CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes:

- Complement Class
- Closure Property

COMPLEXITY CLASSES - COMPLEMENTS

- Complement of a (Decision) Problem:
 - Given a decision problem π its complement π is defined as follows:
 - σ $\pi(x) = 1$ if and only if $\pi'(x) = 0$
- Complement (Complexity) Class:
 - Given a complexity class C its complement class co-C is defined as follows:
 - o co- $\mathbb{C} = \{ \pi \mid \pi' \text{ is in } \mathbb{C} \}$

COMPLEXITY CLASSES — COMPLEMENTS AND CLOSURE

- Recall
 - $P = \{ \pi \mid \pi \text{ is a decision problem that can be solved by a polynomial time algorithm } \}$
 - i.e. $\mathbb{P} = U_{k \in \mathbb{N}}$ TIME(n^k)
- Then we can define co-P as:

 the class of problems whose complement

the class of problems whose complements are in ${f P}$

- Question:
 - Is ₱ closed under *complementation*?

```
oi.e. Is P = co-P?
```

- o Answer:
 - Yes. (By definition of decision problems, any algorithm that solves a problem solves its complement as well.)

COMPLEXITY CLASSES — COMPLEMENTS AND CLOSURE [2]

o Recall:

- NP = $\{\pi \mid \pi \text{ is a decision problem that can be solved by a non-deterministic polynomial time algorithm }$
- Then we can define co-NP
 - as the class of problems whose complements are in
 NP
- Examples:
 - Is **Validity** (of Boolean formulas) in co-NP?
 - Is Graph Isomorphism in co-N₱?
- Exercise:
 - Argue that **Validity** is (co-NP)-complete.

COMPLEXITY CLASSES — COMPLEMENTS AND CLOSURE

• Question:

• Is NP closed under *complementation*?

oi.e. Is NP = co-NP?

O Answer:

- Ability to (efficiently) verify a positive certificate does not imply the ability to (efficiently) verify a negative certificate (or vice versa)
 - \circ i.e. Let π be a decision problem. Assume that there exists a polynomial time algorithm A to verify a certificate y for an instance x of π
 - This does not imply that there exists a polynomial time algorithm A' to verify a certificate y' for an instance x' of the complement of π