计算机组成原理一数字

刘宏伟

哈尔滨工业大学 计算机科学与技术学院

主要内容

•1) 计算机中数的表示

•2) 计算机的运算方法

•3) 运算器的设计

教材: 计算机组成原理(第2版)

- 普通高等教育"十二五"规划教材
- 面向21世纪课程教材
- 全国普通高等学校优秀教材二等奖
- 普通高等教育精品教材

参考教材

David A.Patterson. John
 L.Hennessy. Computer
 Organization & Design: A
 Hardware/Software Interface

David Harris, Sarah Harris.
 Digital Design and Computer Architecture. Morgan Kaufmann, 2007

课程内容的组织

第3篇 CPU

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

- 一、无符号数
- 二、有符号数
 - 1、机器数与真值
 - 2、原码表示法
 - 3、补码表示法
 - 4、反码表示法
 - 5、移码表示法

- ✓ 定义
- ✓ 特点
- ✓ 举例
 - > 机器数与真值的转换
 - 不同机器数形式之间 的转化
- ✓ 机器数表示的范围与 其字长有关

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

0 ~ 255

16位

 $0 \sim 65535$

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+ 0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

小数点的位置

2. 原码表示法

6.1

(1) 定义

整数
$$[x]_{\mathbb{R}} = \left\{ \begin{array}{ll} \mathbf{0}, & x & 2^n > x \ge 0 \\ 2^n - x & \mathbf{0} \ge x > -2^n \end{array} \right.$$

x 为真值 n 为整数的位数

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如 x = +0.110

$$[x]_{\mathbb{R}} = 0 \cdot 1101$$

用 小数点 将符号 - 位和数值部分隔开

$$x = -0.1101$$
 $[x]_{\text{ff}} = 1 - (-0.1101) = 1.1101$

$$x = +0.1000000$$
 $[x]_{\text{ff}} = 0$

$$[x]_{\mathbb{R}} = 0$$
. 1000000 用小数点将符号 _ 位和数值部分隔开

$$x = -0.1000000$$
 $[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$

例 6.1 已知
$$[x]_{\mathbb{R}} = 1.0011$$
 求 $x - 0.0011$

解:由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 6.2 已知
$$[x]_{\mathbb{R}} = 1,1100$$
 求 $x - 1100$

解:由定义得

$$x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$$

例 6.3 已知
$$[x]_{\mathbb{R}} = 0.1101$$
 求 x

6.1

解: 根据 定义 :
$$[x]_{\mathbb{R}} = 0.1101$$

$$x = +0.1101$$

例 6.4 求 x=0 的原码

解: 设
$$x = +0.0000$$
 $[+0.0000]_{\text{原}} = 0.0000$

$$x = -0.0000$$
 $[-0.0000]_{\text{ff}} = 1.0000$

同理,对于整数
$$[+0]_{\mathbb{F}} = 0,0000$$

$$[-0]_{\mathbb{R}} = 1,0000$$

∴
$$[+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$$

原码的特点:简单、直观

6.1

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数

就可使 减 —— 加

5/6/9 哈尔滨工业大学 刘宏伟

3. 补码表示法

6.1

(1) 补的概念

• 时钟

顺时针

$$\frac{6}{+9}$$

可见-3可用+9代替 减法→加法 -7

称+9是-3以12为模的补数

时钟以12为模

$$-5 \equiv +7 \pmod{12}$$

结论

6.1

自然去掉

- >一个负数加上"模"即得该负数的补数
- ▶ 一个正数和一个负数互为补数时 它们绝对值之和即为 模 数
 - 计数器 (模 16) 1011 ──0000?

$$\begin{array}{ccc}
 1011 & & 1011 \\
 -1011 & & +0101 \\
\hline
 0000 & & 10000
\end{array}$$

可见-1011 可用 + 0101 代替

记作 $-1011 \equiv +0101 \pmod{2^4}$

同理 $-011 \equiv +101$ (mod 2^3)

 $-0.1001 \equiv +1.0111 \pmod{2}$

(2) 正数的补数即为其本身

6.1

 $(\text{mod}2^4)$ 两个互为补数的数 + 0101 分别加上模 +10000+10000+ 0101 结果仍互为补数 $(\text{mod}2^4)$ $\therefore +0101 \equiv +0101$ 丢掉 $+0101 \rightarrow +0101$ **- 1011** $[0],0101 \longrightarrow ^{*}_{+}0101$ $(\text{mod } 2^{4+1})$ -1011 = 100000**- 1011** 用 逗号 将符号位 1,0101 和数值部分隔开

(3) 补码定义

6.1

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如
$$x = +1010$$
 $x = -1011000$
$$[x]_{\stackrel{}{\uparrow}} = 0,1010$$

$$[x]_{\stackrel{}{\uparrow}} = 2^{7+1} + (-1011000)$$

$$= 1000000000$$

$$= 1011000$$

$$1,0101000$$

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$

$$x = -0.1100000$$

$$[x]_{\begin{subarray}{ll} [x]_{\begin{subarray}{ll} [x]_{\begin{sub$$

2015/6/9

(4) 求补码的快捷方式

6.1

又
$$[x]_{\mathbb{R}} = 1,1010$$

当真值为负时,补码可用原码除符号位外

每位取反,末位加1求得

6.1

例 6.5 已知
$$[x]_{\stackrel{}{\mathbb{A}}} = 0.0001$$
 求 x

解: 由定义得 x = +0.0001

例 6.6 已知
$$[x]_{\stackrel{}{\mathbb{A}}} = 1.0001$$
 $[x]_{\stackrel{}{\mathbb{A}}} \stackrel{?}{\longrightarrow} [x]_{\stackrel{}{\mathbb{B}}}$

$$[x]_{\stackrel{\wedge}{\rightarrow}}[x]_{\mathbb{R}}$$

$$[x]_{\mathbb{R}} = 1.1111$$

$$x = -0.1111$$

$$x = [x]_{\nmid h} - 2$$

$$= 1.0001 - 10.0000$$

$$=-0.1111$$

例 6.7 已知
$$[x]_{\stackrel{}{\text{\tiny h}}}=1,1110$$

6.1

解: 由定义得

$$[x]_{\stackrel{?}{\rightarrow}}[x]_{\stackrel{}{\otimes}}$$

$$x = [x]_{-1} - 2^{4+1}$$

$$[x]_{\mathbb{R}} = 1,0010$$

$$= 1,1110 - 100000$$

$$x = -0010$$

= -0010

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

练习 求下列真值的补码

6.1

真值	$[x]_{ eqh}$	[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\frac{1}{1}} = [-$	· 0.0000	0.0000
$x = \boxed{-0.0000}$	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]		$x \geq 0$
	$\begin{array}{cccc} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	$x \ge -1 \pmod{2}$

$$[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

4. 反码表示法

6.1

(1) 定义

整数

$$[x]_{ar{ar{\wp}}} = egin{cases} 0, & x & 2^n > x \geq 0 \ & (2^{n+1}-1) + x & 0 \geq x > -2^n \pmod{2^{n+1}-1} \ & x > p$$
id $x > -2^n \pmod{2^{n+1}-1}$ $x > p$ id $x > -2^n \pmod{2^{n+1}-1}$ $x > p$ id $x > -2^n \pmod{2^{n+1}-1}$ $x > -2^n \pmod{2^n}$ $x > -2^n \pmod{2^n}$

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

x 为真值

n为小数的位数

如

$$x = +0.1101$$
 $x = -0.1010$ $[x]_{\overline{\wp}} = 0.1101$ $[x]_{\overline{\wp}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ 用小数点将符号位 $= 1.0101$

和数值部分隔开

```
(2) 举例
```

```
例 6.8 已知 [x]_{\overline{\triangleright}} = 0,1110 求 x
  解:
           由定义得 x = +1110
例6.9 已知 [x]_{\overline{\nu}} = 1,1110 求 x
  解: 由定义得 x = [x]_{\overline{k}} - (2^{4+1} - 1)
                            = 1,1110 -11111
                             = -0001
例 6.10 求 0 的反码
  解: 设x = +0.0000 [+0.0000]<sub>反</sub>= 0.0000
              x = -0.0000 [-0.0000]_{\text{F}} = 1.1111
同理,对于整数 [+0]_{\mathbb{P}} = 0,0000 [-0]_{\mathbb{P}} = 1,1111
               \therefore [+0]_{\bowtie} \neq [-0]_{\bowtie}
```

三种机器数的小结

6.1

- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中1位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和 反码时,对应的真值范围各为多少?

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000	0	+0	±0	+0
	1	+1	+1	+1
00000010	2	+2	+2	+2
	:	:	:	:
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	129	-1 :	-1 <i>21</i>	-120 :
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

设 $[y]_{\geqslant 1} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

 $< I > [y]_{\nmid h} = 0. y_1 y_2 ... y_n$

[y]₄连同符号位在内,每位取反,末位加1

即得[-y]**

$$[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

$$\langle II \rangle$$
 $[y]_{\nmid h} = 1. y_1 y_2 \cdots y_n$

[y]*连同符号位在内, 每位取反, 末位加1

即得[-y]*

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

5. 移码表示法

6.1

补码表示很难直接判断其真值大小

如 十进制

补码

$$x = +21$$

$$x = -21$$

$$-10101$$

$$x = +31$$

$$x = -31$$

$$x + 2^{5}$$

$$+10101 + 1000000 = 110101$$
 \rightarrow \rightarrow

$$-10101 + 100000 = 001011$$

$$+11111 + 100000 = 1111111$$

$$-11111 + 100000 = 000001$$

(1) 移码定义

6.1

$$[x]_{38} = 2^n + x \quad (2^n > x \ge -2^n)$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如

$$x = 10100$$

$$[x]_{8} = 2^{5} + 10100 = 1,10100$$

 $x = -10100$

用 逗号 将符号位 和数值部分隔开

$$[x]_{8} = 2^{5} - 10100 = 0.01100$$

(2) 移码和补码的比较

补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

6		
6	. 1	

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	00000	0
- 11111	100001	000001	1
- 11110	100010	000010	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: 111111 00000 00000 00001 000010 :	: 011111 100000 100001 100010 :	31 32 33 34 :
+ 11110	$011110 \\ 011111$	111110	62
+ 11111		111111	63

(4) 移码的特点

6.1

> 当
$$x = 0$$
 时 $[+0]_{8} = 2^{5} + 0 = 1,00000$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$
∴ $[+0]_{8} = [-0]_{8}$

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全0

用移码表示浮点数的阶码能方便地判断浮点数的阶码大小