Irreducibility & rational maps (i) a) UCX dense U irred (=) X irred. b) f: X-iY X iwed surj =) Y i =) Y irred (2) X abbine X < 1/2 clused X irred () fe[x] is a domain

(=) I(X) is prime,

Rational maps
X imed, Y separated
Arational map is an equ. class of (U,f) UCX open non-empty (=) dense)
& f: U -> Y regular.
Relation: $(U,f) \sim (V,g)$ if
$f,g:UnV \longrightarrow Y$ are equal.
Restatement: $(U,f) \sim (V,9)$ if there is
Jan non-empty open WCUNV such that
f,g:W -> Y ave equal

. .

.

٠

۰

.

.

.

. . . .

.

0

.

. . . .

.

.

.

. .

. .

.

.

.

.

. .

.

.

. . .

۰

۰

0

.

.

.

0

Why are these equivalent?	• • • •
HW problem Separa	ted
- + ' ' ' - ' - ' - ' - ' - ' - ' - ' -	
Dense f=9	
then $f=g$ on Domain.	
Given this, f,g: W -> Y equal	^
WCUNV irreducible On U Dense	
$(v,f) \sim (v,g) \sim (w,h)$	
$(v,f) \sim (w,h) \times now$	
$f,h: \overline{\Omega} \longrightarrow \overline{\Omega}$	
(=) fih are equal on UNW)	

Rational map ex. separated Rat fun := Rot map to A $X = \mathbb{P}^{1}$ $\left\{ \left[X : Y \right] \right\}$ ("U" omitted") $f = \frac{\lambda}{\lambda}$ $U \subset \mathbb{R}^{1}$ is $[x.y] \quad Y \neq 0$. Homos) Rathum on Pr Homos) same deg. 2 × 2 × 2 debine a ret map Domain of def. (U,f)f is "undefined" at every $x \notin U$.

f is defined at $a \in X$ if $f(V,g) \cap (U,F)$ $x \in V$

$$X = V(2y - 2w) C$$
 $f = \frac{2}{3}$
 (V, f)
 $V = \{w \neq 0\} \land X$

To f defined at $(0, 1, 0, 0)$

Can f be defined at $(0, 1, 0, 0)$?

Can your find $(V, 9) \land (V, f)$

St. $(0, 1, 0, 0) \in V$
 $g = \frac{2}{9}$

on the int g domains.

 $(w \neq 0, \frac{2}{3}) \land (y \neq 0, \frac{2}{9})$
 $(0, 1, 0, 0) \in Domain g def g rate map rep. by f .$

(5) Field of rest fun = Set of real functions on X ((0,0),(0,0))k algebra Ring $\frac{1}{2} \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \frac{1}{2}$ $\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right)^{2}, \frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right)^{2}$ + $k \rightarrow k(x)$ $(U \cap V, f_{g})$ On P = f $\gamma \neq 0$ Y # 0 Y-X = 9 defined everywhere f+9 = 1 $1) \sim (\mathbb{P}^1, \mathbb{I})$

Field - (U,f) non-zero (X,0) zero element. (x,0) $\not\sim$ (U,f) ie. on Uthe O fun & fun fare not equal. Consider $V = U - \{u \in U \mid f(u) = 0\}$ copen in $V = V - \frac{f'(0)}{f'(0)}$ (V, 1/4) represents the multinv. of (U,F)

X C A closed frac k[x] ~ k(x) f,9 EK[X] 9 + 0. $g: X \rightarrow \mathbb{Z}$ $(10^{\circ}, \frac{1}{2})^{\circ}$ £ 1 $()=\times -9(0)$ Cleerly a ring homomorphism.

Domain a field =) injective. Surjectivity. (U,f) = le(X) Take uEU. fis regalu Jopen WCV containing a such that $f = \frac{P}{9} \quad P,9 \in k[x]$ $P \rightarrow p \quad k[x] \rightarrow k[x]$ P = frac k[x]

is mapped to the rat fun

(W, P/a).

Irreducibility
Prop: X, Y irreducible then XXY is irreducible
Pf: $X \times Y = Z_1 \cup Z_2$ Two closed sets. Y Amount $Z_1 = X \times Y$ $Z_2 = X \times Y$
$(323 \times Y) = Z_1 \cap (=)$ $(323 \times Y) = Z_2 \cap ($
one of the factors is who) Blue = Contained in Zz Red = Not contained in Zz (ontained in Z)
Doing this cris-cross > all of XXY mus

Doing this conscross \Rightarrow all of $X \times Y$ must be in Z_1 or Z_2 . ie. $Z_1 = X \times Y$ or $Z_2 = X \times Y$.

X CP inved Cx C/xt {0} is imed. A-0 < iwed. 2,022 either all lines one blue all lines one red.

Tools to show irreducibility	Surj
); ×
2) Densc subsets.	
3) closures of med.	Im(x
(4) Products	
(5) Cones.	
6) Affres & Domain.	
In general, Showing that som	cthing is

. .

0

. .

.

. . . .

. .

. . .

. .

0

. . .

.

.

.

. . .

0

.

. . .

.

. . .

٠

.

.

. . . .

. .

. .

0

.

.

.

.

. .

. . .

. . .

.

.

0

.

.

. . .

.

. .

.

.

. . .

.

.

.