

Universidade Federal da Paraíba Centro de Ciências Humanas, Letras e Artes Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Marlon Valmórbida Cendron

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

Orientador: Flávio Freitas Barbosa

Coorientador: Wilfredo Blanco Figuerola

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

João Pessoa - PB, 20 de Agosto de 2025:

Flávio Freitas Barbosa Orientador

Wilfredo Blanco Figuerola

Coorientador

João Pessoa - PB 2025

Resumo

Resumo

Palavras-chave: Palavra1. Palavra2. Palavra3. Palavra4. Palavra5.

Abstract

Abstract

Keywords: Word1. Word2. Word3. Word4. Word5.

Lista de tabelas

Tabela 1 - Parâmetros do modelo Izhikevich por tipo de neurônio	 14
Tabela 2 - Parâmetros das sinapses entre as populações neuronais	 16
Tabela 3 – Cronograma	 20
Tabela 4 – Análise de robustez	 22
Tabela 5 – Análise descritiva adicional	 23

Lista de ilustrações

Figura 1 – Arquitetura da rede	 14
rigula i – Aiquitetula da rede	 17

Sumário

1	INTRODUÇÃO	9
2	JUSTIFICATIVA	0
3	OBJETIVOS	1
3.1	Objetivo geral	1
3.2	Objetivos específicos	1
4	HIPÓTESES	2
5	MATERIAIS E MÉTODOS	3
5.1	Modelo da rede neural DG-CA3	3
5.2	Modelo de neurônio	3
5.3	Modelo de sinapse	5
5.4	Plasticidade de longo prazo	6
5.5	Neurogênese temporal	6
5.6	Separação de padrões	6
6	RESULTADOS ESPERADOS	9
7	CRONOGRAMA	0
	REFERÊNCIAS	1
	APÊNDICE A – ANÁLISE DE ROBUSTEZ	2
	APÊNDICE B – ESTATÍSTICAS DESCRITIVAS	3

1 Introdução

2 Justificativa

Justificativa

3 Objetivos

3.1 Objetivo geral

Desenvolver um modelo de condutância do circuito GD-CA3 do hipocampo para analisar os impactos da neurogênese adulta na capacidade de armazenamento de memória e separação de padrões.

3.2 Objetivos específicos

- •
- •
- •

4 Hipóteses

Hipóteses

5 Materiais e Métodos

5.1 Modelo da rede neural DG-CA3

Brian2 (STIMBERG; BRETTE; GOODMAN, 2019)

Runge-Kutta de 4ª ordem com passo de tempo fixo de 0,1ms (BUTCHER, 1996).

5.2 Modelo de neurônio

Os neurônios foram modelados de acordo com o modelo de neurônio de Izhikevich de 9 parâmetros (IZHIKEVICH, 2006, cap. 8) e um único compartimento, sem considerar dendritos ou axônios. Esse modelo foi escolhido por ser capaz de capturar o comportamento dinâmico de neurônios em uma ampla variedade de condições com plausibilidade biológica, como o modelo de Hodgkin-Huxley (HODGKIN; HUXLEY, 1952), ao mesmo tempo em que apresenta um modelo matemático mais simples e computacionalmente mais eficiente. O modelo de neurônio de Izhikevich é descrito pelas seguintes equações:

$$C_m \frac{dV_m}{dt} = k(V_m - V_r)(V_m - V_t) - u + I$$
 (5.1)

$$\frac{du}{dt} = a[b(V_m - V_r) - u] \tag{5.2}$$

Onde V_m é o potencial de membrana, u é a variável de recuperação, C_m é a capacitância da membrana, V_r é o potencial de repouso, V_t é o potencial de limiar, I é a corrente total que flui para o neurônio e k, a e b são constantes que definem as características dinâmicas do neurônio. Além das equações diferenciais acima, que definem a evolução temporal do potencial de membrana e da variável de recuperação, o modelo de neurônio de Izhikevich também inclui uma regra para a geração de potenciais de ação, definida pela equação 5.3.

se
$$V_m \ge V_{\text{peak}}, \quad \begin{cases} V_m \leftarrow V_{min} \\ u \leftarrow u + d \end{cases}$$
 (5.3)

Quando o potencial de membrana atinge o valor de pico $V_{\rm peak}$, um potencial de ação é gerado e o potencial de membrana é redefinido para o potencial pós-disparo V_{min} e a variável de recuperação u é incrementada em d, dificultando a geração de um próximo potencial de ação.

Figura 1 – Arquitetura da rede

Célula	k (nS/mV)	a (ms ⁻¹)	b (nS)	d (pA)	C _m (pF)	V _r (mV)	V_t (mV)	V _{min} (mV)	V _{peak} (mV)
Granular madura	0.45	0.003	24.48	50	38	-77.4	-44.9	-66.47	15.49
Granular imatura	0.139	0.002	-1.877	12.149	24.6	-63.66	-38.41	-48.2	83.5
Musgosa	1.5	0.004	-20.84	117	258	-63.67	-37.11	-47.98	28.29
HIPP	0.01	0.004	-2	40.52	58.7	-70	-50	-75	90
Em cesto	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08
Piramidal do CA3	0.79	0.008	-42.55	588	366	-63.2	-33.6	-38.87	35.86
Inibitória do CA3	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08

Tabela 1 – Parâmetros do modelo Izhikevich por tipo de neurônio.

5.3 Modelo de sinapse

O modelo de sinapse, assim como o de neurônio, foi definido a partir do Hippocampome.org (WHEELER et al., 2023), seguindo a formulação de Senn, Markram e Tsodyks (2001),
Mongillo, Barak e Tsodyks (2008). Esse modelo modela a plasticidade de curto prazo, seja
ela depressão de curto prazo, causada pela depleção de neurotransmissores, ou potenciação de
curto prazo, causada pelo acúmulo de cálcio, ambas na escala dos décimos de segundos. Cada
sinapse possui 5 parâmetros (descritos na Tabela 2): a condutância máxima da sinapse no caso
de nenhuma depleção de recursos sinápticos g, a proporção de recursos utilizados a cada disparo U_{se} , a constante de tempo de decaimento da corrente sináptica τ_d , a constante de tempo de
facilitação τ_f , e a constante de tempo de recuperação dos recursos τ_r (MORADI et al., 2022).

O modelo é descrito por três variáveis de estado: a utilização dos recursos sinápticos (U), a recuperação desses recursos (R), inicialmente igual a 1, e a porcentagem de recursos em estado ativo (A). A evolução temporal dessas variáveis é governada pelo seguinte sistema de equações diferenciais:

$$\frac{dU}{dt} = \frac{-U}{\tau_f} + U_{se}(1 - U_{-})\delta(\Delta t_i)$$
 (5.4)

$$\frac{dR}{dt} = \frac{1 - R - A}{\tau_r} - U_+ R_- \delta(\Delta t_i)$$
 (5.5)

$$\frac{dA}{dt} = \frac{-A}{\tau_d} + U_+ R_- \delta(\Delta t_i) \tag{5.6}$$

nde δ é a função delta de Dirac, que resulta em 1 apenas quando $\Delta t_i = t - t_i = 0$, ou seja, apenas no tempo t correspondente ao tempo do evento sináptico t_i . U_+ corresponde ao valor de U logo após o evento sináptico, enquanto que R_- corresponde ao valor de R logo antes do mesmo.

A partir dessas equações, a corrente sináptica é dada por:

$$I = k \cdot A \cdot g \cdot (V_m - E) \tag{5.7}$$

onde V_m é o potencial de membrana do neurônio pós-sináptico, E é o potencial de reversão da sinapse, para sinapses inibitórias e excitatórias, respectivamente, $E_{inh} = -86 \,\mathrm{mV}$ e $E_{exc} = 0 \,\mathrm{mV}$, e k é uma constante de escala definida como k = 10 para todas as sinapses. Essa constante de escala é necessária por conta da escala reduzida da rede como um todo, visto que, pelo baixo número de sinapses do modelo comparado ao hipocampo do rato, sem o escalamento a rede toda ficaria silenciosa.

Pré-sináptico	Pós-sináptico	Conexão	P	g	$ au_d$	$ au_r$	$ au_f$	U
			(%)	(nS)	(ms)	(ms)	(ms)	
Córtex Entorrinal	Granular madura	Aleatória	8	1.825	5.333	266.239	18.714	0.27
Córtex Entorrinal	Granular imatura	Aleatória	0	1.825	5.333	266.239	18.714	0.27
Córtex Entorrinal	Musgosa	Aleatória	20	1.422	4.671	319.835	57.766	0.204
Córtex Entorrinal	Em cesto	Aleatória	20	1.406	3.849	144.415	48.2	0.214
Córtex Entorrinal	Piramidal do CA3	Aleatória	4	1.065	6.55	258.318	53.478	0.184
Córtex Entorrinal	Inibitória do CA3	Aleatória	20	1.556	3.602	457.468	35.904	0.21
Granular madura	Musgosa	Lamelar	20	1.713	5.347	428.583	73.479	0.151
Granular madura	HIPP	Aleatória	10	1.305	5.181	462.814	48.986	0.15
Granular madura	Em cesto	Lamelar	100	1.458	3.566	151.265	62.278	0.197
Granular madura	Piramidal do CA3	Lamelar	5	1.384	6.657	278.286	78.584	0.155
Granular madura	Inibitória do CA3	Lamelar	100	1.625	3.915	518.934	43.274	0.176
Granular imatura	Musgosa	Lamelar	20	1.713	5.347	428.583	73.479	0.151
Granular imatura	HIPP	Aleatória	10	1.305	5.181	462.814	48.986	0.15
Granular imatura	Em cesto	Lamelar	100	1.458	3.566	151.265	62.278	0.197
Granular imatura	Piramidal do CA3	Lamelar	5	1.384	6.657	278.286	78.584	0.155
Granular imatura	Inibitória do CA3	Lamelar	100	1.625	3.915	518.934	43.274	0.176
Musgosa	Granular madura	Entre lamelas	0.2	2.394	5.357	166.162	20.224	0.304
Musgosa	Granular imatura	Entre lamelas	0.2	2.394	5.357	166.162	20.224	0.304
Musgosa	HIPP	Entre lamelas	100	1.376	4.824	358.431	54.872	0.181
Musgosa	Em cesto	Entre lamelas	100	1.996	3.396	117.365	69.316	0.255
HIPP	Granular madura	Aleatória	20	2.002	8.935	559.143	8.396	0.278
HIPP	Em cesto	Aleatória	2	1.709	5.982	367.198	15.292	0.221
Em cesto	Granular madura	Lamelar	100	2.451	6.543	433.876	6.347	0.332
Em cesto	Granular imatura	Lamelar	100	2.451	6.543	433.876	6.347	0.332
Em cesto	HIPP	Aleatória	2	1.408	6.544	534.182	8.385	0.24
Piramidal do CA3	Piramidal do CA3	Aleatória	2	0.603	9.516	278.258	27.513	0.172
Piramidal do CA3	Musgosa	Lamelar	10	2.035	4.297	359.116	40.457	0.236
Piramidal do CA3	Inibitória do CA3	Aleatória	70	1.247	4.525	525.605	23.321	0.189
Inibitória do CA3	Piramidal do CA3	Aleatória	70	1.462	7.793	416.282	20.63	0.203

Tabela 2 – Parâmetros das sinapses entre as populações neuronais.

5.4 Plasticidade de longo prazo

5.5 Neurogênese temporal

5.6 Separação de padrões

A metodologia para quantificar a separação de padrões foi baseada na que foi utilizada em (KIM; LIM, 2024). Para caracterizar a separação de padrões, é comparada a sobreposição entre os padrões de atividade neural na entrada (células do córtex entorrinal) e na saída (células

granulares do DG, ou piramidais do CA3) da rede. Um padrão é definido por um representação binária de tamanho N, onde N é o número total de neurônios de uma população específica, em que neurônios que dispararam ao menos uma vez durante o intervalo de tempo da simulação são representados por 1 e os que não dispararam são representados por 0. Para um par de padrões $A^{(l)}$ e $B^{(l)}$ (onde $l \in \{in, out\}$ para entrada e saída, respectivamente), a distância entre os padrões $D_p^{(l)}$ é definida como:

$$D_p^{(l)} = \frac{O^{(l)}}{D_a^{(l)}} \tag{5.8}$$

Nesta equação, $O^{(l)}$ representa o grau de ortogonalização e $D_a^{(l)}$ o grau médio de ativação dos dois padrões. O grau médio de ativação $D_a^{(l)}$ é a média aritmética dos graus de ativação de cada padrão, $A^{(l)}$ e $B^{(l)}$:

$$D_a^{(l)} = \frac{D_a^{(A^{(l)})} + D_a^{(B^{(l)})}}{2}$$
 (5.9)

O grau de ativação de um padrão individual é a fração de neurônios ativos (representados por 1 em uma codificação binária) no padrão. O grau de ortogonalização $O^{(l)}$, que mede a dissimilaridade entre os padrões, é calculado a partir do coeficiente de correlação de Pearson, $\rho^{(l)}$:

$$O^{(l)} = \frac{1 - \rho^{(l)}}{2} \tag{5.10}$$

Onde $\rho^{(l)}$ é o coeficiente de correlação de Pearson entre os padrões $A^{(l)}$ e $B^{(l)}$. Considerando $\{a_i^{(l)}\}$ e $\{b_i^{(l)}\}$ $(i=1,\ldots,N_l)$ como as representações binárias do estado da i-ésima célula nos padrões $A^{(l)}$ e $B^{(l)}$ $(l \in \{in, out\})$, o coeficiente de correlação de Pearson é dado por:

$$\rho^{(l)} = \frac{\sum_{i=1}^{N_l} \Delta a_i^{(l)} \cdot \Delta b_i^{(l)}}{\sqrt{\sum_{i=1}^{N_l} (\Delta a_i^{(l)})^2} \sqrt{\sum_{i=1}^{N_l} (\Delta b_i^{(l)})^2}}$$
(5.11)

em que $\Delta a_i^{(l)} = a_i^{(l)} - \langle a^{(l)} \rangle$ e $\Delta b_i^{(l)} = b_i^{(l)} - \langle b^{(l)} \rangle$. A notação $\langle \dots \rangle$ indica a média populacional sobre todas as células. O valor de $\rho^{(l)}$ varia entre -1 e 1. A similaridade entre os padrões, $C^{(l)}$, é diretamente o coeficiente de correlação de Pearson:

$$C^{(l)} = \rho^{(l)} \tag{5.12}$$

A partir das distâncias dos padrões de entrada $(D_p^{(in)})$ e saída $(D_p^{(out)})$, a eficácia da separação de padrões, S_d , é calculada como a razão entre elas:

$$S_d = \frac{D_p^{(out)}}{D_p^{(in)}}$$
 (5.13)

Um valor de $S_d > 1$ indica que os padrões de saída são mais distintos que os de entrada, caracterizando a separação de padrões. Inversamente, $S_d < 1$ indica uma convergência de padrões, onde os padrões de saída se tornam mais similares entre si.

6 Resultados esperados

Resultados esperados

7 Cronograma

Tabela 3 – Cronograma

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

Referências

BUTCHER, J. A history of Runge-Kutta methods. *Applied Numerical Mathematics*, v. 20, n. 3, p. 247–260, mar. 1996. ISSN 01689274. 13

HODGKIN, A. L.; HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology*, v. 117, n. 4, p. 500–544, ago. 1952. ISSN 0022-3751, 1469-7793. 13

IZHIKEVICH, E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. [S.l.]: The MIT Press, 2006. ISBN 978-0-262-27607-8. 13

KIM, S.-Y.; LIM, W. Effect of adult-born immature granule cells on pattern separation in the hippocampal dentate gyrus. *Cognitive Neurodynamics*, v. 18, n. 4, p. 2077–2093, ago. 2024. ISSN 1871-4080, 1871-4099. 16

MONGILLO, G.; BARAK, O.; TSODYKS, M. Synaptic Theory of Working Memory. *Science*, v. 319, n. 5869, p. 1543–1546, mar. 2008. ISSN 0036-8075, 1095-9203. 15

MORADI, K. et al. Normalized unitary synaptic signaling of the hippocampus and entorhinal cortex predicted by deep learning of experimental recordings. *Communications Biology*, v. 5, n. 1, p. 418, maio 2022. ISSN 2399-3642. 15

SENN, W.; MARKRAM, H.; TSODYKS, M. An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing. *Neural Computation*, v. 13, n. 1, p. 35–67, jan. 2001. ISSN 0899-7667, 1530-888X. 15

STIMBERG, M.; BRETTE, R.; GOODMAN, D. F. Brian 2, an intuitive and efficient neural simulator. *eLife*, v. 8, p. e47314, ago. 2019. ISSN 2050-084X. 13

WHEELER, D. W. et al. *Hippocampome.Org v2.0: A Knowledge Base Enabling Data-Driven Spiking Neural Network Simulations of Rodent Hippocampal Circuits*. 2023. 15

APÊNDICE A - Análise de Robustez

Tabela 4 – Análise de robustez

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

APÊNDICE B - Estatísticas descritivas

Tabela 5 – Análise descritiva adicional

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4