MATERIALS AND STRUCTURAL TEST

GROUP 4

INVERTED V-BRACING
BUILDING

GROUP 4

GROUP MEMBERS: SHEREAN DUNCAN B11135027 ANA AQUINO B11035012 ARACELI AYALA F11205102 JUAN PABLO BENITEZ F11205105 BIANCA CESPEDES F11205109 ALEJANDRO LOPEZ F11205115 JULIO OVIEDO F11205118

DESIGN CONCEPT

A inverted-v bracing design

Planes designed in AutoCAD 2D

WATER TANK - FRONT

Type of frames

Inverted V-braces

• This design includes inverted V-brace trusses. These trusses enhances the tower's lateral stability, ensuring it can withstand various forces and maintain structural integrity.

DESIGN DETAILS

DESIGN DETAILS

LOADING PLATFORM

DESIGN DETAILS - LOAD PLACEMENT

STRUCTURE DETAILS

UNIT: N/mm

NUMBER OF STORIES: 3

NUMBER OF NODES: 60

MATERIAL PROPERTIES

MATERIAL: Medium Density Fiberboard (MDF)

ELASTIC MODULUS: 4000 MPA

POISSON'S RATIO: 0.25

TRANSMISION OF FORCES

First we calculate the **forces generated in members** because of the *12 blocks* carried on the top support, in order to analyze the reactions and how they are distributed throught the structure.

We use the two-way slab because of the surface dimensions.

Calculations for distributed load

Mass of each block: 0. 635 kg

Weight of each block: $(0.635 kg)(9.81 kg/m^2) = 6.229 N$

Supporting area: $(18 cm)(18 cm) = 324 cm^2$

Distributed loading: $\frac{6.229 \, N}{324 \, cm^2} = 0.01923 \, N/cm^2$

Tributary load: $(0.01923 N/cm^2)(9 cm) = 0.17302 N/cm$

Two-way slab

Because length = width

Load will be distributed in two perpendicular directions.

IDEALIZED MODEL

Reactions at the supports:

$$+\uparrow \sum Fy = 0$$

 $R1 + R2 + R3 - Tributary Load = 0$
 $R1 + R2 + R3 = (0.17302 \times 18 \times 0.5) / 3$
 $R1 = R2 = R3 = 0.51906 N$

FORCES DISTRIBUTED TO THE STRUCTURE

- We distribute the load thorught the three nodes located at the top support.
- By symmetry we can analyze one side, and its magnitude will represent the other ones.

As more:

- Blue: Greater force magnitude.
- Green: No magnitude.

RESULTS OBTAINED

Member ID	Start -> End Node	Length (mm)	Axial Force (N)
0	0 → 2	167	0.7786
1	0 → 4	189.7	0
2	$2 \rightarrow 4$	90	0
3	1 → 3	167	0.7786
4	1 → 4	189.7	0
5	3 → 4	90	0
6	2 → 5	167	0.7786
7	$2 \rightarrow 7$	189.7	0
8	5 → 7	90	-0.1399
9	3 → 7	189.7	0
10	3 → 6	167	0.7786
11	6 → 7	90	-0.1399
12	5 → 8	167	0.5191
13	5 → 9	189.7	0.2948
14	8 → 9	90	0
15	6 → 9	189.7	0.2948
16	6 → 10	167	0.5191
17	9 → 10	90	0
18	0 → 1	180	0

REFLECTIONS

- The column members supporting the first and second floor are the most influenced ones, meaning that a reinforcement in those will enhance overall load capacity.
- 12 The inverted V-Brace Members distribute effectively the loadings.

 Meaning that it's inclusion and location are correct decisions.
- Because of the magnitudes, the loads doesn't represent a threat for the structure integrity.

LOAD TESTING

NODAL MASS DISTRIBUTION ON 3F

- 0.5 column + 1 beam + 2 mass blocks 1.255768931x10⁻³ N-s²/mm
- 1.5 beam + 1 brace + 1 mass block 6.350645989 x 10⁻⁴ N-s²/mm

1 beam + 1 brace + 1 mass block 6.33094186x10⁻⁴ N-s²/mm

TOTAL OF 12 MASS BLOCKS ON LOADING PLATFORM

FREQUENCY MEASURED IN TOP FLOOR

THE ANALYSIS WAS BASED ON THE NODE N60

NATURAL PERIOD: 0.069 SEC

FREQUENCY: 14.5 HZ

2500 mm/s²
DISPLACEMENT

0.281 mm

ACCELERATION

647.357 mm/s²

4000 mm/s²
DISPLACEMENT

0.449 mm

ACCELERATION

1035.093 mm/s²

5000 mm/s²
DISPLACEMENT

0.561 mm

ACCELERATION

1293.866 mm/s²

6000 mm/s²

DISPLACEMENT

0.673 mm

ACCELERATION

1552.639 mm/s²

7000 mm/s²

DISPLACEMENT

0.785 mm

1811.412 mm/s²

8000 mm/s²

DISPLACEMENT

 $0.897 \, \text{mm/s}^2$

ACCELERATION

2070.186 mm/s²

THANK YOU

••••