62nd Annual North American Meetings of the Regional Science Association International Portland, OR November 11-14, 2015

GeoDaSpace – spreg Workshop Exercise IPython Notebooks

Luc Anselin
luc.anselin@asu.edu

Contents

- Chapter 5 OLS
 - Chapter 5 OLS practice solutions
- Chapter 6 2SLS
 - Chapter 6 2SLS practice solutions
- Chapter 7 Spatial 2SLS
 - Chapter 7 Spatial 2SLS practice solutions
- Chapter 8 ML Spatial Lag
- Chapter 9 GM, GMM Error
 - o Chapter 9 GM, GMM practice solutions
- Chapter 10 ML Error
- Chapter 11 Combo Model
- Chapter 12 Regimes (OLS only)
 - o Chapter 12 Regimes OLS practice solutions
- Chapter 13 Regimes, Spatial (spatial lag only)
 - o Chapter 13 Regimes Spatial Lag practice solutions

Chapter 5 - OLS

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 5 - OLS in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved

In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"

0.1 Basic Regression Setup

Creating arrays for y and x using the Baltimore example Preliminaries, importing numpy and PySAL

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
     import pysal
```

Loading the data set and creating the data object

This assumes that the sample data sets are contained in the 'data' subdirectory of the current working directory

```
In [3]: db = pysal.open('data/baltim.dbf','r')
```

Quick check on the number of observations and the contents of the data set in the db object

```
'CITCOU',
          'LOTSZ',
          'SQFT',
          'Χ',
          'Y']
   \mathbf{y} - dependent variable is PRICE
In [6]: y_name = "PRICE"
   Create the y array as a n by 1 column vector (hence the transpose \mathbf{T})
In [7]: y = np.array([db.by_col(y_name)]).T
   Check on the dimensions
In [8]: y.shape
Out[8]: (211, 1)
   \mathbf{x} - the explanatory variables
   First create a list with the variable names, then use a list comprehension to create the \mathbf{x} array
In [9]: x_names = ['NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE',
                     'LOTSZ', 'SQFT']
        x = np.array([db.by_col(var) for var in x_names]).T
   Check on dimensions
In [10]: x.shape
Out[10]: (211, 9)
   Model weights - needed for spatial diagnostics
   k nearest neighbor with k=4 constructed from baltim.shp, using STATION as the ID variable
In [11]: w = pysal.knnW_from_shapefile('data/baltim.shp',
                                              k=4,idVariable='STATION')
   Quick check on dimension
In [12]: w.n
Out[12]: 211
   row-standardize - is always necessary
In [13]: w.transform = 'r'
   Quick check on the values of the weights
In [14]: w.weights[1]
Out[14]: [0.25, 0.25, 0.25, 0.25]
   Kernel weights - needed for HAC standard error option
   triangular adaptive bandwidth kernel with k=12, constructed from baltim shape file
In [15]: kw = pysal.adaptive_kernelW_from_shapefile('data/baltim.shp',
                                                            k=12,diagonal=True,idVariable='STATION')
```

Check on dimension and actual weights - Note how diagonal element = 1, not 0

This is the case for a triangular kernel function, whether or not the **diagonal** option is set to True or not. Otherwise the latter **must** be set to **True** (see also the example in Chapter 6).

```
In [16]: kw.n
Out[16]: 211
In [17]: kw.weights[1]
Out[17]: [1.0,
          0.4849212978701576,
          0.3611234988877102,
          0.33567595079889523,
          0.31302206649524533,
          0.2768409033403173,
          0.27156871375844516,
          0.14137042299357871,
          0.1179222999771653,
          0.08526805755421585,
          0.0564397505258174,
          0.007682671413889897,
          9.99999900663795e-08]
```

0.2 Basic OLS

Default settings, no variable names

```
In [18]: ols1 = pysal.spreg.OLS(y,x)
   the regression coefficiens, in the order of the columns of \mathbf{x}
In [19]: ols1
Out[19]: <pysal.spreg.ols.OLS instance at 0x109dcd5f0>
In [20]: dir(ols1)
Out[20]: ['__doc__',
           '__init__',
           '__module__',
           '__summary',
           '_cache',
           'aic',
           'ar2',
           'betas',
           'breusch_pagan',
           'f_stat',
           'jarque_bera',
           'k',
           'koenker_bassett',
           'logll',
           'mean_y',
           'mulColli',
           'n,
           'name_ds',
```

```
'name_gwk',
          'name_w',
          'name_x',
          'name_y',
          'predy',
          'r2',
          'robust',
          'schwarz',
          'sig2',
          'sig2ML',
          'sig2n',
          'sig2n_k',
          'std_err',
          'std_y',
          'summary',
          't_stat',
          'title',
          'n,
          'utu',
          'vm',
          'x',
          'xtx',
          'xtxi',
          'y']
In [21]: ols1.betas
Out[21]: array([[ 23.26999634],
                [ 0.22249352],
                [ 5.64840507],
                [ 10.33587549],
                [ 11.17272765],
                [ 7.85416373],
                [ 5.40206849],
                [-0.21345497],
                [ 0.09490639],
                 [ 0.18775621]])
In [22]: ols1.betas
Out[22]: array([[ 23.26999634],
                [ 0.22249352],
                [ 5.64840507],
                [ 10.33587549],
                [ 11.17272765],
                [ 7.85416373],
                [ 5.40206849],
                [-0.21345497],
                [ 0.09490639],
                [ 0.18775621]])
```

pretty output, but no variable names (coefficients in order of columns of \mathbf{x}) or any other descriptive information about the data set, etc.

```
In [23]: print ols1.summary
```

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES _____

Data set : unknown
Dependent Variable : dep_var
Mean dependent var : 44.3072
S.D. dependent var : 23.6061
R-squared : ^ 25.5 Number of Observations: 211 Number of Variables : 10 Degrees of Freedom : 201

 $\begin{array}{lll} \mbox{R-squared} & : & \mbox{0.6500} \\ \mbox{Adjusted R-squared} & : & \mbox{0.6343} \\ \end{array}$

F-statistic : 41.4718 Prob(F-statistic) : 3.24e-41 Log likelihood : -855.223 Sum squared residual: 40960.463 Sigma-square : 203.783 S.E. of regression : 14.275 Sigma-square ML : 194.125 S.E of regression ML: 13.9329 Akaike info criterion: 1730.446 Schwarz criterion : 1763.965

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT var_1 var_2 var_3 var_4 var_5	23.2699963	5.2241658	4.4542989	0.0000140
	0.2224935	1.2279277	0.1811943	0.8563976
	5.6484051	2.0182820	2.7986204	0.0056318
	10.3358755	3.1202987	3.3124635	0.0010966
	11.1727277	2.7323132	4.0891094	0.0000626
	7.8541637	2.7024343	2.9063292	0.0040671
var_6	5.4020685	1.9636140	2.7510848	0.0064824
var_7	-0.2134550	0.0573535	-3.7217456	0.0002568
var_8	0.0949064	0.0165355	5.7395480	0.0000000
var_9	0.1877562	0.1890598	0.9931047	0.3218530

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 20.609

TEST ON NORMALITY OF ERRORS

DF VALUE PROB TEST Jarque-Bera 429.933 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF VALUE TEST PROB 9 بر 167.792 Breusch-Pagan test 0.0000 39.197 0.0000 Koenker-Bassett test

OLS with variable and data set names

In [24]: ols1a = pysal.spreg.OLS(y,x,name_y=y_name,name_x=x_names, name_ds='baltim.shp')

In [25]: print ols1a.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

: baltim.shp

Data set

Dependent Variable :	PRICE	Number	of Observations	s:	211
Mean dependent var :	44.3072	Number	of Variables	:	10
S.D. dependent var :	23.6061	Degree	s of Freedom	:	201
R-squared :	0.6500				
Adjusted R-squared :	0.6343				
Sum squared residual:	40960.463	F-stat	istic	:	41.4718
Sigma-square :	203.783	Prob(F	-statistic)	:	3.24e-41
S.E. of regression :	14.275	Log li	kelihood	:	-855.223
Sigma-square ML :	194.125	Akaike	info criterion	:	1730.446
S.E of regression ML:	13.9329	Schwar	z criterion	:	1763.965
Variable	Coefficient	Std.Error	t-Statistic		Probability
CONSTANT	23.2699963	5.2241658	4.4542989		0.0000140
AC	7.8541637	2.7024343	2.9063292		0.0040671
AGE	-0.2134550	0.0573535	-3.7217456		0.0002568
FIREPL	11.1727277	2.7323132	4.0891094		0.0000626
GAR	5.4020685	1.9636140	2.7510848		0.0064824
LOTSZ	0.0949064	0.0165355	5.7395480		0.0000000
NBATH	5.6484051	2.0182820	2.7986204		0.0056318
NROOM	0.2224935	1.2279277	0.1811943		0.8563976
PATIO	10.3358755	3.1202987	3.3124635		0.0010966
SQFT	0.1877562	0.1890598	0.9931047		0.3218530

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 20.609

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 429.933 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

 TEST
 DF
 VALUE
 PROB

 Breusch-Pagan test
 9
 167.792
 0.0000

 Koenker-Bassett test
 9
 39.197
 0.0000

note how the order of the coefficients is different from before, it follows the alfabetical order of the variable names

0.3 OLS with White Test

 $set white_test = True$

In [27]: print ols2.summary

REGRESSION

SUMMARY OF OUTPUT: ORI	INARY LEAST SQUARES			
Data set :	baltim.shp			
Dependent Variable :		Numbe:	r of Observations:	211
Mean dependent var :	44.3072		r of Variables :	
S.D. dependent var :			es of Freedom :	
R-squared :		6		
Adjusted R-squared :				
Sum squared residual:		F-sta	tistic :	41.4718
Sigma-square :			F-statistic) :	
S.E. of regression :			ikelihood :	
Sigma-square ML :	194.125		e info criterion :	
S.E of regression ML:			rz criterion :	
Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	23.2699963	5.2241658	4.4542989	0.0000140
AC	7.8541637	2.7024343	2.9063292	0.0040671
AGE	-0.2134550	0.0573535	-3.7217456	0.0002568
FIREPL	11.1727277	2.7323132	4.0891094	0.0000626
GAR	5.4020685	1.9636140	2.7510848	0.0064824
LOTSZ	0.0949064	0.0165355	5.7395480	0.0000000
NBATH	5.6484051	2.0182820	2.7986204	0.0056318
NROOM	0.2224935	1.2279277	0.1811943	0.8563976
PATIO	10.3358755	3.1202987	3.3124635	0.0010966
SQFT	0.1877562	0.1890598	0.9931047	0.3218530
REGRESSION DIAGNOSTICS MULTICOLLINEARITY COND		20.609		
MOLITCOLLINEARITY CONL	TITON NUMBER	20.009		
TEST ON NORMALITY OF E	RRORS			
TEST	DF	VALUE	PROB	
Jarque-Bera	2	429.933	0.0000	
DIAGNOSTICS FOR HETERO	CVEDACTICITY			
RANDOM COEFFICIENTS	BUEDARITOTII			
TEST	DF	VALUE	PROB	
Breusch-Pagan test	9	167.792	0.0000	
Koenker-Bassett test	9	39.197	0.0000	
Noenker Dassect test	3	55.157	0.0000	
SPECIFICATION ROBUST T	EST			
TEST	DF	VALUE	PROB	
White	51	164.335	0.0000	
=======================================	====== END OF R	EPORT =====	==========	========

now the \mathbf{White} test is included as one of the diagnostics

0.4 OLS with Spatial Diagnostics

specify the weights (w) and set spat_diag = True and moran = True specify a name for the weights in name_w, all the rest is as before for convenience, white_test is back to default of False

Data set : baltim.shp
Weights matrix : baltim.k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 10
S.D. dependent var : 23.6061 Degrees of Freedom : 201
R-squared : 0.6500

S.D. dependent var : 23.6061 R-squared : 0.6500 Adjusted R-squared : 0.6343 Sum squared residual: 40960.463

 Sum squared residual:
 40960.463
 F-statistic
 : 41.4718

 Sigma-square
 : 203.783
 Prob(F-statistic)
 : 3.24e-41

 S.E. of regression
 : 14.275
 Log likelihood
 : -855.223

 Sigma-square ML
 : 194.125
 Akaike info criterion
 : 1730.446

 S.E of regression ML:
 13.9329
 Schwarz criterion
 : 1763.965

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	23.2699963	5.2241658	4.4542989	0.0000140
AC	7.8541637	2.7024343	2.9063292	0.0040671
AGE	-0.2134550	0.0573535	-3.7217456	0.0002568
FIREPL	11.1727277	2.7323132	4.0891094	0.0000626
GAR	5.4020685	1.9636140	2.7510848	0.0064824
LOTSZ	0.0949064	0.0165355	5.7395480	0.0000000
NBATH	5.6484051	2.0182820	2.7986204	0.0056318
NROOM	0.2224935	1.2279277	0.1811943	0.8563976
PATIO	10.3358755	3.1202987	3.3124635	0.0010966
SQFT	0.1877562	0.1890598	0.9931047	0.3218530

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 20.609

TEST ON NORMALITY OF ERRORS

 TEST
 DF
 VALUE
 PROB

 Jarque-Bera
 2
 429.933
 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

 TEST
 DF
 VALUE
 PROB

 Breusch-Pagan test
 9
 167.792
 0.0000

 Koenker-Bassett test
 9
 39.197
 0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB
Moran's I (error) 0.1095 2.696 0.0070
Lagrange Multiplier (lag) 1 31.896 0.0000

Robust LM (lag)	1	29.305	0.0000
Lagrange Multiplier (error)	1	5.658	0.0174
Robust LM (error)	1	3.067	0.0799
Lagrange Multiplier (SARMA)	2	34.963	0.0000

diagnostics for spatial dependence at the bottom of the listing

OLS with White Standard Errors

set **robust= 'white'** for the default scaling, dividing by n-k, the spatial diagnostics have been turned off

In [30]: ols4 = pysal.spreg.OLS(y,x,robust='white', name_y=y_name,name_x=x_names,name_ds='baltim.shp')

In [31]: print ols4.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

Data set	:	baltim.shp			
Dependent Variable	:	PRICE	Number of Observations	s:	211
Mean dependent var	:	44.3072	Number of Variables	:	10
S.D. dependent var	:	23.6061	Degrees of Freedom	:	201
R-squared	:	0.6500			
Adjusted R-squared	:	0.6343			
Sum squared residual	l:	40960.463	F-statistic	:	41.4718
Sigma-square	:	203.783	<pre>Prob(F-statistic)</pre>	:	3.24e-41
S.E. of regression	:	14.275	Log likelihood	:	-855.223
Sigma-square ML	:	194.125	Akaike info criterion	:	1730.446
S.E. of regression MI		13.9329	Schwarz criterion	•	1763.965

White Standard Errors

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	23.2699963	6.5488415	3.5532997	0.0004741
AC	7.8541637	3.1147472	2.5216055	0.0124581
AGE	-0.2134550	0.1082717	-1.9714745	0.0500417
FIREPL	11.1727277	3.0235003	3.6952957	0.0002831
GAR	5.4020685	3.2537312	1.6602688	0.0984196
LOTSZ NBATH	0.0949064 5.6484051	0.0260489 2.4995696	3.6433902 2.2597511	0.0003425 0.0249092 0.8733042
NROOM	0.2224935	1.3934904	0.1596663	0.8733042
PATIO	10.3358755	4.1978783	2.4621665	0.0146520
SQFT	0.1877562	0.2099744	0.8941860	0.3722918

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 20.609

TEST ON NORMALITY OF ERRORS

VALUE TEST DF PROB Jarque-Bera 2 429.933 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

 TEST
 DF
 VALUE
 PROB

 Breusch-Pagan test
 9
 167.792
 0.0000

 Koenker-Bassett test
 9
 39.197
 0.0000

turn off scaling (i.e., divide by n) by setting $sig2n_k = False$

In [33]: print ols5.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

: baltim.shp Dependent Variable : PRICE Number of Observations: 211 Mean dependent var : 44.3072 Number of Variables : 10 S.D. dependent var : 23.6061 Degrees of Freedom : 201 0.6500 R-squared Adjusted R-squared : 0.6343 Sum squared residual: 40960.463 Sigma-square : 194.125 S.E. of regression : 13.933 Sigma-square ML : 194.125 S.E of regression ML: 13.9329 Akaike info criterion: 1730.446 Schwarz criterion : 1763.965

White Standard Errors

Variable Coefficient Std.Error t-Statistic Probability CONSTANT 6.3917721 3.0400421 3.6406174 0.0003459 23.2699963 AC 7.8541637 2.5835707 0.0104876 AGE -0.2134550 0.1056749 -2.0199209 0.0447190 3.7861028 FIREPL 11.1727277 2.9509837 0.0002020 5.4020685 3.1756927 GAR 1.7010678 0.0904767 LOTSZ 0.0949064 0.0254242 3.7329217 0.0002464 2.4396191 NBATH 5.6484051 2.3152815 0.0216067 NROOM 0.2224935 1.3600685 0.1635899 0.8702183 PATIO 10.3358755 4.0971951 2.5226710 0.0124216 0.2049383 SQFT 0.1877562 0.9161595 0.3606811

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 20.609

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 429.933 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST	DF	VALUE	PROB
Breusch-Pagan test	9	167.792	0.0000
Koenker-Bassett test	9	39.197	0.0000

note how all the estimates remain the same, but the standard errors change (slightly)

OLS with HAC Standard Errors

set robust = hac', specify the kernel weights gwk = kw and give a name for the weights in $name_gwk$

```
In [34]: ols6 = pysal.spreg.OLS(y,x,robust='hac',gwk=kw,
                                name_y=y_name,name_x=x_names,
                                name_gwk='baltim_tri_k12',name_ds='baltim.shp')
```

In [35]: pysal.spreg.OLS()

TypeError Traceback (most recent call last)

<ipython-input-35-65d92a8396c9> in <module>() ----> 1 pysal.spreg.OLS()

TypeError: __init__() takes at least 3 arguments (1 given)

In [36]: print ols6.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES _____

: baltim.shp Data set Dependent Variable : PRICE Number of Observations: 211

 Mean dependent var
 :
 44.3072

 S.D. dependent var
 :
 23.6061

 R-squared
 :
 0.6500

 Adjusted R-squared
 :
 0.6343

 Number of Variables : 10 Degrees of Freedom : 201 F-statistic : 41.4718 Prob(F-statistic) : 3.24e-41 Log likelihood : -855.223 Sum squared residual: 40960.463

Sigma-square : 203.783 S.E. of regression : 14.275 Sigma-square ML : 194.125 S.E of regression ML: 13.9329 Akaike info criterion: 1730.446 Schwarz criterion : 1763.965

HAC Standard Errors; Kernel Weights: baltim_tri_k12

______ Variable Coefficient Std.Error t-Statistic Probability -----CONSTANT 23.2699963 6.7557589 3.4444682 0.0006964 AC 7.8541637 3.2786034 2.3955822 0.0175113 AGE -0.2134550 0.1067463 -1.9996471 0.0468849

```
FIREPL
                         11.1727277
                                           2.9682469
                                                           3.7640830
                                                                           0.0002194
                 GAR
                          5.4020685
                                           3.5732508
                                                           1.5118078
                                                                           0.1321534
              LOTSZ
                          0.0949064
                                           0.0251785
                                                           3.7693418
                                                                           0.0002151
              NBATH
                           5.6484051
                                           2.4853389
                                                           2.2726901
                                                                           0.0241027
               NROOM
                           0.2224935
                                           1.3841624
                                                           0.1607424
                                                                           0.8724578
              PATIO
                          10.3358755
                                           4.4904057
                                                           2.3017687
                                                                           0.0223729
                SOFT
                           0.1877562
                                           0.1867878
                                                           1.0051843
                                                                           0.3160167
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER
                                             20.609
TEST ON NORMALITY OF ERRORS
                                                           PROB
TEST
                                 DF
                                           VALUE
                                            429.933
                                                              0.0000
Jarque-Bera
```

DIAGNOSTICS FOR HETEROSKEDASTICITY RANDOM COEFFICIENTS

TEST	DF	VALUE	PROB
Breusch-Pagan test	9	167.792	0.0000
Koenker-Bassett test	9	39.197	0.0000

Again, same estimates as before, but different standard errors

Accessing Individual Functions

```
Muticollinearity Diagnostics - Variance inflation factor
   use vif and pass a regression object, e.g., ols1
```

```
In [37]: v = pysal.spreg.diagnostics.vif(ols1)
In [38]: v
Out[38]: [None,
          (2.1282653585417042, 0.46986622038767001),
          (1.7612737468067756, 0.56777091114485745),
          (1.2635001075481409, 0.79145224763021937),
          (1.4167716982292522, 0.70583002275514606),
          (1.3859551858036305, 0.72152405088059268),
          (1.4320753736980556, 0.69828726781167594),
          (1.3336259007911946, 0.7498354669077244),
          (1.5646798143926102, 0.63910839189050828),
          (2.4833041895651888, 0.40268928961743256)]
```

extract the statistics by skipping over the first element in the list, $\mathbf{v}[1:]$

```
In [39]: v[1:]
```

```
Out[39]: [(2.1282653585417042, 0.46986622038767001),
          (1.7612737468067756, 0.56777091114485745),
          (1.2635001075481409, 0.79145224763021937),
          (1.4167716982292522, 0.70583002275514606),
          (1.3859551858036305, 0.72152405088059268),
          (1.4320753736980556, 0.69828726781167594),
          (1.3336259007911946, 0.7498354669077244),
          (1.5646798143926102, 0.63910839189050828),
          (2.4833041895651888, 0.40268928961743256)]
```

This list contains a tuple with for each variable (in the order given in \mathbf{x}) the variance inflation factor (VIF) and its inverse, the tolerance factor. The rule of thumb is to keep the VIF under 5 or 10 and the tolerance factor above 0.2 or 0.1.

Lagrange Multiplier Tests - accessing individual statistics use LMtests with a regression object and a weights object

```
In [40]: vw = pysal.spreg.diagnostics_sp.LMtests(ols1,w)
In [41]: vw
Out[41]: <pysal.spreg.diagnostics_sp.LMtests instance at 0x10ae5a3f8>
        check the contents of this object using dir
In [42]: dir(vw)
Out[42]: ['_-doc__', '_-init__', '_-module__', 'lme', 'lml', 'rlme', 'rlml', 'sarma']
        extract the specific test statistic as attributes, e.g., lme, lml, rlme, rlml, sarma
In [43]: vw.lme
Out[43]: (5.6577758243448066, 0.017378147300347417)
In [44]: vw.lml
Out[44]: (31.895904502800899, 1.6265975177114666e-08)
```

0.8 Practice

Create a regression object using the classic Harrison-Rubinfeld Boston house price data set (included as Boston.shp). Regression median house value (MEDV) on crime rate (CRIM), Charles river dummy (CHAS), nitric oxides (NOX), number of rooms (RM), age (AGE), weighted distance to five employment centers (DIS) and percent "lower status population" (LSTAT). A full description of the Boston data set is available on the GeoDa Center sample data set site.

Use a k-nearest neighbor spatial weights (k = 4) for the spatial diagnostics, and a triangular adaptive bandwidth kernel weights (k = 12) for the HAC standard errors.

What is the most likely alternative spatial regression model, given the results of a spatial specification search.

Try including the White test and see what happens.

Try any other combinations of explanatory variables, spatial weights and standard error specifications.

In []:

Chapter 5 - OLS practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 5

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/boston.dbf','r')
In [4]: len(db)
Out[4]: 506
In [5]: db.header
Out[5]: ['POLY_ID',
         'ID',
         'TOWN',
         'TOWNNO',
         'TRACT',
         'LON',
         'LAT',
         'х',
         'y',
         'MEDV',
         'CMEDV',
         'CRIM',
         'ZN',
         'INDUS',
         'CHAS',
         'NOX',
         'RM',
         'AGE',
         'DIS',
         'RAD',
         'TAX',
         'PTRATIO',
         'B',
         'LSTAT']
In [6]: y_name = 'MEDV'
        y = np.array([db.by_col(y_name)]).T
```

```
In [7]: x_names = ['CRIM', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'LSTAT']
       x = np.array([db.by_col(var) for var in x_names]).T
In [8]: w = pysal.knnW_from_shapefile('data/boston.shp',
                                       k=4,idVariable='POLY_ID')
In [9]: w.n
Out[9]: 506
In [10]: w[1]
Out[10]: {30: 1.0, 32: 1.0, 33: 1.0, 35: 1.0}
In [11]: w.transform = 'r'
In [12]: kw = pysal.adaptive_kernelW_from_shapefile('data/boston.shp',
                                                     k=12,idVariable='POLY_ID')
In [13]: kw.n
Out[13]: 506
In [14]: kw[1]
Out[14]: {1: 1.0,
         23: 0.017975809698839718,
         24: 0.07789763977511166,
         25: 0.03599595976755843,
         26: 9.99999900663795e-08,
         28: 0.06731962890224807,
         29: 0.1567134489385178,
         30: 0.22098960210545193,
         31: 0.14004706565547476,
         32: 0.24298214626370784,
         33: 0.15996168962289714,
         34: 0.06768918779207955,
         35: 0.1978979513164435}
In [15]: reg1 = pysal.spreg.OLS(y,x,w=w,spat_diag=True,moran=True,
                               name_y=y_name,name_x=x_names,name_w='boston_k4',
                               name_ds='boston.shp')
In [16]: print reg1.summary
REGRESSION
_____
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
Data set
                  : boston.shp
Weights matrix : boston_k4
Dependent Variable : MEDV
                                                Number of Observations:
                                                                                506
Mean dependent var :
                                                Number of Variables :
                         22.5328
                                                                                 8
S.D. dependent var :
                        9.1971
                                                Degrees of Freedom
                                                                                498
R-squared
                         0.6788
Adjusted R-squared :
                         0.6743
Sum squared residual: 13719.651
                                                F-statistic
                                                                    : 150.3613
```

Sigma-square :	27.550		-statistic)	
S.E. of regression :	5.249		ikelihood	
Sigma-square ML :	27.114		e info criterion	
Sigma-square : S.E. of regression : Sigma-square ML : S.E of regression ML:	5.2071	Schwar	rz criterion	: 3155.602
Variable (Coefficient	Std.Error	t-Statistic	Probability
 CONSTANT	11 4725706	3 00/18811	2 0380077	0 0034564
AGE	-0.0168636	0.0143248	-1.1772306 4.1169776 -3.4091522	0.2396658
CHAS	3.8639095	0.9385306	4.1169776	0.0000449
CRIM	-0.1074230	0.0315102	-3.4091522	0.0007045
סדת	-1 06/0851	0 1031115	-5 51/19716	0 0000001
LSTAT	-0.5746656	0.0547460	-10.4969367	0.0000000
NOX -	-13.2572627	3.5597665	-3.7241945	0.0002183
			-10.4969367 -3.7241945 11.4102121	
JLTICOLLINEARITY CONDITION	ON NUMBER	47.587		
TEST ON NORMALITY OF ERROF				
FEST		VALUE		
arque-Bera	2	482.230	0.0000	
DIAGNOSTICS FOR HETEROSKEI RANDOM COEFFICIENTS	DASTICITY			
TEST	DF	VALUE	PROB	
Breusch-Pagan test	7	97.286	0.0000	
Koenker-Bassett test	7	32.560	0.0000	
IAGNOSTICS FOR SPATIAL DE	EPENDENCE			
	MT/DF	VALUE	PROB	
TEST				
TEST	0 4726	16 903	0.0000	
TEST	0 4726	16 903	0.0000 0.0000	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag)	0.4736 1 1	16.803 167.220 4.999	0.0000 0.0000 0.0254	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag)	0.4736 1 1	16.803 167.220 4.999	0.0000 0.0000 0.0254 0.0000	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag) Lagrange Multiplier (erron	0.4736 1 1	16.803 167.220 4.999	0.0000 0.0254	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag) Lagrange Multiplier (error Robust LM (error)	0.4736 1 1 1 1 1	16.803 167.220 4.999 261.062	0.0000 0.0254 0.0000	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag) Lagrange Multiplier (error Robust LM (error) Lagrange Multiplier (SARMA	0.4736 1 1 1 1 1 1 A) 2	16.803 167.220 4.999 261.062 98.841 266.061	0.0000 0.0254 0.0000 0.0000 0.0000	
TEST Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag) Lagrange Multiplier (error Robust LM (error) Lagrange Multiplier (SARMA	0.4736 1 1 1 1 1 A) 2	16.803 167.220 4.999 261.062 98.841 266.061	0.0000 0.0254 0.0000 0.0000 0.0000	
Moran's I (error) Lagrange Multiplier (lag) Robust LM (lag) Lagrange Multiplier (error Robust LM (error) Lagrange Multiplier (SARMA	0.4736 1 1 1 1 1 A) 2 ===== END OF eg.OLS(y,x,w=w,	16.803 167.220 4.999 261.062 98.841 266.061 REPORT ====================================	0.0000 0.0254 0.0000 0.0000 0.0000	True,moran=Tru

In [18]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

Data set : boston.shp
Weights matrix : boston_k4

Dependent Variable : MEDV Number of Observations: 506

Mean dependent var :			of Variables	
S.D. dependent var :		Degree	es of Freedom	: 498
R-squared :				
Adjusted R-squared :	0.6743			
Sum squared residual:			istic	
Sigma-square :	27.550		-statistic)	
S.E. of regression :	5.249		.kelihood	
Sigma-square ML :	27.114		e info criterion	
S.E of regression ML:	5.2071	Schwar	z criterion	: 3155.602
HAC Standard Errors; Ke				
	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	11.4725706			0.2106678
	-0.0168636			
	3.8639095		2.6318056	
	-0.1074230		-2.7519731	
	-1.0649851		-4.4679079	
	-0.5746656		-4.3662150	
	-13.2572627			
	4.9333429		4.3146561	
REGRESSION DIAGNOSTICS MULTICOLLINEARITY COND	ITION NUMBER	47.587		
TEST ON NORMALITY OF E	RRORS			
TEST ON NOIGHABITE OF BE	DF	VALUE	PROB	
Jarque-Bera	2	482.230	0.0000	
Jarque Dera	Z	402.200	0.0000	
DIAGNOSTICS FOR HETEROS	SKEDASTICITY			
RANDOM COEFFICIENTS				
TEST	DF	VALUE		
Breusch-Pagan test	7	97.286	0.0000	
Koenker-Bassett test	7	32.560	0.0000	
DIAGNOSTICS FOR SPATIAL	L DEPENDENCE			
TEST	MI/DF	VALUE	PROB	
Moran's I (error)	0.4736	16.803	0.0000	
Lagrange Multiplier (la	ag) 1	167.220	0.0000	
Robust LM (lag)	1	4.999	0.0254	
Lagrange Multiplier (en	rror) 1	261.062	0.0000	
Robust LM (error)	1	98.841	0.0000	
Lagrange Multiplier (SA	ARMA) 2	266.061	0.0000	
	===== END OF 1	REPORT =====	:========	========

In []:

In []:

Chapter 6 - 2SLS

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 6 - 2SLS in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

```
(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Basic Regression Setup

Creating arrays for y, x, the endogenous variables yend and the instruments q Using the natregimes.dbf example Preliminaries, importing numpy and pysal

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
          import pysal
```

Loading the data set and creating the data object

```
In [3]: db = pysal.open('data/natregimes.dbf','r')
In [4]: len(db)
Out [4]: 3085
In [5]: db.header
Out[5]: ['REGIONS',
         'NOSOUTH',
         'POLY_ID',
         'NAME',
         'STATE_NAME',
          'STATE_FIPS',
          'CNTY_FIPS',
         'FIPS',
         'STFIPS',
         'COFIPS',
         'FIPSNO',
         'SOUTH',
         'HR60',
          'HR70',
         'HR80',
```

```
'HR90',
```

- 'HC60',
- 'HC70',
- 'HC80',
- 'HC90',
- 'PO60',
- 'P070',
- 'PO80',
- 'PO90',
- 'RD60',
- 'RD70',
- 'RD80',
- 'RD90',
- 'PS60',
- 'PS70',
- 'PS80',
- 'PS90',
- 'UE60',
- 'UE70',
- 'UE80',
- 'UE90',
- 'DV60',
- 'DV70',
- 'DV80',
- 'DV90',
- 'MA60',
- 'MA70',
- 'MA80', 'MA90',
- 'POL60',
- 'POL70',
- 'POL80',
- 'POL90',
- 'DNL60',
- 'DNL70',
- 'DNL80',
- 'DNL90',
- 'MFIL59',
- 'MFIL69',
- 'MFIL79',
- 'MFIL89',
- 'FP59',
- 'FP69',
- 'FP79',
- 'FP89', 'BLK60',
- 'BLK70',
- 'BLK80',
- 'BLK90',
- 'GI59',
- 'GI69',
- 'GI79',
- 'GI89',
- 'FH60',

```
'FH70',
         'FH80',
         'FH90',
          'West']
  y - dependent variable HR90
In [6]: y_name = "HR90"
        y = np.array([db.by_col(y_name)]).T
In [7]: y.shape
Out[7]: (3085, 1)
  \mathbf{x} - array with observations on explanatory variables
In [8]: x_names = ['RD90','MA90','PS90']
        x = np.array([db.by_col(var) for var in x_names]).T
In [9]: x.shape
Out[9]: (3085, 3)
  yend - endogenous explanatory variable, UE90
In [10]: yend_names = ['UE90']
         yend = np.array([db.by_col(var) for var in yend_names]).T
In [11]: yend.shape
Out[11]: (3085, 1)
  q - array of instruments
In [12]: q_names = ['FH90', 'FP89', 'GI89']
         q = np.array([db.by_col(var) for var in q_names]).T
In [13]: q.shape
Out[13]: (3085, 3)
   Creating the model weights, queen contiguity for natregimes.shp, using FIPSNO as the ID
variable
In [14]: w = pysal.queen_from_shapefile('data/natregimes.shp',idVariable="FIPSNO")
In [15]: w.n
Out[15]: 3085
  row-standardize
In [16]: w.transform = 'r'
   Creating the kernel weights, triangular with k=20
  since natregimes.shp coordinates are in lat-lon, use radius to get great circle distance
   note that diagonal = True to ensure that the value of 1 is on the diagonal
In [17]: kw = pysal.adaptive_kernelW_from_shapefile('data/natregimes.shp',
                                                         k=20, radius=pysal.cg.RADIUS_EARTH_MILES,
                                                          diagonal=True,idVariable='FIPSNO')
```

0.2 Basic Two Stage Least Squares

default settings including variable names and data set name

```
In [18]: reg1 = pysal.spreg.TSLS(y,x,yend,q,name_y=y_name,name_x=x_names,
                                   name_yend=yend_names,name_q=q_names,name_ds='nat.dbf')
   regression coefficients, in alphabetical order of the variable names
In [19]: reg1.betas
Out[19]: array([[ 15.64555155],
                 [ 5.72924882],
                 [ -0.09837584],
                 [ 1.8770506 ],
                 [ -0.91445539]])
   pretty listing
In [20]: print reg1.summary
REGRESSION
_____
SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES
_____
Data set
                          \mathtt{nat.dbf}
Dependent Variable : HR90
Mean dependent var : 6.1829
S.D. dependent var : 6.6414
Pseudo R-squared : 0.3570
                                                    Number of Observations:
                                                                                      3085
                                                    Number of Variables :
                                                    Degrees of Freedom :
                                                                                      3080
Pseudo R-squared :
                            0.3570
```

 Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	15.6455516	1.3545018	11.5507796	0.0000000
MA90	-0.0983758	0.0299492	-3.2847583	0.0010207
PS90	1.8770506	0.1070934	17.5272273	0.0000000
RD90	5.7292488	0.2129126	26.9089171	0.0000000
UE90	-0.9144554	0.0986831	-9.2665854	0.0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

0.3 The Two Stages of 2SLS

create a matrix with all the instruments, i.e., both ${\bf x}$ and ${\bf q}$

```
In [21]: bigx = np.hstack((x,q))
In [22]: bigx.shape
Out[22]: (3085, 6)
```

OLS regression of endogenous variable on all the instruments $(\mathbf{x} \text{ and } \mathbf{q})$

```
In [23]: step1 = pysal.spreg.OLS(yend,bigx)
```

predicted values for endogenous variable

In [24]: y2 = step1.predy

replace the endogenous variable by its predicted value

In [25]: newx = np.hstack((x,y2))

second step OLS regression

In [26]: step2 = pysal.spreg.OLS(y,newx)

In [27]: print step2.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

Data set :	unknown			
Dependent Variable :	$\mathtt{dep_var}$	Number of Observations	:	3085
Mean dependent var :	6.1829	Number of Variables	:	5
S.D. dependent var :	6.6414	Degrees of Freedom	:	3080
R-squared :	0.4027			
Adjusted R-squared :	0.4019			
Sum squared residual:	81252.812	F-statistic	:	519.1009
Sigma-square :	26.381	Prob(F-statistic)	:	0
S.E. of regression :	5.136	Log likelihood	:	-9422.964
Sigma-square ML :	26.338	Akaike info criterion	:	18855.928
S.E of regression ML:	5.1321	Schwarz criterion	:	18886.100

Variab	le Coefficient	Std.Error	t-Statistic	Probability
CONSTA				0.0000000
var			28.1190386	0.0000000
var	_2 -0.0983758	0.0286603	-3.4324773	0.0006060
var	_3 1.8770506	0.1024846	18.3154447	0.0000000
var	_4 -0.9144554	0.0944362	-9.6833132	0.0000000

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 30.224

TEST ON NORMALITY OF ERRORS

VALUE TEST DF PROB Jarque-Bera 56513.324 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST	DF	VALUE	PROB
Breusch-Pagan test	4	1350.019	0.0000
Koenker-Bassett test	4	120.991	0.0000

ignore measure of fit and diagnostics, but the coefficient estimates match, the estimated standard errors do not, because they are based on the wrong residuals

0.42SLS with Spatial Diagnostics

set spat_diag = True and specify a weights object w (and, optionally, its name in name_w)

In [28]: reg2 = pysal.spreg.TSLS(y,x,yend,q,w=w,spat_diag=True, name_y=y_name,name_x=x_names,name_yend=yend_names, name_q=q_names,name_w="nat_queen",name_ds="nat.dbf")

In [29]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES -----

Data set : nat.dbf Weights matrix : nat_queen

Dependent Variable : HR90 Mean dependent var : 6.1829 Number of Observations: 3085 Number of Variables : Mean dependent var : 5 S.D. dependent var : 6.6414 Degrees of Freedom : 3080

0.3570 Pseudo R-squared :

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	15.6455516	1.3545018	11.5507796	0.0000000
MA90	-0.0983758	0.0299492	-3.2847583	
PS90	1.8770506	0.1070934	17.5272273	0.0000000
RD90	5.7292488	0.2129126	26.9089171	0.0000000
UE90	-0.9144554	0.0986831	-9.2665854	

Instrumented: UE90

Instruments: FH90, FP89, GI89

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 124.415 0.0000

2SLS with White Standard Errors 0.5

set robust = 'white'

In [30]: reg3 = pysal.spreg.TSLS(y,x,yend,q,robust='white', name_y=y_name,name_x=x_names,name_yend=yend_names, name_q=q_names,name_ds="nat.dbf")

In [31]: print reg3.summary

REGRESSION

SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES

: Data set $\mathtt{nat.dbf}$

HR90 3085 Dependent Variable : Number of Observations: Mean dependent var : 6.1829 Number of Variables : 5 S.D. dependent var : 6.6414 Degrees of Freedom : 3080 Pseudo R-squared : 0.3570

White Standard Errors

Va:	riable	Coefficient	Std.Error	z-Statistic	Probability
C0]	NSTANT MA90 PS90 RD90	15.6455516 -0.0983758 1.8770506 5.7292488	1.5393092 0.0316213 0.1688432 0.3053397	10.1640082 -3.1110577 11.1171261 18.7635242	0.0000000 0.0018642 0.0000000 0.0000000
	UE90	-0.9144554	0.1384631	-6.6043272	0.0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

0.6 2SLS with HAC Standard Errors

set robust = 'hac' and specify a kernel weights object as gkw (name_gwk is optional)

In [33]: print reg4.summary

REGRESSION

SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES

Data set : nat.dbf

Dependent Variable : HR90 Number of Observations: 3085
Mean dependent var : 6.1829 Number of Variables : 5
S.D. dependent var : 6.6414 Degrees of Freedom : 3080

Pseudo R-squared : 0.3570

HAC Standard Errors; Kernel Weights: nat_k20_triang

Variab	Le Coefficient	Std.Error	z-Statistic	Probability
CONSTA:	90 -0.0983758	1.6405678	9.5366688	0.0000000
MA		0.0341965	-2.8767776	0.0040176
PS	5.7292488	0.1982054	9.4702289	0.0000000
RD		0.3304847	17.3358973	0.0000000
UE		0.1429221	-6.3982775	0.0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

0.7 Practice

Repeat the 2SLS regression with spatial diagnostics using the natregimes data set, but for a different year, say using HR60.

Check the effect of HAC estimates on the standard errors.

Create a different model weights, using k=6 nearest neighbors and a kernel weights using quadratic (Epanechnicov) kernel.

In []:

Chapter 6 - 2SLS practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 6

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/natregimes.dbf','r')
In [4]: len(db)
Out[4]: 3085
In [5]: db.header
Out[5]: ['REGIONS',
         'NOSOUTH',
         'POLY_ID',
         'NAME',
         'STATE_NAME',
         'STATE_FIPS',
         'CNTY_FIPS',
         'FIPS',
         'STFIPS',
         'COFIPS',
         'FIPSNO',
         'SOUTH',
         'HR60',
         'HR70',
         'HR80',
         'HR90',
         'HC60',
         'HC70',
         'HC80',
         'HC90',
         'PO60',
         'P070',
         'PO80',
         'P090',
         'RD60',
         'RD70',
         'RD80',
         'RD90',
```

```
'PS60',
         'PS70',
         'PS80',
         'PS90',
         'UE60',
         'UE70',
         'UE80',
         'UE90',
         'DV60',
         'DV70',
         'DV80',
         'DV90',
         'MA60',
         'MA70',
         'MA80',
         'MA90',
         'POL60',
         'POL70',
         'POL80',
         'POL90',
         'DNL60',
         'DNL70',
         'DNL80',
         'DNL90',
         'MFIL59',
         'MFIL69',
         'MFIL79',
         'MFIL89',
         'FP59',
         'FP69',
         'FP79',
         'FP89',
         'BLK60',
         'BLK70',
         'BLK80',
         'BLK90',
         'GI59',
         'GI69',
         'GI79',
         'GI89',
         'FH60',
         'FH70',
         'FH80',
         'FH90',
         'West']
In [6]: y_name = 'HR60'
        y = np.array([db.by_col(y_name)]).T
In [7]: x_names = ['RD60', 'MA60', 'PS60']
        x = np.array([db.by_col(var) for var in x_names]).T
In [8]: yend_names = ['UE60']
        yend = np.array([db.by_col(var) for var in yend_names]).T
```

```
In [9]: q_names = ['FH60', 'FP59', 'GI59']
         q = np.array([db.by_col(var) for var in q_names]).T
In [10]: w = pysal.knnW_from_shapefile('data/natregimes.shp',
                                               k=6,radius=pysal.cg.RADIUS_EARTH_MILES,idVariable='FIPSNO')
In [11]: w.n
Out[11]: 3085
In [12]: w.transform = 'r'
In [13]: kw = pysal.adaptive_kernelW_from_shapefile('data/natregimes.shp',
                                                              k=12,function='quadratic',radius=pysal.cg.RADIUS_
                                                              diagonal=True,idVariable='FIPSNO')
In [14]: kw.n
Out[14]: 3085
   two stage least squares with White standard errors and diagnostics for spatial dependence
In [15]: reg1 = pysal.spreg.TSLS(y,x,yend,q,w=w,robust='white',spat_diag=True,
                                    name_y=y_name,name_x=x_names,name_yend=yend_names,
                                     name_q=q_names,name_w='nat_k6',
                                    name_ds='natregimes.shp')
In [16]: print reg1.summary
REGRESSION
_____
SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES
Data set .natl6
Weights matrix : nat k6
Dependent Variable : HR60
Mean dependent var : 4.5041
S.D. dependent var : 5.6497
Pseudo R-squared : 0.2044
Data set
                      :natregimes.shp
                                                                                           3085
                                                        Number of Observations:
                                                        Number of Variables :
                                                        Degrees of Freedom :
                                                                                           3080
White Standard Errors
 ______
             Variable Coefficient
                                              Std.Error z-Statistic Probability
______

      -0.2485547
      0.9883561
      13.6094882
      0.0000000

      -0.2485547
      0.0212910
      -11.6741458
      0.0000000

      0.4393596
      0.1330675
      3.3017812
      0.0009607

      2.3711959
      0.1093345
      21.6875296
      0.000000

      -0.3302298
      0.417100
      0.0000000

                           13.4510208
              CONSTANT
                  MA60
                  PS60
                  RD60
                  UE60
                            -0.3302298
                                               0.1171311
                                                                 -2.8193185
                                                                                   0.0048126
Instrumented: UE60
Instruments: FH60, FP59, GI59
DIAGNOSTICS FOR SPATIAL DEPENDENCE
                                   MI/DF VALUE PROB
1 277.956 0.0
TEST
                                  1
Anselin-Kelejian Test
                                                                   0.0000
```

two stage least squares with HAC standard errors and diagnostics for spatial dependence

In [18]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: TWO STAGE LEAST SQUARES

Data set :natregimes.shp
Weights matrix : nat_k6
Dependent Variable : HR60

Dependent Variable : HR60 Number of Observations: 3085
Mean dependent var : 4.5041 Number of Variables : 5
S.D. dependent var : 5.6497 Degrees of Freedom : 3080

Pseudo R-squared : 0.2044

HAC Standard Errors; Kernel Weights: nat_quadratic_12

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	13.4510208	1.1336621	11.8651063	0.0000000
MA60	-0.2485547	0.0244053	-10.1844645	0.0000000
PS60	0.4393596	0.1461997	3.0052022	0.0026540
RD60	2.3711959	0.1308052	18.1276895	0.0000000
UE60	-0.3302298	0.1395031	-2.3671862	0.0179239

Instrumented: UE60

Instruments: FH60, FP59, GI59

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 277.956 0.0000

In []:

In []:

Chapter 7 - Spatial 2SLS

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 7 - Spatial 2SLS in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved

```
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Basic Regression Setup

In [1]: %pylab inline

0.2 Spatial Lag without Endogenous Variables

Creating arrays for y and x using the Baltimore example - see also Chapter 5 Notebook Preliminaries, import numpy and pysal

```
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
  the baltimore sample data set
In [3]: db = pysal.open('data/baltim.dbf','r')
        y_name = "PRICE"
        y = np.array([db.by_col(y_name)]).T
        x_names = ['NROOM','NBATH','PATIO','FIREPL','AC','GAR','AGE',
                   'LOTSZ', 'SQFT']
        x = np.array([db.by_col(var) for var in x_names]).T
  model weights - k nearest neighbors with k=4
In [4]: w = pysal.knnW_from_shapefile('data/baltim.shp',
                                         k=4,idVariable='STATION')
        w.transform = 'r'
  kernel weights - triangular with k=12
In [5]: kw12 = pysal.adaptive_kernelW_from_shapefile('data/baltim.shp',
                                                       k=12,diagonal=True,idVariable='STATION')
```

0.3 Basic Spatial 2SLS

'vm',
'x',
'y',

```
default settings
```

```
In [6]: reg1 = pysal.spreg.GM_Lag(y,x,w=w,name_y=y_name,name_x=x_names,
                                     name_w='baltim_k4',name_ds='baltim')
   coefficients in the order of variables in x_names - last one is spatial autoregressive coefficient
In [7]: dir(reg1)
Out[7]: ['__doc__',
          '__init__',
          '__module__',
          '__summary',
          '_cache',
          'betas',
          'e_pred',
          'h',
          'hth',
          'hthi',
          'htz',
          'k',
          'kstar',
          'mean_y',
          'n,
          'name_ds',
          'name_gwk',
          'name_h',
          'name_q',
          'name_w',
          'name_x',
          'name_y',
          'name_yend',
          'name_z',
          'pfora1a2',
          'pr2',
          'pr2_e',
          'predy',
          'predy_e',
          'q',
          'rho',
          'robust',
          'sig2',
          'sig2n',
          'sig2n_k',
          'std_err',
          'std_y',
          'summary',
          'title',
          'n,
          'utu',
          'varb',
```

```
'yend',
                ,z,
                'z_stat',
                'zthhthi']
In [8]: reg1.betas
Out[8]: array([[ 1.17583298],
                          [ 0.87624587],
                          [5.5262249],
                          [ 6.86878774],
                          [7.01874585],
                          [ 6.43131769],
                          [ 3.71781024],
                          [-0.09245938],
                          [0.06707445],
                          [0.07907289],
                          [ 0.48461954]])
In [9]: print reg1.summary
REGRESSION
SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES
_____
Data set
                                            baltim
Weights matrix : baltim_k4
Dependent Variable : PRICE
Mean dependent var : 44.3072
S.D. dependent var : 23.6061
Pseudo R-squared : 0.7080
                                                                                   Number of Observations:
                                                                                                                                        211
                                                                                   Number of Variables :
                                                                                                                                           11
                                                                                   Degrees of Freedom :
                                                                                                                                           200
Spatial Pseudo R-squared: 0.6868
                    Variable Coefficient Std.Error z-Statistic Probability

      CONSTANT
      1.1758330
      5.7402917
      0.2048385
      0.8376983

      AC
      6.4313177
      2.4191155
      2.6585410
      0.0078480

      AGE
      -0.0924594
      0.0543360
      -1.7016213
      0.0888264

                                            7.0187459
                                                                      2.5164274
                                                                                                  2.7891708
                        FIREPL
                                                                                                                             0.0052843

      7.0167459
      2.5164274
      2.7891708
      0.0052843

      3.7178102
      1.7693095
      2.1012775
      0.0356166

      0.0670745
      0.0153366
      4.3734849
      0.0000122

      5.5262249
      1.7995640
      3.0708688
      0.0021344

      0.8762459
      1.0992925
      0.7970998
      0.4253931

      6.8687877
      2.8313870
      2.4259445
      0.0152686

      0.0790729
      0.1693687
      0.4668683
      0.6405941

                             GAR
                         LOTSZ
                         NBATH
                         NROOM
                         PATIO
```

0.0735894

6.5854513

0.0000000

Instrumented: W_PRICE

Instruments: W_AC, W_AGE, W_FIREPL, W_GAR, W_LOTSZ, W_NBATH, W_NROOM,

0.4846195

W_PATIO, W_SQFT

SQFT W_PRICE

using second order spatial lags for the instruments, set \mathbf{w}_{-} lags = 2

In [11]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : baltim Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 11
S.D. dependent var : 23.6061 Degrees of Freedom : 200

Pseudo R-squared : 0.7076
Spatial Pseudo R-squared: 0.6856

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	0.6967291	5.6918227	0.1224088	0.9025753
AC	6.4004638	2.4204278	2.6443523	0.0081847
AGE	-0.0898356	0.0542103	-1.6571679	0.0974855
FIREPL	6.9286683	2.5140883	2.7559367	0.0058524
GAR	3.6812877	1.7696563	2.0802275	0.0375047
LOTSZ	0.0664709	0.0153170	4.3396943	0.0000143
NBATH	5.5235755	1.8009199	3.0670855	0.0021616
NROOM	0.8904222	1.0998836	0.8095604	0.4181929
PATIO	6.7936052	2.8309029	2.3998016	0.0164040
SQFT	0.0767161	0.1694537	0.4527261	0.6507460
W_PRICE	0.4951283	0.0716451	6.9108461	0.0000000

Instrumented: W_PRICE

Instruments: W2_AC, W2_AGE, W2_FIREPL, W2_GAR, W2_LOTSZ, W2_NBATH, W2_NROOM,

W2_PATIO, W2_SQFT, W_AC, W_AGE, W_FIREPL, W_GAR, W_LOTSZ,

W_NBATH, W_NROOM, W_PATIO, W_SQFT

up to third order spatial lags, set w_lags=3

In [13]: print reg2a.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : baltim Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 11

Degrees of Freedom : 200

S.D. dependent var : 23.6061 Pseudo R-squared : 0.7078 Spatial Pseudo R-squared: 0.6862

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	0.9254523	5.6633202	0.1634116	0.8701944
AC	6.4151934	2.4192610	2.6517161	0.0080084
AGE	-0.0910882	0.0541071	-1.6834807	0.0922821
FIREPL	6.9716711	2.5110371	2.7764111	0.0054963
GAR	3.6987235	1.7684991	2.0914478	0.0364879
LOTSZ	0.0667590	0.0152957	4.3645680	0.0000127
NBATH	5.5248403	1.8002401	3.0689464	0.0021482
NROOM	0.8836545	1.0993508	0.8037967	0.4215144
PATIO	6.8294972	2.8285357	2.4144992	0.0157569
SQFT	0.0778412	0.1693686	0.4595966	0.6458058
W_PRICE	0.4901115	0.0706057	6.9415235	0.0000000

Instrumented: W_PRICE

Instruments: W2_AC, W2_AGE, W2_FIREPL, W2_GAR, W2_LOTSZ, W2_NBATH, W2_NROOM,

W2_PATIO, W2_SQFT, W3_AC, W3_AGE, W3_FIREPL, W3_GAR, W3_LOTSZ, W3_NBATH, W3_NROOM, W3_PATIO, W3_SQFT, W_AC, W_AGE, W_FIREPL,

W_GAR, W_LOTSZ, W_NBATH, W_NROOM, W_PATIO, W_SQFT

0.3.1 Direct, Indirect and Total Effects

extract the regression coefficients

extract the spatial autoregressive coefficient

```
In [16]: rho = reg1.betas[-1]
In [17]: rho
Out[17]: array([ 0.48461954])
   total effect using the multiplier
In [18]: btot = b / (1.0 - rho)
```

```
In [19]: btot
Out[19]: array([[ 2.28148539],
               [ 1.70019227],
               [ 10.72261246],
               [ 13.32760616],
                [ 13.61857201],
                [ 12.47877682],
               [ 7.21371988],
                [-0.17940024]
               [ 0.13014551],
               [ 0.15342625]])
  indirect effect
In [20]: bind = btot - b
  summary of the results
In [21]: varnames = ["CONSTANT"] + x_names
        print "Variable Direct
                                           Indirect
                                                         Total"
        for i in range(len(varnames)):
            print "%10s %12.7f %12.7f %12.7f" % (varnames[i],b[i][0],bind[i][0],btot[i][0])
Variable
                           Indirect
                                         Total
              Direct
 CONSTANT
                          1.1056524
             1.1758330
                                       2.2814854
    NROOM
             0.8762459
                          0.8239464
                                     1.7001923
    NBATH
             5.5262249
                          5.1963876
                                      10.7226125
    PATIO
             6.8687877
                          6.4588184
                                     13.3276062
   FIREPL
           7.0187459
                          6.5998262 13.6185720
       AC
             6.4313177
                          6.0474591
                                     12.4787768
      GAR
             3.7178102
                          3.4959096
                                       7.2137199
      AGE
            -0.0924594
                         -0.0869409
                                      -0.1794002
    LOTSZ
             0.0670745
                          0.0630711
                                       0.1301455
     SQFT
             0.0790729
                          0.0743534
                                       0.1534263
     Spatial 2SLS with Spatial Diagnostics
specify the weights as w=w, set spat_diag = True and optionally specify a name for the weights
In [22]: reg3 = pysal.spreg.GM_Lag(y,x,w=w,spat_diag=True,
                                  name_y=y_name,name_x=x_names,
                                  name_w='baltim_k4',name_ds='baltim')
In [23]: print reg3.summary
REGRESSION
SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES
Data set
                         baltim
Weights matrix :
                       baltim_k4
Dependent Variable :
                       PRICE
                                                Number of Observations:
                                                                                211
Mean dependent var :
                         44.3072
                                                Number of Variables
                                                                                 11
S.D. dependent var :
                         23.6061
                                                Degrees of Freedom
                                                                                200
Pseudo R-squared
                         0.7080
```

Spatial Pseudo R-squared: 0.6868

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	1.1758330	5.7402917	0.2048385	0.8376983
AC	6.4313177	2.4191155	2.6585410	0.0078480
AGE	-0.0924594	0.0543360	-1.7016213	0.0888264
FIREPL	7.0187459	2.5164274	2.7891708	0.0052843
GAR	3.7178102	1.7693095	2.1012775	0.0356166
LOTSZ	0.0670745	0.0153366	4.3734849	0.0000122
NBATH	5.5262249	1.7995640	3.0708688	0.0021344
NROOM	0.8762459	1.0992925	0.7970998	0.4253931
PATIO	6.8687877	2.8313870	2.4259445	0.0152686
SQFT	0.0790729	0.1693687	0.4668683	0.6405941
W_PRICE	0.4846195	0.0735894	6.5854513	0.0000000

Instrumented: W_PRICE

Instruments: W_AC, W_AGE, W_FIREPL, W_GAR, W_LOTSZ, W_NBATH, W_NROOM,

W_PATIO, W_SQFT

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 3.654 0.0559

0.5 Spatial 2SLS with White Standard Errors

set robust = 'white'

In [25]: print reg4.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : baltim
Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 11
S.D. dependent var : 23.6061 Degrees of Freedom : 200

S.D. dependent var : 23.6061
Pseudo R-squared : 0.7080
Spatial Pseudo R-squared: 0.6868

White Standard Errors

 Variable
 Coefficient
 Std.Error
 z-Statistic
 Probability

 CONSTANT
 1.1758330
 7.0047804
 0.1678615
 0.8666922

 AC
 6.4313177
 2.6910698
 2.3898739
 0.0168542

 AGE
 -0.0924594
 0.0983874
 -0.9397478
 0.3473469

FIREPL	7.0187459	2.4195615	2.9008338	0.0037217
GAR	3.7178102	2.3876143	1.5571234	0.1194412
LOTSZ	0.0670745	0.0251308	2.6690191	0.0076073
NBATH	5.5262249	2.1872327	2.5265830	0.0115178
NROOM	0.8762459	1.3976000	0.6269647	0.5306824
PATIO	6.8687877	3.1491404	2.1811627	0.0291714
SQFT	0.0790729	0.2234025	0.3539481	0.7233778
W_PRICE	0.4846195	0.1259270	3.8484168	0.0001189

Instrumented: W_PRICE

Instruments: W_AC, W_AGE, W_FIREPL, W_GAR, W_LOTSZ, W_NBATH, W_NROOM,

W_PATIO, W_SQFT

DIAGNOSTICS FOR SPATIAL DEPENDENCE

0.6 Spatial 2SLS with HAC Standard Errors

set robust = 'hac' and specify the kernel weights gwk and optionally their name name_gwk

In [27]: print reg5.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 11
S.D. dependent var : 23.6061 Degrees of Freedom : 200

Pseudo R-squared : 0.7080 Spatial Pseudo R-squared: 0.6868

HAC Standard Errors; Kernel Weights: baltim_tri_k12

V	ariable	Coefficient	Std.Error	z-Statistic	Probability
C	ONSTANT	1.1758330	7.3538150	0.1598943	0.8729644
	AC	6.4313177	2.9201174	2.2024175	0.0276358
	AGE	-0.0924594	0.0962413	-0.9607039	0.3367011
	FIREPL	7.0187459	2.4120995	2.9098078	0.0036165
	GAR	3.7178102	2.4421020	1.5223812	0.1279136
	LOTSZ	0.0670745	0.0229299	2.9251915	0.0034424
	NBATH	5.5262249	2.1861011	2.5278908	0.0114750
	NROOM	0.8762459	1.4166133	0.6185498	0.5362130
	PATIO	6.8687877	3.1066547	2.2109917	0.0270364
	SQFT	0.0790729	0.1980344	0.3992887	0.6896805

W_PRICE 0.4846195 0.1132898 4.2776985 0.0000189

Instrumented: W_PRICE

Instruments: W_AC, W_AGE, W_FIREPL, W_GAR, W_LOTSZ, W_NBATH, W_NROOM,

W_PATIO, W_SQFT

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 3.654 0.0559

Spatial Lag Model with other Endogenous Variables

create the variable arrays using the natregimes sample data set

```
In [28]: db = pysal.open('data/natregimes.dbf','r')
         y_name = "HR90"
         y = np.array([db.by_col(y_name)]).T
         x_names = ['RD90','MA90','PS90']
         x = np.array([db.by_col(var) for var in x_names]).T
         yend_names = ['UE90']
         yend = np.array([db.by_col(var) for var in yend_names]).T
         q_names = ['FH90', 'FP89', 'G189']
         q = np.array([db.by_col(var) for var in q_names]).T
  model weights
In [29]: w = pysal.queen_from_shapefile('data/natregimes.shp',idVariable="FIPSNO")
         w.transform = 'r'
```

0.7.1 Spatial Lag with Endogenous Variables

base case with spatial diagnostics

```
In [30]: reg6 = pysal.spreg.GM_Lag(y,x,yend,q,w=w,spat_diag=True,
                                   name_y=y_name, name_x=x_names, name_yend=yend_names,
                                   name_q=q_names,name_w='natqueen',name_ds='nat')
```

In [31]: print reg6.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : nat Weights matrix : natqueen

Dependent Variable: HR90
Mean dependent var: 6.1829
S.D. dependent var: 6.6414
Pseudo R-squared: 0.4186 Number of Observations: 3085 Number of Variables : Degrees of Freedom : 3079

Spatial Pseudo R-squared: 0.3914

Variable Coefficient Std.Error z-Statistic Probability ______ CONSTANT 10.0338240 1.3616383 7.3689349 0.0000000

MA90	-0.0500990	0.0286025	-1.7515613	0.0798493
PS90	1.5813070	0.1084249	14.5843567	0.0000000
RD90	4.4092974	0.2400482	18.3683863	0.0000000
UE90	-0.5182722	0.0882736	-5.8712062	0.0000000
W_HR90	0.2123364	0.0371805	5.7109639	0.0000000

Instrumented: UE90, W_HR90

Instruments: FH90, FP89, GI89, W_FH90, W_FP89, W_GI89, W_MA90, W_PS90,

W_RD90

DIAGNOSTICS FOR SPATIAL DEPENDENCE

without spatial lags for the instruments, set $lag_q = False$

In [33]: print reg7.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : nat Weights matrix : nat_queen

Dependent Variable : HR90 Number of Observations: 3085
Mean dependent var : 6.1829 Number of Variables : 6
S.D. dependent var : 6.6414 Degrees of Freedom : 3079
Pseudo R-squared : 0.4076

Pseudo R-squared : 0.4076 Spatial Pseudo R-squared: 0.3802

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	11.2850228	1.4177538	7.9597903	0.0000000
MA90	-0.0601927	0.0290474	-2.0722259	0.0382444
PS90	1.6149324	0.1105060	14.6139849	0.0000000
RD90	4.6642007	0.2537771	18.3791221	0.0000000
UE90	-0.6580528	0.0951942	-6.9127375	0.0000000
W_HR90	0.2163835	0.0389967	5.5487653	0.000000

Instrumented: UE90, W_HR90

Instruments: FH90, FP89, GI89, W_MA90, W_PS90, W_RD90

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 2.442 0.1182

0.8 Practice

Replicate the analysis above using a subset of the U.S. counties, i.e., the south data set. Use both k=6 nearest neighbors and queen contiguity as weights and compare the results. Use adaptive bandwidth quadratic kernel weights (k=12) to assess the effect of HAC standard errors.

In []:

Chapter 7 - S2SLS practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 7

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/south.dbf','r')
In [4]: len(db)
Out[4]: 1412
In [5]: db.header
Out[5]: ['FIPSNO',
         'NAME',
         'STATE_NAME',
         'STATE_FIPS',
         'CNTY_FIPS',
         'FIPS',
         'STFIPS',
         'COFIPS',
         'SOUTH',
         'HR60',
         'HR70',
         'HR80',
         'HR90',
         'HC60',
         'HC70',
         'HC80',
         'HC90',
         'PO60',
         'P070',
         'PO80',
         'P090',
         'RD60',
         'RD70',
         'RD80',
         'RD90',
         'PS60',
         'PS70',
         'PS80',
```

```
'UE60',
         'UE70',
         'UE80',
         'UE90',
         'DV60',
         'DV70'.
         'DV80',
         'DV90',
         'MA60',
         'MA70',
         'MA80',
         'MA90',
         'POL60',
         'POL70',
         'POL80',
         'POL90',
         'DNL60',
         'DNL70',
         'DNL80',
         'DNL90',
         'MFIL59',
         'MFIL69',
         'MFIL79',
         'MFIL89',
         'FP59',
         'FP69',
         'FP79',
         'FP89',
         'BLK60',
         'BLK70',
         'BLK80',
         'BLK90',
         'GI59',
         'GI69',
         'GI79',
         'GI89',
         'FH60',
         'FH70',
         'FH80',
         'FH90']
In [6]: y_name = 'HR90'
        y = np.array([db.by_col(y_name)]).T
In [7]: x_names = ['RD90', 'MA90', 'PS90', 'UE90']
        x = np.array([db.by_col(var) for var in x_names]).T
In [8]: xe_names = ['RD90', 'MA90', 'PS90']
        xe = np.array([db.by_col(var) for var in xe_names]).T
In [9]: yend_names = ['UE90']
        yend = np.array([db.by_col(var) for var in yend_names]).T
In [10]: q_names = ['FH90', 'FP89', 'GI89']
         q = np.array([db.by_col(var) for var in q_names]).T
```

'PS90',

```
In [11]: w = pysal.knnW_from_shapefile('data/south.shp',
                                                k=6,radius=pysal.cg.RADIUS_EARTH_MILES,idVariable='FIPSNO')
          w.transform = 'r'
In [12]: ww = pysal.queen_from_shapefile('data/south.shp',idVariable="FIPSNO")
           ww.transform = 'r'
In [13]: w.n, ww.n
Out[13]: (1412, 1412)
In [14]: kw = pysal.adaptive_kernelW_from_shapefile('data/south.shp',
                                                               k=12,function='quadratic',radius=pysal.cg.RADIUS_
                                                                diagonal=True,idVariable='FIPSNO')
In [15]: kw.n
Out[15]: 1412
   spatial two stage least squares: exogenous variables only, using k=6 nearest neighbors
In [16]: reg1 = pysal.spreg.GM_Lag(y,x,w=w,spat_diag=True,
                                         name_y=y_name,name_x=x_names,
                                         name_w='south_k6',name_ds='south')
In [17]: print reg1.summary
REGRESSION
SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES
Data set
Weights matrix : south_k6
Dependent Variable: HR90
Mean dependent var: 9.5493
S.D. dependent var: 7.0389
Pseudo R-squared: 0.3170
                                                         Number of Observations:
                                                                                            1412
                                                         Number of Variables :
                                                         Degrees of Freedom : 1406
Spatial Pseudo R-squared: 0.3017
             Variable Coefficient Std.Error z-Statistic Probability
 -----

      8.7095236
      2.0183412
      4.3151890
      0.0000159

      0.0144354
      0.0480777
      0.3002507
      0.7639859

      2.0300519
      0.2069009
      9.8117134
      0.0000000

      4.2657445
      0.2694077
      15.8337904
      0.0000000

      -0.4609325
      0.0741770
      -6.2139568
      0.0000000

      0.1181498
      0.0661620
      1.7857661
      0.0741371

              CONSTANT
                  MA90
                  PS90
                  RD90
                  UE90
                W_HR90
Instrumented: W_HR90
Instruments: W_MA90, W_PS90, W_RD90, W_UE90
DIAGNOSTICS FOR SPATIAL DEPENDENCE
                                    MI/DF
                                                  VALUE
2.949
                                                                   PROB
TEST
                              MI/DF
1
Anselin-Kelejian Test
                                                                    0.0859
----- END OF REPORT -----
```

spatial two stage least squares using k=6 nearest neighbors, with HAC standard errors

In [19]: print reg1a.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : south
Weights matrix : south_k6

Dependent Variable : HR90 Number of Observations: 1412 Mean dependent var : 9.5493 Number of Variables : 6 S.D. dependent var : 7.0389 Degrees of Freedom : 1406

S.D. dependent var : 7.0389
Pseudo R-squared : 0.3170
Spatial Pseudo R-squared: 0.3017

HAC Standard Errors; Kernel Weights: south_quad_12

 Variable
 Coefficient
 Std.Error
 z-Statistic
 Probability

 CONSTANT
 8.7095236
 2.2063492
 3.9474820
 0.0000790

 MA90
 0.0144354
 0.0493446
 0.2925419
 0.7698723

 PS90
 2.0300519
 0.3980117
 5.1004829
 0.0000003

 RD90
 4.2657445
 0.4770866
 8.9412379
 0.0000000

 UE90
 -0.4609325
 0.1019096
 -4.5229549
 0.0000061

 W_HR90
 0.1181498
 0.0949992
 1.2436927
 0.2136127

Instrumented: W_HR90

Instruments: W_MA90, W_PS90, W_RD90, W_UE90

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 2.949 0.0859

spatial two stage least squares using queen contiguity

In [21]: print reg1b.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : south Weights matrix : south_queen

Dependent Variable : HR90 Number of Observations: 1412
Mean dependent var : 9.5493 Number of Variables : 6
S.D. dependent var : 7.0389 Degrees of Freedom : 1406

Pseudo R-squared : 0.3222 Spatial Pseudo R-squared: 0.3020

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	8.1830219	2.0412020	4.0089231	0.0000610
MA90	0.0227990	0.0483737	0.4713098	0.6374195
PS90	2.0297011	0.2037269	9.9628509	0.0000000
RD90	4.2106113	0.2661952	15.8177558	0.0000000
UE90	-0.4537805	0.0734397	-6.1789507	0.0000000
W_HR90	0.1418881	0.0652331	2.1750937	0.0296231

Instrumented: W_HR90

Instruments: W_MA90, W_PS90, W_RD90, W_UE90

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 2.306 0.1289

spatial two stage least squares with exogenous and endogenous variables, k=6 nearest neighbors

In [23]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES

Data set : south Weights matrix : south_k6

Dependent Variable : HR90 Number of Observations: 1412
Mean dependent var : 9.5493 Number of Variables : 6
S.D. dependent var : 7.0389 Degrees of Freedom : 1406

Pseudo R-squared : 0.2800 Spatial Pseudo R-squared: 0.2774

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	14.4390815	2.2781115	6.3381803	0.0000000
MA90	-0.0170951	0.0499350	-0.3423476	0.7320893
PS90	2.2209207	0.2158787	10.2878183	0.0000000
RD90	5.6815334	0.3619922	15.6951837	0.0000000
UE90	-1.0886919	0.1299393	-8.3784666	0.0000000
W_HR90	0.0226703	0.0693006	0.3271294	0.7435700

Instrumented: UE90, W_HR90

Instruments: FH90, FP89, GI89, W_FH90, W_FP89, W_GI89, W_MA90, W_PS90,

W_RD90

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 7.492 0.0062

In []:

In []:

Chapter 8 - ML Spatial Lag

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 8 - ML Spatial Lag in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved

```
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Basic Regression Setup

0.1.1 Model Specification

Creating arrays for y and x using the Baltimore example - see also Chapter 5 Notebook Preliminaries, import numpy and pysal

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
    import pysal
```

the **baltimore** sample data set

model weights - k nearest neighbors with k=4

0.2 ML Estimation of Spatial Lag Model

0.2.1 Full Method

/Users/luc/anaconda/lib/python2.7/site-packages/scipy/optimize/_minimize.py:573: RuntimeWarning: Method "defaulting to absolute tolerance.", RuntimeWarning)

contents of the ML_Lag object

```
In [6]: dir(reg1)
Out[6]: ['__doc__',
          '__init__',
          '__module__',
          '__summary',
          '_cache',
          'aic',
          'betas',
          'e_pred',
          'epsilon',
          'k',
          'logll',
          'mean_y',
          'method',
          'n,
          'name_ds',
          'name_w',
          'name_x',
          'name_y',
          'pr2',
          'pr2_e',
          'predy',
          'predy_e',
          'rho',
          'schwarz',
          'sig2',
          'sig2n',
          'sig2n_k',
          'std_err',
          'std_y',
          'summary',
          'title',
          'u',
          'utu',
          'vm',
          'vm1',
          'х',
          'y',
          'z_stat']
```

the regression coefficients, with rho as last

```
[ 0.07484533],
[ 0.10941805],
```

[0.34931031]])

In [8]: reg1.betas[-1][0]

Out[8]: 0.34931030602875046

In [9]: reg1.rho

Out[9]: 0.34931030602875046

print the full set of results

In [10]: print reg1.summary

REGRESSION

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)

Data set baltim Weights matrix : baltim_k4

Dependent Variable: PRICE
Mean dependent var: 44.3072
S.D. dependent var: 23.6061
Pseudo R-squared: 0.7073 Number of Observations: 211 Number of Variables : 11 Degrees of Freedom : 200

Spatial Pseudo R-squared: 0.6927

Log likelihood : -839.288 Sigma-square ML : 162.407 S.E of regression : 12.744 Akaike info criterion: 1700.577 Schwarz criterion : 1737.447

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	7.3446812	5.0631000	1.4506293	0.1468831
AC	6.8285865	2.4153196	2.8271979	0.0046957
AGE	-0.1262422	0.0526168	-2.3992737	0.0164276
FIREPL	8.1785672	2.4835614	3.2930804	0.0009910
GAR	4.1880672	1.7562803	2.3846235	0.0170966
LOTSZ	0.0748453	0.0150251	4.9813401	0.0000006
NBATH	5.5603385	1.8049519	3.0806020	0.0020658
NROOM	0.6937135	1.0965606	0.6326267	0.5269774
PATIO	7.8368234	2.8017708	2.7970966	0.0051564
SQFT	0.1094180	0.1689413	0.6476690	0.5171991
W_PRICE	0.3493103	0.0553858	6.3068556	0.0000000

0.2.2 Ord Method

```
In [11]: reg2 = pysal.spreg.ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names,
                                 name_w = "baltim_k4",name_ds = "baltim")
```

In [12]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)

Dependent Variable: PRICE Number of Observations: 211
Mean dependent var: 44.3072 Number of Variables: 11
S.D. dependent var: 23.6061 Degrees of Freedom: 200
Pseudo R-squared: 0.7073

Spatial Pseudo R-squared: 0.6927

Sigma-square ML : 162.407 Log likelihood : -839.288 S.E of regression : 12.744 Akaike info criterion : 1700.577 Schwarz criterion : 1737.447

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	7.3446812	5.0631000	1.4506293	0.1468831
AC	6.8285865	2.4153196	2.8271979	0.0046957
AGE	-0.1262422	0.0526168	-2.3992737	0.0164276
FIREPL	8.1785672	2.4835614	3.2930804	0.0009910
GAR	4.1880672	1.7562803	2.3846235	0.0170966
LOTSZ	0.0748453	0.0150251	4.9813401	0.0000006
NBATH	5.5603385	1.8049519	3.0806020	0.0020658
NROOM	0.6937135	1.0965606	0.6326267	0.5269774
PATIO	7.8368234	2.8017708	2.7970966	0.0051564
SQFT	0.1094180	0.1689413	0.6476690	0.5171991
W_PRICE	0.3493103	0.0553858	6.3068556	0.000000

In []:

In []:

Chapter 9 - GM_GMM Error

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 9 - GM/GMM Error in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved

```
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Basic Regression Setup

0.1.1 Exogenous Explanatory Variables Only

Creating arrays for y and x for south.dbf example data set (see previous notebooks)
Preliminaries, import numpy and pysal

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
    import pysal

In [3]: db = pysal.open('data/south.dbf','r')
    y_name = "HR90"
    y = np.array([db.by_col(y_name)]).T
    x_names = ["RD90","PS90","UE90","DV90"]
    x = np.array([db.by_col(var) for var in x_names]).T
```

0.1.2 Exogenous and Endogenous Explanatory Variables

Creating arrays for yend, q and xe (exogenous only)

```
In [4]: yend_names = ["UE90"]
    yend = np.array([db.by_col(var) for var in yend_names]).T
    q_names = ["FH90","FP89","GI89"]
    q = np.array([db.by_col(var) for var in q_names]).T
    xe_names = ["RD90","PS90","DV90"]
    xe = np.array([db.by_col(var) for var in xe_names]).T
```

0.1.3 Spatial Weights

Queen contiguity, with FIPSNO as the ID variable

0.2 GM

```
0.2.1 Exogenous Variables Only
```

```
In [6]: gm1 = pysal.spreg.GM_Error(y,x,w,name_y=y_name,name_x=x_names,
                            name_w="south_q",name_ds="south.dbf")
   Attributes of the regression object
In [7]: dir(gm1)
Out[7]: ['__doc__',
         '__init__',
         '__module__',
         '__summary',
         '_cache',
         'betas',
          'e_filtered',
         'n,
          'mean_y',
          'n,
          'name_ds',
          'name_w',
          'name_x',
          'name_y',
          'pr2',
          'predy',
          'sig2',
          'std_err',
          'std_{-}y',
          'summary',
          'title',
          'u',
         'vm',
         'x',
         ,у,,
         'z_stat']
   The estimated coefficients, including lambda as the last element
In [8]: gm1.betas
Out[8]: array([[ 6.33865368],
                [ 4.43265183],
                [ 1.81335314],
                [-0.3985616],
                [0.47772164],
                [ 0.26040896]])
   The spatial autoregressive coefficient
In [9]: gm1.betas[-1][0]
Out[9]: 0.2604089565665465
   The full listing
In [10]: print gm1.summary
```

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES

Data set : south.dbf Weights matrix : south_q

Dependent Variable: HR90
Mean dependent var: 9.5493
S.D. dependent var: 7.0389
Pseudo R-squared: 0.3066 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

DV90 0.4777216 0.1203677 3.9688512 0.0000	Variable	Coefficient	Std.Error	z-Statistic	Probability
RD90 4.4326518 0.2318185 19.1212180 0.0000	DV90 PS90 RD90 UE90	0.4777216 1.8133531 4.4326518 -0.3985616	0.1203677 0.2105237 0.2318185	3.9688512 8.6135328 19.1212180	0.0000000 0.0000722 0.0000000 0.0000000 0.00000002

0.2.2 Exogenous and Endogenous Variables

```
In [11]: gm2 = pysal.spreg.GM_Endog_Error(y,xe,yend,q,w,name_y=y_name,
                           name_x=xe_names,name_yend=yend_names,name_q=q_names,
                           name_w="south_q",name_ds="south.dbf")
```

Attributes of the regression object

```
In [12]: dir(gm2)
Out[12]: ['__doc__',
          '__init__',
           '__module__',
           '__summary',
           '_cache',
           'betas',
           'e_filtered',
           'k',
           'mean_y',
           'n,
           'name_ds',
           'name_h',
           'name_q',
           'name_w',
           'name_x',
           'name_y',
           'name_yend',
           'name_z',
           'pr2',
           'predy',
           'sig2',
           'std_err',
```

```
'std_y',
'summary',
'title',
u',
'vm',
'x',
,y,,
'yend',
'z',
'z_stat']
```

The estimated coefficients, including lambda as the last element

```
In [13]: gm2.betas
```

```
Out[13]: array([[ 10.7717841 ],
               [ 5.90371303],
                [ 2.04553883],
               [ 0.49190638],
                [ -1.14071221],
               [ 0.23609742]])
```

The spatial autoregressive coefficient

In [14]: gm2.betas[-1][0]

Out[14]: 0.23609741823856531

The full listing

In [15]: print gm2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES ______

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.2818 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

 Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	10.7717841	1.2771988	8.4339137	0.0000000
DV90	0.4919064	0.1246483	3.9463541	0.0000794
PS90	2.0455388	0.2190619	9.3377222	0.0000000
RD90	5.9037130	0.3473996	16.9940125	0.0000000
UE90	-1.1407122	0.1483842	-7.6875610	0.0000000
lambda	0.2360974			

Instrumented: UE90

Instruments: FH90, FP89, GI89

0.3 GMM Heteroskedastic Case

0.3.1 Exogenous Variables Only

Out[19]: 0.31474155432811185

```
In [16]: gm3 = pysal.spreg.GM_Error_Het(y,x,w,name_y=y_name,name_x=x_names,
                             name_w="south_q",name_ds="south.dbf")
   Attributes of the regression object
In [17]: dir(gm3)
Out[17]: ['__doc__',
           '__init__',
           '__module__',
           '__summary',
           '_cache',
           'betas',
           'e_filtered',
           'iter_stop',
           'iteration',
           'k',
           'mean_y',
           'n,
           'name_ds',
           'name_w',
           'name_x',
           'name_y',
           'pr2',
           'predy',
           'std_err',
           'std_y',
           'step1c',
           'summary',
           'title',
           'n,
           'vm',
           'x',
           'xtx',
           'y',
           'z_stat']
   The estimated coefficients, including lambda as the last element
In [18]: gm3.betas
Out[18]: array([[ 6.25760366],
                 [ 4.41953589],
                 [ 1.79832764],
                 [-0.38976971],
                 [ 0.48116579],
                 [ 0.31474155]])
   The spatial autoregressive coefficient
In [19]: gm3.betas[-1][0]
```

The full listing

In [20]: print gm3.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HET)

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.3062
N. of iterations : 1 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

Step1c computed No :

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT DV90 PS90 RD90 UE90	6.2576037 0.4811658 1.7983276 4.4195359 -0.3897697	1.0821873 0.1198516 0.3359957 0.3468537 0.0985644	5.7823668 4.0146802 5.3522335 12.7417874 -3.9544664	0.0000000 0.0000595 0.0000001 0.0000000 0.0000767
lambda	0.3147416	0.0374883	8.3957227	0.0000000

Setting the step1c option

In [21]: gm4 = pysal.spreg.GM_Error_Het(y,x,w,step1c=True,name_y=y_name, name_x=x_names,name_w="south_q",name_ds="south.dbf")

The full listing

In [22]: print gm4.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HET)

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.3059
N. of iterations : 1 Number of Observations: 1412 Number of Variables : Degrees of Freedom : 1407

N. of iterations : Step1c computed Yes :

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	6.1903085	1.0826509	5.7177328	0.0000000
DV90	0.4840327	0.1199034	4.0368561	0.0000542
PS90	1.7859187	0.3361596	5.3127111	0.000001
RD90	4.4088516	0.3472585	12.6961665	0.0000000

```
-0.3824992 0.0986013 -3.8792513
0.3161445 0.0374169 8.4492406
          UE90
                                     8.4492406
                                                0.0000000
        lambda
Setting the maximum number of iterations
```

```
In [23]: gm5 = pysal.spreg.GM_Error_Het(y,x,w,max_iter=10,name_y=y_name,
                name_x=x_names,name_w="south_q",name_ds="south.dbf")
```

The full listing

In [24]: print gm5.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HET)

Data set south.dbf Weights matrix : south_q

Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.3053
N. of iterations : 5 Number of Observations: 1412 Number of Variables : Degrees of Freedom : 1407

N. of iterations : Step1c computed

Variable Coefficient Std.Error z-Statistic Probability

 CONSTANT
 6.0484442
 1.0837030
 5.5812749
 0.0000000

 DV90
 0.4900931
 0.1200190
 4.0834631
 0.0000444

 PS90
 1.7599431
 0.3365045
 5.2300726
 0.0000002

 RD90
 4.3869346
 0.3481280
 12.6014996
 0.0000000

 0.0986888 UE90 -0.3672549 -3.7213436 0.0001982 0.3191342 0.0372671 lambda 8.5634294 0.0000000

0.3.2 Exogenous and Endogenous Variables

```
In [25]: gm6 = pysal.spreg.GM_Endog_Error_Het(y,xe,yend,q,w,name_y=y_name,
                             {\tt name\_x=xe\_names,name\_yend=yend\_names,name\_q=q\_names,}
                             name_w="south_q",name_ds="south.dbf")
```

Attributes of the regression object

In [26]: dir(gm6) Out[26]: ['__doc__', '__init__', '__module__', '__summary', '_cache', 'betas', 'e_filtered', 'h',

```
'hth',
          'iter_stop',
          'iteration',
          'k',
          'mean_y',
          'n,
          'name_ds',
          'name_h',
          'name_q',
          'name_w',
          'name_x',
          'name_y',
          'name_yend',
          'name_z',
          'pr2',
          'predy',
          'q',
          'std_err',
          'std_y',
          'step1c',
          'summary',
          'title',
          'u',
          'vm',
          'x',
          'y',
          'yend',
          'z',
          'z_stat']
  The estimated coefficients, including lambda as the last element
In [27]: gm6.betas
Out[27]: array([[ 10.74563401],
               [ 5.89766591],
                [ 2.03579202],
                [ 0.49278877],
                [ -1.13750113],
                [ 0.26162482]])
  The spatial autoregressive coefficient
In [28]: gm6.betas[-1][0]
Out [28]: 0.26162482091893224
  The full listing
In [29]: print gm6.summary
REGRESSION
-----
SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET)
______
Data set
                       south.dbf
```

Step1c computed

:

No

CONSTANT 10.7456340 1.5222725 7.0589425 0.00000 DV90 0.4927888 0.1266845 3.8898895 0.00010 PS90 2.0357920 0.3491174 5.8312538 0.00000	Variable
RD90 5.8976659 0.5199311 11.3431685 0.00000 UE90 -1.1375011 0.2109871 -5.3913304 0.00000 lambda 0.2616248 0.0414083 6.3181770 0.00000	DV90 PS90 RD90 UE90

Instrumented: UE90

N. of iterations :

Instruments: FH90, FP89, GI89

0.4 GMM Homoskedastic Case

0.4.1 Exogenous Variables Only

Attributes of the regression object

```
In [31]: dir(gm7)
Out[31]: ['__doc__',
          '__init__',
           '__module__',
           '__summary',
           '_cache',
           'betas',
           'e_filtered',
           'iter_stop',
           'iteration',
           'n,
           'mean_y',
           'n,
           'name_ds',
           'name_w',
           'name_x',
           'name_y',
           'pr2',
           'predy',
           'sig2',
           'std_err',
           'std_y',
           'summary',
           'title',
```

```
u',
          'vm',
          'х',
           'xtx',
           ,y,,
           'z_stat']
In [32]: gm7.betas
```

The estimated coefficients, including lambda as the last element

```
Out[32]: array([[ 6.33803479],
                [ 4.43255065],
                 [ 1.81323806],
                [-0.39849432],
                [ 0.4777479 ],
                [ 0.27985722]])
```

The spatial autoregressive coefficient

In [33]: gm7.betas[-1][0] Out [33]: 0.2798572154943586

The full listing

In [34]: print gm7.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HOM) ______

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90 Number of Observations: 1412 Mean dependent var : 9.5493 Number of Variables : Degrees of Freedom : 1407

S.D. dependent var : 7.0389
Pseudo R-squared : 0.3066
N of iterations : 1 N. of iterations :

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	6.3380348	1.0237066	6.1912612	0.0000000
DV90	0.4777479	0.1210440	3.9468939	0.0000792
PS90	1.8132381	0.2118595	8.5586829	0.0000000
RD90	4.4325506	0.2336868	18.9679144	0.0000000
UE90	-0.3984943	0.0777957	-5.1223182	0.0000003
lambda	0.2798572	0.0355242	7.8779334	0.0000000

```
The A1 option
A1 = \text{'hom'}
```

```
In [35]: gm8a = pysal.spreg.GM_Error_Hom(y,x,w,A1='hom',name_y=y_name,
                             name_x=x_names,name_w="south_q",
                             name_ds="south.dbf")
```

Full listing

In [36]: print gm8a.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HOM)

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.3066 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

N. of iterations :

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	6.3392818	1.0236978	6.1925324	0.0000000
DV90	0.4776950	0.1210433	3.9464801	0.0000793
PS90	1.8134699	0.2118581	8.5598346	0.0000000
RD90	4.4327545	0.2336848	18.9689495	0.0000000
UE90	-0.3986299	0.0777951	-5.1241028	0.0000003
lambda	0.2798359	0.0355255	7.8770510	0.0000000

A1 = 'het'

In [37]: gm8b = pysal.spreg.GM_Error_Hom(y,x,w,A1='het',name_y=y_name, name_x=x_names,name_w="south_q", name_ds="south.dbf")

Full listing

In [38]: print gm8b.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HOM)

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.3062
N. of iterations : 1 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

N. of iterations :

Variable	Coefficient	Std.Error	z-Statistic	Probability
 CONSTANT	6.2576037	1.0361188	6.0394656	0.0000000
DV90	0.4811658	0.1220549	3.9422070	0.0000807
PS90	1.7983276	0.2138587	8.4089517	0.0000000

```
RD90
        4.4195359 0.2365100 18.6864665 0.0000000
 UE90
                    0.0786895
                                -4.9532615
                                            0.0000007
        -0.3897697
         0.3088889
                                 8.8445872
                                             0.0000000
lambda
                    0.0349241
```

0.4.2 Exogenous and Endogenous Variables

```
In [39]: gm9 = pysal.spreg.GM_Endog_Error_Hom(y,xe,yend,q,w,name_y=y_name,
                           name_x=xe_names,name_yend=yend_names,name_q=q_names,
                           name_w="south_q",name_ds="south.dbf")
```

Full listing

In [40]: print gm9.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)

Data set : south.dbf
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
S.D. dependent var : 7.0389
Pseudo R-squared : 0.2818 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

N. of iterations :

Variable	Coefficient	Std.Error	z-Statistic	Probability
 CONSTANT	10.7713463	1.2834619	8.3924158	0.0000000
DV90	0.4919212	0.1249985	3.9354165	0.0000831
PS90	2.0453736	0.2197377	9.3082522	0.0000000
RD90	5.9036116	0.3489835	16.9165947	0.0000000
UE90	-1.1406585	0.1491507	-7.6476928	0.0000000
lambda	0.2431636	0.0389702	6.2397251	0.0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

The A1 option A1 = 'hom'

```
In [41]: gm10a = pysal.spreg.GM_Endog_Error_Hom(y,xe,yend,q,w,A1='hom',
                               name_y=y_name,name_x=xe_names,name_yend=yend_names,
                               name_q=q_names,name_w="south_q",
                               name_ds="south.dbf")
```

Full listing

In [42]: print gm10a.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)

Data set : south.dbf Weights matrix : south_q

Dependent Variable: HR90
Mean dependent var: 9.5493
S.D. dependent var: 7.0389
Pseudo R-squared: 0.2818
N. of iterations: 1 Number of Observations: Number of Variables : 5 Degrees of Freedom : 1407

Vari	iable Coefi	ficient Std	.Error z-Sta	tistic Proba	ability
	DV90 0.4 PS90 2.0 RD90 5.9 UE90 -1.3	1918910 0.11 0457096 0.21 0038177 0.34 1407677 0.14	249994 3.9 197392 9.3 489855 16.9 491515 -7.6	0.0 097152 0170837 0.0 4483826	0000000 0000831 0000000 0000000 0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

A1 = 'het'

In [43]: gm10b = pysal.spreg.GM_Endog_Error_Hom(y,xe,yend,q,w,A1='het', name_y=y_name,name_x=xe_names,name_yend=yend_names, name_q=q_names,name_w="south_q", name_ds="south.dbf")

Full listing

In [44]: print gm10b.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)

Data set : south.dbf Weights matrix : south_q

Dependent Variable: HR90
Mean dependent var: 9.5493
S.D. dependent var: 7.0389
Pseudo R-squared: 0.2820
N. of iterations: 1 Number of Observations: 1412 Number of Variables : 5 Degrees of Freedom : 1407

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	10.7456340	1.2965714	8.2877305	0.0000000
DV90	0.4927888	0.1257156	3.9198710	0.0000886
PS90	2.0357920	0.2211232	9.2065972	0.000000
RD90	5.8976659	0.3522831	16.7412669	0.0000000
UE90	-1.1375011	0.1507539	-7.5454198	0.0000000

lambda 0.2580216 0.0387024 6.6668084 0.0000000

Instrumented: UE90

Instruments: FH90, FP89, GI89

----- END OF REPORT -----

0.5 Practice

Since the spatial diagnostics for the Boston house price example (Chapter 5 practice) pointed to a spatial error alternative, estimate this specification by means of GM, GMM-het and GMM-hom. Compare the results and the inference. Feel free to experiment with the various options (number of iterations, etc.). To assess the effect of endogenous variables, use the south or natregimes data sets for one of the HR specifications (see Chapter 7 practice).

In []:

Chapter 9 - GM,GMM practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 9

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/boston.dbf','r')
In [4]: len(db)
Out[4]: 506
In [5]: db.header
Out[5]: ['POLY_ID',
         'ID',
         'TOWN',
         'TOWNNO',
         'TRACT',
         'LON',
         'LAT',
         'х',
         'y',
         'MEDV',
         'CMEDV',
         'CRIM',
         'ZN',
         'INDUS',
         'CHAS',
         'NOX',
         'RM',
         'AGE',
         'DIS',
         'RAD',
         'TAX',
         'PTRATIO',
         'B',
         'LSTAT']
In [6]: y_name = 'MEDV'
        y = np.array([db.by_col(y_name)]).T
```

```
In [7]: x_names = ['CRIM', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'LSTAT']
       x = np.array([db.by_col(var) for var in x_names]).T
In [8]: w = pysal.knnW_from_shapefile('data/boston.shp',
                                  k=4,idVariable='POLY_ID')
       w.transform = 'r'
In [9]: w.n
Out[9]: 506
0.2 GM
GM estimation (no inference for \lambda
In [10]: reg1 = pysal.spreg.GM_Error(y,x,w,name_y=y_name,name_x=x_names,
                       name_w="boston_k4",name_ds="boston.dbf")
In [11]: print reg1.summary
REGRESSION
SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES
______
Data set : boston.dbf Weights matrix : boston_k4
                                          Number of Observations:
                                                                      506
Dependent Variable : MEDV
Mean dependent var :
                     22.5328
                                          Number of Variables :
                                                                       8
                    9.1971
S.D. dependent var :
                                          Degrees of Freedom :
                                                                      498
Pseudo R-squared :
                      0.6563
          Variable Coefficient Std.Error z-Statistic Probability
                                                  3.0480840
          CONSTANT
                     13.2030606
                                    4.3315934
                                                                0.0023031
              AGE
                     -0.0439815
                                   0.0137959
                                                -3.1880025
                                                               0.0014326
                                                0.4193260 0.6749779

-3.5806686 0.0003427

-4.4442426 0.0000088

-7.5890133 0.0000000
              CHAS
                      0.3561344
                                   0.8493020
                     -0.0997814
             CRIM
                                   0.0278667
                                   0.2713816
              DIS
                     -1.2060859
                     -0.3884304
             LSTAT
                                   0.0511833
              NOX
                     -19.2017960
                                   4.6625597
                                                 -4.1182949
                                                                0.0000382
               RM
                     5.2655604
                                   0.3780721
                                                 13.9273967
                                                               0.0000000
            lambda
                      0.6194043
```

0.3 GMM

GMM estimation, heteroskedasticity

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HET)

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable : MEDV

Mean dependent var : 22.5328

S.D. dependent var : 9.1971

Pseudo R-squared : 0.6546 Number of Observations: 506 Number of Variables : 8 Degrees of Freedom : 498

Pseudo R-squared : 0.6546

N. of iterations : 1 Step1c computed : No

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT AGE CHAS CRIM DIS LSTAT NOX RM	13.3293495 -0.0447930 0.2680795 -0.0986761 -1.2035485 -0.3824789 -19.4566834 5.2668820 0.7319953	7.9502765 0.0143511 1.3168505 0.0378155 0.3259144 0.0897396 5.1702338 0.9616157 0.0516632	1.6765894 -3.1212345 0.2035763 -2.6094115 -3.6928361 -4.2620956 -3.7632115 5.4771174 14.1685990	0.0936228 0.0018009 0.8386847 0.0090698 0.0002218 0.0000203 0.0001677 0.0000000

-----END OF REPORT -------

GMM estimation, homoskedasticity

In [14]: reg3 = pysal.spreg.GM_Error_Hom(y,x,w,name_y=y_name,name_x=x_names, name_w="boston_k4",name_ds="boston.dbf")

In [15]: print reg3.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED LEAST SQUARES (HOM)

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable : MEDV
Mean dependent var : 22.5328
S.D. dependent var : 9.1971
Pseudo R-squared : 0.6563
N. of iterations : 1 Number of Observations: 506 Number of Variables : 8 Degrees of Freedom : 498

 Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	13.2024291	4.4531626	2.9647310	0.0030295
AGE	-0.0439774	0.0136983	-3.2104366	0.0013253
CHAS	0.3565845	0.8388698	0.4250772	0.6707804
CRIM	-0.0997870	0.0275156	-3.6265588	0.0002872
DIS	-1.2060960	0.2933683	-4.1112010	0.0000394
LSTAT	-0.3884606	0.0509103	-7.6303011	0.0000000

lambda	0.6914855	0.0311299	22.2129044	0.0000000
RM	5.2655520	0.3725242	14.1347915	0.0000000
NOX	-19.2005124	4.8708867	-3.9418926	0.0000808

In []:

In []:

Chapter 10 - ML Error

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 10 - ML Error in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey (c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu" **Basic Regression Setup** 0.10.1.1 Model Specification Creating arrays for y and x for south.dbf example data set Preliminaries, import numpy and pysal In [1]: %pylab inline Populating the interactive namespace from numpy and matplotlib In [2]: import numpy as np import pysal Basic Model In [3]: db = pysal.open(pysal.examples.get_path('south.dbf'),'r') $y_name = "HR90"$ y = np.array([db.by_col(y_name)]).T x_names = ["RD90","PS90","UE90","DV90"] x = np.array([db.by_col(var) for var in x_names]).T **Spatial Weights** Reading in the spatial weights In [4]: galw = pysal.open(pysal.examples.get_path("south_q.gal"),'r') w = galw.read() galw.close w.transform = 'r' Alternatively, creating from scratch

w.transform = 'r'

In [5]: w = pysal.queen_from_shapefile(pysal.examples.get_path("south.shp"),idVariable="FIPSNO")

0.2 ML Error - Method Full

```
In [10]: reg1 = pysal.spreg.ML_Error(y,x,w,name_y=y_name,name_x=x_names,name_w = "south_q",name_ds = "s
   Contents of the ML_Error object
In [11]: dir(reg1)
Out[11]: ['__doc__',
           '__init__',
           '__module__',
          '__summary',
           '_cache',
           'aic',
           'betas',
           'e_filtered',
           'epsilon',
           'get_x_lag',
           'k',
           'lam',
           'logll',
           'mean_y',
           'method',
           'n,
           'name_ds',
           'name_w',
           'name_x',
           'name_y',
           'pr2',
           'predy',
           'schwarz',
           'sig2',
           'sig2n',
           'sig2n_k',
           'std_err',
           'std_y',
           'summary',
           'title',
           'n,
           'utu',
           'vm',
           'vm1',
           'x',
           'y',
           'z_stat']
   Regression coefficients, with lambda as last one
In [12]: reg1.betas
Out[12]: array([[ 6.14922463],
                 [ 4.40242011],
                 [ 1.77837122],
                 [-0.3780731],
```

[0.48578576], [0.29907787]]) Lambda extracted

In [13]: reg1.betas[-1][0]

Out[13]: 0.29907786543300452

Lambda explicitly

In [14]: reg1.lam

Out[14]: 0.29907786543300452

Full listing

In [15]: print reg1.summary

REGRESSION

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL) ______

Data set : south
Weights matrix : south_q
Dependent Variable : HR90
Mean dependent var : 9.5493
7.0389
0.3058 Number of Observations: 1412 Number of Variables : Degrees of Freedom : 1407

32.407 Log likelihood : -4471.407 Sigma-square ML : S.E of regression : 5.693 Akaike info criterion: 8952.814 Schwarz criterion : 8979.078

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	6.1492246	1.0318747	5.9592748	0.000000
DV90	0.4857858	0.1217110	3.9913061	0.0000657
PS90	1.7783712	0.2131787	8.3421630	0.0000000
RD90	4.4024201	0.2355472	18.6901825	0.0000000
UE90	-0.3780731	0.0783853	-4.8232683	0.0000014
lambda	0.2990779	0.0378155	7.9088793	0.0000000

0.3 ML Error - Method Ord

In [17]: reg2 = pysal.spreg.ML_Error(y,x,w,method='ord',\

name_y=y_name,name_x=x_names,name_w = "south_q",name_ds =

Full listing of results

In [18]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = ORD)

south Weights matrix : south_q

:	HR90	Number of Observations	:	1412
:	9.5493	Number of Variables	:	5
:	7.0389	Degrees of Freedom	:	1407
:	0.3058			
:	32.407	Log likelihood	:	-4471.407
:	5.693	Akaike info criterion	:	8952.814
		Schwarz criterion	:	8979.078
	: : : : : : : : : : : : : : : : : : : :	: 9.5493 : 7.0389 : 0.3058 : 32.407	 9.5493 Number of Variables 7.0389 Degrees of Freedom 0.3058 32.407 Log likelihood 5.693 Akaike info criterion 	: 9.5493 Number of Variables : 7.0389 Degrees of Freedom : 0.3058 : 32.407 Log likelihood : 5.693 Akaike info criterion :

Variable Coefficient Std.Error z-Statistic CONSTANT 1.0318746 5.9592751 0.0000000 6.1492248 DV90 0.4857858 0.1217110 3.9913061 0.0000657 PS90 1.7783713 0.2131787 8.3421633 0.0000000 RD90 4.4024201 0.2355472 18.6901829 0.000000 UE90 -0.3780731 0.0783853 -4.8232686 0.0000014 0.0378155 0.2990778 7.9088781 0.0000000 lambda

----- END OF REPORT -----

In []:

In []:

Chapter 11 - Combo Model

November 5, 2015

```
This notebook contains the PySAL/spreg code for Chapter 11 - Combo Model
  in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL.
  by Luc Anselin and Sergio J. Rey
 (c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
     Basic Regression Setup
0.1
0.1.1 Exogenous Explanatory Variables Only
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
  Creating arrays for y and x for nat.dbf example data set
In [7]: db = pysal.open('data/natregimes.dbf','r')
        y_name = "HR60"
        y = np.array([db.by_col(y_name)]).T
        x_names = ["RD60","PS60","UE60","DV60","BLK60"]
        x = np.array([db.by_col(var) for var in x_names]).T
0.1.2 Exogenous and Endogenous Explanatory Variables
Creating arrays for yend, q and xe (exogenous only)
In [8]: yend_names = ["UE60"]
        yend = np.array([db.by_col(var) for var in yend_names]).T
        q_names = ["FH60","FP59","GI59"]
        q = np.array([db.by_col(var) for var in q_names]).T
        xe_names = ["RD60","PS60","DV60","BLK60"]
        xe = np.array([db.by_col(var) for var in xe_names]).T
0.1.3 Spatial Weights
Reading in the weights file
In [5]: galw = pysal.open(pysal.examples.get_path("nat_queen.gal"),'r')
        w = galw.read()
        galw.close
        w.transform = 'r'
  Alternatively, creating from scratch
```

In [12]: w = pysal.queen_from_shapefile('data/natregimes.shp',idVariable="FIPSNO")

w.transform = 'r'

0.2 GM Combo

Exogenous Only

```
In [13]: combo1 = pysal.spreg.GM_Combo(y,x,w=w,name_y=y_name,
                                  name_x=x_names,name_w="nat_queen",
                                  name_ds="NAT")
In [14]: dir(combo1)
Out[14]: ['__doc__',
          '__init__',
          '__module__',
          '__summary',
          '_cache',
          'betas',
           'e_filtered',
          'e_pred',
          'k',
           'mean_y',
           'n,
           'name_ds',
           'name_h',
           'name_q',
           'name_w',
          'name_x',
          'name_y',
          'name_yend',
          'name_z',
          'pr2',
           'pr2_e',
           'predy',
           'predy_e',
          'rho',
           'sig2',
           'std_err',
          'std_y',
          'summary',
           'title',
          'n,
          'vm',
          'x',
           ,y,,
           'yend',
           ,z,
          'z_stat']
   The coefficient estimates
In [15]: combo1.betas
Out[15]: array([[ 0.32411091],
                 [ 0.80866252],
                 [ 0.1056478 ],
                 [ 0.05279337],
                 [ 0.61577086],
```

```
[ 0.07096489],
[ 0.44950309],
[-0.1884266 ]])
```

The spatial autoregressive (lag) coefficient

In [16]: combo1.rho

Out[16]: array([0.44950309])

In [17]: combo1.betas[-2][0]

Out[17]: 0.44950309137162137

The spatial autoregressive error coefficient

In [18]: combo1.betas[-1][0]

Out[18]: -0.1884265986340069

Full listing

In [19]: print combo1.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES

Dependent Variable : HR60 Number of Observations: 3085
Mean dependent var : 4.5041 Number of Variables : 7
S.D. dependent var : 5.6497 Degrees of Freedom : 3078
Pseudo R-squared : 0.3333

Pseudo R-squared : 0.3333 Spatial Pseudo R-squared: 0.2854

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	0.3241109	0.2492294	1.3004522	0.1934460
BLK60	0.0709649	0.0105437	6.7305432	0.0000000
DV60	0.6157709	0.0980317	6.2813471	0.0000000
PS60	0.1056478	0.0843697	1.2522008	0.2104967
RD60	0.8086625	0.1400977	5.7721323	0.0000000
UE60	0.0527934	0.0308956	1.7087671	0.0874941
W_HR60	0.4495031	0.0652376	6.8902409	0.0000000
lambda	-0.1884266			

Instrumented: W_HR60

Instruments: W_BLK60, W_DV60, W_PS60, W_RD60, W_UE60

Exogenous and Endogenous explanatory variables

In [21]: print combo2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES

Data set : NAT

Data set : NAT
Weights matrix : nat_queen

Dependent Variable: HR60 Number of Observations: 3085
Mean dependent var: 4.5041 Number of Variables: 7
S.D. dependent var: 5.6497 Degrees of Freedom: 3078

Pseudo R-squared : 0.3328 Spatial Pseudo R-squared: 0.2812

BLK60 0.0703360 0.0108268 6.4964399 0.000000 DV60 0.5411868 0.1009337 5.3618036 0.000000 PS60 0.0636171 0.0911780 0.6977245 0.485349 RD60 0.6903681 0.1485215 4.6482704 0.000003	Variable	Coefficient	Std.Error	z-Statistic	Probability
W_HR60 0.4818021 0.0610440 7.8926964 0.000000 lambda -0.1901571	BLK60 DV60 PS60 RD60 UE60 W_HR60	0.0703360 0.5411868 0.0636171 0.6903681 0.1276860 0.4818021	0.0108268 0.1009337 0.0911780 0.1485215 0.0688647	6.4964399 5.3618036 0.6977245 4.6482704 1.8541563	0.8600079 0.0000000 0.0000001 0.4853495 0.0000033 0.0637168 0.0000000

Instrumented: UE60, W_HR60

'mean_y',

Instruments: FH60, FP59, GI59, W_BLK60, W_DV60, W_FH60, W_FP59, W_GI59,

W_PS60, W_RD60

0.3 GM Combo with Homoskedastic Errors

Exogenous only

```
In [22]: combo3 = pysal.spreg.GM_Combo_Hom(y,x,w=w,name_y=y_name,
                        name_x=x_names,name_w="nat_queen",
                        name_ds="NAT")
In [23]: dir(combo3)
Out[23]: ['__doc__',
          '__init__',
          '__module__',
          '__summary',
          '_cache',
          'betas',
          'e_filtered',
          'e_pred',
          'h',
          'hth',
          'iter_stop',
          'iteration',
          'k',
```

```
'n,
'name_ds',
'name_h',
'name_q',
'name_w',
'name_x',
'name_y',
'name_yend',
'name_z',
'pr2',
'pr2_e',
'predy',
'predy_e',
'nq'n,
'rho',
'sig2',
'std_err',
'std_y',
'summary',
'title',
'n,
'vm',
'x',
'y',
'yend',
,z,
'z_stat']
```

In [24]: print combo3.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)

Data set : NAT Weights matrix : nat_queen

Dependent Variable : HR60 Number of Observations: 3085
Mean dependent var : 4.5041 Number of Variables : 7
S.D. dependent var : 5.6497 Degrees of Freedom : 3078
Pseudo R-squared : 0.3333

Pseudo R-squared : 0.3333 Spatial Pseudo R-squared: 0.2854 N. of iterations : 1

CONSTANT 0.3239850 0.2364887 1.3699807 BLK60 0.0709563 0.0103216 6.8745561	tic Probability
DV60 0.6158838 0.0969425 6.3530825 PS60 0.1056035 0.0804090 1.3133301 RD60 0.8086410 0.1364000 5.9284534 UE60 0.0527400 0.0295573 1.7843270 W_HR60 0.4495694 0.0652271 6.8923719 lambda -0.2729182 0.1021516 -2.6716980	561 0.0000000 325 0.0000000 301 0.1890717 534 0.0000000 270 0.0743705 719 0.0000000

Instrumented: W_HR60

Instruments: W_BLK60, W_DV60, W_PS60, W_RD60, W_UE60

Exogenous and Endogenous explanatory variables

In [26]: print combo4.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)

_____,

Data set : NAT
Weights matrix : nat_queen

Dependent Variable: HR60 Number of Observations: 3085
Mean dependent var: 4.5041 Number of Variables: 7
S.D. dependent var: 5.6497 Degrees of Freedom: 3078
Pseudo R-squared: 0.3328

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	-0.0617938	0.3188267	-0.1938164	0.8463197
BLK60	0.0703134	0.0103875	6.7690271	0.0000000
DV60	0.5412369	0.0977580	5.5365000	0.0000000
PS60	0.0635952	0.0851447	0.7469065	0.4551200
RD60	0.6902893	0.1403672	4.9177379	0.0000009
UE60	0.1275722	0.0631550	2.0199859	0.0433848
W_HR60	0.4819608	0.0602250	8.0026721	0.0000000
lambda	-0.3104618	0.0989503	-3.1375537	0.0017036

Instrumented: UE60, W_HR60

Instruments: FH60, FP59, GI59, W_BLK60, W_DV60, W_FH60, W_FP59, W_GI59,

W_PS60, W_RD60

----- END OF REPORT -----

0.4 GM Combo with Heteroskedastic Errors

Exogenous only

In [28]: print combo5.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET)

Data set : NAT Weights matrix : nat_queen

Dependent Variable : HR60 Number of Observations: 3085 4.5041 Mean dependent var : Number of Variables : Degrees of Freedom : S.D. dependent var : 5.6497 3078

Pseudo R-squared : 0.3333 Spatial Pseudo R-squared: 0.2853

 $\mathbb{N}.$ of iterations : 1 Step1c computed : No

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT BLK60 DV60 PS60 RD60 UE60 W HR60	0.3264431 0.0711234 0.6136830 0.1064660 0.8090534 0.0537745 0.4482870	0.2256289 0.0122398 0.1071702 0.1016379 0.1532549 0.0287134 0.0719587	1.4468142 5.8108400 5.7262456 1.0475035 5.2791348 1.8728001 6.2297823	0.1479490 0.0000000 0.0000000 0.2948674 0.0000001 0.0610960 0.0000000
lambda	-0.4383045	0.0979689	-4.4739149	0.0000077

Instrumented: W_HR60

Instruments: W_BLK60, W_DV60, W_PS60, W_RD60, W_UE60

Exogenous and Endogenous explanatory variables

In [29]: combo6 = pysal.spreg.GM_Combo_Het(y,xe,yend=yend,q=q,w=w, name_y=y_name,name_x=xe_names, name_yend=yend_names,name_q=q_names, name_w="nat_queen",name_ds="NAT")

In [30]: print combo6.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET)

Data set Weights matrix : nat_queen

Dependent Variable : HR60 Number of Observations: 3085 Mean dependent var : 4.5041 S.D. dependent var : 5.6497 Pseudo R-squared : 0.3328 Number of Variables : 7 Degrees of Freedom : 3078

Spatial Pseudo R-squared: 0.2810

N. of iterations : Step1c computed : No

Variable	Coefficient	Std.Error	z-Statistic	Probability
 CONSTANT	-0.0622402	0.3447555	-0.1805344	0.8567330
BLK60	0.0707237	0.0111402	6.3485286	0.0000000
DV60	0.5402806	0.1044551	5.1723733	0.0000002
PS60	0.0639946	0.0894662	0.7152939	0.4744275

RD60	0.6916849	0.1395608	4.9561544	0.000007
UE60	0.1296600	0.0692818	1.8714876	0.0612775
W_HR60	0.4790831	0.0645823	7.4181827	0.0000000
lambda	-0.4644452	0.0926202	-5.0145116	0.0000005

Instrumented: UE60, W_HR60

Instruments: FH60, FP59, GI59, W_BLK60, W_DV60, W_FH60, W_FP59, W_GI59,

W_PS60, W_RD60

In []:

In []:

Chapter 12 - Regimes (OLS only)

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 12 - Regimes, Non-Spatial (OLS only) in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rev

```
(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved
```

```
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Regimes - Non-spatial - OLS

0.1.1 Baltimore Example

Basic Setup:

- import necessary modules (numpy and pysal)
- create a data object
- create variables as numpy arrays
- create regime variable (as list)
- create weights object(s) for diagnostics

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
        import pysal
```

create data object

```
In [3]: db = pysal.open('data/baltim.dbf','r')
```

read in dependent variable and turn into numpy array y

read in explanatory variables and turn into numpy array x

create k = 4 nearest neighbor weights and row-standardize

```
In [6]: w = pysal.knnW_from_shapefile("data/baltim.shp",k=4,idVariable='STATION')
        w.transform = 'r'
  use CITCOU as the regimes variable
In [7]: rvar = "CITCOU"
In [8]: regimes = db.by_col(rvar) # note: regimes is a list
In [9]: regimes[:4]
Out[9]: [0.0, 1.0, 1.0, 1.0]
      Regimes - Default Setting
0.2
With spatial diagnostics
In [10]: reg1 = pysal.spreg.OLS_Regimes(y,x,regimes,w=w,spat_diag=True,moran=True,
         name_y=y_name,name_x=x_names,name_regimes=rvar,name_w="baltim_k4",name_ds="baltim.dbf")
   Various regime settings
  Separate regressions by regime
In [11]: reg1.regime_err_sep
Out[11]: True
  Different constant term in each regime
In [12]: reg1.constant_regi
Out[12]: 'many'
   All coefficients are varying
In [13]: reg1.cols2regi
Out[13]: 'all'
  Note the warning for islands in each of the regimes
In [14]: print reg1.summary
REGRESSION
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME O
_____
                   : baltim.dbf
Data set
Weights matrix : baltim_k4
Dependent Variable : 0_PRICE
Mean dependent var : 31.5127
S.D. dependent var : 17.1598
Pagguared : 0.6120
                                                  Number of Observations:
                                                                                  83
                                                  Number of Variables :
                                                                                   10
                                                  Degrees of Freedom :
                                                                                    73
R-squared : 0.6129
Adjusted R-squared : 0.5652
                                                  F-statistic : 12.8414
Prob(F-statistic) : 5.381e-12
Sum squared residual: 9347.239
Sigma-square :
                         128.044
```

Log likelihood : -313.818 S.E. of regression : 11.316 Sigma-square ML : 112.617 S.E of regression ML: 10.6121 Akaike info criterion: 647.635 Schwarz criterion : 671.824

Variable	Coefficient	Std.Error	t-Statistic	Probability
O_CONSTANT	8.1507931	6.1763252	1.3196833	0.1910646
O_AC	12.5725010	4.4326770	2.8363224	0.0059022
O_AGE	0.0480813	0.0638384	0.7531721	0.4537687
O_FIREPL	7.4664199	3.8221968	1.9534368	0.0546005
O GAR	0.1065636	2.7762058	0.0383846	0.9694858
O_LOTSZ	0.1623115	0.0416145	3.9003550	0.0002116
O_NBATH	4.3791320	2.3582245	1.8569615	0.0673509
O_NROOM	1.2632458	1.4442233	0.8746887	0.3846120
O_PATIO	11.0843832	5.1221666	2.1640029	0.0337364
O_SQFT	-0.1616281	0.2387840	-0.6768797	0.5006216

Regimes variable: CITCOU

Warning: The regimes operation resulted in islands for regime 0.

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 19.164

TEST ON NORMALITY OF ERRORS

DF VALUE 2 3.619 TEST Jarque-Bera 0.1637

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF VALUE PROB
9 51.012 0.0000 **TEST** Breusch-Pagan test Koenker-Bassett test 36.345 0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	-0.0118	0.174	0.8619
Lagrange Multiplier (lag)	1	0.003	0.9551
Robust LM (lag)	1	0.003	0.9533
Lagrange Multiplier (error)	1	0.019	0.8900
Robust LM (error)	1	0.019	0.8893
Lagrange Multiplier (SARMA)	2	0.023	0.9888

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME 1

Data set : baltim.dbf Weights matrix : baltim.k4

Dependent Variable : 1_PRICE

Mean dependent var : 52.6036

S.D. dependent var : 23.5574

R-squared : 0.6994

Adjusted R-squared : 0.6765 Number of Observations: 128
Number of Variables : 10
Degrees of Freedom : 118

Sum squared residual:	21182.550	F-statistic	:	30.5123
Sigma-square :	179.513	Prob(F-statistic)	:	7.144e-27
S.E. of regression :	13.398	Log likelihood	:	-508.594
Sigma-square ML :	165.489	Akaike info criterion	:	1037.188
S.E of regression ML:	12.8642	Schwarz criterion	:	1065.708

Variable	Coefficient	Std.Error	t-Statistic	Probability
1_CONSTANT	12.6503298	8.2390546	1.5354104	0.1273601
1_AC	1.9482904	3.2564121	0.5982935	0.5507907
1_AGE	-0.2262105	0.1319972	-1.7137522	0.0892000
$1_{\sf FIREPL}$	11.4398872	3.2634124	3.5054985	0.0006452
$1_{\sf GAR}$	9.0685246	2.3854458	3.8016058	0.0002291
1_LOTSZ	0.0473774	0.0183697	2.5791121	0.0111337
$1_{ m NBATH}$	13.6724100	2.8027934	4.8781370	0.0000034
1_NROOM	1.8803799	1.7763784	1.0585469	0.2919683
1_PATIO	6.8221115	3.4400819	1.9831247	0.0496762
1_SQFT	0.1398581	0.2406887	0.5810746	0.5622984

Regimes variable: CITCOU

Warning: The regimes operation resulted in islands for regime 1.

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 25.769

TEST ON NORMALITY OF ERRORS

TEST ON NORMELT OF ENGLIS			
TEST	DF	VALUE	PROB
Jarque-Bera	2	124.888	0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF	VALUE	PROB
9	87.423	0.0000
9	27.036	0.0014
	9	9 87.423

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.1795	3.116	0.0018
Lagrange Multiplier (lag)	1	19.126	0.0000
Robust LM (lag)	1	11.439	0.0007
Lagrange Multiplier (error)	1	7.728	0.0054
Robust LM (error)	1	0.041	0.8398
Lagrange Multiplier (SARMA)	2	19.167	0.0001

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CONSTANT	1	0.191	0.6621
AC	1	3.731	0.0534
AGE	1	3.500	0.0614
FIREPL	1	0.625	0.4292
GAR	1	5.995	0.0143
LOTSZ	1	6.384	0.0115

NBATH	1	6.437	0.0112
NROOM	1	0.073	0.7875
PATIO	1	0.477	0.4897
SQFT	1	0.791	0.3739
Global test	10	68.382	0.0000

DIAGNOSTICS FOR GLOBAL SPATIAL DEPENDENCE

Residuals are treated as homos	skedastic	for the purpose	of these tests
TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.0895	2.520	0.0118
Lagrange Multiplier (lag)	1	15.683	0.0001
Robust LM (lag)	1	12.271	0.0005
Lagrange Multiplier (error)	1	3.783	0.0518
Robust LM (error)	1	0.371	0.5426
Lagrange Multiplier (SARMA)	2	16.054	0.0003

0.2.1 Regime Options

regime_err_sep = False - forced homoskedasticity

using k nearest neighbor weights

Number of Observations:

Number of Variables :

Degrees of Freedom :

211

20

191

In [16]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES

Data set : baltim.dbf
Weights matrix : baltim.k4
Dependent Variable : PRICE
Mean dependent var : 44.3072
S.D. dependent var : 23.6061

S.D. dependent var : 23.6061
R-squared : 0.7391
Adjusted R-squared : 0.7132
Sum squared residual: 30529.788

 Sum squared residual:
 30529.788
 F-statistic
 : 28.4795

 Sigma-square
 : 159.842
 Prob(F-statistic)
 : 1.261e-45

 S.E. of regression
 : 12.643
 Log likelihood
 : -824.216

 Sigma-square ML
 : 144.691
 Akaike info criterion
 : 1688.433

 S.E of regression ML:
 12.0288
 Schwarz criterion
 : 1755.470

Variable	Coefficient	Std.Error	t-Statistic	Probability
$O_CONSTANT$	8.1507931	6.9007315	1.1811491	0.2390121
O_AC	12.5725010	4.9525749	2.5385786	0.0119281
O_AGE	0.0480813	0.0713259	0.6741077	0.5010579
$O_{\mathtt{FIREPL}}$	7.4664199	4.2704930	1.7483742	0.0820059
$O_{ m GAR}$	0.1065636	3.1018203	0.0343552	0.9726298
0_LOTSZ	0.1623115	0.0464954	3.4909141	0.0005978

O_NBATH	4.3791320	2.6348149	1.6620264	0.0981478
O_NROOM	1.2632458	1.6136128	0.7828680	0.4346742
O_PATIO	11.0843832	5.7229332	1.9368360	0.0542408
O_SQFT	-0.1616281	0.2667904	-0.6058241	0.5453508
$1_CONSTANT$	12.6503298	7.7745361	1.6271492	0.1053540
1_AC	1.9482904	3.0728153	0.6340408	0.5268128
1_AGE	-0.2262105	0.1245552	-1.8161467	0.0709158
1_FIREPL	11.4398872	3.0794210	3.7149475	0.0002668
1_GAR	9.0685246	2.2509542	4.0287468	0.0000809
1_LOTSZ	0.0473774	0.0173340	2.7332108	0.0068612
$1_{\rm NBATH}$	13.6724100	2.6447717	5.1695994	0.000006
1_NROOM	1.8803799	1.6762261	1.1217937	0.2633585
1_PATIO	6.8221115	3.2461298	2.1016139	0.0368984
1_SQFT	0.1398581	0.2271186	0.6157931	0.5387642

Regimes variable: CITCOU

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 25.769

TEST ON NORMALITY OF ERRORS

 TEST
 DF
 VALUE
 PROB

 Jarque-Bera
 2
 150.287
 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST	DF	VALUE	PROB
Breusch-Pagan test	19	148.626	0.0000
Koenker-Bassett test	19	50.961	0.0001

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.0895	2.415	0.0157
Lagrange Multiplier (lag)	1	15.683	0.0001
Robust LM (lag)	1	12.271	0.0005
Lagrange Multiplier (error)	1	3.783	0.0518
Robust LM (error)	1	0.371	0.5426
Lagrange Multiplier (SARMA)	2	16.054	0.0003

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CONSTANT	1	0.187	0.6651
AC	1	3.323	0.0683
AGE	1	3.652	0.0560
FIREPL	1	0.570	0.4504
GAR	1	5.468	0.0194
LOTSZ	1	5.365	0.0205
NBATH	1	6.197	0.0128
NROOM	1	0.070	0.7908
PATIO	1	0.420	0.5171
SQFT	1	0.740	0.3895
Global test	10	65.256	0.0000

constant_regi='one' - one global constant

with regime_err_sep=True (default), i.e. groupwise heteroskedasticity

In [17]: reg3 = pysal.spreg.OLS_Regimes(y,x,regimes,w=w,spat_diag=True,moran=True, constant_regi='one', name_y=y_name, name_x=x_names, name_regimes=rvar,name_w="baltim_k4",name_ds="baltim.dbf")

In [18]: print reg3.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)

Data set : baltim.dbf Weights matrix : baltim_k4

Dependent Variable : PRICE
Mean dependent var : 44.3072
S.D. dependent var : 23.6061
R-squared : 0.7389 Number of Observations: 211 Number of Variables : 19 Degrees of Freedom : 192

Adjusted R-squared : 0.7144

Variable	Coefficient	Std.Error	t-Statistic	Probability
0_AC	12.3629617	4.4713687	2.7649167	0.0062490
O_AGE	0.0415673	0.0630325	0.6594583	0.5103917
$O_{ extsf{FIREPL}}$	7.6921977	3.8431499	2.0015347	0.0467427
O_GAR	0.3583408	2.7571385	0.1299684	0.8967275
O_LOTSZ	0.1631251	0.0421765	3.8676805	0.0001504
$O_{-}NBATH$	4.2585971	2.3765053	1.7919577	0.0747144
O_NROOM	0.9732288	1.3069987	0.7446287	0.4574066
O_PATIO	11.1805981	5.1917191	2.1535445	0.0325226
O_SQFT	-0.1448928	0.2392109	-0.6057117	0.5454216
1_AC	1.9770250	3.2167442	0.6146044	0.5395437
1_AGE	-0.2085209	0.1240057	-1.6815427	0.0942834
1_FIREPL	11.3783766	3.2212699	3.5322642	0.0005160
1_GAR	8.9112047	2.3293499	3.8256187	0.0001763
1_LOTSZ	0.0472602	0.0181477	2.6041969	0.0099293
$1_{ m NBATH}$	13.9019236	2.7192012	5.1125027	0.0000008
1_NROOM	2.3460009	1.3965542	1.6798496	0.0946130
1_PATIO	6.6782440	3.3829757	1.9740739	0.0498074
1_SQFT	0.1226495	0.2345384	0.5229399	0.6016190
$_{\tt Global_CONSTANT}$	9.8248121	4.9652501	1.9787144	0.0492779

Regimes variable: CITCOU

Warning: Residuals treated as homoskedastic for the purpose of diagnostics.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.0854	2.319	0.0204
Lagrange Multiplier (lag)	1	15.213	0.0001
Robust LM (lag)	1	12.214	0.0005
Lagrange Multiplier (error)	1	3.437	0.0638
Robust LM (error)	1	0.438	0.5081
Lagrange Multiplier (SARMA)	2	15.651	0.0004

REGIMES DIAGNOSTICS - CHOW TEST VARIABLE DF VALUE PROB AC 1 3.563 0.0591 AGE 1 3.446 0.0634 FIREPL 1 0.543 0.4610 1 5.799 0.0160 GAR 6.371 LOTSZ 1 0.0116 NBATH 1 7.292 0.0069 0.3602 NROOM 1 0.837 PATIO 1 0.530 0.4666 SQFT 1 0.655 0.4182 Global test 9 68.189 0.0000

with regime_err_sep=False, i.e. homoskedasticity

In [20]: print reg4.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES

144.833

Data set : baltim.dbf Weights matrix : baltim_k4

Sigma-square ML :

Dependent Variable : PRICE Number of Observations: 211 Number of Variables : Mean dependent var : 44.3072 19 S.D. dependent var : 23.6061 Degrees of Freedom : 192 R-squared 0.7389 Adjusted R-squared : 0.7144 Sum squared residual: 30559.735 F-statistic 30.1790 159.165 Prob(F-statistic) : 2.471e-46 Log likelihood : -824.320 Sigma-square S.E. of regression : 12.616

S.E of regression ML: 12.0347 Schwarz criterion : 1750.325

Akaike info criterion: 1686.640

Variable	Coefficient	Std.Error	t-Statistic	Probability
 O_AC	12.3243111	4.9088481	2.5106320	0.0128770
O_AGE	0.0403658	0.0689162	0.5857223	0.5587500
O_FIREPL	7.7338436	4.2166122	1.8341368	0.0681815
O_GAR	0.4047824	3.0179268	0.1341260	0.8934435
0_LOTSZ	0.1632751	0.0463437	3.5231374	0.0005330
O_NBATH	4.2363638	2.6085499	1.6240302	0.1060099
O_NROOM	0.9197336	1.4019826	0.6560236	0.5125943
O_PATIO	11.1983454	5.7047622	1.9629820	0.0510926
O_SQFT	-0.1418060	0.2622738	-0.5406791	0.5893554
1_AC	1.9738848	3.0657377	0.6438531	0.5204390
1 AGE	-0.2104541	0.1188647	-1.7705350	0.0782249

$1_{\sf FIREPL}$	11.3850987	3.0703001	3.7081388	0.0002732
$1_{\sf GAR}$	8.9283971	2.2228329	4.0166749	0.0000846
1_LOTSZ	0.0472730	0.0172956	2.7332401	0.0068575
1_NBATH	13.8768417	2.5967453	5.3439364	0.0000003
	2.2951164	1.3724545	1.6722714	0.0960996
_	6.6939663	3.2257527	2.0751641	0.0393043
	0.1245301	0.2238656		0.5786729
_Global_CONSTANT				0.0505449
Regimes variable: CITCOU				
_				
REGRESSION DIAGNOSTICS				
MULTICOLLINEARITY CONDITION	N NUMBER	22.573		
TEST ON NORMALITY OF ERROF	o C			
TEST ON NORMALITY OF ERROR	DF	VALUE	PROB	
Jarque-Bera	2	144.878	0.0000	
DIAGNOSTICS FOR HETEROSKED	ASTICITY			
RANDOM COEFFICIENTS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
TEST	DF	VALUE	PROB	
Breusch-Pagan test	18	147.991	0.0000	
Koenker-Bassett test	18	51.428	0.0000	
DIAGNOSTICS FOR SPATIAL DE	EPENDENCE.			
TEST	MI/DF	VALUE	PROB	
Moran's I (error)	0.0854	2.319	0.0204	
Lagrange Multiplier (lag)		15.009	0.0001	
Robust LM (lag)	1	11.987	0.0005	
Lagrange Multiplier (error	r) 1	3.437	0.0638	
Robust LM (error)	1	0.415	0.5195	
Lagrange Multiplier (SARMA	1) 2	15.424	0.0004	
REGIMES DIAGNOSTICS - CHOW	I TEST			
VARIABLE	DF	VALUE	PROB	
AC	1	3.205	0.0734	
AGE	1	3.577	0.0586	
FIREPL	1	0.493	0.4827	
GAR	1	5.340	0.0208	
LOTSZ	1	5.502	0.0190	
NBATH	1	7.021	0.0081	
NROOM	1	0.810	0.3681	
PATIO	1	0.474	0.4911	
SQFT	1	0.613	0.4336	
Global test	9	65.345	0.0000	
GIODAI test				
	END OF	REFURI ======		==== = =

cols2regi – specifying variable specific regimes

set up the list with True for regimes, False for constant across regimes follow the order in which the x array has been created NROOM, NBATH, PATIO, FIREPL, AC, GAR, AGE, LOTSZ, SQFT only NBATH, GAR and LOTSZ vary

In [21]: colsvari = [False,True,False,False,True,False,True,False]

must set constant_regi='one' to keep constant from varying across regimes - not included in cols2regi

with default regime_err_sep = True, k nearest neighbor weights

In [22]: reg5 = pysal.spreg.OLS_Regimes(y,x,regimes,w=w,spat_diag=True,moran=True, constant_regi='one',cols2regi=colsvari,

name_y=y_name,name_x=x_names,

name_regimes=rvar,name_w="baltim_k4",name_ds="baltim.dbf")

In [23]: print reg5.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)

Data set : baltim.dbf
Weights matrix : baltim.k4
Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 13
S.D. dependent var : 23.6061 Degrees of Freedom : 198
R-squared : 0.7288

R-squared : 0.7288 Adjusted R-squared : 0.7123

	Variable	Coefficient	Std.Error	t-Statistic	Probability
_	${\sf O_GAR}$	-0.5338910	2.7346384	-0.1952328	0.8454109
	O_LOTSZ	0.1442208	0.0388247	3.7146643	0.0002646
	O_NBATH	3.1935950	1.8607269	1.7163158	0.0876682
	1_GAR	8.8076244	2.1915833	4.0188408	0.0000831
	1_LOTSZ	0.0425182	0.0173812	2.4462143	0.0153096
	$1_{ m NBATH}$	14.3810934	2.1949150	6.5520047	0.0000000
	$_{ t Global_CONSTANT}$	10.9182891	4.8772065	2.2386358	0.0262928
	$_{ t Global_AC}$	6.1789275	2.4375839	2.5348573	0.0120226
	$_{ t Global_AGE}$	-0.0365910	0.0534059	-0.6851498	0.4940507
	$_{ t Global_FIREPL}$	10.1857847	2.4360365	4.1812940	0.0000435
	$_{ t Global_NR00M}$	1.3115815	1.1169156	1.1742888	0.2416898
	_Global_PATIO	8.6281564	2.8072460	3.0735305	0.0024136
	_Global_SQFT	0.0523376	0.1658904	0.3154953	0.7527179

Regimes variable: CITCOU

Warning: Residuals treated as homoskedastic for the purpose of diagnostics.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.0842	2.225	0.0261
Lagrange Multiplier (lag)	1	15.959	0.0001
Robust LM (lag)	1	13.216	0.0003
Lagrange Multiplier (error)	1	3.343	0.0675
Robust LM (error)	1	0.600	0.4386
Lagrange Multiplier (SARMA)	2	16.559	0.0003

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE DF VALUE PROB

GAR	1	7.364	0.0067
LOTSZ	1	5.946	0.0147
NBATH	1	37.809	0.0000
Global test	3	59.755	0.0000

with regime_err_sep = False (homoskedasticity), k nearest neighbors

In [25]: print reg6.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES

Data set : baltim.dbf
Weights matrix : baltim.k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 13
S.D. dependent var : 23.6061 Degrees of Freedom : 198

R-squared : 0.7288
Adjusted R-squared : 0.7123
Sum squared residual: 31739.937

 Sum squared residual:
 31739.937
 F-statistic
 : 44.3338

 Sigma-square
 : 160.303
 Prob(F-statistic)
 : 1.532e-49

 S.E. of regression
 : 12.661
 Log likelihood
 : -828.317

 Sigma-square ML
 : 150.426
 Akaike info criterion
 : 1682.635

 S.E of regression ML:
 12.2648
 Schwarz criterion
 : 1726.209

Variable	Coefficient	Std.Error	t-Statistic	Probability
O_GAR	-0.6329806	2.9769198	-0.2126294	0.8318348
0_LOTSZ	0.1416988	0.0421173	3.3643857	0.0009211
O_NBATH	3.1414902	1.9529611	1.6085780	0.1093020
$1_{\rm GAR}$	8.7399064	2.1002731	4.1613191	0.0000472
1_LOTSZ	0.0425588	0.0166214	2.5604851	0.0111978
1_NBATH	14.2191980	2.1820910	6.5163178	0.0000000
$_{ t Global_CONSTANT}$	11.0645165	5.0453798	2.1929997	0.0294723
$_{ t Global_AC}$	5.6662011	2.4240823	2.3374623	0.0204140
$_{ t Global_AGE}$	-0.0488391	0.0563876	-0.8661322	0.3874660
$_{ t Global_FIREPL}$	10.5115191	2.4440989	4.3007749	0.0000267
$_{ t Global_NR00M}$	1.3482450	1.1497597	1.1726319	0.2423523
$_{ t Global_PATIO}$	8.3790398	2.7820285	3.0118454	0.0029353
$_{ t Global_SQFT}$	0.0734034	0.1685032	0.4356203	0.6635868

Regimes variable: CITCOU

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 22.081

TEST ON NORMALITY OF ERRORS

ILDI	DI.	VALUE	FILOD					
Jarque-Bera	2	179.995	0.0000					
DIAGNOSTICS FOR HETEROSKEDAST	DIAGNOSTICS FOR HETEROSKEDASTICITY							
RANDOM COEFFICIENTS								
TEST	DF	VALUE	PROB					
Breusch-Pagan test	12	162.258	0.0000					
Koenker-Bassett test	12	51.857	0.0000					
DIAGNOSTICS FOR SPATIAL DEPEN	DENCE							
TEST	MI/DF	VALUE	PROB					
Moran's I (error)	0.0840	2.220	0.0264					
Lagrange Multiplier (lag)	1	15.791	0.0001					
Robust LM (lag)	1	13.047	0.0003					
Lagrange Multiplier (error)	1	3.325	0.0682					
Robust LM (error)	1	0.581	0.4459					
Lagrange Multiplier (SARMA)	2	16.372	0.0003					
DEGINES DIAGNOSTICS SUOI TE	7.00							
REGIMES DIAGNOSTICS - CHOW TES		WAT III	מסמת					
VARIABLE	DF	VALUE	PROB					
GAR	1	6.859	0.0088					
LOTSZ	1	4.962	0.0259					
NBATH	1	35.148	0.0000					
Global test	3	57.519	0.0000					
	=== END OF	REPORT =====		======				

VALUE

PROB

DF

default is constant varies across regimes

In [27]: print reg7.summary

REGRESSION

TEST

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)

.....

Data set : baltim.dbf
Weights matrix : baltim_k4
Dependent Variable : PRICE

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 14
S.D. dependent var : 23.6061 Degrees of Freedom : 197

R-squared : 0.7289 Adjusted R-squared : 0.7110

Vari	lable Coeffic	ient Std.Err	or t-Statisti	c Probability
O_CONS'	TANT 11.400	 1349 5.305364	44 2.1487939	0.0328709
0	O_GAR -0.503	7883 2.752330	02 -0.1830406	0.8549544
0_L	OTSZ 0.144	1176 0.039017	78 3.6936367	0.0002863
O_N	BATH 2.923	3414 2.194576	68 1.3320753	0.1843744

$1_CONSTANT$	10.2791300	5.6240112	1.8277222	0.0691040
1_GAR	8.7912487	2.1942467	4.0064997	0.0000873
1_LOTSZ	0.0428939	0.0174692	2.4553981	0.0149398
$1_{\rm NBATH}$	14.6915880	2.5853633	5.6826009	0.0000000
$_{ t Global_AC}$	6.0650203	2.4776377	2.4479044	0.0152446
$_{\tt Global_AGE}$	-0.0400820	0.0552525	-0.7254330	0.4690473
$_{\tt Global_FIREPL}$	10.1648793	2.4460652	4.1556043	0.0000483
$_{\tt Global_NROOM}$	1.3433861	1.1284255	1.1904960	0.2352841
$_{\tt Global_PATIO}$	8.5584205	2.8253938	3.0291071	0.0027814
$_{\tt Global_SQFT}$	0.0543615	0.1664689	0.3265568	0.7443498

Regimes variable: CITCOU

Warning: Residuals treated as homoskedastic for the purpose of diagnostics.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.0829	2.223	0.0262
Lagrange Multiplier (lag)	1	16.023	0.0001
Robust LM (lag)	1	13.440	0.0002
Lagrange Multiplier (error)	1	3.241	0.0718
Robust LM (error)	1	0.658	0.4172
Lagrange Multiplier (SARMA)	2	16.681	0.0002

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CONSTANT	1	0.054	0.8160
GAR	1	7.216	0.0072
LOTSZ	1	5.830	0.0158
NBATH	1	14.378	0.0001
Global test	4	59.478	0.0000

0.3 Practice

Use the Boston example (see Chapter 5 notebook) with CHAS as the regime variable. Experiment with the different options. For example, using the results of the Chow test in the default setup for OLS regimes, let only those coefficient vary that are significant in the individual Chow tests.

In []:

Chapter 12 - Regime OLS practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 12 (OLS only)

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/boston.dbf','r')
In [4]: len(db)
Out[4]: 506
In [5]: db.header
Out[5]: ['POLY_ID',
         'ID',
         'TOWN',
         'TOWNNO',
         'TRACT',
         'LON',
         'LAT',
         'х',
         'y',
         'MEDV',
         'CMEDV',
         'CRIM',
         'ZN',
         'INDUS',
         'CHAS',
         'NOX',
         'RM',
         'AGE',
         'DIS',
         'RAD',
         'TAX',
         'PTRATIO',
         'B',
         'LSTAT']
In [6]: y_name = 'MEDV'
        y = np.array([db.by_col(y_name)]).T
```

```
In [7]: x_names = ['CRIM','NOX','RM','AGE','DIS','LSTAT']
         x = np.array([db.by_col(var) for var in x_names]).T
In [8]: rvar = "CHAS"
         regimes = db.by_col(rvar)
In [9]: w = pysal.knnW_from_shapefile('data/boston.shp',
                                           k=4,idVariable='POLY_ID')
         w.transform = 'r'
   Default regime regression
In [10]: reg1 = pysal.spreg.OLS_Regimes(y,x,regimes,w=w,spat_diag=True,moran=True,
          name_y=y_name,name_x=x_names,name_regimes=rvar,name_w="boston_k4",name_ds="boston.dbf")
In [11]: print reg1.summary
REGRESSION
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME O
______
Data set : boston.dbf
Weights matrix : boston_k4
Dependent Variable : 0_MEDV
                                                      Number of Observations:
                                                                                        471
Mean dependent var :
                                                     Number of Variables :
                           22.0938
                                                                                           7
S.D. dependent var :
                            8.8314
                                                     Degrees of Freedom :
                                                                                          464
R-squared
                            0.6815
Adjusted R-squared : 0.6774
                                                    F-statistic : 165.4969

Prob(F-statistic) : 6.533e-112

Log likelihood : -1424.335
Sum squared residual: 11673.935
Sigma-square : 25.159
S.E. of regression : 5.016
Sigma-square ML : 24.785
S.E of regression ML: 4.9785
                                                      Akaike info criterion: 2862.671
                                                      Schwarz criterion : 2891.755
            Variable Coefficient Std.Error t-Statistic Probability
_____

      8.1040354
      3.8968336
      2.0796462
      0.0381065

      -0.0257461
      0.0140762
      -1.8290484
      0.0680340

      -0.1237989
      0.0303482
      -4.0792867
      0.0000532

      -0.9839729
      0.1877386
      -5.2411850
      0.0000002

           O_CONSTANT
                O\_AGE
               O_CRIM
                O_DIS
                LSTAT -0.5310903 0.0547369 -9.7026084 0.0000000

0_NOX -10.3946003 3.7540335 -2.7689151 0.0058496

0_RM 5.1863159 0.4323591 11.9953890 0.0000000
              O_LSTAT
Regimes variable: CHAS
Warning: The regimes operation resulted in islands for regime 0.
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER
                                                47.618
TEST ON NORMALITY OF ERRORS
                                              VALUE
TEST
                                    DF
                                                                PROB
                                                546.616 0.0000
                                    2
Jarque-Bera
```

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST	DF	VALUE	PROB
Breusch-Pagan test	6	64.772	0.0000
Koenker-Bassett test	6	20.345	0.0024

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.4883	16.237	0.0000
Lagrange Multiplier (lag)	1	105.840	0.0000
Robust LM (lag)	1	0.028	0.8669
Lagrange Multiplier (error)	1	244.718	0.0000
Robust LM (error)	1	138.906	0.0000
Lagrange Multiplier (SARMA)	2	244.746	0.0000

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME 1

Data set : boston.dbf
Weights matrix : boston_k4

Number of Observations: Number of Variables : Degrees of Freedom : 7 28

Weights matrix : boston_k4

Dependent Variable : 1_MEDV

Mean dependent var : 28.4400

S.D. dependent var : 11.8166

R-squared : 0.7414

Adjusted R-squared : 0.6860

Sum squared residual: 1227.556

Sigma-square : 43.841

S.E. of regression : 6.621

Sigma-square ML : 35.073

S.E of regression ML: 5.9222 F-statistic : 13.3815 Prob(F-statistic) : 4.126e-07 Log likelihood : -111.918 Akaike info criterion: 237.836 Schwarz criterion : 248.723

 Variable	Coefficient	Std.Error	t-Statistic	Probability
 1_CONSTANT	57.0766870	21.4502496	2.6608868	0.0127561
1_AGE	0.0492828	0.1002633	0.4915339	0.6268801
1_CRIM	1.6986344	0.6470628	2.6251462	0.0138749
1_DIS	-1.5463540	2.4097200	-0.6417152	0.5262771
1_LSTAT	-1.0254282	0.3165284	-3.2396094	0.0030797
1_NOX	-48.4520409	14.6412959	-3.3092727	0.0025786
1_RM	1.4362819	2.1043742	0.6825221	0.5005170

Regimes variable: CHAS

Warning: The regimes operation resulted in islands for regime 1.

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 52.476

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB 0.056 0.9726 2 Jarque-Bera

DIAGNOSTICS FOR HETEROSKEDASTICITY

TEST	DF	VALUE	PROB
Breusch-Pagan test	6	17.560	0.0074
Koenker-Bassett test	6	19.414	0.0035

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.2619	2.304	0.0212
Lagrange Multiplier (lag)	1	12.889	0.0003
Robust LM (lag)	1	11.139	0.0008
Lagrange Multiplier (error)	1	2.024	0.1548
Robust LM (error)	1	0.274	0.6008
Lagrange Multiplier (SARMA)	2	13.163	0.0014

REGIMES DIAGNOSTICS - CHOW TEST

DF	VALUE	PROB
1	5.046	0.0247
1	0.549	0.4587
1	7.915	0.0049
1	0.054	0.8160
1	2.368	0.1238
1	6.340	0.0118
1	3.047	0.0809
7	30.223	0.0001
	1 1 1 1	1 5.046 1 0.549 1 7.915 1 0.054 1 2.368 1 6.340 1 3.047

DIAGNOSTICS FOR GLOBAL SPATIAL DEPENDENCE

Residuals are treated as homos	skedastic :	for the purpose of	these tests
TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.4478	16.208	0.0000
Lagrange Multiplier (lag)	1	168.223	0.0000
Robust LM (lag)	1	10.157	0.0014
Lagrange Multiplier (error)	1	233.376	0.0000
Robust LM (error)	1	75.311	0.0000
Lagrange Multiplier (SARMA)	2	243.533	0.0000

======= END OF REPORT ===================

Keeping AGE, DIS, LSTAT and RM constant and letting constant, CRIM and NOX vary order of variables in x is CRIM, NOX, RM, AGE, DIS, LSTAT

```
In [12]: colsvari = [True,True,False,False,False,False]
```

In [14]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable : MEDV

Mean dependent var : 22.5328

S.D. dependent var : 9.1971

R-squared : 0.6932 Number of Observations: 506 Number of Variables : 10 Degrees of Freedom : 496

Adjusted R-squared : 0.6876

Variable	Coefficient	Std.Error	t-Statistic	Probability
O_CONSTANT O_CRIM O_NOX 1_CONSTANT 1_CRIM 1_NOX _Global_AGE	9.1431225 -0.1227281 -10.7282290 27.0896561 2.0303936 -41.1760368 -0.0234270	3.8154187 0.0301084 3.7046976 7.1209694 0.6580158 11.3959164 0.0138239	2.3963615 -4.0762043 -2.8958447 3.8042091 3.0856305 -3.6132273 -1.6946805	0.0169281 0.0000533 0.0039483 0.0001600 0.0021447 0.0003333 0.0907637
$_{ t Global_DIS}$	-0.9944373	0.1860103	-5.3461400	0.000001
$_{ t Global_LSTAT}$	-0.5445706	0.0536013	-10.1596519	0.0000000
$_{ t Global_RM}$	5.0579970	0.4212336	12.0075822	0.0000000

Regimes variable: CHAS

Warning: Residuals treated as homoskedastic for the purpose of diagnostics.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Moran's I (error)	0.4475	15.935	0.0000
Lagrange Multiplier (lag)	1	162.290	0.0000
Robust LM (lag)	1	8.339	0.0039
Lagrange Multiplier (error)	1	233.065	0.0000
Robust LM (error)	1	79.114	0.0000
Lagrange Multiplier (SARMA)	2	241.404	0.0000

REGIMES DIAGNOSTICS - CHOW TEST

VARI.	ABLE	DF	VALUE	PROB
CONS	TANT	1	7.938	0.0048
	CRIM	1	10.672	0.0011
	NOX	1	6.806	0.0091
Global	test	3	20.205	0.0002

----- END OF REPORT -----

In []:

In []:

Chapter 13 - Regimes, Spatial (Lag only)

November 5, 2015

This notebook contains the PySAL/spreg code for Chapter 13 - Regimes, Spatial (Lag only) in Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. by Luc Anselin and Sergio J. Rey

```
(c) 2014 Luc Anselin and Sergio J. Rey, All Rights Reserved
```

```
In [1]: __author__ = "Luc Anselin luc.anselin@asu.edu"
```

0.1 Regimes, Spatial - Spatial Lag

0.1.1 Baltimore Example

Basic Setup:

- import necessary modules (numpy and pysal)
- create a data object
- create variables as numpy arrays
- create regime variable (as list)
- create weights object(s) for diagnostics

```
In [1]: %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: import numpy as np
import pysal
create data object
```

```
In [3]: db = pysal.open('data/baltim.dbf','r')
```

read in dependent variable and turn into numpy array y

read in explanatory variables and turn into numpy array x

create k=4 nearest neighbor weights and row-standardize

```
In [6]: w = pysal.knnW_from_shapefile("data/baltim.shp",k=4,idVariable='STATION')
     w.transform = 'r'
```

creating a regimes variable

```
In [7]: rvar = "CITCOU"
    regimes = db.by_col(rvar) # note: regimes is a list
```

0.2 Spatial Lag Regimes (IV)

0.2.1 Default setup (with spatial diagnostics)

$regime_lag_sep = False and <math>regime_err_sep = True$

one spatial lag coefficient and heteroskedasticity (White standard errors)

In [9]: print reg1.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES

Data set : baltim.dbf
Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 21
S.D. dependent var : 23.6061 Degrees of Freedom : 190

Pseudo R-squared : 0.7609 Spatial Pseudo R-squared: 0.7511

White Standard Errors

Variable	Coefficient	Std.Error	z-Statistic	Probability
O_CONSTANT	-7.9106111	11.1708343	-0.7081486	0.4788530
O_AC	11.4234750	2.8020744	4.0767921	0.0000457
O_AGE	0.0816839	0.0894822	0.9128510	0.3613209
O_FIREPL	4.2998763	4.3728174	0.9833194	0.3254502
$O_{-}GAR$	0.0476798	2.8106893	0.0169637	0.9864655
0_LOTSZ	0.1097621	0.0494611	2.2191611	0.0264758
O_NBATH	4.3881697	2.3185401	1.8926434	0.0584053
O_NROOM	2.3011044	2.2304548	1.0316750	0.3022244
O_PATIO	11.7423138	5.2046237	2.2561312	0.0240624
O_SQFT	-0.1562391	0.3466908	-0.4506583	0.6522359
$1_{\tt CONSTANT}$	4.5831279	8.3669344	0.5477667	0.5838521
1_AC	2.0822932	3.2396167	0.6427591	0.5203804
1_AGE	-0.1704200	0.1395672	-1.2210611	0.2220629
1_FIREPL	8.8750302	2.8130485	3.1549510	0.0016053
$1_{-}GAR$	6.9821813	3.0976615	2.2540169	0.0241951
1_LOTSZ	0.0416225	0.0260264	1.5992443	0.1097663
$1_{ m NBATH}$	11.6968197	3.1909777	3.6655912	0.0002468
1_NROOM	0.9591934	1.5702331	0.6108605	0.5412919
1_PATIO	4.4690966	3.4572318	1.2926806	0.1961215
1_SQFT	0.1057631	0.2267528	0.4664246	0.6409116
$_{\tt Global_W_PRICE}$	0.3462294	0.0972955	3.5585333	0.0003729

Instrumented: _Global_W_PRICE

Instruments: O_W_AC, O_W_AGE, O_W_FIREPL, O_W_GAR, O_W_LOTSZ, O_W_NBATH,

O_W_NROOM, O_W_PATIO, O_W_SQFT, 1_W_AC, 1_W_AGE, 1_W_FIREPL,

1_W_GAR, 1_W_LOTSZ, 1_W_NBATH, 1_W_NROOM, 1_W_PATIO, 1_W_SQFT

Regimes variable: CITCOU

DIAGNOSTICS FOR SPATIAL DEPE TEST	NDENCE MI/DF	VALUE 0.990	PROB 0.3197	
Anselin-Kelejian Test	1	0.990	0.3197	
REGIMES DIAGNOSTICS - CHOW T	EST			
VARIABLE	DF	VALUE	PROB	
CONSTANT	1	0.911	0.3398	
AC	1	4.977	0.0257	
AGE	1	2.324	0.1274	
FIREPL	1	0.743	0.3886	
GAR	1	2.741	0.0978	
LOTSZ	1	1.684	0.1944	
NBATH	1	3.560	0.0592	
NROOM	1	0.249	0.6176	
PATIO	1	1.375	0.2410	
SQFT	1	0.397	0.5289	
Global test	10	38.732	0.0000	
======================================				

0.2.2 Constant Lag Coefficient, Homoskedasticity

regime_lag_sep = False and regime_err_sep = False

In [11]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES

Data set : baltim.dbf Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 21
S.D. dependent var : 23.6061 Degrees of Freedom : 190

S.D. dependent var : 23.6061
Pseudo R-squared : 0.7609
Spatial Pseudo R-squared: 0.7511

Variable Coefficient Std.Error z-Statistic Probability -----

 -7.9106111
 7.1357915
 -1.1085822

 11.4234750
 4.5180780
 2.5283926

 0.0816839
 0.0653582
 1.2497887

 O_CONSTANT 0.2676105 2.5283926 0.0114586 1.2497887 0.2113768 O_AC O_AGE O_FIREPL 4.2998763 3.9468124 1.0894555 0.2759531 O_GAR 0.0476798 2.8256726 0.0168738 0.9865373 2.5075473 0.1097621 0.0437727 O_LOTSZ 0.0121572 O_NBATH 4.3881697 2.4002213 1.8282354 0.0675142

 1.5484722
 0.1215086

 2.2515478
 0.0243509

 -0.6428561
 0.5203175

 O_NROOM 2.3011044 1.4860482 O_PATIO 11.7423138 5.2152186 -0.1562391 0.2430390 O_SQFT 1_CONSTANT 4.5831279 7.2825586 0.6293293 0.5291335

1_AC	2.0822932	2.7993648	0.7438449	0.4569703
1_AGE	-0.1704200	0.1140699	-1.4939970	0.1351764
1_FIREPL	8.8750302	2.8565945	3.1068569	0.0018909
1_GAR	6.9821813	2.0969242	3.3297252	0.0008693
1_LOTSZ	0.0416225	0.0158369	2.6281958	0.0085839
1_NBATH	11.6968197	2.4448284	4.7843111	0.0000017
1_NROOM	0.9591934	1.5392131	0.6231713	0.5331720
1_PATIO	4.4690966	2.9981975	1.4905945	0.1360680
1_SQFT	0.1057631	0.2070209	0.5108812	0.6094343
$_{\tt Global_W_PRICE}$	0.3462294	0.0727891	4.7566105	0.0000020

Instrumented: _Global_W_PRICE

Instruments: O_W_AC, O_W_AGE, O_W_FIREPL, O_W_GAR, O_W_LOTSZ, O_W_NBATH,

 $\hbox{\tt O_W_NROOM, O_W_PATIO, O_W_SQFT, 1_W_AC, 1_W_AGE, 1_W_FIREPL, }$

1_W_GAR, 1_W_LOTSZ, 1_W_NBATH, 1_W_NROOM, 1_W_PATIO, 1_W_SQFT

Regimes variable: CITCOU

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Anselin-Kelejian Test	1	0.990	0.3197

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CONSTANT	1	1.687	0.1939
AC	1	3.087	0.0789
AGE	1	3.713	0.0540
FIREPL	1	0.909	0.3403
GAR	1	3.887	0.0487
LOTSZ	1	2.170	0.1408
NBATH	1	4.550	0.0329
NROOM	1	0.386	0.5343
PATIO	1	1.456	0.2275
SQFT	1	0.673	0.4119
Global test	10	42.108	0.0000

0.2.3 Different Lag Coefficient - Heteroskedasticity

regime_lag_sep = True and regime_err_sep = True

In [13]: print reg3.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES ESTIMATION - REGIME O

Data set : baltim.dbf
Weights matrix : baltim_k4

Dependent Variable : 0_PRICE Number of Observations: 83
Mean dependent var : 31.5127 Number of Variables : 11

Degrees of Freedom : 72

S.D. dependent var : 17.1598 Pseudo R-squared : 0.6074 Spatial Pseudo R-squared: 0.6097

Variable	Coefficient	Std.Error	z-Statistic	Probability
O_CONSTANT	3.5115654	8.0774135	0.4347388	0.6637520
$O_{-}AC$	12.1021336	4.2247793	2.8645599	0.0041759
O_AGE	0.0536825	0.0606711	0.8848118	0.3762581
O_FIREPL	6.7001786	3.7261107	1.7981695	0.0721502
O_GAR	-0.0778926	2.6314990	-0.0296001	0.9763860
O_LOTSZ	0.1466405	0.0436008	3.3632565	0.0007703
O_NBATH	4.5436972	2.2361256	2.0319508	0.0421586
O_NROOM	1.5804082	1.4165268	1.1156924	0.2645538
O_PATIO	11.2170868	4.8404878	2.3173464	0.0204849
O_{-} SQFT	-0.1815703	0.2268049	-0.8005573	0.4233880
O_W_PRICE	0.1158306	0.1394951	0.8303560	0.4063376

Instrumented: O_W_PRICE

Instruments: O_W_AC, O_W_AGE, O_W_FIREPL, O_W_GAR, O_W_LOTSZ, O_W_NBATH,

O_W_NROOM, O_W_PATIO, O_W_SQFT

Regimes variable: CITCOU

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 0.473 0.4 0.4916

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES ESTIMATION - REGIME 1

Data set : baltim.dbf
Weights matrix : baltim_k4

128 Dependent Variable : 1_PRICE
Mean dependent var : 52.6036
S.D. dependent var : 23.5574
Pseudo R-squared : 0.7521 Number of Observations:
Number of Variables :
Degrees of Freedom : Number of Ubservations: 128
Number of Variables : 11
Degrees of Freedom : 117

Spatial Pseudo R-squared: 0.7272

Variable	Coefficient	Std.Error	z-Statistic	Probability
1_CONSTANT	4.7259639	7.4124347	0.6375724	0.5237521
1_AC	1.1979943	2.8447583	0.4211234	0.6736650
1_AGE	-0.2141868	0.1151314	-1.8603687	0.0628334
1_FIREPL	8.3104564	2.9354673	2.8310506	0.0046395
1_GAR	7.3539573	2.1171974	3.4734396	0.0005138
1_LOTSZ	0.0444901	0.0160317	2.7751414	0.0055178
1_NBATH	11.0543992	2.5172425	4.3914716	0.0000113
1_NROOM	1.2158803	1.5564972	0.7811645	0.4347057
1_PATIO	3.8386833	3.0773523	1.2473981	0.2122516
1_SQFT	0.1181056	0.2099339	0.5625846	0.5737178
1_W_PRICE	0.3460901	0.0797089	4.3419243	0.0000141

Instrumented: 1_W_PRICE

Instruments: 1_W_AC, 1_W_AGE, 1_W_FIREPL, 1_W_GAR, 1_W_LOTSZ, 1_W_NBATH,

1_W_NROOM, 1_W_PATIO, 1_W_SQFT

Regimes variable: CITCOU

Warning: The regimes operation resulted in islands for regime 1.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Anselin-Kelejian Test	1	0.042	0.8375

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CONSTANT	1	0.012	0.9118
AC	1	4.583	0.0323
AGE	1	4.237	0.0396
FIREPL	1	0.115	0.7343
GAR	1	4.842	0.0278
LOTSZ	1	4.835	0.0279
NBATH	1	3.739	0.0532
NROOM	1	0.030	0.8625
PATIO	1	1.655	0.1983
SQFT	1	0.940	0.3322
W_PRICE	1	2.054	0.1518
lobal test	11	41.450	0.0000

0.3 Hybrid models

0.3.1 One Global Constant

constant_regi='one'

In [14]: reg5 = pysal.spreg.GM_Lag_Regimes(y,x,regimes,w=w,spat_diag=True, constant_regi='one', cores=False, name_y=y_name, name_x=x_names,name_regimes=rvar,name_w="baltim_k4",name_ds="baltim.dbf")

In [15]: print reg5.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES _____

Data set : baltim.dbf Weights matrix : baltim_k4

Dependent Variable : PRICE
Mean dependent var : 44.3072
S.D. dependent var : 23.6061
Pseudo R-squared : 0.7595 Number of Observations: 211 Number of Variables : 20 Degrees of Freedom : 191

Spatial Pseudo R-squared: 0.7517

White Standard Errors

 Variable	Coefficient	Std.Error	z-Statistic	Probability
 O AC	10.8305600	2.6406091	4.1015386	0.0000410

O_AGE	0.0590564	0.0879669	0.6713475	0.5019992
O_FIREPL	5.2053119	4.1505682	1.2541203	0.2097983
O_{GAR}	0.8472330	2.4770299	0.3420358	0.7323239
0_LOTSZ	0.1155147	0.0474209	2.4359445	0.0148530
O_NBATH	4.0065534	2.1938432	1.8262715	0.0678094
O_NROOM	1.3214078	1.6595792	0.7962306	0.4258980
O_PATIO	12.0066771	5.1942737	2.3115218	0.0208040
0_SQFT	-0.1036572	0.3555538	-0.2915372	0.7706405
1_AC	2.1424985	3.2823072	0.6527416	0.5139229
1_AGE	-0.1317404	0.1375002	-0.9581109	0.3380068
1_FIREPL	8.8840193	2.8091612	3.1625168	0.0015641
1_GAR	6.7344280	3.0925902	2.1776012	0.0294357
1_LOTSZ	0.0416920	0.0259131	1.6089145	0.1076350
$1_{ m NBATH}$	12.3620424	3.1066516	3.9792176	0.0000691
1_NROOM	2.1219371	1.5752501	1.3470478	0.1779649
1_PATIO	4.2694651	3.4803283	1.2267420	0.2199196
1_SQFT	0.0669139	0.2241789	0.2984843	0.7653335
$_{\tt Global_CONSTANT}$	-1.6461745	7.3712409	-0.2233239	0.8232834
$_{\tt Global_W_PRICE}$	0.3252752	0.1002870	3.2434437	0.0011809

Instrumented: _Global_W_PRICE

Instruments: O_W_AC, O_W_AGE, O_W_FIREPL, O_W_GAR, O_W_LOTSZ, O_W_NBATH,

MI/DE

O_W_NROOM, O_W_PATIO, O_W_SQFT, 1_W_AC, 1_W_AGE, 1_W_FIREPL,

1_W_GAR, 1_W_LOTSZ, 1_W_NBATH, 1_W_NROOM, 1_W_PATIO, 1_W_SQFT

VALIIE

PROR

Regimes variable: CITCOU

TEST

DIAGNOSTICS FOR SPATIAL DEPENDENCE

IESI	HIT/ DF	VALUE	FRUD
Anselin-Kelejian Test	1	1.031	0.3098
DEGINES DIAGNOSTICS SUCL	PDQ III		
REGIMES DIAGNOSTICS - CHOW T	IESI		
VARIABLE	DF	VALUE	PROB
AC	1	4.476	0.0344
AGE	1	1.560	0.2117
FIREPL	1	0.516	0.4726
GAR	1	2.265	0.1323
LOTSZ	1	2.155	0.1421
NBATH	1	5.676	0.0172
NROOM	1	0.248	0.6183
PATIO	1	1.553	0.2127
SQFT	1	0.167	0.6828
Global test	9	33.636	0.0001

0.3.2 Fixed and Varying Coefficients

Hybrid models with cols2regi

set up the list with True for regimes, False for constant across regimes follow the order in which the x array has been created NROOM, NBATH, PATIO, FIREPL, AC, GAR, AGE, LOTSZ, SQFT only NBATH and PATIO vary

In [16]: colsvari = [False,True,True,False,False,False,False,False,False]

In [17]: reg6 = pysal.spreg.GM_Lag_Regimes(y,x,regimes,w=w,spat_diag=True,

constant_regi='one',cols2regi=colsvari,name_y=y_name,
name_x=x_names,name_regimes=rvar,name_w="baltim_k4",name_ds="baltim.dbf")

In [18]: print reg6.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES

Data set : baltim.dbf
Weights matrix : baltim_k4

Dependent Variable : PRICE Number of Observations: 211
Mean dependent var : 44.3072 Number of Variables : 13
S.D. dependent var : 23.6061 Degrees of Freedom : 198
Pseudo R-squared : 0.7459

Pseudo R-squared : 0.7459 Spatial Pseudo R-squared: 0.7356

White Standard Errors

Variable Coefficient Std.Error z-Statistic Probability -----O_NBATH 4.1276399 1.7139905 2.4082047 0.0160312

 1.7139905
 2.4082047
 0.0160312

 4.6526505
 2.7824791
 0.0053945

 2.5909710
 4.4184044
 0.0000099

 3.6356118
 1.2276090
 0.2195938

 6.6995390
 -0.3914632
 0.6954549

 2.4862269
 2.0591888
 0.0394762

 0.0895005
 0.0611088
 0.9512725

 12.9459029 O_PATIO 1_NBATH 11.4479575 4.4631096 1_PATIO _Global_CONSTANT _Global_AC -2.6226230 5.1196107 _Global_AGE 0.0054693 _Global_FIREPL 7.8224574 2.3564903 3.3195373 0.0009017 _Global_GAR 4.1538938 2.2214006 1.8699436 0.0614917

Instrumented: _Global_W_PRICE

Instruments: O_W_AC, O_W_AGE, O_W_FIREPL, O_W_GAR, O_W_LOTSZ, O_W_NBATH,

O_W_NROOM, O_W_PATIO, O_W_SQFT, 1_W_AC, 1_W_AGE, 1_W_FIREPL,

1_W_GAR, 1_W_LOTSZ, 1_W_NBATH, 1_W_NROOM, 1_W_PATIO, 1_W_SQFT

Regimes variable: CITCOU

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 2.647 0.1038

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
NBATH	1	22.672	0.0000
PATIO	1	2.192	0.1387
Global test	2	23.284	0.0000

0.4 Practice

As for Chapter 12, we will use the Boston example with CHAS as the regime variable. Experiment with the different options for fixed and varying spatial lag coefficient, and with hybrid specifications (some coefficients fixed, some varying).

In []:

Chapter 13 - Regime Spatial Lag practice solutions

November 5, 2015

0.1 Solutions to Practice Example Chapter 13 (Spatial Lag only)

```
In [1]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]: import numpy as np
        import pysal
In [3]: db = pysal.open('data/boston.dbf','r')
In [4]: len(db)
Out[4]: 506
In [5]: db.header
Out[5]: ['POLY_ID',
         'ID',
         'TOWN',
         'TOWNNO',
         'TRACT',
         'LON',
         'LAT',
         'х',
         'y',
         'MEDV',
         'CMEDV',
         'CRIM',
         'ZN',
         'INDUS',
         'CHAS',
         'NOX',
         'RM',
          'AGE',
         'DIS',
         'RAD',
         'TAX',
         'PTRATIO',
         'B',
         'LSTAT']
In [6]: y_name = 'MEDV'
        y = np.array([db.by_col(y_name)]).T
```

```
In [7]: x_names = ['CRIM','NOX','RM','AGE','DIS','LSTAT']
        x = np.array([db.by_col(var) for var in x_names]).T
In [8]: rvar = "CHAS"
       regimes = db.by_col(rvar)
In [9]: w = pysal.knnW_from_shapefile('data/boston.shp',
                                        k=4,idVariable='POLY_ID')
       w.transform = 'r'
```

Default regime regression - one spatial lag coefficient

In [10]: reg1 = pysal.spreg.GM_Lag_Regimes(y,x,regimes,w=w,spat_diag=True,name_y=y_name, name_x=x_names,name_regimes=rvar,name_w="boston_k4",name_ds="boston.dbf")

In [11]: print reg1.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES -----

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable : MEDV
Mean dependent var : 22.5328 Number of Observations: 506 Number of Variables : 15 9.1971 S.D. dependent var : Degrees of Freedom : 491

Pseudo R-squared : 0.7509 Spatial Pseudo R-squared: 0.7019

White Standard Errors

Variable	Coefficient	Std.Error	z-Statistic	Probability
O_CONSTANT	1.9971534	6.4730209	0.3085350	0.7576753
O_AGE	-0.0257038	0.0148801	-1.7273909	0.0840975
O_CRIM	-0.1049741	0.0255258	-4.1124706	0.0000391
O_DIS	-0.8593821	0.1704692	-5.0412764	0.000005
O_LSTAT	-0.4388405	0.1159908	-3.7834062	0.0001547
O_NOX	-7.3824231	3.5670211	-2.0696326	0.0384868
O_RM	4.9734098	0.8047620	6.1799759	0.0000000
$1_{ t CONSTANT}$	52.7381380	22.4111206	2.3532129	0.0186120
1_AGE	0.0327541	0.0759571	0.4312184	0.6663095
1_CRIM	1.4064698	0.7682942	1.8306396	0.0671544
1_DIS	-1.6276184	2.2266950	-0.7309570	0.4648054
$1_{\tt LSTAT}$	-0.9440847	0.3188578	-2.9608333	0.0030681
1_NOX	-43.2094420	10.6978217	-4.0390879	0.0000537
1_RM	1.0185629	2.7944265	0.3644980	0.7154861
$_{ t Global_W_MEDV}$	0.1878789	0.0893492	2.1027493	0.0354877

Instrumented: _Global_W_MEDV

Instruments: O_W_AGE, O_W_CRIM, O_W_DIS, O_W_LSTAT, O_W_NOX, O_W_RM,

1_W_AGE, 1_W_CRIM, 1_W_DIS, 1_W_LSTAT, 1_W_NOX, 1_W_RM

Regimes variable: CHAS

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Anselin-Kelejian Test	1	29.464	0.0000
REGIMES DIAGNOSTICS - CHOW TES	ST		
VARIABLE	DF	VALUE	PROB
CONSTANT	1	4.753	0.0292
AGE	1	0.575	0.4481
CRIM	1	3.860	0.0494
DIS	1	0.119	0.7299
LSTAT	1	2.231	0.1353
NOX	1	10.586	0.0011
RM	1	1.883	0.1700
Global test	7	25.091	0.0007
	== END OF	F REPORT ======	

Different spatial lag coefficient by regime

In [13]: print reg2.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES ESTIMATION - REGIME O

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable : 0_MEDV Number of Observations: 471
Mean dependent var : 22.0938 Number of Variables : 8
S.D. dependent var : 8.8314 Degrees of Freedom : 463

S.D. dependent var : 8.8314
Pseudo R-squared : 0.6753
Spatial Pseudo R-squared: 0.6815

Variable	Coefficient	Std.Error	z-Statistic	Probability
O_CONSTANT	8.6803461	4.3732000	1.9848958	0.0471561
O_AGE	-0.0258782	0.0141152	-1.8333562	0.0667496
O_CRIM	-0.1259612	0.0312996	-4.0243655	0.0000571
O_DIS	-0.9955440	0.1922645	-5.1779932	0.0000002
O_LSTAT	-0.5404006	0.0634028	-8.5232917	0.0000000
O_NOX	-10.6753594	3.8826769	-2.7494844	0.0059689
O_RM	5.2162763	0.4452429	11.7155742	0.0000000
O_W_MEDV	-0.0200673	0.0685075	-0.2929213	0.7695823

Instrumented: O_W_MEDV

Instruments: O_W_AGE, O_W_CRIM, O_W_DIS, O_W_LSTAT, O_W_NOX, O_W_RM

Regimes variable: CHAS

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 46.984 0.0000

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES ESTIMATION - REGIME 1

Data set : boston.dbf Weights matrix : boston_k4

Dependent Variable: 1.MEDV
Mean dependent var: 28.4400
S.D. dependent var: 11.8166
Pseudo R-squared: 0.8519 Number of Observations: Number of Variables : Degrees of Freedom : 8 27

Spatial Pseudo R-squared: 0.8103

Variable	Coefficient	Std.Error	z-Statistic	Probability
1_CONSTANT 1_AGE 1_CRIM 1_DIS 1_LSTAT 1_NOX	44.8287190	14.7772808	3.0336244	0.0024164
	-0.0074283	0.0690503	-0.1075780	0.9143305
	0.2228650	0.5476273	0.4069647	0.6840339
	-2.4169243	1.6430422	-1.4710056	0.1412896
	-0.7484767	0.2230083	-3.3562731	0.0007900
	-29.1037026	10.8087813	-2.6925980	0.0070898
1_RM	1.2008034	1.4257911	0.8422015	0.3996752
1_W_MEDV	0.3584167	0.0797971	4.4915983	0.0000071

Instrumented: 1_W_MEDV

Instruments: 1_W_AGE, 1_W_CRIM, 1_W_DIS, 1_W_LSTAT, 1_W_NOX, 1_W_RM

Regimes variable: CHAS

Warning: The regimes operation resulted in islands for regime 1.

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST	MI/DF	VALUE	PROB
Anselin-Keleiian Test	1	1.307	0.2530

REGIMES DIAGNOSTICS - CHOW TEST

DIAGNUSTICS - CHUW	IESI		
VARIABLE	DF	VALUE	PROB
CONSTANT	1	5.502	0.0190
AGE	1	0.069	0.7935
CRIM	1	0.404	0.5248
DIS	1	0.738	0.3902
LSTAT	1	0.805	0.3695
NOX	1	2.575	0.1086
RM	1	7.227	0.0072
W_MEDV	1	12.951	0.0003
Global test	8	51.489	0.0000
	VARIABLE CONSTANT AGE CRIM DIS LSTAT NOX RM W_MEDV	CONSTANT 1 AGE 1 CRIM 1 DIS 1 LSTAT 1 NOX 1 RM 1 W_MEDV 1	VARIABLE DF VALUE CONSTANT 1 5.502 AGE 1 0.069 CRIM 1 0.404 DIS 1 0.738 LSTAT 1 0.805 NOX 1 2.575 RM 1 7.227 W_MEDV 1 12.951

----- END OF REPORT -----

Keeping AGE, DIS, LSTAT and RM constant and letting constant, CRIM and NOX vary order of variables in x is CRIM, NOX, RM, AGE, DIS, LSTAT

In [14]: colsvari = [True,True,False,False,False,False]

In [15]: reg3 = pysal.spreg.GM_Lag_Regimes(y,x,regimes,w=w,spat_diag=True, constant_regi='one',cols2regi=colsvari,name_y=y_name, name_x=x_names,name_regimes=rvar,name_w="boston_k4",name_ds="boston.dbf")

In [16]: print reg3.summary

REGRESSION

SUMMARY OF OUTPUT: SPATIAL TWO STAGE LEAST SQUARES - REGIMES

Data set : boston.dbf
Weights matrix : boston_k4

Dependent Variable : MEDV Number of Observations: 506
Mean dependent var : 22.5328 Number of Variables : 10
S.D. dependent var : 9.1971 Degrees of Freedom : 496
Pseudo R-squared : 0.7476

Pseudo R-squared : 0.7476 Spatial Pseudo R-squared: 0.6835

White Standard Errors

Variable Coefficient Std.Error z-Statistic 0_CRIM -0.0912037 0.0268472 -3.3971428 0_NOX -11.8180423 3.6078832 -3.2756166 1_CRIM 0.9410008 0.8584270 1.0961919 1_NOX -11.1960904 4.3850765 -2.5532258	
0_NOX -11.8180423 3.6078832 -3.2756166 1_CRIM 0.9410008 0.8584270 1.0961919 1_NOX -11.1960904 4.3850765 -2.5532258	Probability
	0.0006809 0.0010543 0.2729948
	0.0106730
_Global_CONSTANT 4.8105023 6.1267270 0.7851667	0.4323558
_Global_AGE -0.0178455 0.0144821 -1.2322477	0.2178566
_Global_DIS -0.9561049 0.1762541 -5.4245828	0.000001
_Global_LSTAT -0.4367124 0.1076675 -4.0561212	0.0000499
_Global_RM 4.7390297 0.7951419 5.9599801	0.0000000
_Global_W_MEDV 0.2299312 0.1006010 2.2855767	0.0222790

Instrumented: _Global_W_MEDV

Instruments: O_W_AGE, O_W_CRIM, O_W_DIS, O_W_LSTAT, O_W_NOX, O_W_RM,

1_W_AGE, 1_W_CRIM, 1_W_DIS, 1_W_LSTAT, 1_W_NOX, 1_W_RM

Regimes variable: CHAS

DIAGNOSTICS FOR SPATIAL DEPENDENCE

TEST MI/DF VALUE PROB Anselin-Kelejian Test 1 28.773 0.0000

REGIMES DIAGNOSTICS - CHOW TEST

VARIABLE	DF	VALUE	PROB
CRIM	1	1.442	0.2298
NOX	1	0.076	0.7827
Global test	2	3.458	0.1775

In []:

In []: