	If neuron 1 is connected to neuron 2 by directional weight w , then the spike from 1 elicits current $I_s(t)$ in cell 2, where I_s is given by: $I_s(t) = w \frac{t}{\tau_\alpha} e^{-t/\tau_\alpha} \Theta(t)$ where Θ is the Heaviside function. Notice that w carries units of current here. $ \text{\textbf{Constant current approximation}} $ If neuron 1 fires at a consistent rate f , such that $1/f$ is proportional to or less the τ_α , the current in cell 2 will saturate at: $ I_{const} = w \tau_\alpha f $	(2)
	This is the constant current approximation. Further, the following equation is a reasonable approximation of the current as the cell is driven: $I_{rise}(t) = w\tau_{\alpha}f\left(1-e^{-t/\tau_{\alpha}}\right)$ Therefore, a cell receiving n spikes at frequency f with the first spike occuring at $t=0$ will have the following current input: $I(t) = \begin{cases} w\tau_{\alpha}f\left(1-e^{-t/\tau_{\alpha}}\right) & t \leq \frac{n}{f} \\ w\tau_{\alpha}f\left(1-e^{-n/(f\tau_{\alpha})}\right)e^{-(t-\frac{n}{f})/\tau_{\alpha}} & t > \frac{n}{f} \end{cases}$	(3)
	Calculating number of output spikes $V(t) = \frac{1}{C} \int_0^t I(t') e^{(t-t')/\tau_m} dt'$ until $V(t) = V_{th}$, at which point the voltage is reset. For a first order solution, we take the membrane constant τ_m to be large compared to $t-t'$, allowing us to approximate $V(t)$ as: $V(t) \approx \frac{1}{C} \int_0^t I(t') dt'$	
	The ouput spikes due to input current $I(t)$, then, is: $n' = \frac{1}{CV_{th}} \int_0^{\inf} I(t') dt'$ Here, the integral is written with upper bound \inf , but it is understood the approximation only holds if $I(t)$ is non-zero for a duration comparable to τ_m or less. The number of output spikes due to n input spikes at frequency f is then: $n' = \frac{1}{CV_{th}} \int_0^{\inf} I(t') dt'$ $= \frac{w \tau_\alpha f}{CV_{th}} \left[\int_0^{n/f} \left(1 - e^{-t/\tau_\alpha} \right) dt + \int_{n/f}^{\inf} \left(1 - e^{-n/(f\tau_\alpha)} \right) e^{-(t-\frac{n}{f})/\tau_\alpha} dt \right]$	
	$=\frac{w\tau_{\alpha}f}{CV_{th}}\left[\left(\frac{n}{f}+\tau_{\alpha}(e^{-n/(f\tau_{\alpha})}-1)\right)+\tau_{\alpha}\left(1-e^{-n/(f\tau_{\alpha})}\right)\right]$ $n'=\frac{w\tau_{\alpha}n}{CV_{th}}$ This calculation, of course, is limited in that it does not calculate exactly when these spikes occur. For the time being, we will assume spikes emitted from a drive cell always occur at frequency f_e .	(4)
	Adding inhibition We now consider an inhibitory cell that receives afferents from all excitatory cells organized in a 1D chain. The average spiking activity cell receives is: $f_{e->i}=\frac{n}{t_e^*},$ where n is the number of spikes per excitatory cell and t_e^* is the average latency in the first spike time of two adjacent neurons in the chain. Invoking the constant current approximation, the average current recieved is: $I_{e->i}=w_{e->i}\tau_{\alpha}f_{e->i}$	this
	$=\frac{w_{e->i}\tau_{\alpha}n}{t_e^*}$ To calculate the average firing rate of the I cell, we begin with the equation for the voltage of a current-coupled neuron driven by a constant current: $V(t)=\frac{1}{C_i}\int_0^t e^{-(t-t')/\tau_m}I_{e->i}dt'$ $V_i^{th}=\frac{I_{e->i}}{C_i}\tau_m\left(1-e^{-t/\tau_m}\right)$	(5)
	This implies the average time to fire is: $t_i^* = -\tau_m \log \left(1 - \frac{V_i^{th}C_i}{I_{e->i}\tau_m}\right)$ This implies firing rate f_i : $f_i = \frac{-1}{\tau_m \log \left(1 - \frac{V_i^{th}C_it_e^*}{w_{e->i}\tau_\alpha n\tau_m}\right)}$	
	This may be approximated effectively as: $f_i = \begin{cases} 0 & x \leq 1 \\ \frac{1}{\tau_m log(2)} + \frac{1}{2\tau_m log^2(2)}(x-2) & x > 1 \end{cases}$ where $x = \frac{w_{e->i}\tau_\alpha n\tau_m}{V_i^{th}C_it_e^*}.$ Calculation of inter-layer first spike latency and spikes per layer	(6)
	We assume a given excitatory cell in our 1D chain has been driven a long time by spiking activity from the inhibitory cell. Extrapolating from equation (5), the steady-state voltage of an excitatory cell will be: $V_e = V_{e,0} + \frac{I_{i->e}\tau_m}{C} = V_{e,0} + \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C}$ Here, it is assumed that $w_{i->e}$ is negative so that it lowers the steady-state voltage of the cell. When an excitatory cell is driven by a spike train of n spikes at frequency f , we can calculate the time to first spike of the driven cell (relative to the start of the incoming spike train) by examining the time-to-threshold of the driven cell: $V(t^*) = V_e^{th} = V_{e,0} + \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C} + \frac{1}{C}\int_0^{t_e^*}I_{e->e}(t')dt'$ We now assume $t^* < \frac{n}{f}$, permitting us to use the first case of equation (3). We further set $V_{e,0} = 0$. Equation (7) then becomes: $V_e^{th} = \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C} + \frac{w_{e->e}\tau_\alpha f_e}{C}\int_0^{t_e^*}(1-e^{-t'/\tau_\alpha})dt'$	(7)
	$V_e^{th} = \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C} + \frac{w_{e->e}\tau_\alpha f_e}{C} \left(t_e^* - \tau_\alpha (e^{-t_e^*/\tau_\alpha} - 1)\right)$ $CV_e^{th} = w_{i->e}f_i\tau_\alpha\tau_m + w_{e->e}\tau_\alpha f_e \left(t_e^* + \tau_\alpha - \tau_\alpha e^{-t_e^*/\tau_\alpha}\right)$ $To \text{ calculate spikes per layer with inhibition present, we recall equation (4) and send } V_e^{th} \to V_e^{th} - \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C}, \text{ yielding:}$ $n' = \frac{w\tau_\alpha n}{C\left(V_e^{th} - \frac{w_{i->e}f_i\tau_\alpha\tau_m}{C}\right)}$ Recalling that $f_i = f_i(n, t^*)$, equations (6), (8), and (9) now fully determine n' and t^* for a given n . To make such a calculation tractative assume that $x > 1$ in (6) (the inhibitory cell will never fire if this is not true). Then the average current from the inhibitory cell into a excitatory cell is $\tau_m f_i(n, t_e^*) = \left[\frac{\log(2) - 1}{\log^2(2)} + \frac{1}{2\log^2(2)} \left(\frac{w_{e->i}\tau_\alpha n\tau_m}{V_i^{th}C_it_e^*}\right)\right]$	an
[190	Inserting into (8), we have: $CV_e^{th} = \frac{w_{i->e}\tau_\alpha}{\log^2(2)} \left[\log(2) - 1 + \frac{1}{2} \left(\frac{w_{e->i}\tau_\alpha n\tau_m}{V_i^{th}C_it_e^*}\right)\right] + w_{e->e}\tau_\alpha f_e\left(t_e^* + \tau_\alpha - \tau_\alpha e^{-t_e^*/\tau_\alpha}\right)\right)$ This equation may be numerically solved to determine t_e^* . Once t_e^* has been calculated, n' may be determined from equation (9). Note that these equations can be further simplified if one is only interested in the fixed point of the spiking activity, i.e. when $n=n'$. Equations for numerical calculatons	(10)
[191	<pre>def f_i(n_in, t_star, params): p = params x = (p['w_ei'] * p['tau_a'] * n_in * p['tau_m'] / (p['v_th_i'] * p['c_i'] * t_star)) if x < 1: return 0 return 1 / np.power(np.log(2), 2) * (np.log(2) - 1 + 0.5 * x) # EQUATION (8) def n_t_star_relation(t_star, n_in, params): p = params term_1 = - p['c_e'] * p['v_th_e'] term_2 = p['w_ie'] * p['tau_a'] * f_i(n_in, t_star, params) term_3 = p['w_ee'] * p['tau_a'] * p['f_e'] * (t_star + p['tau_a'] - p['tau_a'] * np.exp(- t_star / p[eq = term_1 + term_2 + term_3 return eq # EQUATION (9)</pre>	'tau
[193	<pre>def calc_n_out(n_in, t_star, params): p = params n_out = p['w_ee'] * p['tau_a'] * n_in / (p['c_e'] * p['v_th_e'] - p['w_ie'] * f_i(n_in, t_star, param return n_out def calc_analytical_preds(n_in, params): n_out = [] t_star = [] for n in n_in: f = partial(n_t_star_relation, n_in=n, params=params) sol = fsolve(f, 1e-3) t_star.append(sol[0]) n_out.append(calc_n_out(n, t_star[-1], params=params)) return np.array(n_out), np.array(t_star)</pre> Calculation of stable values of p for different values of recurrent inhibition	s) *
[21]:	<pre>%matplotlib inline from copy import deepcopy as copy import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy import stats from scipy.optimize import fsolve import scipy.io as sio import pandas as pd from tqdm import tqdm import pickle from collections import OrderedDict</pre>	
[209	<pre>import os from scipy.ndimage.interpolation import shift from functools import reduce import time from ntwk import LIFNtwkI from aux import * import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt from functools import partial import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) dt = 5e-5 tau_m_e = 4e-3 tau_m_i = 4e-3 tau_m_i = 4e-3 tau_a = 1.6e-3 v_th_e = 20e-3 v_th_i = 20e-3 c_e = 1e-6 c_i = 1e-6</pre>	
[243	<pre>f_e = 130 w_ee = 2.4e-4 w_ei = 0.5e-5 w_ie = -3e-5 # PARAMS ## NEURON AND NETWORK MODEL M = Generic(# Excitatory membrane C_M_E=1e-6, # membrane capacitance G_L_E=.1e-3, # membrane leak conductance (T_M (s) = C_M (F/cm^2) / G_L (S/cm^2))</pre>	
	E_L_E=07, # membrane leak potential (V) V_TH_E=05, # membrane spike threshold (V) T_R_E=0.5e-3, # refractory period (s) T_R_I=0, E_R_E=-0.07, # reset voltage (V) # Inhibitory membrane #C_M_I=1e-6, #G_L_E=.1e-3, #E_L_I=06, #V_TH_E=05, #T_R_I=.002, N_EXC=250, N_INH=1, # OTHER INPUTS SGM_N=0, # noise level (A*sqrt(s)) I_EXT_B=0, # additional baseline current input	
	W_E_E = w_ee, W_E_I = w_ei, #0.2e-5, #1e-5, W_I_E = w_ie, W_U_E = 0, W_U_I = 0, #1e-1, F_IN = 500, SIGMA_IN = 10e-3, F_B = 5e3, T_B = 15e-3,) tau_m = 10e-3	
[251	<pre>def speed_test(M, buffer=200): w_r = np.block([[M.W_E_E * np.diag(np.ones((M.N_EXC - 1)), k=-1), M.W_I_E * np.ones((M.N_EXC, M.N_INH))], [M.W_E_I * np.ones((M.N_INH, M.N_EXC)), np.zeros((M.N_INH, M.N_INH))],]) w_u = np.block([</pre>	
	<pre>[np.array([M.W_U_E]), np.zeros((1))], [np.zeros((M.N_EXC - 1, 2))], [np.zeros((M.N_INH, 1)), M.W_U_I * np.ones((M.N_INH, 1))],]) i_b = np.zeros((M.N_EXC + M.N_INH), dtype=int) ntwk = LIFNtwkI(</pre>	
	<pre>w_r = w_r, w_u = w_u, i_b = i_b, f_b = M.F_B, t_b = M.T_B, t_a = tau_a,) S = Generic(RNG_SEED=0, T=0.62, DT=dt) t = np.arange(0, S.T, S.DT) spks_u = np.zeros((len(t), 2), dtype=int) clamp_input_spks = {}</pre>	
	<pre>driving_pulse = np.random.poisson(lam=m.F_IN * dt, size=int(M.SIGMA_IN / dt)) for i, val in enumerate(driving_pulse): if val == 1: clamp_input_spks[i * dt] = [0] rsp = ntwk.run(dt=S.DT, clamp=Generic(v={0: M.E_L_E * np.ones((M.N_EXC + M.N_INH))}, spk=clamp_input_spks), i_ext=np.zeros(len(t)), spks_u=spks_u) raster = np.stack([rsp.spks_t, rsp.spks_c]) inh_raster = raster[:, raster[1, :] >= M.N_EXC]</pre>	
[252	der get_equaliy_spaced_colors(n, cmap='autumn'):	
[257	<pre>cmap = plt.get_cmap(cmap) colors = cmap(np.linspace(0, 1, n)) return [matplotlib.colors.rgb2hex(rgba) for rgba in colors] all_colors = get_equally_spaced_colors(50) data = [] w_ee_vals = [0.25e-3, 0.35e-3, 0.45e-3] w_ei_vals = [0.25e-5, 0.5e-5, 0.75e-5] for j, w_ee in enumerate(w_ee_vals): all p = []</pre>	
	<pre>rasters = [] for i, w_ei in enumerate(w_ei_vals): m = copy(M) m.W_E_E = w_ee m.W_E_I = w_ei all_p.append([]) rasters.append([]) for i in range(10): p_stable, parsed_raster = speed_test(m) all_p[-1].append(p_stable) rasters[-1].append(parsed_raster) print(f' p: {p_stable}')</pre>	
	<pre>data.append((w_ee, w_ei_vals, all_p, rasters)) # plt.show() p: 223.913812985619 p: 220.22053809853293 p: 220.14942265690607 p: 220.31146502113066 Inputs must not be empty. p: nan p: 223.97253305997276 p: 223.73941014444512 p: 223.71583757189472</pre>	
	p: 223.68731333477726 p: 223.72762057504045 p: 217.18638488299842 p: 225.45736235553474 p: 292.83296813973556 p: 225.26113950089498 p: 225.44846800631453 p: 225.26974317119743 p: 268.614688237105 p: 225.56417171082597 p: 225.28372494540366 p: 225.17962653149795 p: -459.98160073597455 p: -3314.447592067982	
	p: 311.2574951874021 p: 295.9917362994115 p: 908.2217973231358 p: 464.9230942841299 p: 369.10626337760044 p: -3999.9999999996 p: 383.00475335229766 p: 322.570538808093 p: 209.61794976303798 p: 209.58882499729032 p: 209.4116751254632 p: 209.66077007583067 p: 209.52597937600848 p: 209.43372600580943	
	p: 209.49498222577844 p: 209.58062656576476 p: 209.42490399161352 p: 209.3769653428042 p: 218.22465542134873 p: 218.31645726515796 p: 217.94553811686475 p: 218.0318753474777 p: 210.54392831362995 p: 218.26984900144046 p: 218.23096321738709 p: 210.70942660566865 p: 218.11454244681298	
	p: 218.13812872955725 p: 311.99230480835854 p: 290.5531651973631 p: 381.07220453154054 p: 294.2043037431165 p: 254.57598457889617 Inputs must not be empty. p: nan p: 299.3713744426275 p: 609.0029263272637 p: 219.5062430135771 p: 327.6822371579999 p: 210.55299877518618 p: 210.3826943503569	
	p: 210.3826943549569 p: 210.50410167789863 p: 210.45168452779308 p: 210.24739899725225 p: 210.25069142043364 p: 210.4967864350449 p: 210.31418107819152 p: 210.3424508295047 p: 210.42878733924664 p: 210.41330570255673 p: 210.33526885568006 p: 216.52224530155573 p: 210.62916882700483	
	p: 210.37549135624064 p: 210.34438421386562 p: 216.48500478411822 p: 210.46393073982335 p: 210.38298480709076 p: 213.84378951550858 p: 210.65079736685658 p: 213.82265553731492 p: 213.82199990507246 p: 210.73793719857903 p: 210.7610104455695 p: 211.10198325707006 p: 210.66649903510643	
[260	<pre>p: 210.7537690601518 p: 210.71837954556415 scale = 1.4 n = len(w_ee_vals) n_2 = len(w_ei_vals) fig, axs = plt.subplots(n, n_2, sharex=False, sharey=False, figsize=(10 * scale, 5 * n * scale)) colors = ['red', 'black', 'green', 'blue', 'purple', 'brown', 'pink'] fig_3, axs_3 = plt.subplots(n, n_2, sharex=False, sharey=False, figsize=(15 * scale, 6 * n * scale)) stable_spike_nums = [] propagation_speeds = []</pre>	
	<pre>for j, (w_ee, w_ei_vals, all_p_for_ei_vals, rasters_for_ei_vals) in enumerate(data): stable_spike_nums.append([]) propagation_speeds.append([]) for k, rasters in enumerate(rasters_for_ei_vals): propagation_speeds_for_condition = [] stable_spike_nums_for_condition = [] for l, raster in enumerate(rasters): if l == 0: trial_title = f'\nw_ee: {w_ee},\nw_ei: {w_ei_vals[k]}' axs[j, k].scatter(raster[0, :] * 1000, raster[1, :], c='black', s=1) axs[j, k].set_title(trial_title)</pre>	
	<pre>spk_counts = [] z_samples = [n for n in range(80)] for z in z_samples: n_spikes_for_z = np.sum(raster[1, :] == z) spk_counts.append(n_spikes_for_z) if spk_counts[-1] > 0: stable_spike_nums_for_condition.append(np.mean(spk_counts[-10:])) propagation_speeds_for_condition.append(all_p_for_ei_vals[k][1]) if l == 0: axs_3[j, k].plot(z_samples[:len(spk_counts)], spk_counts, label='spk_counts', color='blue axs_3[j, k].set_title(trial_title) axs_3[j, k].set_title(trial_title) stable_spike_nums[-1].append(np.mean(stable_spike_nums_for_condition)) propagation_speeds[-1].append(np.mean(propagation_speeds_for_condition)) for i in range(0, n_2): axs[i, k].set_xlabel(r't (ms)') axs[i, k].set_ylabel('cell idx') axs[i, k].set_ylabel('cell idx') axs[i, k].set_ylim(-0.5, 150) axs[i, k].set_xlim(0, 600)</pre>	'')
	w_ee: 0.00025, w_ei: 2.5e-06 250 200 200 200 200 200 200 2	
	0 100 200 300 400 500 600 0 100 200 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 400 500 600 100 200 400 400 500 600 100 400 400 400 400 400 400 400 400 4	0
	150 - 150 -	in.
	t (ms) t (ms) w_ee: 0.00045, w_ee: 0.00045, w_ei: 2.5e-06 w_ei: 5e-06 w_ei: 7.5e-06 250 250 250 250 250 250 250 250 250 250	
	0 100 200 300 400 500 600 0 100 200 300 400 500 600 t (ms) w_ee: 0.00025,	0
	100	
	100	0 k_count
	100 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 400 400 400 400 400 400 400 4	k_count
	100 100 200 300 at 0 500 600 0 120 20 300 at 0 500 60 0 120 200 300 at 0 500 60 0 120 20 20 300 at 0 500 60 0 120 20 20 20 20 20 20 20 20 20 20 20 20 2	k_count
[262	20	k_count
[262	### 000055 ### 00	k_count
[262	### 100 10	k_count
	20	k_count k_count
[263	20	k_count k_count
	def size people of which we will also so the second size of the second	k_count k_count
	def size people of which we will also so the second size of the second	k_coun

0.00025 2.5e-06 -3e-05 0.00025 5e-06 -3e-05 0.00025 7.5e-06 -3e-05 0.00035 2.5e-06 -3e-05 0.00035 5e-06 -3e-05 0.00035 7.5e-06 -3e-05 0.00045 2.5e-06 -3e-05 0.00045 5e-06 -3e-05 0.00045 7.5e-06 -3e-05 w_r: -7.500000000000001e-11, w_ee: 0.00025 w_r: -1.5000000000000002e-10, w_ee: 0.00025 w_r: -2.25e-10, w_ee: 0.00025 w_r: -7.500000000000001e-11, w_ee: 0.00025 w_r: -1.5000000000000002e-10, w_ee: 0.00025 w_r: -2.25e-10, w_ee: 0.00025 Propagation speed N spikes out N spikes in N spikes in w_r: -7.500000000000001e-11, w_ee: 0.00035 w_r: -1.5000000000000002e-10, w_ee: 0.00035 w_r: -2.25e-10, w_ee: 0.00035 w_r: -7.5000000000000001e-11, w_ee: 0.00035 - w_r: -1.5000000000000002e-10, w_ee: 0.00035 - w_r: -2.25e-10, w_ee: 0.00035 Propagation speed N spikes out N spikes in N spikes in ò w_r: -7.500000000000001e-11, w_ee: 0.00045 w_r: -1.5000000000000002e-10, w_ee: 0.00045 w_r: -2.25e-10, w_ee: 0.00045 w_r: -7.500000000000001e-11, w_ee: 0.00045 w_r: -1.5000000000000002e-10, w_ee: 0.00045 w_r: -2.25e-10, w_ee: 0.00045 Propagation speed N spikes out 0 + N spikes in N spikes in In []: In []: