ECE 215 Spring 2025

Objective 1.3: AC Circuit Analysis

RMS

Objective 1.3

I can calculate the voltages, currents, instantaneous power, and average power associated with devices in a simple AC-powered circuit using tools such as KVL, KCL, voltage and current dividers, Ohm's Law, RMS values, and the power equation.

ANATOMY OF AC

- $v(t) = V_{\text{bias}} + A \cos 2\pi f \cdot t + \Phi$
- V_{bias} = DC bias
- Amplitude (A or V_{pk}) = peak strength of the signal
- 2π = converts period to °(sometimes 360°)
- $f = \text{frequency}\left(Hz = \frac{1}{s}\right)$
- *t* = time
- Period (*T*) = the time range over which the signal repeats $\left(T = \frac{1}{f}\right)$
- Φ = Phase shift $\left(\Phi = \frac{2\pi}{T}\Delta t\right)$
- RMS Value (V_{rms}) = effective value of the signal

AC EXAMPLE - SINE SIGNAL

Questions:

- What is DC bias?
- What is the phase shift?
- What is the equation for this graph?
- What is the value of the signal at t = 10ms?
- What is the value of the signal at t = 0ms?

PHASE ANGLE

Ohm's Law

Power

RMS

Sinusoids

Red leads Blue by 75 deg, or alternatively Blue lags Red by 75 deg.

AC AND OHM'S LAW - GOOD NEWS

- Ohm's Law still holds true!
- Must keep cosine term (still AC)
- Find *i*₁

AC AND OHM'S LAW - GOOD NEWS

- When looking at just a resistor, there is no phase difference between V_s and I_s
- No phase difference → they are in phase!

• Recall $\omega = 2\pi f$

WHAT ABOUT POWER?

Question: how much power is consumed by the resistor?

$$v(t) = 17\cos 450tV$$

$$v(t) = 17\cos 450tV$$
 $i(t) = 1.7\cos 450tA$

Average value of $P_{inst}(t)$?

Instantaneous Power

$$P_{inst}(t) = V_R I_R =$$

RMS

Definition

RMS value for a periodic waveform is the equivalent DC value that produces the same power effect.

$$V_{\text{RMS}} = \sqrt{\frac{1}{T} \int_0^T \left[v(t) \right]^2 dt} = \sqrt{\frac{1}{T} \int_0^T \left[V_{\text{pk}} \cos \omega t + \theta \right]^2 dt}$$
$$= \frac{V_{\text{pk}}}{\sqrt{2}} = 0.7071 V_{\text{pk}}$$

REAL POWER

RMS

$$\begin{split} V_{RMS} &= \sqrt{V_{bias}^2 + \frac{A^2}{2}} \qquad \text{if $V_{bias} = 0$, then:} \\ V_{RMS} &= \frac{V_{pk}}{\sqrt{2}} = 0.707 * V_{pk} \end{split}$$

Real Power

The average of the instantanous power; represents the real work done by the electrical system.

$$\label{eq:power_power_power} \textit{P} = \frac{1}{2} V_{pk} I_{pk} = \frac{1}{2} \left(\qquad V_{rms} \right) \left(\qquad I_{rms} \right)$$