Reconciling 00 and Haskell-Style Overloading

Mark Shields
Simon Peyton Jones
Microsoft Research Cambridge

{markshie, simonpj}@microsoft.com

It's an OO World

Basic FFI

C#	Haskell
<pre>class A { static int m(int, char); }</pre>	m :: Int -> Char -> IO Int

- Marshal C# base types to/from Haskell types
- · Design decisions yet to make:
 - Unboxing? (Probably ignore)
 - Byrefs? (Probably copy in, copy out)
 - Null Pointers? (Probably use Maybe)
 - Purity? Non-null? (Need standard C# type annotations)

Novelty 1: Subtyping

```
C#

class A {
   int m(char);
}
class B : A, I { ... }
Haskell

m :: Char -> A -> IO Int

char -> A ->
```

```
a:: A, b:: B
a # m '1' :: IO Int
b # m '1' :: IO Int
(#) :: a -> (a -> b) -> b ling in this talk. In lerived class.)
```

Novelty 2: Overloading

```
    a:: A
    a # m '1' :: IO Int -- call first m
    a # m 1 :: IO Int -- call second m
```

 (This doesn't seem so bad, give Haskell already has typebased overloading)

Novelty 3: "Overlapping" Methods

```
C#
class C { ... }
class D : C { ... }
class A {
  int m(C);
  int m(D);
}
Haskell

m :: C -> A -> IO Int
m :: D -> A -> IO Int
class A {
  int m(C);
  int m(D);
}
```

```
a :: A, c :: C, d :: D

a # m c :: IO Int -- call first m
a # m d :: IO Int -- call second m
```

 (Since both m's match second call, this seems well outside of Haskell's system)

Objectives

- Account for these novelties in a way which:
 - is as natural as C#: no name mangling or explicit coercions
 - blends with existing constrained polymorphism and class constraints framework
- Non objectives:
 - Extend Haskell to be a "calculus of objects"
 - · in particular, internalizing virtual methods
 - be as natural as C# for constructing new classes
 - (The MLj approach would probably be the best were these to be the objectives)

Constrained Polymorphism in 1 Slide

- Classes: class D a => C a where a -> a
- Constraints: C τ true if type τ is a member of type class C
- Witnesses: instance C Int = t
 C Int is true, and witnessed by the pair
 (W, t)
 where W is a witness for D Int
 and t :: Int -> Int

- Type inference propagates constraints at compile-time
- Dictionary transformation causes witnesses to be propagated at run-time

Obvious Non-starter

- Can't just encode C# class as Haskell class:
 - Will reject C# class with overloaded methods
 (Haskell method names must be unique within class)
 - Will reject C# classes sharing the same method name (Haskell method names must be unique across all classes)
 - Too much witness passing:

```
f :: A a => a -> IO Int
```

Each call to f passes bogus dictionary of methods for a

Subtyping: Attempt

· Simulate subtyping constraints using classes:

C#	Haskell
class A {	newtype A = ObjRef
int m(char);	newtype B = ObjRef
}	
class B : A, I	class BelowA a
{ }	instance BelowA A
	instance BelowA B
	class (BelowA a, BelowI a) =>
	BelowB a
	instance BelowB B
	m :: BelowA a => Char -> a -> IO Int

Subtyping: Attempt

- No witness passing required
- Works for multiple inheritance
- @ AboveA may be defined analogously
- © Captures transitivity

Subtyping: Attempt

- ② Quadratic growth in instance declarations
- Almost no subtype simplifications possible

```
(AboveA a, BelowA a) => a -> a
instead of A -> A

(AboveA a, BelowB a) => a -> a
instead of type error
```

Subtyping: Solution

· Add a new subtype constraint

```
t :<: u "type t is a subtype of type u"
```

- Subtype constraints only appear on
 - imported methods

```
-coerce :: a :<: b => a -> b
```

- (possibly) functions using the above
- Subtypes only introduced by newtype declarations

```
newtype A :<: B_1, ..., B_n = ObjRef
```

Subtyping: Solution

```
a :: A, b :: B
a # m '1' :: IO Int
b # m '1' :: IO Int
```

f x = x # m '1'

• f :: a :<: A => a -> IO Int

Subtyping: Quirks

- For convenience, rules for structural subtyping builtin
- Subtyping is not implicit on every application
- Hence, maximization & minimization simplification rules not applicable

```
(A :<: a, b :<: B) => b -> a cannot be reduced to B -> A
```

- We only assume newtypes form a poset, not a lattice or upwards-closed semi-lattice
- Hence, no ⊥ or T types

Subtyping: Quirks

- · The subtype poset is downward extensible
- Hence glb rules are not applicable

```
newtype A
newtype B
newtype C :<: A, B
(a :<: A, a :<: B) => a -> a
cannot be reduced to
a :<: C => a -> a
since another module may add
newtype D :<: A, B
```

lub rules ok

Overloading: Attempt

 Encode OO overloading as degenerate Haskell type-class overloading

```
Haskell
                    class Has m a where
class A {
  int m(char);
                      m :: a
  int m(int);
                    instance a :<: A =>
                      Has m (Char -> a -> IO Int)
                         where m = \{- \text{ call first } m - \}
                    instance a :<: A =>
                      Has m \overline{\text{(Int -> a -> IO Int)}}
                         where m = \{- \text{ call second } m - \}
```

Overloading: Attempt

Type inference won't commit to return type:

```
a :: A
a # m '1' :: Has_m (Char -> A -> b) => b
```

Type inference won't report error eagerly:

```
a # m True :: Has m (Bool \rightarrow A \rightarrow b) => b
```

Type inference won't commit to a method:

```
instance a :<: A =>
   Has_m ((Int, Int) -> a -> IO Int)
a # m (x,y) :: Has m ((b,c) -> A -> d) => d
```

Overloading: Attempt

- These problems are a consequence of the openness of instance declarations:
 - simplifier must assume Has_m could be extended in another module
 - hence Has_m constraints will propagate within type schemes until become ground
- But, we want most/all method overloading to be resolved before generalization based on which methods are visible now

- Introduce notion of closed class
- If simplifier sees a class constraint for a closed class, it may assume all instance declarations are in scope
- This allows more aggressive simplification: improvement and early failure
- Has m classes are declared closed
- Constraint syntactic sugar

```
m :: t
for
Has_m t
```

```
Haskell
                  class closed m :: a where
class A {
  int m(char);
                    m :: a
  int m(int);
                  instance a :<: A =>
                    m :: Char -> a -> IO Int
                       where m = \{-\text{ call first } m - \}
                  instance a :<: A =>
                    m :: Int -> a -> IO Int
                       where m = \{-\text{ call second } m - \}
```

© Only one method on A with Char argument possible, so commit:

```
a :: A
a # m '1' :: IO Int
```

© No methods on A with Bool argument possible, so reject:

```
a # m True
```

```
error: cannot satisfy m :: Bool -> A -> c
```

© Only one method on A with pair argument, so commit:

```
instance a :<: A =>
    m :: (Int, Int) -> a -> IO Int
a # m (x, y) :: IO Int
    (and x :: Int, y :: Int)
```

© A little more subtle: still don't know which method, but know result must be IO Int

 (Deferring method constraints seems reminiscent of virtual methods. We shall return to this)

Simplification for Closed Class Constraints

Given constraint C τ for closed class C:

• Step 1: Collect all "candidate" instances

$$\forall \alpha . \Phi \Rightarrow C \upsilon$$

such that there exists a θ such that

$$\theta [\alpha \mid \rightarrow \beta] (C \upsilon) = \theta (C \tau)$$

and $\theta [\alpha \rightarrow \beta] \Phi$ (may be) satisfiable

- Step 2: Calculate least-common generalization, τ' , of all θ [$\alpha \mid \rightarrow \beta$] υ
- Step 3: Unify τ with τ'
- Step 4: If only one candidate, use it to construct witness for C τ'

Overlapping Overloading: Attempt

Overlapping methods become overlapping instances

```
C#
                   Haskell
class C { ... }
                   class closed m :: a where
class D : C { ... }
                     m :: a
class A {
                   instance (a :<: A, b :<: C) =>
  int m(C);
  int m(D);
                     m :: b -> a -> IO Int
                   instance (a :<: A, b :<: D) =>
                     m :: b -> a -> IO Int
```

Overlapping Overloading: Attempt

- Overlapping instances are illegal in standard Haskell
- ⊗ GHC/Hugs support them, but (as usual for Haskell...) without any formal description, and inconsistently (even between versions)
- © Could be made to work if only one candidate:

```
a :: A, c :: C
a # m c -- only first m possible
```

But still fails with multiple candidates:

Overlapping Overloading: Solution

- Classes declared as closed (or overlap) may have arbitrarily overlapping instances
- Solve class constraints as before, but if multiple candidates, may choose least under (an approximation of) the instantiation ordering
- Eg:

```
∀ab. (a:<: A, b:<: D) => m:: b -> a -> IO Int

≤

∀ab. (a:<: A, b:<: C) => m:: b -> a -> IO Int

since from a:<: A, b:<: D

we may derive a:<: A, b:<: C
```

Overlapping Overloading: Solution

More formally, ≤ is defined by entailment:

$$\forall \beta . \Xi => C \tau , [\alpha \rightarrow \alpha'] \Phi \mid -e [\alpha \rightarrow \alpha'] C \upsilon$$

$$\forall \alpha . \Phi => C \upsilon \leq \forall \beta . \Xi => C \tau$$

However, it is implemented by simplification:

$$< \forall \beta . \Xi => C \tau , [\alpha \rightarrow \alpha'] \Phi, C \upsilon >$$

$$\rightarrow^* < \forall \beta . \Xi => C \tau , [\alpha \rightarrow \alpha'] \Phi >$$

$$\forall \alpha . \Phi => C \upsilon \le \forall \beta . \Xi => C \tau$$

Overlapping Overloading: Incompleteness

- Constraint simplifier is deliberately incomplete w.r.t. constraint entailment for overlapping instances:
 - Only consider one class constraint at a time:

```
instance m :: Int -> Int
 instance m :: Bool -> Int
 instance n :: Int -> Int
 instance n :: Char -> Int
 f x = m x + n x
Valid typing is f :: Int -> Int
But inferred type is
 f :: (m :: a -> Int, n :: a -> Int) =>
         a -> Int
```

Overlapping Overloading: Incompleteness

- Don't fully exploit unsatisfiability

```
class closed C a where ...
 class closed D a where ...
 instance C Int
 instance C a => m :: a -> IO Int
 instance D a => m :: a -> IO Int
 f x = m x
Valid typing is f :: Int -> IO Int
But inferred type is
 f :: (m :: a -> IO Int) => a -> IO Int
```

Virtual Methods vs Member Constraints

```
Haskell
class A {
                   newtype A
 virtual int m();
                   newtype B :<: A
                   instance m :: A -> IO Int
class B : A {
                   instance m :: B -> IO Int
 virtual int m();
                    Dispatch based on
                    dynamic type of x
int f(A, A);
                                           =>
f(x, y) {
 int i, j;
                       y = do_i < -x # m
                                <- y # m
  Call m passed as
                              return i + j
 implicit argument
```

Virtual Methods vs Member Constraints

 Can we simulate OO references using existentials? Not quite:

```
data Sub a = forall b . b :<: a => Sub b
newtype A
                            But, as stands, system
newtype B :<: A
                              cannot determine m
instance m :: A -> IO Int
                                from subtype
instance m :: B -> IO Int
                              constraint passed
f = do a :: A <- new
                               captured in Sub
       b:: B <- new
       list :: Sub A = [Sy a,
       return (map (\Sub a -> m a) list)
error: constraint m :: a -> b escapes scope
of existentially quantified variable a
```

Virtual Methods vs Member Constraints

- Upshot: it rarely makes sense for a method constraint to escape into a type scheme
- If class C has global modifier, it is an error for C τ to appear in a scheme

```
class global closed m :: a
instance m :: A -> IO Int
instance m :: B -> IO Int
f x = x # m
error: constraint m :: a -> b cannot
be generalized
```

Type Class Space

Modifiers aren't as ad-hoc as may first appear:

Future Work

- About (finally...) to submit to Haskell or Babel Workshop
- Ulterior motive is to establish standard "calculus for type systems" including all the bells and whistles used in practice
- · Simplifier defined quite abstractly...
 - ... still work to be done in refining it to a good algorithm
 - ... subtyping responsible for over half of complexity of simplifer
- · Many small-scale FFI decisions to be made
- Simon & co about to start on implementation
- No formal properties shown as yet
- What about exporting Haskell as a .NET class?
- · Can we further exploit nominal subtyping within Haskell?