# Believe It or Not – Adding belief annotations to databases

Wolfgang Gatterbauer, Magda Balazinska, Nodira Khoussainova, and Dan Suciu

University of Washington <a href="http://db.cs.washington.edu/beliefDB/">http://db.cs.washington.edu/beliefDB/</a>

# **High-level overview**

- DBMS: manage consistent data
- Applications need inconsistent DM
  - Scientific databases reason: disagreement!
  - Internet community databases
- Community DBMS: manage inconsistent views
- This work: Belief databases
  - manage data and curation
  - grounded in modal and default logic
  - implemented on top of relational model

# Agenda

- Motivating example
- Logic foundations
- Relational implementation
- Discussion

## **Motivating application**

- NatureMapping project (http://depts.washington.edu/natmap/)
  - volunter contribute animal observations
  - one person curates the database

#### **Observations**

problem: does not scale!

| <u>id</u> | uid   | species | date     | location    | comment        |
|-----------|-------|---------|----------|-------------|----------------|
| 2         | Alice | Crow    | 06-14-08 | Lake Placid | found feathers |

#### Sightings (S)

| <u>sid</u> | uid   | species | date     | location    |
|------------|-------|---------|----------|-------------|
| s2         | Alice | Crow    | 06-14-08 | Lake Placid |

#### Comments (C)

| <u>cid</u> | comment        | sid |
|------------|----------------|-----|
| c1         | found feathers | s2  |

#### 1. Distinct database instances





D1: Belief worlds: individually consistent, mutually possibly inconsistent

#### 1. Distinct database instances

|       | S | <u>sid</u> | uid     | species | date     | location    |
|-------|---|------------|---------|---------|----------|-------------|
|       |   | s2         | Alice   | Crow    | 06-14-08 | Lake Placid |
| Alice |   |            |         |         |          |             |
|       |   |            |         |         |          |             |
|       | S | <u>sid</u> | uid     | species | date     | location    |
|       |   | s2         | Alice ( | Raven   | 06-14-08 | Lake Placid |
| Bob   |   |            |         |         |          |             |

#### **BeliefSQL**

I: Alice believes that she saw a crow.
insert into BELIEF 'Alice' Sightings
values ('s2','Alice','Crow','06-14-08','Lake Placid')
I: Bob believes that she actually saw a raven.
insert into BELIEF 'Boh' Sightings
values ('s2','Alice','Raven','D6-14-08','Lake Placid')

```
Q: Who believes something different
than Alice and what?

select U2.name, S1.species, S2.species
from Users as U,
BELIEF 'Alice' Sightings as S1,
BELIEF LLuid Sightings as S2,
where S1.sid = S2.sid
and S1.species <> S2.species
A: {('Bob', 'Crow', 'Raven')}
```

# 2. Open world assumption



Carol

S sid uid species date location

s2 Alice Crow 06-14-08 Lake Placid

s2 Alice Raven 06-14-08 Lake Placid

—

Adapted key constraints!

D2: Model incomplete knowledge with exlicit negative beliefs

# 2. Open world assumption





#### 2. Open world assumption



Bob

| S | <u>sid</u> | uid   | species | dat |
|---|------------|-------|---------|-----|
|   | s2         | Alice | Raven   | 06- |



Carol

| S | <u>sid</u> | uid | species | dat |
|---|------------|-----|---------|-----|
|   |            |     |         |     |

06-14-08 **s**2 Alice Crow Lake Placid Alice 06-14-08 | Lake Placid **s2** Raven

Q: Who disagrees with a sighting from '06-14-08' that Alice believes?

select U.name, S1.species

from Users as U,

**BELIEF** 'Alice' Sightings as S1,

**BELIEF** U.uid not Sightings as S2

where S1.sid = S2.sid

S1.uid = S2.uidand

and S1.species = S2.species

S1.date = '06-14-08'and

and S2.date = '06-14-08'

S1.location = S2.location and

A: {('Bob', 'Crow'), ('Carol', 'Crow')}



Bob

Ssiduidspeciesdatelocations2AliceRaven06-14-08Lake Placid

cidcommentsidc1plain black featherss2



C

cidcommentsidc1purple-black featherss2

D3: Beliefs about other user's beliefs: allow discussion between users













# 4. Message board assumption



D4: Default assumption: models a trusting attitude & avoids repeated inserts

## 4. Message board assumption



#### What we have seen so far

- 4 Design decisions for Belief Database model
  - Distinct belief worlds
  - Open world assumption (OWA)
  - Higher-order beliefs
  - Message board assumption
- BeliefSQL
  - SQL + 'BELIEF' (+ 'not')

# Agenda

- Motivating example
- Logic foundations
- Relational implementation
- Discussion

## Logic foundations: Belief statements



## Logic foundations: Entailment



## Logic foundations: Message board assumption

#### Message board assumption

If 
$$D \models \Box_w t^s$$
  
and  $\Box_{u^{\bullet}w} t^s$  consistent with D  
then  $D \models \Box_{u^{\bullet}w} t^s$ 





non-monotonic reasoning!



belief database "contains" more than the explicit belief annotations!

# "Semi-formal" problem statement

#### **INPUT**

#### **Belief statements**

 $i_1$ :  $\phi_1$   $i_2$ :  $\phi_2$ ...  $i_n$ :  $\phi_n$ 

Adapted key constraints

Message board assumption

$$\frac{\varphi: \square_{\mathsf{u}}\,\varphi}{\square_{\mathsf{u}}\,\varphi}$$

#### **OUTPUT**

$$D \models \varphi$$
 ?

$$D \models \square_{w_1...w_d} R^+(x_1,...x_l) ?$$

$$q(\overline{x}) := \square_{\overline{w}} R_i^+(\overline{x}_i)$$

**Belief Conjunctive Queries (BCQ)** 

$$q(\overline{x}) := \square_{\overline{w}_1} R_1^{s_1}(\overline{x}_1), ..., \square_{\overline{w}_g} R_g^{s_g}(\overline{x}_g)$$

# Agenda

- Motivating example
- Logic foundations
- Relational implementation
- Discussion

## **Canonical Kripke structure**

# **Belief statements\*** i<sub>1</sub>: s1<sub>1</sub><sup>+</sup> $i_2$ : $\square_{Bob} s1_1^$ $i_3$ : $\square_{Bob} s1_2^$ $i_4$ : $\square_{Alice} s2_1^+$ $i_5$ : $\square_{Alice} c1_1^+$ $i_6$ : $\square_{Bob} s2_2^+$ $i_7$ : $\square_{\text{Bob} \bullet \text{Alice}} c2_1^+$ $i_8$ : $\square_{Bob} c2_2^+$ Message board assumption



 $\varphi: \sqcup_i \varphi$ 

<sup>\*</sup> Running example from the paper

# **Relational representation**

#### Sightings\_INTERNAL

| <u>tid</u> | sid | uid   | species    | date     | location    |
|------------|-----|-------|------------|----------|-------------|
|            |     |       |            |          | Lake Forest |
| s1.2       | s1  | Carol | Fish eagle | 06-14-08 | Lake Forest |
| s2.1       | s2  | Alice | Crow       | 06-14-08 | Lake Placid |
| s2.2       | s2  | Alice | Raven      | 06-14-08 | Lake Placid |

#### ${\color{red}\textbf{Comments\_INTERNAL}}$

| <u>tid</u> | cid | comment               | sid |
|------------|-----|-----------------------|-----|
| c1.1       | c1  | found feathers        | s2  |
| c2.1       | c2  | plain black feathers  | s2  |
| c2.2       | c2  | purple-black feathers | s2  |

#### Sightings\_V

| <u>wid</u> | tid  | sid        | S | е |
|------------|------|------------|---|---|
| #0         | s1.1 | s1         | + | У |
| #1         | s1.1 | <b>s</b> 1 | + | n |
| #1         | s2.1 | s2         | + | У |
| #2         | s1.1 | <b>s</b> 1 | _ | У |
| #2         | s1.2 | s1         | - | У |
| #2         | s2.2 | s2         | + | У |
| #3         | s1.1 | s1         | + | n |
| #3         | s2.1 | s2         | + | n |

#### Ε

| wid1           | uid     | wid2 |
|----------------|---------|------|
| <b>&gt;</b> #0 | Alice ( | #1   |
| #0             | Bob     | #2   |
| #0             | Carol   | #0   |
| #1             | Bob     | #2   |
| #1             | Carol   | #0   |
| #2             | Alice   | #3   |
| #2             | Carol   | #0   |
| #3             | Bob     | #2   |
| #3             | Carol   | #0   |

#### Comments\_V

| <u>wd</u> | tid  | cid       | S | е |
|-----------|------|-----------|---|---|
| #1        | c1.1 | <b>c1</b> | + | У |
| #2        | c2.2 | c2        | + | У |
| #3        | c1.1 | <b>c1</b> | + | n |
| #3        | c2.1 | c2        | + | У |

#### D

| wid | d |  |
|-----|---|--|
| #0  | 0 |  |
| #1  | 1 |  |
| #2  | 1 |  |
| #3  | 2 |  |

#### S

| 9    |      |
|------|------|
| wid1 | wid2 |
| #1   | #0   |
| #2   | #0   |
| #3   | #1   |
|      |      |

# **Example Translation of a Belief CQ (BCQ)**

Q: Who disagrees with a sighting from '06-14-08' that Alice believes?

#### **BeliefSQL**

```
select U.name, S1.species
from
      Users as U.
        BELIEF 'Alice' Sightings as S1,
        BELIEF U.uid not Sightings as S2
where S1.sid = S2.sid
       S1.uid = S2.uid
and
and
       S1.species = S2.species
and
       S1.date = '06-14-08'
       S2.date = '06-14-08'
and
        S1.location = S2.location
and
```

```
q(x,y) :- \square_{Alice} S<sup>+</sup>(u,v,y,'06-14-08',z),
\square_{x} S<sup>-</sup>(u,v,y,'06-14-08',z)
```

#### **Translation into SQL**

```
E1.uid as uid1, V.tid, V.sid, R.uid, R.species, R.date, R.location, V.s
select
into
         T2
         E as E1, Sightings V as V, Sightings STAR as R
from
where
         F1.wid1=0
         V.wid=E1.wid2
and
         V.tid=R.tid
and
         E1.uid='1';
and
select
         E1.uid as uid1, V.tid, V.sid, R.uid, R.species, R.date, R.location, V.s
into
         T1
         E as E1, Sightings V as V, Sightings STAR as R
from
         E1.wid1=0
where
and
         V.wid=F1.wid2
         V.tid=R.tid;
and
         T1.uid1, T2.species
select
         T1 as T1, T2 as T2
from
         T1.sid=T2.sid
where
         ((T1.s=0 and T1.uid=T2.uid and T1.species=T2.species
and
         and T1.date='6-14-08' and T1.location=T2.location) or
         (T1.s=1 and (T1.uid<>T2.uid or T1.species<>T2.species
         or T1.date<>'6-14-08' or T1.location<>T2.location)))
         T2.s=1
and
         T2.date='6-14-08';
and
         table T2;
drop
         table T1;
drop
```

# Agenda

- Motivating example
- Logic foundations
- Relational implementation
- Discussion

# **Experiments**

#### Size

Relative overhead 
$$\rho := \frac{|R^*|}{n}$$
  $\rho = O(m^{d_{max}})$ 

$$\rho = O(m^{d_{max}})$$

... #users d<sub>max</sub> ... maximum depth of belief annotation

$$\rho \rightarrow 10,000$$

Experiments: 
$$\rho \rightarrow 21 - 1,009$$

Size not limitation of semantics, but of relational implementation!

#### Time

Depends on type of query (3 types in paper) Q1: ~0.1 s

Q2: ~0.4 s Experiments on 10,000 annotations ( $\rho = 22.4$ ):

Q3: ~4.5 s

Considerable speed-up to come!

# Inspirations and related work (excerpt)

#### Annotations

- Buneman et al. [ICDT 2001 / ICDT 2007]
- Bhagwat et al. [VLDBJ 2005], Geerts et al. [ICDE 2006]
- Srivastava & Velegrakis [SIGMOD 2007]

#### Modal logic

- Fagin et al. [1995]
- Calvanese et al. [IS 2008]
- Nguyen [LJ-IGPL 2008]

#### Uncertain / incomplete information

- Sarma et al. [ICDE 2006]
- Green & Tannen [IEEE Data Eng. 2006]
- Dalvi & Suciu [PODS 2007]

#### Inconsistency / key violations

- Arenas et al. [PODS 1999]
- Fuxman et al. [SIGMOD 2005]

#### Peer-to-peer computing / collaborative data sharing

- Bernstein et al. [WebDB 2002]
- Ives et al. [SIGMOD record 2008]

#### **Conclusions**

- Proposed BELIEF databases
  - Goal: manage, curate inconsistent data
- Implementation
  - Logical foundations
  - Relational translation
- Current work
  - making it compact and fast

# **BACKUP**

# Relative overhead of relational representation

Bound for relative overhead  $\frac{|\mathcal{R}^*|}{n} = \mathcal{O}(m^{d_{\text{max}}})$ 

Measured relative overhead  $\frac{|\mathcal{R}^*|}{n}$  for n = 10,000 annotations, m = 100 users, uniform or Zipf user participation, and 3 distributions of annotation depth:

| $\Pr[d = \{0, 1, 2\}]$              | uniform         | Zipf |
|-------------------------------------|-----------------|------|
| $[0.\dot{3}, 0.\dot{3}, 0.\dot{3}]$ | (1,009)         | 130  |
| [0.8, 0.19, 0.01]                   | $1\overline{6}$ | 68   |
| [0.199, 0.8, 0.001]                 | (26)            | 21   |

Measured relative overhead  $\frac{|\mathcal{R}^*|}{n}$  for m = 100 users, uniform user participation, and 2 distributions of annotation depth:



## Query types and execution times

1. Query for content: "What does Alice believe?"  $d \in \{0, ..., 4\}$ :

$$q_{1,d}(x,y) := \Box_w S^+(x, -, y, -, -), \text{ with } |w| \in \{0, \dots, 4\}$$

2. Query for conflicts: "Which animal sightings does Bob believe that Alice believes, which he does not believe himself?"

$$q_2(x,y) := \Box_{2\cdot 1}S^+(x,z,y,u,v), \Box_2S^-(x,z,y,u,v)$$

3. Query for users: Who disagrees with any of Alice's beliefs of sightings at Lake Placid?"

$$q_3(x):-\Box_x S^-(y,z,u,v,'a'), \Box_1 S^+(y,z,u,v,'a')$$

Execution times and size of result sets for example queries executed over a belief database with 10,000 annotations and relative overhead 22.4.

|                                      | $q_{1,0}$ | $q_{1,1}$ | $q_{1,2}$ | $q_{1,3}$ | $q_{1,4}$ | $q_2$ | $q_3$ |
|--------------------------------------|-----------|-----------|-----------|-----------|-----------|-------|-------|
| E(Time) [msec]                       | 105       | 145       | 146       | 152       | 144       | 436   | 4473  |
| $\sigma(\text{Time}) \text{ [msec]}$ | 120       | 168       | 153       | 162       | 162       | 186   | 661   |
| Result size                          | 1626      | 2816      | 2253      | 2061      | 1931      | 196   | 99    |

# **Belief Conjunctive Queries (BCQ)**

Conjunctive Queries (CQ) in Datalog form:

$$q(\bar{x}):=R_1(\bar{x}_1),\ldots,R_g(\bar{x}_g)$$

Belief Conjunctive Queries (BCQ) in "Modal Datalog" form:

$$q(\bar{x}) := \Box_{\bar{w}_1} R_1^{s_1}(\bar{x}_1), \dots, \Box_{\bar{w}_g} R_g^{s_g}(\bar{x}_g)$$

 $q_1$ : "Who disagrees with any sighting from '06-14-08' that Alice believes?"

$$q_1(x,y) := \Box_{\text{Alice}} S^+(u,v,y,'06\text{-}14\text{-}08',z), \Box_x S^-(u,v,y,'06\text{-}14\text{-}08',z)$$

$$q_1(D) = \{('Bob', 'bald eagle'), ('Bob', 'crow')\}$$

# Revisiting the semantics / the user



(3)

-> Structured discourse

(2) BeliefSQL

Conflicts in belief worlds: OWA, keys, ML, DA

(1) SQL

Standard relational model

BELIEF 'Alice' (...,'eagle',...)

-> 'Alice'ASSERTS (...,'eagle',...)

BELIEF 'Bob' BELIEF 'Alice' (...,'black feathers',...)

-> 'Bob'SUGGESTS that the ASSUMPTION (...,'black feathers',...) has led 'Alice' to her original observation