Introducción a la Bioinformática: Comparative Genomics: Sequence Alignments

Luis E. Garreta U luis.garreta@javerianacali.edu.co

Curso de Bioinformática

Pontificia Universidad Javeriana – Cali Facultad de Ingeniería - Carrera de Biología

3 de septiembre de 2018

Motivation: Evolutionary History of the Sequences

Any alignment between two or more nucleotide or amino acid sequences **represents an explicit hypothesis** regarding the evolutionary history of those sequences.

Motivation:

Comparisons of Sequences facilitate their Understanding

Comparisons of related protein and nucleotide sequences have facilitated advances in understanding the content and function of genetic sequences.

Motivation: Solving Key Problems in Bioinformatics

Sequence alignments provide important information for solving many of the key problems in bioinformatics including:

- Find evolutionary relationships between organisms (genes, proteins), and
- ► Identify the function of a newly discovered genetic sequence;
- ▶ Predicting the structure and function of proteins.

The Biological Problem Basic Question in Biology

What properties are shared among organisms?

Homology: Organisms share Characteristics

Descent from a common ancestor

http://www.bio.miami.edu/dana/160/160S13_5.html

Homology: Sequences match Positions

Sequence Similarity and String Similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

Sequence Similarity and String Similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

Similarity between sequences

.

Similarity between strings

Similarity vs. Homology

- ► Similarity does not imply homology
- ► Similarity can occur by chance

But, what is expected...

But, homology is expected to cause similarity

Homology and Evolution

Homology is more difficult to detect over greater evolutionary

```
# mutations

0: AGTGTCCGTTAAGTGCGTTC

8: AGTGTCCGCTTCAAGGGGCGT

64: ACAGTCCGTTCGGGCTATTG

256: CACGAGTAAGATATAGCT

1024: ACCCTTATCTACTTCCTGGAGTT

2048: AGCGACCTGCCCAA

4096: CAAAC
```

Sequence Alignment

Alignment specifies which positions in two sequences **match**

Edit Operations

- ▶ 13 matches: Points where a single base do not change
- ▶ 4 mismatches: substitution (point mutation) of a single base
- ▶ 5 indels: insertion or deletion of a base with respect to the ancestor sequence
 - √ 2 insertions (

)
 - √ 3 deletions (

)

Sequence Alignment Problems

- ▶ What sorts of alignments should be considered?
- ► How to score alignments?
- ► How to find optimal or good scoring alignments?
- ► How to evaluate the statistical significance of scores?

First Question:

What sorts of alignments should be considered?

Types of Alignments

Local Alignment

Pairwise Sequence Alignment

Global Alignment

Dot Plot Matrix: Strings

String A: DOROTHYCROWFOOTHODGKIN

String B: DOROTHYHODGKIN

Dot Plot Matrix: Pair of Sequences

- Comparing two sequences:
 - ✓ AGCTAGGA
 - √ GACTAGGC
- Dots represent similarities between segments
- Diagonal of dots reveals similar elements

Not technically an "alignment" but it gives a picture of correspondence between pairs of sequences

Dot Plot Matrix: Interpretation

- ➤ 1 Matches: looks like diagonals (continuous match or repeat)
- ▶ 2a Mutations: gaps in the diagonal
- 2b Insertions: gaps which lie only one axis (Y axis)
- 2c Deletions: gaps which lie only one axis (X axis)

Dot Plot Matrix: Example

	T	C	G	G	A	T	T	C	G	T
Т	•									
C		•								
G			•							
C								•		
G									•	
T						•				•
T							•			
C								•		

Dot Plot Limitations

- ▶ Problems with larger sequences sharing extensive regions of similarity
- ► Solution: filtering using a window size and threshold

How to relate alignmente with homology

- ► An alignment between two sequences is simply a pairwise match between the characters of each sequence.
- ► A true alignment (nucleotides or amino acids) reflects the evolutionary relationship between two or more homologous.
- Homology is not a matter of degree –at any given position in an alignment, sequences (and individual positions) either share a common ancestor or they do not.

In contrast, the overall similarity between two sequences can be described as a fractional value.

Second Question

How to score alignments?

Simple Alignments

Three possible **simple** alignments for AATCTATA y AAGATA:

AATCTATA AAGATA AAGATA AAGATA

Three kinds of changes can occur:

- 1. A mutation replacing one character with another
- 2. An insertion adding one or more position
- 3. A deletion deleting one or more position

Scoring Simple Alignments

- Scoring Penalty Example: $\begin{cases} 1 \text{ for a match} \\ 0 \text{ for a mismatch} \end{cases}$
- Scoring the Alignments:

AATCTATA AAGATA	A A T C T A T A A A G A T A	AATCTATA AAGATA	
Score = 4	Score = 1	Score = 3	,

Scoring function for a Simple Alignment:

```
\sum_{i=1}^{n} \begin{cases} \text{match score if seq1=seq2} \\ \text{mismatch score if } seq1 \neq seq2 \end{cases}
```

Alignment with Gaps

- ▶ Insertions and deletions events complicates sequence alignments
- ► The number of possible alignments increase vastly

$$\left(\frac{3}{7}\right) = 28$$

Only 5 of the 28 possible alignments :

AATCTATA	AATCTATA	AATCTATA	AATCTATA	AATCTATA
AAG-AT-A	AA-G-ATA	A A G A T A	A - A - GATA	AA-GAT-A

Scoring Alignments with Gaps

- $\blacktriangleright \ \, \mathsf{Scoring} \,\, \mathsf{Penalty} \,\, \mathsf{Example:} \begin{cases} -1 \,\, \mathsf{for} \,\, \mathsf{gaps} \\ +1 \,\, \mathsf{for} \,\, \mathsf{a} \,\, \mathsf{match} \\ 0 \,\, \mathsf{for} \,\, \mathsf{a} \,\, \mathsf{match} \end{cases}$
- Scoring the Alignments:

Scoring function for a Simple Alignment:

```
\sum_{i=1}^{n} \begin{cases} \text{gap penalty, if seq1="-" or seq2="-"} \\ \text{match score, if seq1=seq2} \\ \text{mismatch score, if } seq1 \neq seq2 \end{cases}
```


Origination and Length Penalties

► Indel events (indels): Insertion and Deletion Events

What is more likely from an evolutionary perspective?

35

```
Without gaps Multiple indels Few indels
-----
AATCTATAGGGTAGAT AATCTATAGGGTAGAT AATCTATAGGGTAGAT
AAGATAGTAA AA-G-AT-A-GT--AT AAG--ATAG--TA--T
```

- ► Extended are more frequent than single multiple indels events
- ► Scoring function biased to reward alignments extending gaps

Scoring Alignments with Gap Penalty

```
AATCTATAGGGTAGAT
AA-G-AT-A-GT--AT
AAG--ATAG--TA--T
Score = -3
Score = 0
```

Scoring function for a Simple Alignment:

```
\sum_{i=1}^{n} \begin{cases} \text{origination gap penalty, if seq1="-" or seq2="-"} \\ \text{length gap penalty, if seq1="-" or seq2="-"} \\ \text{match score, if seq1=seq2} \\ \text{mismatch score, if } seq1 \neq seq2 \end{cases}
```


Scoring Matrices:

Taking account conservative substitutions

▶ Some substitutions are more common than others.

Proteins: alanine substituted for valine instead lysine

Mismatch penalty can be broken down as gap penalty

Scoring Matrices: DNA Sequences

Identity Matrix						
	Α	T	С	G		
Α	1	0	0	0		
T	0	1	0	0		
С	0	0	1	0		
G	0	0	0	1		

		ACT NA				
BLAST Matrix						
	Α	Т	С	G		
Α	5	-4	-4	-4		
Т	-4	5	-4	-4		
С	-4	-4	5	-4		
G	-4	-4	-4	5		

Transition Transversion						
	Α	Т	С	G		
Α	5	-4	-4	-4		
T	-4	5	-4	-4		
С	-4	-4	5	-4		
G	-4	-4	-4	5		

- Scoring matrix is used to score each nongap position
- ► Transitions transversion matrix provides mild penalty for transitions:
 - √ Purine (A or G) is replaced with another purine
 - √ Pyramidine (C or T) is replaced with another purine

Scoring Matrices: Amino Acid sequences

PAM (Point Accepted Mutation):

- Computed by observing substitution rates
- Used to score closely related sequences

BLOSUM (BLOcks SUbstitution Matrix):

- Computed by clustering ungapped alignments
- Used to score more distant related sequences

Third Question:

How to find optimal or good scoring alignments?

Exhaustive search

- ► Exhaustive search is not feasible for most sequences
- ► Two modest-sized sequences of 100 and 95 nucleotides
 - √ ~75 million possible alignments
- ► For larger sequences, search becomes intractable

Impossible to compute in a reasonble amount of time

Dynamic Programming

► A method of breaking a problem apart into reasonably sized problems and using these partial results to compute the final answer.

Example: Shortest Path Problem (Initial)

Example: Shortest Path Problem (01)

Example: Shortest Path Problem (02)

Example: Shortest Path Problem (03)

Example: Shortest Path Problem (04)

Example: Shortest Path Problem (Final)

Example: Shortest Path Problem (Backtracking)

Example: Shortest Path Problem (Shortest Path)

otivation Homology Problems Alignments Alineamientos Globales **Dynamic Programming**

Example: Shortest Path Problem (Recursive Algorithm)


```
ShortestPath (PUJ, Yumbo):
min( 5 + ShortestPath (Pance, Yumbo);
2 + ShortestPath (Holgines, Yumbo);
1 + ShortestPath (Univalle, Yumbo);
2 + ShortestPath (Autonoma, Yumbo)
)
```

Too Many Recursive Calls

```
ShortestPath (Pance, Yumbo):
    min( 5 + ShortestPath (Poblado, Yumbo))
ShortestPath (Poblado, Yumbo):
    min( 5 + ShortestPath (Carrefour, Yumbo);
    5 + ShortestPath (SuperInter, Yumbo))
...
ShortestPath (Sameco, Yumbo):
    min(5)
5
```

```
ShortestPath (Univalle, Yumbo):
    min( 2 + ShortestPath (PBanderas, Yumbo);
    2 + ShortestPath (Luna, Yumbo))
ShortestPath (PBanderas, Yumbo):
    min( 2 + ShortestPath (Ermita, Yumbo);
    2 + ShortestPath (Centro, Yumbo);
...
```

```
ShortestPath (Carrefour, Yumbo):
...
```

```
ShortestPath (SuperInter, Yumbo):
```

otivation Homology Problems Alignments Alineamientos Globales **Dynamic Programming**

Example: Shortest Path Problem (Dynamic Programming)

	Pance	Pobl	
PUJ	5		
Pance		8	_
Holg.		5	
Univ		1	
Auton		4	

	Pance	Pobl
PUJ	5	4
Pance		8
Holguines		5
Univ		1
Auton		4

	Pance	Pobl	Luna	PBan	Centro
PUJ	5	4			4
Pance		8			
Holg		5			
Univ		1	3	3	
Auton		4			
Centro			1	2	

Needleman and Wunsch Algorithm

 Needleman and Wunsch were the first to apply DP to sequence alignments

Key to understanding DM approch to sequence alignment

Observing how the alignment problem is broken down into subproblems

Example: Align the sequences CACGA y CGA

```
ACGA A | CGA - | ACGA A | CGA GA G | A G | A - | GA - | GA
```

Dynamic Programming Matrix

Sequence 1: CACGA Sequence 2: CGA

Dynamic Programming Matrix: Initialization with Penalty Gaps

▶ Uniform Penalty Gap of -1

Moves:

► Horizontal: gap in the left sequence

► Vertical: gap in the top sequence

Diagonal: match or mismatch

Sequence 1: CACGA Sequence 2: CGA

CACGA y CGA

Dynamic Programming Matrix: Edit Operations and Scoring Function

Edit Operations

Scoring Function

```
Match: +1
Mismach: 0
Indel: -1
```

Sequence 1: CACGA Sequence 2: CGA

CACGA y CGA

	-	С	А	С	G	А
-	0	-1	-2	-3	-4	-5
С	-1					
G	-2					
А	-3					

Dynamic Programming Matrix: For each step

Scoring Function

Match: +1
Mismach: 0
Indel: -1

Compute the max score for each cell:

- According to the score
- According to the neighbors

Pos		1	2		3	4	5	6
		-	С		Α	С	G	А
1	-	0	-1		-2	-3	-4	-5
2	С	-1	→ +1 → -1	-1 1				
3	G	-2						
4	А	-3						

Dynamic Programming Matrix: Finish with backtracking

Scoring Function

Match: +1
Mismach: 0
Indel: -1

CA(CGA A		$\overset{\rightarrow}{\rightarrow}$		CACG CG	
	-	С	Α	С	G	Α
-	0	-1	-2	-3	-4	-5
С	-1	₹1	←0	←-1	-2	-3
G	-2	0	1	0	₹0	-1
Α	-3	-1	1	1	0	₹1

Dynamic Programming Matrix: Exercise

Scoring Function

Match: +1 Mismach: 0 Indel: -1

Dynamic Programming Matrix: Solution

Scoring Function

Match: +1 Mismach: 0 Indel: -1

ACTCG	\rightarrow	ACTCG
ACAGTAG	\rightarrow	ACAGTAG
	c -	

	-	Α	С	Т	С	G
-		-1	-2	-3	-4	-5
Α	-1	1	0	-1	-2	-3
С	-2	0	2	1	0	-1
Α	-3	-1	1	2	1	0
G	-4	-2	0	1	2	2
т	-5	-3	-1	1	1	2
Α	-6	-4	-2	0	1	1
G	-7	-5	-3	-1	0	2

Global vs Local Alignments

The Smith-Waterman Algorithm (Local Alignments)

- ► Align parts of the sequence:
 - ✓ Not restricted to align the entire sequence:
- Only positive or zero scores:
 - √ Not restricted to have negative partial scores
- ► Start the traceback from best score:
 - ✓ Not restricted to start the traceback in the botton-right

The Smith-Waterman Algorithm Modifications to the Global Alignment Algorithm

- First row and first column of the DP matrix are filled with 0s
- ► Allow preceding and trailing indels without penalty:
 - \checkmark if a score < 0 then put 0
- ► Look the highest-scoring path starting in the cell with the highest-score.

The Smith-Waterman Algorithm An example

Scoring Function Match: +1 Mismach: -1

-1

```
CACGAT
                              CACGAT
CGAA
                                  CGA
          c
                    c
                          G
               Α
                                 Α
                                      Т
      0
          0
               0
                    n
                           0
                                 0
                                       0
 c
      0
          1
               0
                   ^{\kappa}1
                           0
                                 0
                                       0
                          人 2
 G
      0
          0
               0
                    0
                                 1
                                       0
 Α
      0
          0
               0
                    0
                           1
                                人3
                                       2
 Α
      0
          1
               0
                    0
                           0
                                 2
                                       2
```

Indel:

The Smith-Waterman Algorithm An excercise

Scoring Function

Match: +1
Mismach: -1
Indel: -1

AACCTATAGCT

The Smith-Waterman Algorithm The solution

Scoring Function

Match: +1
Mismach: -1
Indel: -1

GC	GA1	ΓΑΊ	Ά		ightarrow TATA							
	-	Α	Α	С	С	т	Α	т	Α	G	С	т
-	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	0	0	0	1	0	0
С	0	0	0	1	1	0	0	0	0	0	2	0
G	0	0	0	0	0	0	0	0	0	1	1	0
Α	0	1	1	0	0	0	1	0	1	0	0	0
т	0	0	0	0	0	^1	0	0	0	0	0	0
Α	0	1	1	0	0	0	₹2	1	0	0	0	0
т	0	0	0	0	0	1	1	₹3	2	0	0	0
Α	0	1	1	0	0	0	1	2	₹4	0	0	0

aaccTATAgct

Assignments

- Reading "Significance of Alignments". Introduction to Bioinformatics" (Arthur M. Lesk) p.267.
- Reading "Databases Searches". Fundamental Concepts of Bioinformatics (Krane & Raymer) p.48.

Ejercicio para la casa 2

- Realizar el alineamiento local de las secuencias: ACATACTATAGC y CATATATA y mostrar los dos alineamiento de mayor valor.
- Utilizar los puntajes:

```
Match: +1
Mismach: -1
Indel: -1
```