Отчет по проверке гипотез с использованием случайных графов

Равиль Гареев

29 мая 2025 г.

Часть I: Проверка гипотез с использованием случайных графов

Введение

В работе исследуется применение случайных графов (KNN-графов и дистанционных графов) для проверки гипотез согласия. Цель — определить, насколько характеристики графов позволяют различать выборки из двух распределений: χ^2 (гипотеза H_0) и χ (гипотеза H_1).

1 Описание кода

1.1 Используемые инструменты

- Python 3.10+: Базовый язык разработки с строгой типизацией
- Библиотеки:
 - numpy: Векторизованные вычисления и работа с массивами
 - scipy.stats: Генерация χ^2 и χ распределений
 - scikit-learn: Оптимизированное построение KNN-графов
 - networkx 3.0+: Топологический анализ и алгоритмы на графах
 - matplotlib/seaborn: Визуализация распределений характеристик
 - tqdm: Интерактивные прогресс-бары для длительных вычислений
- **Архитектура**: Модульная структура с разделением на генерацию данных, построение графов и анализ

1.2 UML-диаграмма класса GraphAnalyzer

GraphAnalyzer - G: nx.Graph - n: int + init(G: nx.Graph) + max_degree() :: int + min_degree() :: int + connected_components() :: int + articulation_points() :: int + count_triangles() :: int + chromatic_number() :: int + clique_number(d: float) :: int + max_independent_set(exact: bool=False, warn_threshold: int=30) :: int + dominating_number() :: int + min_clique_cover() :: int

Рис. 1: Диаграмма класса GraphAnalyzer с методами анализа

1.3 Реализованные компоненты

- Генераторы данных (distribution generators.py):
 - $-\chi^2$ -распределение: Адаптер для chi2.rvs() с параметрами:
 - * nu степени свободы
 - * п размер выборки
 - γ-распределение: Обертка для chi.rvs() с аналогичными параметрами
- Построители графов (build graph.py):
 - KNN-граф:
 - 1. Поиск k+1 ближайших соседей через NearestNeighbors
 - 2. Фильтрация петель $(i \neq j)$
 - 3. Сохранение координат в атрибуте узлов
 - Дистанционный граф:
 - 1. Полный перебор всех пар вершин
 - 2. Проверка условия $|x_i x_j| \leq d$
- Анализатор графов (graph_analyzer.py):
 - Расчёт степеней вершин: max_degree(), min_degree()
 - Компоненты связности: connected_components()
 - Топологический анализ: articulation_points(), count_triangles()
 - Раскраска графов: адаптивный алгоритм DSATUR в chromatic_number()

- Клики: Алгоритм двух указателей для 1D в clique_number()
- Оптимизационные задачи: независимые множества (max_independent_set()),
 доминирующие множества (dominating_number())

• Статистический анализ (hypothesis testing.py):

- Критическая область: calculate_critical_region() на квантилях
- Мощность теста: estimate_power() через сравнение с критическим значением

• Монте-Карло симулятор (monte carlo.py):

- 1. Итеративная генерация n samples выборок для H_0 или H_1
- 2. Динамическое построение графов (KNN/дистанционные)
- 3. Гибкий выбор метрик через рефлексию (getattr())
- 4. Поддержка аргументов метрик через metric_args

2 Описание экспериментов

2.1 Эксперимент 1: Зависимость характеристик от параметра ν

Цель: Исследовать, как характеристики графов (число треугольников для KNN, кликовое число для дистанционного) реагируют на изменение параметра ν в распределениях χ^2 и χ .

Рис. 2: Зависимость характеристик от ν (слева — KNN-граф, справа — дистанционный)

Ключевые наблюдения:

• KNN-граф (число треугольников):

- Минимальная чувствительность: различия между χ^2 и χ не превышают 0.4% для всех ν
- Стабильность: значения остаются в диапазоне 3012-3035 при любом ν

• Дистанционный граф (кликовое число):

- Катастрофическое различие: при $\nu=3$ значения для χ в 2.13 раза выше (113.2 vs 53.5)
- Парадоксальный рост: разрыв увеличивается с ростом ν (см. Табл. 1)
- При $\nu=20$: χ показывает более чем в 5 раз большее кликовое число (110 vs 20)

Статистика:

ν	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
3	53.5	113.3	+111.8%	2.12x
5	38.1	111.2	+191.9%	2.92x
7	31.9	110.1	+245.1%	3.45x
10	26.9	110.3	+309.7%	4.10x
12	24.8	109.6	+342.1%	4.42x
15	22.7	109.4	+381.9%	4.82x
20	20.3	110.2	+442.9%	5.43x

Таблица 1: Результаты для дистанционного графа ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

Выводы:

KNN-граф:

- Полностью неэффективен для различения распределений
- Число треугольников практически идентично для χ^2 и χ

• Дистанционный граф:

- Чрезвычайно чувствителен к типу распределения
- Эффективность растет с увеличением ν

2.2 Эксперимент 2: Зависимость характеристик от параметров графа и размера выборки

Цель: Исследовать влияние параметров графа (k для KNN, d для дистанционного) и размера выборки (n) на характеристики при фиксированных распределениях $\chi^2(\nu = 5)$ и $\chi(\nu = 5)$.

Результаты

• KNN-граф (число треугольников):

- Зависимость от k:
 - * Для H_0 : Рост от 1,038 (k=5) до 18,526 (k=20)
 - * Для H_1 : Рост от 1,040 (k=5) до 18,606 (k=20)
 - * Макс. разрыв: 80.7 треугольников (k = 20, 0.43%)
- Зависимость от n:
 - * Для H_0 : Рост от 1,595 (n=100) до 7,242 (n=500)
 - * Для H_1 : Рост от 1,591 (n=100) до 7,259 (n=500)
 - * Разрыв < 0.23% для всех n

• Дистанционный граф (кликовое число):

- Зависимость от d:
 - * Для H_0 : Рост от 31.5 (d=0.5) до 97.7 (d=2.0)
 - * Для H_1 : Рост от 92.7 (d=0.5) до 260.4 (d=2.0)
 - * Отношение H_1/H_0 : от 2.94х (d=0.5) до 2.66х (d=2.0)
- Зависимость от n:
 - * Для H_0 : Рост от 57.2 (n=100) до 272.7 (n=500)
 - * Для H_1 : Рост от 20.7 (n=100) до 87.4 (n=500)
 - * Отношение H_0/H_1 : от 2.76х (n = 100) до 3.12х (n = 500)

Ключевые выводы

Параметр	KNN $(\Delta_{max}, \%)$	DIST $(\Delta_{max}, \%)$	DIST (Отношение)
$k = 5 \rightarrow 20$	0.43	_	_
$d = 0.5 \to 2.0$	_	726.0%	$2.94x \rightarrow 2.66x$
$n = 100 \rightarrow 500$	0.23	377.1%	$2.76x \rightarrow 3.12x$

Таблица 2: Сводка результатов ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

• KNN-граф:

- Число треугольников растёт с k и n, но не различает H_0/H_1
- Максимальная разница: 0.43% при k=20

• Дистанционный граф:

- Кликовое число демонстрирует:
 - * Максимальную чувствительность при $d = 0.5 \; (\Delta = 194.4\%)$
 - * Стабильный рост различий с увеличением $n~(\Delta = 377.1\%)$
- Отношение H_0/H_1 сохраняется в диапазоне 2.66х—3.12х

d	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
0.5	31.5	92.7	+194.4%	2.94x
1.0	55.0	164.6	+199.3%	2.99x
1.5	76.2	222.2	+191.6%	2.92x
2.0	97.7	260.4	+166.5%	2.66x

Таблица 3: Зависимость от d для дистанционного графа (n=300)

2.3 Эксперимент 3: Проверка гипотез с критической областью

Цель: Оценить эффективность критериев для различения $\chi^2(\nu=5)$ и $\chi(\nu=5)$ при $\alpha=0.05$.

Метрика	KNN-граф	Дистанционный граф
Критическое значение	7,507.15	97.05
FPR (Ошибка I рода)	5.00%	5.00%
TPR (Мощность)	4.80%	100.00%
AUC-ROC	0.545	1.000

Таблица 4: Сравнение критериев (n = 500, k = 10, d = 1.0)

Анализ результатов

- KNN-граф (число треугольников):
 - Низкая мощность (4.8%): Менее 5% выборок H_1 попадают в критическую область
 - AUC 0.545: Незначительное улучшение над случайным угадыванием (0.5)
 - FPR строго соответствует уровню $\alpha=0.05$
- Дистанционный граф (кликовое число):
 - Идеальная сепарация: AUC=1.0 и мощность=100%
 - Все выборки H_1 превышают критическое значение
 - Стабильный контроль ошибки І рода (ровно 5%)

Практические выводы

- Дистанционный граф с характеристикой "кликовое число" демонстрирует:
 - Абсолютную надежность при d=1.0
 - Эффективный контроль ошибок обоих типов
- KNN-граф требует:
 - Пересмотра используемой характеристики (число треугольников неинформативно)
 - Дополнительных исследований для поиска значимых метрик
- Оптимальная конфигурация: $d = 1.0, n \ge 500$ гарантирует AUC=1.0

Заключение (Часть І)

- KNN-граф не подходит для проверки гипотез в текущей конфигурации.
- Дистанционный граф с характеристикой «кликовое число» показал идеальное разделение (AUC=1.0).
- Возможно, для KNN-графа стоит изучить другие характеристики.

Часть II: Анализ графовых признаков для классификации распределений

3 Введение

Цель исследования — оценить эффективность графовых признаков, построенных на выборках из распределений $\chi^2(5)$ и $\chi(5)$, для задачи бинарной классификации.

4 Описание экспериментов

4.1 Извлечение признаков

Для каждой выборки размера n строился дистанционный граф с порогом d=1.0 и вычислялись четыре признака.

4.2 Анализ важности признаков

При помощи Random Forest оценивалась важность признаков при n=25,100,500. Результаты приведены в таблице:

Признак	n = 25	n = 100	n = 500
count_triangles	0.49	0.45	0.45
${ m clique_number}$	0.34	0.39	0.39
\min_{degree}	0.00	0.01	0.05
$connected_components$	0.16	0.15	0.11

Таблица 5: Важность признаков при разных размерах выборки

Вывод: count_triangles и clique_number являются наиболее информативными.

4.3 Классификация и метрики качества

Эксперименты проводились для n=10,20,50,100,200,500 с классификаторами LogisticRegression, RandomForest и SVM. Оценивались Ассигасу, дисперсия Ассигасу, FPR, TPR, Precision и F1.

Рис. 3: Зависимость метрик качества от размера выборки

5 Выводы (Часть II)

- При $n \geq 20$ все алгоритмы достигают 100% Ассигасу и мощности, при этом FPR = 0.
- Для практических задач достаточно $n \approx 20\text{--}50$ для идеального разделения.
- RandomForest и SVM показали наилучшую стабильность при малых выборках.
- Наиболее информативные признаки: count_triangles и clique_number.