Name: Tejal Yadav
Branch: Computer
Year: Third year
UID: 2019130071
Subject: Data Analytics
Date: 19th May 2022

Experiment 3: One Way ANOVA on SAS platform

Objective: To perform One Way ANOVA with SAS online platform.

What is One Way ANOVA?

One way ANOVA tests the differences among means of a single categorical variable on a single dependent variable

Steps followed to perform One Way ANOVA in SAS

Step 1: Create Data

30 students participated in a study. The students are randomly assigned to use one of three studying methods to prepare for an exam.

The exam results for each student are shown below:

Method A	Method B	Method C	
78	81	84	
81	83	88	
82	83	88	
82	85	89	
85	86	90	
88	88	93	
88	90	95	
90	91	98	

Code to generate the data:

```
Program 1 ×
             LOG
   CODE
                     RESULTS
                              OUTPUT DATA
 🖈 💇 🖫 風 🖟 🖹 🞩 📗
   1 /*create dataset*/
   2 data my_data;
         input Method $ Score;
   3
         datalines;
   4
   5 A 78
   6 A 81
   7 A 82
   8 A 82
   9 A 85
  10 A 88
  11 A 88
  12 A 90
  13 B 81
  14 B 83
  15 B 83
  16 B 85
  17 B 86
  18 B 88
  19 B 90
  20 B 91
  21 C 84
  22 C 88
  23 C 88
```

Dataset is generated in SAS as shown below:

Step 2: Perform the One-Way ANOVA

Code to perform One-Way ANOVA:

```
/*perform one-way ANOVA*/
proc ANOVA data=my_data;
class Method;
model Score = Method;
means Method / tukey cldiff;
run;
```

Step 3: Interpret the Results

From this table we can see:

• The overall F Value: 5.26

• The corresponding p-value: 0.0140

A one-way ANOVA uses the following null and alternative hypotheses:

- H0: All group means are equal.
- HA: At least one group means different from the rest.

Since the p-value from the ANOVA table (0.0140) is less than $\alpha = .05$, we reject the null hypothesis.

This tells us that the mean exam score is not equal between the three studying methods.

Step 5: Visualizing Graphs and tables:

1. Boxplot

Boxplots are used to visualize the distribution of exam scores for each of the three studying methods:

From the boxplots we can see that the exam scores tend to be higher among students who used studying method C compared to methods B and C.

2. Comparison Table

	Th	e ANOVA Procedure		
	Tukey's Studen	tized Range (HSD) Te	st for Score	
Note	e: This test contr	ols the Type I experime	ntwise error r	ate.
	Alpha	0.05		
	Error Degrees	21		
	Error Mean Sq	16.67857		
	Critical Value of Studentized Range		3.56462	
	Minimum Significant Difference		5.1469	
Comparisons signification Method Difference Between Comparison Means		ant at the 0.05 level ar Simultaneous 95% (
C - B	4.750	-0.397	9.897	
C - A	6.375	1.228	11.522	
B - C	-4.750	-9.897	0.397	
B-A	1.625	-3.522	6.772	
A - C	-6.375	-11.522	-	1.228 **
A - B	-1.625	-6.772		3.522

From the table we can see that the mean values for groups A and C are statistically significantly different.

We can also see the 95% confidence interval for the difference in mean exam scores between group A and C:

95% Confidence Interval for Difference in Means: [1.228, 11.522]

Conclusion:

- 1. A one-way ANOVA was performed to compare the effect of three different studying methods on exam scores.
- 2. A one-way ANOVA revealed that there was a statistically significant difference in mean exam score between at least two groups (F(2, 21) = [5.26], p = 0.014).

- 3. The mean value of exam score was significantly different between method C and method A (95% C.I. = [1.228,11.522]).
- 4. There was no statistically significant difference in mean exam scores between method A and method B or between method B and method C.