

The ability of LLMs to detect and fix logical errors

Table of contents

- Introduction
- LLMs cannot find reasoning errors, but can correct them given the error location
- Decoding Logic Errors: A Comparative Study on Bug Detection by Students and Large Language Models
- LogiCode: an LLM-Driven Framework for Logical Anomaly Detection
- Debug Bench: Evaluating Debugging Capability of Large Language Models
- Improving LLM Classification of Logical Errors by Integrating Error Relationship into Prompts
- 6 Conclusion

LLMs cannot find reasoning errors, but can correct them given the error location

Idea

Large Language Models (LLMs) have achieved impressive results in many natural language processing (NLP) tasks, such as question answering, text generation, and problem-solving. However, a major limitation remains: **LLMs** struggle with reasoning accuracy, particularly in detecting logical errors in their own outputs.

Dataset Name: BIG-Bench Mistake.

Size: 2186 Chain-of-Thought (CoT) traces.

Source: Generated using PaLM 2 Unicorn.

Annotations: Each trace is labeled with the first logical mistake.

Tasks:

- . Word sorting
- . Tracking shuffled objects
- . Logical deduction
- . Multistep arithmetic
- . Dyck languages

Evaluation Metrics

First: Mistake Finding Accuracy.

Evaluates whether models correctly identify the first logical mistake in a trace.

Performance compared across three prompting strategies (trace-level, step-level, CoT-step-level). Second: Error Correction Performance.

Measures accuracy improvement when correct mistake locations are provided.

Uses backtracking correction and compares against random resampling.

Mistake Finding Accuracy (Best Model Results)

Model	Direct	Direct	CoT		
Model	(trace)	(step)	(step)		
Wor	rd sortin	g (11.7)			
GPT-4-Turbo	36.33	33.00	1—1		
GPT-4	35.00	44.33	34.00		
GPT-3.5-Turbo	11.33	15.00	15.67		
Gemini Pro	10.67	-	3-3		
PaLM 2 Unicorn	11.67	16.33	14.00		
Tracking	shuffled	objects (5.	4)		
GPT-4-Turbo	39.33	61.67	9-0		
GPT-4	62.29	65.33	90.67		
GPT-3.5-Turbo	10.10	1.67	19.00		
Gemini Pro	37.67	_	344		
PaLM 2 Unicorn	18.00	28.00	55.67		
Logic	al deduc	tion (8.3)			
GPT-4-Turbo	21.33	75.00	-		
GPT-4	40.67	67.67	10.33		
GPT-3.5-Turbo	2.00	25.33	9.67		
Gemini Pro	8.67	-	2.—		
PaLM 2 Unicorn	6.67	38.00	12.00		
Multist	tep arith	metic (5.0)			
GPT-4-Turbo	38.33	43.33	35-33		
GPT-4	44.00	42.67	41.00		
GPT-3.5-Turbo	20.00	26.00	25.33		
Gemini Pro	21.67	_	_		
PaLM 2 Unicorn	22.00	21.67	23.67		
		es† (24.5)			
GPT-4-Turbo	15.33*	28.67*	-		
GPT-4	17.06	44.33*	41.00*		
GPT-3.5-Turbo	5-Turbo 8.78 5.91 1.86		1.86		
	2.00	-	3-3		
PaLM 2 Unicorn	10.98	14.36	17.91		

Accuracy Gains After Providing Mistake Location

Held-out task	Trained classifier accuracy mis (Otter)	3-shot prompting accuracy _{mis} (Unicorn)	Difference
Word sorting	22.33	11.67	+11.66
Tracking shuffled objects	37.67	18.00	+19.67
Logical deduction	6.00	6.67	-0.67
Multi-step arithmetic	26.00	22.00	+4.00
Dyck languages	33.57	10.98	+22.59

Key Observations

GPT-4 performed best overall in mistake detection.

PaLM 2 Unicorn struggled significantly with mistake finding.

Providing explicit mistake locations improved accuracy by up to +43.92%.

Step-level prompting outperformed trace-level prompting.

2

Decoding Logic Errors: A Comparative Study on Bug Detection by Students and Large Language Models

Idea

The study was conducted to evaluate whether Large Language Models (LLMs), such as GPT-3 and GPT-4, can effectively detect logic errors in C programs

Study aim to answer

How do students and LLMs compare in identifying logic errors in faulty code?

Which types of logic errors are easiest for students and LLMs to identify?

How many bugs or issues do students and LLMs identify when reviewing faulty and correct code?

Types of logic errors

```
Code Example 1
int LargestValue(int values[], int length) {
  int i, max;
  max = values[0];
  for (i = 1; i < length; i++) {
                                          Out of bounds
   if (values[i] > max) {
   max = values[i];
                                  for (i = 0; i < length; i++) {
                                    if (values[i+1] > max) {
                                     max = values[i+1];
  return max;
                             Expression
                               if(values[i]>values[max]
                                    Operator
                                    if(values[i]<max)
```

The study investigates the ability of Large Language Models (LLMs), specifically GPT-3 and GPT-4, to detect logic errors in C programs and compares their performance to 964 introductory programming students.

2980 total student responses from collected from a C programming lab session

720 LLM responses generated for analysis.

2980 total student responses collected from a C programming lab session, 720 LLM responses generated for analysis.

			Code Example 1 Code Example 2				Code Example 3						
Source	88	Bug 1	Bug 2	Bug 3	Correct	Bug 1	Bug 2	Bug 3	Correct	Bug 1	Bug 2	Bug 3	Correct
	correct	56	91	108	207	71	90	82	222	84	66	69	220
Student	incorrect	147	146	125	19	184	165	130	6	155	143	162	26
	rate	0.276	0.384	0.464	0.916	0.278	0.353	0.387	0.974	0.351	0.316	0.299	0.894
	correct	30	23	8	30	29	27	24	29	29	30	24	12
GPT-3	incorrect	0	4	22	0	0	0	1	1	0	0	6	17
	rate	1	0.852	0.267	1	1	1	0.96	0.967	1	1	0.800	0.414
	correct	29	30	28	19	30	30	28	0	30	30	28	0
GPT-4	incorrect	0	0	1	11	0	0	1	30	0	0	1	30
	rate	1	1	0.966	0.633	1	1	0.966	0	1	1	0.966	0

3

Code Linting using Language Models (June 2024).

3.1 Introduction

Traditional code linters are language-specific and rule-based

 They often produce false positives and miss logical errors

 The study explores LLM-based linting as a versatile, language-independent alternative

 Objective: Detect a wide range of code issues efficiently across multiple languages

3.2 Approach

3.3

Methodology

Dataset Collection: Diverse code snippets with labeled issues (multi-language)

Model Selection & Training:

a. Binary Classifier: Detects whether a code snippet has issues

GPT-4 and Codex: Codex performed slightly better in precision, while GPT-4 had a better recall, meaning GPT-4 detected more errors, but Codex was more precise in its predictions.

Methodology

a. Multi-Label Classifier: Identifies the specific types of issues

StarCoder: GPT-4 was also tested, but StarCoder showed better performance for classifying multiple types of logical errors at once

• Training Process: The LLM learns error patterns from the dataset

3.4 Evaluation Metrics

$$Accuracy = \frac{TP + TN}{|T|}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$\text{F1} = 2\frac{Precision \cdot Recall}{Precision + Recall}$$

Performance Metrics Binary Classifier Accuracy 84.9% **Traditional code linters 78.2% Multi-Label Classifier Accuracy** 83.6% Traditional code linters 75.5%

Findings

1. LLM-based linting detects a broad range of issues

2. Outperforms traditional linters in detecting logical errors

Conclusion & Implications

- Key Contributions:
 - 1. Language-independent, deep-learning-driven code linting
 - 2. Enhanced detection of logical and semantic errors

- Future Work:
 - 1. Improving false positive rates
 - 2. Expanding training datasets
 - 3. Integration into real-world development tools

Debug Bench: Evaluating Debugging Capability of Large Language Models

Question

Given two integers n and k, return the kth lexicographically smallest integer in the range [1, n].

Examples

Input: n = 13, k = 2; Output: 10; Explanation: The lexicographical order is [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9], so the second smallest number is 10.

Code Solution

def findKthNumber(self, n, k) -> int:
 ... x = 1
 while k > 1...
 return x

Buggy Code

def findKthNumber(self, n, k) -> int:
...x = 0
while k > 1...
return x

Bug Explanation

Setting x to 0 leads to an incorrect result, as 0 is considered an invalid node.

Input Prompt

Observe the expected code funcitonality. [the question] Here is a faulty implementation. [the buggy code] Can you fix it up?

LLM Debugging

def findKthNumber(self, n, k) -> int:
 ... x = 1

while k > 0. . .

total test cases: 69

Test Results

test suites passing: 000010000000000 . . . 000000000 memory: 16236000

LLM Explanation

Starting value of x should be 1 and k > 0 should be checked in while loop.

Decision

Fail

Size: 4,253 code snippets with implanted bugs.

Bug Types

- Syntax (e.g., missing semicolons).
- Reference (e.g., undefined variables).
- Logic (e.g., incorrect loop conditions).
- Multiple (combined errors).

Type	Number		
	misused ==/=	137	
Syntax	missing colons	129	
	unclosed parentheses	133	
	illegal separation	68	
	illegal indentation	45	
	unclosed string	125	
	illegal comment	124	
Reference	faulty indexing	206	
	undefined objects	187	
	undefined methods	167	
	illegal keywords	124	
	condition error	260	
Logic	operation error	180	
	variable error	100	
	other error	50	
	double bugs	750	
Multiple	triple bugs	750	
1	quadruple bugs	718	

Methodology & Metrics

Tested Models

- 1. Closed-source: GPT-4, GPT-3.5.
- 2. Open-source: CodeLlama, Llama-3, DeepSeek-Coder, Mixtral.

Evaluation Process

- Models were asked to fix bugs in code snippets.
- Pass Rate: % of bugs fixed correctly.
- Human Baseline: 80% pass rate.

Limitations

Synthetic Dataset

Some Bugs were artificially created, not from real-world projects

Open-Source Models

Poor performance due to limited training data

Future Research

Real-World Data

Expand benchmarks with real-world debugging scenarios (e.g., GitHub issues, industry codebases).

Training Enhancements

Curate datasets with debugging workflows to improve LLMs' ability to reason about errors. 5

Detecting Logical Errors in Programming Assignments Using Code2Seq

Idea

Evaluating code manually

Logical errors are harder to detect than syntax errors

Compilers help with syntax errors

Code2Seq

Methodology

- 50% of the dataset was modified with errors for better learning.
- Goal: Test if Code2Seq can detect errors after training.
- Two experiments on Java code with manually added errors.

- 9,500 open-source Java projects from GitHub.
- Real-world code
- No artificially generated code to maintain reliability.

```
for (Statement statement : method.getBody().
               get().getStatements()) {
    if (statement instance of ForStmt) {
        ForStmt forStmt = (ForStmt) statement;
        if (forStmt.getCompare().isPresent()) {
            Expression expr = forStmt.getCompare().get();
            if (expr instanceof BinaryExpr) {
                BinaryExpr bExpr = (BinaryExpr) expr;
                if (forStmt.getInitialization().size()==1 &&
                    (bExpr.getRight().isFieldAccessExpr())){
                    list.add(forStmt);
```

```
eligibleMethod(){
    for(int i = 0;
        i < arr.length; i++){
            //do something
    }
}</pre>
```

Evaluation Metrics

Using multiple metrics ensures a well-rounded evaluation.

Accuracy Precision

Recall F1-score

- High performance in detecting logical errors.
- Best results in detecting for-loop errors.

• Code2Seq can reduce manual effort in grading.

Limitations

- Might not perform well on complex errors.
- Only detects specific errors like for-loop and if-else mistakes
- Does not cover all types of logical errors.

Conclusion

- Code2Seq detects logical errors with up to 90% accuracy.
- Shows strong potential for Al use in programming education.

• Future improvements can expand error detection capabilities.

References

- 1. LLMs cannot find reasoning errors, but can correct them given the error location
- 2. Decoding Logic Errors: A Comparative Study on Bug Detection by Students and Large Language Models
- 3. LogiCode: an LLM-Driven Framework for Logical Anomaly Detection
- 4. Debug Bench: Evaluating Debugging Capability of Large Language Models
- 5. Improving LLM Classification of Logical Errors by Integrating Error Relationship into Prompts

