Important limits

Marco Vergura

October 2018

Polynomials and Rational Functions

$$\bullet \ \lim_{x \to \infty} x^n = \infty$$

•
$$\lim_{x \to -\infty} x^n = \begin{cases} \infty & \text{if } n \text{ is even} \\ -\infty & \text{if } n \text{ is odd} \end{cases}$$

• If
$$r = \frac{p}{q} > 0$$
, $\lim_{x \to \infty} \frac{1}{x^r} = 0$

• If
$$r = \frac{p}{q} > 0$$
 and x^r is defined when $x < 0$, then $\lim_{x \to -\infty} \frac{1}{x^r} = 0$

• If
$$n$$
 is an even positive integer, then $\lim_{x\to 0} \frac{1}{x^n} = \infty$

$$\bullet$$
 If n is an odd positive integer, then:

$$-\lim_{x\to 0^+} \frac{1}{x^n} = \infty;$$

$$-\lim_{x\to 0^-} \frac{1}{x^n} = -\infty.$$

$$-\lim_{n\to 0^-}\frac{1}{x^n}=-\infty$$

Exponentials and Logarithms

•
$$\lim_{x \to \infty} a^x = \begin{cases} \infty & \text{if } a > 1\\ 0 & \text{if } 0 < a < 1 \end{cases}$$

•
$$\lim_{x \to -\infty} a^x = \begin{cases} 0 & \text{if } a > 1\\ \infty & \text{if } 0 < a < 1 \end{cases}$$

• In particular,
$$\lim_{x\to\infty}e^x=\infty$$
 and $\lim_{x\to-\infty}e^x=0$.

$$\bullet \ \lim_{x \to \infty} \log_b(x) = \begin{cases} \infty & \text{if } b > 1 \\ -\infty & \text{if } 0 < b < 1 \end{cases}$$

$$\bullet \lim_{x \to 0^+} \log_b(x) = \begin{cases} -\infty & \text{if } b > 1 \\ \infty & \text{if } 0 < b < 1 \end{cases}$$

• In particular,
$$\lim_{x\to 0^+} \ln(x) = -\infty$$
 and $\lim_{x\to \infty} \ln(x) = \infty$

Trigonometric Functions and their inverses

•
$$\lim_{x \to \infty} \sin(x)$$
 DNE, $\lim_{x \to -\infty} \sin(x)$ DNE

•
$$\lim_{x \to \infty} \cos(x)$$
 DNE $\lim_{x \to -\infty} \cos(x)$ DNE

• If
$$k$$
 is an odd integer, $\lim_{x \to \left(\frac{\pi k}{2}\right)^+} \tan(x) = -\infty$, $\lim_{x \to \left(\frac{\pi k}{2}\right)^-} \tan(x) = \infty$

•
$$\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}$$
, $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$.

Other remarkable limits

•
$$\lim_{h \to 0} (1+h)^{\frac{1}{h}} = e$$
, $\lim_{x \to \infty} (1+\frac{1}{x})^x = e$

$$\bullet \lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

$$\bullet \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$