Primeiro Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

29 de julho de 2022

Sumário

Conclusão

1	Intr	rodução		
	1.1	A ponte de Wheatstone		
	1.2	Obten	do R_x	
2	Tar	efas		
	2.1 Aument a tensao d		nt a tensao da fonte ate a cor-	
		rente em A atingir 9mA		
	2.2	_		
		a ponte de Wheatstone		
	2.3	Com a ponte balanceada, aumente		
	a tensao da fonte			
	2.4		Verifique o funcionamento com um	
			or de $12k\Omega$	
	2.5	Medindo resistencia da lampada		
		2.5.1		
		2.5.2	Grafico	
		2.5.3		
	2.6 Comportamento do LDR		_	
		2.6.1		
			cada	
		2.6.2		
			cada	
		2.6.3		

1 Introdução

Neste relatório, vamos discutir a ponte de Wheatstone e um método experimental para obter uma resistência desconhecida a partir de um circuito ja conhecido

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/fisicaexperimental2

1.1 A ponte de Wheatstone

Esta tem como função principal determinar uma resistência desconhecida R_x a partir de três resistências e uma corrente previamente conhecidas, que vamos chamar aqui de A e R_1 , R_2 , e R_k .

1.2 Obtendo R_x

Para obter essa resistência desconhecida, o que faremos é inicialmente determinar a corrente A. E tentar modificar a resistencia R_k ate esta corrente A se aproximar de 0

A ideia central disto en que a corrente que esta saindo da fonte vai se dividir em C, e se $R_1 * R_x = R_k * R_2$ entao o sistema estara balanceado e a corrente A sera 0.

Ja que escolhemos o valor de R_1 , R_2 , e R_k , vamos poder determinar R_x como a seguinte equação:

$$R_1 * R_x = R_k * R_2$$

$$R_x = \frac{R_2 * R_k}{R_1} \tag{1}$$

Apesar de termos escolhido R_1 e R_2 iguais, nao simplifiquei a equacao para $R_x = R_k$. Porque perderia as incertezas de R_1 e R_2 .

2 Tarefas

2.1 Aument a tensao da fonte ate a corrente em A atingir 9mA

Fizemos isto com um R_k fixo em 0. E conseguimos uma tensao de $0.9V\pm0.1V$ nos terminais da fonte

2.2 Varie a resistencia R_k ate balancear a ponte de Wheatstone

Neste caso a resistencia R_x se iguala a resistencia R_k , obedecendo as devidas regras de derivação de erro a partir dos erros conhecidos conseguimos:

$$R_k = (5.6 \pm 0.1) * 10^3 \Omega \tag{2}$$

2.3 Com a ponte balanceada, aumente a tensao da fonte

Ela se manteve em zero.

O amperimetro vai estar medindo uma porcentagem de desbalanceamento na ponte.

Se a corrente que entra em C aumenta, e a ponte esta desbalanceada. A corrente passando pelo amperimetro tambem aumenta.

No nosso caso em particular, nao foi possivel detectar este aumento, porem se constinuassemos aumentando a tensao da fonte, eventualmente veriamos o residuo do desbalanceamento passando pelo amperimetro.

2.4 Verifique o funcionamento com um resistor de $12k\Omega$

Fizemos a verificação, e conseguimos igualar o R_k a $12k\Omega$ resultando em uma corrente minima passando por A.

Esta corrente minima estava na ordem de 10^-6A , ela existe por causa dos erros associados as medidas do circuito. Em um circuito ideal ela seria 0.

2.5 Medindo resistencia da lampada

2.5.1 Tabela de dados

Tensão (V)	Resistencia L (Ω)
2.00 ± 0.05	9 ± 1
4.00 ± 0.05	13 ± 1
6.00 ± 0.05	15 ± 1

2.5.2 Grafico

Gráfico de Resistência por Tensao Autor: Henrique Pedro da Silva

2.5.3 Interpretacao de resultados

O resultado eh coerente com o esperado. Que seria o caso da lampada ser um caso de comportamento nao Ohmico, e que sua resistencia sobe de acordo com a tensao aplicada.

2.6 Comportamento do LDR

Aplicamos uma tensao de $1.00V \pm 0.05$ no circuito, que resultou em uma corrente de $10.06mA \pm 0.1mA$ entrando no LDR antes do balanceamento.

2.6.1 Balanceamento com luz aplicada

Neste caso conseguimos uma resistencia de $1.7*10^3 \Omega \pm 10^2 \Omega$

2.6.2 Balanceamento sem luz aplicada

Neste caso conseguimos uma resistencia de $7*10^4\Omega\pm10^4\Omega$

2.6.3 Interpretacao de resultados

Podemos observar que a resistencia aumenta uma ordem de magnitude quando a luz eh removida.

Tambem foi observado que o sistema en extremamente sensivel a mudancas pequenas de luz. Uma "sombra" leve ja faz a resistencia variar significantemente.

3 Conclusão

Utilizando um circuito de *Wheatstone* posso medir pequenas alterações de *corrente* para descobrir uma resistência desconhecida com bastante precisão.

Esse sistema é bastante robusto para diferentes valores de tensões de fonte. E tambem é significantemente resistente a erros aleatórios de medição.