MATH 407 4/23/18 [Review] KEG normal subgroup 3Kg=kg, +g *If geh, kek there are k', k"
st. gh=k'g, hg=gk" *If \$: a > a - honomorphism,

then \$ 'Ee's = ker (\$) is normal *If k' normal in a, then & (k') normal in a * If K normal in G, then \$(k) hormal in \$(G) Pf. (If k' normal in G, then & (k') normal in G) Let k be normal in G. Let g' & D(G), so there is q &G 28-28 0 m 1 () 5 (1 \$ () Fegt 1) Look at g'k'(g'), where k' = \$(k), kek g'k'(g')-1- \$(g) \$(k) \$(g-1) = 0 (gkg) = (p) 5 PMT = D(ko), some ko EK 6 € (k) 5 = 1 (a) 5 = 5 (b) 5 (b) wal was to last on last let, thek

(2)

* Let K be normal subgroup of G.

G/K = {gK: g ∈ G}

= {[g]_k: g ∈ G}, g ~ g' iff g' ∈ gK

g'g' ∈ K

* [a] [b] = [ab] K

* [e] k is identify of G/K

* [s] k is inverse [g] k

*Showed $\pi_k: G \to G/K$ $\pi_k(g) = [g]_k = gK$ is homomorphism $\ker(\pi_k) = [e]_k = K$

Th: Z -> Zn, Ker (Th)= nZ

*Look at \$\tilde{L}(\bar{1}_3\bar{1}_k) = \tilde{\psi}(g), where \$\tilde{\psi}: G \rightarrow G'

is homomorphism w/ker (\$\tilde{\psi}) = K

If g'ng, g'g-1 \cdot K = eK

Thus, $\Phi(g'g') = \Phi(e) = e'$ => $\Phi(g') \Phi(g') = e'$ => $\Phi(g') \Phi(g') = e'$ => $\Phi(g') = e' \Phi(g)$ = $\Phi(g') = e' \Phi(g)$

Thm. If H, k are normal subgroups of G st. HDK= {e3 then HOK~HKCG Show hk=kh, theH, tkek (hk) (h'k+')= e => h(kh-'k-') = e, h"=kh-'k-'EH => (hkh-')k-'=e, h"=hkh-'EK => (hkh-')k-'=e, k"=hkh-'EK (Dok'k'se, k'k'Ekzansiosio * (h,k) > hk is isomorphic = (1) A Above is the Fradade Helphandson The Look at & ([4]) E Da lankers Disc. HG tional (and (book) (and) (siple HE) and HE a Thus \$ (30) - 5/0 (20) 2 5/0 HO. H Look at Gul the subdisolips Hake War is Hake G