Tarea 4 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (1 pt) Demuestra que la función $\hat{f}: A \to f[A]$ siempre es función sobreyectiva; y concluye que, si $f: A \to B$ es inyectiva, entonces $\hat{f}: A \to f[A]$ es biyectiva.

Demostración. Para la primera parte, veamos que $\hat{f}: A \to f[A]$ es una sobreyección. Efectivamente, sea $y \in f[A]$ cualquiera, entonces por definición de imagen directa, existe $a \in A$ tal que $y = f(a) = \hat{f}$; así, $a \in \text{ima}(\hat{f})$. Por lo tanto $\text{ima}(\hat{f} \subseteq f[A])$; y, como f[A] es codominio de \hat{f} , entonces $\text{ima}(\hat{f}) \subseteq f[A]$. Esto prueba que $\text{ima}(\hat{f}) = f[A]$; es decir, $\hat{f}: A \to f[A]$ es sobreyectiva.

Para la segunda parte, notemos que si f es inyectiva y $x, y \in A$ son tales que $\hat{f}(x) = \hat{f}(y)$, entonces f(x) = f(y) (por la definición de \hat{f}), y con ello x = y. Por lo tanto \hat{f} es inyectiva; así también, biyectiva.

Ej. 2 (1.5 pts) Demuestra que:

- i) Si $X \subseteq Y$, entonces $i_{X,Y} : X \to Y$ es inyectiva.
- ii) $f = i_{f[A],B} \circ \hat{f}$.

Demostración. (i) Supongamos que $X \subseteq Y$. Veamos que $i_{X,Y}$ es inyectiva; efectivamente, sean $x,y \in \text{dom}(i_{X,Y}) = X$ ysupongamos que $i_{X,Y}(x) = i_{X,Y}(y)$; así, x = y (por definición de $i_{X,Y}$). Lo cual prueba que $i_{X,Y}$ es inyectiva.

(ii) Como el dominio de \hat{f} es X; el dominio de la composición $f = i_{f[A],B} \circ \hat{f}$ es X; además, el dominio de f es X. Por lo tanto, para verificar la igualdad entre las funciones f y $i_{f[A],B} \circ \hat{f}$; basta verificar que:

$$\forall x \in X \left(f(x) = \left(i_{f[A],B} \circ \hat{f} \right)(x) \right)$$

En efecto, si $x \in X$ es cualquiera, entonces:

$$(i_{f[A],B} \circ \hat{f})(x) = i_{f[A],B}(\hat{f}(x))$$
 (Definición de composición)
 $= i_{f[A],B}(f(x))$ (Definición de \hat{f})
 $= f(x)$ (Definición de $i_{f[A],B}$)

finalizando la prueba de la igualdad funcional deseada.

Ej. 3 (1.5 pts) Por un ejercicio de las tareas (¿cuál?), la relación \sim es de equivalencia. Demuestra la igualdad de conjuntos: $A /_{\sim} = \{f^{-1}[\{b\}] \mid b \in f[A]\}$.

Demostración. La relación \sim es de equivalencia en virtud del *Ejercio 10 (o un caso particular del Ejrcicio 7)* de la *Tarea 2*. Ahora, demostraremos la igualdad $A /_{\sim} = \{f^{-1}[\{b\}] \mid b \in f[A]\}$ por doble contención.

(⊆) Sea $[x] \in A /_{\sim}$ cualquiera. Sea $b := f(x) \in f[A]$, se afirma que $[x] = f^{-1}[\{b\}]$; en efecto, note que para cada y se cumple:

$$y \in [x] \Leftrightarrow y \sim x$$
 (Definición de clase de equivalencia)
 $\Leftrightarrow f(y) = f(x)$ (Definición de \sim)
 $\Leftrightarrow f(y) = b$ (Definición de b)
 $\Leftrightarrow y \in f^{-1}[\{b\}]$ (Definición de b)

lo cual prueba que $\forall y (y \in [x] \leftrightarrow y \in f^{-1}[\{b\}])$, esto es, $[x] = f^{-1}[\{b\}]$. Por lo tanto $[x] \in \{f^{-1}[\{b\}] \mid b \in f[A]\}$, probando $A /_{\sim} \subseteq \{f^{-1}[\{b\}] \mid b \in f[A]\}$.

(⊇) Ahora, sea $f^{-1}[\{b\}] \in \{f^{-1}[\{b\}] \mid b \in f[A]\}$ cualquier elemento, entonces $b \in f[A]$. Por definición de imagen directa, existe $a \in A$ de modo que b = f(a). Se afirma que $f^{-1}[\{b\}] = [a]$. Efectivamente, para cada y:

$$y \in f^{-1}[\{b\}] \Leftrightarrow f(y) \in \{b\}$$
 (Definición de imagen inversa)
 $\Leftrightarrow f(y) = b$ (Conjunto unitario)
 $\Leftrightarrow f(y) = f(a)$ (Pues $a = f(b)$)
 $\Leftrightarrow y \sim a$ (Definición de \sim)
 $\Leftrightarrow y \in [a]$ (Definición de clase de equivalencia)

por lo que $f^{-1}[\{b\}] = [a]$, así que $f^{-1}[\{b\}] \in A /_{\sim}$. Esto prueba la contención restante, $\{f^{-1}[\{b\}] \mid b \in f[A]\} \subseteq A /_{\sim}$.

Ej. 4 (1.5 pts) En términos de la definición previa:

- i) Demuestra que q_f es sobreyectiva.
- ii) Prueba que si f es inyectiva, entonces para cada $x \in X$, $[x] = \{x\}$.
- iii) Concluye que, si f es inyectiva, entonces q_f es biyectiva.

Demostración. (i) Sea $[a] \in A /_{\sim}$ cualquiera, entonces q(a) = [a]; esto es, para cada elemento x = [a] de $A /_{\sim}$, existe un elemento $y := a \in A$ de modo que q(y) = x; luego q_f es sobreyectiva. (ii) Supongamos que f es inyectiva g sea g cualquiera. Para cada g se tiene que:

$$y \in [x] \Leftrightarrow y \sim x$$
 (Definición de clase de equivalencia)
 $\Leftrightarrow f(y) \sim f(x)$ (Definición de \sim)
 $\Leftrightarrow y = x$ (f es función y es inyectiva)
 $\Leftrightarrow y \in \{x\}$ (Conjunto unitario)

lo cual demuestra que $[x] = \{x\}$.

(iii) Supongamos (otra vez) que f es inyectiva. Por el inciso previo, para cada $y \in A$ se tiene que:

$$y \sim x \Leftrightarrow y \in [x]$$
 (Definición de clase de equivalencia)
 $\Leftrightarrow y \in \{x\}$ (Inciso previo)
 $\Leftrightarrow y = x$ (Conjunto unitario)
 $\Leftrightarrow y \text{ id}_A x$ (Conjunto unitario)

lo cual demuestra que $\sim = \mathrm{id}_A$. Así, se obtiene del *Ejericio 10* de la *Tarea 2*, que q_f es biyectiva.

Ej. 5 (1.5 pts) Haciendo uso de la terminología definida hasta ahora, para cada inciso da un ejemplo particular de:

- i) Una función $f: \{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow \{0, 1, 2\}$ tal que q_f sea constante.
- ii) Una función $f: \mathbb{N} \to \mathbb{N}$ de modo que $\mathbb{N} /_{\sim}$ posea exactamente 5 elementos.
- iii) Una función $f:\mathbb{Z}\to\mathbb{Z}$ tal que para cada $z\in\mathbb{Z}$ se cumple $q_f(z)=q_f(z+7)$ y $q_f(z)\neq q_f(z+1)$.

Solución. (i) Definamos f para cada $x \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ como f(x) = 2. Por definición de función constante, hay que verificar que:

$$\forall x, y \in \{1, 2, 3, 4, 5, 6, 7, 8\} \left(q_f(x) = q_f(y) \right)$$

En efecto, sean $x, y \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ cualesquiera, entonces f(x) = f(y) (pues ambos son 2); con ello $x \in y$, esto es [x] = [y]; o equivalentemente q(x) = q(y). Lo anterior prueba que q_f es una función constante.

(ii) Definamos $f:\mathbb{N}\to\mathbb{N}$ por medio de la regla:

$$f(n) = \begin{cases} 2 & ; n < 1 \\ 4 & ; 1 \le n < 2 \\ 6 & ; 2 \le n < 3 \\ 8 & ; 3 \le n < 4 \\ 10 & ; 4 \le n \end{cases}$$

De esta manera, se tiene lo siguiente para cada $n \in \mathbb{N}$:

- i) Si n < 1 entonces n = 0 y entonces [n] = [0].
- ii) Si $1 \le n < 2$ entonces n = 1 y entonces [n] = [1].
- iii) Si $2 \le n < 3$ entonces n = 2 y entonces [n] = [2].

- iv) Si $3 \le n < 4$ entonces n = 3 y entonces [n] = [3].
- v) Si $4 \le n$ entonces n = 2 y entonces f(n) = 10. Como f(4) = 10, entonces f(n) = f(4), y con ello [n] = [4].

Esto demuestra que $\mathbb{N}/_{\sim} = \{[0], [1], [2], [3], [4]\}$. Lo único que falta para verificar que este conjunto cuenta con exactamente cinco elementos es verificar que sus elementos son distintos dos a dos, es decir que $[0] \neq [1], [0] \neq [2], [0] \neq [3], [0] \neq [4]$; que $[1] \neq [2], [1] \neq [3], [1] \neq [4]$; que $[2] \neq [3], [2] \neq [4]$; y, que $[3] \neq [4]$. Pero esto resulta innmediato de la definición de la relación de equivalencia \sim , y de que: $f(0) \neq f(1), f(0) \neq f(2), f(0) \neq f(3), f(0) \neq f(4)$; que $f(1) \neq f(2), f(1) \neq f(3), f(1) \neq f(4)$; que $f(2) \neq f(2), f(2) \neq f(4)$; y que $f(3) \neq f(4)$.

(iii) Definamos $f: \mathbb{Z} \to \mathbb{Z}$ como:

$$f(z) = \begin{cases} 0 & ; \exists k \in \mathbb{Z}(n = 7k) \\ 1 & ; \exists k \in \mathbb{Z}(n = 7k + 1) \\ 2 & ; \exists k \in \mathbb{Z}(n = 7k + 2) \\ 3 & ; \exists k \in \mathbb{Z}(n = 7k + 3) \\ 4 & ; \exists k \in \mathbb{Z}(n = 7k + 4) \\ 5 & ; \exists k \in \mathbb{Z}(n = 7k + 5) \\ 6 & ; \exists k \in \mathbb{Z}(n = 7k + 6) \end{cases}$$

de modo que f(z)=0 si z es múltiplo de 7 (es decir, si es de la forma 7k, con k entero); y, f(z)=z si z no es múltiplo de 7. Sea $z\in\mathbb{Z}$ cualquiera, veamos que $q_f(z)=q_f(z+7)$; y, que $q_f(z)\neq q_f(z+1)$. Observemos que lo primero es lo mismo a demostrar [z]=[z+7], es decir, $z\sim z+7$; o equivalentemente, $f(z)\neq f(z+7)$; similarmente, lo segundo es equivalente a demostrar que $f(z)\neq f(z+1)$, así que esto sera lo que demostraremos. Sea m:=f(z), entonces existe k entero tal que z=7k+m.

- i) Para lo primero, notemos que se lo antrior se desprende que z+7=(7k+m)+7=7(k+1)+m; es decir, existe $l=k+1\in\mathbb{Z}$ de modo que z+7=7l+m, probando que f(z)=f(z+1) (ambos son m).
- ii) Ahora, por contradicción, supongamos que f(z) = f(z+1), como ambos son m, entonces existe un entero k' de modo que z+1=7k'+m. Puesto que z=7k+m, entonces (7k+m)+1=7k'+m, de donde 7k+1=7k', o bien 1=7(k-k'). Pero esto mostraría que 1 es múltiplo de 7, lo cual claramente es absurdo. Por lo tanto, $f(z) \neq f(z+1)$.

 \Diamond

Por lo tanto, esta función cumple con el requisito deseado.

Ej. 6 (1.5 pts) Completa la demostración empezada en el párrafo anterior; es decir, prueba que f^* es función de A / \sim en f[A] mostrando que:

$$\forall [x] \in A /_{\sim} \forall b, b' \in f[A] \left(\left([x] f^* b \wedge [x] f^* b' \right) \to b = b' \right).$$

Demostración. Sean $[x] \in A /_{\sim}$, $b, b' \in f[A]$ y supongamos que $[x]f^*b$ y $[x]f^*b'$, habremos de demostrar que b = b'.

Como $[x]f^*b$, existe $y \in [x]$ de forma que b = f(y); similarmente, existe $y' \in [x]$ de manera que b' = f(y'). Ahora, como $y \in [x]$ y $y' \in [x]$, entonces $y \sim x$ y $y' \sim x$, respectivamente. De lo anterior, f(y) = f(x) y f(y') = f(x), respectivamente. Por lo tanto b = f(y) = f(y') = b', es decir b = b'. Se finaliza así la demostración de que f^* es función.

Ej. 7 (1 pt) Demuestra que $f^*: A/_{\sim} \to f[A]$ es biyectiva.

Demostración. (Inyectividad) Sean $[x], [y] \in A /_{\sim} y$ supongamos que $f^*(x) = f^*(y)$. Dado que $f^*([x]) = f(x)$ y $f^*([y]) = f(y)$ (esto es, en esencia, lo que se probó en el ejrecicio anterior), entonces f(x) = f(y); con ello $x \sim y$, o equivalentemente, [x] = [y]. Así, f^* es inyectiva.

(Sobreyectividad) Sea $l \in f[A]$ cualquier elemento, por definición de imagen directa, existe $a \in A$ con l = f(a). Notemos que $f^*([a]) = f(a) = l$, es decir, para cada elemento l de f[A], existe $x = [a] \in A /_{\sim}$ de manera que $f^*(x) = l$. Por lo tanto, f^* es sobreyectiva, y así mismo, inyectiva.

Ej. 8 (.5 pts) Demuestra el Primer Teorema de Isomorfismo para conjuntos; es decir, prueba que:

$$f = i_{f[A],B} \circ f^* \circ q_f$$

(f es composición de una sobreyección, una biyección y una inyección).

Demostración. Notemos que A es el dominino dee f, pero, como también es el dominio de q_f , entonces también lo es de la composición $f^* \circ q_f$; y con ello, de la composición $i_{f[A],B} \circ f^* \circ q_f = i_{f[A],B} \circ (f^* \circ q_f)$. Por lo tanto, para verificar la igualdad funcional deseada, habremos de hacer la demostración de que:

$$\forall x \in A \Big(f(x) = \big(i_{f[A],B} \circ f^* \circ q_f \big)(x) \Big)$$

En efecto, si $x \in A$ es cualquier elemento, entonces:

$$(i_{f[A],B} \circ f^* \circ q_f)(x) = (i_{f[A],B} \circ (f^* \circ q_f))(x)$$
 La composición es asociativa
$$= (i_{f[A],B} \circ (f^* \circ q_f))(x)$$
 (Definición de composición)
$$= i_{f[A],B} (f^* \circ q_f)(x)$$
 (Definición de composición)
$$= i_{f[A],B} (f^*(q_f(x)))$$
 (Definición de composición)
$$= i_{f[A],B} (f^*([x]))$$
 (Definición de q_f)
$$= i_{f[A],B} (f(x))$$
 (Propiedad de f^*)
$$= i_{f[A],B} (f(x))$$
 (Propiedad de f^*)
$$= f(x)$$
 (Definición de $i_{f[A],B}$)

lo cual finaliza la demostración de este ejercicio (y, del Primer Teorema de Isomorfismo para Conjuntos).

Ej. 9 (+1 pt) Prueba que para cualesquiera funciones $i, j : A /_{\sim} \to B$, si se tiene que $j \circ q_f = f$ y $i \circ q_f = f$, entonces i = j.

Demostración. Supongamos que $i, j: A/_{\sim} \to B$ son funciones tales que se dan las igualdades $j \circ q_f = f$ y $i \circ q_f = f$. Como q_f es una función sobreyectiva, tiene inveresa derecha (visto en clase), a saber, existe $u: f[A] \to A/_{\sim}$ de manera que $q_f \circ u = \mathrm{id}_{f[A]}$. Por lo tanto, de $j \circ q_f = f$ se obtiene que:

```
\begin{array}{ll} j=j\circ \operatorname{id}_{f[A]} & \text{(La identidad es neutro de la composición)} \\ =j\circ (q_f\circ u) & \text{($u$ es inversa derecha de $q_f$)} \\ =(j\circ q_f)\circ u & \text{(La composición es asociativa)} \\ =f\circ u & \text{(Pues $j\circ q_f=f$)} \\ =(i\circ q_f)\circ u & \text{(Pues $i\circ q_f=f$)} \\ =i\circ \operatorname{id}_{f[A]} & \text{($u$ es inversa derecha de $q_f$)} \\ =i & \text{(La identidad es neutro de la composición)} \end{array}
```

finalizando la demostración.

Ej. 10 (+1 pt) A partir del ejercicio anterior, concluye que si $k: A/_{\sim} \to f[A]$ es biyección y $f = i_{f[A],B} \circ k \circ q_f$, entonces $k = f^*$.

Demostración. Supongamos que $k: A/_{\sim} \to f[A]$ es biyección y que $f = i_{f[A],B} \circ k \circ q_f$. Por el Primer Teorema de Isomorfismo, se tiene que $f = i_{f[A],B} \circ f^* \circ q_f$; así, a consecuencia del ejercicio anterior, se tiene que $i_{f[A],B} \circ f^* = i_{f[A],B} \circ k$.

Ahora, $i_{f[A],B}$ es inyectiva (algo demostrado en esta tarea); por lo que tiene inveras izquerda (visto en clase); a saber, existe $v: B \to f[A]$ de modo que $v \circ i_{f[A],B} = \mathrm{id}_{f[A]}$; de donde:

```
f^* = \operatorname{id}_{f[A]} \circ f^* \qquad \qquad \text{(La identidad es neutro de la composición)}
= (v \circ i_{f[A],B}) \circ f^* \qquad \qquad (v \text{ es inversa izquierda de } i_{f[A],B})
= v \circ (i_{f[A],B} \circ f^*) \qquad \qquad (\text{La composición es asociativa})
= v \circ (i_{f[A],B} \circ k) \qquad \qquad (\text{Pues } f = i_{f[A],B} \circ f^* \circ q_f)
= (v \circ i_{f[A],B}) \circ k \qquad \qquad (\text{La composición es asociativa})
= \operatorname{id}_{f[A]} \circ k \qquad \qquad (v \text{ es inversa izquierda de } i_{f[A],B})
= k \qquad \qquad (\text{La identidad es neutro de la composición})
```

probando lo deseado.

Ej. 11 (+2 pts) Definimos los conjuntos:

$$\mathcal{F} := \{g \mid g \text{ es función } \land \text{ dom}(g) = A \land g \text{ es sobreyectiva}\}$$

 $\mathcal{R} := \{R \mid R \subseteq A \times A \land R \text{ es relación de equivalencia}\}$

Encuentra una biyección entre \mathcal{F} y \mathcal{R} .

Demostración. Definimos $\Psi: \mathcal{F} \to \mathcal{R}$ por medio de $\Psi(g) = \sim_g$; donde, \sim_g es la relación dada por: $x \sim_g y$ si y sólo si g(x) = g(y). Sabemos (por lo realizado en esta tarea) que \sim_g es de equivalencia; así que Ψ está bien definida, veamos que es una biyección.

(Inyectividad) Sean $f, g \in \mathcal{F}$ y supongamos que $\Psi(g) = \Psi(f)$; esto es, $\sim_g = \sim_h$; esto significa que, para cualesquiera $x, y \in A$ se tiene que (por definición de las relaciones de equivalencia):

$$g(x) = g(y) \Leftrightarrow x \sim_g y \Leftrightarrow x \sim_f y \Leftrightarrow f(x) = f(y)$$

y como f y g tienen el mismo dominio, A, esto demuestra que f = g. Por ende, Ψ es inyectiva. (Sobreyectividad) Sea $R \in \mathcal{R}$; esto es, $R \subseteq A \times A$ es una relación de equivalencia. Consideremos $g: A \to A/R$ como la función dada por g(x) = [x]. Se afirma que $\Psi(g) = R$. Efectivamente, sean $x, y \in A$ cualesquiera, entonces:

$$xRy \Leftrightarrow [x] = [y]$$
 (Comportamiento de las clases de equivalencia)
 $\Leftrightarrow g(x) = g(y)$ (Comportamiento de las clases de equivalencia)
 $\Leftrightarrow x \sim_g y$ (Definición de \sim_g)

Como $R \subseteq A \times A$ y $\sim_g \subseteq A \times A$, lo anterior prueba que $R = \sim_g$; o bien, por definición de Ψ , se ha mostrado que $R = \Phi(g)$. Esto es, para cada elemento R de \mathcal{R} , existe un elemento R de \mathcal{R} manera tal que $\Psi(g) = R$; es decir, Φ es sobreyectiva; y, por lo tanto biyectiva.