Application: Number systems and circuits for addition

Binary number system

Positional system: multiply each digit by its place value

Decimal notation
$$4268_{10} = 4 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0$$

Binary notation

$$1100 \, 0111_2 = 1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$
$$= 128 + 64 + 0 + 0 + 0 + 4 + 2 + 1 = 199_{10}$$

Here indices 10 and 2 are used to highlight the base of the number system

Convert decimal numbers to binaries: divide by 2

Rule: divide repeatedly by 2, writing down the reminder from each stage from right to left.

Example:
$$533/2 = 266$$
 remainder = 1 $266/2 = 133$ remainder = 0 $133/2 = 66$ remainder = 1 $66/2 = 33$ remainder = 0 $33/2 = 16$ remainder = 1 $16/2 = 8$ remainder = 0 $8/2 = 4$ remainder = 0 $4/2 = 2$ remainder = 0 $4/2 = 2$ remainder = 0 $1/2 = 0$ remainder = 1

$$533_{10} = 1000010101_2$$

57,0 = 1110012

Alternative method

■ If you know powers of 2, continually subtract largest power value from the number

$$123_{10} = 64 + (123 - 64) = 64 + 59$$

$$= 64 + 32 + (59 - 32) = 64 + 32 + 27$$

$$= 64 + 32 + 16 + (27 - 16) = 64 + 32 + 16 + 11$$

$$= 64 + 32 + 16 + 8 + (11 - 8) = 64 + 32 + 16 + 8 + 3 =$$

$$= 64 + 32 + 16 + 8 + 2 + (3 - 2)$$

$$= 64 + 32 + 16 + 8 + 2 + 1 =$$

$$= 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} =$$

$$= 1111011_{2}$$

Binary addition

Half-adder

Full-adder

	Р	Q	C_{in}	C_{out}	S
ĺ	1	1	1	1	1
İ	1	1	0	1	0
	1	0	1	1	0
İ	1	0	0	0	1
	0	1	1	1	0
	0	1	0	0	1
	0	0	1	0	1
Į	0	0	0	0	0

'Black box' notation

4-bit adder

mod 16

_17

Computer representation of negative integers

- Typically a fixed number of bits is used to represent integers: 8, 16, 32 or 64 bits
 - Unsigned integer can take all space available
- Signed integers
 - Leading sign

but then

■ Two's complement:

given a positive integer a, the **two's complement of** a **relative to a fixed bit length** n is the binary representation of

$$2^{n} - a$$
.

Example: 4-bit two's complement (n=4)

■
$$a = 1$$
, two's complement: $2^4 - 1 = 15 = 1111_2$ = -1
■ $a = 2$, two's complement: $2^4 - 2 = 14 = 1110_2$ = -2

a
$$a = 3$$
, two's complement: $2^4 - 3 = 13 = 1101_2$

$$a = 8$$
, two's complement: $2^4 - 8 = 8 = 1000_2 = -8$

Properties

- Positive numbers start with 0, negative numbers start with 1
- 0 is always represented as a string of zeros
- lacksquare -1 is always represented as a string of ones

Example: 4-bits

- The number range is split unevenly between +ve and -ve numbers
- The range of numbers we can represent in *n* bits is -2^{n-1} to $2^{n-1} 1$