MA3101

Analysis III

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Euclidean spaces

1

1 Euclidean spaces

We are familiar with the vector space \mathbb{R}^n , with the standard inner product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \dots + x_n y_n.$$

The standard norm is defined as

$$\|x - y\|^2 = \langle x - y, x - y \rangle = \sum_{k=1}^{n} (x_i - y_i)^2.$$

Exercise 1.1. What are all possible inner products on \mathbb{R}^n ?

Solution. Note that an inner product is a bilinear, symmetric map such that $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$, and $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$. Thus, an product map on \mathbb{R}^n is completely and uniquely determined by the values $\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = a_{ij}$. Let A be the $n \times n$ matrix with entries a_{ij} . Note that A is a real symmetric matrix with positive entries. Now,

$$\langle \boldsymbol{x}, \boldsymbol{e}_j \rangle = x_1 a_{1j} + \dots + x_n a_{nj} = \boldsymbol{x}^\top \boldsymbol{a}_j,$$

where a_j is the j^{th} column of A. Thus,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{a}_1 y_1 + \dots + \boldsymbol{x}^{\top} \boldsymbol{a}_n y_n = \boldsymbol{x}^{\top} A \boldsymbol{y}.$$

Furthermore, any choice of real symmetric A with positive entries produces an inner product.

Theorem 1.1 (Cauchy-Schwarz). Given two vectors $v, w \in \mathbb{R}^n$, we have

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| \leq ||\boldsymbol{v}|| ||\boldsymbol{w}||.$$

MA3101: Analysis III

Proof. This is trivial when w = 0. When $w \neq 0$, set $\lambda = \langle v, w \rangle / ||w||^2$. Thus,

$$0 \le \|\boldsymbol{v} - \lambda \boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 - 2\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \lambda^2 \|\boldsymbol{w}\|^2.$$

Simplifying,

$$0 \le \|\boldsymbol{v}\|^2 - \frac{|\langle \boldsymbol{v}, \boldsymbol{w} \rangle|^2}{\|\boldsymbol{w}\|^2}.$$

This gives the desired result. Clearly, equality holds if and only if $v = \lambda w$.

Theorem 1.2 (Triangle inequality). Given two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have

$$||v + w|| \le ||v|| + ||w||.$$

Proof. Write

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 + 2\langle \boldsymbol{v}, \boldsymbol{w} \rangle + \|\boldsymbol{w}\|^2 \le \|\boldsymbol{v}\|^2 + 2|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| + \|\boldsymbol{w}\|^2.$$

Applying Cauchy-Schwarz gives

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 \le (\|\boldsymbol{v}\| + \|\boldsymbol{w}\|)^2.$$

Equality holds if and only if $v = \lambda w$ for $\lambda \geq 0$.

This allows us to define the standard metric on \mathbb{R}^n , seen as a point set.

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Definition 1.1. For any $\epsilon > 0$, the set

$$B_{\epsilon}(\boldsymbol{x}) = \{ \boldsymbol{y} \in \mathbb{R}^n : d(\boldsymbol{x}, \boldsymbol{y}) < \epsilon \}$$

is called the open ball centred at $\boldsymbol{x} \in \mathbb{R}^n$ with radius ϵ . This is also called the ϵ neighbourhood of \boldsymbol{x} .

Definition 1.2. A set U is open in \mathbb{R}^n if for every $\boldsymbol{x} \in U$, there exists an open ball $B_{\epsilon}(\boldsymbol{x}) \subset U$.

Remark. Every open ball in \mathbb{R}^n is open.

Remark. Both \emptyset and \mathbb{R}^n are open.

Definition 1.3. A set F is closed in \mathbb{R}^n if its complement $\mathbb{R}^n \setminus F$ is open in \mathbb{R}^n .

Remark. Both \emptyset and \mathbb{R}^n are closed.