

## 딥러닝팀

## 1팀

정승민 변석주 이정환 송승현 최용원

## CONTENTS

1. 자연어

2. RNN

3. RNN 모델의 응용

4. 마무리



1

자연어

## 자연어

Natural Language



일상생활에서 사용하는 언어를 인공적으로 만들어진 인공어와 구분하는 개념



## 자연어 처리

Natural Language Processing (NLP)



자연어를 컴퓨터가 이해할 수 있는 형태로 변환하는 작업 감성 분석, 챗봇, 기계번역, 자동요약에 사용됨

## 자연어의 특징



자연어는 순서가 달라질 경우 의미가 손상되는 <mark>순차적인</mark> 데이터 RNN은 자연어의 순차적인 특징 반영

"마감시간이 끝나기 전에 과제를 끝냈다."

"과제가 끝나기 전에 마감시간이 끝났다."



형태가 유사하더라도 완전히 다른 의미 가질 수 있음

경제 / 결제 , 지양 / 지향

## 자연어의 특징



#### 오호성 🔆



표현의 중의성

"차를 마시러 공원에 가는 차 안에서 나는 그녀에게 차였다."



'차'는 각각 의미가 다른 동음이의어



문장 내 정보의 부족 문제

"나는 철수를 안 때렸다."



🐃 정보 생략으로 문장 해석의 어려움

대응 형태의 다양성

## 자연어의 전처리

정제 (Cleaning)

#### 텍스트 데이터의 의미 분석에 필요하지 않은 변수 제거

Apple | apple → 같은 의미 US (미국) | us (우리) → 다른 의미



\_\_\_\_ 코퍼스(corpus): 정제의 대상이 되는 전체 문장 데이터 집합

필요한 부분에 한해 대문자를 남기고 소문자를 제거하는 과정 진행

## 자연어의 전처리

토큰화 (Tokenize)



Let's tokenize! Isn't this easy?

코퍼스를 의미를 가지는 최소 단위로 잘게 쪼개는 과정

토큰 (token): 의미를 가지는 최소 단위

## 자연어의 전처리

토큰화 (Tokenize)

```
print('단어 토큰화1 :',word_tokenize("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
```

```
단어 토큰화1 : ['Do', "n't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', ',', 'Mr.', 'Jone', "'s", 'Orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop', '.']
```



가장 기본적인 토큰화 함수 띄어쓰기 단위와 구두점 기준으로 토큰화 진행

@nltk - WordPuncTokenizer() 함수는 구두점 별도 분리

1

#### 자연어

## 자연어의 전처리

토큰화 (Tokenize)

```
print('단어 토큰화3 :',text_to_word_sequence("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
```

```
단어 토큰화3 : ["don't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', 'mr', "jone's", 'orphanag e', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop']
```



대문자를 소문자로 일괄 변환 구두점 제거

자연어의 전처리 토큰화 (Tokenize)



pri t('단어 토큰화3 :',text\_to\_word\_sequence("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))

#### 라이브러리와 함수에 따라 여러 방식의 토큰화 가능

단어 로큰화3 : ["don't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', 'mr', "jone's", 'orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop']



정의와 목적에 따라 다양한 방식의



대문자를 소문자로 일괄 변환

구두점 제거

## 자연어의 전처리

한국어의 토큰화

#### 한국어의 특징



어간에 접사가 붙어 단어를 이루고, 의미와 문법적 기능이 더해지는 교착어

어간 '가-' + 접사 '-ㅆ다' = 단어 '갔다'



한국어의 토큰화

형태소 (morpheme) 단위로 토큰화 진행

#### **Word Vector**

One-hot-vector

단어 집합 (vocabulary)

이산적인 단어의 의미를 표현하기 위해 서로 다른 단어들을 중복하지 않고 모아 놓은 집합



One-hot-encoding

One-hot-vector

N개의 단어를 각각 N개 차원의 벡터로 표현한 것

1

#### 자연어

## **Word Vector**

One-hot-encoding

One-hot-encoding

표현하고 싶은 단어의 index에는 1을, 나머지에는 0을 넣는 방법

희소표현: 벡터 또는 행렬의 값이 대부분 0으로 표현되는 방법

hotel = [ 0 0 0 1 0 0 0 0 0 0 ]

motel = [000001000]



서로 직교 (orthogonal) 하기 때문에 유사성 찾을 수 없음

→ 검색 결과에 반영 어려움



#### Word Vector

One-hot-encoding



One-hot-encoding

눈을 의심

표현하고 싶은 단어의 index에는 1을, 나머지에는 0을 넣는 방법 N개의 차원 형성으로 인해 차원의 저주



## 유의미한 정보가 있는 공간이 적음 → 공간 낭비 문제



motel = [0000001000]

서로 직교 (orthogonal) 하기 때문에 유사성 찾을 수 없음
→ 검색 결과에 반영 어려움

## Word Vector

Word Embedding

밀집 표현

모든 단어의 벡터 차원을 사용자가 설정한 값으로 맞춤

→ 실수 값으로 벡터 구성

 $hotel = [0.7 \ 0.3 \ 0.1 \ 0.5]$ 

차원 = 4인 밀집 벡터

 $motel = [0.5 \ 0.1 \ 0.3 \ 0.6]$ 

**Word Embedding** 

밀집 벡터의 각 요소로 서로 다른 특징 표현

의미를 고려하여 텍스트 구분



단, 각요소의 의미는 알 수 없음

## Word Vector

Word2Vec

"비슷한 위치에 등장하는 단어는 비슷한 의미를 가진다"

**CBow** 

주변의 단어들을 입력으로 사용하여 중간에 있는 단어 예측하는 방법

Skip-gram 성능이 좋아 더 많이 사용

중간에 있는 단어를 입력으로 사용하여 주변 단어들을 예측하는 방법





## **Word Vector**

Word2Vec - Skip\_gram



## **Word Vector**

Word Embedding



제한된 문장 안에서 여러 번 학습 진행하여 <mark>임베딩 벡터</mark> 생성 단어가 고차원의 한 점으로 표시되어 벡터 간 연산 가능

# 2

## RNN

2 RNN

#### RNN (Recurrent Neural Network)



**RNN** 

순차적인 자료 처리하는 신경망 매개변수 공유를 통해 가변 길이 순차열 처리 가능

입력 데이터의 길이가 다른 데이터 학습 가능

#### RNN (Recurrent Neural Network)

계산 그래프 펼치기

#### -- 점화식 구조 ----

$$a_{n+1} = f(a_n), \qquad n = 1, 2, \cdots$$

#### RNN

$$s^{(t)} = f(s^{(t-1)}; \theta)$$
  
노드의 상태 (state)



점화식 구조로 이전 항을 통해 다음 항 구조를 파악할 수 있음

#### RNN

## RNN (Recurrent Neural Network)

계산 그래프 펼치기

 $s^{(t-1)}$ 이 f 를 거쳐  $s^{(t)}$  가 됨



 $s^{(t)}$ 가 f 를 거쳐  $s^{(t+1)}$  이 됨



너무하심..

$$s^{(t+1)} = f(s^{(t)}; \theta) = f(f(s^{(t-1)}; \theta); \theta)$$

위 수식은 자기 자신의 과거 정보만을 반영

→ 현재 시점의 외부 정보 반영 필요

#### RNN

#### RNN (Recurrent Neural Network)

계산 그래프 펼치기

손실이 있는 과거 요약 함수
$$h^{(t)}=fig(h^{(t-1)},x^{(t)}; hetaig)$$

과거시점의 정보  $(h^{(t-1)})$  + 현재 시점의 정보  $(x^{(t)})$  사용

 $h^{(t-1)}$  : RNN의 hidden layer 이전 시점의 데이터를 기억하는 메모리 셀(memory cell)



$$h^{(t)} = g^{(t)}(x^{(t)}, x^{(t-1)}, x^{(t-2)}, \dots, x^{(2)}, x^{(1)})$$
$$= f(h^{(t-1)}, x^{(t)}; \theta)$$

2 RNN

#### Vanilla RNN



시간 순서의 데이터를 학습함에 있어 하나의 Layer 반복 사용  $\rightarrow h^{(t)}$ 는 1 ~ t 시점의 모든 데이터를 반영

#### RNN

## Vanilla RNN

작동 원리



 $h^{(t)}$  : Memory Cell

활성화 함수 : tanh

 $x^{(t)}$  : 입력

작동 원리



$$y^{(t-1)}$$
와  $x^{(t)}$ 는 같은 단어를 가짐 ex) 나는 오늘 어제의 너를 만난다 나는  $(x^{(1)}) + (2) = y^{(2)}$  이산형 출력자 Softmax 함수 사용

h<sup>(t)</sup>: Memory Cell 활성화 함수 : tanh

 $\mathbf{x}^{(t)}$  : 입력

'어제의'(y<sup>(2)</sup>)와 비교

'어제의' $(y^{(2)})$ 는 다시 입력 $(x^{(3)})$ 으로

단계별 수식

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

$$h^{(t)} = tanh(a^{(t)})$$

$$o^{(t)} = c + Vh^{(t)}$$

$$\widehat{y^{(t)}} = softmax(o^{(t)})$$

 $a^{(t)}$  = 이전 단계의 입력 및
hidden state의 가중치 합  $h^{(t)} = a^{(t)}$  를 바탕으로 도출한
현재 시점의 hidden state  $o^{(t)}$  = t 시점의 출력 결과  $\widehat{y^{(t)}}$  =  $o^{(t)}$  를 softmax 함수에 통과

매개 변수 : 편향 벡터(b,c) + 가중치 행렬(W,U,V) 시점에 의존하지 않는 모습 순전파 과정에서 매개변수는 공유되면 변하지 않음!

단계별 수식

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

$$h^{(t)} = tanh(a^{(t)})$$

$$o^{(t)} = c + Vh^{(t)}$$

$$\widehat{y^{(t)}} = softmax(o^{(t)})$$



 $\tanh(x) = 2\sigma(2x) - 1$ 

활성화함수 :  $tanh (0 \le |h^{(t)}| \le 1)$ 

다음 단계로 전달될 정보를 효과적으로 표현 가능

ReLU: RNN의 순환구조로 인해 값이 발산할 수 있기 때문에 부적절

손실 함수

$$L(\{x^{(1)}, ..., x^{(\tau)}\}, \{y^{(1)}, ..., y^{(\tau)}\})$$

$$= \sum_{t} L^{(\tau)}$$

$$= \sum_{t} -\log(\hat{y}_{y^{(t)}}^{(t)})$$



각 시점의 손실 함수의 총합

## 역전파 (Back Propagation)

BPTT, Truncated BPTT

#### **BPTT**



#### **Truncated BPTT**



모델을 통해 해결하고자 하는 문제, Sequential Data의 크기에 따라 다르게 정의 2 RNN

#### **BPTT**

back-propagation through time



매 시점마다 출력이 반환되는 형태의 RNN에서 활용 매 시점마다 손실함수 계산 가능

#### **BPTT**

back-propagation through time





gradient를 계산해 첫 시점의 입력까지 역전파를 진행

2 RNN



# Truncated BPTT



Sequential Data를 일정한 구간으로 끊어 구간마다 BPTT 진행

### 완전 연결 그래프 모형

Sequential 데이터에 대한 모델



$$P(Y) = P(y^{(1)}, \dots, y^{(\tau)}) = \prod_{t=1}^{\tau} P(y^{(t)}|y^{(t-1)}, y^{(t-2)}, \dots, y^{(1)})$$

 $y^{(t)}$  : 이전 모든 시점의 y에 대해 영향을 받음

Data의 길이가 길어지면 매우 비효율적

# 완전 연결 그래프 모형

Sequential 데이터에 대한 모델



### Hidden state를 통한 매개변수의 공유로 해결



Data의 길이가 길어지면 매우 비효율적

# 장기 의존성 문제

Long-Term Dependency Problem

단어 간의 거리가 가까워 붉은 상자의 단어를 효과적으로 예측

The clouds are in the sky
vs

I grew up in France ... when i was young ...
I speak Fluent French

단어 간의 거리가 멀어 붉은 상자의 단어 예측이 어려움

Vanilla RNN의 문제

 tanh(x)로 인해 결과값이 점차 작아짐

 Sequential 데이터의 길이에 취약

 모델이 장기 기억을 제대로 처리하지 못하는 것

### LSTM

Long Short-Term Memory

 $h^{(t)}$  (hidden state) : 데이터 전반의 정보 포괄적 담당 사람의 기억이 장기와 단기로 구분된 것에서 착안

 $h^{(t)}$  (hidden state)

.STM

: 단기 기억 담당

 $c^{(t)}$  (cell state)

: 장기 기억 담당

데이터를 장기와 단기로 구분 기존 RNN의 <mark>장기 의존성 문제</mark>를 해결!



# LSTM

LSTM의 구조



 $c^{(t)}$  : 많은 연산 없이 다음 time-step으로 정보 전달

# LSTM

### LSTM의 구조



Gate

각각의 State에 어떤 값을 저장할지 정해주는 3가지 Gate 존재

Forget, Input, Output!

### LSTM

LSTM의 구조



### **Forget Gate**

이전 시점의 hidden state  $h^{(t-1)}$ 와 현재 시점의 입력  $x^{(t)}$ 를 가중치  $W_f$ 와 곱해 시그모이드 통과시켜 Cell State로 전달

# LSTM

LSTM의 구조





과거의 정보를 얼마나 잊을지 결정하는 역할

### LSTM

LSTM의 구조



이전 시점의  $h^{(t-1)}$ 와 현재 시점의 입력  $x^{(t)}$ 를 가중치  $W_i$ 와 곱해 시그모이드 통과시켜  $i^{(t)}$ 로 변환

# LSTM

LSTM의 구조





현재의 정보를 얼마나 기억할지 결정하는 역할

# LSTM

LSTM의 구조



이전 시점의  $h^{(t-1)}$ 와 현재 시점의 입력  $x^{(t)}$ 를 가중치  $W_g$ 와 곱해 tanh 통과시켜  $g^{(t)}$ 로 변환

# LSTM

LSTM의 구조



현재의 정보 중 어떤 정보를 Cell State에 전달할지 결정

# LSTM

LSTM의 구조



현재 시점의 Cell State와 이전 시점의 정보들을 바탕으로 현재 시점의 hidden state 결정

# LSTM

LSTM의 구조



### LSTM

Gate의 수식과 의미



$$f_t = \sigma(W_f \times [h^{(t-1)}, x^{(t)}] + b_f)$$

$$o_t = \sigma(W_o \times [h^{(t-1)}, x^{(t)}] + b_o)$$

$$i_t = \sigma(W_i \times [h^{(t-1)}, x^{(t)}] + b_i)$$

Forget Gate: 과거의 정보를 얼마나 잊을지 결정

Input Gate: 현재의 정보를 <mark>얼마나</mark> 기억할지 결정

Output Gate: 현재까지의 정보들 중 어떤 정보들을

얼마나 활용할 것인지 결정

### **LSTM**

Gate의 수식과 의미



$$f_t = \sigma(W_f \times h^{(t-1)}, x^{(t)} + b_f)$$

$$o_t = \sigma(W_o \times h^{t-\frac{1}{2}}, \chi^{t+\frac{1}{2}} + b_o)$$

0~1 사이의 출력값을 갖는

시그모이드 함수를 통해 반영

Forget Gate:(일종의상반영 비율) 잊을지 결정

Input Gate: 현재의 정모를 <mark>얼마나</mark> 기억알지 결정

Output Gate: 현재까지의 정보들 중

어떤 정보들을 <mark>얼마나</mark> 활용할 것인지 결정

### LSTM



 $i_t$ : 현재의 정보를 얼마나 기억할지 결정

 $g_t$ : 현재의 정보 중 어떤 정보를 Cell State에 전달할 것인지

### **LSTM**

작동 과정

$$g^t = tanh(W_h \times [h_{t-1}, x_t] + b_i)$$

'어떤' 정보를 표현하기 위해서 tanh 함수를 사용

$$\begin{cases} x_t, h_{(t-1)} \\ g_t \\ C_t \end{cases}$$

 $i_t$ : 현재의 정보를 얼마나 기억할지 결정

 $g_t$ : 현재의 정보 중 어떤 정보를 Cell State에 전달할 것인지

### **LSTM**

작동 과정

 $C_t$  계산

이전 시점의 Hidden State와 현 시점의 입력을 바탕으로 현 시점 Cell State 정의

$$C_t = f_t \times C_{t-1} + i_t \times g_t$$

Forget Gate와 Input Gate의 출력을 바탕으로

현 시점 Cell State의 값 결정

 $h_t$  계산

$$h_t = o_t \times \tanh(C_t)$$

정의된 Cell State( $C_t$ )와 이전 시점의 정보( $o_t$ )들을 활용하여 현 시점의 Output이자 현 시점의 Hidden State를 결정

# GRU (Gated Reccurent Unit)



LSTM의 구조를 간소화한 모델 Cell State가 없어지고 Gate의 구조가 변경됨

# GRU의 구조



두벡터의 concatenation 
$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$
  $\widetilde{h_t} = \tanh(W \cdot [r_t * h_{t-1}, x_t])$ 

 $r_t$ : 리셋 게이트 이전 시점의 정보를 얼마나 유지할지 결정

# GRU의 구조



$$z_{t} = \sigma(W_{z} \cdot [h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \widetilde{h_{t}}$$

Forget Gate와 Input Gate를 합친 개념

 $z_t$ : 업데이트 게이트

이전 시점과 현재 시점의 Hidden State의 반영 비율 결정



# 3

# RNN 모델의 응용

### Encoder와 Decoder



Encoder

인풋데이터를 압축하는 역할 Decoder

압축된 데이터를 받아 의미있는 정보로 변환하는 역할

# Seq2Seq

Encoder/Decoder에 RNN 적용



LSTM 마지막 셀의 Hidden State 입력 문장의 문맥 정보를 담고 있음

# Seq2Seq



Context Vector를 입력 받아 매 시점마다 예측 단어 출력이전 시점의 출력을 입력으로 사용



Seq2Seq

Encoder Decoder가 예측을 잘못하게 될 경우

전체의 학습 과정이 저해됨



Cont Decoder의 입력에 실제 정답 사용들력

이전 시점의 출력을 입력으로 사용

# Seq2Seq의 문제점



# Encoder에서 문장의 의미를 하나의 압축된 벡터를 사용하므로 두 가지 문제 발생

병목현상(Bottleneck Problem)

전체 입력 데이터를 고정된 길이의 벡터로 압축하여 정보의 손실 발생 Gradient Vanishing Problem

RNN에서 Cell이 늘어날수록 기울기 소실 문제 심화

### **Attention**

**Dotproduct Attention** 



어떤 Hidden State에 집중해야 하는가를 반영

### **Attention**

**Dotproduct Attention** 



코사인 유사도를 통해 집중의 정도 측정 즉, 두 벡터가 얼마나 유사한가를 계산

$$x \cdot y = x^T y = \cos\theta |x| |y|$$

**Dotproduct Attention** 



$$A \Rightarrow x^T y = \cos\theta |x| |y|$$

$$A \Rightarrow \cos\theta = \frac{x^T y}{|x||y|} = Corr(x, y)$$

두 백터 사이각의 코사인은

즉, 두 <mark>쌍관관계와 같다</mark>를 계산

### Attention의 진행과정

Attention Score 계산



<u>와 정말</u> <u>데단해</u>



h<sub>i</sub>: Encoder의 각 시점의 Hidden State

 $s_t$ : Decoder의 Hidden State

$$score(s_t, h_i) = s_t^T h_i$$

$$e_t = [s_t^T h_1, s_t^T h_2, ..., s_t^T h_n]$$

Decoder 매 시점 마다의 Hidden State와 Encoder의 Hidden State간의 내적값 계산

### Attention의 진행과정

Attention Score 계산



 $e_t$ : Attention Score

$$e_t = [s_t^T h_1, s_t^T h_2, \dots, s_t^T h_n]$$

$$a_t = softmax(e^t)$$

Attention Score를 Softmax함수에 통과시켜 정규화된 확률을 구함

## Attention의 진행과정

Attention Score 계산



e<sub>t</sub>: Attention Score

 $a_t = softmax(e_t)$ 

h<sub>i</sub>: Encoder의 각 시점의 Hidden State

$$\alpha_t = a_t \cdot h = \sum_{i=1}^n a_{ti} h_i$$
where  $h = [h_1 \ h_2 \ \cdots \ h_n]$ 

Attention Distribution을 가중치로 각 Hidden State와 가중합하여 Attention Value 계산

### Attention의 진행과정

#### Concatenation





$$v_t = [\alpha_t, s_t]$$

$$\widetilde{s_t} = \tanh(W_c \cdot v_t + b_c)$$

$$o_t = softmax(W_o \cdot \widetilde{s_t} + b_o)$$

Attention Value와 Decoder의 Hidden State를 연결 이 벡터를 통해 정답 예측



주제분석 가보자고~



# THANK YOU