Міністерство освіти і науки України Житомирський державний університет імені Івана Франка

Б.М. Ляшенко, О.М. Кривонос, Т.А. Вакалюк

МЕТОДИ ОБЧИСЛЕНЬ

Навчально-методичний посібник для студентів фізико-математичного факультету

Житомир Вид-во ЖДУ ім. І. Франка 2014 Затверджено Вченою радою Житомирського державного університету імені Івана Франка, протокол № __ від _____ р.

Рецензенти:

Биков В.Ю. – доктор технічних наук, професор, академік НАПН України

Жалдак М.І. – доктор педагогічних наук, професор, академік НАПН України

Михайленко В.В. – доктор фізико-математичних наук, професор

Ляшенко Б.М., Кривонос О.М., Вакалюк Т.А.

Методи обчислень: навчально-методичний посібник для студентів фізико-математичного факультету. — Житомир: Вид-во ЖДУ, 2014. — 228 с., іл.

Посібник призначений для використання студентами на лекціях, практичних та лабораторних заняттях під керівництвом викладача. Посібник містить теоретичні відомості з методів обчислень, приклади виконань завдань, тексти лабораторних робіт, тести для контролю знань та умінь. Викладений матеріал відповідає діючим стандартам та навчальним програмам із методів обчислень для природничо-математичних спеціальностей.

Для студентів фізико-математичного факультету.

УДК 51-3 ББК 22.193

Л99

Зміст

Вступ	6
Теоретичні відомості із методів обчислень	10
Теорія похибок	
Абсолютна та відносна похибки наближеного значення числа. Дії	
наближеними числами	10
Методи нелінійної алгебри	21
Розв'язування нелінійних рівнянь з однією змінною	21
Розв'язування нелінійних систем	28
Метод Ньютона розв'язування систем нелінійних рівнянь	33
Метод покоординатного спуску	
Методи лінійної алгебри	39
Метод Гауса. Метод головних елементів. Метод простої ітераці	ï.39
Метод квадратних коренів	
Метод прогонки	45
Методи розв'язування задач про власні значення та власні вектори мат	риц
	_
Метод безпосереднього розгортання	47
Метод обертань	
<i>QR–АЛГОРИТМ</i>	
МЕТОД ОБЕРНЕНИХ ITEPAЦIЙ	
Інтерполювання функцій	
Інтерполювання функцій: інтерполяційний многочлен Лагранжа	55
Перша інтерполяційна формула Ньютона	
Друга інтерполяційна формула Ньютона	
Оцінки похибок інтерполяційних формул Ньютона	
Інтерполювання сплайнами	
Апроксимація функцій	
Апроксимація функцій. Метод найменших квадратів	
Чисельне диференціювання та інтегрування функцій	
Чисельне диференціювання функцій	
Чисельне інтегрування	
Чисельне інтегрування у випадку кратних інтегралів	
Кубатурна формула типу Сімпсона	
Наближене обчислення кратних інтегралів методом Монте-Кар.	
Квадратурна формула Гауса	
Чисельні методи розв'язування задачі Коші для звичайних	
диференціальних рівнянь	79
Метод Рунге-Кутта	
Метод Адамса	
Метод скінчених різниць розв'язування диференціальних рівнянь	50
другого порядку	86
Метод сплайн-колокації	
,	

Наближене розв'язування диференціальних рівнянь в частиг похідних	
похіонихАпроксимація еліптичних диференціальних рівнянь у части	
похідних	
Апроксимація параболічних і гіперболічних диференціальних	
частинних похідних	_
Приклади виконання завдань	107
Теорія похибок	
Елементи теорії похибок	
Методи нелінійної алгебри	
Розв'язування нелінійних рівнянь з однією змінною	
Розв'язування систем нелінійних рівнянь	
Метод Ньютона для наближеного знаходження розв'язку сі	
Метод градієнтного спуску	
Методи лінійної алгебри	
Розв'язування систем лінійних алгебраїчних рівнянь	
Метод простої ітерації	
Розв'язування систем лінійних алгебраїчних рівнянь з симет	
матрицею методом квадратних коренів	
Метод прогонки	121
Методи розв'язування задач про власні значення та власні в	ектори
матриць	122
Власні значення та власні вектори	122
Інтерполювання функцій	128
Інтерполювання функцій	128
Інтерполювання сплайнами	130
Апроксимація функцій	131
Метод найменших квадратів	131
Чисельне диференціювання та інтегрування функцій	
Чисельне диференціювання функцій	
Обчислення визначених інтегралів за формулами Гауса	
Наближене розв'язування диференціального рівняння метод	
Адамса	
Наближені методи розв'язування задач в частинних похідн	
(рівняння еліптичного типу)	
Наближені методи розв'язування задач в частинних похідн	
(рівняння параболічного та гіперболічного типу)	
Методи Рітца та Бубнова-Гальоркіна	
Апроксимація еліптичних диференціальних рівнянь у части 	
похідних	
Апроксимація параболічних і гіперболічних диференціальних	
частинних похідних	
Метод сплайн-колокації з використанням В-сплайнів	153

Пабораторний практикум	. 155
Теорія похибок	
Лабораторна робота №1. Елементи теорії похибок	. 155
Методи нелінійної алгебри	. 159
Лабораторна робота №2. Розв'язування рівнянь з однією змінною	. 159
Лабораторна робота №3. Розв'язування систем нелінійних рівнянь	. 161
Методи лінійної алгебри	. 163
Лабораторна робота №4. Розв'язування систем лінійних алгебраї	чних
рівнянь	. 163
Лабораторна робота №5. Розв'язування систем лінійних алгебраї	
рівнянь з симетричною матрицею методом квадратних коренів. 1	
Лабораторна робота № 6. Метод прогонки	
Методи розв'язування задач про власні значення та власні вектори мат	
Лабораторна робота № 7. Власні значення та власні вектори	
Інтерполювання функцій	. 177
Лабораторна робота № 7. Інтерполювання функцій	
Лабораторна робота № 8. Інтерполювання сплайнами	
Апроксимація функцій	
Лабораторна робота №8. Метод найменших квадратів	
Чисельне диференціювання та інтегрування функцій	
Лабораторна робота №9. Чисельне диференціювання та інтегрув функиій	
функційЛабораторна робота №10. Обчислення визначених інтегралів за	. 10/
лаоораторна рооота м10. Оочислення визначених інтегралів за формулами Гауса	101
Лабораторна робота №11. Чисельне розв'язування звичайного	. 171
диференціального рівняння першого порядку	192
Лабораторна робота №12. Наближене розв'язування	. 1) 2
диференціального рівняння методом Адамса	.195
Лабораторна робота №13. Розв'язування диференціального рівнян	
другого порядку методом скінчених різниць	. 196
Лабораторна робота №14. Наближені методи розв'язування зада	
частинних похідних	
Лабораторна робота №15. Наближені методи розв'язування зада	
частинних похідних	
Лабораторна робота №16. Наближені методи розв'язування зада	ч в
частинних похідних	
Гестові завдання перевірки знань	. 202
Контрольні завдання для перевірки засвоєних знань т	
• •	
умінь	
Запитання до екзамену	
Список рекомендованих джерел і літератури	224

Вступ

Суспільство вступило в важливий період свого розвитку — еру інформатизації. Використання електронних обчислювальних машин перейшло в сферу безпосереднього виробництва.

Для вирішення теоретичних і практичних задач, що виникають при діяльності людини у різних галузях науки, техніки та виробництва з метою звільнення людини від надмірного інтелектуального навантаження великий ефект дає використання обчислювальної техніки при умові достатнього програмного забезпечення й ефективного його використання. Тому дисципліна "Методи обчислень" у підготовці фахівців високої кваліфікації набуває особливо великого значення.

Мета вивчення дисиипліни

Курс "Методи обчислень" має своєю метою:

- надання основних знань з методів обчислень, а також практичних навичок використання методів та засобів сучасних інформаційних технологій у повсякденній практичній діяльності;
- підготувати студентів до ефективного використання сучасних комп'ютерних технологій при розв'язуванні фахових завдань.

Прослухавши курс "Методи обчислень", студент повинен вміти обґрунтувати вибір чисельного методу розв'язування математичної задачі, знати особливості його реалізації на ЕОМ, володіти алгоритмом методу, провести необхідні обчислення і аналіз отриманих результатів, а також мати навички практичного використання програмного забезпечення ЕОМ для розв'язання математичних задач.

В результаті вивчення даного курсу студент повинен

<u>Знати</u>:

- етапи розв'язування задач з використанням ЕОМ;
- суть математичного моделювання; схему обчислювального експерименту;
- основні групи методів, які використовуються для розв'язування математичних задач;
- вимоги до чисельних методів;
- джерела похибок, їх класифікацію;
- означення абсолютної і відносної похибок, правильної, сумнівної, значущої цифр наближеного числа;
- правила округлення;
- загальні формули для похибок;
- правила підрахунку цифр;
- формули подання і способи округлення чисел в ЕОМ;
- способи зменшення обчислювальних похибок.
- суть методів, особливості їх машинної реалізації, швидкість і умови

- збіжності, оцінки для наближень до кореня;
- суть методу Жордана-Гауса і його модифікацій, особливості їх машинної реалізації;
- методи простих ітерацій і Зейделя, умови збіжності методів;
- суть методу квадратного кореня і особливості його реалізації;
- особливості розв'язування систем із погано обумовленими матрицями.
- суть методів, особливості їх машинної реалізації, швидкість і умови збіжності, оцінки для наближень до кореня
- постановку задачі наближення функцій, суть методів наближення (інтерполювання, середньоквадратичне наближення, рівномірне), як оптимально вибрати вузли інтерполювання, найпростіші інтерполяційні методи для розв'язування рівнянь з одним невідомим, особливості реалізації методів на ЕОМ
- суть задач чисельного диференціювання і інтегрування, різні підходи до побудови формул чисельного інтегрування, особливості машинної реалізації диференціювання і інтегрування
- постановку задачі, класифікацію методів і суть методів Рунге-Кутта та Ейлера;
- геометричну інтерпретацію різновидів методу Ейлера;
- підходи до оцінки точності методів;
- методи розв'язування задач про власні значення:
- метод скінчених різниць;
- особливості розв'язування крайових задач;
- метод скінчених елементів;
- чисельні методи розв'язування інтегральних рівнянь

Вміти:

- будувати математичні моделі найпростіших об'єктів;
- вивести загальну формулу для обчислення похибок (абсолютної, відносної) функції;
- виконувати дії з наближеними числами;
- оцінювати похибки результатів і обґрунтовувати правила підрахунку цифр;
- виконувати обчислення без точного врахування похибок і розв'язувати пряму і обернену задачі теорії похибок;
- оцінювати похибки округлень при виконанні арифметичних операцій на EOM;
- навести приклади задач, які чутливі до похибок вхідних даних; навести приклади стійких і нестійких методів;
- обґрунтувати збіжність методів, давати їх геометричну інтерпретацію;
- записувати алгоритми і програми, застосовувати їх для знаходження із заданою точністю коренів нелінійних рівнянь,
- користуватися бібліотечними програмами та педагогічними програмними засобами.
- розв'язувати системи лінійних алгебраїчних рівнянь методами

- виключення, обчислювати визначники, ранги матриць, обернені матриці, підрахувати число арифметичних дій, необхідних для розв'язування системи методами виключення, використовувати бібліотечні програми методів типу Жордана-Гаусса;
- застосовувати методи простих ітерацій і Зейделя для розв'язування систем лінійних рівнянь, записувати відповідні алгоритми і програми методів, обґрунтовувати збіжність, оцінити похибку наближення до розв'язку; розв'язувати системи лінійних рівнянь із симетричними матрицями методом квадратного кореня
- обгрунтувати збіжність методів, давати їх геометричну інтерпретацію;
- записувати алгоритми і програми, застосовувати їх для знаходження із заданою точністю коренів нелінійних рівнянь,
- користуватися бібліотечними програмами та педагогічними програмними засобами
- обгрунтовувати існування і єдиність розв'язку задачі інтерполювання,
- вивести формули інтерполяційних многочленів Лагранжа і Ньютона,
- оцінити похибку інтерполювання,
- будувати інтерполяційні многочлени і кубічні сплайни,
- обчислювати значення функцій за допомогою інтерполяційних многочленів,
- застосувати інтерполяційні многочлени для обчислення значень функцій і розв'язування рівнянь,
- обґрунтувати умову застосовності лінійної і квадратичної інтерполяції,
- знаходити найкращу середньоквадратичну апроксимацію функції, що задана на відрізку;
- шукати методом найменших квадратів наближення таблично заданих функцій,
- будувати емпіричні формули, виконувати згладжування таблично заданих функцій
- будувати формули чисельного диференціювання і інтегрування, давати їм геометричну інтерпретацію, оцінювати похибки, обчислювати похідні й означені інтеграли, записувати відповідні алгоритми і програми, використовувати бібліотечні програми і ППЗ
- обгрунтовувати методи типу Ейлера, Рунге-Кутта;
- розв'язувати задачу Коші (для одного рівняння і системи першого і вищих порядків) за допомогою формули Тейлора, методами типу Ейлера, Рунге-Кутта;
- розв'язувати задачі на власні значення;
- застосовувати різницеві методи та метод скінчених елементів до розв'язування крайових задач;
- розв'язувати інтегральні рівняння чисельними методами;
- записувати відповідні алгоритми і програми;
- використовувати бібліотечні програми.

Предмет "Методи обчислень" ϵ логічним продовженням курсів "Математичний аналіз", "Лінійна алгебра" та "Інформатика" і змістовно пов'язана з базовими дисциплінами. Засвоєння студентами основних положень цієї дисципліни поряд з освітньо-пізнавальним має і науковоприкладне значення на початковому етапі навчання і формування фахівця загалом.

Навчальним планом передбачається: вивчення дисципліни на лекційних та лабораторних заняттях, самостійна робота студентів; перевірка основних теоретичних знань та практичних умінь студентів за допомогою тестових завдань та контрольної роботи; складання заліку.

Основними труднощами при вивченні даної дисципліни є багатоплановість матеріалу, який розглядається, і його великий об'єм. Тому успішне засвоєння курсу не можливе без регулярної самостійної роботи з літературою і творчого відношення до виконання практичних і лабораторних робіт.

Під час викладання дисципліни використовуються комп'ютерні навчальні програми та практичні завдання і вправи. Всі лабораторні роботи виконуються на ПЕОМ. При проведенні лабораторних робіт на ПЕОМ звертається увага на охорону здоров'я студентів.

9

Теоретичні відомості із методів обчислень

Теорія похибок

Абсолютна та відносна похибки наближеного значення числа. Дії з наближеними числами

Джерела та класифікація похибок

- 1. Похибка, пов'язана з самою постановкою задачі (похибка постановки задачі).
 - 2. Похибка методу.
- 3. Похибка, пов'язана з обриванням нескінченних процесів (наприклад, ряду). Називається залишковою похибкою.
- 4. Похибка даних, які можуть бути визначені лише наближено. Називається початковою похибкою.
 - 5. Похибка округлення.
 - 6. Похибка дій над наближеними числами.

Абсолютна та відносна похибки

Hаближеним числом a називається число, що незначно відрізняється від точного числа A і яке заміняє його в обчисленнях.

Якщо a < A, то кажуть, що число a наближене значення числа A з недостачею, а якщо a > A, то з надлишком.

Різниця між точним числом A та його наближеним числом a називається *похибкою*.

Якщо a < A, то A - a > 0; якщо a > A, то A - a < 0. Як правило, у практиці масових обчислень знак похибки визначити важко, то користуються поняттям абсолютної похибки.

Абсолютна величина різниці A і a називається aбсолютною похибкою наближеного числа a і позначається $\frac{\Delta = |A - a|}{a}$ або Δa .

Тут може бути два випадки:

1). Точне число A відоме. Тоді абсолютна похибка легко знаходиться.

2). Точне число A нам невідоме, тому абсолютну похибку обчислити неможливо. Тоді користуються поняттям границі абсолютної похибки, що задовольняє нерівність $|A-a| \leq \Delta_a$.

Під *граничною абсолютною похибкою* Δ_a наближеного числа розуміють всяке число, не менше абсолютної похибки цього числа.

Звідси маємо $a-\Delta_a \le A \le a+\Delta_a$. Значення числа A записується так: $A=a\pm\Delta_a$.

<u>Приклад 2</u>. Визначити граничну абсолютну похибку числа a=3,14, що замінює число π . Якщо $3,14<\pi<3,15$, то $|a-\pi|<0,01$, $\Delta_a=0,01$.

Абсолютна похибка і гранична абсолютна похибка не дозволяє характеризувати точність вимірювання чи точність обчислень.

<u>Приклад 3</u>. При вимірюванні довжин двох стержнів одержали результати: $l_1 = 100,8 \pm 0,1$ см, $l_2 = 5,8 \pm 0,1$ см. Абсолютні похибки рівні, але якість вимірювання l_1 вища аніж l_2 .

Для оцінки якості вимірювання чи обчислення вводиться поняття відносної похибки.

Відносною похибкою $^{\delta a}$ наближеного числа a називається відношення абсолютної похибки $^{\Delta a}$ цього числа до модуля відповідного точного числа $A(A \neq 0)$ $\delta a = \Delta A/|A|$

Граничною відносною похибкою δ_a наближеного числа a називають всяке число, не менше відносної похибки цього числа. $\delta_a \geq \delta a$.

Оскільки
$$\frac{\Delta A}{|A|} \le \delta_a$$
, то $\Delta A \le |A| \cdot \delta_a$. Звідси $\Delta_a = |A| \cdot \delta_a$.

<u>Приклад 4.</u> Визначити граничну відносну похибку числа $a = 35{,}148 \pm 0{,}00074$

$$\delta_a = \frac{\Delta_a}{|a|} = \frac{0,00074}{35,148} = 0,000021 \approx 0,0021\%$$

Десятковий запис наближених чисел. Значуща цифра. Кількість правильних знаків

Кожне додатне число a може бути поданим у вигляді

$$a = \alpha_m \cdot 10^m + \alpha_{m-1} \cdot 10^{m-1} + \dots + \alpha_{m-n+1} \cdot 10^{m-n+1} + \dots$$

де α_i — цифри числа a.

Приклад 5.
$$3141,59... = 3 \cdot 10^3 + 1 \cdot 10^2 + 4 \cdot 10^1 + 1 \cdot 10^0 + 5 \cdot 10^{-1} + 9 \cdot 10^{-2} + ...$$

На практиці користуються скінченими дробами.

Будь-яке додатне число можна подати як:

$$b = \beta_m \cdot 10^n + \beta_{m-1} \cdot 10^{m-1} + ... + \beta_{m-n+1} \cdot 10^{m-n+1} \quad (\beta_m \neq 0).$$

Всі десяткові знаки β_i , що зберігаються при написанні, називаються значущими цифрами наближеного числа.

Значущою цифрою наближеного числа називається всяка цифра в його десятковому поданні, відмінна від нуля і нуль, якщо він знаходиться між значущими цифрами.

Приклад 6

$$b = 7 \cdot 10^{-3} + 0 \cdot 10^{-4} + 1 \cdot 10^{-5} + 0 \cdot 10^{-6} = 0,00 7010.$$
 Підкреслені $0,00$ — незначущі цифри.

 $b = 2 \cdot 10^9 + 0 \cdot 10^7 + 3 \cdot 10^6 + 0 \cdot 10^5 = 20030 \, \underline{00000}$. Підкреслені 00000 — незначущі цифри. Останній не підкреслений нуль є значущою цифрою (він

вказує, що збережено один десятковий розряд).

Введемо поняття правильного числа.

Кажуть, що n перших значущих цифр наближеного числа ϵ правильними, якщо абсолютна похибка цього числа не перевищує половини одиниці розряду, що виражається n-тою значущою цифрою, рахуючи зліва направо.

Тобто, якщо відомо, що $\Delta a = |A - a| \le \frac{1}{2} \cdot 10^{m-n+1}$, то перші n цифр α_m , α_{m-1} , \cdots , α_{m-n+1} цього числа ϵ правильними.

Приклад 7. Нехай A = 35,97. Тоді a = 36,00 — наближення з трьома правильними цифрами, оскільки $\left|A-a\right|=0.03<\frac{1}{2}\cdot0.1$

Округлення чисел

Oкруглення числа a — це заміна його числом a_1 із меншою кількістю значущих цифр. Число a_1 вибирають так, щоб похибка округлення $|a-a_1|$ була мінімальною.

Правило округлення. Щоб округлити число до n значущих цифр, відкидають усі наступні значущі цифри. При цьому, якщо:

- перша з відкинутих цифр менша 5, то остання залишена цифра залишається тією самою;
- перша з відкинутих цифр більша або рівна 5, то до останньої значущої цифри додається 1.

<u>Приклад 8</u>. Округлити число $\pi = 3,1415926535...$ до 5, 4 і 3-х значущих цифр.

Одержуємо 3,1416, 3,142, 3,14 з абсолютними похибками меншими $\frac{1}{2} \cdot 10^{-4}$ $\frac{1}{2} \cdot 10^{-3}$ $\frac{1}{2} \cdot 10^{-2}$

Зайві цифри називають сумнівними.

Похибка суми

Теорема. Абсолютна похибка алгебраїчної суми кількох наближених не перевищує суми абсолютних похибок чисел ШИХ чисел: $\Delta u \le \Delta x_1 + \Delta x_2 + \ldots + \Delta x_n$

Доведення. Нехай x_1, x_2, \dots, x_n — наближені числа. Розглянемо їх алгебраїчну суму $u = \pm x_1 \pm x_2 \pm ... \pm x_n$. Очевидно, що $\Delta u = \pm \Delta x_1 \pm \Delta x_2 \pm ... \pm \Delta x_n$. Звілси $\Delta u \leq \Delta x_1 + \Delta x_2 + \ldots + \Delta x_n$.

Наслідок. Як граничну абсолютну похибку алгебраїчної суми можна прийняти CVMV граничних абсолютних похибок доданків: $\Delta_u = \Delta_{x_1} + \Delta_{x_2} + \dots + \Delta_{x_n}$

Звідси випливає, що гранична абсолютна похибка не може бути меншою граничної абсолютної похибки найменш точного із доданків.

Це означає, що з якою б точністю не були визначені інші доданки, ми

не можемо за їх рахунок підвищити точність суми.

Звідси маємо таке

Правило. Щоб додати числа різної абсолютної точності потрібно:

- 1. виділити числа, десятковий запис яких обривається раніше інших; залишити їх без зміни;
- 2. інші числа округлити за зразком виділених, зберігаючи один або два запасних десяткових знаків;
- 3. провести додавання чисел, враховуючи всі збережені знаки;
- 4. одержаний результат округлити на один розряд.

При округленні доданків суми $u=x_1+x_2+\ldots+x_n$ до m-го десяткового розряду похибка округлення суми в самому гіршому випадку не перевищує $\Delta_{okp} \leq n \cdot \frac{1}{2} \cdot 10^m$

<u>Приклад 9</u>. Знайти суму наближених чисел : 0,348; 0,1834; 345,4; 235,2; 11,75; 9,27; 0,0849; 0,0214; 0,000354.

Розв'язування.

- 1) Виділимо числа абсолютної точності. Абсолютна похибка їх може бути 0,05 (оскільки маємо числа 345,4; 235,2).
 - 2) Округлюємо всі останні числа до сотих.
 - 3) 345.4 + 235.2 + 11.75 + 9.27 + 0.35 + 0.18 + 0.08 + 0.02 + 0.00 = 602.25
 - 4) Одержаний результат округлюємо до десятих : u = 602,3 .

Повна похибка результату складається з трьох доданків:

- 1) з суми граничних похибок вхідних даних $\Delta_1 = 10^{-3} + 10^{-4} + 10^{-1} + 10^{-1} + 10^{-2} + 10^{-2} + 10^{-4} + 10^{-4} + 10^{-6} = 0,221301 < 0,222$
- 2) абсолютної величини суми похибок (з врахуванням знаків округлення доданків): $\Delta_2 = \left| -0.002 + 0.003 + 0.0049 + 0.0014 + 0.000354 \right| = 0.008054 < 0.009$

3) залишкова похибка округлення результату:
$$\Delta_3 = 602,3-602,25=0,050$$
. $\Delta = \Delta_1 + \Delta_2 + \Delta_3 \le 0,222+0,009+0,050=0,281<0,3$. $u=602,3\pm0,3$

Теорема. Якщо доданки одного і того ж знаку, то гранична відносна похибка їх суми не перевищує найбільшої з граничних відносних похибок доданків.

Доведення. Нехай $u=x_1+x_2+\dots x_n$. Для визначеності $x_i>0$, $i=\overline{1,n}$. Позначимо A_i ($A_i>0$) точні величини доданків A_i , а через $A_i=A_1+A_2+\dots +A_n$ — точне значення суми $A_i=A_1+A_2+\dots +A_n$

$$\delta_u = \frac{\Delta_u}{A} = \frac{\Delta_{x_1} + \Delta_{x_2} + \ldots + \Delta_{x_n}}{A_1 + A_2 + \ldots + A_n} \ .$$

Оскільки $\delta_{x_i} = \frac{\Delta_{x_i}}{A_i}$, $i = \overline{1,n}$, то $\Delta_{x_i} = A_i \cdot \delta_{x_i}$. Підставимо в формулу і отримаємо

Похибка добутку

Теорема. Відносна похибка добутку кількох наближених чисел, відмінних від нуля, не перевищує суми відносних похибок цих чисел: $\delta \leq \delta_1 + \delta_2 + ... + \delta_n$

Доведення. Нехай $u = x_1 \cdot x_2 \cdots x_n$. Для спрощення покладемо, що наближені числа x_1, x_2, \cdots, x_n додатні.

$$ln u = ln x_1 + ln x_2 + \ldots + ln x_n$$

Використовуючи наближену формулу $\frac{\Delta \ln x \approx d \ln x = \frac{\Delta x}{x}}{x}, \quad \text{маємо}$ $\frac{\Delta u}{u} = \frac{\Delta x_1}{x_1} + \frac{\Delta x_2}{x_2} + \ldots + \frac{\Delta x_n}{x_n}$

Оцінюючи за модулем, маємо $\left| \frac{\Delta u}{u} \right| \le \left| \frac{\Delta x_1}{x_1} \right| + \left| \frac{\Delta x_2}{x_2} \right| + \dots + \left| \frac{\Delta x_n}{x_n} \right|$.

Якщо A_i ($i = \overline{1,n}$) — точні значення співмножників x_i , а $\left| \Delta x_i \right|$, як це буває звичайно, малі порівняно з $\left| x_i \right|$, то наближено можна покласти $\left| \frac{\Delta x_i}{x_i} \right| \approx \left| \frac{\Delta x_i}{A_i} \right| = \delta_i$ і

 $\left| \frac{\Delta u}{u} \right| = \delta$, де δ_i — відносні похибки співмножників x_i , $i = \overline{1,n}$, δ — відносна похибка добутку.

Отже,
$$\delta \leq \delta_1 + \delta_2 + \ldots + \delta_n$$
.

Ця формула має місце також у випадку, коли співмножники x_i , $i = \overline{1,n}$ мають різні знаки.

Наслідок 1: Гранична відносна похибка добутку рівна сумі граничних відносних похибок співмножників: $\delta_u = \delta_{x_1} + \delta_{x_2} + ... + \delta_{x_n}$

Наслідок 2: Якщо всі співмножники добутку достатньо точні за винятком одного, то гранична відносна похибка буде співпадати з граничною відносною похибкою найменш точного співмножника.

Наприклад,
$$\delta_u = \delta_{x_1}$$
.

Знаючи граничну відносну похибку добутку $^{\delta_u}$ можна визначити абсолютну граничну похибку $^{\Delta_u=|u|\cdot\delta_u}.$

Приклад 10.

Визначити добуток u наближених чисел $x_1 = 12.2$ і $x_2 = 73.56$ і число

правильних знаків у ньому, якщо всі записані цифри співмножників правильні.

Розв'язування.

Граничні похибки співмножників: $\Delta_{x_1} = 0.05$; $\Delta_{x_2} = 0.005$.

$$\delta_u = \frac{0,05}{12,2} + \frac{0,005}{73,56} = 0,0042$$

Відносна похибка добутк $u = 12, 2 \cdot 73, 56 = 897,432$

Правильними є лише перші дві цифри.

Отже,
$$\Delta_u = |u| \cdot \delta_u = 897,432 \cdot 0,0042 = 3,6 \approx 4.$$
 $u = 897 \pm 4$.

<u>Частинний випадок</u>. При множенні наближеного числа на точний множник відносна гранична похибка не змінюється, а абсолютна гранична похибка збільшується в |k| разів.

Дійсно, нехай $u=k\cdot x$, де x- наближене значення числа, k- точний множник, тоді $\Delta_u=|k|\cdot \Delta_x$.

Правило. Щоб знайти добуток з кількох наближених чисел із різною кількістю правильних значущих цифр, досить:

- округлити їх так, щоб кожне з них містило на одну (або дві) значущі цифри більше, ніж кількість правильних цифр в найменш точному із співмножників;
- в результаті множення зберегти стільки значущих цифр, скільки правильних цифр в найменш точному співмножнику (або утримати ще одну запасну цифру).

<u>Приклад 11</u>. Знайти добуток наближених чисел $x_1 = 2.5$, $x_2 = 72.397$ правильних в написаних цифрах.

Розв'язування. Округляємо $x_1 = 2.5$, $x_2 = 72.4$. Маємо $x_1 \cdot x_2 = 2.5 \cdot 72.4 \approx 1.8 \cdot 10^2$.

Кількість правильних цифр добутку

Нехай маємо добуток n співмножників $(n \le 10)$ $u = x_1 \cdot x_2 \cdots x_n$. Нехай α_1 , α_2 , \cdots , α_n — перші значущі цифри у десятковому записі співмножників $x_i = \alpha_i \cdot 10^{p_i} + \beta_i \cdot 10^{p_{i-1}} + \cdots$, $(i = \overline{1,n})$.

$$\text{Тоді} \begin{array}{l} \delta_{x_i} = \frac{1}{2\alpha_i} {\left(\frac{1}{10}\right)}^{m-1} \quad \delta_u = {\left(\frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \ldots + \frac{1}{\alpha_n}\right)} \cdot {\left(\frac{1}{10}\right)}^{m-1} \\ \\ \text{Оскільки} \quad \frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \ldots + \frac{1}{\alpha_n} \leq 10 \quad \quad \delta_u \leq \frac{1}{2} {\left(\frac{1}{10}\right)}^{m-2} \\ \\ \end{array} .$$

Отже, в самому гіршому випадку добуток u має m=2 правильних цифр.

Правило. Якщо всі співмножники мають m правильних десяткових знаків і кількість їх не більша 10, то кількість правильних знаків в добутку на одну або дві одиниці менше m.

Зауваження. Якщо співмножники мають різну точність, то під m слід розуміти кількість знаків в найменш точному із співмножників.

<u>Приклад 12</u>. Визначити відносну похибку і кількість правильних цифр добутку $u = 93,87 \cdot 9,236$.

 $Poзв'язування. \qquad \delta_u = \frac{1}{2} \cdot \left(\frac{1}{9} + \frac{1}{9}\right) \cdot \frac{1}{10^3} < \frac{1}{2} \cdot 10^{-3} \\ \text{цифри.} \qquad . \qquad \text{Добуток має 3 правильні}$

<u>Приклад 13</u>. Визначити відносну похибку і кількість правильних цифр добутку $u = 17,63 \cdot 14,285$.

 $\delta_u = \frac{1}{2} \cdot \left(\frac{1}{1} + \frac{1}{1}\right) \cdot \frac{1}{10^3} = 1 \cdot 10^{-3}$. Добуток має принаймні 3 правильні цифри.

Похибка частки

Теорема. Відносна похибка частки не перевищує суми відносних похибок діленого і дільника.

Доведення. Нехай u = x/y. Тоді $\ln u = \ln x - \ln y$. По аналогії з попереднім отримуємо $\frac{\Delta u}{u} = \frac{\Delta x}{x} - \frac{\Delta y}{y}$, звідки $\left| \frac{\Delta u}{u} \right| = \left| \frac{\Delta x}{x} \right| + \left| \frac{\Delta y}{y} \right|$, що й треба було довести.

Наслідок. Якщо $U = \frac{x}{y}$, то гранична відносна похибка $\delta_u = \delta_x + \delta_y$.

<u>Приклад 14</u>. Знайти кількість правильних цифр частки u = 25,7/3,6.

 $\begin{array}{c} \delta_u = \frac{0,05}{25,7} + \frac{0,05}{3,6} = 0,002 + 0,014 = 0,016\\ Po36 'язання. \end{array} \qquad \begin{array}{c} \delta_u = \frac{0,05}{25,7} + \frac{0,05}{3,6} = 0,002 + 0,014 = 0,016\\ \Delta_u = 0,016 \cdot 7,14 = 0,11 \end{array} \qquad \begin{array}{c} O\text{скільки} \quad u = 7,14\\ \text{.} \end{array}$

Тому частка u має два правильних знаки, тобто u=7,1 або точніше $u=7,14\pm0,11$

Кількість правильних знаків частки

Нехай ділене x і дільник y мають хоча б m правильних цифр. Якщо α і β — їх перші значущі цифри, то як граничну відносну похибку можна

 $\delta_{_{u}} = \frac{1}{2} \bigg(\frac{1}{\alpha} + \frac{1}{\beta} \bigg) \cdot \bigg(\frac{1}{10} \bigg)^{^{m-1}} \, .$ прийняти величину

Правило:

- 1) якщо $\alpha \ge 2$ і $\beta \ge 2$, то частка U має щонайменше m-1 правильних цифр;
 - 2) якщо $\alpha = 1$ або $\beta = 1$, то частка U має m-2 правильних знаки.

Відносна похибка степеня

Нехай $U=x^m$ (m — натуральне число), тоді $\ln u = m \ln x$ і $\left| \frac{\Delta u}{u} \right| = m \left| \frac{\Delta x}{x} \right|$. Звідси $\delta_u = m \delta_x$, тобто:

Гранична відносна похибка m-го степеня числа $U = x^m$ в m разів більша

відносної граничної похибки самого числа ($^{\delta_u = m\delta_x}$).

Відносна похибка кореня

Теорема. Гранична відносна похибка кореня m -го степеня $U = \sqrt[m]{x}$ в m разів менша граничної відносної похибки підкореневого числа. ($\delta_U = \frac{1}{m} \delta_x$).

<u>Приклад 15</u>. Визначити, з якою відносною похибкою і з скількома правильними цифрами можна знайти сторону a квадрата, якщо його площа S = 12,34 (з точністю до 0,01).

 P_{O36} 'язування. Маємо $a=\sqrt{S}=3{,}5128...$ Оскільки $\delta_S=\frac{0{,}01}{12{,}33}\approx 0{,}0008$, то $\delta_a=\frac{1}{a}\delta_x=0{,}0004$. Тому $\Delta_a=3{,}5128\cdot 0{,}0004=1{,}4\cdot 10^{-3}$. Звідси маємо, що число a буде мати 4 правильних цифри i, отже, $a=3{,}513$.

Похибка різниці

Розглянемо різницю $u=x_1-x_2$. За теоремою про похибку суми гранична абсолютна похибка Δ_u різниці дорівнює $\Delta_u=\Delta_{x_1}+\Delta_{x_2}$.

Гранична відносна похибка різниці $\delta_u = \frac{\Delta_{x_1} + \Delta_{x_1}}{A}$, де A — точне значення абсолютної величини різниці $x_1 - x_2$.

Зауваження про втрату точності при відніманні близьких чисел.

Оскільки $\delta_U = \frac{\Delta_{x_1} + \Delta_{x_2}}{A}$, де A - точне значення абсолютної величини різниці $x_1 - x_2$, то гранична відносна похибка може бути досить велика для близьких наближених чисел x_1 і x_2 , тобто при малому A відбувається втрата точності.

<u>Приклад 16</u>. $x_1 = 47{,}132$, $x_2 = 47{,}111$. Кожне число має 5 правильних значущих цифр. Різниця $u = 47{,}132 - 47{,}111 = 0{,}021$ має лише дві значущі цифри, з яких остання сумнівна. Тому гранична абсолютна похибка різниці $\Delta_u = 0{,}0005 + 0{,}0005 = 0{,}001$

Граничні відносні похибки зменшуваного, від'ємника і різниці:

$$\delta_{x_1} = \frac{0,0005}{47,132} \approx 0,00001$$
 $\delta_{x_2} \approx \frac{0,0005}{47,111} = 0,00001$ $\delta_u = \frac{0,001}{0,021} \approx 0,05$

Маємо, що гранична відносна похибка різниці приблизно в 5000 разів більша граничних відносних похибок початкових даних.

Тому при наближених обчисленнях корисно перетворювати вирази обчислення числових значень яких приводить до віднімання близьких чисел.

<u>Приклад 17</u>. $u = \sqrt{2,01} - \sqrt{2}$. Знайти різницю з трьома значущими цифрами.

$$Po36$$
 'язування. $\sqrt{2,01} = 1,4177446...$, $\sqrt{2} = 1,4142135...$ $u = 0,00353 = 3,53 \cdot 10^{-3}$.

Цей же результат можна одержати, записуючи вираз у вигляді $u = \frac{0{,}01}{\sqrt{2{,}01} + \sqrt{2}}$ і взяти $\sqrt{2{,}01}$ і $\sqrt{2}$ лише з трьома правильними цифрами $u = \frac{0{,}01}{1{,}42 + 1{,}41} = \frac{0{,}01}{2{,}83} = 10^{-2} \cdot 3{,}53 \cdot 10^{-1} = 3{,}53 \cdot 10^{-3}$. Звідси маємо таке

Правило: При наближених обчисленнях слід по можливості уникати віднімання майже рівних чисел. Якщо ж в силу необхідності доводиться віднімати такі числа, то слід зменшуване і від'ємник брати з достатньою кількістю запасних правильних цифр.

Обчислення без точного врахування похибок

Раніше ми розглянули методи оцінки граничної абсолютної похибки дій. При цьому припускали, що абсолютні похибки компонент підсилюють одне одну, що практично буває порівняно рідко.

При масових обчисленнях, коли не враховуються похибки кожного окремого результату, рекомендується користуватись наступними правилами підрахунку цифр.

- 1. При додаванні і відніманні наближених чисел молодший десятковий розряд результату повинен бути найбільшим серед десяткових розрядів, що виражаються останніми правильними значущими цифрами початкових даних.
- 2. При множенні і діленні наближених чисел у результаті треба зберігати стільки значущих цифр, скільки їх має наближене число із найменшою кількістю правильних значущих цифр.
- 3. При піднесенні до квадрату або кубу наближені числа у результаті необхідно зберігати стільки значущих цифр, скільки правильних значущих цифр має основа степеня.
- 4. При добуванні квадратного кореня і кубічного кореня в результаті треба зберігати стільки значущих цифр, скільки правильних цифр має підкореневе число.
- 5. У всіх проміжних результатах слід зберігати на одну цифру більше, ніж рекомендується попередніми правилами, у кінцевому результаті ця "запасна" цифра округлюється.
- 6. Якщо дані можна брати із довільною точністю, то для одержання результату з k правильними цифрами вихідні дані потрібно брати із такою кількістю цифр, яка згідно з попередніми правилами забезпечує $^{k+1}$ правильну цифру у результаті.

Якщо деякі дані мають зайві молодші десяткові розряди (при додаванні і відніманні) або більше значущих цифр, ніж інші (множення, ділення, добування кореня n -го степеня, піднесення числа до n -го степеня), то їх заздалегідь слід округлювати, зберігаючи при цьому одну запасну цифру.

Пряма задача теорії похибок

Відомі похибки деякої системи величин $x_1, x_2, ..., x_n$. Потрібно

визначити похибку функції $u = f(x_1, x_2, x_3, ..., x_n)$ від цих величин.

Нехай $|\Delta x_i|$ — абсолютні похибки аргументів функції. Тоді абсолютна похибка функції $|\Delta u| = |f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_n)|$.

Будемо вважати Δx_i малими величинами, добутками, квадратами і вищими степенями яких можна нехтувати, тоді

$$\left|\Delta u\right| \approx \left|df\left(x_1, x_2, \dots x_n\right)\right| = \left|\sum_{i=1}^n \frac{df}{\partial x_i} \cdot \Delta x_i\right| \le \sum_{i=1}^n \left|\frac{\partial f}{\partial x_i}\right| \cdot \left|\Delta x_i\right| \tag{1}$$

Позначимо $^{\Delta_u}$ — граничну похибку функції u , $^{\Delta_{x_i}}$ — граничну похибку x_i

Для малих
$$\Delta_{x_i}$$
 маємо:
$$\Delta_u = \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right| \cdot \Delta x_i$$
 (2)

Поділяючи обидві частини (1) на |u|, маємо оцінку відносної похибки функції u

$$\delta \leq \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \middle/ u \right| \cdot \Delta x_i = \sum_{i=1}^{n} \left| \frac{\partial}{\partial x_i} \ln f(x_1, \dots, x_n) \right| \cdot \Delta x_i$$

Отже, як гранична відносна похибка функції має вигляд $\delta_u = \sum_{i=1}^n \left| \frac{\partial}{\partial x_i} \ln u \right| \cdot \Delta x_i$

Обернена задача теорії похибок

Визначити, якими повинні бути абсолютні похибки аргументів функції $u = f(x_1, x_2, ... x_n)$, щоб абсолютна похибка функції Δ_u не перевищувала заданої величини.

Ця задача математично не визначена, оскільки задану граничну похибку Δ_u функції $u=f(x_1,x_2,...x_n)$ можна забезпечити, встановлюючи по різному абсолютні похибки Δ_{x_i} її аргументів.

Для розв'язування задачі скористаємося принципом рівних впливів.

Згідно з цим принципом припускають, що всі частинні диференціали $\frac{\partial f}{\partial x_i} \cdot \Delta x_i$ однаково впливають на утворення загальної абсолютної похибки Δ_u функції $u = f(x_1, x_2, ... x_n)$.

Нехай величина граничної абсолютної похибки Δ_u задана. Тоді $|\Delta_u| = \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right| \cdot \Delta x_i$

Припускаючи, що всі доданки рівні між собою, будемо мати

$$\left| \frac{\partial u}{\partial x_1} \right| \cdot \Delta x_1 = \left| \frac{\partial u}{\partial x_2} \right| \cdot \Delta x_2 = \dots = \left| \frac{\partial u}{\partial x_n} \right| \cdot \Delta x_n = \frac{\Delta u}{n} \cdot \text{OTWe}, \quad \Delta x_i = \Delta_u / n \cdot \left| \frac{\partial u}{\partial x} \right|, \quad i = 1, 2, \dots, n.$$

Метод меж

У певних випадках потрібно мати точні границі для шуканого значення функції, якщо відомі границі зміни її аргументів.

Для цього користуються способом подвійних обчислень, який ще Нехай $u = f(x_1, x_2, x_3, ..., x_n)$ _ неперервномеж. методом диференційовна функція, монотонна по кожному аргументу x_i у розглядуваній області о зміни аргументів.

Припустимо, що похідні $\frac{\partial f}{\partial x_i}$, i=1,2,...,n зберігають постійний знак у цій області.

Покладемо $\frac{x_i}{x_i} < x_i < \overline{x_i}$, i = 1, 2, ..., n.

$$\widehat{x}_i = \begin{cases} \underline{\underline{x}_i} - & u \uparrow \\ \overline{\underline{x}_i} - & u \downarrow \end{cases}; \qquad \widehat{x}_i = \begin{cases} \overline{x_i} - & u \downarrow \\ \underline{x_i} - & u \uparrow \end{cases}$$

Тоді очевидно, що $\underline{u} < u < \overline{u}$, де $\underline{u} = f(\widetilde{x}_1, \widetilde{x}_2, ... \widetilde{x}_n)$, $\overline{u} = f(\widehat{x}_1, \widehat{x}_2, ... \widehat{x}_n)$

3ауваження. Змінні \tilde{x}_i і результати дії над ними можна округлювати лише в сторону зменшення \underline{u} , а \hat{x}_i і результат дії над ними лише в сторону збільшення u.

Поняття про ймовірнісну оцінку похибки

Нехай маємо $u = x_1 + x_2 + ... + x_n$.

Тоді гранична абсолютна похибка суми рівна $^{\Delta_u=\Delta_{x_1}+\Delta_{x_2}+\ldots+\Delta_{x_n}}$. Коли $\hat{\Delta}_{x_1} = \Delta_{x_2} = \dots = \Delta_{x_n} = \Delta_{x_n} = \Delta_{u} = n \cdot \Delta_{u}$.

Ця формула дає максимально можливе значення абсолютної похибки суми. Ця похибка досягається лише тоді, коли помилки всіх складових: 1) найбільші із можливих; 2) мають однакові знаки. При великій кількості доданків таке малоймовірно. Тому поряд з теоретичною граничною похибкою суми Δ_u вводять практичну граничну похибку Δ_u^* .

похибка абсолютна доданків суми незалежні підпорядковуються нормальному закону розподілу з однією і тією ж мірою точності.

Покладемо, що з ймовірністю, що перевищує γ , абсолютні похибки доданків не перевищують числа Δ , тобто $P(|\Delta x_i| \leq \Delta) > \gamma$. При цій умові в теорії ймовірностей доводиться, що з тією ж мірою достовірності абсолютна похибка суми u буде задовольняти нерівність $|\Delta u| \leq \Delta \cdot \sqrt{n}$, де n – кількість доданків. Таким чином, $\Delta_u^{\bullet} = \Delta \cdot \sqrt{n}$

Аналогічно для множення n співмножників з однаковою відносною граничною похибкою δ можна довести, що практична гранична відносна похибка добутку визначається за формулою $\delta_u^* = \delta \cdot \sqrt{n}$.

Методи нелінійної алгебри

Розв'язування нелінійних рівнянь з однією змінною

Якщо функція f(x) визначена і неперервна на деякому відрізку [a,b], то розв'язання рівняння f(x)=0 зводиться до відшукання множини значень $x \in [a,b]$, при яких це рівняння перетворюється у тотожність.

Знаходження наближених коренів рівняння f(x) = 0 складається із двох етапів:

- відокремлення коренів, тобто знаходження досить малих відрізків, на кожному з яких міститься один і тільки один корінь рівняння;
 - уточнення кореня із наперед заданою точністю ε .

чисельного розв'язування рівняння відділення коренів, тобто встановлення відрізків, що мають лише один корінь.

Приймаючи до уваги, що дійсні корені рівняння геометрично ϵ точками перетину графіка функції F(x) з віссю абсцис, досить побудувати графік F(x) і відмітити на осі Ox відрізки, що містять по одному кореню.

Рис. 1.

Побудову графіка можна дуже спростити, замінюючи початкове рівняння рівносильним $f_1(x) = f_2(x)$. У цьому випадку будуються графіки функцій $f_1(x)$ і $f_2(x)$, а потім на осі Oxвідмічаються відрізки, що локалізують абсциси точок перетину цих графіків.

Для відокремлення коренів можемо також використати відому теорему: якщо неперервна функція F(x) на кінцях відрізку [a,b] приймає значення протилежних знаків (F(a)F(b) < 0), то відрізок містить принаймні один корінь рівняння F(x)=0. А якщо вдасться встановити монотонність функції F(x) на [a,b], то на цьому відрізку міститься ізольований корінь.

Наведемо, можливо не зовсім коректний, але часто вживаний спосіб відокремлення коренів рівняння F(x) = 0 на відрізку [a, b], де F(x) визначена, неперервна і F(a)F(b) < 0. Точками x_k ($x_k = a + k \cdot h$, h = (b - a)/n, k = 0,1,...,n) розбиваємо відрізок [a,b] на n частин. Як тільки $F(x_k)F(x_{k+1}) < 0$ і функція F(x) монотонна на відрізку $[x_k, x_{k+1}]$, то вважатимемо, що на $[x_k, x_{k+1}]$ міститься єдиний корінь. Зауважимо, що при такому відокремленні коренів необхідно вибирати досить малі значення кроку h.

Метод половинного ділення

Нехай корінь ξ рівняння f(x)=0 відділений і знаходиться на відрізку [a,b], тобто $f(a) \cdot f(b) < 0$. Візьмемо точку c = (a+b)/2. Цією точкою відрізок [a,b] поділяється на два рівних відрізки [a,c], [c,b]. Якщо f(c)=0, то c-1 точний корінь рівняння. Якщо $f(c)\neq 0$, то виберемо той відрізок, на кінцях якого f(x) приймає протилежні знаки. Позначимо його $[a_1,b_1]$ і проведемо дії за тими ж міркуваннями. Процес продовжується, доки на чкомусь етапі середина відрізку буде коренем рівняння, або буде отримано відрізок $[a_n,b_n]$ такий, що $b_n-a_n=(b-a)/2^n\leq \varepsilon$, де $\varepsilon-3$ адана точність пошуку кореня.

Як наближене значення кореня треба взяти $\xi = (b-a)/2$. Тоді похибка не перевищує $(b-a)/2^{n+1}$.

Метод хорд

Нехай дано рівняння f(x)=0, де f(x) — неперервна функція, що має на відрізку [a;b] неперервні похідні першого і другого порядків, які зберігають сталі знаки на цьому відрізку, причому f(a)f(b)<0, тобто корінь x^0 рівняння відокремлений на [a;b].

Ідея методу хорд в тому, що на досить малому відрізку дуга кривої y = f(x) замінюється хордою і абсциса точки перетину хорди з віссю $Ox \in Haboning Expansion (Action 1) випадки розміщення графіка.$

Рис. 2

Рис. 3 y = f(x) $a \in f(a) > 0, f(b) < 0$ f'(x) < 0, f'(x) > 0

Розглянемо випадки, коли $f(x)\cdot f''(x)>0$ (див. рис. 6). Нехай, зокрема, f(a)<0, f(b)>0, f'(x)>0, f''(x)>0. Графік функції проходить через точки $A_0(a,f(a))$, $B_0(b,f(b))$. Шуканий корінь рівняння f(x)=0 є абсциса точки перетину графіка функції y=f(x) з віссю абсцис. Ця тоска нам невідома, але замість неї візьмемо точку x_1 перетину хорди x_2 0 з віссю x_3 0 з віссю x_4 0 це й буде наближене значення кореня. Рівняння хорди, що проходить через точки x_4 0 і

 $\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}$. Знайдемо значення $x=x_1$, для якого y=0: $x_1=a-\frac{f(a)(b-a)}{g(a)}$

 $x_1 = a - \frac{f(a)(b-a)}{f(b)-f(a)}$. Ця формула має назву формули методу хорд. Тепер корінь $\xi \in [x_1,b]$. Застосуємо метод хорд до $[x_1,b]$. З'єднаємо точку $A_1(x_1,f(x_1))$ з точкою B(b,f(b)) і знайдемо x_2 — точку перетину хорди A_1B з віссю A_2B з віссю A_2B

 $x_2 = x_1 - \frac{f(x_1)(b - x_1)}{f(b) - f(x_1)}$. Продовжуючи цей процес, маємо

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)} (b - x_n)$$
 (1)

f''(x) > 0

Процес продовжується, доки не отримаємо наближений корінь із заданим ступенем точності.

За наведеними формулами обчислюються корені при f(a) > 0, f(b) < 0, f'(x) < 0, f''(x) < 0.

Розглянемо випадок, коли f'(x)f''(x) < 0. Нехай, зокрема, f(a) > 0, f(b) < 0, f'(x) < 0,

3'єднаємо точки A(a,f(a)) і B(b,f(b)) та запишемо рівняння хорди, що проходить через точки A і B :

$$\frac{y - f(b)}{f(a) - f(b)} = \frac{x - b}{a - b}$$

Знайдемо x_1 як точку перетину хорди з віссю Ox, покладаючи y=0:

$$x_1 = b - \frac{f(b)}{f(b) - f(a)}(b - a)$$
. Корінь $\xi \in [a, x_1]$. Застосуємо метод хорд до цього відрізку $x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(a)}(x_1 - a)$. У загальному випадку маємо $f(x_n)$

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(a)} (x_n - a)$$
(2)

За цими ж формулами знаходяться наближені значення кореня для випадку f(a) < 0, f(b) > 0, f'(x) > 0, f''(x) < 0.

Отже, якщо $f'(x) \cdot f''(x) > 0$, то використовується формула (1).

Якщо $f'(x) \cdot f''(x) < 0$, то використовується формула (2).

Правило. Нерухомим кінцем відрізка є той, для якого знак функції співпадає зі знаком другої похідної. Тобто метод хорд можна записати так:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(c)}(x_k - c)$$
, $k = 0, 1, 2, \dots$ де $c = \begin{cases} a, & \text{якщо} \quad f(a)f''(a) > 0 \\ b, & \text{якщо} \quad f(b)f''(b) > 0 \end{cases}$.

Метод Ньютона (дотичних)

Нехай корінь рівняння f(x) = 0 відділений на відрізку [a,b], причому функції f'(x), f''(x) неперервні і зберігають знаки на всьому відрізку [a,b].

Геометричний зміст методу Ньютона полягає в тому, що дуга кривої y = f(x) замінюється дотичною до цієї кривої (звідси й друга назва — метод дотичних).

Перший випадок. Нехай f(a) < 0, f(b) > 0, f'(x) > 0, f''(x) > 0 (рис.8) або f(a) > 0, f(b) < 0, f'(x) < 0, f''(x) < 0 (рис.9).

Рис.8

Рис.9

Проведемо дотичну до кривої y = f(x) в точці $B_0(b, f(b))$ і знайдемо абсцису точки перетину дотичної з віссю Ox. Відомо, що рівняння дотичної в точці $B_0(b,f(b))$ має вигляд

$$y - f(b) = f'(b)(x - b)$$

Покладаючи y=0, $x=x_1$, отримаємо $x_1=b-\frac{f(b)}{f'(b)}$. Тепер $\xi \in [a,x_1]$. Знову $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ і в загальному випадку маємо

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
. Отримуємо послідовність $x_1, x_2, ..., x_n, ... < \xi$.

Другий випадок. Нехай f(a) < 0, f(b) > 0, f'(x) > 0, f''(x) < 0 (рис.3) або f(a) > 0, f(b) < 0, f(x) < 0, f''(x) > 0 (рис.11).

Якщо провести дотичну до кривої y = f(x) в точці B, то вона пертне вісь абсцис у точці, що не належить $a_0(a,f(a))$ і запишемо її рівняння $a_0(a,f(a))$ і запишемо її рівняння $a_0(a,f(a))$ і запишемо ії рівняння і запишемо ії рівняння і запишемо ії за

$$A_0(a,f(a))$$
 і запишемо її рівняння $y-f(a)=f'(a)(x-a)$. Покладаючи $y=0$, $x=x_1$, знаходимо $x_1=a-\frac{f(a)}{f'(a)}$. Корінь $\xi\in[x_1,b]$. Застосуємо метод Ньютона $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$

Правило. Як початкову точку треба вибирати той кінець відрізку [a,b], в якому знак функції співпадає зі знаком другої похідної.

Якщо
$$f(b) \cdot f''(x) > 0$$
, то $b = x_0$, а якщо $f(a) \cdot f''(x) > 0$, то $a = x_0$.

Комбінований метод дотичних і хорд

Характерна особливість методів дотичних і хорд та, що послідовності їх наближень монотонні. Причому, якщо для даного рівняння послідовність наближень методу хорд монотонно спадна, то послідовність наближень методу дотичних — монотонно зростаюча, і навпаки. Одночасне застосування цих методів дає змогу наближатися до кореня рівняння з двох боків, дістаючи наближення з недостачею і надлишком.

За наведеними раніше умовами для одного методу як початкове наближення вибирають точку x=a, а в іншому точку b. Після застосовуння методів хорд та дотичних дістають нові наближення a_1,b_1 , і початковий відрізок ізоляції кореня відрізку [a;b] звузився. Для знаходження нових наближень застосовують метод дотичних і хорд уже на відрізку $[a_1;b_1]$. У результаті дістають нові наближення a_2,b_2 відповідно, причому $[a_2;b_2]\subset [a_1;b_1]\subset [a;b]$. Такий процес продовжують доти, поки довжина відрізка $[a_k;b_k]$ стане меншою або дорівнюватиме величині 2ε , де ε - наперед задана точність.

Розрахункові формули:

при
$$f'(x)f''(x) > 0$$
: $a_{n+1} = a_n - \frac{f(a_n)}{f(b_n) - f(a_n)}(b_n - a_n), b_{n+1} = b_n - \frac{f(b_n)}{f'(b_n)};$

при
$$f'(x)f''(x) < 0$$
: $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}, b_{n+1} = b_n - \frac{f(b_n)}{f(b_n) - f(a_n)}(b_n - a_n)$.

Процес обчислень припиняється, як тільки $|\overline{x_n} - \underline{x_n}| < \varepsilon$. Як наближене значення приймається $\xi = \frac{1}{2}(\overline{x_n} - \underline{x_n})$, де $\overline{x_n}$ і $\overline{x_n}$ — наближені значення з надвишкою і з недостачею.

Метод простої ітерації

Нехай дано рівняння F(x)=0, де F(x) — неперервна функція. Потрібно визначити дійсний корінь цього рівняння на a — замінимо рівняння a — рівносильним йому рівнянням a — корінь цього рівняння, а a — одержане будь-яким способом початковим наближенням до кореня a . Підставляючи a у праву частину рівняння, одержимо деяке число a — a — зробимо те ж саме з a — одержимо a — a — a — одержимо те ж саме з a — одержимо a — a — a — одержимо те ж саме з a — одержимо a — a — одержимо a — a — одержимо те ж саме з a — одержимо a — a — одержимо те ж саме з a — одержимо a — одержимо a — одержимо те ж саме з a — одержимо a — одержимо те ж саме з a — одержимо a — одержимо те ж саме з a — одержимо послідовність a — одержуємо числову послідовність a — одержимо одержуємо числову послідовність a — одержимо одержуємо числову послідовність a — одержуємо числову послідовність одержимо за випадки:

- 1) послідовність x_0 , x_1 ,..., x_n ,... збігається, тобто має границю, і тоді ця границя буде коренем рівняння F(x)=0;
 - 2) послідовність $x_0, x_1, \dots, x_n, \dots$ розбігається, тобто немає границі.

Достатня умова збіжності ітераційного процесу визначається такою теоремою.

Теорема збіжності ітераційної послідовності. Нехай рівняння x = f(x) має єдиний корінь на відрізку [a,b] і виконані умови:

f(x) визначена і диференційована на [a,b];

 $f(x) \in [a,b]$ для всіх $x \in [a,b]$.

існує таке дійсне q, що $|f'(x)| \le q < 1$ для всіх $x \in [a;b]$.

Тоді ітераційна послідовність $x_n = f(x_{n-1})$, n = 1, 2, ... збігається при будьякому початковому значенні $x_0 \in [a;b]$.

Доведення. Побудуємо ітераційну послідовність $x_0, x_1, \dots, x_n, \dots$. Внаслідок умови 2) всі члени послідовності знаходяться в [a,b].

Розглянемо два послідовних наближення $x_n = f(x_{n-1})$ і $x_{n+1} = f(x_n)$. За теоремою Лагранжа про скінчені прирости маємо $x_{n+1} - x_n = f(x_n) - f(x_{n-1}) = f'(c)(x_n - x_{n-1})$, де $c \in [x_{n-1}, x_n]$.

Переходячи до модулів і приймаючи до уваги умову 3) теореми, маємо $|x_{\scriptscriptstyle n+1}-x_{\scriptscriptstyle n}|=|f'(c)|\!|x_{\scriptscriptstyle n}-x_{\scriptscriptstyle n-1}|\leq q|x_{\scriptscriptstyle n}-x_{\scriptscriptstyle n-1}|\qquad |x_{\scriptscriptstyle n+1}-x_{\scriptscriptstyle n}|\leq q|x_{\scriptscriptstyle n}-x_{\scriptscriptstyle n-1}|$

При n = 1, 2, ... будемо мати

$$|x_2 - x_1| \le q \cdot |x_1 - x_0|, |x_3 - x_2| \le q \cdot |x_1 - x_0|,$$
(3)

 $\left|x_{n+1} - x_n\right| \le q^n \cdot \left|x_1 - x_0\right|$

Розглянемо ряд

$$x_0 + (x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1}) + \dots$$
(4)

Складемо частинні суми цього ряду : $S_1 = x_0$, $S_2 = x_1$, ..., $S_{n+1} = x_n$.

Відмітимо, що $\binom{(n+1)}{}$ -ша частинна сума ряду (4) співпадає з $\binom{n}{}$ -м членом ітераційної послідовності, тобто

$$S_{n+1} = X_n \tag{5}$$

Порівняємо ряд (4) з рядом

$$|x_1 - x_0| + q|x_1 - x_0| + q^2|x_1 - x_0| + \dots$$
(6)

Відмітимо, що внаслідок співвідношень (3) абсолютні величини членів ряду (4) (член x_0 не приймається до уваги) не перевищують відповідних членів ряду (6). Але ряд (6) збігається як нескінченно спадна геометрична прогресія (q < 1 за умовою). Отже, і ряд (4) збігається, оскільки його частинна сума (5) має границю. Нехай $\lim_{n\to\infty} x_n = \xi$. Внаслідок неперервності функції f(x) отримуємо $\lim_{n\to\infty} x_n = \lim_{n\to\infty} f(x_{n-1}) = f(\lim_{n\to\infty} x_{n-1}) = f(\xi)$, тобто $\xi = f(\xi)$, тобто ξ – корінь рівняння x = f(x).

Відмітимо, що умови теореми достатні і не є необхідними. Це означає, що ітераційна послідовність може збігатися і при невиконанні цих умов.

Оцінка похибки методу ітерацій

Нехай x_n — наближення до істинного значення кореня рівняння x = f(x). Абсолютна похибка наближення оцінюється модулем $\Delta x_n = |\xi - x_n|$. $\xi - x_n = \xi - S_{n+1} = (x_{n+1} - x_n) + (x_{n+2} - x_{n+1}) + \dots$

Порівняємо (7) з залишком ряду (6): $q^n |x_1 - x_0| + q^{n+1} |x_1 - x_0| + \dots$ Враховуючи (3), маємо

$$\left|\xi - x_n\right| \le q^n \left|x_1 - x_0\right| + q^{n+1} \left|x_1 - x_0\right| + \dots = \frac{q^n}{1 - q} \left|x_1 - x_0\right|$$

Таким чином, для оцінки похибки n-го наближення маємо формулу

$$\Delta x_n \le \frac{q}{1-q} \left| x_n - x_{n-1} \right| \tag{8}$$

Перетворення рівняння до ітераційного вигляду

Рівняння F(x) = 0 може бути приведено до ітераційного вигляду різними способами, проте необхідно зробити так, щоб для функції f(x)виконувались умови теореми збіжності.

3 цією метою рівняння F(x) = 0 подамо у вигляді $x = x - m \cdot F(x)$, де

стала $m \neq 0$. Тоді позначимо f(x) = x - mF(x). Диференціюючи, отримуємо f'(x) = 1 - mF'(x). Для виконання умови 3 теореми збіжності потрібно $|f'(x)| = |1 - mF'(x)| \le q < 1$. А для цього досить підібрати сталу $m \ne 0$ так, щоб для фіксованого $x \in [a;b]$ виконувалося mF'(x)=1. Підставимо це значення m у рівняння $x = x - m \cdot F(x)$ і отримуємо схему збіжного ітераційного процесу.

Розв'язування нелінійних систем

Поняття про принципи стискаючих відображень

Нехай є загальний вигляд нелінійної системи рівнянь:

$$f_1(x_1, x_2, ..., x_n) = y_1;$$

 $f_2(x_1, x_2, ..., x_n) = y_2;$

 $f_n(x_1, x_2, x_n) = y_n$ (1)

або у вертикальному вигляді

$$\bar{f}(\bar{x}) = \bar{y} \,, \tag{2}$$

де f – функція (або відображення) з областю визначення $D \in E^n$ та областю значень $G \in E^n$; вектор \bar{y} задається. Кожне рівняння в системі (1) визначає деяку поверхню в E^n . Отже, розв'язками системи (1) є точки перетину цих поверхонь.

Для прикладу розглянемо систему двох рівнянь з двома невідомими

$$f_1 = x_1^2 - x_2 + \alpha = 0$$
,
 $f_2 = -x_1 + x_2^2 + \alpha = 0$

де α — дійсний параметр, $1 \le \alpha \le -1$.

Якщо змінювати α у вказаному інтервалі, то мають місце такі випадки (див. рис. 12-15):

Рис. 12

Рис. 14

Рис. 13

Рис. 15

$$\alpha = 1$$
 — розв'язків немає;

 $\alpha = 0.25$

розв'язок єдиний;

$$\alpha = 0$$
 — два розв'язки;

$$\alpha = -1$$
 — чотири

розв'язки.

Підхід до розв'язання нелінійних грунтується на лінеаризації вихідної системи, заміні її на "близьку" лінійну систему 3 уточненням ітераційними методами.

Питання про існування розв'язку системи рівнянь (1) в околі точки (x^0, y^0) вирішує відоме в математичному аналізі твердження.

Твердження 1. Нехай функції $f_1(x_1,x_2,...,x_n)$, $1 \le i \le n$, неперервно диференційовані в околі точки $x^{(0)} = \left\{x_1^{(0)},...,x_n^{(0)}\right\}$, $f_i\left(x_i^{(0)},...,x_n^{(0)}\right) = y_i^{(0)}$, $1 \le i \le n$ і матриця

$$A(x^{(0)}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} (x_1^{(0)}, \dots, x_n^{(0)}) \dots \frac{\partial f_1}{\partial x_n} (x_1^{(0)}, \dots, x_n^{(0)}) \\ \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1} (x_1^{(0)}, \dots, x_n^{(0)}) \dots \frac{\partial f_n}{\partial x_n} (x_1^{(0)}, \dots, x_n^{(0)}) \end{pmatrix}$$

 ϵ невироджена. Тоді ϵ неперервні функції $x_i = z_i(y_i,...,y_n)$ в околі точки $y^{(0)} = (y_1^{(0)},...,y_n^{(0)})$ з властивостями:

$$f_i(z_1(y_1,...,y_n),...,z_n(y_1,...,y_n)) = y_i;$$

$$z_i(y_1^{(0)},...,y_n^{(0)}) = x_i^{(0)}; \quad 1 \le i \le n.$$

Це твердження дає підхід до розв'язування нелінійних систем рівнянь, заснований на лінеаризації системи (1).

Припустимо, що функції $f_i(x_1,...,x_n)$ двічі неперервна диференційовані в E^n . Зобразимо ліву частину (1) відрізком ряду Тейлора з центром у точці $x^{(0)}$.

$$f_i(\overline{x}^{(0)}) + \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} (\overline{x}^{(0)}) (x_j - x_j^{(0)}) + o \|\overline{x} - \overline{x}^{(0)}\| = y^{(0)}$$

Якщо відкинути в цій формулі залишковий член, дістанемо лінеаризовану в околі $\bar{x}^{(0)}$, $\bar{y}^{(0)}$ систему рівнянь (1), яку запишемо в матричній формі:

$$f(\bar{x}^{(0)}) + A(\bar{x}^{(0)})(\bar{x} - \bar{x}^{(0)}) = \bar{y}^{(0)}.$$
(3)

Оскільки точний розв'язок вихідної системи рівнянь невідомий, у загальному випадку:

$$f(\overline{x}^{(0)}) \neq y^{(0)}.$$

Нехай $\det A(\overline{x}^{(0)}) \neq 0$. Тоді чисельно розв'язуємо систему лінійних рівнянь (3) й дістанемо лінеаризованої системи:

$$\bar{x} = A^{-1} (\bar{x}^{(0)}) (\bar{y}^{(0)} - \bar{f}(\bar{x}^{(0)})) + \bar{x}^{(0)}$$
(4)

Похибка чисельного розв'язування (3) та похибка, пов'язана з відкиданням залишкового члена, дають повну похибку (4), якщо прийняти розв'язок лінеаризованого рівняння за наближений розв'язок (1). Похибка лінеаризації визначається числом обумовленості матриці $A(\bar{x}^{(0)})$ та вибором нульового наближення.

Розглянемо лінійний п-вимірний дійсний простір E^n й визначимо в E^n якусь норму $\| \overline{x}^{(0)} \|$ елемента $\overline{x} = \{x_1, \dots, x_n\}$.

Нехай задано, взагалі кажучи, нелінійне відображення $\bar{y} = \overline{\varphi}(\bar{x})$,

наприклад, за допомогою n функцій:

$$y_{1} = \varphi_{1}(x_{1}, ..., x_{n});$$

$$y_{2} = \varphi_{2}(x_{1}, ..., x_{n});$$

$$...$$

$$y_{n} = \varphi_{n}(x_{1}, ..., x_{n})$$
(5)

які визначені на всьому просторі E^n .

Відображення $\overline{\phi}(x)$ переводить E^n в себе, якщо для будь якого елемента \overline{x} , який належить до E^n , елемент $\overline{y} = \overline{\phi}(\overline{x})$ також належить до E^n .

Наприклад, відображення $y = \sin x$ переводить E^1 в себе, відображення $y = \sqrt{\sin x}$ цієї властивості не має.

Відображення $\overline{\varphi}(\overline{x})$, яке переводить E^n в себе, має назву стискаючого в E, якщо для довільних двох елементів \overline{x}_1 та $\overline{x}_2 \in E^n$ має місце нерівність:

 $\|\overline{\varphi}(\overline{x}_1) - \overline{\varphi}(\overline{x}_2)\| \le q\|\overline{x}_1 - \overline{x}_2\|,\tag{6}$

де коефіцієнт стискання
$$q$$
 задовольняє нерівність: $0 < q < 1$. (7)

Наприклад, $\varphi(x) = 0.1 \sin x$ — стискаюче відображення в E^1 з нормою ||x|| = |x|. Покажемо, що $\varphi(x)$ задовольняє (3.6) та (3.7). Дійсно,

$$|\varphi(x_1) - \varphi(x_2)| = |0.1\sin x_1 - 0.1\sin x_2| = 0.1|\sin x_1 - \sin x_2|$$

Але із теореми про середнє маємо:

$$|\sin x_1 - \sin x_2| = |\cos \xi| \cdot |x_1 - x_2|, \quad x_1 \le 5 \le x_2.$$

3 двох останніх співвідношень дістанемо $\|\phi(x_1) - \phi(x_2)\| \le 0.1 |x_1 - x_2|$, тобто нерівність (6) з коефіцієнтом стискання q = 0.1. Дію стискаючого відображення ілюструє рисунок 16.

 $\overline{\varphi}(\overline{x})$ нелінійних функцій Для вимога $\overline{\varphi}(\overline{x})$ E^{n} визначення на всьому просторі обмежуючою. виявляється занадто відображення $\overline{\varphi}(\overline{x})$ часто розглядається локально, тільки в кулі S, яка належить області визначення D -відображення. Куля S — це сукупність елементів $\overline{x} \in E^n$ Takux, IIIO $\|\overline{x} - \overline{x}^{(0)}\| \le \overline{r}$ $S = \{\overline{x} : \|\overline{x} - \overline{x}^{(0)}\| \le \overline{r}\}$

Тут $\bar{x}^{(0)}$ - елемент; E^n - центр кулі; r - додатне число, радіус кулі.

Відображення $\overline{\phi}(\overline{x})$ переводить кулю в себе, якщо для будь-якого $\overline{x} \in S$, елемент $\overline{\phi}(\overline{x})$ також належить кулі S. Наприклад, відображення $y = \sqrt{\sin x}$ переводить кулю $\left|x - \frac{\pi}{2}\right| \leq \frac{\pi}{2}$, з центром в точці $x^{(0)} = \pi/2$ та радіусом $\pi/2$ в себе.

Відображення $\overline{\phi}(\overline{x})$, яке переводить кулю S в E^n , має назву

стискаючого в S, якщо для довільних двох елементів \bar{x}_1 та \bar{x}_2 мають місце нерівності (6), (7).

Метод простої ітерації. Метод Зейделя

Стискаюче відображення ϵ чудовим представником класу відображень, які визначають нелінійне рівняння вигляду

$$x_1 = \varphi_1(x_1, \dots, x_n);$$

$$x_2 = \varphi_2(x_1, \dots, x_n);$$

$$x_n = \varphi_n(x_1, \dots, x_n) \tag{8}$$

або у векторному вигляді

$$\overline{x} = \overline{\varphi}(\overline{x}), \tag{9}$$

де інтегруючі функції $\phi_1(x), \phi_2(x), ..., \phi_n(x)$ дійсні, визначені та неперервні в деякому околі ω ізольованого кореня $x_1^*, x_2^*, ..., x_n^*$ системи (8).

Розв'язок рівняння (8) , якщо воно існує, є нерухомою точкою перетворення (5).

Для рівняння вигляду (8) легко відповісти на питання про існування та єдності його розв'язку, а також побудувати послідовність наближень $\{\bar{x}^{(k)}\}$, які збігаються до розв'язку.

Побудуємо послідовність
$$\{\overline{x}^{(k)}\}$$
 за формулою: $\overline{x}^{(k+1)} = \overline{\varphi}(\overline{x}^{(k)}), k = 0,1,2,...,$ (10)

де $\bar{x}^{(0)}$ — початкове наближення, яке має бути задано. Якщо процес ітерації збігається, то граничне значення $\bar{x}^* = \lim_{\kappa \to \infty} \bar{x}^{(\kappa)}$ обов'язково є коренем рівняння (8). Таким чином, розв'язок нелінійного рівняння (8) за допомогою (10) має назву методу простої ітерації.

Твердження 2. Нехай область G замкнена та відображення (5) є стискаючим в G; таким чином справджується умова (6). Тоді , якщо для ітераційного процесу (10) всі послідовні наближення $\{\bar{x}^{(k)}\}\in G$ ($k=0,1,\dots$) то:

- 1) незалежно від вибору початкового наближення $\bar{x}^{(0)}$ процес (10) збігається, тобто існує $\bar{x}^* = \lim_{\kappa \to \infty} \bar{x}^{(k)}$;
 - 2) граничний вектор \bar{x}^* є єдиним розв'язком рівняння (8) в області G;
 - 3) справедлива оцінка

$$\|\overline{x}^* - \overline{x}^{(k)}\|^2 \le q^k / (1 - q) \|\overline{x}^{(1)} - \overline{x}^{(0)}\|_{;}$$
(11)

тут q — константа , що характеризує коефіцієнт стискання оператора $\overline{\mathbf{\varphi}}(\overline{x})$

Зауваження 1: Якщо область G збігається з усім простором E^n , то умова $\{\bar{x}^{(k)}\}\in G$ ($k=0,1,\dots$), як видно, є зайвою.

Зауваження 2: Якщо $0 \le q \le 0.5$, то можемо показати, що $\|\overline{x}^{(k)} - \overline{x}^{(k-1)}\| \le \varepsilon$, звідки випливає нерівність $\|\overline{x}^* - \overline{x}^{(k)}\| \le \varepsilon$.

Порівняємо (10) з методом простої ітерації в системах лінійних рівнянь. Метод простої ітерації (10) є відповідним методом розв'язку лінійних рівнянь, якщо позначити $\overline{\varphi}(\overline{x}) = B\overline{x} + \overline{\alpha}$, де B — матриця; \overline{x} , $\overline{\alpha}$ — вектори відповідних розмінностей. Аналогом достатньої умови збігання простих ітерацій в лінійному випадку $(\|B\| < 1)$ виявляється умова стисливості (q < 1).

Зауваження 3: Процес ітерації (10) збігається до єдиного розв'язку рівняння (8), якщо при $\bar{x} \in G$ виконується одна з умов

$$\sum_{i=1}^{n} \left| \frac{\partial \varphi_i(x)}{\partial x_j} \right| \le q_j < 1$$

$$(12)$$

$$\sum_{j=1}^{n} \left| \frac{\partial \varphi_{j}(x)}{\partial x_{i}} \right| \le q_{i} < 1 \tag{13}$$

Отже, достатньою умовою збігання ітераційного процесу (10) ϵ виконання умови:

$$||M|| \le q < 1, \tag{14}$$

 $m_{ij} = \frac{\partial \phi_i}{\partial x_j} \; .$ де M — матриця з елементами

Якщо рівняння має вигляд (1), то воно попередньо повинно бути перетворено до виду (9), причому таким чином, щоб $\overline{\phi}(\overline{x})$ виявилося стискуючим відображенням. Загального прийому для переходу від (1) до (9) не існує, і тут є важливим попередній аналіз задачі, наприклад, дослідження лінеаризованого рівняння. зокрема для перетворення:

$$F_1(x, y) = 0;$$

$$F_2(x, y) = 0;$$

$$y$$

$$x = \varphi_1(x, y);$$

$$x = \varphi_2(x, y)$$

з виконання умов (12) або (13) можна рекомендувати такий прийом побудови ітерованих функцій:

$$\varphi_1(x,y) = x + \alpha F_1(x,y) + \beta F_2(x,y),$$

$$\varphi_2(x,y) = y + \gamma F_1(x,y) + \delta F_2(x,y), \quad \alpha \delta \neq \beta \gamma.$$
(15)

Коефіцієнти $\alpha, \beta, \delta, \lambda$ шукаються з умов:

$$\begin{cases} \frac{\partial \varphi_1(x_0, y_0)}{\partial x} = 0; & \frac{\partial \varphi_2(x_0, y_0)}{\partial x} = 0; \\ \frac{\partial \varphi_1(x_0, y_0)}{\partial y} = 0; & \frac{\partial \varphi_2(x_0, y_0)}{\partial y} = 0, \end{cases}$$

що для (15) має вигляд:

$$1 + \alpha \frac{\partial F_1(x_0, y_0)}{\partial x} + \beta \frac{\partial F_2(x_0, y_0)}{\partial x} = 0;$$
$$\gamma \frac{\partial F_1(x_0, y_0)}{\partial x} + \delta \frac{\partial F_2(x_0, y_0)}{\partial x} = 0.$$

$$\alpha \frac{\partial F_1(x_0, y_0)}{\partial y} + \beta \frac{\partial F_2(x_0, y_0)}{\partial y} = 0$$

$$1 + \gamma \frac{\partial F_1(x_0, y_0)}{\partial y} + \delta \frac{\partial F_2(x_0, y_0)}{\partial y}$$

При такому виборі параметрів умови (12)-(14) виконуються, якщо $F_1(x,y)$, $F_2(x,y)$ змінюється не швидко в околі (x_0,y_0) .

Повернемось до запису системи у вигляді (2). Припустимо, що за допомогою обчислювального алгоритму (10) обчислення доведені до наближення номера k: $\bar{x}^{(k)}=(x_1^{(k)},\cdots,x_n^{(k)})$. В методі Зейделя для пошуку наступного наближення: $\bar{x}^{(k+1)}=(x_1^{(k+1)},x_2^{(k+1)},\cdots,x_n^{(k+1)})$ насамперед слід встановити порядок обчислення його компонентів $x_i^{(k+1)}$, $(i=1,2,\ldots,n)$.

Такий порядок має бути своїм для кожної системи і для кожного кроку. Оскільки будь-яке розташування $x_i^{(k+1)}$ можна привести шляхом зміни нумерації до натурального порядку x_1^{k+1} , x_2^{k+2} , , x_n^{k+1} , то правило Зейделя достатньо записати для цього порядку таким чином:

$$x_{1}^{(k+1)} = \varphi_{1}(x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k});$$

$$x_{2}^{(k+1)} = \varphi_{2}(x_{1}^{k+1}, x_{2}^{k}, \dots, x_{n}^{k});$$

$$\dots \dots \dots$$

$$x_{n}^{(k+1)} = \varphi_{n}(x_{1}^{(k+1)}, x_{2}^{(k+1)}, \dots, x_{n-1}^{(k+1)}, x_{n}^{k}).$$

$$(16)$$

Після обчислення $x_i^{(k+1)}$ (i=1,2,...,n) відбувається пошук наступного наближення $x_i^{(k+2)}$: обирають послідовність обчислення його компонентів $x_i^{(k+2)}$ та виконують його розрахунок за допомогою рівнянь, аналогічних (16), і т.д.

Метод Ньютона розв'язування систем нелінійних рівнянь

Розглянемо, взагалі кажучи, нелінійну систему рівнянь

$$f_{1} = (x_{1}, x_{2}, ..., x_{n}) = 0;$$

$$f_{2} = (x_{1}, x_{2}, ..., x_{n}) = 0;$$

$$...$$

$$f_{n} = (x_{1}, x_{2}, ..., x_{n}) = 0$$
(1)

з дійсними лівими частинами, яка має у векторному запису вигляд $\bar{f}(\bar{x}) = 0$. (2)

Припустимо, що знайдемо k-те наближення $\bar{x}^{(k)}=(x_1^{(k)},x_2^{(k)},\ldots,x_n^{(k)})$ одного з ізольованих коренів $\bar{x}=(x_1,x_2,\ldots,x_n)$ рівняння (2). Тоді точний корінь рівняння (2) можна подати у вигляді

$$\overline{x} = \overline{x}^{(k)} + \overline{\varepsilon}^{(k)}, \tag{3}$$

де $\bar{\epsilon}^{(k)} = (\epsilon_1^{(k)}, \epsilon_2^{(k)}, ..., \epsilon_n^{(k)})$ - похибка кореня.

Підставляючи вираз (3) у рівняння (2) матимемо $\bar{f}(\bar{x}^{(k)} + \bar{\epsilon}^{(k)}) = 0$. (4)

Припускаючи, що функція $f(\bar{x})$ неперервно диференційовна в деякій опуклій області G, яка містить \bar{x} та $\bar{x}^{(k)}$, розкладемо ліву частину рівняння (4) за степенями малого параметра $\bar{\epsilon}^{(k)}$, обмежуючись лінійними членами

$$\bar{f}(\bar{x}^{(k)} + \bar{\varepsilon}^{(k)}) = \bar{f}(\bar{x}^{(k)}) + \bar{f}'(\bar{x}^{(k)})\bar{\varepsilon}^{(k)} = 0$$

$$(5)$$

або в розгорнутому вигляді

$$\begin{split} \bar{f}_{1}(x_{1}^{(k)} + \varepsilon_{1}^{(k)}, x_{2}^{(k)} + \varepsilon_{2}^{(k)}, \dots, x_{n}^{(k)} + \varepsilon_{n}^{(k)}) &= \\ &= f_{1}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) + f'_{1x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{1}^{(k)} + \\ &+ f'_{1x_{2}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{2}^{(k)} + \dots + f'_{1x_{n}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{n}^{(k)} &= 0, \\ \bar{f}_{2}(x_{1}^{(k)} + \varepsilon_{1}^{(k)}, x_{2}^{(k)} + \varepsilon_{2}^{(k)}, \dots, x_{n}^{(k)} + \varepsilon_{n}^{(k)}) &= \\ &= f_{2}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) + f'_{2x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{1}^{(k)} + \\ &+ f'_{2x_{2}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{2}^{(k)} + \dots + f'_{2x_{n}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{n}^{(k)} &= 0, \end{split}$$

 $\bar{f}_n(x_1^{(k)} + \varepsilon_1^{(k)}, \ x_2^{(k)} + \varepsilon_2^{(k)}, \dots, x_n^{(k)} + \varepsilon_n^{(k)}) =$

$$= f_{n}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) + f'_{nx_{1}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{1}^{(k)} + f'_{nx_{2}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{1}^{(k)} + \dots + f'_{nx_{n}}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \varepsilon_{n}^{(k)} = 0$$

$$(5')$$

3 формул (5) та (5') випливає , що під похідною $\bar{f}'(\bar{x})$ треба розуміти матрицю Якобі системи функцій f_1, f_2, \dots, f_n відносно змінних x_1, x_2, \dots, x_n , тобто

$$f'(\bar{x}) = F(\bar{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Система (5') є лінійною системою відносно поправок $\bar{\varepsilon}_i^{(k)}$ (i=1,2,...,n) з матрицею $F(\bar{x})$; тому формула (5') може бути записана у вигляді

$$\bar{f}(\bar{x}^{(k)}) + F(\bar{x}^{(k)})\bar{\varepsilon}^{(k)} = 0$$

Звідси, припускаючи, що матриця $F(\bar{x}^{(k)})$ не вироджена, отримаємо $\bar{\epsilon}^{(k)} = -F^{-1}(\bar{x}^{(k)})\bar{f}(\bar{x}^{(k)})$

Отже,

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - F^{-1}(\bar{x}^{(k)})\bar{f}(\bar{x}^{(k)}) \quad (k = 0, 1, 2, ...).$$
(6)

За початкове наближення слід обирати вектор розв'язку $\bar{x}^{(0)}$, достатньо близький до шуканого розв'язку \bar{x} системи.

Оскільки при безпосередньому використанні формули (6) необхідно обчислювати на кожному кроці обернену матрицю до матриці Якобі, що ускладнює обчислювальний процес, зручно замість вказаної формули обчислення вести за такою схемою:

$$F(\bar{x}^{(k)})\bar{\varepsilon}^{(k)} = -\bar{f}(\bar{x}^{(k)}) \tag{7}$$

$$\overline{x}^{(k+1)} = \overline{x}^{(k)} + \overline{\varepsilon}^{(k)} \tag{8}$$

При реалізації цієї обчислювальної схеми для кожного наближення розв'язується система лінійних рівнянь з матрицею $F(\bar{x}^{(k)})$, а потім за знайденим приростом $\bar{\mathbf{\epsilon}}^{(k)}$ відшукується наступне наближення $\bar{x}^{(k+1)}$

Оскільки часто за рядом причин важко отримати в явному вигляді матрицю Якобі $F(\bar{x}^{(k)})$, при чисельній реалізації методу використовується її скінченорізницева апроксимація, наприклад

$$(F(\overline{x}^{(k)}))_{ij} \approx \frac{f_i(\overline{x}^{(k)} + h\overline{e}_j) - f_i(\overline{x}^{(k)})}{h},$$

де h – крок диференціювання; \overline{e}_j - j -й одиничний орт.

При використанні методу Ньютона припускається, що в деякій області G, яка містить розв'язок (\bar{x}^*) системи (1), функції $f_i(\bar{x})$ мають неперервні похідні першого порядку і в деякому околі точки (\bar{x}^*) матриця Якобі невироджена. Якщо $F(\bar{x})$ в деякому околі кореня (\bar{x}^*) задовольняє умову $||F(\bar{x}) - F(\bar{x}^*)|| \le L||\bar{x} - \bar{x}^*||$, то маємо квадратичну збіжність.

Недоліком методу Ньютона ϵ те, що початкове наближення $\overline{x}^{\scriptscriptstyle (0)}$ знаходиться далеко від розв'язку (\bar{x}^*) , то метод Ньютона найчастіше розбігається.

Існують модифікації методу Ньютона вигляду

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} + t^{(k)} \bar{P}^{(k)}$$

$$\overline{P}^{(k)} = -F^{-1}(\overline{x}^{(k)})\overline{f}(\overline{x}^{(k)})$$

(так званий ньютонівський напрям); $t^{(k)} > 0$ - деяка довжина кроку вздовж $\overline{P}^{(k)}$. Якщо функції $f_i(\overline{x})$ неперервні та виконується умова $\|F^{-1}(\overline{x}^{(k)})\| \leq C$ для будь-яких \overline{x} із розглядуваної області G , то гарантується збіжність до розв'язку (\overline{x}^*) з будь-якої початкової точки $(\overline{x}_0) \in G$. При цьому від (\bar{x}^*) модифікації повністю збігаються з традиційним методом Ньютона, що забезпечує високу швидкість збігання. Одна з перших модифікацій використовує відому властивість ньютонівського напрямку $\bar{P}^{(k)}$, яка полягає в тому, що при всіх достатньо малих t > 0 (незалежно від вигляду норми $\|-\|$) виконується нерівність

$$||f(\bar{x}^k + tP^k)|| \le ||f(\bar{x}^k)||$$

тобто P^k - напрям спадання норми відхилу $\|f(\overline{x}^k)\|$.

Критерієм закінчення інтеграцій для методу Ньютона та його модифікацій може бути нерівність

$$\left\| f(\overline{x}^k) \right\| \le \varepsilon \tag{9}$$

де ε - спочатку дане додатне число.

Якщо отримання матриці Якобі потребує порівняно невеликих обчислювальних витрат, то метод Ньютона дуже ефективний. Коли обчислювальні витрати, необхідні для знаходження матриці Якобі, є значними, замість методу Ньютона використовуються його різні модифікації.

Метод покоординатного спуску

Розглянемо нелінійну систему рівнянь вигляду

Припустимо, що функції f_i дійсні та неперервно диференційовані в їх загальній області визначення . Розглянемо функцію

$$U(\bar{x}) = \sum_{i=1}^{n} [f_i(\bar{x})]^2 = (\bar{f}(\bar{x})\bar{f}(\bar{x}))$$
(2)

Очевидно, що кожний розв'язок системи (1) перетворює на нуль функцію $U(\overline{x})$; навпаки, числа $x_1, x_2, ..., x_n$, для яких функція $U(\overline{x})$ дорівнює нулю, є коренями системи (1).

Ідея всіх методів спуску полягає в тому, що згідно з початковим наближенням — точки $\bar{x}^{(0)} = \{x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\} \in D$ — перейти в точку $\bar{x}^{(1)} = \{x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}\} \in D$ так, щоб значення $U = \{x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}\}$ зменшилось $(U(\bar{x}^{(1)}) < U(\bar{x}^{(0)})$). Вважатимемо, що система (1) має лише ізольований розв'язок, який є точкою строгого мінімуму функції $U(\bar{x})$. Таким чином, задача зводиться до відшукування мінімуму функції $U(\bar{x})$ в n-вимірному просторі $E^n = \{x_1, x_2, ..., x_n\}$.

Нехай \bar{x} — вектор-корінь системи (1) і $\bar{x}^{(0)}$ — його нульове наближення. Через точку $\bar{x}^{(0)}$ проведемо поверхню рівня функцій $U(\bar{x})$. Якщо точка $\bar{x}^{(0)}$ достатньо близька до кореня \bar{x} , то при наших припущеннях поверхня рівня $U(\bar{x}) = U(\bar{x}^{(0)})$ буде схожа на еліпсоїд.

3 точки $\bar{x}^{(0)}$ рухаємось по нормалі до поверхні $U(\bar{x}) = U(\bar{x}^{(0)})$ доти, поки ця нормаль не торкнеться в деякій точці $\bar{x}^{(1)}$ якоїсь іншої поверхні рівня

 $U(\overline{x}) = U(\overline{x}^{(1)})$. Відштовхуючись від точки $\overline{x}^{(1)}$ знову зсуваємося по нормалі до поверхні рівня $U(\overline{x}) = U(\overline{x}^{(1)})$ доти, поки ця нормаль не торкнеться в деякій точці $\overline{x}^{(2)}$ нової іншої поверхні $U(\overline{x}) = U(\overline{x}^{(2)})$ і т.д. (рис.1). Оскільки $U(\overline{x}^{(0)}) \vee U(\overline{x}^{(1)}) \vee U(\overline{x}^{(2)}) \vee \cdots$, то рухаючись таким шляхом, швидко можна наблизитись до точки з найменшим значенням U, яка відповідає шуканому кореню \overline{x} системи (1).

Нагадаємо, що градієнт функції $U(\overline{x})$ визначається формулою $grad\ U(\overline{x}) = \left(\frac{\partial U}{\partial x_1}, \frac{\partial U}{\partial x_2}, ..., \frac{\partial U}{\partial x_n}\right)$

Вектор $grad\ U(\overline{x})$ ортогональний лініям рівня $U(\overline{x})=C=const$, його напрям збігається з напрямом максимального зростання $U(\overline{x})$ у заданій точці. У точці мінімуму функції $grad\ U(\overline{x})=0$.

Визначити ітераційний процес $\bar{x}^{(k+1)} = \bar{x}^{(k)} - h_k \operatorname{grad} U(\bar{x}^{(k)})$

де h_k – крок спуску на k -й ітерацій; $\bar{x}^{(0)}$ – задане початкове наближення до точки мінімуму. При $h_k = h = const$ формула (3) являє собою метод градієнтного спуску з постійним кроком. Ітераційний процес (3) продовжується до виконання якої-небудь умови закінчення алгоритму, наприклад, $|U(\bar{x}^{(k+1)}) - U(\bar{x}^{(k)})| \langle \varepsilon$, або $\|grad\ U(\bar{x}^{(k+1)})\| \langle \varepsilon$, де ε – задана точність.

Для випадку змінного кроку залишається визначити множник h_k . Для цього розглянемо складну функцію $\Phi(h) = U\left[\overline{x}^{(k)} - h \ grad \ U\left(\overline{x}^{(k)}\right)\right]$.

Функція $\Phi(h)$ дає зміну рівня функції U вздовж відповідної нормалі до поверхні рівня в точці $\bar{x}^{(k)}$. Множник $h=h_k$ треба обертати таким чином, щоб $\Phi(h)$ мала мінімум . Беручи похідну по h і прирівнюючи її до нуля, дістанемо рівняння

$$\Phi'(h) = \frac{d}{dh} U[\bar{x}^{(k)} - h \operatorname{grad} U(\bar{x}^{(k)})] = 0$$
(4)

Найменший додатний корінь рівняння (4) і дає нам значення h_k . Рівняння (4) розв'язується чисельно, тому вкажемо метод чисельного відшукування чисел h_k . Вважатимемо, що h_k — мала величина, квадратами і вищими степенями якої можна знехтувати. Маємо

$$\Phi(h) = \sum_{i=1}^{n} \left\{ f_i \left[\overline{x}^{(k)} - h \operatorname{grad} U(\overline{x}^{(k)}) \right]^2 \right\}$$

Розкладаючи функцію f_i за степенями h з точністю до лінійних членів, дістанемо

$$\Phi(h) = \sum_{i=1}^{n} \left[f_i(\overline{x}^{(k)}) - h \frac{\partial f_i(\overline{x}^{(k)})}{\partial \overline{x}} \operatorname{grad} U(\overline{x}^{(k)}) \right]^2$$

37

(3)

де
$$\frac{\partial f_i}{\partial \overline{x}} = \left\{ \frac{\partial f_i}{\partial x_i}, \frac{\partial f_i}{\partial x_2}, \dots, \frac{\partial f_i}{\partial x_n} \right\}.$$
Звідсм
$$\Phi'(h) = -2\sum_{i=1}^n \left[f_i(\overline{x}^{(k)}) - h \frac{\partial f_i(\overline{x}^{(k)})}{\partial \overline{x}} \operatorname{grad} U(\overline{x}^{(k)}) \right] \cdot \frac{\partial f_i(\overline{x}^{(k)})}{\partial \overline{x}} \operatorname{grad} U(\overline{x}^{(k)}) = 0$$

Отже.

$$h_{k} = \frac{\sum_{i=1}^{n} f_{i}(\overline{x}^{(k)}) \frac{\partial \overline{f}_{i}(\overline{x}^{(k)})}{\partial \overline{x}} \operatorname{grad} U(\overline{x}^{(k)})}{\sum_{i=1}^{n} \left[\frac{\partial \overline{f}_{i}(\overline{x}^{(k)})}{\partial \overline{x}} \operatorname{grad} U(\overline{x}^{(k)}) \right]^{2}} = \frac{\left(\overline{f}(\overline{x}^{(k)}) \cdot F(\overline{x}^{(k)}) \operatorname{grad} U(\overline{x}^{(k)})\right)}{\left(F(\overline{x}^{(k)}) \operatorname{grad} U(\overline{x}^{(k)}) \cdot F(\overline{x}^{(k)}) \operatorname{grad} U(\overline{x}^{(k)})\right)}$$

$$F(x) = \frac{\partial \bar{f}_{i}}{\partial \bar{x}} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{pmatrix}$$

$$grad\ U(\overline{x}) = 2\begin{bmatrix} \sum_{i=1}^{n} f_{i}(\overline{x}) \frac{\partial f_{i}(\overline{x})}{\partial x_{1}} \\ \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} f_{i}(\overline{x}) \frac{\partial f_{i}(\overline{x})}{\partial x_{n}} \end{bmatrix} = 2F^{\overline{j}}(\overline{x})\overline{f}(\overline{x})$$

Звідси

де для того, щоб формула була короткою, прийнято $\bar{f}^{(k)} = \bar{f}(\bar{x}^{(k)}) \cdot F_k = F(\bar{x}^{(k)})$. Причому $\bar{x}^{(k+1)} = \bar{x}^{(k)} - 2h_k F_k \bar{f}^{(k)}$ (k = 0,1,2,...).

Методи лінійної алгебри

Метод Гауса. Метод головних елементів. Метод простої ітерації Метод Гауса

Найбільш поширеним прийомом розв'язування систем лінійних алгебраїчних рівнянь є метод послідовного виключення невідомих, який називається методом Гауса.

Розглянемо систему

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(1)

Нехай $a_{11} \neq 0$ (ведучий елемент). Розділимо коефіцієнти першого

рівняння системи на a_{11} і одержимо $x_1 + \frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} = \frac{b_1}{a_{11}}$. Введемо

 $a_{_{1k}}^{({}_{1})}=\frac{a_{_{1k}}}{a_{_{11}}}\;,\;b_{_{1}}^{({}_{1})}=\frac{b_{_{1}}}{a_{_{11}}}\;.\;{\rm Ma}\varepsilon{\rm mo}$ позначення

$$x_1 + a_{12}^{(1)} x_2 + \ldots + a_{1n}^{(1)} x_n = b_1^{(1)}$$
(2)

Користуючись рівнянням (2) виключимо невідомі x_1 із інших рівнянь системи (1). Для цього рівняння (2) помножимо на a_{31} , віднімемо від третього рівняння системи (1) і так далі до n-го рівняння. Коефіцієнти нової системи визначатимуться за формулами

$$a_{ik}^{(1)} = a_{ik} - a_{1k}^{(1)} \cdot a_{i1} \quad b_i^{(1)} = b_i - a_{i1} \cdot b_1^{(1)}$$

Маємо

$$\begin{cases} x_{1} + a_{12}^{(1)}x_{2} + a_{13}^{(1)}x_{3} + \dots + a_{1n}^{(1)}x_{n} = b_{1}^{(1)} \\ a_{22}^{(1)}x_{2} + a_{23}^{(1)}x_{3} + \dots + a_{2n}^{(1)}x_{n} = b_{2}^{(1)} \\ a_{32}^{(1)}x_{2} + a_{33}^{(1)}x_{3} + \dots + a_{3n}^{(1)}x_{n} = b_{3}^{(1)} \\ \dots \dots \dots \\ a_{n2}^{(1)}x_{2} + a_{n3}^{(1)}x_{3} + \dots + a_{nn}^{(1)}x_{n} = b_{n}^{(1)} \end{cases}$$

$$(3)$$

Розглянемо друге рівняння системи (3).

Нехай $a_{22}^{(1)} \neq 0$ (ведучий елемент). Проведемо ті ж дії, що й для першого рівняння початкової системи. Розділимо рівняння на $a_{22}^{(1)}$:

$$x_{2} + a_{23}^{(2)}x_{3} + \dots + a_{2n}^{(2)}x_{n} = b_{2}^{(2)},$$

$$\mathbf{g}_{2k}^{(2)} = a_{2k}^{(1)}/a_{22}^{(1)}, \quad b_{2}^{(2)} = b_{2}^{(1)}/a_{22}^{(1)}.$$
(4)

Виключимо невідому змінну x_2 з усіх наступних рівнянь, помножаючи (4) на $a_{i2}^{(1)}$ і віднімаючи від відповідних рівнянь. Маємо

$$\begin{cases} x_{1} + a_{12}^{(1)}x_{2} + a_{13}^{(1)}x_{3} + \dots + a_{1n}^{(1)}x_{n} = b_{1}^{(1)} \\ x_{2} + a_{23}^{(2)}x_{3} + \dots + a_{2n}^{(2)}x_{n} = b_{2}^{(2)} \\ a_{33}^{(2)}x_{3} + \dots + a_{3n}^{(2)}x_{n} = b_{3}^{(2)} \\ \dots & \dots \\ a_{n3}^{(2)}x_{3} + \dots + a_{nn}^{(2)}x_{n} = b_{n}^{(2)} \end{cases}$$

$$(5)$$

Вибираючи $a_{33}^{(2)}$ як ведучий елемент виконуємо ту ж операцію. Виконавши ці дії для (n-1)-го рівняння, одержуємо систему

$$\begin{cases} x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 + \dots + a_{1n}^{(1)} x_n = b_1^{(1)} \\ x_2 + a_{23}^{(2)} x_3 + \dots + a_{2n}^{(2)} x_n = b_2^{(2)} \\ x_3 + \dots + a_{3n}^{(3)} x_n = b_3^{(3)} \\ \dots \dots \dots \\ a_{nn}^{(n-1)} x_n = b_n^{(n-1)} \end{cases}$$

$$(6)$$

На цьому прямий хід методу Гауса закінчується і починається зворотній хід.

Розглянемо n -те рівняння системи (6). З нього легко визначити $x_n = b_n^{(n-1)}/a_{nn}^{(n-1)}$. Підставимо одержане значення x_n в попередні рівняння, перенесемо одержані числові значення в праву частину рівнянь, одержимо таку ж систему рівнянь, що має на одне рівняння і одне невідоме менше. Виконуючи цю процедуру $^{n-2}$ рази, маємо значення x_1 , x_2 , ..., x_n – розв'язок системи.

Оцінимо, скільки арифметичних операцій потрібно виконати для розв'язування системи n рівнянь з n невідомими методом Гауса.

Для прямого ходу потрібно множень і ділень

$$n(n+1)+(n-1)n+\ldots+1\cdot 2=(1^2+2^2+\ldots+n^2)+(1+2+\ldots+n)=\frac{n(n+1)(n+2)}{3}$$

і стільки ж віднімань.

$$n(n-1)$$

Для зворотного ходу потрібно $\frac{}{2}$ множень і ділень та стільки ж віднімань.

Всього буде
$$N = \frac{2n(n+1)(n+3)}{3} + n(n-1) < n^3$$
 при $n > 7$.

Метод головних елементів

Нехай дана система

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{1,n+1} \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1} \\ \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = a_{n,n+1} \end{cases}$$

$$(1)$$

Розглянемо розширену прямокутну матрицю, яка складається з коефіцієнтів системи та її вільних членів

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1q} & \cdots & a_{1n} & a_{1n+1} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2q} & \cdots & a_{2n} & a_{2n+1} \\ \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{iq} & \cdots & a_{in} & a_{in+1} \\ \cdots & \cdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pq} & \cdots & a_{pn} & a_{pn+1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nq} & \cdots & a_{nn} & a_{nn+1} \end{pmatrix}$$

Виберемо найбільший за модулем елемент a_{pq} , який не належить стовпчику вільних членів. Назвемо цей елемент головним. Рядок з номером p, який містить головний елемент, також називається головним.

Обчислимо множники
$$m_i = -a_{iq}/a_{pq}$$
 для всіх $i \neq p$.

Проведемо таку операцію: до кожного неголовного рядка додамо головний рядок, помножений на відповідний множник m_i для цього рядка. У результаті одержимо нову матрицю, в якій q -тий стовпчик, за винятком $^{a_{pq}}$, складається із нулів. Відкидаючи цей стовпчик і головний рядок p , одержимо нову матрицю $^{M^{(1)}}$ з меншою на одиницю кількістю рядків і стовпців.

Над матрицею $M^{(1)}$ повторюємо ті ж операції і в результаті одержуємо матрицю $M^{(2)}$. Продовжуючи цей процес, одержуємо послідовність матриць M, $M^{(1)}$, $M^{(2)}$, ..., $M^{(n-1)}$, остання з яких буде двочленною матрицею-рядком. Її також вважатимемо головним рядком.

Для визначення невідомих x_i об'єднуємо в систему всі головні рядки, починаючи з останнього, що входить в матрицю $M^{(n-1)}$.

Таким чином одержуємо систему з трикутною матрицею, із якої легко крок за кроком знайти всі невідомі даної системи.

Відзначимо, що метод Гауса є частинним випадком методу головних

елементів, коли як головний елемент завжди вибирається лівий верхній елемент відповідної матриці.

Метод простої ітерації

Подамо систему лінійних алгебраїчних рівнянь у вигляді

$$\begin{cases} x_{1} = \alpha_{11}x_{1} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n} + \beta_{1} \\ x_{2} = \alpha_{21}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n} + \beta_{2} \\ \dots & \dots \\ x_{n} = \alpha_{n1}x_{1} + \alpha_{n2}x_{2} + \dots + \alpha_{nn}x_{n} + \beta_{n} \end{cases}$$

$$(1)$$

або скорочено

$$x_{i} = \sum_{j=1}^{n} \alpha_{ij} x_{j} + \beta_{i} \qquad i = \overline{1, n}$$
 (2)

Вибираємо початкову точку $x^{(0)}(x_1^{(0)},x_2^{(0)},...,x_n^{(0)})$ і будуємо ітераційний процес для системи (1).

Отримуємо ітераційну послідовність точок n -вимірного простору: $x^{(0)}, x^{(1)}, ..., x^{(n)}, ...$

Щоб послідовність була збіжною, достатньо виконання однієї з таких умов:

 $a = \max_{1 \le i \le n} \sum_{j=1}^{n} \left| a_{ij} \right| < 1$, тобто, максимальна із сум модулів коефіцієнтів при невідомих в правій частині системи (1), взятих по рядках, повинна бути менша одиниці;

 $a = \max_{1 \le i \le n} \sum_{j=1}^{n} \left| a_{ij} \right| < 1$, тобто максимальна із сум коефіцієнтів при невідомих в правій частині системи (2), взятих по стовпчиках, повинна бути менша одиниці;

 $a = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}} \neq 1$ в) , тобто сума квадратів коефіцієнтів при невідомих в правій частині системи (2) повинна бути менша одиниці.

При цих умовах процес ітерації для даної системи збігається до єдиного розв'язку незалежно від вибору початкового вектора.

Метод квадратних коренів

Метод квадратних коренів застосовується для розв'язування систем лінійних рівнянь з симетричною матрицею A . Матриця A подається у вигляді

$$A = C^T \cdot D \cdot C, \tag{1}$$

де C — верхня трикутна матриця; $C^{^T}$ — транспонована до неї; D — діагональна матриця з елементами $d_{_{ii}}=\pm 1$.

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1n} \\ 0 & c_{22} & c_{23} & \dots & c_{2n} \\ 0 & 0 & c_{33} & \dots & c_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c_{nn} \end{pmatrix}, \quad \text{ne} \quad c_{ii} > 0$$

Рівність (1) утворює систему рівнянь, з якої визначаються елементи матриць C і D .

$$a_{ij} = c_{1j} \cdot c_{1j} \cdot d_{11} + \ldots + c_{ii} \cdot c_{ij} \cdot d_{ii}$$
, при $i < j$.

Рівняння при i > j відкидається, оскільки рівняння відповідних параметрів (i,j), (j,i) еквівалентні. Отримаємо рекурентні формули для визначення елементів d_{ii} , c_{ii} .

$$d_{ii} = sign\left(a_{ii} - \sum_{k=1}^{i-1} c_{ki}^2 \cdot d_{kk}\right); \qquad c_{ii} = \sqrt{\left|a_{ii} - \sum_{k=1}^{i-1} c_{ki} \cdot d_{kk}\right|}.$$

Також визначимо формулу для $^{c_{ij}}$:

$$c_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} c_{ki} c_{kj} d_{kk}}{c_{ii} d_{ii}}$$
 при $i < j$; $c_{ij} = 0$ при $i > j$.

3 цих формул видно, що матриця $C \in \text{верхньою}$ трикутною матрицею. Таким чином після подання $A \in \overline{x} = \overline{b}$ (2)

зводиться до послідовного розв'язання двох систем із трикутними матрицями.

У випадку, коли A>0, про симетричну матрицю А кажуть, що вона додатньо визначена. Матриця називається додатньо визначеною, якщо всі її головні мінори A_{ii} додатні (всі $d_{ii}=1$). Тоді $A=C^T\cdot C$. У цьому випадку розв'язання системи (2) зводиться до розв'язання системи $C^T\cdot C\cdot \bar{x}=\bar{b}$.

Це прямий хід методу квадратних коренів.

Покладемо $C \cdot \bar{x} = \bar{z}$. Отримаємо, що рівняння системи (2) еквівалентні розв'язанню двох рівнянь з трикутними матрицями

$$C^{T} \cdot \overline{z} = \overline{b};$$

$$C \cdot \overline{x} = \overline{z}.$$

Елементи z_i , ($i = \overline{1, n}$) знаходяться за формулами

$$z_{1} = \frac{b_{1}}{c_{11}}, \quad z_{i} = \frac{b_{i} - \sum_{k=1}^{i-1} c_{ik} \cdot z_{k}}{c_{ii}}, \quad (i > 1).$$

Обчислення x_i здійснюється подібно оберненому ходу у схемі Гауса за формулами

$$x_n = \frac{z_n}{c_{nn}}, \quad x_i = \frac{z_i - \sum_{k=i+1}^n c_{ik} \cdot x_k}{c_{ii}}, \quad (i < n).$$

Нехай дано систему (2), де A - симетрична матриця. Тоді A можна подати у вигляді двох транспонованих між собою трикутних матриць.

$$A = T \cdot T', \tag{3}$$

де

$$T = \begin{pmatrix} t_{11} & t_{12} & t_{13} & \dots & t_{1n} \\ 0 & t_{22} & t_{23} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & t_{nn} \end{pmatrix}, \qquad T' = \begin{pmatrix} t_{11} & 0 & 0 & \dots & 0 \\ t_{21} & t_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_{1n} & t_{2n} & t_{3n} & \dots & t_{nn} \end{pmatrix}$$

Перемножуючи матриці T і T' для визначення елементів t і j одержимо такі рівняння:

$$\begin{cases} t_{1i}t_{1j} + t_{2i}t_{2j} + \dots + t_{ii}t_{ij} = a_{ij} & (i < j), \\ t_{1i}^2 + t_{2i}^2 + \dots + t_{ii}^2 = a_{ii}. \end{cases}$$

Звідси послідовно знаходимо

$$\begin{cases} t_{11} = \sqrt{a_{11}}, & t_{1j} = \frac{a_{1j}}{t_{11}} & (j > 1), \\ t_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} t_{ki}^2} & (1 < i \le n), \\ t_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} t_{ki} t_{kj}}{t_{ii}} & (i < j), \\ t_{ij} = 0 & (i > j). \end{cases}$$

При наявності рівності (3) рівняння (2) еквівалентне двом рівнянням $T \cdot \overline{y} = \overline{b}$, $T \cdot \overline{x} = \overline{y}$.

У розкритому вигляді дані рівняння можна записати так

$$\begin{cases} t_{11} \cdot y_{1} = b_{1}, \\ t_{12} \cdot y_{1} + t_{22} \cdot y_{2} = b_{2}, \\ \dots \\ t_{1n} \cdot y_{1} + t_{2n} \cdot y_{2} + \dots + t_{nn} \cdot y_{n} = b_{n}. \end{cases}$$

$$\begin{cases} t_{11} \cdot x_{1} + t_{12} \cdot x_{2} + \dots + t_{1n} \cdot x_{n} = y_{1}, \\ t_{22} \cdot x_{2} + \dots + t_{nn} \cdot x_{n} = y_{2}, \\ \dots \\ t_{nn} \cdot x_{n} = y_{n}. \end{cases}$$

$$(5)$$

3 формул (5) і (6) послідовно знаходимо

$$y_{1} = \frac{b_{1}}{t_{11}}, \quad y_{i} = \frac{b_{i} - \sum_{k=1}^{i-1} t_{ki} \cdot y_{k}}{t_{ii}}, \quad i > 1;$$

$$(7)$$

$$x_{n} = \frac{y_{1}}{t_{nn}}, \quad x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} t_{ik} \cdot x_{k}}{t_{ii}}, \quad i < n.$$
 (8)

При практичному застосуванні методу квадратних коренів прямим ходом за формулами (4) і (7) послідовно обчислюються коефіцієнти t_{ij} , y_j , ($i=\overline{1,n}$), а потім зворотнім ходом за формулою (7) знаходяться невідомі x_i ($i=n,n-1,\ldots,1$).

Метод прогонки

Метод застосовний до систем лінійних алгебраїчних рівнянь з тридіагональною матрицею A. Розгорнутий запис цієї системи має вигляд

$$\alpha_i x_{i-1} - \beta_i x_i + \gamma_i x_{i+1} = \delta_i \qquad \alpha_1 = \gamma_n = 0 \qquad i = \overline{1, n}$$
(1)

якому відповідає розширена матриця

$$A = \begin{pmatrix} -\beta_1 & \gamma_1 & 0 & 0 & \cdots & 0 & 0 & \delta_1 \\ \alpha_2 & -\beta_2 & \gamma_2 & 0 & \cdots & 0 & 0 & \delta_2 \\ 0 & \alpha_3 & -\beta_3 & \gamma_3 & \cdots & 0 & 0 & \delta_3 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \cdots & \alpha_n & -\beta_n & \delta_n \end{pmatrix}$$

Тут перше та останнє рівняння, що містять по два доданки, можуть розглядатися як крайові умови. Знак "-" при коефіцієнті β_i покладений для більш зручного подання розрахункових формул.

Застосуємо алгоритм прямого ходу методу Гауса і отримуємо

$$\widetilde{A}_{1} = \begin{pmatrix} 1 & -P_{1} & 0 & 0 & \cdots & Q_{1} \\ 0 & 1 & -P_{2} & 0 & \cdots & Q_{2} \\ 0 & 0 & 1 & -P_{3} & \cdots & Q_{3} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 1 & \cdots & Q_{n} \end{pmatrix}$$

Враховуючи, що останній стовпчик в цій матриці відповідає правій частині, після переходу до системи, що містить невідомі, отримуємо рекурентну формулу:

$$x_i = P_i x_{i+1} + Q_i$$
, $i = \overline{1, n-1}$. (2)

Співвідношення (2) є формулою для зворотного ходу, а формули для коефіцієнтів P_i , Q_i , які називаються прогоночними, визначаються із (1),(2). Запишемо (2) для індекса i-1:

$$x_{i-1} = P_{i-1}x_i + Q_{i-1}$$

і підставимо в (2). Отримаємо

$$\alpha_i (P_{i-1} x_i + Q_{i-1}) - \beta_i x_i + \gamma_i x_{i+1} = \delta_i$$

Приведемо цю формулу до виду (2) і після порівняння отриманого виразу із (2), отримуємо рекурентне співвідношення для P_i , Q_i :

$$P_{i} = \frac{\gamma_{i}}{\beta_{i} - \alpha_{i} P_{i-1}}, \quad Q_{i} = \frac{\alpha_{i} Q_{i-1} - \delta_{i}}{\beta_{i} - \alpha_{i} P_{i-1}}, \quad i = \overline{1, n-1}.$$
(3)

Визначення прогоночних коефіцієнтів за формулами (3) відповідає прямому ходу методу прогонки.

Зворотній хід методу прогонки починається з обчислення x_n . Для цього використовується останнє рівняння, коефіцієнти якого визначені у прямому ході, і останнє рівняння початкової системи:

$$x_{n-1} = P_{n-1}x_n + Q_{n-1},$$

$$\alpha_n x_{n-1} - \beta_n x_n + 0 \cdot x_{n+1} = \delta_n$$

Тоді визначається x_n :

$$x_{n} = \frac{\alpha_{n}Q_{n-1} - \delta_{n}}{\beta_{n} - \alpha_{n}P_{n-1}} = Q_{n}, \text{ TOOTO } x_{n} = Q_{n}.$$
(4)

Інші значення невідомих знаходяться рекурентно за формулою (2).

Всі співвідношення для виконання обчислень отримані. Тоді можна провести розрахунки за методом Гауса, використовуючи прямих і зворотний хід.

Методика розв'язування задачі

Прямий хід.

- $P_{1} = \frac{\gamma_{1}}{\beta_{1}}$; $Q_{1} = \frac{\delta_{1}}{\beta_{1}}$ (в (4) підставити $\alpha_{1} = 0$).
- 2. Обчислити прогоночні коефіцієнти P_2Q_2 ; ...; $P_{n-1}Q_{n-1}$ за формулами (3).

Зворотний хід.

$$x_{n} = \frac{\alpha_{n}Q_{n-1} - \delta_{n}}{\beta_{n} - \alpha_{n}P_{n-1}} \ .$$
 1. Знайти

2. Значення x_{n-1} , x_{n-2} , ..., x_1 визначити за формулою (2): $x_{n-1} = P_{n-1}x_n + Q_{n-1}$, $x_{n-2} = P_{n-2}x_{n-1} + Q_{n-2}$, ..., $x_1 = P_1x_2 + Q_1$.

Для наочності початкові дані і результати розрахунків розмістимо в таблицю.

i	α_i	β_i	γ_i	δ_{i}	P_{i}	Q_i	X_i
1	0	-5	3	8	-3/5	8/5	1
2	3	-6	1	10	-5/21	26/21	1
3	1	-4	-2	3	42/79	37/79	1
4	1	3	0	-2	_	1	1

Методи розв'язування задач про власні значення та власні вектори матриць

Метод безпосереднього розгортання

Повну проблему власних значень для матриць невисокого порядку ($n \le 10$) можна розв'язати методом безпосереднього розгортання. У цьому випадку будемо мати

$$|A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} - \lambda \end{vmatrix} = P_n(\lambda) = 0$$
(1)

Рівняння $P_n(\lambda) = 0$ є нелінійним. Його розв'язування дає n (можливо, комплексних) власних значень $\lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, при яких $P_n(\lambda_i) = 0$ ($i = \overline{1,n}$). Для кожного $\lambda = \lambda_i$ може бути знайдений розв'язок однорідної системи $(A - \lambda_i E)X^i = 0$, $i = \overline{1,n}$. Ці розв'язки X^i , визначені з точністю до сталого множника, утворюють систем n різних векторів n-вимірного простору.

Методика розв'язування задачі

- 1. Для заданої матриці A скласти характеристичне рівняння $|A-\lambda E|=0$ і розгорнути отриманий визначник.
- 2. Розв'язати характеристичне рівняння і знайти власні значення λ_1 , λ_2 , ..., λ_n .
- 3. Для кожного власного значення скласти систему $(A \lambda E)X^i = 0$, i = 1, 2, ..., n, і знайти власні вектори X^i .

Метод обертань

Використовується для розв'язування повної проблеми власних значень симетричної матриці і ґрунтується на перетворенні подібності початкової матриці $A \in \mathbb{R}^{n-n}$ за допомогою ортогональної матриці H.

Дві матриці A і $A^{(i)}$ називаються подібними, якщо $A^{(i)} = H^{-1}AH$ або $A = HA^{(i)}H^{-1}$, де H — невироджена матриця.

В методі обертань як H береться ортогональна матриця, така, що $HH^T = H^T H = E$, тобто $H^T = H^{-1}$.

При реалізації методу обертань перетворення подібності застосовується до початкової матриці багатократно:

$$A^{(k+1)} = (H^{(k)})^{-1} A^{(k)} H^{(k)} = (H^{(k)})^{T} A^{(k)} H^{(k)}, \quad k = 0,1,...$$
(1)

Формула (1) визначає ітераційний процес, де початкове наближення $A^{(0)} = A$. На кожній k-тій ітерації для деякого вибраного при розв'язуванні задачі недіагонального елемента $a_{ij}^{(k)}$, $i \neq j$, визначається ортогональна

матриця $H^{(k)}$, що приводить цей елемент $a_{ij}^{(k+1)}$ (а також $a_{ji}^{(k+1)}$) до нуля. При цьому на кожній ітерації як $a_{ij}^{(k)}$ вибирається найбільший за модулем. Матриця $H^{(k)}$, що називається матрицею обертання Якобі, залежить від кута $\Phi^{(k)}$ і має вигляд

i — mий cтовичик j — mий cтовичик

В даній ортогональній матриці елементи на головній діагоналі одиничні, окрім $h_{ii}^{(k)} = \cos \phi^{(k)}$ і $h_{jj}^{(k)} = \cos \phi^{(k)}$, а $h_{ij}^{(k)} = -\sin \phi^{(k)}$, $h_{ji}^{(k)} = \sin \phi^{(k)}$ (h_{ij} — елементи матриці H).

Кут повороту $\phi^{(k)}$ визначається за формулою

$$tg \ 2\varphi^{(k)} = \frac{2a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{jj}^{(k)}} = \overline{P_k} \qquad \varphi^{(k)} = \frac{1}{2} \operatorname{arctg} \overline{P_k}$$
 (2)

де $\left|2\varphi^{(k)}\right| \leq \frac{\pi}{2}$, i < j (a_{ij} вибирається у верхній трикутній наддіагональній частині матриці A).

В процесі ітерацій сума квадратів всіх недіагональних елементів $\sigma(A^{(k)})$ при зростанні k зменшується, тобто $\sigma(A^{(k+1)}) < \sigma(A^{(k)})$. Елементи $a_{ij}^{(k)}$, зведені до нуля на k-тій ітерації, при наступній ітерації небагато зростають. При $k \to \infty$ отримується монотонно спадна обмежена знизу нулем послідовність $\sigma(A^{(1)}) > \sigma(A^{(2)}) > \dots > \sigma(A^{(k)})$ Тому $\sigma(A^{(k)}) \to 0$ при $k \to \infty$. Це означає збіжність

$$A^{(k)} \to \Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}.$$

методу. При цьому

Методика розв'язування задачі

- 1. Покласти k = 0, $A^{(0)} = A$ і задати $\epsilon > 0$.
- 2. Виділити у верхній трикутній наддіагональній частині матриці $A^{(0)}$ максимальний за модулем елемент $a_{ij}^{(k)}$, i < j.

3. Якщо $\left|a_{ij}^{(k)}\right| \leq \varepsilon$ для всіх $i \neq j$, процес завершити. Власні значення визначаються за формулою $\lambda_i \left(A^{(k)}\right) = a_{ii}^{(k)}$, $i = \overline{1,n}$.

Власні вектори X^i знаходяться як i-ті стовпчики матриці, що утворюється множенням: $v_k = H^{(0)}H^{(1)}H^{(2)}\cdots H^{(k-1)} = (X^1,X^2,X^3,...,X^n).$

$$\mathbf{v}_{k} = H^{(0)}H^{(1)}H^{(2)}\cdots H^{(k-1)} = (X^{1}, X^{2}, X^{3}, \dots, X^{n})$$

Якщо $|a_{ij}^{(k)}| > \varepsilon$, процес продовжується.

$$\varphi^{(k)} = \frac{1}{2} \operatorname{arctg} \frac{2a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{jj}^{(k)}}$$

- 3. Знайти кут повороту за формулою
- 4. Скласти матрицю обертання $H^{(k)}$.
- 5. Обчислити чергове наближення $A^{(k+1)} = (H^{(k)})^T A^{(k)} H^{(k)}$ Покласти k = k + 1 і перейти до п.2.

Зауваження.

$$\overline{P_k} = \frac{2a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{ii}^{(k)}}$$

 $\overline{P_{\scriptscriptstyle k}} = \frac{2 a_{\scriptscriptstyle ij}^{(k)}}{a_{\scriptscriptstyle ii}^{(k)} - a_{\scriptscriptstyle jj}^{(k)}}$, можна в п.3 методики 1. Використовуючи позначення обчислювати елементи метриці обертання за формулами

$$\sin \varphi^{(k)} = sign \ \overline{P_k} \cdot \sqrt{\frac{1}{2} \left(1 - \frac{1}{\sqrt{1 + \overline{P_k}^2}} \right)}, \qquad \cos \varphi^{(k)} = \sqrt{\frac{1}{2} \left(1 + \frac{1}{\sqrt{1 + \overline{P_k}^2}} \right)}.$$

2. Контроль правильності виконання дій по кожному повороту здійснюється шляхом перевірки збереження сліду перетворюваної матриці.

OR–АЛГОРИТМ

Перейдемо до обчислення власних значень несиметричних матриць за допомогою ітераційних методів. Це набагато складніша задача, ніж у випадку симетричних матриць, і раціональні методи її розв'язання виявляються значно складнішими за методи, що викладені у попередніх лекціях. Більш суттєвим є те, що власні значення несиметричних матриць можуть бути дуже погано обумовлені, тобто незначна зміна елементів Ця можливість матриці веде до зміни власних значень. обумовленості власних значень не дозволяє розраховувати на те, що знайдеться такий метод, який буде точно обчислювати власні значення для всіх несиметричних матриць. Якщо задана матриця A, то у найкращому випадку можна сподіватись, що метод буде давати достатньо точні власні значення для матриць типу A+E, де елементи матриці E у якомусь смислі малі. Якщо ж знайдені власні значення будуть суттєво відрізнятися від точних, то це пояснюється поганою обумовленістю цих власних значень.

Останнім часом для розв'язання проблеми власних несиметричної матриці успішно використовують QR-алгоритм Френсиса-Кублановської. Цей метод базується на зведенні вихідної матриці A до клітинно-діагональної форми, для якої легко знаходяться власні значення. Даний метод вигідний для верхніх майже трикутних матриць (зменшується число арифметичних дій на кожній ітерації). Тому на першому етапі вихідна матриця зводиться до форми Хессенберга, яка дозволяє провести розкладання за менший час. Матриці, у яких нижче головної діагоналі є тільки одна ненульова діагональ, що безпосередньо прилягає до головної, називаються матрицями Хессенберга ($a_{ij} = 0$, $i \ge j + 2$) і мають вигляд

Вихідна матриця A може бути ефективно зведена до вигляду (1) за допомогою методу Гівенса, суть якого полягає в тому, що вихідна матриця множиться на елементарні матриці плоских обертань, підібраних так, щоб при обертанні анулювались відповідні елементи, Зведення за методом Гівенса має $^{(n-2)}$ основних етапів, на r —му із яких з'являються нулі у r -му рядку і r -му стовпчику, при цьому нулі, одержані на попередніх $^{(r-1)}$ етапах, не зникають. На початку r -го основного етапу перші $^{(r-1)}$ рядків і стовпців утворюють тридіагональну матрицю. Проілюструємо це для випадку n = 6, r = 3.

$$\begin{bmatrix}
X & X & 0 & \dots & 0 & 0 & 0 \\
X & X & X & \dots & 0 & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots & \dots \\
0 & X & X & \dots & X & X & X \\
0 & 0 & X & \dots & X & X & X \\
0 & 0 & X & \dots & X & X & X
\end{bmatrix}
\leftarrow$$

$$\leftarrow$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$(2)$$

Основний r-й етап складається із (n-r-1) допоміжних етапів, на яких нулі з'являються послідовно у позиціях r+2,r+3,...,n r-го рядка і r-го стовпця. У (2) підкреслені елементи які виключаються на r-му основному етапі, і відмічені стрілками ті рядки і стовпці, які використовуються. Одразу ж видно, що перші (r-1) рядки і стовпці цілком не змінюються, хоча деякі ненульові елементи беруть участь у перетворенні, вони замінюються лінійною комбінацією нулів. Тому у дійсності на r-му основному етапі ми маємо справу лише з матрицею порядку (n-r+1) у нижньому правому куті поточної матриці. Нуль в i-й позиції з'являється за допомогою обертання у площині (r+1,i), тобто при множенні матриці зліва на матрицю обертання, де

$$c = \cos \theta = \frac{a_{r+1,r}}{\sqrt{a_{r+1,r}^2 + a_{i,r}^2}} \tag{3}$$

$$s = \sin \theta = \frac{a_{i,r}}{\sqrt{a_{r+1,r}^2 + a_{i,r}^2}}$$

Якщо $x = a_{r+1,r}^2 + a_{i,r}^2 = 0$, то беремо $\cos \theta = 1 \sin \theta = 0$ і справа домножуємо на обернену матрицю $T^{-1} \left(T^{-1} = T' \right) T$ ортогональна матриця. При множенні справа на обернену матрицю обертання форма Хессенберга зберігається.

Дослідження показали, що цей метод чисельно стійкий і дає добру точність.

Припустимо, що матриця A зведена до форми Хессенберга, й перейдемо до другого етапу — розгляд питання про застосування до неї Q^R — алгоритму. Провідна ідея Q^R -алгоритму полягає у поданні матриці Хессенберга у вигляді добутку Q^R , де Q^R — ортогональна матриця, Q^R — верхньотрикутна матриця. Переписуючи співвідношення Q^R у вигляді Q^R , зводимо задачу до знаходження такої ортогональної матриці Q^R , для якої $Q^{-1}A^R$ було б верхньотрикутною матрицею. Знову використаємо метод Гівенса. Домножуючи матрицю Хессенберга вигляду (1) зліва на матрицю обертання, у якої синуси та косинуси розташовані у лівому верхньому куті, дістанемо

Верхньому кут1, дістанемо
$$\begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} \sin \theta + a_{21} \cos \theta & \dots & a_{1n} \sin \theta + a_{2n} \cos \theta \\ -a_{11} \cos \theta + a_{21} \sin \theta & \dots & -a_{1n} \cos \theta + a_{2n} \sin \theta \\ a_{32} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{nn} & a_{nn} \end{bmatrix}.$$

Якщо вибрати θ із умови $-a_{11}\cos\theta+a_{21}\sin\theta=0$ або $\theta=arctg(a_{11}/a_{21})$, то елемент a_{21} при цьому перетвориться в нуль. Таким чином, у результаті множення на послідовність матриць плоских обертань T_i із відповідними значеннями кутів, всі піддіагональні елементи матриці Хессенберга послідовно перетворяться в 0. Дістанемо $R=T_{n-1}'T_{n-2}'\ldots T_1'A$. Звідки $A=T_1T_2\ldots T_{n-1}R$ або A=QR, де $Q=T_1T_2\ldots T_{n-1}$ — ортогональна матриця. Далі будуємо нову матрицю $A_1=RQ$. Оскільки $A=QR=Q(RQ)Q^{-1}=QA_1Q^{-1}$, то, як видно, матриці A і A_1 подібні, тобто мають однакові власні значення. QR факторизація проводиться із матрицею A_1 . Здійснюючи факторизацію та перестановку співмножників, отримаємо послідовність матриць

$$A_k = Q_k R_k$$
; $A_{k+1} = R_k Q_k$, $k = 0,1,...$

Одержана послідовність подібних матриць A_k при $^{k \to \infty}$ прямує до клітинно-діагонального вигляду.

Зведення матриці A до форми Хессенберга не мало б сенсу, якби цю процедуру потрібно було б виконувати після кожного кроку алгоритму. Дійсно відмінні від 0 позадіагональні елементи матриць T_i , розташовані

лише у позиціях $^{(i+1,i), (i,i+1)}$. Звідси випливає, що матриця Q сама є матрицею Хессенберга. Оскільки R — верхня трикутна матриця, добуток RQ також є матрицею Хессенберга. Таким чином, якщо вихідна матриця зведена до форми Хессенберга, то і всі матриці A_k , що генеруються QR -алгоритмом, будуть автоматично зберігати цю форму.

Потрібно зазначити, що навіть при початковому зведенні до форми Хесенберга і випливаючої звідси економії економії при побудові матриць A_k , алгоритм може виявитися неефективним через повільну збіжність до нуля елементів, що містяться під діагоналлю. Швидкість збіжності описується виразом

$$a_{ij}^{(k)} = o\left(\left|\lambda_{i}\right|^{k} / \left|\lambda_{j}\right|^{k}\right), k \to \infty, i \rangle j, \tag{4}$$

із якого видно, що коли два власних значення (припустимо $^{\lambda_i}$ та $^{\lambda_{i+1}}$) близькі, то позадіагональний елемент із індексами $^{(i+1,i)}$ буде прямувати до нуля дуже повільно.

Пропонуємо послабити цю проблему збіжності таким чином. Припустимо, що $\overline{\lambda}_n$ є непоганим наближенням до λ_n і розглянемо матрицю $\overline{A} = A - \overline{\lambda}_n E$, власні значення якої дорівнюють $\lambda_1 - \overline{\lambda}_n$, ..., $\lambda_n - \overline{\lambda}_n$. Якщо застосувати Q^R - алгоритм до \overline{A} , то позадіагональні елементи останнього рядка матриці A_k будуть прямувати до нуля як степені відношень $(\lambda_n - \overline{\lambda}_n)/(\lambda_i - \overline{\lambda}_n)$, а не як степені λ_n/λ_i $(i=1,\dots,n-1)$. Найповніше із них збігається елемент у позиції (n,n-1), при чому для матриці \overline{A} швидкість збіжності описується відношенням , а для $(\lambda_n - \overline{\lambda}_n)/(\lambda_{n-1} - \overline{\lambda}_n)$ вихідної матриці A — відношенням λ_n/λ_{n-1} . Якщо, наприклад, $\lambda_n = 0.99$, $\lambda_{n-1} = 1.1$, $\overline{\lambda}_n = 2.0$, $\lambda_n/\lambda_{n-1} = 0.9$, $|\lambda_n - \overline{\lambda}_n|/|\lambda_{n-1} - \overline{\lambda}_n| = 0.1$, тобто елемент (n,n-1) матриці із зсунутими власними значеннями прямує до нуля у 20 разів швидше.

Добре наближення λ_n , яке б слід було б використовувати як параметр зсуву, нам, як правило невідоме. Але під час Q^R - алгоритму елементи $a_m^{(k)}$ матриць A_k будуть прямувати до λ_n , тобто ми можемо їх використовувати як параметри зсувів, тобто зробивши k кроків, на k+1 кроці можемо виконати Q^R –розклад матриці $\overline{A_k} = A_k - a_{nn}^{(k)} E$. У той же час можемо виконати перетворення зсуву на кожному кроці Q^R - алгоритму, використовуючи як параметр елемент A_k поточної матриці. Оскільки при кожному зсувові власні значення вихідної матриці змінюються на величину зсуву, то необхідно стежити за нагромадженням цих величин. Фактично, саме сума зсуву збігається до власного значення A_k . Критерієм збіжності виступає достатня мализна елементів останнього рядка. Коли цього буде досягнуто, можна буде відкинути останній рядок і стовпець матриці і перейти до

відшукання власного значення λ_{n-1} на основі отриманої матриці розміру $\binom{n-1}{n}$.

Зазначимо, що власні значення цієї підматриці, а отже й вихідної матриці, були змінені на сумарну величину усіх зсуві (яка служила наближенням до $^{\lambda_n}$); отже, після обчислення власних значень матриці, до них треба додати цю величину. Можна вчинити інакше, повертаючи зсув назад після кожного кроку Q^R - алгоритму, тоді матриці A_k будуть мати ті ж самі власні значення.

Метод обернених ітерацій

Для відшукання власних векторів матриці використовується метод обернених ітерацій. Розглянемо його. Вибираємо довільний вектор \overline{b} і лінійну неоднорідну систему

$$(A - \widetilde{\lambda}_k E)\overline{x} = \overline{b} , \qquad (5)$$

де $\tilde{\lambda}_k$ — наближене значення для власного числа $\tilde{\lambda}_k$. Оскільки $\det(A-\tilde{\lambda}_k E)\neq 0$, то система має єдиний розв'язок. Покажемо, що знайдений із неї вектор \bar{x} майже дорівнює власному вектору \bar{x}_k , що відповідає власному значенню $\tilde{\lambda}_k$.

Для простоти обмежимось випадком, коли матриця n -го порядку має n лінійно незалежних власних векторів $^{\overline{x}_j}$, $^{j=1,\dots,n}$. Тоді власні вектори утворюють базис, по якому можна розкласти вектори $^{\overline{x}}$ і $^{\overline{b}}$: $^{\overline{x}=\sum_{j=1}^n a_j \overline{x}_j}$, $^{\overline{b}}=\sum_{j=1}^n c_j \overline{x}_j$

Підставляючи ці розклади у систему (5) і враховуючи, що ${}^{A\overline{x}_j}=\lambda_j\overline{x}_j$, дістанемо ${}^{\sum_{j=1}^n}a_j(\lambda_j-\widetilde{\lambda}_k)\overline{x}_j=\sum_{j=1}^nc_j\overline{x}_j$.

Звідси в силу лінійної незалежності \overline{x}_j випливає, що при довільному $a_j(\lambda_j - \widetilde{\lambda}_k) = c_j$, $a_j = c_j/(\lambda_j - \widetilde{\lambda}_k)$.

Як видно з формули, якщо j=k, то $\lambda_k \approx \tilde{\lambda}_k$ і коефіцієнт a_k буде дуже великим, у противному разі він невеликий. Іншими словами при оберненій ітерації, тобто при переході від \bar{b} до \bar{x} , компонента a_k сильно збільшується у порівнянні з іншими компонентами і вектор \bar{x} виявляється близьким до \bar{x}_k .

У випадку коли вектор \bar{b} вибраний невдало, знайдений вектор \bar{x} може значно відрізнятися від \bar{x}_k , тоді ітерації слід повторити за формулами

$$(A - \widetilde{\lambda}_k E)\overline{x}^{(s)} = \overline{x}^{(s-1)}, \quad \overline{x}^{(0)} = \overline{b}.$$
(6)

Звичайно двох-трьох ітерацій достатньо, при цьому на кожній з них обов'язково потрібно нормувати знайдені вектори, щоб не отримувати у розрахунках занадто великих чисел, які викликають на ЕОМ переповнення.

Метод обернених ітерацій застосовується для знаходження власних векторів як у випадку простих λ_k , так і у випадку кратних власних значень. Щоб знайти усі власні вектори для кратного власного значення, кількість лінійно незалежних векторів \overline{b}_r повинна відповідати кратності кореня. Оберненими ітераціями для кожного буде побудовано вектор. Серед цих векторів буде стільки лінійно незалежних, скільки власних векторів відповідають власному значенню λ_k .

Знаходження власного вектора потребує (на одну ітерацію) не більше $2/3 \cdot n^3$ арифметичних дій, тобто для знайдення всіх їх потрібно близько n^4 арифметичних дій. Таким чином, при великих порядках матриці, метод буде не економічним, але при $n \le 10$ досить задовільним. Особливу зручність дає його простота, універсальність і стабільність стійкості алгоритму.

У деяких окремих випадках розрахунки суттєво спрощуються і прискорюються. Найбільш важливий випадок тридіагональної матриці. При цьому лінійна система рівнянь (5) для визначення компонент власних векторів може бути тридіагональною, і її розв'язують економічним методом прогонки.

Виділимо одне суттєве зауваження. Оскільки $\det(A-\widetilde{\lambda}_k E) \neq 0$, то при відшуканні власних векторів у формулах прямого ходу методу виключення (прогонки) на головній діагоналі з'явиться хоча б один дуже малий елемент. Для формального ведення розрахунків діагональні елементи не повинні обертатися на нуль; для цього потрібно, щоб похибка власного значення була не дуже малою, тобто не становила б 10-15 останніх двійкових розрядів числа на ЕОМ. Щоб уникнути ділення на 0, треба вносити у λ_i невеликі похибки.

Інтерполювання функцій

Інтерполювання функцій: інтерполяційний многочлен Лагранжа

На відрізку [a,b] задано n+1 точки x_0 , x_1 , ..., x_n (які називатимемо вузлами інтерполяції) і значення деякої функції f(x) у цих точках

$$f(x_0) = y_0, \ f(x_1) = y_1, \dots, \ f(x_n) = y_n.$$
 (1)

Потрібно побудувати функцію F(x) (інтерполяційну функцію), що приймає у вузлах інтерполяції ті ж значення, що й f(x), тобто

$$F(x_0) = y_0, F(x_1) = y_1, \dots, F(x_n) = y_n.$$
(2)

Геометрично це означає, що потрібно знайти криву y = F(x), що проходить через задану систему точок $M_i(x_i, y_i)$, $i = \overline{0, n}$.

У такій загальній постановці задача може мати нескінченну множину розв'язків, або зовсім не мати розв'язків.

Однак, ця задача стає однозначною, якщо замість довільної функції F(x) шукати многочлен $P_n(x)$ степеня не вище n, що задовольняє умовам (2), тобто

$$P_n(x_0) = y_0$$
, $P_n(x_1) = y_1$, ..., $P_n(x_n) = y_n$.

Одержану інтерполяційну формулу y = F(x) використовують для наближеного визначення значень даної функції f(x) для значень аргументу відмінного від вузлів інтерполяції. Така операція називається інтерполюванням.

Інтерполяційний многочлен Лагранжа

Нехай на відрізку [a,b] дано n+1 значень аргументу $x_0, x_1, ..., x_n$ і відомі значення функції y = f(x) в цих точках $f(x_0) = y_0$, $f(x_1) = y_1$, ..., $f(x_n) = y_n$. Потрібно побудувати многочлен $L_n(x)$ степеня не вище n такий, що у вузлах x_0 , x_1 , ..., x_n має значення $L_n(x_i) = y_i$, i = 0,1,...,n.

Для цього побудуємо спочатку многочлен $p_i(x)$ такий, що $p_i(x_j) = 0$ при $i \neq j$ $p_i(x_i) = 1$

Оскільки такий многочлен перетворюється в нуль в n точках x_0 , x_1 , $\dots, x_{i-1}, x_{i+1}, \dots, x_n$, то він має вигляд $p_i(x) = C_i(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)$

$$p_i(x) = C_i(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)$$

де C_i — деяка стала.

Покладемо $x = x_i$ і, враховуючи, що $p_i(x_i) = 1$, одержимо $C_i(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n) = 1$

$$C_i = \frac{1}{(x_i - x_0)(x_i - x_1)\cdots(x_i - x_{i-1})(x_i - x_{i+1})\cdots(x_i - x_n)}$$
.

Підставимо одержане C_i в формулу і одержимо

$$p_{i}(x) = \frac{(x - x_{0})(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})...(x_{i} - x_{n})}$$

Перейдемо до загальної задачі: відшукаємо такий многочлен $L_n(x)$, що

$$L_n(x_i) = y_i$$
. Цей многочлен має вигляд $L_n(x) = \sum_{i=0}^n p_i(x) y_i$ (дійсно, $L_n(x_j) = \sum_{i=0}^n p_i(x_j) y_i = p_j(x_j) y_j = y_j$).

Підставимо
$$p_i(x)$$
 і одержимо інтерполяційну формулу Лагранжа:
$$L_n(x) = \sum_{i=0}^n \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)} y_i$$
.

Доведемо єдиність многочлена Лагранжа.

Припустимо протилежне, що існують два многочлени Лагранжа. Нехай $\widetilde{L}_{n}(x)$ — многочлен, відмінний від $L_{n}(x)$, степеня не вище n і такий, що $\widetilde{L}_n(x_i) = y_i, i = 0,1,\ldots,n$

Тоді многочлен $Q_n(x) = \widetilde{L}_n(x) - L_n(x)$, степінь якого не вище n, перетворюється в нуль в n+1 точці x_0 , x_1 , ..., x_n , тобто $Q_n(x) \equiv 0$. Отже, $\widetilde{L}_n(x) = L_n(x)$

Формулі Лагранжа можна надати більш стислого вигляду. Для цього введемо позначення

$$\Pi_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

Продиференціюємо по x цей добуток:

$$\Pi'_{n+1}(x) = \sum_{j=0}^{n} (x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)$$

Покладемо
$$x = x_i$$
 і маємо $\Pi'_{n+1}(x_i) = (x_i - x_0)(x_i - x_1) \cdots (x_i - x_{j-1})(x_i - x_{j+1}) \cdots (x_i - x_n)$

Формулу Лагранжа можемо записати у такому вигляді

$$L_n(x) = \prod_{n+1} (x) \sum_{i=0}^n \frac{y_i}{\prod'_{n+1} (x_i)(x - x_i)}$$

Оцінимо похибку інтерполяційної формули Лагранжа, визначимо наскільки близько побудований многочлен наближається до f(x) в інших точках, тобто величину залишкового функції $R_n(x) = f(x) - L_n(x)$

Нехай f(x) в [a,b] має всі похідні f'(x), f''(x), ..., $f^{(n+1)}(x)$. Введемо допоміжну функцію

$$u(x) = f(x) - L_n(x) - k\Pi_{n+1}(x)$$
(1)

де k – сталий множник, значення якого буде вибране пізніше.

Функція u(x) має n+1 корінь в точках $x_0, x_1, ..., x_n$. Підберемо коефіцієнт k так, щоб u(x) мала (n+2)-й корінь у довільній фіксованій точці $\overline{x} \in [a,b]$. Для цього досить покласти $f(\overline{x}) - L_n(\overline{x}) - k\Pi_{n+1}(\overline{x}) = 0$

Оскільки
$$\Pi_{n+1}(\bar{x}) \neq 0$$
, то $k = \frac{f(\bar{x}) - L_n(\bar{x})}{\Pi_{n+1}(\bar{x})}$ (2).

При цьому значенні k функція u(x) має (n+2)-й корінь і буде перетворюватися в нуль на кінцях відрізків $[x_0, x_1]$, $[x_1, x_2]$, $[x_i, \overline{x}]$, $[\overline{x}, x_{i+1}]$ $[x_{n-1}, x_n]$. Застосуємо теорему Ролля до кожного із відрізків. Одержимо, що функція u'(x) має не менше n+1 кореня на [a,b]. Знову застосуємо теорему Ролля до функції u'(x). Маємо: u''(x) має n коренів на [a,b], і так далі. Отримуємо $u^{(n+1)}(x)$ має хоча б один нуль на [a,b], який позначимо ξ , тобто $u^{(n+1)}(\xi) = 0$

Із формули (1), враховуючи
$$L_n^{(n+1)}(x) = 0$$
 і $\Pi_{n+1}^{(n+1)}(x) = (n+1)!$, маємо $u^{(n+1)}(x) = f^{(n+1)}(x) - k(n+1)!$

При
$$x = \xi$$
 маємо $0 = f^{(n+1)}(\xi) - k(n+1)!$ Звідси

$$k = \frac{f^{(n+1)}(\xi)}{(n+1)!} \tag{3}$$

Прирівняємо (2) і (3):

$$\frac{f(\bar{x}) - L_n(\bar{x})}{\Pi_{n+1}(\bar{x})} = \frac{f^{(n+1)}(\xi)}{(n+1)!} \qquad \text{afo} \qquad f(\bar{x}) - L_n(\bar{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \Pi_{n+1}(\bar{x}).$$

Оскільки \bar{x} – довільна точка, то

ОСКИТЬКИ
$$x = \text{довитьна точка, то}$$

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \Pi_{n+1}(\bar{x}), \qquad \text{де} \qquad \xi \in [a,b].$$

Позначимо $M_{n+1} = \max_{a \le x \le b} \left| f^{(n+1)}(x) \right|$ і одержуємо оцінку абсолютної похибки інтерполяційної формули Лагранжа

$$|R_n(x)| = |f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\Pi_{n+1}(x)|$$

Скінчені різниці

Нехай y = f(x) — задана функція. Позначимо $\Delta x = h$ — фіксовану величину приросту аргументу (крок). Тоді вираз $\Delta y \equiv \Delta f(x) = f(x + \Delta x) - f(x)$ першою скінченою різницею ϕ ункції y. Аналогічно називається визначаються скінчені різниці вищих порядків:

$$\Delta^n y = \Delta \left(\Delta^{n-1} y \right), \quad n = 2, 3, \dots$$

Наприклад.

$$\Delta^{2} y = \Delta \overline{(f(x + \Delta x) - f(x))} = (f(x + 2\Delta x) - f(x + \Delta x)) - (f(x + \Delta x) - f(x)) = f(x + 2\Delta x) - 2f(x + \Delta x) + f(x)$$

Легко перевірити властивості оператора Δ :

1)
$$\Delta(u+v) = \Delta u + \Delta v$$

2).
$$\Delta(cu) = c\Delta u$$
, $c = const$

3).
$$\Delta^m(\Delta^n u) = \Delta^{m+n} u$$

Часто доводиться розглядати функції y=f(x), задані табличними значеннями $y_i=f(x_i)$ для системи рівновіддалених точок x_i , $i=0,1,\dots$, де $\Delta x_i=x_{i+1}-x_i=h=const$

Скінчені різниці послідовності y_i визначаються

$$\Delta y_{i} = y_{i+1} - y_{i},$$

$$\Delta^{2} y_{i} = \Delta(\Delta y_{i}) = \Delta y_{i+1} - \Delta y_{i},$$
...
$$\Delta^{n} y_{i} = \Delta(\Delta^{n-1} y_{i}) = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_{i}$$

Звідси маємо

$$y_{i+1} = y_i + \Delta y_i = (1 + \Delta)y_i$$
 — символічно $y_{i+2} = (1 + \Delta)y_i = (1 + \Delta)^2 y_i$

$$y_{i+n} = (1+\Delta)^n y_i$$

Використовуючи формулу бінома Ньютона, маємо

$$y_{i+n} = y_i + C_n^1 \Delta y_i + C_n^2 \Delta^2 y_i + \dots + \Delta^n y_i,$$
 i навпаки
$$\Delta^n y_i = (1 + \Delta)^n y_i - C_n^1 (1 + \Delta)^{n-1} y_i + \dots + (-1)^n y_i.$$

Наприклад.
$$\Delta^2 y_i = y_{i+2} - 2y_{i+1} + y_i$$
, $\Delta^3 y_i = y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_i$ і так далі.

Скінчені різниці різних порядків зручно розміщувати у вигляді таблиць двох видів: горизонтальної таблиці різниць і діагональної таблиці різниць.

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
x_0	\mathcal{Y}_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$
x_1	y_1	Δy_1	$\Delta^2 y_1$	$\Delta^3 y_1$
x_2	y_2	Δy_2	$\Delta^2 y_2$	$\Delta^3 y_2$
••••	•••	•••	•••	•••

x	у	Δy	$\Delta^2 y$	$\Delta^3 y$
x_0	${\mathcal Y}_0$			
		Δy_0		
x_1	\mathcal{Y}_1		$\Delta^2 y_0$	
		Δy_1		$\Delta^3 y_0$
x_2	\mathcal{Y}_2		$\Delta^2 y_1$	
		Δy_2		
x_3	y_3			

Перша інтерполяційна формула Ньютона

Нехай для функції y=f(x) задані значення $y_i=f(x_i)$ для рівновіддалених значень змінної $x: x_i=x_0+i\cdot h$, $i=0,1,\dots,n$, h — крок інтерполяції.

Потрібно підібрати многочлен $P_n(x)$ степеня не вище n, що в точках x_i приймає значення $P_n(x_i) = y_i$, $i = \overline{0,n}$. Ця умова еквівалентна $\Delta^m P_n(x_0) = \Delta^m y_0$ при $m = 0,1,\dots,n$. Будемо шукати цей многочлен у вигляді

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Знайдемо коефіцієнти a_0 , a_1 , ..., a_n . Покладемо $x=x_0$. Одержуємо $P_n(x_0)=a_0$, тобто $a_0=y_0$. Щоб знайти коефіцієнт a_1 , складемо першу скінчену різницю для многочлена $P_n(x)$ в точці $x=x_0$:

$$\Delta P_n(x_0) = P_n(x_1) - P_n(x_0) = a_0 + a_1(x_1 - x_0) - a_0 = a_1 h$$

Оскільки
$$\Delta P_n(x_0) = \Delta y_0$$
, то $a_1 = \frac{\Delta y_0}{h}$.

Щоб визначити коефіцієнт a_2 , складемо скінчену різницю другого порядку в точці $x=x_0$:

$$\Delta^{2} P_{n}(x_{0}) = \Delta P_{n}(x_{1}) - \Delta P_{n}(x_{0}) = (a_{0} + a_{1}(x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1}) - (a_{0} + a_{1}(x_{1} - x_{0})) - a_{1}h = a_{1} \cdot 2h + a_{2} \cdot 2h \cdot h - a_{1} \cdot h - a_{1}h = 2h^{2}a_{2}$$

$$a_2 = \frac{\Delta^2 y_0}{2h^2}$$

Обчислюючи скінчені різниці більш високих порядків в точці $x = x_0$, одержуємо

$$a_i = \frac{\Delta^i y_0}{i! \cdot h^i}, \quad i = \overline{0, n}, \quad 0! = 1.$$

Підставляючи одержані коефіцієнти, одержуємо першу інтерполяційну формулу Ньютона

$$P_n(x) = y_0 + \frac{\Delta y_0}{1!h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Цю формулу можна подати в іншому вигляді. Для цього введемо нову

$$q = \frac{x - x_0}{h}$$
, де q — кількість кроків. Тоді $P_n(x) = y_0 + q\Delta y_0 + \frac{q(q-1)}{2!}\Delta^2 y_0 + \ldots + \frac{q(q-1)\cdots(q-n+1)}{n!}\Delta^n y_0$

Першу інтерполяційну формулу Ньютона зручно використовувати для інтерполювання на початку відрізка інтерполяції [a,b] при малому q.

Друга інтерполяційна формула Ньютона

використовують Для інтерполювання в кінці таблиці другу інтерполяційну формулу Ньютона.

Розглянемо інтерполяційний многочлен

$$P_n(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + \dots + a_n(x - x_n)(x - x_{n-1}) \cdots (x - x_1)$$

Знайдемо коефіцієнти $a_0, a_1, ..., a_n$.

$$I_3 P_n(x_n) = y_n \text{ Maemo } a_0 = y_n.$$

$$3$$
відси $a_1 = \frac{\Delta y_{n-1}}{h}$.

Із виразу для другої скінченої різниці $\Delta^2 P_n(x_{n-2}) = \Delta^2 y_{n-2} = 2!h^2 a_2$

$$a_2 = \frac{\Delta^2 y_{n-2}}{2!h^2}$$

знаходимо

Методом математичної індукції можна довести, що $a_i = \frac{\Delta' y_{n-i}}{i!h^i}$, $i = \overline{0,n}$

Підставимо одержані значення a_i і отримаємо

$$P_n(x) = y_n + \frac{\Delta y_{n-1}}{1!h}(x - x_n) + \frac{\Delta^2 y_{n-2}}{2!h^2}(x - x_n)(x - x_{n-1}) + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-2})(x - x_{n-2}) + \dots + \frac{\Delta^3 y_{n-3}}{3!h^3}(x - x_n)(x - x_{n-2})(x - x_{n-$$

$$+\frac{\Delta^{n} y_{0}}{n! h^{n}} (x-x_{n})(x-x_{n-1})\cdots(x-x_{1})$$

Це друга інтерполяційна формула Ньютона.

 $q = \frac{x - x_n}{h}$. Враховуючи, що $\frac{x - x_{n-1}}{h} = \frac{x - (x_n - h)}{h} = q + 1$

 $\frac{x - x_{n-2}}{h} = q + 2$, ... Maємо

$$P_n(x) = y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \frac{q(q+1)(q+2)}{3!}\Delta^2 y_{n-3} + \dots + \frac{q(q+1)\cdots(q+n-1)}{n!}\Delta^n y_0$$

Оцінки похибок інтерполяційних формул Ньютона

Раніше була виведена оцінка похибки для інтерполяційного многочлена Лагранжа

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |(x-x_0)(x-x_1)\cdots(x-x_n)|$$

Враховуючи, що вузли інтерполяції рівновіддалені, введемо $h = x_{i+1} - x_i$, покладемо $q = (x - x_0)/h$ і одержимо

$$R_n(x) = h^{n+1} \frac{q(q-1)\cdots(q-n)}{(n+1)!} f^{(n+1)}(\xi)$$

для першої інтерполяційної формули

Ньютона;

$$R_n(x) = h^{n+1} \frac{q(q+1)\cdots(q+n)}{(n+1)!} f^{(n+1)}(\xi)$$
 для другої інтерполяційної формули

Ньютона.

Інтерполювання в таблицях

При табулюванні таблично заданих функцій, як правило, користуються лінійною або квадратичною інтерполяцією.

Інтерполяційний многочлен Лагранжа для лінійної інтерполяції:

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

Перша інтерполяційна формула Ньютона: $P_{_{1}}(x) = y_{_{0}} + \frac{\Delta y_{_{0}}}{h}(x-x_{_{0}}), \quad \text{де}$ $\Delta y_{_{0}} = y_{_{1}} - y_{_{0}}$

Друга інтерполяційна формула Ньютона: $P_{_{1}}(x) = y_{_{n}} + \frac{\Delta y_{_{n-1}}}{h}(x-x_{_{n}}), \quad \text{де}$ $\Delta y_{_{n-1}} = y_{_{n}} - y_{_{n-1}}$

У випадку квадратичної інтерполяції має.

Інтерполяційний многочлен Лагранжа:

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Перший інтерполяційний многочлен Ньютона:

$$P_2(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2h^2}(x - x_0)(x - x_1)$$

Другий інтерполяційний многочлен Ньютона:

$$P_2(x) = y_n + \frac{\Delta y_n}{h}(x - x_n) + \frac{\Delta^2 y_0}{2h^2}(x - x_n)(x - x_{n-1})$$

Інтерполювання сплайнами

Сплайн – це функція, яка на кожному частинному відрізку інтерполяції ϵ алгебраїчним многочленом, а на всьому заданому відрізку – неперервна з кількома своїми похідними.

Розглянемо спосіб побудови кубічних сплайнів, які найбільш широко використовуються на практиці.

Нехай інтерпольована функція y=f(x) задана своїми значеннями y_i в точках x_i (i=0,1,...,n). Довжину відрізка $\begin{bmatrix} x_{i-1},x_i \end{bmatrix}$ позначимо $h_i=x_i-x_{i-1}$. Будемо шукати кубічний сплайн на кожному із частинних відрізків $\begin{bmatrix} x_{i-1},x_i \end{bmatrix}$ у вигляді

$$S(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3$$
, (1) де a_i , b_i , c_i , d_i — невідомі коефіцієнти. Для n відрізків коефіцієнтів буде $4n$.

Будемо вимагати співпадання значень S(x) у вузлах з табличними значеннями функції y = f(x):

$$S(x_{i-1}) = y_{i-1} = a_i \,, \tag{2}$$

$$S(x_i) = y_i = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3$$
(3)

Кількість цих рівнянь (2^n) вдвічі менше кількості невідомих коефіцієнтів; щоб отримати додаткові умови, вимагатимемо також неперервності S'(x) і S''(x) у всіх точках, включаючи вузли. Для цього треба прирівняти ліві і праві похідні S'(x-0), S''(x+0), S''(x-0), S''(x-0) у внутрішніх вузлах x_i .

Похідні:
$$S'(x) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2$$
, $S''(x) = 2c_i + 6d_i(x - x_{i-1})$.

Для першої похідної маємо $S'(x_i - 0) = b_i + 2c_i h_i + 3d_i h_i^2$, $S'(x_i + 0) = b_{i+1}$, i = 1, 2, ..., n-1

(для $S'(x_i + 0)$ перш за все потрібно у виразі S'(x) замінити i на i + 1).

Аналогічно для другої похідної:

$$S''(x) = 2c_i + 6d_i(x - x_{i-1}), \quad S''(x_i - 0) = 2c_i + 6d_ih_i, \quad S''(x_i + 0) = 2c_{i+1}.$$

Прирівнюючи ліві і праві похідні, отримуємо

$$b_{i+1} = b_i + 2c_i h_i + 3d_i h_i^2$$
 (4)

$$c_{i+1} = c_i + 3d_i h_i, \quad i = 1, 2, ..., n-1.$$
 (5)

Ці рівняння дають ще $2^{(n-1)}$ умов. Не вистачає ще дві умови. Як правило їх приймають у вигляді вимоги до поведінки сплайна у граничних точках x_0 і x_n .

Якщо вимагати нульової кривини сплайна на кінцях (тобто рівності нулю другої похідної ($S''(x_0) = 0$, $S''(x_n) = 0$)), то отримаємо

$$c_1 = 0, \quad c_n + 3d_n h_n = 0. \tag{6}$$

Перепишемо тепер всі рівняння (3)-(6), виключаючи n невідомих a_i :

$$b_{i}h_{i} + c_{i}h_{i}^{2} + d_{i}h_{i}^{3} = y_{i} - y_{i-1}, i = \overline{1, n},$$

$$b_{i+1} - b_{i} - 2c_{i}h_{i} - 3d_{i}h_{i}^{2} = 0, i = \overline{1, n-1},$$

$$c_{i+1} - c_{i} - 3d_{i}h_{i} = 0, i = \overline{1, n-1},$$

$$c_{1} = 0,$$

$$c_{n} + 3d_{n}h_{n} = 0$$

$$(7)$$

Система (7) складається з n+2(n-1)+2=3n рівнянь. Розв'язуючи її, отримаємо значення невідомих b_i , c_i , d_i (відомо, що $a_i=y_{i-1}$), що визначають сукупність усіх формул для шуканого інтерполяційного сплайна

$$S_{i}(x) = a_{i} + b_{i}(x - x_{i-1}) + c_{i}(x - x_{i-1})^{2} + d_{i}(x - x_{i-1})^{3}, \quad i = \overline{1, n}.$$
 (8)

Апроксимація функцій

Апроксимація функцій. Метод найменших квадратів

Нехай вивчаючи функціональну залежність y = f(x) ми провели ряд вимірювань величин x та y і в результаті одержали таблицю значень

х	x_1	x_2	•••	X_n
У	\mathcal{Y}_1	\mathcal{Y}_2	•••	\mathcal{Y}_n

Якщо аналітично вираз функції f(x) невідомий або досить складний, то виникає важлива практична задача: знайти емпіричну формулу $\widetilde{y} = \widetilde{f}(x)$, значення якої при $x = x_i$ якомога менше відрізнялись від експериментальних значень y_i .

У такій постановці задача досить невизначена. Тому, як правило, вказують досить вузький клас функцій K (наприклад, множина функцій лінійних, степеневих, показникових тощо) якому повинна належати шукана функція $\tilde{f}(x)$ і справа зводиться до відшукання найкращих значень параметрів.

У багатьох випадках клас ^К визначається вимогами простоти емпіричної функції; інколи цей клас підказується самою природою явища.

Геометрично задача побудови емпіричної функції зводиться до проведення кривої з класу K "якомога ближче" до системи точок $M_i(x_i,y_i)$.

Відзначимо, що задача побудови емпіричної функції відмінна від задачі інтерполювання.

Як правило вихідних матеріал досить об'ємний і шукається порівняно проста аналітична залежність між даними змінними x та y. Ця залежність, звичайно, не зводиться до інтерполяційних формул (які дають значення, що співпадають в заданих точках із заданими значеннями функції), оскільки графік емпіричної функції $\widetilde{y} = \widetilde{f}(x)$ у загальному випадку не проходять точно через відповідну систему точок $M_i(x_i, y_i)$, $i = \overline{1, n}$.

Крім того, самі вихідні дані x_i і y_i , як правило, є наближеними і містять похибки. Тому інтерполяційна формула , що повторюватиме ці помилки, не кажучи навіть про її складність, не є ідеальним розв'язком поставленої задачі. Можливо, проста формула, яка згладжує місцеві неправильності, краще відобразить дійсність.

Побудова такої формули складається з двох етапів:

- 1) з'ясування загального вигляду цієї формули;
- 2) визначення найкращих її параметрів.

Вдалий вибір формули у значній мірі залежить від досвіду і вміння. Частіше всього застосовуються залежності:

1)
$$y = ax + b$$
; 2) $y = ax^2 + dx + c$; 3) $y = ax^m$; 4) $y = a \cdot \exp(mx)$; 5) $y = 1/(ax + b)$; 6) $y = a \cdot \ln x + b$; 7) $y = a/x + b$; 8) $y = x/(ax + b)$,

де a, b, c, m – параметри.

Метод найменших квадратів

Нехай відомий вигляд емпіричної функції $y = \widetilde{f}(x, a_1, a_2, ..., a_m)$

 $\varepsilon_i = \widetilde{f}(x_i, a_1, a_2, \dots, a_m) - y_i$, $i = \overline{1, n}$ відхилення емпіричної Позначимо функції від вихідних даних x_i , y_i . Як міру відхилення функції від вихідних даних (x_i, y_i) приймемо функцію

$$S(a_1, a_2, ..., a_m) = \sum_{i=1}^{n} (\widetilde{f}(x_i, a_1, a_2, ..., a_m) - y_i)^2$$

яка називається квадратичним відхиленням.

Для побудови апроксимуючого многочлена потрібно підібрати коефіцієнти $a_1, a_2, ..., a_m$ так, щоб величина $S(a_1, a_2, ..., a_m)$ була найменшою.

Скористаємося необхідними умовами екстремуму функції кількох змінних. Одержуємо так звану нормальну систему для визначення коефіцієнтів a_i , $i = \overline{1,m}$:

$$\frac{\partial S}{\partial a_1} = 0, \quad \frac{\partial S}{\partial a_2} = 0, \quad \frac{\partial S}{\partial a_m} = 0$$

Якщо ця система має єдиний розв'язок, то він буде шуканим. Система спрощується, якщо функція $\widetilde{f}(x,a_1,a_2,...,a_m)$ лінійна відносно шуканих параметрів. Дійсно, покладаючи $\widetilde{f}(x, a_1, a_2, ..., a_m) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + ... + a_m \varphi_m(x)$ будемо мати

$$S(a_1, a_2, ..., a_m) = \sum_{i=1}^n (a_1 \varphi_1(x_i) + a_2 \varphi_2(x_i) + ... + a_m \varphi_m(x_i))^2$$

$$\begin{cases} \frac{1}{2} \frac{\partial S}{\partial a_1} = \sum_{i=1}^n \varphi_1(x_i) (a_1 \varphi_1(x_i) + a_2 \varphi_2(x_i) + \dots + a_m \varphi_m(x_i) - y_i) = 0 \\ \dots \dots \dots \\ \frac{1}{2} \frac{\partial S}{\partial a_m} = \sum_{i=1}^n \varphi_m(x_i) (a_1 \varphi_1(x_i) + a_2 \varphi_2(x_i) + \dots + a_m \varphi_m(x_i) - y_i) = 0 \end{cases}$$

Введемо позначення
$$(\varphi_j, \varphi_k) = \sum_{i=1}^n \varphi_j(x_i) \varphi_k(x_i)$$
, $(\varphi_j, y) = \sum_{i=1}^n \varphi_j(x_i) y_i$

Із системи

$$\begin{cases} a_1(\varphi_1, \varphi_1) + a_2(\varphi_1, \varphi_2) + \dots + a_m(\varphi_1, \varphi_m) = (\varphi_1, y) \\ \dots & \dots \\ a_1(\varphi_m, \varphi_1) + a_2(\varphi_m, \varphi_2) + \dots + a_m(\varphi_m, \varphi_m) = (\varphi_m, y) \end{cases}$$

знаходимо невідомі $a_1, a_2, ..., a_m$, що є шуканими параметрами.

Розглянемо випадок відшукання наближуючої функції у вигляді $F(x,a,b,c) = ax^2 + bx + c$

$$\frac{\partial F}{\partial a} = x^2$$
, $\frac{\partial F}{\partial b} = x$, $\frac{\partial F}{\partial c} = 1$.

$$\begin{cases} M_{x^4} \cdot a + M_{x^3} \cdot b + M_{x^2} \cdot c = M_{x^2y} \\ M_{x^3} \cdot a + M_{x^2} \cdot b + M_x \cdot c = M_{xy} \\ M_{x^2} \cdot a + M_x \cdot b + c = M_y \end{cases},$$

$$M_{x^4} = \frac{1}{n} \sum_{i=1}^n x_i^4 \quad M_{x^3} = \frac{1}{n} \sum_{i=1}^n x_i^3 \quad M_{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2 \quad M_x = \frac{1}{n} \sum_{i=1}^n x_i \quad M_{x^2y} = \frac{1}{n} \sum_{i=1}^n x_i^2 y_i$$

$$M_{xy} = \frac{1}{n} \sum_{i=1}^n x_i y_i \quad M_y = \frac{1}{n} \sum_{i=1}^n y_i \quad M_{x^2y} = \frac{1$$

Розглянемо деякі інші види наближення функцій.

3). $F(x,a,m) = ax^m$. Прологарифмуємо $\ln F = \ln a + m \ln x$. Позначимо m = A, $\ln a = B$ і задача зводиться до лінійної апроксимації.

Практичні дії:

- прологарифмувати x_i , y_i ;
- знайти параметри A, B;
- потенціювати B;
- -підставити знайдені значення у формулу залежності.

4).
$$F(x,a,m) = a \cdot \exp(mx)$$
.

Логарифмуємо $LnF = \ln a + mx$, далі дії за попередньою схемою.

5).
$$F(x,a,b) = 1/(ax+b)$$

 $\Phi(x,a,b) = \frac{1}{F(x,a,b)} = ax + b$ і задача зводиться

Залежність перепишемо так до лінійної апроксимації.

- 6). $F(x,a,b) = a \ln x + b$. Позначимо $u = \ln x$ і знову маємо лінійну апроксимацію.
- $F(x,a,b) = \frac{a}{x} + b$. Позначимо $u = \frac{1}{x}$ і задача зводиться до лінійної апроксимації.
- $F(x,a,b) = \frac{x}{ax+b}$. Залежність подамо у ВИГЛЯД1 $\Phi(x,a,b) = \frac{1}{F(x,a,b)} = a + \frac{b}{x}$ і задача зводиться до випадку 7).

Чисельне диференціювання та інтегрування функцій Чисельне диференціювання функцій

До чисельного диференціювання вдаються тоді, коли функція задана таблично. Щоб побудувати формули чисельно диференціювання, задану на відрізку [a,b] функцію f замінюють відповідним інтерполяційним многочленом P(x). Тоді

$$f(x) = P(x) + R(x; f), \tag{1}$$

де R(x;f) – залишковий член інтерполяційної формули.

Якщо функція f на [a,b] має похідні до k-го порядку включно, то диференціюючи тотожність (1) по x, знаходять

За наближені значення похідних від функції f беруть перші доданки правих частин цих рівностей:

$$f'(x) \approx P'(x), f''(x) \approx P''(x), \dots, f^{(k)}(x) \approx P^{(k)}(x), x \in [a,b].$$

Формули чисельного диференціювання, побудовані за першою інтерполяційною формулою Ньютона. Нехай функцію f задано у рівновіддалених точках x_i ($i=0,1,\ldots,n$) відрізка [a,b] значеннями $y_i=f(x_i)$. Щоб знайти похідні f' і f'' у точках x, близьких до x_0 , функцію x_0 наближено замінюють першим інтерполяційним многочленом Ньютона

$$P_{n}(x_{0} + th) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{0} + \frac{t(t-1)(t-2)}{3!}\Delta^{3}y_{0} + \dots + \frac{t(t-1)(t-2)\dots(t-n+1)}{n!}\Delta^{n}y_{0}$$
(2)

де
$$t = \frac{x - x_0}{h}$$
, a $\frac{x - x_1}{h} = \frac{x - (x_0 + h)}{h} = t - 1$,..., $\frac{x - x_{n-1}}{h} = t - n + 1$.

Кожний доданок формули (2) подамо за степенями t. Оскільки $t(t-1)(t-2)...(t-k) = t^{k+1} - S_k^{(1)}t^k + S_k^{(2)}t^{k-1} + ... + (-1)^k S_k^{(k)}t$

де $S_k^{(i)}$ — сума усіх добутків натуральних чисел від 1 до k по i множників (наприклад для n=4 маємо:

$$t(t-1)(t-2)(t-3)(t-4) = t^5 - (1+2+3+4)t^4 + (1\cdot 2+1\cdot 3+1\cdot 4+2\cdot 3+2\cdot 4+3\cdot 4)t^3 - (1\cdot 2\cdot 3+1\cdot 2\cdot 4+1\cdot 3\cdot 4+2\cdot 3\cdot 4)t^2 + 1\cdot 2\cdot 3\cdot 4\cdot t = t^5 - 10t^4 + 35t^3 - 50t^2 + 24t$$

то формулу (2) можна записати так:

$$f(x) \approx P_n(x) = y_0 + t\Delta y_0 + \frac{t^2 - t}{2!} \Delta^2 y_0 + \frac{t^3 - 3t^2 + 2t}{3!} \Delta^3 y_0 + \frac{t^4 - 6t^3 + 11t^2 - 6t}{4!} \Delta^4 y_0 + \frac{t^5 - 10t^4 + 35t^3 - 50t^2 + 24t}{5!} \Delta^5 y_0 + \dots + \frac{t^n - S_{n-1}^{(1)} t^{n-1} + S_{n-1}^{(2)} t^{n-2} - \dots + (-1)^{n-1} S_{n-1}^{(n-1)} t}{n!} \Delta^n y_0$$

де
$$t = \frac{x - x_0}{h}$$
, $h = x_{i+1} - x_i$.

Врахувавши, що похідні

$$\frac{\partial f}{\partial x} = \frac{df(x)}{dt} \cdot \frac{dt}{dx} = \frac{1}{h} \frac{df(x)}{dt}$$

$$\frac{d^2 f}{dx^2} = \frac{d}{dx} \left(\frac{1}{h} \frac{df(x)}{dt} \right) = \frac{1}{h} \frac{d}{dx} \left(\frac{df(x)}{dt} \right) = \frac{1}{h} \frac{d^2 f(x)}{dt^2} \cdot \frac{dt}{dx} = \frac{1}{h^2} \frac{d^2 f}{dt^2}$$

і продиференціювавши двічі по t наближену рівність (2), дістанемо

$$f'(x) \approx P'_{n}(x) = \frac{1}{h} \left(\Delta y_{0} + \frac{2t-1}{2!} \Delta^{2} y_{0} + \frac{3t^{2}-6t+2}{3!} \Delta^{3} y_{0} + \frac{4t^{3}-18t^{2}+22t-6}{4!} \Delta^{4} y_{0} + \frac{5t^{4}-40t^{3}+105t^{2}-100t+24}{5!} \Delta^{5} y_{0} + \dots + \frac{nt^{n-1}-(n-1)S_{n-1}^{(1)}t^{n-2}+(n-2)S_{n-1}^{(2)}t^{n-3}-\dots+(-1)^{n-1}S_{n-1}^{(n-1)}}{n!} \Delta^{n} y_{0} \right)$$

$$(4)$$

$$f''(x) \approx P_n''(x) = \frac{1}{h^2} \left(\Delta^2 y_0 + \frac{6t - 6}{3!} \Delta^3 y_0 + \frac{12t^2 - 36t + 22}{4!} \Delta^4 y_0 + \frac{20t^3 - 120t^2 + 210t - 100}{5!} \Delta^5 y_0 + \dots + \left(n(n-1)t^{n-2} - (n-1)(n-2)S_{n-1}^{(1)} t^{n-3} + (n-2)(n-3)S_{n-1}^{(2)} t^{n-4} + \dots + (-1)^n 2S_{n-1}^{(n-2)} \Delta^n y_0 / n! \right)$$
(5)

Якщо похідні обчислюють за формулами (4),(5) в точці x, то за точку x_0 вибирають найближче табличне значення аргументу, яке менше за x.

Формули чисельного диференціювання (4),(5) значно спрощуються, якщо значення похідних обчислювати у вузлах інтерполювання. Оскільки табличне значення можна взяти за x_0 , то, поклавши у формулах (4),(5) t=0, лістанемо

$$f'(x_0) \approx P_n'(x_0) = \frac{1}{h} \left(\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \frac{1}{6} \Delta^6 y_0 + \dots + \frac{(-1)^{n-1}}{n} \Delta^n y_0 \right)$$
 (6)

$$f''(x_0) \approx P_n''(x_0) = \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 + \dots + (-1)^n \frac{2S_{n-1}^{(n-2)}}{n!} \Delta^n y_0 \right)$$
(7)

Подібним чином неважко отримати формули чисельного диференціювання, побудовані за другою інтерполяційною формулою Ньютона.

Чисельне інтегрування

Якщо функція f(x) неперервна на [a,b] і відома її первісна F(x), то визначений інтеграл може бути визначений за формулою Ньютона-Лейбніца

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Якщо функція f(x) дуже складна або задана таблицею, то

використовують спеціальні чисельні методи.

Квадратурні формули Ньютона-Котеса

Замінимо функцію $^{\mathcal{Y}}$ під знаком інтеграла відповідним інтерполяційним многочленом Лагранжа. Маємо

$$\int_{x_0}^{x_n} y dx = \sum_{i=0}^n A_i y_i$$
 (1)

де A_i — сталі коефіцієнти.

Виведемо явні вирази для коефіцієнтів A_i . Як відомо

$$L_n(x) = \sum_{i=0}^n p_i(x) y_i, \text{ де} \quad p_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}.$$

Введемо $q = \frac{x - x_0}{h}$ $q^{[n+1]} = q(q-1)\cdots(q-n)$.

Тоді
$$L_n(x) = \sum_{i=0}^n \frac{(-1)^{n-i}}{i!(n-i)!} \cdot \frac{q^{[n+1]}}{q-i} y_i$$
.

Підставимо в (1) вираз для $L_n(x)$, одержуємо $A_i = \int_{x_0}^{x_n} \frac{(-1)^{n-i}}{i!(n-i)!} \cdot \frac{q^{[n+1]}}{q-i} dx$.

Якщо $q = \frac{x - x_0}{h}$, то $dq = \frac{dx}{h}$. Зробимо заміну змінних у визначеному інтегралі:

$$A_{i} = h \frac{(-1)^{n-i}}{i!(n-i)!} \int_{0}^{n} \frac{q^{[n+1]}}{q-i} dq, \quad i = \overline{0, n}.$$

Оскільки $h = \frac{b-a}{n}$, то вважатимемо $A_i = (b-a)H_i$, де

$$H_{i} = \frac{1}{n} \frac{(-1)^{n-i}}{i!(n-i)!} \int_{0}^{n} \frac{q^{[n+1]}}{q-i} dq$$

- сталі, що називаються коефіцієнтами Котеса.

Квадратурна формула (1) при цьому прийме вигляд $\int_{a}^{b} y dx = (b-a) \sum_{i=0}^{n} H_{i} y_{i}$

Формула трапецій та її залишковий член

Застосуємо одержані формули Ньютона-Котеса, поклавши n=1.

$$H_0 = \int_0^1 \frac{q(q-1)}{q} dq = \frac{1}{2}, \ H_2 = \int_0^1 \frac{q(q-1)}{q-1} dq = \frac{1}{2}.$$

$$\int_{x_0}^{x_n} y dx = \frac{h}{2} (y_0 + y_1)$$

член (похибка) Залишковий формули

$$R = \int_{x_0}^{x_n} y dx - \frac{h}{2} (y_0 + y_1)$$

Будемо розглядати R = R(h) як функцію від h:

$$R(h) = \int_{x_0}^{x_n} y dx - \frac{h}{2} (y(x_0) + y(x_0 + h))$$

Продиференціюємо функцію R(h) по h двічі:

$$R'(h) = y(x_0 + h) - \frac{1}{2}(y(x_0) + y(x_0 + h)) - \frac{h}{2}y'(x_0 + h) = \frac{1}{2}(y(x_0 + h) - y(x_0)) - \frac{h}{2}y'(x_0 + h)$$

$$R''(h) = \frac{1}{2}y'(x_0 + h) - \frac{1}{2}y'(x_0 + h) - \frac{h}{2}y''(x_0 + h) = -\frac{h}{2}y''(x_0 + h)$$

Відзначимо, що R(0) = 0, R'(0) = 0.

Проінтегруємо двічі і скористаємося теоремою про середнє:

$$R'(h) = R'(0) + \int_{0}^{h} R''(t)dt = -\frac{1}{2} \int_{0}^{h} t y''(x_{0} + t)dt = -\frac{1}{2} y''(\xi_{1}) \int_{0}^{h} t dt = -\frac{h^{2}}{4} y''(\xi_{1})$$

$$\xi_1 \in (x_0, x_0 + h)$$

$$R(h) = R(0) + \int_{0}^{h} R'(t)dt = -\frac{1}{4} \int_{0}^{h} t^{2} y''(\xi_{1})dt = -\frac{1}{4} y''(\xi_{2}) \int_{0}^{h} t^{2} dt = -\frac{h^{3}}{12} y''(\xi_{2}),$$

$$\xi_{2} \in (x_{0}, x_{0} + h)$$

$$\text{дe}$$

Рис. 18а

 $R = -\frac{h^3}{12}y''(\xi_2)$

Якщо y'' > 0, то формула для значення $x_0 = x_1$ інтеграла з надлишком, а при y'' < 0 — з

Ми отримали формулу для $[x_0, x_1]$. Для $[x_0, x_n]$

$$\int_{0}^{b} y dx = \frac{h}{2} (y_0 + y_1) + \frac{h}{2} (y_1 + y_2) + \dots + \frac{h}{2} (y_{n-1} + y_n) = h \left(\frac{y_0}{2} + y_1 + y_2 + \dots + y_{n-1} + \frac{y_n}{2} \right)$$

Геометрично формула одержується заміною підінтегральної функції ламаною лінією.

$$R = \int_{x_0}^{x_n} y(x) dx - \frac{h}{2} \sum_{i=1}^{n} (y_{i-1} + y_n) = \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_i} y dx - \frac{h}{2} (y_{i-1} + y_i) \right) = -\frac{h^3}{12} \sum_{i=1}^{n} y''(\xi_i)$$

$$\xi_i \in (x_{i-1}, x_i)$$

Позначимо середнє арифметичне $=\frac{1}{n}\sum_{i=1}^{n}y''(\xi_i)$. Оскільки функція y''(x) на відрізку [a,b] неперервна, то на [a,b] знайдеться така точка $\xi\in[a,b]$, що

=
$$y''(\xi)$$
. Тоді $R = -\frac{nh^3}{12}y''(\xi) = -\frac{b-a}{12}y''(\xi)h^2$, $\xi \in [a,b]$.

Формула Сімпсона (парабол) та її залишковий член

Скористаємося формулами Ньютона-Котеса при n = 2. Маємо

$$H_0 = \frac{1}{2} \cdot \frac{1}{2} \int_0^2 (q-1)(q-2)dq = \frac{1}{4} \left(\frac{8}{3} - 6 + 4 \right) = \frac{1}{6}$$

$$H_2 = \frac{1}{2} \cdot \frac{1}{2} \int_{0}^{2} q(q-1)dq = \frac{1}{6}$$

$$H_1 = -\frac{1}{2} \cdot \frac{1}{1} \int_0^2 q(q-2)dq = \frac{2}{3}$$

Оскільки
$$x_2 - x_0 = 2h$$
, то $\int_{x_0}^{x_2} y dx = \frac{h}{3} (y_0 + 4y_1 + y_2)$

$$R = \int_{0}^{x_{n}} y dx - \frac{h}{3} (y_{0} + 4y_{1} + y_{2})$$

Залишковий член формули

Розглянемо R як функцію від h, тобто R(h).

$$R(h) = \int_{x_1-h}^{x_1+h} y dx - \frac{h}{3} (y(x_1-h) + 4y(x_1) + y(x_1+h))$$

Продиференціюємо R(h) тричі по h.

$$R'(h) = y(x_1 + h) + y(x_1 - h) - \frac{1}{3}(y(x_1 - h) + 4y(x_1) + y(x_1 + h)) - \frac{h}{3}(-y'(x_1 - h) + y'(x_1 + h)) =$$

$$= \frac{2}{3}(y(x_1 - h) + y(x_1 + h)) - \frac{4}{3}y(x_1) - \frac{h}{3}(-y'(x_1 - h) + y'(x_1 + h))$$
.

$$R''(h) = \frac{2}{3}(-y'(x_1 - h) + y'(x_1 + h)) - \frac{1}{3}(-y'(x_1 - h) + y'(x_1 + h)) - \frac{h}{3}(y''(x_1 - h) + y''(x_1 + h)) =$$

$$= \frac{1}{3}(-y'(x_1 - h) + y'(x_1 + h)) - \frac{h}{3}(y''(x_1 - h) + y''(x_1 + h))$$

$$R'''(h) = \frac{1}{3} (y''(x_1 - h) + y''(x_1 + h)) - \frac{1}{3} (y''(x_1 - h) + y''(x_1 + h)) - \frac{h}{3} (-y'''(x_1 - h) + y'''(x_1 + h)) =$$

$$= -\frac{h}{3} (y'''(x_1 + h) - y'''(x_1 - h)) = -\frac{2h^2}{3} y^{IV}(\xi),$$

$$\pi e^{-\xi} \xi \in (x_1 - h, x_1 + h)$$

Крім того, маємо R(0) = 0, R'(0) = 0, R''(0) = 0

Послідовно інтегруючи вираз для R'''(x) та використовуючи теорему про середнє, маємо

$$R''(h) = R''(0) + \int_{0}^{h} R'''(t)dt = -\frac{2}{3}\int_{0}^{h} t^{2}y^{IV}(\xi_{1})dt = -\frac{2}{3}y^{IV}(\xi_{1})\int_{0}^{h} t^{2}dt = -\frac{2}{9}h^{3}y^{IV}(\xi_{1})$$

$$\exists t \in (x_{1} - h, x_{1} + h).$$

$$R'(h) = R'(0) + \int_{0}^{h} R''(t)dt = -\frac{2}{9} \int_{0}^{h} t^{3} y^{IV} (\xi_{1})dt = -\frac{2}{9} y^{IV} (\xi_{2}) \int_{0}^{h} t^{3} dt = -\frac{h^{4}}{18} y^{IV} (\xi_{2})$$

$$\text{де } \xi_{2} \in (x_{1} - h, x_{1} + h).$$

$$R(h) = R(0) + \int_{0}^{h} R'(t)dt = -\frac{1}{18} \int_{0}^{h} t^{4} y^{IV} (\xi_{2})dt = -\frac{1}{18} y^{IV} (\xi_{3}) \int_{0}^{h} t^{4} dt = -\frac{h^{5}}{90} y^{IV} (\xi_{3})$$

$$\text{де } \xi_{3} \in (x_{1} - h, x_{1} + h).$$

Залишковий член $R = -\frac{h^3}{90} y^{IV}(\xi)$, де $\xi \in (x_0, x_2)$.

Поширимо цей результат на весь відрізок [a,b], вважаючи, що n=2m і $h=\frac{b-a}{n}=\frac{b-a}{2m}$

Застосуємо одержану формулу для кожного подвоєного проміжку довжини 2m :

$$\int_{a}^{b} y dx = \frac{h}{3} (y_0 + 4y_1 + y_2) + \frac{h}{3} (y_2 + 4y_3 + y_4) + \dots + \frac{h}{3} (y_{2m-2} + 4y_{2m-1} + y_{2m})$$

Маємо

$$\int_{a}^{b} y dx = \frac{h}{3} ((y_0 + y_{2m}) + 4 \cdot (y_1 + y_3 + \dots + y_{2m-1}) + 2 \cdot (y_2 + y_4 + \dots + y_{2m-2}))$$

- загальну формулу Сімпсона.

Позначимо $\sigma_1 = y_1 + y_3 + ... + y_{2m-1}$, $\sigma_2 = y_2 + y_4 + ... + y_{2m-2}$.

Тоді
$$\int_{a}^{b} y dx = \frac{h}{3} (y_0 + y_n + 4\sigma_1 + 2\sigma_2)$$

Залишкова похибка методу Сімпсона $R = -\frac{h^5}{90} \sum_{k=1}^{m} y^{IV} (\xi_k)$

Оскільки $y^{IV}(x)$ неперервна на [a,b], то існує $\xi \in [a,b]$ така, що $y^{IV}(\xi) = \frac{1}{m} \sum_{k=1}^{m} y^{IV}(\xi_k)$

$$R = -\frac{mh^5}{90} y^{IV}(\xi) = -\frac{(b-a)h^4}{180} y^{IV}(\xi)$$

Якщо відома гранична допустима похибка $\varepsilon > 0$, то, позначивши $M_4 = \max \left| y^{IV}(x) \right|$, для визначення кроку h маємо

$$(b-a)\frac{h^4}{180}M_4 < \varepsilon \Rightarrow h < \sqrt[4]{\frac{180\varepsilon}{(b-a)M_4}},$$
 тобто h має порядок $\sqrt[4]{\varepsilon}$.

У багатьох випадках оцінка похибки методу Сімпсона досить важка. Тому рекомендується робити так:

- виконати розрахунки з h і 2h;
- десяткові знаки, що співпадають, вважати точними цифрами шуканого результату.

Чисельне інтегрування у випадку кратних інтегралів

Кубатурні формули призначені для числового обчислення подвійних інтегралів.

Нехай функція z = f(x, y) визначена і неперервна у деякій обмеженій області σ .

У цій області вибирається система точок (вузлів) $M_i(x_i, y_i)$, $i = \overline{1, N}$.

Для обчислення подвійного інтеграла $\iint\limits_{(\sigma)} f(x,y) dx dy$ наближено покладають

$$\iint\limits_{(\sigma)} f(x, y) dx dy = \sum_{i=1}^{N} A_i f(x_i, y_i)$$
(1)

Щоб знайти коефіцієнти A_i , вимагатимемо точного виконання кубатурної формули (1) для всіх многочленів

$$P_{n}(x,y) = \sum_{k+l \le n} C_{kl} x^{k} y^{l}$$
 (2)

степінь яких не перевищує заданого числа n . Для цього необхідно і досить, щоб формула (1) була точною для добутку степенів $^{x^ky^l}$, $^{k,\,l=\overline{0,N}}$, $^{k+l\,\leq\,N}$.

Покладаючи в (1) $f(x,y) = x^k y^l$, будемо мати

$$I_{kl} = \iint_{(\sigma)} x^k y^l dx dy = \sum_{i=1}^N A_i x_i^k y_i^l$$
 (3)

Таким чином, коефіцієнти A_i формули (1) можуть бути визначені із системи лінійних рівнянь (3). Для того, щоб система (3) була визначеною, необхідно, щоб кількість невідомих N була рівна кількості рівнянь. Звідси, складаючи "решітку показників" (рис.2),

$$N = (n+1) + n + \dots + 1 = \frac{(n+1)(n+2)}{2}$$

Залишається відкритим питання про найбільш раціональний вибір вузлів для даної області.

Розглянемо один досить загальний прийом обчислення подвійного інтеграла. Нехай область інтегрування обмежена неперервними однозначними кривими $y = \varphi(x)$, $y = \psi(x)$ ($\varphi(x) \le \psi(x)$) і двома вертикальними прямими x = a, x = b.

Maemo
$$I = \iint_{(\sigma)} f(x, y) dx dy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) dy$$

Нехай

$$F(x) = \int_{\varphi(x)}^{\psi(x)} f(x, y) dy$$

ТОД1

$$\iint_{(\sigma)} f(x, y) dx dy = \int_{a}^{b} F(x) dx$$

Застосовуючи до останнього інтеграла одну квадратурних формул, одержимо

$$\iint\limits_{(\sigma)} f(x,y) dx dy = \sum_{i=1}^{n} A_{i} F(x_{i}), \text{ де } x_{i} \in [a,b], A_{i} - \text{деякі сталі}$$

коефіцієнти.

 $F(x_i) = \int_{\phi(x_i)}^{\psi(x_i)} f(x_i, y) dy$ У свою чергу значення можуть бути також знайдені

 $F(x_i) = \sum_{j=1}^{m_i} B_{ij} f(x_i, y_j)$, де B_{ij} – відповідні за деякими квадратурними формулами сталі.

$$\iint\limits_{(\sigma)} f(x,y) dx dy = \sum_{i=1}^{n} \sum_{j=1}^{m_i} A_i B_{ij} f(x_i,y_j), \text{ де } A_i, B_{ij} - \text{відомі сталі}.$$

Геометрично цей метод еквівалентний обчисленню об'єму Iдопомогою поперечних розділів.

Кубатурна формула типу Сімпсона

спочатку областю інтегрування ϵ прямокутник $R\{a \le x \le A, b \le y \le B\}$

Кожен із відрізків [a,A], [b,B] розіб'ємо пополам точками $x_0 = a$, $x_1 = a + h$, $x_2 = a + 2h = A$,

пополам точками
$$x_0 = a$$
, $x_1 = a + h$, $x_2 = a + 2h = A$, $y_0 = b$, $y_1 = b + k$, $y_2 = b + 2k = B$, де $h = \frac{A - a}{2}$, $k = \frac{B - b}{2}$

Маємо 9 точок (x_i, y_j) $\iint\limits_{(B)} f(x,y) dx dy = \int\limits_{A}^{A} dx \int\limits_{B}^{B} f(x,y) dy$

Обчислюємо внутрішній інтеграл за формулою Сімпсона. Маємо

$$\iint\limits_{(R)} f(x,y) dx dy = \int\limits_{0}^{A} dx \cdot \frac{k}{3} (f(x,y_0) + 4f(x,y_1) + f(x,y_2)) =$$

$$= -\frac{k}{3} \left(\int_{a}^{A} f(x, y_{0}) dx + 4 \int_{a}^{A} f(x, y_{1}) dx + \int_{a}^{A} f(x, y_{2}) dx \right) =$$

$$= \frac{hk}{9} \left(\left(f(x_{0}, y_{0}) + 4 f(x_{1}, y_{0}) + f(x_{2}, y_{0}) \right) + 4 \left(f(x_{0}, y_{1}) + 4 f(x_{1}, y_{1}) + f(x_{2}, y_{1}) \right) +$$

$$+ f(x_{0}, y_{2}) + 4 f(x_{1}, y_{2}) + f(x_{2}, y_{2}) \right) =$$

$$= \frac{hk}{9} \left(\left(f(x_{0}, y_{0}) + f(x_{2}, y_{0}) + f(x_{0}, y_{2}) + f(x_{2}, y_{2}) \right) + 4 \left(f(x_{1}, y_{0}) + f(x_{0}, y_{1}) + f(x_{2}, y_{1}) + f(x_{1}, y_{2}) \right) +$$

$$+ 16 f(x_{1}, y_{1}).$$

Одержали кубатурну формулу Сімпсона:

$$\iint\limits_{(R)} f(x, y) dx dy = \frac{hk}{9} (\sigma_0 + 4\sigma_1 + 16\sigma_2)$$

де σ_0 — сума значень f(x,y) у вершинах прямокутника R, σ_1 — сума значень f(x,y) у серединах сторін прямокутника R, $\sigma_2 = f(x_1,y_1)$ — значення в центрі.

Якщо розміри прямокутника R великі, то область R розбивають на систему прямокутників, до кожного з яких застосовують кубатурну формулу Сімпсона.

Наближене обчислення кратних інтегралів методом Монте-Карло

Нехай функція $y = f(x_1, x_2, ..., x_m)$ неперервна в обмеженій замкненій області S і потрібно обчислити m -кратний інтеграл

$$I = \iiint_{(S)} f(x_1, x_2, \dots, x_m) dx_1 dx_2 \cdots dx_m$$
(1)

Геометрично число I являє собою (m+1)-мірний об'єм прямого циліндроїда в просторі $Ox_1x_2\cdots x_my$, побудованому на основі S і обмеженого зверху даною поверхнею $y=f(\overline{x})$, де $\overline{x}=(x_1,x_2,...,x_m)$.

Перетворимо інтеграл (1) так, щоб нова область інтегрування повністю містилася всередині одиничного m -вимірного куба. Нехай область S розміщена в m -вимірному паралелепіпеді

$$a_i \le x_i \le A_i, \quad i = \overline{1, m} \ . \tag{2}$$

Зробимо заміну змінної

$$x_i = a_i + (A_i - a_i)\xi_i \tag{3}$$

Тоді m -вимірний паралелепіпед (2) перетвориться в m -вимірний одиничний куб

$$0 \le \xi_i \le 1, \quad i = \overline{1, m}. \tag{4}$$

Отже, нова область інтегрування буде міститися всередині цього куба. Обчислимо якобіан перетворення

$$\frac{D(x_1, x_2, \dots, x_m)}{D(\xi_1, \xi_2, \dots, \xi_m)} = \begin{vmatrix} A_1 - a_1 & 0 & \dots & 0 \\ 0 & A_2 - a_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_m - a_m \end{vmatrix} = (A_1 - a_1)(A_2 - a_2) \cdots (A_m - a_m)$$

$$I = \iint_{(\sigma)} \int F(\xi_1, \xi_2, \dots, \xi_m) d\xi_1 d\xi_2 \dots d\xi_m$$
(5)

де
$$F(\xi_1, \xi_2, ..., \xi_m) = (A_1 - a_1)(A_2 - a_2) \cdots (A_m - a_m) \quad f(a_1 + (A_1 - a_1)\xi_1, a_2 + (A_2 - a_2)\xi_2, ..., a_m + (A_m - a_m)\xi_m)$$

Введемо позначення $\bar{\xi} = (\xi_1, \xi_2, ..., \xi_m)$, $d\sigma = d\xi_1 d\xi_2 ... d\xi_m$.

Інтеграл (5) перепишемо так

$$I = \iint_{(\sigma)} F(\xi) d\sigma$$
 (5')

Рис. 24

Обчислимо (5') методом випадкових

Вибираємо m рівномірно розподілених на

$$\xi_1^{(1)}, \xi_2^{(1)}, \dots, \xi_n^{(1)}, \dots;$$
 $\xi_1^{(2)}, \xi_2^{(2)}, \dots, \xi_n^{(2)}, \dots;$
 $\dots \dots;$
 $\xi_1^{(m)}, \xi_2^{(m)}, \dots, \xi_n^{(m)}, \dots$

Точки $M_i \left(\xi_i^{(1)}, \xi_i^{(2)}, \dots, \xi_i^{(m)} \right)$, $i=1,2,\dots$ можна розглядати як випадкові. Вибираючи досить велику кількість N точок M_1 , M_2 , ..., M_N , перевіряємо, які з них належать області о (перша категорія) і які не належать їй (друга категорія).

Нехай
$$M_i \in \sigma$$
 для $i = \overline{1,n}$, (6)

$$M_i \notin \sigma$$
 для $i = n + 1, n + 2, \dots, N$ (6')

(спеціально міняємо нумерацію точок).

При досить великій кількості n точок наближено можемо покласти

$$y_{cep} = \frac{1}{n} \sum_{i=1}^{n} F(M_i)$$

Звідси шуканий інтеграл виражається формулою

$$I = y_{cep} \cdot \sigma = \frac{\sigma}{n} \sum_{i=1}^{n} F(M_i)$$
(7)

де $\sigma-m$ -вимірний об'єм області інтегрування σ .

Якщо обчислення об'єму σ складне, то можна прийняти $\sigma \approx \frac{n}{N}$. Звідси $I \approx \frac{1}{N} \sum_{i=1}^{n} F(M_i)$

Для перевірки умов (6) і (6') виходять із аналітичного задання границі

 Γ області σ . У найпростішому випадку, якщо поверхня Γ задана рівнянням $\phi(\xi) = 0$ (8)

де при $\varphi(\xi) < 0$ точка $\xi \in \sigma$, а при $\varphi(\xi) > 0$ точка $\xi \notin \sigma$, то маємо:

- 1) якщо $\varphi(M_i) < 0$, то точка M_i першої категорії;
- 2) при $\phi(M_i) > 0$ точка M_i другої категорії.

Квадратурна формула Гауса

Для отримання підвищеної точності при чисельному інтегруванні користуються формулою Гауса

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$
(1)

у якій не фіксуються не тільки вузли інтерполювання $x_1, x_2, ..., x_n$, але й квадратурні коефіцієнти $c_1, c_2, ..., c_n$. При цьому 2^n невідомих величин $x_1, x_2, ..., x_n, c_1, c_2, ..., c_n$ визначаються із умови, що формула є точною у випадку довільного многочлена степеня 2^{n-1} .

Таким чином, для довільного многочлена (2n-1)-го степеня $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n-1} x^{2n-1}$ (2)

повинна виконуватися точна рівність

$$\int_{-1}^{1} f(x)dx = c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$
(3)

Многочлен f(x), степінь якого рівний 2n-1, можна подати у вигляді f(x) = F(x)Q(x) + R(x), (4)

де F(x) — шуканий многочлен n -го степеня, а Q(x) і R(x) — відповідно частка від ділення f(x) на F(x) і остача від цього ділення; степені многочленів Q(x) і R(x) не перевищують n-1. Вираз для F(x) можна записати таким чином:

$$F(x) = x^{n} + A_{1}x^{n-1} + A_{2}x^{n-2} + \dots + A_{n} = (x - x_{1})(x - x_{2})\dots(x - x_{n});$$
(5)

тут величини $x_1, x_2, ..., x_n$ — шукані абсциси формули Гауса, а $A_1, A_2, ..., A_n$ — сталі.

Оскільки шукана функція F(x) у вузлах $x_1, x_2, ..., x_n$ перетворюється в нуль, то

$$f(x_1) = R(x_1), f(x_2) = R(x_2), ..., f(x_n) = R(x_n).$$
 (6)

Тоді рівність (3) набуде вигляду

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} F(x)Q(x)dx + \int_{-1}^{1} R(x)dx = c_1R(x_1) + c_2R(x_2) + \dots + c_nR(x_n)$$
(7)

Але для многочлена R(x) степеня не вище n-1 також повинна

виконуватися точна рівність

$$\int_{-1}^{1} R(x)dx = c_1 R(x_1) + c_2 R(x_2) + \dots + c_n R(x_n)$$
Віднімаючи (8) із (7), отримуємо

$$\int_{-1}^{1} F(x)Q(x)dx = 0 (9)$$

Із останнього співвідношення можна визначити шукану функцію F(x). Оскільки рівність (9) справедлива для довільного многочлена Q(x) степеня n-1, тобто для многочлена виду

$$Q(x) = b_0 x^{n-1} + b_1 x^{n-2} + \dots + b_{n-2} x + b_{n-1},$$
(10)

то вона виконується при довільних коефіцієнтах b_0 , b_1 , ..., b_{n-1} ; отже, має місце така система рівнянь

$$\int_{-1}^{1} x^{n-1} F(x) dx = 0,$$

$$\int_{-1}^{1} x^{n-2} F(x) dx = 0,$$
......
$$\int_{-1}^{1} xF(x) dx = 0,$$

$$\int_{-1}^{1} F(x) dx = 0.$$
(11)

Підставляючи сюди вираз для F(x) із формули (5) та інтегруючи, отримаємо для визначення коефіцієнтів $A_1, A_2, ..., A_n$ систему n рівнянь:

$$\begin{cases}
\frac{A_1}{2n-1} + \frac{A_3}{2n-3} + \frac{A_5}{2n-5} + \dots = 0, \\
\frac{1}{2n-1} + \frac{A_2}{2n-3} + \frac{A_4}{2n-5} + \dots = 0, \\
\frac{A_1}{2n-3} + \frac{A_3}{2n-5} + \frac{A_5}{2n-7} + \dots = 0, \\
\frac{1}{2n-3} + \frac{A_2}{2n-5} + \frac{A_4}{2n-7} + \dots = 0,
\end{cases}$$
(12)

Із цих рівнянь видно, що $A_1 = A_3 = A_5 = A_7 = \dots = 0$ і, отже, шуканий многочлен має вигляд

$$F(x) = x^{n} + A_{2}x^{n-2} + A_{4}x^{n-4} + A_{6}x^{n-6} + \dots$$
(13)

Відмітимо, що при парному n корені рівняння F(x) = 0 попарно рівні за абсолютною величиною, але протилежні за знаком, а при непарному nкоренем буде також і x = 0.

Визначивши із системи (12) коефіцієнти A_i (i=1,2,...,n), складемо рівняння F(x) = 0 і знайдемо його коефіцієнти c_i (i = 1, 2, ..., n) за формулою

$$c_{i} = \frac{\int_{-1}^{1} (x - x_{1}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n}) dx}{(x_{i} - x_{1}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})}$$
(14)

Можна показати, що будь який інший многочлен, що задовольняє цим умовам, відрізняється від наведеного лише сталим множником.

Для обчислення коефіцієнтів $^{\mathcal{C}_k}$ використовують спрощену функцію частинного вигляду. Покладемо

$$f(x) = 2F_k(x)F_k'(x), (19)$$

ле

$$F_k(x) = \frac{F(x)}{x - x_k} = k(x - x_1)(x - x_2) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$
(20)

(тут величина k – стала. Тоді

$$\int_{-1}^{1} 2F_k(x)F_k'(x)dx = (F_k(x))^2\Big|_{-1}^{1} = \frac{(F(1))^2}{(1-x_k)^2} - \frac{(F(-1))^2}{(1+x_k)^2} = \frac{4x_k}{(1-x_k^2)^2}F^2(1) = \frac{4x_k}{(1-x_k^2)^2}$$
 (21)

оскільки $(F(-1))^2 = (F(1))^2 = 1$. Згідно формули (3)

$$\int_{-1}^{1} 2F_k(x)F_k'(x)dx = 2c_k F(x_k)F'(x_k)$$
(22)

оскільки всі інші члени в формулі (3) перетворюються в нуль.

Диференціюючи рівність $(x-x_k)F_k(x) = F(x)$ двічі по x і покладаючи $x=x_k$, отримаємо

$$F_k(x_k) = F'(x_k), \quad 2F'_k(x_k) = F''(x_k).$$
 (23)

Підставляючи (23) в (22) і порівнюючи з (21), знаходимо

$$c_k = \frac{4x_k}{(1 - x_k^2)^2} \cdot \frac{1}{F'(x_k)F''(x_k)}$$
 (24)

Оскільки F(x) задовольняє диференціальне рівняння

$$(x^{2}-1)F''(x) + 2xF'(x) - n(n+1)F(x) = 0$$
(25)

то покладаючи в ньому $x = x_k$ і зауваживши, що $F(x_k) = 0$, маємо $(x_k^2 - 1)F''(x_k) + 2x_kF'(x_k) = 0$,

звілки

$$F''(x_k) = \frac{2x_k F'(x_k)}{1 - x_k^2} \tag{26}$$

Підставляючи цей вираз у співвідношення для коефіцієнтів c_k , нарешті отримуємо

$$c_k = \frac{2}{(1 - x_k^2)(F'(x_k))^2} \qquad (k = 1, 2, ..., n).$$
 (27)

Для обчислення інтеграла загального вигляду $\overset{\circ}{a}$ треба провести заміну змінної

$$z_{i} = \frac{b+a}{2} + \frac{b-a}{2} x_{i} \quad (i=1,2,...,n).$$
The right arrange France property of the contract of

Тоді формула Гауса прийме вигляд

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} (c_1 f(z_1) + c_2 f(z_2) + \dots + c_n f(z_n))$$
(29)

Значення квадратурних коефіцієнтів Гауса c_i (i=1,2,...,n) і абсцис x_i (i=1,2,...,n) наведені в таблиці 1.

Таблиця 1

Квадратурні коефіцієнти Гауса

	1 01	
n = 1	$x_1 = 0.5$	$c_1 = 2$
n = 2	$-x_1 = x_2 = 0,577350$	$c_1 = c_2 = 1$
n = 3	$-x_1 = x_3 = 0,774597, x_2 = 0$	$c_1 = c_3 = 0.555555, c_2 = 0.888889$
n=4	$-x_1 = x_4 = 0,861136$	$c_1 = c_4 = 0.347855$
	$-x_2 = x_3 = 0.339981$	$c_2 = c_3 = 0,652145$
n = 5	$-x_1 = x_5 = 0.906180$	$c_1 = c_5 = 0.236927$
	$-x_2 = x_4 = 0,538470$	$c_2 = c_4 = 0,478629$
	$x_3 = 0$	$c_3 = 0,568889$
n = 6	$-x_1 = x_6 = 0.932470$	$c_1 = c_6 = 0.171324$
	$-x_2 = x_5 = 0,661210$	$c_2 = c_5 = 0.360761$
	$-x_3 = x_4 = 0.238620$	$c_3 = c_4 = 0,467914$
n = 7	$-x_1 = x_7 = 0.949108$	$c_1 = c_7 = 0.129485$
	$-x_2 = x_6 = 0,741531$	$c_2 = c_6 = 0.279705$
	$-x_3 = x_5 = 0,405845$	$c_3 = c_5 = 0.381830$
	$x_4 = 0$	$c_4 = 0.417960$
n = 8	$-x_1 = x_8 = 0.960290$	$c_1 = c_8 = 0.101228$
	$-x_2 = x_7 = 0,796666$	$c_2 = c_7 = 0.222381$
	$-x_3 = x_6 = 0,525532$	$c_3 = c_6 = 0.313707$
	$-x_4 = x_5 = 0,183434$	$c_4 = c_5 = 0.362684$

Чисельні методи розв'язування задачі Коші для звичайних диференціальних рівнянь

Найпростішим диференціальним рівнянням є рівняння виду
$$y' = f(x, y)$$
 (1)

Основна задача, пов'язана з цим рівнянням, відома як задача Коші: відшукати розв'язок рівняння (1) у вигляді функції, що задовольняє початкову умову:

$$y(x_0) = y_0 \tag{2}$$

Геометрично це означає, що потрібно знайти інтегральну криву y = y(x), що проходить через задану точку $M_0(x_0, y_0)$ при виконанні умови (2).

Існування і єдиність розв'язку рівняння (1) забезпечується наступною теоремою.

Теорема Пікара. Якщо функція f(x,y) визначена і неперервна в деякій області G, що визначається нерівностями

$$\left|x - x_0\right| \le a, \left|y - y_0\right| \le b \tag{3}$$

і задовольняє в цій області умову Ліпшиця по y: $|f(x,y_1)-f(x,y_2)| \le M \cdot |y_1-y_2|$, то на деякому відрізку $|x-x_0| \le h$, де h — додатне число, існує, причому тільки один розв'язок рівняння (1), що задовольняє початкову умову $y_0 = y(x_0)$.

Тут M — стала (константа Ліпшиця), залежна в загальному випадку від a і b . Якщо f(x,y) має обмежену в G похідну f'(x,y), то при $(x,y) \in G$ можна прийняти

$$M = \max \left| f_y'(x, y) \right| \tag{4}$$

В залежності від форми подання розв'язку, наближені методи розв'язування диференціальних рівнянь поділяються на три основні групи:

- аналітичні методи, застосування яких дає розв'язок диференціального рівняння у вигляді аналітичного виразу;
 - графічні методи, що дають наближений розв'язок у вигляді графіка;
- чисельні методи, коли шукана функція отримується у вигляді числової таблиці.

Метод Пікара

Цей метод дозволяє отримати наближений розв'язок диференціального рівняння (1) у вигляді функції, поданої аналітично.

Розглянемо задачу (1),(2).

Проінтегруємо обидві частини рівняння (1) від x_0 до x:

$$\int_{x_0}^{x} dy = \int_{x_0}^{x} f(x, y) dx \qquad y(x) = y_0 + \int_{x_0}^{x} f(x, y) dx$$
afo

Розв'язок інтегрального рівняння (5) буде задовольняти задачу (1),(2).

 $y(x_0) = y_0 + \int_{x_0}^{x} f(x, y) dx = y_0$

Дійсно, при $k = x_0$ маємо:

Разом з тим інтегральне рівняння (5) дозволяє застосовувати метод послідовних наближень. Покладемо $y = y_0$ і отримаємо із (5) перше

$$y_1(x) = y_0 + \int_{x_0}^{x} f(x, y_0) dx$$

наближення:

Інтеграл у правій частині містить тільки змінну x; після знаходження цього інтеграла буде отримано аналітичний вираз наближення $y_1(x)$ як функції змінної x. Замінимо тепер у рівнянні (5) y знайденим значенням

 $y_2(x) = y_0 + \int_{x_0}^x f(x,y_1) dx$ $y_1(x)$ і отримаємо друге наближення : і так далі. У загальному випадку ітераційна формула має вигляд

$$y_n(x) = y_0 + \int_{x_0}^{x} f(x, y_{n-1}) dx, \quad n = 1, 2, \dots$$
(6)

Циклічне застосування формули (6) дає послідовність функцій $y_1(x), y_2(x), ..., y_n(x), ...$ (7)

Оскільки функція f(x,y) неперервна в області G, то вона обмежена в деякій області $G' \in G$, яка містить точку (x_0,y_0) , тобто

$$|f(x,y)| \le N \tag{8}$$

Застосовуючи до рівняння (6) в умовах теореми існування принцип стислих відображень, неважко показати, що послідовність (7) збігається (мається на увазі збіжність за метрикою $\rho(\phi_1,\phi_2)=\max|\phi_1(x)-\phi_2(x)|$ в просторі неперервних функцій $\phi(x)$, визначених на сегменті $|x-x_0| \leq d$, таких, що $|\phi(x)-y_0| \leq Nd$). Її границя є розв'язком інтегрального рівняння (6), а отже, і диференціального рівняння (1) з умовами (2). Це означає, що k-тий член послідовності (7) є наближенням до точного розв'язку рівняння (1) з заданою точністю.

Оцінка похибки k-го наближення дається формулою

$$|y(x)-y_k(x)| \le M^k N \frac{d^{k+1}}{(k+1)!},$$
 (9)

де M — стала Ліпшиця (4), N — верхня грань модуля функції f(x,y) із нерівності (8), а величина d для визначення околу $|x-x_0| \le d$ обчислюється за формулою

$$d = \min\left(a, \frac{b}{N}\right). \tag{10}$$

Метод Ейлера

В основі методу ламаних Ейлера лежить ідея графічної побудови розв'язку диференціального рівняння, однак цей метод дає одночасно і спосіб знаходження шуканої функції в чисельній формі.

Нехай дана задача (1),(2). Виберемо досить малий крок h, побудуємо, починаючи з точки x_0 , систему рівновіддалених точок $x_i = x_0 + ih$, i = 0,1,.... Замість інтегральної кривої на $[x_0, x_1]$ розглянемо відрізок дотичної до неї в точці $M_0(x_0, y_0)$ з рівнянням $y = y_0 + f(x_0, y_0)(x - x_0)$. При $x = x_i$ із рівняння для

дотичної L_1 отримуємо $y_1 = y_0 + hf(x_0, y_0)$, звідки видно, що приріст значення функції на першому кроці має вигляд: $\Delta y_0 = hf(x_0, y_0)$.

Аналогічно, проводячи дотичну L_2 до деякої інтегральної кривої сімейства в точці $M(x_1, y_1)$, отримаємо $y = y_1 + f(x_1, y_1) \cdot (x - x_1)$, що при $x = x_2$ дає $y_2 = y_1 + hf(x_1, y_1)$. Тобто $y_2 = y_1 + \Delta y_1$, де $\Delta y_1 = hf(x_1, y_1)$.

$$\begin{cases} \Delta y_k = h f(x_k, y_k) \\ y_{k+1} = y_k + \Delta y_k, \quad k = 0, 1, 2, \dots \end{cases}$$
 (11)

Метод Ейлера має малу точність, до того ж похибка кожного кроку систематично зростає. Найбільш прийнятним для практики методом оцінки точності є спосіб подвійних обчислень — з кроком h і з кроком $^{h/2}$. Співпадання десяткових знаків в отриманих двома способами результатах дає підставу вважати їх правильними.

Метод додаткового півкроку

Розглянемо задачу (1),(2). Виберемо h і маємо $x_i = x_0 + ih$. Згідно методу Ейлера

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Тут напрямок визначали в точці M_i на початку відрізка $M_i M_{i+1}$. Якщо напрямок будемо визначати в середній точці цього відрізка, то він буде краще наближати напрямок дійсної інтегральної кривої.

Обчислимо проміжні значення

$$x_{i+\frac{1}{2}} = x_i + \frac{h}{2}$$
 $y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i)$

і знайдемо значення напрямку поля інтегральних кривих в середній

точці
$$\begin{pmatrix} x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}} \end{pmatrix}$$
, тобто $f_{i+\frac{1}{2}} = f \begin{pmatrix} x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}} \end{pmatrix}$, а потім покладемо $y_{i+1} = y_i + hf_{i+\frac{1}{2}}$.

Поліпшений метод Ейлера-Коші (метод пробного кроку)

В цьому методі спочатку визначається "грубе наближення" розв'язку $\widetilde{y}_{i+1} = y_i + h f_i$, виходячи з якого знаходиться напрямок поля інтегральних

кривих
$$\widetilde{f} = f(x_{i+1}, \widetilde{y}_{i+1})$$
. Потім наближено кладуть $y_{i+1} = y_i + h \frac{f_i + \widetilde{f}_{i+1}}{2}$.

Метод пробного кроку можна поліпшити, застосувавши ітераційну обробку кожного значення $y_i^{(0)}$. Виходячи з грубого наближення $y_{i+1}^{(0)} = y_i + hf(x_i, y_i)$, побудуємо ітераційний процес

$$y_{i+1}^{(k)} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, y_i^{(k-1)}) \right), \quad k = 1, 2, \dots$$

Ітерацію продовжуємо доти, доки два послідовних значення не співпадуть між собою у відповідних десяткових знаках.

Метод Рунге-Кутта

Метод Ейлера і метод Ейлера-Коші відносяться до сімейства методів Рунге-Кутта, які мають наступний вигляд.

Фіксуємо деякі числа α_2 , ..., α_q ; $p_1,...$, p_q ; β_{ij} , $0 < j < i \le q$, послідовно обчислюємо

$$k_{1}(h) = h \cdot f(x, y),$$

$$k_{2}(h) = h \cdot f(x + \alpha_{2} h, y + \beta_{21} k_{1}(h)),$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$k_{q}(h) = h \cdot f(x + \alpha_{q} h, y + \beta_{q1} k_{1}(h) + \dots + \beta_{qq-1} k_{q-1}(h))$$

і покладаємо

$$y(x+h) \approx y(x) + \sum_{i=1}^{q} p_i k_i(h) = z(h)$$
 (1)

Розглянемо питання про вибір параметрів α_i , p_i , β_{ij} .

Позначимо $\varphi(h) = y(x+h) - z(h)$.

Будемо вважати, що $\varphi(0) = \varphi'(0) = \dots = \varphi^{(s)}(0) = 0$ для довільних функцій f(x,y), а $\varphi^{(s+1)}(0) \neq 0$ для деякої функції f(x,y).

За формулою Тейлора справедлива рівність

$$q(h) = \sum_{i=0}^{s} \frac{\varphi^{i}(0)}{i!} h^{i} + \frac{\varphi^{s+1}}{(s+1)!} h^{s+1}$$
(2)

де $0 < \theta < 1$. Величина $\phi(x)$ називається похибкою методу на кроці , а s — порядком похибки методу.

При
$$q=1$$
 будемо мати
$$\phi(h) = y(x+h) - y(x) - p_1 h f(x,y),$$
 $\phi(0) = 0,$
$$\phi'(0) = (y'(x+h) - p_1 f(x,y)) \Big|_{h=0} = f(x,y)(1-p_1),$$
 $\phi''(h) = y''(x+h).$

Зрозуміло, що рівність $\phi'(0) = 0$ виконується для довільних функцій f(x,y) лише при умові $p_1 = 1$. При цьому значенні p_1 з (1) випливає формула методу Ейлера. Для похибки цього методу на кроці згідно (2) маємо

$$\varphi(h) = \frac{\varphi''(x + \theta h) \cdot h^2}{2}$$

Розглянемо випадок q = 2. Тоді

$$\phi(h) = y(x+h) - y(x) - p_1 h f(x, y) - p_2 h f(\bar{x}, \bar{y}),$$

$$\pi e^{\bar{x}} = x + \alpha_2 h, \ \bar{y} = \beta_{21} h f(x, y).$$

Згідно з вихідним диференціальним рівнянням

$$y = f y'' = f_x + f_y f y''' = f_{xx} + 2f_{xy} f + f_{yy} f^2 + f y'' (3)$$

Обчислюючи похідні функції $\varphi(h)$ та підставляючи у вирази для $\varphi(h)$, $\varphi'(h)$, $\varphi''(h)$ значення h=0, отримаємо (з врахуванням співвідношень(3)):

$$\phi(0) = 0,$$

$$\phi'(0) = (1 - p_1 - p_2)f,$$

$$\phi''(0) = (1 - 2p_2\alpha_2)f_x + (1 - 2p_2\beta_{21})f_yf$$

Вимога $\phi(0) = \phi'(0) = 0$ буде виконуватися для всіх f(x,y) лише в тому випадку, якщо одночасно будуть справедливі наступні три рівності відносно чотирьох параметрів:

$$1 - p_1 - p_2 = 0,$$

$$1 - 2p_2\alpha_2 = 0,$$

$$1 - 2p_2\beta_{21} = 0$$
(4)

Довільно задаючи значення одного з параметрів і визначаючи значення інших із системи (4), будемо отримувати різні методи Рунге-Кутта з порядком похибки s=2.

Це розрахункові формули методу Ейлера-Коші. Із (2) випливає, що при цьому головна частина похибки на кроці $\epsilon^{\frac{\phi'''(0)}{6}}h^3$.

В обчислювальній практиці найбільш часто використовується метод Рунге-Кутта з q=4, s=4.

Наведемо без доведення один з варіантів відповідних розрахункових формул:

$$k_{1} = h \cdot f(x, y),$$

$$k_{2} = h \cdot f(x + \frac{h}{2}, y + \frac{k_{1}}{2}),$$

$$k_{3} = h \cdot f(x + \frac{h}{2}, y + \frac{k_{2}}{2}),$$

$$k_{4} = h \cdot f(x + h, y + k_{3})$$

$$\Delta y = z(h) - y(x) = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}).$$
(5)

Відмітимо, що у цьому випадку похибка на кроці пропорційна п'ятому степеню кроку (h^5) . Звідси випливає, що при достатньо малому h і малих похибках обчислень розв'язок рівняння y' = f(x, y), отриманий методом Рунге-Кутта за формулами (8), буде близький до точного.

Метод Адамса

$$y' = f(x, y), \tag{1}$$

$$y(x_0) = y_0 \tag{2}$$

Нехай x_i , i=0,1,2,... — система рівновіддалених точок з кроком h і $y_i=y(x_i)$

Маємо

$$\Delta y_i = \int_{x_i}^{x_{i+1}} y' dx \tag{3}$$

З другої інтерполяційної формули Ньютона з точністю до різниць четвертого порядку отримуємо

четвертого порядку отримуємо
$$y' = y'_i + q\Delta y'_{i-1} + \frac{q(q+1)}{2!}\Delta^2 y'_{i-1} + \frac{q(q+1)(q+2)}{3!}\Delta^3 y'_{i-3}, \quad \text{де } q = \frac{x - x_i}{h}, \text{ або}$$

$$y' = y'_i + q\Delta y'_{i-1} + \frac{q^2 + q}{2!}\Delta^2 y'_{i-1} + \frac{q^3 + 3q^2 + 2q}{3!}\Delta^3 y'_{i-3}$$
 (4)

Підставляючи (4) в (3) і враховуючи, що $dx = h \cdot dq$, будемо мати $\Delta y_i = h \int_0^1 \left(y_i' + q \Delta y_{i-1}' + \frac{q^2 + q}{2} \Delta^2 y_{i-2}' + \frac{q^3 + 3q^2 + 2q}{6} \Delta^3 y_{i-3}' \right) dq$

Отримуємо екстраполяційну формулу Адамса

$$\Delta y_i = hy_i' + \frac{1}{2}\Delta(hy_{i-1}') + \frac{5}{12}\Delta^2(hy_{i-2}') + \frac{3}{8}\Delta^3(hy_{i-3}')$$

Для початку процесу потрібні чотири початкових значення y_0 , y_1 , y_2 , y_3 , так званий початковий відрізок, який визначається з початкової умови (2) якимось чисельним методом. Можна використати метод Рунге-Кутта або розвинення в ряд Тейлора

$$y_i = y(x_0 + ih) = y_0 + y_0' \cdot (ih) + \frac{y_0''}{2} (ih)^2 + \dots$$
, μ_0 , μ_0 , μ_0

Знаючи ці значення, із рівняння (1) можна знайти значення похідних y_0', y_1', y_2', y_3' і скласти таблицю різниць: $\Delta(hy_0'), \Delta(hy_1'), \Delta(hy_2'), \Delta^2(hy_0'), \Delta^2(hy_1'), \Delta^2(hy_2')$

Подальші значення y_i , i = 4,5,..., шуканого розв'язку можна крок за кроком обчислювати за формулою Адамса, обчислюючи необхідні різниці.

Для роботи на ЕОМ формулу Адамса вигідно застосовувати у розкритому вигляді. Враховуючи, що $x_{i+1} = x_i + h$ і $\Delta y'_{i-1} = y'_i - y'_{i-1}$, $\Delta^2 y'_{i-2} = y'_i - 2y'_{i-1} + y'_{i-2}$

$$\Delta^2 y'_{i-3} = y'_i - 3y'_{i-1} + 3y'_{i-2} - y'_{i-3}$$

після зведення подібних членів маємо

$$y_{i+1} = y_i + \frac{h}{24} (55y_i' - 59y_{i-1}' + 37y_{i-2}' - 9y_{i-3}')$$

Метод скінчених різниць розв'язування диференціальних рівнянь другого порядку

Розглянемо лінійне диференціальне рівняння

$$y'' + p(x)y' + q(x)y = f(x)$$
(1)

з двоточковими крайовими умовами

$$\alpha_0 y(a) + \alpha_1 y'(a) = A$$
, $\beta_0 y(b) + \beta_1 y'(b) = B$ (2)

 $(|\alpha_0| + |\alpha_1| \neq 0), |\beta_0| + |\beta_1| \neq 0),$

де p(x), q(x), f(x) — неперервні на [a,b] функції.

Значення в точках x_i функції y(x)

позначатимемо

$$y_i = y(x_i), y_i' = y'(x_i), y_i'' = y''(x_i), p_i = p(x_i), q_i = q(x_i), f_i = f(x_i).$$

Замінимо похідні односторонніми скінченнорізницевими співвідношеннями для внутрішніх точок x_i

$$y_i' = \frac{y_{i+1} - y_i}{h} \qquad y_i'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$
(3)

Для кінцевих точок $x_0 = a$ і $x_n = b$ покладаємо

$$y_0' = \frac{y_1 - y_0}{h} \qquad y_n' = \frac{y_n - y_{n-1}}{h} \tag{4}$$

Використовуючи формули (3) диференціальне рівняння (1) наближено можна замінити наближеною системою рівнянь

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + p_i \frac{y_{i+1} - y_i}{h} + q_i y_i = f_i \qquad i = 1, n-1$$
 (5)

Крайові умови (2) додатково дають ще два рівняння

$$\alpha_0 y_0 + \alpha_1 \frac{y_1 - y_0}{h} = A \qquad \beta_0 y_n + \beta_1 \frac{y_n - y_{n-1}}{h} = B \qquad (6)$$

Маємо систему n+1 рівнянь з n+1 невідомими y_0, y_1, \dots, y_n , які є значеннями шуканої функції y=y(x). Похідну y' можна апроксимувати

більш точно за допомогою різниці $y' = \frac{y_{i+1} - y_{i-1}}{2h}$, якою замінимо похідну в (5).

Метод прогонки

При застосуванні методу скінчених різниць до крайових задач для

диференціальних рівнянь другого порядку отримуємо тричленну систему лінійних алгебраїчних рівнянь. Для розв'язання такої системи розроблений метод прогонки.

Розглянемо задачу

$$y'' + p(x)y' + q(x)y = f(x)$$
(1)

$$\alpha_0 y(a) + \alpha_1 y'(a) = A \quad \beta_0 y(b) + \beta_1 y'(b) = B$$
 (2)

$$(\left|\alpha_{0}\right|+\left|\alpha_{1}\right|\neq0,\left|\beta_{0}\right|+\left|\beta_{1}\right|\neq0)$$

Введемо скінченнорізницеву сітку. При $x = x_i$ замість диференціального рівняння (1) маємо

$$\frac{y_{i+2} - 2y_{i+1} + y_i}{h^2} + p_i \frac{y_{i+1} - y_i}{h} + q_i y_i = f_i$$

Після спрощення маємо

$$y_{i+2} + (-2 + hp_i)y_{i+1} + (1 - hp_i + h^2q_i)y_i = f_i h^2$$
(3)

Введемо позначення
$$y_{i+2} + m_i y_{i+1} + n_i y_i = f_i h^2$$
, $i = \overline{0, n-2}$. $1 - h p_i + h^2 q_i = n_i$. Отримуємо (4)

3 крайових умов (2) маємо

$$\alpha_0 y_0 + \alpha_1 \frac{y_1 - y_0}{h} = A$$

$$\beta_0 y_n + \beta_1 \frac{y_n - y_{n-1}}{h} = B$$
(5)

Лінійна система (4), (5) складається із n+1 рівняння і n+1 невідомих y_0 , y_1 , ..., y_n . Цю систему можна розв'язати звичайним способом. Вкажемо більш короткий шлях.

Для цього розв'яжемо рівняння (4) щодо y_{i+1} :

$$y_{i+1} = \frac{f_i}{m_i} h^2 - \frac{n_i}{m_i} y_i - \frac{1}{m_i} y_{i+2}$$
 (6)

Припустимо, що за допомогою повної системи (4) із рівняння виключений член, що містить y_i . Тоді рівняння (6) можна записати у вигляді $y_{i+1} = c_i (d_i - y_{i+2})$, (7)

де коефіцієнти c_i , d_i потрібно визначити. Знайдемо розрахункові формули для цих коефіцієнтів.

При i = 0 із (6) і крайових умов (5) випливає

$$y_1 = \frac{h^2}{m_0} f_0 - \frac{n_0}{m_0} y_0 - \frac{1}{m_0} y_2$$
 $y_0 = \frac{\alpha_1 y_1 - Ah}{\alpha_1 - \alpha_0 h}$

Виключаючи з цих двох рівнянь y_0 , отримуємо $y_1 = \frac{f_0}{m_0}h^2 - \frac{n_0}{m_0}\frac{\alpha_1y_1 - Ah}{\alpha_1 - \alpha_0h} - \frac{1}{m_0}y_2$

Звідси

$$y_{1} = \frac{\frac{n_{0}}{m_{0}} \cdot \frac{Ah}{\alpha_{1} - \alpha_{0}h} + \frac{f_{0}}{m_{0}}h^{2} - \frac{1}{m_{0}}y_{2}}{1 + \frac{n_{0}}{m_{0}} \cdot \frac{\alpha_{1}}{\alpha_{1} - \alpha_{0}h}} = \frac{\alpha_{1} - \alpha_{0}h}{m_{0}(\alpha_{1} - \alpha_{0}h) + n_{0}\alpha_{1}} \left(\frac{n_{0}Ah}{\alpha_{1} - \alpha_{0}h} + f_{0}h^{2} - y_{2}\right)$$
(8)

$$y_1 = c_0(d_0 - y_2) \tag{9}$$

Порівнюючи формули (8) і (9), знаходимо

$$c_0 = \frac{\alpha_1 - \alpha_0 h}{m_0 (\alpha_1 - \alpha_0 h) + n_0 \alpha_1}, \qquad d_0 = \frac{n_0 A h}{\alpha_1 - \alpha_0 h} + f_0 h^2$$
(10)

Нехай тепер i > 0. Виразимо y_i за формулою (7): $y_i = c_{i-1}d_{i-1} - c_{i-1}d_{i+1}$ і підставимо в (6):

$$y_{i+1} = \frac{f_i}{m_i} h^2 - \frac{n_i}{m_i} (c_{i-1} d_{i-1} - c_{i-1} d_{i+1}) - \frac{1}{m_i y_{i+2}}.$$

$$y_{i+1} = \frac{\frac{f_i}{m_i} h^2 - \frac{n_i}{m_i} c_{i-1} d_{i-1} - \frac{1}{m_i} y_{i+2}}{1 - \frac{n_i}{m_i} c_{i-1}}$$
Poor's weak a pigua and y_{i+1} .

Розв'яжемо відносно y_{i+1} :

$$y_{i+1} = \frac{1}{m_i - n_i c_{i-1}} \left(f_i h^2 - n_i c_{i-1} d_{i-1} - y_{i+2} \right)$$
(11)

Порівнюючи (7) і (11), для коефіцієнтів c_i і d_i отримуємо рекурентні формули

$$c_{i} = \frac{1}{m_{i} - n_{i}c_{i-1}}, \qquad d_{i} = f_{i}h^{2} - n_{i}c_{i-1}d_{i-1}, \qquad i = \overline{1, n-2}.$$
 (12)

На підставі формул (12), використовуючи формули (10) для c_0 і d_0 , можна послідовно визначити коефіцієнти c_i і d_i до c_{n-2} і d_{n-2} включно (прямий хід).

Із формули (7) при i = n - 2 і другої крайової умови (5) отримуємо

$$y_{n-1} = c_{n-2}(d_{n-2} - y_n),$$
 $\beta_0 y_n + \beta_1 \frac{y_n - y_{n-1}}{h} = B.$

Розв'яжемо цю систему відносно y_n :

$$y_n = \frac{\beta_1 c_{n-2} d_{n-2} + Bh}{\beta_1 (1 + c_{n-2}) + \beta_0 h}$$
 (13)

Використовуючи формулу (7) і першу крайову умову (5), послідовно знаходимо y_{n-1} , y_{n-2} , ..., y_0 (обернений хід):

$$\begin{cases} y_{n-1} = c_{n-2}(d_{n-2} - y_n) \\ y_{n-2} = c_{n-1}(d_{n-1} - y_{n-1}) \\ \dots \\ y_1 = c_0(d_0 - y_2) \\ y_0 = \frac{\alpha_1 y_1 - Ah}{\alpha_1 - \alpha_0 h} \end{cases}$$

$$(14)$$

Для найпростіших крайових умов y(a) = A, y(b) = B формули для обчислення c_0 , d_0 , y_0 , y_n спрощуються.

Метод сплайн-колокації

Метод колокації розв'язання крайових задач для звичайних диференціальних рівнянь базується на використанні апарату наближення многочленами. Але в силу складності реалізації та не зовсім задовільних апроксимаційних властивостей многочленів такий підхід не знайшов практичного застосування.

Метод сплайн-колокації на відміну від попереднього базується на апроксимації сплайнами, що дозволяє побудувати алгоритми, чисельне розв'язання яких не складніше за різницеві схеми. Принципова відзнака цього підходу від різницевих методів полягає в тому, що наближений розв'язок знаходиться у вигляді сплайна на всьому інтервалі інтегрування, а не на дискретній множині точок як в різницевих методах. Це дозволяє одержати більш повну інформацію про розв'язок задачі.

Викладемо метод сплайн-колокації на прикладі крайової задачі для диференціального рівняння другого порядку. Розглянемо крайову задачу для рівняння

$$L[y(x)] = y''(x) + p(x)y'(x) + q(x)y(x) = f(x) (a \le x \le b)$$
(1)

з граничними умовами

$$a_1 y(a) + \beta_1 y'(a) = \gamma_1$$
, $a_2 y(b) + \beta_2 y'(b) = \gamma_2$. (2)

Введемо на [a,b] сітку $\Delta: a=x_0 < x_1 < ... < x_N=b$. Шукаємо розв'язок крайової задачі (1),(2) у вигляді кубічного сплайна S(x) на сітці Δ . Вимагатимемо, щоб сплайн S(x) задовольняв рівняння (1) в точках $\xi_k \in [a,b]$, k=0,1,...,N (точки колокації) і граничні умови (2). Маємо

$$L[S(\xi_k)] = S''(\xi_k) + p(\xi_k)S'(\xi_k) + q(\xi_k)S(\xi_k) = f(\xi_k), \quad (k = 0, 1, ..., N);$$
(3)

$$\alpha_1 S(a) + \beta_1 S'(a) = \gamma_1, \quad \alpha_2 S(b) + \beta_{21} S'(b) = \gamma_2.$$
 (4)

Співвідношення (3), (4) утворюють систему алгебраїчних рівнянь відносно параметрів сплайна. Точка ξ_k називаються вузлами колокації, і їх число визначається розмірністю простору кубічних сплайнів N+3. Оскільки S(x) задовольняє двом граничним умовам, то число точок колокації дорівнює N+1. Точки колокації можуть вибиратись довільним чином. На

даному відрізку $[x_{i,} x_{i+1}]$ не повинно бути більше трьох вузлів колокації, бо в противному разі сплайн S(x) визначався б незалежно від інших відрізків і в тому числі граничних умов. Вважаємо що точки колокації упорядковані, тобто $\xi_0 < \xi_1 < \ldots < \xi_N$. Система рівнянь (3),(4) залежить від способу запису сплайна S(x) і від вибору колокації.

Для реалізації методу сплайн-колокації доцільно застосувати базисні сплайни, які позначають як B -сплайни. У зв'язку з цим наведемо деякі відомості про B -сплайни.

Розширимо сітку
$$\Delta: a=x_0 < x_1 < \ldots < x_N=b$$
 допоміжними точками $x_{-m} < \ldots < x_{-1} < a, b < x_{N+1} < \ldots < x_{N+m}$ і будемо розглядати сітку $\Delta_1: x_{-m} < \ldots < x_{-1} < 0 < x_1 < \ldots < x_N < x_{N+1} < \ldots < x_{N+m}$

Розглянемо функцію $\phi_m(x,t) = (-1)^{m+1}(m+1)(x-t)_+^m$ і побудуємо розділену різницю (m+1)-го порядку за значеннями аргументу $t=x_i,\dots,x_{i+m+1}$. В результаті отримуємо функції змінної x_i

$$\widetilde{B}_{m}^{i} = \varphi_{m}[x, x_{i}, \dots, x_{i+m+1}] \quad (i = -m, \dots, N-1)$$
(5)

Ці функції називаються B -сплайнами степеня m і є сплайнами степеня m дефекту 1 на розширеній сітці Δ_1 . З $(x-t)_+^m = (x-t)^m + (-1)^{m+1}(t-x)_+^m$ можна отримати інший вигляд запису (5):

$$\widetilde{B}_{m}^{i}(x) = (m+1) \sum_{p=1}^{i+1+m} \frac{(x_{p} - x)_{+}^{m}}{\omega'_{m+1i}(x_{p})}, \quad (i = -m, ..., N-1).$$

$$\omega_{m+1i}(t) = \prod_{j=1}^{i+m+1} (t - x_{j}).$$

$$Ae$$

$$(6)$$

При практичних обчисленнях зручно використовувати не самі Всплайни, а нормалізовані В-сплайни, які мають вигляд

$$B_{m}^{i}(x) = \frac{x_{i+m+1} - x_{i}}{m+1} \widetilde{B}_{m}^{+}(x)$$
 (7)

Для нормалізованих В-сплайнів існує рекурентна формула

$$B_{m}^{i}(x) = \frac{x - x_{i}}{x_{i+m} - x_{i}} B_{m-1}^{i}(x) + \frac{x_{i+m+1} - x}{x_{i+m+1} - x_{i+1}} B_{m-1}^{i+1}(x)$$
(8)

яка може використовуватися як визначення В-сплайнів. При цьому $B_0^i(x) = \begin{cases} 1 \ \partial \pi x \in [x_i, x_{i+1}), \\ 0 \ \partial \pi x \not\in [x_i, x_{i+1}). \end{cases}$

Функції $B_m^i(x)$ є сплайнами степеня m дефекту 1 із скінченними носіями мінімальної довжини. Крім цього, система функцій $B_m^i(x)$ $(i=-m,\dots,N-1)$ є лінійно незалежна і утворює базис у просторі сплайнів $S_m(\Delta)$. Це означає, що кожен сплайн $S_m(x) \in S_m(\Delta)$ може бути єдиним способом записаний у вигляді

$$S_m(x) = \sum_{i=-m}^{N-1} b_i B_m^i(x)$$
 (9)

де b_i - деякі сталі коефіцієнти.

Сплайни $B_{m}^{l}(x)$ мають такі властивості:

Сплаини = m (м) мають такі в
$$B_{m}^{i}(x) = \begin{cases} > 0 \text{ для } x \in [x_{i}, x_{i+1}), \\ \equiv 0 \text{ для } x \notin [x_{i}, x_{i+1}). \end{cases}$$
b) = $\frac{\int_{-\infty}^{\infty} B_{m}^{i}(x) dx}{m} = \frac{x_{i+m+1} - x_{i}}{m+1}.$

Розглянемо розширену $\Delta': x_{-m} < \ldots < x_{-1} < x_0 < x_1 < \ldots < x_N < x_{N+1} < \ldots < x_{N+m} \ (x_{k+1} - x_k = h = const).$ сітку

Побудуємо перші три В-сплайни непарного степеня. При цьому нумерувати їх будемо по середньому вузлі носіїв. В-сплайни непарного степеня позначимо через $B_m^i(x)$ замість $B_m^{i-\frac{m+1}{2}}(x)$, тобто нумерація сплайнів зсувається на 2 одиниць вправо.

Таким чином В-сплайни першого степеня мають вигляд

$$B_{m}^{i}(x) = \begin{cases} 0 & npu - \infty \le x < x_{i-1}; \\ t & npu & x_{i-1} \le x < x_{i}; \\ 1 - t & npu & x_{i} \le x < x_{i+1}; \\ 0 & npu & x_{i} \le x < \infty; \end{cases}$$

$$(10)$$

В-сплайни третього степеня:

$$B_{3}^{i}(x) = \frac{1}{6} \begin{cases} 0 & npu & -\infty \leq x < x_{i-2}; \\ t^{3} & npu & x_{i-2} \leq x < x_{i-1}; \\ -3t^{3} + 3t^{2} + 3t^{1} + 1 & npu & x_{i-1} \leq x < x_{i}; \\ 3t^{3} - 6t^{2} + 4 & npu & x_{i} \leq x < x_{i+1}; \\ (1-t)^{3} & npu & x_{i+1} \leq x < x_{i+2}; \\ 0 & npu & x_{i+2} \leq x < \infty; \end{cases}$$

$$B\text{-сплайни Π'ятого степеня:}$$

В-сплайни п'ятого степеня:

В-сплайни п'ятого степеня:
$$B_{5}^{c}(x) = \frac{1}{120} \begin{cases} 0 & npu & -\infty \leq x < x_{i-3}; \\ t^{5} & npu & x_{i-3} \leq x < x_{i-2}; \\ -5t^{5} + 5t^{4} + 10t^{3} + 10t^{2} + 5t + 1 & npu & x_{i-2} \leq x < x_{i-1}; \\ 10t^{5} - 20t^{4} - 20t^{3} + 20t^{2} + 50t + 26 & npu & x_{i-1} \leq x < x_{i}; \\ -10t^{5} + 30t^{4} - 60t^{2} + 66 & npu & x_{i} \leq x < x_{i+1}; \\ 5t^{5} - 20t^{4} + 20t^{3} + 20t^{2} - 50t + 26 & npu & x_{i+1} \leq x < x_{i+2}; \\ (1-t)^{5} & npu & x_{i+2} \leq x < x_{i+3}; \\ 0 & npu & x_{i+3} \leq x < \infty, \end{cases}$$

$$t = \frac{x - x_{k}}{h} \quad \text{ на інтервалі} \quad \begin{bmatrix} x_{k}, x_{k+1} \end{bmatrix}, \quad k = i - \frac{m+1}{2}, i + \frac{m+1}{2} - 1; \quad i = -\frac{m+1}{2} + 1, \end{cases}$$

$$N + \frac{m+1}{2} - 1$$
, $m = 1, 3, 5$.

Значення сплайнів $B_3^i(x)$ і $B_5^i(x)$ та їхні похідні у вузлах, що належать до їх носіїв, наведені в таблицях 2 та 3.

 Таблиця 2

 Значення сплайнів та їх похідні у вузлах

		эначення спланнів та			
X	$B_5^i(x)$	$B_5^i(x)$	$B_5^i(x)$	$B_5^{i^{""}}(x)$	$B_5^{i^{""}}(x)$
x_{i-3}	0	0	0	0	0
x_{i-2}	$\frac{1}{120}$	$\frac{1}{24h}$	$\frac{1}{6h^2}$	$\frac{1}{2h^3}$	$\frac{1}{h^4}$
x_{i-1}	$\frac{26}{120}$	$\frac{10}{24h}$	$\frac{2}{6h^2}$	$-\frac{1}{h^3}$	$-\frac{4}{h^4}$
x_i	$\frac{66}{120}$	0	$-\frac{1}{h^2}$	0	$\frac{6}{h^4}$
X_{i+1}	$\frac{26}{120}$	$-\frac{10}{24h}$	$\frac{2}{6h^2}$	$\frac{1}{h^3}$	$-\frac{4}{h^4}$
X_{i+2}	$\frac{1}{120}$	$-\frac{1}{24h}$	$\frac{1}{6h^2}$	$-\frac{1}{2h^3}$	$\frac{1}{h^4}$
X_{i+3}	0	0	0	0	0

Таблиця 3 Значенння сплайнів та їх похідні у вузлах

X	$B_3^i(x)$	$B_3^i(x)$	$B_3^{i'}(x)$
x_{i-2}	0	0	0
x_{i-1}	$\frac{1}{6}$	$\frac{1}{2h}$	$\frac{1}{h^2}$
X_i	$\frac{4}{6}$	0	$-\frac{2}{h^2}$
X_{i+1}	$\frac{1}{6}$	$-\frac{1}{2h}$	$\frac{1}{h^2}$
x_{i+2}	0	0	0

Наближене розв'язування диференціальних рівнянь в частинних похідних

1. Класифікація диференціальних рівнянь в частинних похідних

Наближені методи розв'язування найбільше розроблені для диференціальних рівнянь в частинних похідних другого порядку з двома незалежними змінними. Для розв'язування багатьох практичних задач необхідно розглядати так звані лінійні диференціальні рівняння в частинних похідних, тобто диференціальні рівняння першого степеня щодо шуканої

функції і всіх її похідних, що не містять їх добутків. Такі рівняння можна подати у такому вигляді:

$$A(x,y)\frac{\partial^2 z}{\partial x^2} + B(x,y)\frac{\partial^2 z}{\partial x \partial y} + C(x,y)\frac{\partial^2 z}{\partial y^2} + a(x,y)\frac{\partial z}{\partial x} + b(x,y)\frac{\partial z}{\partial y} + c(x,y)z = F(x,y)$$
(1.1)

У рівнянні (1) шуканою є функція z, а x та y — незалежні змінні. Функції A(x,y), B(x,y), C(x,y), a(x,y), b(x,y), c(x,y) — неперервні функції від x та y, що мають неперервні частинні похідні.

Наведемо класифікацію диференціальних рівнянь в частинних похідних, що грунтується на розгляді рівняння (1.1). Введемо позначення

$$z_{xx} = \frac{\partial^2 z}{\partial x^2}$$
, $z_{xy} = \frac{\partial^2 z}{\partial x \partial y}$, $z_{yy} = \frac{\partial^2 z}{\partial y^2}$, $z_x = \frac{\partial z}{\partial x}$, $z_y = \frac{\partial z}{\partial y}$ (для зручності запису частинних похідних "штрихи" випускаються) і розглянемо спрощену форму рівняння (1.1):

$$A(x,y)z_{xx} + B(x,y)z_{xy} + C(x,y)z_{yy} = 0$$
(1.2)

що відповідає (1.1) при $a \equiv b \equiv c \equiv F \equiv 0$.

Рівняння (1.2) завжди може бути зведено до однієї з трьох стандартних канонічних форм. Цими формами є еліптичні, параболічні і гіперболічні диференціальні рівняння в частинних похідних. Тип рівняння визначається значенням коефіцієнтів у виразі (1.2) і пов'язаний зі знаком дискримінанта $\Delta = B^2(x, y) - 4A(x, y)C(x, y)$ у виразі (1.2).

У залежності від знаку дискримінанта маємо:

 $\Delta < 0$ — еліптичний тип у точці (x, y);

 $\Delta = 0$ — параболічний тип у точці (x, y);

 $\Delta > 0$ — гіперболічний тип у точці (x, y).

Якщо коефіцієнти A, B, C сталі, не залежні від x та y, то канонічні рівняння є повністю еліптичними, параболічними або гіперболічними.

Щоб показати, як будуються диференціальні рівняння в частинних похідних, розглянемо вираз (1.2) зі сталими коефіцієнтами A, B і C. Введемо дві нові змінні

$$\xi = y + a_1 x, \quad \eta = y + a_2 x \tag{1.3}$$

$$a_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}, \quad a_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}.$$

Оскільки рівняння (1.2) лінійне щодо похідних шуканої функції z(x,y), то розв'язок z(x,y) цього рівняння може бути поданий у вигляді z(x,y) = f(y+ax) (1.4)

Розглянемо функцію z(x,y) як функцію $z=f(\xi,\eta)$ двох нових змінних ξ , η . Тоді, враховуючи заміну змінних (1.3) і вигляд шуканої функції (1.4), отримаємо для частинних похідних такі вирази: $z_x = a_1 z_\xi + a_2 z_\eta$; $z_{xy} = a_1 z_{\xi\xi} + (a_1 + a_2) z_{\xi\eta} + a_2 z_{\eta\eta}$; $z_{xx} = a_1^2 z_{\xi\xi} + 2a_1 a_2 z_{\xi\eta} + a_2^2 z_{\eta\eta}$; $z_{yy} = z_{\xi\xi} + 2z_{\xi\eta} + z_{\eta\eta}$.

Використовуючи знайдені значення похідних, подамо рівняння (1.2) у

вигляді

$$(Aa_1^2 + Ba_1 + C)z_{\xi\xi} + (2Aa_1a_2 + Ba_1 + Ba_2 + 2C)z_{\xi\eta} + (Aa_2^2 + Ba_2 + C)z_{\eta\eta} = 0$$
(1.5)

Розглянемо рівняння

$$Aa_i^2 + Ba_i + C = 0$$
 $(i = 1, 2);$ (1.6)

воно має два корені a_1 , a_2 , які можуть бути дійсними і різними, дійсними і рівними або комплексно спряженими. Тип коренів залежить від величини дискримінанта B^2-4AC .

У випадку $B^2 - 4AC > 0$ корені a_1 і a_2 рівняння (1.6) дійсні і різні, причому коефіцієнти першого і третього членів виразу (1.5) рівні нулю. При цьому рівняння (1.5) має вигляд канонічної форми гіперболічного рівняння у частиних похідних

$$z_{\xi\eta} = 0 \tag{1.7}$$

$$z_{\xi\eta} = f_g(\xi, \eta, z, z_{\xi}, z_{\eta})$$
 (1.7')

відповідної виразу (1.1).

Перейдемо до побудови канонічної форми диференціального рівняння еліптичного типу. Якщо $B^2-4AC=0$, то обидва корені a_1 і a_2 рівняння (1.6) дійсні числа і змінні ξ і η є залежними. Покладемо один із коренів рівним $a_1=-B/(2A)$; тоді a_2 може бути довільним, причому $a_1\neq a_2$. Підставляючи a_1 і a_2 у співвідношення (1.5), отримаємо

$$z_{\eta\eta} = 0 \tag{1.8}$$

Вираз (1.8) ϵ канонічною формою параболічного диференціального рівняння в частинних похідних. У загальному випадку його можна записати у вигляді

$$z_{\eta\eta} = f_p(\xi, \eta, z_{\xi}, z_{\eta}) \tag{1.8'}$$

Якщо $B^2-4AC<0$, то a_1 і a_2 є комплексно спряженими: $a_1=b_1+b_2i$, $a_2=b_1-b_2i$. Тоді рівність (1.5) прийме вигляд

$$z_{\xi\xi} + z_{\eta\eta} = 0$$
 (1.9)

Вираз (1.9) ϵ канонічною формою диференціального рівняння еліптичного типу. У загальному випадку рівняння (1.9) можна подати так:

$$z_{\xi\xi} + z_{\eta\eta} = f_e(\xi, \eta, z, z_{\xi}, z_{\eta}). \tag{1.9'}$$

Класичними прикладами диференціальних рівнянь у частинних похідних ϵ рівняння Лапласа

$$z_{xx} + z_{yy} = 0 ag{1.10}$$

(що має канонічну еліптичну форму), рівняння теплопровідності

$$z_{xx} = z_{y} \tag{1.11}$$

(що має канонічну параболічну форму) і хвильове рівняння

$$z_{xx} = z_{yy} \tag{1.12}$$

(що має канонічну гіперболічну форму).

2. Скінченорізницеві апроксимації

Скінченорізницеві апроксимації для частинних похідних є найбільш поширеним підходом до чисельного інтегрування диференціальних рівнянь у частинних похідних. Частинні похідні замінюються відповідними різницевими співвідношеннями по відповідним незалежним змінним. У загальному випадку розмірність області, у якій необхідно знайти розв'язання диференціального рівняння у частинних похідних, рівна кількості незалежних змінних.

У випадку двох незалежних У i область змінних \boldsymbol{x} двовимірною. Метод, ЩО використовується ДЛЯ скінченорізницевої апроксимації, грунтується на покритті області прямокутних клітинок сіткою шириною h (у напрямку осі Ox) і висотою k (у напрямку осі Oy). Величина залежної змінної z = z(x, y)встановлюється y

довільній точці у межах області. Зокрема, коли задана одна точка прямокутної сітки з координатами x_r , y_s , оточуючі її чотири точки мають координати x_{r+h} , y_s ; x_{r-h} , y_s ; x_r , y_{s+k} ; x_r , y_{s-k} . Геометричний спосіб покриття області сіткою показаний на рис. 27.

Введемо такі оператори: E — оператор приросту; δ — оператор центральних різниць; Δ — різницевий оператор випередження; D — диференціальний оператор.

Ці оператори визначаються такими співвідношеннями:

$$Ef(x) = f(x+h), (2.1)$$

$$\Delta f(x) = f(x+h) - f(x), \tag{2.2}$$

$$Df(x) = \frac{df(x)}{dx} = f'(x) \tag{2.3}$$

$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) \tag{2.4}$$

Подамо f(x+h) у вигляді розвинення в ряд Тейлора:

$$f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \dots$$
 (2.5)

Використовуючи оператор D, подамо оператор E у вигляді

$$Ef(x) = \left(1 + \frac{hD}{1!} + \frac{h^2D^2}{2!} + \dots\right) f(x)$$
(2.6)

або, користуючись розвиненням експоненціальної функції e^{hD} в ряд Тейлора, перетворимо вираз (2.6) так:

$$Ef(x) = e^{hD} f(x) \tag{2.6'}$$

Тоді залежність оператора E від D може бути подана у вигляді

$$E = e^{hD}. (2.7)$$

або

$$hD = \ln E \,. \tag{2.8}$$

Із виразів (2.1) і (2.2) отримуємо таке співвідношення між операторами E і Δ :

$$\Delta f(x) = Ef(x) - f(x) \tag{2.9}$$

або

$$E = \Delta + 1. \tag{2.10}$$

Підставляючи вираз (10) у формулу (8), отримаємо $hD = \ln(1+\Delta)$ (2.11)

Використовуючи розвинення логарифмічної функції в ряд:

$$\ln(1+\Delta) = \Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \frac{\Delta^5}{5} - \dots$$
 (2.12)

отримаємо такий вираз для оператора D:

$$D = \frac{1}{h} \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right)$$
 (2.13)

Поширюючи викладений метод на різниці другого порядку, маємо

$$(hD)^{2} = (\ln(1+\Delta))^{2} \tag{2.14}$$

або

$$D^{2} = \frac{1}{h^{2}} \left(\Delta^{2} - \Delta^{3} + \frac{11}{12} \Delta^{4} - \frac{5}{6} \Delta^{5} + \frac{137}{180} \Delta^{6} - \dots \right)$$
 (2.15)

В формулах (2.13) і (2.15) можна обмежитися певною кількістю членів, щоб отримати скінченорізницеве подання для похідної із бажаною точністю. Обмежуючись у кожному виразі першою і другою різницею для похідних:

$$\frac{dz_r}{dx} = \frac{1}{h} \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right) z_r \tag{2.16}$$

$$\frac{d^2 z_r}{dx^2} = \frac{1}{h^2} \left(\Delta^2 - \Delta^3 - \frac{11}{12} \Delta^4 - \dots \right)$$
 (2.17)

маємо відповідно

$$\frac{dz_r}{dx} = \frac{z_{r+1} - z_r}{h} + O(h) \tag{2.18}$$

$$\frac{d^2 z_r}{dx^2} = \frac{z_{r+1} - 2z_r + z_{r-1}}{h^2} + O(h^2)$$
 (2.19)

Для наочного подання рівнянь виду (2.18) і (2.19) використовують шаблони, що мають такий вид:

$$\frac{dz_r}{dx} = \frac{1}{h} \underbrace{\begin{pmatrix} +1 \\ -1 \end{pmatrix}} \underbrace{\begin{pmatrix} -1 \\ 0 \end{pmatrix}} z_r$$

$$\frac{d^2z_r}{dx^2} = \frac{1}{h^2} \left(\begin{array}{c} +1 \\ \end{array} \right) - \left(\begin{array}{c} -2 \\ \end{array} \right) - \left(\begin{array}{c} +1 \\ \end{array} \right) z_r$$

У наведених шаблонах в центрі кругів наводяться коефіцієнти диференціального рівняння. Круг центральної частини шаблона відповідає величині z_r . Додатковим приростам по горизонтальним лініям (рис. 2.1) відповідає лівий кінець, від'ємним – правий кінець шаблону.

Подібні шаблони можна отримати у випадку використання оператора δ центральних різниць. Покладаючи у співвідношенні (2.6) значення змінної рівними x + h/2 і x - h/2, маємо

$$Ef\left(x + \frac{h}{2}\right) = \left(1 + \frac{\left(\frac{h}{2}\right)D}{1!} + \frac{\left(\frac{h}{2}\right)^2D^2}{2!} + \cdots\right)f(x) = e^{hD/2}f(x)$$
(2.20)

$$Ef\left(x - \frac{h}{2}\right) = \left(1 + \frac{\left(-\frac{h}{2}\right)D}{1!} + \frac{\left(-\frac{h}{2}\right)^2D^2}{2!} + \cdots\right)f(x) = e^{-hD/2}f(x)$$
(2.20')

Тому, користуючись співвідношенням (4), отримуємо

$$\delta f(x) = \left(e^{hD/2} - e^{-hD/2}\right) f(x) \tag{2.21}$$

або в операторному вигляді
$$\delta = \left(e^{hD/2} - e^{-hD/2}\right) = 2sh(hD/2), \tag{2.22}$$

тобто

$$hD = 2arcsh(\delta/2). \tag{2.23}$$

Розвиваючи гіперболічну функцію $arcsh(\delta/2)$ в ряд, маємо

$$hD = 2\left(\frac{\delta}{2} - \frac{1}{2} \cdot \frac{1}{3}\left(\frac{\delta}{2}\right)^3 + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{5}\left(\frac{\delta}{2}\right)^5 + \cdots\right) = \left(\delta - \frac{1}{24}\delta^3 + \frac{3}{640}\delta^5 + \cdots\right)$$
(2.24)

Безпосереднім піднесенням до степеня одержимо

$$D^{2} = \frac{1}{h^{2}} \left(\delta^{2} - \frac{\delta^{4}}{12} + \frac{\delta^{6}}{90} - \dots \right)$$
 (2.25)

$$D^{4} = \frac{1}{h^{4}} \left(\delta^{4} - \frac{\delta^{6}}{6} + \frac{7}{240} \delta^{8} - \dots \right)$$
 (2.25')

Співвідношення для похідних, виражені через центральні різниці, можна записати так:

$$\frac{dz_r}{dx} = \frac{1}{h} \left(\delta - \frac{1}{24} \delta^3 + \frac{3}{640} \delta^5 - \cdots \right) z_r,
\frac{d^2 z_r}{dx^2} = \frac{1}{h^2} \left(\delta^2 - \frac{\delta^4}{12} + \frac{\delta^6}{90} - \cdots \right) z_r,
\frac{d^4 z_r}{dx^4} = \frac{1}{h^4} \left(\delta^4 - \frac{\delta^6}{6} + \frac{7}{240} \delta^8 - \cdots \right) z_r$$
(2.26)

Обмежуючись у виразах для похідних першими і другими центральними різницями, знаходимо

$$\frac{dz_{r}}{dx} = \frac{z_{r+1} - z_{r-1}}{2h} + O(h^{2}),$$

$$\frac{dz_{r}}{dx} = \frac{-z_{r+2} + 8z_{r+1} - 8z_{r-1} + z_{r-2}}{12h} + O(h^{4}),$$

$$\frac{d^{2}z_{r}}{dx^{2}} = \frac{z_{r+1} - 2z_{r} + z_{r+1}}{h^{2}} + O(h^{2}),$$

$$\frac{d^{2}z_{r}}{dx^{2}} = \frac{-z_{r+2} + 16z_{r+1} - 30z_{r} + 16z_{r-1} - z_{r-2}}{12h^{2}} + O(h^{4}),$$

$$\frac{d^{4}z_{r}}{dx^{4}} = \frac{z_{r+2} - 4z_{r+1} + 6z_{r} - 4z_{r-1} + z_{r-2}}{h^{4}} + O(h^{2}).$$
(2.27)

Розглянемо застосування викладеного вище підходу для скінченорізницевої апроксимації частинних похідних. Для функції z = z(x, y) використаємо таке позначення для значень у вузлах сітки x_r , y_s :

$$z_{r,s} = z(x_r, y_s). (2.28)$$

Оскільки $\frac{\partial z}{\partial x}$ означає похідну від z при сталому y, одержуємо

$$\frac{\partial z_{r,s}}{\partial x} = \frac{1}{h} (z_{r+1,s} - z_{r,s}); \tag{2.29}$$

при цьому обчислювальний шаблон має вигляд

$$\frac{\partial z_{r,s}}{\partial x} = \frac{1}{h} + 1 \qquad \qquad 0 \qquad z_{r,s}$$

Обчислювальний шаблон містить тільки горизонтальні елементи, оскільки s (або y) є сталою. Аналогічно одержуємо

для похідної у напрямку s .

Змішана похідна одержується аналогічно:

Множенням окремих елементів рядка на кожен елемент стовпця отримаємо

Тут всі нульові члени, за винятком центрального, випущені.

Розглянемо обчислювальні шаблони (h = k), що найчастіше використовуються:

Апроксимація еліптичних диференціальних рівнянь у частинних похідних

Для ілюстрації чисельних методів розв'язування рівнянь еліптичного типу розглянемо двовимірне рівняння Лапласа

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \tag{3.1}$$

Це рівняння моделює усталений режим теплопровідності через двовимірне тіло. Припускається, що рівняння (3.1) виконується всередині області R, оточеної межею B. Задача полягає у визначенні z(x,y), причому крайові умови на межі B задані. Для спрощення розглянемо межу B у вигляді квадрата зі стороною, рівною L. Є три можливі способи подання величини z на межі B.

Перший спосіб:

$$z|_{x=0} = f_1(y); z|_{x=L} = f_2(y); z|_{y=0} = g_1(x); z|_{y=L} = g_2(x);$$
(3.2)

де f_1, f_2, g_1, g_2 – довільні функції.

Задача відшукання розв'язку рівняння (3.1) з крайовими умовами (3.2) називається задачею Діріхле.

Другий спосіб:

$$\frac{\partial z}{\partial x}\Big|_{x=0} = f_1(y), \quad \frac{\partial z}{\partial x}\Big|_{x=L} = f_2(y);$$

$$\frac{\partial z}{\partial y}\Big|_{y=0} = g_1(x), \quad \frac{\partial z}{\partial y}\Big|_{y=L} = g_2(x)$$
(3.3)

Задача відшукання розв'язку рівняння (3.1) з крайовими умовами (3.3) називається задачею Неймана.

Третій спосіб:

$$a_1 \frac{\partial z}{\partial x} + a_2 z = a_3 \qquad b_1 \frac{\partial z}{\partial y} + b_2 x = b_3 \tag{3.4}$$

Цьому способу відповідає змішаний тип крайових умов (3.4), які при спеціальному виборі значень коефіцієнтів a_1 , a_2 , a_3 і b_1 , b_2 , b_3 зводяться до умов (3.2) і (3.3).

Для будь якої крайової умови, наведеної вище, шукана функція визначена на межі B і задовольняє рівняння Лапласа у межах області, обмеженої межею B . Розв'язок рівняння Лапласа Може бути отриманий аналітично, однак тут будуть використані лише чисельні методи. Потім розглядатимуться узагальнені рівняння еліптичного типу, які не можуть бути розв'язані аналітично, але можуть бути розв'язані чисельно з використанням пропонованих методів.

Після постановки деякої крайової задачі типу (3.1) з крайовими умовами одного із трьох типів, необхідно, по перше, встановити систему рівнянь, Що апроксимує диференціальне рівняння еліптичного типу і

крайову умову, по друге, визначити метод розв'язування цієї системи і, нарешті, визначити похибку між розв'язком апроксимуючої системи рівнянь і точним розв'язком поставленої задачі. Розглянемо способи розв'язування поставлених питань.

На рис. 28 показана сітка (h=k), що покриває область R і включає межу B. Нижня права точка має координати x_0 , y_0 і величина z рівна $z(x_0,y_0)$, або z_0 . Величини z у крайових точках і у внутрішніх вузлових точках позначені через z_1 , z_2 , ..., z_{23} , z_{24} . Для задачі Діріхле величини z_0 , z_1 , ..., z_{14} , z_{15} ,

відповідні значенням функції на межі, відомі і необхідно обчислити z_{16} , z_{17} , ..., z_{23} , z_{24} так, щоб було задоволено рівняння Лапласа.

Існує значна кількість можливих скінченорізницевих подань для рівняння Лапласа. Найбільш часто використовуються шаблони

або

У вигляді рівняння останнє співвідношення можна записати таким чином:

$$\frac{1}{h^2} (z_{r,s+1} + z_{r,s-1} + z_{r+1,s} + z_{r-1,s} - 4z_{r,s}) + O(h^2) = 0$$
(3.5)

Розв'язування різницевих рівнянь для еліптичних диференціальних рівнянь

Після того, як скінченорізницева апроксимація для еліптичного диференціального рівняння стала відома (тобто для рівняння Лапласа отримана співвідношення (3.5)), наступним завданням є ефективне розв'язування апроксимуючих алгебраїчних рівнянь. У цьому разі для задачі Діріхле маємо таку систему:

$$\begin{cases} z_{r+1,s} + z_{r-1,s} + z_{r,s+1} + z_{r,s-1} - 4z_{r,s} = 0 & всередині R \\ z_{z,s} = b_r & на межі B \end{cases}$$
 (4.1)

Тут $b_{r,s}$ – відомі крайові умови.

Нехай N- кількість внутрішніх вузлових точок в рядку і N+1- кількість інтервалів в рядку. Як і раніше, розглядатимемо квадрат. Найпростішим ітераційним методом розв'язування системи рівнянь є метод Річардсона, в якому обчислення проводяться за формулами

$$z_{r,s}^{(n+1)} = \begin{cases} \frac{1}{4} \left(z_{r+1,s}^{(n)} + z_{r-1,s}^{(n)} + z_{r,s+1}^{(n)} + z_{r,s-1}^{(n)} \right), & z_{r,s} \in R, \\ b_{r,s} &, & z_{r,s} \in B \end{cases}$$
 (4.2)
Позначення $z_{r,s}^{(n)}$, $z_{r,s}^{(n+1)}$ відповідають n -й і $(n+1)$ -ій апроксимаціям в

Позначення $z_{r,s}^{(n)}$, $z_{r,s}^{(n+1)}$ відповідають n-й і (n+1)-ій апроксимаціям в ітераційному процесі. Починаючи з допустимих величин $z_{r,s}^{(0)}$ у внутрішніх вузлових точках і відомих величин в крайових умовах, вираз (4.2) використовується для згладжування впливу початково обраних точок $z_{r,s}^{(0)}$ і для обчислення нового набору точок $z_{r,s}^{(1)}$. Процес обчислень ε ітераційним.

Для завершення процесу обчислень вимагається виконання умови $|z_{r,s}^{(n+1)}-z_{r,s}^{(n)}| \le \varepsilon$ для всіх r і s, де ε — задана заздалегідь похибка обчислень. Коли ця умова виконується, ітераційний процес збігається до розв'язку скінченорізницевої апроксимації рівняння Лапласа із заданими крайовими умовами. Це правильно для обраної величини h, що використовується для побудови сітки.

Вплив криволінійних крайових умов

У більш загальному випадку межа B ϵ криволінійною, а не квадратом чи прямокутником. На рис.29 зображена типова криволінійна межа з квадратною сіткою, накладеною на цю межу. Величини P_1h , P_3h , P_5h і P_6h ϵ віддалі від вузла 0 до межі або прилеглої точки. Як показано на рис.29, величини P_5 і P_6 менші 1, а P_1 і P_3 рівні 1. У подальшому викладі величини P_1 і P_3 також можуть приймати значення, менші ніж 1.

Розглянемо спочатку рис. 29 з точки зору розв'язування задачі Діріхле. Тут z_5 і z_6 задані, z_2 і z_4 — значення функції у фіктивних (так званих нерегулярних) вузлах за межею.

Розвинення функцій $z(x_0+\alpha,y_0)$ і $z(x_0,y_0+\beta)$ в ряд Тейлора в околі x_0 , y_0 дає:

$$z(x_0 + \alpha, y_0) = z(x_0, y_0) + \alpha z_x(x_0, y_0) + \frac{\alpha^2}{2!} z_{xx}(x_0, y_0) + \frac{\alpha^3}{3!} z_{xxx}(x_0, y_0) + \dots$$

$$z(x_0, y_0 + \beta) = z(x_0, y_0) + \beta z_y(x_0, y_0) + \frac{\beta^2}{2!} z_{yy}(x_0, y_0) + \frac{\beta^3}{3!} z_{yyy}(x_0, y_0) + \dots$$

Якщо покладемо $\alpha = P_5 h$ і потім $\alpha = -P_1 h$ у першому рівнянні, $\beta = P_6 h$ і потім $\beta = -P_6 h$ у другому рівнянні, то, обмежуючись в цих рівняннях членами, що містять другі похідні, з похибкою $O(h^2)$ маємо:

$$z(x_{0} + P_{5}h, y_{0}) = z(x_{0}, y_{0}) + P_{5}hz_{x}(x_{0}, y_{0}) + \frac{(P_{5}h)^{2}}{2} z_{xx}(x_{0}, y_{0});$$

$$z(x_{0} - P_{5}h, y_{0}) = z(x_{0}, y_{0}) - P_{1}hz_{x}(x_{0}, y_{0}) + \frac{(P_{1}h)^{2}}{2} z_{xx}(x_{0}, y_{0});$$

$$z(x_{0}, y_{0} + P_{6}h) = z(x_{0}, y_{0}) + P_{6}hz_{y}(x_{0}, y_{0}) + \frac{(P_{6}h)^{2}}{2} z_{yy}(x_{0}, y_{0});$$

$$z(x_{0}, y_{0} - P_{3}h) = z(x_{0}, y_{0}) - P_{3}hz_{y}(x_{0}, y_{0}) + \frac{(P_{3}h)^{2}}{2} z_{yy}(x_{0}, y_{0})$$

$$(5.1)$$

Із перших двох рівнянь (5.1) величина $z_x(x_0, y_0)$ може бути виключена, при цьому

$$z_{xx}(x_0, y_0) = \frac{2}{h^2} \frac{1}{P_5^2 + P_5 P_1} \left(z_5 - z_0 \left(1 + \frac{P_5}{P_1} \right) + \frac{P_5}{P_1} z_1 \right)$$

Аналогічно, використовуючи останні два рівняння (1), отримаємо

$$z_{yy}(x_0, y_0) = \frac{2}{h^2} \frac{1}{P_6^2 + P_6 P_3} \left(z_6 - z_0 \left(1 + \frac{P_6}{P_3} \right) + \frac{P_6}{P_3} z_1 \right)$$

Додаючи отримані вирази, маємо

$$\left(z_{xx} + z_{yy}\right)_{x_0, y_0} = \frac{2}{h^2} \left(\frac{1}{P_5^2 + P_5 P_1} \left(z_5 - z_0 \left(1 + \frac{P_5}{P_1}\right) + \frac{P_5}{P_1} z_1\right) + \frac{1}{P_6^2 + P_6 P_3} \left(z_6 - z_0 \left(1 + \frac{P_6}{P_3}\right) + \frac{P_6}{P_3} z_3\right)\right) = 0$$
 (5.2)

У випадку $P_1 = P_3 = 1$ вираз (5.2) зводиться до вигляду

$$(z_{xx} + z_{yy})|_{x_0, y_0} = \frac{2}{h^2} \left(\frac{1}{P_5 + 1} z_1 + \frac{1}{P_6 + 1} z_3 + \frac{1}{P_5 (P_5 + 1)} z_5 + \frac{1}{P_6 (P_6 + 1)} z_6 - \frac{P_6 + P_5}{P_5 P_6} z_0 \right) + O(h^2) = 0$$
 (5.3)

Для $P_5=P_6=1$ у випадку квадратної межі цей вираз зводиться до вигляду $\left(z_{xx}+z_{yy}\right)_{x_0,y_0}=\frac{1}{h^2}(z_1+z_3+z_6-4z_0)$.

Алгебраїчне перетворення рівняння (3) дають таке рівняння:

$$P_5P_6(P_6+1)z_1 + P_5P_6(P_5+1)z_3 + P_6(P_6+1)z_5 + P_5(P_5+1)z_6 - (P_5+1)(P_6+1)(P_5+P_6)z_0 = 0$$
 (5.4)

Відмітимо, що рівняння (5.2) ϵ рівнянням більш загальним, аніж (5.4),

оскільки до нього входять значення функцій на межі і коефіцієнти P_1 , P_3 , P_5 і P_6 . Тепер процес розв'язування рівняння Лапласа полягає у даному випадку у використанні рівняння (4) для всіх точок, не прилеглих до межі, і рівняння (5.2) з відповідним вибором величин P_1 , P_3 , P_5 і P_6 для точок прилеглих до межі. У всьому іншому розв'язування здійснюється аналогічно розв'язуванню задачі для випадку квадратної мажі.

Для задачі Неймана використовується подібна, однак більш ускладнена послідовність дій. Для ілюстрації може бути використаний 30;

тут на межі задається значення $\frac{\partial z}{\partial n} = f(x,y)$. Величина $\frac{\partial z}{\partial n}$ є градієнтом по нормалі від функції z на межі і має нахил θ_5 до горизонталі. В точці 5 маємо $\frac{\partial z}{\partial n}\Big|_{s} = \frac{\partial z}{\partial x}\Big|_{s} \cos\theta_s + \frac{\partial z}{\partial y}\Big|_{s} \sin\theta_s$ (5.5)

Апроксимація параболічних і гіперболічних диференціальних рівнянь у частинних похідних

Оскільки основні особливості чисельного інтегрування диференціальних рівнянь параболічного і гіперболічного типу подібні, то ці диференціальні рівняння будуть розглянуті разом. Класичним параболічним диференціальним рівнянням у частинних похідних ε одновимірне рівняння теплопровідності

$$\alpha \frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial t}$$
 (6.1)

де z = z(x,t); α — додатна стала; t — час; x — віддаль, причому інтервал зміни x є обмеженим. Обмеження зміни x інтервалом z інтервалом z інтервалом z інтервалом z і оскільки рівняння z і одна умова для z в деякий момент z і одна умова для z і одна умова z і одна умова для z і одна умова умова для z і одна умова умов

$$z(0,t) = f_0(t), \quad x = 0, \quad t \ge 0,$$

$$z(1,t) = f_1(t), \quad x = 1, \quad t \ge 0$$
(6.2)

I

$$z(x,0) = g_0(x), t = 0, 0 < x < 1.$$
 (6.3)

Функції $f_0(t)$, $f_1(t)$ і g(t) є звичайними аналітичними функціями.

Класичним гіперболічним рівнянням у частинних похідних ε хвильове рівняння

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial t^2}, \quad 0 < x < 1, \quad t \ge 0$$
 (6.4)

при тому ж позначенні змінних, що й у рівнянні (6.1). Оскільки

рівняння (6.4) є рівнянням другого порядку по обом незалежним змінним, треба дві крайові умови і дві початкові умови. Їх можна задати таким чином:

$$z(0,t) = f_0(t), \quad x = 0, \quad t \ge 0;$$

$$z(x,0) = f_1(x), \quad x = 1, \quad t \ge 0;$$
(6.5)

$$z(x,0) = g_0(x), \quad t = 0, \quad 0 < x < 1; \qquad \frac{\partial z}{\partial t}(x,0) = g_1(x), \quad t = 0, \quad (6.6)$$

$$0 < x < 1$$

Умови (6.5) i (6.5) можна замінити більш загальною градієнтною умовою, яка має вигляд

$$a_1 \frac{\partial z}{\partial x} + a_2 z = a_3$$
, $x = 0$ and $x = 1$, $t \ge 0$ (6.7)

і при відповідному виборі a_1 , a_2 , a_3 зводиться до одного із видів (6.5) або (6.6).

Рис. 31

В обох розглядуваних класах диференціальних рівнянь межа визначена з трьох сторін області (x,t) і необмежена з четвертої сторони. Для постійних значень $f_0(t)$ і $f_1(t)$ і сталому $g_0(x)$, скажімо, рівному нулю, область в межа вказані на рис. 6.1. Задача полягає у визначенні z(x,t) в

області R при умовах на межі B. Для застосування скінчено-різницевого методу область покривається прямокутною сіткою з кроком h за напрямком t і кроком t за напрямком t . Вузловій точці t0 відповідає значення функції t0 сіткою t1 відповідає значення t3 відповідає значення функції t4 сіткою t5 відповідає значення функції t6 сіткою t7 відповідає значення функції t8 сіткою t8 відповідає значення функції t9 сіткою t9 відповідає значення функції t9 сіткою t9 відповідає значення функції t9 відповідає значення в

Найбільш просте скінченорізницеве подання параболічного диференціального рівняння в частинних похідних (6.1) використовує формулу центральних різниць для z_{xx} і випереджаючу різницю для z_t . Користуючись співвідношенням (2.30), маємо

$$\alpha z_{xx} - z_t = \alpha \frac{z_{r+1,s} - 2z_{r,s} + z_{r-1,s}}{h^2} - \frac{z_{r,s+1} - z_{r,s}}{k} = 0$$

або

$$z_{r,s+1} = z_{r,s} + \frac{\alpha k}{h^2} (z_{r+1,s} - 2z_{r,s}) + O(h^2) + O(k)$$

Позначивши $\beta = \alpha k/h^2$, отримаємо $z_{r,s+1} = \beta z_{r+1,s} + (1-2\beta)z_{r,s} + \beta z_{r-1,s}$, (6.8)

де $1 \le r \le N$ і $s \ge 1$. Рівняння (6.8) має обчислювальний шаблон

Зокрема, коли $\beta = 1/2$, рівняння (6.8) приймає вигляд

$$z_{r,s+1} = \frac{1}{2} (z_{r+1,s} + z_{r-1,s})$$
(6.9)

Співвідношення (6.9) називається формулою Шмідта.

Крайові і початкові умови (6.2) і (6.3) приймають такий вигляд:

$$z_{0,s} = f_0(sk), \quad s \ge 0,$$

$$z_{M,s} = f_1(sk), \quad s \ge 0,$$

$$z_{r,0} = g_0(rh), \quad 0 < r < M.$$
(6.10)

(6.8) i Спосіб розв'язування рівнянь (6.10)виплива€ вищевикладеного для рівнянь еліптичного типу. Початкові і крайові умови (6.10) визначають величини для всіх межевих вузлів. Рівняння (6.8) може бути використаним для обчислення усіх $z_{r,s}$ в першому рядку за значеннями величини $z_{r,0}$. Це можна легко побачити із обчислювального шаблона, в якому величина $z_{r,s+1}$ випливає із величин функції тільки на рівні s . Як тільки відомий повний рядок $z_{r,1}$, величина $z_{r,s}$ може бути обчислена за допомогою рівняння (6.8) по відомим крайовим умовам і значенням величин $z_{r,1}$. Цей процес може бути продовжений в області часу настільки, наскільки це необхідно за умовою задачі. Зауважимо, що процес обчислення полягає у простому обчисленні значень рівень за рівнем, з невідомою z на (s+1)-му рівні, що обчислюється за одержаним значенням z на попередньому s-му рівні. Програма обчислень цього процесу відносно проста і вимоги до пам'яті обмежені. Рівняння (6.8) називається явним.

Треба відмітити, що основна задача полягає у обчисленні значень функції $z_{r,s}$ у першому рядку. Розрив існує в умовних точках $z_{0,0}$ і $z_{M,0}$, оскільки наближення до цих точок у напрямку $z_{0,0}$ і в напрямку $z_{0,0}$ веде до різних величин. Це звичайно компенсується використанням середніх арифметичних функції в умовних точках, що відповідають $z_{0,0}$ і $z_{0,0}$ Насправді значення функції в кутах не використовується у подальших обчисленнях і тому не є особливо важливими.

Приклади виконання завдань

Теорія похибок

Елементи теорії похибок.

Приклад 1.

Знайти суму наближених чисел: 0,348; 0,1834; 345,4; 235,2; 11,75; 9,27; 0,0849; 0,0214; 0,000354.

Розв'язування.

- 1) Виділимо числа абсолютної точності. Абсолютна похибка їх може бути 0,05 (оскільки маємо числа 345,4; 235,2).
 - 2) Округлюємо всі останні числа до сотих.
 - 3) 345,4 + 235,2 + 11,75 + 9,27 + 0,35 + 0,18 + 0,08 + 0,02 + 0,00 = 602,25
 - 4) Одержаний результат округлюємо до десятих : u = 602,3 .

Повна похибка результату складається з трьох доданків:

1) з суми граничних похибок вхідних даних

$$\Delta_1 = 10^{-3} + 10^{-4} + 10^{-1} + 10^{-1} + 10^{-2} + 10^{-2} + 10^{-4} + 10^{-4} + 10^{-6} = 0,221301 < 0,222$$

2) абсолютної величини суми похибок (з врахуванням знаків округлення доданків):

$$\Delta_2 = \left| -0.002 + 0.003 + 0.0049 + 0.0014 + 0.000354 \right| = 0.008054 < 0.009$$

3) залишкова похибка округлення результату: $\Delta_3 = 602,3 - 602,25 = 0,050$. $\Delta = \Delta_1 + \Delta_2 + \Delta_3 \le 0.222 + 0.009 + 0.050 = 0.281 < 0.3.$ $u = 602.3 \pm 0.3$

Приклад 2.

Визначити добуток u наближених чисел $x_1 = 12,2$ і $x_2 = 73,56$ і число правильних знаків у ньому, якщо всі записані цифри співмножників правильні.

Розв'язування.

Граничні похибки співмножників: $\Delta_{x_1} = 0.05$; $\Delta_{x_2} = 0.005$.

добутку :
$$\delta_u = \frac{0.05}{12.2} + \frac{0.005}{73.56} = 0.0042$$

Відносна похибка $u = 12, 2 \cdot 73, 56 = 897, 432$

Правильними ϵ лише перші дві цифри.

OTKE. $\Delta_u = |u| \cdot \delta_u = 897,432 \cdot 0,0042 = 3,6 \approx 4.$

Приклад 3.

$$u = \frac{25,7}{3,6} = 7,14$$

Знайти кількість правильних знаків частки

Розв'язування.

похибку : $\Delta_u = 0.016 \cdot 7.14 = 0.11$. Правильних знаків буде два, тобто ми можемо зберегти один знак u = 7,1. $u = 7,14 \pm 0,11$

Приклад 4 (Пряма задача теорії похибок).

Знайти граничні абсолютну та відносну похибки об'єму кулі $V = \frac{1}{6} \cdot \pi \cdot D^3 \, , \ \text{якщо} \ D = 3.7 \pm 0.05 \, \text{м}, \ \pi \approx 3.14 \, .$

Розв'язування.

Розглянемо π і D як змінні величини.

Обчислимо частинні похідні :
$$\frac{\partial V}{\partial \pi} = \frac{1}{6}D^3 = 8,44$$
; $\frac{\partial V}{\partial D} = \frac{1}{2}\pi D^2 = 21,5$

Гранична абсолютна похибка обчислення об'єму

$$\Delta_{v} = \left| \frac{\partial V}{\partial \pi} \right| \cdot \Delta_{\pi} + \left| \frac{\partial V}{\partial D} \right| \cdot \Delta_{D} = 8,44 \cdot 0,0016 + 21,5 \cdot 0,05 = 1,0188 \approx 1,1 \left(M^{3} \right)$$

 $V = 27,4 \pm 1,1$

Гранична відносна похибка об'єму $\delta_{_V} = \frac{1,088}{27,4} = 0,0397$, $\delta_{_V} \approx 4\%$

Приклад 5 (Обернена задача теорії похибок).

Радіус основи циліндра $\hat{R} \approx 2M$, висота $\hat{H} \approx 3M$. З якими абсолютними похибками треба визначити R і H, щоб об'єм циліндра V отримати із точністю до $0.1M^3$?

Розв'язування.

$$V = \pi R^2 H$$
, $\Delta_V = 0.1 M^3$. Покладемо $R = 2 M$, $H = 3 M$, $\pi = 3.14$. $\frac{\partial V}{\partial \pi} = R^2 H = 12$; $\frac{\partial V}{\partial R} = 2 \pi R H = 37.7$; $\frac{\partial V}{\partial H} = \pi R^2 = 12.6$; $\Delta_{\pi} = \frac{0.1}{3 \cdot 12} < 0.003$. $\Delta_{R} = \frac{0.1}{3 \cdot 37.7} < 0.001$. $\Delta_{H} = \frac{0.1}{3 \cdot 12.6} < 0.003$

Приклад 6 (Метод меж).

Алюмінієвий циліндр з діаметром основи $d=2\pm0.01\,c$ м, висотою $h=11\pm0.02\,c$ м, має масу $p=93.4\pm0.001\,H$. Визначити густину γ алюмінію і оцінити її граничну абсолютну похибку.

Розв'язування

$$V = \frac{\pi d^2}{4}h, \quad \gamma = \frac{p}{V} = \frac{4p}{\pi d^2 h}, \quad p > 0, \, d > 0, \, h > 0.$$

Функція $^{\gamma}$ - зростаюча по аргументу p і спадна по аргументам d і h : $1,99 \le d \le 2,01$, $10,98 \le h \le 11,02$, $93,399 \le p \le 93,401$, $3,14159 \le \pi \le 3,1416$,

$$\underline{\gamma} = \frac{4 \cdot 93,399}{3,1416 \cdot 2,01^2 \cdot 11,02} = 2,671 \frac{H}{c M^3}$$
 (3 недостачею);
$$\overline{\gamma} = \frac{43 \cdot 93,401}{3,14159 \cdot 1,99^2 \cdot 10,98} = 2,735 \frac{H}{c M^3}$$
 (3 надвишкою).

Візьмемо середнє арифметичне $\gamma = 2,703 \pm 0,027 \frac{H}{c M^3}$. Після округлення маємо $\gamma = 2,70 \pm 0,03$.

Методи нелінійної алгебри

Розв'язування нелінійних рівнянь з однією змінною Постановка задачі

Якщо функція f(x) визначена і неперервна на деякому проміжку (a,b), то розв'язання рівняння f(x)=0 зводиться до відшукання множини значень $x \in (a,b)$, при яких це рівняння перетворюється у тотожність. Знаходження наближених коренів рівняння f(x)=0 складається із двох етапів:

- відокремлення коренів, тобто знаходження досить малих відрізків, на кожному з яких міститься один і тільки один корінь рівняння;
 - уточнення кореня із наперед заданою точністю ε .

Для відокремлення коренів можемо використати відому теорему: якщо неперервна функція F(x) на кінцях відрізку [a,b] приймає значення протилежних знаків (F(a)F(b)<0), то відрізок містить принаймні один корінь рівняння F(x)=0. А якщо вдасться встановити монотонність функції F(x) на [a,b], то на цьому відрізку міститься ізольований корінь.

Якщо F(x) = f(x) - g(x), то корінь рівняння F(x) = 0 можна знайти як точку перетину графіків функцій y = f(x), y = g(x).

Наведемо, можливо не зовсім коректний, але часто вживаний спосіб відокремлення коренів рівняння F(x)=0 на відрізку [a,b], де F(x) визначена, неперервна і F(a)F(b)<0. Точками x_k ($x_k=a+k\cdot h$, h=(b-a)/n, k=0,1,...,n) розбиваємо відрізок [a,b] на n частин. Як тільки $F(x_k)F(x_{k+1})<0$ і функція F(x) монотонна на відрізку $[x_k,x_{k+1}]$, то вважатимемо, що на $[x_k,x_{k+1}]$ міститься єдиний корінь. Зауважимо, що при такому відокремленні коренів необхідно вибирати досить малі значення кроку h.

Метод хорд

Нехай дано рівняння f(x)=0, де функція f(x) на відрізку [a;b] має неперервні похідні першого і другого порядків, які зберігають сталі знаки на цьому відрізку, причому f(a)f(b)<0, тобто корінь x^0 рівняння відокремлений на [a;b].

Ідея методу хорд в тому, що на досить малому відрізку дуга кривої y = f(x) замінюється хордою і абсциса точки перетину хорди з віссю $Ox \in Hadon$ наближеним значенням кореня.

Метод хорд можна записати так:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(c)}(x_k - c)$$
, $k = 0, 1, 2, \dots$ де $c = \begin{cases} a, & \text{якщо} \quad f(a)f''(a) > 0 \\ b, & \text{якщо} \quad f(b)f''(b) > 0 \end{cases}$.

Метод Ньютона (дотичних)

Нехай рівняння f(x)=0 на відрізку [a,b] має ізольований корінь x^0 , тобто f(a)f(b)<0, а функції f(x), f'(x) неперервні і зберігають знаки на відрізку [a,b].

Геометричний зміст методу: дуга кривої y = f(x) замінюється дотичною до цієї кривої.

Формула $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0,1,2,...$ визначає метод Ньютона.

Як початкове наближення у методі Ньютона слід брати точку $x_0 \in [a,b]$, в якій $f(x_0)f'(x_0) > 0$. Як x_0 прийнято брати відповідний кінець відрізку [a,b].

Комбінований метод дотичних і хорд

Характерна особливість методів дотичних і хорд та, що послідовніості їх наближень монотонні. Причому, якщо для даного рівняння послідовність наближень методу хорд монотонно спадна, то послідовність наближень методу дотичних — монотонно зростаюча, і навпаки. Одночасне застосування цих методів дає змогу наближатися до кореня рівняння з двох боків, дістаючи наближення з недостачею і надлишком.

За наведеними раніше умовами для одного методу як початкове наближення вибирають точку x=a, а в іншому точку b. Після застосовуння методів хорд та дотичних дістають нові наближення a_1,b_1 , і початковий відрізок ізоляції кореня відрізку [a;b] звузився. Для знаходження нових наближень застосовують метод дотичних і хорд уже на відрізку $[a_1;b_1]$. У результаті дістають нові наближення a_2,b_2 відповідно, причому $[a_2;b_2]\subset [a_1;b_1]\subset [a;b]$. Такий процес продовжують доти, поки довжина відрізка $[a_k;b_k]$ стане меншою або дорівнюватиме величині 2ε , де ε - наперед задана точність.

Метод простої ітерації

Замінимо рівняння F(x)=0 рівносильним рівнянням x=f(x). Нехай ξ - корінь цього рівняння, а x_0 - одержане будь-яким способом початковим наближенням до кореня ξ . Підставляючи x_0 у праву частину рівняння, одержимо деяке число $x_1=f(x_0)$. Зробимо те ж саме з x_1 , одержимо $x_2=f(x_1)$ і так далі. Використовуючи крок за кроком співвідношення $x_n=f(x_{n-1})$ для $n=1,2,\dots$ одержуємо числову послідовність x_0 , x_1 ,..., x_n ,..., яку називають ітераційною послідовністю.

Ітераційна послідовність може бути як збіжною, так і розбіжною.

Теорема збіжності ітераційної послідовності. Нехай рівняння x = f(x) має єдиний корінь на відрізку [a,b] і виконані умови:

$$f(x)$$
 визначена і диференційована на $[a,b]$; $f(x) \in [a,b]$ для всіх $x \in [a,b]$;

існує таке дійсне q, що $|f'(x)| \le q < 1$ для всіх $x \in [a;b]$.

Тоді ітераційна послідовність $x_n = f(x_{n-1})$, $n = 1, 2, \dots$ збігається при будьякому початковому наближенні $x_0 \in [a;b]$.

Перетворення рівняння до ітераційного вигляду

Рівняння F(x)=0 може бути приведено до ітераційного вигляду різними способами, проте необхідно зробити так, щоб для функції f(x) виконувались умови теореми збіжності.

3 цією метою рівняння F(x)=0 подамо у вигляді $x=x-m\cdot F(x)$, де стала $m\neq 0$. Тоді позначимо f(x)=x-mF(x). Диференціюючи, отримуємо f'(x)=1-mF'(x). Для виконання умови 3 теореми збіжності потрібно $|f'(x)|=|1-mF'(x)|\leq q<1$. А для цього досить підібрати сталу $m\neq 0$ так, щоб для фіксованого $x\in [a;b]$ виконувалося $x\in [a;b]$ підставимо це значення $x\in [a;b]$ виконувалося $x\in [a;b]$

Розв'язування систем нелінійних рівнянь

- 1. Використовуючи метод ітерацій, розв'язати систему нелінійних рівнянь з точністю до 0.001.
- 2. Використовуючи метод Ньютона, розв'язати систему нелінійних рівнянь з точністю до 0.001.

Приклад розв'язування одного варіанта.

$$\begin{cases} \sin(x-0.6)-y=1.6 & \sin(2x-y)-1.2x=0.4 \\ 1) & 3x-\cos y=0.9 & 2) \end{cases} \begin{cases} \sin(2x-y)-1.2x=0.4 \\ 0.8x^2+1.5y^2=1 \\ x=\frac{1}{3}\cos y+0.3 \end{cases}$$
1). Перепишемо дану систему у вигляді

Відокремлення коренів проводимо графічно (рис.1). Із графіка бачимо, що система має один розв'язок, розміщений в області D: 0 < x < 0.3, -2.2 < y < -1.8

Переконаємося в тому, що метод ітерацій застосовний для уточнення розв'язку системи, для чого запишемо її у такому вигляді:

$$\begin{cases} x = \varphi_1(x, y) = \frac{1}{3}\cos y + 0.3 \\ y = \varphi_2(x, y) = \sin(x - 0.6) - 1.6 \end{cases}$$

$$OCKIЛЬКИ \frac{\partial \varphi_1}{\partial x} = 0, \quad \frac{\partial \varphi_2}{\partial x} = \cos(x - 0.6),$$

$$\frac{\partial \varphi_1}{\partial y} = -\frac{1}{3}\sin y, \quad \frac{\partial \varphi_2}{\partial y} = 0$$

$$MAEMO \quad \left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial x} \right| = \left| \cos(x - 0.6) \le \cos 0.3 = 0.2955 < 1 \right|$$

$$\left| \frac{\partial \varphi_1}{\partial y} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = \left| -\frac{1}{3}\sin y \right| < \left| \frac{1}{3}\sin(-1.8) \right| < 1$$

Таким чином, умови збіжності виконуються.

 $\begin{cases} x_{\scriptscriptstyle n+1} = \frac{1}{3}\cos y_{\scriptscriptstyle n} + 0.3\\ y_{\scriptscriptstyle n+1} = \sin(x_{\scriptscriptstyle n} - 0.6) - 1.6\\ \end{cases}.$ Як початкове наближення приймаємо $x_{\scriptscriptstyle 0} = 0.15$, $y_{\scriptscriptstyle 0} = -2$.

Таблиця 1

n	X_n	\mathcal{Y}_n	$x_n - 0.6$	$\sin(x_n - 0.6)$	$\cos y_n$	$\frac{1}{3}\cos y_n$
0	0.15	-2	-0.45	-0.4350	-0.4161	-0.1384
1	0.1616	-2.035	-0.4384	-0.4245	-0.4477	-0.1492
2	0.1508	-2.0245	-0.4492	-0.4342	-0.4382	-0.1461
3	0.1539	-2.0342	-0.4461	-0.4313	-0.4470	-0.1490
4	0.1510	-2.0313	-0.4490	0.4341	-0.4444	-0.1481
5	0.1519	-2.0341	-0.4481	-0.4333	-0.4469	-0.1490
6	0.1510	-2.0333	-0.4490	-0.4341	-0.4462	-0.1487
7	0.1513	-2.0341	-0.4487	-0.4340	-0.4469	-0.1490
8	0.1510	-2.0340				

Відповідь: $x \approx 0.151$, $y \approx -2.034$.

2) Відокремлення коренів проводимо графічно (рис.2). Для побудови графіків функцій складемо таблицю значень функцій y_1 та y_2 , що входять до першого та другого рівняння (табл.2).

Таблиця 2

x	-1.1	-1	-0.8	-0.6	-0.2	-0.4	0	0.2	0.4	0.5
x^2	1.21	1	0.64	0.36	0.04	0.16	0	0.04	0.16	0.25
$0.8x^2$	0.97	0.8	0.51	0.29	0.032	0.13	0	0.032	0.13	0.2
$1 - 0.8x^2$	0.03	0.2	0.49	0.71	0.97	0.87	1	0.97	0.87	0.8
$\frac{1-0.8x^2}{1.5}$	-0.02	0.13	0.33	0.47	0.65	0.58	0.67	0.65	0.58	0.53
y_2	±0.14	±0.36	<u>±</u>	±	<u>±</u>	±	±0.82	±	±	± 0.73
1.2 <i>x</i>	-1.32	-1.2	- 0.96	- 0.72	-0.24	- 0.48	0	0.24	0.48	0.6
0.4 + 1.2x	-0.92	-0.8	- 0.56	0.32	0.16	- 0.08	0.4	0.64	0.88	1
2x-y	-1.17	-0.93	- 0.59	0.33	0.16	0.08	0.41	0.69	2.06 1.08	1.57
\mathcal{Y}_1	-1.03	-1.07	- 1.01	- 0.87	-0.56	- 0.72	-0.41	-0.29	- 1.26 - 1.28	-0.57

Значення для x можна брати виходячи із таких умов: із першого рівняння $-1 \le 1.2x + 0.4 \le 1$, тобто $-1.16 \le x \le 0.5$; із другого рівняння $-\sqrt{1.25} \le x \le \sqrt{1.25}$, тобто $-1.12 \le x \le 1.12$. Таким чином, $-1.12 \le x \le 0/5$.

Система має два розв'язки. Уточнимо один із них, що належить області

один 13 них, що належить обл

$$0.4 < x < 0.5$$
, $-0.76 < y < -0.73$. Маємо

$$\begin{cases} F(x,y) = \sin(2x-y) - 1.2x - 0.4 \\ G(x,y) = 0.8x^2 + 1.5y^2 - 1 \end{cases}$$

$$\begin{cases} F'_x = 2\cos(2x-y) - 1,2 & F'_y = -\cos(2x-y) \\ G'_x = 1.6 & G'_y = 3y \end{cases}$$

Ньютона:
$$\begin{cases} x_{n+1} = x_n + h_n \\ y_{n+1} = y_n + k_n \\ G'_x(x_n, y_n) & F'_y(x_n, y_n) \\ G'_x(x_n, y_n) & G'_y(x_n, y_n) \\ G'_x(x_n, y_n) & G'_x(x_n, y_n) \\ G'_x(x_n, y_n) &$$

Всі обчислення виконуємо в таблиці 3.

Таблиця 3

										,
n	X_n	$0.8x_n^2$	$2x_n - y_n$				$F_y'(x_n, y_n)$	٨	Δ_{h_n}	h_n
l n	\mathcal{Y}_n	$1.5y_n^2$		$\cos(2x_n-y_n)$	$G(x_n, y_n)$	$G_x'(x_n, y_n)$	$G_{y}'(x_{n},y_{n})$	Δ_n	Δ_{k_n}	k_n
0	0.4	0.128	0.55	0.9988	0.1198	-1.1584	-0.0208	2.6197	0.2701	0.10
U	0.75	0.8438	0.55	0.0208	-0.0282	0.64	-2.25	2.0197	0.0440	0.017
1	, 0.50 0	0.2	0.733	0.9869	-0.0131	-1.523	0.1615	3.2199	-0.0193	-0.0060
1	-0.733	0.8059	0.733	-0.1615	0.059	0.8	-2.199	3.2199	0.0794	0.0247
2	0.4940	0.1952	1.6963	0.9921	-0.0007	-1.4502	0.1251	2.9827	-0.0080	-0.0027
2	-0.7083	0.7525	1.0903	-0.1251	-0.0523	0.7904	-2.1249	2.9621	-0.0003	-0.0256
3	0.4913	0.1931	1.7165	0.9894	-0.0002	-1.4904	0.1452	3.1673	-0.0003	-0.0001
3	-0.7339	0.8079	1./103	-0.1452	-0.1452	0.7861	-2.2017	3.10/3	0.0013	0.0004
4	0.4912									
4	-0.7335									

Відповідь: $x \approx 0.491$, $y \approx -0.734$.

Метод Ньютона для наближеного знаходження розв'язку системи

Приклад. Методом Ньютона наближено знайти додатний розв'язок системи

$$\begin{cases} x^2 + y^2 + z^2 = 1, \\ 2x^2 + y^2 - 4z = 0, \\ 2x^2 - 4y + z^2 = 0. \end{cases}$$

Розв'язання: На підставі початкового наближення $x_0 = y_0 = z_0 = 0,5$

маємо

$$f(\overline{x}) = \begin{pmatrix} x^2 + y^2 + z^2 - 1, \\ 2x^2 + y^2 - 4z, \\ 2x^2 - 4y + z^2. \end{pmatrix}$$

$$f(\overline{x}^{0}) = \begin{pmatrix} 0.25 + 0.25 + 0.25 - 1 \\ 0.50 + 0.25 - 2.00 \\ 0.75 - 2.00 + 0.25 \end{pmatrix} = \begin{pmatrix} -0.25 \\ -1.25 \\ -1.00 \end{pmatrix}$$

Побудуємо матрицю Якобі

$$F(\bar{x}) = \begin{pmatrix} 2x & 2y & 2z \\ 4x & 2y & -4 \\ 6x & -4 & 2z \end{pmatrix}.$$

Дістанемо

$$f(\overline{x}^0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -4 \\ 3 & -4 & 1 \end{pmatrix}$$

Відповідно з (7) маємо систему рівнянь

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -4 \\ 3 & -4 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_x^{(0)} \\ \varepsilon_y^{(0)} \\ \varepsilon_z^{(0)} \end{pmatrix} = \begin{pmatrix} 0,25 \\ 1,25 \\ 1,00 \end{pmatrix}$$

розв'язуючи її методом виключення Гауса, отримуємо:

$$\varepsilon_x^{(0)} = 0.375; \quad \varepsilon_y^{(0)} = 0; \quad \varepsilon_z^{(0)} = -0.125$$

За знайденим приростом дістанемо перше наближення (8):

$$\overline{x}^{\scriptscriptstyle (1)} = \overline{x}^{\scriptscriptstyle (0)} + \overline{\varepsilon}^{\scriptscriptstyle (0)};$$

$$\overline{x}^{(1)} = \begin{pmatrix} 0,875\\1,5\\1,375 \end{pmatrix}.$$

Далі обчислюємо друге наближення
$$\overline{x}^{(2)}$$
. Маємо $f(\overline{x}^{(1)}) = \begin{pmatrix} 0,12625 \\ 0,28125 \\ 0,43750 \end{pmatrix}; \quad F(\overline{x}^{(1)}) = \begin{pmatrix} 1,750 & 1 & 0,750 \\ 3,500 & 1 & -4 \\ 5,250 & -4 & 0,750 \end{pmatrix}.$

Розв'язуючи систему рівнянь $F(\bar{x}^{(1)})\bar{\epsilon}^{(1)} = -\bar{f}(\bar{x}^{(1)})$, отримуємо $\varepsilon_x^{(1)} = -0.085183; \quad \varepsilon_v^{(1)} = -0.0033784; \quad \varepsilon_z^{(1)} = -0.0050675.$

Використовуючи знайдений приріст, будуємо друге наближення: $\bar{x}^{(2)} = \bar{x}^{(1)} + \bar{\varepsilon}^{(1)}$:

$$\overline{x}^{(2)} = \begin{pmatrix} 0.78982 \\ 0.49662 \\ 0.36992 \end{pmatrix}$$

Аналогічно відшукуються подальші наближення:

$$\bar{x}^{(3)} = \begin{pmatrix} 0.78521 \\ 0.49662 \\ 0.36992 \end{pmatrix}, \quad \bar{f}(\bar{x}^{(3)}) = \begin{pmatrix} 0.00001 \\ 0.00004 \\ 0.00005 \end{pmatrix}$$

і так далі.

наближенням, Обмежуючись третім x = 0.7852; y = 0.4966 z = 0.3699.

дістанемо:

Метод градієнтного спуску

Приклад. Методом градієнтного спуску приблизно обчислити корені системи

$$x + x^2 - 2yz = 0.1$$
;

$$y - y^2 + 3xz = -0.2;$$

$$z + z^2 + 2xy = 0.3$$
;

розташовані в околі початку координа

$$\bar{f} = \begin{bmatrix} x + x^2 - 2yz - 0.1 \\ y - y^2 + 3xz + 0.2 \\ z + z^2 + 2xy - 0.3 \end{bmatrix}; \qquad F = \begin{bmatrix} 1 + 2x & -2z & -2y \\ 3z & 1 - 2y & 3x \\ 2y & 2x & 1 + 2z \end{bmatrix}$$

Розв'язання. Підставляючи нульове наближення, матимемо

$$\bar{f}^{(0)} = \begin{bmatrix} -0.1 \\ 0.2 \\ -0.3 \end{bmatrix} F_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E$$

За формулами (5), (6) отримуємо перше наближення:

$$2h_0 = \frac{\left(\bar{f}^{(0)} \cdot \bar{f}^{(0)}\right)}{\left(\bar{f}^{(0)} \cdot \bar{f}^{(0)}\right)} = 1 \quad \overline{x}^{(1)} = \overline{x}^{(0)} - 1 * E\bar{f}^{(0)} = \begin{bmatrix} 0,1 \\ -0,2 \\ 0,3 \end{bmatrix}.$$

Аналогічно шукаємо друге наближення $\bar{x}^{(1)}$.

$$\bar{f}^{(1)} = \begin{bmatrix} 0.13 \\ 0.05 \\ 0.05 \end{bmatrix} \quad F_1 = \begin{bmatrix} 1.2 & -0.6 & 0.4 \\ 0.9 & 1.4 & 0.3 \\ -0.4 & 0.2 & 1.6 \end{bmatrix}$$

Аналогино шукаемо друге наолиження
$$\bar{f}^{(1)} = \begin{bmatrix} 0.13 \\ 0.05 \\ 0.05 \end{bmatrix}, \quad F_1 = \begin{bmatrix} 1.2 & -0.6 & 0.4 \\ 0.9 & 1.4 & 0.3 \\ -0.4 & 0.2 & 1.6 \end{bmatrix}.$$
 Маємо: $\bar{F}_1 f^{(1)} = \begin{bmatrix} 0.181 \\ 0.002 \\ 0.147 \end{bmatrix}, \quad F_1 F_1 \bar{f}^{(1)} = \begin{bmatrix} 0.2748 \\ 0.2098 \\ 0.1632 \end{bmatrix}.$

Звідси

Отже
$$2h_1 = \frac{0,13 \cdot 0,2748 + 0,05 \cdot 0,2098 + 0,05 \cdot 0,1632}{0,2748^2 + 0,2098^2 + 0,1632^2} = 0,3719$$
;
$$\overline{x}^{(2)} = \begin{bmatrix} 0,0327 \\ -0,2007 \\ 0,2453 \end{bmatrix}$$

і т.л.

Методи лінійної алгебри

Розв'язування систем лінійних алгебраїчних рівнянь

Приклад 1. Розв'яжемо методом Гауса систему рівнянь виду

$$\begin{cases} 2,50x_1 + 0,94x_2 + 0,36x_3 = 6,804 \\ 0,87x_1 + 2,30x_2 + 0,76x_3 = 8,415 \\ 0,26x_1 + 0,97x_2 + 2,15x_3 = 8,877 \end{cases}$$

коефіцієнти і вільні члени якої є точним числами.

Розв'язання. Переконаємось спочатку, що система невироджена і добре обумовлена .Для цього підрахуємо визначник системи: $\Delta = 9.035498$. Значення визначника системи становить 361% значення найбільшого коефіцієнта системи ($a_{11} = 2.50$).

За схемою єдиного розв'язуємо у такий спосіб.

1. Коефіцієнти і вільні члени системи записуємо в перші три рядки (стовпці 3-6) табл.1. Підрахуємо контрольні і рядкові суми ($a_{i1} + a_{i2} + a_{i3} + b_i$), які збігаються між собою, і записуємо їх у 7-му і 8-му стовпцях.

Таблиця 1

		1				1	тиолици т
Крок пере- творе- ння	Рядок	Коефіцієн x_2, x_3	т при змі	нних x_1 ,	Вільний член	Контрольн а сума	Рядкова сума
1	2	3	4	5	6	7	8
	1	2.50	0.94	0.36	6.804	10.604	10.604
1	2	0.87	2.30	0.76	8.415	12.345	12.345
	3	0.26	0.97	2.15	8.877	12.257	12.257
	4	1	0.376	0.144	2.7216	4.2416	4.2416
2	5		1.9729	0.6347	6.0472	8.6548	8.6548
	6		0.8722	2.1126	8.1694	11.1542	11.1542
3	7		1	0.3217	3.0651	4.3868	4.3868
3	8			1.8320	5.4960	7.3280	7.3280
	9			1	3.0000	4.0000	4.0000
4	10		1		2.1000	3.1000	3.1000
	11	1			1.5000	2.5000	2.5000

2. Усі числа першого рядка, крім рядкової суми (стовпчик 8), ділимо на $a_{11} = 2.50$. Результати ділення записуємо у четвертий рядок. Усі проміжні обчислення виконуємо з двома запасними десятковими розрядами. Рядкова сума 1+0.376+0.144+2.7216=4.2416 збігається з контрольною сумою 10.604/2.50=4.2416, а це значить, що помилок в обчисленнях немає.

3. Обчислюємо коефіцієнти
$$a_{ij}^{(1)}$$
 ($i=2,3$; $j=2,3,4$) системи $\begin{cases} a_{22}^{(1)}x_2+a_{23}^{(1)}x_3=a_{24}^{(1)}\\ a_{32}^{(1)}x_2+a_{33}^{(1)}x_3=a_{34}^{(1)} \end{cases}$

за формулами $a_{ij}^{(1)}=a_{ij}-a_{i1}a_{1j}^{(1)}$ $(i=2,3\;;\;j=2,3,4\;)$ і записуємо їх у 5-й та 6-й рядки.

Контрольні суми

12.345-0.87*4.2416=12.345-3.690=8.6548,

12.257-0.26*4.2416=12.257-1.103=11.1542

збігаються з відповідними рядковими сумами

1.9729 + 0.6347 + 6.0472 = 8.6548,

0.8722+2.1126+8.1694=11.1542

а це означає, що обчислення виконані правильно.

- 4. Усі числа рядка 5, окрім числа, що стоїть у 8-му стовпці, ділимо на $a_{22}^{(1)}=1,9729$, і результати записуємо у 7-й рядок. Контрольна сума дорівнює 8.6548/1.9729=4.3868, і вона збігається з рядковою сумою 1+0.3217+3.0651=4.3868.
- 5. Коефіцієнт $a_{ij}^{(2)}$ (i=3, j=3,4) рівняння $a_{33}^{(2)}x_3=a_{34}^{(2)}$ обчислюємо за формулами $a_{3j}^{(2)}=a_{3j}^{(1)}-a_{32}^{(1)}a_{2j}^{(2)}$ (j=3,4) і записуємо у 8-й рядок.

Контрольна сума 11.1542-4.3868*0.8722=7.3280 збігається з рядковою 1.8320+5.4960=7.3280.

$$\begin{cases} x_3 = a_{34}^{(3)}, \\ x_2 = a_{24}^{(2)} - a_{23}^{(2)} x_3, \\ x_1 = a_{14}^{(1)} - a_{13}^{(1)} x_3 - a_{12}^{(1)} x_2 \end{cases}$$

6. Зворотній хід виконується за формулами

При цьому використовуються 8-й, 7-й і 4-й рядки табл.3.1. Із 8-го рядка дістаємо:

 $x_3 = 5.4960/1.8320 = 3.0000,$ $x_3 = 7.3280/1.8320 = 4.0000.$

3 7-го рядка маємо:

 $x_2 = 3.0651 - 0.3217 * 3 = 2.1000,$ $\overline{x_2} = 4.3868 - 0.3217 * 4 = 3.1000.$

Нарешті, з 4-го рядка знаходимо:

 $x_1 = 2.7216 - 0.144*3 - 0.376*2.1 = 1.5000,$ $x_1 = 4.2416 - 0.144*4 - 0.376*3.1 = 2.5000.$

Обчислені значення x_j , x_j пов'язані між собою співвідношенням $\overline{x_j} = x_j + 1$ (j = 1, 2, 3), що свідчить про відсутність випадкових обчислювальних помилок.

Безпосередньо підстановкою x_1 , x_2 , x_3 у систему переконуємося, що система розв'язана правильно: усі нев'язки дорівнюють нулю. Результати розв'язання системи за схемою єдиного ділення зведено в табл. 1.

Метод простої ітерації

Приклад. Розв'язати систему

$$2.34x_1 - 4.21x_2 - 11.61x_3 = 14.41$$

$$8.04x_1 + 5.22x_2 + 0.27x_3 = -6.44$$

$$3.92x_1 - 7.99x_2 + 8.37x_3 = 55.56$$

методом простої ітерації з точністю $\xi = 10^{-4}$.

Одержимо спочатку систему, де переважають діагональні коефіцієнти. Для цього першим рівнянням візьмемо друге, третім -перше, а другим - суму першого з третім:

$$8.04x_1 + 5.22x_2 + 0.27x_3 = -6.44$$

$$6.26x_1 - 12.20x_2 - 3.24x_3 = 69.97$$

$$2.34x_1 - 4.21x_2 - 11.61x_3 = 14.41$$

Поділимо тепер кожне рівняння на його діагональний коефіцієнт і виразимо із кожного рівняння діагональне невідоме:

$$x_1 = -0.6492537x_2 - 0.033582x_3 - 0.800995$$

$$x_2 = 0.5131147x_1 - 0.2655737x_3 - 5.7352459$$

$$x_3 = 0.2015503x_1 - 0.3626184x_2 - 1.2411714$$

Необхідно перевірити одну із умов збіжності. Спробуємо встановити. Відмітимо, що максимальною сумою модулів коефіцієнтів по стовпцям буде сума модулів коефіцієнтів при x_2 . Але ця сума не задовольняє умові б): 0.6492537+0.3626184>1.

Невиконання однієї із умов ще не означає, що метод ітерації застосувати не можливо. Попробуємо встановити умову збіжності в просторі з евклідовою метрикою в).

Маємо:

 $\begin{array}{l} 0.64925372 + 0.0335822 + 0.51311472 + 0.26557372 + 0.20155032 + 0.36261842 = \\ = 0.4215303 + 0.0011277 + 0.2632866 + 0.0705293 + 0.0412271 + 0.1314921 = 0.\\ 9291931 < 1 \end{array}$

Отже, ітераційний процес в евклідовому просторі збіжний, причому коефіцієнт стиску $\alpha = \sqrt{0.9291931} \approx 0.96$. Для досягнення точності $\xi = 10^{-4}$ наближення потрібно знаходити до тих пір, доки буде виконуватися нерівність $\rho(x^{(k-1)},x^k) \leq \xi(1-\alpha)/\alpha$, де $\rho(x^{(k-1)},x^k)$ - відстань між двома послідовними наближеннями, причому $\xi = 10^{-4}$, $\alpha = 0.96$.

Розв'язування систем лінійних алгебраїчних рівнянь з симетричною матрицею методом квадратних коренів

Приклад. Розв'язати систему методом квадратного кореня

$$2.66x_1 - 1.35x_2 - 2.63x_3 + 2.61x_4 = 3.5337$$

$$-1.35x_1 - 2.67x_2 + 1.36x_3 + 2.22x_4 = -1.8689$$

$$-2.63x_1 + 1.36x_2 - 2.37x_3 + 1.16x_4 = -1.5770$$

$$2.61x_1 + 2.22x_2 + 1.16x_3 + 1.22x_4 = 15.6635$$

Розв'язання. Скористаємося наведеною раніше схемою, заповнюючи таку таблицю

Коефіцієнти	Вільні члени	Контрольна сума
$a_{11} \ a_{12} \ a_{13} \ a_{14}$	b_1	S_a
$a_{21} \ a_{22} \ a_{23} \ a_{24}$	b_2	S_{a_2}
$a_{31} \ a_{32} \ a_{33} \ a_{34}$	b_3	S_{a_3}
$a_{41} \ a_{42} \ a_{43} \ a_{44}$	b_4	S_{a_4}
t_{11} t_{12} t_{13} t_{14}	y_1	S_{t_1}
t_{22} t_{23} t_{24}	y_2	S_{t_2}
t_{33} t_{34}	y_3	S_{t_3}
t ₄₄	\mathcal{Y}_4	S_{t_4}
x_1 x_2 x_3 x_4		
\overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4		

Коефіцієнти таблиці знаходяться за наведеним алгоритмом при n=4:

Упевнившись, що обчислені значення S_{ji} співпадають із сумою

елементів відповідного рядка, переходимо до наступного етапу:

$$x_4 = \frac{y_4}{t_{44}} = 2.57998 \qquad x_3 = \frac{y_3 - t_{34}x_4}{t_{33}} = 1.56998 \qquad ;$$

$$x_2 = \frac{y_2 - t_{23}x_3 - t_{24}x_4}{t_{22}} = 2.75998 \qquad x_1 = \frac{y_1 - t_{12}x_2 - t_{13}x_3 - t_{14}x_4}{t_{11}} = 1.75003 \qquad ;$$

$$\mathcal{I}_{ЛЯ} \text{ контролю обчислюємо } \overline{x}_i \text{ за формулами для } x_i, \text{ в яких } y_i \text{ замінено }$$

 $_{\rm Ha}$ S_{t_i}

Контроль виконуємо за формулою $\overline{x}_i = x_i + 1$.

Результати числових розрахунків подамо у вигляді таблиці:

	Коефі	<u>цієнти</u>		Вільні	Контрольна
				члени	сума
2,66	-1,35	-2,63	2,61	3,5337	4,8237
-1,35	-2,67	1,36	2,22	-1,8689	-2,3089
-2,63	1,36	-2,37	1,16	-1,5770	-4,0570
2,61	2,22	1,16	1,22	15,6635	22,8735
1,63095	-0,82774	-1,61256	1,60029	2,16665	2,95760
	1,83171 i	-0.01377i	-1,93515 <i>i</i>	$0,04121^{i}$	-0.07601i
		2,22939 <i>i</i>	-1,68980 <i>i</i>	-0.85956i	-0.31998i
			2,29332	5,91673	8,21005
1,75003	2,75998	1,56998	2,57998		
2,74999	3,75997	2,56997	3,57998		

Метод прогонки

Приклад.

Дана система лінійних алгебраїчних рівнянь з тридіагональною матрицею A (n=4):

$$5x_1 + 3x_2 = 8$$
$$3x_1 + 6x_2 + x_3 = 10$$
$$x_2 + 4x_3 - 2x_4 = 3$$
$$x_3 - 3x_4 = -2$$

 $(\alpha_1 = 0, \gamma_4 = 0)$. Розв'язати цю систему методом прогонки.

Розв'язання.

$$A_1 = \begin{pmatrix} 5 & 3 & 0 & 0 & 8 \\ 3 & 6 & 1 & 0 & 10 \\ 0 & 1 & 4 & -2 & 3 \\ 0 & 0 & 1 & -3 & -2 \end{pmatrix}$$

Матриця системи

Прямий хід. Обчислимо прогоночні коефіцієнти:

$$P_1 = \frac{\gamma_1}{\beta_1} = \frac{3}{-5} = -\frac{3}{5}$$
, $Q_1 = \frac{\delta_1}{\beta_1} = -\frac{8}{-5} = \frac{8}{5}$,

$$P_{2} = \frac{\gamma_{2}}{\beta_{2} - \alpha_{2} P_{1}} = \frac{1}{-6 - 3 \cdot \left(-\frac{3}{5}\right)} = -\frac{5}{21} \qquad Q_{2} = \frac{\alpha_{2} Q_{1} - \delta_{2}}{\beta_{2} - \alpha_{2} P_{1}} = \frac{3 \cdot \frac{8}{5} - 10}{-6 - 3 \cdot \left(-\frac{3}{5}\right)} = \frac{26}{21}$$

Відмітимо, що $\beta_1 = -5$; $\beta_2 = -6$; $\beta_3 = -4$; $\beta_4 = 3$, оскільки в (1) у другому доданку покладено знак "мінус":

$$P_{3} = \frac{\gamma_{3}}{\beta_{3} - \alpha_{3} P_{2}} = \frac{-2}{-4 - 1 \cdot \left(-\frac{5}{21}\right)} = \frac{42}{79}$$

$$Q_{3} = \frac{\alpha_{3} Q_{2} - \delta_{3}}{\beta_{3} - \alpha_{3} P_{2}} = \frac{1 \cdot \frac{26}{21} - 3}{-4 - 1 \cdot \left(-\frac{5}{21}\right)} = \frac{37}{79}$$

Зворотний хід:

$$x_{4} = Q_{4} = \frac{\alpha_{4}Q_{3} - \delta_{4}}{\beta_{4} - \alpha_{4}P_{3}} = \frac{1 \cdot \frac{37}{79} + 2}{3 - 1 \cdot \left(\frac{42}{79}\right)} = 1$$

$$\vdots \qquad x_{3} = P_{3}x_{4} + Q_{3} = \frac{42}{79} \cdot 1 + \frac{37}{79} = 1$$

$$\vdots \qquad x_{1} = P_{1}x_{2} + Q_{1} = -\frac{3}{5} \cdot 1 + \frac{8}{5} = 1$$

Підстановкою розв'язку $\vec{x} = (1;1;1;1)$ в початкову систему переконуємося, що задача розв'язана правильно.

Методи розв'язування задач про власні значення та власні вектори матриць

Власні значення та власні вектори

Приклад 1.

Знайти власні значення і власні вектори матриці $A = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}$ **Розв'язування**.

1. Запишемо рівняння (1): $|A - \lambda E| = \begin{vmatrix} 3 - \lambda & -2 \\ -4 & 1 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda - 5 = 0$

- 2. Знаходимо корені (власні значення) отриманого характеристичне рівняння: $\lambda_1 = 5$; $\lambda_2 = -1$.
- 3. Складаємо систему $(A \lambda_i E)X^i = 0$, i = 1,2, для кожного власного значення і знаходимо власні вектори:

$$\begin{pmatrix} 3 - \lambda_1 & -2 \\ -4 & 1 - \lambda_1 \end{pmatrix} \cdot \begin{pmatrix} x_1^1 \\ x_2^1 \end{pmatrix} = 0 \qquad -2x_1^1 - 2x_2^1 = 0, \\ x_2^1 - 4x_1^1 - 4x_2^1 = 0.$$

Звідси $x_1^1 = x_2^1$. Якщо $x_1^1 = 0$, то $x_2^1 = 0$, де 0 довільне дійсне число.

В результаті отримуємо $X^1 = \{x_1^1, x_2^1\} = \{(-1;1)\}$

Для
$$\lambda_2 = -1$$
 маємо

$$\begin{pmatrix} 3 - \lambda_2 & -2 \\ -4 & 1 - \lambda_2 \end{pmatrix} \cdot \begin{pmatrix} x_1^1 \\ x_2^1 \end{pmatrix} = 0 \qquad 4x_1^2 - 2x_2^2 = 0, \\ -4x_1^2 + 2x_2^2 = 0.$$

Звідси $x_2^2 = 2x_1^2$. В результаті $X^2 = \{x_1^2, x_2^2\} = \{(1;2)\}$

Приклад 2. Знайти власні значення і власні вектори матриці

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Розв'язування.

1. Запишемо характеристичне рівняння (1):

$$\begin{vmatrix} 2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{vmatrix} = 0$$
afo $(1-\lambda)((2-\lambda)^2 - 1) = 0$.

- 2. Корені характеристичного рівняння $\lambda_{1,2} = 1$ (кратний корінь), $\lambda_3 = 3$ власні значення матриці.
 - 3. Знайдемо власні вектори.

Для $\lambda_{1,2} = 1$ запишемо систему $(A - \lambda_{1,2} E) X^{1,2} = 0$.

$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1^{1,2} \\ x_2^{1,2} \\ x_3^{1,2} \end{pmatrix} = 0$$

Оскільки $rang(A-\lambda_{1,2}E)=1$, то в системі є лише одне незалежне рівняння $x_1^{1,2}-x_2^{1,2}+x_3^{1,2}=0$ або $x_1^{1,2}=x_2^{1,2}-x_3^{1,2}$.

Покладаючи $x_2^{1,2}=0$, $x_3^{1,2}=1$, отримуємо $x_1^{1,2}=1$ і власний вектор $X^1=\begin{pmatrix}1\\1\\0\end{pmatrix}$

Покладаючи $x_2^{1,2}=1$, $x_3^{1,2}=0$, отримуємо $x_1^{1,2}=-1$ і власний вектор $X^2=\begin{pmatrix} -1\\0\\1 \end{pmatrix}$

Відмітимо, що обидва отримані вектори лінійно незалежні.

Для власного значення $\lambda_3 = 3$ запишемо систему $(A - \lambda_3 E)X^3 = 0$:

$$\begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1^3 \\ x_2^3 \\ x_3^3 \end{pmatrix} = 0$$

Оскільки $rang(A-\lambda_3 E)=2$, то вибираємо два рівняння: $-x_1^3-x_2^3+x_3^3=0$ $-2x_3^3=0$

Звідси $x_3^3 = 0$, $x_1^3 = -x_2^3$. Покладаючи $x_2^3 = 1$, отримуємо $x_1^3 = -1$ і власний

$$X^3 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

вектор

Приклад 3. Для матриці $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ методом обертань знайти власні вектори і власні значення.

Розв'язування.

1. Покладемо
$$k=0$$
 , $A^{(0)}=A=\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$, $\epsilon=10^{-10}$.

- 2. Вище головної діагоналі є тільки один елемент $a_{ij} = a_{12} = 1$
- 3. Знаходимо кут повороту матриці за формулою (2), використовуючи в розрахунках 11 цифр після коми у відповідності із заданою точністю:

$$tg \ 2\varphi^{(0)} = \frac{2a_{ij}}{a_{ii} - a_{jj}} = \frac{2}{2 - 3} = -2,$$

$$\cos \varphi^{(0)} = 0.85065080835$$

$$\sin \varphi^{(0)} = -0.52573111212,$$

4. Сформуємо матрицю обертання

$$H^{(0)} = \begin{pmatrix} \cos \varphi^{(0)} & -\sin \varphi^{(0)} \\ \sin \varphi^{(0)} & \cos \varphi^{(0)} \end{pmatrix} = \begin{pmatrix} 0.85065080835 & 0.52573111212 \\ -0.52573111212 & 0.85065080835 \end{pmatrix}$$

5. Виконаємо першу ітерацію:

123

$$A^{(1)} = \left(H^{(0)}\right)^{T} A^{(0)} H^{(0)} =$$

$$= \begin{pmatrix} 0.85065080835 & -0.52573111212 \\ 0.52573111212 & 0.85065080835 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 0.85065080835 & 0.52573111212 \\ -0.52573111212 & 0.85065080835 \end{pmatrix} =$$

$$= \begin{pmatrix} 1.38196601125 & -4.04620781325 \cdot 10^{-12} \\ -4.04587474634 \cdot 10^{-12} & 3.61803398874 \end{pmatrix}.$$

Очевидно, слід матриці із заданою точністю зберігається, тобто $\sum_{i=1}^2 a_{ii}^{(1)} = \sum_{i=1}^2 a_{ii}^{(0)} = 5$. Покладемо k=1 і перейдемо до п.2.

2. Максимальний за модулем наддіагональний елемент $|a_{12}|=4,044620781325\cdot 10^{-12}<\varepsilon=10^{-10}$

Для розв'язування задачі (відмітимо при n=2) із заданою точністю знадобилася лише одна ітерація, отриману матрицю можна вважати діагональною. Знайдені такі власні значення і власні вектори:

$$\lambda_{1} = 1,38196601125, \qquad \lambda_{2} = 3,61803398874, \qquad X^{1} = \begin{pmatrix} 0,85065080835 \\ -0,52573111212 \end{pmatrix},$$

$$X^{2} = \begin{pmatrix} 0,52573111212 \\ 0,85065080835 \end{pmatrix}$$

Приклад 4. Знайти власні значення і власні вектори матриці $A = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 3 \end{pmatrix}$

Розв'язування.

- 1. Покладемо k = 0, $A^{(0)} = A$, $\epsilon = 0.001$
- 2. Виділимо максимальний за модулем елемент в наддіагональній частині: $a_{13}^{(0)}=2$. Оскільки $a_{13}=2>\epsilon=0{,}001$, то процес продовжується.
 - 3. Знаходимо кут повороту:

$$\phi^{(0)} = \frac{1}{2} \arctan \frac{2 \cdot a_{13}^{(0)}}{a_{11}^{(0)} - a_{33}^{(0)}} = \frac{1}{2} \arctan \frac{4}{5 - 3} = \frac{1}{2} \arctan 2 = 0,553574$$

$$\sin \phi^{(0)} = 0,52573, \cos \phi^{(0)} = 0,85065.$$

$$H^{(0)} = \begin{pmatrix} 0,85065 & 0 & -0,52573 \\ 0 & 1 & 0 \\ 0,52573 & 0 & 0,85065 \end{pmatrix}$$

- 4. Сформуємо матрицю обертання:
- 5. Виконаємо першу ітерацію:

$$A^{(1)} = (H^{(0)})^T A^{(0)} H^{(0)} = \begin{pmatrix} 6,236 & 1,376 & 2,33 \cdot 10^{-6} \\ 1,376 & 4 & 0,325 \\ 2,33 \cdot 10^{-6} & 0,325 & 1,764 \end{pmatrix}$$

Покладемо k = 1 і перейдемо до п.2.

2. Максимальний за модулем наддіагональний елемент $a_{12}^{(1)} = 1,376$.

Оскільки $a_{12}^{(1)} > \varepsilon$, то процес продовжується.

3. Знайдемо кут повороту:

$$\phi^{(1)} = \frac{1}{2} \operatorname{arctg} \frac{2 \cdot a_{12}^{(1)}}{a_{11}^{(1)} - a_{22}^{(1)}} = \frac{1}{2} \operatorname{arctg} \frac{2 \cdot 1,376}{6,236 - 4} = \frac{1}{2} \operatorname{arctg} 1,230769 = 0,444239$$

$$\sin \phi^{(1)} = 0,429770 \quad \cos \phi^{(1)} = 0,902937$$

$$H^{(1)} = \begin{pmatrix} 0.902937 & -0.429770 & 0 \\ 0.429770 & 0.902937 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4. Сформуємо матрицю обертання:

5. Виконаємо другу ітерацію:
$$A^{(2)} = (H^{(1)})^T A^{(1)} H^{(1)} = \begin{pmatrix} 6.891 & 2.238 \cdot 10^{-4} & 0.14 \\ 2.238 \cdot 10^{-4} & 3.345 & 0.293 \\ 0.14 & 0.293 & 1.764 \end{pmatrix}.$$

Покладемо k = 2 і перейдемо до п.2.

- 2. Максимальний за модулем наддіагональний елемент $a_{23}^{(2)} = 0,293 > \varepsilon$
- 3. Знайдемо кут повороту:

$$\phi^{(2)} = \frac{1}{2} \arctan \frac{2 \cdot a_{21}^{(2)}}{a_{22}^{(2)} - a_{33}^{(2)}} = \frac{1}{2} \arctan \frac{2 \cdot 0,293}{3,345 - 1.764} = \frac{1}{2} \arctan 0,370651 = 0,177476$$

$$\sin \phi^{(2)} = 0,1765460, \cos \phi^{(2)} = 0,9842924.$$

$$H^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.9842924 & -0.1765460 \\ 0 & 0.1765460 & 0.9842924 \end{pmatrix}$$

- 4. Сформуємо матрицю обертання
- 5. Виконаємо третю ітерацію:

$$A^{(3)} = (H^{(2)})^T A^{(2)} H^{(2)} = \begin{pmatrix} 6.891 & 0.025 & 0.138 \\ 0.025 & 3.398 & 3.375 \cdot 10^{-7} \\ 0.138 & 3.375 \cdot 10^{-7} & 1.711 \end{pmatrix}$$

Покладемо k = 3 і перейдемо до п.2.

- 2. Максимальний за модулем наддіагональний елемент $a_{13}^{(3)} = 0,138 > \varepsilon$
- 3. Знайдемо кут повороту:

3. Знаидемо кут повороту:
$$\phi^{(3)} = \frac{1}{2} \operatorname{arctg} \frac{2 \cdot a_{13}^{(3)}}{a_{11}^{(3)} - a_{33}^{(3)}} = \frac{1}{2} \operatorname{arctg} \frac{2 \cdot 0,138}{6,891 - 1,711} = \frac{1}{2} \operatorname{arctg} 0,05328 = 0,026615; \\ \sin \phi^{(3)} = 0,026611; \cos \phi^{(3)} = 0,999646.$$

$$H^{(3)} = \begin{pmatrix} 0.999646 & 0 & -0.026611 \\ 0 & 1 & 0 \\ 0.026611 & 0 & 0.999646 \end{pmatrix}$$

- 4. Сформуємо матрицю обертання:
- 5. Виконаємо четверту ітерацію:

$$A^{(4)} = (H^{(3)})^T A^{(3)} H^{(3)} = \begin{pmatrix} 6,895 & 0,025 & 8,406 \cdot 10^{-6} \\ 0,025 & 3,398 & -6,649 \cdot 10^{-4} \\ 8,406 \cdot 10^{-6} & -6,649 \cdot 10^{-4} & 1,707 \end{pmatrix}$$

Покладемо k = 4 і перейдемо до п.2

- 2. Оскільки $a_{12}^{(4)} = 0.025 > \varepsilon$, то процес продовжується.
- 3. Знайдемо кут повороту

$$\varphi^{(4)} = \frac{1}{2} atctg \frac{2 \cdot a_{12}^{(4)}}{a_{11}^{(4)} - a_{22}^{(4)}} = \frac{1}{2} arctg \frac{2 \cdot 0,025}{6,895 - 3,398} = 0,0071484,$$

 $\sin \varphi^{(4)} = 0.0071483$; $\cos \varphi^{(4)} = 0.9999744$.

$$H^{(4)} = \begin{pmatrix} 0,9999744 & -0,0071483 & 0 \\ 0,0071483 & 0,9999744 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 4. Сформуємо матрицю обертання:
- 5. Виконаємо п'яту ітерацін

$$A^{(5)} = (H^{(4)})^T A^{(4)} H^{(4)} = \begin{pmatrix} 6,895 & 4,774 \cdot 10^{-7} & 3,653 \cdot 10^{-6} \\ 4,774 \cdot 10^{-7} & 3,398 & -6,649 \cdot 10^{-4} \\ 3,653 \cdot 10^{-6} & -6,649 \cdot 10^{-4} & 1,707 \end{pmatrix}$$

Покладемо k = 5 і перейдемо до п.2.

2. Оскільки найбільший за модулем наддіагональний задовольняє умову $\left|-6,649\cdot10^{-4}\right|<\epsilon=0,001$, то процес завершується. Власні значення: $\lambda_1=a_{11}^{(5)}=6,895$; $\lambda_2=a_{22}^{(5)}=3,398$; $\lambda_3=a_{33}^{(5)}=1,707$.

Для знаходження власних векторів обчислюємо

$$\mathbf{v}_{5} = H^{(0)} \cdot H^{(1)} \cdot H^{(2)} \cdot H^{(3)} \cdot H^{(4)} = \begin{pmatrix} 0.753 & -0.458 & -0.473 \\ 0.432 & 0.886 & -0.171 \\ 0.497 & -0.076 & 0.864 \end{pmatrix}$$

$$X^1 = \begin{pmatrix} 0,753 \\ 0,432 \\ 0,497 \end{pmatrix}, \quad X^2 = \begin{pmatrix} -0,458 \\ 0,886 \\ -0,076 \end{pmatrix}, \quad X^3 = \begin{pmatrix} -0,473 \\ -0,171 \\ 0,864 \end{pmatrix},$$
 або після нормування $X^1 = \begin{pmatrix} 1 \\ 0,5737 \\ 0,660 \end{pmatrix}, \quad X^2 = \begin{pmatrix} -0,517 \\ 1 \\ -0,0858 \end{pmatrix}, \quad X^3 = \begin{pmatrix} -0,5474 \\ -0,1979 \\ 1 \end{pmatrix}$

$$X^{1} = \begin{pmatrix} 1\\0,5737\\0,660 \end{pmatrix} \quad X^{2} = \begin{pmatrix} -0,517\\1\\-0,0858 \end{pmatrix} \quad X^{3} = \begin{pmatrix} -0,5474\\-0,1979\\1 \end{pmatrix}$$

Приклад 5. За допомогою QR - алгоритму знайти власні значення матриці A . Обчислення виконати із точністю $E = 10^{-5}$.

$$A = \begin{vmatrix} 0,40463 & 0,59641 & 1,00000 & 1,00000 \\ 0,89066 & 1,00000 & 0,74534 & 0,36879 \\ 0,67339 & 0,79956 & 0,46333 & 0,52286 \\ 2,00000 & 0,25761 & 0,61755 & 0,12392 \end{vmatrix}$$

Матриця у формі Хессенберга

У результаті виконання 15 ітерацій одержана трикутна матриця у якої на діагоналі розташовані власні значення вихідної матриці $\lambda_1=2,86362$; $\lambda_2=-1,14335$. $\lambda_3=0,51392$. $\lambda_4=-0,2423$

Приклад 6. Знайти власні значення матриці A за допомогою методу QR -алгоритму та власні вектори за методом ітерації:

$$A = \begin{vmatrix} 1,022551 & 0,116069 & -0,287028 & -0,429969 \\ 0,228401 & 0,742521 & -0,176368 & -0,283720 \\ 0,326141 & 0,097221 & 0,197209 & -0,216487 \\ 0,433864 & 0,148965 & -0,193686 & 0,0064772 \end{vmatrix}$$

Матриця у формі Хессенберга

$$H = \begin{vmatrix} 1,022551 & -0,430736 & 0,020506 & -0,307858 \\ 0,588874 & -0,047172 & 0,039884 & -0,511079 \\ 0,000000 & 0,016830 & 0,325898 & 0,029246 \\ 0,000000 & 0,000000 & 0,000024 & 0,664781 \end{vmatrix}$$

$$R = \begin{vmatrix} 0,667480 & 0,000000 & 0,418900 & -1,086180 \\ 0,000000 & 0,667480 & -0,051130 & 0,195630 \\ 0,000000 & 0,000000 & 0,346180 & -0,035130 \\ 0,000000 & 0,000000 & 0,000040 & 0,287620 \end{vmatrix}$$

Трикутна форма матриці

У результаті виконання 40 ітерацій, одержані власні числа матриці A: $\lambda_1 = 0,66748$, $\lambda_2 = 0,66748$, $\lambda_3 = 0,34618$, $\lambda_4 = 0,28762$.

Власні вектори

$$\bar{x}_1 = (0.555003; -1.02163; 0.129450; 0.0961189),$$

$$\bar{x}_2 = (0.976771; 0.636737; 0.517676; 0.632935),$$

$$\overline{x}_3 = (-0.611585; -0.366955; -1.22309; -0.244691)$$

$$\bar{x}_4 = (-0.598402; -0.398937; -0.199437; -0.997345)$$

Інтерполювання функцій

Інтерполювання функцій

Приклад 1. Побудувати інтерполяційний многочлен Лагранжа для функції, заданої таблицею 1.

			Таблиця I
x	1	3	4
y = f(x)	12	4	6

Розв'язання. Із таблиці випливає, що $x_0 = 1, x_1 = 3, x_2 = 4, y_0 = 12, y_1 = 4, y_2 = 6$. Маємо

$$L_2(x) = 12\frac{(x-3)(x-4)}{(1-3)(1-4)} + 4\frac{(x-1)(x-4)}{(3-1)(3-4)} + 6\frac{(x-1)(x-3)}{(4-1)(4-3)} =$$

$$= 2(x^2 - 7x + 12) - 2(x^2 - 5x + 4) + 2(x^2 - 4x + 3) = 2x^2 - 12x + 22$$

Приклад 2. У таблиці 2 дано значення функції $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Застосовуючи першу інтерполяційну формулу Ньютона, знайти $\phi(2,22)$.

Розв'язування. Будуємо скінчені різниці функції $\phi(x)$; обмежимось третьою скінченою різницею. Як x приймаємо число найближче до заданого, тобто покладаємо x=2,2. Оскільки крок h=0,1, то $q=\frac{2,22-2,20}{0,1}=\frac{0,02}{0,1}=0,2$. Маємо

$$y = 0.0355 + 0.2 \left(-0.0072\right) + \frac{0.2 \left(0.2 - 1\right)}{2!} 0.0013 + \frac{0.2 \left(0.2 - 1\right) \left(0.2 - 2\right)}{3!} \left(-0.0003\right) = 0.0339$$

Таблиця 2 $\Delta^2 y$ $\Delta^3 v$ Δy 2,0 0,0540 -100 15 -2 0 440 -85 13 -72 -3 13 283 -59 10 -10 224 -49 0 175 -49 136

Для виконання завдання 3 за даною таблицею функції із рівновіддаленими значеннями аргументу складається таблиця скінчених різниць і визначається порядок інтерполяційного полінома Ньютона. У залежності від розташування ділянки субтабулювання відносно вихідної таблиці і потреби у скінчених різницях обирається перша

$$P_n(x) = P_n(x_0 + th) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \ldots + \frac{t(t-1)\cdot\ldots\cdot(t-n+1)}{n!}\Delta^n y_0$$
або друга

$$P_n(x) = P_n(x_n + th) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \frac{t(t+1)\cdot \dots \cdot (t+n-1)}{n!}\Delta^n y_0$$

інтерполяційні формули Ньютона. Вихідні дані для виконання завдання 3 (номер таблиці функції, кінці відрізку [a,b] і крок H субтабулювання) беруться із таблиці. У програмі субтабулювання передбачити обчислення похибки методу за однією із формул:

$$|R_{n}(x)| \leq \frac{h^{n+1}M_{n+1}}{(n+1)!} \cdot |t(t-1)(t-2) \cdot \dots \cdot (t-n)|,$$

$$|R_{n}(x)| \leq \frac{h^{n+1}M_{n+1}}{(n+1)!} \cdot |t(t+1)(t+2) \cdot \dots \cdot (t+n)|$$
afoo
$$|R_{n}(x)| \approx \frac{|t(t-1)(t-2) \cdot \dots \cdot (t-n)|}{(n+1)!} \Delta^{n+1} y \qquad |R_{n}(x)| \approx \frac{|t(t+1)(t+2) \cdot \dots \cdot (t+n)|}{(n+1)!} \Delta^{n+1} y$$

Перед виконанням завдання корисно розглянути наступний приклад.

Дано п'ятизначну таблицю $\sin x$ на відрізку $\begin{bmatrix} 0.15; \, 0.18 \end{bmatrix}$ із кроком h=0.005 . Потрібно зробити крок H=0.001 на відрізку $\begin{bmatrix} 0.155; \, 0.165 \end{bmatrix}$.

За даною таблицею відразу складемо таблицю скінчених різниць (за зразком табл. 2). Для скорочення записів скінчені різниці записують тільки значущими цифрами. Треба відмітити, що скінчені різниці другого порядку вже практично близькі до нуля у межах точності таблиці. Тому при використанні першої інтерполяційної формули Ньютона обмежимось трьома

першими доданками:
$$P_n(x) \approx y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0$$

Якщо використовуємо першу формулу Ньютона, то у даному випадку природно прийняти $x_0=0.155$. Значення t для кожного значення x знаходимо за формулою $t=(x-x_0)/h$.

Отримані результати слід округлити до точності вихідної таблиці (треба відмітити, що обчислені похибки інтерполяції повністю забезпечують правильність п'яти знаків після коми у всіх отриманих значеннях функції).

Інтерполювання сплайнами

Приклад. Побудувати кубічний сплайн S(x), якщо задано значення функції $f(x_i) = y_i$, i = 1,2,3,4:

$$x_0 = 0$$
, $x_1 = 0.25$, $x_2 = 1$, $y_0 = 1$, $y_1 = 2$, $y_2 = 1$.

На кінцях відрізка [0,1] задані граничні умови $y_0'' = 0$, $y_2'' = 0$.

Розв'язання.

Скористаємося розрахунковими формулами (див. теоретичну частину). Маємо:

1) при
$$i = 1$$
:
 $b_1 h_1 + c_1 h_1^2 + d_1 h_1^3 = y_1 - y_0$,
 $b_2 - b_1 - 2c_1 h_1 - 3d_1 h_1^2 = 0$

$$c_2 - c_1 - 3d_1h_1 = 0.$$

2) при i=2 тільки: $b_2h_2+c_2h_2^2+d_2h_2^3=y_2-y_1$, додатково $c_1=0$, $c_2+3d_2h_2=0$. Розв'язуючи отриману систему 5 рівнянь з 5 невідомими b_1 , c_1 , d_1 , b_2 , c_2 , d_2 , знаходимо коефіцієнти сплайнів для кожного із 2 відрізків.

Нагадаємо, що $h_1=x_1-x_0$, $h_2=x_2-x_1$, $a_1=y_0$, $a_2=y_1$. Отож, маємо $h_1=0.25$, $h_2=0.75$, $a_1=1$, $a_2=2$.

Підставляємо відомі величини y_i та значення h_1 , h_2 отримуємо

$$c_{1} = 0,$$

$$b_{1} \cdot 0.25 + d_{1} \cdot 0.25^{3} = 1$$

$$b_{2} - b_{1} - 3d_{1} \cdot 0.25^{2} = 0,$$

$$c_{2} - 3d_{1} \cdot 0.25 = 0,$$

$$c_{2} + 3d_{2} \cdot 0.75 = 0.$$

Звідси маємо

$$c_1 = 0$$
, $16b_1 + d_1 = 64$, $16b_2 - 16b_1 - 3d_1 = 0$, $4c_2 - 3d_1 = 0$, $4c_2 + 9d_2 = 0$.

Після розв'язування цієї системи рівнянь маємо:

$$a_1 = 1$$
, $b_1 = 8$, $c_1 = 0$, $d_1 = -64$, $a_2 = 2$, $b_2 = -4$, $c_2 = -48$, $d_2 = 64$

Таким чином, шуканий сплайн має вигляд

$$S(x) = \begin{cases} 1 + 8x^2 - 64x^3 & \partial \pi & x \in [0; 0, 25], \\ 2 - 4(x - 0, 25) - 48(x - 0, 25)^2 + 64(x - 0, 25)^3 & \partial \pi & x \in [0, 25; 1]. \end{cases}$$

Апроксимація функцій

Метод найменших квадратів

Приклад. Методом найменших квадратів побудувати многочлен другого степеня, що наближав би функцію, задану таблицею:

x	-1,71	-1,08	-0,45	0,18	0,81	1,44	2,04
У	0,1173	0,4934	0,7008	0,8862	0,9415	0,8748	0,7251

Шукатимемо многочлен у вигляді $P(x) = a_2 x^2 + a_1 x + a_0$.

$$\sigma = \sum_{i=0}^{6} \left(a_2 x_i^2 + a_1 x_i + a_0 - y_i \right)^2$$
Othe

Для знаходження коефіцієнтів цього многочлена складаємо систему

$$\begin{cases} \frac{1}{2} \frac{\partial \sigma}{\partial a_2} = \sum_{i=0}^{6} \left(a_2 x_i^2 + a_1 x_i + a_0 - y_i \right) x_i^2 = 0 \\ \frac{1}{2} \frac{\partial \sigma}{\partial a_1} = \sum_{i=0}^{6} \left(a_2 x_i^2 + a_1 x_i + a_0 - y_i \right) x_i^2 = 0 \\ \frac{1}{2} \frac{\partial \sigma}{\partial a_0} = \sum_{i=0}^{6} \left(a_2 x_i^2 + a_1 x_i + a_0 - y_i \right) x_i^2 = 0 \end{cases}$$

Перепишемо цю систему в такому вигляді:

$$\begin{cases} a_2 \sum_{i=0}^{6} x_i^4 + a_1 \sum_{i=0}^{6} x_i^3 + a_0 \sum_{i=0}^{6} x_i^2 - \sum_{i=0}^{6} x_i^2 y_i = 0 \\ a_2 \sum_{i=0}^{6} x_i^3 + a_1 \sum_{i=0}^{6} x_i^2 + a_0 \sum_{i=0}^{6} x_i^2 - \sum_{i=0}^{6} x_i y_i = 0 \\ a_2 \sum_{i=0}^{6} x_i^2 + a_1 \sum_{i=0}^{6} x_i + 7a_0 - \sum_{i=0}^{6} y_i = 0 \end{cases}$$

Обчислимо коефіцієнти системи:

	Обчислимо косфиценти системи.											
i	X_i	x_i^2	x_i^3	x_i^4	${\mathcal Y}_i$	$x_i y_i$	$x_i^2 y_i$					
0	-1,71	2,9241	-	8,55036	0,1173	-	0,34300					
1	-1,08	1,1664	5,00021	1,36049	0,4934	0,20058	0,57550					
2	-0,45	0,2025	-	0,04101	0,7008	-	0,14191					
3	0,18	0,0324	1,25971	0,00105	0,8862	0,53287	0,02871					
4	0,81	0,6561	-	0,43047	0,9415	-	0,61772					
5	1,44	2,0736	0,09113	4,29982	0,8748	0,31536	1,81399					
6	2,07	4,2849	0,00583	18,36037	0,7251	0,15952	3,10698					
			0,53144			0,76262						
			2,98598			1,25971						
			8,86974			1,50096						
$\sum_{i=0}^{2}$	1,26000	11,34000	6,04195	33,04356	4,73910	2,63399	6,62781					

Остаточно отримуємо систему рівнянь

$$\begin{cases} 33,04357a_2 + 6,04194a_1 + 11,3400a_0 = 6,62781\\ 6,04194a_2 + 11,3400a_1 + 1,26a_0 = 2,63400\\ 11,3400a_2 + 1,26a_1 + 7a_0 = 4,7391 \end{cases}$$

Поділимо ліву і праву частини кожного з рівнянь на 7, упорядкуємо невідомі, і отримаємо систему рівнянь у такому вигляді

$$\begin{cases} a_0 + 0.18a_1 + 1.62a_2 = 0.67701 \\ 0.18a_0 + 1.62a_1 + 0.86313a_2 = 0.37629 \\ 1.62a_0 + 0.86313a_1 + 4.72051a_2 = 0.94683 \end{cases}$$

Для розв'язування системи скористаємося методом Гауса.

a_0	a_1	a	Вільні члени	Контрольна
4 0	α_1	a_2	DIJIBHI AJICHII	сума
1	0,18000	1,62000	0,67701	3,47701
0,18000	1,62000	0,86313	0,37629	3,03942
1,62000	0,86313	4,72051	0,94683	8,15047
1	0,18000	1,62000	0,67701	3,47701
	1,58760	0,57153	0,25443	2,41356
	0,57153	2,09611	-0,14993	2,51771
	1	0,36000	0,16026	1,52026
		1,89036	-0,24152	1,64884
		1	-0,12776	0,87224
	1		0,20625	1,20625
1			0,84686	1,84686

Отже, $P(x) = -0.1278x^2 + 0.2063x + 0.8469$.

Обчислимо відхилення о.

X_i	$P(x_i)$	y_i	Δ_i	Δ_i^2
-1,71	0,1204	0,1173	0,0031	0,0000
-1,08	0,4750	0,4934	0,0184	0,0003
-0,45	0,7282	0,7008	0,0274	0,0008
0,18	0,8799	0,8862	0,0063	0,0000
0,81	0,9302	0,9415	0,0113	0,0001
1,44	0,7882	0,8748	0,0866	0,0075
2,07	0,7263	0,7251	0,0012	0,0000

 $Ma \in MO$ $\sigma = 0.0087$.

Чисельне диференціювання та інтегрування функцій Чисельне диференціювання функцій

Приклад. У точках x=1, x=1,1 знайти першу і другу похідні від функції y=1/x, заданої таблицею

x_i	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7
y_i	1,00000	0,90909	0,83333	0,76923	0,71429	0,66667	0,62500	0,58824

Побудуємо таблицю скінчених різниць

		т таолицк						1
\boldsymbol{x}_{i}	\mathcal{Y}_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$	$\Delta^7 y_i$
1	1,00000							
		-9091						
1,1	0,90909		1515					
		-7576		-349				
1,2	0,83333		1166		99			
		-6410		-250		-33		
1,3	0,76923		916		66		14	
		-5496		-184		-19		-9
1,4	0,71429		732		47		5	
		-4762		-137		-14		
1,5	0,66667		595		33			
		-4167		-104				
1,6	0,62500		491					
		-3676						
1,7	0,58824							

Оскільки п'яті різниці практично сталі, то покладемо n=5. Точка x=1 розміщена на початку таблиці, тому першу і другу похідні обчислюватимемо за формулами, які розглядались у теоретичній частині (6, 7). У цьому разі h=0,1; $x_0=1$; $\Delta y_0=-0,0991$; $\Delta^2 y_0=0,01515$; $\Delta^3 y_0=-0,00349$; $\Delta^4 y_0=0,00099$; $\Delta^5 y_0=-0,00033$

Виконавши обчислення, знайдемо

$$\begin{split} f'(1) &= 10 \cdot \left(-0.09091 - \frac{1}{2} \cdot 0.01515 - \frac{1}{3} \cdot 0.00349 - \frac{1}{4} \cdot 0.00099 - \frac{1}{5} \cdot 0.000333 \right) = \\ &= -10 \cdot \left(0.09091 + 0.007575 + 0.0011633 + 0.0002475 + 0.000066 \right) = -10 \cdot 0.09999618 = -0.99962 \\ f''(1) &\approx 100 \cdot \left(0.01515 - \left(-0.00349 \right) + \frac{11}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{11}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.0198225 = 1.98225 \\ &= -10 \cdot \left(0.000349 \right) + \frac{1}{12} \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.00033 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000349 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000034 \right) = 100 \cdot 0.00099 - \frac{5}{9} \cdot \left(-0.000009 - 0.00099 - 0.$$

Точні значення похідних: f'(1) = -1, f''(1) = 2.

Похибка в обчисленні першої похідної дорівнює $^{-0,00038}$, другої $^{-0,01775}$

Щоб проілюструвати вплив на точність чисельного диференціювання кількість взятих у формулах (6),(7) доданків, наведемо їх значення,

обчислені з використанням, відповідно одного, двох, трьох (а для f'(1) і чотирьох) доданків. Маємо f'(1) = -0.9091, f'(1) = -0.98485, f'(1) = -0.998958, f''(1) = 1.515, f''(1) = 1.864, f''(1) = 1.95475.

Обчислюючи значення похідних у точці x=1,1, вважаємо, що h=0,1; $x_0=1,1$; $\Delta y_0=-0.07576$; $\Delta^2 y_0=0.01166$; $\Delta^3 y_0=-0.00250$; $\Delta^4 y_0=0.00066$; $\Delta^5 y_0=-0.00019$

Виконавши обчислення, матимемо

$$\begin{split} f'(1,1) &\approx 10 \cdot \left(-0.07576 - \frac{1}{2} \cdot 0.01166 + \frac{1}{3} \cdot \left(-0.00250 \right) - \frac{1}{4} \cdot 0.00066 + \frac{1}{5} \cdot \left(-0.00019 \right) \right) = \\ &= -10 \cdot \left(0.07576 + 0.00583 + 0.0008333 + 0.000165 + 0.000038 \right) = -10 \cdot 0.08262263 = -0.826263, \\ f''(1,1) &\approx 100 \cdot \left(0.01166 - \left(-0.00250 \right) + \frac{11}{12} \cdot 0.00066 - \frac{5}{6} \cdot \left(-0.00019 \right) \right) = \\ &= 100 \cdot \left(0.01166 + 0.00250 + 0.000605 + 0.0001583 \right) = 100 \cdot 0.0149233 = 1,49233 \end{split}$$

Значення похідних у точці x = 1,1, обчислені в Excel, дорівнюють: f'(1,1) = -0.82644628. f''(1,1) = 1.5026296.

Тому похибка в обчисленні першої похідної дорівнює 0,0001833, другої — 0б0102996.

Приклад. Знайти для x=0,423 першу та другу похідні функції f(x), заданої таблицею. Обчислення вести, враховуючи різниці до 5-го порядку включно.

Щоб розв'язати задачу, записуємо, починаючи із значення $x = x_0 = 0.4$ частину даної таблиці і обчислюємо потрібні нам різниці.

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$
0,4 0,5 0,6 0,7 0,8 0,9	2,8918247 3,1487213 3,4221188 3,7137527 4,0255409 4,3596031	2568966 2733975 2916339 3117882 3340622	165009 182364 201543 222740	17355 19179 21197	1824 2018	194

У даному прикладі маємо: x = 0.423; $x_0 = 0.4$; $\Delta x = 0.1$; $u = \frac{x - x_0}{\Delta x} = 0.23$. За формулами (3) знаходимо коефіцієнти c'_n , c''_n .

Всі обчислення, які виконуються без проміжних записів, подані в табл.1, в яку заздалегідь треба записати знайдені різниці $^{\Delta^n f(x_0)}$. Коефіцієнти $^{c'_5} = 0.05068$ та $^{c''_5} = -0.4817$ округляємо відповідно до числа значущих цифр різниці $^{\Delta^5 f(x_0)} = 0.0000194$. Знайшовши коефіцієнти $^{c'_n}$ та $^{c''_n}$, обчислюємо $^{f'(x)}$ та $^{f''(x)}$ за формулами (2).

n	u^{n-1}	c'_n	c_n''	$\Delta^n f(x_0)$
1	-	1,00000	0	0,2568966
2	0,23000	-0,27000	1,0000	0,0165009
3	0.05290	0,12978	-0,7700	0,0017355
4	0,01217	-0,07681	0,5981	0,0001824
5	0,00280	0,05070	-0,4820	0,0000194

Отже, при n = 5 та x = 0.423 маємо f'(x) = 2.526536; f''(x) = 1.52643.

Щоб збільшити точність, у формулі (2) потрібно брати більшу кількість членів. Окрім того, вихідні значення потрібно брати із більшою кількістю знаків.

Зауваження. При знаходженні похідних чисельним методом точність обчислень швидко знижується. Так, у таблиці значення функції f(x) дано із 8-ма значущими цифрами. Але кожна з наступних різниць має вже на одну значущу цифру менше. Тому точність першої похідної не може перевищувати семи значущих цифр, другої похідної — шести значущих цифр, і т.д., та й то тільки при неодмінній умові, що у формулі (2) взято достатню кількість членів.

Обчислення визначених інтегралів за формулами Гауса

Приклад. Побудувати квадратурну формулу Гауса для випадку n=2 на відрізку інтегрування [-1,1].

Розв'язання. Загальний вигляд квадратурної формули Гауса при n=2

 $\int\limits_{-1}^{1} f(x) dx = c_1 f(x_1) + c_2 f(x_2)$ у заданих межах інтегрування i^{-1} , де треба визначити квадратурні коефіцієнти i^{-1} і i^{-1} , а також абсциси i^{-1} і i^{-1} .

Для визначення абсцис складемо многочлен $F(x) = x^2 + A_1 x + A_2$, коефіцієнти A_1 і A_2 якого знайдемо із системи виду (11):

$$\begin{cases} \int_{-1}^{1} xF(x)dx = 0, \\ \int_{-1}^{1} F(x)dx = 0 \end{cases}$$

безпосередньою підстановкою многочлена F(x) в систему. Маємо

$$\begin{cases} \frac{A_1}{3} = 0, \\ \frac{1}{3} + A_2 = 0 \end{cases}$$

тобто
$$A_1 = 0$$
, $A_2 = -1/3$. Тоді $F(x) = x^2 - \frac{1}{3} = 0$, звідки $x_1 = -\frac{\sqrt{3}}{3} = -0.57735$;

$$x_2 = \frac{\sqrt{3}}{3} = 0,57735$$

Коефіцієнти c_1 і c_2 обчислимо за формулою (14):

$$c_1 = \int_{-1}^{1} \frac{x - x_2}{x_1 - x_2} dx = 1$$
, $c_2 = \int_{-1}^{1} \frac{x - x_1}{x_2 - x_1} dx = 1$

,
$$\int_{-1}^{1} f(x)dx = f(-0.57735) + f(0.57735)$$

Отже, $\int_{-1}^{1} f(x)dx = f(-0.57735) + f(0.57735)$

можна підібрати многочлен F(x), Проте ШО задовольняє співвідношенням (11), без попереднього визначення коефіцієнтів A_1 , A_2 , ...,

Якобі запропонував як многочлен F(x)використати многочлен Лежандра

$$F(x) = \frac{1}{n! \, 2^n} \cdot \frac{d^n (x^2 - 1)^n}{dx^n} \tag{15}$$

для якого справедливі рівності (11), тобто

$$\int_{-1}^{1} x^{k} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}} = 0 \tag{16}$$

Дійсно, інтегруючи за частинами, знаходимо

$$s_{k} = \int_{-1}^{1} x^{k} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}} dx = \left(x^{k} \frac{d^{n-1} (x^{2} - 1)^{n}}{dx^{n-1}} \right)_{-1}^{1} - k \int_{-1}^{1} x^{k-1} \frac{d^{n-1} (x^{2} - 1)^{n}}{dx^{n-1}} dx$$
 (17)

Перший член правої частини рівності (17) перетворюється в нуль. Звідси

$$s_k = -k \int_{-1}^{1} x^{k-1} \frac{d^{n-1} (x^2 - 1)^n}{dx^{n-1}} dx$$
 (18)

Аналогічно отримаємо

$$\int_{-1}^{1} x^{k-1} \frac{d^{n-1} (x^2 - 1)^n}{dx^{n-1}} dx = -(k-1) \int_{-1}^{1} x^{k-2} \frac{d^{n-2} (x^2 - 1)^n}{dx^{n-2}} dx$$

$$\int_{-1}^{1} x^{k-(k-1)} \frac{d^{n-(k-1)} \left(x^2 - 1\right)^n}{dx^{n-(k-1)}} dx = -1 \cdot \int_{-1}^{1} \frac{d^{n-k} \left(x^2 - 1\right)^n}{dx^{n-k}} dx = 0$$

$$s_k = (-1)^k 1 \cdot 2 \cdot 3 \dots k \int_{-1}^{1} \frac{d^{n-k} (x^2 - 1)^n}{dx^{n-k}} dx = 0$$

Отже, при k < n маємо

Таким чином, многочлен Лежандра задовольняє систему рівнянь (11).

$$\int_{0}^{\infty} \sqrt{x+1} \ dx$$
ал застосовуюч

Приклад. Обчислити інтеграл $\int_{0}^{1} \sqrt{x+1} \ dx$, застосовуючи квадратурну формулу Гауса з чотирма ординатами.

Розв'язування. Тут a=0, b=1. Відповідно з формулою (29) маємо

$$\int_{0}^{1} \sqrt{x+1} \, dx = \frac{b-a}{2} (c_1 f(z_1) + c_2 f(z_2) + c_3 f(z_3) + c_4 f(z_4))$$

Знайдемо абсциси z_1 , z_2 , z_3 i z_4 , користуючись формулою заміни змінної (28) в таблиці:

$$z_{1} = \frac{1}{2} + \frac{1}{2}x_{1} = 0.5 - 0.430568 = 0.069432;$$

$$z_{2} = \frac{1}{2} + \frac{1}{2}x_{2} = 0.5 - 0.169991 = 0.330009;$$

$$z_{3} = \frac{1}{2} + \frac{1}{2}x_{3} = 0.5 + 0.169991 = 0.669991;$$

$$z_{4} = \frac{1}{2} + \frac{1}{2}x_{4} = 0.5 + 0.430568 = 0.930568$$

Оскільки квадратурні коефіцієнти попарно рівні: $c_1 = c_4 = 0.347855$, $c_2 = c_3 = 0.652145$, то формула Гауса для даного випадку приймає вигляд

$$\int_{0}^{1} \sqrt{x+1} \, dx = \frac{1}{2} (c_1(f(z_1) + f(z_4)) + c_2(f(z_2) + f(z_3)))$$

Тоді нарешті отримаємо

$$\int_{0}^{1} \sqrt{x+1} \, dx = \frac{1}{2} \left(0.347855 \left(\sqrt{1,069432} + \sqrt{1,930568} \right) + 0.652145 \left(\sqrt{1,330009} + \sqrt{1,669991} \right) \right) = 1,218951$$

 $I = \int_{1.6}^{27} \frac{x + 0.8}{\sqrt{x^2 + 1.2}} dx$ за формулою Гауса, застосовуючи для оцінки точності подвійний перерахунок (при $n_1 = 4$ і $n_2 = 5$)

Формула Гауса має вигляд

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (C_{1}f(x_{1}) + C_{2}f(x_{2}) + \dots + C_{n}f(x_{n})),$$

В даному прикладі $x_i = \frac{2.7 + 1.6}{2} + \frac{2.7 - 1.6}{2}t_i = 2.15 + 0.55t_i$, а значення C_i і

 t_i беремо із таблиці квадратурних коефіцієнтів Гауса.

Обчислення зручно розміщувати в таблиці. При n = 4 маємо:

C_i	t_i	x_i	$x_i^2 + 1.2$	$\sqrt{x_i^2 + 1.2}$	$f(x_i)$	$C_i f(x_i)$
0.34785	-0.86114	1.6764	4.0103	2.0026	1.2366	0.43015
0.65215	-0.33998	1.9630	5.0534	2.2248	1.2291	0.80155
0.65215	0.33998	2.3370	6.6616	2.5810	1.2154	0.79264
0.34785	0.86114	2.6236	8.0833	2.8431	1.2042	0.41887
					$\sum = 2.4432$	1

Отже, $I \approx 0.55 \cdot 2.44321 = 1.3438$.

При n = 5 маємо:

C_i	t_i	X_i	$x_i^2 + 1.2$	$\sqrt{x_i^2 + 1.2}$	$f(x_i)$	$C_i f(x_i)$
0.23693	-0.90618	1.6516	3.9278	1.9819	1.2370	0.2903
0.47863	-0.538469	1.8538	4.6366	2.1533	1.2324	0.58988
0.56889	0	2.1500	5.8225	2.4130	1.2225	0.69549
0.47863	0.538469	2.4462	7.1839	2.6803	1.2111	0.57968
0.23693	0.90618	2.6484	8.2140	2.8660	1.2032	0.28508
					$\sum = 2.4432$	1

Отож, $I \approx 0.55 \cdot 2.44321 = 1.3438$. Співпадання результатів свідчить про правильність обчислень.

Відповідь: $I \approx 1.3438$.

Наближене розв'язування диференціального рівняння методом Адамса

Використовуючи метод Адамса із другими різницями, скласти таблицю наближених значень розв'язання диференціального рівняння y' = f(x,y), яке задовольняє початковим умовам $y(x_0) = y_0$ на відрізку [0,1]; крок h = 0.1. Всі обчислення вести з чотирма десятковими знаками. Початковий відрізок визначити методом Рунге-Кутта.

$$y' = 1 + 0.2y \sin x - 1.5y^2 = f(x, y), y(0) = 0, x \in [0, 1], h = 0.1$$

Розв'язування.

1. Визначимо значення $y_1 = y(0,1)$, $y_2 = y(0,2)$ (початковий відрізок) методом Рунге-Кутта. При цьому значення $y_{i+1} = y(x_{i+1})$, де $x_{i+1} = x_i + h$, знаходяться за формулами

$$y_{i+1} = y_i + \Delta y_i,$$

$$\Delta y_i = \frac{1}{6} \left(k_1^{(i)} + 2k_2^{(i)} + 2k_3^{(i)} + k_4^{(i)} \right),$$

$$k_1^{(i)} = hf(x_i, y_i),$$

$$k_2^{(i)} = hf \left(x_i + \frac{h}{2}, y_i + \frac{k_1^{(i)}}{2} \right),$$

$$k_3^{(i)} = hf \left(x_i + \frac{h}{2}, y_i + \frac{k_2^{(i)}}{2} \right),$$

$$k_4^{(i)} = hf(x_i + h, y_i + k_3^{(i)}),$$

Всі обчислення будемо розміщувати в таблиці (табл.1).

Таблиця 1

x	y(x)	$\sin x$	$0.2y\sin x$	$-1.5y^2$	f(x,y)	hf(x,y)	Δy
0	0	0	0	0	1	0.1	0.1000
0.05	0.05	0.0500	0.0005	-0.0038	0.9967	0.0997	0.1994
0.05	0.0498	0.0500	0.0005	-0.0037	0.9968	0.0997	0.1994

0.10	0.0997	0.0998	0.0020	-0.0149	0.9871	0.0987	0.0987
							$0.5979 \cdot (1/6) =$
							=0.0996
0.10	0.0996	0.0998	0.0020	-0.0149	0.9871	0.0987	0.0987
0.15	0.1490	0.1494	0.0045	-0.0333	0.9712	0.0971	0.1942
0.15	0.1490	0.1494	0.0044	-0.0329	0.9715	0.0972	0.1944
0.20	0.1968	0.1987	0.0078	-0.0581	0.9497	0.0950	0.0950
							$0.5823 \cdot (1/6) =$
							=0.0970
0.20	0.1966	0.1987	0.0078	-0.0580	0.9498		

2. Обчислення наступних значень $y_i = y(x_i)$, де $x_i = x_0 + ih$ $(i = 3, 4, \dots)$, здійснюємо за формулою Адамса із другими різницями

$$y_{i+1} = y_i + q_i + \frac{1}{2}\Delta q_{i-1} + \frac{5}{12}\Delta^2 q_{i-2}$$
, $\text{Re} \quad q_i = hf(x_i, y_i)$.

Табл. 2 містить значення $y(x_i)$ та значення скінчених різниць, що містяться в обчислювальній формулі.

Таблиця 2

	тиолиц	<u> </u>				
i	X_i	${\cal Y}_i$	$f(x_i, y_i)$	$q_i = hf_i$	$\Delta q_{_i}$	$\Delta^2 q_i$
0	0	0	0.1000	0.1000	-0.00129	-0.00244
1	0.1	0.0996	0.9871	0.09871	-0.00373	-0.00204
2	0.2	0.1966	0.9498	0.09498	-0.00577	-0.00154
3	0.3	0.2887	0.8921	0.08921	-0.00731	-0.00088
4	0.4	0.3742	0.8190	0.08190	-0.00819	-0.00035
5	0.5	0.4518	0.7371	0.07371	-0.00854	-0.00008
6	0.6	0.5210	0.6517	0.06517	-0.00846	-0.00049
7	0.7	0.5818	0.5671	0.05671	-0.00797	-0.00067
8	0.8	0.6343	0.4874	0.04874	-0.00730	_
9	0.9	0.6792	0.4144	0.04144	_	_
10	1.0	0.7173	_	_	_	_

Наближені методи розв'язування задач в частинних похідних (рівняння еліптичного типу)

Приклад розв'язування задачі: $\frac{x^2}{16} + \frac{y^2}{9} = 1$ (Γ); $u(x,y)|_{\Gamma} = 0.5(|x| + |y|)$.

1. Використовуючи симетрію заданих початкових умов, побудуємо розв'язок тільки у першій четверті (рис.34).

Візьмемо крок h=1 і складемо таблицю значень x та y .

Рис.34

х	0	1	2	3	4
У	3	2,90	2,60	1,98	0

На рисунку хрестиками позначені крайові точки, а кружечками — внутрішні.

Обчислимо значення функції u(x, y) на межі:

$$A(0;3); \qquad u(A) = 0,5(0+3) = 1,5; \\ B(1;2,90); \qquad u(B) = 0,5(1+2,9) = 1,95; \\ C(2;2,60); \qquad u(C) = 0,5(2+2,6) = 2,3; \\ D(3;1,98); \qquad u(D) = 0,5(3+1,98) = 2,49; \\ E(3,77;1); \qquad u(E) = 0,5(3,77+1) = 2,39; \\ F(4;0); \qquad u(F) = 0,5(4+0) = 2.$$

Для визначення початкових значень функції u(x,y) у внутрішніх точках складемо систему рівнянь, що містять ці значення. Кожне рівняння одержується прирівнюванням значення функції у середній точці середньому арифметичному чотирьох значень у сусідніх точках:

$$u_{1} = \frac{1}{4}(1,5 + u_{4} + 2u_{2}), \qquad u_{2} = \frac{1}{4}(1,95 + u_{1} + u_{3} + u_{5}), \qquad u_{3} = \frac{1}{4}(4,79 + u_{2} + u_{6}),$$

$$u_{4} = \frac{1}{4}(u_{1} + u_{8} + 2u_{5}),$$

$$u_{5} = \frac{1}{4}(u_{2} + u_{4} + u_{6} + u_{8}), \qquad u_{6} = \frac{1}{4}(u_{3} + u_{5} + u_{7} + u_{10}), \qquad u_{7} = \frac{1}{4}(4,88 + u_{6} + u_{11}),$$

$$u_{8} = \frac{1}{4}(4u_{5}),$$

$$u_{9} = \frac{1}{4}(u_{8} + u_{10} + 2u_{5}), \quad u_{10} = \frac{1}{4}(u_{9} + u_{11} + 2u_{6}), \quad u_{11} = \frac{1}{4}(4.78 + 2u_{6}).$$

Розв'язуючи цю систему, отримуємо $u_1 = 1.91$, $u_2 = 2.05$, $u_3 = 2.10$,

$$u_4 = 2,05$$
, $u_5 = 2$, $u_6 = 2,18$, $u_7 = 2,34$, $u_8 = 2,11$, $u_9 = 2,13$, $u_{10} = 2,19$, $u_{11} = 2,28$.

Знайдені значення функції u(x,y) дозволяють скласти шаблон №1, у якому внутрішні значення відповідають знайденим, а крайові отримуються у результаті уточнення попередніх крайових значень за формулою лінійної інтерполяції

$$u(A_h) = u(A) + \delta \cdot \frac{u(B_h) - u(A)}{1 + \delta}$$

де A_h — вузлова крайова точка; A — найближча до A_h точка, що лежить на межі; B_h — найближча до A_h вузлова точка, що лежить всередині області; $^{\delta}$ — віддаль між точками A і A_h , взята зі знаком плюс, якщо точка A_h лежить всередині області, і зі знаком мінус, якщо вона лежить поза областю.

У даному прикладі маємо:

$$u(A_h) = u(A) = 1,5; \ \delta_B = 2,90 - 3 = -0,1; \ u(B_k) = 1,95 - 0,1 \frac{2,05 - 1,95}{0,9} = 1,94; \ \delta_C = 2,60 - 3 = -0,4; \ u(C_h) = 2,3 - 0,4 \frac{2,1 - 2,3}{0,9} = 2,43; \ \delta_D = 1,98 - 2 = 0,02; \ u(D_h) = 2,49 - 0,02 \frac{2,34 - 2,49}{0.98} = 2,49; \ \delta_E = 3,77 - 4 = -0,23; \ u(E_h) = 2,39 - 0,28 \frac{2,34 - 2,39}{0,77} = 2,40; \ u(F_h) = u(F) = 2.$$

$$\frac{\text{IIIa} \delta \pi \text{OH Ne} 1}{1,5 + 1,94 + 2,43} = \frac{1}{1,91 + 2,05} = \frac{1}{2,11} = \frac{1}{2,13} = \frac{1}{2,19} = \frac{1}{2,28} = \frac{1}{2,40}$$

2. Потім починається процес уточнення значень, що входять до шаблону №1. Кожен наступний шаблон одержується із попереднього таким значення функції y внутрішніх точках рівні чином: середньому арифметичному чотирьох сусідніх значень попереднього шаблону, а значення функції у крайових точках знаходяться за формулою лінійного інтерполювання, вже використаної при отриманні шаблону №1. Це уточнення здійснюється доти, доки два послідовні шаблони не співпадуть із заданою точністю. У результаті обчислень отримуємо таку послідовність шаблонів:

№ 2				
1,5	1,94	2,31		
1,91	2,02	2,29	2,49	
2,06	2,10	2,18	2,34	2,40
2,09	2,13	2,19	2,22	2

№3				
1,5	1,94	2,33		
1,90	2,06	2,25	2,49	
2,05	2,10	2,23	2,32	2,41
2,10	2,12	2,18	2,22	2

№4				
1,5	1,94	2,31		
1,92	2,05	2,28	2,49	
2,05	2,12	2,21	2,34	2,40
2,09	2,12	2,20	2,20	2

№5				
1,5	1,94	2,33		
1,91	2,06	2,26	2,49	
2,06	2,11	2,23	2,33	2,40
2,09	2,14	2,19	2,22	2

№6				
1,5	1,94	2,31		
1,92	2,06	2,28	2,49	
2,06	2,12	2,22	2,34	2,40
2,10	2,13	2,20	2,21	2

№7				
1,5	1,94	2,32		
1,91	2,06	2,27	2,49	
2,06	2,12	2,23	2,33	2,41
2,10	2,20	2,22	2,22	2

№8								
1,5	1,94	2,32						
1,92	2,06	2,27	2,49					
2,06	2,12	2,23	2,33	2,41				
2,10	2,13	2,20	2,22	2				

Шаблон №8 є відповіддю.

Наближені методи розв'язування задач в частинних похідних (рівняння параболічного та гіперболічного типу)

Рівняння параболічного типу

Використовуючи метод сіток, скласти розв'язок змішаної задачі для

диференціального рівняння параболічного типу $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x^2}$ (рівняння теплопровідності) при заданих початкових умовах u(x,0) = f(x), $u(0,t) = \varphi(t)$, $u(0.6,t) = \psi(t)$, де $x \in [0;0.6]$. Розв'язування виконати при h = 0.1, для $t \in [0;0.01]$ з чотирма десятковими цифрами, вважаючи $\sigma = 1/6$.

Приклад розв'язання задачі: u(x,0) = 3x(1-x) + 0.12, u(0,t) = 2(t+0.06), u(0.6,t) = 0.84

Параболічне рівняння розв'язується методом сіток поступовим переходом від значень функції $u(x_i,t_j)$ до значень $u(x_i,t_{j+1})$; причому $t_{j+1}=t_j+k$, де $k=h^2/6=0.01/6=0.0017$.

Обчислення виконують за формулою

$$u_{i,j+1} = \frac{1}{6} \left(u_{i+1,j} + 4u_{ij} + u_{i-1,j} \right) \quad (i = \overline{1,6}; j = \overline{1,6}).$$

Усі розрахунки наведені в таблиці:

	у от розрамунки наводонг в таомица.									
j	i	0	1	2	3	4	5	6		
	x_i t_j	0	0.1	0.2	0.3	0.4	0.5	0.6		
0	0	0.12	0.39	0.60	0.75	0.84	0.87	0.84		
1	0.0017	0.1233	0.3800	0.5900	0.7400	0.8300	0.8600	0.84		
2	0.0033	0.1267	0.6372	0.5800	0.7300	0.8200	0.8517	0.84		
3	0.0050	0.1300	0.3659	0.5704	0.7200	0.8103	0.8445	0.84		
4	0.0067	0.1333	0.3607	0.5612	0.7101	0.8010	0.8380	0.84		
5	0.0083	0.1367	0.3562	0.5526	0.7004	0.7920	0.8322	0.84		
6	0.01	0.1400	0.3524	0.5445	0.6910	0.7834	0.8268	0.84		

Рівняння гіперболічного типу

Використовуючи метод сіток, скласти розв'язок змішаної задачі для

рівняння коливання струни $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ з початковими умовами u(x,0) = f(x), $u_t(x,0) = \Phi(x)$ ($0 \le x \le 1$) і крайовими умовами $u(0,t) = \varphi(t)$, $u(1,t) = \psi(t)$. Розв'язування виконати з кроком h = 0.1, визначаючи значення функції u(x,t) з чотирма десятковими знаками, причому $0 \le t \le 0.5$.

Приклад розв'язання задачі: $f(x) = 2x(1-x^2)$, $\Phi(x) = (x+0.4)\cos(x+0.3)$, $\varphi(t) = 0.5t^2$, $\psi(t) = 0$

Для розв'язування скористаємося співвідношенням $u_{i,j+1}=u_{i+1,j}+u_{i-1,j}-u_{i,j-1}$ де $i=1,2,\ldots$ ј $j=1,2,\ldots$

При цьому $u_{i0}=f_i$, а для визначення u_{i1} можна використати один із можливих прийомів, наприклад, $u_{i1}=\frac{1}{2}(f_{i+1}+f_{i-1})+h\Phi_i$, причому $x_i=0+ih$, $(i=0,1,\dots n)$, $n=\frac{1-0}{h}=10$, $t_j=0+jh$, (j=0,1,2,3,4,5) . Зокрема, $u_{0j}=\varphi(t_j)$, $u_{nj}=\psi(t_j)$

Розв'язування по наведеним формулам зручно виконувати в таблиці, яка і ϵ розв'язанням даної задачі.

Порядок заповнення таблиці:

- 1. Обчислюємо $u_{i0} = f(x_i) = 2x_i (1-x_i^2)$ при $x_i = 0.1 \cdot i$ і записуємо їх до першого рядка (він відповідає значенню $t_0 = 0$).
- 2. Обчислюємо значення $u_{0j} = \varphi(t_j) = 0.5 \cdot t_j^2$ при $t_j = 0.1$ і записуємо їх до першого стовпця таблиці (він відповідає значенню $x_0 = 0$).
- 3. Заносимо значення $u_{10j} = \psi(t_j) = 0$ до останнього стовпчика таблиці (він відповідає значенню $x_{10} = 1.0$).
- 4. Обчислюємо значення u_{i1} за формулою $u_{i1} = \frac{1}{2}(f_{i+1} + f_{i-1}) + h\Phi_i$, де f_{i+1} та f_{i-1} беруться із першого рядка таблиці, а $\Phi_i = (x_i + 0.4)\cos(x_i + 0.3)$, $x_i = 0.1 \cdot i$ ($i = 1, 2, \dots, 9$), h = 0.1. Результати записуємо до другого рядка таблиці.
- 5. Обчислюємо значення u_{ij} в наступних рядках за формулою $u_{i,j+1} = u_{i+1,j} + u_{i-1,j} u_{i,j-1}$, де значення $u_{i+1,j}$, $u_{i-1,j}$, $u_{i,j-1}$ беруться із двох попередніх рядків таблиці.

x_i x_j	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0	0.198	0.384	0.546	0.672	0.750	0.768	0.714	0.576	0.342	0
0.1	0.005	0.2381	0.4247	0.5858	0.7092	0.7677	0.7942	0.7315	0.5825	0.3354	0
0.2	0.02	0.2317	0.4399	0.5879	0.6815	0.7534	0.7312	0.6627	0.4909	0.2405	0
0.3	0.045	0.2218	0.3949	0.5356	0.6321	0.6450	0.6219	0.4906	0.3207	0.1555	0
0.4	0.08	0.2082	0.3175	0.4391	0.4991	0.5006	0.4044	0.2799	0.1552	0.0802	0
0.5	0.125	0.1757	0.2524	0.2810	0.3076	0.2585	0.1586	0.0609	0.0394	-0.0003	0

Методи Рітца та Бубнова-Гальоркіна

Приклад. Знайдемо розв'язок крайової задачі

$$y'' + y + x = 0$$
 $(0 \le x \le 1)$ $y(0) = y(1) = 0$

Розв'язання. Варіаційна задача зводиться до знаходження мінімуму лінійного інтеграла

$$I(y) = \int_{0}^{1} ((y')^{2} - y^{2} - 2xy) dx$$
 (1)

Згідно з методом Рітца і Бубнова-Гальоркіна наближений розв'язок

Знаходимо $y_1 = x(1-x)a_1$ і похідну $y_1' = (1-2x)a_1$. Підставляємо отримані вирази в (1). Для знаходження мінімуму отриманої функції необхідно задовольнити умову $\frac{\partial I}{\partial a_1} = 0$

Продиференціюємо інтеграл (1) по параметру a_1 . Маємо

$$\frac{\partial I}{\partial a_1} = \int_0^1 \left(2y' \frac{\partial y'}{\partial a_1} - 2y \frac{\partial y}{\partial a_1} - 2x \frac{\partial y}{\partial a_1} \right) dx = 2\int_0^1 \left(y' \frac{\partial y'}{\partial a_1} - (x+y) \frac{\partial y}{\partial a_1} \right) dx = 0$$

$$\frac{\partial y_1}{\partial a_1} = x(1-x) \quad \frac{\partial y_1'}{\partial a_1} = 1 - 2x$$

$$\int_{0}^{1} \left(y' \frac{\partial y'}{\partial a_{1}} - (x+y) \frac{\partial y}{\partial a_{1}} \right) dx = \int_{0}^{1} \left((1-2x)a_{1}(1-2x) - (x+x(1-x)a_{1})x(1-x) \right) dx = a_{1} \cdot I_{1} + I_{2} = 0$$

$$I_1 = \int_0^1 ((1-2x)^2 - x^2(1-x)^2) dx$$
 $I_2 = -\int_0^1 x^2(1-x) dx$

$$I_1 = \left(-\frac{1}{6}(1-2x)^3 - \left(\frac{x^3}{3} - 2\frac{x^4}{4} + \frac{x^5}{5}\right)\right)\Big|_0^1 = \left(\frac{1}{6} - \frac{1}{3} + \frac{1}{2} - \frac{1}{5}\right) - \left(-\frac{1}{6}\right) = \frac{3}{10}$$

$$I_2 = -\left(\frac{x^3}{3} - \frac{x^4}{4}\right)\Big|_0^1 = -\frac{1}{3} + \frac{1}{4} = -\frac{1}{12}$$

 $a_{\rm l} = -\frac{I_{\rm 2}}{I_{\rm l}} = \frac{5}{18}$. Таким чином, у першому наближенні

$$y_1 = \frac{5}{18}x(1-x)$$

Розглянемо друге наближення $y_2 = x(1-x)(a_1 + a_2x)$ і його похідну $y_2' = (x(1-x))'(a_1 + a_2x) + x(1-x)(a_1 + a_2x)' = (1-2x)(a_1 + a_2x) + x(1-x) \cdot a_2 = a_1(1-2x) + a_2(2x-3x^2)$ Диференціюючи (1) по a_1 та a_2 , отримаємо

$$\frac{\partial I}{\partial a_1} = 2 \int_0^1 \left(y' \frac{\partial y'}{\partial a_1} - (x + y) \frac{\partial y}{\partial a_1} \right) dx = 0$$
 (2)

$$\frac{\partial I}{\partial a_2} = 2 \int_0^1 \left(y' \frac{\partial y'}{\partial a_2} - (x + y) \frac{\partial y}{\partial a_2} \right) dx = 0$$

Похідні функції $y_2(x,a_1,a_2)$ по шуканим параметрам мають вигляд:

Похідні функції 22 м 10 інуканим параметрам мають вигляд.
$$\frac{\partial y}{\partial a_1} = x(1-x), \quad \frac{\partial y}{\partial a_2} = x^2(1-x), \quad \frac{\partial y'}{\partial a_1} = 1-2x, \quad \frac{\partial y'}{\partial a_2} = 2x-3x^2$$
. Тоді із (2) маємо
$$\frac{1}{2} \frac{\partial I}{\partial a_1} = \int_0^1 ((a_1(1-2x) + a_2(2x-3x^2)) \cdot (1-2x) - x(1-x)(a_1+a_2x) \cdot x(1-x) - x \cdot x(1-x)) dx = 0$$

Звідси $a_1 \cdot I_1 + a_2 \cdot I_2 = I_3$, де $I_1 = \int_0^1 ((1-2x)^2 - x^2(1-x)^2) dx = \int_0^1 (1-4x+3x^2+2x^3-x^4) dx = \frac{3}{10},$, $I_2 = \int_0^1 ((2x-3x^2)(1-2x)-x^2(1-x)^2 \cdot x) dx = \int_0^1 (2x-7x^2+5x^3+2x^4-x^5) dx = \frac{3}{20}$ $I_3 = \int_0^1 x^3(1-x) dx = \int_0^1 (x^3-x^4) dx = \frac{1}{20}$

Отож, для визначення невідомих параметрів a_1 , a_2 маємо

$$\frac{3}{10}a_1 + \frac{3}{20}a_2 = \frac{1}{12} \tag{3}$$

Для другого рівняння системи (2) маємо

$$\frac{1}{2}\frac{\partial I}{\partial a_2} = \int_0^1 ((a_1(1-2x) + a_2(2x-3x^2))(2x-3x^2) - x(1-x)(a_1+a_2x) \cdot x^2(1-x) - x \cdot x^2(1-x)) dx = 0$$

, звідси маємо $a_1 \cdot I_1 + a_2 \cdot I_2 = I_3$, де

$$I_{1} = \int_{0}^{1} ((1-2x)\cdot(2x-3x^{2})-x(1-x)\cdot x^{2}(1-x))dx = \int_{0}^{1} (2x-7x^{2}+5x^{3}+2x^{4}-x^{5})dx = \frac{3}{20},$$

$$I_{2} = \int_{0}^{1} ((2x-3x^{2})^{2}-x(1-x)\cdot x\cdot x^{2}(1-x))dx = \int_{0}^{1} (4x^{2}-12x^{3}+8x^{4}+2x^{5}-x^{6})dx = \frac{13}{105},$$

$$I_{3} = \int_{0}^{1} x^{3}(1-x)dx = \int_{0}^{1} (x^{3}-x^{4})dx = \frac{1}{20}$$

Для визначення невідомих параметрів a_1 , a_2 отримали друге рівняння

$$\frac{3}{20}a_1 + \frac{13}{105}a_2 = \frac{1}{20} \tag{4}$$

Розв'язком системи (3),(4) буде $a_1=\frac{71}{369}$, $a_2=\frac{7}{41}$. Таким чином, у другому наближенні $y_2=x(1-x)\left(\frac{71}{369}+\frac{7}{41}x\right)$. Точний розв'язок цієї задачі має вигляд $y=\frac{\sin x}{\sin 1}-x$. Значення одержаних розв'язків наведено в табл. 1.

—	-1
Ιορπιπα	1
1 аолиця	- 1
т и Озтитил	_

х	\mathcal{Y}_1	y_2	${\cal Y}_{\it moчнe}$
0,25	0,052	0,044	0,044
0,50	0,069	0,069	0,070
0,75	0,052	0,060	0,060

Апроксимація еліптичних диференціальних рівнянь у частинних похідних

Приклад 1. Знайти розв'язок рівняння Лапласа для квадрата при крайових умовах, наведених на рис.35.

Рис.35. Рис36

Розв'язання. Складемо систему скінчено-різницевих рівнянь, використовуючи обчислювальний шаблон (2.30). За формулами (4.2) маємо

$$z_{11} = \frac{1}{4}(z_{21} + 24,34 + z_{12} + 12,38), \qquad z_{12} = \frac{1}{4}(z_{22} + 26,15 + 0,00 + z_{11}), z_{21} = \frac{1}{4}(38,53 + z_{11} + z_{22} + 30,10), \qquad z_{22} = \frac{1}{4}(16,18 + z_{12} + 0,00 + z_{21})$$

Отримана система чотирьох рівнянь з чотирма невідомими z_{11} , z_{12} , z_{21} , z_{22} може бути записана у вигляді

$$\begin{cases} z_{11} - 0.25z_{12} - 0.25z_{21} &= 8.43 \\ -0.25z_{11} + z_{12} & -0.25z_{22} = 6.748 \\ -0.25z_{11} + z_{21} - 0.25z_{22} = 17.168 \\ -0.25z_{12} - 0.25z_{21} + z_{22} = 4.045 \end{cases}$$

Розв'язування цієї системи методом Гауса дає такі значення невідомих:

$$z_{11} = 20.53$$
, $z_{12} = 15.20$, $z_{21} = 29.09$, $z_{22} = 14.12$.

При застосуванні обчислювального шаблона (2.30) залишилися невикористаними дані в кутових точках межі квадрата, однак ці значення необхідні при використанні обчислювальних шаблонів інших типів.

Приклад 2. Знайти розв'язання рівняння Лапласа $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ при

крайових умовах, наведених на рис.36.

Розв'язування. Обчислення початкового наближення проводиться шляхом інтерполювання крайових умов на внутрішні вузли. При інтерполюванні передбачається, що значення шуканої функції лінійно спадають або зростають від одного краю до іншого. Використовуються такі розрахункові формули:

$$z_{ij} = z_{ij_n} + rac{z_{ij_k} - z_{ij_n}}{j_k - j_n} (j - j_n)$$
 (для рядків) і $z_{ij} = z_{i_n j} + rac{z_{i_k j} - z_{i_n j}}{i_k - i_n} (i - i_n)$ (для стовпців).

Індекси i_n , j_n , i_k , j_k позначають початкові і кінцеві значення. Початковому значенню відповідає правий нижній кут таблиці. Для розглядуваного прикладу $j_n=0$, $j_k=4$. Обчислення починаємо з першого рядка зверху. Будемо вважати, що функція лінійно зростає від $z_{ij_n}=z_{30}=0$ до $z_{ij_k}=z_{34}=12$. Маємо

$$z_{34} = 0 + \frac{12}{4 - 0}(4 - 0) = 12$$
, $z_{33} = 0 + \frac{12}{4 - 0}(3 - 0) = 9$, $z_{32} = 0 + \frac{12}{4 - 0}(2 - 0) = 6$, $z_{31} = 0 + \frac{12}{4 - 0}(1 - 0) = 3$.

Переходимо до правого стовпця: тут $z_{i_n j} = z_{41} = 0$, $z_{i_k j} = z_{01} = 12$; потім $z_{31} = 3 + \frac{9}{0-3}(3-3) = 3$, $z_{21} = 3 + \frac{9}{0-3}(2-3) = 6$, $z_{11} = 3 + \frac{9}{0-3}(1-3) = 9$ $z_{01} = 3 + \frac{9}{0-3}(0-3) = 12$

Потім розглядаємо другий рядок, вважаючи, що функція лінійно зростає від $z_{ij_n}=z_{21}=6$ до $z_{ij_k}=z_{24}=20$. Тоді

$$z_{24} = 6 + \frac{14}{4 - 1}(4 - 1) = 20$$
, $z_{23} = 6 + \frac{14}{4 - 1}(3 - 1) = 15,33$, $z_{22} = 6 + \frac{14}{4 - 1}(2 - 1) = 10,66$, $z_{21} = \frac{14}{4 - 1}(1 - 1) = 6$.

Переходимо до другого стовпця, покладаючи $z_{i_n j} = z_{22} = 10,66$, $z_{i_k j} = z_{02} = 20$. Маємо $z_{12} = 10,66 + \frac{20 - 10,66}{4 - 2}(3 - 2) = 15,33$.

Нарешті, знаходимо
$$z_{13}$$
, вважаючи $z_{ij_n}=z_{12}=15{,}33$ і $z_{ij_k}=z_{14}=40$: $z_{13}=15{,}33+\frac{40-15{,}33}{4-2}(3-2)=27{,}67$

Після визначення таким способом усіх значень у внутрішніх вузлах процес побудови початкового наближення закінчується.

На наступному етапі в ітераційному процесі визначення послідовних наближень використовуються розрахункові формули

$$\begin{split} z_{11}^{(n+1)} &= \frac{1}{4} \left(z_{21}^{(n)} + z_{01}^{(n)} + z_{12}^{(n)} + z_{10}^{(n)} \right), \quad z_{21}^{(n)} &= \frac{1}{4} \left(z_{31}^{(n)} + z_{11}^{(n)} + z_{22}^{(n)} + z_{20}^{(n)} \right), \\ z_{12}^{(n+1)} &= \frac{1}{4} \left(z_{22}^{(n)} + z_{11}^{(n)} + z_{02}^{(n)} + z_{13}^{(n)} \right), \quad z_{22}^{(n+1)} &= \frac{1}{4} \left(z_{32}^{(n)} + z_{12}^{(n)} + z_{23}^{(n)} + z_{21}^{(n)} \right), \\ z_{13}^{(n+1)} &= \frac{1}{4} \left(z_{23}^{(n)} + z_{03}^{(n)} + z_{14}^{(n)} + z_{12}^{(n)} \right), \quad z_{23}^{(n+1)} &= \frac{1}{4} \left(z_{33}^{(n)} + z_{13}^{(n)} + z_{24}^{(n)} + z_{22}^{(n)} \right), \\ z_{31}^{(n+1)} &= \frac{1}{4} \left(z_{41}^{(n)} + z_{21}^{(n)} + z_{32}^{(n)} + z_{30}^{(n)} \right), \quad z_{32}^{(n+1)} &= \frac{1}{4} \left(z_{33}^{(n)} + z_{13}^{(n)} + z_{24}^{(n)} + z_{22}^{(n)} \right), \\ z_{33}^{(n+1)} &= \frac{1}{4} \left(z_{43}^{(n)} + z_{23}^{(n)} + z_{34}^{(n)} + z_{32}^{(n)} \right). \end{split}$$

Розв'язування прикладу проведено двома методами: методом простої ітерації і методом Зейделя. Послідовні наближення за методом простої ітерації наведені в таблиці 1, а за методом Зейделя — в таблиці 2. Розрахунок за методом Зейделя потребує шести ітерацій, що на дві ітерації менше, аніж за методом простої ітерації. Обчислення закінчуються, коли значення в послідовних ітераціях співпадають із заданою точністю ($\varepsilon = 0,1$).

Аналіз отриманих результатів показує, що таблиці 1 і 2 симетричні щодо своїх допоміжних діагоналей через спеціальний симетричний вигляд крайових умов.

Таблиця 1

Таблиця 2

	0,0	0,0	0,0	
12	8,74	5,79	2,88	0,0
20	17,22	11,46	5,79	0,0
40	28,59	17,22	8,74	0,0
	40	20	12	

	0,0	0,0	0,0	
12	8,72	5,76	2,88	0,0
20	17,19	11,47	5,76	0,0
40	28,58	17,19	8,72	0,0
	40	20	12	

 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

Приклад. Знайти наближений розв'язок рівняння z^2 задовольняє на колі $z^2 + y^2 = 16$ (рис.37) умову $z(x,y) = x^2 y^2$.

Рис.37

Розв'язування. Користуючись симетрією заданих крайових умов, розглянемо четверть круга (рис.38). Для застосування скінченорізницевих методів необхідно мати початкове наближення. Побудова початкового наближення проводимо таким чином.

Рис. 38

$$z_A = z_M = x^2 y^2 \Big|_{x=2, y=\sqrt{12}} = 48$$

Покладаємо значення шуканої функції у вузлах сітки, близьких до межі, рівними значенням цієї функції на межі. Розглянемо спочатку крупну сітку з кроком h=2. Для вузла A при x=2 із рівняння кола маємо $y=\sqrt{16-x^2}=\sqrt{16-4}=\sqrt{12}$. Найближчою до вузла A точкою межі є точка $M\left(2;\sqrt{12}\right)$. із крайової умови знаходимо

Аналогічно для вузла A' маємо найближчу точку $M'(\sqrt{12};2)$ зі значеннями шуканої функції на межі $z_{A'} = z_{M'} = x^2 y^2 \big|_{x=\sqrt{12},y=2} = 48$. При x=0 або y=0 значення функції на межі перетворюється в нуль, тому у вузлах O'(4;0) і O(0;4) отримуємо $z_O = z_{O'} = 0$.

Для визначення значень функції у внутрішніх вузлах (див. рис.5.4) маємо систему скінченорізницевих рівнянь

$$\begin{split} z_S &= \frac{1}{4} \Big(z_Q + z_Q + z_Q + z_Q \Big) \\ , & z_Q = \frac{1}{4} \big(z_O + z_S + z_F + z_F \big) \\ , & z_F = \frac{1}{4} \Big(z_A + z_Q + z_Q + z_A \big) \\ , \\ \mathbf{3} \mathbf{B} \mathbf{i} \mathbf{J} \mathbf{K} \mathbf{M} \end{split}$$

Для підвищення точності обчислень зменшуємо крок до h=1 і знову

розглядаємо четверть круга, враховуючи симетрію розв'язку. Початкові значення шуканої функції визначаємо, знаючи значення, отримані у вузлах крупної сітки, користуючись симетрією розв'язків і приймаючи значення у вузлах близьких до межі, рівними значенням функції на межі. Знаходимо $z_A = z_{A'} = 48$, $z_B = z_{B'} = 15$, $z_C = z_{C'} = 63$

Для визначення значень z_D , z_G , z_R використаємо рівняння

$$z_{D} = \frac{1}{4} (z_{Q} + z_{Q} + z_{F} + z_{S}), \quad z_{G} = \frac{1}{4} (z_{E} + z_{H} + z_{Q} + z_{F}),$$

$$z_{P} = \frac{1}{4} (z_{Q} + z_{Q} + z_{E} + z_{E}), \quad z_{R} = \frac{1}{4} (z_{Q} + z_{S} + z_{H} + z_{H}).$$

Для визначення значень шуканої функції z_H і z_E використаємо скінченорізницеві рівняння у вигляді

$$z_H = \frac{1}{4} (z_Q + z_Q + z_F + z_S), \quad z_E = \frac{1}{4} (z_F + z_O + z_A + z_Q)$$

Підставляючи числові значення, маємо систему рівнянь

$$z_{D} = \frac{1}{4}(48 + z_{E} + 63 + 36), \quad z_{R} = \frac{1}{4}(24 + 24 + z_{H} + z_{H}), \quad z_{Q} = \frac{1}{4}(z_{E} + z_{H} + 24 + 36),$$

$$z_{H} = \frac{1}{4}(24 + 24 + 24 + 36), \quad z_{P} = \frac{1}{4}(z_{E} + z_{E} + 0 + 24), \quad z_{E} = \frac{1}{4}(0 + 36 + 48 + 24).$$

Розв'язування системи дає такі значення: $z_{\mathcal{Q}}=28.5$, $z_{\mathcal{D}}=43.5$, $z_{\mathcal{E}}=27$, $z_{\mathcal{H}}=27$, $z_{\mathcal{P}}=19.5$, $z_{\mathcal{E}}=25.5$.

Уточнимо значення шуканої функції у межевих вузлах B, A і C. Обмежуючись у розвиненні Тейлора першою похідною, маємо $z(x_0,y_0+\delta h)=z(x_0,y_0)+\delta h z_y(x_0,y_0)$

Замінюємо значення $z_y(x_0, y_0)$ в точках L , M і N межі їх значеннями у вузлах B , A і C :

$$z_B = z_L + \frac{z_E - z_L}{\delta_B - h} \delta_B, \qquad z_A = z_M + \frac{z_D - z_M}{\delta_A - h} \delta_A, \qquad z_C = z_N + \frac{z_D - z_M}{\delta_C - h} \delta_C$$

Тут δ_B , δ_A , δ_C — віддалі від точок межі L, M і N до найближчих вузлів B, A і C. Маємо такі числові значення:

$$\delta_{B} = |BL| = 4 - \sqrt{15} \approx 0.13, \qquad z_{B} = 14 - \frac{13}{0.87} \cdot 0.13 \approx 12,$$

$$\delta_{A} = |AM| = 4 - \sqrt{12} \approx 0.6, \qquad z_{A} = 48 + \frac{4.5}{0.4} \cdot 0.6 \approx 55,$$

$$\delta_{C} = |CN| = 3 - \sqrt{7} \approx 0.35, \qquad z_{C} = 63 + \frac{19.5}{0.65} \cdot 0.35 \approx 74$$

Складаємо таблицю початкових значень і методом простої ітерації знаходимо значення шуканої функції доти, доки значення, отримані у послідовних ітераціях (див. табл.1), не будуть відрізнятися на величину останнього розряду. В табл.2 наводяться для порівняння значення точного

розв'язку задачі $z(x,y) = x^2 y^2 + \frac{1}{8} (256 - (x^2 + y^2))$

Таблиця 1

21	28	47	
27	30	38	47
28	29	30	28
28	28	27	21

Таблиця 2

	1		-	
0	12	46		_
22	28	47	73	
30	33	40	47	46
32	32	33	28	12
32	32	30	22	0

Апроксимація параболічних і гіперболічних диференціальних рівнянь у частинних похідних

Приклад. Знайти розв'язок рівняння $\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial t}$, 0 < x < 1, 0 < t < 0.01, що задовольняє умовам $g_0(x) = (1.5x^2 + 2.2)e^{-x}$; $f_0(t) = 2.2$; $f_1(t) = 3.7e^{-1}$ із заданою точністю $\varepsilon = 10^{-4}$.

Розв'язування. Скористаємося явною схемою (6.8) при $\beta = 1/6$. Виберемо крок по осі x рівним h = 0.1. Оскільки $\alpha = 1$, $\beta = 1/6$, то за формулою $\beta = \alpha k/h^2$ знаходимо крок по осі t: $k = \beta h^2/\alpha = 0.01/6 \approx 0.0017$.

Записуємо в таблицю початкові і крайові значення. Нульовому рядку відповідають крайові значення, лівому стовпцю — початкові значення. Формула (6.8) при $\beta = 1/6$ приймає вигляд

$$z_{r,s+1} = \frac{1}{6} (z_{r+1,s} + 4z_{r,s} + z_{r-1,s})$$

Для першого рядка маємо

$$z_{r,1} = \frac{1}{6} \left(z_{r+1,0} + 4z_{r,0} + z_{r-1,0} \right)$$

Підставляючи числові значення, знаходимо

$$\begin{split} z_{11} &= \frac{1}{6}(1.850 + 4 \cdot 2/004 + 2.2) = 2.011 \\ ; & z_{21} = \frac{1}{6}(1.730 + 4 \cdot 1.850 + 2.004) = 1.856 \\ ; & z_{31} = \frac{1}{6}(1.636 + 4 \cdot 1.730 + 1.850) = 1.734 \\ ; & z_{41} = \frac{1}{6}(1.562 + 4 \cdot 1.636 + 1.730) = 1.639 \\ ; & z_{61} = \frac{1}{6}(1.458 + 4 \cdot 1.504 + 1.562) = 1.506 \\ ; & z_{71} = \frac{1}{6}(1.420 + 4 \cdot 1.458 + 1.504) = 1.459 \\ ; & z_{81} = \frac{1}{6}(1.388 + 4 \cdot 1.420 + 1.458) = 1.420 \\ ; & z_{91} = \frac{1}{6}(3.7e^{-1} + 4 \cdot 1.388 + 1.375) = 1.368 \\ . \end{split}$$

Для наступних рядків при t = 0.003; 0.0050; 0.0067 обчислення проводяться аналогічно (див. табл.1).

								Таб	блиця 1
t	z_{1j}	z_{2j}	z_{3j}	z_{4j}	z_{5j}	z_{6j}	z_{7j}	z_{8j}	z_{9j}
0.0067	2.025	1.872	1.748	1.649	1.572	1.512	1.463	1.424	1.391
0.0050	2.021	1.867	1.743	1.646	1.570	1.510	1.462	1.423	1.390
0.0033	2.017	1.861	1.739	1.642	1.567	1.508	1.460	1.422	1.390
0.0017	2.011	1.856	1.734	1.639	1.564	1.506	1.459	1.421	1.389
0.0000	2.004	1.850	1.730	1.636	1.562	1.504	1.457	1.420	1.388

Метод сплайн-колокації з використанням В-сплайнів

Розглянемо метод сплайн-колокації з використанням В-сплайнів. Запишемо кубічний сплайн у вигляді ряду по кубічних сплайнах:

$$S(x) = \sum_{i=-1}^{N+1} b_i B_i(x) \left[x_0, x_N \right]$$
 (13)

(для спрощення запису упущено значок m=3, а i знаходиться в індексі).

Зупинимось на випадку, коли колокації ξ_i збігаються з вузлами сплайна x_i . Підставляючи у відповідні формули, дістанемо

$$b_{i-1}L[B_{i-1}(x_i)] + b_iL[B_i(x_i)] + b_{i+1}L[B_{i+1}(x_i)] = f_i$$
 $(i = 0, 1, 2, ..., N).$

Після диференціювання ці рівняння можна записати у вигляді

$$b_{i-1}A_{i} + b_{i}C_{i} + b_{i+1}B_{i} = D_{i} \quad (i = 0, 1, 2, ..., N),$$

$$A_{i} = \frac{1}{x_{i+1} - x_{i-1}} \left(1 - \frac{1}{2} p_{i} h_{i} + \frac{1}{6} q_{i} h_{i}^{2} \right); \quad B_{i} = \frac{1}{x_{i+1} - x_{i-1}} \left(1 - \frac{1}{2} p_{i} h_{i-1} + \frac{1}{6} q_{i} h_{i-1}^{2} \right);$$

$$1$$

$$1$$

$$1$$

$$C_i = -A_i - B_i + \frac{1}{6}q_i(h_i + h_{i-1}); \quad D_i = \frac{1}{6}f_i(h_i + h_{i-1}).$$

3 рівнянь (2), покладаючи
$$h_{-j}=h_{j-1}$$
, $h_{N-1+j}=h_{N-j}$, $j=1,2,3$ отримуємо $b_{-1}A_{-1}+b_0C_{-1}+b_1B_{-1}=D_{-1}$; $b_{N-1}A_{N+1}+b_NC_{N+1}+b_{N+1}B_{N+1}=D_{N+1}$,
$$d_{N-1}A_{N+1}+b_NC_{N+1}+b_{N+1}B_{N+1}=D_{N+1}$$
,
$$d_{N-1}A_{N+1}=\alpha_1h_0-3\beta_1, \ B_{-1}=\alpha_1h_0+3\beta_1, \ C_{-1}=2\alpha_1(h_1+h_0)$$
; $A_{N+1}=\alpha_2h_{N-1}-3\beta_2, \ B_{N+1}=\alpha_2h_{N-1}+3\beta_2, C_{N+1}=2\alpha_2(h_{N-2}+h_{N-1})$; $D_{-1}=2\gamma_1(h_1+2h_0)$, $D_{N-1}=2\gamma_2(h_{N-2}+2h_{N-1})$.

Рівняння (14),(15) утворюють систему N+3 рівнянь відносно N+3 невідомих b_i . Виключаючи за допомогою рівнянь (15) невідомі b_{-i} , b_{N-1} отримаємо систему з тридіагональною матрицею:

$$b_{0}\widetilde{C}_{0} + b_{1}\widetilde{B}_{0} = \widetilde{D}_{0};$$

$$b_{i-1}A_{i-1} + b_{i}C_{i} + b_{i+1}B_{i} = D_{i}, i = 1, 2, ..., N-1,$$

$$b_{N-1}\widetilde{A}_{N} + b_{N}\widetilde{C}_{N} = \widetilde{D}_{N}.$$
(16)

де

$$\widetilde{C}_0 = C_0 - \frac{C_{-1}A_0}{A_{-1}}, \quad \widetilde{B}_0 = B_0 - \frac{B_{-1}A_0}{A_{-1}}, \quad \widetilde{D}_0 = D_0 - \frac{D_{-1}A_0}{A_{-1}};$$

$$\widetilde{A}_{N} = A_{N} - \frac{A_{N+1}B_{N}}{B_{N+1}}, \quad \widetilde{C}_{N} = C_{N} - \frac{C_{N+1}B_{N}}{B_{N+1}}, \quad \widetilde{D}_{N} = D_{N} - \frac{D_{N+1}B_{N}}{B_{N+1}}.$$

Таким чином, з системи рівнянь (16) знаходимо $b_0, b_1, ..., b_N$, а потім з рівнянь (15) — b_{-i} і b_{N-1} . Підставивши ці коефіцієнти у вираз (13), знаходимо розв'язок крайової задачі (1) і (2).

Аналогічно за допомогою методу сплайн-колокації розв'язати крайову задачу для диференціального рівняння четвертого порядку, використовуючи при цьому В-сплайни п'ятого порядку.

Як приклад, наведемо результати розв'язання крайової задачі про згин пластини сталої товщини, дві протилежні сторони якої шарнірно оперті, а дві інші (x-const, y-const) шарнірно закріплені під дією нормального навантаження $q=q_1(x)\sin\pi y$ $(0\leq y\leq b, 0\leq x\leq a)$. Задача описується рівнянням

$$w^{(IV)} - 2\left(\frac{\pi}{6}\right)^2 w'' + \left(\frac{\pi}{6}\right)^4 w = \frac{q}{D_m}, \qquad D_m = \frac{Eh^3}{12(1-v^2)}$$

з граничними умовами w = w' = 0 при x = 0.

Розв'язання задачі одержано методом сплайн-колокації з використанням В-сплайнів п'ятого порядку (12).

Розв'язок задачі отримано при таких даних a=b=1; h=0,1; E=l; v=0,3 число точок колокації N=16,32; t=16x; $q_1=\pi/2$.

Результати розв'язання задачі для w і w' наведено в таблиці (в силу симетрії результати дано для $0 \le x \le 0.5$).

симетри результати дано для).								
t	w			w''				
	Розв'язанн	НЯ В	Точний	Розв'язання в сп	лайнах	Точний		
	сплайнах		розв'язок			розв'язок		
	N = 16	N = 32		N = 16	N = 32			
0	0	0	0	810,3	806,1	806,2		
1	1,339	1,333	1,333	462,8	460,5	460,8		
2	4,516	4,493	4,495	205,9	204,9	205,1		
3	8,519	8,477	8,481	18,28	18,19	18,39		
4	12,61	12,55	12,56	-116,2	-115,5	-115,5		
5	16,26	16,18	16,19	-209,5	-208,4	-208,7		
6	19,10	19,01	19,02	-270,4	-269,1	-269,3		
7	20,90	20,80	20,81	-304,7	-303,5	-303,5		
8	21,51	21,41	21,42	-315,8	-314,2	-314,5		

Лабораторний практикум

Теорія похибок

Лабораторна робота №1. Елементи теорії похибок.

Мета: Ознайомлення з елементами теорії похибок. Набуття навичок обчислення похибок.

Завдання:

- 1. Обчислити значення функції Z (див. табл. 1) при заданих значеннях параметрів a, b і c з точним врахуванням правильних цифр.
- 2. Методом меж визначити точність обчислення функції Z із врахуванням кількості правильних цифр у параметрах.
 - 3. Розв'язати пряму задачу теорії похибок при обчисленні функції Z.
- 4. Розв'язати обернену задачу теорії похибок для функції Z при $\Delta Z=0,1$

Варіант	Z	а	b	С
1.	$\frac{c+\cos b}{2c-a^2} + \frac{\pi}{2}$	0,317	3,27	4,7561
2.	$\frac{\ln(a+c)}{b-ac} + e^2$	0,0399	4,83	0,072
3.	$\frac{\sqrt{a+b}}{3a-c} + \sin 45^{\circ}$	1,574	1,40	1,1236
4.	$\frac{ab-4c}{\ln a+3b} + arctg1$	12,72	0,34	0,029
5.	$\frac{a - tgb}{13c + b} - \sqrt{5}$	3,49	0,845	0,0037
6.	$\frac{ac+3b}{\sqrt{b-c}} + \sin\frac{\pi}{4}$	0,0976	2,371	1,15874
7.	$\frac{\ln(a-b)}{\sqrt{b+c}} - 2e$	82,3574	34,12	7,00493
8.	$\frac{b + \cos c}{3b + 2a} + \ln 2,1$	0,11587	4,256	3,00971
9.	$\frac{a^2 - b}{\sqrt{ab + c}} + 2\cos\frac{\pi}{6}$	3,71452	3,03	0,765
10.	$\frac{\ln a + 4b}{ab - c} - 7$	7,345	0,31	0,09872
11.	$\frac{b^2 + \ln c}{\sqrt{c - a}} + 2tg \frac{\pi}{5}$	0,038	3,9353	5,75

12.	$\frac{2tg(a+b)}{a^2c+b} - 3\sqrt{3}$	0,2471	0,0948	37,84
	$\frac{a^2c+b}{4\sqrt{a^2+c}} + \frac{\pi}{c}$		•	
13.	ab-c 4	1,284	4,009	3,2175
14.	$\frac{\sin(a-\sqrt{b})}{c+\ln b} - (\sqrt{2})^3$	18,407	149,12	2,3078
15.	$\frac{0.8 \ln b}{\sqrt{a+b}} + \cos 1$	29,49	87,878	_
16.	$\frac{\sqrt{a}}{bc - \ln b} - \ln 2$	74,079	5,3091	6,234
17.	$\frac{\sqrt{ab}}{b-2a} + \sin\frac{\pi}{3}$	3,4	6,22	0,149
18.	$\frac{(b-c)^2}{2a+b} - \sqrt[3]{7}$	0,7219	135,347	0,013
19.	$\frac{b-\sin a}{a+3c}+\sqrt{\pi}$	3,672	4,63	0,0278
20.	$\frac{10c+b}{a^2-b}-\sin(\cos 1)$	1,24734	0,346	5,081
21.	$\frac{(a-c)^2}{\sqrt{a}+3b} + \ln 5$	11,7	0,0937	5,081
22.	$\frac{a-\sin b}{b^2+6c}-3\sqrt{5}$	1,75	1,21	0,041
23.	$\frac{\sqrt{b-c}}{\ln a+b} - 2\sin 1,2$	18,0354	3,7251	0,071
24.	$\frac{\ln c - 10a}{\sqrt{bc}}$	0,113	0,1056	89,4
25.	$\frac{\ln(0,2a+2)}{\sqrt[3]{(b-c)^2}}$	1,003	2,21	0,0235
26.	$e^a \sin b \cos c^2$	-2,301	1,72	-0,002
27.	$\frac{\ln(1+\cos a)}{2\pi+b}$	1,02	0,0065	_
28.	$\frac{\cos a + 2\pi}{\sqrt{b}}$	3,14156	14,8	_
29.	$\frac{\sin a - \cos b}{\pi - b - a}$	-0,1236	1,37432 1	_
30.	$\frac{b+c}{1+\sqrt{\ln a}}$	3,8134	3,5	0,064
31.	$\frac{tga^2}{b^3 + 2\pi}$	0,14	16,352	_
32.	$\frac{\ln a + 1}{e^{2b} + \pi}$	3,14	-4,002	_
33.	$\frac{\cos a + \sin 2b}{\sin a + \cos 2b}$	0,25	0,0645	_

		1		
34.	$\frac{3.2\cos^2 a}{\pi\sin b}$	1,53252	-0,034	_
35.	$e^{c} \left(\frac{\ln a + \sin 3a}{x^{b} + 1} \right)$	1,45	2,1	-3,145
36.	$\sin\frac{\ln a}{b+c}$	5,46	12,0001	3,178
37.	$3 tg a + \frac{\sin b}{c}$	0,1	1,351	4,67
38.	$\sqrt[3]{2 \cdot 0.7^a + b \cdot \sin c}$	-3,43	12,003	1,57
39.	$\frac{\sqrt[5]{a-3b-c}}{a+b-c}$	3,123	-2,47	4,16542
40.	$\frac{\ln(a^2+1)}{\sqrt{b}\sin c}$	-2,8103	16,04	-0,743
41.	$\frac{a-1}{b+2}\sin c$	9,42	5,318	-0,341
42.	$\sqrt{e^{-a} + b^2} \sin c$	1,006	3,02	0,016
43.	$\frac{\sin a}{b}(c-2)$	-0,57	2,6701	7,02
44.	$0.7^a - \frac{\sin b}{\sin c}$	-2,7302	-0,674	1,690
45.	$\frac{\ln(a+\sqrt{b})}{\sin c}$	3,2	4,365	-0,34
46.	$\cos 3a(2b+e^{-3c})$	1,1002	4,23	0,71
47.	$a^2 + \frac{2\pi + 3}{\cos c}$	2,3416	_	0,002
48.	$\frac{a}{\sin b - 3\sin c}$	3,16	0,341	-0,1692
49.	$b^3 - \frac{\sin 3c}{2-a}$	2,1	0,137	4,0038
50.	$\ln(b-a) + \frac{3}{\sin c}$	6,42	3,0028	1,2304
51.	$\sin(a-\pi) + \frac{c}{a-c}$	1,21	_	0,24745
52.	$\cos(b+1,2\pi) - \frac{b}{a+b}$	3,14975	1,43	_
53.	$\frac{3a-b}{b-c}$	2,33	7,56841	2,47
54.	$\frac{a}{b-c} - \frac{b}{c-a}$	0,734	4,0834	2,345
55.	$\frac{b-c}{a} + \frac{c-a}{b}$	1,639	2,81	1,97852
56.	$\sin\left(\frac{a}{c-b}\right) + a^2$	2,12	1.4465	1.164
	` /	l .		1

57.	$\cos\left(\frac{b}{a+c}\right) - ac$	1,31	-1,23	0,2345
58.	$ \ln\left(b - \frac{c - a}{b + a}\right) - abc $	3,521	6,18	2,7129
59.	$\sin(a-2b)-3\ln(a-c)$	4,31	1,071	2,0934
60.	$\sqrt[3]{b-2a} - \sin(a+b)$	1,274	5,23	_

Методи нелінійної алгебри

Лабораторна робота №2. Розв'язування рівнянь з однією змінною

Мета: Вивчити наближені методи розв'язання нелінійних рівнянь з однією змінною.

Завдання:

- 1. Графічним методом та за допомогою ЕОМ відділити корені рівняння (див. табл.1).
- 2. Використовуючи метод простої ітерації обчислити один корінь рівняння з точністю 10^{-3} .
 - 3. Розв'язати рівняння комбінованим методом хорд і дотичних.

				1 ac	лиця I
№	Рівняння	Обме-	№	Рівняння	Обме-
п/п	1 івпиппи	ження	п/п	1 ібпиппи	ження
1.	$(0,2)^3 = \cos x$		31.	$x - 1/(3 + \sin 3.6x) = 0$	
2.	$x - 10\sin x = 0$		32.	$e^x - e^{-x} - 2 = 0$	
3.	$2^{-x} = \sin x$	при x < 0	33.	$x-2+\sin(1/x)=0$	
4.	$2^x - 2\cos x = 0$	$\begin{array}{c} $	34.	$\sqrt{1-x} - tg \ x = 0$	
5.	$\lg(x+5) = \cos x$	при x < 5	35.	$e^x + \sqrt{1 + e^{2x}} - 2 = 0$	
6.	$\sqrt{4x+7} = 3\cos x$		36.	$0.6 \cdot 3^x - 2.3x - 3 = 0$	
7.	$x\sin x - 1 = 0$		37.	$2e^{-x} - 3x + 5 = 0$	
8.	$8\cos x - x = 6$		38.	$(x - 0.8)^2 - \sin x = 0$	
9.	$\sin x - 0.2x = 0$		39.	$(x-1)^2 - 1.5e^x = 0$	
10.	$10\cos x - 0.1x^2 = 0$		40.	$e^x - 1/x - 1 = 0$	
11.	$2\lg(x+7) - 5\sin x = 0$		41.	$x^3 - 7x^2 + 5x - 6 = 0$	
12.	$4\cos x + 0.3x = 0$		42.	$e^{x-2} - \ln(x+5) = 0$	
13.	$5\sin 2x = \sqrt{1-x}$		43.	$\sqrt{x} - \cos^2 \sqrt{x} = 0$	
14.	$1,2x^4 + 2x^3 - 24,1 = 13x^2 + 14,2x$		44.	$e^{3x} + 2x - 23 = 0$	
15.	$2x^2 - 5 = 2^x$		45.	$x^2 - 1 - \cos 5x = 0$	
16.	$2^{-x} = 10 - 0.5x^2$		46.	$x^3 - 6x^2 + 12x - 8 = 0$	
17.	$4x^4 - 6.2 = \cos 0.6x$		47.	$\sin x^2 + \cos^2 x = 0$	
18.	$3\sin 8x = 0.7x - 0.9$	на [-1;1]	48.	tg 1, 2x - 2 + 3x = 0	
19.	$1,2 - \ln x = 4\cos 2x$		49.	$2^x + 2x^2 - 3 = 0$	
20.	$\ln(x+6,1) = 2\sin(x-1,4)$		50.	$2x\sin x - \cos x = 0$	
21.	$e^{-x} - \ln x = 0$		51.	$e^{-x} - 2\sin x = 0$	
22.	$\sin x - 1/x = 0$		52.	$e^{-2x} - 3\cos x = 0$	
23.	$\cos x - 1/(x+2) = 0$		53.	$x^3 - x - \sin x = 0$	

24.	$\cos x + x^3 = 0$	5	54.	$\sin x - \frac{\cos x}{x} = 0$	
25.	$x^2 - \sin 2x - 2 = 0$	5	55.	$x^3 \sin x = 1$	
26.	$x^3 - e^x - 5.5 = 0$	5	56.	$x^2 - x - 1 - \sin x = 0$	
27.	$\ln(7,62x) - 8,59x + 0,5 = 0$	5	57.	$x^2 + 3x - 2 - \cos x = 0$	
28.	$2,67\sin 3,04x - 2,25x = 0$	5	58.	$x^2\cos x - 1,5 = 0$	
29.	$2\cos(x+0.5) + x^2 + 1.2 = 0$	5	59.	$\sqrt[3]{x+1} - e^{-x} = 0$	
30.	$3\sin\sqrt{x} + 0.35x - 3.8 = 0$	ϵ	60.	$\sin x - x + x^2 + x^3 = 0$	

Контрольні запитання

- 1. Які існують методи відокремлення коренів та їх уточнення?
- 2. Як зробити оцінку вибору функції?
- 3. В чому полягає суть методів простих ітерацій, Ньютона, бісекцій та їх геометрична інтерпретація?
- 4. Поясніть схему алгоритму та програму відшукання коренів нелінійних рівнянь методами простих ітерацій, Ньютона, бісекцій.

Лабораторна робота №3. Розв'язування систем нелінійних рівнянь

Завдання:

- 1. Використовуючи метод ітерацій, розв'язати систему нелінійних рівнянь з точністю до 0.001.
- 2. Використовуючи метод Ньютона, розв'язати систему нелінійних рівнянь з точністю до 0.001.

Варіанти індивідуальних завдань:

	Бартанти індивідуальних	300-2001-0
1.	$\begin{cases} \sin(x+1) - y = 1.2 \\ 2x + \cos y = 2 \end{cases}$	$\begin{cases} tg(xy+0.4) = x^2 \\ 0.6x^2 + 2y^2 = 1, x > 0, y > 0 \end{cases}$
2.	$\begin{cases} \cos(x-1) + y = 0.5 \\ x - \cos y = 3 \end{cases}$	$\begin{cases} \sin(x+y) - 1.6x = 0 \\ 2) \end{cases} \begin{cases} \sin(x+y) - 1.6x = 0 \\ x^2 + y^2 = 1, x > 0, y > 0 \end{cases}$
3.	$\begin{cases} \sin x + 2y = 2 \\ \cos(y-1) + x = 0.7 \end{cases}$	$\begin{cases} tg(xy+0.1) = x^2 \\ 2) & \begin{cases} x^2 + 2y^2 = 1 \end{cases} \end{cases}$
4.	$\begin{cases} \cos x + y = 1.5 \\ 2x - \sin(y - 0.5) = 1 \end{cases}$	$\begin{cases} \sin(x+y) - 1.2x = 0.2 \\ x^2 + y^2 = 1 \end{cases}$
5.	$\begin{cases} \sin(x+0.5) - y = 1 \\ \cos(y-2) + x = 0 \end{cases}$	$\begin{cases} tg(xy+0.3) = x^2 \\ 0.9x^2 + 2y^2 = 1 \end{cases}$
6.	$\begin{cases} \cos(x+0.5) + y = 0.8\\ \sin y - 2x = 1.6 \end{cases}$	$\begin{cases} \sin(x+y) - 1.3x = 0 \\ x^2 + y^2 = 1 \end{cases}$
7.	$\begin{cases} \sin(x-1) = 1.3 - y \\ x - \sin(y+1) = 0.8 \end{cases}$	$\begin{cases} tg \ xy = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases}$
8.	$\begin{cases} 2y - \cos(x+1) = 0 \\ x + \sin y = -0.4 \end{cases}$	$\begin{cases} \sin(x+y) - 1.5x = 0.1 \\ x^2 + y^2 = 1 \end{cases}$
9.	$\begin{cases} \cos(x+0.5) - y = 2\\ \sin y - 2x = 1 \end{cases}$	$\begin{cases} tg \ xy = x^2 \\ 0.7x^2 + 2y^2 = 1 \end{cases}$
10.	$\begin{cases} \sin(x+2) - y = 1.5 \\ x + \cos(y-2) = 0.5 \end{cases}$	$\begin{cases} \sin(x+y) - 1.2x = 0.1 \\ x^2 + y^2 = 1 \end{cases}$
11.	$\begin{cases} \sin(y+1) - x = 1.2 \\ 2y + \cos x = 2 \end{cases}$	$\begin{cases} tg (xy + 0.2) = x^2 \\ 0.6x^2 + 2y^2 = 1 \end{cases}$
12.	$\begin{cases} \cos(y-1) + x = 0.5 \\ y - \cos = -3 \end{cases}$	$\begin{cases} \sin(x+y) = 1.5x - 0.1 \\ x^2 + y^2 = 1 \end{cases}$
13.	$\begin{cases} \sin y + 2x = 2\\ \cos(x-1) + y = 0.7 \end{cases}$	$\begin{cases} tg (xy + 0.4) = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases}$
14.	$\begin{cases} \cos y + x = 1.5 \\ 2y - \sin(x - 0.5) = 1 \end{cases}$	$\begin{cases} \sin(x+y) = 1.2x - 0.1 \\ x^2 + y^2 = 1 \end{cases}$

	$(\sin(y+0.5)-x=1)$	$\int tg(xy+0.1) = x^2$
15.	$\begin{cases} \cos(x-2) + y = 0 \end{cases}$	$\begin{cases} 1g(xy + 0.1) - x \\ 0.9x^2 + 2y^2 = 1 \end{cases}$
	$(\cos(y+0.5) + x = 0.8)$	$\left[\sin(x+y) - 1.4x = 0\right]$
16.	$\begin{cases} \sin x - 2y = 1.6 \end{cases}$	$\begin{cases} x^2 + y^2 = 1 \end{cases}$
	$\sin(y-1) + x = 1.3$	$\int tg(xy+0.1) = x^2$
17.	1) $y - \sin(x+1) = 0.8$	$\begin{array}{ c c c } \hline 2) & \{0.5x^2 + 2y^2 = 1 \\ \hline \end{array}$
	$(2x - \cos(y+1) = 0$	$(\sin(x+y) = 1.1x - 0.1$
18.	1) $y + \sin x = -0.4$	(2) $(x^2 + y^2 = 1)$
10	$\int \cos(y+0.5) - x = 2$	$\int tg(x-y) - xy = 0$
19.	$1) \int \sin x - 2y = 1$	2) $x^2 + 2y^2 = 1$
	$\int \sin(y+2) - x = 1.5$	$\sin(x-y) - xy = -1$
20.	1) $y + \cos(x-2) = 0.5$	$\begin{cases} x^2 - y^2 = \frac{3}{4} \end{cases}$
	$(\sin(x+1) - y = 1)$	$tg(xy+0.2) = x^2$
21.	$\begin{cases} 2x + \cos y = 2 \end{cases}$	$\begin{cases} x^2 + 2y^2 = 1 \end{cases}$
	$(\cos(x-1)y = 0.8$	$\left(\sin(x+y) - 1.5x = 0\right)$
22.	$1) \begin{cases} x - \cos y = 2 \end{cases}$	$2) \begin{cases} x^2 + y^2 = 1 \end{cases}$
2.2	$\int \sin x + 2y = 1.6$	$\int tg \ xy = x^2$
23.	$1) \cos(y-1) + x = 1$	$2) \left(0.5x^2 + 2y^2 = 1\right)$
24	$\int \cos x + y = 1.2$	$\int \sin(x+y) = 1.2x - 0.2$
24.	1) $(2x - \sin(y - 0.5) - y = 1.2$	2) $x^2 + y^2 = 1$
25	$\int \sin(x+0.5) - y = 1.2$	$\int tg(xy+0.1) = x^2$
25.	$1) \left(\cos(y-2) + x = 0\right)$	$2) \left(0.7x^2 + 2y^2 = 1\right)$
2.6	$\int \cos(x+0.5) + y = 1$	$\sin(x+y) - 1.5x = 0.2$
26.	$1) \int \sin y - 2x = 2$	$2) x^2 + y^2 = 1$
25	$\int \sin(x-1) + y = 1.5$	$\int tg \ xy = x^2$
27.	$1) \begin{cases} x - \sin(y+1) = 1 \end{cases}$	$2) \left(0.6x^2 + 2y^2 = 1\right)$
20	$\int \sin(y+1) - x = 1$	$\int \sin(x+y) - 1.2x = 0$
28.	$1) 2y + \cos x = 2$	$2) x^2 + y^2 = 1$
20	$\int \cos(y-1) + x = 0.8$	$\int tg (xy + 0.3) = x^2$
29.	$1) \begin{cases} y - \cos x = 2 \end{cases}$	$2) \int 0.5x^2 + 3y^2 = 1$
20	$\int \cos(x-1) + y = 1$	$\int \sin(x+y) - 1.1x = 0.1$
30.	$1) \begin{cases} \sin y + 2x = 1.6 \end{cases}$	$2) x^2 + y^2 = 1$

Методи лінійної алгебри

Лабораторна робота №4. Розв'язування систем лінійних алгебраїчних рівнянь

Мета : Оволодіти методикою і технікою розв'язування систем лінійних алгебраїчних рівнянь.

Завдання: Систему трьох лінійних рівнянь з трьома невідомими

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$
(1)

розв'язати різними методами:

- методом Гауса (за схемою єдиного ділення);
- методом простої ітерації з точністю $\varepsilon = 10^{-3}$.

Коефіцієнти і вільні члени системи рівнянь за варіантами наведені в таблиці 1.

Індивідуальні завдання

Варіант	i	a_{i1}	a_{i2}	a_{i3}	b_i
	1	0.21	-0.45	-0.20	1.91
1	2	0.30	0.25	0.43	0.32
	3	0.60	-0.35	-0.25	1.83
	1	-3	0.5	0.5	-56.5
2	2	0.5	-6	0.5	-100
	3	0.5	0.5	-3	-210
	1	0.45	-0.94	-0.15	-0.15
3	2	-0.01	0.34	0.06	0.31
	3	-0.35	0.05	0.63	0.37
	1	0.63	0.05	0.15	0.34
4	2	0.15	0.01	0.71	0.42
	3	0.03	0.34	0.10	0.32
	1	-0.20	1.60	-0.10	0.30
5	2	-0.30	0.10	-1.50	0.40
	3	1.20	-0.20	0.30	-0.60
	1	0.30	1.20	-0.20	-0.60
6	2	-0.10	-0.20	1.60	0.30
	3	0.05	0.34	0.10	0.32
	1	0.20	0.44	0.81	0.74
7	2	0.58	-0.29	0.05	0.02
	3	0.05	0.34	0.10	0.32
	1	6.36	11.75	10	-41.40
8	2	7.42	19.03	11.75	-49.49
	3	5.77	7.48	6.36	-27.67

	1	-9.11	1.02	-0.73	-1.25
9	2	7.61	6.25	-2.32	2.33
	3	-4.64	1.13	-8.88	-3.75
	1	-9.11	1.02	-0.73	-1.25
10	2	7.61	6.25	-2.32	2.33
	3	-4.64	1.13	-8.88	-3.75
	1	1.02	-0.73	-9.11	-1.25
11	2	6.25	-2.32	7.62	2.33
	3	1.13	-8.88	4.64	-3.75
	1	0.06	0.92	0.03	-0.82
12	2	0.99	0.01	0.07	0.66
	3	1.01	0.02	0.99	-0.98
	1	0.10	-0.07	-0.96	-2.04
13	2	0.04	-0.99	-0.85	-3.73
	3	0.91	1.04	0.19	-1.67
	1	0.62	0.81	0.77	-8.18
14	2	0.03	-1.11	-1.08	0.08
	3	0.97	0.02	-1.08	0.06
	1	0.63	-0.37	1.76	-9.29
15	2	0.90	0.99	0.05	0.12
	3	0.13	-0.95	0.69	0.69
	1	0.98	0.88	-0.24	1.36
16	2	0.16	-0.44	-0.88	-1.27
	3	9.74	-10.00	1.71	-5.31
	1	0.21	-0.94	-0.94	-0.25
17	2	0.98	-0.19	0.93	0.23
	3	0.87	0.87	-0.14	0.33
	1	3.34	4.07	-106.00	46.8
18	2	74.4	1.84	-1.85	-26.5
	3	3.34	94.3	1.02	92.3
	1	0.66	0.44	0.22	-0.58
19	2	1.54	0.74	1.54	-0.32
	3	1.42	1.42	0.86	0.83
	1	0.78	-0.02	-0.12	0.56
20	2	0.02	-0.86	0.04	0.77
	3	0.12	0.44	-0.72	1.01
	1	1.14	-2.15	-5.11	2.05
21	2	0.42	-1.13	7.05	0.80
	3	-0.71	0.81	-0.02	-1.07
	1	0.61	0.71	-0.05	-0.16
22	2	-1.03	-2.05	0.87	0.50
	3	2.5	-3.12	5.03	0.95

23 1 6.1 0.7 -0.05 6.97 23 2 -1.3 -2.05 0.87 0.10 3 2.5 -3.12 -5.03 2.04 1 7.6 0.5 2.4 1.9 24 2 2.2 9.1 4.4 9.7 3 -1.3 2.2 5.8 -1.4 25 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 2 0.74 3.45 -0.98 4.90 26 2 0.74 3.45 -0.84 6.03 3 -0.65 1.18 2.38 10.13 27 2 -0.73 2.92 -0.39 4.329 3 -0.58 -1.12 3.12 7.532 1 2.50 -0.91 -0.32 0.287	5
3 2.5 -3.12 -5.03 2.04 1 7.6 0.5 2.4 1.9 24 2 2.2 9.1 4.4 9.7 3 -1.3 2.2 5.8 -1.4 1 7.09 1.17 -2.23 -4.75 25 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 26 2 0.74 3.45 -0.98 4.90 26 2 0.74 3.45 -0.84 6.03 3 -0.65 1.18 2.38 10.13 27 2 -0.73 2.92 -0.39 4.329 3 -0.58 -1.12 3.12 7.532	5
1 7.6 0.5 2.4 1.9 24 2 2.2 9.1 4.4 9.7 3 -1.3 2.2 5.8 -1.4 1 7.09 1.17 -2.23 -4.75 25 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 1 3,90 1,25 -0,98 4,905 26 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
24 2 2.2 9.1 4.4 9.7 3 -1.3 2.2 5.8 -1.4 1 7.09 1.17 -2.23 -4.75 25 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 26 2 0.74 3.45 -0.98 4.90 26 2 0.74 3.45 -0.84 6.03 3 -0.65 1.18 2.38 10.13 27 2 -0.73 2.92 -0.39 4.329 3 -0.58 -1.12 3.12 7.532	5
3 -1.3 2.2 5.8 -1.4 1 7.09 1.17 -2.23 -4.75 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 1 3,90 1,25 -0,98 4,900 26 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
25 1 7.09 1.17 -2.23 -4.75 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 1 3,90 1,25 -0,98 4,905 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
25 2 0.43 1.4 -0.62 -1.05 3 3.21 -4.25 2.13 -5.06 1 3,90 1,25 -0,98 4,903 26 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
3 3.21 -4.25 2.13 -5.06 1 3,90 1,25 -0,98 4,903 26 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 1 2,68 -0,68 0,48 3,868 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
1 3,90 1,25 -0,98 4,900 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 1 2,68 -0,68 0,48 3,868 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	5
26 2 0,74 3,45 -0,84 6,03 3 -0,65 1,18 2,38 10,13 1 2,68 -0,68 0,48 3,868 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	
3 -0,65 1,18 2,38 10,13 1 2,68 -0,68 0,48 3,868 27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	
27 1 2,68 -0,68 0,48 3,868 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	
27 2 -0,73 2,92 -0,39 4,329 3 -0,58 -1,12 3,12 7,532	
3 -0,58 -1,12 3,12 7,532	
1 2,50 -0,91 -0,32 0,28'	
	7
28 2 -0,91 3,64 -0,48 5,418	3
3 0,48 -0,98 2,14 5,908	3
1 2,78 0,38 -0,43 3,26	
29 2 -0.78 3.14 -0.81 3.293	5
3 -0,45 -0,45 2,48 6,072	2
1 3,96 -0,78 -0,35 2,523	5
30 2 1,18 3,78 -0,87 7,30	
3 -0,96 -1,02 3,68 9,190)
1 3,48 1,12 -0,94 4,158	3
31 2 1,08 3,67 -0,87 6,908	3
3 -1,21 -1,43 4,14 9,50°	7
1 2,75 1,12 -0,6 3,060	5
32 2 1,06 2,98 -0,86 5,328	3
3 -1,18 -1,36 3,02 5,790)
1 3,45 0,78 -0,97 3,229)
33 2 0,78 2,63 -0,89 4,020	5
3 -0,97 -0,89 2,41 5,030)
1 3,21 0,81 -0,93 3,102	
34 2 0,81 2,49 -0,94 3,57	
3 -0,93 -0,94 2,53 5,39	
1 3,67 0,68 -1,21 2,46	
35 2 0,68 2,71 -0,96 3,823	
3 -1,21 -0,96 2,69 5,513	
1 3,78 0,67 -0,83 3,928	
36 2 0,67 2,76 -0,69 4,87	}
3 -0,83 -0,69 2,39 5,610	

	1	4,05	-0,93	-0,41	2,096
37	2	-0,93	3,76	0,25	8,221
	3	-0,41	0,25	3,2	11,201
	1	3,74	1,12	-1,03	4,207
38	2	1,12	2,43	-1,07	3,412
	3	-1,03	-1,07	2,7	5,547
	1	3,91	0,88	-1,13	3,543
39	2	0,88	2,77	-0,98	4,173
	3	-1,13	-0,98	2,41	4,599
	1	3,80	1,10	0,98	10,716
40	2	0,75	2,96	0,92	11,023
	3	0,60	1,20	3,20	13,900
	1	2,40	1,10	0,60	7,680
41	2	0,98	2,60	1,20	11,354
	3	0,56	1,10	2,70	12,008
	1	2,50	1,05	0,75	8,170
42	2	0,95	2,60	0,85	10,195
	3	0,68	1,05	2,15	10,284
	1	2,60	1,10	0,70	8,260
43	2	0,92	2,70	0,65	9,756
	3	0,48	0,88	1,98	9,072
	1	2,70	1,15	0,48	7,806
44	2	0,86	2,60	0,32	8,382
	3	1,05	0,74	2,10	9,861
	1	2,80	1,02	0,32	7,112
45	2	0,96	2,40	0,46	8,480
	3	0,76	0,98	2,02	9,804
	1	2,90	1,08	0,43	7,738
46	2	0,82	2,50	0,64	9,114
	3	0,38	0,96	1,80	8,558
	1	3,10	1,20	0,62	8,894
47	2	1,12	2,60	0,85	10,416
	3	0,82	1,20	2,54	12,074
	1	3,75	1,20	1,07	11,355
48	2	0,89	3,50	1,52	13,245
	3	0,79	1,71	3,20	14,376
	1	4,20	1,50	0,92	12,210
49	2	1,32	4,50	1,20	15,030
	3	0,98	1,45	3,50	15,015
	1	3,50	1,20	0,96	10,650
50	2	2,10	4,30	1,02	15,240
	3	0,87	1,70	3,20	14,538

	1	3,21	1,56	3,41	31,923
51	2		8,32		
31	$\frac{2}{3}$	-5,72		4,09	-1,097
		1,09	-0,67	0,53	-3,745
50	1	3,21	-4,25	2,13	5,061
52	2	7,09	1,17	-2,23	4,753
	3	0,43	-1,40	-0,62	-1,052
	1	0,42	-1,13	7,05	6,156
53	2	1,14	-2,15	5,11	-4,163
	3	-0,71	0,81	-0,02	-0,171
	1	2,50	-3,12	-4,03	-7,57
54	2	0,61	0,71	-0,05	0,44
	3	-1,03	-2,05	0,87	-1,16
	1	7,09	1,17	-2,23	-4,75
55	2	0,43	-1,40	-0,62	-1,16
	3	3,21	-4,25	2,13	-7,50
	1	1,14	-2,15	-5,11	-4,163
56	2	-0,71	0,81	-0,02	-0,171
	3	0,42	-1,13	7,05	6,155
	1	0,61	0,71	-0,05	0,44
57	2	-1,03	-2,05	0,87	-1,16
	3	2,50	-3,12	-5,03	-7,50
	1	3,11	-1,66	-0,60	-0,92
58	2	-1,65	3,51	-0,78	2,57
	3	0,60	0,78	-1,87	2,65
	1	0,10	12,00	-0,13	0,10
59	2	0,12	0,71	0,15	0,26
	3	-0,13	0,15	0,63	0,38
	1	0,71	0,10	0,12	0,29
60	2	0,10	0,34	-0,04	0,32
	3	0,12	-0,04	0,10	-0,10

Лабораторна робота №5. Розв'язування систем лінійних алгебраїчних рівнянь з симетричною матрицею методом квадратних коренів

Завдання: Методом квадратних коренів розв'язати систему рівнянь,

задану розширеною матрицею

№	a_{i_1}	a_{i_2}	a_{i_3}	a_{i_4}	b_i
	2,75	-0,33	1,14	7,44	-5,6033
	-0,33	7,30	-4,70	-3,54	-8,1652
1	1,14	-4,70	7,49	-5,36	6,7613
	7,44	-3,54	-5,36	-8,28	-5,2470
	1,76	-0,88	-4,25	-4,63	6,1530
	-0,88	-3,79	7,16	6,24	-8,2580
2	-4,25	7,16	7,34	-3,13	-4,4608
	-4,63	6,24	-3,13	-8,45	-5,1844
	-4,36	1,83	6,70	-4,28	-5,6981
	1,83	2,39	-4,63	-3,81	2,3190
3	6,70	-4,63	-5,13	-0,30	2,5328
	-4,28	-3,81	-0,30	-0,27	-0,5553
	6,64	-8,87	-4,18	-4,38	1,8438
_	-8,87	6,10	-4,22	-4,51	-8,7128
4	-4,18	-4,22	1,79	2,69	-4,7940
	-4,38	-4,51	2,69	-4,74	-5,9102
	2,24	1,57	1,65	6,81	-4,4131
_	1,57	-0,33	6,89	2,76	-0,5109
5	1,65	6,89	-8,72	-3,74	-3,7101
	6,81	2,76	-3,74	7,45	-3,1816
	-0,87	2,75	7,42	-3,47	-8,6363
6	2,75	-8,86	-0,87	7,42	-4,2410
0	7,42	-0,87	2,90	-3,39	-0,8095
	-3,47	7,42	-3,39	-8,47	-4,3327
	2,21	-3,59	2,58	-5,29	-3,7721
7	-3,59	-0,35	-8,75	1,29	1,4428
'	2,58	-8,75	-5,87	2,23	-8,4050
	-5,29	1,29	2,23	7,55	7,3204
	-5,31	-3,75	6,83	1,84	-3,5615
8	-3,75	-5,41	2,73	-8,76	-5,1361
0	6,83	2,73	-5,87	6,20	-8,1271
	1,84	-8,76	6,20	7,52	-4,3016
	7,40	2,49	-4,24	7,79	-3,1495
9	2,49	-4,61	-5,59	-5,57	2,5370
	-4,24	-5,59	1,12	7,37	7,8646
	7,79	-5,57	7,37	-4,61	-8,5660
10	-5,52	-5,70	2,65	-0,17	-5,6951

	5.70	4.10	(40	1 42	0.1505
	-5,70	-4,19	6,49	1,43	-8,1595
	2,65	6,49	1,75	6,40	-4,9810
	-0,17	1,43	6,40	-5,71	-8,4580
	-3,85	7,28	7,85	7,69	-5,5200
11	7,28	-5,18	-0,39	-4,65	7,2303
	7,85	-0,39	-5,22	-0,40	-0,7021
	7,69	-4,65	-0,40	-0,52	-4,5808
	7,13	6,31	6,85	1,28	6,1954
12	6,31	1,67	7,78	2,39	6,2841
12	6,85	7,78	-0,69	-0,88	-0,1847
	1,28	2,39	-0,88	-3,56	2,3309
	1,67	-8,88	2,19	7,62	-4,1891
13	-8,88	-0,38	-8,58	-3,33	6,5570
13	2,19	-8,58	-8,17	2,70	-3,7097
	7,62	-3,33	2,70	-3,12	-0,4673
	-4,56	-4,32	-8,11	2,17	6,6232
14	-4,32	2,51	-5,41	-3,15	-8,5834
14	-8,11	-5,41	1,29	-8,22	-8,2313
	2,17	-3,15	-8,22	-4,80	6,3750
	-8,32	7,75	2,33	6,67	-0,1313
15	7,75	-8,70	-3,83	-3,17	7,9544
13	2,33	-3,83	-4,10	1,48	-5,3280
	6,67	-3,17	1,48	7,33	7,7302
	2,26	1,72	-0,26	6,87	2,7680
16	1,72	7,51	6,11	-4,43	1,9599
16	-0,26	6,11	-8,66	-5,26	-3,3429
	6,87	-4,43	-5,26	6,41	-3,6129
	2,76	-8,59	7,90	1,17	7,9760
17	-8,59	-3,85	-0,70	2,36	-5,7201
17	7,90	-0,70	-0,79	7,83	-5,9389
	1,17	2,36	7,83	-4,78	6,5798
	-4,62	-5,68	2,33	1,62	-0,1842
10	-5,68	-5,23	2,87	6,19	-5,8776
18	2,33	2,87	-8,61	-5,22	-3,2600
	1,62	6,19	-5,22	7,51	-0,4477
	6,54	-5,60	-5,60	2,70	-5,8303
10	-5,60	7,42	1,62	1,27	-3,8198
19	-5,60	1,63	2,25	1,16	2,3534
	2,70	1,27	1,16	-4,72	7,6550
	6,44	-5,73	-0,18	6,56	-4,9500
20	-5,73	6,80	-5,44	-0,77	1,6063
20	-0,18	-5,44	-3,57	-5,28	-4,3570
	6,56	-0,77	-5,28	6,19	-4,9524
21	2,23	-5,13	-5,63	7,87	-5,7265

	-5,13	2,62	6,24	-8,58	2,4529
	-5,63	6,24	-3,75	-8,38	-8,2462
	7,87	-8,58	-8,38	7,37	-4,9709
	-0,29	2,19	-5,33	-3,36	-8,5409
22	2,19	7,37	7,21	2,80	7,6021
22	-5,33	7,21	-0,82	-4,39	-4,9372
	-3,36	2,80	-4,39	-5,60	6,8915
	-5,76	1,80	6,87	7,11	-0,4611
22	1,80	-0,45	-5,39	-8,17	-8,2444
23	6,87	-5,39	-3,10	2,58	6,4923
	7,11	-8,17	2,58	-0,18	-8,1714
	6,74	1,19	1,16	7,81	7,8960
24	1,19	-3,76	-5,52	1,48	1,9700
2 4	1,16	-5,52	-5,21	7,54	2,7593
	7,81	1,48	7,54	-8,85	-0,2603
	1,74	7,55	7,32	-0,77	2,3672
25	7,55	7,38	6,65	-5,44	2,2074
23	7,32	6,65	-5,23	-4,89	-0,8734
	-0,77	-5,44	-4,89	7,58	-3,1900
	6,34	-2,02	0,21	4,72	0,1657
26	-2,02	2,91	-3,64	1,28	-7,0786
20	0,21	-3,64	-1,05	3,45	-5,7648
	4,72	1,28	3,45	-0,34	7,7263
	9,54	0,21	-8,36	-3,73	4,6328
27	0,21	-6,51	3,14	7,13	16,5362
27	-8,36	3,14	-2,81	0,89	-13,6536
	-3,73	7,13	0,89	4,32	2,1638
	3,56	-2,38	1,26	3,27	8,7199
28	-2,38	3,98	-4,16	3,39	-3,1085
20	1,26	-4,16	6,03	6,41	10,9728
	3,27	3,39	6,41	2,05	-15,4545
	1,65	-3,17	4,25	6,18	0,6931
29	-3,17	0,34	3,85	-2,71	-9,6941
	4,25	3,85	-3,52	2,38	12,7255
	6,18	-2,71	2,38	7,21	9,1732
	4,57	7,88	-6,37	8,16	-9,5351
30	7,88	5,16	3,45	6,14	5,3849
	-6,37	3,45	7,77	-1,15	1,6058
	8,16	6,14	-1,15	-6,06	5,4529
	-5,55	6,16	4,18	-6,81	-7,1832
31	6,16	-5,19	6,18	-2,88	-5,1808
	4,18	6,18	-4,59	8,91	16,1204
	-6,81	-2,88	8,91	-4,49	2,0898
32	-8,13	2,17	-8,15	5,16	4,6437

	2,17	7,14	-3,48	9,95	-2,0063
	-8,15	-3,48	9,11	-5,18	-9,0448
	5,16	9,95	-5,18	-5,19	-3,7285
	7,55	6,18	4,85	-6,13	-10,4814
22	6,18	-4,89	0,18	-0,95	-12,9562
33	4,85	0,18	5,12	4,09	-6,4466
	-6,13	-0,95	4,09	9,15	9,0925
	-8,9	5,06	-0,49	5,99	-14,6651
2.4	5,06	-0,99	-6,08	-0,85	-6,1222
34	-0,49	-6,08	5,61	0,79	14,7771
	5,99	-0,85	0,79	-4,05	9,1199
	4,98	0,59	7,54	-0,52	-1,4448
25	0,59	-0,48	5,68	7,44	-1,0563
35	7,54	5,68	4,79	-0,66	15,0841
	-0,52	7,44	-0,66	-9,47	8,6627
	7,61	4,69	6,48	3,79	8,3400
36	4,69	5,55	7,09	-0,48	11,2802
30	6,48	7,09	7,29	7,58	-3,8714
	3,79	-0,48	7,58	-1,02	24,4432
	-9,05	0,99	4,07	8,47	-28,7812
37	0,99	4,08	6,58	2,09	-9,7150
37	4,07	6,58	7,88	-3,78	3,2365
	8,47	2,09	-3,78	9,15	16,9204
	-4,56	4,91	3,86	5,47	-11,6699
38	4,91	2,98	6,43	4,77	18,1076
30	3,86	6,43	4,75	-6,43	-5,1946
	5,47	4,77	-6,43	-0,74	-2,7087
	3,81	-2,54	-4,01	9,41	2,5921
39	-2,54	3,33	-1,41	0,15	-3,2226
	-4,01	-1,41	0,14	0,16	-7,3569
	9,41	0,15	0,16	1,41	16,3840
	4,11	4,11	3,44	-2,11	10,6933
40	5,12	1,11	-4,45	9,81	5,5739
	3,44	-4,45	6,48	0,22	0,5998
	-2,11	9,81	0,22	-1,17	13,7147
	8,88	5,44	-1,55	0,18	-2,2198
41	5,44	9,99	-6,16	-9,18	6,2634
71	-1,55	-6,16	4,44	0,16	0,3782
	0,18	-9,18	0,16	3,33	-14,5322
	0,25	0,13	0,25	5,18	-9,2826
42	0,13	0,36	3,20	4,18	-4,7400
	0,25	3,20	0,47	5,13	-13,8301
1.5	5,18	4,18	5,13	0,58	5,9359
43	3,47	9,19	7,16	-2,32	6,0502

	0.10	5 50	0.50	6.00	5 6627
	9,19	5,58	-8,58	-6,08	5,6627
	7,16	-8,58	6,69	3,13	15,7566
	-2,32	-6,07	3,13	7,71	-4,1137
	4,15	-3,13	2,54	8,17	-3,7275
44	-3,13	4,16	7,56	1,92	2,9117
77	2,54	7,56	4,17	3,39	6,9235
	8,17	1,92	3,39	9,18	3,1793
	8,12	-1,32	2,58	7,81	7,3593
45	-1,32	3,18	5,23	3,16	-2,1319
43	2,58	5,23	4,23	8,19	6,8500
	7,81	3,16	8,19	4,54	2,6161
	1,54	2,55	3,81	-0,23	1,5756
46	2,55	4,81	4,31	6,88	11,8324
40	3,81	4,31	9,34	-5,34	-3,1833
	-0,23	6,88	-5,34	7,68	8,8745
	3,36	-4,13	-8,85	6,68	-6,0969
47	-4,13	4,85	7,13	6,67	-4,3950
4/	8,85	7,13	5,96	9,18	10,2461
	6,68	6,68	9,18	6,81	9,2756
	3,99	-3,87	4,89	5,61	4,5114
48	-3,87	4,59	7,15	-1,41	6,0202
40	4,89	7,15	5,66	-3,64	18,1266
	5,61	-1,41	-3,64	7,87	3,6223
	9,19	-3,23	-4,41	7,16	-8,0933
49	-3,23	8,17	5,24	6,81	0,5928
49	-4,41	5,24	5,15	3,18	2,8760
	7,16	6,81	3,18	6,18	8,0545
	-9,47	8,52	3,47	-0,58	-7,2875
50	8,52	8,47	4,06	8,16	26,4461
50	3,47	4,06	5,47	7,48	22,8807
	-0,58	8,16	7,48	-0,68	5,1638

- **Контрольні запитання.**1. Для яких систем лінійних рівнянь застосовний метод квадратних коренів?
 - 2. У чому полягає прямий хід методу квадратного кореня?

Лабораторна робота № 6. Метод прогонки

Мета. Вивчити метод прогонки розв'язування системи рівнянь. **Завдання.** Методом прогонки розв'язати систему:

	Эпринии: итстодом прогонки ро	3B 713W	•
	$x_1 + 2x_2 = 5$		$2x_1 + x_2 = 4$
1.	$2x_1 - x_2 + x_3 = 3$	2.	$2x_1 + 3x_2 - x_3 = 9$
	$x_2 - x_3 + x_4 = 3$		$x_2 - x_3 + 3x_4 = 12$
	$x_3 + x_4 = 7$		$x_3 - x_4 = -4$
	$-x_1 + x_2 = 1/6$		$2x_1 - x_2 = 1$
3.	$3x_1 - x_2 - x_3 = 11/12$		$x_1 + x_2 - x_3 = 6$
	$2x_2 + x_3 - x_4 = 43/60$	4.	$-2x_2 + 3x_3 - x_4 = 4$
	$2x_3 - x_4 = 3/10$		$-x_3 + x_4 = 5$
	$2x_1 + 3x_2 = 1$		$3x_1 - x_2 = 3$
	$-x_1 + x_2 - x_3 = 0$		$2x_1 + x_2 - 2x_3 = 11$
5.	$3x_2 - x_3 + x_4 = 0$	6.	$-2x_2 + x_3 - x_4 = -9$
	$2x_3 - x_4 = 5$		$-x_3 + 2x_4 = 4$
	$-2x_1 + x_2 = 1$		$4x_1 - x_2 = 7$
	$x_1 + x_2 - x_3 = 5$		$3x_1 + x_2 - x_3 = 4$
7.	$2x_2 + x_3 - x_4 = 2$	8.	$x_2 + x_3 - x_4 = 5$
	$3x_3 + x_4 = 0$		$2x_3 + x_4 = 5$
	$-x_1 + 3x_2 = 1/4$		$2x_1 + 3x_2 = 5/2$
	$2x_1 - x_2 + x_3 = 3/2$		$-x_1 + x_2 + 2x_3 = 7/2$
9.	$2x_2 - x_3 + x_4 = -5/4$	10.	$x_2 - x_3 + 2x_4 = 2$
	$x_3 - 2x_4 = 11/4$		$3x_3 - x_4 = 1$
	$2x_1 - 3x_2 = -1$		$-x_1 - x_2 = 1$
	$3x_1 + 2x_2 - x_3 = 5$		$2x_1 + x_2 + x_3 = 1/2$
11.	$-x_2 + x_3 - x_4 = 1$	12.	$-2x_2 - x_3 + x_4 = -1/2$
	$2x_3 + x_4 = 7$		$x_3 - 2x_4 = 1$
	$x_1 - 2x_2 = 2$		$3x_1 - x_2 = 1$
	$2x_1 - 3x_2 + x_3 = 7$		$x_1 + x_2 - x_3 = 3/4$
13.	$3x_2 + x_3 - x_4 = 6$	14.	$2x_2 + x_3 - x_4 = 1$
	$x_3 + x_4 = 1$		$x_3 + 2x_4 = 3/4$
	$x_1 + x_2 = 1$		$4x_1 - x_2 = 2$
	$2x_1 - 3x_2 + x_3 = -5$	16.	$2x_1 + x_2 - x_3 = 1/2$
15.	$x_2 - x_3 - x_4 = -4$		$x_2 + x_3 + x_4 = 2$
	$2x_3 - x_4 = 1$		$x_3 - x_4 = -1$
	$3x_1 - x_2 = 1/2$		$x_1 + 2x_2 = 3$
	$6x_1 + 2x_2 - x_3 = 1$		$2x_1 - x_2 - x_3 = -1$
17.	$4x_2 + x_3 + x_4 = 3$	18.	$3x_2 + x_3 - 2x_4 = 7$
	$2x_3 - 3x_4 = 7$		$x_3 + x_4 = 1$
	J	1	<i>J</i> ⊤

	2 1		4
19.	$3x_{1} - x_{2} = 1$ $2x_{1} + x_{2} - 2x_{3} = -2$ $-x_{2} + x_{3} - 2x_{4} = -7$ $2x_{3} + x_{4} = 10$	20.	$4x_{1} + x_{2} = 9/4$ $-x_{1} - 2x_{2} + x_{3} = -1/2$ $3x_{2} - x_{3} + x_{4} = 1/2$ $2x_{3} - x_{4} = 3/4$
21.	$2x_{1} - 3x_{2} = 1$ $x_{1} + x_{2} - x_{3} = 4$ $3x_{2} - 2x_{3} + x_{4} = 7$ $2x_{3} + 3x_{4} = 4$	22.	$x_{1} + 3x_{2} = 13$ $-2x_{1} + x_{2} - 3x_{3} = -4$ $x_{2} - 3x_{3} + x_{4} = -3$ $2x_{3} - x_{4} = 7$
23.	$3x_{1} - 2x_{2} = -4$ $-2x_{1} - x_{2} + 3x_{3} = 8$ $x_{2} - 3x_{3} - x_{4} = 0$ $x_{3} - 4x_{4} = -7$	24.	$x_{1} + 3x_{2} = 2$ $4x_{1} + x_{2} - 2x_{3} = 1$ $x_{2} - x_{3} + 3x_{4} = -8$ $x_{3} - x_{4} = -4$
25.	$2x_{1} - 3x_{2} = -3$ $-x_{1} + 2x_{2} - 3x_{3} = 5.5$ $x_{2} - 3x_{3} + 2x_{4} = 1$ $x_{3} - 2x_{4} = 3$	26.	$4x_{1} + 3x_{2} = -2.5$ $2x_{1} + 3x_{2} - x_{3} = 0.5$ $x_{2} + x_{3} + x_{4} = 5.5$ $x_{3} - x_{4} = 1.5$
27.	$2x_{1} - 3x_{2} = 0$ $-x_{1} + 2x_{2} + x_{3} = -2$ $-3x_{2} + x_{3} + x_{4} = 6$ $2x_{3} + x_{4} = -1$	28.	$2x_{1} + x_{2} = -2.5$ $x_{1} + x_{2} + x_{3} = -1.5$ $x_{2} - 2x_{3} + 3x_{4} = 10$ $x_{3} - 2x_{4} = -4.5$
29.	$4x_1 + 3x_2 = 4.5$ $-2x_1 + x_2 - 3x_3 = -2$ $x_2 - 4x_3 + x_4 = 10.5$ $4x_3 - 3x_4 = 11$	30.	$2x_{1} + 3x_{2} = \frac{9}{4}$ $-x_{1} + x_{2} - x_{3} = -\frac{3}{2}$ $3x_{2} - x_{3} + x_{4} = \frac{7}{4}$ $2x_{3} - x_{4} = 0$
31.	$x_{1} + x_{2} = 1$ $x_{1} - x_{2} - 2x_{3} = -5$ $4x_{2} - 2x_{3} + x_{4} = -13$ $6x_{3} - 3x_{4} = 27$	32.	$2x_{1} + 5x_{2} = -1$ $-3x_{1} + x_{2} - x_{3} = -10$ $3x_{2} - 2x_{3} + x_{4} = -7$ $3x_{3} - 2x_{4} = 5$
33.	$x_{1} + 3x_{2} = 9$ $-x_{1} + 2x_{2} - x_{3} = 6.5$ $3x_{2} - 4x_{3} + x_{4} = 3.5$ $2x_{3} - 3x_{4} = 1$	34.	$x_{1} + x_{2} = 6$ $-x_{1} + x_{2} - x_{3} = -4$ $3x_{2} - x_{3} + x_{4} = 4,5$ $x_{3} - 2x_{4} = -5$
35.	$2x_{1} - 3x_{2} = -9.4$ $-3x_{1} + x_{2} - x_{3} = -6.3$ $3x_{2} - 2x_{3} + x_{4} = 0.6$ $2x_{3} - 5x_{4} = 1.4$	36.	$3x_{1} + 2x_{2} = -5$ $-x_{1} + 3x_{2} - x_{3} = 3.4$ $-x_{2} - 3x_{3} + 2x_{4} = -1.9$ $5x_{3} - 3x_{4} = 1.5$

$4x_1 + 3x_2 = 10.6$		$3x_1 - 2x_2 = -0.2$
$-2x_1 + x_2 - 3x_3 = -15.4$		$-2x_1 + x_2 - 3x_3 = 7.1$
$x_2 - x_3 + 3x_4 = -8.4$	38.	$3x_2 - 2x_3 + x_4 = 9.1$
$x_3 - 5x_4 = 11.2$		$2x_3 - 3x_4 = -4.7$
$x_1 + 2x_2 = 3.9$		$3x_1 + 4x_2 = -1.6$
$-3x_1 + x_2 - 2x_3 = -2.4$	40	$-2x_1 + x_2 - x_3 = 0.8$
$3x_2 - 3x_3 + x_4 = 19.5$	40.	$3x_2 - x_3 + 2x_4 = -3.4$
$x_3 - 2x_4 = -7.2$		$5x_3 - x_4 = 0.4$
$3x_1 + 4x_2 = -0.5$		$x_1 + x_2 = -0.6$
$-2x_1 + x_2 + x_3 = 5.8$	42	$-x_1 + x_2 - 2x_3 = -2.4$
$3x_2 - 2x_3 + x_4 = 8.6$	42.	$3x_2 - 3x_3 + x_4 = -2.9$
$x_3 - 3x_4 = -9.4$		$2x_3 - 3x_4 = -4.2$
$x_1 + 3x_2 = 4.9$		$2x_1 - 3x_2 = 4$
$x_1 + x_2 - x_3 = -0.1$ $x_2 - 2x_3 + x_4 = 2.3$ $x_3 - 3x_4 = -5.9$		$-x_1 + 2x_2 - x_3 = -3$
		$3x_2 - x_3 + 2x_4 = -0.8$
		$2x_3 - x_4 = -0.8$
	$-2x_{1} + x_{2} - 3x_{3} = -15.4$ $x_{2} - x_{3} + 3x_{4} = -8.4$ $x_{3} - 5x_{4} = 11.2$ $x_{1} + 2x_{2} = 3.9$ $-3x_{1} + x_{2} - 2x_{3} = -2.4$ $3x_{2} - 3x_{3} + x_{4} = 19.5$ $x_{3} - 2x_{4} = -7.2$ $3x_{1} + 4x_{2} = -0.5$ $-2x_{1} + x_{2} + x_{3} = 5.8$ $3x_{2} - 2x_{3} + x_{4} = 8.6$ $x_{3} - 3x_{4} = -9.4$ $x_{1} + 3x_{2} = 4.9$ $x_{1} + x_{2} - x_{3} = -0.1$ $x_{2} - 2x_{3} + x_{4} = 2.3$	$-2x_{1} + x_{2} - 3x_{3} = -15.4$ $x_{2} - x_{3} + 3x_{4} = -8.4$ $x_{3} - 5x_{4} = 11.2$ $x_{1} + 2x_{2} = 3.9$ $-3x_{1} + x_{2} - 2x_{3} = -2.4$ $3x_{2} - 3x_{3} + x_{4} = 19.5$ $x_{3} - 2x_{4} = -7.2$ $3x_{1} + 4x_{2} = -0.5$ $-2x_{1} + x_{2} + x_{3} = 5.8$ $3x_{2} - 2x_{3} + x_{4} = 8.6$ $x_{3} - 3x_{4} = -9.4$ $42.$ $x_{1} + 3x_{2} = 4.9$ $x_{1} + x_{2} - x_{3} = -0.1$ $x_{2} - 2x_{3} + x_{4} = 2.3$ $44.$

Методи розв'язування задач про власні значення та власні вектори матриць

Лабораторна робота № 7. Власні значення та власні вектори

Завдання: Методом безпосереднього розгортання та методом обертань з точністю $\varepsilon = 0{,}01$ визначити власні значення та власні функції матриці.

№	Матриця	№	матриця	No	матриця	$N_{\underline{0}}$	матриця
1.	(2,1 1 1,1 1 2,6 1,1 1,1 1,1 3,1	2.	(2,4 1 1,4 1 2,3 1,4 1,4 1,4 3,4	3.	(1,3 0,4 0,5 0,4 1,3 0,3 0,5 0,3 1,3	4.	1,6 0,7 0,8 0,7 1,6 0,3 0,8 0,3 1,6
5.	$ \begin{pmatrix} 2,2 & 1 & 2,2 \\ 1 & 2,7 & 1,2 \\ 1,2 & 1,2 & 3,2 \end{pmatrix} $	6.	(2,5 1 1,5 1 1,3 1,5 1,5 1,5 1,5	7.	$ \begin{pmatrix} 1,4 & 0,5 & 0,6 \\ 0,5 & 1,4 & 0,3 \\ 0,6 & 0,3 & 1,4 \end{pmatrix} $	8.	$ \begin{pmatrix} 1,7 & 0,8 & 0,9 \\ 0,8 & 0,7 & 0,3 \\ 0,9 & 0,3 & 1,7 \end{pmatrix} $
9.	(2,3 1 1,3 1 2,8 1,3 1,3 1,3 3,3	10	(2,1 1,2 1,3 1,2 3,1 2,4 1,3 2,4 4,1	11.	$ \begin{pmatrix} 1,4 & 1 & 1,2 \\ 1 & 2,1 & 2 \\ 1,2 & 2 & 2,5 \end{pmatrix} $	12	(1,3 1,6 2,1 1,6 0 3,3 2,1 3,3 2,1
13.	(0,3 2,1 1,3 2,1 0,5 1,2 1,3 1,2 0,7	14	$ \begin{pmatrix} 3,2 & 4,1 & 2,5 \\ 4.1 & -2,3 & 1,1 \\ 2,5 & 1,1 & 2,5 \end{pmatrix} $	15.	4,1 2,3 1,2 2,3 2,2 2,4 1,2 2,4 1,4	16	(1,0 2.1 3,2 2,1 2,0 3,3 3,2 3,3 3,0
17.	(2,2 1,2 4,2 1,2 1,8 3,1 4,2 3,1 2,8	18	(3,1 2,1 3,1 2,1 2,2 4,2 3,1 4,2 2,3	19.	(3,3 1,2 1,3 1,2 2,2 3,2 1,3 3,2 1,1	20	(0,5 1,5 3,2 1,5 1,5 2,5 3,2 2,5 2,5

Інтерполювання функцій

Лабораторна робота № 7. Інтерполювання функцій

Мета. Вивчити методику інтерполювання таблично заданих функції із використанням інтерполяційних многочленів Ньютона і Лагранжа.

Завдання:

- 1. За таблицею 1 значень функції записати інтерполяційний многочлен Лагранжа. Побудувати його графік та відмітити на ньому вузлові точки $M_i(x_i,y_i)$ i=0,1,2
- 2. Обчислити за допомогою калькулятора одне значення заданої функції для проміжного значення аргументу за допомогою інтерполяційного многочлена Лагранжа та оцінити похибку інтерполяції (табл. 2).
- 3. Користуючись інтерполяційними формулами Ньютона, ущільнити частину таблиці заданої функції (табл. 2).

Індивідуальні завдання.

Варіант	x_0	x_1	x_2	y_0	y_1	y_2
1	-1	0	3	-3	5	2
2	2	3	5	4	1	7
3	0	2	3	-1	-4	2
4	7	9	13	2	-2	3
5	-3	-1	3	7	-1	4
6	1	2	4	-3	-7	2
7	-2	-1	2	4	9	1
8	2	4	5	9	-3	6
9	-4	-2	0	2	8	5
10	-1	1,5	3	4	-7	1
11	2	4	7	-1	-6	3
12	-9	-7	-4	3	-3	4
13	0	1	4	7	-1	8
14	-8	-5	0	9	-2	4
15	-7	-5	-4	4	-4	5
16	1	4	9	-2	9	3
17	7	8	10	6	-2	7
18	-4	0	2	4	8	-2
19	-3	-1	1	11	-1	6
20	0	3	8	1	5	-4
21	2	6	8	1	9	16
22	-5	-2	1	7	2	4

23	0	2	6	4	-7	-15
24	-4	-2	0	12	4	-1
25	3	4	6	9	6	3
26	-1	0	3	2	1	34
27	-3	2	1	22	-3	-2
28	-1	0	2	1	-2	10
29	-2	-1	1	-8	-1	-5
30	-2	0	2	-11	-3	1
31	-1	1	2	1	1	-8
32	1	2	3	7	12	53
33	1	2	3	2	-2	-10
34	0	1	2	-2	-1	6
35	-1	1	2	3	-1	6
36	-2	1	3	5	-4	22
37	-2	2	3	2	6	7
38	-3	-1	2	1	15	3
39	-1	1	2	3	3	23
40	-2	0	1	-5	-3	-8
41	-1	2	3	10	10	22
42	1	2	3	-6	-7	-10
43	0	1	2	2	3	4
44	-1	2	4	11	8	2
45	1	2	3	5	21	47
46	0	1	2	3	5	13
47	-1	1	2	6	2	3
48	0	1	2	-2	0	0
49	0	1	2	2	0	-6
50	-1	2	3	-7	-4	-3
51	1	3	5	2	22	66
52	-3	1	2	4	2	-1
53	-2	1	2	3	-2	4
54	0	2	4	2	-1	2
55	-1	1	3	1	5	32
56	2	3	4	1	5	11
57	0	2	3	-1	11	28
58	-2	2	4	-11	1	-5
59	-1	1	2	2	4	5
60	-2	3	4	0	-3	-8

Таблиця 2

Варіант	Завдання 2		Завдання 3	Завдання 3				
Баріант	Таблиця	x	Таблиця	а	b	h		
1	4	2,8	4	1,75	2,00	0,05		
2	5	3,5	4	1,30	1,80	0,05		
3	6	0,5	4	1,45	1,55	0,01		
4	7	1,8	4	2,20	2,40	0,02		
5	6	0,8	5	2,0	2,4	0,02		
6	5	7,4	5	3,5	3,8	0,03		
7	6	0,4	4	0,32	0,42	0,01		
8	7	2,4	6	-0,7	-0,8	0,01		
9	4	3,0	6	0,1	0,3	0,03		
10	5	5,3	5	2,5	3,5	0,1		
11	6	-0,7	6	0,3	0,6	0,03		
12	7	2,2	8	0,15	0,35	0,025		
13	4	4,4	8	0,2	0,5	0,03		
14	5	2,5	9	2,45	2,65	0,02		
15	6	-0,3	9	3,0	3,5	0,02		
16	7	2,0	4	0,15	1,15	0,1		
17	4	2,5	9	2,3	2,5	0,02		
18	5	4,3	9	3,2	3,3	0,01		
19	6	-0,9	7	1,0	1,4	0,04		
20	7	2,0	8	0,5	0,75	0,025		
21	4	4,3	4	1,8	1,9	0,025		
22	5	3,5	3	0,25	0,40	0,01		
23	6	0,3	4	1,30	1,40	0,01		
24	7	0,8	4	2,20	2,40	0,02		
25	4	4,7	3	0,30	0,45	0,015		
26	7	1,0	7	-0,2	1	0,03		
27	8	0,1	8	0,7	1,0	0,03		
28	9	2,3	9	2,7	3,1	0,02		
29	6	-0,5	8	1,0	1,3	0,03		
30	5	1,4	9	2,7	3,1	0,02		
31	3	0,23	7	1,3	1,8	0,05		
32	9	3,3	3	0,28	0,38	0,01		

33	8	1,1	3	0,42	0,57	0,01
34	7	1,3	4	3,5	4,0	0,005
35	6	0,1	5	6,0	7,0	0,005
36	5	5,8	6	0,5	0,65	0,03
37	4	3,9	7	2,2	2,5	0,06
38	3	0,49	7	1,7	2,3	0,05
39	4	2,2	8	1,1	1,4	0,03
40	5	7,0	9	2,9	3,4	0,02
41	9	2,5	8	0,1	0,5	0,01
42	8	1,3	9	2,35	2,55	0,02
43	7	1,1	8	0,85	1,25	0,04
44	6	0,5	3	0,42	0,72	0,03
45	5	4,5	4	4,0	5,0	0,01
46	4	4,4	5	2,5	5	0,5
47	3	0,42	6	-0,5	0,5	0,1
48	5	3,6	6	0,24	0,54	0,03
49	8	0,7	7	1,35	1,85	0,05
50	9	2,7	7	1,8	2,4	0,05
51	9	2,47	6	-0,9	0,9	0,1
52	8	0,44	5	2	5	0,3
53	5	2,13	8	0,35	0,85	0,05
54	3	0,28	9	2,2	2,9	0,1
55	3	0,32	8	0,45	1	0,5
56	6	-0,66	6	-0,5	0,5	0,1
57	6	-0,42	9	2,5	3,3	0,1
58	5	2,2	4	2	3	0,5
59	7	0,93	3	0,18	0,28	0,05
60	8	0,28	5	3,5	5,5	0,2

Таблиця 3		Таблиця 4		Таблиця 5		Таблиця 6	
x	$\cos x$	х	$1/x + \lg x + x^2$	x	$\ln 2.3x - 0.8/x$	x	$2,1\sin 0,37x$
0,05	0,99375	1,3	2,5731	1,2	0,3486	-1,0	-0,7594
0,10	0,99500	1,7	3,7086	1,9	1,0537	-0,8	-0,6127
0,15	0,99877	2,1	5,2084	2,6	1,4807	-0,6	-0,4624
0,20	0,98007	2,5	7,0479	3,3	1,7844	-0,4	-0,3097
0,25	0,96891	2,9	9,2172	4,0	2,0192	-0,2	-0,1553
0,30	0,95534	3,3	11,7115	4,7	2,2103	0,0	0,0000
0,35	0,93937	3,7	14,5285	5,4	2,3712	0,2	0,1553
0,40	0,92106	4,1	17,6667	6,1	2,5101	0,4	0,3097
0,45	0,90045	4,5	21,1254	6,8	2,6322	0,6	0,4624
0,50	0,87758	4,9	24,9043	7,5	2,7411	0,8	0,6127
0,55	0,85252	5,3	29,0030	8,2	2,8394	1,0	0,7594

Табл	иця 7	Табл	иця 8	Табл	иця 9
x	$x - \cos(0.4 - 0.7x)$	x	$y = \sin x/x$	\boldsymbol{x}	y = sh x
0,6	-0,3998	0,0	1,0000	2,0	3,6267
0,9	-0,0737	0,2	0,9934	2,2	4,4571
1,2	0,2952	0,4	0,9735	2,4	5,4662
1,5	0,7039	0,6	0,9411	2,6	6,6947
1,8	1,1476	0,8	0,8967	2,8	8,1919
2,1	1,6199	1,0	0,8415	3,0	10,0179
2,4	2,1133	1,2	0,7767	3,2	12,2459
2,7	2,6193	1,4	0,7039	3,4	14,9654

Контрольні запитання

- 1. Коли виникає потреба у побудові інтерполюючих функцій?
- 2. Що називається вузлом інтерполяції?
- 3. Поясніть поняття "інтерполююча функція".
- 4. У чому полягає лінійне інтерполювання?
- 5. Як будується інтерполяційний многочлен Лагранжа?
- 6. Як оцінюються похибки лінійного інтерполювання та за формулою Лагранжа?
- 7. Складіть схему алгоритму обчислень значень функції за інтерполяційним многочленом Лагранжа.

Лабораторна робота № 8. Інтерполювання сплайнами Завдання:

Побудувати квадратний сплайн S(x), якщо задано значення функції $f(x_i) = y_i$:

No		<i>i</i> – 0	;_1	:-2	№		; _ 0	i = 1	i _ 2
710	24	i = 0	i = 1	i = 2	110		i = 0		i=2
1	X_i	1	1,2	1,5	2	\mathcal{X}_{i}	1	2	5
	${\mathcal Y}_i$	-1	2	1		${\mathcal Y}_i$	-2	1	0
3	X_i	0	0,1	0,5	4	x_i	0,5	1	3
3	\mathcal{Y}_{i}	2	1	2		${\mathcal Y}_i$	-1	0	2
5	x_i	0,2	0,25	0,5	6	x_i	0	1	4
3	${\mathcal Y}_i$	0	1,5	2	U	${\mathcal Y}_i$	1	4	2
7	X_i	0,1	0,3	0,7	8	x_i	0,2	0,5	2
/	\mathcal{Y}_{i}	0,5	1	0,2	O	${\mathcal Y}_i$	0	4	1
9	X_i	1	1,5	1,75	10	x_i	0,3	0,5	1
9	\mathcal{Y}_{i}	0	1,3	2	10	${\mathcal Y}_i$	-2	0	1
11	X_i	0,2	0,5	0,6	12	x_{i}	0	2	6
11	\mathcal{Y}_{i}	0,5	1	0,4	12	${\mathcal Y}_i$	2	-2	1
13	x_i	0	0,5	0,6	14	x_i	0,2	0,3	0,8
13	y_i	2	1	1,5	14	\mathcal{Y}_i	2	1	3
15	X_i	0,3	0,4	0,7	16	x_i	0,1	0,5	1
13	\mathcal{Y}_{i}	0	1,5	2	10	\mathcal{Y}_i	0	3	2
17	x_i	0,1	0,25	0,6	18	x_i	1	1,4	1,5
1 /	${\mathcal Y}_i$	0,1	0,6	1	10	${\mathcal Y}_i$	1	-1	3
19	x_i	0	1	4	20	X_i	0	4	6
17	y_i	1	3	2	20	\mathcal{Y}_i	2	-1	2

Апроксимація функцій

Лабораторна робота №8. Метод найменших квадратів

Мета: Отримати практичні навички аналізу та опрацювання даних, одержаних у результаті експерименту. Вивчити найпростіші аналітичні прийоми побудови емпіричних залежностей за допомогою методу найменших квадратів.

Завдання:

- 1. За даними таблиці 1 побудувати графік та визначити вид емпіричної залежності (лінійна, степенева, показникова тощо);
- 2. За методом найменших квадратів апроксимувати функцію та відшукати числові значення її параметрів;
- 3. Скласти алгоритм розв'язування, описати його, розробити програму для обчислення параметрів функції;
- 4. Графічно зобразити табличні дані (графік 1) та розрахункові результати (графік 2).

Індивідуальні завдання.

Таблиця 1

варіант	X_i	y_i	варіант	X_i	y_i	варіант	X_i	y_i
1	0 1 2 3 4 5	0,2 0,6 1,2 1,4 1,6 1,7	21	0 1 2 3 4 5 6	1,8 1,9 2,3 2,5 2,8 3,1 2,5	41	6,2 2,6 0 0,3 1,4 6,5	6,4 2,5 0 0,4 1,2 6,8
2	-2 -1 0 1 2 3	3,1 2,8 2,5 2,0 1,7 2,2	22	0 1 2 3 4 5 6	3,5 3,2 2,9 2,1 3,0 3,2 3,5	42	-3 -1 1 3 6 9	3,1 3,6 4,2 4,8 5,6 6,4
3	-6 -4 -3 -1 0 3	2,5 1,2 0,4 -0,5 -1,3 1,1	23	-2 -1 0 1 1,5 2	7,7 1,3 0 1,3 4,6 7,7	43	-2 -1 0 1 2 3 4	-0,3 0,5 1,5 0,5 0,3 -0,2 -1,2
4	-1 0 1 2	2,1 2,2 2,3 2,4	24	-3 -2 -1 0	5,8 3,6 3,1 2,8	44	3,5 4 5 5,5	7,5 4,6 3,5 3,8

	3 4 5	2,5 2,5 2,4		3	3,1 5,8		6 6,5	4,7 7,5
5	-6 -2 0 1 3 7	-1,9 0,6 2,0 2,7 4,1 6,7	25	-3 -1 0 1 3 4 6	1,7 3,3 5,1 6,6 5,6 4,0 3,5	45	-6 -4 -1 1 2 5	-2,0 -1,0 -2,3 -3,1 -3,5 -4,7
6	0 1 2 3 4 5	0,5 0,8 1,3 1,7 1,9 2,5	26	-2 -1 0 1 2 3 4	0,3 -0,5 -1,5 -0,5 -0,1 0,2 1,2	46	-4 -2 -1 1 2 4	-2,6 -1,7 -0,9 0,9 1,7 2,6
7	-3 -2 -1 0 1 2	1,7 1,2 1,0 0,5 -0,2 0,5	27	-1 0 1 2 3 4 5	-6,1 -5,8 -5,2 -4,8 -4,5 -5,0 -5,2	47	0,25 0,5 1,0 2,0 3,0 5,0	-2,8 0,0 0,9 1,9 2,5 2,8
8	-2 -1 0 1 2 4	1,8 1,2 0,2 -0,9 -1,9 2,4	28	-4 -3 -2 0 1 4	11,3 3,1 0,7 0 0,2 11,3	48	1,5 2 3 4 5 6	-1,0 0,7 2,6 2,8 2,0 2,2
9	-4 -3 -1 0 1 2 3	-1,8 -1,5 -1,1 -1,3 -1,4 -1,6 -1,9	29	1 3 5 7 8 9	4,6 5,7 5,9 5,6 4,7 4,1	49	-6 -5 -4 -3 -2 -1 0	-2,4 -2,5 -2,5 -2,4 -2,3 -2,2 -2,1
10	-6 -2 1 3 5 7	-2,6 1,9 1,5 2,7 5,4 5,0	30	0 1 2 3 4 5 6	1,7 1,9 2,5 2,9 3,1 2,8 2,4	50	1,5 2,0 2,5 3,5 4,5 5,5	3,1 1,3 0,6 0,0 0,6 2,5

		T	1	1	1	T	1	,
11	-1 0 1 2 3 4	3,1 2,8 2,4 2,1 1,9 2,2	31	-3 -2 -1 0 1 2 3	-0,8 -0,5 -0,2 0,5 1,0 1,2 1,7	51	-2 -1,5 -1 0 1,5 2	-3,1 -4,1 -5,1 -5,6 -4,2 2,5
12	1 2 3 4 5 7	1,2 1,7 3,3 5,1 4,6 1,9	32	-4 -3 -1 0 2 4	9,5 0,1 -28 3,0 2,2 9,5	52	1,2 1,4 1,6 1,8 2,0 2,2	-2,3 -1,5 -0,1 2.0 4,1 3,3
13	0 1 2 3 4 6	1,7 1,9 2,4 2,7 3,1 2,5	33	-7 -5 0 1 2 4	5,4 3,5 1,3 2,4 -3,3 -5,2	53	-3,2 -2,1 1,3 2,1 3,9 4,2	5,8 4,3 3,1 -2,4 -3,5 2,3
14	0 1 2 3 4 5 6	3,1 3,3 3,4 3,7 3,2 2,9 1,1	34	0,25 0,5 1,0 2,0 3,5 5,0	-2,0 -2,5 -4,3 -5,2 -5,9 -6,2	54	0 1 2 3 4 6	1,7 1,9 2,4 2,7 3,1 2,5
15	-6 -2 0 2 5 7	-4,3 -2,2 -1,0 0,1 1,6 2,7	35	0,5 1,0 1,5 2,0 2,5 3,0	-4,2 -2,8 -2,2 -1,6 -1,3 -0,9	55	0 1 2 3 4 5 6	3,1 3,3 3,4 3,7 3,2 2,9 1,1
16	-2 -1 0 1 2 3 4	-0,3 0,5 0,8 1,8 0,8 0,4 0,0	36	1 2 3 4 5 6	4,7 5,1 5,5 5,8 6,2 6,6	56	-6 -2 0 2 5 7	-4,3 -2,2 -1,0 0,1 1,6 2,7
17	-3 -2 -1 0 1	4,8 4,2 3,7 3,6 3,3	37	-1 0 1 2 3	3,1 4,5 4,9 5,1 5,5	57	-2 -1 0 1 2	-0,3 0,5 0,8 1,8 0,8

	2 3	3,1 2,8		4 5	5,2 5.0		3 4	0,4
18	-1,5 -1 0 1 1,5 2	6,0 2,8 1,6 2,8 6,0 8,7	38	-7,5 -6,5 -6,0 -5,5 -5,0 -4,5	8,4 4,3 4,0 4,4 5,3 8,4	58	-1,5 -1 0 1 1,5 2	6,0 2,8 1,6 2,8 6,0 8,7
19	-5 -3 -1 1 3 5	-5,6 -4,5 -3,5 -2,4 -1,3 0,3	39	-4 -2 -1 1 2 4	7,8 4,7 3,4 0,4 -1,2 -4,1	59	-5 -3 -1 1 3 5	-5,6 -4,5 -3,5 -2,4 -1,3 0,3
20	0 1 2 3 4 5 6	-1,2 -0,5 -0,2 0,3 0,7 1,1 1,4	40	1,5 2,5 3,5 4,5 5,5 6,5	0,0 15 2,0 2,2 2,3 2,4	60	0 1 2 3 4 5 6	-1,2 -0,5 -0,2 0,3 0,7 1,1 1,4

Контрольні запитання

- 1. У чому полягає загальна постановка задачі апроксимації?
- 2. Що таке емпірична функція або формула?
- 3. У чому полягає різниця між задачами апроксимації та інтерполювання?
 - 4. У чому полягає суть методу найменших квадратів?
 - 5. Що ϵ умовою мінімуму критерію квадратичного відхилення?
- 6. Як перевірити відповідність емпіричної формули даним експерименту?
- 7. Як одержати системи рівнянь для визначення параметрів при лінійному, квадратичному, показниковому та степеневому наближенні за методом найменших квадратів?

Чисельне диференціювання та інтегрування функцій Лабораторна робота №9. Чисельне диференціювання та інтегрування функцій

Мета: Отримання навичок диференціювання та інтегрування функції; використання формул Лагранжа, Ньютона, Сімпсона, Ньютона-Котеса, трапецій; побудови програм для обчислення значень похідних та інтеграла заданої функції.

Завлання:

- обчислити значення похідної функції, використовуючи інтерполяційні формули Ньютона;
- обчислити визначений інтеграл функції f(x) на [a,b] за формулами трапецій та Сімпсона при діленні відрізку [a,b] на N рівних частин, провести оцінку похибки методів інтегрування і порівняти точність отриманих результатів;
- скласти на ЕОМ програму обчислення інтегралу функції f(x) на відрізку [a,b] за формулою Сімпсона методом повторного рахунку, виконати обчислення з точністю 10^{-6} .

Варіанти завдань Чисельне диференціювання

Знайти значення першої та другої похідних при заданих значень аргумента для функцій, заданих таблично.

	Табли	іця 4										
х	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6
y(x)	3.526	3.782	3.945	4.043	4.104	4.155	4.222	4.331	4.507	4.77	5 5.159	5.683
	Табли	иця 5										
X	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
y(x)	10.517	10.193	9.807	9.387	8.977	8.637	8.442	8.482	8.802	9.701	11.132	13.302
	Табли	иця 6										
x	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70
y(x)	0.861	0.819	0.779	0.741	0.705	0.670	0.638	0.607	0.577	0.548	8 0.497	0.472
	Табли	иця 7										
X	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.53	0.54	0.55	0.56
y(x)	20.19	19.61	18.94	18.17	17.30	16.31	15.20	13.95	12.55	10.99	9 9.26	7.35

Обчислити першу y'(x) та другу похідні y''(x) в точках z_1 і z_2 , зазначених в індивідуальних завданнях

No	$N_{\underline{0}}$	z_1	z_2	№	№ таблиці	z_1	z_2
	таблиці						
1	4	2.6	3.1	2	4	3.0	3.9
3	4	3.4	2.5	4	4	2.4	2.7
5	4	4.0	2.9	6	4	2.8	3.1
7	4	3.2	3.7	8	4	3.6	3.3
9	4	3.8	3.5	10	5	5.5	2.1

11	5	2.0	1 7	10	5	5.0	2.2
11		3.0	1.7	12		5.0	3.2
13	5	3.5	1.6	14	5	2.0	3.7
15	5	4.5	3.1	16	5	1.5	2.3
17	5	2.5	3.6	18	5	4.0	1.8
19	6	0.15	0.32	20	6	0.25	0.47
21	6	0.35	0.19	22	6	0.45	0.31
23	6	0.40	0.46	24	6	0.20	0.52
25	6	0.50	0.34	26	6	0.30	0.44
27	6	0.55	0.27	28	7	0.45	0.525
29	7	0.48	0.512	30	7	0.49	0.502
31	7	0.52	0.473	32	7	0.46	0.482
33	7	0.51	0.453	34	7	0.47	0.477
35	7	0.50	0.457	36	7	0.53	0.522
37	4	2.4	2.9	38	4	2.8	3.1
39	4	3.2	2.7	40	4	2.6	2.5
41	4	3.0	3.3	42	4	3.4	3.6
43	4	3.6	3.5	44	4	3.8	3.7
45	4	4.0	3.9	46	5	2.0	1.8
47	5	2.5	2.9	48	5	3.0	1.6
49	5	3.2	2.3	50	5	1.5	3.7
51	5	3.4	4.2	52	5	3.6	3.6
53	5	3.8	2.7	54	5	4.0	1.7
55	6	0.15	0.254	56	6	0.30	0.403
57	6	0.35	0.157	58	6	0.25	0.412
59	6	0.40	0.203	60	6	0.20	0.355

Чисельне інтегрування

Варіант	f(x)	а	b	N
И				
1	$0.37e^{\sin x}$	0	1	10
2	$0.5x + x \lg x$	1	2,2	12
3	$(x+1,9)\sin(x/3)$	1	2	10
4	$\frac{1}{x}\ln(x+2)$	1	3	10
5	$\frac{3\cos x}{2x+1,7}$	0	1,4	14
6	$(2x+0.6)\cos(x/2)$	1	2	10
7	$2.6x^2 \ln x$	1,2	2,2	10
8	$(x^2+1)\sin(x-0.5)$	0,5	1,5	10
9	$x^2\cos(x/4)$	2	3,2	12
10	$\frac{\sin(0,2x-3)}{x^2+1}$	2	4	10
11	$3x + \ln x$	1	2	10

12	$4xe^{x^2}$	-1	2	10
13	$3x^2 + tgx$	-0,5	0,5	10
14	$\frac{3x^2 + \sin x}{x^2}$	0,1	1,5	14
15	$3xe^{\cos x}$	0,2	1,2	10
16	$x^2 tg \frac{x}{2}$	1,5	2,5	10
17	$x^2 \sin x$	0	1,4	14
18	$\sqrt{x} + \ln x$	1	2	10
19	$xe^{\sin x}$	0	1	10
20	$2^{\ln x} + x$	1	3	8
21	$x \sin x$	0	1,4 1,2	14
22	$x^2 \cos x$	0	1,2	12
23	$\cos x + \ln x$	1	1,5	10
24	$\sin x + \ln x$	1	3	10
25	$x\cos x$	0	1,4	14
26	$x^2 \sin \frac{x}{2}$	0	1	10
27	$tgx + 2 \ln x$	1	2	10
28	$\frac{x^2}{tgx} + 3$	0,5	1,5	10
29	2x + tgx	1	2	10
30	$3\sin x - \lg x$	2,5	3	10
31	$\frac{x \ln 2x}{(1-x)}$	0,3	0,9	12
32	$2e^{2+4x} + e^{x+3}$	1	13	12
33	$\frac{\ln(1+x^2)}{2x+1}$	1,2	2,8	16
34	$\left(\frac{x}{2}+1\right)\sin\frac{x}{2}$	1,2	2,8	16
35	$4^{x}\sqrt[3]{7,5-x^2}$	1,35	1,95	10
36	$\sqrt[3]{x^2 + e^x} \ln x$	0,1	0,9	8
37	$\sqrt[7]{x^5 + e^x} \cos x$	1,7	2,1	8
38	$\frac{\ln(x^2+1)}{\sin^2 x + 5}$	0,8	1,8	10
39	$\frac{1,3\ln(x+2)}{\cos^2 x}$	1,2	1,34	12
40	$e^x \sin x \cos^3 x$	1	1,8	16
41	$\ln(1+\cos x)$	0	π	10
42	$\frac{\cos x}{\sqrt[3]{x}}$	0,1	2,1	10
43	$e^{\sin x}$	0	1	10

	T .			1
44	$\sin x \cdot e^{-x^2}$	0	1	10
45	$3.2\sqrt[3]{x} + \ln^2(2x+4)$	0,6	0,9	12
46	$\cos^2(x+5)-2.5\ln x$	1	2	10
47	$\cos^2 x^3 - 2.5 \ln x $	1	1,3	12
48	$\sqrt[5]{\cos^2 x} + 3.7x$	2	2,5	10
49	$\cos x + x^3$	0	1	10
50	$\sin\left(x^4+2x^3+x^2\right)$	0	1	10
51	$\arcsin^2 x (e^x + \ln x)$	0,4	0,8	20
52	$\frac{\sin\sqrt[3]{x^2 + \ln x}}{\operatorname{arctg}^2 x + e^x}$	1,8	2	16
53	$4\sqrt[x]{7,5\log_3(x+2)}$	1,05	1,25	10
54	$\frac{\sqrt[5]{\cos^2 x + x}}{arctg \ x^2}$	2	2,5	14
55	$\frac{\cos^2 x^3 + \ln x }{e^{\sqrt{x+6}}}$	1	1,3	12
56	$\frac{\cos^2(x+5) - 2.5 \ln x}{x^{0.7} + 5}$	1	2	10
57	$3.2\sqrt[3]{x} + \ln^2(2x+4)$	0,6	0,9	20
58	$\sqrt[3]{2x^{0,7}-0.3\cos x}$	1,4	2	16
59	$\frac{\sin^2(e^x+1)}{\log_{4,5}(x+2)}$	0	1,2	10
60	$\frac{\ln^2(x^3+8)}{\sin^3 x + 2,2^x}$	0,5	1	12

Контрольні питання

- 1. У чому полягають переваги наближених методів інтегрування порівняно з точними?
- 2. З якою метою використовують чисельне інтегрування і в чому полягає суть його методів (Ейлера, трапецій, Сімпсона)?
 - 3. Як здійснюється накопичення суми y_i ?
- 4. Чому додавання до суми першого та останнього членів у формулі Сімпсона відбувається поза циклом?
- 5. Чому вихід із циклу здійснюється до досягнення межі інтервалу інтегрування?
- 6. Як оцінити похибку наближеного обчислення визначених інтегралів? Від яких параметрів вона залежить?
- 7. Складіть схему алгоритму для обчислення визначених інтегралів за формулами Ейлера, трапецій, Сімпсона.

Лабораторна робота №10. Обчислення визначених інтегралів за формулами Гауса

Завдання. Обчислити інтеграл за формулою Гауса, застосовуючи для оцінки точності подвійний перерахунок (при $n_1 = 4$ і $n_2 = 5$).

		- 7 1	· I · I · · J		\ 1		
1.	$_{-0.5} \sqrt{x^2 + 1}$	9.	$\int_{2}^{3.2} \frac{x+2}{\sqrt{x^2+1}} dx$		$\int_{0.5}^{1.6} \frac{x^2 + 0.5}{\sqrt{x^2 + 1}} dx$		$\int_{2.2}^{3.4} \frac{x^2 dx}{\sqrt{x+1}}$
2.	$\int_{2.2}^{3.8} \frac{x+1}{\sqrt{x^2+2}} dx$	10.	$\int_{0.2}^{2.4} \frac{\sqrt{x^2 + 1}}{x + 2} dx$	18.	$\int_{1}^{2.6} \frac{xdx}{\sqrt{x^2 + 3}}$	26.	$\int_{0.8}^{1.6} \frac{0.5x + 2}{\sqrt{x^2 + 1}} dx$
3.	$\int_{-0.8}^{1.4} \frac{x^2 dx}{\sqrt{x^2 + 4}}$	11.	$\int_{2.6}^{3.4} \frac{x + 0.5}{\sqrt{x^2 + 1.5}} dx$	19.	$\int_{0.8}^{2} \frac{xdx}{\sqrt{x^2 + 2}}$	27.	$\int_{2.4}^{3.2} \frac{x^2 dx}{\sqrt{x+2}}$
4.	$\int_{0.7}^{1.5} \frac{x+2}{\sqrt{x^2+1}} dx$	12.	$\int_{0.2}^{2.5} \frac{\sqrt{x^2 + 2}}{x + 2} dx$	20.	$_{1.4}^{3}\sqrt{x^{2}}+2.5$	28.	$\int_{2.2}^{3} \sqrt{x^2 + 1}$
5.	$\int_{-2.5}^{-1.3} \frac{x dx}{\sqrt{x^2 + 1.8}}$	13.	$\int_{-0.4}^{1.8} \frac{x^2 + 2}{\sqrt{x^2 + 1}} dx$	21.	$\int_{0.6}^{2} \frac{x^2 dx}{\sqrt{x^2 + 2}}$	29.	$_{1.6}^{\circ}\sqrt{x+1.2}$
6.	$\int_{0.6}^{1.8} \frac{x^2 dx}{\sqrt{x+1.7}}$	14.	$\int_{0.4}^{1.8} \frac{x^2 + 1.4}{\sqrt{x^2 + 0.2}} dx$	22.	$\int_{2.2}^{2.8} \frac{(4-x)dx}{\sqrt{x^2+1}}$	30.	$\int_{0.8}^{1.5} \frac{x dx}{\sqrt{x^2 + 2.4}}$
7.	$\int_{1.2}^{2} \frac{x - 0.5}{\sqrt{x^2 - 1}} dx$	15.	$\int_{0.2}^{2} \frac{x + 0.5}{\sqrt{x^2 + 1}} dx$	23.	$\int_{0.2}^{1.11} \frac{\sqrt{x^2 + 1}}{2x + 2.5} dx$		
8.	$\int_{-0.4}^{1.6} \frac{x+1}{\sqrt{x^2+1}} dx$	16.	$\int_{0.4}^{1.6} \frac{x+3}{\sqrt{x^2+1}} dx$	24.	$\int_{0.4}^{1.7} \frac{x + 2.2}{\sqrt{x^2 + 1}} dx$		

Лабораторна робота №11. Чисельне розв'язування звичайного диференціального рівняння першого порядку

Мета: Вивчити наближені методи розв'язування звичайних диференціальних рівнянь першого порядку.

Завдання. Диференціальне рівняння, наведене у таблиці, розв'язати: 1) методом Ейлера-Коші; 2) методом Рунге-Кутта.

Індивідуальні завдання

Варіант	f(x,y)	диыдуальні а	в	$y(x_0) = y_0$	h
1.	$xy^3 - x^2$	4	5	0,7	0,1
2.	$\sqrt{4x^2+1}-3y^2$	2,6	4,6	1,8	0,2
3.	$\cos(1.5x - y^2) - 1.3$	-1	1	0,2	0,2
4.	$x^2 + xy + y^2$	2	3	1,2	0,1
5.	$e^{-(y^2+1)} + 2x$	0	0,5	0,3	0,05
6.	$\cos(1.5y + x)^2 + 1.4$	1	2	0,9	0,1
7.	$4.1x - y^2 + 0.6$	0,6	2,6	3,4	0,2
8.	$\frac{1}{1+x^3y} + 2y$	1,5	2	2,1	0,05
9.	$x + \cos \frac{y}{\sqrt{11}}$	2,1	3,1	2,5	0,1
10.	$\frac{2xy}{x+4} - 0.4$	3	5	1,7	0,2
11.	$2.5x + \cos(y + 0.6)$	1	3	1,5	0,2
12.	$x+2.5y^2+2$	1	2	0,9	0,1
13.	$2-\sin(x+y)^2$	2	3	2,3	0,1
14.	$\frac{2}{x+2} + x + 1$	0,1	0,5	1,25	0,05
15.	$x + \cos \frac{y}{2}$	-2	-1	3	0,1
16.	$\sqrt{x^2 + 0.5y^2} + 1$	0	2	2,9	0,2
17.	$\sin(x+y)+1,5$	1,5	2,5	0,5	0,1
18.	$x + \sin \frac{y}{\pi}$	4	6,4	0,7	0,1
19.	$x + \sin \frac{y}{\sqrt{10}}$	1,6	4,0	2,9	0,1
20.	$x + \cos \frac{y}{\pi}$	1,7	5,3	5,3	0,15
21.	$x + \cos \frac{y}{\sqrt{10}}$	0,6	4,2	0,8	0,15
22.	$x + \cos \frac{y}{3}$	1,6	5,2	4,6	0,15
23.	$x + \cos \frac{y}{e}$	1,4	5,0	2,2	0,15

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.	$x + \cos\frac{\sqrt{\pi}}{5}y$	0,8	4,4	1,0	0,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.	$x + \cos \frac{y}{\sqrt{7}}$	0,5	4,1	0,6	0,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.	$-0.05ye^{0.4x}$	0,2	1,2	0,3	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.		1,0	2,5	0,1	0,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.		0,2	1,6	0,4	0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.	$(1-y^2)/x$	0,0	1,0	0,2	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.	$1,5-\sin(x+y)$	0	2	0,2	0,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.	$x+1+2y^2$	1	2	0,5	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.	$1,4x-\sin(x+2y^2)$	1	2	1,2	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.	$2x + \cos(x^2 + y)$	2	3	1,4	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.	$1.5y + \sin(y^2 + 0.7x)$	1	2	1,6	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.	$\exp(-x-y)+0.5y^2$	0,5	1		0,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.	$x + \sqrt{y^2 + 1.5x^2}$	0	1	0,5	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.	$0.5x + \sqrt[3]{x^2 + 0.125y}$	0	1	1	0,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.	$2x + \sqrt{1 + x^2 + y^2}$	0	1	2	0,1
41. $\cos(0.5x + y) + x - y$ 0 1 0 0,1 42. $\exp(-1 - xy) + x^2 + y$ 0 2 1 0,2 43. $y \ln(x - 0.5) + x$ 1 3 1 0,2 44. $2 + 0.1y \sin x - 0.5y^2$ 0 1 0 0,1 45. $xy + y^2 + \cos y$ 0 2 1 0,2 46. $x^2 + 0.1y^2 + \cos xy$ 0 1 0,2 0,1 47. $xy + x^2 + \cos y$ 1 2 0 0,1 48. $1 + x \ln y - y \ln x$ 1 2 1 0,1 49. $1 + y \sin x - 0.8y^2$ 0 2 1 0,2 50. $\exp(-x^2) - 4y(x - 3)$ 1 3 2 0,2 51. $1/(\cos x - y)$ -4 1 0 0 0,25 52. $3e^{0.5x} + 0.8y$ -4,1 0,9 0,2 0,5 53. $-0.06ye^{0.4x}$ 1 2,5 0,1 0,1 54. $-4xy - x^2$ 0,2 1,6 0,4 0,1 55. $5x + \cos(x/y)$ 0 1 0,2 0,1 56. $x^2y^2 - 2$ 0 1 0,5 0,1 57. $2x^3 + y^3$ 0 1 0,1 58. $y \sin^2 x + 4y$ -0,4 1,6 0,1 0,2 59. $y^2 \sin(x + 3.5)$ 1,2 2,3 0,6 0,11	39.	$(1-x^2)\cos x + 0.5xy$	0	1	0	0,1
42. $\exp(-1-xy)+x^2+y$ 0210,243. $y\ln(x-0.5)+x$ 1310,244. $2+0.1y\sin x-0.5y^2$ 0100,145. $xy+y^2+\cos y$ 0210,246. $x^2+0.1y^2+\cos xy$ 010,20,147. $xy+x^2+\cos y$ 1200,148. $1+x\ln y-y\ln x$ 1210,149. $1+y\sin x-0.8y^2$ 0210,250. $\exp(-x^2)-4y(x-3)$ 1320,251. $1/(\cos x-y)$ -4100,2552. $3e^{0.5x}+0.8y$ -4,10,90,20,553. $-0.06ye^{0.4x}$ 12,50,10,154. $-4xy-x^2$ 0,21,60,40,155. $5x+\cos(x/y)$ 010,20,156. x^2y^2-2 010,50,157. $2x^3+y^3$ 01-1,00,158. $y\sin^2 x+4y$ -0,41,60,10,259. $y^2\sin(x+3.5)$ 1,22,30,60,11	40.	$1 + (1 - x)\sin y - (2 + x)y$	0	1	0	0,1
43. $y \ln(x-0.5) + x$ 1310.244. $2 + 0.1y \sin x - 0.5y^2$ 0100,145. $xy + y^2 + \cos y$ 0210,246. $x^2 + 0.1y^2 + \cos xy$ 010,20,147. $xy + x^2 + \cos y$ 1200,148. $1 + x \ln y - y \ln x$ 1210,149. $1 + y \sin x - 0.8y^2$ 0210,250. $\exp(-x^2) - 4y(x - 3)$ 1320,251. $1/(\cos x - y)$ -4100,2552. $3e^{0.5x} + 0.8y$ -4,10,90,20,553. $-0.06ye^{0.4x}$ 12,50,10,154. $-4xy - x^2$ 0,21,60,40,155. $5x + \cos(x/y)$ 010,20,156. $x^2y^2 - 2$ 010,50,157. $2x^3 + y^3$ 01-1,00,158. $y \sin^2 x + 4y$ -0,41,60,10,259. $y^2 \sin(x + 3,5)$ 1,22,30,60,11	41.	$\cos(0.5x + y) + x - y$	0	1	0	0,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.	$\exp(-1-xy)+x^2+y$	0	2	1	0,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.	$y\ln(x-0.5)+x$	1	3	1	0,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44.	$2 + 0.1y \sin x - 0.5y^2$	0	1	0	0,1
47. $xy + x^2 + \cos y$ 1200,148. $1 + x \ln y - y \ln x$ 1210,149. $1 + y \sin x - 0.8y^2$ 0210,250. $\exp(-x^2) - 4y(x - 3)$ 1320,251. $1/(\cos x - y)$ -4100,2552. $3e^{0.5x} + 0.8y$ -4,10,90,20,553. $-0.06ye^{0.4x}$ 12,50,10,154. $-4xy - x^2$ 0,21,60,40,155. $5x + \cos(x/y)$ 010,20,156. $x^2y^2 - 2$ 010,50,157. $2x^3 + y^3$ 01-1,00,158. $y \sin^2 x + 4y$ -0,41,60,10,259. $y^2 \sin(x + 3,5)$ 1,22,30,60,11	45.	$xy + y^2 + \cos y$	0	2	1	0,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.	$x^2 + 0.1y^2 + \cos xy$	0	1	0,2	0,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.	$xy + x^2 + \cos y$	1	2	0	0,1
50. $\exp(-x^2) - 4y(x-3)$ 1320,251. $1/(\cos x - y)$ -4100,2552. $3e^{0.5x} + 0.8y$ -4,10,90,20,553. $-0.06ye^{0.4x}$ 12,50,10,154. $-4xy - x^2$ 0,21,60,40,155. $5x + \cos(x/y)$ 010,20,156. $x^2y^2 - 2$ 010,50,157. $2x^3 + y^3$ 01-1,00,158. $y\sin^2 x + 4y$ -0,41,60,10,259. $y^2\sin(x+3.5)$ 1,22,30,60,11	48.	$1 + x \ln y - y \ln x$	1	2	1	0,1
51. $1/(\cos x - y)$ -4100,2552. $3e^{0.5x} + 0.8y$ -4,10,90,20,553. $-0.06ye^{0.4x}$ 12,50,10,154. $-4xy - x^2$ 0,21,60,40,155. $5x + \cos(x/y)$ 010,20,156. $x^2y^2 - 2$ 010,50,157. $2x^3 + y^3$ 01-1,00,158. $y\sin^2 x + 4y$ -0,41,60,10,259. $y^2\sin(x + 3.5)$ 1,22,30,60,11	49.		0	2	1	0,2
52. $3e^{0.5x} + 0.8y$ $-4,1$ $0,9$ $0,2$ $0,5$ 53. $-0.06ye^{0.4x}$ 1 $2,5$ $0,1$ $0,1$ 54. $-4xy - x^2$ $0,2$ $1,6$ $0,4$ $0,1$ 55. $5x + \cos(x/y)$ 0 1 $0,2$ $0,1$ 56. $x^2y^2 - 2$ 0 1 $0,5$ $0,1$ 57. $2x^3 + y^3$ 0 1 $-1,0$ $0,1$ 58. $y\sin^2 x + 4y$ $-0,4$ $1,6$ $0,1$ $0,2$ 59. $y^2 \sin(x + 3,5)$ $1,2$ $2,3$ $0,6$ $0,11$	50.	$\exp(-x^2)-4y(x-3)$	1	3	2	0,2
53. $-0.06ye^{0.4x}$ 1 2.5 0.1 0.1 54. $-4xy-x^2$ 0.2 1.6 0.4 0.1 55. $5x + \cos(x/y)$ 0 1 0.2 0.1 56. x^2y^2-2 0 1 0.5 0.1 57. $2x^3 + y^3$ 0 1 -1.0 0.1 58. $y\sin^2 x + 4y$ -0.4 1.6 0.1 0.2 59. $y^2 \sin(x + 3.5)$ 1.2 2.3 0.6 0.11	51.	$1/(\cos x - y)$	-4	1	0	0,25
$54.$ $-4xy - x^2$ $0,2$ $1,6$ $0,4$ $0,1$ $55.$ $5x + \cos(x/y)$ 0 1 $0,2$ $0,1$ $56.$ $x^2y^2 - 2$ 0 1 $0,5$ $0,1$ $57.$ $2x^3 + y^3$ 0 1 $-1,0$ $0,1$ $58.$ $y\sin^2 x + 4y$ $-0,4$ $1,6$ $0,1$ $0,2$ $59.$ $y^2 \sin(x + 3,5)$ $1,2$ $2,3$ $0,6$ $0,11$	52.	$3e^{0.5x} + 0.8y$	-4,1	0,9	0,2	0,5
55. $5x + \cos(x/y)$ 0 1 0,2 0,1 56. $x^2y^2 - 2$ 0 1 0,5 0,1 57. $2x^3 + y^3$ 0 1 -1,0 0,1 58. $y\sin^2 x + 4y$ -0,4 1,6 0,1 0,2 59. $y^2 \sin(x + 3,5)$ 1,2 2,3 0,6 0,11	53.	$-0.06ye^{0.4x}$	1	2,5	0,1	0,1
56. x^2y^2-2 010,50,157. $2x^3+y^3$ 01-1,00,158. $y\sin^2 x + 4y$ -0,41,60,10,259. $y^2\sin(x+3,5)$ 1,22,30,60,11	54.	$-4xy-x^2$	0,2	1,6	0,4	0,1
57. $2x^3 + y^3$ 0 1 -1,0 0,1 58. $y \sin^2 x + 4y$ -0,4 1,6 0,1 0,2 59. $y^2 \sin(x + 3,5)$ 1,2 2,3 0,6 0,11	55.	$5x + \cos(x/y)$	0	1	0,2	0,1
58. $y \sin^2 x + 4y$ -0,41,60,10,259. $y^2 \sin(x+3.5)$ 1,22,30,60,11	56.		0	1	0,5	0,1
59. $y^2 \sin(x+3.5)$ 1.2 2.3 0.6 0.11	57.	$2x^3 + y^3$	0	1	-1,0	0,1
	58.	$y\sin^2 x + 4y$	-0,4	1,6	0,1	0,2
60. $\sin x \cos y + 2.2x$ 0.3 1.8 0.1 0.1	59.	$y^2\sin(x+3,5)$	1,2	2,3	0,6	0,11
	60.	$\sin x \cos y + 2,2x$	0,3	1,8	0,1	0,1

Контрольні питання.

- 1. Що називається диференціальним рівнянням n-го порядку?
- 2. Що ϵ розв'язком диференціального рівняння?
- 3. Що ϵ частинним розв'язком диференціального рівняння? Поясніть графічно.
- 4. Чому виникає потреба у застосуванні наближених методів розв'язання диференціальних рівнянь?
- 5. У чому полягає суть розв'язання диференціальних рівнянь за методами Ейлера та Рунге-Кутта, їх геометрична інтерпретація.
- 6. Поясніть перевага та недоліки числових методів розв'язання диференціальних рівнянь і як оцінюється їх похибка.
- 7. Поясніть схему алгоритму та програму розв'язання диференціальних рівнянь за методами Ейлера та Рунге-Кутта.

Лабораторна робота №12. Наближене розв'язування диференціального рівняння методом Адамса

Завдання: Використовуючи метод Адамса із другими різницями, скласти таблицю наближених значень розв'язання диференціального рівняння y' = f(x, y), яке задовольняє початковим умовам $y(x_0) = y_0$ на відрізку [0,1]; крок h=0.1. Всі обчислення вести з чотирма десятковими

знаками. Початковий відрізок визначити методом Рунге-Кутта.

1.	$y' = 1 + 0.2y \sin x - y^2$, $y(0) = 0$	2.	$y' = \cos(x+y) + 0.5(x-y), y(0) = 0$
3.	$y' = \frac{\cos x}{x+1} - 0.5y^2$, $y(0) = 0$	4.	$y' = (1 - y^2)\cos x + 0.6y$, $y(0) = 0$
5.	$y' = 1 + 0.4y \sin x - 1.5y^2, y(0) = 0$	6.	$y' = \frac{\cos y}{x+2} + 0.3y^2, y(0) = 0$
7.	$y' = \cos(1.5x + y) + (x - y), y(0) = 0$	8.	$y' = 1 - \sin(x + y) + \frac{0.5y}{x + 2}, y(0) = 0$
9.	$y' = \frac{\cos y}{1.5 + x} + 0.1y^2$, $y(0) = 0$	10.	$y' = 0.6 \sin x - 1.25 y^2 + 1, \ y(0) = 0$
11.	$y' = \cos(2x + y) + 1.5(x - y), y(0) = 0$	12.	$y' = 1 - \frac{0.1y}{x+2} - \sin(2x+y), y(0) = 0$
13.	$y' = \frac{\cos y}{1.25 + x} - 0.1y^2$, $y(0) = 0$	14.	$y' = 1 + 0.8y \sin x - 2y^2$, $y(0) = 0$
15.	$y' = \cos(1.5x + y) + 1.5(x - y), y(0) = 0$	16.	$y' = 1 - \sin(2x + y) + \frac{0.3y}{x + 2}, \ y(0) = 0$
17.	$y' = \frac{\cos y}{1.75 + x} - 0.5y^{2}, y(0) = 0$ $y' = (0.8 - y^{2})\cos x + 0.3y, y(0) = 0$	18.	$y' = 1 + (1 - x)\sin y - (2 + x)y$, $y(0) = 0$
19.	$y' = (0.8 - y^2)\cos x + 0.3y$, $y(0) = 0$	20.	$y' = 1 + 2.2 \sin x + 1.5 y^2$, $y(0) = 0$
21.	$y' = \cos(x + y) + 0.75(x - y), y(0) = 0$	22.	$y' = 1 - \sin(1.25x + y) + \frac{0.5y}{x+2}, \ y(0) = 0$
23.	$y' = \frac{\cos y}{x+2} - 0.3y^2$, $y(0) = 0$	24.	$y' = 1 - \sin(1.75x + y) + \frac{0.1y}{x+2}, y(0) = 0$
25.	$y' = \frac{\cos y}{1.25 + x} - 0.5y^2$, $y(0) = 0$	26.	$y' = \sin(1.5x + y) - 2.25(x + y),$ y(0) = 0
27.	$y' = \frac{\sin y}{1.5 + x} - 1.25y^{2}, \ y(0) = 0$	28.	$y' = 1 - (x - 1)\sin y + 2(x + y), \ y(0) = 0$
29.	$y' = 1 - \sin(0.75x - y) + \frac{1.25y}{1.5 + x}$	30.	$y' = \cos(x - y) + \frac{1.25y}{1.5 + x}, \ y(0) = 0$
	y(0) = 0		· · · , • · · ·

Лабораторна робота №13. Розв'язування диференціального рівняння другого порядку методом скінчених різниць

Мета: Вивчити методику чисельного розв'язування диференціальних рівнянь другого порядку методом скінчених різниць.

Завдання: Застосовуючи метод скінчених різниць на розв'язок знайти чисельний різницевої сітки i метод прогонки, y'' + p(x)y' + q(x)y = f(x)рівняння 3 двоточковими диференціального $\alpha_0 y(a) + \alpha_1 y'(a) = A$ $\beta_0 y(b) + \beta_1 y'(b) = B$ Коефіцієнти умовами крайовими диференціального рівняння, параметри крайових умов і кількість вузлів різницевої сітки наведено в таблиці згідно індивідуальних варіантів.

Таблиця

No	p(x)	q(x)	f(x)	α_0	α_1	β_0	β_1	A	В	а	b	n
1	$x^2 + 1$	$\sin x$	4	0	1	1	0	2	1	0	1,6	8
2	2 <i>x</i>	$x^{3}-2$	2 <i>x</i>	1	1	0	1	-3	6	1	2	10
3	$\cos x$	$3\sin x$	$x \sin x$	1	0	0	1	2	-1	-1	1	10
4	0	$\ln(x^2+1)$	x-1	1	1	1	1	4	-2	0	2	10
5	$2\sqrt{x+1}$	$\ln x $	4-x	3	1	0	1	2	0	1	1,5	10
6	$\ln x$	$6x^2$	$\pi \sin x$	0	1	0	1	-1	π	0,5	1,9	8
7	e^x	$x^{2}-1$	2	1	0	0	1	6	4	0	2	10
8	$\frac{x}{x^2+1}$	$x \sin x$	x^2	1	0	0	1	3	0	0	1	10
9	$x^2 + x$	cos x	2+x	1	1	1	0	1	1	-2	0	10
10	$\cos x$	$\sin x$	2sin 2x	1	0	1	0	0	2	0	1,2	12
11	$\sin x$	x^2	$\cos x$	0	1	0	1	2	-1	-1	1	10
12	$3 \ln x$	$\ln^2 x$	<i>x</i> + 1	1	0	1	0	3	1	1	1,6	8
13	$5e^{2x}$	e^x	3	0	1	0	1	1	-1	-1	0	10
14	$\sin x + \cos x$	0	x-1	2	1	1	0	2	-1	0	1	10
15	$\sin x/x$	х	$\cos x$	1	0	0	1	4	0	0,5	2,1	8
16	x-1	$x^2 + x$	4	0	1	1	0	-2	1	0	1,6	8
17	$x^2 + 1$	$x^4 - x^2$	x + 2	1	1	1	1	1	-2	1	2	10
18	$x - \sin x$	$\cos x$	3	0	1	0	1	3	2	0	1,6	8
19	$x \sin x$	x + 2	5	2	1	0	1	4	1	0	2	10
20	x^2-3x	$\sqrt{x^2+1}$	4 <i>x</i>	0	1	1	3	0	1	1	2,6	8
21	$\cos x + x$	x^2	$2\sin x$	4	1	1	0	$-\pi$	π	0	1,6	8
22	$2 \ln x + 1$	x^2	$x \sin x$	1	0	0	1	1	-1	1	2,6	8
23	$\sin 3x$	$2\cos x$	-4	1	1	1	1	1	2	0	1	10
24	$6\cos 2x$	$x^2 + 1$	2-x	1	0	0	1	0	2	0	2	10
25	x^3-x	$x + \sin x$	$\cos x$	0	1	2	0	2	0	0	1,6	8

26	$\cos(x+1)$	$\sin x$	2	0	1	1	1	0	2	1	3	8
27	$x - \sin(x)$	$\cos x$	-3	1	0	0	1	-2	0	0	2	10
28	x-1	cosx	$x \sin x$	1	1	0	1	2	1	2	3	8
29	3	$2 + \ln x$	$\sin x$	1	1	2	0	1	1	1	3	10
30	xe^x	1	$\ln(x+2)$	1	0	0	1	0	1	-1	1	8
31	x^2	cosx	2	0	1	1	0	-2	1	-1	1	10
32	x^3	$2x + \ln x$	1	1	1	0	-1	1	0	1	2	8
33	$x \ln x$	x^2	x	1	0	1	1	1	1	2	4	10
34	$x - \sin x$	$\cos x$	x	1	0	0	1	1	2	-1	1	10
35	$x\cos x$	<i>x</i> + 1	3	1	1	1	0	0	2	0	3	10
36	2x + 1	$x \ln x$	x	0	1	1	1	2	4	1	3	8
37	$x^{3}-2$	$x^{2}-1$	x	1	1	1	0	1	1	-2	2	4
38	$\sqrt{x+1}$	x^2	$\sin x$	0	1	1	1	1	2	0	1	8
39	$2\sin x$	$3\cos x$	-2	1	1	0	1	2	2	-2	2	10
40	$\sin x - \cos x$	2	$\cos x$	2	0	1	1	1	2	-1	1	8
41	$x^3 + x^2$	$x^2 + 1$	x	2	1	1	2	0	1	0	3	10
42	$\sin x - x$	$\cos x$	x^2	1	0	2	3	1	2	0	2	10
43	$2x-x^3$	$\sin x$	$\ln x$	1	1	0	-1	1	1	1	2	8
44	$\sin(1-x)$	$x^{2} + 1$	1-x	0	1	2	1	3	2	-2	2	10
45	$x\cos x$	x^2	$\sin x$	1	0	0	2	2	3	-1	2	10
46	ln(x+2)	x+3	e^x	1	0	1	1	2	3	-1	1	8
47	$\cos(x+\sqrt{x})$	$\sqrt{x} + 2$	$\sin x$	1	1	2	2	1	0	0	2	10
48	$x + \ln x$	х	x^2	0	1	1	1	1	1	1	3	8
49	$x \sin x$	x^2	$\sin x$	1	1	0	0	2	3	-2	2	10
50	$x\cos x$	-x	$\cos x$	0	3	1	2	1	3	-1	1	8
51	$3x + \cos x$	$\sqrt[3]{x}$	$\sin x$	2	0	0	1	1	-2	0	2	12
52	$x/\sin x$	cosx	x	1	1	1	0	3	2	0,5	1	10
53	$\sin(x+x^2)$	$x \ln x$	1-x	1	-1	3	0	-2	-1	1	2	10
54	$\cos x \sin 2x$	1 – <i>x</i>	3 <i>x</i>	0	1	-1	1	2	1	-1	2	10
55	$\ln x \sin x$	$\sqrt{x} + 1$	x	3	0	1	-1	2	0	1	3	14
56	$x^2 \sin x$	x^2	x	2	-2	0	3	2	0	-2	2	16
57	$x\cos 2x$	$\sin x$	-2x	3	1	1	0	1	1	-1	2	12
58	$x \ln x$	1/ <i>x</i>	2 <i>x</i>	1	0	1	3	0	1	1	3	10
59	$3-\sin x$	$\sin x$	$\cos x$	1	1	0	1	1	-2	0	2	10
60	$-\sin x$	$\sqrt{x+1}$	x	0	2	1	0	3	-2	-1	1	20

Лабораторна робота №14. Наближені методи розв'язування задач в частинних похідних

Рівняння еліптичного типу

Завдання: Використовуючи метод сіток, побудувати розв'язок

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

диференціального рівняння Лапласа ∂x^2 умовами; крок h = 0,1.

із заданими крайовими

Варіанти завдань:

	Барганти завда	ипр,			
1	$\frac{x^2}{9} + \frac{y^2}{16} = 1$ (Γ)	$u(x,y) _{\Gamma} = x + y $	2	$(x +2)(y +2)=12$ (Γ)	$u(x,y)\big _{\Gamma} = 2 x + y $
3	$\begin{cases} y = 4 - x^2 \\ x \in [-2,2] \end{cases} (\Gamma)$	$u(x,y) _{\Gamma}= x \cdot y $	4	$x^2 + y^2 = 16_{\Gamma}$	$u(x,y)\big _{\Gamma} = x + 2 y $
5	$\frac{x^2}{16} + \frac{y^2}{9} = 1$ (\Gamma)	$u(x,y) _{\Gamma} = x \cdot y $	6	$\begin{cases} x = 4 - y^2 \\ x \in [-4;4] \text{ (}\Gamma\text{)} \end{cases}$	$u(x,y) _{\Gamma} = x + y $
7	(x +2)(y +2) = 12 (Γ)	$u(x,y) _{\Gamma} = x \cdot y $	8	$\frac{x^2}{9} + \frac{y^2}{16} = 1$ (\Gamma)	$u(x,y) _{\Gamma} = 2 x + y $
9	$\frac{x^2}{16} + \frac{y^2}{25} = 1$ (Γ)	$u(x,y)\big _{\Gamma}= x \cdot y $	10	$\begin{cases} y = 4 - x^2 \\ x \in [-2,2] \end{cases} (\Gamma)$	$u(x,y)\big _{\Gamma} = x + y $
11	$x^2 + y^2 = 16 \ (\Gamma)$	$u(x,y) _{\Gamma} = 0.5 x + y $	12	$\frac{x^2}{16} + \frac{y^2}{9} = 1$ (Γ)	$u(x,y) _{\Gamma} = x + 0.5 y $
13	$\begin{cases} x = 4 - y^2 \\ x \in [-4;4] \end{cases} $ (Γ)	$u(x,y) _{\Gamma} = x + \frac{y^2}{2}$	14	$(x +2)(y +2) = 12$ (Γ)	$u(x, y) _{\Gamma} = 2 x + 0.5 y $
15		$u(x,y) _{\Gamma} = x + y $	16	$\frac{x^2}{9} + \frac{y^2}{16} = 1$ (Γ)	$u(x, y) _{\Gamma} = 2 x + 0.5 y $
17	$\frac{x^{2}}{25} + \frac{y^{2}}{9} = 1$ $ y = 9 - x^{2}$ $x \in [-3;3] (\Gamma)$	$u(x, y) _{\Gamma} = x + 0.5 y $	18	$x^2 + y^2 = 16 \ (\Gamma)$	$u(x, y) _{\Gamma} = 0.5 x + 2 y $
19	$\frac{x^2}{16} + \frac{y^2}{9} = 1$ (\Gamma)	$u(x,y) _{\Gamma} = 0.5 x + y $	20	$\begin{cases} y = 9 - x^2 \\ x \in [-3;3] \end{cases} (\Gamma)$	$u(x,y) _{\Gamma} = 0.5 x + y $
21	$\frac{x^2}{9} + \frac{y^2}{16} = 1$ (Γ)	$u(x,y) _{\Gamma} = 0.5 x + 2 y $	22	$\frac{x^2}{25} + \frac{y^2}{16} = 1$ (Γ)	$u(x,y) _{\Gamma} = 0.5 x \cdot y $
23	(x +3)(y +2)=18 (Γ)	$u(x, y) _{\Gamma} = x + 0.5 y $	24	$\begin{cases} y = 9 - x^2 \\ x \in [-3,3] \end{cases} (\Gamma)$	$u(x, y) _{\Gamma} = 2 x + 0.5 y $
25	$x^2 + y^2 = 16 (\Gamma)$	$u(x,y) _{\Gamma} = 0.5(x + y)$	26	$\frac{x^2}{16} + \frac{y^2}{9} = 1$ (Γ)	$u(x,y) _{\Gamma} = 0.5 x + y $
27	$\begin{cases} x = 4 - y^2 \\ x \in [-4;4] \text{ (}\Gamma\text{)} \end{cases}$	$u(x,y) _{\Gamma} = x + 0.5 y $	28	$(x +2)(y +3) = 18$ (Γ)	$u(x, y) _{\Gamma} = 2 x + 0.5 y $
29	$\frac{x^2}{9} + \frac{y^2}{16} = 1$ (Γ)	$u(x,y) _{\Gamma} = x + 0.5 y $	30	$(x +5)(y +5) = 45$ _(Γ)	$u(x,y) _{\Gamma} = x + 0.5 y $

Лабораторна робота №15. Наближені методи розв'язування задач в частинних похідних

Рівняння параболічного типу

Завдання: Використовуючи метод сіток, скласти розв'язок змішаної

задачі для диференціального рівняння параболічного типу $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (рівняння теплопровідності) при заданих початкових умовах u(x,0) = f(x), $u(0,t) = \varphi(t)$, $u(0.6,t) = \psi(t)$, де $x \in [0;0.6]$. Розв'язування виконати при h = 0.1, для $t \in [0;0.01]$ з чотирма десятковими цифрами, вважаючи $\sigma = 1/6$.

Варіанти завдань:

1.	$u(x,0) = \cos 2x,$	u(0,t)=1-6t,	u(0.6,t) = 0.3624.
2.	u(x,0) = x(x+1),	u(0,t)=0	u(0.6,t) = 2t + 0.96.
3.	$u(x,0) = 1.2 + \ln(x + 0.4)$	u(0,t) = 0.8 + t	u(0.6,t) = 1.2.
4.	$u(x,0) = \sin 2x,$	u(0,t)=2t	u(0.6,t) = 0.932.
5.	u(x,0) = 3x(2-x),	u(0,t)=0	u(0.6,t) = t + 2.52.
6.	$u(x,0) = 1.2 - \ln(x+0.4)$	u(0,t)=1.4	u(0.6,t)=t+1.
7.	$u(x,0) = \sin(0.55x + 0.03),$	u(0,t) = t + 0.03,	u(0.6,t) = 0.354.
8.	u(x,0) = 2x(1-x) + 0.2	u(0,t)=0.2	u(0.6,t) = t + 0.68.
9.	$u(x,0) = \sin x + 0.08$	u(0,t) = 0.08 + 2t,	u(0.6,t) = 0.6446.
10.	$u(x,0) = \cos(2x + 0.19),$	u(0,t) = 0.932	u(0.6,t) = 0.1798.
11.	u(x,0) = 2x(x+0.2) + 0.4	u(0,t) = 2t + 0.4	u(0.6,t) = 1.36.
12.	$u(x,0) = \ln(x+0.26) + 1$	u(0,t) = 0.415 + t	u(0.6,t) = 0.9345.
13.	$u(x,0) = \sin(x + 0.45),$	u(0,t) = 0.435 - 2t,	u(0.6,t) = 0.8674.
14.	u(x,0) = 0.3 + x(x+4)	u(0,t)=0.3	u(0.6,t) = 6t + 0.9.
15.	u(x,0) = (x-0.2)(x+1) + 0.2	u(0,t)=6t,	u(0.6,t) = 0.84.
16.	u(x,0) = x(0.3 + 2x),	u(0,t)=0,	u(0.6,t) = 6t + 0.9.
17.	$u(x,0) = \sin(x+0.48),$	u(0,t) = 0.4618	u(0.6,t) = 3t + 0.882.
18.	$u(x,0) = \sin(x+0.02),$	u(0,t) = 3t + 0.02,	u(0.6,t) = 0.581.
19.	$u(x,0) = \cos(x + 0.48),$	u(0,t) = 6t + 0.887	u(0.6,t) = 0.4713.
20.	$u(x,0) = \ln(2.63 - x)$	u(0,t) = 3(0.14-t)	u(0.6,t) = 0.3075.
21.	u(x,0) = 1.5 - x(1-x)	u(0,t) = 3(0.5-t)	u(0.6,t) = 1.26.
22.	$u(x,0) = \cos(x + 0.845),$	u(0,t) = 6(t+0.11),	u(0.6,t) = 0.1205.
23.	$u(x,0) = \ln(2.42 + x)$	u(0,t) = 0.3838	u(0.6,t) = 6(0.08-t).
24.	u(x,0) = 0.6 + x(0.8 - x)	u(0,t) = 0.6,	u(0.6,t) = 3(0.24+t).
25.	$u(x,0) = \cos(x + 0.66),$	u(0,t) = 3t + 0.79,	u(0.6,t) = 0.3058.

Лабораторна робота №16. Наближені методи розв'язування задач в частинних похідних

Рівняння гіперболічного типу

Завдання: Використовуючи метод сіток, скласти розв'язок змішаної

задачі для рівняння коливання струни $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ з початковими умовами u(x,0) = f(x), $u_t(x,0) = \Phi(x)$ (0 \le x \le 1) і крайовими умовами $u(0,t) = \varphi(t)$ $u(1,t) = \psi(t)$. Розв'язування виконати з кроком h = 0.1, визначаючи значення функції u(x,t) з чотирма десятковими знаками, причому $0 \le t \le 0.5$.

	Варіанти завдань:
1.	$f(x) = x(x+1)$, $\Phi(x) = \cos x$, $\varphi(t) = 0$, $\psi(t) = 2(t+1)$.
2.	$f(x) = x \cos \pi x$, $\Phi(x) = x(2-x)$, $\varphi(t) = 2$, $\psi(t) = -1$.
3.	$f(x) = \cos \frac{\pi x}{2}, \Phi(x) = x^2, \varphi(t) = 1 + 2t, \psi(t) = 0.$ $f(x) = (x + 0.5)(x - 1), \Phi(x) = \sin(x + 0.2), \varphi(t) = t - 0.5, \psi(t) = 3t.$
4.	$f(x) = (x+0.5)(x-1), \ \Phi(x) = \sin(x+0.2), \ \varphi(t) = t-0.5, \ \psi(t) = 3t$
5.	$f(x) = 2x(x+1) + 0.3$, $\Phi(x) = 2\sin x$, $\varphi(t) = 0.3$, $\psi(t) = 4.3 + t$.
6.	$f(x) = (x + 0.2)\sin\frac{\pi x}{2}, \Phi(x) = 1 + x^2, \varphi(t) = 0, \psi(t) = 1.2(t+1).$
7.	$f(x) = x \sin \pi x$, $\Phi(x) = (x+1)$, $\varphi(t) = 2t$, $\psi(t) = 0$.
8.	$f(x) = 3x(1-x), \ \Phi(x) = \cos(x+0.5), \ \varphi(t) = 2t, \ \psi(t) = 0.$
9.	$f(x) = x(2x - 0.5), \ \Phi(x) = \cos 2x, \ \varphi(t) = t^2, \ \psi(t) = 1.5.$
10.	$f(x) = (x+1)\sin \pi x$, $\Phi(x) = x^2 + x$, $\varphi(t) = 0$, $\psi(t) = 0.5t$.
11.	$f(x) = (1-x)\cos\frac{\pi x}{2}$, $\Phi(x) = 2x+1$, $\varphi(t) = 2t+1$, $\psi(t) = 0$.
12.	$f(x) = 0.5x(x+1), \ \Phi(x) = x\cos x, \ \varphi(t) = 2t^2, \ \psi(t) = 1.$
13.	$f(x) = 0.5(x^2 + 1), \ \Phi(x) = x \sin 2x, \ \varphi(t) = 0.5 + 3t, \ \psi(t) = 1.$
14.	$f(x) = (x+1)\sin\frac{\pi x}{2}, \Phi(x) = 1 - x^2, \varphi(t) = 0.5t, \psi(t) = 2.$
15.	$f(x) = x^{2} \cos \pi x$, $\Phi(x) = x^{2}(x+1)$, $\Phi(t) = 0.5t$, $\Psi(t) = t-1$.
16.	$f(x) = (1 - x^2)\cos \pi x$, $\Phi(x) = 2x + 0.6$, $\varphi(t) = 1 + 0.4t$, $\psi(t) = 0$.
17.	$f(x) = (x+0.5)^2$, $\Phi(x) = (x+1)\sin x$, $\varphi(t) = 0.5(0.5+t)$, $\psi(t) = 2.25$.
18.	$f(x) = 1.2x - x^2$, $\Phi(x) = (x + 0.6)\sin x$, $\varphi(t) = 0$, $\psi(t) = 0.2 + 0.5t$.
19.	$f(x) = (x+0.5)(x+1), \ \Phi(x) = \cos(x+0.3), \ \varphi(t) = 0.5, \ \psi(t) = 3-2t$
20.	$f(x) = 0.5(x+1)^2$, $\Phi(x) = (x+0.5)\cos \pi x$, $\varphi(t) = 0.5$, $\psi(x) = 2-3t$.
21.	$f(x) = (x + 0.4)\sin \pi x$, $\Phi(x) = (x + 1)^2$, $\varphi(t) = 0.5t$, $\psi(t) = 0$.
22.	$f(x) = (x+0.4)\sin \pi x, \Phi(x) = (x+1)^2, \varphi(t) = 0.5t, \psi(t) = 0.5t$ $f(x) = (2-x)\sin \pi x, \Phi(x) = (x+0.6)^2, \varphi(t) = 0.5t, \psi(t) = 0.5t$

23.	$f(x) = x \cos \frac{\pi x}{2}$, $\Phi(x) = 2x^2$, $\varphi(t) = 0$, $\psi(t) = t^2$.
	$f(x) = (x + 0.4)\cos\frac{\pi x}{2}$, $\Phi(x) = 0.3(x^2 + 1)$, $\varphi(t) = 0.4$, $\psi(t) = 1.2t$.
25.	$f(x) = (1-x^2) + x$, $\Phi(x) = 2\sin(x+0.4)$, $\varphi(t) = 1$, $\psi(t) = (t+1)^2$.
26.	$f(x) = 0.4(x+0.5)^2$, $\Phi(x) = x\sin(x+0.6)$, $\varphi(t) = 0.1+0.5t$, $\psi(t) = 0.9$.
27.	$f(x) = (x^2 + 0.5)\cos \pi x$, $\Phi(x) = (x + 0.7)^2$, $\varphi(t) = 0.5$, $\psi(t) = 2t - 1.5$.
28.	$f(x) = (x+2)(0.5x+1), \Phi(x) = 2\cos\left(x+\frac{\pi}{6}\right), \varphi(t) = 2, \psi(t) = 4.5-3t.$
29.	$f(x) = (x^2 + 1)(1 - x), \ \Phi(x) = 1 - \sin x, \ \varphi(t) = 1, \ \psi(t) = 0.5t$
30.	$f(x) = (x + 0.2)\sin\frac{\pi x}{2}$, $\Phi(x) = 1 + x^2$, $\varphi(t) = 0.6t$, $\psi(t) = 1.2$.

Тестові завдання перевірки знань

- 1. Дано два приблизних числа $a = 2 \pm 0.1$, $b = 1.2 \pm 0.05$. Тоді гранична абсолютна похибка різниці цих чисел буде рівна...
 - a. 0,15
 - b. 0,05
 - c. 0,1
- 2. Гранична абсолютна похибка числа a = 25,146, у якого всі цифри правильні (у широкому смислі) рівна...
 - a. 0,0001
 - b. 0,001
 - c. 0,0005
 - d. 0,00005
- 3. Кількість правильних значущих цифр (у широкому смислі) для приблизного числа $^{4,214\pm0,05}$ рівна...
 - a. 2
 - b. 3
 - c. 4
- 4. Задано два приблизних числа $a = 4 \pm 0.1$, $b = 2 \pm 0.1$. Тоді гранична абсолютна похибка добутку цих чисел рівна...
 - a. 0,6
 - b. 0,01
 - c. 0,2
- 5. Задано два приблизних числа $a = 8 \pm 0.2$, $b = 4 \pm 0.1$. Тоді гранична a

абсолютна похибка частки \overline{b} цих чисел рівна...

- a. 0,1
- b. 0,05
- c. 0,6
- 6. Задано два приблизних числа $a = 2 \pm 0.05$, $b = 3 \pm 0.05$. Тоді гранична абсолютна похибка різниці цих чисел рівна...
 - a. 0,1
 - b. 0,2
 - c. -0,1
 - d. 0
- 7. Три ітерації по методу половинного ділення при рішенні рівняння $x^2-45,4=0$ на відрізку [0;8] потребують послідовного обчислення значення функції $f(x)=x^2-45,4$ у точках...
 - $x_1 = 4; \quad x_2 = 6; \quad x_3 = 7$
 - b. $x_1 = 4$; $x_2 = 6$; $x_3 = 5$
 - $x_1 = 5; \quad x_2 = 6; \quad x_3 = 7$
 - d. $x_1 = 4$; $x_2 = 7$; $x_3 = 6$

8. Три ітерації по методу половинного ділення при рішенні рівняння $x^2 - 5,93 = 0$ на відрізку [0;8] потребують послідовного обчислення значення функції $f(x) = x^2 - 5,93$ у точках...

a.
$$x_1 = 4$$
; $x_2 = 6$; $x_3 = 5$

b.
$$x_1 = 1$$
; $x_2 = 2$; $x_3 = 3$

c.
$$x_1 = 4$$
; $x_2 = 2$; $x_3 = 3$

d.
$$x_1 = 4$$
; $x_2 = 3$; $x_3 = 2$

9. Три ітерації по методу половинного ділення при рішенні рівняння $x^2 - 5,29 = 0$ на відрізку [0;8] потребують послідовного обчислення значення функції $f(x) = x^2 - 5,29$ у точках...

a.
$$x_1 = 4$$
; $x_2 = 2$; $x_3 = 3$

b.
$$x_1 = 4$$
; $x_2 = 3$; $x_3 = 2$

c.
$$x_1 = 4$$
; $x_2 = 6$; $x_3 = 5$

d.
$$x_1 = 1$$
; $x_2 = 2$; $x_3 = 3$

10. Один із коренів рівняння $x^3 - 12x - 4 = 0$ локалізований на інтервалі [-2;2], тоді при уточненні цього кореня методом хорд за точку x_0 початкового наближення потрібно взяти...

a.
$$x_0 = -2$$

b.
$$x_0 = 2$$

c.
$$x_0 = 0$$

d.
$$x_0 = 1$$

11. Один із коренів рівняння $x^3 - 27x + 8 = 0$ локалізований на інтервалі [-6;-3], тоді при уточненні цього кореня методом хорд за точку x_0 початкового наближення потрібно взяти...

a.
$$x_0 = -6$$

b.
$$x_0 = 6$$

c.
$$x_0 = 3$$

d.
$$x_0 = -3$$

12. Один із коренів рівняння $x^3 - 12x - 4 = 0$ локалізований на інтервалі [-4;-2], тоді при уточненні цього кореня методом Ньютона за точку x_0 початкового наближення потрібно взяти...

a.
$$x_0 = -2$$

b.
$$x_0 = -4$$

c.
$$x_0 = 4$$

d.
$$x_0 = 2$$

13. Один із коренів рівняння $x^3 - 27x + 8 = 0$ локалізований на інтервалі [-6;-3], тоді при уточненні цього кореня методом Ньютона за точку x_0 початкового наближення потрібно взяти...

a.
$$x_0 = -3$$

b.
$$x_0 = 3$$

c.
$$x_0 - 6$$

d.
$$x_0 = 6$$

14. Дійсний корінь рівняння $x^3 + 2x - 1$ належить інтервалу...

$$a.$$
 $\left(0;\frac{1}{2}\right)$

$$\left(\frac{3}{2};2\right)$$

$$\left(\frac{1}{2};1\right)$$

$$1; \frac{3}{2}$$

15. Дійсний корінь рівняння $x^3 + 4x - 1$ належить інтервалу ...

a.
$$\left(0;\frac{1}{2}\right)$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\left(\frac{3}{2};2\right)$$

$$1 \quad \left(1; \frac{3}{2}\right)$$

16. Дійсний корінь рівняння $x^3 + 6x - 1$ належить інтервалу ...

a.
$$\left(0;\frac{1}{2}\right)$$

$$\int_{0}^{\infty} \left(\frac{3}{2};2\right)$$

$$\left(\frac{1}{2};1\right)$$

$$(1;\frac{3}{2})$$

17. Відома матриця а системи лінійних алгебраїчних рівнянь, яка приведена

$$\alpha = \begin{pmatrix} 0 & -0.125 & -0.125 \\ -0.2 & 0 & 0.2 \\ -0.2 & 0.2 & 0 \end{pmatrix}$$

до нормального виду

Чи вірно, що ітераційний процес рішення системи рівнянь збігається?

18. Відома матриця а системи лінійних алгебраїчних рівнянь, яка приведена

$$\alpha = \begin{pmatrix} 0 & 0.5 & 0.2 \\ 0.1 & 0 & 0.3 \\ 0.6 & 0.4 & 0 \end{pmatrix}$$

до нормального виду

Чи вірно, що ітераційний процес рішення системи рівнянь збігається?

- а. Так
- b. нi
- 19. Відома матриця а системи лінійних алгебраїчних рівнянь, яка приведена

$$\alpha = \begin{pmatrix} 0 & 0.9 & 0.3 \\ 0.1 & 0 & 0.6 \\ 0.1 & 0.2 & 0 \end{pmatrix}$$

до нормального виду

Чи вірно, що ітераційний процес рішення системи рівнянь збігається?

- а. Так
- b. нi
- 20. Відомі норми матриць α та β нормалізованої системи лінійних алгебраїчних рівнянь: $\|\alpha\| = 0.5$, $\|\beta\| = 0.4$. Методом простих ітерацій проведено три наближення на шляху до розв'язку системи. Тоді гранична абсолютна похибка результату рівна ...
 - a. 0.1
 - b. 0.05
 - c. 0.15
- 21. Відомі норми матриць α та β нормалізованої системи лінійних алгебраїчних рівнянь:: $\|\alpha\| = 0.7$, $\|\beta\| = 0.5$. Методом простих ітерацій проведено три наближення на шляху до розв'язку системи. Тоді гранична абсолютна похибка результату рівна ...
 - a. 0,2
 - b. 0,04
 - c. 0,4
- 22. Відомі норми матриць α та β нормалізованої системи лінійних алгебраїчних рівнянь: $\|\alpha\| = 0.7$, $\|\beta\| = 0.2$. Методом простих ітерацій проведено три наближення на шляху до розв'язку системи. Тоді гранична абсолютна похибка результату рівна ...
 - a. 0,2
 - b. 0.16
 - c. 0.12
- 23. Ітераційний процесу рішення системи лінійних алгебраїчних рівнянь збігається, якщо для норми матриці α, нормалізованої лінійної системи виконується умова ...
 - a. $\|\alpha\| < 1$
 - b. $\|\alpha\| > 1$
 - $\|\alpha\| = 1$
- 24. Задана таблична функція $y_i = f(x_i)$:

X_i	1	2	3
\mathcal{Y}_i	2	4	8

Тоді інтерполяційний многочлен, апроксимуючий цю функцію, буде рівний...

a.
$$P(x) = x^2 - x + 2$$

b.
$$P(x) = x^2 - 2x + 3$$

c.
$$P(x) = x^2 - 3x + 4$$

d.
$$P(x) = x^2 - 4x + 5$$

25. Задана таблична функція $y_i = f(x_i)$:

	,	1	
X_i	1	2	3
\mathcal{Y}_i	2	3	6

Тоді інтерполяційний многочлен, апроксимуючий цю функцію, буде рівний...

a.
$$P(x) = x^2 - 2x + 3$$

b.
$$P(x) = x^2 - x + 2$$

c.
$$P(x) = x^2 - 3x + 4$$

$$P(x) = x^2 - 4x + 5$$

26. Задана таблична функція $y_i = f(x_i)$:

\mathcal{X}_{i}	1	2	3
\mathcal{Y}_i	2	1	2

Тоді інтерполяційний многочлен, апроксимуючий цю функцію, буде рівний...

a.
$$P(x) = x^2 - 2x + 3$$

b.
$$P(x) = x^2 - 4x + 5$$

c.
$$P(x) = x^2 - x + 2$$

d.
$$P(x) = x^2 - 3x + 4$$

27. Задана таблична функція $y_i = f(x_i)$:

\mathcal{X}_{i}	1	2	3
\mathcal{Y}_i	2	4	3

Тоді її лінійна апроксимація за методом найменших квадратів буде мати вигляд:

a.
$$0.5x + 2$$

b.
$$0.5x-1$$

c.
$$0.5x + 1$$

28. Задана таблична функція $y_i = f(x_i)$:

\mathcal{X}_{i}	1	2	3
\mathcal{Y}_i	3	1	2

Тоді її лінійна апроксимація за методом найменших квадратів буде мати вигляд:

a.
$$-0.5x + 3$$

b.
$$1.5x + 1$$

c.
$$-1.5x-1$$

29. Задана таблична функція $y_i = f(x_i)$:

X_i	1	2	3	4	5	6	7
\mathcal{Y}_{i}	0	2	6	5	3	1	0

Тоді визначений інтеграл цієї функції в межах від 1 до 7, обчислений методом трапецій з кроком h=1 буде рівний...

- a. 19
- b. 17
- c. 13
- d. 14

30. Задана таблична функція $y_i = f(x_i)$:

X_i	1	2	3	4	5	6	7
y_i	2	4	8	9	7	6	4

Тоді визначений інтеграл цієї функції в межах від 1 до 7, обчислений методом трапецій з кроком h=1 буде рівний...

- a. 40
- b. 37
- c. 39
- d. 41

31. Задана таблична функція $y_i = f(x_i)$:

X_i	1	2	3	4	5	6	7
\mathcal{Y}_i	0	2	7	11	12	6	2

Тоді визначений інтеграл цієї функції в межах від 1 до 7, обчислений методом Симпсона з кроком h=1 буде рівний...

- a. 38,67
- b. 40,2
- c. 39,12
- d. 42,4

32. Задана таблична функція $y_i = f(x_i)$:

		1					
X_i	1	2	3	4	5	6	7
\mathcal{Y}_{i}	2	8	16	15	10	7	6

Тоді визначений інтеграл цієї функції в межах від 1 до 7, обчислений методом Симпсона з кроком h=1 буде рівний...

- a. 58,2
- b. 60,7
- c. 62,4
- d. 65,3

33. Задана таблична функція $y_i = f(x_i)$:

x_i	1	2	3	4	5	6	7
\mathcal{Y}_i	4	5	6	10	9	8	6

Тоді визначений інтеграл цієї функції в межах від 1 до 7, обчислений методом Симпсона з кроком h=1 буде рівний...

- a. 48,3
- b. 57,3
- c. 44,1
- d. 46,7
- 34. Округліть число 3,1415926 до чотирьох значущих цифр та виберіть правильну відповідь:
 - a. 3, 1415
 - b. 3, 1416
 - c. 3, 142
 - d. 3, 14
- 35. Етап методу Гауса, який полягає в послідовному знаходженні значень невідомих, називається:
 - а. Прямий хід
 - b. Обернений xiд
 - с. Немає вірної відповіді
- 36. Вираз $\Delta^2 y = f(x + 2\Delta x) 2 f(x + \Delta x) + f(x)$ називається:
 - а. Першою скінченною різницею
 - b. Другою скінченою різницею
 - с. Скінченною різницею п-го порядку
 - d. Немає вірної відповіді
- 37. Визначте назву даного інтерполяційного многочлена

$$\sum_{i=0}^{n} \frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)} \cdot y_i$$

- а. інтерполяційний многочлена Лагранжа
- ь. інтерполяційний многочлена Стірлінга
- с. І інтерполяційний многочлена Ньютона
- d. II інтерполяційний многочлена Ньютона
- 38. Формули для наближеного обчислення інтеграла, називаються :
 - а. лінійними
 - b. квадратурними
 - с. різнистними
 - d. немає вірної відповіді
- 39. Метод розв'язування задачі Коші, який дозволяє побудувати формулу розрахунку наближеного розв'язку майже будь-якого порядку точності називається...
 - а. метод найменьших квадратів
 - b. метод Ейлера
 - с. метод Рунге-Кутта
- 40. Що з перерахованого не ϵ чисельним методом розв'язування рівнянь з одні ϵ ю змінною?
 - а. метод Ньютона;
 - b. метод ітерацій;
 - с. метод Ейлера;
 - d. метод хорд.

- 41. Що з перерахованого не є формулою чисельного інтегрування функцій?
 - а. формула трапецій;
 - b. формула Сімпсона;
 - с. формула Крамера;
 - d. формула прямокутників.
- 42. Що з перерахованого не ϵ методом розв'язування систем лінійних алгебраїчних рівнянь?
 - а. метод Зейделя;
 - ь. метод простої ітерації;
 - с. метод Гаусса;
 - d. метод голових елементів.
- 43. Що з перерахованого не ϵ засобом інтерполювання функцій?
 - а. схема Ейткіна;
 - b. многочлен Лагранжа;
 - с. многочлен Ньютона;
 - d. немає вірної відповіді
- 44. Наближеним числом a називається число...
- а) що повністю відрізняється від точного числа А і яке заміняє його в обчисленнях.
- b) що незначно відрізняється від точного числа A і яке заміняє його в обчисленнях.
- с) що незначно відрізняється від точного числа А і яке не може заміняти його в обчисленнях.
- d) що повністю відрізняється від точного числа A і яке не може заміня його в обчисленнях.
- 45. Різниця між точним числом А та його наближеним числом а називається...
 - а) границею
 - b) функцією
 - с) похибкою
 - d) інтервалом
- 46. Під *граничною* абсолютною похибкою Δ_a наближеного числа розуміють всяке число, яке...
 - а) не менше абсолютної похибки цього числа
 - b) не більше абсолютної похибки цього числа
 - с) дорівнює абсолютній похибці цього числа
 - d) не менше відносної похибки цього числа
- 47. Відносною похибкою δa наближеного числа а називається відношення...
 - а) абсолютної похибки Δa цього числа до модуля відповідного точного числа
 - b) абсолютної похибки Δa цього числа до наближеного числа
 - α абсолютної похибки Δa цього числа до відповідного точного числа
 - d) абсолютної похибки Δa цього числа до модуля наближеного числа

- 48. Щоб округлити число до n значущих цифр, відкидають усі наступні значущі цифри. При цьому, якщо:
 - а) перша з відкинутих цифр менша 5, то від останньої значущої цифри віднімається одиниця;
 - b) перша з відкинутих цифр більша 5, то остання залишена цифра залишається тією самою;
 - с) перша з відкинутих цифр менша 5, то остання залишена цифра залишається тією самою;
 - d) перша з відкинутих цифр менша 5, то до останньої значущої цифри додається одиниця;
- 49. Відносна похибка добутку кількох наближених чисел, відмінних від нуля...
 - а) не перевищує різниці відносних похибок цих чисел
 - b) не перевищує суми відносних похибок цих чисел
 - с) більша за суму відносних похибок цих чисел
 - d) дорівнює добутку відносних похибок цих чисел
- 50. Якщо всі співмножники мають m правильних десяткових знаків і кількість їх не більша 10, то...
 - а) кількість правильних знаків в добутку на одну або дві одиниці більше m
 - b) кількість правильних знаків в добутку дорівнює m
 - c) кількість правильних знаків в добутку на 5 одиниць більше m
 - d) кількість правильних знаків в добутку на одну або дві одиниці менше
- 51. Відносна похибка частки...
 - а) не перевищує суми відносних похибок діленого і дільника
 - ь) більша суми відносних похибок діленого і дільника
 - с) дорівнює абсолютній похибці діленого
 - d) дорівнює відносній похибці діленого
- 52. Гранична відносна похибка m-го степеня числа $U = x^m \dots$
 - а) в m разів більша відносної граничної похибки самого числа
 - b) в m-l разів більша відносної граничної похибки самого числа
 - с) в m разів менша відносної граничної похибки самого числа
 - d) в m-l разів менша відносної граничної похибки самого числа
- 53. Гранична відносна похибка кореня m-го степеня $U = \sqrt[m]{x}$...
 - а) в m-1 разів менша граничної відносної похибки підкореневого числа
 - b) в m-1 разів більша граничної відносної похибки підкореневого числа
 - с) в m разів більша граничної відносної похибки підкореневого числа
 - d) в m разів менша граничної відносної похибки підкореневого числа
- 54. Гранична абсолютна похибка різниці $U = x_1 x_2 \dots$
 - а) дорівнює різниці граничних похибок зменшуваного і від'ємника
 - b) дорівнює сумі граничних похибок зменшуваного і від'ємника

- с) дорівнює добутку граничних похибок зменшуваного і від'ємника
- d) дорівнює частці граничних похибок зменшуваного і від'ємника
- 55. Метод Гауса полягає в:
 - а) Послідовному вилученні невідомих з системи;
 - b) Зведенні системи до трикутної форми;
 - с) Перетворенні вихідної системи до рівносильної їй;
 - d) Всі відповіді неправильні.
- 56. На якому етапі метода Гауса вихідну систему рівнянь зводять до рівносильної їй системи трикутної форми?
 - а) Першому;
 - b) Другому;
 - с) Третьому;
 - d) На будь-якому.
- 57. Процес перетворення вихідної системи рівнянь до рівносильної їй системи трикутної форми називають:
 - а) Зворотним ходом;
 - b) Прямим ходом;
 - с) Прямою ітерацією;
 - d) Зворотною ітерацією.
- 58. Як називається другий етап методі Гауса:
 - а) Зворотним ходом;
 - b) Прямим ходом;
 - с) Прямою ітерацією;
 - d) Зворотною ітерацією.
- 59. Якщо рядкова сума збігається з контрольною сумою, то:
 - а) Помилок в обчисленнях немає;
 - b) Допущено помилку в обчисленнях;
 - с) Допущено помилку, контрольна сума має бути більша за рядкову;
 - d) Допущено помилку, контрольна сума має бути менша за рядкову.
- 60. Якщо рядкова сума більша за контрольну, то:
 - а) Помилок в обчисленнях немає;
 - b) Не має значення для ходу обчислень;
 - с) Допущено помилку в обчисленнях;
 - d) Правильної відповіді немає.
- 61. Зворотній хід в методі Гауса виконується за формулами:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

a.
$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

b.
$$\begin{cases} a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 = a_{24}^{(1)} \\ a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 = a_{34}^{(1)} \end{cases}$$

$$\begin{cases} a_{32}x_2 + a_{33}x_3 = a_{34} \\ x_3 = a_{34}^{(3)}, \\ x_2 = a_{24}^{(2)} - a_{23}^{(2)}x_3, \\ x_1 = a_{14}^{(1)} - a_{13}^{(1)}x_3 - a_{12}^{(1)}x_2 \end{cases}$$

- d. За будь-якою з формул.
- 62. Для того, щоб в методі простої ітерації послідовність була збіжною, достатньо:

a.
$$a = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = 1$$

b.
$$a = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| < 1$$

c.
$$a = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2} = 1$$

- d. Всі відповіді правильні.
- 63. В методі простої ітерації початкова точка n-вимірного простору позначена:

a.
$$x^{(1)}(x_1^{(1)}, x_2^{(1)}, ..., x_5^{(1)})$$

b.
$$x^{(0)}(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})$$

c.
$$x(x_1, x_2, x_3)$$

- d. Всі відповіді правильні.
- 64. Якщо одна із умов збіжності $a = \max_{1 \le i \le n} \sum_{j=1}^n \left| a_{ij} \right| < 1$, $a = \max_{1 \le i \le n} \sum_{j=1}^n \left| a_{ij} \right| < 1$,

$$a = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} \neq 1}$$

не виконується, то:

- а. Метод ітерації застосувати неможливо;
- b. Це не означає, що метод ітерації застосувати не можливо;
- с. Необхідне виконання всіх умов для використання методу ітерації;
- d. Нема ϵ правильної відповіді.
- 65. Якщо функція F(x) монотонна на [a, b], то на цьому відрізку міститься корінь.
- а) наближений
- б) алгебраїчний
- в) ізольований
- г) квадратний
- 66. Ідея методу хорд полягає в тому, що на досить малому відрізку дуга кривої y = f(x) замінюється
 - а) паралельною прямою
 - б) хордою
 - в) дотичною
 - г) перпендикулярною прямою
- 67. Яка формула визначає метод Ньютона?

a)
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, ...$$

6)
$$x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, ...$$

B)
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(c)} (x_k - c), k = 0, 1, 2, ...$$

$$\Gamma$$
) $x_{k+1} = x_k + \frac{f(x_k)}{f(x_k) + f(c)} (x_k + c), k = 0, 1, 2, ...$

- 68. Геометричний зміст методу дотичних: дуга кривої y = f(x) замінюється до цієї кривої.
 - а) паралельною прямою
 - б) хордою
 - в) дотичною
 - г) перпендикулярною прямою
- 69. Якщо для даного рівняння послідовність наближень методу хорд монотонно спадна, то якою буде послідовність наближень методу дотичних?
 - а) монотонно зростаюча
 - б) монотонно спадна
 - в) неперервна
 - г) визначена
- 70. Якщо корінь рівняння F(x) = 0 можна знайти як точку перетину графіків функцій y = f(x), y = g(x), то F(x) = :

a)
$$F(x) = \frac{f(x)}{g(x)}$$

$$6) F(x) = f(x) + g(x)$$

B)
$$F(x) = f(x)g(x)$$

$$\Gamma) \ F(x) = f(x) - g(x)$$

- 71. Якщо функція f(x) визначена і неперервна на деякому проміжку (a,b), то розв'язання рівняння f(x) = 0 зводиться до відшукання множини значень $x \in (a,b)$, при яких це рівняння перетворюється у
 - а) рівносильне рівняння
 - б) тотожність
 - в) лінійний вираз
 - г) неправильну тотожність
- 72. Як алгебраїчно можна записати метод хорд?

a)
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(c)} (x_k - c), \ k = 0, 1, 2, ...$$

6)
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, ...$$

B)
$$x_{k+1} = x_k + \frac{f(x_k)}{f(x_k) + f(c)} (x_k - c), k = 0, 1, 2, ...$$

$$6) x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, \dots$$

73. Знаходження наближених коренів рівняння f(x) = 0 складається із двох етапів:

..... та уточнення кореня із наперед заданою точністю ϵ .

- а) знаходження коренів
- б) виділення коренів
- в) відокремлення коренів
- г) всі відповіді правильні
- 74. В чому полягає комбінований метод розв'язування рівнянь?
 - а) одночасне застосування методів дотичних і хорд
 - б) одночасне застосування методу хорд і методу простої ітерації
 - в) одночасне застосування методу дотичних і методу простої ітерації
- 75. Для чого застосовується метод квадратних коренів?
 - а. для розв'язування систем лінійних алгебраїчних рівнянь
 - b. для розв'язування лінійних рівнянь з симетричною матрицею
 - с. для розв'язування систем лінійних рівнянь з симетричною матрицею
 - d. правильної відповіді немає
- 76. Симетрична матриця подається у вигляді
 - a. $A=C^T*D*C$
 - b. $A=C*D^T*C$
 - c. $A=C^T*D$
 - d. $A=C^T*C$
 - e. $A=C^T*D^T*C$
- 77. Як називається матриця C^T ?
 - а. трансформована матриця
 - b. транспонована матриця
 - с. діагональна матриця
 - d. трансцендентна матриця
- 78. Що таке рекурентна формула?
 - а. формула, що виражає загальний (п-й) член послідовності через наступні її члени
 - ь. формула, що знаходить суми членів послідовності
 - с. формула, що виражає загальний (n-й) член послідовності через попередні її члени
 - d. формула, що знаходить останній член послідовності
- 79. Матриця називається додатнью визначеною, якщо всі її головні мінори A_n :
 - а. від'ємні
 - b. додатні
 - с. рівні
 - d. обернені
 - е. трансформовані

80. Нехай дано систему рівнянь

$$2.66x_1 - 1.35x_2 - 2.63x_3 + 2.61x_4 = 3.5337$$

$$-1.35x_1 - 2.67x_2 + 1.36x_3 + 2.22x_4 = -1.8689$$

$$-2.63x_1 + 1.36x_2 - 2.37x_3 + 1.16x_4 = -1.5770$$

$$2.61x_1 + 2.22x_2 + 1.16x_3 + 1.22x_4 = 15.6635$$

Тоді вільними членами називаються:

- а. коефіцієнти при x_1
- b. коефіцієнти при x_2
- с. коефіцієнти при x_3
- d. коефіцієнти при x_4
- е. немає правильної відповіді

Контрольні завдання для перевірки засвоєних знань та умінь

Варіант № 1

Виберіть	правильну	відповідь:
----------	-----------	------------

1) Виокремте корені рівняння графічно та вкажіть їх кількість $\cos x - x^2 = 0$.

A) 1;

Б)2;

B)3;

Γ)4.

2) Виокремте корені рівняння аналітично та вкажіть їх кількість $x^3 - 12x - 5 = 0$.

A) 1;

Б)2;

B)3;

Γ)4.

3) Обчисліть за формулою трапецій $\int_{1}^{2} \frac{dx}{x}$ з точністю до 0,01; прийняв n=5.

A) 0,51;

Б)0,69;

B)0,81;

 Γ)0,99.

4) Методом множників Лагранжа знайти екстремум функцій $f(x,y) = x^2 + y^2$ при умові що $x \cdot y = 16$.

A) (4;4);

Б)(8;2);

B)(2;8);

 Γ)(1;16).

5) Обчисліть за формулою Сімпсона $\int_{0}^{1} x^{2} \sin x dx$ з точністю до 0,000001; прийняв n=10.

A) 0,2232396;

Б)1,2122234;

B) 0,5142317;

Γ)2,0013427.

6) 3 таблиці

		1					
X	1	2	3	4	5	6	7
у	3	7	13	21	31	43	57

найти значення у при x=3,1 використовуючи інтерполяційну формулу Ньютона.

A) 13,20;

Б)12.71:

B)14,31;

Γ)15.82.

7) Маємо таблицю функції

X	0,41	1,55	2,67	3,84
у	2,63	3,75	4,87	5,03

Необхідно знайти значення функції в точці 1,91 використовуючи многочлен Лагранжа

A) 4,25;

Б)3,95;

B)4,35;

 Γ)4,15.

8) Який знак відношення можна поставити між степеню інтерполяційного многочлена та кількістю вузлів інтерполяції:

А) рівна;

Б) менше;

В) більше;

- Г) не більше.
- 9) В якому вигляді можна отримати розв'язок звичайного диференційного рівняння за методом Ейлера:
 - А) графік;

- Б) таблиця значень;
- В) аналітичне рівняння;
- Г) константа.
- 10) Значення функції у, що визначається диференціальним рівнянням $y' = y^2 + \frac{y}{x}$, з початковою умовою y(2) = 4, було отримано методом Ейлера з кроком h=0,1. В точці x = 2,3 буде дорівнювати:
 - A) 9,81;
- Б)18,78;
- B)5,91;
- Γ)20,45.

Знайдіть розв'язок.

- 11) Методом ділення навпіл уточніть корінь з точністю до 0,01 корінь рівняння $x^4 x 1 = 0$ на відрізку [1; 2].
- 12) Методом простої ітерації найдіть наближене значення кореня рівняння $x^3 10x + 4 = 0$ з точністю до 0,01 на [0; 1].
- 13) Методом Гауса знайдіть розв'язок системи рівнянь:

$$\begin{cases} 3x_1 - x_2 + 3x_3 = 5 \\ x_1 + 2x_2 - x_3 = 2 \\ 3x_1 + 2x_2 - 5x_3 = 0. \end{cases}$$

- 14) Дано точки (0;3), (2;1), (3;5), (4;7). Складіть рівняння многочлена, що набуває зазначених значень при заданих значеннях аргументу.
- 15) Запишіть розрахункові формули методу Рунге-Кутта що наближує розв'язок звичайного диференціального рівняння (розв'язок задачі Коші).

Варіант №2

Виберіть правильну відповідь:

- 1) Виокремте корені рівняння графічно та вкажіть ΪX кількість $2\cos\left(x + \frac{\pi}{6}\right) + x^2 - 3x + 2 = 0$.
 - A) 1;
- Б)2:
- B)3;
- Γ)4.
- 2) Виокремте корені рівняння аналітично вкажіть ΪX кількість $x^3 - 10x + 4 = 0$.
 - A) 1;
- Б)2;
- B)3;
- Γ)4.
- 3) Обчисліть за формулою трапецій $\int_{r^2}^2 \frac{dx}{r^2}$ з точністю до 0,0001; прийняв n=10.
 - A) 1,5012;
- Б)0,4857;
- B)2,1432;
- Γ)0,5000.
- 4) Методом множників Лагранжа знайти екстремум функцій $f(x, y) = x \cdot y$ при умові що 2x + 3y = 5.
 - A) (1;1);

- Б) $(\frac{5}{4}; \frac{5}{6});$ В) $(\frac{1}{2}; \frac{5}{3});$ Γ) $(\frac{5}{2}; \frac{1}{3}).$
- 5) Обчисліть за формулою трапецій $\int_{0}^{1} x^{2} \sin x dx$ з точністю до 0,001; прийняв n=10.
 - A) 0,119;
- Б)0,225;
- B) 1,012; Γ)1,897.

6) 3 таблиці

X	5	6	7	8
y	25	36	49	64

найти значення у при х=6,25 використовуючи інтерполяційну формулу Ньютона.

- A) 39,0125;
- Б)38,0625;
- B)39,0625;
- Γ)38,0125.

7) Маємо таблицю функції

X	321	322,8	324,2	325
y	2,50651	2,50893	2,51081	2,51188

Необхідно знайти значення функції в точці 323,5 використовуючи многочлен Лагранжа

- A) 2,44081;
- Б)2,50987;
- B)2,48812;
- Γ)2,31245.
- 8) В якому вигляді можна отримати розв'язок звичайного диференційного рівняння за методом Пікара:
 - А) графік;

Б) таблиця значень;

- В) аналітичне рівняння; Γ) константа.
- 9) Який знак відношення можна поставити між степеню інтерполяційного многочлена та кількістю вузлів інтерполяції:
 - А) не більше;

Б) рівність;

В) менше;

Г) більше.

- 10) Значення функції у, що визначається диференціальним рівнянням $y' = 1 + x + y^2$, з початковою умовою y(0) = 1, було отримано методом Ейлера з кроком h=0,1. В точці x = 0,2 буде дорівнювати:
 - A) 1,81;
- Б)16,5;
- B)1,45;
- Γ)1,39.

Знайдіть розв'язок.

- 11) Методом ділення навпіл уточніть корінь з точністю до 0,01 корінь рівняння $x^5 x 2 = 0$ на відрізку [1; 2].
- 12) Методом простої ітерації найдіть наближене значення кореня рівняння $x^3 12x 5 = 0$ з точністю до 0,01 на [-1; 0].
- 13) Методом Гауса знайдіть розв'язок системи рівнянь:

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ x_1 + x_2 - x_3 = 0 \\ 4x_1 - x_2 + 5x_3 = 3. \end{cases}$$

- 14) Дано точки (0;-7), (3;5), (4;8), (6;14). Складіть рівняння многочлена, що набуває зазначених значень при заданих значеннях аргументу.
- 15) Запишіть всі відомі вам формули чисельного інтегрування.

Варіант №3

Виберіть правильну відповідь:

1) Виокремте корені рівняння графічно та вкажіть ΪX кількість $2x + \lg(2x + 3) - 1 = 0$.

A) 1;

B)3;

Γ)4.

2) Виокремте корені рівняння аналітично та вкажіть їх кількість $x^4 - x - 1 = 0$.

Б)2;

B)3;

Γ)4.

3) Обчисліть за формулою трапецій $\int_{1}^{2} \frac{dx}{\sqrt{x}+1}$ з точністю до 0,000001; прийняв n=8.

A) 1,169172;

Б)2,543081;

B)3,051213; Γ)4,083182.

множників Лагранжа знайти функцій 4) Методом екстремум $f(x,y) = x^2 + y^2$ при умові що x + y = 1.

A) (0;1);

Б)(1;0);

B) $(\frac{1}{2};\frac{1}{2});$

5) Обчисліть за формулою трапецій $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+x} dx$ з точністю до 0,001; прийняв n=6.

A) 1,28;

Б)0,42;

B) 1,85;

 Γ)0,67.

6) 3 таблиці

о) этаблиці						
X	2,0	2,1	2,2	2,3	2,4	2,5
y	0,30103	0,32222	0,34242	0,36173	0,38021	0,39794

найти значення у при х=2,03 використовуючи інтерполяційну формулу Ньютона.

A) 0,30750;

Б)0,30625;

B)0,31625;

 Γ)0,31125.

7) Маємо таблицю функції

T) Tituesiae ruesiaigie q					
X	0	2	3	4	
у	3	1	5	7	

Необхідно знайти значення функції в точці х=1 використовуючи многочлен Лагранжа

A) -1;

Б)2;

B)-1,5;

 Γ)0,5.

8) До якого типу методів відноситься метод Гауса:

А) прямий;

Б) ітераційний;

В) уточнюючий;

Г) сліпий.

- 9) В якому вигляді можна отримати розв'язок звичайного диференційного рівняння за методом Рунге-Кутта:
 - А) графік;

- Б) таблиця значень;
- В) аналітичне рівняння;
- Г) константа.
- 10) Значення функції у, що визначається диференціальним рівнянням $y' = x^2 + y^2$, з початковою умовою y(0) = 0, було отримано методом Ейлера з кроком h=0,1. В точці x = 0,3 буде дорівнювати:
 - A) 0,005;
- Б)0,21;
- B)0,041;

 Γ)0,85.

Знайдіть розв'язок.

- 11) Методом ділення навпіл уточніть корінь з точністю до 0,01 корінь рівняння $x^3 + 2x 7 = 0$ на відрізку [1; 2].
- 12) Методом простої ітерації найдіть наближене значення кореня рівняння $2 \lg x x = 0$ з точністю до 0,01 на [1; 2].
- 13) Методом Гауса знайдіть розв'язок системи рівнянь:

$$\begin{cases} x_1 + 2x_2 + 5x_3 = -9 \\ x_1 - x_2 + 3x_3 = 2 \\ 3x_1 - 6x_2 - x_3 = 25. \end{cases}$$

- 14) Дано точки (2;3), (4;7), (5;9), (10;19). Складіть рівняння многочлена, що набуває зазначених значень при заданих значеннях аргументу.
- 15) Запишіть інтерполяційні формули Ньютона.

Запитання до екзамену

- 1. Етапи розв'язування задач на ЕОМ.
- 2. Джерела і класифікація похибок. Похибки наближених чисел. Запис наближених чисел. Правила округлення.
- 3. Пряма задача теорії похибок.
- 4. Обернена задача теорії похибок.
- 5. Метод границь.
- 6. Задача відокремлення коренів нелінійного рівняння.
- 7. Розв'язування нелінійного рівняння методом хорд.
- 8. Розв'язування нелінійного рівняння методом простої ітерації. Збіжність методу простої ітерації.
- 9. Розв'язування нелінійного рівняння методом Ньютона, його збіжність.
- 10. Розв'язування нелінійного рівняння методом методом поділу проміжку навпіл.
- 11. Розв'язування систем лінійних алгебраїчних рівнянь методом головних елементів та ітерацій.
- 12. Метод квадратного кореня розв'язування систем лінійних алгебраїчних рівнянь.
- 13. Метод прогонки розв'язування систем лінійних алгебраїчних рівнянь
- 14. Розв'язування систем нелінійних алгебраїчних рівнянь методом ітерацій.
- 15. Розв'язування систем нелінійних алгебраїчних рівнянь методом Ньютона.
- 16. Розв'язування задачі про власні значення та власні вектори методом безпосереднього розгортання визначника.
- 17. Розв'язування задачі про власні значення та власні вектори методом обертань.
- 18. Задача наближення функцій. Інтерполяційний многочлен Лагранжа.
- 19. Оцінка похибки інтерполювання за допомогою інтерполяційного многочлена Лагранжа.

- 20. Інтерполяційні многочлени Ньютона.
- 21. Інтерполювання сплайнами.
- 22. Апроксимація функцій. Метод найменших квадратів.
- 23. Чисельне інтегрування. Квадратурні формули Ньютона-Котеса.
- 24. Формула трапецій.
- 25. Оцінка похибки формули трапецій.
- 26. Формула Сімпсона.
- 27. Оцінка похибки формули Сімпсона.
- 28. Чисельне інтегрування у випадку кратних інтегралів. Кубатурні формули типу Сімпсона.
- 29. Квадратурна формула Гауса.
- 30. Чисельне диференціювання.
- 31. Постановка задачі Коші. Розв'язування задачі Коші методами Ейлера.
- 32. Розв'язування задачі Коші методами типу Рунге-Кутта.
- 33. Розв'язування задачі Коші методом Адамса.
- 34. Розв'язування диференціальних рівнянь другого порядку методом скінчених різниць.
- 35. Класифікація диференціальних рівнянь у частинних похідних.
- 36. Скінченорізницеві апроксимації диференціальних рівнянь у частинних похідних.
- 37. Апроксимація та розв'язування еліптичних диференціальних рівнянь в частинних похідних. Вплив криволінійних крайових умов.

223

Список рекомендованих джерел і літератури

- 1. Бабенко К.И. Основы численного анализа. М.: Наука, 1986.
- 2. Бахвалов H.C. Численные методы. M.: Hayкa, 1973. 631 с.
- 3. Бахвалов Н.С. Численные методы. Анализ, алгебра, обыкновенные дифференциальные уравнения. М.: Наука, 1975. 631 с.
- 4. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 598 с.
- 5. Бейко И.В., Бублик Б.Н., Зинько П.Н. Методы и алгоритмы решения задач оптимизации. Киев: Вища шк., 1983. С. 19-37.
- 6. Березин И.С., Жидков Н.П. Методы вычислений. Т.1. М.: Наука, 1966. 632 с.
- 7. Березин И.С., Жидков Н.П. Методы вычислений. Т.2. М.: ГИФМЛ, 1960. 620 с.
- 8. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984. 320 с.
- 9. Волков Е.А. Численные методы. М.: Наука, 1978
- 10. Гаврилюк І.П., Макаров В.Л. Методи обчислень: Підручник. К.: Вища шк. 1995. 367 с.
- 11. Григоренко Я.М., Панкратова Н.Д. Обчислювальні методи в задачах прикладної математики. К.: Либідь, 1995.
- 12. Дейнека В.С., Сергиенко И.В., Скопецкий В.В. Математические модели и методы расчета задач с разрывными решениями. Киев: Наук. думка, 1995. 262 с.
- 13. Демидович Б.П., Марон И.А. Основы вычислительной математики. –М.: Наука, 1970. –654 с.
- 14. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. М.: Физматгиз, 1063. 400 с.
- 15. Жалдак М.И., Рамский Ю.С. Чисельні методи математики. Київ: Рад.шк., 1984.
- 16.Заварыкин В.М., Житомирский В.Г., Лапчик М.П. Численные методы. М.: Просвещение, 1991. 175 с.
- 17.Зуховицкий С.И., Авдеева Л.И. Линейное и выпуклое программирование. М.: Наука, 1976.
- 18. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- 19. Колатц Л., Альбрехт Ю. Задачи по прикладной математике. М.: Наука, 1978.
- 20. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: Наука, 1972.
- 21. Крылов В.И., Бобков В.В. Вычислительные методы. М.: Наука, 1976. Т. 1., 1977. Т. 2.
- 22. Крылов В.И., Бобков В.В. Начала теории вычислительных методов. Интерполирование и интегрирование. Минск: Наука и техника, 1983.
- 23. Кузьмичев Д.А., Радкевич М.А., Смирнов А.Д. Автоматизация

- экспериментальных исследований: Учеб. пособие для вузов. М. :Наука, 1983. 391 с.
- 24. Ляшко И.И., Макаров В.Л., Скоробагатько А.А. Методы вычислений (Численный анализ. Методы решения задач математической физики). Киев: Вища шк., 1977. 408 с.
- 25. Лященко М.Я., Головань М.С. Чисельні методи. К.: Либідь, 1996. 288 с.
- 26. Макаров В.Л., Хлобыстов В.В. Сплайн-аппроксимация функций. М.: Высш.шк., 1983.
- 27. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
- 28. Молчанов И.Н. Машинные методы решения прикладных задач. Дифференциальные уравнения. Киев: Наук. думка, 1988. 343 с.
- 29. Молчанов И.М., Николенко Л.Д. Основы метода конечных элементов. Киев: Наук. думка, 1989. – 272 с.
- 30.Методи обчислень: Практикум на ЕОМ. Навч. посібник / Бурківська В.Л. та ін. К.: Вища шк., 1995. 303 с.
- 31. Пшеничный Б.Н. Необходимые условия экстремума. М.: Наука, 1982. 144 с.
- 32. Самарский А.А. Введение в численные методы. М.: –Наука 1987. 288 с.
- 33. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. 430 с.
- 34.Солодовников А.С. Введение в линейную алгебру и линейное программирование. М.: Просвещение, 1966. 183 с.

ДЛЯ НОТАТОК

ДЛЯ НОТАТОК

Навчальне видання

ЛЯШЕНКО Борис Миколайович КРИВОНОС Олександр Миколайович ВАКАЛЮК Тетяна Анатоліївна

МЕТОДИ ОБЧИСЛЕНЬ

Навчально-методичний посібник для студентів фізико-математичного факультету

Надруковано з оригінал-макета авторів

Підписано до друку 30.09.12. Формат 60х90/16. Папір офсетний. Гарнітура Times New Roman. Друк різографічний. Ум. друк. арк. 13,25. Обл. вид. арк. 10.5. Наклад 300. Зам. 744.

Видавець і виготовлювач
Видавництво Житомирського державного університету імені Івана Франка м. Житомир, вул. Велика Бердичівська, 40
Свідоцтво суб'єкта видавничої справи: серія ЖТ №10 від 07.12.04 р.