Akim Demaille akim@lrde.epita.fr

EPITA — École Pour l'Informatique et les Techniques Avancées

March 22, 2009

Preamble

The following slides are implicitly dedicated to classical logic.

Logical Formalisms Natural Deduction

Logical Formalisms

Natural Deduction

1 Logical Formalisms

2 Natural Deduction

- Logical Formalisms
 - Syntax
 - Proof Systems
- 2 Natural Deduction

A. Demaille

Logical Formalisms Natural Deduction

Syntax Proof Systems

Terminal Symbols

Propositional Calculus

Constants a, b, c, \ldots

Propositional Variables A, B, C, ...

Unary Connective ¬

Binary Connectives \land, \lor, \Rightarrow

Quantifiers \forall , \exists

Punctuation (,),[,],...

Terminal Symbols

Propositional Calculus

Constants a, b, c, \ldots

Propositional Variables A, B, C, ...

Unary Connective ¬

Binary Connectives \land, \lor, \Rightarrow

Quantifiers \forall , \exists

◆□▶ ◆圖▶ ◆園▶ ■ り90

Natural Deduction

Logical Formalisms Natural Deduction

Syntax Proof Systems

Terminal Symbols

Predicate calculus

Individual Variables x, y, z, ...

A. Demaille

Terminal Symbols

Predicate calculus

Individual Variables x, y, z, ...

Functions f, g, h, \ldots , with a fixed arity

Predicate calculus

Terminal Symbols

Individual Variables x, y, z, ...

Functions f, g, h, \ldots , with a fixed arity

Predicates P, Q, R, \ldots , with a fixed arity

Syntax Proof Systems

Propositional Formulas

(propositional variable) $\langle formula \rangle ::=$

> $\neg \langle formula \rangle$ $\langle formula \rangle \wedge \langle formula \rangle$

 $\langle \text{formula} \rangle \vee \langle \text{formula} \rangle$

 $\langle \text{formula} \rangle \Rightarrow \langle \text{formula} \rangle$

Syntax Proof Systems

Terms

 $\langle constant \rangle$ $\langle \text{term} \rangle ::=$ $\langle \text{function} \rangle (\langle \text{term} \rangle, \ldots)$

With the proper arity.

First Order Formulas

 $\langle \text{formula} \rangle ::= \langle \text{propositional variable} \rangle$

 $\neg \langle formula \rangle$

 $\langle \text{formula} \rangle \wedge \langle \text{formula} \rangle$

 $\langle \text{formula} \rangle \vee \langle \text{formula} \rangle$

 $\langle \text{formula} \rangle \Rightarrow \langle \text{formula} \rangle$

 $\langle \text{predicate} \rangle (\langle \text{term} \rangle, \ldots)$

 $\forall \langle individual \ variable \rangle \cdot \langle formula \rangle$

 $\exists \langle individual \ variable \rangle \cdot \langle formula \rangle$

With the proper arity.

Natural Deduction

Natural Deduction

Logical Formalisms

Syntax

Logical Formalisms Natural Deduction

Syntax

Syntactic Conventions

Associativity

- ∧, ∨ are left-associative (unimportant)
- ⇒ is right-associative (very important)

Precedence (increasing)

- **●**,∀,∃
- $2 \Rightarrow$
- **3** \
- 4

Syntactic Conventions

Associativity

- ∧, ∨ are left-associative (unimportant)
- ⇒ is right-associative (very important)

Free Variables

$$FV(X) = \emptyset$$

$$FV(P(x_1, x_2, \dots, x_n)) = \{x_1, x_2, \dots, x_m\}$$

$$FV(\neg A) = FV(A)$$

$$FV(A \lor B) = FV(A) \cup FV(B)$$

$$FV(A \wedge B) = FV(A) \cup FV(B)$$

$$FV(A \Rightarrow B) = FV(A) \cup FV(B)$$

$$FV(\forall x \cdot A) = FV(A) - \{x\}$$

$$FV(\exists x \cdot A) = FV(A) - \{x\}$$

Natural Deduction

Proof Systems

Hilbertian Systems

Natural Deduction

Natural Deduction

Sequent Calculus

Natural Deduction in Sequent Calculus

Proof Systems

- Hilbertian Systems
- Natural Deduction
- Sequent Calculus
- Natural Deduction in Sequent Calculus

イロン イ部 とくきと くきと 一度 。

Natural Deduction

Logical Formalisms

Logical Formalisms Natural Deduction

Proof Systems

Axioms

• Axioms are formulas that are considered true a priori

$$\forall x \cdot x + 0 = x$$

• Axiom schemes use meta-variables that range over a specific domain

$$X + Y = Y + X$$

$$A \vee \neg A$$

• Axioms are formulas that are considered true a priori

$$\forall x \cdot x + 0 = x$$

$$X + Y = Y + X$$

$$\begin{array}{ccc} SXYZ & \to & XZ(YZ) \\ KXY & \to & X \end{array}$$

Natural Deduction

Proof Systems

Axioms

• Axioms are formulas that are considered true a priori

$$\forall x \cdot x + 0 = x$$

• Axiom schemes use meta-variables that range over a specific domain

$$X + Y = Y + X$$

• Axiom schemes are used when quantifiers are not welcome

$$\begin{array}{ccc} SXYZ & \to & XZ(YZ) \\ KXY & \to & X \end{array}$$

$$A \vee \neg A$$

Axioms

• Axioms are formulas that are considered true a priori

$$\forall x \cdot x + 0 = x$$

 Axiom schemes use meta-variables that range over a specific domain

$$X + Y = Y + X$$

• Axiom schemes are used when quantifiers are not welcome

$$\begin{array}{ccc} SXYZ & \to & XZ(YZ) \\ KXY & \to & X \end{array}$$

Axiom schemes are used when quantifiers do not apply

$$A \vee \neg A$$

Proof Systems

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900

A. Demaille

Natural Deduction

Logical Formalisms Natural Deduction "

39

Natural Deduction

 $\frac{H_1 \quad H_2 \quad \cdots \quad H_n}{G}$ Rule name

- Axiom name

Logical Formalisms Natural Deduction

Syntax Proof Systems

Hilbertian System

• A single inference rule: the modus ponens

$$\frac{A \longrightarrow B}{B}$$
 modus ponens

Many axioms to define the connectives

$$A \Rightarrow B \Rightarrow A \land B$$
 $A \land B \Rightarrow A$ $A \land B \Rightarrow B$

$$A \Rightarrow A \lor B$$
 $B \Rightarrow A \lor B$
 $A \lor B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$

$$A \Rightarrow B \Rightarrow A$$
 $(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$

ロト (日) (日) (日) (日)

Inference Rules

• A single inference rule: the modus ponens

$$\frac{A \longrightarrow B}{B}$$
 modus ponens

Many axioms to define the connectives

$$A \Rightarrow B \Rightarrow A \land B$$
 $A \land B \Rightarrow A$ $A \land B \Rightarrow B$

$$A \Rightarrow A \lor B$$
 $B \Rightarrow A \lor B$
 $A \lor B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$

$$A \Rightarrow B \Rightarrow A$$
 $(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$

$$A \lor \neg A$$
 $A \Rightarrow \neg A \Rightarrow B$

40.49.41.41. 1 000

Matural Da

Natural Deduction

17 / 3

A. Demaille

Natural Deduction

17 / 3

Proof Systems

Hilbertian System: Prove $A \Rightarrow A$

Proof Systems

Hilbertian System

• A single inference rule: the modus ponens

$$\frac{A \qquad A \Rightarrow B}{B} \text{ modus ponens}$$

Many axioms to define the connectives

$$A \Rightarrow B \Rightarrow A \land B \qquad A \land B \Rightarrow A \qquad A \land B \Rightarrow B$$

$$A \Rightarrow A \lor B \qquad B \Rightarrow A \lor B$$

$$A \lor B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$$

$$A \Rightarrow B \Rightarrow A \qquad (A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$$

$$\Rightarrow A \lor \neg A \qquad A \Rightarrow \neg A \Rightarrow B$$

<ロ > < @ > < き > くき > き の < @ へ

Natural Deduction

Natural Deduction

Proof Systems

Hilbertian System: Prove $A \Rightarrow A$

$$(A \Rightarrow ((A \Rightarrow A) \Rightarrow A)) \Rightarrow (A \Rightarrow A \Rightarrow A) \Rightarrow A \Rightarrow A \qquad A \Rightarrow (A \Rightarrow A) \Rightarrow A$$

 $(A \Rightarrow A \Rightarrow A) \Rightarrow A \Rightarrow A$

 $A \Rightarrow A \Rightarrow A$

 $A \Rightarrow A$

- Logical Formalisms
- Natural Deduction
 - Syntax
 - Normalization

- Logical Formalisms
- 2 Natural Deduction
 - Syntax
 - Normalization

Syntax Normalization Logical Formalisms Natural Deduction

Deduction

Deduction

A deduction is a tree whose root (A) is the conclusion and whose active leafs (Γ) is the set of hypotheses.

Natural Deduction

Any formula A is a valid hypothesis.

Proof (Demonstration)

A proof is a deduction without hypotheses.

Deduction

Deduction

A deduction is a tree whose root (A) is the conclusion and whose leafs (Γ) is the set of hypotheses.

Any formula A is a valid hypothesis.

Proof (Demonstration)

A proof is a deduction without hypotheses.

Natural Deduction

Logical Formalisms Natural Deduction

Deductions

What's this?

Α

Natural Deduction

Syntax

Deductions

What's this?

Α

Natural Deduction

A deduction of A under the hypothesis A.

22 / 39

Implication

Natural Deduction

Logical Formalisms Natural Deduction

Syntax Normalization

Logical Formalisms Natural Deduction

Syntax Normalization

Implication

$$\begin{array}{ccc}
[A] & \vdots & \vdots \\
\frac{B}{A \to B} \Rightarrow \mathcal{I} & \frac{A \to B}{B} \Rightarrow \mathcal{E}
\end{array}$$

Implication

Deduction theorem, and Modus Ponens.

A. Demaille

Syntax

Logical Formalism

Proving $A \Rightarrow A$ in Natural Deduction

Syntax Normalization

Implication

$\begin{array}{ccc} [A] & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ A \to B \Rightarrow \mathcal{I} & A \to B \\ \hline A \to B \Rightarrow \mathcal{E}$

Deduction theorem, and Modus Ponens. Note the connection with (left) contraction: any number of *A* (including 0) is discharged.

| ロ ト 4 団 ト 4 里 ト 4 里 ト 9 Q C

A. Demaille

TVacarar E

A. Demaille

Natural Deduction

Logical Formalisms Natural Deduction Syntax Normalization 24 /

Logical Formalisms
Natural Deduction

Syntax Normalization

Proving $A \Rightarrow A$ in Natural Deduction

$$\frac{[A]}{A \to A} \Rightarrow \mathcal{I}$$

Conjunction

Conjunction

$$\begin{array}{ccc} \vdots & \vdots & & \vdots \\ \frac{A & B}{A \wedge B} \wedge \mathcal{I} & & \frac{A \wedge B}{A} \wedge l\mathcal{E} & & \frac{A \wedge B}{B} \wedge r\mathcal{E} \end{array}$$

Universal Quantification

$$\frac{A[y/x]}{\forall x \cdot A} \,\forall \mathcal{I} \quad y \notin \text{FV}(hyp(A)) \qquad \frac{\forall x \cdot A}{A[t/x]} \,\forall \mathcal{E}$$

$$\frac{\frac{[A]}{\forall x \cdot A} \, \forall \mathcal{I}}{A \Rightarrow \forall x \cdot A} \Rightarrow \mathcal{I}$$

$$\frac{A \Rightarrow A}{A \Rightarrow A} \Rightarrow \mathcal{I}$$

Universal Quantification

Logical Formalisms
Natural Deduction

Universal Quantification

$$\frac{A[y/x]}{\forall x \cdot A} \,\forall \mathcal{I} \quad y \notin FV(hyp(A)) \qquad \frac{\forall x \cdot A}{A[t/x]} \,\forall \mathcal{E}$$

$$\frac{[A]}{\forall x \cdot A} \forall \mathcal{I}$$

$$A \Rightarrow \forall x \cdot A \Rightarrow \mathcal{I}$$

$$\frac{[A]}{A \Rightarrow A} \Rightarrow \mathcal{I}$$

$$\forall x \cdot (A \Rightarrow A) \quad \forall x \in \mathcal{I}$$

 $\frac{[A]}{\forall x \cdot A} \forall \mathcal{I}$ $A \Rightarrow \forall x \cdot A \Rightarrow \mathcal{I}$ $\frac{[A]}{A \Rightarrow A} \Rightarrow \mathcal{I}$ $\forall x \cdot (A \Rightarrow A) \forall \mathcal{I}$

Natural Deduction

Natural Deduction

 $\frac{A[y/x]}{\forall x \cdot A} \, \forall \mathcal{I} \quad y \not\in \mathrm{FV}(hyp(A)) \qquad \frac{\forall x \cdot A}{A[t/x]} \, \forall \mathcal{E}$

Absurd

$$\frac{\vdots}{A} \perp \mathcal{E}$$

Natural Deduction

Logical Formalisms Natural Deduction

A. Demaille

Logical Formalisms Natural Deduction

Syntax Normalization

Syntax Normalization

Existential Quantification

$$\frac{A[t/x]}{\exists x \cdot A} \exists \mathcal{I} \qquad \frac{\exists x \cdot A \qquad B}{B} \exists \mathcal{E} \quad y \notin FV(B, hyp(B))$$

For elimination, $y \notin hyp(B)$, i.e., not in the hypotheses other than the discharged A.

Negation

Disjunction

$$\begin{bmatrix} A \\ \vdots \\ \frac{\perp}{\neg A} \neg \mathcal{I} & \vdots & \vdots \\ \frac{A}{\neg A} \neg A \\ \end{bmatrix} \neg \mathcal{E}$$

Negation

$$\begin{array}{cccc}
 [A] & \vdots & \vdots \\
 \vdots & & A & \neg A \\
 \frac{\bot}{\neg A} \neg \mathcal{I} & & \frac{A}{\bot} & \neg \mathcal{E}
\end{array}$$

Plus one of these equivalent formulation of the fact that classical negation is involutive.

$$\frac{1}{A \vee \neg A} XM \qquad \frac{\vdots}{A} \neg \neg A \qquad \frac{\neg A}{A} \neg \neg \qquad \frac{B}{A} \qquad \neg B \text{ Contradiction}$$

4□ > 4□ > 4 = > 4 = > = 90

A. Demaille

Natural Deduction

30 / 39

Normalization

- 1 Logical Formalisms
- 2 Natural Deduction
 - Syntax
 - Normalization

←□ → ←□ → ← □ → ← □ → ○ へ ○

Logical Formalisms Natural Deduction

Syntax Normalization

Cut

Cut: Introduction of a connective followed by its elimination.

$$\frac{A \quad B}{A \wedge B} \wedge \mathcal{I}$$

$$\frac{A \wedge B}{A} \wedge I\mathcal{E}$$

Logical Formalisms Natural Deduction Syntax Normalization

Normalization

The normalization process eliminates the cuts.

$$\frac{A \quad B}{A \wedge B} \wedge I \quad \sim \quad A$$

$$\frac{A \wedge B}{A} \wedge I\mathcal{E}$$

Normalizing Conjunctions

$$\frac{A \qquad B}{A \wedge B} \wedge \mathcal{I} \qquad \Rightarrow \qquad A$$

$$\frac{A \wedge B}{A} \wedge I\mathcal{E} \qquad \Rightarrow \qquad A$$

$$\vdots$$

$$\frac{A \qquad B}{A \wedge B} \wedge \mathcal{I} \qquad \Longrightarrow \qquad B$$

$$\frac{B}{B} \wedge r\mathcal{E} \qquad \Longrightarrow \qquad B$$

A. Demaille

Natural Deduction

34

Normalizing Implications

$$\begin{array}{ccc}
[A] & \vdots & \vdots \\
\vdots & B & \vdots \\
A & \overline{A \Rightarrow B} \Rightarrow \mathcal{I} & A \\
\hline
B & \vdots & B \\
\vdots & \vdots & B
\vdots$$

A Demaille

Vatural Deduction

Syntax Normalization

Logical Formalisms Natural Deduction 35 /

Logical Formalisms
Natural Deduction

Syntax

Normalizing Universal Quantifiers

 $\frac{A}{\frac{A}{\forall x \cdot A}} \forall \mathcal{I} \qquad \qquad \vdots \\
\frac{A[t/x]}{A[t/x]} \forall \mathcal{E} \qquad \qquad \Rightarrow \qquad A[t/x]$

x must not be free in the hypotheses, otherwise the reduction would change them.

Normalizing Disjunction

$$\frac{A}{A \vee B} \vee I\mathcal{I} \qquad \vdots \qquad \vdots \qquad A \\
C \qquad C \qquad C \\
\vdots \qquad \vdots \qquad \vdots$$

$$\frac{\vdots}{B} \vee r\mathcal{I} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\
\frac{B}{C} \vee \mathcal{E} \qquad C \qquad C \qquad C \qquad C \qquad C \qquad \vdots$$

Bibliography Notes

- [1] A short (160p.) book addressing all the concerns of this course, and more (especially Linear Logic). Easy and pleasant to read. Now available for free.
- [2] A much more comprehensive book focusing on logic and its connections with computer science. In French.

Bibliography I

J.-Y. Girard, Y. Lafont, and P. Taylor.

Proofs and Types.

Cambridge University Press, 1989.

http:

//www.cs.man.ac.uk/~pt/stable/Proofs+Types.html.

Jean-Yves Girard.

Cours de Logique, Rome, Automne 2004.

http://logica.uniroma3.it/uif/corso/, 2004.

Natural Deduction