Øving 1

Oppgave 1

- a) Hvor mange m/s² tilsvarer en akselerasjon på 1 km/h²?
- b) En bestemt elbil oppgis å ha et energiforbruk ved blandet kjøring på 1 kWh/mil. Hva tilsvarer dette i joule per meter; J/m?

Oppgitt: 1 kWh = $3.6 \cdot 10^6$ J, 1 mil = 10 km.

Oppgave 2

En bil som kjører i 30 km/t bremses opp og stopper etter 30 m. Bilens akselerasjon er konstant på stoppestrekningen.

- a) Hvor stor er akselerasjonen under oppbremsingen?
- b) Hvor lang tid tar det før bilen stanser?

Bilen bremses så opp fra dobbelt så stor hastighet, 60 km/t. Anta samme akselerasjon som funnet i a).

c) Hvor lang er bremsestrekningen og bremsetiden nå i forhold til oppbremsingen i a)?

Oppgave 3

En personbil passerer en politibil, som står i ro, i 100 km/t og fortsetter med konstant hastighet. Etter 2,0 s begynner politibilen å kjøre etter med konstant akselerasjon.

Hva må politibilens akselerasjon være for å ta igjen personbilen 1,0 km etter passeringspunktet? [Hint: Skisser situasjonen i en posisjon-tid, graf, som viser grafen for både politibilen og bilen som forfølges.]

Oppgave 4

Grafen ovenfor oppgir akselerasjonen til en bil som kjører mellom to lyskryss, som en funksjon av tid. Bilen begynner å kjøre fra ro foran det første lyskrysset i t=0 og beveger seg så langs en rett vei til den stanser ved neste lyskryss.

Hvilke av følgende påstander om bevegelsen er riktige?

- A. Hastigheten er størst ved t_1 .
- B. Hastigheten er størst ved t_2 .
- C. Hastigheten er størst ved t_3 .
- D. Bilen begynner å bremse ved t_2 .
- E. Bilen begynner å bremse ved t_3 .
- F. Bilen begynner å bremse ved t_4 .
- G. Arealet under grafen mellom t_1 og t_2 gir tilbakelagt strekning i dette tidsrommet.
- H. Arealet under grafen mellom t_1 og t_2 gir hastighetsendringen i dette tidsrommet.
- I. Stigningstallet til grafen i et punkt gir bilens hastighet i dette tidspunktet.