Université d'Évry Val d'Essonne 2009-2010

M54 algèbre et arithmétique

Indications pour le partiel de 2009

Exercice 1.1 à 3. Cours.

- 4. L'idéal (2, X) n'est pas principal : s'il était engendré par P, ce P diviserait 2 et X...
- 5. Cours.
- 6. **Z**.
- 7. Pas traité en cours cette année.
- 8. Les polynômes de degré 1, et ceux de degré 2 à discriminant strictement négatif.
- 9. Cet anneau est principal, donc les idéaux maximaux sont ceux engendrés par les éléments irréductibles, donnés à la question précédente.

Exercice 2. 1. \mathbf{F}_2 est un corps, et le cours dit que l'anneau des polynômes sur un corps est euclidien, donc principal.

- 2. Il est de degré 2 et n'a pas de racine.
- 3. Ce sont les $a + b\overline{X}$ avec a et b dans \mathbf{F}_2 .
- 4. Fait en TD.
- 5. Polynôme de degré 2 : il est irréductible si et seulement si il n'a pas de racine.
- 6. Par la question précédente, P est irréductible, dans l'anneau principal $\mathbf{F}_p[X]$ il engendre donc un idéal maximal : le quotient est corps.
- 7. D'après la question précédente, on peut voir \mathbf{F}_9 comme $F_3[X]/(X^2+1)$.
- 8. Polynôme de degré 3 sans racine. $\mathbf{F}_8 = \{a + b\overline{X} + c\overline{X} \text{ avec } a, b, c \in \mathbf{F}_2\}$. Règles de calcul données par $\overline{X}^3 = \overline{X}^2 + 1$.

Exercice 3. 1. Voir feuille 5.

- 2. Fait en TD.
- 3. On résout $a^2 + b^2 = 2$ dans **Z**, on trouve (1,1). Pour 3, il n'y a pas de solution.
- 4. Application directe de la définition.
- 5. En clair : montrer que x est un carré si et seulement si $x^{\frac{p-1}{2}} = 1$. Puis calculer le nombre de solutions de $X^{\frac{p-1}{2}} = 1$. Voir feuille 1.
- 6. Voir feuille 1.
- 7. Erreur dans l'énoncé : il faut montrer que $\mathbf{Z}[X]/(p,X^2+1)$ est isomorphe à $\mathbf{Z}[i]/(p)$. On commence comme l'indication, il faut ensuite montrer que $\ker \phi = (p,X^2+1)$. Une inclusion est évidente. Pour l'autre on prend P dans le noyau, on fait sa division euclidienne par X^2+1 et on montre que le reste doit être nul modulo p.

- 8. À la question précédente, on peut voir que $\mathbf{F}_p[X]/(X^2+1) \equiv \mathbf{Z}[i]/(p)$. Si p est congru à 1 modulo 4, alors X^2+1 n'est pas irréductible sur \mathbf{F}_p , donc l'idéal qu'il engendre n'est pas maximal, et le quotient n'est pas un corps. Ainsi $\mathbf{Z}[i]/(p)$ non plus, donc (p) n'est pas maximal et p n'est pas irréductible (on est dans des anneaux principaux).
- 9. p est le produit de deux éléments de $\mathbf{Z}[i]$. Comme à l'exercice 6 de la feuille 5, on montre ce ces éléments sont forcément conjugués.
- 10. $X^2 + 1$ est de degré 2 et n'a pas de racine. L'idéal qu'il engendre est maximal; le quotient est un corps, donc $\mathbf{Z}[i]/(p)$ aussi et p est irréductible dans $\mathbf{Z}[i]$.
- 11. Si z est irréductible, on l'écrit z=xy avec x et y non inversibles. On $\phi(z)=\phi(x)\phi(y)$, et on aboutit à une contradiction.
- 12. $p \mid \phi(z) = z\bar{z}$. Comme p est irréductible dans $\mathbf{Z}[i]$, il divise soit z soit \bar{z} . Or, s'il divise \bar{z} il divise aussi z. Donc p divise z, mais les deux sont irréductibles, l'un est donc un multiple de l'autre par un inversible (unicité de la décomposition en facteurs irréductibles).
- 13. Il existe q tel que $p=q\bar{q}$. Ainsi $q\bar{q}$ divise $z\bar{z}$, qui est le produit de deux irréductibles. On a donc z=uq ou $z=u\bar{q}$ avec u inversible.

14. ...

Exercice 4. 1. On écrit $P = (X^2 + 2)Q + R$ la division euclidienne de P par $X^2 + 2$, avec R de degré 1. On voir que $P(i\sqrt{2}) = R(i\sqrt{2})$.

- 2. Voir exercice précédent.
- 3. Pas traité en cours cette année.
- 4. Ce sont les x tels que $\phi(x)$ est inversible dans Z. On trouve seulement 1 et -1.
- 5. Oui, car son image par ϕ l'est dans **Z**.
- 6. On trouve c=0 et $d=\pm 1$. Irréductibilité : voir question précédente.
- 7. On a $2i\sqrt{2} = -(i\sqrt{2})^3$, décomposition en facteur premiers. Les diviseurs sont $\pm (i\sqrt{2})^{\alpha}$ avec α entre 0 et 3; ils sont irréductibles pour $\alpha = 1$.
- 8. Si l'un est pair, l'autre doit l'être aussi. S'ils étaient pairs, on aurait $4 \mid y^2$, donc $4 \nmid y^2 + 2$, or $8 \mid x^3$.
- 9. S'ils ont un facteur premier commun f, alors f divise leur différence $2i\sqrt{2}$, donc $f=\pm i\sqrt{2}$ par la question précédente. Mais alors $f^2=\pm 2$ diviserait x^3 , or x est impair.
- 10. Dans la décomposition de x est produit d'irréductibles dans $\mathbf{Z}[i\sqrt{2}]$, chaque facteur divise soit $y+i\sqrt{2}$ soit $y-i\sqrt{2}$. On choisit pour $a+ib\sqrt{2}$ le produit de ceux qui divisent $y+i\sqrt{2}$.
- 11. On a donc $y+i\sqrt{2}=(a+ib\sqrt{2})^3=a(a^2-6b^2)+b(3a^2-2b^2)i\sqrt{2}$). Par identification, $1=b(3a^2-2b^2)$. Ainsi, b est inversible dans \mathbf{Z} , donc $b=\pm 1$. On voit que seul b=1 est possible, avec $a=\pm 1$. On trouve alors $y=\pm 5$ et x=3.