

NMReDATA file validation through Computer-Assisted Structure Elucidation

1st NMReDATA Symposium Porto, 26 September 2019

Jean-Marc Nuzillard and Stefan Kuhn

NMReDATA files

Interpretation

A: 7, 8

B: 9

C: 4, 5, 6

Coherenti

Links to NMR spectra

##DATA TABLE=(X++(R..R)), XYDATA
0.000000 8210.441210 15319.203860
0.001200 -3579.394247 -6391.616387
0.002400 -8371.959656 -5958.791078
0.003600 4750.645813 3990.972917
0.004800 -822.396323 -719.694050
0.006000 1951.423817 3084.714990

A: δ 3.687; q, J = 7.1; 2H

B: δ 2.61, *bs*, 1H

C: 1.226; *q*, *J* = 7.1; 3H

Description of NMR spectra by spectrum parameter sets

Validate a description

- Q: Is the spectrum description coherent with the spectra?
 - A structure proposal is even not needed to answer this question (but helps!)
 - Generate description again (change method) and compare descriptions
 - Spectrum simulation from NMR parameters
 - Iterative refinement of NMR parameters
 - Not so easy
 - Generate a spectrum from a description and compare spectra
 - Spectrum simulation from NMR parameters
 - Requires a full set of parameters

Validate a structure

- Q: Does the proposed structure fit with experimental and a priori data?
 - Generate descriptions from structures and compare descriptions
 - Database / QM prediction of descriptor values
 - Automatic structure validation
 - Generate spectra from descriptions from structures and compare spectra
 - The same as above, but with spectrum calculation from description
 - Generate structure from description
 - De novo structure elucidation, Computer-Assisted Structure Elucidation (CASE).

CASE software, for structure validation purpose

- No structure produced or the expected structure is absent
 - Bad description, or bad structure, or both...

- The expected structure is found as well as other ones
 - Good, try to eliminate alternatives

- The expected structure is the only one to be produced
 - Good for the 2D structure, but other validation criteria (3D geometry) must be considered.

A simple workflow, as already mentioned by Stefan

NMReDATA file

NMReDATA Javatools, Stefan Kuhn github.com/NMReDATAInitiative/javatools

Input file for LSD CASE software

Example 1

Thanks to **EdiSDF!**

- NMReDATA file, from Bruker
 CMC-se, generated by the CDK
- Structure elucidation by the LSD software
- SDG by outlsd (part of LSD)

LSD: J.-M. Nuzillard and G. Massiot, *Tetrahedron* **1991**, *47*, 3655-3664. Initial development in 1989, 30 YEARS AGO

NMReDATA file, Structure

```
1128171657
                 CDK
                 8 7 0 0 0 0 0 0 0 0999 V2000
         1
                  3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0
                  1.2990 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0
         3
                  2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
                  6.4952 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0
                  6
                  7.7942 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
                  3.8971 -2.2500 0.0000 0 0 0 0 0 0 0 0 0 0 0 0
         8
                  5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0
                 6410000
Implicit atom #
                 5 2 1 0 0 0 0
                 2 3 2 0 0 0 0
                 4810000
                 3 1 1 0 0 0 0
                 1810000
                 1720000
                M END
```

No explicit H atom!

NMReDATA file, Assignment

```
> <NMREDATA_ASSIGNMENT>
c1, 166.603, 1
c2, 144.493, 2
c3, 122.699, 3
c4, 60.151, 4
c5, 17.980, 5
c6, 14.166, 6
h1, 6.949, H2
h2, 5.844, H3
h3, 4.177, H4
h4, 1.854, H5
h5, 1.255, H6
```

Signal identifier, chemical shift value, atom identifier

NMReDATA file, Description (1D)

```
> < NMREDATA 1D 1H>
Larmor=500.130
Spectrum Location=file:D:/SciPrograms/Bruker/TopSpin3.5.b.91pl7/data/nes/nmr/nesEX9 CMCse Test/1/pdata/1
Pulseprogram=zg30
6.94928, L=h1
5.84414, L=h2
4.17706, L=h3
1.85439, L=h4
1.25499, L=h5
> <NMREDATA 1D_13C>
Larmor=125.758
Spectrum Location=file:D:/SciPrograms/Bruker/TopSpin3.5.b.91pl7/data/nes/nmr/nesEX9 CMCse Test/2/pdata/1
Pulseprogram=zgdc30
166.603, L=c1
144.493, L=c2
122.699, L=c3
60.1508, L=c4
17.9798, L=c5
14.1659, L=c6
```

NMReDATA file, Description (HSQC and COSY)

```
> < NMREDATA 2D 13C 1J 1H>
Larmor=500.130
CorType=HSQC
Spectrum Location=file:D:/SciPrograms/Bruker/TopSpin3.5.b.91pl7/data/nes/nmr/nesEX9_CMCse_Test/3/pdata/1
Pulseprogram=hsqcg
c2/h1
c3/h2
c4/h3
c5/h4
c6/h5
> < NMREDATA 2D 1H NJ 1H>
Larmor=500.130
CorType=COSY
Spectrum Location=file:D:/SciPrograms/Bruker/TopSpin3.5.b.91pl7/data/nes/nmr/nesEX9 CMCse Test/4/pdata/1
Pulseprogram=cosygpqf
h1/h2, W2=20.00, W1=20.00
h1/h4, W2=20.00, W1=20.00
h3/h5, W2=20.00, W1=20.00
```

NMReDATA file, Description (HMBC)

```
> <NMREDATA_2D_13C_NJ_1H>
Larmor=500.130
CorType=HMBC
Spectrum_Location=file:D:/SciPrograms/Bruker/TopSpin3.5.b.91pl7/data/nes/nmr/nesEX9_CMCse_Test/6/pdata/1
Pulseprogram=hmbcgplpndqf
c1/h1, E=6.70107e+09, W2=98.36, W1=418.65
c1/h3, W2=20.00, W1=80.00
c2/h4, W2=20.00, W1=80.00
c3/h4, W2=20.00, W1=80.00
c4/h5, W2=20.00, W1=80.00
c6/h3, W2=20.00, W1=80.00
c5/h2, W2=20.00, W1=80.00
c5/h1, W2=20.00, W1=80.00
```

Input file for LSD

LSD produces a single structure out of this input file

Example 2

- Data from Damien Jeannerat
- NMReDATA file from Mnova
- Structure generation by the LSD software. 1 solution.
- SDG by outlsd (part of LSD)

Example 3

- 5α-Cyprinol sulfate
- MRC 2018, 56, 1201–1207
- Data from Nils Schlörer

- Planar structure validation.
- NMReDATA → Isd input file
- Manual edition before running Isd

Example 3, approach 1

- 2D NMR data from HSQC and HMBC only, no COSY, no H2BC
- "Give" the sulfate group
- Allow for 1 ⁴J HMBC correlation
 - \rightarrow 5325 solutions
- Indicate the tetracyclic ring system as a sub-structure
 - \rightarrow 140 solutions
- 5 carbon atoms, from 61.7 to 72.6 ppm, are bound to 1 oxygen atom
 - \rightarrow 50 solutions
- Indicate the 2 methyl groups attached to the tetracyclic ring system (
 - \rightarrow 20 solutions
- Attach the sulfate group at one end of the side-chain (2 CH₂, 62 and 68 ppm)
 - \rightarrow 4 solutions

Example 3, approach 1, 4 solutions

- The sulfate group can be attached anywhere (5 positions)
- Structures 2 and 3 and are the most likely ones (assignment isomers)

Example 3, approach 2

- 2D NMR data from HSQC and HMBC only, no COSY, no H2BC
- "Give" the sulfate group
- Allow for 1 ⁴J HMBC correlation
 - \rightarrow 5325 solutions, as for approach 1.
- Rank solutions according to similarity between predicted and experimental ¹³C chemical shifts.
- Prediction uses nmrshiftdb
- PyLSD
 - \rightarrow The solution ranked first is the published one for 5α -cyprinol sulfate

Conclusion

- NMReDATA Javatools transforms NMReDATA files into LSD input files
- LSD searches for 2D alternatives to the structure in the NMReDATA file
- Nmrshiftdb provides chemical shift prediction for structure ranking

- NMReDATA Javatools, LSD, nmrshiftdb are free software
- NMReDATA file validation through computer-assisted structure elucidation is possible but still may require human intervention
- Software bricks are there but still need some integration to improve user-friendliness.