4723

1	(i)	State $f(x) \le 10$	B1	1 Any equiv but must be or imply ≤
	(ii)	Attempt correct process for composition of functions	. M1	[whether algebraic or numerical]
		Obtain 6 or correct expression for ff(x)	A1	
		Obtain - 71	A1	3
2		<u>Either</u> Obtain $x = 0$	B1	[ignoring errors in working]
		Form linear equation with signs of 6x and x different	M1	[ignoring other sign errors]
		State $6x - 1 = -x + 1$	A1	[or correct equiv with or without brackets]
		Obtain $\frac{2}{7}$ and no other non-zero value	A1	4 [or exact equiv]
	Or	Obtain $36x^2 - 12x + 1 - x^2 - 2x + 1$	B1	[or equiv]
	 - - -	Attempt to solve quadratic equation	M1	[as far as factorisation or subn- into formula]
	!	Obtain ½ and no other non-zero value	A1	[or exact equiv]
		Obtain 0	B1	(4) [ignoring errors in working]
3	(i)	Attempt solution involving (natural) logarithm	M1	
		Obtain $0.017t = \ln \frac{25}{180}$	A1	[or equiv]
		Obtain 116	A1	3 [or greater accuracy rounding to 116]
	(ii)	Differentiate to obtain k e 0.017/	M1	[any constant k different from 180; solution must involve differentiation]
		Obtain correct +3.06e ^{61η} η	A1	[or unsimplified equiv: accept + or -]
		Obtain 1.2	A1	3 [or greater accuracy: accept + or + answer]
4	(a)	State or imply $\int \pi y ^2 dx$	B1	
		Integrate to obtain k ln x	M1	[any constant k, involving π or not; or equiv such as $k \ln 4x$]
		Obtain $4\pi \ln x$ or $4 \ln x$	A1	[or equiv]
		Obtain $4\pi \ln 5$	A1	4 [or similarly simplified equiv]

	(b)	Attempt calculation involving attempts at <i>y</i> values	M1	with each of 1, 4, 2 present at least once as coefficients
		Attempt $\frac{1}{3} \times 1(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1	[with attempts at five y values]
		Obtain $\frac{1}{3}(\sqrt{2} + 4\sqrt{5} + 2\sqrt{10} + 4\sqrt{17} + \sqrt{26})$	A1	or exact equiv or decimal equivs]
ì		Obtain 12,758	A1	4 [or greater accuracy]
5	(i)	Obtain $R = \sqrt{13}$, or 3.6 or 3.61 or greater accuracy	B1	
		Attempt recognisable process for finding α	M1	[allow sine/cosine muddles]
		Obtain $\alpha = 33.7$	A1	3 [or greater accuracy]
	(ii)	Attempt to find at least one value of $\theta + \alpha$	*M1	
		Obtain value rounding to 76 or 104	A1 √	[following their R]
		Subtract their α from at least one value	M1	[dependent on *M]
		Obtain one value rounding to 42 or 43, or to 70	A1	
		Obtain other value 42.4 or 70.2	A1	5 [or greater accuracy; no other answers between 0 and 360;
				ignore answers outside 0 to 360}
6	(a)	Attempt use of product rule	*M1	
		Obtain $\ln x + 1$	A1	[or unsimplified equiv]
		Equate attempt at first derivative to zero and obtain value involving e	M1	[dependent on *M]
		Obtain e ⁻¹	A1	4 [or exact equiv]
	(b)	Attempt use of quotient rule	M1	[or equiv using product rule or
		Obtain $\frac{(4x+c)4}{(4x+c)^2} \cdot \frac{4(4x+c)}{(4x+c)^2}$	A1	} [or equiv]
		Show that first derivative cannot be zero	A1	3 [AG; derivative must be correct]
7	(i)	State $2\cos^2 x$ 1	B1	1
	(ii)	Attempt to express left hand side in terms of cos x	M1	[using expression of form a cos² x + h]
		Identify $\frac{1}{\cos x}$ as $\sec x$	M1	[maybe implied]

Mark Scheme

4723

		Confirm result	A	1 3 [AG: necessary detail required]
1	(ii	i) Use identity $\sec^2 x = 1 + \tan^2 x$	_ B	
		Attempt solution of quadratic equation in tar	M1	for equiv
		Obtain $2 \tan^2 x \cdot 3 \tan x = 9 = 0$ and hence $\tan x = -3$, $\frac{3}{2}$	A1	
		Obtain at least two of 0.983, 4.12, 1.89, 5.03	A1	fallow answers with only 2 s.f., allow greater accuracy; allow
		(or of 0.313π , 1.31π , 0.602π , 1.60π)		$0.983 \pm \pi$, $1.89 \pm \pi$ allow
		Obtain all four solutions	A1	degrees: 56, 236, 108, 288] 5 [now with at least 3 s.f.; must be radians;
			-	no other solutions in the range $0 - 2\pi$.
	· 			ignore solutions outside range 0 - 2 π
8	(i)	Attempt relevant calculations with 5.2 and 5.3	M1	19-24
	<u> </u> 	Obtain correct values	A1	$\begin{bmatrix} x & y_1 & y_2 & y_1 - y_2 \end{bmatrix}$
		Conclude appropriately	A 1	5.2 2.83 2.87 +0.04 5.3 2.89 2.88 0.006 3 [AG; comparing p values or noting sign change in difference in p values
	(ii)	Equate expressions and attempt rearrangement to x =	 M1	or equiv]
		Obtain $x = \frac{5}{3} \ln(3x + 8)$	A1	2 [AG: necessary detail
		Obtain correct first iterate	B1	required]
		Carry out correct process to find at least two iterates in all	M1	
		Obtain 5,29	A1	3 [must be exactly 2 decimal places;
			ſ	5.2 >5.2687 >5.2832 >5.2863 +5.2869 5.25 +5.2793 >5.2855 +5.2868 +5.2870 5.3 +5.2898 >5.2877 +5.2872 +5.28714
	(iv) [Obtain integral of form $k(3v+8)^{\frac{1}{2}}$	M1	<u> </u>
		Obtain integral of form keist	M1	

	-	Obtain $\frac{1}{4}(3x+8)^{\frac{4}{3}} = 5e^{\frac{1}{3}x}$	A1	[or equiv]
		Apply limits 0 and their answer to (iii)	M 1	[applied to difference of two integrals]
	ļ	Obtain 3.78	A1	· .
)	(i)	translation	M1	-i
ĺ		State translation by 7 units in negative <i>x</i> direction	A1	[or equiv; using correct terminology]
		State stretch in x direction with factor $1/m$	A1	[must follow the translation by 7; or equiv; using correct terminology]
		Indicate translation by 4 units in negative predirection	B1	4 [or equiv; at any stage; the two translations may be combined]
l	(ii)	Refer to each y value being image of unique x value	B1	[or equiv]
		Attempt correct process for finding inverse	M1	
		Obtain expression involving $(x \neq 4)^2$ or $(x \neq 4)^2$	M1	
ļ ļ		Obtain $\frac{(v+4)^2-7}{m}$	A1	4 [or equiv]
	(iii)	Refer to fact that curves are reflections of each other in line $y = x$	B1	[or equiv]
		Attempt arrangement of either $f(x) = x$ or $f^{-1}(x) = x$	M1	
		Apply discriminant to resulting quadratic equation	M1	
[ĺ	Obtain $(m-2)(m-14) < 0$	A1	[or equiv]
		Obtain $2 \le m \le 14$	A1	5