

COMP30026 Models of Computation

Cezary Kaliszyk and William Umboh

Lecture 3

Consequence and Satisfaction

Recap: Models

"|=" is short for "is a model of" or "satisfies".

 $v \models F \text{ iff } F \text{ is true under } v.$

Recap: Models

"|=" is short for "is a model of" or "satisfies".

 $v \models F$ iff F is true under v.

Examples:

$${P \mapsto 1, Q \mapsto 0} \models P \lor Q$$

 ${P \mapsto 0} \models \neg P$

Recap: Models

"|=" is short for "is a model of" or "satisfies".

 $v \models F$ iff F is true under v.

Examples:

$${P \mapsto 1, Q \mapsto 0} \models P \lor Q$$

 ${P \mapsto 0} \models \neg P$

Non-examples:

$${P \mapsto 1, Q \mapsto 0} \nvDash P \to Q$$

 ${P \mapsto 1} \nvDash \neg P$

Recap: Equivalence

" \equiv " is short for "is logically equivalent to".

 $A \equiv B$ iff A and B always have equal truth values.

Recap: Equivalence

"≡" is short for "is logically equivalent to".

 $A \equiv B$ iff A and B always have equal truth values.

Examples:

$$P \to Q \equiv \neg P \lor Q$$
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Recap: Equivalence

"≡" is short for "is logically equivalent to".

 $A \equiv B$ iff A and B always have equal truth values.

Examples:

$$P \to Q \equiv \neg P \lor Q$$
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Non-examples:

$$P \to Q \not\equiv R \to S$$
$$P \land Q \not\equiv P \lor Q$$

Semantic Consequence

Definition

G is a *semantic consequence* of *F* **if and only if** every model of *F* is a model of *G*.

For short, we write " $F \models G$ ".

"=" is pronounced "(semantically) entails".

Semantic Consequence

Definition

G is a *semantic consequence* of *F* **if and only if** every model of *F* is a model of *G*.

For short, we write " $F \models G$ ".

"|=" is pronounced "(semantically) entails".

Note: $F \equiv G$ iff $F \models G$ and $G \models F$.

Consequence and Implication

models used before defined later?

Let *F* and *G* be formulas.

Theorem

 $F \models G$ if and only if $\models F \rightarrow G$.

Consequence and Implication

models used before defined later?

Let *F* and *G* be formulas.

Theorem

 $F \models G$ if and only if $\models F \rightarrow G$.

As an immediate corollary:

Corollary

 $F \equiv G$ if and only if $\models F \leftrightarrow G$.

Poll

Of the following formulas, which allow us to conclude $P \rightarrow Q$?

- 1. *P*
- $2. \neg P$
- 3. Q
- 4. $P \rightarrow (Q \land R)$
- 5. $(P \lor R) \rightarrow Q$
- 6. $\neg P \lor Q$
- 7. $\neg Q \rightarrow \neg P$
- 8. $P \rightarrow (Q \lor R)$
- 9. $(P \rightarrow Q) \vee R$

Pol1

Of the following formulas, which allow us to conclude $P \rightarrow Q$?

- 1. *P*
- 2. ¬*P*
- 3. Q
- 4. $P \rightarrow (Q \land R)$
- 5. $(P \lor R) \rightarrow Q$
- 6. $\neg P \lor O$
- 7. $\neg Q \rightarrow \neg P$
- 8. $P \rightarrow (Q \lor R)$
- 9. $(P \rightarrow Q) \lor R$

- No
- Yes
- Yes
- Yes
- Yes
- Yes
- Yes
- No
- No

Pol1

Of the following formulas, which allow us to conclude $P \rightarrow Q$?

- 1. P
- $2. \neg P$
- 3. Q
- 4. $P \rightarrow (Q \land R)$
- 5. $(P \lor R) \rightarrow Q$
- 6. $\neg P \lor O$
- 7. $\neg Q \rightarrow \neg P$
- 8. $P \rightarrow (Q \lor R)$
- 9. $(P \rightarrow Q) \vee R$

Tautology: a logical formula which is always true.

Tautology: a logical formula which is always true.

 $(\neg P \land Q) \rightarrow (P \rightarrow R)$ is a tautology:

P	Q	R	(¬	P	\land	Q	\rightarrow	(P	\rightarrow	R)
1	1	1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	1	1	0	0
1	0	1	0	1	0	0	1	1	1	1
1	0	0	0	1	0	0	1	1	0	0
0	1	1	1	0	1	1	1	0	1	1
0	1	0	1	0	1	1	1	0	1	0
0	0	1	1	0	0	0	1	0	1	1
0	0	0	1	0	0	0	1	0	1	0

Contradiction: A logical formula which is always false.

 $Q \land \neg Q$ is a contradiction.

Contradiction: A logical formula which is always false.

 $Q \land \neg Q$ is a contradiction.

 $P \land Q \land (\neg Q \longleftrightarrow (\neg P \lor Q))$ is a contradiction.

No need for whole truth table.

Contradiction: A logical formula which is always false.

 $Q \land \neg Q$ is a contradiction.

 $P \wedge Q \wedge (\neg Q \leftrightarrow (\neg P \vee Q))$ is a contradiction.

No need for whole truth table.

If either *P* or *Q* are false, \wedge makes whole formula false.

Contradiction: A logical formula which is always false.

 $Q \land \neg Q$ is a contradiction.

 $P \land Q \land (\neg Q \longleftrightarrow (\neg P \lor Q))$ is a contradiction.

No need for whole truth table.

If either P or Q are false, \wedge makes whole formula false.

When *P* and *Q* are both true:

Contradiction: A logical formula which is always false.

 $Q \land \neg Q$ is a contradiction.

$$P \land Q \land (\neg Q \longleftrightarrow (\neg P \lor Q))$$
 is a contradiction.

No need for whole truth table.

If either P or Q are false, \wedge makes whole formula false.

When *P* and *Q* are both true:

Negating a contradiction gives a tautology and vice versa.

Tautologies Are Valid

Consider: "If the program works, then the program works."

It is true regardless of what "program" or "works" mean.

Tautologies Are Valid

Consider: "If the program works, then the program works."

It is true regardless of what "program" or "works" mean.

Valid: Always true.

Non-valid: Sometimes false.

 \models *F* is short for "*F* is valid".

Contradictions Are Unsatisfiable

Consider:

"the application is good and the application is not good."

It is false regardless of what "the application" or "good" mean.

Contradictions Are Unsatisfiable

Consider:

"the application is good and the application is not good."

It is false regardless of what "the application" or "good" mean.

Unsatisfiable: Never true.

Satisfiable: Sometimes true.

Most Statements Are Contingent

Consider: "It is currently raining."

It is true if and only if it is currently raining.

Most Statements Are Contingent

Consider: "It is currently raining."

It is true if and only if it is currently raining.

Contingent: Sometimes true, sometimes false.

Classify the following formulas as valid, contingent, or unsatisfiable:

- 1. P
- 2. $P \longleftrightarrow \neg P$
- 3. $P \rightarrow (\neg Q \lor P)$
- 4. $\neg Q \lor \neg (P \land \neg Q)$

Classify the following formulas as valid, contingent, or unsatisfiable:

- 1. P
- 2. $P \longleftrightarrow \neg P$
- 3. $P \rightarrow (\neg Q \lor P)$
- 4. $\neg Q \lor \neg (P \land \neg Q)$

- contingent
- unsatisfiable
- valid
- valid

Example

Consider " $P \rightarrow P$ ".

Example

Consider " $P \rightarrow P$ ".

Substitute *P* with " $(Q \land R)$ ".

Example

Consider " $P \rightarrow P$ ".

Substitute *P* with " $(Q \land R)$ ".

Result: " $(Q \land R) \rightarrow (Q \land R)$ ".

Example

Consider " $P \rightarrow P$ ".

Substitute *P* with " $(Q \land R)$ ".

Result: " $(Q \land R) \rightarrow (Q \land R)$ ".

Substitution preserves validity! Students do not know what preserves MEANS?

Does substitution preserve unsatisfiability?

Does substitution preserve unsatisfiability?

Yes!

Does substitution preserve unsatisfiability?

Yes!

Negation of contradiction is a tautology.

Does substitution preserve satisfiability?

Does substitution preserve satisfiability?

No — a counterexample is easy:

Does substitution preserve satisfiability?

No — a counterexample is easy:

Take P (which is clearly satisfiable).

Then substitute *P* by $Q \land \neg Q$.

Substitution Preserves Logical Equivalence

Denote by F[A := B] the result of substituting A with B in F.

Example: $(P \rightarrow P)[P := Q]$ is $(Q \rightarrow Q)$.

Substitution Preserves Logical Equivalence

Denote by F[A := B] the result of substituting A with B in F.

Example: $(P \rightarrow P)[P := Q]$ is $(Q \rightarrow Q)$.

Theorem

Let F, G, H be formulas and P be any propositional variable.

If $F \equiv G$, then $F[P := H] \equiv G[P := H]$.

If $F \equiv G$, then F can be freely replaced with G.

If $F \equiv G$, then F can be freely replaced with G.

Theorem

Let H' be the result of replacing an instance of F with G in H.

If $F \equiv G$, then $H \equiv H'$.

If $F \equiv G$, then F can be freely replaced with G.

Theorem

Let H' be the result of replacing an instance of F with G in H.

If $F \equiv G$, then $H \equiv H'$.

Result is equivalent: all semantic properties preserved.

If $F \equiv G$, then F can be freely replaced with G.

Theorem

Let H' be the result of replacing an instance of F with G in H.

If $F \equiv G$, then $H \equiv H'$.

Result is equivalent: all semantic properties preserved.

Rewrite formulas algebraically!

Some Equivalences

Absorption: $P \wedge P \equiv P$

 $P \lor P \equiv P$

Commutativity: $P \land Q \equiv Q \land P$

 $P \vee Q \equiv Q \vee P$

Associativity: $P \land (Q \land R) \equiv (P \land Q) \land R$

 $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

Distributivity: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$

 $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

More Equivalences

Double negation: $P \equiv \neg \neg P$

De Morgan:
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

Implication: $P \to Q \equiv \neg P \lor Q$

Contraposition:
$$\neg P \rightarrow \neg Q \equiv Q \rightarrow P$$

$$P \to \neg Q \equiv Q \to \neg P$$

$$\neg P \to Q \equiv \neg Q \to P$$

Biimplication:
$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

Last Equivalences

 \perp is equivalent to any unsatisfiable formula \top is equivalent to any valid formula

Duality:
$$\neg T \equiv \bot$$

Negation from absurdity: $P \rightarrow \bot \equiv \neg P$

Identity:
$$P \lor \bot \equiv P$$

$$P \wedge \top \equiv P$$

Dominance:
$$P \land \bot \equiv \bot$$

$$P \vee \top \equiv \top$$

Contradiction:
$$P \land \neg P \equiv \bot$$

Excluded middle:
$$P \lor \neg P \equiv \top$$

Which of these claims hold?

1.
$$P \rightarrow Q \equiv (Q \leftrightarrow (P \lor Q))$$

2.
$$(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$$

3.
$$(P \rightarrow R) \land (Q \rightarrow R) \models (P \land Q) \rightarrow R$$