Группы

- **1.** Проверьте, что $SO_2(\mathbb{R})$ коммутативна, но $O_2(\mathbb{R})$ нет.
- **2.** Покажите, что группа $SO_3(\mathbb{R})$ порождается поворотами на 180° , и все такие повороты сопряжены друг другу. Докажите, что $SO_3(\mathbb{R})$ проста.
- **3.** Найдите линейную оболочку $\mathrm{SL}_n(\mathbb{R})$ в пространстве матриц $\mathrm{Mat}_{n\times n}(\mathbb{R})$.
- **4.** (Движения в \mathbb{R}^3) Пусть T_v , S_H , $R_{v,\varphi}$ обозначают соответственно параллельный перенос на вектор v, отражение относительно гиперплоскости H и поворот вокруг прямой с направляющим вектором v на угол φ против часовой стрелки. Выясните, когда имеют место написанные ниже равенства, и во всех случаях, когда они верны, выразите параметры движения в правой части через параметры движений из левой
 - a) $S_{H_1} \circ S_{H_2} = R_{v,\varphi}$,
 - b) $S_{H_1} \circ S_{H_2} = T_v$,
 - c) $S_H \circ R_{v,\varphi} \circ S_H = R_{u,\psi},$
 - $d) R_{v_1,\varphi_1} \circ R_{v_2,\varphi_2} = T_v \circ R_{u,\psi},$
 - e) $R_{u,\varphi} \circ S_{H_1} \circ R_{u,-\varphi} = S_{H_2}$.
- 5. Пусть $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ некоторое движение. Найти движения
 - a) $F \circ T_v \circ F^{-1}$,
 - $b) F \circ S_H \circ F^{-1},$
 - c) $F \circ R_{v,\varphi} \circ F^{-1}$.

Проективная геометрия

- $\mathbb{P}^n(\mathbb{F})$ n-мерное проективное пространство над полем \mathbb{F} , по умолчанию $\mathbb{F} = \mathbb{R}$. Группа проективных преобразований $\mathrm{PGL}_{n+1}(\mathbb{F}) = \mathrm{GL}_{n+1}(\mathbb{F})/\{\lambda E \mid \lambda \in \mathbb{F}^{\times}\}.$
- **1.** Укажите три точки $A, B, C \in \mathbb{P}^2$ так, чтобы точки A' = (1:0:0), B' = (0:1:0), C' = (0:0:1) лежали соответственно на прямых (CB), (AC), (AB), а прямые (AA'), (BB'), (CC') пересекались в точке (1:1:1).
- 2. Опишите все преобразования проективной прямой, переводящие
 - a) $\infty \to \infty$,
 - b) $\infty \to \infty$, $0 \to 0$,
 - c) $\infty \to 0$, $0 \to \infty$, $1 \to 1$,
 - d) $\infty \to 1$, $0 \to 0$, $1 \to \infty$,
 - e) $\infty \to \infty$, $0 \to 1$, $1 \to 0$.
- **3.** а) В какие множества переводит прямые и окружности преобразование комплексной проективной прямой $z\mapsto \frac{az+b}{cz+d},\ a,b,c,d\in\mathbb{C}?$
 - б) Найдите образ множества $\{z \mid \operatorname{Im} z > 0\} \subset \mathbb{C}$ в $\mathbb{P}^1(\mathbb{C})$ при отображении $z \mapsto \frac{az+b}{cz+d}$, $a,b,c,d \in \mathbb{C}$.
- **4.** При каком условии на три прямые ℓ_0 , ℓ_1 и ℓ_2 на проективной плоскости $\mathbb{P}^2(\mathbb{R})$ можно так выбрать базис, чтобы для каждого j стандартная аффинная карта $U_j = \{(x_0 : x_1 : x_2) \mid x_j \neq 0\}$ была равна $U_j = \mathbb{P}^2(\mathbb{R}) \setminus \ell_j$, то есть ℓ_j была прямой на бесконечности для U_j ?
- **5.** Покажите, что для любых двух проективных подпространств $U, V \subset \mathbb{P}^n$ выполняется неравенство $\dim(U \cap V) \geqslant \dim U + \dim V n$ (в частности, любые две прямые на \mathbb{P}^n пересекаются).

6. Пусть сумма размерностей двух непересекающихся проективных подпространств V_1 и V_2 в \mathbb{P}^n равна n-1. Покажите, что для любой точки $p \notin V_1, V_2$ существует единственная прямая $\ell \ni p$, пересекающая как V_1 , так и V_2 .

Конечные поля

 \mathbb{F}_q — поле из q элементов. $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ для простых p.

- 1. Оказалось, что в группе по изучению французского языка для любых двух девочек есть ровно один мальчик, который нравится им обеим, и каждый мальчик нравится по крайней мере трём девочкам. Приведите пример такой группы, в которой учится больше одного мальчика.
- **2.** Может ли какое-либо поле \mathbb{F} содержать поля \mathbb{F}_p и $\mathbb{F}_{p'}$ для различных простых p, p'?
- **3.** Сколько k-мерных проективных подпространств в $\mathbb{P}^n(\mathbb{F}_q)$?
- **4.** Сколько элементов в группах $SL_2(\mathbb{F}_q)$, $PGL_2(\mathbb{F}_q)$?
- **5.** Пусть $r=2^k$. Докажите, что на кривой $C=\{x^{r+1}+y^{r+1}+z^{r+1}=0\}\subset \mathbb{P}^2(\mathbb{F}_{r^2})$ ровно $(r-2)(r-1)^2$ точек.