NUS-ISSVision Systems

Module 3 - Foundations of computer vision system (2) - Local feature and representation, part 1

Dr. Tan Jen Hong
Lecturer & Consultant
Institute of System Science
National University of Singapore
issjht@nus.edu.sg

© 2021 National University of Singapore. All Rights Reserved.

Learning objectives

- Read, display and write image
- Convert image's colour format
- Expand image's border
- Draw objects on image

Read image

vse/m2.1/v1.2

yoshida1.jpg

 In opency, use imread() to load an image

```
> import cv2
```

```
> imgfile = 'yoshida1.jpg'
> img = cv2.imread(imgfile)
```

Or simply just

```
> img = cv2.imread('yoshida1.jpg')
```

- Supported formats: jpg, bmp, png, tif, tiff, pbm, ppm, hdr, pic
 - Check the below link for more detail: https://docs.opencv.org/3.4.2/d4/da8/ group__imgcodecs.html

Check basic info

yoshida1.jpg

- Many times it is beneficial / required to check basic information about the image loaded
- In Spyder, that can be done in Variable explorer

```
img | uint8 | (700, 477, 3)
height width channel
```

To access through code, do

```
> img.shape
: (700, 477, 3)

> img.dtype
: dtype('uint8')

> print('img height: %d' % (img.shape[0]))
: img height: 700
```

Display image

Through opency

To display an image in opency for img, we do

```
> cv2.imshow('a drawing',img)
> cv2.waitKey(0)
> cv2.destroyAllWindows()
```

•On some platforms, it needs the below 4 lines to prevent freezing of the window:

```
> cv2.waitKey(1)
> cv2.waitKey(1)
> cv2.waitKey(1)
> cv2.waitKey(1)
```

Display image

Through opency

imshow() does the display of image

```
cv2.imshow('a drawing',img)

name of the window the variable
```

 imshow() should be followed by function waitKey(), which specifies how long the image should be specified in milliseconds

```
cv2.waitKey(0)

value zero stands for waiting infinitely
```

- > cv2.imshow('a drawing',img)
- > cv2.waitKey(∅)
- > cv2.destroyAllWindows()

 destroyAllWindows() shuts down all windows opened through opency

Colour format

BGR

BGR format displayed by function that expects RGB format

vse/m2.1/v1.2

- This implies that we can manipulate the output variable using numpy's function/method
- •For a colour image img, imread() gives a 3D numpy array, in BGR format

```
img[:,:,0] \rightarrow Blue channel
img[:,:,1] \rightarrow Green channel
img[:,:,2] \rightarrow Red channel
```

 However, many other libraries process image array only in RGB format

Colour format conversion

Use cvtColor() to convert colour format

name of the variable

> colour conversion code

Other conversion codes:

cv2.CoLoR_BGR2RGB cv2.CoLoR_RGB2BGR cv2.CoLoR_BGR2GRAY cv2.CoLoR_BGR2YUV cv2.CoLoR_YUV2BGR cv2.CoLoR_BGR2Luv cv2.CoLoR_Luv2BGR

https://docs.opencv.org/3.4.2/d7/d1b/group__imgproc__misc.html

Colour format conversion

 When we convert a colour image to gray, the output is no longer a 3D numpy array

> imgc.shape
: (700, 477)

 To get back a 3D BGR array, we can do

simply a colour that has the same value in R,G and B

vse/m2.1/v1.2

A gray is

Or we can do

for for blue red channel channel

> imge = cv2.merge((imgc,imgc,imgc))

for green channel

Why often do we need to convert colour image into gray scale image?

The theory of colour

Display image, again

Through matplotlib

axis off

 We can use matplotlib to display an image img, to do that, we write

```
> import matplotlib.pyplot as plt
> plt.axis('off')
> plt.imshow(cv2.cvtColor(img,
                           cv2.COLOR_BGR2RGB))
> plt.show()
```

- In the above codes, we first turn off axis in the plot
- •Then use plt.imshow() to display image, but that function expects image in RGB format
- •Thus need to use cv2.cvtColor() to convert img into RGB format
- •Finally, use plt.show() to get the plot displayed

Display image, again

Through matplotlib

To display a grayscale image imgc, we need extra settings on plt.imshow()

- cmap='gray': inform the function to use grayscale colour map
- •vmin=0 : map value 0 to black
- vmax=255 : map value 255 to white

- Often in image processing it is necessary to expand image border to avoid undesired effect
- Use cv2.copyMakeBorder() to expand border

```
> imgf = cv2.imread('yoshida2.jpg')
> bdrx = cv2.copyMakeBorder(imgf,
                               30,
                                     top
                               30,
                                     bottom
                               50,
                                     left
                               50,
                         right
                              cv2.BORDER_REPLICATE)
                     borderType
```

cv2.BORDER_REPLICATE

cv2.BORDER_REFLECT

cv2.BORDER_WRAP

cv2.BORDER_CONSTANT

- When we select borderType
 cv2.BORDER_CONSTANT, we need
 to input one extra parameter:
- The colour we want on the border

Draw objects

- We can draw objects on image using API provided by opency
- Generally in computer vision we use these API to make annotations on image
- Some of the functions available:

```
cv2.line()
cv2.circle()
cv2.rectangle()
cv2.ellipse()
cv2.putText()
```

After the drawing, we display the product either using cv2.imshow() or plt.imshow()

Draw text

vse/m2.1/v1.2

 To write words on image, we use cv2.putText()

```
> imgg = cv2.imread('kawasei1.jpg')
    > cv2.putText(imgg,
                     'Kawasei', text to display
(x, y) position at bottom-left (150, 410),
             font type cv2.FONT_HERSHEY_SIMPLEX,
            font scale 2.5,
               colour (0,0,255),
         font thickness 5,
             line type cv2.LINE_AA)
```

- •cv2.FONT_HERSHEY_SIMPLEX stands for normal size sans-serif font
- •cv2.LINE_AA gives anti-aliased line

Draw rectangle

•To draw rectangle on image, we use cv2.rectangle()

Saving image

- After all the hard work, it would be useless if we can't save the final output
- •To save an image, we use cv2.imwrite()

- Supported formats: jpg, png, tif, tiff, hdr, exr
 - Check the below link for more detail: https://docs.opencv.org/3.4.2/d4/da8/ group__imgcodecs.html

Image understanding

Area and perimeter

- •Exercise: Propose steps to determine the area and the perimeter of the algae in the image without using numpy and any opency or image library (except for image reading and display)?
- Write your answer in Word or PowerPoint and submit to luminus

Source: BUCCANEERSHIP/ISTOCK/GETTY IMAGES PLUS