High-Level Design

1. Overview

This MLOps platform enables users to upload datasets, train machine learning models, track experiments, manage artifacts, and view results through a user-friendly web interface. The system is modular, scalable, and designed for reproducibility and collaboration.

2. Flow of the Program

3. Components:

Data Processing:

• Data Cleaning using KNN imputer for Missing Data

Train Validation Split for Training Fraud Detection Model

Feature Selection Model:

- A Deep Learning Model which selects the most important features and removes the ones which arent.
- Saved the artifacts and inferences

Fraud Detection Model:

 Using Inferences from Feature Selection it runs a model on mlflow for detecting frauds

DVC Tracking:

Artifacts from every component are saved using DVC.

User Interface:

- UI has 5 Routes namely, ML Platform, Previous Runs, Model Specs, Feature Selection and Test Results
- Each Route runs an api call to the backend for accessing data and displaying results.

4. Design Choices & Rationale

Frontend

- React was chosen for its component-based architecture, facilitating the development of complex, dynamic dashboards and forms.
- RESTful API communication keeps the frontend decoupled from backend logic, enabling independent development and scaling.

Backend

- **Node.js** offers non-blocking I/O, making it well-suited for handling concurrent requests and long-running ML jobs.
- Express provides a simple, extensible routing layer for API endpoints.

ML Pipelines

- **Python** is the de facto language for machine learning, offering rich libraries (scikit-learn, pandas, TensorFlow).
- Running pipelines as subprocesses or jobs allows for language separation and easy scaling.

Experiment Tracking

- MLflow is an industry standard for tracking experiments, storing metrics, and managing models.
- This enables reproducibility, auditability, and comparison of different runs.

Data Versioning

 DVC integrates with Git to version control large datasets and models, supporting collaborative workflows and rollback.

Database

 MongoDB is chosen for its flexible schema, which accommodates evolving ML metadata and experiment logs.

Infrastructure

 Docker Compose ensures all components run in isolated, reproducible environments, simplifying setup for both development and production.

5. Scalability & Extensibility

- Modular Design: Each service (frontend, backend, ML, database, MLflow, DVC) can be scaled independently.
- API-First Approach: Enables integration with other tools or automation scripts.
- Artifact and Data Versioning: Supports collaborative and reproducible research.

6. User Experience

- **Intuitive UI** for non-technical users to upload data, launch runs, and view results.
- Clear feedback on job status, errors, and results.
- **Downloadable artifacts** (e.g., confusion matrix, predictions).

7. Summary Table

Component	Technology	Rationale
Frontend	React	Dynamic UI, component-based, REST integration
Backend	Node.js/Express	Async I/O, easy API routing
ML Pipeline	Python	ML ecosystem, subprocess separation
Tracking	MLflow	Experiment tracking, artifact management
Data Version	DVC	Git-like data/model versioning
Database	MongoDB	Flexible schema, easy scaling
Infra	Docker Compose	Reproducibility, easy orchestration