VE320 Homework Four

Due: 2021/6/14 23:59

- 1. (a) The required conductivity of an n-type silicon sample at $T = 300 \, K$ is to be $\sigma =$ $10(\Omega \cdot cm)^{-1}$. What donor impurity concentration is required? What is the electron mobility corresponding to this impurity concentration?
 - (b) A p-type silicon material is required to have a resistivity of $\rho = 0.20(\Omega \cdot cm)$. What acceptor impurity concentration is required and what is the corresponding hole mobility?
- 2. A perfectly compensated semiconductor is one in which the donor and acceptor impurity concentrations are exactly equal. Assuming complete ionization, determine the resistivity of silicon at T = 300 K in which the impurity concentrations are

(a)
$$N_a = N_d = 10^{14} cm^{-3}$$

(a)
$$N_a = N_d = 10^{14} cm^{-3}$$

(b) $N_a = N_d = 10^{16} cm^{-3}$
(c) $N_a = N_d = 10^{18} cm^{-3}$

$$(c)N_a = N_d = 10^{18} cm^{-3}$$

3. Consider a semiconductor that is uniformly doped with $N_d = 10^{14} cm^{-3}$ and $N_a = 0$, with an applied electric field of E = 100V/cm. Assume that $\mu_n = 1000cm^2/V \cdot s$ and $\mu_p = 0$. Also assume the following parameters:

$$N_c = 2 \times 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}} cm^{-3}, \ N_v = 1 \times 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}} cm^{-3}, \ E_g = 1.10 eV$$
 (a) Calculate the electric-current density at $T = 300 \ K$.

- (b) At what temperature will this current increase by 5 percent? (Assume the mobilities are independent of temperature.)
- 4. The effective density of states functions in silicon can be written in the form

$$N_c = 2.8 \times 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}, N_v = 1.04 \times 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}$$

Assume the mobilities are given by

$$\mu_n = 1350 \left(\frac{T}{300}\right)^{-\frac{3}{2}}, \mu_p = 480 \left(\frac{T}{300}\right)^{-\frac{3}{2}}$$

Assume the bandgap energy is $E_a = 1.12 \, eV$ and independent of temperature. **Plot** the intrinsic conductivity as a function of T over the range $200 \le T \le 600 K$.

- 5. The steady-state electron distribution in silicon can be approximated by a linear function of x. The maximum electron concentration occurs at x = 0 and is $n(0) = 2 \times 10^{16} \text{ cm}^3$. At x = 00.012 cm, the electron concentration is 5×10^{15} . If the electron diffusion coefficient is $D_n =$ $27cm^2/s$, determine the electron diffusion current density.
- Consider an n-type semiconductor at T = 300 K in thermal equilibrium (no current).

Assume that the donor concentration varies as $N_d(x) = N_{d0}e^{-\frac{x}{L}}$ over the range $0 \le x \le L$ where $N_{d0} = 10^{16} cm^{-3}$ and $L = 10 \mu m$.

- (a) Determine the electric field as a function of x for $0 \le x \le L$.
- (b) Calculate the potential difference between x = 0 and x = L (with the potential at x = 0being positive with respect to that at x = L).