MATE 1207 CÁLCULO VECTORIAL Sección 5

Taller 2 Abril de 2019

Parte B: Integrales de línea y de superficie

S. Adarve, N. Ramírez, A. F. Patiño

- 1. Halle el área de cada una de las vallas descritas a continuación:
 - a) $0 \le x \le 1$, $y = x^2$, z = x

(la curva base está en el plano xy)

b) $0 \le y \le 1$, y + z = 1, $x = \sqrt{2y - y^2}$

(la curva base está en el plano yz)

c) $0 \le z \le 1$, z = x, $y = e^{x+z}$

(la curva base está en el plano xz)

- 2. Un alambre delgado tiene la forma de la curva de intersección del plano y + z = 0 con la esfera $x^2 + y^2 + z^2 = 1$. Si la densidad de masa en cada punto del alambre es el cuadrado de su distancia al plano xy, halle la masa del alambre.
- 3. Un alambre delgado tiene la forma de la curva de intersección del cono $z=1-r\,$ con el cilindro $r=2sen\theta$. Halle el trabajo realizado por la fuerza F(x,y,z)=i+j+kpara mover una partícula a lo largo de esta curva desde el punto (0,0,1) hasta el punto $(\sqrt{3}/2,1/2,0).$
- 4. Para cada una de las superficies a continuación, halle:
 - a) Una ecuación paramétrica para la recta normal y la ecuación del plano tangente en el punto dado.
 - b) El área de la superficie.
 - El cilindro circular recto definido por $x = 2cos\theta$, $y = 2sen\theta$, z = u, donde $0 \le \theta \le 2\pi$, $0 \le u \le 2$, en el punto $(\sqrt{2}, \sqrt{2}, 1)$.
 - El cono circular dado por $x = rcos\theta$, $y = rsen\theta$, z = 4 2r, donde $0 \le r$ ii) $\theta \le 2\pi$, $0 \le r \le 2$, en el punto $(1/2, \sqrt{3}/2, 2)$.
 - La esfera de radio 4 centrada en el origen en el punto $\frac{4}{\sqrt{2}}(1,1,1)$.
- 5. Sean $F(x, y, z) = x^2 i + y^2 j + z^2 k$ y *S* el paraboloide $z = 1 (x^2 + y^2)$, $z \ge 0$. Determine el flujo de *F* hacia afuera de *S*.
- 6. Sea S la superficie cilíndrica que es imagen de la parametrización $r(\theta,u)=$ $(\cos\theta, \sin\theta, u)$, definida sobre el rectángulo $[0, 2\pi] \times [0, 1]$, donde S está orientada con la normal exterior. Halle el flujo de F a través de S para cada uno de los siguientes campos vectoriales:
 - a) F(x, y, z) = k
 - b) F(x, y, z) = yj
 - c) $F(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$