03 - 表达式与运算 C++ 程序设计基础

SOJ 信息学竞赛教练组

2024年5月16日

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

• 整数类型

• int: 近似值 2.1×10^9

• long long: 近似值 9.2×10^{18}

• 整数类型

• int: 近似值 2.1×10^9

• long long: 近似值 9.2×10^{18}

• 浮点数类型(实数/小数)

• double: 双精度浮点数

• 整数类型

• int: 近似值 2.1×10^9

• long long: 近似值 9.2×10^{18}

• 浮点数类型(实数/小数)

• double: 双精度浮点数

• 字符类型

• char: 键盘上的字母、数字及符号

• 整数类型

• int: 近似值 2.1×10^9

• long long: 近似值 9.2×10^{18}

• 浮点数类型 (实数/小数)

• double: 双精度浮点数

• 字符类型

• char: 键盘上的字母、数字及符号

• 布尔类型

• bool: true / false (真/假)

- 变量的声明
 - 类型 变量名
 - int a;

- 变量的声明
 - 类型 变量名
 - int a;
- 变量的赋值
 - a = 100;

- 变量的声明
 - 类型 变量名
 - int a;
- 变量的赋值
 - a = 100;
- 使用 cin 语句输入变量, 在输入流符号 >> 后写上变量名
 - cin >> a;

- 变量的声明
 - 类型 变量名
 - int a;
- 变量的赋值
 - a = 100;
- 使用 cin 语句输入变量, 在输入流符号 >> 后写上变量名
 - cin >> a;
- 使用 cout 语句输出变量, 在输出流符号 << 后写上变量名
 - cout << a << endl;

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

算术运算

操作	操作符	例子	结果
加法	+	20 + 10	30
减法	_	20 - 10	10
乘法	*	20 * 10	200
除法	/	20 / 10	2
取模(求余数)	%	20 % 10	0

• 相同数据类型的运算数进行算术运算,得到的结果也是相同类型

- 相同数据类型的运算数进行算术运算,得到的结果也是相同类型
 - 例:整数除以整数,结果也是整数

- 相同数据类型的运算数进行算术运算,得到的结果也是相同类型
 - 例:整数除以整数,结果也是整数
 - 2 / 4 的结果是什么? 是 0 还是 0.5?

- 相同数据类型的运算数进行算术运算,得到的结果也是相同类型
 - 例:整数除以整数,结果也是整数
 - 2 / 4 的结果是什么? 是 0 还是 0.5?
 - 是 0 (整数) 而不是 0.5 (实数)

- 相同数据类型的运算数进行算术运算,得到的结果也是相同类型
 - 例:整数除以整数,结果也是整数
 - 2 / 4 的结果是什么? 是 0 还是 0.5?
 - 是 0 (整数) 而不是 0.5 (实数)
 - 那如何让 2 / 4 的结果为 0.5 呢?

隐式类型转换

不同数据类型的运算数进行算术运算,则存储空间小的类型自动转换为存储空间大的类型,再进行运算,运算的结果为存储空间大的类型

隐式类型转换

- 不同数据类型的运算数进行算术运算,则存储空间小的类型自动转换为存储空间大的类型,再进行运算,运算的结果为存储空间大的类型
 - 例: 实数除以整数, 结果是实数

隐式类型转换

- 不同数据类型的运算数进行算术运算,则存储空间小的类型自动转换为存储空间大的类型,再进行运算,运算的结果为存储空间大的类型
 - 例: 实数除以整数, 结果是实数
 - 2.0 / 4 的结果的结果为 0.5 (实数)

随堂练习

选择题

1. 下面语句中可以得到整数的有

```
A. 10 / 4.0;
```

随堂练习

选择题

1. 下面语句中可以得到整数的有

```
A. 10 / 4.0;
```

B. (double)10 / 4;

C. 1.0 * 10;

D. 10 * 4;

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

• 表达式,是由变量、常量、运算符和分组符号等组成,能通过 计算得出数值的式子,如 a * 10 - b

- 表达式,是由变量、常量、运算符和分组符号等组成,能通过 计算得出数值的式子,如 a * 10 - b
 - 分组符号只可以为**小括号**,如 a * (10 b)

- 表达式,是由变量、常量、运算符和分组符号等组成,能通过 计算得出数值的式子,如 a * 10 - b
 - 分组符号只可以为**小括号**,如 a * (10 b)
 - 运算符不可以省略不写

- 表达式,是由变量、常量、运算符和分组符号等组成,能通过 计算得出数值的式子,如 a * 10 - b
 - 分组符号只可以为**小括号**,如 a * (10 b)
 - 运算符不可以省略不写
 - 括号使用时、需要成对出现

随堂练习

选择题

1. 以下选项中出现的字母或单词均为变量或常量,那么以下选项中在 C++ 中属于合法的表达式的有

A.
$$2(a + b)$$

B.
$$[(a + b) * h] / 2$$

随堂练习

选择题

1. 以下选项中出现的字母或单词均为变量或常量,那么以下选项中在 C++ 中属于合法的表达式的有

A.
$$2(a + b)$$

B.
$$[(a + b) * h] / 2$$

- 在表达式中,参与运算不会改变变量的值
- 对于表达式的结果, 我们可以直接输出, 或存储后再使用

- 在表达式中,参与运算不会改变变量的值
- 对于表达式的结果, 我们可以直接输出, 或存储后再使用

```
1 #include <iostream>
2
3 using namespace std;
4
5 int main() {
6   int a = 5;
7   a / (3.0 - 1);  // 无意义
8   cout << a << endl; // 输出 5
9
10   return 0;
11 }</pre>
```

- 在表达式中,参与运算不会改变变量的值
- 对于表达式的结果, 我们可以直接输出, 或存储后再使用

```
1 #include <iostream>
2
3 using namespace std;
4
5 int main() {
6   int a = 5;
7   cout << a / (3.0 - 1) << endl; // 输出 2.5
8   cout << a << endl;
9
10   return 0;
11 }</pre>
```

运算的优先级

- 在表达式求值时,必须了解各种运算及其优先顺序
 - 优先顺序从高到低排列:
 - 1. 括号
 - 2. 乘法/除法/取模
 - 3. 加法 / 减法

- 4. 关系运算
- 5. 逻辑运算
- 6. 赋值运算
- 同等优先顺序的两个运算则按照从左到右进行计算
 - 除了赋值运算和逻辑非

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

赋值运算

操作	操作符	解释
赋值	=	将值赋予变量
加法赋值	+=	a += b, 等价于 a = a + b
减法赋值	-=	a -= b, 等价于 a = a - b
乘法赋值	*=	a *= b, 等价于 a = a * b
除法赋值	/=	a /= b, 等价于 a = a / b
取模赋值	%=	a %= b, 等价于 a = a % b

随堂练习

填空题

- 1. 在各表达式互相独立、不相互影响的情况下,写出执行下列表达式后各变量的值。(a、b 的初始值分别为 21、5)
 - a + b;
 - a += b;
 - b = a / b;
 - a %= b;

随堂练习

填空题

1. 在各表达式互相独立、不相互影响的情况下,写出执行下列表达式后各变量的值。(a、b 的初始值分别为 21、5)

```
• a + b; a = 21 b = 5
• a += b; a = 26 b = 5
```

• b = a / b;
$$a = 21$$
 $b = 4$

• a %= b;
$$a = 1$$
 $b = 5$

例 3.1:交换两个变量的值

编程题

- 编写程序,由用户输入两个整数 a, b ($1 \le a$, $b \le 10^3$),输出交换后的整数。
- 样例输入3 5
- 样例输出 5 3

例 3.1: 交换两个变量的值

```
1 #include <iostream>
3 using namespace std;
4
  int main() {
   int a, b;
   cin >> a >> b;
   int tmp = a; // 把变量 a 原本的值存到变量 tmp 中
   a = b; // 把变量 b 的值赋值给变量 a
10
   b = tmp; // 把变量 tmp 的值赋值给变量 b
   cout << a << " " << b << endl;
11
12
13
   return 0;
14 }
```

 操作	操作符	解释
自增自减	++	变量的值增加 1 变量的值减少 1

操作	操作符	解释
自增自减	++	变量的值增加 1 变量的值减少 1

- 自增和自减运算符可放在变量前或变量后,单独使用时,效果 都一样
 - a++; 与 ++a; 等价, 都表示 a = a + 1;
 - a--; 与 --a; 等价, 都表示 a = a 1;

自增和自减运算符参与其他操作时,运算符的前后位置会影响 结果

• 自增和自减运算符参与其他操作时,运算符的前后位置会影响 结果

- b = a++;
 - 先赋值, 再 a++
 - 相当于 b = a; a = a + 1;

• 自增和自减运算符参与其他操作时,运算符的前后位置会影响 结果

- b = a++;
 - 先赋值, 再 a++
 - 相当于 b = a; a = a + 1;
- b = ++a;
 - 先 ++a, 再赋值
 - 相当于 a = a + 1; b = a;

字符的简单运算

- 字符类型的变量, 也可以进行加减运算
 - char ch = 'a'; // 字符类型变量 ch 赋值为字母 a
 - ch++; // 变量 ch 的值加 1
 - cout << ch << endl; // 输出字母 b

例 3.2: 输出下一个字母

编程题

- 编写程序,由用户输入一个 a 到 y 之间的小写字母,输出该字母的下一个字母。
- 样例输入a
- 样例输出 b

例 3.2: 输出下一个字母

```
1 #include <iostream>
2
3 using namespace std;
4
5 int main() {
6    char ch;
7    cin >> ch;
8    ch++;
9    cout << ch << endl;
10
11    return 0;
12 }</pre>
```

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

操作	操作符	例子	结果
判断相等	==	20 == 10	false
判断不等	!=	20 != 10	true
判断大于	>	20 > 10	true
判断小于	<	20 < 10	false
判断大于等于	>=	20 >= 10	true
判断小于等于	<=	20 <= 20	true

• 参与关系运算的操作数是任意类型的表达式,结果是 bool 类型

- 参与关系运算的操作数是任意类型的表达式,结果是 bool 类型
- 能将关系运算表达式的结果赋值给 bool 类型变量并输出

- 参与关系运算的操作数是任意类型的表达式, 结果是 bool 类型
- 能将关系运算表达式的结果赋值给 bool 类型变量并输出

```
• bool f;
f = (20 > 10);
cout << f << endl; // 输出结果为 1
```

- 参与关系运算的操作数是任意类型的表达式,结果是 bool 类型
- 能将关系运算表达式的结果赋值给 bool 类型变量并输出

```
• bool f;
f = (20 > 10);
cout << f << endl; // 输出结果为 1
```

```
• f = (10 + 10 != 20);
cout << f << endl; // 输出结果为 0
```

判断倍数关系

• 如何判断整数 a 是否为 2 的倍数?

判断倍数关系

• 如何判断整数 a 是否为 2 的倍数?

```
• bool f;
f = (a % 2 == 0);
```

判断倍数关系

- 如何判断整数 a 是否为 2 的倍数?
 - bool f;
 f = (a % 2 == 0);
 - cout << f << endl; // 2 的倍数则输出 1, 否则输出 0

例 3.3: 4 的倍数

编程题

- 编写程序,由用户输入一个整数 n ($1 \le n \le 10^9$),如果该整数 是 4 的倍数,则输出 1,否则输出 0。
- 样例输入12
- 样例输出1

例 3.3: 4 的倍数

```
1 #include <iostream>
 using namespace std;
4
  int main() {
    int n;
    cin >> n;
    bool f = (n \% 4 == 0);
    // 判断 n 是否为 4 的倍数, 即 n 除以 4 的余数是否为 0
  cout << f << endl;</pre>
10
11
12
    return 0;
13 }
```

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

逻辑运算

- 参与逻辑运算的操作数是 bool 类型, 结果也是 bool 类型
- 逻辑运算有以下三种:
 - 逻辑与 &&
 - 逻辑或 ||
 - 逻辑非!

逻辑与: &&

• 逻辑与运算符有"并且"的含义,当两侧的操作数都成立(true)时,表达式才成立(true)

表达式	操作数运算	结果
2 > 1 && 2 < 3	true && true	true
2 > 1 && 2 > 3	true && false	false
2 < 1 && 2 < 3	false && true	false
2 < 1 && 2 > 3	false && false	false

逻辑或: ||

• 逻辑或运算符有"或者"的含义,当两侧的操作数有一个成立 (true) 时,表达式就成立 (true)

表达式	操作数运算	结果
	true false	true true
	false true false false	

逻辑非:!

• 逻辑非运算符会将表达式的结果取反

表达式	操作数运算	结果
!(2 > 1)	!(true)	false
!(2 < 1)	!(false)	true
!(!(2 > 1))	!(!(true))	true

随堂练习

选择题

1. 在 C++ 中, 判断 a 等于 0 或 b 等于 0 的表达式是

C.
$$a == 0 \mid | b == 0$$

D.
$$a = 0 | | b = 0$$

随堂练习

选择题

1. 在 C++ 中, 判断 a 等于 0 或 b 等于 0 的表达式是

C.
$$a == 0 \mid | b == 0$$

D.
$$a = 0 | 1 | b = 0$$

例 3.4: 两位数判断

编程题

- 编写程序,由用户输入一个整数 n ($0 \le n \le 10^9$),如果该整数是两位数,则输出 1,否则输出 0。
- 样例输入10
- 样例输出1

例 3.4: 两位数判断

```
1 #include <iostream>
  using namespace std;
4
  int main() {
    int n;
    cin >> n;
    bool f = (10 \le n \& n \le 99);
    // 两位数是 10 ~ 99 之间的数
10
    // 注意不能写成 10 <= n <= 99 的形式
    cout << f << endl;</pre>
11
12
13
    return 0;
14 }
```

目录

- 1 复习回顾
- 2 算术运算
- 3 表达式
- 4 赋值运算
- 5 关系运算
- 6 逻辑运算
- 7 总结

总结

- 算术运算
- 赋值运算
- 关系运算
- 逻辑运算
- 运算优先级

Thank you!