confidence interval (for a mean)

- what is a confidence interval?
- conditions
- finding & interpreting

Dr. Mine Çetinkaya-Rundel Duke University A plausible range of values for the population parameter is called a confidence interval.

- If we report a point estimate, we probably won't hit the exact population parameter.
- If we report a range of plausible values we have a good shot at capturing the parameter.

Central Limit Theorem (CLT):

$$\bar{x} \sim N\left(mean = \mu, SE = \frac{\sigma}{\sqrt{n}}\right)$$

approximate 95% CI: x ± 25E

margin of error (ME)

One of the earliest examples of behavioral asymmetry is a preference in humans for turning the head to the right, rather than to the left, during the final weeks of gestation and for the first 6 months after birth. This is thought to influence subsequent development of perceptual and motor preferences. A study of 124 couples found that 64.5% turned their heads to the right when kissing. The standard error associated with this estimate is roughly 4%. Which of the below is **false**?

- (a) A higher sample size would yield a lower standard error.
- (b) The margin of error for a 95% CI for the percentage of kissers who turn their heads to the right is roughly 8%.
- \times (c) The 95% CI for the percentage of kissers who turn their heads to the right is roughly 64.5% \pm 4%.
- (d) The 99.7% CI for the percentage of kissers who turn their heads to the right is roughly $64.5\% \pm 12\%$.

Confidence interval for a population mean: Computed as the sample mean plus/minus a margin of error (critical value corresponding to the middle XX% of the normal distribution times the standard error of the sampling distribution).

$$\bar{x} \pm z^{\star} \frac{s}{\sqrt{n}}$$

Conditions for this confidence interval:

- 1. Independence: Sampled observations must be independent.
 - random sample/assignment
 - if sampling without replacement, n < 10% of population
- 2. Sample size/skew: $n \ge 30$, larger if the population distribution is very skewed.

Second decimal place					
0.07	0.06	0.05	0.04	0.00	Z
0.0003	0.0003	0.0003	0.0003	0.0003	-3.4
0.0004	0.0004	0.0004	0.0004	0.0005	-3.3
0.0005	0.0006	0.0006	0.0006	0.0007	-3.2
0.0008	0.0008	0.0008	0.0008	0.0010	-3.1
0.0011	0.0011	0.0011	0.0012	0.0013	-3.0
0.0015	0.0015	0.0016	0.0016	0.0019	-2.9
0.0021	0.0021	0.0022	0.0023	0.0026	-2.8
0.0028	0.0029	0.0030	0.0031	0.0035	-2.7
0.0038	0.0039	0.0040	0.0041	0.0047	-2.6
0.0051	0.0052	0.0054	0.0055	0.0062	-2.5
0.0068	0.0069	0.0071	0.0073	0.0082	-2.4
0.0089	0.0091	0.0094	0.0096	0.0107	-2.3
0.0116	0.0119	0.0122	0.0125	0.0139	-2.2
0.0150	0.0154	0.0158	0.0162	0.0179	-2.1
0.0192	0.0197	0.0202	0.0207	0.0228	-2.0
0.0244	0.0250	0.0256	0.0262	0.0287	-1.9
0.0307	0.0314	0.0322	0.0329	0.0359	-1.8