Hypotheses and measures

Hypotheses

- **1** Most (>60%) dyads will successfully divide the grid.
- 2 Behavioral data will be explained by a simple heuristics.
- 3 Social background (e.g., sex, age, geographical location, political party, etc.) is NOT correlated with successful division of labor.

Measures

We will measure the division of labor using the following measures:

- 1 Distance between paths
- 2 Complementary distance
- 3 Normalized score
- 4 Fairness

Measures — Distance between paths

Size Path Player 1 (Red) = 14 Size Path Player 2 (Green) = 10

Measures — Distance between paths

Size union
$$= 21$$

Size intersection (Blue) = 3

Measures — Distance between paths

Distance between paths
$$=1-\frac{\text{Size intersection}}{\text{size union}}=1-\frac{3}{21}=0.86$$

Measures — Complementary distance

Complementary distance is defined as 1 minus the distance between the union of both palyers' paths and the entire grid.

Measures — Normalized Score

We measure how close the accumulated score of a player is to the perfect score.

$$Norm_Score = \frac{(Score - Min_Score)}{(Max_Score - Min_Score)}$$

Size Path Player 1 (Red) = 14 Size Path Player 2 (Green) = 10

We measure how even is the division of tiles among players.

Size Path Player 1 (Red) = 14 Size Path Player 2 (Green) = 10

Difference in number of tiles between paths = 4

$$FAIRNESS = 1 - \frac{4}{64}$$

$$\mathrm{FAIRNESS} = 1 - \frac{\mathsf{Difference} \ \mathsf{in} \ \mathsf{number} \ \mathsf{of} \ \mathsf{tiles} \ \mathsf{between} \ \mathsf{paths}}{\mathsf{Num_Tiles}}$$

DLIndex and DLIndex1

- $\overrightarrow{x_1}$: Distances between paths.
- $\overrightarrow{x_2}$: Complementary distance.
- $\overrightarrow{x_3}$: Normalized score.

$$DLIndex = mean(x_1, x_2, x_3)$$

$$DLIndex1 = x_1 - x_2$$