РК1 Авдеев Ю. В. ИУ5-24М

```
In [0]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [32]:

```
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
print(X.shape)
(506, 13)

Out[32]:
```

Создание Pandas Dataframe

In [0]:

(506, 13)

In [34]:

```
data = make_dataframe(load_boston) #Создание датафрейма data.head() #Вывод первых 5 строк
```

Out[34]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	

Поиск пустых значений в колонках

In [35]:

```
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))
    #Пустых значений не обнаружено
```

```
CRIM - 0
ZN - 0
INDUS - 0
CHAS - 0
NOX - 0
RM - 0
AGE - 0
DIS - 0
RAD - 0
TAX - 0
PTRATIO - 0
B - 0
LSTAT - 0
target - 0
```

In [36]:

```
data.describe() #Описательные статистики
```

Out[36]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	ţ
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	

Распределениие значений целевого признака

In [37]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['target'])
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcff7006390>

Распределение похоже на нормальное

Парные диаграммы для понимания общей картины

In [38]:

sns.pairplot(data)

Out[38]:

<seaborn.axisgrid.PairGrid at 0x7fcff7849908>

Находим почти линейную зависимость между значениями двух колонок с содержанием "выбросов"

In [39]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='RM', y='target', data=data)
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcff2cea668>

In [0]:

```
sns.violinplot(x=data['INDUS'])
```

Out[0]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f39e74599e8>

По violin plot видим, что распределение бимодальное.

Задание для ИУ5-23M (boxplot для колонки с возрастом)

In [40]:

```
sns.boxplot(y=data['AGE'])
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcff2fefc18>

Корреляционный анализ

Построим корреляционную матрицу

In [41]:

data.corr()

Out[41]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DI
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.37967
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.66440
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.70802
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.09917
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.76923
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.20524
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.74788
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.00000
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.49458
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.53443
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.23247
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.29151
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.49699
target	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.24992

Также построим матрицу корреляций по Пирсону

In [42]:

```
# Треугольный вариант матрицы Пирсона
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.lf')
```

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcff2b41978>

Выявлена корреляция между показателями RAD и TAX

Использовав Solar correlation map, получаем ту же зависимость

