ELEC 8590 Physical Design Automation for VLSI and FPGAs

Lecture 2:

Definitions of PD Tasks, Review of Algorithms, Complexity Analysis & Data Structures

Mohammed Khalid

Department of Electrical and Computer Engineering
University of Windsor

References and Copyright

Slide sources (including notes):

- Prof. Kia Bazargan, University of Minnesota
- Prof. Rajesh Gupta, University of California, Irvine
- Dr. Naveed Sherwani (Companion slides with textbook)
- Prof. Scott Hauck, University of Washington
- Prof. Jonathan Rose, University of Toronto
- Dr. Habib Youssef, Tunisia

Definitions of Physical Design Tasks

See PDF file "590_lec2_partial"

39

Optimization

- Each of the steps in PD flow involve choosing the best among different available choices => optimization
 - this is a key point in CAD
- Optimization means to minimize or maximize a function of many variables subject to certain constraints
 - the function is called objective function
 - combinatorial optimization implies the variables are required to belong to a discrete set, typically a subset of integers.
- We will study different optimization algorithms used for solving problems in physical design automation.

Algorithm

- An algorithm defines a procedure for solving a computational problem
 - Examples:
 - o Quick sort, bubble sort, insertion sort, heap sort
 - o Dynamic programming method for the knapsack problem
- Definition of complexity
 - Run time on deterministic, sequential machines
 - Based on resources needed to implement the algorithm
 - Needs a cost model: memory, hardware/gates, communication bandwidth, etc.
 - o Example: RAM model with single processor
 - \rightarrow running time \propto # operations

Algorithm (cont.)

- Definition of complexity (cont.)
 - Example: Bubble Sort ————
 - Scalability with respect to input size is important
 - o How does the running time of an algorithm change when the input size doubles?
 - Function of input size (n). Examples: n²+3n, 2ⁿ, n log n, ...
 - Generally, large input sizes are of interest(n > 1,000 or even n > 1,000,000)
 - o What if I use a better compiler? What if I run the algorithm on a machine that is 10x faster?

```
for (j=1; j < N; j++) {
  for (i=j; i < N-1; i++) {
    if (a[i] > a[i+1]) {
      hold = a[i];
      a[i] = a[i+1];
      a[i+1] = hold;
    }
  }
}
```

Function Growth Examples

Winter 2021 ELEC 8590 43

Asymptotic Notions

• Idea:

 A notion that ignores the "constants" and describes the "trend" of a function for large values of the input

Definition

■ Big-Oh notation f(n) = O(g(n))if constants K and n_0 can be found such that: $\forall n \ge n_0$, $f(n) \le K$. g(n)

g is called an "upper bound" for f (f is "of order" g: f will not grow larger than g by more than a constant factor)

Examples: $1/3 \text{ n}^2 = O(n^2)$ $0.02 \text{ n}^2 + 127 \text{ n} + 1923 = O(n^2)$

Asymptotic Notions (cont.)

- Definition (cont.)
 - Big-Omega notation $f(n) = \Omega (g(n))$ if constants K and n_0 can be found such that: $\forall n \ge n_0$, $f(n) \ge K$. g(n) g is called a "lower bound" for f
 - Big-Theta notation $f(n) = \Theta(g(n))$ if g is both an upper and lower bound for f Describes the growth of a function more accurately than O or Ω

Example:

$$n^3 + 4 n \neq \Theta (n^2)$$

 $4 n^2 + 1024 = \Theta (n^2)$

Asymptotic Notions (cont.)

- How to find the order of a function?
 - Not always easy, esp if you start from an algorithm
 - Focus on the "dominant" term

```
o 4 n^3 + 100 n^2 + \log n \rightarrow O(n^3)
o n + n \log(n) \rightarrow n \log(n)
```

- $n! = K^n > n^K > log n > log log n > K$ ⇒ $n > log n, \quad n log n > n, \quad n! > n^{10}.$
- What do asymptotic notations mean in practice?
 - If algorithm A has "time complexity" O(n²)
 and algorithm B has time complexity O(n log n), then
 algorithm B is better
 - If problem P has a lower bound of $\Omega(n \log n)$, then there is NO WAY you can find an algorithm that solves the problem in O(n) time.

Problem Tractability

- Problems are classified into "easier" and "harder" categories
 - Class P: a polynomial time algorithm is known for the problem (hence, it is a tractable problem)
 - Class NP (non-deterministic polynomial time):
 ~ polynomial solution not found yet
 (probably does not exist)
 - → exact (optimal) solution can be found using an algorithm with exponential time complexity
- Unfortunately, most CAD problems are NP
 - Be happy with a "reasonably good" solution
 - Exact solutions are possible but they will take many years to compute, even for small input sizes! e.g. O(n!) or O(2ⁿ)

Algorithm Types

- Based on quality of solution and computational effort
 - Deterministic
 - Probabilistic or randomized
 - Approximation
 - Heuristics: local search

Deterministic Algorithm Types

- Algorithms usually used for P problems
 - Exhaustive search! (aka exponential)
 - Dynamic programming
 - Divide & Conquer (aka hierarchical)
 - Greedy
 - Mathematical programming
 - Branch and bound
- Algorithms usually used for NP problems (not seeking "optimal solution", but a "good" one)
 - Greedy (aka heuristic)
 - Genetic algorithms
 - Simulated annealing
 - Restrict the problem to a special case that is in P

Data Structures

- Review basic data structures
 - arrays, linked lists, stacks and queues
- More advanced data structures
 - priority queues, search trees, graphs
- Important programming tip: Use object oriented programming (C++ or Java) for CAD tool development, you will save hundreds of hours in SW development and testing.
 - Well tested class libraries available for basic and advanced data structures
 - Do not reinvent the wheel!
 - Real world CAD: 90% effort on SW development and 10% on algorithm development - we will do more algorithms and relatively less SW development.

Graph Definition

- Graph: set of "objects" and their "connections"
- Formal definition:
 - $G = (V, E), V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
 - V: set of vertices (nodes), E: set of edges (links, arcs)
 - Directed graph: e_k = (v_i, v_j)
 - Undirected graph: e_k={v_i, v_i}
 - Weighted graph: w(e_k) is the "weight" of e_k.

Graph Representation: Adjacency List

Graph Representation: Adjacency Matrix

	a	b	C	d	e
a	0	1	0	(1)	0
b	0 0	0	0	1	0
C	1	0	0	0	0
a b c d e	(1)	0	0	0	1
e	0	0	0	0	0

Edge / Vertex Weights in Graphs

Edge weights

Usually represent the "cost" of an edge

- Examples:
 - Distance between two cities
 - Width of a data bus
- Representation
 - o Adjacency matrix: instead of 0/1, keep weight
 - Adjacency list: keep the weight in the linked list item

Node weight

- Usually used to enforce some "capacity" constraint
- Examples:
 - o The size of gates in a circuit
 - o The delay of operations in a "data dependency graph"

Graph Search Algorithms

- Purpose: to visit all the nodes
- Algorithms
 - Depth-first search
 - Breadth-first search
 - Topological
- Examples

[©Sherwani]

55

Depth-First Search Algorithm

```
struct vertex {
  int mark;
dfs (v)
   v.mark \leftarrow 1
   print v
   for each (v, u) \in E
       if (u.mark != 1) // not visited yet?
         dfs (u) // note the recursive call
// DFS goes "deep" into graph in contrast to BFS which
// "sweeps" the graph (mark all adjacent vertices first)
// Time complexity O(V+ E)
Algorithm DEPTH_FIRST_SEARCH ( V, E )
    for each v \in V
        v.marked ← 0 // not visited yet
    for each v \in V
        if (v.marked == 0)
          dfs (v)
```

Minimum Spanning Tree (MST)

- Tree (usually undirected):
 - Connected graph with no cycles
 - |E| = |V| 1
- Spanning tree
 - Connected subgraph that covers all vertices
 - If the original graph not tree, graph has several spanning trees
- Minimum spanning tree
 - Spanning tree with minimum sum of edge weights (among all spanning trees)
 - Example: build a railway system to connect N cities,
 with the smallest total length of the railroad

Minimum Spanning Tree Algorithms

Basic idea:

- Start from a vertex (or edge), and expand the tree, avoiding loops (i.e., add a "safe" edge)
- Pick the minimum weight edge at each step
- Known algorithms
 - Prim: start from a vertex, expand the connected tree
 - Kruskal: start with the min weight edge, add min weight edges while avoiding cycles (build a forest of small trees, merge them)

Prim's Algorithm for MST

Data structure:

- S set of nodes added to the tree so far
- set of nodes not added to the tree yet
- T the edges of the MST built so far
- λ(w) current length of the shortest edge (v, w) that connects w to the current tree
- $\pi(w)$ potential <u>parent</u> node of w in the final MST (current parent that connects w to the current tree)
- Time complexity is O(n2)

Prim's Algorithm

Initialize S, S' and T

```
o S \leftarrow {u<sub>0</sub>}, S' \leftarrow V = {u<sub>0</sub>} // u<sub>0</sub> is any vertex o T \leftarrow { } 
o \forall V \in S' , \lambda(v) \leftarrow \infty
```

- Initialize λ and π for the vertices adjacent to u_0
 - o For each $v \in S'$ s.t. $(u_0, v) \in E$,
 - $\lambda(v) \leftarrow \omega((\mathbf{u_0}, \mathbf{v}))$ // set edge weights
 - $\pi(v) \leftarrow u_0$ // set parent node
- While (S' != φ)
 - o Find $u \in S'$, s.t. $\forall v \in S'$, $\lambda(u) \leq \lambda(v)$ // pick least cost edge
 - o $S \leftarrow S \cup \{u\}$, $S' \leftarrow S' \{u\}$, $T \leftarrow T \cup \{(\pi(u), u)\} // \text{ update}$
 - o For each v s.t. (u, v) ∈ E, // set new parent node & edge weights
 - If $\lambda(v) > \omega((u,v))$ then $\lambda(v) \leftarrow \omega((u,v))$ $\pi(v) \leftarrow u$

$$S = \{V_1\}$$

Node

λ

 π

 V_1

 ∞

$$S = \{v_1\}$$

Node λ

 π

V

 V_3

 V_4

V₅

 ∞

_

 V_1

 V_1

 V_1

_

$$S = \{v_1, v_2\}$$

Node v_1 v_2 v_3 v_4 v_5 λ - 2 4 3 ∞ π

$$S = \{v_1, v_2\}$$

Node v_1 v_2 v_3 v_4 v_5 λ - 2 1 2 5 π v_1 v_2 v_3 v_4 v_5

$$S = \{v_1, v_2\}$$

Node v_1 v_2 v_3 v_4 v_5 λ - 2 1 2 5 π - v_1 v_2 v_2 v_2

$$S = \{v_1, v_2, v_3\}$$

Node	$\mathbf{v_1}$	V_2	V_3	V_4	V_5
λ	-	2	1	2	5
π	-	$\mathbf{v_1}$	V_2	V_2	V_2

$$S = \{v_1, v_2, v_3\}$$

Node v_1 v_2 v_3 v_4 v_5 λ - 2 1 1 2 π - v_1 v_2 v_3 v_3

$$S = \{v_1, v_2, v_3\}$$

Node v_1 v_2 v_3 v_4 v_5 λ - 2 1 1 2 π - v_1 v_2 v_3 v_3

$$S = \{v_1, v_2, v_3, v_4\}$$

· · -	J 1-				
Node	$\mathbf{v_1}$	V_2	V_3	V_4	V_5
λ	-	2	1	1	2
π	-	V_1	V_2	V_3	V_3

$$S = \{v_1, v_2, v_3, v_4\}$$

Node λ

V₁

2 V₁ **V**₃

 V_2

 V_3

 V_3

$$S = \{V_1, V_2, V_3, V_4, V_5\}$$

Node	$\mathbf{v_1}$	V_2	V_3	V_4	V ₅
λ	-	2	1	1	2
π	_	V_1	V_2	V_3	V_3

Other Graph Algorithms of Interest...

- Min-cut partitioning
- Graph coloring
- Maximum clique, independent set
- Min-cut algorithms
- Steiner tree
- Matching
- References for review
 - Any good Algorithms and Data Structures textbook
 - Wide variety of resources available on the web (search on Google, "tutorial on algorithms and data structures" or "specific topic")