Part 1.

Section 1. 代码基本架构

代码架构上我积极参考了 PyTorch 的文档,实现了一个 torch-like 的深度学习框架,各个模块的接口都尽量 向 torch 看齐,能比较方便地实现可伸缩易调整的网络结构:

- nn 模块是框架核心部分,包含了 Linear 、 Sigmoid 等基本网络结构的前后向传播逻辑。
- optim 模块和训练优化器相关,包含了最基本的优化器 optimizer 等。
- utils 模块与训练数据加载有关,其中实现了 DataLoader 、 BatchSampler 等。
- model 模块是使用框架搭建的自定义模型,包含模型结构、训练逻辑、模型存取等。
- init 模块中主要包含初始化时使用的函数,包括设置随机种子、日志设置、数据预处理等。

为了加速和方便计算表示,我使用了 numpy 库进行数学计算,并使用 numpy.ndarray 代替 torch.Tensor 进行向量化计算,使用 numpy 让性能不至于太低。

下面挑选代码中最重要的一些类进行分析,为节省字数,代码中所有的注释都被删去,具体注释详见源码。

Linear

```
class Linear(Module):
    def __init__(self, input_size, output_size):
        super(Linear, self).__init__()
        self.inputs = None
        self.params = {"W": None, "b": None}
        self.grads = {"W": None, "b": None}
        sqrt_k = np.sqrt(1 / input_size)
        self.params["w"] = np.random.uniform(-sqrt_k, sqrt_k, (input_size,
output_size))
        self.params["b"] = np.random.uniform(-sqrt_k, sqrt_k, (1, output_size))
    def forward(self, inputs):
        self.inputs = inputs
        return np.matmul(self.inputs, self.params["w"]) + self.params["b"]
    def backward(self, grads):
        self.grads["w"] = np.matmul(self.inputs.T, grads)
        self.grads["b"] = np.sum(grads, axis=0)
        return np.matmul(grads, self.params["w"].T)
```

线性层很大程度地参考了 PyTorch 文档的定义,但是矩阵计算采用 y=xA+b式(不同于文档提到的 $y=xA^T+b$),可以使用 [input_size] 和 [output_size] 指定每个 sample 的输入输出维度。在参数的 初始化方面,参考 PyTorch 文档使用 $U(-\sqrt{k},\sqrt{k})$,其中 $k=\frac{1}{\text{input size}}$ 。

这样初始化也较符合 Project1 文档和老师上课的说法,将初始参数调得比较小,能比较好达到收敛。

Softmax

考虑到 softmax 函数的计算过程需要在后续被复用,我把 softmax 的计算逻辑单独封装为 softmax 函数:

```
def softmax(input, dim):
    exp_logits = np.exp(input - np.max(input, axis=dim, keepdims=True))
    softmax_scores = exp_logits / np.sum(exp_logits, axis=dim, keepdims=True)
    return softmax_scores
```

注意到这里的 softmax 计算其实先对每个 sample 减去了分量中的最大值,然后再计算 exp ,与课件上或 PyTorch 文档中的定义不同。这么做是为了避免因输入数值较大而出现上溢,而且这么做不会影响 softmax 计算的合理性,这点将在下一节证明。

所以 Softmax 的前向传播就是简单地直接调用 Softmax ,反向传播则利用保存下来的 Softmax_Scores :

```
class Softmax(Module):
    def __init__(self, dim):
        super(Softmax, self).__init__()
        self.dim = dim

def forward(self, inputs):
        self.softmax_scores = softmax(inputs, dim=self.dim)
        return self.softmax_scores

def backward(self, grads):
    sum = np.sum(grads * self.softmax_scores, axis=self.dim, keepdims=True)
    return self.softmax_scores * (grads - sum)
```

对 ndarray 使用 softmax 后,在指定维度上的分量将会在 [0,1) 范围内,并且这些分量和为 1 。

CrossEntropyLoss

nn.CrossEntropyLoss = nn.LogSoftmax + nn.NLLLoss .

```
class CrossEntropyLoss(Module):
    def __init__(self):
        super(CrossEntropyLoss, self).__init__()

def forward(self, predicts, labels):
    self.predicts = predicts
    self.labels = labels
    self.batch_size = predicts.shape[0]

self.softmax_scores = softmax(predicts, dim=1)

if predicts.shape == labels.shape:
    loss = -np.sum(labels * np.log(self.softmax_scores))
    else:
        e = labels[0]
```

参考 PyTorch 文档,输入的每个 sample 不需要分量求和为 1 ,因为文档提到 nn. CrossEntropyLoss 等价于先计算 nn. LogSoftmax 然后计算 nn. NLLLoss ,也就是会先对输入进行 softmax ,然后再计算交叉 熵损失函数。所以在多分类问题中,若使用 CrossEntropyLoss 作为损失函数,则模型的输出层实际无需再添加 Softmax 层。

同时,这里实现的 CrossEntropyLoss 也支持两种 [target] 形式,可以是形如 (batch_size) 的一维数组,存储每个 sample 的目标分类索引,也可以是形如 (batch_size, class_num) 的矩阵,存储每个 sample 的各个类的分类概率,例如 one-hot 编码。

对于 [labels] (也即 [target]) 是 (batch_size) 的一维数组时,代码中利用了 [numpy] 的高级索引—— [self.softmax_scores[np.arange(self.batch_size), labels] 简化代码编写,提高计算效率。

ReLU

```
class ReLU(Module):
    def __init__(self):
        super(ReLU, self).__init__()
        self.inputs = None

def forward(self, inputs):
        self.inputs = inputs
        return np.maximum(0, inputs)

def backward(self, grads):
    outputs_grad_inputs = self.inputs > 0
    return np.multiply(grads, outputs_grad_inputs)
```

除了课件上提到的 Sigmoid 模块,我还实现了 ReLU 激活函数,考虑到 Sigmoid 容易面临梯度消失的问题,所以实际代码中我更多使用 ReLU 。但是 ReLU 也可能导致神经元死亡,对应部分参数不更新,训练模型时需要谨慎调整超参。

Optimizer

按照 PyTorch 的文档, optimizer 应当传入一个可迭代的 params 声明要被优化 (调整) 的模型权重,但是这又涉及到 torch 中的子模块注册机制,严格实现会增加很多意义不大的工作量。考虑到实验中只用到了类似 ModuleList 这样的结构,而且其中的子模块都是 nn 中的基本结构。故可以直接把整个 model 传入 optimizer ,调整模型参数时直接遍历 model module_list 即可。

step() 方法应在模型反向传播后调用,其遍历各个子模块的参数,根据学习率和各层的梯度进行参数调整。zero_grad() 方法直接遍历各层模块并清零存储的梯度。

DataLoader

为了方便训练代码的编写,我还实现了一个 DataLoader ,使用的方式和 torch 中的相近,能够根据 Dataset 和 Sampler 对给出的数据集进行采样、整合,并提供一种迭代的方式使用数据。

```
class DataLoader:
    def __init__(
        self, dataset, batch_size=1, shuffle=False, collate_fn=None, drop_last=False
    ):
        sampler = RandomSampler(dataset) if shuffle else SequentialSampler(dataset)
        batch_sampler = BatchSampler(sampler, batch_size, drop_last)
        if collate_fn is None:
            collate_fn = default_collate
        self.dataset = dataset
        self.batch_size = batch_size
        self.drop_last = drop_last
        self.sampler = sampler
        self.batch_sampler = batch_sampler
        self.batch_sampler_iter = None
        self.collate_fn = collate_fn
    def __len__(self):
```

```
return len(self.batch_sampler)

def __next__(self):
    indices = next(self.batch_sampler_iter)
    data = [self.dataset[idx] for idx in indices]
    stacked = self.collate_fn(data)
    return stacked

def __iter__(self):
    self.batch_sampler_iter = iter(self.batch_sampler)
    return self
```

为了更好地解释这部分代码,这里引用知乎上的一张流程图:

BatchSampler 是批量采样器,迭代这个批量采样器会每次返回一批的索引,我们利用这些索引从dataset 中获取一批的 sample ,以一个 list 的形式传入 collate_fun 进行整理,整理后返回一个可以输入网络的 ndarray 。默认整理函数参考了 PyTorch 的源代码,利用递归可以处理 ndarray 、 dict 、 list 形式的 sample :

```
def default_collate(batch):
    elem_type = type(batch[0])
    if elem_type.__module__ == "numpy":
        return np.stack(batch, 0)
    elif isinstance(batch[0], collections.Mapping):
        return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
    elif isinstance(batch[0], collections.Sequence):
        transposed = zip(*batch)
        return [default_collate(samples) for samples in transposed]
    else:
        raise NotImplementedError
```

collate_fun 把 batch_size 个形如 $(dim_0, dim_1, \cdots, dim_k)$ 的 ndarray sample 整理成一个形如 $(batch_size, dim_0, \cdots, dim_k)$ 的 ndarray batch。而 sampler 提供对整个数据集所有样本的一个采样索引序列,每次 BatchSampler 从 Sampler 中取 batch_size 个索引,利用这些索引去 dataset 中取 对应的 sample。所以 dataset 只需要实现 __getitem__ 和 __len__ 方法即可。

Section 2. 对反向传播算法的理解

前馈神经网络具有很强的拟合能力,根据通用近似定理,只要隐藏层神经元的数量足够,它可以以任意的精度来近似任何一个定义在实数空间 \mathbb{R}^D 中的有界闭集函数。而学习隐藏层参数一般使用梯度下降法,计算损失函数对参数的偏导数,若通过链式法则逐一对每个参数求偏导效率低,所以训练网络时常使用反向传播算法计算梯度。

第 l 层的误差项(损失关于该层输出的偏导数 $\delta^{(l)}=\frac{\partial \mathcal{L}}{\partial z^{(l)}}$)可以通过第 l+1 层的误差项计算得到,也就是误差可以反向传播。

注:以下推导中涉及的矩阵求导全部使用分子布局。

Linear

线性层是代码中的核心模块,也是实验 Part1 中神经网络的主要组成部分。在代码中我使用表达式 $z^{(l)}=a^{(l-1)}W^{(l)}+b^{(l)}$ (其中 $a^{(l-1)}$ 是一个行向量,来自前一层),假设该层的输出向量长度 M_l ,令 $\mathcal L$ 是最终的损失函数,根据链式法则有:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial w_{ij}^{(l)}} &= rac{\partial \mathcal{L}}{\partial z^{(l)}} \cdot rac{\partial z^{(l)}}{\partial w_{ij}^{(l)}} \ rac{\partial \mathcal{L}}{\partial b^{(l)}} &= rac{\partial \mathcal{L}}{\partial z^{(l)}} \cdot rac{\partial z^{(l)}}{\partial b^{(l)}} \end{aligned}$$

首先计算 $rac{\partial z^{(l)}}{\partial w_{ij}^{(l)}}$, 因为 $z^{(l)}=a^{(l-1)}W^{(l)}+b^{(l)}$, 也就是 $z_j^{(l)}=\sum_i a_i^{(l-1)}\cdot w_{ij}^{(l)}$, 所以:

$$egin{aligned} rac{\partial z^{(l)}}{\partial w_{ij}^{(l)}} &= \left[rac{\partial z_1^{(l)}}{\partial w_{ij}^{(l)}}, \ldots, rac{\partial z_j^{(l)}}{\partial w_{ij}^{(l)}}, \ldots, rac{\partial z_{M_l}^{(l)}}{\partial w_{ij}^{(l)}}
ight]^T \ &= \left[0, \cdots, rac{\partial (\sum_i a_i^{(l-1)} \cdot w_{ij}^{(l)})}{\partial w_{ij}^{(l)}}, \cdots, 0
ight]^T \ &= [0, \cdots, a_i^{(l-1)}, \cdots, 0]^T \end{aligned}$$

注意其中 $a_i^{(l-1)}$ 是第 j 个分量值。

然后计算 $rac{\partial z^{(l)}}{\partial b^{(l)}}$,因为 $z^{(l)}=a^{(l-1)}W^{(l)}+b^{(l)}$,则显然有:

$$rac{\partial z^{(l)}}{\partial b^{(l)}} = I_{M_l} \quad \in \mathbb{R}^{M_l imes M_l}$$

为 $M_l \times M_l$ 的单位矩阵。

根据 $z^{(l+1)} = a^{(l)}W^{(l+1)} + b^{(l+1)}$ 有:

$$rac{\partial z^{(l+1)}}{\partial a^{(l)}} = (W^{(l+1)})^T \quad \in \mathbb{R}^{M_{l+1} imes M_l}$$

 $a^{(l)}$ 代表第 l 层的输出 $z^{(l)}$ 经过激活函数后的活性值,将会输入到下一个线性层。根据 $a^{(l)}=f_l(z^{(l)})$ (其中 $f_l(\cdot)$ 为按位计算函数),则有:

$$egin{aligned} rac{\partial a^{(l)}}{\partial z^{(l)}} &= rac{\partial f_l(z^{(l)})}{\partial z^{(l)}} \ &= \operatorname{diag}(f_l'(z^{(l)})) \quad \in \mathbb{R}^{M_l imes M_l} \end{aligned}$$

最后计算 $\delta^{(l)}=rac{\partial \mathcal{L}}{\partial z^{(l)}}$,因为 $z^{(l)}=a^{(l-1)}W^{(l)}+b^{(l)}$,根据链式法则有:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial z^{(l)}} &= rac{\partial \mathcal{L}}{\partial a^{(l)}} \cdot rac{\partial a^{(l)}}{\partial z^{(l)}} \ &= \left(rac{\partial \mathcal{L}}{\partial z^{(l+1)}} \cdot rac{\partial z^{(l+1)}}{\partial a^{(l)}}
ight) \cdot rac{\partial a^{(l)}}{\partial z^{(l)}} \ &= \left(\delta^{(l+1)} \cdot (W^{(l+1)})^T
ight) \cdot \mathrm{diag}(f_l'(y^{(l)})) \end{aligned}$$

因此 $\frac{\partial \mathcal{L}}{\partial w_{ij}^{(l)}}$ 就可以被表示为:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial w_{ij}^{(l)}} &= \delta^{(l)} \cdot rac{\partial z}{\partial w_{ij}^{(l)}} \ &= [\delta_1^{(l)}, \cdots, \delta_j^{(l)}, \cdots, \delta_{M_l}^{(l)}] \cdot [0, \cdots, a_i^{(l-1)}, \cdots, 0]^T \ &= a_i^{(l-1)} \cdot \delta_j^{(l)} \end{aligned}$$

其中 $a_i^{(l-1)} \cdot \delta_j^{(l)}$ 相当于向量 $a^{(l-1)}$ 和向量 $\delta^{(l)}$ 的外积的第 i,j 个元素,故上式可以改写为:

$$\left[rac{\partial \mathcal{L}}{\partial W^{(l)}}
ight]_{ij} = \left[(a^{(l-1)})^T \cdot \delta^{(l)}
ight]_{ij}$$

因此, \mathcal{L} 关于第 l 层权重 $W^{(l)}$ 的梯度为:

$$rac{\partial \mathcal{L}}{\partial W^{(l)}} = (a^{(l-1)})^T \cdot \delta^{(l)} \quad \in \mathbb{R}^{M_{l-1} imes M_l}$$

同理可得, \mathcal{L} 关于第 l 层偏置量 $b^{(l)}$ 的梯度为:

$$rac{\partial \mathcal{L}}{\partial b^{(l)}} = \delta^{(l)} \quad \in \mathbb{R}^{M_l}$$

实际代码中一层神经元的输入并不是一个行向量,而是一个 $(batch_size, dim_{in})$ 的矩阵,但是梯度的表达式也几乎相同,在代码中使用[numpy]库的向量化运算可以简洁地表达。

Softmax

上一节曾提到, Softmax 在代码中的实现方式和原公式有所不同, 注意到:

$$\frac{e^{x_i+c}}{\sum e^{x_i+c}} = \frac{e^c \cdot e^{x_i}}{e^c \cdot \sum e^{x_i}} = \frac{e^{x_i}}{\sum e^{x_i}}$$

所以加或减一个常数不会影响 Softmax 的结果。

虽然在代码中使用表达式 $e^{x_i-\max x}/\sum e^{x_i-\max x}$,但是这里不妨使用原始公式进行推导,因为实际上加减一个常数并不影响导数的形式。假设输入的 x 是行向量,输出的 y 也是行向量,长度均为 M ,在 **分子布局**下有:

$$egin{aligned} rac{\partial y}{\partial x} = egin{bmatrix} rac{\partial y_1}{\partial x_1} & rac{\partial y_1}{\partial x_2} & \cdots & rac{\partial y_1}{\partial x_M} \ rac{\partial y_2}{\partial x_1} & rac{\partial y_2}{\partial x_2} & \cdots & rac{\partial y_2}{\partial x_M} \ dots & dots & dots & dots \ rac{\partial y_M}{\partial x_1} & rac{\partial y_M}{\partial x_2} & \cdots & rac{\partial y_M}{\partial x_M} \end{bmatrix} \end{aligned}$$

对于 $\frac{\partial y_k}{\partial x_k}$ 来说有:

$$egin{aligned} rac{\partial y_k}{\partial x_k} &= rac{\partial rac{e^{x_k}}{\sum_i e^{x_i}}}{\partial x_k} \ &= rac{\left(rac{\partial e^{x_k}}{\partial x_k} \cdot \sum_i e^{x_i} - e^{x_k} rac{\partial \sum_i e^{x_i}}{\partial x_k}
ight)}{(\sum_i e^{x_i})^2} \ &= rac{e^{x_k}}{\sum_i e^{x_i}} \cdot \left(1 - rac{e^{x_k}}{\sum_i e^{x_i}}
ight) \ &= y_k \cdot (1 - y_k) \end{aligned}$$

对于 $\frac{\partial y_j}{\partial x_k}$ 其中 $j \neq k$ 来说有:

$$egin{aligned} rac{\partial y_j}{\partial x_k} &= rac{\partial rac{e^{x_j}}{\sum_i e^{x_i}}}{\partial x_k} \ &= rac{-e^{x_j}e^{x_k}}{(\sum_i e^{x_i})^2} \ &= -rac{e^{x_j}}{\sum_i e^{x_i}} \cdot rac{e^{x_k}}{\sum_i e^{x_i}} \ &= -y_j \cdot y_k \end{aligned}$$

在反向传播算法中, $\delta^{(l)}$ 是由后一层传入的误差项,也就是损失关于本层输出的偏导数:

$$\delta^{(l)} = \left[rac{\partial \mathcal{L}}{\partial y_1}, \cdots, rac{\partial \mathcal{L}}{\partial y_M}
ight]$$

根据链式法则有:

$$\delta^{(l-1)} = rac{\partial \mathcal{L}}{\partial x} = rac{\partial \mathcal{L}}{\partial y} \cdot rac{\partial y}{\partial x} = \delta^{(l)} \cdot rac{\partial y}{\partial x}$$

也就是有:

$$\begin{split} \delta^{(l-1)} &= \delta^{(l)} \cdot \frac{\partial y}{\partial x} \\ &= \left[\frac{\partial \mathcal{L}}{\partial y_1}, \cdots, \frac{\partial \mathcal{L}}{\partial y_k}, \cdots, \frac{\partial \mathcal{L}}{\partial y_M} \right] \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_M} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_M}{\partial x_1} & \frac{\partial y_M}{\partial x_2} & \cdots & \frac{\partial y_M}{\partial x_M} \end{bmatrix} \\ &= \left[\frac{\partial \mathcal{L}}{\partial x_1}, \cdots, \frac{\partial \mathcal{L}}{\partial x_k}, \cdots, \frac{\partial \mathcal{L}}{\partial x_M} \right] \end{split}$$

显然,对于 $\frac{\partial \mathcal{L}}{\partial x_i}$ 有:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial x_k} &= \sum_{j=1}^M (rac{\partial \mathcal{L}}{\partial y_j} \cdot rac{\partial y_j}{\partial x_k}) \ &= -\sum_{j=1, j
eq k}^M rac{\partial \mathcal{L}}{\partial y_j} \cdot y_j \cdot y_k + rac{\partial \mathcal{L}}{\partial y_k} \cdot y_k \cdot (1 - y_k) \ &= y_k \cdot \left(\sum_{j=1}^M rac{\partial \mathcal{L}}{\partial y_j} \cdot (-y_j) + rac{\partial \mathcal{L}}{\partial y_k}
ight) \ &= y_k \cdot \left(rac{\partial \mathcal{L}}{\partial y_k} - \sum_{j=1}^M \left(rac{\partial \mathcal{L}}{\partial y_j} \cdot y_j
ight)
ight) \end{aligned}$$

CrossEntropyLoss

交叉熵损失函数也是一个很重要的损失函数,在多分类任务中不可或缺。老师在上课时提到,多分类任务也可以使用 MSELoss ,但是使用 CrossEntropyLoss 是"标准答案",因为 MSELoss 并没有那么适合分类问题。多分类问题为何建议用交叉熵损失函数,经过思考和查找资料,我认为:

- 交叉熵的输入通常是类别概率分布,代表模型对各个分类的后验概率,衡量的是两个概率分布之间的差异(极大似然)。而均方误差的输入则是一个高维空间中的点位置,衡量的是模型预测点和真实点之间的距离。
- 交叉熵只关心 \hat{y}_p 是否更趋近 1 了,而均方误差除了与 \hat{y}_p 有关,从取到最小值的方向看来,还会尽量希望剩下的预测概率相等。

在大多分类问题中,我们对类别与类别之间的关系(相似、相近等)是难以量化的,所以一般标签都是one-hot。在这个前提下,假如标签为 $[1,\,0,\,0]$,均方误差会认为 $[0.8,\,0.1,\,0.1]$ 比 $[0.8,\,0.15,\,0.05]$ 更好,也就是平均比有倾向性更好。

但实际上这是有悖常识的,例如在分类 ["cat", "tiger", "pig"] 中,如果正确标签是 "cat", 预测结果中 "tiger" 通常会比 "pig" 有更高的概率,因为 "tiger" 的特征和 "cat" 更接近。

• 在一个极端的二分类例子中,令 $\hat{y}_i=\sigma(\sum w_ix_i+b)$, σ 是 <code>Sigmoid</code> 。如果正确标签是 $[0,\ 1]$,但预测结果是 $[1,\ 0]$,使用均方误差作为损失函数 $L=\frac{1}{2n}\sum(y_i-\hat{y}_i)^2$,则有:

$$rac{\partial L}{\partial w_i} = rac{\partial L}{\partial \hat{y}_i} \cdot rac{\partial \hat{y}_i}{\partial (\sum w_i x_i + b)} \cdot x_i = -(y_i - \hat{y}_i)(\hat{y}_i \cdot (1 - \hat{y}_i))x_i$$

代入数值后发现梯度为 0 , 这显然是不合理的。

• 邱锡鹏老师的《神经网络与深度学习》中, 3.6 损失函数对比 中也有提及。

因此,在多分类问题中更多时候是使用 CrossEntropyLoss 作为损失函数。

在代码的实现中,我按照 PyTorch 文档的说明和课件的提示,将 softmax 和交叉熵损失的计算都放在 CrossEntropyLoss 模块中,所以在推导该模块的反向传播的时候,可以利用 Softmax 的求导结果。假设输入 CrossEntropyLoss 的 x 是一个行向量,先经过 softmax 函数计算出行向量 \hat{y} ,然后与正确结果 y 计算出交叉熵损失,为了方便不妨假设这里 y 是 one-hot 编码的行向量。

首先计算交叉熵的导数,交叉熵的公式是 $\mathcal{L} = -\sum_{c=1}^{M} y_c \log \hat{y}_c$,其导数:

$$rac{\partial \mathcal{L}}{\partial \hat{y}_c} = -rac{y_c}{\hat{y}_c}$$

将这个式子带入上面计算出来的 $\frac{\partial \mathcal{L}}{\partial x_k}$ 中,可以得到:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial x_k} &= \hat{y}_k \cdot \left(rac{\partial \mathcal{L}}{\partial \hat{y}_k} - \sum_{j=1}^M \left(rac{\partial \mathcal{L}}{\partial \hat{y}_j} \cdot \hat{y}_j
ight)
ight) \ &= -y_k + \hat{y}_k \cdot \left(\sum_{j=1}^M y_j
ight) \end{aligned}$$

由于 y 是 one-hot 编码(或者是概率分布),所以应当有 $\sum_{j=1}^{M}y_{j}=1$,则:

$$egin{align} rac{\partial \mathcal{L}}{\partial x_k} &= -y_k + \hat{y}_k \cdot \left(\sum_{j=1}^M y_j
ight) \ &= \hat{y}_k - y_k \ &= rac{e^{x_k}}{\sum_{i} e^{x_i}} - y_k \end{split}$$

直接用向量表示就是:

$$\frac{\partial \mathcal{L}}{\partial x} = \hat{y} - y$$

这样就得出了损失关于 CrossEntropyLoss 输入的偏导数了。

Section 3. 神经网络训练

拟合 sin 和汉字分类上,我都将数据集按照 train:valid = 9:1 的比例划分训练集和验证集进行训练。由于拟合 sin 的过程比较简单,而且其训练集数据比较丰富,所以下面的内容都是针对汉字分类的训练过程。

网络结构

汉字分类在模型结构上使用了 Linear 和 ReLU 进行搭建,具体网络结构按照如下顺序连接:

- 1. Linear(28 * 28, 1024)
- 2. ReLU()
- 3. Linear(1024, 2048)
- 4. ReLU()
- 5. Linear(2048, 512)
- 6. ReLU()

最后没有经过 Softmax 是因为损失函数模块 CrossEntropyLoss 中已经包含了 Softmax 计算了。对于 28×28 的输入图片,拉平成向量后长度就是 784 ,为了能从样本中充分地学习特征,线性层神经元数量至 少需要上干的规模。经过探索,我认为上述的网络规模是一个比较合适的规模,一方面,再增加规模也很难 提高模型在验证集上的正确率,而且训练的效率大打折扣;另一方面,减小模型的规模容易导致模型学习图像的特征不够充分。

网络训练

经过多次尝试后,确定使用如下训练参数进行训练,同时不使用 scheduler 进行学习率调整。

```
"batch_size": 32,
  "data_path": "./data/char/data.npz",
  "epoches": 80,
  "hash_id": "7cb67d02",
  "learning_rate": 0.03,
  "mode": "train_and_test",
  "random_seed": 42,
  "raw_data_path": "./data/char/train_raw",
  "record_path": "./record/char",
  "save_path": "./save/char/best_model.pkl"
}
```

注意对于灰度图片,其像素值在 [0,255] ,这里我在 CharDataset 初始化时传入一个 [0,1] 范围,而且经过多次比较发现,归一化后的训练效果往往更好。使用上述参数训练后,模型在验证集上的正确率达到了 92.3% 。

基于上面的预训练,我接着使用如下参数进行训练,同样不使用 scheduler 调整学习率。

```
"batch_size": 16,
  "data_path": "./data/char/data.npz",
  "epoches": 80,
  "hash_id": "3981de82",
  "learning_rate": 0.03,
  "mode": "train_and_test",
  "random_seed": 42,
  "raw_data_path": "./data/char/train_raw",
  "record_path": "./record/char",
  "save_path": "./save/char/best_model.pkl"
}
```

与上一次训练参数的主要差别就是减小了 batch_size ,减小了 batch_size 后模型权重的更新频率更高,通常也能引入更多的随机性。使用上述参数训练后,模型在验证集上的正确率达到了 92.95%。

最后我调小了学习率,调大了 batch_size 希望让模型更稳定地学习,但是最终在验证集上地正确率没有提高。个人认为一方面数据集数据量比较小,另一方面受限于线性层过于简单,难以像 CNN 那样学习多种层次的特征。故若想进一步提升正确率,我认为可以对数据进行增强(增加数据、旋转图片、图片添加噪声等),同时使用更好的模型结构,如CNN等。

参考资料

- <u>PyTorch documentation PyTorch 2.1 documentation</u>
- nndl/nndl.github.io:《神经网络与深度学习》 邱锡鹏著 Neural Network and Deep Learning
- 温故知新——前向传播算法和反向传播算法 (BP算法) 及其推导 知乎 (zhihu.com)
- 带你从零掌握迭代器及构建最简 DataLoader 知乎 (zhihu.com)
- DataLoader原理解析 (最简单版本实现) 知乎 (zhihu.com)
- PyTorch36.DataLoader源代码剖析 知乎 (zhihu.com)
- 直观理解为什么分类问题用交叉熵损失而不用均方误差损失?-腾讯云开发者社区-腾讯云 (tencent.com)