#### Discriminative Learning of Sum-Product Networks

Robert Gens Pedro Domingos























SPN Review



Discriminative Training



**Experiments** 





SPN Review



Discriminative Training



**Experiments** 

#### Graphical Models





SPNs perform fast, exact inference on high treewidth models

#### Deep Architectures



SPNs have full probabilistic semantics and tractable inference over many layers

#### Discriminative Learning



SPNs combine features with fast, exact inference over high treewidth models









Discriminative Training



**Experiments** 



#### A Univariate Distribution Is an SPN.









# A Product of SPNs over Disjoint Variables Is an SPN.



# A Weighted Sum of SPNs over the Same Variables Is an SPN.











P(X=0) ?



P(X=0) ?



P(X=0) ?















$$\max_{y} P(X=0, Y=y) = 0.12$$



#### Special Cases of SPNs

- Junction trees
- Hierarchical mixture models
- Non-recursive probabilistic context-free grammars
- Models with context-specific independence
- Models with determinism
- Other high-treewidth models

## Compactly Representable Probability Distributions



#### Learning SPNs

| Update         | Soft Inference<br>(Marginals) | Hard Inference<br>(MAP States) |
|----------------|-------------------------------|--------------------------------|
| Gen. EM        |                               |                                |
| Gen. Gradient  |                               |                                |
| Disc. Gradient |                               |                                |

Poon & Domingos, UAI 2011





SPN Review



Discriminative Training



**Experiments** 

 $P(\mathbf{Y}|\mathbf{X})$ 

Y Query

H Hidden

X Evidence





H Hidden

Y Query



X Evidence







### Discriminative Training

$$\nabla \log P(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})} =$$



















#### Problem with Backpropagation



## Hard Inference Overcomes Gradient Diffusion



Soft Inference (Marginals)

Hard Inference (MAP States)

## Reasons to Use Hard Inference

- To overcome gradient diffusion
- When goal is to predict most probable structure
- For speed or tractability



$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$\nabla \log \max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x}) - \nabla \log \max_{\mathbf{y}', \mathbf{h}} P(\mathbf{y}', \mathbf{h}, \mathbf{x})$$

Correct label

Best guess

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$\nabla \log \max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x}) - \nabla \log \max_{\mathbf{y}', \mathbf{h}} P(\mathbf{y}', \mathbf{h}, \mathbf{x})$$

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$abla \log \left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$$
 –  $abla \log \left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$ 

 $\max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x})$ 

 $\max_{\mathbf{y}',\mathbf{h}} P(\mathbf{y}',\mathbf{h},\mathbf{x})$ 

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$



$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$



$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$



$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$



# w/ correct \_ # w/ model label guess

$$\frac{\partial}{\partial w_i} \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \frac{\Delta c_i}{w_i}$$

# Learning SPNs: Summary



| Update         | Soft Inference<br>(Marginals)                                                                                                    | Hard Inference<br>(MAP States)              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Gen. EM        | $\Delta w_i \propto w_i \frac{\partial S}{\partial S_k}$                                                                         | $\Delta w_i = c_i$                          |
| Gen. Gradient  | $\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$                                                                          | $\Delta w_i = \eta \frac{c_i}{w_i}$         |
| Disc. Gradient | $\Delta w_i = \eta \left( \frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k} \right)$ | $\Delta w_i = \frac{\eta}{w_i} (c_i - c_i)$ |

## Learning SPNs: Summary



| Update         | Soft Inference<br>(Marginals)                                                                                         | Hard Inference<br>(MAP States)              |
|----------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Gen. EM        | $\Delta w_i \propto w_i rac{\partial S}{\partial S_k}$                                                               | $\Delta w_i = c_i$                          |
| Gen. Gradient  | $\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$                                                               | $\Delta w_i = \eta \frac{c_i}{w_i}$         |
| Disc. Gradient | $\Delta w_i = \eta ( \frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k} )$ | $\Delta w_i = \frac{\eta}{w_i} (c_i - c_i)$ |

## Learning SPNs: Summary



| Update         | Soft Inference<br>(Marginals)                                                                                                                          | Hard Inference<br>(MAP States)                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Gen. EM        | $\Delta w_i \propto w_i \frac{\partial S}{\partial S_k}$                                                                                               | $\Delta w_i = c_i$                            |
| Gen. Gradient  | $\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$                                                                                                | $\Delta w_i = \eta \frac{c_i}{w_i}$           |
| Disc. Gradient | true label exp. label $\Delta w_i = \eta \left( \frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k} \right)$ | $\Delta w_i = \frac{\eta}{w_i} ( c_i - c_i )$ |





SPN Review



Discriminative Training



**Experiments** 

### Image Classification















































#### CIFAR-10

32x32px 50k train 10k test

STL-10

96x96px 5k train }
8k test 100k unlabeled

#### Feature Extraction

Coates et al., AISTATS 2011



#### SPN Architecture



#### CIFAR-10 Results



#### CIFAR-10 Results



#### CIFAR-10 Results



#### STL-10 results



#### Future Work

- Max-margin SPNs
- Learning SPN structure
- Applying discriminative SPNs to structured prediction
- Approximate inference using SPNs

### Summary

- Discriminative SPNs combine the advantages of
  - Tractable inference
  - Deep architectures
  - Discriminative learning
- Hard gradient combats diffusion in deep models
- Discriminative SPNs outperform SVMs and deep models on image classification benchmarks