How Soon Will a Complaint be Resolved?

A CASE STUDY ON NEW YORK CITY 311 CALL

Problem

We accept 311 complaint phone calls 24 x 7 and try to help people.

Satisfied response time?

- → Model the response time
- → (Alternatively) Model the response time category (> 1 day?)
- → Variable importance: potential improvement

Technical Stack: PySpark + Pandas

Data Source

NYC OpenData: 311 Service Requests from 2010 to Present

- https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
- CSV format, 9.36 M rows and 41 columns
 - Unique Key, Created Date, Closed Date, Agency, Complaint Type, Borough ...

Unique K	Created Date ↑ :	Closed Date	Agen :	Agency Name :	Complaint Type :
15636031	2010 Jan 01 12:24:00 AM	01/14/2010 01:45:00 AM	DEP	Department of Environmental P	Noise
15636032	2010 Jan 01 12:54:00 AM	01/01/2010 01:15:00 PM	DEP	Department of Environmental P	Sewer
15636033	2010 Jan 01 01:00:00 AM	01/01/2010 01:15:00 AM	DEP	Department of Environmental P	Hazardous Materials
15654995	2010 Jan 01 01:00:00 AM	01/05/2010 12:00:00 PM	DSNY	A - Manhattan	Dirty Conditions
15636035	2010 Jan 01 01:07:00 AM	01/27/2010 09:50:00 AM	DEP	Department of Environmental P	Water System
15636135	2010 Jan 01 01:49:00 AM	01/01/2010 12:00:00 PM	DSNY	BCC - Staten Island	Snow
15636036	2010 Jan 01 01:54:00 AM	01/01/2010 10:00:00 AM	DEP	Department of Environmental P	Sewer

Data Wrangling

Target Variable: Resp_time (Response Time)

- Resp_time = Closed Date Created Date [unit: second]
- Issue:
 - Missing values: no Closed Date → eliminate
 - Negative values: Closed Date < Created Date → no explanation, eliminate
 - Hard to read → convert to day

Alternative Target Variable: isLate

- If Response Time > 1 (day), isLate = True, otherwise False
- Quite balanced (show only the sample)


```
+----+
|isLate|count|
+----+
| 1|27535|
| 0|20066|
+----+
```

Data Wrangling

Predictor: HOD (hour of day)

- The time of call matters!
- HOD = hour of Created Date
 - Properly handled the 24-hr format (0-23)

Unique Key	/ Resp_time	Created Dat	te	HOD
32199603	22	12/14/2015		
20074547 28951515	2 1	03/21/2011 09/25/2014		
17575598 28270434	5 3	07/03/2010 06/16/2014		
34115581 28261221	13 1	08/18/2016 06/14/2014	02:24:21	PM 14
22829180	2	03/06/2012	12:05:20	PM 12
29709630 20809019	1 8	01/13/2015 07/11/2011		
+	+	+		++

Choice of Variables

- Eliminate variables having very little information: e.g. Taxi Company
- Choose Borough as the representative variable for geographic information
 - Drop coordinates and other similar variables
- Variables have Unspecified category dominated (95%) → drop

Exploration

Distribution of Resp_time

Distribution of log_Resp_time

Use log_Resp_time instead as the target variable for regression model

Modeling - Regression

Attempt to build a regression model to predict log-response time.

Model tested:

- Linear regression
- Generalized linear regression (Poisson with log-link)
- Random forest regressor
- Gradient boosting tree regressor

Metric: RMSE

Best model: Random forest (100 trees, max depth 10, with max 250 bins)

- Test set prediction RMSE (log-scale): 0.84
- RMSE is too large → Far from satisfaction!

Modeling - Classification

Attempt to build a regression model to predict whether a case will take more than one day to close (isLate).

Model tested:

- Logistic regression
- Naïve Bayes classifier
- Random forest classifier
- Gradient boosting tree classifier

Metric: AUC

Best model: Gradient boosting tree classifier (20 max iteration, max depth 5, with max 250 bins)

Test set prediction AUC: 0.94

Results

Variable Importance

features	values	
AgencyVec	0.005244	0
CompTypeVec	0.934895	1
BoroughVec	0.020878	2
HOD	0.038983	3

Confusion Matrix

prediction	0.0	1.0
isLate		
0	5004	1032
1	736	7672

Accuracy: 88.3%

Conclusion

Using just a few variables, we are able to predict whether a complaint case may be resolved within one day or tends to be delayed on response with 88% accuracy.

Predicting the actual response time remains a challenge.

The complaint type is identified to be the most important variable, followed by the filing time (although much less impact comparing to complaint type), in determining the response time.