Find a parametrization of the following:

$$\frac{2}{4} + \frac{y^2}{9} = 1$$

$$\sqrt{4}$$
 $x^2 + y^2 + z^2 = 16$

$$\frac{9}{4} + \frac{2}{4} + \frac{2}{25} = 1$$

I Let C be a curve in xy plane with parametrization $\vec{r}'(t)$. Given that $f(x,y) = e^{x} - y^{2}$ $\vec{r}'(2) = \langle 0, 1 \rangle$ and $\vec{r}'(2) = \langle -2, 3 \rangle$.

let $Z = f(\vec{r}(t))$, find $\frac{dz}{dt}$ at t=2

Find the absolute maximum and minimum values of f on the set D. f(x,y) = x + y - xy; D is the closed feciangular region bounded by (0,0), (0,2) and (4,0)

14.7	Loca	al	Extrema
A	Find	the	local

A find the local massimen, minimum and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

Evaluate the integral [y e-xy dA; R=[0,2]×[0,3]

R

u-substitution yields:

$$\int e^{ax} dx = \frac{e^{ax}}{e + c} \quad \text{if } a \neq 0$$

$$\int_{e}^{ax+by+c} dx = e \qquad | f \qquad | f \qquad | a \neq 0$$

$$\int_{e}^{ax+by+c} dx = e \qquad | x=e \qquad | f \qquad$$

EXAMPLE 1 Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.				

Note:

Find the volume of the solid

20. Below the cone $z = \sqrt{x^2 + y^2}$ and above the ring $1 \le x^2 + y^2 \le 4$

Use spherical coordinates to find the volume
of the solid above the cone $\overline{z} = \sqrt{x^2 + y^2}$ and below the Sphere $x^2 + y^2 + z^2 = 1$
and below the sphere x2+y2+z2=1
V

23.	$\iint_{R} \frac{x - 2y}{3x - y} dA$, where R is the parallelogram enclosed by
	the lines $x - 2y = 0$, $x - 2y = 4$, $3x - y = 1$, and
	3x - y = 8

3x - y = 8		

EXAMPLE 2 Evaluate $\int_C 2x ds$, where C consists of the arc C_1 of the parabola $y = x^2$ from $(0,0)$ to $(1,1)$ followed by the vertical line segment C_2 from $(1,1)$ to $(1,2)$.				

EXAMPLE 4 Evaluate $\int_C y^2 dx + x dy$, where (a) $C = C_1$ is the line segment from (-5, -3) to (0, 2) and (b) $C = C_2$ is the arc of the parabola $x = 4 - y^2$ from (-5, -3) to (0, 2). (See Figure 7.)

FIGURE 7

(*) Compute $\int \vec{F} \cdot d\vec{r}$ where $\vec{F} = \langle y, -x \rangle$ and

C is the unit circle oriented counter-clockwise Use the answer to determine whether \vec{F} is conservative or not.

Let $\vec{F}(x_1y) = (3+2xy)^{\frac{1}{2}} + (x^2-3y^2)^{\frac{1}{2}}$. Is the vector field \vec{F} conservative?

-	FR	-		
-	г л.	D/A	ν	,

- (a) If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by

$$\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \cos t \, \mathbf{j} \qquad 0 \le t \le \pi$$