

การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 9 คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ 30 เมษายน 2556

เวลา 08:00 - 13:00 น.

เฉลยข้อสอบภาคทฤษฎี

เลขา	ไระจำ	ตัวส	อบ	•••••	• • • • • • •	 •••
ศูา	าถุ นธ	าวน.		• • • • • • • •		

คำตอบข้อที่ 1 (6 คะแนน)

1.1

 \mathbf{E}^0 รวมที่เกิดจากปรากฏการณ์ดังกล่าว

2.89 V

(0.5 คะแนน)

เหตุผลที่ต้องเลือกเกิดครึ่งปฏิกิริยาที่แต่ละขั้วไฟฟ้า (1 คะแนน)

อะลูมิเนียมทำหน้าที่เป็นขั้วแอโนค เนื่องจากมี reduction potential ต่ำสุด นั่นคือ oxidizing power สูงสุด ขณะที่ออกซิเจนทำปฏิกิริยา reduction เนื่องจากเป็นสารที่มีในระบบที่มี reduction potential สูงสุด

1.2 ค่าความต่างศักย์

2.61 V

(0.5 คะแนน)

วิธีคิด (2.5 คะแนน)

สมการ Nernst มาจาก
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 $\Delta G = -nF\Delta E$ (1, สมการละ 0.5)
$$-nF\Delta E = -nF\Delta E^{\circ} + RT \ln Q$$

$$\Delta E = \Delta E^{\circ} - \frac{RT}{nF} \ln \frac{[\mathrm{Al}^{3+}]^4}{(P_{\mathrm{O}_2})^3 [\mathrm{H}^+]^{12}}$$

$$= 2.89 - \frac{(2.303)(8.314)(310)}{(12)(96500)} \times \log \frac{(1.0 \times 10^{-8})^4}{(0.10)^3 (1.0 \times 10^{-7})^{12}}$$
 (1.5)*
$$= 2.61 \mathrm{~V}$$

(* เขียน Q จากสมการ ได้ 0.5 | จำนวนอิเล็กตรอนถูก 0.5 | ใช้ค่า R และ T ถูก 0.5)

คำตอบข้อที่ 2 (10 คะแนน)

2.1 สมการที่คุลแล้ว

2.2 สัคส่วนโมลของ $S_2O_8^{2-}$ ต่อโมลของ $S_2O_3^{2-}$

$$\frac{\text{โมลของ } S_2O_8^{2-}}{\text{โมลของ } S_2O_3^{2-}} = \frac{\frac{1}{2}}{2} \tag{0.5 กะแนน}$$

2.3

2.3.1 ค่าความเข้มข้นของ
$$S_2O_8^{2-}$$
 ที่ใช้ไป และอัตราการเกิดปฏิกิริยาเป็นดังนี้ (3 คะแนน)

การทคลอง	ความเข้มข้นเริ่มต้นในสารละลายผสม (M)			$\Delta[S_2O_8^{2-}]$	$\Delta[S_2O_8^{2-}]$ Δt	อัตราการเกิดปฏิกิริยา
ครั้งที่	[I ⁻]	$[S_2O_8^{2-}]$	$[S_2O_3^{2-}]$	(M)	(s)	(หน่วยmol/L·s)
1	0.080	0.028	0.0020	0.0010	35	2.9×10^{-5}
2	0.080	0.020	0.0020	0.0010	53	1.9×10^{-5}
3	0.056	0.040	0.0020	0.0010	33	3.0×10^{-5}
4	0.024	0.040	0.0020	0.0010	95	1.1×10^{-5}

วิธีคิดของการทดลองครั้งที่ 1 (1 คะแนน)

เลขประจำตัวสอบ......

วิธีคิด n และ m (2 คะแนน)

Rate =
$$k [I^{-}]^{m} [S_{2}O_{8}^{2-}]^{n} = -\frac{\Delta[S_{2}O_{8}^{2-}]}{\Delta t}$$

จากการทดลองที่ 1:
$$2.9 \times 10^{-5} = k (0.080)^m (0.028)^n$$
(1)

จากการทดลองที่ 2:
$$1.9 \times 10^{-5} = k (0.080)^m (0.020)^n$$
(2)

สมการ (1) / สมการ (2) :
$$\frac{2.9}{1.9} = \left(\frac{0.028}{0.020}\right)^n \tag{1 คะแนน}$$

$$1.5 = (1.4)^n$$

$$n = 1.2 \approx 1$$

จากการทดลองที่ 3:
$$3.0 \times 10^{-5} = k (0.056)^m (0.040)^n$$
(3)

จากการทดลองที่
$$4:$$
 $1.1 \times 10^{-5} = k (0.024)^m (0.040)^n$ (4)

สมการ (3) / สมการ (4) :
$$\frac{3.0}{1.1} = \left(\frac{0.056}{0.024}\right)^{m}$$
 (1 คะแนน)

$$2.7 = (2.3)^{m}$$

$$m = 1.2 \approx 1$$

$$k = 1.1 \times 10^{-2}$$
 L mol⁻¹ s⁻¹ (1 คะแนน)

(0.5 คะแนน สำหรับคำตอบ, 0.5 คะแนน สำหรับหน่วย)

วิธีคิดค่า k (0.5 คะแนน)

จากการทดลองที่
$$4: 1.1 \times 10^{-5} = k (0.024)^m (0.040)^n$$

คังนั้น
$$k = \frac{1.1 \times 10^{-5} \text{ mol/L} \cdot \text{s}}{(0.024 \text{ mol/L})(0.040 \text{ mol/L})}$$

$$= 1.1 \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$$

$$(0.5 \text{ คะแนน})$$

คำตอบข้อที่ 3 (3 คะแนน)

ธาตุกัมมันตรังสีเริ่มต้นที่มีเลขมวลและเลขอะตอมตรงกับธาตุที่ปรากฏในตารางธาตุ

คือ

(0.5 คะแนน)

วิธีคิด (2.5 คะแนน)

สมมุติเป็นธาตุ X ที่มีเลขมวลเป็น a และเลขอะตอมเป็น b

 $^a_b X \, o \,$ ผลิตภัณฑ์ที่ $1 \, o \,$ ผลิตภัณฑ์ที่ $2 \, o \,$ ผลิตภัณฑ์ที่ $3 \, o \,$ ผลิตภัณฑ์ที่ $4 \, o \, ^{226}_{88} Ra$

(1): 3 ขั้นตอนสลายให้อนุภาค ${}^4_2\alpha$ (หรือ ${}^4_2{
m He}$) (0.25 คะแนน)

 $a \rightarrow 226 + 3\frac{4}{2}\alpha$ จะได้ a = 238(0.5 คะแนน)

 $b \to 88 + 3\frac{4}{2}\alpha$ $\mathfrak{nell} b'' b = 94$ (0.5 คะแนน)

ขั้นตอนนี้ได้ธาตุ $^{238}_{94}\mathrm{Y}$

(2):2 ขั้นตอนสถายให้อนุภาค $^{0}_{-1}eta$ (หรือ $^{0}_{-1}e)$ (0.25 คะแนน)

(0.5 คะแนน)

 $a \rightarrow 238 + 2 {0 \atop -1} \beta$ จะได้ a = 238 $b \rightarrow 94 + 2 {0 \atop -1} \beta$ จะได้ b = 92(0.5 คะแนน)

ธาตุกัมมันตรังสีที่มีเลขมวลและเลขอะตอมตรงกับธาตุในตารางธาตุคือ $^{238}_{92}\mathrm{U}$

คำตอบข้อที่ 4 (10 คะแนน)

4.1 (1 คะแนน)

อุณหภูมิที่เริ่มมีของแข็งคือ 4.2 ของแข็งที่เกิดขึ้นคือ

55 °C A

(0.5 คะแนน)

(0.5 คะแนน)

วิธีคิด (1 คะแนน)

เลขประจำตัวสอบ......

จุด y คือ อุณหภูมิที่เริ่มมีของแข็งตรงกับ $55~^\circ\mathrm{C}$ เฉพาะ $\mathbf A$ ที่เป็นตัวทำละลายจะแข็งตัวแยกออกมา

4.2.1 เมื่อลดอุณหภูมิต่อลงมาจนถึง 40 °C

มี solid phase = 75 % (0.5 คะแนน)

มี liquid phase = 25 % (0.5 คะแนน)

ใน solid phase มี A(s) = 100 % w/w (0.5 คะแนน)

ใน liquid phase มี A(l) = 60 % w/w (0.5 คะแนน)

วิธีคิด (2 คะแนน)

จากกราฟในคำตอบข้อ 4.2 ที่ 40 °C ตรงกับจุด z

จากเส้น tie line azb ได้อัตราส่วน solid phase : liquid phase = az : zb = 30 : 10

solid phase = $\frac{30}{(30+10)} \times 100 = 75 \%$

liquid phase = 100 - 75 = 25 %

liquid curve (caey) คือ กราฟองค์ประกอบของ A(l) และ B(l) ในของเหลว solid curve (fbd) คือ กราฟองค์ประกอบของของแข็ง

จาก solid curve จุด b คือ องค์ประกอบของของแข็ง มี $\mathbf{A}(\mathbf{s}) = 100~\%~\mathrm{w/w}$

จาก liquid curve จุด a คือ องค์ประกอบของของเหลว มี A(l)=60~%~w/w

4.2.2 ถ้าต้องการให้ระบบส่วนที่เป็น liquid phase มี A เหลือ 50~%~w/w

ต้องลดอุณหภูมิลงมาถึง = 35 °C (0.5 คะแนน)

4.2.3 ถ้าลดอุณหภูมิลงมาจาก $50~^{\circ}\mathrm{C}$ เป็น $40~^{\circ}\mathrm{C}$

วิธีคิด (1 คะแนน)

จากกราฟในคำตอบข้อ 4.2

ที่ 50 °C มี solid phase : liquid phase = 1 : 1 หรือมี solid 50 % w/w (0.5 คะแนน)

ที่ 40 °C มี solid 75 % w/w (0.5 คะแนน)

ดังนั้น มีของแข็งเพิ่มขึ้น = 75 - 50 = 25 % w/w

4.3 สารตัวอย่างที่มี cooling curve ตามแบบที่ 1 คือ

1, 4 และ 7

(0.5 คะแนน)

วิธีคิด (0.5 คะแนน)

cooling curve ตามแบบที่ 1 เป็นของสารบริสุทธิ์ cooling curve ตามแบบที่ 2 เป็นของสารละลาย

คำตอบข้อที่ 5 (5 คะแนน)

ความคันย่อยของแก๊ส
$$A = 0$$
 atm (0.5 คะแนน)

ความดันย่อยของแก๊ส B = <mark>3.1</mark> atm (0.5 คะแนน)

ความคันย่อยของแก๊ส $A_2B =$ 3.1 atm (0.5 คะแนน)

ความคันรวมของแก๊สผสม = 6.2 atm (0.5 คะแนน)

วิธีคิด (3 คะแนน)

$$P(B) = \frac{nRT}{V}$$
 (0.5 คะแนน)
= $\frac{5 \times 0.082 \times 300}{(20 + 20)}$ (0.5 คะแนน)
= $3.075 = 3.1$ atm

$$P(A_2B) = \frac{nRT}{V}$$
 (0.5 คะแนน)
$$= \frac{5 \times 0.082 \times 300}{(20 + 20)}$$
 (0.5 คะแนน)
$$= 3.075 = 3.1 \text{ atm}$$

$$P_{\rm T}$$
 = $P({\rm B}) + P({\rm A}_2{\rm B})$
= $3.1 + 3.1$ (0.5 คะแนน)
= 6.2 atm

Answers to Problem 6 (10 points)

6.1 Structures of compounds **A** to **G** are shown below.

6.2 The structure of Reagent **X** is

6.3 The number of stereoisomers for **H** is

6.4 The structure of the (2R,3S,7R)-**H** isomer is

Complete synthetic scheme –

Answers to Problem 7 (12 points)

7.1 Type of reaction and reagents used for the transformations.

(4 points)

Step	Type of Reaction	Laboratory Reagent	Explanation
I	Oxidation	No specific oxidizing agent is available.	Aldehyde group is more easily oxidized the 1° alcohol.
	(0.5 point)	(0.5 point)	
II	Reduction	1) NaBH ₄ 2) H ₃ O ⁺	-
	(0.5 point)	(0.5 point)	
III	Substitution (Esterification)	No specific reagent is available.	2° Alcohol groups have similar activity.
	(0.5 point)	(0.5 point)	
IV	Oxidation	No specific reagent is available.	Dehydrogenation can be occurred at various positions.
	(0.5 point)	(0.5 point)	

7.2 Mechanism of step III is

(2 points)

7.3 Identify the most acidic proton for ascorbic acid and write its conjugate base with a brief explanation. (2 points)

เลขประจำตัวสอบ......

7.4 Oxidized form of Vitamin C is

(1 point)

7.5 Reaction mechanism for the interconversion of α and $\beta\text{-forms}.$

(2 points)

$$\alpha$$
-D-glucuronic acid α -D-glucuronic acid

7.6 A structure of glucuronide of β -D-glucuronic acid and phenol.

(1 point)

คำตอบข้อที่ 8 (9 คะแนน)

8.1

วิธีคิด (2 คะแนน)

คำนวณ
$$\Delta G^0$$
 ของปฏิกิริยาจาก $\Delta G^0 = \Delta G_{\mathrm{f}}^0(\mathrm{ZnO}) - \Delta G_{\mathrm{f}}^0(\mathrm{Zn}) - \frac{1}{2} \Delta G_{\mathrm{f}}^0(\mathrm{O}_2)$
$$= (-318.2) - 0 - 0$$

$$= -318.2 \text{ kJ} \tag{1 คะแนน}$$

ที่ภาวะมาตรฐาน
$$\Delta G^0 = -\mathrm{nF}E^0_{\mathrm{cell}}$$

$$-(318.2\times1000)~\mathrm{J}~= -(2~\mathrm{mol})(96,500~\mathrm{J/V\cdot mol})~E^0_{\mathrm{cell}}~~(1~\mathrm{กะแนน})$$

$$E^0_{\mathrm{cell}}~=~1.6487~\mathrm{V}~=~1.65~\mathrm{V}$$

วิธีคิด (1 คะแนน)

emf เมื่อความคันย่อยของออกซิเจนเป็น
$$0.30~{\rm atm} = E_{\rm cell}^0 - \frac{0.0592}{n} \log \frac{1}{P_{\rm O_2}}$$
 (0.5 คะแนน)
$$= 1.65 - \frac{0.0592}{2} \log \frac{1}{0.30}$$
 (0.5 คะแนน)
$$= 1.65 - 0.0155$$

$$= 1.63~{\rm V}$$

8.4 จะต้องผ่านอากาศเข้าไปในแบตเตอรี่ =
$$63$$
 L/s (0.5 กะแนน) ตอบเป็นเลขจำนวนเต็ม

วิธีคิด (3 คะแนน)

จากสมการ ½
$$O_2(g) + 2e^- \rightarrow O^{2-}$$
 หรือ $O_2(g) + 4e^- \rightarrow 2O^{2-}$ จะเห็นว่า อิเล็กตรอน 4 mol ทำปฏิกิริยากับออกซิเจนได้ 1 mol ถ้าต้องการให้แบตเตอรี่มีกระแส 2.0×10^5 A ใน 1 วินาที่ต้องใช้ mol $O_2 = (2.0 \times 10^5 \, \mathrm{A}) \times (1 \, \mathrm{s}) \times \frac{1 \, \mathrm{C}}{1 \, \mathrm{A} \cdot \mathrm{s}} \times \frac{1 \, \mathrm{F}}{96,500 \, \mathrm{C}} \times \frac{1 \, \mathrm{mol} \, e^-}{1 \, \mathrm{F}} \times \frac{1 \, \mathrm{mol} \, O_2}{4 \, \mathrm{mol} \, e^-}$ (1 กะแนน) $= 0.518 \, \mathrm{mol}$ (0.5 กะแนน) ที่ความดันบรรยากาส 760 mmHg อากาสประกอบด้วย O_2 ร้อยละ 20 โดยปริมาตร แสดงว่า ที่ความดันบรรยากาส 1 atm ความดันย่อยของ $O_2 = 1 \, \mathrm{atm} \times \frac{20}{100} = 0.20 \, \mathrm{atm}$ (0.5 กะแนน) คำนวณปริมาตร O_2 จาก $PV = nRT$ $V = \frac{(0.518 \, \mathrm{mol})(0.082 \, \mathrm{L} \cdot \mathrm{atm/mol \cdot K})(298 \, \mathrm{K})}{0.20 \, \mathrm{atm}}$ (1 กะแนน) $= 63.29 \, \mathrm{L} = 63 \, \mathrm{L/s}$ ปริมาตรอากาส $= 10$ ริมาตร $O_2 = 63 \, \mathrm{L/s}$ (เนื่องจากคำนวณความดันย่อยจากอัตราส่วนโมลโดยปริมาตรคงที่)

คำตอบข้อที่ 9 (23 คะแนน)

9.1	สูตรของตะกอนขาว A คือ	PbCl ₂	(0.5 คะแนน)
	สูตรของตะกอนขาว B คือ	Zn(OH) ₂ , Mg(OH) ₂ (คำตอบละ 0.25 คะแนน)	(0.5 คะแนน)
	สูตรของตะกอนขาว C คือ	$Mg(OH)_2$	(0.5 คะแนน)
	สูตรของสาร D คือ	Zn(OH) ₄ ²⁻	(0.5 คะแนน)
	สูตรของสาร E คือ	PbCl ₄ ²⁻	(0.5 คะแนน)

9.2 geometry ของสาร E คือ

distorted tetrahedral (Seesaw)

(0.5 คะแนน)

9.3 ลำดับค่า \mathbf{K}_{f} ของสารเชิงซ้อนจากมากไปน้อยเป็นดังนี้

$$| Z_{n}(CN)_{4}^{2-} | > | PbL_{2}^{2-} | > | PbY^{2-} | > | ZnL_{2}^{2-} |$$
 (0.5 คะแนน) (0.5 คะแนน) (0.5 คะแนน)

9.4 สมการที่คุลคือ (1 คะแนน)

$$Zn(CN)_4^{2-} + 4HCHO + 4H_2O \Rightarrow Zn^{2+} + 4HOCH_2CN + 4OH^{-}$$

9.5 ร้อยละของ
$$Pb^{2+}$$
 ในสารละลายตัวอย่าง = $\frac{5.83}{5}$ (0.5 คะแนน)

ร้อยละของ Zn^{2+} ในสารละลายตัวอย่าง = $\frac{8.18}{5}$ (0.5 คะแนน)

ร้อยละของ Mg^{2+} ในสารละลายตัวอย่าง = $\frac{4.18}{5}$ (0.5 คะแนน)

ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (4.5 คะแนน)

$$mol (Pb^{2+} + Mg^{2+}) = 40.00 \text{ mL EDTA} \times \frac{0.0200 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol } (Pb^{2+} + Mg^{2+})}{1 \text{ mol EDTA}}$$

$$= 8.00 \times 10^{-4} \text{ mol } (Pb^{2+} + Mg^{2+})$$

$$(0.75)$$

$$\begin{split} \text{mol } Mg^{2+} = \ 8.00 \times 10^{-4} \ \text{mol } (Pb^{2+} + Mg^{2+}) - 1.125 \times 10^{-4} \ \text{mol } Pb^{2+} \\ = \ 6.875 \times 10^{-4} \ \text{mol } Mg^{2+} \end{split} \tag{0.75}$$

$$\begin{array}{ll} mol \; Zn^{2+} \; = \; 25.00 \; mL \; EDTA \times \frac{0.0200 \; mol \; EDTA}{1000 \; mL \; EDTA} \times \frac{1 \; mol \; Zn^{2+}}{1 \; mol \; EDTA} \\ & = \; 5.00 \times 10^{-4} \; mol \; Zn^{2+} \end{array} \tag{0.75}$$

% Pb²⁺ =
$$1.125 \times 10^{-4} \text{ mol Pb}^{2+} \times \frac{207.2 \text{ g Pb}^{2+}}{1 \text{ mol Pb}^{2+}} \times \frac{1}{0.400 \text{ g sample}} \times 100 \%$$
 (0.5)
= $5.8275 = 5.83 \%$

%
$$Zn^{2+} = 5.00 \times 10^{-4} \text{ mol } Zn^{2+} \times \frac{65.4 \text{ g } Zn^{2+}}{1 \text{ mol } Zn^{2+}} \times \frac{1}{0.400 \text{ g sample}} \times 100 \text{ %}$$

$$= 8.175 = 8.18 \text{ %}$$
(0.5)

%
$$Mg^{2+} = 6.875 \times 10^{-4} \text{ mol } Mg^{2+} \times \frac{24.3 \text{ g } Mg^{2+}}{1 \text{ mol } Mg^{2+}} \times \frac{1}{0.400 \text{ g sample}} \times 100 \text{ %}$$

$$= 4.1766 = 4.18 \text{ %}$$
(0.5)

(0.5 คะแนน)

- 9.6 วิธีหาเฉพาะปริมาณ ${
 m Mg}^{2+}$ โดยการไทเทรตกับ EDTA เพียง 1 ขั้น ทำได้โดย (1.5 คะแนน)
 - เติม NaCN ปริมาณมากเกินพอลงในสารละลาย (เพื่อป้องกันไม่ให้ $\mathbf{Z}\mathbf{n}^{2+}$ ทำปฏิกิริยากับ EDTA) (0.5)
 - เติม 2,3-dimercapto-1-propanol ลงในสารละลาย (เพื่อป้องกันไม่ให้ Pb^{2+} ทำปฏิกิริยากับ EDTA) (0.5)
 - ไทเทรตกับ EDTA ที่ pH 10 (ควบคุม pH ด้วยสารละลายบัฟเฟอร์) (0.5)

9.7

- 9.7.1 บัฟเฟอร์ที่ใช้ควบคุม pH 5.5 และมีความจุของบัฟเฟอร์สูงที่สุด คือ
 - □ acetic acid / sodium acetate
 - □ lactic acid / sodium lactate
 - ☑ potassium hydrogen phthalate / potassium phthalate
 - □ sodium dihydrogen phosphate / sodium hydrogen phosphate

วิธีคิด (1.5 คะแนน)

บัฟเฟอร์จะมี buffer capacity สูงที่สุดเมื่อความเข้มข้นของคู่กรด-เบสเท่ากัน หรือ $\frac{[A^-]}{[HA]}=1$

จาก
$$HA + H_2O \rightleftharpoons H_3O^+ + A^-\; ; \;\; K_a \; = \; \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]} \; = \; \left[H_3O^+\right] \;\; หรือ \;\; pH = pK_a$$

(โดยทั่วไปจะเตรียมบัฟเฟอร์ให้ความเข้มข้นของคู่กรด-เบสต่างกันไม่เกิน 10 เท่า หรือ $pH = pK_a \pm 1$) ดังนั้นถ้าต้องการเตรียมสารละลายบัฟเฟอร์ pH 5.5 ที่มี buffer capacity สูงที่สุด ควรใช้กรดอ่อนที่มี pK_a ใกล้เคียง 5.5 มากที่สุด ผสมกับคู่เบส แล้วปรับ pH โดยใช้กรดแก่หรือเบสแก่

acetic acid
$$K_a = 1.8 \times 10^{-5}$$
 $pK_a = 4.74$

lactic acid
$$K_a = 1.4 \times 10^{-4} \qquad pK_a = 3.85$$

$$hydrogen\ phthalate \qquad \quad K_{a2} = 3.9 \times 10^{-6} \qquad pK_{a2} = 5.41$$

dihydrogen phosphate
$$K_{a2} = 6.2 \times 10^{-8}$$
 $pK_{a2} = 7.20$ (0.5)

potassium hydrogen phthalate มี p K_a ใกล้เคียง 5.5 มากที่สุด จึงใช้เตรียมบัฟเฟอร์ pH 5.5 ที่มี buffer capacity สูงที่สุด

9.7.2 ปริมาตรของสารละลาย NH3 เข้มข้น =
$$\frac{34}{100}$$
 mL (0.5 คะแนน) น้ำหนักของ NH4Cl = $\frac{4.8}{100}$ g (0.5 คะแนน)

วิธีกิด (4 กะแนน)

$$\frac{(2.0)(1.0 \times 10^{-10})}{[NH_4^+]} = 5.6 \times 10^{-10}$$

$$10.0 = -\log (5.6 \times 10^{-10}) + \log \frac{2.0}{[NH_4^+]}$$

$$[NH_4^+] = \frac{(2.0)(1.0 \times 10^{-10})}{(5.6 \times 10^{-10})}$$

$$= 0.357 M$$

$$10.0 = -\log (5.6 \times 10^{-10}) + \log \frac{2.0}{[NH_4^+]}$$

$$-\log [NH_4^+] = 10.0 - \log (5.6 \times 10^{-10}) - \log 2.0$$

$$[NH_4^+] = 0.357 M$$

$$(0.5)$$

น้ำหนักของ NH₄Cl = 250 mL buffer solution
$$\times \frac{0.357 \text{ mol NH}_4\text{Cl}}{1000 \text{ mL buffer solution}} \times \frac{53.5 \text{ g NH}_4\text{Cl}}{1 \text{ mol NH}_4\text{Cl}}$$
 (1) = 4.77 g NH₄Cl

วิธีคิด (2 คะแนน)

ปริมาณ BAL ในชา 1000 mg = 1000 mg ชา
$$\times \frac{10 \text{ mg BAL}}{1000 \text{ mg ชา}} = 100 \text{ mg BAL}$$
 (0.5)

มวลโมเลกุลของ BAL $(C_3H_8OS_2) = (3 \times 12.0) + (8 \times 1.0) + (1 \times 16.0) + (2 \times 32.1) = 124.2$

จำนวนโมล BAL ในยา =
$$100 \text{ mg BAL} \times \frac{1 \text{ g BAL}}{1000 \text{ mg BAL}} \times \frac{1 \text{ mol BAL}}{124.2 \text{ g BAL}}$$

$$= 8.052 \times 10^{-4} \text{ mol BAL}$$
 (0.5)

จากสมการในขั้นที่ 2 โลหะตะกั่ว (${
m Pb}^{2+}$) $1~{
m mol}$ เกิดสารเชิงซ้อนกับ ${
m BAL}$ หรือ ${
m LH}_2$ $2~{
m mol}$

$$PbY^{2-} + 2LH_2 \rightarrow PbL_2^{2-} + 4H^+ + Y^{4-}$$

ปริมาณ โลหะหนักที่เกิดสารเชิงซ้อนกัน BAL

$$= 8.052 \times 10^{-4} \text{ mol BAL} \times \frac{1 \text{ mol Pb}^{2+}}{2 \text{ mol BAL}} = 4.026 \times 10^{-4} \text{ mol Pb}^{2+}$$

$$= 4.026 \times 10^{-4} \text{ mol Pb}^{2+} \times \frac{10^6 \text{ } \mu\text{mol}}{1 \text{ mol}}$$
 (1)

 $= 403 \mu mol$

คำตอบข้อที่ 10 (10 คะแนน)

10.1 โครงสร้างสามมิติของ cisplatin คือ

10.2 แผนภาพการแยกระดับพลังงานของ d-orbital ของ cisplatin เขียนได้ดังนี้

10.3 (1.5 คะแนน)

ออร์บิทัลที่พลังงานสูงขึ้น คือ
 ออร์บิทัลที่พลังงานต่ำลง คือ
 ออร์บิทัลที่พลังงานไม่เปลี่ยนแปลง คือ

d_{xz}	$d_{\rm yz}$ $d_{\rm z^2}$
d_{xz}	$d_{\mathrm{x}^2-\mathrm{y}^2}$

10.4

10.4.1 สมการเคมีที่เกิดขึ้นในขั้นที่ 1 คือ

```
[PtCl_2(NH_3)_2](s) + H_2O(l) \rightleftharpoons [PtCl(H_2O)(NH_3)_2]^+(aq) + Cl^-(aq)
(ถ้าไม่เขียนสูตรเคมีของ A ไม่ให้คะแนน)
(สูตรของ A ถูก 0.25 คะแนน / สมการโดยรวมถูก 0.25 คะแนน)
```

10.4.2 ความเข้มข้นของ
$${f A}$$
 ที่สมคุล = 0.025 ${f M}$ (0.5 คะแนน) ความเข้มข้นของ ${f B}$ ที่สมคุล = 1.1 $imes$ 10.025 ${f M}$ (0.5 คะแนน) ความเข้มข้นของ ${f Cl}^-$ ที่สมคุล = 0.025 ${f M}$ (0.5 คะแนน)

วิธีคิด (3.5 คะแนน)

ขั้นที่ 2 มีค่าคงที่สมคุลน้อยกว่าขั้นที่ 1 มาก ๆ การคำนวณหา [A] และ [Cl-] จึงสามารถประมาณได้ โดยคิดว่า [A] และ [Cl-] มาจากปฏิกิริยาในขั้นที่ 1 เท่านั้น (1)

แก้สมการ โดยไม่สามารถประมาณว่า $0.2-x\approx 0.2$ ได้ เนื่องจากค่า \mathbf{K}_1 มีค่าสูงเมื่อเทียบกับ $0.2~\mathbf{M}$ เพราะฉะนั้นแก้สมการ โดยไม่มีการประมาณจะได้

$$x^{2} + 3.6 \times 10^{-3} x - 7.2 \times 10^{-4} = 0$$

$$x = \frac{-3.6 \times 10^{-3} \pm \sqrt{(3.6 \times 10^{-3})^{2} - 4 \times (-7.2 \times 10^{-4})}}{2}$$

$$x = [A] = [Cl^{-}] = 0.025 \text{ M}$$
(1)

ขึ้นที่ 2
$$\mathbf{A}(aq) + H_2O(1) \rightleftharpoons \mathbf{B}(aq) + Cl^-(aq)$$
 $K_2 = 1.1 \times 10^{-6}$ (0.5)

$$\frac{[\mathbf{B}][\mathrm{Cl}^-]}{[\mathbf{A}]} = \frac{[\mathbf{B}](0.025 \,\mathrm{M})}{(0.025 \,\mathrm{M})} = 1.1 \times 10^{-6} \tag{0.5}$$

$$[\mathbf{B}] = 1.1 \times 10^{-6} \,\mathrm{M}$$

คำตอบข้อที่ 11 (10.5 คะแนน)

11.1 (2.5 คะแนน) สารที่ยังไม่สามารถระบุสูตรเคมีที่ชัดเจนได้และสูตรเคมีที่เป็นไปได้ทั้งหมด
สารที่ยังไม่สามารถระบุสูตรเคมีที่ชัดเจนได้ คือสาร

С (0.5 คะแนน)

สูตรเคมีที่แสดงส่วนของสารเชิงซ้อนที่เป็นไปได้ของสารนี้

 $[Mn(C_2O_4)_2(H_2O)_2]$ $[Mn(C_2O_4)(H_2O)_4]$ (1 กะแนน) สูตรละ 1 กะแนน

การทคลองเพื่อยืนยันชนิคสาร

 $C_2O_4{}^{2-}$ เป็นตัวรีคิวซ์ จึงใช้ตัวออกซิไคส์ เช่น $KMnO_4$ มาไทเทรตหาปริมาณของ $C_2O_4{}^{2-}$ ที่อยู่ในสารเชิงซ้อนได้

(1 คะแนน)

11.2 (2 คะแนน) แผนภาพแสดงระดับพลังงานของ d-orbital

11.3 (6 คะแนน)

จำนวนใอโซเมอร์ทั้งหมดของสาร $\mathbf{G} = \mathbf{10}$ (1 คะแนน)

ชื่อภาษาอังกฤษของสารเชิงซ้อน ${f G}$ ที่เป็นไปได้ทั้งหมดโดยไม่ต้องระบุชื่อไอโซเมอร์ (2 คะแนน)

aquadioxalatothiocyanatomanganate(II) aquaisothiocyanatodioxalatomanganate(II)

ชื่อละ 1 คะแนน

หมายเหตุ จะใช้การบอกจำนวนของ $\mathbf{C_2O_4}^{2-}$ เป็น $\mathbf{bis}(\mathbf{oxalato})$ ก็ได้

รูปแสดง geometrical isomer ที่เป็นไปได้ทั้งหมดของสารที่เขียนชื่อมาด้านบน 1 สาร (3 คะแนน)

ชื่อสาร.....

มี geometrical isomer ที่เป็นไปได้ทั้งหมดดังนี้

ใจโซเมอร์ละ 1 คะแนน ถ้าเขียนชื่อของ isothiocyanato มา ต้องวาครูปโคยใช้ NCS แทน SCN (ไม่จำเป็นต้องระบุประจุ)

เฉลยเพิ่มเติม

กลุ่ม	สารละลาย	สี / ข้อมูลอื่น	การนำไฟฟ้า ใกล้เคียงกับสารละลาย	สูตรเชิงซ้อน
1	A	แดงเชอร์รี่	K ₃ Fe(CN) ₆	$[Mn(C_2O_4)_3]^{3-}$
1	В	ชมพู	K ₄ Fe(CN) ₆	$[Mn(C_2O_4)_3]^{4-}$
2	C	แดงเบอร์กันดี	$C_6H_{12}O_6$	$[Mn(C_2O_4)_2(H_2O)_2]$
2	D	ชมพู	Ni(en) ₃ Cl ₂	$[Mn(C_2O_4)_2(H_2O)_2]^{2-}$
3	E	ชมพูอ่อน / ตกตะกอนเมื่อเติม Ba ²⁺	Mn(SiF ₆)	$[Mn(H_2O)_6]^{2+}$
3	F	ม่วงเข้ม	K ₄ Fe(CN) ₆	$[Mn(CN)_6]^{4-}$

เลขประจำตัวสอบ......

คำตอบข้อที่ 12 (11.5 คะแนน)

12.1 การจัดอิเล็กตรอนของ Fe และ Cr ในแร่นี้ และจำนวน unpaired electron

วิธีคิด (1 คะแนน)

การจัดอิเล็กตรอนของอะตอม Fe : [Ar]
$$3d^6 4s^2$$
 และ Cr : [Ar] $3d^3 4s^1$ (0.25 คะแนน) สมมุติเลขออกซิเดชันของ Fe และ Cr ใน FeCr₂O₄ เป็น x และ y ตามลำดับ $x + 2y - 8 = 0$ ค่าที่เป็นเลขจำนวนเต็มคือ $x = +2$ และ $y = +3$ (0.5 คะแนน) เมื่อเป็นใจออน ดึงอิเล็กตรอนใน $4s$ ออกก่อน (0.25 คะแนน)

12.2 สมการเคมี (1.5 คะแนน) (ทุกปฏิกิริยาต้องใช้ความร้อน ซึ่งละไว้ในฐานที่เข้าใจ) กระบวนการที่ได้โครเมียมไม่บริสุทธิ์

กระบวนการที่ได้โครเมียมบริสุทธิ์

$$Na_2Cr_2O_7 + 2C \rightarrow Cr_2O_3 + Na_2CO_3 + CO$$

 $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$ (1 คะแนน)

ถ้ามีแร่บริสุทธิ์ (FeCr₂O₄) 1 mol จะเกิด Na₂Cr₂O₇ 1 mol และ จากสมการในข้อ 12.2 จะเกิด Cr₂O₃ 1 mol โดยจะใช้ Al ในการรีดิวซ์ 2 mol แต่แร่นี้บริสุทธิ์ 80 % ดังนั้นจะเกิด Cr₂O₃ อย่างมาก 80 % ด้วย

มวลโมเลกุลของ
$$FeCr_2O_4 = 223.8$$
 (0.5 คะแนน)

จำนวนโมลของ FeCr₂O₄ เริ่มต้น =
$$10 \times 10^3 \times \frac{80}{100} \times \frac{1}{223.8}$$
 (0.5 คะแนน)

จำนวนโมลของ $\mathrm{Cr}_2\mathrm{O}_3$ ที่เกิดขึ้น (อย่างมาก) $= 10 \times 10^3 imes \frac{80}{100} imes \frac{1}{223.8}$

จำนวนโมลของ Al ที่ต้องใช้
$$= 2 \times 10 \times 10^3 \times \frac{80}{100} \times \frac{1}{223.8}$$
 (0.5 คะแนน)

คิดเป็นน้ำหนักของ Al ที่ต้องใช้
$$= 2 \times 10 \times 10^3 \times \frac{80}{100} \times \frac{1}{223.8} \times 27.0$$
 (0.5 คะแนน) $= 1.93 \text{ kg}$

12.4 🛮 ผลึกที่มีประสิทธิภาพการเรียงตัวสูงกว่า (เรียงอะตอมได้แน่นกว่า) คือ ผลึกของ

Al (0.5 คะแนน)

เหตุผล (1.5 คะแนน)

เนื่องจากอะตอมในแต่ละชั้นของ Al เรียงแบบสัมผัสใกล้ชิด เหลือช่องว่างน้อยมาก และชั้นต่อไป อะตอมก็จัดตัวอยู่ในหลุมที่เกิดจากชั้นแรก

ส่วนกรณี Cr อะตอมในแต่ละชั้นก็ไม่ชิคกัน (เพราะถ้าชิคกัน ชั้นต่อไปก็จะเรียงให้เป็นแบบ bodycentered cubic ไม่ได้) เมื่อดูจากรูปจะเห็นได้ชัดเจน

นอกจากนี้ เมื่อเรียงอะตอม 3 ชั้น จะเห็นว่า Al อะตอมหนึ่งห้อมล้อมด้วยอะตอมอื่นจำนวน 12 อะตอม ในขณะที่ Cr อะตอมหนึ่งห้อมล้อมด้วยอะตอมอื่นจำนวน 8 อะตอม

Each successive layer is placed over the holes of the layer below it.

cubic closest packing

body-centered cubic

(คำอธิบาย 0.5 คะแนน วาครูป ๆ ละ 0.5 คะแนน 2 รูป)

12.5 ความหนาแน่นของ Cr =

4.90

g/cm³

(0.5 คะแนน)

วิธีคิด ให้วาครูปหน่วยเซลล์ประกอบด้วย (2 คะแนน)

จำนวนอะตอมในหน่วยเซลล์ = $8 \times 1/8 = 1$ (0.5 คะแนน) มวลใน 1 หน่วยเซลล์ = $\frac{1 \times 52.0}{6.02 \times 10^{23}}$ g ความยาวตามขอบเซลล์ = $2 \times 130 \times 10^{-10}$ cm (0.5 คะแนน) (เนื่องจาก 2 อะตอมสัมผัสกัน) ปริมาตรของ 1 หน่วยเซลล์ = $(2 \times 130 \times 10^{-10})^3$ cm³ ความหนาแน่น = $\frac{M}{V} = \frac{1 \times 52.0}{(6.02 \times 10^{23})(2 \times 130 \times 10^{-10})^3}$ g/cm³ (0.5 คะแนน) = 4.90 g/cm³