Mapping

Aligning sequencing reads to a reference

The Big Picture

So you got some sequences... now what?

Quality Control

- Trim low quality reads/bases
- Remove Adapters
- Error Correction

Mapping

- Comparison to a reference sequence (genome, transcriptome, etc)

Assembly

- Generate a new consensus sequence (genome, transcriptome, etc)

6 June 2023 GDW 2023: Mapping 3

Mapping

• The process by which sequencing reads are aligned (matched) to a region of the genome from which they derive (*reference*)

Why Mapping?

- Identify variants
 - Substitutions (fixed difference from reference)
 - *Polymorphisms* (multiple alleles, heterozygous)
 - Single nucleotide polymorphisms = SNPs
 - Structural variants (insertion-deletion events, duplications, etc)

Reference Genome

TGCATCGTACGACTGACTGACGGGATAGTAGTAGTCTCTGA

ATCGTAGGACT

GTAGGATTGGC

AGGACTGACTGA

GATTGACTGACGG

TTGACTGACGGGA

Reference Genome

TGCATCGTA C GACTGACTGACGGGATAGTAGTCTCTGA

ATCGTA G GACT

GTA G GATTGGC

A G GACTGACTGA

GATTGACTGACGG

TTGACTGACGGA

TTGACTGACGGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGA

TTGACTGACGGGA

Reference Genome

```
TGCATCGTACGA C FGACTGACGGGATAGTAGTAGTCTCTGA

ATCGTAGGA C FGACTGA

GTAGGA T FGACTGA

Feads

GA T FGACTGACGG

T FGACTGACGGA
```


Reference Genome

```
TGCATCGTACGACTGACTGACGGGATAGTAGTAGTCTCTGA
   ATCGTAGGACT
      GTAGGATT G
        AGGACTGA CTGA
                                reads
          GATTGACTGACGG
                 CTGACGGGA
```


Reference Genome

TGCATCGTACGACTGACTGACGGGATAGTAGTAGTCTCTGA

--- = deletion from reference; TAG = insertion relative to reference

Why Mapping?

- Identify variants
 - Substitutions (fixed difference from reference)
 - *Polymorphisms* (multiple alleles, heterozygous)
 - Single nucleotide polymorphisms = SNPs
 - Structural variants (insertion-deletion events, duplications, etc)
- Quantification (counting)
 - Expression level of genes in a transcriptome (RNA-seq)

Quantification

Why Mapping?

- Identify variants
 - *Substitutions* (fixed difference from reference)
 - Polymorphisms (multiple alleles, heterozygous)
 - Single nucleotide polymorphisms = SNPs
 - Structural variants (insertion-deletion events, duplications, etc)
- Quantification
 - Expression level of genes in a transcriptome (RNA-seq)
- Identify or remove sequences of specific origins
 - Contamination
 - Parasites, microbiome, pathogens
 - Organellar DNA (mtDNA, cpDNA)

Identifying/Removing sequences from mixed origin

= Other (e.g., contamination, microbiome, etc)

DIY Exercise!!

Map the reads to the reference!

it was the best of times it was the worst of times it was the age

Reference "Genome"

Read "Library"

(shotgun sequenced pieces of the reference genome)

e the worest of jimis it was the eot of til. Worst of tim bi wasjthe h was the thexb age gythe best tihembit es it ras th was

it was the best of times it was the worst of times it was the age

eot of timis

Drag and drop the "reads" from the library and align them to the reference genome.

it was the the worest of jimis f time f tim

DIY Exercise!!

- Report the:
 - Coverage
 - Error rate
 - How many variants (SNPs)?
 - Mapping rate (reads/sec)?
- Extra credit: Name the book and author
 - No Googling!

http://ivory.idyll.org/blog/the-assembly-exercise.html

Just a pairwise alignment, right?

Yes. x 400 million (or more)

Which Mapping Soft

- >70 published programs
 - Input data type
 - Reference
 - Speed vs sens
 - Memory

Passion ---DynMap ----

6 June 2023 GDW 2023: Mapping 20

Phylogeny of Pairwise Alignment

Comparison (10 million human reads, 40 bp)

Software	Algorithm	Mismatches	Memory (GB)	Time (min)
BWA	BWT	yes	2.2	73
Bowtie	BWT	yes	7.4	166
BFAST	Spaced seeds	yes	9.7	902
MPScan	Suffix tree	no	2.7	80
PerM	Spaced seeds	yes	13.8	785

Schbath et al. 2012 *J Comput Biol*

GDW 2023: Mapping

Comparison (RNA-seq reads; splice aware)

1 core (cpu)

Software	Read-pairs/hr (millions)	Memory (GB)
STAR	51.5	4.5
STAR sparse	37.9	2.6
TopHat2	1.33	0.68
RUM	0.85	4.5
MapSplice	0.5	0.55
GSNAP	0.3	4.3

Dobin et al. 2013 Bioinformatics

Comparison (RNA-seq reads; splice aware)

1 core (cpu)

12 cores (cpus)

Software	Read-pairs/hr (millions)	Memory (GB)	Read-pairs/hr (millions)	Memory (GB)
STAR	51.5	4.5	549.9	28.4
STAR sparse	37.9	2.6	423.1	16.0
TopHat2	1.33	0.68	10.1	11.3
RUM	0.85	4.5	7.6	53.3
MapSplice	0.5	0.55	3.1	3.3
GSNAP	0.3	4.3	2.8	27.0

Dobin et al. 2013 *Bioinformatics*

Storing Read Alignments

Sequence Alignment (SAM/BAM) Format

- Universal Standard
- SAM (readable)
- BAM (binary, compressed form)
- Specifications:
 - https://samtools.github.io/hts-specs/SAMv1.pdf

• Structure

- Header: programs, version, reference info, sort order, sample info, etc.
- Read alignment records
 - One record per line

SAM: Header

X = bowtie2-align-s --wrapper basic-0 -q --phred33 --very-sensitive -t -p 1 -x NC_012059.1 -1 ERR1938563_1.fq -2 ERR1938563_2.fq

ref	AGCATGTTAGATAA * * GATAGCTGTGCTAGTAGG	GCAGTCAGCGCCAT
+r001/1	TTAGATAAAGGATA * CTG	
+r002	aaaAGATAA* GGATA	
+r003	gcctaAGCTAA	
+r004	ATAGCT	TCAGC
-r003	ttagctTAG	GC
-r001/2		CAGCGGCAT

ref	AGCATGTTAGATAA * * GATAGCTGT	GC1	TAGTAGGCAGTCAGCGCCAT
+r001/1	TTAGATAAAGGATA * CTG		
+r002	aaaAGATAA* GGATA		
+r003	gcctaAGCTAA		
+r004	ATAGCT		TCAGC
-r003		ttagctTAGGC	
-r001/2			CAGCGGCAT


```
ref AGCATGTTAGATAA * * GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1 TTAGATAAAGGATA * CTG
+r002 aaaAGATAA* GGATA
+r003 gcctaAGCTAA
+r004 ATAGCT....... TCAGC
-r003 ttagctTAGGC
-r001/2 CAGCGGCAT
```

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
     99 ref 7 30 8M2I4M1D3M
r001
                                 = 37 39 TTAGATAAAGGATACTG *
    0 ref 9 30 3S6M1P1I4M
                                      O AAAAGATAAGGATA *
r002
                      5S6M
r003 0 ref 9 30
                                      0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30 6M14N5M
                                      0 ATAGCTTCAGC *
r004
r003 2064 ref 29 17
                      6H5M
                                   0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                 = 7 -39 CAGCGGCAT * NM:i:1
                        9M
```


The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
     99 ref 7 30 8M2I4M1D3M
                                  = 37 39 TTAGATAAAGGATACTG *
r001
      0 ref 9 30 3S6M1P1I4M
                                       O AAAAGATAAGGATA *
r002
                       5S6M
r003
      0 ref 9 30
                                       0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30 6M14N5M
                                       0 ATAGCTTCAGC *
r004
r003 2064 ref 29 17
                       6H5M
                                    0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
    147 ref 37 30
                                  = 7 -39 CAGCGGCAT * NM:i:1
                         9M
```

Read name

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
     99 ref 7 30 8M2I4M1D3M
r001
                                = 37 39 TTAGATAAAGGATACTG *
     0 ref 9 30 3S6M1P1I4M
                                   0 0 AAAAGATAAGGATA *
r002
                      5S6M
    0 ref 9 30
r003
                                      0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30 6M14N5M
                                      0 ATAGCTTCAGC *
r004
r003 2064 ref 29 17
                      6H5M
                                   0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                 = 7 -39 CAGCGGCAT * NM:i:1
                        9M
```

Flag: pair information, orientation, mapped, etc.

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
     99 ref 7 30 8M2I4M1D3M
                                 = 37 39 TTAGATAAAGGATACTG *
    0 ref 9 30 3S6M1P1I4M
                                   0 0 AAAAGATAAGGATA *
r002
r003 0 ref 9 30
                      5S6M
                                      0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30
                                      0 ATAGCTTCAGC *
r004
                  6M14N5M
r003 2064 ref 29 17
                      6H5M
                                   0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                 = 7 -39 CAGCGGCAT * NM:i:1
                        9M
```

Reference sequence name & position

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M
                                 = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M
                                   0 0 AAAAGATAAGGATA *
r003 0 ref 9 30
                      5S6M
                                   0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30
                                       0 ATAGCTTCAGC *
r004
                   6M14N5M
r003 2064 ref 29 17
                      6H5M
                                      0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                 = 7 -39 CAGCGGCAT * NM:i:1
                        9M
```

Mapping Quality (MQ): -10 * log₁₀(pr[wrongly mapped])

SAM: Alignments

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M
                                   = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M
                                         O AAAAGATAAGGATA *
r003 0 ref 9 30
                        5S6M
                                         0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30
                                         0 ATAGCTTCAGC *
r004
                   6M14N5M
r003 2064 ref 29 17
                        6H5M
                                         0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                   = 7 -39 CAGCGGCAT * NM:i:1
                          9M
```

CIGAR string

REF ACGATACATAC REF GACA-AACC READ ACGA-ACATAC READ atGTCATAACC

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 \underline{M} atches + 1 \underline{D} eletion + 6 \underline{M} atches] [2 \underline{S} kipped + 4 \underline{M} atches + 1 \underline{I} nsertion + 4 \underline{M} atches]

REF ACGATAC
READ ACGA-ACATAC

REF GACA-AACC READ atGTCATAACC

CIGAR: 4M1D6M

[4 Matches + 1 Deletion + 6 Matches]

CIGAR: 2S4M1I4M

[2 <u>Skipped</u> + 4 <u>Matches</u> + 1 <u>Insertion</u> + 4 <u>Matches</u>]

REF ACGATACATAC REF GACA-AACC READ ACGA-ACATAC READ atGTCATAACC

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 Matches + 1 Deletion + 6 Matches] [2 Skipped + 4 Matches + 1 Insertion + 4 Matches]

REF ACGATACATAC
READ ACGA-ACATAC

REF GACA-AACC READ atGTCATAACC

CIGAR: 4M1D6M

[4 Matches + 1 Deletion + 6 Matches]

CIGAR: 2S4M1I4M

[2 <u>Skipped</u> + 4 <u>Matches</u> + 1 <u>Insertion</u> + 4 <u>Matches</u>]

GACA-AACC

atGTCATAACC

REF ACGATACATAC REF READ ACGA-ACATAC READ

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 Matches + 1 Deletion + 6 Matches] [2 Skipped + 4 Matches + 1 Insertion + 4 Matches]

REF ACGATACATAC REF GACA-AACC READ ACGA-ACATAC READ atGTCATAACC

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 Matches + 1 Deletion + 6 Matches] [2 Skipped + 4 Matches + 1 Insertion + 4 Matches]

REF ACGATACATAC REF GACA-AACC READ ACGA-ACATAC READ atGTCATAACC

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 \underline{M} atches + 1 \underline{D} eletion + 6 \underline{M} atches] [2 \underline{S} kipped + 4 \underline{M} atches + 1 \underline{I} nsertion + 4 \underline{M} atches]

REF ACGATACATAC REF GACA-AACC READ ACGA-ACATAC READ atGTCATAACC

CIGAR: 4M1D6M CIGAR: 2S4M1I4M

[4 \underline{M} atches + 1 \underline{D} eletion + 6 \underline{M} atches] [2 \underline{S} kipped + 4 \underline{M} atches + 1 \underline{I} nsertion + 4 \underline{M} atches]

SAM: Alignments

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M
                                   = 37 39 TTAGATAAAGGATACTG *
r001
      0 ref 9 30 3S6M1P1I4M
                                         O AAAAGATAAGGATA *
r002
r003 0 ref 9 30
                        5S6M
                                         O GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
       0 ref 16 30
                                         O ATAGCTTCAGC *
r004
                   6M14N5M
r003 2064 ref 29 17
                        6H5M
                                      0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                   = 7 -39 CAGCGGCAT * NM:i:1
                          9M
```

Mate sequence, location, insert size

SAM: Alignments

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
                                   = 37 39 TTAGATAAAGGATACTG *
     99 ref 7 30 8M2I4M1D3M
r001
      0 ref 9 30 3S6M1P1I4M
                                     0 0 AAAAGATAAGGATA *
r002
r003 0 ref 9 30
                        5S6M
                                        0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
      0 ref 16 30
                                        O ATAGCTTCAGC *
r004
                    6M14N5M
r003 2064 ref 29 17
                       6H5M
                                     0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30
                                   = 7 -39 CAGCGGCAT * NM:i:1
                          9M
```

Read sequence & quality (* = no quality stored)

Now for when you DON'T have a reference...

Mark Stenglein

DIY Exercise!!

Report the:

- Coverage = 7X
- Error rate = 10%
- How many variants (SNPs)? = 2? 3? tim[i/e]s wa[s/k] ep[o/r]ch
- Mapping rate (reads/sec)?
- Extra credit: Name the book and author
 - Tale of Two Cities

http://ivory.idyll.org/blog/the-assembly-exercise.html