

Science

A quick introduction to the Coalescent

Anders Gonçalves da Silva
Population and landscape genomics workshop – Day 2
25 March 2014
CBA – ANU

Outline

- Define the coalescent
- Introduce a reproductive model
- Use the reproductive model to turn-back time
- Conceptualize a simple coalescent model
- Try it out in R
- Introduce the idea of a skyline plot
- Modify our model to accommodate population growth
- Test it with skyline plots

Question?

- What is the likelihood that at least one pair of genes in this room shares a common ancestor one generation in the past?
- How many generations do we need to go back before the probability is larger than 50%?

What is the Coalescent?

What is the Coalescent?

A statistical model:

 $P(Genealogy | \theta)$

2N = 8 – number of haploid genomes

Each genes is equally represented

in the gamete pool.

2N gametes are chosen at random to form the next generation.

The coalescent

How long before two lineages merge?

How long before all lineages merge?

Merging is a coalescent event!

The *n*-coalescent

What is the probability
that two lineages
coalesce in the previous
generation?

The *n*-coalescent

$$P(T_2=1)$$

What is the probability that a random individual has a parent in the previous generation?

What is the probability that a second individual shares the same parent?

What is the probability that a second individual shares the same parent?

$$P(T_2=1)$$

Pr(Individual has parent)

X

Pr(Individual

shares parent)

$$P(T_2=1) = 1/(2N)$$

 $P(T_2 \neq 1)$

$$P(T_2 \neq 1) = 1-1/(2N)$$

$P(T_2=2)$?

$$P(T_2=2)$$
?

$P(T_2=j)$?

- $P(T_2=2) = P(T_2\neq 1) \times P(T_2=1)$
- $P(T_2=3) = P(T_2\neq 1) \times P(T_2\neq 1) \times P(T_2=1)$
- $P(T_2=4) = P(T_2\neq 1) \times P(T_2\neq 1) \times P(T_2\neq 1) \times P(T_2=1)$ $P(T_2=1)$

- $P(T_2=j) = P(T_2\neq 1)^{(j-1)} \times P(T_2=1)$
- $P(T_2=j) = (1-(1/(2N))^{(j-1)} \times (1/(2N))$

The n-coalescent: k > 2

$$P(T_3 \neq 1)$$

The n-coalescent: k > 2

The n-coalescent: k > 2

$$P = 1-2/(2N)$$
 $P = 1-1/(2N)$
 $P = 1-1/(2N)$

$$P(T_k = j)$$

$$\mathbf{P}(\mathbf{T}_k = \mathbf{j}) = \left\{1 - \binom{k}{2} \frac{1}{2N}\right\}^{J-1} \binom{k}{2} \frac{1}{2N}$$

Thus...

$$T_k \sim Geom(p)$$

$$P(T_k = j) = (1 - p)^{j-1}p$$

$$p = {k \choose 2} \frac{1}{2N}$$

LET'S TRY IT IN R...

The point of the coalescent...

- Given a topology (genealogy), we can estimate:
 - Effective population size
 - Migration rates
 - Population size changes
 - -Mutation rates
 - Age of mutations
 - -Recombination rates
 - Time of divergence

Estimating population growth...

$$N_i = \gamma_i \frac{i(i-1)}{2}$$

Ho & Shapiro (2011) MER 11: 423

LET'S ESTIMATE POPULATION GROWTH IN R...

Further reading

- Hein, Schierup and Wiuf (2010). Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press.
- Wakeley (2009). Coalescent theory: an introduction. Roberts & Company.

