Lecture 8 - Linear Mappings Part 1

COMP1046 - Maths for Computer Scientists

Dr. Ferrante Neri / Dr. Tony Bellotti

Learning outcomes

By the end of this lecture we will have learned:

- Mappings
- Linear Mappings
- Linear Mappings and Vector Spaces

Based on Sections 10.1 and 10.2 of textbook (Neri 2018).

Mappings

Mapping and Domain

Definition

Let $(E, +, \cdot)$ and $(F, +, \cdot)$ be two vector spaces defined over the scalar field \mathbb{K} . Let $f : E \to F$ be a relation.

Let *U* be a set such that $U \subseteq E$.

The relation f is said *mapping* when

$$\forall \mathbf{u} \in U : \exists ! \mathbf{w} \in F \text{ such that } f(\mathbf{u}) = \mathbf{w}.$$

The set U is said *domain* and is indicated with dom (f).

A vector w such that

$$\mathbf{w} = f(\mathbf{u})$$

is said to be the *mapped* (or *transformed*) of \mathbf{u} through f.

Image

Definition

Let f be a mapping $E \to F$, where E and F are sets associated with the vector spaces $(E, +, \cdot)$ and $(F, +, \cdot)$. The *image* of f, indicated with Im (f), is a set defined as

$$\operatorname{Im}(f) = \left\{ \mathbf{w} \in F \mid \exists \mathbf{u} \in E \text{ such that } f(\mathbf{u}) = \mathbf{w} \right\}.$$

Mapping and Image

Example

Let $(\mathbb{R}, +, \cdot)$ be a vector space.

An example of mapping $\mathbb{R} \to \mathbb{R}$ is $f(x) = x^2 + 2x + 2$.

- ⊚ The domain of the mapping dom $(f) = \mathbb{R}$.
- ⊚ The image Im $(f) = [1, \infty[$.

Mapping and Image

Example

Let $(\mathbb{R}^2, +, \cdot)$ and $(\mathbb{R}, +, \cdot)$ be two vector spaces.

An example of mapping $\mathbb{R}^2 \to \mathbb{R}$ is f(x, y) = x + 2y + 2.

- ⊚ The domain of the mapping dom $(f) = \mathbb{R}^2$.
- \odot The image Im $(f) = \mathbb{R}$.

Example

From the vector spaces $(\mathbb{R}^2, +, \cdot)$ and $(\mathbb{R}^3, +, \cdot)$ an example of mapping $\mathbb{R}^3 \to \mathbb{R}^2$ is

$$f(x, y, z) = (x + 2y + -z + 2, 6y - 4z + 2).$$

- ⊚ The domain of the mapping dom $(f) = \mathbb{R}^3$.
- \odot The image Im $(f) = \mathbb{R}^2$.

Surjective, Injective, Bijective

Definition

Let f be a mapping $E \to F$, where E and F are sets associated with the vector spaces $(E, +, \cdot)$ and $(F, +, \cdot)$.

- ⊚ The mapping f is said *surjective* if the image of f coincides with F: Im (f) = F.
- \odot The mapping f is said *injective* if

$$\forall \mathbf{u}, \mathbf{v} \in E \text{ with } \mathbf{u} \neq \mathbf{v} \Rightarrow f(\mathbf{u}) \neq f(\mathbf{v}).$$

 The mapping f is said bijective if f is injective and surjective.

Surjective, Injective, Bijective

Example

Consider these mappings:

- \odot $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$:
 - Not surjective since $Im(f) = \mathbb{R}^+$.
 - Not injective because $\exists x_1, x_2$ with $x_1 \neq x_2$ such that $x_1^2 = x_2^2$. For example if $x_1 = 3$ and $x_2 = -3$, thus $x_1 \neq x_2$, it occurs that $x_1^2 = x_2^2 = 9$.
 - Hence not bijective.
- ⊚ $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ is injective but not surjective. Hence, this mapping is not bijective.
- ⊚ $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 2 is injective and surjective. Hence, this mapping is bijective.

Definition

Let f be a mapping $E \to F$, where E and F are sets associated with the vector spaces $(E, +, \cdot)$ and $(F, +, \cdot)$.

The mapping f is said *linear mapping* if the following properties are valid:

- \odot additivity: $\forall \mathbf{u}, \mathbf{v} \in E : f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$
- ⊚ homogeneity: $\forall \lambda \in \mathbb{K}$ and $\forall \mathbf{v} \in E : f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$

Example

Let us check the linearity of the mapping $f : \mathbb{R} \to \mathbb{R}$

$$\forall x : f(x) = e^x$$
.

Consider two vectors (numbers in this case) x_1 and x_2 .

Calculate $f(x_1 + x_2) = e^{x_1 + x_2}$.

From basic calculus we know that

$$e^{x_1+x_2} \neq e^{x_1} + e^{x_2}$$
.

Therefore, additivity is not verified. Hence the mapping is not linear.

Example

Let us consider the linearity of the mapping $f : \mathbb{R} \to \mathbb{R}$

$$\forall x: f(x) = 2x.$$

Consider two vectors (numbers in this case) x_1 and x_2 . Then,

$$f(x_1 + x_2) = 2(x_1 + x_2)$$

$$f(x_1) + f(x_2) = 2x_1 + 2x_2.$$

It follows that $f(x_1 + x_2) = f(x_1) + f(x_2)$.

Hence, this mapping is additive.

Continued...

Example

Let us check the homogeneity by considering a generic scalar λ . We have that

$$f(\lambda x) = 2\lambda x$$
$$\lambda f(x) = \lambda 2x.$$

It follows that $f(\lambda x) = \lambda f(x)$.

Hence, since also homogeneity is verified this mapping is linear.

Affine Mapping

Definition

Let f be a mapping $E \to F$, where E and F are sets associated with the vector spaces $(E, +, \cdot)$ and $(F, +, \cdot)$.

The mapping f is said affine mapping if the mapping

$$g\left(\mathbf{v}\right) = f\left(\mathbf{v}\right) - f\left(\mathbf{o}\right)$$

is linear.

Affine Mapping

Example

Consider the mapping $f : \mathbb{R} \to \mathbb{R}$, $\forall x : f(x) = x + 2$.

Consider two vectors (numbers in this case) x_1 and x_2 . Then

$$f(x_1 + x_2) = x_1 + x_2 + 2$$

$$f(x_1) + f(x_2) = x_1 + 2 + x_2 + 2 = x_1 + x_2 + 4.$$

It follows that $f(x_1 + x_2) \neq f(x_1) + f(x_2)$. Hence, this mapping is not linear. Still, f(0) = 2 and

$$g\left(x\right) = f\left(x\right) - f\left(0\right) = x$$

which is a linear mapping. This means that f(x) is an affine mapping.

Proposition

Let f be a linear mapping $E \to F$.

Let us indicate with $\mathbf{o_E}$ and $\mathbf{o_F}$ the null vectors of the vector spaces $(E, +, \cdot)$ and $(F, +, \cdot)$, respectively.

It follows that

$$f\left(\mathbf{o_{E}}\right)=\mathbf{o_{F}}.$$

Proof.

$$f(\mathbf{o}_{\mathbf{E}}) = f(0\mathbf{o}_{\mathbf{E}}) = 0f(\mathbf{o}_{\mathbf{E}}) = \mathbf{o}_{\mathbf{F}}.$$

Exercise 1: Linear and Affine Mappings

Which of these mappings are linear and which are affine (or both or neither)?:

- \odot $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 2$.
- \odot $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = 2x 3y.
- $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (2x y + 1, 2y x 2).$

Exercise 1: Solution

- \odot $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 2$:
 - Take $x_1 = 1$ and $x_2 = 2$, then $f(x_1 + x_2) = 2(x_1 + x_2)^2 + 2 = 11$.
 - However, $f(x_1) + f(x_2) = 4 + 10 = 14$, hence not additive, and so it is not a linear mapping.
 - Also, $f(0) = 2 \Rightarrow g(x) = 2x^2$. Again, $g(x_1 + x_2) = 2(x_1 + x_2)^2 = 18$ and $g(x_1) + g(x_2) = 2 + 8 = 10$, hence not an affine mapping either.

Exercise 1: Solution

- \odot $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = 2x 3y:
 - For any $(x_1, y_1) \in \mathbb{R}^2$ and $(x_2, y_2) \in \mathbb{R}^2$, $f(x_1, y_1) + f(x_2, y_2) = (2x_1 3y_1) + (2x_2 3y_2) = 2(x_1 + x_2) 3(y_1 + y_2) = f((x_1, y_1) + (x_2, y_2))$ which shows additivity.
 - For any $(x, y) \in \mathbb{R}^2$, $\lambda f(x, y) = \lambda (2x 3y) = 2(\lambda x) 3(\lambda y) = f(\lambda(x, y))$ which shows homogeneity.
 - Hence this is a linear mapping.
 - Since f(0,0) = 0, g = f and hence this is an affine mapping too.

Exercise 1: Solution

- - o f(0,1) + f(1,0) = (0,0) + (3,-3) = (3,-3). However, f((0,1) + (1,0)) = f(1,1) = (2,-1), so it is not additive and hence not a linear mapping.

 - For any $(x_1, y_1) \in \mathbb{R}^2$ and $(x_2, y_2) \in \mathbb{R}^2$, $g(x_1, y_1) + g(x_2, y_2)$ = $((2x_1 - y_1) + (2x_2 - y_2), (2y_1 - x_1) + (2y_2 - x_2))$ = $(2(x_1 + x_2) - (y_1 + y_2), 2(y_1 + y_2) - (x_1 + x_2))$ = $g((x_1, y_1) + (x_2, y_2))$, which shows g is additive.
 - For any $(x, y) \in \mathbb{R}^2$, $\lambda g(x, y) = (\lambda(2x y), \lambda(2y x))$ = $(2(\lambda x) - \lambda y, 2(\lambda y) - \lambda x)$
 - = $g(\lambda(x, y))$, which shows g has homogeneity.
 - Hence g is a linear mapping $\Rightarrow f$ is an affine mapping.

Definition

Let f be a mapping $U \subset E \to F$.

The *image of U through f*, indicated with f(U), is the set

$$f(U) = \{ \mathbf{w} \in F \mid \exists \mathbf{u} \in U \text{ such that } f(\mathbf{u}) = \mathbf{w} \}.$$

Theorem

Let $f: E \to F$ be a linear mapping and $(U, +, \cdot)$ be a vector subspace of $(E, +, \cdot)$.

It follows that the triple $(f(U), +, \cdot)$ *is a vector subspace of* $(F, +, \cdot)$.

Proof.

In order to prove that $(f(U), +, \cdot)$ is a vector subspace of $(F, +, \cdot)$ we have to show that the set f(U) is closed with respect to the two composition laws.

By definition, the fact that a vector $\mathbf{w} \in f(U)$ means that $\exists \mathbf{v} \in U$ such that $f(\mathbf{v}) = \mathbf{w}$.

Thus, if we consider two vectors \mathbf{w} , $\mathbf{w}' \in f(U)$ then

$$\mathbf{w} + \mathbf{w}' = f(\mathbf{v}) + f(\mathbf{v}') = f(\mathbf{v} + \mathbf{v}').$$

Since for hypothesis $(U, +, \cdot)$ is a vector space, then $\mathbf{v} + \mathbf{v}' \in U$. Hence, $f(\mathbf{v} + \mathbf{v}') \in f(U)$. The set f(U) is therefore closed with respect to the internal composition law. *continued...*

Proof.

Let us now consider a generic scalar $\lambda \in \mathbb{K}$ and calculate

$$\lambda \mathbf{w} = \lambda f(\mathbf{v}) = f(\lambda \mathbf{v}).$$

Since for hypothesis $(U, +, \cdot)$ is a vector space, then $\lambda \mathbf{v} \in U$. Hence, $f(\lambda \mathbf{v}) \in f(U)$. The set f(U) is closed with respect to the external composition law.

Since the set f(U) is closed with respect to both the composition laws the triple $(f(U), +, \cdot)$ is a vector subspace of $(F, +, \cdot)$.

Inverse image

Definition

Let f be a mapping $E \to W \subset F$.

The *inverse image of* W *through* f, indicated with $f^{-1}(W)$, is a set defined as

$$f^{-1}(W) = \{\mathbf{u} \in E \mid f(\mathbf{u}) \in W\}.$$

Theorem

Let $f: E \to F$ be a linear mapping. If $(W, +, \cdot)$ is a vector subspace of $(F, +, \cdot)$, then $(f^{-1}(W), +, \cdot)$ is a vector subspace of $(E, +, \cdot)$.

Inverse image

Proof.

In order to prove that $(f^{-1}(W), +, \cdot)$ is a vector subspace of $(E, +, \cdot)$ we have to prove the closure of $f^{-1}(W)$ with respect to the two composition laws.

If a vector $\mathbf{v} \in f^{-1}(W)$ then $f(\mathbf{v}) \in W$.

We can write for the linearity of f

$$f\left(\mathbf{v}+\mathbf{v'}\right)=f\left(\mathbf{v}\right)+f\left(\mathbf{v'}\right).$$

Since $(W, +, \cdot)$ is a vector space, $f(\mathbf{v}) + f(\mathbf{v}') \in W$.

Hence, $f(\mathbf{v} + \mathbf{v}') \in W$ and $\mathbf{v} + \mathbf{v}' \in f^{-1}(W)$.

Thus, the set $f^{-1}(W)$ is closed with respect to the first composition law. *continued...*

Inverse image

Proof.

Let us consider a generic scalar $\lambda \in \mathbb{K}$ and calculate

$$f(\lambda \mathbf{v}) = \lambda f(\mathbf{v}).$$

Since $(W, +, \cdot)$ is a vector space, $\lambda f(\mathbf{v}) \in W$. Since $f(\lambda \mathbf{v}) \in W$ the $\lambda \mathbf{v} \in f^{-1}(W)$. Thus, the set $f^{-1}(W)$ is closed with respect to the second composition law.

Hence, $(f^{-1}(W), +, \cdot)$ is a vector subspace of $(E, +, \cdot)$.

Vector Spaces

Example

Let us consider the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (x+y, x-y)$$

and the set $U = \{(x, y) \in \mathbb{R}^2 \mid 2x - y = 0\}.$

It can be easily checked that $(U, +, \cdot)$ is a vector space. This set can be represented by means of the vector

$$U = \alpha (1, 2)$$

with $\alpha \in \mathbb{R}$.

Continued...

Note: Here we use the shorthand $\alpha \mathbf{v}$ for $\{\alpha \mathbf{v} : \alpha \in \mathbb{R}\}$.

Vector Spaces

Example

Let us now calculate f(U) by replacing (x, y) with $(\alpha, 2\alpha)$:

$$f(U) = (\alpha + 2\alpha, \alpha - 2\alpha) = (3\alpha, -\alpha) = \alpha(3, -1)$$

that is a line passing through the origin. Hence also

$$(f(U), +, \cdot)$$

is a vector space.

Summary and next lecture

Summary

- Mappings
- O Linear Mappings
- Linear Mappings and Vector Spaces

The next lecture

We will learn about Endomorphisms, Kernels and Rank-Nullity Theorem.