

EXAMEN FINAL

Problema 1

Se ha tomado una muestra aleatoria de 40 baterías y se ha registrado su duración en años. Estos resultados se los ha agrupado en 7 clases o intervalos en la siguiente tabla de frecuencia:

X: Duración en años	Frec. Absoluta (O _i)		
1.45 1.95	2		
1.95 2.45	1		
2.45 2.95	4		
2.95 3.45	15		
3.45 3.95	10		
3.95 4.45	5		
4.45 4.95	3		
TOTAL: 40			

Verificar con 5% de significancia que la duración en años de las baterías producidas por este fabricante tienen una distribuida normalmente con media 3.5 y desviación estándar 0.7

a) (1pto) Definir la variable estadística y el tipo a la que pertenece. Plantear las hipótesis:

X: duración en años de baterías

Tipo: cuantitativa-continua

Hipótesis:

H0: la duración de baterías están distribuidas normalmente

H1: la duración de baterías no están distribuidas normalmente

b) (1pto) Calcule los valores esperados

X: Duración en			frec.
años	Frec. Absoluta (Oi)	probabilidad	Esperada
1.45 1.95	2	0.012037	0.48148
1.95 2.45	1	0.052904	2.11616
2.45 2.95	4	0.145048	5.80192
2.95 3.45	15	0.248317	9.93268
3.45 3.95	10	0.265575	10.623
3.95 4.45	5	0.193496	7.73984
4.45 4.95	3	0.062893	2.51572
n=	40		39.2108

c) (1pto) **Calcular el valor del estadístico de prueba** χ^2 usando la fórmula:

$$\frac{1.95-3.5}{0.7} - \frac{1.45-3.5}{0.7}$$

c.b) (1.95<x<2.45)

$$\frac{2.45 - 3.5}{07} - \frac{1.95 - 3.5}{0.7}$$

c.c) (2.45<x<2.95)

$$\frac{2.95 - 3.5}{07} - \frac{2.45 - 3.5}{0.7}$$

c.d) (2.95<x<3.45)

$$\frac{3.45 - 3.5}{07} - \frac{2.95 - 3.5}{0.7}$$

$$-0.1 - 0.8 = 0.460172 - 0.211855 = 0.248317$$

c.e) (3.45<x<3.95)

$$\frac{3.95-3.5}{07} - \frac{3.45-3.5}{0.7}$$

$$0.6 - -0.1 = 0.725747 - 0.460172 = 0.265575$$

c.f) (3.95 < x < 4.45)

$$\frac{4.45 - 3.5}{07} - \frac{3.95 - 3.5}{0.7}$$

c.g) (4.45<x<4.95)

$$\frac{4.95-3.5}{07} - \frac{4.45-3.5}{0.7}$$

c) (1pto) Calcular el valor crítico de la tabla χ^2 usando el nivel de significación: α

$$X^2_{cal} = \frac{(2 - 0.48)^2}{0.48} + \frac{(1 - 2.11)^2}{2.11} + \frac{(4 - 5.80)^2}{5.80} + \frac{(15 - 9.93)^2}{9.93} + \frac{(10 - 10.62)^2}{10.62} + \frac{(5 - 7.73)^2}{7.73} + \frac{(3 - 2.52)^2}{2.52} = 9.62$$

$$X_{1}$$
- \propto (7-0-1)=6 $X^{2}_{TAB(0.95)}$ (6)=12.95

d) (1pto) Criterio de decisión y Conclusión al problema.

Dado que 9.62 es < a 12.95 no se rechaza la hipótesis nula Conclusión:

La duración de baterías están distribuidas normalmente

Problema 2

Suponga que usted sea dueño de una cafetería en la UNIVERSIDAD PRIVADA "ALAS PERUANAS" con sede en Ica y que para la venta de sus hamburguesas, ofrezca una salsa especial que acompaña a los demás ingredientes. Usted cuenta con clientes regulares que conforman la comunidad universitaria en todos los días. La mayoría de sus clientes son docentes, estudiantes y empleados de oficina y de no oficina. Algunos de ellos casi siempre piden la salsa especial, pero usted tiene la impresión de que a los estudiantes y a los docentes les gusta más esta salsa que a los empleados. Basándose en 10 días representativos para cada grupo, puede confirmar esta sospecha par un nivel de significación de α =5%

Núm	Número de clientes piden la salsa especial						
Día	Docentes	Empleados	Estudiantes				
1	25	15	25				
2	10	18	29				
3	14	13	28				
4	14	15	27				
5	20	14	25				
6	27	9	28				
7 19 9 29			29				
8	22	10	27				
9	19	11	26				
10	14	13	28				

a) (0.5 pto.) Identifique la variable de estudio o de respuesta y el tipo a la que pertenece.

Y: preferencias de salsa Tipo: cuantitativa discretas X: Numero de clientes que piden salsa especial

b) (0.5 pto.) Plantee las hipótesis correspondientes.

$$H_0$$
 : $\mu_1 = \mu_2 = \mu_3$

 $H_{_{\, 1}}\,$: Algún $\,\mu_{i}\,$ de las medias difiere de las demás

c) (2.0 pto.) Realice el análisis de varianza para ver si existe alguna diferencia significativa entre estos grupos.

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de los	F	Probabilidad	Valor crítico
---------------	---------	-----------	-----------------	---	--------------	---------------

variaciones	cuadrados	libertad	cuadrados			para F
Entre grupos Dentro de los	31.9	9	3.54444444	0.0362418	0.9999925	2.210697
grupos	2934	30	97.8			
Total	2965.9	39				

d) (1.0 pto.) Decisión y haga conclusiones finales.

Rechazo
$$H_0$$
 Si $F_{\text{cal}} > 2.21$

No Rechazo
$$H_0$$
 Si $F_{\rm cal} \leq 2.21$

Como
$$F_{cal} = 0.036 < 2.21$$

 \therefore Rechazamos $H_1 \Rightarrow$ Aceptamos H_0

Conclusión:

En La preferencia de la salsa tanto para los docentes, alumnos, y trabajadores no se ve la diferencia de la aceptación.

Problema 3

Supóngase que el administrador de una planta industrial conjetura que el rendimiento (en número de artículos producidos por turno de 8 horas) de una línea de producción depende de dos variables cualitativas: El primero depende del supervisor de la línea (de los cuales hay dos, digamos A1 y A2) y el segundo depende del turno para el cual se mide la producción (al que dividiremos en tres turnos, de 8:00 am a 4:00 pm, de 4:00 pm a 12:00 am y de 12:00 am a 8:00 am. A los que denotaremos por: B1; B2 y B3:

El administrador desea establecer si existen diferencias entre las producciones de los distintos turnos, con cada supervisor y si existe interacción entre los dos factores, para ello efectuó r = 3 réplicas de un experimento factorial de 2x3 para investigar el efecto de "*supervisor*" (con dos niveles) y .turno.(con tres niveles). Las observaciones se dan en la tabla a continuación:

Supervisor (Factor A)	Turno (Factor B)					
	B ₁ (8:00 am - 4:00 pm)	B ₂ (4:00 pm - 12:00 am)	B ₃ (12:00 am - 8:00 am)			
	570	480	470			
Α,	610	475	430			
	625	540	450			
	480	625	630			
A_2	515	600	680			
	465	580	660			

a) (0.5 pto.) Identifique la variable de estudio o de respuesta y el tipo a la que pertenece.

X: El rendimiento de una línea de producción Variable:cuantitativa-continua

b) (0.5 pto.) Plantee las hipótesis correspondientes.

X1 : intervalo de producción cualitativa nominal

X2 : superficie de producción cualitativa nominal

 $^{H_{\,0}}\,$: no hay interacción entre las investigaciones

 H_{\perp} : si hay interacción entre las investigaciones

c) (2.0 pto.) Realice el análisis de varianza para ver si existe alguna relación significativa entre estos factores.

	B1	B2	B1
	(8:00 am -4:00	(4:00 pm -12:00	(12:00 am -8:00
	pm)	am)	am)
A1	570	480	470
	610	475	430
A2	515	600	680
	465	580	660

Análisis de varianza de dos factores con varias muestras por grupo					
RESUMEN	b	С	D	Total	
A1					
Cuenta	2	2	2	6	
Suma	1180	955	900	3035	
Promedio	590	477.5	450	505.8333333	
Varianza	800	12.5	800	4724.166667	

A2				
Cuenta	2	2	2	6
Suma	980	1180	1340	3500
Promedio	490	590	670	583.3333333
Varianza	1250	200	200	6836.666667

Total			
Cuenta	4	4	4
Suma	2160	2135	2240
Promedio	540	533.75	560
		4289.58333	
Varianza	4016.666667	3	16466.66667

ANÁLISIS DE						
VARIANZA						
Origen de las	Suma de	Grados de	Promedio de los		Probabilida	Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	d	para F
					0.0011973	5.98737760
Muestra	18018.75	1	18018.75	33.13793103	26	7
					0.3206322	
Columnas	1504.166667	2	752.0833333	1.383141762	57	5.14325285
					0.0001945	
Interacción	53037.5	2	26518.75	48.77011494	93	5.14325285
Dentro del grupo	3262.5	6	543.75			
Total	75822.91667	11				

d) (1.0 pto.) Decisión y haga conclusiones finales.

Nota: Recuerde que si no hay interacción, se realiza un análisis de varianza por factor como si fuese de una sola vía

Problema 4

Se presume que hay una relación lineal entre las Ventas de cerveza y los gastos de publicidad en la que realiza cada una de las marcas de cerveza en el Perú. El siguiente cuadro muestra los ventas (en millones de dólares) y los Gastos en publicidad (en millones de dólares) para 10 marcas principales de cerveza en el Perú:

Marca	Ventas Y	Gastos en publicidad X
Cristal	120	36,3
Pilsen callao	68,7	20,7
Cusqueña	100,1	15,9
Brahma	76,6	13,2
Arequipeña	8,7	8,1
Zenda	0,1	7,1
Franca	21,5	5,6
Club	1,4	4,4
Pilsen trujillo	5,3	4,3
Barena	1,7	4,3

a) (0.5 pto.) Identifique las variables de estudio y el tipo a la que pertenecen.

X,Y: Ambas son continuas cuantitativas continuas

b) (0.5 pto.) Haga un gráfico de dispersión. ¿Cuál es el modelo de estimación a usarse?

Estadísticas de la	regresión							
Coeficiente de cor								
Coeficiente de det	0.7833508							
R^2 ajustado	0.7562696							
-								
Error típico	22.831353							
Observaciones	10							
ANÁLISIS DE VARIA	.NZA							
		na de cuadra	lio de los cua	F	alor crítico de	F		
Regresión	1							
Residuos	8	4170.16558						
Total	9	19248.469						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	nferior 95.0%	uperior 95.0%
Intercepción	-7.6276699	11.4849257	-0.66414621	0.52527213	-34.1119561	18.8566163	-34.1119561	18.8566163
Variable X 1	4.0064779	0.74493464	5.37829454	0.00066299	2.28865554	5.72430024	2.28865554	5.72430024
Análisis de los resi	duales							
Observación	nóstico par	Residuos						
1	137.80748	-17.8074775						
2	75.306422	-6.60642243						
3	56.075329	44.0246714						
4		31.3421618						
5	24.824801							
6		-20.7183231						
7	14.808606							
8		-8.60083281						
9		-4.30018502						
10	9.600185	-7.90018502						

El modelo a usarse es el modelo lineal

c) (2.0 pto.) Según su modelo de estimación y de regresión, responda a las siguientes preguntas:

• ¿Se incrementarán las ventas de cerveza en un próximo período al aumentar los gastos de publicidad? (Solo observe su tendencia del gráfico de dispersión para dar su repuesta)

Si se incrementa

• ¿Es adecuado suponer que el ajuste entre estas variables es efectivamente lineal teniendo en cuenta los valores de las variables? Ajuste el modelo lineal e interprete el coeficiente de correlación y los coeficientes del modelo lineal.

Pues si es adecuado suponer que el ajuste entre las variables es efectivamente lineal

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0.8850711
Coeficiente de determinación R^2	0.7833508

R = 1 Entonces correlación entre X e Y es perfecta positiva.

 ¿Qué porcentaje de las ventas de cerveza son explicadas por las variaciones de los gastos de publicidad?

37.8%

Si se presupuesta para un próximo período en 12.6 millones de dólares los gastos en publicidad
 ¿Cuál serían las ventas de cerveza para ese próximo período?

Seria de 42.85%

- La asociación de "Cervezas del Perú" estiman que para un próximo período las ventas de cerveza alcanzaran la cifra de 48.5 millones de dólares ¿cuál sería el monto de gasto en publicidad que tendrían que llevar a cabo; para lograr dicha estimación?
- c) (1 **pto.**) En base a sus resultados, está en lo correcto suponer que entre las ventas de cerveza y los gastos de publicidad; hay una relación lineal.

Seria 13.9 millones de dolares

Problema 5

Supongamos que las ventas de una empresa en la ciudad de Ica sean como se muestra en el cuadro. La *variable dependiente* para el análisis será "el nivel anual de ventas" en miles de soles de los diferentes periodos anuales. Se aprecia en el también que los Gastos en publicidad varían enormemente de un periodo a otro en cuanto a las comisiones cobradas por los vendedores también son muy variables y este es un factor que seguramente debe afectar el nivel de las Ventas anuales.

Nuestro problema consistirá, por tanto, en encontrar aquellos coeficientes que nos permitan explicar esta variación observada; por lo que una mejor aproximación de estimación a usarse es la siguiente regresión múltiple:

$$\hat{Y} = a + b.X_1 + c.X_2$$

	Y	X1	X2
AÑO	VENTAS	GASTOS DE PUBLICIDAD	COMISIONES DE VENDEDORES

2000	264000	550	15840
2001	384000	590	19250
2002	400200	680	26013
2003	422400	700	16896
2004	543000	750	16290
2005	548000	760	16380
2006	556000	750	16200
2007	543000	740	16500
2008	538000	750	16400
2009	558000	780	16900
2010	562000	800	17300
2011	553000	820	17500
2012	567000	840	17800

a) (0.5 pto.) Identifique las variables de estudio y el tipo a la que pertenecen.

Y:ventas de una empresa en la ciudad de ica Variable: cuanlitativa –continua

b) (0.25 pto.) ¿Cuál es el modelo de estimación?

Es el modelo multilineal Y = A+BX1+CX2

c) (**2.25 ptos.**) Según su modelo de estimación y de regresión, responda a las siguientes preguntas:

Resumen

Estadísticas de la regresión

Coeficiente

de

correlación 0.9400786

múltiple
Coeficiente
de
determinació 0.8837477
n R^2 8
0.8604973
R^2 ajustado 3
35748.869
Error típico 3
Observacione
s 13

ANÁLISIS DE VARIANZA

			Promedio de		
	Grados de	Suma de	los		Valor
	libertad	cuadrados	cuadrados	F	crítico de F
		9.7152E+1	4857599326		
Regresión	2	0	0	38.00993	2.1233E-05
Residuos	10	1.278E+10	1277981656		
		1.0993E+1			
Total	12	1			

					*		Inferio	
	Coeficiente			Probabilida	Inferior	Superio	r	Superior
	S	Error típico	Estadístico t	d	95%	r 95%	95.0%	95.0%
	-						-	
	177544.80	124323.62	-			99465.	45455	99465.5
Intercepción	1	9	1.428085736	0.183745	-454555.11	5	5	1
	1031.7857	124.50795			754.36471	1309.2		1309.20
Variable X 1	4	8	8.28690594	8.64E-06	9	1	754.36	7
	-							
	4.6478152	3.9291616	-				-	4.10690
Variable X 2	9	1	1.182902551	0.264208	-13.402533	4.1069	13.403	2

• ¿Es adecuado suponer que el ajuste entre estas variables es efectivamente multilineal teniendo en cuenta los valores de las variables? Ajuste el modelo multilineal e interprete el coeficiente de correlación que responderá a esta pregunta.

Pues si es de acuerdo suponer que estas variables son efectivamente multilineales

Estadísticas de la regresión					
Coeficiente de correlación					
múltiple	0.9400786				
Coeficiente de determinación					
R^2	0.88374778				
R^2 ajustado	0.86049733				
Error típico	35748.8693				
Observaciones	13				

R = 1 Entonces correlación entre X e Y es perfecta positiva.

• ¿Qué porcentaje de la variabilidad de las ventas **son explicadas** por las variaciones de los Gastos en publicidad y Las comisiones cobradas?

63.68%

• Si se incrementa el gasto en publicidad para este año en 880 mil soles y la comisión que se espera pagar es de 18200 ¿Cuál será la predicción de las Ventas anual en este año?

Será de 620012

d) (1 pto.) En base a sus resultados, está en lo correcto la suposición de que el nivel de ventas anuales aumentan al aumentar los gastos en publicidad y las comisiones de los vendedores; haga sus conclusiones que le ayudarán a tomar decisiones y sugerencias.

Entonces también aumentaran las ventas también para la empresa por lo que será favorable para el siguiente año .