Unidades e análise dimensional

Ricardo Mendes Ribeiro

Sumário

Unidades do SI

Análise dimensional

• A importância de escrever sempre e bem as unidades

- A importância de escrever sempre e bem as unidades
- Unidades base: 7
 - Unidade de comprimento: metro (m)
 - Unidade de massa: kilograma (kg)
 - Unidade de tempo: segundo (s)
 - Unidade de corrente eléctrica: ampere (A)
 - Unidade de temperatura termodinâmica: kelvin (K)
 - Unidade de quantidade de substância: mole (mol)
 - Unidade de intensidade luminosa: candela (cd)

Unidade de comprimento: metro (m)

O metro é o comprimento do percurso que a luz executa no vácuo no intervalo de tempo de $1/299\ 792\ 458$ do segundo.

Unidade de massa: kilograma (kg)

É igual à massa do protótipo internacional do kilograma.

Unidade de tempo: segundo (s)

O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133

Precisão dos relógios atómicos

Azul: Relógios de microondas (Cs); Verde: Relógios ópticos.

Frequência de ressonância natural do átomo de césio (9 192 631 770 Hz): é a frequência usada para definir o segundo.

• Os melhores relógios atómicos actuais podem medir a duração de um dia com uma precisão de $100~\rm ps~(10^{-10}~\rm s)$.

- Os melhores relógios atómicos actuais podem medir a duração de um dia com uma precisão de $100~\rm ps~(10^{-10}~\rm s)$.
- Todos os satélites do GPS têm a bordo relógios atómicos; uma maior precisão nesses relógios permitiria maior precisão no posicionamento.

- Os melhores relógios atómicos actuais podem medir a duração de um dia com uma precisão de $100~\rm ps~(10^{-10}~\rm s)$.
- Todos os satélites do GPS têm a bordo relógios atómicos; uma maior precisão nesses relógios permitiria maior precisão no posicionamento.
- Os efeitos da relatividade geral também são importantes: dois relógios atómicos colocados com uma diferença de altura de 1 cm terão frequências de transição que estarão desfasadas entre si de 1 parte em 10¹⁸.

- Os melhores relógios atómicos actuais podem medir a duração de um dia com uma precisão de $100~\rm ps~(10^{-10}~\rm s)$.
- Todos os satélites do GPS têm a bordo relógios atómicos; uma maior precisão nesses relógios permitiria maior precisão no posicionamento.
- Os efeitos da relatividade geral também são importantes: dois relógios atómicos colocados com uma diferença de altura de 1 cm terão frequências de transição que estarão desfasadas entre si de 1 parte em 10¹⁸.
- Os relógios atómicos ópticos alcançarão muito brevemente essa precisão.

- Os melhores relógios atómicos actuais podem medir a duração de um dia com uma precisão de $100 \text{ ps } (10^{-10} \text{ s})$.
- Todos os satélites do GPS têm a bordo relógios atómicos; uma maior precisão nesses relógios permitiria maior precisão no posicionamento.
- Os efeitos da relatividade geral também são importantes: dois relógios atómicos colocados com uma diferença de altura de 1 cm terão frequências de transição que estarão desfasadas entre si de 1 parte em 10^{18} .
- Os relógios atómicos ópticos alcançarão muito brevemente essa precisão.

E já estamos na fase da miniaturização:

Chip-Scale Atomic Clock Unveiled by NIST

Unidade de corrente eléctrica: ampere (A)

O ampere é a corrente que, se mantida em dois condutores rectos e paralelos de comprimento infinito, the secção transversal negligível e colocados a um metro de distância um do outro no vácuo, produz uma força entre esses condutores igual a $2x10^{-7}$ newton por metro de comprimento.

Unidade de temperatura termodinâmica: kelvin (K)

O kelvin é a fracção 1/273.16 da temperatura termodinâmica do ponto triplo da água.

Unidade de quantidade de substância: mole (mol)

A mole é a quantidade de substância de um sistema que contém tantas entidades elementares quantos átomos há em 0.012 kilogramas de carbono 12.

Quando se utiliza a mole, as entidades elementares têm de ser especificadas, e podem ser átomos, moléculas, iões, outras partículas ou grupos de partículas.

Unidade de intensidade luminosa: candela (cd)

A candela é a intensidade luminosa, numa dada direcção, de uma fonte que emite radiação monocromática com $540x10^{12}$ hertz de frequência e que tem uma intensidade radiante nessa direcção de 1/683 watt por steradiano.

Unidades base

Quantidade base	Nome	Símbolo
Comprimento	metro	m
Massa	kilograma	kg
Tempo	segundo	S
Corrente eléctrica	am pere	Α
Temperatura termodinâmica	kelvin	K
Quantidade de substância	mole	mol
Intensidade luminosa	candela	cd

Unidades derivadas

Unidades derivadas são aquelas que se podem obter a partir das unidades base através dos símbolos matemáticos de divisão e multiplicação.

Unidades derivadas

Unidades derivadas são aquelas que se podem obter a partir das unidades base através dos símbolos matemáticos de divisão e multiplicação.

Algumas unidades derivadas têm nomes e símbolos próprios, que podem ser usados em combinações com outras unidades base e derivadas.

Unidades derivadas

Quantidade derivada	Nome	Símbolo
Årea	metro quadrado	m ²
Volume	metro cúbico	m ³
Velocidade	metro por segundo	m/s
Aceleração	metro por segundo quadrado	m/s ²
Número de onda	metro recíproco	m^{-1}
Densidade, densidade de massa	kilograma por metro cúbico	kg/m³
Volume específico	metro cúbico por kilograma	m³/kg
Densidade de corrente	ampere por metro quadrado	A/m ²
Intensidade do campo magnético	ampere por metro	A/m
Concentração (de quantidade de substância)	mole por metro cúbico	mol/m³
Luminância	candela por metro quadrado	cd/m²
Índice de refracção (número)	ıım	1

			Expressed in terms of	Expressed in terms of
Derived quantity	Name	Symbol	other SI units	SI base units
plane angle	ra dia n	ra d		$m \cdot m^{-1} = 1$
solid angle	stera dia n	sr		$m^2 \cdot m^{-2} = 1$
frequency	hertz	Hz		_s -1
force	newton	N		m ⋅ kg ⋅ s ⁻²
pressure, stress energy, work,	pascal	Pa	N/m ²	m ⁻¹ · kg · s ⁻²
quantity of heat	joule	J	N·m	m ² ·kg·s ⁻²
power, radiant flux electric charge,	watt	W	J/s	m ² ·kg·s ⁻³
quantity of electricity electric potential difference,	coulomb	С	s · A	
electromotive force	volt	V	W/A	m ² · kg · s ⁻³ ·A ⁻¹
cap a citan ce	fara d	F	C/V	m ⁻² · kg ⁻¹ · s ⁴ ·A ²
electric resistance	ohm	Ω	V/A	m ² · kg · s ⁻³ ·A ⁻²
electric conductance	siemens	S	A/V	m ⁻² ⋅ kg ⁻¹ ⋅ s ³ ⋅A ²
magnetic flux	weber	WЬ	V ·s	m ² · kg · s ⁻² ·A ⁻¹
magnetic flux density	tesla	Т	Wb/m ²	kg ⋅ s ⁻² ⋅A ⁻¹
inductance	henry	Н	Wb/A	m ² · kg·s ⁻² ·A ⁻²
Celsius temperature	degree Celsius	°C		K
luminous flux	lu me n	lm	cd · sr	$m^2 \cdot m^{-2} \cdot cd = cd$
illuminance activity	lux	lx	lm/m ²	$m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$
(referred to a radionuclide) absorbed dose, specific energy (imparted),	becquerel	Вq		s ¹
		•	L /I	m^2 . s^{-2}
kerma dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equivalent,	gray	Gy	J/kg	m⁻·s ¯
organ equivalent dose	sievert	Sv	J/kg	m ² ⋅s ²
catalytic activity	katal	kat	. •	s ⁻¹ ⋅ mol

Prefixos SI

Factor	Nome	Símbolo	Factor	Nome	Símbolo
10 ²⁴	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	С
10^{18}	exa	Е	10^{-3}	mili	m
10^{15}	peta	Р	10^{-6}	micro	μ
10^{12}	tera	Τ	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	р
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10 ¹	deka	da	10^{-24}	yocto	у

• Escrevem-se em caracteres romanos (não itálico, nem negrito)

- Escrevem-se em caracteres romanos (não itálico, nem negrito)
- Escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula

- Escrevem-se em caracteres romanos (não itálico, nem negrito)
- Escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula
- Quando se escreve por extenso é sempre em minúscula

- Escrevem-se em caracteres romanos (não itálico, nem negrito)
- Escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula
- Quando se escreve por extenso é sempre em minúscula
- Os símbolos não são alterados no plural

- Escrevem-se em caracteres romanos (não itálico, nem negrito)
- Escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula
- Quando se escreve por extenso é sempre em minúscula
- Os símbolos não são alterados no plural
- Os símbolos não terminam com ponto final, a não ser no fim de uma frase

- Escrevem-se em caracteres romanos (não itálico, nem negrito)
- Escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula
- Quando se escreve por extenso é sempre em minúscula
- Os símbolos não são alterados no plural
- Os símbolos não terminam com ponto final, a não ser no fim de uma frase

 \bullet Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m

- Para multiplicar unidades: ponto a meia altura ou um espaço: $N \cdot m$ ou $N \cdot m$
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹

- Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹
- Deve-se evitar qualquer tipo de ambiguidade:

- Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹
- Deve-se evitar qualquer tipo de ambiguidade: m/s² ou m·s⁻², mas não m/s/s

- Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹
- Deve-se evitar qualquer tipo de ambiguidade: m/s² ou m·s⁻², mas não m/s/s m·kg/(s³·A) ou m·kg·s⁻³·A⁻¹, mas não m·kg/s³·A

- Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹
- Deve-se evitar qualquer tipo de ambiguidade: m/s² ou m·s⁻², mas não m/s/s m·kg/(s³·A) ou m·kg·s⁻³·A⁻¹, mas não m·kg/s³·A

Uso dos prefixos

• Escrevem-se sempre em caracteres normais romanos, sem nenhum espaço entre eles e o símbolo

Uso dos prefixos

- Escrevem-se sempre em caracteres normais romanos, sem nenhum espaço entre eles e o símbolo
- Constitui um símbolo inseparável do símbolo a que está ligado: $1~{\rm cm^3}=(10^{-2}~{\rm m})^3$

Uso dos prefixos

- Escrevem-se sempre em caracteres normais romanos, sem nenhum espaço entre eles e o símbolo
- Constitui um símbolo inseparável do símbolo a que está ligado: $1 \text{ cm}^3 = (10^{-2} \text{ m})^3$
- Não se podem formar prefixos compostos

Importância das estimativas

Quando não sabemos com precisão um determinado valor, é útil ser capaz de *estimar* um valor razoável para ele.

Importância das estimativas

Quando não sabemos com precisão um determinado valor, é útil ser capaz de *estimar* um valor razoável para ele.

Actividade: Fazer estimativas;

número de bolas de ping-pong que cabem nesta sala

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

```
comprimento – L
tempo – T
massa – M
```

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

comprimento - L

tempo – T

massa – M

Se tivermos uma grandeza física qualquer G, podemos representar a sua dimensão pela expressão geral:

$$[\mathsf{G}] = [\mathsf{L}]^{a}[\mathsf{T}]^{b}[\mathsf{M}]^{c}$$

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

comprimento - L

tempo – T

massa – M

Se tivermos uma grandeza física qualquer G, podemos representar a sua dimensão pela expressão geral:

$$[\mathsf{G}] = [\mathsf{L}]^{a}[\mathsf{T}]^{b}[\mathsf{M}]^{c}$$

Por exemplo, para uma força, que se mede em newton (ou kg·m·s $^{-2}$) tem-se:

a = 1

b = -2

c = 1

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

comprimento – L tempo – T massa – M

Se tivermos uma grandeza física qualquer G, podemos representar a sua dimensão pela expressão geral:

$$[\mathsf{G}] = [\mathsf{L}]^{a}[\mathsf{T}]^{b}[\mathsf{M}]^{c}$$

Por exemplo, para uma força, que se mede em newton (ou kg·m·s $^{-2}$) tem-se:

$$\begin{aligned} a &= 1 \\ b &= -2 \\ c &= 1 \\ & [G] = [L][T]^{-2}[M] \end{aligned}$$