

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

PACIFIC
NORTH
WEST
FOREST AND RANGE
EXPERIMENT STATION

USDA FOREST SERVICE RESEARCH NOTE

PNW-239

November 1974

VOLUME EQUATIONS FOR SECOND-GROWTH DOUGLAS-FIR

by

David Bruce, *Chief Mensurationist*

and

Donald J. DeMars, *Associate Mensurationist*

FOREST AND RANGE
EXPERIMENT STATION
APR 7 1975
ATION LIBRARY COPY

ABSTRACT

This note presents volume equations and tables for second-growth Douglas-fir.

Keywords: Volume measurement (tree),
Douglas-fir.

A request for a volume equation giving reasonable values for small Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco) led to a study of methods of preparing such volume tables. Although results of this study will not be reported here, we mention it to assure prospective users that the volume equations have a sound theoretical basis and, in the sense of minimizing squared residual variation, are the best fitting that could be found for the 1,127 trees in the sample.^{1/} The root mean square variations for both volume and form factor were the test criteria.

^{1/} Cooperation of the following in providing stem analysis data is gratefully acknowledged: Weyerhaeuser Company, Canadian Forest Service, University of British Columbia, Oregon State University, Washington Department of Natural Resources, and the Intensive Culture of Douglas-fir Project of the Pacific Northwest Forest and Range Experiment Station.

The sample included trees from young stands in Oregon, Washington, and British Columbia. It included more low-elevation than high-elevation trees. Tree size ranged from 0.4 inch by 6 feet to 32 inches by 167 feet (table 1). Because of diverse sources of data, independent variables were limited to total height and diameter at breast height (b.h.) outside bark (o.b.) and inside bark (i.b.). The dependent variable was form factor, based on total cubic volume i.b. including a stump calculated as a cylinder. Stump heights were as cut, but data were collected recently so low stumps were the rule.

Two sets of equations were needed: one for very small trees and one for larger trees. There is no definite breaking point between these categories. The one chosen was 18 feet. At this height, the two equations give virtually identical volume estimates within the range of the data.

The two sets of equations follow:

H = total height in feet

D = d.o.b. at b.h. in inches

F0 = outside bark form factor (FOS or FOL)

V = total volume including stump and tip in cubic feet (VS or VL)

if H < 18 feet calculate FOS (basis 59 trees)

if H > 18 feet calculate FOL (basis 1,068 trees)

$$\begin{aligned} \text{FOS} &= 0.406098(H-0.9)^2/(H-4.5)^2 - 0.0762998 D(H-0.9)^3/(H-4.5)^3 \\ &\quad + 0.00262615 DH(H-0.9)^3/(H-4.5)^3 \end{aligned}$$

$$\text{VS} = 0.005454154 \text{ FOS}(D^2 H)$$

$$\begin{aligned} \text{FOL} &= 0.480961 + 42.46542/H^2 - 10.99643 D/H^2 - 0.107809 D/H \\ &\quad - 0.00409083 D \end{aligned}$$

$$\text{VL} = 0.005454154 \text{ FOL}(D^2 H)$$

These equations had root mean square errors of 12.2 and 8.0 percent for FOS and FOL, respectively; 12.7 and 16.8 percent for VS and VL.

Volumes calculated from these equations appear in tables 2 and 3.

In table 2, the increases in volume with decreases in height for small trees of equal diameter result from diameter being measured 4.5 feet above ground.

For those who want to compare a logarithmic volume equation with these equations, the following had the lowest squared deviations when fit in the form stated: $\log(V-0.14) = -2.5869 + 1.0619 \log H + 1.8159 \log D$. This had a root mean square error of 12.1 percent for form factor and 18.9 percent for volume estimates.

Table 1.—Number of trees in sample

D.b.h. (inches)	Height (feet)												Total						
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170		
<0.5	1	34	8														1		
1	2	10	49	6													42		
2	3	16	54	5													65		
3	4	1	14	25	2	10	3	1									75		
4	5	1	32	15	14	15	6										45		
5	6	1	1	32	15	10	3	1									55		
6	7	2	13	18	10	19	15	3									83		
7	8	2	2	21	3	22	26	3									80		
8	9	3	3	12	8	8	34	15	5	1							79		
9	10	1	1	6	9	23	17	10									86		
10	11	1	1	2	10	11	22	12	3	2							68		
11	12	1	1	3	9	18	22	5	2	1	1						64		
12	13	1	3	7	6	21	14	6	1	2							62		
13	14	1	1	4	9	16	9	7	1	2							58		
14	15	1	1	1	10	6	4	4	3	2	1						49		
15	16	1	1	2	1	2	6	8	7	6	3	1					32		
16	17	1	1	1	1	2	4	4	3	2	1						34		
17	18	1	1	1	1	2	5	5	5	2	1						17		
18	19	1	1	1	1	2	5	5	5	3	2						16		
19	20	1	1	1	1	2	2	2	2	2	3	3					20		
20	21	1	1	1	1	2	3	6	3	6	6	1					12		
21	22	1	1	1	1	2	5	2	2	2	2	3					23		
22	23	1	1	1	1	2	1	1	1	1	2	2	3				15		
23	24	1	1	1	1	2	2	2	1	1	2	2	3				10		
24	25	1	1	1	1	1	1	1	1	1	1	4	7				7		
25	26	1	1	1	1	1	1	1	1	1	1	1	1	1	1		5		
26	27	1	1	1	1	2	1	3	1	1	1	1	1	1	1		8		
27	28	1	1	1	1	2	1	1	1	1	1	1	1	1	1		6		
28	29	1	1	1	1	2	1	1	1	1	1	1	1	1	1		3		
29	30	1	1	1	1	2	1	1	1	1	1	1	1	1	1		2		
30	31	1	1	1	1	2	1	1	1	1	1	1	1	1	1		4		
31	32	1	1	1	1	2	1	1	1	1	1	1	1	1	1		1		
Total		45	74	109	92	80	47	92	137	109	115	60	55	36	34	18	17	7	1,127

Table 2.—Estimated cubic-foot volume, Douglas-fir under 18 feet in height,
including stump and tip—basis 59 trees

D.b.h. (inches)	Height (feet)											
	6	7	8	9	10	11	12	13	14	15	16	17
.4	0.020	0.013	0.019	0.016	0.014	0.014						
.5	.029	.026	.022	.020	.019							
.6	.038	.034	.029	.026	.025	0.025	0.026					
.7	.049	.043	.036	.034	.032	.032	.033	0.034				
.8	.058	.051	.044	.041	.040	.040	.041	.042	0.043			
.9	.068	.060	.053	.050	.048	.048	.049	.050	.051	.053		
1.0	.069	.061	.058	.057	.057	.058	.059	.061	.063	.065	.067	0.070
1.1												
1.2												
1.3												
1.4												
1.5												
1.6												
1.7												
1.8												
1.9												
2.0												
2.1												
2.2												
2.3												
2.4												
2.5												
2.6												
2.7												
2.8												
2.9												
3.0												
3.1												
3.2												
3.3												
3.4												
3.5												

Table 3.--Estimated cubic-foot volume, Douglas-fir, over 18 feet in height (including stump and tip)--basis 1,068 trees

D.b.h. (inches)	Height (feet)											
	20	30	40	50	60	70	80	90	100	110	120	130
1 0.06												
2 .22	0.32											
3 .47	.69	0.92										
4 .77	1.17	1.58	1.99	2.39	2.80	3.20	3.61					
5 1.10	1.75	2.40	3.03	3.67	4.30	4.93	5.56	6.19				
6 1.43	2.41	3.34	4.26	5.17	6.08	6.98	7.89	8.79				
7 1.75	3.12	4.40	5.66	6.90	8.13	9.35	10.6	11.8				
8	3.86	5.56	7.20	8.82	10.4	12.0	13.6	15.2	16.8			
9 4.63	6.80	8.88	10.9	13.0	15.0	17.0	18.9	20.9	22.9			
10 5.39	8.09	10.7	13.2	15.7	18.2	20.6	23.0	25.5	27.9	30.3		
11	9.43	12.6	15.6	18.6	21.6	24.5	27.5	30.4	33.3	36.2	39.1	
12	10.8	14.5	18.2	21.7	25.2	28.7	32.2	35.7	39.1	42.5	46.0	49.4
13	16.6	20.8	25.0	29.1	33.2	37.2	41.2	45.2	49.3	53.3	57.2	
14	23.6	28.4	33.1	37.8	42.5	47.1	51.7	56.4	61.0	65.5		
15	26.4	31.9	37.3	42.7	48.0	53.3	58.6	63.8	69.0	74.2	79.5	
16	35.5	41.7	47.7	53.7	59.7	65.7	71.6	77.5	83.4	89.3		
17	39.2	46.1	53.0	59.7	66.4	73.0	79.7	86.3	92.9	99.5		
18	50.7	58.3	65.8	73.3	80.7	88.0	95.4					
19	55.4	63.8	72.1	80.3	88.5	96.7	105					
20	60.1	69.4	78.5	87.6	96.6	106	114					
21	75.0	85.0	95.0	105	115	124	134					
22	80.8	91.7	102	113	124	134	145					
23	86.6	98.4	108.4	110	122	133	145					
24	92.4	105	118	130	143	155	168					
25	98.2	112	126	139	153	166	179					
26	104	119	133	148	162	177	191					
27	126	141	157	172	187	203	218					
28	149	166	182	198	215	231	247					
29		175	192	209	226	244	261					
30			202	220	238	257	275					
31			231	250	270	289	308					
32			242	262	283	303	323					
33			274	296	317	338						

The mission of the PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION is to provide the knowledge, technology, and alternatives for present and future protection, management, and use of forest, range, and related environments.

Within this overall mission, the Station conducts and stimulates research to facilitate and to accelerate progress toward the following goals:

1. Providing safe and efficient technology for inventory, protection, and use of resources.
2. Development and evaluation of alternative methods and levels of resource management.
3. Achievement of optimum sustained resource productivity consistent with maintaining a high quality forest environment.

The area of research encompasses Oregon, Washington, Alaska, and, in some cases, California, Hawaii, the Western States, and the Nation. Results of the research will be made available promptly. Project headquarters are at:

Fairbanks, Alaska	Portland, Oregon
Juneau, Alaska	Olympia, Washington
Bend, Oregon	Seattle, Washington
Corvallis, Oregon	Wenatchee, Washington
La Grande, Oregon	

Mailing address: Pacific Northwest Forest and Range
Experiment Station
P.O. Box 3141
Portland, Oregon 97208

The FOREST SERVICE of the U. S. Department of Agriculture
is dedicated to the principle of multiple use management of the
Nation's forest resources for sustained yields of wood, water,
forage, wildlife, and recreation. Through forestry research, co-
operation with the States and private forest owners, and man-
agement of the National Forests and National Grasslands, it
strives — as directed by Congress — to provide increasingly greater
service to a growing Nation.

