

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΣ002, ΜΑΘΗΜΑΤΙΚΑ ΙΙ

ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ

5/7/2017

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:	
ΑΡ. ΤΑΥΤΟΤΉΤΑΣ:	

ΒΑΘΜΟΛΟΓΊΑ

ΑΣΚΗΣΗ 1	ΑΣΚΗΣΗ 2	$ΑΣΚΗΣΗ _3$	ΑΣΚΗΣΗ 4	ΑΣΚΗΣΗ 5	ΣΥΝΟΛΟ

Το εξεταστικό δοκίμιο αποτελείται από 5 ασκήσεις.

ΑΣΚΗΣΗ 1: (α) Να βρεθεί το **εμβαδόν του χωρίου** που περικλείεται από την καμπύλη $y = x^2 - 4x + 3$, την ευθεία y = x - 1 στο διάστημα [0,4]. (B: 2.5)

(β) ί. Χρησιμοποιώντας τους ορισμούς των υπερβολικών συναρτήσεων να αποδειχτούν οι ταυτότητες:

$$\cosh^2 x - \sinh^2 x = 1 \qquad \text{και} \qquad \cosh^2 3x = \frac{1}{2} (1 + \cosh 6x)$$

(B:2)

ίί. Να βρεθεί το εμβαδόν της επιφάνειας που παράγεται από την πλήρη στροφή γύρω από των άξονα των x του τόξου της καμπύλης $y = \cosh x$ από το σημείο με τετμημένη x = 0 έως το σημείο με τετμημένη $x = \ln 4$. (B:2.5)

ΑΣΚΗΣΗ 2: Να **υπολογισθούν** τα πιο κάτω όρια:

(B:1-1.5-2-3)

$$i. \quad \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

$$\text{ii. } \lim_{x\to +\infty} e^{-4x} \left(x + \ln(x) \right)$$

$$\text{iii. } \lim_{x \to 1^+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

$$\text{iv. } \lim_{x\to+\infty}\left(1+\frac{e}{x}\right)^x$$

ΑΣΚΗΣΗ 3: Να εξεταστεί αν τα πιο κάτω γενικευμένα ολοκληρώματα συγκλίνουν ή αποκλίνουν: (B:3-2.5-2)

$$i. \int_{0}^{2} x^{3} \ln x dx$$

ii.
$$\int_{-1}^{+\infty} \frac{1}{(x+1)^5} dx$$

$$\text{iii.} \int_{-\infty}^{\circ} \frac{3}{1-4x} dx$$

ΑΣΚΗΣΗ 4: Να εξεταστεί αν οι πιο κάτω ακολουθίες είναι μονότονες (αύξουσες ή φθίνουσες) και φραγμένες. Στην συνέχεια, να εξεταστεί αν είναι συγκλίνουσες. Αν είναι συγκλίνουσες, να βρείτε το όριο τους: (B:2-2-1.5)

$$i. \qquad \left\{\frac{n}{5n+2}\right\} \qquad \qquad ii. \left\{\frac{\ln(n+5)}{n+5}\right\}$$

$$\text{ii. } \left\{ \frac{\ln(n+5)}{n+5} \right\}$$

itt.
$$\{(-1)^{n+1}+2\}$$

ΑΣΚΗΣΗ 5: (α) Να εξεταστεί αν οι πιο κάτω σειρές συγκλίνουν ή αποκλίνουν. Αν συγκλίνουν, να βρεθεί το άπειρο άθροισμα τους.

$$i. \quad \sum_{k=1}^{\infty} \frac{3}{\sqrt[3]{k}}$$
 (B:1)

$$\text{ii.} \quad \sum_{k=1}^{\infty} \left(\frac{1}{5^{k-1}} + \frac{2^{k+1}}{3^{k+2}} \right) \tag{B:2}$$

iii.
$$\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+1)}$$
 (B:2)

(β) Να εξεταστούν ως προς την σύγκλιση οι σειρές. Σε κάθε περίπτωση, να γραφτεί πιο κριτήριο θα χρησιμοποιηθεί.

$$i. \quad \sum_{k=1}^{\infty} \left(\frac{4+3k}{k+2} \right)^k$$
 (B.1.5)

ú.
$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^5 + 1}}$$
 (B:1.5)

iii.
$$\sum_{k=1}^{\infty} \frac{(k+3)!}{k!3!e^k}$$
 (B:2)

ív.
$$\sum_{k=1}^{\infty} \frac{k^4 + 3k + 1}{2k^2 + 1}$$
 (B:1)

(γ)
$$N\alpha$$
 εξεταστεί αv η σειρά συγκλίνει σχετικά και απόλυτα: $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{2k+1}$.

(B:1.5)

ΠΡΟΧΕΊΡΟ