

FDC6303N Digital FET, Dual N-Channel

General Description

These dual N-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switching applications. Since bias resistors are not required this one N-Channel FET can replace several digital transistors with different bias resistors like the IMHxA series.

Features

■ 25 V, 0.68 A continuous, 2 A Peak.

$$\begin{split} R_{\text{DS(ON)}} &= 0.6 \; \Omega \; @ \; \text{V}_{\text{GS}} = 2.7 \; \text{V} \\ R_{\text{DS(ON)}} &= 0.45 \; \Omega \; @ \; \text{V}_{\text{GS}} = 4.5 \; \text{V}. \end{split}$$

- Very low level gate drive requirements allowing direct operation in 3V circuits. V_{GS(th)} < 1.5 V.
- Gate-Source Zener for ESD ruggedness. >6kV Human Body Model
- Replace multiple NPN digital transistors (IMHxA series) with one DMOS FET.

Absolute Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter		FDC6303N	Units
V _{DSS}	Drain-Source Voltage		25	V
V_{GSS}	Gate-Source Voltage		8	V
I _D	Drain Current - Continuous		0.68	A
	- Pulsed		2	
$P_{\scriptscriptstyle D}$	Maximum Power Dissipation	(Note 1a)	0.9	W
		(Note 1b)	0.7	
T_J , T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
SD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm)		6.0	kV
THERMA	L CHARACTERISTICS	·		
R _{OJA}	Thermal Resistance, Junction-to-Ambie	nt (Note 1a)	140	°C/W
R _{euc}	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	25			V
Δ BV _{DSS} / Δ T _J	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C		26		mV /°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, \ V_{GS} = 0 \text{ V}$			1	μA
		$T_{\rm J} = 55^{\circ}$	С		10	μA
GSS	Gate - Body Leakage Current	$V_{GS} = 8 \text{ V}, \ V_{DS} = 0 \text{ V}$			100	nA
	CTERISTICS (Note 2)	1 33				
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp.Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-2.6		mV /°C
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.65	0.8	1.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 0.5 \text{ A}$		0.33	0.45	Ω
(,		T ₁ =125°	rC C	0.52	0.8	
		$V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}$		0.44	0.6	
D(ON)	On-State Drain Current	$V_{GS} = 2.7 \text{ V}, \ V_{DS} = 5 \text{ V}$	0.5			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A}$		1.45		S
DYNAMIC C	HARACTERISTICS					•
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, \ V_{GS} = 0 \text{ V}, $ f = 1.0 MHz		50		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		28		pF
C_{rss}	Reverse Transfer Capacitance			9		pF
SWITCHING	CHARACTERISTICS (Note 2)					
D(on)	Turn - On Delay Time	$V_{DD} = 6 \text{ V}, \ I_{D} = 0.5 \text{ A},$		3	6	ns
Ļ	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$		8.5	18	ns
D(off)	Turn - Off Delay Time			17	30	ns
i T	Turn - Off Fall Time			13	25	ns
Q _g	Total Gate Charge	$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A},$ $V_{GS} = 4.5 \text{ V}$		1.64	2.3	nC
Q_{gs}	Gate-Source Charge			0.38		nC
Q_{gd}	Gate-Drain Charge			0.45		nC
DRAIN-SOU	RCE DIODE CHARACTERISTICS AND MA	XIMUM RATINGS				
S	Maximum Continuous Source Current				0.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.5 \text{ A (Note 2)}$		0.83	1.2	V

Notes:

1. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while $R_{\theta^{CA}}$ is determined by the user's board design. $R_{\theta^{JA}}$ shown below for single device operation on FR-4 in still air.

a. 140°C/W on a 0.125 in² pad of 2oz copper.

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On Resistance Variation with Gate-To- Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical And Thermal Characteristics

Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal response will change depending on the circuit board design.