Intro to R for Biologists Session 4 Data Visualisation

Irina & Rao Michaelmas 2021

INTRO TO R FOR BIOLOGISTS

▶ Data Visualisation

- ►Intro to ggplot2
- ▶ Base R plotting vs ggplot2
- ▶ggplot2 syntax (demo)
- ▶Intro to factors
- ▶ Problem set from Session 3
- ► Merging and reshaping data.frames (demo)
- ► Dot/box/bar plots (demo with Covid vaccine data)
- ▶ Practical (breakout room)
 - ►OWID Covid data

How to choose the graph type

- Human perception is not uniformly good at distinguishing different physical aspects – e.g. length is better than volume
- Factors to help decide on viz:
 - Information detail or summary?
 - Number of dimensions
 - Comparisons
 - Continuous vs categorical data
 - Scale e.g. linear or log?
 - Shape and size
 - Colours distinct? Colour-blind friendly?
 - Legends and labels
 - Subplots
- <u>From Data to Viz</u> A handy tool to help you decide

Figure 10.3 Cleveland graphic elements hierarchy

How to choose the graph type

Rao et al., Sci Rep, 2019

Visualising data in R

Base R plotting (e.g. plot() function)

```
plot(x = iris$Sepal.Length, y =
iris$Petal.Length, col =
iris$Species)
```

ggplot2 package

```
ggplot(iris, aes(x = Sepal.Length,
y = Petal.Length, colour =
Species)) + geom_point()
```

Lattice package

```
xyplot(Sepal.Length ~ Petal.Length,
data = iris, groups = Species)
```

- Grid package
 - Low level plotting (both ggplot2 and lattice built on grid graphics)

Graphics devices in R

- The plotting window in Rstudio
 - Needs to be saved manually
 - Size of the figure can be adjusted manually
 - Can be copied to clipboard from RStudio
 - For quick exploratory visualisation
- A file (svg, png, pdf, tiff, jpeg, bmp)
 - Saved to file from code
 - Size of the figure can be specified in the code
 - For creating reproducible figures
 - png(), pdf(), svg(), ggsave() are functions to save plots
- Start or close graphical devices with dev.new() or dev.off()
 respectively
 - Tip: If your plot is not showing up on the window or file that you are expecting
 it to, you are probably drawing on the wrong device. dev.off() may solve
 this issue.

Building a graph step-by-step with

Total cases

ggplot2 syntax

Global mapping – applies to the entire plot

```
ggplot(data, mapping) + entire plot
  geom_point(mapping, stat, position, colour, fill, shape,
  size, alpha) +
  coord_cartesian() + Geom-specific
  scale_colour_discrete() +
  facet_wrap() +
  theme_bw() +
  ggtitle() +
  labs()
```

Where,

```
mapping = aes(x, y, colour, fill, shape, size, alpha)
```

Note: Colour, shape, alpha, etc. can be passed

- 1) to the mapping argument changes attributes based on some variable in the dataset itself (e.g. colour = location, or shape = hdi class)
- 2) directly as specific arguments in the geom function changes the attributes to fixed values that are provided separately from the data (e.g. colour = "red" or size = 10)

Let's explore practically

How to plot your data?

The most common plots in publications:

box plots/violin plots, bar plots, dot plots, histograms/density plots, line graphs, networks, heatmaps, PCA, etc.

Hint: choose the appropriate representation based on the type of data you have.

Typical data types: numeric, categoric, maps, network, time series +combinations of those

<u>From Data to Viz</u> – Decision tree to choose an appropriate chart type for your data

Plotting grouped data

Maximum (Maximum Value in the Data, Q₃ + I.5*IQR)

Plotting grouped data

Bar plots

geom_bar(position=...)

Plotting grouped data

Dot plots

geom_dotplot()

ggplot(...) +
geom_boxplot(...) +
geom_dotplot(...)

dose

ggplot(...) +
geom_dotplot(...)


```
ggplot(...) +
geom_boxplot(position = "dodge") +
geom dotplot(...)
```

Understanding factors

- Factors are used to represent categorical data.
- Factors don't have to be binary! You can have many categories.
- When you import a table to R, your categorical columns are treated as characters ("Germany", "Belgium", "Germany", etc.) or numbers (1, 2): using safest option stringsAsFactors = FALSE argument in read... functions.
- You know where your categories are presented. Convert the relevant column into factor:

```
df1$col1 <- as.factor(df1$col1)</pre>
```

• Factors have levels, you can check all the categories within the factor: levels (df1\$col1)

You need to have your categories as factors in order to analyse and to plot the data by group!

Reshaping data

library(data.table)

To plot by groups we need our data to be in a long format!

Error bars – geom_bar()


```
ggplot(data)
+ geom_bar( aes(x=group, y=mean), stat="identity",
fill="forestgreen", alpha=0.5)
+ geom_errorbar( aes(x=group, ymin=mean-sd, ymax=mean+sd),
width=0.4, colour="orange", alpha=0.9, size=1.5) +
ggtitle("using standard deviation")
```

SD, SE, CI

• Standard Deviation (SD) represents the amount of dispersion of the variable. Calculated as the root square of the variance:

```
sd <- sd(vec)
sd <- sqrt(var(vec))</pre>
```

Standard Error (SE) is the standard deviation of the vector sampling distribution.
 Calculated as the SD divided by the square root of the sample size.

```
se = sd(vec) / sqrt(length(vec))
```

Confidence Interval (CI).

This interval is defined so that there is a specified probability that a value lies within it. It is calculated as t * SE. Where t is the value of the Student's t-distribution for a specific alpha.

```
alpha=0.05
t=qt((1-alpha)/2 + .5, length(vec)-1) # tend to 1.96 if
sample size is big enough
CI=t*se
```

Hint: easier way to add error bars without calculation! Explore stat summary ()

Faceting

facet_wrap (~var) builds a new chart for each level of a categorical
variable

facet grid(var1~var2) builds one chart for each combinations of 2

categorical variables

Let's explore practically

Address the tasks in breakout rooms!

Useful references

- R Graph Gallery Examples of the kinds of graphs and plots possible in R (+ the code to create them)
- <u>The Grammar of Graphics (Leland Wilkinson)</u> Theory of graphical visualisation (SpringerLink book – free access through Uni of Oxford Bodleian subscription)
- <u>ggplot2 reference</u> Help and cheatsheet
- <u>ggplot2 extensions</u> Additional packages that extend ggplot2 functionality
- <u>From Data to Viz</u> Decision tree to choose an appropriate chart type for your data