Lecture 15: Curves

For the rest of the course we will focus on curves—i.e. algebraic varieties of dimension 1. (*Note*: although these are 1-dimensional over \mathbb{C} , they are 2-dimensional over \mathbb{R} .) Much of the theory discussed in this lecture is true for any curve, but for simplicity we will restrict to the case of plane curves.

Recall. The field of rational functions on an affine algebraic variety $X \subset \mathbb{A}^n$ is given by

$$\mathbb{C}(X) = \left\{ \frac{g}{h} : g, h \in \mathbb{C}[x_1, \dots, x_n] \right\} / \left(\frac{g}{h} = \frac{g'}{h'} \iff gh' - g'h \in \mathbb{I}(X) \right)$$

and that $\phi \in \mathbb{C}(X)$ is regular at p if there exists a representation $\phi = \frac{g}{h}$ where $h(p) \neq 0$.

1 Local geometry

Suppose $X = \mathbb{V}(f) \subset \mathbb{A}^2$ is an irreducible plane affine curve which is nonsingular at $p \in X$. Wlog we can translate p to the origin (0,0) and assume that the line $\mathbb{V}(x)$ is *not* tangent to $p \in X$ (else reflect X in the diagonal of \mathbb{A}^2 to switch $x \leftrightarrow y$). Now f must be of the form

$$f(x,y) = ax + by + \cdots$$
 (terms of degree ≥ 2) (*)

where $a, b \in \mathbb{C}$. At least one of $a, b \neq 0$, since $p \in X$ is nonsingular, and in fact $b \neq 0$, since $\mathbb{V}(x)$ is not the tangent line to $p \in X$. We have the following picture:

1.1 Order of vanishing of a regular function

Definition 31. The order of vanishing $v_p(\phi)$ of a regular function ϕ at p is

$$v_p(\phi) = \max\left\{n \ge 0 : \frac{\phi}{x^n} \text{ is regular at } p\right\}.$$

By definition we also set $v_p(0) = \infty$.

Lemma 32.

- 1. If ϕ is regular at p and $\phi(p) = 0$ then $v_p(\phi) > 0$.
- 2. If $v_p(\phi) = n$ then $\frac{\phi}{x^n}$ is regular and nonzero at p. This property determines $v_p(\phi)$ uniquely.
- 3. $v_p(\phi \psi) = v_p(\phi) + v_p(\psi)$
- 4. $v_p(\phi + \psi) \ge \min\{v_p(\phi), v_p(\psi)\}\$ and equality holds if $v_p(\phi) \ne v_p(\psi)$.

Proof.

- 1. We need to show that if ϕ is regular at p and $\phi(p) = 0$, then $\frac{\phi}{x}$ is also regular at p. But if $\phi(p) = 0$ then $\phi = \frac{g}{h}$ where g(p) = 0, so we can write $g(x,y) = xg_1 + yg_2$ for some $g_1, g_2 \in \mathbb{C}[x,y]$. Now $\frac{\phi}{x} = \frac{g_1}{h} + \frac{y}{x} \frac{g_2}{h}$ where $\frac{g_1}{h}, \frac{g_2}{h}$ are regular at p, so the result will follow if we can show $\frac{y}{x}$ is regular at p. From (*) we can write $f(x,y) = xf_1 + yf_2$ with $f_1, f_2 \in \mathbb{C}[x,y]$ where $f_1(p) = a$ and $f_2(p) = b \neq 0$. As a rational function on X, we have $\frac{y}{x} = -\frac{f_1}{f_2}$, since $f = xf_1 + yf_2 \in \mathbb{I}(X)$. Since $f_2(p) \neq 0$ this shows that $\frac{y}{x}$ is regular at p.
- 2. By definition $\phi' = \frac{\phi}{x^n}$ is regular at p and, if $\phi'(p) = 0$, then $\frac{\phi'}{x} = \frac{\phi}{x^{n+1}}$ is regular at p by (1), contradicting the definition of $\nu_p(\phi)$. Clearly there can be at most one n such that $\frac{\phi}{x^n}$ is regular and nonzero at p.
- 3. If $v_p(\phi) = m$ and $v_p(\psi) = n$ then $\frac{\phi\psi}{x^{m+n}} = \frac{\phi}{x^m} \frac{\psi}{x^n}$ is regular and nonzero at p, hence $v_p(\phi\psi) = m + n$ by (2).
- 4. Let $v_p(\phi) = m$, $v_p(\psi) = n$ and (wlog) assume $m \leq n$. Then $\frac{\phi + \psi}{x^m}$ is regular at p, so $v_p(\phi + \psi) \geq \min\{m, n\}$. If m < n then $\frac{\phi}{x^m}$ is nonzero at p whereas $\frac{\psi}{x^m}$ is zero at p, so $\frac{\phi + \psi}{x^m}$ must be nonzero at p. Hence $v_p(\phi + \psi) = \min\{m, n\}$ by (2).

For an irreducible projective curve $X \subset \mathbb{P}^2$ we can define v_p at any nonsingular point $p \in X$ by restricting to an affine patch containing p and following this construction. It can be shown that v_p is independent of any choices made.

1.2 Order of vanishing of a rational function

Definition 33.

- 1. A rational function $\phi = \frac{g}{h} \in \mathbb{C}(X)$ has order of vanishing $v_p(\phi) = v_p(g) v_p(h)$ at p. If $v_p(\phi) = -n < 0$ we say that ϕ has a pole of order n at $p \in X$.
- 2. A rational function $t \in \mathbb{C}(X)$ with $v_p(t) = 1$ is called a uniformiser at $p \in X$.

It can be shown that $v_p(\phi)$ is independent of the choice of g and h. Note that in the previous discussion, $x \in \mathbb{C}(X)$ was a uniformiser at p. Given any uniformiser t and any $0 \neq \phi \in \mathbb{C}(X)$, we have $v_p(\phi) = n \iff \frac{\phi}{t^n}$ is regular and nonzero at p.

Lemma 34. A rational function $\phi \in \mathbb{C}(X)$ is regular at p if and only if $v_p(\phi) \geq 0$.

Proof. Clearly if ϕ is regular at p then $v_p(\phi) \geq 0$. Conversely, write $\phi = \frac{g}{h}$ where $v_p(g) = m$ and $v_p(h) = n$. Pick a uniformiser t and write $g = g't^m$ and $h = h't^n$ where g', h' are regular and nonzero at p. Then $\phi = \frac{g'}{h'}t^{m-n}$. If $v_p(\phi) = m - n \geq 0$ then ϕ is regular at p.

Example 35. Suppose $X = \mathbb{A}^1_x$. At the point $\lambda \in \mathbb{A}^1$ the function $x - \lambda$ is a uniformiser. For a regular function $f \in \mathbb{C}[x]$ we have $v_{\lambda}(f) = \max\{m \geq 0 : (x - \lambda)^m \text{ divides } f(x)\}$, or in other words the multiplicity of λ as a root of f. In particular, summing over all $\lambda \in \mathbb{A}^1$ we get $\deg(f) = \sum_{\lambda \in \mathbb{A}^1} v_{\lambda}(f)$. Similarly, for a rational function $\phi = \frac{g}{h}$, we have $\sum_{\lambda \in \mathbb{A}^1} v_{\lambda}(\phi) = \deg g - \deg h$.

Now suppose that $m:=\deg g-\deg h\geq 0$, and consider $\phi(x)$ as a rational function on \mathbb{P}^1 by taking the homogenisation $\widetilde{\phi}(x,y)=\frac{\widetilde{g}}{y^m\widetilde{h}}$ with respect to y. Note that at $\infty=(1:0)$, the rational function $\frac{y}{x}\in\mathbb{C}(\mathbb{P}^1)$ is a uniformiser, and we have $\widetilde{g}(1,0), \widetilde{h}(1,0)\neq 0$. Therefore $v_{\infty}(\widetilde{\phi})=-m$ and $\sum_{\lambda\in\mathbb{P}^1}v_{\lambda}(\widetilde{\phi})=\sum_{\lambda\in\mathbb{A}^1}v_{\lambda}(\widetilde{\phi})+v_{\infty}(\widetilde{\phi})=0$. So a rational function $\phi\in\mathbb{C}(\mathbb{P}^1)$ always has the same number of zeroes as poles (counted with multiplicity).

¹Or come up with a similar argument if deg $g - \deg h < 0$.

1.3 Extending rational maps from plane curves

Proposition 36. Given an irreducible plane curve X, a rational map $f: X \dashrightarrow \mathbb{P}^n$ and a nonsingular point $p \in X$, then f can always be defined at p. In particular, if X is nonsingular then f can always be extended to a morphism $f: X \to \mathbb{P}^n$.

Proof. We want to show that f is defined at $p \in X$. Pick a uniformiser $t \in \mathbb{C}(X)$ at p. Then we can write $f = (f_1t^{a_1} : \ldots : f_mt^{a_m})$, where $a_i \in \mathbb{Z}$ and the f_i are all regular and nonzero at p. Now suppose that $a = \min_{i=0,\ldots,m} a_i$ and let $b_i = a_i - a$. Multiplying all coordinates of f by t^{-a} gives $f = (f_1t^{b_1} : \ldots : f_mt^{b_m})$ where $b_i \geq 0$ for all i and at least one $b_i = 0$. This expression for f is a well-defined at p since the ith coordinate of f(p) is either 0 if $b_i > 0$ or $f_i(p) \neq 0$ if $b_i = 0$, and there is at least one nonzero coordinate.

2 Global geometry—the genus

The main global invariant that distinguishes a nonsingular curve is called the *genus*. From the topological point of view, the genus $g \in \mathbb{Z}_{>0}$ is the number of 'holes' that the curve has:

Giving a rigorous algebraic definition of the genus would take too long, so we will just consider some examples.

Fact 37. A nonsingular plane curve $C \subset \mathbb{P}^2$ of degree d has genus $g(C) = \frac{(d-1)(d-2)}{2}$.

Lines and conics. We already know that a line or a plane conic is isomorphic to \mathbb{P}^1 , which we have already seen is the *Riemann sphere* (cf. Lecture 10). Therefore, these curves have genus 0. (In fact, *any* curve of genus 0 must *always* be isomorphic to \mathbb{P}^1 !)

Cubic curves. Sketch that a nonsingular cubic curve C has g(C) = 1.

Fact 38. An irreducible plane cubic $C \subset \mathbb{P}^2$ is isomorphic to a plane cubic in Weierstrass normal form $\mathbb{V}(y^2z-x^3-axz^2-bz^3)$ for some $a,b\in\mathbb{C}$.

A cubic C in Weierstrass form has a projection $\pi\colon C\to\mathbb{P}^1$ with $\pi(x:y:z)=(x:z)\in\mathbb{P}^1$ and $\pi(0:1:0)=(1:0)$. The morphism π is generally 2-to-1, given by considering $y=\pm\sqrt{\frac{x^3+axz^2+bz^3}{z}}$ as a two-valued function on \mathbb{P}^1 . However there are four ramification points where y is single valued, given by (1:0) and $(\alpha_i:1)$ for $\alpha_1,\alpha_2,\alpha_3$ the roots of $x^3+ax+b=0$. If we cut \mathbb{P}^1 along two branch curves each joining two of the four points, we get two 'sheets' isomorphic to a twice-punctured copy of \mathbb{P}^1 , where y is single-valued. We can join the sheets up together to get a torus.

$$= 2 \times$$

Remark. Note, not every value of $g(C) \in \mathbb{Z}_{\geq 0}$ can occur for a nonsingular plane curve $C \subset \mathbb{P}^2$! In particular, there are no plane curves with g(C) = 2. Curves of genus 2 do exist, but they can't be embedded in \mathbb{P}^2 . (In fact 'most' curves can't be embedded in \mathbb{P}^2 .)