1 Rezonanses frekvence otrajā eksperimentā

Maketam zināmā kapacitāte - 1670 pF, bet induktivitāte - 2.1 mH. Rezultātā aprēķināma rezonanses frekvence f_0 pēc šādas sakarības:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 84.987[kHz]$$

Eksperimentāli rezonanses frekvence pirmajā eksperimentā pie R_1 noteikta kā 80 kHz, pie R_2 kā 79.5 kHz, otrajā eksperimentā pie R_1 77.3 kHz, bet pie R_2 kā 77.7 kHz. Vidēji tas ir 78.6 kHz. Atšķirība no teorētiskā ir 7.5% jeb 6.4 kHz.

2 Frekvenču diagrammas

Ieguvām skojošu U(f) un normēto U(f)/U(f_{rez}) diagrammu.

3 Labuma (Q) salīdzinājums

Mums ir jāsalīdzina pirmajā experimentā iegūtās labuma vērtības kontūram pie R_1 un pie R_2 pretestības ar labumu otrajā eksperimentā. Otrajā eksperimentā labumu atradīsim izmantojot sakarību

$$Q = \frac{f_{rez}}{\Delta f}$$

kur Δf ir frekvenču starpības modulis pie 0.707 no maksimālās amplitūdas ($\Delta f = f_2 - f_1$) un f_{rez} ir rezonanses frekvence pie attiecīgās pretestības. Izmantojot kubiskās interpolācijas metodi, varam nolasīt attiecīgas vērtības šajā amplitūdā. Parādīsim arī pirmā eksperimenta aprēķināto labumu (Q_1) un par cik tas atšķiras (δQ).

	f_1 , kHz	f_2 , kHz	f_{rez} , kHz	Δf , kHz	Q_2	Q_1	$\delta Q, \%$
R_1	73.4844	82.4432	77.3	8.9588	8.6284	8.2683	4.3551
R_2	75.2481	81.1891	77.7	5.941	13.0786	14.4695	9.6127

4 Secinājumi

Pēc pirmā eksperimenta datiem mēs varam sastādīt rimstošo svārstību vienādojumu pēc sakarības

$$u(t) = U_m e^{-\beta t} cos(\omega t + \phi)$$

kur β ir rimšanas koeficients $\beta=\frac{\lambda}{T}$ un $\omega=2\pi f$. Sākumfāzi ϕ mēs eksperimentā pieņēmām par nulli. Sastādīsim vienādojumu kontūram ar pretestību R_1 , ievietojot aptuvenas vērtības:

$$u(t) = 0.32e^{-3 \times 10^4 t} \cos(5 \times 10^5 t)$$

Pēc divu šo eksperimentu veikšanas mēs varam gūt priekšstatu par rimstošās un uzspiestās svārstībās notiekošajiem procesiem un to raksturlielumiem, un kā tie savstarpēji mijiedarbojas.

Teorētiski noteiktajam labumam pirmajā eksperimentā būtu jābūt tādam pašam kāds iegūts otrajā eksperimentā. Redzam ka R_1 slodzei labums ir izmērīts nedzaudz lielāks, bet R_2 slodzei mazāks kā pirmajā eksperimentā.

Rezonanses frekvence mūsu eksperimentos salīdzinājumā ar teorētisko atšķiras par 7.4%. Kļūdas galvenokārt skaidrojamas ar mērījumu izdarīšanas procesu. Pirmajā eksperimentā mērījumi tika nolasīti ar aci pēc osciloskopa iedaļām. Otrajā eksperimentā rezonanses frekvence tika iestādīta aptuveni vadoties pēc augstākā iespējamā voltmetra rādījuma. Uz signālu generatora regulātora izšķirtspēja bija zema.