WHAT IS CLAIMED IS:

1	1. An (R)-2,3-butanediol dehydrogenase, wherein
2	(a) the dehydrogenase produces (R)-acetoin by acting on (2R,3R)-2,3-
3	butanediol using nicotinamide adenine dinucleotide as a coenzyme and produces
4	(2R,3R)-2,3-butanediol by reducing 2,3-butanedione using reduced form of
5	nicotinamide adenine dinucleotide as a coenzyme;
	(b) the dehydrogenase uses nicotinamide adenine dinucleotide as a coenzyme-
6 7	in oxidation reaction and uses reduced form of nicotinamide adenine dinucleotide as a
	coenzyme in reduction reaction and preferentially oxidizes a hydroxyl group of 2,3-
8	butanediol in (R) configuration; and
9	(c) the dehydrogenase has 100 U or higher of (R)-2,3-butanediol
10	dehydrogenase activity per 1 mg of the dehydrogenase when purified.
11	
្ឋ ភ្នំ 1	2. The (R)-2,3-butanediol dehydrogenase of claim 1, wherein the dehydrogenase
2	has (a) an optimal pH for glycerol oxidation reaction of 10; and (b) a molecular weight of
3	36,000 when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
1. 1. 4	76,000 when determined by gel filtration.
: ::	The control of the control of along 1 wherein the dehydrogenase
1	3. The (R)-2,3-butanediol dehydrogenase of claim 1, wherein the dehydrogenase
. . 2	is produced by a microorganism belonging to the genus Pichia.
	4. The (R)-2,3-butanediol dehydrogenase of claim 3, wherein the microorganism
^{pols} 2	is Pichia angusta.
1	5. An isolated polynucleotide selected from the group consisting of:
2	(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1;
3	(b) a polynucleotide encoding a polypeptide comprising the amino acid sequence
4	of SEQ ID NO:2;
5	(c) a polynucleotide encoding a polypeptide that comprises an amino acid
6	sequence comprising the amino acid sequence of SEQ ID NO: 2 in which one or more amino
7	acids are substituted, deleted, inserted, and/or added and that is functionally equivalent to a
8	polypeptide comprising the amino acid sequence of SEQ ID NO:2; and

ļ,

#10 PM

ŀ≓

En the time

2

3

1

16. The method of claim 14, wherein the microorganism is *Pichia angusta*.

comprising: (a) culturing a microorganism that belongs to the genus *Pichia* and that produces

the polypeptide of claim 8 and (b) isolating the dehydrogenase from the microorganism.

	1	17. A method for producing an alcohol, the method comprising the steps of:
	2	reacting the (R)-2,3-butanediol dehydrogenase of claim 1 or a processed product
	3	thereof to a ketone in the presence of reduced form of nicotinamide adenine dinucleotide to
	4	generate an alcohol, and
	5	recovering the generated alcohol.
	1	18. A method for producing an alcohol, the method comprising the steps of:
	2	reacting the polypeptide of claim 8 or a processed product thereof to a ketone in the
	3	presence of reduced form of nicotinamide adenine dinucleotide to generate an alcohol, and
	4	recovering the generated alcohol.
	1	19. A method for producing an alcohol, the method comprising the steps of:
r#s	2	providing a microorganism producing the (R)-2,3-butanediol dehydrogenase of
	3	claim 1 or a processed product thereof;
	4	reacting the (R)-2,3-butanediol dehydrogenase produced from the microorganism to a
and that then that the	5	ketone in the presence of reduced form of nicotinamide adenine dinucleotide to generate an
	6	alcohol, and
# H 45.	7	recovering the generated alcohol.
. E	1 2	20. The method of claim 19, wherein the microorganism is the transformant of
i (f.m)((f	2	claim 11.
-H	1	21. The method of claim 17, wherein the ketone is 2,3-butanedione and the
	2	alcohol is (2R,3R)-2,3-butanediol.
	1	22. The method of claim 18, wherein the ketone is 2,3-butanedione and the
	2	alcohol is (2R,3R)-2,3-butanediol.
	-	· ·
	1	23. The method of claim 19, wherein the ketone is 2,3-butanedione and the
	2	alcohol is (2R,3R)-2,3-butanediol.