- # https://freecodecam-boilerplate-gr127opof4f.ws-eu117.gitpod.io/
- 2 # https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-project
- 1 import numpy as np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- from google.colab import drive
- 2 drive.mount('content/')

→ Mounted at content/

- adult_data = pd.read_csv('_/content/content/MyDrive/CodeCamp/Adult_Data.csv')
- 3 # вывожу перечень атрибутов и их типы, а также количество ненулевых значений
- 4 adult_data.info()
- <<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 32561 entries, 0 to 32560
 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education-num	32561 non-null	int64
5	marital-status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital-gain	32561 non-null	int64
11	capital—loss	32561 non-null	int64
12	hours-per-week	32561 non-null	int64
13	native-country	32561 non-null	object
14	salary	32561 non-null	object

dtypes: int64(6), object(9)

memory usage: 3.7+ MB

1 # вывожу несколько записей датасета 2 adult_data.head(3)

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relat
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ-spouse	Exec- managerial	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not

Next steps: (View recommended plots

New interactive sheet

Рассмотрим атрибуты датасета

Категориальные данные

- age
- workclass

```
'State-gov' - правительство штата
'Federal-gov' - федеральное управление
'Local-gov' – местное управление
'Self-emp-not-inc' - не зарегистрированный самозанятый
'Self-emp-inc' - Self employee inc/ зарегистрированный самозанятый
'Without-pay' - волонтерство/ работа в НКО
'Never-worked' - никогда не работал
'Private'
'?' – не указано
```

education

```
'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
'5th-6th', '10th', '1st-4th', 'Preschool', '12th'
```

- education-num
- marital-status: семейное положение

```
'Never-married': никогда не был(а) в браке
'Married-civ-spouse': в зарегистрированном браке (незарегистрированный)
'Divorced': в разводе
'Married-spouse-absent': в браке (супруг отсутствует)
'Separated': в браке с раздельным проживанием
'Married-AF-spouse': в браке с военнослужащим
'Widowed': овдовевший
```

- occupation: род занятий
- relationship

```
Not-in-family', 'Husband', 'Wife',
'Own-child', 'Unmarried','Other-relative'
```

race

```
'White', 'Black', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other'
```

- sex
- native-country

```
'United-States', 'Cuba', 'Jamaica', 'India', '?', 'Mexico',
'South', 'Puerto-Rico', 'Honduras', 'England', 'Canada', 'Germany',
'Iran', 'Philippines', 'Italy', 'Poland', 'Columbia', 'Cambodia',
'Thailand', 'Ecuador', 'Laos', 'Taiwan', 'Haiti', 'Portugal',
'Dominican-Republic', 'El-Salvador', 'France', 'Guatemala',
'China', 'Japan', 'Yugoslavia', 'Peru', 'Outlying-US(Guam-USVI-etc)', 'S'
'Vietnam', 'Hong', 'Ireland', 'Hungary',
'Holand-Netherlands'
```

Количественные данные

- fnlwgt /final weight -- взвешенный критерий для корректировки выборки относительно генеральной совокупности.
- education-num -- уровень образования
- capital-gain -- прирост капитала / доход от капитала

- capital-loss -- потеря капитала
- hours-per-week -- кол-во рабочих часов в неделю
- salary

```
1 # каков средний возраст, количество классов образования, среднее рабочее время в неделю
 3 workclass_describe = adult_data.groupby(by='workclass').agg({'workclass':'count',
                                            'age':'mean',
 5
                                            'education-num':'mean',
                                            'hours-per-week':'mean'}).rename(columns={
 6
 7
                                                                               'workclass':'number_ci
                                                                               'age': 'avg_age',
 8
 9
                                                                               'education-num':'avg_e
10
                                                                               'hours-per-week':'avg_
11
12 total_number_citizens = workclass_describe['number_citizens'].sum(axis=0)
13 workclass_describe['part_of_citizens, %'] = round(workclass_describe['number_citizens'] / total_
14
15 workclass_describe
```

 $\overline{\mathbf{T}}$

		avg_education_num		part_of_c
number_citizens	avg_age	avg_education_num	avg_npw	

workclass

22696	36.797585	9.879714	40.267096	
2541	44.969697	10.226289	44.421881	
2093	41.751075	11.042045	40.982800	
1836	40.960240	9.260349	31.919390	
1298	39.436055	11.375963	39.031587	
1116	46.017025	11.137097	48.818100	
960	42.590625	10.973958	41.379167	
	2541 2093 1836 1298 1116	2541 44.969697 2093 41.751075 1836 40.960240 1298 39.436055 1116 46.017025	2541 44.969697 10.226289 2093 41.751075 11.042045 1836 40.960240 9.260349 1298 39.436055 11.375963 1116 46.017025 11.137097	2541 44.969697 10.226289 44.421881 2093 41.751075 11.042045 40.982800 1836 40.960240 9.260349 31.919390 1298 39.436055 11.375963 39.031587 1116 46.017025 11.137097 48.818100

Next steps:

View recommended plots

New interactive sheet

наблюдения

- у никогда не работавших граждан зафиксировано среднее рабочее время в неделю 28 часов. Возможно, это время отражает время учебной практики: в среднем ~ 4 часа в день при пяти дневной рабочей неделе.
- работающие без оплаты в среднем работают в неделю больше, чем у граждан с другими типами занятости при этом данные граждане не имеют завершенного школьного образования
- ~ 70% граждан ответили, что относятся к Private workclass при этом в среднем они имеют 9 классов образования и в среднем отрабатывают восьми часовой рабочий день

```
1 # рассмотрим роды деятельности в разрезе рабочих классов
2 # выведем кол-во граждан, занятых в каждом роде деятельности
3
4 adult_data.groupby(by=['workclass', 'occupation']).agg({'occupation':'count'})
```

_		_
•	•	
	→	$\overline{}$
•	_	_

occupation workclass occupation ? ? 1836 Federal-gov Adm-clerical 317 **Armed-Forces** 9 **Craft-repair** 64 **Exec-managerial** 180 Farming-fishing Without-pay 6 **Handlers-cleaners** 1 **Machine-op-inspct** Other-service 1

Transport-moving

83 rows x 1 columns

```
9
                                     colors=pie_colors,
10
                                     startangle=140,
                                     wedgeprops={'edgecolor':'black'},
11
12
                                     textprops={'fontsize':8})
13
14
15 for text in texts:
16 text.set_fontsize(8)
17 for autotext in autotexts:
   autotext.set_fontsize(8)
   autotext.set_color('white')
19
20
21 plt.title('Distribution of workclass', fontsize=14, fontweight='bold')
22 plt.show()
```

$\overline{\Rightarrow}$

Distribution of workclass

Private

```
1 # рассмотрим статистические характеристики количественных данных
 3 adult_data[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']]
\overline{\pm}
                                              education-
                                                                capital-
                                                                               capital-
                                                                                            hours-
                                   fnlwgt
                       age
                                                      num
                                                                     gain
                                                                                    loss
                                                            32561.000000
      count 32561.000000
                             3.256100e+04
                                             32561.000000
                                                                            32561.000000
                                                                                           32561.00
                                                10.080679
                                                             1077.648844
      mean
                 38.581647
                             1.897784e+05
                                                                               87.303830
                                                                                               40.4
       std
                 13.640433
                             1.055500e+05
                                                 2.572720
                                                             7385.292085
                                                                              402.960219
                                                                                               12.34
       min
                 17.000000
                             1.228500e+04
                                                 1.000000
                                                                 0.000000
                                                                                0.000000
                                                                                                1.00
       25%
                 28.000000
                             1.178270e+05
                                                 9.000000
                                                                 0.000000
                                                                                0.000000
                                                                                               40.00
       50%
                 37.000000
                             1.783560e+05
                                                10.000000
                                                                 0.000000
                                                                                0.000000
                                                                                               40.00
                             2.370510e+05
                                                12.000000
       75%
                 48.000000
                                                                 0.000000
                                                                                0.000000
                                                                                               45.00
                                                            99999.000000
                 90.000000
                            1.484705e+06
                                                16.000000
                                                                             4356.000000
                                                                                               99.00
       max
 1 # строю сводную таблицу в разрезе пола. Рассмотрим кол-во граждан в разрезе полов, медианный воз
 2
 3 demographic_data = adult_data.groupby(by='sex').agg({'sex':'count',
 4
                                     'age':'median',
 5
                                     'education-num':'median'
 6
                                     })
 7 demographic data['sex'] = np.round(demographic data['sex'] / demographic data['sex'].sum(axis=0)
 8 demographic_data.rename(columns={'sex':'part_respondents, %',
                                    'age':'median_age',
 9
10
                                    'education-num':'median education level'}, inplace=True)
11 demographic_data
\overline{\Sigma}
                                                                                        HH
               part respondents, % median age median education level
         sex
                                                                                        ıl.
      Female
                                  33.08
                                                  35.0
                                                                                10.0
       Male
                                  66.92
                                                  38.0
                                                                                10.0
Next steps:
              View recommended plots
                                               New interactive sheet
```

Происхождение респондентов

для нанесения на карту стран происхождения респондентов переписи, устанавливаю библиотеку geopandas

1 pip install geopandas

Requirement already satisfied: geopandas in /usr/local/lib/python3.11/dist-Requirement already satisfied: numpy>=1.22 in /usr/local/lib/python3.11/dis Requirement already satisfied: pyogrio>=0.7.2 in /usr/local/lib/python3.11/Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-Requirement already satisfied: pandas>=1.4.0 in /usr/local/lib/python3.11/d Requirement already satisfied: pyproj>=3.3.0 in /usr/local/lib/python3.11/d Requirement already satisfied: shapely>=2.0.0 in /usr/local/lib/python3.11/Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/di Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-pa Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-pa Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-pa

```
1 import geopandas as gpd

2
3 # Загружаю карту мира из naturalearth

4 world = gpd.read_file('https://naturalearth.s3.amazonaws.com/110m_cultural/ne_110m_admin_0_count

5
6 # Список стран, которые нужно отметить на карте

7 native_countries = adult_data['native_country'].unique()

8 world['select'] = world['ADMIN'].isin(native_countries)

9
10 # Строю карту
11 fig, ax = plt.subplots(figsize=(10, 10))
12 world.plot(ax=ax, color='lightgray', edgecolor='grey')
13 world[world['select']].plot(ax=ax, color='lightblue')

14
15 # Удаляю координатные оси
16 ах.set_xticks([]), ах.set_yticks([]), ах.set_frame_on(False)

17
18 plt.title('Native countries of respondents', fontsize=12, fontweight='medium')
19 plt.show()
```


Native countries of respondents

Детальный анализ количественных атрибутов датасета

- 1 import matplotlib.pyplot as plt
- 2 import numpy as np
- 3 import pandas as pd
- 4 import seaborn as sns

Age

1 ######## age analysis ########

3 adult_data.age.describe()

age

count	32561.000000
mean	38.581647
std	13.640433
min	17.000000
25%	28.000000
50%	37.000000
75%	48.000000
max	90.000000

dtype: float64

- 1 plt.figure(figsize=(25, 4)) 2 sns.histplot(adult_data[['age']])
- 3 plt.xticks(np.arange(15, 95, 1));

анализ графика

- длинный затухающий хвост справа что может свидетелествовать о малой доле пожилого населения в переписи
- 50% данных приходится на диапазон от 28 до 48 лет включительно
- видим мультимодальность. Она проявляется на пиках: [22.5, 27.5, 32.5, 37.5, 43.5, 48.5, 53.5, 58.5, 63.5, 69.5, 74.5, 79.5, 89.5] лет
 - на основе мод выделю подгруппы:
 - учащиеся 17 <= age < 27.5
 - молодые специалисты 27.5 <= age < 32.5</p>
 - профессионалы 32.5 <= age < 58.5
 - пенсионеры 58.5 <= age < 89.5
- > Final weight
 - [] → 6 cells hidden
- > Capital gain
- [] → 5 cells hidden
- Capital loss

```
1 ######## Capital loss analysis ########
3 adult_data['capital-loss'].describe()
```


capital-loss

count	32561.000000
mean	87.303830
std	402.960219
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	4356.000000

dtype: float64

```
1 # Рассчитываю отношение стандартного отклонения к среднему
3 std_by_mean_capital_loss = round(adult_data['capital-loss'].std()/ adult_data['capital-loss'].me
```

4 f'Стандартное отклонение превосходит среднее в: {std_by_mean_capital_loss} раз'

 $\overline{\pm}$ 'Стандартное отклонение превосходит среднее в: 4.6 раз'

Визуализирую распредление потерь капитала

```
1 plt.figure(figsize=(6, 3))
2 sns.histplot(adult_data['capital-loss'], color='orange', alpha=.7)
3
4 plt.title('Гистограмма "Распределение суммарной потери капитала среди респондентов"\n', fontsize
5 plt.xlabel('\nCapital loss'), plt.ylabel('\n\nNumber respondents')
6
7 plt.xticks(np.arange(0, 4500, 250), rotation=90, fontsize=9)
8 plt.yticks(np.arange(0, 35000, 5000), fontsize=9)
9 plt.tight_layout();
```

Тистограмма "Распределение суммарной потери капитала среди респондентов"

анализ графика

- в среднем потери капитала составляют 87 единиц и при этом стандартное отклонение ~ в 5 раз больше среднего.
- большая часть населения не имеет потерь. Отмечу, что в данных есть записи, в которых ненулевые потери капитала могут быть при нулевом приросте капитала.

```
1 ######## education-num ########
2
3 adult_data['education-num'].describe()
```

-		_
-	→	V
_	Ť	_

count 32561.000000 mean 10.080679 std 2.572720 min 1.0000000

education-num

9.000000

50% 10.000000 **75%** 12.000000

max 16.000000

dtype: float64

✓ Education num

25%

```
1 plt.figure(figsize=(6, 3))
2
3 sns.histplot(adult_data['education-num'])
4
5 plt.title('Распределение количества классов образования среди респондентов\n')
6 plt.xlabel('Education num'), plt.ylabel('Number of respondents', fontsize=9)
7 plt.xticks(fontsize=9), plt.yticks(np.arange(0, 12000, 2000), fontsize=9);
```

$\overline{2}$

Распределение количества классов образования среди респондентов


```
1 size_dataset = len(adult_data)
 3 # количество граждан с полным школьным образованием: пройдено 10 классов
 4 has_school_education = len(adult_data[adult_data['education-num'] == 10])
 5 has_school_education_percent = round(has_school_education /size_dataset , 2) * 100
 7 hasnt_school_education = len(adult_data[adult_data['education-num'] < 10])</pre>
 8 hasnt_school_education_percent = round(hasnt_school_education / size_dataset ,2) * 100
10 # количество граждан с бакалаврским образованием: 11-14 классы
11 has_bachelor_grade = len(adult_data[adult_data['education-num'] == 14])
12 hasnt bachelor grade = len(adult data[(adult data['education-num'] > 10) & (adult data['educatio
13
14 has_bachelors_grade_percent = round(has_bachelor_grade /size_dataset , 2) * 100
15 hasnt_bachelors_grade_percent = round(hasnt_bachelor_grade / size_dataset ,2) * 100
16
17 # количество граждан с магистерским образованием: 15-16 классы
18 has_master_grade = len(adult_data[adult_data['education-num'] == 16])
19 hasnt_master_grade = len(adult_data[(adult_data['education-num'] > 14) & (adult_data['education-
20
21 has_master_grade_percent = round(has_master_grade /size_dataset , 2) * 100
22 hasnt_master_grade_percent = round(hasnt_master_grade / size_dataset ,2) * 100
23
24
25 print(f'количество граждан с полным школьным образованием: {has_school_education}({has_school_ed
26 print(f'\nколичество граждан с бакалаврским образованием: {has_bachelor_grade}({has_bachelors_gr
27 print(f'\nколичество граждан с магистерским образованием: {has_master_grade}({has_master_grade_p
```

→ количество граждан с полным школьным образованием: 7291(22.0%) человек не имеют школьного образования: 14754(45.0%)

количество граждан с бакалаврским образованием: 1723(5.0%) человек не имеют бакалаврского образования: 7804(24.0%)

количество граждан с магистерским образованием: 413(1.0%) человек не имеют магистерского образования: 576(2.0%)

анализ графика

- количество граждан с полным школьным образованием меньше количества граждан без полного школьного образования в больше чем 2 раза
- 45% граждан не имеют школьного образования
- 22% граждан имеют 10 классов образования
- 24% граждан имеют школьное образование и не имеют степени бакалавра
- 5% имеют степень бакалавра
- 2% граждан имеют бакалаврское и не имеют магистерского образования
- 1% граждан имеют магистерское образование

```
1 # рассмотрим финансовые показатели каждой группы населения в разрезе уровня образования
2 adult_data.pivot_table(index='education-num', values=['age', 'capital-gain', 'capital-loss'],
3 aggfunc={'age':'mean',
4 'capital-gain':'mean',
5 'capital-loss':'mean'}).sort_values('capital-gain',
6 ascending=False)
```


age capital-gain capital-loss

education-num

education-num			
15	44.746528	10414.416667	231.203125
16	47.702179	4770.145278	262.845036
14	44.049913	2562.563552	166.719675
13	38.904949	1756.299533	118.350327
1	42.764706	898.392157	66.490196
11	38.553546	715.051375	72.754703
12	37.381443	640.399250	93.418932
10	35.756275	598.824167	71.637087
9	38.974479	576.800114	70.466622
6	37.429796	404.574491	56.845659
5	41.060311	342.089494	28.998054
8	32.000000	284.087760	32.337182
4	48.445820	233.939628	65.668731
7	32.355745	215.097872	50.079149
3	42.885886	176.021021	68.252252
2	46.142857	125.875000	48.327381

✓ Hours-per-week

2 adult_data['hours-per-week'].describe()

hours-per-week

	_
count	32561.000000
mean	40.437456
std	12.347429
min	1.000000
25%	40.000000
50%	40.000000
75%	45.000000
max	99.000000

dtype: float64

```
1 plt.figure(figsize=(4, 4))
2
3 plt.title('Распределение количества занятых работой часов в неделю среди респондентов')
4
5 plt.xlabel('Hours per week', fontsize=9), plt.ylabel('Number of respondents')
6 plt.xticks(fontsize=9), plt.yticks(fontsize=9)
7 sns.histplot(adult_data['hours-per-week']);
```

$\overline{\Rightarrow}$

Распределение количества занятых работой часов в неделю среди респондентов

1 # вывожу сводную таблицу количества рабочих часов в неделю в разрезе возраста респондентов 2 adult_data.pivot_table(index='age', values=['hours-per-week'], aggfunc={'hours-per-week':'mean'}

hours-per-week

age	
17	21.367089
18	25.912727
19	30.678371
20	32.280212
21	34.034722
85	29.333333
86	40.000000
86 87	40.000000 2.000000

73 rows × 1 columns

^{1 #} среднее количество рабочих часов в по возрастным группам

² work_hours_by_week_for_age = adult_data.pivot_table(index='age', values=['hours-per-week'], aggf

³ work_hours_by_week_for_age['mean_work_hours_by_week'] = round(work_hours_by_week_for_age['mean_w

```
# визуализация распределение среднего количества рабочих часов в неделю вдоль возрастной шкалы
from matplotlib import pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 3))
plt.title('Pacпределение среднего количества рабочих часов в неделю по возрастам респондентов')

sns.scatterplot(x='age', y='mean_work_hours_by_week', data=work_hours_by_week_for_age, color='li

plt.yticks(np.arange(0, 50, 5))
plt.ylabel('Mean work hours by week');
```


Анализ графика

- Минимальное количество рабочих часов в неделю в среднем составляет 1 час.
- начиная с 17 лет среднее количество рабочих часов в месяц более 20 часов (может быть подработка в школьные или студенческие годы)
- граждане пенсионного возраста (стандартный возраст выхода на пенсию -- от 55 лет)
- от 60 до ~ 75 лет видим плавное снижение средней продолжительности рабочего времени в неделю
- от 80 до ~ 83.5 лет происходит резкое снижение (< 10 часов) средней продолжительности рабочего времени в неделю
- наблюдаем резкий рост (до 40 часов) средней продолжительности рабочего времени в неделю
- максимальная продолжительность рабочей недели равна 99 часов.
 Потенциально, это либо говорит об ошибке в данных либо о наличии граждан, работающие по 19.5 часов в день при пяти дневном рабочем графике или по 14 часов при семи дневном рабочем графика. Оба варианта говорят о высоком уровне нагрузки на сотрудника.

> OTI	веты на	вопросы	/ Answers	to c	questions
-------	---------	---------	-----------	------	-----------

[] → 8 cells hidden