Prova 2

Teoria dos Jogos em Computação

Professor: Pedro O.S. Vaz de Melo 26 de novembro de 2019

Nome:	
	
	escrevendo o meu nome eu juro que seguirei o código de honra

Código de Honra para este exame:

- Não darei ajuda a outros colegas durante os exames, nem lhes pedirei ajuda;
- não copiarei nem deixarei que um colega copie de mim.

1. (10 points) Considere o jogo de dois jogadores abaixo, em que $\theta \in \{0,3\}$ é um parâmetro conhecido pelo jogador P1. O jogador P2 não tem (nem terá, até a distribuição dos payoffs) nenhuma informação sobre θ , mas acredita que $\theta = 0$ com probabilidade 1/2 e $\theta = 3$ com probabilidade 1/2. Todas essas informações são de conhecimento comum.

$$P_{1} = \begin{bmatrix} P_{2} \\ L & R \\ P_{1} & B & 0 \end{bmatrix}$$

- **a.** (2 pts) Escreva esse jogo (jogadores, ações e tipos) formalmente como um jogo Bayesiano usando a notação de tipos epistêmicos.
 - **b.** (8 pts) Compute dois equilíbrios de Nash Bayesianos para esse jogo.
- **2.** (10 points) Considere que o jogo na forma extensiva representado abaixo. Note que dois payoffs do Jogador 3 não foram especificados: $a \in b$. Uma possibilidade é (5,0), isto é, a=5 e b=0. Outra possibilidade é (0,5). Para todas as questões abaixo, você deve a ater a estratégias puras.

- **a.** (4 pts) Encontre todos os SPNE (sub-perfect Nash equilibrium) do jogo usando (a, b) = (5, 0).
- **b.** (6 pts) Encontre todos os SPNE (sub-perfect Nash equilibrium) do jogo usando (a, b) = (0, 5).

3. (10 points) Duas empresas competidoras, 1 e 2, jogam o seguinte jogo repetido infinito em que todas as jogadas anteriores são observadas, e cada jogador tenta maximizar a soma dos seus lucros com fator de desconto $\beta=4/5=0.8$. A cada estágio t, simultaneamente, cada firma i seleciona o preço $p_i \in \{1,2,3,4,5\}$ do seu produto. Se $p_1=p_2$, então cada firma vende uma unidade do produto e tem lucro $p_1=p_2$. Caso contrário, se $p_i < p_j$, a empresa de menor preço vende duas unidades, lucrando $2 \times p_i$, e a de maior preço não vende nenhuma, lucrando 0. Considere que produzir produtos não custa nada para as empresas.

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \qquad \sum_{k=1}^{\infty} x^k = \frac{x}{1-x} \qquad \sum_{k=0}^{\infty} x^{2k} = \frac{1}{1-x^2}$$

a. (8 pts) Encontre um subgame perfect equilibrium (SPE) que dá aos jogadores um lucro médio (por estágio) de pelo menos 4. Verifique que o perfil de estratégia que você construiu é de fato um SPE.

b. (2 pts) Considerando o seu perfil de estratégia, que efeito a mudança do fator de desconto β para 3/5 = 0.6 produziria? Ainda seria um equilíbrio?

4. (10 points) Considere o jogo na forma normal abaixo.

Dicas:

$$P_{1} \begin{array}{c|ccc} & P_{2} \\ & y_{1} & y_{2} & y_{3} \\ P_{1} & x_{1} & 0, 0 & 4, 3 & 2, 4 \\ x_{2} & 1, 4 & 2, 0 & 0, 0 \end{array}$$

a. (2 pts) Escreva o sistema de equações do algoritmo Lemke Howson.

b. (3 pts) Execute duas trocas de base a partir do algoritmo Lemke Howson. Inicie colocando x_1 na base.

c. (1 pt) As duas trocas anteriores encontraram um equilíbrio de Nash? Caso afirmativo, qual?

d. (3 pts) De onde parou, execute mais duas trocas de base usando o algoritmo Lemke Howson. Se não estiver claro qual variável deverá entrar na base, inicie colocando x_2 na base.

e. (1 pt) As duas trocas anteriores encontraram um equilíbrio de Nash? Caso afirmativo, qual?