Отчёт по лабораторной работе №1

Информационная безопасность

Арбатова Варвара Петровна

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы 3.1 Создание и настройка виртуальной машины	7
4	Выполнение домашнего задания	13
5	Выводы	15
Сг	писок литературы	16

Список таблиц

Список иллюстраций

3.1	создание виртуальнои машины
3.2	имя пользователя
3.3	Количество памяти и процессоров
3.4	виртуальный жесткий диск
3.5	Язык установки
3.6	Задание пароля
3.7	Создание пользователя
3.8	Выбор программ
3.9	Выключаю КDUMР
3.10	Имя узла
3.11	Запуск машины
3.12	Носители
4.1	Загрузка системы
4.2	Ядро, процесс
4.3	Память
4.4	гипервизор
4.5	тип файловой системы
4.6	Последовательность монтирования

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

2 Теоретическое введение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox(https://www.virtualbox.org/)операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/)). Выполнение работы возможно как в дисплейном классе факультета физико-математических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками:— Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 20 GB свободного места на жёстком диске;— OCLinuxGentoo(http://www.gentoo.ru/);— VirtualBox верс.6.1 или старше;— каталог с образами ОС для работающих в дисплейном классе: /afs/dk.sci.pfu.edu.ru/common/files/iso/.

3 Выполнение лабораторной работы

3.1 Создание и настройка виртуальной машины

Создаю виртуальную машину

Рис. 3.1: создание виртуальной машины

Согласно соглашению об именовании даю имя пользователя и компьютера, ввожу пароль

Рис. 3.2: имя пользователя

Настраиваю количество оперативной памяти и процессоров

Рис. 3.3: Количество памяти и процессоров

Выделяю место для виртуального жесткого диска

Рис. 3.4: виртуальный жесткий диск

Выбираю язык установки

Рис. 3.5: Язык установки

Задаю пароль root

Рис. 3.6: Задание пароля

Создаю пользователя, удовлетворяющего соглашению об именовании

Рис. 3.7: Создание пользователя

Произвожу выбор программ

Рис. 3.8: Выбор программ

Выключаю KDUMP

Рис. 3.9: Выключаю КDUMP

Меняю имя узла

Рис. 3.10: Имя узла

Запускаю машину

Рис. 3.11: Запуск машины

Проверяю что диск отключен

Рис. 3.12: Носители

4 Выполнение домашнего задания

В окне терминала анализирую последовательность загрузки системы, выполнив команду dmesg

```
[vparbatova@vparbatova ~]$ dmesg | less
```

Рис. 4.1: Загрузка системы

Версия ядра линукс, частота процессора, модель процессора

Рис. 4.2: Ядро, процесс

Память

Рис. 4.3: Память

Тип обнаруженного гипервизора

```
[vparbatova@vparbatova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 2.269404] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
```

Рис. 4.4: гипервизор

sudo fdish -l показывает тип файловой системы, типа Linux, Linux LVM

```
[vparbatova@vparbatova ~]$ sudo fdisk -l
Мы полагаем, что ваш системный администратор изложил вам основы
безопасности. Как правило, всё сводится к трём следующим правилам:
№1) Уважайте частную жизнь других.
№2) Думайте, прежде что-то вводить.
№3) С большой властью приходит большая ответственность.
[sudo] пароль для vparbatova:
```

Рис. 4.5: тип файловой системы

Последовательность монтирования файловых систем

```
vparbatova@vparbatova ~]$ dmesg | grep -i "Mount
                              t-cache hash table entries: 4096 (order: 3, 32768 bytes, line
      0.079062]
       0.079062] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes,
linear)
      3.177375] XFS (dm-0): Mounting V5 Filesystem 0c473f44-e082-46da-a4cf-c1a278
506dfa
      3.199974] XFS (dm-0): Ending clean
                                                                  nt Arbitrary Executable File Formats Fi
      4.055779] systemd[1]: Set up autom
  4.055779] systemd[]: Set up automount. Afficially Executes:

System Automount Point.

4.071674] systemd[]: Mounting Huge Pages File System...

4.076692] systemd[]: Mounting POSIX Message Queue File System...

4.077588] systemd[]: Mounting Kernel Debug File System...

4.078555] systemd[]: Mounting Kernel Trace File System...

4.197372] systemd[]: Starting Remount Root and Kernel File Systems...

9.224083] XFS (sdal): Mounting V5 Filesystem b7560567-f36c-4e67-a5d6-02121b
10751b
      9.226803] XFS (dm-2): Mounting V5 Filesystem f2d41728-ad6c-43e4-9712-840dad
c8621f
       9.479365] XFS (dm-2): Ending clean
      11.497464] XFS (sda1): Ending clean
```

Рис. 4.6: Последовательность монтирования

5 Выводы

Мной была установлена и настроена виртуальная машина

Список литературы