

ORGANISASI ARSITEKTUR KOMPUTER CACHE MEMORY

STT TERPADU NURUL FIKRI TEKNIK INFORMATIKA 2017

SISTEM KOMPUTER SAAT INI

LOKASI MEMORY KOMPUTER

1. Memori Internal / Primary Memory

Memori yang ada di dalam internal sistem prosesor dan motherboard.

Contoh: register, cache memory, main memory/RAM

2. Memori Eksternal / Secondary Memory

Memori yang ada di luar sistem prosesor dan motherboard.

Contoh: harddisk, CD, DVD, flashdisk

KAPASITAS

FAKTOR PERTIMBANGAN PENGGUNAAN MEMORI

- Kapasitas
 adalah jumlah bit/byte yang dapat ditampung dalam suatu memori.
- 2. Access time
 Yaitu waktu yang diperlukan untuk membaca atau
 menulis ke memori.
- Transfer rate adalah kecepatan transfer data yang dapat dilakukan dari/ke suatu memori.
- Cost per bit adalah biaya per bit yang dibutuhkan untuk memproduksi terkait bahan dan teknologi dari suatu memori, dimana akan mempengaruhi harga jual.

Bagan Interkoneksi CPU

MEMORI INTERNAL

Adalah memori yang kerjanya berhubungan dengan CPU dalam pemrosesan data.

- CPU memiliki kecepatan yang sangat tinggi.
 Misal Dual Core dengan clock 1GHz dapat memiliki instruksi yang bisa selesai dalam 1 ns, sehingga dalam selang waktu 1 ns bisa diperlukan akses untuk membaca/menulis ke memori.
- Diperlukan memori yang memiliki access time yang cepat, dengan kapasitas yang mencukupi. Karena itu digunakan RAM.
- Memori internal terdiri atas main memory dan cache memory.

JENIS MEMORI RAM

	Dynamic RAM (DRAM)		Static RAM (SRAM)
1.	Sel tersusun atas transistor dan	1.	Sel tersusun atas transistor-
	kapasitor		transistor
2.	Perlu dilakukan refresh secara	2.	Tidak perlu dilakukan
	periodik untuk menjaga isi logic		refresh terhadap isi sel
	di sel		memori
3.	Memiliki kerapatan sel lebih	3.	Kerapatan sel tidak dapat
	tinggi		lebih rapat dari DRAM
4.	Kapasitas lebih tinggi	4.	Kapasitas lebih rendah
5.	Access time cepat	5.	Access time sangat cepat
6.	Harga lebih rendah	6.	Harga sangat mahal
7.	Dipakai untuk main memory	7.	Dipakai untuk cache
			memory

Perbandingan Teknologi DRAM

	Clock Frequency (MHz)	Transfer Rate (GB/s)	Access Time (ns)	Pin Count
SDRAM	166	1.3	18	168
DDR	200	3.2	12.5	184
RDRAM	600	4.8	12	162

Sebelum tahun 2000, teknologi DDR dan RDRAM bersaing sebagai standar memori yang digunakan untuk komputer.

Pada perkembangannya teknologi DDR yang kemudian banyak digunakan dan terus ditingkatkan sehingga menjadi menjadi DDR2, DDR3 dan seterusnya.

PERMASALAHAN "CPU-MEMORY BOTTLENECK"

- Main memory jauh lebih lambat dibandingkan dengan CPU
- Bisa saja mengurangi selisih kecepatan dengan menggunakan Static RAM untuk main memory
 - Akan jauh lebih cepat
 - Tapi biaya bahan & pembuatan memori jadi sangat sangat tinggi
 - Siapa yang mau beli?

Cache Memory

- Merupakan sejumlah kecil memori cepat SRAM
- Ada di antara jalur main memory dan CPU
- Secara fisik ada dalam chip atau modul CPU
- Menduplikasi sebagaian block data di main memory
- Sehingga dapat memberikan data ke CPU jika membutuhkan tanpa CPU harus menunggu lama main memory

Ilustrasi Cache Memory

Cara Kerja Cache Memory

- CPU meminta data dari suatu lokasi di main memory
- Cache mengecek data tersebut apakah ada di dalam dirinya
- Jika ada, maka ambil dari cache (disebut HIT, akan menjadi cepat)
- Jika tidak ada, ambil dari main memory untuk dikopi ke cache dan dibawa ke CPU (disebut MISS, akan menjadi lambat)

PERTIMBANGAN DALAM DESAIN CACHE MEMORYNURUL FIKRI

- 1. Alamat Cache: logical atau physical
- 2. Ukuran Cache: seberapa besar
- Level Cache: 1, 2, 3 atau berapa level
- 4. Algoritma Penggantian: LRU, FIFO, LFU, Random
- 5. Cara Mapping: Direct Mapping atau Set Associative
- 6. Cara Write: Write Through atau Write Back

Alamat Cache

(b) Physical cache

Ukuran Cache Memory

		J			
Processor	Туре	Year of Introduction	L1 cache ^a	L2 cache	L3 cache
IBM 360/85	Mainframe	1968	16 to 32 KB	_	_
PDP-11/70	Minicomputer	1975	1 KB	_	_
VAX 11/780	Minicomputer	1978	16 KB	_	_
IBM 3033	Mainframe	1978	64 KB	_	_
IBM 3090	Mainframe	1985	128 to 256 KB	_	_
Intel 80486	PC	1989	8 KB	_	_
Pentium	PC	1993	8 KB/8 KB	256 to 512 KB	_
PowerPC 601	PC	1993	32 KB	_	_
PowerPC 620	PC	1996	32 KB/32 KB	_	_
PowerPC G+	PC/server	1999	32 KB/32 KB	256 KB to 1 MB	2 MB
IBM \$/390 G+	Mainframe	1997	32 KB	256 KB	2 MB
IBM S/390 G6	Mainframe	1999	256 KB	8 MB	_
Pentium +	PC/server	2000	8 KB/8 KB	256 KB	_
1BM SP	High-end server/ supercomputer	2000	64 KB/32 KB	8 MB	_
CRAY MTAb	Supercomputer	2000	8 KB	2 MB	_
Itanium	PC/server	2001	16 KB/16 KB	96 KB	+ MB
SGI Origin 2001	High-end server	2001	32 KB/32 KB	+ MB	_

Makin besar makin mahal!

From Computer Desktop Encyclopedia

© 1999 The Computer Language Co. Inc.

- Least Recently Used (LRU)
 Data yang sudah paling lama tidak digunakan diganti dengan yang baru
- First In First Out (FIFO)
 Data yang terbaru masuk menggantikan data yang paling lama
- Least Frequently Used (LFU)
 Data yang paling jarang digunakan diganti dengan yang baru
- 4. Random Penggantian secara acak

CARA MAPPING CACHE

Bagaimana menata duplikasi data block memory di cache?

- Direct Mapping
 Memetakan bagian-bagian awal secara berurutan.
 Sederhana dan tidak mahal.
- Associative Mapping
 Memetakan dimana saja, tidak perlu berurutan. Lebih canggih namun rumit.

CARA WRITE CACHE

Bagaimana menuliskan ke main memory jika terjadi perubahan data?

- Write Through
 Setiap kali ada perubahan data oleh CPU terhadap data cache,
 maka ditulis perubahannya juga di main memory. Memastikan isi
 main memory selalu valid pada setiap waktu. Namun
 mengakibatkan traffic penulisan data yang tinggi.
- Write Back
 Baru akan ditulis ke main memory ketika data di cache akan digantikan dengan yang baru. Mengurangi traffic penulisan data ke main memory namun rumit.

TERIMA KASIH

Thank you very much for your kind attention