70092 ExerciseTypes.CW1

Logic Coursework

Submitters

sf23

Shihan Fu

Emarking

	Logic coursework 1 elements: $\forall \exists \rightarrow \neg \land \lor \neq X_1 \equiv$	
	a. i) $\exists X \forall E(comp(X) \land event(E) \land enter(X, E) \rightarrow won(X, E))$	2/2
You want e.g. ∀x (mon (x,E1) ⇔ mon (x,E2) as there can be more winners	ii) $\forall E(\text{event}(E) \rightarrow \exists X(\text{comp}(X) \land \text{enter}(X, E) \land \text{won}(X, E))) \land \exists E, X_1, X_2(\text{event}(E) \land \text{comp}(X_1) \land \text{comp}(X_2) \land \text{enter}(X_1, E) \land \text{enter}(X_2, E) \land \text{won}(X_1, E) \land \text{won}(X_2, E) \land X_1 \neq X_2)$	3/3
	iii) $\exists X, E_1, E_2(\text{comp}(X) \land \text{event}(E_1) \land \text{event}(E_2) \land \text{enter}(X, E_1) \land \text{enter}(X, E_2) \land \text{won}(X, E_1) \land \text{won}(X, E_2) \land E_1 \neq E_2)$. This has block likely a complete whom we have the law of the property $\forall X (\exists E_1, E_2(\text{comp}(X) \land \text{event}(E_1) \land \text{event}(E_2) \land \text{enter}(X, E_1) \land \text{enter}(X, E_2) \land the property of the propert$	1.5/3 3/3
	$(V) \stackrel{\checkmark}{\supset} X (\neg \exists E (comp(X) \land event(E) \land enter(X, E) \land won(X, E)) \lor \bigvee X (\exists E_1, E_2 (event(E_1) \land event(E_2) \land comp(X) \land enter(X, E_1) \land enter(X, E_2) \land won(X, E_1) \land won(X, E_2) \rightarrow E_1 = E_2)) \rightarrow (\neg \exists P, X (press(P) \land invited(X, P)))) $	1/4
you	con't have multiple grantifiers missing 2 closing brackets, b. for the same Missing brackets, Conclusion: (i), (iii), (iv), (v) are correct.	5 /2.5
	To show that (i) and (iv) are equivalent, we only need to demonstrate that $\neg \forall X \forall E (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) is the same as \exists X \exists E (inv(X, E) \land ev(E) \land won(X, E)). According to Equivalences in predicate logic, \neg \forall X p(X) \equiv \exists X \neg p(X), then \neg \forall X \forall E (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E)) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E))) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E))) \equiv \exists X \exists E (\neg (\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E))) \in A(\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E))$	37 2.0
	$\neg ev(E) \lor \neg won(X, E))) . According to De Morgan Rule and Double Negation Rule, \\ \exists X \exists E(\neg(\neg inv(X, P) \lor \neg ev(E) \lor \neg won(X, E))) \equiv \exists X \exists E(inv(X, P) \land ev(E) \land won(X, E)) . So, (i) \\ and (iv) are equivalent.$.5/2.5

15.5/20