Student: Ziqiang Wang

Question 1

1. We can express g_t in terms of h_t by :

$$\boldsymbol{g}_t = \sigma(\boldsymbol{h}_t)$$

To prove the induction step, we will assume that the expression holds for time step t-1:

$$\boldsymbol{g}_{t-1} = \sigma(\boldsymbol{h}_{t-1})$$

that is $\sigma^{-1}(\boldsymbol{g}_{t-1}) = \boldsymbol{h}_{t-1}$, where σ^{-1} is inverse activation function.

Then we need to show that the relationship also holds for time step t:

$$\boldsymbol{g}_t = \sigma^{-1}(\boldsymbol{h}_t)$$

We can start with the recurrence of h_t :

$$\boldsymbol{h}_t = \boldsymbol{W}\sigma(\boldsymbol{h}_{t-1}) + \boldsymbol{U}\boldsymbol{x}_t + \boldsymbol{b}$$

Substitute our induction assumption, $\sigma^{-1}(\mathbf{g}_{t-1}) = \mathbf{h}_{t-1}$:

$$h_t = W\sigma(\sigma^{-1}(g_{t-1}) + Ux_t + b$$

= $Wg_{t-1} + Ux_t + b$

Now apply the activation function σ to both sides :

$$\sigma \boldsymbol{h}_t = \sigma(\boldsymbol{W}\boldsymbol{g}_{t-1} + \boldsymbol{U}\boldsymbol{x}_t + \boldsymbol{b})$$

According to the recurrence of g_t , $g_t = \sigma(Wg_{t-1} + Ux_t + b)$, the induction step is completed:

$$\sigma(\boldsymbol{h}_t) = \boldsymbol{g}_t$$

2. We can use the chain rule to express the gradient with respect to the initial hidden state as a product of gradients with respect to each intermediate hidden state:

$$\frac{\partial \boldsymbol{g}_T}{\partial \boldsymbol{g}_0} = \prod_{t=1}^T \frac{\partial \boldsymbol{g}_t}{\partial \boldsymbol{g}_{t-1}}$$

Using the recurrence relation for the hidden state, we have :

$$\frac{\partial \boldsymbol{g}_t}{\partial \boldsymbol{g}_{t-1}} = \frac{\partial \sigma'(\boldsymbol{W} \boldsymbol{g}_{t-1} + \boldsymbol{U} \boldsymbol{x}_t + \boldsymbol{b})}{\partial \boldsymbol{g}_{t-1}} = \sigma'(\boldsymbol{W} \boldsymbol{g}_{t-1} + \boldsymbol{U} \boldsymbol{x}_t + \boldsymbol{b}) \boldsymbol{W}$$

Using the first property of the L2 operator norm in the question, we have:

$$\left| \left| \frac{\partial \boldsymbol{g}_t}{\partial \boldsymbol{g}_{t-1}} \right| \right| \leq \left| \left| \sigma'(\boldsymbol{W} \boldsymbol{g}_{t-1} + \boldsymbol{U} \boldsymbol{x}_t + \boldsymbol{b}) \right| \right| \cdot \left| \left| \boldsymbol{W} \right| \right|$$

IFT6135-W2023 Prof : Aaron Courville

Substitute the assumption, $|\sigma'(x)| \leq \gamma$:

$$\left| \left| \frac{\partial \boldsymbol{g}_t}{\partial \boldsymbol{g}_{t-1}} \right| \right| \leq \gamma ||\boldsymbol{W}||$$

Recursively apply this bound and the two properties, we get:

$$\left\| \frac{\partial \boldsymbol{g}_{T}}{\partial \boldsymbol{g}_{0}} \right\| \leq \prod_{t=1}^{T} \left\| \frac{\partial \boldsymbol{g}_{t}}{\partial \boldsymbol{g}_{t-1}} \right\|$$

$$\leq \gamma^{T} ||\boldsymbol{W}||^{T}$$

$$= \gamma^{T} (\sqrt{\lambda_{1}(\boldsymbol{W}^{\top} \boldsymbol{W})})^{T}$$

Substitute $\lambda_1(\boldsymbol{W}^{\top}\boldsymbol{W}) \leq \frac{\delta^2}{\gamma^2}$ where $\gamma > 0, 0 \leq \delta \leq 1$:

$$\left| \left| \frac{\partial \boldsymbol{g}_T}{\partial \boldsymbol{g}_0} \right| \right| \leq \gamma^T \left(\sqrt{\frac{\delta^2}{\gamma^2}} \right)^T = \gamma^T \sqrt{\frac{\delta^2}{\gamma^2}}^T = \delta^T$$

Thus,
$$\delta^T \to 0$$
 as $T \to \infty \implies \left| \left| \frac{\partial g_T}{\partial g_0} \right| \right| \to 0$ as $T \to \infty$

3. If the largest eigenvalue of the weights is larger than $\frac{\delta^2}{\gamma^2}$, then the gradients of the hidden state are likely to explode. however, this condition is necessary but not sufficient for the gradient to explode.

$$\left| \left| \frac{\partial \boldsymbol{g}_T}{\partial \boldsymbol{g}_0} \right| \right| \leq \gamma^T (\sqrt{\lambda_1(\boldsymbol{W}^\top \boldsymbol{W})})^T > \delta^T$$

Question 2

1. For the SGD with momentum, we have:

$$\Delta \boldsymbol{\theta}_t = -\boldsymbol{v}_t = -(\alpha \boldsymbol{v}_{t-1} + \epsilon \boldsymbol{g}_t)$$

Since $\Delta \theta_{t-1} = -\mathbf{v}_{t-1}$, we can write $\mathbf{v}_{t-1} = -\Delta \theta_{t-1}$. Substituting this into the equation above, we have :

$$\Delta \boldsymbol{\theta}_t = -\alpha(-\Delta \boldsymbol{\theta}_{t-1}) - \epsilon \boldsymbol{g}_t = \alpha \Delta \boldsymbol{\theta}_{t-1} - \epsilon \boldsymbol{g}_t$$

For the SGD with running average of g_t , we have :

$$\Delta \boldsymbol{\theta}_t = -\delta \boldsymbol{v}_t = -\delta(\beta \boldsymbol{v}_{t-1} + (1-\beta)\boldsymbol{g}_t)$$

Since $\Delta \theta_{t-1} = -\delta v_{t-1}$, we can write $v_{t-1} = -\frac{1}{\delta} \Delta \theta_{t-1}$. Substituting this into the equation above, we have :

$$\Delta \boldsymbol{\theta}_{t} = -\delta \beta \left(-\frac{1}{\delta} \Delta \boldsymbol{\theta}_{t-1}\right) - \delta (1 - \beta) \boldsymbol{g}_{t} = \beta \Delta \boldsymbol{\theta}_{t-1} - (1 - \beta) \delta \boldsymbol{g}_{t}$$

Now, to show that the two update rules are equivalent, we need to find a relationship between (α, ϵ) and (β, δ) by comparing the two expressions for $\Delta \theta_t$:

$$\alpha \Delta \boldsymbol{\theta}_{t-1} - \epsilon \boldsymbol{g}_t = \beta \Delta \boldsymbol{\theta}_{t-1} - (1 - \beta) \delta \boldsymbol{g}_t$$

To make these two expressions equal, we need:

$$\alpha = \beta$$
 and $\epsilon = (1 - \beta)\delta$

2.

Continue this process for all t time steps, we have :

$$oldsymbol{v}_t = eta^t oldsymbol{v}_0 + \sum_{i=1}^t (1-eta)eta^{t-i}oldsymbol{g}_i$$

Since v_0 is initialized as a vector of zeros, we can simplify the expression to :

$$\boldsymbol{v}_t = \sum_{i=1}^t (1 - \beta) \beta^{t-i} \boldsymbol{g}_i$$

3.

$$\mathbf{v}_t = \sum_{i=1}^t (1 - \beta) \beta^{t-i} \mathbf{g}_i$$

Taking the expectation of both sides:

$$\mathbb{E}[\boldsymbol{v}_t] = \mathbb{E}\left[\sum_{i=1}^t (1-\beta)\beta^{t-i}\boldsymbol{g}_i\right]$$
$$= \sum_{i=1}^t (1-\beta)\beta^{t-i}\mathbb{E}[\boldsymbol{g}_i]$$

Since g_t has a stationary distribution independent of t, we can have $\mathbb{E}[g_i] = \mu_g$, that is a constant value. Thus, we can rewrite the equation as:

$$\mathbb{E}[\boldsymbol{v}_t] = \mu_{\boldsymbol{g}} \sum_{i=1}^t (1 - \beta) \beta^{t-i}$$

Isolating $\mu_{\boldsymbol{g}}$:

$$\mu_{\mathbf{g}} = \frac{\mathbb{E}[\mathbf{v}_t]}{\sum_{i=1}^t (1-\beta)\beta^{t-i}}$$

Thus, we can estimate $\mathbb{E}[\boldsymbol{g}_i]$ using $\mathbb{E}[\boldsymbol{v}_t]$:

$$\mathbb{E}[\boldsymbol{g}_i] = \frac{\mathbb{E}[\boldsymbol{v}_t]}{\sum_{i=1}^t (1-\beta)\beta^{t-i}}$$

Question 3

1. We can express the one-step gradient descent update as follows:

$$x_1 = x_0 - \epsilon g$$

This question is to find the value of $\hat{f}_{x_0}(x_1)$ after the above update :

$$\hat{f}_{x_0}(x_1) = f(x_0) + (x_1 - x_0)^T g + \frac{1}{2} (x_1 - x_0)^T H(x_1 - x_0)$$

Substituting $x_1 = x_0 - \epsilon g$:

$$\hat{f}_{x_0}(x_1) = f(x_0) + (-\epsilon g)^T g + \frac{1}{2} (-\epsilon g)^T H(-\epsilon g)$$

Finally, simplifying the equation:

$$\hat{f}_{x_0}(x_1) = f(x_0) - \epsilon g^T g + \frac{1}{2} \epsilon^2 g^T H g$$

2. To determine whether gradient descent would work, we need to look at the sign of $\hat{f}_{x_0}(x_1) - f(x_0)$, which gives the change in the objective function after one step of gradient descent. We have:

$$\hat{f}_{x_0}(x_1) - f(x_0) = f(x_0) - \epsilon g^T g + \frac{1}{2} \epsilon^2 g^T H g - f(x_0)$$
$$= -\epsilon g^T g + \frac{1}{2} \epsilon^2 g^T H g$$

Thus, gradient descent would work if and only if ϵ is small enough such that $-\epsilon g^T g + \frac{1}{2} \epsilon^2 g^T H g < 0$, or equivalently, $\epsilon < \frac{2g^T g}{g^T H g}$.

IFT6135-W2023 Prof : Aaron Courville

3. To derive a new optimization algorithm based on setting the gradient of $\hat{f}_{x_0}(\cdot)$ to zero, we can differentiate $\hat{f}_{x_0}(\cdot)$ with respect to x and set the resulting expression to zero:

$$\nabla_x \hat{f}_{x_0}(x) = g + \frac{1}{2} * 2H((x - x_0)) = g + H(x - x_0) = 0$$

Isolating x:

$$x = x_0 - H^{-1}g$$

which is the Newton's Method.

Question 4

1. For BN, given that x is whitened to be independently distributed with zero mean and unit variance, i.e., E[x] = 0 and Var[x] = 1, we can get :

$$E[w^{T}x + b] = w^{T}E[x] + b = u^{T}(0) + b = b$$

$$Var[w^Tx + b] = Var[w^Tx] = E[(w^Tx)^2] - (E[w^Tx])^2 = E[w^Txw] - 0^2 = w^TE[xx^T]w = w^Tw = ||w||^2$$

Therefore, the output after BN is:

$$y_{BN} = \frac{w^T x + b - E[w^T x + b]}{\sqrt{Var[w^T x + b]}} = \frac{w^T x}{\|w\|}$$

For WN:

$$y_{WN} = (\frac{g}{\|u\|}u)^T x + b = g\frac{u^T x}{\|u\|} + b$$

Thus, in the condition of ignoring the learned scale and shift terms for both BN and WN, we can say in this case y_{WN} is equivalent to y_{BN} .

2. By the chain rule, we get:

$$\nabla_u L = \nabla_w L \cdot \nabla_u w$$

First we compute the derivative of w with respect to u:

$$\nabla_u w = \frac{g}{\|u\|} \left(I - \frac{uu^T}{\|u\|^2} \right)$$

where I is the identity matrix. The term $\frac{uu^T}{\|u\|^2}$ can be regarded as vv^T where v is a unit vector with the same direction as u. Considering a vector a, we have :

$$(vv^T)a = v(v^Ta)$$

Here, $v^T a$ is a scalar that represents the component of a in the direction of v. Thus $\frac{uu^T}{\|u\|^2}$ (that is vv^T) represents the projection matrix onto the direction of u. Consequently, $I - \frac{uu^T}{\|u\|^2}$ (that is $I - vv^T$) is the orthogonal complement projection matrix, because:

$$(1 - vv^T)a = a - v(v^T a)$$

We denote this projection matrix as W^* :

$$W^* = I - \frac{uu^T}{\|u\|^2}$$

Then we get the $\nabla_u L$:

$$\nabla_u L = \nabla_w L \cdot \frac{g}{\|u\|} \cdot W^*$$

Since $\frac{g}{\|u\|}$ is a scalar, we can express $\nabla_u L$ as :

$$\nabla_u L = sW^* \cdot \nabla_w L$$

where $s = \frac{g}{\|u\|}$.

3. Assume the gradient update step for u with step size α is:

$$u_{t+1} = u_t - \alpha \nabla_u L_t$$

Substitute the $\nabla_u L$ from the last question :

$$u_{t+1} = u_t - \alpha s W^* \cdot \nabla_w L_t$$

$$\implies ||u_{t+1}|| = ||u_t - \alpha s W^* \cdot \nabla_w L_t||$$

Because W^* is the orthogonal complement projection matrix, which projects any vector onto the subspace orthogonal to u_t , so u_t and $-\alpha s W^* \cdot \nabla_w L_t$ are orthogonal vectors. Then according to the Pythagorean theorem, we can get :

$$||u_{t+1}||^2 = ||u_t||^2 + \alpha^2 s^2 ||W^* \cdot \nabla_w L_t||^2$$

Because $0 \le \alpha^2 s^2 \|W^* \cdot \nabla_w L_t\|^2$, thus :

$$||u_t||^2 \le ||u_{t+1}||^2$$

 $\implies ||u_t|| \le ||u_{t+1}||$

This shows that ||u|| becomes equal or larger after one gradient update step.