

博士学位论文

半空间弹性波反散射问题

作者姓名:_		
指导教师:_	陈志明 研究员	
	中国科学院 数学与系统科学研究员	
学位类别 : _	理学博士	
学科专业:_	计算数学	
培养单位:	中国科学院 数学与系统科学研究员	

2019年6月

LATEX Thesis Template

 $\underline{\mathbf{of}}$

Academy of Mathematics and Systems Science Chinese Academy of Sciences

A thesis submitted to the
University of Chinese Academy of Sciences
in partial fulfillment of the requirement
for the degree of
Doctor of Philosophy
in Computational Mathematics

By

Zhou Shiqi

Supervisor: Professor Chen Zhiming

Academy of Mathematics and Systems Science
Chinese Academy of Sciences

June, 2019

中国科学院大学 学位论文原创性声明

本人郑重声明: 所呈交的学位论文是本人在导师的指导下独立进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明或致谢。本人完全意识到本声明的法律结果由本人承担。

作者签名:

日期:

中国科学院大学 学位论文授权使用声明

本人完全了解并同意遵守中国科学院大学有关保存和使用学位论文的规定,即中国科学院大学有权保留送交学位论文的副本,允许该论文被查阅,可以按照学术研究公开原则和保护知识产权的原则公布该论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存、汇编本学位论文。

涉密及延迟公开的学位论文在解密或延迟期后适用本声明。

作者签名: 导师签名:

日期: 日期:

摘要

本文是中国科学院大学学位论文模板 ucasthesis 的使用说明文档。主要内容为介绍 LATEX 文档类 ucasthesis 的用法,以及如何使用 LATEX 快速高效地撰写学位论文。

关键词: 中国科学院大学,学位论文, $ext{LME}X$ 模板

Abstract

This paper is a help documentation for the LaTeX class ucasthesis, which is a thesis template for the University of Chinese Academy of Sciences. The main content is about how to use the ucasthesis, as well as how to write thesis efficiently by using LaTeX.

Keywords: University of Chinese Academy of Sciences (UCAS), Thesis, LATEX Template

目 录

第1章 引言	1
1.1 研究背景	1
1.2 弹性波半空间散射与逆散射问题	1
1.3 逆时偏移法简介	1
1.4 本文的研究成果 · · · · · · · · · · · · · · · · · · ·	1
1.5 系统要求	1
1.6 问题反馈	1
1.7 模板下载	2
第2章 基础知识	3
第3章 半空间中的弹性反散射问题的直接成像方法 ······	5
3.1 Green 函数 ·····	5
3.2 正散射问题的适定性 ·····	6
第 4 章 逆时偏移算法 · · · · · · · · · · · · · · · · · · ·	7
4.1 数值算例	7
附录 A 中国科学院大学学位论文撰写要求······	9
A.1 论文无附录者无需附录部分 ······	9
A.2 测试公式编号 ·····	9
A.3 测试生僻字 ····································	9
参考文献 · · · · · · · · · · · · · · · · · · ·	11
作者简历及攻读学位期间发表的学术论文与研究成果 · · · · · · ·	13
致谢 · · · · · · · · · · · · · · · · · · ·	15

图形列表

表格列表

符号列表

字符

Symbol	Description	Unit
R	the gas constant	$m^2\cdot s^{-2}\cdot K^{-1}$
C_v	specific heat capacity at constant volume	$m^2\cdot s^{-2}\cdot K^{-1}$
C_p	specific heat capacity at constant pressure	$m^2\cdot s^{-2}\cdot K^{-1}$
E	specific total energy	$m^2\cdot s^{-2}$
e	specific internal energy	$m^2\cdot s^{-2}$
h_T	specific total enthalpy	$m^2\cdot s^{-2}$
h	specific enthalpy	$m^2\cdot s^{-2}$
k	thermal conductivity	$kg\cdot m\cdot s^{-3}\cdot K^{-1}$
S_{ij}	deviatoric stress tensor	$kg\cdot m^{-1}\cdot s^{-2}$
$ au_{ij}$	viscous stress tensor	$kg\cdot m^{-1}\cdot s^{-2}$
δ_{ij}	Kronecker tensor	1
I_{ij}	identity tensor	1

算子

Symbol	Description
Δ	difference
∇	gradient operator
δ^{\pm}	upwind-biased interpolation scheme

缩写

CFD	Computational Fluid Dynamics
CFL	Courant-Friedrichs-Lewy
EOS	Equation of State
JWL	Jones-Wilkins-Lee
WENO	Weighted Essentially Non-oscillatory
ZND	Zel'dovich-von Neumann-Doering

第1章 引言

- 1.1 研究背景
- 1.2 弹性波半空间散射与逆散射问题
- 1.3 逆时偏移法简介
- 1.4 本文的研究成果
- 1.5 系统要求

ucasthesis 宏包可以在目前主流的 LATEX 编译系统中使用,例如 CTEX 套装(请勿混淆 CTEX 套装与 ctex 宏包。CTEX 套装是集成了许多 LATEX 组件的 LATEX 编译系统,因已停止维护,**不再建议使用**。ctex 宏包如同 ucasthesis,是 LATEX 命令集,其维护状态活跃,并被主流的 LATEX 编译系统默认集成,是几乎所有 LATEX 中文文档的核心架构。)、MiKTEX(维护较不稳定,**不太推荐使用**)、TEXLive。推荐的 LATEX 编译系统 和 LATEX 文本编辑器 为

操作系统	IAT _E X 编译系统	ETEX 文本编辑器
Linux	TEXLive Full	Texmaker, Vim (已集成于 Linux 系统)
MacOS	MacTEX Full	Texmaker, Texshop (已集成于 MacT _E X Full)
Windows	TEXLive Full	Texmaker

LATEX 编译系统,如 TeXLive (MacTeX 为针对 MacOS 的 TeXLive),用于提供编译环境,LATEX 文本编辑器 (如 Texmaker) 用于编辑 TeX 源文件。请从各软件官网下载安装程序,勿使用不明程序源。LATeX 编译系统和 LATeX 编辑器分别安装成功后,即完成了 LATeX 的系统配置,无需其他手动干预和配置。若系统原带有旧版的 LATeX 编译系统并想安装新版,请先卸载干净旧版再安装新版。

1.6 问题反馈

关于 LATEX 的知识性问题,请查阅 ucasthesis 和 LATEX 知识小站 和 LATEX Wikibook。

关于模板编译和样式设计的问题,请**先仔细阅读此说明文档,特别是"常见问题"(章节??)**。若问题仍无法得到解决,请**先将问题理解清楚并描述清楚,再将问题反馈**至 Github/ucasthesis/issues。

欢迎大家有效地反馈模板不足之处,一起不断改进模板。希望大家向同事积极推广 LATeX,一起更高效地做科研。

1.7 模板下载

Github/ucasthesis: https://github.com/mohuangrui/ucasthesis

第2章 基础知识

第3章 半空间中的弹性反散射问题的直接成像方法

3.1 Green 函数

设源点 $y \in \mathbb{R}^2_+$, 引入半空间弹性波 Neumann 零边界格林函数 $\mathbb{N}(x,y)$,对任意向量 $q \in \mathbb{R}^2$,其满足如下方程:

$$\Delta_e[\mathbb{N}(x;y)q] + \omega^2[\mathbb{N}(x,y)q] = -\delta_y(x)q \text{ in } \mathbb{R}^2_+, \tag{3.1}$$

$$\sigma(\mathbb{N}(x,y)q)e_2 = 0 \text{ on } \Gamma_0, \tag{3.2}$$

其中 (3.2) 代表该 green 函数满足半空间自由边界条件, $\delta_y(x)$ 代表位于点 y 的 Dirac 源。由于半空间的特性,我们将利用对 x_1 变量作傅里叶变换的方式来推导 Green 函数,令

$$\hat{\mathbb{N}}(\xi, x_2; y_2) = \int_{\mathbb{R}} \mathbb{N}(x_1, x_2; y) e^{-\mathbf{i}(x_1 - y_1)\xi} dx_1, \quad \forall \xi \in \mathbb{C},$$
(3.3)

记 $\mathbb{G}(x,y)$ 为弹性波方程的基本解,且对其 x_1 变量做傅里叶变换后有 $\hat{\mathbb{G}}(\xi,x_2;y_2) = \hat{\mathbb{G}}_s(\xi,x_2;y_2) + \hat{\mathbb{G}}_p(\xi,x_2;y_2)$ 及

$$\hat{\mathbb{G}}_{s}(\xi, x_{2}; y_{2}) = \frac{\mathbf{i}}{2\omega^{2}} \begin{pmatrix} \mu_{s} & -\xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} \\ -\xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} & \frac{\xi^{2}}{\mu_{s}} \end{pmatrix} e^{\mathbf{i}\mu_{s}|x_{2} - y_{2}|}, \tag{3.4}$$

$$\hat{\mathbb{G}}_{p}(\xi, x_{2}; y_{2}) = \frac{\mathbf{i}}{2\omega^{2}} \begin{pmatrix} \frac{\xi^{2}}{\mu_{p}} & \xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} \\ \xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} & \mu_{p} \end{pmatrix} e^{\mathbf{i}\mu_{p}|x_{2} - y_{2}|}.$$
(3.5)

这里 $\mu_{\alpha} = (k_{\alpha}^2 - \xi^2)^{1/2}$ 且有 $\alpha = s, p, k_p = \omega/\sqrt{\lambda + 2\mu}, k_s = \omega/\sqrt{\mu}$ 为 p 波和 s 波的波数。为了利用基本解 $\mathbb{G}(x, y)$ 的特性,我们令:

$$\mathbb{N}_c(x, y) = \mathbb{N}(x, y) - (\mathbb{G}(x, y) - \mathbb{G}(x, y'))$$

其中 $y' = (y_1, -y_2)$ 为 y 关于 x_1 轴的镜像点。于是由式(3.1-3.2),得 $\mathbb{N}_c(x, y)$ 满足如下方程:

$$\Delta_e[\mathbb{N}_c(x;y)q] + \omega^2[\mathbb{N}_c(x,y)q] = 0 \text{ in } \mathbb{R}_+^2, \tag{3.6}$$

$$\sigma(\mathbb{N}_c(x,y)q)e_2 = -\sigma(\mathbb{G}(x,y) - \mathbb{G}(x,y')) \text{ on } \Gamma_0,$$
(3.7)

注 3.1.1 在全篇论文中,我们假设对于任意的 $z \in \mathbb{C} \setminus \{0\}$, $z^{1/2}$ 是多值函数 \sqrt{z} 的如下解析分支: $\operatorname{Im}(z^{1/2}) \geq 0$,这对应于在复平面取右半实轴为割支线。则对于 $z = z_1 + \mathbf{i} z_2, z_1, z_2 \in \mathbb{R}$,

$$z^{1/2} = \operatorname{sgn}(z_2) \sqrt{\frac{|z| + z_1}{2}} + \mathbf{i} \sqrt{\frac{|z| - z_1}{2}}, \quad \forall z \in \mathbb{C} \backslash \mathbb{R}_+.$$
 (3.8)

当 z 位于右半实轴的上沿或是下沿时,取 $z^{1/2}$ 为 $\varepsilon \to 0^+$ 时 $(z+\mathbf{i}\varepsilon)^{1/2}$ 或是 $(z-\mathbf{i}\varepsilon)^{1/2}$ 的极限即可。

通过对式(3.6-3.7)两边作傅里叶变换,我们得到:

3.2 正散射问题的适定性

第4章 逆时偏移算法

4.1 数值算例

附录 A 中国科学院大学学位论文撰写要求

学位论文是研究生科研工作成果的集中体现,是评判学位申请者学术水平、授予其学位的主要依据,是科研领域重要的文献资料。根据《科学技术报告、学位论文和学术论文的编写格式》(GB/T 7713-1987)、《学位论文编写规则》(GB/T 7713.1-2006)和《文后参考文献著录规则》(GB7714—87)等国家有关标准,结合中国科学院大学(以下简称"国科大")的实际情况,特制订本规定。

A.1 论文无附录者无需附录部分

A.2 测试公式编号

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \text{ times font test} \\ \frac{\partial (\rho \mathbf{V})}{\partial t} + \nabla \cdot (\rho \mathbf{V} \mathbf{V}) = \nabla \cdot \boldsymbol{\sigma} \text{ times font test} \\ \frac{\partial (\rho E)}{\partial t} + \nabla \cdot (\rho E \mathbf{V}) = \nabla \cdot (k \nabla T) + \nabla \cdot (\boldsymbol{\sigma} \cdot \mathbf{V}) \end{cases}$$

$$\frac{\partial}{\partial t} \int u \, d\Omega + \int \mathbf{n} \cdot (u \mathbf{V}) \, dS = \dot{\phi}$$
(A.2)

A.3 测试生僻字

霜蟾盥嶶曜灵霜颸妙鬘虚霩淩澌菀枯菡萏泬寥窅冥毰毸擭落霅霅便嬛岧峣 瀺灂姽婳愔嫕飒纚棽俪緸冤莩甲摛藻卮言倥侗椒觞期颐夜阑彬蔚倥偬澄廓簪缨 陟遐迤逦缥缃鹣鲽憯懔闺闼璀错媕婀噌吰澒洞阛闠覼缕玓瓑逡巡諓諓琭琭瀌瀌 踽踽叆叇氤氲瓠犀流眄蹀躨赟嬛茕頔璎珞螓首蘅皋惏悷缱绻昶皴皱颟顸愀然菡 萏卑陬纯懿犇麤掱暒墌墍墎墏墐墒墒墓墔墕墖墘墖墚墛坠墝竲墠墡墢墣墤墥墦 墧墨墩墪樽墬墭堕墯墰墱墲坟墴墵垯墷墸墹墺墙墼墽垦墿壀壁壂壃壄壅壆坛壈 壉壞垱壌壍埙壏壐壑壒压壔壕壖壗垒圹垆壛壜壝垄壠壡坜壣壤壥壦壧壨坝塆圭 嫶嫷嫸嫹燗娴嫼嫽嫾婳妫嬁嬂嬃嬄嬅嬆嬇娆嬉嬊娇嬍嬎嬏嬐嬑嬒嬓嬔嬕嬖嬗嬘 嫱嬚嬛嬜嬞嬟嬠媛嬢嬣嬥嬦嬧嬨嬩嫔嬫嬬奶嬬嬮嬯婴嬱嬲嬳嬴嬵嬶嬤婶嬹嬺嬻 嬼嬽嬾嬿孀孁孂斏孄嬂孆孇孆孈孉孊娈孋孊孍孎孏嫫婿媚嵭嵮嵯嵰嵱嵲嵳嵴嵵 嵶嵷嵸嵹嵺嵻嵼嵽嵾嵿嶀嵝嶂嶃崭嶅嶆岖嶈嶉嶊嵨嶌嶍嶎嶏嶐嶑嶒嶓嵚嶕嶖嶘 嶙嶚蟟嶜嶝嶞嶟蚸嶡峣嶣嶤嶥嶦峄峃嶩嶪嶫嶬嶭崄嶯嶰嶱嶲嶳岙嶵嶶嶷嶫嶹岭

嶻屿岳帋巀巁雟巃巄巅巆巇巈巉巊岿巌巍巎巏巐巑峦巓巅巕岩巗巘巙巚帠帡帢 帣帤帨帩帪帬帯帰帱帲帴帵帷帹帺帻帼帽帾帿幁幂帏幄幅幆幇幈幉幊幋幌幍幎 核幐幑幒幓幖幙幚幛幜幝幞帜幠幡幢幤幥幦幧幨幩幪幭幮幯幰幱庍庎庑庖庘庛 廖庠庡室咏庤庥庨庩庪庞庮庯庰庱庲庳庴庵庹庺庻庼庽庿廀厕廃厩廅廆廇廋廌 廍庼廏廐廑瘷廔廕廖廗廰廙廛廜廞庑廤廥廦廧廨癪廮廯廰痈廲廵廸廹廻廼廽廿 弁弅弆弇弉弖弙弟弜弝弞弡弢弣弤弨弩弪弫砈弭弮弰弲弪弴弶弸弻弻弽弿彖彗 彘彚彛彜彝彞彟彴彵彶彷彸役彺彻彽彾佛徂徃徆徇徉后徍徎徏径徒従徔徕徖徙 徚徛徜徝从徟徕御徢徣健徥徦徧徨复循徫旁徭微徯徰徱徲徳徵徵徶德徸彻徺忁 忂惔愔忇忈忉忔忕忖忚忛応忝忞忟忪挣挦挧挨挩捓挫挬挭挮挰掇授掉掊掋掍掎 掐掑排掓掔掕挜掚挂掜掝掞掟掠采探掣掤掦措掫掬掭掮掯掰掱掲掳掴掵掶掸掹 掺掻掼掽掾掿拣揁揂揃揅揄揆揇揈揉揊揋揌揍揎揑揓揔揕揖揗揘揙揤揥揦揧揨 揫捂揰揱揲揳援揵揶揷揸揻揼揾揿搀搁搂搃搄搅搇搈搉搊搋搌搎搏搐搑搒摓摔 摕摖摗摙摚摛掼摝摞摠摡斫斩斮斱斵斳斴斵斶斸旪旫旮旯晒晓晔晕晖晗晘晙睍 晜晞晟晠晡晰晣晤晥晦晧晪晫啐晭晰睒晲晳晴晵晷晸晹晻晼晽晾晿暀暁暂暃睻 暅暆暇晕晖暊睯暌暍暎暏暐暑暒暓暔暕暖暗旸暙暚暛暜暝暞暟暠暡暣暤暥暦暧 暨暩瞞暬暭暮暯暰呢暲暳曓暵暶暷暸暹暺暻暼瞵暾暿晴曁曂曃晔曅曈曊曋曌曍 曎曏曐曑曒曓曔曕曗曘曙曚曛曜曝曞曟旷曡曢曣曤曥曦曧昽曓曪曫晒曭曮矚椗 梦椙椚椛検槼椞椟椠椡椢椣椤椥椦椧椨椩椪椫椬椭椮椯椰椱椲椳椴椵椶楲椸棋 椺椻椼椽椾椿楀楁楂楃楅楆楇楈楉杨楋楌楍榴榵榶榷榸榹榺榻榼榽榾桤稾熇槂 盘槄槅槆槇槈槉槊构槌柃艖槏槐槑槒朾槔槕橐槗滙滛滜滝滞艵滠滢滣湙滧滪滫 沪滭滮滰滱渗滳滵滶滹滺浐滼滽漀漃漄漅漈瀌溇漋漌漍漎漐漑澙熹漗漘漙沤漛 漜漝漞漟漡漤漥斄漧漨溣渍漭漮漯漰摗漳漴溆潐漷漹漺漻漼漽漾浆潀颍潂潃潄 潅潆潇潈潉潊潋潌潍潎潏潐潒潓洁潕潖潗潘沩潚潜潝潞潟潠潡潢潣润潥潦潧潨 潩潪潫潬潭浔溃潱潲潳潴潵潶滗潸潹潺潻潼潽潾涠澁澄澃澅浇涝澈澉澊**澋澌澍** 澎澏湃澪澑澒澓澔澕澖涧澘澙澚澛澜澝澞澟渑澢斢泽浍澯澰淀澲澳澴澵澶澷澸 潇潆橢潰澯瀤瀥潴泷濑瀩瀪瀫瀕瀭瀮瀯弥瀱泑瀳瀴瀵瀶瀷瀸瀹瀺瀻瀼獆澜瀿灀 僩瀺灂沣滠灅潚灇灈<u>灉</u>灊灋灌灍灎灏瀠洒濳灓漓灖灗滩灙灚灛灜灏灞灟灠灡灢 湾滦灥灦灔灨灪燝燞燠爅澩燣燤燥灿煫燨燩燪燫孿燯煖燱燲燳烩燵燵燸燹燺薰 燽寿燿爀爁爂爃爄爅蓺爈爉熝爋牗烁爎爏熣爒爓燨爕爖爗爘爙爚烂爜爝爞爟爠 爡靡爣爤爥爦爧爨爩猽猾獀犸獂**獆獇獈獉獊獔**獌獍獏徸獑嫯獓獔獕獖獗獘獙獚 獛獜獝獞獟獠獡獢獣獤獥獦獧獩狯猃獬獭狝獯狞獱獳獴獶獹獽獾獿猡玁玂矡。

参考文献

作者简历及攻读学位期间发表的学术论文与研究成果

本科生无需此部分。

作者简历

casthesis 作者

吴凌云,福建省屏南县人,中国科学院数学与系统科学研究院博士研究生。

ucasthesis 作者

莫晃锐,湖南省湘潭县人,中国科学院力学研究所硕士研究生。

已发表 (或正式接受) 的学术论文:

[1] ucasthesis: A LaTeX Thesis Template for the University of Chinese Academy of Sciences, 2014.

申请或已获得的专利:

(无专利时此项不必列出)

参加的研究项目及获奖情况:

可以随意添加新的条目或是结构。

致 谢

感激 casthesis 作者吴凌云学长,gbt7714-bibtex-style 开发者 zepinglee,和 ctex 众多开发者们。若没有他们的辛勤付出和非凡工作,LATEX 菜鸟的我是无法完成 此国科大学位论文 LATEX 模板 ucasthesis 的。在 LATEX 中的一点一滴的成长源于 开源社区的众多优秀资料和教程,在此对所有 LATEX 社区的贡献者表示感谢!

ucasthesis 国科大学位论文 LATEX 模板的最终成型离不开以霍明虹老师和丁云云老师为代表的国科大学位办公室老师们制定的官方指导文件和众多 ucasthesis 用户的热心测试和耐心反馈,在此对他们的认真付出表示感谢。特别对国科大的赵永明同学的众多有效反馈意见和建议表示感谢,对国科大本科部的陆晴老师和本科部学位办的丁云云老师的细致审核和建议表示感谢。谢谢大家的共同努力和支持,让 ucasthesis 为国科大学子使用 LATEX 撰写学位论文提供便利和高效这一目标成为可能。