Econ 703 - Day Five - Solutions

I. Continuity

Theorem: Suppose that a < b and $f : (a,b) \to \mathbb{R}$. Then f is uniformly continuous on (a,b) if and only if f can be continuously extended to [a,b].

a.) Using the ϵ - δ defintion of continuity, show that, for a continuous function $f: A \to B$, for $V \subset B$ open, $f^{-1}(V)$ is also open. Assume $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.

Solution: Proof: Take an arbitrary open set V in \mathbb{R} . We want to show its preimage is open. This is trivial if the preimage is empty, so assume not. Take $x \in f^{-1}(V)$. Since $f(x) \in V$ and V is open, there exists some $\epsilon > 0$ such that $(f(x) - \epsilon, f(x) + \epsilon) \subset V$. By continuity at x, there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \subset f^{-1}(V)$. That is, x is an interior point of $f^{-1}(V)$. Since this is true for arbitrary x in the $f^{-1}(V)$, the preimage set must be open, which is what we wanted to show.

b.) Show that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Solution: Proof: Suppose, by way of contradiction, that f is uniformly continuous. Then, given an $\epsilon > 0$, we can find a $\delta > 0$ such that for any $x,y \in \mathbb{R}$ where $|x-y| < \delta$ then $|x^2-y^2| < \epsilon$. In particular, set $\epsilon = 1$. Then take y = n and $x = n + \frac{\delta}{2}$ for some arbitrary $n \in \mathbb{N}$. We get

$$\epsilon > |f(x) - (y)| > n\delta.$$

However, by the Archimedean property, there exists some n such that $n\delta > \epsilon$. Having assumed uniform continuity we need $\epsilon > |f(x) - (y)|$ for any choice of n, and so we have a contradiction and the proof is finished.

c.) Are open and closed sets invariant under images by continuous functions? Consider $f(x) = x^2$ and domain X = (-1,1) and $g(u) = \frac{1}{u}$ with domain $U = [1, \infty)$.

Solution: We observe the answer to both questions is no.

$$f(X) = [0, 1)$$
 and $g(U) = (0, 1]$.

d.) Let $E \subset \mathbb{R}$ be nonempty and $f, g : E \to \mathbb{R}$ are continuous at a point $a \in E$. Show that f + g is also continuous at a.

Solution: Proof: By assumption, we can find a single $\delta > 0$ such that for any x satisfying $|x-a| < \delta$ then $|f(x)-f(a)| < \frac{\epsilon}{2}$ and $|g(x)-g(a)| < \frac{\epsilon}{2}$. Then

$$|f(x) + g(x) - f(a) - g(a)| \le |f(x) - f(a)| + |g(x) - g(a)| < \epsilon$$

which proves continuity.

e.) Consider the function $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 0 for $x \in \mathbb{Q}$ and f(x) = 1 else. Is this function continuous? Use the sequential characterization of continuity.

Solution: No. Sketch: We can construct a sequence of irrationals, say $\{\frac{\pi}{n}: n \in \mathbb{N}\}$ that converges to a rational 0. Then $f(x_n)$ does not converge to f(0). Similarly we might construct a rational sequence that converges to an irrational number and find that the image of that sequence would not converge to the image of the limit.

f.) Let $f: X \to \mathbb{R}$. Show that the preimage $f^{-1}(0)$ is a closed set in X for f continuous.

Solution: We prove this by proving something even more general. For any $S \subset \mathbb{R}$ closed, $f^{-1}(S)$ is closed in X.

Proof I: Because f is continuous, if S is closed, then $\mathbb{R} - S$ is open. Accordingly, $f^{-1}(\mathbb{R} - S)$ is open. Its complement, $f^{-1}(S)$ must be closed. \square

An alternative proof might use limit points. We know S contains all its limit points. Let $\{x_n\}$ be a sequence in the preimage of S.

Want to show: For any arbitrary convergent sequence in the preimage of S, its limit is also contained in the preimage of S.

Proof II: Because f is continuous for $x_n \to x$ as $n \to \infty$ where $x_n \in f^{-1}(S)$,

$$\lim_{n \to \infty} f(x_n) = f(x).$$

Because S is closed and $\{f(x_n)\}$ is a sequence, $f(x) \in S$ and therefore $x \in f^{-1}(S)$. Hence, the preimage contains any and all limits points and is therefore closed.

g.) For a metric space (X,d), is $d(\cdot,a):X\to\mathbb{R},\ a\in X$ itself a continuous function? Even for the discrete metric?

Solution: Proof: Take $\delta = \epsilon$. Then by the triangle inequality, for any x, y satisfying, $d(x, y) < \epsilon$, then $|d(x, a) - d(y, a)| < \epsilon$, which is all we have to show.

Comment Note that, for the discrete metric, this makes the "discontinuous looking" graph of d(x, a) in fact continuous.

h.) Show f $f:[a,b] \to [a,b]$ is continuous, then f has a fixed point, c, such that f(c) = c. You may use the Intermediate Value Theorem, stated below.

Solution: Proof: We construct a helper function, g(x) = f(x) - x. Then, note $g(b) \le 0$ and $g(a) \ge 0$. Next, we note g is also continuous so we can apply the IVT, concluding there must exist some $c \in [a, b]$ such that g(c) = 0. This is equivalent to saying f(c) = c, and so we are done.

IVT: Suppose that a < b and that $f : [a, b] \to \mathbb{R}$ is continuous. If y_0 lies between f(a) and f(b), then there is an $x_0 \in (a, b)$ such that $f(x_0) = y_0$.