Projekt

ROBOTY MOBILNE

Założenia projektowe

Robot gąsienicowy ReTank

Przygotował:
Marcin Bober, 249426
Termin: srTN18

 $\label{eq:prowadzący:modz} Prowadzący:$ mgr inż. Arkadiusz Mielczarek

Spis treści

1	Opis projektu	2
2	Bank energii 2.1 Ogniwa	2 2 2
3	Płytka drukowana 3.1 Mikrokontroler 3.2 Sterowniki silników 3.3 Akcelereometr 3.4 Inne	3 3 4 4
4	Mechanika 4.1 Podwozie	5
5	Harmonogram	6

1 Opis projektu

Projekt dotyczy budowy robota mobilnego, sterowanego zdalnie. Zadanie obejmuje zaprojektowanie części elektronicznej, oprogramowania na mikrokontroler i oprogramowania na urządzenie sterujące. W skład części elektronicznej wchodzi projekt płytki drukowanej i banku energii.

2 Bank energii

2.1 Ogniwa

Zasilania robotowi zapewniać będą trzy ogniwa 16850. Aby minimalzować koszty, zostały one pozyskane ze starej baterii z laptopa. Nie są one dobrze opisane co sprawia że nie jestem w stanie odnaleźć ich specyfikacji. Ich żywotność również jest nie znana, co uniemożliwia oszacowanie ich łącznej pojemności.

Rysunek 1: Ogniwa 16850

2.2 Balanser

Do zarządzania ogniwami użyty zostanie gotowy układ BMS przystosowany do współpracy z trzema ogniwami 16850. Zapewnia on podstawowe zabezpieczenia w tym:

- zabezpieczenie przed nadmiernym rozładowaniem poniżej 3.0V,
- zabezpieczenie przed przeładowaniem powyżej 4.25V,
- zabezpieczenie przed przeciążeniem prądowym,
- zabezpieczenie przed zwarciem.

Napięcie generowane przez baterię ogniw powinno oscylować w zakresie 9.0V - 12.7V

Rysunek 2: Balanser baterii

3 Płytka drukowana

 ${
m Jednym}$ z podstawowych elementów projektu jest stworzenie płytki drukowanej integrującej wszystkie wymagane elementy.

3.1 Mikrokontroler

Sercem układu zostanie układ ESP32-WROVER. Najważniejszym kryterium decydującym o wyborze tego konkretnego układu jest wbudowany modu WiFi i jego niska cena oscylująca w okolicach 2.50\$. Jest to zdecydowanie najtańszy sposób na połączenia robota do Internetu.

Rysunek 3: Mikrokontroler ESP32

Najważniejsze cechy:

• Wbudowany MCU o dwóch rdzeniach z taktowaniem do 240 MHz

• Protokoły Wi-Fi: 802.11 b/g/n/d/e/i/k/r

• Protokoły BT: Bluetooth v4.2 BR/EDR oraz Bluetooth BLE

 $\bullet\,$ Napięcie zasilania: 2.2 V - 3.6 V

• Średni pobór prądu: 80 mA

3.2 Sterowniki silników

Układ będzie wspierał sterowanie dwoma silnikami prądu stałego. Każdy z nich będzie mógłbyć wyposarzony w osobny enkoder liczący obroty silnika. Do tego celu posłuży układa L298N w obudowie Multiwatt 15 pin.

Rysunek 4: Układ scalony L298N

3.3 Akcelereometr

Robot będzie wyposarzony w akcelerometr i żyroskop, aby móc mierzyć przyspieszenia oraz prędkości katowe. Będzie to możliwe dzięki użyciu układu MPU-6050.

Rysunek 5: Układ scalony MPU6050

3.4 Inne

Aby móc komfortowo użytkować i prototypować robota niezbędne będą dodatkowe elementy takie jak:

- wyprowadzenie JATG,
- wyprowadzenie interfejsu I2C,
- wyprowadzenie kamery ArduCam OV2640,
- wyprowadzenie UART,
- wejście zasilania,
- złącze czujnika ultradzwiękowego,
- dwa wejścia enkoderów,
- dwa wyjścia na silniki.

4 Mechanika

4.1 Podwozie

Aby zredukować koszty i lepiej zintegrować wszystkie elementy ze sobą, postanowiłem samemu zaprojektować podwozie i wydrukować je przy użyciu drukarki 3D. Materiał który do tego użyję to ABS.

4.2 Silniki

Silniki których użyję są produkcji DFRobot. Mają one doczepione enkodery, które pozwolą mi bardzo dokładnie kontorlować prędkości silników.

Rysunek 6: Silnik z enkoderem

Ich skrócona specyfikacja:

- Napięcie zasilania: 6 V
- $\bullet\,$ Napięcie enkodera: od 3,3 V do 5 V
- Współczynnik redukcji: 1:20
- \bullet Prędkość bez obciążenia: 300 RPM 0,1 A

5 Harmonogram

- 1. Sporządzenie listy i zdobycie wymaganych elementów. (17.03)
- 2. Zaprojektowanie i wykonanie podwozia. (24.03)
- 3. Zaprojektowanie i wykonanie pakietu baterii. (31.03)
- 4. Zaprojektowanie płytki drukowanej. (7.04)
- 5. Napisanie i przetestowanie bazowej wersji programu na MCU. $\left(14.04\right)$
- 6. Zbudowanie komunikacji z kontrolerem. (21.04)
- 7. Dodanie obsługi enkoderów. $\left(28.04\right)$
- 8. Dodanie obsługi żyroskopu. (5.05)
- 9. Testowanie i dopieszczanie. (12.05)