2018-CE-'14-26'

EE24BTECH11023

- 1) A bitumen sample has been graded as VG30 as per IS: 73-2013. The '30' in the grade means that
 - a) penetration of bitumen at 25°C is between 20 and 40
 - b) viscosity of bitumen at 60°C is between 2400 and 3600 Poise
 - c) ductility of bitumen at $60^{\circ}C$ is more than 30 cm
 - d) elastic recovery of bitumen at 60°C is more than 30%
- 2) The speed-density relationship for a road section is shown in the figure.

The shape of the flow-density relationship is

- a) piecewise linear
- b) parabolic
- c) initially linear then parabolic
- d) initially parabolic then linear
- 3) A well-designed signalized intersection is one in which the
 - a) crossing conflicts are increased
 - b) total delay is minimized
 - c) cycle time is equal to the sum of red and green times in all phases
 - d) cycle time is equal to the sum of red and yellow times in all phases
- 4) A flow field is given by $u = y^2$, v = -xy, w = 0. Value of the z-component of the angular velocity (in radians per unit time, up to two decimal places) at the point (0, -1, 1) is
- 5) The frequency distribution of the compressive strength of 20 concrete cube specimens is given in the table.

f (MPa)	Number of specimens with compressive strength equal to f
23	4
28	2
22.5	5
31	5
29	4

If μ is the mean strength of the specimens and σ is the standard deviation, the number of specimens (out of 20) with compressive strength less than $\mu - 3\sigma$ is

- 6) In a fillet weld, the direct shear stress and bending tensile stress are 50 MPa and 150 MPa, respectively. As per IS 800:2007, the equivalent stress (in MPa, up to two decimal places) will be
- 7) In a shrinkage limit test, the volume and mass of a dry soil pat are found to be 50 cm³ and 88 g, respectively. The specific gravity of the soil solids is 2.71, and the density of water is 1 g/cc. The shrinkage limit (in %, up to two decimal places) is
- 8) A core cutter of 130 mm height has inner and outer diameters of 100 mm and 106 mm, respectively. The area ratio of the core cutter (in %, up to two decimal places) is _____

9)	A 1:50 model of a spillway is to be tested in the laboratory. The discharge in the prototype				
	is 1000 m ³ /s. The corresponding discharge (in	m ³ /s, up to two decimal p	laces) to be maintained in		
	the model, neglecting variation in acceleration	due to gravity, is			
10)	0) A 10 m wide rectangular channel carries a d	ischarge of 20 m ³ /s under	critical condition. Using		
	$g = 9.81 \text{ m/s}^2$, the specific energy (in m, up to	two decimal places) is	<u></u>		
11)	For routing of flood in a given channel using the Muskingum method, two of the routing coeff				
	are estimated as $C_0 = -0.25$ and $C_1 = 0.55$. Th	e value of the third coeffic	ient C_2 would be		
12)	2) A city generates 40×10^6 kg of municipal solid waste (MSW) per year, out of which on				
	recovered/recycled and the rest goes to landfill. The landfill has a single lift of 3 m height and				
	compacted to a density of 550 kg/m ³ . If 80% o	f the landfill is assumed to	be MSW, the landfill area		
	(in m ² , up to one decimal place) required would be				
	Q.26-Q.55 Carry two marks each				
13)	The value of the integral $\int_0^{\pi} x \cos^2 x dx$ is				
	π^2 π^2	$\sim \pi^2$	1 2		
	a) $\frac{\pi^2}{8}$ b) $\frac{\pi^2}{4}$	c) $\frac{\pi^2}{2}$	d) π^2		