Cap. 1 - Introdução

- 1.1 Conceitos Básicos e Aplicações Típicas
- 1.2 Estruturas de Redes de Computadores
- 1.3 Arquiteturas de Redes de Computadores
- 1.4 Modelo OSI (Open System Interconnection)
- 1.5 Serviços e Protocolos do Modelo OSI
- 1.6 Padronização das Redes de Computadores
- 1.7 Exemplos de Redes: ARPANET, MAP & TOP, CSNET, BITNET

Cap. 1 - Introdução

- * Andrew S TANENBAUM; **Computer Networks**, Second Edition, Prentice-Hall International, Inc., 1989, ISBN: 0-13-166836-6
- ★ Eleri CARDOZO; Maurício MAGALHÃES; Redes de Computadores: Modelo OSI/X.25, Departamento de Engenharia de Computação e Automação Industrial, Faculdade de Engenharia Elétrica e de Computação, UNICAMP, 1996.
- ★ Eleri CARDOZO, Maurício MAGALHÃES; **Comunicação de Dados I**, Departamento de Engenharia de Computação e Automação Industrial, Faculdade de Engenharia Elétrica e de Computação, UNICAMP, 1998.

1.1 - Conceitos Básicos e Aplicações Típicas

- * definição: conjunto de computadores autônomos e interconectados;
- ... ao exigir que os computadores sejam autônomos, excluímos da nossa definição a relação mestre/escravo;
- * classificação quanto a extensão geográfica:
 - LAN Local Area Network (10 m a 1 Km)
 - CAN Campus Area Network (1 Km a 10 Km)
 - MAN Metropolitan Area Network (5 Km a 100 Km)
 - WAN Wide Area Network (100 a 5000 Km)
- * classificação quanto às máquinas:
 - Homogêneas computadores idênticos;
 - Heterogêneas computadores não idênticos.

... 1.1 - Conceitos Básicos e Aplicações Típicas

- * Não se deve confundir redes de computadores com sistemas distribuídos, dado que tais sistemas constituem um caso especial das redes de computadores;
- sistema distribuído: a distinção chave é a de que a existência de múltiplos computadores é transparente, ou seja, não visível para o usuário.
- ullet ... em um sistema distribuído, o software apresenta alto grau de coesão e transparência, especialmente no nível do sistema operacional.
- ➢ Não obstante, há muitas intersecções entre os dois temas, p.ex., em ambos há
 a necessidade de manipulação de arquivos;
- ... a diferença está em como isto se dá!

... 1.1 - Conceitos Básicos e Aplicações Típicas

- ★ Benefícios decorrentes das Redes de Computadores:
 - compartilhamento de informações e recursos;
 - crescimento da capacidade de processamento;
 - diversidade de equipamentos e liberdade de escolha;
 - aumento de confiabilidade;
 - processamento de informação in loco;
 - um meio alternativo de comunicação.
- ★ Impacto produzido pela Tecnologia de Rede:
 - ... Ensino/Pesquisa;
 - ... Produção e Serviços;
 - ... Administração.

... 1.1 - Conceitos Básicos e Aplicações Típicas

- * Empresas de Telecomunicações serviços de comunicação de dados:
 - RENPAC Rede Nacional de Comutação de Pacotes;
 - Serviços Multimídia Áudio e Vídeo;
 - CAD cooperativo, Teleconferência, Telemedicina.

1.2 - Estruturas de Redes de Computadores

* ... utilizaremos a terminologia utilizada na Rede ARPANET ($Advanced\ Research\ Project\ Agency\ Network$:

• ... separando-se os aspectos da comunicação na rede (subrede) dos aspectos da aplicação (hosts), o projeto da rede pode ser simplificado.

... 1.2 - Estruturas de Redes de Computadores

Topologias típicas de Subredes Ponto-Ponto

Topologias típicas de Subredes de Difusão

Anel

1.3 - Arquiteturas de Redes de Computadores

 ... para reduzir a complexidade no projeto, as redes são organizadas como uma séria de camadas ou níveis, cada qual construída sobre a sua predecessora.

... 1.3 - Arquiteturas de Redes de Computadores

... exemplo: como prover comunicação para a última camada de uma rede estratificada em 7 camadas?

... 1.3 - Arquiteturas de Redes de Computadores

☆ ... um aspecto importante que precisa ser bem entendido é a relação entre comunicação virtual e real bem como a diferença entre protocolos e interfaces;

• ... sem a abstração de processos pares, é muito difícil senão impossível o particionamento do projeto integral da rede em problemas menores e gerenciáveis.

... 1.3 - Arquiteturas de Redes de Computadores

- * Alguns aspectos essenciais do projeto de redes de computadores estão presentes em várias das camadas, dentre eles destacamos:
- toda camada deve prover um mecanismo para estabelecer conexão;
- outro aspecto, diz respeito às regras que governam a transferência de dados, ou seja, simplex-communication, half-duplex ou full-duplex;
- tratamento de erros é igualmente importante, dado que circuitos que possibilitam a comunicação física não são perfeitos;
- nem todos os canais de comunicação preservam a ordem de envio das mensagens;
- inabilidade de tratar mensagens longas, exigindo mecanismos de desmontagem, transmissão e remontagem da mensagem;
- ... etc.

1.4 - Modelo OSI (Open System Interconnection)

... 1.4 - Modelo OSI: Camada Física

- ★ Intimamente relacionada com o meio físico empregado: fibra óptica, cabo coaxial, par trançado.
- * Gera sinais elétricos, óticos ou eletromagnéticos para serem propagados.
- ★ Funções do protocolo da Camada Física:
 - especificar qual a duração e intensidade do sinal;
 - técnica de multiplexação;
 - pinagem, ...;

... 1.4 - Modelo OSI: Camada de Enlace

- \Rightarrow Utiliza a Camada Física para transmissão dos $data\ frames$;
- * Data Frames são delimitados por sequências pré-estabelecidas;
- * Transmite (Recebe) $data\ frames$ aguardando (enviando) o respectivo quadro de reconhecimento;
- * Algumas características do protocolo:
 - transmissão não confiável (mesmo com reconhecimento de recepção);
 - data frames podem ser duplicados ao chegar fora de ordem;
 - duplicações geralmente ocorrem quando o data frame de reconhecimento é deformado na transmissão;
 - controla o fluxo de $data\ frames$, evitando que um host envie quadros em uma taxa superior a que o receptor é capaz de processar.

... 1.4 - Modelo OSI: Camada de Rede

- * Controla a operação da subrede.
- ☆ Algumas de suas Funções:
 - roteamento de pacotes do *host* origem ao *host* destino;
 - o roteamento pode apresentar características dinâmicas ou estáticas;
 - fragmentação e remontagem de pacotes para atender limites impostos.
- * Nota: em subredes de difusão esta camada é extremamente simples, uma vez que a principal função (roteamento) é inexistente.

... 1.4 - Modelo OSI: Camada de Transporte

- ☆ Algumas de suas Funções:
 - receber dados da camada de sessão;
 - particionar estes dados em unidades menores;
 - garantir envio de dados sem duplicação e na ordem correta;
- ≯ Possui 2 tipos de serviços:
 - serviço rápido com mensagens de tamanho limitado e sem garantia de entrega, ordem ou ausência de duplicação;
 - serviço mais lento, porém altamente confiável e sem limites de tamanho de mensagens;
- \not É a primeira camada a promover comunicação host-host, assim controla o fluxo de dados entre 2 processos comunicantes.

... 1.4 - Modelo OSI: Camada de Sessão

- \Rightarrow Permite que 2 Application Process APs estabeleçam sessões entre si a fim de organizar e sincronizar a troca de informação.
- ★ Conexão de Sessão => definição das regras de diálogo entre 2 APs
 - Two Way Simultaneous (TWS);
 - Two Way Alternate (TWA);
 - *One Way* (OW).

... 1.4 - Modelo OSI: Camada de Apresentação

- ★ Serviços oferecidos:
 - representação canônica de dados;
 - compressão de dados;
 - criptografia.
- ★ Necessidade da Representação Canônica de Dados:
 - quando arquiteturas diferentes devem se comunicar.
- * Compressão é útil para o envio de grandes massas de dados.
- * Criptografia é utilizada quando os dados são confidencias.

... 1.4 - Modelo OSI: Camada de Aplicação

- * Dispõe de serviços comumente utilizados por usuários de redes.
 - correio eletrônico;
 - *login* remoto;
 - serviços de diretório;
 - submissão de *jobs* remotos.
- * Também se constitui em ponto de acesso à rede por APs.
- * Application Program Interface APIs (em vias de padronização)
 - são bibliotecas de funções para envio/recepção de mensagens, ...

- Modelo de Referência permite a especificação de várias Classes de Serviço.
- Cada Classe de Serviço permite a especificação de várias Classes de Protocolo.
- No nível mais baixo temos a Implementação do Protocolo.

- ★ Modelo OSI divide a rede em camadas horizontais cuja finalidade consiste:
 - permitir uma discussão da interação entre elementos pares;
 - funcionalidade de cada camada pode ser desenvolvida de forma gradual;
 - o sistema aberto pode ser visto como uma sucessão de sub-sistemas.
- * Elementos ativos em cada camada são chamados de Entidades
 - \bullet a entidade na camada N implementa serviços usados na camada N+1;
 - ullet ... assim a camada N é provedora de serviços enquanto a camada N+1 é usuária dos serviços oferecidos pela camada N.

... 1.5 - Serviços e Protocolos do Modelo OSI

SAP - Service Access Point

CEP - Connection End Point

Entidade - elemento ativo em cada chamada (i.e., processo, controlador de I/O, ...)

★ Serviço Conectado:

- estabelecem um canal lógico entre as entidades comunicantes
- canal é dito lógico pelo fato de não dispor de uma conexão física exclusiva;
- múltiplos canais lógicos podem compartilhar uma mesma conexão física.

★ Tipos de Serviços Conectados:

- mensagens têm fronteiras limitadas;
- cadeias de *bytes* não têm fronteiras limitadas;
- serviços típicos: transferência de arquivos, login remoto, ...

★ Serviço Sem Conexão - análogo a Serviços Postais

- também denominados Serviços de Datagrama;
- serviços típicos: acesso a banco de dados, sincronização de relógios, ...

- ☆ Com o objetivo de permitir que objetos como Entidades, SAPs e conexões sejam referenciados faz-se necessário um esquema para identificação global:
 - identificadores de Entidades = *Titles*;
 - identificadores de SAPs = Endereços;
 - identificadores de Conexões = CEP-identifier.
- * Uma Entidade $_N$ possui um Título $_N$.
- # Um SAP_N possui um Endereço_N.
- * Um CEP_N possui um identificador CEP_N.

- * A troca de dados ocorre de duas formas:
 - entre Entidades $_{N+1}$ remotas, sendo a troca governada pelo Protocolo $_N$;
 - entre Entidades $_{N+1}$ e Entidade $_N$ através de um mesmo SAP $_N$.
- * As informações trocadas podem ser de dado ou de controle.
- * Assim, 04 tipos de unidades de dados podem ser definidas:
 - informação de controle de protocolo informação trocada entre entidades pares com a finalidade de coordenar as suas operações conjuntas;
 - dado do usuário dado transferido entre uma E_{N+1} e uma E_N ;
 - informação de controle de interface informação trocada entre E_{N+1} e E_N para coordenar as suas interações através do SAP_N ;
 - ullet dado de interface dado transferido da Entidade $_{N+1}$ à Entidade $_N$ afim de que seja enviado à EntidadeN+1 par (host receptor).

- → 02 tipos de Unidade contendo Informações de Dado e Controle:
 - unidade de dado do protocolo_N (PDU_N) informação trocada entre entidades pares e constituída de controle e dado do usuário;
 - unidade de dado de interface $_{N+1}$ informação trocada entre uma entidade $_{N+1}$ e uma entidade $_N$ através de um SAP $_N$, sendo constituída de controle e dado do usuário.

- ★ Formas de mapeamento possíveis:
 - **segmentação**: função realizada pela entidade_N através da qual uma SDU_N é mapeada em várias $PDUs_N$;
 - **remontagem:** função realizada pela entidade $_N$ par através da qual múltiplas PDUs $_N$ são mapeadas em uma SDU $_N$;
 - **bloqueio:** função realizada por uma entidade $_N$ que mapeia múltiplas $SDUs_N$ em uma PDU_N ;
 - **desbloqueio:** função realizada por uma entidade $_N$ par que mapeia uma PDU_N em múltiplas SDUs_N correspondentes;
 - concatenação: permite uma entidade $_N$ mapear múltiplas PDUs $_N$ em uma SDU $_{N-1}$;
 - **separação:** permite uma entidade $_N$ par mapear uma SDU_{N-1} em múltiplas PDUs_N correspondentes.

Segmentação e Remontagem

Bloqueio e Desbloqueio

Copyright © 2004 by Luís F. Faina/FACOM/UFU

- ★ Modelo OSI estabelece 04 tipos de primitivas:
 - requisição: uma entidade requer a execução de um serviço;
 - indicação: uma entidade é informada da ocorrência de um evento;
 - resposta: uma entidade deseja responder a um evento;
 - confirmação: uma entidade é informada sobre o resultado de sua requisição.

- ★ conceito clássico: define a forma como entidades equivalentes interagem entre si para a realização de um objetivo comum para a prestação de serviços a entidades na camada superior.
- \Rightarrow **protocolo da camada**_N: conjunto de regras e formatos, representados por aspectos semânticos, sintáticos e temporais, que regem a comunicação entre entidades pares.
- * Especificação de Protocolo compreende a descrição ...
 - dos tipos de PDUs;
 - dos procedimentos do protocolo de cada tipo de PDU;
 - dos serviços evocados para transferência de cada tipo de PDU;
 - formal da estrutura da cada tipo de PDU;
 - formal da operação da entidade de protocolo.

- ★ São formados por 02 partes:
 - uma correspondente aos dados do usuário;
 - e outra contendo informações de controle relativa ao protocolo.
- * Estrutura dos PDUs Especificação do Protocolo
 - Cadeias de Bits
 - ASN.1 (Abstract Syntax Notation Number One) + Regras de Codificação
- * Cadeia de Bits protocolos das camadas inferiores.
- * ANS.1 baseada na tipificação dos dados (sintaxe abstrata)
 - protocolos de nível mais alto protocolos orientados a aplicação

- * Entidade de Protocolo é modelada como uma máquina de estados finitos (autômato).
- * A transição de um estado para outro ocorre quando um evento válido ocorre na interface do autômato ... exemplos:
 - recepção de uma primitiva de serviço na interface com a camada superior;
 - recepção de uma primitiva na interface com a camada inferior;
 - ocorrência de eventos locais
- ... associado à ocorrência de um evento válido, o autômato muda de estado e gera alguma ação interna específica.
- ... método de especificação utiliza uma tabela evento-estado onde cada entrada na tabela especifica o evento saída e o novo estado para o qual o autômato deverá transitar devido a uma combinação evento de entrada e estado atual.

	Entrada Atual							
	s ₀	s ₁	S ₂		S _n			
Evento 1							-	
						Evento de Entrada camada superior OE _x - Evento de Saída "x'		
Evento _X						primitivas de serviço S _a - Novo Estado "a"	S _a - Novo Estado "a"	
Evento _{x+1}								
						Evento de Entrada camada superior		
Evento y						primitivas de serviço		
Evento y+1						P_0 : OE $_{\rm X}$ onde $P_{\rm k}$ é pr		
						ex., temporizador P ₂ : OF	S _a - Novo Estado "a" P ₂ : OE _y	
Evento z							S _b - Novo Estado "b"	

1.6 - Padronização das Redes de Computadores

- * padrões: (standards) conjunto de normas e procedimentos, cujo cumprimento pode ser de obrigatório ou recomendável;
- ☆ Objetivo dos Padrões:
 - homogeneizar produtos e serviços;
 - minimizar investimentos em estoques;
 - compatibilizar equipamentos de diferentes procedências.
- ≯ Padrão de Facto:
 - adotado sem nenhuma ação de entidade reguladora (ex.: IBM);
- ★ Padrões de Jure:
 - produzidos por entidades reguladoras, nacionais ou internacionais;
 - exemplo: ISO 9000;

... 1.6 - Padronização das Redes de Computadores

- ★ Entidades de Padronização Eng. Elétrica:
 - Brasil Associação Brasileira de Normas Técnicas (ABNT);
 - EUA American National Standard Institute (ANSI);
 - EUA Institute of Electrical and Eletronic Engineers (IEEE);
 - Alemanha Deutsche Industrie-Norm (DIN);
 - Inglaterra British Standard Institution (BSI).
- ★ Entidades de Padronização Redes de Computadores: ITU-TS e ISO
- $\ \mathbb{H} ITU-TS$ "International Telecommunication Union Telecommunication Standardization" antiga CCITT "Comité Consultatif International de Télégraphique et Téléphonique"
- ★ ISO "International Standard Organization"

... 1.6 - Padronização das Redes de Computadores

≯ Padrões ITU-TS:

- normalmente se referem a transmissão de dados a longas distâncias;
- situam-se mais próximo do *hardware*.

≯ Padrões ISO:

- são mais voltados aos serviços que um rede provê;
- protocolos de conversação inter-hosts;
- cobrem praticamente todo o espectro de tecnologias de rede.
- ★ Modelo ISO/OSI ou OSI (Open Systems Interconnection):
 - estipula que uma rede de computadores deve ser estipulada em 7 camadas, propondo um ou mais padrões para controlar cada camada;
 - ullet estes padrões estão ainda em vias de se tornarem padrões $de\ facto$.

... 1.6 - Padronização das Redes de Computadores

- \Rightarrow Padrões de Facto são também chamados Padrões Internet:
 - enfatizam o transporte confiável de um host para outro;
 - apenas três serviços são padronizados no nível de usuário: transferência de arquivo, correio eletrônico e login remoto.
- ★ Serviços introduzidos (Comunidade ou Fabricante):
 - Yellow Pages diretório;
 - RPC "Remote Procedure Call";
 - NFS "Network File System"
- * Tendência: novos serviços como aqueles oferecidos por redes ISDN "Integrated System Digital Network" serão aderentes ao Modelo OSI.

- * rede pública: denominação dada aos sistemas das operadoras de redes utilizados no oferecimento de serviços de comunicação de dados para os hosts e terminais de seus clientes;
- ... embora sejam diferentes em diferentes países, virtualmente todas utilizam-se do Modelo OSI (ISO 7498) ou de Protocolos OSI ou ITU (antiga CCITT);
- ... as 03 camadas inferiores são conhecidas coletivamente como X.25 (CCITT Recommendation Number), entretanto a ISO o adotou como um padrão;
- ... para as demais camadas, padrões separados para especificação do serviço e do protocolo são adotados pela ISO.

... 1.7 - Exemplos de Redes: Redes Públicas, ARPANET, BITNET

• ISO 8802 são derivados dos Padrões IEEE 802.

7	ISO 8571 ISO 8572	File Transfer, Access and Manipulation Service File Transfer, Access and Manipulation Protocol		
	ISO 8831 ISO 8832	Job Transfer and Manipulation Service Job Transfer and Manipulation Service		
	ISO 9040 ISO 9041	Virtual Terminal Service Virtual Terminal Protocol		
	CCITT X.400	Message Handling (Electronic Mail)		
6	ISO 8822 ISO 8823	Connection Oriented Presentation Service Connection Oriented Presentation Protocol		
5	ISO 8326 ISO 8327	Connection Oriented Session Service Connection Oriented Session Protocol		
4	ISO 8072 ISO 8073	Connection Oriented Transport Service Connection Oriented Transport Protocol		
3	CCITT X.25	X.25 Layer 3 Protocol		
2	ISO 8802 CCITT X.25	Local Area Networks HDLC/LAPB Data Link Layer		
1	CCITT X.21	Physical Layer Digital Interfaces		

- ARPANET é resultado do Projeto DARPA (Defense Advanced Research Projects Agency do Departamento de Defesa do USA;
- ... iniciado no final da década de 1960 com o propósito de pesquisar redes de computadores através de investimentos concedidos aos departamento de ciência da computação e até mesmo cooporações privadas;
- ... após a consolidação da tecnologia ARPANET no oferecimento de serviços por vários anos, uma rede militar MILNET ($Military\ Network$) foi construída com a mesma tecnologia;
- ... a ARPANET tinha sua próprias LANs, eventualmente conectadas a IMPs conectando-a a ARPA Internet com milhares de hosts e centenas de milhares de usuários durante a década de 1970.

- ... os IMPs originais da ARPANET eram minicomputadores Honeywell DDP-516 com memória de 12 K palavras de 16-bits;
- ... atualmente, são conhecidos por PSN $Packet \ Switch \ Nodes$ ou simplesmente SN $(Switch \ Nodes)$ mas com a mesma funcionalidade.
- * ARPANET não segue o Modelo OSI, na verdade, ela antecede a proposta em mais de uma década sendo as vezes difícil compará-los;
- ... p.ex., Protocolo IMP-IMP é uma mistura de Camada 2 e 3 do OSI;
- Protocolo de Rede é o IP (*Internet Protocol*): projetado para permitir a interconexão de uma grande variedade de redes, por isso é um protocolo não orientado a conexão.

- → Protocolo de Transporte da ARPANET pode ser:
- TCP (Transmission Control Protocol: orientado a conexão;
- UDP (*User Datagram Protocol*): não orientado a conexão.
- → Não encontramos nem camada de sessão, nem de apresentação e até a década de 1890 pouco ou nenhum uso tiveram.
- → Quanto aos Serviços da Camada de Aplicação, destacamos:
- FTP (File Transfer Protocol);
- SMTP (Simple Mail Transfer Protocol);
- TELNET e outros.

