4.2 MVT

Cor I Let $a,b \in \mathbb{R}$ be fixed constate,

With a < b. Suppose f(x) = 0 for all $x \in (a,b)$.

Then For all $x \in (a,b)$, f(x) = C for some constant

Cor 2 Let a, b $\in \mathbb{R}$ be fixed. Suppose that f(x), g(x) Satisfy: f'(x) = g'(x) for all $x \in (a,b)$. Then f(x) = g(x) + C.

 $Ex f(x) = x^2$, $g(x) = x^2 + 13$ f'(x) = 2x, g(x) = 2x — Start withing

Pf Let h(x) = f(x) - g(x). As f(x), g(x)we differentiable on (a_1b) and f'=g' on (a_1b) , then h'(x) exists and h'(x) = 0 on (a_1b) . So by Corl, $h(y) = C_1$, for some C_1 . So h(x) = C = f(x) - g(x)Lon (a_1b) , we have $f(x) = g(x) + C_1$.

Ex Wat function
$$h(x)$$
 with $h'(x) = -\sin(x)$ and $h(0) = 2$.

 $h(x) = \cos(x) + C$

Use $h(0) = 2 = \cos(0) + C$
 $2 = 1 + C$
 $C = 1$
 $h(x) = \cos(x) + 1$

Ex Wat $h(x)$, with $h'(x) = e^{2x}$, $h(0) = \frac{3}{2}$.

 $h(x) = \frac{1}{2}e^{2x} + C$
 $h(x) = \frac{1}{2}e^{2x} + C$
 $h(x) = \frac{1}{2}e^{2x} + C$
 $h(x) = \frac{3}{2}e^{2x} + C$
 $h(x) = \frac{1}{2}e^{2x} + C$

4.4 Concavity Def let f(x) be a further that is twice dibberontiable (a) X=C. We say that: Ly f(x) is concave up (CCU) (a) x=c if f'(c) >0, Ly f(x) is Concave down (CCD) @ x=c if f"(c) < 0, $f(X) = X^2 is$ CCU everywhereEx f(x)=x2 f(x)=2x P"(x) = 2 >0, 50 $E_X f(X) = \sqrt{X} = \chi^2$ $\rightarrow f(x) = VX$ (is CCI) f(x) = 1/2 x 1/2 on its domain of COID). $f'(x) = \frac{-1}{4} x^{-3/2} < 0 \text{ on } to_i Ad_i$

Sof(x) = x1/2 is CCD on Eopo).

Ex Find
$$POI$$
 for $f(x) = x^4 - 2x^2$
 $f''(x) = 12x^2 - 4 = 0$
 $4(3x^2 - 1) = 0 \Rightarrow x = \pm 1\frac{1}{3}$
Need To determine @ which pts f'' changes sign

Eig
$$f''(-1) = 4(3 \cdot (-1)^2 - 1) = 4(3 - 1) > 0$$

 $f''(0) = 4(0 - 1) < 0$
 $f''(1) = 4(3 \cdot 1 - 1) = 4(3 - 1) > 0$

As
$$f''$$
 chased from:
 $L_5 + to -QX = -\sqrt{3}$, $f(x)$ has $POIQOX = \sqrt{3}$
 $L_7 - to + QX = \sqrt{3}$, $f(x)$ has $POIQOX = \sqrt{3}$.

Second Derivative Test Let f(x) be twice diff., and suppose that flx) has crit pt. @ x = c. L> F"(c) 70, then f(x) has local min @ x=c. by f'(c) <0, then f(x) has local max @ x=c. Ly Otherwise, if f'(c) =0, go do first Deriv Test, $E_{x} f(x) = x^{2} + bx + c$ (where b, c are constants) f'(x) = 2x + b f''(x) = 2 > 0Lo So f(x) has local min@ critpt (x=-b) $\int_{-X}^{-X} f(x) = -x^2 + bx + C$ f (x1 = -2 < 0, So f(x) has local max @ crit pt (x=b)