ALPhA Summer Week 5 Presentation

BRADEN KRONHEIM
JULY 1, 2019

Summary

- Generated heatmaps of cross sections as a function of two variables
- Got Softsusy up and running
 - 2/3 of parameter combinations create tachyons, meaning a negative mass squared
 - These are not allowed
- Trained a neural network to predict whether a specific parameter combination creates tachyons
 - Examined impact of each parameter on tachyon creation

Most important variables for cross section: wino, higgsino, A_t, M_tR, M_q1L

Most important variable (cont.)

Tachyons

- Around 2/3 of parameter combinations fed into softsusy give tachyons, or particles with negative squared mass
 - ► These are not allowed, so they give an easy way to remove a lot of parameter combinations
- Trained a normal neural network as a classifier

Metric	Value
Precision	0.964
Recall	0.973
F1	0.969

	Not a tachyon	Tachyon
Tachyons not predicted	30,662	2,432
Tachyon predicted	1,758	65,148

Parameter distribution without tachyons

Cross Section Distribution

Goals for next week

- Examine impact of removing tachyons on heatmaps
- Generate mass data from softsusy and train neural networks on it
 - Possible network ideas are for the lightest super symmetric particle, the lightest neutral higgs mass, or just all of the masses