Rank-76291 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1503221081

General information

Number of lines	16
Number of points	37
Number of singular points	2
Number of Eckardt points	3
Number of double points	29
Number of single points	3
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{16}
Type of lines on points	$5^2, 3^3, 2^{29}, 1^3$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_8 = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0)$$

The 16 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\begin{split} \ell_1 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{PI}(0,0,1,0,0,0)_2 \\ \ell_2 &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \mathbf{PI}(1,0,0,0,0,1)_{102} \\ \ell_3 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \mathbf{PI}(1,0,1,0,1,0)_{33} \\ \ell_4 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega^2 & \omega \end{bmatrix}_{11} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{11} = \mathbf{PI}(3,0,2,0,1,0)_{42} \\ \ell_5 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega & \omega^2 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{14} = \mathbf{PI}(2,0,3,0,1,0)_{48} \\ \ell_6 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{PI}(0,1,0,0,0,0)_1 \\ \ell_7 &= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{PI}(0,0,1,1,1,1)_{198} \\ \ell_8 &= \begin{bmatrix} 1 & \omega^2 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{81} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{81} = \mathbf{PI}(0,0,3,2,3,1)_{332} \\ \ell_9 &= \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{61} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{61} = \mathbf{PI}(0,0,2,3,2,1)_{265} \\ \ell_{10} &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \mathbf{PI}(1,1,1,0,1,1)_{180} \\ \ell_{11} &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega^2 & \omega \end{bmatrix}_{35} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{35} = \mathbf{PI}(2,3,3,0,3,1)_{307} \\ \ell_{12} &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega^2 & \omega \end{bmatrix}_{32} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{32} = \mathbf{PI}(3,2,2,0,2,1)_{245} \\ \ell_{13} &= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{313} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{313} = \mathbf{PI}(0,2,2,3,2,1)_{270} \\ \ell_{14} &= \begin{bmatrix} 1 & \omega & 0 & \omega^2 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{313} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{249} = \mathbf{PI}(0,3,3,2,3,1)_{338} \\ \mathbf{PI}(0,2,2,3,2,1)_{245} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{249} = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{249} = \mathbf{PI}(0,3,3,2,3,1)_{338} \\ \mathbf{PI}(0,2,2,3,2,1)_{245} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{249} = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{249} = \mathbf{PI}(0,3,3,2,3,1)_{338} \\ \mathbf{PI}(0,2,2,3,2,1)_{245} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{249} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{249}$$

Rank of lines: (0, 16, 21, 5, 11, 14, 356, 38, 81, 61, 26, 35, 32, 122, 313, 249) Rank of points on Klein quadric: (0, 2, 102, 33, 42, 48, 1, 198, 332, 265, 180, 307, 245, 202, 270, 338)

Eckardt Points

The surface has 3 Eckardt points:

 $0: P_{38} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1),$

1: $P_{53} = \mathbf{P}(0, 0, \omega, 1) = \mathbf{P}(0, 0, 2, 1),$ 2: $P_{69} = \mathbf{P}(0, 0, \omega^2, 1) = \mathbf{P}(0, 0, 3, 1)$

Double Points

The surface has 29 Double points:

The double points on the surface are:

$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$
$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_7$
$P_6 = (2, 1, 0, 0) = \ell_0 \cap \ell_8$
$P_7 = (3, 1, 0, 0) = \ell_0 \cap \ell_9$
$P_2 = (0,0,1,0) = \ell_1 \cap \ell_6$
$P_{12} = (1, 1, 1, 0) = \ell_2 \cap \ell_{13}$
$P_{16} = (1, 2, 1, 0) = \ell_2 \cap \ell_{14}$
$P_{20} = (1, 3, 1, 0) = \ell_2 \cap \ell_{15}$
$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_7$
$P_{42} = (0, 1, 1, 1) = \ell_3 \cap \ell_{10}$
$P_{44} = (3, 1, 1, 1) = \ell_3 \cap \ell_{14}$
$P_{43} = (2, 1, 1, 1) = \ell_3 \cap \ell_{15}$
$P_{67} = (2, 3, 2, 1) = \ell_4 \cap \ell_9$
$P_{65} = (0, 3, 2, 1) = \ell_4 \cap \ell_{12}$
$P_{68} = (3, 3, 2, 1) = \ell_4 \cap \ell_{13}$

$$P_{66} = (1, 3, 2, 1) = \ell_4 \cap \ell_{15}$$

$$P_{80} = (3, 2, 3, 1) = \ell_5 \cap \ell_8$$

$$P_{77} = (0, 2, 3, 1) = \ell_5 \cap \ell_{11}$$

$$P_{79} = (2, 2, 3, 1) = \ell_5 \cap \ell_{13}$$

$$P_{78} = (1, 2, 3, 1) = \ell_5 \cap \ell_{14}$$

$$P_{47} = (2, 2, 1, 1) = \ell_7 \cap \ell_{11}$$

$$P_{52} = (3, 3, 1, 1) = \ell_7 \cap \ell_{12}$$

$$P_{75} = (2, 1, 3, 1) = \ell_8 \cap \ell_{10}$$

$$P_{82} = (1, 3, 3, 1) = \ell_8 \cap \ell_{12}$$

$$P_{60} = (3, 1, 2, 1) = \ell_9 \cap \ell_{10}$$

$$P_{62} = (1, 2, 2, 1) = \ell_9 \cap \ell_{11}$$

$$P_{27} = (1, 1, 0, 1) = \ell_{10} \cap \ell_{13}$$

$$P_{33} = (3, 2, 0, 1) = \ell_{11} \cap \ell_{15}$$

$$P_{36} = (2, 3, 0, 1) = \ell_{12} \cap \ell_{14}$$

Single Points

The surface has 3 single points: The single points on the surface are:

0:
$$P_3 = (0, 0, 0, 1)$$
 lies on line ℓ_6
1: $P_9 = (2, 0, 1, 0)$ lies on line ℓ_1

The single points on the surface are:

2 : $P_{10} = (3,0,1,0)$ lies on line ℓ_1

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0 1	2	3	4	5	6	7	8	9	10	11	12	2	13	14	15
0	01	1	1	1	1	0	1	1	1	0	0	()	0	0	0
1	10	1	1	1	1	1	0	0	0	1	1	1	L	0	0	0
2	11	0	0	0	0	0	0	0	0	1	1	. 1	L	1	1	1
3	11	0	0	1	1	0	1	0	0	1	0	()	0	1	1
4	11	0	1	0	1	0	0	0	1	0	0	1	L	1	0	1
5	11	0	1	1	0	0	0	1	0	0	1	()	1	1	0
6	0 1	0	0	0	0	0	1	1	1	0	0	()	1	1	1
7	10	0	1	0	0	1	0	0	0	0	1	1	L	1	0	0
8	10	0	0	0	1	1	0	0	0	1	0	1	L	0	0	1
9	10	0	0	1	0	1	0	0	0	1	1	()	0	1	0
10	0 1	1	1	0	0	0	0	1	1	0	1	. 1	L	1	0	0
11	0 1	1	0	0	1	0	1	0	1	1	0	1	L	0	0	1
12	0 1	1	0	1	0	0	1	1	0	1	1	()	0	1	0
13	0 0	1	0	1	1	1	1	0	0	1	0	()	0	0	0
14	0 0	1	1	0	1	1	0	0	1	0	0	1	L	0	0	0
15	0 0	1	1	1	0	1	0	1	0	0	1	()	0	0	0

Neighbor sets in the line inte Line 0 intersects	rsection gr	aph:	
	Line	ℓ_1	

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_7	ℓ_8	ℓ_9
in point	P_0	P_1	P_0	P_0	P_0	P_5	P_6	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_{10}	ℓ_{11}	ℓ_{12}
in point	P_0	P_8	P_0	P_0	P_0	P_2	P_8	P_8	P_8

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}	ℓ_{15}
in point	P_1	P_8	P_8	P_8	P_8	P_{12}	P_{16}	P_{20}

Line 3 intersects

Line								
in point	P_0	P_0	P_0	P_0	P_4	P_{42}	P_{44}	P_{43}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_5	ℓ_9	ℓ_{12}	ℓ_{13}	ℓ_{15}
in point	P_0	P_0	P_0	P_0	P_{67}	P_{65}	P_{68}	P_{66}

 ${\bf Line~5~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_8	ℓ_{11}	ℓ_{13}	ℓ_{14}
in point	P_0	P_0	P_0	P_0	P_{80}	P_{77}	P_{79}	P_{78}

Line 6 intersects

Line	ℓ_1	ℓ_7	ℓ_8	ℓ_9	ℓ_{13}	ℓ_{14}	ℓ_{15}
in point	P_2	P_{38}	P_{69}	P_{53}	P_{38}	P_{53}	P_{69}

Line 7 intersects

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_{11}	ℓ_{12}	ℓ_{13}
in point	P_5	P_4	P_{38}	P_{47}	P_{52}	P_{38}

Line 8 intersects

Line	ℓ_0	ℓ_5	ℓ_6	ℓ_{10}	ℓ_{12}	ℓ_{15}
in point	P_6	P_{80}	P_{69}	P_{75}	P_{82}	P_{69}

Line 9 intersects

Line	ℓ_0	ℓ_4	ℓ_6	ℓ_{10}	ℓ_{11}	ℓ_{14}
in point	P_7	P_{67}	P_{53}	P_{60}	P_{62}	P_{53}

Line 10 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_8	ℓ_9	ℓ_{11}	ℓ_{12}	ℓ_{13}
in point	P_8	P_8	P_{42}	P_{75}	P_{60}	P_8	P_8	P_{27}

Line 11 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_7	ℓ_9	ℓ_{10}	ℓ_{12}	ℓ_{15}
in point	P_8	P_8	P_{77}	P_{47}	P_{62}	P_8	P_8	P_{33}

 ${\bf Line~12~intersects}$

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_7	ℓ_8	ℓ_{10}	ℓ_{11}	ℓ_{14}
in point	P_{8}	Po	$P_{e\pi}$	P_{E2}	Pon	Po	Po	P_{26}

Line 13 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_{10}
in point	P_{12}	P_{68}	P_{79}	P_{38}	P_{38}	P_{27}

 ${\bf Line} \ 14 \ {\bf intersects}$

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_9	ℓ_{12}
in point	P_{16}	P_{44}	P_{78}	P_{53}	P_{53}	P_{36}

Line 15 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_8	ℓ_{11}
in point	P_{20}	P_{43}	P_{66}	P_{69}	P_{69}	P_{33}

The surface has 37 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$13: P_{20} = (1, 3, 1, 0)$	$26: P_{65} = (0, 3, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$14: P_{27} = (1, 1, 0, 1)$	$27: P_{66} = (1, 3, 2, 1)$
$2: P_2 = (0,0,1,0)$	$15: P_{33} = (3, 2, 0, 1)$	$28: P_{67} = (2, 3, 2, 1)$
$3: P_3 = (0,0,0,1)$	$16: P_{36} = (2, 3, 0, 1)$	$29: P_{68} = (3, 3, 2, 1)$
$4: P_4 = (1, 1, 1, 1)$	$17: P_{38} = (0,0,1,1)$	$30: P_{69} = (0,0,3,1)$
$5: P_5 = (1, 1, 0, 0)$	$18: P_{42} = (0, 1, 1, 1)$	$31: P_{75} = (2, 1, 3, 1)$
$6: P_6 = (2, 1, 0, 0)$	$19: P_{43} = (2, 1, 1, 1)$	$32: P_{77} = (0, 2, 3, 1)$
$7: P_7 = (3, 1, 0, 0)$	$20: P_{44} = (3, 1, 1, 1)$	$33: P_{78} = (1, 2, 3, 1)$
$8: P_8 = (1,0,1,0)$	$21: P_{47} = (2, 2, 1, 1)$	$34: P_{79} = (2, 2, 3, 1)$
$9: P_9 = (2,0,1,0)$	$22: P_{52} = (3, 3, 1, 1)$	$35: P_{80} = (3, 2, 3, 1)$
$10: P_{10} = (3, 0, 1, 0)$	$23: P_{53} = (0,0,2,1)$	$36: P_{82} = (1, 3, 3, 1)$
$11: P_{12} = (1, 1, 1, 0)$	$24: P_{60} = (3, 1, 2, 1)$	
$12: P_{16} = (1, 2, 1, 0)$	$25: P_{62} = (1, 2, 2, 1)$	