Discrete Convolution								
Linear Convolution	h[k]*x[k]	=	$\sum_{\kappa = -\infty}^{\infty} h[\kappa] x[k - \kappa]$					
Periodic Convolution	$h[k]\circledast_N x[k]$	=	$\sum_{\kappa=0}^{N-1} h[\kappa] x[(k-\kappa) \mod N]$					
Properties and Rules								
Commutativity	x[k] * h[k]	=	h[k]*x[k]					
Associativity	(x[k]*g[k])*h[k]	=	x[k]*(g[k]*h[k])					
Distributivity	x[k]*(g[k]+h[k])	=	(x[k]*g[k]) + (x[k]*h[k])					
Neural Element	$x[k]*\delta[k]$	=	x[k]					
Multiplication	a(x[k]*h[k])	=	$a\ x[k]*h[k] = x[k]*a\ h[k]$					

Discrete-Time Fourier Transform (DTFT)						
$X(e^{j\Omega}) = \mathcal{F}_* \{x[k]\} = \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k}$		$x[k] = \mathcal{F}_*^{-1} \left\{ X(e^{j\Omega}) \right\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega k} d\Omega$				
Properties and Theorems						
Periodicity	$X(e^{j\Omega})$	=	$X(e^{j(\Omega+2\pi)})$			
Time Reversal	x[-k]	\circ	$X(e^{-j\Omega})$			
Conjugation	$x^*[k]$	\circ	$X^*(e^{-j\Omega})$			
Convolution	x[k] * h[k]	○	$X(e^{j\Omega}) \cdot H(e^{j\Omega})$			
Multiplication	$x[k] \cdot h[k]$	\circ	$\frac{1}{2\pi}X(e^{j\Omega}) \circledast H(e^{j\Omega})$			
Shift $(\kappa \in \mathbb{Z})$	$x[k-\kappa]$	\bigcirc	$e^{-j\Omega\kappa}X(e^{j\Omega})$			
Modulation $(\Omega_0 \in \mathbb{R})$	$e^{j\Omega_0 k}x[k]$	○	$X(e^{j(\Omega-\Omega_0)})$			
Multiplication by k	kx[k]	\circ	$j\frac{d}{d\Omega}X(e^{j\Omega})$			
Parseval's Theorem	$\sum_{k=-\infty}^{\infty} x[k] ^2$	=	$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left X(e^{j\Omega}) \right ^2 \mathrm{d}\Omega$			
Correspondences						
	$\delta[k]$	0	1			

$\delta[k]$	O—•	1
1	\circ	$\coprod \left(\frac{\Omega}{2\pi}\right)$
$\epsilon[k]$	$\circ\!\!\!-\!\!\!\!-\!\!\!\!-$	$\frac{1}{1-e^{-j\Omega}} + \frac{1}{2} \coprod \left(\frac{\Omega}{2\pi}\right)$
$e^{j\Omega_0 k}$	\circ	$\coprod \left(\frac{\Omega - \Omega_0}{2\pi}\right)$
(für $ a < 1$) $a^k \epsilon[k]$	\bigcirc	$rac{1}{1-ae^{-j\Omega}}$
$\cos[\Omega_0 k]$	\bigcirc	$\frac{1}{2} \left(\coprod \left(\frac{\Omega + \Omega_0}{2\pi} \right) + \coprod \left(\frac{\Omega - \Omega_0}{2\pi} \right) \right)$
$\sin[\Omega_0 k]$	\bigcirc	$\frac{j}{2} \left(\coprod \left(\frac{\Omega + \Omega_0}{2\pi} \right) - \coprod \left(\frac{\Omega - \Omega_0}{2\pi} \right) \right)$

Discrete Fourier Transform (DFT)

$$X[\mu] = \text{DFT}_N \{x[k]\} = \sum_{k=0}^{N-1} x[k] e^{-j\frac{2\pi}{N}\mu k} \qquad x[k] = \text{IDFT}_N \{X[\mu]\} = \frac{1}{N} \sum_{\mu=0}^{N-1} X[\mu] e^{j\frac{2\pi}{N}\mu k}$$

Properties and Theorems

Periodicity $X[\mu]$ $= X[\mu + N]$ x[k] = x[k+N] $x[-k] \quad \bigcirc - \bullet \quad X[N-\mu]$ Time Reversal $x^*[k] \circ \longrightarrow X^*[N-\mu]$ Conjugation $x[k] \circledast h[k] \quad \bigcirc - \bullet \quad X[\mu] \cdot H[\mu]$ Periodic Convolution Multiplication $x[k] \cdot h[k] \quad \bigcirc \longrightarrow \quad \frac{1}{N} X[\mu] \circledast H[\mu]$ $x[k-\kappa] \quad \bigcirc \longrightarrow \quad e^{-j\frac{2\pi}{N}\mu\kappa}X[\mu]$ Cyclic Shift $(\kappa \in \mathbb{Z})$ $\sum_{k=0}^{N-1} |x[k]|^2 = \frac{1}{N} \sum_{\mu=0}^{N-1} |X[\mu]|^2$ Modulation $(\lambda \in \mathbb{Z})$ Parseval's Theorem

Correspondences

z-Transform

$$X(z) = \mathcal{Z}\{x[k]\} = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$
 $x[k] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_{C \subset Kb} X(z)z^{k-1} dz$

Properties and Theorems

Convergence

Linearity	$A x_1[k] + B x_2[k]$	○	$AX_1(z) + BX_2(z)$	$\operatorname{Kb} \supseteq \operatorname{Kb}\{X_1\} \cap \operatorname{Kb}\{X_2\}$
Time Reversal	x[-k]	○	$X(z^{-1})$	$\left\{z \mid z^{-1} \in \operatorname{Kb}\{X\}\right\}$
Conjugation	$x^*[k]$	\bigcirc	$X^*(z^*)$	$\operatorname{Kb}\{X\}$
Shift $(\kappa \in \mathbb{Z})$	$x[k-\kappa]$	○	$z^{-\kappa}X(z)$	$Kb\{X\}$ $z = 0 \text{ und } z \to \infty$ have to be considered
Multiplication by k	kx[k]	\bigcirc	$-z\frac{d}{dz}X(z)$	$Kb\{X\}$ have to be considered separately
Modulation $(a \in \mathbb{C})$	$a^k x[k]$	○	$X(\frac{z}{a})$	$\left\{z \mid \frac{z}{a} \in \mathrm{Kb}\{X\}\right\}$
Convolution	x[k]*h[k]	\circ	$X(z) \cdot H(z)$	$\operatorname{Kb} \supseteq \operatorname{Kb}\{X_1\} \cap \operatorname{Kb}\{H\}$

Correspondences