ДЗ по линейной алгебре на 15.09.2021

Кожевников Илья 2112-1

13 сентября 2021 г.

№1

Доказать: $\lambda(\mu * A) = (\lambda \mu) * A$

Представим λ в виде нулевой матрицы, умноженной на λ . Аналогично представим в виде матрицы μ . Тогда наше выражение с тремя перемноженными матрицами примет вид $\lambda \mu * A$. Но по правилу ассоциативности $\lambda(\mu * A) = (\lambda \mu) * A$. Следовательно, изначальное выражение верно при любых λ и μ . Ч.Т.Д.

№2.1

$$\begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix} * \begin{pmatrix} 3 & 29 \\ 2 & 18 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{pmatrix}$$
Otbet:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{pmatrix}$$

№2.2

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$$
 Otbet:
$$\begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$$

№2.3

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Otbet:
$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

№2.4

№3

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} * \begin{pmatrix} -1 & -2 & -3 \\ 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} * \begin{pmatrix} -1 & 1 \\ -2 & 0 \\ -3 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} -14 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} -10 & 10 \end{pmatrix}$$

Other: $\begin{pmatrix} -10 & 10 \end{pmatrix}$

№4

Найти:
$$F(A)$$
, где $F(x)=x^3-3x+2$, $A=\begin{pmatrix}2&1&1\\1&2&1\\1&1&2\end{pmatrix}$

$$2) \ 3A = 3 * \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 3 \\ 3 & 6 & 3 \\ 3 & 3 & 6 \end{pmatrix}$$

$$4)2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$O_{\text{ТВЕТ:}} \begin{pmatrix}
 18 & 18 & 18 \\
 18 & 18 & 18 \\
 18 & 18 & 18
 \end{pmatrix}$$

№5

1)
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
2) $\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$
3) $\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$

$$2) \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$

$$3) \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$

№6

Доказать:
$$X^2-(a+d)X+ad-bc=0$$
, где $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + ad & ab + bd \\ ac + cd & cb + d^2 \end{pmatrix}$$

2)
$$(a+d)x = \begin{pmatrix} a^2 + ad & ab + bd \\ ac + cd & ad + d^2 \end{pmatrix}$$

$$(3) \,\, ad-bc = egin{pmatrix} ad-bc & 0 \ 0 & ad-bc \end{pmatrix}$$

1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + ad & ab + bd \\ ac + cd & cb + d^2 \end{pmatrix}$$

2) $(a+d)x = \begin{pmatrix} a^2 + ad & ab + bd \\ ac + cd & ad + d^2 \end{pmatrix}$
3) $ad - bc = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$
4) $x^2 - (a+d)x = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + dc & cb + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + ad & ab + bd \\ ac + dc & ad + d^2 \end{pmatrix} = \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix}$
5) $\begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$

5)
$$\begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
 H.T. Λ .

№7

 \mathbf{a}

Каждый элемент матрицы Λ будет умножаться на λ n, где n - номер столбца в матрице Λ .

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} * \begin{pmatrix} \lambda 1 & 0 & 0 \\ 0 & \lambda 2 & 0 \\ 0 & 0 & \lambda 3 \end{pmatrix} = \begin{pmatrix} a\lambda 1 & b\lambda 2 & c\lambda 3 \\ d\lambda 1 & e\lambda 2 & f\lambda 3 \\ g\lambda 1 & h\lambda 2 & i\lambda 3 \end{pmatrix}$$

б)

В таком случае при умножении A на Λ всегда будет получаться A, ведь тогда Λ - единичная матрица. Например:

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

8

При умножении А на Е получится матрица, где на ј-том столбце каждый элемент равен соответствующему элементу из матрицы А (1), а при умножении Е на А получится матрица, где на i-той строке каждый элемент равен соответствующему элементу из матрицы A(2).

$$(1) \begin{pmatrix} a11 & a12 & \dots & a1j & \dots & a1n \\ a21 & a22 & \dots & a2j & \dots & a2n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ ai1 & ai2 & \dots & aij & \dots & ain \\ \dots & \dots & \dots & \dots & \dots & \dots \\ am1 & am2 & \dots & amj & \dots & amn \end{pmatrix} * \begin{pmatrix} 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ ai1 & ai2 & \dots & aij & \dots & ain \\ \dots & \dots & \dots & \dots & \dots & \dots \\ am1 & am2 & \dots & amj & \dots & amn \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & a1j & \dots & a1j \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ ai1 & ai2 & \dots & aij & \dots & amn \\ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

9

a)

Пусть $a_{ij} = a_{kl} = 1$

Т.к. все строки и столбцы в обеих матрицах за исключением тех, в которых содержатся a_{ij} и a_{kl} , нулевые, то все элементы произведения матриц будут равны 0 кроме тех, у которых

 $a_{ij} * a_{kl} = 1 * 1 = 1$

Следовательно,

$$\begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

б)

В противном случае аналогично, все строки и столбцы нулевые кроме і-тых и ј-тых => при их перемножении будут получаться нули, а при перемножении строки и столбца с единицами

выражение примет следующий вид: $\begin{pmatrix} 0 & 0 & \dots & a_{ij} & \dots & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 & \dots & a_{kl} & \dots & a$

ние будет равно $0*0+0*0+a_{ij}*0+...+0*a_{kl}+...+0*0$, что будет равно 0. Следовательно, все элементы произведения матриц будут равны нулю => матрица будет нулевая. Ч.Т.Д.