Exercice 1 L'unité de longueur est le centimètre. Déterminer les volumes des solides ci-dessous.

<u>Exercice 2</u> Afin de faciliter l'accès à sa piscine, Monsieur Joseph décide de construire un escalier constitué de deux prismes superposés dont les bases sont des triangles rectangles. Voici ses plans :

Information 1:

Volume du prisme = aire de la base \times hauteur;

 $1L = 1dm^3$

Information 2:

Voici la reproduction d'une étiquette figurant au dos d'un sac de ciment de 35 kg.

Dosage pour 1 sac de 35 kg	Volume de béton obtenu	Sable (seaux)	Gravillons (seaux)	Eau
Mortier cou- rant	105 L	10		16 L
Ouvrages en béton courant	100 L	5	8	17 L
Montage de murs	120 L	12		18 L

Dosages donnés à titre indicatif et pouvant varier suivant les matériaux régionaux et le taux d'hygrométrie des granulats

- 1. Démontrer que le volume de l'escalier est égal à 1,262 08 m^3 .
- 2. Sachant que l'escalier est un ouvrage en béton courant, déterminer le nombre de sacs de ciment de 35 kg nécessaires à la réalisation de l'escalier.
 - 3. Déterminer la quantité d'eau nécessaire à cet ouvrage.