МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»

Кафедра автоматизированных систем обработки информации и управления

Отчет по лабораторной работе № 4 по дисциплине «Компьютерное моделирование»

Тема: «Моделирование надежности системы»

Выполнил: Ольховский Н. С., ИТА-123

Проверила: Самойлова Т. А.

Задание

Вариант 13 представлен на рис. 1.

№	Среднее время наработки на отказ, тыс. час.							тказ	Заданное время работы, тыс. час.	Номера блоков			Число опытов		
	$\frac{-}{\tau_1}$	$\overline{\tau_2}$	$\overline{\tau_3}$	$\overline{\tau_4}$	$\overline{\tau_5}$	$\overline{\tau_6}$	$\overline{\tau_7}$	$\overline{\tau_8}$	$\overline{\tau_9}$	$\overline{\tau_{10}}$	Tz				Nop
13	13	21	6	13	17	25	17	13	16	8	6	4	5	8	9

Рис. 1 – Задание

Схема изображена на рис. 2.

Рис. 2

Перечень возможных цепочек

- 1) 1-2-5-9
- 2) 1-3-5-9
- 3) 1-3-6-9
- 4) 1-3-6-10
- 5) 1-3-7-10
- 6) 1-4-7-10
- 7) 1-4-8-10

Текст программы

Ниже приведен текст программы моделирования надежности системы.

```
tic;
% заданные параметры
ts = [13e3; 21e3; 6e3; 13e3; 17e3; 25e3; 17e3; 13e3; 16e3; 8e3];
Tz = 6e3;
N = 9e4;
r = \{[1,2,5,9], [1,3,5,9], [1,3,6,9], [1,3,6,10], [1,3,7,10], [1,4,7,10], [1,4,8,10]\};
count = 0; T = zeros(N, 1);
for k = 1:N
  % генерация времен отказов компонентов
  t = exprnd(ts);
  tmin = zeros(length(r), 1);
  % расчет минимального времени для каждого пути
  for j = 1:length(r)
     components = r\{i\};
    tmin(j) = min(t(components));
  end
  % время отказа системы
  T(k) = max(tmin);
  % проверка на соответствие Тz
  if T(k) >= Tz
     count = count + 1;
  end
end
% расчёт
P = count / N;
Sr = mean(T);
Med = median(T);
[h, a] = hist(T, 137);
[\sim, nmax] = max(h);
if nmax == 1
  Mod = a(1) / 2;
else
```

```
Mod = (a(nmax-1) + a(nmax)) / 2;
end
% гистограмма
hist(T, 137);
title('Гистограмма времени наработки на отказ');
xlabel('Время');
ylabel('Частота');
Tm = toc;
```

Результаты выполнения

Гистограмма времени наработки на отказ системы изображена на рис. 3.

Рис. 3

На рис. 4 и в таблице 1 представлены результаты работы программы.

Workspace				
Name 📤	Value	Min	Max	Mean
count h j k Med Mod P Sr	35828 1x137 double 7 90000 4.9175e+03 3.5417e+03 0.3981 5.8360e+03 90000x1 double	35828 0 7 90000 4.9175e+03 3.5417e+03 0.3981 5.8360e+03 0.1732	35828 3240 7 90000 4.9175e+03 3.5417e+03 0.3981 5.8360e+03 4.4108e+04	35828 656.9343 7 90000 4.9175e+03 3.5417e+03 0.3981 5.8360e+03 5.8360e+03
⊞ Tm	2.0184	2.0184	2.0184	2.0184

Рис. 4

Таблица 1 – Результаты выполнения программы

Медиана	Мода	Среднее	Р (надёжность)
4917.4828	3541.6872	5835.9685	0.3981

Текст программы

Ниже приведен текст программы исследования зависимости времени наработки на отказ от среднего времени блока 4.

```
tic;
```

```
Nop = 9;
               % количество вариантов параметров
                % количество компонентов
  Nb = 10:
               % заданное время работы
  Tz = 6e3;
                % количество симуляций
  N = 10e4;
  ts = zeros(Nop, Nb);
  for j = 1:Nop
    ts(j, :) = [13e3; 21e3; 6e3; 5e3*j; 17e3; 25e3; 17e3; 13e3; 16e3; 8e3];
  end
  r = \{[1,2,5,9], [1,3,5,9], [1,3,6,9], [1,3,6,10], [1,3,7,10], [1,4,7,10], [1,4,8,10]\};
  len = length(r);
  P = zeros(Nop,1);
  Sr = zeros(Nop, 1);
  Med = zeros(Nop,1);
  Mod = zeros(Nop,1);
  T \ all = zeros(N, Nop); % время наработки на отказ для каждой симуляции и
варианта
  for i = 1:Nop
    count = 0;
    T = zeros(N,1);
    for k = 1:N
       t = exprnd(ts(i, :)');
```

```
tmin = zeros(len, 1);
     for m = 1:len
       tmin(m) = min(t(r\{m\}));
     end
     T(k) = max(tmin);
    if T(k) >= Tz
       count = count + 1;
     end
  end
  P(i) = count / N;
  Sr(i) = mean(T);
  Med(i) = median(T);
  [h, a] = hist(T, 137);
  [\sim, nmax] = max(h);
  if nmax == 1
     Mod(i) = a(1) / 2;
  else
     Mod(i) = (a(nmax-1) + a(nmax)) / 2;
  end
  T_{all}(:,i) = T;
end
figure;
plot(5e3*(1:Nop), P, '-o');
xlabel('Время наработки на отказ \tau_4');
ylabel('Вероятность работы системы Р');
title('Зависимость вероятности работы системы от \tau_4');
grid on;
Tm = toc;
```

Результаты выполнения

График изображен на рис. 6.

Рис. 6

Среднее время наработки на отказ системы, его медиана и мода, вероятность (P) того, что системы проработает не меньше, чем заданное время T_Z , представлены в таблице 2.

Таблица 2 — Зависимость времени наработки на отказ от среднего времени блока 4

№ опыта	$\overline{ au_4}$	P	Среднее	Медиана	Мода
1	5000	0,3589	5480	4577	2923
2	10000	0,3884	5722	4829	2382
3	15000	0,4049	5883	4981	2602
4	20000	0,4090	5952	5020	2733
5	25000	0,4143	6012	5058	3062
6	30000	0,4171	6056	5097	3847
7	35000	0,4226	6105	5131	3024
8	40000	0,4235	6122	5150	2951
9	45000	0,4261	6147	5170	2877

Время моделирования — 17.6248 секунд.

При увеличении среднего времени наработки на отказ блока 4 с 5000 до 45000 часов вероятность работы системы Р возросла незначительно с 0,3589 до 0,4261, оставаясь ниже 50%. Это свидетельствует о том, что значительное улучшение надежности блока 4 имеет ограниченно небольшое влияние на общую вероятность безотказной работы системы в данной конфигурации.

Текст программы

Ниже приведены измененные фрагменты текста программы исследования зависимости времени наработки на отказ от среднего времени блока 5.

• • •

ts(j, :) = [13e3; 21e3; 6e3; 13e3; 5e3*j; 25e3; 17e3; 13e3; 16e3; 8e3];

. .

Результаты выполнения

График изображен на рис. 7.

Среднее время наработки на отказ системы, его медиана и мода, вероятность того, что системы проработает не меньше, чем заданное время T_Z , представлены в таблице 3.

Таблица 3 — Зависимость времени наработки на отказ от среднего времени блока 5

№ опыт	$\overline{ au_5}$	Р	Среднее	Медиана	Мода
a					
1	5000	0,3288	5099	4361	2626
2	10000	0,3730	5534	4714	2775
3	15000	0,3937	5763	4879	3341
4	20000	0,4073	5938	4992	2334
5	25000	0,4143	6046	5061	2671
6	30000	0,4196	6129	5096	2664
7	35000	0,4218	6174	5132	2881
8	40000	0,4258	6224	5152	2677
9	45000	0,4280	6262	5181	2853

Время моделирования — 19.2340 секунд.

Рост т5 с 5000 до 45000 часов привёл к увеличению вероятности Р с 0,3288 до 0,4280. Значение увеличения вероятности работы системы сравнимо с прошлым опытом, что указывает на слабое влияние блока 5 на общую вероятность безотказной работы системы и невысокую критичность этого компонента для системы в данной конфигурации.

Текст программы

Ниже приведены измененные фрагменты текста программы исследования зависимости времени наработки на отказ от среднего времени блока 8.

. . .

$$ts(j, :) = [13e3; 21e3; 6e3; 13e3; 17e3; 25e3; 17e3; 5e3*j; 16e3; 8e3];$$

. . .

Результаты выполнения

График изображен на рис. 8.

Рис. 8

Среднее время наработки на отказ системы, его медиана и мода, вероятность того, что системы проработает не меньше, чем заданное время T_Z , представлены в таблице 4.

Таблица 4 — Зависимость времени наработки на отказ от среднего времени блока 8

№ опыта	$\overline{ au_8}$	Вероятность	Среднее	Медиана	Мода
1	5000	0,38917	5748	4843	3188
2	10000	0,39735	5821	4921	3202
3	15000	0,39931	5852	4930	2702
4	20000	0,40113	5874	4954	3542
5	25000	0,40200	5898	4934	3036
6	30000	0,40153	5886	4953	2766
7	35000	0,40538	5913	4971	2706
8	40000	0,40457	5901	4977	3361
9	45000	0,40291	5906	4963	2777

Время моделирования — 19.6771 секунд.

Рост т8 с 5000 до 45000 часов привёл к увеличению вероятности Р с 0,38917 до 0,40291. Вероятность работы системы возросла крайне незначительно, что указывает на практическое отсутствие влияния блока 8 на общую вероятность безотказной работы системы и невысокую критичность этого компонента для системы в данной конфигурации.