COIS 3400

Assignment 3

Konrad Bartlett

2018-11-24

Person:

<u>ID</u>	name	age	gender	occupationID	cityID
1	John	31	Male	1	3
2	Alaadin	23	Male	1	4
3	Jane	31	Female	2	4
4	Xi	26	Male	3	2

Occupation:

occupationID	occupationName
1	Software Engineer
2	Accountant
3	Business Manager
4	Professor

City:

cityID	cityName
1	Halifax
2	Toronto
3	Peterborough
4	Hamilton

- a- $\Pi_{name}(\sigma_{age>25}(Person))$
- b- $\sigma_{ID>3 \text{ and age }!=31}(Person)$
- $c\text{--}\sigma_{Person.occupationID=Occupation.occupationID}(Person~X~Occupation)$
- d-Person ⋈ Occupation ⋈ City
- e- $\Pi_{\text{name, gender}}$ ($\sigma_{\text{cityName}=\text{"Toronto"}}$ (Person \bowtie City))

- 1- Show the output for the following relational algebra expressions using the relational instances above (5 points):
 - A- Πname(σage>25(Person))

Person:

Name
John
Jane
Xi

B- σID>3 and age !=31(Person)

Person:

ID	name	age	gender	occupationID	cityID
4	XI	26	Male	3	2

C- σPerson.occupationID=Occupation.occupationID(Person X Occupation)

Person:

ID	name	age	gender	occupationID	cityID	occupationName
1	John	31	Male	1	3	Software Engineer
2	Alaadin	23	Male	1	4	Software Engineer
3	Jane	31	Female	2	4	Accountant
4	Xi	26	Male	3	2	Business Manager

D- Person ⋈ Occupation ⋈ City

Person:

ID	name	age	gender	occupationID	cityID	occupationName	cityName
1	John	31	Male	1	3	Software Engineer	Peterborough
2	Alaadin	23	Male	1	4	Software Engineer	Hamilton
3	Jane	31	Female	2	4	Accountant	Hamilton
4	Xi	26	Male	3	2	Business Manager	Toronto

E- Πname, gender (σcityName= "Toronto" (Person ⋈ City))

Person:

name	gender
Xi	Male

```
2- Write the equivalent SQL statements for the relational algebra expressions in question 1 (5 points).
A- Πname(σage>25(Person))
    SELECT 'name'
    FROM Person
    WHERE (age > 25);
B- σID>3 and age !=31(Person)
    SELECT Person.*, Occupation.*
    FROM Person
    WHERE (ID > 3) AND (age <> 31);
C- σPerson.occupationID=Occupation.occupationID(Person X Occupation)
    SELECT *
    FROM Person
    INNER JOIN Occupation
            ON Person.occupationID = Occupation.occupdationID;
D- Person ⋈ Occupation ⋈ City
    SELECT Person.*, Occupation.*, City.*
    FROM Person
    INNER JOIN Occupation
            ON Person.occupationID = Occupation.occupationID
    INNERJOIN City
            ON Person.cityID = City.cityID;
E- Πname, gender (σcityName= "Toronto" (Person ⋈ City))
    SELECT Person.name, Person.gender
    FROM PERSON
    INNER JOIN City
            ON Person.cityID = City.cityID
    WHERE (City.cityName = "Toronto");
```

3- Briefly comment and provide a rationale as to which NF the database above is in currently (2 points).

1NF: Rows are uniquely identified

Each cell only has 1 value

Table layout is organized well

2NF: Is in 1NF

Each non-key attribute relies fully on the primary key value

3NF: Is in 2NF

No transitive dependency

No derived data

BCNF: Is in 3NF

No overlapping candidate keys

Therefore by following the checklist of rules that define each step, I can assume that the tables are in Boyce-Codd normal form as they meet every requirement.