

Test Report #: 4126-1 Date: 5/6/2015

TEST REPORT

OF

FCC Part 15 Subpart C (§15.247)

Prepared For: Stratos Technologies, Inc. 617 Detroit St, #120 Ann Arbor, MI, 48104

Product Name : Stratos Card

Model Name : STRATOS CARD 01A

FCC ID: 2ACZ6-STRCD01A

Application Purpose : Original

Prepared by:

EMCE Engineering, Inc. 44366 S. Grimmer Blvd., Fremont, CA 94538 US

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the EMCE Engineering, Inc.

Accreditation under Lab Code 200092-0

Test Report #: 4126-1 Date: 5/6/2015

Revision History

Rev.	Issue Date	Description
1	5/6/2015	Initial Issue

Test Report #: 4126-1 Date: 5/6/2015

TABLE OF CONTENTS

1.	GENERAL INFORMATION	4
2.	EUT DESCRIPTION	5
3.	SUMMARY OF TEST RESULTS	6
4.	MODIFICATIONS	7
5.	TEST RESULTS	8
6.	TEST EQUIPMENT	27
7	SAMPLE CALCULATION	28

Test Report #: 4126-1 Date: 5/6/2015

1.0 GENERAL INFORMATION

Test Laboratory:	EMCE Engineering 44366 S. Grimmer Blvd.
	Fremont, CA 94538 USA
	Tel: 510-490-4307, Fax: 510-490-3441
	bob@universalcompliance.com
	FCC registration number : 743299
	Test Site: FCC: US5291, IC: 3324A
Applicant Name :	Stratos Technologies, Inc.
	617 Detroit St, #120
	Ann Arbor, MI, 48104 US
	Contact Person: Greg Marek
Application Purpose :	Original
EUT Description	Remote Controller
Product Name	Stratos Card
Model Name :	STRATOS CARD 01A
Applied Standards :	FCC 47 CFR §15.209, §15.247
FCC ID:	2ACZ6-STRCD01A
IC:	N/A
RF Operating Frequency (ies)	2402 – 2480 MHz
RF Conducted output power	-11.6dBm(0.06918mW)
Antenna Gail	3.3dBi
Modulation	CCK
Emission Designator	N/A
Receipt of EUT :	4/10/15
Date of Testing:	4/15/15 – 5/1/15
Date of Report :	5/6/15

The tests listed in this report have been completed to demonstrate compliance to the CFR 47 Section 15.247.

Contents approved:

Name: Bob Cole
Title: President

Test Report #: 4126-1 Date: 5/6/2015

2.0 EUT AND ACCESSORY INFORMATION

EUT				
Product Name		Stratos Card		
Model name		STRATOS C	ARD 01A	
Frequency Range		2402 – 248	30 MHz	
Modulation Type		CCF	(
Number of Channels		40		
Manufacturer		Stratos Techno	ologies, Inc.	
Power Source		DC 2.7V (Lithiu	um Battery)	
Antenna Type		PCB Pattern	Antenna	
	Support	Equipment		
Description	Model Number	Serial Number	Manufacturer	Power Cable Description
NONE				
	Cable D	Description		
From	То	Length (Meters)	Shielded (Y/N)	Ferrite Loaded (Y/N)
NONE				

Test Report #: 4126-1 Date: 5/6/2015

3.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

Test S	tandard		Result (Pass / Fail)
FCC 47 CFR Part 15	RSS 210, RSS-Gen, Issue 4	Description	
15.209(a) 15.247	N/A	Radiated Emissions, Radiated Bandedge, Spurious Emissions	Pass
15.247(a)(2)	N/A	6dB Bandwidth of Operation Frequency	Pass
15.247(a)(3)	N/A	Peak Output Power	Pass
15.247(e)	N/A	Power Spectral Density	Pass
15.247(d)	N/A	Conducted Bandedge	Pass

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

PASS The EUT passed that particular test.
FAIL The EUT failed that particular test.
N/A Not Applicable – No IC Application

Test Report #: 4126-1 Date: 5/6/2015

4.0 MODIFICATIONS

There were no modifications.

Test Report #: 4126-1 Date: 5/6/2015

5.0 TEST RESULTS

5.1 Conducted Spurious Emissions

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement

TEST RESULTS – 2402 MHz Xmit Frequency

Test Report #: 4126-1 Date: 5/6/2015

TEST RESULTS – 2440 MHz Xmit Frequency

TEST RESULTS – 2480 MHz Xmit Frequency

Test Report #: 4126-1 Date: 5/6/2015

5.2 6 dB BANDWIDTH OF OPERATION FREQUENCY

LIMIT

§15.247(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

- The transmitter output is connected to the spectrum analyzer
- The RBW is set to 100KHz. The VBW is set to 100KHz. The sweep time is coupled.
- Signal Peak is detected
- Bandwidth is determined at the points 6 dB down from the peak value of the modulated carrier.

RESULTS

NO non-compliance noted.

Operating Frequency (MHz)	6dB Bandwidth (KHz)	Limit (KHz)	Result
2402	680	>500	PASS
2440	709	>500	PASS
2480	724	>500	PASS

Test Report #: 4126-1 Date: 5/6/2015

Date: 1 M AY .2015 19:43:49

Date: 1 M AY .2015 19:48:22

Test Report #: 4126-1 Date: 5/6/2015

Date: 1 M AY .2015 19:54:53

Test Report #: 4126-1 Date: 5/6/2015

5.3 Peak Power Out

LIMIT

§15.247(d) & IC RSS-

1 Watt / 137 dBuV (50 Ohms conversion)

TEST PROCEDURE

The transmitter output to the antenna is connected to a spectrum analyzer. The RBW / VBW is set to 1. The sweep time is coupled and the span is set to 10 MHz.

Peak Output Power

Frequency	Peak Output	Limit (dBuV)	Results
	Power(dBuV)		
2402	94.78	137	PASS
2440	94.41	137	PASS
2480	95.40	137	PASS

Date: 30 APR 2015 21:39:16

Test Report #: 4126-1 Date: 5/6/2015

Date: 30 APR .2015 21:41:49

Date: 30 APR .2015 21:45:03

Test Report #: 4126-1 Date: 5/6/2015

5.4 Power Spectral Density

LIMIT

§15.247 (e) & RSS210

8 dBm

TEST PROCEDURE

The transmitter antenna output is connected to a spectrum analyzer. The RBW is set to $3 \, \text{KHz}$ and the VBW is set to $10 \, \text{KHz}$.

RESULTS

NO non-compliance noted.

Frequency (MHz)	PSD	Limit (dBm)	Result
2402	-25.09	8.0	PASS
2440	-25.04	8.0	PASS
2480	-24.83	8.0	PASS

Test Report #: 4126-1 Date: 5/6/2015

Date: 1 M A Y .2015 23:15:36

Date: 1 M AY .2015 23:17:52

Test Report #: 4126-1 Date: 5/6/2015

Date: 1 M AY .2015 23:19:28

Test Report #: 4126-1 Date: 5/6/2015

5.5 Bandedge - Conducted Bandedge

LIMIT

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Transmitter antenna output connected to spectrum analyzer. Analyzer span is set to show Peak in band, as well as out of band peaks.

RESULTS

Bandedge	Measured	Limit (dBuV)	Result
2402	21.21	>20	PASS
2480	22.62	>20	PASS

Test Report #: 4126-1 Date: 5/6/2015

Date: 30 APR .2015 21:50:20

Date: 30 APR .2015 21:47:44

Test Report #: 4126-1 Date: 5/6/2015

5.6 Radiated Spurious Emissions – Bandedge

LIMIT

15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Test Report #: 4126-1 Date: 5/6/2015

RESULT

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 •

Customer: Stratos Technologies, Inc. Specification: 15.247 2483.5 - 2500 peak

Work Order #: 4125 Date: 5/6/2015
Test Type: Radiated Scan Time: 12:25:55
Equipment: Credit Card Sequence#: 1

Manufacturer: Stratos Technologies, inc. Tested By: Bob Cole

Model: Stratos 01A

S/N: N/A

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Credit Card*	Stratos Technologies, inc.	Stratos 01A	N/A	

Transducer Legend:

1. unsuitet. Eegena.		
T1=100' LMR 900 Rad Cable 12-2013	T2=8449B Preamp	
T3=Sunol JB6 S/N A42610		

Ext Attn: 0 dB

Measu	rement Data:	Rea	ding liste	d by frequency. Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2396.766M	58.1	+4.8	+30.1	+30.5		+0.0	63.3	74.0	-10.7	Horiz
							134				180
2	2396.766M	60.5	+4.8	+30.1	+30.5		+0.0	65.7	74.0	-8.3	Vert
							157				114
3	2396.983M	45.0	+4.8	+30.1	+30.5		+0.0	50.2	54.0	-3.8	Vert
	Ave						157				114
4	2396.997M	43.7	+4.8	+30.1	+30.5		+0.0	48.9	54.0	-5.1	Horiz
	Ave										226
5	2485.160M	61.2	+4.9	+30.2	+30.9		+0.0	66.8	74.0	-7.2	Vert
							118				115
6	2485.160M	55.3	+4.9	+30.2	+30.9		+0.0	60.9	74.0	-13.1	Horiz
							73				232
7	2485.446M	44.1	+4.9	+30.2	+30.9		+0.0	49.7	54.0	-4.3	Vert
	Ave						118				115
8	2485.470M	38.9	+4.9	+30.2	+30.9		+0.0	44.5	54.0	-9.5	Horiz
	Ave						168				154

Test Report #: 4126-1 Date: 5/6/2015

5.7 TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table;

Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz However, operation within these frequency bands is permitted under other sections of this part, e.g., Sections 15.231 and 15.241

Test Report #: 4126-1 Date: 5/6/2015

TEST CONFIGURATION

[30 MHz - 1 GHz]

[Above 1 GHz]

Test Report #: 4126-1 Date: 5/6/2015

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4 The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 KHz for peak detection measurements or 120 KHz or quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and VBW of 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS:

NO non-compliance noted.

Test Report #: 4126-1 Date: 5/6/2015

MEASUREMENT UNCERTAINTY

Measurement Uncertainty Budget Radiated Emissions @ 10 Meters Per CISRP 16-4-2

Input Quantity	Uncerta	inty of x _i	U(x)	Ci	C _i u (x _{i)}	
	dB	Probability Distribution Function	dB		dB	
Receiver Reading	+/- 0.1	K = 1	0.1	1	0.1	
Attenuation, Antenna - receiver	+/- 0.1	K = 2	0.05	1	0.05	
Antenna Factor	+/- 2.0	K = 2	1.0	1	1.0	
·		Receiver C	Corrections			
Sine Wave Voltage	+/- 1.0	K = 1	0.5	1	0.5	
Pulse Amplitude Response	+/- 1.5	Rectangular	0.87	1	0.87	
Pulse Rep Rate Response	+/- 1.5	Rectangular	0.87	1	0.87	
Noise Floor Proximity	+/- 0.5	K = 2	0.25	1	0.25	
Mismatch Antenna – Receiver	+/- 0.9	U shaped	0.67	1	0.67	
•		Antenna C	orrections			
AF Freq Interpolation	+/- 0.3	Rectangular	0.17	1	0.17	
AF Height Deviations	+/- 0.5	Rectangular	0.29	1	0.29	
Balance	+/- 0.3	Rectangular	0.17	1	0.17	
		Site Cor				
Site Imperfections	+/- 3.0	Rectangular	1.22	1	0.82	
Separation distance	+/- 0.1	Rectangular	0.06	1	0.06	
Table Height	+/- 0.1	K = 2	0.05	1	0.05	
Total Mea	asurement Unce	rtainty - Radiated 2U _c (E) = 4.89	l Emissions @ 1	0 Meters	4.89	

Test Report #: 4126-1 Date: 5/6/2015

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 •

Customer: Stratos Technologies

Specification: FCC 15.209 30 - 25000 MHz Limits

 Work Order #:
 4125
 Date:
 5/1/2015

 Test Type:
 Radiated Scan
 Time:
 11:24:18

Equipment: Sequence#: 1

Manufacturer: Stratos Technologies Tested By: Test Engineer

Model: S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Stratos Card	Stratos Technologies, Inc.	Stratos 01A	N/A

Transducer Legend:

T1=100' LMR 900 Rad Cable 12-2013	T2=84125 RF Amps	T5= HP 8447D PreAmp
T3=A.H. SAS-200/571 Horn	T4= JB6 BiLog Antenna	

Ext Attn: 0 dB

Measi	urement Data:	Re	eading list	ted by ma	argın.		16	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4806.508M	56.0	+7.4	+54.7	+34.7		+0.0	43.4	54.0	-10.6	Vert
							96				110
2	4877.500M	54.2	+7.5	+54.7	+34.9		+0.0	41.9	54.0	-12.1	Vert
							134				147
3	4960.000M	53.1	+7.6	+54.7	+35.1		+0.0	41.1	54.0	-12.9	Vert
							178				139
4	7203.508M	49.2	+0.0	+55.2	+37.0		+0.0	31.0	54.0	-23.0	Vert
							134				147
5	7440.000M	49.1	+0.0	+55.2	+36.9		+0.0	30.8	54.0	-23.2	Vert
							238				125
6	7317.500M	48.6	+0.0	+55.2	+36.9		+0.0	30.3	54.0	-23.7	Vert
							83				118

Test Report #: 4126-1 Date: 5/6/2015

6.0 TEST EQUIPMENT

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer Hewlett-Packard	8566B	3014A06947	8/2/14	8/2/16
Quasi-Peak Adapter Hewlett-Packard	85650A	3145A01673	8/2/14	8/2/16
EMI Analyzer System Hewlett-Packard	8593EM	3497A5703	5/17/14	5/17/16
Signal Analyzer Rohde-Schwarz	FSV7	1321.3008K7	3/10/14	3/10/16
HP 84125 EMI Measurement System	84125B	US36432003	5/1 /14	5/1/16
Pre-Amplifier(100KHz-1.3GHz) Hewlett-Packard	8447D	2443A03587	5/1/14	5/1/16
BiConiLog Antenna Sunol Sciences	JB6	1090	2/12/14	2/12/16
Loop Antenna Empire Devices	LP105	000114	8/15/14	8/15/15
RF Signal Cable Murata	25' LMR	N/A	8/10 /14	8/10 /15
RF Signal Cable EMCE	100' LMR	N/A	8/1 /14	8/1 /15

Test Report #: 4126-1 Date: 5/6/2015

7.0 SAMPLE CALCULATION

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

Assume a receiver reading of 21.5 dBuV is obtained. The Antenna Factor of 7.4 dB/m and a Cable Factor of 1.1 dB is added. The 30 dBuV/m value is mathematically converted to its corresponding level in uV/m.

FS = 21.5 + 7.4 + 1.1 = 30 dBuV/m