

Probability and Statistics: To p, or not to p?

Module Leader: Dr James Abdey

5.4 Testing a population mean claim

We consider the **hypothesis test of a population mean** in the context of a claim made by a manufacturer.

As an example, the amount of water in mineral water bottles exhibits slight variations attributable to the bottle-filling machine at the factory not putting in *identical* quantities of water in each bottle. The labels on each bottle may state '500 ml' but this equates to a claim about the average contents of all bottles produced (in the population of bottles).

Let X denote the quantity of water in a bottle. It would seem reasonable to assume a normal distribution for X such that:

$$X \sim N(\mu, \sigma^2)$$

and we wish to test:

$$H_0: \mu = 500 \text{ml}$$
 vs. $H_1: \mu \neq 500 \text{ml}$.

Suppose a random sample of n=100 bottles is to be taken, and let us assume that $\sigma=10$ ml. From our work in Section 4.5 we know that:

$$ar{X} \sim N\left(\mu,\,rac{\sigma^2}{n}
ight) = N\left(\mu,\,rac{(10)^2}{100}
ight) = N(\mu,\,1).$$

Further suppose that the sample mean in our random sample of 100 is $\bar{x} = 503$ ml. Clearly, we see that:

$$\bar{x} = 503 \neq 500 = \mu$$

where 500 is the claimed value of μ being tested in H₀.

The question is whether the difference between $\bar{x} = 503$ and the claim $\mu = 500$ is:

- (a) due to sampling error (and hence H₀ is true)?
- (b) statistically significant (and hence H_1 is true)?

Determination of the p-value will allow us to choose between explanations (a) and (b).

We proceed by **standardising** \bar{X} such that:

$$Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,\,1)$$

acts as our **test statistic**. Note the test statistic includes the effect size, $\bar{X} - \mu$, as well as the sample size, n.

Using our sample data, we now obtain the test statistic value (noting the **influence of both** the effect size and the sample size, and hence ultimately the influence on the *p*-value):

$$\frac{503 - 500}{10/\sqrt{100}} = 3.$$

The p-value is the probability of our test statistic value or a more extreme value conditional on H_0 . Noting that $H_1: \mu \neq 500$, 'more extreme' here means a z-score > 3 and < -3. Due to the symmetry of the standard normal distribution about zero, this can be expressed as:

$$p$$
-value = $P(Z \ge |3|) = 0.0027$.

Note this value can easily be obtained using Microsoft Excel, say, as:

=NORM.S.DIST(
$$-3$$
)*2 or =(1-NORM.S.DIST(3))*2

where the function NORM.S.DIST(z) returns $P(Z \le z)$ for $Z \sim N(0, 1)$.

Recall the **p-value decision rule**, shown below for $\alpha = 0.05$:

Therefore, since 0.0027 < 0.05 we reject H_0 and conclude that the result is 'statistically significant' at the 5% significance level (and also, of course, at the 1% significance level). Hence there is (strong) evidence that $\mu \neq 500$. Since $\bar{x} > \mu$ we might go further and suppose that $\mu > 500$.

Finally, recall the possible **decision space**:

		Decision made	
		H_0 not rejected	${ m H}_0$ rejected
True state	H_0 true	Correct decision	Type I error
of nature	${ m H_1\ true}$	Type II error	Correct decision

As we have rejected H_0 this means one of two things:

- ullet we have correctly rejected H_0
- we have committed a Type I error.

Although the p-value is very small, indicating it is $highly\ unlikely$ that this is a Type I error, unfortunately we cannot be certain which outcome has actually occurred!