

However, class variable should always be categorical in nature.

NAIVE BAYES FOR CLASSIFICATION X

Naive Bayes - Estimating probabilities from Data - Example illustration 2

Consider data set below. Where indicator variables are mixture of data types and objective is to predict Gender of an

Class variable

unknown person.

Numerical variable

Age	Weight	Gender
32	Heavy	Male
39	Normal	Female
21	Heavy	Male
22	Heavy	Female
31	Normal	Male

Indicator variable

categorical variable

Figure 68: Hypothetical data set

Suppose we are to predict Gender class of an observation:

(Age = 33, Weight = Heavy), using Naive Bayes classifier using data set above.

For continuous indicator variables present in the data set, we use Normal distribution to compute the probability density function as defined below.

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)}{2\sigma^2}} \qquad (33)$$
 where,
$$\mu = mean \qquad \sigma = standard deviation$$

NAIVE BAYES FOR CLASSIFICATION XI

Naive Bayes - Estimating probabilities from Data - Example illustration 2

Objective: To predict class of Gender for given input: (Age = 33, Weight = Heavy)

In order to predict the class, we need to compute following two probabilities using Naive Bayes:

- 1. P (Gender = Male | Age = 33, Weight = Heavy)
- 2. P (Gender = Female | Age = 33, Weight = Heavy)

NAIVE BAYES FOR CLASSIFICATION XII

Naive Bayes - Estimating probabilities from Data - Example illustration 2

$$P(Age = 33 \mid Gender = Male) \times P(Weight = Heavy \times Gender = Male) \times P(Gender = Male)$$

Using data set,

P (Gender = Male) =
$$3/5 = 0.6$$

P (Weight = Heavy | Gender = Female) =
$$2/3 = 0.66$$

			n		8
$Q^{x} =$	~ /	$\frac{1}{n-1}$	Σ	(x _i –	$\mu_{x})^{2}$
		Server Thinks	i = 1		

 $\mu_{x} = \frac{1}{n} \sum_{i} x_{i}$

Age	Weight	Gender
32	Heavy	Male
39	Normal	Female
21	Heavy	Male
22	Heavy	Female
31	Normal	Male

Figure 68: Hypothetical data set

Age	Weight	Gender
32	Heavy	Male
21	Heavy	Male
31	Normal	Male

In order to compute above:

- 1. Find Age of all data points with Gender = Male.
- 2. Compute Mean and Standard deviation of Age for data set in right. On calculating we have, μ = 28 and σ = 6.08.

P (Age = 33 × Gender = Male) =
$$\frac{1}{\sqrt{2 \times 3.14 \times (6.08)^2}} e^{\frac{(33-28)^2}{2 \times 6.08^2}} = 0.08$$

4. P (Gender = Male | Age = 33, Weight = Heavy) =
$$\frac{0.08 \times 0.66 \times 0.6}{P \text{ (Age = 33 | Weight = Heavy)}} = 0.024$$

NAIVE BAYES FOR CLASSIFICATION XIII

Naive Bayes- Estimating probabilities from Data- Example illustration 2

P (Gender = Female | Age = 33, Weight = Heavy)

$$P(Age = 33 \mid Gender = Female) \times P(Weight = Heavy \times Gender = Female) \times P(Gender = Female)$$

C	nn	data	COT
		uala	36.

P (Gender = Female) = 2/5 = 0.4

P (Weight = Heavy | Gender = Female) = 1/2 = 0.50

P(Age = 33 | Gender = Female) = ?

Age	Weight	Gender
32	Heavy	Male
39	Normal	Female
21	Heavy	Male
22	Heavy	Female
31	Normal	Male

Age	Weight	Gender
39	Normal	Female
22	Heavy	Female

In order to compute above:

- Find Age of all data points with Gender = Female.
- 2. Compute Mean and Standard deviation of Age for data set in right. On calculating we have, $\mu = 27$ and $\sigma = 7.07$.

P (Age = 33 × Gender = Female) =
$$\frac{1}{\sqrt{2 \times 3.14 \times (7.07)^2}} e^{\frac{(33-27)^2}{2 \times 7.07^2}} = 0.063$$

4. P (Gender = Female | Age = 33, Weight = Heavy) =
$$\frac{0.063 \times 0.5 \times 0.4}{P \text{ (Age = 33 \times Weight = Heavy)}} = 0.0126$$

NAIVE BAYES FOR CLASSIFICATION XIV

Naive Bayes- Estimating probabilities from Data- Example illustration 2

Age	Weight	Gender
32	Heavy	Male
39	Normal	Female
21	Heavy	Male
22	Heavy	Female
31	Normal	Male

P(Gender = Male | Age = 33, Weight = Heavy) > P(Gender = Female | Age = 33, Weight = Heavy)

Hence, a new data point (Age = 33, Weight = Heavy) is predicted as Male.

