LIGHT BASED METHODS

Ryan Collison MLS (ASCP)^{CM}

NATURE OF LIGHT

- Inverse relationships
- UV and visible range most useful
- Substances in solution absorb light
 - Beer's Law A=2-log(%T)

Wavelength (λ)→

PRODUCTION OF LIGHT

Tungsten/ Tungsten- halogen	Hydrogen/ Deuterium	Mercury (vapor) (low pressure)	Mercury/Xenon (Arc) (high pressure)	Hollow Cathode Lamp
Most common light source, halogen extends life	Continuous spectra of UV light down to 165 nm	Emits a line spectrum in UV and visible	Continuous spectrum UV to mid-visible	Provides emission spectra of element
Near UV-Visible light produced	Deuterium has longer useful life	Unless you're measuring at that wavelength, useless for measurements	Frequently used in UV applications	Used for atomic absorption spectroscopy
Does not work <320nm	Frequently used in UV applications	Useful for calibration		Lamp contains element of interest
Requires heat-cut filter				

MANIPULATION OF LIGHT

Monochrometers (wavelength selection)

Prisms separate light

Interference filters produce light with multiples of a given λ . Needs later filters.

Diffraction gratings are the most common

Wide band but at low intensity

DETECTION OF LIGHT

Increasing Complexity

Barrier
layer cell:
light
sensitive
material
generates
electrons

Phototube: similar, but requires voltage input PM Tube: Series of dynodes amplify signal, extremely sensitive Photodiode array:
series of diodes over
spectrum can
measure whole
spectrum but,
needs more light

DETECTION OF LIGHT

- Metrics of light detection
 - Bandpass
 - A function of monochrometers
 - Stray light
 - Ideally zero
 - Dark current
 - Always present

Absorbance Spectrophotometry

• Turbidmetry, nephelometry

- Atomic Absorption Spectroscopy
 - Flameless with graphite furnace

- Fluorometry
 - Emitting light of longer wavelengths than those absorbed
 - Sensitivity and specificity

Chemiluminescence (competitive and non-competitive)

ENSURING QUALITY RESULTS

- Wavelength Accuracy
 - Didymium or holmium oxide
- Stray Light
- Sample Blanks
 - Specific to specimen
- Reagent Blanks
 - Specific to reagent lot
- Bichromatic analysis
 - Measure at secondary λ

Cobas 8000 absorbance readout