Dominando el Entrenamiento de Modelos de Machine Learning

Una guía completa para construir Modelos Supervisados

Edgar Rios Linares

Ruta

Camino al Dominio del Aprendizaje Supervisado

Definición

Le "enseñamos" a una máquina a partir de datos etiquetados para que aprenda a predecir resultados en el futuro.

Definición

El aprendizaje supervisado es una técnica en la que un modelo es entrenado con un conjunto de datos etiquetados.

Cada ejemplo de entrenamiento está acompañado de una salida deseada.

El objetivo es que el modelo aprenda a mapear entradas(features) a salidas correctas(labels).

Componentes

Conjunto de datos etiquetados

Características (features)

Etiquetas (labels)

Función objetivo

Componentes

Conjunto de datos etiquetados: Datos de entrada con sus respectivas salidas esperadas.

Características (features): Atributos relevantes que se utilizarán para hacer predicciones (pixeles de una imagen)

Etiquetas (labels): Valores objetivo que el modelo debe aprender a predecir (perro o gato)

Función Objetivo: Métrica que el modelo optimiza durante el entrenamiento para mejorar sus predicciones.

1. División de Datos

Entrenamiento: Entrenar el modelo. (70-80%)

Validación: Ajustar hiperparámetros. (10-15%)

Prueba: Evaluar el desempeño final. (10-15%)

2. Selección del Modelo

Regresión, árboles, SVM, redes, etc.

3. Optimización de Parámetros

Validación cruzada, Grid Search, etc.

4. Evaluación del Rendimiento

Rendimiento en validación y prueba.

1. División de Datos

Conjunto de Entrenamiento

Utilizado para entrenar el modelo Utilizado para ajustar los hiperparámetros

Conjunto de Prueba

Utilizado para evaluar el rendimiento final

1. División de Datos

2. Selección del Modelo

3. Optimización de Parámetros

4. Evaluación del Rendimiento

ACTUAL

CAT

NO CAT

CAT

TRUE POSITIVE

FALSE POSITIVE ERROR

NO CAT

FALSE NEGATIVE ERROR

TRUE NEGATIVE

F1-Score

Recall

Evalúa la capacidad del modelo para identificar todos los casos positivos.

Precisión

Mide la exactitud de las predicciones positivas del modelo.

Equilibra precisión y

recall en una única puntuación.

MSE

Calcula el promedio de los errores al cuadrado de las predicciones.

Proporciona una vista detallada de las predicciones correctas e incorrectas.

Precisión (Accuracy) Proporción de predicciones correctas sobre el total de predicciones.

Fórmula: (Verdaderos positivos + Verdaderos negativos) / Total.

Recall (Sensibilidad) Proporción de verdaderos positivos sobre el total de positivos reales.

Fórmula: Verdaderos positivos / (Verdaderos positivos + Falsos negativos).

TRUE POSITIVE

F1-Score, Media de precisión y recall. Útil cuando hay desbalance en las clases.

Fórmula: 2 * (Precisión * Recall) / (Precisión + Recall).

$$F1 ext{-}score = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

MSE (Error Cuadrático Medio): Para problemas de regresión, mide la diferencia entre valores reales y predichos

$$MSE = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Donde:

 y_i son los valores reales.

 \hat{y}_i son las predicciones del modelo.

 $m{n}$ es el número total de observaciones.

Ejemplo Práctico

Predicción de Empresas Solventes

Paso 1: Recopilación de Datos

Se obtiene un conjunto de datos con características como ingresos, egresos, créditos y solvencia.

Paso 2: Preprocesamiento

Limpieza de datos y tratamiento de valores nulos.

Normalización de variables numéricas.

Paso 3: Entrenamiento del Modelo

División de datos en entrenamiento, validación y prueba.

Modelo LDA- relación de características y solvencia.

Paso 4: Evaluación

Se calculan, Precision, Recall, F1-Score y Matriz de

Confusión

Se ajustan hiperparámetros y se reentrena.

Ejemplo Práctico

PASO 1

	income	debt	credit_history	solvent
0	57450.712295	26483.242833	392.115420	0
1	47926.035482	33365.916483	357.512312	0
2	59715.328072	10210.026983	650.036637	1
3	72845.447846	23940.784657	688.561650	1
4	46487.699379	15445.502016	317.372380	1

PASO 2

	income	debt	credit_history
0	-0.245825	-0.531158	1.500187
1	-0.042386	0.079393	-0.803370
2	-0.741307	-0.848214	-0.136724
3	-1.040191	0.480125	0.156964
4	-0.720783	0.168569	-1.356440

PASO 3

PASO 4

OVERFITTING

El sobreajuste ocurre cuando un modelo aprende demasiado bien los detalles y el ruido del conjunto de entrenamiento, pero no generaliza bien a nuevos datos. Memoriza los datos.

ACTUAL

CAT

NO CAT

CAT

TRUE POSITIVE

NO CAT

TRUE NEGATIVE

PREDICTION

Educator in Al

Artificial Intelligence

Data Engineering

Machine Learning

Data Science

TLinkedin —> https://www.linkedin.com/in/erlinares/

☐ GitHub: https://github.com/erlinares/365_Al_Journey/

Discord: https://discord.gg/5fFM2zh8

Edgar Rios Linares