Formal Languages The Pumping Lemma for CFLs

Review: pumping lemma for regular languages

Take an infinite context-free language

Generates an infinite number of different strings

Example:

$$S \rightarrow AB$$

$$A \rightarrow aBb$$

$$B \rightarrow Sb$$

$$B \rightarrow b$$

$$S \rightarrow AB$$

$$A \rightarrow aBb$$

$$B \rightarrow Sb$$

$$B \rightarrow b$$

In a derivation of a long string, variables are repeated

A derivation:

$$S \Rightarrow AB \Rightarrow aBbB \Rightarrow abbB$$

$$\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBbBb \Rightarrow$$

$$\Rightarrow abbabbBb \Rightarrow abbabbbb$$

 $B \Rightarrow aBbbb$

 $B \Rightarrow b$

 $B \Rightarrow aBbbb$

 $B \Rightarrow aBbbb \Rightarrow aaBbbbbbbb$

A Derivation from S

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

$$s \Rightarrow abbBb$$

$$S \Rightarrow abbBb$$

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

*

$$A$$
 B
 b

$$S \Rightarrow abbBb \Rightarrow abbbb$$

$$= abb(a)^0b(bbb)^0$$

<

$$S \Rightarrow abbBb$$

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

$$S \Rightarrow abb(a)^0 b(bbb)^0$$

$$abb(a)^0b(bbb)^0 \in L(G)$$

A Derivation from S

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

$$s \Rightarrow abbBb$$

$$S \Rightarrow abbBb$$
 $*$
 $B \Rightarrow aBbbb$
 $B \Rightarrow b$

$$*$$
 $S \Rightarrow abbBb \Rightarrow abbaBbbb$

$$S \Rightarrow abbBb$$
*

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

*
$$S \Rightarrow abb(a)B(bbb) \Rightarrow abb(a)^2B(bbb)^2$$

$$S \Rightarrow abbBb$$
*

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

 $S \Rightarrow abb(a)^2 B(bbb)^2 \Rightarrow abb(a)^2 b(bbb)^2$

<

$$S \Rightarrow abbBb$$

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

$$S \Rightarrow abb(a)^2b(bbb)^2$$

$$abb(a)^2b(bbb)^2 \in L(G)$$

A Derivation from S

*

 $S \Rightarrow abbBb$

 $B \Rightarrow aBbbb$

 $B \Rightarrow b$

$$s \Rightarrow abb(a)^2 B(bbb)^2$$

$$s \Rightarrow abbBb$$

*

 $B \Rightarrow aBbbb$

 $B \Rightarrow b$

 $S \Rightarrow abb(a)^2 B(bbb)^2 \Rightarrow abb(a)^3 B(bbb)^3$

 $s \Rightarrow abbBb$

 $B \Rightarrow aBbbb$

 $B \Rightarrow b$

 $S \Rightarrow abb(a)^3 B(bbb)^3 \Rightarrow abb(a)^3 b(bbb)^3$

K

$$S \Rightarrow abbBb$$

$$B \Rightarrow aBbbb$$

$$B \Rightarrow b$$

$$abb(a)^3b(bbb)^3 \in L(G)$$

In General:

* * $S \Rightarrow abbBb$ $B \Rightarrow aBbbb$ $B \Longrightarrow b$ $S \Rightarrow abb(a)^i b(bbb)^i$ $abb(a)^{i}b(bbb)^{i} \in L(G)$ $i \ge 0$

Consider now an infinite context-free language L

Let G be the grammar of $L-\{\lambda\}$

Take G so that it has no unit-productions no λ -productions

Let
$$p = \text{(Number of productions)} \times \text{(Largest right side of a production)}$$

Let
$$m=p+1$$

Example
$$G: S \to AB$$
 $p = 4 \times 3 = 12$ $A \to aBb$ $m = p + 1 = 13$ $B \to b$

Take a string $w \in L(G)$ with length $|w| \ge m$

We will show:

in the derivation of \mathcal{W} a variable of \mathcal{G} is repeated

$$S \Longrightarrow w$$

$$v_1 \Longrightarrow v_2 \Longrightarrow \cdots \Longrightarrow v_k \Longrightarrow w$$

$$S = v_1$$

$$v_1 \Longrightarrow v_2 \Longrightarrow \cdots \Longrightarrow v_k \Longrightarrow w$$

 $m \le |w| \le k \cdot f$ $p < k \cdot f$

$$v_1 \Longrightarrow v_2 \Longrightarrow \cdots \Longrightarrow v_k \Longrightarrow w$$

$$p < k \cdot f$$

$$k > \frac{p}{f}$$

Number of productions in grammar

$$v_1 \Longrightarrow v_2 \Longrightarrow \cdots \Longrightarrow v_k \Longrightarrow w$$

k > Number of productions in grammar

Some production must be repeated

$$v_1 \Rightarrow \cdots \Rightarrow a_1 A a_2 \Rightarrow \cdots \Rightarrow a_3 A a_4 \Rightarrow \cdots \Rightarrow w$$

Repeated

variable

$$S \rightarrow r_1$$

$$A \rightarrow r_2$$

$$B \rightarrow r_2$$

• • •

$$w \in L(G)$$
 $|w| \ge m$

Derivation of string W

$$S \Rightarrow \cdots \Rightarrow a_1 A a_2 \Rightarrow \cdots \Rightarrow a_3 A a_4 \Rightarrow \cdots \Rightarrow w$$

Some variable is repeated

Derivation tree of string W

Possible derivations:

 $A \Rightarrow vAy$

 $A \Longrightarrow x$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

$$* * UAz \Rightarrow uxz$$

$$uv^0xy^0z$$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

$$S \Longrightarrow uAz \Longrightarrow uvAyz \Longrightarrow uvxyz$$

The original
$$w = uv^1xy^1z$$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

* * * * * *
$$S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow uvvxyyz$$

$$uv^2xy^2z$$

We know:

$$S \Longrightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

$$S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow \\ * \qquad * \\ \Rightarrow uvvVAyyz \Rightarrow uvvvxyyz$$

$$uv^3xy^3z$$

We know:

$$S \Longrightarrow uAz$$

$$A \Longrightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvVAyyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV \cdots vAy \cdots yyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV \cdots vxy \cdots vyyz$$

$$uv^ixy^iz$$

Therefore, any string of the form

$$uv^i x y^i z$$
 $i \ge 0$

is generated by the grammar G

Therefore,

knowing that
$$uvxyz \in L(G)$$

we also know that $uv^i xy^i z \in L(G)$

$$L(G) = L - \{\lambda\}$$

$$uv^{i}xy^{i}z \in L$$

Observation: $|vxy| \leq m$

Since A is the last repeated variable

Observation: $|vy| \ge 1$

Since there are no unit or λ -productions

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that

for any string $w \in L$, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: v and y only contain a

m m m m aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating
$$v$$
 and y

$$k \ge 1$$

$$m+k$$
 m

aaaaaaaaabbb...bbbccc...ccc

$$u v^2 x y^2$$

 \boldsymbol{m}

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k \ge 1$

$$m+k$$
 m

aaaaaaaaaabbb...bbbccc...ccc

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: vxy is within b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

 $|vy| \ge 1$

 $|vxy| \leq m$

w = uvxyz

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$vxy$$
 is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: Same analysis as in case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Subcase 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

$$m+k_1$$

$$m+k_2$$

m

aaa...aaaaaaaabbbbbbbbbbbcccc...ccc

$$v^2 xy^2$$

Z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Subcase 2: v contains a and b y only contains b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Subcase 2:
$$v$$
 contains a and b $k_1 + k_2 + k \ge 1$ y only contains b

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k_1 + k_2 + k \ge 1$

Ú

$$v^2 xy^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Subcase 3: v only contains a y contains a and b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Subcase 3: v only contains a y contains a and b

Same analysis as for subcase 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5:
$$vxy$$
 overlaps b^m and c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

 $|vxy| \le m$ $|vy| \ge 1$

Case 5: Same analysis as in case 4

w = uvxyz

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot

overlap a^m , b^m and c^m at the same time)

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free