

Machine Learning (NLP)

Final Project Presentation

Idea

Social Media Monitoring for Disaster Alert and Location Detection

Group-B3

Jamal Jamal Uddin Tanvin **Presented By** Rifat Muhammad Rifat Islam **Tausif** MD Tausiful Haque **Nurshat** Nurshat Fateh Ali

Motivation

Features

Vs

ANALYZE SOCIAL MEDIA POSTS TO DETERMINE WHETHER THERE IS A REAL DISASTER

DETECT THE LOCATION OF THE DISASTER FROM THE SOCIAL MEDIA POST

Dataset Overview

01 ID (Feature Column)

A unique identifier for each tweet {Null Value: 0}

02 Keyword (Feature Column)

A particular keyword from the tweet. keywords->disasters. {Null Value: 0, Unique Value: 219 Most Common: "thunderstorm" (1%)}

03 Location (Feature Column)

The location the tweet was sent from. {Null Value: 3418 (30%)}

04 Text (Feature Column)

The text of the tweet { Null Value: 0}

05 Target (Target Column)

Denotes whether a tweet is about a real disaster (1) or not (0) {Null Value: 0, 0 (Not Disaster): 9256, 1 (Disaster): 2114 }

Disaster tweet | Keggle

Size: 11.4k

Model Comparison

BERT

Transformer

- Massive dataset of text and code
- learn long-range dependencies
- deep understanding of the meaning of a text

LSTM

Recurrent Neural Network

- Small dataset of text
- Capture long-range dependencies
- deep understanding of the meaning of a word

Experimental Design

Flowchart

Training Collecting Dataset Selecting Model

Fine Tuning Model parameters

Training the Model

Finding the Result

Code Link

Discussion

Criteria	BERT	LSTM
Performance	BERT outperforms LSTM due to its transformer architecture which captures the context of words in a sentence in all directions.	LSTM captures the context of words based on their sequence in a sentence which might not be as effective as BERT.
Training Time	BERT requires a significant amount of time and computational resources to train from scratch. However, it is commonly used in a transfer learning setting where the model is pre-trained on a large corpus and fine-tuned on the specific task.	LSTM is less resource-intensive compared to BERT and can be trained from scratch relatively quicker.

Accuracy: 91% 89% LSTM

Future Goals

Thank You