

GCE

Edexcel GCE

Core Mathematics C3 (6665)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6665 Core C3 Mark Scheme

Question Number	Scheme	Ма	rks
1. (a)	Dividing by $\cos^2 \theta$: $\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$	M1	
	Completion: $1 + \tan^2 \theta = \sec^2 \theta$ (no errors seen)	A1	(2)
(b)	Use of $1 + \tan^2 \theta = \sec^2 \theta$: $2(\sec^2 \theta - 1) + \sec \theta = 1$ [$2\sec^2 \theta + \sec \theta - 3 = 0$]	M1	
	Factorising or solving: $(2 \sec \theta + 3)(\sec \theta - 1) = 0$	M1	
	$[\sec \theta = -\frac{3}{2} \text{ or } \sec \theta = 1]$		
	heta=0	B1	
	$\cos \theta = -\frac{2}{3}$; $\theta_1 = 131.8^{\circ}$ $\theta_2 = 228.2^{\circ}$	M1 A1	
	$\theta_2 = 228.2^{\circ}$	A1√	(6)
	[A1ft for $\theta_2 = 360^\circ - \theta_1$]		(6) [8]

Question Number	Scheme	Marks
2. (a)	(i) $6\sin x \cos x + 2\sec 2x \tan 2x$ or $3\sin 2x + 2\sec 2x \tan 2x$ [M1 for $6\sin x$]	M1A1A1 (3)
	(ii) $3(x + \ln 2x)^2 (1 + \frac{1}{x})$ [B1 for $3(x + \ln 2x)^2$]	B1M1A1 (3)
(b)	Differentiating numerator to obtain $10x - 10$ Differentiating denominator to obtain $2(x-1)$	B1 B1
	Using quotient rule formula correctly: To obtain $\frac{dy}{dx} = \frac{(x-1)^2 (10x-10) - (5x^2 - 10x + 9)2(x-1)}{(x-1)^4}$	M1 A1
	Simplifying to form $\frac{2(x-1)[5(x-1)^2 - (5x^2 - 10x + 9)}{(x-1)^4}$	M1
	$= -\frac{8}{(x-1)^3} $ * (c.s.o.)	A1 (6) [12]
	Alternatives for (b) Either Using product rule formula correctly: Obtaining $10x - 10$ Obtaining $-2(x-1)^{-3}$ To obtain $\frac{dy}{dx} = (5x^2 - 10x + 9)\{-2(x-1)^{-3}\} + (10x - 10)(x-1)^{-2}$	M1 B1 B1 A1 cao
	Simplifying to form $\frac{10(x-1)^2 - 2(5x^2 - 10x + 9)}{(x-1)^3}$ $= -\frac{8}{(x-1)^3} * (c.s.o.)$	M1 A1 (6)
	Or Splitting fraction to give $5 + \frac{4}{(x-1)^2}$ Then differentiating to give answer	M1 B1 B1 M1 A1 A1 (6)

Question Number	Scheme	Marks	
3(a)	$\frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$	B1	
	$= \frac{5x + 1 - 3(x - 1)}{(x + 2)(x - 1)}$ M1 for combining fractions even if the denominator is not lowest common	M1	
	$= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1}$ M1 must have linear numerator	M1 A1 cso	(4)
(b)	$y = \frac{2}{x-1} \implies xy - y = 2 \implies xy = 2 + y$	M1A1	
	$f^{-1}(x) = \frac{2+x}{x}$ o.e.	A1	(3)
(c)	$fg(x) = \frac{2}{x^2 + 4} \text{(attempt)} \qquad \left[\frac{2}{"g" - 1} \right]$	M1	
	Setting $\frac{2}{x^2 + 4} = \frac{1}{4}$ and finding $x^2 = \dots$; $x = \pm 2$	M1; A1	(3)
		[[10]

Question Number	Scheme	Marks
4 (a)	$f'(x) = 3 e^x - \frac{1}{2x}$	M1A1A1 (3)
(b)	$3e^x - \frac{1}{2x} = 0$	M1
(c)	$\Rightarrow 6\alpha e^{\alpha} = 1 \qquad \Rightarrow \alpha = \frac{1}{6} e^{-\alpha} \qquad (*)$ $x_1 = 0.0613, x_2 = 0.1568, x_3 = 0.1425, x_4 = 0.1445$	A1 cso (2)
	[M1 at least x_1 correct, A1 all correct to 4 d.p.]	M1 A1 (2)
	(d) Using $f'(x) = 3 e^x - \frac{1}{2x}$ with suitable interval e.g. $f'(0.14425) = -0.0007$ f'(0.14435) = +0.002(1)	M1
	Accuracy (change of sign and correct values)	A1 (2)
		[9]

Question Number	Scheme	Marks	
5. (a)	$\cos 2A = \cos^2 A - \sin^2 A (+ \text{ use of } \cos^2 A + \sin^2 A \equiv 1)$	M1	
	$= (1 - \sin^2 A); -\sin^2 A = 1 - 2\sin^2 A \qquad (*)$	A1	(2)
(b)	$2\sin 2\theta - 3\cos 2\theta - 3\sin \theta + 3 = 4\sin \theta \cos \theta; -3(1 - 2\sin^2 \theta) - 3\sin \theta + 3$	B1; M1	
	$\equiv 4\sin\theta\cos\theta + 6\sin^2\theta - 3\sin\theta$	M1	
	$\equiv \sin\theta(4\cos\theta + 6\sin\theta - 3) \tag{*}$	A1	(4)
(c)	$4\cos\theta + 6\sin\theta = R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$ Complete method for R (may be implied by correct answer) $[R^2 = 4^2 + 6^2, R\sin\alpha = 4, R\cos\alpha = 6]$ $R = \sqrt{52} \text{ or } 7.21$ Complete method for α ; $\alpha = 0.588$ (allow 33.7°)	M1 A1 M1 A1	(4)
(d)	$\sin\theta (4\cos\theta + 6\sin\theta - 3) = 0$ $\theta = 0$	M1 B1	
	$\sin(\theta + 0.588) = \frac{3}{\sqrt{52}} = 0.4160$ (24.6°)	M1	
	$\theta + 0.588 = (0.4291), 2.7125 \text{ [or } \theta + 33.7^{\circ} = (24.6^{\circ}), 155.4^{\circ}]$ $\theta = 2.12 \text{ cao}$	dM1 A1	(5) [15]

Question Number	Scheme		Marks	
6. (a)		nslation ← by 1 ercepts correct	M1 A1	(2)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, correct "shape" vided graph is not original oh flection in y-axis ercepts correct	B1 B1√ B1	(3)
(c)	a = -2, b = -1		B1B1	(2)
(d)	Intersection of $y = 5x$ with $y = -x - 1$ Solving to give $x = -\frac{1}{6}$		M1A1	(4)
	[Notes: (i) If both values found for $5x = -x - 1$ and $5x = -x - 1$ algebraically, can score 3 out of 4 for $x = -\frac{1}{2}$ required to eliminate $x = -\frac{3}{4}$ for final mark. (ii) Squaring approach: M1 correct method, $24x^2 + 22x + 3 = 0$ (correct 3 term quadratic Solving M1, Final correct answer A1.]	$\frac{1}{6}$ and $x = -\frac{3}{4}$;		[11]

7. (a)	Setting $p = 300$ at $t = 0 \implies 300 = \frac{2800a}{1+a}$	M1	
	(300 = 2500a); $a = 0.12$ (c.s.o) *	dM1A	1 (3)
(b)	$1850 = \frac{2800(0.12)e^{0.2t}}{1 + 0.12e^{0.2t}} ; \qquad e^{0.2t} = 16.2$	M1A1	
	Correctly taking logs to $0.2 t = \ln k$	M1	
	t = 14 (13.9)	A1	(4)
(c)	Correct derivation: (Showing division of num. and den. by $e^{0.2t}$; using a)	B1	(1)
(d)	Using $t \to \infty$, $e^{-0.2t} \to 0$,	M1	
	$p \to \frac{336}{0.12} = 2800$	A1	(2)
			[10]