Lectures 6 & 7

Topics

- SSB: Modulation
- SSB: Coherent and Envelope Detection
- Problems of SSB
- Drawing Spectrum of SSB
- Concept of VSB

DSB vs **SSB**

- In DSB, bandwidth utilization is 50%
- In SSB, bandwidth utilization is 100%

SSB

- In SSB, bandwidth utilization is 100%
- Full signal recovery is possible from SSB
- Cutoff is done using a filter

$$M+(w) = M(w) v(w)$$
 $M-(w) = M(w) v(-w)$
 $m+(t), m-(t) \rightarrow$

inverse fourier transform.

```
* RAR Since amplitude spectra | M+(W) | and | M-(W) |
are not even functions of w, the signals m+(+) &
m-(+) cannot be real -> they are complex.
      Se M+(w) se M-(w) are two halves of
                                          M(W)
  So, M+(w) 20 M-(w) -> conjugates 20 M(w)
                                          =M+(M)
       m+(+) 80 m -(+) > conjugates.
       Also, m+(+)+m-(+)=m(+)
```

Now,
$$\phi_{usb}(w) = M_{+}(w-wc) + M_{-}(w+wc)$$

Taking Inverse Fourier Transform,
 $\phi_{usb}(t) = m_{+}(t) e^{jwct} + m_{-}(t) e^{-jwct}$
 $m_{+}(t) = \frac{1}{2} [m(t) + j \tilde{m}(t)]$, conjugate
 $m_{-}(t) = \frac{1}{2} [m(t) - j \tilde{m}(t)]$

Hilbert Transform

Signum Function

Divided by 2 ->

Now,
$$m_{+}(+) = \frac{1}{2}m(+) + j \pm m(+)$$
 $M_{+}(\omega) = \frac{1}{2}m(\omega) + j m(\omega) + j m(\omega) - m(\omega)$

Now, $m_{+}(\omega) = \frac{1}{2}[m(\omega) + j m(\omega)] - m(\omega)$
 $M_{-}(\omega) = \frac{1}{2}[m(\omega) - j m(\omega)] - m(\omega)$
 $= m(\omega) + m(\omega) + m(\omega)$


```
*** # Hilbert Transform & convolution of a signal m(+) & 2

+ve frequencies of the signal → - 1/2 phase shift

-ve frequencies of the signal → + 1/2 phase shift
```

m(+)
$$\rightarrow$$
 + ve freq \rightarrow - $\sqrt{2}$ phase shift \rightarrow m (+)

so, Muse (ω) = M + (ω - ω c) + M -(ω - ω c)

= M (+) eiwct + M (+) eiwct

2 Muse (ω) = [M (+) + M (+)] (cos ω c+ + M (sin ω ct)

+ [M (+) - M (+)] (cos ω c+ - M (sin ω ct)

= M (M (M) = M (M) cos ω c+ M (M) sin ω ct

So, Muse (ω) = M (M) cos ω c+ M (M) sin ω ct

Actually,
$$m(+)$$
 $total -T/2$ phone shift $(\omega < 0)$ $total -T/2$ phone shift $(\omega < 0)$ $total -T/2$ phone shift $(\omega < 0)$ $total -T/2$ $total -T/2$

Hilbert Transform for cosine signal ->

Shifting cosine signal by $+\pi/2$ (for negative frequencies) or $-\pi/2$ (for positive frequencies) ->

Transmitting cosine signal with a phase delay of $-\pi/2$

-T/2 phase shift:
$$\cos(\omega_c - \frac{\pi}{2})$$
 | the frequently componently $\cos(-\frac{\pi}{2})$ | -ve freq comp.

= $\cos(\omega_c + \frac{\pi}{2})$ | > so

+ $\frac{\pi}{2}$ phase shift

Frample:
$$m(t) = \cos 100t$$

 $\tilde{m}_{n}(t) = \cos (100t - \pi r_{2}) = \sin 100t$

```
so, MSSB(W) = mC+) coswct + mC+) sinwcf

So, MSSB(W) = mC+) coswct ± mC+) sin wcf

[+ -> LSB, - -> USB)
```


SSB: Coherent Demodulation

Demodulation (Cohorant) = [m(t) coswet+ m(t) single
$$\times$$
 coswet = $\frac{1}{2}$ [m(t) (1+cos 2wct) - m(t) sin 2wt] = $\frac{1}{2}$ m(t) $+$ = $-$ + fixen out.

SSB-WC: Envelope Detection

Here transmit this signal
$$\rightarrow$$
 $m(t) \cos w_{c}t - m(t) \sin w_{c}t$
 $+ A \cos w_{c}t + B \sin w_{c}t$
 $= \sqrt{A^{2}+B^{2}} \cos(w_{c}t) + A \cos w_{c}t - m(t) \sin w_{c}t$
 $= \sqrt{A^{2}+B^{2}} \cos(w_{c}t) + A \cos w_{c}t - m(t) \sin w_{c}t$
 $= \sqrt{A^{2}+B^{2}} \cos(w_{c}t) + A \cos w_{c}t - m(t) \sin w_{c}t$

After expanding this part using binomial expansion and discarding higher order terms,

A + m(t)

So, utimately $\approx A + m(t) \cos (w_{c}t) + A \cos (w_{c}t)$

SSB-WC: Condition for Envelope Detection

SSB: Problems

- In practice, it is often not feasible to sharply cut off double sideband to produce single sideband using filters
- It is not always possible to multiply a signal and its Hilbert transform -> since real signals have many components, it is not possible to transform each component -> approximation methods are used

Drawing Spectrum of SSB

$$m(t) = \cos 100 \pi t$$

$$-100 \pi t$$

$$+100 \pi$$

$$+200 \pi t = \cos 500 t$$

$$+100 \pi$$

$$+200 \pi t = m(t) \cos \omega_{c} t - m(t) \sin \omega_{c} t$$

$$= 200 \cos 100 t \cos 500 t$$

$$- \sin 100 t \sin 500 t$$

$$= \cos (500 t + 100 t) = 8 \cos 600 t$$

Drawing Spectrum of SSB

Pros and Cons of DSB and SSB

DSB: Less error-prone, but requires more bandwidth!

SSB: Requires less bandwidth, but more error-prone!

Concept of VSB (Vestigial Sideband): Sending more than SSB, but less than DSB!!

Concept of VSB

Concept of VSB

Concept of VSB

Concept of VSB: Problem with Demodulation

- During demodulation, the extra portion will overlap in the middle and become distorted -> has to be nullified using an inverse filter
- Since designing an inverse filter is quite easy, data loss will not occur!