The curl of E. (Electrostatic case)

The work done in moving a charge Q round **any** closed path C in an electrostatic field $\mathbf{E}_{S}(\mathbf{r})$ is zero.

(Electrostatic fields are "conservative")

Work done = $\oint_C \mathbf{F}_e \cdot d\mathbf{r}$ and from earlier $\mathbf{F}_e = Q\mathbf{E}_S$, so

$$\oint_C \mathbf{E}_S \cdot d\mathbf{r} = 0.$$

Now apply **Stokes' Theorem** to the LHS:

$$\oint_C \mathbf{E}_S \cdot d\mathbf{r} = \int_S [\nabla \times \mathbf{E}_S] \cdot d\mathbf{S} = 0,$$

where S is **any** surface enclosed by path C.

Since C and S are "arbitrary", we have

$$\nabla \times \mathbf{E}_S = \mathbf{0}$$
.

- Not quite a Maxwell Equation only valid for electrostatic fields.
- Curl measures "rotational" sources; this result implies there aren't any in electrostatics.

Electrostatics via the electrostatic potential

All electrostatic fields $\mathbf{E}_{S}(\mathbf{r})$ are solutions to our 2 differential equations

$$\nabla \cdot \mathbf{E}_S = \frac{\rho}{\varepsilon_0} \quad \text{and} \quad \nabla \times \mathbf{E}_S = \mathbf{0}.$$

Since $\nabla \times \nabla \psi = \mathbf{0}$ for **any** scalar field ψ , we can choose to write \mathbf{E}_S in terms of a potential function:

$$\mathbf{E}_{S} = -\nabla \phi$$
.

(The minus sign is a convention.)

 $\phi(\mathbf{r})$ is the electrostatic potential.

Then
$$\nabla \cdot \mathbf{E}_S = \nabla \cdot (-\nabla \phi) = \frac{\rho}{\varepsilon_0}$$
.

But $\nabla \cdot (\nabla \phi) = \nabla^2 \phi$, the "Laplacian" of ϕ , so

$$abla^2 \phi = -\frac{\rho}{\varepsilon_0}$$
. The Poisson Equation.

This scalar, 2nd order PDE governs electrostatics.

If we want a solution in a region away from charges, where $\rho(\mathbf{r}) = 0$, then the equation to solve is

$$\nabla^2 \phi = 0$$
. Laplace's Equation.

Solutions to the Poisson Equation

For a single charge *Q* at the origin,

$$\mathbf{E}_{S}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2}} \hat{\mathbf{e}}_{r},$$

and we now have $\mathbf{E}_S = -\nabla \phi$. In this case we can find $\phi(\mathbf{r})$ by inspection:

Since
$$-\nabla \left(\frac{1}{r}\right) = -\hat{\mathbf{e}}_r \frac{\partial}{\partial r} \left(\frac{1}{r}\right) = +\frac{\hat{\mathbf{e}}_r}{r^2},$$

it follows that the electrostatic potential due to a single charge at the origin is

$$\phi(\mathbf{r}) = \frac{Q}{4\pi\varepsilon_0 r}.$$

For a general charge distribution $\rho(\mathbf{r}')$ within volume V', superposition of electrostatic potentials yields

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV'.$$

1.2 The Magnetic field B

To deduce the origin of the magnetic field, consider a "thought experiment", in which we revisit the 2 charges Q_1 and Q_2 used to write down Coulomb's Law.

This time, let each charge move with **constant** velocity (\mathbf{v}_1 and \mathbf{v}_2) and re-measure the force between them:

If we could do this experiment, we would find an additional force \mathbf{F}_m between the charges.

Total force:

$$\mathbf{F} = \mathbf{F}_e + \mathbf{F}_m.$$

Experimental Force	$\mathbf{F}_e = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2} \hat{\mathbf{e}}_r$	$\mathbf{F}_{m} = \frac{\mu_{0}}{4\pi} \frac{Q_{1}Q_{2}}{r^{2}} \mathbf{v}_{2} \times (\mathbf{v}_{1} \times \hat{\mathbf{e}}_{r})$ $\mu_{0} = \text{permeability of free space}$ $= 4\pi \times 10^{-7} \text{Ns}^{2} \text{C}^{-2} \text{ or Hm}^{-1}$
Use Q_2 as a test charge	$\mathbf{F}_e = Q_2 \mathbf{E}$ defines $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{\mathbf{e}}_r.$	$\mathbf{F}_{m} = Q_{2}(\mathbf{v}_{2} \times \mathbf{B})$ defines $\mathbf{B}(\mathbf{r}) = \frac{\mu_{0}}{4\pi} \frac{Q_{1}}{r^{2}} (\mathbf{v}_{1} \times \hat{\mathbf{e}}_{r})$