Fundamentals of Molecular Biology

IN-BIOS 5000/9000

- 1. A guided tour of the (human) genome
- 2. From DNA to biological function
- 3. Genomics in biomedical research

Living organisms are built up of cells

- Unicellular organisms vs. multicellular
- Humans, average 5 x 10¹³ cells (50 000 billion)
- Cells > tissues > organ > organ system > organism

Prokaryots vs. eukaryots

Procaryots

- DNA stored in the cytoplasm, commonly a single circular chromosome
- Allways unicellular, high-speed selective pressure

Plasma Prokaryote Pilis Capsule (some prokaryotes) Cell Wall (in some eukaryotes) Typically 1 vs. 25 µm diameter

Ribosomes

Eukaryots

- DNA in a cellular nucleus, with several linear chromosomes
- 100-10000 x larger than procaryotes, may be multicellular
- Organelles (e.g. mitochondria), cytoskeleton, endoplasmatic reticulum, golgi apparatus cytosol
- Different histones and ribosomes

Prokaryots vs. eukaryots

	Prokaryote	Eukaryote	ap:
Nucleus	Absent	Present	iar
Membrane-bound organelles	Absent	Present	
Cell structure	Unicellular	Mostly multicellular; some unicellular	Ξι
Cell size	Smaller (0.1-5 µm)	Larger (10-100 μm)	
Complexity	Simpler	More complex	
DNA Form	Circular	Linear	
Examples	Bacteria, archaea	Animals, plants, fungi, protists	

Typically 1 *vs.* 25 μm diameter

Components of a typical eukaryotic cell

- 1. Nucleolus
- 2. Nucleus
- 3. Ribosome (dots as part of 5)
- 4. Vesicle
- 5. Rough endoplasmic reticulum
- 6. Golgi apparatus
- 7. Cytoskeleton
- 8. Smooth endoplasmic reticulum
- 9. Mitochondrion
- 10. Vacuole
- 11. Cytosol (fluid surrounding organelles; with which, comprises cytoplasm)
- 12. Lysosome
- 13. Centrosome
- 14. Cell membrane

Components of a typical eukaryotic cell

Nucleus: Stores the genetic information in chromatin form (DNA twined around proteins [histones])

Nucleolus: The part of eukaryotic cells where ribosomal RNA is produced; found inside of the nucleus

Plasma membrane: A phospholipid bilayer surrounding the cell and encompassing the organelles within

Cytoskeleton or cell wall: Provides structure, allows for cell movement, and plays a role in cell division

Ribosomes: Carrying out protein synthesis

Mitochondria: Sites for energy production

Cytoplasm: The region of the cell between the nuclear envelope and plasma membrane

Cytosol: A gel-like substance within the cell that contains the organelles

Endoplasmic reticulum: An organelle dedicated to protein maturation and transportation

Vesicles and vacuoles: Membrane-bound sacs involved in transportation and storage

Other common organelles in many eukaryotes include the Golgi apparatus, chloroplasts and lysosomes

Biological macromolecules

Large molecules, necessary for life, built from smaller organic molecules

The majority of a cell's dry mass

Nucleic acids (DNA & RNA): Information storage

and transfer, ribozymes

Proteins: Structure, enzymes, signalling

Lipids: Membranes, energy storage, signalling,

insulation

Carbohydrates: Energy storage, structure

LIPIDS

dreamstime.com

CARBOHYDRATES

PROTEINS

DNA

Deoxyribonucleic acid

Nucleotides = phoshate + sugar + base

The DNA-strand has a sugar-phosphate backbone where bases attached to the sugars are of four types

0-

Phosphate

OH

(Deoxy)ribonucleic acids, DNA & RNA

OH

- Four bases or nucleotides: A, C, G, T (or U)
 - Thymine is exchanged for Uracil in RNA
- Double strand and base pairing, A::T & C:::G
- Directionality 5' to 3' (synthesis and reading)
- RNA has ribose instead of deoxyribose

Hydrogen bonds

DNA helix, antiparallel orientation

Transcription

 The synthesis of an RNA molecule, based on converting the baseorder sequence information from a DNA template into an RNA

Three (human) RNA polymerases, each primarily synthesising:

Pol I - ribosomal RNA (45S rRNA)

Pol II - messenger RNA (mRNA), microRNA (miRNA), long noncoding RNA (lncRNA)

Pol III - transfer RNA (tRNA), rRNA, other small RNAs

Post/co-transcriptional modification

Chemical altering of the primary mRNA transcript to produce a mature, functional mRNA molecule

Pre-mRNA to mature mRNA:

- 5' capping (m⁷G to 5'-end)
- 3' poly-adenylation (A)_n
- Pre-mRNA splicing (removal of introns)

RNA transcript variation - Alternative splicing

Virtually all genes encode multiple different transcript variants

In addition to alternative splicing (figure), transcript variation are caused by alternative promoters and polyadenylation sites (alternative first and last exons)

Three main types of RNA

- Coding RNA
 - Messenger RNA, mRNA: Template for protein synthesis, ~5 % of all RNA
- Noncoding RNA
 - Ribosomal RNA, rRNA: Parts of ribosomes, ~90% of all RNA
 - Transfer RNA, tRNA: Translate the DNA/RNA-code into protein-code
- Other types (selected)
 - Long noncoding-RNA, IncRNA: Miscellaneous functions
 - Small nuclear RNA, snRNA: Splicing factors
 - Micro-RNA, miRNA: Regulates translation
 - Ribozymes: Biological catalysts

Translation: RNA to protein

Gene regulation at many levels

DNA

- DNA copy numbers
- Promoter and enhancer sequences
- Epigenetics: DNA modifications, e.g. methylation at promoters
- Epigenetics: Histone modifications (hetero vs. euchromatin)

Transcription

- Alternative transcription start site
- Transcription factors expression levels

RNA

- Alternative splicing
- RNA editing
- Stability/degradation

Translation

Protein

- Post-tranlational modification (acetylation, phosphorylation, ubiquitination, etc.)
- Folding
- Stability/degradation

Genomics concepts

Single nucleotide polymorphism (SNP)

 Ploidy, allele, polymorphism (SNP, STRP, CNP), homo/hetero/hemizygous

Short tandem repeat polymorphism (STRP)

Genomics concepts

 Ploidy, allele, polymorphism (SNP, STRP, CNP), homo/hetero/hemizygous

Deletion

- Mutation, variants, polymorphisms
 - Germline vs. somatic
 - Large vs. base-level
 - Silent, missense, nonsense
 - Numeric vs. structural
 - DNA copy number changes (amplifications, deletions)
 - Fusion genes
 - Driver vs. passenger

National Human Genome Research Institute genome.gov/genetics-glossary

