Econometrics 710 Midterm Exam Sample Answers Spring, 2000

1. It is worth first noting that

$$\tilde{\beta} = \frac{\sum_{i=1}^{n} (x_i \beta + e_i)}{\sum_{i=1}^{n} x_i} = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i} \beta + \frac{\sum_{i=1}^{n} e_i}{\sum_{i=1}^{n} x_i} = \beta + \frac{\sum_{i=1}^{n} e_i}{\sum_{i=1}^{n} x_i}.$$

(a)

$$E\left(\tilde{\beta} - \beta \mid X\right) = E\left(\frac{\sum\limits_{i=1}^{n} e_i}{\sum\limits_{i=1}^{n} x_i} \mid X\right) = \frac{\sum\limits_{i=1}^{n} E\left(e_i \mid x_i\right)}{\sum\limits_{i=1}^{n} x_i} = 0,$$

so $E(\tilde{\beta} \mid X) = \beta$ and $\tilde{\beta}$ is unbiased for β .

(b) As
$$E(\tilde{\beta} \mid X) = \beta$$
,

$$\begin{split} Var\left(\tilde{\beta}\mid X\right) &= E\left(\left(\tilde{\beta}-\beta\right)^2\mid X\right) \\ &= E\left(\left(\sum\limits_{i=1}^n e_i\right)^2\mid X\right) \\ &= \frac{\sum\limits_{i=1}^n E\left(e_i^2\mid X\right)}{\left(\sum\limits_{i=1}^n x_i\right)^2} = \frac{\sum\limits_{i=1}^n \sigma_i^2}{\left(\sum\limits_{i=1}^n x_i\right)^2}, \end{split}$$

where $\sigma_i^2 = E\left(e_i^2 \mid x_i\right)$. Note: Under the stated assumptions, σ_i^2 may be random, not a constant.

(c) As $n \to \infty$, by the WLLN (since the data are iid)

$$\frac{1}{n} \sum_{i=1}^{n} e_i \rightarrow {}_{p} E(e_i) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i \rightarrow {}_{p} E(x_i) = \mu,$$

say, so if $\mu \neq 0$, then

$$\tilde{\beta} - \beta = \frac{\frac{1}{n} \sum_{i=1}^{n} e_i}{\frac{1}{n} \sum_{i=1}^{n} x_i} \to_p \frac{0}{\mu} = 0.$$

This requires the assumption that $\mu \neq 0$.

(d) As $n \to \infty$, by the CLT (as e_i is iid)

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_i \to_p N\left(0, \sigma^2\right)$$

where $\sigma^2 = E(e_i^2)$. Thus (if again $\mu \neq 0$),

$$\sqrt{n}\left(\tilde{\beta} - \beta\right) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_i}{\frac{1}{n} \sum_{i=1}^{n} x_i} \to_d \frac{N\left(0, \sigma^2\right)}{\mu} = N\left(0, \frac{\sigma^2}{\mu^2}\right).$$

2. The following asymptotic confidence interval is based on the "delta method". Notationally, it is helpful to let V_{11} denote the first diagonal element in V, and similarly \hat{V}_{11} . Since

$$\sqrt{n}\left(\hat{\beta}-\beta\right) \to_d N(0,V),$$

then

$$\sqrt{n}\left(\hat{\beta}_1 - \beta_1\right) \to_d N(0, V_{11}),$$

where V_{11} is the first diagonal element in V. Letting $h(\beta_1) = 1/\beta_1$, then $\frac{\partial}{\partial \beta}h(\beta) = -\beta_1^{-2}$. By the delta method formula,

$$\sqrt{n}\left(1/\hat{\beta}_1 - 1/\beta_1\right) \rightarrow_d N\left(0, \frac{V_{11}}{\beta_1^4}\right).$$

Thus a standard error for $1/\hat{\beta}_1$ is $\hat{\beta}_1^{-2} \cdot \hat{V}_{11}^{1/2}$, where \hat{V}_{11} is the first diagonal element in \hat{V} . We conclude that a 95% confidence interval for $1/\beta_1$ is

$$\left[\frac{1}{\hat{\beta}_1} - 2\frac{\hat{V}_{11}^{1/2}}{\hat{\beta}_1^2}, \quad \frac{1}{\hat{\beta}_1} + 2\frac{\hat{V}_{11}^{1/2}}{\hat{\beta}_1^2}\right].$$

3.

(a)

$$R\tilde{\beta} = R\hat{\beta} - R(X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R\hat{\beta}$$
$$= R\hat{\beta} - R\hat{\beta} = 0$$

(b) Since $E(\hat{\beta} \mid X) = \beta$,

$$\begin{split} E\left(\hat{\beta} \mid X\right) &= E\left(\hat{\beta} - (X'X)^{-1} R' \left[R \left(X'X\right)^{-1} R'\right]^{-1} R \hat{\beta} \mid X\right) \\ &= E\left(\hat{\beta} \mid X\right) - (X'X)^{-1} R' \left[R \left(X'X\right)^{-1} R'\right]^{-1} R E\left(\hat{\beta} \mid X\right) \\ &= \beta - (X'X)^{-1} R' \left[R \left(X'X\right)^{-1} R'\right]^{-1} R \beta \\ &= \beta \end{split}$$

since $R\beta = 0$. So $\tilde{\beta}$ is unbiased for β .

(c)

$$\tilde{\beta} = \hat{\beta} - (X'X)^{-1} R' \left[R (X'X)^{-1} R' \right]^{-1} R \hat{\beta}
= \left(I - (X'X)^{-1} R' \left[R (X'X)^{-1} R' \right]^{-1} R \right) \hat{\beta}
= A \hat{\beta},$$

say where

$$A = I - (X'X)^{-1} R' \left[R (X'X)^{-1} R' \right]^{-1} R.$$

Then

$$Var\left(\tilde{\beta} \mid X\right) = Var\left(A\hat{\beta} \mid X\right)$$
$$= AVar\left(\hat{\beta} \mid X\right)A'$$
$$= A\left(X'X\right)^{-1}\left(X'DX\right)\left(X'X\right)^{-1}A'$$

where $D = diag\{\sigma_1^2, ..., \sigma_n^2\}$.

(d) Setting $\hat{D} = diag\{\hat{e}_1^2, ..., \hat{e}_n^2\}$, the White estimator for $Var\left(\tilde{\beta} \mid X\right)$ is

$$\hat{V} = A (X'X)^{-1} (X'\hat{D}X) (X'X)^{-1} A'.$$

The standard errors are the square roots of the diagonal elements of \hat{V} .

4. Note that $g = g(x) = x'\beta$. The estimate of g is $\hat{g} = x'\hat{\beta}$ which has standard error $s(\hat{g}) = (x'\hat{V}x)^{1/2}$. The t-ratio for g is

$$T_n = \frac{\hat{g} - g}{s(\hat{g})} = \frac{x'\hat{\beta} - x'\beta}{\left(x'\hat{V}x\right)^{1/2}}.$$

As \hat{g} is a linear function of $\hat{\beta}$, $T_n \to_d N(0,1)$. This is a context where the use of the percentile-t bootstrap makes sense.

For the bootstrap, we draw independently and with replacement from the sample, to create a bootstrap sample with n observations, and on this sample, run the OLS regression, to obtain $\hat{\beta}^*$ and \hat{V}^* . The bootstrap t-ratio is

$$T_n^* = \frac{\hat{g}^* - \hat{g}}{s(\hat{g}^*)} = \frac{x'\hat{\beta}^* - x'\hat{\beta}}{\left(x'\hat{V}^*x\right)^{1/2}} = \frac{x'\left(\hat{\beta}^* - \hat{\beta}\right)}{\left(x'\hat{V}^*x\right)^{1/2}}.$$

Calculating a large number B of independent draws of the random variable T_n^* , we find the $\alpha/2\%$ quantile $q_n^*(\alpha/2)$ and the $1-\alpha/2\%$ quantile $q_n^*(1-\alpha/2)$ of this distribution. (Numerically, we sort the T_n^* and find the $\alpha/2\%$ and $1-\alpha/2\%$ order statistics.) Then the $(1-\alpha)\%$ equal-tailed percentile-t interval for g is

$$\begin{aligned} & \left[\hat{g} - q_n^* (1 - \alpha/2) \cdot s(\hat{g}), \quad \hat{g} - q_n^* (\alpha/2) \cdot s(\hat{g}) \right] \\ &= \left[x' \hat{\beta} - q_n^* (1 - \alpha/2) \cdot \left(x' \hat{V} x \right)^{1/2}, \quad x' \hat{\beta} - q_n^* (\alpha/2) \cdot \left(x' \hat{V} x \right)^{1/2} \right]. \end{aligned}$$