L'algèbre linéaire est un outil essentiel pour toutes les branches des mathématiques, en particulier lorsqu'il s'agit de modéliser puis résoudre numériquement des problèmes issus de divers domaines : des sciences physiques ou mécaniques, des sciences du vivant, de la chimie, de l'économie, des sciences de l'ingénieur...

Cette exemple introductif permet de présenter les **différentes représentations** de l'objet mathématique système d'équations linéaires.

Exemple

Problème : la somme des tailles d'un fils et du père est de 2,5 mètres. La différence de tailles est de 0.5 mètres. Quel est la taille du fils?

Modélisation:

Soit l'inconnue x représentant la taille du fils et l'inconnue y représentant la taille du père.

La somme est 2,5 donc x + y = 2, 5.

La différence est 0.5 donc y - x = 0.5.

Ainsi on cherche x et y vérifiant le système (S):

I Système d'équations

A Résolution algébrique

Pour déterminer l'ensemble des solutions x et y vérifiant ce système, une idée est de découpler par itérations les dépendances entre les inconnues dans les équations par combinaison ou élimination. A chaque itération, ces deux opérations transforment un système d'équations en un autre équivalent (ayant les mêmes solutions). L'application à l'exemple introductif est :

1. pour éliminer x de la ligne 2, on ajoute à la ligne 2 la ligne 1 :

$$\begin{cases} x+y &= 2,5\\ 2y &= 3 \end{cases}$$

2. pour déterminer y, on divise la ligne 2 par 2 :

$$\begin{cases} x + y &= 2, 5 \\ y &= 1, 5 \end{cases}$$

3. pour éliminer y de la ligne 2, on soustraie à la ligne 1 la ligne 2 :

$$\begin{cases} x = 1 \\ y = 1, 5 \end{cases}$$

Ainsi l'ensemble des solution est l'unique solution (1,1,5) car ce dernier système d'équations est équivalent au premier.

Cette approche sera l'objet du chapitre système d'équations linéaires.

B Résolution géométrique

Le système équation:

(S)
$$\begin{cases} x+y = 2,5 & (D_1) \\ -x+y = 0,5 & (D_2) \end{cases}$$

est constitué de deux équations de deux droites D_1 et D_2 .

Trois cas se présentent alors :

1. Si les droites D_1 et D_2 ne sont pas parallèles, alors elle s'intersecte en un unique point et le système (S) a une unique solution.

2. Si les droites D_1 et D_2 sont parallèles et non confondues, alors elle ne s'intersecte pas et le système (S) n'a pas de solution.

3. Si les droites D_1 et D_2 sont parallèles et confondues, alors elle s'intersecte en une infinité de points et le système (S) a une infinité de solutions.

Dans notre exemple, comme les vecteurs normaux aux deux droites $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ ne sont pas colinéaires, les deux droites ne sont pas parallèles et donc admettent un unique point d'intersection.

II Calcul matricielle 3

Ainsi l'ensemble des solution admet une unique solution. Par lecture graphique, l'unique solution est (1,1,5). La notion de vecteurs normaux sera l'objet du chapitre **espaces préhilbertiens**.

II Calcul matricielle

On sait résoudre par de simples opérations algébriques une équation linéaire à une inconnue. Par exemple, pour l'équation 2x + 1 = 5, on additionne l'opposé de 1, soit -1

$$2x + 1 + (-1) = 5 + (-1)$$

ce qui donne 2x = 4, puis on multiple par l'inverse de 2, ce qui donne x = 2.

Une idée est de transformer le système de deux équations à deux inconnues à une équation à une inconnue. Cette transformation est une abstraction sur la nature des coefficients et des variables des équations : de **réels** à **tableaux de nombres**.

Ainsi, l'équation équivalente au système d'équations linéaires est :

$$\begin{cases} x+y &= 2,5 \\ -x+y &= 0,5 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$$

Autrement dit, on

$$A \times X = B$$

avec
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $B = \begin{pmatrix} 2, 5 \\ 0, 5 \end{pmatrix}$.

En calculant le déterminant de la matrice (voir chapitre **déterminant**), on démontre que la matrice $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ est

inversible, c'est à dire qu'il existe une matrice $A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ telle que, en multipliant, par A^{-1} les deux membres de l'équation $A \times X = B$, on obtient :

$$X = A^{-1}B$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2, 5 \\ 0, 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1, 5 \end{pmatrix}.$$

Par identification, l'ensemble des solution est de nouveau l'unique solution x = 1 et y = 1, 5. Les**matrices** seront étudiées dans le chapitre **matrices**.

III Espace vectoriel

Une idée est de transformer ce système deux équations à deux inconnues en un système d'une équation à deux inconnues. On a :

$$\begin{cases} x + y &= 2,5 \\ -x + y &= 0,5 \end{cases} \Leftrightarrow x \begin{pmatrix} 1 \\ -1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$$

Il s'agit de déterminer x, y afin d'exprimer $\begin{pmatrix} 2,5\\0,5 \end{pmatrix}$ comme combinaisons linéaires des vecteurs $\begin{pmatrix} 1\\-1 \end{pmatrix}$ et $\begin{pmatrix} 1\\1 \end{pmatrix}$ (voir animation GeoGebra https://www.geogebra.org/m/shsawcqc). D'un point de vue mathématiques, on se pose trois questions :

- 1. Existence: la famille est génératrice de \mathbb{R}^2 , c'est à dire pour tout vecteur de \mathbb{R}^2 il existe un couple (x,y) tel que ce vecteur s'exprime comme combinaison linéaire de $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Cela est vrai, en particulier pour le vecteur $\begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$. Avec GeoGebra, on trouve la couple (x=1,y=1,5).
- 2. Unicité: la famille est libre, , c'est à dire si un vecteur de \mathbb{R}^2 s'exprime comme combinaison linéaire de $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ alors cette combinaison est unique. Cela est vrai, en particulier pour le vecteur $\begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$, on ne peut pas trouver un autre couple que (x=1,y=1,5).
- 3. Existence et Unicité : les vecteurs $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ forment une base de \mathbb{R}^2 , c'est à dire que pour tout vecteur de \mathbb{R}^2 il existe un unique couple (x,y) tel que ce vecteur s'exprime comme combinaison linéaire de $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Cela est vrai, en particulier pour le vecteur $\begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$. On a ainsi l'existence et l'unicité de la solution du système linéaire.

L'étude des combinaisons linéaires sera fait dans le chapitre espaces vectoriels.

IV Application linéaire

La dernière idée est de considérer le membre de gauche de l'équation comme l'image d'une fonction :

$$\begin{cases} x+y &= 2,5 \\ -x+y &= 0,5 \end{cases} \Leftrightarrow \begin{pmatrix} x+y \\ -x+y \end{pmatrix} = \begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix} \Leftrightarrow u(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} 2,5 \\ 0,5 \end{pmatrix}$$

$$\text{avec} \quad \begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} x+y \\ -x+y \end{pmatrix}$$

Les solutions du système sont l'ensemble des antécédents $\begin{pmatrix} 2,5\\0,5 \end{pmatrix}$ par la fonction à deux variables $u \mid \begin{pmatrix} x\\y \end{pmatrix} \longmapsto \begin{pmatrix} x+y\\-x+y \end{pmatrix}$.

L'étude générale des fonctions à plusieurs variables est compliquée et est fait dans un cours d'analyse, cependant, du fait que la fonction u possède une propriété de linéarité :

$$u(\binom{x}{y} + \binom{x'}{y'}) = u(\binom{x}{y}) + u(\binom{x'}{y'}) \quad \text{ et } \quad u(\lambda \binom{x}{y}) = \lambda u(\binom{x}{y})$$

 $\mathbf{5}$

on peut démontrer qu'elle est bijective. Ainsi, il existe une unique vecteur antécédent au vecteur $\begin{pmatrix} 2,5\\0,5 \end{pmatrix}$ donc le système admet une unique solution.

L'étude des applications linéaires sera fait dans le chapitre **applications linéaires**.