu(\tilde{A}) = 0$.

Definição 12.1. Seja $(\Omega, \mathcal{A}, \mu)$ espaço de medida. Dizemos que $A \in \mathcal{A}$ é σ -finito, se existe $(A_n) \in \mathcal{A}$, com $\mu(A_n) < \infty$ tal que $A = \bigcup_{n=1}^{\infty} A_n$.

Teorema 12.2.

- a) Se A_n é σ -finito, $\forall n$, então $A = \bigcup_{n=1}^{\infty} A_n$ é σ -finito.
- b) Se A é σ -finito e $B \subset A$, então B é σ -finito.

Corolário 12.2. Se Ω é σ -finito, então A é σ -finito, para todo $A \in \mathcal{A}$.

Definição 12.2. Seja $(\Omega, \mathcal{A}, \mu)$ espaço de medida. Dizemos que o espaço é σ -finito, se Ω for σ -finito. Dizemos que o espaço é finito, se $\mu(\Omega) < \infty$. Quando $\mu(\Omega) = 1$, dizemos que é um **espaço de probabilidade**.

Teorema 12.3. Seja $f: \Omega \to \overline{\mathbb{R}}, \mathbb{R}^n$ ou \mathbb{C} . Se f é integrável, então $(f \neq 0)$ é σ -finito.

Definição 12.3. Seja $(\Omega, \mathcal{A}, \mu)$ espaço de medida. Defina $\mathcal{N} = \{E \subset \Omega \mid \exists A \in \mathcal{A}, A \supset E, \mu(A) = 0\}$ e $\overline{\mathcal{A}} = \{A \cup E \mid A \in \mathcal{A}, E \in \mathcal{N}\}.$

Teorema 12.4. O conjunto \overline{A} é uma σ -álgebra (o completamento de A).

Teorema 12.5. Seja $\mu:\Omega\to[0,\infty)$ medida σ -aditiva. Valem:

- a) $S \subset \sigma(S) \subset \overline{\sigma(S)} \subset \Lambda$;
- b) seja $A \in \Lambda$. Se A é σ -finito, então $A \in \overline{\sigma(S)}$;
- c) se (Ω, Λ, μ) é σ -finito, então $\overline{\sigma(S)} = \Lambda$.

Corolário 12.3. A σ -álgebra de Lebesgue de \mathbb{R}^n é o completamento da σ -álgebra de Borel.

Teorema 12.6. Seja $\mu: \Omega \to [0, \infty)$ medida σ -aditiva. Então existe uma única σ -álgebra Λ satisfazendo as três condições do teorema de extensão de Lebesgue.

Definição 12.4. Sejam Ω e Ω' conjuntos quaisquer e $f:\Omega\to\Omega'$. Dado \mathcal{C} uma coleção de subconjuntos de Ω' , defina $f^{-1}(\mathcal{C})=\{f^{-1}(A)\mid A\in\mathcal{C}\}.$

Teorema 12.7.

- a) Se \mathcal{A}' é σ -álgebra de Ω' , então $f^{-1}(\mathcal{A}')$ é σ -álgebra de Ω .
- b) Se \mathcal{A} é σ -álgebra de Ω , então $\{A \subset \Omega' \mid f^{-1}(A) \in \mathcal{A}\}$ é σ -álgebra de Ω' .

Corolário 12.4. Sejam \mathcal{A} σ -álgebra e \mathcal{C} classe de subconjuntos de Ω' . Então se $f^{-1}(A) \in \mathcal{A}$, $\forall A \in \mathcal{C}$, então $f^{-1}(A) \in \mathcal{A}$, $\forall A \in \sigma(\mathcal{C})$.

Teorema 12.8.

- a) $f: \Omega \to \mathbb{R}^n$ é Borel mensurável, se, e somente se, $f^{-1}(A) \in \mathcal{A}$, para todo A boreliano de \mathbb{R}^n .
- b) Se $f:\Omega\to\mathbb{R}^n$ ou \mathbb{C} é contínua, então f é Borel mensurável.

Teorema 12.9. Sejam $f: \Omega \to \Omega'$ e \mathcal{C} classe de subconjuntos de Ω . Então $\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$.

13 Aula 13 - Teorema de Tonelli-Cavalieri

Proposição 13.1 (Lema Maluco). Sejam $\mu : \mathcal{S} \to [0, \infty)$ uma medida σ -aditiva, $\mu : \Lambda \to [0, \infty]$ medida de Lebesgue e \mathcal{C} uma família de subconjuntos de Ω tal que $\mathcal{S} \subset \mathcal{C} \subset \{A \in \Lambda \mid A \in \sigma\text{-finito}\}$. Então, se valem as condições:

- i) Se $A_n \in \mathcal{C}$, $\mu(A_n) < \infty$, $\forall n \in A = \sum A_n$, então $A \in \mathcal{C}$.
- ii) Se $A_1 \subset A_2$, $A_1, A_2 \in \mathcal{C}$, $\mu(A_i) < \infty$, com i = 1, 2, então $A_2 \setminus A_1 \in \mathcal{C}$.
- iii) Se $A \in \mathcal{C}$, $\mu(A) = 0$ e $E \subset A$, então $E \in \mathcal{C}$.

Temos que $C = \{ A \in \Lambda \mid A \in \sigma\text{-finito} \}.$

Definição 13.1. Sejam Ω_1, Ω_2 conjuntos quaisquer, \mathcal{S}_j semianel de $\Omega_j, \mu_j : \mathcal{S}_j \to [0, \infty)$ medida σ -aditiva e $\mu_j : \Lambda_j \to [0, \infty]$ a respectiva extensão de Lebesgue. Já vimos que $\mathcal{S}_1 \times \mathcal{S}_2$ é semianel de $\Omega_1 \times \Omega_2$ e que $(\mu_1 \times \mu_2) : \mathcal{S}_1 \times \mathcal{S}_2 \to [0, \infty)$, com $(\mu_1 \times \mu_2)(S \times T) = \mu_1(S)\mu_2(T)$ é medida σ -aditiva. Então está bem definida a extensão de Lebesgue $(\mu_1 \times \mu_2) : \Lambda \to [0, \infty]$, onde Λ é a σ -álgebra de Lebesgue de $\Omega_1 \times \Omega_2$. Chamamos $\mu_1 \times \mu_2$ de **medida produto**.

Definição 13.2.

- a) Seja $A \in \Lambda$, Para todo $x \in \Omega_1$, definimos a x-seção de A, como sendo $A_x = \{y \in \Omega_2 \mid (x,y) \in A\}$. Analogamente, para todo $y \in \Omega_2$, definimos a y-seção de A, como sendo $A_y = \{x \in \Omega_1 \mid (x,y) \in A\}$.
- b) Seja $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}, \mathbb{R}^n$ ou \mathbb{C} . Para todo $x \in \Omega_1$, definimos a x-seção de f, como sendo $f_x: \Omega_2 \to \mathbb{R}, y \mapsto f(x,y)$. Analogamente, para todo $y \in \Omega_2$, definimos a y-seção de f, como sendo $f_y: \Omega_1 \to \mathbb{R}, x \mapsto f(x,y)$.

Teorema 13.1 (Tonelli-Cavalieri). Seja $A \in \Lambda$ e A σ -finito. Então:

- i) $A_x \in \Lambda_2$ e A_x σ -finito com respeito a μ_2 , x-qtp $\in \Omega_1$
- ii) $A_y \in \Lambda_1$ e A_y σ -finito com respeito a μ_1 , y-qtp $\in \Omega_2$
- iii) Sejam $g: \Omega_1 \to [0,\infty], \ g(x) = \mu_2(A_x)$ e $h: \Omega_2 \to [0,\infty], \ h(y) = \mu_1(A_y)$. Então g é Λ_1 -mensurável, h é Λ_2 -mensurável e $\int_{\Omega_1} g(x) d\mu_1(x) = \int_{\Omega_2} h(y) d\mu(y) = (\mu_1 \times \mu_2)(A)$.

14 Aula 14 - Teorema de Fubini

Corolário 14.1. Se $A \in \Lambda$ e $(\mu_1 \times \mu_2)(A) = 0$, então $\mu_2(A_x) = 0$ x-qtp e $\mu_1(A_y) = 0$ y-qtp.

Teorema 14.1 (Tonelli-Funibi). Seja $f: \Omega_1 \times \Omega_2 \to [0, \infty]$ Λ -mensurável, tal que (f > 0) é σ -finito. Então:

- a) f_x é Λ_2 -mensurável, x-qtp;
- b) $f_y \in \Lambda_1$ -mensurável, y-qtp;
- c) se $g: \Omega_1 \to [0, \infty], x \mapsto \int_{\Omega_2} f(x, y) d\mu_2(y)$ e $h: \Omega_2 \to [0, \infty], y \mapsto \int_{\Omega_1} f(x, y) d\mu_1(x)$, vale que $\int_{\Omega_1} g(x) d\mu_1(x) = \int_{\Omega_2} h(y) d\mu_2(y) = \int_{\Omega_1 \times \Omega_2} f(x, y) d(\mu_1 \times \mu_2)$.

Teorema 14.2 (Fubini). Seja $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ (ou \mathbb{R}^n ou \mathbb{C}) integrável com respeito a $\mu_1 \times \mu_2$. Então:

- a) f_x é integrável, x-qtp;
- b) f_y é integrável, y-qtp;
- c) se $g: \Omega_1 \to [0, \infty], x \mapsto \int_{\Omega_2} f(x, y) d\mu_2(y)$ e $h: \Omega_2 \to [0, \infty], y \mapsto \int_{\Omega_1} f(x, y) d\mu_1(x)$, vale que $\int_{\Omega_1} g(x) d\mu_1(x) = \int_{\Omega_2} h(y) d\mu_2(y) = \int_{\Omega_1 \times \Omega_2} f(x, y) d(\mu_1 \times \mu_2)$.

Teorema 14.3. Sejam $A_i \in \Lambda_i$, μ_i σ -finito, para i = 1, 2. Então:

- a) $A_1 \times A_2 \in \Lambda \in \sigma$ -finito;
- b) $(\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_2)\mu_2(A_2)$.

Corolário 14.2. Se Ω_j é μ_j σ -finito, j=1,2, então $\Omega_1 \times \Omega_2$ é $(\mu_1 \times \mu_2)$ σ -finito.

Corolário 14.3. Sejam $f_j: \Omega_j \to \overline{\mathbb{R}}$ mensuráveis, j=1,2. Então $g(x,y)=f_1(x), h(x,y)=f_2(y)$ e $i(x,y)=f_1(x)f_2(y)$ são Λ -mensuráveis.

Teorema 14.4. Seja $(V_{n,k})$, $n \in \Omega_1$ e $k \in \Omega_2$ tal que vale i) ou ii) abaixo:

- i) $0 \leq V_{n,k}$, para todo $(n,k) \in \Omega_1 \times \Omega_2$;
- ii) $\sum_{(n,k)\in\Omega_1\times\Omega_2} |V_{n,k}| < \infty$

Então $\sum_{n} \sum_{k} V_{n,k} = \sum_{k} \sum_{n} V_{n,k} = \sum_{(n,k) \in \Omega_1 \times \Omega_2} V_{n,k}$.

15 Aula 15 - Medida de Lebesgue-Stieltjes

Lema 15.1. Sejam $\nu : \Lambda \to [0, \infty]$ extensão de Lebesgue de $\nu : \mathcal{S} \to [0, \infty]$ e $(\Omega, \tilde{\mathcal{A}}, \rho)$ espaço completo tal que $\mathcal{S} \subset \tilde{\mathcal{A}}$ e $\rho = \nu$ em \mathcal{S} . Então $\{A \in \Lambda \mid A \sigma$ -finito em $(\Omega, \mathcal{A}, \nu)\} = \{A \in \Lambda \mid A \sigma$ -finito em $(\Omega, \mathcal{A}, \nu), A \in \tilde{\mathcal{A}}$ e $\rho(A) = \nu(A)\}$.

Teorema 15.1. Sejam $(\Omega, \mathcal{A}, \mu)$ espaço completo, $g: \Omega \to [0, \infty]$ \mathcal{A} -mensurável. Suponha $\mathcal{A} \supset \mathcal{S}$ semianel. Defina $\nu: \mathcal{A} \to [0, \infty]$, como $\nu(S) = \int_S g d\mu$ e $\nu: \Lambda_\nu \to [0, \infty]$ sua extensão de Lebesgue. Se $A \in \Lambda_\nu$ é σ -finito com respeito a ν , então $A \cap (g > 0) \in \mathcal{A}$ e $\nu(A) = \int_{A \cap (g > 0)} g d\mu$

Proposição 15.1. Sejam $(\Omega, \mathcal{A}, \mu)$ espaço de medida, $g: \Omega \to [0, \infty]$ \mathcal{A} -mensurável. Defina a medida σ -aditiva $\nu: \mathcal{A} \to [0, \infty]$, como $\nu(A) = \int_A g d\mu$. Dada $f: \Omega \to [-\infty, \infty]$ \mathcal{A} -mensurável, então temos que f é (semi-)integrável com respeito a ν se, e somente se, fg é (semi-)integrável com respeito a μ . Neste caso, $\int_{\Omega} f d\nu = \int_{\Omega} f g d\mu$.

Proposição 15.2. Sejam $(\Omega, \mathcal{A}, \mu)$ e $(\Omega_1, \mathcal{A}_1, \mu_1)$ espaços de medida, $\Omega_1 \in \mathcal{A}$ $\mathcal{A}_1 \subset \mathcal{A}$ e $\mu_1 = \mu|_{\mathcal{A}_1}$. Dado $f: \Omega_1 \to [-\infty, \infty]$ \mathcal{A}_1 -mensurável, temos que f é (semi)-integrável com respeito a μ_1 se, e somente se, f é (semi)-integrável com respeito a μ . Neste caso, $\int_{\Omega_1} f d\mu_1 = \int_{\Omega} f d\mu$.

Definição 15.1. Sejam $\Omega \subset \mathbb{R}$ intervalo não degenerado e $\alpha : \Omega \to \mathbb{R}$ de classe C^1 , com $\alpha'(x) \geq 0$, para todo $x \in \Omega$. Denote por \mathcal{S}_{Ω} o semianel dos intervalos S tais que $\overline{S} \subset \Omega$. A **medida de Stieltjes** $\nu : \mathcal{S}_{\Omega} \to \mathbb{R}$ é dada por $\nu(S) = \int_{S} \alpha'(x) d\lambda$. Logo $\nu \geq 0$ e ν é σ -aditiva em \mathcal{S}_{Ω} . Portanto, ν tem extensão de Lebesgue $\nu : \Lambda_{\nu} \to [0, \infty]$, chamada **medida de Lebesgue-Stieltjes** definida por α .

Teorema 15.2. Seja $\Lambda(\Omega) = \{A \in \Omega \mid A \in \Lambda_{\lambda}\}$, onde Λ_{λ} é a σ -álgebra de Lebesgue da reta. Então:

- a) $\Lambda_{\nu} = \{ A_1 \cup A_2 \mid A_1 \in \Lambda(\Omega), A_2 \subset (\alpha' = 0) \};$
- b) $\nu(A_1) = \int_{A_1} \alpha'(x) d\lambda$, para todo $A_1 \in \Lambda(\Omega)$;
- c) $A_2 \in \Lambda_{\nu}$ e $\nu(A_2) = 0$, para todo $A_2 \subset (\alpha' > 0)$;
- d) ν é σ -finita.

16 Aula 16 - Espaço \mathcal{L}^p

Corolário 16.1. Sejam $\Lambda(\Omega) = \{A \in \Omega \mid A \in \Lambda_{\lambda}\}$, onde Λ_{λ} é a σ -álgebra de Lebesgue da reta e $f: \Omega \to \overline{\mathbb{R}}, \mathbb{R}^n$ ou \mathbb{C} Λ -mensurável. Então

- a) $f \in \Lambda_{\nu}$ -mensurável
- b) f é (semi-)integrável com respeito a ν , se, e somente se, $f\alpha'$ é (semi-)integrável com respeito a λ . E neste caso $\int f d\nu = \int f \alpha' d\lambda$.

Definição 16.1. Seja $(\Omega, \mathcal{A}, \mu)$ espaço de medida. Definimos $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu, V) = \{f : \Omega \to V \mid \exists c > 0 \mid f(x)| \leq c \text{ } x\text{-qtp}\}$, onde $V = \mathbb{R}^n$ ou \mathbb{C} . Definimos também $||f||_{\infty} = \{c \geq 0 \mid c \geq |f(x)| \text{ } x\text{-qtp}\}$.

Proposição 16.1. $|f(x)| \leq ||f||_{\infty}$ x-qtp, isto é, $||f||_{\infty}$ é a menor das cotas superiores qtp.

Teorema 16.1. \mathcal{L}^{∞} é espaço vetorial seminormado com seminorma $||f||_{\infty}$.

Corolário 16.2. $||f||_{\infty} = 0 \Leftrightarrow f(x) = 0$ x-qtp.

Teorema 16.2. Se $f \in \mathcal{L}^{\infty}$ e g = f qtp, então $g \in \mathcal{L}^{\infty}$.

Teorema 16.3. Sejam $(f_n), f \in \mathcal{L}^{\infty}$ tais que $||f_n - f||_{\infty} \to 0$. Então existe A, com $\mu(A) = 0$, tal que $f_n \to f$ uniformemente, para todo $x \in A^{\complement}$.

17 Aula 17 - Desigualdade de Minkovski

Definição 17.1.

- a) Sejam $(\Omega, \mathcal{A}, \mu)$ espaço de medida e $p \in [1, \infty)$. Definimos $\mathcal{L}^p(\Omega, \mathcal{A}, \mu, V) = \{f : \Omega \to V \mid f \text{ \'e mensur\'avel e } \int_{\Omega} |f|^p d\mu < \infty\}$, onde $V = \mathbb{R}$ ou \mathbb{C} .
- b) $||f||_p = \left(\int_{\Omega} |f|^p d\mu \right)^{\frac{1}{p}}$.

Proposição 17.1.

- a) Para todo $c \in \mathbb{R}$ (ou \mathbb{C}) vale que se $f \in \mathcal{L}^p$, então $cf \in \mathcal{L}^p$ e $||cf||_p = |c|||f||_p$
- b) $||f||_p = 0 \Leftrightarrow f = 0$ x-qtp.

Lema 17.1. Sejam $a, b \ge 0$ e $t \in [0, 1]$. Então $m = ta + (1 - t)b \ge g = a^t b^{1-t}$.

Corolário 17.1 (Desigualdade de Young). Sejam $a, b \ge 0, p \in [1, \infty)$ e q tal que 1/p + 1/q = 1. Então $ab \le a^p/p + b^q/q$. Se $a^p = b^q$, então vale a igualdade.

Teorema 17.1 (Desigualdade de Hölder). Sejam $p \in q$ tais que $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{L}^p \in g \in \mathcal{L}^q$. Então $fg \in \mathcal{L}^1$ e vale $|\int fg d\mu| \leq \int |fg| d\mu \leq ||f||_p ||g||_q$.

Teorema 17.2. Sejam $p \in [1, \infty)$, q tal que 1/p + 1/q = 1 e $f \in \mathcal{L}^p$. Então existe uma função $g \in \mathcal{L}^q$ com $||g||_q = 1$ tal que $\int |fg| d\mu = ||f||_p ||g||_q$. Além disso, se $f(\Omega) \subset \mathbb{R}$, então $g(\Omega) \subset \mathbb{R}$ e se $f \geq 0$, então $g \geq 0$.

Teorema 17.3.

- a) (Desigualdade de Minkovski) Se $f, g \in \mathcal{L}^p$, então $f + g \in \mathcal{L}^p$ e $||f + g||_p \le ||f||_p + ||g||_p$.
- b) \mathcal{L}^p é espaço vetorial seminormado com seminorma $||f||_p$.

Definição 17.2. Sejam $(f_n), f \in \mathcal{L}^p$. Dizemos que $f_n \to f$ em \mathcal{L}^p , se $||f_n - f||_p \to 0$.

Teorema 17.4 (Teorema da Convergência Dominada em \mathcal{L}^p). Sejam f_n e f tais que $f_n \to f$ qtp. Se existe $g \in \mathcal{L}^p$, $g \ge 0$ tal que $f_n \le g$ qtp $\forall n$, então $f, f_n \in \mathcal{L}^p$ e $||f - f_n||_p \to 0$.

18 Aula 18 - \mathcal{L}^p é completo

Definição 18.1. Sejam $f, f_n \in \mathcal{L}^p$. Fizemos que $\{f_n\}$ é uma sequência de Cauchy em \mathcal{L}^p se dadp $\varepsilon > 0$, $\exists M \in \mathbb{N}$ tal que $||f_m - f_n||_p < \varepsilon$, para quaisquer $m, n \ge M$. Dizemos também que $\{f_n\}$ converge para f em \mathcal{L}^p se $||f_n - f||_p \xrightarrow{n \to 0} 0$.

Definição 18.2. Um espaço vetorial V é **completo** se toda sequência de Cauchy em V converge para um elemento de V segundo $\|\cdot\|_V$.

Proposição 18.1. $f_n \xrightarrow{\mathcal{L}^p} f \Rightarrow f_n$ é de Cauchy em \mathcal{L}^p .

Teorema 18.1. \mathcal{L}^p é completo para $1 \leq p < \infty$.

Corolário 18.1. Se $f_n \xrightarrow{\mathcal{L}^p} f$, então existe uma subsequência (f_{n_k}) tal que $f_{n_k} \xrightarrow{qtp} f$.

19 Aula 19 - Teoremas de decomposição de Hahn e Jordan

Definição 19.1. Seja $\mu: \mathcal{A} \to \mathbb{R}$ carga (medida com sinal). Um conjunto $\Omega^+ \in \mathcal{A}$ é positivo para a carga μ se $\mu(E \cap \Omega^+) \geq 0, \forall E \in \mathcal{A}$. Analogamente, dizemos que $\Omega^- \in \mathcal{A}$ é negativo para a carga μ se $\mu(E \cap \Omega^-) \leq 0, \forall E \in \mathcal{A}$. O conjunto $\mathcal{N} \in \mathcal{A}$ é nulo para a carga μ se $\mu(E \cap \mathcal{N}) = 0, \forall E \in \mathcal{A}$.

Teorema 19.1 (Teorema de Decomposição de Hahn). Dada $\mu : \mathcal{A} \to \mathbb{R}$ carga, existem Ω^+ e Ω^- tais que $\Omega^+ \cup \Omega^- = \Omega$, $\Omega^+ \cap \Omega^- = \emptyset$, Ω^+ é positivo para a carga μ e Ω^- é negativo para a carga μ .

Teorema 19.2. Sejam (Ω_1^+, Ω_1^-) e (Ω_2^+, Ω_2^-) decomposições de Hahn distintas. Então $\mu(E \cap \Omega_1^+) = \mu(E \cap \Omega_2^+)$ e $\mu(E \cap \Omega_1^-) = \mu(E \cap \Omega_2^-)$.

Definição 19.2. Sejam $\mu: \mathcal{A} \to \mathbb{R}$ uma carga e Ω^+ e Ω^- uma decomposição de Hahn para μ . Definimos a **variação positiva de** μ , denotada por μ^+ , como $\mu^+: \mathcal{A} \to \mathbb{R}$, $\mu^+(E) = \mu(E \cap \Omega^+)$. Definimos a **variação negativa de** μ , denotada por μ^- , como $\mu^-: \mathcal{A} \to \mathbb{R}$, $\mu^-(E) = -\mu(E \cap \Omega^-)$. Analogamente, definimos a **variação total de** μ , $|\mu|$, como $|\mu|(E) = \mu^+(E) + \mu^-(E)$.

Teorema 19.3 (Teorema de Decomposição de Jordan). Seja $\mu: \mathcal{A} \to \mathbb{R}$ uma carga. Então $\mu(E) = \mu^+(E) - \mu^-(E)$. Além disso, se $\mu = \lambda - \nu$, com λ e ν medidas positivas, então $\mu^+(E) \le \lambda(E)$ e $\mu^-(E) \le \nu(E)$.

Corolário 19.1. Sejam $\mu: \mathcal{A} \to \mathbb{R}$ medida, $f \in \mathcal{L}(\Omega, \mathcal{A}, \mu, \mathbb{R})$ e $\lambda(E) = \int_E |f| d\mu$. Então $\lambda^+(E) = \int_E f^+ d\mu$, $\lambda^-(E) = \int_E f^- d\mu$, $|\lambda|(E) = \int_E |f| d\mu$.

Definição 19.3. Sejam μ e λ medidas em (Ω, \mathcal{A}) . Dizemos que λ é absolutamente contínua com respeito a μ , denotado por $\lambda << \mu$, se para todo $A \in \mathcal{A}$ com $\mu(A) = 0$ vale que $\lambda(A) = 0$.

Lema 19.1. Sejam μ e λ medidas em (Ω, \mathcal{A}) . Então $\lambda << \mu$ se, e somente se, $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que $\forall A \in \mathcal{A}$ com $\mu(A) < \delta$, vale $\delta(A) < \varepsilon$.

20 Aula 20 - Segunda prova

Foi realizada a segunda prova.

21 Aula 21 - Teorema de Radón-Nikodým

Teorema 21.1 (Radón-Nikodým). Sejam μ medida positiva e λ carga, ambas σ -finitas. Então $|\lambda| << \mu$ se, e somente se, existe $f:\Omega \to \mathbb{R}$ semi-integrável tal que $\lambda(E) = \int_E f d\mu$. Além disso, temos que f é única μ -qtp e se λ for medida positiva, então $f \geq 0$ μ -qtp.

Definição 21.1. Sejam λ e μ medidas em (Ω, \mathcal{A}) . Dizemos que λ e μ são **mutualmente singulares**, se existem $A, B \in \mathcal{A}$ tais que $A \cup B = \Omega$, $A \cap B = \emptyset$ e $\mu(A) = \lambda(B) = 0$. Notação: $\lambda \perp \mu$.

Teorema 21.2 (Decomposição de Lebesgue). Sejam λ e μ medidas σ -finitas em (Ω, \mathcal{A}) . Então existem λ_1 e λ_2 medidas em (Ω, \mathcal{A}) tais que:

- i) $\lambda = \lambda_1 + \lambda_2$.
- ii) $\lambda_1 \perp \mu$.
- iii) $\lambda_2 \ll \mu$.

Além disso, a decomposição é única.

22 Aula 22 - Teorema da Representação de Riesz

Definição 22.1.

- a) Dizemos que $G: \mathcal{L}^p \to \mathbb{R}$ (ou \mathbb{C}) é um **funcional linear** $(p \in [1, \infty))$, se $G(\alpha f + \beta g) = \alpha G(f) + \beta G(g)$, $\forall \alpha, \beta \in \mathbb{R}$ (ou \mathbb{C}) e $\forall f, g \in \mathcal{L}^p$.
- b) Dizemos que G é **limitado** se existe c > 0 tal que $|G(f)| < c||f||_p$, $\forall f \in \mathcal{L}^p$.
- c) $||G|| = \sup\{|G(f)| \mid f \in \mathcal{L}^p, ||f||_p = 1\}.$
- d) Dizemos que um funcional linear limitado é **positivo**, se $G(f) \ge 0, \forall f \ge 0$.

Lema 22.1. Seja $G: \mathcal{L}^p \to \mathbb{R}$ funcional linear limitado. Então existem $G^+, G^-: \mathcal{L}^p \to \mathbb{R}$ funcionais lineares limitados positivos tais que $G(f) = G^+(f) = G^-(f)$.

Teorema 22.1 (Representação de Riesz).

- a) Seja $(\Omega, \mathcal{A}, \mu)$ espaço de medida σ -finito e $G : \mathcal{L}^p \to \mathbb{R}$ funcional linear limitado $(p \in [1, \infty))$. Então existe $g \in \mathcal{L}^q$ (onde $q = \frac{p}{p-1}$) tal que $G(f) = \int_{\Omega} fg d\mu$. Além disso, $\|G\| = \|g\|_q$ e se G for funcional linear limitado positivo, então $g \geq 0$.
- b) Se $p \in (1, \infty)$, a hipótese de $(\Omega, \mathcal{A}, \mu)$ ser σ -finito é desnecessário.

23 Aula 23 - Modos de Convergência

Definição 23.1. Sejam $(\Omega, \mathcal{A}, \mu)$ espaço de medida e $f, f_n : \Omega \to \overline{\mathbb{R}}$.

- a) Dizemos que f_n converge uniformemente para f se $\forall \varepsilon > 0$, $\exists N \ge 1$ tal que $\forall x \in \Omega$ e $\forall n \ge N$, temos que $|f_n(x) f(x)| < \varepsilon$. Notação: $f_n \to f$ uniformente.
- b) Dizemos que f_n converge pontualmente para f se $\forall x \in \Omega$ e $\forall \varepsilon > 0$, $\exists N \ge 1$ tal que $\forall n \ge N$, temos que $|f_n(x) f(x)| < \varepsilon$. Notação: $f_n \to f$ pontualmente.

- c) Dizemos que f_n converge para f qtp se $\forall x \in \Omega \setminus \{A\}$, com $\mu(A) = 0$, e $\forall \varepsilon > 0$, $\exists N \ge 1$ tal que $\forall n \ge N$, temos que $|f_n(x) f(x)| < \varepsilon$. Notação: $f_n \to f$ qtp.
- d) Dizemos que f_n converge para f em \mathcal{L}^p se $\forall \varepsilon > 0$, $\exists N \ge 1$ tal que $\forall n \ge N$, temos que $||f_n f||_p < \varepsilon$. Notação: $f_n \to f$ em \mathcal{L}^p ou $f_n \xrightarrow{\mathcal{L}^p} f$.
- e) Dizemos que f_n converge em medida para f se $\forall \varepsilon > 0$, $\lim_{n \to \infty} \mu(|f_n f| \ge \varepsilon) = 0$ (em outros termos, $\forall \varepsilon > 0$ e $\forall \delta > 0$, $\exists N \ge 1$ tal que $\forall n \ge N$, temos que $\mu(|f_n f| \ge \varepsilon) < \delta$). Notação: $f_n \to f$ em medida ou $f_n \xrightarrow{\mu} f$.
- f) Dizemos que f_n converge quase uniformemente para f se $\forall \delta > 0$, $\exists E_{\delta}$, com $\mu(E_{\delta}) < \delta$ tal que $f_n \to f$ uniformemente em E_{δ}^{\complement} . Notação: $f_n \to f$ quase uniformente ou $f_n \xrightarrow{qu} f$.

Definição 23.2. Sejam $(\Omega, \mathcal{A}, \mu)$ espaço de medida e $f, f_n : \Omega \to \overline{\mathbb{R}}$.

- a) Dizemos que (f_n) é uma sequência de Cauchy em medida, se $\forall \varepsilon > 0$ e $\forall \delta > 0$, $\exists N \geq 1$ tal que $\forall m, n \geq N$, temos que $\mu(|f_m f_n| \geq \varepsilon) < \delta$.
- b) Dizemos que (f_n) é uma sequência de Cauchy quase uniformemente, se $\forall \delta > 0$, $\exists E_{\delta}$, com $\mu(E_{\delta}) < \delta$ tal que $\forall \varepsilon > 0$, $\exists N \geq 1$ tal que $\forall x \in E_{\delta}^{\complement}$ e $\forall m, n \geq N$, temos que $|f_m(x) f_n(x)| \leq \varepsilon$.

Exemplo 23.1. Suponha $\mu(\Omega) = 1$. Seja (f_n) sequência de funções mensuráveis. Dizemos que vale uma lei dos grandes números para (f_n) , se

$$\frac{s_n - \int_{\Omega} s_n d\mu}{n} \to 0$$

onde $s_n = \sum_{k=1}^n f_k$. Quando a convergência acima é qtp, dizemos que vale uma lei forte dos grandes números; quando a convergência acima é em medida, dizemos que vale uma lei fraca dos grandes números.

Proposição 23.1.

- Se $f_n \to f$ uniformemente, então $f_n \xrightarrow{\mu} f$.
- Se $f_n \to f$ em \mathcal{L}^p , então $f_n \xrightarrow{\mu} f$.

Teorema 23.1. Seja (f_n) de Cauchy em medida. Então existe uma subsequência (g_k) tal que g_k converge qtp e em medida.

Corolário 23.1. Se (f_n) é de Cauchy em medida, então existe f tal que $f_n \xrightarrow{\mu} f$. Além disso, f é única qtp.

Teorema 23.2. Se $f_n \xrightarrow{\mu} f$, $(f_n) \in \mathcal{L}^p$ e $\exists g \in \mathcal{L}^p$ tal que $|f_n| \leq g$ qtp, então $f \in \mathcal{L}^p$ e $f_n \to f$ em \mathcal{L}^p .

Teorema 23.3. Seja (f_n) de Cauchy quase uniformemente. Então existe f tal que $f_n \to f$ que f que f

24 Aula 24 - Teoremas de Egoroff e de Vitali

Teorema 24.1. Se $f_n \to f$ qu, então $f_n \xrightarrow{\mu} f$. Reciprocamente, se $f_n \xrightarrow{\mu} f$, então existe (g_k) subsequência de (f_n) tal que $g_k \to f$ qu.

Corolário 24.1. Se $f_n \to f$ em \mathcal{L}^p , então existe (g_k) tal que $g_k \to f$ qu.

Teorema 24.2 (Egoroff). Se $\mu(\Omega) < \infty$ e $f_n \to f$ qtp, então $f_n \to f$ qu.

Teorema 24.3. Seja $f: \Omega \to [0, \infty]$ integrável. Então valem:

- a) $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que $\forall A \in \mathcal{A}$, como $\mu(A) < \delta$, vale que $\int_A f d\mu < \varepsilon$. Notação: $\lim_{\mu(A) \to 0} \int_A f d\mu$.
- b) $\forall \varepsilon > 0$, $\exists B \in \mathcal{A}$, com $\mu(B) < \infty$ tal que $\int_{B^{\complement}} f d\mu < \varepsilon$.

Teorema 24.4 (Convergência de Vitali). Sejam $(f_n) \in \mathcal{L}^p$ e f mensurável. Então $f \in \mathcal{L}^p$ e $f_n \to f$ em \mathcal{L}^p se, e somente se, valem as condições:

- i) $f_n \to f \text{ em } \mu$
- ii) $\lim_{\mu(A)\to 0} \int_A |f_n|^p d\mu = 0, \ \forall n \in \mathbb{N}$, isto é, $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall A \in \mathcal{A}$, $\mu(A) < \delta$, vale $\int_A |f_n|^p d\mu < \varepsilon$, $\forall n \in \mathbb{N}$.
- iii) $\forall \, \varepsilon > 0 \,, \, \exists \, B \in \mathcal{A} \,, \, \mu(B) < \infty \text{ tal que sup } \int_{B^{\complement}} |f_n|^p d\mu < \varepsilon.$

Modos de convergência:

25 Aula 25 - Lema de Vitali

Definição 25.1. Seja $\mu : \mathcal{A} \to [0, \infty]$, onde \mathcal{A} é álgebra ou \mathcal{S}_{σ} ou $\mathcal{A}(\mathcal{S})$. Então, para todo $A \subseteq \Omega$, definimos a **medida exterior de** A como $\mu^* = \inf\{\mu(B) \mid B \supseteq A, B \in \mathcal{A}\}$. Temos que $\mu^*(\emptyset) = 0$, $\mu^*(\sum A_n) \le \sum \mu^*(A_n)$, mas, em geral, μ^* não é medida.

Definição 25.2. Sejam \mathcal{I} uma coleção de intervalos não degeneados de \mathbb{R} e $E \subseteq \mathbb{R}$. Dizemos que \mathcal{I} é uma **cobertura de Vitali para** E, se $\forall x \in E$, $\forall \varepsilon > 0$, $\exists I \in \mathcal{I}$ tal que $x \in I$ e $\lambda(I) < \varepsilon$.

Lema 25.1 (Lema de Vitali). Sejam $E \subseteq \mathbb{R}$ com $\lambda^*(E) < \infty$ e \mathcal{I} uma cobertura de Vitali para E. Então $\forall \varepsilon > 0$, existem $I_1, \ldots, I_{\tilde{n}}$ intervalos de \mathcal{I} dois a dois disjuntos tais que $\lambda^*(E \setminus \bigcup_{i=1}^{\tilde{n}} I_i) < \varepsilon$.

Definição 25.3. Seja $f:[a,b]\to\mathbb{R}$ mensurável. Definimos as quantidades

$$D^+f(x) = \limsup_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$
 $D_+f(x) = \liminf_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$

$$D^{-}f(x) = \limsup_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}$$
 $D_{-}f(x) = \liminf_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}$

Quando $D^+f(x)=D_+f(x)=D^-f(x)=D_-f(x)\neq\pm\infty$, dizemos que f(x) é **diferenciável** em x e denotamos o limite por f'(x).

Teorema 25.1. Seja $f:[a,b]\to\mathbb{R}$ não decrescente. Então f é diferenciável qtp, f' é integrável e $\int_a^b f'(y)dy \le f(b) - f(a)$.

26 Aula 26 - Variação Limitada

Definição 26.1. Sejam $f:[a,b]\to\mathbb{R}$ e $\pi=\{x_0=a< x_1<\cdots< x_n=b\}$ uma partição. Definimos as quantidades $p=p(f,\pi)=\sum_{i=0}^{n-1}[f(x_{i+1})-f(x_i)]^+, n=n(f,\pi)=\sum_{i=0}^{n-1}[f(x_{i+1})-f(x_i)]^-$ e $t=t(f,\pi)=\sum_{i=0}^{n-1}|f(x_{i+1})-f(x_i)|$. Observe que t=p+n e p-n=f(b)-f(a). Definimos $P=P_a^b(f)=\sup_{\pi}p(f,\pi), \ N=N_a^b(f)=\sup_{\pi}n(f,\pi)$ e $T=T_a^b(f)=\sup_{\pi}t(f,\pi)$. As quantidades P,N e T são chamadas, respectivamente, de **variação positiva, negativa e total de** f **no intervalo** [a,b]. Note que $P,N\leq T\leq P+N$.

Definição 26.2. Uma função $f:[a,b]\to\mathbb{R}$ é de variação limitada se $T_a^b(f)<\infty$.

Lema 26.1. Se f é uma função de variação limitada então T = P + N e P - N = f(b) - f(a).

Teorema 26.1. Seja $f:[a,b] \to \mathbb{R}$. Então f é de variação limitada se, e somente se, f pode ser escrita como a diferença de duas funções monótonas.

Corolário 26.1. Se f é variação limitada, então f é derivável qtp.

Definição 26.3. Seja $f:[a,b]\to\mathbb{R}$. Definimos a **integral indefinida de** f como a função $F(x)=\int_a^x f(t)dt$.

Lema 26.2. Se f é integrável, então F é contínua e de variação limitada.

Lema 26.3. Seja $f:[a,b]\to\mathbb{R}$ integrável. Então se $\int_a^x f(t)dt=0, \, \forall \, x\in[a,b]$, então f=0 qtp.

Lema 26.4. Seja $f:[a,b]\to\mathbb{R}$ mensurável e limitada e seja $F(x)=\int_a^x f(t)dt+F(a)$. Então F é derivável e F'=f qtp.

Teorema 26.2. Sejam $f:[a,b]\to\mathbb{R}$ integrável e $F(x)=\int_a^x f(t)dt+F(a)$. Então F é derivável e F'=f qtp.

27 Aula 27 - Continuidade Absoluta

Definição 27.1. Dizemos que $f:[a,b] \to \mathbb{R}$ é **absolutamente contínua**, se $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que $\forall n \in \mathbb{N}$, $\forall (x_i, y_i)$, com $i = 1, \ldots, n$, intervalos disjuntos de [a, b], com $\sum_{i=1}^{n} |y_i - x_i| < \delta$, vale que $\sum_{i=1}^{n} |f(y_i) - f(x_i)| < \varepsilon$.

Lema 27.1. Toda função absolutamente contínua é de variação limitada.

Corolário 27.1. Toda função absolutamente contínua é diferenciável qtp.

Lema 27.2. Seja $f:[a,b]\to\mathbb{R}$ absolutamente contínua. Se f'(x)=0 qtp, então f é constante.

Exemplo 27.1. Definimos $f: \mathbb{R} \to [0,1]$ da seguinte maneira:

- 1. $f(x) = 0, \forall x \le 0, e f(x) = 1, \forall x \ge 1$.
- 2. Para $x \in K^{\complement}$, f(x) é definida indutivamente, conforme figura abaixo.
- 3. Para $x \in K$, tome (x_k) sequência com $x_k \in K^{\complement}$ e $x_k \downarrow x$. Então $f(x) = \lim_{k \to \infty} f(x_k)$.

- i) f é contínua.
- ii) f é monótona, logo de variação limitada.
- iii) $f'(x) = 0, \forall x \in K^{\complement}$. Como $\lambda(K) = 0$, então f'(x) = 0 qtp.
- iv) f não é constante, portanto, f não é absolutamente contínua.

Teorema 27.1. Uma função F é integral indefinida se, e somente se, F for absolutamente contínua.

Corolário 27.2. Toda função absolutamente contínua é a integral indefinida de sua derivada, isto é, se F é absolutamente contínua, então $\int_a^b F'(t)dt = F(b) - F(a)$.

28 Aula 28 - Extensão de Kolmogorov

Teorema 28.1 (Extensão de Carathéorory). Seja Ω conjunto qualquer, \mathcal{A} uma álgebra de Ω e $\mu: \mathcal{A} \to [0, \infty]$ medida σ -aditiva. Então existe uma única medida $\overline{\mu}: \sigma(\mathcal{A}) \to [0, \infty]$ tal que $\overline{\mu}(A) = \mu(A), \forall A \in \mathcal{A}$.

Definição 28.1. Um conjunto de \mathbb{R}^{∞} é um **cilindro** n **dimensional de base** B, com $n \in \mathbb{N}$ e $B \in \mathcal{B}(\mathbb{R}^n)$, se ele é da forma $\{x = (x_1, \dots, x_n, \dots) \in \mathbb{R}^{\infty} \mid (x_1, \dots, x_n) \in B\}$. Denotamos por $C_n(B)$.

Definição 28.2. Seja $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu_n)$, espaço de medida, para todo $n \in \mathbb{N}$. A sequência μ_n de medidas é **consistente**, se, para todo $n \in \mathbb{N}$ e para todo $B \in \mathcal{B}(\mathbb{R}^n)$, vale que $\mu_n(B) = \mu_{n+1}(B \times \mathbb{R})$.

Teorema 28.2 (Extensão de Kolmogorov). Seja (μ_n) sequência de consistente de medida de probabilidade em $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Então existe uma única medida (que é de probabilidade) em $(\mathbb{R}^\infty, \mathcal{B}(\mathbb{R}^\infty))$ tal que, $\forall n \in \mathbb{N}, \forall B \in \mathcal{B}(\mathbb{R}^n), \mu_n(B) = \mu(C_n(B))$

29 Aula 29 - Terceira prova

Foi realizada a terceira prova.