COLÓIDES

Prof. Harley P. Martins filho

SISTEMAS COLOIDAIS

Colóide (Thomas Graham): materiais em solução que não atravessavam uma membrana de pergaminho → dispersão de pequenas partículas de um material em outro.

Faixa de tamanho das partículas coloidais $\approx 10^{-9}$ a 10^{-6} m

Colóides são sistemas com enorme área interfacial:

- ➤ Material em um cubo com aresta de 1 cm: área de 6 cm².
- Mesmo material dividido em 10¹² cubos: partículas de tamanho coloidal com área interfacial total de 6 m². Se há uma tensão interfacial, a reunião das partículas no cubo original implica uma grande variação negativa de área.

$$\rightarrow \Delta G = \gamma_{\alpha\beta} \Delta A < 0$$
 (espontânea)

Uso dos colóides: indústrias alimentícia, cosmética, de higiene pessoal e de tintas.

- · Classificações de colóides
- ☐ Quanto ao estado físico das fases dispersa e dispersante

Table	. :	Types	of	Colloidal	Systems
-------	-----	-------	----	-----------	----------------

Dispersed phase	Dispersion medium	Type of colloid	Examples
Solid	Solid	Solid sol	Some coloured glasses and gem stones
Solid	Liquid	Sol	Paints, cell fluids
Solid	Gas	Aerosol	Smoke, dust
Liquid	Solid	Gel	Cheese, butter, jellies
Liquid	Liquid	Emulsion	Milk, hair cream
Liquid	Gas	Aerosol	Fog, mist, cloud, insecticide sprays
Gas	Solid	Solid sol	Pumice stone, foam rubber
Gas	Liquid	Foam	Froth, whipped cream, soap lather

- ☐ Quanto à natureza da interação entre fases dispersa e dispersante
- 1. Colóides liofílicos: interações favoráveis partícula-meio dispersante. Exemplo: sóis de goma, gelatina, borracha, amido etc. Naturalmente estáveis e difíceis de coagular.

Látex: aglomerados de poli-isopreno cercados de uma capa proteica.

1

adicionais estabilizantes.

2. Colóides liófobos: interações desfavoráveis partícula-meio dispersante. Exemplo: sóis de metais ou sais insolúveis em água, emulsões óleo em água. Instáveis, necessitando de substâncias

- ☐ Quanto ao tipo de partícula da fase dispersa
- 1. Colóides multimoleculares: partículas são aglomerados de átomos ou moléculas de uma substância. Exemplos: sol de ouro coloidal, emulsão de querosene em água.
- 2. Colóides macromoleculares: em soluções verdadeiras de macromoléculas, as moléculas têm tamanho na faixa coloidal. Exemplos: soluções de amido, celulose, proteínas e enzimas.
- 3. Colóides de associação: moléculas de surfactantes acima da temperatura de Kraft e da concentração micelar crítica formam micelas de tamanho coloidal. O exterior da micela tem grupos polares altamente hidrofílicos que tornam a partícula altamente estável.

1. SÓIS

→ Dispersões de partículas sólidas em líquidos

Exemplo: Tintas de pigmentos:

Tintas a óleo: óxidos ou sais de metais pesados/óleo

➤ Tinta nanquim: carvão/água/goma arábica

Exemplo: barro coloidal em rios (argilominerais)

Sóis são geralmente **liófobos** → não há afinidade entre fases dispersa e dispersante (Há sempre uma tensão interfacial positiva). Partículas são muito pequenas → aparência transparente.

Sóis **liófilos**: partículas de amido, proteínas, borracha etc, dispersas em água.

Desembocadura do rio Mississipi.

Efeito Tyndall: Se um feixe de luz é direcionado através de um sol, parte dos fótons é espalhada em todas as direções, tornando visível o caminho do feixe.

•Estabilidade dos sóis

Partículas estão em **movimento** browniano constante \rightarrow choques frequentes

Aglutinação das partículas \rightarrow diminuição da área de interface com o solvente $\rightarrow \Delta G = \gamma_{\alpha\beta} \Delta A < 0$ (coagulação é espontânea)

Proteções contra a coagulação:

- Dupla camada elétrica: adsorção de cargas na superfície das partículas leva a repulsão global entre as partículas
- 2. Adsorção de proteínas ou ânions de ácido carboxílico → cria-se uma capa na superfície da partícula com grupos polares que conferem afinidade pelo solvente → ocorre **solvatação** da partícula como um todo. A camada de solvatação impede o contato entre as partículas durante os choques.

- Preparação de sóis
- 1. Métodos de dispersão
- → Pulverização de partículas grosseiras do material no meio dispersante em presença de agente estabilizante
- > Trituração do material em moinho coloidal

> Método do arco de Bredig

Arco voltaico vaporiza parte da superfície metálica. Condensação produz partículas coloidais.

➤ Ablação de metal por laser pulsado de alta potência

O laser vaporiza parte da superfície metálica. Condensação produz partículas coloidais.

Vídeo no YouTube: Nanoparticle Synthesis: Laser Ablation in Liquid (canal: Breaking Taps)

➤ Peptização de compostos insolúveis

→ O composto insolúvel é colocado em água e adiciona-se uma pequena quantidade de um eletrólito com um íon em comum com o composto. O íon em comum é adsorvido na superfície do composto, que, com agitação, decompõe-se parcialmente em partículas de tamanho coloidal com carga correspondente à do íon adsorvido.

Exemplo: hidróxido férrico (Fe(OH)₃) com FeCl₃ \rightarrow sol positivo de hidróxido férrico.

Exemplo: Cloreto de prata (AgCl) com HCl \rightarrow sol negativo de cloreto de prata.

2. Métodos de condensação

→ Agregação de partículas como moléculas ou íons até o tamanho coloidal.

> Dissolução e reprecipitação de material insolúvel

Exemplo: Dissolver parafina sólida em etanol e verter solução em água fervente → etanol evapora-se e parafina condensa-se em partículas coloidais.

Exemplo: Adicionar uma solução de ácido esteárico em etanol em água. As moléculas de etanol fazem ligações mais fortes com as moléculas de água \rightarrow a água desloca o solvente etanol, desestabilizando o ácido esteárico no meio \rightarrow formação de partículas de ácido esteárico.

Exemplo: adicionar uma solução de enxofre em etanol a água.

➤ Reações químicas

Exemplo: Adicionar solução de $AuCl_3$ em água fervente. Adicionar fósforo vermelho e solução de citrato de sódio \rightarrow redução do ouro pelo fósforo \rightarrow hidrossol de ouro (púrpura escuro)

Exemplo: Adicionar solução de $AgNO_3$ em água fervente. Adicionar solução de citrato ferroso \rightarrow redução da prata pelo íon ferroso \rightarrow sol de prata coloidal (Ex: Argyrol – antiséptico ocular)

→ nos dois casos acima, citrato é o agente dispersante

Exemplo: Hidrólise de tiosulfato com pH controlado

$$S_2O_3^{2-}(aq) + H_2O(1) \rightarrow S(coloidal) + SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$$

(oxidação e redução de átomos de enxofre)

Exemplo: Adicionar solução de cloreto férrico em água fervente

Hidrólise: $Fe^{3+}(aq) + 3H_2O(l) \rightarrow Fe(OH)_3(coloidal) + 3H^+(aq)$ (sol vermelho-marrom)

→ Agente estabilizante é o Fe³⁺ que sobra e forma uma dupla camada elétrica nas partículas coloidais

Exemplo: Precipitação de sais insolúveis em presença de agentes dispersantes

$$Ba(SCN)_2(aq) + (NH_4)_2SO_4(aq) + citrato de potássio \rightarrow \\ BaSO_4(coloidal) + 2NH_4SCN(aq)$$

Exemplo: Precipitação de sais insolúveis a partir de soluções frias e concentradas com mistura rápida

AgNO₃(aq,conc) + NaCl(aq,conc) → AgCl(coloidal) + NaNO₃(aq) → adição de gelatina a uma das soluções reagentes otimiza o processo

Purificação de sóis: sóis formados em presença de alta concentração de eletrólitos são instáveis → remover o excesso por **diálise** (difusão do eletrólito por uma membrana permeável a solutos e solvente – bexiga animal, papel celofane etc)

Saco de papel celofane tratado com hidróxido de sódio, contendo o sol impuro

Eletrodiálise: membrana com sol é colocada entre dois eletrodos nos quais se aplica diferença de potencial. Cada íon do eletrólito migra forçadamente para um dos eletrodos.

•A dupla camada elétrica

Partículas coloidais em meio a solvente tendem a adquirir carga elétrica superficial

≽Ionização

Exemplo: proteínas

pH baixo → formação de NH₃⁺ (carga positiva)

pH alto → formação de COO (carga negativa)

→ Em ambos os casos, moléculas se repelem mutuamente e ficam solvatadas.

Ponto isoelétrico da proteína: pH no qual a molécula é neutra em solução → pouca solubilidade

➤ Adsorção de íons

Na interface de duas substâncias de polaridade diferente aparece uma diferença de potencial, que determina a adsorção seletiva de um íon em solução com carga preferencial.

Metais nobres → adsorvem íons negativos
Enxofre → adsorvem íons negativos
Óxidos ou hidróxidos metálicos → adsorvem íons positivos
No caso de adsorção de H+ ou OH-, atividades destes íons podem determinar qual dos dois será adsorvido

Cátions costumam ser menores que os ânions e portanto são mais solvatados em solução → ânions ficam mais disponíveis para adsorção.

Na presença de íons de substâncias tensoativas (surfactantes), é a adsorção destes que determina geralmente a carga superficial.

Equilíbrio iônico envolvendo partícula coloidal

Exemplo: No sol de AgI, ânions I⁻ ficam mais presos à estrutura cristalina que os cátions (por serem menos solvatados em solução)

Produto de solubilidade do AgI: $a_{Ag+} \cdot a_{I-} = 7,5 \times 10^{-17}$

Concentração dos íons (para $a_{\rm Ag+}=a_{\rm L}$): $a_{\rm Ag+}=a_{\rm L}=(7.5\times 10^{-17})^{1/2}=8.7\times 10^{-9}$. Então, em água pura, $a_{\rm L}$ é ligeiramente mais baixa que 8.7×10^{-9} e $a_{\rm Ag+}$ é ligeiramente mais alta para manter produto iônico constante.

Se $a_{\rm Ag+}$ for aumentada (por adição de AgNO $_3$, por exemplo), diminuise a tendência do cátion Ag a solubilizar-se, diminuindo a carga negativa das partículas coloidais. Nota-se que as partículas do sol ficam eletricamente neutras quando $a_{\rm Ag+}=3.0\times10^{-6}$. Se $a_{\rm Ag+}>3.0\times10^{-6}$, partículas ficam carregadas positivamente.

•Desestabilização de sóis

Sóis são coagulados pela adição de pequenas quantidades de eletrólitos

Coagulação: agregação densa **irreversível** das partículas. Floculação: agregação frouxa **reversível** (por agitação) das partículas.

Concentração crítica de coagulação: concentração do eletrólito necessária para coagular um sol de concentração definida arbitrariamente em um tempo definido arbitrariamente.

Concentrações de coagulação (mmol L-1)					
As ₂ S ₃ (negativo)		Al ₂ O ₃ (positivo)			
NaCl	51	NaCl	43,5		
KNO ₃	50	KNO ₃	60,0		
CaCl ₂	0,65	K ₂ SO ₄	0,30		
$MgSO_4$	0,81	K ₂ Cr ₂ O ₇	0,63		
AlCl ₃	0,093	$K_3[Fe(CN)_6]$	0,08		
$Al(NO_3)_3$	0,095				

Sequência de cores na coagulação lenta do sol de ouro:

Different sizes of colloidal gold particles

K₂SO₄ 32,8

Concentrações críticas de coagulação (mmol L-1)					
As ₂ S ₃ (negativo)		Al ₂ O ₃ (positivo)			
NaCl	51	NaCl	43,5		
KNO ₃	50	KNO ₃	60,0		
CaCl ₂	0,65	K ₂ SO ₄	0,30		
$MgSO_4$	0,81	K ₂ Cr ₂ O ₇	0,63		
AlCl ₃	0,093	$K_3[Fe(CN)_6]$	0,08		
$Al(NO_3)_3$	0,095				

- → Depende consideravelmente da carga do íon do eletrólito de mesma carga que a segunda camada elétrica do sol
- \rightarrow É praticamente independente da natureza específica dos íons e da concentração do sol
- → Depende moderadamente da natureza do sol

Regra de Schulze-Hardy: As concentrações de coagulação de íons trivalentes, bivalentes e monovalentes (para um mesmo sol) estão na razão de 1:10:500

➤ Dependência da CCC com a estequiometria do composto

Se a fórmula do composto tem índice estequiométrico do íon de interesse diferente de um, é necessário modificar a CCC medida para comparação com outros eletrólitos.

Exemplo: CCC medida para coagulação do As_2S_3 pelo $Al_2(SO_4)_3$ é de 0,048 mmol $L^{\text{-1}}$.

$$0.048 \cdot 10^{-3} = \frac{(m/M)}{V} = \frac{m}{MV}$$

Para comparação com compostos que têm apenas um cátion na fórmula, calcular uma CCC_{formal} que considera uma massa molar equivalente à formula $(1/2)Al_2(SO_4)_3$.

$$CCC_{formal} = \frac{m}{(1/2)MV} = 2\frac{m}{MV} = 2CCC = 2 \times 0,048 \cdot 10^{-3} = 0,096 \,\mathrm{mmol}\,\mathrm{L}^{-1}$$