CMIP6 Model Documentation

Institute: IPSL

Model: IPSL-CM6A-LR

Topic: Atmosphere

Doc. Generated:2019-11-07Doc. Seeded From:Spreadsheet

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	14
5	Turbulence Convection	26
6	Microphysics Precipitation	30
7	Cloud Scheme	32
8	Observation Simulation	36
9	Gravity Waves	39
10	Natural Forcing	43

1 Key Properties

Atmosphere key properties

1.1.1 Top level properties

Atmosphere key properties

1.1.1.1 Name *

Name of atmos model code

LMDZ6A

1.1.1.2 Keywords *

Keywords associated with atmos model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

The atmospheric general circulation model LMDZ6A-LR is based on a finite-difference formulation of the primitive equations of meteorology (Sadourny and Laval, 1984) on a staggered and stretchable longitude-latitude grid (the Z of LMDZ standing for Zoom). Water vapor, liquid and solid water and atmospheric trace species are advected with a monotonic second order finite volume scheme (Van Leer, 1977; Hourdin and Armengaud, 1999). In the vertical, the model uses a classical so-called hybrid sigmapressure coordinate. As concerns physics parameterizations, IPSL participated to CMIP5 with two versions: a "Standard Physics" version (atmospheric component LMDZ5A used in IPSL-CM5A, Hourdin et al., 2013a) and an "New Physics" version (LMDZ5B used in IPSL-CM5B, Hourdin et al., 2013b) based on a full rethinking of the parameterizations of turbulence, convection and clouds on which the 6A version is built. This NP package includes in particular a trubulent sceme based on the prognostic equation for the turbulent kinetik energy that follows Yamada (1983), a mass flux representation of the organized structures of the convective boundary layer called "Thermal Plume Model" (Hourdin et al., 2002, Rio et al., 2008, Rio et al., 2010) and a parameterization of the cold pools or wakes created below cumulonimbus by the evaporation of convective rainfall (Grandpeix et al., 2010ab). The episodic mixing and buoyancy sorting scheme originally developed by Emanuel (1991) used for deep convection was modified to make the closure and triggering rely on the description of the subcloud vertical motions by thermal plumes and wakes (Rio et al, 2009). Concerning convection, two important improvement were made from version 5B to 6A: a modification of the lateral detrainment in the thermal plume model that allows to represent satisfacory well the transition from stratocumulus to cumulus clouds (Jam et al., submitted to James) and the introduction of a statitical triggering for deep convection (Rochetin et al., 2014). The radiation scheme is inherited from the European Center for Medium-Range Weather Forecasts and includes in the 6A version the RRTM code for thermal infra-red radiation and 6 bands in the solar radiation. Cloud cover and cloud water content are computed using a statistical scheme using a log normal function for deep convection (Bony and Emanuel, 2001) and bigaussian for shallow cumulus (Jam et al., 2013). With 79 vertical layers, the 6A version extends to the stratosphere and includes representation of gravity waves generated by mountains as well as by convection (Lott and Guez, 2013) and fronts (de la Cmara and Lott 2015, de la Cmara et al., 2016). The 6A-LR version is based on a regular horizontal grid with 144 points regularly spaced in longitude and 142 in latitude, corresponding to a resolution of 2.5 1.3.

1.1.1.4 Model Family *			
Type of at	mospheric model.		
\boxtimes	AGCM - Atmospheric General Circulation Model		
	ARCM - Atmospheric Regional Climate Model		
	Other - please specify:		
1.1.1.5	Basic Approximations *		
Basic app	roximations made in the atmosphere.		
\boxtimes	Primitive equations		
	Non-hydrostatic		
	Anelastic		
	Boussinesq		
\boxtimes	Hydrostatic		
	Quasi-hydrostatic		
	Other - please specify:		
1.2.1 F	Resolution		
Characte	eristics of the model resolution		
1.2.1.1	Horizontal Resolution Name *		
This is a s	string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.		
$\mathbf{L}\mathbf{R}$			
1.2.1.2	Canonical Horizontal Resolution *		
Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.			
2.5 1.3 lon-lat			
1.2.1.3	Range Horizontal Resolution *		
Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg			
Regular 2.5 1.3 lon-lat			
1.2.1.4 Number Of Vertical Levels *			
Number of vertical levels resolved on the computational grid.			

79.0

1.2.1.5	High Top *
Does the	atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top stratopause.
\boxtimes	True False
1.3.1	Γ imestepping
Charact	eristics of the atmosphere model time stepping
1.3.1.1	Timestep Dynamics *
Timestep	for the dynamics in seconds
129.0	
1.3.1.2	Timestep Shortwave Radiative Transfer
Timestep	for the shortwave radiative transfer in seconds.
5400	.0
1.3.1.3	Timestep Longwave Radiative Transfer
Timestep	for the longwave radiative transfer in seconds.
5400	.0
1.4.1	Orography
Charact	eristics of the model orography
1.4.1.1	Type *
Type of o	prographic representation.
	Fixed: present day
\boxtimes	Fixed: modified - Provide details of modification below
	Other - please specify:
1.4.1.2	Modified
If the ord	graphy type is modified describe the adaptation.
	Related to ice sheets
	Related to tectonics
	Modified mean
\boxtimes	Modified variance if taken into account in model (cf gravity waves)
	Other - please specify:

1.4.1.3 Time-varying

Describe any time varying orographic change

Enter TEXT:

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

The tuning of the IPSL-CM6A model has been a long process alternating phases of tuning or improvements of individual components in stand alone mode (Orchidee for continental surfaces, LMDZ for the atmosphere and NEMO for the ocean) and phases of tests of the full coupled model. Tuning of the atmospheric component LMDZ for the coupled model was a long lasting 3-year iterative process. Phases of code modification (or tuning of a particular aspect) in standalone atmospheric simulations (with continental surfaces but with imposed SSTs) included retuning of the energetics. This systematic retuning has been done about 20 times, each time by running one or a few series of typically 10 sensitivity experiments to the most uncertain parameters that control most the radiative budget: cloud and convection parameters. Not only the global energy balance was targeted in this tuning but also individually the long-wave (LW) and short-wave (SW) radiation, the contribution of Cloud Radiative Effect (CRE), as well as key elements of their space-time distribution that were targeting the reduction in particular of SST biases of the coupled model.

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Total radiation at TOA, Cloud radiative forcing at TOA in the visible and in the infra-red

1.5.1.3 Regional Metrics Used

List of regional metrics of mean state used in tuning model/component

Zonal mean of the TOA radiative fluxes and cloud radiative effect, separating visible and infrared, same metrics for the high seen as contrast between the high latitudes and tropics or between the East side of tropical oceans (region of classical SST warm biases) and the rest of the tropics, same for a decomposition between subsiding, convective and intermediate regimes in the tropics over oceans.

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

None

2 Grid

 $Atmosphere\ grid$

2.	1.1	1 To	p lev	el pro	perties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

C-grid

2.1.1.2 Overview

Overview of grid in atmos model.

Longitude-latitude regular C-grid. Vertical grid based on hybrid sigma-pressure coordinate.

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1	Scheme Type *
Horizontal	$discretisation\ type$
	Spectral
\boxtimes	Fixed grid

2.1.2.2 Scheme Method *

Other - please specify:

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Centered finite difference

M	Second
	Third
	Fourth

	Other - please specify:
	Horizontal Pole
Horizonta	l discretisation pole singularity treatment
\boxtimes	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2.1.2.5	Grid Type *
Horizonta	l grid type
	Gaussian
\boxtimes	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:
2.1.3 V	Vertical
	nere discretisation in the vertical
2.1.3.1	Coordinate Type *
	ertical coordinate system
	Isobaric - Vertical coordinate on pressure levels
	Sigma - Allows vertical coordinate to follow model terrain
\boxtimes	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian
	Other - please specify:

Dynamical Core 3

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

3.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.3 Timestepping Type	*
---------------------------	---

Temperature

3.1.1.3	Timestepping Type *		
Timestepping framework type			
	Adams-Bashforth		
	Explicit		
	Implicit		
	Semi-implicit		
\boxtimes	Leap frog		
	Multi-step		
	Runge Kutta fifth order		
	Runge Kutta second order		
	Runge Kutta third order		
	Other - please specify:		
3.1.1.4 Prognostic Variables *			
List of the model prognostic variables			
	Surface pressure		
	Wind components		
П	Divergence/curl		

\boxtimes	Potential temperature		
	Total water		
	Water vapour		
	Water liquid		
	Water ice		
\boxtimes	Total water moments		
	Clouds		
	Radiation		
	Other - please specify:		
	Γορ Boundary boundary layer at the top of the model		
3.2.1.1	Top Boundary Condition *		
Top boun	dary condition		
\boxtimes	Sponge layer		
	Radiation boundary condition		
	Other - please specify:		
3.2.1.2	Top Heat *		
3.2.1.2 Top Heat * Top boundary heat treatment			
Ente	r TEXT:		
Top boun	Top Wind * dary wind treatment r TEXT:		
	Lateral Boundary lateral boundary condition (if the model is a regional model)		
	Condition uteral boundary condition		
Selec	t SINGLE option: Sponge layer		

	Radiation boundary condition
	Other - please specify:
_	
3.4.1 I	Diffusion Horizontal
Horizon	tal diffusion scheme
3.4.1.1	Scheme Name
Horizonta	l diffusion scheme name
Itera	ted Laplacian
3.4.1.2	Scheme Method *
Horizonta	l diffusion scheme method
\boxtimes	Iterated Laplacian
	Bi-harmonic
	Other - please specify:
$3.4.2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Tracers
Tracer a	$dvection\ scheme$
3.4.2.1	Scheme Name
Tracer ad	vection scheme name
	Heun
\boxtimes	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:
	Scheme Characteristics *
Tracer ad	vection scheme characteristics
	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian

	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
\boxtimes	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
	Conserved Quantities *
Tracer adu	vection scheme conserved quantities
Ш	Dry mass
	Tracer mass
	Other - please specify:
34240	Conservation Method *
	vection scheme conservation method
	SINGLE option:
	Conservation fixer
	Priestley algorithm
	Other - please specify:
3.4.3 N	Momentum
Momento	um advection scheme
3.4.3.1	Scheme Name
Momentur	n advection schemes name
Select	SINGLE option:
	VanLeer
	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	Other - please specify:

3.4.3.2	Scheme Characteristics *
Momentu	m advection scheme characteristics
	2nd order
	4th order
	Cell-centred
\boxtimes	Staggered grid
	Semi-staggered grid
	Other - please specify:
	Scheme Staggering Type *
Momentu	m advection scheme staggering type
	Arakawa B-grid
\boxtimes	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
	Conserved Quantities *
Momenta	m advection scheme conserved quantities
	Angular momentum
	Horizontal momentum
\boxtimes	Enstrophy
	Mass
	Total energy
	Vorticity
	Other - please specify:
0.40 =	C NT .1 1 *
	Conservation Method * m advection scheme conservation method
Selec	t SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Morcrette (SW) and RRTM (LW)

4.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

Enter TEXT:

4.1.1.3 Aerosols *

Aerosols v	whose radiative effect is taken into account in the atmosphere model
\boxtimes	Sulphate
\boxtimes	Nitrate
\boxtimes	Sea salt
\boxtimes	Dust
	Ice
	Organic
\boxtimes	BC - Black carbon / soot
	SOA - Secondary organic aerosols
\boxtimes	POM - Particulate organic matter
	Polar stratospheric ice

 STS - Supercooled ternary solution aerosol particle

4.2.1 Shortwave Radiation

Other - please specify:

Properties of the shortwave radiation scheme

 NAT - Nitric acid trihydrate NAD - Nitric acid dihydrate

4.2.1.1	Name		
Commonly used name for the shortwave radiation scheme			
More	Morcrette		
4.2.1.2	Spectral Integration *		
Shortwav	e radiation scheme spectral integration		
\boxtimes	Wide-band model		
	Correlated-k		
	Exponential sum fitting		
	Other - please specify:		
4213	Transport Calculation *		
	re radiation transport calculation methods		
\boxtimes	Two-stream		
	Layer interaction		
	Bulk - Highly parameterised methods that use bulk expressions		
	Adaptive - Exploits spatial and temporal correlations in optical characteristics		
	Multi-stream		
	Other - please specify:		
4.2.1.4	Spectral Intervals *		
Shortwav	re radiation scheme number of spectral intervals		
6.0			
4.2.1.5	General Interactions *		
General	radiative interactions e.g. with aerosols, cloud ice and cloud water		
\boxtimes	Emission/absorption,		
\boxtimes	Scattering		
	Other - please specify:		

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4011		
4.3.1.1	Greenhouse Gas Complexity *	
Complexis	ty of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model	
\boxtimes	CO2 - Carbon Dioxide	
\boxtimes	CH4 - Methane	
	N2O - Nitrous Oxide	
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalence	${ m CFC-12~eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${ m CFC-12}$ ce concentration	
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion	
	$ {\it Explicit~ODSs-Explicit~representation~of~Ozone~Depleting~Substances~e.g.~CFCs,~HCFCs~and~Halons } \\$	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $	
\boxtimes	O3	
\boxtimes	H2O	
	Other - please specify:	
4.3.1.2 ODS		
$Ozone \ deg \\ model$	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere	
Selec	t MULTIPLE options:	
	CFC-12 - CFC	
	CFC-11 - CFC	

CFC-113 - CFC
CFC-114 - CFC
CFC-115 - CFC

 $\mathrm{HCFC} ext{-}22$ - HCFC

HCFC-141b - HCFC HCFC-142b - HCFC Halon-1211 - Halon

Halon-1301 - Halon Halon-2402 - Halon

Methyl chloroform - CH3CCl3

1	1
- 1	r
_	

	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3

	SF6
	SO2F2
	Other - please specify:
4.4.1 S	Shortwave Cloud Ice
Shortway	ve radiative properties of ice crystals in clouds
4.4.1.1	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	t MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.4.1.2	Optical Methods *
Optical me	ethods applicable to cloud ice crystals in the shortwave radiation scheme
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

4.5.1.1 Physical Representation *		
Physical r	representation of cloud liquid droplets in the shortwave radiation scheme	
\boxtimes	Cloud droplet number concentration - CDNC	
\boxtimes	Effective cloud droplet radii	
	Droplet size distribution	
\boxtimes	Liquid water path - Integrated liquid water path through the cloud kg m-2	
	Other - please specify:	
4.5.1.2	Optical Methods *	
$Optical\ m$	ethods applicable to cloud liquid droplets in the shortwave radiation scheme	
\boxtimes	Geometric optics - For non-spherical particles	
	Mie theory - For spherical particles	
	Other - please specify:	
4.6.1	Shortwave Cloud Inhomogeneity	
Cloud in	thomogeneity in the shortwave radiation scheme	
4.6.1.1	Cloud Inhomogeneity *	
Method fo	or taking into account horizontal cloud inhomogeneity	
Selec	t SINGLE option:	
	Monte Carlo Independent Column Approximation - McICA	
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010	
	Analytic	
	Other - please specify:	
4.7.1 8	Shortwave Aerosols	
Shortwave radiative properties of aerosols		
4.7.1.1	Physical Representation *	
Physical r	representation of aerosols in the shortwave radiation scheme	
\boxtimes	Number concentration	
	Effective radii	
\boxtimes	Size distribution	

Ш	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
	Optical Methods *	
Optical m	ethods applicable to aerosols in the shortwave radiation scheme	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
\boxtimes	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.8.1 Longwave Radiation Properties of the longwave radiation scheme		
4.8.1.1	Name	
	Name y used name for the longwave radiation scheme.	
	y used name for the longwave radiation scheme.	
Commonl	y used name for the longwave radiation scheme.	
Commonl RRT 4.8.1.2	y used name for the longwave radiation scheme. $oldsymbol{\mathrm{M}}$	
Commonl RRT 4.8.1.2	y used name for the longwave radiation scheme. M Spectral Integration *	
Commonl RRT 4.8.1.2 Longwave	y used name for the longwave radiation scheme. M Spectral Integration * radiation scheme spectral integration	
Commonl RRT 4.8.1.2 Longwave	y used name for the longwave radiation scheme. M Spectral Integration * radiation scheme spectral integration Wide-band model	
Commonl RRT 4.8.1.2 Longwave □ □	y used name for the longwave radiation scheme. M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k	
RRT 4.8.1.2 Longwave	M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting Other - please specify:	
RRT 4.8.1.2 Longwave	y used name for the longwave radiation scheme. M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting	
Commonl RRT 4.8.1.2 Longwave	M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting Other - please specify:	
Commonl RRT 4.8.1.2 Longwave	y used name for the longwave radiation scheme. M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting Other - please specify: Transport Calculation *	
Commonl RRT 4.8.1.2 Longwave	M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting Other - please specify: Transport Calculation * radiation transport calculation methods	
### Common! RRT 4.8.1.2 Longwave	M Spectral Integration * radiation scheme spectral integration Wide-band model Correlated-k Exponential sum fitting Other - please specify: Transport Calculation * radiation transport calculation methods Two-stream	

	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
16.0	
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
\boxtimes	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexit	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
\boxtimes	CO2 - Carbon Dioxide
\boxtimes	CH4 - Methane
\boxtimes	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalence	${\it CFC-12}$ eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${\it CFC-12}$ ce concentration
concentra	${ m HFC}\text{-}134a$ eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}\text{-}134a$ equivalence tion
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
\boxtimes	O3
\boxtimes	H2O
	Other - please specify:

4.9.1.2 ODS

 ${\it Ozone \ depleting \ substances \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model}$

\boxtimes	CFC-12 - CFC
\boxtimes	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases crinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
П	HFC-32 - HFC
П	HFC-125 - HFC
П	HFC-143a - HFC
П	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC

	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.10.1	Longwave Cloud Ice
Longway	ve radiative properties of ice crystals in clouds
4.10.1.1	Physical Reprenstation *
Physical r	representation of cloud ice crystals in the longwave radiation scheme
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: nundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
\boxtimes	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:

4.10.1.	2 Optical Methods *
Optical n	nethods applicable to cloud ice crystals in the longwave radiation scheme
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
	Longwave Cloud Liquid
Longwa	ve radiative properties of liquid droplets in clouds
4.11.1.	1 Physical Representation *
Physical	representation of cloud liquid droplets in the longwave radiation scheme
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
\boxtimes	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:
4.11.1.	2 Optical Methods *
Optical n	nethods applicable to cloud liquid droplets in the longwave radiation scheme
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
Cloud is	nhomogeneity in the longwave radiation scheme
4.12.1.	1 Cloud Inhomogeneity *
$Method\ f$	or taking into account horizontal cloud inhomogeneity
Selec	et SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010

	Analytic
	Other - please specify:
4.13.1	Longwave Aerosols
Longwav	e radiative properties of aerosols
4.13.1.1	Physical Representation *
Physical r	epresentation of aerosols in the longwave radiation scheme
\boxtimes	Number concentration
	Effective radii
\boxtimes	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
	Optical Methods *
Optical m	ethods applicable to aerosols in the longwave radiation scheme
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
\boxtimes	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

Commonly used name for the turbulence convection in atmos model.

LMDZ New Physics (NP)

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Compared to the "Standard Physics" (SP) version LMDZ5A used for most of the CMIP5 with the IPSL model, the NP version was characterized by a profound rethinking of the representation of convection and clouds. Specific parameterizations were introduced for the representation of the organized structures of the convective boundary layer, the so-called "thermal plume model" (Hourdin et al., 2002, Rio et al., 2008, Rio et al., 2010), and for the cold pools created below cumulonimbus by reevaporation of convective rainfall (Grandpeix et al., 2010ab). Above that, the triggering and closure of the deep convection scheme is controlled in this NP version by subgrid scale vertical velocities associated with boundary layer convective plumes, and air rising downwind of the cold pools gust front. A bi-Gaussian PDF for the subgrid scale water was also coupled to the thermal plume model to better represent cumulus clouds. One important aspect of those developments was to promote an object oriented framework for the parameterization of convection. While many authors advocate for the development of unified parameterizations for convection, the deliberate choice was made to identify as separate objects boundary layer convection (unified between dry and cloudy), cumulonimbus and cold pools, and to develop explicit parameterizations that control their interplay. This approach favors the possibility for different regimes to coexist within the same model column. A first NP version was used in the LMDZ5B versions delivered for CMIP5. Compared to this 5B versions, the main modifications in the 6A version concern the introduction of a stochastic triggering designed to make the frequency of occurrence of new convective systems within a mesh aware of the grid cell size(scale awareness, Rochetin et al., 2014a, Rochetin et al., 2014b), a modification of the thermal plume model for the representation of stratocumulus clouds (Jam et al., in revision)

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary	layer turbulence scheme name
\boxtimes	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:

5.2.1.2	Scheme Type *
Boundary	y layer turbulence scheme type
\boxtimes	TKE prognostic
	TKE diagnostic
	TKE coupled with water
	Vertical profile of Kz
	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
Uses bour	ndary layer turbulence scheme counter gradient True
5.3.1	Deep Convection
Properts	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
Ema	nuel (91-93)
5.3.1.2	Scheme Type *
Deep con	vection scheme type
\boxtimes	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:

5.3.1.3	Scheme Method *
Deep conv	vection scheme method
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	${\it CAPE/WFN\ based\ -\ CAPE-Cloud\ Work\ Function:\ Based\ on\ the\ quasi-equilibrium\ of\ the\ free\ tropological and the statement of the $
	${\it TKE/CIN\ based\ -\ TKE-Convective\ Inhibition:\ Based\ on\ the\ quasi-equilibrium\ of\ the\ boundary\ layer}$
	Other - please specify:
5.3.1.4	Processes *
Physical p	processes taken into account in the parameterisation of deep convection
\boxtimes	Vertical momentum transport
\boxtimes	Convective momentum transport
\boxtimes	Entrainment
\boxtimes	Detrainment
\boxtimes	Penetrative convection
\boxtimes	Updrafts
	Downdrafts
\boxtimes	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
1 0	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts
	Tuning parameter based
\boxtimes	Single moment
	Two moment
	Other - please specify:

5.4.1 Shallow Convection

Properties of the shallow convection scheme

5.4.1.1 Scheme Name

 $Shallow\ convection\ scheme\ name$

Thermal Plume Model

11101	Thermal Lame Wode				
	Scheme Type * convection scheme type				
	Mass-flux				
	Cumulus-capped boundary layer				
	Other - please specify:				
5.4.1.3	Scheme Method *				
Shallow o	convection scheme method				
	Same as deep (unified)				
	Included in boundary layer turbulence				
	$Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria$				
	Other - please specify:				
	Processes *				
	processes taken into account in the parameterisation of shallow convection				
\boxtimes	Convective momentum transport				
\boxtimes	Entrainment				
\boxtimes	Detrainment				
\boxtimes	Penetrative convection				
	Re-evaporation of convective precipitation				
	Other - please specify:				
5.4.1.5	Microphysics				
Microphy	sics scheme for shallow convection				
	Tuning parameter based				
\boxtimes	Single moment				
	Two moment				
	Other - please specify:				

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Hourdin et al (2006)

6.2.1.2 Hydrometeors *

Dona a im it a tim a	h J	4 - 1	i 4			41	1	1 .		L
Frecibilalina	hydrometeors	иакен	uuuo	account	vu	une	iarae	scare	precipitation	scheme

\bowtie	Liquid rain
\boxtimes	Snow
	Hail
	Graupel
	Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

LeTreut and Li (1991)

Large scale cloud microphysics processes						
Select MULTIPLE options:						
	Mixed phase					
	Cloud droplets					
	Cloud ice					
	Ice nucleation					
	Water vapour deposition					
	Effect of raindrops					
	Effect of snow					
	Effect of graupel					

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7	7 1	1 1	1 1	1	N	· 2	m	6

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3 Scheme Type *

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:		
	Prognostic	
	Diagnostic	
	Other - please specify:	

7.1.1.4 Uses Separate Treatment *

 $Description \ for \ when \ different \ cloud \ schemes \ are \ used \ for \ different \ types \ of \ clouds \ e.g. \ convective, \ stratiform \ and \ boundary \ layer)$

Yes

7.1.1.5 Processes *

 $Processes\ included\ in\ the\ cloud\ scheme$

Entrainment
Detrainment
Bulk cloud
Other - please specify:

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:		
	Cloud amount		
	Liquid		
	Ice		
	Rain		
	Snow		
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes		
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes		
	Other - please specify:		
7.1.1.7 Atmos Coupling Atmosphere components that are linked to the cloud scheme			
Selec	t MULTIPLE options:		
	Atmosphere_radiation		
	Atmosphere_microphysics_precipitation		
	$Atmosphere_turbulence_convection$		
	Atmosphere_gravity_waves		
	Atmosphere_natural_forcing		
	Atmosphere_observation_simulation		
7.2.1 Optical Cloud Properties Optical cloud properties			
7.2.1.1	Cloud Overlap Method		
	r taking into account overlapping of cloud layers		
Selec	t SINGLE option:		
	Random		
	Maximum		
	Maximum-random - Combination of maximum and random overlap between clouds		
	Exponential		
	Other - please specify:		

7.	2.	1.	.2	Cloud	Inhomogene	eitv

Method for taking into account cloud inhomogeneity

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

Sub-grid scale water distribution		
7.3.1.1 Type *		
Sub-grid scale water distribution type		
Prognostic		
□ Diagnostic		
7.3.1.2 Function Name *		

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ name$

Generalyzed log normal

7.3.1.3 Function Order *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ type$

2.0

7.3.1.4 Convection Coupling *

Sub- $grid$	scale water distribution coupling with convection
\boxtimes	Coupled with deep
	Coupled with shallow

Not coupled with convection

7.4.1 Sub Grid Scale Ice Distribution

 $Sub\mbox{-}grid\ scale\ ice\ distribution$

7.4.1.1 Type *

 $Sub\text{-}grid\ scale\ ice\ distribution\ type$

Select	SINGLE	option:
	Prognostic	

Diagnostic

Sub-grid scale ice distribution function name			
Enter TEXT:			
7.4.1.3 Function Order *			
Sub-grid scale ice distribution function type			
Enter INTEGER value:			
7.4.1.4 Convection Coupling *			
Sub-grid scale ice distribution coupling with convection			
Select MULTIPLE options:			
Coupled with deep			
Coupled with shallow			
☐ Not coupled with convection			

7.4.1.2 Function Name *

Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

8.1.1.2 Overview

Overview of characteristics of observation simulation in atmos model.

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

☐ No adjustmen
readjustmen

	ΙR	brightness
--	----	------------

Other - please specify:

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Other - please specify:

\boxtimes	Lowest altitude level
	Highest altitude level
	Other - please specify

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1 Run Configuration
Cloud simulator COSP run configuration
Offline
Other - please specify:
8.3.1.2 Number Of Grid Points
Cloud simulator COSP number of grid points
9026.0
8.3.1.3 Number Of Sub Columns
Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability
20.0
8.3.1.4 Number Of Levels Cloud simulator COSP number of levels
Cloud simulator COSP number of levels
39.0
8.4.1 Radar Inputs
Characteristics of the cloud radar simulator
8.4.1.1 Frequency
Cloud simulator radar frequency (Hz)
94.0
8.4.1.2 Type
Cloud simulator radar type
Surface
Space borne
Other - please specify:
8.4.1.3 Gas Absorption
Cloud simulator radar uses gas absorption
☐ False

8.4.1.4	Effective Radius
Cloud sir	nulator radar uses effective radius
\boxtimes	True
8.5.1	Lidar Inputs
Charact	teristics of the cloud lidar simulator
0 = 1 1	T m
8.5.1.1	Ice Types
Cloud sin	nulator lidar ice type
\boxtimes	Ice spheres
	Ice non-spherical
	Other - please specify:
8.5.1.2	Overlap
Cloud sir	nulator lidar overlap
Selec	ct MULTIPLE options:
	Max
	Random
	Other - please specify:

Gravity Waves 9

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or $other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or $other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3 Sponge Layer *

Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.

sponge w	ger the title appear tecess the cracer to accord gracing water refrections at the top.
Select	t SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
9.1.1.4	Background *
Backgroun	nd wave distribution
Select	t SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:
9.1.1.5	Subgrid Scale Orography *
Subgrid sc	ale orography effects taken into account.

 \boxtimes Effect on drag

 \boxtimes Effect on lifting

	Enhanced topography - To enhance the generation of long waves in the atmosphere $$
	Other - please specify:
	Orographic Gravity Waves waves generated due to the presence of orography
9.2.1.1	Name
	y used name for the orographic gravity wave scheme
	TEXT:
9.2.1.2	Source Mechanisms *
Orographi	c gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
\boxtimes	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	ic gravity wave calculation method
	Non-linear calculation
\boxtimes	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	c gravity wave propogation scheme
\boxtimes	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.1.5	Dissipation Scheme *
Orographi	ic gravity wave dissipation scheme
\boxtimes	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1	Non Orographic Gravity Waves
	waves generated by non-orographic processes.
9.3.1.1	
Commonl	y used name for the non-orographic gravity wave scheme
Ente	r TEXT:
0.010	C M 1 ' *
	Source Mechanisms *
Non-orogi	raphic gravity wave source mechanisms
	Convection
	Precipitation
\boxtimes	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogr	raphic gravity wave calculation method
\boxtimes	Spatially dependent
\boxtimes	Temporally dependent
9.3.1.4	Propagation Scheme *
Non-orogr	raphic gravity wave propogation scheme
	Linear theory
\boxtimes	Non-linear theory
	Other - please specify:

9.3.1.5 Dissipation Scheme *	
------------------------------	--

 $Non-orographic\ gravity\ wave\ dissipation\ scheme$

Select	t SINGLE option:
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10	Natural	\mathbf{F}	orcin	g
----	---------	--------------	-------	---

Natural	forcina	solar	and	nol	canic
raturat .	porcury.	$souu_1$	unu	vou	cunic.

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ natural\ forcing\ in\ atmos\ model.$

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

 $Time\ adaptation\ of\ the\ solar\ constant.$

Fixed

Transient

1366.0896
10.3.1.3 Transient Characteristics
$Solar\ constant\ transient\ characteristics\ (W\ m\text{-}2)$
Enter TEXT:
10.4.1 Orbital Parameters
Orbital parameters and top of atmosphere insolation characteristics
10.4.1.1 Type *
Type of orbital parameter
Transient
10.4.1.2 Fixed Reference Date
Reference date for fixed orbital parameters (yyyy)
2000.0
10.4.1.3 Transient Method
Description of transient orbital parameters
Enter TEXT:
10.4.1.4 Computation Method
Method used for computing orbital parameters.
Berger 1978
Laskar 2004
Other - please specify:
10.5.1 Insolation Ozone
Impact of solar insolation on stratospheric ozone
10.5.1.1 Solar Ozone Impact *
$Does\ top\ of\ atmosphere\ insolation\ impact\ on\ stratospheric\ ozone?$
☐ False

If the solar constant is fixed, enter the value of the solar constant (W m-2).

10.3.1.2 Fixed Value

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes Implementation *

 $How\ volcanic\ effects\ are\ modeled\ in\ the\ atmosphere.$

Select SINGLE option:	
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: