Colon Cancer

Jose Tamez

2023-05-15

Contents

1 RRPlot and the Colon data set 1.1 The data set	1 2 2 4 30
1.0.1 Libraries	
library(survival) library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
## ## Attaching package: 'Hmisc'	
<pre>## The following objects are masked from 'package:base': ##</pre>	
## format.pval, units	
## Loading required package: pROC	
## Type 'citation("pROC")' for a citation.	
## Attaching package: 'pROC'	
<pre>## The following objects are masked from 'package:stats': ## ##</pre>	
## cov, smooth, var	
<pre>#library(corrplot) #source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") op <- par(no.readonly = TRUE) pander::panderOptions('digits', 3)</pre>	

```
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.1 The data set

```
data(cancer)
colon <- subset(colon,etype==1)
colon$etype <- NULL
rownames(colon) <- colon$id
colon$id <- NULL
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

0 1 442 446

```
dataColon <- as.data.frame(model.matrix(status~.*.,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\+","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]
pander::pander(table(dataColonTrain$status))</pre>
```

0	1
306	315

pander::pander(table(dataColonTest\$status))

0	1
136	131

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time,status)~1,data=dataColonTrain,NumberofRepeats = 3)</pre>
```

```
[+++++++++++++++++++++++++]..
```

pander::pander(sm\$coefficients)

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
nodes	0.018711	1.013	1.019	1.024	0.614
${\bf nodes_node4}$	0.012480	1.009	1.013	1.016	0.609
${f differ_node4}$	0.066230	1.047	1.068	1.090	0.607
${ m extent_node4}$	0.031074	1.021	1.032	1.042	0.607
${f age_nodes}$	0.000127	1.000	1.000	1.000	0.604
${f node 4}$	0.058374	1.037	1.060	1.083	0.607
${f age_node4}$	0.001203	1.001	1.001	1.002	0.607
${f nodes_extent}$	0.003370	1.002	1.003	1.005	0.622
${ m rxLev_5FU_age}$	-0.001451	0.998	0.999	0.999	0.576
${f nodes_differ}$	0.001619	1.001	1.002	1.003	0.615
sex_nodes	-0.009527	0.986	0.991	0.995	0.509
${ m rxLev_5FU_differ}$	-0.023466	0.965	0.977	0.989	0.576
${f rxLev_5FU_extent}$	-0.030572	0.955	0.970	0.985	0.576
${f rxLev_5FU}$	-0.045898	0.932	0.955	0.978	0.576
$rxLev_5FU_sex$	-0.065777	0.903	0.936	0.971	0.560
${f differ_extent}$	0.015186	1.006	1.015	1.024	0.546
${f extent}$	0.078339	1.031	1.081	1.135	0.551
$rxLev_5FU_node4$	0.010141	1.003	1.010	1.017	0.515

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
nodes	0.529	0.618	0.616	0.524	0.620
${f nodes_node4}$	0.507	0.609	0.612	0.500	0.612
${f differ_node4}$	0.588	0.620	0.611	0.586	0.623
${\bf extent_node4}$	0.574	0.610	0.611	0.571	0.613
${f age_nodes}$	0.510	0.604	0.606	0.503	0.606
${f node 4}$	0.596	0.609	0.611	0.594	0.613
${f age_node4}$	0.596	0.612	0.611	0.595	0.615
${f nodes}_{f extent}$	0.587	0.628	0.624	0.586	0.629
$rxLev_5FU_age$	0.618	0.620	0.574	0.622	0.623
${f nodes_differ}$	0.602	0.607	0.617	0.602	0.608
sex_nodes	0.611	0.627	0.511	0.610	0.628
${ m rxLev_5FU_differ}$	0.602	0.612	0.574	0.604	0.615
$rxLev_5FU_extent$	0.618	0.627	0.574	0.621	0.628
${ m rxLev_5FU}$	0.606	0.612	0.574	0.609	0.615
$rxLev_5FU_sex$	0.607	0.607	0.555	0.611	0.611
${f differ_extent}$	0.604	0.612	0.550	0.607	0.615
\mathbf{extent}	0.609	0.620	0.546	0.612	0.623
$rxLev_5FU_node4$	0.599	0.609	0.521	0.599	0.608

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
nodes	0.03760	0.4472	6.72	6.083	0.096424	1.000

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
nodes_node4	0.03676	0.4491	6.56	6.679	0.112278	1.000
${f differ_node4}$	0.04932	0.4424	6.41	6.527	0.036928	1.000
${\rm extent_node4}$	0.04407	0.4424	6.20	6.527	0.041515	1.000
${f age_nodes}$	0.03284	0.4209	6.20	5.707	0.103268	1.000
${f node 4}$	0.03141	0.4255	5.44	6.305	0.018459	1.000
${f age_node4}$	0.03153	0.4358	5.39	6.464	0.019286	1.000
${f nodes}_{f extent}$	0.02817	0.3831	5.35	5.152	0.042958	1.000
$rxLev_5FU_age$	0.02174	0.2960	4.27	3.974	0.001821	1.000
${f nodes_differ}$	0.01698	0.2833	3.93	3.767	0.005854	1.000
sex_nodes	0.01040	0.1824	3.92	2.329	0.017805	1.000
${ m rxLev_5FU_differ}$	0.01817	0.2960	3.90	3.974	0.010498	1.000
$rxLev_5FU_extent$	0.01839	0.3002	3.80	4.079	0.007530	1.000
${ m rxLev_5FU}$	0.01716	0.2960	3.73	3.974	0.006348	1.000
$rxLev_5FU_sex$	0.01704	0.2215	3.58	3.862	0.000032	1.000
${f differ_extent}$	0.01586	0.1155	3.31	1.448	0.007547	1.000
extent	0.01386	-0.0138	3.19	-0.213	0.011111	1.000
rxLev_5FU_node4	0.00426	0.1059	2.77	1.359	0.008777	0.333

1.3 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

Number at risk

Low	489	313	264	41	0
At Risk > 0.465	132	37	26	2	0

1.3.2 Time to event

```
toinclude <- rdata[,1] == 1
obstiemToEvent <- dataColonTrain[,"time"]
tmin<-min(obstiemToEvent)
sum(toinclude)</pre>
```

[1] 315

```
timetoEvent <- meanTimeToEvent(rdata[,2],timeinterval)
tmax<-max(c(obstiemToEvent,timetoEvent))
lmfit <- lm(obstiemToEvent[toinclude]~0+timetoEvent[toinclude])
sm <- summary(lmfit)
pander::pander(sm)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
${\bf time to Event [to include]}$	0.459	0.0228	20.1	1.84e-58

Table 7: Fitting linear model: obstiem ToEvent[toinclude] $\sim 0 + timetoEvent[toinclude]$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
315	1.35	0.563	0.562

```
plot(timetoEvent,obstiemToEvent,
     col=1+rdata[,1],
     xlab="Expected Time",
     ylab="Observed Time",
     main="Expected vs. Observed",
     xlim=c(tmin,tmax),
     ylim=c(tmin,tmax),
     log="xy")
lines(x=c(tmin,tmax),y=lmfit$coefficients*c(tmin,tmax),lty=1,col="blue")
txt <- bquote(paste(R^2 == .(round(sm$r.squared,3))))</pre>
text(tmin+0.005*(tmax-tmin),tmax,txt,cex=0.7)
text(tmin+0.015*(tmax-tmin),tmax,sprintf("Slope=%4.3f",sm$coefficients[1]),cex=0.7)
legend("bottomright",legend=c("No Event","Event","Linear fit"),
             pch=c(1,1,-1),
             col=c(1,2,"blue"),
             lty=c(-1,-1,1)
```

Expected vs. Observed

MADerror2 <- mean(abs(timetoEvent[toinclude]-obstiemToEvent[toinclude]))
pander::pander(MADerror2)</pre>

1.99

1.3.3 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 8: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.465	0.343	0.254	2.31e-01	0.499
$\mathbf{R}\mathbf{R}$	1.748	1.793	3.603	2.56e + 01	1.798
RR_LCI	1.523	1.524	1.811	5.53e-02	1.571
RR_UCI	2.007	2.109	7.166	1.18e + 04	2.058
\mathbf{SEN}	0.321	0.610	0.978	1.00e+00	0.286
\mathbf{SPE}	0.899	0.683	0.131	1.63e-02	0.925
\mathbf{BACC}	0.610	0.646	0.554	5.08e-01	0.605
${\bf Net Benefit}$	0.119	0.227	0.350	3.61e-01	0.108

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 9: O/E Ratio

O/E	Low	Upper	p.value
0.958	0.855	1.07	0.473

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 10: O/E Mean

mean	50%	2.5%	97.5%
1.57	1.57	1.55	1.6

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 11: O/Acum Mean

mean	50%	2.5%	97.5%
1.38	1.38	1.38	1.39

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.665	0.665	0.636	0.694

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 13: ROC AUC

est	lower	upper
0.693	0.653	0.734

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 14: Sensitivity

est	lower	upper
0.321	0.269	0.375

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 15: Specificity

est	lower	upper
0.899	0.859	0.93

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 16: Probability Thresholds

90%	
0.465	

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 17: Logrank test Chisq = 81.105923 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	489	214	269.7	11.5	81.1
class=1	132	101	45.3	68.6	81.1

1.3.4 Cox Calibration

h0	Gain	TimeInterval
0.696	1.53	2.86

1.3.5 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

ROC: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

1.3.6 Time to event after calibration

```
timetoEvent <- meanTimeToEvent(rdata[,2],timeinterval)
tmax<-max(c(obstiemToEvent,timetoEvent))
lmfit <- lm(obstiemToEvent[toinclude]~0+timetoEvent[toinclude])
sm <- summary(lmfit)
pander::pander(sm)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
${f time to Event[to include]}$	0.737	0.0366	20.1	1.84e-58

Table 20: Fitting linear model: obstiem ToEvent[toinclude] $\sim 0 + timetoEvent[toinclude]$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
315	1.35	0.563	0.562

Expected vs. Observed

MADerror2 <- c(MADerror2,mean(abs(timetoEvent[toinclude]-obstiemToEvent[toinclude])))
pander::pander(MADerror2)</pre>

1.99 and 1.17

1.3.7 Calibrated Train Performance

```
pander::pander(t(rrAnalysisTrain$keyPoints),caption="Threshold values")
```

Table 21: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
$\overline{\text{Thr}}$	0.6164	0.475	0.362	3.32e-01	0.500
RR	1.7484	1.793	3.603	$2.56e{+01}$	1.626
RR_LCI	1.5231	1.524	1.811	5.53e-02	1.406
RR_UCI	2.0070	2.109	7.166	1.18e + 04	1.881
\mathbf{SEN}	0.3206	0.610	0.978	1.00e+00	0.429
\mathbf{SPE}	0.8987	0.683	0.131	1.63e-02	0.801
\mathbf{BACC}	0.6097	0.646	0.554	5.08e-01	0.615
${f NetBenefit}$	0.0824	0.168	0.253	2.66e-01	0.119

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 22: O/E Ratio

O/E	Low	Upper	p.value
0.768	0.686	0.858	1.27e-06

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 23: O/E Mean

mean	50%	2.5%	97.5%
0.986	0.986	0.972	1

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 24: O/Acum Mean

mean	50%	2.5%	97.5%
1.06	1.06	1.06	1.06

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.665	0.665	0.636	0.694

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 26: ROC AUC

est	lower	upper
0.693	0.653	0.734

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 27: Sensitivity

est	lower	upper
0.321	0.269	0.375

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 28: Specificity

est	lower	upper
0.899	0.859	0.93

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 29: Probability Thresholds

6	90%
0	.616

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 30: Logrank test Chisq = 81.105923 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	489	214	269.7	11.5	81.1
class=1	132	101	45.3	68.6	81.1

1.3.8 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

1.3.9 Test Performance

pander::pander(t(rrAnalysisTest\$keyPoints), caption="Threshold values")

Table 31: Threshold values

	@:0.616	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.6152	0.473	0.364	0.32	0.5015
RR	1.7969	1.869	3.084	1.00	1.4510
RR_LCI	1.4460	1.428	1.090	0.00	1.1463
RR_UCI	2.2330	2.446	8.727	0.00	1.8365
\mathbf{SEN}	0.3130	0.656	0.977	1.00	0.4122
\mathbf{SPE}	0.9044	0.640	0.110	0.00	0.7574
\mathbf{BACC}	0.6087	0.648	0.544	0.50	0.5848
${\bf Net Benefit}$	0.0757	0.157	0.220	0.25	0.0779

pander::pander(t(rrAnalysisTest\$OERatio\$estimate),caption="0/E Ratio")

Table 32: O/E Ratio

O/E	Low	Upper	p.value
0.718	0.6	0.852	7.33e-05

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Mean")

Table 33: O/E Mean

mean	50%	2.5%	97.5%
0.838	0.839	0.823	0.854

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Mean")

Table 34: O/Acum Mean

mean	50%	2.5%	97.5%
1.01	1.01	1	1.01

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.645	0.647	0.6	0.693

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 36: ROC AUC

est	lower	upper
0.671	0.607	0.736

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 37: Sensitivity

est	lower	upper
0.305	0.228	0.392

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 38: Specificity

est	lower	upper
0.904	0.842	0.948

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 39: Probability Thresholds

90%	
0.616	

```
pander::pander(rrAnalysisTest$surdif,caption="Logrank test")
```

Table 40: Logrank test Chisq = 34.193780 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	214	91	113.6	4.49	34.2
class=1	53	40	17.4	29.32	34.2

1.4 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

```
stp <- rcv$survTestPredictions
stp <- stp[!is.na(stp[,4]),]

bbx <- boxplot(unlist(stp[,1])~rownames(stp),plot=FALSE)
times <- bbx$stats[3,]
status <- boxplot(unlist(stp[,2])~rownames(stp),plot=FALSE)$stats[3,]
prob <- ppoisGzero(boxplot(unlist(stp[,4])~rownames(stp),plot=FALSE)$stats[3,],h0)

rdatacv <- cbind(status,prob)
rownames(rdatacv) <- bbx$names</pre>
```

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

1.4.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$keyPoints),caption="Threshold values")

Table 41: Threshold values

	@:0.616	@MAX BACC	@MAX RR	@SPE100	p(0.5)
Thr	0.6166	0.469	0.373	0.31443	0.5000
RR	1.6897	1.670	2.410	1.00000	1.5120
RR_LCI	1.4999	1.457	1.612	0.00000	1.3351
RR_UCI	1.9035	1.913	3.603	0.00000	1.7125
\mathbf{SEN}	0.3251	0.599	0.957	1.00000	0.3901
\mathbf{SPE}	0.8824	0.656	0.152	0.00679	0.7964
\mathbf{BACC}	0.6037	0.627	0.554	0.50339	0.5933
NetBenefit	0.0691	0.149	0.229	0.27555	0.0946

pander::pander(t(rrAnalysisCVTest\$0ERatio\$estimate),caption="0/E Ratio")

Table 42: O/E Ratio

O/E	Low	Upper	p.value
0.754	0.686	0.827	5.12e-10

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Mean")

Table 43: O/E Mean

mean	50%	2.5%	97.5%
0.937	0.936	0.926	0.947

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Mean")

Table 44: O/Acum Mean

mean	50%	2.5%	97.5%
1.03	1.03	1.03	1.03

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.649	0.649	0.622	0.673

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 46: ROC AUC

est	lower	upper	
0.672	0.637	0.708	

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 47: Sensitivity

est	lower	upper	
0.325	0.282	0.371	

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 48: Specificity

est	lower	upper	
0.882	0.849	0.911	

pander::pander(t(rrAnalysisCVTest\$thr_atP),caption="Probability Thresholds")

Table 49: Probability Thresholds

90%	
0.616	

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 50: Logrank test Chisq = 99.248680 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	691	301	376.8	15.3	99.2
class=1	197	145	69.2	83.0	99.2