CSI 5387: Data Mining and Concept Learning Winter 2020

Assignment 2

Submitted By: Deepshi Mediratta (300086013)

1. Data Preprocessing

1.1 Missing Data

A dataset can have missing values due to corruption in the way it was collected. It is important to handle these missing values to achieve successful results. After analyzing the dataset for missing information, significant amount of missing values was found in the columns- Glucose (0.6%), BloodPressure (4.4%), SkinThickness (29.5%), Insulin (48.3%) and BMI (1.4%).

The missing data is handled in the dataset with SciKit library's Simple Imputer model. Wherever we have a '?' in the dataset, the Imputer will replace it with a new value.

I used the strategy 'mean' to replace the value that replaces the null values in the dataset. For example, in the feature 'BloodPressure' the values are replaced with 72.30654, in the feature 'SkinThickness' the values are replaced with 29.1. Similarly, other values are also replaced by the mean.

The following snippet shows a sample of the dataset before replacing missing data-

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	?	33.6	0.627	50	1
1	1	85	66	29	?	26.6	0.351	31	0
2	8	183	64	?	?	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	?	?	25.6	0.201	30	0
6	3	78	50	32	88	31	0.248	26	1
7	10	115	?	?	?	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	?	?	?	0.232	54	1

The following snippet shows the same sample of the dataset after applying SimpleImputer and replacing the missing values with mean.

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6.0	148.0	72.00000	35.00000	154.372796	33.600000	0.627	50.0	1
1	1.0	85.0	66.00000	29.00000	154.372796	26.600000	0.351	31.0	0
2	8.0	183.0	64.00000	29.15342	154.372796	23.300000	0.672	32.0	1
3	1.0	89.0	66.00000	23.00000	94.000000	28.100000	0.167	21.0	0
4	0.0	137.0	40.00000	35.00000	168.000000	43.100000	2.288	33.0	1
5	5.0	116.0	74.00000	29.15342	154.372796	25.600000	0.201	30.0	0
6	3.0	78.0	50.00000	32.00000	88.000000	31.000000	0.248	26.0	1
7	10.0	115.0	72.30654	29.15342	154.372796	35.300000	0.134	29.0	0
8	2.0	197.0	70.00000	45.00000	543.000000	30.500000	0.158	53.0	1
9	8.0	125.0	96.00000	29.15342	154.372796	32.457464	0.232	54.0	1

1.2 Normalization/Standardization

The features in the dataset are numeric, but they are not on the same scale. To achieve this, min-max scaling technique is used to scale the data to a fixed range- 0 to 1. I have used sklearn.preprocessing.MinMaxScaler to achieve this.

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}} (new_{max} - new_{min}) + new_{min}$$

The following snippet shows a sample of the dataset after normalizing to range 0 to 1(Only Features).

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
0	0.352941	0.670968	0.590164	0.304348	0.182474	0.314928	0.234415	0.483333
1	0.058824	0.264516	0.540984	0.239130	0.182474	0.171779	0.116567	0.166667
2	0.470588	0.896774	0.524590	0.240798	0.182474	0.104294	0.253629	0.183333
3	0.058824	0.290323	0.540984	0.173913	0.111111	0.202454	0.038002	0.000000
4	0.000000	0.600000	0.327869	0.304348	0.198582	0.509202	0.943638	0.200000
5	0.294118	0.464516	0.606557	0.240798	0.182474	0.151329	0.052519	0.150000
6	0.176471	0.219355	0.409836	0.271739	0.104019	0.261759	0.072588	0.083333
7	0.588235	0.458065	0.592677	0.240798	0.182474	0.349693	0.023911	0.133333
8	0.117647	0.987097	0.573770	0.413043	0.641844	0.251534	0.034159	0.533333
9	0.470588	0.522581	0.786885	0.240798	0.182474	0.291564	0.065756	0.550000

1.3 Train-Test split

The dataset is partitioned into training dataset and test dataset. The training set contains the classification label and is used for learning. The test set is used to test the model's accuracy. This is done using the method train_test_split provided by the SciKit learn library. The following is the split configuration.

	%	Count
Training Data	75%	576
Test Data	25%	192

2. Model Development

2.1 Single Layer

2.1.1 Training Model

Loss = Binary Crossentropy

Optimizer = Adam

Activation of first layer = linear

Activation of output layer = sigmoid

Epochs = 150

2.1.2 Plotting the Neural Network

Simple Feedforward Network

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 1)	9
dense_2 (Dense)	(None, 1)	2

2.1.3 Printing the weights and bias

The following are the weights and bias of between the input layer and the hidden node-

W ₀ (Bias)	1.0719262
W_1	-0.79294497
W_2	-1.5398409
W_3	1.2884599
W ₄	-0.09530403
W_5	-0.51220816
W_6	-1.2032514
W ₇	-1.0087095
W ₈	-1.2391063

2.1.4 Generating predictions on test set

Threshold = 0.40

If the output from the neural network is greater than 0.40, then the label is 1, otherwise the output is 0.

Accuracy on test set(y_test) is 68.75%

Sample A = [0.176471, 0.219355, 0.409836, 0.271739, 0.104019, 0.261759, 0.072588, 0.083333]

Actual Label = 1

Predicted Label = 0

Sample B = [0.352941, 0.967742, 0.639344, 0.240798, 0.182474, 0.108384, 0.0217768, 0.633333]

Actual Label = 1

Predicted Label = 1

2.1.5 Confusion Matrix

Sensitivity: 66.66 Specificity: 69.91

2.1.6 ROC Curve

2.1.7 Results

Single Layer Perceptron				
Training Accuracy	73.44%			
Test Accuracy	68.75%			
Sensitivity	66.66			
Specificity	69.91			
Area Under the ROC curve	68.29			

2.2 Multi Layer

2.2.1 Training Model

Layer 1, activation = Linear

Layer 2, activation = Linear

Layer 3, activation = Sigmoid

Loss = Binary Cross entropy

Optimizer = Adam

Epoch = 150

Batch size = 10

2.2.2 Plotting the Neural Network

Multi Layer Feedforward Network

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 5)	45
dense_4 (Dense)	(None, 5)	30
dense_5 (Dense)	(None, 1)	6

2.2.3 Printing Weights and bias

Layer 1:

```
Weights = [[-0.8563855    0.07834488    0.38206294 -0.2364078    0.61581093]
[-0.19751102 -0.9974625    -0.6622703    -0.06009922    0.36121586]
[ 0.71295696 -0.13580357    0.14800173    0.4176822    -0.1685529 ]
[-0.4659252    0.13717239    -0.3445492    0.77804404    0.34458876]
[-0.02041052 -0.3151512    0.18509208    0.5075335    -0.6215947 ]
[-0.8696279    -0.7558522    -0.3686173    -0.5291634    -0.45839503]
[ 0.05204249    -0.2361069    -0.21189974    -0.3607502    -0.5237303 ]
[ 0.16519026    -0.256725    -0.5466635    -0.30268672    -0.24682966]]
Biases = [ 0.34506914    0.39925662    0.322645    0.24237785    -0.26647672]
```

Layer 2:

```
Weights = [[-0.18346056 0.98389846 1.010243 0.22751442 0.18854874]
[-0.9517719 0.99827373 0.05728059 0.24928275 -0.7320455 ]
[-1.0846953 0.67326283 0.9004637 0.06737702 -0.09174947]
[-0.23712419 -0.49336272 0.35393205 -0.35010117 -0.4031896 ]
[ 0.41292834 -0.6846582 0.11550495 0.1630262 0.05692496]]
Biases = [-0.27112487 0.3074697 0.26036382 -0.23260203 -0.28498244]
```

Layer 3:

```
Weights = [[ 1.5657389 ]

[-0.88816166]

[-0.86672384]

[ 0.7379403 ]

[ 1.2507896 ]]

Biases = [-0.24494104]
```

2.2.4 Generating predictions on test set

Threshold = 0.6

If the output from the neural network is greater than 0.6, then the label is 1, otherwise the output is 0.

Accuracy on test set(y_test) is 75.52%

Sample A = [0.176471, 0.219355, 0.409836, 0.271739, 0.104019, 0.261759, 0.072588, 0.083333]

Actual Label = 1

Predicted Label = 0

Sample B = [0.352941, 0.967742, 0.639344, 0.240798, 0.182474,

0.108384, 0.0217768, 0.633333]

Actual Label = 1

Predicted Label = 1

2.2.5 Confusion Matrix

Sensitivity: 56.52 Specificity: 86.17

2.2.6 ROC Curve

2.2.7 Results – Multi Layer Perceptron

Multi Layer Perceptron				
Training Accuracy	72.92%			
Test Accuracy	75.52%			
Sensitivity	56.52			
Specificity	86.17			
Area Under the ROC curve	71.35			

2.3 Experiments on Multi Layer Perceptron

I performed some experiments in multi layer perceptron by varying the optimizer, the learning rate and the number of epochs. It was observed that the test accuracy was better with Stochastic Gradient decent as compared to Adam optimizer. The model performed best when the learning rate was 0.01 As the number of epochs increased, the test accuracy was better, but after 100 epoch the test accuracy was almost the same. The following are the results from these experiments.

Optimizer				
	Test Accuracy			
Adam	75.52%			
SGD	76.04%			
Learning	Rate(SGD)			
0.1	75.52%			
0.01	76.04%			
0.001	63.02			
Number of	epochs(and			
SGD=	=0.01)			
50	71.87%			
100	76.04%			
150	76.04%			

2.4 Single Layer VS Multi layer Perceptron

It can be observed that the overall accuracy is better for multi layer perceptron. This can be verified by looking at the test accuracy and area under the ROC curve.

However, the true positive rate for single layer perceptron is better and the false positive rate for multi layer is better.

	Multi Layer	Single Layer
	Perceptron	Perceptron
Training Accuracy	72.92%	73.44%
Test Accuracy	75.52%	68.75%
Sensitivity	56.52	66.66
Specificity	86.17	69.91
Area Under the ROC curve	71.35	68.29
Number of hidden Layers	2	0
Number of nodes in	5	1
hidden layers		
Number of epochs	150	150

3. Model Comparison

3.1 Support Vector Machine

C = 1.0

Kernel = Linear

Degree = 3

Gamma = auto

3.2 Confusion Matrix

Sensitivity: 57.97

Specificity: 82.92

3.3 ROC Curve

ROC Curve for Support Vector Machine

3.4 Results

Support Vector Machine				
Test Accuracy	73.95%			
Sensitivity	57.97			
Specificity	82.92			
Area Under the ROC curve	70.44			

4. Model Evaluation

4.1 Multi-Layer Perceptron VS Support Vector Machine

It can be observed that the overall accuracy is better for multi layer perceptron. This can be verified by looking at the test accuracy and area under the ROC curve.

However, the true positive rate for SVM is better and the false positive rate for multi layer is better.

	Support Vector Machine	Multi-Layer Perceptron
Test Accuracy	73.95%	75.52%
Sensitivity	57.97	56.52
Specificity	82.92	86.17
Area Under the ROC curve	70.44	71.35

ROC Analysis- SVM VS Multi-Layer Perceptron

From the ROC curve, we can clearly see that multi layer performed has slightly higher accuracy than SVM because the area under the curve is higher.

4.2 Best Model

Criterion	Model Name	Value
Test Accuracy	Multi Layer Perceptron	75.52%
Sensitivity	SVM	57.97
Specificity	Multi Layer Perceptron	86.17