Neural Networks

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics
- And, more.

Blue slides: from Mitchell. Turquoise slides: from Alpaydin.

[Alpaydin] Neural Networks

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

[Alpaydin] Understanding the Brain

- Levels of analysis (Marr, 1982)
 - 1. Computational theory
 - 2. Representation and algorithm
 - 3. Hardware implementation
- Reverse engineering: From hardware to theory
- Parallel processing: SIMD vs MIMD
 Neural net: SIMD with modifiable local memory

Learning: Update by training/experience

Biological Neurons and Networks

- \bullet Neuron switching time $\sim .001$ second (1 ms)
- ullet Number of neurons $\sim 10^{10}$
- \bullet Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second (100 ms)
- 100 processing steps doesn't seem like enough
 [→] much parallel computation

Artificial Neural Networks

- Many neuron-like threshold switching units (real-valued)
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically: New learning algorithms, new optimization techniques, new learning principles.

Biologically Motivated (or Accurate) Neural Networks

- Spiking neurons
- Complex morphological models
- Detailed dynamical models
- Connectivity either based on or trained to mimic biology
- Focus on modeling network/neural/subneural processes
- Focus on natural principles of neural computation
- Different forms of learning: spike-timing-dependent plasticity, covariance learning, short-term and long-term plasticity, etc.

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Long training time (may need occasional, extensive retraining)
- Form of target function is unknown
- Fast evaluation of learned target function
- Human readability of result is unimportant

Example Applications (more later)

(a) ALVINN

(b) http://yann.lecun.com

Examples:

- Speech synthesis
- Handwritten character recognition (from yann.lecun.com).
- Financial prediction, Transaction fraud detection (Big issue lately)
- Driving a car on the highway

Perceptrons

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_nx_n > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Hypothesis Space of Perceptrons

• The tunable parameters are the weights $w_0, w_1, ..., w_n$, so the space H of candidate hypotheses is the set of all possible combination of real-valued weight vectors:

$$H = \{\vec{w} | \vec{w} \in \mathcal{R}^{(n+1)}\}$$

Boolean Logic Gates with Perceptron Units

Russel & Norvig

input: $\{0,1\}$, output: $\{0,1\}$

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

What Perceptrons Can Represent

Perceptrons can only represent **linearly separable** functions.

Output of the perceptron:

$$w_1 \times x_1 + w_2 \times x_2 - w_0 > 0$$
, then output is 1 $w_1 \times x_1 + w_2 \times x_2 - w_0 \le 0$, then output is 0

The hypothesis space is a collection of separating lines.

Geometric Interpretation

• Rearranging $w_1 \times x_1 + w_2 \times x_2 - w_0 > 0$, then output is 1 we get (if $w_2 > 0$)

$$x_2 > \frac{-w_1}{w_2} \times x_1 + \frac{w_0}{w_2},$$

where points above the line, the output is 1, and 0 for those below the line. Compare with

$$y = \frac{-w_1}{w_2} \times x + \frac{w_0}{w_2}.$$

The Role of the Bias

- Without the bias ($w_0 = 0$), learning is limited to adjustment of the slope of the separating line passing through the origin.
- Three example lines with different weights are shown.

Limitation of Perceptrons

- Only functions where the output = 0 points and output = 1 points are clearly separable can be represented by perceptrons.
- The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n inputs plus one threshold (or bias) unit.

Generalizing to n-Dimensions

http://mathworld.wolfram.com/Plane.html

- $\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x_0} = (x_0, y_0, z_0).$
- Equation of a plane: $\vec{n} \cdot (\vec{x} \vec{x_0}) = 0$
- In short, ax+by+cz+d=0, where a,b,c can serve as the weight, and $d=-\vec{n}\cdot\vec{x_0}\propto\vec{n}\cdot\vec{n}$ as the bias.
- For n-D input space, the decision boundary becomes a (n-1)-D hyperplane (1-D less than the input space).

Linear Separability

- Functions that take integer/real values output either 0 or 1.
- Data set 1: linearly separable (can draw a straight line between the classes).
- Data set 2: not linearly separable (perceptrons cannot represent such a function)

Linear Separability (cont'd)

- Perceptrons cannot represent XOR!
- Minsky and Papert (1969)

Impossibility of XOR for Perceptron: Proof

#	x_1	x_2	XOR
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

$$w_1 \times x_1 + w_2 \times x_2 - w_0 > 0$$
, then output is 1:

1
$$0 + 0 - w_0 \le 0 \rightarrow w_0 \ge 0$$

$$0 + w_2 - w_0 > 0 \rightarrow w_2 > w_0$$

$$3 w_1 + 0 - w_0 > 0 w_1 > w_0$$

4
$$w_1 + w_2 - w_0 \le 0$$
 \to $w_1 + w_2 \le w_0$

 $2w_0 < w_1 + w_2 < w_0$ (from 2, 3, and 4), but $w_0 \ge 0$ (from 1), a contradiction.

Learning: Perceptron Rule

- The weights do not have to be calculated manually.
- We can train the network with (input,output) pair according to the following weight update rule (t: target value, o: output value):

$$w_i \leftarrow w_i + \eta(t - o)x_i$$

where η is the learning rate parameter.

• Proven to converge **if input set is linearly separable** and η is small.

Learning in Perceptrons (Cont'd)

$$w_i \leftarrow w_i + \eta(t-o)x_i$$

- When t = o, weight stays.
- When t = 1 and o = 0, change in weight is:

$$\eta(1-0)x_i > 0$$

if x_i are all positive. Thus $\vec{w} \cdot \vec{x}$ will increase to become positive, thus eventually, output o will turn to 1.

• When t=0 and o=1, change in weight is:

$$\eta(0-1)x_i < 0$$

if x_i are all positive. Thus $\vec{w} \cdot \vec{x}$ will decrease to become negative, thus eventually, output o will turn to 0.

Learning in Perceptron: Another Look

- The perceptron on the left can be represented as a line shown on the right (why? see page 16).
- Learning can be thought of as adjustment of \vec{w} rotating toward the input vector \vec{x} : $\vec{w} \leftarrow \vec{w} + \eta(t-o)\vec{x}$.
- ullet Decision boundary tilts towards $ec{x}$ as a result.

Another Learning Rule: Delta Rule

- The perceptron rule cannot deal with noisy data.
- The delta rule will find an approximate solution even when input set is not linearly separable.
- Use **linear unit** without the step function: $o(\vec{x}) = \vec{w} \cdot \vec{x}$.
- Want to reduce the error by adjusting \vec{w} :

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Gradient Descent

Want to minimize by adjusting

$$\vec{w}$$
: $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$

- ullet Note: the error surface is defined by the training data D. A different data set will give a different surface.
- $E(w_0, w_1)$ is the error function above, and we want to change (w_0, w_1) to position under a low E.

Gradient Descent (Cont'd)

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent (Example)

- Gradient points in the maximum increasing direction.
- Gradient is prependicular to the level curve (uphill direction).
- $E(w_0,w_1)$ is the error function above, so $\nabla E=(\frac{\partial E}{\partial w_0},\frac{\partial E}{\partial w_1})$, a vector on a 2D plane.

Gradient Descent (Cont'd)

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Since we want
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
, $\Delta w_i = \eta \sum_d (t_d - o_d) x_{i,d}$.

Gradient Descent: Summary

Gradient-Descent ($training_examples, \eta$)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- ullet Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - st For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite H:

- H contains continuously parameterized hypotheses, and
- the error can be **differentiated** wrt the parameters.

Limitations:

- convergence can be slow, and
- finds local minima (global minumum not guaranteed).

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic gradient descent.

• Instead of weight update based on **all** input in D, immediately update weights after each input example:

$$\Delta w_i = \eta(t - o)x_i,$$

instead of

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_i,$$

Can be seen as minimizing error function

$$E_d(\vec{w}) = \frac{1}{2}(t_d - o_d)^2.$$

Standard and Stochastic Grad. Desc.: Differences

- ullet In the standard version, error is defined over entire D.
- In the standard version, more computation is needed per weight update, but η can be larger.
- Stochastic version can **sometimes** avoid local minima.

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule using gradient descent

- Asymptotic convergence to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- ullet Even when training data not separable by H

Exercise: Implementing the Perceptron

- It is fairly easy to implement a perceptron.
- You can implement it in any programming language: C/C++, etc.
- Look for examples on the web, and JAVA applet demos.

Multilayer Networks

Differentiable threshold unit: sigmoid

$$\sigma(y) = \frac{1}{1 + \exp(-y)}.$$

Interesting property: $\frac{d\sigma(y)}{dy} = \sigma(y)(1 - \sigma(y))$.

Output:

$$o = \sigma(\vec{w} \cdot \vec{x})$$

• Other functions:

$$\tanh(y) = \frac{\exp(-2y) - 1}{\exp(-2y) + 1}$$

Multilayer Networks and Backpropagation

Output

Nonlinear decision surfaces.

(b) Two hidden, one output unit

Input 1

sigm(sigm(x+y-1.1)+sigm(-x-y+1.13)-1)

0.53

0.52 0.51

Another example: XOR

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

$$= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

Note: $o_d = \sigma(net_d)$

Error Gradient for a Sigmoid Unit

From the previous page:

$$\frac{\partial E}{\partial w_i} = -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$

$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do
 - Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$
 where $\Delta w_{ji} = \eta \delta_j x_i$.

Note: w_{ji} is the weight from i to j (i.e., $w_{j\leftarrow i}$).

The δ Term

• For output unit:

$$\delta_k \leftarrow \underbrace{o_k(1 - o_k)}_{\sigma'(net_k)} \underbrace{(t_k - o_k)}_{\text{Error}}$$

For hidden unit:

$$\delta_h \leftarrow \underbrace{o_h(1-o_h)}_{\sigma'(net_h)} \underbrace{\sum_{k \in outputs} w_{kh} \delta_k}_{\text{Backpropagated error}}$$

- ullet In sum, δ is the derivative times the error.
- Derivation to be presented later.

Derivation of Δw

Want to update weight as:

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}},$$

where error is defined as:

$$E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

• Given $net_j = \sum_j w_{ji} x_i$,

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

Different formula for output and hidden.

Derivation of \Delta w: Output Unit Weights

From the previous page, $\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$

• First, calculate $\frac{\partial E_d}{\partial net_j}$:

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

$$= \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= 2\frac{1}{2} (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

Derivation of \Delta w: Output Unit Weights

From the previous page,

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -(t_j - o_j) \frac{\partial o_j}{\partial net_j}$$
:

ullet Next, calculate $rac{\partial o_j}{\partial net_j}$: Since $o_j=\sigma(net_j)$, and $\sigma'(net_j)=o_j(1-o_j)$,

$$\frac{\partial o_j}{\partial net_j} = o_j(1 - o_j).$$

Putting everything together,

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j).$$

Derivation of \Delta w: Output Unit Weights

From the previous page:

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j).$$

Since
$$\frac{\partial net_j}{\partial w_{ji}}=\frac{\partial \sum_k w_{jk} x_k}{\partial w_{ji}}=x_i$$
,

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= -\underbrace{(t_j - o_j)o_j(1 - o_j)}_{\delta_j = error \times \sigma'(net)} \underbrace{x_i}_{input}$$

Derivation of Δw **: Hidden Unit Weights**

Start with
$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_i$$
:
$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

Derivation of Δw **: Hidden Unit Weights**

Finally, given

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_i,$$

and

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} -\delta_k w_{kj} \underbrace{o_j(1 - o_j)}_{\sigma'(net)},$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta \left[\underbrace{o_j(1 - o_j)}_{\sigma'(net)} \underbrace{\sum_{k \in Downstream(j)} \delta_k w_{kj}}_{error} \right] x_i$$

Extension to Different Network Topologies

ullet Arbitrary number of layers: for neurons in layer m:

$$\delta_r = o_r(1 - o_r) \sum_{s \in layer \ m+1} w_{sr} \delta s.$$

• Arbitrary acyclic graph:

$$\delta_r = o_r(1 - o_r) \sum_{s \in Downstream(r)} w_{sr} \delta s.$$

Backpropagation: Properties

- Gradient descent over entire network weight vector.
- Easily generalized to arbitrary directed graphs.
- Will find a local, not necessarily global error minimum:
 - In practice, often works well (can run multiple times with different initial weights).
- ullet Often include weight *momentum* lpha

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1).$$

- Minimizes error over training examples:
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using the network after training is very fast.

Representational Power of Feedforward Networks

- Boolean functions: every boolean function representable with two layers (hidden unit size can grow exponentially in the worst case: one hidden unit per input example, and "OR" them).
- Continous functions: Every **bounded** continuous function can be approximated with an arbitrarily small error (output units are linear).
- Arbitrary functions: with three layers (output units are linear).

Function Approximation (Regression)

- Assume one input unit (scalar value).
- Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be learned. Ex: $y = \sin(x)$.

Example: $y = \sin(x)$

- Top: $\sin(x)$ nnet: Model=[# of units, activation func, [next layer spec], ...]
- ullet Bottom: $\sin(x)$ vs. the hidden unit's output of last hidden layer.

Ex: $y = \sin(x)$ Model=[2,tanh:1,linear]

- One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
- Bottom plot: Hidden neurons represent sigmoids.
- Top plot: Output unit is a linear combination of two sigmoids.

Ex: $y = \sin(x)$ Model=[20,tanh:3,tanh:1,linear]

• 2nd hidden layer represents linear combination of 20 sigmoids.

Ex: $y = \sin(x)$ Model=[20,tanh:5,tanh:1,linear]

Out-of-range inputs illustrate the limitation of DL.

Ex: $y = \sin(x)$ Model=[30,tanh:1,linear]

• Does a single hidden layer suffice? – Yes, with enough neurons.

H-Space Search and Inductive Bias

- H-space = n-D weight space (when there are n weights).
- The space is continuous, unlike decision tree or general-to-specific concept learning algorithms.
- Inductive bias:
 - Smooth interpolation between data points.

Learning Hidden Layer Representations

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	0000010
00000001	\rightarrow	0000001

Learned Hidden Layer Representations

Input			Hidden			Output
			Values			
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	0000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	0000001

Learned Hidden Layer Representations

- Learned encoding is similar to standard 3-bit binary code.
- Automatic discovery of useful hidden layer representations is a key feature of ANN.
- Note: The hidden layer representation is compressed.

Overfitting

- Error in two different robot perception tasks.
- Training set and validation set error.
- Early stopping ensures good performance on unobserved samples, but must be careful.
- Weight decay, use of validation sets, use of k-fold cross-validation, etc. to overcome the problem.

Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values (when the slope is available):

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

Tie together weights:

- e.g., in phoneme recognition network, or
- handwritten character recognition (weight sharing).

Recurrent Networks

- Sequence recognition.
- Store tree structure (next slide).
- Can be trained with plain backpropagation.
- Generalization may not be perfect.

Recurrent Networks (Cont'd)

- Autoassociation (intput = output)
- Represent a stack using the hidden layer representation.
- Accuracy depends on numerical precision.

[Alpaydin] Learning Time

- Applications:
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction
 - Sequence association
- Network architectures
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

[Alpaydin] Time-Delay Neural Network

[Alpaydin] Recurrent Neural Network

Unfolding in Time

Some Applications: NETtalk

- NETtalk: Sejnowski and Rosenberg (1987).
- Learn to pronounce English text.
- Demo
- Data available in UCI ML repository

NETtalk data

```
aardvark a-rdvark 1<<<>2<<0
aback xb@k-0>1<<0
abacus @bxkxs 1<0>0<0
abaft xb@ft 0>1<<0
abalone @bxloni 2<0>1>0 0
abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0
abash xb@S-0>1<<0
abate xbet-0>1<<0
abatis 0bxti-1<0>2<2
```

- Word Pronunciation Stress/Syllable
- about 20,000 words

Backpropagation Exercise

- **URL:** http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz
- Untar and read the README file:

```
gzip -dc backprop-1.6.tar.gz | tar
xvf -
```

- Run make to build (on departmental unix machines).
- Run ./bp conf/xor.conf etc.

Backpropagation: Example Results

- Epoch: one full cycle of training through all training input patterns.
- OR was easiest, AND the next, and XOR was the most difficult to learn.
- Network had 2 input, 2 hidden and 1 output unit. Learning rate was 0.001.

Backpropagation: Example Results (cont'd)

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

Backpropagation: Things to Try

- How does increasing the number of hidden layer units affect the
 (1) time and the (2) number of epochs of training?
- How does increasing or decreasing the learning rate affect the rate of convergence?
- How does changing the slope of the sigmoid affect the rate of convergence?
- Different problem domains: handwriting recognition, etc.

[Alpaydin] Convolutional NNet (CNN): Structured MLP

[Alpaydin] CNN: Weight Sharing

[Alpaydin] Tuning the Network Size

- Destructive
- Weight decay:

$$\Delta w_{i} = -\eta \frac{\partial E}{\partial w_{i}} - \lambda w_{i}$$
$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

- Constructive
- Growing networks

[Alpaydin] Bayesian Interpretation of MLP

• Consider weights w_i as random vars, prior $p(w_i)$

$$p(\mathbf{w} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{w})p(\mathbf{w})}{p(\mathcal{X})} \quad \hat{\mathbf{w}}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg max log }} p(\mathbf{w} \mid \mathcal{X})$$

$$\log p(\mathbf{w} \mid \mathcal{X}) = \log p(\mathcal{X} \mid \mathbf{w}) + \log p(\mathbf{w}) + C$$

$$p(\mathbf{w}) = \prod_{i} p(w_{i}) \text{ where } p(w_{i}) = c \cdot \exp\left[-\frac{w_{i}^{2}}{2(1/2\lambda)}\right]$$

$$E' = E + \lambda ||\mathbf{w}||^{2}$$

$$E' = E + \lambda \|\mathbf{w}\|^2$$

 Weight decay, ridge regression, regularization $cost=data-misfit + \lambda complexity$ More about Bayesian methods in chapter 14

Summary

- ANN learning provides general method for learning real-valued functions over continuous or discrete-valued attributed.
- ANNs are robust to noise.
- H is the space of all functions parameterized by the weights.
- H space search is through gradient descent: convergence to local minima.
- Backpropagation gives novel hidden layer representations.
- Overfitting is an issue.
- More advanced algorithms exist.