RÉVISIONS RDM

TRACTION COMPRESSION TORSION

Exercice 1 Traction Pure

Un tirant, constitué d'une barre rectiligne en acier supporte une sollicitation de traction pure N = 5000 N

Les caractéristiques du matériau sont les suivantes :

- Acier d'usage courant à 0,32 % de carbone (C32)
- Recuit à 860°
- Re = 370 MPa
- Rm = 650 MPa
- Module d'Young $E= 2.10^5$ MPa
- Limite de fatigue σ_D = 270 MPa
- Allongement A%=20

Le but du TD est de dimensionner le Tirant .

- 1. Calculer l'aire minimale de la section droite du tirant si la charge est appliquée de façon statique (aucune oscillation), en admettant un coefficient de sécurité s=1,2
- 2. Tracer la répartition de la contrainte dans la section droite
- 3. Définir les extrémités filetées en admettant un coefficient de concentration de contrainte au pied du filet k=2,5 et un chargement statique
- 4. Enappliquant la loi de Hooke, évaluer la variation de longueur du tirant pour une longueur initiale de 1m (prendre pour l'aire de la section droite la valeur trouvée en 1.)

Exercice 2 Torsion Pure

Soit une barre de torsion de suspension de véhicule en acier spécial dont les caractéristiques sont : Re = 500 MPa; $G = 8.10^4 \text{ MPa}$

La condition de déformation impose $~\alpha_{AB}{<}4^{\,\circ}~$. Pour la condition de résistance, on adopte un coefficient de sécurité s=2

La variation de section en A et en B provoque une concentration de contrainte de coefficient k=2

1. Déterminer littéralement puis numériquement le moment de torsion maximal que

peut supporter cette barre pour que la condition de résistance soit vérifiée.

- 2. Tracer la répartition de contrainte dans la section droite
- 3. Déterminer litteralement puis numériquement le moment de torsion maximal que peut supporter cette barre pour que la condition de déformation soit vérifiée.
- 4. Conclusion

Exercice 3 Solide d'égale contrainte

Un pillier de béton de hauteur h=6m est appuyé uniformément sur un sol horizontal.

Il supporte en tête une charge F dirigée vers le bas de 1,5.10 N.

La masse volumique du béton est estimée à 2,5.10³kg/m³

La limite admissible en compression du béton vaut $\sigma_{\rm c} = 20 MPa$.

On prendra g=10m/s² pour l'accélération de la pesanteur.

- 1. Déterminer la loi de variation de l'aire de la section droite S(z) (de centre G) du pilier pour qu'en tout point la contrainte soit égale à $\sigma_{\it C}$ en fonction de :
 - L'altitude z= $\overrightarrow{OG} \cdot \overrightarrow{z}$
 - La hauteur h
 - La masse volumique μ
 - · La charge F
 - La contrainte admissible σ_c
- 2. En déduire le diamètre de la base du pilier. Faire l'application numérique