Esercizio 7.9

Per assurdo, se L fosse regolare, per il Teorema di Kleene esisterebbe M FSA, M=(Q, δ , qo, F): T(M)=L.

|Q|=p, p>0

Scelgo z€L=T(M), |z|>=|Q|

$$z=a b^{(p+1)} c^{p}$$
 (m=p+1 > k=p)

Considero la computazione $\delta^*(q_0, z)$.

1°passo di computazione	δ^* (qo, a)=qo
2°passo di computazione	δ^* (qo, ab)=qz1
3°passo di computazione	δ^* (qo, abb)=qz2

...

p-esimo di computazione	δ^* (qo, ab^p)=qzp
-------------------------	---------------------------

Ma avremmo p+1 stati distinti: q_0 , q_{z1} , q_{z2} ,... q_{zp} mentre |Q|=p.

Dunque 2 stati devono coincidere, ossia esiste un ciclo nel diagramma di transizione di M.

Formalmente

∃ i,j, 1<=i<j<p: qzi=qzj

Posso scrivere:

$z=uvw$, dove $u=ab^i$, $v=b^i$, $w=b^i$

Considero la (3) con i=0:

u v^0 w= ab^i λ b^(p+1-j) c^p = ab^(p+1-(j-i)) c^p

#(b, u v^0 w)=p+1-(j-i) #(c, u v^0 w)=p e dunque #(b, u v^0 w)= $p+1-(j-i) \le p=\#(c, u v^0 w)$

 \neg (u v^0 w \in T(M) = L) Contraddizione.

Possiamo dunque concludere che L non è regolare.