P23688.P04

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Hiroshi NOMURA

Serial No.: Not Yet Assigned

Filed : Concurrently Herewith

For : A LENS BARREL INCORPORATING THE ADVANCING/RETRACTING

MECHANISM

CLAIM OF PRIORITY

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

Sir:

Applicant hereby claims the right of priority granted pursuant to 35 U.S.C. 119 based upon Japanese Application No. 2002-247338, filed August 27, 2002 and Application No. 2003-025447, filed February 3, 2003. As required by 37 C.F.R. 1.55, certified copies of the Japanese applications are being submitted herewith.

Respectfully submitted, Hiroshi NOMURA

Bruce H. Bernstern

Reg. No. 29,027

August 15, 2003 GREENBLUM & BERNSTEIN, P.L.C. 1950 Roland Clarke Place Reston, VA 20191 (703) 716-1191

US- (157 1/2

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 8月27日

出願番号

Application Number:

特願2002-247338

[ST.10/C]:

[JP2002-247338]

出 願 人
Applicant(s):

ペンタックス株式会社

2003年 5月30日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

P4898

【あて先】

特許庁長官 殿

【国際特許分類】

G02B 7/04

F16H

【発明者】

【住所又は居所】 東京都板橋区前野町2丁目36番9号 旭光学工業株式

会社内

【氏名】

野村 博

【特許出願人】

【識別番号】

000000527

【氏名又は名称】

旭光学工業株式会社

【代理人】

【識別番号】

100083286

【弁理士】

【氏名又は名称】

三浦 邦夫

【手数料の表示】

【予納台帳番号】

001971

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9704590

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ズームレンズ鏡筒の繰出カム機構及び繰出カム機構【特許請求の範囲】

【請求項1】 回転可能でカム溝を周面に有するカム環と、上記カム溝に係合するカムフォロアを有し光軸方向に直進案内された、撮影光学系の少なくとも一部を支持する直進環とを有し、カム環の回転に従って上記直進環を撮影光学系の光軸方向に前後移動させるズームレンズ鏡筒の繰出カム機構において、

カム環に、同一の基礎軌跡を有する複数のカム溝を少なくとも光軸方向に位置 を異ならせて形成するとともに、複数の上記カム溝のいずれも、少なくとも前方 一部と後方一部のいずれかが存在しないように短尺として該カム溝をカム環端面 に開口させ、

直進環に、複数の上記カム溝にそれぞれ係合する複数のカムフォロアを少なく とも光軸方向に位置を異らせて形成し、

直進環の前方移動端と後方移動端の少なくとも一方では、複数の上記カム溝の 一部からカムフォロアが外れ、他のカムフォロアとカム溝が係合を維持すること を特徴とするズームレンズ鏡筒の繰出カム機構。

【請求項2】 請求項1記載のズームレンズ鏡筒の繰出カム機構において、 複数の上記カム溝は、基礎軌跡の前方の一部が存在しないようにカム環の前端 面に開口する前方カム溝と、基礎軌跡の後方の一部が存在しないようにカム環の

複数の上記カムフォロアは、上記前方カム溝に係合する前方カムフォロアと、 上記後方カム溝に係合する後方カムフォロアとを有し、

後端面に開口する後方カム溝とを有し、

直進環の前方移動端では、前方カムフォロアが前方カム溝から外れて後方カム 溝と後方カムフォロアのみが係合し、後方移動端では、後方カムフォロアが後方 カム溝から外れて前方カム溝と前方カムフォロアのみが係合するズームレンズ鏡 筒の繰出カム機構。

【請求項3】 請求項1または2記載のズームレンズ鏡筒の繰出カム機構において、

カム環に、少なくとも光軸方向位置の異なる複数の上記カム溝を1グループと

する、複数のカム溝グループを周方向に位置を異ならせて形成し、

直進環に、少なくとも光軸方向位置の異なる複数の上記カムフォロアを1グループとする、複数のカムフォロアグループを周方向に位置を異ならせて形成したズームレンズ鏡筒の繰出カム機構。

【請求項4】 回転可能でカム溝を周面に有するカム環と、上記カム溝に係合するカムフォロアを有し光軸方向に直進案内された、撮影光学系の少なくとも一部を支持する直進環とを有し、カム環の回転に従って上記直進環を撮影光学系の光軸方向に前後移動させるズームレンズ鏡筒の繰出カム機構において、

カム環に、同一の基礎軌跡を有する一対のカム溝を少なくとも光軸方向に位置 を異ならせて形成するとともに、少なくとも一方のカム溝の前方一部又は後方一 部が存在しないように短尺として該カム溝をカム環端面に開口させ、

直進環に、上記一対のカム溝にそれぞれ係合する一対のカムフォロアを少なく とも光軸方向に位置を異らせて形成し、

直進環の前方移動端と後方移動端の少なくとも一方では、上記一対のカムフォロアとカム溝のうち一方の係合が外れ、他方のみが係合を維持することを特徴とするズームレンズ鏡筒の繰出カム機構。

【請求項5】 回転可能でカム溝を周面に有するカム環と、上記カム溝に係合するカムフォロアを有し該カム環の回転軸方向に直進案内された直進環とを有し、カム環の回転に従って上記直進環を上記回転軸方向に前後移動させる繰出カム機構において、

カム環に、同一の基礎軌跡を有する複数のカム溝を少なくとも回転軸方向に位置を異ならせて形成するとともに、複数の上記カム溝のいずれも、少なくとも前方一部と後方一部のいずれかが存在しないように短尺として該カム溝をカム環端面に開口させ、

直進環に、複数の上記カム溝にそれぞれ係合する複数のカムフォロアを少なく とも上記回転軸方向に位置を異らせて形成し、

直進環の前方移動端と後方移動端の少なくとも一方では、複数の上記カム溝の一部からカムフォロアが外れ、他のカムフォロアとカム溝が係合を維持することを特徴とするズームレンズ鏡筒の繰出カム機構。

【発明の詳細な説明】

[0001]

【技術分野】

本発明は、カム環と直進環による繰出カム機構に関し、特に、ズームレンズ鏡筒のカム環によるレンズ移動機構に関する。

[0002]

【従来技術及びその問題点】

カメラの小型化の要求はとどまるところが無く、カム環を用いてレンズ繰出及び収納を行うズームレンズ鏡筒では、光軸方向へのレンズ群の移動量は確保しつつ、カム環の光軸方向長さを短くすることが求められている。また、このような二律背反的な要求を満たす繰出カム機構は、ズームレンズ鏡筒以外の技術分野でも望まれている。

[0003]

【発明の目的】

本発明は、レンズ群の移動量を犠牲にすることなくカム環を小型化することが可能なズームレンズ鏡筒の繰出カム機構を提供することを目的とする。本発明はまた、直進移動部材の移動量を犠牲にすることなくカム環を小型化することが可能な繰出カム機構を提供することを目的とする。

[0004]

【発明の概要】

本発明のズームレンズ鏡筒の繰出カム機構は、回転可能でカム溝を周面に有するカム環と、このカム溝に係合するカムフォロアを有し光軸方向に直進案内された、撮影光学系の少なくとも一部を支持する直進環とを有することを前提としている。カム環には、同一の基礎軌跡を有する複数のカム溝を少なくとも光軸方向に位置を異ならせて形成するとともに、複数のカム溝のいずれも、少なくとも前方一部と後方一部のいずれかが存在しないように短尺として該カム溝をカム環端面に開口させる。一方、直進環には、これら複数のカム溝にそれぞれ係合する複数のカムフォロアを少なくとも光軸方向に位置を異らせて形成する。そして、直進環の前方移動端と後方移動端の少なくとも一方では、複数の上記カム溝の一部

からカムフォロアが外れ、他のカムフォロアとカム溝が係合を維持することを特徴としている。該構造により、カム環の光軸方向長以上の移動量を直進環に与えることができる。このカム溝とカムフォロアは、それぞれが最低一対あれば機能することができる。

[0005]

より好ましくは、カム溝として、基礎軌跡の前方の一部が存在しないようにカム環の前端面に開口する前方カム溝と、基礎軌跡の後方の一部が存在しないようにカム環の後端面に開口する後方カム溝とを設け、カムフォロアとして、前方カム溝に係合する前方カムフォロアと、後方カム溝に係合する後方カムフォロアとを設け、直進環の前方移動端では、前方カムフォロアが前方カム溝から外れて後方カム溝と後方カムフォロアのみが係合し、後方移動端では、後方カムフォロアが後方カム溝から外れて前方カム溝と前方カムフォロアのみが係合するように構成するとよい。

[0006]

直進環の支持安定のため、カム環には、少なくとも光軸方向位置を異ならせている前掲の複数のカム溝を1グループとする、複数のカム溝グループを周方向に位置を異ならせて形成し、直進環には、少なくとも光軸方向位置を異ならせている前掲の複数のカムフォロアを1グループとする、複数のカムフォロアグループを周方向に位置を異ならせて形成することが好ましい。

[0007]

本発明はまた、撮影光学系以外の対象を直進環に支持させることにより、ズームレズ鏡筒以外のカム繰出機構に適用することも可能である。

[0008]

【発明の実施の形態】

[ズームレンズ鏡筒の全体の説明]

まず、図1ないし図18について、本実施形態のズームレンズ鏡筒71の全体構造を説明する。この実施形態は、デジタルカメラ70用のズームレンズ鏡筒に本発明を適用した実施形態であり、撮影光学系は、物体側から順に、第1レンズ群LG1、シャッタS及び絞りA、第2レンズ群LG2、第3レンズ群LG3、

ローパスフィルタ(フィルタ類) LG4及び固体撮像素子(CCD)60からなっている。撮影光学系の光軸はZ1である。この撮影光軸Z1は、ズームレンズ鏡筒71の中心軸Z0と平行であり、かつ該鏡筒中心軸Z0に対して偏心している。ズーミングは、第1レンズ群LG1と第2レンズ群LG2を撮影光軸Z1方向に所定の軌跡で進退させ、フォーカシングは同方向への第3レンズ群LG3の移動で行う。なお、以下の説明中で「光軸方向」という記載は、特に断りがなければ撮影光軸Z1と平行な方向を意味している。

[0009]

図6及び図7に示すように、カメラボディ72内に固定環22が固定され、この固定環22の後部にCCDホルダ21が固定されている。CCDホルダ21上にはCCDベース板62を介して固体撮像素子60が支持され、固体撮像素子60の前部に、フィルタホルダ73とパッキン61を介してローパスフィルタLG4が支持されている。

[0010]

固定環22内には、第3レンズ群LG3を保持するAFレンズ枠(3群レンズ枠)51が光軸方向に直進移動可能に支持されている。すなわち、固定環22とCCDホルダ21には、撮影光軸Z1と平行な一対のAFガイド軸52、53の前端部と後端部がそれぞれ固定されており、このAFガイド軸52、53に対してそれぞれ、AFレンズ枠51に形成したガイド孔が摺動可能に嵌まっている。本実施形態では、AFガイド軸52がメインのガイド軸で、AFガイド軸53はAFレンズ枠51の回転規制用に設けられている。AFレンズ枠51に固定したAFナット54に対し、AFモータ160のドライブシャフトに形成した送りねじが螺合しており、該ドライブシャフトを回転させると、送りねじとAFナット54の螺合関係によってAFレンズ枠51が光軸方向に進退される。AFレンズ枠51は、AF枠付勢ばね55によって光軸方向の前方に付勢されている。

[0011]

図5に示すように、固定環22の上部には、ズームモータ150と減速ギヤボックス74が支持されている。減速ギヤボックス74は内部に減速ギヤ列を有し、ズームモータ150の駆動力をズームギヤ28に伝える。ズームギヤ28は、

撮影光軸Z1と平行なズームギヤ軸29によって固定環22に枢着されている。 ズームモータ150とAFモータ160は、固定環22の外周面に配設したレンズ駆動制御FPC(フレキシブルプリント回路)基板75を介して、カメラの制御回路により制御される。

[0012]

固定環22の内周面には、雌ヘリコイド22a、撮影光軸Z1と平行な3本の直進案内溝22b、雌ヘリコイド22aと平行な3本のリード溝22c、及び各リード溝22cの前端部に連通する周方向への回転摺動溝22dが形成されている。雌ヘリコイド22aは、回転摺動溝22dが形成されている固定環22前部の一部領域には形成されていない(図8参照)。

[0013]

へリコイド環18は、雌ヘリコイド22aに螺合する雄ヘリコイド18aと、リード溝22c及び回転摺動溝22dに係合する回転摺動突起18bとを外周面に有している(図4、図9)。雄ヘリコイド18a上には、撮影光軸Z1と平行なギヤ歯を有するスパーギヤ部18cが形成されており、スパーギヤ部18cはズームギヤ28に対して螺合する。従って、ズームギヤ28によって回転力を与えたときヘリコイド環18は、雌ヘリコイド22aと雄ヘリコイド18aが螺合関係にある状態では回転しながら光軸方向へ進退し、ある程度前方に移動すると、雄ヘリコイド18aが雌ヘリコイド22aから外れ、回転摺動溝22dと回転摺動突起18bの係合関係によって鏡筒中心軸Z0を中心とする周方向回転のみを行う。固定環22には、回転摺動溝22dと外周面とを貫通するストッパ挿脱孔22eが形成され、このストッパ挿脱孔22eに対し、撮影領域を越えるヘリコイド環18の回動を規制するための鏡筒ストッパ26が着脱可能となっている

[0014]

ヘリコイド環18の前端部内周面に形成した回転伝達凹部18d(図4、図10)に対し、第3外筒15の後端部から後方に突設した回転伝達突起15a(図11)が嵌入されている。回転伝達凹部18dと回転伝達突起15aはそれぞれ、周方向に位置を異ならせて3箇所設けられており、周方向位置が対応するそれ

ぞれの回転伝達突起15aと回転伝達凹部18dは、鏡筒中心軸Z0に沿う方向への相対摺動は可能に結合し、該鏡筒中心軸Z0を中心とする周方向には相対回動不能に結合されている。すなわち、第3外筒15とヘリコイド環18は一体に回転する。また、ヘリコイド環18には、回転摺動突起18bの内径側の一部領域を切り欠いて嵌合凹部18eが形成されており、該嵌合凹部18eに嵌合する嵌合突起15bは、回転摺動突起18bが回転摺動溝22dに係合するとき、同時に回転摺動溝22dに係合する(図6のズームレンズ鏡筒上半断面参照)。

[0015]

第3外筒15とヘリコイド環18の間には、互いを光軸延長上での離間方向へ付勢する3つの離間方向付勢ばね25が設けられている。離間方向付勢ばね25は圧縮コイルばねからなり、その後端部がヘリコイド環18の前端部に開口するばね挿入凹部18fに収納され、前端部が第3外筒15のばね当付凹部15cに当接している。この離間方向付勢ばね25によって、回転摺動溝22dの前側壁面に向けて嵌合突起15bを押圧し、かつ回転摺動溝22dの後側壁面に向けて回転摺動突起18bを押圧することで、固定環22に対する第3外筒15とヘリコイド環18の光軸方向のバックラッシュが除去される。

[0016]

第3外筒15の内周面には、内径方向に突設された相対回動案内突起15dと、鏡筒中心軸Z0を中心とする周方向溝15eと、撮影光軸Z1と平行な3本のローラ嵌合溝15fとが形成されている(図4、図11)。相対回動案内突起15dは、周方向に位置を異ならせて複数設けられている。ローラ嵌合溝15fは、回転伝達突起15aに対応する周方向位置に形成されており、その後端部は、回転伝達突起15aを貫通して後方へ向け開口されている。また、ヘリコイド環18の内周面には鏡筒中心軸Z0を中心とする周方向溝18gが形成されている(図4、図10)。この第3外筒15とヘリコイド環18の結合体の内側には直進案内環14が支持される。直進案内環14の外周面には光軸方向の後方から順に、該径方向へ突出する3つの直進案内突起14aと、それぞれ周方向に位置を異ならせて複数設けた相対回動案内突起14b及び14cと、鏡筒中心軸Z0を中心とする周方向溝14dとが形成されている(図4、図12)。直進案内環1

4は、直進案内突起14aを直進案内溝22bに係合させることで、固定環22に対し光軸方向に直進案内される。直進案内環14はまた、相対回動案内突起14cを周方向溝15eに係合させ、周方向溝14dに相対回動案内突起15dを係合させることで、第3外筒15と相対回動可能かつ光軸方向へ相対移動不能に結合され、相対回動案内突起14bを周方向溝18gに係合させることで、ヘリコイド環18に対しても相対回動可能かつ光軸方向へ相対移動不能に結合されている。

[0017]

直進案内環14には、内周面と外周面を貫通する3つのローラ案内貫通溝14 eが形成されている。各ローラ案内貫通溝14eは、図12に示すように、周方向へ向け形成された平行な前後の周方向溝部14e-1、14e-2と、この両周方向溝部14e-1及び14e-2を接続する、上記雌へリコイド22aと平行なリード溝部14e-3とを有する。それぞれのローラ案内貫通溝14eに対し、カム環11の外周面に設けたカム環ローラ32が嵌まっている。カム環ローラ32は、ローラ固定ねじ32aを介してカム環11に固定されており、周方向へ位置を異ならせて3つ設けられている。カム環ローラ32はさらに、ローラ案内貫通溝14eを貫通して第3外筒15内周面のローラ嵌合溝15fに嵌まっている。各ローラ嵌合溝15fの前端部付近には、ローラ付勢ばね17に設けた3つのローラ押圧片17aが嵌っている(図11)。ローラ押圧片17aは、カム環ローラ32が周方向溝部14e-1に係合するときに該カム環ローラ32に当接して後方へ押圧し、カム環ローラ32とローラ案内貫通溝14e(周方向溝部14e-1)との間のバックラッシュを取る。

[0018]

以上の構造から、固定環22からカム環11までの繰り出しの態様が理解される。すなわち、ズームモータ150によってズームギヤ28を鏡筒繰出方向に回転駆動すると、雌ヘリコイド22aと雄ヘリコイド18aの関係によってヘリコイド環18が回転しながら前方に繰り出される。ヘリコイド環18と第3外筒15は共に、直進案内環14に対して相対回動可能かつ回転軸方向(鏡筒中心軸20に沿う方向)へ一体に移動するように結合されているため、ヘリコイド環18

が回転繰出されると、第3外筒15も同方向に回転しながら前方に繰り出され、 直進案内環14はヘリコイド環18及び第3外筒15と共に前方へ直進移動する。また、第3外筒15の回転力はローラ嵌合溝15fとカム環ローラ32を介してカム環11に伝達される。カム環ローラ32はローラ案内貫通溝14eにも嵌まっているため、直進案内環14に対してカム環11は、リード溝部14e-3の形状に従って回転しながら前方に繰り出される。前述の通り、直進案内環14自体も第3外筒15及びヘリコイド環18と共に前方に直進移動しているため、結果としてカム環11には、リード溝部14e-3に従う回転繰出分と、直進案内環14の前方への直進移動分とを合わせた光軸方向移動量が与えられる。

[0019]

以上の繰出動作は雄へリコイド18aが雌へリコイド22aと螺合した状態で行われ、このとき回転摺動突起18bはリード溝22c内を移動している。ヘリコイドによって所定量繰り出されると、雄へリコイド18aと雌へリコイド22aの螺合が解除されて、やがて回転摺動突起18bがリード溝22cから回転摺動溝22d内へ入る。このとき同時に、カム環ローラ32はローラ案内貫通溝14eの周方向溝部14e-1に入る。すると、ヘリコイド環18及び第3外筒15は、ヘリコイドによる回転繰出力が作用しなくなるため、ズームギヤ28の駆動に応じて光軸方向の一定位置で回動のみを行うようになる。この状態では直進案内環14が停止し、かつカム環ローラ32が周方向溝部14e-1内に移行したため、カム環11にも前方への移動力が与えられなくなり、カム環11は第3外筒15の回転に応じて一定位置で回動のみ行うようになる。

[0020]

ズームギヤ28を鏡筒収納方向に回転駆動させると、以上と逆の動作が行われる。カム環ローラ32がローラ案内貫通溝14eの周方向溝部14e-2に入るまでヘリコイド環18に回転を与えると、以上の各鏡筒部材が図7に示す位置まで後退する。

[0021]

カム環11より先の構造をさらに説明する。直進案内環14の内周面には、撮影光軸Z1と平行な3つの第1直進案内溝14f及び6つの第2直進案内溝14

gが、それぞれ周方向に位置を異ならせて形成されている。第1直進案内溝14 fは、6つのうち3つの第2直進案内溝14gの両側に位置する一対の溝部から なっており、この3つの第1直進案内溝14fに対し、2群直進案内環10に設 けた3つの股状突起10a(図3、図15)が摺動可能に係合している。一方、 第2直進案内溝14gに対しては、第2外筒13の後端部外周面に突設した6つ の直進案内突起13a(図2、図17)が摺動可能に係合している。したがって 、第2外筒13と2群直進案内環10はいずれも、直進案内環14を介して光軸 方向に直進案内されている。

[0022]

2群直進案内環10は、第2レンズ群LG2を支持する2群レンズ移動枠8を 直進案内するための部材であり、第2外筒13は、第1レンズ群LG1を支持す る第1外筒12を直進案内するための部材である。

[0023]

まず第2レンズ群LG2の支持構造を説明する。2群直進案内環10は、3つの股状突起10aを接続するリング部10bから前方へ向けて、3つの直進案内キー10cを突出させている(図3、図15)。図6及び図7に示すように、リング部10bはカム環11の後端部に固定され、直進案内キー10cはカム環11の内側に延出されている。各直進案内キー10cは、撮影光軸Z1と平行な一対のガイド面を側面に有しており、このガイド面を、カム環11の内側に支持された2群レンズ移動枠8の直進案内溝8aに係合させることによって、2群レンズ移動枠8を軸方向に直進案内している。直進案内溝8aは、2群レンズ移動枠8の外周面側に形成されている。

[0024]

図3に示すように、カム環11の内周面には2群案内カム溝11aが形成されており、2群案内カム溝11aに対して、2群レンズ移動枠8の外周面に設けた2群用カムフォロア8bが係合している。2群レンズ移動枠8は直進案内環14を介して直進案内されているため、カム環11が回転すると、2群案内カム溝11aに従って、2群レンズ移動枠8が光軸方向へ所定の軌跡で移動する。この2群案内カム溝11aによる2群レンズ移動枠8のガイド構造については後述する

[0025]

2群レンズ移動枠8の内側には、第2レンズ群LG2を保持する2群レンズ枠6が支持されている。2群レンズ枠6は、一対の2群レンズ枠支持板36、37に対し、2群回動軸33を介して軸支されており、2群枠支持板36、37が支持板固定ビス66によって2群レンズ移動枠8に固定されている。2群回動軸33は撮影光軸Z1と平行でかつ撮影光軸Z1に対して偏心しており、2群レンズ枠6は、2群回動軸33を回動中心として、第2レンズ群LG2の光軸Z2を撮影光軸Z1と一致させる撮影用位置(図6)と、2群光軸Z2を撮影光軸Z1から偏心させる収納用退避位置(図7)とに回動することができる。2群レンズ移動枠8には、2群レンズ枠6を上記撮影用位置で回動規制する回動規制ピン35が設けられていて、2群レンズ枠6は、2群レンズ枠戻しばね39によって該回動規制ピン35との当接方向へ回動付勢されている。軸方向押圧ばね38は、2群レンズ枠6の光軸方向のバックラッシュ取りを行う。

[0026]

2群レンズ枠6は、光軸方向には2群レンズ移動枠8と一体に移動する。CC Dホルダ21には2群レンズ枠6に係合可能な位置にカム突起21a(図4)が 前方に向けて突設されており、図7のように2群レンズ移動枠8が収納方向に移 動してCCDホルダ21に接近すると、該カム突起21aの先端部に形成したカ ム面が、2群レンズ枠6に係合して上記の収納用退避位置に回動させる。

[0027]

続いて第1レンズ群LG1の支持構造を説明する。直進案内環14を介して光軸方向に直進案内された第2外筒13の内周面には、周方向に位置を異ならせて3つの直進案内溝13bが光軸方向へ形成されており、各直進案内溝13bに対し、第1外筒12の後端部付近の外周面に形成した3つの係合突起12aが摺動可能に嵌合している(図2、図17及び図18参照)。すなわち、第1外筒12は、直進案内環14と第2外筒13を介して光軸方向に直進案内されている。また、第2外筒13は後端部付近の内周面に、周方向へ向かう内径フランジ13cを有し、この内径フランジ13cがカム環11の外周面に設けた周方向溝11c

に摺動可能に係合することで、第2外筒13は、カム環11に対して相対回転可能かつ光軸方向の相対移動は不能に結合されている。一方、第1外筒12は、内径方向に突出する3つの1群用ローラ(カムフォロア)31を有し、それぞれの1群用ローラ31が、カム環11の外周面に3本形成した1群案内カム溝11bに摺動可能に嵌合している。

[0028]

第1外筒12内には、1群調整環2を介して1群レンズ枠1が支持されている。1群レンズ枠1には第1レンズ群LG1が固定され、その外周面に形成した雄調整ねじ1aが、1群調整環2の内周面に形成した雌調整ねじ2aに螺合している。この調整ねじ1a、2aの螺合位置を調整することよって、1群レンズ枠1は1群調整環2に対して光軸方向に位置調整可能となっている。

[0029]

1群調整環2は外径方向に突出する一対の(図2には一つのみを図示)ガイド 突起2 b を有し、この一対のガイド突起2 b が、第1 外筒1 2 の内周面側に形成 した一対の1 群調整環ガイド溝1 2 b に摺動可能に係合している。1 群調整環ガイド溝1 2 b は撮影光軸 Z 1 と平行に形成されており、該1 群調整環ガイド溝1 2 b とガイド突起2 b の係合関係によって、1 群調整環2 と 1 群レンズ枠1 の結合体は、第1 外筒1 2 に対して光軸方向の前後移動が可能になっている。第1 外筒1 2 にはさらに、ガイド突起2 b の前方を塞ぐように、1 群抜止環3 が抜止環固定ビス64 によって固定されている。1 群抜止環3 のばね受け部3 a とガイド 突起2 b との間には、圧縮コイルばねからなる1 群付勢ばね2 4 が設けられ、該1 群付勢ばね2 4 によって1 群調整環2 は光軸方向後方に付勢されている。1 群調整環2 は、その前端部付近の外周面に突設した係合爪2 c を、1 群抜止環3 の前面(図2 に見えている側の面)に係合させることによって、第1 外筒1 2 に対する光軸方向後方への最大移動位置が規制される(図6 の上半断面参照)。一方、1 群付勢ばね2 4 を圧縮させることによって、1 群調整環2 は光軸方向前方に若干量移動することができる。

[0030]

第1レンズ群LG1と第2レンズ群LG2の間には、シャッタSと絞りAを有

するシャッタユニット76が支持されている。シャッタユニット76は、2群レンズ移動枠8の内側に支持されており、シャッタSと絞りAは、第2レンズ群LG2との空気間隔が固定となっている。シャッタユニット76を挟んだ前後位置には、シャッタSと絞りAを駆動する2つのアクチュエータ(不図示)が、それぞれ一つずつ配置されており、シャッタユニット76からはこれらアクチュエータをカメラの制御回路と接続するための露出制御FPC(フレキシブルプリント回路)基板77が延出されている。

[0031]

第1外筒12の前端部には、シャッタSとは別に、非撮影時に撮影開口を閉じ て撮影光学系(第1レンズ群LG1)を保護するためのレンズバリヤ機構が設け られる。レンズバリヤ機構は、鏡筒中心軸ZOに対して偏心した位置に設けた回 動軸を中心として回動可能な一対のバリヤ羽根104及び105と、該バリヤ羽 根104、105を閉じ方向に付勢する一対のバリヤ付勢ばね106と、鏡筒中 心軸ΖΟを中心として回動可能で所定方向の回動によってバリヤ羽根1Ο4、1 05に係合して開かせるバリヤ駆動環103と、該バリヤ駆動環103をバリヤ 開放方向に回動付勢するバリヤ駆動環付勢ばね107と、バリヤ羽根104、1 05とバリヤ駆動環103の間に位置するバリヤ押さえ板102とを備えている 。バリヤ駆動環付勢ばね107の付勢力はバリヤ付勢ばね106の付勢力よりも 強く設定されており、ズームレンズ鏡筒71がズーム領域(図6)に繰り出され ているときには、バリヤ駆動環付勢ばね107がバリヤ駆動環103をバリヤ開 放用の角度位置に保持して、バリヤ付勢ばね106に抗してバリヤ羽根104、 105が開かれる。そしてズームレンズ鏡筒71がズーム領域から収納位置(図 7) へ移動する途中で、カム環11のバリヤ駆動環押圧面11d(図3、図13)がバリヤ駆動環103をバリヤ開放方向と反対方向に強制回動させ、バリヤ駆 動環103がバリヤ羽根104、105に対する係合を解除して、該バリヤ羽根 104、105がバリヤ付勢ばね106の付勢力によって閉じられる。レンズバ リヤ機構の前部は、バリヤカバー101(化粧板)によって覆われている。

[0032]

以上の構造のズームレンズ鏡筒71の全体的な繰出及び収納動作を説明する。

なお、カム環11が定位置回転状態に繰り出される段階までは既に説明しているので簡潔に述べる。図7の鏡筒収納状態では、ズームレンズ鏡筒71はカメラボディ72内に完全に格納されており、カメラボディ72の前面は、ズームレンズ鏡筒71が突出しないフラット形状になっている。この鏡筒収納状態からズームモータ150によりズームギヤ28を繰出方向に回転駆動させると、ヘリコイド環18と第3外筒15の結合体がヘリコイド(雄ヘリコイド18a、雌ヘリコイド22a)に従って回転繰出される。直進案内環14は、第3外筒15及びヘリコイド環18と共に前方に直進移動する。このとき、第3外筒15により回転力が付与されるカム環11は、直進案内環14の前方への直進移動分と、該直進案内環14との間に設けたリード構造(カム環ローラ32、リード溝部14e-3)による繰出分との合成移動を行う。ヘリコイド環18とカム環11が前方の所定位置まで繰り出されると、それぞれの回転繰出構造(ヘリコイド、リード)の機能が解除されて、鏡筒中心軸Z0を中心とした周方向回転のみを行うようになる。

[0033]

カム環11が回転すると、その内側では、2群直進案内環10を介して直進案内された2群レンズ移動枠8が、2群用カムフォロア8bと2群案内カム溝11aの関係によって光軸方向に所定の軌跡で移動される。図7の鏡筒収納状態では、2群レンズ移動枠8内の2群レンズ枠6は、CCDホルダ21に突設したカム突起21aの作用によって、2群光軸Z2が撮影光軸Z1から偏心する収納用退避位置に保持されており、該2群レンズ枠6は、2群レンズ移動枠8がズーム領域まで繰り出される途中でカム突起21aから離れて、2群レンズ枠戻しばね39の付勢力によって2群光軸Z2を撮影光軸Z1と一致させる撮影用位置(図6)に回動する。以後、ズームレンズ鏡筒71を再び収納位置に移動させるまでは、2群レンズ枠6は撮影用位置に保持される。

[0034]

また、カム環11が回転すると、該カム環11の外側では、第2外筒13を介して直進案内された第1外筒12が、1群用ローラ31と1群案内カム溝11bの関係によって光軸方向に所定の軌跡で移動される。

すなわち、撮像面(ССD受光面)に対する第1レンズ群LG1と第2レンズ 群LG2の繰出位置はそれぞれ、前者が、固定環22に対するカム環11の前方 移動量と、該カム環11に対する第1外筒12のカム繰出量との合算値として決 まり、後者が、固定環22に対するカム環11の前方移動量と、該カム環11に 対する2群レンズ移動枠8のカム繰出量との合算値として決まる。ズーミングは 、この第1レンズ群LG1と第2レンズ群LG2が互いの空気間隔を変化させな がら撮影光軸乙1上を移動することにより行われる。図7の収納位置から鏡筒繰 出を行うと、まず図6の下半断面に示すワイド端の繰出状態になり、さらにズー ムモータ150を鏡筒繰出方向に駆動させると、同図の上半断面に示すテレ端の 繰出状態となる。図6から分かるように、本実施形態のズームレンズ鏡筒71は 、ワイド端では第1レンズ群LG1と第2レンズ群LG2の間隔が大きく、テレ 端では、第1レンズ群LG1と第2レンズ群LG2が互いの接近方向に移動して 間隔が小さくなる。このような第1レンズ群LG1と第2レンズ群LG2の空気 間隔の変化は、2群案内カム溝11aと1群案内カム溝11bの軌跡によって与 えられるものである。このテレ端とワイド端の間のズーム領域(ズーミング使用 領域)では、カム環11、第3外筒15及びヘリコイド環18は、前述の定位置 回転のみを行い、光軸方向へは進退しない。

[0036]

ズーム領域では、被写体距離に応じてAFモータ160を駆動することにより、第3レンズ群LG3(AFレンズ枠51)が撮影光軸Z1に沿って移動してフォーカシングがなされる。

[0037]

ズームモータ150を鏡筒収納方向に駆動させると、ズームレンズ鏡筒71は、前述の繰り出し時とは逆の収納動作を行い、カメラボディ72の内部に完全に格納される収納位置(図7)まで移動される。この収納位置への移動の途中で、2群レンズ枠6がカム突起21aによって収納用退避位置に回動され、2群レンズ移動枠8と共に後退する。ズームレンズ鏡筒71が収納位置まで移動されると、第2レンズ群LG2は、光軸方向において第3レンズ群LG3やローパスフィ

ルタLG4と同位置に格納される(鏡筒の径方向に重なる)。この収納時の第2 レンズ群LG2の退避構造によってズームレンズ鏡筒71の収納長が短くなり、 図7の左右方向におけるカメラボディ72の厚みを小さくすることが可能となっ ている。

[0038]

デジタルカメラ70は、ズームレンズ鏡筒71に連動してするズームファイン ダを備えている。ズームファインダは、ファインダギヤ30をスパーギヤ部18 cに噛合させてヘリコイド環18から動力を得ており、該ヘリコイド環18がズ ーム領域において前述の定位置回転を行うと、その回転力を受けてファインダギ ヤ30が回転する。ファインダ光学系は、対物窓81a、第1の可動変倍レンズ 81 b、第2の可動変倍レンズ81 c、プリズム81 d、接眼レンズ81 e、接 眼窓81fを有し、第1と第2の可動変倍レンズ81b、81cをファインダ対 物系の光軸乙3に沿って所定の軌跡で移動させることで変倍を行う。ファインダ 対物系の光軸 Z 3 は、撮影光軸 Z 1 と平行である。可動変倍レンズ 8 1 b 及び 8 1 c の保持枠は、ガイドシャフト 8 2 によって光軸 Z 3 方向に移動可能に直進案 内され、かつガイドシャフト82と平行なシャフトねじから駆動力を受けるよう 、になっている。このシャフトねじとファインダギヤ30の間に減速ギヤ列が設け られており、ファインダギヤ30が回転するとシャフトねじが回転し、可動変倍 レンズ81 b、81 cが進退する。以上のズームファインダの構成要素は、図5 に示すファインダユニット80としてサブアッシされ、固定環22の上部に取り 付けられる。

[0039]

[本発明の特徴部分の説明]

続いて、本発明の特徴部分を説明する。以上のズームレンズ鏡筒では、カム環11の内周面に形成した2群案内カム溝(カム溝グループ)11aは、2群レンズ移動枠(直進環)8に所要の移動を与えるために図14に示す基礎軌跡αを必要とする。基礎軌跡とは、ズーム領域及び収納用領域を含む全ての鏡筒使用領域(使用領域)と、鏡筒の組立分解用領域とを含む概念上のカム溝形状である。鏡筒使用領域とは、言い換えれば、カム機構によって移動が制御されうる領域のこ

とであり、カム機構の分解組立領域と区別する意味で用いられている。また、ズ ーム領域とは、鏡筒使用領域の中でも特にワイド端とテレ端の間の移動を制御す るための領域であり、収納用領域と区別する意味で用いられている。

[0040]

図27から分かるように、この基礎軌跡 a の光軸方向(図27の左右方向)に 占める形成領域W1は、同方向へのカム環11の長さW2を上回っている。なお 、光軸方向におけるズーム領域はW3である。すなわち、基礎軌跡全体を含む1 本の長尺のカム溝をカム環の周面に単純に形成するという従来の手法では、カム 環11上に必要十分なカム溝を得ることはできない。本実施形態のカム機構は、 カム環11の光軸方向長さを増大させることなく、2群レンズ移動枠8の必要な 移動量を確保するものであり、以下にその詳細を説明する。

[0041]

図14に示すように、2群案内カム溝11aは、光軸方向に位置を異ならせた 前方カム溝11a-1と後方カム溝11a-2の2種類からなっている。前方カム 溝11a-1と後方カム溝11a-2はいずれも、同形状の基礎軌跡αをトレース して形成されたカム溝であるが、それぞれが基礎軌跡α全域をカバーしているの ではなく、前方カム溝 1 1 a-1と後方カム溝 1 1 a-2では基礎軌跡 α上に占め る領域が異なっている。基礎軌跡αは、光軸と平行をなす光軸方向前方の第1領 域α1、この第1領域α1の終端における第1変曲点αhから光軸方向後方の第 2変曲点αmへ向かう第2領域α2、該第2変曲点αmから前方の第3変曲点α ηへ向かう第3領域α3、及び第3領域α3の先の第4領域α4に大きく分ける ことができる。なお、カム溝11a-1及び11a-2の第4領域α4は、組立時 のみ使用する領域である。前方カム溝11a-1は、この基礎軌跡αのうち、第 1領域α1の全体と第2領域α2の一部とを欠く態様で、カム環11の前方に位。 置を寄せて形成されており、第2領域α2の途中位置に、カム環11の前端面へ の前方開口部R1を有している。一方、後方カム溝11a-2は、第2変曲点α mを挟む第2領域α2と第3領域α3の一部を欠く態様で、カム環11の後方に 位置を寄せて形成されており、第2領域α2の途中位置と第3領域α3の途中位 置に、それぞれカム環11の後端面への後方開口部R2、R3を有し、さらに第

1 領域 α 1 の前端部に、カム環 1 1 の前端面への前方開口部 R 4 を有している。前方カム溝 1 1 a - 1 において欠落している基礎軌跡 α 上の領域は後方カム溝 1 1 a - 2 に含まれており、逆に、後方カム溝 1 1 a - 2 において欠落している基礎軌跡 α 上の領域は前方カム溝 1 1 a - 1 に含まれている。つまり、対をなす前方カム溝 1 1 a - 1 と後方カム溝 1 1 a - 2 を合わせれば、基礎軌跡 α の全域が含まれていることになる。前方カム溝 1 1 a - 1 と後方カム溝 1 1 a - 2 の幅は等しい

[0042]

一方、図16に示すように、2群案内カム溝11aに係合する2群レンズ移動枠8側の2群用カムフォロア(カムフォロアグループ)8bも、光軸方向に位置を異ならせた一対の前方カムフォロア8b-1と後方カムフォロア8b-2を1グループとして構成されており、前方カムフォロア8b-1は前方カム溝11a-1に係合し、後方カムフォロア8b-2は後方カム溝11a-2に係合するように光軸方向の間隔が定められている。前方カムフォロア8b-1と後方カムフォロア8b-2の径は等しい。

[0043]

図19は、鏡筒収納状態(図7)での2群案内カム溝11aと2群用カムフォロア8bの関係を示している。収納位置では、2群用カムフォロア8bは基礎軌跡 αのうち第3変曲点 α n 近傍に位置される。前方カム溝11a-1と後方カム溝11a-2はいずれも第3変曲点 α n の近傍領域を含んでいるため、前方カムフォロア8b-1と後方カムフォロア8b-2の両方とも、対応する前方カム溝11a-1と後方カム溝11a-2に対して係合している。

[0044]

図19の収納状態から鏡筒繰出方向(同図上方)へカム環11を回転させると、前方カムフォロア8b-1と後方カムフォロア8b-2はそれぞれ、前方カム溝11a-1と後方カム溝11a-2にガイドされて、各カム溝の第3領域α3上を第2変曲点αmに向かって光軸方向後方へ移動する。後方カム溝11a-2は、第2変曲点αmを含む光軸方向後方の一部領域が存在しないため、この移動の途中で後方カムフォロア8b-2は、カム環11の後端面に開口する後方開口部R

3を通って後方カム溝 1 1 a - 2 から外れる。一方、前方カム溝 1 1 a - 1 の光軸方向の後方領域は欠落せずに全て存在しているので、前方カムフォロア 8 b - 1 は前方カム溝 1 1 a - 1 との係合を保っており、後方カムフォロア 8 b - 2 が外れた後は、該前方カムフォロア 8 b - 1 と前方カム溝 1 1 a - 1 の係合関係のみによって 2 群レンズ移動枠 8 が移動される。

[0045]

図20は、ワイド端(図6の下半断面)における2群案内カム溝11aと2群用カムフォロア8bの関係を示している。ワイド端における基礎軌跡αでの2群用カムフォロア8bの位置は、第2変曲点αmを若干超えた第3領域α3内に定められる。前述の通り、後方カムフォロア8b-2は後方カム溝11a-2から外れているが、該後方カムフォロア8b-2と対をなす前方カムフォロア8b-1が前方カム溝11a-1との係合関係を保っているので、該後方カムフォロア8b-2も基礎軌跡α上から逸脱してはいない。

[0046]

図20のワイド端から鏡筒繰出方向(同図上方)へ力ム環11を回転させると、前方カムフォロア8b-1は対応する前方カム溝11a-1にガイドされて、第1領域α1側に向かって第2領域α2上を光軸方向前方へ移動する。この移動に伴って、後方カム溝11a-2には係合していない後方カムフォロア8b-2も第2領域α2上を移動し、やがて後方開口部R2に達すると再び後方カム溝11a-2に係合する。この再係合後は、前方カムフォロア8b-1と後方カムフォロア8b-2の両方が各カム溝11a-1、11a-2のガイドを受ける。しかし、前方カム溝11a-1は光軸方向前方の一部領域を欠いて形成されているため、後方カムフォロア8b-2が再係合してからしばらく後に、前方カムフォロア8b-1が、カム環11の前端面に開口する前方開口部R1を通って前方カム溝11a-1から外れる。一方、後方カムフォロア8b-2は光軸方向の前方領域は欠落せずに全て形成されているので、後方カムフォロア8b-2は後方カム溝11a-2との係合を維持しており、前方カムフォロア8b-1が外れた後は、該後方カムフォロア8b-2と後方カム溝11a-2の係合関係のみによって2群レンズ移動枠8が移動される。

[0047]

図21は、テレ端(図6の上半断面)における2群案内カム溝11aと2群用カムフォロア8bの関係を示している。テレ端では、2群用カムフォロア8bの位置は、第2領域α2のうち第1変曲点αhに近い位置に定められる。前述の通り、この段階で前方カムフォロア8b-1は前方カム溝11a-1から外れているが、該前方カムフォロア8b-1と対をなす後方カムフォロア8b-2が後方カム溝11a-2との係合関係を保っているので、前方カムフォロア8b-1も基礎軌跡α上から逸脱してはいない。

[0048]

テレ端からさらに繰出方向にカム環 1 1 を回転させると、図 2 2 に示すように、後方カムフォロア 8 b - 2 が第 1 変曲点α h に至って第 1 領域α 1 に入る。この時点で前方カムフォロア 8 b - 1 は既に前方カム溝 1 1 a - 1 から外れており、残る後方カムフォロア 8 b - 2 が係合するのは、光軸と平行なカム溝領域(第 1 領域α 1) なので、2 群レンズ移動枠 8 を光軸方向前方に引き抜いて、後方カムフォロア 8 b - 2 を後方カム溝 1 1 a - 2 の前方開口部 R 4 から取り外すことができる。すなわち、図 2 2 は、カム環 1 1 と 2 群レンズ移動枠 8 の分解(組立)状態を示している。

[0049]

図23ないし図26は、以上の収納状態、ワイド端、テレ端及び分解状態それ ぞれにおけるカム環11と2群レンズ移動枠8の関係を、基礎軌跡αを消し、2 群直進案内環10を追加して示したものである。

[0050]

以上のように、カム環11には、同一の基礎軌跡を有する一対の前方カム溝11a-1と後方カム溝11a-2を光軸方向に位置を異ならせて形成し、この一対の前方カム溝11a-1と後方カム溝11a-2を、それぞれ個別には基礎軌跡なの一部を含まないようにカム環11の前端面と後端面に開口させると共に、相互には基礎軌跡な全域をカバーするように形成した。そして、カム環11に対する2群レンズ移動枠8の前方への移動端(図6の上半断面参照)では、後方に位置する後方カムフォロア8b-2と後方カム溝11a-2のみを係合させ、後方の移

動端(図6の下半断面参照)では、前方に位置する前方カムフォロア8b-1と前方カム溝11a-1のみを係合させるようにした。これにより、2群レンズ移動枠8の光軸方向への移動量を、同方向へのカム環11の長さよりも大きくすることが可能となった。つまり、2群レンズ移動枠8、すなわち第2レンズ群LG2の光軸方向への移動量を犠牲にすることなく、カム環11の光軸方向長さを小さくすることができる。

[0051]

本実施形態のカム環11における繰出カム機構は、さらに次の特徴を有している。一般に、カム環のカム溝軌跡は、カム環の回転方向に対する傾斜が小さい(カム環の周方向と平行に近い)ほど、カム環の単位回転量あたりのカムフォロアの光軸方向への移動量が小さくなり、駆動対象の移動精度を高めることができる。また、このカム溝軌跡の傾斜が小さいほど、カム環の回転に対する抵抗が小さくなり、作動トルクを抑えることができる。作動トルクの減少は、部品の耐久性、カム環を駆動するモータ電力の節約、小型モータの採用による鏡筒小型化といったメリットをもたらす。もちろん、実際のカム溝形状は、カム環の周面サイズ、カム環の最大回転角など様々な要素を考慮して決定されるが、カム溝の傾斜に関しては一般的に以上のような傾向がある。

[0052]

カム環11には、前方カム溝11a-1と後方カム溝11a-2を1グループとした場合、周方向に等間隔で3グループの2群案内カム溝11aが形成されている。2群案内カム溝11aの基礎軌跡αは、仮に周方向へ3つ並べたとすれば、互いに干渉せずにカム環11の周面上に収まる形状である。しかし、光軸方向の省スペース化を図るため、2群案内カム溝11aを光軸方向に離間する前方カム溝11a-1と後方カム溝11a-2とに分けている関係上、カム環11上には、計6本(後方カム溝11a-2は2つに分断されているが、1本とみなす)のカム溝が形成されている。前方カム溝11a-1と後方カム溝11a-2の各々は基礎軌跡αよりは短いものの、基本的にカム溝の本数が多くなれば、それだけカム環上のスペースには余裕がなくなり、カム溝が干渉する可能性が高くなる。この対策として、カム環の周方向に対するカム溝軌跡の傾斜を大きくしたり(光軸と

平行な方向に近づけたり)、カム環の径を大きくしてカム溝を形成するための周面積の拡大を図ることが考えられるが、前者は、移動精度の確保や作動トルクの減少という観点から好ましくなく、後者は鏡筒の大型化の原因になってしまう。

[0053]

これに対し本実施形態のカム環11では、仮にカム溝11a-1、11a-2が交差していても、このカム溝11a-1、11a-2の基礎軌跡αが同一であり、当該交差位置を前方カムフォロア8b-1と後方カムフォロア8b-2の一方が通過するときに、他方がカム溝との係合を保っていれば実質的なガイド性能が損なわれないことに着目し、カム溝の基礎軌跡αの形状は変えず、かつカム環11の径を大きくすることもなく、周方向に隣接する前方カム溝11a-1と後方カム溝11a-2を敢えて交差させている。具体的には、3グループの2群案内カム溝11a-2を敢えて交差させている。具体的には、3グループの2群案内カム溝11a-1とG2の後方カム溝11a-1とG3の後方カム溝11a-1とG2の後方カム溝11a-1とG3の後方カム溝11a-2、G3の前方カム溝11a-1とG1の後方カム溝11a-2という、周方向に隣り合う前後のカム溝がそれぞれ交差している。

[0054]

そして、一方のカムフォロアがカム溝交差位置を通過するときに他方のカムフォロアをカム溝へ確実に係合させておくために、G1、G2及びG3の2群案内カム溝11 a の各グループ内において、対をなす前方カム溝11 a -1 と後方カム溝11 a -2 は、互いの光軸方向位置のみならず周方向にも位置をずらして形成されている。このカム溝11 a -1、11 a -2 の周方向の位相量を図14 に β で表している。その結果、前方カム溝11 a -1 と後方カム溝11 a -2 の交差位置は周方向にシフトされ、各前方カム溝11 a -1 上におけるカム溝交差位置は、第3領域 α 3 上の第3変曲点 α n 近傍位置となり、各後方カム溝11 a -2 上におけるカム溝交差位置は、第1領域 α 1 の終端部(第1変曲点 α h 付近)となっている。

[0055]

以上のように各グループの2群案内カム溝11aを形成することにより、前方カムフォロア8b-1が前方カム溝11a-1内でのカム溝交差位置を通過すると

き、他方の後方カムフォロア 8 b - 2 はカム環 1 1 b a - 2 との係合を維持しており、前方カムフォロア 8 b - 1 を前方カム溝 1 1 a - 1 から脱落させることなく交差位置を通過させることができる(図 2 8 参照)。この前方カム溝 1 1 a - 1 におけるカム溝交差位置は、収納用領域とワイド端領域の間、すなわち鏡筒使用領域に位置しているが、以上の構造によれば、このようなカム溝交差領域の存在に関わらず確実な繰出収納性能を得ることができる。なお、後方カムフォロア 8 b - 2 が後方カム溝 1 1 a - 2 内でのカム溝交差位置に達するとき、他方の前方カムフォロア 8 b - 1 は既に前方カム溝 1 1 a - 1 から外れているが(図 2 1、図 2 5)、この交差位置は、鏡筒使用領域から外れた分解及び組立用の位置であり、後方カムフォロア 8 b - 2 がカム環の回転力を受ける状態にない。つまり、後方カム溝 1 1 a - 2 側では、カメラ使用状態におけるカム溝交差位置からの後方カムフォロア 8 b - 2 の脱落を考慮しなくてよい。

[0056]

また、前方カム溝 1 1 a - 1 におけるカム溝交差位置は、鏡筒収納位置とワイド端の間で前方カムフォロア 8 b - 1 が通過する領域であり、後方カム溝 1 1 a - 2 におけるカム溝交差位置は、前述の通り分解及び組立用の領域であるから、前方カム溝 1 1 a - 1 と後方カム溝 1 1 a - 2 のいずれにおいても、ワイド端とテレ端の間におけるズーム領域にはカム溝の交差部分が存在していないことになる。これにより、カム溝の交差に関わりなく、ズーミングの際の第 2 群レンズ L G 2 の移動精度を高く保つことができる。

[0057]

すなわち、基礎軌跡αが同一である前後のカム溝11 a-1、11 a-2の周方向位相を異ならせることにより、該カム溝に対してカムフォロアが離脱及び係合するタイミングを変化させたり、カム溝の交差領域を、ズーミングに影響しない適切な位置に定めることができる。

[0058]

以上のように、本実施形態では、前方カム溝11a-1と後方カム溝11a-2を敢えて交差させ、さらに該前方カム溝11a-1と後方カム溝11a-2の光軸方向位置のみならず、周方向位置も異ならせることにより、第2群レンズLG2

の移動精度を損なうことなく各カム溝をスペース効率良く配置することが可能になった。すなわち、カム環11を光軸方向だけでなく、周方向(径方向)にもコンパクトにすることが可能になった。

[0059]

なお、本発明は以上の実施形態に限定されるものではない。例えば、図示実施 形態では、2群案内力ム溝11a(11a-1、11a-2)と2群用カムフォロ ア8b(8b-1、8b-2)はそれぞれ、周方向に位置を異ならせて3グループ 形成されているが、周方向におけるカム溝グループやカムフォロアグループの数 は任意に選択することができる。

[0060]

また、実施形態では、各カム溝グループ(2群案内カム溝11a)におけるカム溝の数(前方カム溝11a-1と後方カム溝11a-2)と、各カムフォロアグループ(2群用カムフォロア8b)におけるカムフォロアの数(前方カムフォロア8b-1と後方カムフォロア8b-2)は、それぞれ一対(2つ)であるが、各グループ内に含まれるカム溝及びカムフォロアの数は3つ以上とすることもできる。各グループのカム溝数を3つ以上とした場合、カム環の光軸方向サイズの小型化を達成するためには、光軸方向の前後端に位置するカム溝のみならず、中間位置にあるカム溝も前後いずれかの一部が存在しないように短尺として形成するとよい。

[0061]

また、実施形態では、前方カム溝11a-1を基礎軌跡 a の前方一部を含まない短尺カム溝とし、後方カム溝11a-2を、基礎軌跡 a の後方一部を含まない短尺カム溝としたが、グループ内の各カム溝の開口位置は任意に定めることができる。例えば、組立分解を考慮しないのであれば、後方カム溝11a-2の前方開口部R4を設けないという選択も可能である。

[0062]

また、実施形態はズームレンズ鏡筒に関するものであるが、本発明はズームレンズ鏡筒以外の繰出カム機構にも適用が可能である。

[0063]

【発明の効果】

以上のように本発明の繰出カム機構によれば、レンズ群やその他の直進移動部材の必要な移動量を確保しつつ、カム環を小型化することができる。

【図面の簡単な説明】

【図1】

本発明の繰出カム機構を適用したズームレンズ鏡筒の分解斜視図である。

【図2】

図1のズームレンズ鏡筒における、第1レンズ群の支持機構に関する部分の分解斜視図である。

【図3】

図1のズームレンズ鏡筒における、第2レンズ群の支持機構に関する部分の分解斜視図である。

【図4】

図1のズームレンズ鏡筒における、固定環からカム環までの繰出機構に関する 部分の分解斜視図である。

【図5】

図1のズームレンズ鏡筒に、ズームモータとファインダユニットを加えた完成 状態の斜視図である。

【図6】

図1のズームレンズ鏡筒のワイド端とテレ端を示す、該ズームレンズ鏡筒を搭載したカメラの縦断面図である。

【図7】

図6カメラの鏡筒収納状態の縦断面図である。

【図8】

固定環の平面図である。

【図9】

ヘリコイド環の平面図である。

【図10】

ヘリコイド環の内周面側の構成要素を透視して示す平面図である。

【図11】

第3外筒の平面図である。

【図12】

直進案内環の平面図である。

【図13】

カム環の平面図である。

【図14】

カム環の内周面側の2群案内カム溝を透視して示す平面図である。

【図15】

2群直進案内環の平面図である。

【図16】

2群レンズ移動枠の平面図である。

【図17】

第2外筒の平面図である。

【図18】

第1外筒の平面図である。

【図19】

鏡筒収納状態におけるカム環と2群レンズ移動枠の関係を示す平面図である。

【図20】

ワイド端におけるカム環と2群レンズ移動枠の関係を示す平面図である。

【図21】

テレ端におけるカム環と2群レンズ移動枠の関係を示す平面図である。

【図22】

鏡筒分解可能状態におけるカム環と2群レンズ移動枠の関係を示す平面図である。

【図23】

鏡筒収納状態におけるカム環、2群レンズ移動枠及び2群直進案内環の関係を 示す平面図である。

【図24】

ワイド端におけるカム環、2群レンズ移動枠及び2群直進案内環の関係を示す。 平面図である。

【図25】

テレ端におけるカム環、2群レンズ移動枠及び2群直進案内環の関係を示す平 面図である。

【図26】

鏡筒分解可能状態におけるカム環、2群レンズ移動枠及び2群直進案内環の関係を示す平面図である。

【図27】

2群案内カム溝内での、収納位置、ワイド端及びテレ端における2群用カムフォロアの位置を示す、カム環の平面図である。

【図28】

2群案内力ム溝の前方力ム溝と後方力ム溝の交差領域を、前方カムフォロアが 通過する状態を示す、カム環の平面図である。

【符号の説明】

- α 2群案内カム溝の基礎軌跡
- β 2群案内カム溝の前方カム溝と後方カム溝の周方向位相量
- LG1 第1レンズ群
- LG2 第2レンズ群
- LG3 第3レンズ群
- LG4 ローパスフィルタ
- S シャッタ
- A 絞り
- Z 0 鏡筒中心軸
- Z 1 撮影光軸
- Z 2 2群光軸
- Z3 ファインダ対物系の光軸

特2002-247338

- 1 1群レンズ枠
- 6 2群レンズ枠
- 8 2群レンズ移動枠(直進環)
- 8 a 直進案内溝
- 8 b 2 群用カムフォロア (カムフォロアグループ)
- 8 b-1 前方カムフォロア
- 8 b-2 後方カムフォロア
- 10 2群直進案内環
- 10a 股状突起
- 10b リング部
- 10 c 直進案内キー
- 11 カム環
- 11a 2群案内カム溝(カム溝グループ)
- 11a-1 前方カム溝
- 11a-2 後方カム溝
- 11b 1群案内カム溝
- 11c 周方向溝
- 12 第1外筒
- 13 第2外筒
- 14 直進案内環
- 15 第3外筒
- 17 ローラ付勢ばね
- 18 ヘリコイド環
- 21 CCDホルダ
- 2 2 固定環
- 28 ズームギヤ
- 31 1群用ローラ
- 32 カム環ローラ
- 3 3 2 群回動軸

特2002-247338

- 51 AFレンズ枠(3群レンズ枠)
- 60 固体撮像素子(CCD)
- 70 デジタルカメラ
- 71 ズームレンズ鏡筒
- 72 カメラボディ
- 76 シャッタユニット
- 80 ファインダユニット
- 150 ズームモータ
- 160 AFモータ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

의

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【書類名】 要約書

【要約】

【目的】 ズームレンズ鏡筒の繰出カム機構において、所要のレンズ群移動量を確保しつつカム環を小型化する。

【構成】 カム環に、同一の基礎軌跡を有する複数のカム溝を少なくとも光軸方向に位置を異ならせて形成するとともに、複数のカム溝のいずれも、少なくとも前方一部と後方一部のいずれかが存在しないように短尺として該カム溝をカム環端面に開口させ、直進環に、これら複数のカム溝にそれぞれ係合する複数のカムフォロアを少なくとも光軸方向に位置を異らせて形成し、直進環の前方移動端と後方移動端の少なくとも一方で、複数のカム溝の一部からカムフォロアが外れ、他のカムフォロアとカム溝が係合を維持するようにしたズームレンズ鏡筒の繰出カム機構。

【選択図】 図20

認定・付加情報

特許出願の番号

特願2002-247338

受付番号

50201271622

書類名

特許願

担当官

伊藤 雅美

2 1 3 2

作成日

平成14年 8月29日

<認定情報・付加情報>

【提出日】

平成14年 8月27日

出願人履歴情報

識別番号

[000000527]

1. 変更年月日 1990年 8月10日

[変更理由] 新規登録

住 所 東京都板橋区前野町2丁目36番9号

氏 名 旭光学工業株式会社

2. 変更年月日 2002年10月 1日

[変更理由] 名称変更

住 所 東京都板橋区前野町2丁目36番9号

氏 名 ペンタックス株式会社