

f. 6

Philos. Transact. N^o. 246

f. 7

f. 8

f. 9

f. 10

f. 11

f. 12

f. 13

No. 246

fig. 1

f. 2

f. 4

f. 14

f. 5

f. 3

f. 15

VII. Curvæ Celerrimi Descensus *investigatio
analytica excerpta ex literis R. Sault, Math.
D^o.*

CUM me novissimé Societate tua dignatus es, collo-
cuti sumus de *Curva Celerrimi Descensus*, Mundo Ma-
thematico, Domino Bernoulliano, proposita. Interq; cætera
mentionem fecisti de demonstrationis meæ publicatione quam
e pluribus retro mensibus inveni : quamvis autem problema
illud nunc obsoletum videatur, libentius tamen publici juris
faciam, quia celeberrimus Leibnitius omnes Mathematicos,
hujus problematis solutionis compotes, enumerare suscepit,
necnon ne tesseram observantiae meæ tibi ipsi debitam, omit-
tam.

Sit AP (Fig. 15.) linea Horizontalis; P , punctum a quo corpus grave descendit, per Curvam lineam quæsitam ADE , C & D puncta duo infinitè propinqua, per quæ corpus decisu-
rum fit, CD recta duo puncta connectens, DC & SC , DF &
 SG , FS & GC vel sH , momenta curvæ, abscissæ, & ordi-
natim applicatae respective. Capiatur $Dr = Ds$ & $tC = BC$.

Quoniam in lineolis nascentibus, tempus est ut via per cursa directe & velocitas (i. e. in hoc casu, ut radix quadrata altitudinis corporis descensi) inversè, per Hypoth. $\frac{D_s}{\sqrt{QD}} +$

$\frac{SC}{VQF} = \text{Tempori Minimo}$. Et quia velocitas in punctis æquialtis S & B per curvam DsC & rectam DBC eadem est, tempus per DC , quod evidenter *minimum* est, erit ut $\frac{DB}{VQD} + \frac{BC}{VQF}$; æquentur ergo hæc tempora, & $\frac{Ds}{VQD} + \frac{SC}{VQF}$

$$= \frac{DB}{VQD} + \frac{BC}{VQF} \text{ hoc est } \frac{DB - Ds}{VQD} = \frac{sC - PC}{VQF} \text{ vel } \frac{Br}{VQD} = \frac{ts}{VQF}$$

Sed triangula Evanescitia *Brs*, *Bts* æquiangula sunt triangulis *DsF*, *HsC*; Erg. $\frac{Bs}{Ds} = \frac{Br}{sB}$ & $\frac{ts}{Hs} = \frac{Bs}{st}$ componantur.

tur hæc duæ rationes æqualitatis & $\frac{Br}{Ds \times Hs} = \frac{ts}{sFxst}$. Ex aequo $\frac{VQD}{sFxst} = \frac{VQF}{Ds \times Hs}$. Quandoquidem autem quidvis ex Elementis æquabiliter fluere supponatur, ponamus $DS = EC$ & evadet simplicissima Curvæ expressio $\frac{VQD}{sF} = \frac{VQF}{Ds}$. ubiq; i. e. in puncto flexuræ Curva semper erit in ratione composita velocitatis directæ & momenti applicatim ordinataꝝ, inverse. Sit x, y & z fluxiones abscissaꝝ, ordinatim applicataꝝ, & curvæ respective, $\frac{x^{\frac{1}{2}}}{y}$ constans est, ut supra.

Erg. $\frac{x^{\frac{1}{2}}}{y} = 1$ sed possumus z ($= \sqrt{xx+yy}$) constans. Ergo ut hæc unitas constans sit & dimensiones debitas retineat $\frac{x^{\frac{1}{2}}}{y} = \frac{a^{\frac{1}{2}}}{\sqrt{xx+yy}}$, & post reductionem, $y = \frac{x^{\frac{1}{2}}x}{\sqrt{a^2-x^2}}$ Expressio notissima Cycloidis PEL. Q. E. F.

VIII. A Catalogue of Books lately printed in Italy.

Collectanea Monumentorum veterum Ecclesiæ Græcæ ac Latinæ quæ haecenüs in Vaticana Bibliotheca delituerunt. Laurentius Alexander Zacagnius Rom. Vaticanæ Bibliothecæ Præfector, e scriptis codicibus nunc Sig. primum edidit, Græca Latina fecit notis illustravit 4to. Romæ 1698.

Osservazioni Historiche sopra alcuni Medagliioni del Sig. Cardinale Carpegna dell' Abate Filippo Buonarotti. 4to. Roma 1698.

Ema.

f. 6. Plate Curved Fins

f. 7.

f. 8.

f. 9.

f. 10.

f. 11.

f. 12.

f. 13.

f. 15.

f. 16.

f. 17.

