Teorema de Compacidad

Sea T una teoría tal que para cada n ∈ N hay un modelo A_n de T tal que A_n tiene al menos n elementos. Probar que T tiene un modelo infinito.

Teorema de Compacidad

- Sea T una teoría tal que para cada n ∈ N hay un modelo A_n de T tal que A_n tiene al menos n elementos. Probar que T tiene un modelo infinito.
- Saque como corolario que si τ es un tipo cualquiera, entonces no hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \vDash \varphi$ sii A es finito. Analogamente, tampoco hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \vDash \varphi$ sii A es infinito.

Teorema de Compacidad

Probemos ahora que

Si T una teoría tal que para cada $n \in \mathbb{N}$ hay un modelo \mathbb{A}_n de T tal que \mathbb{A}_n tiene al menos n elementos entonces T tiene un modelo infinito.

• Sea $\phi_n =$ "el universo del modelo tiene al menos n elementos"

- Sea ϕ_n = "el universo del modelo tiene al menos n elementos"
- Sea $\Sigma = \{\phi_n : n \in \mathbb{N}\}$

- Sea ϕ_n = "el universo del modelo tiene al menos n elementos"
- Sea $\Sigma = \{\phi_n : n \in \mathbb{N}\}$
- Observación: Σ tiene infinitos elementos

- Sea $\phi_n =$ "el universo del modelo tiene al menos n elementos"
- Sea $\Sigma = \{\phi_n : n \in \mathbb{N}\}$
- Observación: Σ tiene infinitos elementos
- ullet Sea au un tipo

- Sea $\phi_n =$ "el universo del modelo tiene al menos n elementos"
- Sea $\Sigma = \{\phi_n : n \in \mathbb{N}\}$
- Observación: Σ tiene infinitos elementos
- Sea τ un tipo
- Sea $T=(\Sigma, au)$ una teoría

 \bullet Por hipótesis, cada subconjunto finito de Σ tiene un modelo

- ullet Por hipótesis, cada subconjunto finito de Σ tiene un modelo
- Por Teorema de Compacidad sabemos que T tiene un modelo

- ullet Por hipótesis, cada subconjunto finito de Σ tiene un modelo
- ullet Por Teorema de Compacidad sabemos que T tiene un modelo
- Sea A dicho modelo

Por definición de Σ:

- Por definición de Σ:
 - $n \leq |A|$, $\forall n \in \mathbb{N}$ donde A es el universo de \mathbb{A}

- Por definición de Σ:
 - $n \leq |A|$, $\forall n \in \mathbb{N}$ donde A es el universo de \mathbb{A}
- Luego, A es infinito

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \models \varphi$ sii A es finito.

Ahora probemos por el absurdo que:

Si τ es un tipo cualquiera, entonces no hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \models \varphi$ sii A es finito.

Analogamente, tampoco hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \models \varphi$ sii A es infinito.

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \vDash \varphi$ sii A es finito.

ullet Sea au un tipo cualquiera

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \vDash \varphi$ sii A es finito.

- ullet Sea au un tipo cualquiera
- Sea $\Sigma \subseteq S^{\tau}$ tal que $\mathbb{A} \vDash \Sigma$ si y sólo si \mathbb{A} es finito

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \models \varphi$ sii A es finito.

- ullet Sea au un tipo cualquiera
- Sea $\Sigma \subseteq S^{\tau}$ tal que $\mathbb{A} \models \Sigma$ si y sólo si \mathbb{A} es finito
- Luego, por la propiedad del item anterior, la teoría (Σ, τ) tiene modelos finitos arbitrariamente grandes

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \vDash \varphi$ sii A es finito.

• Así, por el lema probado anteriormente, (Σ, τ) tiene un modelo infinito

No hay una sentencia $\varphi \in S^{\tau}$ tal que para cada modelo de tipo τ , se de que $\mathbf{A} \models \varphi$ sii A es finito.

• Así, por el lema probado anteriormente, (Σ, τ) tiene un modelo infinito

ABSURDO