Bisection Searches

Bisection Search

- Given a continuous function f you can use bisection search to
 - Find a root of the function, i.e. a point x such that f(x) = 0
 - Find a local minimum, i.e. a point x such that every point z in a neighborhood of x has $f(x) \le f(z)$
 - Find a local maximum
- Do not confuse this with binary search in ordered sequences of values

Finding a root

Given an interval [a, b] such that $f(a) \times f(b) \leq 0$, compute m = (a + b)/2 and then continue searching in either [a, m] or [m, b]

Eventually the interval becomes so small that we are satisfied and we then stop searching and return that interval or a point in it

Finding a local minimum

Given an interval [a,c] such that for b=(a+c)/2 we have $f(b) \leq f(a)$ and $f(b) \leq f(c)$ we compute $m_1=(a+b)/2$ and $m_2=(b+c)/2$ and then continue searching in either [a,b], or $[m_1,m_2]$, or [b,c]

Eventually the interval becomes so small that we are satisfied and we then stop searching and return that interval or a point in it