Very Busy Expressions

Un'espressione si può definire very busy in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito. Ad esempio: un'espressione a+b è very busy in un punto p se a+b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi.

L'analisi delle very busy expressions è un'analisi del flusso all'indietro, poiché propaga informazioni riguardanti le valutazioni future all'indietro verso punti precedenti.

Analizzando una very busy expressions si trasmettono informazioni sulle possibili valutazioni future all'indietro nel tempo, influenzando decisioni prese in fasi precedenti della computazione.

Le caratteristiche del DFA si riassumono nella tabella a destra.

Di seguito si mostra la soluzione dell'esercizio assegnato.

Le istruzioni nel CFG sono tre: a! = b, b - a, a - b.

	Very Busy Expressions framework
Domain	Expression
Direction	Backward
Fransfer Function	$f_b(x) = Gen_b \cap (x - Kill_b)$
Meet Operation	Λ
Boundary Conditions	$in[EXIT] = \emptyset$
nitial Interior Points	in[b] = U
Equations	$in[b] = f_b(out[b])$
	$out[b] = \cap in[succ[b]]$

BB1 entry					
BB2	(a!=b)?				
BB3 X :	=b-a	BB5	y=b-a		
	T	BB6	a=0		
BB4 x	=a-b	BB7	x=a-b		
	вв8 🕞	xit			

Very Busy Expressions

BB	OUT	IN
8	000	000
7	000	001
4	000	001
6	001	000
5	000	010
3	001	011
2	010	110
1	110	110