4.4. Юла вращается вокруг своей

оси симметрии \mathcal{O}_{ζ} с постоянной по величине угловой скоростью ω , \mathcal{O} сь \mathcal{O}_{ζ} равномерно вращается вокрут неподвижной оси \mathcal{O}_{ζ} с угловой скоростью ω , образуя с ней постоянный утол θ (регулярияя прецессия). Найти угловую скорость и угловое ускорение воли

$$\overline{E} = \overline{W_1} + \overline{W_2} + \overline{W_1} \times \overline{W_2} = > \overline{E} = \overline{W_1} \times \overline{W_2}$$

$$\overline{V_0} = 0$$

N4.10

4.10. Тонкое колесо радиуса r, жестко насажанное под прямым углом на стержень OC длины $l = \sqrt{3}$, катится по плоскости без скольжения. В рассматриваемый момент угловая скорость и утловое ускорение стержня OC, описывающего коническую поверхность с неподвижной вершиной O, равны по величине o и e. Определить величины угловой скорости, утлового ускорения колеса, а также величины ускорений его точек A и B.

V=WxOC=VB+WxBC

Wrod & I Wat Water

NA

xOC=Weshie

$$V_{C}=WrJ\overline{3}$$
, $\sin\frac{\pi}{6}=\frac{WrJ\overline{3}}{2}$

W155 = 1 W/2 => WK= W 53

 $\overline{W} = \overline{W}_0 + \overline{\varepsilon} + \overline{S} + \overline{W} \times (\overline{W} + \overline{S})_0$

WO-WO+ELXOB+WUX(WAX9)

EW. - WKEW, WKO EW, WKEW,

En=Wu= Wiewx + Wx ewx = & 53 Ewx + WxWx

V=[w;r]

4.12. Тонкий обруч раднуса R катится без скольжения по приокости обруча увеленае ос CD, вокур которой с постоянна и равна \mathbf{v} . В плоскости обруча укреплена ос CD, вокур которой с постоянной по величине утловой скоростью ω вращается лиск радиуса \mathbf{r} . Центры диска и обруча совпадают, пысокость диска перпендикулярна CD. В положении, когда ось CD образует угол а с прямой AB, найти скорость и ускорение точек 1, 3 и 2, 4 диска, соответственно расположенных на концах диманетра, лежащего в плоскости обруча, и диаметра, перпендикулярного плоскости обруча.

A B

 $\overline{W}_{0} = \overline{W} + \overline{W}_{0}$ $\overline{W}_{0} = \overline{R} \quad |W_{0}| = \overline{R}$ $\overline{W}_{0} = \overline{R} \quad |W_{0}| = \overline{R}$ $\overline{W}_{0} = \overline{R} \quad |W_{0}| = \overline{R}$

V = W S = T sind]

i i v v gall oylb.

4.23. При движении прямой (оси Ox) известны ускорения w_1 и w_2 точек с координатами x_1 и x_2 соответственно. Найти ускорение точки этой прямой с произвольным значением координаты x.

 $\overline{W}_{2} = \overline{W}_{1} + \overline{\varepsilon}_{1} \times \overline{X}_{1} \times \overline{w}_{1} \times \overline{w}_{1} \times \overline{w}_{2} \times \overline{X}_{2}$ $\overline{W}_{2} - \overline{W}_{1} = \overline{\varepsilon}_{1} \times \overline{X}_{1} \times \overline{X}_{2} + \overline{w}_{1} \times (\overline{w}_{1} \times \overline{X}_{2} \times \overline{X}_{2})$

N=V1+E1XX1X+W1X(W1XX1X)

5

$$X_{1}X_{2} = \lambda X_{1}X = \lambda \lambda = \frac{x_{2} - x_{1}}{x_{1} - \lambda_{1}}$$

$$(W - W_{1}) = E_{1} \times \overline{X_{1}X_{2}} + W_{1} \times (W_{1} \times X_{1}\overline{X_{2}}) = W_{2} - W_{1}$$

$$W = \frac{W_{2} - W_{1}}{\lambda} + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{1} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{1}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2} - \lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2}} \cdot (W_{2} - W_{2}) + W_{2} = \frac{X - \lambda_{1}}{\lambda_{2}$$

4.30. В рассматриваемый момент угловая скорость и угловое ускорение тела, вращающегося вокруг неподвижной точки, равны о и є соответственно. Показать, что вращательная компонента ускорения какой-либо точки тела совпадает с касательной, а осестремительная компонента - с нормальной в том и

4.56. Ориентация осей Охуг, жестко связанных с твердым телом, относительно поступательно движущейся системы отсчета ОХҮZ может быть задана ортогональной матрицей A(t)таблицей направляющих косинусов. Показать, что угловое перемещение твердого тела из начального положения в конечное может быть осуществлено одним поворотом (теорема Эйлера).

Указание. При решении воспользоваться тем фактом, что орт и оси конечного поворота удовлетворяет уравнению $A\mathbf{u} = \mathbf{u}$.

 $\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & -1 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}$

Т2. Твердое тело поворачивают на угол $\pi/2$ относительно оси x_1 неподвижного базиса x, а затем – на угол $\pi/2$ вокруг

оси x_2 того же базиса. Найти матрицу ориентации базиса связанного с телом, относительно x, если в начальный момент базисы x и ξ совпадают. Найти вектор соответствуего конечно поворота и углы Эйлера.

$$C = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

4.66. Поворот пераого гена задается углами Эйлера
$$\sqrt{0}$$
 и $\sqrt{2}$ $\sqrt{2}$

2.9. В некоторый момент переносные угловая скорость и угловое ускорение соответственно равны $\boldsymbol{\omega}_e = \mathbf{e}_r \boldsymbol{\omega}_e, \quad \boldsymbol{\epsilon}_e = \mathbf{e}_s \boldsymbol{\epsilon}_e$. Какими должны быть относительные скорость $\mathbf{v}_r = \mathbf{e}_s \mathbf{v}_r$ и ускорение $\mathbf{w}_r = \mathbf{e}_s \mathbf{w}_r$ точки, движущейся по оси Or цилиндрической системы координат $Or\phi z$, чтобы её абсолютное ускорение было равно нулю?

$$\begin{array}{c}
W_0 + \overline{\varepsilon} + \overline{S} + \overline{w} + (\overline{w} + \overline{S}) + 2\overline{w} \times \overline{V}^r + \overline{W}^r = \overline{0} \\
\downarrow 0 \\
\varepsilon_e \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\
\downarrow 0 \\
\downarrow 1 \\
\downarrow 0 \\$$

$$\begin{bmatrix} -r & 2e \\ -r & 2e \end{bmatrix} + \begin{bmatrix} 0 \\ we \\ -r & 2e \end{bmatrix} + \begin{bmatrix} -r & 2e \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} -r & 2e \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -r & 2e \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0$$