2009年8月

$$oxed{1}$$
 $\mathbb{R}=(-\infty,\infty)$ 上の関数 $f(x)$ を

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

と定める.

- (1) f(x) の $x \neq 0$ での導関数を求めよ.
- (2) f(x) は x=0 で微分可能であることを示せ.
- (3) f'(x) は x=0 で連続でないことを示せ.
- (4) \mathbb{R} 上の2回微分可能な関数 g(x) で g''(x) が x=0 で連続でない関数の例を与え、その事実を示せ。
- 2 α, β を正の定数, $D = \{(x,y): x \geq 0, y \geq 0, x+y \leq 1\}$ とする. D 上で定義された関数 $f(x,y) = x^{\alpha}y^{\beta}(1-x-y)$ に対して次の問いに答えよ.
 - (1) f(x,y) の偏導関数 $f_x(x,y)$, $f_y(x,y)$ を求めよ.
 - (2) f(x,y) の D における最大値を求めよ.
 - (3) $\beta=1$ のとき、重積分

$$I = \iint_D f(x, y) dx dy$$

の値を α の式で表せ.

3 a,b,c を実数とする.

$$(1) \ A = \begin{pmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{pmatrix} の固有多項式を求めよ.$$

- (2) 0 が A の固有値であるとき, その固有空間を求めよ.
- $oxed{4} W_1, W_2$ をそれぞれ

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\3 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 2\\-1\\3 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 2\\5\\5 \end{pmatrix} \right\}$$

で張られるベクトル空間 ℝ3 の部分空間とする.

- (1) W_1, W_2 の次元と一組の基底をそれぞれ求めよ.
- (2) $W_1 \cap W_2$ の次元と一組の基底を求めよ.
- 5 n は 2 以上の整数とし、 a_1, a_2, \ldots, a_n を正の整数からなる数列とする。 $k=1,2,\ldots,n$ に対して、

$$S_k = \sum_{i=1}^k a_i,$$

$$T_k = \sum_{i=1}^k a_{n+1-i}$$

とおく. このとき次の問いに答えよ.

- (1) $S_n = 2n 1$ を満たす数列 $a_1, a_2, ..., a_n$ であって, n より小さい任意の正の整数 k, l に対して $S_k \neq T_l$ となるようなものを挙げよ.
- (2) $S_n \leq 2n-2$ ならば、n より小さいある正の整数 k,l が存在して $S_k = T_l$ となることを示せ、
- 6 a>0 を定数とする. R を [0,a] 上の一様分布に従う確率変数, Θ を $[0,2\pi]$ 上の一様分布に従う確率変数とし, R と Θ は独立であるとする. 2つの確率変数 X,Y を

$$X = R\cos\Theta, \qquad Y = R\sin\Theta$$

で定義するとき、次の問いに答えよ.

- (1) X の平均値 **E**(X) と 分散 **V**(X) を求めよ.
- (2) X と Y の共分散 $\mathbf{Cov}(X,Y) = \mathbf{E}((X \mathbf{E}(X))(Y \mathbf{E}(Y)))$ を求めよ.
- (3) $Cov(X^2, Y^2)$ を求め, $X \ge Y$ が独立かどうかを述べよ.

7

(1) $g(z),\ h(z)$ を z=a の近傍における正則関数とし, g(a)=g'(a)=0, $g''(a)\neq 0$ とするとき, $\frac{h(z)}{g(z)}$ の z=a における留数は

$$\operatorname{Res}\left(\frac{h}{g}, a\right) = \frac{2}{3} \cdot \frac{3g''(a)h'(a) - g'''(a)h(a)}{g''(a)^2}$$

によって与えられることを示せ.

(2) 有理型関数

$$f(z) = \frac{1}{z\left(5 + 2\left(z + \frac{1}{z}\right)\right)^2}$$

の単位円板 |z|<1 におけるすべての極およびその点における留数を求めよ.

- (3) 定積分 $I = \int_0^{2\pi} \frac{d\theta}{(5+4\cos\theta)^2}$ を求めよ.
- $oxedsymbol{8}$ 正の実数 a に対して

$$F(a) = \int_{-\infty}^{\infty} \frac{a \cos x}{1 + a^2 x^2} dx$$

と定める.

(1) $\mathbb{R}=(-\infty,\infty)$ 上の実数値連続関数の列 $\{f_n(x)\}_{n=1}^\infty$ は n について一様に有界であり、 \mathbb{R} 上の実数値関数 f(x) に、 \mathbb{R} の任意の閉区間において一様収束するものとする。このとき

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{f_n(x)}{1+x^2} dx = \int_{-\infty}^{\infty} \frac{f(x)}{1+x^2} dx$$

が成り立つことを示せ.

- (2) $\lim_{n\to\infty} F(n)$ の値を求めよ.
- (3) $\lim_{a\to+0} F(a)$ の値を求めよ.
- 9 \mathbb{R}^2 をユークリッド平面, S^1 を \mathbb{R}^2 における単位円周とし, \mathbb{Z} を整数全体の集合とする.
 - (1) 任意の (x_1, y_1) , $(x_2, y_2) \in \mathbb{R}^2$ に対して, 関係 $(x_1, y_1) \sim (x_2, y_2)$ を $(x_1 x_2, y_1 y_2) \in \mathbb{Z} \times \mathbb{Z}$ と定める. このとき, \sim は同値関係になることを示せ.
 - (2) 同値類の集合 \mathbb{R}^2/\sim に商位相を与えると, $S^1\times S^1$ と同相になることを示せ.
- 10 p を素数とし, p のべき q に対し q 個の元からなる有限体を \mathbb{F}_q で表す. $a,b\in\mathbb{F}_p$ に対し $\alpha\in\mathbb{F}_{p^2}$ を 2 次方程式

$$x^2 + ax + b = 0$$

の解とするとき、次の問いに答えよ.

- (1) α^p も $x^2 + ax + b = 0$ をみたすことを示せ.
- (2) $\alpha \notin \mathbb{F}_n$ とする. $\alpha + \alpha^p = -a$, $\alpha^{p+1} = b$ が成り立つことを示せ.
- (3) $\alpha \notin \mathbb{F}_p$ とする. $c,d \in \mathbb{F}_p$ に対し, $(c\alpha+d)^{p+1}$ を a,b,c,d を用いて表せ.
- (4) $i \in \mathbb{F}_{19^2}$ を $x^2+1=0$ の解とする. $(1+2i)^{21}$ を x+yi $(x,y\in\mathbb{F}_{19})$ の形で表せ.