שונות VAR	תוחלת E	P - פונקציית ההתפלגות	תומך	דוגמא	שם
$.Var(X) = \frac{(b-a+1)^2-1}{12}$	$.E(X) = \frac{a+b}{2}$	$.k \in S$ לכל $P(X=k) = rac{1}{ S }$	$S = \{a, \dots, b\}$	אם X = תוצאת הטלת קוביה אז: X מתפלג אחיד על: $U(\{1,2,3,4,5,6\})$ לכולם סיכוי אחיד.	$\mathit{U}(a,b)$ - אחידה
.Var(X) = p(1-p)	E(X) = p	P(X = 1) = p, P(X = 0) = 1 - p	0,1}. משתנים שמקבלים רק את הערך $\{0,1\}$	P(X=0) = P, (X=1)הטלת מטבע הוגן אז	- ברנולי (אינדיקטורים)
			או 1.	$1) = \frac{1}{2}$	ber(p)
Var(X) = np(1-p)	E(X) = np	$P(X=k) = \frac{n}{k} \cdot p^k \cdot (1-p)^{n-k}$	$\cdot (1-m{p})^{n-k}$ באשר כל הפעמים $\{0,1,2,\dots,n\}$ כאשר n הוא מספר הניסויים, p היא ההסתברות להצליח הוא p ההסתברות להצלחה בכל ניסוי.		Bin(n,p) - בינומית
$.Var(X) = \frac{1-p}{p^2}$	$.E(X) = \frac{1}{p}$	$.P(X=k)=(1-p)^{k-1}\cdot p$	$\{1,2,\dots inf\}$ לדוגמא - הטלת קוביה שוב ושוב עד שיוצא 6 בפעם הראשונה. X = כמה הטלות היו (כולל האחרונה).	מבצעים את אותו הדבר שוב ושוב עד הפעם הראשונה שמצליחים, כל הפעמים הם בלתי תלויים ובכל פעם הסיכוי להצליח הוא p, המשתנה X סופר כמה נסיונות סה"כ היו.	Geom(p) - גיאומטרית
$Var(X) = \frac{Dn(N-D)(N-n)}{N^2(N-1)}$	$.E(X) = \frac{1}{p}$	$.P(X = k) = \frac{\binom{D}{k} \cdot \binom{N-D}{n-k}}{\binom{N}{n}}$	$.\{max(0, n + D - N), \dots, min(n, D)\}$	כאשר: N הוא מספר העצמים הכולל, D הוא מספר העצמים הטובים, n הוא מספר העצמים שבוחרים מתוך הסה"כ. מתוך הסה"כ. X סופר את מספר העצמים הטובים שבחרנו	- היפרגיאומטרית $Hyp(N,D,n)$
$Var(X) = \lambda$	$E(X) = \lambda$	$.P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$	$\{0,1,2,\dots\}$ מתאר את ממוצע האירועים ליחידת זמן λ	בכל יחידת זמן אחת מתרחשים אירועים כאשר בממוצע יש λ אירועים לאותה יחידת זמן. X סופר את מספר האירועים שקרו ביחידת זמן אחת.	$Pois(\lambda)$ - פואסון
$.Var(X) = \frac{r(1-p)}{p^2}$	$.E(X) = \frac{r}{p}$	$P(X = k) = \frac{k-1}{r-1} \cdot p^r \cdot (1-p)^{k-r}$	$\{r,r+1,r+2,\ldots\}$ כאשר r מתאר את מספר ההצלחות, r מתאר את הסיכוי להצלחה בכל ניסיון	מנסים את אותו הדבר שוב ושוב עד שמצליחים r פעמים בדיוק ואז עוצרים. כל ניסוי הוא בלתי תלוי באחרים ובכל ניסוי הסיכוי להצלחה הוא q . סופר את מספר הניסויים הכולל שעשינו.	- בינומית שלילית $NB(r,p)$

	מקדם מתאם		COV	שונות משותפת	שונות VAR	תוחלת E	
		. ממוצע מכפלת המרחקים של X מהממוצע שלו ו Y מהממוצע שלו ו Y מהממוצע שלו בין X,Y אבל "סוג של" מנורמל		ממוצע המרחקים של הערכים מהממוצע כאשר כל מרחק נמדד	הערך הממוצע של המשתנה X על פני כל הדגימות.		
	$ ho(X,Y) = rac{cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}}$ הגדרה: $ ho(X,Y) = E(XY) - E(X)E(Y)$			בריבוע. $Var(X) = E(X^2) - (E(X))^2$.	$.E(X) = \sum\limits_{\omega \in \Omega} P(\omega) \cdot X(\omega)$ הגדרה:		
רק כאשר 2 המשתנים אינם קבועים). $ m ext{norm}$ תכונות של מקדם מתאם: $ m ext{-} m ext{$.E(XY	$P(x) = \sum\limits_{a}\sum\limits_{b}ab\cdot P(X=a,Y=b)$ הערה: תכונות של שונות משותפת: $Cov(X,X) = Var(X)$ - אמ $V(X,Y) = 0$. אמ $V(X,Y) = 0$. אר $V(X,Y) = 0$.	.: תכונות X,Y בלתי תלויים. $Var(X+Y) = Var(X) + Var(Y)$	$E(X) = \sum\limits_k P(X=k) \cdot k$ הגדרה דרך מאורעות: תוחלת: תכונות של תוחלת: - ליניאריות התוחלת: -		
	$ \rho(X + a, Y) = \rho(X + a, Y) = \frac{a}{ a } \cdot \rho(X + a, Y) $	(X,Y) -	(ככל שאחד גדל השני גדל ולהיפך),	אם $(X, X, Y, Y) = 0$ אז הם בלתי מתואמים (אבל - אם $(X, Y) = 0$ אז הם באותו ניזון של תלות $(X, Y) = 0$ אז הם באותו ניזון של תלות אם $(X, Y) = 0$ אז הם בכיוונים מנוגדים של ו	$.Var(aX)=a^2Var(X)$ - $.Var(a)=0$ - $.Var(X)\geq 0$ - $.Var(X)\geq 0$	$.E(X + Y) = E(X) + E(Y) \qquad \bullet$ $.E(aX) = aE(X) \qquad \bullet$	
. ho(X,X)=1 - $.Cov(X,Y)=0$ רק אם $.Cov(X,Y)=0$ - $.Cov(X,Y)=0$ אם $.P(X,Y)=0$ אם $.P(X,Y)=1$ אם $.P(X,Y)=1$ אם $.P(X,Y)=-1$ אם $.P(X,Y)=-1$ ואם $.P(X,Y)=-1$		$.Cov(X,Y) = Cov(Y,X) - \\ .Cov(aX,bY) = a \cdot b \cdot Cov(X,Y) - \\ .Cov(X+Z,Y+W) = Cov(X,Y) + Cov(X,W) + Cov(Z,Y) + Cov(Z,W) - \\ .Cov(X+Z,Y+W) = Cov(X+X) + Cov(X+X+X) + Cov(X+X+X) + Cov(X+X+X) + Cov(X+X+X) + Cov(X+X+X) + Cov(X+X+X) + Cov(X+X+X+X) + Cov(X+X+X+X) + Cov(X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+$:אם X, Y תלויים \bullet $Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y)$	$E(a)=a$ • $E(X)=E(X)$ - אם $X\leq Y$ לכל הערכים אז $E(X)\leq E(Y)$ (בתנאי שהתוחלות קיימות).		
			ו הנדרה ועל שונות לפי <i>ינוס: ו</i>		$Var(X+Y)=Var(X)+Var(Y)$ א א \bullet אם \star \bullet סכום שונות- $Var(X\pm Y)=Var(X)+Var(Y)$ $\pm 2\cdot Cov(X,Y)$	$E(f(X))=$ יתוחלת של פונקציה של משתנה מקרי: - $\sum_k P(X=k)\cdot f(k)$. $E(XY)=E(X)E(Y)$	
אי שיווין מרקוב אי שיוון צ'בישב אי שיוון צ'בישב		נוסחת ההסתברות השלמה: $P(A) = P(B) \cdot P(A B) + P(B^c) \cdot P(A B^c)$ נוסחת ההסתברות השלמה: $P(A B) = \frac{P(A) \cdot P(B A)}{P(B)}$ נוסחת בייס:		תכונות, משפטים ונוסחאות: $pP(\Phi) = 0, P(\varOmega) = 1$			
$P(X-X X - X)$ אם X משתנה מקרי אזי: $P(X \geq a) \leq \frac{E(X)}{a}$		אם X משתנה חיובי אזי: $\frac{X(X)}{a}$	R(4 0 R) R(4) R(R) :	(מאורע משלים) $P(A^c)=1-P(A)$. 2			

תכונות, משפטים ונוסחאות:

 $.P(A) \le P(B)$ אם $A \subseteq B$ אם

 $P(A \cup B) = P(A) + P(B)$ אם A, B אם A, B

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ אם A, B אם A, B

נוסחת הכלה והדחה: אם A_1,\dots,A_n קבוצות לא זרות אזי:

 $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \left[P(A_i) - \sum_{i< j=1}^{n} \left[P(A_i \cap A_j) + \sum_{i< j< k=1}^{n} \left[P(A_i \cap A_j \cap A_k) - \cdots (-1)^{n+1} P(\bigcap_{i=1}^{n} A_i) \right] \right]$ $P(X=k|X>n)=rac{P(X=k,X>n)}{P(X>n)}$ הסתברות מותנה:

 $\mathbb{P}(X=\underline{x},\underline{Y}=y)=\mathbb{P}(Y=y\mid X=x)\cdot\mathbb{P}(X=x)$. $P(A|B)=\frac{P(A\cap B)}{P(B)}$ הסתברות מותנה של מאורעות:

 $P(A \cap B) = P(B) \cdot P(A|B)$ ייצוג אחר:

 $\sum_{k=0}^{n} {n \choose k} \cdot x^{k} \cdot y^{n-k} = (x + y)^{n}$

 $P(A \cap B) = P(A) \cdot P(B)$ האם: בודקים בודקים מאורעות הם מאורעות מאורעות כדי לבדוק מאורעות מאורעות הם בלתי משתנים מקריים בלתי תלויים -

 $\mathbb{p}(X=x,Y=y)=\mathbb{p}(X=x)\cdot\mathbb{p}(Y=y)$

 $\sum_{n=0}^{\infty} q^n = \frac{a_1}{1-q}$ $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$

 $\Sigma_{m=0}^{\infty} \frac{\lambda^m}{m!} = e^{\lambda} \quad \Sigma_{i=1}^n i = \frac{n \cdot (n+1)}{2}$

אי שיווין מרקוב אי שיוון צ'בישב P(|X-1|X) אם X משתנה מקרי אזיי $E(X)|\geq a)\leq rac{Var(X)}{a^2}$ $P(X \geq a) \leq \frac{E(X)}{a}$ אם X משתנה חיובי אזי: לדוגמא: נניח ש X מתפלג בינומית עם: n = :לדוגמא: נניח ש X מתפלג בינומית עם נביא אותו לצורה) n = 30, p = 1/2.30, p = 1/2 $P(X \ge 20)$ תנו חסם על ההסתברות ש $P(X \ge 20)$ פתרון: לפי מרקוב: $\frac{3}{2} = \frac{3}{4}$ $P(X \ge 20)$ תנו חסם על ההסתברות ש $P(X \ge 20) = P(X - 15 \ge 20 - 10)$ $.15) \le P(|X - 15| \ge 5) \le \frac{7.5}{25} < \frac{1}{3}$

 $\mathbb{P}(A|B\cap C) = \frac{\mathbb{P}(A\cap B\cap C)}{\mathbb{P}(B\cap C)}$ $\frac{\mathbb{P}(\{3\})}{\mathbb{P}(\{1,3\})}$ P({3}) 1/4

וגם $P(A|B) \le 2/3$ אם $P(B) \le 1/3$ אם P(A|B) ≤ 1/3 וגם אורעות כך ש-1/3 א. (12 נקודות) יהיו $P(A) \le 4/9 \text{ xr } P(A|B^c) \le 1/3$ ב. (13 נקודות) יהיו A,B ו-C מאורעות כך ש-A ו-C בלתי תלויים וכו A,B יהיו (13) ב. $P(A|B \cap C) = P(A|B)$

(a) This statement is true. Denote p = P(B). It follows by the law of total probability that $\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c) \le 2/3 \cdot p + 1/3 \cdot (1-p) = 1/3 + p/3 \le 1/3 + 1/9 = 4/9$ where the last inequality holds sine f(p) := 1/3 + p/3 is an increasing function and

יהי n מספר טבעי. גלית ואבי משחקים את המשחק הבא. לכל $i \leq n$ מטילים קוביה הוגנת, כאשר כל הטלות הקוביה בלתי תלויות. לכל $i \leq n$ נסמן ב $i \leq n$ את תוצאת ההטלה ה-i. אם סך כל הנקודות. יהי X סך כל הנקודות, אחרת אבי מקבל a_i^2 נקודות. יהי X סך כל הנקודות a_i נקודות. יהי שגלית קיבלה ויהי Y סך כל הנקודות שאבי קיבל.

> X ושל א. (8 נקודות) א. א. (8 נקודות) א. Y ושל אושל אונויות של X ושל ב. (9 נקודות) חשבו את השונויות של \mathcal{L} (8 נקודות) חשבו את (8 נקודות)

שאלת מבחו. לכל i < 20 מטבע הוגו כאשר כל i < 20הטלות המטבע בלתי תלויות. תהי Aקבוצת כל השלמים בין 1 ל-20 $X = \sum_{i \in A} i$ יהי עץ. יהי שתוצאת המטבע שהוטל עבורם הייתה עץ

.Var(X) חשבו את 2 E(X) חשבו את 1.

פתרון 1: נגדיר את האינדיקטורים: X_{\cdot} השווה ל 1 אם יצא עץ בהטלה

. מכאן:
$$X = \sum_{i=1}^{20} i \cdot X_{_i}$$
מכאן: $1 \leq i \leq 20$ ה . לכל

$$E(X) = E(\sum_{i=1}^{20} i \cdot X_i) = \sum_{i=1}^{20} E(i \cdot X_i) = \sum_{i=1}^{20} i \cdot E(X_i) =$$

$$= \sum_{i=1}^{20} i \cdot P(X_i = 1) = \frac{1}{2} \sum_{i=1}^{20} i = \frac{21 \cdot 20}{4} = 105$$

$$Var(X) = Var(\sum_{i=1}^{20} i \cdot X_i) = \sum_{i=1}^{20} Var(i \cdot X_i) =$$

$$= \sum_{i=1}^{20} i^2 Var(X_i) = \frac{1}{4} \sum_{i=1}^{20} i^2 = \frac{20 \cdot 21 \cdot 41}{24} = 717.5$$

 $Y \sim Geom(p)$ ו- $X \sim Geom(p)$ ו-היו (מספר ממשי ויהיו 12) לכל $P(X=k\mid X+Y=n)=rac{1}{n-1}$ משתנים מקריים בלתי תלויים. הוכיחו שמתקיים

(13) נקודות) יהיו X ו-Y משתנים מקריים המקבלים ערכים שלמים אי שליליים. הוכיחו כי ו-a ו-a מתקיים b ו-A מתקיים אי שליליים אם רק אם רק אם לכל שני שלמים אי $P(X \ge a, Y \ge b) = P(X \ge a)P(Y \ge b)$

|k| כמה ערכים שונים יש? מכיוון ש 2 המשתנים הם גיאומטריים אז התומך שלהם הוא: $\{1,2,\dots\}$ ולכן: הערכים האפשריים ל $P(X = k | X + Y = n) = \frac{1}{n-1}$ ערכים שונים ולכן. (1,2,3,...,n-1). ישנם (1,2,3,...,n-1)

A, b לכל $P(X=a,Y=b)=P(X=a)\cdot P(Y=b)$ ב. המשתנים A, Y הם בלתי תלויים אם ורק אם (ב. המשתנים אינים אינים אורק אם ורק אם אם ורק אם אם ורק אם בלתי תלויים אם ורק אם אם ורק אם בלתי תלויים אם ורק אם ורק אם בלתי תלויים אם בלתי תלויים אם ורק אם בלתי תלויים בלתי תליים בלתי תלויים בלתי תליים בלתי תליים בלתי תלויים בלתי תלויים בלתי תלויים בלתי תליים בלתי תלויים הוכחה: כיוון 1: נניח ש X, Y ב"ת. מכאן:

$$P(X \ge a)P(Y \ge b) = \sum_{k=a}^{\infty} \prod_{m=b}^{\infty} P(X = k) \sum_{m=b}^{\infty} \prod P(Y = m) = \sum_{k=a}^{\infty} \prod \sum_{m=b}^{\infty} \prod P(X = k)P(Y = m) = \sum_{k=a}^{\infty} \prod \sum_{m=b}^{\infty} \prod P(X = k, Y = m) = P(X \ge a, Y \ge b)$$

כיוון 2: נניח ש $P(Y \geq a) \cdot P(Y \geq a) \cdot P(X \geq a)$ צ"ל: X, Y ב"ת.

$$\begin{split} P(X = a, Y = b) &= P(X \ge a, Y \ge b) - P(X \ge a + 1, Y \ge b) - P(X \ge a, Y \ge b + 1) + \\ &\quad + P(X \ge a + 1, Y \ge b + 1) = \\ &= P(X \ge a) P(Y \ge b) - P(X \ge a + 1) P(Y \ge b) - P(X \ge a) P(Y \ge b + 1) + P(X \ge a + 1) P(Y \ge b + 1) \\ &= P(Y \ge b) [P(X \ge a) - P(X \ge a + 1)] - P(Y \ge b + 1) [P(X \ge a) - P(X \ge a + 1)] = \\ &= P(Y \ge b) P(X = a) - P(Y \ge b + 1) P(X = a) = P(X = a) P(Y = b) \end{split}$$

א. (5 נקודות) יהיו a < b ו-1 a < b מספרים ממשיים. יהי X משתנה מקרי המקיים P(X = a) = P(X = a) - P(X = a) ו-P(X = a) = p

P(X = 1) = p ב. (9 נקודות) יהי 0 ממשי ויהי (2 נקודות) ב.E(X) = 3Var(X)-ם נתון ש- P(X = 0) = 1 - p-ו

P(X) את (X זוגי) את $X \sim Geom(p)$ ממשי ויהי 0 חשבו את (X זוגי).

(a) Denote $Y = \frac{X-b}{a-1}$. Note that if X = a, then Y = 1 and if X = b, then Y = 0. It follows

$$Y \sim \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

(b) By definition, X ~ Ber(p), implying that E(X) = p and Var(X) = p(1 − p). Since $\mathbb{E}(X) = 3\text{Var}(X)$ by assumption, it then follows that

$$p = 3p(1-p) \Longrightarrow 1-p = 1/3 \Longrightarrow p = 2/3.$$

(c) Since X ~ Geom(p), the probability that X is even is

$$\sum_{k=1}^{\infty} \mathbb{P}(X=2k) = \sum_{k=1}^{\infty} p(1-p)^{2k-1} = p \cdot \frac{1-p}{1-(1-p)^2} = \frac{p(1-p)}{2p-p^2} = \frac{1-p}{2-p}.$$

For every $1 \le i \le n$ let X_i denote the number of points Galit receives in the ith round of the game and let Y_i denote the number of points Avi receives in the *i*th round of the game. By assumption, for every $1 \le i \le n$, it holds that

$$X_i \sim \begin{cases} 0 & 1/2 \\ 4 & 1/6 \\ 5 & 1/6 \\ 6 & 1/6 \end{cases}$$

$$Y_i \sim \begin{cases} 0 & 1/2 \\ 1 & 1/6 \\ 4 & 1/6 \\ 9 & 1/6 \end{cases}$$

In particular, $\mathbb{E}(X_i) = (4+5+6)/6 = 5/2$ and $\mathbb{E}(Y_i) = (1+4+9)/6 = 7/3$ hold for every $1 \le i \le n$. Note that $X = \sum_{i=1}^{n} X_i$ and $Y = \sum_{i=1}^{n} Y_i$. It then follows by the linearity of expectation that $\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X_i) = 5n/2$ and $\mathbb{E}(Y) = \sum_{i=1}^{n} \mathbb{E}(Y_i) = 7n/3$.

(b) For every $1 \le i \le n$ it holds that $\mathbb{E}(X_i^2) = (4^2 + 5^2 + 6^2)/6 = 77/6$ and thus

$$Var(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = 77/6 - (5/2)^2 = 79/12.$$

Noting that X_1, \ldots, X_n are mutually independent random variables, we conclude that

$$Var(X) = \sum_{i=1}^{n} Var(X_i) = 79n/12.$$

$$(1 - (\mathbb{E}(Y_i))^2 = (1 + 4 + 9^2)/6 - (7/3)^2 = 98/9$$

and thus

$$Var(Y) = \sum_{i=1}^{n} Var(Y_i) = 98n/9$$

(c) Since

$$Cov(X, Y) = Cov \left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{n} Y_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} Cov(X_i, Y_j),$$

we wish to determine $Cov(X_i, Y_i)$ for every $1 \le i, i \le n$. Since different die rolls are independent, X_i and Y_j are independent whenever $i \neq j$; in particular $Cov(X_i, Y_j) = 0$ in this case. Given any $1 \le i \le n$, note that, by definition, either $X_i = 0$ or $Y_i = 0$. It

$$Cov(X_i, Y_i) = \mathbb{E}(X_iY_i) - \mathbb{E}(X_i)\mathbb{E}(Y_i) = \mathbb{E}(0) - 5/2 \cdot 7/3 = -35/6.$$

We conclude that

$$Cov(X, Y) = \sum_{i=1}^{n} Cov(X_i, Y_i) = -35n/6$$

יהיו (Ω, P) מאורעות כלשהם באותו מרחב הסתברות באותו מרחב הפריכו כל אחת מן הפריכו כל אחת מן

א. (8 נקודות) אם A ו-A בלתי תלויים וגם B ו-A בלתי תלויים אז A ו-A בלתי תלויים.

P(A) > 2/3 אז $P(A|C^c) > 2/3$ וגם $P(A|C^c) > 2/3$ אז P(A|C) > 2/3 ב.

ג. $(9 \, \text{נקודות}) \, \text{אם } A \, \text{ו-B בלתי תלויים בהנתן C והם גם בלתי תלויים בהנתן B בלתי תלויים בהנתן$

. בהסתברות אחידה. $A = \{1\}, B = \Phi, C = \{1, 2\}, \Omega = \{1, 2, 3\}$ בהסתברות אחידה. .ת. A, B ולכן $P(A \cap B) = 0, P(A) \cdot P(B) = 0$

$$A,C$$
 ב"ת. B,C ב"ת $P(B\cap C)=0$, $P(B)\cdot P(C)=0$ תלויים. $P(A\cap C)=\frac{1}{3}$, $P(A)\cdot P(C)=\frac{1}{3}\cdot \frac{2}{3}=\frac{2}{9}$

P(A) > 2/3: צ"ל: 2/3 את הנתונים. צ"ל: 2/3

ואכו לפי נוסחת ההסתברות השלמה:

$$P(A) = P(C) \cdot P(C) + P(C^{c}) \cdot P(C^{c}) > \frac{2}{3} P(C) + \frac{2}{3} P(C^{c})$$

= $\frac{2}{3} (P(C) + P(C^{c})) = \frac{2}{3}$

אז: $A = \{1, 2\}, B = \{3\}, C^c = \{3\}$ אז: $C = \{1, 2\}, \Omega = \{1, 2, 3\}$ אז: .3 $P(C) = 0, P(C) \cdot P(C) = 1 \cdot 0$ בהינתן

$$.C^c$$
 אולכן הם ב"ת בהינתן $P(C^c) = 0, P(C^c) \cdot P(C^c) = 0 \cdot 1 = 0$ אולכן הם תלויים. $P(A \cap B) = 0, P(A) \cdot P(B) = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$

יהיו $X \sim Bin\left(n, \frac{1}{n+1}\right)$ משתנים מקריים בלתי תלויים.

א. (7 נקודות) חשבו את התוחלת של $\frac{1}{Y+1}$

ב. (7 נקודות) חשבו את התוחלת של $\frac{x}{y+1}$. $\lim_{X\to X} P(X>1.1)=0$ ג. (9 נקודות) הוכיחו או הפריכו:

ד. (10 נקודות) חשבו את התוחלת של $\frac{1}{1+x}$.

$$.E(\frac{1}{Y+1}) = \sum_{k=0}^{\infty} \frac{1}{k+1} \cdot \frac{e^{-1} \cdot 1^{k}}{k!} = e^{-1} \sum_{k=0}^{\infty} \frac{1}{(k+1)!} = e^{-1} \sum_{m=1}^{\infty} \frac{1}{m!} = e^{-1}(e-1) = 1 - e^{-1}$$

 $P(X=a,\frac{1}{Y+1}=b)=P(X=a,Y=\frac{1-b}{b})=P(X=a)P(Y=\frac{1-b}{b})=\frac{1}{Y+1}$ נראה ש

$$E(X \cdot \frac{1}{Y+1}) = E(X)E(\frac{1}{Y+1}) = (n \cdot \frac{1}{n+1}) \cdot (1 - e^{-1})$$
 ומכאן:

$$\lim_{n\to\infty} P(X>1.1) \ge \lim_{n\to\infty} P(X=2) = \lim_{n\to\infty} \frac{n}{2} \cdot \left(\frac{1}{n+1}\right)^2 \cdot \left(\frac{n}{n+1}\right)^{n-2} = \lim_{n\to\infty} \frac{n(n-1)}{2} \cdot \left(\frac{1}{n+1}\right)^2 \cdot \left(1-\frac{1}{n+1}\right)^2 \cdot \left(1-\frac{1}{$$

$$\frac{1}{n+1})^{n-2} = \frac{1}{n+1} \cdot \frac{1}{n+1}$$

$$\lim_{n\to\infty} \frac{n(n-1)}{2} \cdot \left(\frac{1}{n+1}\right)^2 \cdot \left(1 - \frac{1}{n+1}\right)^{n-2} = \lim_{n\to\infty} \frac{n^2 - n}{2n^2 + 4n + 2} \cdot \left(1 - \frac{1}{n+1}\right)^{n+1} \cdot \left(1 - \frac{1}{n+1}\right)^{-3}$$

$$= \frac{1}{2} \cdot e^{-1} \cdot 1 = \frac{1}{2e} > 0$$

ולכן הגבול המקורי לא שואף ל 0 ולכן הטענה לא נכונה.

$$E(\frac{1}{X+1}) = \sum_{k=0}^{n} \frac{1}{k+1} \cdot {n \choose k} \cdot (\frac{1}{n+1})^k (1 - \frac{1}{n+1})^{n-k} = \sum_{k=0}^{n} \frac{1}{k+1} \cdot \frac{n!}{k!(n-k)!} \cdot (\frac{1}{n+1})^k (1 - \frac{1}{n+1})^{n-k} =$$

$$(n+1) = \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n-k)!} \cdot (\frac{1}{n+1})^{k+1} (1 - \frac{1}{n+1})^{n-k} = \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n-k)!} \cdot (\frac{1}{n+1})^{n-k}$$

$$= \sum_{k=0}^{n} {n+1 \choose k+1} \cdot \left(\frac{1}{n+1}\right)^{k+1} \left(1 - \frac{1}{n+1}\right)^{n+1-(k+1)} = \sum_{m=1}^{n+1} {n+1 \choose m} \cdot \left(\frac{1}{n+1}\right)^m \left(1 - \frac{1}{n+1}\right)^{n+1-m} =$$

$$= \left(\frac{1}{n+1} + \left(1 - \frac{1}{n+1}\right)\right)^{n+1} - \left(1 - \frac{1}{n+1}\right)^{n+1} = 1 - \left(1 - \frac{1}{n+1}\right)^{n+1}$$

Elad V.