4A13 Examples

Oussama Chaib

April 2022

1 Basic questions

- Definitions physical and chemical:
 - Laminar burning velocity (2015:Q1).
 - Flammability limits (2015:Q1, 2014:Q1).
 - Quenching distance (2015:Q1, 2018:Q1).
 - Flame blow-off (2015:Q1).

- Concepts :

- NOx types, generation mechanisms, and solutions (2015:Q1, 2018:Q1).
- Main pollutants, their formation, and solutions (2018:Q1).
- Types of elementary reactions (order) + Examples (2017:Q1).
- Types of chain reactions, their properties, the difference between gas shift vs. wall termination + Examples (2017:Q1, 2012:Q1).
- Where does each chain reaction occur within a laminar premixed flame and why? (2017:Q1).
- Criterion for finite concentration, criterion for explosion (2012:Q1, 2011:Q2).
- Does pressure affect product composition? (2019:Q1).
- How to increase H_2 yield? (2019:Q1).
- Thermal equilibrium vs. steady state.
- High pressure vs. low pressure limit effect on decay and collisional reactions (2016:Q1).
- Reaction rate of a species present in both reactants and products.

- Graphs:

• Ignition graph – energy gain and loss term vs T (2018:Q1).

- Blow-off graph heat conduction and heat generation terms vs. T (2015:Q1, 2014:Q1).
- S_L as a function of ϕ , T_R p (3 cases as a function of order of reaction n) (2014:Q2, 2017:Q1, 2012:Q2).
- T, Y_f , Y_{ox} , Y_p in a freely propagating laminar premixed flame (2017:Q1).

- Derivations :

- Ignition time τ_{ign} (2018:Q1).
- Extinction equation (2014:Q1).
- Laminar flame speed S_L (2012:Q2, 2010:Q1).
- δ_L and S_L as a function of w (2012:Q2, 2017:Q1).
- Quenching distance d (2014:Q2).

2 Chapter 1: Intro

- Write the balanced combustion reaction of X fuel with air with equivalence ratio ϕ and the molar/mass coefficients of reactants/products
 - 1. Write the equation for stoichiometry ($\phi = 1$).
 - 2. Calculate or derive an expression for a:

$$a(O_2 + \beta N_2)$$

Most of the time, $a = x + \frac{y}{4}$, but always check.

- 3. Write the real equation.
 - (a) $\phi < 1$: Add excess air to the products with its coefficient:

$$a_5 = a \frac{1 - \phi}{\phi}$$

(b) $\phi > 1$: Add H_2 and CO. Their stoichiometric coefficients have to be found from the K_p table.

$$K_{p} = \frac{\left(P_{H_{2}}/p^{\circ}\right)\left(P_{CO_{2}}/p^{\circ}\right)}{\left(P_{CO_{2}}/p^{\circ}\right)\left(P_{H_{2}O}/p^{\circ}\right)} = \frac{\left(d/n\right)\left(a/n\right)}{\left(b/n\right)\left(c/n\right)} \ \frac{\left(P/p^{\circ}\right)\left(P/p^{\circ}\right)}{\left(P/p^{\circ}\right)\left(P/p^{\circ}\right)}$$

P: total pressure

p°: 1 bar

n = a + b + c + d + e

• Does the composition of products vary with pressure?

It doesn't vary with pressure if:

$$\sum \nu_i = 0$$

in the associated stoichiometric equation of the products in the K_p section of the databook.

- How to improve the conversion efficiency (produce more H_2)
 - 1. Increase K_p by decreasing temperatures.
 - 2. Water injection (water will make use of the heat to dissociate the H_2O molecules into H_2). The water gas shift reaction (below) will shift towards the right (Le Chatelier's principle: When H_2O goes up, H_2 goes up).

$$CO_2 + H_2 = H_2O + CO$$

• Would you expect thermodynamic equilibrium everywhere in the combustion chamber?

3

Not in the flame because kinetics dominate there. The products will slowly approach thermodynamic equilibrium.

3 Chapters 2-3: Kinetics, dissociation

- What type of reaction is X? (2011:Q2, 2012:Q1)
 - 1. Chain initiating:

$$A + M \longrightarrow B + R$$

where R is a radical.

- Production of a radical.
- Requires high activation energies.
- 2. Chain branching:

$$A + R \longrightarrow \alpha R + B$$

with $\alpha > 1$.

- More radicals in products than in reactants.
- Fast.
- Low activation energy.
- Behind explosions.
- 3. Chain propagating:

$$A + R \longrightarrow R + B$$

with $\alpha = 1$.

- Radicals can change identity but their number in either side is the same.
- 4. Chain terminating:

$$A + R \longrightarrow B$$

with $\alpha = 0$.

- Consumption of all radicals.
- Write the reaction rate of species X in the following reaction: (2011:Q2, 2012:Q1, 2016:Q1)

$$A + R \longrightarrow \alpha R$$

In this case, we write:

$$\frac{d[R]}{dt} = -k[A][R] + k[A]\alpha[R]$$

$$\frac{d[R]}{dt} = k(\alpha - 1)[A][R]$$

Careful with α since it will only appear when calculating the reaction rate of R. In other words:

$$\frac{d[A]}{dt} = -k[A][R]$$

Notice there is no alpha in this equation.

- Explosion limits (2011:Q2, 2012:Q1)
 - Explosions are facilitated by **chain-branching** reactions.
 - Explosions happen when the reaction rate is very high and approaches infinity. Typically, this means the **denominator** of d[A]/dt is very close to zero.

• Steady-state vs chemical equilibrium

- Species N is in steady-state:

$$\frac{dN}{dt} = 0$$

- The elementary reaction is in equilibrium:

$$A + B \longrightarrow C + D$$

$$k_f[A][B] = k_b[C][D]$$

• Other miscellaneous questions

- Pressure and T balance into dT/dt as a function of reaction rate (2011:Q2).
- Types of chain termination (wall vs gas phase) (2012:Q1).
 - * Wall: no collision partner required.
 - * Gas phase: collision partner required.
- Show that the rate of formation of P is first order in the high pressure limit and second order in the low pressure limit.
 - * Probably has to do with Le Chatelier's principle.
 - * At high pressure: more collisions so $k_{collision}$ should be higher.

4 Chapter 4: Autoignition

5 Chapter 5: Extinction

- Quenching \neq Extinction
 - The term quenching is used to separate "chemical" extinction (real extinction) due to high inflow of reactants from "physical/thermal" extinction due to heat losses to the cold walls (quenching).
- /!\ Key equation to memorise

 $Conductive\ heat\ flux = Reactive\ heat\ flux$

$$\lambda \frac{dT}{dx} A = Q w_f V$$

$$\lambda \frac{dT}{dx} = Q w_f \delta$$

$$\lambda \frac{\Delta T}{\delta} = (c_p \Delta T) \left(\frac{\rho_0 S_L}{\delta}\right) \delta$$

• /!\ Quenching distance : Find an expression for δ as a function of the pipe or flame arrestor diameter d

 $Conductive\ heat\ loss\ at\ walls = Reactive\ heat\ flux$

$$\lambda \left(\frac{dT}{dx}|_{wall}\right) A = Qw_f V$$

$$\lambda \left(\frac{T_f - T_w}{d/2}\right) \pi d\delta = \left(c_p (T_f - T_0)\right) \left(\frac{\rho_0 S_L}{\delta}\right) \left(\frac{\pi d^2}{4}\delta\right)$$

6 Chapter 6: Premixed flames

• Derivation of S_L

1. Derive an expression for $dT/dx|_{x=x_i}$ by combining expressions from the preheat zone (only diffusion and advection) and the reaction zone (only diffusion and reaction, taking into consideration their boundary conditions.

- Pre-heat zone:

$$\frac{\partial T}{\partial x}|_{x=x_i} = S_L \frac{T_I - T_0}{\alpha}$$

- Reaction zone:

$$\frac{\partial^2 T}{\partial x^2}|_{x=x_i} = 2\frac{Q}{\lambda}(T_f - T_I) \int_{T_I}^{T_f} \dot{w}_{fu} dT$$

In the above equation, we use a trick to convert the diffusion term $\partial^2 T/\partial x^2$ to an expression involving $(\partial T/\partial x)^2$.

2. Combine both expressions at $x = x_i$ to get a single expression for $(\partial T/\partial x)$, then derive a first expression for S_L .

$$\frac{\partial T}{\partial x} = \sqrt{\frac{2Q}{\lambda}RR}$$

$$S_L = \sqrt{\frac{2\alpha \frac{1}{\rho_0 Y_{fu,0}} \frac{RR}{T_f - T_0}}{\underset{reactants}{\text{reactants}}} \frac{RR}{T_f - T_0}}$$

3. Derive an expression for the integrated reaction rate term RR.

$$RR = \underbrace{\rho_1^2}_{products} \frac{A}{M_{ox}} \int_{T_I}^{T_f} Y_{fu} Y_{ox} exp\left(\frac{T_a}{T}\right) dT$$

$$RR = \rho_1^2 \frac{A}{M_{ox}} \int_{T_I}^{T_f} Y_{fu} Y_{ox} exp\left(\frac{T_a}{T}\right) dT$$

4. Simplify the exponential term by using high activation energy expansion.

$$exp\left(-\frac{T_a}{T}\right) = exp\left(-\frac{T_a}{T_f - \Delta T}\right) = exp\left(-\frac{T_a}{T_f(1 - \Delta T/T_f)}\right)$$

$$= exp\left(-\frac{T_a}{T_f}(1 + \frac{\Delta T}{T_f})\right)$$

$$= exp\left(-\frac{T_a}{T_f}\right) exp\left(-\frac{T_a}{T_f^2}(T_f - T)\right)$$
Tin numerator

5. Plug in the above expression and derive an expression for RR. Some useful assumptions:

- Stoichiometric mixture $Y_{fu,0} = S.Y_{ox,0}$
- Complete combustion $Y_{fu,f} = 0$
- 6. Perform a change of variable inside the RR integral to introduce the Zeldovich number:

$$\beta = \frac{T_a}{T_f^2} (T_f - T)$$

- The value of β is very high, so $exp(-\beta) << 1$.
- 7. Derive a final expression for S_L .
- How does S_L vary with the ratio of O_2 and CO_2 in reactants?
 - High $O_2\% \longrightarrow NOx$ capture easier (but high T_f , so potentially high thermal NO_x , and need for air separation units).
 - $-CO_2$ dilution \longrightarrow Lower T_f and NO_x .
- Prove that $\delta_{\mathbf{f}}^2 = \lambda/\mathbf{c_p}\dot{\omega}$ For a propagating flame, equate the reaction heat flux and conductive heat flux

$$H\dot{\omega}\delta_f = \lambda \frac{dT}{dx}$$

$$c_p \Delta T \dot{\omega} \delta_f = \lambda \frac{\Delta T}{\delta_f}$$

- Effect of ϕ , $T_{reactants,0}$, and p^n on S_L
 - ϕ : This is standard. However, the \dot{w} expression we use is for lean mixtures, so hard to explain tendencies at $\phi > 1$ using the S_L equation derived.
 - $T_{reactants,0}$: When T of reactants increases, S_L increases but not 100% linearly because the **exponential term** contains T_f which is responsible for the exponential tendency at higher values of $T_{reactants,0}$.
 - p^n : The effect of pressure is seen from the **density** term in the S_L expression. Depending on the value of n (order of reaction), the correlation between p and S_L can be positive (n > 2), negative (n = 1), or inexistent (n = 2).

7 Chapter 8: Pollutants