FONDAMENTI DI INTELLIGENZA ARTIFICIALE

12 Settembre 2019 – Tempo a disposizione: 2 h – Risultato: 32/32 punti

Esercizio 1 (6 punti)

Si formalizzino le seguenti frasi in logica dei predicati:

- Esiste almeno un gatto amichevole
- Ogni gatto amichevole ama i bambini
- Ogni gatto che ama i bambini fa le fusa
- Ogni gatto che fa le fusa ama i bambini
- Il gatto Attila è amichevole.

Le si trasformi in clausole e si usi poi il principio di risoluzione per dimostrare che c'è un gatto che fa le fusa. Si usino i predicati gatto(X), amichevole(X), ama_bambini(X), e il predicato fa_fusa(X).

Esercizio 2 (punti 4)

Si consideri il seguente albero di gioco in cui il primo giocatore è MAX. Si mostri come l'algoritmo min-max e l'algoritmo alfa-beta risolvono il problema e la mossa selezionata dal primo giocatore.

Esercizio 3 (punti 6)

Dato il seguente programma Prolog, rangeList(L1, L2, Min, Max) che riporta nella lista L2 gli elementi della lista L1 compresi nel range tra Min e Max:

disegnare l'albero SLD per il goal seguente (si indichino i tagli effettuati dal *cut* e non si espandano gli eventuali rami tagliati):

```
?-rangeList([5,12,31], L, 1, 10).
```

Esercizio 4 (punti 4)

Data una lista di reali di nome L che contiene un numero pari di elementi, si realizzi un predicato Prolog extract (L, L1) che restituisca una nuova lista L1 contenente solo quegli elementi della lista L in modo che, considerati a coppie, a partire dai primi due elementi, il primo elemento della coppia sia minore o uguale (ovvero preceda) il secondo elemento.

Ad esempio, se L = [3.2, 4.9, -1.1, -2.7, 5.3, 0], il predicato extract restituisce [3.2, 4.9], in quanto 3.2 precede 4.9, mentre non contiene gli altri elementi in quanto -1.1 non precede -2.7 e -5.3 non precede -1.1 non pr

Esercizio 5 (punti 7)

Si consideri il seguente grafo, dove A è il nodo iniziale e G il nodo goal, e il numero associato agli archi è il costo dell'operatore per andare dal nodo di partenza al nodo di arrivo dell'arco. A fianco di ogni nodo, in un quadrato, è indicata inoltre la stima euristica della sua distanza dal nodo goal:

- a) L'euristica è ammissibile?
- b) Si applichi la ricerca A^* e si disegni l'albero di ricerca sviluppato indicando per ogni nodo n l'ordine di espansione. In caso di non-determinismo, si scelgano i nodi da espandere in base all'ordine alfabetico del loro nome. Si consideri come euristica h(n) quella indicata nel quadrato a fianco di ogni nodo in figura.
- c) Qual è il costo di cammino trovato da A* ed il numero di nodi espansi per arrivare al goal G a partire dal nodo iniziale A?

Esercizio 6 (punti 5)

Si consideri il seguente CSP:

A::[4, 5, 6, 7, 8, 9, 10]

B::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

C::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

D::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

A>B-5

C>B-7

A=D+3

B=D+2

Si cerchi la prima soluzione, applicando labeling e Forward Checking dopo ogni passo di labeling, considerando le variabili secondo l'ordine alfabetico del loro nome, e i valori nel dominio secondo l'ordine crescente sugli interi.

Si cerchi poi sempre la prima soluzione, ma applicando l'euristica Minimum Remaining Value per la scelta della variabile, e sempre applicando labeling e Forward Checking dopo ogni passo di labeling. Cosa cambia? Commentare adeguatamente.

COGNOME NOME	
Min-max	

Alfa-beta

12 Settembre 2019 - Soluzioni

Esercizio 1

- Esiste almeno un gatto amichevole
 - $\exists X(gatto(X) \land amichevole(X))$
- Ogni gatto amichevole ama i bambini
 - $\forall X(\text{gatto}(X) \land \text{amichevole}(X) \rightarrow \text{ama_bambini}(X))$
- Ogni gatto che ama i bambini fa le fusa
 - $\forall X \text{ (ama bambini}(X) \land \text{gatto}(X) \rightarrow \text{fa fusa}(X))$
- Ogni gatto che fa le fusa ama i bambini
 - $\forall X(gatto(X) \land fa_fusa(X) \rightarrow ama_bambini(X))$
- Il gatto Attila è amichevole.
 gatto(attila) ∧ amichevole(attila)

C'è un gatto che fa le fusa.

Query: $\exists Y \ gatto(Y) \land fa_fusa(Y)$

Clausole:

- Cla gatto(c)
- C1b amichevole(c)
- C2 $\neg gatto(X) \lor \neg amichevole(X) \lor ama bambini(X)$
- C3 $\neg gatto(X) \lor \neg ama \ bambini(X) \lor fa \ fusa(X)$
- C4 $\neg gatto(X) \lor ama\ bambini(X) \lor \neg\ fa\ fusa(X)$
- C5a gatto(attila)
- C5b amichevole(attila)
- C6 \neg gatto(Y) $\vee \neg$ fa fusa(Y) (goal, query negata)

Risoluzione (una possibile "strada"):

C7: C6 + C3: $\neg gatto(X) \lor \neg ama \ bambini(X)$

C8: C7 + C2: $\neg gatto(X) \lor \neg amichevole(X)$

C9: C8 + C5b: ¬gatto(attila)
C10: C9 + C5a: contraddizione

Esercizio 2

Min-Max:

Tagli alfa-beta: Sono 3 Tagli

Esercizio 3

Esercizio 4

```
extract([], []).
extract([A,B|Tail],[A,B|Rest]) :- A=< B, !, extract(Tail,Rest).
extract([_ ,_|Tail],Rest):- extract(Tail,Rest).</pre>
```

Esercizio 5

A* (l'euristica è ammissibile; costo di cammino: 6; nodi espansi: 6, quelli con etichetta quadrata a fianco, con all'interno numero d'ordine di espansione)

Esercizio 6

A::[4, 5, 6, 7, 8, 9, 10]
B::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
C::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
D::[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
A>B-5
C>B-7
A=D+3
B=D+2

	Α	В	С	D
Labeling e FC	A=4	[18]	[110]	[110]
Labeling e FC	A=4	[18]	[110]	[1]
Backtracking	A=4	B=1	[110]	Fail
Backtracking	A=4	B=2	[110]	Fail
Labeling e FC	A=4	B=3	[110]	[1]
Labeling e FC	A=4	B=3	C=1	[1]
Labeling e FC	A=4	B=3	C=1	D=1
Con MRV invece:	Α	В	С	D
Labeling e FC	A=4	[18]	[110]	[1]
Labeling e FC	A=4	[18]	[110]	D=1
Labeling e FC	A=4	[3]	[110]	D=1
Labeling e FC	A=4	B=3	[110]	D=1
Labeling e FC	A=4	B=3	C=1	D=1

L'euristica MRV fa scegliere prima la variabile con dominio più piccolo come cardinalità, e quindi porta a legare prima la variabile D all'unico valore possibile (ovvero il valore 1), evitando i fallimenti che si hanno nel caso di scelta della variabile B da istanziare prima della variabile D.