University of Georgia Small Satellite Research Laboratory

•••

Structural Design and Optimization of SPOC Satellite Graham Grable & Megan Le Corre 2017 CURO Syposium

Introduction to CubeSats

- Cube Satellites are small standardized satellites
- Because of this standardization, they are very cost effective when compared to traditional, larger satellites
- The specific structural design of these satellites presents an interesting design challenge
- Stuctures must survive very violent launch conditions while conforming to strict standards

SPOC

- SPOC hosts a hyperspectral sensor, designed by the Small Satellite Research Laboratory.
- Core Avionics are found in a different section of the satellite.
- Most mass in the satellite is found in these areas, therefore failure is likely to occur in those areas.

Mass Block Simulation – Material Properties

- Avionics block assigned
 FR4
- Payload block assigned Al 6061-T6
- Structure assigned Al 6082 T6

	Al 6082-T6	Al 6061-T6	FR4
Density (ω)	2700 kg-m ⁻³	670 kg-m ⁻³	1174 kg-m ⁻³
		(modified density)	(modified density)
Modulus of Elasticity	72 GPa	68.9 GPa	22 GPa
(E)			
Poisson's Ratio (μ)	0.33	0.33	0.118
Tensile Ultimate	330 MPa	290 MPa	320 Pa
Strength (F _{tu})			
Tensile Yield Strength	270 MPa	255 MPa	
(F _{ty})			

Inertial Loading

- MAC represents worst case scenario
- Mass of 3.28 kg
- SPOC is expected to experience 43g's or 421.83 m-s⁻² upon launch

Inertial Loading

- Analysis is performed to determine if the satellite will survive forces that result from the acceleration of the launch vehicle
- Factors of Saftey (FOS) are calculated as:

•
$$FOS_{yield} = \frac{Yielding \, Stress}{Max \, Experienced \, Stress}$$
 $FOS_{ultimate} = \frac{Ultimate \, Stress}{Max \, Experienced \, Stress}$

• Optimal values are $FOS_{vield} = 2.0 \& FOS_{ultimate} = 2.6$

Results – Inertial Loading Analysis

- Supported on the –Z face
- Average stress: 1.647 Mpa
- Max Stress: 57.172 Mpa
- Max stress occurs at Al 6082-T6 standoffs
- $FOS_{vield} = 4.72$
- $FOS_{ultimate} = 5.77$

Results – Inertial Loading Analysis

- Supported on the +Y face
- Average stress: 6.794 Mpa
- Max Stress: 254.77 Mpa
- Max stress occurs at Al 6082-T6 standoffs
- $FOS_{vield} = 1.06$
- $FOS_{ultimate} = 1.39$

First Mode Analysis

- Analysis is performed to verify that the satellite will not pass through its first natural frequency during launch
- If the satellite passes through its natural frequency, catastophic structural failure can result
- It is recommended that 3U cubesats are designed such that their first natural frequency is above 100 Hz

Results – First Mode Analysis

- Supported on the -Z face
- First natural frequency of 180.73 Hz, above the recommended minimum value of 100 Hz
- Maximum displacement occurs at the payload block

Results – First Mode Analysis

- Supported on the +Y face
- First natural frequency of 246.94 Hz, above the recommended minimum value of 100 Hz
- Maximum displacement again occurs at the payload block

SPOCEye Design

- Hyperspectral sensor based off of similar ground spectrometers.
- Frame and housing must act as structural support for both payload and satellite.
- Extremely sensitive to temperature fluctuations.

SPOCEye Design

- Small size limits lens mount designs.
- Modular design allows for easy integration.
- Materials with low thermal coefficients of expansion are chosen.

Caveats and Sources of Error

- Components within mass blocks are not composed of a singular material—for example, the ADCS reaction wheels within the avionics block are composed of stainless steel
- Doesn't account for drum modes of avionics boards
- Use of mass blocks introduces additional stiffness to structure
- This is just one iteration of a long process will continue to refine as design is updated

Next Steps

- Adjust satellite design to incorprate better placement of payload and interface ribs.
- Optimize Payload structural design to reduce mass and stress.
- Gradually increase model complexity include individual boards, fasteners, and cabling.
- Conduct random vibration analyses and shock analyses.
- SPOCeye STOP Analysis

References

AFRL UNP-9 Users Guide

http://www.matweb.com/search/datasheet_print.aspx?matguid=fad29be6e64d4e95a2 41690f1f6e1eb7

http://www.makeitfrom.com/material-properties/6082-T6-Aluminum

Questions?

