and we should choose

$$Y(t) = e^{(\alpha+i\beta)t}(A_0t^n + \dots + A_n) + e^{(\alpha-i\beta)t}(B_0t^n + \dots + B_n),$$

or, equivalently,

$$Y(t) = e^{\alpha t} (A_0 t^n + \dots + A_n) \cos \beta t + e^{\alpha t} (B_0 t^n + \dots + B_n) \sin \beta t.$$

Usually, the latter form is preferred. If $\alpha \pm i\beta$ satisfy the characteristic equation corresponding to the homogeneous equation, we must, of course, multiply each of the polynomials by t to increase their degrees by one.

If the nonhomogeneous function involves both $\cos \beta t$ and $\sin \beta t$, it is usually convenient to treat these terms together, since each one individually may give rise to the same form for a particular solution. For example, if $g(t) = t \sin t + 2 \cos t$, the form for Y(t) would be

$$Y(t) = (A_0t + A_1)\sin t + (B_0t + B_1)\cos t$$

provided that $\sin t$ and $\cos t$ are not solutions of the homogeneous equation.

PROBLEMS

In each of Problems 1 through 14, find the general solution of the given differential equation.

1.
$$y'' - 2y' - 3y = 3e^{2t}$$

3.
$$y'' - y' - 2y = -2t + 4t^2$$

5.
$$y'' - 2y' - 3y = -3te^{-t}$$

7.
$$y'' + 9y = t^2 e^{3t} + 6$$

$$0.2v'' + 3v' + v = t^2 + 3\sin t$$

11.
$$\mu'' + \omega_0^2 \mu = \cos \omega t$$
. $\omega^2 \neq \omega_0^2$

13.
$$y'' + y' + 4y = 2 \sinh t$$

 $Hint: \sinh t = (e^t - e^{-t})/2$

2.
$$y'' + 2y' + 5y = 3\sin 2t$$

4.
$$y'' + y' - 6y = 12e^{3t} + 12e^{-2t}$$

6.
$$y'' + 2y' = 3 + 4\sin 2t$$

8.
$$y'' + 2y' + y = 2e^{-t}$$

10.
$$y'' + y = 3\sin 2t + t\cos 2t$$

12.
$$u'' + \omega_0^2 u = \cos \omega_0 t$$

9.
$$2y'' + 3y' + y = t^2 + 3\sin t$$

10. $y'' + y = 3\sin 2t + t\cos 2t$
11. $u'' + \omega_0^2 u = \cos \omega t$, $\omega^2 \neq \omega_0^2$
12. $u'' + \omega_0^2 u = \cos \omega_0 t$
13. $y'' + y' + 4y = 2\sinh t$
14. $y'' - y' - 2y = \cosh 2t$
Hint: $\sinh t = (e^t - e^{-t})/2$
Hint: $\cosh t = (e^t + e^{-t})/2$

In each of Problems 15 through 20, find the solution of the given initial value problem.

15.
$$y'' + y' - 2y = 2t$$
, $y(0) = 0$, $y'(0) = 1$

16.
$$y'' + 4y = t^2 + 3e^t$$
, $y(0) = 0$, $y'(0) = 2$

17.
$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$

18.
$$y'' - 2y' - 3y = 3te^{2t}$$
, $y(0) = 1$, $y'(0) = 0$

19.
$$y'' + 4y = 3\sin 2t$$
, $y(0) = 2$, $y'(0) = -1$

20.
$$y'' + 2y' + 5y = 4e^{-t}\cos 2t$$
, $y(0) = 1$, $y'(0) = 0$

In each of Problems 21 through 28:

- (a) Determine a suitable form for Y(t) if the method of undetermined coefficients is to be
- (b) Use a computer algebra system to find a particular solution of the given equation.

21.
$$y'' + 3y' = 2t^4 + t^2e^{-3t} + \sin 3t$$

22.
$$y'' + y = t(1 + \sin t)$$

23.
$$y'' - 5y' + 6y = e^t \cos 2t + e^{2t} (3t + 4) \sin t$$

24.
$$y'' + 2y' + 2y = 3e^{-t} + 2e^{-t}\cos t + 4e^{-t}t^2\sin t$$

25.
$$y'' - 4y' + 4y = 2t^2 + 4te^{2t} + t \sin 2t$$

26.
$$y'' + 4y = t^2 \sin 2t + (6t + 7) \cos 2t$$

27.
$$y'' + 3y' + 2y = e^{t}(t^{2} + 1)\sin 2t + 3e^{-t}\cos t + 4e^{t}$$

28. $y'' + 2y' + 5y = 3te^{-t}\cos 2t - 2te^{-2t}\cos t$

29. Consider the equation

$$y'' - 3y' - 4y = 2e^{-t} (i)$$

from Example 5. Recall that $y_1(t) = e^{-t}$ and $y_2(t) = e^{4t}$ are solutions of the corresponding homogeneous equation. Adapting the method of reduction of order (Section 3.4), seek a solution of the nonhomogeneous equation of the form $Y(t) = v(t)y_1(t) = v(t)e^{-t}$, where v(t) is to be determined.

- (a) Substitute Y(t), Y'(t), and Y''(t) into Eq. (i) and show that v(t) must satisfy v'' 5v' = 2.
- (b) Let w(t) = v'(t) and show that w(t) must satisfy w' 5w = 2. Solve this equation for w(t).
- (c) Integrate w(t) to find v(t) and then show that

$$Y(t) = -\frac{2}{5}te^{-t} + \frac{1}{5}c_1e^{4t} + c_2e^{-t}.$$

The first term on the right side is the desired particular solution of the nonhomogeneous equation. Note that it is a product of t and e^{-t} .

30. Determine the general solution of

$$y'' + \lambda^2 y = \sum_{m=1}^N a_m \sin m\pi t,$$

where $\lambda > 0$ and $\lambda \neq m\pi$ for m = 1, ..., N.

31. In many physical problems the nonhomogeneous term may be specified by different formulas in different time periods. As an example, determine the solution $y = \phi(t)$ of

$$y'' + y = \begin{cases} t, & 0 \le t \le \pi, \\ \pi e^{\pi - t}, & t > \pi, \end{cases}$$

satisfying the initial conditions y(0) = 0 and y'(0) = 1. Assume that y and y' are also continuous at $t = \pi$. Plot the nonhomogeneous term and the solution as functions of time. *Hint:* First solve the initial value problem for $t \le \pi$; then solve for $t > \pi$, determining the constants in the latter solution from the continuity conditions at $t = \pi$.

32. Follow the instructions in Problem 31 to solve the differential equation

$$y'' + 2y' + 5y = \begin{cases} 1, & 0 \le t \le \pi/2, \\ 0, & t > \pi/2 \end{cases}$$

with the initial conditions y(0) = 0 and y'(0) = 0.

Behavior of Solutions as $t \to \infty$. In Problems 33 and 34, we continue the discussion started with Problems 37 through 39 of Section 3.4. Consider the differential equation

$$ay'' + by' + cy = g(t), (i)$$

where a, b, and c are positive.

- 33. If $Y_1(t)$ and $Y_2(t)$ are solutions of Eq. (i), show that $Y_1(t) Y_2(t) \to 0$ as $t \to \infty$. Is this result true if b = 0?
- 34. If g(t) = d, a constant, show that every solution of Eq. (i) approaches d/c as $t \to \infty$. What happens if c = 0? What if b = 0 also?

35. In this problem we indicate an alternative procedure⁷ for solving the differential equation

$$y'' + by' + cy = (D^2 + bD + c)y = g(t),$$
 (i)

where b and c are constants, and D denotes differentiation with respect to t. Let r_1 and r_2 be the zeros of the characteristic polynomial of the corresponding homogeneous equation. These roots may be real and different, real and equal, or conjugate complex numbers.

(a) Verify that Eq. (i) can be written in the factored form

$$(D - r_1)(D - r_2)y = g(t),$$

where $r_1 + r_2 = -b$ and $r_1 r_2 = c$.

(b) Let $u = (D - r_2)y$. Then show that the solution of Eq (i) can be found by solving the following two first order equations:

$$(D-r_1)u = g(t),$$
 $(D-r_2)y = u(t).$

In each of Problems 36 through 39, use the method of Problem 35 to solve the given differential equation.

36.
$$y'' - 3y' - 4y = 3e^{2t}$$
 (see Example 1)

37.
$$2y'' + 3y' + y = t^2 + 3\sin t$$
 (see Problem 9)

38.
$$y'' + 2y' + y = 2e^{-t}$$
 (see Problem 8)

39.
$$y'' + 2y' = 3 + 4\sin 2t$$
 (see Problem 6)

3.6 Variation of Parameters

In this section we describe another method of finding a particular solution of a non-homogeneous equation. This method, **variation of parameters**, is due to Lagrange and complements the method of undetermined coefficients rather well. The main advantage of variation of parameters is that it is a *general method*; in principle at least, it can be applied to any equation, and it requires no detailed assumptions about the form of the solution. In fact, later in this section we use this method to derive a formula for a particular solution of an arbitrary second order linear nonhomogeneous differential equation. On the other hand, the method of variation of parameters eventually requires us to evaluate certain integrals involving the nonhomogeneous term in the differential equation, and this may present difficulties. Before looking at this method in the general case, we illustrate its use in an example.

EXAMPLE 1 Find a particular solution of

$$y'' + 4y = 3\csc t. \tag{1}$$

Observe that this problem is not a good candidate for the method of undetermined coefficients, as described in Section 3.5, because the nonhomogeneous term $g(t) = 3 \csc t$ involves

⁷R. S. Luthar, "Another Approach to a Standard Differential Equation," *Two Year College Mathematics Journal 10* (1979), pp. 200–201. Also see D. C. Sandell and F. M. Stein, "Factorization of Operators of Second Order Linear Homogeneous Ordinary Differential Equations," *Two Year College Mathematics Journal 8* (1977), pp. 132–141, for a more general discussion of factoring operators.