ART 34 AMDT

- 16 -

WHAT IS CLAIMED IS:

- A radio frequency (RF) up-convertor with reduced local oscillator leakage, for modulating an input signal x(t), comprising:
- a synthesizer for generating mixing signals φ_1 and φ_2 which vary irregularly over time, where φ_1 * φ_2 has significant power at the frequency of a local oscillate signal being emulated, and neither φ_1 nor φ_2 has significant power at the frequency of said local oscillator signal being emulated;
- a first mixer coupled to said synthesizer for mixing said input signal x(t) with said mixing signal ϕ_1 to generate an output signal x(t) ϕ_1 ; and
- a second mixer coupled to said synthesizer and to the output of said first mixer for mixing said signal x(t) ϕ_1 with said mixing signal ϕ_2 to generate an output signal x(t) ϕ_1 ϕ_2 .
- The radio frequency (RR) up-convertor of claim 1 wherein said synthesizer further comprises:
- a synthesizer for generating mixing signals φ_1 and φ_2 , where $\varphi_1 * \varphi_1 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1 \varphi_2$.
- 3. The radio frequency (RF) up-convertor of claim 2 wherein said synthesizer further comprises:
- a synthesizer for generating mixing signals φ_1 and φ_2 , where $\varphi_2 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1$.
- 4. The convertor of claim 3, further comprising: a closed loop error correction circuit.
- 5. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit further comprises:
- an error level measurement circuit for measuring an error in said output signal x(t) φ_2 ; and
- a time-varying signal modification circuit for modifying a parameter of one of said mixing signals φ₁ and φ₂ to minimize said error level.

Julai

- 6. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a power measurement.
- 7. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a voltage measurement.
 - 8. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a current measurement.
 - 9. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the phase delay of one of said mixing signals φ₁ and φ₂.
 - 10. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the fall or rise time of one of said mixing signals φ_1 and φ_2 .
 - 11. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter includes both the phase delay and the fall or use time of one of said mixing signals φ_1 and φ_2 .
 - 12. The radio frequency (RF) up-convertor of claim 3 wherein said synthesizer further comprises:
 - a synthesizer for generating mixing signals ϕ_1 and ϕ_2 , where said mixing signals ϕ_1 and ϕ_2 can change with time in order to reduce errors.
 - 13. The radio frequency (RF) up-convertor of claim 3, further comprising: a DC offset correction circuit.
 - 14. The radio frequency (RF) up-convertor of claim 13, wherein said DC offset correction circuit comprises:
 - a DC offset generating circuit for generating a DC offset voltage;
 - a summer for adding said DC offset voltage to an output of one of said mixers; and
 - a DC error level measurement circuit for modifying the level of said DC offset voltag to minimize error level.

July 1

- The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a power measurement circuit.
- 16. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a voltage measurement circuit.
- 17. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a current measurement circuit.
- 18. The radio frequency (RF) up-convertor of claim 1, further comprising: a filter for removing unwanted signal components.
- 19. The radio frequency (RF) up-convertor of claim 18, where said filter comprises:
- a filter for removing unwanted signal components from said x(t) φ_1 signal.
- 20. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ₁ and φ₂ are random.
- 21. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ_1 and φ_2 are pseudo-random.
- 22. The radio frequency (RF) up-convertor of claim 1, wherein said synthesizer uses a single time base to generate both mixing signals ϕ_1 and ϕ_2 .
- 23. The radio frequency (RF) up-convertor of claim \(\) wherein said mixing signals φ₁ and φ₂ are digital waveforms.
- 24. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ, and φ, are square waveforms.
- 25. The radio frequency (RF) up-convertor of claim 3, further comprising:
 a local oscillator coupled to said synthesizer for providing a periodic signal having a
 frequency that is an integral multiple of the frequency of said local oscillator
 signal being emulated.

ź

- 26. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit comprises a digital signal processor (DSP).
- 27. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit comprises analogue components.
- 28. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit further comprises:
- an error level measurement circuit for measuring an error in said output signal x(t) ϕ_1 ; and
- a time-varying signal modification cilicuit for modifying a parameter of one of said mixing signals φ₁ and φ₂ to minimize said error level.
- 29. The radio frequency (RF) up-convertor of claim 1, where said synthesizer uses different patterns to generate signals φ_1 and φ_2 .
- A method of modulating a baseband signal x(t) comprising the steps of: generating mixing signals ϕ_1 and ϕ_2 which vary irregularly over time, where $\phi_1 = \phi_2$ has significant power at the frequency of a local oscillator signal being emulated, and neither ϕ_1 nor ϕ_2 has significant power at the frequency of sail local oscillator signal being emulated;

mixing said input signal x(t) with said mixing signal φ_1 to generate an output signal x(t) φ_1 ; and

- mixing said signal x(t) φ_1 with said mixing signal φ_2 to generate an output signal x(t) φ_1 φ_2 .
- 31. An integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1 29.
- 32. A computer readable memory medium, storing computer software code in a hardware development language for fabrication of an integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1 29

33. A computer data signal embodied in a carrier wave, said computer data signal comprising computer software code in a hardware development language for fabrication of an integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1 - 29.