Características generalizadas de desempenho de instrumentos - Características dinâmicas

Modelo matemático generalizado de um sistema dinâmico

Equação diferencial ordinária linear com coeficientes constantes:

❖ Modelo matemático mais utilizado para estudar o comportamento dinâmico de um sistema de medição

Características Gerais de Desempenho

As bases quantitativas que irão determinar a habilidade com que o instrumento medirá entradas desejadas e rejeitará as entradas espúrias constituem as características gerais de desempenho:

- Características Estáticas
- Características Dinâmicas

Características estáticas

Conjunto de critérios de desempenho que descrevem significantemente a qualidade da medição

➤ Relevantes em aplicações onde as grandezas medidas são constantes ou variam lentamente

Características dinâmicas

- Conjunto de critérios que descrevem a qualidade da medição em problemas envolvendo grandezas que variam rapidamente
- ➤ Situações em que a descrição entrada-saída envolve o uso de equações diferenciais

Características estáticas (Calibração Estática)

Características Estáticas são obtidas a partir de calibração estática

- ➤ Todas entradas (desejadas, interferentes e modificantes) menos uma são mantidas constantes
- A entrada não constante é variada num conjunto de valores constantes, resultando em um conjunto de <u>saídas</u> de valores constantes
- ➤ Relações entrada-saída obtidas implicam numa calibração estática válida sob as condições impostas às outras variáveis
- Este procedimento pode ser repetido considerando variáveis as entradas mantidas constantes anteriormente

Método e Processo de Medida

- ➤ Método de medida situação ideal "*Todas entradas menos uma devem* ser mantidas constantes"
- ➤ Processo de medida realização física de um método de medida em termos práticos (imperfeita)

Discrepâncias entre Método e Processo de Medida

- Causas de discrepâncias entre os métodos
- ➤Instruções do método absolutamente precisas que não podem ser realizadas com exatidão
- ➤ Instruções imprecisas

Postulado da Medição

Diferenças entre Método e Processo de medição implicam no "Postulado da Medição":

Repetidas medidas de uma mesma quantidade por um processo particular de medição não resultam uniformemente o mesmo número

As medidas são afetadas por erros, <u>interpretados</u> como sendo manifestações das <u>variações existentes</u> na execução de um processo de medição

O conceito de Valor Real e Valor Medido

- ➤ Quando uma grandeza física é medida com um instrumento e um valor numérico é atribuído à grandeza, interessa saber quão perto do valor real a medição pode estar
- ➤O chamado <u>valor real</u> geralmente é desconhecido e não pode ser obtido

Exemplo:

- Medição do comprimento de uma barra cilíndrica:
- •Faces planas?
- •Faces paralelas?
- ■Se não forem planas qual o tipo de superfície?
- •Rugosidade?

O conceito de Valor Real e Valor Medido

Valor real ou verdadeiro: valor médio obtido através de um método exemplar, ou seja, um método aceito por "experts" como sendo suficientemente acurado para os fins a que a medição se destina

Processo de medida (controle estatístico)

- A Execução deve seguir o mais fielmente possível os procedimentos especificados no método de medição
- ➤ Processo é dito estar em estado de controle estatístico se somente entradas aleatórias estiverem afetando a medição. Os efeitos de entradas aleatórias não podem ser removidos
- As medidas resultantes de um processo de medição em estado de controle estatístico formam uma sequência aleatória

Exemplo: medição de pressão sem controle de temperatura e com controle de temperatura

O problema do controle estatístico das variáveis

Efeitos de não controlar a Temperatura

Um exemplo de uma calibração

Figure 2.2 Pressure gage.

Um exemplo de uma calibração

True pressure = $10.000 \pm .001$ kPa Acceleration = 0 Vibration level = 0 Ambient temperature = $20 \pm 1^{\circ}$ C

Trial number	Scale reading, kPa				
1	10.02				
2	10.20				
3	10.26				
4	10.20				
5	10.22				
6	10.13				
7	9.97				
8	10.12				
9	10.09				
10	9.90				
11	10.05				
12	10.17				
13	10.42				
14	10.21				
15	10.23				
16	10.11				
17	9.98				
18	10.10				
19	10.04				
20	9.81				

Figure 3.3 Pressure-gage calibration d.ta.

Características do Experimento

- ➤ No experimento temos usado padrões bem definidos
- ➤ Temos mantido as outras entradas razoavelmente próximas das condições especificadas
- ➤ Vamos definir uma quantidade:

$$Z \equiv \frac{\left(n\acute{u}mero_leituras_num_int\ ervalo\right)/\left(n\acute{u}mero_total_de_leituras\right)}{l\ arg\ ura_do_int\ ervalo}$$

Distribuição dos Dados do Experimento (usando um gráfico de barras)

Comentários

➤ A área do Histograma deve ser 1.0 (100%)

Se for possível tomar um número infinito de leituras e cada uma com um infinito número de dígitos significativos os intervalos

➤ Podemos escolher intervalos tão pequenos como quisermos

Neste caso, teremos o gráfico continuo

Comentários

A probabilidade de uma leitura estar entre a e b é:

$$P(a < x < b) = \int_a^b f(x) dx$$

A informação da probabilidade é dada, frequentemente em termos de distribuição acumulativa

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

Funções de probabilidade e função de distribuição acumulativa

A Distribuição Gaussiana

A Distribuição Gaussiana

A forma da curva é definida por σ

 $\triangleright \mu$ só define a posição da curva no eixo x

A função não pode ser integrada e por isto a função de distribuição acumulativa não pode ser escrita explicitamente

A função tem sido tabulada usando métodos numéricos

A Distribuição Gaussiana

(significado de σ e μ)

Definindo se uma distribuição é Gaussiana (método Gráfico)

Resultado do Método Gráfico

Análise do Resultado Gráfico

Do resultado anterior podemos tentar calcular o valor de:

$$\frac{1}{X} = \frac{\sum_{i=1}^{N} X_i}{N}$$

$$Xi = \text{leitura individual}$$

$$N = \text{Número total de leituras}$$

$$S^{2} \equiv \frac{\sum_{i=1}^{N} \left(X_{i} - \overline{X} \right)^{2}}{N - 1}$$

Distribuição de um gerador de números aleatórios (CSMP-IBM)

20 amostras

Distribuição de um gerador de números aleatórios (CSMP-IBM)

100 amostras

Distribuição Gaussiana (características para valores de **z**₁)

- >68,26% das leituras ocorrem no intervalo $x\pm1\sigma$
- >95,45% das leituras ocorrem no intervalo $x\pm2\sigma$
- >99,73% das leituras ocorrem no intervalo $x\pm3\sigma$
- Estes conceitos se escrevem de maneira geral como:

$$x_i = x' \pm z_1 \sigma \qquad (P\%)$$

Teoria das Medições Estadísticas

- •Chamaremos x' de valor estimado de uma variável x
- •Também o chamaremos de "valor médio verdadero da variável"
- •Este valor deve ser estimado a partir de um conjunto de dados finito.
- •Sobre este conjunto de dados finito pode ser calculado um *valor médio* (valor médio da amostra): \overline{x}

- •Se o número de dados a amostra (N) é pequeño o valor estimado da média (χ') a partir do conjunto de dados (amostra) pode estar muy influenciado pelo valor de algum dado.
- •Isto acontece quando é calculada uma média aritmética (por exemplo).
- •Neste contexto, as vezes a *mediana* da uma melhor informação do comportamento de uma amostra.
- •Se o valor de N for grande a influeça de qualquer dado longe do valor de χ' não terá impacto no erro.
- •Conforme $N \Rightarrow \infty X$ toma todas a variações possíveis de X estariam incluidas na amostra

- •Infelizmente só podemos contar com um conjunto finito de dados
- •Neste caso, os dados medidos só proporcionam uma estimação do valor verdadero
- •A partir de uma análisis estatística do conjunto de dados e das fontes de erro que influenciam χ' podemos dizer:

$$x' = \overline{x} \pm u_{x} \qquad (P\%)$$

Onde \bar{x} representa a estimação mais provável de x' com base nos dados disponíveis

 $\pm u_x$ representa o intervalo de incerteza a esse valor estimado com algum nível de provabilidade P%

Distribuição Gaussiana

Soluciones de la integral unilateral para $p(z_1) = \frac{1}{(2\pi)^{1/2}} \int_0^{z_1} e^{-\beta^2/2} d\beta$

					(201)					
$z_1 = \frac{x_1 - x'}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4758	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4799	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.49865	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990
										-

Estatística Finita

- •Os métodos de predição usados em estatísticas infinitas podem ser extendidos a conjuntos de dados finitos
- •Quando o tamanho das amostras são finitos a variável z das estatisticas infinitas não fornece uma estimação ponderadas confiável da probabilidade verdadeira
- •Neste caso, a variança da amostra pode se ponderar objetivando compensar a diferencia entre os valores estatísticos finitos e os valores estatísticos infinitos (esperados para uma variável medida)
- •Para uma distribuição normal de ${\bf x}$ em torno a algum valor medio da amostra ${\bf \bar x}$ pode se definir: $x_i = {\bf \bar x} \pm t_{v,P} S_x$ (P%)

Estatística Finita

$$x_i = \overline{x} \pm t_{v,P} S_x \qquad (P\%)$$

- •A variável $t_{v,P}$ é obtida a partir de uma nova função ponderada para conjuntos de dados finitos
- •Esta variável substitui a variáve z
- •Esta variável é denominada de estimador t
- •Intervalo $\pm t_{v,P} S_x$ representa um intervalo de precisão para uma probabilidade P%
- •O valor de t é função da probabilidade (P%), os graus de liberdade (v)

Estatística Finita

$$x_i = \overline{x} \pm t_{v,P} S_x \qquad (P\%)$$

- •Os valores de *t* podem obterse da tabela de distribuição *t-Student* desenvolvida por Willian S. Gosset (1876-1937)
- •Esta matemático percebeu que o uso da variável z com S_x no lugar de σ não eram obtidas estimações exatas do intervalo de precisão com graus de liberdade pequenos
- •Pode-se observar nesta tabela que os valores de t permitem aumentar o tamanho do intervalo $\pm t_{v,P}S_x$ com relação a $z_1\sigma$ (P%)
- •Tudo isto é feito para valores pequenos de N
- •Para valores grandes de N os valores de t se aproximam de z_1

Distribuição t-student

Tabla 4.4 Distribución t de Student

V	t ₅₀	t_{90}	t ₉₅	t ₉₉
1	1.000	6.314	12.706	63.657
2	0.816	2.920	4.303	9.925
2 3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.770	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
30	0.683	1.697	2.042	2.750
40	0.681	1.684	2.021	2.704
50	0.680	1.676	2.010	2.679
60	0.679	1.671	2.000	2.660
∞	0.674	1.645	1.960	2.576

Estatística Finita

- •Si uma variável vai ser medida N vezes e este procedimento fosse repetido M vezes, que valores estimandos seriam obtidos???
- •Por exemplo, qual sería o valor de \bar{x} e σ para cada amostra????

- •Os diversos eventos diversos podem alterar estes valores estatísticos.
- •Pode ser demonstrado que os valores de $\bar{\chi}$ para as amostras seguem uma distribuição normal
- •Isto é uma consequência do teorema do limite central

Estatística Finita

- •Os valores de se distribuiem em volta *da media verdadeira* (a qual corresponde a uma distribuição Gaussiana).
- •A variança dos valores das medias para as amostras (com respeito à media verdadeira) pode ser calculado:

$$S_{\overline{x}} = \frac{S_x}{\sqrt{N}}$$

•Onde $S_{\bar{x}}$ representa a variança das médias das amostras

Teorema do Limite Central

Estatística Finita

•Desta maneira a pregunta é: que tão adequado é a estimação da **média verdadeira** de uma variável aleatória se só conhecemos uma amostra de tamanho N???

•A estimação da faixa de valores possíveis do valor da média verdadeira é dada por: $x' = \bar{x} \pm t_{v,P} S_{\bar{x}}$ (P%)

Onde $\pm t_{v,P} S_{\bar{x}}$ é um intervalo de confiança a uma probabilidade P%

Estatística Finita

- •Considere os dados da tabela: (a) calcule as estatísticas da amostra para esse conjunto de dados. (b) Estimar o intervalo de valores para o qual espera-se que estem 95% das medições. (c) Calcular o valor médio do valor medido ao 95% de probabilidade com base no conjunto de dados finito.
- •Para este problema sabemos que N = 20 e que o conjunto de dados têm uma distribuição normal.
- •Neste caso, precisamos calcular:
 - a) \bar{x}
 - $b) x_i = \overline{x} \pm t_{v,P} S_x$
 - $c) x' = \overline{x} \pm t_{v,P} S_{\overline{x}}$

Dados para o exemplo

i	x_i	i	x_i
1	0.98	11	1.02
2	1.07	12	1.26
3	0.86	13	1.08
4	1.16	14	1.02
5	0.96	15	0.94
6	0.68	16	1.11
7	1.34	17	0.99
8	1.04	18	0.78
9	1.21	19	1.06
10	0.86	20	0.96

Estatística Finita

$$\overline{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 1,02$$

$$S_x = \sqrt{\frac{1}{19} \sum_{i=1}^{20} (x_i - \bar{x})^2} = 0.16$$

Graus de liberdade: v = N - 1 = 19

Consultar na tabela t-Student ao 95% de probabilidade

- •Pode ser obtido na tabela $t_{19.95} = 2,093$
- •O intervalo de valores no qual cairiam 95% das medições de x está dado pela equação: $x_i = \overline{x} \pm t_{v,P} S_x$

•
$$x_i = 1,02 \pm (2,093 \times 0,16) = 1,02 \pm 0,33 \quad (95\%)$$

•Existe uma probabilidade de 95% que um novo dado tenha um valor entre 0,69 e 1,35

Estatística Finita

$$\overline{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 1,02$$

$$S_x = \sqrt{\frac{1}{19} \sum_{i=1}^{20} (x_i - \bar{x})^2} = 0.16$$

Graus de liberdade: v = N - 1 = 19

Consultar na tabela t-Student ao 95% de probabilidade

•O valor médio verdadeiro é calculado a partir do valor médio da amostra

$$S_{\bar{x}} = \frac{S_x}{\sqrt{N}} = \frac{0.16}{\sqrt{20}} = 0.04$$

Neste caso, temos que o valor médio verdadeiro está na faixa:

$$x' = \bar{x} \pm t_{v,P} S_{\bar{x}} = 1,02 \pm 0,08$$
 (95%)

Um experimento de Calibração

Conceitos de Exatidão, Precisão, Erro sistemático (bias)

Erro: Diferença entre o valor medido e o valor real da grandeza (para uma medida)

Exatidão de um processo de medida: indica o maior desvio de leitura para uma entrada conhecida

Precisão de um processo de medida: indica sua habilidade de reproduzir uma certa leitura com uma dada exatidão

Comentários

Exatidão relaciona-se com a proximidade das leituras em relação à verdade e precisão relaciona-se com a proximidade das medidas entre si (conceito de repetibilidade dos resultados)

- Exatidão está associada com erro sistemático (bias) (será comentado mais na frente)
- ➤ <u>Precisão</u> está associada com erro aleatório(será comentado mais na frente)

Aspectos da Calibração de um Instrumento de Medição

<u>Uma definição de Calibração:</u> Quantificação dos parâmetros "exatidão" e "precisão" de um processo de medida

- ❖Calibração ou aferição de um instrumento: comparar sua resposta com um padrão
- ❖Implica em melhorar exatidão, mantida a precisão (inerente ao processo)

Aspectos da Calibração de um Instrumento de Medição

Procedimento envolve comparação:

- ➤ Com padrão primário
- Com padrão secundário com maior exatidão que o instrumento a ser calibrado
- ➤ Com entradas conhecidas

O problema da calibração

➤ Resulta em aproximações, uma vez que os próprios padrões apresentam erros em relação ao valor real

O Conceito de Incerteza

Incerteza: define uma faixa em que estima-se estar localizado o valor verdadeiro da grandeza medida, dentro de um determinado nível de probabilidade

Definições estatísticas

- Função densidade de probabilidade: f(x)
- Função de distribuição acumulada: F(x)
- ➤ Distribuição normal
- Estimação do valor médio, μ
- Estimação do desvio padrão, σ

Distribuição Gaussiana

- Formas de verificação se uma distribuição é gaussiana:
- ❖Plotar medidas num gráfico de probabilidade gaussiana e verificar quão próximo da linha gaussiana perfeita os dados estão
- **riangle** Usar o teste χ^2 (teste de confiança)

Problema da calibração: ajuste de dados a uma função — mínimos quadrados

- Estimação dos parâmetros da equação de ajuste
- Estimação das dispersões das estimativas dos parâmetros
- Combinação de erros no cálculo da exatidão global do sistema

O método dos Mínimos Quadrados

$$\frac{\partial(sum)}{\partial m} = 0 \qquad \frac{\partial(sum)}{\partial c} = 0$$

Valor na reta

$$\frac{\partial(sum)}{\partial m} = \frac{\partial}{\partial m} \sum_{i=1}^{n} [Y_i - (mX_i + c)]^2 = 0$$

$$\frac{\partial(sum)}{\partial c} = \frac{\partial}{\partial c} \sum_{i=1}^{n} [Y_i - (mX_i + c)]^2 = 0$$

➤ Queremos minimizar *sum* respeito a *m* e a *c*

Resultado de derivar e igualar a zero cada expressão

$$\frac{\partial(sum)}{\partial m} = \frac{\partial}{\partial m} \sum_{i=1}^{n} \left[Y_i - (mX_i + c) \right]^2 = 0 \qquad c \sum_{i=1}^{n} X_i + m \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i Y_i$$

$$\frac{\partial(sum)}{\partial c} = \frac{\partial}{\partial c} \sum_{i=1}^{n} \left[Y_i - (mX_i + c) \right]^2 = 0 \qquad cn + m \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y_i$$

Resolvendo o sistema

a)
$$c\sum_{i=1}^{n} X_i + m\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i Y_i$$

b)
$$cn + m \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y_i$$

$$m = \frac{n\sum X_i Y_i - \left(\sum X_i\right) \left(\sum Y_i\right)}{n\sum X_i^2 - \left(\sum X_i\right)^2}$$

$$c = \frac{\left(\sum X_i^2\right)\left(\sum Y_i\right) - \left(\sum X_i\right)\left(\sum X_iY_i\right)}{n\sum X_i^2 - \left(\sum X_i\right)^2}$$

Valores
para a
equação
da reta

Mudando a notação das equações

$$m = \frac{n\sum q_i q_o - \left(\sum q_i\right)\left(\sum q_o\right)}{n\sum q_i^2 - \left(\sum q_i\right)^2}$$

$$c = \frac{\left(\sum q_i^2\right)\left(\sum q_o\right) - \left(\sum q_i\right)\left(\sum q_i q_o\right)}{n\sum q_i^2 - \left(\sum q_i\right)^2}$$

➤Onde q_i é a valor de entrada (real) e q_o o valor de saída (lido na saída/valor medido)

➤No exemplo apresentado temos:

$$> m = 1.08 \text{ e } c = -0.85$$

$$>\mu = 10.11$$

$$> \sigma = 0.14$$

Cálculo dos desvios de m e c

- ➤Os valores de *m* e *c* são calculados a usando os valores lidos no instrumento de medição e os valores reais
- \triangleright É importante calcular a possível variância de m e c

$$s_m^2 = \frac{Ns_{qo}^2}{N\sum q_i^2 - (\sum q_i)^2}$$

$$s_{qo}^2 \in \frac{s_{qo}^2 \sum q_i^2}{N\sum q_i^2 - (\sum q_i)^2}$$

$$s_{qo}^2 \in \frac{1}{N} \sum (mq_i + b - q_o)^2$$

$$s_{qo}^2 = \frac{1}{N} \sum (mq_i + b - q_o)^2$$

Exemplo Tratado

Os cálculos usando os dados do exemplo

➤ No exemplo tratado temos que:

$$s_{qo} = 0.20$$

$$s_{\rm m} = 0.0134$$

$$s_c = 0.078$$

- Assumindo um distribuição gaussiana e 99,7% limitado a (±3s) podemos pensar que:
- ***** *m* pode estar entre 1.08 ± 0.04 (isto é: $0.4 = 3 \times 0.0134$)
- ***** c pode estar entre -0.85 ± 0.24 (isto é: $0.24 = 3 \times 0.078$)

Cálculo do valor real

A nossa reta de calibração obtida usando os valores de *m* e *c* é:

$$q_o = 1,08q_i - 0.85$$

➤Temos então:

$$q_i = \frac{q_o + 0.85}{1.08}$$

- ➤O anterior indica que podemos tentar obter o valor real a partir do valor lido
- Entretanto, este valor "real" dever ter algum erro
- Para $q_0 = 4.32$ o valor de q_i é igual a 4.79

Cálculo do desvio do Valor Real

➤ Podemos calcular o desvio do valor real calculado usando a reta de mínimos quadrados assim:

$$s_{qi}^{2} = \frac{1}{N} \sum \left(\frac{q_{o} - b}{m} - q_{i} \right)^{2} = \frac{s_{qo}^{2}}{m^{2}} = \frac{1}{N} \sum (mq_{i} + b - qo)^{2}$$

➤ No exemplo tratado temos:

$$s_{qi} = 0.18 \text{ Kpa}$$

±3×s limita 99,7% dos dados

- Desta maneira se usarmos um medidor para medir uma pressão desconhecida e lermos o valor de 4,32 Kpa temos:
- ❖ Valor real estimado = $4,79 \pm 0,54$ (observe que $0,54 = 3 \times 0,18$)

O conceito de "erro provável"

- ➤ Um outro método comum de calcular o valor real é usando o conceito de erro provável (e_p)
- \geq e_p = 0,674 × s (onde s é o desvio padrão)
- ►No nosso exemplo o desvio padrão (S_{qi})é: 0,<u>18</u>
- Temos que $0.674 \times 0.18 = 0.12$
- ➤ A faixa de ±e_p inclui os dados para 50% dos valores reais (≈50% da área sob a curva de distribuição gaussiana)
- ► Usando este conceito podemos estimar de outra maneira o valor real para o valor lido: $q_0 = 4,32$
- Neste caso o valor real será: $q_i = 4,79 \pm 0,12$

É importante definir se estamos usando o <u>erro provável</u> ou ±3×s

Erro sistemático (bias) e erro randômico

- Num processo de calibração podemos pensar que o erro total está composto por dois termos
- Por exemplo, no caso do valor lido $q_0 = 4,32$ calculamos o valor real = $4,79 \pm 0,54$ (limitado a $3\times s$)

$$q_i = \frac{q_o + 0.85}{1.08}$$
 $qi = 4.79$

- \triangleright O primeiro termo do erro será 4,32 4,79= -0, 47 (ou seja $q_o q_i$)
- Este valor é denominado de *erro sistemático* (*bias*)
- \triangleright O outro termo do erro é \pm 0,54
- Este termo é denominado de *erro randômico*

Definição do conceito de Calibração

➤O processo de calibração consiste em quantificar o valor de erro sistemático e removê-lo do instrumento

➤O erro randômico define claramente a imprecisão do instrumento de medição

- Exatidão de um instrumento tem a ver com o erro sistemático
- ➤ Precisão de um instrumento tem a ver com o erro randômico

O Teste Qui-quadrado (χ^2)

Problema: dadas várias leituras para um mesmo valor real, definir se os dados correspondem a uma distribuição Gaussiana

A distribuição Gaussiana, geralmente, descreve bem fenômenos da natureza

Porém, o engenheiro deve definir o quanto ela se aproxima para seu experimento

Um exemplo de uma calibração

True pressure = $10.000 \pm .001$ kPa Acceleration = 0 Vibration level = 0 Ambient temperature = $20 \pm 1^{\circ}$ C

Trial number	Scale reading, kPa	
1	10.02	
2	10.20	
3	10.26	
4	10.20	$> \overline{x} = 10.11$
5	10.22	$\lambda - 10.11$
6	10.13	
7	9.97	>s = 0,14
8	10.12	, 5 0,2 1
. 9	10.09	
10	9.90	
11	10.05	
12	10.17	
13	10.42	
14	10.21	
15	10.23	
16	10.11	
17	9.98	
18	10.10	
19	10.04	
20	9.81	Figure 3.3 Pressure-

Figure 3.3 Pressure-gage calibration d.ta.

Distribuição dos Dados do Experimento (usando um gráfico de barras)

O Teste Qui-quadrado (χ^2)

 \triangleright O teste pode ser usada para n ≥ 20 (isto pode mudar segundo a literatura)

➤ Para o teste ser aplicado precisamos definir pelo menos 4 grupos

Para isto precisamos pelo menos 20 dados

➤O teste é definido assim:

$$\chi^2 \equiv \sum_{i=1}^n \frac{(n_o - n_e)^2}{n_e}$$

O Teste Qui-quadrado (χ^2)

$$\chi^2 \equiv \sum_{i=1}^n \frac{(n_o - n_e)^2}{n_e}$$

Onde:

 $rac{>}n_o \equiv$ numero de leituras observadas num grupo

rackream n = número de leituras que seriam observadas na mesma faixa se a distribuição fosse Gaussiana, com:

$$\mu = x$$

$$e$$

$$\sigma = s$$

O Teste Qui-quadrado (χ^2) Cálculo do número n_e

➤ Usar a tabela de distribuição Gaussiana onde temos

$$w \equiv \frac{x - \mu}{\sigma}$$

➤Por exemplo, se tivermos coletados dados com:

$$\mu = \bar{x} = 10,11$$

$$\sigma = s = 0.14$$

e quisermos calcular n_e para o intervalo entre - ∞ e 10,03 o que fazemos?

O Teste Qui-quadrado (χ^2) (cálculo do w)

Intervalo: $-\infty \le x \le 10,03$

$$w \equiv \frac{x - \mu}{\sigma}$$

$$\mu = \bar{x} = 10,11$$

$$\sigma = s = 0,14$$

Para
$$x = 10,03$$
 temos:

Para
$$x = 10,03$$
 temos: $w = \frac{10,03-10,11}{0,14} = -0,572$

Dado que a curva de distribuição Gaussiana é perfeitamente simétrica em volta de w = 0 temos:

♦P(-
$$\infty$$
 < x < -0,572) = P(0,572 < x < ∞)

O Teste Qui-quadrado (χ^2)

$$P(-\infty < x < -0.572) = P(0.572 < x < \infty)$$

➤Portanto, na tabela (que é acumulativa) podemos obter:

$$P(-\infty < x < +0.572) = 0.717$$

▶ Para obter P(0,572 $< x < \infty$) fazemos:

$$1 = 0.717 = 0.283$$

Significado: numa amostragem de 20 dados nos esperamos que $20 \times 0,283 = 5,66$ dados estejam no intervalos proposto ($-\infty \le x \le 10,03$)

O Teste Qui-quadrado (χ^2)

Gro	up	numbe	Range of x		Range of w		n ₀	n _e v	n _e	Sil 2		leda no		
	1		- ∞	to	10.03	- ∞	to	-0.572	5	5.66	0.077		HALL.	
	2		10.03	to	10.115	-0.572	to	0.0357	5	4.62	0.031			
	3	1 4	10.115	to	10.215	0.0357	to	0.75	6	5.18	0.130	me of		l dejun
y.v	4	-	10.215	to	œ	0.75	to) (00)	4	4.532	0.062	THE		lance
	I						-			,	$\chi^2 = 0.30$	00		

O Teste Qui-quadrado (χ²) (Graus de Liberdade)

➤ Para outros intervalos trabalhamos da mesma maneira

- ➤ Para interpretar o resultado usamos o conceito de graus de liberdade (*degrees of freedom*)
- ► Este é definido como: *número de grupos 3*
- ➤ Neste exemplo temos 4 grupos, e, portanto, o número de graus de liberdade é 1

Guia para agrupar no teste Qui-quadrado

O Teste Qui-quadrado (χ²) (interpretação)

- Se tivermos uma distribuição Gaussiana perfeita com $\mu = 10,11$ e $\sigma = 0,14$ da qual fizermos 20 leituras nos não teríamos um valor de $\chi^2 = 0$
- ►Isto pela natureza aleatória das nossas leituras

- ➤ Uma amostragem finita não mostrará as mesmas características da *população pai*
- E para uma pequena amostragem teremos um resultado que nos diz que a distribuição não é Gaussiana

O Teste Qui-quadrado (χ²) (interpretação)

- Se trabalharmos, por exemplo com **10 graus de liberdade** (13 grupos) teremos (observando o gráfico):
- a) Teremos um valor de χ^2 de pelo menos 3,94
- b) Se o valor de χ^2 for de 2,71 teremos uma séria evidência de que a distribuição é Gaussiana (maior que 95%)
- c) Se tivermos um valor de χ^2 de 20,2 teremos menos de 10% de chance de termos uma distribuição Gaussiana.
- d) Para nosso valor de $\chi^2 = 0.30$ (um grau de liberdade) a probabilidade de se ter uma distribuição, perfeitamente, Gaussiana está entre 50% e 75%
- e) Isto não é muito conclussivo dado que o teste qui-quadrado é muito sensível.

- Na distribuição t-student se inclui a variação de parâmetro z com respeito ao tamanho da amostra. Na verdade z se converte em $t_{v,P}$
- Isto serve para fazer um ajuste da incerteza que deverá crescer na medida em que o tamanho da amostra seja menor
- Quando o tamanho da amostra aumente temos que $t_{v,P} \rightarrow z$

- *Uma pergunta seria*: O que passa com a variância (ou com o desvio padrão) da amostra quando varia o tamanho da amostra?
- Quando se faz um gráfico para diversos conjuntos de dados, cada um com N pontos de dados, gera-se uma função de densidade de probabilidade: $p(\chi^2)$
- Esta função segue a conhecida distribuição Chiquadrado (χ^2)

• Um intervalo de precisão para a variância da amostra se denota mediante o enunciado de probabilidade:

$$P\left(\chi_{1-\alpha/2}^2 \le \chi^2 \le \chi_{\alpha/2}^2\right) = 1 - \alpha$$

com uma probabilidade $P(\chi^2) = 1 - \alpha$

O termo α denomina-se de nível de confiança

• Cominando as equações:

$$\chi^{2} = \frac{vS_{x}^{2}}{\sigma^{2}}$$

$$P(\chi_{1-\alpha/2}^{2} \le \chi^{2} \le \chi_{\alpha/2}^{2}) = 1 - \alpha$$

temos:

$$P(vS_x^2/\chi_{\alpha/2}^2 \le \sigma^2 \le vS_x^2/\chi_{1-\alpha/2}^2) = 1-\alpha$$

$$P(vS_x^2/\chi_{\alpha/2}^2 \le \sigma^2 \le vS_x^2/\chi_{1-\alpha/2}^2) = 1-\alpha$$

• Por exemplo, para um intervalo de precisão de 95% para estimar σ a partir de S_x^2 temos:

$$vS_x^2/\chi_{.025}^2 \le \sigma^2 \le vS_x^2/\chi_{.975}^2$$
 (95%)

Observe que este intervalo está limitado pelos níveis de confiança de 2.5% e 97.5% para 95% de cobertura

- A distribuição χ^2 estima a discrepância esperada devido à possibilidade aleatória.
- Os valores de χ^2 são tabelados em função dos graus de liberdade
- O valor de P (χ^2) é igual à área abaixo da curva (medida de esquerda)
- O valor de α é a área medida desde a direita

- •O valor de P (χ^2) é igual à área abaixo da curva (medida desde a esquerda)
- •O valor de α é a área medida desde a direita

ν	$\chi^{2}_{0.99}$	$\chi^{2}_{0.975}$	$\chi^{2}_{0.95}$	$\chi^{2}_{0.90}$	$\chi^{2}_{0.50}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.025}$	$\chi^{2}_{0.01}$
1	0.000	0.000	0.000	0.016	0.455	3.84	5.02	6.63
2	0.020	0.051	0.103	0.211	1.39	5.99	7.38	9.21
3	0.115	0.216	0.352	0.584	2.37	7.81	9.35	11.3
4	0.297	0.484	0.711	1.06	3.36	9.49	11.1	13.3
5	0.554	0.831	1.15	1.61	4.35	11.1	12.8	15.1
6	0.872	1.24	1.64	2.20	5.35	12.6	14.4	16.8
7	1.24	1.69	2.17	2.83	6.35	14.1	16.0	18.5
8	1.65	2.18	2.73	3.49	7.34	15.5	17.5	20.1
9	2.09	2.70	3.33	4.17	8.34	16.9	19.0	21.7
10	2.56	3.25	3.94	4.78	9.34	18.3	20.5	23.2
11	3.05	3.82	4.57	5.58	10.3	19.7	21.9	24.7
12	3.57	4.40	5.23	6.30	11.3	21.0	23.3	26.2
13	4.11	5.01	5.89	7.04	12.3	22.4	24.7	27.7
14	4.66	5.63	6.57	7.79	13.3	23.7	26.1	29.1
15	5.23	6.26	7.26	8.55	14.3	25.0	27.5	30.6
16	5.81	6.91	7.96	9.31	15.3	26.3	28.8	32.0
17	6.41	7.56	8.67	10.1	16.3	27.6	30.2	33.4
18	7.01	8.23	9.39	10.9	17.3	28.9	31.5	34.8
19	7.63	8.91	10.1	11.7	18.3	30.1	32.9	36.2
20	8.26	9.59	10.9	12.4	19.3	31.4	34.2	37.6
30	15.0	16.8	18.5	20.6	29.3	43.8	47.0	50.9
60	37.5	40.5	43.2	46.5	59.3	79.1	83.3	88.4

Exemplo

Se fazem 10 provas de tensão de aço um uma população grande e se calcula que a variância da amostra é de 40000 (KN/m²)². Calcule a variância verdadeira esperada com uma confiança de 95%.

- O número de graus de liberdade é: *N*-1 = 9
- Usando a tabela encontra-se $\chi^2 = 19.0$ com $\alpha = 0.05$, denotada como: $S_{.975}^2 = 2.7$
- Para $\alpha = 0.975$ temos $S_{.025}^2 = 19.0$

$$vS_x^2/\chi_{.025}^2 \le \sigma^2 \le vS_x^2/\chi_{.975}^2$$
 (95%)

Exemplo

$$vS_x^2/\chi_{.025}^2 \le \sigma^2 \le vS_x^2/\chi_{.975}^2$$
 (95%)

$$(9)(40000)/19.0 \le \sigma^2 \le (9)(40000)/2.7$$
 (95%)

$$18947 \le \sigma^2 \le 133333 \qquad (95\%)$$

Conforme a tamanho da população (N) aumenta temo que $S^2 \Rightarrow \sigma^2$