

Master Thesis

Morphology Optimization of a Tilt-Rotor MAV

Spring Term 2018

Declaration of Originality

I hereby declare that the written work I have submitted entitled

Morphology	Optimization	of a	Tilt-Rotor	1// A 1/
Mornings	Oblimization	oı a	Till-Rotor	WAV

is original work which I alone have authored and which is written in my own words. 1

Author(s)		
Luca	Rinsoz	
Student supervisor(s)		
Karen Zachary	Bodie Taylor	
Supervising lecturer		
Roland	Siegwart	
citation rules and that I hav quette' (https://www.ethz abschluesse/leistungsko citation conventions usual to The above written work ma	e that I have been informed re read and understood the information.ch/content/dam/ethz/maintrollen/plagiarism-citate the discipline in question have be tested electronically for	formation on 'Citation eti- n/education/rechtliches- tionetiquette.pdf). The ere have been respected.
Place and date	Signature	

¹Co-authored work: The signatures of all authors are required. Each signature attests to the originality of the entire piece of written work in its final form.

Contents

Al	ostra	ct	iii
$\mathbf{S}\mathbf{y}$	mbo	ls	\mathbf{v}
1	Intr 1.1	oduction Motivation	1 1
	1.2	Literature review	1
	1.3	Problem Statement	1
2	Met	hod	3
	2.1	Modelisation of MAVs	3
	2.2	Optimization problem	3
	2.3	Optimization tool	3
	2.4	Control Approach	3
3	Opt	imization Results	5
	3.1	Even Designs	5
		3.1.1 Platonic Solids	5
		3.1.2 Quad-copter	5
		3.1.3 Hexa-copter	5
		3.1.4 Octa-copter	5
	3.2	Odd Designs	5
		3.2.1 Tri-copter	5
		3.2.2 Penta-copter	5
		3.2.3 Hepta-copter	5
	3.3	Comparison of Different Designs	5
4	Sim	ulation Results	7
	4.1	Hexa-copter	7
	4.2	Hepta-copter	7
	4.3	Octa-copter	7
5	Con	clusion	9
	5.1	Summary/Achieved	9
	5.2	Improvements	9
	5.3	Further Developement	9
Bi	bliog	graphy	11
\mathbf{A}	$\mathbf{U}\mathbf{M}$	L: Activity Diagram	13

Abstract

Hier kommt der Abstact hin ...

Symbols

Symbols

 ϕ, θ, ψ roll, pitch and yaw angle

b gyroscope bias

 Ω_m 3-axis gyroscope measurement

Indices

x x axis y y axis

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule

EKF Extended Kalman Filter
IMU Inertial Measurement Unit
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter

Introduction

- 1.1 Motivation
- 1.2 Literature review

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1.3 Problem Statement

Method

2.1 Modelisation of MAVs

Describe the modeling for the optimization engine

2.2 Optimization problem

Define morphology optimization problem

2.3 Optimization tool

Show resulting optimization tool.

2.4 Control Approach

Optimization Results

Show results produced by the engine.

3.1 Even Designs

- 3.1.1 Platonic Solids
- 3.1.2 Quad-copter
- 3.1.3 Hexa-copter
- 3.1.4 Octa-copter

3.2 Odd Designs

3.2.1 Tri-copter

Show tricopter.

3.2.2 Penta-copter

3.2.3 Hepta-copter

3.3 Comparison of Different Designs

```
\begin{split} \cos(\beta) &= \sqrt{(\frac{2}{3})} => \beta = 35.26^{\circ} \\ F_{min} &= 34.74, F_{max} = 42.55, M_{min} = 17.42, M_{max} = 21.34, H_{eff,min} = 81.65\%, H_{eff,max} = 100\% \\ F_{min} &= 26.6, F_{max} = 52.11, M_{min} = 15.1, M_{max} = 26.13, H_{eff,min} = 75\%, H_{eff,max} = 100\% \\ \text{Design 1: } F_{min} &= 23.18, F_{max} = 28.56, M_{min} = 11.61, M_{max} = 14.3, H_{eff,min} = 81.11\%, H_{eff,max} = 95.2\% \\ \text{Design 2: } F_{min} &= 23.22, F_{max} = 28.37, M_{min} = 11.65, M_{max} = 14.23, H_{eff,min} = 81.65\%, H_{eff,max} = 94.73\% \\ F_{min} &= 44.7, F_{max} = 58.8, M_{min} = 22.4, M_{max} = 29.5, H_{eff,min} = 81.78\%, H_{eff,max} = 96.65\% \\ F_{min} &= 46.46, F_{max} = 56.73, M_{min} = 23.3, M_{max} = 28.45, H_{eff,min} = 81.64\%, H_{eff,max} = 94.77\% \\ \end{split}
```

Table 3.1: Comparison between the different number of propellers.

MAV Design	$F_{min}[N]$	$F_{max}[N]$	$F_{mean}[N]$	$M_{min}[Nm]$	$M_{max}[Nm]$	$M_{mean}[Nm]$	$H_{eff,mean}$ [%]
Tri-copter	17.17	21.21	17.95	8.61	10.64	9	85.46
Quad-copter	23.22	28.37	26.87	11.65	14.23	13.47	87.1
Penta-copter	28.95	35.46	29.4	14.52	17.78	14.74	85.35
Hexa-copter	34.74	42.55	39.52	17.42	21.34	19.82	88.9
Hepta-copter	39.96	49.44	47.2	20.04	24.8	23.66	91.1
Octa-copter	44.7	58.8	53.95	22.4	29.48	27.06	91.42

Simulation Results

Evaluate results in simulation.

- 4.1 Hexa-copter
- 4.2 Hepta-copter
- 4.3 Octa-copter

Conclusion

- 5.1 Summary/Achieved
- 5.2 Improvements
- 5.3 Further Developement

Bibliography

- [1] D. Brescianini and R. D'Andrea, "Design, modeling and control of an omnidirectional aerial vehicle," in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 3261–3266.
- [2] A. Nikou, G. C. Gavridis, and K. J. Kyriakopoulos, "Mechanical design, modelling and control of a novel aerial manipulator," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 4698–4703.
- [3] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor, R. Siegwart, and I. Gilitschenski, "Voliro: An Omnidirectional Hexacopter With Tiltable Rotors," arXiv:1801.04581 [cs], Jan. 2018, arXiv: 1801.04581.
- [4] M. Tognon and A. Franchi, "Omnidirectional Aerial Vehicles with Unidirectional Thrusters: Analysis, Optimal Design, and Motion Control," *IEEE Robotics and Automation Letters*, p. 11, 2018.
- [5] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi, "Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 4006–4013.
- [6] R. Rashad, P. Kuipers, J. Engelen, and S. Stramigioli, "Design, Modeling, and Geometric Control on SE(3) of a Fully-Actuated Hexarotor for Aerial Interaction," arXiv:1709.05398 [math], Sep. 2017, arXiv: 1709.05398.
- [7] S. Park, J. Her, J. Kim, and D. Lee, "Design, modeling and control of omnidirectional aerial robot," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 1570–1575.
- [8] M. Ryll, H. H. Bülthoff, and P. R. Giordano, "Modeling and control of a quadrotor UAV with tilting propellers," in 2012 IEEE International Conference on Robotics and Automation, May 2012, pp. 4606–4613.
- [9] M. Burri, J. Nikolic, H. Oleynikova, M. W. Achtelik, and R. Siegwart, "Maximum likelihood parameter identification for MAVs," in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 4297–4303.

Bibliography 12

Appendix A

UML: Activity Diagram