K-mer counting tool instructions

Gabe Mednick

8/4/2021

Dear colleague,

Thanks for sharing your concern about the k-mer frequencies in your experiments. I had a chance to look at the FASTA files and, as you suspected, the k-mer counts are not evenly distributed across experiments.

This document contains a short analysis of the challenge 1 FASTA files (Exp1-4) and provides instructions on how to run the accompanying kmer_counting_tool.R script from the command line. I have the k-mer length set to 4, but you can change it to any value within the range of your sequence length when using the counting script.

Import the FASTA file with the Biostrings package

The nucleotide sequence will be imported as a DNAStringSet object but I will convert it into a data frame and slice it into k-mers.

```
## DNAStringSet object of length 1:
## width seq names
## [1] 10000 GTATTTACAGCAA...TGTCTTTTATGAG
```

Table of K-mer counts by Experiment

This table is similar to the tab separated output file that is produced from the kmer_counting_tool.R.

Kmer counts by experiment								
Exp4_counts	Exp3_counts	Exp2_counts	Exp1_counts	standard_nucs	kmer			
10	22	45	77	TRUE	ATAA			
8	19	37	73	TRUE	TAAT			
9	24	38	66	TRUE	ATAT			
11	27	28	66	TRUE	TATT			
14	22	30	65	TRUE	AAAT			
11	15	36	65	TRUE	AATT			
9	28	29	63	TRUE	TTTT			
9	24	30	60	TRUE	TAAA			

It may be helpful to visualize the k-mer count distributions to look for similarities and differences between the experiments.

Bar plots of count distributions for each experiment

Notably, experiments 1 and 2 are right skewed and experiments 3 and 4 are progressively less so.

Summary table

The max count variation is worth exploring further.

K-mer counts summary table								
experiment	median count	mean count	min count	max count				
Exp1_counts	5	11	1	77				
Exp2_counts	7	10	1	48				
Exp3_counts	9	10	1	28				
Exp4_counts	10	10	3	17				

Density plots

We can get a better feeling for the distributions with density plots.

Density distributions of k-mers (4-mers) by count

Binning the kmer counts for a more general pattern

In the next two plots, the k-mer counts are grouped into 8 categories (10-80 k-mer counts by 10 and an other category). For all experiments, most of the 256 possible k-mers appear less than 10 times. So as not to dwarf the k-mer counts that appear more than ten times, it's better shown separately.

We see that experiment 2 dominates k-mer counts in the 30-40 range and experiment 1 dominates in the greater than 40 range.

K-mer count

31-40

41-50

71 and greater

I hope these plots help you narrow down the culprit behind your experimental variation. Good luck and let me know if you have any questions regarding the command line k-mer counting script.

Instructions: k-mer counting script for the command line

To help you check for imbalanced k-mer distributions in future experiments, I designed a k-mer counting analysis script that works from the command line. The k-mer counter let's you input a FASTA file and k-mer length, and returns a tab separated file of k-mer counts ordered by frequency. The program also returns messages about the analysis including:

- Input sequence length
- K-mer length
- Which nonstandard nucleotides the program can identify

21-30

- Whether the k-mer length is acceptable for the sequence range
- The top 10 k-mers by count

0

- Whether the given sequence contains standard or nonstandard nucleotides. The nonstandard nucleotide warning can be tested with the following file: takehome/challenge1/nonstandard_nucs.fasta

To use the k-mer counting tool:

- 1. Download the directory I sent you and open it in the command line
- 2. Change the permissions for kmer_counter_tool.R script to make it executable on your machine (chmod +x kmer_counter_tool.R)
- 3. Then run the following incantation in your command line (with custom input and output file names): Rscript kmer_counter_tool.R 'input_file' kmer-length -output_file 'output_file' e.g.,

bio-rad [main]\$ Rscript kmer_counting_tool.R 'takehome/challenge1/experiment1.fasta' 4 --output_file 'output-kmer-4.tsv'

4. See the image below for the expected output in the command line (Note: I am working on a mac).

When running the script, a new output file (tab separated format) with k-mers ordered by frequency is generated.

```
[[1]]
10000-letter DNAString object
seq: GTATTTACAGCAAAATTATATAAAAATGGGCAATT...ATTGACAGTATTTACTGCCATTTTGTCTTTTATGAG
[1] "The input sequence is 10000 bp's in length"
[1] "The kmer length is 4"
[1] "Good choice! The kmer length is within the sequence range."
[1] "Non-standard nucleotides include [bdefhijklmnopqrsuvwxyzBDEFHIJKLMNOPQRSUVWXYZ]"
# A tibble: 218 × 2
   kmer length
   <chr>
          <int>
1 ATAA
             77
 2 TAAT
             73
3 ATAT
             66
 4 TATT
             66
             65
 5 AAAT
 6 AATT
             65
 7 TTTT
             63
 8 TAAA
             60
 9 ATTT
             58
10 TTAT
             57
# ... with 208 more rows
[1] "Great news: Your fasta sequence contains A, C, G, T"
```