Cermak, J.E., 513, 525, 571, 575	Cooney, R.C., 580
Chalk, P.L., 395, 407	Cornell, C.A., 407
change of use (reclassification of structure),	Corotis, R.B., 394, 395, 407, 433
363–364	corrugated sheet metal anchors, 136
characteristic earthquake, 58	Cortinas, J.V. Jr., 455
Cheung, J.C.J., 570	coupling beam, 58, 135–136
chimneys, 148	couplings, 120, 487
Chinn, J., 447	crane loads, 16, 411
Chock, G., 512	critical load condition, 245
Chopra, A.K., 520	Culver, C.G., 407
Chu, S.L., 513	curved roofs, 411, 430
Claffey, K., 455	601160 10010, 111, 100
Cluts, S., 462	Daly, S., 419, 422
Coastal A-zone, 21, 416	damped response modification, 190–192
coastal high hazard area (V-zone), 21, 416, 418	damping device, 179
Colbeck, S.C., 434, 458	damping systems
cold-formed steel, 127–129, 387	damped response modification, 190–192
light-frame construction, 128–129	definitions, 179
quality assurance, 361	general design requirements, 182–183
special bolted moment frames, 128	nonlinear procedures, 184
cold-formed steel special bolted moment frames	notation, 179–181
(CFS-SBMF), 128	
	response spectrum procedure, 184–187
collapse, 378–379	testing, 195–197
collector strut, 59	database-assisted design, 576
combination framing detailing requirements, 78	Davenport, A.G., 557
components, 58, 243, 476. See also wind loads	dead loads, 11, 397, 399t–403t
(components and cladding); specific type of	Deaves, D.M., 547
component	debris object weight, 420
components and appurtenances, 47	debris velocity, 421
composite steel, 134	decks, 408
concentrated live loads, 409	deep flexural members, 136
concentrically braced frame, 59	deflection, 365
concrete	deformability, 58
anchors, 115, 484	deformation, 58
plain, 58	de Marne, H., 428
prestressed, 360	depth coefficient, 419t, 420f, 421
reinforced, 58	design acceleration parameters, 208–209
seismic design/detailing, 129–134, 489–491	designated seismic systems, 58, 451–452
structural, 360	design displacement, 165
testing of structural, 362	design earthquake, 58
concrete piles, 490–491	design earthquake ground motion, 59
metal-cased, 134	design flood, 21, 415–416
seismic design category C, 131–132	design flood elevation (DFE), 21
seismic design category D-F, 132–134	design flood elevation enclosures, 416
concrete structures, 134	design force, 243
consensus standards, 6	design loads, 21, 404t–406t, 416
construction documents, 58	design pressure, 243
containment systems, secondary, 149	design rain loads, 43, 447
continuous special inspection, 60	design response spectrum, 66–67, 66f, 208
contraction and expansion, 365, 582	design spectral acceleration parameters, 65
controlled drainage, 43, 448	design strength, 1, 61
conveyor systems, 125	detailed plain concrete shear wall, 130–131
Cook, N.J., 563	detailed plain concrete structural wall, 129