Runtime of Quicksort COMS10018 - Algorithms

Dr Christian Konrad

```
Require: array A of length n

if n \le 1 then

return A

else

i \leftarrow \mathsf{Partition}(A)

QUICKSORT(A[0, i-1])

QUICKSORT(A[i+1, n-1])

Algorithm QUICKSORT
```

```
Require: array A of length n

if n \le 1 then

return A

else

i \leftarrow \text{Partition}(A)

QUICKSORT(A[0, i-1])

QUICKSORT(A[i+1, n-1])
```

Algorithm QUICKSORT

Partition A around a Pivot:

 14
 3
 9
 8
 16
 2
 1
 7
 11
 12
 5


```
Require: array A of length n

if n \le 1 then

return A

else

i \leftarrow \text{Partition}(A)

QUICKSORT(A[0, i-1])

QUICKSORT(A[i+1, n-1])
```

Algorithm QUICKSORT

Partition A around a Pivot:


```
Require: array A of length n

if n \le 1 then

return A

else

i \leftarrow \mathsf{Partition}(A)

QUICKSORT(A[0, i-1])

QUICKSORT(A[i+1, n-1])
```

Algorithm QUICKSORT

Partition A around a Pivot:

Runtime:

Runtime: T(n): worst-case runtime on input of length n

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1, n_2 are the lengths of the two resulting subproblems.

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1 , n_2 are the lengths of the two resulting subproblems.

Observe:
$$n_1 + n_2 = n - 1$$

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1 , n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1 , n_2 are the lengths of the two resulting subproblems.

Observe:
$$n_1 + n_2 = n - 1$$

Worst-case:

Suppose that pivot is always the largest element

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1 , n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_1 = n 1$, $n_2 = 0$

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1 , n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_1 = n 1$, $n_2 = 0$

Best-case:

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_1 = n 1$, $n_2 = 0$

Best-case:

• Suppose pivot splits array evenly, i.e., pivot is the median

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1)$$
 (termination condition)
 $T(n) = O(n) + T(n_1) + T(n_2)$,

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_1 = n 1$, $n_2 = 0$

Best-case:

- Suppose pivot splits array evenly, i.e., pivot is the median
- Then, $n_1 = \lfloor \frac{n-1}{2} \rfloor$, $n_2 = \lceil \frac{n-1}{2} \rceil$

Partition:

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

$$T(n) \leq \sum_{i=1}^{n} Ci = C \sum_{i=1}^{n} i$$

Partition: Let C be such that Partition() runs in time at most Cn

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

$$T(n) \leq \sum_{i=1}^{n} Ci = C \sum_{i=1}^{n} i$$
$$= C \frac{(n+1)n}{2}$$

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

$$T(n) \leq \sum_{i=1}^{n} Ci = C \sum_{i=1}^{n} i$$

$$= C \frac{(n+1)n}{2}$$

$$= \frac{C}{2} (n^{2} + n)$$

Partition: Let *C* be such that Partition() runs in time at most *Cn*

Recurrence:

$$T(n) \leq Cn + T(n-1)$$

$$T(n) \le \sum_{i=1}^{n} Ci = C \sum_{i=1}^{n} i$$

= $C \frac{(n+1)n}{2}$
= $C \frac{C}{2} (n^2 + n) = O(n^2)$.

Best Case:

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n = 1

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \leq 1$$

 $\log(n) + 1 \le \ell$

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

$$\frac{n}{2^{\ell-2}} > 1$$

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

$$rac{n}{2^{\ell-1}} \leq 1$$
 1 2 7 9 1 2 but one level: $n=2$ $\frac{n}{2^{\ell-2}} > 1$ which implies $\log(n) + 2 > \ell$

2

16

n

<= n/2

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Case:
$$n_1, n_2 \leq \frac{n}{2}$$

Number of Levels: ℓ • Last level: n=1

$$\frac{n}{2^{\ell-1}} \leq 1$$

$$\log(n) + 1 \leq \ell$$

• Last but one level: n=2

$$\frac{n}{2\ell-2} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

$$\frac{n}{2^{\ell-2}} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

$$\frac{n}{2^{\ell-2}} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

• Observe: Total runtime of Partition() in a level: O(n)

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n=1

$$\frac{n}{2^{\ell-1}} \le 1$$

$$\log(n) + 1 \le \ell$$

• Last but one level: n=2

$$\frac{n}{2^{\ell-2}} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

- Observe: Total runtime of Partition() in a level: O(n)
- Total runtime: $\ell \cdot O(n) = O(n \log n)$.

Good versus Bad Splits:

• It is crucial that subproblems are roughly balanced

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, QUICKSORT is therefore usually very fast

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, QUICKSORT is therefore usually very fast

Good versus Bad Splits: Intuition and Rough Analysis

Only good splits: Recursion tree depth $\lceil \log n \rceil + 1$

Good versus Bad Splits: Intuition and Rough Analysis

Good & bad splits alternate: Recursion tree depth $2 \cdot (\lceil \log n \rceil + 1)$

Ideal Pivot:

Ideal Pivot: Median

Ideal Pivot: Median

Ideal Pivot: Median

Pivot Selection

• To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot

Ideal Pivot: Median

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median

Ideal Pivot: Median

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice

Ideal Pivot: Median

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice:

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random!

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random! (Implementation: exchange A[n-1] with a uniform random element A[i])

Randomized Algorithm

 Randomized pivot selection turns Quicksort into a Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime:

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)

A split is bad if $\min\{n_1, n_2\} \leq \frac{1}{10}n$.

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)

A split is bad if $\min\{n_1, n_2\} \leq \frac{1}{10}n$.

If we select the pivot randomly, how likely is it to have a bad split?

- Bad split if element chosen as pivot is either among smallest
 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2

- Bad split if element chosen as pivot is either among smallest
 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad

- Bad split if element chosen as pivot is either among smallest
 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest
 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: QUICKSORT runs in expected time $O(n \log n)$ if the pivot is chosen uniformly at random