DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING III SEMESTER B.TECH. (CSE) IN SEMESTER EXAMINATION

SUBJECT: COMPUTER ORGANIZATION AND ARCHITECTURE (CSE 2151)

Time: 10.30AM- 12.00 NOON Date: 15/12/2021 MAX.MARKS: 20

Scheme of Evaluation Set2

Calculate the product of 13.125 and 17.5 in IEEE 32-bit format 4 1 representation. Show all the steps clearly and represent the final answer in both IEEE 32-bit format and decimal representation **Step i:** Convert 13.125 to binary representation (0.5)1101.001 \rightarrow After normalizing: 1.101001 \times 2³ E'=3+127= 130= 10000010₍₂₎ In IEEE 32-bit format: 0 10000010 10100100000000....... **Step ii:** Convert 17.5 to binary representation (0.5)10001.1 \rightarrow After normalizing: 1.00011×2⁴

> E'=4+127= 131= 10000011₍₂₎ In IEEE 32-bit format: 0 10000011 000110000000000......

Step 1: (0.5)

Add exponents and subtract 127. 130+131-127= 134

Step 2:

(1) Multiply the mantissa

> 1.101001×1.00011 1 101001 11 01001 000 0000 0000 000 000000 110100 1 111001 011011

 $1.101001 \times 1.00011 = 1.11001011011$ (0.5)The result is already normalized.

Step 3:

Adjust the exponent if required: Not applicable

In 32-bit representation: (0.5)

0 10000110 11001011011000...

- $= 1.11001011011000 \times 2^{7}$
- =11100101.1011000...
- =128+64+32+4+1+ 0.5+0.125+.0625

In decimal representation =229.6875

2 A. Construct a large memory of capacity 4Mx32 using 1M x 8 chips. 3 Draw the structure and indicate clearly, the number of address lines and the data lines in the diagram

(0.5)

Identifying correct number of rows and colums-> 0.5m Identifying no. of address lines for Large memory-0.5M Identifying no. of address lines for small memory-0.5M Writing decoder with proper inputs and outputs-0.5M Writing proper data lines: 0.5M

Overall diagram: 0.5M

B. Explain the factors on which the length of the microinstruction is dependent on.

1

The length of the uinstruction is dependent on factors:

- •How many µoperations will have to be activated simultaneously.
- •The method by which the address of next µinstruction is specified.
- 3 Using Booth's algorithm for 2's complement multiplication, show how to 3 multiply the multiplicand (-8) by the multiplier (-21)

Multiplicand (M)=-8 Multiplier (a) =-21 -8 x -21			+8=001000 -8=110111 111000 +&1=010101 -&1=101010				
A -	101011	Q_1	101011 Action				
001000	101011	0	A = A - M + 000 600 + 001000=+8 A zithmetic zt shift 001000				
000010	001010	1,	Arithmetic at shift				
111010	001010	1	A < A+M 000010 8 Arith shift right 111010				
000010	000101	0	A= A-M 111101 +8 Arith-shift right +001000				
111010	100010	0	A = A+M 000010 - A = A = A = 111000 = 111010				
0000101	010001	0	A-A-M				
168 168 168 168 168 168 168 168							
Each step with above entries 0.5M×6steps=3M If student do not write 'Action' column, 1M must be deducted.							

If student do not write the 'Action steps' then 1M may be deducted. 0.5M for each step X 6 = 3M

Assume that an array A is stored in consecutive word locations starting from address A and an array B is stored in consecutive word locations starting from address B. Write a RISC-style program to find the product of the corresponding elements of two arrays and store it in the third array C starting at address C. Assume uniform sized arrays with the size of the array stored in memory location named SIZE. Assume a byte addressable memory and word length of two bytes.

MOVE R2, #A

MOVE R3, #B

MOVE R4, #C

LOAD R5, SIZE

LOAD R6, (R2)

LOAD R7, (R3)

MULTIPLY R8, R6, R7

STORE R8, (R4)

ADD Re, Re, #OR
ADD R3, R3, #OR
ADD R4, R4, #OR
SUBTRACT R5, R5, #1

BRANCH if [R5] > 0 Loop

For each couple of mistakes 0.5 M maybe deducted

5 Divide 25 by 3 using Restoring division method. Indicate all the steps clearly 3

A A String Rest	Q	1 3	
00000	11001	Initial values M=00011 -M=11101	
00001 <u>11101</u> 11110	10010	Shift A,M to the left A=A-M Set Q0=0, Restore A	
00011 00001	10010	I Cycle	
00011	00100	Shift A,M to the left	
<u>11101</u> 00000	00101	A=A-M Set Q0=0, Restore A II Cycle	
00000 11101 11101 00011	01010	Shift A,M to the left A=A-M Set Q0=1 III Cycle	
00000	01010	iii Cycle	
00000 <u>11101</u> 11101 <u>00011</u> 00000	10100	Shift A,M to the left A=A-M Set Q0=0, Restore A IV Cycle	
00001 <u>11101</u> 11110	10100	Shift A,M to the left A=A-M Set Q0=0, Restore A	
00011 00001	01000	V Cycle	
Remainder	Quotient		

Each step: $0.5 \times 5 = 2.5M$; Indicating quotient and remainder 0.5M

Declare Registers A[4],B[4],D[4] Declare buses Outbus[4] Start: $A \leftarrow 5$, $B \leftarrow 0$, $D \leftarrow 4$;

Loop: $B \leftarrow B + A$ $D \leftarrow D-1$;

If D<> 0 then go to Loop

Outbus = B; Halt: go to Halt

Design a neat processing section identifying all the control points

Writing 4 blocks: 0.5M

Showing width of data path and inputs: 0.5M Identifying control signals and output: 2M

For any mistake: 0.5M deducted