Tugas Besar EL4125

- Tugas besar dikerjakan secara berkelompok, satu kelompok maksimal beranggotakan tiga orang (kelompok dapat didaftarkan pada ketua kelas sebelum 1 Desember 2023)
- Setiap kelompok diharapkan mampu:
 - Mendeskripsikan suatu persoalan pada bidang pengolahan citra digital.
 - Mengembangkan algoritma yang sesuai untuk mengatasi persoalan yang ditelaah.
 - Melakukan implementasi algoritma dengan menggunakan Matlab atau bahasa pemrograman lainnya.
 - Menyusun dan mempresentasikan laporan mengenai langkah-langkah percobaan yang telah dilakukan.
- Topik tugas besar ditentukan oleh masing-masing kelompok, dengan mempertimbangkan materi pengolahan citra digital yang telah/ hendak dikuasai.
- Peserta dipersilakan mengacu pekerjaan yang sudah diterbitkan dalam publikasi ilmiah oleh pihak lain, asalkan dikutip dalam Daftar Pustaka. Kelalaian mengutip referensi akan dianggap sebagai upaya penjiplakan dan akan mengurangi nilai.
- Dokumen tugas besar dikumpulkan selambat-lambatnya 13 Desember 2023 pukul 24.00
 presentasi akan dijadwalkan pada tanggal 15 Desember 2023:
 - Laporan dalam bentuk softcopy, file presentasi, dan file code yang dipergunakan dalam tugas besar dikumpulkan pada MS Teams sebagai folder zip dengan konvensi nama: NIM1 NIM2 NIM3

Tugas Besar EL4125

- Dokumen tugas besar mencakup:
 - File laporan kegiatan (beri nama L_NIM1_NIM2_NIM3.pdf)
 Laporan kegiatan dibuat dengan menggunakan perangkat lunak pengolah kata, kemudian dikonversi ke format pdf. Laporan tersusun dalam beberapa bagian sebagai berikut:
 - Pendahuluan, mencakup identifikasi/latar belakang masalah yang hendak diselesaikan dan tujuan penyelesaian masalah.
 - Beberapa asumsi yang diambil mengenai kasus yang dipilih dan sistem yang dirancang. Termasuk dalam bagian ini adalah ruang lingkup masalah dan kriteria penyelesaian masalah.
 - Rancangan dan diagram blok dari sistem yang dibangun.
 - Langkah dan hasil percobaan.
 - Analisis.
 - Kesimpulan dan saran/usulan mengenai masalah-masalah teknis yang belum terselesaikan.
 - Daftar pustaka
 - File presentasi laporan (beri nama P_NIM1_NIM2_NIM3.pdf)
 Presentasi laporan dibuat dengan menggunakan MS Powerpoint atau program sejenis, kemudian dikonversi ke format pdf. Isi presentasi mencakup hal-hal penting dari kegiatan pelaksanaan tugas besar yang telah dikerjakan, dan dapat dipresentasikan dalam durasi 15-20 menit.
 - Source code program (dalam satu folder berjudul S_NIM1_NIM2_NIM3)
 Pastikan bahwa source code dan/atau program yang dikumpulkan dapat dites ulang oleh penilai.

Image Enhancement

Deteksi Micro Aneurysms

- Diabetic retinopathy adalah komplikasi akibat penyakit diabetes yang mengganggu penglihatan dan dapat mengakibatkan kebutaan.
- Micro Aneurysms (MA) adalah gejala klinis pertama dari diabetic retinopathy. MA berupa titik kecil berwarna kemerahan yang terdapat pada retina.

QR Code

Image Registration

Baut vs Mur

Nomor Kendaraan

Image Watermarking

(a) Original Lena image

(b) Watermarked Lena image

Watermark information insertion without visible image quality degradation

Deteksi Wajah

Restorasi (& Manipulasi!) Foto

Image Inpainting

Biometrik

http://www.cbsr.ia.ac.cn/english/Databases.asp

Sistem CNN

Brain tumor classification using convolutional neural network.

Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. (2019). Brain tumor classification using convolutional neural network. In *World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic (Vol. 1)* (pp. 183-189). Springer Singapore.

Brain tumor detection and classification: (a) Meningioma (b) Glioma (c) Pituitary

Sistem CNN

"Pneumonia Detection with Deep Convolutional Architecture."

Al Mubarok, A. F., Dominique, J. A., & Thias, A. H. (2019, March). Pneumonia detection with deep convolutional architecture. In *2019 International conference of artificial intelligence and information technology (ICAIIT)* (pp. 486-489). IEEE.

