Report 2

Computational Neuroscience

Computer Assignment 2

Aref Afzali

610098014

```
In [1]: %matplotlib notebook import torch import numpy as np

In [2]: from cnsproject.network.neural_populations import ELIFPopulation, AELIFPopulation from cnsproject.plotting.plotting import plotting from cnsproject.utils import step_function, random_step_function from cnsproject.network.monitors import Monitor
```

Global Variables

time parameter shows how often (seconds*scale/dt) we want to run our neuron. dt means with what resolution (scale) we want our seconds move forward.

Description

The main part of each model is how compute the next potential. The computation formula for next potential is as follow:

1. ELIF:

$$U(t+\Delta) = U(t) - (rac{\Delta}{ au}).\left[(U(t) - U_{rest}) - \Delta_T.\,e^{rac{U(t) - heta_{rh}}{\Delta_T}} - R.\,I(t)
ight]$$

2. AELIF:

$$W(t+\Delta) = W(t) + (rac{\Delta}{ au_w}).\left[a.\left(U(t) - U_{rest}
ight) - W(t) + b.\, au_w.\sum_{t^f}\delta(t-t^f)
ight]$$

$$U(t+\Delta) = U(t) - (rac{\Delta}{ au_m}).\left[(U(t)-U_{rest}) - \Delta_T.\,e^{rac{U(t)- heta_{rh}}{\Delta_T}} + R.\,W - R.\,I(t)
ight]$$

Neuron Behavior

The next functions are simulation for a neuron based on ELIF and AELIF models. They return the neuron, current, a list of spikes, and a list of potentials.

```
In [4]:
      def elif_single_neuron_time(
              time, dt, scale, step_size, I_function, shape, spike_trace,
              additive_spike_trace, tau_s, trace_scale,
              is_inhibitory, learning, R, C, delta_t, threshold_rh, threshold_r = -55
          ):
          I = I_function(time, step_size, scale)
          neuron = ELIFPopulation(
                  shape, spike trace, additive spike trace, tau s, trace scale,
                  is inhibitory, learning, R, C, delta t, threshold rh, threshold r
          neuron.dt = dt
          monitor = Monitor(neuron, state variables=["s", "u"])
          monitor.set time steps(time, dt)
          monitor.reset_state_variables()
          for i in range(len(I)):
              neuron.forward(I[i][0])
              monitor.record()
          return neuron, I, torch.transpose(monitor.get("s")*1, 0, 1), monitor.get("u")
      def aelif single neuron time(
              time, dt, scale, step_size, I_function, shape, spike_trace,
              additive_spike_trace, tau_s, trace_scale,
              is_inhibitory, learning, R, C, delta_t, tau_w, a, b, threshold_rh, threshold_r =
      -55
          ):
          I = I_function(time, step_size, scale)
          neuron = AELIFPopulation(
                  shape, spike trace, additive spike trace, tau s, trace scale,
                   is_inhibitory, learning, R, C, delta_t, tau_w, a, b, threshold_rh, threshold
      _r
          neuron.dt = dt
          monitor = Monitor(neuron, state_variables=["s", "u"])
          monitor.set_time_steps(time, dt)
          monitor.reset state variables()
          for i in range(len(I)):
              neuron.forward(I[i][0])
              monitor.record()
          return neuron, I, torch.transpose(monitor.get("s")*1, 0, 1), monitor.get("u")
```

Exponential Leaky Integrate and Fire Model

The default of the parameters of a neuron is as follow:

```
In [5]:
      %%time
      time = 1500
      scale = 100
      plot = plotting()
      neuron, I, s, u = elif_single_neuron_time(
              time = time, dt = 1, scale = scale, step size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
              is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 1,
              threshold_rh = -55, threshold_r = 20
          )
      plot.plot_ut_it_init(time/scale)
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "defau
      lt")
      plot.show()
```


CPU times: user 440 ms, sys: 12.3 ms, total: 452 ms Wall time: 448 ms

The next cell is showing how the Δ_T affects on a neuron. By increasing Δ_T , the growth rate of potential increases.

```
In [6]:
      %%time
      time = 1500
      scale = 100
      plot = plotting()
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is inhibitory = False, learning = False, R = 10, C = 10, delta t = 1,
              threshold_rh = -40, threshold_r = 20
          )
      plot.plot_ut_it_init(time/scale)
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=1")
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 20,
              threshold_rh = -40, threshold_r = 20
          )
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=20")
      plot.show()
```


By decreasing threshold we can see the neuron with the higher Δ_T , will spike but the other one won't.

```
In [7]:
      %%time
      time = 1500
      scale = 100
      plot = plotting()
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is inhibitory = False, learning = False, R = 10, C = 10, delta t = 1,
              threshold_rh = -55, threshold_r = 20
          )
      plot.plot_ut_it_init(time/scale)
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=1")
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 20,
              threshold_rh = -55, threshold_r = 20
          )
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=20")
      plot.show()
```


We can see a condition which both neuron with different Δ_T will spike.

Wall time: 822 ms

```
In [8]:
      %%time
      time = 1500
      scale = 100
      plot = plotting()
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is inhibitory = False, learning = False, R = 10, C = 10, delta t = 20,
              threshold_rh = -55, threshold_r = 20
          )
      plot.plot_ut_it_init(time/scale)
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=20")
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 25,
              threshold_rh = -55, threshold_r = 20
          )
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "delta
      _t=25")
      plot.show()
```


The next cell is showing how the θ_{rh} affects on a neuron. By decreasing θ_{rh} , the rate of spikes increases.

```
In [9]:
      %%time
      time = 1500
      scale = 100
      plot = plotting()
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is inhibitory = False, learning = False, R = 10, C = 10, delta t = 20,
              threshold_rh = -50, threshold_r = 20
          )
      plot.plot_ut_it_init(time/scale)
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "theta
      _rh=-50")
      neuron, I, s, u = elif single neuron time(
              time = time, dt = 1, scale = scale, step_size = 1,
              I_function = step_function, shape = (1,), spike_trace = True,
              additive spike trace = True, tau s = 10., trace scale = 1.,
              is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 20,
              threshold_rh = -60, threshold_r = 20
          )
      plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "theta
      _rh=-60")
      plot.show()
```


The next cell is showing how the θ_r (threshold for reseting the spike) affects on a neuron. By decreasing θ_r , the rate of spikes increases. It will cause the spikes occure faster because the reseting is happening sooner.

```
In [10]:
       %%time
       time = 1500
       scale = 100
       plot = plotting()
       neuron, I, s, u = elif single neuron time(
               time = time, dt = 1, scale = scale, step_size = 1,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive spike trace = True, tau s = 10., trace scale = 1.,
               is inhibitory = False, learning = False, R = 10, C = 10, delta t = 20,
               threshold_rh = -55, threshold_r = 20
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "theta
       _r=20")
       neuron, I, s, u = elif single neuron time(
               time = time, dt = 1, scale = scale, step_size = 1,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive spike trace = True, tau s = 10., trace scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 20,
               threshold_rh = -55, threshold_r = -20
           )
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "theta
       _r=-20")
       plot.show()
```


Neuron with a random current as input:

```
In [37]:
       %%time
       time = 1500
       scale = 100
       plot = plotting()
       neuron, I, s, u = elif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 5,
               I_function = random_step_function, shape = (1,), spike_trace = True,
               additive spike trace = True, tau s = 10., trace scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10, delta_t = 20,
               threshold_rh = -55, threshold_r = 20
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "rando
       m")
       plot.show()
```


In the next cell, we are checking out the behavior of a neuron with different normal step function values. In the end, we plot the figure which shows the spikes frequency in each step function's value. This function has a live plotting.

No handles with labels found to put in legend.

CPU times: user 11.2 s, sys: 81.4 ms, total: 11.3 s Wall time: 11.6 s

Adaptive Exponential Leaky Integrate and Fire Model

The default of the parameters of a neuron is as follow:

```
In [11]:
       %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 1,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "defau
       plot.show()
```


The next cell is showing how the a affects on a neuron. By increasing a, the W will increase so the growth rate of potential decreases.

```
In [12]:
       %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 1,
               I function = step function, shape = (1,), spike trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "a=0.0
       01")
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step size = 1,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.1, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot ut it update(I, u, neuron.threshold rh, s[0].nonzero(as tuple=True)[0], "a=0.
       plot.show()
```


With a higher current we can see the behavior of a adaptive ELIF neuron.

```
In [13]: | %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 1,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is inhibitory = False, learning = False, R = 10, C = 10,
               delta_t = 1, tau_w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "I=1")
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 3,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive spike trace = True, tau s = 10., trace scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "I=3")
       plot.show()
```


CPU times: user 1.28 s, sys: 3.34 ms, total: 1.29 s Wall time: 1.29 s

The next cell is showing how the b affects on a neuron. By decreasing b, the W will decrease so the rate of adaptation decreases. It will cause more spikes occure in a duration of time.

```
In [14]:
       %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 3,
               I function = step function, shape = (1,), spike trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "b=0.
       5")
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step size = 3,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.2,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "b=0.
       plot.show()
```


The next cell is showing how the τ_w affects on a neuron. By increasing τ_w , the W will decrease so the rate of adaptation increases. It will cause less spikes occure in a duration of time.

```
In [15]:
       %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 3,
               I function = step function, shape = (1,), spike trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "tau_w
       =1")
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step size = 3,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta t = 1, tau w = 5, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot ut it update(I, u, neuron.threshold rh, s[0].nonzero(as tuple=True)[0], "tau w
       plot.show()
```


Neuron with a random current as input:

```
In [42]: | %%time
       time = 2000
       scale = 100
       plot = plotting()
       neuron, I, s, u = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = 20,
               I_function = random_step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta_t = 10, tau_w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
       plot.plot_ut_it_init(time/scale)
       plot.plot_ut_it_update(I, u, neuron.threshold_rh, s[0].nonzero(as_tuple=True)[0], "rando
       m")
       plot.show()
```


CPU times: user 707 ms, sys: 18.9 ms, total: 726 ms Wall time: 732 ms

In the next cell, we are checking out the behavior of a neuron with different normal step function values. In the end, we plot the figure which shows the spikes frequency in each step function's value. This function has a live plotting.

```
In [18]:
       %%time
       plot.plot_fi_init()
       spikes = []
       for x in range(15):
           _, _, s, _ = aelif_single_neuron_time(
               time = time, dt = 1, scale = scale, step_size = x,
               I_function = step_function, shape = (1,), spike_trace = True,
               additive_spike_trace = True, tau_s = 10., trace_scale = 1.,
               is_inhibitory = False, learning = False, R = 10, C = 10,
               delta_t = 20, tau_w = 1, a = 0.001, b = 0.5,
               threshold_rh = -55, threshold_r = 0
           )
           spikes.append(s[0].sum())
           plot.plot_fi_update(spikes)
       plot.show()
```


No handles with labels found to put in legend.