Neural Machine Translation

Shusen Wang

Sequence-to-Sequence Model (Seq2Seq)

English

German

```
"do you agree" => [Seq2Seq] => "bist du einverstanden"
```

"go to sleep" => [Seq2Seq] => "gehen Sie schlafen"

"We will fight" => [Seq2Seq] => "Wir werden kämpfen"

Machine Translation Data

Datasets

• Tab-delimited Bilingual Sentence Pairs: http://www.manythings.org/anki/

1. Processing the Data

• **Preprocessing**: to lower case, remove punctuation, remove non-printable chars.


```
    input_texts => [Eng_Tokenizer] => input_tokens
    target_texts => [Deu_Tokenizer] => target_tokens
```

Use 2 different tokenizers for the 2 languages

input_texts => [Eng_Tokenizer] => input_tokens
 target texts => [Deu Tokenizer] => target tokens

Eng_Tokenizer

• "I_am_okay." => ['i', '_', 'a', 'm', ..., 'a', 'y']

Deu Tokenizer

• "Es geht mir gut" => ['e', 's', '_', ..., 'u', 't']

Question: Why 2 different tokenizers?

Answer: In the char-level, languages have different alphabet/chars.

• English: A a, B b, C c ..., Z z. (26 letters ×2).

• German: 26 letters, 3 umlauts (Ä,Ö,Ü) and one ligature (ß).

• Greek: A α , B β , $\Gamma \gamma$, $\Delta \delta$, ..., $\Omega \omega$. (24 letters \times 2).

• Chinese: 金木水火土…赵钱孙李 (a few thousands characters).

• Japanese: あいうえお… (46 Hiragana, 46 Karagana, hundreds 漢字).

Question: Why 2 different tokenizers?

Answer: In the word-level, languages have different vocabulary.

• English:

Machine learning is a generic term for the artificial generation of knowledge from experience: An artificial system learns from examples and can generalize these after completion of the learning phase.

• Deutsche:

Maschinelles Lernen ist ein Oberbegriff für die künstliche Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern.

3. Encoding

Eng_Dictionary

- 'a' => 1
- 'b' => 2
- 'c' => 3
- 'd' => 4
- ...
- 'z' => 26
- ' ' **=>** 27

Deu Dictionary

- '\t' => 1 start sign
- '\n' => 2 stop sign
- 'a' => 3
- 'b' => 4
- 'c' => 5
- 'd' => 6
- •
- 'z' => 28
- ' ' => 29

3. Encoding

```
"I am okay."
                           Eng_Tokenizer
['i', '_', 'a', 'm', '_', 'o', 'k', 'a', 'y']
                           Encoding using <a href="Eng_Dictionary">Eng_Dictionary</a>
[ 9, 27, 1, 13, 27, 15, 11, 1, 25]
```

3. Encoding

```
"Es geht mir gut"
['e', 's', '_', 'g', 'e', ..., 'g', 'u', 't']
                    Encoding using Deu_Dictionary
[7, 21, 29, 9, 7, ..., 9, 23, 22]
```

4. Embedding (One-Hot Encoding)

Seq2Seq Model

The [start] sign


```
decoder input[i]
encoder input[i]
                                   "\tmach ne fliege"
    "go away"
                                       LSTM Decoder
   LSTM Encoder
                      LSTM's final
                    states (h, c)
                                   "mach ne fliege\n"
   hidden states
     (discarded)
                                  decoder target[i]
                            (left shift of decoder input[i])
```


- The decoder is a text generator (in the previous lecture).
 - Difference from the simple text generator: the initial states are determined by the encoder.

Seq2Seq Model in Keras

Inference Using the Seq2Seq Model

Record: "m"

Record: "m"

Record: "ma"

Record: "ma"

Record: "mac"

Record: "mac"

Record: "mach ne fliege"

Return: "mach ne fliege"

Summary

Seq2Seq Model

Encoder RNN

Seq2Seq Model

Encoder RNN

How to Improve?

1. Bi-LSTM instead of LSTM

- The final states (\mathbf{h}_t and \mathbf{c}_t) of the Encoder have all the information of the English sentence.
- Really?
 - If the sentence is long (hundreds of tokens), the final states have forgotten the first tokens.

1. Bi-LSTM instead of LSTM

- The final states (\mathbf{h}_t and \mathbf{c}_t) of the Encoder have all the information of the English sentence.
- Really?
 - If the sentence is long (hundreds of tokens), the final states have forgotten the first tokens.
- Bi-LSTM (left-to-right and right-to-left) remembers the first tokens.

2. Word-Level Tokenization

- Word-level tokenization instead of char-level.
 - The average length of English words is 4.5 letters.
 - The sequences will be 4.5x shorter.
 - Shorter sequence, less likely to forget.

2. Word-Level Tokenization

- Word-level tokenization instead of char-level.
 - The average length of English words is 4.5 letters.
 - The sequences will be 4.5x shorter.
 - Shorter sequence, less likely to forget.
- But you will need a large dataset!
 - # of (frequently used) chars is $^{\sim}10^2$.
 - # of (frequently used) words is $^{\sim}10^4$.
 - Word Embedding Layer has many parameters overfitting!

 Even if you want to translate English to German, you can use all the datasets:

- Afrikaans English afr-eng.zip (725)
- Aklanon English akl-eng.zip (22)
- Albanian English sqi-eng.zip (412)
- Algerian Arabic English arq-eng.zip (156)
- English ara-eng.zip (11009)
- English afb-eng.zip (28)
- Assamese English asm-eng.zip (23)
- Asturian English ast-eng.zip (23)
- Azerbaijani English aze-eng.zip (2131)
- Basque English eus-eng.zip (667)
- Belarusian English bel-eng.zip (2698)
- Bengali English ben-eng.zip (4399)
- Berber English ber-eng.zip (54988)
- Bulgarian English bul-eng.zip (14968)

- Spanish English spa-eng.zip (120799)
- Swedish English swe-eng.zip (17409)
- Tagalog English tgl-eng.zip (3144)
- Tamil English tam-eng.zip (197)
- Tatar English tat-eng.zip (529)
- Telugu English tel-eng.zip (138)
- Thai English tha-eng.zip (110)
- Turkish English tur-eng.zip (497249)
- Ukrainian English ukr-eng.zip (113396)
- Urdu English urd-eng.zip (1180)
- Uyghur English uig-eng.zip (285)
- Vietnamese English vie-eng.zip (3413)
- Waray English war-eng.zip (1181)
- Zaza English zza-eng.zip (345)

How to Improve?

- 1. Bi-LSTM instead of LSTM.
- 2. Tokenization in the word-level (rather than char-level.)
- 3. Multi-task learning.
- 4. Attention! (Future lectures, soon.)

Homework 4

- Build a seq2seq model for machine translation.
 - Anything languages except for [English ==> German].
 - Follow my IPython Notebook.
- Make as least one improvement over my naïve model.
 - E.g., Bi-LSTM, multi-task, attention, etc.
- Evaluate your model using BLEU score. (Optional.)
 - BLEU (BiLingual Evaluation Understudy).
 - Reference:
 - Wikipedia: https://en.wikipedia.org/wiki/BLEU
 - Blog: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/