Aula 02

Algoritmo universal de compressão

Existe algum algoritmo sem perdas capaz de comprimir qualquer arquivo?

Algoritmo universal de compressão

Existe algum algoritmo sem perdas capaz de comprimir qualquer arquivo?

Algoritmo universal de compressão

Porquê não é possível?

Se A e B, dois arquivos diferentes, são comprimidos por um algoritmo que os reduz a 50% do tamanho original para os arquivos C e D

C e D podem ser iguais?

X arquivos possíveis \rightarrow 50% de compressão \rightarrow Y saídas possíveis

Entropia da informação

Claude Shannon, 1948, "A Mathematical Theory of Communication"

$$\mathrm{H}(X) = -\sum_{i=1}^n \mathrm{P}(x_i) \log \mathrm{P}(x_i)$$

X é uma variável aleatória discreta com valores possíveis $(x_1, ..., x_n)$ e probabilidades $P(x_1), ..., P(x_n)$

Entropia da informação

Ex.:

A = (aaaaaaaaaabcde)

 $P(A) = \{0,75; 0,0625; 0,0625; 0,0625; 0,0625\} \rightarrow H(A) = 1,3$

B = (aaaabbbbccccddee)

 $P(B) = \{0,25; 0,25; 0,25; 0,125; 0,125\} \rightarrow H(B) = 2,25$

Taxa de compressão e Fator de Compressão

Fator de compressão = tamanho descomprimido / tamanho comprimido

Ex.: 10 MB/2 MB = $5 \rightarrow 5$:1 (5 para 1) (maior é melhor)

Taxa de compressão = tamanho comprimido / tamanho descomprimido

Ex.: 2 MB/10 MB = $0.2 \rightarrow$ comprimido tem 20% do tamanho do original (menor é melhor)

1 - Taxa = espaço economizado (1 - 0,2 = 0,8 \rightarrow 80% de economia de espaço)

Lei dos rendimentos decrescentes

(diminishing returns)

