Requirements

1. Functional Requirements

ID	Requirement	Description	Priority
FR1	User registration	Allow farmers, technicians, and admin-	High
		istrators to create an account using	
		email or third-party login providers.	
FR2	Authentication and	Provide secure login with differentiated	High
	access control	access levels based on user roles.	
FR3	Continuous data in-	Incorporate weather data in near real	High
	gestion	time from open or authorized sources,	
		ensuring constant availability.	
FR4	Distributed data stor-	Store and access climate and agricul-	High
	age	tural data efficiently from any location	
		with low latency.	
FR5	Weather data queries	Enable users to consult and visualize	High
		current and historical weather data rel-	
		evant to their agricultural zone.	
FR6	Climate risk predic-	Offer reliable predictions about	High
	tion	droughts, frosts, or heavy rainfall to	
		support preventive decision-making.	
FR7	Agricultural recom-	Generate personalized recommenda-	Medium
	mendations	tions for planting, irrigation, and fer-	
TID o		tilization based on local microclimates.	3.5.31
FR8	Report generation	Allow users to create customized re-	Medium
		ports for farmers and institutions to	
ED 0		support strategic decisions.	
FR9	Administrative panel	Provide administrative tools to manage	High
		users, roles, and global system statis-	
		tics.	

2. Non-Functional Requirements

ID	Requirement	Description	Priority
NFR1	Performance	The system must respond to queries and pre-	High
		dictions within acceptable times for the ex-	
		pected data volumes.	
NFR2	Horizontal scalabil-	Must support efficient scaling as the number	High
	ity	of users or data ingestion volume increases.	
NFR3	High availability	Must minimize downtime through automatic	High
		recovery mechanisms, ensuring operational	
		continuity.	
NFR4	Multi-region access	Must provide reasonable load times to ge-	Medium
		ographically distributed users, regardless of	
		physical location.	
NFR5	Interoperability	Must integrate with external weather and	Medium
		agricultural data sources using standardized	
		protocols.	
NFR6	Usability	The interface should be intuitive, responsive,	Medium
		and usable on various devices, even with lim-	
31775-		ited connectivity.	3.6.31
NFR7	Maintainability	The system should have a modular and well-	Medium
		documented architecture to support updates	
		and scaling.	

3. Prioritization Strategy — Applied Criteria

- Impact on the end user: Requirements that directly affect the farmer's or institution's ability to make critical decisions are marked high.
- Operational dependencies: Requirements that are prerequisites for other functions (e.g., authentication before access) are rated high.
- Expected frequency of use: Frequently used features (like queries or forecasts) are prioritized over occasional ones (like reporting).
- Strategic value: Features that support the business model or provide competitive advantage are prioritized.
- Incremental benefit vs. complexity: Important but less urgent or more complex features are marked as medium to be planned in later stages.

Priority levels (High or Medium) result from evaluating these criteria collectively with the development team and potential pilot users.

4. Performance and Capacity Analysis

System Dimensioning Assumptions

- Registered users: 2,000 in year one.
- Peak concurrent users: 500 (25%).
- Data sources: 1,200 sensors / 1 reading per minute \rightarrow 1.7M records/day.
- Peak usage windows: 5:00–8:00 AM and 6:00–9:00 PM.
- Rural limitations: 2–5 Mbps connections, unstable latencies.

Target Metrics

Target Metric	Value	Source of Estimate
Response latency (p95)	3 seconds	Based on rural bandwidth tests +
		UI load tolerance for 150 KB re-
		sponses.
Response latency (p99)	5 seconds	Ensures smooth UX for almost all
		users during peak hours.
Data update delay	2 minutes	1 min of emission + 1 min of in-
		gestion/processing.
Ingestion throughput	2,000 rec/s sus-	Derived from 1.7M daily recs \times
	tained $(6,000)$	peak load factor \times 3.
	peak)	
Availability	99.5% (3.6	Balanced cost-benefit for mid-tier
	h down-	infrastructure.
	time/month)	
Payload size	150 KB	Suitable for 3G/4G connections
		to ensure ; 0.5s load.
Scalability	Double capacity	Tested via auto-provisioning in
	in ; 1 hour	pilot environment.

Source of Numbers

- Demographic and usage patterns came from interviews with local agricultural associations and two pilot tests (n 50 users).
- Network performance was measured with tools like Speedtest in three rural municipalities.
- \bullet Peak values include safety factors $\times 3-5$ over observed averages to cover climate emergency scenarios and system growth.
- These metrics will be reviewed semiannually based on production monitoring and adjusted as system adoption increases.

Sizing Methodology

• Anticipated volume: 2,000 accounts in the first year, with peaks of 500 concurrent users during planting season.

- Sensors/weather sources: 1,200 stations (owned or open) sending 1 data/minute 1.7 million records/day.
- Usage patterns: Most frequent queries: 05:00–08:00 and 18:00–21:00 (day planning and alert verification). On average, a user executes 3 queries per session.
- Limitations: Rural connectivity: 2–5 Mbps links and unstable latencies.