Calculate	iterations
Ranjith	Zahara
Spectacular Algo	Zee's algo
30sec Dell windows	Mac M2
Google	python
(Mac) 5sec	C++
C++	(2sec)
T) Execution time of	does not determine an algorithm
V	? depends on enternal
for (i = 1; i	<= N; i++) \(\) [1, N]
2) No. of iterations analyse algo	is a better metric to rithms

Do dow h	Karan
Andarh 100 log N	Karan N
100 log N	N .
U	lo
N = 2	
100 lg 22	2
	10
[<i>00</i>	O

Asymtotic analysis of	algos
Analysing algos for	$N \rightarrow \infty$
P : •	
Big O	
1) Count no. of iteration	N
2) Take the highest.	
3) Remove constant a	pefficient
$N^3 + 3N^2$	5N + 1000
$\frac{N^3 + 3N^2}{O(N^3)}$	O(N)
$\frac{6N^2 + 3N^3 + N \times C}{1}$	
D(N ³)	

2N³ $N^2 + N$ $O(N^3)$ $N^2 + N$ 10 x 100 = 97. $N=10 \rightarrow 110$ 110 N=1000 -> 1001000 1000 ×100 1001000 100 - 0.097. 1001 We ignore lower order terms because their contribution is negliple N + 10 M = 1020 2×10 10

100			1000
D(!)			α (1)
	Issue	in big O	
2		•	. 2
N ² better			3N2
<u>better</u>			
$O(N^2)$			D(N2)
1) You cannot	compau	algos with	same big O
) You cannot value		<u> </u>	
	big O	analysis is	TC


```
Space Complexity
  Extra space required for your algorithm
func (int N) {
                           int: apytes
   int n; //4
                           long: 8 bytes
   int y; 1/4
long 2; 118
                         16 bytes
                           SC: 0(1)
func (int N) {
    int x = N : 4
                            4N + 16
    int y = xxx : 4
                             SC: D(N)
    long z = k+y : 8
   int arr = new int [N]: 9xN
                        N
func (int N) {
   int x = N
   int y = zxx
   long z = x+y 8
                    4N
  int arr = new int [N]
  int l = new long (N) [N] 8 \times N^2
```


	lime limit exceeded
Aakash	Pinklesh
	\downarrow
	Referral > 600gle
) Cod	ing contest
	Q2)
	D → TLE (i) ∫ optimize
1	1 optimin
	Ψ =
	(i)
	I second -> 10 iteration Budget
	GHZ PLOCESSOV -> 109 operations in I second
	Constraint
	1 5 N 5 10
	$TC: O(N^2)$
	iterations: $N=10^3 \Rightarrow 10^6$

TC: O(N3)

iteration: N=103 => 109 X

Don!

$$2^{10} = (1000)^{3} = 10^{9}$$

