	Exam 2 M409 Summer 2012 C. Judge
	NAME:
	Show all work! Let K be a field and V a vector spa Each problem is worth 10 points.
	(1) Complete of the following statements:
_	(a) A bilinear form in positive definite if and only if
	if and only if
_	$B(v,v)>0 \forall v\neq 0$
_	
	(b) A set {v1, v2, v2, v2} is an orthogonal
_	(b) A set {v1, v2, v3,, vj} is an orthogonal set if and only if
_	$B(v_i, v_j) = 0 \forall i \neq j$
_	
_	(c) Let B: VxV -> K be a bilinear form
	The vectors v, w & V are said to be
	orthogonal with respect to B if and
	only if

B(v,w)=0

- (d) A function $F: K^n \times ... \times K^n \longrightarrow K$ is an alternating multilinear form if and only if
- $\begin{cases}
 F(v_1,...,v_{j+1},v_j,...,v_n) = -F(v_1,...,v_j,v_{j+1},...,v_n) \\
 F(v_1,...,sv_j+s'v_j,...,v_n) = sF(v_1,...,v_j,...,v_n) \\
 +s'F(v_1,...,v_j',...,v_n)
 \end{cases}$
 - (e) A bijection f: {1,...,n} -> {1,...,n} is called a permutation if and only if

I exist

- (2) Let $B: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the bilinear form defined by $B((x_1, x_2), (x_1', x_2')) = x_1 x_1' + 2x_1 x_2' 2x_2 x_1' + x_2 x_2'$
- (a) Is B positive definite? Explain why or why not
- Yes, $B(k_1, k_2), (x_1, x_2) = x_1^2 + x_2^2 > 0 \quad \forall \quad (x_1, x_2) \neq (0, 0)$
 - (b) Is B symmetric? Explain why or why not
- No, [127 is not a symmetric matrix

(3) Let V be the vector space of continuous functions
$$f: [o, 1] \longrightarrow \mathbb{R}$$
. Define $B: V \times V \longrightarrow \mathbb{R}$ by $B(f,g) = \int_{-\infty}^{\infty} f(t) g(t) dt$. Verify that B is a bilinear form.

$$\int_{0}^{4} f(t) g(t) dt = \int_{0}^{4} g(t)f(t)dt \implies B(f,g) = B(g,f)$$
Hence suffices to prove linearity in the first "slot"
$$\int_{0}^{4} (sf(t) + s'h(t))g(t)dt = s \int_{0}^{4} f(t)g(t)dt + s' \int_{0}^{4} h(t)g(t)dt$$

$$B(sf + s'h,g) = s B(f,g) + s' B(h,g)$$

(4) Let $B: V \times V \longrightarrow \mathbb{R}$ be as in (3). Find an orthogonal basis for the vector space generated by the functions t and t^3 .

$$V_{1} = t \qquad V_{2} = t^{3} - \frac{B(t^{3}, t)}{B(t, t)} t$$

$$B(t^{3}, t) = \int_{0}^{t^{4}} dt \qquad = t^{3} - \frac{1/5}{1/3} t$$

$$= \frac{1}{5} t^{5/1} \qquad = t^{3} - \frac{3}{5} t$$

$$= \frac{1}{5}$$

$$B(t, t) = \int_{0}^{1} t^{2} dt \qquad = t^{3}$$

$$= \frac{1}{3} t^{3/1} = \frac{1}{3}$$

$$= \frac{1}{3} t^{3/1} = \frac{1}{3}$$

(5) Let
$$B: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 be the bilinear form associated to the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$p_{n_{jechon}} = \frac{B(e_{2,e_{3}})}{B(e_{3,e_{3}})} e_{3} = \frac{1}{1} e_{3} = e_{3}$$

$$u_1 = e_3$$
 $u_2 = e_2 - P_{\langle u_1 \rangle}(e_2) = e_2 - e_3$

$$u_3 = e_1 - P_{\langle u_1 \rangle}(e_1) - P_{\langle u_2 \rangle}(e_1)$$

$$= e_1 - \frac{B(e_1 e_3)}{B(e_3, e_3)} e_3 - \frac{B(e_1, e_2 - e_3)}{B(e_2 - e_3, e_2 - e_3)} (e_2 - e_3)$$

$$= e_{1} - 0 - \left(\frac{B(e_{1},e_{2}) - B(e_{3},e_{3})}{B(e_{2},e_{3}) - 2B(e_{2},e_{3}) + B(e_{3},e_{3})}\right) (e_{3} - e_{3})$$

$$= e_1 - \left(\frac{1-0}{-1-2\cdot 1+1}\right)(e_2 - e_3) = e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_3$$

$$-B(u_{2},u_{2}) = -2 < 0 = 0 + 2 \frac{1}{2} \cdot 1 + 2(-\frac{1}{2} \cdot 1) + \frac{1}{4}(-1) - \frac{2}{4}1 + \frac{1}{4}1$$

Signature =
$$(0,2,1)$$
 = 1+1-1-1/2+1/4 = 1/2>0

$$id = \begin{bmatrix} 123 \\ 123 \end{bmatrix}$$
 $\tau_{42} = \begin{bmatrix} 123 \\ 213 \end{bmatrix}$ $\tau_{23} = \begin{bmatrix} 123 \\ 132 \end{bmatrix}$ $\tau_{43} \begin{bmatrix} 123 \\ 321 \end{bmatrix}$

$$\sigma_1$$
 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ σ_2 $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$

$$\mathcal{E}(id) = 1$$

$$\mathcal{E}(\tau_{ij}) = -1$$
since transpositions
$$\sigma_1 = \tau_{12} \circ \tau_{23} =) \quad \mathcal{E}(\sigma_1) = (-1)^2 = +1$$

$$\sigma_2 = \tau_{13} \circ \tau_{23} =) \quad \mathcal{E}(\sigma_2) = +1$$

(c) Use (a) and (b) to write the expansion formula for
$$D: \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$$
.

$$= \varepsilon(id) a_{11} a_{22} a_{33} + \varepsilon(\tau_{42}) a_{12} a_{24} a_{33} + \varepsilon(\tau_{23}) a_{41} a_{32} a_{23} + \varepsilon(\tau_{43}) a_{43} a_{22} a_{33} + \varepsilon(\sigma_{4}) a_{42} a_{23} a_{34} + \varepsilon(\sigma_{2}) a_{43} a_{32} a_{24}$$

$$= a_{11} a_{12} a_{33} - a_{12} a_{21} a_{33} - a_{14} a_{32} a_{23} - a_{13} a_{12} a_{33} + a_{14} a_{23} a_{34} + a_{15} a_{25} a_{34} + a_{15} a_{35} a_{35} a_{24}$$

(7) Let
$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$

Let
$$C_1 = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$
 then $C_0 f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{bmatrix}$

Let
$$T_2 = \begin{bmatrix} 1234 \\ 1324 \end{bmatrix}$$
 then $50706 = \begin{bmatrix} 1234 \\ 1243 \end{bmatrix}$

Let
$$\tau_3 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{bmatrix}$$
 then $\tau_2 \circ \tau_4 \circ f = \tau_3$

$$\implies f = \tau_4 \circ \tau_2 \circ \tau_3$$
where each τ_i is transposition.

$$\implies f = \tau_1 \circ \tau_2 \circ \tau_3$$

$$\varepsilon(f) = \varepsilon(\alpha_1 \circ \alpha_2 \circ \alpha_3) = \varepsilon(\alpha_1)\varepsilon(\alpha_2)\varepsilon(\alpha_3) = (-1)(-1)(-1) = -1$$
since α_i transpositions.

$$\varepsilon \left(\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 4 & 1 & 6 \end{bmatrix} \right) = \varepsilon \left(\begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 3 & 5 & 1 \end{bmatrix} \right)$$

$$= \varepsilon \left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \right) = -4$$

(8) Let $F: (K^n)^n \to K$ be an alternating multilinear form. Show that there exists $C \in K$ so that CF = D. (If you use a theorem, then please give a precise statement of the theorem.)

Theorem: The space of alternating multilinear forms F: (K")" -> K is 1-dimensional

Hence F and D differ by a constant

(9) Let $B: V \times V \longrightarrow \mathbb{R}$ be a symmetric bilinear form Show that if B(v,v) = 0 for all $v \in V$, then B(v,w) = 0 for all $v,w \in V$.

(x, w) = 0 for all $(x, w \in V)$. B(v+w, v+w) = B((y,v) + B((y,w) + B((w,v)) + B((w,w))

 $\Rightarrow 0 = B(y,w) + B(w,v)$

Since B symmetric, O = B(v,w) + B(v,w) $\Rightarrow B(v,w) = 0.$

- (10) Let $B: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ be a symmetric bilinear form. Let $\{v_1, ..., v_n\}$ be orthogonal set.
 - (a) Is D(v1, v2,..., vn) necessarily equal to zero?

 Discuss why or why not.

No, for example D(en,...gen) = 1 = 0

(b) Same question but now assume that B is nondegenerate.

No, for example D(en,..., en) = 1 +0