

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =120V, I_D =100A $R_{DS(ON)}$ =6.5m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =6.3m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST12N065-T3	VST12N065	TO-220C	-	-	-
VST12N065-TC	VST12N065	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	120	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	100	А	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	72	А	
Pulsed Drain Current	I _{DM}	400	Α	
Maximum Power Dissipation	P _D	150	W	
Derating factor		1.0	W/℃	
Single pulse avalanche energy (Note 4)	E _{AS}	450	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.0	°C/W
--------------------------------------	----------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition		Min	Тур	Max	Unit
Off Characteristics	•			•	•	•	,
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		120		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =120V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 3)				•	•	•	,
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$		2.0	3.0	4.0	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =50A	TO-220	-	6.5	7.0	mΩ
Drain-Source On-State Resistance	$R_{DS(ON)}$		TO-263		6.3	7.0	
Forward Transconductance	g FS	V _{DS} =5V,I _D =50A			60	-	S
Dynamic Characteristics (Note3)							
Input Capacitance	C _{lss}	V _{DS} =60V,V _{GS} =0V, F=1.0MHz		-	3450	-	pF
Output Capacitance	Coss			-	390	-	pF
Reverse Transfer Capacitance	C _{rss}			-	18	-	pF
Switching Characteristics (Note 3)							
Turn-on Delay Time	t _{d(on)}	- V _{DD} =60V,I _D =50A V _{GS} =10V,R _G =1.6Ω		-	20	-	nS
Turn-on Rise Time	t _r			-	15	-	nS
Turn-Off Delay Time	$t_{d(off)}$			-	40	-	nS
Turn-Off Fall Time	t _f			-	10	-	nS
Total Gate Charge	Q_g	- V _{DS} =60V,I _D =50A, - V _{GS} =10V		-	57	-	nC
Gate-Source Charge	Q _{gs}			-	21	-	nC
Gate-Drain Charge	Q_{gd}			-	13	-	nC
Drain-Source Diode Characteristics				•	•	'	
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =50A		-	-	1.2	V
Diode Forward Current	I _S			-	-	100	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 100A		-	70	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$		-	110	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 5 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 6 Capacitance vs Vds

T_J-Junction Temperature(°C) **Figure 7 Power De-rating**

T_J-Junction Temperature (°C)

Figure 9 Current De-rating

Figure 8 Safe Operation Area

Figure 10 Rdson-Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance