A Book of Abstract Algebra (2nd Edition)

Chapter 17, Problem 2EB	Bookmark	Show all steps: ON
F	Problem	

Step-by-step solution

Step 1 of 3

Consider that the set F(R) of all the function from real number R to R, with the following addition and multiplication:

$$(f+g)(x) = f(x)+g(x),$$

$$(fg)(x) = f(x)g(x),$$

Describe the divisors of zero in $\mathscr{F}(\mathbb{R})$.

for every real number x.

Note that, F(R) satisfies all the axioms to be a commutative ring with unity. The zero element is the zero function, the unity is constant function 1, and the negative of any f is -f in F(R).

Objective is to describe the divisors of zero in F(R).

Comment

Step 2 of 3

A <u>nonzero function</u> $f \in F(R)$ is a divisor of zero if there exists some <u>nonzero function</u> $g \in F(R)$ such that fg = 0, here 0 is the zero element which is zero function in F(R).

The product fg = 0 means that for all x in real numbers,

$$(fg)(x) = 0$$
$$f(x)g(x) = 0.$$

Suppose that

$$f(x) = \begin{cases} 1, & x \text{ is even} \\ 0, & x \text{ is odd} \end{cases},$$

$g(x) = \begin{cases} 0, & x \text{ is even} \\ 1, & x \text{ is odd} \end{cases}$
Both the functions are nonzero but their product is
(fg)(x) = 0
for all real x.
Comment
Step 3 of 3
Thus, $F(R)$ contains the divisor of zero.

and

Comment