Szymon Wróbel

6 listopada 2019

Plan prezentacji

Wstęp

Logika intuicjonistyczna

Inne logiki nieklasyczne

Filozofowie: Poszukiwanie prawdy.

Filozofowie: Poszukiwanie prawdy.

Lingwiści: Formalizacja znaczenia wypowiedzi.

Po co nam logika?

Filozofowie: Poszukiwanie prawdy.

Lingwiści: Formalizacja znaczenia wypowiedzi.

Matematycy: Systemy dowodzenia

Po co nam logika?

Filozofowie: Poszukiwanie prawdy.

Lingwiści: Formalizacja znaczenia wypowiedzi.

Matematycy: Systemy dowodzenia (lub z nudów).

Po co nam logika?

Filozofowie: Poszukiwanie prawdy.

Lingwiści: Formalizacja znaczenia wypowiedzi.

Matematycy: Systemy dowodzenia (lub z nudów).

Informatycy: Weryfikacja poprawności programów analiza pracy

systemów, systemy AI.

Projektowanie aplikacji

Problem

- Problem
- Pomysł

- Problem
- Pomysł
- Specyfikacja

- Problem
- Pomysł
- Specyfikacja
- Implementacja

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

Projektowanie aplikacji

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

Projektowanie logiki

Problem

Projektowanie aplikacji

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

- Problem
- Intuicja

Projektowanie aplikacji

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

- Problem
- Intuicja
- Składnia

Projektowanie aplikacji

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

- Problem
- Intuicja
- Składnia
- Semantyka

Projektowanie aplikacji

- Problem
- Pomysł
- Specyfikacja
- Implementacja
- Wdrożenie

- Problem
- Intuicia
- Składnia
- Semantyka
- Zastosowania

Problem

Czy istnieją dwie liczby niewymierne a, b, takie, że a^b jest liczbą wymierną?

Problem

Czy istnieją dwie liczby niewymierne a,b, takie, że a^b jest liczbą wymierną?

Dowód

Weźmy $a=\sqrt{2}, b=\sqrt{2}$. Rozważmy wymierność a^b . Jeśli jest wymierne, to dowód jest zakończony. Jeśli nie, weźmy $a=\sqrt{2}^{\sqrt{2}}$ $b=\sqrt{2}$

Wtedy

$$a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^2 = 2$$

Problem

Podaj dwie liczby niewymierne a, b, takie, że a^b jest liczbą wymierną?

Problem

Podaj dwie liczby niewymierne a, b, takie, że a^b jest liczbą wymierna?

Pomimo tego, że udowodniliśmy istnienie tych liczb, nie możemy skorzystać z poprzedniego dowodu

Dowód (v 2.0)

Weźmy
$$a = \sqrt{2}, b = 2 \log_2 3.$$

Wtedy
$$a^b = \sqrt{2}^{(2\log_2 3)} = 2^{\log_2 3} = 3$$

Logika intuicjonistyczna

Prawdziwe jest to, na co mamy dowód.

Logika intuicjonistyczna

Interpretacja BHK

Dowód $A \wedge B$ to dowód A i dowód B

Interpretacja BHK

- Dowód A ∧ B to dowód A i dowód B
- Dowód A ∨ B to dowód A albo dowód B

Logika intuicjonistyczna

Interpretacja BHK

- Dowód A ∧ B to dowód A i dowód B
- Dowód A ∨ B to dowód A albo dowód B
- Dowód A → B to metoda przekształcająca dowód A, w dowód B

Logika intuicionistyczna

Interpretacja BHK

- Dowód $A \wedge B$ to dowód A i dowód B
- Dowód $A \vee B$ to dowód A albo dowód B
- Dowód $A \rightarrow B$ to metoda przekształcająca dowód A, w dowód B
- Nie ma dowodu ⊥

Postać sekwentów

 $\Delta \vdash \Gamma$

Aksjomat

$$\overline{\Delta,P\vdash P}$$
 Ass

Aksjomat

$$\overline{\Delta,P\vdash P}$$
 Ass

Implikacja

$$\frac{\Delta, A \vdash B}{\Delta \vdash A \to B} \to I$$

$$\frac{\Delta \vdash A \to B \ \Delta \vdash A}{\Delta \vdash B} \to \mathsf{E}$$

Aksjomat

$$\overline{\Delta,P\vdash P}$$
 Ass

Implikacja

$$\frac{\Delta, A \vdash B}{\Delta \vdash A \to B} \to I$$

$$\frac{\Delta \vdash A \to B \ \Delta \vdash A}{\Delta \vdash B} \to \mathsf{E}$$

Koniunkcja

$$\frac{\Delta \vdash A \ \Delta \vdash B}{\Delta \vdash A \land B} \land I$$

$$\Delta \vdash A \land B$$
 $\land E_1$

$$\frac{\Delta \vdash A \land B}{\Delta \vdash B} \land \mathsf{E}_2$$

Alternatywa

$$\frac{\Delta \vdash A}{\Delta \vdash A \lor B} \lor I_{1} \qquad \frac{\Delta \vdash B}{\Delta \vdash A \lor B} \lor I_{2}$$

$$\frac{\Delta \vdash A \lor B}{\Delta \vdash A \lor B} \Delta, A \vdash C \Delta, B \vdash C$$

$$\frac{\Delta \vdash A \lor B}{\Delta \vdash C} \lor E$$

Alternatywa

$$\frac{\Delta \vdash A}{\Delta \vdash A \lor B} \lor I_{1} \qquad \frac{\Delta \vdash B}{\Delta \vdash A \lor B} \lor I_{2}$$

$$\frac{\Delta \vdash A \lor B}{\Delta \vdash A \lor B} \Delta, A \vdash C \Delta, B \vdash C$$

$$\frac{\Delta \vdash A \lor B}{\Delta \vdash C} \lor E$$

 $NI \Rightarrow NK$

$$\frac{\Delta \vdash \neg \neg P}{\Delta \vdash P \lor \neg P}$$
 LEM $\frac{\Delta \vdash \neg \neg P}{\Delta \vdash P}$ DNE $\frac{\Delta, \neg P \vdash \bot}{\Delta \vdash P}$ PBC

Przykład: $P \rightarrow \neg \neg P$

$$\vdash P \rightarrow (P \rightarrow \bot) \rightarrow \bot$$

$$\frac{P \vdash (P \to \bot) \to \bot}{\vdash P \to (P \to \bot) \to \bot} \to I$$

$$\frac{P, (P \to \bot) \vdash \bot}{P \vdash (P \to \bot) \to \bot} \to I$$
$$\vdash P \to (P \to \bot) \to \bot$$

$$\frac{P, (P \to \bot) \vdash (P \to \bot) \quad P, (P \to \bot) \vdash P}{P, (P \to \bot) \vdash \bot} \to \mathsf{E}$$

$$\frac{P, (P \to \bot) \vdash \bot}{P \vdash (P \to \bot) \to \bot} \to \mathsf{I}$$

$$\vdash P \to (P \to \bot) \to \bot$$

$$\frac{P, (P \to \bot) \vdash (P \to \bot)}{P, (P \to \bot) \vdash P} \xrightarrow{\mathsf{Ass}} \frac{P, (P \to \bot) \vdash P}{P \vdash (P \to \bot) \to \bot} \xrightarrow{\mathsf{Al}} \frac{P, (P \to \bot) \vdash \bot}{P \vdash (P \to \bot) \to \bot} \xrightarrow{\mathsf{Al}} \frac{\mathsf{Ass}}{P, (P \to \bot) \vdash P} \xrightarrow{\mathsf{Ass}} \frac{\mathsf{Ass}}{P, (P \to \bot) \vdash P} \xrightarrow{\mathsf{Ass}$$

Izomorfizm Curry'ego-Howarda

Rachunek lambda z typami prostymi

$$\Gamma, x : \alpha \vdash x : \alpha$$

Izomorfizm Curry'ego-Howarda

Rachunek lambda z typami prostymi

$$\Gamma, x : \alpha \vdash x : \alpha$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash (\lambda x. M) : \alpha \to \beta} ABS$$

$$\frac{\Gamma \vdash M : \alpha \to \beta \quad \Gamma \vdash N : \alpha}{\Gamma \vdash (MN) : \beta} \mathsf{APP}$$

Izomorfizm Curry'ego-Howarda

Rachunek lambda z typami prostymi

$$\overline{\Gamma, x : \alpha \vdash x : \alpha}$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash (\lambda x.M) : \alpha \to \beta} ABS \qquad \frac{\Gamma \vdash M : \alpha \to \beta \quad \Gamma \vdash N : \alpha}{\Gamma \vdash (MN) : \beta} APP \frac{\Gamma \vdash A : \alpha \quad \Gamma \vdash B : \beta}{\Gamma \vdash \langle A, B \rangle : \alpha * \beta} PAIR$$

$$\frac{\Gamma \vdash \langle A, B \rangle : \alpha * \beta}{\Gamma \vdash A : \alpha} \mathsf{FST} \qquad \frac{\Gamma \vdash \langle A, B \rangle : \alpha * \beta}{\Gamma \vdash B : \beta} \mathsf{SND}$$

Przykład

Logika liniowa

Przykład

Niech P oznacza "mieć ciastko".

Logika liniowa

Przykład

Niech P oznacza "mieć ciastko". Niech Q oznacza "zjeść ciastko".

Logika liniowa

Przykład

Niech P oznacza "mieć ciastko".

Niech Q oznacza "zjeść ciastko". Jeśli mamy ciastko, to możemy je zjeść, co zapiszemy jako $P \to Q$

Przykład

Niech P oznacza "mieć ciastko".

Niech Q oznacza "zjeść ciastko".

Jeśli mamy ciastko, to możemy je zjeść, co zapiszemy jako $P \to Q$ Wtedy w logice intuicjonistycznej możemy udowodnić

 $P \to (P \to Q) \to P \land Q$.

Wniosek

Dzięki logice intuicjonistycznej możemy zjeść ciastko i mieć ciastko

Inne logiki nieklasyczne

Zmienne zdaniowe

 p, p^{\perp}

Stałe

$$1, \perp, \top, 0$$

Koniunkcja

$$A \otimes B$$
, $A \& B$

Alternatywa

 $A\%B, A\oplus B$

Logika liniowa: zastosowania

Inne logiki nieklasyczne

• Typy Liniowe jako kontrakt [Wad91]

Inne logiki nieklasyczne

- Typy Liniowe jako kontrakt [Wad91]
- Logika liniowa jako logika współbieżności/równoległości [Wad14]

Logika liniowa: zastosowania

Inne logiki nieklasyczne

- Typy Liniowe jako kontrakt [Wad91]
- Logika liniowa jako logika współbieżności/równoległości [Wad14]
- Powiązania z układami kwantowymi [Lag12], [Bae09]

Implikacja

Jeśli 2=3, to księżyc jest z sera.

Implikacja

Jeśli 2 = 3, to księżyc jest z sera.

Potrzebujemy logiki, w której poprzednik implikacji jest istotny (ang. relevant) dla następnika.

Relevance Logic

Implikacja

Jeśli 2 = 3, to księżyc jest z sera.

Potrzebujemy logiki, w której poprzednik implikacji jest istotny (ang. relevant) dla następnika.

Zastosowania

- Analiza systemów współbieżnych [Dam88]
- Reprezentacja wiedzy w systemach sztucznej inteligencji [Sha92]

Inne logiki nieklasyczne

Jedą z istotnych właściwości logiki istotnościowej, wynikającą z potrzeby istotności przesłanki implikacji, jest odrzucenie zasady eksplozji (z fałszu wynika wszystko).

Inne logiki nieklasyczne

Jedą z istotnych właściwości logiki istotnościowej(???), wynikającą z potrzeby istotności przesłanki implikacji, jest odrzucenie zasady eksplozji (z fałszu wynika wszystko).

Jedą z istotnych właściwości logiki istotnościowej, wynikającą z potrzeby istotności przesłanki implikacji, jest odrzucenie zasady eksplozji (z fałszu wynika wszystko).

Zastosowania

- Powiązania z modelami obliczeń kwantowych [Agu06]
- Parakonsystencja jako dualność intuicjonizmu [Aoy04]

Bibliografia

- [Tho91] S. Thompson, *Type Theory and Functional Programming*, Addison-Wesley, 1991.
- [Pri08] G. Priest, An Introduction to Non-Classical Logic: From If to Is, Cambridge University Press, 2008.
- [Gen35] G. Gentzen, *Untersuchungen über das logische Schließen*, 1935.
- [Wad15] P. Wadler, *Propositions as types*, 2015.
- [Wad91] P. Wadler, Is there a use for linear logic?, 1991.
- [Wad14] P. Wadler, Propositions as sessions, Journal of Functional Programming, vol. 24, 2014.
- [Lag12] U. Dal Lago, C. Faggian, On Multiplicative Linear Logic, Modality and Quantum Circuits, Electronic Proceedings in Theoretical Computer Science, 2012

Bibliografia

- [Bae09] J. Baez, M. Stay, Physics, Topology, Logic and Computation: A Rosetta Stone, 2009.
- [Dam88] M. Dam, Relevance logic and concurrent composition, 1988.
- [Sha92] S. Shapiro, Relevance Logic in Computer Science, 1992
- [Agu06] J. Agudelo-Agudelo, W. Carnielli, Quantum Computation via Paraconsistent Computation, 2006.
- [Aoy04] H. Aoyama, LK, LJ, Dual Intuitionistic Logic, and Quantum Logic, 2004.