Diffusion Policy Evaluation

Franklin Wang and Ram Goel

6.8200 Final Presentation

Multimodality in Policy Learning for Offline RL Problems

- Offline RL: Clone expert's policy given expert data
- Main challenge: multimodal modeling capabilities

- Approaches:
 - Explicit (Mixture of Gaussian, Binning)
 - Implicit/Diffusion

(From Diffusion Policy paper)

Problem Formulation: Push-T Task

- Observation space: 96 x 96 pixel image of top-down 2D view
- Action space: (x,y) coordinates for hand to move to

- Success Criteria: Intersection over
 Union (IoU) > 90%
- No inherent reward
 - Dataset of expert examples for behavior cloning

Our trained **Diffusion Policy learning algorithm** performing
Push-T

Diffusion Policy Methodology Overview

Baseline: Implicit Behavior Cloning (IBC)

- Minimize an energy function for observation to select action
- Potential for **multimodal** modeling

Diffusion Demonstration of our Trained Model

Diffusion Policy Results

	Best Model	IBC
Average Best IoU	75%	64%
Success Rate (IoU > 0.9)	47%	42%

Observation Horizon: # of observations fed into the model per timestep

Action Horizon: # of actions we act upon at a time

Resnet Encoder is used to encode the image observations

Issues, Changes, and Learnings

Analysis:

- Main important hyperparameters
 - Action horizon
 - Observation Horizon
- Discrepancies between our findings vs original paper
 - Different "optimal" hyperparameters
 - Performance: ~90% of original
 - 75% vs 84% IoU Average

Challenges:

- Multimodality not as apparent as it should be
 - Possible overfitting to one mode due to longer training epochs
 - Size of validation/test set
- Difficulty training diffusion models