ISIMA 1^{ère} année

jeudi 21 janvier 2010

Durée: 2 heures

Documents de cours autorisés

PROBABILITES

La qualité de la rédaction sera prise en compte dans la notation de ces exercices.

Exercice 1:

Soient a et b des entiers positifs. On forme deux urnes U et V en mettant a boules blanches et b boules noires dans U, b boules blanches et a boules noires dans V. On fait des tirages au hasard et avec remise, à raison d'une boule par tirage, dans les conditions suivantes :

- i) on fait le premier tirage dans U;
- ii) pour tout entier n > 0, si la boule tirée au $n^{\text{ème}}$ tirage est blanche, on fait le tirage suivant dans U, sinon on le fait dans V.

Soient B_n l'évènement "la boule tirée au $n^{\text{ème}}$ tirage est blanche" et U_n l'évènement "le $n^{\text{ème}}$ tirage est effectué dans l'urne U". On note $p_n = \mathbf{P}(B_n)$.

- 1°) Calculer $\mathbf{P}(B_1)$, $\mathbf{P}(B_2)$ et $\mathbf{P}(B_3)$.
- 2°) Calculer $P(B_{n+1} \mid B_n)$ et $P(B_{n+1} \mid \overline{B_n})$, $\overline{B_n}$ représentant l'évènement contraire de B_n .
- 3°) En déduire une relation entre p_{n+1} et p_n .
- 4°) Résoudre l'équation $x = \frac{a-b}{a+b}x + \frac{b}{a+b}$ et en déduire, pour tout n > 0, que

$$p_n = \left(\frac{a-b}{a+b}\right)^{n-1} \frac{a}{a+b} - \frac{1}{2} \left(\frac{a-b}{a+b}\right)^{n-1} + \frac{1}{2}.$$

- 5°) Calculer la limite de la suite p_n . Cette limite dépend-elle du choix de l'urne pour le premier tirage ?
- 6°) Calculer $P(U_{n+1} | B_n)$, $P(U_{n+1} | \overline{B_n})$ et en déduire $P(U_n)$.
- 7°) Calculer la probabilité d'avoir utilisé l'urne V au $n^{\text{ème}}$ tirage sachant que l'on a tiré une boule noire à ce tirage et en trouver la limite lorsque n tend vers l'infini.

Exercice 2:

N objets, considérés comme ponctuels, se répartissent uniformément sur un domaine du plan dont l'aire est égale à A. L'uniformité de la distribution de ces objets permet d'admettre les hypothèses suivantes:

- le nombre total, N, d'objets est proportionnel à l'aire : $N = \lambda A$;
- pour une surface d'aire a, petite devant A, la probabilité, p, pour qu'un objet, pris au hasard, appartienne à cette surface est donnée par : $p = \frac{a}{4}$.
- 1°) Soit une surface d'aire a, petite devant A. Soit X_a la variable aléatoire représentant le nombre d'objets contenus dans cette surface. Quelle est la loi de X_a ?

Pour tout $k \in IN$, exprimer en fonction de N, p et k la probabilité $\mathbf{P}(X_a = k)$.

2°) L'aire A étant très grande devant a, par quelle loi la distribution de X_a peut-elle être Pour tout $k \in IN$, exprimer en fonction de λ et a la probabilité $\mathbf{P}(X_a = k)$. approximée?

- 3°) Etant donné un point P, soit D la variable aléatoire représentant la distance entre P et l'objet le plus proche. Pour tout $x \in \mathbb{R}_+$, $\mathbb{P}(D > x)$ est la probabilité pour qu'il n'y ait aucun objet dans le disque centré en P, de rayon x. En déduire la loi de D.
- 4°) Exprimer E [D] en fonction de A et N.
- 5°) Déterminer la loi de $S = \pi D^2$ et exprimer **E** [S] en fonction de A et N.

Exercice 3:

Soient Z et X deux variables aléatoires entières telles que :

- Z est à valeurs dans [1, n] pour $n \in \mathbb{N}^*$,
- la loi de X sachant que Z = k est la loi uniforme sur [0, k].
- 1°) Quel est l'ensemble des valeurs prises par la variable aléatoire X?
- 2°) Déterminer les lois de (X, Z) et de X en fonction des P(Z = k).
- 3°) Calculer l'espérance de X en fonction de $\mathbb{E}[Z]$. $m_{i}[X] = \mathbb{E}[X] = \mathbb{E}[$
- 4°) Déterminer la loi de Z-X et montrer que c'est la loi de X.

Indications:
$$\sum_{i=0}^{n} \sum_{j=i}^{n} ... = \sum_{j=0}^{n} \sum_{i=0}^{j} ...$$
 et $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.