Organization Analysis with Protégé

Towards "Living" Theorizing?

by Vladimir Diatlov for Sixth International Protégé Workshop 7-9th July 2003

Attempt of Organization Analysis

- Review of organization studies to create ontology structure
 - Processes, structures and boundaries framework (Pettigrew et al. 2000)
 - Interdependence as a denominator for organization context
- Populating ontology with empirical data
- Protégé for leveraging of knowledge of organisation studies domain
 - Maps and relations among concepts easier reframing and new connections
 - New angles new ideas
- Protégé as an R&D tool rather than an application to edit a stable ontology

Empirical Case: Data Collection and Generation

- Documentary Analysis (intensive, Intranet, 700 pages of raw data)
- Structured Interviews (25, 1 hour on average)
- Observation (branch work, physical structure, visual tools like wall with project management documentation)
- Participation (work with information systems)
- Talks, context study, notices...
- Process and obstacles:
 - Information requirements and interpretation
 - Get all information needed while access is active
 - Preparation for interviews

From Literature Review: Organisation Context and IT

Processes	Structures
Institutionalization processes and IT	Social structure
Isomorphism and imitation	-Routines
Strategising	-Norms
Decision-making	-Rules
Integration	-Controls
Communication	-Relations
Coordination	Interdependence
Collaboration and teamwork	Power Distribution
Learning	-Authority Hierarchy
Culture	-Information Access
Power	IT Function
Structuration	Work Organisation through information lens:
Interpretation	-Application routines
Sensemaking	-Reliability routines
Information processing	-Learning and training routines
Information and knowledge management	-Innovation routines
	-Evaluation routines
	-Controls
	-Relations among immediate and adjacent co-workers for:
	–IT support
	-Teamwork
	-Workflow (specialization)

Ontology of Organization Elements

- Using Protégé "knowledge acquisition" and objectoriented ontology building software
- A Semantic Web development from Stanford University
- Becomes recognized standard in ontology building

Contology of Organization Elements (graph)

Contology Descriptive Statistics What Does It Say?

Protégé Facilities for Theorizing

- Parent-child relations for concept decomposition
- Multiple inheritance for linking concepts (:Norm and :Symbol are elements of structure and cultural processes both)
- Reconfiguration of facets, when attaching a slot to various frames (down to class hierarchy)
- Abstract classes for auxiliary and root concepts
- Meta-classes for properties of concept per se, not instances
- Self-reflexivity for processes: a class is also an individual of itself with own slots/properties "power points/increases itself"

University of Southampton

Use of Facilities. Design and Modelling Choices

- Creating ontology means design choices
- No "grand" over-loaded classes for complex concepts
 - Interdependence as a conceptual link meta-class (plan)
 - Interdependence as a root concept abstract class (also "structure," "task," or "transaction")
 - Interdependence as a task relation among workers, a concrete link – class/subclasses as types
 - Interdependence as a reified link subclass of:RELATION
 - Interdependence as a link enacted in particular real context – instance
- Slots with subclasses of :Structure are used for description of subclasses of :Process
- Reified relations: special classes, not slots
- When create ontology or model TRACE CHOICES, heuristics and conventions!!!

Example: Task and Authority Interdependence

- Interdependence as a root concept (analysis versatility and multiplicity): "Each relation like employee-unit, unit-unit or business process ownership contributes to various interdependence patterns to interpret."
- Example of researchvaluable conclusion: "high amount of enacted interdependencies for business processes definition for core IS replacement initiative highlights its political quality."

"Living Theorizing?"

Dynamism

 Dynamic networks of concepts that could be visualized (TVizGraph plug-in)

Versatility and multiplicity

- Ease of data restructuring or just reframing how one would look at it
- Keeping track of meanings and their juxtapositions behind a model demands significant knowledge of domain (organization theory)

Visibility

 Traditional "research models" may take decades of text pages to describe

by Vladimir Diatlov

Southampton

Ontology-based Research?

- Concept of ontology is traditionally used to delineate "what" is studied in philosophy, social sciences, and organization studies
 - Independent reality, factors, constraints objectification, visibility, positivism
 - Socially constructed multiple reality every ontology is only one possible view on knowledge domain – dynamism, versatility, multiplicity, interpretivism
- Ontology as a research method like case study, ethnography or survey
- Validity of ontology-based representation procedures of data entry and modelling choices are important ("framework from literature," "data from documents and interviews")

University of Southampton

Data Leveraging

- Reusing ontology-based data high
 - Data is structured
- Sharing ontology-based data low?
 - Every ontology is based upon complicated, contextual and "tacit" knowledge – difficult to re-make sense from outside
- Standardized ontologies for transfer of empirical data – within a project or well-established standards are needed
- Technological issues
 - Weak query engine Protégé Axiom Language (PAL Queries and EZPal tabs), Formal Concept Analysis, F-logic and Prolog are yet complicated for an end-user. What about functionality of SQL?
 - Export and import of structured but non-ontological data, like tables

Knowledge Acquisition?

- Being a "knowledge acquisition tool" or "knowledge base editing system" could encounter a critique
- Knowledge models and metaphors:
 - Object (Simon 1981)
 - Process (Weick 1995) and pattern (Snowden 2002)
 - Interpretation (Winograd and Flores 1986)
 - Relationship (Dilthey 1976)
- Contemporary approach to knowledge as a process poses it as socially recurrently constructed and context-bounded – inextricable
- Nevertheless "knowledge model"/architecture of Protégé is advanced and interestingly fits with theories of knowledge. See theorizing versatility and use of facilities above

of Southampton

Research Presentation: Keeping Grounds Clear

- Paradigms, interpretative schemes or just languages (?) of computer scientists and "soft" scientists, including business school researchers
- Translation is needed for the parties to recognize value, validity and applications. Some examples:
 - Ontology: same word, variety of established meanings
 - User requirements versus organisational context
 - Intelligence for web/systems, metadata exchange versus corporate information management (broad and human)
 - o Knowledge management...what does it mean for parties?
- Generic issue for research assisted with software, Semantic Web developments or elements of intelligence like automatic reasoning

Examples from Ontology: Interdependence Analysis

Author will readily address your personal enquiry on ontology details at v.v.diatlov@soton.ac.uk as examples are based on sensitive data

