correction d'erreurs en communication, codes de Reed Muller

transition, transformation, conversion

dans quelle mesure l'utilisation de codes correcteurs est pertinente pour la transmission de données ?

GRIMAUD Krawlya: 34692

• perturbations :

• redondance:

codage
$$11$$
 bruit 10 ? detecte \longrightarrow 111 101 1 detecte et corrige

$$1+1 = 2 pair$$

1010 0

code de hamming

structure en carré, placement avisé de plusieurs bits de contrôle

travail sur lignes et colones → localisation de l'erreur

corrige 1 erreur détecte 2 erreurs

Quelques définitions

distance minimale: d

plus petite distance de hamming entre deux mots distincts du code (nombre de bits qui diffèrent)

nombre d'erreurs qu'il est possible de corriger

taux d'information:

nombre de bits d'information / nombre de bits total

04/26

prendre le message recu et le rapporter au code le plus proche

on considèrera le canal de communication assez fiable pour décoder le message

Les codes de Reed Muller : definition RM(1,m) et propriétés

• paramètres :

pour m = 3

 $r \rightarrow degré$, $m \rightarrow nombre de variables$

x0 = 111111111

2^m - uplets <u>x1, ..., xm</u>

x1 = 000011111

<u>xi</u>: alternance de 0 et 1 tous les 2^(m-i)

x2 = 00110011

x3 = 01010101

• RM(1, m):

toutes les combinaisons linéaires de <u>1, x1,</u> ..., <u>xm</u> de coefficents <u>a0,</u> ..., <u>am</u>

Les codes de Reed Muller : definition RM(1,m) et propriétés

<u>base</u>:
(<u>1</u>, <u>x1</u>, ..., <u>xm</u>)

• <u>distance</u>: d = 2^{m-1} distance minimale de Hamming entre

• matrice generatrice:

• <u>erreurs corrigeables</u>:

deux codes

• taux d'information

Les codes de Reed Muller : encodage (r=1)

message à encoder : (a0, a1, ..., am)

l'encodage <u>c</u> → 2^m-uplet qui correspond à la combinaison linéaire des 2^m mots binaires dans l'ordre lexicographique pondérée par les ai

colonnes de la matrices génératrice \rightarrow tous ces mots binaires

i allant de 0 à m :
$$ci = a0 + a1x1[i] + ... + amxm[i]$$

$$\underline{\mathbf{c}} = [\mathbf{c0}, ..., \mathbf{cm}] = [\mathbf{a0}, ..., \mathbf{am}]$$

$$\underline{\mathbf{x0}}[0] ... \underline{\mathbf{x0}}[2^{m}-1]$$

$$...$$

$$\underline{\mathbf{xm}}[0] ... \underline{\mathbf{xm}}[2^{m}-1]$$

décoder ai : r le mot reçu i : 1 à m

sommer $\underline{r}[a]$ et $\underline{r}[b]$ tel qu'ils correspondent à des paires identiques sauf à la i^e position

ex 1110 et 1100 (2^{m-1} mots de ce type)

ici
$$a2 = \underline{r}[a] + \underline{r}[b]$$

= $(a0 \cdot 1 + a1 \cdot 1 + a2 \cdot 1 + a3 \cdot 0) + (a0 \cdot 1 + a1 \cdot 1 + a2 \cdot 0 + a3 \cdot 0)$
= $0 + 0 + a2 + 0$
si il n'y a pas eu d'erreur

vote de majorité sur les 2^{m-1} ai que l'on a calculé

Les codes de Reed Muller : decodage (r=1) concept

on a maintenant al ... am et r

décoder a0:

$$\underline{r}[i] = \underline{a0} + \underline{a1}\underline{x1}[i] + ... + \underline{am}\underline{xm}[i]$$

$$a0 = \underline{r}[i] + a1\underline{x1}[i] + ... + am\underline{xm}[i]$$
 si il n'y a pas eu d'erreur

vote de majorité pour tout i

on a obtenu les a0, ..., am

Les codes de Reed Muller : résilience et taux d'information

annexe

Les codes de Reed Muller : definition RM(r,m) et propriétés

distance: d = 2^(m-r)
 distance entre deux codes

erreurs corrigeables:| (d-1) /2 |

taux d'information
 |base| / 2^m
 = Σ(i=0->r) (^m_i) /2^m

corriger un maximum d'erreurs : maximiser la distance

erreurs corrigeables:
$$\lfloor (d-1)/2 \rfloor$$
 $d = 2^{(m-r)}$

-> minimiser r

les codes RM(1, m) corrigent les plus d'erreurs

- distance: $d = 2^{m-1}$
- erreurs corrigeables: [(d-1)/2]
- <u>taux d'information</u>: m+1/2^m

mot nul: est un mot de code

distance entre lui et le mot de poids minimal : poids de ce mot c'est la distance minimale

mot de poids minimal : monôme de degré r (*)

poids minimal (nombre de bits à 1) : 2^{m-r}

(*) multiplication de deux mots : le <u>a·b[i] =1 ssi a[i]=1 et b[i]=1</u> plus le degré est grand moins il y a de 1

Les codes de Reed Muller : formule du nombre d'erreurs dorrigeables

s'apparente à des classes d'équivalences où les mots de codes sont les représentants

données

	m	longeur du code	erreurs corrigeables	%erreurs possibles	bits d'information	% information
	repetition			33		33
	hamming	15	1	7	11	73
reed muller	3	8	1	13	4	50
	4	16	3	19	5	31
	5	32	7	22	6	19
	6	64	15	23	7	11
	7	128	31	24	8	6
	8	256	63	25	9	4
	9	512	127	25	10	2