HISTOGRAMS OF ORIENTATION GRADIENTS

School of Computer Science & Statistics
Trinity College Dublin
Dublin 2
Ireland
www.scss.tcd.ie

OVERVIEW

- Advanced Feature Extraction
 - Viola-Jones (& Ada boost) ✓
 - Optical Flow (& Motion analysis) ✓
 - Histograms of Orientation Gradients this lecture
 - Histograms of Flows this lecture
 - Scale Invariant Feature Transforms subsequent lecture

Histograms of Orientation Gradients

- Objective: object recognition
- □ Basic idea
 - Local shape information often well described by the distribution of intensity gradients or edge directions even without precise information about the location of the edges themselves.

Algorithm Overview

- ☐ Divide image into small sub-images: "cells"
 - Cells can be rectangular (R-HOG) or circular (C-HOG)
- Accumulate a histogram of edge orientations within that cell
- ☐ The combined histogram entries are used as the feature vector describing the object
- □ To provide better illumination invariance (lighting, shadows, etc.) normalize the cells across larger regions incorporating multiple cells: "blocks"

Why HOG?

- ☐ Capture edge or gradient structure that is very characteristic of local shape
- Relatively invariant to local geometric and photometric transformations
 - Within cell rotations and translations do not affect the HOG values
 - Illumination invariance achieved through normalization
- The spatial and orientation sampling densities can be tuned for different applications
 - For human detection (Dalal and Triggs) coarse spatial sampling and fine orientation sampling works best
 - For hand gesture recognition (Fernandez-Llorca and Lacey) finer spatial sampling and orientation sampling is required

A worked example: Dalal and Triggs CVPR'05

Colour Normalisation

- RGB and LAB colour spaces equivalent
- Gamma correction (gain) no major affect on results
- ☐ Greyscale only small negative effect (-1.5%) on results

Computing the Gradient

- Several gradient detectors tried
 - [1,-1], [1,0,-1], [1,-8,0,8,-1], Sobel
 - Unfiltered and Pre-filtered with Gaussian smoothing
- ☐ Simplest [1,0,-1] proved best
- Gaussian smoothing affected results negatively
- For colour images
 - Compute each channel separately
 - Choose the largest value as the gradient for that pixel

Orientation Binning

- ☐ Each pixel votes for an orientation according to the closest bin in the range
 - 0 to 180 (ignore negative edge directions)
 - 0 to 360
- Bilinear smoothing to reduce aliasing effects
- □ The "vote" is weighted by the gradient magnitude
 - Magnitude, Magnitude², edge presence absence, etc

Normalization

- Gradient is affected by illumination changes > normalization needed
 - Normalization takes the maximum range of a signal and stretches it to take up the maximum possible range
 - e.g.a simple normalization scheme: if the range of pixel values is 50-180 out of a total of 0-255 then min=50 and max =180, normalization > (old_pix min)*((max-min)/255)= new_pix
 - Other normalization schemes can be used
- ☐ Group cells into larger blocks
- Normalize within the blocks
 - This ensures that low contrast regions are stretched
- Overlapping blocks
 - This ensures consistency across the whole image without the loss of local variations

Block Geometries

- ☐ R-HOG
 - Rectangular arrangement of cells
 - E.g. 6x6 cells
- ☐ C-Hog
 - Circular arrangement of cells

Classification

- Detector Window
 - 64X128 Dalal and Triggs
 - 128X128 hand washing
- □ Support Vector Machine(SVM) Classifier
 - We will discuss these later in the course.
- Feature vector made up of the multiple HOGs within the detector window
 - Shape information encoded by HOGs
 - Spatial location implicitly encoded by relative positions of HOG's within the detector window.

Dalal and Triggs results

input image

avg. grad

weighted pos wts

weighted neg wts

outside in block

- The most important cues are head, shoulder, leg silhouettes
- Vertical gradients inside the person count as negative
- Overlapping blocks those just outside the contour are the most important

Example video

Extracting Movement and Shape: histograms of flows

Dalal, Triggs and Schmid - ECCV 06 Hand Washing Analysis - Lacey, Llorca, Vilariño and Zhou

School of Computer Science & Statistics
Trinity College Dublin
Dublin 2
Ireland
www.scss.tcd.ie

Background

- Motion is a good feature but difficult to use
- Motion on its own is a weak classifier
- Combining motion with appearance or shape makes a strong classifier
- Earlier approaches
 - Viola, Jones and Snow 2003
 - □ harr wavelets and block matching using AdaBoost
 - Haritaoglu et.al 2000
 - Optical flow based activity recognition

Add motion to HOG

- Calculate optical flows
- Compute differential optical flow
- Combine in spatial and orientation cells as before

What type of motions?

- Camera Motions
 - Optical flow based on camera motions (pan, tilt and roll) is smooth over the image
 - Computing the difference of flows (first difference of optical flows) removes this.
- Object Motions
 - What remains are effects due to motion parallax due to changes in depth - object silhouette
 - Internal flows will give limb body relative motions

Motion Boundary Histogram (MBH)

- Optical flow gives two "images" the horizontal and vertical components of optical flow: I^x, I^y
- ☐ Treating each separately find the first derivative using a simple filter, [-1,0,1], with no smoothing
- Compute the combined histogram using winner takes all voting for each pixel
 - Similar to how colour was handled in the HOG case
- Or separate histograms can be built for each "image"

Example motions captured

Fig. 3. Illustration of the MBH descriptor. (a,b) Reference images at time t and t+1. (c,d) Computed optical flow, and flow magnitude showing motion boundaries. (e,f) Gradient magnitude of flow field \mathcal{I}^x , \mathcal{I}^y for image pair (a,b). (g,h) Average MBH descriptor over all training images for flow field \mathcal{I}^x , \mathcal{I}^y .

Internal Motion Histograms

- MBH captures shape too similar to HOG?
- ☐ To capture "internal" relative motions use IMH family of descriptors
 - IMHdiff > different scales and angles
 - □ five: [-1,0,0,0,1] or seven: [-1,0,0,0,0,0,1] and diagonals also
 - IMHcd > split block into 3X3 cells, motion differences are calculated on a pixel by pixel basis subtracting the central pixel value from the corresponding pixel in each of the 8 outer cells
 - IMHmd > 3X3 normalised as full block
 - IMHwd > like IMHcd but uses Harr wavelets rather than differences to calculate values
 - IMHsd > viola-jones type of spatial differencing between cells in the blocks

Evaluations for people finding

Detector Set-up for detecting people

- ☐ Cell size 8x8
- □ 81 histogram bins per cell
- 2x2 blocks used for normalisation
- Horn and Schunk method used for optical flow calculation
- ☐ Static HOG + IMHcd performed best
- Complimentary Information in two detectors

Extensions

- Pyramidal HOG (PHOG)
 - Representing shape with a spatial pyramid kernel CIVR-07
 - Bosch (Girona), Zisserman(Oxford), Munoz(Girona)
- ☐ 3D HOG
 - 3D Extended Histogram of oriented Gradients (3DHOG) for the classification of road users in urban scenes - BMVC-09
 - Buch, Orwell, Velastin (Kingson)

PHOG

- Classify Images based on objects they contain
- □ Objective:
 - An image feature that changes depending on object type

PHOG performance

- Comparison with Chamfer matching
 - [Using χ^2 statistic]
- Why bother?
 - Tolerance of small rotations
 - Compact feature vector for use with machine learning
 - Less need for spatial matching
- More on machine learning later...

3DHOG

- □ 3D objects change appearance significantly depending on orientation
- Associate 2D HOG with surface patches of 3D model during training

Conclusions

- Shape and appearance important cues
- Motion may be an important additional cue
 - Motion vectors need to be dense
 - □ Block matching is too coarse
- Motion information needs to be complimentary to shape
 - People in moving images
 - "Internal" motion differencing
- ☐ Further Reading (links)
 - Histograms of Oriented Gradients for Human Detection
 Navneet Dalal and Bill Triggs
 - Human Detection Using Oriented Histograms of Flow and Appearance Navneet Dalal, Bill Triggs, and Cordelia Schmid