МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им.В.Г.Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №6

дисциплина: Информатика

тема: «Обнаружение и исправление однократной ошибки в сообщении»

Выполнил: ст. группы ПВ-201

Машуров Дмитрий Русланович

Проверил: Бондаренко Т.В.

Лабораторная работа №6.

Обнаружение и исправление однократной ошибки в сообщении

Цель работы: изучить основные принципы помехоустойчивого кодирования; изучить способ определение позиции и значения корректирующих бит кода Хемминга; получить практические навыки построения кода Хемминга корректирующего однократные ошибки; изучить способ построения линейногруппового кода и возможность коррекции однократной ошибки с помощью линейно-группового кода.

Часть 1. Обнаружение и коррекция однократной ошибки в сообщении с помощью кода Хемминга

Задания к работе:

- 1. Выполнить кодирование текстового сообщения M_1 по буквам, используя русский или латинский алфавит, размер сообщения не менее 4 букв. Определить размер п в битах закодированного сообщения M. Например, в качестве кода можно использовать порядковый номер буквы в алфавите. Если M_1 = "АБ", то M = 000001000010 и размер сообшения n = 12.
- 2. Определить количество k контрольных разрядов кода Хемминга, необходимых для кодирования сообщения M размер n бит.
- 3. Определить позиции и значения k контрольных разрядов кода Хемминга: двумя способами:
 - подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
 - использование двоичного представления номеров разрядов сообщения.
- 4. Записать полученное сообщение размера (n + k) в коде Хемминга.
- 5. Смоделировать коррекцию ошибки: внести однократную, двукратную и k-кратную ошибки в произвольные биты сообщения и найти эти ошибки с помощью кода Хемминга, используя:
 - подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
 - двоичное представление номеров разрядов сообщения.

Дополнительное задание:

Составить программу, выполняющую построение кода Хемминга для произвольного сообщения, состоящего из символов русского и английского алфавита. (Сообщение необходимо закодировать)

Смоделировать процесс передачи сообщения, реализовав в программе случайное возникновение однократной, двукратной и k — кратной ошибки в случайно выбранных битах сообщения.

Реализовать в программе проверку сообщения в коде Хемминга на наличие однократной ошибки и поиск позиции бита с ошибкой.

Реализовать исправление ошибки и вывод откорректированного сообщения для пользователя.

Часть 2. Обнаружение и коррекция однократной ошибки в сообщении с помощью линейно-группового кода Задание к работе:

- 1. Выполнить построение порождающей матрицы G линейно-группового кода, необходимой для кодирования сообщения M_1 по буквам. Определить необходимое число информационных и проверочных столбцов матрицы G. Вычислить значение проверочных столбцов и доказать соответствие полученной порождающей матрицы G требованиям.
- 2. Выполнить кодирование сообщения M_1 по буквам с помощью порождающей матрицы G.
- 3. Смоделировать коррекцию ошибки: внести в линейно-групповой код одной из букв сообщения M_1 однократную ошибку, выполнить проверку сообщения на наличие ошибки и найти бит с ошибкой в сообщении. Провести аналогичную проверку для двукратной ошибки.

Дополнительное задание:

Составить программу, выполняющую построение порождающей матрицы линейно-группового кода заданной размерности. (Порождающая матрица должна подбираться программой автоматически, не допускается использование матрицы заданной пользователем заранее).

Реализовать получение линейно-группового кода произвольного сообщения, состоящего из символов русского и английского алфавита. (Сообщение необходимо закодировать).

Смоделировать процесс передачи сообщения, реализовав в программе случайное возникновение однократной, двукратной и k — кратной ошибки в случайно выбранных битах сообщения.

Реализовать в программе проверку сообщения в линейно-групповом коде на наличие ошибки и поиск позиции бита с ошибкой.

Реализовать исправление ошибки и вывод откорректированного сообщения для пользователя.

Выполнение работы:

Часть 1

1. Выполню кодирования текстового сообщения M_1 по буквами, используя русский или латинский алфавит, размер сообщения не менее 4 букв. Определю размер n в битах закодированного сообщения M

$$M_1$$
 = "димон", M = 100101 100001 101110 110000 101111, n = 30

2. Определю k контрольных разрядов для сообщения M длиной n=30:

$$2^K \ge n + K + 1$$
$$2^K \ge 31 + K$$

Подбор значения k:

$$2^5 \ge 31 + 5$$
$$2^6 \ge 31 + 6$$

Следовательно k=6

3. Определить позиции и значения k контрольных разрядов кода Хемминга:

1 способ:

Подсчитав количество единиц в контрольных разрядах, получим:

$$\begin{split} K_1 &= (1+1+1+1+1+1) \ mod \ 2 = 0 \\ K_2 &= (1+1+1+1+1+1+1) \ mod \ 2 = 1 \\ K_4 &= (1+1+1+1+1) \ mod \ 2 = 1 \\ K_8 &= (1+1+1+1+1) \ mod \ 2 = 1 \\ K_{16} &= (1+1+1+1+1+1+1+1+1) \ mod \ 2 = 0 \\ K_{32} &= (1+1+1+1) \ mod \ 2 = 0 \end{split}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	0	1	1	0	0	0	1	1	0	1	1	0	0	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	1	1	1
1	0		1		0		1		0		1		0		0		1		0		1		0		1		0		0		0		1		1	
2		0	1			0	1			1	1			0	0			1	0			1	0			0	0			1	0			1	1	
4				0	0	0	1					0	0	0	0					1	1	1	0					0	0	1	0					1
8								0	0	1	1	0	0	0	0									1	1	0	0	0	0	1	0					
16																0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0					
32																																0	1	1	1	1

2 способ:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	1	1	1

$$3 = 000011_2$$
 $7 = 000111_2$
 $10 = 001010_2$
 $11 = 001011_2$
 $17 = 010001_2$
 $18 = 010010_2$
 $20 = 010100_2$
 $21 = 010101_2$
 $22 = 010110_2$
 $24 = 011000_2$
 $25 = 011001_2$
 $30 = 011110_2$
 $30 = 0101110_2$
 $31 = 100010_2$
 $32 = 100010_2$
 $33 = 100010_2$
 $34 = 100100_2$

$$K_1 = 0, K_2 = 1, K_4 = 0, K_8 = 1, K_{16} = 0, K_{32} = 0$$

4. Запишу полученное сообщение (n + k) разрядов в коде Хемминга (красный цвет — контрольные разряды):

011000110110000011011101100001001111

5. Исправление ошибок (синий бит – ошибочный):

1-кратная ошибка:

Поступило сообщение: 100100 100001 101110 110000 101111

1 способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	0	1	1	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	1	1	1
1	0		1		0		1		0		1		0		0		1		0		1		0		1		0		0		0		1		1	
2		0	1			0	1			0	1			0	0			1	0			1	0			0	0			1	0			1	1	
4				0	0	0	1					0	0	0	0					1	1	1	0					0	0	1	0					
8								0	0	0	1	0	0	0	0									1	1	0	0	0	0	1	0					
16																0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0					
32																																0	1	1	1	1

$$K_1 = (1+1+1+1+1+1) \mod 2 = 0$$

 $K_2 = (1+1+1+1+1+1+1+1) \mod 2 = 0$
 $K_4 = (1+1+1+1+1+1) \mod 2 = 1$
 $K_8 = (1+1+1+1+1+1+1+1+1) \mod 2 = 0$

 $K_{16} = (1+1+1+1+1+1+1+1) \mod 2 = 0$ $K_{32} = (1+1+1+1) \mod 2 = 0$

Значения K_2 и K_8 не совпадают с изначальными, значит ошибочный разряд находится в 2+8, то есть в 10

2 способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	0	1	1	0	0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	1	1	1
1	0		1		0		1		0		1		0		0		1		0		1		0		1		0		0		0		1		1	
2		0	1			0	1			0	1			0	0			1	0			1	0			0	0			1	0			1	1	
4				0	0	0	1					0	0	0	0					1	1	1	0					0	0	1	0					
8								0	0	0	1	0	0	0	0									1	1	0	0	0	0	1	0					
16																0	1	1	0	1	1	1	0	1	1	0	0	0	0	1	0					
32																																0	1	1	1	1

$$3 = 000011_2$$

$$7 = 000111_2$$

$$11 = 001011_2$$

 $17 = 010001_2$

$$18 = 010001_2$$

 $18 = 010010_2$

$$20 = 010010_2$$

 $20 = 010100_2$

$$20 = 010100_2$$

 $21 = 010101_2$

$$21 = 010101_2$$

 $22 = 010110_2$

$$24 = 011000_2$$

$$25 = 011001_2$$

$$30 = 011110_2$$

$$33 = 100001_2$$

 $34 = 100010_2$
 $35 = 100011_2$
 $36 = 100100_2$

	0	0	0	0	1	1
	0	0	0	1	1	1
	0	0	1	0	1	1
	0	1	0	0	0	1
	0	1	0	0	1	0
	0	1	0	1	0	0
	0	1	0	1	0	1
	0	1	0	1	1	0
xor	0	1	1	0	0	0
	0	1	1	0	0	1
	0	1	1	1	1	0
	1	0	0	0	0	1
	1	0	0	0	1	0
	1	0	0	0	1	1
	1	0	0	1	0	0
	0	0	0	0	0	0

$$K_1 = 0, K_2 = 0, K_4 = 0, K_8 = 0, K_{16} = 0, K_{32} = 0$$

Как можно заметить, значения K_2 и K_8 не совпадают с изначальными, поэтому ошибка находится в разряде 2+8, т.е. в 10 разряде

2-кратная ошибка:

Поступило сообщение: 100101 000001 101110 110100 101111

Код Хэмминга не может исправить 2-кратную ошибку – только определить, поэтому:

1 способ:

$$K_1 = (1+1+1+1+1+1+1+1) \mod 2 = 0$$

 $K_2 = (1+1+1+1+1+1+1+1+1) \mod 2 = 1$
 $K_4 = (1+1+1+1+1+1) \mod 2 = 0$
 $K_8 = (1+1+1+1+1+1) \mod 2 = 1$
 $K_{16} = (1+1+1+1+1+1+1+1) \mod 2 = 1$

$$K_{32} = (1 + 1 + 1 + 1) \bmod 2 = 0$$

Можно заметить, что значение K_{16} не совпадает с изначальным, но поскольку K_{16} является контрольным разрядом, то мы не можем однозначно сказать, в каком разряде находится ошибка

2 способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	0	1	1	0	0	0	1	1	0	1	0	0	0	0	0	1	1	1	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1	1	1	1
1	0		1		0		1		0		0		0		0		1		0		1		0		1		1		0		0		1		1	
2		0	1			0	1			1	0			0	0			1	0			1	0			0	1			1	0			1	1	
4				0	0	0	1					0	0	0	0					1	1	1	0					0	0	1	0					1
8								0	0	1	0	0	0	0	0									1	1	0	1	0	0	1	0					
16																0	1	1	0	1	1	1	0	1	1	0	1	0	0	1	0					
32																																0	1	1	1	1

 $3 = 000011_2$

 $7 = 000111_2$

 $10 = 001010_2$

 $17 = 010001_2$

 $18 = 010010_2$

 $20 = 010100_2$

 $21 = 010101_2$

 $22 = 010110_2$

 $24 = 011000_2$

 $25 = 011001_2$

 $27 = 011011_2$

 $30 = 011110_2$

 $33 = 100001_2$

 $34 = 100010_2$

 $35 = 100011_2$

 $36 = 100100_2$

	0	0	0	0	1	1
	0	0	0	1	1	1
	0	0	1	0	1	0
	0	1	0	0	0	1
	0	1	0	0	1	0
	0	1	0	1	0	0
	0	1	0	1	0	1
	0	1	0	1	1	0
xor	0	1	1	0	0	0
	0	1	1	0	0	1
	0	1	1	0	1	1
	0	1	1	1	1	0
	1	0	0	0	0	1
	1	0	0	0	1	0
	1	0	0	0	1	1
	1	0	0	1	0	0
	0	1	1	0	1	0

Можно заметить, что значение K_{16} не совпадает с изначальным, но поскольку K_{16} является контрольным разрядом, то мы не можем однозначно сказать, в каком разряде находится ошибка

k-кратная ошибка:

Выполняется аналогично как и с 2-кратной ошибкой

Часть 2

1. Число информационных бит единичной матрицы $n_{\text{и}} = \log_2 64 = 6$ Число проверочных бит $n_{\text{к}} = \log_2 (n+1+\log_2 (n+1)) = (\log_2 (6+1+\log_2 (6+1)) \approx 3,29 \rightarrow n_{\text{к}} = 4$

Единичная матрицы порядка $n_{\rm u}=6$

Порождающая матрица G:

a_1	a_2	a_3	a_4	a_5	a_6	p_1	p_2	p_3	p_4
						$(1\oplus 2\oplus 6)$	$(2\oplus 3\oplus 4)$	$(1\oplus 3\oplus 4\oplus 5)$	$(4\oplus 5\oplus 6)$
1	0	0	0	0	0	1	0	1	0
0	1	0	0	0	0	1	1	0	0
0	0	1	0	0	0	0	1	1	0
0	0	0	1	0	0	0	1	1	1
0	0	0	0	1	0	0	0	1	1
0	0	0	0	0	1	1	0	0	1

$$d_{min} = 3$$

$$w_{min} = d_{min} - 1 = 2$$

Порождающая матрица G удовлетворяет требованиям:

- 1) Все вектора различны и линейно независимы
- 2) Нулевой вектор отсутствует
- 3) $w(v_i) \ge d_{min}$
- 4) $d(v_i, v_j) \ge d_{min}$

2. Закодирую сообщение M_1

$$100101 \rightarrow 0100$$
 $100001 \rightarrow 0011$
 $101110 \rightarrow 1000$
 $110000 \rightarrow 0110$
 $101111 \rightarrow 0001$

Матрица М':

	a_1	a_2	a_3	a_4	a_5	a_6	p_1	p_2	p_3	p_4	S_1	S_2	S_3	S_4	
a_1	1	0	0	0	0	0	0	0	0	0	1	0	1	0	
a_2	0	1	0	0	0	0	0	0	0	0	1	1	0	0	
a_3	0	0	1	0	0	0	0	0	0	0	0	1	1	0	
a_4	0	0	0	1	0	0	0	0	0	0	0	1	1	1	
a_5	0	0	0	0	1	0	0	0	0	0	0	0	1	1	
a_6	0	0	0	0	0	1	0	0	0	0	1	0	0	1	
p_1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	
p_2	0	0	0	0	0	0	0	1	0	0	0	1	0	0	
p_3	0	0	0	0	0	0	0	0	1	0	0	0	1	0	
p_4	0	0	0	0	0	0	0	0	0	1	0	0	0	1	

Проверю часть с ошибкой:

1000010100

$$S_1 = a_1 + a_2 + a_6 + p_1 = 1 + 1 = 0$$

 $S_2 = a_2 + a_3 + a_4 + p_2 = 1$
 $S_3 = a_1 + a_3 + a_4 + a_5 + p_3 = 1$
 $S_4 = a_4 + a_5 + a_6 + p_4 = 1$

Значит ошибка находится в разряде a_4

Проверю часть с ошибкой:

0000010100

Найду вектор-синдром, определяющий двукратную ошибку, для a_1 и a_4 :

xor	1	0	1	0	
	0	1	1	1	
	1	1	0	1	

$$S_1 = a_1 + a_2 + a_6 + p_1 = 1$$

$$S_2 = a_2 + a_3 + a_4 + p_2 = 1$$

$$S_3 = a_1 + a_3 + a_4 + a_5 + p_3 = 0$$

$$S_4 = a_4 + a_5 + a_6 + p_4 = 1$$

Полученные значение совпадают с вектор-синдромом, значит ошибка действительно находится в ячейках a_1 и a_4 . Может быть исправлена если в построенной матрице M'' все векторы будут различны