Bayesian Data Analysis, class 2a

Andrew Gelman

Chapter 2. Single-parameter models (part 1)

- ► The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

► The basics:

- Data model (thus, likelihood)
- Prior density
- Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

- ► The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

- ▶ The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

- ▶ The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

- ► The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

- ► The basics:
 - Data model (thus, likelihood)
 - Prior density
 - Posterior density
- Work with analytic conjugate forms
- Likelihood comes before the prior; why?

Figure 2.1 Unnormalized posterior density for binomial parameter θ , based on uniform prior distribution and y successes out of n trials. Curves displayed for several values of n and y.

- ► Bayes' original example
- $\triangleright \frac{y}{n}, \frac{y+1}{n+2}$, and other alternatives
- Consider some examples

 \triangleright Dependence of θ and n

- ► Bayes' original example
- \triangleright $\frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
- Rare diseases
- ightharpoonup Dependence of θ and n

- ► Bayes' original example
- \triangleright $\frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
- Opinion polls
 - Sampling of financial records
- ightharpoonup Dependence of θ and n

- ► Bayes' original example
- \triangleright $\frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
 - Opinion polls
 - Sampling of financial records
 - Rare diseases
- \blacktriangleright Dependence of θ and n

- ► Bayes' original example
- \triangleright $\frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
 - Opinion polls
 - Sampling of financial records
 - Rare diseases
- ightharpoonup Dependence of θ and n

- ► Bayes' original example
- $\triangleright \frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
 - Opinion polls
 - Sampling of financial records
 - Rare diseases
- ightharpoonup Dependence of θ and n

- ► Bayes' original example
- $\triangleright \frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
 - Opinion polls
 - Sampling of financial records
 - Rare diseases
- ▶ Dependence of θ and n

- ► Bayes' original example
- $\triangleright \frac{y}{n}$, $\frac{y+1}{n+2}$, and other alternatives
- Consider some examples
 - Opinion polls
 - Sampling of financial records
 - Rare diseases
- ▶ Dependence of θ and n

- ► The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?

```
    Bad luck
    Bad model
```

Research problem: when do models have "warning lights"?

- ► The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?
 - Bad luck
 - Bad model
- Research problem: when do models have "warning lights"?

- ► The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?
 - Bad luck
 - Bad model
- Research problem: when do models have "warning lights"?

- ► The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?
 - Bad luck
 - Bad model
- ► Research problem: when do models have "warning lights"?

- ► The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?
 - Bad luck
 - Bad model
- ▶ Research problem: when do models have "warning lights"?

- The posterior variance is on average smaller than the prior variance
- ▶ When does it happen that posterior variance is *larger* than the prior variance?
 - Bad luck
 - ▶ Bad model
- Research problem: when do models have "warning lights"?

- ► Simulation draws
- Simulations + analytics
- Posterior intervals

Figure 2.2 Hypothetical posterior density for which the 95% central interval and 95% highest posterior density region dramatically differ: (a) central posterior interval, (b) highest posterior density region.

Simulation draws

- ► Simulations + analytics
- Posterior intervals

Figure 2.2 Hypothetical posterior density for which the 95% central interval and 95% highest posterior density region dramatically differ: (a) central posterior interval, (b) highest posterior density region.

- Simulation draws
- Simulations + analytics
- Posterior intervals

Figure 2.2 Hypothetical posterior density for which the 95% central interval and 95% highest posterior density region dramatically differ: (a) central posterior interval, (b) highest posterior density region.

- Simulation draws
- Simulations + analytics
- Posterior intervals

Figure 2.2 Hypothetical posterior density for which the 95% central interval and 95% highest posterior density region dramatically differ: (a) central posterior interval, (b) highest posterior density region.

Central and shortest intervals

Shortest posterior intervals

- Central intervals
- Highest posterior density intervals
- ▶ Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation

Central intervals

- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation

- Central intervals
- Highest posterior density intervals
- ▶ Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation
 Accepting what's in the interval

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- ▶ The purpose of interval estimation
 - Accepting what's in the interval
 - Rejecting what's outside the interval

Posterior intervals: choices and goals

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation
 - Accepting what's in the interval
 - Rejecting what's outside the interval

Posterior intervals: choices and goals

- Central intervals
- Highest posterior density intervals
- Nested or non-nested?
- Asymmetry and multiple modes
- Multidimensional contours
- The purpose of interval estimation
 - Accepting what's in the interval
 - Rejecting what's outside the interval

- Empirical Spin
- Smoothing
- Boostrapping
- Computational tradeoffs

- Empirical Spin
- Smoothing
- Boostrapping
- Computational tradeoffs

- Empirical Spin
- Smoothing
- Boostrapping
- Computational tradeoffs

- Empirical Spin
- Smoothing
- Boostrapping
- Computational tradeoffs

- Empirical Spin
- Smoothing
- Boostrapping
- Computational tradeoffs

Sampling variability of the empirical shortest posterior interval

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- Binomial model:

Conjugate and non-conjugate priors

Interpretations

- Population
- State of knowledge
- Software defaults (statistician in a box)
- Binomial model:

Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- Binomial model:

Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- ▶ Binomial model:
 - Beta(α, β) prior as eqivalent to α + β data points?
 N α + β − 2 data points?
- Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- ▶ Binomial model:
 - ▶ Beta (α, β) prior as eqivalent to $\alpha + \beta$ data points
 - ▶ Or $\alpha + \beta 2$ data points?
- Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- ► Binomial model:
 - ▶ Beta (α, β) prior as eqivalent to $\alpha + \beta$ data points
 - ▶ Or $\alpha + \beta 2$ data points?
- Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- ► Binomial model:
 - ▶ Beta (α, β) prior as eqivalent to $\alpha + \beta$ data points
 - ▶ Or $\alpha + \beta 2$ data points?
- Conjugate and non-conjugate priors

- Interpretations
 - Population
 - State of knowledge
 - Software defaults (statistician in a box)
- Binomial model:
 - ▶ Beta (α, β) prior as eqivalent to $\alpha + \beta$ data points
 - ▶ Or $\alpha + \beta 2$ data points?
- Conjugate and non-conjugate priors

Probability of a girl birth

▶ In general population, Pr(girl birth) = 0.485

Probability of a girl birth

▶ In general population, Pr(girl birth) = 0.485

Variation!

Example: probability of a girl birth given placenta previa

- ▶ Data: 437 girls out of 980 births, y/n = 437/980 = 0.446
- ▶ Consider different Beta (α, β) priors

$\frac{\alpha}{\alpha+eta}$	$\alpha + \beta$	Posterior median of θ	95% posterior interval for θ
0.500	2	0.446	[0.415, 0.477]
0.485	2	0.446	[0.415, 0.477]
0.485	5	0.446	[0.415, 0.477]
0.485	10	0.446	[0.415, 0.477]
0.485	20	0.447	[0.416, 0.478]
0.485	100	0.450	[0.420, 0.479]
0.485	200	0.453	[0.424, 0.481]

Example: probability of a girl birth given placenta previa

- ▶ Data: 437 girls out of 980 births, y/n = 437/980 = 0.446
- Consider different Beta (α, β) priors

$\frac{\alpha}{\alpha + \beta}$	$\alpha + \beta$	Posterior median of θ	95% posterior interval for θ
0.500	2	0.446	[0.415, 0.477]
0.485	2	0.446	[0.415, 0.477]
0.485	5	0.446	[0.415, 0.477]
0.485	10	0.446	[0.415, 0.477]
0.485	20	0.447	[0.416, 0.478]
0.485	100	0.450	[0.420, 0.479]
0.485	200	0.453	[0.424, 0.481]

Example: probability of a girl birth given placenta previa

- ▶ Data: 437 girls out of 980 births, y/n = 437/980 = 0.446
- Consider different Beta (α, β) priors

$\frac{\alpha}{\alpha+eta}$	$\alpha + \beta$	Posterior median of θ	95% posterior interval for θ
0.500	2	0.446	[0.415, 0.477]
0.485	2	0.446	[0.415, 0.477]
0.485	5	0.446	[0.415, 0.477]
0.485	10	0.446	[0.415, 0.477]
0.485	20	0.447	[0.416, 0.478]
0.485	100	0.450	[0.420, 0.479]
0.485	200	0.453	[0.424, 0.481]

- ightharpoonup p = probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - Need $\frac{27}{6.29} = 0.485$ and $\frac{27}{(64.79)} = 0.017$ Solve to get $\alpha + \beta = 2500$ (actually, 2495.75) and $\alpha = 1212.55$ $\beta = 1297.5$
- \triangleright Combine with n = 980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - ▶ Need $\frac{\alpha}{\alpha + \beta} = 0.485$ and $\frac{\alpha + \beta \frac{\alpha + \beta}{\alpha + \beta \frac{\alpha}{\alpha} + \beta + 11}}{(\alpha + \beta \frac{\alpha}{\alpha} + \beta + 11)} = 0.01^{2}$
 - * Solve to get $\alpha+B=2500$ (actually, 2495.75) and $\alpha=1212250$
- ightharpoonup Combine with n=980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - Need $\frac{\alpha}{\alpha+\beta}=0.485$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}=0.01^2$
 - Solve to get $\alpha+\beta=2500$ (actually, 2496.75) and $\alpha=1212.5$ $\beta=1287.5$
- \triangleright Combine with n = 980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - ▶ Need $\frac{\alpha}{\alpha+\beta}=0.485$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}=0.01^2$
 - Solve to get $\alpha + \beta = 2500$ (actually, 2496.75) and $\alpha = 1212.5$, $\beta = 1287.5$
- ▶ Combine with n = 980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - ▶ Need $\frac{\alpha}{\alpha+\beta} = 0.485$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.01^2$
 - Solve to get $\alpha+\beta=2500$ (actually, 2496.75) and $\alpha=1212.5$, $\beta=1287.5$
- ▶ Combine with n = 980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - ▶ Need $\frac{\alpha}{\alpha+\beta}=0.485$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}=0.01^2$
 - Solve to get $\alpha+\beta=$ 2500 (actually, 2496.75) and $\alpha=$ 1212.5, $\beta=$ 1287.5
- ▶ Combine with n = 980 data points

- ightharpoonup p probability of a girl birth given placenta previa
- ► Suppose we believe *p* should be between 0.47 and 0.50
 - ▶ Beta (α, β) prior with mean 0.485 and sd 0.01
 - ▶ Need $\frac{\alpha}{\alpha+\beta} = 0.485$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.01^2$
 - Solve to get $\alpha + \beta = 2500$ (actually, 2496.75) and $\alpha = 1212.5$, $\beta = 1287.5$
- ▶ Combine with n = 980 data points

