QArm Recommended Assessment

Workspace Identification

1. Provide the completed DH Table for the QArm manipulator.

i	a_i	α_i	d_i	θ_i
1				
2				
3				
4				

- 2. From the completed DH table and the general transformation matrix $^{i-1}T_i$, derive the matrices 0T_1 , 1T_2 , 2T_3 , and 3T_4 .
- 3. Derive the matrices ${}^{0}T_{2}$, ${}^{0}T_{3}$, and ${}^{0}T_{4}$.
- 4. Provide expressions for the position and orientation of the end-effector frame with respect to the base frame.
- 5. Can you provide an example of the joint states $\vec{0}$ where the task space position of the end-effector is ${}^0p_4 = [0\ 0\ 0.5]^T$. The end-effector in this configuration is directly above the base, hence the x and y positions being 0. Are there other solutions for this position?
- 6. Open MATLAB and load the data you saved by double-clicking on myData.mat in the Folder Browser. What is the maximum reach of the manipulator r_{max} in your case? You can calculate this by running the following command in the Command Window.

$$>> r_max = max(sqrt(x.^2 + y.^2 + z.^2))$$

Note the dot between the variable and the power symbol to denote an element-wise exponent. What is the theoretical length of the manipulator when completely stretched out? Compare the theoretical result to your r_max value.

7. Comment on any discrepancy between the theoretical workspace volume and the one you measured in this lab.