End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine)

Course Name:<B.TECH>, Semester:<1st> Batch: <2024>

(December, 2024)

Subject Code: BEC 101 Time :3 Hours	Subject: Basics of Electrical and Electronics Engineering
Note: O1 is communi	Maximum Marks :60

Note: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.

	a) Explain Kirchoffs first and second law	.5*8=20)	CO Mapping
	and second law	,	CO1
	b) Draw the equivalent circuit of practical voltage and current source		CO1
			COI
	V_m Sin ωt is $\frac{V_m}{V_m}$		CO2
	Trove the power in purely industive or and		CO2
	of its applied with a voltage growth		CO2
	anction: Explain the formation of the		
	- Tri junction		CO1
	f) Compare Zener Breakdown and Avalanche Breakdown		
	o, what the various operating mode of DITA		CO1
	h) Distinguish between holding and latching current.		CO2
02	IINITI		CO2
Q2	Find the voltage V0 across 20 Ohm resistance using superposition theorem?		CO Mapping
	theorem? superposition	(10)	CO3
	20V + + 200 + 48V		
Q3	Find Thevenin's Equivalent circuit across AB. What value of Load should be connected across AB so that maximum power transfer takes place through it? What is the value of Maximum Power transferred?	(10)	CO3

	2 Ohms 2 Ohms 5 V S Ohms		
	В		
	UNIT II		CO Mapping
Q4	Derive the expression of resonance frequency for a series RLC circuit, which is connected across an ac voltage source (v=Vmsinωt). Also draw the phasor diagram and derive the following: (i) Total impedance (ii) Expression of current and (iii) Quality factor.	(10)	CO2
Q5	Draw the phasor-diagram of a circuit having two parallel branches, one	(10)	CO2
	having a series R-L circuit and the other having a series R-C circuit.		
	Derive the condition of resonance and expression of resonance		
	frequency.		CO Mapping
	UNIT III		CO2
Q6	a) Draw the Energy bands in intrinsic and extrinsic silicon.	(5,5)	
	b) Derive the diode current equation for p-n junction diode	(10)	CO3
Q7	For the circuit shown below, determine the range of R_L and I_L that will result in V_{RL} being maintained at $10V$ $1k\Omega - \frac{N}{N}$ $+ R$ $Vi=50V \qquad V_2=10V$ $/2M=32mA$	(10)	, h
	UNITIV		CO Mapping
Q8	 a) Give and explain the current components of PNP transistor. b) A transistor operating in CB configuration has IC = 2.98mA, IE = 3.00 mA and ICO =0.01 mA. What current will flow in the collector circuit for this transistor when connected in CE 	(5,5)	CO4
	has a base current of 30UA!	(10)	CO3
Q9	With the help of neat diagram, explain the operation and characteristics of n-channel enhancement type MOSFET.	(22)	