

Al5090: STOCHASTIC PROCESSES

QUIZ 2

**DATE: 04 MARCH 2025** 

| Question     | 1 | 2 | Total |
|--------------|---|---|-------|
| Marks Scored |   |   |       |

## **Instructions:**

- Fill in your name and roll number on each of the pages.
- You may use any result covered in class directly without proving it.
- Unless explicitly stated in the question, DO NOT use any result from the homework without proof.

Fix a probability space  $(\Omega, \mathscr{F}, \mathbb{P})$ .

## 1. (3 Marks)

Let  $\{X_n\}_{n=1}^{\infty}$  be a sequence of i.i.d. random variables with the common PMF

$$\mathbb{P}\left(X_1 = \frac{1}{2}\right) = \frac{1}{2} = \mathbb{P}\left(X_1 = -\frac{1}{2}\right).$$

Show that the above sequence does not converge in probability to any random variable X.

**Note:** By definition, we have  $X_n \stackrel{p.}{\longrightarrow} X$  if and only if

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0 \qquad \forall \varepsilon > 0.$$

Name:

Roll Number: Department:

Program: BTech / MTech TA / MTech RA / PhD (Tick one)



## 2. (2 Marks)

 $\operatorname{Fix}\alpha>1.$ 

For each 
$$n \in \mathbb{N}$$
, let  $X_n \sim \mathcal{N}\left(0, \, \frac{1}{n^{\alpha}}\right)$ .

Show that  $X_n \stackrel{\text{a.s.}}{\longrightarrow} 0$ .

**Hint:** Use Borel–Cantelli lemma.