

Cadeira: Redes de Computadores

Aula 2 - 10.08.23

```
# (cont...)
# Dispositivos de Interligação de Redes;
# Tipos de Redes;
# Classificação de Redes.
```

2.1. Dispositivos de Interligação de Redes

Refere-se ao equipamento que facilita o uso de uma rede de computadores, isto é, que permitem:

- A ligação de sistemas terminais (postos de trabalho e servidores) à rede;

- A interligação de vários segmentos dentro da mesma rede ou
 - A interligação de redes distintas

São exemplos, os *hubs, routers, switches, bridges* e outros *hardwares* relacionados.

2.1. Dispositivos de Interligação de Redes (Hub)

Tem 8 ou 16 portas para RJ45 (normalmente) ou ISO 8877.

- Uma das portas pode funcionar como uplink;
- Repetidor de sinal com múltiplas portas todas da mesma tecnologia.

2.1. Dispositivos de Interligação de Redes (Hub)

Actua na camada física do modelo OSI.

Pode ser de dois tipos:

- Passivos: não possuem alimentação, funciona como concentrador de fiação e não regeneram o sinal;

- Activos: são alimentados, regeneram o sinal e é multiporta.

2.1. Dispositivos de Interligação de Redes (switch)

comutador ou **switch** é um dispositivo utilizado em redes de computadores para reencaminhar módulos (frames) entre os diversos nós da rede.

2.1. Dispositivos de Interligação de Redes (switch)

É inteligente:

- Recebe o sinal do nó A para o nó B;
- O nó B avisa ao nó A que recebeu e o Switch aprende local de B;
- Se algum nó enviar um sinal para os nós A ou B, é encaminhado directamente para o nó destino e não para toda a rede;
- A localização (*Mac Address*) de todos os nós vai sendo memorizada em uma tabela (*cache*) do *switch*;
 - Aprende a localização do nó A

2.1. Dispositivos de Interligação de Redes (switch)

É inteligente:

- Actua na camada de enlace (ideais para as redes locais simples que precisam fazer a segmentação de tráfego) e na camada de rede (adequado para as redes mais complexas, com necessidades avançadas de roteamento);
 - É implementado por software e hardware;
 - Pode-se interligar várias tecnologias de transmissão;

2.1. Dispositivos de Interligação de Redes (switch)

2.1. Dispositivos de Interligação de Redes (Bridge)

A interligação de dois ou mais segmentos de Redes de área local (LANs) pode ser feita por dispositivos designados pontes (ou bridges), sendo a rede resultante designada bridged LAN.

2.1. Dispositivos de Interligação de Redes (Bridge)

Actua na camada de enlace do modelo OSI:

- Interligam segmentos de rede;
- Aumento do desempemho (não sobrecarrega segmentos com tráfego);
- Quadros entregues aos nós.

Se duas subredes não forem compatíveis na camada de enlace, podese utilizar um bridge.

2.1. Dispositivos de Interligação de Redes (Bridge)

Efectuam o armazenamento e retransmissão de quadros em duas redes LANs.

É um equipamento baseado em microprocessador.

2.1. Dispositivos de Interligação de Redes (Bridge)

O bridge pode se conectar po cascata ou backbone

2.1. Dispositivos de Interligação de Redes (Bridge)

O bridge pode se conectar po cascata ou backbone

2.1. Dispositivos de Interligação de Redes (Router)

É um eqipamento utilizado para fazer a comutação de protocolos, a comunicação entre diferentes redes de computadores, provendo a comunicação entre computadores distantes entre sí.

Interligam as redes LANs, MANs e WANs.

2

2.1. Dispositivos de Interligação de Redes (Router)

É um eqipamento utilizado para fazer a comutação de protocolos, a comunicação entre diferentes redes de computadores, provendo a comunicação entre computadores distantes entre sí.

Interligam as redes LANs, MANs e WANs.

Utiliza o protocolo de roteamento para construir a tabela de roteamento.

Actua na camada de rede.

2.1. Dispositivos de Interligação de Redes (Router)

2.1. Dispositivos de Interligação de Redes (Router)

2.1. Dispositivos de Interligação de Redes (Resumindo)

2.1. Dispositivos de Interligação de Redes

Deve-se prestar atenção no seguinte:

- o router ocupa uma porta do switch;
- Cada computador ocupa uma porta do switch;
- Pode interligar 3 hubs em "cascata";
- Nunca ligar os cabos de forma a criar um ciclo;

2.1. Dispositivos de Interligação de Redes

Deve-se prestar atenção no seguinte:

- O comprimento dos cabos entre os equipamentos nunca deverá ser superior a 100 metros;
 - Escolher preferencialmente equipamentos e placas de rede 10/100Mpbs;
- Nas ligações switch/switch, hub/switch ou hub/hub é necessário utilizar cabos cruzados ou usar portas ou interruptor com capacidade "cross-over".

2.2. Tipos de Redes

Existem muitos tipos de redes especializadas: redes de televisão (por cabo e sem fios), redes de transmissão de vídeo, redes telefónicas, redes de vigilância, ... e redes de computadores.

As redes de computadores ou redes de dados são redes de transporte de pacotes de dados, muito flexíveis e gerais no tipo de aplicações que suportam (transmissão de ficheiros, correio electrónico, páginas web, voz, vídeo, ...)

2.2. Tipos de Redes

Os outros tipos de redes são geralmente especializadas num único tipo de aplicação e são optimizadas para esse fim (transporte de sinal de vídeo, de voz, ...).

Existe a tendência para que todas as redes passem a ser gerais e se baseiem na transmissão de dados.

2.3. Classificação de Redes

As redes de computadores podem ser classificadas quanto:

- A abragência (dimensão ou área geográfica dimensionada);
- Modelo Computacional;
- Tipo de Comutação;
- Topologia;
- Pilha de Protocolos (tecnologia de transmissão);

2.3. Classificação de Redes

As redes de computadores podem ser classificadas quanto:

- Ao ambiente em que se inserem;
- Capacidade de transferência de informação;
- Ao método de transferência de dados;
- Meios físicos de suporte ao envio de dados.

2.3. Classificação de Redes

Quanto a abragência ou área geográfica, as redes podem ser:

- LANs (Local Area Network);
- PAN (Personal Area Network);
- CAN (Campus Network);
- MAN (Metropolitan Area Network);
- WLAN (Wireless Local Area Network);

2.3. Classificação de Redes

Quanto a abragência ou área geográfica, as redes podem ser:

- WAN (Wide Area Network);
- VLAN (Virtual Local Area Network) e VPN (Virtual Private Network);
- CAN (Campus Network);
- MAN (Metropolitan Area Network);
- WLAN (Wireless Local Area Network);

2.3. Classificação de Redes

LAN (Local Area Network):

- Mais conhecida como rede local;
- É a mais comum de todas;
- Pode ocupar uma sala, escritório ou até um prédio;
- A distância máxima não ultrapassa algumas centenas de metros (edifício);
 - Exemplo: Ethernet ou IEEE 802.3

2.3. Classificação de Redes

LAN (Local Area Network):

2.3. Classificação de Redes

PAN (Personal Area Network):

- É uma rede pessoal;
- É uma rede pequena em que os dispositivos sem fio estão conectados dentro do alcance pessoal (conectar o smartphone conectado ao carro usando o bluetooth);
 - Exemplo: bluetooth, infravermelho;

2.3. Classificação de Redes

WLAN (Wireless Local Area Network):

- Idêntico a rede local, excepto por não utilizar o cabeamento, mas sim a transmissão em radiofrequência;

- O mais comum é o 802.11

2.3. Classificação de Redes

CAN (Campus Area Network):

- Conhecida como rede de campo;
- Interliga vários edifícios de uma organização, concentradas numa determinada área (maior que uma rede local);
 - Exemplo: Universidades, Hospitais, etc;

2.3. Classificação de Redes

CAN (Campus Area Network):

2.3. Classificação de Redes

MAN (Metropolitan Area Network):

- É uma rede metropolitana, conhecida por interligar até uma cidade, como é o caso da conexão de organizações que tem edifícios em diferentes pontos de uma cidade;
 - A conexão é feita via telecomunicações;
 - Exemplo: Net-cabo, Vodacom, etc.

2.3. Classificação de Redes

MAN (Metropolitan Area Network):

2.3. Classificação de Redes

WAN (Wide Area Network):

- É uma rede de longa distância;
- A área é maior que uma cidade;
- Interliga regiões, países ou até mesmo o planeta;
- Exemplo: Internet.

2.3. Classificação de Redes

WAN (Wide Area Network):

Faizal Eduardo Licumba – 2023

Agencia de Maputo

2.3. Classificação de Redes

VLAN (Virtual Local Area Network):

- É uma rede de local virtual;
- É definida sobre rede local que está equipada com dispositivos apropriados;
- Trata-se de definir até que zonas da LAN se propagam as emissões em broadcast;
- É uma rede configurável (software) onde determinados dispositivos passam a fazer parte de uma mesma rede local.

2.3. Classificação de Redes

VPN (Virtual Private Network):

- É uma rede privada virtual;
- Usa uma rede pública (internet) para estabelecer uma ligação de dados entre dois pontos;
- Os dois pontos de ligação passam a funcionar como encaminhadores ("routers") para as respectivas redes.

2.3. Classificação de Redes

Quanto a abragência ou área geográfica (resumindo)

2.3. Classificação de Redes

Quanto a abragência ou área geográfica (resumindo)

2.3. Classificação de Redes

Quanto a abragência ou área geográfica (resumindo)

2.3. Classificação de Redes

Quanto a topologia, as redes podem ser:

- Totalmente conectada (fully connected) e Malha (mesh);
- Anel (ring);
- Barramento (bus);
- Estrela (star);
- Árvore (tree) e sem fio;

2.3. Classificação de Redes (topologia)

Totalmente conectada (fully connected):

- Cada computador tem uma conexão individual para cada outro computador;
 - Cada computador pode conversar com outro directamente;
 - Apresenta maior nível de redundância;

2.3. Classificação de Redes (topologia)

Totalmente conectada (fully connected):

2.3. Classificação de Redes (topologia)

Malha (mesh):

- Idêntico ao totalmente conectada, no entanto, utiliza menos conexões;
 - É utilizada em WANs;
 - Sem servidor central;
- Os computadores interligam-se entre sí, ponto a ponto, ou seja, exitem vários caminhos para chegar ao destino;

2.3. Classificação de Redes (topologia)

Malha (mesh): Vantagens

- Existem vários caminhos possíveis para a comunicação;

Malha (mesh): desvantagens

- Maior complexidade da rede;
- Elevado preço dos equipamentos de interligação de nós.

2.3. Classificação de Redes (topologia)

Malha (mesh):

2.3. Classificação de Redes (topologia)

Anel (ring):

- É utilizada em LANs;
- É constituída por um cabo coaxial fechado em sí próprio, formando um anel;
- Cada computador possui dois cabos, um para o anterior e outro para o próximo da rede ;
- A comunicação tem de se realizar sempre num sentido (horário ou anti-horário);

2.3. Classificação de Redes (topologia)

Anel (ring):

- É possível que mais do que um computador esteja a comunicar com o outro em simultâneo;
 - Consegue suportar uma maior carga de tráfego;
- Os sinais circulam dentro do anel e passam sequencialmente de computador em computador;

2.3. Classificação de Redes (topologia)

Anel (ring): Vantagens

- A passagem dos sinais]e realizada sequencialmente de computador
 para computador;
 - A velocidade de transmissão do sinal é de 16Mbps e de 100Mbps

Anel (ring): desvantagens

- Preço de equipamento de rede muito elevado;
- Se o cabo tiver problemas todos os computadores deixam de

7

2.3. Classificação de Redes (topologia)

Anel (ring):

2.3. Classificação de Redes (topologia)

Barramento (Bus):

- Foi utilizada em LANs;
- Os diversos computadores partilham uma linha comum e quando pretendem comunicar entre si mandam uma mensagem para a linha que, além dos dados que pretende transmitir, contém também o endereço do destinatário;
- Todos os computadores desta rede têm também a capacidade de escutar sobre a linha comum;
 - Tem como problema as colisões

2

2.3. Classificação de Redes (topologia)

Barramento (bus): Vantagens

- Necessita de poucos equipamentos;
- A ligação é aparentemente fácil;
- Torna fácil a inserção de um novo computador na rede;

2.3. Classificação de Redes (topologia)

Barramento (bus): desvantagens

- Já não é utilizada em LANs, devido aos seguintes problemas:
- Quando existe pproblema num cabo, toda a rede perde a comunicação;
- Utilizando um cabo coaxial fino (10base2), a velocidade máxima de transmissão é de 10Mbps;

2.3. Classificação de Redes (topologia)

Barramento (bus):

2.3. Classificação de Redes (topologia)

Estrela (star):

- É utilizada em LANs;
- Os computadores são conectados a um dispositivo (hub ou switch), facilitando a manutenção;
- Se um cabo é partido, a rede continua funcionando excepto o cabo que não tem acesso a rede;

2.3. Classificação de Redes (topologia)

Estrela (star): desvantagens

- Necessidade de se adquirir um dispositivo de interligação;
- O número de portas de um concentrador é limitado;
- A distância máxima sem amplificação é de apenas 100m;

2.3. Classificação de Redes (topologia)

Estrela (star):

2.3. Classificação de Redes (topologia)

Árvore (tree):

- Solução muito utilizada em LANs;
- É baseada em estrutura hierárquica de várias redes e sub-redes;
- É formada por várias redes estrelas conectadas;
- Existem um ou mais dispositivos (hub ou switch) que interligam cada rede local e existe um outro dispositivo que interliga todos os outros dispositivos;

2.3. Classificação de Redes (topologia)

Árvore (tree):

2.3. Classificação de Redes (topologia)

Sem fio:

 Permite que computadores se conectem a rede sem o uso de cabeamento, usam o chamado ponto de acesso (WAP – Wireless Access Point) para fazer a conexão entre os computadores com placa de rede sem fio e a rede física.

2

2.3. Classificação de Redes (topologia)

Sem fio:

2.3. Classificação de Redes

Quanto ao modelo computacional (existência ou não de um ou mais computadores dedicados a rede), podem ser:

- Ponto a ponto (peer to peer);
- Cliente-servidor (client-server);

2.3. Classificação de Redes (modelo computacional)

Ponto a ponto (peer to peer):

- Todos os computadores tem competências iguais;
- Não existe computador dedicado exclusivamente para a partilha de recursos ;
- Cada computador pode aceder aos recursos disponibilizados pelos outros.

2.3. Classificação de Redes (modelo computacional)

Ponto a ponto (peer to peer): resumo

- É utilizadas em redes pequenas;
- É de baixo custo;
- Tem um sistema simples de cabeamento;
- A rede é administrada por cada utilizador;
- É de fácil implementação e baixa segurança.

2.3. Classificação de Redes (modelo computacional)

Ponto a ponto (peer to peer):

2.3. Classificação de Redes (modelo computacional)

Cliente-servidor (client-server):

- Existem um ou mais computadores dedicados para partilhar recursos;
- Este tipo de computadores (partilha recursos), são geralmente de grande capacidade, tanto ao nível de armazenamento como de processamento.

2.3. Classificação de Redes (modelo computacional)

Cliente-servidor (client-server): características

- Conhecida como rede hierárquica;
- Custo mais elevado que a rede ponto a ponto;
- Oferece um alto nível de segurança;
- Um computador (servidor) gerencia outros (clientes);
- A administração e configuração da rede é administrada.

2.3. Classificação de Redes (modelo computacional)

Cliente-servidor (client-server): características

- Conhecida como rede hierárquica;
- Custo mais elevado que a rede ponto a ponto;
- Oferece um alto nível de segurança;
- Um computador (servidor) gerencia outros (clientes);
- A administração e configuração da rede é administrada.

2.3. Classificação de Redes (modelo computacional)

Cliente-servidor (client-server): resumo

- Maior desempenho que a rede ponto a ponto;
- Sua implementação necessita de especialistas;
- Existência de servidores capazes de oferecer recursos aos demais na rede;
 - Possibilidade de uso de aplicações cliente/servidor (base de dados);
 - Usada em redes que necessitam de um alto grau de segurança.

2.3. Classificação de Redes (modelo computacional)

2.3. Classificação de Redes (modelo computacional)

Comparações básicas

Cliente/Servidor	Ponto-a-Ponto
Serviço de diretório	Não possui serviço de diretório
Administração centralizada	Não tem administração centralizada
Alta manutenção	Baixa manutenção
Implementação complexa	Implementação simples
Várias opções de segurança	Segurança fraca
Alto custo	Baixo custo