Translating intervention effects to real-world /

Charlotte Lang
Laboratory for Movement Biomechanics
ETH Zürich
23rd February 2024

LAB VS REAL-WORLD

- Broad range of nonpharmacological interventions
- Effectiveness typically assessed in the lab under supervised conditions

 But: Effectiveness in realworld?

- Disparity between lab and real-world
- Gait quality worse in real-world settings (slower, higher variability,...)¹

LAB VS REAL-WORLD

Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length

Silvia Del Din^{*}, Alan Godfrey, Brook Galna, Sue Lord and Lynn Rochester

Table 2 Laboratory based and free-living gait characteristics.

Domain/gait characteristic	BWM Lab			BWM free-living		
characteristic	CL (n = 50)	PD (n = 47)	р	CL (n = 50)	PD (n = 47)	р
Pace						
Step Velocity (m/s)	1.393 ± 0.207	1.254 ± 0.211	0.002	1.097 (0.48)	1.017 (0.426)	<0.001
Step Length (m)	0.726 ± 0.095	0.667 ± 0.073	0.001	0.601 (0.183)	0.578 (0.243)	<0.001
Swing Time Var (s)	0.018 (0.113)	0.025 (0.103)	0.051	0.147 (0.125)	0.151 (0.134)	0.014
Variability (SD)						
Step Velocity Var (m/s)	0.073 (0.301)	0.081 (0.223)	0.253	0.383 (0.494)	0.362 (0.221)	0.070
Step Length Var (m)	0.033 (0.096)	0.039 (0.094)	0.050	0.151 (0.079)	0.152 (0.091)	0.660
Step Time Var (s)	0.019 (0.109)	0.028 (0.085)	0.037	0.175 (0.156)	0.181 (0.179)	0.037
Stance Time Var (s)	0.022 (0.109)	0.029 (0.092)	0.088	0.188 (0.161)	0.196 (0.249)	0.034
Rhythm						
Step Time (s)	0.525 ± 0.047	0.539 ± 0.058	0.206	0.593 (0.144)	0.605 (0.318)	0.017
Swing Time (s)	0.371 ± 0.040	0.388 ± 0.055	0.092	0.449 (0.113)	0.458 (0.252)	0.008
Stance Time (s)	0.679 ± 0.061	0.689 ± 0.069	0.450	0.741 (0.166)	0.756 (0.434)	0.035

Article

Multidisciplinary Intensive Rehabilitation Program for People with Parkinson's Disease: Gaps between the Clinic and Real-World Mobility

Moriya Cohen 1,2 , Talia Herman 1 , Natalie Ganz 1 , Inbal Badichi 2 , Tanya Gurevich 3,4,5 and Jeffrey M. Hausdorff $^{1,4,6,7,*} \odot$

Ratalbaseld parameters

		Pre intervention	Post intervention	P-value										
		Gait Quantity		1										
Steps per day (average) 4496.50 4502.5 [2513.00-7501.25] [2456.7-7384.0]														
	Gait Quality													
	Cadence (step/min)	102.85 [97.68-109.48]	102.02 [97.30-110.43]	0.413										
Rhythm	Stride Time (sec)	1.16 (±0.11)	1.17 (±0.13)	0.359										
	Gait Speed (cm/sec)	89.00 (±18.49)	87.70 (±19.16)	0.389										

LAB VS REAL-WORLD

- Disparity between lab and real-world
- Gait quality worse in real-world settings (slower, higher variability,...)¹

Translation of intervention effects possible?

Lab-based interventions e.g. treadmill training

Improvement of gait quality in the lab

Same improvements in real-world gait

How can we achieve translation of lab-based improvements to real-world gait?

Positive effects on

- Gait speed²
- Step/Stride length²
- Cadence³

Comfortable walking speed

	Task-spi	ecific trai	ning	C	ontrol			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Canning 2012	1.39	0.32	9	1.23	0.2	9	5.0%	0.16 [-0.09, 0.41]			
Fisher 2008	1.52	0.19	10	1.41	0.17	10	12.2%	0.11 [-0.05, 0.27]		-	
Ganesan 2015	0.71	0.1	20	0.48	0.1	20	79.2%	0.23 [0.17, 0.29]		-	
Protas 2005	1.45	0.37	9	1.27	0.25	9	3.6%	0.18 [-0.11, 0.47]		-	
Total (95% CI)			48			48	100.0%	0.21 [0.15, 0.27]		•	
Heterogeneity: Tau*=	0.00; Chi2:	= 2.14, df	= 3 (P =	0.54); P	= 0%				-	15 05	乛
Test for overall effect:	Z= 7.46 (P	< 0.0000	1)						-1 -0	0.5 0 0.5 Control Task-specific training	, '

Stride length

	Task-sp	ecific tra	ining	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Fisher 2008	1.54	0.16	10	1.41	0.23	10	36.7%	0.13 [-0.04, 0.30]	+-
Protas 2005	0.73	0.17	9	0.61	0.11	9	63.3%	0.12 [-0.01, 0.25]	-
Total (95% CI)			19			19	100.0%	0.12 [0.02, 0.23]	•
Heterogeneity: Tau2=	0.00; Chi2:	= 0.61, df	=1 (P=	0.93); P	= 0%				-1 -0.5 0 0.5 1
Test for overall effect:	Z = 2.30 (P	= 0.02)							Control Task-specific training

Step length

	Task-sp	ecific trai	ining	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Fisher 2008	0.77	0.08	10	0.71	0.11	10	46.5%	0.06 [-0.02, 0.14]	-
Ganesan 2015	2015 0.54 0.1		20	0.37	0.1	20	53.5%	0.17 [0.11, 0.23]	
Total (95% CI)			30			30	100.0%	0.12 [0.01, 0.23]	•
Heterogeneity: Tau ² =	0.00; Chi ² :	= 4.25, df	= 1 (P =	0.04); F	= 769	6			-1 -0.5 0 0.5 1
Test for overall effect:	Z = 2.17 (P	= 0.03)							Control Task-specific training

Positive effects on

Gait speed

Step length

Cadence

But...

... TT does not reflect typical

demands of natural

environment

INTERVENTION

To approach daily life more closely add..

...dual task

...perturbations

...AR/VR

PARAMET

- Most commonly: gait speed, step/stride length, cadence⁵
- Less frequent: variability/asymmetry parameters

- Determine: which parameter targeted by intervention?
- Gait stability parameters might be useful to achieve translation

- Day-to-day variability of performance measures⁶
- Variations in activity between workdays/weekends⁷

- ≤ 3 days of recording for reliable assessment
- When possible: equal number of workdays and weekends pre/post

Similar environment pre/post assessment

T1

T2

Questionnaire assessing...

... special activities (running, etc.)

... use of walking aids

7-day activity diary 8

1 How long did you ride a bike?

mo tu we th fr sa su

0 minutes

1–15 minutes

16–30 minutes

31–60 minutes

61–120 minutes

longer than 2 hours

LASA physical activity questionnaire (LAPAQ)⁸

16. Which sport did you do most time during the past two weeks? Sometimes it happens that a respondent does a sport, which is not on the list. This should be recorded:

- 1. Distance walking
- 2. Distance cycling
- 3. Gymnastics
- 4. Cycling on hometrainer
- 5. Swimming
- 6. Dancing
- 7. Bowling
- 8. Tennis, badminton
- 9. Running, fast walking

- 10. Rowing 11. Sailing
- 12. Playing billiards
- 13. Fishing
- 14. Playing soccer/basketball/hockey
- 15. Playing volleyball/baseball
- 16. Skiing
- 17. Else,

27. Do you do heavy household tasks?

Explanation: with heavy household tasks we mean window cleaning, changing the bed, beating the mat, vacuuming, washing or scrubbing the floor, and chores with sawing, carpeting, repairing or painting.

- 1. no (go to question 30)
- 2. yes

RESEARCH

Open Access

Assessing inertial measurement unit locations for freezing of gait detection and patient preference

(2022) 19:20

Johanna O'Day^{1*†}, Marissa Lee^{2†}, Kirsten Seagers^{2†}, Shannon Hoffman³, Ava Jih-Schiff⁴, Łukasz Kidziński¹, Scott Delp^{1,2,5†} and Helen Bronte-Stewart^{3,6†}

Individual Sensor Wearability

- Estimation of spatial parameters challenging
- Higher accuracy with sensors at ankles/feet compared to lower back¹⁰

SENSORS

- 3-sensor system
- 1x lower back, 2x ankles
- Enhanced accuracy
- Might be able to facilitate translation

- Majority of walking bouts less than 12 strides
- Unclear if shorter or longer walking bouts better discriminate between PD and OA

RESEARCH Open Access

Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length

Silvia Del Din*, Alan Godfrey, Brook Galna, Sue Lord and Lynn Rochester

Article

Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life

Vrutangkumar V. Shah ^{1,*}, James McNames ², Graham Harker ¹, Martina Mancini ¹, Patricia Carlson-Kuhta ¹, John G. Nutt ¹, Mahmoud El-Gohary ³, Carolin Curtze ⁴ and Fay B. Horak ¹

MEDICATION

Time since medication intake

MEDICATION

Day/ Time	6:00 7:00		1	:00 :00	:00 :00	:00 :00	0 12:00 0 13:00																20:00 21:00		21:00 22:00		Comments
Monday																											
Tuesday																											
Wednesday																											
Thursday																											
Friday																											
Saturday																											
Sunday																											

DISCUSSION

- 1. Documentation of medication intake feasible?
- 2. Is gait speed as outcome parameter enough?

List of references

- [1] Del Din, S., Godfrey, A., Galna, B., Lord, S., & Rochester, L. (2016). Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length. Journal of neuroengineering and rehabilitation, 13, 1-12.
- [2] Cohen, M., Herman, T., Ganz, N., Badichi, I., Gurevich, T., & Hausdorff, J. M. (2023). Multidisciplinary Intensive Rehabilitation Program for People with Parkinson's Disease: Gaps between the Clinic and Real-World Mobility. International Journal of Environmental Research and Public Health, 20(5), 3806.
- [3] Robinson, A. G., Dennett, A. M., & Snowdon, D. A. (2019). Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson's disease and multiple sclerosis: a systematic review and meta-analysis. *Physiotherapy*, 105(2), 174-186.
- [4] Bello, O., Sánchez, J. A., Lopez-Alonso, V., Márquez, G., Morenilla, L., Castro, X., ... & Fernández-del-Olmo, M. (2013). The effects of treadmill or overground walking training program on gait in Parkinson's disease. Gait & posture, 38(4), 590-595.
- [5] Polhemus, A., Ortiz, L.D., Brittain, G. *et al.* Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes. *npj Digit. Med.* **4**, 149 (2021). https://doi.org/10.1038/s41746-021-00513-5
- [6] Holleran, C. L., Bland, M. D., Reisman, D. S., Ellis, T. D., Earhart, G. M., & Lang, C. E. (2020). Day-to-day variability of walking performance measures in individuals post-stroke and individuals with Parkinson disease. Journal of neurologic physical therapy: JNPT, 44(4), 241.,
- [7] Carcreff, L., Gerber, C. N., Paraschiv-Ionescu, A., De Coulon, G., Aminian, K., Newman, C. J., & Armand, S. (2020). Walking speed of children and adolescents with cerebral palsy: laboratory versus daily life. Frontiers in bioengineering and biotechnology, 8, 812.
- [8] Stel, V. S., Smit, J. H., Pluijm, S. M., Visser, M., Deeg, D. J., & Lips, P. (2004). Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. *Journal of clinical epidemiology*, *57*(3), 252-258.
- [9] O'Day, J., Lee, M., Seagers, K., Hoffman, S., Jih-Schiff, A., Kidziński, Ł., ... & Bronte-Stewart, H. (2022). Assessing inertial measurement unit locations for freezing of gait detection and patient preference. Journal of neuroengineering and rehabilitation, 19(1), 20.
- [10] Panebianco, G. P., Bisi, M. C., Stagni, R., & Fantozzi, S. (2018). Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait & posture, 66, 76-82.
- [11] Debelle, H., Packer, E., Beales, E., Bailey, H. G., Mc Ardle, R., Brown, P., ... & Del Din, S. (2023). Feasibility and usability of a digital health technology system to monitor mobility and assess medication adherence in mild-to-moderate Parkinson's disease. Frontiers in Neurology, 14, 1111260.
- [12] Hauser, R. A., Friedlander, J., Zesiewicz, T. A., Adler, C. H., Seeberger, L. C., O'Brien, C. F., ... & Factor, S. A. (2000). A home diary to assess functional status in patients with Parkinson's disease with motor fluctuations and dyskinesia. Clinical neuropharmacology, 23(2), 75-81.