

Operador de Infraestrutura de Redes

Qualificação Profissional em TI - SENAI MARACANÃ

Anthony Freitas

FUNDAMENTOS DE REDES

Matriz Curricular

Operador de Infraestrutura de Redes - Qualificação

Módulos	Unidades Curriculares	Carga Horária	Carga Horária do Módulo
Módulo Básico	Fundamentos de Hardware	20h	80h
	Fundamentos de Software	20h	
	Fundamentos de Redes	40h	
Módulo Específico Profissional	Cabeamento Estruturado	20h	
	Comutação, Roteamento e Wireless	60h	
	Servidores, Virtualização e Computação em nuvem	20h	240h
	Serviços de Rede	60h	
	Gerenciamento e Monitoramento de Rede	20h	
	Segurança de Redes	20h	
	Redes WAN e Automação	20h	
	Integração de Competências Profissionais	20h	
	Carga Horária Total	320h	

Módulo Básico Unidade III- Fundamentos de Redes

- Fundamentos Históricos
- Protocolos de Rede
 - Modelo OSI / TCP/IP, Camadas
- Topologias de Rede
 - Malha, Estrela, Barramento, Anel, Híbrido
- Tipos e Características
 - Ponto-a-ponto, Cliente-Servidor, LAN, MAN, WAN, WLAN, PAN, CAN, SAN
- Conceitos de Rede Virtual
- Provedores de Links
 - Satélite, DSL, Cable...
- Instalação e Configuração
 - Sistemas Operacionais, softwares aplicativos
- Packet Tracer
 - Conceitos
 - Configurações

Entendendo Endereços IP

Um endereço IP é um identificador único para um dispositivo em uma rede. Ele é composto por quatro grupos de números, como 192.168.1.1, que permitem a comunicação entre diferentes dispositivos.

Diferenças entre IPv4 e IPv6

IPv4 IPv6

Endereços de 32 bits, com formato 192.168.1.1. Possui aproximadamente 4,3 bilhões de endereços disponíveis. Endereços de 128 bits, com formato 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Possui aproximadamente 340 undecilhões de endereços disponíveis.

Formato do Endereço IPv4

1 Faixa de Endereços

Os endereços IPv4 variam de 0.0.0.0 a 255.255.255.255.

2 Exemplos 192.168.1.1, 10.0.0.1

Máscara de Sub-rede

Função

A máscara de sub-rede define qual parte do endereço IP é a rede e qual é o host.

Exemplos

255.255.255.0, 255.255.0.0

CIDR Notation

O que é CIDR?

Classless Inter-Domain Routing, uma notação que facilita a alocação de endereços IP e roteamento.

1

Exemplo

/24 (equivalente a 255.255.255.0)

O que é DNS?

Definição

Domain Name System, responsável por traduzir nomes de domínio em endereços IP.

Exemplo

www.example.com -> 93.184.216.34

O que é Broadcast?

Definição

Envio de dados para todos os dispositivos em uma rede.

Endereço de Broadcast

Último endereço de uma sub-rede (Ex: 192.168.1.255 para a sub-rede 192.168.1.0/24).

Portas de Comunicação

1 Definição

Pontos de entrada e saída de dados em uma rede.

2 Exemplos

HTTP: 80, HTTPS: 443, FTP: 21, SSH: 22

Definição de IP da Máquina

Configuração Manual

O IP da máquina pode ser configurado manualmente pelo usuário.

Atribuição Automática

O IP também pode ser atribuído automaticamente por um servidor DHCP.

Máscaras de Sub-rede e Classes de Endereço IP

Conceitos fundamentais de máscaras de sub-rede e Classes de endereços IP

Estas são ferramentas essenciais para a organização e o gerenciamento eficiente das redes de computadores.

O que são Máscaras de Sub-rede?

Definição

A máscara de sub-rede é uma ferramenta que separa o endereço IP em uma parte referente à rede e outra parte referente aos hosts (dispositivos) dentro dessa rede.

Exemplo

Um endereço IP típico é 192.168.1.50 com máscara 255.255.255.0. Nesse caso, a parte da rede é 192.168.1 e a parte do host é .50.

Importância

As máscaras de sub-rede permitem dividir uma rede IP maior em sub-redes menores, melhorando o gerenciamento, a segurança e a eficiência da rede.

Classes de Endereços IP

Visão Geral

Os endereços IP são divididos em 5 classes (A, B, C, D e E), com base nos primeiros bits do endereço.

Características

- Classe A: 0-127 na primeira parte
- Classe B: 128-191 na primeira parte
- Classe C: 192-223 na primeira parte
- Classe D: 224-239 na primeira parte (multicast)
- Classe E: 240-255 na primeira parte (reservada)

Aplicações

As diferentes classes de endereços IP permitem organizar e gerenciar o espaço de endereçamento, facilitando a atribuição de endereços a redes e dispositivos.

Cálculo do Número de Hosts

Subdivisão de Redes (Subnetting)

1 Definição

Subnetting é a divisão de uma rede IP maior em subredes menores, usando máscaras de sub-rede.

2 Benefícios

Melhora o gerenciamento da rede, a segurança e a eficiência no uso de endereços IP.

3 Exemplo

Dividir a rede 192.168.1.0/24 em sub-redes menores, como 192.168.1.0/26 e 192.168.1.64/26.

VLSM (Máscara de Sub-rede de Comprimento Variável)

Definição

VLSM permite o uso de máscaras de sub-rede de diferentes comprimentos dentro da mesma rede.

Benefício

Maximiza o uso eficiente do espaço de endereçamento IP.

Aplicação

Ideal para redes com necessidades de endereçamento variadas.

Classe A

Características

· Primeiros bits: 0

Intervalo: 0.0.0.0 a
 127.255.255.255

 Máscara padrão: /8 (255.0.0.0)

Número de redes: 128

 Número de hosts por rede: 16.777.214

Aplicações

Ideal para redes muito grandes, como backbones de provedores de internet e grandes organizações.

Observações

O endereço 127.0.0.1 é reservado para o loopback, usado internamente pelos dispositivos.

Classe B

Características

Primeiros bits: 10

 Intervalo: 128.0.0.0 a 191.255.255.255

 Máscara padrão: /16 (255.255.0.0)

Número de redes: 16.384

 Número de hosts por rede: 65.534

Aplicações

Comum em redes de médio porte, como empresas, universidades e provedores regionais.

Observações

Oferece um bom equilíbrio entre o número de redes e o número de hosts por rede.

Classe C

Características

· Primeiros bits: 110

 Intervalo: 192.0.0.0 a 223.255.255.255

 Máscara padrão: /24 (255.255.255.0)

Número de redes: 2.097.152

Número de hosts por rede:
 254

Aplicações

Amplamente utilizada em redes pequenas, como escritórios, lojas e LANs domésticas.

Observações

Apesar do grande número de redes, a quantidade de hosts por rede é limitada.

Classe D

A Classe D é reservada para endereços de multicast, usados para comunicação de um para muitos. Os primeiros bits desses endereços são sempre 1110, com um intervalo de 224.0.0.0 a 239.255.255.255.

Classe E

A Classe E é reservada para uso futuro ou experimental. Seus primeiros bits são sempre 1111, com um intervalo de 240.0.0.0 a 255.255.255.255. Essa classe não é atualmente utilizada para roteamento ou alocação de endereços.

Calculando o Número de Hosts por Sub-rede

Fórmula

A fórmula para calcular o número de hosts em uma sub-rede é: 2^n - 2, onde n é o número de bits reservados para os hosts. Subtrai-se 2 para excluir os endereços de rede e broadcast.

Exemplo 1: Máscara /24

Com uma máscara /24 (255.255.255.0), temos 8 bits para hosts (32 - 24 = 8). Portanto, o número de hosts possíveis é 2^8 - 2 = 254.

3 Exemplo 2: Máscara /26

Com uma máscara /26 (255.255.255.192), temos 6 bits para hosts (32 - 26 = 6). Portanto, o número de hosts possíveis é $2^6 - 2 = 62$.

Subnetting: Dividindo Redes em Sub-redes

Mais Exemplos de Máscaras de Subrede

Máscara /28

Com uma máscara /28 (255.255.250), temos 4 bits para hosts (32 - 28 = 4). Portanto, o número de hosts possíveis é 2^4 - 2 = 14.

Máscara /30

Com uma máscara /30 (255.255.255.252), temos 2 bits para hosts (32 - 30 = 2). Portanto, o número de hosts possíveis é 2^2 - 2 = 2.

Benefícios do Subnetting

O subnetting traz diversos benefícios, como um melhor gerenciamento da rede, maior segurança e eficiência no uso dos endereços IP disponíveis.

Exemplo de Subnetting

Ao dividir uma rede 192.168.1.0/24 em sub-redes menores, podemos melhor alocar e gerenciar os recursos de rede de acordo com as necessidades específicas de cada segmento.

VLSM: Máscara de Sub-rede de Comprimento Variável

Flexibilidade

O VLSM permite o uso de máscaras de sub-rede de diferentes comprimentos dentro da mesma rede, maximizando o uso dos endereços IP disponíveis.

Eficiência

Essa técnica oferece uma alocação mais eficiente de endereços IP, evitando desperdícios e otimizando a utilização da rede.

Exemplos Práticos de Cálculos de Subrede

Máscara	Bits para Hosts	Hosts Possíveis
/24	8	254
/26	6	62
/28	4	14
/30	2	2

Planejamento e Implementação de Redes com Subnetting

Análise

1

Compreender as necessidades da rede, como o número de dispositivos, requisitos de segurança e escalabilidade, é o primeiro passo crucial no planejamento de uma rede com subnetting.

Projeto

2

Com base na análise inicial, projetar a divisão da rede em sub-redes, atribuir faixas de endereços IP e definir as máscaras de sub-rede apropriadas.

Implementação

Colocar em prática o projeto de subnetting, configurando roteadores, switches e hosts de acordo com o esquema definido, garantindo a conectividade e a eficiência da rede.

Importância do Subnetting

O domínio das técnicas de subnetting é essencial para projetar, implementar e gerenciar redes de computadores eficientes e escaláveis, atendendo às necessidades de organizações de todos os portes.

Benefícios Práticos

Com o subnetting, é possível melhorar a segurança da rede, otimizar o uso dos endereços IP disponíveis e facilitar o gerenciamento de grandes infraestruturas de rede.

Configuração Manual de Rede

Configuração Manual de IP

Para configurar
manualmente o endereço
IP, a máscara de sub-rede e
o gateway padrão, basta
digitar os valores desejados.
Por exemplo: IP: 192.168.1.10,
Máscara de Sub-rede:
255.255.255.0, Gateway
Padrão: 192.168.1.1.

Configuração Manual de DNS

Você também pode
configurar manualmente os
servidores DNS preferencial
e alternativo. Por exemplo:
DNS Preferencial: 8.8.8.8,
DNS Alternativo: 8.8.4.4.
Isso permite que o
computador resolva nomes
de domínio de maneira
confiável.

Validação das Configurações

Após realizar as configurações, é importante validá-las. Você pode usar o comando "ipconfig /all" no prompt de comando para verificar se os detalhes estão corretos e se a conexão de rede está funcionando corretamente.

Configuração Automática de Rede

DHCP

O DHCP (Dynamic Host Configuration Protocol) é um protocolo que atribui automaticamente endereços IP, máscara de sub-rede, gateway e informações de DNS a dispositivos em uma rede. Isso simplifica muito a configuração de rede.

Benefícios do DHCP

O uso do DHCP traz diversos benefícios, como a facilidade de gerenciamento, a alocação dinâmica de endereços IP e a redução de erros de configuração. Isso é especialmente útil em redes com muitos dispositivos.

1 2 3

Configuração Automática

Quando o DHCP está ativado, os dispositivos na rede recebem suas configurações de rede automaticamente. Isso evita a necessidade de configurar manualmente cada dispositivo, tornando o processo muito mais conveniente.

Redes Virtuais e VPN

Redes Virtuais

As redes virtuais (VLANs) permitem a criação de múltiplas redes lógicas dentro de uma mesma rede física, separando o tráfego e melhorando a segurança.

VPNs

As VPNs (Redes Privadas Virtuais) criam um túnel seguro entre um dispositivo e uma rede remota, permitindo o acesso a recursos internos de forma criptografada.

Benefícios

Tanto as redes virtuais quanto as VPNs oferecem maior controle, segurança e flexibilidade na gestão da infraestrutura de rede.

Tendências e Futuro da Configuração de Rede

Redes Inteligentes

Com o avanço da Internet das Coisas (IoT) e da Inteligência Artificial (IA), as redes se tornarão cada vez mais inteligentes, automatizadas e capazes de se adaptarem dinamicamente às necessidades dos usuários e aplicações.

Redes 5G e Mobilidade

A chegada do 5G revolucionará a conectividade, oferecendo velocidades mais altas, latência reduzida e suporte a uma maior quantidade de dispositivos móveis, transformando a forma como interagimos com a rede.

Tendências e Futuro da Configuração de Rede

Redes Inteligentes

Com o avanço da Internet das Coisas (IoT) e da Inteligência Artificial (IA), as redes se tornarão cada vez mais inteligentes, automatizadas e capazes de se adaptarem dinamicamente às necessidades dos usuários e aplicações.

Redes 5G e Mobilidade

A chegada do 5G revolucionará a conectividade, oferecendo velocidades mais altas, latência reduzida e suporte a uma maior quantidade de dispositivos móveis, transformando a forma como interagimos com a rede.

Computação em Nuvem

A computação em nuvem continuará a desempenhar um papel fundamental na configuração de rede, permitindo a migração de infraestrutura e serviços para ambientes cloud, oferecendo escalabilidade, flexibilidade e redução de custos.

Segurança Avançada

Com o aumento da complexidade das redes, a segurança se tornará ainda mais crítica, com o desenvolvimento de soluções baseadas em IA, criptografia avançada e detecção de ameaças em tempo real.

Exercícios

1. Uma rede de computadores com acesso à Internet está configurada pelo IP 197.251.176.0 e máscara 255.255.255.240, enquanto que a segunda rede pela notação CIDR 189.241.0.0/23. Pode-se concluir que a notação CIDR para a primeira rede e a máscara utilizada pela segunda rede, são respectivamente:

- a) 197.251.176.0/28 e 255.255.254.0
- b) 197.251.176.0/27 e 255.255.254.0
- c) 197.251.176.0/26 e 255.255.255.0
- d) 197.251.176.0/27 e 255.255.252.0
- e) 197.251.176.0/28 e 255.255.252.0

Exercícios - Resolução:

1. Uma rede de computadores com acesso à Internet está configurada pelo IP 197.251.176.0 e máscara 255.255.255.240, enquanto que a segunda rede pela notação CIDR 189.241.0.0/23. Pode-se concluir que a notação CIDR para a primeira rede e a máscara utilizada pela segunda rede, são respectivamente:

Primeira Rede

IP: 197.251.176.0

Máscara de sub-rede: 255.255.255.240 Máscara de sub-rede 255.255.255.240:

Em binário: 1111111111111111111111111111110000

O número de bits em 1 é 28 (24 + 4), o que indica que a notação CIDR é /28.

Portanto, a notação CIDR para a primeira rede é 197.251.176.0/28.

Segunda Rede

IP: 189.241.0.0/23 Notação CIDR /23:

/23 significa que os primeiros 23 bits do endereço são usados para a parte da rede.

Em binário: 1111111111111111111111110.00000000

Convertendo para decimal: 255.255.254.0

Portanto, a máscara de sub-rede para a segunda rede é 255.255.254.0.

Exercícios - Resolução:

1. Uma rede de computadores com acesso à Internet está configurada pelo IP 197.251.176.0 e máscara 255.255.255.240, enquanto que a segunda rede pela notação CIDR 189.241.0.0/23. Pode-se concluir que a notação CIDR para a primeira rede e a máscara utilizada pela segunda rede, são respectivamente:

A notação CIDR para a primeira rede e a máscara de sub-rede para a segunda rede são respectivamente:

a) 197.251.176.0/28 e 255.255.254.0

Exercícios

2. Seja S a sub-rede da estação de endereço IP 192.168.100.20 e máscara 255.255.255.248. Qual o endereço de broadcast de S?

- a) 192.168.100.0
- b) 192.168.100.23
- c) 192.168.100.19
- d) 192.168.255.21
- e) 192.168.255.255

Para encontrar o endereço de broadcast de uma sub-rede, precisamos entender o intervalo de endereços que essa sub-rede cobre.

O endereço de broadcast é o último endereço dentro desse intervalo.

Passos para calcular o endereço de broadcast:

1. Identificar o endereço IP e a máscara de sub-rede:

Endereço IP: 192.168.100.20

Máscara de sub-rede: 255.255.255.248

2. Converter a máscara de sub-rede para binário:

255.255.255.248 em binário é: 111111111111111111111111111111000

3. Determinar a quantidade de bits para a rede e para o host:

A máscara de sub-rede 255.255.255.248 tem 29 bits '1', então é uma /29. Isso significa que temos 3 bits para hosts (32 - 29 = 3).

4. Calcular o número de endereços na sub-rede:

Com 3 bits para hosts, podemos ter $23=82^3=823=8$ endereços por sub-rede. Endereços válidos: 0 a 7, 8 a 15, 16 a 23, etc.

5. Identificar o bloco de endereços que contém 192.168.100.20:

192.168.100.20 cai no bloco de endereços de 192.168.100.16 a 192.168.100.23.

6. Identificar o endereço de broadcast:

O endereço de broadcast é o último endereço no bloco: 192.168.100.23

LINK PARA O MATERIAL DA AULA

Slides github/sammyfreitas/QUA0682024U008

Livro Da Unidade III

https://estantedelivros.senai.br/view/1JiJqSH

W5UrCizAxbUDhU5YQsTJHruOr7

https://github.com/

Perguntas

anthony.freitas@docente.senai.br

