Hochschule Merseburg (FH)

Fachbereich Ingenieur- und Naturwissenschaften

Lehrgebiet Analytik

Praktikum:

000 BAC/2.Sem.: "Analytik " BCUC/4.Sem.: "Analytik" BCUU/4.Sem.: "Analytik" BWIWU/4.Sem.: "Analytik"

Datum: Gruppe: .. Namen:

0 Protokoll genehmigt 0 Protokoll korrigieren 0 Rücksprache erbeten

Protokoll registriert

0

Protokoll

Versuch:

Molekülspektroskopie/UV-VIS-Bereich/Photometrie

3.3

Mehrkomponentenanalytik: Simultanbestimmung von Mn und Cr

1 Probenvorbereitung:

Herstellen von je (N_C=) 3 Einkomponenten-Kalibrierlösungen K für Mn und Cr (Konz. s.u.)

Herstellen von (N_V=) 3 Zweikomponenten-Validierlösungen (Konz. s.u.)

Empfangen von $(N_A =)$ 2 Analysenlösungen (A1 und A2)

Auswahl der empfindlichsten Mess-Stellen (Wellenlängen):

- 2.1 Nehmen Sie die Absorptionsspektren des Permanganat- und des Dichromat-Anions auf. (jeweils mittlere Konzentration, Ausdrucken als Anlage 1)
- 2.2 Wählen Sie die jeweils beste Messwellenlänge für die Photometrie aus: $\lambda_{1,\text{MAX}} = 500 \text{ nm}$ nm 525Komponente 1 (Analyt Permanganat) Komponente 2 (Analyt Dichromat) $\lambda_{2,MAX} = nm 352$
- 3.3 Diskutieren Sie die Chance, die einzelnen Komponenten in Gemischen störungsfrei bei dem jeweiligen λ_{MAX} photometrisch bestimmen zu können.

3 Kalibrierung:

- 3.1 Ignorieren der Querempfindlichkeit (traditionelle Kalibrierung)
- Vermessen Sie beide Kalibrierserien (je dreimal) bei jeweils beiden λ_{MAX} . 3.1.1

Mess-Ergebnisse der Kalibrierlösungen

Komponente: Ka Permanganat Wellenlänge : $\lambda_{1, \text{max}} = 5.25$

,, 011011111111111111111111111111111111				
Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,08 mmol l ⁻¹	0,4860	0,1853	0,1860	0,1860
K2: 0,16 mmol l ⁻¹	013686	0,3685	0,3684	0,3685
K3: 0,32 mmol 1 ⁻¹	0,7282	0,7279	0,7279	0,7280

Komponente:

Permanganat

Wellenlänge : λ 2, max =

Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,08 mmol 1 ⁻¹	0,0388	0,0997	0,0998	0,0994
K2: 0,16 mmol l ⁻¹	0,1847	0,1843	0,1841	0,1844
K3: 0,32 mmol l ⁻¹	0,3647	0,3651	0,3653	0,3650

Komponente:

Dichromat

Wellenlänge : $\lambda_{1, \text{max}} = 5.2.5...$

Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,15 mmol l ⁻¹	0,0023	0,0023	0,0022	0,0023
K2: 0,30 mmol l ⁻¹	0,0140	0,0140	0,0140	0,0140
K3: 0,45 mmol l ⁻¹	6,0088	0,0088	0,0088	010088

Komponente	•		Dichromat	
Wallanlänge	-	1	= 352	

Wellenlänge : A 2, max	= 30.2	1.1.1.2	Absorbanz 3	Mittelwert
Kalibrierlösung	Absorbanz 1	Absorbanz 2	AUSUIDAILE 5	0,4744
K1: 0,15 mmol l ⁻¹	0,4744	0,4744	6,4743	0, 9332
K2: 0,30 mmol l ⁻¹	019332	0,9332	019333	1 2050
K3: 0,45 mmol 1 ⁻¹	1,3858	113858	1.3859	1110000

3.1.2 Stellen Sie die Kalibrierkurven für Mn (bei $\lambda_{1,MAX}$ und bei $\lambda_{2,MAX}$) in <u>einem</u> Diagramm dar. Stellen Sie die Kalibrierkurven für Cr (bei $\lambda_{1,MAX}$ und bei $\lambda_{2,MAX}$) in <u>einem</u> Diagramm dar. (Abgeben als **Anlage 2**)

Diskutieren und vergleichen Sie die Empfindlichkeit der Kalibrierungen.

- 3.1.3 Berechnen Sie für Mn (nur bei $\lambda_{1,MAX}$) und für Cr (nur bei $\lambda_{2,MAX}$) die Geradenparameter und bewerten Sie die (Einkomponenten-)Kalibriergeraden hinsichtlich
 - Leerwert a₀
 - Empfindlichkeit a₁
 - Bestimmtheitsmaß B = r (vermerken auf Anlage 2)
- 3.2 Berücksichtigen der Querempfindlichkeiten (ohne Analytwechselwirkung) (Simultane Kalibrierung, beruhend auf *Einkomponenten*-Kalibrierlösungen)
- 3.2.1 Berechnen Sie die partiellen Empfindlichkeiten. (siehe Versuchsanleitung Gl. 2; abgeben als Anlage 3)

$$a_{11} = \frac{2.5010}{1}$$

$$a_{12} = 0.0272$$

$$a_{22} = 31.11.76$$

4 Überprüfen Sie die beiden Einkomponenten-Kalibriergeraden anhand ausgewählter Zweikomponenten-Validierlösungen.

	KMnO ₄	K ₂ Cr ₂ O ₇	KMnO ₄	K ₂ Cr ₂ O ₇	Absorbanz bei	Absorbanz bei λ _{2,MAX}
	Teile	Teile	mmol/l	mmol/l	- λ1,MAX	N2,MAX
V1	1 x K2	1 x K1	0,08	0,075	0,1810	0,3598
V2	1 x K1	2 x K3	0,026	0,3	0,0638	0,3786
V3	1 x K3	2 x K1	0,106	011	0,2345	0,4479

Ergebnisse der Validierung

Validierlösung	V1	V2	V3
Soll-Konzentration Mn =	0,08	0,026	0,106
gefunden (bei $\lambda_{1,MAX}$) =	0,077	0,0255	0,101
Differenz, absolut	0,003	0,0005	0,005
Soll-Konzentration Cr =	0,075	93	0,1
gefunden (bei $\lambda_{2,MAX}$) =	01112	0,32	0,14
Differenz, absolut	0,037	0,02	0,04

			THE PERSON NAMED IN COLUMN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyse	Min (musil)	Cr (must/1)	Sezesen
1	6,213	011	blenem
2	0,2	0,15	Feller

Vermessen Sie die Analysenlösungen je dreimal und, berechnen Sie die Konzentrationen *ohne* und *mit* Berücksichtigung der Querempfindlichkeiten.

Wellenlänge: $\lambda_{1, \text{max}} = .52.5...$

Analyse

Wellemange.	Absorbanz 1	Absorbanz 2	Absorbanz 3	
Probe A1	0,5103	0,5107	0,5104	
Probe A2	6,4807	014807	0,4805	

Wellenlänge: $\lambda_{2, \text{max}} = .352$

The state of the s	Absorbanz 1	Absorbanz 2	Absorbanz 3	
Probe A1	0,6023	0,6028	0,6036	
Probe A2	0,7362	0,7362	0,7361	

Analysen-Ergebnisse (ohne Berücksichtigung Querempfindlichkeit)

Probe	Komponente	N _A	\overline{X}_A	$\operatorname{cnf}(\overline{x}_A)$	"wahrer x _A "	Fehler (%)
Al	Mn	3	0,2234	±2,29.10-4	-0,213	4,90
	Cr	3	0,1920	±5,36.10-4	0,1	91,96
A2	Mn	3	0,1517	±9,44.10-5	0,2	24,14
	Cr	3	0,2358	±4,72.105	0,15	57,22

Analysen-Ergebnisse (mit Berücksichtigung Ouerempfindlichkeit, Berechnung Anlage 4)

Probe	Komponente	N _A	$\overline{\overline{x}_A}$	$\operatorname{cnf}(\overline{x}_A)$	"wahrer x _A "	Fehler (%)
Al	Mn	3	0,2206	± 2,24.10-4	0,213	3,54
	Cr			±5,22.104	011	10,02
A2	Mn		1	+1,25.10-4	0,2	3,51
	Cr	3	0,1579	+1,43.10-6	0,15	5,25

Gegenüberstellung der Analysen-Ergebnisse (\overline{x}_{A})

für die o.a. Kalibriermodelle

Probe	Komponente	ohne	mit	"wahrer x _A "
		Querempfindlichkeit	Querempfindlichkeit	
A1	Mn	0,2234	0,2206	0,213
	Cr	0,1920	011101	0,1
A2	Mn	0,1517	0,2070	0,2
	Cr	0,2358	0,1579	0,15