

Lung X-ray Covid Classification

A presentaion by Ayush Bajracharya

18 December, 2024

Introduction

The data aims to build an image classification model based on Deep Learning to detect COVID-19 infections using chest X-ray images or CT scans. The model is used to classify images into multiple categories, such as:

- 1. COVID-19 (cases of coronavirus infection)
- 2. Normal (healthy individuals)
- 3. Pneumonia (pneumonia unrelated to COVID-19).

Data Preparation

Dataset Overview:

- Dataset organization (train/test split).
- Labels: Covid, Normal, Viral Pneumonia.

Preprocessing:

- Image resizing to 224x224.
- Class distribution visualization.
- Use of techniques like SMOTE for balancing. (worse results)

Data Augmentation and Exploration

Image Augmentation:

• Display sample images with labels.

Data Dimensions:

• Training data dimensions and reshaping process.

Model Architechture

Model Design

- Sequential CNN model with:
 - 2 Convolutional layers.
 - 2 MaxPooling layers.
 - Fully connected dense layer.
- Activation functions:
 - Relu and Softmax
- Loss:
 - Categorical Crossentropy
- Metrics:
 - Accuracy

Training Setup

```
# Learning rate reduction on plateau
learning_rate_reduction = ReduceLROnPlateau(
    monitor='val_accuracy', # Monitor validation accuracy
    patience=2, # Number of epochs without improvement before reducing the learning rate
    verbose=1, # Display a message when reducing the learning rate
    factor=0.3, # Reduce learning rate by 70%
    min_lr=0.000001 # Minimum learning rate
)

# Early stopping to prevent overfitting
early_stopping = EarlyStopping(
    monitor='val_loss', # Monitor validation loss
    patience=5, # Number of epochs without improvement before stopping
    restore_best_weights=True # Restore the best weights after training stops
)
```

- Epochs:
 - o 50
- Batch Size:
 - 0 64
- Callbacks:
 - Learning Rate Reduction
 - Early stopping

Model Comparision

	First Model	Second Model	Third Model	Fourth Model	Fifth Model
Changes	Image Data Generator (IDG) 150 Input 1 Output (GreyScale)	Remove IDG SMOTE 5 CN Layers	224 Input 3 CN Layers 3 Output	Remove SMOTE Learning Rate Adam Optimizer	2 CN Layers AdamX Optimizer
Accuracy	50%	77%	82%	89%	94%

Best Model Metrics

Runtime: ~10 mins (with early stop)

Thank You

18 December, 2024