Tartalomjegyzék

1. Saját jelölések	2
2. Vektorterek	3
3. Alterek összege	4
4. Konjugált mátrixok	5
5. Mátrixok sajátfelbontása	6
6. Spektrálfelbontás	7
7. Bilineáris leképezések	8
8. Euclides-terek	g
9. Ortogonális bázisok	10
10. Ortogonális kiegészítő	11
11. Adjungált	11
12. Ortogonális transzformációk	12
13. Szemiortogonális mátrixok	13
14. Qadratikus alak	14

1. Saját jelölések

Jelölés Az $\{i \in \mathbb{N} | 1 \le n\}$ halmazt \underline{n} jelöli.

2. Vektorterek

- **1 Tétel** V vektortér K felett, S független V-beli vektorok halmaza, ekkor ha $v \notin \text{span}(S)$, akkor $S \cup \{s\}$ is független.
- **2 Lemma** V vektortér K felett, S V-beli lineárisan független vektorok halmaza, T V-beli generátor vektorok halmaza, v eleme S-nek, de nem eleme T-nek, akkor létezik egy olyan T, de nem S-beli vektor, hogy az S-ből a v-t kivéve és w-t hozzáadva (($S \{v\}$) \cup {w}) független vektorrendszert kapunk.
- **3 Lemma** V vektortér K felett, $f_1,\ldots,f_n\in V$ lineárisan függetlenek, $g_1,\ldots,g_m\in V$ generátorrendszer, ekkor $n\leq m$.
- 4 Tétel Ha V vektortér K felett, ekkor
 - 1. ha S V-beli generátorrendszer, akkor létezik egy B bázis V-ben, ami S-nek része,
 - 2. ha S V-beli független, akkor létezik egy olyan B bázis, aminekS része,
 - 3. ha B_1 és B_2 V-beli bázisok, akkor a számosságuk megegyezik.
- **5 Deffiníció** Ha (X, \leq) parciálisan rendezett halmaz, ha \leq parciális rendezés.
 - A parciális rendezés reflexív, antiszimmetrikus és tranzitív.
- **6 Deffiníció** Ha (X, \leq) parciálisan rendezett halmaz, ekkor $a \in X$ maximális, ha $\forall b \in X$, $a \leq b$ esetén a = b.
- **7 Deffiníció** Ha (X, \leq) parciálisan rendezett halmaz, ekkor $Y \subset X$ lánc, ha (Y, \leq) teljesen rendezett halmaz.
 - | Teljesen rendezett halmaz bármely két eleme összehasonlítható.
- **8 Lemma** (Zorn) Ha (X, \leq) nem üres parciálisan rendezett halmaz és minden $Y \subset X$ láncnak van X-ben felső korlátja, akkor X-nek van maximális eleme.

3. Alterek összege

Jelölés V_K jelöli a V vektorteret K test felett, de következetesség miatt mindig megjegyezzük, hogy " V_K vektortér", ami még mindig rövidebb, mint a hosszú "V K test feletti vektortér".

9 Deffiníció Ha V_K vektortér és $V_1, \ldots, V_n \leq V$, akkor ezen alterek összege:

$$V_1 + \ldots + V_n = \{v_1 + \ldots + v_n | v_i \in V_i, 1 \le i \le n\}$$

10 Deffiníció Ha V_K vektortér és $V_1, \ldots, V_n \leq V$, akkor ezen alterek direkt összege, olyan alterek összege, aminek minden eleme egyértelműen áll elő $v_1 + \ldots + v_n$ $(\forall v_i \in V_i, i \in \underline{n})$ alakban.

| Tehát minden vektor előáll olyan összegként, aminek tagjai különböző indexű alterekben van.

- 11 Állítás Ha V_K vektortér, akkor V_1, \ldots, V_n összeg direkt, akkor és csak akkor, ha $v_i \in V_i 0_V$, $v_i \notin \sum_{i \neq i} V_i$.
- 12 Állítás Ha V_K vektortér, akkor $V_1 + \ldots + V_n (= \operatorname{span}(\cup V_i))$ altér.
- 13 Deffiníció V_k vektortér, U, $W \le V$, $V = U \oplus W$, $\pi : V \to v$ lineáris leképezés, $u \in U$, $w \in W$, hogy $v = u + w \in V$ esetén $\pi(v) = u$. Ekkor π -t az U altérre való W irányú vetítésnek nevezzük.

4. Konjugált mátrixok

- **14 Deffiníció** $A, B \in K^{n \times n}$ A és B konjugáltak (hasonlók), ha létezik egy olyan $X \in K^{n \times n}$, melyre $B = X^{-1}AX$.
- **15 Deffiníció** V_K vektortér, $f:V\to V$ linráris leképezés a V endomorfizmusa.

Jelölés End_K V

- **16 Deffiníció** V_K vektortér, $f \in \text{End}_K V$, $t \in K$:
 - 1. $t \in K$ sajátértéke f-nek, ha létezik egy olyan nemnulla V-beli vektor, amire f(v) = tv,
 - 2. $t \in K$ sajátérték, ekkor a V-beli v vektor a t-hez tartozó sajátvektor, ha f(v) = tv.
 - 3. az f összes sajátértékének halmaza f spektruma.
- **17 Deffiníció** Ha $n \ge 1$, $A \in K^{n \times n}$, ekkor A mátrix sajátértékei, sajátvektorai, spektruma az $f_A : K^n \to K^n$, $x \mapsto Ax$ endomorfizmus sajátértékei, sajátvektorai és spektruma.
- **18 Deffiníció** V_K vektortér, $f \in \operatorname{End}_K V$, az S_t a t-hez tartozó sajátvektorokat tartalmazó halmaz, akkor $S \cup 0_V$ az f endomorfizmus t-hez tartozó sajátaltere.

Jelölés Eig_{f,t}

19 Deffiníció V_K vektortér $f \in \operatorname{End}_K V$, t változó, akkor $\det(f - tI)$ polinom az f karakterisztikus polinomja.

Jelölés $char_f(t)$

- **20 Deffiníció** V_K vektortér, $f \in \operatorname{End}_K V$, $t \in K$, ekkor dim $(\operatorname{Eig}_{f,t})$ a t sajátártákánek geometriai multiplicitása.
- **21 Deffiníció** V_K vektortér, t_0 az $f \in \operatorname{End}_V K$ sajátértéke, ekkor t_0 algebrai multiplicitása k, ha t_0 pntosan k-szoros gyöke $\operatorname{char}_f(t)$ -nek.
- 22 **Deffiníció** V_K vektortér, ekkor $f \in \operatorname{End}_K V$ diagonalizálható, ha létezik egy \mathcal{B} bázis, amiben $[f]_{\mathcal{B}}$ diagonális.

5. Mátrixok sajátfelbontása

23 Deffiníció $A \in K^{n \times n}$, $y \in K^n - 0$, akkor az y^T sorvektor az A baloldali sajátvektora, ha $y^T A = \lambda y^T$

24 **Deffiníció** $A \in K^{n \times n}$ diagonilazálható mátrix sajátfelbontása PDP^{-1} , ahol P i-edik oszlopa az A mátrixhoz tartozó t_i -edik egyik sajátvektora (jelölje ezt most \underline{x}_i), P^{-1} i-edik sora az A mátrix t_i -hez tartozó egyik baloldali sajátvektora (jelölje most ezt \underline{y}_i). Ekkor:

$$\sum_{i=1}^{n} t_{i} \underline{x}_{i} \underline{y}_{i}$$

a sajátfelbontás diadikus alakja.

6. Spektrálfelbontás

Deffiníció Ha $A \in K^{n \times n}$ -nak létezik sajátfelbontása és P_i a $\text{Eig}_{A,t(i)}$ -re való vetítés mátrixa (a vetítés iránya a többi sajátaltér direkt összege), akkor A spektrálfelbontása:

$$A = t_1 P_1 + \ldots + t_k P_k$$

7. Bilineáris leképezések

Dián vannak itt dolgok, amit nem akarok leírni.

Dia (deffiníció)tartalma:

- 1. bilineáris leképezés
- 2. szimmetrikus bilineáris leképezés
- 3. Gram-mátrix
- 4. baloldali, jobboldali mag, reguláris
- 5. ortogonalitás bilineáris leképezésre nézve
- 6. ortogonális kiegészítő
- 7. Tehetetlenségi Tétel

8. Euclides-terek

26 Deffiníció $V_{\mathbb{R}}$, $\beta: V \times V \to \mathbb{R}$ bilineáris leképezés, ekkor β pozitív definit, ha szimmetrikus és minden V-beli v vektorra $\beta(v,v) \geq 0$, továbbá $\beta(v,v) = 0$ pontosan akkor, ha v = 0. Másik elnevezés a skalárszorzat.

27 Deffiníció

- 1. $V_{\mathbb{R}}$, $\beta := \langle ., . \rangle : V^2 \to \mathbb{R}$ skalárszorzat (másnéven belsőszorzat), ekkor a $(V, \langle ., . \rangle)$ pár Euclides-tér (inner product space).
- 2. $v \in V$, akkor $||v|| = \sqrt{\langle v, v \rangle}$ a v normája
- 3. $v, w \in V$, akkor d(v, w) = ||v w|| a v és a w távolsága

Jelölés $(V, \langle ., . \rangle)_E$ jelöli a $V_{\mathbb{R}}$ vektorteret, amiben $\langle ., . \rangle$ vektorszorzat. Ha emellett V még véges dimenziós is, akkor ezt $(V, \langle ., . \rangle)_{E, \hat{\otimes}}$ jelöli.

28 Deffiníció $(V, \langle ., . \rangle)_E$ ekkor ha $v, w \in V$, akkor a szögük:

$$\arccos \frac{\langle v, w \rangle}{||v||||w||}$$

29 Deffiníció $(V, \langle .,. \rangle)_E$ és $v, w \in V$, akkor $v \perp_{\langle .,. \rangle} w$, ha v és w szöge $\frac{\pi}{2}$.

9. Ortogonális bázisok

30 Deffiníció $(V, \langle .,. \rangle)_E S \subset V$ ortogonális részhalmaz, ha minden $v, w \in S$ esetén $v \perp_{\langle ... \rangle} w$, valamint S ortonormált, ha ortogonális és minden S-beli v-re ||v|| = 1, és S ortonormált bázis, ha ortonormált és bázis.

31 **Deffiníció** $A \in \mathbb{R}^{n \times n}$ pozitív definit mátrix, ha $\beta(x, y) = x^T A y$ pozitív definit pontosan akkor, ha A szimmetrikus és $x^T x > 0$ minden nemnulla $\mathbb{R}^n - 0$ -beli vektorra.

10. Ortogonális kiegészítő

11. Adjungált

32 Deffiníció $(V_1, \langle .,. \rangle_1)_E$, $(V_2, \langle .,. \rangle_2)_E$, $f: V_1 \to V_2$ lineáris leképezés $f^*: V_2 \to V_1$ lineáris függvényt az f adjungáltjának nevezzük, ha minden $v: V_1$ -beli, $w: V_2$ -beli vektorokra:

$$\langle f(v), w \rangle_2 = \langle v, f^*(w) \rangle_1.$$

33 **Deffiníció** $(V, \langle ., . \rangle)_E$ $f \in \operatorname{End}_{\mathbb{R}} V$, ekkor f önadjungált, ha $f^* = f$.

34 Deffiníció $X \in \mathbb{R}^{n \times n}$ ortogonális, ha $X^T X = I$ (azaz $X^T = X^{-1}$).

12. Ortogonális transzformációk

35 Deffiníció $(V, \langle .,. \rangle)_E$, $f \in \operatorname{End}_{\mathbb{R}} V$, ekkor f ortogonális transzformácó, ha bijektív (izomorfizmus) és minden V-beli v és w esetén:

$$\langle v, w \rangle = \langle f(v), f(w) \rangle.$$

36 Állítás

- 1. id_V ortogonális,
- 2. $f, g \in \operatorname{End}_{\mathbb{R}} V$, akkor fg, f^{-1} ortogonális.

37 Deffiníció A (G, \cdot) páros csoport, ha $G \neq \emptyset$.

38 Deffiníció A (G, \cdot) páros Abel-csoport, ha (G, \cdot) csoport és \cdot kommutatív.

39 Állítás Az (.,.)-ortogonális transzformációk csoportot alkotnak a kompozícióra nézve

Jelölés $O_{\langle .,. \rangle}$ (vagy $O_{\langle \rangle}$).

40 Deffiníció Ha $(V, \langle .,. \rangle)_{E,\stackrel{<}{\infty}}$, $V = \mathbb{R}^{n \times n} A \in V \langle .,. \rangle$ -ortogonális leképezés mátrixa, ekkor az ilyen leképezések csoportja a mátrixszorzásra nézve az n-edrendű ortogonális csoport.

Jelölés $O_{n,\langle\rangle}(\mathbb{R})$

41 Deffiníció $(V, \langle ., . \rangle)_{E, \overset{<}{\sim}}$, $f \in O(V)$, ekkor az olyan f-ek melyekre det(f) = 1 a speciális ortogonális csoportot alkotnak.

Jelölés SO(V)

42 Állítás Ha $(V, \langle ., . \rangle)_E$, akkor SO(V) csoport.

|| Tehát a deffiníció értelmes.

43 Deffiníció Ha $A: \mathbb{R}^2 \to \mathbb{R}^2$ mátrix:

$$A = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

alakú, akkor kétdimenziós forgásmátrix.

Jelölés Rt

44 Tétel $(V, \langle .,. \rangle)_{E, \overset{\sim}{\sim}}$, ekkor f pontosan akkor ortogonális, ha létezik egy V-beli $\mathcal B$ ortonormált bázis, amiben $[f]_{\mathcal B}$ blokkdiagonális úgy, hogy a főátlóra fűzott 2×2 -es és 1×1 -es blokkokból áll, hol a 2×2 -es blokkok R_t , az 1×1 blokkok ± 1 alakúak.

45 Következmény Két síkra való tükrözés tengely körüli forgatás.

13. Szemiortogonális mátrixok

46 Deffiníció $A \in \mathbb{R}^{n \times m}$ szemiortogonális, ha az oszlopok vagy sorok ortonormált bázist (vagy csak rendszert?) alkotnak. Tehát $A^T A = I_n$, ha az oszlopok alkotnak, $AA^T = I_m$, ha a sorok alkotnak ortonormált rendszert.

47 Deffiníció A teljes oszloprangú (rkA=n) $A \in \mathbb{R}^{n \times m}$ QR-felbontása QR=A, ha $Q \in \mathbb{R}^{n \times m}$ szemiortogonális, $R \in \mathbb{R}^{n \times n}$ pedig felsőháromszögmátrix, ahol a diagonális elemek nemnegatívok.

48 Tétel A QR-felbontás egyértelműen létezik.

- **49 Deffiníció** $(V, \langle ., . \rangle)_{E, \stackrel{\leq}{\infty}}, \beta : V \times V \to \mathbb{R}$, szimmetrikus, bilineáris, akkor β :
 - 1. pozitív definit, ha $\forall v \in V : \beta(v, v) \ge 0$ és $\beta(v, v) = 0 \leftrightarrow v = 0$,
 - 2. pozitív semidefinit, ha $\forall v \in V : \beta(v, v) \geq 0$,
 - 3. negatív definit, ha $\forall v \in V : \beta(v, v) \leq 0$ és $\beta(v, v) = 0 \leftrightarrow v = 0$,
 - 4. negatív semidefinit, ha $\forall v \in V : \beta(v, v) \leq 0$,
 - 5. indefinit, ha $\exists v, w : \beta(v, v) > 0, \beta(w, w) < 0$
- **50 Állítás** $(V, \beta)_{\mathbb{R} \stackrel{<}{\sim}}$, ha \mathcal{B} , egy V-beli bázis, úgy, hogy $[\beta]_{\mathcal{B}}$ diagonalizálható, a diagonális elemek d_1, \ldots, d_n akkor:
 - 1. β pozitív definit pontosan akkor, ha minden $\forall d_i > 0$,
 - 2. β pozitív semidefinit pontosan akkor, ha minden $\forall d_i \geq 0$,
 - 3. β negatív definit pontosan akkor, ha minden $\forall d_i < 0$,
 - 4. β negativ semidefinit pontosan akkor, ha minden $\forall d_i \leq 0$,
 - 5. β indefinit egyébként.
- 51 Állítás $(V, \beta)_{\mathbb{R} \stackrel{<}{\leq}}$, ha \mathcal{B} , egy V-beli bázis, úgy, hogy $[\beta]_{\mathcal{B}}$ szimmetrikus akkor:
 - 1. β pozitív definit pontosan akkor, ha minden sajátértéke pozitív,
 - 2. β pozitív semidefinit pontosan akkor, ha minden sajátértéke nemnegatív,
 - 3. β negatív definit pontosan akkor, ha minden sajátértéke negatív,
 - 4. β negatív semidefinit pontosan akkor, ha minden sajátértéke nempozitív,
 - 5. β indefinit egyébként.
- 52 Állítás (Főtengelytétel-Junior) $(V, \beta)_{\mathbb{R}, \overset{<}{\sim}}$, $\mathcal{B} = \{b_1, \dots, b_n\}$ bázis V-ben, $A = [\beta]_{\mathcal{B}}$. Ha A_k a az A főminorja, akkor:
 - 1. β pontosan akkor pozitív definit, ha det $A_k > 0$,
 - 2. β pontosan akkor negatív definit, ha $(\det A_k)(-1)^k > 0$, $\forall k \in \underline{n}$,
 - 3. ha det $A \neq 0$ és se az 1., se a 2. eset nem áll fenn, akkor β indefinit.

14. Qadratikus alak

53 Deffiníció $V_{\mathbb{R}, \infty}$ és $\beta: V \times V \to \mathbb{R}$ szimmetrikus, bilineáris leképezés, $\mathcal{B} = \{b_1, \dots, b_n\}$ V vektortér egy bázisa, $[x]_{\mathcal{B}} = (x_1, \dots, b_n)^T$, ekkor a qadratikus alak:

$$Q(x) = [x]_{\mathcal{B}}^{T}[\beta]_{\mathcal{B}}[x]_{\mathcal{B}} = \sum_{i,j=1}^{n} \beta(b_{i}, b_{j}) x_{i} x_{j} = \sum_{i,j=1}^{n} a_{ij} x_{i} x_{j}$$

Ekkor ez az alak az x_1, \ldots, x_n egy homogén másodfokú polinomja.

Jelölés Az a szimmetrikus, bilineáris β függvény, amit Q meghatároz β_Q jelöli.

54 Állítás $(V)_{\mathbb{R}, \infty}$ vektortér, $\mathcal{B} = \{b_1, \dots, b_n\}$ bázis, ekkor Q qadratikus alak egyertelműen meghatároz egy β_Q szimmetrikus bilineáris függvényt.

Jelölés $(V, \beta)_{\mathbb{R}, \tilde{\otimes}}$ jelöli innentől (amíg másképpen nincs meghatározva, β milyensége) az \mathbb{R} feletti véges vektorteret, amin β egy szimmetrikus, bilineáris függvény.

55 **Tétel** Ha $(V, \langle .,. \rangle)_{E,\hat{\infty}}$, $Q: V \to \mathbb{R}$ qadratikus alak, amit $\langle .,. \rangle$ határoz meg, ekkor létezik egy $\mathcal{B} = \{b_1, ..., b_n\}$ V-ben, továbbá, $\exists p, q \geq p + q \leq n$ egészek, melyekre minden V-beli $x = (x_1, ..., x_n)$ vektorra, és ha $y_1, ..., y_{p+q}$ az $[x]_{\mathcal{B}}$ vektor első p+q koordinátája, ekkor:

$$Q(x) = \lambda_1 y_1^2 + \ldots + \lambda_p^2 y_p^2 - \lambda_{p+1} y_{p+1}^2 - \ldots - \lambda_p y_{p+q}^2$$

létezik, a λ -k sorrendjétől (vagy talán értékétől (is) ???) eltekintve.

56 Deffiníció $(V, \beta)_{\mathbb{R}, \infty}$, $C = \{c_1, \ldots, c_n\}$ V-nek egy ortonormált bázisa, $A = [\beta_Q]_C$, akkor $\mathcal{B} = \{b_1, \ldots, b_n\}$ V-beli bázis által feszített egydimenziós altereket (egyeneseket), a Q főtengelyeinek nevezzük.

57 Deffiníció Q qadratikus alak:

- 1. pozitív definit, pontosan akkor, ha β_O is az,
- 2. pozitív semidefinit, pontosan akkor, ha β_Q is az,
- 3. pozitív definit, pontosan akkor, ha β_O is az,
- 4. pozitív semidefinit, pontosan akkor, ha β_Q is az,
- 5. semidefinit, pontosan akkor, ha β_O is az,

58 Deffiníció $(a_{ij}) = A \in \mathbb{R}^{n \times n}$, $b = (b_1, \dots, b_2)^T \in \mathbb{R}^n$, $d \in \mathbb{R}$, $x \in \mathbb{R}^n$:

$$f(x) = x^{T}Ax + b^{T}x + d = \sum_{i,i=1}^{n} a_{ij}x_{i}y_{j} + \sum_{i=1}^{n} b_{i}x_{i} + d = 0$$

egyenletet kielégítő pontok másodfokú görbék halmazát alkotják.