1. Билет 44. Поверхностные интегралы второго рода. Определение. Физический смысл.

Поверхностный интеграл 2-го рода Пусть имеется ориентировочная кусочно-гладкая поверхность r и на ней задано векторное поле $\overline{F} = (P(x,y,z),Q(x,y,z),R(x,y,z))$

- 1. Разобьем поверхность на п частей, $\lambda_i , i n ; \delta G_i$ проекция i n частей на плоскость ху взятая со знаком '+' если нормаль имеет плоскость направление по оси Oz и со знаком '-', если на оборот
- 2. В каждой из частей выберем по произволной точке M_i
- 3. Соствляем интегральную сумму $\sum_i R(M_i) \delta G_i$
- 4. Берем предел интегр. сумм при условии что диматр всей части $\lambda_i \to 0$
- 5. $\lim_{\lambda_i \to 0} \sum_i R(M_i) \delta G_i$

Если этот предел существует, не завитсит от зазбиения и выбора точек, то обозначаем его $\iint_r \mathbf{R}(\mathbf{x},\mathbf{y},\mathbf{z}) d\mathbf{x} d\mathbf{y}$

Аналогичным образом $\iint_r P(x,y,z) dxdz$ и $\iint_r Q(x,y,z) dxdz$

Определение:Сумма 3-х полученных интегралов называется поверхностным интегралом 2-го рода векторного поля $\overline{F}-r\overline{n}$

$$\iint_r P(x,y,z)dxdz + Q(x,y,z)dxdz + R(x,y,z)dxdy$$

Физический смысл: другое название этого интеграла - поток векторного поля \overline{F} через поверхность r в направлении нормали \overline{n}

Вычесления:

1. В явном виде каждая составляющая инт-ла считается отдельно. Если пов-ть задана в явном виде: z = z(x,y)

$$\iint_r R(x,y,z)dxdy = \iint_D R(x,y,z(x,y))dxdy$$

Где D - проекция на плоскость хоу $\iint_r P(x,y,z) dx dz \iint_r Q(x,y,z) dx dz$

2. Сведение к поверх. инт-лу 1-го рода

$$\iint_r P(x,y,z) dx dz + Q(x,y,z) dx dz + R(x,y,z) dx dy = \iint_r (P\cos(\alpha) + Q\cos(\beta) + R\cos(\gamma)) dS$$
 Где $\cos(\alpha), \cos(\beta), \cos(\gamma)$ - направляющие косинусы нормали
$$(\frac{\overline{r_u} * \overline{r_v}}{|\overline{r_u} * \overline{r_v}|}) = \cos(\alpha), \cos(\beta), \cos(\gamma)$$

3. Пусть пов-ть однозначно проектируется на плоскости uv и $\overline{n} = \overline{r_u} * \overline{r_v} = (A, B, C),$ тогда

$$\iint_r P(x,y,z) dxdz + Q(x,y,z) dxdz + R(x,y,z) dxdy = \iint_D (AD + DQ + CR) dxdv$$

В частности, если z=z(x,y) и пов-ть однозначно проектируется на ось xy, то $\iint_r P(x,y,z) dx dz + Q(x,y,z) dx dz + R(x,y,z) dx dy = \iint_D (-z'x P(x,y,z)) (-z'y Q(x,y,z(x,y))) + (R(x,y,z(x,y))) dx dy$