Sprawozdanie z listy drugiej

Karolina Bak

Listopad 2019

1 Zadanie 1

Zadanie polegało na powtórzeniu zadania 5 z poprzedniej listy dla nieco zaburzonych danych. Ponownie obliczyłam iloczyn skalarny dla wektora:

x = (2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957)

oraz:

y = (1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049)

gdzie usunęłam ostatnie 9 z \mathbf{x}_4 oraz ostatnie 7 z $\mathbf{x}_5.$ Uzyskałam następujące wyniki:

	Float32	Float64
1	-0.4999443	-0.004296342739891585
2	-0.4543457	-0.004296342998713953
3	-0.5	-0.004296342842280865
4	-0.5	-0.004296342842280865

Poprzednie wyniki wyglądały następująco:

	Float32	Float64	
1	-0.4999443	$1.0251881368296672*10^{-10}$	
2	-0.4543457	$-1.5643308870494366*10^{-10}$	
3	-0.5	0	
4	-0.5	0	

Zmniejszenie liczby cyfr w części dziesiętnej x spowodowało znaczną utratę bliskości do poprawnego wyniku przy Float64 ($-1.00657107000000*10^{-11}$). Niewielkie zmiany rzędu 10^{-10} spowodowały ogromną zmianę (10^7 razy większy wynik). Potwierdza to wniosek z pierwszej listy, że zadanie jest źle uwarunkowane dla danych tego typu (różne znaki przy współrzędnych).

2 Zadanie 2

Celem drugiego zadania było przedstawienie graficznie wykresu funkcji:

$$f(x) = e^x * ln(1 + e^{-x})$$

w co najmniej dwóch programach do wizualizacji. Jeden wykres wykonałam przy użyciu Pythona i paczki matplotlib, a drugi on-line na stronie graphsketch.com. Poniżej przedstawiam otrzymane wykresy w Pythonie:

Wykresy z graphsketch.com:

Granicą powyższej funkcji jest 1. Przybliżając wykresy oraz testując dokładniej funkcję dla odpowiednich wartości ustaliłam, że zaburzenia pojawiły się około $\mathbf{x}=16$, a około $\mathbf{x}=18$ zaczęły przekraczać 1. Im dalej tym większe było zaburzenie, aż funkcja zmieniła się w stałe 0. Stało się tak, ponieważ działałam na bardzo dużych i bardzo małych liczbach. Mnożąc je ze sobą, stale zwiększałam błąd w obliczeniach, który rósł aż e(-x) zostało pochłonięte przez 1, co wyzerowało logarytm. Dlatego każda następna wartość była równa 0.

3 Zadanie 3

Zadanie polegało na rozwiązaniu układu równań liniowych

$$Ax = b$$

gdzie A jest daną macierzą współczynników $A \in \mathbb{R}^{n \times n}$, a $b \in \mathbb{R}^n$ jest wektorem prawych stron. Macierz A jest generowana na dwa sposoby. Pierwszy to macierz Hilberta o danym stopniu n generowana przez funkcję hilb(n). Drugim sposobem jest generowanie losowej macierzy o zadanym wskaźniku uwarunkowania c przez funkcję matcond(n,c). Wektor b jest generowany przez powyższe równanie, gdzie $\mathbf{x} = (1,...,1)^T$. Znane więc są dokładne A oraz b.

Test w zadaniu polega na rozwiązaniu układu na dwa różne sposoby: eliminacją Gaussa $x=A\backslash b$ oraz $x=A^{-1}b$. Dla macierzy Hilberta uzyskałam poniższe wyniki.

Gauss:

n	$\frac{\ x - xp\ }{\ x\ }$	$\operatorname{cond}(A)$	rank(A)
1	0.0	1.0	1
2	$5.661048867003676*10^{-16}$	19.28147006790397	2
3	$8.022593772267726*10^{-15}$	524.0567775860644	3
4	$4.137409622430382*10^{-14}$	15513.73873892924	4
5	$1.6828426299227195*10^{-12}$	476607.25024259434	5
6	$2.618913302311624*10^{-10}$	$1.4951058642254665*10^{7}$	6
7	$1.2606867224171548*10^{-8}$	$4.75367356583129*10^8$	7
8	$6.124089555723088*10^{-8}$	$1.5257575538060041*10^{10}$	8
9	$3.8751634185032475*10^{-6}$	$4.931537564468762*10^{11}$	9
10	$8.67039023709691*10^{-5}$	$1.6024416992541715*10^{13}$	10
11	0.00015827808158590435	$5.222677939280335*10^{14}$	10
12	0.13396208372085344	$1.7514731907091464*10^{16}$	11
13	0.11039701117868264	$3.344143497338461*10^{18}$	11
14	1.4554087127659643	$6.200786263161444*10^{17}$	11
15	4.696668350857427	$3.674392953467974*10^{17}$	12
16	54.15518954564602	$7.865467778431645*10^{17}$	12
17	13.707236683836307	$1.263684342666052*10^{18}$	12
18	9.134134521198485	$2.2446309929189128*10^{18}$	12
19	9.720589712655698	$6.471953976541591*10^{18}$	13
20	7.549915039472976	$1.3553657908688225*10^{18}$	13

Odwrotna macierz:

n	$\frac{\ x - xp\ }{\ x\ }$	$\operatorname{cond}(A)$	rank(A)
1	0.0	1.0	1
2	$1.4043333874306803*10^{-15}$	19.28147006790397	2
3	0.0	524.0567775860644	3
4	0.0	15513.73873892924	4
5	$3.3544360584359632*10^{-12}$	476607.25024259434	5

6	$2.0163759404347654*10^{-10}$	$1.4951058642254665*10^{7}$	6
7	$4.713280397232037*10^{-9}$	$4.75367356583129*10^8$	7
8	$3.07748390309622*10^{-7}$	$1.5257575538060041*10^{10}$	8
9	$4.541268303176643*10^{-6}$	$4.931537564468762*10^{11}$	9
10	0.0002501493411824886	$1.6024416992541715*10^{13}$	10
11	0.007618304284315809	$5.222677939280335*10^{14}$	10
12	0.258994120804705	$1.7514731907091464*10^{16}$	11
13	5.331275639426837	$3.344143497338461*10^{18}$	11
14	8.71499275104814	$6.200786263161444*10^{17}$	11
15	7.344641453111494	$3.674392953467974*10^{17}$	12
16	29.84884207073541	$7.865467778431645*10^{17}$	12
17	10.516942378369349	$1.263684342666052*10^{18}$	12
18	7.575475905055309	$2.2446309929189128*10^{18}$	12
19	12.233761393757726	$6.471953976541591*10^{18}$	13
20	22.062697257870493	$1.3553657908688225*10^{18}$	13

Dla macierzy losowych uzyskałam poniższe wyniki. Gauss:

n	$\frac{\ x - xp\ }{\ x\ }$	$\operatorname{cond}(A)$	rank(A)
5	$1.7901808365247238*10^{-16}$	1.000000000000000009	5
5	$1.4043333874306804*10^{-16}$	9.99999999999998	5
5	$1.3136335981433191*10^{-16}$	1000.0000000000316	5
5	$3.635564360697878*10^{-10}$	$1.00000000004173718*10^{7}$	5
5	$9.930136612989092*10^{-17}$	$9.99966763751934*10^{11}$	5
5	0.22407027119013165	$1.1171692878820258*10^{16}$	4
10	$3.1985215122904827*10^{-16}$	1.0000000000000001	10
10	$4.749367485114549*10^{-16}$	10.0000000000000007	10
10	$3.1044345184083204*10^{-14}$	1000.0000000000381	10
10	$7.312885725957515*10^{-11}$	$9.99999999487321*10^6$	10
10	3.5736334640683613*10-6	$9.999705522584362*10^{11}$	10
10	0.007886044944081804	$2.852771852948684*10^{16}$	9
20	$5.093734210850115*10^{-16}$	1.00000000000000013	20
20	$7.199349044417091*10^{-16}$	9.99999999999991	20
20	$1.9013586298626663*10^{-14}$	999.999999999523	20
20	$8.344401704472224*10^{-11}$	$1.0000000003527017*10^7$	20
20	$4.029043035753852*10^{-5}$	$1.0000489898080726*10^{12}$	20
20	0.12546327027700901	$6.405885370975909*10^{15}$	19

Odwrócona macierz:

n	$\frac{\ x - xp\ }{\ x\ }$	cond(A)	rank(A)
5	$2.0471501066083611*10^{-16}$	1.00000000000000007	5
5	$2.2752801345137457*10^{-16}$	9.999999999998	5
5	$1.53220431207386*10^{-14}$	1000.00000000000089	5
5	$1.0165530953424155*10^{-10}$	$9.999999993366444*10^6$	5
5	$1.7481138973067626*10^{-5}$	$9.9993293808524*10^{11}$	5
5	0.17936451951089713	$5.668621505285428*10^{15}$	4
10	$2.7866376757248753*10^{-16}$	1.000000000000000009	10
10	$4.550560269027491*10^{-16}$	10.000000000000014	10
10	$3.2824171342942656*10^{-14}$	1000.0000000000537	10
10	$4.020386326707943*10^{-10}$	$9.999999998237088*10^6$	10
10	$9.19195614625663*10^{-6}$	$9.999112458768989*10^{11}$	10
10	0.12357124133296675	$1.0162651221978986*10^{16}$	9
20	$3.394814396577995*10^{-16}$	1.00000000000000013	20
20	$5.489713268447767*10^{-16}$	10.0000000000000005	20
20	$2.3174107273898665*10^{-14}$	999.999999999737	20
20	$2.3524392971717174*10^{-10}$	$1.00000000006275691*10^{7}$	20
20	$1.0904881120709677*10^{-5}$	$1.0000824146741567*10^{12}$	20
20	0.04533606607016923	$8.635757378668062*10^{15}$	19

Z otrzymanych danych wynika, że im większy wskaźnik uwarunkowania tym większy błąd względny, czyli jeśli wskaźnik uwarunkowania jest duży, to zadanie jest źle uwarunkowane. Przy macierzy Hilberta z rosnącym n bardzo szybko zwiększa się cond(A), przez co uzyskane wyniki szybko zaczynają być absurdalne. Od n=10 w macierzy Hilberta można zauważyć, że rząd zaczyna rosnąć coraz wolniej. Ilość tych samych rank() pod rząd rośnie co 1 (2 razy 10, 3 razy 11, 4 razy 12, itd). W losowych macierzach również można zauważyć spadek rzędu na cond()= 10^{16} .

4 Zadanie 4

Celem zadania było obliczenie 20 zer wielomianu Wilkinsona w postaci naturalnej. Współczynniki do wykorzystania były podane. Pierwiastki wielomianu obliczyłam korzystając z funkcji roots z pakietu Polynomials. Wyniki przetestestowałam następnie z wartościami dla wielomianu w postaci naturalnej oraz iloczynowej.

k	$ \mathrm{P}(\mathrm{z}_k) $	$ \mathrm{p}(\mathrm{z}_k) $	$ \mathbf{z}_k - k $
1	36352.0	$5.517824*10^6$	$3.0109248427834245*10^{-13}$
2	181760.0	$7.378697629901744*10^{19}$	$2.8318236644508943*10^{-11}$

3	209408.0	$3.320413931687578*10^{20}$	$4.0790348876384996*10^{-10}$
4	$3.106816*10^6$	$8.854437035384718*10^{20}$	$1.626246826091915*10^{-8}$
5	$2.4114688*10^{7}$	$1.8446752056545675*10^{21}$	$6.657697912970661*10^{-7}$
6	$1.20152064*10^{8}$	$3.320394888870126*10^{21}$	$1.0754175226779239*10^{-5}$
7	$4.80398336*10^{8}$	$5.423593016891272*10^{21}$	0.00010200279300764947
8	$1.682691072*10^9$	$8.26205014011023*10^{21}$	0.0006441703922384079
9	$4.465326592*10^9$	$1.196559421646318*10^{22}$	0.002915294362052734
10	$1.2707126784*10^{10}$	$1.6552601335207813*10^{22}$	0.009586957518274986
11	$3.5759895552*10^{10}$	$2.2478332979247994*10^{22}$	0.025022932909317674
12	$7.216771584*10^{10}$	$2.8869446884129956*10^{22}$	0.04671674615314281
13	$2.15723629056*10^{11}$	$3.807325552825022*10^{22}$	0.07431403244734014
14	$3.65383250944*10^{11}$	$4.612719853149547*10^{22}$	0.08524440819787316
15	$6.13987753472*10^{11}$	$5.901011420239329*10^{22}$	0.07549379969947623
16	$1.555027751936*10^{12}$	$7.01087410689741*10^{22}$	0.05371328339202819
17	$3.777623778304*10^{12}$	$8.568905825727875*10^{22}$	0.025427146237412046
18	$7.199554861056*10^{12}$	$1.0144799361089491*10^{23}$	0.009078647283519814
19	$1.0278376162816*10^{13}$	$1.1990376202486947*10^{23}$	0.0019098182994383706
20	$2.7462952745472*10^{13}$	$1.4019117414364248*10^{23}$	0.00019070876336257925

Otrzymane wartości dla wielomianu mimo dość niewielkich błędów przy pierwiastkach są bardzo oddalone od oczekiwanego zera. Dzieje się tak, gdyż współczynniki wielomianu są większe niż $4.5*10^{15}$, a od tego momentu liczby zmiennoprzecinkowe są oddalone od siebie o wartości większe od 1 i ich reprezentacja może być niedokładna. Do błędu przy wyznaczeniu pierwiastków przyczynia się również ogromna różnica między liczbami, na których operowałam. Także przy dość wysokich wykładnikach w potęgowaniu uzyskiwane wyniki są obarczone dużym błędem, co zauważyłam już w poprzednim zadaniu potęgując 10.

Następnym celem zadania było powtórzenie eksperymentu Wilkinsona. Polega ono na zaburzeniu 19. współczynnika o 2^{-23} . Dla tych danych uzyskałam następujące wyniki.

k	$ P(z_k) $	$ \mathrm{p}(\mathrm{z}_k) $	$ \mathbf{z}_k - k $
1	20992.0	$3.012096*10^6$	$1.6431300764452317*10^{-13}$
2	349184.0	$7.37869763029606*10^{19}$	$5.503730804434781*10^{-11}$
3	$2.221568*10^6$	$3.3204139201100146*10^{20}$	$3.3965799062229962*10^{-9}$
4	$1.046784*10^7$	$8.854437817429645*10^{20}$	$8.972436216225788*10^{-8}$
5	$3.9463936*10^7$	$1.8446726974084148*10^{21}$	$1.4261120897529622*10^{-6}$
6	$1.29148416*10^{8}$	$3.320450195282314*10^{21}$	$2.0476673030955794*10^{-5}$
7	$3.88123136*10^{8}$	$5.422366528916045*10^{21}$	0.00039792957757978087
8	$1.072547328*10^9$	$8.289399860984229*10^{21}$	0.007772029099445632
9	$3.065575424*10^9$	$1.1607472501770085*10^{22}$	0.0841836320674414

10	$7.143113638035824*10^9$	$1.7212892853671066*10^{22}$	0.6519586830380406
10			0.00190000000000400
11	$7.143113638035824*10^9$	$1.7212892853671066*10^{22}$	1.1109180272716561
12	$3.357756113171857*10^{10}$	$2.8568401004080516*10^{22}$	1.665281290598479
13	$3.357756113171857*10^{10}$	$2.8568401004080516*10^{22}$	2.045820276678428
14	$1.0612064533081976*10^{11}$	$4.934647147685479*10^{22}$	2.5188358711909045
15	$1.0612064533081976*10^{11}$	$4.934647147685479*10^{22}$	2.7128805312847097
16	$3.3151034759817638*10^{11}$	$8.484694713574187*10^{22}$	2.9060018735375106
17	$3.315103475981763*10^{11}$	$8.484694713574187*10^{22}$	2.825483521349608
18	$9.539424609817828*10^{12}$	$1.318194782057474*10^{23}$	2.454021446312976
19	$9.539424609817828*10^{12}$	$1.318194782057474*10^{23}$	2.004329444309949
20	$1.114453504512*10^{13}$	$1.591108408283123*10^{23}$	0.8469102151947894

Jak widać błąd w wyznaczonych pierwiastkach o wiele się zwiększył. Niektóre różnice zaczęły dochodzić nawet do 3. W samych zerach wielomianu pojawiły się pierwiastki zespolone. Ta sytuacja pokazała, że mikroskopijne zmiany mogą tym w tym wypadku drastycznie wpłynąć na otrzymane wyniki, co znaczy, że wielomian Wilkinsona jest źle uwarunkowany.

5 Zadanie 5