Titanic survives with logistic regression in R

Chayanis Tavichai

2023-12-31

Logistic Regression Model

In this project, the model was trained to be able to predict which passengers were likely to survive on Titanic.

Install packages

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
            1.1.4
                                   2.1.4
                       v readr
## v forcats
              1.0.0
                       v stringr
                                   1.5.1
## v ggplot2 3.4.4
                      v tibble
                                   3.2.1
## v lubridate 1.9.3
                        v tidyr
                                   1.3.0
## v purrr
              1.0.2
## -- Conflicts -----
                                          ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(titanic)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
##
      discard
## The following object is masked from 'package:readr':
      col_factor
##
library(dplyr)
```

Check data

```
head(titanic_train)
```

```
## 5
               5
## 6
               6
                                3
                         0
##
                                                      Name
                                                               Sex Age SibSp Parch
## 1
                                  Braund, Mr. Owen Harris
                                                                    22
                                                              male
                                                                            1
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female
                                                                    38
                                                                            1
                                                                                  0
                                   Heikkinen, Miss. Laina female
                                                                                  0
## 3
            Futrelle, Mrs. Jacques Heath (Lily May Peel) female
## 4
                                                                    35
## 5
                                 Allen, Mr. William Henry
                                                              male
                                                                    35
                                                                           0
                                                                                  0
## 6
                                          Moran, Mr. James
                                                              male
                                                                    NA
                                                                                  0
##
               Ticket
                          Fare Cabin Embarked
## 1
            A/5 21171 7.2500
                                             C
             PC 17599 71.2833
## 2
                                 C85
## 3 STON/02. 3101282 7.9250
                                             S
## 4
                                             S
               113803 53.1000
                                C123
## 5
               373450 8.0500
                                             S
## 6
               330877 8.4583
                                             Q
```

As this data has many variables, and somes have NA values so we need to clean data

Clean data (NA null)

```
titanic_train <- na.omit(titanic_train)
glimpse(titanic_train)

## Rows: 714
## Columns: 12</pre>
```

```
## Columns: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19~
                                                    <int> 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1~
## $ Survived
## $ Pclass
                                                    <int> 3, 1, 3, 1, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 3, 2, 2, 3~
                                                    <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley (Fl~
## $ Name
## $ Sex
                                                    <chr> "male", "female", "female", "female", "male", "m
                                                    <dbl> 22, 38, 26, 35, 35, 54, 2, 27, 14, 4, 58, 20, 39, 14, 55, ~
## $ Age
## $ SibSp
                                                    <int> 1, 1, 0, 1, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0~
## $ Parch
                                                    <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0~
                                                    <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", "37~
## $ Ticket
## $ Fare
                                                    <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 51.8625, 21.0750~
## $ Cabin
                                                    <chr> "", "C85", "", "C123", "", "E46", "", "", "", "G6", "C103"~
                                                    ## $ Embarked
```

Titanic_Train Dataset

```
print(tibble(titanic_train), n = 20)
```

```
## # A tibble: 714 x 12
##
      PassengerId Survived Pclass Name
                                                    Age SibSp Parch Ticket Fare Cabin
                                           Sex
##
            <int>
                      <int>
                             <int> <chr>
                                           <chr> <dbl> <int> <int> <chr> <dbl> <chr>
                          0
                                  3 "Brau~ male
                                                                   0 A/5 2~ 7.25 ""
##
   1
                 1
                                                     22
                                                            1
##
    2
                 2
                          1
                                  1 "Cumi~ fema~
                                                     38
                                                                   0 PC 17~ 71.3
                                                                                  "C85"
                                                            1
                                                                   0 STON/~ 7.92 ""
##
    3
                 3
                                  3 "Heik~ fema~
                                                     26
                                                            0
                          1
                                  1 "Futr~ fema~
                                                     35
                                                                   0 113803 53.1
##
   4
                 4
                          1
                                                            1
                                  3 "Alle~ male
                                                                   0 373450 8.05 ""
##
   5
                5
                          0
                                                     35
                                                            0
##
    6
                7
                          0
                                  1 "McCa~ male
                                                     54
                                                            0
                                                                   0 17463 51.9
                                  3 "Pals~ male
##
   7
                8
                          Ω
                                                      2
                                                            3
                                                                   1 349909 21.1
                9
                                  3 "John~ fema~
                                                                   2 347742 11.1
##
   8
                          1
                                                     27
                                                            0
                                  2 "Nass~ fema~
                                                                   0 237736 30.1
##
    9
                10
                          1
                                                     14
                                                            1
```

```
## 10
                     1
                            3 "Sand~ fema~
                                                  1
                                                       1 PP 95~ 16.7 "G6"
             11
## 11
             12
                            1 "Bonn~ fema~
                                                  0
                                                       0 113783 26.6 "C10~
                      1
                                            58
## 12
             13
                      0
                            3 "Saun~ male
                                            20
                                                  0
                                                       0 A/5. ~ 8.05 ""
## 13
             14
                     0
                            3 "Ande~ male
                                            39
                                                       5 347082 31.3
                                                  1
## 14
             15
                     0
                            3 "Vest~ fema~
                                           14
                                                  0
                                                       0 350406 7.85 ""
             16
                     1
                          2 "Hewl~ fema~ 55
                                                  0
                                                     0 248706 16
## 15
                     0
                          3 "Rice~ male
                                           2
                                                  4
                                                      1 382652 29.1 ""
## 16
             17
                                                     0 345763 18
                     0
                            3 "Vand~ fema~
                                            31
## 17
             19
                                                 1
                           2 "Fynn~ male
## 18
             21
                     0
                                            35
                                                  0
                                                     0 239865 26
             22
                            2 "Bees~ male
                                            34
                                                  0 0 248698 13
                                                                     "D56"
## 19
                     1
## 20
             23
                      1
                            3 "McGo~ fema~
                                         15
                                                       0 330923 8.03 ""
## # i 694 more rows
## # i 1 more variable: Embarked <chr>
```

Explore Titanic Train Dataset

Split Data

Pclass2

Pclass3

Age

Sexfemale

Use sample for sampling titanic passenger

Use 75% for train model and 25% for test model

```
set.seed(123)
n <- nrow(titanic_train)
row <- sample(1:n, size = n * 0.75)
train_data <- titanic_train[row,]
test_data <- titanic_train[-row,]</pre>
```

Use logistic regression for train model

```
model_mlm <- glm(formula = Survived ~ Pclass + Sex + Age + Fare , family = "binomial", data = train_dat
summary(model_mlm)

##
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age + Fare, family = "binomial",
## data = train_data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.0245514 0.4593403 2.230 0.025715 *
```

-1.1877070 0.3579293 -3.318 0.000906 ***

-2.3288785 0.3611389 -6.449 1.13e-10 ***

2.4266242 0.2345189 10.347 < 2e-16 ***

-0.0359752 0.0086592 -4.155 3.26e-05 ***

Testing Model and Evaluate using accuracy (of confusion matrix)

We can observe that the logistic model has the ability to train on unseen data and does not suffer from overfitting.

Use confusion matrix for explain the model

```
conM <- table(train_data$pred_survived_train, train_data$Survived, dnn = c("Predicted", "Actual"))
conM

## Actual
## Predicted 0 1
## 0 275 64
## 1 51 145</pre>
```

Summary

Accuracy : 0.7850467 ## Precision : 0.7397959 ## Recall : 0.6937799 ## f1 : 0.7160494

This model, relying on factors like passenger class, gender, age, and ticket price, can estimate with 69%-78% accuracy whether someone aboard the Titanic would have survived, as shown in the confusion matrix.