Interview Skills Graph Algorithms

Richard Morrill

Fordham University CS Society

Wednesday, January 9th 2019

What is a Graph?

What is a Graph?

Figure 1: Not This Kind of Graph!

What is a Graph?

Figure 1: Not This Kind of Graph!

Figure 2: This Kind of Graph!

- Set of Nodes S
- Set of Edges $E \subset S^{2*}$

^{*}This just means every possible ordered pair of nodes.

- Set of Nodes S
- Set of Edges $E \subset S^{2*}$
- Can represent a wide variety of real-world problems (such as?)

^{*}This just means every possible ordered pair of nodes.

- Set of Nodes S
- Set of Edges $E \subset S^{2*}$
- Can represent a wide variety of real-world problems (such as?)
 - Islands & Bridges
 - Network Connections[†]
 - Intersections and Streets

^{*}This just means every possible ordered pair of nodes.

[†]You'll see this come up when you take a networking class.

- Set of Nodes S
- Set of Edges $E \subset S^{2*}$
- Can represent a wide variety of real-world problems (such as?)
 - Islands & Bridges
 - Network Connections[†]
 - Intersections and Streets
- Position of nodes is for communication only
- Edges may have a "weight" assigned to them, which may represent distance in some cases

^{*}This just means every possible ordered pair of nodes.

[†]You'll see this come up when you take a networking class.

Adjacency Matrix

Very useful for mathematical proofs

Figure 3: Visual Representation of a Graph

$$egin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Figure 4: The Same Graph as 3, in an Adjacency Matrix

Adjacency Matrix

Very useful for mathematical proofs

Figure 3: Visual Representation of a Graph

Memory usage causes issues when used in programs.

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Figure 4: The Same Graph as 3, in an Adjacency Matrix

• A graph is an abstract data type (ADT)

- A graph is an abstract data type (ADT)
 - The operations you can perform on a graph are consistently defined.
 - The actual way data is stored may vary from implementation to implementation.

- A graph is an abstract data type (ADT)
 - The operations you can perform on a graph are consistently defined.
 - The actual way data is stored may vary from implementation to implementation.
- For higher level problems, you might use a graph library that provides a consistent interface to access and manipulate graphs.
- For now, though, it's important to show you know how to actually work with low-level implementations.

- A graph is an abstract data type (ADT)
 - The operations you can perform on a graph are consistently defined.
 - The actual way data is stored may vary from implementation to implementation.
- For higher level problems, you might use a graph library that provides a consistent interface to access and manipulate graphs.
- For now, though, it's important to show you know how to actually work with low-level implementations.
- Graphs are most often represented as:
 - Node Lists
 - Edge Lists

Node List

Edge List


```
vector < vector < int>> graph = {
       {0, 0},
       {0, 4},
      {1, 2},
     {1, 3},
     {1, 0},
       {2, 0},
       {2, 4},
       {3, 3},
      {3, 1},
      {3, 4},
      {4, 3}
13 };
```

Graph Operations

- Part of the graph ADT
- Theoretical functions you can perform on nodes

Graph Operations

- Part of the graph ADT
- Theoretical functions you can perform on nodes
- View Operations
 - adjacent(x,y): bool
 - neighbors(x): list of edges
 - get_vertex_value(x): value type
 - get_edge_value(...): value type[‡]

[‡]Argument is either edge key or the two vertices it connects, depending on representation.

Graph Operations

- Part of the graph ADT
- Theoretical functions you can perform on nodes
- View Operations
 - adjacent(x,y): bool
 - neighbors(x): list of edges
 - get_vertex_value(x): value type
 - get_edge_value(...): value type[‡]
- Modify Operations[§]
 - set_vertex_value(x, v): void
 - set_edge_value(..., v): void
 - add / remove edges / vertices

[‡]Argument is either edge key or the two vertices it connects, depending on representation.

[§]We won't be modifying already constructed graphs in this workshop.

- This is information you might be given as part of an interview prompt.
- If you misinterpret it, you're basically guaranteed to fail.

- This is information you might be given as part of an interview prompt.
- If you misinterpret it, you're basically guaranteed to fail.
- Cyclic / Acyclic
 - It it possible to end up back where you started without re-using edges?
 - Most of the time problems that involve acyclic graphs are phrased as tree problems, so if you aren't told otherwise, assume you have to deal with cycles in your code.

- This is information you might be given as part of an interview prompt.
- If you misinterpret it, you're basically guaranteed to fail.
- Cyclic / Acyclic
 - It it possible to end up back where you started without re-using edges?
 - Most of the time problems that involve acyclic graphs are phrased as tree problems, so if you aren't told otherwise, assume you have to deal with cycles in your code.
- Directed / Undirected
 - Are the edges directional?
 - All the graphs I showed thus far were directed, but by removing information you
 could easily make them undirected.

- This is information you might be given as part of an interview prompt.
- If you misinterpret it, you're basically guaranteed to fail.
- Cyclic / Acyclic
 - It it possible to end up back where you started without re-using edges?
 - Most of the time problems that involve acyclic graphs are phrased as tree problems, so if you aren't told otherwise, assume you have to deal with cycles in your code.
- Directed / Undirected
 - Are the edges directional?
 - All the graphs I showed thus far were directed, but by removing information you
 could easily make them undirected.
- Values on Edges / Nodes
 - Sometimes all that really matters is the connections, sometimes you have values attached.
 - For e.g. calculating the travel time between two cities on a graph representing a map.
 - Representation in code will get more complex, but luckily you'll usually be given starter code.

Most Basic Graph Algorithm: Depth First Search

- Simple and straightforward (although not efficient) way to identify any path between two nodes.
- Path is not guaranteed to be optimal by any metric.

Problem 1: Flower Garden

You have N gardens, labeled 1 to N - 1. In each garden, you want to plant one of 4 types of flowers (labeled 0 to 3). You are supplied with an array paths such that paths[i] = [x,y] means that there is a bidirectional path between nodes x and y. You may assume that no garden has more than 3 paths connecting to it.

Your task is to determine which type of flower to plant in each garden, such that no two connected gardens have the same flower. Your code should return an array of size N, where each element represents the flower planted in each garden.

Solution 1 (Inneficient but Easy to Understand)

```
vector < int > garden No Adj (int N, vector < vector < int >>& paths) {
    vector < int > result(N, -1);
    for (int i = 1; i \le N; ++i) {
        int color = 1:
        for (; color <= 4; ++color) {</pre>
             bool conflict = false:
            for (auto& edge : paths) {
                 if (edge[0] == i) {
                     if (result[edge[1] - 1] == color) {
                          conflict = true;
                    (edge[1] == i) {
                     if (result [edge [0] - 1] == color) {
                          conflict = true:
                (!conflict) {
        result[i - 1] = color:
    return result:
```


Problem 2: Bipartite

Given an undirected graph, determine whether it is bipartite. A bipartite graph is simply one that can be split into two sets of nodes such that no nodes in the same set are connected to each other.

In more graphical terms, this means you can draw a line that crosses every edge.

Your function should take input as a list of nodes and return a boolean. ¶

[¶]bool is_bipartite(const vector<vector<int>>& graph)

Solution Problem 2

There about a million ways you could code this, so I'll just show the theory behind the solution.

You create a list that stores the "color" of each node: red, black, or uncolored.