

Analoge Schaltungen: Selftuned Filter

Julian Sündermann, Alexander Smolko, Dimitri Krämer

Inhalt

- 1 Einführung ins Thema
- 2 Theorie
- 3 Simulation mit LTSpice
- 4 Praxis
- 5 Ausblick
- 6 Zusammenfassung
- 7 Quellen

1. Einführung ins Thema

Das ALSK Pro Board

Das Ziel

Rückblick (Experiment 4)

Tiefpass

Hochpass

Bandpass

Bandsperre

 $\frac{V_{03}}{V_i} = \frac{+H_0}{\left(1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}\right)}$

 $\frac{V_{01}}{V_i} = \frac{\left(H_0 \cdot \frac{S^2}{\omega_0^2}\right)}{\left(1 + \frac{S}{\omega_0 Q} + \frac{S^2}{\omega_0^2}\right)}$

 $\frac{V_{02}}{V_i} = \frac{\left(-H_0 \cdot \frac{S}{\omega_0}\right)}{\left(1 + \frac{S}{\omega_0 Q} + \frac{S^2}{\omega_0^2}\right)}$

 $\frac{V_{04}}{V_i} = \frac{\left(1 + \frac{s^2}{\omega_0^2}\right) \cdot H_0}{\left(1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}\right)}$

 ω_{out} ist Filterabhänig

Gegebener Schaltungsaufbau

2. Theorie

Tiefpasseigenschaften eines Integrators

$$\omega_0 = \frac{1}{RC}$$

Aufbau eines Multipliziereres

ACHTUNG: In der Praxis sind nicht lineare Effekte zu beachten!

Spannungsgesteuerter Tiefpass (Integrator)

$$\omega_0 = \frac{U_{SF}}{RC \cdot V_C}$$

*U*_{SF} = *Referenzspannung des Multiplizierers*

Zwischenstand

$$\omega_0 = \frac{U_{SF}}{RC \cdot V_C}$$
 $U_{SF} = Referenzspannung des Multiplizierers$

Abhängigkeit von Phase und Mittenfrequenz

- Maximale Amplitude (Anpassung der Mittenfrequenz) bei 90° Phasenverschiebung zum Eingangssignal
- Wir brauchen also einen Phasendetektor!

15

Phasendetektor mit einem Multiplizierer

$$V_Z = \frac{V_X V_Y}{U_{SF}} \cdot \sin \omega t \cdot \sin(\omega t + \varphi)$$
$$= \frac{V_X V_Y}{2U_{SF}} \cdot (\cos \varphi - \cos(2\omega t + \varphi))$$

$$V_{Out,TP} = \frac{V_X V_Y}{2U_{SF}} \cdot \cos \varphi$$

Phasendetektor mit einem Multiplizierer

$$V_{Out,TP} = \frac{V_X V_Y}{2U_{SF}} \cdot \cos \varphi$$

$$V_{Out,Integrator} = 0.82 \cdot U_{Amp} - \frac{1}{RC} \int \frac{V_X V_Y}{2U_{SF}} \cdot \cos \phi \ dt$$

Selftuned Filter

Figure 5.2: A Self-Tuned Filter based on a Voltage Controlled Filter or Voltage Controlled Phase Generator

$$\omega_0 = \frac{U_{SF}}{RC \cdot V_{F3}}$$

$$V'_{F3} = \frac{V_X V_Y}{2U_{SF}} \cdot \cos \phi$$

Bei $\varphi = 90^\circ$ wird $V'_{F3} = 0$

$$V_{Amp} = 0.82 \cdot U_{Amp} - \frac{1}{RC} \int V'_{F3} dt$$

$$V_{F3} = V_{Amp} \frac{R_{10}}{R_{11} + R_{10}} + V_3 \frac{R_{11}}{R_{11} + R_{10}}$$

3. Simulation mit LTSpice

Experiment 04

$$\tau = R \cdot C$$

Experiment 05

4. Praxis

Aufbau des Selftuned Filters

Messung

Messung des Miltipliezierers

5. Ausblick

Ausblick

- Schaltung auf Platine löten
 - Um Schaltungsfehler zu minimieren
- Multiplizierer
 - Offset hinzufügen um negativen Offset auszugleichen
 - Warum muss das Ausgangssignal an Z zurückgeführt werden?
- Rückkopplung am Ende der Schaltung
 - Formeln die das Verhalten der Rückkopplung beschreiben

Zusammenfassung

- Baut auf Experiment 4 auf.
- Verschiedene Bestandteile
 - Integrator, Multiplizierer, spannungsgesteuerter Tiefpass und Phasendetektor
- Abhängigkeit von Phase und Mittenfrequenz
- Riesiges Kabelmanagement
- Verschiedene Messungen
- Multiplizierer in der Praxis

Figure 5.2: A Self-Tuned Filter based on a Voltage Controlled Filter or Voltage Controlled Phase Generator

Fragen?

Vielen Dank!

Julian Sündermann, Alexander Smolko, Dimitri Krämer

Quellen

- https://www.electronics-tutorials.ws/wpcontent/uploads/2013/08/opamp26.gif?fit=400%2C204
- lec-22-biquads.key, Autor: Herr Meiners
- aslk-pro-manual-v103.pdf
- https://www.ti.com/lit/ds/symlink/mpy634.pdf?ts=1593457053833
 &ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%
 252FMPY634 (mpy634 Datasheet)
- https://freevideolectures.com/course/2330/analog-ics/23
 Alle Links zum angegebenen Datum (29.06.20) überprüft.