Computational Astrophysics

ASTR 660, Spring 2021 計算天文物理

Lecture 7

Initial Value Problems

Instructor: Prof. Kuo-Chuan Pan kuochuan.pan@gapp.nthu.edu.tw

Class website

https://kuochuanpan.github.io/courses/109ASTR660_CA/

Plan for today

- Ordinary Differential Equations (ODEs)
- ODE: Initial Value Problems
- Direct N-body method
- Lab: Solar system simulation

Reference:

"Scientific Computing: An introductory survey", Michael Heath

https://books.google.com.tw/books?id=f6Z8DwAAQBAJ&hl=zh-TW

Ordinary Differential Equation (ODE)

Ordinary Differential Equations

- Ordinary differential equation (ODE): all derivatives are with respect to single independent variable, often representing time
- Order determined by highest-order derivative of solution function appearing in ODE
- Higher-order ODE can be transformed into several equivalent first-order system
- Most ODE software is designed to solve only first-order equations

Example: higher-order ODE

$$F = ma = mx''$$

$$v' = v$$

$$v' = a = F/m$$

Recall the Angry bird and binary problems in lecture 02

Ordinary Differential Equations

General first-order system of ODEs has form

$$oldsymbol{y}'(t) = oldsymbol{f}(t, oldsymbol{y})$$

$$\begin{bmatrix} y_1'(t) \\ y_2'(t) \\ \dots \\ y_n'(t) \end{bmatrix} = \begin{bmatrix} dy_1(t)/dt \\ dy_2(t)/dt \\ \dots \\ dy_n(t)/dt \end{bmatrix}$$

Function f is given and we wish to determine y

Ordinary Differential Equations

- By itself, ODE does not determine unique solution function
- •This is because ODE merely specifies slope of solution function at each point, but not actual value of y at any point
- Therefore, requires an initial value to solve the specific solution function
- That is why we called "Initial Value Problems (IVP)"

Example: Ordinary Differential Equations

•Consider scalar (n=1) ODE

$$y' = y$$

t

- •Family of solutions is given by y=c exp(t), where c is an arbitrary real constant
- •In this example, if $t_0=0$ $y=y_0$, then $c=y_0$, which means that solution is $y(t)=y_0$ exp(t)

Stability of solutions

- •Stable: if solutions resulting from perturbations of initial value remain close to original solution
- Asymptotically stable: if solutions resulting from perturbations converge back to original solution
- Unstable: if solutions resulting from perturbations diverge away from original solution without bound

Stability of solutions

Asymptotically Stable

Unstable

Stiff ODEs

 Asymptotically stables solutions converge with time, and this has favorable property of damping errors in numerical solution

- But if convergence of solutions is too rapid, then difficulties of different type may arise
- Such ODE is said to be stiff

Errors in Numerical Solution of ODEs

Recall lecture 01

- Truncation error: due to mathematical approximations
- Rounding error: due to inexact representation of real numbers and arithmetic operations upon them

In practice, truncation error is the dominant factor

Errors in Numerical Solution of ODEs

- Global error: difference between computed solution and true solution
- Local error: error made in one step of numerical method
- Global error is not necessary sum of local errors

Numerical Solution of ODEs y'(t) = f(t, y)

Consider Taylor series:

$$y(t+h) = y(t) + y'(t)h + \frac{y''(t)}{2}h^2 + \frac{y'''(t)}{6}h^3 + \dots$$

- •Euler's method: consider only first order term
- Advances solution by extrapolating along straight line whose slop is give by f(t,y)
- •Euler's method is single-step method

$$y_{k+1} = y_k + h_k f(t_k, y_k)$$

Explicit and implicit methods

- (forward) Euler's method is explicit. It uses only information at time t_k to advance solution to time t_{k+1}
- Larger stability region can be obtained by using information at time t_{k+1} , which makes method implicit.
- Backward Euler method is implicit

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$

Implicit methods

Backward Euler method is implicit

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$

- •Typically, we use iterative method such as Newton's method to solve for y_{k+1}
- •Good starting guess for iteration can be obtained from explicit method or from solution at previous time step

Example Implicit methods

•Consider ODE:

$$y' = -y^3$$
 with initial condition $y(0) = 1$

•Using backward Euler with step size h=0.5, we obtain implicit equation

$$y_1 = y_0 + hf(t_1, y_1) = 1 - 0.5y_1^3$$

- Can be solved by Newton's method
- •Starting guess of y_1 can be obtained by explicit method, such as Euler, which gives $y_1 = y_0 0.5y_0^3 = 0.5$

Implicit methods

TS WA UNIVERSITY OF THE PROPERTY OF THE PROPER

- Takes extra efforts (more expensive)
- But implicit methods generally have significantly larger stability region than comparable explicit methods

Example: Stability

•Consider ODE: $y' = \lambda y$

Forward Euler

$$y_{k+1} = y_k + h_k f(t_k, y_k)$$

$$y_k = (1 + h\lambda)^k y_0$$
Growth factor

$$|1 + h\lambda| < 1$$

Backward Euler

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$

$$(1 - h\lambda)y_{k+1} = y_k$$

$$y_k = \left(\frac{1}{1 - h\lambda}\right)^k y_0 \qquad \left|\frac{1}{1 - h\lambda}\right| \le 1$$

Hold for any h when Re(lambda) <0

Higher-order methods

 Higher-order accuracy can be achieved by averaging forward Euler and backward Euler methods to obtain implicit trapezoid method

$$y_{k+1} = y_k + h_k(f(t_k, y_k) + f(t_{k+1}, y_{k+1}))/2$$

Numerical Methods for ODEs

- Single-step methods (Taylor series, Runge-Kutta, Extrapolation)
- Multistep methods
- Multivalue methods

Taylor Series Methods

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \dots$$

- Euler's method can be derived from Taylor series expansion
- Higher-order can be achieved by retaining more terms in Taylor series
- For example

$$y_{k+1} = y_k + h_k y_k' + \frac{h_k^2}{2} y_k''$$
 Difficult

Runge-Kutta Methods

- Runge-Kutta methods are single-step methods similar in motivation to Taylor series methods, but do not require computation of higher derivatives
- Instead, Runge-Kutta methods simulate effect of higher derivatives by evaluating f several times between t_k and t_{k+1}

Heun's Method (RK2)

 Simplest example is second-order Heun's method (or Runge-Kutta 2)

$$y_{k+1} = y_k + \frac{h_k}{2}(k_1 + k_2)$$

$$k_1 = f(t_k, y_k)$$

 $k_2 = f(t_k + h_k, y_k + h_k k_1)$

• Similar to implicit trapezoid method, but remains explicit

Forth-order Runge-Kutta Method (RK4)

Best-known Runge-Kutta method is the classical RK4

$$y_{k+1} = y_k + \frac{h_k}{6}(k_1 + 2k_2 + 2k_3 + k4)$$

$$k_1 = f(t_k, y_k)$$

$$k_2 = f(t_k + h_k/2, y_k + (h_k/2)k_1)$$

$$k_3 = f(t_k + h_k/2, y_k + (h_k/2)k_2)$$

$$k_4 = f(t_k + h_k, y_k + h_k k_3)$$

Analogous to Simpson's rule

Forth-order Runge-Kutta Method (RK4)

Pros

- No history of solution prior to time t_k (self-starting)
- Easy to change step size
- Easy to program

Cons

- No error estimate
- Inefficient for stiff ODEs

Exercise: Runge Kutta Methods

Modify your angry bird simulation code

Step 1. Refresh the Euler's method

Step 2. Implement the RK 2 method

Step 3. Implement the RK 4 method

Truncation error and rounding error

Extrapolation Method

- Use single-step method to integrate ODE over given interval $t_k <= t <= t_{k+1}$ using different step size h_i , and yielding results dented by $Y(h_i)$
- Gives discrete approximation to function Y(h), where $Y(0) = y(t_{k+1})$
- Extrapolation methods are capable of achieving very high accuracy but less efficient and less flexible than other methods for ODEs

Multistep methods

- Use information at more than one previous point to estimate solution at next point
- Linear multistep methods have form

$$y_{k+1} = \sum_{i=1}^{m} \alpha_i y_{k+1} + h \sum_{i=0}^{m} \beta_i f(t_{k+1-i}, y_{k+1-i})$$

Alpha and beta are determined by polynomial interpolation.
 If beta_0 = 0, method is explicit, other wise it is implicit

Multistep methods

Simplest second-order explicit two-step method:

$$y_{k+1} = y_k + h_k(3y_k' - y_{k-1}')/2$$

require two starting values

Simplest second-order implicit method is trapezoid method

$$y_{k+1} = y_k + h_k(y'_{k+1} + y'_k)/2$$

Predictor-Corrector Method

- Implicit methods are usually more accurate and stable than explicit methods, but require starting guess for y_{k+1}
- Starting guess is conveniently supplied by explicit method, so the two are used as predictor-corrector pair
- One could use corrector repeatedly until some convergence tolerance is met (expensive)
- In practice, only use fixed number of corrector steps

Example: Predictor-Corrector Method

$$y' = -2ty^2$$
 With initial value $y(0) = 1$

- (1) Pick a h=0.25, use RK2 to obtain y_1 = 0.9375 at t_1 =0.25
- (2) Use $y_{k+1} = y_k + h_k(3y'_k y'_{k-1})/2$ Two-step explicit method:
- (3) $\hat{y}_2 = y_1 + \frac{h}{2}(3y_1' y_0') = 0.7727$ The predicted value
- $(4) \quad \hat{y}_2' = -0.05971$
- (5) $y_2 = y_1 + \frac{h}{2}(y_2' + y_1')$ Implicit trapezoid method

The corrected solution!

Multistep methods

Pros

- Good local error estimate can be determined from difference between predictor and corrector
- Being based on interpolation, they can provide solution values at output points other than integration points
- Can be effective for stiff ODEs

Cons

- Not self-starting, since several previous values are needed initially
- Changing step size is complicated
- Relatively complicated to program

Multi-value methods

- Like multistep methods, multivalue methods are also based on polynomial interpolation, but avoid some implementation difficulties associated with multistep methods
- One key idea motivating multivalue method is observation that interpolating polynomial itself can be evaluated at any point, not just at equally spaced intervals

Example: Multi-value methods

Consider four-values method for solving scalar ODE

$$y' = f(t, y)$$

• Instead of representing interpolating polynomial by its value at four different points, we represent it by its value and first three derivatives at single point t_k

$$y_k = \begin{vmatrix} y_k \\ hy_k' \\ (h^2/2)y_k'' \\ (h^3/6)y_k''' \end{vmatrix}$$

Example: Multi-value methods

By differentiating Taylor series

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \dots$$

• Corresponding values at next point $t_{k+1} = t_k$ +h are given approximately by transformation

$$\hat{y}_{k+1} = By_k$$

$$y_{k+1} = \hat{y}_{k+1} + \alpha r$$

$$r \text{ is a fixed vector}$$

$$\alpha = h(y'_{k+1} - \hat{y}'_{k+1})$$

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If r = [3/8, 1, 3/4, 1/6].T -> implicit fourth-order Adams-Moulton method

Summary: IVP

- •Numerical solution of ODE IVP is table of approximate values of solution function at discrete points, generated by simulating behavior of system governed by ODE step by step
- •Accuracy can be improved by using higher-order methods, and stability region can be expanded by using implicit methods
- Implicit methods are especially important for solving stiff
 ODEs, which have widely disparate time scales
- Import families of ODE methods include Runge-Kutta and multistep/multivalue methods

Direct N-body Method

N- Body Problem

•The classical astrophysical "N-Body" problem:

$$\frac{d^2x_i}{dt^2} = -\sum_{j=1; j\neq i}^{N} \frac{Gm_j(x_i - x_j)}{|x_i - x_j|^3}$$

- 1. Calculating the net force on a given particle
- 2. Determining the new position of the particle at an advanced time

N- Body Problem

•If we write:

$$w_i = [x_i, v_i] = (w_{i1}, w_{i2}, w_{i3}, w_{i4}, w_{i5}, w_{i6})$$

•It becomes n=6 IVPs

Exercise: Solar System Simulator

Create a model file model.txt that contains the particles

```
1 Sun
                    0.000e00
          1.989e33
          3.302e26
2 Mercury
                    0.390e00
                    0.720e00
          4.869e27
3 Venus
          5.974e27 1.000e00
4 Earth
5 Mars
          6.419e26 1.520e00
                    5.200e00
6 Jupiter 1.899e30
          5.685e29
                    9.580e00
7 Saturn
          8.683e28 1.920e01
8 Uranus
9 Neptune
          1.024e29
                    3.005e01
                    Distance [AU]
          mass [g]
  name
```

Modify the binary simulations code to read the model

Exercise: Solar System Simulator

- Extra:
- Try adding comets, asteroid, or satellites
- Extent to 3D forces
- GR effects?
- ...(more) ...

Exercise: Solar System Simulator

- The program we write is a very simple N-body code
- How to improve the accuracy?
- •How to improve the efficiency?
- •Is our initial condition correct?

N-Body code for large N

- Direct N-body code cannot handle large N simulation
- •Force calculation takes ~O(N²)
- •Tree Method (Barnes & Hut, 1986) ~ O(N logN)

Letter | Published: 04 December 1986

A hierarchical O(N log N) force-calculation algorithm

Josh Barnes & Piet Hut

Nature **324**, 446–449 (1986) | Download Citation **±**

Problem Set 6

https://kuochuanpan.github.io/courses/109ASTR660_CA/

Next lecture

Boundary Value Problems

