3. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik

Sommersemester 2021

30. April 2021

Abgabe bis 7. Mai 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis einschließlich Seite 22 des Vorlesungsskripts behandelt.

Aufgabe 9 (K):

(i) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch

$$f(x,y) := \begin{cases} \frac{x^2y^2}{x^6 + y^6}, & \text{falls } (x,y) \neq (0,0), \\ 0, & \text{falls } (x,y) = (0,0). \end{cases}$$

Zeigen Sie, dass in allen Punkten beide partiellen Ableitungen erster Ordnung existieren und berechnen Sie diese. Zeigen Sie zudem, dass f in (0,0) nicht stetig ist.

(ii) Bestimmen Sie alle differenzierbaren Funktionen $f: \mathbb{R}^3 \to \mathbb{R}$ mit

grad
$$f(x, y, z) = (x^2 + y^2 + z^2, 2xy + z, 2xz + y)$$
 für alle $(x, y, z) \in \mathbb{R}^3$.

(iii) Begründen Sie, dass es keine differenzierbare Funktion gibt, für die folgendes gilt:

grad
$$f(x, y, z) = (2xy + z, x^2 + y^2 + z^2, 2xz + y)$$
 für alle $(x, y, z) \in \mathbb{R}^3$.

Hinweis: Satz von Schwarz.

Aufgabe 10:

(i) Es seien $f, g: \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar und $F: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch F(x, y) := f(x + g(y)) für $(x, y) \in \mathbb{R}^2$. Zeigen Sie:

$$F_x \cdot F_{xy} = F_y \cdot F_{xx}$$
.

(ii) Bestimmen Sie alle $f \in C^2(\mathbb{R})$ mit

$$f(x + f(y)) = f(x) + f(y) \quad ((x, y) \in \mathbb{R}^2).$$

Aufgabe 11 (K):

Es seien $f: \mathbb{R}^2 \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}^2$ definiert durch

$$f(x,y) = \begin{cases} \frac{y^5}{2x^4 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}, \qquad g(t) = (t,t).$$

- (i) Zeigen Sie, dass f in (0,0) stetig und partiell differenzierbar ist.
- (ii) Zeigen Sie, dass $(f \circ g)'(0) \neq \operatorname{grad} f(0,0) \cdot g'(0)$. Warum ist dies kein Widerspruch zur Kettenregel?

Aufgabe 12:

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} x^3 y \sin\left(\frac{y}{x}\right), & (x,y) \in \mathbb{R}^2, x \neq 0, \\ 0, & (x,y) \in \mathbb{R}^2, x = 0. \end{cases}$$

- (i) Bestimmen Sie die partiellen Ableitungen f_x und f_y .
- (ii) Zeigen Sie, dass f in (0,0) differenzierbar ist.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs **Höhere Mathematik II (Analysis) für die Fachrichtung Informatik** bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

 $\verb|https://ilias.studium.kit.edu/goto.php?target=crs_1460343_rcodeUyjdjAUg9P&client_id=produktiv|$

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung. Dort werden Sie auch über mögliche Änderungen informiert.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 7-8 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten. Das kommende Übungsblatt wird den Vorlesungsstoff bis Seite 30 (einschließlich Bsp. c)) beinhalten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal.