CIS 678 - Machine Learning

Predictive modeling: Classification Metrics and Imbalanced Data

Accuracy =
$$\frac{\text{Nb of correct predictions}}{\text{Nb of (correct + incorrect) predictions}}$$

Accuray

• Is accuracy a good metric?

- Is accuracy a good metric?
- Not always

- Is accuracy a good metric?
- Not always
- Let's analyze the confusion matrix of our credit card fraud detection notebook
 - o Accuray metric can be catastrophic
- What other metrics we may use?

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

• Accuracy $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$

Other important classification metrics

- Precision (also called **Positive Predictive Value**)
- Recall (also called Sensitivity)
- F1 Score

Metrics

Precision (also called Positive Predictive Value)

Metrics

• Recall (also called **Sensitivity**)

Recall =
$$\frac{TP}{TP + FN}$$

Metrics

• F1Score

- Demonstration through a practical example
 - o CC fraud detection

- How to deal with Data Imbalance Problems
 - Through Sampling Bias

- How to deal with Data Imbalance Problems
 - Through Sampling Bias
 - Undersampling
 - Oversampling

How to deal with Data Imbalance Problems

Through Sampling Bias

Undersampling

Oversampling

- How to deal with Data Imbalance Problems
 - Through Sampling Bias
 - Undersampling
 - Oversampling
 - Redefining model (loss function for an example)

- How to deal with Data Imbalance Problems
 - Through Sampling Bias
 - Undersampling
 - Oversampling
 - Redefining model (loss function for an example)

QA