КОМП'ЮТЕРНИЙ СИНТЕЗ та ОБРОБКА ЗОБРАЖЕНЬ

2020 / 2021 навчальний рік

СИГНАЛИ

- 1. Інтеграл Фур'є
- 2. Дискретизація сигналів
- 3. Відновлення сигналів. Теорема відліків
- 4. 2D сигнали. Дискретизація та теорема відліків для 2D зображень

https://github.com/eabshkvprof/2021_Image_Processing_IPZm_20

Перетворення Фур'є

!!! Неперіодичний сигнал

= сигнал з безкінечним періодом.

Ряд Фур'є перетворюється в інтеграл Фур'є

Пряме перетворення
$$I \Rightarrow F$$

$$F(\omega) = \int_{-\infty}^{\infty} I(x) e^{-j\omega x} dx$$

3воротне перетворення $F \Rightarrow I$

$$I(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega x} d\omega$$

 $F(\omega)$ - комплексна функція — спектр сигналу I(x)

Інтеграл Фур'є. Один прямокутний імпульс

$$I(x) = \begin{cases} 0: |x| < \frac{\tau}{2} \\ A: |x| > \frac{\tau}{2} \end{cases}$$

$$T \to 0$$

$$F(\omega) = A\tau \frac{\sin(\omega \frac{\tau}{2})}{\omega \frac{\tau}{2}} = A\tau \frac{\tau}{2}$$

$$T \to \infty$$

sinc(x)=sin(x)/x - кардинальний синус

if
$$(x=0) \rightarrow \text{sinc } (x) = 1$$

Один прямокутний імпульс. Спектральна щільність

Має затухаючий коливальний характер. Нулі $F(\omega)$, тобто частоти, відповідні $F(\omega)=0$, рівні $\omega=k^{2\pi}/\tau$, де $k=\pm 1,\pm 2,...$

Швидкість убування бічних пелюсток $F(\omega)$ пропорційна $1/\omega$.

Дельта - функція

Дельта- функція Дірака

!! Площа дельта-функції = 1

Дельта - функція

Інтеграл від довільної функції I(x) помноженої на дельта- функцію в точці x_0 є

$$\int_{-\infty}^{\infty} I(x) \, \delta(x - x_0) dx = \int_{-\infty}^{\infty} I(x_0) \, \delta(x - x_0) dx$$

Дискретизація – множення сигналу на дельта-функцію

Сигнал $I(x) \Rightarrow I_s(x)$!!! дискретизація

$$I_s(kT)=I(x)\delta(x-kT)$$

T - період дискретизації,

 $f_s = {}^1\!/_T$ - частота дискретизації (Гц) $\omega_s = {}^{2\pi}\!/_T$ - кругова частота дискретизації (рад/с) \hat{f} : (-1 ... 1)- нормована частота дискретизації (абсолютна частота віднесена до частоти дискретизації, π рад/відлік) $\hat{\omega}$: (- π ... π) - нормована кругова частота дискретизації — (рад/відлік)

Сигнал $I_s(x) \Rightarrow$ його спектр $F(\omega)$ Дискретизваний сигнал $I_s(x) \Rightarrow$?? спектр

$$S(\widehat{\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left(F(\frac{\widehat{\omega}}{T} - n\omega_s) \right)$$

Сума спектрів!

$$S(\widehat{\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left(F(\frac{\widehat{\omega}}{T} - n\omega_s) \right)$$

Спектр дискретизованого сигналу $I_{s}(x)$, отриманого шляхом дискретизації безперервного сигналу $I_s(x)$, дорівнює нескінченної сумі по nзсунутих копій спектрів вхідного безперервного сигналу $F(\omega)$. Зсув = номер n копії помножений на кругову частоту дискретизації $\omega_s = \frac{2\pi}{T}$ Тобто $S(\widehat{\omega})$ - періодична функція, що повторюється з періодом 2π радіан на відлік або в абсолютних одиницях рівній частоті дискретизації f_{s} .

10

До вибору шагу дискретизації

Якщо безперервний сигнал x(t) має спектр, обмежений частотою f_{max} , то він може бути однозначно і без витрат відтворений за своїми дискретними відліками, узятими з частотою $f_{samp} > 2*f_{max} (\omega_s > 2 \omega_{max})$, або за вдліками, узятими з періодом $T_{sampl} < 1/(2*f_{max})$.

f_{max} - частота Найквіста

Тобто, для того, щоб відтворити сигнал за його відліками без втрат, необхідно, щоб частота дискретизації була хоча б у два рази більша за f_{max} первинного безперервного сигналу.

Відтворення (встановлення) сигналу

$$I(x) = \sum_{k=-\infty}^{\infty} I(t_k) \frac{\sin(\frac{\pi}{T_S}(t - kT_S))}{\frac{\pi}{T_S}(t - kT_S))}$$

$$I(x) = \sum_{k=-\infty}^{\infty} I(t_k) \operatorname{sinc}(\frac{\pi}{T_S}(t - kT_S))$$

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 1. Lec 2