

Statistical Inference — Lab 2

Date of issue: 08. November 2018	Due Date: 22. November 2018, 18 Uhr

Family Name:

First Name:

Student ID:

Adjustment of height networks

The 3 following schemes outline simple levelling networks consisting of 5 points (the arrows indicate the direction of track of levels). The objective of this exercice is to adjust the height network by using a linear model y = Ax + e and the given measured height differences (the parameter k corresponds to the last two digits of your student ID number). The measured height differences are:

$$h_{[m]} = [h_{1B}, h_{13}, h_{12}, h_{32}, h_{1A}]^{\mathsf{T}}$$

=
$$\left[6.9803 + \frac{k}{1000}, 10.0213 - \frac{k}{1000}, 14.3030, 4.2871, 7.5001 + \frac{k}{1000}\right]^{\mathsf{T}}$$

and the unknown absolute heights are:

- for case 1: $x = [H_1, H_2, H_3, H_B]^T$
- for case 2: $x = [H_A, H_1, H_2, H_3]^T$
- for case 3: $x = [H_1, H_2, H_3]^T$

In case 1 (resp. case 2) only the height of P_A is known exactly (resp. P_B) while in case 3 both levelling points are supposed to be known exactly ($H_A = 100.956 \, \text{m}$, $H_B = 100.459 \, \text{m}$).

For each of the 3 cases, follow the step-by-step approach to adjust the height network by determining

- the set of equations describing height network,
- the reduced observation vector y,
- the design matrix A, the number of rows (observations) m, columns (unknowns) n and the rank of A rk A,
- $\operatorname{rk}[A|y]$,
- the Least-squares estimate of the vector \hat{H} ,
- the corresponding adjusted reduced observation vector \hat{y} ,
- the adjusted observations $\hat{h} = \left[\hat{h}_{1B}, \, \hat{h}_{13}, \, \hat{h}_{12}, \, \hat{h}_{32}, \, \hat{h}_{1A}\right]^\mathsf{T}$,
- the estimate \hat{e} of the inconsistency parameter and its quadratic sum $\|\hat{e}\|_2^2 := \hat{e}^T \hat{e}$,
- the redundancy r and the redundancy-normalized inconsistency quadratic sum $\frac{\hat{e}^{\mathsf{T}}\hat{e}}{r}$.

Comment on and interpret the differences in the results between the 3 cases, in particular in what concerns the estimated inconsistencies and the corresponding quadratic sum.

Verify the correctness of your results with the help of the *orthogonality check* and the *main check*.