

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Susan L. Acton et al.

Serial No.: not yet assigned

Filed: Herewith

For: ***DIAGNOSTIC ASSAYS AND KITS FOR BODY MASS AND CARDIOVASCULAR DISORDERS***

Attorney Docket No.: MNI-172CP2

Assistant Commissioner for Patents
Box Sequence Listing
Washington, D.C. 20231

TRANSMITTAL LETTER FOR DISKETTE CONTAINING SEQUENCE LISTING

Dear Sir:

Enclosed is a diskette which contains a computer readable form of the Sequence Listing for the patent application filed herewith. The Sequence Listing complies with the requirements of 37 C.F.R. § 1.821. The material on this diskette is identical in substance to the Sequence Listing appearing on pages 1-36 of the specification which is submitted herewith, as required by 37 C.F.R. § 1.821(f). The computer readable form of the Sequence Listing contained on the enclosed diskette is understood to comply with the requirements of § 1.824(d).

"Express Mail" mailing label number EL 683 636 332 US

Date of Deposit February 8, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Box Patent Application, Washington, D.C. 20231

Signature

Nelson F. Barros

Nelson F. Barros

Please Print Name of Person Signing

LAHIVE & COCKFIELD, LLP
Attorneys at Law

By

DeAnn F. Smith

Reg. No. 36,383
28 State Street
Boston, MA 02109
Telephone: 617-227-7400
Facsimile: 617-742-4214

SEQUENCE LISTING

<110> Acton, Susan L.
 Ordovas, Jose M.
 McCarthy, Jeanette J.

<120> DIAGNOSTIC ASSAYS AND KITS FOR BODY MASS AND
 CARDIOVASCULAR DISORDERS

<130> MNI-172CP2

<140> 09/031,626
 <141> 1998-02-27

<150> 08/890,979
 <151> 1997-07-10

<160> 121

<170> PatentIn Ver. 2.0

<210> 1
 <211> 2630
 <212> DNA
 <213> Human

<220>
 <221> CDS
 <222> (119)..(1645)

<400> 1
 accgtgcctc tgcggcctgc gtgcccggag tcccccgcctg tgtcgctct gtcgccgtcc 60

ccgtctcctg ccaggcgccgg agccctgcga gccgcgggtg ggccccaggc gcgcagac 118
 atg ggc tgc tcc gcc aaa gcg cgc tgg gct gcc ggg gcg ctg ggc gtc
 Met Gly Cys Ser Ala Lys Ala Arg Trp Ala Ala Gly Ala Leu Gly Val
 1 5 10 15

gcg ggg cta ctg tgc gct gtg ctg ggc gct gtc atg atc gtg atg gtg 214
 Ala Gly Leu Leu Cys Ala Val Leu Gly Ala Val Met Ile Val Met Val
 20 25 30

ccg tcg ctc atc aag cag cag gtc ctt aag aac gtg cgc atc gac ccc 262
 Pro Ser Leu Ile Lys Gln Gln Val Leu Lys Asn Val Arg Ile Asp Pro
 35 40 45

agt agc ctg tcc ttc aac atg tgg aag gag atc cct atc ccc ttc tat 310
 Ser Ser Leu Ser Phe Asn Met Trp Lys Glu Ile Pro Ile Pro Phe Tyr
 50 55 60

ctc tcc gtc tac ttc ttt gac gtc atg aac ccc agc gag atc ctg aag 358
 Leu Ser Val Tyr Phe Phe Asp Val Met Asn Pro Ser Glu Ile Leu Lys
 65 70 75 80

ggc gag aag ccg cag gtg cggtt gag cgc ggg ccc tac gtg tac agg gag 406
 Gly Glu Lys Pro Gln Val Arg Glu Arg Gly Pro Tyr Val Tyr Arg Glu

85	90	95	
ttc agg cac aaa agc aac atc acc ttc aac aac gac acc gtg tcc Phe Arg His Lys Ser Asn Ile Thr Phe Asn Asn Asn Asp Thr Val Ser 100	105	110	454
ttc ctc gag tac cgc acc ttc cag ttc cag ccc tcc aag tcc cac ggc Phe Leu Glu Tyr Arg Thr Phe Gln Phe Gln Pro Ser Lys Ser His Gly 115	120	125	502
tcg gag agc gac tac atc gtc atg ccc aac atc ctg gtc ttg ggt gcg Ser Glu Ser Asp Tyr Ile Val Met Pro Asn Ile Leu Val Leu Gly Ala 130	135	140	550
gcg gtg atg atg gag aat aag ccc atg acc ctg aag ctc atc atg acc Ala Val Met Met Glu Asn Lys Pro Met Thr Leu Lys Leu Ile Met Thr 145	150	155	598
ttg gca ttc acc acc ctc ggc gaa cgt gcc ttc atg aac cgc act gtg Leu Ala Phe Thr Leu Gly Glu Arg Ala Phe Met Asn Arg Thr Val 165	170	175	646
ggt gag atc atg tgg ggc tac aag gac ccc ctt gtg aat ctc atc aac Gly Glu Ile Met Trp Gly Tyr Lys Asp Pro Leu Val Asn Leu Ile Asn 180	185	190	694
aag tac ttt cca ggc atg ttc ccc ttc aag gac aag ttc gga tta ttt Lys Tyr Phe Pro Gly Met Phe Pro Phe Lys Asp Lys Phe Gly Leu Phe 195	200	205	742
gct gag ctc aac aac tcc gac tct ggg ctc ttc acg gtg ttc acg ggg Ala Glu Leu Asn Asn Ser Asp Ser Gly Leu Phe Thr Val Phe Thr Gly 210	215	220	790
gtc cag aac atc agc agg atc cac ctc gtg gac aag tgg aac ggg ctg Val Gln Asn Ile Ser Arg Ile His Leu Val Asp Lys Trp Asn Gly Leu 225	230	235	838
agc aag gtt gac ttc tgg cat tcc gat cag tgc aac atg atc aat gga Ser Lys Val Asp Phe Trp His Ser Asp Gln Cys Asn Met Ile Asn Gly 245	250	255	886
act tct ggg caa atg tgg ccg ccc ttc atg act cct gag tcc tcg ctg Thr Ser Gly Gln Met Trp Pro Pro Phe Met Thr Pro Glu Ser Ser Leu 260	265	270	934
gag ttc tac agc ccg gag gcc tgc cga tcc atg aag cta atg tac aag Glu Phe Tyr Ser Pro Glu Ala Cys Arg Ser Met Lys Leu Met Tyr Lys 275	280	285	982
gag tca ggg gtg ttt gaa ggc atc ccc acc tat cgc ttc gtg gct ccc Glu Ser Gly Val Phe Glu Gly Ile Pro Thr Tyr Arg Phe Val Ala Pro 290	295	300	1030
aaa acc ctg ttt gcc aac ggg tcc atc tac cca ccc aac gaa ggc ttc Lys Thr Leu Phe Ala Asn Gly Ser Ile Tyr Pro Pro Asn Glu Gly Phe 305	310	315	1078

tgc ccg tgc ctg gag tct gga att cag aac gtc agc acc tgc agg ttc Cys Pro Cys Leu Glu Ser Gly Ile Gln Asn Val Ser Thr Cys Arg Phe 325 330 335	1126
agt gcc ccc ttg ttt ctc tcc cat cct cac ttc ctc aac gcc gac ccg Ser Ala Pro Leu Phe Leu Ser His Pro His Phe Leu Asn Ala Asp Pro 340 345 350	1174
gtt ctg gca gaa gcg gtg act ggc ctg cac cct aac cag gag gca cac Val Leu Ala Glu Ala Val Thr Gly Leu His Pro Asn Gln Glu Ala His 355 360 365	1222
tcc ttg ttc ctg gac atc cac ccg gtc acg gga atc ccc atg aac tgc Ser Leu Phe Leu Asp Ile His Pro Val Thr Gly Ile Pro Met Asn Cys 370 375 380	1270
tct gtg aaa ctg cag ctg agc ctc tac atg aaa tct gtc gca ggc att Ser Val Lys Leu Gln Leu Ser Leu Tyr Met Lys Ser Val Ala Gly Ile 385 390 395 400	1318
gga caa act ggg aag att gag cct gtg gtc ctg ccg ctc tgg ttt Gly Gln Thr Gly Lys Ile Glu Pro Val Val Leu Pro Leu Leu Trp Phe 405 410 415	1366
gca gag agc ggg gcc atg gag ggg gag act ctt cac aca ttc tac act Ala Glu Ser Gly Ala Met Glu Gly Glu Thr Leu His Thr Phe Tyr Thr 420 425 430	1414
cag ctg gtg ttg atg ccc aag gtg atg cac tat gcc cag tac gtc ctc Gln Leu Val Leu Met Pro Lys Val Met His Tyr Ala Gln Tyr Val Leu 435 440 445	1462
ctg gcg ctg ggc tgc ctg ctg gtc cct gtc atc tgc caa atc Leu Ala Leu Gly Cys Val Leu Leu Val Pro Val Ile Cys Gln Ile 450 455 460	1510
cgg agc caa gag aaa tgc tat tta ttt tgg agt agt agt aaa aag ggc Arg Ser Gln Glu Lys Cys Tyr Leu Phe Trp Ser Ser Ser Lys Lys Gly 465 470 475 480	1558
tca aag gat aag gag gcc att cag gcc tat tct gaa tcc ctg atg aca Ser Lys Asp Lys Glu Ala Ile Gln Ala Tyr Ser Glu Ser Leu Met Thr 485 490 495	1606
tca gct ccc aag ggc tct gtg ctg cag gaa gca aaa ctg tagggtcctg Ser Ala Pro Lys Gly Ser Val Leu Gln Glu Ala Lys Leu 500 505	1655
aggacaccgt gagccagcca ggcctggccg ctgggcctga ccggcccccc agcccctaca ccccgcttct cccggactct cccagcagac agccccccag ccccacagcc tgagcctccc agctgccatg tgcctgttgc acacctgcac acacgcccctg gcacacatac acacatgcgt gcaggcttgt gcagacactc agggatggag ctgctgctga agggacttgt agggagaggc	1715 1775 1835 1895

tcgtcaacaa gcactgttct ggaacttct ctccacgtgg cccacaggcc tgaccacagg 1955
 ggctgtgggt cctgcgtccc cttcctcggt tgagcctggc ctgtcccggtt cagccgttgg 2015
 gcccaggctt cctccctcc aaggtgaaac actgcagtcc cggtgtggtg gctccccatg 2075
 caggacgggc caggctggga gtgccgcctt cctgtgccaa attcagtggg gactcagtgc 2135
 ccaggccctg gccacgagct ttggccttgg tctacctgcc aggcaggca aagcgccttt 2195
 acacaggcct cgaaaaacaa tggagtgagc acaagatgcc ctgtgcagct gcccggggt 2255
 ctccgcccac cccggccgga ctttgcgtccc cccgaagtct tcacaggcac tgcgtgggt 2315
 tgtctggcgc cctttcctc cagcctaaac tgacatcatc ctatggactg agccggccac 2375
 tytytggccg aagtggccgc aggctgtgcc cccgagctgc ccccaccccc tcacagggtc 2435
 cctcagatta taggtgcccga ggctgaggtg aagaggcctg ggggcccgtc cttccggcgc 2495
 ctcctggacc ctggggcaaa cctgtgaccc ttttctactg gaatagaaat gagttttatc 2555
 atcttgaaa aataattcac tcttgaagta ataaacgtt aaaaaaatgg gaaaaaaaaa 2615
 aaaaaaaaaa aaaaaa 2630

<210> 2

<211> 509

<212> PRT

<213> Human

<400> 2

Met	Gly	Cys	Ser	Ala	Lys	Ala	Arg	Trp	Ala	Ala	Gly	Ala	Leu	Gly	Val
1									10						15

Ala	Gly	Leu	Leu	Cys	Ala	Val	Leu	Gly	Ala	Val	Met	Ile	Val	Met	Val
											20			25	

Pro	Ser	Leu	Ile	Lys	Gln	Gln	Val	Leu	Lys	Asn	Val	Arg	Ile	Asp	Pro
											35			40	

Ser	Ser	Leu	Ser	Phe	Asn	Met	Trp	Lys	Glu	Ile	Pro	Ile	Pro	Phe	Tyr
											50			55	

Leu	Ser	Val	Tyr	Phe	Phe	Asp	Val	Met	Asn	Pro	Ser	Glu	Ile	Leu	Lys
											65			70	

Gly	Glu	Lys	Pro	Gln	Val	Arg	Glu	Arg	Gly	Pro	Tyr	Val	Tyr	Arg	Glu
											85			90	

Phe	Arg	His	Lys	Ser	Asn	Ile	Thr	Phe	Asn	Asn	Asp	Thr	Val	Ser	
											100			105	

Phe	Leu	Glu	Tyr	Arg	Thr	Phe	Gln	Phe	Gln	Pro	Ser	Lys	Ser	His	Gly
											115			120	

Ser Glu Ser Asp Tyr Ile Val Met Pro Asn Ile Leu Val Leu Gly Ala
 130 135 140
 Ala Val Met Met Glu Asn Lys Pro Met Thr Leu Lys Leu Ile Met Thr
 145 150 155 160
 Leu Ala Phe Thr Thr Leu Gly Glu Arg Ala Phe Met Asn Arg Thr Val
 165 170 175
 Gly Glu Ile Met Trp Gly Tyr Lys Asp Pro Leu Val Asn Leu Ile Asn
 180 185 190
 Lys Tyr Phe Pro Gly Met Phe Pro Phe Lys Asp Lys Phe Gly Leu Phe
 195 200 205
 Ala Glu Leu Asn Asn Ser Asp Ser Gly Leu Phe Thr Val Phe Thr Gly
 210 215 220
 Val Gln Asn Ile Ser Arg Ile His Leu Val Asp Lys Trp Asn Gly Leu
 225 230 235 240
 Ser Lys Val Asp Phe Trp His Ser Asp Gln Cys Asn Met Ile Asn Gly
 245 250 255
 Thr Ser Gly Gln Met Trp Pro Pro Phe Met Thr Pro Glu Ser Ser Leu
 260 265 270
 Glu Phe Tyr Ser Pro Glu Ala Cys Arg Ser Met Lys Leu Met Tyr Lys
 275 280 285
 Glu Ser Gly Val Phe Glu Gly Ile Pro Thr Tyr Arg Phe Val Ala Pro
 290 295 300
 Lys Thr Leu Phe Ala Asn Gly Ser Ile Tyr Pro Pro Asn Glu Gly Phe
 305 310 315 320
 Cys Pro Cys Leu Glu Ser Gly Ile Gln Asn Val Ser Thr Cys Arg Phe
 325 330 335
 Ser Ala Pro Leu Phe Leu Ser His Pro His Phe Leu Asn Ala Asp Pro
 340 345 350
 Val Leu Ala Glu Ala Val Thr Gly Leu His Pro Asn Gln Glu Ala His
 355 360 365
 Ser Leu Phe Leu Asp Ile His Pro Val Thr Gly Ile Pro Met Asn Cys
 370 375 380
 Ser Val Lys Leu Gln Leu Ser Leu Tyr Met Lys Ser Val Ala Gly Ile
 385 390 395 400
 Gly Gln Thr Gly Lys Ile Glu Pro Val Val Leu Pro Leu Leu Trp Phe
 405 410 415
 Ala Glu Ser Gly Ala Met Glu Gly Glu Thr Leu His Thr Phe Tyr Thr
 420 425 430

atc acc ttc aat gac aat gat act gtg tcc ttt gtg gag cac cgc agc Ile Thr Phe Asn Asp Asn Asp Thr Val Ser Phe Val Glu His Arg Ser 105 110 115	509
ctc cat ttc cag ccg gac agg tcc cac ggc tct gag agt gac tac att Leu His Phe Gln Pro Asp Arg Ser His Gly Ser Glu Ser Asp Tyr Ile 120 125 130	557
ata ctg cct aac att ctg gtc ttg ggg ggc gca gta atg atg gag agc Ile Leu Pro Asn Ile Leu Val Leu Gly Gly Ala Val Met Met Glu Ser 135 140 145 150	605
aag tct gca ggc ctg aag ctg atg acc ttg ggg ctg gcc acc ttg Lys Ser Ala Gly Leu Lys Leu Met Met Thr Leu Gly Leu Ala Thr Leu 155 160 165	653
ggc cag cgt gcc ttt atg aac cga aca gtt ggt gag atc ctg tgg ggc Gly Gln Arg Ala Phe Met Asn Arg Thr Val Gly Glu Ile Leu Trp Gly 170 175 180	701
tat gag gat ccc ttc gtg aat ttt atc aac aaa tac tta cca gac atg Tyr Glu Asp Pro Phe Val Asn Phe Ile Asn Lys Tyr Leu Pro Asp Met 185 190 195	749
ttc ccc atc aag ggc aag ttc ggc ctg ttt gtt gag atg aac aac tca Phe Pro Ile Lys Gly Lys Phe Gly Leu Phe Val Glu Met Asn Asn Ser 200 205 210	797
gac tct ggg ctc ttc act gtg ttc acg ggc gtc cag aac ttc agc aag Asp Ser Gly Leu Phe Thr Val Phe Thr Gly Val Gln Asn Phe Ser Lys 215 220 225 230	845
atc cac ctg gtg gac aga tgg aat ggg ctc acg aac gtc aac tac tgg Ile His Leu Val Asp Arg Trp Asn Gly Leu Ser Lys Val Asn Tyr Trp 235 240 245	893
cat tca gag cag tgc aac atg atc aat ggc act tcc ggg cag atg tgg His Ser Glu Gln Cys Asn Met Ile Asn Gly Thr Ser Gly Gln Met Trp 250 255 260	941
gca cca ttc atg aca ccc cag tcc tcg ctg gaa ttc ttc agt ccg gaa Ala Pro Phe Met Thr Pro Gln Ser Ser Leu Glu Phe Phe Ser Pro Glu 265 270 275	989
gcc tgc agg tct atg aag ctc acc tac cat gat tca ggg gtg ttt gaa Ala Cys Arg Ser Met Lys Leu Thr Tyr His Asp Ser Gly Val Phe Glu 280 285 290	1037
ggc atc ccc acc tat cgc ttc aca gcc cct aaa act ttg ttt gcc aat Gly Ile Pro Thr Tyr Arg Phe Thr Ala Pro Lys Thr Leu Phe Ala Asn 295 300 305 310	1085
ggg tct gtt tac cca ccc aat gaa ggt ttc tgc ccg tgc ctt gaa tcc Gly Ser Val Tyr Pro Pro Asn Glu Gly Phe Cys Pro Cys Leu Glu Ser 315 320 325	1133

ggc att caa aat gtc agc act tgc agg ttt ggt gca ccc ctg ttt ctg Gly Ile Gln Asn Val Ser Thr Cys Arg Phe Gly Ala Pro Leu Phe Leu 330 335 340	1181
tca cac cct cac ttc tac aat gca gac cct gtg cta tca gaa gcc gtt Ser His Pro His Phe Tyr Asn Ala Asp Pro Val Leu Ser Glu Ala Val 345 350 355	1229
ctg ggt ctg aac cct gac cca agg gag cat tct ttg ttc ctt gac atc Leu Gly Leu Asn Pro Asp Pro Arg Glu His Ser Leu Phe Leu Asp Ile 360 365 370	1277
cat ccg gtc act ggg atc ccc atg aac tgt tct gtg aag ttg cag ata His Pro Val Thr Gly Ile Pro Met Asn Cys Ser Val Lys Leu Gln Ile 375 380 385 390	1325
agc ctc tac atc aaa gct gtc aag ggc att ggg caa aca ggg aag atc Ser Leu Tyr Ile Lys Ala Val Lys Gly Ile Gly Gln Thr Gly Lys Ile 395 400 405	1373
gag ccc gtg gtc ctc cca ttg ctg tgg ttt gag cag agc ggt gcc atg Glu Pro Val Val Leu Pro Leu Leu Trp Phe Glu Gln Ser Gly Ala Met 410 415 420	1421
ggc ggc gag ccc ctg aac acg ttc tac acg cag ctg gtg ctg atg ccc Gly Gly Glu Pro Leu Asn Thr Phe Tyr Thr Gln Leu Val Leu Met Pro 425 430 435	1469
cag gta ctt cag tat gtg cag tat gtg ctg ctg ggg ctg ggc ggc ctc Gln Val Leu Gln Tyr Val Gln Tyr Val Leu Leu Gly Leu Gly Gly Leu 440 445 450	1517
ctg ctg ctg gtg ccc gtc atc tac cag ttg cgc agc cag gag aaa tgc Leu Leu Leu Val Pro Val Ile Tyr Gln Leu Arg Ser Gln Glu Lys Cys 455 460 465 470	1565
ttt tta ttt tgg agt ggt agt aaa aag ggc tcg cag gat aag gag gcc Phe Leu Phe Trp Ser Gly Ser Lys Lys Gly Ser Gln Asp Lys Glu Ala 475 480 485	1613
att cag gcc tac tct gag tct ctg atg tca cca gct gcc aag ggc acg Ile Gln Ala Tyr Ser Glu Ser Leu Met Ser Pro Ala Ala Lys Gly Thr 490 495 500	1661
gtg ctg caa gaa gcc aag ctg tagggtcccc aagacaccac gagccccccc Val Leu Gln Ala Lys Leu 505	1712
aacctgatag cttggtcaga ccagccatcc agccctaca ccccgcttct tgaggactct ctcagcggac agtccgccag tgccatggcc tgagccccag atgtcacacc tgt	1772 1825

<210> 4
<211> 509
<212> PRT
<213> Human

<400> 4

Met	Gly	Gly	Ser	Ala	Arg	Ala	Arg	Trp	Val	Ala	Val	Gly	Leu	Gly	Val
1				5					10				15		
Val	Gly	Leu	Leu	Cys	Ala	Val	Leu	Gly	Val	Val	Met	Ile	Leu	Val	Met
	20					25							30		
Pro	Ser	Leu	Ile	Lys	Gln	Gln	Val	Leu	Lys	Asn	Val	Arg	Ile	Asp	Pro
	35						40					45			
Ser	Ser	Leu	Ser	Phe	Ala	Met	Trp	Lys	Glu	Ile	Pro	Val	Pro	Phe	Tyr
	50					55					60				
Leu	Ser	Val	Tyr	Phe	Phe	Glu	Val	Val	Asn	Pro	Ser	Glu	Ile	Leu	Lys
	65				70				75				80		
Gly	Glu	Lys	Pro	Val	Val	Arg	Glu	Arg	Gly	Pro	Tyr	Val	Tyr	Arg	Glu
	85					90						95			
Phe	Arg	His	Lys	Ala	Asn	Ile	Thr	Phe	Asn	Asp	Asn	Asp	Thr	Val	Ser
	100					105						110			
Phe	Val	Glu	His	Arg	Ser	Leu	His	Phe	Gln	Pro	Asp	Arg	Ser	His	Gly
	115					120					125				
Ser	Glu	Ser	Asp	Tyr	Ile	Ile	Leu	Pro	Asn	Ile	Leu	Val	Leu	Gly	Gly
	130					135					140				
Ala	Val	Met	Met	Glu	Ser	Lys	Ser	Ala	Gly	Leu	Lys	Leu	Met	Met	Thr
	145					150				155			160		
Leu	Gly	Leu	Ala	Thr	Leu	Gly	Gln	Arg	Ala	Phe	Met	Asn	Arg	Thr	Val
		165					170					175			
Gly	Glu	Ile	Leu	Trp	Gly	Tyr	Glu	Asp	Pro	Phe	Val	Asn	Phe	Ile	Asn
		180					185					190			
Lys	Tyr	Leu	Pro	Asp	Met	Phe	Pro	Ile	Lys	Gly	Lys	Phe	Gly	Leu	Phe
		195				200					205				
Val	Glu	Met	Asn	Asn	Ser	Asp	Ser	Gly	Leu	Phe	Thr	Val	Phe	Thr	Gly
		210				215					220				
Val	Gln	Asn	Phe	Ser	Lys	Ile	His	Leu	Val	Asp	Arg	Trp	Asn	Gly	Leu
		225					230				235			240	
Ser	Lys	Val	Asn	Tyr	Trp	His	Ser	Glu	Gln	Cys	Asn	Met	Ile	Asn	Gly
			245					250				255			
Thr	Ser	Gly	Gln	Met	Trp	Ala	Pro	Phe	Met	Thr	Pro	Gln	Ser	Ser	Leu
			260				265					270			
Glu	Phe	Phe	Ser	Pro	Glu	Ala	Cys	Arg	Ser	Met	Lys	Leu	Thr	Tyr	His
			275				280				285				
Asp	Ser	Gly	Val	Phe	Glu	Gly	Ile	Pro	Thr	Tyr	Arg	Phe	Thr	Ala	Pro

290

295

300

Lys Thr Leu Phe Ala Asn Gly Ser Val Tyr Pro Pro Asn Glu Gly Phe
 305 310 315 320

Cys Pro Cys Leu Glu Ser Gly Ile Gln Asn Val Ser Thr Cys Arg Phe
 325 330 335

Gly Ala Pro Leu Phe Leu Ser His Pro His Phe Tyr Asn Ala Asp Pro
 340 345 350

Val Leu Ser Glu Ala Val Leu Gly Leu Asn Pro Asp Pro Arg Glu His
 355 360 365

Ser Leu Phe Leu Asp Ile His Pro Val Thr Gly Ile Pro Met Asn Cys
 370 375 380

Ser Val Lys Leu Gln Ile Ser Leu Tyr Ile Lys Ala Val Lys Gly Ile
 385 390 395 400

Gly Gln Thr Gly Lys Ile Glu Pro Val Val Leu Pro Leu Leu Trp Phe
 405 410 415

Glu Gln Ser Gly Ala Met Gly Gly Glu Pro Leu Asn Thr Phe Tyr Thr
 420 425 430

Gln Leu Val Leu Met Pro Gln Val Leu Gln Tyr Val Gln Tyr Val Leu
 435 440 445

Leu Gly Leu Gly Gly Leu Leu Leu Val Pro Val Ile Tyr Gln Leu
 450 455 460

Arg Ser Gln Glu Lys Cys Phe Leu Phe Trp Ser Gly Ser Lys Lys Gly
 465 470 475 480

Ser Gln Asp Lys Glu Ala Ile Gln Ala Tyr Ser Glu Ser Leu Met Ser
 485 490 495

Pro Ala Ala Lys Gly Thr Val Leu Gln Glu Ala Lys Leu
 500 505

<210> 5

<211> 1002

<212> DNA

<213> Human

<400> 5

actgcggaga tgagggtcta gaaggtggtg gcggggcatg tggaccgttg taaggcgtct 60

ggggttccctg ggtgggctgg cgaagtccta ctcacagtga ccaaccatga tcatggtccc 120

gatagaggag gagagggagg aggagggaaa aggaagggtg aggggctcag aggggagagc 180

tgggaggagg ggagacatac gtggggaaag gggtaggaga aaggggaagg gagcaagagg 240

gtgaggggca ccaggccccca tagacgtttt ggctcagcgg ccacgaggct tcacgagtc 300

ccggccccaaa acggaagcga ggccgtgggg gcagcggcag catggcgaaa cttgtcttgg 360
 cggccatggc cccgccccct gcccgtccga tcagcgcccc gccccgtccc cgccccgacc 420
 ccgccccggg cccgctcagg ccccgccccct gccgcccggaa tcctgaagcc caaggctgcc 480
 cgggggcggcgt ccggcggcgc cggcgatggg gcataaaacc actggccacc tgccgggctg 540
 ctccctgcgtg cgctgccgtc ccggatccac cgtgcctctg cggcctgcgt gccccgagtc 600
 cccgcctgtg tcgtctctgt cggcgatcccc gtctcctgcc aggcgcggag ccctgcgagc 660
 cgcgggtggg ccccaggcgc gcagacatgg gctgctccgc caaagcgcgc tgggctgccg 720
 gggcgctggg cgtcgccggg ctactgtgcg ctgtgctggg cgctgtcatg atcgtgatgg 780
 tgccgtcgct catcaagcag caggtcctta aggtgggtga gggagacccc agggggtccg 840
 cgcacggacc cgggctgttg ggcgctgggc gccgggagga cccgcgcgtt gcgggtgggtg 900
 ggcgaccgca gcggaatcgg cggccggcc tggcgccgca gaacacgagg gaggccaggg 960
 gtttcgggag gggctgtgc ccgcctcccc accaccctca cc 1002

<210> 6
 <211> 479
 <212> DNA
 <213> Human

<400> 6
 agcctcatgt gcgaagggtt ttccaccac ctcctatccc aagctcccgc cgaggagccc 60
 cttccctggc cgggctcggg cagctgtcc ggagccttgt ggtggggcgt gggccctca 120
 tcactctcct cacaagcgtt cttgtccctt cccctgcaga acgtgcgcattt cgaccccaagt 180
 agcctgtcct tcaacatgtt gaaggagatc cctatcccct tctatctctc cgtctacttc 240
 tttgacgtca tgaaccccaag cgagatcctg aaggcgaga agccgcaggt gcgggagcgc 300
 gggccctacg tgtacaggtt aggctgtgtc cacgtgtatgg tggacgggcc ggctgacgct 360
 gggcatgggaa cgggtctcaa gtggacggaa tggggaggtt gctgactgac ccccaaacat 420
 tggccggaa gcacgcaact catagtcggtt gtaagtgcata ctccaaaaaa agtttgcgt 479

<210> 7
 <211> 495
 <212> DNA
 <213> Human

<400> 7
 catgtcctgc agtgggcagg cagcgggagg gacagacttg gcgaaggggc cgagctcagc 60

tttggctgtg gggccggagg tgtgcacaga cgtccagggc ccctggttcc caggcaggca 120
 ttgcaggcga gtagaaggga aacgtcccatt gcagcggggc ggggcgtctg acccactggc 180
 ttccccaca gggagtttag gcacaaaagc aacatcacct tcaacaacaa cgacaccgtg 240
 tccttcctcg agtaccgcac cttccagttc cagccctcca agtcccacgg ctcggagagc 300
 gactacatcg tcatgcccaa catcctggtc ttggtgaggc tgccctgtgg cccacgcccgc 360
 ctgcaccct gacctcggtcc cctgtctctc ctcccgctg ccccttgtgc agagagcagt 420
 ccctgaggtg gtcggagcgt gggactcac gcctggtggg tggcttcgg ccctgtgctg 480
 tctccaccac cccca 495

<210> 8
 <211> 526
 <212> DNA
 <213> Human

<400> 8
 ggtggttctg gtgtcccaga tgcccccacgt ggccactcca ggggcctcct gcacccca 60
 atttcccttc atgggcttt tgctgtgagg cccagctggg gccaaggag gatgggccag 120
 ccacgtccag cctctgacac tagtgcctt tcgccttgca gggtgccggc gtgtatgtgg 180
 agaataagcc catgaccctg aagctcatca tgaccttggc attcaccacc ctccggcaac 240
 gtgccttcat gaaccgcact gtgggtgaga tcatgtgggg ctacaaggac cccttgtgaa 300
 tctcatcaac aagtactttc caggcatgtt ccccttcaag gacaagttcg gattatttc 360
 tgaggtacgt gtggccttgtt gagaagccaa agattcaggc ctgtgtcctg tcttcccctc 420
 acacagcctg gacactggtc accagcttgc tttgttagctg gctggggatc tagtggctgt 480
 gggttgtaag tgactgagaa cctgactcaa accggcttga gtgaaa 526

<210> 9
 <211> 416
 <212> DNA
 <213> Human

<400> 9
 cctctcggtc cccagacact gggcatttgg cagtgaacca gatgtgggg gccctgtcct 60
 tctggtgag ggggaggagg gctcagccca gaatgttcag accaggccgg ctcaatggca 120
 ggcctaagcc ttacgatgtt gttccctgtt gtgtctgttag ctcaacaact ccgactctgg 180
 gctcttcacg gtgttcacgg gggccagaa catcaggcagg atccacctcg tggacaagt 240
 gaacgggctg agcaagggtga ggggcgagag gcgaggccc ctgtcgccag ggagagggga 300

gggtgggccc ggccatggct gctcggaggt ggcaggacc agagagctcc ttcttccttt 360

gtcgtgaaga gggtgctggg agatgaaca ctcttgaagt tggaggaggg atttta 416

<210> 10

<211> 436

<212> DNA

<213> Human

<400> 10

tctctgtgtg tctacatagc ctgcctctt cccaccgtgc cagtattggg aattgagtg 60

ccgtgcgtgc accagggta gtaggtgtg cagcaccta gagggttat taaggggct 120

tggccctact gaggggtcta gtctggatgc ttccccccag gttgacttct ggcattcga 180

tcagtgcac atgatcaatg gaacttctgg gcaaattgtgg ccgccttca tgactcctga 240

gtcctcgctg gagttctaca gcccggaggc ctgccggtaa tcactggac tcggggcctc 300

ctgggtttcc tggtagctc atggccaaat tctgtgggtg tggctgtgca cttggaaagc 360

attttgcactc atcggtggatt tgactcagta gcccttgcca ccagcttcaa ttctctttgg 420

tcacaccacc aaaagc 436

<210> 11

<211> 481

<212> DNA

<213> Human

<220>

<223> All occurrences of n = any nucleotide

<400> 11

ggaggtcgct gcagctccgc gggtgagaga tggggggcggt ttggacccgg gaggtggtag 60

cggccgtggg gagaagtggc tggatctggg cagcctttgg cagggcctgg ctctggccgc 120

cgggtctggg tgtccccctct catcctgtct gtcccctgca gatccatgaa gctaattgtac 180

aaggagtcag gggtgtttga aggcatcccc acctatcgct tcgtggctcc caaaaccctg 240

tttgccaacg gtcacatcta cccacccaac gaaggcttct gcccgtgcct ggagtctgga 300

attcagaacg tcagcagctg caggttcagt acgtgccgtc ccctgttctg ggatngccgg 360

agggtgttag gtntngggca cctnanggtt tatctgcccata tgctgtctg cttaatctct 420

ggcctctgtta ctcttgataa cccattaagc caaaaatatg atgcctctgg gacgatatct 480

g

481

<210> 12
<211> 430
<212> DNA
<213> Human

<400> 12
tggggcttt tacagaatgg aggaaggat cctctgtc gggtattatg gtcatgc 60
cgggggtgcc gtgcagacca cagctctgtg cagacttccg gagtggcagg acgtgc 120
atactgtcgt tgtatgtatgt cccctccctg cccttgttgt aggtgc 180
cccatcctca cttcatcaac gccgaccgg ttctggcaga agcggtgact ggcctgc 240
ctaaccagga ggcacactcc ttgttcgtgg acatccaccc ggtgagcccc tgccatcc 300
tgtgggggt gggtgattcc tggtgaggc acacctggct gcctcctctc tccccaggca 360
gagagctgct gtgggctggg gtggtgaa gcctggcttc tagaatctcg agccaccaa 420
gttccttact 430

<210> 13
<211> 390
<212> DNA
<213> Human

<220>
<223> All occurrences of n = any nucleotide

<400> 13
ccccagcctg tggcttggtt tagtaagat acaagcaagc tccactggc agtttagctgg 60
gacgcccacc ctcttgactg ggaccaggaa aaagaagggtt gactgtgtcc ctggagcttg 120
ggggtggcca gtctcctcac tgtgtttgtt gccgcaggc acggaaatcc ccatgaactg 180
ctctgtgaaa ctgcagctga gcctctacat gaaatctgtc gcaggcattg ggtgagtg 240
gactggaaac tggggctgca ttgctcattt agagattang tgctcagtgc tccagtgttc 300
ccagactccc ctgacatacc ccaggaaaca gggcatgggg aaggagagg gtcctattgg 360
gggtggaatc cagtcctgc tgcatttc 390

<210> 14
<211> 370
<212> DNA
<213> Human

<400> 14
atggctccta aagtgtttca gtcattgtt tatatttgggtt ggtgagggtt tagtgtgtc 60
aaaattatac taaacctgtt tagatgttgtt attcaagcag aatttagatca agttgggtg 120

taagactttg ttccaacacc tatgtcttgc ttatttcag acaaactggg aagattgagc 180
 ctgtggtcct gccgctgctc tggttgcag aggttaagggt gcgttggca cagcgtcggg 240
 ggctttgtt aatagccat gtggcattt gaggcaggag gcggggggag cactttag 300
 aaaggagag ggctgagcca gggtaaccgg actgttacat ggaccagcgt atcatacact 360
 tcaccctgtc 370

<210> 15
 <211> 470
 <212> DNA
 <213> Human

<400> 15
 cctggaggga ggaggtccct ggcaggctcc aacacatgct ttagccggga agcttgaggt 60
 ggggaaaagc tgaggcgggc acagaggaag gtgttgggtg gcacatcgcc ttagccccgc 120
 agcctcgccccc cccagctcat gtgttgtca ttctgtctcc tcagagcggg gccatggagg 180
 gggagactct tcacacattc tacactcagc tggtgttgcat gccaagggtg atgcactatg 240
 cccagtagt cctcctggcg ctggctgcg tcctgctgt ggtccctgtc atctgccaaa 300
 tccggagcca agtaggtgct ggccagaggg cagcccgccg tgacagccat tcgcttgcc 360
 gctggggaa aggggcctca gatcgaccc tctggccaac cgccagcctgg agcccaccc 420
 cagcagcagt cctgcgtctc tgccggagtg ggagcggtca ctgctggggg 470

<210> 16
 <211> 450
 <212> DNA
 <213> Human

<400> 16
 ccccacatct cagccacactg caatcggtga gggttgttgg actctaaact tatgtgcctt 60
 tcctgtttcc tctttgcctt ttgcaaattt aagaaccgtg taaaaccatt tttatgtggc 120
 ttcaacgtca actataaatt agcttggta tcttctagga gaaatgctat ttatttgg 180
 gtagtagtaa aaagggcctca aaggataagg aggccattca ggcctattct gaatccctga 240
 tgacatcagc tcccaaggc tctgtgctgc aggaagcaaa actgttaggtg ggtaccaggt 300
 aatgccgtgc gcctccccgc cccctccat atcaagttaga atgctggcgg cttaaaacat 360
 ttggggtcct gtcattcct tcagcctcaa cttcacctgg agtgcataca gactgaagat 420
 gcatatttgt gtatttgtt tttggagaaaa 450

<210> 17
<211> 544
<212> DNA
<213> Human

<400> 17
actgcggaga tgagggtcta gaagggtgg gcgccccatg tggaccgttg taagggtct 60
ggggttcctg ggtgggctgg cgaagtccta ctcacagtga ccaaccatga tcatggtccc 120
gatagaggag gagagggagg aggagggaaa aggaagggtg aggggcttag aggggagagc 180
tggaggagg ggagacata gttggggaaag gggtaggaga aaggggaagg gagcaagagg 240
gtgaggggca ccaggccca tagacgtttt ggctcagcgg ccacgaggct tcacagctc 300
ccgccccaaa acggaagcga ggccgtggg gcagcggcag catggcggg cttgtcttgg 360
cggccatggc cccgccccctt gcccgtccga tcagcgcctt gccccgtccc cgcccccggacc 420
ccgccccggg cccgctcagg cccgccccctt gccgcccggaa tcctgaagcc caaggctgcc 480
cggggcggt ccggcgccgc cggcgatggg gcataaaacc actggccacc tgccggctg 540
ctcc 544

<210> 18
<211> 190
<212> DNA
<213> Human

<400> 18
gtgggtgagg gagaccccaag ggggtcccgac cacggacccg ggctgttggg cgctggcg 60
cgggaggacc cgccgttgc ggtgggtggg cgaccgcagc ggaatcggcg cccgggcctg 120
gcgcgcaga acacgaggga ggccaggcgc ttccggagg gctgtgccc gcctccccac 180
cacccctcacc 190

<210> 19
<211> 159
<212> DNA
<213> Human

<400> 19
agcctcatgt gcaagggtt tccaccac ctcctatccc aagctccgc cgaggagccc 60
cttccctggc cgggtcgagg cagctgttcc ggagccttgtt ggtggggcgt gggccctca 120
tcactctcctt cacaagcgta cttgtccctt cccctgcag 159

<210> 20
<211> 162

<212> DNA
<213> Human

<400> 20
gtgaggctgt gtccacgtga tggtgacgg gccggctgac gctgggcattt ggacgggtct 60
caagtggacg ggatggggag gctgctgact gaccccaaa cattgttccg gaagcacgca 120
actcatagtc gggtaagtg ctactccaa aaaagtttgc gt 162

<210> 21
<211> 191
<212> DNA
<213> Human

<400> 21
catgtcctgc agtgggcagg cagcgggagg gacagacttg gcgaaggggc cgagctcagc 60
tttggctgtg gggccggagg tgtgcacaga cgtccagggc ccctggttcc caggcaggca 120
ttgcaggcga gtagaaggga aacgtcccat gcagcggggc gggcggtctg acccactggc 180
ttccccccaca g 191

<210> 22
<211> 162
<212> DNA
<213> Human

<400> 22
gtgaggctgc cctgtggccc acgccccctc gcaccctgac ctcgtccct gtctctcctc 60
ccgcctgccc cttgtgcaga gagcagtccc tgaggtggtc ggagcggtgg gactcacgcc 120
tgggtgggtgg ctttcggccc tgtgtgtct ccaccacccc ca 162

<210> 23
<211> 161
<212> DNA
<213> Human

<400> 23
ggtgtttctg gtgtcccaga tgcccccacgt ggccactcca ggggcctcct gcaccccagc 60
atttccttc atgggcttt tgctgtgagg cccagctggg gccaaggag gatgggcag 120
ccacgtccag cctctgacac tagtgtccct tcgccttgca g 161

<210> 24
<211> 162
<212> DNA
<213> Human

<400> 24
 gtacgtgtgg cctggtgaga agccaaagat tcaggcctgt gtcctgtctt cccctcacac 60
 agcctggaca ctggtcacca gcttgctttg tagctggctg gggatctagt ggctgtgggt 120
 tgtaagtgac tgagaacctg actcaaaccg gcttgagtga aa 162

<210> 25
 <211> 160
 <212> DNA
 <213> Human

<400> 25
 cctctcggtc cccagacact gggcatttgg cagtgaacca gatgctgggg gccctgtcct 60
 tctggtggag ggggaggagg gctcagcccgaatgttcag accaggccgg ctcaatggca 120
 ggcctaagcc ttacgatgct gttccctgct gtgtctgttag 160

<210> 26
 <211> 160
 <212> DNA
 <213> Human

<400> 26
 gtgagggcg agaggcgagg gccctgtcg ccagggagag gggaggggtgg gcccggccat 60
 ggctgctcggtcgg gagtggcagg gaccagagag ctccttcttc ctttgtcgta aagagggtgc 120
 tgggaggatg aacactcttg aagttggagg agggattttta 160

<210> 27
 <211> 160
 <212> DNA
 <213> Human

<400> 27
 tctctgtgtg tctacatagc ctgccctttt cccaccgtgc cagtattggg aattgagtgg 60
 ccgtgcgtgc accagggtga gtttaggtgtg cagcacctga gagggcttat taagggcct 120
 tggccctact gaggggtcta gtctggatgc ttccccccag 160

<210> 28
 <211> 160
 <212> DNA
 <213> Human

<400> 28
 gtaatcaactg ggactcgaaaa cctccctgggt ttcctggta gctcatggcc aaattctgtg 60
 gtgttggctg tgcacttgaa aagcattttg actcatcgta gatttgactc agtagccctt 120

ggcaccagct tgaattctct ttggtcacac caccaaaagc 160

<210> 29
<211> 161
<212> DNA
<213> Human

<400> 29
ggaggtcgct gcagctccgc gggtagaga tggggcggt ttggacccgg gaggtggtag 60
cgccccgtggg gagaagtggc tggatctggg cagccttgg cagggcctgg ctctggccgc 120
cgggtctggg tgtccctct catcctgtct gtcccctgca g 161

<210> 30
<211> 153
<212> DNA
<213> Human

<220>
<223> All occurrences of n = any nucleotide
<400> 30
gtacgtgccg tcccctgttc tggatngcc ggagggtgtt aggtntnggg cacctnangg 60
tttatctgcc caatgctgtc tgcttaatct ctggcctctg tactcttgat aacccattaa 120
gccaaaaata tgatgcctct gggacgatat ctg 153

<210> 31
<211> 162
<212> DNA
<213> Human

<400> 31
tggggcttt tacagaatgg aggaaggat cctctctgtc gggtattatg gtcatcgcca 60
cgggggtgcc gtgcagacca cagctctgtc cagactccg gagtggcagg acgtgccaat 120
atactgtcgt tgtatgatgt cccctccctg cccttgttgt ag 162

<210> 32
<211> 149
<212> DNA
<213> Human

<400> 32
gtgagccct gccatcctct gtgggggtg ggtgattcct ggtggagca cacctggctg 60
cctcctctct ccccaggcag agagctgtc tggctgggg tggtggaaag cctggcttct 120
agaatctcga gccaccaaag ttccttact 149

<210> 33
<211> 157
<212> DNA
<213> Human

<400> 33
ccccagcctg tggcttgttt tagttaagat acaagcaagc tccactgggc agttagctgg 60
gacgcccacc ctcttgactg ggaccaggga aaagaagggt gactgtgtcc ctggagcttg 120
gggttggcca gtctcctcac tgtgtttgtt gccgcag 157

<210> 34
<211> 159
<212> DNA
<213> Human

<220>
<223> All occurrences of n = any nucleotide

<400> 34
gtgagtgggg actggaaact ggggctgcat tgctcattga gagattangt gctcagtgtc 60
ccagtgttcc cagactcccc tgacatacc cagaaacag ggcattggga agggagaggg 120
tcctattggg ggttggaaatcc agtccctgtc gatcttctc 159

<210> 35
<211> 160
<212> DNA
<213> Human

<400> 35
atggcttcata aagtgtttca gtcattgtt tatatttgggtt ggtgagggtt tagtgtgtgc 60
aaaattatac taaacctgtt tagatgttgtt attcaagcag aattagatca agtttgggtg 120
taagacttttgc ttccaaacacc tatgtcttgc ttatttccag 160

<210> 36
<211> 158
<212> DNA
<213> Human

<400> 36
gtaagggtgc gttgggcaca gcgtcgaaaa cttttgttaa tagccaatgt gggcatttga 60
ggcaggaggc ggggggagca cttttagaa agggagaggg ctgagccagg gtaaccggac 120
tgttacatgg accagcgtat catacacttc accctgtc 158

<210> 37

<211> 164
<212> DNA
<213> Human

<400> 37
cctggaggga ggaggtccct ggcaggctcc aacacatgct ttagccggga agcttgagg 60
ggggaaaagc tgaggcgggc acagaggaag gtgttgggtg gcatctgcgc tgtagccgc 120
agcctgcggc cccagctcat gtgttgtca ttctgtctcc tcag 164

<210> 38
<211> 159
<212> DNA
<213> Human

<400> 38
gtagtgctg gccagagggc agcccggtc gacagccatt cgcttgctg ctggggaaa 60
ggggcctcag atcggaccct ctggccaacc gcagcctgga gcccacctcc agcagcagtc 120
ctgcgtctct gccggagtgg gagcggtcac tgctggggg 159

<210> 39
<211> 158
<212> DNA
<213> Human

<400> 39
ccccacatct cagccacact caatcggtga gggttgttgg actctaaact tatgtgcct 60
tcctgtttcc tctttgcctt ttgcaaattt aagaaccgtg taaaaccatt tttatgtggc 120
ttcaacgtca actataaatt agcttggta tcttctag 158

<210> 40
<211> 163
<212> DNA
<213> Human

<400> 40
gtgggtacca gtaatgccg tgcgcctccc cgccccctcc catabcaagt agaatgctgg 60
cggttaaaaa catttgggtt cctgctcatt cttcagcct caacttcacc tggagtgtct 120
acagactgaa gatgcatatt tgtgtatccc gctttggag aaa 163

<210> 41
<211> 23
<212> DNA
<213> Human

<400> 41

ccccctgccgc cggaatcctg aag	23
<210> 42 <211> 24 <212> DNA <213> Human	
<400> 42 cgctttggcg gagcagccca tgtc	24
<210> 43 <211> 24 <212> DNA <213> Human	
<400> 43 tggggccctc atcactctcc tcac	24
<210> 44 <211> 23 <212> DNA <213> Human	
<400> 44 gcagcctccc catcccggtcc act	23
<210> 45 <211> 18 <212> DNA <213> Human	
<400> 45 attgcaggcg agtagaaag	18
<210> 46 <211> 18 <212> DNA <213> Human	
<400> 46 caggcgggag gagagaca	18
<210> 47 <211> 20 <212> DNA <213> Human	
<400> 47 tgggctctt gctgtgaggc	20

<210> 48		
<211> 20		
<212> DNA		
<213> Human		
<400> 48		
ccaggctgtg tgaggggaag		20
<210> 49		
<211> 20		
<212> DNA		
<213> Human		
<400> 49		
gcccgagaatg ttcagaccag		20
<210> 50		
<211> 20		
<212> DNA		
<213> Human		
<400> 50		
gcacctctt cacgacaaag		20
<210> 51		
<211> 19		
<212> DNA		
<213> Human		
<400> 51		
cacctgagag ggcttattta		19
<210> 52		
<211> 19		
<212> DNA		
<213> Human		
<400> 52		
caaaaatgctt tccaagtgc		19
<210> 53		
<211> 20		
<212> DNA		
<213> Human		
<400> 53		
gcccgcgggt ctgggtgtcc		20
<210> 54		
<211> 23		
<212> DNA		

<213> Human

<400> 54

cagaggccag agattaagca gac

23

<210> 55

<211> 20

<212> DNA

<213> Human

<400> 55

ttgtatgatg tcccctccct

20

<210> 56

<211> 20

<212> DNA

<213> Human

<400> 56

ttcccaccac cccagccccac

20

<210> 57

<211> 20

<212> DNA

<213> Human

<400> 57

ggttgactgt gtccctggag

20

<210> 58

<211> 21

<212> DNA

<213> Human

<400> 58

gggaacactg gagcactgag c

21

<210> 59

<211> 20

<212> DNA

<213> Human

<400> 59

ggttgtgagg gtttagtgtg

20

<210> 60

<211> 20

<212> DNA

<213> Human

<400> 60

ctccccccgc ctcctgcctc	20
<210> 61	
<211> 20	
<212> DNA	
<213> Human	
<400> 61	
aagggtttgg gtggcatctg	20
<210> 62	
<211> 20	
<212> DNA	
<213> Human	
<400> 62	
ggctccaggc tgcggttggc	20
<210> 63	
<211> 19	
<212> DNA	
<213> Human	
<400> 63	
ttgaagaacc gtgtaaaaac	19
<210> 64	
<211> 18	
<212> DNA	
<213> Human	
<400> 64	
ttgaggctga aggaatga	18
<210> 65	
<211> 430	
<212> DNA	
<213> Human	
<400> 65	
tggggcttt tacagaatgg aggaaggat cctctctgtc gggtattatg gtcatcgcca	60
cgggggtgcc gtgcagacca cagctctgtc cagacttccg gagtggcagg acgtgccaat	120
atactgtcgt tgtatgatgt cccctccctg cccttgtgt aggtgcccc ttgtttctct	180
cccatcctca cttcatcaac gctgaccgg ttctggcaga agcggtgact ggcctgcacc	240
ctaaccagga ggcacactcc ttgttcgtgg acatccaccc ggtgagcccc tgccatcctc	300
tgtgggggtt gggtgattcc tgggtggagc acacctggct gcctcctctc tccccaggca	360

gagagctgct	gtgggctggg	gtggtggaa	gcctggcttc	tagaatctcg	agccaccaaa	420
gttccttact						430
<210>	66					
<211>	160					
<212>	DNA					
<213>	Human					
<400>	66					
gtgaggggcg	agaggcgagg	gccctgtcg	ccagggagag	gggagggtgg	gcctggccat	60
ggctgctcgg	gagtggcagg	gaccagagag	ctccttcttc	ctttgtcgtg	aagagggtgc	120
tgggaggatg	aacactcttg	aagttggagg	agggattta			160
<210>	67					
<211>	20					
<212>	DNA					
<213>	Human					
<400>	67					
aaccgggtca	gcgtttagga					20
<210>	68					
<211>	31					
<212>	DNA					
<213>	Human					
<400>	68					
tgccagaacc	ggtcagcgt	tgaggaagtg	a			31
<210>	69					
<211>	20					
<212>	DNA					
<213>	Human					
<400>	69					
tcctcaacgc	tgaccgggtt					20
<210>	70					
<211>	31					
<212>	DNA					
<213>	Human					
<400>	70					
tcacttcctc	aacgctgacc	cggttctggc	a			31
<210>	71					
<211>	20					
<212>	DNA					

<213> Human		
<400> 71		
aaccgggtcg gcgttcatga	20	
<210> 72		
<211> 31		
<212> DNA		
<213> Human		
<400> 72		
tgcagaacc gggcggcgt tcatgttttg a	31	
<210> 73		
<211> 20		
<212> DNA		
<213> Human		
<400> 73		
tcatcaacgc cgaccgggtt	20	
<210> 74		
<211> 31		
<212> DNA		
<213> Human		
<400> 74		
tcacttcatc aacgcccacc cgggtctggc a	31	
<210> 75		
<211> 21		
<212> DNA		
<213> Human		
<400> 75		
agccatggcc gggccccacc t	21	
<210> 76		
<211> 31		
<212> DNA		
<213> Human		
<400> 76		
cgagcagcca tggccgggcc caccctcccc t	31	
<210> 77		
<211> 21		
<212> DNA		
<213> Human		
<400> 77		

agggtgggcc cggccatggc t	21
<210> 78	
<211> 31	
<212> DNA	
<213> Human	
<400> 78	
aggggagggt gggcccgccc atggctgctc g	31
<210> 79	
<211> 21	
<212> DNA	
<213> Human	
<400> 79	
agccatggcc aggcccaccc t	21
<210> 80	
<211> 31	
<212> DNA	
<213> Human	
<400> 80	
cgagcagcca tggccaggcc caccctcccc t	31
<210> 81	
<211> 21	
<212> DNA	
<213> Human	
<400> 81	
agggtgggcc tggccatggc t	21
<210> 82	
<211> 31	
<212> DNA	
<213> Human	
<400> 82	
aggggagggt gggccctggcc atggctgctc g	31
<210> 83	
<211> 22	
<212> DNA	
<213> Human	
<400> 83	
tcctgggtgg gctggcgaag tc	22

<210> 84		
<211> 24		
<212> DNA		
<213> Human		
<400> 84		24
gttttggggc gggagctgat gaag		
<210> 85		
<211> 18		
<212> DNA		
<213> Human		
<400> 85		18
tgtaaaaacga cggccagt		
<210> 86		
<211> 18		
<212> DNA		
<213> Human		
<400> 86		18
cagggaaacag ctagacc		
<210> 87		
<211> 62		
<212> DNA		
<213> Human		
<400> 87		60
ctgagcaagg tgaggggcga gagggcgaggg cccctgtcgc cagggagggg agggtgtggcc		
yg		62
<210> 88		
<211> 51		
<212> DNA		
<213> Human		
<400> 88		51
cstgcggccc cagctcatgt gtttgcatt ctgtctcctc agagcggggc c		
<210> 89		
<211> 24		
<212> DNA		
<213> Human		
<400> 89		24
ccggcgatgg ggcataaaac cact		
<210> 90		

<211> 23
<212> DNA
<213> Human

<400> 90
cgcccagcac agcgcacagt agc 23

<210> 91
<211> 20
<212> DNA
<213> Human

<400> 91
gcccaagaatg ttcagaccag 20

<210> 92
<211> 20
<212> DNA
<213> Human

<400> 92
gcacccttctt cacgacaaag 20

<210> 93
<211> 34
<212> DNA
<213> Human

<400> 93
ccttgtttct ctcccatcct cacttcctca agg 34

<210> 94
<211> 22
<212> DNA
<213> Human

<400> 94
caccacccca gcccacagca gc 22

<210> 95
<211> 1002
<212> DNA
<213> Human

<400> 95
actgcggaga tgagggtcta gaagggtgg gcgccccatg tggaccgttg taagggtct 60
ggggttcctg ggtgggctgg cgaagtccta ctcacagtga ccaaccatga tcatggtccc 120
gatagaggag gagagggagg aggagggaaa aggaagggtg aggggctcag aggggagagc 180
tggaggagg ggagacatac gtggggaaag gggtaggaga aaggggaaagg gagcaagagg 240

gtgaggggca ccagggccca tagacgttt ggctcagcgg ccacgaggct tcatacgctc 300
 ccgcggccaaa acggaagcga ggcgcgtgggg gcagcggcag catggcgggg cttgtcttg 360
 cggccatggc cccggccccct gcccgtccga tcagcgcccc gccccgtccc cgccccgacc 420
 cccgccccggg cccgctcagg ccccgccccct gccgcccggaa tcctgaagcc caaggctgcc 480
 cggggggcggt cggcgccgc cggcgatggg gcataaaaacc actggccacc tgccgggctg 540
 ctccctgcgtg cgctgccgtc ccggatccac cgtgcctctg cggcctgcgt gccccgagtc 600
 cccgcctgtg tcgtctctgt cgccgtcccc gtctcctgcc aggcgcggag ccctgcgagc 660
 cgcgggtggg ccccaggcgc gcagacatga gctgctccgc caaagcgcgc tgggctgccg 720
 gggcgctggg cgtcgccggg ctactgtcg ctgtgctggg cgctgtcatg atcgtgatgg 780
 tgccgtcgct catcaagcag caggtcctta aggtgggtga gggagacccc agggggtccg 840
 cgcacggacc cgggctgttg ggccgtgggc gccgggagga cccgcgcgtt gccgggtggtg 900
 ggcgaccgca gcggaatcgg cgcggggcc tggcgccgca gaacacgagg gaggccaggc 960
 gttcgggag gggctgctgc ccgcctcccc accaccctca cc 1002

<210> 96
 <211> 495
 <212> DNA
 <213> Human

<400> 96
 catgtcctgc agtgggcagg cagcgggagg gacagacttg gcgaaggggc cgagctcagc 60
 ttggctgtg gggccggagg tgtcacaga cgtccagggc ccctgggtcc caggcaggca 120
 ttgcaggcga gtagaaggga aacgtcccat gcagcggggc gggcgtctg acccactggc 180
 ttccccaca gggagttcag gcacaaaagc aacatcacct tcaacaacaa cgacaccgtg 240
 tccttcctcg agtaccgcac cttccagttc cagccctcca agtcccacgg ctcggagagc 300
 gactacatca tcatgccaa catcctggtc ttggtgaggc tgccctgtgg cccacgcgc 360
 ctcgcaccct gacctcggtcc cctgtctctc ctcccgctg ccccttgtgc agagagcagt 420
 ccctgaggtg gtcggagcgt ggggactcac gcctgggtgg tggcttcgg ccctgtgtg 480
 tctccaccac cccca 495

<210> 97
 <211> 470
 <212> DNA
 <213> Human

<400> 97
 cctggaggga ggaggtccct ggcaggctcc aacacatgtt ttagccggga agcttgagg 60
 ggggaaaagc tgaggcgccc acagaggaag gtgttgggtg gcatactgcgc tgttagccgc 120
 agcgtgcggc cccagctcat gtgttgtca ttctgtctcc tcagagcggg gccatggagg 180
 gggagactct tcacacattc tacactcaga tggtgttgat gccaagggtg atgcactatg 240
 cccagtagct ctcctggcg ctgggctgcg tcctgctgt ggtccctgtc atctgccaaa 300
 tccggagcca agtaggtgt ggcagaggg cagccgggc tgacagccat tcgcttgcc 360
 gctggggaa aggggcctca gatggaccc tctggccaac cgccgcctgg agcccaccc 420
 cagcagcagt cctgcgtctc tgccggagtg ggagcggtca ctgctggggg 470

<210> 98
 <211> 21
 <212> DNA
 <213> Human

<400> 98
 gcggaggcagc tcatgtctgc g

21

<210> 99
 <211> 31
 <212> DNA
 <213> Human

<400> 99
 ctttcgcgga gcagctcatg tctgcgcgcc t

31

<210> 100
 <211> 21
 <212> DNA
 <213> Human

<400> 100
 cgccagacatg agctgctccg c

21

<210> 101
 <211> 31
 <212> DNA
 <213> Human

<400> 101
 aggccgcgcag acatgagctg ctccgcggaa g

31

<210> 102
 <211> 21

<212> DNA		
<213> Human		
<400> 102		21
gcggaggcagc gcatgtctgc g		
<210> 103		
<211> 31		
<212> DNA		
<213> Human		
<400> 103		31
ctttcgccga gcagcgcatg tctgcgcgcc t		
<210> 104		
<211> 21		
<212> DNA		
<213> Human		
<400> 104		21
cgcagacatg cgctgctccg c		
<210> 105		
<211> 31		
<212> DNA		
<213> Human		
<400> 105		31
aggcgcgcag acatgcgcgtg ctccgc当地 g		
<210> 106		
<211> 21		
<212> DNA		
<213> Human		
<400> 106		21
ttggggcatga tgatgttagac g		
<210> 107		
<211> 31		
<212> DNA		
<213> Human		
<400> 107		31
ggatgttggg catgtatgtatg tagacgctct c		
<210> 108		
<211> 21		
<212> DNA		
<213> Human		

<400> 108 cgactacatc atcatgccca a	21
<210> 109 <211> 31 <212> DNA <213> Human	
<400> 109 gagagcgact acatcatcat gcccaaacatc c	31
<210> 110 <211> 21 <212> DNA <213> Human	
<400> 110 ttgggcatga ggatgttagac g	21
<210> 111 <211> 31 <212> DNA <213> Human	
<400> 111 ggatgttggg catgaggatg tagacgctct c	31
<210> 112 <211> 21 <212> DNA <213> Human	
<400> 112 cgactacatc ctcatgccca a	21
<210> 113 <211> 32 <212> DNA <213> Human	
<400> 113 gagagcgact acatccatca tgcccaacat cc	32
<210> 114 <211> 21 <212> DNA <213> Human	
<400> 114 tggggccgca cgctgcgggc t	21

<210> 115
<211> 31
<212> DNA
<213> Human

<400> 115
tgagctgggg ccgcacgctg cgggctacag c

31

<210> 116
<211> 21
<212> DNA
<213> Human

<400> 116
agcccgcagc gtgcggcccc a

21

<210> 117
<211> 31
<212> DNA
<213> Human

<400> 117
gctgtagccc gcagcgtgcg gccccagctc a

31

<210> 118
<211> 21
<212> DNA
<213> Human

<400> 118
tggggccgca ggctgcgggc t

21

<210> 119
<211> 31
<212> DNA
<213> Human

<400> 119
tgagctgggg ccgcaggctg cgggctacag c

31

<210> 120
<211> 21
<212> DNA
<213> Human

<400> 120
agcccgcagc ctgcggcccc a

21

<210> 121
<211> 31

<212> DNA
<213> Human

<400> 121
gctgttagccc gcagcctgcg gccccagctc a

31

T G G T G G A T = G A G T G G C C C G G