FA_1 Rosales, Frances Aneth

No. 1 Problem:

GIVEN TABLE 2.14

Viewing Time Number of (minutes)	Number of (minutes) Students
300–399	14
400–499	46
500–599	58
600–699	76
700–799	68
800–899	62
900–999	48
1000–1099	22
1100–1199	6

(a) The upper limit of the fifth class

```
In [139... classes_interval_lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
    classes_interval_upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]

fifth_upper_class = classes_interval_upper[4]
    print("The upper limit of the fifth class:", fif_upp)
```

The upper limit of the fifth class: 799

(b) The lower limit of the eighth class

```
In [140... classes_interval_lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
    classes_interval_upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]
    eigth_lower_class = classes_interval_lower[7]
    print("The lower limit of the eighth class:", eigth_lower_class)
```

The lower limit of the eighth class: 1000

(c) The class mark of the seventh class

```
In [160...
          classes_interval_lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
          classes interval upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]
          Seventh_class_lower = classes_interval_lower[6]
          Seventh class upper = classes interval upper[6]
          midpoint_seventh_class = (Seventh_class_upper + Seventh_class_lower) / 2
          print("7th Lower Class:", Seventh_class_lower)
          print("7th Upper Class:", Seventh_class_upper)
          print("The class mark of the seventh class", midpoint_seventh_class)
         7th Lower Class: 900
         7th Upper Class: 999
```

The class mark of the seventh class 949.5

(d) The class boundaries of the last class

```
In [161...
          classes interval lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
          classes interval upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]
          last class lower = classes interval lower [8]
          last_class_upper = classes_interval_upper [8]
          midpoint_last_class = (last_class_upper + last_class_lower) / 2
          print("Last Lower Class:", last_class_lower)
          print("Last Upper Class:", last_class_upper)
          print("The class boundaries of the last class", midpoint_last_class)
        Last Lower Class: 1100
        Last Upper Class: 1199
        The class boundaries of the last class 1149.5
```

(e) The class-interval size

```
In [163...
          classes interval lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
          classes_interval_upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]
          interval class lower = (classes interval lower [8]-.5)#1100
          interval_class_upper = (classes_interval_upper [8]+.5) #1199
          interval_last_class = interval_class_upper-interval_class_lower
          print("Lower Class Interval:", interval_class_lower)
          print("Upper Class Interval :", interval_class_upper)
```

```
print("The class-interval size", interval_last_class)

Lower Class Interval: 1099.5

Upper Class Interval : 1199.5

The class-interval size 100.0
```

(f) The frequency of the fourth class

```
In [144... num_students = [14, 46, 58, 76, 68, 62, 48, 22, 6]
    fourth_num_students = num_students[3]
    print("The frequency of the fourth class", fourth_num_students)
```

The frequency of the fourth class 76

(g) The relative frequency of the sixth class

(h) The percentage of students whose weekly viewing time does not exceed 600 minutes

```
In [146...
    total_students_class600 = 0
    num_students = [14,46,58,76,68,62,48,22,6]

for i in range(3):
        total_students_class600 += num_students[i]

total_students = sum(num_students)

percent_wkly_600 = (total_students_class600/total_students)*100

print("600 below Class:", total_students_class600)
```

```
print("Total No. of Students:", total_students)
print("The percentage of students whose weekly viewing time does not exceed 600
600 below Class: 118
Total No. of Students: 400
The percentage of students whose weekly viewing time does not exceed 600 minutes: 29.5 %
```

(i) The percentage of students with viewing times greater than or equal to 900 minutes

(j) The percentage of students whose viewing times are at least 500 minutes but less than 1000 minutes

```
Least 500 but less than 1000 Class: 276 Total No. of Students: 400 The percentage of students with viewing times greater than or equal to 900 minute s: 69.0~\%
```

2.21

(a) a histogram

```
In [157...
          import matplotlib.pyplot as plt
          # Class interval boundaries
          classes_interval_lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
          classes_interval_upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]
          num students = [14, 46, 58, 76, 68, 62, 48, 22, 6]
          class_midpoints = [0] * 9
          for i in range(9):
              class_midpoints[i] = ((classes_interval_lower[i] + classes_interval_upper[i]
          plt.figure(figsize=(10, 6))
          plt.bar(class_midpoints, num_students, width=80, color='skyblue', edgecolor='bla
          plt.xlabel("Class Midpoints")
          plt.ylabel("Frequency")
          plt.title("Histogram")
          plt.xticks(class_midpoints, rotation=45)
          plt.grid(axis='y', linestyle='--', alpha=0.7)
          plt.show()
```


(b) Frequency Polygon

```
In [158... plt.figure(figsize=(8, 5))
    plt.plot(class_midpoints, num_students, marker='o', linestyle='-', color='blue')
    plt.xlabel("Class Midpoints")
    plt.ylabel("Frequency")
    plt.title("Frequency Polygon")
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.show()
```


2.22

(a) a relative-frequency distribution,

```
In [180...
    classes_interval_lower = [300, 400, 500, 600, 700, 800, 900, 1000, 1100]
    classes_interval_upper = [399, 499, 599, 699, 799, 899, 999, 1099, 1199]

    num_students = [14, 46, 58, 76, 68, 62, 48, 22, 6]

    total_data_points = sum(num_students)

    fre_each = [0] * 9

    for i in range(9):
        fre_each[i] = num_students[i] / total_data_points

for i in range(9):
        print(f"Relative Frequency {fre_each[i]:.4f}: {(fre_each[i])*100:.2f}%")
```

Relative Frequency 0.0350: 3.50%
Relative Frequency 0.1150: 11.50%
Relative Frequency 0.1450: 14.50%
Relative Frequency 0.1900: 19.00%
Relative Frequency 0.1700: 17.00%
Relative Frequency 0.1550: 15.50%
Relative Frequency 0.0550: 5.50%
Relative Frequency 0.0150: 1.50%

(b) a relative frequency histogram

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.bar(class_midpoints, fre_each, width=80, color='skyblue', edgecolor='black')
plt.xlabel("Class Midpoints")
plt.ylabel("Relative Frequency")
plt.title("Relative-Frequency Histogram")
plt.xticks(class_midpoints, rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


c. Create the relative-frequency polygon

```
In [152...
plt.figure(figsize=(10, 6))
plt.plot(class_midpoints, fre_each, marker='o', linestyle='-', color='orange')
plt.xlabel("Class Midpoints")
plt.ylabel("Relative Frequency")
plt.title("Relative-Frequency Polygon")
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```

