

Number Theory

Sarthak Sahoo and Gordon Ye

Welcome

- All workshops shall be 2 hours long.
- The notes of the contents in the workshops shall be provided on the CPMSoc website.
- Each workshop will have an accompanying problem set, which can be found in the notes.
- There will be workshops on odd numbered weeks from week 5 on wards (That's this week).
- Hope you enjoy yourselves and feel free to ask questions during the workshops ⑤.

Competitive Mathematics

- Well known competitions such as Putnam, IMC, SMMC.
- 6 hours contest, 3 hours per half.
- Having first year uni knowledge is a prerequisite.
- Challenging problems that are slightly different from typical uni exams.
- Have fun solving!

Table of contents

- 1 Welcome
 - Workshop
 - Competitive Mathematics
- 2 Revision
- 3 Euclid's Gem
 - Theorem
- 4 Fermat's Little Theorem and Generalizations
 - Fermat's Little Theorem
 - Euler's Totient Theorem
- 5 Example Problems

Notation

- $\mathbb{N} = \{1, 2, 3\cdots\}$
- $\mathbb{P} = \{ \text{set of all primes} \}$

Example

Example

Let p be a prime number. Prove that there are infinitely many multiples of p whose last ten digits are all distinct.

■ The answer for p = 2 and p = 5 becomes obvious after some thought.

Example

- The answer for p = 2 and p = 5 becomes obvious after some thought.
- Consider p, 2p, 3p, ...999999999p. We will prove that those numbers produces $10^{10} 1$ different terminating sequences.

Example

- The answer for p = 2 and p = 5 becomes obvious after some thought.
- Consider p, 2p, 3p, ...999999999p. We will prove that those numbers produces $10^{10} 1$ different terminating sequences.

Example

- The answer for p = 2 and p = 5 becomes obvious after some thought.
- Consider p, 2p, 3p, ...999999999p. We will prove that those numbers produces $10^{10} 1$ different terminating sequences.
- Since p is coprime to 10^{10} and m-n does not divide 10^{10} , p(m-n) is not divisible by 10^{10} .

Euclid's Gem

There are infinitely many primes! A fact that seems intuitively obvious, yet we shall present a proof (or rather we shall present Euclid's proof). Before proceeding to the proof we present a lemma.

Lemma (Fundamental Theorem of Arithmetic)

Every positive integer n>1 can be written as the product of primes uniquely up to ordering.

Sarthak Sahoo and Gordon Ye Number Theory 16.3.2022 6 / 15

Euclid's Gem

There are infinitely many primes! A fact that seems intuitively obvious, yet we shall present a proof (or rather we shall present Euclid's proof). Before proceeding to the proof we present a lemma.

Lemma (Fundamental Theorem of Arithmetic)

Every positive integer n>1 can be written as the product of primes uniquely up to ordering.

Theorem (Infinitude of Primes)

There are infinitely many primes!

Sarthak Sahoo and Gordon Ye Number Theory 16.3.2022 6 / 15

Euclid's Gem

Proof.

We proceed by assuming that there are finitely many primes

$$\mathbb{P} = \{p_1, p_2, \dots, p_n\},\$$

we do not bother ourselves with the ordering of the elements in the set of primes denoted by \mathbb{P} .

Consider the following:

$$n = p_1 \cdots p_n + 1,$$

the above leaves a remainder of 1 when divided by each of the primes in the set \mathbb{P} ,i.e, its not divisible by any prime in \mathbb{P} . However by the **FTA** n must be divisible by a prime $p_{n+1} \notin \mathbb{P}$, which is a contradiction since we assumed the set of all primes is finite. Hence \mathbb{P} must be infinite.

Fermat's little theorem can be really use full in considering $a^k \pmod{n}$, and is a fundamental theorem in elementary number theory.

The theorem tells us how to treat powers of an integer modulo a natural number. And is essential for building up understanding of divisibility between different forms of numbers. Before proceeding to proving Fermat's Little Theorem, we prove a little lemma,

Lemma

If p is a prime then.

$$(a+b)^p \equiv a^p + b^p \pmod{p},$$

where $a, b \in \mathbb{Z}$.

Proof.

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k} = a^p + b^p + pM, \ M \in \mathbb{Z}.$$

Proof.

$$(a+b)^p = \sum_{k=0}^p {p \choose k} a^k b^{p-k} = a^p + b^p + pM, \ M \in \mathbb{Z}.$$

Corollary

Corollary: For $p \in \mathbb{P}$ (Induction).

$$\left(\sum_{1 \le i \le n} a_i\right)^p \equiv \sum_{1 \le i \le n} a_i^p \pmod{p},$$

where $a_i \in \mathbb{Z}, \forall i$.

Theorem (Fermat's Little Theorem)

For $a \in \mathbb{Z}$ and $p \in \mathbb{P}$ such that gcd(a, p) = 1 we have,

$$a^p \equiv a \pmod{p} \iff a^{p-1} \equiv 1 \pmod{p}.$$

Theorem (Fermat's Little Theorem)

For $a \in \mathbb{Z}$ and $p \in \mathbb{P}$ such that gcd(a, p) = 1 we have,

$$a^p \equiv a \pmod{p} \iff a^{p-1} \equiv 1 \pmod{p}.$$

Proof.

Note that for $gcd(a, p) = 1, a, p \in \mathbb{N}$,

$$a \text{ times}$$
 $a \text{ times}$ $a \text{ times}$ $a^p \equiv (1+1+\dots+1)^p \equiv (1+1+\dots+1) \equiv a \pmod{p}$

One generalization of Fermat's Little Theorem is what's known as Euler's Totient Theorem. Euler's Totient Theorem is naturally motivated through a specific counting problem. The Euler's $\varphi(n)$ counts the number of integers k such that $\gcd(k,n)=1, k\in\mathbb{Z}/n\mathbb{Z}$.

The precise formulation is; for $n \in \mathbb{N} - \{1\}$

$$\varphi(n) = \left| \left\{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \right\} \right|,$$

we can define or check through the definition that $\varphi(1) = 1$.

Sarthak Sahoo and Gordon Ye Number Theory 16.3.2022 11 / 15

One generalization of Fermat's Little Theorem is what's known as Euler's Totient Theorem. Euler's Totient Theorem is naturally motivated through a specific counting problem. The Euler's $\varphi(n)$ counts the number of integers k such that $\gcd(k,n)=1, k\in\mathbb{Z}/n\mathbb{Z}$.

The precise formulation is; for $n \in \mathbb{N} - \{1\}$

$$\varphi(n) = \left| \left\{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \right\} \right|,$$

we can define or check through the definition that $\varphi(1) = 1$.

We present two important lemmas, that are not only important on their own but also are precursors of a method to proving an explicit formulation of Euler's Totient function.

Sarthak Sahoo and Gordon Ye Number Theory 16.3.2022 11 / 15

Lemma

For $p \in \mathbb{P}$ and $a \in \mathbb{N}$,

$$\varphi(p^a) = p^a - p^{a-1}.$$

Lemma

For $p \in \mathbb{P}$ and $a \in \mathbb{N}$,

$$\varphi(p^a) = p^a - p^{a-1}.$$

Proof.

Two of them actually, the first one is to simply count the set $\varphi(p^a) = |\{b \in \mathbb{Z}_{p^a} : \gcd(b, p^a) = 1\}| = |\{p, 2p, \cdots, p^2, p^2 + p, \cdots, \}|$. Or use the inclusion-exclusion principle,

$$\varphi(p^a) = p^a - |\{b : 1 \le b \le p^a, p|b\}| = p^a - \frac{p^a}{p}$$

.

Lemma

If $m, n \in \mathbb{N}$ and gcd(m, n) = 1, then

$$\varphi(mn) = \varphi(m)\varphi(n).$$

This makes φ multiplicative.

Consider the following matrix:

$$\Phi = \begin{pmatrix} 1 & 2 & \cdots & m \\ m+1 & m+2 & \cdots & 2m \\ \vdots & \vdots & \ddots & \vdots \\ m(n-1)+1 & m(n-1)+1 & \cdots & mn \end{pmatrix},$$

there are $\varphi(mn)$ numbers in the matrix above that are relatively prime to mn.

However, note that there are also $\varphi(m)$ columns containing containing those elements in the table that are relatively prime to m. Then we take note that there are $\varphi(n)$ elements in each $\varphi(m)$ columns that are relatively prime to n, therefore there are $\varphi(m)\varphi(n)$ elements that are co-prime to mn.

$$\therefore \varphi(mn) = \varphi(m)\varphi(n).$$

Number Theory 16.3.2022

14 / 15

Euler's Theorem

Theorem

Let $\varphi : \mathbb{N} \to \mathbb{N}$ then,

$$\varphi(n) = n \prod_{p \in \mathbb{P}_n} \left(1 - \frac{1}{p}\right).$$

Proof.

This is a corollary of the two **Lemmas** presented above.

Euler's Theorem

Theorem

Let $\varphi : \mathbb{N} \to \mathbb{N}$ then,

$$\varphi(n) = n \prod_{p \in \mathbb{P}_n} \left(1 - \frac{1}{p}\right).$$

Proof.

This is a corollary of the two **Lemmas** presented above.

Theorem (Euler's Theorem)

If
$$n \in \mathbb{N}$$
, $gcd(a, n) = 1$ and $\varphi : \mathbb{N} \to \mathbb{N}$,

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Consider the set of units modulo n

$$R = \{x_1, x_2, \cdots, x_{\varphi(n)}\},\$$

where $1 \le x_i \le n-1$, $gcd(x_i, n) = 1$ and all the x_i are distinct. We consider the left coset,

$$aR = \{ax_1, \dots, ax_{\varphi(n)}\}.$$

Since multiplying by a is a bijection we have that aR = R, therefore we have that

$$\prod_{i=1}^{\varphi(n)} x_i \equiv \prod_{i=1}^{\varphi(n)} (ax_i) \pmod{n}, \iff a^{\varphi(n)} \equiv 1 \pmod{n}$$

Sarthak Sahoo and Gordon Ye

Example Problems

- if $a \equiv b \pmod{n}$, show that $a^n \equiv b^n \pmod{n^2}$.
- 2 Let a and b be positive integers. Prove that

$$\gcd(n^a - 1, n^b - 1) = n^{\gcd(a,b)} - 1.$$

 \blacksquare Let n be an integer greater than 2. Prove that among the fractions

$$\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n},$$

an even number are irreducible.

4 Determine the respective last digit (unit digit) of the numbers

$$3^{1001}7^{1002}13^{1003}, \underbrace{7^{7^{\cdot \cdot 7}}}_{1001 \ 7's}.$$