# **GMR Institute of Technology**

An Autonomous Institute Affiliated to JNTUK, Kakinada



#### **COURSE HANDOUT**

## B. Tech (CSE) – 8<sup>th</sup> Semester(FSI)

#### (Applicable for the Batches Admitted from 2014-15, Non – FSI & FSI Model)

Course Title : **Data Engineering Lab** Dated : 20-11-2017 Course Code : CSE 4226 Academic Year : 2017-18

Course Code : CSE 4226 Course Structure : 3-1-0-4

Course Coordinator : Dr. S.S.Gantayat Instructor(s) : Dr. S.S.Gantayat

**Course Objective:** 

#### The course content enables students to:

- 1. Conceptualize the Data Mining Problem
- 2. Perform Preprocess Data
- 3. Analyze and Visualize the Data with Data Mining Techniques
- 4. Perform Predictive Modeling
- 5. Generate Association Rules for Business Data

#### **Course Outcome:**

At the end of the course students will be able to:

- 1. Implement the Algorithms to solve Data Mining problem using WEKA tool
- 2. Identify an appropriate method to apply in a given situation
- 3. Communicate results in terms relevant to Science, Business etc.
- 4. Apply different classification and clustering techniques to characterize subgroups.

#### Lab Manuals:

#### **Text Books:**

- 1. Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Education, 2002.
- 2. Jiawei Han & Micheline Kamber, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann, India, 2010.

#### **Reference Books:**

- 1. Data Mining: Introductory and Advanced Topics, Margaret H. Dunham, Pearson Education. 2002.
- 2. Data Mining:Practical Machine Learning Tools and Techniques, Ian H. Witten, Eibe Frank, Mark A. Hall, 3<sup>rd</sup> Edition, Morgan Kaufmann Publishers, 2011.
- 3. Arun K. Pujari, Data Mining Techniques, 3rd Edition, University Press. 2013.

#### **Other References:**

Weka Examples: <a href="https://svn.scms.waikato.ac.nz/svn/weka/branches/stable-3-6/wekaexamples/">https://svn.scms.waikato.ac.nz/svn/weka/branches/stable-3-6/wekaexamples/</a>
Weka Manual : <a href="http://statweb.stanford.edu/~lpekelis/13">http://statweb.stanford.edu/~lpekelis/13</a> datafest <a href="https://statweb.stanford.edu/~lpekelis/13">http://statweb.stanford.edu/~lpekelis/13</a> datafest <a href="https://statweb.stanford.edu/">https://statweb.stanford.edu/~lpekelis/13</a> datafest <a href="https://statweb.stanford.edu/">https://statweb.stanford.edu/~lpekelis/13</a> datafest <a href="https://statweb.stanford.edu/">https://statweb.stanford.edu/</a>

Weka Software: http://www.cs.waikato.ac.nz/ml/weka/downloading.html

# **GMR Institute of Technology**

An Autonomous Institute Affiliated to JNTUK, Kakinada



## **SYLLABUS: (List of Experiments)**

Softwares to Implement: WEKA/ Clementine/ IBM SPSS

#### Experiment 1.

Introduction to Graphical User Interface (GUI) of WEKA.

#### Experiment 2.

Perform Data Pre-processing on a sample data set.

#### **Experiment 3.**

Introduction to IBM SPSS Modeler and nodes palette.

#### **Experiment 4.**

Preparing the data for analysis using data audit node.

#### Experiment 5.

Automated data preparation using data audited node.

#### Experiment 6.

Perform Association Analysis to derive the association rules Algorithm.

#### Experiment 7.

Implement the Classification using Decision Tree Induction Algorithm.

#### **Experiment 8.**

Implement the Classification using Regression.

#### **Experiment 9.**

Implement the Bayesian Classification Algorithm.

#### Experiment 10.

Classify Telecommunications Churn by using Binomial Regression Algorithm.

#### **Experiment 11.**

Implement Market Basket Analysis using Rule Induction/C5.0 Algorithm.

#### **Experiment 12.**

Predicting Loan Defaulters using Bayesian Networks Algorithm

#### Experiment13.

Implement K-means clustering Algorithm.

#### Experiment 14.

Implement Hierarchical clustering Algorithm.

# GMR Institute of Technology An Autonomous Institute Affiliated to JNTUK, Kakinada



### **Course Plan:**

| Experiment No. | Learning Objectives                           | Topic(s) to be Covered                             |  |
|----------------|-----------------------------------------------|----------------------------------------------------|--|
| 1              | To understand the different Graphics User     | Introduction to Graphical User Interface (GUI)     |  |
|                | Interfaces of the WEKA Software package for   | of WEKA                                            |  |
|                | implementation.                               |                                                    |  |
| 2              | To perform data pre-processing for some       | Perform Data Pre-processing on sample data         |  |
|                | sample dataset                                | set                                                |  |
|                | To understand the different Graphics User     | Introduction to IBM SPSS Modeler and nodes palette |  |
| 3              | Interfaces of the IBM SPSS Modeler and        |                                                    |  |
|                | nodes palette for implementation.             | parette                                            |  |
| 4              | To prepare data for analysis using data audit | Preparing the data for analysis using data audit   |  |
|                | nodes.                                        | node.                                              |  |
| 5              | Implementing automated data preparation       | Automated data preparation using data audited      |  |
|                | using data audited node.                      | node.                                              |  |
| 6              | To perform Association Analysis to derive the | Perform Association Analysis to derive the         |  |
|                | association rules algorithm for a given data  | association rules.                                 |  |
|                | set                                           |                                                    |  |
| 7              | To implement the Classification using         | Implementing the Classification using              |  |
|                | Decision Tree Induction algorithm.            | Decision Tree Induction algorithm.                 |  |
| 8              | To implement the Classification using         | Implementing the Classification using              |  |
|                | Regression algorithm                          | Regression algorithm.                              |  |
| 9              | To implementing the Bayesian Classification   | Implementing the Bayesian Classification           |  |
|                | algorithm for given sample data.              | Algorithm.                                         |  |
| 10             | To classifying telecommunications churn by    | Classifying telecommunications churn by            |  |
|                | using Binomial Regression algorithm           | using Binomial Regression algorithm.               |  |
| 11             | To analyze Market Basket Analysis using       | Analyzing Market Basket Analysis using Rule        |  |
|                | Rule Induction/C5.0 Algorithm                 | Induction/C5.0 Algorithm                           |  |
| 12             | To predict Loan Defaulters using Bayesian     | Predicting Loan Defaulters using Bayesian          |  |
|                | Networks Algorithm from a bank data.          | Networks Algorithm.                                |  |
| 13             | To implement the K-means clustering           | Implement K-means clustering Algorithm             |  |
|                | algorithm for a given data set.               |                                                    |  |
| 14             | To implement the Hierarchical clustering      | Implement Hierarchical clustering Algorithm.       |  |
|                | algorithm for a given data set.               | implement inerarchical clustering Argorithm.       |  |

# **GMR** Institute of Technology

An Autonomous Institute Affiliated to JNTUK, Kakinada



#### **Evaluation Scheme:**

| Component            | Particulars                               | Marks | Date & Time                    |
|----------------------|-------------------------------------------|-------|--------------------------------|
| Lab Regularity       | No. of Experiments completed and recorded | 15    | Every week during the semester |
| Internal Examination | 150 Minutes                               | 10    | 26-03-2018 to 31-03-2018       |
| External Examination | 180 Minutes                               | 50    | 02-04-2018 to 07-04-2018       |
| T                    | otal                                      | 75    |                                |

Venue: Programming Lab / Networks Lab

**Notices:** CSE Main Notice Board

S.S. Gantayat
Signature of the Instructors

Signature of the Course-Coordinator