VE475 Introduction to Cryptography Homework 3

Jiang, Sifan jasperrice@sjtu.edu.cn 515370910040

June 6, 2019

Ex. 1 - Finite fields

1. Assume $X^2 + 1$ is reducible in $\mathbb{F}_3[X]$, then $X^2 + 1$ can be written as the product of two polynomials of lower degree. The possible factors of $X^2 + 1$ are X, X + 1, and X + 2.

$$X \cdot X = X^{2}$$

$$X \cdot (X+1) = X^{2} + X$$

$$X \cdot (X+2) = X^{2} + 2X$$

$$(X+1) \cdot (X+1) = X^{2} + 2X + 1$$

$$(X+1) \cdot (X+2) = X^{2} + 2$$

$$(X+2) \cdot (X+2) = X^{2} + X + 1$$

Since none of them is equal to $X^2 + 1$, it is irreducible in $\mathbb{F}_3[X]$.

2. Since X^2+1 is irreducible in $\mathbb{F}_3[X]$ and 1+2X is a polynomial in $\mathbb{F}_3[X]$, there exists a polynomial B(X) such that

$$(1+2X)\cdot B(X) \equiv 1 \mod (X^2+1)$$

So, B(X) is the multiplicative inverse of $1 + 2X \mod X^2 + 1$ in $F_3[X]$.

3. Using the extended Euclidean algorithm.

Initially,
$$r_0 = X^2 + 1$$
, $r_1 = 2X + 1$, $s_0 = 0$, $s_1 = 1$, $t_0 = 1$, and $t_1 = 0$.

q	r_0	r_1	s_0	s_1	t_0	t_1
			1		0	_
2X	X + 1	2X + 1	X	1	1	0
2	2	X+1	X+1	X	1	1
2X	1	2	$X^2 + 2X$	X + 1	X + 1	1
	0	1	$X^2 + 1$	$X^{2} + 2X$	X+2	X + 1

So, the multiplicative inverse of $1+2X \mod X^2+1$ in $\mathbb{F}_3[X]$ is $X^2+2X=2+2X$.

Ex. 2 - AES

- 1. (a) InvShiftRows should be described as: cyclically shift to the right row i by offset i, $0 \le i \le 3$.
 - (b) Since in the AddRoundKey layer, each byte of the state is combined with a byte from the round key using the XOR operation (\oplus) . Also, since $(a \oplus k) \oplus k = a$, where $a \in \{0,1\}$, and $k \in \{0,1\}$, the inverse of the layer AddRoundKey is just applying AddRoundKey again.
 - (c) In MixColumns layer, we have $B=C(X)\times A$, where B is the output matrix and A is the state matrix. So the transformation InvMixColumns is given by $C^{-1}(X)\times C(X)\times A=A=C^{-1}(X)\times B$. We then need to verify if the result of the multiplication of the two matrices is an identity matrix or not.

$$\begin{pmatrix} 00001110 & 00001011 & 00001101 & 00001001 \\ 00001001 & 00001110 & 00001011 & 00001101 \\ 00001101 & 00001001 & 00001110 & 00001011 \\ 00001011 & 00001101 & 00001001 & 00000011 \\ 00000001 & 00000011 & 00000011 & 00000001 \\ 00000001 & 00000010 & 00000011 & 00000001 \\ 00000001 & 00000001 & 00000010 & 00000011 \\ 00000011 & 00000001 & 0000001 & 00000010 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I$$

The detailed calculation, take the element of first row and first column as the example, is

```
I_{0,0} = (00001110 \times 00000010) \oplus (00001011 \times 00000001) \oplus
(00001101 \times 00000001) \oplus (00001001 \times 00000011)
= 00011100 \oplus 00001011 \oplus 00001101 \oplus (00010010 \oplus 00001001)
= 00011100 \oplus 00001011 \oplus 00001101 \oplus 00011011
= 1
```

So, the matrix is the inverse matrix of C(X), and the transformation InvMixColumns is given by multiplication by the matrix.

2. First, generate a round key according to the original 128 bits key. Then

3.

- 4. (a)
 - (b)
 - (c)
 - (d)
- 5.
- 6.

Ex. 3 - DES

- 1.
- 2.
- 3.
- 4.

Ex. 4 - Programming