Apuntes de Lenguajes Formales

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

16 de mayo de 2019

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Agradecimiento a marmot

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia INF319 (Lenguajes Formales), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2019 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.	Pre	reliminares Formales				
	1.1.	Conjur	ntos			
		1.1.1.	Conjunto Finito e Infinito			
	1.2.	Prelim	inares			
		1.2.1.	Alfabeto			
		1.2.2.	Palabra			
		1.2.3.	Notaciones			
		1.2.4.	Cantidad de Ocurrencias			
		1.2.5.	Concatenación			
		1.2.6.	Inversa			
		1.2.7.	Potencia de una Palabra			
			Principio de Inducción para Σ^*			
			Lenguajes			
		1.2.10.	Expresiones Regulares			
		1.2.11.	Módulos			
		1.2.12.	Máquinas			

ÍNDICE GENERAL

Capítulo 1

Preliminares Formales

1.1. Conjuntos

1.1.1. Conjunto Finito e Infinito

Equivalencia

Dado A y B (conjuntos) los llamamos equivalentes si existe una biyección: $f:A\to B$

Conjunto Finito

Un conjunto A es finito si es equivalente a $\{1, 2, 3, \dots, n\}$ para algún $n \in \mathbb{N}$.

Conjunto Infinito

Un conjunto es infinito si no es finito. Si no es equivalente a $\{1, 2, 3, ..., n\}$ es decir no hay biyección. Sin embargo no todos los conjuntos finitos son equivalentes.

- Conjunto Contablemente Infinito: Se dice que un conjunto es contablemente infinito si es equivalente con N.
- Conjunto Contable: Es contable si es finito o contablemente infinito.
- Conjunto Incontable: Se dice que es incontable si no es contable.

Principio de las Casillas

Si A y B son conjuntos finitos no vacíos y |A| > |B| entonces no existe una función inyectiva de: $A \to B$.

1.2. Preliminares

1.2.1. Alfabeto

Un alfabeto Σ es cualquier conjunto finito no vacío.

Ejemplo(s)

$$\Sigma_1 = \{Leo, Martha\}$$
 $\Sigma_2 = \{0, 1, 2, 3, \dots, 13\}$
 $\Sigma_3 = \{a, b\}$
 $\Sigma_4 = \{R, G, B, A\}$

1.2.2. Palabra

Una palabra sobre Σ es una sucesión finita de símbolos de Σ . Es decir:

$$(\sigma_1, \sigma_2, \dots, \sigma_n); \sigma \in \Sigma$$
 ó $\sigma_1 \sigma_2 \sigma_3 \dots \sigma_n; \sigma \in \Sigma$

Ejemplo(s)

Sobre Σ_1	$\textbf{Sobre} \Sigma_2$	Sobre Σ_3	Sobre Σ_4
$w_1 = LeoLeo$	$w_1 = 11111110$	$w_1 = bababababa$	$w_1 = ABGR$
$w_2 = MarthaLeoMartha$	$w_2 = 11235813$	$w_2 = abba$	$w_2 = RRRA$

Denotamos por Σ^* el conjunto de todas las palabras sobre Σ .

Longitud de una Palabra

Sea w una palabra sobre Σ , es decir $w = \sigma_1 \sigma_2 \dots \sigma_n; \sigma \in \Sigma$. La longitud de w es n y se denota por: |w| = n.

Palabra vacía

Es la sucesión vacía de símbolos de Σ y se denota por: $\lambda.$

1.2.3. Notaciones

- $\Sigma^+ = \{ w \in \Sigma^* / |w| > 0 \}$
- $\Sigma^0 = \{ w \in \Sigma^* / |w| = 0 \} = \{ \lambda \}$
- $\bullet \ \Sigma^1 = \{w \in \Sigma^*/|w| = 1\} = \Sigma$

1.2.4. Cantidad de Ocurrencias

Sea $w \in \Sigma^*$, denotamos por $|w|_{\sigma}$ al número de ocurrencias del símbolo σ en la palabra w.

Ejemplo(s)

$$\Sigma = \{a, b\}$$

- $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, \ldots \}$
- $\Sigma_1 = \Sigma = \{a, b\}$

1.2.5. Concatenación

Sea $u, v \in \Sigma^*$ tal que $u = \sigma_1 \sigma_2 \dots \sigma_n, v = \epsilon_1 \epsilon_2 \dots \epsilon_n$. La concatenación de u y v se define por:

$$uv = \sigma_1 \sigma_2 \dots \sigma_n \epsilon_1 \epsilon_2 \dots \epsilon_n$$

Definición de Recurrencia

$$\begin{vmatrix} | & | : \Sigma^* \to \mathbb{N} \\ |\lambda| &= 0 \\ |wa| &= |w| + 1 \end{vmatrix}$$

Ejemplo(s)

$$u = abab$$
$$v = bba$$

$$uv = ababbba$$

 $vu = bbaabab$

Propiedades

- $uv \neq vu$
- (uv)w = u(vw)
- $u\lambda = \lambda u = u$
- |uv| = |u| + |v|
- $|uv|_a = |u|_a + |v|_a$

1.2.6. Inversa

Si $w = \sigma_1, \sigma_2, \dots, \sigma_n \in \Sigma^n$ entonces $w' = \sigma_n, \sigma_{n-1}, \dots, \sigma_1$ se llama inversa o transpuesta de w.

Definición de Recurrencia

$$': \Sigma^* \to \Sigma^*$$

$$\begin{cases} \lambda' = \lambda \\ (wa)' = aw' \end{cases}$$

1.2.7. Potencia de una Palabra

$$w^n = \underbrace{ww \dots w}_{n-veces}$$

Definición de Recurrencia

$$': \Sigma^* \to \Sigma^*$$

$$\begin{cases} w^0 = \lambda \\ w^{n+1} = ww^n \end{cases}$$

Propiedades

- $|w^n| = n|w|$
- $w^m w^n = w^{m+n}$
- $(w^n)^m = w^{mn}$
- $\quad \blacksquare \ \lambda^n = \lambda$

1.2.8. Principio de Inducción para Σ^*

Sea L un conjunto de palabras sobre Σ con las propiedades:

- i.) $\lambda \in L$
- ii.) $w \in L \land a \in \Sigma \Rightarrow wa \in L$

Entonces

 $L=\Sigma^*,$ (es decir, todas las palabras sobre Σ están en L.)

1.2.9. Lenguajes

Un lenguaje sobre Σ es un subconjunto de Σ^*

Operaciones

Recordemos que ya conocemos otras operaciones (Unión, Intersección, Diferencia y Complemento), para esta materia tenemos las siguientes:

■ Concatenación

Sea $A, B \subseteq \Sigma^*$

$$AB = \{ w \in \Sigma^* / w = xy, x \in A, y \in B \}$$

Transposición

Sea $A \subseteq \Sigma^*$

$$A' = \{ w' \in \Sigma^* / w \in A \}$$

■ Estrella de Kleene

Sea $A \subseteq \Sigma^*$

$$A^* = \{ w \in \Sigma^* / w = w_1 w_2 \dots w_n \text{ para algún } k \in \mathbb{N} \text{ y para algunas } w_1, w_2, \dots, w_k \in A \}$$

1.2.10. Expresiones Regulares

Las expresiones regulares (ER) sobre un alfabeto (Σ) son las palabras sobre el alfabeto $\Sigma \cup \{\}, (\emptyset, \cup, *\}$ tal que cumple lo siguiente:

- 1.) \emptyset y cada símbolo de Σ es una ER.
- **2.)** Si α y β son ER entonces $(\alpha\beta)$ es una ER.
- **3.)** Si α y β son ER entonces $(\alpha \cup \beta)$ es una ER.
- **4.)** Si α es una ER entonces α^* es una ER.
- 5.) Nada mas es una ER a menos que provenga de (1.) a (4.)

1.2.11. Módulos

1.2.12. Máquinas