Contact: 1p2528@nyu.edu Sep. 18th, 2020

CSCI-SHU 220 - Algorithms

Recitation 1

Hand-written notes during recitation will be available at:

https://www.dropbox.com/sh/x1z104c22d51pox/AACiJdDSKe2SDZw3qNljNApka?dl=0

A. Asymptotics: a review

• Why asymptotics?) In short:

Historical point of view: check the paper of Donald E. Knuth: ¹

"On the basis of the issues discussed here, I propose that members of SIGACT,² and editors of computer science and mathematics journals, adopt the O,Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

• Big-O notation in English words:

T(n) = O(f(n)) if and only if T(n) is eventually bounded above by a constant multiple of f(n).

Note: by a *constant* multiple we mean some number independent of n.

A set-theoretical view: O(f(n)) is the set of all functions which are eventually bounded above by f(n). By T(n) = O(f(n)) it means that $T(n) \in O(f(n))$.

• Big-O notation in mathemathcal words:

T(n) = O(f(n)) if and only if there are positive constants c and n_0 such that

$$T(n) \le c \cdot f(n)$$
, for all $n \ge n_0$. (1)

A game-theoretical view: if you want to prove O(f(n)), then your task is to choose the constants c and n_0 such that (1) holds whenever $n \ge n_0$. Think of it as a contest between you and an opponent. You go first, and have to commit to constants c and n_0 . Your opponent goes second and can choose any integer n that is at least n_0 . You win if (1) holds; your opponent wins if the opposite inequality $T(n) > c \cdot f(n)$ holds.

B. Exercises

- 1. Describe Θ and Ω notations in English words.
- 2. Suppose $T(n) = a_k n^k + \cdots + a_1 n + a_0$, where k is a non-negative integer and the a_i 's are real numbers. Prove that $T(n) = O(n^k)$.
- 3. Let $k \ge 1$ be a positive integer and let $T(n) = n^k$. Prove that T(n) is not $O(n^{k-1})$.
- 4. For $T(n) = 2^{n+100}$, prove or disprove: $T(n) = O(2^n)$.
- 5. For $T(n) = 2^{100n}$, prove or disprove: $T(n) = O(2^n)$.
- 6. Let f and g denote functions from the positive integers to the non-negative real numbers, and define $T(n) = \max(f(n), g(n))$ for each n > 1. Prove that $T(n) = \Theta(f(n) + g(n))$.
- 7. Let f and g be non-decreasing real-valued functions defined on the positive integers, and $f(1) \ge 1$ and $g(1) \ge 1$. Prove or disprove that $f(n) = O(g(n)) \Rightarrow 2^{f(n)} = O(2^{g(n)})$.

¹Donald E. Knuth, "Big Omicron and Big Omega and Big Theta," SIGACT News, Apr.-June 1976, page 23. Reprinted in *Selected Papers on Analysis of Algorithms* (Center for the study of Language and Information, 2000).

²SIGACT is the special interest group of the ACM (Association for Computing Machinery) that concerns theoretical computer science, and in particular the analysis of algorithms.

³Before the adoptation of the big-O notation, Knuth used $(\leq f(n))$ to denote the set of all functions which are eventually bounded above by f(n), and you can guess what $(\sim f(n))$ and $(\geq f(n))$ are.

- 8. Arrange the following functions in order of increasing growth rate, with g(n) following f(n) in your list if and only if f(n) = O(g(n)).
 - a) $n^2 \log_2 n$
 - b) 2^n
 - c) 2^{2^n}
 - d) $n^{\log_2 n}$
 - e) n^2
- 9. Prove that

$$\log(n!) = \Theta(n\log n). \tag{2}$$

Hint: To show an upper bound, compare n! with n^n . To show a lower bound, compare it with $(n/2)^{n/2}$.

10. Prove that

$$\sum_{k=1}^{2^{n}} \frac{1}{k} = \Theta(n). \tag{3}$$

C. The watermelon problem.

Let us go back to the watermelon problem in mathematical terms.

- (a) What is the maximum number L_n of 2D regions defined by n lines of \mathbb{R}^2 ? Examples: $L_1 = 2, L_2 = 4, L_3 = 7$. Hint: find a relation between L_n and L_{n-1} .
- (b) What is the maximum number P_n of 3D regions defined by n parallel planes of \mathbb{R}^3 ?
- (c) Next we will ask you for the maximum number P_n of 3D regions defined by n planes of \mathbb{R}^3 . Think the moment when you have n-1 planes and you are going to add a new one to obtain the regions defined by those n planes. At most how many lines does the newly added plane contain as the intersections with other n-1 planes? What is the maximum number of 2D regions defined by those lines?
- (d) What is the maximum number P_n of 3D regions defined by n planes of \mathbb{R}^3 ?

D. LATEX.

To start with, read this:

https://tobi.oetiker.ch/lshort/lshort.pdf

The following link is useful when you try to find some mathematical symbols.

https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject