An SCI-based Software VIA System for PC Clustering

Jeonghee Shin
University of Southern California

AGENDA

- Introduction
- SCI-based Software VIA(SS-VIA)
 - Overview of SS-VIA
 - Implementation of SS-VIA
- Experimental Result
 - Latency and Bandwidth
 - NAS Parallel Benchmark
- Conclusion

Introduction

- ◆ TCP/IP
 - Unnecessary data copy
 - Context switch
 - Interrupt

- User-level message-passing interface
 - without intervention of the kernel
 - U-Net, SHRIMP, Active Message, Fast Message, VIA

Virtual Interface Architecture

- Compaq, Intel, and Microsoft
- Eliminating the system call overhead of traditional models
- Hardware implementation
 - Emulex/Giganet's cLan
 - Finisar's Fibre Channel VI Host Bus Adapter
 - Technical University of Chemnitz
- Software implementation
 - Intel (Fast Ethernet, Myrinet)
 - Lawrence Berkeley Laboratory's M-VIA (Fast Ethernet, Gigabit Ethernet)
 - UC Berkeley (Myrinet)

SS-VIA

- SCI (Scalable Coherent Interface)
 - ANSI/IEEE standard (1592-1992)
 - Low latency & high bandwidth
 - Remote memory access mechanism
 - Enable a node to transfer data in remote nodes' memory without system call
 - ⇒ Excellent environment to build a VIA system
- Support both
 - MPI-based message passing programming
 - SCI-based shared memory programming

- Virtual Interface (VI)
- Completion Queue (CQ)
- VI Provider
- VI Consumer

Application

MPI(Message Passing Interface)

VIPL(Virtual Interface Provider Library)

User

Kernel

Kernel Agent

SISCI(Software Infrastructure for SCI)

PCI-SCI Adapter Card

- Handled by the VI Manager
- Consists of a pair of Work Queues
 - Send Queue & Receive Queue

- VI Provider
 - Kernel Agent & VI Network Adapter
- Kernel Agent
 - Setup & resource management functions

- VI Network Adapter
 - Perform data transfer functions
 - Dolphin's PCI-SCI Adapter Card

VI Consumer

- VIPL, MPI, and user applications
- Make system calls to the Kernel Agent to create a VI on a local system & connect it to a VI on a remote system
- Application's requests are directly posted to the local VI after a connection is established

- ◆ CQ
 - The completion of the request is notified to the CQ
 - Associated with a Work Queue

PCI-SCI Mapping

- Implementing functions for SS-VIA using SISCI API
- Mapping between a local memory and a remote memory
 - The local node can access the remote node's memory directly
 - Communication : Remote Read/Write

Initialization Mechanism

- By the Kernel Agent
 - Request the VI manager to create a local VI
 - Connect it with another VI
 - Only use remote write transaction for data transfer
 - Remote Write < Remote Read

Transfer data without intervention of the Kernel Agent once the VI connection is completed

The sender and the receiver put their descriptor in the Work Queue through the VI manager

- On the sender side
 - The VI manager picks up the descriptor in the Send Queue
 - Send the data pointed by the descriptor to the VI Network Adapter

- The VI Network Adapter transfers the data to the network
 - remote write

- On the receiver side
 - the data received through the network is stored in the user buffer which is pointed to by the descriptor in the Receive Queue

- Eliminating the time-consuming system call
 - Using the remote memory access mechanism
 - Main feature of NUMA
- Removing the unnecessary data copy in the intermediate buffers
 - Directly move the data between the user buffer and the network interface
- Using the polling mechanism
 - Avoid the context switch overhead

MPI on SS-VIA

- MPI-2 Standard
- Provide an easy way of programming

User Application

MPI API

MPI Runtime Library

SS-VIA

Experimental Environment

Node

Node

Node

3COM

Super-StackII

Switch

Node

Node

Node

Node

L1

bridge

PCI Fast Ethernet Memory

► PCI bus

- 8-node PC cluster system
 - 350 MHz Pentium II
 - 128MB Memory
 - 4.3GB SCSI Hard Disk
 - Linux

Experiments

- Compared systems
 - M-VIA on Fast Ethernet
 - A software-emulated VIA developed in Lawrence Berkeley Laboratory
 - modular VIA on Linux
 - SCI-MPI
 - Developed in Aachen university
 - Provide MPI on the SCI-based shared memory system
 - TCP/IP on Fast Ethernet

Latency & Bandwidth

- Other VIA systems
 - M-VIA on Gigabit Ethernet : 19μs, 60MB/s
 - UC Berkeley's VIA on Myrinet: 30µs, 68MB/s
 - Intel's VIA on Myrinet : 53μs, 87MB/s
 - Emulex/Giganet's cLan: 7μs, 110MB/s

Execution Time of NPB

- NAS(Numerical Aerodynamics Simulation) Parallel Benchmark (NPB) version 2.3
 - Developed by NASA

Benchmark Program	Problem Size (byte)	# of iterations
LU solver (LU)	33x33x33	300
Multigrid (MG)	64x64x64	40
Conjugate Gradient (CG)	14000	15
Embarrassingly Parallel (EP)	33554432	0

Execution Time of NPB

Execution Time of NPB

Conclusion

- SS-VIA
 - VIA has been developed on top of the SCI network based PC cluster system
 - Eliminating intervention of the kernel
 - Bandwidth: 84MB/s Latency: 8µs
 - NAS Parallel Benchmark: average speed-up of 6.1
 - Support both
 - Message-passing programming
 - SCI-based shared-memory programming
 - Guarantee stability
- Future Work
 - Optimization