Disciplined Convex Optimization with CVXR

Anqi Fu Bala Narasimhan Stephen Boyd

EE & Statistics Departments

Stanford University

useR! Conference 2016

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_m$ are convex
- ► Equality constraints are linear

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_m$ are convex
- ► Equality constraints are linear

Why?

- We can solve convex optimization problems
- ▶ There are many applications in many fields

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Future Work

CVXR

CVXR

A modeling language in R for convex optimization

- ▶ Open source down to the solvers
- Uses disciplined convex programming to verify convexity
- Supports parameters, multiple constraints
- ▶ Mixes easily with general R code and other libraries

CVXR

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Future Work

Example: Ordinary Least Squares (OLS)

TODO: Mathematical definition of problem?

Example: Ordinary Least Squares (OLS)

```
library(cvxr)
beta <- Variable(n)
obj <- SumSquares(y - X %*% beta)
prob <- Problem(Minimize(obj))
solution <- solve(prob)
solution$opt_val
solution$beta</pre>
```

- ▶ X and y are constants; beta, obj, and prob are S4 objects
- solve method canonicalizes, solves, and returns a list with final objective and optimal value of each variable

Example: Non-Negative Least Squares

```
constr <- list(beta >= 0)
prob2 <- Problem(Minimize(obj), constr)
solution2 <- solve(prob2)
solution2$opt_val
solution2$beta</pre>
```

- ▶ Extend prior example by requiring beta be non-negative
- Construct new problem with list constr of constraints formed from constants and variables
- Variables, parameters, expressions, and constraints exist outside of any problem

Results: Non-Negative Least Squares

Overview: Huber Regression

minimize
$$\sum_{i}^{n} \phi(y_i - \beta^T x_i)$$

with variable $\beta \in \mathbb{R}^n$ and Huber function

$$\phi(u) = \begin{cases} u^2 & |u| \le 0 \\ 2Mu - M^2 & |u| > 0 \end{cases}$$

where M > 0 is the threshold

- ► TODO: Plot of Huber function?
- ▶ Same as OLS for small residuals, allows some large residuals
- Better fit when data contains outliers

Example: Huber Regression

```
beta = Variable(n)
cost = SumEntries(Huber(y - X %*% beta, 1))
prob <- Problem(Minimize(cost))
solution <- solve(prob)
solution$opt_val
solution$beta</pre>
```

- ▶ Generate data and replace fraction p of y_i 's with $-y_i$
- ▶ Huber regression with threshold of 1, no constraints
- Compare with OLS and prescient regression where sign changes are known

Results: Huber Regression

Results: Huber Regression

Overview: Direct Standardization

► TODO: Overview of problem

Overview: Direct Standardization

maximize
$$\sum_{i} p_{i} \log p_{i}$$

subject to $p \geq 0, \sum_{i}^{n} p_{i} = 1$
 $Ap = b$

with variable $p \in \mathbf{R}^n$

- Probabilities p must be non-negative and sum to 1
- ightharpoonup Ap = b represents distributional knowledge about some attributes, e.g. expected value, CDF in given range, etc
- Maximizing negative entropy without constraint Ap = b yields uniform distribution

Example: Direct Standardization

► TODO: Specific data we generate for example

Example: Direct Standardization

```
probs <- Variable(n)
cost <- SumEntries(Entr(probs))
constr <- list(probs >= 0, SumEntries(probs) == 1,
    t(X[,1]) %*% probs == 0.5)
prob <- Problem(Maximize(cost), constr)
solution <- solve(prob)
solution$probs</pre>
```

► TODO: Details about code, constraint on fraction of women

Results: Direct Standardization

TODO: Plot of CDF from original, skewed, and estimated distributions

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Disciplined Convex Programming (DCP)

(Grant, Boyd, Ye, 2006)

- ▶ Framework for describing convex optimization problems
- ▶ Based on constructive convex analysis
- Sufficient, but not necessary for convexity
- Basis for several domain-specific languages and tools for convex optimization
 - CVX, YALMIP, CVXPY, Convex.jl

Convex Optimization

CVXR

Code Examples

Disciplined Convex Programming

Future Work

Future Work

- ► More solvers SCS, POGS, etc
- More convex functions and constraints
- Domain-specific language for defining new operators
- ► Warm start to speed up convergence