Example of RSA Algorithm

```
Encryption \rightarrow C = M<sup>e</sup> mod N
Decryption \rightarrow M = C<sup>d</sup> mod N
```

Given p=61, q=53, Message, M=123 and Public Key, e = 17

N=p*q =
$$61*53 = 3233$$

Totient $\Theta(p,q) = (p-1)(q-1)$
= $(61-1)(53-1)$
= 3120

The encryption \rightarrow C = $M^e \mod N$

C =
$$M^e \mod N = 123^{17} \mod N = 123^{17} \mod 3233$$

= 855 (from scientific calculator)

 $= M^e \mod N = 123^{17} \mod N = 123^{17} \mod 3233$

Simple hand written calculation;

$$17 = 1*2^{0} + 0*2^{1} + 0*2^{2} + 0*2^{3} + 1*2^{4} = 1 + 16$$

$$123^{1} = 123 \mod 3233 = 123$$

$$123^{2} = 123*123 \mod 3233 = 15129 \mod 3233 = 2197$$

$$123^{4} = 2197*2197 \mod 3233 = 4826809 \mod 3233 = 3173$$

$$123^{8} = 3173*3173 \mod 3233 = 10067929 \mod 3233 = 367$$

 $123^{16} = 367*367 \mod 3233 = 2136$

$$123^{17}$$
 = $(123^1 * 123^{16}) \mod 3233 = 123*2136 \mod 3233$
= $262728 \mod 3233$

= 855

Private Key d can be calculated from ed $\equiv 1 \pmod{\Theta(p,q)}$

Therefore, $17d \equiv 1 \pmod{3120}$, this can be wrote as

$$d \equiv 17^{-1} \pmod{3120}$$
, it is same as $17a + 3120b = 1$

If we can find a and b, we can find public key d. Then, the simplest way to find a and b is using the Extended Euclid Algorithm

$$17a + 3120b = 1$$

$$\Rightarrow$$
 3120 = 183(17) + 9
 \Rightarrow 9 = 3120 - 183(17) \Rightarrow (1)

also
$$9 = 1+8$$

 $1 = 9-8$

From (1) and (2)

Compare 17(-367) + 3120(2) = 1 with 17a + 3120b = 1Then,

$$a = -367$$
 and $b = 2$

Therefore,

d =
$$17^{-1} \mod 3120$$

= $-367 \mod 3120$
= $3120 - 367$
= 2753

So that, private key d = 2753.

The Decryption \rightarrow M = C^d mod N

Therefore
$$M = C^d \mod N$$

 $M = 855^{2753} \mod 3233$

Same way using the scientific calculator and get back the original message, M = 123

Or using simple hand written computation:

 $M = 855^{2753} \mod 3233$

$855^{2753} \mod 3233$

```
1*2^{0}+1*2^{7}+1*2^{8}+1*2^{10}+1*2^{12}=1+64+128+512+2048
2753
855^{1}
                   855 mod 3233
                                              855
855^{2}
                   855*855 \mod 3233 =
                                              731025 \mod 3233 =
                                                                        367
855^{4}
             =
                   367*367 \mod 3233 =
                                              134689 mod 3233 =
                                                                        2136
855^{8}
             =
                   2136*2136 mod 3233 =
                                              4562496 \mod 3233 =
                                                                        733
855^{16}
             =
                   733*733 \mod 3233 =
                                              537289 mod 3233 =
                                                                        611
855^{32}
             =
                   611*611 mod 3233
                                              = 1526
855^{64}
                   1526*1526 mod 3233
                                              = 916
855^{128}
             =
                   916*916 mod 3233
                                              = 1709
855^{256}
                   1709*1709 mod 3233
                                              = 1282
855^{512}
                   1282*1282 mod 3233
             =
                                              = 1160
855^{1024}
                   1160*1160 mod 3233
                                              = 672
855^{2048}
                   672*672 mod 3233
                                              = 2197
Therefore,
             = 855^{(1+64+128+512+2048)}
855^{2753}
             = 855*916*1709*1160*2197 mod 3233
855^{65}
             = 855*916 mod 3233
                                                     794
855^{640}
             = 1709*1160 mod 3233
                                              611
            = 855^{(65+640+2048)}
8552753
             = 796*611*2197 mod 3233
             = 123
```

M = 123 and get back the original messages.