

Datenbankanonymisierung auf Basis von k-means-Algorithmen

Finn Stoldt

19.12.2019

IM FOCUS DAS LEBEN

NETFLIX

Netflix Prize dataset

- 2006 veröffentlicht
- pseudonymisierte Filmbewertungen (mit Datum)
- von 500.000 Abonnenten
- Re-Identifizierung über öffentliche IMDb möglich

- Pseudonymisierung garantiert keine Anonymität.
- Daten müssen anonymisiert werden.
- Orientieren uns an Datenschutzmodell k-Anonymität.
- Kann durch Mikroaggregation erreicht werden.

Grundlagen

Daten

Datenbank $\mathcal{X} \in \mathbb{R}^{n imes m}$ mit n Elementen mit m reellwertigen Quasi-Identifikatoren

i-tes Element repräsentiert durch Vektor $\mathbf{x}_i = (x_1, ..., x_m)$

Abstand zwischen $\mathbf{x},\mathbf{x}'\in\mathcal{X}$

$$d(\mathbf{x}, \mathbf{x}') := \sum_{i=1}^{m} (x_i - x_i')^2$$

Abstand zwischen $\mathcal{X}, \mathcal{X}' \in \mathbb{R}^{n \times m}$

$$sse(\mathcal{X}, \mathcal{X}') := \sum_{i=1}^{n} d(\mathbf{x}, \mathbf{x}')$$

Schwerpunkt von $\mathcal{X} \in \mathbb{R}^{n \times m}$

$$c(\mathcal{X}) := rac{1}{|\mathcal{X}|} \sum_{old x \in \mathcal{X}} old x$$

Abstand zwischen allen $\mathbf{x} \in \mathcal{X}$ und $c(\mathcal{X})$

$$\operatorname{sse}(\mathcal{X}) := \sum_{\mathbf{x} \in \mathcal{X}} \operatorname{d}(\mathbf{x}, \operatorname{c}(\mathcal{X}))$$

Anonymisierung

 $\mathcal X$ ist k-anonym, wenn jeder Vektor $\mathbf x \in \mathcal X$ mindestens k mal in $\mathcal X$ vorkommt.

Ein Anonymisierungsalgorithmus μ ist eine Abbildung $\mu: \mathbb{R}^{n \times m} o \mathbb{R}^{n \times m}$,

$$\mu:\mathcal{X}:=\mathbf{x}_1,...,\mathbf{x}_n\mapsto\hat{\mathcal{X}}:=\hat{\mathbf{x}}_1,...,\hat{\mathbf{x}}_n$$

Anonymisierung von \mathcal{X} durch Mikroaggregation:

- 1. k-Clustering C von X erzeugen.
- 2. Für alle $C \in \mathcal{C}$: Ersetze alle $\mathbf{x} \in C \subset \mathcal{X}$ durch c(C)

Anonymisierung

Anonymisierungsverzerrung bei Anonymisierung von ${\mathcal X}$ durch μ

$$\mathrm{D}_{\mu}(\mathcal{X}) := \mathrm{sse}(\mathcal{X}, \mu(\mathcal{X})) = \mathrm{sse}(\mathcal{X}, \hat{\mathcal{X}})$$

Diversität von ${\mathcal X}$

$$\Delta(\mathcal{X}) := sse(\mathcal{X})$$

Informations verlust bei Anonymisierung von ${\mathcal X}$ durch μ

$$L_{\mu}(\mathcal{X}) := \frac{D_{\mu}(\mathcal{X})}{\Delta(\mathcal{X})}$$

k-means

Algorithmus *x*-means

Eingabe: Datenbank \mathcal{X} , Clusteranzahl \varkappa **Ausgabe:** Partition $\mathcal{C} = \mathcal{C}_1, ..., \mathcal{C}_\varkappa$ von \mathcal{X}

- 1. Wähle arkappa beliebige Elemente aus $\mathcal X$ als Mittelpunkte $\mathsf M=\mathbf m_1,...,\mathbf m_{arkappa}$.
- 2. Ordne jedem Punkt $\mathbf{x} \in \mathcal{X}$ ein Cluster C_i mit $i \in \{1, ..., \varkappa\}$ zu, für das $d(\mathbf{x}, \mathbf{m}_i)$ minimal ist.
- 3. Aktualisiere \mathbf{m}_i für alle $i \in \{1, ..., \varkappa\}$, sodass \mathbf{m}_i der Gruppenschwerpunkt aller Punkte in C_i ist: $\mathbf{m}_i = c(C_i)$.
- 4. Wiederhole Schritt 2 und 3 solange, bis sich $\mathcal C$ nicht mehr verändert.

kAnonyMeans

Algorithmus kAnonyMeans

Eingabe: Datenbank $\mathcal X$, Anonymitätsparameter k, Initiale Clusteranzahl \varkappa **Ausgabe:** k-anonyme Datenbank $\hat{\mathcal X}$

- 1. Partitioniere die gegebene Datenbank ${\mathcal X}$ mittels ${m \varkappa}$ -means in ${m \varkappa}$ Cluster.
- Verschmelze durch Merge jedes Cluster mit weniger als k Elementen mit anderen Clustern.
- 3. Teile mittels Split jedes Cluster mit 2k oder mehr Elementen in kleinere auf.

Merge

Verschiedene Reihenfolgen durch unterschiedlichen Aufbau von Merge:

- mit innerer Schleife
- mit äußerer Schleife
- ohne weitere Schleife

Verschiedene Eignungsmaße für Verschmelzungskandidaten:

- Mittelpunktabstand
- sse-Zuwachs

Split

k-Clusterings müssen erzeugt werden \Rightarrow MDAV $^+$

Verwenden MDAV⁺ da

- geringe Clustervarianzen
- wenige Elemente

MergeAndSplit während k-means

Abbildung: Beispiel-Situation für k=3 in der es sinnvoll ist, nach MergeAndSplit wieder \varkappa -means auszuführen. Die Elemente des Datensatzes sind durch Kreise und die Clustermittelpunkte durch Kreuze dargestellt.

MergeAndSplit während k-means

Abbildung: Dargestellt ist ein Beispiel einer Livelock-Situation verursacht durch Ausführung von MergeAndSplit während \varkappa -means für k=3. Die Elemente des Datensatzes sind durch Kreise und die Clustermittelpunkte durch Kreuze dargestellt.

Ausführung

Algorithmus kAnonyMeans

Eingabe: Datenbank $\mathcal X$, Anonymitätsparameter k, Initiale Clusteranzahl \varkappa **Ausgabe:** k-anonyme Datenbank $\hat{\mathcal X}$

- 1. Partitioniere die gegebene Datenbank ${\mathcal X}$ mittels ${\it \varkappa}$ -means in ${\it \varkappa}$ Cluster.
- 2. Verschmelze durch Merge jedes Cluster mit weniger als *k* Elementen mit anderen Clustern.
- 3. Teile mittels Split jedes Cluster mit 2k oder mehr Elementen in kleinere auf.

Ausführung

Abbildung: Histogramm der in 1.000 Durchläufen entstandenen Informationsverluste (in Prozent) bei Anonymisierung des Benchmarkdatensatzes CENSUS durch kAnonyMeans mit Standardkonfiguration und k=3.

kAnonyMeans*

Idee

- Zufallsfaktor: inititiale Mittelpunkte
- "Je besser die Mittelpunkte, desto niedriger der Informationsverlust"
- Mittelpunkte evolutionär entwickeln

Abbildung: Schematische Darstellung des Zyklus bei evolutionären Algorithmen.

Finn Stoldt 19.12.2019 17/24 IM FOCUS DAS LEBEN

Ausführung

Algorithmus kAnonyMeans*

Eingabe: Datenbank \mathcal{X} , Populationsgröße p, Überlebende s, Mutationen m_c , Mutationsstärke m_s

Ausgabe: Anonymisierte Datenbank $\hat{\mathcal{X}}$

Erzeuge Startpopulation $\mathcal{M} = M_1, ..., M_p$ mit $M \subseteq \mathcal{X}$ nach Forgy-oder \varkappa -means++-Methode;

 $\text{Berechne}\, L_{k\texttt{AnonyMeans}_{\mathsf{M}}}(\mathcal{X})\, \text{für alle}\, \mathsf{M} \in \mathcal{M};$

Solange ¬ Abbruchbedingung

Sortiere \mathcal{M} aufsteigend nach $L_{kAnonyMeans_M}(\mathcal{X})$ mit $M \in \mathcal{M}$;

Entferne alle Individuen M_{s+1} bis M_p , sodass die s besten Individuen überleben;

Erzeuge aus den überlebenden Individuen (Eltern) p-s neue Individuen (Kinder) und füge diese an \mathcal{M} an;

Tausche von m_c Kindern jeweils m_s zufällige Mittelpunkte durch zufällige Elemente aus \mathcal{X} aus;

Berechne $L_{kAnonyMeans_M}(\mathcal{X})$ für alle Kinder $M \in \{M_{s+1}, ..., M_p\} \in \mathcal{M}$;

Sortiere \mathcal{M} aufsteigend nach $L_{kAnonyMeans_M}(\mathcal{X})$ mit $M \in \mathcal{M}$;

Berechne kAnonyMeans $_{M_1}(\mathcal{X})$;

Ergebnisse

Verwendete Datensätze

- Etablierte Benchmark-Datensätze
 - CENSUS
 - EIA
 - TARRAGONA
- Synthetisch generierte Datensätze
 - SimU
 - SimC
- Sonstige Datensätze
 - Cloud1
 - Cloud2

Ergebnisse

Abbildung: Informationsverluste (in Prozent) bei Anonymisierung des EIA Datensatzes durch verschiedene Algorithmen für verschiedene k.

Ergebnisse

Abbildung: Informationsverluste (in Prozent) bei Anonymisierung des SimC Datensatzes durch verschiedene Algorithmen für verschiedene k.

Zusammenfassung und Ausblick

Zusammenfassung

- kAnonyMeans* im Schnitt 17,4% besser als MDAV $^+$
- kAnonyMeans* im Schnitt 11,6% besser als MDAV*
- kAnonyMeans* im Schnitt 3% besser als kAnonyMeans
- Stark auf geclusterten Daten
- Je größer k, desto stärker kAnonyMeans

Ausblick - kAnonyMeans

- Zufallsabhängikeiten minimieren
- optimale Paramterbelegung finden
- bessere Rekombinations- / Mutationsstrategien

Ausblick - Mikroaggregation

- Optimaler Algorithmus
- lacksquare besserer Approximationsalgorithmus als $\mathcal{O}(\mathit{k}^3)$
- Linearzeitalgorithmus
- Mikroaggregation durch evolutionäre Strategie

Danke für Ihre Aufmerksamkeit!

MDAV

Algorithmus MDAV+

Eingabe: Datenbank \mathcal{X} , Anonymitätsparameter k**Ausgabe:** k-anonyme Datenbank $\hat{\mathcal{X}}$

- 1. Berechne den Schwerpunkt $c(\mathcal{X})$ der Eingabedatenmenge \mathcal{X} .
- 2. Wähle jenen noch nicht zugewiesenen Eintrag $\mathbf{x} \in \mathcal{X}$, der am weitesten von $c(\mathcal{X})$ entfernt ist.
- 3. Bilde eine Gruppe um \mathbf{x} bestehend aus \mathbf{x} und seinen k-1 nächsten nicht zugewiesenen Nachbarn (diese Elemente sind nun zugewiesen).
- 4. Wenn mindestens *k* nicht zugewiesene Einträge übrig sind, gehe zurück zu Schritt 2, andernfalls weise alle noch nicht zugewiesenen Elemente der zu ihnen nächsten Gruppe zu.

k-means

Auswahl der initialen Mittelpunkte

- Forgy
- x-means++

Laufzeit und Informationsverlust bei kAnonyMeans

Abbildung: Minimaler (grüne Linie) und maximaler (rote Linie) Informationsverlust (in Prozent) bei fünfzigmal durchgeführter Anonymisierung des CENSUS-Datensatzes mittels kAnonyMeans für k=3 bei verschiedener Anzahl an Durchläufen. Die gepunktete Linie gibt zum Vergleich den Informationsverlust bei Verwendung von MDAV* an, die gestrichelte Linie den von MDAV+.

Laufzeit und Informationsverlust bei kAnonyMeans*

Abbildung: Minimaler (grüne Linie) und maximaler (rote Linie) Informationsverlust (in Prozent) bei fünfzigmal durchgeführter Anonymisierung des CENSUS-Datensatzes mittels $kAnonyMeans^*$ für k=3 bei verschiedener Anzahl an Durchläufen. Die gepunktete Linie gibt zum Vergleich den Informationsverlust bei Verwendung von $MDAV^*$ an, die gestrichelte Linie den von $MDAV^+$.

References I