

CAFCR Functional View Functional, non-Functional requirements & Constraints

System Engineering (TCTI-V2SYEN-16) week 3

Marius Versteegen

Auteur: Joost Schalken-Pinkster

Terugblik

Application

Functional

Conceptional

Voordelen van goed geschreven requirement

- Vormt de basis voor overeenstemming tussen de stakeholders en de ontwikkelteam over wat het product moet doen.
- Vermindert de ontwikkelingsinspanning omdat er minder herstel nodig is vanwege slecht beschreven, ontbrekende en onbegrepen eisen.
- Biedt een basis voor het schatten van kosten en planningen.

Function	Behaviour Structure	
Systeem Context	Functional Requirements Logische view	
Stakeholders	Non-functional requirements	Development view
Key drivers	Constraints	Beslissingsmatrices
Application drivers		FMEA
		Process View
		Physical View
Key-driver graph		
	Tracability diagram	

Requirements

De requirements moeten **toepasbaar** zijn, **testbaar**, gerelateerd aan **identificeerbare bedrijfsbehoefte** of kansen, en gedefinieerd op een niveau dat voldoende gedetailleerd is voor het systeemontwerp.

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Requirements Attributen

Naam	< Naam van de vereiste>
Omschrijving	<formulering <b="">SMART></formulering>
ID	<identificatie> = <type requirements><nr></nr></type </identificatie>
Rationale	<verklaring></verklaring>
Business prioriteit	<moscow></moscow>

Een voorbeeld

F01 – Kattenvoer dispenseren		
Omschrijving	Het apparaat moet een gecontroleerde hoeveelheid kattenvoer kunnen dispenseren.	
Rationale	Dan hoeft het baasje het niet te doen, zodat hij tijd bespaart.	
Business Prioriteit	Must have	

SMART Requirements

Zijn de requirements ...

- Specifiek Is de requirement eenduidig?
- Meetbaar Onder welke meetbare voorwaarden of vorm is het te bereiken?
- Acceptabel Is het acceptabel voor de opdrachtgever/gebruiker?
- Realiseerbaar Is het haalbaar?
- Tijdgebonden wanneer moet het bereikt worden?

Rationale

 De rationale is een toelichting van de reden van de requirement. Customer objectives

Application

Functional Conceptional

Realisation

Business Prioriteit

Must Have → Essentieel

Deze vereisten moeten in het eindresultaat terugkomen, Het niet halen van deze vereisten betekent dat het systeem niet voldoet aan de key drivers en is niet bruikbaar.

Should Have → Belangrijk

deze vereisten zijn zeer gewenst, maar zonder is het product wel bruikbaar. Het weglaten van deze vereisten kan klant tevredenheid beïnvloeden.

Could Have

Deze vereisten zullen alleen aan bod komen als er tijd genoeg is.

Won't Have

deze eisen zullen in dit project niet aan bod komen maar kunnen in de toekomst, bij een vervolgproject, interessant zijn.

Tips requirements opstellen

- Maak actieve zinnen
- ✓ Vermijd onduidelijke woorden
- ✓ Kwantificeer waar mogelijk (meetbaar)
- Geen onnodige keuzes voor implementatie of keuzes die alleen een sub-systeem aangaan.

Customer objectives

Application

Functional Conceptional

Realisation

Tracability

- ✓ ledere requirement heeft een eigenaar
- Requirements zijn achterwaarts traceerbaar naar application drivers en key drivers en voorwaarts traceerbaar naar ontwerp, code en testcases

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Conceptional

Functional requirements

- Definiëren WAT het systeem voor de gebruikers moet doen.
- Zijn acties die het systeem moet kunnen uitvoeren.
- Dragen direct bij aan het bereiken van het doel van de klant.

Functional Requirements

Voorbeelden

Rationale

Business Priority

Must have

"Applicatie stuurt een email wanneer een gebruiker zich aanmeldt"

F07 – Dieet instellen		
Omschrijving	Er kan een dieet voor de kat ingesteld worden	
Rationale	Anders weet het kattenvoersysteem niet hoeveel budget het op welke momenten moet vrijgeven.	
Business Prioriteit	Must have	
F03 – Rupsbandenbe	sturing	
Omschrijving D	Omschrijving De robot moet met zijn runsbanden kunnen voortbewegen	

kan misschien beter...

Rupsbanden geven meer grip in moeilijk begaanbaar terrein dan andere alternatieven.

Opdracht Functional Requirements: Schrijf je Functional Requirements uit in blokken als onderstaand:

F07 – Dieet instellen	
Omschrijving	Er kan een dieet voor de kat ingesteld worden
Rationale	Anders weet het kattenvoersysteem niet hoeveel budget het op welke momenten moet vrijgeven.
Business Prioriteit	Must have

- Definiëren WAT het systeem voor de gebruikers moet doen.
- Zijn acties die het systeem moet kunnen uitvoeren.
- Ze dragen direct bij aan het bereiken van het doel van de klant.

- Actieve zinnen
- Vermijd onnodige implementatie-keuzes
- Duidelijke formuleringen voorkomt misverstanden

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Customer Application

Non-Functional requirements

- Beschrijven HOE het systeem werkt en zich moet gedragen
- Specificeren de kwaliteitsattributen en kenmerken van het systeem (eigenschappen of kwaliteiten die het systeem moet hebben)
- Specificeren de criteria's om de kwaliteit van de werking van het systeem te beoordelen
- Ze worden ook Architecturally Significant
 Requirements genoemd en gaan vaak over de
 kwaliteit van een systeem (daarom ook wel
 kwaliteitseisen genaamd).

HU

Non-Functional requirements

- Ze bevatten informatie over:
 - Betrouwbaarheid van het systeem
 - Bruikbaarheid van het systeem
 - Informatiebeveiliging van het systeem
 - Performance van het systeem
 - Onderhoudbaarheid van het systeem

Voorbeelden:

- De maximale tijd die nodig is om een uitgevallen onderdeel van het systeem te vervangen is 3 uur.
- Het duurt maximum 5 minuten tot de gebruiker een mail ontvangt nadat die zich heeft aangemeld.

ISO 25010 - Kwaliteitskenmerken

Productkwaliteit

- Betrouwbaarheid (Reliability)
- Bruikbaarheid (Usability)
- Beveiligbaarheid (Security)
- Prestatie-efficiëntie (Performance efficiency)
- Uitwisselbaarheid (Compatibility)
- Onderhoudbaarheid (Maintainability)
- Overdraagbaarheid (Portability)

Kwaliteit tijdens gebruik

- Effectiviteit (Effectiveness)
- Efficientie (Efficiency)
- Voldoening (Satisfaction)
- Vrijwaring tegen risico (Freedom from risk)
- Context dekking (Context coverage)

ISO_25010, Wikipedia. https://nl.wikipedia.org/wiki/ISO_25010

Productkwaliteit

Functionele geschiktheid	Prestatie- efficiëntie	Uitwisselbaarheid	Bruikbaarheid
Functionele compleetheid Functionele correctheid Functionele toepasbaarheid	Snelheid Middelenbeslag Capaciteit	Beïnvloedbaarheid Koppelbaarheid	Herkenbaarheid van geschiktheid Leerbaarheid Bedienbaarheid Voorkomen gebruikersfouten Volmaaktheid gebruikersinteractie Toegankelijkheid

Betrouwbaarheid	Beveiligbaarheid	Onderhoudbaarheid	Overdraagbaarheid
Volwassenheid	Vertrouwelijkheid	Modulariteit	Aanpasbaarheid
Beschikbaarheid	Integriteit	Herbruikbaarheid	Installeerbaarheid
Foutbestendigheid	Onweerlegbaarheid	Analyseerbaarheid	Vervangbaarheid
Herstelbaarheid	Verantwoording	Wijzigbaarheid	
	Authenticiteit	Testbaarheid	

 $Source: http://www.gripoprequirements.nl/downloads/iso-25010-2011-een-introductie-v1_0.pdf$

Effectiviteit	Efficiëntie	Voldoening	Vrijheid van risico	Context dekking
Effectiviteit		Vertrouwen Tevredenheid	Economisch risico beperking Gezond- en veiligheidsrisico beperking Omgevingsrisico beperking	Context compleetheid Flexibiliteit

FURPS – software kwaliteit eigenschappen

- Functionality Features, mogelijkheden, beveiliging
- Usability Menselijke factoren, esthetisch eigenschappen, consistentie, documentatie
- Reliability Faalfrequentie, betrouwbaarheid, faalimpact, herstelbaarheid, voorspelbaarheid, nauwkeurigheid, mean time to failure
- Performance Snelheid, efficiëntie, resourceverbruik, throughput, responsetijd
- Supportability Testbaarheid, uitbreidbaarheid, aanpasbaarheid, onderhoudbaarheid, compatibiliteit, configureerbaarheid, serviceability, installeerbaarheid, localizability, overdraagbaarheid

Functional & non-Functional ijsberg

Specificeren gedrag of functie van het systeem.

Beschrijf hoe het systeem moet werken en zich gedragen

Opdracht Non-Functional Requirements:

Noteer de non-functional requirements uit het ISO25010:2011 document die van toepassing zijn voor je project

NF07 – Nauwkeurig dispenseren		
Omschrijving	Een gedispenseerde portie moet tussen de 1 en de 4 brokjes zitten.	
Rationale	Als er geen brokjes gedispenseerd worden, krijgt de kat niets te eten. Als er teveel brokjes tegelijk gedispenseerd worden, wordt de afwijking op het voor de kat ingestelde dieet te groot.	
Business Prioriteit	Must have	

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Constraints

Constraint

- Is een voorwaarde van buitenaf aan het systeem opgelegd die het aantal mogelijke oplossingen beperkt
- Toont de grenzen waarbinnen het systeem moet worden gerealiseerd.

Bijvoorbeeld: Een zeker apparaat mag vanwege wetgeving niet meer dan 80dB aan geluid produceren.

Constraints

- Constraints kunnen economische, politiek, technisch of milieutechnisch aard zijn
- Constraints kunnen betrekking hebben op projectplan, project resources en het systeem zelf.

Requirements vs Constraints

Requirements

Wat moet systeem doen

Constraints

Voorwaardes die de oplossing beperken.

Opdracht Constraints: Leg de belangrijkste constraints vast zoals op onderstaande manier (voeg een rationale toe indien nodig)

C01 – Voldoet aan international EM-storingsnormen		
Omschrijving	De electromagnetische straling van het apparaat moet voldoen aan internationale normen.	
Rationale	De draadloze deurbel van de voordeur mag bijvoorbeeld niet kunnen afgaan als het gevolg van een actie van het kattenvoersysteem.	
Business Prioriteit	Must Have	

- Constraints kunnen economische, politiek, technisch of milieutechnisch aard zijn
- Constraints kunnen betrekking hebben op projectplan, project resources en het systeem zelf.

Referenties

Hoofdstuk 7 van Muller (2013) Architectural Reasoning Explained.

http://www.gripoprequirements.nl/downloads/iso-25010-2011-een-introductie-v1_0.pdf