东南大学电工电子实验中心 实验报告

课程名称:	电路实验	

第 1、3 次实验

实验名称:	电子	元器件	参数	测计	式		
院 (系):	电气工程学院	_专	业:	电′	气工程	及其	自动化
姓 名:	王皓冬	学	号	:	16022	2627	
实验室:	103 室	_实验	组别	: _			
同组人员:	李烨凡	_实验	付间:	<u>20</u>) <u>23</u> 年_	11 月	<u>13</u> 日
评定成绩:		审门	阅 教师	Ħ:			

一、实验目的

- 1. 了解电流表电压表的物理模型,运用欧姆定律,通过对测量误差的分析、推理, 掌握电流表内接法、电流表外接法等测量方法;通过对不同测量方法产生误差的 估算、分析,建立技术方法存在适用范围的概念。
- 2. 了解二极管、稳压二极管的特性与应用特点,掌握稳压管伏安特性测量方法。

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

1. 二极管的导电特性:

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。

a. 下向特性

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。

必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。

只有当正向电压达到某一数值(这一数值称为"门槛电压",锗管约为 0.2V, 硅管约为 0.6V)以后,二极管才能直正导通。

导通后二极管两端的电压基本上保持不变(锗管约为 0.3V, 硅管约为 0.7V), 称为二极管的"正向压降"。

b. 反向特性

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。

二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。 当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将 失去单方向导电特性,这种状态称为二极管的击穿。

c. 稳压二极管:

稳压二极管是一个特殊的面接触型的半导体硅二极管,其伏安特性曲线与普通二极管相似,但反向击穿曲线比较陡,稳压二极管工作于反向击穿区,由于它在电路中与适当电阴配合后能起到稳定电压的作用,故称为稳压管。

稳压管反向电压在一定范围内变化时,反向电流很小,当反向电压增高到击 穿电压时,反向电流突然猛增,稳压管从而反向击穿,

此后,电流虽然在很大范围内变化,但稳压管两端的电压的变化却相当小, 利于这一特性,稳压管访问就在电路到起到稳压的作用了。

而且,稳压管与其它普通二极管不同,反向击穿是可逆性的,当去掉反向电压稳压管又恢复正常,但如果反向电流超过允许范围,二极管将会发热击穿而损坏,所以要用电阻限制其电流。

图 1 稳压二极管特性曲线

2. 正弦波信号的参数定义

图 2 正弦波信号的参数定义

3. 了解分析稳压管伏安特性测量方法

图 3 测量稳压二极管的伏安特性

4. DDS 信号源作用、基本功能和使用方法

λSDG1000X 信号源性能指标: "频率范围: 最大输出频率 60MHz"幅度范围: 最大输出幅度 20Vp-p

常用功能按键

" Waveforms: 用于选择基本波形

"Parameter:用于设置基本波形参数,直接进行参数设置;

" Ch1/Ch2 : 切换 CH1 或 CH2 为当前选中通道。开机时默认选中 CH1,用户界面 CH1 对应的区域高亮显示,且通道状态栏边框显示为绿色;按下此键可选中 CH2,用户界面 CH2 区域高亮显示,且边框显示黄色。"在 Waveforms 操作界面下有一列波形选择按键,分别为正弦波、方波、三角波、脉冲波、高斯白噪声、DC 和任意波"

通道输出控制:使用 Output 按键,将开启/关闭前面板的输出接口的信号输出。选择相应的通道,按下 Output 按键,该按键灯被点亮,同时打开输出开关,输出信号。再次按 Output 按键,将关闭输出。

数字键盘:用于编辑波形时参数值的设置,直接键入数值可改变参数值。

旋钮:用于改变波形参数中某一数位的值的大小

方向键:使用旋钮设置参数时,用于移动光标以选择需要编辑的位,使用数字键盘输入参数时,用于删除光标左边的数字。

图 4 DDS 信号源面板

三、实验内容

- (1) 用数字万用表直接测量(10Ω、2MΩ)、电容(0.022μF)的参数,测量二极管(稳压二极管)的极性。
 - (1) 示波器的补偿(校准)信号测量
- (a) 在示波器稳定显示其补偿(校准)信号,观测其频率、幅度、高低电平电压值,记录波形;

测量方法:在屏幕上先读出波形垂直所占格数或水平所占格数,然后用"格数×档位(V/DIV,S/DIV)"方式计算相应电压或时间。

探头 衰减		幅度		高	电平电	1压	低	电平电	1月		周期		频率
	档位	格数	计算 值	档 位	格 数	计算 值	档位	格数	计算 值	档 位	格 数	计算 值	,
×1	500mV	4	2/	5xxV	4	2/	Zwin	0	οV	Zwus	5	/ms	Hz Hz

(b) 将示波器的探头开关衰减变为"×10",记录波形,观察实验现象并作出

相应处理。

探头 衰减		幅度		高	电平电	1月	但	毛电平电	1月		周期		频率
×10	档 位	格 数	计算 值	档 位	格 数	计算 值	档 位	格数	计算 值	档位	格 数	计算 值	(000
×10	Zunl	14	>00mV	[ww]	4	/mcox	toml	10	ογ	ζωuς	2]ms	Hz

(2) 用万用表进行电阻测量 用万用表电阻档测量找出器件中 $10 \Omega \times 2M \Omega$ 电阻,记录其实际测量值,同时识 别其标称值,将实际测量值与标称值比较。

标称阻值	10 Ω	2ΜΩ
测量值	10.514	1.981
实测误差	5.14%	1.9%

(3) 调节直流稳压源输出电压(验收) a)用台式数字万用表测量电压输出,对比两者的电压指示值;

CH1 直流稳压电源输出电压显示值	1.01 V
万用表测量输出电压值	1.00337V
实测误差	0.663%

(2) 设计电路,进行电阻阻值的测量 $(10\Omega, 2M\Omega)$;

a) 选择合适的电源电压,分别用电流表内接和电流表外接两种方法测量每个电阻阻值;

10Ω电阻测量电路(电流表内接、电流表外接测量电路及实物图片拍摄)

2MΩ 电阻测量电路(电流表内接、电流表外接测量电路及实物图片拍摄)

b) 记录测量数据,对比分析测量误差及误差原因,并以提高测量精度为准则给出实验结论。

电源电压(U)	测量对象 (标称值)	测量方法	电压(U)	电流(I)	电阻(R)	误差
4. 5V	10 Ω	电流表内接	0. 482V	42.1mA	11. 45 Ω	14.5%
4. 5V	10 Ω	电流表外接	0. 423V	42.8mA	9. 88 Ω	1.2%
10. OV	2ΜΩ	电流表内接	10.07V	4. 85 μ A	2.07ΜΩ	3.7%
10. OV	2M Ω	电流表外接	10. 07V	5. 46 µ A	1.84ΜΩ	8.0%

实验数据分析 (误差和误差原因):

- 1. 电阻本身的电阻值存在一定的误差、导线等并非理想器件,存在一定阻值;
- 2. 万用表所得电流值与电压值并非恒定的数值,其值处于某个区间来回跳动, 无法准确读数。
- 3. 电流表与电压表非理想电表带来的误差:

首先给出测量公式:

$$R = \frac{U}{I}$$

电流表内接,所测结果偏小。产生该误差的原因是:电流表测的是流过电阻的电流,是准确值;电压表测的是电流表和电阻两端的电压, $U = U_R + U_A$,偏大。因而结果偏大。

电流表外接,所测结果偏大。产生该误差的原因是:电流表测的是流过电阻及电压表的电流, $I = I_R + I_V$,偏大;电压表测的是电阻两端的电压,是准确值。因而结果偏小。在实际中,可以采用比较所测电阻与 $\sqrt{R_A R_V}$ 比较的方法判断是大电阻还是小电阻。

实验结论:

电流表外接法适合小电阻的测量, 其测量结果会偏小;

电流表内接法适合大电阻的测量,其测量结果会偏大。

(3) DDS 信号源输出 20kHz 的脉冲(Pulse)波形,低电平 0V,

高电平 5V, 占空比 50%。示波器稳定显示波形。

- a) 用示波器测量信号的周期、频率、幅度和低电平电压、高电平电压、上升时间、下降时间(测量方法:使用面板上的"Measure"按钮,调出菜单,在显示屏上读数);用万用表测量其直流分量。
- b) 改变示波器测量通道的耦合方式,观察记录波形:波形、周期、频率、幅度、低电平电压、高电平电压各会有什么变化,并解释原因;
- c)调整示波器通道菜单探头倍率(探针电压(固纬)),观察记录波形参数变化(10×,0.1×),并说明最终数据处理方法;
- d) 改变触发源、调节触发电平,观察显示波形有无影响?

信号源		示波器测量结果					万用表测量结 果	
频 率 (Hz)	幅度	高电平电 压	低电平电 周期 频率 上升时间				下降时间	直流分量
20k	4.96V	4.92V	-40.0mA	50. 0us	20.0kHz	62. 77ns	61.92ns	2. 42V

表 1 脉冲信号的测量

b) 改变后的数值如下:

可以看到,周期、频率、幅度几乎不变;波形不变,但整体下移至中轴约与坐标轴重合。原因是,交流耦合时,示波器只能显示交流分量,滤去了直流部分。

c) 改变后数值如下:

10x:

1x:

可以观察到,探头倍率改变后,周期、频率等数值不变,而振幅、高低值等数据改变幅度对 应探头改变幅度。

d)有影响。

可以观察到,示波器无法正确显示波形。

(2) 正弦波测量,设置频率为 1.5kHz,峰峰值为 3V。测量频率,周期,峰峰值,有效值。并解释峰值一有效值、周期-频率对应关系。测量方法:

- a) 用光标 "Cursor"来测量。
- b) 使用 "Measure"按钮,调出菜单,在显示屏上读数。

表 2 正弦波的测量

测量方法	峰峰值	周期	有效值	频率
а	3.00V	668us	/	/
b	3.02V	666. 4us	2. 11V	1.501kHz

峰峰值约为有效值的√2倍;周期约为频率的倒数。

其中,峰峰值与有效值的准确关系应为方均根值关系,在此处约表征为 $\sqrt{2}$ 。

(3) 测量电容和电测量电容(0.022 µF、330 µH 电感)

a) 选择信号源作为激励源,选择信号频率,计算相应容抗、感抗;

测量频率	容抗	测量频率	感抗
1kHz	7234. 3 Ω	10kHz	20. 7 Ω
10kHz	723. 4 Ω	20kHz	41. 5 Ω

- b) 选择电阻、电容,或者电阻、电感构成电路,接入激励源;
- c) 选择测量方法, 画出测量电路;

电容测量电路及实物图片拍摄:

电感测量电路及实物图片拍摄:

d) 在不同频率段分别测量并记录实验数据(各测两组数据),计算电容、电感的参数;

激励源频率 (Hz)	测量对象 (标称值)	测量方法	电压(U)	电流(I)	元件参数 (测量值)	误差
1k	0. 022 μF	内接法	1.7648V	0. 2731mA	0. 0246 µ F	10%
10k	0. 022 μF	内接法	0. 1754V	2. 5572mA	0. 0231 µ F	5%
10k	330 µ Н	内接法	0.53V	26.12mA	322. 9 µ H	2.1%
20k	330 µ Н	内接法	0.93V	23.08mA	320. 7 µ H	2.8%

e) 思考: 如何提高测量精度?

(对比上述实验中的测量误差,分析误差原因,以及如何降低测量误差提高测量精度。)

由于本实验中的容抗与感抗是大阻抗,误差的主要来源是电流表分压。对于电容的测量,由矢量三角形可得,要使阻抗近似等于容抗,则需要容抗远大于电流表电阻。容抗的表达式:

$$Xc = \frac{1}{\omega C}$$

故欲使容抗值真实值与测量值接近,需要激励源频率尽可能小。同理,对于电感的测量,由矢量三角形可得,要使阻抗值近似等于感抗,同样需要感抗远大于电流表电阻。感抗的表达式:

$$X_L = \omega L$$

故欲使感抗值真实值与测量值接近,需要激励源频率尽可能大。 但上述频率的取值都应合理。

(4) 稳压二极管伏安特性的测量; (提高要求)

a) 测量电路:

(图中有导线未接)

b) 数据记录表格

电压/V	电流/uA
-6.248	-3569
-6.224	-1668.44
-6.21	-717.12
-6.201	-243.84
-6.193	-155.041
-6.19	-10.686
-5.957	-0.842
-3.956	-0.403
-1.953	-0.203
-0.157	-0.025
0.356	0.078
0.406	0.129
0.431	0.178
0.442	0.206
0.457	0.265
0.507	0.732
0.554	2.453
0.597	8.55
0.631	23.511

0.672	82.903
0.689	160.256

c) 描绘稳压二极管的伏安特性曲线

四、实验总结

(实验出现的问题及解决方法、思考题(如有)、收获体会等)

这两次实验中主要出现的问题包括:

- 1. 电路设计与搭接:测量二极管特性时,由于电路搭接错误,导致花费了很多时间修正测量电路;
- 2. 实验仪器操作不熟练:测量交流分量时没有正确转接红表笔,导致所测数据 异常并花费了很多时间寻找错误。

经过这两次的实验,对于面包板上电路的设计更为熟练了,同时,电路实验的导线用法不同于数电实验,有与表笔相接等更广泛的用法。

五、参考资料 (预习、实验中参考阅读的资料)

电路教学计划 2023