TEST REPORT

Reference No. : WTS15S0832859E

FCC ID...... : 2ADLSWLSP-PI1101

Manufacturer : Nanjing IOT Sensor Technology Co., Ltd

Nanjing, China

Product Name : Smart PIR Motion Detector

Brand : Wulian

Standards...... FCC CFR47 Part 15 C Section 15.247:2014

Date of Receipt sample..... : Aug. 28, 2015

Date of Issue Sep. 09, 2015

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Zero Zhou / Test Engineer

Reference No.: WTS15S0832859E Page 2 of 33

2 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Emissions	15.207(a)	N/A
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

	COV	/ED DAGE	Page
1		/ER PAGE	
2		NTENTS	
4		VERAL INFORMATION	
•	4.1	GENERAL DESCRIPTION OF E.U.T.	
	4.1	DETAILS OF E.U.T.	
	4.3	CHANNEL LIST	4
	4.4	TEST MODE	
	4.5	TEST FACILITY	
5	EQU	JIPMENT USED DURING TEST	
	5.1	EQUIPMENTS LIST	
	5.2 5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST EQUIPMENT CALIBRATION	
6	RAD	DIATED EMISSIONS	8
	6.1	EUT OPERATION	8
	6.2	TEST SETUP	9
	6.3	SPECTRUM ANALYZER SETUP	
	6.4 6.5	TEST PROCEDURE	
	6.6	SUMMARY OF TEST RESULTS	
7	BAN	ND EDGE MEASUREMENT	
	7.1	TEST PRODUCE	15
	7.2	TEST RESULT	
8	6 DE	B BANDWIDTH MEASUREMENT	17
	8.1	Test Procedure:	17
	8.2	TEST RESULT:	17
9	MAX	XIMUM PEAK OUTPUT POWER	19
	9.1	TEST PROCEDURE:	
	9.2	TEST RESULT:	
10	POV	NER SPECTRAL DENSITY	21
	10.1		
	10.2		
11		TENNA REQUIREMENT	
12		EXPOSURE	
13	PHC	DTOGRAPHS – MODEL WL-ZSPWBPW-PI11-01 TEST SETUP	
	13.1		
14	PHC	DTOGRAPHS - CONSTRUCTIONAL DETAILS	
	14.1		
	14.2	MODEL WL-ZSPWBPW-PI11-01 - INTERNAL PHOTOS	31

Reference No.: WTS15S0832859E Page 4 of 33

4 General Information

4.1 General Description of E.U.T.

Product Name: Smart PIR Motion Detector

Model No.: WL-ZSPWBPW-PI11-01, WL-ZSPWBPW-PI11-xx (xx denotes 95~99)

Model Difference: These models are identical in interior structure, electrical circuits and

components, and just product appearance design and models are

different for the marketing requirement.

Operation Frequency: 2405MHz ~ 2480MHz

The Lowest Oscillator: 32.768KHz

Antenna Gain: 1.0 dBi

Type of modulation: 0-QPSK

Remark: The model WL-ZSPWBPW-PI11-01 is the tested sample.

4.2 Details of E.U.T.

Technical Data: DC 3V powered by CR2 Lithium Battery

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2405	2	2410	3	2415	4	2420
5	2425	6	2430	7	2435	8	2440
9	2445	10	2450	11	2455	12	2460
13	2465	14	2470	15	2475	16	2480

Reference No.: WTS15S0832859E Page 5 of 33

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	802.15.4 ZigBee/SmartRoom	250Kbps	1/8/16	TX
Power Spectral Density	802.15.4 ZigBee/SmartRoom	250Kbps	1/8/16	TX
Band Edge	802.15.4 ZigBee/SmartRoom	250Kbps	1/8/16	TX
Bandwidth	802.15.4 ZigBee/SmartRoom	250Kbps	1/8/16	TX
Transmitter Spurious Emissions	802.15.4 ZigBee/SmartRoom	250Kbps	1/8/16	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1,July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#— Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

3m Sei	mi-anechoic Chamber		sions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2014	Sep.14,2015	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.18,2015	Apr.17,2016	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2014	Sep.14,2015	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.18,2015	Apr.17,2016	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.18,2015	Apr.17,2016	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.16,2015	Mar.15,2016	
8	Coavial Cable						
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Sep.15,2014	Sep.14,2015	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2014	Sep.14,2015	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2014	Sep.14,2015	
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2014	Sep.14,2015	
RF Co	nducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2014	Sep.14,2015	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2014	Sep.14,2015	

Reference No.: WTS15S0832859E Page 7 of 33

5.2 Description of Support Units

Equipment	Manufacturer	Model No.
Wireless Gateway	Wulian	WL-ZGWMDPB-G110-01
Mobile phone	ZTE	NX507J
Computer	Lenovo	T4900V

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
De liste d'Occasione Facilità de de d	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS15S0832859E Page 8 of 33

6 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2009

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIIIL.						
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

6.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

PC Spectrum

AMP Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

6.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH:	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS15S0832859E Page 11 of 33

6.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission

level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the

maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna

both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the

table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting

the eut in X axis, so the worst data were shown as follow.

8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and

subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit

for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

6.6 Summary of Test Results

Test Frequency: 32.768kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC Part	15.247
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			O-QI	PSK Low	Channe	el			
223.51	41.25	QP	68	1.0	Н	-11.62	29.63	46.00	-16.37
223.51	36.29	QP	55	1.9	V	-11.62	24.67	46.00	-21.33
4810.00	50.51	PK	102	1.7	V	-1.06	49.45	74.00	-24.55
4810.00	46.37	Ave	102	1.7	V	-1.06	45.31	54.00	-8.69
7215.00	41.12	PK	236	1.7	Н	1.33	42.45	74.00	-31.55
7215.00	41.96	Ave	236	1.7	Н	1.33	43.29	54.00	-10.71
2322.41	46.51	PK	25	1.2	V	-13.19	33.32	74.00	-40.68
2322.41	38.97	Ave	25	1.2	V	-13.19	25.78	54.00	-28.22
2380.89	43.00	PK	357	1.5	Н	-13.14	29.86	74.00	-44.14
2380.89	36.24	Ave	357	1.5	Н	-13.14	23.10	54.00	-30.90
2485.09	43.79	PK	58	1.9	V	-13.08	30.71	74.00	-43.29
2485.09	36.57	Ave	58	1.9	V	-13.08	23.49	54.00	-30.51

I									
_	Receiver	Turn	RX Antenna		Corrected		FCC Part 15.247		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			O-QP	SK Middl	e Chani	nel			
223.51	41.23	QP	232	1.2	Н	-11.62	29.61	46.00	-16.39
223.51	37.57	QP	198	1.2	V	-11.62	25.95	46.00	-20.05
4880.00	49.83	PK	154	1.2	V	-0.62	49.21	74.00	-24.79
4880.00	46.15	Ave	154	1.2	V	-0.62	45.53	54.00	-8.47
7320.00	40.83	PK	34	1.2	Н	2.21	43.04	74.00	-30.96
7320.00	42.71	Ave	34	1.2	Н	2.21	44.92	54.00	-9.08
2331.92	45.85	PK	26	1.7	V	-13.19	32.66	74.00	-41.34
2331.92	38.53	Ave	26	1.7	V	-13.19	25.34	54.00	-28.66
2379.45	42.48	PK	117	2.0	Н	-13.14	29.34	74.00	-44.66
2379.45	36.36	Ave	117	2.0	Н	-13.14	23.22	54.00	-30.78
2486.96	42.16	PK	324	1.2	V	-13.08	29.08	74.00	-44.92
2486.96	36.26	Ave	324	1.2	V	-13.08	23.18	54.00	-30.82

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC Part	15.247
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			O-QF	PSK High	Chann	el			
223.51	39.79	QP	314	1.5	Н	-11.62	28.17	46.00	-17.83
223.51	38.51	QP	215	1.6	V	-11.62	26.89	46.00	-19.11
4960.00	50.18	PK	89	1.2	V	-0.24	49.94	74.00	-24.06
4960.00	47.65	Ave	89	1.2	V	-0.24	47.41	54.00	-6.59
7440.00	41.67	PK	125	1.4	Н	2.84	44.51	74.00	-29.49
7440.00	42.47	Ave	125	1.4	Н	2.84	45.31	54.00	-8.69
2326.03	45.27	PK	70	1.4	V	-13.19	32.08	74.00	-41.92
2326.03	39.31	Ave	70	1.4	V	-13.19	26.12	54.00	-27.88
2385.99	44.15	PK	297	1.3	Н	-13.14	31.01	74.00	-42.99
2385.99	38.40	Ave	297	1.3	Н	-13.14	25.26	54.00	-28.74
2498.55	44.63	PK	261	1.3	V	-13.08	31.55	74.00	-42.45
2498.55	38.08	Ave	261	1.3	V	-13.08	25.00	54.00	-29.00

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

7 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03 June 9, 2015

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

7.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

7.2 Test Result

Test result plots shown as follows:

Reference No.: WTS15S0832859E Page 17 of 33

8 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03 June 9, 2015

8.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

8.2 Test Result:

Operation mode	Bandwidth (MHz)		
O-QPSK	Low Channel	Middle Channel	High Channel
	1.629	1.629	1.629

Test result plot as follows:

9 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03 June 9, 2015

9.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r03 06/09/2015

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =10 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

9.2 Test Result:

Test mode : O-QPSK				
Maximum Peak Output Power (dBm)				
2405MHz	2440MHz	2480MHz		
3.38	3.31	3.26		
Limit: 1W/30dBm				

10 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03 June 9, 2015

10.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r03 06/09/2015 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

10.2 Test Result:

Test mode : O-QPSK				
Power Spectral (dBm per 3kHz)				
Low Channel	Middle Channel	High Channel		
-13.00	-12.51	-12.72		
Limit: 8dBm per 3kHz				

11 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB Printed Antenna fulfill the requirement of this section.

Reference No.: WTS15S0832859E Page 24 of 33

12 RF Exposure

Remark: refer to RF Exposure test report: WTS15S0832895E.

13 Photographs – Model WL-ZSPWBPW-PI11-01 Test Setup

13.1 Radiated Emission

14 Photographs - Constructional Details

14.1 Model WL-ZSPWBPW-PI11-01 - External Photos

Reference No.: WTS15S0832859E Page 28 of 33

Reference No.: WTS15S0832859E Page 29 of 33

Reference No.: WTS15S0832859E Page 30 of 33

14.2 Model WL-ZSPWBPW-PI11-01 – Internal Photos

Reference No.: WTS15S0832859E Page 32 of 33

Reference No.: WTS15S0832859E Page 33 of 33

=====End of Report=====