1. Descrição do Problema

O cultivo pessoal de cannabis para uso medicinal exige controle preciso das condições ambientais para garantir a produção de plantas saudáveis e ricas em canabinoides terapêuticos (como CBD e THC). No entanto, cultivadores caseiros enfrentam desafios como:

- Falta de monitoramento preciso: Termômetros e higrômetros analógicos não fornecem dados confiáveis ou registros históricos.
- Variações climáticas não detectadas: Mudanças bruscas de temperatura, umidade ou CO₂ podem:
 - o Reduzir a eficácia medicinal da planta.
 - o Aumentar o risco de mofo, pragas e estresse vegetal.
- Dificuldade em otimizar recursos: Sem dados, é difícil ajustar irrigação, ventilação ou iluminação de forma eficiente.
- ➤ Falta de precisão − Termômetros/higrômetros analógicos não dão dados confiáveis.
- X Perda de plantas Variações não detectadas de temperatura e umidade causam mofo ou estresse.
- X Dificuldade em otimizar Sem dados, fica difícil ajustar luz, água e ventilação.

2. Solução

Um sistema embarcado de baixo custo, desenvolvido com a BitDogLab (Raspberry Pi Pico), que monitora em tempo real:

- ▼ Temperatura e umidade (BME280).
- Luminosidade (BH1750).
- ☑ Display local (OLED) para ver dados em tempo real.
- ✓ Alertas locais (buzzer/OLED) quando as condições saem do ideal.

3. Requisitos Técnicos

Categoria	Especificação			
Microcontrolador	BitDogLab			
Sensores	- BME280 (temperatura, umidade e pressão).			
	- BH1750 (luminosidade em lux).			
	- MH-Z19 (CO ₂ – opcional).			
Comunicação	- Sem nuvem (apenas display local).			
	- Opcional: Wi-Fi (ESP-01) para alertas no celular.			
Display	OLED SSD1306 (128x64) para leitura local dos dados.			
Alimentação	Bateria LiPo 3.7V (1000–2000mAh) ou USB 5V.			
Robustez	- À prova de umidade (caixa plástica ou impressão 3D).			
	- Faixa de operação: 0°C a 50°C.			

4. Lista de Componentes

Componente	Modelo	Função
Controlador	Raspberry Pi Pico (BitDogLab)	Processamento e lógica de controle.
Sensor Temperatura/Umidade	BME280 (I ² C)	Mede temperatura, umidade e pressão.
Sensor de Luz	BH1750 (I ² C)	Mede intensidade Iuminosa (PAR).
Display Local	OLED SSD1306 (128x64)	Mostra dados em tempo real.
Bateria	LiPo 3.7V 1000mAh	Alimentação portátil.
Protoboard/Cabo	Jumpers e protoboard	Conexões entre componentes.
Caixa de Proteção	Plástico/3D	Proteção contra umidade e poeira.