第三章 系统动力学建模方法

实验工具: Vensim

Vensim 是由一种可观念化、文件化、模拟、分析、与最佳化动态系统模型之图形接口软件。该软件提供一种简易而具有弹性的方式,以建立包括因果循环(casual loop)、存货(stock)与流程图等相关模型。使用 Vensim 建立动态模型,我们只要用图形化的各式箭头记号连接各式变量记号,并将各变量之间的关系以适当方式写入模型,各变量之间的因果关系便随之记录完成。而各变量、参数间之数量关系以方程式功能写入模型。透过建立模型的过程,我们可以了解变量间的因果关系与回路,并可透过程序中的特殊功能了解各变量的输入与输出间的关系,便于了解模型架构,也便于修改模型的内容。

版本: 8.2.1

实验内容:

学会使用 Vensim 软件掌握系统动力学的建模方法。在 Vensim 中首先学会绘制因果关系图,分析要素之间的相互关系,构造反馈环;依据反馈环的动态作用,画出系统因果关系图。其次学会绘制流图,明确问题及其构成要素;绘制要素间相互作用关系的因果关系图,注意一定要形成回路;确定变量类型(包括水平变量、速率变量和辅助变量)。再学会实现系统流图的 DYNAMO 仿真模型建立与分析。以便获取所需信息用以分析和研究系统的结构和动态行为,为正确进行科学决策提供可靠依据。

实验步骤:

1. 绘制因果关系图

以课件中的野兔—山猫模型为例,能够绘制出该系统中各个要素间的因果关系。

New Model

(1) 首先打开 Vensim,从菜单栏选择文件>新建或者单击工具栏的新建按钮 ,出 如下对话框,点击确定。

Time Bounds	Info/Pswd	Sketch Unit	Equiv >	KLS Files	Ref Modes	File Format	
Time Bound	daries for the	Model					
INITIAL TIN	1E =	0					
FINAL TIME =		100					
TIME STER) =	1		~			
Save re	sults every T EPER =	ME STEP					
Units for Tir	ne	Month	1	~			
Integration Type		Euler		~			
_		e equations for t	ne above p	parameters.			
Active Ini Relative				Absolute	0		
			0K	, _	Cancel		

- (4) 右击一个变量,可以给该变量添加边框,并对变量名的字体进行编辑。

(5) 右击一个箭头,可以对该箭头的线性和极性进行编辑。

Options for Arrow from 猫捕食野兔率 to 野兔数里
✓ Arrowhead Delay mark
Line Style/Thickness
Polarity ● None
Position polarity mark at the
OK Cancel

(6) 通过分析, 最终绘制该系统的因果关系图如下:

2. 绘制流图

以课件中的一个地区的林业系统为例,在该系统中有:

水平变量: 宜林荒地、造林面积、森林面积;

速率变量: 宜林荒地增加率、造林率、造林面积过渡到森林面积的比率、毁林率

辅助变量: 偏差、期望森林面积、期望覆盖率

常量: 造林方案有关, 从造林到森林的时间延迟常数, 毁林率

T

(3)添加辅助变量:选择______,在需要添加变量的地方单击鼠标,写变量名。选择

,为变量之间添加连接线。辅助变量主要为圆形框。

4₹

(4)添加常量:选择______,在需要添加常量的地方单击鼠标,写常量名。

通过分析, 画出该系统流图如下所示:

3. 系统流图的 DYNAMO 仿真模型建立

以库存控制问题为例

库存量-I、途中存货量-G、订货量-R1、入库量-R2、库存差额-D

(1) 首先绘制因果关系图

(2) 绘制流图

根据因果关系图,进行分析可绘制出流图如下所示:

(3) 定义每个参数的方程

a. 首先定义两个水平变量,分别点击途中库存量和入库量这两个变量。 途中库存量初值确定为 10000

入库量初值确定 1000

b. 定义入库调整时间,确定为10,

c. 定义入库量。入库量=途中存货量/入库调整时间

d. 定义订货量。订货量=库存差额/订货调整时间

e. 定义订货调整时间,确定为5

f. 定义库存差额。库存差额=目标库存-库存量。

g. 定义目标库存,确定初始值为6000。

(4) 进行仿真

选择 ,单击鼠标进行仿真。点击库存量,再点击 ,就可以观察到库存量的变化 趋势。同样也可以观察到途中库存量的变化趋势。

如果要看更长一段时间的稳定状态,可以把仿真的时间调长一些,调成200。

此时可以看到库存量的变化如下所示,库存量在100多天后稳定了下来。

Time (Month)

— ✓ Current

再把途中库存量调小来进行对比

把第二次仿真的数据放到 current2 里去,点击选择 进行仿真,此时仿真结果中库存量的变化趋势如下所示。

点击确定之后,再点击仿真按钮 fmulste ,得到直观的结果如下所示:

这时候就可以实时改变订货调整时间、入库调整时间、目标库存来观察变化。

在该实验中利用系统动力学建模的方法,经过计算机模拟,对系统内部信息反馈过程进行分析,了解该系统结构和动态行为特性。

注:

参考资料: https://wenku.baidu.com/view/b430efe6bed5b9f3f80f1c15.html