The Covariance of Ergodic Stationary Processes

BY STEPHEN CROWLEY
July 27, 2025

Abstract

This note establishes in detail the equality, for strictly stationary and ergodic real-valued stochastic processes with finite second moment, between the covariance function as defined by the expectation of the product of observations at a given lag and the almost sure limit of temporal expectation of products along a single path. The argument is developed from first principles, specifying measure-theoretic structure, shift invariance, ergodicity, and relevant properties of function spaces, and invoking the continuous-time ergodic theorem in full generality for integrable functions.

1. Preliminaries

Definition 1. [Probability Space and Process] Let (Ω, \mathcal{F}, P) be a probability space. A stochastic process $\xi: \mathbb{R} \times \Omega \to \mathbb{R}$ is a collection of real random variables $\xi(t): \Omega \to \mathbb{R}$, indexed by $t \in \mathbb{R}$. The process is jointly measurable if the mapping $(t, \omega) \mapsto \xi(t, \omega)$ is measurable with respect to the product σ -algebra $\mathcal{B}(\mathbb{R}) \otimes \mathcal{F}$.

Definition 2. [Strict Stationarity] A stochastic process $\xi = (\xi(t))_{t \in \mathbb{R}}$ is strictly stationary if, for every $n \in \mathbb{N}$, every choice $t_1, \ldots, t_n \in \mathbb{R}$, and every $h \in \mathbb{R}$,

$$(\xi(t_1+h),\ldots,\xi(t_n+h)) \stackrel{d}{=} (\xi(t_1),\ldots,\xi(t_n)),$$

that is, the finite-dimensional distributions are invariant under time shifts.

Definition 3. [Covariance Function] For a stochastic process ξ with $\mathbb{E}[\xi(0)^2] < \infty$, define the covariance function r by

$$r(\tau) = Cov(\xi(0), \xi(\tau)) = \mathbb{E}[(\xi(0) - m)(\xi(\tau) - m)], \quad m = \mathbb{E}[\xi(0)].$$

If $\mathbb{E}[\xi(0)] = 0$, then $r(\tau) = \mathbb{E}[\xi(0) \xi(\tau)]$.

Definition 4. [Shift Operator (Path Space Version)] Let $E = \mathbb{R}$ and consider the canonical space $\Omega = \mathbb{R}^{\mathbb{R}}$ consisting of all functions $x: \mathbb{R} \to \mathbb{R}$. For each $h \in \mathbb{R}$ define the shift operator $T_h: \Omega \to \Omega$ by

$$(T_h x)(t) = x (t+h)$$

for all $t \in \mathbb{R}$, $x \in \Omega$. If ξ is a process on an abstract probability space, interpret x as a sample path $x_{\omega}(t) = \xi(t, \omega)$.

Proposition 5. [Shift Invariance] Let μ be a probability measure on (Ω, \mathcal{F}) such that the coordinate process x(t) under μ has the same law as $\xi(t)$ for all t. If ξ is strictly stationary, then for every $h \in \mathbb{R}$ and every $A \in \mathcal{F}$, $\mu(T_h^{-1}A) = \mu(A)$.

Proof. Let $A \in \mathcal{F}$ be a cylinder set of the form

$$A = \{x \in \Omega: (x(t_1), \dots, x(t_n)) \in B\}$$

where $t_1, \ldots, t_n \in \mathbb{R}$ and B is a Borel set in \mathbb{R}^n . Then

$$T_h^{-1} A = \{x \in \Omega: (x(t_1 + h), \dots, x(t_n + h)) \in B\}.$$

Since under μ the law of $(x(t_1+h),...,x(t_n+h))$ coincides with that of $(x(t_1),...,x(t_n))$ by stationarity,

$$\mu((x(t_1+h),\ldots,x(t_n+h)) \in B) = \mu((x(t_1),\ldots,x(t_n)) \in B) = \mu(A).$$

Extension from cylinder sets to \mathcal{F} proceeds by the monotone class theorem or standard arguments.

Definition 6. [Ergodicity] The measure-preserving flow $(T_h)_{h\in\mathbb{R}}$ on $(\Omega, \mathcal{F}, \mu)$ is called ergodic if, for every $A \in \mathcal{F}$ satisfying $T_h^{-1} A = A$ for all $h \in \mathbb{R}$, either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark 7. Ergodicity is equivalent to the triviality of the shift-invariant σ -algebra:

$$\mathcal{I} = \{ A \in \mathcal{F} : T_h^{-1} A = A \text{ for all } h \in \mathbb{R} \}.$$

2. The Covariance Function and Pathwise Limit

Theorem 8. [Pathwise Determination of Covariance Function]Let $(\Omega, \mathcal{F}, \mu)$ and the canonical process x(t) be as above. Suppose that under μ , x(t) is strictly stationary, ergodic with respect to $(T_h)_{h\in\mathbb{R}}$, and $\mathbb{E}_{\mu}[x(0)^2] < \infty$. Fix $\tau \in \mathbb{R}$. Then for μ -almost every $x \in \Omega$,

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) \ x(t+\tau) \ dt = r(\tau)$$

where $r(\tau) = \mathbb{E}_{\mu} [x(0) x(\tau)].$

Proof. The steps follow as below.

- 1. The map $x \mapsto x(0) x(\tau)$ is measurable as a product of coordinate projections, hence Borel measurable on Ω .
- 2. Since $\mathbb{E}_{\mu}[x(0)^2] < \infty$, by the Cauchy-Schwarz inequality,

$$\mathbb{E}_{\mu}[\,|x(0)\,x(\tau)|\,] \leq \sqrt{\mathbb{E}_{\mu}[x(0)^2]\ \mathbb{E}_{\mu}[x(\tau)^2]} = \mathbb{E}_{\mu}[x(0)^2] < \infty$$

by stationarity, so $x \mapsto x(0) x(\tau)$ is integrable.

- 3. Consider the function $F: \Omega \to \mathbb{R}$ given by $F(x) = x(0) x(\tau)$. For each $t \in \mathbb{R}$, define $F \circ T_t(x) = x(t) x(t+\tau)$. As above, this is measurable and integrable for each t.
- 4. For each $x \in \Omega$ and T > 0, set

$$A_T(x) := \frac{1}{2T} \int_{-T}^{T} F(T_t x) dt = \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt.$$

5. The Birkhoff (Khintchine) ergodic theorem in continuous time for flows of measure-preserving transformations applies under the above conditions. Thus, for μ -almost every $x \in \Omega$,

$$\lim_{T \to \infty} A_T(x) = \mathbb{E}_{\mu}[F] = r(\tau).$$

This matches the claimed formula.

Remark 9. The set of $x \in \Omega$ for which the limit in Theorem 8 fails has measure zero under μ . The limit is a measurable function of x. The limit equals the covariance function for each fixed $\tau \in \mathbb{R}$. Almost sure convergence for all τ simultaneously generally holds only for countable subsets of \mathbb{R} .

3. Measure-Theoretic and Technical Details

- 1. The canonical path space $\Omega = \mathbb{R}^{\mathbb{R}}$ with the product σ -algebra supports all coordinate projections and the shift operator. The measure μ is defined such that the law of $(x(t_1), \ldots, x(t_n))$ under μ is that of $(\xi(t_1), \ldots, \xi(t_n))$.
- 2. The measurability and integrability of $x \mapsto x(0) x(\tau)$ follow from the structure of Ω and the moment assumption.
- 3. The shift flow $(T_h)_{h\in\mathbb{R}}$ acts measurably and preserves μ .
- 4. The ergodic theorem for flows applies, as all conditions (integrability, invariance, ergodicity) are satisfied.

4. Almost Sure Convergence

Definition 10. [Almost Surely] Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A property holds almost surely if the set of $x \in \Omega$ for which it fails has μ -measure zero.

Remark 11. If a sequence of measurable maps $f_n: \Omega \to \mathbb{R}$ converges almost surely to f, this means $\mu(\{x: \lim_{n\to\infty} f_n(x) = f(x)\}) = 1$. Sets of measure zero do not affect expectation or measure-theoretic statements.

Bibliography

[doob] Joseph L. Doob, Stochastic Processes, Wiley, 1953.
[krengel] Ulrich Krengel, Ergodic Theorems, de Gruyter, 1985.
[cohn] Donald L. Cohn, Measure Theory, Birkhäuser, 2013.
[cornfeld] Ilya P. Cornfeld, Sergei V. Fomin, Yakov G. Sinai, Ergodic Theory, Springer, 1982.
[yosida] Kôsaku Yosida, Ergodic Theorems, Springer, 1965.