1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Série 1 : Outils mathématiques, comparaisons, ordre de complexité

Exercice 1 : Exercices sur les preuves par récurrences

a) Montrer que

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Solution1:

Preuve par récurrence :

n=1 $\sum_{i=1}^{1} i=1$ et $\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1$ donc vrai pour n=1On suppose qu'elle est vraie pour n et on montre qu'elle est vraie pour n+1

On montre que : $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

$$\textstyle \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)(n+2)}{2} \text{ Vraie c.q.f.d}$$

Solution2:

$$S = \sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$

$$1xS=1+2+3+ \dots +(n-2)+(n-1)+n$$

 $1xS=n+(n-1)+(n-2)+ \dots +3+2+1$

$$\Rightarrow$$
 S= $\frac{n(n+1)}{2}$

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

b) Montrer que

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Solution :

$$S = \sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \dots + (n-1)^{2} + n^{2}$$

Démonstration par récurrence :

$$i=1 \rightarrow S=1^2 = \frac{1(1+1)(2x^{1+1})}{6} = \frac{6}{6} = 1$$
 est vraie

on suppose que
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 est vraie

On démontre que

$$\begin{split} \sum_{i=1}^{n+1} i^2 &= \frac{(n+1)((n+1)+1)(2(n+1)+1))}{6} = \frac{(n+1)(n+2)(2n+3)}{6} \\ S &= \sum_{i=1}^{n+1} i^2 = 1^2 + 2^2 + \dots + (n-1)^2 + n^2 + (n+1)^2 \\ &= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \\ &= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \frac{(n+1)(2n^2 + 7n + 6)}{6} \\ &= \frac{(n+1)(n(2n+1) + 6(n+1))}{6} \\ &= \frac{(n+1)(n+2)(2n+3)}{6} \text{ Donc par récurrence la propriété est vraie } \forall n \end{split}$$

c) Montrer par récurrence (et non en recherchant des expressions séparées pour les deux sommes) que :

$$\sum_{i=1}^{n} i^{3} = \left(\sum_{i=1}^{n} i\right)^{2}$$

$$= \$1$$

$$= \$2$$

Solution:

Démonstration par récurrence :

$$i=1 \rightarrow S1(1)=S2(1)=1$$
 est vraie

On suppose que S1(n)=S2(n), et on démontre que S1(n+1)=S2(n+1)

On montre que :
$$\sum_{i=1}^{n+1} i^3 = \left(\sum_{i=1}^{n+1} i\right)^2 = \frac{n^2 + (n+1)^2}{4}$$

$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^n i^3 + (n+1)^3$$

$$\left(\sum_{i=1}^{n+1} i\right)^2 = \left(\sum_{i=1}^n i\right)^2 + (n+1)^2 + 2(n+1) \sum_{i=1}^n i$$

$$= \left(\sum_{i=1}^n i\right)^2 + (n+1)^2 + 2(n+1) \frac{n(n+1)}{2}$$

$$= \left(\sum_{i=1}^n i\right)^2 + (n+1)^2 + n(n+1)^2$$

$$= \left(\sum_{i=1}^n i\right)^2 + (n+1)^3$$

$$\sum_{i=1}^{n} i^3 + (n+1)^3 = \sum_{i=1}^{n} i^2 + (n+1)^3$$
 Donc vrai par récurrence.

Exercice 2 : Comparaison de croissance

Soit un ordinateur pour lequel toute instruction possède une durée de 10^{-6} secondes. On exécute un algorithme qui utilise, pour une donnée de taille, n, f(n) instructions, f(n) étant n, n^2 , n^3 , log n, n log n et 2^n .

- a) Remplir un tableau qui donne, en fonction de la taille n=10, 20, 30 et 60, et de la fonction f(n), la durée d'exécution de l'algorithme.
- b) Reclassez le tableau en fonction de l'ordre croissant des f(n).

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

n	10	20	30	60
f(n)				
log n	log10*10 ⁻⁶	log20*10 ⁻⁶	log30*10 ⁻⁶	log60*10 ⁻⁶
	=2,3*10 ⁻⁶	=3,00*10 ⁻⁶	$=3,40*10^{-6}$	=4,09*10 ⁻⁶
N	10*10 ⁻⁶	20*10 ⁻⁶	30*10 ⁻⁶	60*10 ⁻⁶
	=10 ⁻⁵	=2*10 ⁻⁵	=3*10 ⁻⁵	=6*10 ⁻⁵
n log n	10log10*10 ⁻⁶	20log20*10 ⁻⁶	30log30*10 ⁻⁶	60log60*10 ⁻⁶
	=2,3*10 ⁻⁵	=5,99*10 ⁻⁵	=1,02*10 ⁻⁴	=2,46*10 ⁻⁴
n^2	10 ² *10 ⁻⁶	20 ² *10 ⁻⁶	30 ² *10 ⁻⁶	60 ² *10 ⁻⁶
	=10 ⁻⁴	=4*10 ⁻⁴	=9*10 ⁻⁴	=3,6*10 ⁻³
n^3	10 ³ *10 ⁻⁶	20 ³ *10 ⁻⁶	30 ³ *10 ⁻⁶	60 ³ *10 ⁻⁶
	=10 ⁻³	=8*10 ⁻³	=2,7*10 ⁻²	=2,16*10 ⁻¹
2 ⁿ	2 ¹⁰ *10 ⁻⁶	2 ²⁰ *10 ⁻⁶	2 ¹⁰ *10 ⁻⁶	2 ¹⁰ *10 ⁻⁶
	=1,02*10 ⁻³	=1,05	$=1,07*10^3$	=1,15*10 ¹²

Remarque:

- Le tableau ci-dessus est calculé en utilisant un logarithme népérien.
- Il est intéressant de remarquer que 1,15*10¹² s ≈ 36 558 ans.

Exercice 3 : Classer dans l'ordre croissant les complexités suivantes :

 $O(n^2)$, $O(3^n)$, $O(2^n)$, $O(n^2 \log n)$, O(1), $O(n \log n)$, $O(n^3)$, O(n!), $O(\log n)$, O(n).

Solution:

Il est évident que $1 \le n \le n^2 \le n^3 \quad \forall n \ge 1$

On a également $1 \le \log n \ \forall n \ge 3 \ (\log 1 = 0, \log 2 = 0.69 \text{ et } \log 3 = 1.09)$

 $logn \leq n \ \forall n \geq 1$

 $n \le n log n \le n^2 log n$

 $donc: \quad 1 \leq logn \leq n \ \leq nlogn \leq n^2 logn \leq n^2 \leq n^3$

on a: $n^3 \le 2^n \Leftrightarrow log n^3 \le log 2^n \Leftrightarrow 3log n \le nlog 2 \forall n \ge 3$

 $donc: n^3 \le 2^n \ \forall n \ge 10 \ (log10 = 2,30)$

Il est évident que : $2^n \le 3^n \ \forall n \ge 1$

Enfin $3^n \le n! \ \forall n \ge 7$

Classement:

 $O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq O(n^2 \log n) \subseteq O(n^3) \subseteq O(2^n) \subseteq O(3^n) \subseteq O(n !).$

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Exercice 4:

Quelles sont les complexités de :

$$T_1(n)=3nlog n + log n$$

$$T_2(n) = 2^n + n^3 + 25$$

$$T_3(n,k)=k+n$$
 où $k \le n$

Classer les dans l'ordre croissant.

Solution:

$$T_1(n) = O(nlog n)$$

Selon la définition O on a :

$$0 \le 3nlogn + logn \le c.nlogn$$

$$0 \le \frac{3nlogn + logn}{nlogn} \le \frac{c.nlogn}{nlogn}$$

$$0 \le 3 + \frac{1}{n} \le c$$

$$\frac{1}{n} \le 1 \ \forall n \ge 1 \ \Rightarrow c = 4 \ et \ n_0 = 1$$

$$T_2(n) = O(2^n)$$

Selon la définition O on a :

$$0 \le 2^n + n^3 + 25 \le c.2^n$$

$$0 \le \frac{2^n + n^3 + 25}{2^n} \le \frac{c. \, 2^n}{2^n}$$

$$0 \le 1 + \frac{n^3}{2^n} + \frac{25}{2^n} \le c$$

$$\frac{n^3}{2^n} \le 1 \ \forall n \ge 7 \ et \ \frac{25}{2^n} \le 1 \ \forall n \ge 5 \ \Rightarrow c = 3 \ et \ n_0 = 7$$

 $T_3(n,k)=O(n)$ selon la règle de la somme on a :

$$O(k)+O(n)=max(O(k),O(n))=O(n)$$
 puisque $k \le n$

Classement:
$$T_3$$
, T_1 , T_2 ,

$$O(n)$$
 $O(n \log n)$ $O(2^n)$

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Exercice 5:

Supposons qu'on ait écrit une procédure pour additionner m matrices carrées de nxn. Si l'addition de deux matrices carrées nécessite un temps d'exécution de $O(n^2)$ quelle sera la complexité de cette procédure en fonction de m et n ?

Solution:

On a a_1, a_2, \ldots, a_m matrices, donc m-1 additions

 \Rightarrow complexité O(m-1) * O(n²) \equiv O((m-1)*n²) \equiv O(m.n²)

Exercice 6:

Supposons que deux algorithmes résolvent le même problème l'un s'exécute en $T_1(n)$ =400 n et l'autre en $T_2(n)$ = n^2 . Quelles sont les complexités de ces deux algorithmes ? Pour quelles valeurs de n doit-on préférer l'algorithme de complexité plus élevée ?

Solution:

 $T_1(n) = O(n)$

 $T_2(n) = O(n^2)$

Pour n=0 $T_1(n)=T_2(n)=O$

Pour n=1 $T_1(n)=400$, $T_2(n)=1$

Pour n=2 $T_1(n)=800$, $T_2(n)=4$

- - -

 $n=400 T_1(n)=400^2, T_2(n)=400^2$

Pour n>400 $T_1(n) < T_2(n)$

Donc l'algorithme de complexité la plus élevée (T₂) n'est préférable que pour 0≤ n<400

Remarque: Cet algorithme montre que quand la constante est trop importante elle peut influer. Donc pour tout n<400 L'algorithme T_2 est préférable.

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Exercice 7:

Soit f(n) et g(n) deux fonctions positives asymptotique. En s'aidant de la définition de base de la notation Θ , prouver que :

$$max(f(n),g(n))=\Theta(f(n)+g(n))$$

Solution

Tout d'abord, clarifions ce qu'est la fonction max (f(n), g(n)). Définissons la fonction h(n) = max(f(n), g(n)).

Alors

$$h(n) = \begin{cases} f(n) \sin f(n) \ge g(n), \\ g(n) \sin f(n) < g(n). \end{cases}$$

Comme f(n) et g(n) sont asymptotiquement non négatif, il existe n_0 tel que $f(n) \ge 0$ et $g(n) \ge 0$ pour tout $n \ge n_0$.

Ainsi, pour $n \ge n_0$, $f(n) + g(n) \ge f(n) \ge 0$ et $f(n) + g(n) \ge g(n) \ge 0$.

Étant donné que pour tout n particulier, h(n) est soit f(n) ou g(n), nous avons $f(n) + g(n) \ge h(n) \ge 0$, ce qui montre que $h(n) = max (f(n), g(n)) \le c2 (f(n) + g(n))$ pour tout $n \ge n_0$ (avec c2 = 1 dans la définition de Θ).

De même, puisque pour tout n particulier, h(n) est la plus grande de f(n) et g(n), nous avons pour tout $n \ge n_0$, $0 \le f(n) \le h(n)$ et $0 \le g(n) \le h(n)$. L'ajout de ces deux inégalités donne $0 \le f(n) + g(n) \le 2h(n)$, ou de manière équivalente $0 \le (f(n) + g(n))/2 \le h(n)$, ce qui montre que $h(n) = max(f(n), g(n)) \ge c1(f(n) + g(n))$ pour tout $n \ge n_0$ (avec c1 = 1/2 dans la définition de Θ).

Département d'informatique

Module : Algorithmique avancé et complexité

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Exercice 8:

Peut-on écrire : $2^{n+1}=O(2^n)$?

$$2^{2n} = O(2^n)$$
 ?

Solution:

 $2^{n+1} = O(2^n)$, mais $2^{2n} \neq O(2^n)$.

Pour montrer $2^{n+1} = O(2^n)$, nous devons trouver les constantes c, n0 > 0 telles

que: $0 \le 2^{n+1} \le c \cdot 2^n$ pour tout $n \ge n_0$.

Sachant que $2^{n+1} = 2 \cdot 2^n$ pour tout n, la définition est satisfaite avec c = 2 et $n_0 = 1$.

Pour montrer $2^{2n} \neq O(2^n)$, On suppose qu'il existe les constantes $c, n_0 > 0$ telles

que:

 $0 \le 2^{2n} \le c \cdot 2^n$ pour tout $n \ge n_0$.

Alors $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. Mais il n'existe pas de constante supérieure à

 2^n , l'hypothèse conduit donc à une contradiction

Exercice 9:

Montrer que les affirmations suivantes sont correctes :

- (a) $5n^2-6n=\Theta(n^2)$
- (b) $n !=O(n^n)$
- (c) $2n^2 + n \log n = \Theta(n^2)$
- (d) $\sum_{i=0}^{n} i^2 = \Theta(n^3)$
- (e) $\sum_{i=0}^{n} i^3 = \Theta(n^4)$
- (f) $n^{2^n} + 6*2^n = \Theta(n^{2^n})$

1^{ère} année Master

N. BENSAOU & C. IGHILAZA

Solution:

(a)
$$5n^2$$
- $6n = \Theta(n^2)$
 $n^2 \le 5n^2$ - $6n \le 5n^2 \quad \forall n \ge 2$

(b) n !=O(nⁿ)
n.(n-1).1
$$\leq$$
 n. n.n $\forall n \geq 1$

(c)
$$2n^2+n \log n=\Theta(n^2)$$

 $C_1n^2 \le 2n^2+n \log n \le C_2n^2$
 $C_1 \le 2 + \frac{n \log n}{n^2} \le C_2$

$$\forall n \ge 1$$
 $0 \le \frac{n \log n}{n^2} \le 1$ avec C₁=2, C₂=3 et n₀=1

(d)
$$\sum_{i=0}^{n} i^2 = \Theta(n^3)$$

 $\frac{n^3}{3} \le \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \le n^3 \quad \forall n \ge 1$

(e)
$$\sum_{i=0}^{n} i^3 = \Theta(n^4)$$

$$\frac{n^4}{4} \le \sum_{i=0}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 \le \mathsf{n}^4 \qquad \forall n \ge 1$$

(f)
$$n^{2^n} + 6*2^n = \Theta(n^{2^n})$$

 $C_1 n^{2^n} \le n^{2^n} + 6*2^n \le C_2 n^{2^n}$

$$C_1 \le 1 + \frac{6*2^n}{n^{2^n}} \le C_2$$

$$\forall n \ge 3 \quad 0 \le \frac{6*2^n}{n^{2^n}} \le 1 \quad \text{avec } C_1=1, \ C_2=2 \text{ et } n_0=3$$