EE 660 VLSI Design Laboratory

Assignment II
Submitted by: L.Sri Sai Swathi (2414202)

1. Design an NMOS common-source amplifier with a PMOS diode-connected load as shown in Fig. 1. The amplifier should have an absolute voltage gain of 3. You can make use of UMC65 models and choose the minimum device size as $2 \mu m/60 nm$. Create a symbol for the amplifier.

Figure: Schematic of CS Amplifier with PMOS diode connected load

2. Create a test bench and instantiate the amplifier in it. Do a large signal analysis of the circuit by doing a DC sweep of the input voltage from 0 to V DD (1.1 V). Decide the input common-mode voltage at the centre of the region where both M1 and M2 are in saturation.

Figure: Plot showing Vout vs Vin

From the plot, Assumed 0.4v as common mode voltage and verified as follows:-

Below is the simulation result of DC operating point analysis. It shows that PMOS is in **region 2** of operation which means "Saturation region". It is also noted that |Vtp| = 0.315v.

		Re	esults D	isplay W	/indow	(on vls	ilab2)	-	_	
Window	Expressions		<u>H</u> elp					c	a d e	n
qg		-568.	01a							
qgdovl			57027a							
qgi		-568.								
qgsovl		-159.								
qjd		-155.	695z							
qjs		-1.	01949f							
qs		395.	644a							
qsi		395.	644a							
rdeff			604m							
region		2								
reversed	ı	9								
rgate		9								
rgbd		9								
ron		2.	08612K							
rout		5.	57364K							
rseff		445.	604m							
self_gai	in	6.	8021							
ueff		9.	63652m							
vbs		-706.	192m							
vdb		9								
vds		-706.	192m							
vdsat		-277.	828m							
vdsat_ma	arg	Na	aΝ							
vdss		-277.	828m							
vearly		1.	88678							
vgb		0								
vgd		0								
vgs		-706.	192m							
vgt		-391.	062m							
vsat_mar	rg	428.	364m							
vsb		706.	192m							
vth		-315.	13m							
vth_driv	re e	Na	aN							
34										

Below is the simulation result of DC operating point analysis. It shows that NMOS is in region 3 of operation which means "Cuttoff region". It is also noted that Vtn = 0.405v.

	Re	sults Display Window (on vlsilab2)	-		×
Window Expressions		- · · · · · · · · · · · · · · · · · · ·		cāde	nce
qg		772a			
qgdovl	10.	7371a			
qgi	975.	772a			
qgsovl	362.	389a			
qjd	-1.	50722 f			
qjs	-203.	933z			
qs	-578.	462a			
qsi	-578.	462a			
rdeff	143.	725m			
region	3				
reversed	Θ				
rgate	Θ				
rgbd	Θ				
ron	1.	16324K			
rout	1.	8856K			
rseff	143.	725m			
self_gain	7.	50371			
ueff	22.	5932m			
vbs	9				
vdb	393.	80 8m			
vds	393.	80 8m			
vdsat	87.	5591m			
vdsat_marg	Na	-			
vdss	87.	5591m			
vearly	638.	355m			
vgb	400m				
vgd	6.	19243m			-
vgs	400m				
vgt		43474m			
vsat_marg	306.	248m			
vsb	-0				
vth	405.	435m			
vth_drive	Na	N			

Observation: Since both transistors are not in saturation when we chose VGS as 400mV, we are choosing another value 420mV which is greater than both value value

- 3. Connect a sinusoidal source at the input with an amplitude of $10\ mV$ and a $500\ fF$ capacitive load at the output.
- (a) Perform a DC operating point analysis to verify that the transistors are in saturation.

Figure: Schematic showing all the DC operating point voltages and currents

Below is the simulation result of DC operating point analysis. It shows that NMOS is in **region 2** of operation which means "Saturation region".

	Results Display Window (on vlsi	· ·
Window Expressions	Info <u>H</u> elp	cādence
qg	1.08776f	
qgdovl	64.9752a	
qgi	1.08776f	
qgsovl	380.428a	
qjd	-1.35815f	
qjs	-238.759z	
qs	-624.587a	
qsi	-624.587a	
rdeff	143.725m	
region	2	
reversed	0	
rgate	0	
rgbd	0	
ron	884.113	
rout	1.62149K	
rseff	143.725m	
self_gain	7.0904	
ueff	22.4788m	
vbs	0	
vdb	351.956m	
vds	351.956m	
vdsat	94.2139m	
vdsat_marg	NaN	
vdss	94.2139m	
vearly	645.497m	
vgb	420m	
vgd	68.0436m	
vgs	420m	
vgt	12.0406m	
vsat_marg	257.743m	
vsb	-0	
vth	407.959m	
vth_drive	NaN	

Below is the simulation result of DC operating point analysis. It shows that PMOS is in **region 2** of operation which means "Saturation region".

	Results Display Window (on vlsilab2)	_ 0
Window Expressions		cādeno
 qg	-609.669a	
qgdovl	-1.57597a	
qgi	-609.669a	
qgsovl	-169.383a	
qjd	-182.944z	
qjs	-1.09813f	
qs	430.933a	
qsi	430.933a	
rdeff	445.604m	
region	2	
reversed	0	
rgate	0	
rgbd	0	
ron	1.88069K	
rout	5.22691K	
rseff	445.604m	
self_gain	6.75352	
ueff	9.47962m	
vbs	-748.044m	
vdb	0	
vds	-748.044m	
vdsat	-303.336m	
vdsat_marg	NaN	
vdss	-303.336m	
vearly	2.07899	
vgb	0	
vgd	0	
vgs	-748.044m	
vgt	-435.956m	
vsat_marg	444.708m	
vsb	748.044m	
vth	-312.088m	
vth_drive	NaN	
_		

Observation: From the above analysis it's been verified that 2 transistors are in Saturation region of operation when Vgs=420mV.

b)Perform a transient analysis of the circuit and verify that the input and output waveforms are out of phase.

Figure: Plot showing Vin ,Vout waveforms obtained from transient analysis .

Figure: Plot showing Vin ,Vout waveforms obtained from transient analysis .

Observation: From the above transient analysis graphs it is observed that input and output waveforms are **out of phase**.

(c) Perform an AC analysis of the circuit. Plot the magnitude and phase responses. Note down the low frequency gain and 3 dB frequency of the circuit. Also, check what is the phase difference between the input and output at the 3 dB frequency.

Figure :Plot showing Frequency and Phase response obtained by performing AC analysis.

Figure :Plot showing Frequency and Phase response obtained by performing AC analysis.

Observations:From the above Ac Analysis plots we can say that :

- 1.Low frequency gain is 6.57dB
- 2. 3dB cuttoff frequency is 639.475MHz
- 3. Phase difference between the input and output at the 3 dB frequency: 134.94 Degrees.

(d) Calculate the power dissipation of the circuit.

Power dissipation of the circuit Id * Vdd = 0.399mA*1.1v = 0.4389mW

- 4. Repeat step 3 by changing the amplitude of the sinusoidal source to 200 mV. Do you see any differences between the results? If yes, justify your observations.
- a)DC operating point analysis Results:

Figure: Schematic showing all the DC operating point voltages and currents

Below is the simulation result of DC operating point analysis. It shows that NMOS is in **region 2** of operation which means "Saturation region".

		Re	esults Display Window (on vlsilab2)	_		×
Window	Expressions	Info	<u>H</u> elp	ca	d e	n c
qdi			1304a			
qg			08776 f			
qgdovl			9752a			
qgi			08776 f			
qgsovl			428a			
qjd			35815 f			
qjs		-238.				
qs		-624.				
qsi		-624.				
rdeff			725m			
region reversed		2 9				
rgate	ı	9				
rgbd		9				
ron		884.	112			
rout			62149K			
rseff			725m			
self_gai	n		0904			
ueff			47.88m			
vbs		9	47 COII			
vdb		_	956m			
vds			956m			
vdsat		94.	2139m			
vdsat_ma	irg	Na	iN .			
vdss		94.	2139m			
vearly		645.	497m			
vgb		420n	1			
vgd		68.	0436m			
vgs		420n	1			
vgt		12.	0406m			
vsat_mar	g	257.	743m			
vsb		-0				
vth		407.	959m			
vth_driv	re	Na	N .			
75						

Below is the simulation result of DC operating point analysis. It shows that PMOS is in **region 2** of operation which means "Saturation region".

	Results Display Window (on vlsilab2)	_ 0 ×
Window Expressions	Info <u>H</u> elp	cādence
qbi	176.843a	
qd	1.89308a	
qdi	1.89308a	_
qg	-609.669a	
qgdovl	-1.57597a	_
qgi	-609.669a	
qgsovl	-169.383a	
qjd	-182.944z	_
qjs	-1.09813f	_
qs	430.933a	
qsi	430.933a	
rdeff	445.604m	
region	2	
reversed	θ	
rgate	0	
rgbd	θ	
ron	1.88069K	
rout	5.22691K	
rseff	445.604m	
self_gain	6.75352	
ueff	9.47962m	
vbs	-748.044m	
vdb	θ	
vds	-748.044m	
vdsat	-303.336m	
vdsat_marg	NaN	
vdss	-303.336m	
vearly	2.07899	
vgb	0	
vgd	0	
vgs	-748.044m	
vgt	-435.956m	
vsat_marg	444.708m	
vsb	748.044m	
vth	-312.088m	
76	MaM	

Observation: From the above DC operating point analysis it's been verified that 2 transistors are in Saturation region of operation when Vgs=420mV.

b)Perform transient analysis of the circuit and verify that the input and output waveforms are out of phase.

Figure: Plot showing Vin , Vout waveforms obtained from transient analysis .

Figure: Plot showing Vin , Vout waveforms obtained from transient analysis .

Observation: It is Observed that, after changing sinusoidal voltage to 200 mV Vout waveform has been changed. This is mainly caused due to the clipping of output voltage caused due to the fact that M1 is in triode region since 0.2 v is not in the range of saturation Vin . Hence , we could see that Vout got clipped. This is major change that has been observed when we have changed input of sinusoidal voltage to 0.2 v

c)Perform AC analysis of the circuit. Plot the magnitude and phase responses.

Figure :Plot showing Frequency and Phase response obtained by performing AC analysis.

Figure :Plot showing Frequency and Phase response obtained by performing AC analysis.

Observations:From the above Ac Analysis plots we can say that:

- 1.Low frequency gain is 6.57dB
- 2. 3dB cuttoff frequency is 639.475MHz
- 3. Phase difference between the input and output at the 3 dB frequency: 134.94 Degrees.

(d) Calculate the power dissipation of the circuit.

Power dissipation of the circuit Id * Vdd = 0.433mA*1.1v = 0.4763mW

5. Mostly, you would have got a low-frequency gain that is different from the designed value in step 3. Could you change the dimensions of M1 or M2 to get a gain of 3?

Yes , we have got gain less than designed value . To get a gain of 3 (I.e Av in dB=9.54dB) below modifications are made to the dimensions of M1 and M2

Initially tried reducing width of M2 from 2um to 80nm(least possible). Below is the magnitude and phase plot:

Figure: Plot showing Magnitude and frequency response

Observed gain =-8.98dB

Now increased width of M1 to 10um(max possible for this technology). Below is the magnitude and phase plot :

Figure: Plot showing Magnitude and frequency response

Observed gain =6.95dB

Since this technology offers maximum width to be 10 um, tried placing nmos transistors in parallel .yet maximum gain attained is 6.35 when 3 transistors are used.

Figure: Schematic showing cs amplifier with 3 nmos transistors in parallel.

Figure: Plot showing Frequency and magnitude response.

Observed gain is 6.39dB