Análise de algoritmos

Introdução à Ciência da Computação 2

Baseado nos slides do Prof. Thiago A. S. Pardo

Exercício

- Seja f(x) = O(g(x)) e g(x) = O(h(x)).
 - Mostre que f(x) = O(h(x))

Solução

If f(x) = O(g(x)), then there are positive constants c_1 and n'_0 such that

$$0 \le f(n) \le c_1 g(n)$$
 for all $n \ge n'_0$,

and if g(x) = O(h(x)), then there are positive constants c_2 and n''_0 such that

$$0 \le g(n) \le c_2 h(n)$$
 for all $n \ge n_0''$.

Set $n_0 = \max(n'_0, n''_0)$ and $c_3 = c_1 c_2$. Then

$$0 \le f(n) \le c_1 g(n) \le c_1 c_2 h(n) = c_3 h(n)$$
 for all $n \ge n_0$.

Thus f(x) = O(h(x)).

• Mostrar que x^4 -23 x^3 +12 x^2 +15x-21 = $\Theta(x^4)$

Solução

It is clear that when $x \geq 1$,

$$x^4 - 23x^3 + 12x^2 + 15x - 21 \le x^4 + 12x^2 + 15x \le x^4 + 12x^4 + 15x^4 = 28x^4$$
.

Also,

$$x^4 - 23x^3 + 12x^2 + 15x - 21 \ge x^4 - 23x^3 - 21 \ge x^4 - 23x^3 - 21x^3 = x^4 - 44x^3 \ge \frac{1}{2}x^4,$$

whenever

$$\frac{1}{2}x^4 \ge 44x^3 \Leftrightarrow x \ge 88.$$

Thus

$$\frac{1}{2}x^4 \le x^4 - 23x^3 + 12x^2 + 15x - 21 \le 28x^4, \text{ for all } x \ge 88.$$

We have shown that $f(x) = x^4 - 23x^3 + 12x^2 + 15x - 21 = \Theta(x^4)$.

Taxas de crescimento

- Algumas regras
 - log^kn = O(n) para qualquer constante k, pois logaritmos crescem muito vagarosamente

Pergunta

- Para qualquer algoritmo, pode-se dizer o que está abaixo?
 - $T(n) = O(\infty)$
 - $T(n) = \Omega(-\infty)$

Pergunta

 Para qualquer algoritmo, pode-se dizer o que está abaixo?

- $T(n) = O(\infty)$
- $T(n) = \Omega(-\infty)$

 Se sim, por que simplesmente não fazemos isso para todo algoritmo e pulamos para o próximo assunto da disciplina?

Funções e taxas de crescimento

As mais comuns

Função	Nome		
С	constante		
log n	logarítmica		
log ² n	log quadrado		
n	linear		
n log n	quadrática		
n ²			
n ³	cúbica		
2 ⁿ	exponencial		
a ⁿ			

Funções e taxas de crescimento

- Apesar de às vezes ser importante, não se costuma incluir constantes ou termos de menor ordem em taxas de crescimento
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes
 - As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes
- Não se diz que T(n) = O(2n²) ou que T(n) = O(n²+n)
 - Diz-se apenas $T(n) = O(n^2)$

- Um algoritmo tradicional e muito utilizado é da ordem de n^{1,5}, enquanto um algoritmo novo proposto recentemente é da ordem de n log n
 - $f(n)=n^{1,5}$
 - g(n)=n log n
- Qual algoritmo você adotaria na empresa que está fundando?
 - Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa

Exercício

- Uma possível solução
 - $f(n) = n^{1,5}$ $\square n^{1,5}/n = n^{0,5}$

 \Box (n^{0,5})² = n

- $g(n) = n \log n$ $\square (n \log n)/n = \log n$ $\square (\log n)^2 = \log^2 n$

 - Como n cresce mais rapidamente do que qualquer potência de log, temos que o <u>algoritmo novo</u> é mais eficiente e, portanto, deve ser o adotado pela empresa no momento

- Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa
- Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente
 - Com memória infinita, por simplicidade

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc.
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada
 - Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes

- Considera-se somente o algoritmo e suas entradas (de tamanho n)
- Para uma entrada de tamanho n, pode-se calcular T_{melhor}(n), T_{média}(n) e T_{pior}(n), ou seja, o melhor tempo de execução, o tempo médio e o pior, respectivamente
 - Obviamente, $T_{melhor}(n) \le T_{média}(n) \le T_{pior}(n)$
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento

- Geralmente, utiliza-se somente a análise do pior caso T_{pior}(n), pois ela fornece os <u>limites</u> para todas as entradas, incluindo particularmente as entradas ruins
 - Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente
 - Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas
 - Dá mais trabalho calcular o tempo médio
 - O melhor tempo n\u00e3o tem muita utilidade

Pergunta

- Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos
 - Qual a configuração do vetor que você imagina que provavelmente geraria o melhor tempo de execução?
 - E qual geraria o pior tempo?

- Soma da subseqüência máxima
 - Dada uma seqüência de inteiros (possivelmente negativos) a₁, a₂, ..., a_n, encontre o valor da máxima soma de quaisquer números de elementos consecutivos; se todos os inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta é 20 (soma de a₁ a a₃)

- Há <u>muitos algoritmos</u> propostos para resolver esse problema
- Alguns são mostrados abaixo juntamente com seus tempos de execução

Algoritmo Tempo	$\begin{array}{ c c }\hline 1\\ O(n^3)\\ \hline \end{array}$	$O(n^2)$	$O(n \log n)$	4 O(n)
n =10	0.00103	0.00045	0.00066	0.00034
n =100	0.47015	0.01112	0.00486	0.00063
n =1.000	448.77	1.1233	0.05843	0.00333
n =10.000	ND*	111.13	0.68631	0.03042
n =100.000	ND	ND	8.0113	0.29832

^{*}ND = Não Disponível

- Deve-se notar que
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos
 - Portanto, se somente entradas pequenas são esperadas, não devemos gastar nosso tempo para projetar melhores algoritmos
 - Para entradas grandes, o melhor algoritmo é o 4
 - Os tempos não incluem o tempo requerido para leitura dos dados de entrada
 - Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: <u>característica típica de algoritmos eficientes</u>

Gráfico (n x milisegundos) das taxas de crescimento dos 4 algoritmos com entradas entre 10 e 100.

Taxas de crescimento

Gráfico (n x segundos) dos 4 algoritmos para entradas maiores