HW 05: PROTOSTARS

BRYAN YAMASHIRO¹
University of Hawaii at Manoa
2500 Campus Road
Honolulu, HI 96822

1. INITIAL PHASE OF PROTOSTAR EVOLUTION

1.1. Method 1

The relation used to calculate the radius of a protostar (R_{ps}) is provided in equation 1. Only the species of H and H₂ are probed, therefore higher order additions including species such as Helium are omitted. The individual stellar parameters used to calculate R_{ps} are provided in table 1. The equation was rewritten in equation 2 to yield R_{ps} . Plugging in the parameters from the table resulted in a protostar radius of $\boxed{7.1854 \times 10^{11} \, m}$ or approximately $\boxed{1033 \, R_{\odot}}$.

$$GM\left(\frac{1}{R_{ps}} - \frac{1}{R_1}\right) \approx \frac{1}{m_H} \left(\frac{\epsilon_d}{2} + \epsilon_i\right) + R_2$$
 (1)

$$R_{ps} = m_H GM \left(\frac{2}{\epsilon_d} + \frac{1}{\epsilon_i} \right) \tag{2}$$

1.2. Method 2

The second attempt to find the protostar radius purely utilizes the gravitational energy in equation 4. The total of dissociation and ionization energy, E_{total} was found using equation 3, and the result was 3.0199×10^{46} erg. E_{total} in this case corresponds to the gravitational potential energy, $-2U_{total}$. The resulting radius of the protostar using method 2 was $8.7436 \times 10^{10} \, m$ or $125.72 \, R_{\odot}$. If the density is uniform a 3/5 approximation can be applied for the gravitational potential energy, and multiplying the factor to the radii, results in a protostar radius of $175.43 \, R_{\odot}$.

$$E_{total} = \frac{M}{2m_H} \epsilon_d + \frac{M}{m_H} \epsilon_i \tag{3}$$

$$R = \left| \frac{GM}{E_{total}} \right| \tag{4}$$

Table 1. Protostar parameters.

Quantity	Symbol	Value	Units
			[cgs units]
Gravitational Constant	G	6.6743×10^{-8}	${\rm cm}^3 {\rm g}^{-1} {\rm s}^{-2}$
Boltzmann's Constant	k_B	1.3807×10^{-16}	${\rm cm}^2~{\rm g~s}^{-2}~{\rm K}^{-1}$
Protostar Mass	\mathbf{M}	1.989×10^{33}	g
Protostar Radius	\mathbf{R}	6.955×10^{10}	$^{ m cm}$
H ₂ Molecule Dissociation Energy	ϵ_d	7.20979×10^{-12}	erg

Table 1 (continued)

Quantity	Symbol	Value	Units [cgs units]
H Atom Ionization Energy	ϵ_i	2.17896×10^{-11}	erg
H Atom Mass	m_H	1.6726×10^{-24}	g

NOTE—Physical and Astronomical constants. Note that the protostar mass and radius are assumed to be the mass and radius of the Sun, respectively.

2. REACHING QUASI-HYDROSTATIC EQUILIBRIUM

To calculate the average internal temperature (\bar{T}) , the Viral theorem is invoked in equation 5. It is imperative to note that since we are concerned with ionized hydrogen, μ is 1/2, therefore the denominator would be 6 for this case. In this instance, \bar{T} is dependent on the protostar mass (M) in the numerator. The resulting average internal temperature is $\boxed{7460.66\,K}$. Using the radius from method 2, the average internal temperature of the protostar was $\boxed{6.131 \times 10^4\,K}$.

$$\bar{T} = \frac{\mu m_H GM}{3k_B R_{ps}} \tag{5}$$