SAIPRASAD LAXMESHWAR

RNA.4 RNA.12 RNA.EOT RNA.EF

1 7425 4248807	14 112132	99	84	52	109	81	5	5	5	655330
634536 288194 2 12101 4429425		91	123	95	75	113	57	123	44	40620
538635 637056 3 3 4178 4621191		113	49	95	107	116	5	5	5	571148
661346 5 3 4 6490 4794631	735945 558829 10 146457	43	64	109	80	88	48	77	33	1041941
	744463 582301	99	104	67	48	120	94	90	30	660410
738756 3731527	338946 242861				96	65	73	114	29	1157452
6 11785 3882456 1086852 5	5 5	66 5	104	121						
7 11620 4747333 1034008 275095	12 177261 214566 635157	78 7	57	113	118	107	84	80	28	325694
8 7335 4405941 72050 787295 3	11 216176 70605 506296	119	112	80	127	45	96	53	39	641129
9 10480 4608464		93	83	55	102	97	122	39	45	591441
10 6681 4455329	12 98200	55	68	72	127	81	125	43	30	1151206
11 4437 4265042		103	124	111	74	53	123	101	33	1023123
103190 731929 4 12 6052 4130219		75	49	93	52	46	46	59	45	137712
1122999 561438 13 9279 4116937	63145 806204 13 203003	4 97	101	66	53	95	55	104	26	936444
536969 5 14 5638 4321603	5 5 14 141110	120	61	64	51	78	90	113	23	392976
884322 586834 :	182775 782154		122	106	105				36	1133727
15 11507 4165603 1111871 421304	437544 124609					88	111	111		
	671490 135145	117	53	50	80	120	66	86	34	614951
17 10843 4165219 721460 5	10 197640 5 5	86	105	70	86	83	87	47	33	900099
18 8476 4466885 230993 457882	14 163276 318363 256415	53	101	50	95	112	97	68	27	1145310
19 6599 4448466		53	124	62	76	57	46	93	26	506756
20 4845 4436025	10 111819	115	121	63	127	95	124	93	42	1080499
21 5925 4031637		86	109	118	119	55	103	84	32	169624
786017 669076 1 22 9952 4994729	531187 282524 10 109023	84	77	67	81	117	68	42	32	1135200
572747 5 23 7961 4595487	5 5 14 94733	45	92	103	104	40	115	93	33	293380
440576 53098 24 7136 4625248	18292 187341	70	102	76	58	111	95	58	25	993940
992652 96482	334897 762760									
	360015 753383	62	91	116	128	41	70	106	43	243433
26 6648 4529290 540654 5	15 109871 5 5	48	112	99	85	59	87	78	35	955296
27 11032 4052583	15 94503 734863 372837	41	54	128	64	71	89	87	34	766355
28 5234 4906158		61	120	113	75	88	114	99	43	486467
29 6038 4763261	13 126721	51	118	98	42	93	53	83	45	285374
186657 5 30 5846 4753531		120	72	117	126	45	95	49	38	426136
247777 767015 3 31 5383 3999388	377123 315150 15 182262	96	49	59	88	62	58	81	41	1194301
	124250 244049 10 201114	57	110	128	96	69	105	72	26	557708
287714 623587	66891 35044	٠.			33	03	103	, -	20	227.00

> HCV_lr = select(HCV,RNA.12,RNA.EF,RNA.EOT,RNA.Base)
> #Multiple Regression
> View(HCV)

> vlew(HCV)
> # Performing multiple regression on HCV dataset
> fit <- lm(Survivorship~RNA.EF+RNA.EOT+RNA.Base+RNA.12,data=HCV)
> #show the results
> summary(fit)

Im(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12, data = HCV)

Residuals:

Min 10 Median 30 Max -0.55458 -0.08468 -0.05481 0.13407 0.59337

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.068e+00 1.453e-02 73.482 < 2e-16 ***
RNA.EF 1.451e-07 2.682e-08 5.409 7.47e-08 ***
RNA.EOT -1.687e-06 2.697e-08 -62.531 < 2e-16 ***
RNA.Base -1.384e-08 1.737e-08 -0.797 0.426
RNA.12 1.224e-07 2.467e-08 4.963 7.80e-07 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2287 on 1380 degrees of freedom
Multiple R-squared: 0.7703, Adjusted R-squared: 0.7696
F-statistic: 1157 on 4 and 1380 DF, p-value: < 2.2e-16
> #Summary has three sections. Section1: How well does the model fit the data (before Coefficient s). Section2: Is the hypothesis supported? (until sifnif codes). Section3: How well does data fit the model (again).
> # Useful Helper Functions
> coefficients(fit)
(Intercept) RNA.EF RNA.EOT RNA.Base RNA.12
1.067746e+00 1.450885e-07 -1.686741e-06 -1.383850e-08 1.224221e-07
> #install.packages("GGally", lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
> library(GGally)
> ggpairs(data=HCV_lr, title="HCV Data")
```

HCV Data

> confint(fit,level=0.95) 2.5 % 97.5 % (Intercept) 1.039242e+00 1.096251e+00 RNA.EF 9.246772e-08 1.977093e-07 RNA.EOT -1.739656e-06 -1.633825e-06 RNA.Base -4.791802e-08 2.024102e-08 RNA.12 7.403556e-08 1.708087e-07											
RNA.12 7.403556e-08 > # Predicted Values	1.7000076-07										
> # Predicted values > fitted(fit)											
>	2	4		6	7						
8 9	3	4	3	O	/						
	-0.100425497	0.046202140	0.978951116	1 051701014	0 027152724	0 602					
599640 0.463088785	-0.100423497	-0.046202140	0.9/0931110	1.051721814	0.827153724	0.603					
	12	12	1.1	15	1.0						
10 11	12	13	14	15	16						
17 18	1 145024724	1 054700333	0 020227120	0 20200202	0 043530500	1 055					
0.700788986 0.395451379	1.145034724	1.054780232	0.939337139	0.383690303	-0.043539588	1.055					
283193 0.608158926	24										
19 20	21	22	23	24	25						
26 27											
0.491963928 0.527928690	0.292325027	1.052029748	1.066513908	0.611586573	0.567963654	1.054					
519349 -0.037988796											

```
29
                                             30
                                                                              32
                                                                                              33
                                                             31
                                                                                                              34
35 36
-0.167439567 1.063790063 0.565364837 0.880695657 1.028626040 -0.011389086 0.506226136 0.011
654539 0.213029450
                             38
                                             39
                                                             40
                                                                              41
                                                                                              42
 0.597629258 0.737527908 1.005760078
                                                0.793516211 0.267095793 0.588765861 0.794159304 -0.016
029038 1.009401378
> residuals(fit)
                                              3
                                                               4
-0.093951141 0.418416934 0.100425497 0.046202140
                                                                 0.021048884 -0.051721814
                                                                                                  0.172846276 0.396
400360 0.536911215
            10
                                             12
                                                             13
                                                                              14
 0.299211014 - 0.395451379 - 0.145034724 - 0.054780232  0.060662861 - 0.383690303  0.043539588 - 0.055
283193 0.391841074
            19
                                             21
                                                             22
                                                                              23
0.432036346 -0.054
519349 0.037988796
            28
                                             30
                                                             31
                                                                              32
                                                                                              33
 35 36
0.167439567 -0.063790063 0.434635163 0.119304343 -0.028626040 0.011389086 0.493773864 -0.011
654539 -0.213029450
37
                             38
                                             39
                                                             40
                                                                              41
                                                                                              42
 45
0.402370742 0.262472092 -0.005760078 0.206483789 -0.267095793
                                                                                  0.411234139
                                                                                                  0.205840696 0.016
029038 -0.009401378
            46
                                             48
                                                             49
                                                                              50
                                                                                              51
 53 54
0.356215266 -0.022662356 -0.237126633 0.073368272 0.087265310 0.113395942 0.427698389 -0.145
781416 -0.032229682
            55
                             56
                                             57
                                                             58
                                                                              59
                                                                                              60
                                                                                                              61
               63
-0.058694243 -0.077549428 0.193079578 -0.201812452 -0.020263805
                                                                                  0.004195303
                                                                                                 0.353194003 0.241
011417 -0.389892131
            64
                                             66
                                                             67
                                                                              68
                                                                                              69
 71 72
0.058767072 0.048147108 0.170029600 0.452182189 -0.010218911 0.199892619 -0.483167144 0.429
041016 0.265917721
                             74
                                             75
                                                             76
                                                                              77
                                                                                              78
 0.478695135 -0.498119095 -0.377537795 0.147279156
                                                                 0.341947206 -0.416317016 0.203756691 0.515
857719 0.178512111
               90
 0.157948751 -0.439036477 0.224930967 -0.412856208 0.349722377 -0.047544726 -0.443753655 -0.294
019820 0.399434327
                                             93
                                                                              95
 0.511166604 -0.202967827 -0.058981268 0.128043944 -0.279917451 -0.061377944 0.100981119 0.090
908069 -0.057401881
> #Anova Table
> anova(fit)
Analysis of Variance Table
Response: Survivorship
                Df Sum Sq Mean Sq F value Pr(>F)
1 29.323 29.323 560.5988 < 2.2e-16 ***
1 211.422 211.422 4041.9169 < 2.2e-16 ***
1 0.039 0.039 0.7417 0.3893
               Df
RNA.FF
RNA.EOT
RNA.Base
                                         24.6336 7.796e-07 ***
                               1.289
                     1.289
RNA.12
Residuals 1380 72.184
                               0.052
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > vcov(fit)
                  (Intercept)
                                         RNA.EF
                                                         RNA.EOT
                                                                         RNA.Base
               2.111404e-04 -8.223385e-11 -8.432992e-11 -1.771662e-10 -7.084659e-11 -8.223385e-11 7.195422e-16 -2.398368e-16 -4.605975e-18 -1.929385e-16 -8.432992e-11 -2.398368e-16 7.276145e-16 -5.055297e-18 -1.804488e-16 -1.771662e-10 -4.605975e-18 -5.055297e-18 3.018065e-16 5.574184e-18 -7.084659e-11 -1.929385e-16 -1.804488e-16 5.574184e-18 6.084031e-16
(Intercept)
RNA.EF
RNA.EOT
RNA.Base
RNA.12
> cov2cor(vcov(fit))
                Intercept) RNA.EF RNA.EOT RNA.Base RNA.12
1.0000000 -0.210977843 -0.21515200 -0.701828333 -0.19766857
-0.2109778 1.000000000 -0.33146446 -0.009883919 -0.29160511
-0.2151520 -0.331464455 1.00000000 -0.010787772 -0.27121123
-0.7018283 -0.009883919 -0.01078777 1.000000000 0.01300832
               (Intercept)
(Intercept)
RNA.EF
RNA.EOT
RNA.Base
                -0.1976686 -0.291605109 -0.27121123 0.013008324 1.00000000
RNA.12
> temp <- influence.measures(fit)</pre>
```

```
temp
Influence measures of
                  lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12,
                                                                                                                                        data = HCV) :
       0.009317 -2.30e-03 -7.89e-03
0.011375 -7.56e-02 8.17e-02
0.022491 -1.23e-03 -2.41e-02
                                                                                             -0.01974 1.005
                                                                                                                       7.80e-05 0.00230
                                                                                               0.13596 0.997
0.03375 1.009
                          -7.91e-02
                                                                                                                       3.69e-03 0.00545
2.28e-04 0.00584
        0.070830
        0.000257
                           1.01e-02
       -0.007665
                           1.34e-03
                                             0.006796
                                                              6.85e-03
                                                                              1.60e-03
                                                                                               0.01308 1.008
                                                                                                                       3.43e-05 0.00416
                          -1.24e-02
3.24e-03
                                                                              3.97e-02
2.59e-03
                                                                                              0.03979 1.165
-0.01422 1.007
       -0.007033
                                            -0.009916
                                                              1.08e-03
                                             0.003318 -9.83e-03
       -0.000415
                                                                                                                      4.05e-05 0.00393
                                             0.003313 -3.03e-03 2.33e-03

0.016197 -1.55e-02 -8.46e-03

0.022960 7.23e-03 7.62e-02

0.051171 -8.76e-04 -7.25e-02

-0.015180 5.55e-02 -1.37e-02
                                                                                               0.04221 1.005
0.09722 0.996
        0.014511
                           3.32e-02
                                            -0.016197
                                                                                                                       3.56e-04 0.00310
       -0.016288
                           1.09e-02
                                            -0.022960
                                                                                                                       1.89e-03 0.00312
        0.041378
                          -1.07e-02
                                                                                               0.10381 0.986
                                                                                                                       2.15e-03 0.00194
       -0.031871
                           4.17e-02
                                            -0.015180
                                                                                               0.07817 1.001
                                                                                                                       1.22e-03 0.00354
                                            -0.025488 -5.83e-02 -8.88e-02
0.034561 2.19e-02 -1.18e-02
                                                                                             -0.13291 0.999 3.53e-03 0.00583
-0.05555 1.010 6.17e-04 0.00756
        0.033901
                           8.30e-02
       -0.014484
                          -3.89e-02
                                                                                                                      3.18e-05 0.00275
7.19e-05 0.00506
                                             0.003466 -6.37e-03
                                                                              2.79e-03 -0.01260 1.006
13
       -0.003268
                           3.39e-03
                                                            -4.01e-03 4.94e-03 0.01895 1.008
-6.98e-02 -2.65e-02 -0.10098 0.997
                           1.40e-02
                                            -0.010662 -4.01e-03
        0.001621
                                            -0.033425
15
                           5.05e-02
        0.033820
                                                                                                                       2.04e-03 0.00359
                                           0.010957 2.35e-04 -5.55e-03 0.01276 1.008
0.003490 -5.76e-03 2.83e-03 -0.01239 1.006
-0.000724 7.28e-02 3.27e-02 0.09253 0.996
                         -5.14e-03
3.41e-03
-1.90e-02
16
        0.001641
                                                                                                                       3.26e-05 0.00445
17
      -0.003767
-0.037327
                                                                                                                      3.07e-05 0.00261
                                                                                                                      1.71e-03 0.00290
18 -0.037327 -1.90e-02 -0.000724 7.28e-02 3.27e-02 0.09253 0.996 1.71e-03 0.00290 199 -0.013742 7.33e-02 -0.012156 1.24e-02 -1.07e-01 -0.13290 0.991 3.52e-03 0.00378 20 0.072959 -8.02e-03 0.014894 -8.68e-02 -8.49e-02 -0.14289 0.988 4.07e-03 0.00379 99 -0.005962 3.51e-03 0.003591 -3.06e-03 2.97e-03 -0.01178 1.006 2.78e-05 0.00220 100 0.033978 -8.45e-03 -0.003932 -2.74e-02 3.14e-04 0.03582 1.004 2.57e-04 0.00253 [reached 'max' / getoption("max.print") -- omitted 1285 rows ]
> View(temp)
> #diagnostic plots
   plot(fit)
Hit <Return> to see next plot:
```


Hit <Return> to see next plot:

Hit <Return> to see next plot:

Im(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12)

Hit <Return> to see next plot:

QQ Plot

> leveragePlots(fit) # leverage plots

Leverage Plots

> # Influential Observations
> # Cook's D plot
> # identify D values > 4/(n-k-1)
> cutoff <- 4/((nrow(HCV_lr)-length(fit\$coefficients)-2))
> plot(fit, which=4, cook.levels=cutoff)

> # Influence Plot > influencePlot(fit, id.method="identify", main="Influence Plot", sub="Circle size is proportial to Cook's Distance") StudRes Hat CookD 5 0.0991361 0.138768759 0.0003169402 296 2.1047833 0.006039832 0.0053705967 494 2.5371963 0.002452653 0.0031530644 625 2.1441686 0.005779939 0.0053316046 838 -1.1507095 0.009669033 0.0025850093 840 2.6034820 0.002786195 0.0037717929

Influence Plot

Hat-Values
Circle size is proportial to Cook's Distance

> # Normality of Residuals
> # qq plot for studentized resid
> qqPlot(fit, main="QQ Plot")
[1] 494 840

QQ Plot

- > # distribution of studentized residuals
 > library(MASS)
 > sresid <- studres(fit)
 > hist(sresid, freq=FALSE,
 + main="Distribution of Studentized Residuals")

Distribution of Studentized Residuals


```
> xfit<-seq(min(sresid),max(sresid),length=40)
> yfit<-dnorm(xfit)
> lines(xfit, yfit)
> #Non-constant Error Variance
> # Evaluate homoscedasticity
> # non-constant error variance test
> ncvTest(fit)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 79.34254, Df = 1, p = < 2.22e-16
> # plot studentized residuals vs. fitted values
> spreadLevelPlot(fit)

Suggested power transformation: 1.305065
Warning message:
In spreadLevelPlot.lm(fit) :
145 negative fitted values removed
```

Spread-Level Plot for fit

> #Multi-collinearity
> # Evaluate Collinearity
> vif(fit) # variance inflation factors
RNA.EF RNA.EOT RNA.Base RNA.12
1.364358 1.347477 1.000344 1.310757
> sqrt(vif(fit)) > 2 # problem?
RNA.EF RNA.EOT RNA.Base RNA.12
FALSE FALSE FALSE FALSE
> #Nonlinearity
> # component + residual plot
> crplots(fit)

> # Ceres plots
> ceresPlots(fit)


```
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
call:
 gvlma(x = fit)
                          Value p-value Decision 27.0771 1.918e-05 Assumptions NOT satisfied! 8.7671 3.067e-03 Assumptions NOT satisfied! 0.1197 7.294e-01 Assumptions acceptable. 18.0083 2.199e-05 Assumptions NOT satisfied!
Global Stat
Skewness
Kurtosis
Link Function
Heteroscedasticity 0.1820 6.696e-01
                                                        Assumptions acceptable.
call:
lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12.
     data = HCV)
Coefficients:
(Intercept)
                         RNA.EF
                                          RNA.EOT
                                                                                 RNA.12
                                                           RNA.Base
  1.068e+00
                    1.451e-07
                                   -1.687e-06
                                                         -1.384e-08
                                                                            1.224e-07
> summary(fit)
lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12,
     data = HCV)
Residuals:
                            Median
Min 1Q Median 3Q Max -0.55458 -0.08468 -0.05481 0.13407 0.59337
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                1.068e+00 1.453e-02 73.482 < 2e-16 ***
1.451e-07 2.682e-08 5.409 7.47e-08 ***
(Intercept)
RNA.EF
                -1.687e-06 2.697e-08 -62.531 < 2e-16 ***
-1.384e-08 1.737e-08 -0.797 0.426
RNA.EOT
RNA.Base
                                                 4.963 7.80e-07 ***
                  1.224e-07 2.467e-08
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2287 on 1380 degrees of freedom
Multiple R-squared: 0.7703, Adjusted R-squared: 0.7696
F-statistic: 1157 on 4 and 1380 DF, p-value: < 2.2e-16
> fit1 <- fit
> fit2 <- lm(Survivorship~RNA.EF+RNA.EOT+RNA.12, data=HCV)
> # compare models
> anova(fit1, fit2)
Analysis of Variance Table
Model 1: Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
Model 2: Survivorship ~ RNA.EF + RNA.EOT + RNA.12
Res.Df RSS Df Sum of Sq F Pr(>F)
  Res.Df RSS Df Sum of Sq
1380 72.184
1381 72
1 1381 72.217 -1 -0.03319 0.6345 0.4258

> step <- stepAIC(fit, direction="both")

Start: AIC=-4081.61
Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
               Df Sum of Sq
                                       RSS
                         0.033 72.217 -4083.0
72.184 -4081.6
1.289 73.473 -4059.1
1.530 73.714 -4054.6
                        0.033
- RNA.Base 1
<none>
- RNA.12
                 1
- RNA.EF
                 1
                      204.531 276.715 -2222.5
- RNA.EOT
                 1
Step: AIC=-4082.98
Survivorship ~ RNA.EF + RNA.EOT + RNA.12
               Df Sum of Sq
                                   72.217 -4083.0
72.184 -4081.6
<none>
+ RNA.Base
                 1
                         0.033
- RNA.12
                         1.294 73.512 -4060.4
                      1.526 73.743 -4056.0
204.611 276.828 -2223.9
- RNA.EF
                                   73.743 -4056.0
- RNA.EOT
> step$anova # display results
Stepwise Model Path
Analysis of Deviance Table
```

```
Initial Model:
Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
Final Model:
Survivorship ~ RNA.EF + RNA.EOT + RNA.12
            Step Df Deviance Resid. Df Resid. Dev
                                                                                 AIC
  1380 72.18418 -4081.615

- RNA.Base 1 0.03319039 1381 72.21738 -4082.978

install.packages("leaps", lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
                                                          72.18418 -4081.615
72.21738 -4082.978
   library(leaps)
   leaps<-regsubsets(Survivorship~RNA.EF+RNA.EOT+RNA.Base+RNA.12, data=HCV_lr,nbest=10)</pre>
> # view results
  summary(leaps)
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
             FALSE FALSE
RNA.EF
RNA.EOT
                   FALSE
                                    FALSE
RNA.Base
                   FALSE
                                    FALSE
RNA.12
                   FALSE
                                    FALSE
RNA.12
10 subsets of each size up to 4
Selection Algorithm: exhaustive
RNA.EF RNA.EOT RNA.Base RNA.12
1 (1) "" "*" "" "" """
1
1
       1)
3)
4)
1)
2)
3)
                                   .. ..
                                                 .. ..
             11 🛠 11
                        .. ..
             " "
                        .. ..
                                    .. ..
                                                 11 % 11
1
2
2
2
2
             ......
                        .. ..
                                    "*"
                                                 .....
             11 % 11
                        11 🛠 11
                                   .....
                                                 .. ..
             " "
                        "*"
                                    .. ..
                                                 ***
             ......
                        11 🔆 11
                                    11 ½ 11
                                                 .....
             "*"
                        .. ..
                                    .. ..
                                                 ***
             11 ½ 11
                        11 11
                                    11 % 11
                                                 .....
       5
2 2 3
             .. ..
                        .. ..
                                    11 ½ 11
                                                 11 🛠 11
       6
             "*"
                        "*"
                                    .....
                                                 "*"
       1
       2 )
3 )
4 )
             11 ½ 11
                        11 % 11
                                    11 % 11
                                                 .. ..
3
             .. ..
                        11 ½ 11
                                    11 ½ 11
                                                 11 🛠 11
             11 ½ 11
                        .. ..
                                    11 % 11
                                                 11 % 11
       4
                        "*"
             11 % 11
                                    11 % 11
                                                 11 % 11
     (1)
' # plot a table of models showing variables in each model.
' # models are ordered by the selection statistic.
> plot(leaps)
```


> plot(leaps,scale="r2")

> subsets(leaps, statistic="rsq")

> # All Subsets Regression
> plot(leaps,scale="bic")


```
> summary(leaps)
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
                 Forced in Forced out
 RNA.EF
                        FALSE
                                             FALSE
RNA.EOT
                        FALSE
                                             FALSE
 RNA.Base
                        FALSE
                                             FALSE
RNA.12 FALSE FALSE
10 subsets of each size up to 4
Selection Algorithm: exhaustive
                 RNA.EF RNA.EOT RNA.Base RNA.12
RNA.1
1 (1) "*"
1 (2) "*"
1 (3) " "
2 (1) "*"
2 (2) " "
2 (3) " "
2 (4) "*"
2 (5) "*"
2 (6) " "
3 (1) "*"
3 (2) "*"
3 (3) " "
4 (1) "*"
> View(leaps)
> leaps
Subset select
                              .......
                              ......
                                             .. ..
                                                             11 % 11
                              .. ..
                                             11 % 11
                              11 % 11
                                             ......
                                                             .. ..
                              11 % 11
                                                             11 🛠 11
                              11 % 11
                                             11 % 11
                                                             .. ..
                              .. ..
                                             .. ..
                                                             "*"
                              .. ..
                                             11 & 11
                              .. ..
                                                             "*"
                                             "*"
                              11 & 11
                                             .. ..
                                                             "*"
                              11 % 11
                                             11 % 11
                                                             .....
                              11 % 11
                                             ***
                                                             11 % 11
                              .. ..
                                             11 % 11
                                                             ***
                                            "*"
                              11 % 11
                                                             11 % 11
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
    RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
                 Forced in Forced out
```