A Model of a Random Walk with Varying Transition Probabilities

Tomáš Kouřim ¹ Petr Volf ²

¹Faculty of Nuclear Sciences and Physical Engineering, CTU Prague ²Institute of Information Theory and Automation, CAS CR Prague

SMTDA 2020

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk.(1905)]

Where is the drunken sailor?

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk.(1905)]

Where is the drunken sailor?

Motivation - Random process with varying probability

Motivation

- Failure of a machine
 - repair after failure
 - preventive maintenance
- Occurrence of a disease
 - cure of the disease
 - prevention (i.e. lifestyle change)
- Development of sports match
 - goal scored, point achieved
 - period won

Motivation

- Failure of a machine
 - repair after failure
 - preventive maintenance
- Occurrence of a disease
 - cure of the disease
 - prevention (i.e. lifestyle change)
- Development of sports match
 - goal scored, point achieved
 - period won

Motivation

- Failure of a machine
 - repair after failure
 - preventive maintenance
- Occurrence of a disease
 - cure of the disease
 - prevention (i.e. lifestyle change)
- Development of sports match
 - goal scored, point achieved
 - period won

Motivation - Random process with varying probability

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p₀
- $X_t \in \{-1,1\}$ with $X_t \sim \text{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

$$X_t = 1 \to p_t = \lambda p_{t-1}$$
 $X_t = -1 \to p_t = 1 - \lambda (1 - p_{t-1})$

$$X_t = 1 \to p_t = 1 - \lambda (1 - p_{t-1})$$
 $X_t = -1 \to p_t = \lambda p_{t-1}$

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p_0
- $X_t \in \{-1, 1\}$ with $X_t \sim \text{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

$$X_t = 1 \to \rho_t = \lambda \rho_{t-1}$$
 $X_t = -1 \to \rho_t = 1 - \lambda (1 - \rho_{t-1})$

$$X_t = 1 \to p_t = 1 - \lambda (1 - p_{t-1})$$
 $X_t = -1 \to p_t = \lambda p_{t-1}$

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p_0
- $X_t \in \{-1,1\}$ with $X_t \sim \operatorname{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

 $X_t = 1 \to \rho_t = \lambda \rho_{t-1}$ $X_t = -1 \to \rho_t = 1 - \lambda (1 - \rho_{t-1})$

 $X_t = 1 \to p_t = 1 - \lambda(1 - p_{t-1})$ $X_t = -1 \to p_t = \lambda p_{t-1}$

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p₀
- $X_t \in \{-1,1\}$ with $X_t \sim \text{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

$$X_t = 1 \to p_t = \lambda p_{t-1}$$
 $X_t = -1 \to p_t = 1 - \lambda (1 - p_{t-1})$

-> "Success punishing"

$$X_t = 1 \to p_t = 1 - \lambda(1 - p_{t-1})$$
 $X_t = -1 \to p_t = \lambda p_{t-1}$

-> "Success rewarding"

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p₀
- $X_t \in \{-1, 1\}$ with $X_t \sim \text{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

$$X_t = 1 \to p_t = \lambda p_{t-1}$$
 $X_t = -1 \to p_t = 1 - \lambda (1 - p_{t-1})$

-> "Success punishing"

$$X_t = 1 \to p_t = 1 - \lambda(1 - p_{t-1})$$
 $X_t = -1 \to p_t = \lambda p_{t-1}$

-> "Success rewarding"

- Random walk with memory based the on standard Bernoulli random walk
- Given starting probability p₀
- $X_t \in \{-1,1\}$ with $X_t \sim \text{Bernoulli}(p_{t-1})$
- Memory coefficient $\lambda \in (0, 1)$ affecting the development of probabilities p_t as

$$X_t = 1 \to p_t = \lambda p_{t-1}$$
 $X_t = -1 \to p_t = 1 - \lambda (1 - p_{t-1})$

-> "Success punishing"

$$X_t = 1 \to p_t = 1 - \lambda(1 - p_{t-1})$$
 $X_t = -1 \to p_t = \lambda p_{t-1}$

-> "Success rewarding"

Example - RW development

Example - RW development

Walk steps properties

$$EX_t = (2\lambda - 1)^{t-1}(2p_0 - 1)$$

$$\lim_{t\to+\infty} EX_t = 0$$

$$Var X_t = 1 - (2\lambda - 1)^{2(t-1)}(2p_0 - 1)^2$$

$$\lim_{t\to +\infty} Var X_t = 1$$

Walk steps properties

$$EX_t = (2\lambda - 1)^{t-1}(2p_0 - 1)$$

$$\lim_{t\to+\infty} EX_t = 0$$

$$Var X_t = 1 - (2\lambda - 1)^{2(t-1)}(2p_0 - 1)^2$$

$$\lim_{t\to +\infty} Var X_t = 1$$

Example - RW steps

Walk probabilities properties

$$EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\lim_{t\to+\infty} EP_t = \frac{1}{2}$$

$$Var P_t = (3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=0}^{t-1} K(i; p_0, \lambda) (3\lambda^2 - 2\lambda)^{t-1-i} - k(t; p_0, \lambda)^2$$

$$\lim_{t \to +\infty} Var P_t = \frac{\frac{1}{2}(1 - \lambda^2)}{-3\lambda^2 + 2\lambda + 1} - \frac{1}{4}$$

Walk probabilities properties

$$EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\lim_{t\to +\infty} EP_t = \frac{1}{2}$$

$$Var P_t = (3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=0}^{t-1} K(i; p_0, \lambda) (3\lambda^2 - 2\lambda)^{t-1-i} - k(t; p_o, \lambda)^2$$

$$\lim_{t \to +\infty} Var \, P_t = \frac{\frac{1}{2}(1 - \lambda^2)}{-3\lambda^2 + 2\lambda + 1} - \frac{1}{4}$$

Example - RW probabilities

Walk position properties

$$ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$\lim_{t\to+\infty} ES_t = S_0 + \frac{(2p_0-1)}{2(1-\lambda)}$$

$$Var S_t = t + 4 \sum_{i=0}^{t-1} \sigma(i; p_0, 0, \lambda) - a(t; p_0, \lambda)$$

$$\lim_{t\to +\infty} Var S_t = c_1(p_0,\lambda)t + c_2(p_0,\lambda)$$

Walk position properties

$$ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$\lim_{t\to+\infty} ES_t = S_0 + \frac{(2p_0-1)}{2(1-\lambda)}$$

$$Var\, S_t = t + 4 \sum_{i=0}^{t-1} \sigma(i; p_0, 0, \lambda) - a(t; p_0, \lambda)$$

$$\lim_{t o +\infty} extstyle extstyle Var S_t = c_1(p_0,\lambda)t + c_2(p_0,\lambda)$$

Example - RW position

Success rewarding model

$$EX_t = 2p_0 - 1$$

 $Var X_t = 4p_0(1 - p_0)$

$$EP_t = p_0$$

$$Var P_t = (2\lambda - \lambda^2)^t p_0^2 + p_0 (1 - \lambda)^2 \sum_{i=0}^{t-1} (2\lambda - \lambda^2)^i - p_0^2$$

$$ES_t = S_0 + t(2p_0 - 1)$$

$$Var S_t = 4p_0(1 - p_0)t^2 + a(p_0, \lambda)t - a(p_0, \lambda)\frac{1 - (2\lambda - \lambda^2)^t}{(1 - \lambda)^2}$$

Model description

000000000000

Success rewarding model

$$EX_t = 2p_0 - 1$$

 $Var X_t = 4p_0(1 - p_0)$

$$EP_t = p_0$$

$$Var P_t = (2\lambda - \lambda^2)^t p_0^2 + p_0 (1 - \lambda)^2 \sum_{i=0}^{j-1} (2\lambda - \lambda^2)^i - p_0^2$$

$$ES_t = S_0 + t(2p_0 - 1)$$

$$Var\, S_t = 4p_0(1-p_0)t^2 + a(p_0,\lambda)t - a(p_0,\lambda)\frac{1-(2\lambda-\lambda^2)^t}{(1-\lambda)^2}$$

- ullet Two memory coefficients λ each affecting one direction of the walk
- Again two variants success punishing and success rewarding

$$X_{t-1} = 1 \rightarrow p_t = \lambda_0 p_{t-1}$$
 $X_{t-1} = -1 \rightarrow p_t = 1 - \lambda_1 (1 - p_{t-1})$

—> "Two-parameter success punishing model"

$$X_{t-1} = 1 \to p_t = 1 - \lambda_0 (1 - p_{t-1})$$
 $X_{t-1} = -1 \to p_t = \lambda_1 p_{t-1}$

—> "Two-parameter success rewarding model"

• M steps, $\lambda(t)$, n-dimensional walk

- ullet Two memory coefficients λ each affecting one direction of the walk
- Again two variants success punishing and success rewarding

$$X_{t-1} = 1 \rightarrow p_t = \lambda_0 p_{t-1}$$
 $X_{t-1} = -1 \rightarrow p_t = 1 - \lambda_1 (1 - p_{t-1})$

-> "Two-parameter success punishing model"

$$X_{t-1} = 1 \rightarrow p_t = 1 - \lambda_0 (1 - p_{t-1})$$
 $X_{t-1} = -1 \rightarrow p_t = \lambda_1 p_{t-1}$

- —> "Two-parameter success rewarding model"
- M steps, $\lambda(t)$, n-dimensional walk

- ullet Two memory coefficients λ each affecting one direction of the walk
- Again two variants success punishing and success rewarding

$$X_{t-1} = 1 \rightarrow p_t = \lambda_0 p_{t-1}$$
 $X_{t-1} = -1 \rightarrow p_t = 1 - \lambda_1 (1 - p_{t-1})$

-> "Two-parameter success punishing model"

$$X_{t-1} = 1 \rightarrow p_t = 1 - \lambda_0 (1 - p_{t-1})$$
 $X_{t-1} = -1 \rightarrow p_t = \lambda_1 p_{t-1}$

- -> "Two-parameter success rewarding model"
- M steps, $\lambda(t)$, n-dimensional walk

- ullet Two memory coefficients λ each affecting one direction of the walk
- Again two variants success punishing and success rewarding

$$X_{t-1} = 1 \rightarrow p_t = \lambda_0 p_{t-1}$$
 $X_{t-1} = -1 \rightarrow p_t = 1 - \lambda_1 (1 - p_{t-1})$

-> "Two-parameter success punishing model"

$$X_{t-1} = 1 \rightarrow p_t = 1 - \lambda_0 (1 - p_{t-1})$$
 $X_{t-1} = -1 \rightarrow p_t = \lambda_1 p_{t-1}$

- -> "Two-parameter success rewarding model"
- M steps, $\lambda(t)$, n-dimensional walk

Example - two-parameter success punishing model

Model fitting

- 1. Find λ with known p_0 , model type
- 2. Find p_0 with known λ , model type
- 3. Find p_0 , λ with known model type
- Find model type and all parameters without any prior knowledge

Model fitting

- 1. Find λ with known p_0 , model type
- 2. Find p_0 with known λ , model type
- 3. Find p_0 , λ with known model type
 - (1-3) maximal likelihood estimate & numerical optimization
- 4. Find model type and all parameters without any prior knowledge

Model fitting

- 1. Find λ with known p_0 , model type
- 2. Find p_0 with known λ , model type
- 3. Find p_0 , λ with known model type
 - (1-3) maximal likelihood estimate & numerical optimization
- Find model type and all parameters without any prior knowledge
 - (4) Akaike information criterion & numerical optimization

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units \rightarrow 430% RO
 - Only 128 bets placed

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units \rightarrow 430% ROI
 - Only 128 bets placed

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units \rightarrow 430% ROI
 - Only 128 bets placed

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units \rightarrow 430% ROI
 - Only 128 bets placed

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units → 430% ROI
 - Only 128 bets placed

- Success rewarding model well suited for modelling tennis matches
- Model trained on 2009–2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - Bankroll: 52 units
 - Profit: 224 units → 430% ROI
 - Only 128 bets placed

Summary

- A specific model of a random walk with memory
- Model properties derived
- Possible applications in a set of real life scenarios
- Initial results show big potential of the model

Thank you.

tom@skourim.com