Московский государственный университет имени М.В.Ломоносова

Механико-математический факультет Кафедра высшей алгебры

Квантовые симметрии в алгебре тройных чисел

Выполнил студент: 211 группы Зазовский Л.С. Научный руководитель: проф. Гордиенко А.С.

Москва 2025

Содержание

1	1 Конечно двойственная алгебра Хопфа	2
	1.1 Структура конечного двойственного пространства	2
	1.2 Структура конечно двойственной алгебры Хопфа	5
2	2 Характеризация <i>H</i> -модульной структуры	6
3	3 Классификация модульных структур	7

1 Конечно двойственная алгебра Хопфа

1.1 Структура конечного двойственного пространства

Пусть у нас задано векторное пространство V над полем \mathbb{K} .

Известно, что если V конечномерное, тогда $V\cong V^*$ и существует канонический изоморфизм между V и V^{**} . Оказывается, что похожий результат верен в бесконечномерных пространствах.

Определение. Конечное двойственное пространство V° — это подпространство V^{*} такое, что для любой линейной функции $\alpha \in V^{\circ}$ её ядро имеет конечную коразмерность.

В случае конечномерных пространств $V^{\circ} = V^*$.

Определение. Пусть в V выбран базис $(e_i)_{i\in\Lambda}$. Тогда двойственная система $(\varepsilon_i)_{i\in\Lambda}$ в V° —это система функций таких, что для всех $i,j\in\Lambda$ верно соотношение $\varepsilon_i(e_j)=\delta_{ij}$, где δ_{ij} —символ Кронекера.

В случае конечномерных пространств двойственная система окажется в точности системой координатных функций.

Теорема. Двойственная система является базисом в V°

Доказательство. Сначала докажем, что двойственная система полна в V° . Рассмотрим некоторую линейную функцию f из V° . Тогда существует векторное подпространство W такое, что V, раскладывается в прямую сумму $V=W\oplus \mathrm{Ker}(f)$.

Рассмотрим проектор π на подпространство W вдоль $\mathrm{Ker}(f)$. Нетрудно, заметить что $\mathrm{Ker}(\pi) = \mathrm{Ker}(f)$ и $\mathrm{Im}(\pi) = W$. Значит $W \cong V/\mathrm{Ker}(f)$. Отсюда следует, что W имеет конечную размерность, обозначим её как m. Выберем базис a_1, \ldots, a_m в W. Для любого вектора v верно разложение $v = \lambda_1 a_1 + \cdots + \lambda_m a_m + u$, где u некоторый вектор из $\mathrm{Ker}(f)$. Тогда $f(v) = f(\lambda_1 a_1 + \cdots + \lambda_m a_m + u) = \lambda_1 f(a_1) + \cdots + \lambda_m f(a_m)$. Мы получили, что значение f на произвольном векторе является линейной комбинацией значений на $(a_i)_{i=1}^m$

Так как $(e_i)_{i\in\Lambda}$ — базис, значит все $(a_j)_{j=1}^m$ выражаются с помощью конечной линейной комбинации $(e_i)_{i\in\Lambda}$. Отсюда понятно, что значение f на произвольном векторе является конечной линейной комбинацией значений на конечном подмножестве базисных векторов $(e_i)_{i\in\Lambda}$. Обозначим это подмножество e_{i_1},\ldots,e_{i_n} . Тогда можно выразить $f=f(e_{i_1})\varepsilon_{i_1}+\cdots+f(e_{i_n})\varepsilon_{i_n}$. А это значит, что двойственная система полна.

Теперь докажем линейную независимость двойственной системы. Рассмотрим линейную комбинацию некоторой конечной подсистемы $\lambda_{i_1}\varepsilon_{i_1}+\cdots+\lambda_{i_n}\varepsilon_{i_n}=0$. Подставим e_{i_k} , получим $\lambda_{i_k}\varepsilon_{i_k}(e_{i_k})=0$, а значит $\lambda_{i_k}=0$. Взяв все возможные k от 1 до n получим, что все коэффициенты равны нулю, что означает линейную независимость этой подсистемы. Следовательно все конечные подсистемы линейно независимы, а значит и двойственная система линейно независима.

Замечание. В силу доказанной выше теоремы будем называть двойственную систему— конечно двойственным базисом.

Для полного соответствия аналогичным результатам в случае конечномерных пространств остатётся доказать две нижеследующие теоремы.

Теорема. Пусть задано векторное пространство V над полем \mathbb{K} . Тогда $V\cong V^\circ$

Доказательство. Выберем в V базис $(e_i)_{i\in\Lambda}$ и соответсвующий ему конечно двойственный базис $(\varepsilon_i)_{i\in\Lambda}$ Пусть $\varphi:V\to V^\circ$ —линейное отображение заданное на базисе $\varphi(e_i):=\varepsilon_i$. Очевидно, что φ сюръективно.

Докажем инъективность. Пусть $\varphi(a)=\varphi(b)$ для некоторых $a,b\in V$. Тогда $\varphi(a-b)=0$. Разложим a-b по базису V: $a-b=\lambda_{i_1}e_{i_1}+\cdots+\lambda_{i_n}e_{i_n}$. Тогда $\varphi(\lambda_{i_1}e_{i_1}+\cdots+\lambda_{i_n}e_{i_n})=\lambda_{i_1}\varepsilon_{i_1}+\cdots+\lambda_{i_n}\varepsilon_{i_n}=0$. В силу линейной независимости $(\varepsilon_{i_k})_{k=1}^n$, получаем $\lambda_{i_1}=\cdots=\lambda_{i_n}=0$. Значит a-b=0, следовательно φ инъективно. Тогда φ изоморфизм.

Теорема. Существует канонический изоморфизм $\varphi: V \to V^{\circ \circ}$.

Доказательство. Определим $\varphi: V \to V^{\circ\circ}$, как $\varphi(u)(\alpha) := \alpha(u)$, для любых $u \in V$ и $\alpha \in V^{\circ}$. Докажем корректность определения, а именно тот факт, что $\varphi(u) \in V^{\circ\circ}$. Ядро $\varphi(u)$ это множество линейных функций α таких, что $\alpha(u) = 0$. Выберем базис $(e_i)_{i \in \Lambda}$ в V и соответствующий ему конечно двойственный базис $(\varepsilon_i)_{i \in \Lambda}$ в V° . Пусть $u = \lambda_{i_1} e_{i_1} + \dots + \lambda_{i_m} e_{i_m}$, тогда $\varepsilon_j(u) = \lambda_j$, если для некоторого k верно $j = i_k$, и $\varepsilon_j(u) = 0$ иначе. Отсюда получаем что $V^{\circ}/\mathrm{Ker}(\varphi(u)) \cong \langle \varepsilon_{i_1}, \dots, \varepsilon_{i_m} \rangle$, откуда следует, что $\mathrm{Ker}(\varphi(u))$ имеет конечную коразмерность.

Теперь докажем, что φ — изоморфизм. Пусть $\varphi(a)(\alpha) = \varphi(b)(\alpha)$ для любой функции $\alpha \in V^{\circ}$. Тогда для любого $i \in \Lambda$ верно $\varphi(a)(\varepsilon_i) = \varphi(b)(\varepsilon_i)$, иначе говоря $\varepsilon_i(a) = \varepsilon_i(b)$ для любого $i \in \Lambda$. Это значит что a и b имеют одинаковые разложения по базису $(e_i)_{i \in \Lambda}$. Получаем, что a = b, следовательно φ инъективен.

Пусть $f \in V^{\circ \circ}$. Выберем в $V^{\circ \circ}$ базис $(\epsilon_i)_{i \in \Lambda}$ конечно двойственный к $(\varepsilon_i)_{i \in \Lambda}$. Разложим функцию f по $(\epsilon_i)_{i \in \Lambda}$: $f = \lambda_{i_1} \epsilon_{i_1} + \dots + \lambda_{i_k} \epsilon_{i_k}$. Рассмотрим вектор $u \in V$, такой что $u = \lambda_{i_1} e_{i_1} + \dots + \lambda_{i_k} e_{i_k}$ и докажем, что $\varphi(u) = f$.

 $f(\varepsilon_j) = \lambda_j$, если для некоторого k верно, что $j = i_k$, иначе $f(\varepsilon_j) = 0$. $\varphi(u)(\varepsilon_j) = \varepsilon_j(u) = \lambda_j$, если для некоторого k верно, что $j = i_k$, иначе $\varphi(u)(\varepsilon_j) = \varepsilon_j(u) = 0$. Значит f и $\varphi(u)$ совпадают на базисе, следовательно $f = \varphi(u)$. Тем самым мы доказали, что φ сюръективен.

Для удобства рассуждений введём ещё одно понятие.

Определение. Пусть задано векторное пространство V над полем \mathbb{K} и система $K\subseteq V^*$. Единицей линейной функции $\alpha\in K$ по системе K- будем называть вектор $v\in V$, такой что $\alpha(v)=1$ и для любой линейной функции $\beta\in K$ отличной от α верно $\beta(v)=0$

Будем обозначать единицу линейной функции α как $\alpha^{(1)}$. Из рассуждений выше следует, что для любой функции из конечно двойственного базиса существует единица линейной функции.

1.2 Структура конечно двойственной алгебры Хопфа

Пусть задана A — алгебра с единицей над полем \mathbb{K} . Рассмотрим подмножество линейных функций $A^{\circ} \subseteq A^{*}$, такое что в ядре любой функции $\alpha \in A^{\circ}$ содержится идеал конечной коразмерности. Тогда $\mu^{*}(A^{\circ}) \subseteq A^{\circ} \otimes A^{\circ}$, а значит можно определить конечную двойственную коалгебру.

Определение. Конечная двойственная коалгебра A° — это коалгебра $(A^{\circ}, \mu^{\circ}, u^{\circ})$, где μ° и u° это ограничения μ^{*} и u^{*} на A° соответственно.

Как множество A° является подпространством в конечно двойственном пространстве к векторному пространству A. Выберем в A° базис $(\varepsilon_i)_{i\in\Lambda}$ и дополним его до базиса всего конечно двойственного пространства. Рассмотрим конечно двойственный базис в A, в нём существует подсистема $(e_i)_{i\in\Lambda}$ из единиц линейных функций составляющих базис A° . Она обладает следующим свойством $\varepsilon_i(e_i) = \delta_{ij}$, где δ_{ij} — символ Кронекера.

Пусть задана H — алгебра Хопфа над полем \mathbb{K} . Рассмотрим H° — конечную двойственную коалгебру. Как множество H° является подалгеброй в H^{*} , поэтому H° является алгеброй Хопфа.

Определение. Пусть задана H — алгебра Хопфа над полем \mathbb{K} . H° называют конечной двойственной алгеброй Хопфа.

Здесь и далее мы пользуемся обозначениями Свидлера и для удобства опускаем знак суммы: $\Delta a = a_{(1)} \otimes a_{(2)}$. Выпишем некоторые полезные соотношения, следующие из двойственности. Для любых $\alpha, \beta \in H^{\circ}$ и $h, g \in H$ верно:

$$\varepsilon \alpha = \alpha \varepsilon = \alpha \tag{1}$$

$$(\alpha\beta)(a) = \alpha(a_{(1)})\beta(a_{(2)}) \tag{2}$$

$$u^{\circ}(\alpha) = \alpha(1_H) \tag{3}$$

$$\triangle \alpha(a \otimes b) = \alpha(ab) \tag{4}$$

2 Характеризация H-модульной структуры

Пусть задана A — конечномерная H-модульная алгебра с 1 над полем \mathbb{K} , где H — алгебра Хопфа.

Отображение $\psi: H \otimes A \to A$, такое что $\psi(h \otimes a) := ha$ для всех $h \in H$ и $a \in a$, называется H-модульной структурой. Определим гомоморфизм алгебр $\zeta: H \to \operatorname{End}_{\mathbb{K}}(A)$ равенством $\zeta(h)(a) := \psi(h \otimes a)$.

Выбрав базис в A такой, что его первым элементом будет единица алгебры A, отождествим $\operatorname{End}_{\mathbb{K}}(A)$ с $M_n(\mathbb{K})$. Тогда существуют такие $(\alpha_{ij})_{ij} \in H^{\circ}$, что

$$\zeta(h) = \begin{pmatrix} \varepsilon(h) & \alpha_{12}(h) & \dots & \alpha_{1n}(h) \\ 0 & \alpha_{22}(h) & \dots & \alpha_{2n}(h) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \alpha_{n2}(h) & \dots & \alpha_{nn}(h) \end{pmatrix}$$

Для удобства положим $\alpha_{11} = \varepsilon$ и $\alpha_{21} = \cdots = \alpha_{n1} = 0$ и обозначим за К базис $\langle \varepsilon, (\alpha_{ij})_{ij} \rangle$.

Будем называть $\zeta(h)$ — матрицей модульной структуры ψ . При так заданном отображении ζ , верно $\zeta(H)=\mathrm{cosupp}\ \psi$. Кроме того, рассмотрев ранг матрицы модульной структуры, получаем $\dim\ \zeta(H)=\dim\ \langle K\rangle$.

Нетрудно заметить, что $\mathrm{Ker}(\zeta)$ совпадает с аннулятором $\langle \mathrm{K} \rangle$. Из того, что $\mathrm{Ker}(\zeta)$ — идеал конечной коразмерности, следует что в ядре любой функции из $\langle \mathrm{K} \rangle$ содержится идеал конечной коразмерности, а значит $\langle \mathrm{K} \rangle \subseteq H^{\circ}$.

Так как ζ гомоморфизм алгебр, для любых $a,b\in H$ верно $\zeta(ab)=\zeta(a)\zeta(b)$. Значит для всех $1\leq i,j\leq n$ верно

$$\alpha_{ij}(ab) = \sum_{k=1}^{n} \alpha_{ik}(a)\alpha_{kj}(b) \tag{*}$$

.

Дополним K до базиса $(\varepsilon_i)_{i\in\Lambda}$ в H° , тогда существует система $(e_i)_{i\in\Lambda}$ в H, такая что $\varepsilon_i(e_j) = \delta_{ij}$, где δ_{ij} —символ Кронекера. Разложим $\Delta\alpha_{ij}$ по базису $(\varepsilon_k \otimes \varepsilon_l)_{k,l\in\Lambda}$. Рассматривая $\Delta\alpha_{ij}$ от всех возможных $e_k \otimes e_l$ и используя (4) и (*), получим

$$\triangle \alpha_{ij} = \sum_{k=1}^{n} \alpha_{ik} \otimes \alpha_{kj}$$

3 Классификация модульных структур

Теорема. Пусть $\psi: H \otimes A \to A$ – структура H-модульной алгебры c 1 на $A = \mathbb{K}[x]/(x^3)$, где H — некоторая алгебра Хопфа, char $\mathbb{K} \neq 3$ и в поле существует примитивный корень степени 3. Выберем базис в $A: \bar{1}, \bar{x}, \bar{x}^2$ и отождествим $\operatorname{End}_{\mathbb{K}}(A)$ с $M_3(\mathbb{K})$. Предположим, что коноситель действия это подалгебра верхнетреугольных матриц. Тогда ψ эквивалентно одной из следующих модульных структур над A:

- 1. действие поля \mathbb{K} на алгебре A умножением на скаляры;
- 2. действие групповой алгебры $\mathbb{K}\langle c\rangle_2$, заданное равенством $c\bar{x}=-\bar{x};$
- 3. действие групповой алгебры $\mathbb{K}\langle c \rangle_3$, заданное равенством $c\bar{x} = \xi \bar{x}$, где ξ примитивный корень из единицы степени 3;
- 4. $H_9(\xi)$ -действие, заданное равенствами $c\bar{x} = \xi \bar{x}, \ v\bar{x} = \bar{1},$ где ξ примитивный корень из единицы степени 3.

Доказательство. Определим отображение $\zeta: H \to \operatorname{End}_{\mathbb{K}}(A)$ из равенства $\zeta(h)(a) := \psi(h \otimes a)$. Выберем в A базис $\bar{1}, \bar{x}, \bar{x}^2$ и отождествим $\operatorname{End}_{\mathbb{K}}(A)$ с $M_3(\mathbb{K})$. Тогда $\zeta(h)$ будет матрицей модульной структуры. Из условий теоремы следует, что матрица модульной структуры верхнетреугольная. Для удобства изложения переобозначим её нижеследующим образом:

$$\zeta(h) = \begin{pmatrix} \varepsilon(h) & \alpha(h) & \tau(h) \\ 0 & \beta(h) & \theta(h) \\ 0 & 0 & \varphi(h) \end{pmatrix}$$

Из того, что A-H-модульная алгебра с 1, следует

$$h(\bar{x}^3) = (h_{(1)}\bar{x})(h_{(2)}\bar{x}^2) = 0$$
$$h(\bar{x}^2) = (h_{(1)}\bar{x})(h_{(2)}\bar{x})$$

Используя определение $\zeta(h)$, получаем следующее

$$h\bar{x} = \alpha(h)\bar{1} + \beta(h)\bar{x}$$
$$h\bar{x}^2 = \tau(h)\bar{1} + \theta(h)\bar{x} + \varphi(h)\bar{x}^2$$

Тогда, используя $\bar{x}^3 = 0$, получим следующие соотношения

$$(h_{(1)}\bar{x})(h_{(2)}\bar{x}) = (\alpha(h_{(1)})\bar{1} + \beta(h_{(1)}))(\alpha(h_{(2)})\bar{1} + \beta(h_{(2)})) =$$

$$=\alpha^2(h)\bar{1}+(\alpha\beta+\beta\alpha)(h)\bar{x}+\beta^2(h)\bar{x}^2$$
 $h\bar{x}^2=(h_{(1)}\bar{x})(h_{(2)}\bar{x})=\tau(h)\bar{1}+\theta(h)\bar{x}+\varphi(h)\bar{x}^2=\alpha^2(h)\bar{1}+(\alpha\beta+\beta\alpha)(h)\bar{x}+\beta^2(h)\bar{x}^2$ А значит можно выразить

$$\tau = \alpha^{2}$$

$$\theta = \alpha\beta + \beta\alpha$$

$$\varphi = \beta^{2}$$
(5)

Кроме того

$$(h_{(1)}\bar{x})(h_{(2)}\bar{x}^2) = (\alpha(h_{(1)})\bar{1} + \beta(h_{(1)})\bar{x}) (\tau(h_{(2)})\bar{1} + \theta(h_{(2)})\bar{x} + \varphi(h_{(2)})\bar{x}^2) =$$

$$= (\alpha\tau)(h)\bar{1} + (\alpha\theta + \beta\tau)(h)\bar{x} + (\alpha\varphi + \beta\theta)(h)\bar{x}^2 = 0$$

Отсюда получаем

$$\alpha\tau = 0$$
$$\alpha\theta + \beta\tau = 0$$
$$\alpha\varphi + \beta\theta = 0$$

Воспользовавшись (5) получим

$$\alpha^3 = 0 \tag{6}$$

$$\alpha^2 \beta + \alpha \beta \alpha + \beta \alpha^2 = 0 \tag{7}$$

$$\alpha \beta^2 + \beta \alpha \beta + \beta^2 \alpha = 0 \tag{8}$$

Из соотношений (5) выразим τ , θ , φ и перепишем матрицу модульной структуры, используя эти выражения:

$$\zeta(h) = \begin{pmatrix} \varepsilon(h) & \alpha(h) & \alpha^2(h) \\ 0 & \beta(h) & (\alpha\beta + \beta\alpha)(h) \\ 0 & 0 & \beta^2(h) \end{pmatrix}$$

Из доказанного в предыдущем разделе

$$\dim \zeta(H) = \dim \langle \varepsilon, \alpha, \beta, \alpha^2, \alpha\beta + \beta\alpha, \beta^2 \rangle \leq 6$$

Если dim $\zeta(H)=6$, тогда $\zeta(H)$ – подалгебра всех верхнетреугольных матриц. Докажем, что в таком случае модульная структура ψ эквивалентна модульной структуре 4.

Пусть $\psi_1: H_9(\xi) \otimes A \to A$ — модульная структура 4. Определим гоморфизм алгебр $\zeta_1: H_9(\xi) \to M_3(\mathbb{K})$ с помощью соотношения $\zeta_1(h)(a) = \psi_1(h \otimes a)$. Тогда мы получим

$$\zeta_1(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \xi^2 \end{pmatrix}, \ \zeta_1(v) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 + \xi \\ 0 & 0 & 0 \end{pmatrix}$$

Выпишем образ базиса $(c^k v^l)_{0 \le k,l \le 2}$ в $\zeta(H)$:

$$\zeta(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \zeta(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \xi^2 \end{pmatrix}, \ \zeta(c^2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi^2 & 0 \\ 0 & 0 & \xi \end{pmatrix}$$

$$\zeta(v) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 + \xi \\ 0 & 0 & 0 \end{pmatrix}, \ \zeta(cv) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & \xi + \xi^2 \\ 0 & 0 & 0 \end{pmatrix} \zeta(c^2v) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 + \xi^2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\zeta(v^2) = \begin{pmatrix} 0 & 0 & 1 + \xi \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \zeta(cv^2) = \begin{pmatrix} 0 & 0 & 1 + \xi \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Рассмотрим эти матрицы как вектора в базисе из матричных единиц и запишем их координаты построчно в матрицу:

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & \xi & 0 & 0 & 0 & \xi^2 \\ 1 & 0 & 0 & 0 & \xi^2 & 0 & 0 & 0 & \xi \\ 0 & 1 & 0 & 0 & 0 & 1 + \xi & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \xi + \xi^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 + \xi^2 & 0 & 0 & 0 \\ 0 & 0 & 1 + \xi & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 + \xi & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Нетрудно, проверить, что rank M=6, а значит dim cosupp $\psi_1=6$, откуда соsupp ψ_1 совпадает с алгеброй верхнетреугольных матриц.

Пусть теперь dim $\zeta(H) \leq 5$

В предыдущем разделе были доказаны разложения для результатов коумножения на элементах матрицы модульной структуры. Выпишем их для наших функций:

$$\Delta \varepsilon = \varepsilon \otimes \varepsilon$$

$$\Delta \alpha = \varepsilon \otimes \alpha + \alpha \otimes \beta$$

$$\Delta \beta = \beta \otimes \beta$$

$$\Delta \alpha^{2} = \varepsilon \otimes \alpha^{2} + \alpha \otimes (\alpha \beta + \beta \alpha) + \alpha^{2} \otimes \beta^{2}$$

$$\Delta (\alpha \beta + \beta \alpha) = \beta \otimes (\alpha \beta + \beta \alpha) + (\alpha \beta + \beta \alpha) \otimes \beta^{2}$$

$$\Delta \beta^{2} = \beta^{2} \otimes \beta^{2}$$

Значит функции ε , β , β^2 являются группоподобными.

Если ε и β линейно зависимы, тогда из того, что $\varepsilon \neq 0$, следует, что $\beta = \lambda \varepsilon$, при этом $1 = \beta(1_H) = \lambda \varepsilon(1_H) = \lambda$, значит $\beta = \varepsilon$. Отсюда $\beta^2 = \varepsilon^2 = \varepsilon$. Подставим это в (8).

$$\alpha \varepsilon + \varepsilon \alpha \varepsilon + \varepsilon \alpha = 3\alpha = 0$$

Из этого тождества и того, что char $\mathbb{K} \neq 3$, следует что $\alpha = 0$. Тогда наша матриц модульной структуры выглядит следующим образом:

$$\zeta(h) = \begin{pmatrix} \varepsilon(h) & 0 & 0 \\ 0 & \varepsilon(h) & 0 \\ 0 & 0 & \varepsilon(h) \end{pmatrix}$$

Значит $\zeta(H)$ - подалгебра скалярных матриц. Такая модульная структура эквивалентна структуре 1.

Далее будем полагать линейные функции $\varepsilon,\ \beta$ линейно независимыми.

Предположим, что функции α , ε , β линейно зависимы, тогда существуют λ , μ такие, что $\alpha=\lambda\varepsilon+\mu\beta$. Подставив в равенство $h=1_H$, получим $0=\lambda+\mu$. Значит

$$\alpha = \lambda(\varepsilon - \beta)$$

В таком случае α коммутирует с β , а значит, с учётом (8)

$$3\alpha\beta^2 = 3\lambda(\varepsilon - \beta)\beta^2 = 3\lambda(\beta^2 - \beta^3) = 0$$

Тогда, с учётом char $\mathbb{K} \neq 3$, получаем, что

$$\lambda(\beta^2 - \beta^3) = 0$$

Так как β группоподобный, значит существует обратный. Домножив это равенство на квадрат обратного к β :

$$\lambda(\varepsilon - \beta) = 0$$

A значит $\alpha = 0$. Значит $\alpha^2 = \alpha\beta + \beta\alpha = 0$.

Случай 1.1

Если $\varepsilon, \beta, \beta^2$ - линейно независимы, тогда $\zeta(H)$ — это алгебра диагональных матриц. Докажем, что тогда модульная структуре ψ эквивалентна структуре 3. Пусть $\psi_1: \mathbb{K}\langle c \rangle_3 \otimes A \to A$ — модульная структура 3. Определим гоморфизм алгебр $\zeta_1: \mathbb{K}\langle c \rangle_3 \to M_3(\mathbb{K})$ с помощью соотношения $\zeta_1(h)(a) = \psi_1(h \otimes a)$. Тогда получаем

$$\zeta(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \xi^2 \end{pmatrix}$$

Выберем в $\mathbb{K}\langle c \rangle_3$ базис $(c^k)_{0 \le k \le 2}$ и выпишем образ этого базиса:

$$\zeta_1(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \zeta_1(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \xi^2 \end{pmatrix}, \ \zeta_1(c^2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \xi^2 & 0 \\ 0 & 0 & \xi \end{pmatrix}$$

Рассмотрим эти матрицы как вектора в базисе из матричных единиц и запишем их координаты построчно в матрицу:

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & \xi & 0 & 0 & 0 & \xi^2 \\ 1 & 0 & 0 & 0 & \xi^2 & 0 & 0 & 0 & \xi \end{pmatrix}$$

Нетрудно проверить, что rank M=3, а значит dim cosupp $\psi_1=\dim\zeta(H)=3$, следовательно соsupp ψ_1 — алгебра диагональных матриц.

Случай 1.2

 β^2 линейно зависим с ε и β . Тогда существуют λ , μ такие, что $\beta^2 = \lambda \varepsilon + \mu \beta$. Подставим $h = 1_H$ и получим $1 = \lambda + \mu$, а значит $\beta^2 = \lambda \varepsilon + (1 - \lambda)\beta$

Из группоподобности $\varepsilon,\ \beta$ и β^2 получаем

$$\varepsilon(\varepsilon^{(1)}\beta^{(1)}) = 0, \ \beta(\varepsilon^{(1)}\beta^{(1)}) = 0, \ \beta^2(\varepsilon^{(1)}\beta^{(1)}) = \lambda(1-\lambda)$$

Используя эти результаты, подставим в разложение функции β^2 $\varepsilon^{(1)}\beta^{(1)}$, где $\varepsilon^{(1)}$ и $\beta^{(1)}$ — это единицы соответствующих линейных функций. Получим

$$\lambda(1-\lambda) = \lambda * 0 + (1-\lambda) * 0 = 0$$

Если $\lambda=0$, значит $\beta^2=\beta$. Домножим это равенство на обратный к β и получим $\beta=\varepsilon$, что противоречит линейной независимости ε и β .

Следовательно $\lambda = 1$ и $\beta^2 = \beta$. Докажем, что в таком случае модульная структура ψ эквивалентна структуре 2.

Пусть $\psi_1: \mathbb{K}\langle c \rangle_2 \otimes A \to A$ — модульная структура 2. Определим гоморфизм алгебр $\zeta_1: \mathbb{K}\langle c \rangle_2 \to M_3(\mathbb{K})$ с помощью соотношения $\zeta_1(h)(a) = \psi_1(h \otimes a)$. Тогда получаем

$$\zeta(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Выберем в $\mathbb{K}\langle c \rangle_3$ базис $(c^k)_{0 \le k \le 1}$ и выпишем образ этого базиса:

$$\zeta_1(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \zeta_1(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Рассмотрим эти матрицы как вектора в базисе из матричных единиц и запишем их координаты построчно в матрицу:

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Нетрудно проверить, что rank M=2, а значит dim cosupp $\psi_1=\dim \zeta(H)=2$, следовательно cosupp ψ_1 —подалгебра диагональных матриц, такая что для любой матрицы B, содержащейся в ней, верно $b_{11}=b_{33}$.

Далее будем полагать ε, β и α линейно независимыми.

Случай 2.1

Предположим, что $\alpha^2 = \lambda_1 \varepsilon + \lambda_2 \beta + \lambda_3 \alpha$, тогда подставив $h = 1_H$, получим $0 = \lambda_1 + \lambda_2$. Обозначим $\lambda = \lambda_1$, $\mu = \lambda_3$ и перепишем разложение α^2 с учётом этого.

$$\alpha^2 = \lambda(\varepsilon - \beta) + \mu\alpha$$

Домножив слева и справа на α , получим

$$\lambda(\alpha - \alpha\beta) + \mu\alpha^2 = 0$$
$$\lambda(\alpha - \beta\alpha) + \mu\alpha^2 = 0$$

Пусть $\lambda \neq 0$, тогда $\alpha\beta = \beta\alpha$, иначе говоря α и β коммутируют. С учётом этого и (8) получаем

$$\alpha\beta^2 + \beta\alpha\beta + \beta^2\alpha = 3\alpha\beta^2 = 0$$

Тогда домножим это тождество на β^{-2} и, учитывая что char $\mathbb{K} \neq 3$ выведем, что $\alpha=0$. Это противоречит линейной независимости ε,α и β .

Значит $\lambda = 0$, иначе говоря $\alpha^2 = \mu \alpha$. Тогда из (6) следует

$$\alpha^3 = \mu \alpha^2 = \mu^2 \alpha = 0$$

Значит $\mu = 0$.

Случай 2.1.1

Функции ε , α , β линейно независимы, $\alpha^2=0$ и функция $\alpha\beta+\beta\alpha$ линейна независима с ε , α , β . Тогда

$$\alpha^{2}\left(\left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right)\right) = \alpha(\alpha^{(1)})(\alpha\beta + \beta\alpha)\left((\alpha\beta + \beta\alpha)^{(1)}\right) = 1$$

что невозможно.

Случай 2.1.2

Функции $\varepsilon,\ \alpha,\ \beta$ линейно независимы, $\alpha^2=0$ и функция $\alpha\beta+\beta\alpha$ линейно выражается через $\varepsilon,\ \alpha,\ \beta.$

Пусть $\alpha\beta + \beta\alpha = \lambda_1\varepsilon + \lambda_2\beta + \mu\alpha$. Подставим $h=1_H$ и получим, что $0=\lambda_1+\lambda_2$. Тогда обозначим $\lambda=\lambda_1,\ \mu=\lambda_3$ и перепишем разложение $\alpha\beta+\beta\alpha$ с помощью этого:

$$\alpha\beta + \beta\alpha = \lambda(\varepsilon - \beta) + \mu\alpha$$

С учётом $\alpha^2=0$ и (7) получим

$$\alpha^2 \beta + \alpha \beta \alpha + \beta \alpha^2 = \alpha \beta \alpha = 0$$

Домножим разложение $\alpha\beta + \beta\alpha$ на α с обеих сторон

$$\lambda(\alpha - \alpha\beta) = 0$$

$$\lambda(\alpha - \beta\alpha) = 0$$

Пусть $\lambda \neq 0$, тогда $\alpha\beta = \beta\alpha = \alpha$. Из (8) и того, что char $\mathbb{K} \neq 3$, получаем $\alpha = 0$, что невозможно. Значит $\lambda = 0$, иначе говоря $\alpha\beta + \beta\alpha = \mu\alpha$.

Тогда

$$(\alpha\beta + \beta\alpha)(\varepsilon^{(1)}\alpha^{(1)}) = \alpha(\varepsilon^{(1)})(\alpha\beta + \beta\alpha)(\alpha^{(1)}) = 0$$
$$\alpha(\varepsilon^{(1)}\alpha^{(1)}) = \varepsilon(\varepsilon^{(1)})\alpha(\alpha^{(1)}) = 1$$

Подставим в разложение $\alpha\beta+\beta\alpha\ \varepsilon^{(1)}\alpha^{(1)}$ и, воспользовавшись результатами выше, получим $0=\mu$, иначе говоря $\alpha\beta+\beta\alpha=0$

Тогда из (8) следует

$$\alpha\beta^2 + \beta(\alpha\beta + \beta\alpha) = \alpha\beta^2 = 0$$

Так как β группоподобный, значит существует β^{-1} . Домножим на квадрат обратного справа и получим $\alpha=0$, что противоречит линейной независимости ε , β , α .

Случай 2.2

Далее полагаем, что $\varepsilon, \alpha, \beta, \alpha^2$ линейно независимы.

Случай 2.2.1

Функции ε , α , α^2 , β линейно независимы и функция $\alpha\beta + \beta\alpha$ линейно выражается через ε , α , α^2 , β . Тогда существуют λ_i такие, что

$$\alpha\beta + \beta\alpha = \lambda_1\varepsilon + \lambda_2\beta + \lambda_3\alpha + \lambda_4\alpha^2$$

Подставим $h=1_H$, получим $0=\lambda_1+\lambda_2$. Тогда обозначим $\lambda=\lambda_1,\ \mu_1=\lambda_3,$ $\mu_2=\lambda_4$ и перепишем разложение $\alpha\beta+\beta\alpha$ с помощью этого:

$$\alpha\beta + \beta\alpha = \lambda(\varepsilon - \beta) + \mu_1\alpha + \mu_2\alpha^2$$

Pассмотрим (7):

$$\alpha(\alpha\beta + \beta\alpha) + \beta\alpha^2 = 0$$

Значит с учётом $\alpha^3 = 0$:

$$\alpha(\alpha\beta + \beta\alpha)\alpha = (-\beta\alpha^2)\alpha = 0$$

Тогда домножим разложение $\alpha\beta + \beta\alpha$ на α с обеих сторон:

$$0 = \lambda(\alpha^2 - \alpha\beta\alpha)$$

Пусть $\lambda \neq 0$, тогда $\alpha^2 = \alpha \beta \alpha$. Домножим $\alpha \beta + \beta \alpha$ на α^2 слева и выпишем, что получится:

$$\alpha^{2}(\alpha\beta + \beta\alpha) = \alpha^{2}\beta\alpha = \alpha^{3} = 0$$
$$(\alpha\beta + \beta\alpha)\alpha^{2} = \alpha\beta\alpha^{2} = \alpha^{3} = 0$$
$$\alpha^{2}(\alpha\beta + \beta\alpha) = \lambda(\alpha^{2} - \alpha^{2}\beta)$$
$$(\alpha\beta + \beta\alpha)\alpha^{2} = \lambda(\alpha^{2} - \beta\alpha^{2})$$

Отсюда, с учётом предположения, что $\lambda \neq 0$, следует, что $\alpha^2 = \alpha^2 \beta = \beta \alpha^2$. Подставим это в (7), используя $\alpha^2 = \alpha \beta \alpha$, тогда

$$\alpha^2\beta + \alpha\beta\alpha + \beta\alpha^2 = 3\alpha^2 = 0$$

Что невозможно, так как char $\mathbb{K} \neq 3$ и функция α^2 линейно независима с ε , α , β . Значит $\lambda = 0$, иначе говоря:

$$\alpha\beta + \beta\alpha = \mu_1\alpha + \mu_2\alpha^2$$

Подставим разложение $\alpha\beta + \beta\alpha$ в (7)

$$\alpha(\alpha\beta + \beta\alpha) + \beta\alpha^2 = \mu_1\alpha^2 + \beta\alpha^2 = 0$$
$$\alpha^2\beta + (\alpha\beta + \beta\alpha)\alpha = \alpha^2\beta + \mu_1\alpha^2 = 0$$

Сложим эти два равенства с учётом (7) получим

$$2\mu_1\alpha^2 = \alpha\beta\alpha$$

Теперь домножим $\alpha\beta + \beta\alpha$ на $\alpha\beta$ слева :

$$\alpha\beta(\alpha\beta + \beta\alpha) = \alpha(-\alpha\beta^2) = -\alpha^2\beta^2 = -\mu_1^2\alpha^2$$
$$\alpha\beta(\mu_1\alpha + \mu_2\alpha^2) = \mu_1\alpha\beta\alpha + \mu_2\alpha\beta\alpha^2 = \mu_1\alpha\beta\alpha - \mu_1\mu_2\alpha^3 = \mu_1\alpha\beta\alpha$$

А значит

$$\mu_1 \alpha \beta \alpha = -\mu_1^2 \alpha^2$$

С учётом полученного выше соотношения приходит к выводу, что

$$2\mu_1^2\alpha^2 = -\mu_1^2\alpha^2 3\mu_1^2\alpha^2 = 0$$

Тогда, так как char $\mathbb{K}\neq 3$ и функция α^2 линейно независима с $\varepsilon,\ \alpha,\ \beta,$ а значит $\alpha^2\neq 0,$ получаем, что $\mu_1=0.$ Тогда

$$\alpha\beta + \beta\alpha = \mu_2\alpha^2$$

Но если мы рассмотрим

$$\alpha^{2} \left(\varepsilon^{(1)} \left(\alpha^{2} \right)^{(1)} \right) = \varepsilon(\varepsilon^{(1)}) \alpha^{2} \left(\left(\alpha^{2} \right)^{(1)} \right) +$$

$$+ \alpha(\varepsilon^{(1)}) (\alpha \beta + \beta \alpha) \left(\left(\alpha^{2} \right)^{(1)} \right) + \alpha^{2} (\varepsilon^{(1)}) \beta^{2} \left(\left(\alpha^{2} \right)^{(1)} \right) = 1$$

$$(\alpha\beta + \beta\alpha) \left(\varepsilon^{(1)} \left(\alpha^2\right)^{(1)}\right) = \beta(\varepsilon^{(1)})(\alpha\beta + \beta\alpha) \left(\left(\alpha^2\right)^{(1)}\right) + \left(\alpha\beta + \beta\alpha\right)(\varepsilon^{(1)})\beta^2 \left(\left(\alpha^2\right)^{(1)}\right) = 0$$

Тогда, если мы подставим в разложение $\alpha \beta + \beta \alpha \ \varepsilon^{(1)} \left(\alpha^2\right)^{(1)}$, получим

$$0 = \mu_2 * 1$$

Значит $\alpha\beta + \beta\alpha = 0$. Отсюда с учётом (8) получаем

$$\beta(\alpha\beta + \beta\alpha) + \alpha\beta^2 = \alpha\beta^2 = 0$$

Но тогда домножив на обратный к β^2 получим $\alpha=0$, что противоречит линейной независимости α с ε , α^2 , β .

Случай 2.2.2

Далее полагаем Функции $\varepsilon,~\alpha,~\alpha^2,~\beta,~\alpha\beta+\beta\alpha$ линейно независимыми.

Случай 2.2.2.1

Функции ε , α , α^2 , β , $\alpha\beta + \beta\alpha$ линейно независимы и функция β^2 линейно выражается через ε , α , α^2 , β . Тогда существуют λ_i такие, что

$$\beta^2 = \lambda_1 \varepsilon + \lambda_2 \beta + \lambda_3 \alpha + \lambda_4 \alpha^2 + \lambda_5 (\alpha \beta + \beta \alpha)$$

Подставим $h=1_H$, получим $1=\lambda_1+\lambda_2$. Тогда обозначим $\lambda=\lambda_1,\ \mu_1=\lambda_3,$ $\mu_2=\lambda_4,\ \mu_3=\lambda_5$ и перепишем разложение $\alpha\beta+\beta\alpha$ с помощью этого:

$$\beta^2 = \lambda \varepsilon + (1 - \lambda)\beta + \mu_1 \alpha + \mu_2 \alpha^2 + \mu_3 (\alpha \beta + \beta \alpha)$$

Рассмотрим значения наших функций от $\left(\alpha^{(1)}\right)^2$

$$\varepsilon\left(\left(\alpha^{(1)}\right)^{2}\right) = \varepsilon\left(\alpha^{(1)}\right)\varepsilon\left(\alpha^{(1)}\right) = 0$$

$$\alpha\left(\left(\alpha^{(1)}\right)^{2}\right) = \varepsilon\left(\alpha^{(1)}\right)\alpha\left(\alpha^{(1)}\right) + \alpha\left(\alpha^{(1)}\right)\beta\left(\alpha^{(1)}\right) = 0$$

$$\beta\left(\left(\alpha^{(1)}\right)^{2}\right) = \beta\left(\alpha^{(1)}\right)\beta\left(\alpha^{(1)}\right) = 0$$

$$\alpha^{2}\left(\left(\alpha^{(1)}\right)^{2}\right) = \varepsilon\left(\alpha^{(1)}\right)\alpha^{2}\left(\alpha^{(1)}\right) + \alpha\left(\alpha^{(1)}\right)\left(\alpha\beta + \beta\alpha\right)\left(\alpha^{(1)}\right) + \alpha^{2}\left(\alpha^{(1)}\right)\beta\left(\alpha^{(1)}\right) = 0$$

$$(\alpha\beta + \beta\alpha)\left(\left(\alpha^{(1)}\right)^{2}\right) = \beta\left(\alpha^{(1)}\right)\left(\alpha\beta + \beta\alpha\right)\left(\alpha^{(1)}\right) + \alpha^{2}\left(\alpha^{(1)}\right)\beta^{2}\left(\alpha^{(1)}\right) = 0$$

$$\beta^{2}\left(\left(\alpha^{(1)}\right)^{2}\right) = \beta^{2}\left(\alpha^{(1)}\right)\beta^{2}\left(\alpha^{(1)}\right) = \mu_{1}^{2}$$

Тогда получим

$$\beta^2 \left(\left(\alpha^{(1)} \right)^2 \right) = \mu_1^2 = 0$$

Значит $\mu_1 = 0$, иначе говоря

$$\beta^2 = \lambda \varepsilon + (1 - \lambda)\beta + \mu_2 \alpha^2 + \mu_3 (\alpha \beta + \beta \alpha)$$

Рассмотрим значения наших функций от $\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}$

$$\varepsilon \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \varepsilon \left(\alpha^{(1)}\right)\varepsilon \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 0$$

$$\alpha \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \varepsilon \left(\alpha^{(1)}\right)\alpha \left((\alpha\beta + \beta\alpha)^{(1)}\right) +$$

$$+ \alpha \left(\alpha^{(1)}\right)\beta \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 0$$

$$\beta \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \beta \left(\alpha^{(1)}\right)\beta \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 0$$

$$\alpha^{2} \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \varepsilon \left(\alpha^{(1)}\right)\alpha^{2} \left((\alpha\beta + \beta\alpha)^{(1)}\right) +$$

$$+ \alpha \left(\alpha^{(1)}\right)(\alpha\beta + \beta\alpha) \left((\alpha\beta + \beta\alpha)^{(1)}\right) +$$

$$+ \alpha^{2} \left(\alpha^{(1)}\right)\beta \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 1$$

$$(\alpha\beta + \beta\alpha) \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \beta \left(\alpha^{(1)}\right)(\alpha\beta + \beta\alpha) \left((\alpha\beta + \beta\alpha)^{(1)}\right) +$$

$$+ (\alpha\beta + \beta\alpha) \left(\alpha^{(1)}\right)\beta^{2} \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 0$$

$$\beta^{2} \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \beta^{2} \left(\alpha^{(1)}\right)\beta^{2} \left((\alpha\beta + \beta\alpha)^{(1)}\right) = 0$$

Значит $\beta^2 \left(\alpha^{(1)}(\alpha\beta + \beta\alpha)^{(1)}\right) = \mu_2 = 0$ Тогда разложения выглядит таким образом:

$$\beta^2 = \lambda \varepsilon + (1 - \lambda)\beta + \mu_3(\alpha \beta + \alpha \beta)$$

Рассмотрим значения наших функций от $\varepsilon^{(1)}(\alpha\beta+\beta\alpha)^{(1)}$

$$\varepsilon \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \varepsilon \left(\varepsilon^{(1)} \right) \varepsilon \left((\alpha \beta + \beta \alpha)^{(1)} \right) = 0$$

$$\alpha \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \varepsilon \left(\varepsilon^{(1)} \right) \alpha \left((\alpha \beta + \beta \alpha)^{(1)} \right) +$$

$$+ \alpha \left(\varepsilon^{(1)} \right) \beta \left((\alpha \beta + \beta \alpha)^{(1)} \right) = 0$$

$$\beta \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \beta \left(\varepsilon^{(1)} \right) \beta \left((\alpha \beta + \beta \alpha)^{(1)} \right) = 0$$

$$\alpha^{2} \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \varepsilon \left(\varepsilon^{(1)} \right) \alpha^{2} \left((\alpha \beta + \beta \alpha)^{(1)} \right) +$$

$$+ \alpha \left(\varepsilon^{(1)} \right) (\alpha \beta + \beta \alpha) \left((\alpha \beta + \beta \alpha)^{(1)} \right) +$$

$$+ \alpha^{2} \left(\varepsilon^{(1)} \right) \beta \left((\alpha \beta + \beta \alpha)^{(1)} \right) = 0$$

$$(\alpha \beta + \beta \alpha) \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \beta \left(\varepsilon^{(1)} \right) (\alpha \beta + \beta \alpha) \left((\alpha \beta + \beta \alpha)^{(1)} \right) +$$

$$+ (\alpha \beta + \beta \alpha) \left(\varepsilon^{(1)} \right) \beta^{2} \left((\alpha \beta + \beta \alpha)^{(1)} \right) = 0$$

$$\beta^{2} \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \beta^{2} \left(\varepsilon^{(1)} \right) \beta^{2} \left((\alpha \beta + \beta \alpha)^{(1)} \right) = \lambda \mu_{3}$$

Значит $\beta^2 \left(\varepsilon^{(1)} (\alpha \beta + \beta \alpha)^{(1)} \right) = \lambda \mu_3 = 0.$

Пусть $\mu_3 \neq 0$, тогда $\lambda = 0$ и $\beta^2 = \beta + \mu_3(\alpha\beta + \beta\alpha)$. Домножим на β слева и справа и с учётом (8) сложим

$$\beta^{3} = \beta^{2} + \mu_{3}\beta(\alpha\beta + \beta\alpha)$$

$$\beta^{3} = \beta^{2} + \mu_{3}(\alpha\beta + \beta\alpha)\beta$$

$$2\beta^{3} = 2\beta^{2} + \mu_{3}\beta\alpha\beta$$

Домножив последнее равенство на обратный к β с обеих сторон и получим

$$2\beta = 2\varepsilon + \mu_2 \alpha$$

Так как ε , α , β линейно независимы значит $\mu_3=0$. Получаем противоречие с нашим предположением $\mu_3\neq 0$. Значит $\mu_3=0$.

Тогда
$$\beta^2 = \lambda \varepsilon + (1 - \lambda)\beta$$
.

Из группоподобности ε , β и β^2 получаем

$$\varepsilon(\varepsilon^{(1)}\beta^{(1)}) = 0, \ \beta(\varepsilon^{(1)}\beta^{(1)}) = 0, \ \beta^2(\varepsilon^{(1)}\beta^{(1)}) = \lambda(1-\lambda)$$

Используя эти результаты, подставим в разложение функции β^2 $\varepsilon^{(1)}\beta^{(1)}$, где $\varepsilon^{(1)}$ и $\beta^{(1)}$ — это единицы соответствующих линейных функций. Получим

$$\lambda(1-\lambda) = \lambda * 0 + (1-\lambda) * 0 = 0$$

Если $\lambda=0$, значит $\beta^2=\beta$. Домножим это равенство на обратный к β и получим $\beta=\varepsilon$, что противоречит линейной независимости ε и β .

Если $\lambda=1$, тогда $\beta^2=\varepsilon$. Рассмотрим (8)

$$\beta^2 \alpha + \beta \alpha \beta + \alpha \beta^2 = 2\alpha + \beta \alpha \beta = 0 \tag{*}$$

Домножим на α с обеих сторон

$$2\beta\alpha\beta + \beta^2\alpha\beta^2 = 2\beta\alpha\beta + \alpha = 0$$

Выразим из (*) $\beta \alpha \beta$ через α и подставим в соотношение выше, получим

$$-4\alpha + \alpha = -3\alpha = 0$$

Так как char $\mathbb{K} \neq 3$, получаем $\alpha = 0$, что невозможно ввиду линейной независимости ε , α , β , α^2 , $\alpha\beta + \beta\alpha$.