ETH zürich

Bayes'scher Ansatz

Peter von Rohr

Frequentisten und Bayesianer

Unterschiede zwischen Frequentisten und Bayesianern bestehen hauptsächlich in

- deren Verständnis von Wahrscheinlichkeiten
- deren Unterteilung von Modell- und Datenkomponenten
- deren Techniken zur Schätzung von Parametern

Bekannte und Unbekannte Grössen

Angenommen: einfaches lineares Regressionsmodell

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i \tag{1}$$

Was	bekannt	unbekannt
 Уі	Χ	
x_{i1}	Χ	
β_0		X
β_1		X
σ^2		Χ

Schätzung Unbekannter Grössen

- Parameterschätzung
- a posteriori Verteilung der unbekannten Grössen

A Posteriori Verteilung

- Für Beispiel unseres Regressionsmodells: $f(\beta, \sigma^2|\mathbf{y})$
- Berechnung durch Satz von Bayes, basiert auf Definition der bedingten Wahrscheinlichkeit

$$f(\beta, \sigma^{2}|\mathbf{y}) = \frac{f(\beta, \sigma^{2}, \mathbf{y})}{f(\mathbf{y})}$$
$$= \frac{f(\mathbf{y}|\beta, \sigma^{2})f(\beta)f(\sigma^{2})}{f(\mathbf{y})}$$
(2)

Komponenten der A Posteriori Verteilung

- $f(\mathbf{y}|\beta, \sigma^2)$: Likelihood
- $f(\beta)$, $f(\sigma^2)$: a priori Verteilungen
- f(y): Normalisierungskonstante

Problem

- A Posteriori Verteilung häufig nicht explizit als Verteilung darstellbar
- Lösung durch
 - Julian Besag 1974: A Posteriori Verteilung ist bestimmt durch vollbedingte Verteilungen
 - Gute Pseudozufallszahlen-Generatoren in Software
- A Posteriori Verteilung für Regression: $f(\beta, \sigma^2|\mathbf{y})$
- Vollbedingte Verteilungen für Regression:
 - $f(\beta_0|\beta_1,\sigma^2,\mathbf{y})$
 - $f(\beta_1|\beta_0,\sigma^2,\mathbf{y})$
 - $f(\sigma^2|\beta_0,\beta_1,\mathbf{y})$

Ablauf einer Analyse: Vorbereitung

- Schritt 1: Festlegung der a priori Verteilungen
- Schritt 2: Bestimmung der Likelihood aufgrund von Daten und Modell
- Schritt 3: Berechnung der a posteriori Verteilung
- Schritt 4: Bestimmung der vollbedingten Verteilungen

Ablauf einer Analyse: Umsetzung

Beispiel der Regression

- Schritt 5: Initialisierung aller unbekannten Grössen (β_0 , β_1 , σ^2) auf einen Startwert
- **Schritt** 6: Bestimme neuen Wert für β_0 durch Ziehen einer Zufallszahl aus $f(\beta_0|\beta_1,\sigma^2,\mathbf{y})$
- Schritt 7: Bestimme neuen Wert für β_1 durch Ziehen einer Zufallszahl aus $f(\beta_1|\beta_0,\sigma^2,\mathbf{y})$
- Schritt 8: Bestimme neuen Wert für σ^2 durch Ziehen einer Zufallszahl aus $f(\sigma^2|\beta_0,\beta_1,\mathbf{y})$
- Schritt 9: Loop viele Wiederholungen über Schritte 6-8 und speichere alle gezogenen Zahlen
- Schritt 10: Parameterschätzungen als Mittelwerte der gespeicherten 7ufallszahlen

Fragen und Dank

- Fragen?
- Vielen Dank!!