

COPA: Constrained PARAFAC2 for Sparse & Large Datasets

Ardavan (Ari) Afshar¹, Ioakeim Perros¹, Evangelos E. Papalexakis², Elizabeth Searles³, Joyce Ho⁴, Jimeng Sun¹

¹Georgia Tech, ²UC Riverside

³Children's Healthcare of Atlanta, ⁴Emory University

Computational Phenotyping from Electronic Health Records (EHRs)

(Phenotyping with Tensor Factorization)

Regular Tensor Factorization Approaches (CP Decomposition)

Challenges: Temporal Mismatch in Phenotyping

Variable # hospital visits.

Background: PARAFAC2

Input data: K subjects (patients), J medical feature and I_k hospital visits per patient.

Model Interpretation for phenotyping via EHRs

evolution of phenotype r.

Each **column** of *V* represents a **phenotype**.

Contributions of COPA

	Marble	Rubik	PARAFAC2	SPARTan	Helwig	СОРА
Smoothness					✓	✓
Sparsity	✓	√				\checkmark
Scalability				✓		✓
Handle irregular tensors			√	√	√	√

- Ho, Joyce C., Joydeep Ghosh, and Jimeng Sun. "Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.
- Wang, Yichen, et al. "Rubik: Knowledge guided tensor factorization and completion for health data analytics." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
- Kiers, Henk AL, Jos MF Ten Berge, and Rasmus Bro. "PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model." *Journal of Chemometrics: A Journal of the Chemometrics Society* 13.3-4 (1999): 275-294.
- Kiers, Henk AL, Jos MF Ten Berge, and Rasmus Bro. "PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model." Journal of Chemometrics: A Journal of the Chemometrics Society 13.3-4 (1999): 275-294.
- Helwig, Nathaniel E. "Estimating latent trends in multivariate longitudinal data via Parafac2 with functional and structural constraints." Biometrical Journal 59.4 (2017): 783-803.

Smoothness on U_k

Creating Basis Functions

Ignoring the gap between two hospital visits

COPA Framework

$$U_k = Q_k H, Q_k^T Q_k = I$$

For all k=1,...K

$$S_k \ge 0$$
, $H \ge 0, V \ge 0$

For all k=1,...K

Non-negativity constraint

Solution for factor matrix $\{Q_k\}$

$$\begin{aligned} & \text{Minimize} \quad \frac{1}{2} \left| |X_k - Q_k H S_k V^T| \right|_F^2 \\ & & \text{Trace Properties} \end{aligned}$$

$$\begin{aligned} & \text{Minimize} \quad \frac{1}{2} \left| |X_k V S_k H^T - Q_k| \right|_F^2 \\ & & \text{Apply SVD} \end{aligned}$$

$$[B_k, \Sigma_k, C_k] = SVD(X_k V S_k H^T) \\ & Q_k = B_k C_k^T \end{aligned}$$

Solutions for factor matrices H, $\{S_k\}$, V

$$||X_k - Q_k H S_k V^T||_F^2$$

$$\left\| Q_K^T X_k - H S_k V^T \right\|_F^2$$

Sparsity on V

Real Datasets Description

- Children Healthcare of Atlanta (CHOA):
 - ✓ Medical features contain diagnosis and medications.
 - ✓ Hospital visits are based on days of visits.
- Centers for Medicare and Medicaid (CMS):
 - ✓ CMS is a set of realistic data set publicly available, however, protecting the privacy of patients.
 - ✓ Medical features just contains diagnosis.

Dataset	# Patients	# Medical Features	# Hospital visits	#non-zero elements
CHOA	247,885	1388	857	11 Million
CMS	843,162	284	1500	84 Million

Evaluation Metrics

FIT
$$= 1 - \frac{\sum_{k=1}^{K} ||X_k - U_k S_k V^T||_F^2}{\sum_{k=1}^{K} ||X_k||_F^2}$$

Higher better

$$=\frac{nz(V)}{size(V)}$$

Higher better

Running-Time

(In Seconds)

Lower better

Quantitative assessment of Constraints

This plot shows the impact of each constraint on the FIT values across both datasets for two different target ranks ($R=\{15,40\}$)

Higher better

R={15,40}

CHOA, CMS

^{*} The missing purple bar in the forth column is out of memory failure for Helwig method.

Quantitative assessment of Constraints

Sparsity Metric

	СН	OA	CMS		
Algorithm	R=15	R=40	R=15	R=40	
COPA	0.9886±0.0035	0.9897±0.0027	0.995 ± 0.0001	0.9963±0.0002	
SPARTan	0.7127±0.0161	0.8127±0.0029	0.1028±0.0032	0.2164±0.0236	

Higher better

5 different random initialization

Scalability

The Total Running Time comparison (average and standard deviation) in seconds for different versions of COPA and SPARTan for 5 different random initializations.

FIT-TIME (Convergence)

The best Convergence of COPA and SPARTan out of 5 different random initializations with non-negativity constraint on H, $\{S_k\}$, V on CHOA, CMS data sets for different target ranks (two cases considered: $R=\{15,40\}$)

Scalability

Time in seconds for one iteration (as an average of 5) for different values of R.

Case Study: CHOA Phenotype Discovery

Children's Healthcare of Atlanta

Focus on Medically Complex Patients (MCPs)

A total of **4602** patients are selected with **810** distinct medical features. We extracted 4 number of phenotypes.

Our goal is:

- Extracting the phenotypes
- Find the temporal evolution of phenotypes for each patient.

Phenotypes Discovered by COPA

Leukemias

Leukemias

Immunity disorders

Deficiency and other anemia

HEPARIN AND RELATED PREPARATIONS

Maintenance chemotherapy; radiotherapy

ANTIEMETIC/ANTIVERTIGO AGENTS

SODIUM/SALINE PREPARATIONS

TOPICAL LOCAL ANESTHETICS

GENERAL ANESTHETICS INJECTABLE

ANTINEOPLASTIC - ANTIMETABOLITES

ANTIHISTAMINES - 1ST GENERATION

ANALGESIC/ANTIPYRETICS NON-SALICYLATE

ANALGESICS NARCOTIC ANESTHETIC ADJUNCT AGENTS

ABSORBABLE SULFONAMIDE ANTIBACTERIAL AGENTS

GLUCOCORTICOIDS

Neurological Disorders

Other nervous system disorders

Epilepsy; convulsions

Paralysis

Other connective tissue disease

Developmental disorders

Rehabilitation care; and adjustment of devices

ANTICONVULSANTS

Congenital anomalies

Other perinatal conditions

Cardiac and circulatory congenital anomalies

Short gestation; low birth weight

Other congenital anomalies

Fluid and electrolyte disorders

LOOP DIURETICS

IV FAT EMULSIONS

Sickle Cell Anemia

Sickle cell anemia Other gastrointestinal disorders Other nutritional; endocrine; and metabolic disorders Other lower respiratory disease Asthma Diagnosis Allergic reactions Esophageal disorders Respiratory failure; insufficiency; arrest (adult) Other upper respiratory disease **BETA-ADRENERGIC AGENTS ANALGESICS NARCOTICS** NSAIDS, CYCLOOXYGENASE INHIBITOR - TYPE ANALGESIC/ANTIPYRETICS NON-SALICYLATE POTASSIUM REPLACEMENT SODIUM/SALINE PREPARATIONS **GENERAL INHALATION AGENTS** Medication LAXATIVES AND CATHARTICS IV SOLUTIONS: DEXTROSE-SALINE ANTIEMETIC/ANTIVERTIGO AGENTS SEDATIVE-HYPNOTICS NON-BARBITURATE GLUCOCORTICOIDS, ORALLY INHALED FOLIC ACID PREPARATIONS ANALGESICS NARCOTIC ANESTHETIC ADJUNCT AGENTS

Title annotation is provided by a medical expert.

Temporal Phenotyping

aafshar8@gatech.edu

http://www.prism.gatech.edu/~aafshar8/

https://github.com/aafshar/COPA

Ari Afshar

Kimis Perros

Vagelis Papalexakis

Bess Searles

Joyce Ho

Jimeng Sun

