

SEQUENCE LISTING

<110> Panda, Satchidananda
Hogenesch, John B.
Provincio, Ignacio
Kay, Steve A.
IRM LLC
Uniformed Services University of the Health Sciences

<120> Methods for Treating Circadian Rhythm Phase Disturbances

<130> 021288-001020US

<140> US 10/637,710
<141> 2003-08-08

<150> US 60/402,570
<151> 2002-08-08

<150> US 60/482,384
<151> 2003-06-25

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 2137
<212> DNA
<213> Mus sp.

<220>
<223> mouse melanopsin cDNA

<400> 1
cactcattcc tttgcgcttc attggacatt aaggcgttag cagccaaag agcagctcca 60
ggctggatgg atgagagcgg gcagcagggt gaccaggccg cagggttaag gatggatag 120
agccggaagt ctggggaccg atccctgatc ttccatggc cttagctcct ctgagagcct 180
gagcatggac ttccttcag gaccaagagt cttgtcaagc ttaactcagg atcccagctt 240
cacaaccagt cctgccttc aaggcatttgc aacggcact cagaacgtct ccgtaaagagc 300
ccagcttctc tctgttagcc ccacgacatc tgacatcag gctgctgcct gggtcccctt 360
ccccacagtc gatgtcccag accatgtca ctatacccta ggcacggta tcctgctgg 420
gggactcaca gggatgtctgg gcaatctgac ggtcatctac accttctgca ggaacagagg 480
cctgcggaca ccagcaaaca ttttcatcat caacctcgca gtcagcgact tcctcatgtc 540
agtcacttag gccccggctc tctttgcac cagcctctac aagaagtggc tctttgggaa 600
gacaggttgc gagttctatg cttctgcgg ggctgtcttt ggcatactt ccatgatcac 660
cctgacagcc atagccatgg accgctatct ggtatcaca cgtccactgg ccaccatgg 720
caggggatcc aaaagacgaa cggcactctgt cctgttaggc gtctggctt atgcctggc 780
ctggagtcgt ccaccccttct ttgggtggag tgcctacgtg cccgaggggc tgctgacatc 840
ctgctctgg gactacatga cttcacacc ccagggtcggt gcctacacca tgctgcttt 900
ctgcttcgtc ttcttcctcc cctgtctcat catcatcttgc tgctacatct tcatcttcag 960
ggccatccga gagacaggcc gggcctgtga gggctgcgg ggtccctc tgccggcagag 1020
ggggcagtgg cagcggctgc agagttagtgg gaagatggcc aaggtcgac tgattgtcat 1080
tcttccttc gtgctgtctt gggctcccta ctccactgtg gctctggccttgcctt 1140
atactcgac atcctgacgc cctacatgg ctgggtgcca gccgtcatcg ccaaggcttc 1200
tgccatccac aatcccattt tctacgcccc cactcaccctt aagtacaggg tggccattgc 1260
ccagcacctg cttgccttgg gggcttctt cgggtatca ggccagcgca gccacccctc 1320
cctcagctac cgctctaccc accgctccac attgagcagc cagtcctcag acctcagctg 1380
gatctcttggc cgaaagcgtc aagagtccct gggcttcttgg agtgaagtgg gctggacaga 1440
cacagaaaca accgctgtcc ggggagctgc ccagcaagca agtggacagt cttctgcag 1500

tcagaaccta gaagatggag aactcaaggc ctcttccagc ccccaggtac agagatctaa 1560
 gactccaaag gtgcctggac ccagtacctg ccccccattg aaaggacagg gagccaggcc 1620
 aagtgccta aggggtgacc agaaaggcag gcttgctgtg tgcacaggcc ttcagatgt 1680
 tccccatccc catacatccc agttccct tgcttccta gaggatgtg tgactctcag 1740
 acatctgttag cagggtctaa gtatgatctg tatctagggg aatatctgca tggactgtg 1800
 tagctctgcg catgacatgc tgtcagctat gtttaccat atgtatatgt agagatgca 1860
 tataacttat gtgccttga agatatgtgg cctacagcag agaacaactc atgcgtgtgt 1920
 ggaccatgtt cctggcatat atgcctctg tcactgtat gcctctgtgt tgggtgggtg 1980
 acagagtgtg atgggtttca cctctctgcg cgggtttga tgctggcaca acacggggaa 2040
 gggagctgca agccatgtac tagctactg ccatggcct tgctcaaga tgtcaccgag 2100
 gagaacactt gtagctatta aaagaaggcc agctgtc 2137

<210> 2
 <211> 521
 <212> PRT
 <213> Mus sp.

<220>
 <223> mouse melanopsin

<400> 2
 Met Asp Ser Pro Ser Gly Pro Arg Val Leu Ser Ser Leu Thr Gln Asp
 1 5 10 15

 Pro Ser Phe Thr Thr Ser Pro Ala Leu Gln Gly Ile Trp Asn Gly Thr
 20 25 30

 Gln Asn Val Ser Val Arg Ala Gln Leu Leu Ser Val Ser Pro Thr Thr
 35 40 45

 Ser Ala His Gln Ala Ala Ala Trp Val Pro Phe Pro Thr Val Asp Val
 50 55 60

 Pro Asp His Ala His Tyr Thr Leu Gly Thr Val Ile Leu Leu Val Gly
 65 70 75 80

 Leu Thr Gly Met Leu Gly Asn Leu Thr Val Ile Tyr Thr Phe Cys Arg
 85 90 95

 Asn Arg Gly Leu Arg Thr Pro Ala Asn Met Phe Ile Ile Asn Leu Ala
 100 105 110

 Val Ser Asp Phe Leu Met Ser Val Thr Gln Ala Pro Val Phe Phe Ala
 115 120 125

 Ser Ser Leu Tyr Lys Lys Trp Leu Phe Gly Glu Thr Gly Cys Glu Phe
 130 135 140

 Tyr Ala Phe Cys Gly Ala Val Phe Gly Ile Thr Ser Met Ile Thr Leu
 145 150 155 160

 Thr Ala Ile Ala Met Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu Ala
 165 170 175

 Thr Ile Gly Arg Gly Ser Lys Arg Arg Thr Ala Leu Val Leu Leu Gly
 180 185 190

 Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly Trp
 195 200 205

Ser Ala Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp Tyr
 210 215 220

 Met Thr Phe Thr Pro Gln Val Arg Ala Tyr Thr Met Leu Leu Phe Cys
 225 230 235 240

 Phe Val Phe Phe Leu Pro Leu Leu Ile Ile Ile Phe Cys Tyr Ile Phe
 245 250 255

 Ile Phe Arg Ala Ile Arg Glu Thr Gly Arg Ala Cys Glu Gly Cys Gly
 260 265 270

 Glu Ser Pro Leu Arg Gln Arg Arg Gln Trp Gln Arg Leu Gln Ser Glu
 275 280 285

 Trp Lys Met Ala Lys Val Ala Leu Ile Val Ile Leu Leu Phe Val Leu
 290 295 300

 Ser Trp Ala Pro Tyr Ser Thr Val Ala Leu Val Ala Phe Ala Gly Tyr
 305 310 315 320

 Ser His Ile Leu Thr Pro Tyr Met Ser Ser Val Pro Ala Val Ile Ala
 325 330 335

 Lys Ala Ser Ala Ile His Asn Pro Ile Ile Tyr Ala Ile Thr His Pro
 340 345 350

 Lys Tyr Arg Val Ala Ile Ala Gln His Leu Pro Cys Leu Gly Val Leu
 355 360 365

 Leu Gly Val Ser Gly Gln Arg Ser His Pro Ser Leu Ser Tyr Arg Ser
 370 375 380

 Thr His Arg Ser Thr Leu Ser Ser Gln Ser Ser Asp Leu Ser Trp Ile
 385 390 395 400

 Ser Gly Arg Lys Arg Gln Glu Ser Leu Gly Ser Glu Ser Glu Val Gly
 405 410 415

 Trp Thr Asp Thr Glu Thr Thr Ala Ala Trp Gly Ala Ala Gln Gln Ala
 420 425 430

 Ser Gly Gln Ser Phe Cys Ser Gln Asn Leu Glu Asp Gly Glu Leu Lys
 435 440 445

 Ala Ser Ser Ser Pro Gln Val Gln Arg Ser Lys Thr Pro Lys Val Pro
 450 455 460

 Gly Pro Ser Thr Cys Arg Pro Met Lys Gly Gln Gly Ala Arg Pro Ser
 465 470 475 480

 Ser Leu Arg Gly Asp Gln Lys Gly Arg Leu Ala Val Cys Thr Gly Leu
 485 490 495

 Ser Glu Cys Pro His Pro His Thr Ser Gln Phe Pro Leu Ala Phe Leu
 500 505 510

 Glu Asp Asp Val Thr Leu Arg His Leu
 515 520

<210> 3
<211> 2284
<212> DNA
<213> Homo sapiens

<220>
<223> human melanopsin cDNA

<400> 3
cgcacacagg agaaaggcgc gggtaggcta agcagggggtg ctgaggatgg aggaaagtgg 60
ggaggctgag cacagctgaa gtcctgagct ccctgtgccc ttgacttctc tggggctcg 120
agcaaggacc atcccaactc aggtgaacc ctccttcggg gccaagagtc cccggccagcc 180
caacccaaga gcccagctgc atggccaccc cagcaccacc cagctggtgg gacagctccc 240
agagcagcat ctccagcctg ggccggcttc catccatcag tcccacagca cctgggactt 300
gggctgctgc ctgggtcccc ctcccccacgg ttgatgttcc agaccatgcc cactataccc 360
tgggcacagt gatcttgctg gtgggactca cggggatgtc gggcaacctg acggtcatct 420
ataccttctg caggagcaga agcctccgga cacctgccaa catgttcatc atcaacctcg 480
cggtcagcga ctccctcatg tccttcaccc agggccctgt ctcttcacc agtagcctct 540
ataaggcagt gctcttggg gagacaggct gcgagttcta tgccttctgt ggagctctct 600
ttggcatttc ctccatgatc accctgacgg ccatcgccct ggaccgctac ctggtaatca 660
cacgcccgt ggcacacccctt ggtgtggcgt ccaagaggcg tgcggcattt gtccctgctgg 720
gctttggct ctatgccctg gcctggagtc tgcaccctt ctccggctgg agcgcctacg 780
tgcccgaggg gttgtgaca tcctgctcct gggactacat gagtttcacg cccggccgtgc 840
gtgcctacac catgcttctc tgctgcttcg tgttcttcct ccctctgtt atcatcatct 900
actgctacat ctcatcttc agggccatcc gggagacagg acgggccttc cagacccctcg 960
gggcctgcaa gggcaatggc gagtccctgt ggcagcggca gcccgtcag agcgagtgc 1020
agatggccaa gatcatgctg ctggtcatcc tccttctgt gctctctgg gctccctatt 1080
ccgctgtggc cctggggcc tttgctgggt acgcacacgt cctgacaccc tacatgagct 1140
cggtgccagc cgtcatcgcc aaggcctctg caatccacaa ccccatcatt tacggccatca 1200
cccaccccaa gtacagggtg gccattgccc agcacctgcc ctgcctgggg gtgtgtctgg 1260
gtgtatcacg ccggcacagt cggccctacc ccagctaccg ctccaccac cgctccacgc 1320
tgaccagcca cacctccaaac ctcaagctgga tctccatacg gaggcggccag gagtccctgg 1380
gctcggagag tgaggtggc tggacacacaca tggaggcagc agctgtgtgg ggagctgccc 1440
agcaagcaaa tggcgggtcc ctctacggtc aggtctggc ggacttggaa gccaaggcac 1500
ccccccagacc ccagggacac gaagcagaga ctccaggggaa gaccaagggg ctgatcccc 1560
gccaggaccc caggatgtag gacgcccact ggctctccct ttcttctgag acacatccag 1620
cccccccaag tctccctcat atacacagac ccaggattat gctgtgagcc tgcaggctt 1680
ggaagtggcc ctgtcaccctg tgctgcacgg gattcacage cccagccca tggccctct 1740
ccacacctca aaactctgc cccataacgt cctccgcattt cactttccag ctcagcagcc 1800
gcacccgagg ctcagcctga ggggtgtgtg cccaggccct cccacttccc gagttgtctg 1860
cctctctca aatgtgtgt gctgcaattt tccaggcgat gacaatgtg atggctccag 1920
agaacacacc agctattt gacccctgtc cccaggctg ggcctgtcac tggcatagga 1980
aggccagccc cgcatctccc actgccaaca gctgaagccg agcacagacc tcccttgca 2040
cgctggaaaca gttactcacc tggcttctt tccccctgt taccgttcca ctgtggccca 2100
cattcttgcg cacgcgggca tttgcagca cgctctcgcg tagttaccta tctgaatgca 2160
caccaagcac atgcgtgcac actctgcgtc tggattcat ttcatgttagt ggtctaagct 2220
cctcccaaggc ctgtgtggat ctgacagggat ataggaaaat aaaaagcggaa gaaggtgtct 2280
tcag 2284

<210> 4
<211> 478
<212> PRT
<213> Homo sapiens

<220>
<223> human melanopsin

<400> 4
Met Asn Pro Pro Ser Gly Pro Arg Val Pro Pro Ser Pro Thr Gln Glu
1 5 10 15

Pro Ser Cys Met Ala Thr Pro Ala Pro Pro Ser Trp Trp Asp Ser Ser
 20 25 30

 Gln Ser Ser Ile Ser Ser Leu Gly Arg Leu Pro Ser Ile Ser Pro Thr
 35 40 45

 Ala Pro Gly Thr Trp Ala Ala Ala Trp Val Pro Leu Pro Thr Val Asp
 50 55 60

 Val Pro Asp His Ala His Tyr Thr Leu Gly Thr Val Ile Leu Leu Val
 65 70 75 80

 Gly Leu Thr Gly Met Leu Gly Asn Leu Thr Val Ile Tyr Thr Phe Cys
 85 90 95

 Arg Ser Arg Ser Leu Arg Thr Pro Ala Asn Met Phe Ile Ile Asn Leu
 100 105 110

 Ala Val Ser Asp Phe Leu Met Ser Phe Thr Gln Ala Pro Val Phe Phe
 115 120 125

 Thr Ser Ser Leu Tyr Lys Gln Trp Leu Phe Gly Glu Thr Gly Cys Glu
 130 135 140

 Phe Tyr Ala Phe Cys Gly Ala Leu Phe Gly Ile Ser Ser Met Ile Thr
 145 150 155 160

 Leu Thr Ala Ile Ala Leu Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu
 165 170 175

 Ala Thr Phe Gly Val Ala Ser Lys Arg Arg Ala Ala Phe Val Leu Leu
 180 185 190

 Gly Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly
 195 200 205

 Trp Ser Ala Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp
 210 215 220

 Tyr Met Ser Phe Thr Pro Ala Val Arg Ala Tyr Thr Met Leu Leu Cys
 225 230 235 240

 Cys Phe Val Phe Phe Leu Pro Leu Leu Ile Ile Ile Tyr Cys Tyr Ile
 245 250 255

 Phe Ile Phe Arg Ala Ile Arg Glu Thr Gly Arg Ala Leu Gln Thr Phe
 260 265 270

 Gly Ala Cys Lys Gly Asn Gly Glu Ser Leu Trp Gln Arg Gln Arg Leu
 275 280 285

 Gln Ser Glu Cys Lys Met Ala Lys Ile Met Leu Leu Val Ile Leu Leu
 290 295 300

 Phe Val Leu Ser Trp Ala Pro Tyr Ser Ala Val Ala Leu Val Ala Phe
 305 310 315 320

 Ala Gly Tyr Ala His Val Leu Thr Pro Tyr Met Ser Ser Val Pro Ala
 325 330 335

Val Ile Ala Lys Ala Ser Ala Ile His Asn Pro Ile Ile Tyr Ala Ile
340 345 350

Thr His Pro Lys Tyr Arg Val Ala Ile Ala Gln His Leu Pro Cys Leu
355 360 365

Gly Val Leu Leu Gly Val Ser Arg Arg His Ser Arg Pro Tyr Pro Ser
370 375 380

Tyr Arg Ser Thr His Arg Ser Thr Leu Thr Ser His Thr Ser Asn Leu
385 390 395 400

Ser Trp Ile Ser Ile Arg Arg Arg Gln Glu Ser Leu Gly Ser Glu Ser
405 410 415

Glu Val Gly Trp Thr His Met Glu Ala Ala Ala Val Trp Gly Ala Ala
420 425 430

Gln Gln Ala Asn Gly Arg Ser Leu Tyr Gly Gln Gly Leu Glu Asp Leu
435 440 445

Glu Ala Lys Ala Pro Pro Arg Pro Gln Gly His Glu Ala Glu Thr Pro
450 455 460

Gly Lys Thr Lys Gly Leu Ile Pro Ser Gln Asp Pro Arg Met
465 470 475

<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer a

<400> 5
caggagcaag gtgagatgac aggag 25

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer b

<400> 6
aggatggat agagccgaa gtctg 25

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer c

<400> 7		
tcaagccaca gaggatacta gcagg		25
<210> 8		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Primer d		
<400> 8		
gatgatctgg acgaagagca tcagg		25
<210> 9		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Primer e		
<400> 9		
actgaggact gacactgaag cctgg		25
<210> 10		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Primer f		
<400> 10		
cagtgtcagg cctagcggga agaga		25
<210> 11		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:quantitative		
RT-PCR arylalkylamine N-acetyltransferase (AA-NAT)		
specific forward primer		
<400> 11		
cagccccccag gacaacac		18
<210> 12		
<211> 21		
<212> DNA		
<213> Artificial Sequence		

<220>

<223> Description of Artificial Sequence:quantitative
RT-PCR arylalkylamine N-acetyltransferase (AA-NAT)
specific reverse primer

<400> 12

ggttccccag cttcagaagt g

21