MATH 611 (DUE 10/2)

HIDENORI SHINOHARA

Exercise. (Problem 10, Chapter 1.3) Find all the connected 2-sheeted and 3-sheeted covering spaces of $S^1 \vee S^1$, up to isomorphisms of covering spaces without base points.

Proof. Let $X = S^1 \vee S^1$. By the discussion on P.70 of the textbook, we know that n-sheeted covering spaces of X are classified by equivalence classes of homomorphisms $\pi_1(X, x_0) \to S_n$. Let a, b denote paths in X as in Figure 1. We can identify each homomorphism ϕ by checking what ϕ maps a and b to. (Strictly speaking, $\pi_1(X, x_0)$ is generated by [a], [b], but we will abuse notations by writing a and b instead of [a], [b].)

The following are all the cases. Figure 2 shows the corresponding graphs.

- Case 1: $\phi_1(a) = \phi_1(b) = (1)$. The space that corresponds to this homomorphism is disconnected.
- Case 2: $\phi_2(a) = (12), \phi_2(b) = (1)$. This generates a connected covering space.
- Case 3: $\phi_3(a) = (1), \phi_3(b) = (12)$. This generates a connected covering space.
- Case 4: $\phi_4(a) = (12), \phi_4(b) = (12)$. This generates a connected covering space.

 $\phi_1 \neq \phi_2$ and $(12)\phi_1(12) \neq \phi_2$, so ϕ_1 and ϕ_2 are not conjugates of each other. Similarly, ϕ_2 and ϕ_3 are not conjugates of each other, and neither are ϕ_1 and ϕ_3 .

Thus the three graphs corresponding to Case 2, 3 and 4 in Figure 2 are all the 2-sheeted covering spaces of X.

We will take the exact same approach for the case of 3. If a certain vertex is fixed in both $\phi(a)$ and $\phi(b)$, then such a vertex is disjoint from the rest of the graph. We will use that property to reduce the possibilities.

• Case 1: $\phi_1 : a \mapsto (1), b \mapsto (1)$ The following maps are conjugates of $\phi_1 - a \mapsto (1), b \mapsto (1)$

This graph is not connected because every vertex is fixed.

- Case 2: $\phi_2: a \mapsto (12), b \mapsto (1)$ The following maps are conjugates of ϕ_2
 - $-a \mapsto (23), b \mapsto (1)$
 - $-a \mapsto (13), b \mapsto (1)$
 - $a \mapsto (12), b \mapsto (1)$

This graph is not connected because vertex 3 is fixed.

• Case 3: $\phi_3: a \mapsto (1), b \mapsto (12)$ The following maps are conjugates of ϕ_3

FIGURE 1. Problem 10 $(X = S^1 \vee S^1)$

FIGURE 2. Problem 10 (2-sheeted covers)

$$-a \mapsto (1), b \mapsto (12)$$

$$-a\mapsto (1), b\mapsto (23)$$

$$-a \mapsto (1), b \mapsto (13)$$

This is the same as Case 2.

• Case 4: $\phi_4: a \mapsto (12), b \mapsto (13)$ The following maps are conjugates of ϕ_4

$$-a \mapsto (13), b \mapsto (12)$$

$$-a \mapsto (12), b \mapsto (23)$$

$$-a \mapsto (12), b \mapsto (13)$$

$$- a \mapsto (13), b \mapsto (23)$$

$$-a \mapsto (23), b \mapsto (12)$$

$$-a \mapsto (23), b \mapsto (13)$$

See Figure 3.

• Case 5: $\phi_5: a \mapsto (12), b \mapsto (123)$ The following maps are conjugates of ϕ_5

$$-a \mapsto (23), b \mapsto (123)$$

$$- \ a \mapsto (12), b \mapsto (123)$$

$$-a \mapsto (12), b \mapsto (132)$$

$$- a \mapsto (13), b \mapsto (132)$$

$$- a \mapsto (13), b \mapsto (123)$$

$$-\ a \mapsto (23), b \mapsto (132)$$

See Figure 3.

• Case 6: $\phi_6: a \mapsto (123), b \mapsto (12)$ The following maps are conjugates of ϕ_6

$$-a \mapsto (123), b \mapsto (13)$$

$$- a \mapsto (132), b \mapsto (12)$$

$$-a \mapsto (132), b \mapsto (23)$$

$$-\ a \mapsto (132), b \mapsto (13)$$

$$-a \mapsto (123), b \mapsto (12)$$

$$- a \mapsto (123), b \mapsto (23)$$

FIGURE 3. Problem 10 (3-sheeted)

See Figure 3.

• Case 7: $\phi_7: a \mapsto (1), b \mapsto (123)$ The following maps are conjugates of ϕ_7 $-a \mapsto (1), b \mapsto (132)$ $-a \mapsto (1), b \mapsto (123)$

See Figure 3.

- Case 8: $\phi_8: a \mapsto (123), b \mapsto (1)$ The following maps are conjugates of ϕ_8 $-a \mapsto (132), b \mapsto (1)$ $-a \mapsto (123), b \mapsto (1)$
 - See Figure 3.
- Case 9: $\phi_9: a \mapsto (123), b \mapsto (132)$ The following maps are conjugates of ϕ_9 $-a \mapsto (123), b \mapsto (132)$ $-a \mapsto (132), b \mapsto (123)$

See Figure 3.

• Case 10: $\phi_{10}: a \mapsto (23), b \mapsto (23)$ The following maps are conjugates of ϕ_{10} $-a \mapsto (12), b \mapsto (12)$ $-a \mapsto (23), b \mapsto (23)$ $-a \mapsto (13), b \mapsto (13)$

FIGURE 4. Problem 11

Vertex 1 is disconnected from the rest of the graph since it is fixed.

• Case 11: $\phi_{11}: a \mapsto (123), b \mapsto (123)$ The following maps are conjugates of ϕ_{11} $-a \mapsto (132), b \mapsto (132)$ $-a \mapsto (123), b \mapsto (123)$ See Figure 3.

Since there are 6 elements in S_3 , there are 36 possible homomorphisms. The list above contains all of them. Therefore, Figure 3 lists all the possible 3-sheeted covers.

Exercise. (Problem 11, Chapter 1.3) Construct finite graphs X_1 and X_2 having a common finite-sheeted covering space $\tilde{X}_1 = \tilde{X}_2$, but such that there is no space having both X_1 and X_2 as covering spaces.

Proof. Figure 4 shows X_1, X_2 and $\tilde{X}_1 = \tilde{X}_2$.

We claim that there exists no space having both X_1 and X_2 as covering spaces. On the contrary, suppose there exists such a space X with covering maps $p_1: X_1 \to X, p_2: X_2 \to X$. Then every point in X must have a neighborhood that homeomorphic to an open subset of X_1 . Since X_1 is a graph, that means X is locally a line and a vertex with edges. In other words, X must be a graph.

There must exist a neighborhood of $p_1(p)$ and a neighborhood of p such that they are homeomorphic. Since p is a vertex of degree 3, $p_1(p)$ must be a vertex of degree 3 as well. Similarly, $p_1(q)$ must be a vertex of degree 3 as well.

Since p, q are the only vertices of X_1 , X contains at most two vertices and their degrees must be 3. Since the sum of degrees of all vertices must be even from elementary graph theory, X must contain two vertices of degree 3.

If X only consists of loops, then the degree of each vertex will be even. Thus the two vertices must be joined by at least one edge. Then if one vertex has a loop, the other must have a loop as well in order to have degree 3. If there exists another edge joining the two vertices, there must be a third one in order for the two vertices to have degree 3. Therefore, X_1, X_2 are the only graphs with two vertices of degree 3.

Suppose that X_1 is a covering space of X_2 with a covering map $f: X_1 \to X_2$. Without loss of generality, f(p) = r, f(q) = s. Consider the path a' in X_2 . Lifting a' to X_1 will result

in a path from p to q. This implies that f maps points on the path b into points on a path a'.

Now consider the path b' in X_2 . Lifting b' to X_1 will again result in a path from p to q. This implies that f maps points on the path b into points on a path b'.

This implies that every point on the path b must be mapped to r or s. This is a contradiction because f is continuous and $\{b(t) \mid t \in [0,1]\}$ is connected, but $\{r,s\}$ is disconnected.

Thus X_1 is not a covering space of X_2 .

Similarly, suppose that X_2 is a covering space of X_1 with a covering map $g: X_2 \to X_1$. Without loss of generality, g(r) = p, g(s) = q. This implies $g^{-1}(p) = \{r\}$, so the number of sheets is 1. In other words, g is injective. Consider the path a in X_1 . Lifting a to X_2 results into a loop based at r. Since $a: I \to X_1$ is injective, $\tilde{a}: I \to X_2$ is injective since $g \circ \tilde{a} = a$. Then $\tilde{a}(t) = s$ for some $t \in [0,1]$, so $a(t) = g(\tilde{a}(t)) = g(s) = q$. However, q is not a point on a. This is a contradiction, so X_2 is not a covering space of X_1 .

Hence, there exists no space that has both X_1 and X_2 as covering spaces.

Exercise. (Problem 14, Chapter 1.3) Find all the connected covering spaces of $\mathbb{R}\mathbf{P}^2 \vee \mathbb{R}\mathbf{P}^2$.

Proof. Let $X = \mathbb{R}\mathbf{P}^2 \vee \mathbb{R}\mathbf{P}^2$. By Theorem 1.38 of the textbook, it suffices to check all the conjugacy classes of subgroups of $\pi_1(X, x_0)$ and corresponding covering spaces.

Since $\pi_1(\mathbb{R}\mathbf{P}^2) = \langle a \mid a^2 \rangle$, $\pi_1(X, x_0) = \langle a, b \mid a^2 = b^2 = e \rangle$ by Van Kampen. Since $a^2 = b^2 = e$, we can express each element in $\pi_1(X, x_0)$ uniquely as a word which alternates a, b.

We will use three properties of elements in $\pi_1(X, x_0)$:

 \bullet Every word can be expressed as a finite alternating sequence of a and b.

Maybe explain more.

• The parity of the length of a word does not depend on its representation because $a^2 = b^2 = 1$.

Maybe explain more.

- The parity of the length of a word is invariant under conjugation because conjugating a word appends an even number of letters.
- The parity of the number of a in a word is invariant under conjugation because conjugating a word appends an even number of a.

Maybe explain more.

• Similarly, the parity of the number of b in a word is invariant under conjugation because conjugating a word appends an even number of b.

We will call a subgroup even if the length of each element in it is even, and we will call a subgroup odd otherwise. Since the parity of the length of a word is invariant under conjugation, even subgroups and odd subgroups are not conjugates of each other. Therefore, we will classify even subgroups and odd subgroups separately.

• Let $H \subset G$ be an even subgroup. Every even length word can be expressed as $(ab)^k$ for some $k \in \mathbb{Z}$. Since $(ab)^k = e$ if and only if k = 0, this number k is unique to each word of odd length. Let $\phi : H \to \mathbb{Z}$ be defined such that $\phi((ab)^k) = k$. Then $\phi(H)$ is a subgroup of $(\mathbb{Z}, +)$. Since \mathbb{Z} is an infinite cyclic group, $\phi(H) = (n)$ for some non-negative integer n. Thus $H = \langle (ab)^n \rangle$. For each n,

Figure

shows the covering space corresponding to $\langle (ab)^n \rangle$. Since the number of sheets is the same as the index of the subset by Proposition 1.32 of the textbook, $[\pi_1(X, x_0) : \langle (ab)^n \rangle]$ is infinity when n = 0 and the index is 2n when $n \geq 1$. Since the index of a subgroup is invariant under conjugation, $\langle (ab)^n \rangle \not\sim \langle (ab)^m \rangle$ whenever $n \neq m$.

• Let $H \subset G$ be an odd subgroup. Every odd element is an alternating sequence of a and b which starts and ends with the same letter. Thus, every odd element is conjugate to a or b. Let $w \in H$ be a word of odd length. Then w is xax^{-1} or xbx^{-1} for some x. Then $x^{-1}Hx$ contains a or b. This implies that every odd subgroup is conjugate to an odd subgroup containing either a or b. (possibly both) Since we are classifying subgroups up to conjugation, we can assume that H contains a or b without loss of generality.

We will first assume that $a \in H$ since the argument for the case $b \in H$ will be the same. Let H' be a subset of H containing only words of even length. Since $e \in H'$ and xy^{-1} is another word of even length for each $x, y \in H'$, H' is a subgroup of H. Then H' is an even subgroup of G, so by the argument above, $H' = \langle (ab)^n \rangle$ for some $n \geq 0$.

Let $w \in H$.

- If the length of w is even, $w \in H' = \langle (ab)^n \rangle = \langle a, (ab)^n \rangle$.
- If the length of w is odd, $aw \in H' = \langle (ab)^n \rangle = \langle a, (ab)^n \rangle$. Since $aw \in \langle a, (ab)^n \rangle$, $w \in \langle a, (ab)^n \rangle$.

Therefore, $H = \langle a, (ab)^n \rangle$.

- When n = 0, $H = \langle a \rangle$.
- When n = 1, $H = \langle a, ab \rangle = \langle a, b \rangle = G$.
- When $n \ge 2$, $H = \langle a, (ab)^n \rangle$.

Using the same argument, if $b \in H$, we can conclude that H is one of the following:

- When n = 0, $H = \langle b \rangle$.
- When n = 1, $H = \langle b, ab \rangle = \langle a, b \rangle = G$.
- When n > 2, $H = \langle b, (ab)^n \rangle$.

By putting these together, if H is an odd subgroup, w