Introduction to SDN and NFV

Uzzam Javed

Planes in Networking

Data Plane

• Forward traffic according to the logic implemented at the control plane.

Planes in Networking

Control Plane

• Control plane is the brain of the network, providing logic for the forwarding plane.

• It learns about the structure of the network by communicating to its peers in

Planes in Networking

Management Plane

• For management and configuration of the network devices.

Traditional Networks

• In traditional networks all three planes reside within the firmware of switches and routers.

 Making the management of large scale networks difficult.

Data Plane
ASIC
Control
Plane
CPU
ASIC
ASIC
RAM

Standard Hardware Switching/Routing

Software Defined Networking (SDN)

- Software Defined Networking (SDN) decouples control plane from data plane.
- Providing a control plane abstraction for the whole network.

SDN Controller

- It is a software that provides a centralized view of and control over the entire network.
- Used to enforce policies that dictate network behavior.
- Makes the management of the network simple that is more uniform and consistent.
- Examples: POX, NOX, OpenDaylight

OpenFlow

- Virtually separated planes interact through different APIs (interfaces).
- OpenFlow is an interface to communicate between the control plane and the data plane promoted by Open Networking Foundation (ONF).

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

OpenFlow Switch Flow Table

+ mask what fields to match

SDN Benefits

- 1. Direct programmability
- 2. Centralized management
- 3. Reduced CAPEX
- 4. Reduced OPEX
- 5. Agility and flexibility

What is Virtualization?

What is Virtualization?

Network Function Virtualization (NFV)

- NFV decouples network functions from the hardware.
- Those network functions are called virtual network functions (VNFs).
- VNFs run in virtual machines on commercial off-the-shelf (COTS) hardware.
- This makes adding new network functions or applications easier and faster.

NFV Model

NFV Model

2. Switch doesn't know where VM3 is connected, so it unicasts to all the

3. VM3 responds and both switches learn the MAC addresses of VM1 and VM3.

History

- Concept and collaborative work on NFV was born in October 2012.
- Number of leading Telecom service providers authored a white paper calling for industrial and research action.
- In November 2012 seven of these operators selected European Telecommunications Standards Institute (ETSI) to be the home of the Industry Specification Group for NFV (ETSI ISG NFV).

NFV Architecture

NFVI

- Manages the physical resources
- Virtualization layer (Hypervisor)
 is responsible for abstracting the
 physical resources into virtual
 resources.

VNF

- A VNF is the basic block in NFV architecture.
- They run on virtual resources on top of the hardware networking resources.
- VNFs handle specific network functions like load balancing or firewalls.

NFV Management and Orchestration

- Automation of resources and network services.
- Global resource management of NFVI resources.
- Allocating and scaling of resources.

Benefits of NFV

- 1. Less Vendor Lock-in
- 2. Greater Resource Efficiency
- 3. Flexibility

Network Function Evolution

Note: Physical, Virtualized and Containerized network functions will coexist for some time

VM vs. Container

VM

Container

SDN vs. NFV

• SDN – flexible forwarding & steering of traffic in a physical or virtual network environment.

SDN vs. NFV

- SDN flexible forwarding & steering of traffic in a physical or virtual network environment.
- NFV flexible placement of virtualized network function across the network.

SDN vs. NFV

- SDN flexible forwarding & steering of traffic in a physical or virtual network environment.
- NFV flexible placement of virtualized network function across the network.
- SDN & NFV are complementary tools for achieving full network programmability.

Flexibility with SDN & NFV

Simple Equation to define Network Virtualization:

Network Virtualization

Simple Equation to define Network Virtualization:

Network Virtualization = SDN+NFV

Have we reached NFV and SDN maturity?

Copyright © Uzzam Javed

SDN/NFV Use Case: 5G

Copyright © Uzzam Javed

Additional Resources

- European Telecommunications Standards Institute ETSI (https://www.etsi.org/technologies/nfv)
- Open Networking Foundation ONF (https://www.opennetworking.org/sdn-definition/)
- Open Platform for NFV OPNFV (https://www.opnfv.org/)

Questions?

Contact:

uzzamjaved@hotmail.com

Teaser For Next Week's Talk!

