Fuente: Examen Final de Econometría II 2021

1. (60 puntos) La variable aleatoria y sigue una distribución Erlang (caso especial de la distribución Gamma). Su función de densidad es:

$$f(y; \alpha, \lambda) = \frac{(y/\lambda)^{\alpha - 1} e^{-y/\lambda}}{\lambda(\alpha - 1)!}, \quad y > 0, \lambda > 0, \alpha \in \mathbb{N}$$
 (1)

- (a) (10 puntos) Encuentre la media, varianza, skewness y kurtosis de y.¹
- (b) (5 puntos) Asumiendo que conoce el valor de α , encuentre el estimador MLE de λ y su esperanza.
- (c) (10 puntos) Asumiendo que conoce el valor de α , utilice estimadores extremos para demuestrar que el estimador MLE de λ es consistente y derive su distribución asintótica.²
- (d) (5 puntos) Asumiendo que conoce el valor de α , proponga un estimador de λ utilizando el método de momentos.
- (e) (10 puntos) Asumiendo que conoce el valor de α , proponga un estimador de λ utilizando GMM.
- (f) (10 puntos) Asuma ahora que desconoce α y λ . Proponga un algoritmo eficiente para estimar los parámetros por MLE.
- (g) (10 puntos) Asuma ahora que desconoce α y λ . Describa cómo estimaría los parámetros por método de momentos.

¹La función generadora de momentos de esta distribución es $M(t) = (1 - \lambda t)^{-\alpha}$. ²Puede asumir que $T^{-1} \sum \ln y_t \stackrel{p}{\to} J(\alpha)$, donde $J(\alpha)$ es una función determinística de α .