ELICITING AWARENESS

Evan Piermont Royal Holloway, University of London

centre d'Economie de la Sorbonne

November 2023

- A decision maker must choose a 'plan-of-action;' what action to take provided the future resolution of uncertainty
- ♦ He is unaware of some relevant contingencies and *knows this is possible*
 - Purchasing a home
 - Hiring a new AP
 - Writing legislation

What do we often do in such situations? seek the council of an expert who is more aware

- Purchasing a home: surveyor
- Hiring a new AP: letter writers, search committee
- Writing legislation: technical advisors

Why is the interesting?

- When preferences are not aligned, the expert might strategically conceal her awareness
- Can the dm do anything to incentivize revelation?
- Importantly, even with full/complete contracting, the dm cannot articulate what he wants
- A(n unaware) designer may not be able to solve the problem, if mechanisms depend on the unknowns

Literature

- Contracting under unawareness
 - Tirole (2009); Filiz-Ozbay (2012); Von Thadden and Zhao (2012); Auster (2013) Auster and Pavoni (2021); Piermont (2017); Lei and Zhao (2021); Francetich and Schipper (2021)
- Modeling unawareness and awareness of unawareness
 - Halpern and Rêgo (2006, 2013); Heifetz et al. (2013); Karni and Vierø (2013, 2017), Halpern and Piermont (2020); Piermont, (2021)
- Robust Mechanism Design
 - ♦ Bergemann and Morris (2005); Jehiel et al., (2006); Carroll (2015, 2019).

- A politician (the decision maker) is trying to write environmental legislation that
 - can be contingent on the future realized environmental state-of-affairs, but
 - can depend only on those contingencies he is aware of.

 He can enlist the help of an environmental scientist (the expert) who may reveal what she is aware of

 \diamond The true state-space is $\Omega = \{\omega, \nu\}$; equally likely

 \diamond Set of actions $\mathcal{A} = \{a, b, c\}$

 \diamond The politician must choose legislation $\mathfrak{c}:\Omega \to \mathcal{A}$

The expert can tell distinguish the states, but the politician cannot.

$$\mathcal{P}_{\mathbf{e}} = \big\{ \{\omega\}, \{\nu\} \big\} \qquad \qquad \mathcal{P}_{d} = \big\{ \{\omega, \nu\} \big\}$$

How does the politician view payoffs in coarse states?
♦ Assume it is aggregated via expectations
⋄ As if he correctly assesses randomness, but cannot explain what causes it

$$u_{d} = \begin{cases} \begin{array}{c|c|c|c} a & b & c \\ \hline \omega & 4 & 0 & 2 \\ \hline \nu & 0 & 6 & 0 \end{array} & u_{e} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega & 0 & 2 & 4 \\ \hline \nu & 0 & 2 & 4 \end{array} \\ \\ u_{d} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega, \nu \} & 2 & 3 & 1 \end{array} & u_{e} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega, \nu \} & 0 & 2 & 4 \end{array} \end{cases}$$

$$u_{d} = \begin{cases} \frac{a}{\{\omega, \nu\}} & 2 & 3 & 1 \end{cases} \qquad u_{e} = \begin{cases} \frac{a}{\{\omega, \nu\}} & 0 & 2 & 4 \end{cases}$$

- Without revelation c = b
- $\bullet \mathbb{E}[u_d] = 3, \mathbb{E}[u_e] = 2$

$$\diamond$$
 With revelation: $\mathfrak{c}': \left\{ egin{array}{l} \omega \mapsto a \\ \nu \mapsto b \end{array} \right.$

$$\bullet \mathbb{E}[u_d] = 5, \mathbb{E}[u_e] = 1$$
; So the expert won't reveal.

$$\diamond \; \mathsf{But}, \mathfrak{c}^\star : \left\{ egin{array}{l} \omega \mapsto c \\ \nu \mapsto b \end{array}
ight. ext{is a Pareto improvement over no revelation}
ight.$$

$$\diamond \mathbb{E}[u_d] = 4, \mathbb{E}[u_e] = 3$$

- ♦ The Pareto improvement c*, requires revelation
- But revealing allows the politician to exploit the expert
- What is the politician could commit:
 - ♦ Propose $\mathfrak{c} = \mathfrak{b}$ (his outside option)
 - \diamond After the expert reveals, propose some other contract c^{\dagger}
 - $\diamond c^{\dagger}$ only get implemented if the expert agrees; else c = b

Internalizing this, the politician solves:

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \hspace{1cm} \text{subject to} \hspace{1cm} \mathbb{E}[u_{\pmb{e}}(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_{\pmb{e}}(\mathfrak{c})] \hspace{1cm} \text{(IC)}$$

Internalizing this, the politician solves:

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \qquad \qquad \text{subject to} \qquad \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c})] \qquad \text{(IC)}$$

$$\diamond$$
 The solution is $\mathfrak{c}^{\star}: \left\{ \begin{array}{l} \omega \mapsto c \\ \nu \mapsto b \end{array} \right.$

- full revelation
- ♦ an efficient contract

So a two stage game with commitment to not revoke the prior proposal resulted in

- ♦ full revelation
- ⋄ an efficient contract

Does this always work?

So a two stage game with commitment to not revoke the prior proposal resulted in

- ♦ full revelation
- ♦ an efficient contract

Does this always work? No

What if the politician as initially unaware of action b?

$$u_e = \begin{cases} & \begin{array}{c|cccc} a & b & c \\ \hline \omega & 0 & 2 & 4 \\ \hline \nu & 0 & 2 & 4 \end{array} \end{cases}$$

- Without revelation $c^* = a$
- $\bullet \mathbb{E}[u_d] = 2, \mathbb{E}[u_e] = 0$

$$\left\{ \begin{array}{c|ccccc}
 & a & b & c \\
\hline
 & \omega & 0 & 2 & 4 \\
\hline
 & \nu & 0 & 2 & 4
\end{array} \right.$$

- \diamond Under full revelation (same as before): $\mathbf{c}': \left\{ \begin{array}{l} \omega \mapsto a \\ v \mapsto b \end{array} \right.$
- $\bullet \mathbb{E}[u_d] = 5, \mathbb{E}[u_e] = 1$; this satisfies the incentive constraint.

$$d = \begin{cases} \begin{array}{c|cccc} a & b & c \\ \hline \omega & 4 & 0 & 2 \\ \hline \end{array}$$

- But, revealing only b leads to $\mathfrak{c} = b$
- $\bullet \mathbb{E}[u_d] = 3, \mathbb{E}[u_e] = 2$, partial revelation is preferred

$$u_d = \left\{ \begin{array}{c|ccc} & a & b & c \\ \hline \omega & 4 & 0 & 2 \end{array} \right.$$

$$\diamond$$
 As before, $\mathfrak{c}^{\star}: \left\{ egin{array}{l} \omega \mapsto c \\ \nu \mapsto b \end{array} \right.$ is a Pareto improvement over $\mathfrak{c}=b$

(1) Initially, the decision maker commits (to $c^* = a$)

- (1) Initially, the decision maker commits (to $c^* = a$)
- (2) The expert partially reveals, (the action *b*)

- (1) Initially, the decision maker commits (to $c^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts

- (1) Initially, the decision maker commits (to $c^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts
 - \diamond This solves the IC-constrained maximization problem with constraint $\mathfrak{c}^*=a$

- (1) Initially, the decision maker commits (to $c^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts
 - \diamond This solves the IC-constrained maximization problem with constraint $\mathfrak{c}^*=a$
 - $\diamond c = b$ becomes the new IC constraint

- (1) Initially, the decision maker commits (to $\mathfrak{c}^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts
 - \diamond This solves the IC-constrained maximization problem with constraint $\mathfrak{c}^*=a$
 - $\diamond c = b$ becomes the new IC constraint
- (4) The expert reveals the rest of her awareness (the partition $\{\{\omega\}, \{\nu\}\}\)$

- (1) Initially, the decision maker commits (to $\mathfrak{c}^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts
 - \diamond This solves the IC-constrained maximization problem with constraint $\mathfrak{c}^* = a$
 - \diamond c = b becomes the new IC constraint
- (4) The expert reveals the rest of her awareness (the partition $\{\{\omega\}, \{\nu\}\}\)$
- (5) The decision maker solves

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \qquad \text{ subject to } \qquad \mathbb{E}[u_e(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_e(\mathfrak{c})] \qquad \text{(IC)}$$

- (1) Initially, the decision maker commits (to $\mathfrak{c}^* = a$)
- (2) The expert partially reveals, (the action b)
- (3) The decision maker proposes to c = b; the expert accepts
 - \diamond This solves the IC-constrained maximization problem with constraint $\mathfrak{c}^* = a$
 - \diamond c = b becomes the new IC constraint
- (4) The expert reveals the rest of her awareness (the partition $\{\{\omega\}, \{\nu\}\}\)$
- (5) The decision maker solves

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \qquad \text{ subject to } \qquad \mathbb{E}[u_e(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_e(\mathfrak{c})] \qquad \text{(IC)}$$

⋄ c* is the solution

Does this always work? Yes, but what is 'always'?

Model

Hypothetical State-Space

Call $h = (W, A, (v_d, v_e), p)$ a hypothetical states-space,

- \diamond W is a finite set of states
- \diamond A is a set of actions
- $v_i: W \times A \to \mathbb{R}$, for $i \in \{d, e\}$, determines payoffs, and,
- $\diamond \ p \in \Delta(W)$ is a probability over states

Let ${\mathscr H}$ collect all hss; ${\mathscr H}$ are the possible types of expert

Say that $h' = (W', A', (v'_d, v'_e), p')$ refines $h = (W, A, (v_d, v_e), p)$:

- $\diamond A \subset A'$
- \diamond Each state in h corresponds to an event in h' such that
 - probabilities aggregate
 - expected utilities of h 'measurable' acts are invariant

Then write: $h \leq h'$.

Formally, $h \leq h'$ if $A \subseteq A'$ and there exists a surjection $q: W' \to W$ such that

 $w' \in q^{-1}(s)$

$$\sum p'(w') = p(w) \qquad \qquad \text{for all } w \in W \tag{H1}$$

and

 $w' \in q^{-1}(w)$

$$\sum w_i'(w',\cdot)p'(w')=v_i(w,\cdot)$$
 for all $w\in W$ and $i\in\{d,e\}$ (H2)

Outcome Profiles

An **outcome profile** is a function from types to contracts:

$$\begin{array}{cccc} f \colon h & \mapsto & \mathfrak{c} \\ & \cap & & \cap \\ \mathscr{H} & & A^W \end{array}$$

Call and outcome profile **incentive compatible** if the experts payoff is monotone in her type

$$\mathbb{E}_{p'}\big[v'_{\boldsymbol{e}}(w, f(h'))\big] \ge \mathbb{E}_p\big[v_{\boldsymbol{e}}(w, f(h))\big]$$

for any h' such that $h \leq h'$

Iterated Revision Mechanism

An *iterated revelation mechanism* (IRM), is parameterized by a function from sequences of types to contracts:

$$\alpha:(h_0\ldots h_n)\mapsto (\mathfrak{c}:W_n\to A_n)$$

- (1) Set n = 0. The decision maker proposes $\mathfrak{c}_0 = \alpha(h_0)$.
- (2) The expert reveals h_{n+1} .
 - \diamond If $h_n \prec h_{n+1}$, the decision maker proposes $\mathfrak{c}_{n+1} = \alpha(h_{n+1})$. Set n = n+1 and repeat step 2.
 - ♦ Otherwise, continue to step 3.
- (3) The mechanism is over and the expert selects from $\{c_0, \dots c_n\}$.

Full Revelation

Theorem

The following are equivalent for an outcome profile f

- (1) f can be implemented by an IRM
- (2) f is a incentive compatible

The can be seen as an impossibility result:	
 Without commitment to leave proposed contracts on the table, full revelation cannot be obtained. 	

Each proposed contract in an IRM specifies:

- (1) The outcome should the game end
 - ⋄ dm wants to maximize his own payoff
- (2) The implicit incentive constraint should the game continue
 - dm wants to minimize the expert's payoff

In the examples, contracts solved (1) ignoring (2)

- ♦ The dm cannot conceive of what the expert is aware of
- ♦ It seems prudent, therefore, to consider *robust* strategies: those that maximize the worst case outcome
- Robust strategies turn out to be exactly those that follow the principle of myopic optimization

Robustness

Call an IRM, α , robust if at every sequence of (partial) revelations $\sigma = (h_0, \dots h_n)$:

- $\diamond \ \alpha$ maximizes the worst case payoff over all best responses that extend σ .
- \diamond relative to any other α' that coincides with α over σ

Robustness

Theorem

The following are equivalent (up to the implemented outcome profile)

- (1) α is robust
- (2) α is myopically optimal: at each sequence (h_0, \ldots, h_n) ,

$$lpha(h_0,\dots,h_n)\in \mathop{\sf argmax}_{{\mathfrak c}\colon W o {\mathbb R}} V_d(h,{\mathfrak c}) \qquad \qquad \text{subject to}$$

$$V_e(h_n,{\mathfrak c})>V_e(h_n,lpha(h_0\dots h_m)) \qquad \qquad \text{for } 0\leq m < n$$

The Designers Problem

More generally, often awareness is decentralized:

- A designer wants the decision maker to take some action
- The designer does not know the dm's or the expert's awareness
- ♦ A mechanism elicits awareness and returns an action recommendation

Mechanism

A mechanism is a mapping from pairs of types into contracts:

where $\mathcal{M}(h^d, h^e): W^e \to \mathcal{A}^e$

$$\mathcal{M}:(h^d,h^{m{e}})\mapsto \mathcal{M}(h^d,h^{m{e}})$$

Desiderata:

INDIVIDUAL RATIONALITY: the dm can not do better alone (there is no constraint for the expert)

INCENTIVE COMPATIBILITY: i prefers to report h^i than any $h \prec h^i$

PARETO OPTIMALITY: there is no feasible contract that dominates the outcome of the mechanism

These are all **ex-post** restrictions — they must hold for all type realizations

Consider the mechanism, \mathcal{M}^{IRM} , that implements an myopically optimal IRM.

Theorem

The mechanism \mathcal{M}^{IRM}

- ⋄ is individually rational, incentive compatible, and Pareto optimal, and,
- $\diamond V_d$ -dominates any other such mechanism (point-wise over \mathscr{H})

 \diamond There is a 'dual' IRM that implements the V_e -dominant mechanism

