3.1 - Transistorswitchar

- 1. Du har en Power Switch till höger, där en last, vars resistans R_{LAST} är 1 k Ω , skall drivas med maximal drainström I_D när switchen är sluten. Matningsspänningen V_{DD} är satt till 20 V.
- a) Hur hög blir strömmen I_D genom lasten när switchen är sluten?
- b) Varför används ingen gateresistor i denna koppling?
- c) Anta att MOSFET-transistorns tröskelspänning U_T är 4 V. Förklara sambandet mellan tröskelspänningen U_T samt gate-sourcespänningen U_{GS}. På vilka villkor blir MOSFET-transistorn icke-ledande respektive ledande?

V_{DD} R_{LAST} U_{UT}

Power Switch.

Lösning:

- a) När switchen är öppen, så är gate-sourcespänningen U_{GS} lika med noll. Transistorn leder då inte och drainströmmen I_D genom lasten är då noll.
- Däremot Ifall switchen sluts så blir gate-sourcespänningen U_{GS} lika med matningsspänningen V_{DD}, vilket i detta fall är 20 V:

$$U_{GS} = V_{DD} = 20 V$$
,

vilket kan bevisas via Kirchhoffs spänningslag beräknat från matningsspänningen VDD ned till jord via transistorns gate:

$$V_{DD}-U_{GS}=0,$$

vilket kan transformeras till

$$U_{GS} = V_{DD}$$

- Maximal drainström I_D kommer då flöda genom lasten, samtidigt som förlusteffekten blir mycket liten på grund av den obefintliga gateströmmen.
- När drainströmmen I_D blir maximal så hamnar så mycket av matningsspänningen V_{DD} som är möjligt över lasten, vilket i sin tur medför att drain-sourcespänningen U_{DS}, alltså spänningsfallet mellan transistorns drain och source, blir så liten som möjligt. I praktiken så kan U_{DS} inte bli mindre än några millivolt, som vi försummar:

$$U_{DS} \approx 0 V$$

• I figuren ovan, så är inte drain-sourcespänningen U_{DS} utmärkt. Däremot är MOSFET-transistorns utsignal detta. I denna krets så gäller att utsignalen U_{UT} alltid är lika med drain-sourcespänningen U_{DS}, då

$$U_{IIT} - U_{DS} = 0,$$

vilket innebär att

$$U_{UT} = U_{DS}$$

• I praktiken så kan utsignalen inte bli mindre än några millivolt, som vi försummar.

$$U_{IIT} \approx 0 V$$

 Därmed så kan spänningen över lasten inte överstiga ungefär 20 − 0 V ≈ 20 V för denna last, vilket också begränsar den maximala drainströmmen I_D, som i detta fall blir

$$I_D = \frac{V_{DD} - U_{UT}}{R_{LAST}} \approx \frac{20 - 0}{1k} \approx 20 \ mA$$

 MOSFET-transistorn blir i detta fall maxledande. Eftersom utspänningen inte kan understiga några millivolt så kan spänningsfallet över lasten inte bli högre än ca 20 V, vilket medför att drainströmmen inte kan bli högre än 20 mA för denna last. b) Eftersom MOSFET-transistorns inresistans R_{IN} är mycket hög, så krävs ingen gateresistor R_G. Oavsett spänningen U_G in på transistorns gate, så blir gateströmmen I_G försumbar (ofta uppe i pA – nA), då

$$I_G = \frac{U_G}{R_{IN}} = \frac{U_G}{\infty} \approx 0$$

c) För att MOSFET-transistorn skall börja leda, så måste gate-sourcespänningen U_{GS} överstiga eller vara lika med tröskelspänningen U₁:

$$\begin{cases} U_{GS} \geq U_T \rightarrow Transistorn\ leder \\ U_{GS} < U_T \rightarrow Transistorn\ sp\"{a}rrar \end{cases}$$

- För att MOSFET-transistorn sedan skall vara maxledande, så måste gate-sourcespänningen U_{GS} vida överstiga tröskelspänningen U_T. Exakt hur mycket beror på MOSFET-transistorn i fråga och kan härledas via ett fåtal ekvationer (se 4.1 – Transistorn som switch under fliken Anteckningar). Dock kan vi anta att för en gate-sourcespänning U_{GS} som överstiger tröskelspänningen U_T med ett fåtal Volt, exempelvis 3 – 4 V, så är transistorn maxledande.
- 2. I denna uppgift skall motsvarande BJT-switch konstrueras. Kretsen har därmed följande data:

$$V_{CC}$$
 = 20 V; R_{LAST} = 1 $k\Omega$ $k\Omega$; 50 \leq h_{FE} \leq 250; $U_{CE,sat}$ = 0,1 V

- Resistor R_{LAST} är en last, som skall drivas med maximal kollektorström Ic.
- För att driva lasten med maximal lastström så kopplas basen till matningsspänningen Vcc.

BJT-switch.

- a) Varför måste en basresistor R_B användas i denna krets?
- b) Hur hög blir kollektorströmmen Ic i maxledande / mättat tillstånd?
- c) Hur hög måste basströmmen I_B sättas till för att kollektorströmmen I_C skall bli maximal även i värstafallscenariot, alltså då BJT-transistorns strömförstärkningsfaktor h_{FE} är 50?
- d) Dimensionera basresistor R_B för att säkerhetsställa att kollektorströmmen I_C är maximal i värstafallscenariot. Beräkna förlusteffekten som erhålls på grund av basströmmen I_B i mättat tillstånd.
- e) Anta att BJT-transistorns strömförstärkningsfaktor h_{FE} är 200, alltså fyra gånger högre än i värstafallscenariot. Vilket värde hade då kunnat användas på basresistor R_B? Med vilken faktor minskar då effektförbrukningen orsakad av BJT-transistorns basström?

Lösning:

a) BJT-transistorn innehar låg inresistans R_{IN}. Utan basresistor R_B, så hade därmed basströmmen I_B blivit mycket hög och bränt sönder transistorn när switchen hade slutits, då

$$I_B = \frac{U_B}{R_{IN}} = \frac{V_{CC} - 0.65}{R_{IN}} = \frac{20 - 0.65}{"0"} = \infty$$

b) Kollektorströmmen Ickan beräknas med Ohms lag:

$$I_C = \frac{U_{LAST}}{R_{LAST}},$$

 $\ d\ddot{a}r\ U_{LAST}\ \ddot{a}r\ sp\ddot{a}nningsfallet\ \ddot{o}ver\ lasten.$

Elektroteknik

• I mättat tillstånd, då kollektorströmmen Ic är maximal, så är spänningsfallet U_{LAST} över lasten också maximalt. Genom att använda Kirchhoffs spänningslag från matningsspänningen V_{CC} ned till jord via emittern, så ser vi att

$$V_{CC} - U_{LAST} - U_{CE} = 0,$$

vilket kan transformeras till

$$U_{LAST} = V_{CC} - U_{CE},$$

där kollektor-emitterspänningen UCE är spänningsskillnaden mellan BJT-transistorns kollektor och emitter.

Notera att utspänningen U_{UT} är lika med kollektor-emitterspänningen U_{CE} i detta fall, då

$$U_{UT}-U_{CE}=0,$$

vilket innebär att

$$U_{UT} = U_{CE}$$

• I specifikationerna så ser vi att BJT-transistorns kollektor-emitterspänning i mättat tillstånd U_{CE,sat} är 0,1 V, vilket betyder att kollektor-emitterspänningen U_{CE} inte kan understiga 0,1 V:

$$U_{CE,SAT} = U_{UT,min} = 0.1 V$$

Detta medför att spänningsfallet ULAST över lasten i mättat tillstånd blir 19,9 V, då

$$U_{LAST} = V_{CC} - U_{CE,sat} = 20 - 0.1 = 19.9 V$$

- Notera att sat är en förkortning för saturated, vilket betyder mättad transistor.
- Därmed blir kollektorströmmen Ici mättat tillstånd 19,9 mA, då

$$I_C = \frac{U_{LAST}}{R_{LAST}} = \frac{19.9}{1k} = 19.9 \ mA$$

- c) För att säkerhetsställa att maximal ström flödar genom lasten oavsett strömförstärkningsfaktor h_{FE} , så antar vi att transistorn har så låg strömförstärkningsfaktor som möjligt, alltså $h_{FE} = 50$.
- Om vi dimensionerar basströmmen I_B efter detta värde så vet vi att kollektorströmmen I_C genom lasten kommer bli maximal, oavsett värde på strömförstärkningsfaktorn. Att BJT-transistorn är mättad medför att strömmen I_C genom lasten inte kan bli högre, oavsett hur mycket vi ökar basströmmen I_B.
- Om h_{FE} är högre än 50 så kommer det bara bli lättare att maximera lastströmmen, men vi tar det säkra före det osäkra och ser till att lastströmmen blir maximerad även i det värsta fallet.:

$$h_{FE} = 50$$

• Eftersom strömförstärkningsfaktorn h_{FE} antas vara lika med 50 så antas basströmmen I_B vara 50 gånger mindre än kollektorströmmen I_C:

$$I_B = \frac{I_C}{h_{FE}}$$

• Därmed kan basströmmen I₃ antas behöva sättas till ca 0,4 mA i värstafallscenariot, då

$$I_B = \frac{I_C}{h_{FF}} = \frac{19,9m}{50} = 0,398 \ mA$$

Elektroteknik

- d) Vi måste bestämma ett lämpligt värde på basresistorn R_B så att maximal ström I_C flödar genom lasten när switchen är sluten. Samtidigt måste basresistor R_B inneha en lämplig storlek så att basströmmen I_B inte blir onödigt hög, vilket kan medföra onödigt hög förlusteffekt eller att transistorn förstörs.
- Basresistor R_B dimensioneras i värstafallscenariot. Därmed skall en basström I_B runt 0,4 mA flöda genom baskretsen i mättat (maxledande) tillstånd. Ett lämpligt värde på basresistor R_B kan beräknas via Ohms lag:

$$R_B = \frac{U_B}{I_B},$$

där U_B är spänningsfallet över basresistor R_B i mättat tillstånd.

• Genom att använda Kirchhoffs spänningslag från matningsspänningen Vcc ned till jord via baskretsen, så ser vi att

 $V_{CC} - U_B - 0.65 = 0,$

vilket kan transformeras till

$$U_B = V_{CC} - 0.65$$

• Eftersom matningsspänningen V_{CC} är satt till 20 V, så kan spänningsfallet U_B över basresistor R_B antas ligga runt 19,35 V i mättat tillstånd, då

$$U_R = 20 - 0.65 = 19.35 V$$

• Därmed bör basresistor R_B sättas till ett värde runt 48 k Ω , då

$$R_B = \frac{19,35}{0.398} \approx 48 \ k\Omega$$

• Närmaste värde i E12-serien är 47 kΩ:

$$R_B = 47 k\Omega$$
,

vilket medför att basströmmen IB hamnar runt 0,41 mA, då

$$I_B = \frac{U_B}{R_R} = \frac{19,35}{47k} \approx 0,41 \ mA$$

- Därmed blir basströmmen I_B blir något högre än vad som krävs i värstafallscenariot, men det skadar inte. Vi har därmed lite marginal, vilket medför att vi kan vara säkra på att maximal ström I_C flödar genom lasten. Andra faktorer, såsom att basemitterspänningen U_{BE} kanske är något högre än 0,65 V på en given BJT-transistor, kan medföra att basströmmen I_B annars blir något lägre än vad vi förutspådde.
- Förlusteffekten P_L genom baskretsen kan beräknas via effektlagen*:

$$P_L = V_{CC} * I_B$$

vilket direkt kan beräknas till ca 8,2 mW, då

$$P_L \approx 20 * 0.41m \approx 8.2 \ mW$$

* Förlusteffekten PL i praktiken består av effektutvecklingen PB i basresistor RB samt effektutvecklingen PB mellan BJT-transistorns bas- och emitter:

 $P_L = P_B + P_{BE},$

som kan beräknas via effektlagen:

 $P_B = R_B * I_B^2 \approx 47k * 0.41m^2 \approx 7.97 \text{ mW}$

samt

$$P_{BE} = U_{BE} * I_{B} \approx 0.65 * 0.41m \approx 0.27 mW,$$

vilket innebär att

$$P_L \approx 7.97m + 0.27m \approx 8.2 \, mW$$

Elektroteknik

e) Om strömförstärkningsfaktor h_{FE} vore 200, så bör basströmmen I_B i mättat / maxledande tillstånd sättas fyra gånger lägre än tidigare, alltså ca 0,1 mA, då

$$I_B = \frac{I_C}{h_{FF}} = \frac{19.9m}{200} \approx 0.1 \ mA$$

• Eftersom basströmmen I_B bör sättas fyra gånger lägre än tidigare, så bör basresistor R_B, som reglerar storleken på I_B, sättas fyra gånger högre än tidigare, då

$$R_B = \frac{U_B}{I_B} \approx \frac{19,35}{0.1m} = 193,5 \text{ k}\Omega$$

Närmaste värde i E12-serien är 180 kΩ:

$$R_B = 180 \ k\Omega$$
,

vilket medför att basströmmen IB hamnar runt 0,11 mA, då

$$I_B = \frac{U_B}{R_B} = \frac{19,35}{180k} = 0,1075 \ mA$$

• Eftersom förlusteffekten PL är proportionerlig med basströmmen IB, så minskar även PL med en faktor fyra, då

$$P_L = V_{CC} * I_B = 19,35 * 0,1075m \approx 2,08 \, mW$$

• Ifall en BJT-switch används, så kan vi därmed med fördel försöka hitta dess förstärkningsfaktor hfe, exempelvis genom att mäta bas- och kollektorströmmen IB samt Ic i linjärt tillstånd, alltså innan transistorn blir mättad; strömförstärkningsfaktor hfe kan då beräknas som ration mellan Ic och IB:

$$h_{FE} = \frac{I_C}{I_B}$$

 Om BJT-transistorn innehar låg strömförstärkningsfaktor h_{FE}, exempelvis mellan 50 – 75, och fler BJT-transistorer finns tillgängliga, så kan denna med fördel bytas mot en annan. Därefter kan samma mätning genomföras igen. Förhoppningsvis innehar denna en strömförstärkningsfaktor h_{FE} på åtminstone 100.