Introduction to LLL "Cryptography"

Di Santi Giovanni

May 26, 2021

Contents

1		roduction to Lattices	2	
	1.1	Vector Spaces	2	
	1.2	Lattices	4	
	1.3	Problems	5	
		1.3.1 SVP	5	
		1.3.2 CVP	5	
2	LLL 7			
	2.1	Purpose	7	
	2.2	Algorithm	7	
3	Applications 8			
	3.1	Attack Knapsack	8	
	3.2	Attack RSA	8	

Chapter 1

Introduction to Lattices

1.1 Vector Spaces

Definition 1.1.1 Vector space.

A vector space V is a subset of \mathbb{R}^m which is closed under finite vector addition and scalar multiplication, with the property that

$$a_1v_1 + a_2v_2 \in V$$
 for all $v_1, v_2 \in V$ and all $a_1, a_2 \in \mathbb{R}$

Definition 1.1.2 Linear Combinations

Let $v_1, v_2, \ldots, v_k \in V$. A linear combination of $v_1, v_2, \ldots, v_k \in V$ is any vector of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$$
 with $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

Definition 1.1.3 Lineaer Independece

A set of vectors $v_1, v_2, \ldots, v_k \in V$ is linearly independent if the the only way to get

$$a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$$

is to have $a_1 = a_2 = \cdots = a_k = 0$.

Definition 1.1.4 Bases

Taken a set of linearly independent vectors $b = (v_1, \ldots, v_n) \in V$ we say that b is a basis of V if $\forall w \in V$ we can write

$$w = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

Definition 1.1.5 Vector's length

The vector's length or Euclidean norm of $v = (x_1, x_2, \dots, x_m)$ is

$$||v|| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Definition 1.1.6 Dot Product

Let $v, w \in V \subset \mathbb{R}^m$ and $v = (x_1, x_2, \dots, x_m), w = (y_1, y_2, \dots, y_m)$, the dot product of v and m is

$$v \cdot m = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$
or
$$v \cdot m = ||v|| ||w|| \cos \theta$$

where θ is the angle between v and w if we place the starting points of the vectors at the origin O.

Geometrically speaking $v \cdot m$ is the length of w projected to v multiplied by the length of v as shown in 1.1

Definition 1.1.7 Ortoghonal Basis

An ortoghonal basis for a vector space V is a basis v_1, \ldots, v_m with the property that

$$v_i \cdot v_j = 0$$
 for all $i \neq j$

Figure 1.1: Dot Product By 3Blue1Brown

Gram-Schmidt Algorithm

Figure 1.2: Gram Schmidt orthogonalization

If $||v_i|| = 1$ for all i then the basis is orthonormal.

Let $b = (v_1, \ldots, v_n)$, be a basis for a vector space $V \subset \mathbb{R}^m$. There is an algorithm to create an orthogonal basis $b^* = (v_1^*, \ldots, v_n^*)$. The two bases have the property that $\operatorname{Span}\{v_1, \ldots, v_i\} = \operatorname{Span}\{v_1^*, \ldots, v_i^*\}$ for all $i = 1, 2, \ldots, n$

If we take $v_1 = (4,1), v_2 = (2,3)$ as basis and apply gram schmidt we obtain $u_1 = v_1 = (4,1), u_2 = (-10/17, 40/17)$ as shown in 1.2

1.2 Lattices

Definition 1.2.1 Lattice

Let $v_1, \ldots, v_n \in \mathbb{R}^m, m \geq n$ be linearly independent vectors. A Lattice L spanned by $\{v_1, \ldots, n_n\}$ is the set of all integer linear combinations of v_1, \ldots, v_n .

$$L = \left\{ \sum_{i=1}^{n} a_i v_i, a_i \in \mathbb{Z} \right\}$$

If v_i for every $i = 1, \ldots n$ has integer coordinates then the lattice is called Integral Lattice.

On the figure 1.3 we show a lattice L with bases v = (3,1) and w = (-1,1), and on 1.4 the same lattice L with a different basis.

Figure 1.3: Lattice L spanned by v, w Figure 1.4: Lattice L spanned by v', w'

1.3 Problems

1.3.1 SVP

The Shortest Vector Problem (SVP): Find a nonzero vector $v \in L$ that minimez the Euclidean norm ||v||.

Gauss Reduction

Gauss's developed an algorithm to find an optimal basis for a two-dimensional lattice given an arbitrary basis. The output of the algorithm gives the shortest nonzero vector in L and in this way solves the SVP.

If we take for example $v_1 = (10, 4), v_2 = (7, 5)$ and apply the gauss reduction algorithm we obtain $w_1 = (3, -1), w_2 = (4, 6)$ 1.5. w_1 is the shortest nonzero vector in the lattice L spanned by v_1, v_2 .

However the bigger the dimension of the lattice, the harder is the problem and there isn't a polynomial algorithm to find such vector.

1.3.2 CVP

The Closest Vector Problem (CVP): Given a vector $w \in \mathbb{R}^m$ that is not in L, find a vector $v \in L$ that is closest to w, in other words find a vector $v \in L$ that minimizes the Euclidean norm ||w - v||.

Example in 1.6

Figure 1.5: Gauss reduction

Figure 1.6: CVP

Chapter 2

LLL

- 2.1 Purpose
- 2.2 Algorithm

Chapter 3

Applications

- 3.1 Attack Knapsack
- 3.2 Attack RSA

End of Paper

 gg^2

Bibliography