Assignments > Homework 3

Homework 3

▼ Hide Assignment Information

Instructions

Problems 4.8, 4.9, 4.18, 4.19, 4.24

4.8 [12] Given a desired position and orientation of the hand of a three-link planar rotary-jointed manipulator, there are two possible solutions. If we add one more rotational joint (in such a way that the arm is still planar), how many solutions are there?

FIGURE 4.13: Two-link planar manipulator (Exercise 4.9).

4.9 [26] Figure 4.13 shows a two-link planar arm with rotary joints. For this arm, the second link is half as long as the first—that is, $l_1 = 2l_2$. The joint range limits in degrees are

$$0<\theta_1<180,$$

$$-90 < \theta_2 < 180.$$

Sketch the approximate reachable workspace (an area) of the tip of link 2.

FIGURE 3.37: Three-link RRP manipulator (Exercise 3.17).

FIGURE 3.38: Three-link RRR manipulator (Exercise 3.18).

- **4.18** [15] Consider the *RRP* manipulator shown in Fig. 3.37. How many solutions do the (position) kinematic equations possess?
- **4.19** [15] Consider the *RRR* manipulator shown in Fig. 3.38. How many solutions do the (position) kinematic equations possess?
- **4.24** [20] Given the description of link frame $\{i\}$ in terms of link frame $\{i-1\}$, find the four Denavit–Hartenberg parameters as functions of the elements of $i-1 \atop i T$.