Seminár 34: Opakovanie II – samostatné riešenie úloh

Úlohy a riešenia

Úloha 34.1. [B-51-S-1] **Riešenie*.** Pre korene x_1 , x_2 danej kvadratickej rovnice (pokiaľ existujú) platí podľa Viètových vzťahov rovnosti

$$x_1 + x_2 = -4p$$
 a $x_1x_2 = 5p^2 + 6p - 16$,

z ktorých vypočítame skúmaný súčet

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (-4p)^2 - 2(5p^2 + 6p - 16) =$$

= $6p^2 - 12p + 32 = 6(p - 1)^2 + 26$.

Odtiaľ vyplýva nerovnosť $x_1^2+x_2^2=26$, pritom rovnosť môže nastať, len keď p=1. Zistíme preto, či pre p=1 má daná rovnica skutočne dve rôzne riešenia. Ide o rovnicu $x^2+4x-5=0$ s koreňmi $x_1=-5$ a $x_2=1$. Tým je úloha vyriešená.

Dodajme, že väčšina riešiteľov pravdepodobne najprv zistí, pre ktoré p má daná rovnica dva rôzne korene. Pretože pre jej diskriminant D platí

$$D = (4p)^{2} - 4(5p^{2} + 6p - 16) = -4p^{2} - 24p + 64 = -4(p+8)(p-2),$$

sú také p práve čísla z intervalu (-8,2).

Odpoved. Minimálna hodnota súčtu $x_1^2+x_2^2$ (rovná 26) zodpovedá jedinému číslu p=1.

Úloha 34.2. [B-51-S-2] **Riešenie*.** V tetivovom štvoruholníku ABXY označme $\varphi = |\angle AXB| = |\angle AYB|$ veľkosť oboch zhodných obvodových uhlov nad spoločnou tetivou AB (obr. 1). Podobne označme $\psi = |\angle BZC| = |\angle BYC|$ a $\omega = |\angle CXA| = |\angle CZA|$ veľkosti zhodných obvodových uhlov nad

Obr. 1:

tetivami BC a CA v tetivových štvoruholníkoch BCYZ a CAZX. Keď zapíšeme postupne rovnosti pre každú z troch dvojíc vyznačených susedných uhlov pri vrcholoch X,Y a Z, dostaneme pre neznáme veľkosti φ , ψ a ω sústavu troch lineárnych rovníc

$$\varphi + \psi = \pi,$$

$$\psi + \omega = \pi,$$

$$\omega + \varphi = \pi,$$

ktorá má jediné riešenie $\varphi = \psi = \omega = \pi/2$, čo jednoducho zistíme napr. odčítaním ľubovoľných dvoch rovníc a dosadením. Tým je tvrdenie úlohy dokázané.

Poznámka. Ak sú naopak body X, Y a Z päty výšok trojuholníka ABC, sú štvoruholníky ABXY, BCYZ a CAZX tetivové podľa Tálesovej vety.

Úloha 34.3. [B-51-S-3] **Riešenie*.** Pretože pre zvolené číslo k vždy platí $18 \le k + 17 \le 34$ a medzi číslami $18, 19, \ldots, 34$ má každé z čísel $12, 13, \ldots, 17$ iba jeden násobok (konkrétne dvojnásobok), ľubovoľné číslo

 $m \in \{12, 13, \dots, 17\}$ zotrieme iba pri voľbe jediného čísla k (pri ktorom k+17=2m). Napríklad číslo 15 zotrieme iba voľbou k=13, číslo 13 iba voľbou k=9. Na zotretie oboch čísel 15 a 13 teda musíme niekedy vybrať k=13 a niekedy neskôr k=9. Potom ale v okamihu výberu čísla k=9 je už zotreté ako číslo 10 (zotreli sme ho najneskôr pri výbere k=13), tak číslo 1 (to sme zotreli hneď pri prvom výbere). Číslo k+17 je deliteľné deviatimi iba pri výberoch k=1 a k=10, pri žiadnom ďalšom výbere už preto nezotrieme číslo 9. Dokázali sme, že opakovaním danej procedúry nemožno zotrieť všetky tri čísla 15, 13 a 9, tým skôr nemožno zotrieť všetky čísla od 1 do 17.

Iné riešenie*. Pripusťme, že všetky čísla možno zotrieť po n výberoch čísla k (spojených so zotieraním všetkých deliteľov čísla k+17) a že každým výberom sa niečo zotrie (inak je taký výber zbytočný). Posledné o. i. znamená, že každé číslo je vybrané najviac raz. Zrejme n>1 a pre posledné vybrané číslo k_n musí platiť $k_n \mid (k_n+17)$, t. j. $k_n=17$ (možnosť $k_n=1$ je vylúčená tým, že číslo 1 je zotreté hneď pri prvom výbere). Pred posledným výberom sú na tabuli len delitele čísla 34, teda okrem čísla 17 prípadne číslo 2. Keby tam číslo 2 nebolo, muselo by opäť platiť $k_{n-1} \mid (k_{n-1}+17)$, čo už možné nie je. Preto nutne kn-1=2. Taká voľba je ale zbytočná, pretože číslo 2+17 je prvočíslo.