```
In [1]:
        import pandas as pd
         import seaborn as sns
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.model_selection import train_test_split
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import ConfusionMatrixDisplay,accuracy_score
         from sklearn.metrics import classification_report
         import numpy as nm
         import matplotlib.pyplot as mtp
         from sklearn import svm
        df=pd.read_csv('email.csv')
In [3]:
         df.head(7)
Out[3]:
            Email
                  the
                                             a you hou ... connevey jay valued lay infrastr
                       to ect and for of
              No.
            Email
          0
                    0
                        0
                                             2
                                                 0
                                                      0 ...
                                                                                  0
                                 0
                                     0
                                        0
                                                                   0
                                                                       0
                                                                              0
            Email
                    8
                      13
                           24
                                     6
                                        2
                                          102
                                                     27 ...
                                                                       0
                                                                              0
                                                                                  0
                                 6
                                                 1
             Email
                    0
                        0
                            1
                                 0
                                     0
                                             8
                                                                                  0
            Email
                        5
                           22
                                 0
                                     5
                                            51
                                                 2
                                                     10 ...
                                                                              0
                                                                                  0
            Email
                                     5
                                                                                  0
                        6
                           17
                                        2
                                            57
                                                 0
                                                      9
                                                                       0
                                                                              0
                                 1
            Email
                                     2
                                        3
                                            45
                                                 1
                                                                                  0
                                                      0 ...
            Email
                                 3
                                     2
                                            37
                                                 0
                                                                              0
                                                                                  0
         7 rows × 3002 columns
        df.shape
In [4]:
Out[4]: (5172, 3002)
In [5]: x=df.drop(['Email No.','Prediction'],axis=1)
         y=df['Prediction']
```

```
In [6]: sns.countplot(x=y)
```

Out[6]: <AxesSubplot:xlabel='Prediction', ylabel='count'>

K Nearest Neighbor

```
In [10]: knn=KNeighborsClassifier(n_neighbors=5)
In [11]: knn.fit(X_train,Y_train)
Out[11]: KNeighborsClassifier()
```

In [12]: ypred=knn.predict(X_test)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors_classificati on.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is ta ken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

In [13]: ConfusionMatrixDisplay.from_predictions(Y_test, ypred)

Out[13]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f3acb
697c0>

In [14]: accuracy_score(Y_test, ypred)

Out[14]: 0.871616395978345

In [15]: print(classification_report(Y_test, ypred))

	precision	recall	f1-score	support	
0	0.98	0.84	0.90	929	
1	0.70	0.95	0.81	364	
accuracy			0.87	1293	
macro avg	0.84	0.89	0.85	1293	
weighted avg	0.90	0.87	0.88	1293	

Support Vector Machine

```
In [19]: print(df.shape)
         (5172, 3002)
         x = df.drop(['Email No.', 'Prediction'], axis=1)
In [40]:
         y = df['Prediction']
In [21]:
         sns.countplot(x=y)
         plt.show()
             3500
             3000
             2500
             2000
             1500
             1000
              500
                                  0
                                                                   1
                                               Prediction
In [41]:
         scaler = MinMaxScaler()
         X scaled = scaler.fit transform(x)
In [42]:
         feature1_index = 0
         feature2 index = 1
In [43]: X_selected_features = X_scaled[:, [feature1_index, feature2_index]]
In [44]: X_train, X_test, Y_train, Y_test = train_test_split(X_selected_features, y,
In [71]: svm_classifier = svm.SVC(kernel='linear') # You can choose a different ker
```

```
In [72]:
         svm_classifier.fit(X_train, Y_train)
Out[72]: SVC(kernel='linear')
        y_pred_svm = svm_classifier.predict(X_test)
In [73]:
In [74]:
         confusion_matrix_svm = confusion_matrix(Y_test, y_pred_svm)
         print("Confusion Matrix:")
         print(confusion_matrix_svm)
         Confusion Matrix:
         [[929
                 0]
          [364
                 0]]
In [75]:
         x_min, x_max = X_selected_features[:, 0].min() - 0.1, X_selected_features[:
         y_min, y_max = X_selected_features[:, 1].min() - 0.1, X_selected_features[:
         xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500), np.linspace(y_min, y_m
In [76]: Z = svm_classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
         Z = Z.reshape(xx.shape)
In [79]:
         plt.contourf(xx, yy, Z, levels=[-1, 0, 1], alpha=0.5, cmap=plt.cm.Paired)
         plt.scatter(X_selected_features[:, 0], X_selected_features[:, 1], c=y, cmap
         plt.xlabel(f'Feature {feature1_index + 1}')
         plt.ylabel(f'Feature {feature2_index + 1}')
         plt.title('SVM Decision Boundary')
```

SVM Decision Boundary

plt.show()

```
In [78]: accuracy_svm = accuracy_score(Y_test, y_pred_svm)
    print(f"Accuracy Score: {accuracy_svm:.2f}")

classification_rep_svm = classification_report(Y_test, y_pred_svm)
    print("Classification_Report:")
    print(classification_rep_svm)
```

Accuracy Score: 0.72 Classification Report:

CIUSSIIICUCIO	ii Kepoi c.			
	precision	recall	f1-score	support
0	0.72	1.00	0.84	929
1	0.00	0.00	0.00	364
accuracy			0.72	1293
macro avg	0.36	0.50	0.42	1293
weighted avg	0.52	0.72	0.60	1293

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))