Introduction to Supervised Learning

Ata Kaban

What Is Supervised Learning?

- One of the most prevalent forms of ML
 - Teach a computer to do something, then let it use its knowledge to do it
 - Also called "learning with a teacher"
- Other forms of ML
 - Unsupervised learning ("learning without a teacher")
 - Reinforcement learning ("learning with (delayed) feedback")

Example: Spam detection

Input: Emails received

• Output: "Spam", or "No spam"

Example: Stock price prediction

• Input: Historical records of stock prices

Output: Next day's stock price

www.shutterstock.com · 598155299

Spam detection

Input: Emails received

- Output: "Spam", or "No spam"
- This is a classification problem.
 The output has 2 possible values

Stock price prediction

Input: Historical records of stock

prices

- Output: Next day's stock price
- This is a regression problem.
 The output is a real value.

Types of supervised learning

- Regression
- Classification
 - Binary
 - Multi-class
 - •

Supervised learning

Task:

- Given some **input** x,
- Predict an appropriate output y.

Want: a **function** f such that f(x)=y

Have: examples of input-output pairs $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Supervised learning helps find a good f.

Training data

 Supervised learning needs annotated data for training: in the form of examples of (Input, Output) pairs

- After training completed,
 - you present it with new Input that it hasn't seen before
 - It needs to predict the appropriate Output

Is painting 8 a genuine Mondrian?

Attributes

Labels

Annotated training data

Examples

Number	Lines	Line types	Rectangles	Colours	Mondrian?
1	6	1	10	4	No
2	4	2	8	5	No
3	5	2	7	4	Yes
4	5	1	8	4	Yes
5	5	1	10	5	No
6	6	1	8	6	Yes
7	7	1	14	5	No

Painting 8

Number	Lines	Line types	Rectangles	Colours	Mondrian?
8	7	2	9	4	???

How quick will your team complete a project?

(programming language)	(team expertise)	(estimated size)		(required effort)
Java	low	1000	• • •	10 p-month
C++	medium	2000	•••	20 p-month
Java	high	2000	•••	8 p-month
• • •	•••	• • •	•••	•••

General notation we will use

(programming language)	(team expertise)	(estimated size)		(required effort)
	$x^{(}$	1)		$\mathcal{Y}^{(1)}$
	$x^{(}$	2)		$y^{(2)}$
	$x^{(}$	3)		$\mathcal{Y}^{(3)}$
• • •	• • •	• • •	• • •	• • •

Vector notation

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, \dots, x_d^{(i)}\right)$$
 The input of the *i*-th example Attributes

Workflow of supervised learning: 1. Training phase

Workflow of supervised learning:

2. Test phase & use

Pictorially

Regression problem
 Housing price prediction.

Classification problem
 Breast cancer prediction

Pictorially

Regression problem

Housing price prediction.

Classification problem
 Breast cancer prediction

Terminology in Supervised Learning

• Input = attribute(s) = feature(s) = independent variable

Output = target = response = dependent variable

function = hypothesis = predictor

Pause. Is this some magic?

So...

- there is this unknown function we're after
- we are given the function values at n specific points only (training set)
- is it really possible to find out the function values at other points?
- No!
- Not unless we make the right assumptions about the unknown function
- Each ML algorithm, implicitly or explicitly, makes assumptions.
- There is a zoo of ML algorithms, there is no best ML algorithm
- Our goal is to focus on few of them, and understand how they work

How many predictors are there for these data?

 Regression problem Housing price prediction.

Classification problem
 Breast cancer prediction

https://www.geeksforgeeks.org/regularization-in-machine-learning/

https://analystprep.com/study-notes/wp-content/uploads/2021/03/Img_13.jpg

https://www.geeksforgeeks.org/regularization-in-machine-learning/

https://analystprep.com/study-notes/wp-content/uploads/2021/03/Img_13.jpg

Overfitting and underfitting

- Fitting the training data too well is BAD! Why?
- Remember the data you actually want to classify, or predict for, is not the same as the training data – so learning every irrelevant detail (noise) in a training data set will not help
- Overfitting happens when the model is more complex than required
- Underfitting happens when the model is simpler than required

Applications of supervised learning

- Handwriting recognition
 - When you write an envelope, algorithms can automatically route envelopes through the post
- Computer vision & graphics
 - When you go out during lockdown, object detection & visual tracking algorithms can automatically detect compliance with the rules
- Bioinformatics
 - Algorithms can predict protein function from sequence
- Human-computer interaction
 - Intrusion detection algorithms can recognise speech, gestures, intention

Prevalence of ML

Generality

 E.g. a robot learning to navigate mazes must be able to learn the layout of the maze it encounters

Adaptability

• E.g. a program designed to predict tomorrow's stock market must learn to adapt when conditions change from boom to bust

Applicability

 Often the human programmer has no idea how to program a solution to the problem (think of how you recognise your friend's face)