

Katabolisme

A. PENDAHULUAN

- Metabolisme adalah reaksi biokimia dalam tubuh makhluk hidup yang melibatkan substrat dan enzim untuk menghasilkan produk.
- Metabolisme terbagi menjadi dua, yaitu katabolisme dan anabolisme.
- 🔌 Pengertian katabolisme dan anabolisme:

Katabolisme	Anabolisme
mengubah senyawa organik menjadi	mengubah senyawa anorganik menjadi
senyawa anorganik	senyawa organik
mengurai molekul kompleks menjadi sederhana	menyusun (sintesis) molekul sederhana menjadi kompleks
menghasilkan ATP	menggunakan ATP

B. KATABOLISME

- Natabolisme terdiri dari:
 - Katabolisme karbohidrat (4,2 kkal/gram), berupa proses respirasi aerob dan respirasi anaerob.
 - 2) Katabolisme lemak (9,1 kkal/gram).
 - 3) Katabolisme protein (4,2 kkal/gram).
- ATP (adenosin trifosfat) adalah bentuk energi yang digunakan oleh makhluk hidup untuk melakukan aktivitas tingkat sel.
- Energi ATP berasal dari proton (H⁺) dan elektron yang berada di dalamnya.
- Energi ATP pada katabolisme dibawa oleh NAD+ (nikotinamid adenin dinukleotida) dan FAD (flavin adenin dinukleotida).
- ▲ ATP pada respirasi dibentuk dari fosforilasi dengan perangkaian gugus fosfat dan reaksi redoks oleh O₂.

C. RESPIRASI AEROB

- Respirasi aerob adalah katabolisme karbohidrat yang membutuhkan O₂ sebagai oksidator (penerima elektron terakhir dari reaksi).
- Tahapan respirasi aerob adalah glikolisis, dekarboksilasi oksidatif asam piruvat, siklus Kreb, dan transpor elektron.
- Glikolisis adalah proses pemecahan glukosa menjadi asam piruvat pada respirasi aerob. Reaksi ini terjadi dalam sitoplasma sel.
- Reaksi glikolisis glukosa:

2NADH

glukosa \rightarrow 2 a.piruvat + 2NAD+ + 2H+ + 4e + 2ATP

Dekarboksilasi oksidatif adalah proses pemutusan gugus karboksil dan oksigen pada asam piruvat. Reaksi ini terjadi dalam mitokondria sel. Reaksi dekarboksilasi oksidatif asam piruvat:

2NADH

2 a.piruvat \rightarrow 2 asetil-KoA + 2NAD+ + 2H+ + 4e + 2CO₂

- 🔪 **Siklus Kreb** (siklus asam sitrat) adalah siklus yang terjadi setelah dekarboksilasi oksidatif asam piruvat. Siklus ini terjadi dalam matriks mitokondria.
- Reaksi siklus Kreb:

6NADH

2FADH₂

NADH dehidrogenase II suksinat dehidrogenase cyt a sitokrom a Q ubikuinon

cyt b sitokrom b cyt c sitokrom c

H⁺ dipompa keluar 3 kali melalui:

- kompleks I
- cyt b
- cyt a

H⁺ dipompa keluar 2 kali melalui:

- cyt b
- cyt a

🔪 Tahapan transpor elektron:

NADH melepaskan proton dan elektron pada kompleks I dan FADH₂ pada kompleks II.

2) Elektron dibawa berjalan-jalan mengelilingi membran dalam mitokondria mekanisme reaksi redoks oleh ion Cu dan Fe, sehingga matriks bermuatan negatif.

- 🔪 Transpor elektron (kemiosmosis) adalah proses pelepasan energi berupa proton (H+) dan elektron (e) dari molekul NADH dan FADH2 yang dibentuk selama katabolisme. Reaksi ini terjadi dalam matriks mitokondria.
- 🔪 Reaksi transpor elektron:

- 3) Proton dari NADH dipompa keluar matriks 3 kali melewati 3 protein pembawa. Berarti, total ATP yang dihasilkan 10 NADH adalah 10 x 3, yaitu 30 ATP.
- 4) Proton dari FADH2 lalu dipompa keluar matriks 2 kali melewati 2 protein pembawa. Berarti, total ATP yang dihasilkan 2 FADH₂ adalah 2 x 2, yaitu 4 ATP.

- 5) Poin 2, 3, dan 4 menyebabkan perbedaan gradien muatan, sehingga proton dipompa kembali melalui ATP-sintase.
- 6) **Proton (H**⁺) yang bergerak melalui ATPsintase memacu pembentukan ATP (sesuai jumlah yang telah dihitung di atas).

$$ADP + P \rightarrow ATP$$

 Agar ATP tetap terbentuk, proton dan elektron pada akhir sistem transpor akan berikatan dengan O₂ membentuk air (O₂ sebagai penerima elektron terakhir).

$$24H^+ + 6O_2 + 24e \rightarrow 12H_2O$$

🦠 **Respirasi aerob** menghasilkan ATP sejumlah:

Tahapan	+ATP	-ATP
Glikolisis	4 ATP	2 ATP
Dekarboksilasi oksidatif	-	-
Siklus Kreb	2 ATP	-
Transfer elektron	34 ATP	-
Total	38 ATP	

D. RESPIRASI ANAEROB

- Respirasi anaerob (fermentasi) adalah katabolisme karbohidrat yang membutuhkan senyawa selain O₂ sebagai oksidator (penerima elektron terakhir dari reaksi).
- Respirasi anaerob terjadi apabila setelah glikolisis berakhir, sel mengalami kekurangan O₂.
- Glikolisis yang terjadi pada respirasi aerob sama seperti respirasi anaerob. Reaksi ini terjadi di sitoplasma sel.
- Reaksi glikolisis glukosa:

2NADH

glukosa \rightarrow 2 a.piruvat + 2NAD+ + 2H+ + 4e + 2ATP

- ◆ Pembentukan etanol atau asam laktat dilakukan setelah glikolisis jika sel mengalami kekurangan O₂. Jika tidak, maka akan dilanjutkan ke respirasi aerob.
- ▶ Pembentukan etanol dilakukan oleh jamur golongan ragi (contohnya Saccharomyces).

Reaksi pembentukan etanol:

2 asam piruvat → 2C₂H₅OH + 2CO₂

- Pembentukan asam laktat dilakukan oleh hewan dan manusia.
- Reaksi pembentukan asam laktat:

2 asam piruvat → 2 asam laktat

🔦 Respirasi anaerob menghasilkan ATP sejumlah:

Tahapan	+ATP	-ATP
Glikolisis	4 ATP	2 ATP
Pembentukan asam laktat	-	-
Total	2 ATP	

- Energi yang dihasilkan respirasi anaerob sedikit, karena etanol/asam laktat sebenarnya masih mengandung banyak energi yang belum dioksidasi.
- Kontraksi otot menggunakan respirasi anaerob, sedangkan relaksasi otot menggunakan respirasi aerob.
- Asam laktat menumpuk pada otot yang terlalu sering berkontraksi menyebabkan kelelahan.
- Agar asam laktat dapat dioksidasi, maka tubuh harus melakukan respirasi aerob dengan membuat nafas tersengal-sengal untuk mendapat lebih banyak O₂.

E. KATABOLISME LEMAK DAN PROTEIN

🔦 Tahapan katabolisme lemak:

Katabolisme asam lemak

1) Reaksi β-oksidasi

Asam lemak bebas diaktifkan dulu menjadi asam lemak palmitat-KoA (asil-KoA), dengan menggunakan 2 ATP.

Asil-KoA akan dibawa menuju mitokondria sel dan dioksidasi menjadi asetil-KoA.

$$asil-KoA + 7O_2$$

2) Siklus Kreb

Dalam siklus Kreb, asetil-KoA akan dioksidasi menjadi CO₂.

8 asetil-KoA +
$$16O_2$$

$$\rightarrow$$
 104H₂O + 16CO₂ + **96 ATP**

Katabolisme gliserol

- Gliserol akan diubah menjadi gliseraldehida 3-fosfat (PGAL).
- 2) Gliseraldehida 3-fosfat selanjutnya masuk ke katabolisme karbohidrat.
- Katabolisme asam lemak menghasilkan ATP sejumlah:

Tahapan	+ATP	-ATP
Reaksi β-oksidasi	35 ATP	2 ATP
Siklus Kreb	96 ATP	-
Total	129 ATP	

- Tahapan katabolisme protein dilakukan melalui transminasi (pemindahan gugus NH₂) atau deaminasi (pembuangan gugus NH₂).
- Name of the second of the seco
 - Rantai atom karbon berupa asam piruvat, asetil-KoA, oksaloasetat, dll. yang selanjutnya masuk ke katabolisme karbohidrat.
 - 2) Amonia (NH₃) yang selanjutnya diubah menjadi urea untuk dibuang melalui sistem ekskresi.
- Katabolisme protein menghasilkan ATF sejumlah katabolisme karbohidrat, yaitu 38 ATP.

F. HUBUNGAN ANTAR KATABOLISME

- Hubungan katabolisme karbohidrat, lemak, dan protein:
 - Katabolisme utama yang dilakukan tubuh adalah katabolisme karbohidrat.
 - Jika karbohidrat habis, maka katabolisme lemak akan dilakukan. Jika lemak habis, maka katabolisme protein akan dilakukan.
 - 2) **Katabolisme lemak** masuk ke dalam sistem katabolisme karbohidrat dengan:

- Mengubah asam lemak menjadi asetil-KoA.
- b. Mengubah gliserol menjadi PGAL.
- Katabolisme protein masuk ke dalam sistem katabolisme karbohidrat dengan transminasi atau deaminasi asam amino menjadi suatu rantai atom karbon.