

Day 95 深度學習應用卷積神約

卷積神經網路-卷積(Convolution)層與參數調整

陳宇春

知識地圖卷積網路套件練習

池化(Pooling)層與參數調整

深度神經網路 Supervised LearningDeep Neural Network (DNN)

簡介 Introduction

套件介紹 Tools: Keras

組成概念 Concept

訓練技巧 Training Skill

應用案例 Application

卷積神經網路 Convolutional Neural Network (CNN)

簡介 introduction

套件練習 Practice with Keras

訓練技巧 Training Skill

電腦視覺 Computer Vision

卷積類神經網路套件練習 Practice CNN with Keras

建立 CNN 模型

Keras 中的 CNN Layers

使用 CNN 完成 CIFAR-10 預測

本日知識點目標

- 了解 CNN Flow
- 池化層超參數的調適

池化層(Pooling Layer) 如何調用

- 以 Keras 為例
- keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)
 - pool_size:整數,沿(垂直,水平)方向縮小比例的因數。
 - · (2,2)會把輸入張量的兩個維度都縮小一半。
 - strides:整數,2個整數表示的元組,或者是"None"。表示步長值。
 - · 如果是 None,那麼默認值是 pool_size。
 - padding: "valid"或者"same"(區分大小寫)。
 - data_format: channels_last(默認)或 channels_first 之一。表示輸入各維度的順序
 - · channels_last 代表尺寸是(batch, height, width, channels)的輸入張量。
 - · channels_first 代表尺寸是(batch, channels, height, width)的輸入張量。

池化層(Pooling Layer) 超參數

- 前端輸入feature map 維度:W1×H1×D1
- 有兩個hyperparameters:
 - · Pooling filter 的維度- F,
 - · 移動的步數 S,
- 所以預計生成的輸出是 W2×H2×D2:
 - · W2=(W1-F)/S+1W2=(W1-F)/S+1
 - \cdot H2=(H1-F)/S+1H2=(H1-F)/S+1
 - · D2=D1

圖片來源:cnblogs

池化層(Pooling Layer)常用的類型

- Pooling Layer 常用的類型:
- Max pooling (最大池化)
- Average pooling (平均池化)

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

建立CNN Model by Keras (I)

建立CNN Model by Keras (II)

重要知識點複習:卷積Convolution 跟 池化Pooling

卷積神經網路(CNN)特性

- 適合用在影像上
 - · 因為 fully-connected networking (全連接層) 如果用在影像辨識上,會導致參數過多(因為像素很多),導致 over-fitting(過度擬合)
 - · CNN 針對影像辨識的特性,特別設計過,來減少參數
 - · Convolution(卷積): 學出 filter 比對原始圖片,產生出 feature map (特徵圖,也當成image)
 - · Max Pooling (最大池化):將 feature map 縮小
 - · Flatten (平坦層):將每個像素的 channels (有多少個filters) 展開成 fully connected feedforward network (全連接的前行網路)
- AlphaGo 也用了 CNN,但是沒有用 Max Pooling (所以不同問題需要不同 model)

Pooling Layer (池化層) 適用的場景

- 特徵提取的誤差主要來自兩個方面:
 - (1) 鄰域大小受限造成的估計值方差增大;
 - (2) 卷積層超參數與內核造成估計均值的偏移。
- 一般來說,
 - · average-pooling 能減小第一種誤差,更多的保留圖像的背景信息
 - · max-pooling 能減小第二種誤差,更多的保留紋理信息

請跳出PDF至官網Sample Code&作業 開始解題

