Insert heading

KHL

remove the pound sign and insert the file path to the image on your computer in the

Introduction

The research question(s); Background/significance of the research; and relevant highlighted information about the data set. (abbreviated version of part 1)

- Does a higher level of educational attainment generally increase personal earnings income across different states?
- Does personal earnings increase with an individual's health?
- Do older individuals generally earn more money than younger individuals?

Given the rise in inflation and cost of living, exploring the relationships connected to personal earnings across different states is fundamental to understanding how factors like education, health status, and age, influence income disparities at a regional level. This inquiry is grounded in the longstanding debate within economic and social research regarding the return on investment in education, health, and wellness. By examining these relationships across diverse geographical areas, the analysis can uncover nuanced insights into how local economies, policies, and opportunities shape the economic benefits of educational attainment.

The U.S. Census is pivotal in the nation's political and economic framework, ensuring each community receives its fair share based on its specific needs (Bureau, 2021).

In addition, it is crucial to the political sphere with its use in redrawing a multitude of political boundaries to ensure each district contains roughly equal numbers of people (Mather & Scommegna, 2019). Its political importance extends even to the U.S. House of Representatives, which bases its apportionment of House seats on Census population data, safeguarding the equity of voting power within the nation (Farley, 2020).

Originating from multiple reputable sources, the dataset focuses on the United States demographic, economic, and educational landscapes as of 2020. It's based on the US Census Bureau's Annual Social and Economic Supplement (ASEC) survey, including the Current Population Survey (CPS) for employment statistics, and adds questions on poverty and migration. Unemployment data comes from the Bureau of Labor Statistics, and urban population percentages from the Census Bureau's Decennial Census. State sales tax rates, sourced from the Tax Foundation, provide a financial perspective.

The dataset was merged on a state basis, focusing on individuals 18 and older to better represent the adult population. It includes averages of education level, gender, work expenses,

and age from the ASEC survey, combined with unemployment rates from the Bureau of Labor Statistics and sales tax rates from the Tax Foundation at the state level.

Methods and Analysis

Include EDA from Report 1

ANALYSIS: - Multiple linear regression logistic regression - Include required analysis steps
- Include the "added techniques" that you selected - Assessing the model. - Selecting a
final "best" model. - NOTE: Your analysis should follow the appropriate order on your
poster with a logical flow

Model building with significance testing (should be supported by EDA and/or variable screening) • Identify and check for multicollinearity • Residual analysis (assumptions + extreme observations) Make necessary adjustments as you see fit. If you are attempting to correct a violation, you only need to try up to three corrections, if the first doesn't work. Include plots or output as needed. • Final model selected should be assessed. It may not be great, but you will explain that in conclusion • Include at least ONE additional techniques from the list to add to your analysis: Weighted least squares (Ch 9.4), External Model validation (Ch 5.11), box -cox transformation (supplemental), or another technique or aspect of MLR you learned on your own. • NOTE: if you have a unique situation with your data-discuss your analysis plan with Prof Varanyak

```
## From the EDA, we saw that the level "Bachelors" for H_ED only had one response. It al
#Displaying unequal responses to levels:
incomeData |>
    group_by(H_ED) |>
    summarise(count=n())
#Subsetting out DC:
incomeData<-incomeData |>
    filter(STATEFIPS != 11)

##EDA to explore variables in relation to the response, PEARNVAL
#Scatter plots for quantitative:
par(mfrow = c(2, 3))
plot(incomeData$AGE,incomeData$PEARNVAL,xlab="AGE",ylab="PEARNVAL")
plot(incomeData$UNEMP_RATE,incomeData$PEARNVAL,xlab="UNEMP_RATE",ylab="PEARNVAL")
```

```
plot(incomeData$TAX_RTE,incomeData$PEARNVAL,xlab="TAX_RTE",ylab="PEARNVAL")
plot(incomeData$URB_PER,incomeData$PEARNVAL,xlab="URB_PER",ylab="PEARNVAL")
plot(incomeData$WRK_SPND,incomeData$PEARNVAL,xlab="WRK_SPND",ylab="PEARNVAL")
#Boxplots for qualitative:
par(mfrow=c(1,3))
```


boxplot(PEARNVAL~H_ED,data=incomeData)
boxplot(PEARNVAL~SEX,data=incomeData)
boxplot(PEARNVAL~HEA,data=incomeData)

##Model with all predictors:
incomemod1<-lm(PEARNVAL~AGE+UNEMP_RATE+TAX_RTE+URB_PER+WRK_SPND+HEA+SEX+H_ED,data=income
summary(incomemod1)
#Results in a globally significant model

##Checking first model for influential observations:
influencePlot(incomemod1)
#Using the Studentized residual threshold of an absolute value of 2, there are 2 outlier
residualPlots(incomemod1,tests=F)</pre>

#Looking at residual plot, there appears to be a fanning relationship with residuals for

```
plot(incomemod1, which=2)
#QQplot is approximately linear
hist(residuals(incomemod1))
#residuals are approximately normally distributed

##Checking for multicollinearity
cor(incomeData[7:11])
quantincomeData<-incomeData[7:11]
corrplot(cor(quantincomeData))</pre>
```



```
#No significant multicollinearity between quantitative variables

##Building a model using step wise regression
ols_step_both_p(incomemod1,pent=0.15,prem=0.15,details=T)
incomemod2<-lm(PEARNVAL~H_ED+URB_PER,data=incomeData)
summary(incomemod2)

#Results in a globally significant model

##Checking second model for influential observations:
influencePlot(incomemod2)

#Again, two influential observations (11 and 21)

residualPlots(incomemod2,tests=F)</pre>
```



```
#No problems with residuals
plot(incomemod2,which=2)
#Approximate linearity, but worse than first model
hist(residuals(incomemod2))
#Residuals approximately normal, but distribution worse (less normal) than first model
##Building a third model with our 3 important var from part I of the project:
incomemod3<-lm(PEARNVAL~H_ED+HEA+AGE,data=incomeData)
summary(incomemod3)
#Globally significant model, but HEA and AGE are individually insignificant</pre>
```

Histogram of residuals(incomemo

Stage 1 - Quantitative Variables

Initial: $PEARNVAL = \beta_0 + \beta_1 UNEMP_RATE + \beta_2 TAX_RTE + \beta_3 URB_PER + \beta_4 WRK_SPND$

incomemods1<-lm(PEARNVAL~UNEMP_RATE+TAX_RTE+URB_PER+WRK_SPND, data=incomeData)
summary(incomemods1)</pre>

Call:

Residuals:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2624.53 15416.17 0.170 0.86558 UNEMP_RATE 617.90 630.94 0.979 0.33265 TAX_RTE -24252.83 41269.02 -0.588 0.55969 URB_PER 205.68 75.08 2.739 0.00879 ** WRK_SPND 28.85 11.60 2.487 0.01667 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 5638 on 45 degrees of freedom

Multiple R-squared: 0.3968, Adjusted R-squared: 0.3431

F-statistic: 7.399 on 4 and 45 DF, p-value: 0.0001142

Final: $PEARNVAL = \beta_0 + \beta_1 URB_PER + \beta_2 WRK_SPND$

Stage 2 - Qualitative Variables

Initial: $PEARNVAL = \beta_0 + \beta_1 URB_PER + \beta_2 WRK_SPND + \beta_3 H_EDassociates + \beta_4 HEAvery good health$

incomemods2<-lm(PEARNVAL~URB_PER+WRK_SPND+H_ED+HEA, data=incomeData)
summary(incomemods2)</pre>

Call:

lm(formula = PEARNVAL ~ URB_PER + WRK_SPND + H_ED + HEA, data = incomeData)

Residuals:

Min 1Q Median 3Q Max -10946.1 -2639.6 734.3 2831.9 10274.5

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 32272.59 11702.52 2.758 0.008381 ** URB PER 190.77 48.51 3.933 0.000287 *** 10.89 8.57 1.271 0.210227 WRK SPND H EDVocational Associate's -5385.42 1623.56 -3.317 0.001806 ** HEAVery Good Health 3044.40 2065.74 1.474 0.147508

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 4709 on 45 degrees of freedom

Multiple R-squared: 0.5792, Adjusted R-squared: 0.5418

F-statistic: 15.48 on 4 and 45 DF, p-value: 4.89e-08

Final: $PEARNVAL = \beta_0 + \beta_1 URB_PER + \beta_2 H_ED$ associates

incomemodfinal<-lm(PEARNVAL~URB_PER+H_ED,data=incomeData)
summary(incomemodfinal)</pre>

Call:

lm(formula = PEARNVAL ~ URB_PER + H_ED, data = incomeData)

Residuals:

Min 1Q Median 3Q Max -10761.5 -3089.3 395.4 2397.4 10323.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 47415.20 4009.21 11.827 1.09e-15 ***

URB_PER 191.57 49.54 3.867 0.000338 ***

H_EDVocational Associate's -6997.66 1433.19 -4.883 1.25e-05 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 4810 on 47 degrees of freedom Multiple R-squared: 0.5414, Adjusted R-squared: 0.5219 F-statistic: 27.74 on 2 and 47 DF, p-value: 1.107e-08

Stage 3 - Interactions There are no interactions believed to be influencing the data. Checking the model with stepwise regression:

ols_step_both_p(incomemodfinal,pent=0.15,prem=0.15,details=T)

Stepwise Selection Method

Candidate Terms:

- 1. URB_PER
- 2. H_ED

Step => 0

Model => PEARNVAL ~ 1

 $R2 \Rightarrow 0$

Initiating stepwise selection...

Step => 1

Selected => H_ED

Model => PEARNVAL ~ H_ED

R2 => 0.395

Step => 2

Selected => URB_PER

Model => PEARNVAL ~ H_ED + URB_PER

R2 => 0.541

Stepwise Summary

Step	Variable	AIC	SBC	SBIC	R2	Adj. R2
0	Base Model	1029.621	1033.445	886.179	0.00000	0.00000
1	H_ED (+)	1006.458	1012.194	863.717	0.39545	0.38286
2	URB_PER (+)	994.646	1002.294	853.126	0.54137	0.52186

Final Model Output

Model Summary

R	0.736	RMSE	4663.477
R-Squared	0.541	MSE	23136192.918
Adj. R-Squared	0.522	Coef. Var	8.331
Pred R-Squared	0.479	AIC	994.646
MAE	3633.934	SBC	1002.294

RMSE: Root Mean Square Error

MSE: Mean Square Error
MAE: Mean Absolute Error

AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression	1283585421.133	2	641792710.566	27.74	0.0000
Residual	1087401067.151	47	23136192.918		
Total	2370986488.284	49			

Parameter Estimates

	model	Beta	Std. Error	Std. Beta	t	Sig
H_EDVocational	(Intercept) Associate's URB_PER	47415.205 -6997.660 191.569	4009.212 1433.189 49.539	-0.506 0.401	11.827 -4.883 3.867	0.000 0.000 0.000

#Yipeee!!! the model resulting from this method (consider the EDA) matches the model gen
#(so that means the model building process is pretty sound)
#The model itself is lowkey mid tho

Checking assumptions:

#Lack of Fit:

residualPlots(incomemodfinal)

Test stat Pr(>|Test stat|)

URB PER -0.3779 0.7072

H_ED

Tukey test -0.1065 0.9152

#Consant Variance

residualPlots(incomemodfinal,tests=F)

Fitted values

#Normality:
plot(incomemodfinal,which=2)

hist(residuals(incomemodfinal))

Histogram of residuals(incomemodfinal)

Test stat Pr(>|Test stat|)
URB_PER -0.2466 0.8063
H_ED
Tukey test 0.2154 0.8294

#no lack of fit

#Constant Variance residualPlots(revisedincomemod,tests=F)

Fitted values

plot(revisedincomemod, which=1)

#Normality:
plot(revisedincomemod,which=2)

hist(residuals(revisedincomemod))

Histogram of residuals(revisedincomemod)

Constant Variance:

##Checking final model for influential observations:
influencePlot(incomemodfinal)

StudRes Hat CookD

11 -2.4286854 0.06293499 0.11958773

19 -0.7384973 0.21029459 0.04888333

21 2.3184308 0.06322337 0.11062508

45 0.7328573 0.20861622 0.04766255

#Using the Studentized residual threshold of an absolute value of 2, there are 2 outlier residualPlots(incomemodfinal,tests=F)

#Looking at residual plot, there appears to be a fanning relationship with residuals for plot(incomemodfinal,which=2)

Histogram of residuals(incomemodfinal)

#residuals are approximately normally distributed

Remove observations 11, 19, 45, 21

subsetincomeData<-incomeData[-c(11,19,45,21),]
subsetincomemod<-lm(PEARNVAL~URB_PER+H_ED,data=subsetincomeData)
summary(subsetincomemod)</pre>

Call:

lm(formula = PEARNVAL ~ URB_PER + H_ED, data = subsetincomeData)

Residuals:

Min 1Q Median 3Q Max -10328.4 -2955.4 382.2 2298.4 9917.9

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 47408.53 4833.78 9.808 1.55e-12 ***

URB_PER 191.95 58.28 3.294 0.00198 **

H_EDVocational Associate's -7017.40 1488.60 -4.714 2.57e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4433 on 43 degrees of freedom Multiple R-squared: 0.5795, Adjusted R-squared: 0.56 F-statistic: 29.63 on 2 and 43 DF, p-value: 8.141e-09

Results

The statistical interpretation of the final model. This should be in statistical terms and overall interpreting and assessing the statistical usefulness of the model with the appropriate metrics. There should be no R output (that will go in the appendix). However, you will include your final model. $PEARNVAL = \beta_0 + \beta_1 URB_PER + \beta_2 H_EDassociates$ $PEARNVAL = 47408.52 + 191.95URB_PER - 7017.40H_EDassociates$

Conclusions

- interpreting your results of the analyses in context of the problem
- commenting on areas of future improvements.

Appendix A: Data Dictionary

Reference	Variable	
Name	Name	Description
State by FIPS Code	STATEFIPS	A qualitative measure that identifies the U.S. state (or D.C.) corresponding to the observation by a standardized numeric code. The 51 possible levels are discrete, ranging from 1-56, omitting 3, 7, 14, 43, and 52.
State	State	A qualitative measure that identifies the state corresponding to the observation. The 51 possible levels are names of the 50 U.S. states and the District of Columbia.
Educational Attainment	H_ED	A qualitative measure that identifies the average of highest education among adult residents of a given state. The three possible levels include a Vocational Associate's Degree, an Academic Associate's Degree, and a Bachelor's Degree.
Majority Sex	SEX	A qualitative measure that identifies the predominant sex among a state's adult residents. Two possible levels, male and female, indicate if the adult population of a state is predominately male or female.
Health Status	HEA	A qualitative measure that reports the average health status of a state's residents. Two levels, very good health and good health indicate the average health status of a state's residents.
Personal Earnings	PEARNVAL	A continuous quantitative measure that reports the average personal earnings of a state's residents, reported in U.S. Dollars. Possible values within the data range from \$45096.53 to \$95387.40.
Age	AGE	A continuous quantitative measure that reports the average age of a state's adult residents in years. Values range from 40.83460 to 46.39759.

Reference	Variable				
Name Name		Description			
Unemployment	UNEMP_RATE	A continuous quantitative measure of a state's			
Rate		unemployment rate from 2020. Unemployment rate is			
		reported as a percentage; the range of possible values			
		within the data is from 4.2% to 13.5% .			
Sales Tax Rate	TAX_RTE	A continuous quantitative measure of a state's sales			
		tax. Sales Tax Rate is reported as a numerical figure;			
		the range of possible values within the data is from			
		$0.0\%~(0\%~{\rm sales~tax})$ to $7.25\%~(7.25\%~{\rm sales~tax}).$			
Percentage of	URB_PER	A continuous quantitative measure of a state's			
Urban		proportion of urban residents to nonurban residents.			
Residents		This variable is reported as a percentage; the range of			
		possible values within the data is from 38.7% to			
		100.0%.			
Work Expenses	WRK_SPND	A continuous quantitative measure that identifies the			
		average amount of money spent on work-related			
		expenses among residents of a state, reported in U.S.			
		Dollars. Possible values in the data range from			
		\$1101.676 to \$1463.411.			

Appendix B: Data Rows

	STATEFIPS	State			H_ED	SEX	HEA
1	1	Alabama	Vocationa	al Ass	ociate's	Male	Good Health
2	2	Alaska	Vocationa	al Ass	ociate's	Male	Good Health
3	4	Arizona	Vocationa	al Ass	ociate's	Male	Good Health
4	5	Arkansas	Vocationa	al Ass	ociate's	Male	Good Health
5	6	California	Vocationa	al Ass	ociate's	Male	Good Health
6	8	Colorado	Academi	c Ass	ociate's	Male	Good Health
7	9	${\tt Connecticut}$	Academi	c Ass	ociate's	Male	Good Health
8	10	Delaware	Vocationa	al Ass	ociate's	Male	Good Health
9	12	Florida	Academi	c Ass	ociate's	Male Very	Good Health
10	13	Georgia	Vocationa	al Ass	ociate's	Female	Good Health
11	15	Hawaii	Academi	c Ass	ociate's	Male	Good Health
12	16	Idaho	Vocationa	al Ass	ociate's	Male	Good Health
13	17	Illinois	Academi	c Ass	ociate's	Male	Good Health
14	18	Indiana	Vocationa	al Ass	ociate's	Male	Good Health
15	19	Iowa	Vocationa	al Ass	ociate's	Male	Good Health
	PEARNVAL	AGE UNE	MP_RATE TA	X_RTE	URB_PER	WRK_SPND	
1	53905.05	42.60043	6.4 0	0.0400	59.0	1142.836	
2	59908.18	43.33103	8.3 0	0.0000	66.0	1234.210	
3	54509.31	41.63326	7.8	.0560	89.8	1229.184	
4	53513.54	43.28300	6.2 0	.0650	56.2	1193.809	
5	62824.72	42.26563	10.1	0.0725	95.0	1237.779	
6	64224.86	43.52050	6.8 0	.0290	86.2	1326.110	
7	70758.66	45.24870	7.9	.0635	88.0	1250.562	
8	58795.20	43.32292	7.5	0.0000	83.3	1195.540	
9	54585.91	44.37481	8.1 0	.0600	91.2	1176.506	
10	55946.86	12.54033	6.5	.0400	75.1	1231.916	
11	54258.90	45.30385	11.7	.0400	91.9	1232.113	
12	55717.66	12.08074	5.5 0	.0600	70.6	1303.237	
13	64375.88	43.44074	9.3 0	.0625	88.5	1292.794	
14	53621.19	42.57899	7.3 0	0.0700	72.4	1308.013	
15	49106.65	42.04989	5.2 0	0.0600	64.0	1384.532	

Appendix C: Tables and Figures

Appendix D: References

Background

- Bureau, U. C. (2021, November 23). Why we conduct the decennial census of Population and Housing. Census.gov. https://tinyurl.com/5fdyh82c
- Mather, M., & Scommegna, P. (2019, March 15). Why is the U.S. Census so important?. Population Reference Bureau https://www.prb.org/resources/importance-of-us-census/
- Farley, R. (2020, January 31). The importance of census 2020 and the challenges of getting a complete count. Harvard Data Science Review. https://hdsr.mitpress.mit.edu/pub/rosc6trb/release/3

Data

- 2020 Unemployment Rates: U.S. Bureau of Labor Statistics. (2024). Unemployment rates for states. U.S. Bureau of Labor Statistics. https://www.bls.gov/lau/lastrk20. htm
- Urban percentage of the population for states, historical. Urban Percentage of the Population for States, Historical | Iowa Community Indicators Program. (2024.). https://www.icip.iastate.edu/tables/population/urban-pct-states
- State and local sales tax rates, 2020. Tax Foundation. (2024, February 22). https://taxfoundation.org/data/all/state/2020-sales-taxes/
- Bureau, U. C. (2022, October 27). 2020 annual social and economic supplements. Census.gov. https://www.census.gov/data/datasets/2020/demo/cps/cps-asec-2020.html
- ASEC 2020 Public Use Data Dictionary. (2020). https://tinyurl.com/3h8vexva

Supplemental Code and Analysis Help

1. List your references used to learn more about your techniques and coding here https://rpubs.com/muxicheng/1004550