Nas aulas passadas...

- ... sinais (largura de banda, velocidade de propagação, análise espectral - Fourier)
- ... carregando informação codificada (nyquist, shannon)
- ... sinais de mídia contínua (audio e vídeo) e sua conversão digital
- ... ATM + CBR, VBR, ABR, etc

---nesta aula---

Meio físico: o caso das Fibras óticas, caracterização, medidas de desempenho

Glossário

- Modos de Propagação:
 - Multimodo
 - Monomodo
- Perdas
 - Dispersão
 - Atenuação
 - Espalhamento
 - Não Linearidade

Fibras óticas e suas aplicações

- FTTH & PONs
- Redes híbridas
- Projeto Kyatera & Giga
- Tendências

Conceitos básicos

velocidade de propagação depende do índice de refração

•
$$\eta$$
=1,46 -> v=2.1x10⁸ m/s » ou,

0.69 da velocidade da luz no vácuo

Conceitos básicos

– VANTAGENS

- maior largura de banda
- volume e peso menor que cobre
- imunidade eletromagnética
- melhor relação atenuação/distância => menos repetidores
- -> maior confiabilidade

DESVANTAGENS

 incompatibilidade com o hardware dos sistemas eletrônicos: gargalo nos pontos de conversão (conversão eletro-óptica)

O Espectro Eletromagnético

Transmissão de Luz através de Fibra

Refração

Fibra Ótica

- (a) Três exemplos de um feixe de luz dentro de uma fibra de sílica colidindo com a fronteira ar/sílica em diferentes ângulos.
- (b) A luz interceptada pela reflexão interna total.

Glossário

- PMD Dispersão de modo de polarização
- Core núcleo
- Cladding revestimento
- Coating Capa
- Índice de refração
- Janelas espectrais de uso

Cabos de Fibra

(a) Perspectiva lateral de uma fibra.

Estrutura física

OPTICAL FIBER

Estrutura física

SINGLE FIBER CABLE

Monomodo X Multimodo

Uma comparação entre diodos semicondutores e emissores de luz utilizados como fontes de luz.

Item	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multimode	Multimode or single mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

Um anel de fibra ótica com repetidores ativos.

Uma conexão em estrela passiva em uma rede de fibra ótica.

Protocolos WDMA (Seção 4.2.5- Tanenbaum)

Cada estação tem 2 transmissores e 2 receptores

- Um receptor de frequencia fixa para ouvir seu canal de controle
- Um transmissor sintonizavel para enviar controles para outros canais
- Um transmissor fixo para transmitir seus dados
- Um receptor sintonizavel para selecionar o canal de um transmissor

Princípios de propagação

- Núcleo (core) e
 Casca (cladding) com
 índices de refração
 próximos
- ângulo de aceitação cônico

Propagação em fibra plana: ex.

 Energia confinada no núcleo:fibra=guia de onda

• Modo de propagação: um para cada θ

Multimodo x monomodo

Fibra multimodo

• Fibra monomodo

Fatores limitantes em fibras

- 1. Dispersão
- 2. Perdas
 - atenuação
 - Espalhamentos

Também...

- Limite na banda de passagem disponível
- Limite no comprimento máximo de fibra

Dispersão - conceito

Dispersion

As a pulse travels down a fiber, dispersion causes pulse spreading. This limits the distance and the bit rate of data on an optical fiber.

Veja mais: http://sol.sci.uop.edu/~jfalward/lightinterference/lightinterference.html

Dispersão - classificação

- Dispersão intermodal
 - predominante em fibras multimodo
 - nas monomodo pode aparecer dependendo:
 - da pureza do laser
 - Da ocorrência de não linearidades (ex: FWM)
- Dispersão intramodal
 - a mais importante em fibras monomodo

Dispersão intermodal

- Dispersão cromática
 - $-\eta$ varia com λ
 - interferência entre modos de propagação
- Dispersão de guia de onda
 - propagação pelo núcleo e casca

Correção de Dispersão Intermodal

 Perfil de índices de η com variação gradual

Dispersão Intramodal

- variação de η ao longo da fibra
 - defeitos
 - curvaturas
 - assimetrias
 - tensões residuais
 - η dependente da polarização da luz (PMD: polarization mode dispersion)

Dispersão Intramodal: PMD

- Velocidades diferente para cada polarização da onda
 - A diferença de tempo de propagação entre os modos de polarização chama-se retardo de grupo diferencial (DRG) e mede a PMD
- Causas
 - Formato elíptico do núcleo
 - Assimetrias da fibra
 - tensões residuais: curvatura e torção
- Varia com a temperatura e tempo
- Efeitos acima de 10 Gbps
- Incremento em 4x na taxa de transmissão → redução de 10x na distância

PMD: exemplo

Diferença de tempo	2,5 Gbps	10 Gbps	40 Gbps
ps/Km			
0,0075	285000 km	18000 km	1100 Km
0,5	6400 Km	400 Km	25 Km
1	1600 Km	100 Km	6 km
5	64 km	4 Km	

Dispersão Intramodal

- Posição da curva que depende de:
 - diâmetro do núcleo (área efetiva)
 - composição da fibra
 - dopagem da fibra

Fabricação - vídeo

- Preforma
 - deposição de vapor de compostos voláteis de (SiCl4, GeCl4, SiF4) + dopantes
 - cozimento
- Puxamento
- Bobinamento

Entendendo valores de dB

A escala decibel (dB) é logarítmica, usada para denotar a taxa de um valor de potência para outro, por exemplo:

 $dB = 10 \log_{10} (Power A/Power B)$

Um aumento de 3 dB indica um dobro de potência. Um aumento de 6 dB indica uma quadruplicação na potência. Alguns exemplos são mostrados na Tabela 1.

Ganho	Número de	Perda	Número de
	vezes		vezes
O dB	1x (o mesmo)	0 dB	1x (o mesmo)
1 dB	1.25x	-1 dB	0.8x
3 dB	2x	-3 dB	0.5x
6 dB	4x	-6 dB	0.25x
10 dB	10x	-10 db	0.10x
12 dB	16x	-12 dB	0.06x
20 dB	100x	-20 dB	0.01x
30 dB	1000x	-30 dB	0.001x
40 dB	10.000x	-40 dB	0.0001x

Perdas - atenuação

- Absorção
 - impurezas na fibra
 - água
- Janelas
 - 820-850 nm MMF
 - 1285 1330 nm MMF/SMF
 - 1525 1575 nm SMF

Perdas - atenuação

- Absorção
 - absorção no infravermelho
 - absorção no ultravioleta

Perdas - espalhamento

 Espalhamentos: transferência da potência de um modo para outro (efeito transformador)

- Lineares
 - Rayleigh
 - Mie

Perdas - espalhamento

- Não-lineares
 - Brillouin estimulado
 - Raman estimulado
 - Modulação de fase cruzada
 - Mistura de 4 ondas
 - Sólitron
 - Espalhamento inelástico
 - acima de um limiar, parte da potência do sinal é transferida em sinal contrapropagante
 - Refração não linear
 - dielétrico (índice de refração) varia com a intensidade do campo elétrico

Perdas - resumo

- Perda de retorno (reflexão)
 - Conector ANSI/TIA/EIA menor que -20 db (usual -30 a -50 dB)
 - Emenda usual -50 a -60 dB
- Perda de inserção (atenuação)
 - Conector ANSI/TIA/EIA menor que 0,75 db (usual 0,5 dB)
 - Emenda usual 0,2 dB
- Absorção (atenuação)
- Espalhamentos (difusão)
- Outros
 - Fraturas (reflexão)
 - Desalinhamento (reflexão)
 - Excentricidade do núcleo (reflexão)
 - Curvatura (atenuação)

Padrões do ITU-T

- G650
 - Parâmetros para testes em fibras
- G651
 - Multimodo 50/125
- G652
 - Monomodo comum
- G653
 - Monomodo dispersão deslocada
- G654
 - Monomodo de corte deslocado
- G655
 - Monomodo de dispersão deslocada não nula

Parâmetros de medição

- Atenuação
 - Perda
 - Curvatura admissível
- Dispersão
 - Cromática
 - -PMD
- Comprimento de onda de corte
- Não Linearidades
- Taxa de erro (BER= bit error rate)

Especificações típicas de fibra

Multimodo

 atenuação 850 nm 	2.7- 3.5	dB/km

- atenuação 1300 nm
 0.6 1.5 dB/km
- diâmetros 50-62.5/125 μm

Monomodo padrão (G652)

- atenuação 1310 nm
 0.33-0.36 dB/km
- atenuação 1550 nm
 0.19-0.22 dB/km
- dispersão zero
 1300 a 1326 nm
- diâmetros 8.5/125 μm

Especificações típicas de fibra

Monomodo deslocado

- atenuação 1310 nm
- atenuação 1550 nm
- dispersão zero
- diâmetros

0.33-0.36 dB/km

0.19-0.22 dB/km

1535 a 1565 nm

8.5/125 μm

Especificações ITU-T - Resumo

Parâmetro	G652	G653	G654
onda (nm)			
	1280 a 1335	1280 a 1335	1480 a 1580
	1480 a 1580	1480 a 1580	
Atenuação			
(dB/Km)	0,3 a 0,4	0,3 a 0,4	
	0,15 a 0,25	0,15 a 0,25	0,15 a 0,20
Dispersão cromática			
	1,2 <m<6,2< td=""><td>-</td><td>-</td></m<6,2<>	-	-
	m<21	2,5 <m<5,5< td=""><td>m<20</td></m<5,5<>	m<20

Otimização no uso da fibra

Multiplexação no tempo (TDM)

- Combines traffic from multiple inputs onto one common high capacity output
- Allows high flexibility in managing traffic; fixed bandwidth
- Requires electrical mux/demux function

Otimização do uso da fibra

Multiplexação no espaço (WDM)

- Merges optical traffic onto one common fiber
- Allows high flexibility in expanding bandwidth
- · Reduces costly mux/demux function, reuses existing optical signals.
- Individual channels use original OAM&P

DWDM = Dense WDM

DWDM = Dense Wave Division Mux

- λ separados em 0.8 nm (ITU-T) -> 32, 80 ou + canais
- 1440 a 1620 nm
- sem conversão eletro-óptica (amplificadores EDFA)

DWDM - dificuldades

- penalidade: diafonia (crosstalk)
 - diafonia linear
 - filtros precisos
 - demultiplexadores precisos
 - controle sobre a largura espectral das fontes (lasers)

diafonia não-linear

DWDM

- DWDM
 - -864 fibras / cabo
 - $-128 \lambda / fibra$
 - OC-48 / λ

Amplificadores ópticos

- Vantagens da amplificação ótica
 - transparência ao formato
 - multi-comprimento de onda
 - bidirecional
 - baixo consumo

Amplificadores ópticos

- Tipos
 - Semicondutor
 - Raman
 - Fibra dopada com Pr ou Nd (1300 nm)
 - Fibra dopada com Er (1550 nm) - EDFA
- Regeneração em 3 etapas (3R)
 - potência (Re-amplified)
 - sincronismo (Re-timed)
 - forma pulso (Re-shaped)

Amplificadores Ópticos de Faixa Larga

Receptores ópticos

- ruído dominante é o ruído térmico
- APD (Avalanche Photo-Diode) x PIN (Photo-Diode Instrinsic Junction)
 - APD: melhor sensibilidade (até 6 dB)
 - PIN: maior banda-passante
 - sensibilidade melhor a custa de amplificador ótico

Redes óticas: autualidade e Tendências

Otimizar uso da fibra ao máximo

TDM + WDM

Add DWDM capability to open untapped embedded capacity

- Maximize return on embedded fiber and TDM investment
- Establish an infrastructure for long term growth
- · Add capacity only where you need it

Add higher bit rate TDM systems to DWDM infrastructure as necessary

- Maximize available capacity
- "Grow-as-you-go" investment
- Graceful evolution to mature higher bit-rate technology

Ex: WDM e 10GbE

Possible 10 Gigabit Ethernet over DWDM

Sem intermedíarios

Comutação óptica

Roteamento ótico

Redes de roteamento de λ

Redes ópticas

Evolução

Kyatera

http://lways1.ifsc.usp.br/kyatera/anel.html

StarLight
Giga
Taquara

FTTH & PON

- FTTH (fiber to the home) is a form of fiber optic communication delivery in which the optical signal reaches the end user's living or office space.[1]
- A passive optical network (PON) is a <u>point-to-multipoint</u>, <u>fiber to the premises</u> network architecture in which unpowered <u>optical splitters</u> are used to enable a single <u>optical fiber</u> to serve multiple premises