# Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Н. В., гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., доц. Голяндина Н. Э.

Санкт-Петербург, 2025

### Введение

Пусть  $\mathsf{X}=(x_1,\ldots,x_N)$  – временной ряд длины  $N,\ x_i\in\mathbb{R}$  – наблюдение в момент времени i.

 $X = X_{Trend} + X_{Periodics} + X_{Noise}$ , где:

- X<sub>Trend</sub> тренд, медленно меняющаяся компонента;
- X<sub>Periodics</sub> сумма периодических компонент;
- X<sub>Noise</sub> шум, случайная составляющая.

Методы: SSA — метод, позволяющий раскладывать временной ряда в сумму интерпретируемых компонент (Golyandina, Nekrutkin и Zhigljavsky 2001); GSSA — модификация SSA на основе добавления весов (Gu и др. 2024); CiSSA — модификация CiSSA на основе циркулярной матрицы (Bogalo, Poncela и Senra 2020).

**Задача:** Описание модификаций в контексте теории **SSA**, сравнение алгоритмов, реализация их на языке R.

### По чему будем сравнивать?

#### Пример

$${\sf X} = {\sf X}_1 + {\sf X}_2 + {\sf X}_{
m Noise} = e^{An} \sin{(2\pi\omega_1 n)} + \cos{(2\pi\omega_2 n)} + arepsilon_n.$$
  $\omega_1, \omega_2$  — частоты;  $\varepsilon_n \sim {\sf N}(0,\sigma^2)$  — шум;  $e^{An} \sin{(2\pi\omega_1 n)} + \cos{(2\pi\omega_2 n)}$  — сигнал.  $\hat{\sf X}$  — оценка выделения сигнала методом.  $\hat{\sf X}_1, \hat{\sf X}_2$  — оценки разделения компонент  ${\sf X}_1, {\sf X}_2$ 

#### Критерии сравнения методов:

- Постановка задачи (для CiSSA она другая, решаем только с заранее заданными частотами)
- Выделение сигнала
- Разделимость

### Разделимость

#### Определение 1

Есть метод разделения ряда на компоненты с параметрами  $\Theta$ , ряд  $X = X^{(1)} + X^{(2)}$ .  $\exists$  набор параметров  $\hat{\Theta}$ , L, N, что при разделении ряда на компоненты этим методом,  $\hat{X}^{(1)}$  является оценкой  $X^{(1)}$ , при этом,  $\mathrm{MSE}\left(X^{(1)},\hat{X}^{(1)}\right) = 0$ . Тогда ряды  $X^{(1)}$  и  $X^{(2)}$  точно разделимы данным методом.

#### Определение 2

Есть метод разделения ряда на компоненты с параметрами  $\Theta$ , ряд  ${\sf X}={\sf X}^{(1)}+{\sf X}^{(2)}$ .  $\exists$  набор параметров  $\hat{\Theta}$  и L=L(N),  $N\to\infty$ , что при разделении ряда на компоненты этим методом,  $\hat{\sf X}^{(1)}$  является оценкой  ${\sf X}^{(1)}$ , при этом,  ${\sf MSE}\left({\sf X}^{(1)},\hat{\sf X}^{(1)}\right)\to 0$ . Тогда ряды  ${\sf X}^{(1)}$  и  ${\sf X}^{(2)}$  называются асимптотически L(N)-разделимыми данным методом.

#### Модификации метода **SSA**

<sup>∟</sup>Разделимость

Какое из оформлений лучше?

#### Разделимость

Есть ім тад рілделений ряде ім компонічты є пірі мерзіні  $\Theta$ , ряд  $X=X^{(1)}+X^{(2)}$ . З ін бор пірізметр оз  $\Theta$ , L, N, 4 то пр и рілделений ряде ім компонічты этим метад од  $X^{(1)}$  я вля есто одні жой  $X^{(1)}$ , пр и этод,  $MSE\left(X^{(1)},X^{(1)}\right)=0$ . Тогди ряды  $X^{(1)}$  и  $X^{(2)}$  то нор уд деляма ді ними метадом.

#### Определение 2

Ect. we then by all eigen error is expended with a corporation of  $\rho_{0A} \propto -\chi^{(1)} + \chi^{(2)} = 0$  for the forthermore  $\hat{\Theta}$  in L = L(N),  $N \to \infty$ , for the real part and enterthy a final material and  $\hat{\chi}^{(1)}$  and attachment  $\hat{\chi}^{(1)}$  and attachment  $\hat{\chi}^{(1)}$  and attachment  $\hat{\chi}^{(2)}$  is a size of  $\hat{\chi}^{(2)}$ . We have  $\hat{\chi}^{(2)} = 0$ , then  $\hat{\chi}^{(2)} = 0$ , then  $\hat{\chi}^{(2)} = 0$ , then  $\hat{\chi}^{(2)} = 0$ . Then  $\hat{\chi}^{(2)} = 0$ , then  $\hat{\chi}^{(2)} = 0$ . Then  $\hat{\chi}^{(2)} = 0$ , then  $\hat{\chi}^{(2)} = 0$ .

### Метод SSA. Алгоритм

 ${\sf X} = (x_1, \dots, x_N)$  — временной ряд. 1 < L < N — длина окна. **А**лгоритм **SSA**:

- Построение траекторной матрицы:
  - $\mathbf{X} = \mathcal{H}(\mathsf{X}) = [\mathsf{X}_1 : \dots : \mathsf{X}_K], \ \mathsf{X}_i = (x_i, \dots, x_{i+L-1})^T, \ 1 \le i \le K, \quad K = N L + 1.$
- ② Сингулярное разложение (SVD) траекторной матрицы:

$$\mathbf{X} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^T = \sum_{i=1}^d \mathbf{X}_i, \ d = \mathrm{rank}(\mathbf{X}).$$

 $\mathbf{X}_i$  — элементарные матрицы ранга 1.

 $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}})$  – i-ая собственная тройка.

 $oldsymbol{\circ}$  Группировка индексов  $1,\ldots,d$  на m непересекающихся подмножеств  $I_1,\ldots,I_m$  .  $\mathbf{X}_{I_k}=\sum\limits_{i\in I_k}^{n_k}\mathbf{X}_i,\ n_k=|I_k|.$ 

$$\mathbf{X} = \mathbf{X}_{I_1} + \cdots + \mathbf{X}_{I_m}$$
.

lacktriangle Восстановление:  $ilde{\mathsf{X}}_{I_k} = \mathcal{H}^{-1}(\mathbf{X}_{I_k})$ ,  $\mathsf{X} = ilde{\mathsf{X}}_{I_1} + \cdots + ilde{\mathsf{X}}_{I_m}$ .

#### Модификации метода **SSA**

└─Метод SSA. Алгоритм

Какое из оформлений лучше?

#### Метод SSA. Алторит м

 $X = (x_1, \dots, x_N)$  — species so P page 1 < L < N — gas so Q case. As rop set in SSA:

 $m{Q}$  Построен ис трае кторно й матрицы:  $\mathbf{X} = \mathcal{H}(\mathbf{X}) = [\mathbf{X}_1: \ldots: \mathbf{X}_K], \ \mathbf{X}_i = (x_i, \ldots, x_{i+L-1})^T,$   $1 \leq i \leq K, \quad K = N-L+1.$ 

 $\mathbf{\Phi}$  С ингулярнов р жложения (SVD) г расе оргой маграци:  $\mathbf{X} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^T = \sum_{i=1}^{d} \mathbf{X}_i, d = \text{tab}(\mathbf{X}).$  $\mathbf{X}_i = \lambda_i$  маграция маграци разез 1.

 $\mathbf{X}_i = \mathbf{x}_i$  we express we write the proof is  $(\sqrt{\lambda_i}, U_i, V_i^T) = i \cdot \mathbf{x}_i$  cofts we seen that is  $\mathbf{x}_i = \mathbf{x}_i$  for a property of  $\mathbf{x}_i$  and  $\mathbf{x}_i = \mathbf{x}_i$  for a property of  $\mathbf{x}_i$  and  $\mathbf{x}_i = \mathbf{x}_i$  for a property of  $\mathbf{x}_i$  and  $\mathbf{x}_i = \mathbf{x}_i$  for a property of  $\mathbf{x}_i = \mathbf{x}_i$  for  $\mathbf{x}_i = \mathbf{x}_i$  and  $\mathbf{x}_i = \mathbf{x}_i$  for  $\mathbf{x}_i = \mathbf{x}_i$  for  $\mathbf{x}_i = \mathbf{x}_i$  and  $\mathbf{x}_i = \mathbf{x}_i$  for  $\mathbf{x}_i = \mathbf{x}_$ 

igoplus Frynningsias  $I_{A_1}$  and  $I_{A_2}$  and  $I_{A_3}$  is a substitution of extension  $I_{A_3}$  and exactly  $I_{A_3}$  ...  $I_{A_6}$  .  $X_{I_6}$  ...  $X_{I_6}$  ...

### Вложенный вариант SSA. EOSSA

#### Определение 3 (Golyandina, Korobeynikov и Zhigljavsky 2018)

Вложенный вариант SSA — двухэтапный метод:

- Выделение сигнала с помощью базового SSA:  $\ddot{\mathbf{X}} = \mathbf{X} - \mathbf{X}_{\mathrm{Noise}}$  (отделение от шума).
- $oldsymbol{Q}$  Применение другого метода к  $oldsymbol{\hat{X}}$  для уточнения анализа:  $\ddot{\mathbf{X}} = \ddot{\mathbf{X}}_1 + \ddot{\mathbf{X}}_2$

EOSSA (Golyandina, Dudnik и Shlemov 2023) является вложенным вариантом SSA. Для заданного набора компонент позволяет улучшить разделимость. Можно задать параметр r, тогда алгоритм будет улучшать разделимость для первых rнаиболее значимых компонент (по SVD).

### Метод GSSA. Алгоритм

$$\mathsf{X}=(x_1,\ldots,x_N)$$
 — временной ряд, параметры  $L$  и  $\alpha\geq 0$ .  $m{w}^{(a)}=(w_1,w_2,\ldots,w_L)=\left(\left|\sin\left(\frac{\pi n}{L+1}\right)\right|\right)^{\alpha},\quad n=1,2,\ldots,L.$ 

#### Шаг 1 алгорима GSSA:

$$\mathbf{X}^{(\alpha)} = \mathcal{H}^{(\alpha)}(\mathsf{X}) = [\mathsf{X}_1^{\alpha}: \ldots: \mathsf{X}_K^{\alpha}],$$

$$X_i^{(\alpha)} = (w_1 x_{i-1}, \dots, w_L x_{i+L-2})^{\mathrm{T}}, \ 1 \le i \le K.$$

Шаги 2-4: аналогичны SSA.

#### Замечание 1

При  $\alpha=0$ , **GSSA** — в точности базовый алгоритм **SSA**.

### Сравнение SSA и GSSA. Линейные фильтры 1

#### Определение 4

Пусть  $X = (..., x_{-1}, x_0, x_1, ...)$  — бесконечный временной ряд. **Линейный конечный фильтр** — оператор  $\Phi$ , преобразующий X в  $X' = (\dots, y_{-1}, y_0, y_1, \dots)$  по правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}, \quad j \in \mathbb{Z},$$

где  $r_1, r_2 \in \mathbb{N}$  — ширина фильтра,  $h_i \in \mathbb{R}$  — коэффициенты.

Пример. При применении фильтра  $\Phi$  на  $\mathsf{X}_{\cos} = \cos 2\pi \omega n$ , получается ряд  $y_i = A_{\Phi}(\omega) \cos{(2\pi\omega j + \phi_{\Phi}(\omega))}$ .  $\phi_{\Phi}(\omega)$  – фазово-частотная характеристика (ФЧХ).  $A_{\Phi}(\omega)$  – амплитудно-частотная характеристика (AЧX).

### Сравнение SSA и GSSA. Линейные фильтры 2

$$\mathbf{X}=(x_1,\ldots,x_N)$$
,  $(\sqrt{\lambda},\,U,\,V)$  — собственная тройка  $\mathbf{SSA}$ .  $U=(u_1,\ldots,u_L)$ .  $\widecheck{\mathbf{X}}=\mathcal{H}^{-1}(\sqrt{\lambda}UV^T)$ .

Запись SSA через линейный фильтр:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left( \sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Аналогичное представление для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left( \sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

### Сравнение SSA и GSSA. Пример

$$X = X_{\sin} + X_{\cos} = \sin\left(\frac{2\pi}{12}n\right) + \frac{1}{2}\cos\left(\frac{2\pi}{19}n\right)$$
.  $N = 96 \cdot 2 - 1$ ,  $L = 48$ .

#### АЧХ для суммы фильтров собственных троек синуса



При  $\alpha=0.5$  АЧХ без волн, но с широкой областью около частоты синуса, что ухудшает отделение от шума, но улучшает разделение компонентов.

### Сравнение SSA и GSSA. Пример, продолжение

Таблица 1: MSE разложений  $X = X_{\sin} + X_{\cos}$ 

| Метод/Ошибка                  | $X_{\sin}$ | $X_{\cos}$ | X        |  |
|-------------------------------|------------|------------|----------|--|
| SSA                           | 5.15e-03   | 5.15e-03   | 6.01e-30 |  |
| ${\it GSSA}, \; \alpha = 0.5$ | 3.68e-04   | 3.68e-04   | 9.53e-30 |  |

Без шума **GSSA** выдает результаты на порядок лучше **SSA**.

Таблица 2: MSE разложений 
$$\mathsf{X} = \mathsf{X}_{\sin} + \mathsf{X}_{\cos} + \varepsilon_n$$
,  $\varepsilon_n \sim \mathrm{N}(0, 0.1^2)$ 

| Метод                           | $X_{\sin}$ | $X_{\cos}$ | X        |
|---------------------------------|------------|------------|----------|
| SSA                             | 5.68e-03   | 5.44e-03   | 7.48e-04 |
| $\textbf{GSSA}, \ \alpha = 0.5$ | 1.21e-03   | 1.25e-03   | 1.04e-03 |

С шумом выигрыш на порядок у **GSSA** пропал, но теперь **SSA** выделил сигнал на порядок лучше.

### Вывод. Вложенный вариант SSA + GSSA

Можно объединить преимущества обоих алгоритмов, выделив сигнал с помощью **SSA**, а затем разделив компоненты друг от друга благодаря **GSSA**:

| Метод                      | $X_{\sin}$ | $X_{\cos}$ | Х        |
|----------------------------|------------|------------|----------|
| SSA + GSSA, $\alpha = 0.5$ | 1.06e-03   | 1.12e-03   | 7.15e-04 |

Получается вложенный вариант **SSA**.

### Метод CiSSA. Алгоритм

 ${\sf X} = (x_1, \dots, x_N)$  — временной ряд. 1 < L < N — длина окна. **Алгоритм CiSSA**:

- **1** Построение траекторной матрицы: как в SSA.
- ② l=1:L,  $U_l=L^{-1/2}(u_{l,1},\dots,u_{l,L}),\,u_{l,j}=\exp\left(-\mathrm{i}2\pi(j-1)\frac{l-1}{L}\right).$  Элементарное разложение:  $w_k=\frac{k-1}{L}$ ,  $k=1:\lfloor\frac{L+1}{2}\rfloor$

$$\begin{split} \mathbf{X}_{w_k} &= U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}; \\ \mathbf{X}_{w_{\frac{L}{2}+1}} &= U_{\frac{L}{2}+1} U_{\frac{L}{2}+1}^H \mathbf{X}, \text{ если } L \mod 2 = 0, \end{split}$$

Разложение: 
$$\mathbf{X} = \sum\limits_{k=1}^d \mathbf{X}_{w_k}, \ d = \lfloor \frac{L+1}{2} \rfloor$$
 (или  $\frac{L}{2}+1$ ).

Оприменения по частотам:

$$\bigsqcup_{i=1}^{m} I_i = \bigsqcup_{i=1}^{m} \left[ w_i^{(l)}, w_i^{(r)} \right] = [0, 0.5].$$

Диагональное усреднение: как в SSA.

#### Замечания:

- В отличие от **SSA**, базис подпространства которого зависит от X, L, N (адаптивный), базис в **CiSSA** зависит только от L, N (фиксированный).
- Поскольку группировка производится по частотам, а частоты зависят от L, то алгоритм применим только в случае, когда заранее известны интересующие частоты.

### Метод CiSSA. Свойства: связь с разложением Фурье

#### Определение 5

#### Разложение

$$x_n = c_0 + \sum_{k=1}^{\lfloor \frac{N+1}{2} \rfloor} (c_k \cos(2\pi nk/N) + s_k \sin(2\pi nk/N)),$$
 (1)

где  $1 \leq n \leq N$  и  $s_{N/2} = 0$  для четного N, называется разложением Фурье ряда X.

#### Замечание 2

Разложение Фурье – проекции всего ряда на пространства, порожденные синусами и косинусами. CiSSA – разложения Фурье для K векторов матрицы X + усреднение соответствующих элементов.

#### Модификации метода **SSA**

Otherwise 1

But we will  $x_0 = \alpha_0 + \sum_{i=1}^{\lfloor \frac{n+1}{2} \rfloor} (a_i \cos[2\pi i b_i N) + a_i \sin[2\pi i b_i N))$ . [3]  $x_0 = \alpha_0 + \sum_{i=1}^{\lfloor \frac{n+1}{2} \rfloor} (a_i \cos[2\pi i b_i N) + a_i \sin[2\pi i b_i N))$ . [4]  $x_0 + 2 + \sum_{i=1}^{\lfloor \frac{n+1}{2} \rfloor} (a_i \cos[2\pi i b_i N) + a_i \sin[2\pi i b_i N)]$ . [5]  $x_0 = x_0 + \sum_{i=1}^{\lfloor \frac{n+1}{2} \rfloor} (a_i \cos[2\pi i b_i N) + a_i \sin[2\pi i b_i N)]$ . [6]

But we will  $b_0 = x_0 + x_0$ 

Метод CiSSA, Свойства: связь с разложением Фурье

└─ Метод CiSSA. Свойства: связь с разложением Фурье

Словами сказать, что один из вопросов моего исследования является рассмотрение того, чем cissa лучше Фурье

### Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд 
$$X = X_1 + X_2 =$$
  
=  $A_1 \cos(2\pi w_1 n + \varphi_1) + A_2 \cos(2\pi w_2 n + \varphi_2)$ .

Условия точной разделимости X для разложения Фурье:

 $Nw_1, Nw_2 \in \mathbb{N}, \ w_1 \neq w_2.$ 

Условия точной разделимости X для CiSSA:

 $Lw_1, Lw_2 \in \mathbb{N}, \ w_1 \neq w_2.$ 

Условия точной разделимости X для SSA:

 $Lw_1, Lw_2, Kw_1, Kw_2 \in \mathbb{N}, \ w_1 \neq w_2, \ A_1 \neq A_2.$ 

Таким образом, условия на разделение косинусов, слабее у методов CiSSA и Фурье, чем у SSA.

### Пример. Точная разделимость

Пример: 
$$X = X_{\sin} + X_{\cos} = A_1 \sin(2\pi w_1 n) + A_2 \cos(2\pi w_2 n)$$

| Метод     | Параметры                                                            | $MSE(X_{sin})$ | $\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$ | MSE (X) |
|-----------|----------------------------------------------------------------------|----------------|---------------------------------------------|---------|
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 \neq A_2$                 | 6.8e-30        | 1.5e-29                                     | 1.8e-29 |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 \neq A_2, r = 4$          | 8.2e-30        | 6.5e-30                                     | 5.5e-30 |
| Fourier   | $Nw \in \mathbb{N}$                                                  | 3.4e-28        | 9.8e-29                                     | 4.0e-28 |
| CiSSA     | $Lw \in \mathbb{N}, A_1 \neq A_2$                                    | 1.1e-29        | 6.5e-30                                     | 7.8e-30 |
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 = A_2$                    | 3.8e-04        | 3.8e-04                                     | 6.0e-29 |
| SSA       | $Lw \in \mathbb{N}$ , $Kw \notin \mathbb{N}$ , $A_1 = A_2$           | 4.9e-03        | 3.4e-03                                     | 5.9e-29 |
| Fourier   | $Nw \notin \mathbb{N}$                                               | 7.6e-03        | 3.3e-03                                     | 5.6e-03 |
| SSA EOSSA | $Lw \in \mathbb{N}$ , $Kw \notin \mathbb{N}$ , $A_1 = A_2$ , $r = 4$ | 1.4e-29        | 2.9e-29                                     | 1.1e-29 |

По таблице видно, что при нарушении условий точной разделимости, результаты значительно ухудшаются. При этом, EOSSA исправляет ситуацию.

#### Модификации метода **SSA**

<sup>∟</sup>Пример. Точная разделимость

| / et 1 ;    | 1 373 1 177 4                                                        | MSE (X <sub>in</sub> ) | MSE (X <sub>m</sub> ) | MSEO   |
|-------------|----------------------------------------------------------------------|------------------------|-----------------------|--------|
| 51          | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 \neq A_2$                 | 9.0K+30                | 1.74-24               | 1200   |
| 5 I BD 5 SI | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 \neq A_2, r = 0$          | F. 26 + 38             | VA 0-21               | 12141  |
| note:       |                                                                      | 3.0K-08                | 9.8 9-2 9             | 0.000  |
| 155 ii      | $L_{m} \in \mathbb{N}$ , $A_{1} \neq A_{2}$                          | 1.18408                | VA 0-21               | 7.0141 |
| 51          | $Lw \in N, Kw \in N, Ac = Ac$                                        | 12111                  | 12114                 | 12111  |
| 51          | $Lw \in \mathbb{N}$ , $Kw \notin \mathbb{N}$ , $A_1 = A_2$           | 62 14 1                |                       | 12141  |
|             |                                                                      |                        |                       |        |
| SH BOSSH    | $Lw \in \mathbb{N}$ , $Kw \notin \mathbb{N}$ , $A_1 = A_2$ , $r = 0$ |                        |                       |        |

Пример, Точная разделимость

Длину N ряда сложно подбирать, поэтому будем рассматривать случаи, когда N хорошее и плохое. А L всегда можем изменить, поэтому все L подобраны наилучшим образом.  $w_1$ ,  $w_2$  фиксированы

## Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Асимптотически разделимы в методе **SSA** полиномы, гармонические функции (Golyandina, Nekrutkin и Zhigljavsky 2001).

В алгоритме разложения **CiSSA** (Фурье) увеличение длины окна L (N) изменяет сетку частот. Это означает, что даже если не удастся подобрать такое L (N), при котором косинус будет точно отделим, его постепенное увеличение позволит приблизить частоты сетки к частоте компоненты. В итоге, можно снизить ошибку выделения нужной компоненты, учитывая соседние частоты.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость ny maritera dyserus y Bodyn ellen, Kitatili z Ziliglev by 2018.

Bandy rever y random ac CISSA, 199 year) y maritera garen merita L [N] i se meritar by verten 200 outsite, i vo garen tare si y garen squeller i se meritar (200 outsite), vo garen tare si y garen squeller i se meritar (200 outsite), vo garen tare si y garen squeller i se meritar (200 outsite), vo garen tare si y garen son meritar (200 outsite), volume activation i meritar (200 outsite),

**TODO** Переформулировать с меньшим количеством слов (тяжело)

### Пример. Асимптотическая разделимость

#### Пример:

$$X = X_{e \cdot \sin} + X_{e \cdot \cos} = e^{A_1 n} \sin(2\pi w_1 n) + e^{A_2 n} \cos(2\pi w_2 n).$$

| Метод     | Параметры                                      | $\mathrm{MSE}\left(X_{e\cdot\sin}\right)$ | $\mathrm{MSE}\left(X_{e\cdot\cos}\right)$ | MSE(X)  |
|-----------|------------------------------------------------|-------------------------------------------|-------------------------------------------|---------|
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}$         | 5.3e-05                                   | 5.3e-05                                   | 1.2e-27 |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, r = 4$  | 3.0e-28                                   | 4.4e-28                                   | 7.4e-29 |
| Fourier   | $Nw \in \mathbb{N}$                            | 6.7e-02                                   | 1.4e-02                                   | 4.9e-02 |
| CiSSA     | $Lw \in \mathbb{N}$                            | 2.6e-02                                   | 3.8e-03                                   | 1.5e-02 |
| SSA       | $Lw \in \mathbb{N}, Kw \notin \mathbb{N}$      | 4.8e-04                                   | 4.8e-04                                   | 1.1e-27 |
| Fourier   | $Nw \notin \mathbb{N}$                         | 1.1e-01                                   | 3.7e-02                                   | 1.1e-01 |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \notin \mathbb{N}, r=4$ | 2.8e-28                                   | 4.2e-28                                   | 7.5e-29 |

При домножении на экспоненты периодик, все результаты ухудшились кроме EOSSA. Фурье и **CiSSA** значительно ухудшились в точности разделения.

### Пример 1. Отделение сигнала от шума

Пример 1: 
$$\mathbf{X} = \mathbf{X}_{\sin} + \mathbf{X}_{\cos} + \mathbf{X}_{\mathrm{Noise}} =$$

$$= A_1 \sin(2\pi w_1 n) + A_2 \cos(2\pi w_2 n) + \varepsilon_n, \ \varepsilon \sim \mathrm{N}(0, 0.1^2)$$

| Метод     | Параметры                                            | $\mathrm{MSE}\left(X_{\mathrm{sin}}\right)$ | $\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$ | MSE(X)  |
|-----------|------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------|
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}$               | 2.7e-04                                     | 3.3e-04                                     | 6.0e-04 |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \in \mathbb{N}$               | 2.7e-04                                     | 3.3e-04                                     | 6.0e-04 |
| Fourier   | $Nw \in \mathbb{N}$                                  | 1.5e-04                                     | 2.1e-04                                     | 3.6e-04 |
| CiSSA     | $Lw \in \mathbb{N}$                                  | 1.6e-04                                     | 2.8e-04                                     | 4.3e-04 |
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}, A_1 = A_2$    | 2.5e-04                                     | 3.3e-04                                     | 6.0e-04 |
| SSA       | $Lw \in \mathbb{N}, Kw \notin \mathbb{N}, A_1 = A_2$ | 4.9e-03                                     | 3.4e-03                                     | 6.0e-04 |
| Fourier   | $Nw \notin \mathbb{N}$                               | 2.6e-02                                     | 7.3e-02                                     | 9.8e-02 |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \notin \mathbb{N}, A_1 = A_2$ | 2.7e-04                                     | 3.4e-04                                     | 6.0e-04 |

Фурье значительно хуже остальных выделил сигнал.

### Пример 2. Отделение сигнала от шума

Пример 2: 
$$X = X_{e \cdot \sin} + X_{e \cdot \cos} + X_{\text{Noise}} = e^{A_1 n} \sin(2\pi w_1 n) + e^{A_2 n} \cos(2\pi w_2 n) + \varepsilon_n, \ \varepsilon \sim N(0, 0.1^2)$$

| Метод     | Параметры                              | $\mathrm{MSE}\left(X_{e\cdot\sin}\right)$ | $\mathrm{MSE}\left(X_{e\cdot\cos}\right)$ | MSE(X)    |
|-----------|----------------------------------------|-------------------------------------------|-------------------------------------------|-----------|
| SSA       | $Lw \in \mathbb{N}, Kw \in \mathbb{N}$ | 3.1e-04                                   | 3.6e-04                                   | 5.6e-04   |
| SSA EOSSA | $Lw \in \mathbb{N}, Kw \in \mathbb{N}$ | 2.2e-04                                   | 3.4e-04                                   | 5.6e-04   |
| Fourier   | $Nw \in \mathbb{N}$                    | 1.1e-01                                   | 1.3e + 00                                 | 1.4e + 00 |
| CiSSA     | $Lw \in \mathbb{N}$                    | 2.8e-02                                   | 3.8e-01                                   | 4.0e-01   |

Таблица 3: Example Table

Фурье совсем плохо себя показал. **CiSSA** ухудшил результаты в сравнении с тем, что было без шума.

### Сравнение SSA, Фурье, CiSSA. Выводы 2

По полученным результатам, можно следующие выводы:

- СiSSA и разложение Фурье работает лучше базового SSA только в том случае, когда периодики имеют одинаковые амплитуды. При этом, SSA с EOSSA исправляет этот недостаток. Во всех остальных случаях CiSSA и разложение Фурье показывают результаты не лучше SSA.
- СiSSA показывает себя лучше Фурье.
- СiSSA при добавлении шума и отклонении от своих показывает значительное ухудшение в разделении сигнала и компонент между собой.

### Список литературы І

- Bogalo, Juan, Pilar Poncela μ Eva Senra (2020). «Circulant singular spectrum analysis: A new automated procedure for signal extraction». B: Signal Processing 177. ISSN: 0165-1684. DOI: 10.1016/j.sigpro.2020.107750. URL: http://www.sciencedirect.com/science/article/pii/S0165168420303264.
- Golyandina, Nina, Pavel Dudnik и Alex Shlemov (2023).
  «Intelligent Identification of Trend Components in Singular Spectrum Analysis». B: Algorithms 16.7, c. 353. DOI: 10.3390/a16070353. URL: https://doi.org/10.3390/a16070353.
- Golyandina, Nina, Anton Korobeynikov и Anatoly Zhigljavsky (янв. 2018). Singular Spectrum Analysis with R. ISBN: 978-3-662-57378-5. DOI: 10.1007/978-3-662-57380-8.

### Список литературы II

Golyandina, Nina, Vladimir Nekrutkin и Anatoly Zhigljavsky (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman и Hall/CRC. URL: https://www.academia.edu/34626051/Analysis\_of\_Time\_

https://www.academia.edu/34626051/Analysis\_of\_Time\_ Series\_Structure\_-\_SSA\_and\_Related\_Techniques.

Gu, Jialiang и др. (2024). «Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals». В: Journal of the Franklin Institute Accepted/In Press. ISSN: 0016-0032. DOI: 10.1016/j.jfranklin.2024.106696. URL:

https://doi.org/10.1016/j.jfranklin.2024.106696.