

2017 한국디지털콘텐츠학회 · 한국정보기술학회 공동학술발표대회 및 대학생 논문경진대회 발표 논문집

딥러닝 기반 실시간 졸음운전 감지 시스템

김성민 김우진 박수현 김신 윤경로 건국대학교 컴퓨터공학과

 $sung 62672@gmail.com,\ efounthens@gmail.com,\ supr 2000@gmail.com,\ new.xin 22@gmail.com,\ yo onk@konkuk.ac.kr$

Real-time Drowsy Driver Detection(DDD) System based on Deep Learning

Sung-Min Kim Woo-Jin Kim Su-Hyun Park Shin Kim Kyoung-Ro Yoon Department of Computer Science & Engineering, Kankuk University

요약

최근 졸음운전으로 인한 대형사고의 증가로 졸음운전을 방지하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 Convolutional Neural Network를 통한 운전자 표정인식으로 졸음운전 감지를 위한 실시간 시스템을 제안한다. 운전자의 표정을 Non-Sleep, Sleep, Yawning 3가지의 종류로 학습하고 실험한 결과 92.2%의 인식률을 보여 졸음운전 방지에 가능성을 보였다.

을 마무리한다.

1. 서론

최근 졸음운전으로 인한 대형사고의 발생이 증가하고 있다. 교통안전공단의 최근 10년간 발생원인 별 고속도로 교통사고율 통계에 따르면 졸음운전으로 인한사고가 22.5%로 21.7%인 과속운전으로 인한사고보다높은 것으로 조사됐다(그림 1). 따라서 졸음운전을 방지하기 위한 다양한 영상처리 기술들이 연구되고 있다[1,2]. 하지만 눈동자를 추적하는 방식은 추가적인 이미지 프로세싱이 필요하거나 실시간성이 떨어진다는 단점이 있다.

본 논문에서는 Convolutional Neural Network[3]를 이용한 실시간 얼굴 표정 분류 시스템을 제안한다. 실시간 졸음운전 방지 시스템을 이용하여 운전자의 표정을 실시간으로 분류하여 운전자가 졸고 있는지 파악할 수있으며 졸고 있다고 분류될 경우 특정 소리를 발생하여 졸음운전 방지를 할 수 있다.

본 논문의 순서는 다음과 같다. 2장에서는 전반적 시스템 디자인과 세부 디자인 내용에 대해 서술하고, 3장에서는 시스템 구현 및 실험 결과에 대해 설명한다. 마지막으로 4장에서 본 논문의 결론을 서술하며 본 논문

(그림 1) 최근 10년간 발생원인 별 고속도로 교통사고율

(Figure 1) Traffic Accident Rate in Highway for 10 Years

2. 시스템 디자인(설계)

2.1 Overall Architecture

본 논문에서 제안하는 전반적인 시스템 구조는 그림 2와 같다. 졸음운전을 감지하기 위해 비디오 의 모든 프레임에서 얼굴을 인식하고 얼굴 영역 만 이미지로 저장한다. 저장한 얼굴 이미지를 기 존에 학습된 모델을 통해 분류하여 운전자가 졸

2017 한국디지털콘텐츠학회 · 한국정보기술학회 공동학술발표대회 및 대학생 논문경진대회 발표 논문집

고 있는지 파악한다.

(Figure 2) System Flow for DDD(Drowsy Driving Detection)

2.2 Face Recognition

Facial Region Recognition은 카메라를 통해 들어오는 프레임 내에 존재하는 운전자의 얼굴을 Haar-like features[4]를 통해 인식한다. 인식 후 얼굴 영역만을 잘라서 Shared Storage에 저장한다.

(Figure 3) Driver's Facial Region Recognition Process

2.3 Image Classifier

Image Classifier는 Shared Storage에서 이미지를 받아 기존에 학습된 모델을 통하여 이미지 분류를 진행한다. 분류의 결과 레이블은 Non-sleepy, Sleepy, Yawning으로 나뉘며 나온 결과 값을 Drowsy Driving Detector로 전달한다.

이 과정에서 필요한 학습모델을 만들기 위해 Inception V3[5]를 통해 학습을 진행했다. 학습에 필요한 데이터베이스는 참고 문헌[6]에서 사용한 것과 본시스템 개발을 위해 직접 녹화한 영상을 통해 구성했다.

(그림 4) 인공지능 모델을 통한 이미지 분류 과정

(Figure 4) Image Classification Process through AI Model

2.4 Drowsy Driving Detecter

Drowsy Driving Detecter는 전달받은 Classifier Data 를 List에 넣어 운전자 상태의 연속성을 확인하여 졸음 운전을 판단하고 운전자에게 알림을 준다.

(Figure 5) Drowsy Driving Detection process

3. 구현 및 실험

3.1 시스템 구현 환경

DDD의 구현과 실험 환경은 〈표 1〉과 같다.

<표 1> DDD 실험 환경

CPU	Intel® Core(TM) i7-4790 CPU @ 3.60GHz	Library	OpenCV 3.3.0 Inception V3 TensorFlow-gpu 1.3.0 NVIDIA CUDA 8.0	
RAM	8GB			
VGA	NVIDIA GeForce GTX 1070			
os	Ubuntu 16.04 LTS 64-bit		NVIDIA cuDNN 6.0.21 Python 3.6.2 Anaconda 4.3.29	
CAM	ZM-PC200			

<Table 1> DDD's Experimental Environment

3.2 실험

실험을 진행하며 각 Non-Sleepy, Sleepy, Yawning 3 가지 종류를 Non-Glasses, Glasses로 나누어 학습모델에 들어있지 않은 3명의 이미지를 종류별로 300장씩실험을 진행하였다. (그림 6)은 정확한 분류가 나온 실험 결과이며, (그림 7)은 틀리게 나온 분류 결과를 보여준다.

(그림 6) 인식의 올바른 예(왼쪽 : Nonsleepy, 가운데 : Sleepy, 오른쪽 : Yawning)

(Figure 6) Correct Examples of Recognition (그림 7) 인식의 올바르지 않은 예(왼쪽 : Nonsleepy, 가운데 : Sleepy, 오른쪽 : Yawning)

(Figure 7) Incorrect Examples of Recognition

실험의 분류 정확도는 <표 2>에서 확인할 수 있다. Non-Sleepy는 99.7%의 정확도를 보였으며 Sleepy, Yawning은 각각 87%와 90%인식률을 보였다. 평균 인식률은 92.2%로 높은 인식률 결과를 보였다.

〈표 2〉실험 결과

	Non-Sleepy 판정	Sleepy 판정	Yawning 판정	Accuracy(%)
실제 Non-Sleepy	299	0	1	99.7
실제 Sleepy	0	261	39	87
실제 Yawning	30	0	270	90
전체				92.2

⟨Table 2⟩ Implementation Result

4. 결론

본 논문은 Convolutional Neural Network 기반 실시 간 졸음운전 감지 시스템을 제안하였다. 학습 모델을 통해 졸음운전 감지 성능을 테스트한 결과, 평균 인식 률은 92.2%를 기록하여 졸음운전을 효과적으로 방지할 수 있음을 확인하였다.

하지만 Sleepy에 대한 인식률이 Non-Sleepy, Yawning에 대한 인식률보다 낮았으며, Inception V3모 델의 처리시간으로 인해 Delay가 발생하는 문제점이 있다. 향후 연구로서 Sleepy에 대한 인식률을 높이고 Delay를 줄일 수 있는 인공지능 모델을 연구해야 할 것이다.

참고 문헌

- [1] 민지홍, 김정철, 홍기천, "눈 검출 및 눈동자 추적 기반을 통한 졸음운전 경보 시스템 구현, "한국지능 시스템학회 학술발표 논문집, 제15권, 제2호, pp.249-252, 2005.
- [2] 이영기, 염석원, "눈 영역 인식을 이용한 졸음운전 방지 시스템, " 대한전자공학회 학술대회, , pp.329-330, 2010.
- [3] 최인규, 송혁, 이상용, 유지상, "깊은 Convolutional Neural Network를 이용한 얼굴표정 분류 기법, "방송공학회논문지, 제22권, 제2호, pp.162-172, 2017.
- [4] Lienhart, Rainer, and Jochen Maydt. "An extended set of haar-like features for rapid object detection." Image Processing. 2002. Proceedings. 2002 International Conference on. Vol. 1. IEEE, 2002.
- [5] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- [6] http://2016.ieeeicip.org/ChallengeSessions.asp