Lecture Note: Discrete Mathematics for Computer Science Bài Giảng: Toán Rời Rạc Cho Khoa Học Máy Tính

Nguyễn Quản Bá Hồng*

Ngày 30 tháng 12 năm 2024

Tóm tắt nôi dung

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/.
Latest version:

• Lecture Note: Discrete Mathematics for Computer Science - Bài Giảng: Toán Rời Rạc Cho Khoa Học Máy Tính.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/discrete_mathematics/lecture/NQBH_discrete_mathematics_lecture.pdf.

 $T_E\!X: \verb"URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/discrete_mathematics/lecture/NQBH_discrete_mathematics_lecture.tex.$

Slide:

• Discrete Mathematics for Computer Science – Toán Rời Rạc Cho Khoa Học Máy Tính.

 $PDF: \verb|URL:|| https://github.com/NQBH/advanced_STEM_beyond/blob/main/discrete_mathematics/slide/NQBH_discrete_mathematics_slide.pdf.$

 $\label{thm:com/NQBH/advanced_STEM_beyond/blob/main/discrete_mathematics/slide/NQBH_discrete_mathematics_slide.tex.$

Mục lục

1	Basic	1
2	Combinatorics – Tổ Hợp	1 1
3	Graph Theory – Lý Thuyết Đồ Thị	2
4	Number Theory – Số Học/Lý Thuyết Số	2
5	Miscellaneous	2

1 Basic

2 Combinatorics – Tổ Hợp

2.1 Combinatorics using SciPy

Problem 1 (Permutation, arrangement, combination). Given $n, k \in \mathbb{N}^*$, $k \leq n$. Write Pascal/Python/C/C++ programs to compute the numbers of permutations P_n , of arrangements A_n^k , of combinations C_n^k .

Solution.
$$P_n = n!, A_n^k = \frac{n!}{(n-k)!}, C_n^k = \frac{n!}{k!(n-k)!}$$
. Run combinatorics.py.

Problem 2 (Pascal triangle & Newton binomial expansion). Given $m, n \in \mathbb{N}^*$. Write Pascal/Python/C/C++ programs to print the 1st n+1 lines of the Pascal triangle & Newton binomial expansion of $(a+b)^n, (a+b+c)^n, (\sum_{i=1}^m a_i)^n, \forall a, b, c, a_i \in \mathbb{R}, \forall i=1,\ldots,m$.

Problem 3 (Count number of lines formed by some points). Write Pascal/Python/C/C++ programs to count the number of lines formed by $n \in \mathbb{N}^*$ distinguished points in (2D) plane.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bén Tre City, Việt Nam.

Hint. There are

$$C_n^2 - \sum_{i=1}^m C_{a_i}^2 + m = \frac{n(n-1)}{2} - \sum_{i=1}^m \frac{a_i(a_i-1)}{2} + m$$
 (1)

lines, where n given points is partitioned into exactly $m \in \mathbb{N}$ disjoint subsets A_i of collinear points, where $a_i \coloneqq |A_i| = \operatorname{card} A_i$, $\forall i = 1, \dots, m$.

Problem 4 (Count number of intersections formed by some lines). Write Pascal/Python/C/C++ programs to count the number of intersections of $n \in \mathbb{N}^*$ distinguished lines in (2D) plane.

Hint. Nếu trong n đường thẳng đã cho có đúng $m \in \mathbb{N}$ bộ lần lượt gồm a_1, \ldots, a_m đường thẳng song song đôi một & $k \in \mathbb{N}$ bộ lần lượt gồm b_1, \ldots, b_k đường thẳng đồng quy thì số giao điểm:

$$C_n^2 - \sum_{i=1}^m C_{a_i}^2 - \sum_{i=1}^m C_{b_i}^2 + k = \frac{n(n-1)}{2} - \sum_{i=1}^m \frac{a_i(a_i-1)}{2} - \sum_{i=1}^k \frac{b_i(b_i-1)}{2} + k$$
 (2)

- 3 Graph Theory Lý Thuyết Đồ Thị
- 4 Number Theory Số Học/Lý Thuyết Số
- 5 Miscellaneous