Abstract Algebra Homework 1

Zachary Meyner

1. Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

Theorem 1. Let $a, b, c \in G$. Given a is the Identity element of the set G, then $a \circ (b \circ c) = (a \circ b) \circ c, \forall b, c \in G.$

Proof. Let $d \in G$ with $b \circ c = d$. Then $a \circ (b \circ c) \implies a \circ d = d$. We also have $(a \circ b) \circ c \implies b \circ c = d$. $\therefore a \circ (b \circ c) = (a \circ b) \circ c.$

(a) $d \mid d \mid a \mid b \mid c$

This Cayley Table does not form a group because it is not

(b) b a d c $c \mid c \mid d \mid a \mid b$

Closure: Every element in the Cayley Table is in the set G, so it is closed.

Identity: taking any element and multiplying it by a returns that element. So a is the indentity element.

Inverse: A diagonal is formed in the table with the identity element a, so every element is its own inverse.

Associative: Because a is the identity element it is associative with every