Отчёт по лабораторной работе №3.7.1 Скин-эффект в полом цилиндре.

Плюскова Н.А. Б04-004

17 января 2024 г.

Описание работы

Цель работы: исследование проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Теоретические сведения

Возьмем цилиндр достаточно длинный для того, чтобы в нем можно было пренебречь краевыми эффектами. В этом приближении поле H всюду направлено по оси системы (ось z), а вихревое электрическое поле E будет всюду перпендикулярно радиусу, т.е. линии поля образуют соосные окружности (рис.1). Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой w, задаваемой частотой колебаний тока в соленоиде. Тогда для ненулевых компонент поля можно записать:

$$H_z = H(r)e^{iwt}, \ E_{\varphi} = E(r)e^{iwt},$$

где H(r) и E(r) - комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты как E, так и B, поэтому функции E(r) H(r) непрерывны во всей исследуемой области.

Рис.1: Электрическое и магнитное поле в тонкостенном цилиндре

Пусть длинный полый цилиндр имеет радиус a и толщину стенки $h \ll a$. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным (аналогично полю внутри пустого соленоида): $H_z(r,t)=H_1e^{iwt}$, где $H_1=const$ - амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции: $rot E=-\frac{\partial B}{\partial t}$

$$2\pi \cdot rE_{\varphi} = -\mu_0 \pi r^2 \frac{dH_z}{dt} \to E(r) = -\frac{1}{2} \mu_0 r \cdot iwH_1$$

Отсюда получаем связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}iwa\mu_0 H_1. {1}$$

Соотношение (1) используем далее как дополнительное граничное условие для задачи о распределении поля внутри стенки.

Поле внутри тонкой стенки цилиндра ("экрана") описывается уравнением скин-эффекта: $\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t}$ (уравнением диффузии поля) в плоской геометрии (рис.2). Поместим начало отсчета на внешнюю поверхность цилиндра и направим оси x к оси системы, и запишем дифференциальное уравнение для комплексной амплитуды магнитного поля:

$$\frac{\partial^2 H}{\partial x^2} = iw\sigma\mu_0 H \tag{2}$$

(для медного цилиндра можно положить $\mu \approx 1$)

Рис.2: Поле в стенке цилиндра

Граничные условия для (2) зададим в виде

$$H(0) = H_0, H(h) = H_1.$$
 (3)

Здесь H_0 - амплитуда колебаний магнитного поля на внешней границе цилиндра. Ее значение определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Величина H_1 также поддается непосредственному измерению - это амплитуда колебаний однородного поля внутри цилиндра Поля H_0 и H_1 не являются независимыми - они связаны через решение уравнений поля вне проводника, т.е. внутри "экрана". Эта связь выражена соотношением (1).

Решение (2) ищем в виде

$$H(x) = Ae^{\alpha x} + Be^{-\alpha x},\tag{4}$$

где А,В - определяемые из граничных условий константы,

$$\alpha = \sqrt{iw\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\frac{\pi}{4}} \tag{5}$$

- один из корней уравнения $\alpha^2=iw\sigma\mu\mu_0,\,\delta$ - глубина скин-слоя $(\delta=\sqrt{\frac{2}{w\sigma\mu\mu_0}}=\sqrt{\frac{2D}{w}}).$

Первое условие (3) дает $A + B = H_0$, что позволяет исключить A из (4):

$$H(x) = H_0 e^{-\alpha x} + 2Bsh\alpha x.$$

Выразим электрическое поле из закона Ампера $(rotH = \sigma E)$. В одномерном случае

$$E(x) = \frac{1}{\sigma} \frac{dH}{dx} = \frac{\alpha}{\sigma} (-H_0 e^{-\alpha x} + 2Bch\alpha x).$$

Далее положим x = h, воспользуемся условием (1), и, исключив константу B, получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{ch\alpha h + \frac{1}{2}\alpha ash(\alpha h)}. (6)$$

Рассмотрим предельный случай (6).

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta \gg h$. Тогда $|\alpha h| \ll 1$, поэтому $ch\alpha h \approx 1$, $sh\alpha h \approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}. (7)$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при $h\ll a$ возможна ситуация $h\ll \delta\ll a$. Отношение модулей амплитуд здесь будет равно

$$\frac{H_1}{H_0} = \frac{1}{\sqrt{1 + (\frac{ah}{\delta^2})^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}(\alpha h \sigma \mu_0 w)^2}}.$$
 (8)

При этом колебания H_1 отстают по фазе от H_0 на угол ϕ , определяемый равенством $tg\phi=\frac{ah}{\sigma^2}$

2. При достаточно *больших частотах* толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h| \gg 1$ и $|\alpha a| \gg 1$, а также $sh(\alpha h) \approx ch(\alpha h) \approx \frac{1}{2}e^{\alpha h}$. Выражение (6) с учетом (5) переходит в

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i(\frac{\pi}{4} + \frac{h}{\delta})}.$$
 (9)

Как видно из формулы (9), в этом пределе поле внутри цилиндра по модулу в $\frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\phi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{w\sigma\mu_0}{2}}.$$
 (10)

На рис.3 схематично изображено распределение магнитного поля от координаты в двух рассмотренных предельных случаях.

Рис.3: Распределение амплитуды колебаний магнитного поля (пунктир) и его мгновенного значения при некотором t (сплошная) в зависимости от расстояния до внешней стенки цилиндра. Слева случай низких частот $(\delta \gg h)$, справа - скин-эффект при высоких частотах $(\delta \ll h)$

Экспериментальная установка

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис.4. Переменное магнитное поле создается с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется катушка 3. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подается напряжение с резистора R, которое пропорционально току, а на вход второго канала - напряжение с измерительной катушки.

Рис.4: Экспериментальная установка для изучения скин-эффекта

Измерение отношения амплитуд магнитного поля внутри и вне экрана. С помощью вольтметра V измеряется действующее значение ЭДС индук-

ции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле H_1e^{iwt} . Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -wi\mu_0 SN H_1 e^{iwt},$$

где SN - произведение площади витка на число витков измерительной катушки. Показание вольтметра, измеряющего это напряжение:

$$U = \frac{SNw}{\sqrt{2}}\mu_0|H_1|.$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала $\nu = \frac{w}{2\pi}$:

$$|H_1| \propto \frac{U}{\nu}$$
.

При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
.

Следовательно,

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I}. \tag{11}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $\frac{U}{\nu I}$ при разных частотах. Неизвестная константа в соотношении (11) может быть определена по измерениям при малых частотах $\nu \to 0$, когда согласно (8) $\frac{|H_1|}{|H_0|} \to 1$.

Определение проводимости материала экрана. В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения (в меньшую сторону). Для определения σ нашего экрана предлагается использовать частотную зависимость (10) фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. Как видно из выражения (10), в области больших частот $w \gg \frac{1}{h^2 \sigma \mu_0}$ зависимость $\phi(\sqrt{w})$ аппроксимируется прямой, проходящей через точку $\phi(0) = \frac{\pi}{4}$. По наклону этой прямой можно вычислить проводимость материала экрана.

Заметим, что на схеме, изображенной на рис.4, на входной канал II осциллографа подается сигнал с измерительной катушки, который пропоционален не полю внутри экрана, а его производной по времени, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому измеренный по экрану осциллографа сдвиг по фазе между двумя синусоидами будет на $\pi/2$ больше фазового сдвига между магнитными полями вне и внутри экрана.

Выполнение работы

Параметры установки:

a = 21мм - радиус цилиндра

h = 1,3мм - толщина стенок

По известным параметрам установки, приняв проводимость меди для оценки равной $\sigma \sim 5 \cdot 10^7$ См/м, рассчитаем ν_h - частоту, соответствующую равенству $h=\delta$ толщины стенок экрана скиновой длине:

$$\nu_h = \frac{1}{\pi \sigma \mu \mu_0 h^2} = \frac{1}{3.14 \cdot 5 \cdot 10^7 \cdot 1.26 \cdot 10^{-6} \cdot 1.3 \cdot 10^{-6} \mathrm{Cm/m} \cdot \Gamma_{\mathrm{H/M} \cdot \mathrm{M}^2}} \approx 3.8 \cdot 10^3 \Gamma_{\mathrm{II}}$$

В области низких частот 20–100 Γ ц (с шагом 5 Γ ц) снимем зависимость «амплитуды» ε_{0c} ($\varepsilon_{0c}=\frac{U}{fI}$) магнитного поля внутри экрана от частоты (см. Таблицу 1).

f, Гц	σ_f , Гц	І, мА	σ_I , MA	U, B	σ_U , B	$ε_{0c}$, κ Γ Η
20	0.25	53.3	6	0.0119	0.36	0.0112
25	0.25	53.5	6	0.0145	0.36	0.0108
30	0.25	53.6	6	0.0179	0.36	0.0111
35	0.5	53.65	6	0.0207	0.36	0.0110
40	0.5	53.6	6	0.0234	0.36	0.0109
45	0.5	53.7	6	0.0263	0.36	0.0109
50	0.5	54.8	6	0.029	0.36	0.0106
55	0.5	54	6	0.0322	0.36	0.0108
60	0.5	54.2	6	0.0346	0.36	0.0106
65	1	54.1	6	0.037	0.36	0.0105
70	1	53.9	6	0.0398	0.36	0.0105
75	1	53.95	6	0.0425	0.36	0.0105
80	1	53.95	6	0.045	0.36	0.0104
85	1	53.82	6	0.0477	0.36	0.0104
90	1	53.86	6	0.05	0.36	0.0103
95	1	53.8	6	0.0529	0.36	0.0104
100	1	53.69	6	0.0548	0.36	0.0102

Таблица 1: Данные, полученные на низких частотах

Построим график в координатах ε_{0c} от f^2 и аппроксимируем полученную зависимость прямой.

Из графика видно, что $\varepsilon_0 = 0.0111 \pm 0.001~\Gamma$ н

Исследуем зависимость ε_{0c} и фазового сдвига $\Delta\psi$ от частоты в диапазоне 100 Гц–30 кГц (см. Таблицу 2)

Изобразим на графике в координатах $\Delta \psi$ и \sqrt{f} частотную зависимость фазового сдвига $\Delta \psi$. Через точку $(0,\pi/4)$ проведем прямую, которая касается экспериментальной кривой при больших частотах. По наклону этой прямой вычислим значение проводимости материала экрана.

Получаем $\sigma = (32\pm7)\cdot 10^6~{\rm Cm/m}$. Данное значение отличается от табличного в $4\sigma_\sigma$ раз.

В области высоких частот изобразим зависимость $\frac{|H_{0c}|}{|H_0|}$ от \sqrt{f} . Используя формулу (6), рассчитаем аналогичную теоретическую зависимость и построим ее на том же графике.

f, Гц	сигма f, Гц	І, мА	сигма I	U, B	сигма U, B	$\Delta \psi$	$\varepsilon\phi$, %
100	1	53,69	6	0,0548	0,36	0,63	0,17
500	5	52,95	6	0,1395	0,36	0,86	0,17
1000	10	53,88	6	0,1552	0,36	0,96	0,17
2000	25	54,43	6	0,1605	0,36	1,00	0,17
3000	25	54,03	6	0,16	0,36	1,05	0,17
4000	50	53,63	6	0,159	0,36	1,14	0,17
5000	50	53,12	6	0,1573	0,36	1,04	0,17
6000	50	52,57	6	0,1555	0,36	1,11	0,17
7000	100	51,88	6	0,1533	0,36	1,13	0,17
8000	100	51,13	6	0,1512	0,36	1,14	0,17
9000	100	50,3	6	0,1486	0,36	1,25	0,17
10000	100	49,32	6	0,146	0,36	1,09	0,17
12000	125	47,25	6	0,1403	0,36	1,26	0,17
14000	125	44,62	6	0,1346	0,36	1,30	0,17
16000	250	41,6	6	0,1285	0,36	1,33	0,17
18000	250	38,8	6	0,1237	0,36	1,38	0,17
20000	250	36,2	6	0,125	0,36	1,48	0,17
22000	250	32,04	6	0,119	0,36	1,52	0,17
24000	250	27,18	6	0,113	0,36	1,52	0,17
26000	250	22,09	6	0,107	0,36	1,50	0,17
28000	250	16,5	6	0,1008	0,36	1,60	0,17
30000	250	10,8	6	0,095	0,36	1,63	0,17

Таблица 2: Данные, полученные на высоких частотах

4) Используя найденное значение проводимости, вычислим глубину проникновения поля. При 50 Γ ц $\delta \approx 12$ мм, при 10^5 Γ ц $\delta \approx 281$ мкм.

Вывод

В данной лабораторной работе был исследовано проникновение переменного магнитного поля в медный полый цилиндр. На основании полученных данных посчитана проводимость меди, из которой изготовлен полый цилиндр. Полученный результат в пределах 4σ сходится с теоретическими значениями. Вероятной причиной расхождения могут быть примеси в меди, из которой изготовлен исследуемый образец.