621.
$$y = \lim_{n \to \infty} \frac{\ln (2^n + x^n)}{n} \quad (x \ge 0).$$

622.
$$y = \lim_{n \to \infty} (x - 1) \arctan x^n$$
.

623.
$$y = \lim_{n \to \infty} \sqrt[n]{1 + e^{n(x+1)}}$$
.

624.
$$y = \lim_{t \to +\infty} \frac{x + e^{tx}}{1 + e^{tx}}$$
.

625.
$$y = \lim_{t \to x} \frac{1}{t - x} \ln \frac{t}{x}$$
 (x>0).

625.1.
$$y = \lim_{n \to \infty} \frac{x \operatorname{tg}^{2n} \frac{\pi x}{4} + \sqrt{x}}{\operatorname{tg}^{2n} \frac{\pi x}{4} + 1}$$
 $(x \ge 0).$

625.2.
$$y = \lim_{n \to \infty} x \operatorname{sgn} |\sin^2(n!\pi x)|$$
.

625.3. Построить кривую

$$\lim_{n\to\infty} \sqrt[n]{|x|^n + |y|^n} = 1.$$

626. Асимптотой (наклонной) для кривой y = f(x) называется прямая y = kx + b, для которой

$$\lim_{x\to\infty} [f(x)-(kx+b)]=0.$$

Используя это уравнение, вывести необходимые и достаточные условия существования асимптоты.

627. Найти асимптоты и построить следующие кривые:

a)
$$y = \frac{x^3}{x^2 + x - 2}$$
; 6) $y = \sqrt{x^2 + x}$;

B)
$$y = \sqrt[3]{x^2 - x^3}$$
; $r) y = \frac{xe^x}{e^x - 1}$;

д)
$$y = \ln (1 + e^x)$$
; e) $y = x + \arccos \frac{1}{x}$.

Найти следующие пределы:

628.
$$\lim_{n\to\infty} \left[\frac{x^{n+1}}{(n+1)!} + \frac{x^{n+2}}{(n+2)!} + \ldots + \frac{x^{2n}}{(2n)!} \right].$$

629.
$$\lim_{n\to\infty} [(1+x)(1+x^2)(1+x^4)\dots(1+x^{2n})],$$
 если $|x|<1$.