

Cuk converter

Thursday, March 11, 2021 9:17 AM

Motivation

- Synthesize a DC-DC circuit that can increase / dec. $\$/\mu\text{V}$.
- Both $\$/\mu\text{A}$ & $\$/\mu\text{A}$ currents non-pulsating or continuous.

Buck | Boost | Buck-boost

Gain of buck-boost = gain of buck \times gain of boost

$$\frac{D}{D'} = \underbrace{(\Delta)}_{\text{cascaded design}} \left(\frac{1}{\Delta'} \right)$$

CUK converter

↳ $\$/\mu\text{A}$ stage = Boost

↳ $\$/\mu\text{A}$ = Buck

At position #1

$$V_{L1} = V_g \quad \text{KVL}$$

$$V_{L2} = -V_1 - V_2 \quad \text{KVL}$$

$$i_{C1} = i_2 \quad \text{KCL}$$

$$\rightarrow i_{C2} = i_2 - \frac{V_2}{R} \quad \text{KCL}$$

small ripple approximation

$$\underline{V_{L1} = V_g}$$

$$\underline{V_{L2} = -V_1 - V_2}$$

$$V_{L2} = -V_1 - V_2$$

$$i_{C1} = I_2$$

$$i_{C2} = I_2 - \frac{V_2}{R}$$

$$V_{L1} = V_g - V_1 \quad \text{KVL}$$

$$V_{L2} = -V_2$$

$$i_{C1} = i_1$$

$$i_{C2} = i_2 - \frac{V_2}{R} \quad \text{KCL}$$

Small ripple approximation:

$$V_{L1} = V_g - V_1$$

$$V_{L2} = -V_2$$

$$i_{C1} = I_1$$

$$i_{C2} = I_2 - \frac{V_2}{R}$$

$$\langle V_{L1} \rangle = 0 = V_g D + D' (V_g - V_1)$$

$$= V_g D'$$

$$\langle V_{L2} \rangle = 0 = D(-V_1 - V_2) + D'(-V_2)$$

$$V_2 = -\frac{D}{D'} V_g - \textcircled{A}$$

$$\langle i_{C1} \rangle = 0 = D I_2 + D' I_1$$

$$I_1 = \left(-\frac{D}{D'} \right) I_2 = -\frac{D}{D'} \frac{V_2}{R}$$

$$= \left(\frac{D}{D'} \right)^2 \frac{V_2}{R}$$

$$\langle i_{C2} \rangle = I_2 - \frac{V_2}{R} = 0$$

$$I_2 = -\frac{D}{D'} \frac{V_g}{R}$$

$$M(D) = \frac{V_2}{V_g} = \frac{-D}{D'} = \frac{-D}{1-D}$$

$$= \frac{D}{D+1}$$

L_1 Expression based on

$$= \frac{V_g}{g \Delta i_1} DT_s$$

L_2 expression

$$L_2 = \frac{V_1 + V_2}{g \Delta i_2} DT_s$$

C_1 expression

$$= \frac{I_2}{g \Delta V_1} DT_s$$

how to determine the C_2 .

→ $i_{C_2}(t)$ is continuous.

$$i_L(t) = I + \Delta i_2$$

- ... allow through R

$$Z_L(t) = \frac{1}{I} \cdot \frac{dI}{dt}$$

DC component I can only flow through R
 b/c $X_C = \frac{1}{2\pi f C} = \infty$ so I can't flow through C .

If $Z_C > R$
 $Z_C < R$

In a well designed converter

$$X_C \ll R$$

To ensure this C is kept large $X_C = \frac{1}{2\pi f C}$

If ideally all Δi_L flows through 'C'

$$C = \frac{\Delta i_L}{8f_s \Delta V}$$

Discussion

1) All DC-DC are non-linear. first order
 ↳ subcircuits are linear [2nd order]

but high freq switching changes
 their structure & its periodic structure
 change make the converter itself a
 non-linear circuit.

→ All converters, $i_L > 0$ no matter is
 called continuous conduction mode (CCM).

Application of basic converter in photovoltaic system.

$$V_o = D V_{in}$$

$$V_o = D V_{PV}$$

$$P_{in} = P_o \quad I_o = \frac{V_o}{R_o}$$

$$R_{PV} = \frac{V_{PV}}{I_{PV}} = \frac{V_o / D}{I_o / D} = \frac{V_o}{I_o} \cdot \frac{D^2}{D^2} = \frac{R_o}{D^2} = \frac{R_{load}}{D^2}$$

$$R = R_{PV}$$

$$R_{PV} = \frac{R_{load}}{D^2}$$

if $D = 1$
 $D = 0$

$$R_{PV} = R_{load}$$

$$R_{PV} = \infty$$

if $R_{load} > R_{PV}$

buck converter can't match
 the impedance & hence can't
 transfer the MPP or it can't track MPP.