Point at Infinity:

In complex variable theory, infinity is regarded as a single point, and behaviour in its neighbourhood is discussed after making a change of variable from z to $w = \frac{1}{z}$. This transformation has the effect that, for example, z = -R, with R large, lies in the w-plane close to z = +R, thereby among other things influencing the values computed for derivatives. An elementary consequence is that entire functions, such as z or e^z , have singular points at $z = \infty$. As a trivial example, note that at infinity, the behaviour of z is identified as that of $\frac{1}{w}$ as $w \to 0$, leading to the conclusion that z is singular there.