The single-query motion planners

Algorithms and Data Structures 2 – Motion Planning and its applications
University of Applied Sciences Stuttgart

Dr. Daniel Schneider

Motion Planning Algorithms

The **sPRM** is not the only motion planning algorithm.

- The roadmap-based motion planner are used for multi-query motion planning.
- If you only need to compute a single path then there are better approaches.
- → These will be covered in this lection.

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.\operatorname{init}(c_{init})$	1
while $(! TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
$\mathbf{return} \ ApproxPath(T)$	11

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.\mathrm{init}(c_{init})$	1
while $(! TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
$\mathbf{return} \ ApproxPath(T)$	11

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.\mathrm{init}(c_{init})$	1
while $(! TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
ightharpoonup return $Path(T)$	10
\Box notation $A_{max}D$	
$\mathbf{return} \ ApproxPath(T)$	11

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.init(c_{init})$	1
while $(!\ TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
$\underline{\mathbf{return}} \ ApproxPath(T)$	11

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.init(c_{init})$	1
while $(!\ TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
$\underline{\mathbf{return}} \ ApproxPath(T)$	11


```
\overline{\text{Algorithm 1: RRT } (c_{init}, c_{goal}, range_{max}, time_{max})}
T.init(c_{init})
while (! TimeElapsed(T_{max})) do
                                                                                                             2
    c_{rand} \leftarrow \text{RandomState}()
                                                                                                             3
    c_{near} \leftarrow \text{NearestN}(c_{rand}, T)
                                                                                                             4
    c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})
                                                                                                             5
    if (! Trapped) then
                                                                                                             6
         T.\text{addVertex}(c_{new})
                                                                                                             7
        T.addEdge(c_{near}, c_{new})
                                                                                                             8
        if goalReached(c_{new}, c_{goal}) then
                                                                                                             9
             return Path(T)
                                                                                                           10
return ApproxPath(T)
                                                                                                           11
```



```
\overline{\text{Algorithm 1: RRT } (c_{init}, c_{goal}, range_{max}, time_{max})}
T.init(c_{init})
while (! TimeElapsed(T_{max})) do
                                                                                                             2
    c_{rand} \leftarrow \text{RandomState}()
                                                                                                             3
    c_{near} \leftarrow \text{NearestN}(c_{rand}, T)
                                                                                                             4
    c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})
                                                                                                             5
    if (! Trapped) then
                                                                                                             6
         T.\text{addVertex}(c_{new})
                                                                                                             7
        T.addEdge(c_{near}, c_{new})
                                                                                                             8
        if goalReached(c_{new}, c_{goal}) then
                                                                                                             9
             return Path(T)
                                                                                                           10
return ApproxPath(T)
                                                                                                           11
```



```
\overline{\text{Algorithm 1: RRT } (c_{init}, c_{goal}, range_{max}, time_{max})}
T.init(c_{init})
while (! TimeElapsed(T_{max})) do
                                                                                                             2
    c_{rand} \leftarrow \text{RandomState}()
                                                                                                            3
    c_{near} \leftarrow \text{NearestN}(c_{rand}, T)
                                                                                                            4
    c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})
                                                                                                            5
    if (! Trapped) then
                                                                                                            6
         T.\text{addVertex}(c_{new})
                                                                                                            7
        T.addEdge(c_{near}, c_{new})
                                                                                                            8
        if goalReached(c_{new}, c_{goal}) then
                                                                                                            9
             return Path(T)
                                                                                                           10
return ApproxPath(T)
                                                                                                           11
```



```
\overline{\text{Algorithm 1: RRT } (c_{init}, c_{goal}, range_{max}, time_{max})}
T.init(c_{init})
while (! TimeElapsed(T_{max})) do
                                                                                                             2
    c_{rand} \leftarrow \text{RandomState}()
                                                                                                             3
    c_{near} \leftarrow \text{NearestN}(c_{rand}, T)
                                                                                                             4
    c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})
                                                                                                             5
    if (! Trapped) then
                                                                                                             6
         T.\text{addVertex}(c_{new})
                                                                                                             7
        T.addEdge(c_{near}, c_{new})
                                                                                                             8
        if goalReached(c_{new}, c_{goal}) then
                                                                                                             9
             return Path(T)
                                                                                                           10
return ApproxPath(T)
                                                                                                           11
```


Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.\mathrm{init}(c_{init})$	1
while $(! TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
$\underline{\mathbf{return}} \ ApproxPath(T)$	11

Algorithm 1: RRT $(c_{init}, c_{goal}, range_{max}, time_{max})$	
$T.\operatorname{init}(c_{init})$	1
while $(! TimeElapsed(T_{max}))$ do	2
$c_{rand} \leftarrow \text{RandomState}()$	3
$c_{near} \leftarrow \text{NearestN}(c_{rand}, T)$	4
$c_{new} \leftarrow \text{getValidEdge}(c_{near}, c_{rand}, range_{max})$	5
if (! Trapped) then	6
$T.\text{addVertex}(c_{new})$	7
$T.\text{addEdge}(c_{near}, c_{new})$	8
if $goalReached(c_{new}, c_{goal})$ then	9
return $Path(T)$	10
	11

On a Large scale

This is why it is called rapidly exploring:

→it covers the c-space fast

45 iterations

2345 iterations

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

The Rapidly-Exploring Random Tree - Connect

Exercise:

- Analyse the algorithm shown on the left.
- Write down an example and try to understand the difference.

17

Solution

Sources:

Bidirectional RRT Algorithm for Collision Avoidance Motion Planning of FFSR – Huazhong Li, Yongsheng Liang

- The algorithm builds up two trees.
- In each iteration the algorithm tries to connect both trees and as soon as the trees are connected the path is found.
- Difference *extend* and *validEdge*: The extend function add also configurations on the edge of the tree.

Why two trees?

The bugtrap problem

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

- There are multiple scenarios that one tree can be stuck. Two trees can help to solve this issues.
- The RRT-Connect was the first algorithm to solve the famous alpha puzzle.

Sources:Planning Algorithms— LaValle - http://planning.cs.uiuc.edu/

More than two?

- Yes, it makes sense to go for more than two trees.
- One can even build up a "roadmap of Trees". (Combination of sPRM and RRT)
- These algorithms are good for parallel programming on the CPU.
- With this one can solve algorithms in even more dimensions.

Sources:

Sampling-Based Roadmap of Trees for Parallel Motion Planning -Lydia E. Kavraki et. al. - https://www.clear.rice.edu/comp450/papers/plaku2005srt-parallel-motion-planning.pdf

Expansive Space Tree

Fig. 11: An example of an Expansive Space Tree approach.