Aula 2 Processamento de Imagens Convolução

Eduardo L. L. Cabral

Objetivos

- Apresentar princípios básicos de processamento de imagens.
- Apresentar a operação de convolução.
- Exemplo de operação de convolução para detectar bordas em imagens.
- Apresentar aspectos operacionais da convolução ("padding" e "stride").

Desafios da visão computacional

- Como visto na Aula 13, a visão computacional apresenta inúmeros desafios.
- Um dos maiores desafios da visão computacional é a dimensão das imagens, que pode ser da ordem de vários mega-pixels.
- Se as imagens forem pequenas, por exemplo, 64x64x3 pixels totalizando 12.288 números ⇒ o uso de uma RNA com camadas densas não é um problema.
- Se as imagens forem, por exemplo, padrão HD de 1080x720x3 pixels tem-se 2.332.800 números ⇒ nesse caso o uso de uma RNA com camadas densas se torna um grande problema computacional.
- A solução para diminuir o número de parâmetros da RNA é usar as RNA convolucionais.

Desafios da visão computacional

Operação de convolução

- Convolução é a operação mais utilizada em visão computacional para processamento de imagens.
- Convolução pode ser utilizada para realizar inúmeras operações:
 - detecção de bordas;
 - detecção de cantos;
 - detecção de cores;
 - suavização da imagem (filtro passa baixa);
 - ressaltamento (filtro passa alta);
 - etc.

Operação de convolução

- Dado o seu potencial de identificar características nas imagens a convolução se tornou a operação básica das RNA convolucionais.
- RNA convolucionais ⇒ especializadas em trabalhar com imagens.
- RNA convolucional de várias camadas, cada camada acrescenta e agrega informações das camadas anteriores para realizar a tarefa desejada.

Operação de convolução

- Exemplo das saídas das camadas de uma RNA convolucional treinada para identificar faces.
- Cada camada agrega informação das camadas anteriores.

Detecção de bordas

 Processamento típico de imagens usando convolução ⇒ detecção de bordas.

Bordas horizontais

Exemplo de detecção de bordas verticais e horizontais em uma imagem.

3	0	~	2	7	4
1	51	80	9 ⁻¹	3	1
2	71	2 ⁰	5 ⁻¹	1	3
0	11	3°	1 ⁻¹	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Imagem 6x6

	1	0		
*	1	0	Υ_	
	1	0	-1	

Filtro 3x3

Convolução

-5	4	0	8
-10	-2		

3	0	1	2	7	4
1	5	81	9°	3 ⁻¹	1
2	7	21	5 °	1 ⁻¹	3
0	1	3 ¹	1 °	7 ⁻¹	8
4	2	1	6	2	8
2	4	5	2	3	9

Imagem 6x6

	1	0	-1
* ^	1	0	-1
	1	0	-1

Filtro 3x3

Convolução

-5	4	0	8
-10	-2	-2	

3	0	~	2	7	4
1	5	8	91	3°	1 ⁻¹
2	7	2	5	10	3 ⁻¹
0	1	3	11	7 °	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	3	9

Imagem 6x6

	1	0	-1
k A	1	0	\
	1	0	-1

Filtro 3x3

Convolução

-5	4	0	8
-10	-2	2	3

3	0	~	2	7	4
1	5	8	9	3	1
2	7	2	5	1	თ
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Imagem 6x6

	1	0	-1
-	1	0	1
	1	0	-1
	1	U	-1

Filtro 3x3

Convolução

-5	4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-10

 Outro exemplo de imagem onde existe de fato uma borda vertical.

10 ¹	10°	10 ¹	0	0	0
10 ¹	10°	101	0	0	0
10 ¹	10°	10 ¹	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1
*	7	0	1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

 Outro exemplo de imagem onde existe de fato uma borda vertical.

10	10 ¹	10°	0 ⁻¹	0	0
10	10 ¹	10°	0 ⁻¹	0	0
10	10 ¹	10°	0 ⁻¹	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1
*	1	0	-1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

 Outro exemplo de imagem onde existe de fato uma borda vertical.

10	10	10 ¹	0 0	0 ⁻¹	0
10	10	10 ¹	0 0	0 ⁻¹	0
10	10	10 ¹	0 0	0 ⁻¹	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1
*	1	0	-1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

 Outro exemplo de imagem onde existe de fato uma borda vertical.

10	10	10	01	0 0	0 ⁻¹
10	10	10	01	0 0	0 ⁻¹
10	10	10	01	0 0	0 ⁻¹
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1
*	7	0	-1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

*

=

- Na figura anterior ⇒ quanto maior o valor do pixel mais claro é o pixel.
- Borda detectada na imagem é espessa ⇒ isso de fato ocorre, mas no caso da imagem do exemplo que tem dimensão reduzida isso parece exagero ⇒ para imagens de dimensões normais essa borda não vai aparentar ser espessa.

Outro exemplo de detecção de borda vertical.

01	00	0 ⁻¹	10	10	10
01	00	0 ⁻¹	10	10	10
01	00	0 ⁻¹	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	0	-1
*	1	0	1
	1	0	-1

	0	-30	-30	0
	0	-30	-30	0
1	0	-30	-30	0
	0	-30	-30	0

*

Outro exemplo de detecção de borda vertical.

0	01	0°	10 ¹	10	10
0	01	00	10 ¹	10	10
0	01	00	10 ¹	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	0	-1
*	1	0	1
	1	0	-1

	0	-30	-30	0
	0	-30	-30	0
1	0	-30	-30	0
	0	-30	-30	0

*

Outro exemplo de detecção de borda vertical.

0	0	0 1	10°	10 ¹	10
0	0	0 1	10°	10 ¹	10
0	0	0 1	10°	10 ¹	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	0	-1
*	1	0	1
	1	0	-1

	0	-30	-30	0
	0	-30	-30	0
1	0	-30	-30	0
	0	-30	-30	0

*

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	1	1	
*	0	0	0	=
	-1	-1	-1	

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

				ı	\mathbf{O}	\cap	0	\cap
	1	1	1					
	ı	1	1		30	10	-10	-30
*	\cap	\cap	\cap		50	10	- 10	-30
				_	30	10	-10	_3(
	_1	-1	-1		5	10	- 10	-50
	•	•	•		\cap	\cap	\cap	\cap
					J	U	U	U

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	4	4	1	0	0	0	0
	1	1	1	30	10	-10	_3(
*	0	0	0				
		4	4	30	10	-10	-30
	-1	-1	-1				_
				U	O	0	U

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	1	1	0	0	0	0
	I	I	ı	30	10	-10	-30
*	0	0	0				
	_1	_1	_1	30	10	-10	-30
	_	_	_	0	0	0	0
)			

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Filtro para borda vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Detecção de bordas

Existem outros tipos de filtros para detectar bordas.

1	0	-1
2	0	-2
1	0	-1

	1		
-1	ITCO	Sobe	ı
	ILIO		

3	0	-3
10	0	-10
3	0	-3

Filtro Scharr

0	1	0
1	0	-1
0	-1	0

Borda a 45°

 Podemos também detectar bordas a -45°, 75° etc ⇒ o que altera são os números dentro do filtro.

Suavização de imagens

- Outro exemplo de convolução ⇒ suavização (filtragem passa baixa).
- Substitui o valor do pixel pela média aritmética simples dos valores dos pixels vizinhos.

 Substitui o valor do pixel pela média ponderada dos valores dos pixels vizinhos.

Suavização de imagens

Exemplo de imagem suavizada.

Imagem original

Imagem suavizada com filtro 7x7

Convolução nas RNAs

- Em uma RNA convolucional os valores dos filtros utilizados são aprendidos durante o treinamento.
- Valores numéricos dos filtros são parâmetros da RNA aprendidos para detectar características, tais como:
 - Bordas em qualquer ângulo;
 - Cores;
 - Cantos;
 - Etc.
- A RNA aprende os filtros que forem necessários para realizar a tarefa desejada.
- Nos filtros com dimensão 3x3, tem-se 9 parâmetros da RNA a serem aprendidos.

W_1	W_2	W_3
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₇	<i>W</i> ₈	W ₉

Filtro a ser aprendido

Efeito de borda

- Dimensão da imagem resultante após convolução:
 - Convolução de imagem 8x8 com filtro 3x3 ⇒ resulta imagem 6x6;
 - Filtro tem que caber completamente na imagem;
 - Imagem encolhe a cada etapa de filtragem.

- Dimensão da imagem resultante ⇒ (n f + 1)x(m f + 1)
 n = altura da imagem em pixels;
 m = largura da imagem em pixels;
 f = tamanho do filtro em pixels.
- Exemplo: $(8x8) * (3x3) \Rightarrow (8-3+1)x(8-3+1) = 6x6$.
- Imagem encolhe a cada operação de filtragem ⇒ isso pode ser indesejável em uma RNA de muitas camadas.

- Informação contida nos pixels de cantos e bordas não está sendo considerada da mesma forma que para os pixels centrais ⇒ informação importante pode estar sendo jogada fora.
- Exemplo de convolução com filtro 3x3:
 - Pixel de canto da imagem é usado 1 única vez;
 - Pixel de borda da imagem é usado 3 vezes;
 - Pixel de centro da imagem é usado 9 vezes.

- Como lidar com as bordas da imagem?
 - Se for ignorada ⇒ imagem resultante é menor do que a imagem original;
 - Uma solução ⇒ colocar valor constante nas bordas ("padding").
- "Padding" ⇒ acrescentar pixels nas bordas da imagem na quantidade necessária para que a imagem resultante tenha a mesma dimensão da imagem original:
 - No caso da imagem 8x8 com filtro 3x3 acrescenta-se 1 pixel em todas as bordas da imagem resultando em uma imagem 10x10, que convolucionada com um filtro 3x3 resulta em uma imagem 8x8.
- Pixels são incluídos nas bordas com valor zero.

• Exemplo de "padding" de imagem original 8x8 e filtro 3x3 (p=1):

Imagem original 8x8 (nxm)
Imagem com "padding" (p=1) 10x10
(n+2p)x(m+2p)

Imagem resultante 8x8 (n+2p-f+1)x(m+2p-f+1)

- Número de pixels adicionados em cada borda ⇒ p
- Dimensão da imagem resultante ⇒ (n+2p-f+1)x(m+2p-f+1)
 n = altura da imagem original em pixels;
 m = largura da imagem original em pixels;
 f = dimensão do filtro em pixles (fxf).
- Usando "padding" ⇒ pixels de cantos e bordas são considerados com maior peso.
- Pode fazer "padding" com um número maior de pixels, por exemplo, p = 2 ⇒ p depende da dimensão do filtro.
- As imagens n\u00e3o precisam ser quadradas ⇒ altura e largura podem ser diferentes.

- Nomenclatura usada:
 - Convolução válida ("valid convolution") ⇒ convolução realizada sem "padding":

```
Dimensões: (nxm) * (fxf) = (n-f+1)x(m-f+1)
```

 Convolução mesma ("same convolution") ⇒ convolução realizada adicionando pixels nas bordas em número suficiente para que a imagem resultante tenha mesma dimensão da imagem original:

Dimensões: (n+2p)x(m+2p) * (fxf) = (n+2p-f+1)x(m+2p-f+1)

 Para obter uma imagem resultante de mesma dimensão da imagem original a quantidade de "padding" deve ser:

$$(n+2p-f+1) = n$$

 $(m+2p-f+1) = m$ \Rightarrow resolvendo para $p \Rightarrow p = (f-1)/2$

- Deve-se sempre usar filtros de dimensão ímpar (f = ímpar).
- Quando f é impar quantidade de "padding" necessária para manter imagem resultante com mesma dimensão é inteiro:

$$f = 3 \rightarrow p = (3 - 1)/2 = 1$$

 $f = 5 \rightarrow p = (5 - 1)/2 = 2$

- Se f for par o que acontece?
 - A quantidade de "padding" para manter a imagem resultante com mesma dimensão será fracionária:

$$f = 4 \rightarrow p = (4 - 1)/2 = 1.5!!$$

- Outra vantagem de f impar \Rightarrow filtro tem pixel central, o que facilita os cálculos, pois define uma referência simples.
- Dimensões comuns de filtros ⇒ 1x1, 3x3, 5x5, 7x7.

- Outra característica da convolução é o quanto o filtro é deslocado na horizontal e vertical ao ser "passado" pela imagem ("stride").
 - "Stride" = 1 o filtro se desloca 1 pixel de cada vez na horizontal e depois na vertical;
 - "Stride" = 2 o filtro se desloca 2 pixels de cada vez na horizontal e depois na vertical.
- Dimensão da imagem resultante:

$$(nxm) * (fxf) com (s, p) = [(n + 2p - f)/s + 1]x[(m + 2p - f)/s + 1]$$

Exemplo de convolução com filtro 3x3, "padding", p = 0, e
 "stride", s = 2:

23	34	74	4	6	2	9
6 ¹	6 ⁰	92	8	7	4	3
3-1	40	83	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

3	4	4
1	0	2
-1	0	3

=

91	

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \cdot \lfloor (m+2p-f)/s+1 \cdot 2 \rfloor$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	73	44	64	2	9
6	6	91	80	72	4	3
3	4	8-1	30	83	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

4	4
0	2
0	3
	4 0 0

=

91	100	

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	63	24	94
6	6	9	8	71	40	32
3	4	8	3	8-1	90	7 ³
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

4	4
0	2
0	3

=

91	100	83

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \cdot \lfloor (m+2p-f)/s+1 \cdot 2 \rfloor$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
33	44	84	3	8	9	7
71	80	32	6	6	3	4
4-1	20	13	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

3	4	4
1	0	2
-1	0	3
	-	-

=

91	100	83
69		

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	83	34	84	9	7
7	8	31	60	6 ²	3	4
4	2	1-1	80	33	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

4	4
0	2
0	3
	0

=

91	100	83
69	91	

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	83	94	74
7	8	3	6	61	30	42
4	2	1	8	3-1	40	63
3	2	4	1	9	8	3
0	1	3	9	2	1	4

*

3	4	4
1	0	2
-1	0	3
	3 1 -1	3 41 0-1 0

=

91	100	83
69	91	127

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \ge \lfloor (m+2p-f)/s+1 \ge \rfloor$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
43	24	14	8	3	4	6
31	20	42	1	9	8	3
0-1	10	33	9	2	1	4

*

4
2
3

=

91	100	83
69	91	127
44		

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	13	84	34	4	6
3	2	41	10	92	8	3
0	1	3-1	90	2 ³	1	4

*

3	4	4
1	0	2
-1	0	3

=

91	100	83
69	91	127
44	72	

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$

$$p = 0$$
, $s = 2$

 Exemplo de convolução com filtro 3x3, "padding", p = 0, e "stride", s = 2:

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	33	44	64
3	2	4	1	91	80	32
0	1	3	9	2-1	10	43

*

	3	4	4
	1	0	2
	-1	0	3
,			

=

91	100	83
69	91	127
44	72	74

Filtro 3x3 (fxf)

Imagem resultante 3x3 $\lfloor (n+2p-f)/s+1 \ge x \lfloor (m+2p-f)/s+1 \ge x \rfloor$

$$p = 0$$
, $s = 2$

Arredondamento

Deslocamento ("stride")

Dimensão da imagem resultante do exemplo:

$$(nxm) * (fxf) = [(n + 2p - f)/s + 1]x [(m + 2p - f)/s + 1]$$

 $(7x7) * (3x3) com (p=0 e s=2) = [(7+0-3)/2+1]x[(7+0-3)/2+1]$
 $(3x3)$

- Pode ocorrer que a divisão por 2 resulta em um número fracionário:
 - Nesse caso o resultado é arredondado para baixo;
 - A parte da máscara que não se encaixa na imagem é desconsiderada no cálculo da imagem resultante, ou seja, não são usados.

 Fórmula geral para calcular a dimensão da imagem resultante:

 Exemplo de convolução de uma imagem 8x8 com filtro 3x3, "padding", p = 0, e "stride", s = 3 ⇒ nesse caso parte da imagem é desconsiderada.

23	34	74	4	6	2	9	8
61	60	92	8	7	4	3	1
3-1	40	83	3	8	9	7	2
7	8	3	6	6	3	4	5
4	2	1	8	3	4	6	7
3	2	4	1	9	8	3	0
0	1	3	9	2	1	4	3
5	7	2	0	5	6	7	4

Filtro 3x3 Imagem resultante (fxf) $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor (m+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor 3,5 \cdot 2x \rfloor = 3x3$

$$p = 0, s = 2$$

2	3	73	44	64	2	9	8
6	6	91	80	72	4	3	1
3	4	8-1	30	83	9	7	2
7	8	3	6	6	3	4	5
4	2	1	8	3	4	6	7
3	2	4	1	9	8	3	0
0	1	3	9	2	1	4	3
5	7	2	0	5	6	7	4

3	4	4		91	100	
1	0	2	=			
-1	0	3				

Filtro 3x3 Imagem resultante (fxf) $\lfloor (n+2p-f)/s+1 \cdot 2x \cdot \lfloor (m+2p-f)/s+1 \cdot 2 \rfloor$ $\lfloor 3,5 \cdot 2x \cdot \lfloor 3,5 \cdot 2x \cdot \rfloor = 3x3$

$$p = 0$$
, $s = 2$

2	3	7	4	63	24	94	8
6	6	9	8	71	40	32	1
3	4	8	3	8-1	90	73	2
7	8	3	6	6	3	4	5
4	2	1	8	3	4	6	7
3	2	4	1	9	8	3	0
0	1	3	9	2	1	4	3
5	7	2	0	5	6	7	4

3	4	4		91	100	83
1	0	2	=			
-1	0	3				

Filtro 3x3 Imagem resultante (fxf) $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor (m+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor 3,5 \cdot 2x \rfloor = 3x3$

$$p = 0, s = 2$$

Máscara não chega na última coluna

Imagem resultante $\lfloor (n+2p-f)/s+1 \ge x \lfloor (m+2p-f)/s+1 \ge 1$

91

100

 $[3,5] \times [3,5] = 3x3$

83

$$p = 0$$
, $s = 2$

2	3	7	4	6	2	9	8
6	6	9	8	7	4	3	1
3	4	8	3	8	9	7	2
7	8	3	6	6	3	4	5
43	24	14	8	3	4	6	7
31	20	42	1	9	8	3	0
0-1	10	33	9	2	1	4	3
5	7	2	0	5	6	7	4

3	4	4		91	100	83
1	0	2	=	69	91	127
-1	0	3		44		

Filtro 3x3 Imagem resultante (fxf) $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x \rfloor = 3x3$

$$p = 0$$
, $s = 2$

$$p = 0$$
, $s = 2$

2	3	7	4	6	2	9	8
6	6	9	8	7	4	3	1
3	4	8	3	8	9	7	2
7	8	3	6	6	3	4	5
4	2	1	8	3	4	6	7
3	2	4	1	9	8	3	0
0	1	3	9	2	X	4	1
5	7	2	0	5	6	X	4 ,

Imagem original 8x8 (nxm)

$$p = 0, s = 2$$

	3	4	4		91
*	1	0	2	=	69
	-1	0	3		44

69 91 127 44 72 74	91	100	03	
44 72 74	69	91	127	
	44	72	74	

Filtro 3x3 Imagem resultante (fxf) $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor (m+2p-f)/s+1 \cdot 2x \rfloor + 1 \cdot 2x$ $\lfloor 3,5 \cdot 2x \rfloor + 3 \cdot 3x$

Máscara não chega na última linha

2	3	7	4	6	2	9	8
6	6	9	8	7	4	3	1
3	4	8	3	8	9	7	2
7	8	3	6	6	3	4	5
4	2	1	8	3	4	6	7
3	2	4	1	9	8	3	0
0	1	3	9	2	1	4	3
5	7	2	0	5	6	7	4

Pixels descartados

Filtro 3x3 Imagem resultante
$$(fxf)$$
 $\lfloor (n+2p-f)/s+1 \cdot 2x \rfloor (m+2p-f)/s+1 \cdot 2$ $\lfloor 3,5 \cdot 2x \rfloor = 3x3$

$$p = 0$$
, $s = 2$

- Imagens coloridas tem 3 canais (RGB) ⇒ como realizar convolução em imagens de vários canais?
- Convolução em imagem RGB é realizada com um filtro 3D.
- Filtro 3D:
 - Imagem de dimensão (nxmx3);
 - Filtro de dimensão (fxfx3) ⇒ filtro deve ter o mesmo número de canais que a imagem;
 - Número de canais da imagem = número de canais do filtro.
 - Dimensão da imagem resultante da convolução usando p = 0,
 s = 1:

 $(nxmx3) * (fxfx3) = (n-f+1)x(m-f+1) \Rightarrow$ imagem resultante tem somente um canal.

- Exemplo: imagem (8x8x3), com filtro (3x3x3), p = 0, s = 1:
 - Filtro 3x3x3 possui 27 parâmetros;
 - Multiplica-se os 27 parâmetros do filtro pelos pixels correspondentes na imagem nos 3 canais e adiciona todos os valores, resultando no valor do pixel da nova imagem;
 - Passando o filtro em toda a imagem, como feito para uma imagem de 1 canal, tem-se a imagem resultante.
- Convolução em volume ⇒ convolução de um volume (várias imagens) por um filtro que é também um volume (vários filtros)

Exemplo: imagem (8x8x3), com filtro (3x3x3), p = 0, s = 1: Filtro 3x3x3 Imagem resultante (6x6) (fxfx3)(n-f+1)x(m-f+1)Imagem original 8x8x3 (nxmx3)

 Convolução de um volume (8x8x3) por um filtro 3D (volume, 3x3x3) ⇒ imagem (6x6)

 Com será um filtro 3D para detectar bordas verticais na cor vermelha?

	G	
0	0	0
0	0	0
0	0	0

	D	
0	0	0
0	0	0
0	0	0

Filtro 3D (3x3) para detectar bordas horizontais na cor azul:

	G	
0	0	0
0	0	0
0	0	0

	В	
1	1	1
0	0	0
-1	-1	-1

- Pode-se usar múltiplos filtros 3D, por exemplo:
 - Um filtro para detectar borda vertical na imagem vermelha ⇒ (nxmx3) * (fxfx3) ⇒ (n-f+1)x(m-f+1);
 - Um filtro para detectar borda horizontal na imagem azul ⇒ (nxmx3) * (fxfx3) ⇒ (n-f+1)x(m-f+1);
 - Unindo as duas imagens resultantes ⇒ tem-se um volume final de dimensão (n-f+1)x(m-f+1)x2.

Convolução de um volume (8x8x3) por dois filtros 3D (3x3x3)
 ⇒ imagem (6x6x2)

- Usando vários filtros é possível detectar muitas características na imagem.
- Considerando "padding" e "stride", tem a fórmula geral para a dimensão do volume resultante:

$$(nxmxn_c) * (fxfxn_c)xn_f = \lfloor (n+2p-f)/s + 1 \cdot 2x \rfloor (m+2p-f)/s +$$

Por exemplo:

-
$$n = 32$$

- $m = 64$
- $n_c = 3$
- $f = 5$;
- $n_f = 10$
- $s = 2$
- $p = 1$ \Rightarrow volume resultante (15x31x10)

Convolução nas RNAs

 Na operação de convolução real os cálculos são realizados com a máscara (filtro) invertida de cima para baixo e da esquerda para a direita.

3	4	5	7	2	5
1	0	2	0	0	4
-1	9	7	-1	1	3

- Nas RNAs não é realizada a operação de inversão da máscara.
- De fato o que se realiza nas RNAs é uma operação de correlação cruzada da máscara com a imagem, mas mesmo assim é chamada de convolução.

Convolução nas RNAs

- A não inversão da máscara é feito para simplificação e não afeta em nada os resultados.
- A convolução apresenta a propriedade distributiva que a correlação cruzada não apresenta.
- Propriedade distributiva ⇒ (A*B)*C = A*(B*C)