Introduction à la robotique

TD N° 0 : Géométrie - Calcul vectoriel

Robot type PUMA (simplifié)

La figure représente un robot manipulateur à 3 degrés de liberté et composé de 3 corps mobiles S_1 , S_2 , S_3 , un bâti fixe S_0 et 3 liaisons pivot. On définit trois repères orthonomés et directs $\mathcal{R}_0 = (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$, $\mathcal{R}_1 = (O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$, $\mathcal{R}_2 = (A, \overrightarrow{x_1}, \overrightarrow{y_2}, \overrightarrow{z_2})$, $\mathcal{R}_3 = (B, \overrightarrow{x_1}, \overrightarrow{y_3}, \overrightarrow{z_3})$ liés respectivement à S_0 , S_1 , S_2 , S_3 . Les rotations entre (S_1/S_0) , (S_2/S_1) , (S_3/S_2) sont respectivement paramétrées par les angles α , β , γ et s'effectuent autour des axes $(O, \overrightarrow{z_0})$, $(A, \overrightarrow{x_1})$, $(B, \overrightarrow{x_1})$. Les longueurs caractéristiques sont données par $\overrightarrow{OA} = d \overrightarrow{x_1}$, $\overrightarrow{AB} = l \overrightarrow{z_2}$, $\overrightarrow{BC} = h \overrightarrow{z_3}$.

- 1. Dessiner les figures planes de calcul définissant les 3 rotations.
- 2. Exprimer les vecteurs positions des points A, B, et C dans le repère \mathcal{R}_0 .
- 3. Soit (x, y, z) les coordonnées dans \mathcal{R}_0 du point terminal C, exprimer (x, y, z) en fonction de (α, β, γ) .
- 4. Calculer $(\dot{x}, \dot{y}, \dot{z})$ en fonction de $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$. Mettre sous forme matricielle.

