P. Maurer ENS Rennes

Leçon 170. Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

Devs:

- Lemme de Morse
- Loi de réciprocité quadratique

Références:

- 1. Gourdon, Algèbre
- 2. Gourdon, Analyse
- 3. Grifone, Algèbre linéaire
- 4. Perrin, Cours d'algèbre
- 5. Rouvière, Petit guide du calcul différentiel
- 6. Caldero, H2G2

On se donne E et F deux espaces vectoriels de dimension finie, sur un corps K de caractéristique différente de 2.

1 Généralités sur les formes quadratiques

1.1 Formes biliénaires symétriques

Définition 1. Une application $\varphi \colon E \times F \to K$ est appelée une forme bilinéaire si pour tout $x \in E$, l'application $\varphi(x,\cdot)$ est linéaire et pour tout $y \in F$, l'application $\varphi(\cdot,y)$ est linéaire.

Exemple 2. L'application φ : $\begin{cases} \mathcal{C}^0([0,1],\mathbb{C})^2 \to \mathbb{C} \\ (f,g) \mapsto \int_0^1 fg d\lambda \end{cases}$ est une forme bilinéaire sur $\mathcal{C}^0([0,1],\mathbb{C})$.

Dans la suite, on supposera F = E, et on se donne φ une forme bilinéaire sur E.

Définition 3. On dit que φ est symétrique si $\varphi(x,y) = \varphi(y,x)$.

Définition 4. On appelle forme quadratique sur E toute application q de la forme q: $E \to K$ avec $q(x) = \varphi(x, x)$, où φ est une forme bilinéaire symétrique sur E.

Proposition 5. Soit q une forme quadratique sur E. Il existe une unique forme bilinéaire symétrique φ telle que pour tout $x \in E$, $q(x) = \varphi(x,x)$. Dans ce cas, φ s'appelle la forme polaire de q et on a $\varphi(x,y) = \frac{1}{2}(q(x+y) - q(y) - q(y)) = \frac{1}{4}(q(x+y) - q(x-y))$.

Proposition 6. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Alors

$$\varphi(x,y) = \sum_{1 < i,j < n} x_i y_j \varphi(e_i, e_j) = X^T M Y,$$

où $M = \text{mat}_{\mathcal{B}}(\varphi)$ est la matrice carrée définie par $m_{ij} = \varphi(e_i, e_j)$.

Proposition 7. φ est symétrique si et seulement si $\operatorname{mat}_{\mathcal{B}}(\varphi) \in \mathcal{S}_n(\mathbb{R})$.

1.2 Rang et noyau

Définition 8. Soit φ une forme bilinéaire sur E.

- $\bullet \quad \textit{On appelle rang de } \varphi \textit{ le rang de l'application } j \colon \left\{ \begin{smallmatrix} E & \to & E^* \\ y & \mapsto & \varphi(\cdot,\,y) \end{smallmatrix} \right. .$
- On appelle noyau de φ le noyau de l'application j, c'est-à-dire

$$N(\varphi) := \{ y \in E : \forall x \in E \quad \varphi(x, y) = 0 \}.$$

• La forme φ est dite non dégénérée si j est injective, c'est-à-dire si $N(\varphi) = \{0\}$, ou en d'autres termes, si $(\forall x \in E \quad \varphi(x,y) = 0) \Longrightarrow y = 0$.

Proposition 9. Le rang et le noyau de φ correspondent au rang et au noyau de la matrice qui représente φ dans une base quelconque. En particulier, on a $\dim(E) = \operatorname{rg}(\varphi) + \dim N(\varphi)$.

Définition 10. On appelle rang et noyau d'une forme quadratique q le rang et le noyau de la forme polaire associée à q. On note N(q) le noyau de q.

La forme q est dite non dégénérée si sa forme polaire est non dégénérée.

Si q est une forme quadratique à valeurs réelles, on dit que q est définie positive si sa forme polaire l'est, c'est-à-dire si q(x) > 0 pour tout $x \in E$ non nul.

Remarque 11. Une forme quadratique définie positive est toujours non dégénérée.

Exemple 12. La forme quadratique $q: \mathbb{R}^3 \to \mathbb{R}$ définie par $q(x,y,z) = 4x^2 + 3y^2 + 5xy - 3xz + 8yz$ est non dégénérée. D'autre part, on a $q(e_3) = \varphi(e_3,e_3) = 0$, donc q n'est pas définie.

Définition 13. On appelle discriminant d'une forme quadratique q, et on le note $\delta(q)$ le déterminant de la matrice qui la représente dans une base quelconque. Notons que $\delta(q)$ n'est défini que dans $K/(K^*)^2$ (à un carré non nul près).

2 Section 2

1.3 Cône isotrope

Définition 14. Soit q une forme quadratique sur E. On appelle cône isotrope l'ensemble $\mathcal{I}(q)$ défini par $\mathcal{I}(q) := \{x \in E : q(x) = 0\}$.

Proposition 15. $\mathcal{I}(q)$ est un cône, c'est-à-dire que pour tout $x \in \mathcal{I}(q)$ et $\lambda \in K$, on a $\lambda x \in \mathcal{I}(q)$.

Remarque 16. $\mathcal{I}(q)$ n'est pas un espace vectoriel, car il n'est pas stable par somme.

Exemple 17. Si $q(x, y) = x^2 - y^2$, on a $\mathcal{I}(q) = \{(x, y) \in \mathbb{R}^2 : x = \pm y\}$.

Proposition 18. On a $N(q) \subset \mathcal{I}(q)$. L'inclusion réciproque, en général, est fausse.

2 Orthogonalité, isotropie et classification

On se donne q une forme quadratique, de forme polaire φ .

2.1 Sous-espaces orthogonaux et isotropes

Définition 19. On dit que $x, y \in E$ sont orthogonaux pour φ si $\varphi(x, y) = 0$. On note cela $x \perp y$, où plus simplement $x \perp y$ s'il n'y a pas de confusion possible.

Définition 20. Soit $A \subset E$. On appelle orthogonal de A pour φ l'ensemble $A^{\perp} := \{x \in E : \forall y \in E \quad \varphi(x,y) = 0\}$.

Proposition 21. A^{\perp} est un sous espace vectoriel de E. On a $\{0\}^{\perp} = E$, $E^{\perp} = N(q)$, et $\forall A \subset E \ N(q) \subset A^{\perp}$.

Proposition 22. Soit F un sous-espace vectoriel de E. Alors $\dim(E) = \dim(F) + \dim(F^{\perp}) - \dim(F \cap N)$, et on a $F^{\perp \perp} = F + N(q)$.

En particulier, si q est non dégénérée, $\dim(E) = \dim(F) + \dim(F^\perp)$ et $F^{\perp \perp} = F.$

Définition 23. Un sous-espace vectoriel F de E est dit isotrope si $F \cap F^{\perp} \neq \{0\}$.

Proposition 24. Il existe des sous-espaces isotropes si et seulement si $\mathcal{I}(q) \neq \{0\}$.

Proposition 25. Soit F un sous-espace vectoriel de E. On a $E = F \oplus F^{\perp} \iff F$ est non isotrope.

Définition 26. Une base $\mathcal{B} = (e_1, \dots, e_n)$ de E est dite orthogonale pour φ si $\varphi(e_i, e_j) = 0$ pour tout $i \neq j$. Elle est dite orthonormée si $\varphi(e_i, e_j) = \delta_{i,i}$.

Théorème 27. On suppose $E \neq \{0\}$. Il existe une base orthogonale sur E pour q.

Remarque 28. On peut construire cette base grâce à l'algorithme de Gram Schmidt.

2.2 Le groupe orthogonal O(q)

Soit (E,q) un espace vectoriel de dimension finie muni d'une forme quadratique q non dégénérée, de forme polaire φ , et $f \in \mathcal{L}(E)$.

Théorème 29. Il existe un unique endomorphisme $f^* \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E \quad \varphi(f(x), y) = \varphi(x, f^*(y)).$$

On dit que f^* est l'adjoint de f relativement à φ .

Proposition 30. Les propositions suivantes sont équivalentes :

- $\forall x \in E \quad q(f(x)) = q(x)$.
- $\bullet \quad \forall x,y \in E \quad \varphi(f(x),f(y)) = \varphi(x,y).$
- $f^* \circ f = \mathrm{Id}_E$.

Un tel endomorphisme est dit orthogonal relativement à q.

Définition 31. On note O(q) et on appelle groupe orthogonal l'ensemble $\{f \in \mathcal{L}(E) : f^* \circ f = \mathrm{Id}_E\}$.

Proposition 32. Muni de la loi de composition des applications, O(q) est un groupe.

Proposition 33. Si $f \in O(q)$ alors $\det(f) = \pm 1$. L'ensemble $\mathrm{SO}(q) := \{f \in O(q) : \det(f) = 1\}$ est un sous-groupe de O(q), appelé sous-groupe orthogonal.

Proposition 34. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de $E, S = \text{mat}_{\mathcal{B}}(q)$ et $A = \text{mat}_{\mathcal{B}}(f)$. Alors $f \in O(q) \iff A^T S A = S$.

2.3 Classification des formes quadratiques

Définition 35. Soit q, q' deux formes quadratiques sur E. On dit que q, q' sont équivalentes s'il existe $\phi \in GL(E)$ tel que $q = q' \circ \phi$.

Proposition 36. Soit q, q' deux formes quadratiques sur E. Si q et q' sont équivalentes, alors on a

- $\operatorname{rg}(q) = \operatorname{rg}(q')$,
- N(q) = N(q'),

Applications en calcul différentiel 3

• $\delta(q) = \delta(q') \ dans \ K/(K^*)^2$.

Remarque 37. Ces conditions ne sont pas suffisantes pour l'équivalence. Il faut distinguer les cas selon le corps K.

Théorème 38.

On suppose que K est algébriquement clos (par exemple $K = \mathbb{C}$), et $\dim(E) = n$. Alors toutes les formes quadratiques non dégénérées sur E sont équivalentes. Dans une base convenable, elles ont pour matrice l'identité, et $q(x) = x_1^2 + \cdots + x_n^2$.

Théorème 39. (Sylvester).

On suppose $K = \mathbb{R}$ et $\dim(E) = n$. Il y a n+1 classes d'équivalences de formes quadratiques non dégénérées sur K. Il existe une base \mathcal{B} de E telle que $q(x) = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_n^2$. Autrement dit, la matrice de φ dans \mathcal{B} s'écrit sous la forme $\operatorname{diag}(I_p, -I_{n-p}, 0)$. Le couple (p, n-p) est appelé la signature de q.

Théorème 40.

On suppose $K = \mathbb{F}_q$ avec $q \neq 2$, et $\dim(E) = n$. Soit $\alpha \in \mathbb{F}_q^*$ tel que $\alpha \notin \mathbb{F}_q^{*2}$. Il y a deux classes d'équivalences de formes quadratiques non dégénérées sur E, de matrices I_n ou $\operatorname{Diag}(I_{n-1}, \alpha)$.

Une forme Q est selon l'un ou l'autre type suivant que son discriminant $\delta(Q)$ est, ou non, un carré de \mathbb{F}_a^* .

Développement 1 :

Corollaire 41. (Loi de réciprocité quadratique)

Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right)=\left(-1\right)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Théorème 42. (Théorème de Witt, admis).

Soit F, F' deux sous-espaces de E. Les conditions suivantes sont équivalentes :

- Il existe $u \in O(q)$ tel que u(F) = F'.
- Les formes quadratique $q_{|F|}$ et $q_{|F'|}$ sont équivalentes.
- Il existe un endomorphisme σ: F → F' orthogonal relativement à q_{|F|} et à q_{|F|}.

3 Applications en calcul différentiel

Théorème 43. (Lemme de Schwarz).

Soit f définie sur un ouvert $U \subset \mathbb{R}^2$ de classe C^2 . Alors $D^2 f \in \mathcal{S}_n(\mathbb{R})$.

Proposition 44.

- Si f admet un minimum (resp un maximum) relatif en $a \in U$, alors la forme quadratique $Q(h) = \left[\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x)\right]^{[2]} = \langle Hf(h), h \rangle$ est positive (resp. négative).
- Si $Q(h) = \left[\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x)\right]^{[2]} = \langle Hf(h), h \rangle$ est définie positive (resp. définie négative), alors f admet un minimum (resp. un maximum) local en a.

Exemple 45. (cas de la dimension 2)

Soit $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 telle que $df_a = 0$ pour $a \in U$. On note $A = \begin{pmatrix} r & s \\ s & t \end{pmatrix} = Hf(x,y)$.

- Si det(A) > 0 et r > 0, alors f admet un minimum relatif en a.
- Si det(A) > 0 et r < 0, alors f admet un maximum relatif en a.
- Si det(A) < 0, alors f n'a pas d'extremum en a.
- Si det(A) = 0, on ne peut pas conclure.

Développement 2 :

Lemme 46. (Réduction différentiable des formes quadratiques)

Soit $A_0 \in \mathcal{S}_n(\mathbb{R}) \cap \mathsf{GL}_n(\mathbb{R})$. Alors il existe un voisinnage V de A_0 et une application $\Psi: V \to \mathsf{GL}_n(\mathbb{R})$ de classe \mathcal{C}^1 tels que

$$\forall A \in V \quad A = \Psi(A)^T A_0 \Psi(A).$$

Théorème 47. (Lemme de Morse)

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 . On suppose que 0 est un point critique quadratique non dégénéré de f, c'est-à-dire que Df(0) = 0 et que la forme quadratique hessienne $Df^2(0)$ est non d'égénérée, de signature (p, n-p).

Alors il existe deux voisinnages V et W de l'origine et un \mathbb{C}^1 -difféomorphisme $\varphi \colon V \to W$ tel $que \varphi(0) = 0$, et en notant $u = (u_1, \dots, u_n) =: \varphi(x)$ pour $x \in U$, on a : ¹

$$f(x)-f(0) = u_1^2+\cdots+u_p^2-u_{p+1}^2-\cdots-u_n^2.$$