Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ КОМП'ЮТЕРНИХ НАУК ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Катедра «Комп'ютерна інженерія та програмування»

3BIT

про виконання лабораторної роботи №1 з навчальної дисципліни «Алгоритми та структури даних»

Варіант 5

Виконав студент:

Омельніцький Андрій Миколайович Група: КН-1023б

Перевірив:

Старший викладач

Бульба Сергій Сергійович

Зміст

1	Мет	га роботи	2			
2	Зав	Завдання				
3	Хід роботи					
	3.1	За ЛСА будуємо графічну схему алгоритму, граф алгоритму та мінімальний граф алгоритму	3			
	3.2	Визначаємо трудомісткість алгоритму методами теорії марковських ланцюгів	4			
	3.3	Визначаємо середню трудомісткість алгоритму за допомогою мережевого підходу	5			
	3.4	Обчислити мінімальну і максимальну трудомісткість алгоритму	7			
	3.5	Висновки	8			

1 Мета роботи

Освоєння аналітичних методів аналізу трудомісткості обчислювальних алгоритмів.

2 Завдання

- 1. З табл. 1.2 обрати логічну схему алгоритму (ЛСА) відповідно до варіанта. У ЛСА символам «Поч.» і «Кін.» відповідають початковий і кінцевий оператори алгоритму. Символами А, В, С, D, Е, К, М позначені функціональні оператори алгоритму. Символами х1, х2, х3, х4 позначені логічні умови. Якщо логічна умова дорівнює одиниці, то виконується наступний один оператор у ЛСА. Якщо логічна умова дорівнює нулю, то здійснюється перехід за стрілкою з відповідним індексом, у цьому випадку у логічної умови стрілка спрямована уверх (наприклад, ↑¹). У місці переходу з логічної умови стрілка спрямована вниз – ↓¹.
- 2. За ЛСА побудувати графічну схему алгоритму, граф алгоритму та мінімальний граф алгоритму.
- 3. Визначити трудомісткість алгоритму методами теорії марковських ланцюгів.
- 4. Визначити середню трудомісткість алгоритму за допомогою мережевого підходу. Спочатку, якщо в алгоритмі є цикли, визначити середню трудомісткість циклів.
- 5. Обчислити мінімальну і максимальну трудомісткість алгоритму.
- 6. Проаналізувати отримані результати.

Варіант	Логічна схема алгоритму
5	Поч. \downarrow ¹ Ax_1 \uparrow ¹ Bx_2 \uparrow ² Ex_3 \uparrow ³ C \downarrow ² \downarrow ³ Mx_4 \uparrow ⁴ D \downarrow ⁴ K Кін.

Рис. 1. Завдання за варіантом (5)

№	P1	P2	Р3	P4
5	0.5	0.3	8.0	0.5

№	A	В	С	D	E	M	K
5	5	4	3	2	1	2	3

Рис. 2. Завдання за варіантом (5)

3 Хід роботи

3.1 За ЛСА будуємо графічну схему алгоритму, граф алгоритму тму та мінімальний граф алгоритму

Рис. 3. (а) графічна схема алгоритму (б) граф алгоритму (в) мінімальний граф алгоритму

3.2 Визначаємо трудомісткість алгоритму методами теорії марковських ланцюгів

	Sı	S ₂	S ₃	S4	Ss	S ₆	S7	Sk
S ₀	1							
Sı	0.5	0.5						
S ₂			0.3		0.7			
S3				0.8	0.2			
S4					1			
S5						0.5	0.5	
S6							1	
S7								1

Рис. 4. Стахостична матриця

Обчислення кількості звертань до вершин:

$$\begin{split} n_0 &= 1 \\ n_1 &= 1*n_0 + 0.5*n_1 | n_1 - 0.5*n_1 = 1 | n_1 = 2 \\ n_2 &= 0.5*n_1 = 1 \\ n_3 &= 0.3*n_2 = 0.3 \\ n_4 &= 0.8*n_3 = 0.24 \\ n_5 &= 0.7*n_2 + 0.2*n_3 + n_4 = 0.7 + 0.2*0.3 + 0.24 = 1 \\ n_6 &= 0.5*n_5 = 0.5 \\ n_7 &= 0.5*n_5 + n_6 = 0.5*1 + 0.5 = 1 \\ n_k &= 1 \end{split}$$

Трудомісткість:

$$\Theta = 10000 + 4000 + 300 + 720 + 2000 + 1000 + 3000 = 21020 (\text{op})$$

3.3 Визначаємо середню трудомісткість алгоритму за допомогою мережевого підходу

Рис. 5. Граф алгоритму без циклів

	Sı	S ₂	S3	S4	S5	S6	S7	Sk
S ₀	1							
Sı		1						
S2			0.3		0.7			
S3				0.8	0.2			
S4					1			
S ₅						0.5	0.5	
S ₆							1	
S7								1

Рис. 6. Стахостична матриця

Обчислення кількості звертань до вершин:

$$n_c = \frac{1}{1 - 0.5} = 2$$

$$q_c = n_c * q_{mc} = 2 * 5000 = 10000$$

Обчислення кількості звертань до вершин:

$$\begin{split} n_0 &= 1 \\ n_1 &= 1 \\ n_2 &= 1 \\ n_3 &= 0.3 * n_2 = 0.3 \\ n_4 &= 0.8 * n_3 = 0.24 \\ n_5 &= 0.7 * n_2 + 0.2 * n_3 + n_4 = 0.7 + 0.2 * 0.3 + 0.24 = 1 \\ n_6 &= 0.5 * n_5 = 0.5 \\ n_7 &= 0.5 * n_5 + n_6 = 0.5 * 1 + 0.5 = 1 \\ n_k &= 1 \end{split}$$

трудомісткість:

$$\Theta = 10000 + 4000 + 300 + 720 + 2000 + 1000 + 3000 = 21020 (\text{op})$$

3.4 Обчислити мінімальну і максимальну трудомісткість алгоритму

Для знаходження мінімальної та максимальної трудомісткісті алгоритму зобразимо на графі максимальний та мінімальний шлях для проходження алгоритму, а позначимо їх зеленим кольором. Але через те, що там ε цикли, то візьмемо для обрахунку максимальної трудомісткісті алгоритму візьмемо середні трудомісткісті циклів.

Рис. 7. (а) Мінімальний (б) Максимльний

Максимальна кількість операцій: 25000(оп) Мінімальна кількість операцій: 14000(оп)

3.5 Висновки

В ході виконання лабораторної робити було розглянуто 2 метода для обрахунку трудомісткість: метод Марковський ланцюгів та мережевий метод. За допомогою них було вирахувано середню трудомісткість алгоритму, та в результаті їх значення збігаються. Також було розраховано мінімальну та максимальну трудомісткість алгоритму.