AST3220, spring 2021: Project 2

In addition to the solution of the analytical part, the deliverables are the following:

- Your code in a separate file, ready to compile and run
- All graphs and other output asked for in the following. Note that the plots must be included in your report. It is not enough that your code generates them.
- Your report can be either a straightforward set of answers to the questions, or in the form of a paper. Either way is fine.
- The maximum score on the project is 100 points.

In the lectures we looked at the relationship between the neutrino temperature T_{ν} and the photon temperature T after the neutrinos decoupled. Among the assumptions we made, was that the electrons and positrons become non-relativistic as soon as the temperature drops below $k_BT = m_ec^2$, where m_e is the electron (and positron) mass. This is not strictly correct, and you will in the following look at the relation between T_{ν} and T when the electrons and positrons are treated more accurately. The following expressions for the energy density and pressure of a gas of fermions will be useful:

$$\rho c^{2}(T) = \int_{0}^{\infty} E(p)n(p,T)dp$$

$$P(T) = \int_{0}^{\infty} \frac{(pc)^{2}}{3E(p)}n(p,T)dp$$

$$n(p,T) = \frac{4\pi gp^{2}}{(2\pi\hbar)^{3}} \frac{1}{\exp[E(p)/k_{B}T] + 1}$$

$$E(p) = \sqrt{p^{2}c^{2} + m^{2}c^{4}},$$

where g is the number of internal degrees of freedom and m is the rest mass of the particle in question. In the lectures we showed that the entropy density is given by

$$s(T) = \frac{\rho c^2 + P}{T},$$

and that entropy conservation implies $a^3s(T) = \text{constant}$.

1) (10 points) Show that entropy conservation together with the first Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

gives

$$t = \int_{T}^{T_0} \frac{s'(T)dT}{s(T)\sqrt{24\pi G\rho(T)}},$$

where $s'(T) = \frac{ds}{dT}$ and I have defined $t(T_0) = 0$.

2) (10 points) Show that the total entropy density for photons, electrons and positrons can be written as

$$s(T) = \frac{4\pi^2}{45} k_B \left(\frac{k_B T}{\hbar c}\right)^3 + \frac{1}{T} \int_0^\infty \frac{16\pi p^2 dp}{(2\pi\hbar)^3} \frac{1}{\exp[E_e(p)/k_B T] + 1} \left[E_e(p) + \frac{(pc)^2}{3E_e(p)}\right] = \frac{4\pi^2}{45} k_B \left(\frac{k_B T}{\hbar c}\right)^3 \mathcal{S}\left(x = \frac{m_e c^2}{k_B T}\right),$$

where $E_e = \sqrt{p^2c^2 + m_e^2c^4}$ and

$$S(x) = 1 + \frac{45}{2\pi^4} \int_0^\infty y^2 \left(\sqrt{y^2 + x^2} + \frac{y^2}{3\sqrt{y^2 + x^2}} \right) \frac{1}{\exp(\sqrt{y^2 + x^2}) + 1} dy.$$

(Note that S(x) here has nothing to do with the function we called S when we discussed distances.)

3) (10 points) I showed in the lectures that after decoupling the neutrinos still follow the Fermi-Dirac distribution with $T_{\nu} \propto 1/a$. Show that entropy conservation implies

$$a \propto rac{1}{T\mathcal{S}^{1/3}(x=m_ec^2/k_BT)},$$

and that we therefore have

$$T_{\nu} = AT \mathcal{S}^{1/3}(x = m_e c^2 / k_B T),$$

where A is a constant.

4) (10 points) What is the relation between T and T_{ν} at very high temperatures $(T \to \infty)$? Use this to find A and show that

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T \mathcal{S}^{1/3} \left(x = \frac{m_e c^2}{k_B T}\right).$$

The following integral may be useful:

$$\int_0^\infty \frac{y^3 dy}{\exp(y) + 1} = \frac{7\pi^4}{120}.$$

5) (10 points) Show that the total energy density can be written as

$$\rho c^{2} = \frac{\pi^{2}}{15} \frac{(k_{B}T)^{4}}{(\hbar c)^{3}} + \frac{7}{8} \frac{\pi^{2}}{30} 6 \frac{(k_{B}T_{\nu})^{4}}{(\hbar c)^{3}}$$

$$+ \int_{0}^{\infty} \frac{16\pi p^{2} dp}{(2\pi\hbar)^{3}} \frac{\sqrt{p^{2}c^{2} + m_{e}^{2}c^{4}}}{\exp(\sqrt{p^{2}c^{2} + m_{e}^{2}c^{4}}/k_{B}T) + 1}$$

$$= \frac{\pi^{2}}{15} \frac{(k_{B}T)^{4}}{(\hbar c)^{3}} \mathcal{E}(x = m_{e}c^{2}/k_{B}T),$$

where

$$\mathcal{E}(x) = 1 + \frac{21}{8} \left(\frac{4}{11}\right)^{4/3} \mathcal{S}^{4/3}(x) + \frac{30}{\pi^4} \int_0^\infty \frac{y^2 \sqrt{y^2 + x^2} dy}{\exp\left(\sqrt{y^2 + x^2}\right) + 1}.$$

6) (10 points) Show that

$$t = \sqrt{\frac{15\hbar^3}{24\pi^3 G m_e^4 c^3}} \int_{m_e c^2/k_B T_0}^{m_e c^2/k_B T} \left(3 - \frac{x \mathcal{S}'(x)}{\mathcal{S}(x)}\right) \mathcal{E}^{-1/2}(x) x dx$$

- 7) (10 points) Write a code to evaluate S(x) and plot it. Use physical arguments to find the value of S in the limits x = 0 and $x \gg 1$. Check that your code agrees with these limits.
- 8) (30 points) Take $T_0 = 10^{11}$ K. Write a code to evaluate t(T) and $T_{\nu}(T)$, and complete the table on the next page.

T(K)	T_{ν}/T	t (s)
10^{11}	1.000	0
$6 \cdot 10^{10}$		
$2\cdot 10^{10}$		
10^{10}		
$6 \cdot 10^{9}$		
$3 \cdot 10^{9}$		
$2 \cdot 10^{9}$		
10^{9}		
$3 \cdot 10^{8}$		
10^{8}		
10^{7}		
10^{6}		