

KAIST Summer Session 2018

Module 3. Deep Learning with PyTorch

Recurrent Neural Network

KAIST College of Business

Jiyong Park

23 August, 2018

Review: What is RNN?

- Unlike CNN, RNN can use past information to learn the present task.
 - Example: Natural Language Processing (NLP)
 - "The clouds are in the ()."
 - "I grew up in France I speak fluent ()."
 - ➤ Vanishing gradient problem
 - As that gap grows, RNN becomes unable to learn to connect the information. (the past information would be vanishing or exploding)

Review: What is RNN?

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) allows RNN to learn how much past information would pass to the next.

(b) Gated Recurrent Unit

RNN in PyTorch

• Although RNN and GRU yield two states (output and hidden), LSTM yields three states (output, hidden, and cell).

```
output, hidden = self.rnn(input,hidden)

output, hidden = self.gru(input,hidden)

output,(hidden, cell) = self.lstm(input,(hidden, cell))
```


Let's Make a Reply Bot (답정너 봇)

Let's Make a Reply Bot (답정너 봇)

• We want to make the Reply Bot_v1 to always reply that "you look pretty."

Reply Bot_v1 using Recurrent Neural Network

M3.6 Recurrent Neural Network_Reply Bot.ipynb

We Want More for the Reply Bot...

 Our Reply Bot_v1 does not understand the contexts. Let's make our Reply Bot more smart!

Sequence-to-Sequence Model

- Our understanding of contexts
 - ightharpoonup (Listening/Reading) \rightarrow (Understanding) \rightarrow (Speaking/Writing)
- Understanding of sequence-to-sequence models
 - ightharpoonup (Encoding) \rightarrow (Decoding)

Reply Bot_v2 using Sequence-to-Sequence

M3.6 Sequence-to-Sequence_Reply Bot.ipynb

Projects for RNN

Neural Machine Translation

• Sequence-to-sequence models lie at the core of machine translation (e.g., Google Translate), as well as other end-to-end tasks (e.g., chat bot)

ightharpoonup (Encoding) \rightarrow (Thought Vector) \rightarrow (Decoding)

Neural Machine Translation

 Sequence-to-sequence models lie at the core of machine translation (e.g., Google Translate), as well as other end-to-end tasks (e.g., chat bot)

ightharpoonup (Encoding) \rightarrow (Decoding)

Neural Machine Translation using Sequence-to-Sequence with Attention

M3.6 Sequence-to-Sequence with Attention

_Machine Translation.ipynb

Simple Chat Bot using Sequence-to-Sequence with Attention

M3.6 Sequence-to-Sequence with Attention
_Chat Bot.ipynb

End of Document

