1 Vocabulaire

- Un **univers** est l'ensemble de tous les résultats possibles d'une expérience aléatoire, il est souvent noté Ω .
- Un **événement** A est un sous-ensemble de Ω : $A \subset \Omega$.
- Un **événement élémentaire** est un événement qui contient un seul élément de l'univers.

AUB

- L'événement contraire de A est l'ensemble \overline{A} des éléments de Ω n'appartenant pas à A.
- A ∩ B est l'événement A et B.
 A ∪ B est l'événement A ou B.
- Si $A \cap B = \emptyset$ on dit que A et B sont incompatibles. L'ensemble des événements de l'univers Ω est noté $\mathcal{P}(\Omega)$.

2 Définitions - Propriétés

1. Définition

Une probabilité définie sur Ω est une application P de $\mathscr{P}(\Omega)$ dans $[0\ ;\ 1]$

- telle que : $P(\Omega) = 1$.
- Pour tout $A \in \mathcal{P}(\Omega)$ et tout $B \in \mathcal{P}(\Omega)$, si $A \cap B = \emptyset$, on a $P(A \cup B) = P(A) + P(B)$.

2. Propriétés

Pour tout $A \in \mathcal{P}(\Omega)$ et tout $B \in \mathcal{P}(\Omega)$:

- $P(\emptyset) = 0$; $P(\overline{A}) = 1 P(A)$;
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

3. Cas particulier : équiprobabilité

• Si Ω contient n éléments,

la probabilité d'un événement élémentaire est : $\frac{1}{n}$.

Tous les événements élémentaires ont la même probabilité.

- Si un événement A contient k éléments : $p(A) = \frac{k}{n}$.
- $p(A) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$