Assignment 4

Arnav Patri

July 12, 2022

1) Find and sketch the domain of the function $f(x,y) = \sqrt{x} + \sqrt{1 - x^2 - y^2}$.

Solution

$$\sqrt{x} \implies x \ge 0$$

$$\sqrt{1 - x^2 - y^2} \implies x^2 + y^2 \le 1$$

The latter equation is that of a circle, so the domain is simply the region bounded by the positive half of the circle $x^2 + y^2 = 1$.

2) Let $f(x,y) = 4 - x^2 - 5y^2$. Find $f_x(1,1)$ and $f_y(1,1)$ and interpret these numbers as slopes.

Solution

$$f_x(x,y) = -2x$$
 $f_y(x,y) = -10y$ $f_x(1,1) = -2(1) = -2$ $f_y(1,1) = -10(1) = -10$

At the point where x = 1 and y = 1, the slopes of the lines tangent to $f(x, y) = 4 - x^2 - 5y^2$ parallel to the x- and y-axes respectively are -2 and -10.

3) Let $f(x,y) = x^3 + xy^2 - 3y^2$. Find f_x , f_y , f_{xx} , f_{yy} , and f_{xy} .

Solution

$$f_x(x,y) = 3x^2 + y^2$$
 $f_y(x,y) = 2xy - 6y$
 $f_{xx}(x,y) = 6x$ $f_{yy}(x,y) = 2x - 6$
 $f_{xy}(x,y) = 2y$

4) Find the equation of the tangent plane for $z = 3x^2 + y^2$ at $P(1, 1, z_0)$.

Solution

$$z_0 = 3(1)^2 + (1)^2 = 4$$

$$\frac{\partial z}{\partial x}\Big|_{(x,y)=(1,1)} = 6x\Big|_{(x,y)=(1,1)} = 6(1) = 6$$

$$\frac{\partial z}{\partial y}\Big|_{(x,y)=(1,1)} = 2y\Big|_{(x,y)=(1,1)} = 2(1) = 2$$

$$z = 6(x-1) + 2(y-1) + 4$$

$$= 6x - 6 + 2y - 2 + 4$$

$$= 6x + 2y - 4$$