M 328K: Lecture 1

Katherine Ho

August 27, 2024

1 Open Problems

- Twin Primes Conjecture: Do there exist infinitely many pairs of primes that are 2 apart?
- Collatz Conjecture, 3n+1 Problem Does this process eventually stop for all n?
- Fermat's Last Theorem: The equation $x^n + y^n = z^n$ has no (non-trivial) integer solution when $n \ge 3$. Note: When n = 2, there are infinite solutions (Pythagorean triples)

2 Notation

- Natural numbers: $\mathbb{N} = \{1, 2, 3, 4, \dots\}$
- Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- Rational Numbers: $\mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0\}$

3 Divisibility

Definition 3.1. Let $n, m \in \mathbb{Z}$. We say that n divides m and write n|m if there exists an integer k such that m = nk.

Ex:
$$2|4,5|-5,3|0,0|0$$

If n does not divide $m: n \nmid m$

Ex:
$$2 \nmid 3, 0 \nmid 5$$

Theorem 3.1. For $a, b, c \in \mathbb{Z}$, the following hold:

- 1. a|0, 1|a, a|a
- 2. $a|1 \text{ iff } a = \pm b$
- 3. If a|b and c|d then ac|bd
- 4. If a|b and b|c then a|c
- 5. a|b and b|a iff $a = \pm b$
- 6. If a|b and $b \neq 0$, then $|a| \leq |b|$
- 7. If a|b and a|c, then a|(bx+cy) for $x,y \in \mathbb{Z}$ Ex. If b, c are even, then (any multiple of b) + (any multiple of c) is even.

Proof (2). First, assume a|1. By definition, there exists an integer k such that 1=ak. Note: $k \neq 0$ and $a \neq 0$, so

$$|ak| = |a||k| \ge |a|$$
 since $|k| \ge 1$

Thus, $1 = |ak| \ge |a|$.

Also, $|a| \ge 1$ since $a \ne 0$ and $a \in \mathbb{Z}$. Thus, |a| = 1 which is equivalent to $a = \pm 1$.

Next, assume $a = \pm 1$.

- If a = 1: a|1 since $1 = a \cdot 1$
- If a = -1: $1 = a \cdot -1$

In both cases, a|1 as desired.

Proof (4). Assume a|b and b|c.

By definition, there exist integers i and j such that $b = a \cdot i$ and $c = b \cdot j$.

Then, $c = (a \cdot i) \cdot j = a(ij)$.

So, a|c by definition.

4 The Division Algorithm

Theorem 4.1. Given integers a and b with $b \neq 0$, there exist unique integers q and r such that

$$a = bq + r, \ 0 \le r \le |b|$$