CS 3186 --- Assignment #2

*Remember to write it out instead of typing so you can get practice and muscle memory $\overline{L} = L^{C}$

I) Give a formal definition with any notations for each of the following: Alphabet, String, Language, Concatenation of strings, Reverse of a string, Substring, Length of a string, Star-Closure of an alphabet, Positive Closure of an alphabet, Sentence of a language

Alphabet - An alphabet Σ is a finite, nonempty set of symbols

String - a finite sequence of symbols from an alphabet

Language - a set of strings

Concatenation of strings - The concatenation of strings u and v means appending the symbols of v to the right end of the symbols of u, denoted as uv

Reverse of a string - The reverse of a string (denoted as w) is denoted as w^R. w^R is the string with the same symbols in reverse order

Substring - Substring is a sequence of consecutive characters taken from the original string to make a new string

Star-Closure of an alphabet - Σ^* for an alphabet Σ , is the set of all strings obtained by concatenating zero or more symbols from the alphabet

Positive-Closure of an alphabet - Σ^+ , for an alphabet Σ , is the set of all strings from the alphabet Σ except (Lambda)

Sentence of a language - A string from a language is referred to as a sentence. For Language L: {a, aa, ab}, "a", "aa", "ab" are sentences

II) For a language L, describe the Complementation, and Star-Closure

Complementation - $L^{C} = \Sigma^{*} - L$

Star-Closure - $L^* = L^0 \cup L^1 \cup L^2 \cup ...$

III) Describe the relationship of Language, Grammar and Automata (over a given alphabet)

A language is a set of strings; a grammar is a set of rules used to define which symbols of an alphabet can be sequenced into strings of a language; and an automata is a mathematical model of a computer which can determine if a string is a part of a language.

IV) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar G.

$$\label{eq:V} \begin{split} V &= \{S,\,A,\,B\} \\ T &= \{a,\,b\}, \\ P &= \{ \\ S &\rightarrow A, \\ S &\rightarrow B, \\ B &\rightarrow bB, \\ A &\rightarrow aA, \\ A &\rightarrow \lambda, \\ B &\rightarrow \lambda \\ \} \end{split}$$

S is the start nonterminal

$$V = \{S, A, B\}$$

 $T = \{a, b\}$
 $S \Rightarrow A \mid B$
 $B \Rightarrow bB \mid \lambda$
 $A \Rightarrow aA \mid \lambda$
1) $S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow aa\lambda \Rightarrow aa$
2) $S \Rightarrow A \Rightarrow \lambda$
3) $S \Rightarrow B \Rightarrow bB \Rightarrow bbB \Rightarrow bbbB \Rightarrow bbbbA$
 $L(G) = \{a^n \mid b^n : n \geq 0\}$

V) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar

$$\label{eq:special} \begin{split} \textbf{S} &\rightarrow \textbf{aSaa} \mid \textbf{B} \\ \textbf{B} &\rightarrow \textbf{bB} \mid \lambda \end{split}$$

VI) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar

$$\mathsf{B} \to \mathsf{bB}$$

VII) Describe the operation of Automaton as an Acceptor

An automaton as an acceptor operates by taking an input then giving either a yes or no output.

VIII) Let $\Sigma = \{a,b\}$ L1 = $\{a,ab,abb\}$ L2 = $\{\lambda,b,bb\}$ Describe all the following languages as a set of strings.

(i)
$$L_3 = L_1 \cap L_2$$

(iii) L₃L₁

(iv) L₁L₂

$$L_1L_2 = \{a,ab,abb,abbb,abbbb\}$$

(vi) $|L_1|$ $|L_3|$

(vii)
$$|L_1|$$
 $|L_2|$

(viii) |L₁L₂|

(ix) L_1^R

(x) L_2^R

(xi) ∑*

(xii) L_2^{C}

(xiii) L_1^0

(xiv) L_1^{1}

$$L_1' = \{a, ab, aab\}$$

$$L_1^2 = \{a,ab,abh\} \{a,ab,abb\}$$

$$= \{aa,aab,aabb,\\abab,abab,\\abba,abbab\}$$

(xvi) L_2^2