

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, Accredited by NAAC, NBA & Affiliated to Anna University)

NATURAL DISASTER INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

Project Report Submitted by

Eddagotti Anil raj (9985770378)

Lingireddy Mahanth Kumar reddy (8242527436)

Mangala Muni Vardhan (6309611043)

Madisetty Veera Bhaskar (9347868813)

BACHELORS OF ENGINEERING

(IN)

COMPUTER SCIENCE & ENGINEERING

TABLE OF CONTENTS

TITLE
FRODUCTION
DJECT OVERVIEW
RPOSE
TERATURE SURVEY
ISTING PROBLEM
FERENCES
OBLEM STATEMENT DEFINITION
EATION & PROPOSED SOLUTION
PATHY MAP CANVAS
ATION & BRAINSTORMING
OPOSED SOLUTION
OBLEM SOLUTION FIT
QUIREMENT ANALYSIS
NCTIONAL REQUIREMENT
N-FUNCTIONAL REQUIREMENTS
OJECT DESIGN
ΓA FLOW DIAGRAMS
LUTION & TECHNICAL ARCHITECTURE
ER STORIES

7.	CODING & SOLUTIONING
	FEATURE 1
	FEATURE 2

TESTING
TEST CASES
ACCEPTANCE TESTING
RESULTS
9.1 PERFORMANCE METRICS
ADVANTAGES & DISADVANTAGES
CONCLUSION
FUTURE SCOPE
APPENDIX
13.1 SOURCE CODE

INTRODUCTION

Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre- trained model and the type of disaster is identified and showcased on the OpenCV window.

Purpose

The purpose of this project to detect the natural disaster and reduce, or avoid, the potential losses from hazards, assure prompt and appropriate assistance to victims of disaster, and achieve rapid and effective recovery.

LITERATURE SURVEY

TITLE: A Deep Learning Approach of Recognizing Natural Disasters on Images.

PROPOSED WORK

First, this work introduces to the research community a new dataset for the joint classification of natural disaster types and intensity. Moreover, this study primarily aims to explore natural disasters recognition using a convolutional neural network and transfer learning. An open source tool is used for finding and removing the repeated images for analysis. Wildfire, Earthquake, Flood and Volcanic eruption are taken. In particular, this study attempts to build and train a lightweight convolutional neural network that can jointly recognize natural disaster types and intensity. Based on the intensity, it classifies as Severe, Moderate, Insignificant Lastly, this study attempts to measure the model performance using four performance measures; accuracy, precision, recall, and F1-Score.

TOOLS USED/ALGORITHM

- · Image Processing
- · Slope NDVI
- · Location API
- · Cloud Architecture
- · Google Earth Engine

· K-Means and Classification Algorithm

· RGB Scale

TECHNOLOGY: Artificial Intelligence

TITLE: Disaster Intensity-Based Selection of Training Samples for Remote Sensing

Building Damage Classification.

PROPOSED WORK

In this proposed work, two fully automatic procedures for the detection of

severely damaged buildings are introduced. The fundamental assumption is that samples

that are located in areas with low disaster intensity mainly represent non-damaged

buildings. Furthermore, areas with moderate to strong disaster intensities likely contain

damaged and nondamaged buildings. Under this assumption, a procedure that is based on

the automatic selection of training samples for learning and calibrating the standard

support vector machine classifier is utilized. The second procedure is based on the use of

two regularization parameters to define the support vectors. These frameworks avoid the

collection of labeled building samples via field surveys and/or visual inspection of optical

images, which requires a significant amount of time. The performance of the proposed

method is evaluated via application to three real cases. The resulted accuracy ranges

between 0.85 and 0.89, and thus, it shows that the result can be used for the rapid

allocation of affected buildings.

TOOLS USED/ALGORITHM

· Automatic labelling

· Building damage

· Multi regularization parameters

· Demand Parameter

· Support Vector Machine (SVM)

TECHNOLOGY: Machine Learning

TITLE: Hurricane Damage Detection using Machine Learning and Deep Learning

Techniques

PROPOSED WORK

In this proposed work, Disaster detection can be done through social media and

satellites. Images obtained from satellites are widely used since capturing and processing

of these images can be done in a shorter span of time. Satellite images help to recognize

damage pattern caused by the disasters. The images from social media are also useful

since they provide information on an immediate basis. Since manual methods are error-

prone, deep learning and machine learning are used which used for detecting the damage

caused by disasters effectively.

TOOLS USED/ALGORITHM

· Social-media

· Satellite imagery

· Deep learning techniques

· CNN,VGG-16, ResNet

· Machine learning techniques

· Support Vector Machine, Decision trees, random forest.

TECHNOLOGY: Machine Learning, Deep Learning

Existing Problem

Earlier we focus on post disaster relief and rehabilitation measures. Now the

focus is shifted. As per sec.2(e) of DM Act 2005, Disaster Management means a

coordination and integrated process of planning, organizing, coordinating, and

implementing measures which are necessary or expedient for-

(i) Prevention of danger or threat of any disaster

(ii) Preparedness to deal with any disaster

(iii) Prompt response to any threatening disaster situation or disaster

(iv) Assessing the severity or magnitude of effects of any disaster

(v) Evacuation, rescue, and relief

(vi) Rehabilitation and reconstruction

References

- 1. Mignan, A.; Broccardo, M. Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations. Seism. Res. Lett. 2020, 91, 2330–2342. [CrossRef]
- 2. Tonini, M.; D'Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [CrossRef]
- 3. Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [CrossRef]
- 4. Schlemper, J.; Caballero, J.; Hajnal, V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 2017, 37, 491–503. [CrossRef] [PubMed]
- 5. Tang, C.; Zhu, Q.; Wu, W.; Huang, W.; Hong, C.; Niu, X. PLANET: Improved convolutional neural networks with image enhancement for image classification. Math. Probl. Eng. 2020, 2020. [CrossRef]

Problem Statement Definition

People needs a way to classify and analyse the natural disaster so that they can prevent themselves from losses due to the disaster and millions of lives.

People and animals are facing so many issues like loss of life, property, resources and deterioration of the air quality due to the natural disaster. So we need to analyse and detect natural disaster and protect them from such disaster.

IDEATION & PROPOSED SOLUTION

Empathy Map Canvas

Ideation & Brainstorming

Braimbvm

Wi)te dawn any Ideas that corre to mind that addies \bullet yois piobtem statement.

You can select a sticky note and his the pencil (switch to

D

Al-based methods can be very effective if a training datBA covers very targe even is	To analyse the intent of disaster use CNN	. The proposed model should achieve high accuracy	Do a literature survey
To classify the disasters use ML models	Get insights from previous research works	Use CNNs they efficiently perform feature extraction	Using massive volumes of high quality dataset.

Infomiation from	To prevent	so«al media ذ	find out the victims
social media can be used as data	natural	considered as a main source of	of natural disasters using
sources to carry	disasters in		streaming
out disaster analysis	the future	big data	
prepare an outline on	Help the	to predict take	e some actian agaimt heavy loss of human ecological
how to approach the	victims of natural	future pro	oblem disaster sasters systems and

p r o

p e problem t y disasters systems and property

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go.
In the last 10 minutes, give each cluster a sentence-tike label. If a cluster is bigger
than six sticky notes, try and see if you and break it up into smaller sub-groups.

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

Grouping bases on dataset

Al-based methods can be very effective if a training dataset covers very large evene

Information from social media can be used as data sources to carry out disaster analysis

Using massive volumes of high quality dataset.

Social media is considered as a main source of big data

To analyse the Intent of disaster use cNN

Using

Grouping based on literature survey

Get insights from previous research

Do a literature survey

prepare an outline on how to approach the problem

high quality dataset.

prepare an out(ine on how to approach the problem

Grouping based on models

To analyse the intent of disaster use CNN

find out the natural disasters using streaming

Proposed solution

S. No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	People needs a way to classify and analyse the Disaster priorly so that they can protect themselves from losses due to the Disaster and Millions of Lives.,
2.	Idea/Solution description	This project uses Multi-layered Deep Convolutional Neural Network (pretrained) model to classify Natural Disaster and calculate the intensity of the Disaster.
3.	Novelty/Uniqueness	To reduce the issues due to imbalance structure of images, the model uses an integrated webcam to capture the video frame and test data is compared with pretrained data.
4.	Social impact/Customer Satisfaction	By the Application, economic damage caused by Disaster can be reduced. Detection of Natural Disaster will become easier while using videos in Deep CNN instead of images.
5.	Business Model (Revenue Model)	Multi-layered Deep Convolutional Neural Network Model.
6.	Scalability of the Solution	Highly expandible, dependable, reliable, scalable and has robustness.

REQUIREMENT ANALYSIS

Functional Requirement

FR	Functional	Sub Requirement (Story / Sub-Task)		
No.	Requirement(Epic)			
FR-1	Request Permission	Access permission from web camera.		
FR-2	Disaster Detection	Based on the webcam image, natural disaster is classified.		
FR-3	Accuracy	Since the training and testing images are huge, The accuracy is higher.		
FR-4	Speed	The generation of results from the input Images are faster.		
FR-5	Resolution	The resolution of the integrated web camera should be high enough to capturethe video frames.		
FR-6	User Interface	Maximizing the interaction in Web Designing Service.		

Non-Functional Requirement

NFR. No.	Non- Functional Requirement	Description	
NFR-1	Usability	User friendly and classify the disaster easily.	
NFR-2	Security	The model is secure due to the cloud deployment models and also there is no login issue.	
NFR-3	Reliability	Accurate prediction of the natural disaster and the website can also be fault tolerant.	
NFR-4	Performance	It is shown that the model gives almost 95 Percent accuracy after continuous training.	
NFR-5	Availability	The website will be made available for 24 hours.	
NFR-6	Scalability	The website can run on web browsers like Googlechrome, Microsoft edge and also it can be extended to the NDRFand customers.	

PROJECT DESIGN

Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data to be enter and leaves the system, what changes the information, and where data is stored.

Flow Diagram

Flow Diagram

Solution & Technical Architecture

Solution Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram

Flow Diagram

Technical Architecture

Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User interacts with application for the	HTML, CSS,
		detection	JavaScript,
		of any Natural disaster's intensity	Django,
		and classify which happened just	Python.
		before.	
3.	Disaster	This function is used to detect,	Decision
	Detection	Outcomes from	trees, Regression,
		the new trained data to perform new	Convolutio
		tasks and solve new problems.	nal Neural
			networks.
4.	Evaluation	It monitors that how Algorithm performs	Chi-Square,
	system	on data as	Confusion
		well as during training.	Matrix, etc.
5.	Input data	To interact with our model and give it	Application
		problems	programming
		to solve. Usually this takes the form	interface, etc.
		of an API, auser interface, or a	
		command-	
		line interface.	

6.	Data	Data is only useful if it's accessible, so	IBM Cloud,
	collection	itneeds to be stored ideally in a	SQLServer.
	unit	consistent structure and conveniently	
		inone place.	
7.	Database	An organized collection of data stored in	MySQL,
	management	database, so that it can be easily	DynamoDB etc.
	system	accessedand managed.	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	An open source framework is a	
	Frameworks	template for software development	Keras, Tensorflow.
		that is designed by a social network	
		of software developers. These	
		frameworks are free for public use	
		and provide the foundation for	
		building a software application.	
2.	Authentication	This keep sour models secure and	Encryption and
		makes sure only those who	Decryption
		havepermission can use them.	(OTP).

3.	Application	User uses mobile application and	Web
	interface	web application to interact with	Develop
		model	ment
			(HTML,C
			SS)
4.	Availability	Its include both online and offline	
	(both Online	work. As good internet connection	Caching, backend
	and Offline	is need for online work to explore	server.
	work)	the software perfectly. Offline work	
		includes the saved data to explore for	
		later time.	
5.	Regular	The truly excellent software product	
	Updates	needs a continuous process of	Waterfall
		improvements and updates.	Approach,
		Maintain your server and make sure	Incremental
		that your content is always up-to-	Approach,
		date. Regularly update an app and	Spiral Approach
		enrich it with new features.	
6.	Personalization	Software has features like flexible	
		fonts, backgrounds, settings, colour	• CSS
		themes, etc. which make a software	
		interface looks good and functional.	

User Stories

Functional	User	User Story / Task	Acceptance criteria
Requirement	Story		
(Epic)	Number		
Collection of	USN-1	As a user, I can collect the	Enough data collected
dataset		dataset for monitoring and	for training Model.
		analyzing.	
		. .	
Home Page	USN-2	As a user, I want to know	I can get the idea about the
		to about the basics of	Application.
		frequently occurring	
		Disasters.	
T .	TIGNI 0		Y
Intro page	USN-3	As a user, I want to about	I can get idea about
		the introduction of	the disaster and
		Disaster in particular	where it occurs.
		areas.	
Open webcam	USN-4	As a user, I adapt with the	I can capture a video or
		webcam to analyze and	image of particular disaster
		classify the Disaster from	to analyze and classify.
		video capturing	
Analysis of	USN-5	As a user, I can regulate	Model should be easy to
required		certain factors influencing	use & working fine from
phenomenon		the action and report on	the web app.
		past event analysis.	

Algorithm	USN-6	As a user, I can choose the	Selection must give the
selection		required algorithm for	better accuracy and better
		specific analysis.	output.
Training and	USN-7	As a user, I can train and	Training the model to
Testing		test the model using the	classify and analyze the
		algorithm.	intensity
Detection and	USN-8	As a user, I can detect and	I can capture a video or
analysis of data		visualize the data	image of particular disaster
		effectively.	to analyze and detect.
Model building	USN-9	As a user I can build with	Model should be predicting
		the web application.	occurrence of the disaster
			and intensity level of
			disaster.
Integrate the	USN-10	As a user, I can use Flask	Model should be easy to use
web app with the		app to use model easily	and working fine from the
AI Model		through web app.	web app.
Model	USN-11	As an administrator, I can	Model's prediction should
deployment		deploy the AI model in	be available for users to
		IBM Cloud.	make decision.

PROJECT PLANNING & SCHEDULING

Sprint planning & Estimation

Sprint	Functional	User	User Story / Task	Story
	Requirement	Story		Points
	(Epic)	Number		
Sprint-1	Collection of	USN-1	As a user, I can collect the dataset	5
	Dataset		for monitoring and analysing.	
Sprint-1	Home page	USN-2	As a user, I want to know to about	5
			the basics of frequently occurring	
			Disasters.	
Sprint-1	Intro page	USN-3	As a user, I want to about the	5
			introduction of Disaster in	
			particular areas.	
Sprint-1	Open webcam	USN-4	As a user, I adapt with the	5
			webcam to analyse and classify	
			the Disaster from video capturing.	
Sprint-2	Analysis of	USN-5	As a user, I can regulate certain	5
	required		factors influencing the action and	
	phenomenon		report on past event analysis.	

Sprint-2	Algorithm	USN-6	As a user, I can choose the	5
	selection		required Algorithm for specific	
			analysis.	
Sprint-2	Training and	USN-7	As a user, I can train and test the	10
	Testing		model using the algorithm.	
Sprint-3	Detection and	USN-8	As a user, I can detect and	10
	analysis of		visualise the data effectively.	
	data			
Sprint-3	Model	USN-9	As a user, I can build	10
	building		with the web application.	
Sprint-4	Integrate the	USN-11	As a user, I can use Flask app to	10
	web app		use model easily through web	
	with the AI		app.	
	model			
Sprint-4	Model	USN-12	As an administrator, I can deploy	10
	deployment		the AI model in IBM Cloud.	

Sprint Delivery schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	20	19 Nov 2022

Reports from Jira

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

CODING & SOLUTIONING

Feature 1

The project focuses on the analysis of intensity of Disaster for giving precautionary measures for the people living in the Danger zone.

It focuses on classifying the type of Disaster which oftenly occurs in that particular zone.

Feature 2

The accuracy of the project is improved more better than the previously submitted models.

The accuracy is improved by training and testing more images in the dataset.

CHAPTER 8 TESTING

Test cases

Test Case ID	Component	Test Scenario	Expected Result	Actual Result	Status
TC_001	Home Page	Verify user is able to see the Home page	Home page should Display	Working as expected	Pass
TC_002	Home Page	Verify the UI elements in Home page	Application should show below UI elements: Home page button Intro page button Open webcam button	Working as expected	Pass
TC_003	Home Page	Verify user is able to see the cards about Disaster	Application should show the cards about Disaster.	Working as expected	Pass
TC_004	Home Page	Verify user is able to navigate to the required page	Application should navigate to the Intro page	Working as expected	Pass
TC_005	Intro Page	Verify user is able to see the Intro page	Intro page should display	Working as expected	Pass
TC_006	Intro Page	Verify the UI Elements in Intropage	Application should show below UI elements: Home page Intro page Open webcam button	Working as expected	Pass

TC_007	Intro Page	Verify the user is able to see the introduction of the Disaster	Application should show the sentences about the Disaster	Working as expected	Pass
TC_008	Intro Page	Verify user is able to navigate to the required page	Application should navigate to the Open webcam page	Working as expected	Pass
TC_009	Webcam page	Verify user is able to see the webcam page	Webcam page is displayed	Working as expected	Pass
TC_010	Webcam page	Verify the Emergency pull button is visible while the webcam is not connected	Application should show below UI elements: a. Emergency pull button	Working as expected	Pass
TC_011	Webcam page	Verify user is able to see the output window	Application should detect the type of Disaster from the real time video	Working as expected	Pass

User Acceptance Testing

It is to briefly explain the test coverage and open issues of the natural disasters intensity analysis and classification using artificial intelligence project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	2	3
Duplicate	1	0	0	0	1
External	0	0	0	0	0
Fixed	1	0	0	2	3
Not	0	0	0	0	0
Reproduce					
Skipped	0	0	0	1	1
Won't Fix	0	0	0	0	0
Totals	3	0	0	5	8

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested.

Section	Test Cases	Not Tested	Fail	Pass
Home Page	4	0	0	4
Intro Page	4	0	0	4
Open Webcam	3	0	0	3

RESULTS

Performance Metrics

The nature disaster intensity analysis and classification with test data and train data has been executed successfully. The model has been trained over 1000+ images and the model have an accuracy of nearly 99% and the model has been tested withthe data which is separate from the trained data and has predicted the data well.

Output of application

HOME PAGE

INTRODUCTION PAGE

China, India and the United States are among the countries of the world most affected by natural disasters.

Natural disasters have the potential to wreck and even end the lives of those people, who stand in their way. However, whether or not you are likely to be affected by a natural disaster greatly depends on where in the world you live, The objective of the project is to human build a web application to detect the type of disaster. The input is taken from the in built web cam, which in turn is given to the pre trained model.

The model predicts the type of disaster and displayed on UI.

WEB CAM

DETECTION OF NATURE DISASTER

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- 1. The proposed model will be used as a real time natural disaster detection model and provide some upcoming predictions for future disasters.
- 2. The model is to detect and classify the type of disaster and The model have a high accuracy rate (99.33).
- 3. The model was used to prevent natural disasters in the future and model can be used to predict future disasters and take some action against heavy loss of human ecological systems and property.
- 4. The proposed system helps to reduce the impact of hazards occur during natural disaster. This provides an efficient way to warn and educate people about disaster prone areas.
- 5. It will help us be prepared in times of disaster

DISADVANTAGES

- 1. The resultant model unable to validate the model performance under uncontrolled conditions.
- 2. The model cannot be used for various natural disaster

CONCLUSION

It focused how image from given dataset (trained dataset) in field and past data set used predict the pattern of different nature disaster using CNN model. In the system had applied different type of CNN compared the accuracy. The natural disaster in Indonesia frequently happened, due to the geographical position of the country. Thus, natural disasters mostly occurred as an impact of the natural condition. However, the weather and climate condition has also influenced and triggered the disasters.

FUTURE SCOPE

In the future, the research will be continued to obtain the data from all over the country, not only west java province, and with the use of more complete analysis, so that the government or related institution could make a better anticipation work as a mitigation effort.

APPENDIX

T 40		101		
Incorting	necessary		nraria	c
	iiccessai v		ui ai ic	D

import numpy as np #used for numerical analysis
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.models import Sequential #it is a plain stack of layers
from tensorflow.keras import layers #A layer consists of a tensor-in tensor-out
computation function

#Dense layer is the regular deeply connected neural network layer

from tensorflow.keras.layers import Dense,Flatten

#Faltten-used fot flattening the input or change the dimension

from tensorflow.keras.layers import Conv2D,MaxPooling2D #Convolutional layer

#MaxPooling2D-for downsampling the image

 $from\ keras.preprocessing.image\ import\ ImageDataGenerator$

tensorflow._version____
tensorflow.keras._version____

Image Data Augumentation

#setting parameter for Image Data agumentation to the training data

train_datagen =

ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)

#Image Data agumentation to the testing data

test_datagen=ImageDataGenerator(rescale=1./255)

Loading our data and performing Data Augumentation

#performing data agumentation to train data

x_train=train_datagen.flow_from_directory(r'C:\Users\vasanth\Desktop\IBM Project\dataset\train_set',target_size=(64, 64),batch_size=5,

color_mode='rgb',class_mode='categorical')

#performing data agumentation to test data

 $x_test=test_datagen.flow_from_directory(r'C:\Users\vasanth\Desktop\IBM\\ Project\dataset\test_set',target_size=(64, 64),batch_size=5,$

color_mode='rgb',class_mode='categorical')

print(x_train.class_indices)#checking the number of classes

```
print(x_test.class_indices)#checking the number of classes
```

from collections import Counter as c

c(x_train .labels)

Creating the Model

Initializing the CNN

classifier = Sequential()

First convolution layer and poolingo

```
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
```

 $classifier.add(MaxPooling2D(pool_size=(2,\ 2)))$

classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))

Second convolution layer and pooling

classifier.add(Conv2D(32, (3, 3), activation='relu'))

```
convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
#Flattening the layers
classifier.add(Flatten())
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=4, activation='softmax')) # softmax for more than 2
classifier.summary() #summary of our model
# Compiling the Model
# Compiling the CNN
#categorical_crossentropy for more than 2
classifier.compile(optimizer='adam', loss='categorical_crossentropy',
```

metrics=['accuracy'])

#input_shape is going to be the pooled feature maps from the previous

```
# Fitting the Model
classifier.fit_generator(
     generator=x_train,steps_per_epoch = len(x_train),
        epochs=10, validation data=x test, validation steps = len(x test))# No of
images in test set
# Saving the Model
classifier.save('disaster.h5')
model_json = classifier.to_json()
with open("model-bw.json", "w") as json_file:
  json_file.write(model_json)
# Predicting Results
from tensorflow.keras.models import load model
from keras.preprocessing import image
model = load_model("disaster.h5") #loading the model for testing
img=image.load_img(r"C:\Users\vasanth\Desktop\IBMProject\dataset\test_set\Cyc
lone\921.jpg",grayscale=False,target size= (64,64)) #loading of the image\n
```

 $x = image.img_to_array(img)$ #image to array\n'',

 $x = np.expand_dims(x,axis = 0)$ #changing the shape\n'',

```
pred = model.predict_classes(x)#predicting the classes\n'',
pred
index=['Cyclone','Earthquake','Flood','Wildfire']
result=str(index[pred[0]])
result
Links to find files, documents and result related to this project,
GitHub: https://github.com/ IBM-EPBL/IBM-Project-32459-
```

1660210022.