

UNIVERSITI KUALA LUMPUR ASSESSMENT BRIEF

COURSE DETAILS		
INSTITUTE	INSTITUTE UniKL BRITISH MALAYSIAN INSTITUTE	
COURSE NAME BIG DATA ANALYTICS		
COURSE CODE BEB43403		
COURSE LEADER MUHD KHAIRULZAMAN ABDUL KADIR		
LECTURER	LECTURER MUHD KHAIRULZAMAN ABDUL KADIR	
SEMESTER & YEAR OCTOBER 2023		

	ASSESSMENT DETAILS				
TITLE/NAME	CASE STUDY				
WEIGHTING	25%				
DATE/DEADLINE	19/12/2023, 5.00PM				
COURSE LEARNING	CLO3: Perform analysis of various data driven predictive models for effective				
OUTCOME(S)	business decisions (A5, PLO12).				
INSTRUCTIONS	Perform the following tasks:				
	Read the instructions given in the assessment sheet CAREFULLY.				
	2. Answer all tasks.				
	3. Answers must be in English.				

Student Name:	ID:	Group:
1) Anis Suriani binti Azizan	(51221221056)	
2) Nurul Izzati binti Mahamad Ismail	(51221221147)	Group 3
3) Ahmad Syahmi bin Ahmad Pauzi	(51221221003)	(L01)
4) Muhammad Waiz bin Nor Kamal	(51221221053)	, ,
5) Muhammad Ikhwan Syafiq bin Norsham	(51221221125)	
Assessor's Comment:	Marks:	

Verified by: Course Leader [MUZA] Prepared by: [MUZA]	QSC format verification	PC/HOS content validation
I hereby declare that all my team members have agreed with this assessment. All team members are certain that this assessment complies with the Course Syllabus.		
Signature:_		
Date :23/11/2023		

TASK NO	CLO	MARKING SCHEME	MARKS
1	3	Propose one application used big data analytics in any industry areas.	15
2	3	Show and explain how the big data is used in the proposed area of application (Detail process – can be either in a block diagram or flowchart or any other method).	15
3	3	Give and show the demo or coding being generated for the big data application proposed.	15
4	3	List the benefits and challenges (at least 5 each) of implementing big data analytics to the area proposed to industry and society.	10
5	3	Recommend the best platform for big data analytics you can use and explain why the platform you selected is the best. (It can be either related to the proposed application or not related to it).	15
6	3	Suggest TWO (2) big data analytics algorithm or techniques and explain how these 2 techniques work.	10
7	3	Give TWO (2) or more examples of other than the application proposed in any area that used big data analytics.	10
8	3	Present all the ideas clearly and effectively with Q&A from both parties (Team presenter & member of the floor)	10
		TOTAL	100

INFORMATION ON SK_SP-TA FOR COURSE

Course Code & Name	:	BEB43403 & BIG DATA ANALYTICS
PLOs	:	12

Please tick () in the box provided.

	Knowledge Profiles (SK) A programme that builds this type of knowledge and develops the attributes listed below is typically achieved in 4 years of study		
SK1	A systematic, theory-based understanding of the natural sciences applicable to the sub-discipline		
SK2	Conceptually-based mathematics, numerical analysis, statistics and aspects of computer and information science to support analysis and use of models applicable to the sub-discipline		
SK3	A systematic , theory-based formulation of engineering fundamentals required in an accepted sub- discipline		
SK4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for an accepted sub-discipline		
SK5	Knowledge that supports engineering design using the technologies of a practice area		
SK6	Knowledge of engineering technologies applicable in the sub-discipline		
SK7	Comprehension of the role of technology in society and identified issues in applying engineering technology: ethics and impacts: economic, social, environmental and sustainability		
SK8	Engagement with the technological literature of the discipline		

Definit	Definition of Broadly-Defined Problem Solving (SP)		
No.	Attribute	Broadly-defined Engineering Problems have characteristic SP1 and some SP2 to SP7:	or all of
SP1	Depth of Knowledge Required	Cannot be resolved without engineering knowledge at the level of one or more of SK 4, SK5, and SK6 supported by SK3 with a strong emphasis on the application of developed technology	
SP2	Range of conflicting requirements	Involve a variety of factors which may impose conflicting constraints.	
SP3	Depth of analysis required	Can be solved by application of well-proven analysis techniques	
SP4	Familiarity of issues	Belong to families of familiar problems which are solved in well-accepted ways	
SP5	Extent of applicable codes	May be partially outside those encompassed by standards or codes of practice	
SP6	Extent of stakeholder involvement and level of conflicting requirements	Involve several groups of stakeholders with differing and occasionally conflicting needs	
SP7	Interdependence	Are parts of, or systems within complex engineering problems	

Range	Range of Engineering Activities (TA)				
No.	Attribute	Broadly-defined activities			
TA1	Range of resources	Involve a variety of resources (and for this purposes resources includes people, money, equipment, materials, information and technologies)			
TA2	Level of interactions Require resolution of occasional interactions between technical, engineering and other issues, of which few are conflicting				
TA3	Innovation	Innovation Involve the use of new materials, techniques or processes in non-standard ways			
TA4	Consequences to society and the environment Have reasonably predictable consequences that are most important locally, but may extend more widely				
TA5	Familiarity	Require a knowledge of normal operating procedures and processes			

CASE STUDY

Big data is reshaping various industries, especially during the transition from Industry Revolution 3 to Industry Revolution 4. Recently, big data has advanced from conventional technology to sophisticated tools like cloud computing and artificial intelligence. It is now extensively employed in sectors like finance, healthcare, and manufacturing to enhance processes, boost efficiency, and gain fresh insights.

For instance, banks utilize big data to detect fraud and evaluate credit risk, while hospitals analyze patient data to enhance treatment outcomes. Nonetheless, working with big data comes with challenges. Maintaining data privacy and security is crucial, and ethical considerations are vital when using data to make decisions impacting people's lives. Despite these hurdles, big data holds significant potential for fostering innovation and shaping the future of industry.

- 1. Prepare a presentation slide which consists of below information: -.
 - **Propose** one application used big data analytics in any industry areas.
 - **Show** and **explain** on how the big data is used in the proposed area of application (Detail process can be either in a block diagram or flowchart or any other method) (SP1)
 - **Give** and **show** the demo or coding being generated for the big data application proposed. (SP1)
 - **List** the **benefits and challenges** (at least 5 each) of implementing big data analytics to the area proposed to industry and society.
 - Recommend the best platform for big data analytics you can use and explain why the
 platform you selected is the best. (It can be either related to the proposed application
 or not related to it). (SP2)
 - Suggest TWO (2) big data analytics algorithms or techniques and explain how these 2 techniques work. (SP3)
 - **Give** TWO (2) or more examples of other than the application proposed in any area that used big data analytics.
- 2. Maximum duration of presentation is **15 20 minutes**.
- 3. Maximum team size: **5 people**. Slides must clearly list the name and student ID of team members.
- 4. **All team members** must participate in the case study (name and student ID must be stated prior to presentation).
- 5. Please also show and give demo on any coding involved for your study case.

CASE STUDY RUBRIC

Group member:

No	Criteria on Case Study Presentation	Null	Very Poor	Poor	Slightly Insufficient	Sufficient	Exceed Expectation
1.0	Propose one application used big data analytics in any industry areas.		1	4	7	10	15
2.0	Show and explain on how the big data is used in the proposed area of application (Detail process – can be either in a block diagram or flowchart or any other method)	0	1	4	7	10	15
3.0	Give and show the demo or coding being generated for the big data application proposed.	0	1	4	7	10	15
4.0	List the benefits and challenges (at least 5 each) of implementing big data analytics to the area proposed to industry and society.	0	2	4	6	8	10
5.0	Recommend the best platform for big data analytics you can use and explain why the platform you selected is the best. (It can be either related to the proposed application or not related to it).	0	1	4	7	10	15
6.0	Suggest TWO (2) big data analytics algorithm or techniques and explain how these 2 techniques work.	0	2	4	6	8	10
7.0	Give TWO (2) or more examples of other than the application proposed in any area that used big data analytics.	0	2	4	6	8	10
8.0	Present all the ideas clearly and effectively with Q&A from both parties (Team presenter & member of the floor)	0	2	4	6	8	10
	Total case study results				/100		

Δς	sessor comments:		
1			

Contents

- Big Data Analytics in Transportation Area
- 2 Block Diagram
- 3 Coding and Result
- **Benefits and Challenges**

- Platform for Big Data
 Analytics
- Big Data Analytics Algorithm for Transportation Area
- More Example of Big Data
 Application in Industry Area

Big Data Analytics in Transportation Area

In transportation, Big Data Analytics is the game-changer. It's the tool that helps us navigate traffic smarter, predict when vehicles need fixing, and make our journeys safer and more efficient.

Block Diagram for Traffic Analytics

REAL TIME DATA

- GPS sensors (vehicles)
- Traffic cameras
- Tollbooth data

DATA STORAGE

- Streaming Data
- Batch Data

MODEL UPDATES

- Retraining models with new data
- Enhancing accuracy and performance

ALERTS

 Notifications for critical events or anomaliesn

TRAFFIC PREDICTION

- Historical and real-time data analysis
- Forecasting traffic patterns and congestion
- Machine learning models

Data Traffic

hour	traffic_volume
0	40
1	35
2	35
3	55
4	60
5	80
6	120
7	100
8	60
9	50
10	80
11	100
12	90
13	120
14	80
15	70
16	90
17	120
18	100
19	90
20	60
21	50
22	55
23	50

Code for Traffic Pattern Analysis in Sungai Pusu, Gombak

Graph before Clustering


```
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
data = pd.read_csv('traffic_flow.csv')
features = data[['hour', 'traffic_volume']]
features_standardized = (features - features.mean()) / features.std()
# Determine the optimal number of clusters (k) using the elbow method
wcss = []
for i in range(1,21):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(features_standardized)
    wcss.append(kmeans.inertia_)
 # Plot the elbow curve
plt.plot(range(1,21), wcss)
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
plt.show()
```

Code

Result

```
# Based on the elbow method, choose an optimal value for k
optimal_k = 3

# Apply k-means clustering with the chosen k
kmeans = KMeans(n_clusters=optimal_k, init='k-means++', max_iter=300, n_init=10, random_state=0)
features['cluster'] = kmeans.fit_predict(features_standardized)

# Visualize the clusters
plt.scatter(features['hour'], features['traffic_volume'], c=features['cluster'], cmap='viridis')
plt.title('Traffic Pattern Clusters')
plt.xlabel('Hour of Day')
plt.ylabel('Traffic Volume')
plt.show()
```

Code

Graph After Clustering

Benefits

Improved Customer Experience

Environmental Sustainability

Optimized Traffic Management

Cost Reduction and Resource Optimization

Innovations in Autonomous Vehicles

Challenges

- Data privacy and security
- 2 Cost and infrastructure requirements
- 3 Data quality and integration issues
- Public acceptance and trust
- 5 Technological limitations

Platform for Big Data Analytics

Apache Kafka

- Real-time Data Processing
- Scalability
- Event-Driven Architecture

Integration

K-MEANS CLUSTERING

How it works:

- Data Preparation: Traffic data is collected from various sources such as GPS sensors, cameras, and toll booths.
- Feature Engineering: Relevant features are extracted from the data, such as average speed, travel time, and distance traveled.
- Cluster Identification: The K-Means algorithm iteratively groups data points into k clusters based on their feature similarities.
- Cluster Interpretation: Each cluster is analyzed to understand its characteristics.

Big Data Analytics Algorithm for Transportation Area

Recurrent Neural Networks (RNNs) for Traffic Prediction

How it works:

- Input Data: Historical traffic data including speed, number of vehicles, and weather conditions.
- Model Training: The RNN model takes sequences of data points as input and learns to predict the next value in the sequence.
- Real-time Updates: The trained model can be used with real-time traffic data from sensors and cameras to continuously update its predictions and provide accurate forecasts for short-term (minutes to hours) traffic conditions.

Big Data Analytics Algorithm for Transportation Area

The Recurrent Neural Networks (RNN)

V7 Labs

Example of Big Data Application in Industry Area

HEALTHCARE

- Personalized Treatment
- Remote Patient Monitoring
- Clinical Research

MANUFACTURING

- Predictive Maintenance
- Supply Chain Optimization.
- Quality Control

RETAIL

- PersonalizedRecommendation
- Inventory Management
- Fraud Detection

FINANCIAL SERVICES

- Risk Management
- Customer Analytics
- Algorithmic Trading

TRANSPORTATION

- Traffic Optimization
- Route Planning
- Autonomous Vehicles

ENERGY

- Smart Grids
- Renewable Energy
- Demand Forecasting

Thank you for listening!

Don't hesitate to ask any questions!

