Langages formels (sujet A) Examen du 27/02/2023

Durée: 1h15

Nom:			
Prénom :			

Consignes:

- Seule une page manuscrite recto-verso de taille A4 est autorisée. La calculatrice est interdite.
- Toute question admet au moins une réponse.
- Les mauvaises réponses seront sanctionnées par des points négatifs.

1. Soit l'automate A suivant :

- (a) (1 point) L'automate \mathcal{A} est-il complet? \bullet oui \bigcirc non
- (b) (1 point) L'automate A est-il déterministe? oui non
- (c) (3 points) Quels sont les mots reconnus par l'automate A?
 - abbaab baabba abbcca bbbabb bbbbbbb
- 2. (2 points) Soit l'automate \mathcal{B} suivant (une étoile \star après le nom d'un état indique un état final, et \downarrow un état initial) :

Quels sont les mots reconnus par l'automate \mathcal{B} ? \bigcirc abbaab \bigcirc baabba \bigcirc babba \bigcirc aabaal

- 3. (1 point) Soit l'expression régulière $r:=\mathtt{a}+\mathtt{b}^\star\mathtt{b}+\mathtt{b}^\star\mathtt{a}\mathtt{b}^\star\mathtt{a}$. Quels mots ne sont pas dans le langage de r:
 - a aa aaa b bb bbb baa babba
- 4. (3 points) Remplir la grille 6×6 suivante en mettant une lettre par case de sorte que les mots inscrits sur les lignes et colonnes correspondent aux langages réguliers de la définition.

	A	В	\mathbf{C}	D	\mathbf{E}	F
1	д	a	р	a	a	O
2	a	a	U	a	a	C
3	a	a	а	a	a	a
4	a	a	C	a	a	a
5	Ъ	a	Ъ	a	b	a
6	a	a	C	С	С	a

Horizontalement

1. (ba)*ac

Verticalement:

A. $(b + a)^*a$

$$2. (aa + c)^*$$

C.
$$(bc + ac)^*$$

$$(ha)^* \perp (ac)^*$$

F.
$$(a + b + c)*a$$

5. Soit l'automate C suivant (une étoile ★ après le nom d'un état indique un état final, et ↓ un état initial) :

(a) (2 points) Minimiser l'automate \mathcal{C} et donner sa représentation graphique :

(b) (1 point) Exprimer par une expression régulière simple le langage reconnu par l'automate \mathcal{C} :

Solution: $a^* + a^*bb^*a(a+b)^*$

(c) (1 point) Exprimer en une phrase la plus concise possible le langage reconnu par l'automate \mathcal{C} :

Solution: Mots sur $\{a,b\}$ où le premier b est suivi plus tard d'un a i.e. mots ne terminant pas par b.

(d) (1 point) Donner deux mots non reconnus par C:

Solution: N'importe quel mot terminant par un b, par exemple b ou bab.

6. Soit l'automate D suivant (une étoile ★ après le nom d'un état indique un état final, et ↓ un état initial) :

(a) (2 points) Quelle est la table de l'automate obtenue avec l'algorithme de déterminisation vu en cours :

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\circ		\circ	\bigcirc

(b) (1 point) À quels ensembles d'états de l'automate \mathcal{D} correspondent les états obtenus lors de la déterminisation :

 $A = \{ \begin{array}{c} \mathbf{0}, \mathbf{1} \\ \end{array} \} \qquad B = \{ \begin{array}{c} \mathbf{0} \\ \end{array} \} \qquad C = \{ \begin{array}{c} \mathbf{1}, \mathbf{3}, \mathbf{4} \\ \end{array} \}$

- $D = \{ \ \underline{\ \ \ \ \ \ } \ E = \{ \ \underline{\ \ \ \ \ \ } \ A, \ B, \ C, \ E, \ F, \ H, \ I$ (c) (1 point) L'ensemble des états finaux est : $\underline{\ \ \ \ \ \ \ \ \ \ \ } \ A, \ B, \ C, \ E, \ F, \ H, \ I$
- 7. (1 point) Soit l'automate \mathcal{E} suivant, où 4 est le seul état final (non représenté ici). Modifier \mathcal{E} pour qu'il reconnaisse le langage complémentaire de celui reconnu par \mathcal{E} (faire apparaître les états finaux).

8. (2 points) Soit L le langage des mots bien parenthésés : par exemple (()())((())) $\in L$ mais (() $\notin L$ ou encore) ($\notin L$. Montrer que L n'est pas régulier en complétant la preuve suivante :

Supposons que L est régulier et soit un automate à n états qui reconnait L.

Soit $w := \underline{\qquad \qquad ()} \in L.$

Alors la reconnaissance de w par l'automate passe par les états q_0, q et q_f où q_0 est initial et q_f final, et tel que le chemin dans l'automate est de la forme

avec r+s+t=n+1 et s>0

D'où le mot _____ est dans L, contradiction puisque ce mot n'est pas bien pa-

renthésé car <u>il contient plus de parenthèses fermantes qu'ouvrantes</u>