ÁLGEBRA IL ÁLGEBRA — SEGUNDO PARCIAL 2017 — TARDE NOMBRE Y APELLIDO: Mario Schuseviteky

Justificar todas las respuestas. No está permitido el uso de calculadoras o dispositivos trónicos.

Ejercicio 1. (20 pts.) Sean W_1 y W_2 los siguientes subespacios de \mathbb{R}^4 :

$$W_1 \text{ y } W_2 \text{ los signientes subset}$$

$$W_2 = \{(x, y, z, w) \in \mathbb{R}^4 : x = y, x - z = w\},$$

$$W_2 = \{(0, 0, 0, 1), (1, 1, 1, 0), (1, 1, 1, -1), (1, 0, 1, 0)\}.$$

$$W_3 = \{(0, 0, 0, 1), (1, 1, 1, 0), (1, 1, 1, -1), (1, 0, 1, 0)\}.$$

- (a) Dar una base de W_1 y completarla a una base de \mathbb{R}^4 .
- (b) Dar una base de $W_1 + W_2$.

Ejercicio 2. (20 prs.) Sea $\mathbb{P}_3 \subset \mathbb{R}[x]$ el subespacio de polinomios de grado menor que 3.

- (a) Mostrar que $\{x+2, x^3+2x, 2x^2\}$ es una base de \mathbb{P}_3 .
- (b) Dar las coordenadas de un polinomio $p(x) = a + bx + cx^2$ en esta base.

Ejercicio 3. (20 pts.)

(a) Hallar una transformación lineal $T:\mathbb{C}^2 \to \mathbb{C}^4$ que satisfaga

transformación lineal
$$T: \mathbb{C}^4 \to \mathbb{C}^4$$
 que $T(1-i,1+i) = (1,-i,1,i), \qquad T(1,1) = (0,0,0,0).$

- (b) ¿Es única?
- (c) Dar una fórmula para T(x, y).

Ejercicio 4. (20 pts.) Sea $D: \mathbb{P}^4 \to \mathbb{P}^3$ la transformación lineal dada por

$$D\left(p(x)\right) = p'(x),$$

es decir $D(ax^3 + bx^2 + cx + d) = 3ax^2 + 2bx^+c$.

- (a) Calcular la matriz de D con respecto a las bases canónicas de \mathbb{P}^4 y \mathbb{P}^3 .
- (b) Calcular el núcleo de D.

LGEBRA II-ÁLGEBRA — SEGUNDO PARCIAL 2017 — TARDE

- ercicio S. (20 pts.) Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar'o dar un contracjemplo según el caso.
 - (a) Sean U, V dos subespacios de un esp. vectorial W. Si U + V = W, entonces
 - (b) ℝ es un C-espacio vectorial (con la suma de R y la multiplicaión por escalares inducida por la inclusión R C C).
 - (c) Sean $T: V \to W$ y $S: W \to U$ dos transformaciones lineales inyectivas. Entonces la composición $S \circ T \colon V \to U$ es inyectiva.
 - (d) Sean $V \subset W$ dos espacios vectoriales y sea B una base de V. Entonces existe una base de W que contiene a B.

Ejercicio	1	2	3	4	5	Total
Nota						