Math Camp Chunyu Qu 2020 Summer

Homework 1 Solution

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

(Hint: use squeeze theorem)

Solution

$$-1 \le \sin \frac{1}{x} \le 1$$

Any inequality remains true when multiplied by a positive number. We know that $x^2 \ge 0$ for all x and so, multiplying each side of the inequalities by x^2 , we get

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

We know that

$$\lim_{x \to 0} x^2 = 0$$
 and $\lim_{x \to 0} (-x^2) = 0$

Taking $f(x) = -x^2$, $g(x) = x^2 \sin(1/x)$, and $h(x) = x^2$ in the Squeeze Theorem, we obtain

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

Compute $\lim_{x\to\infty} (\sqrt{x^2+1}-x)$.

Solution

$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to \infty} (\sqrt{x^2 + 1} - x) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

Notice that the denominator of this last expression $(\sqrt{x^2+1}+x)$ becomes large as $x\to\infty$ (it's bigger than x). So

$$\lim_{x\to\infty} \left(\sqrt{x^2+1}-x\right) = \lim_{x\to\infty} \frac{1}{\sqrt{x^2+1}+x} = 0$$

Find the horizontal and vertical asymptotes of the graph of the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

Solution

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} \qquad \text{(since } \sqrt{x^2} = x \text{ for } x > 0\text{)}$$

$$= \frac{\lim_{x \to \infty} \sqrt{2 + \frac{1}{x^2}}}{\lim_{x \to \infty} \left(3 - \frac{5}{x}\right)} = \frac{\sqrt{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 3 - 5 \lim_{x \to \infty} \frac{1}{x}} = \frac{\sqrt{2 + 0}}{3 - 5 \cdot 0} = \frac{\sqrt{2}}{3}$$

Therefore the line $y=\sqrt{2}/3$ is a horizontal asymptote of the graph of f. In computing the limit as $x\to -\infty$, we must remember that for x<0, we have $\sqrt{x^2}=|x|=-x$. So when we divide the numerator by x, for x<0 we get

$$\frac{1}{x}\sqrt{2x^2+1} = -\frac{1}{\sqrt{x^2}}\sqrt{2x^2+1} = -\sqrt{2+\frac{1}{x^2}}$$

Therefore

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} = \frac{-\sqrt{2 + \lim_{x \to -\infty} \frac{1}{x^2}}}{3 - 5 \lim_{x \to -\infty} \frac{1}{x}} = -\frac{\sqrt{2}}{3}$$

Thus the line $y = -\sqrt{2}/3$ is also a horizontal asymptote.

A vertical asymptote is likely to occur when the denominator, 3x-5, is 0, that is, when $x=\frac{5}{3}$. If x is close to $\frac{5}{3}$ and $x>\frac{5}{3}$, then the denominator is close to 0 and 3x-5 is positive. The numerator $\sqrt{2x^2+1}$ is always positive, so f(x) is positive. Therefore

$$\lim_{x \to (5/3)^+} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \infty$$

If x is close to $\frac{5}{3}$ but $x < \frac{5}{3}$, then 3x - 5 < 0 and so f(x) is large negative. Thus

$$\lim_{x \to (5/3)^{-}} \frac{\sqrt{2x^2 + 1}}{3x - 5} = -\infty$$

The vertical asymptote is $x = \frac{5}{3}$. All three asymptotes are shown in Figure 8.

Figure 8

Evaluate

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

Solution

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{\frac{3x^2 - x - 2}{5x^2 + 4x + 1}}{\frac{5x^2 + 4x + 1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 0}$$

$$= \frac{3}{5}$$

Find $\lim_{x\to\infty} (x^2 - x)$.

Solution

It would be wrong to write

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x^2 - \lim_{x \to \infty} x = \infty - \infty$$

The Limit Laws can't be applied to infinite limits because ∞ is not a number $(\infty - \infty$ can't be defined). However, we *can* write

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x(x - 1) = \infty$$

because both x and x-1 become arbitrarily large and so their product does too.

Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

Solution

In fact, we can make x^3 as big as we like by taking x large enough. Therefore we can write

$$\lim x^3 = \infty$$

Similarly, when x is large negative, so is x^3 . Thus

$$\lim_{x \to -\infty} x^3 = -\infty$$

Find
$$\lim_{x\to\infty}\frac{x^2+x}{3-x}$$
.

Solution

$$\lim_{x \to \infty} \frac{x^2 + x}{3 - x} = \lim_{x \to \infty} \frac{x + 1}{\frac{3}{x} - 1} = -\infty$$

because $x + 1 \rightarrow \infty$ and $3/x - 1 \rightarrow -1$ as $x \rightarrow \infty$.

If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

Solution

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right)$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

We see that f'(x) exists if x > 0, so the domain of f' is $(0, \infty)$. This is smaller than the domain of f, which is $[0, \infty)$.

Find
$$f'$$
 if $f(x) = \frac{1-x}{2+x}$

Solution

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}}{h}$$

$$= \lim_{h \to 0} \frac{(1 - x - h)(2 + x) - (1 - x)(2 + x + h)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{(2 - x - 2h - x^2 - xh) - (2 - x + h - x^2 - xh)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{-3h}{h(2 + x + h)(2 + x)} = \lim_{h \to 0} \frac{-3}{(2 + x + h)(2 + x)} = -\frac{3}{(2 + x)^2}$$

If $f(x) = e^x - x$, find f' and f''. Compare the graphs of f and f'.

Solution

$$f'(x) = \frac{d}{dx} (e^x - x) = \frac{d}{dx} (e^x) - \frac{d}{dx} (x) = e^x - 1$$

In Section 2.8 we defined the second derivative as the derivative of f', so

$$f''(x) = \frac{d}{dx}(e^x - 1) = \frac{d}{dx}(e^x) - \frac{d}{dx}(1) = e^x$$

- (a) If $f(x) = xe^x$, find f'(x).
- (b) Find the nth derivative, $f^{(n)}(x)$.

Solution

(a) By the Product Rule, we have

$$f'(x) = \frac{d}{dx}(xe^x)$$

$$= x\frac{d}{dx}(e^x) + e^x\frac{d}{dx}(x)$$

$$= xe^x + e^x \cdot 1 = (x+1)e^x$$

(b) Using the Product Rule a second time, we get

$$f''(x) = \frac{d}{dx} [(x+1)e^x]$$

$$= (x+1)\frac{d}{dx} (e^x) + e^x \frac{d}{dx} (x+1)$$

$$= (x+1)e^x + e^x \cdot 1 = (x+2)e^x$$

Further applications of the Product Rule give

$$f'''(x) = (x+3)e^x$$
 $f^{(4)}(x) = (x+4)e^x$

In fact, each successive differentiation adds another term e^x , so

$$f^{(n)}(x) = (x+n)e^x$$

Find an equation of the tangent line to the curve $y = e^x/(1 + x^2)$ at the point $(1, \frac{1}{2}e)$.

Solution

$$\frac{dy}{dx} = \frac{(1+x^2)\frac{d}{dx}(e^x) - e^x \frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$
$$= \frac{(1+x^2)e^x - e^x(2x)}{(1+x^2)^2}$$
$$= \frac{e^x(1-x)^2}{(1+x^2)^2}$$

So the slope of the tangent line at $(1, \frac{1}{2}e)$ is

$$\frac{dy}{dx}\bigg|_{x=1} = 0$$

This means that the tangent line at $(1, \frac{1}{2}e)$ is horizontal and its equation is $y = \frac{1}{2}e$.

Find the derivative of the function

$$g(t) = \left(\frac{t-2}{2t+1}\right)^9$$

Solution

Combining the Power Rule, Chain Rule, and Quotient Rule, we get

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^{8} \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

$$= 9\left(\frac{t-2}{2t+1}\right)^{8} \frac{(2t+1) \cdot 1 - 2(t-2)}{(2t+1)^{2}} = \frac{45(t-2)^{8}}{(2t+1)^{10}}$$

Find y' if $sin(x + y) = y^2 cos x$.

Solution

Differentiating implicitly with respect to x and remembering that y is a function of x,

$$\cos(x + y) \cdot (1 + y') = y^{2}(-\sin x) + (\cos x)(2yy')$$

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain Rule on the right side.) If we collect the terms that involve y', we get

$$\cos(x+y) + y^2 \sin x = (2y\cos x)y' - \cos(x+y) \cdot y'$$

So
$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

Differentiate
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$
.

(Hint: The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following example is called logarithmic differentiation).

Solution

We take logarithms of both sides of the equation and use the Laws of Logarithms

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2)$$

Differentiating implicitly with respect to x gives

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Solving for dy/dx, we get

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Because we have an explicit expression for y, we can substitute and write

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5} \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Differentiate $y = x^{\sqrt{x}}$.

Solution

SOLUTION 1 Since both the base and the exponent are variable, we use logarithmic differentiation:

$$\ln y = \ln x^{\sqrt{x}} = \sqrt{x} \ln x$$

$$\frac{y'}{y} = \sqrt{x} \cdot \frac{1}{x} + (\ln x) \frac{1}{2\sqrt{x}}$$

$$y' = y \left(\frac{1}{\sqrt{x}} + \frac{\ln x}{2\sqrt{x}} \right) = x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}} \right)$$

SOLUTION 2 Another method is to write $x^{\sqrt{x}} = (e^{\ln x})^{\sqrt{x}}$:

$$\frac{d}{dx} \left(x^{\sqrt{x}} \right) = \frac{d}{dx} \left(e^{\sqrt{x} \ln x} \right) = e^{\sqrt{x} \ln x} \frac{d}{dx} \left(\sqrt{x} \ln x \right)$$
$$= x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}} \right) \qquad \text{(as in Solution 1)}$$

Calculate $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$.

Solution

Since $\ln x \to \infty$ and $\sqrt[3]{x} \to \infty$ as $x \to \infty$, l'Hospital's Rule applies:

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{1/x}{\frac{1}{3}x^{-2/3}}$$

Notice that the limit on the right side is now indeterminate of type $\frac{0}{0}$. But instead of applying l'Hospital's Rule a second time as we did in Example 2, we simplify the expression and see that a second application is unnecessary:

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{X}} = \lim_{x \to \infty} \frac{1/x}{\frac{1}{3}X^{-2/3}} = \lim_{x \to \infty} \frac{3}{\sqrt[3]{X}} = 0$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

Solution

The given limit is indeterminate because, as $x \to 0^+$, the first factor (x) approaches 0 while the second factor $(\ln x)$ approaches $-\infty$. Writing x = 1/(1/x), we have $1/x \to \infty$ as $x \to 0^+$, so l'Hospital's Rule gives

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

Find $\lim_{x\to 0^+} x^x$.

Solution

$$x^x = (e^{\ln x})^x = e^{x \ln x}$$

we used l'Hospital's Rule to show that

$$\lim_{x\to 0^+} x \ln x = 0$$

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1$$