Introducción al Análisis Matemático Tema 1 Clase Práctica 5

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la Clase Práctica 5 del Tema 1 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la Conferencia 1.6 sobre la relación entre las funciones trigonométricas y la exponencial. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1.

Calcular
$$sen(x)$$
, $cos(x)$ $tan(x)$ para $x = \frac{\pi}{3}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$, $x = \frac{\pi}{2}$, $x = \frac{\pi}{12}$

Ejercicio 2.

Prueba las fórmulas trigonométricas siguientes:

a)
$$sen(x) sen(y) = -\frac{1}{2} [cos(x+y) - cos(x-y)]$$

b)
$$\cos(x)\cos(y) = \frac{1}{2}[\cos(x+y) + \cos(x-y)]$$

c)
$$\tan(x-y) = \frac{\tan(x)-\tan(y)}{1+\tan(x)\tan(y)}$$

Ejercicio 3.

a) Justifique en forma trigonométrica que

$$\operatorname{sen}(x) \le x \le \operatorname{tan}(x), \ x \in \left[0; \frac{\pi}{2}\right)$$

- b) Prueba las siguientes desigualdades:
 - i) $|\operatorname{sen}(x)| \le |x|, \ x \in \mathbb{R}.$
 - ii) $\cos(x) \ge 1 \frac{x^2}{2}, \ x \in \mathbb{R}.$
 - iii) $\tan(x) < \frac{2}{\pi 2x}, \ x \in]0, \frac{\pi}{2}[.$

Ejercicio 4.

Prueba por inducción matemática la validez de la Fórmula de Moivre

$$[\cos(x) + i\sin(x)]^n = \cos(nx) + i\sin(nx)$$

Ejercicio 5.

Halle las sumas

- a) $\sum_{k=0}^{n} e^{ik\theta}$
- b) $\sum_{k=1}^{n} \operatorname{sen}(k\theta)$
- c) $\sum_{k=0}^{n} \cos(k\theta)$

Ejercicio 6.

Pruebe que

- a) $\arcsin(x) + \arccos(x) = \frac{\pi}{2}, |x| \le 1.$
- b) $\arctan(\frac{u+v}{1-uv}) = \arctan(u) + \arctan(v)$, con $u, v \in [-1, 1]$, $uv \neq 1$.
- c) $\frac{\pi}{4} = 4 \arctan(\frac{1}{5}) \arctan(\frac{1}{239}).$
- d) $\arcsin(x) > x, \ x \in (0, 1)$.
- e) $|\arctan(x)| \le |x|, x \in \mathbb{R}.$

Ejercicio 7.

El sabio alemán Johann Heinrich Lambert (1728-1777) introdujo las llamadas $funciones\ hiperbólicas$

$$senh(x) = \frac{e^x - e^{-x}}{2} \quad cosh(x) = \frac{e^x + e^{-x}}{2}$$

a) Verifica las identidades siguientes:

i)
$$\cosh^2(x) - \sinh^2(x) = 1$$

ii)
$$\cosh(x \pm y) = \cosh(x) \cosh(y) \pm \sinh(x) \sinh(y)$$

iii)
$$\operatorname{senh}(x \pm y) = \operatorname{senh}(x) \cosh(y) \pm \cosh(x) \operatorname{senh}(y)$$

b) Encuentre las fórmulas para:

i)
$$senh(2x)$$
, $senh(\frac{x}{2})$

ii)
$$\cosh(2x)$$
, $\cosh(\frac{x}{2})$

iii)
$$\tanh(2x)$$
, $\tanh(\frac{x}{2})$

c) Muestra que

i)
$$senh(ix) = i sen(x)$$

ii)
$$\cosh(ix) = \cos(x)$$

- d) Encuentre los desarrollos en serie para senh(x) y cosh(x).
- e) Las inversas de las funciones hiperbólicas (arcsenh(x), arccosh(x), arctanh(x)) pueden definirse de manera semejante al caso de las trigonométricas. Pruebe que

i)
$$arcsenh(x) = \ln(x + \sqrt{1 + x^2}), -\infty < x < \infty$$

ii)
$$arccosh(x) = \ln(x + \sqrt{x^2 - 1}), x \ge 1$$

iii)
$$arctanh(x) = \frac{1}{2}\ln(\frac{1+x}{1-x}), |x| < 1.$$