Stichprobenverfahren

Einfache Zufallsstichprobe

Willi Mutschler (willi@mutschler.eu)

Sommersemester 2017

Einfache Zufallsstichprobe

- Man unterscheidet Modelle
 - ohne Zurücklegen: y₁,..., y_n sind identisch verteilt, aber stochastisch abhängig. Alle Stichproben haben den gleichen Umfang.
 - mit Zurücklegen: y₁,..., y_n sind unabhängig und identisch verteilt. Die Stichprobengröße ist zufällig.
- In der Theorie und Praxis betrachten wir meistens ohne Zurücklegen, aber bei mit Zurücklegen haben einige Schätzfunktionen extrem einfache statistische Eigenschaften, die wir approximativ ausnutzen können

Einfache Zufallsstichprobe: Mit Zurücklegen (1)

- Ziehe m Elemente unabhängig voneinander und derart, dass jede der N
 Grundgesamtheitselemente mit derselben Wahrscheinlichkeit 1/N gezogen
 wird. Alle N Elemente nehmen an jeder Ziehung teil.
- Bereits gezogene Elemente können erneut gezogen werden
- \hookrightarrow Stichprobengröße ist zufällig
 - Die Wahrscheinlichkeit, dass ein Element genau r mal in den m Ziehungen auftritt ist

$$\binom{m}{r} \left(\frac{1}{N}\right)^r \left(1 - \frac{1}{N}\right)^{m-r}$$

• Die Wahrscheinlichkeit, dass ein Element überhaupt nicht gezogen wird, ist $\left(1-\frac{1}{N}\right)^m$. Somit gilt, dass die Wahrscheinlichkeit, dass ein Element k mindestens einmal in der Stichprobe auftritt:

$$\pi_k = 1 - \left(1 - \frac{1}{N}\right)^m$$

• Die Einschlusswahrscheinlichkeiten zweiter Ordnung lauten

$$\pi_{kl} = 1 - 2\left(1 - \frac{1}{N}\right)^m + \left(1 - \frac{2}{N}\right)^m$$

Einfache Zufallsstichprobe: Mit Zurücklegen (2)

- Unterscheidung des Begriffs Stichprobe wichtig:
 - 1. Bezeichne k_i das Element, welches in der iten Ziehung gezogen wird $(i=1,\ldots,m)$, dann nennen wir

$$os = (k_1, \ldots, k_m)$$

die "geordnete Stichprobe" mit $p(os) = 1/N^m$. Informationen über Zeitpunkt der Ziehung und Multiplizität vorhanden.

2. Die Menge rein verschiedener Elemente in os

$$s = \{k : k = k_i \text{ für ein i}; i = 1, ..., m\}$$

bezeichnen wir als Mengen-Stichprobe s mit Stichprobendesign p(s). Die Kardinalität n_s von s ist eine Zufallsvariable, es gilt $Pr(n_s \leq m) = 1$. Informationen über Zeitpunkt der Ziehung und Multiplizität nicht vorhanden.

Einfache Zufallsstichprobe: Mit Zurücklegen (3)

Verallgemeinerung für Design mit ungleichen Wahrscheinlichkeiten

- Sei Pr[Ziehen von Element $k] = p_k$ mit $\sum_U p_k = 1$ und k wird bei jeder der m Ziehung ersetzt, dann gilt
 - 1. für das geordnete Stichprobendesign $Pr[(k_1,k_2,...,k_m)] = p_{k_1} \cdot p_{k_2} \cdot ... \cdot p_{k_m}$
 - 2. für das Mengen-theoretische Stichprobendesign eine komplizierte Form
- Einschlusswahrscheinlichkeit: $\pi_k = 1 (1 p_k)^m$
- Mitteln über den "p-expanded" Wert des kten Elements $\frac{y_k}{\rho_k}$, ergibt

$$\hat{t}_{pwr} = \frac{1}{m} \sum_{i=1}^{m} \frac{y_{k_i}}{p_{k_i}}$$

den unverzerrten *pwr* Schätzer für die Merkmalssumme $t_U = \sum_U y_k$.

• Die Varianz ist

$$V(\hat{t}_{pwr}) = \frac{1}{m} \sum_{U} \left(\frac{y_k}{p_k} - t_U \right)^2 p_k$$

und lässt sich unverzerrt schätzen mit

$$\hat{V}(\hat{t}_{ extit{pwr}}) = rac{1}{m} rac{1}{m-1} \sum_{i=1}^m \left(rac{y_{k_i}}{p_{k_i}} - \hat{t}_{ extit{pwr}}
ight)^2$$

 Dies ist der "p-expanded with replacement" Schätzer (Hansen und Hurwitz, 1943)

Einfache Zufallsstichprobe: Mit Zurücklegen (4)

- ullet Man kann natürlich auch den üblichen $\pi ext{-Schätzer}$ verwenden: $\hat{t}_\pi = \sum_s \check{y}_k$
- Beide Schätzer sind unverzerrt, welcher die kleinere Varianz hat, hängt von den y Werten ab

Einfache Zufallsstichprobe: Ohne Zurücklegen

- Einschlusswahrscheinlichkeiten: $\pi_k = \frac{n}{N}$ und $\pi_{kl} = \frac{n}{N} \frac{n-1}{N-1}$
- Der π-Schätzer für die Merkmalssumme der Grundgesamtheit U vereinfacht sich zu:

$$\hat{t}_{\pi} = N\bar{y}_s = \frac{1}{f} \sum_s y_k$$

$$V(\hat{t}_{\pi}) = N^2 \frac{1 - f}{n} S_{y,U}^2$$

$$\hat{V}(\hat{t}_{\pi}) = N^2 \frac{1 - f}{n} S_{y,s}^2$$

mit

$$f=n/N,$$
 (sampling fraction)
$$S_{y,U}^2=\frac{1}{N-1}\sum_U(y_k-\bar{y}_U)^2$$
 (Populations varianz)
$$S_{y,s}^2=\frac{1}{n-1}\sum_s(y_k-\bar{y}_s)^2$$
 (Stich proben varianz)

ullet Für den π -Schätzer für den Mittelwert der Grundgesamtheit U wird durch N geteilt, bei der Varianz des Schätzers durch N^2

Designeffekt

Das Framework der einfachen Zufallsstichprobe ohne Zurücklegen wird häufig als Referenzwert für alternative Schätzmöglichkeiten verwendet

• Bezeichne p ein alternatives Design mit π Schätzer \hat{t}_{π} und SI das Design der einfachen Zufallsstichprobe ohne Zurücklegen mit π -Schätzer \hat{t}_{SI} , dann bezeichnen wir das Varianzverhältnis

$$deff = \frac{V(\hat{t}_{\pi})}{V(\hat{t}_{SI})} = \frac{\sum \sum_{U} \Delta_{kI} \check{y}_{k} \check{y}_{I}}{N^{2} \left(\frac{1}{n} - \frac{1}{N}\right) S_{y,U}^{2}}$$

als "Designeffekt"

ullet deff < 1 bedeutet, dass das alternative Design präziser ist

Schätzung von Domains (1)

- In den meisten Umfragen werden Schätzwerte für Untergruppen der Grundgesamtheit, sogenannte "Domains", erwünscht
- Beispiele:
 - Anteil von Personen über 65 Jahren
 - Durchschnittliche Einkommen von Haushalten mit drei oder mehr Kindern
- Notation:
 - $U_d \subset U$ bezeichne eine Unterpopulation der Größe N_d
 - $P_d = N_d/N$ bezeichne die relative Größe von U_d
- Annahme, dass N bekannt und N_d unbekannt ist
- Definiere Domain-Indikatorvariable

$$z_{dk} = egin{cases} 1 & ext{falls } k \in U_d \ 0 & ext{sonst} \end{cases} (k = 1, \dots, N)$$

dann

$$\sum_{U} z_{dk} = N_d$$
 und $\bar{z}_{dU} = \sum_{U} z_{dk}/N = N_d/N = P_d$

ullet Also N_d ist Populationssumme und P_d der Populationsmittelwert von z_d

Schätzung von Domains (2)

- Im Rahmen der einfachen Zufallsstichprobe ohne Zurücklegen lassen sich die absolute und relative Größe einer Domain recht einfach schätzen
- Definiere $Q_d = 1 P_d$, $n_d = \sum_s z_{dk}$, $p_d = n_d/n$ und $q_d = 1 p_d$
- Es folgt, dass

$$S_{z_d U} = \frac{N}{N-1} P_d Q_d$$
 und $S_{z_d s} = \frac{n}{n-1} p_d q_d$

• Für den π -Schätzer dann

$$\hat{N}_d = Np_d, \qquad V(\hat{N}_d) = N^2 \frac{N-n}{N-1} \frac{P_d Q_d}{n}, \qquad \hat{V}(\hat{N}_d) = N^2 (1-f) \frac{p_d q_d}{n-1}$$

wobei \hat{N}_d und $\hat{V}(\hat{N}_d)$ unverzerrte Schätzer sind.

• Die relative Domaingröße, $P_d = N_d/N$, lässt sich mit $\hat{P}_d = p_d = n_d/n$ schätzen. Die Varianzen sind N^2 mal kleiner als die obigen Ausdrücke

Schätzung von Domains (3)

• Für die Schätzung der Summe $t_d = \sum_{U_d} y_k$ und Mittelwertes $\bar{y}_{U_d} = \sum_{U_d} y_k/N_d$ einer Untergruppe, definiere

$$y_{dk} = \begin{cases} y_k & \text{falls } k \in U_d \\ 0 & \text{sonst} \end{cases}$$

dann gilt $t_d = \sum_{U_d} y_k = \sum_U y_{dk}$ und lässt sich schätzen mit

$$\hat{t}_{d\pi} = \sum_{s} y_{dk} / \pi_k = \frac{N}{n} \sum_{s} y_{dk} = \frac{N}{n} \sum_{s_d} y_k$$

mit $s_d = U_d \cap s$, d.h. s_d ist die Untermenge an Elementen von s, die in die Domain U_d fallen