物理实验报告

学号: 114514 姓名: SUSTech 日期: 2025/03/08 时间: 周二下午

1 实验名称:测量螺线管的磁场

2 实验目的

学习测量交变磁场的一种方法,加深理解磁场的一些特性及电磁感应定律。

- 3 实验原理
- 3.1 有限长载流直螺线管的磁场

图 1 是一个长为 2l, 匝数为 N 的单层密绕的直螺线管产生的磁场。当导线中流过电流 I 时,由毕奥-萨伐尔定律可以计算出在轴线上某一点 P 的磁感应强度为

$$B = \frac{\mu_0 nI}{2} \left\{ \frac{x+l}{\sqrt{R^2 + (x+l)^2}} - \frac{x-l}{\sqrt{R^2 + (x-l)^2}} \right\}$$
 (1)

- (1) $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$ (2) $n = \frac{N}{2l}$ 为单位长度上的线圈数
- (3) R 为线圈管半径 (4) x 为 P 点到线圈管中心处的距离 在 SI 单位制中,B 的单位为特斯拉 (T)。图 1 同时给出 B 随 x 的分布曲线。由曲线显

Figure 1: 实验原理图

示,在线圈管内部磁场近于均匀,只在端点附近磁感应强度才显著下降。当 $l\gg R$ 时, $B=\mu_0nI$ 即场点的坐标 x 对内部磁场无影响,而在线圈管两端, $B=\frac{1}{2}\mu_0nI$ 为内部 B 值的一半。无限长、密绕的直线线圈是实验室中常用的产生均匀磁场的理想装置。

3.2 探测线圈法测量磁场

当低频交流电流通过螺线管产生磁场时,检测线圈中感应出的电压 V 与磁感应强度 B 的关系可写为

$$B = \frac{V}{2\pi^2 N_1 r_1^2 f} \tag{2}$$

其中, N_1 为螺线管的匝数, r_1 为检测线圈半径,f 为交流电频率。

4 实验仪器

螺线管套件, 示波器, 信号发生器, 电阳, 导线若干

5 实验内容

- 5.1 研究螺线管中磁感应强度 ${\bf B}$ 与电流 ${\bf I}$ 和感生电动势 ${\bf V}$ 之间的关系,测量螺线管中的磁感应强度
 - (1) 记录参数: 螺线管 A 的半径 R、长度 2l、总匝数 N,探测线圈 A1 的半径 r1 和总匝数 N1(参数由实验仪器面板给出)。
 - (2) 按图 2 接好线路。需要注意的是,本实验螺线管串联 1 欧姆的电阻,通过探测电阻两端电压,可以得到输出电流。
 - (3) A 和 A1 两个中心点的距离代表磁场场点坐标 x, 其值由装置中的直尺读出。 取 x=0(中心位置),低频信号发生器频率分别选取为 f=4000Hz、2000Hz、1000Hz,调节信号输出使输出电流从 10.0mA 至 40.0mA,每隔 5.0mA 记录相应的感生电动势 V。
 - (4) 取 x=l (管口位置),频率和电流分别取三组数值: f=4000Hz、I=10.0mA; f=2000Hz、I=20.0mA; f=1000Hz、I=40.0mA,测出对应的 V 值。从测量结果中可以得出什么结论? (5) 从以上测量数据中取出 x=0,f=1000Hz,I=40.0mA 和对应的 V 值,再取 x=l,f=1000Hz,I=40.0mA 和对应的 V 值。分别用公式(1)和(2)计算出 B 值,并对得出

5.2 测量直螺线管轴线上的磁场分布

的 B 值进行比较和讨论。

- (1) 仍按图 2 接线。取 f=2000Hz,输出电流可设定为 20.0mA,当 x=0(中心位置)时,记录下此时的 V 值。
- (2) 向外侧移动探测线圈 A1,每隔 1.0cm 记录对应的 V,其间注意记下 x=1 (管口位置)时的 V 值。测量直至 x=21.0cm 为止,此时探测线圈中心移出螺线管。
- (3) 作出 V(x)-x 曲线, 它是否就是相应的 B(x)-x 曲线? 对曲线进行分析讨论。
- (4) 计算 $V_{x=l}/V_{x=0}$ 是否等于 $\frac{1}{2}$, 为什么?

6 数据记录

根据实验结果记录数据,使用 excel 整理处理。

7 数据处理

7.1 分析讨论 V-I 曲线

根据实验数据,做出散点图并进行线性回归分析,得拟合直线方程及 R 值。

Figure 2: V-I 曲线

直线: 当 f 不变时,由于 x=0,故式(1)化为 $B=\mu_0 nI$,又有式(2) $B=\frac{V}{2\pi^2N_1r_1^2f}$,得 $V=(2\pi^2N.r_1^2fu_0n)I$,故 V-I 呈线性相关

斜率: 由 V-I 图可知: $k_{4000Hz} \approx 2k_{2000Hz} \approx 4k_{1000Hz}$, 刚好与理论公式 $V/I = (2\pi'Nr_1^2\mu_0n)$ · f, 斜率与 f 成正比相符

7.2 x=l(管口位置)时,频率和电流得关系

Table 1: 实验数据(分成两行,每行11组数据)

x (cm)	0	1	2	3	4	5	6	7	8	9	10
V (mV)	320.7	320.5	320.3	320.3	320.1	319.6	318.7	318.4	318.2	317.3	316.3
B(T)	0.164678	0.164575	0.164472	0.164369	0.164113	0.163651	0.163394	0.162932	0.162418	0.16211	0.161751
x (cm)	11	12	13	14	15	16	17	18	19	20	21
V(mV)	315.7	315	312.8	309.6	302.5	281.4	238.5	181.6	126.2	74.79	29.16
B(T)	0.160621	0.158978	0.155332	0.144497	0.122468	0.093251	0.064803	0.038404	0.014973	0.001119	2.18

同 7.1 推论公式 $V=(2\pi'Nr_1^2\mu_0n)\cdot If$ 同理,得当 x=l 时, $V=\frac{\pi^2N_1r_1^2f\mu_0NI}{\sqrt{R^2+4l^2}}$ 同时由实验数据可看出 $f_1I_1\approx f_2I_2\approx f_2I_2$,验证了推论公式:fI 之积约为定值,故 V 几乎相等

7.3 对计算所得 B 值比较分析

带入要求场景下的实验数据,计算所得制成表格

Table 2: 不同条件下测得的磁场数据

	公式 (1)	公式 (2)
x=0, f=1000 Hz, I=40.0 mA		
x=1, f=1000 Hz, I=40.0 mA	1.48×10^{-4}	1.44×10^{-4}

有 $B_1 \approx B_1'$, $B_2 \approx B_2'$, 说明测量值与理论值相近; 同时有 $B_1 \approx 2B_2$, $B_1' \approx 2B_2'$, 符合 $B_{x=0} = \mu_0 nI = 2 \times \frac{1}{2} \mu_0 I = 2B_{x=2}$ 的理论值。

7.4 V(x)-x 曲线与 B(x)-x 曲线的关系

Figure 3: V(x)-x 曲线与 B(x)-x 曲线对比分析

做出 B(x)-x 曲线曲线,与 V(x)-x 曲线对比,可以发现两者趋势相同,但值不同。 根据 $B = \frac{V}{2\pi^2 N_1 r_1^2 f}$,可得 $V = B \cdot 2\pi^2 N_1 r_1^2 f$,实验结果和理论一致。

7.5 $\frac{V_{x=l}}{V_{x=0}}$ 是否等于 $\frac{1}{2}$?

根据实验数据,其值近似 1/2,但由于实际操作中由于漏磁、边缘效应及实验仪器不稳定等一系列原因,造成其值小于 1/2。

Table 3: 不同工作条件下的电压数据及其比值

条件	$V_{x=l}$ (mV)	$V_{x=0}$ (mV)	$\frac{V_{x=l}}{V_{x=0}}$
f = 4000 Hz, I = 10.0 mA	145.4	316.5	0.46
f = 2000 Hz, I = 20.0 mA	147.76	317.72	0.465
f = 1000 Hz, I = 40.0 mA	149.36	340.95	0.438

7.6 误差分析

在实验测量过程中,存在多种可能影响数据精度的误差因素。下面列举了三个主要因素及其分析:

1. 边缘效应

理论模型通常假设磁场分布是均匀的,尤其是在螺线管或其他线圈内部采用理想化假设时。然而,在实际情况中,线圈边缘区域的磁场分布往往不均匀,即存在边缘效应。该效应会造成测量点附近的磁通密度与理论预期不同,从而导致电压及其它测量数据产生偏差。边缘效应的影响程度取决于线圈尺寸、匝数以及测量点距离边缘的远近。

2. 频率与信号稳定性

实验中,信号源的频率和电流稳定性对测量结果起着至关重要的作用。如果频率存在较大波动,或信号源在采样过程中不够稳定,会引起瞬时电压值的变化。目前使用的理论公式往往基于稳态信号进行推导,高频下亦可能出现寄生电感、电容等非理想效应,进一步扰乱预期信号。因此,确保信号源和电流源的稳定性是取得准确数据的关键。

3. 环境因素

环境温度、电磁干扰及其他外部因素也会影响实验结果。温度变化可能影响线圈的电阻和电感特性,从而改变通过线圈的电流;同时,外部电磁场的影响可能引入噪声,干扰电压和磁场的稳定测量。为了降低这方面的误差,实验通常需要在温度受控、屏蔽良好的环境中进行,或在数据分析阶段对环境因素造成的误差进行补偿。

8 问题思考

为减小测量误差,本实验可从以下几个方面进行改进:

- 1. 仪器精度与校准使用高精度的测量仪器,并定期对设备进行校准。增加数据采样次数,通过多次重复测量取平均值,降低系统和随机误差。
- 2. 环境控制与屏蔽建立温度、湿度受控的实验环境,并对实验装置进行电磁屏蔽,减少外部干扰对测量的影响。采用屏蔽室或磁屏蔽设备,可有效降低背景噪声。
- 3. 实验装置优化改进线圈及传感器的设计与制作,尽量减小边缘效应对磁场分布的影响。 使用精度更高的元件,并在设计上尽量使磁场分布接近理论模型的理想状态。
- 4. 信号源稳定性为确保信号的频率和幅值稳定,采用高稳定性的波形发生器、电流源和相关控制器,减少因信号波动导致的误差。
- 5. 同步采样与时序控制采用同步采样技术,确保在不同测量位置的数据采集能同步进行, 防止因时间延迟或采样误差引起的数据偏差。

9 实验结论

根据实验过程和实验数据,在数据处理过程进行分析讨论,可以得到部分结论,加深了对磁场的理解。