

## OPTIMAL TREE DENSITY APPROXIMATORS

## Why

Which is the optimal tree to use for tree density approximation?

## **Definition**

We want to choose the tree whose corresponding approximator for the given density achieves minimum relative entropy with the given density among all tree density approximators. We call such a density an *optimal tree approximator* of the given density. We call a tree according to which an optimal tree approximator factors and optimal approximator tree.

## Result

**Prop. 1.** Let  $g : \mathbb{R}^n \to [0,1]$  be a density. A tree T on  $\{1,\ldots,n\}$  is an optimal approximator tree if and only if it is a maximal spanning tree of the differential mutual information graph of q.

*Proof.* First, denote the optimal approximator of g for tree T by  $f_T^*$ . Recall

$$f_T^* = f_1 \prod_{i \neq 1} f_{i|\text{pa}\,i}$$

Second, recall d(g, f) = H(g, f) - H(g). Since H(g) does not depend on f, f is a minimizer of d(g, f) if and only if it is a minimizer of H(g, f).

Third, express the cross entropy of  $f_T^*$  relative to g as

$$\begin{split} H(q, p_{T}^{*}) &= h(q_{1}) - \sum_{j \neq i} \left( \int_{\mathbf{R}^{d}} g(x) \log g_{i|pai}(x_{i}, x_{pai}) dx \right) \\ &= H(q_{1}) - \sum_{i \neq 1} \sum_{a \in A} q(a) (\log q_{i,pai}(a_{i}, a_{pai}) - \log q_{pai}(a_{pai})) \\ &= H(q_{1}) - \sum_{i \neq 1} \sum_{a \in A} q(a) (\log q_{i,pai}(a_{i}, a_{pai}) - \log q_{pai}(a_{pai}) - \log q_{i}(a_{i}) \\ &= \sum_{i = 1}^{n} H(q_{i}) - \sum_{i \neq 1} I(q_{i}, q_{pai}) \\ &= \sum_{i = 1}^{n} H(q_{i}) - \sum_{i \neq 1} I(q_{i}, q_{j}) \end{split}$$

where pa i denotes the parent of vertex i in T (i = 2, ..., n).  $H(g_i)$  does not depend on the choice of tree. Choosing a tree to minimize the second term in the final expression above is equivalent to choosing a maximal spanning tree from the weighted graph with differential mutual information edge weights; namely, the mutual information graph of g.

