On supersymmetric AdS₄ orientifold vacua

Joan Quirant

Based on: 2003.13578 with F.Marchesano, E. Palti and A. Tomasiello

Contents

- o) A bit of context: motivating the problem
- 1) SUSY AdS_4 IIA flux vacua
 - **1.1)** General description
 - 1.2) "DGKT vacuum"
- 2) Large volume approximation
- 3) Solving the equations
- 3) Conclusions

• String theory supports many AdS vacua, solutions of the form $AdS_d imes M_p$

• String theory supports many AdS vacua, solutions of the form $AdS_d \times M_p$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_p}$

Mathematically:

Phenomenologically: (**)

String theory supports many AdS vacua, solutions of the form $AdS_d \times M_n$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_n}$

Mathematically:

Phenomenologically: (:)

• Strong AdS distance conjecture. Infinite tower of states with mass m:

 $m \sim \Lambda^{1/2}$ SUSY vacua Lüst, Palti, Vafa '19 Usually KK scale

String theory supports many AdS vacua, solutions of the form $AdS_d \times M_p$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_n}$

Mathematically:

Phenomenologically: (:*)

• Strong AdS distance conjecture. Infinite tower of states with mass m:

SUSY vacua

String theory supports many AdS vacua, solutions of the form $AdS_d \times M_p$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_n}$

Mathematically:

Phenomenologically: (:)

DeWolfe, Giryavets, Kachru, Taylor '05; Camara, Font, Ibáñez '05 ...

"DGKT vacua", IIA on CY orientifold with fluxes:

$$R_{KK} \sim R_{AdS}^{7/9}$$

Counterexample?

SAdSDC $R_{KK} \sim R_{AdS}$

String theory supports many AdS vacua, solutions of the form $AdS_d \times M_n$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_n}$

Mathematically:

Phenomenologically: (:)

DeWolfe, Giryavets, Kachru, Taylor '05; Camara, Font, Ibáñez '05 ...

"DGKT vacua", IIA on CY **orientifold** with fluxes:

SAdSDC

But... These vacua are not solving the 10D equations of motion. Difficulties arise because of the O-planes.

String theory supports many AdS vacua, solutions of the form $AdS_d \times M_p$

Duff, Nilsson, Pope '86; Douglas, Kachru '07; Tsimpis '12;...

• For almost all of them: $R_{AdS} \sim R_{M_n}$

Mathematically:

Phenomenologically: (:)

DeWolfe, Giryavets, Kachru, Taylor '05; Camara, Font, Ibáñez '05 ...

"DGKT vacua", IIA on CY **orientifold** with fluxes:

Counterexample?

SAdSDC $R_{KK} \sim R_{AdS}$

$$R_{KK} \sim R_{AdS}^{7/9}$$

Recent related work: Junghans '20; Buratti, Calderón, Mininno, Uranga '20

We find an approximate solution to the uplift problem. Approximate: at first order in an expansion parameter.

• Two complementary approaches:

- Two complementary approaches:
- 4D description:
 - **1)** Compactify IIA in an orientifold of $X_4 \times X_6$ being X_6 a CY manifold. Give a vev to the RR pforms the NS 3-form.
 - 2) Minimize (SUSY preserving) the potential, impose Bianchi identities.

- Two complementary approaches:
- 4D description:
 - **1)** Compactify IIA in an orientifold of $X_4 \times X_6$ being X_6 a CY manifold. Give a vev to the RR pforms the NS 3-form.
 - 2) Minimize (SUSY preserving) the potential, impose Bianchi identities.
- 10D description:
 - 1) We want a solution to the e.o.m with a metric: $ds^2 = e^{2A} ds_{AdS_A}^2 + ds^6$
 - **2)** Preserved SUSY in 4d:

Graña , Minasian , Petrini , Tomasiello '04,...

- **2.1)** Restricts X_6 to be a manifold with either SU(3) or $SU(3) \times SU(3)$ structure
- **2.1)** E.O.M = vanishing SUSY variations + Bianchi identities

- Two complementary approaches:
- 4D description:
 - **1)** Compactify IIA in an orientifold of $X_4 \times X_6$ being X_6 a CY manifold. Give a vev to the RR pforms the NS 3-form.
 - 2) Minimize (SUSY preserving) the potential, impose Bianchi identities.
- 10D description:
 - **1)** We want a solution to the e.o.m with a metric: $ds^2 = e^{2A} ds_{AdS_4}^2 + ds^6$
 - **2)** Preserved SUSY in 4d:

Graña , Minasian , Petrini , Tomasiello '04,...

- **2.1)** Restricts X_6 to be a manifold with either SU(3) or $SU(3) \times SU(3)$ structure
- **2.1)** E.O.M = vanishing SUSY variations + Bianchi identities

SUSY *AdS*₄ IIA flux vacua

• A key characteristic of this family of vacua is

SU(3) or $SU(3) \times SU(3)$

DGKT vacua?

$$\langle G_6 \rangle \propto \int_{X_6} G_6 = 0$$
 $(\rho_0 = 0 \text{ in the language of Herráez, Ibáñez, Marchesano, Zoccarato, '18)}$

• A key characteristic of this family of vacua is

SU(3) or $SU(3) \times SU(3)$

DGKT vacua?

$$\langle G_6 \rangle \propto \int_{X_6} G_6 = 0$$

 $(
ho_0=0$ in the language of Herráez, Ibáñez, Marchesano, Zoccarato, '18)

• This is a 4d property... But it restricts the possible 1od uplift:

Not compatible with this property

Inside this branch, this property puts also some technical constraints

• Recap of the relevant ideas introduced in this section:

Also:

- Recap of the relevant ideas introduced in this section:
 - Preserved SUSY in 4D constrains the possible internal 6D manifolds
 - \bullet DGKT vacua have vanishing $G_6 \rightarrow$ selects one of the allowed internal geometries

- Recap of the relevant ideas introduced in this section:
 - Preserved SUSY in 4D constrains the possible internal 6D manifolds
 - \bullet DGKT vacua have vanishing $G_6 \rightarrow$ selects one of the allowed internal geometries
 - ❖ 10D e.o.m = vanishing SUSY variations + Bianchi identities
- Also:

- Recap of the relevant ideas introduced in this section:
 - Preserved SUSY in 4D constrains the possible internal 6D manifolds
 - \bullet DGKT vacua have vanishing $G_6 \rightarrow$ selects one of the allowed internal geometries
 - ❖ 10D e.o.m = <u>vanishing SUSY variations</u> + Bianchi identities
- Also:
 - vanishing SUSY variations formally solved in Saracco, Tomasiello '12

- Recap of the relevant ideas introduced in this section:
 - Preserved SUSY in 4D constrains the possible internal 6D manifolds
 - \bullet DGKT vacua have vanishing $G_6 \rightarrow$ selects one of the allowed internal geometries
 - 10D e.o.m = vanishing SUSY variations + Bianchi identities
- Also:
 - vanishing SUSY variations formally solved in Saracco, Tomasiello '12
 - *We have to make them compatible with the Bianchi Identities

- Recap of the relevant ideas introduced in this section:
 - Preserved SUSY in 4D constrains the possible internal 6D m
 - \clubsuit DGKT vacua have vanishing $G_6 \rightarrow$ selects one of the allowe

Having set the framework we are ready to deal with the equations

- ❖ 10D e.o.m = <u>vanishing SUSY variations</u> + <u>Bianchi identities</u>
- Also:
 - vanishing SUSY variations formally solved in Saracco, Tomasiello '12
 - *We have to make them compatible with the Bianchi Identities

• Inspired by Saracco, Tomasiello '12 we will solve the equations in the limit $\hat{\mu} = l_s \mu = l_s \sqrt{-\Lambda/3}$ small or, equivalently, g_s small, $R_{\rm internal}$ big:

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{X_6}^{-3}$

• Inspired by Saracco, Tomasiello '12 we will solve the equations in the limit $\hat{\mu} = l_s \mu = l_s \sqrt{-\Lambda/3}$ small or, equivalently, g_s small, $R_{\rm internal}$ big:

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{X_6}^{-3}$

Acharya, Benini, Valandro '06

• If the source is smeared $\delta_{06} \to \# \mathrm{Re}\Omega$ one has the following scaling:

$$F_4 \sim N$$
, $R_{\rm X_6} \sim N^{1/4}$, $g_s \sim \mu \sim R_{\rm X_6}^{-3} \sim N^{-3/4}$

• Inspired by Saracco, Tomasiello '12 we will solve the equations in the limit $\hat{\mu} = l_s \mu = l_s \sqrt{-\Lambda/3}$ small or, equivalently, g_s small, $R_{\rm internal}$ big:

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{X_6}^{-3}$

Acharya, Benini, Valandro '06

• If the source is smeared $\delta_{06} \to \# \mathrm{Re}\Omega$ one has the following scaling:

$$F_4 \sim N$$
, $R_{\rm X_6} \sim N^{1/4}$, $g_s \sim \mu \sim R_{\rm X_6}^{-3} \sim N^{-3/4}$

Similar approach in Junghans '20

One can interpret this scaling as the zeroth order of an expansion of the full solution

• Inspired by Saracco, Tomasiello '12 we will solve the equations in the limit $\hat{\mu} = l_s \mu = l_s \sqrt{-\Lambda/3}$ small or, equivalently, g_s small, $R_{\rm internal}$ big:

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{X_6}^{-3}$

Acharya, Benini, Valandro '06

• If the source is smeared $\delta_{06} \to \# \mathrm{Re}\Omega$ one has the following scaling:

$$F_4 \sim N$$
, $R_{\rm X_6} \sim N^{1/4}$, $g_s \sim \mu \sim R_{\rm X_6}^{-3} \sim N^{-3/4}$

Similar approach in Junghans '20

- One can interpret this scaling as the zeroth order of an expansion of the full solution.
- We will expand the solution to the vanishing SUSY variations in terms of g_S in the limit $g_S \sim 0$

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

- Let us focus on understanding what lies behind this expansion:
 - 1) The SU(3) case would be enough if it was not for the Bianchi identity for G_2

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

- Let us focus on understanding what lies behind this expansion:
 - 1) The SU(3) case would be enough if it was not for the Bianchi identity for G_2
 - 2) But this B.I. fails because that setup has constant dilaton ϕ and warp factor A (from the B.I for G_0)

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

- Let us focus on understanding what lies behind this expansion:
 - 1) The SU(3) case would be enough if it was not for the Bianchi identity for G_2
 - 2) But this B.I. fails because that setup has constant dilaton ϕ and warp factor A (from the B.I for G_0)
 - 3) Let us take the $SU(3) \times SU(3)$ case, extract the underlying SU(3) and use some of the extra pieces to solve the problems we had for SU(3). This is the leading order of the expansion we are doing.

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

- Let us focus on understanding what lies behind this expansion:
 - 1) The SU(3) case would be enough if it was not for the Bianchi identity for G_2
 - 2) But this B.I. fails because that setup has constant dilaton ϕ and warp factor A (from the B.I for G_0)
 - 3) Let us take the $SU(3) \times SU(3)$ case, extract the underlying SU(3) and use some of the extra pieces to solve the problems we had for SU(3). This is the leading order of the expansion we are doing.
 - 4) For example, at leading order the dilaton ϕ and the warp factor A are no longer constant

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

Vanishing SUSY variations

Bianchi identities

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

Bianchi identities

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

Bianchi identities

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

Bianchi identities

$$g_s \to 0$$
, $g_s \sim \hat{\mu} \sim R_{\rm internal}^{-3}$

• Let us focus on understanding what lies behind this expansion:

Solving the equations: B.I.

• Forget for the moment the SUSY equations. Let us solve the B.I. for DGKT. Then we will use the expansion of the SUSY solution to accommodate this result ③. Consider:

$$H = 2\mu \text{Re }\Omega_{CY}$$

• Forget for the moment the SUSY equations. Let us solve the B.I. for DGKT. Then we will use the expansion of the SUSY solution to accommodate this result ©. Consider:

$$H = 2\mu \text{Re } \Omega_{CY}$$

• The Bianchi identity for the 2-form flux reads:

$$l_S^2 d \widetilde{F_2} = 2m\hat{\mu} \operatorname{Re} \Omega_{CY} + \delta(\Pi_{06})$$

• Forget for the moment the SUSY equations. Let us solve the B.I. for DGKT. Then we will use the expansion of the SUSY solution to accommodate this result ©. Consider:

$$H = 2\mu \text{Re } \Omega_{CY}$$

• The Bianchi identity for the 2-form flux reads:

$$l_S^2 d \widetilde{F_2} = 2m\hat{\mu} \text{Re } \Omega_{CY} + \delta(\Pi_{06})$$

• The solution for the previous equation can be written as:

$$l_s^2 \widetilde{F_2} = -J_{CY} \cdot d(4\varphi \operatorname{Im} \Omega_{CY} - \star_{CY} K) + \widetilde{F_2^h} + dC_1$$

with dC_1 exact, $\widetilde{F_2^h}$ CY harmonic and $\Delta K = 2m\hat{\mu} \text{Re } \Omega_{CY} + \delta(\Pi_{06})$

• The rest of BI follows easily from this solution.

• Forget for the moment the SUSY equations. Let us solve the B.I. for DGKT. Then we will use the expansion of the SUSY solution to accommodate this result ©. Consider:

$$H = 2\mu \text{Re }\Omega_{CY}$$

• The Bianchi identity for the 2-form flux reads:

$$l_S^2 d \widetilde{F_2} = 2m\hat{\mu} \text{Re } \Omega_{CY} + \delta(\Pi_{06})$$

• The solution for the previous equation can be written as:

$$l_s^2 \widetilde{F_2} = -J_{CY} \cdot d(4\varphi \operatorname{Im} \Omega_{CY} - \star_{CY} K) + \widetilde{F_2^h} + dC_1$$

with $d\mathcal{C}_1$ exact, $\widetilde{F_2^h}$ CY harmonic and $\Delta K = 2m\hat{\mu}\mathrm{Re}~\Omega_{CY} + \delta(\Pi_{06})$

• The rest of BI follows easily from this solution.

This H is an approximation of the actual H. In the expansion it will correspond to the leading term

• Strategy: express the terms of the expansion in terms of CY quantities solving the B.I

- Strategy: express the terms of the expansion in terms of CY quantities solving the B.I
- Better understood with an example. For instance:

B.I. solution:
$$l_s^2 \widetilde{F_2} = -J_{CY} \cdot d(4\varphi \operatorname{Im} \Omega_{CY} - \star_{CY} K) + \widetilde{F_2^h} + dC_1$$

SUSY equations
$$F_2 = -\frac{1}{g_s}J \cdot d(e^{-3A_0}{\rm Im}\Omega) + \mathcal{O}(g_s)$$
, (Ω,J) defining an $SU(3)$ structure,

- Strategy: express the terms of the expansion in terms of CY quantities solving the B.I
- Better understood with an example. For instance:

B.I. solution:
$$l_S^2 \widetilde{F_2} = -J_{CY} \cdot d(4\varphi \operatorname{Im} \Omega_{CY} - \star_{CY} K) + \widetilde{F_2^h} + dC_1$$

SUSY equations
$$F_2 = -\frac{1}{g_s}J \cdot d(e^{-3A_0}{\rm Im}\Omega) + \mathcal{O}(g_s)$$
, (Ω,J) defining an $SU(3)$ structure,

$$J = J_{CY} + \mathcal{O}(g_s^2), \qquad e^{-3A_0} \text{Im}\Omega = (1 + g_s 4\varphi) \text{Im}\Omega_{CY} - g_s \star_{CY} K + \mathcal{O}(g_s^2)$$

- Strategy: express the terms of the expansion in terms of CY quantities solving the B.I
- Better understood with an example. For instance:

B.I. solution:
$$l_S^2 \widetilde{F_2} = -J_{CY} \cdot d(4\varphi \operatorname{Im} \Omega_{CY} - \star_{CY} K) + \widetilde{F_2^h} + dC_1$$

SUSY equations
$$F_2 = -\frac{1}{g_s} J \cdot d(e^{-3A_0} {\rm Im}\Omega) + \mathcal{O}(g_s)$$
, (Ω,J) defining an $SU(3)$ structure,

$$J = J_{CY} + \mathcal{O}(g_s^2), \qquad e^{-3A_0} \text{Im}\Omega = (1 + g_s 4\varphi) \text{Im}\Omega_{CY} - g_S \star_{CY} K + \mathcal{O}(g_s^2)$$

Same procedure for the rest of functions...
 Explicit toroidal example in section 6.2

Strategy: express the terms of the expansion in terms of CY quantities solving the B.I.

• Final result:

$$H = g_s \frac{2}{5} G_0 \operatorname{Re} \Omega_{CY} \left(1 + O \left(g_s^{4/3} \right) \right), \qquad e^{-A} = 1 + O \left(g_s^{4/3} \right),$$

$$G_2 = O \left(g_s^{2/3} \right), \qquad e^{\phi} = g_s \left(1 + O \left(g_s^{4/3} \right) \right),$$

$$G_4 = \frac{3}{10} G_0 J_{CY} \left(1 + O \left(g_s^{4/3} \right) \right), \qquad J = J_{CY} \left(1 + O \left(g_s^{4/3} \right) \right),$$

> At 0th order we recover the usual smeared solution of Acharya, Benini, Valandro 'o6

• Final result:

$$H = g_{S} \frac{2}{5} G_{0} \operatorname{Re} \Omega_{CY} \left(1 + O \left(g_{S}^{4/3} \right) \right), \qquad e^{-A} = 1 + O \left(g_{S}^{4/3} \right),$$

$$G_{2} = O \left(g_{S}^{2/3} \right), \qquad e^{\phi} = g_{S} \left(1 + O \left(g_{S}^{4/3} \right) \right),$$

$$G_{4} = \frac{3}{10} G_{0} J_{CY} \left(1 + O \left(g_{S}^{4/3} \right) \right), \qquad J = J_{CY} \left(1 + O \left(g_{S}^{4/3} \right) \right),$$

- > At 0th order we recover the usual smeared solution of Acharya, Benini, Valandro 'o6
- > At first order corrections appear. The B.I. is solved with the *smeared H*
- The obstruction present for the SU(3) case is avoided in this solution (at the level of approximation we are working)

• DGKT has passed a non-trivial first test: there could have been obstructions already at this order.

- DGKT has passed a non-trivial first test: there could have been obstructions already at this order.
- Obstructions could come at higher orders. One also should consider α' corrections and string loop corrections controlled by powers of g_s .

- DGKT has passed a non-trivial first test: there could have been obstructions already at this order.
- Obstructions could come at higher orders. One also should consider α' corrections and string loop corrections controlled by powers of g_s .
- Our expansion breaks down near the O6-planes. Interaction terms
 appearing at next order. Still progress to do in understanding these objects.

- DGKT has passed a non-trivial first test: there could have been obstructions already at this order.
- Obstructions could come at higher orders. One also should consider α' corrections and string loop corrections controlled by powers of g_s .
- Our expansion breaks down near the O6-planes. Interaction terms appearing at next order. Still progress to do in understanding these objects.
- We are closer to establish the existence of vacua with scale separation in string theory. Hope the problem is settled in the not too distant future

- DGKT has passed a non-trivial first test: there could have been obstructions already at this order.
- Obstructions could come at higher orders. One also should consider α' corrections and string loop corrections controlled by powers of g_s .
- Our expansion breaks down near the O6-planes. Interaction terms appearing at next order. Still progress to do in understanding these objects.
- We are closer to establish the existence of vacua with scale separation in string theory. Hope the problem is settled in the not too distant future

