SMT

Solving Arithmetic Constraints in SMT

Clark Barrett (joint work with Tim King)

CS 357, Lecture 14, November 4, 2015

► SAT, SMT & DPLL(*T*)

► Simplex for DPLL(*T*)

► Sum of Infeasibilities for SMT

► Leverage LP/MIP Solvers

► Experiments

► SAT, SMT & DPLL(T)

How to combine CDCL + Simplex?

▶ Simplex for DPLL(T)

► Sum of Infeasibilities for SMT

► Leverage LP/MIP Solvers

► Experiments

► SAT, SMT & DPLL(*T*)

How to combine CDCL + Simplex?

▶ Simplex for DPLL(T)

SOTA decision procedure for QF_LRA

► Sum of Infeasibilities for SMT

► Leverage LP/MIP Solvers

Experiments

► SAT, SMT & DPLL(*T*)

How to combine CDCL + Simplex?

▶ Simplex for DPLL(T)

SOTA decision procedure for QF_LRA

► Sum of Infeasibilities for SMT [FMCAD13]

Robust decision procedure for QF_LRA

► Leverage LP/MIP Solvers

Experiments

► SAT, SMT & DPLL(*T*)

How to combine CDCL + Simplex?

▶ Simplex for DPLL(T)

SOTA decision procedure for QF_LRA

► Sum of Infeasibilities for SMT [FMCAD13]

Robust decision procedure for QF_LRA

► Leverage LP/MIP Solvers [FMCAD14]

Accelerate exact precision solver

► Experiments

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for $DPLL(\mathcal{T})$

Sum Of Infeasibilities Simplex [FMCAD13

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

SATISFIABILITY MODULO THEORIES

- ► <u>Theories</u> enforce the semantics of the syntax
- ▶ $\mathcal{T}_{\mathbb{R}}$: theory of reals

Domain of values is \mathbb{R} "+" is mathematical + "0" is mathematical 0 "<" is mathematical <

•••

▶ $\mathcal{T}_{\mathbb{Z}}$: theory of integers

SATISFIABILITY MODULO THEORIES

- ► Theories enforce the semantics of the syntax
- ▶ $\mathcal{T}_{\mathbb{R}}$: theory of reals

Domain of values is \mathbb{R} "+" is mathematical + "0" is mathematical 0 "<" is mathematical <

 $ightharpoonup \mathcal{T}_{\mathbb{Z}}$: theory of integers

SMT Problem

Does there exist a variable assignment a for the theory \mathcal{T} such that the formula ϕ evaluates to **true**?

QF_LRA EXAMPLE

QUANTIFIER-FREE LINEAR REAL ARITHMETIC

$$\phi \equiv (y \le 4)$$

$$\phi \equiv (y \ge 5 \lor x + y \le 6)$$

$$\wedge (x > 2 \lor x - y \ge 1)$$

Is there an assignment that makes ϕ evaluate to **true**?

$$a: \mathcal{X} \to \mathbb{R}$$

SMT

SMT SOLVER FRAMEWORK

SAT Solver CDCL Theory Solver

$$\begin{array}{rcl} y & \leq & 4 \\ y \geq 5 & \lor & x+y \leq 6 \\ x > 2 & \lor & x-y \geq 1 \end{array}$$

$\text{DPLL}(\mathcal{T})$

SMT

SMT SOLVER FRAMEWORK

SAT Solver CDCL Theory Solver

$$\begin{array}{rcl} \mathbf{y} & \leq & \mathbf{4} \\ y \geq 5 & \lor & x+y \leq 6 \\ x > 2 & \lor & x-y \geq 1 \end{array}$$

$$y \leq 4$$

$$\begin{array}{rcl} \mathbf{y} & \leq & \mathbf{4} \\ y \geq 5 & \lor & x+y \leq 6 \\ x > 2 & \lor & x-y \geq 1 \end{array}$$

$DPLL(\mathcal{T})$

$$y \le 4$$

$$y \le 4$$
$$x + y \le 6$$

$$y \leq 4$$

$$y \geq 5 \quad \forall \quad x + y \leq 6$$

$$x > 2 \quad \forall \quad x - y \geq 1$$

$$y \le 4$$

$$x + y \le 6$$

$$x > 2$$

$$y \le 4$$

$$x + y \le 6$$

$$x > 2$$

$$y \le 4$$

 $y \ge 5 \lor x + y \le 6$
 $x > 2 \lor x - y \ge 1$
 $x \le 2 \lor x + y \le 6 \lor y > 4$

$$y \le 4$$

$$x + y \le 6$$

$$x \le 2$$

$$y \le 4$$

 $y \ge 5 \lor x + y \le 6$
 $x > 2 \lor x - y \ge 1$
 $x \le 2 \lor x + y \le 6 \lor y > 4$

SMT

$$y \le 4$$

$$x + y \le 6$$

$$x \le 2$$

$$x - y \ge 1$$

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for DPLL(T)

Sum Of Infeasibilities Simplex [FMCAD13

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

DECISION PROCEDURE FOR QF_LRA

QUANTIFIER FREE LINEAR REAL ARITHMETIC

Is there a satisfying assignment, $a: \mathcal{X} \to \mathbb{R}$, that makes,

$$\begin{array}{cccc}
x & + & y & \leq & 6 \\
x & - & y & \geq & -1 \\
& & y & \leq & 4
\end{array}$$

evaluate to true?

VISUALLY

VISUALLY

$$\begin{array}{cccc} + & y & \leq & 6 \\ - & y & \geq & -1 \\ & y & \leq & 4 \end{array}$$

$$\begin{bmatrix} a_x \\ a_y \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

SMT

SMT

SMT

Preprocessing

- ▶ Introduce a fresh s_i for each $\sum T_{i,j} \cdot x_i$
- ► Literals are of the form:

$$\bigwedge \left(s_i = \sum_{j \in \mathcal{N}} T_{i,j} \cdot x_j \right) \wedge \bigwedge l_i \leq x_i \leq u_i$$

and s_i appears in exactly 1 equality.

► Collect into:

$$T\vec{\mathcal{X}} = 0$$
 $\vec{l} < \vec{\mathcal{X}} < \vec{u}$

PREPROCESSING

- ▶ Introduce a fresh s_i for each $\sum T_{i,j} \cdot x_j$
- ► Literals are of the form:

$$\bigwedge \left(s_i = \sum_{j \in \mathcal{N}} T_{i,j} \cdot x_j \right) \wedge \bigwedge l_i \leq x_i \leq u_i$$

and s_i appears in exactly 1 equality.

► Collect into:

$$T\vec{\mathcal{X}} = 0$$
 $\vec{l} < \vec{\mathcal{X}} < \vec{u}$

PREPROCESSING

- ▶ Introduce a fresh s_i for each $\sum T_{i,j} \cdot x_j$
- ► Literals are of the form:

$$\bigwedge \left(s_i = \sum_{j \in \mathcal{N}} T_{i,j} \cdot x_j \right) \wedge \bigwedge l_i \leq x_i \leq u_i$$

and s_i appears in exactly 1 equality.

► Collect into:

$$T\vec{\mathcal{X}} = 0$$
 $\vec{l} < \vec{\mathcal{X}} < \vec{u}$

▶ Every row in T is solved for a variable x_i

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j$$

- ▶ Not-solved-for variables are **nonbasic** ($j \in \mathcal{N}$)
- ▶ Set of solved-for variables are **basic** ($i \in \mathcal{B}$)

UPDATING NONBASIC VARIABLES

Changing the assignment to $j \in \mathcal{N}$ is easy:

- $ightharpoonup a_j += \delta$
- ► for all $i \in \mathcal{B}$: $a_i += T_{i,j} \cdot \delta.$

Changing the assignment to $j \in \mathcal{N}$ is easy:

- $ightharpoonup a_i += \delta$
- ► for all $i \in \mathcal{B}$: $a_i += T_{i,j} \cdot \delta$.

Add the Invariant

The nonbasic variables satisfy their bounds.

PIVOT(i, j)

MOVE VARIABLES IN/OUT OF ${\cal B}$

Preconditions

Given x_i basic, x_j nonbasic, and $T_{i,j} \neq 0$, PIVOT(i,j) makes x_i nonbasic and x_j basic.

PIVOT(i,j)

MOVE VARIABLES IN/OUT OF ${\cal B}$

Preconditions

Given x_i basic, x_j nonbasic, and $T_{i,j} \neq 0$, PIVOT(i,j) makes x_i nonbasic and x_j basic.

► Take x_i 's row

$$x_i = T_{i,j} x_j + \sum T_{i,k} x_k$$

▶ Solve for x_j

$$x_j = \frac{1}{T_{i,j}} x_i + \sum -\frac{T_{i,k}}{T_{i,j}} x_k$$

▶ Replace x_i everywhere else in T

MOVE VARIABLES IN/OUT OF \mathcal{B}

Preconditions

Given x_i basic, x_i nonbasic, and $T_{i,i} \neq 0$, PIVOT(i, j) makes x_i nonbasic and x_i basic.

▶ Take x_i 's row

$$x_i = T_{i,j} x_j + \sum T_{i,k} x_k$$

 \triangleright Solve for x_i

$$x_j = \frac{1}{T_{i,j}} x_i + \sum -\frac{T_{i,k}}{T_{i,j}} x_k$$

ightharpoonup Replace x_i everywhere else in T

Preserves Linear Subspace

PIVOT(i, j) preserves Ta = 0.

TABLEAU EXAMPLE

$$\begin{array}{ccccc} x & + & y & \leq & 6 \\ x & - & y & \geq & -1 \\ & & y & \leq & 4 \end{array}$$

TABLEAU EXAMPLE

$$s_1 = x + y$$

$$s_2 = x - y$$

$$s_1 \ge 6 \land s_2 \ge -1 \land y \le 4$$

$$s_1 = x + y$$

$$s_2 = x - y$$

$$s_1 \ge 6 \land s_2 \ge -1 \land y \le 4$$

$$T\vec{\mathcal{X}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathcal{B} = \{s_1, s_2\}, \mathcal{N} = \{x, y\}$$

$$s_1 = x + y$$

$$s_2 = x - y$$

$$s_1 \ge 6 \land s_2 \ge -1 \land y \le 4$$

$$T\vec{\mathcal{X}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathcal{B} = \{s_1, s_2\}, \mathcal{N} = \{x, y\}$$

$$s_1 = x + y$$

$$s_2 = x - y$$

$$s_1 \ge 6 \land s_2 \ge -1 \land y \le 4$$

$$T\vec{\mathcal{X}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathcal{B} = \{s_1, s_2\}, \mathcal{N} = \{x, y\}$$

SIMPLEX FOR DPLL(\mathcal{T})

PSEUDOCODE

SMT

while
$$i \in \mathcal{B}$$
 s.t. $a_i > u_i$ or . . . **do**

select some
$$x_i = \sum T_{i,j} \cdot x_j$$

if $\sum T_{i,j} \cdot x_j$ is at a minimum **then**

return a row conflict

else

Select *j* from $\sum T_{i,j} \cdot x_j$

Change the assignment of x_i s.t. $a_i \leftarrow u_i$

PIVOT(i, j)

Simplex for $DPLL(\mathcal{T})$

PSEUDOCODE

SMT

while
$$i \in \mathcal{B}$$
 s.t. $a_i > u_i$ or . . . **do**

select some
$$x_i = \sum T_{i,j} \cdot x_j$$

if
$$\sum T_{i,j} \cdot x_j$$
 is at a minimum **then**

return a row conflict

else

Select *j* from
$$\sum T_{i,j} \cdot x_i$$

Change the assignment of x_i s.t. $a_i \leftarrow u_i$

SIMPLEX FOR DPLL(\mathcal{T}) SEARCH

Greedily fix

$$x + y \le 6$$

ignoring

$$x - y \ge -1$$
 and

$$y \le 4$$

SIMPLEX FOR $DPLL(\mathcal{T})$ SEARCH

Greedily fix

$$x + y \le 6$$

ignoring

$$x - y \ge -1$$
 and

$$y \le 4$$

CONFLICT DETECTION

SMT

► Select x_i s.t. $a_i > u_i$ and $i \in \mathcal{B}$

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j$$

CONFLICT DETECTION

► Select x_i s.t. $a_i > u_i$ and $i \in \mathcal{B}$

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j$$

- ▶ If
 - $a_j = l_j$ for all $T_{i,j} > 0$ and
 - $a_k = u_k$ for all $T_{i,k} < 0$,
 - ▶ then $\sum T_{i,j}x_i$ must be minimized.

► Select x_i s.t. $a_i > u_i$ and $i \in \mathcal{B}$

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j$$

- ▶ If
 - $a_j = l_j$ for all $T_{i,j} > 0$ and
 - $a_k = u_k$ for all $T_{i,k} < 0$,
 - ▶ then $\sum T_{i,j}x_j$ must be minimized.
- ▶ Thus $x_i \ge a_i$ is entailed by

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j \wedge \bigwedge_{T_{i,j} > 0} x_j \ge l_j \bigwedge_{T_{i,k} < 0} x_k \ge u_k$$

CONFLICT DETECTION

► Select x_i s.t. $a_i > u_i$ and $i \in \mathcal{B}$

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j$$

- ► If
 - $a_i = l_i$ for all $T_{i,j} > 0$ and
 - $a_k = u_k$ for all $T_{i,k} < 0$,
 - ▶ then $\sum T_{i,j}x_j$ must be minimized.
- ▶ Thus $x_i \ge a_i$ is entailed by

$$x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j \wedge \bigwedge_{T_{i,j} > 0} x_j \ge l_j \bigwedge_{T_{i,k} < 0} x_k \ge u_k$$

▶ But $u_i \ge x_i \ge a_i > u_i!$

CONFLICT DETECTION

CONTINUED

Thus, the following is **Unsat** in $\mathcal{T}_{\mathbb{R}}$:

$$\left(x_i = \sum_{j \in \mathcal{N}} T_{i,j} x_j\right) \wedge \left(\bigwedge_{T_{i,j} > 0} x_j \ge l_j\right) \wedge \left(\bigwedge_{T_{i,k} < 0} x_k \ge u_k\right) \wedge x_i \le u_i$$

EAGER CONFLICT DETECTION

SMALL CONTRIBUTION

SMT

▶ $\forall i \in \mathcal{B}$ track the cardinalities of the sets:

$$J = \{j | T_{i,j} > 0, a_j = l_j\} \quad K = \{k | T_{i,k} < 0, a_k = u_k\}$$

SMALL CONTRIBUTION

 \blacktriangleright $\forall i \in \mathcal{B}$ track the cardinalities of the sets:

$$J = \{j | T_{i,j} > 0, a_j = l_j\} \quad K = \{k | T_{i,k} < 0, a_k = u_k\}$$

- ▶ Suppose x_i is basic with n nonbasic vars on its row.
- ▶ If $a_i > u_i$ and |J| + |K| = n, a conflict can be extracted from the row T_i .

SMALL CONTRIBUTION

 \blacktriangleright $\forall i \in \mathcal{B}$ track the cardinalities of the sets:

$$J = \{j | T_{i,j} > 0, a_j = l_j\} \quad K = \{k | T_{i,k} < 0, a_k = u_k\}$$

- ▶ Suppose x_i is basic with n nonbasic vars on its row.
- ▶ If $a_i > u_i$ and |J| + |K| = n, a conflict can be extracted from the row T_i .
- ▶ Bookkeeping \rightarrow O(1)-amortized conflict detection

EAGER CONFLICT DETECTION

SMALL CONTRIBUTION

 \blacktriangleright $\forall i \in \mathcal{B}$ track the cardinalities of the sets:

$$J = \{j | T_{i,j} > 0, a_j = l_j\} \quad K = \{k | T_{i,k} < 0, a_k = u_k\}$$

- ▶ Suppose x_i is basic with n nonbasic vars on its row.
- ▶ If $a_i > u_i$ and |J| + |K| = n, a conflict can be extracted from the row T_i .
- ▶ Bookkeeping \rightarrow O(1)-amortized conflict detection
- ► Never miss conflicts!

SIMPLEX FOR DPLL(\mathcal{T})

WITH EAGER CONFLICT DETECTION

check for row conflicts

while $i \in \mathcal{B}$ s.t. $a_i > u_i$ or . . . and no row conflicts **do**

select some
$$x_i = \sum T_{i,j} \cdot x_j$$

Select *j* from
$$\sum T_{i,j} \cdot x_j$$

Change the assignment of x_j s.t. $a_j \leftarrow u_j$

check for row conflicts

SIMPLEX FOR DPLL(\mathcal{T})

WITH EAGER CONFLICT DETECTION

check for row conflicts

while $i \in \mathcal{B}$ s.t. $a_i > u_i$ or . . . and no row conflicts **do**

select some $x_i = \sum T_{i,j} \cdot x_j$

Select *j* from $\sum T_{i,j} \cdot x_j$

Change the assignment of x_j s.t. $a_j \leftarrow u_j$

PIVOT(i, j)

check for row conflicts

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for $DPLL(\mathcal{T})$

Sum Of Infeasibilities Simplex [FMCAD13]

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

SIMPLEX FOR DPLL(\mathcal{T}) SEARCH REMINDER

Greedily fix

$$x + y \le 6$$

ignoring

$$x - y \ge -1$$
 and

$$y \le 4$$

SUM OF INFEASIBILITIES

▶ Infeasibility of x_i is how much x_i violates its bounds.

$$V_i = \begin{cases} a_i - u_i & a_i > u_i \\ 0 & l_i \le a_i \le u_i \\ l_i - a_i & a_i < l_i \end{cases}$$

► Sum of Infeasibilities:

$$V(\mathcal{X}) = \sum_{x_i \in \mathcal{X}} V_i$$

► SOISIMPLEX minimizes V(X) every round

SUM OF INFEASIBILITIES

▶ Infeasibility of x_i is how much x_i violates its bounds.

$$V_i = \begin{cases} a_i - u_i & a_i > u_i \\ 0 & l_i \le a_i \le u_i \\ l_i - a_i & a_i < l_i \end{cases}$$

► Sum of Infeasibilities:

$$V(\mathcal{X}) = \sum_{x_i \in \mathcal{X}} V_i$$

- ► SOISIMPLEX minimizes V(X) every round
 - ► Known in optimization
 - ► New for SMT

SOISIMPLEX SEARCH

SOISIMPLEX SEARCH

SOISIMPLEX SEARCH

DIRECTION OF $V(\mathcal{X})$

$$\begin{cases} a_i \dots & a_i > u_i \\ 0 & \text{otherwise} \\ -a_i & a_i < l_i \end{cases}$$

DIRECTION OF $V(\mathcal{X})$

SMT

$$\begin{cases} a_i \dots & a_i > u_i \\ 0 & \text{otherwise} \\ \dots - a_i & a_i < l_i \end{cases}$$

 $V(\mathcal{X}) = 0$ iff *a* is sat

SOISIMPLEX HIGHLEVEL

ROUGH SKETCH

```
procedure SOISIMPLEX
```

while V(X) is not at a minimum **do**

select a variable x_j

update x_j s.t. V(X) decreases and

 $a_i \leftarrow u_i \text{ (or } \ldots \text{) for some } i \in \mathcal{B}$

PIVOT(i, j)

> can check rows for conflicts

return (if (V(X) = 0) then Sat else SoiQE())

procedure SOISIMPLEX

while V(X) is not at a minimum **do**

select a variable x_j

update x_j s.t. $V(\mathcal{X})$ decreases and

 $a_i \leftarrow u_i \text{ (or } \ldots \text{) for some } i \in \mathcal{B}$

PIVOT(i, j)

> can check rows for conflicts

return (if (V(X) = 0) then Sat else SoiQE())

ROUGH SKETCH

```
procedure SOISIMPLEX
```

while V(X) is not at a minimum **do**

select a variable x_i

update x_i s.t. $V(\mathcal{X})$ decreases and

 $a_i \leftarrow u_i$ (or . . .) for some $i \in \mathcal{B}$

PIVOT(i, j)

> can check rows for conflicts

return (if (V(X) = 0) then Sat else SoiQE())

Where $V(\mathcal{X})$ changes

$$\delta \in \left\{ \frac{a_i - u_j}{T_{i,j}}, \frac{a_i - l_j}{T_{i,j}}, \dots, a_j - u_j, a_j - l_j \right\}$$

BREAKPOINTS WHERE $V(\mathcal{X})$ Changes

$$\delta \in \{1,3,4\}$$

SOISELECT()

Select x_j on $V(\mathcal{X})$'s row

s.t. x_i is not at its bound

Compute breakpoints $\{\delta\}$ for x_j

Compute $V(\mathcal{X})$ post $UPDATE(j, \delta)$ for each δ

return the δ and corresponding i with

the lowest $V(\mathcal{X})$ post $\mathsf{UPDATE}(j,\delta)$

SOISELECT()

Select x_j on $V(\mathcal{X})$'s row

s.t. x_i is not at its bound

Compute breakpoints $\{\delta\}$ for x_j

Compute $V(\mathcal{X})$ post UPDATE (j, δ) for each δ

return the δ and corresponding i with

the lowest $V(\mathcal{X})$ post $UPDATE(j, \delta)$

 $V(\mathcal{X})$ monotonically decreases!

FILLING IN THE SKETCH

while V(X) is not at a minimum **do**

$$\langle i, \delta, j \rangle \leftarrow \text{SOISELECT}()$$

UPDATE (j, δ)

PIVOT(i, j)

> can check rows for conflicts

return (if $(V(\mathcal{X}) = 0)$ then Sat else SoiQE())

FILLING IN THE SKETCH

while V(X) is not at a minimum do

$$\langle i, \delta, j \rangle \leftarrow \text{SOISELECT}()$$

UPDATE (j, δ)

PIVOT(i, j)

> can check rows for conflicts

return (if $(V(\mathcal{X}) = 0)$ then Sat else SoiQE())

FILLING IN THE SKETCH

while V(X) is not at a minimum do

$$\langle i, \delta, j \rangle \leftarrow \text{SOISELECT}()$$

UPDATE (j, δ)

PIVOT(i, j)

> can check rows for conflicts

return (if (V(X) = 0) then Sat else SoiQE())

FILLING IN THE SKETCH

while V(X) is not at a minimum do

$$\langle i, \delta, j \rangle \leftarrow \text{SOISELECT}()$$

UPDATE (j, δ)

PIVOT(i, j)

> can check rows for conflicts

return (if (V(X) = 0) then Sat else SoiQE())

- ▶ Suppose V(X) is minimal and V(X) > 0
- ► Suppose $a_i > u_i$ for all $V_i > 0$

- ▶ Suppose V(X) is minimal and V(X) > 0
- ► Suppose $a_i > u_i$ for all $V_i > 0$
- ▶ $V_i = (a_i u_i) > 0$
- ▶ But, $0 \ge (x_i u_i)$

- ▶ Suppose V(X) is minimal and V(X) > 0
- ► Suppose $a_i > u_i$ for all $V_i > 0$
- ▶ $V_i = (a_i u_i) > 0$
- ▶ But, $0 \ge (x_i u_i)$
- ▶ If V(X) is minimal, then

$$\sum x_i \ge \sum a_i$$

- ▶ Suppose V(X) is minimal and V(X) > 0
- ► Suppose $a_i > u_i$ for all $V_i > 0$
- ▶ $V_i = (a_i u_i) > 0$
- ▶ But, $0 \ge (x_i u_i)$
- ▶ If V(X) is minimal, then

$$\sum x_i \ge \sum a_i$$

► Subtract $\sum_{V_i>0} u_i$ from both sides

$$\sum (x_i - u_i) \ge \sum V_i = V(\mathcal{X}) > 0$$

- ▶ Suppose V(X) is minimal and V(X) > 0
- ► Suppose $a_i > u_i$ for all $V_i > 0$
- ▶ $V_i = (a_i u_i) > 0$
- ▶ But, $0 \ge (x_i u_i)$
- ▶ If V(X) is minimal, then

$$\sum x_i \ge \sum a_i$$

► Subtract $\sum_{V_i>0} u_i$ from both sides

$$\sum (x_i - u_i) \ge \sum V_i = V(\mathcal{X}) > 0$$

▶ But....

$$0 \ge \sum_{i \in \mathcal{P}} (x_i - u_i)$$

WHAT HAPPENS WHEN $V(\mathcal{X})$ IS MINIMAL?

- ► Can extract a conflict using $\sum_{V_i>0} T_i$
- ► Conflict may not be minimal

SMT

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for DPLL(\mathcal{T}

Sum Of Infeasibilities Simplex [FMCAD13]

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

- ightharpoonup SOISimplex added optimization to Simplex for DPLL(\mathcal{T})
- ► Linear Programming solvers perform both
 - feasibility checking and
 - ► optimization

- ► SOISimplex added optimization to Simplex for DPLL(T)
- ► Linear Programming solvers perform both
 - feasibility checking and
 - ► optimization
- ► Mixed Integer Programming = $LP + IsInt(x_i)$ constraints

- ► SOISimplex added optimization to Simplex for DPLL(T)
- ► Linear Programming solvers perform both
 - feasibility checking and
 - optimization
- ► Mixed Integer Programming = LP + IsInt(x_i) constraints
- ► Decades of research: fast by SMT standards

- ▶ SOISimplex added optimization to Simplex for DPLL(\mathcal{T})
- ► Linear Programming solvers perform both
 - ► feasibility checking and
 - ► optimization
- ► Mixed Integer Programming = $LP + IsInt(x_i)$ constraints
- ► Decades of research: fast by SMT standards
- ► Can SMT leverage LP?
 - ► Trusting LP solver [YM06]
 - ► Check each *T*-conflict used [FaureNOR08]
 - ► FORCEDPIVOT procedure [Caminha'Monniaux'PAAR2012, Monniaux'CAV09]
 - ▶ All use LP solver as main $\mathcal{T}_{\mathbb{R}}$ -solver

RESEEDING SIMPLEX STATES

GENERAL APPROACH

- ► Call an external off-the-shelf **untrusted** Simplex LP solver
- ► Reseed the state of the exact precision solver
- ► Only when it is likely to help
- ► Implemented with GLPK

RESEEDING THE SIMPLEX STATE

If the \mathbb{R} -relaxation is hard, try the following:

1. Construct an approximate problem from exact

$$T\vec{\mathcal{X}} = 0, \vec{l} \le \vec{\mathcal{X}} \le \vec{u} \implies \tilde{T}\vec{\mathcal{X}} = 0, \tilde{l} \le \vec{\mathcal{X}} \le \vec{v}$$

- 2. Call <u>untrusted floating point</u> Simplex solver on \widetilde{T} , \widetilde{l} , \widetilde{u}
- 3. Get back untrusted \tilde{a} and $\tilde{\mathcal{B}}$
- 4. Convert floating point \tilde{a} into $a^{massage}$ ($\mathcal{X} \to \mathbb{Q}$)
- 5. Reseed $(a^{massage}, \widetilde{\mathcal{B}})$ to get a new a and T
- 6. Call exact precision Simplex

MASSAGING ASSIGNMENTS

- ▶ Suppose we directly attempted to use \tilde{a} .
- ► Each row must satisfy:

$$a_i = \sum T_{i,j} a_j$$

- ► Many variables have assignments near the bounds
- ► Many slack variables are entailed to be 0 (in practice)
- ► Get in a Simplex "friendly" state

MASSAGING ASSIGNMENTS

FLOATS TO RATIONALS

SMT

$$r \leftarrow \text{DIOPHANTINEAPPROX}(\widetilde{a}_i, D)$$

if
$$|r - a_i| \le \epsilon$$
 then $r \leftarrow a_i$

if
$$x \in \mathcal{X}_{\mathbb{Z}}$$
 and $|r - \lfloor r \rceil| \le \epsilon$ then $r \leftarrow \lfloor r \rceil$

if
$$r > u_i$$
 or $|r - u_i| \le \epsilon$ **then** $r \leftarrow u_i$

else if
$$r < l_i$$
 or $|r - l_i| \le \epsilon$ then $r \leftarrow l_i$

$$a_i^{massage} \leftarrow r$$

```
Reserding Simplex (a^{massage}, \widetilde{\mathcal{B}})
```

for all $j \in \mathcal{N}$ **do** UPDATE (j, \cdot) s.t. $a_j = a_j^{massage}$

 $\mathcal{B}_{want} \leftarrow \mathcal{N} \cap \widetilde{\mathcal{B}}$

repeat

if any row conflict then return Unsat

if $l \le a \le u$ then return Sat

select i, k s.t. $k \in \mathcal{B}_{want}$, $i \notin \widetilde{\mathcal{B}}$, $T_{i,k} \neq 0$, and $V_i > 0$

if no such $\langle i, k \rangle$ then

return Unknown $\triangleright \widetilde{\mathcal{B}}$ is not valid basis

else

PIVOT(i,k) and UPDATE (i,\cdot) s.t. $a_i = a_i^{massage}$

until $\mathcal{B}_{want} = \emptyset$ return Unknown

Simplex for DPLL(T)

```
RESEEDING SIMPLEX (a^{massage}, \mathcal{B})
          for all j \in \mathcal{N} do UPDATE(j, \cdot) s.t. a_j = a_i^{massage}
          \mathcal{B}_{vont} \leftarrow \mathcal{N} \cap \widetilde{\mathcal{B}}
          repeat
               if any row conflict then return Unsat
               if l < a < u then return Sat
               select i, k s.t. k \in \mathcal{B}_{want}, i \notin \widetilde{\mathcal{B}}, T_{i,k} \neq 0, and V_i > 0
               if no such \langle i, k \rangle then
                     return Unknown \triangleright \widetilde{\mathcal{B}} is not valid basis
               else
                     PIVOT(i, k) and UPDATE(i, \cdot) s.t. a_i = a_i^{massage}
```

until $\mathcal{B}_{want} = \emptyset$ return Unknown

More robust with SOI Simplex [KBD13]

$$\text{Move} \ \langle \text{Qf_lra}, LP \rangle \to \langle \text{Qf_lira}, MIP \rangle$$

▶ Partition variables \mathcal{X} into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$

- ▶ Partition variables \mathcal{X} into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$
- $ightharpoonup \mathbb{R}$ -relaxation treat all \mathcal{X} as $\mathcal{X}_{\mathbb{R}}$
- ▶ *a* is **integer-compatible** if $\forall x_i \in \mathcal{X}_{\mathbb{Z}}$, then $a_i \in \mathbb{Z}$

- ▶ Partition variables \mathcal{X} into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$
- $ightharpoonup \mathbb{R}$ -relaxation treat all \mathcal{X} as $\mathcal{X}_{\mathbb{R}}$
- ▶ *a* is **integer-compatible** if $\forall x_i \in \mathcal{X}_{\mathbb{Z}}$, then $a_i \in \mathbb{Z}$
- ► MIP is new for SMT

ANOTHER EXAMPLE: VISUALLY

$$\begin{array}{ccccc} x & + & y & \geq & 1 \\ x & - & y & \geq & 0 \\ 4x & - & y & \leq & 2 \end{array}$$

$$\begin{bmatrix} a_x \\ a_y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Refining \mathbb{Z} -infeasible assignments

► Branch:

$$\frac{x_i \in \mathcal{X}_{\mathbb{Z}} \qquad \alpha \in \mathbb{R}}{x_i \le |\alpha| \lor x_i \ge \lceil \alpha \rceil}$$

- ► Cut: $\sum c_i x_i \ge d$ such that
 - $\{l_i\} \models_{\mathbb{R}\mathbb{Z}} \sum c_j x_j \geq d$
 - $\{l_i\} \not\models_{\mathbb{R}} \sum c_j x_j \geq d$

BRANCHES AND CUTS

VISUALLY

Branch: $y \ge 1 \lor y \le 0$

Cut: $\{\cdots\} \models_{\mathbb{R}\mathbb{Z}} x \geq 1$

BRANCH-AND-CUT SOLVERS

MOST SMT SOLVERS AND MANY MIP SOLVERS

- 1. Treat all of \mathcal{X} as if they were $\mathcal{X}_{\mathbb{R}}$
- ____

2. Solve the \mathbb{R} -relaxation

- 3. If unsat, return \mathbb{R} -conflict[s]
- 4. If \mathbb{R} -relaxation is **Sat** and a is \mathbb{Z} -compatible, return a
- 5. [Heuristically] try to derive a cut. If successful, add the cut $\sum c_i x_i \ge d$, and goto (1)
- 6. Branch on some $x_i \in \mathcal{X}_{\mathbb{Z}}$ with $a_i \notin \mathbb{Z}$

BRANCH-AND-CUT SOLVERS

MOST SMT SOLVERS AND MANY MIP SOLVERS

- 1. Treat all of \mathcal{X} as if they were $\mathcal{X}_{\mathbb{R}}$
- 2. Solve the \mathbb{R} -relaxation
- 3. If unsat, return \mathbb{R} -conflict[s]
- 4. If \mathbb{R} -relaxation is **Sat** and a is \mathbb{Z} -compatible, return a
- 5. [Heuristically] try to derive a cut. If successful, add the cut $\sum c_i x_i \ge d$, and goto (1)
- 6. Branch on some $x_i \in \mathcal{X}_{\mathbb{Z}}$ with $a_i \notin \mathbb{Z}$ Splitting-on-Demand in SMT

MIP ANSWERS

What are the possible answers for QF_LIA and QF_LIRA?

- ▶ ℝ-infeasible
- $ightharpoonup \mathbb{R}$ -feasible and \mathbb{Z} -feasible

 $ightharpoonup \mathbb{R}$ -feasible and \mathbb{Z} -infeasible

MIP ANSWERS

What are the possible answers for QF_LIA and QF_LIRA?

- ▶ ℝ-infeasible
- ► R-feasible and Z-feasible
 Same reseeding trick as R-feasible
- $ightharpoonup \mathbb{R}$ -feasible and \mathbb{Z} -infeasible

MIP ANSWERS

What are the possible answers for QF_LIA and QF_LIRA?

- ▶ ℝ-infeasible
- ▶ R-feasible and Z-feasible Same reseeding trick as R-feasible
- $ightharpoonup \mathbb{R}$ -feasible and \mathbb{Z} -infeasible

INFEASIBLE BRANCH-AND-CUT EXECUTIONS

► Leaves are conflicts

► Internal nodes are

branches

$$x_i \leq \lfloor \alpha \rfloor \forall x_i \geq \lceil \alpha \rceil \quad \text{if } x_i \in \mathcal{X}_{\mathbb{Z}}$$

Nodes have cuts

$$\{l_i\} \models_{\mathbb{R}\mathbb{Z}} \sum c_j x_j \geq d$$

REPLAYING THE MIP EXECUTION

► Minimizes changes to the MIP solver's search

REPLAYING THE MIP EXECUTION

- ► Minimizes changes to the MIP solver's search
- ► Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes

REPLAYING THE MIP EXECUTION

- ► Minimizes changes to the MIP solver's search
- ► Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- ► Repeat "the big steps" in the SMT solver

REPLAYING THE MIP EXECUTION

- ► Minimizes changes to the MIP solver's search
- ► Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- ► Repeat "the big steps" in the SMT solver
- Reconstruct the Resolution+Cutting Planes proof
- ► Resolution removes branching literals

REPLAYING THE MIP EXECUTION

- ► Minimizes changes to the MIP solver's search
- ► Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- ► Repeat "the big steps" in the SMT solver
- ► Reconstruct the Resolution+Cutting Planes proof
- ► Resolution removes branching literals
- Any failure can be safely dropped
- ► Success is a conflict

CUTTING PLANES

- ► Hint is used to instantiate a cutting plane procedure
- ► Proof must tightly match to get the "same" cut
- ► White-box knowledge and detailed hints
- ► Support for Gomory (easy) and MK-MIR (hard) cuts

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for DPLL(\mathcal{T}

Sum Of Infeasibilities Simplex [FMCAD13]

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

TWO GROUPS OF EXPERIMENTS

- 1. Compare: SOISIMPLEX to SIMPLEXFORDPLL(\mathcal{T})
- 2. Everything: SOISIMPLEX + RESEED + REPLAY

Below x = y means SOISIMPLEX is faster

	SOI	Z 3	yices2	mathsat
QFLRA (634)	618	620	619	608
latendresse (18)	18	8	10	10

PIVOTS NEEDED

- $ightharpoonup \sim 95\%$ of calls to theory solver need 0 simplex round
- $ightharpoonup \sim 1.8\%$ of calls to the theory solver need 1 simplex round
- ightharpoonup ~ 2.5% of calls to the theory solver need [2 10] rounds
- ► This is about 50% of the simplex rounds in total

Most problems in March 2014 SMT-LIB don't need SOISIMPLEX

SMT

SMT

SOISIMPLEX + RESEED + REPLAY Results

SMT SOLVER COMPARISON

QF_LRA

			SOI+MIP		CVC4		yices2		mathsat5		Z3	
set	# inst.	# sel.	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
QF_LRA	634	634	627	6199	618	7721	620	5265	612	10814	615	5696
latendresse	18	18	18	129	10	44	12	85	10	99	0	0
miplib	42	37	30	1530	21	3037	23	2730	17	5682	18	2435
DTP-*	91	4	4	4	4	4	4	0	4	2	4	1
total	-	41	34	1534	25	3041	27	2330	21	5684	22	2436

(AR) = Applied either Reseed or Replay, $\mathbf{K} = 1000$, & SOI+MIP is CVC4 1.4 with options

SMT SOLVER COMPARISON

QF_LIA ¬-CONJUNCTIVE

CIRC

calypto

nec-smt wisa

total

									_	-		. 9 -
set	# inst.	# sel.	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
everything	g											
QF_LIA	5882	5882	5738	97 K	5540	117 K	5697	88 K	5513	94 K	5188	264 K
conjuncts	1303	1303	1249	11 K	1068	31 K	1154	33 K	1039	19 K	1232	2055
$(AR) \neg conjuntive$												
convert	319	282	208	9646	193	9343	274	1876	282	118	166	272
bofill-*	652	460	460	5401	458	4490	460	1519	460	2060	67	55

K

K

CVC4

mathsat5

K

K

Z3

K (AR) = Applied either RESEED or REPLAY, K = 1000, & SOI+MIP is CVC4 1.4 with options

K

SOI+MIP

K

K

Conclusion

altergo

SMT SOLVER COMPARISON

QF_LIA CONJUNCTIVE

SMT

			SOI-	+MIP	C۱	/C4	math	nsat5	Z	<u>'</u> 3	alte	ergo
set	# inst.	# sel.	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
everything												
QF_LIA	5882	5882	5738	97 K	5540	117 K	5697	88 K	5513	94 K	5188	264 K
conjuncts	1303	1303	1249	11 K	1068	31 K	1154	33 K	1039	19 K	1232	2055
(AR) conjun	(AR) conjuntive											
dillig	233	189	189	49	157	9823	188	7185	166	1269	189	5
miplib2003	16	8	4	307	4	1283	5	354	5	1089	0	0
prime-cone	37	37	37	2	37	2	37	1	37	2	37	1
slacks	233	188	166	61	93	2003	119	4741	90	1994	188	84
CAV_2009	591	424	424	69	346	10 K	421	10 K	354	2759	423	323
cut_lem.	93	74	62	9581	64	6865	45	9472	38	5858	74	267
total	-	920	882	10 K	701	30 K	815	31 K	690	12 K	911	680

(AR) = Applied either Reseed or Replay, $\mathbf{K}=1000$, & SOI+MIP is CVC4 1.4 with options

Conclusion

COMPARISON WITH CONJUNCTIVE SOLVERS

			SOI	+MIP	cutsat		scip		gl	pk
set	# inst.	# sel.	solved	time (s)						
conjuncts	1303	1303	1249	11130	1018	35330	1255	7164	1173	8895
(AR) conjuntive										
dillig	233	189	189	49	166	5840	189	42	189	3
miplib2003	16	8	4	307	6	146	7	17	6	295
prime-cone	37	37	37	2	37	4	37	1	37	0
slacks	233	188	166	61	96	6324	161	2361	101	11
CAV_2009	591	424	424	69	377	17015	424	105	424	6
cut_lemmas	93	74	62	9581	15	1887	72	1757	71	760
total	-	920	882	10069	697	31216	890	4283	828	1075

(AR) = Applied either Reseed or Replay, $\mathbf{K}=1000$, & SOI+MIP is CVC4 1.4 with options

cutsat is using [JovanovicM11]

SMT

QF_LIA RESEED AND REPLAY SUCCESS RATES

			RES	SEED	REPLAY		
set	# inst.	solve int calls	attempts	successes	attempts	successes	
QF_LIA	1806	3873	2559	1058	652	425	
convert	208	2130	1356	1	178	3	
bofill-scheduling	460	254	245	245	0	0	
CIRC	11	85	6	5	79	77	
calypto	37	375	77	23	293	278	
wisa	1	1	1	1	0	0	
dillig	189	228	225	185	3	2	
miplib2003	4	10	3	3	5	4	
prime-cone	37	37	19	19	18	18	
slacks	166	195	168	162	3	3	
CAV_2009	424	469	459	414	8	7	
cut_lemmas	62	89	0	0	65	33	

Only includes solved instances

SMT

SMT-COMP'14

- ► CVC4 won OF_LRA
- ► [CVC4-with-bugfix] solved the most QF_LIA benchmarks
- ▶ Won a number of combination & quantified divisions

Also won Typed First-order Theorems +*-/ at CASCJ7

TABLE OF CONTENTS

Satisfiability Modulo Theories

Simplex for $DPLL(\mathcal{T})$

Sum Of Infeasibilities Simplex [FMCAD13]

Reseed & Replay [FMCAD14]

Empirical Results

Conclusion

FINAL WORD

SOISIMPLEX

- ▶ Minimize V(X)
- ► More expensive analysis
- ► Fewer rounds on average*

SIMPLEXFORDPLL(\mathcal{T})

- Greedily fixes some $V_i > 0$
- ► Cheaper analysis
- ► Faster on easy instances

REPLAY RESULTS

WHAT HAPPENED ON THE CONVERT FAMILY?

- ► MIP solver is wrong about feasibility too often
- ► Variables are in bounds up to a "dual gap"
 - ▶ Intuitively: Let a_i violate u_i by a litle where little is scaled by the size of the numbers
 - Numerically stability of floating points
- ► Gap is too large for QF_LIA bit-extracts for $\sim m + n > 40$

$$x = 2^m y + z \land z \in [0, 2^m), y \in [0, 2^n), x \in [0, 2^{m+n})$$

- ► Decreasing the gap leads to cycling [in practice]
- ► Need bigger floats if MIP solver is to work

► Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main theory solver!)

- ► Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main theory solver!)
- ► Reseeding Simplex (1 week to implement[*])
 - ► Gives candidate assignments and gives ℝ-relaxation conflicts
 - ► Massaging floating points is really important

- ► Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main theory solver!)
- ► Reseeding Simplex (1 week to implement[*])
 - ► Gives candidate assignments and gives ℝ-relaxation conflicts
 - ► Massaging floating points is really important
- Replaying MIP conflicts (significantly more effort)
 MIP must be white-box and must log proofs!

- ► Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main theory solver!)
- ► Reseeding Simplex (1 week to implement[*])
 - ► Gives candidate assignments and gives ℝ-relaxation conflicts
 - ► Massaging floating points is really important
- ► Replaying MIP conflicts (significantly more effort) MIP must be white-box and must log proofs!
- Overall performance is good
- ► But there are known problems

MT Simplex for DPLL(\mathcal{T}) SOI Simplex Reseed & Replay Empirical Conclusion

FUTURE WORK

- ► SOISIMPLEX
 - ► Help Replay & Reseed
 - ► Mix in primal optimization
- ► REPLAY & RESEED
 - Optimization Modulo Theories
 - ► Different heuristics for cuts
 - Logging and replaying approximate Farkas's lemma instances[Neumaier2004]
 - ► *k*-precision floating Simplex solver for SMT[CookKSW13]

CONFERENCE PAPERS

- "Leveraging Linear and Mixed Integer Programming for SMT". <u>Tim King</u>, Clark Barrett and Cesare Tinelli. [to appear] FMCAD '14
- ► "Finding Minimum Type Error Sources". Zvonimir Pavlinovic, Tim King, Thomas Wies. OOPSLA '14
- ► "Simplex with Sum of Infeasibilities for SMT". Tim King, Clark Barrett and Bruno Dutertre FMCAD '13
- "CVC4." Clark Barrett, Chris Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, <u>Tim King</u>, Andrew Reynolds, and Cesare Tinelli. CAV '11

REFERENCES I

SMT