Height-Balanced Trees

Search process is *much* faster using trees $(O(\log_2 n))$ than using linked lists (O(n)). But if a tree is unbalanced then this advantage is lost, and search process is O(n).

Height-Balanced Trees (cont)

Therefore, it is worth the effort to build a balanced tree or modify an existing tree and make it balanced. A tree is said to be *height-balanced* if all of its nodes have balance factors: 1, 0, or -1.

Balance factor of a tree is defined as the difference between the heights of its left and right subtree.

The height of a tree is the number of nodes visited in traversing a branch that leads to a leaf node at the deepest level of the tree. The height of an empty tree is -1.

AVL Tree

An AVL tree is a tree in which the height of left and right subtrees of every node differ by at most one. If a balance factor of any node in an AVL tree becomes less than -1 or greater than 1, the tree has to be balanced. Basic steps for balancing a tree:

- 1. Let a node to be inserted travel down the appropriate branch, insert the node in the appropriate point. Besides keep track along the way of the deepest-level node (not the inserted node) on that branch that has a balance factor of 1 or -1 (this node is called the *pivot node*).
- 2. Starting from the pivot node, recompute all the balance factors along the insertion path (traced in step 1).
- 3. Determine whether the absolute value of the pivot node's balance factor switched from 1 to 2.
- 4. If there was such a switch, perform a manipulation on tree pointers centered at the pivot node to bring the tree back into height-balance (using AVL rotations).

Theorem:

An AVL tree of height h has at least $F_{h+3}-1$ nodes, where F_i is the ith Fibonacci number. The Fibonacci numbers F_0, F_1, \ldots, F_i are defined as follows:

$$F_0 = 0$$
, $F_1 = 1$ and $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$.

It can be shown that $F_i \approx \phi^i/\sqrt{5}$, where $\phi = (1+\sqrt{5})/2 \approx 1.618$. The height of an AVL tree satisfies $h < 1.44 \log_2(n+1) - 1.328$, where n is the number of nodes in the tree. The worst-case height is at most 44% more than the minimum for binary trees.

Let n_h denote the minimum number of elements in the AVL tree. Examples:

 $n_0 = 1$ – an AVL tree with one element for h = 0

 $n_1 = 2$ – an AVL tree with two elements for h = 1

 $n_2 = 2$ – an AVL tree with four elements for h = 2, the root r plus $n_0 = 1$ plus $n_1 = 2$

 $n_h = n_{h-1} + n_{h-2} + 1$ – an AVL tree with minimum number of elements for h is called *Fibonacci tree*.

 $n \ge n_h = F_{h+3} - 1$ – this relation can be proved by induction with respect to the height h of this tree. Also, we know that $F_h = \frac{\Phi^h}{\sqrt{5}}$. Hence

 $n \ge \frac{\Phi^{h+3}}{\sqrt{5}} - 1$ and solving for h we get:

 $h+3 \leq \frac{\log_2(\sqrt{5}(n+1))}{\log_2\Phi} \quad h \leq 1.44\log_2(n+1) - 1.328 \leq 1.44\log_2(n+1) = O(\log_2 n).$

Prove that $n_h = F_{h+3} - 1$ by induction.

h	n_h	F_h	F_h-1
0	1	0	
1	2	1	0
2	4	1	0
3	7	2	1
4	12	3	2
5	20	5	4
6	33	8	7
7	54	13	12
8	88	21	20

From the table you can notice that $n_0 = F_3 - 1$, $n_1 = F_4 - 1$. It is our base step.

Inductive step.

Assume that $n_h = F_{h+3} - 1$ for $h \le k$ so

$$n_{k-1} = F_{k+2} - 1$$
 for $k-1$

and

$$n_k = F_{k+3} - 1 \text{ for } k$$

We will prove that $n_{k+1} = F_{k+4} - 1$ for k + 1.

Proof: By definition of the Fibonacci tree with height k + 1,

$$n_{k+1} = n_k + n_{k-1} + 1$$
 for $k+1$

From the inductive step $n_{k+1} = F_{k+3} - 1 + F_{k+2} - 1 + 1 = F_{k+4} - 1$

AVL Rotations

Assume that the node to be rebalanced is X. A violation might occur in any of four cases:

- 1. An insertion into the left subtree of the left child of X
- 2. An insertion into the right subtree of the left child of X
- 3. An insertion into the left subtree of the right child of X
- 4. An insertion into the right subtree of the right child of X

Cases 1 and 4 are mirror-image symmetries with respect to X, as are cases 2 and 3. The cases 1 and 4 are fixed by a *single rotation* of the tree. The cases 2 and 3 are fixed by (slightly more complex) *double rotation*. These rotations are sufficient to maintain the binary search tree balanced.

C++ Codes for Rotations

```
//single right rotation
BinaryNode* singleRight(BinaryNode* X)
  BinaryNode Y = X->left;
  X->left = Y->right;
   Y->right = X;
   return Y;
//single left rotation
BinaryNode* singleLeft(BinaryNode* X)
  BinaryNode Y = X->right;
   X->right = Y->left;
   Y->left = X;
   return Y;
```

```
// double right rotation
BinaryNode* doubleRight(BinaryNode* X)
  X->left = singleLeft(X->left);
   return singleRight(X);
// double left rotation
BinaryNode* doubleLeft(BinaryNode* X)
   X->right = singleRight(X->right);
   return singleLeft(X);
```


