

Chain of Reasoning for Visual Question Answering

Chenfei Wu, Jinlai Liu, Xiaojie Wang, Xuan Dong Center for Intelligence Science and Technology Beijing University of Posts and Telecommunications

insight

"The technical issues of acquiring knowledge, representing it, and using it appropriately to construct and explain lines-of-reasoning, are important problems in the design of knowledge-based systems, which illuminates the art of Artificial Intelligence"

-- Edward A. Feigenbaum, "father of expert systems"

GRU

How to construct "lines-of-reasoning"?

Related Works

Models	How they view reasoning	Deficiencies
Relation-based methods	View reasoning procedure as one-step relational reasoning	Not enough to answer complex questions
Attention-based methods	View reasoning procedure as to update the attention distribution on original objects.	Cannot generate new objec

attention distribution on original objects. Module-based View reasoning procedure as a layout methods

generated from manually pre-defined modules.

cts.

Cannot form new relations.

Our work

The reasoning procedure is viewed as the alternate updating of objects and relations

Chain of Reasoning Model for VQA

Question: What is placed next to the bus on the right of the picture?

bus on the right

<bus2, on the right of, picture> <bus 1, in front of, tree>

Relations

Compound objects

sign

Answer:

<sign, next to, bus on the right>

New relations

Pred: dog X

Comparison with state-of-the-arts

We achieve state-of-the-art results on four public datasets: the VQA 1.0 dataset, the VQA 2.0 dataset, the COCO-QA dataset and the TDIUC dataset.

Table 1: Comparision with the state-of-the-arts on the VQA 1.0 dataset. VQA 1.0 Test-dev VQA 1.0 Test-std Open-Ended Open-Ended All Y/N Num. Other All All Y/N Num. Other All Method Single HighOrderAtt[12] -MLB(7)[14]67.36 84.91 39.79 58.35 feature Mutan(5)[16] 67.42 85.14 39.81 58.52 66.01 83.59 40.18 56.84 70.04 66.09 83.37 40.39 56.89 69.97 67.9 84.0 38.7 **60.4** ReasonNet[22] feature CoR-2(36boxes) 68.16 85.57 43.76 58.80 72.60 68.19 85.61 43.10 58.75 72.61 CoR-3(36boxes) 68.37 85.69 44.06 59.08 72.84 68.54 85.83 43.93 59.11 72.93

	VQA 2.0 Test-dev					VQA 2.0 Test-std			
Method	All	Y/N	Num.	Other	All	Y/N	Num.	Other	
MF-SIG-VG[23]	64.73	81.29	42.99	55.55	-	-	-	-	
Up-Down(36 boxes)[24]	65.32	81.82	44.21	56.05	65.67	82.20	43.90	56.26	
LC_Baseline(100 boxes)[25]	67.50	82.98	46.88	58.99	67.78	83.21	46.60	59.20	
LC_Counting(100 boxes)[25]	68.09	83.14	51.62	58.97	68.41	83.56	51.39	59.11	
CoR-2(36 boxes) (ours)	67.96	84.7	47.1	58.42	68.15	84.82	46.8	58.52	
CoR-3(36 boxes) (ours)	68.19	84.98	47.19	58.64	68.59	85.16	47.19	59.07	
CoR-3(100 boxes) (ours)	68.62	85.22	47.95	59.15	69.14	85.76	48.4	59.43	

Table 3: Comparision with the state-of-the-arts on the COCO-QA dataset.								
Method	All	Obj.	Num.	Color	Loc.	WUPS0.9	WUPS0.0	
QRU [26]	62.50	65.06	46.90	60.50	56.99	72.58	91.62	
HieCoAtt [11]	65.4	68.0	51.0	62.9	58.8	75.1	92.0	
Dual-MFA [21]	66.49	68.86	51.32	65.89	58.92	76.15	92.29	
CoR-2(36 boxes) (ours)	68.67	69.76	55.14	73.36	59.52	77.47	92.68	
CoR-3(36 boxes) (ours)	69.38	70.42	55.83	74.13	60.57	78.10	92.86	
T 11 4 G			. 0.1			7.1		

CoR-3(36 boxes) (ours)	69.38 70.	42 55.83	74.13 60.57	78.10	92.86					
Table 4: Comparision with the state-of-the-arts on the TDIUC dataset.										
Question Type	MCB-A[13]	RAU[27]	CATL-QTA ^W [28]	CoR-2 (ours)	CoR-3 (ours)					
Sceen Recognition	93.06	93.96	93.80	94.48	94.68					
Sport Recognition	92.77	93.47	95.55	95.94	95.90					
Color Attributes	68.54	66.86	60.16	73.59	74.47					
Other Attributes	56.72	56.49	54.36	59.59	60.02					
Activity Recognition	52.35	51.60	60.10	60.29	62.19					
Positional Reasoning	35.40	35.26	34.71	39.34	40.92					
Sub. Object Recognition	85.54	86.11	86.98	88.38	88.83					
Absurd	84.82	96.08	100.00	95.17	94.70					
Utility and Affordances	35.09	31.58	31.48	40.35	37.43					
Object Presence	93.64	94.38	94.55	95.40	95.75					
Counting	51.01	48.43	53.25	57.72	58.83					
Sentiment Understanding	66.25	60.09	64.38	66.72	67.19					
Overall (Arithmetric MPT)	67.90	67.81	69.11	72.25	72.58					
Overall (Harmonic MPT)	60.47	59.00	60.08	65.65	65.77					
Overall Accuracy	81.86	84.26	85.03	86.58	86.91					

Ablation study

	Table 5: I	Effectivenes	s of the cha	ain structure o	on the VQA 2	2.0 validation.			
Method	MLB[14]	MLB-	MLB-	MLB-	MLB-	CoR-2	CoR-3		
Memou	MLD[[14]	Stack-2	Stack-3	Parallel-2	Parallel-3	with MLB	with MLB		
Val	62.91	63.28	63.55	63.20	63.28	64.90	64.96		
Mathad	d Mutan 16	Mutan-	Mutan-	Mutan-	Mutan-	CoR-2	CoP 3		
Memou	wittani <u>i 10</u> j	Stack-2	Stack-3	Parallel-2	Parallel-3		CoR-3		
Val	63.61	63.78	63.90	63.66	63.80	64.96	65.14		
Table 6: Effectiveness of relational reasoning operation on the VQA 2.0 validation.									
		Method				Val			
	CoR-2 v	vith $[O_i^{(t)}; \epsilon]$	$O_j^{(1)}; G]W_1$		62.46				
	CoR-2 w	$\operatorname{vith}(O_i^{(t)} +$	$O_j^{(1)}) \odot G$	Ţ	64.73				
(CoR-2 with ($(O_i^{(t)}\odot G_l)$	$G_r)$		64.24				
		CoR-2		64.96					
	Table 7: Effe	ectiveness o	f object ref	ining operation	on on the VQ	A 2.0 validati	on.		
		Method	Val						
	CoR-2	with $\sum_{i=1}^{m}$		64.42					
CoR-2					64.96				
Table 8: Effectiveness of the model on different question types on the CLEVR dataset.									
M	ethod Ove	erall C	ount E		-	•	pare		

Table 8: Eff	Table 8: Effectiveness of the model on different question types on the CLEVR dataset.								
Method	Overall	Count	Exist	Compare Numbers	Query Attribute	Compare Attribute			
MLB	85.0	90.0	76.7	78.8	91.1	82.7			
Mutan	86.3	92.5	80.2	81.7	91.2	84.5			
RN	96.4	-	-	-	-	-			
CoR-2	98.7	98.8	97.7	92.3	99.9	99.7			

Tab. 5 shows that our proposed chain **structure** is superior to **stack structure** or parallel structure.

Tab. 6 shows that our relational reasoning operation $R_{ij}^{(t)} = \left(O_i^{(t)} \odot G_l\right) \oplus \left(O_j^{(1)} \odot G_r\right)$ is superior than others.

Tab. 7 shows that our object refining operation $O_i^{(t+1)} = \sum_{i=1}^m \alpha_i^{(t)} R_{ii}^{(t)}$ is superior than the others.

Tab. 8 shows that the whole model is superior than MLB, Mutan and RN at the same setup.

Qualitative evaluation

GT: green

Figure 4: Visualization of the reasoning procedure of CoR-3.

Pred: green ✓

GT: legs

We visualize the compound objects generated by CoR-3 and their attention weights. The upper part of each example shows the top-2 compound objects and the lower part shows the attention distributions. Interestingly, the attention distribution changes from dispersion to concentration Statistics show that 96.76% of the suceess cases in CoR-3 satisfy the phenomenon.