Package 'drimmR'

February 19, 2021

```
Type Package
Title Estimation, Simulation and Reliability of drifting Markov Models
Version 1.0.0
Author Vlad Stefan Barbu,
      Geoffray Brelurut,
      Annthomy Gilles,
      Arnaud Lefebvre,
      Victor Mataigne,
      Alexandre Seiller,
      Nicolas Vergne
Maintainer Nicolas Vergne < Nicolas . Vergne@univ-rouen.fr>
Description This package introduces the drifting Markov models (DMMs) which are
      inhomogeneous Markov models designed for modeling the heterogeneities of
      sequences in a more flexible way than homogeneous Markov chains or even
      hidden Markov. In this context, we developed a R package dedicated to
      the estimation, simulation and reliability of drifting Markov models.
      The implemented methods are described in
      Vergne, N. (2008), <doi:10.2202/1544-6115.1326>,
      Barbu, V.S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8>
License GPL-3 + file LICENSE
Encoding UTF-8
LazyData true
Suggests testthat,
      knitr,
     rmarkdown
Imports seqinr,
      Biostrings,
      testthat,
      stats,
      ggplot2,
      utils,
      parallel,
      foreach,
      future,
```

doParallel, doSNOW, tidyverse,

2 aic

dplyr,
reshape2,
Rdpack

RdMacros Rdpack

RoxygenNote 7.1.1

VignetteBuilder knitr

Depends R (>= 2.10)

R topics documented:

aic	Akaike Information Criterion (AIC) S3 generic function	
Index		28
	word_probas	27
	word_proba	
	words_probas	
	stationaryLaw_evol	
	simulate.dmmsum	
	simulate	
	reliability	
	maintainability	
	loglik.dmmsum	
	loglik	
	length_probas	
	lambda	
	getTransitionMatrix.dmmsum	
	getTransitionMatrix	
	getStationaryLaw.dmmsum	
	getStationaryLaw	
	getDistribution.dmmsum	
	getDistribution	11
	failureRate	
	dmmsum	8
	Distribution evol	
	bic.dmmsum	
	bic	
	availability	
	aic.dmmsum	
	aic	2

Description

Generic function computing the Akaike Information Criterion of the model 'x', with the list of sequences 'sequences'.

Usage

```
aic(x, sequences)
```

aic.dmmsum 3

Arguments

An object of class "dmm" for which the logikelihood can be computed.

sequences A vector of character or a list of vector of character representing the sequences

for which the AIC criterion must be computed.

Value

A numeric value giving the value of the AIC.

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

aic.dmmsum

Evaluate AIC

Description

Evaluate AIC

Usage

```
## S3 method for class 'dmmsum'
aic(x, sequences)
```

Arguments

x An object of class "dmm", dmmsum

sequences A character vector or a list of character vector representing the sequence

Value

A list of numeric, AIC

Author(s)

Victor Mataigne, Alexandre Seiller

4 availability

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, loglik, aic

Examples

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a","a")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
aic(dmm,sequence)</pre>
```

availability

Evaluate Availability

Description

Estimation of the pointwise (or instantaneous) availability for (ergodic) repairable systems at time $l \in N$

Usage

```
availability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

X	An object of class "dmm"
k1	start position (numeric)
k2	end position (numeric)
s1	Character vector of the subspace working states among the state space vector s.t. $s1 < s$
output_file	(Optional) A file containing matrix of availability probabilities (e.g, "C://AVAL.txt")
plot	FALSE (no figure plot of availability by position); TRUE (figure plot)

Details

The pointwise (or instantaneous) availability is the probability that the system is in a working state at time l, independently of the fact that the system worked or not during the time interval [0; l)

Value

A matrix with Availability score at each position

bic 5

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

See Also

dmmsum, getTransitionMatrix, reliability, maintainability

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
availability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

bic

Bayesian Information Criterion (BIC) S3 generic function

Description

Generic function computing the Bayesian Information Criterion of the model 'x', with the list of sequences 'sequences'.

Usage

```
bic(x, sequences)
```

Arguments

x An object of class "dmm" for which the logikelihood can be computed.

sequences A vector or a list of vector of character representing the sequences for which the

BIC criterion must be computed.

Value

A numeric value giving the value of the BIC.

Author(s)

Victor Mataigne, Alexandre Seiller

6 bic.dmmsum

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

bic.dmmsum

Evaluate BIC

Description

Evaluate BIC

Usage

```
## S3 method for class 'dmmsum'
bic(x, sequences)
```

Arguments

x An object of class "dmm", dmmsum

sequences A character vector or a list of character vector representing the sequence

Value

A numeric, BIC

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, loglik, bic

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a","a")
dmm<-dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
bic(dmm,sequence)</pre>
```

Distribution_evol 7

Distribution_evol

Plot distributions for a range of positions between <start> and <end>

Description

Plot distributions for a range of positions between <start> and <end>

Usage

```
Distribution_evol(
    x,
    start = 1,
    end = NULL,
    step = NULL,
    output_file = NULL,
    plot = FALSE
)
```

Arguments

```
x An object of class "dmm"

start Start position (numeric)

end End position (numeric)

step A step (numeric)

output_file (Optional) A file containing matrix of distributions (e.g, "C:/.../DIST.txt")

plot FALSE (no figure plot of dist evolution); TRUE (figure plot)
```

Value

A matrix of distributions with position and probability of states

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getDistribution, getStationaryLaw

8 dmmsum

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
Distribution_evol(dmm,start=1,end=1000,step=100, plot=TRUE)</pre>
```

dmmsum

Point by point estimates of a k-th order Drifting-Markov Model

Description

Estimation of d+1 points of support transition matrices and $|E|^k$ initial law of a k-th order Drifting Markov Model starting from one or several sequences.

Usage

```
dmmsum(
  sequences,
  order,
  degree,
  states,
  init.estim = c("mle", "freq", "prod", "stationary", "unif", ...)
)
```

Arguments

sequences A list of character vector(s) representing one (several) sequence(s)

order Order of the Markov chain

degree Degree of the polynomials (e.g., linear drifting if degree=1, etc.)

states Vector of states space of length s > 1

init.estim Default="mle". Method used to estimate the initial law. If 'init.estim' = "mle",

then the classical Maximum Likelihood Estimator is used, if 'init.estim' = "freq", then, the initial distribution 'init.estim' is estimated by taking the frequences of the words of length 'k' for all sequences. If 'init.estim' = "prod", then, 'init.estim' is estimated by using the product of the frequences of each letter (for all the sequences) in the word of length 'k'. If init.estim = "stationary", then 'init.estim' is estimated by using the stationary law of the point of support transition matrices of each letter. If 'init.estim' = "unif", then, 'init.estim' of each letter is estimated by using $\frac{1}{s}$. Or init.estim= customisable vector of length

 $|E|^k$. See Details for the formulas.

Details

The 'dmmsum' function creates a Drifting-Markov model object ('dmm').

Let $E=1,\ldots,s,$ $s<\infty$ be random system with finite state space, with a time evolution governed by discrete-time stochastic process of values in E. A sequence X_0,X_1,\ldots,X_n with state space $E=1,2,\ldots,s$ is said to be a linear drifting Markov chain (of order 1) of length n between the Markov transition matrices Π_0 and Π_1 if the distribution of $X_t, t=1,\ldots,n$, is defined by $P(X_t=v\mid X_{t-1}=u,X_{t-2},\ldots)=\Pi_{\frac{t}{n}}(u,v),$; $u,v\in E$, where $\Pi_{\frac{t}{n}}(u,v)=(1-\frac{t}{n})\Pi_0(u,v)+$

dmmsum 9

 $\frac{t}{n}\Pi_1(u,v),\ u,v\in E.$ The linear drifting Markov model of order 1 can be generalized to polynomial Drifting-Markov model of order k and degree d.Let $\Pi_{\frac{i}{d}}=(\Pi_{\frac{i}{d}}(u_1,\ldots,u_k,v))_{u_1,\ldots,u_k,v\in E}$ be d Markov transition matrices (of order k) over a state space E.

The initial distribution of a k-th order Drifting Markov Model is defined as $\mu_i = P(X_1 = i)$. The initial distribution of the k first letters is freely be customisable by the user, but five methods are proposed for the estimation of the latter:

Estimation based on the Maximum Likelihood Estimator: The Maximum Likelihood Estimator for the initial distribution. The formula is: $\widehat{\mu_i} = \frac{Nstart_i}{L}$, where $Nstart_i$ is the number of occurences of the word i (of length k) at the beginning of each sequence and L is the number of sequences. This estimator is reliable when the number of sequences L is high.

Estimation based on the frequency: The initial distribution is estimated by taking the frequences of the words of length 'k' for all sequences. The formula is $\widehat{\mu_i} = \frac{N_i}{N}$, where N_i is the number of occurences of the word i (of length k) in the sequences and N is the sum of the lengths of the sequences.

Estimation based on the product of the frequences of each state: The initial distribution is estimated by using the product of the frequences of each state (for all the sequences) in the word of length k.

Estimation based on the stationary law of point of support transition matrix for a word of length k: The initial distribution is estimated using $\mu(\Pi_{\underline{k-1}})$

Estimation based on the uniform law: $\frac{1}{s}$

Value

An object of class "dmm", dmmsum

Author(s)

Geoffray Brelurut, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

```
data(lambda, package = "drimmR")
states <- c("a","c","g","t")
order <- 1
degree <- 1
dmmsum(lambda,order,degree,states, init.estim = "freq")</pre>
```

10 failureRate

Description

Estimation of two different definition of the failure rate : the BMP-failure rate and RG-failure rate

Usage

```
failureRate(
    x,
    k1,
    k2,
    s1,
    error.rate = c("BMP", "RG"),
    output_file = NULL,
    plot = FALSE
)
```

Arguments

х	An object of class "dmm"
k1	start position (numeric)
k2	end position (numeric)
s1	Character vector of the subspace working states among the state space vector $s.t. \ s1 < s$
error.rate	Default="BMP", then BMP-failure-rate is the method used to estimate the error rate. If error.rate= "RG", then RG-failure rate is the method used to estimate the error rate.
output_file	(Optional) A file containing matrix of error rates at each position (e.g, "C://ER.txt")
plot	FALSE (no figure plot of error rates by position); TRUE (figure plot)

Details

The BMP-failure rate denoted by $\lambda(l), l \in N$ is usually considered for continuous time systems. The RG-failure rate denoted by $r(l), l \in N$ is adapted to work in discrete time systems.

Value

A matrix with error rate score at each position

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

getDistribution 11

See Also

dmmsum, getTransitionMatrix, reliability

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
failureRate(dmm,k1,k2,s1,error.rate="BMP",plot=TRUE)</pre>
```

 ${\tt getDistribution}$

Get distribution S3 generic function

Description

Evaluate distribution at a given position or at every position

Usage

```
getDistribution(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

Χ	An object of class "dmm"
pos	An integer, a position
all.pos	FALSE (evaluation at pos index); TRUE (evaluation for all pos indices)
internal	FALSE (default); TRUE (for internal use of distrib_evol function)

Details

Distribution at position 1 is evaluated by $\mu_l = \mu_0 \prod_{t=k}^l \pi_{\frac{t}{n}}, \forall l \geq k, k \in N^*$ order of the DMM

Value

A vector or matrix of distribution probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

```
getDistribution.dmmsum
```

Get distribution

Description

Evaluate distribution at a given position or at every position

Usage

```
## S3 method for class 'dmmsum'
getDistribution(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

Χ	An object of class	"dmm", dmmsum

pos An integer for position

all.pos FALSE (default, evaluation at position index); TRUE (evaluation for all position

indices)

internal FALSE (default); TRUE (for internal use of distrib_evol function)

Details

Distribution at position 1 is evaluated by $\mu_l = \mu_0 \prod_{t=k}^l \pi_{\frac{t}{2}}, \forall l \geq k, k \in N^*$ order of the DMM

Value

A vector or matrix of distribution probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

 $dmmsum, get Transition Matrix, Distribution_evol, get Stationary Law$

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
t <- 10
getDistribution(dmm,pos=t)</pre>
```

getStationaryLaw 13

getStationaryLaw Get stationary law S3 generic function

Description

Evaluate stationary law at a given position or at every position

Usage

```
getStationaryLaw(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

х	An object of class "dmm"
pos	An integer, a position
all.pos	FALSE (default, evaluation at position index); TRUE (evaluation for all position indices)
internal	FALSE (default); TRUE (for internal use of dmmsum initial law)

Details

Stationary law at position t is evaluated by solving $\mu_t \ \pi_{\frac{t}{n}} = \mu$

Value

A vector or matrix of stationary law probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

```
getStationaryLaw.dmmsum
```

Get stationary law

Description

Evaluate stationary law at a given position or at every position

Usage

```
## S3 method for class 'dmmsum'
getStationaryLaw(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

X	An object of class	"dmm", dmmsum

pos An integer for position

all.pos FALSE (default, evaluation at position index); TRUE (evaluation for all position

indices)

internal FALSE (default); TRUE (for internal use of dmmsum initial law and word

applications)

Details

Stationary law at position t is evaluated by solving $\mu_t \pi_{\frac{t}{n}} = \mu$

Value

A vector or matrix of stationary law probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, stationaryLaw_evol, getDistribution

getTransitionMatrix 15

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
t <- 10
getStationaryLaw(dmm,pos=t)</pre>
```

getTransitionMatrix

Get transition S3 generic function

Description

Get transition S3 generic function

Usage

```
getTransitionMatrix(x, pos)
```

Arguments

x An object of class "dmm"

pos An integer, a position

Value

A transition matrix at a given position

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

getTransitionMatrix.dmmsum

Get transition matrix at a given position

Description

Get transition matrix at a given position

Usage

```
## S3 method for class 'dmmsum'
getTransitionMatrix(x, pos)
```

Arguments

```
x An object of class "dmm", dmmsum
pos position along the sequence (integer)
```

Value

A transition matrix at a given position

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'),init.estim = "freq")
t <- 10
getTransitionMatrix(dmm,pos=t)</pre>
```

lambda 17

lambda	lambda genome	
--------	---------------	--

Description

Complete data from phage genome [WT71] of length 48502

Usage

```
data(lambda)
```

Format

A vector object of class "Rdata".

Examples

data(lambda)

length_probas	Probability of occurrence of the Observed word of size n in a sequence
	at several positions

Description

Probability of occurrence of the Observed word of size n in a sequence at several positions

Usage

```
length_probas(n, sequence, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

n	An integer, the length word
sequence	A vector of characters
pos	A vector of integer positions
X	An object of class "dmm"
output_file	(Optional) A file containing the vector of probabilities (e.g, "C://PROB.txt")
plot	FALSE (no figure plot of words probabilities); TRUE (figure plot)

Value

a dataframe of probability by position (and probability plots)

Author(s)

Victor Mataigne, Alexandre Seiller

18 loglik

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
n <- 2
length_probas(n, lambda, c(1,length(lambda)-n+1), dmm,plot=TRUE)</pre>
```

loglik

Loglikelihood S3 generic function

Description

Generic function computing the loglikelihood of the model 'x', with the list of sequences 'sequences'.

Usage

```
loglik(x, sequences)
```

Arguments

x An object of class "dmm" for which the logikelihood can be computed.

sequences A vector of character or list of vectors representing the sequences for which the

log-likelihood of the model must be computed.

Value

A numeric, the log-likelihood

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

loglik.dmmsum

loglik.dmmsum

Evaluate Log-likelihood

Description

Evaluate Log-likelihood

Usage

```
## S3 method for class 'dmmsum'
loglik(x, sequences)
```

Arguments

x An object of class "dmm", dmmsum

sequences A character vector or a list of character vectors representing the sequence

Value

A list of log-likelihood (numeric)

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a","a")
dmm <-dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
loglik(dmm, sequence)</pre>
```

20 maintainability

maintainability	Evaluate Maintainability	
-----------------	--------------------------	--

Description

Estimation of maintainability for (ergodic) repairable system at time $k \in N$.

Usage

```
maintainability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

X	An object of class "dmm"
k1	start position (numeric)
k2	end position (numeric)
s1	Character vector of the subspace working states among the state space vector
	s.t. s1 < s
output_file	(Optional) A file containing matrix of maintainability probabilities (e.g, "C://MAIN.txt")
plot	FALSE (no figure plot of maintainability by position); TRUE (figure plot)

Details

The maintainability at time $k \in N$ of a repairable system is the probability that the system is repaired up to time l, given that is has failed at time l = 0.

Value

A matrix with Maintainability score at each position

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

See Also

dmmsum, getTransitionMatrix

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
maintainability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

reliability 21

Description

Estimation of reliability for (ergodic) repairable or (non-ergodic) non-repairable systems at time $l \in N$

Usage

```
reliability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

x	An object of class "dmm"
k1	start position (numeric)
k2	end position (numeric)
s1	Character vector of the subspace working states among the state space vector s.t. $s1 < s$
output_file	(Optional) A file containing matrix of reliability probabilities (e.g, "C://REL.txt")
plot	FALSE (no figure plot of reliability by position); TRUE (figure plot)

Details

The reliability at time $l \in N$ is the probability thant the system has functioned without failure in the period [0,l]

Value

A matrix with Reliability score at each position

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

See Also

dmmsum, getTransitionMatrix

22 simulate

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
reliability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

simulate

Simulate S3 generic function

Description

Simulate S3 generic function

Usage

```
simulate(x, output_file, model_size = 1e+05)
```

Arguments

```
x An object of class "dmm", dmmsum
output_file (Optional) File containing the simulated sequence (e.g, "C:/.../SIM.txt")
model_size Size of the model
```

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

simulate.dmmsum 23

simulate.dmmsum

Simulate a sequence with the Drifting Markov Model

Description

Simulate a sequence with the Drifting Markov Model

Usage

```
## S3 method for class 'dmmsum'
simulate(x, output_file = NULL, model_size = NULL)
```

Arguments

```
    x An object of class "dmm", dmmsum
    output_file (Optional) File containing the simulated sequence (e.g, "C:/.../SIM.txt")
    model_size Size of the model
```

Value

the vector of simulated sequence

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, getStationaryLaw

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
simulate(dmm, model_size=100)</pre>
```

24 stationaryLaw_evol

stationaryLaw_evol

Plot stationary laws for a range of positions between <start> and <end>

Description

Plot stationary laws for a range of positions between <start> and <end>

Usage

```
stationaryLaw_evol(
    x,
    start = 1,
    end = NULL,
    step = NULL,
    output_file = NULL,
    plot = FALSE
)
```

Arguments

x	An object of class "dmm"
start	Start position (numeric)
end	End position (numeric)
step	A step (numeric)
output_file	(Optional) A file containing matrix of stationary laws (e.g, "C://SL.txt")
plot	FALSE (no figure plot of SL evolution); TRUE (figure plot)

Value

A matrix of probabilities with position and probability of states (and figure plot)

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getStationaryLaw

words_probas 25

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
stationaryLaw_evol(dmm,start=1,end=1000,step=100, plot=TRUE)</pre>
```

words_probas

Probability of several words at several positions of a DMM

Description

Probability of several words at several positions of a DMM

Usage

```
words_probas(words, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

words A vector of characters containing words

pos A vector of integer positions
x An object of class "dmm"

output_file (Optional) A file containing the matrix of probabilities (e.g, "C:/.../PROB.txt")

plot FALSE (no figure plot of words probabilities); TRUE (figure plot)

Value

a dataframe of word probabilities along the positions of the sequence

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba, word_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
words_probas(c("atcgattc", "taggct", "ggatcgg"),c(100,300),dmm, plot=TRUE)</pre>
```

26 word_proba

word	proba

Probability of a word at a position t of a DMM

Description

Probability of a word at a position t of a DMM

Usage

```
word_proba(word, pos, x, output_file = NULL, internal = FALSE)
```

Arguments

word A subsequence (string of characters)

pos A position (numeric)
x An object of class "dmm"

output_file (Optional) A file containing the probability (e.g,"C:/.../PROB.txt") internal FALSE (default); TRUE (for internal use of word applications)

Value

A numeric, probability of word

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_probas, words_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
word_proba("aggctga",4,dmm)</pre>
```

word_probas 27

word_probas	Probabilities of a word at several positions of a DMM
-------------	---

Description

Probabilities of a word at several positions of a DMM

Usage

```
word_probas(word, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

word A subsequence (string of characters)
pos A vector of integer positions

x An object of class "dmm"

output_file (Optional) A file containing the vector of probabilities (e.g,"C:/.../PROB.txt")

plot FALSE (no figure plot of word probabilities); TRUE (figure plot)

Value

A numeric vector, probabilities of word

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba, words_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
word_probas("aggctga",c(100,300),dmm, plot=TRUE)</pre>
```

Index

```
* datasets
    lambda, 17
aic, 2, 4
aic.dmmsum, 3
availability, 4
bic, 5, 6
bic.dmmsum, 6
Distribution_evol, 7, 12
dmmsum, 3-7, 8, 9, 11, 12, 14, 16, 18-27
failureRate, 10
getDistribution, 7, 11, 14
getDistribution.dmmsum, 12
getStationaryLaw, 7, 12, 13, 23, 24
{\tt getStationaryLaw.dmmsum,}\ 14
getTransitionMatrix, 4-6, 11, 12, 14, 15,
         18-21, 23, 25-27
getTransitionMatrix.dmmsum, 16
lambda, 17
length\_probas, 17
loglik, 4, 6, 18
loglik.dmmsum, 19
maintainability, 5, 20
reliability, 5, 11, 21
simulate, 22
simulate.dmmsum, 23
stationaryLaw_evol, 14, 24
word_proba, 18, 25, 26, 27
word_probas, 25, 26, 27
words_probas, 25, 26, 27
```