Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Для броска монетки элементарные исходы: "орел", "решка"

Для броска кубика элементарные исходы: 1, 2, 3, 4, 5, 6

Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Для броска кубика элементарные исходы: 1, 2, 3, 4, 5, 6

Множество элементарных исходов
$$\ \Omega = \{\omega_1, \omega_2, ..., \omega_n\}$$

{1,2,3,4,5,6}

Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Множество элементарных исходов
$$\ \Omega = \{\omega_1, \omega_2, ..., \omega_n\}$$

Результат, полученный в ходе эксперимента (часто говорят случайного эксперимента)

Множество элементарных исходов
$$\ \Omega = \{\omega_1, \omega_2, ..., \omega_n\}$$

Эксперимент: бросание монетки три раза

$$\Omega_1 = \{ooo, oop, opo, opp, poo, pop, ppo, ppp, ppo, ppp\}$$

 $\Omega_2 = \{$ третий бросок - решка, третий - орел $\}$

Эксперимент: бросание монетки три раза

$$\Omega_1 = \{ooo, oop, opo, opp, poo, pop, ppo, ppp, ppo, ppp\}$$

 $\Omega_2 = \{$ третий бросок - решка, третий - орел $\}$

Любое подмножество множества элементарных исходов

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

"Выпало четное число"

Любое подмножество множества элементарных исходов

"Выпало число больше 2"

Любое подмножество множества элементарных исходов

Достоверное событие

- Невозможное событие

Ω		

Ω	

{Все маленькие события, все возможные объединения двоек, троек и тд...}

{Все маленькие события, все возможные объединения двоек, троек и тд...} - алгебра событий

Функция P:A
ightarrow [0,1]

Функция $P:A
ightarrow \llbracket 0,1
ceil$

Свойство 1:
$$\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$$

$$P(\omega_1 + \omega_2 + \dots + \omega_n) = 1$$

Функция P:A o [0,1]

Свойство 2:
$$P(A) = \sum_{\omega \in A} P(\omega)$$

Функция $P:A
ightarrow \llbracket 0,1
rbracket$

Свойство 3:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Дискретное вероятностное пространство

$$(\Omega, A, P)$$

Дискретное вероятностное пространство: нечестная монета

$$(\Omega,A,P)$$
 $\Omega=\{o,p\}$ A = Все подмножества Ω $P(\emptyset)=0$ $P(p)=q$ $P(o)=p$ $P(p\cup q)=1$

1)
$$P(A) = 1 - P(\overline{A})$$

1)
$$P(A) = 1 - P(\overline{A})$$

Доказательство:

$$P(\Omega) = 1$$

1)
$$P(A) = 1 - P(\overline{A})$$

Доказательство:

$$P(\Omega) = 1$$

1)
$$P(A) = 1 - P(\overline{A})$$

Доказательство:

$$P(\Omega) = 1 \Rightarrow \sum_{\omega \in \Omega} P(\omega) = 1$$

1)
$$P(A) = 1 - P(\overline{A})$$

Доказательство:

$$P(\Omega) = 1 \Rightarrow \sum_{\omega \in \Omega} P(\omega) = 1$$

Разделяя ω на входящие вA и входящие в \overline{A} получаем:

$$\sum_{\omega \in A} P(\omega) + \sum_{\omega \in \overline{A}} P(\omega) = 1 \Rightarrow P(A) + P(\overline{A}) = 1$$

$$2) \quad A \subseteq B \Rightarrow P(A) \le P(B)$$

3) Независимые события

$$P(A)P(B) = P(A \cap B)$$

3) Независимые события

$$P(A)P(B) = P(A \cap B)$$

3) Независимые события

$$P(A)P(B) = P(A \cap B)$$

4) Независимые события

$$P(A)P(B) = P(A \cap B)$$

4) Несовместные события

$$P(A \cap B) = 0$$

4) Несовместные события - не имеют ничего общего с независимыми!

$$P(A \cap B) = 0 \qquad P(A)P(B) = P(A \cap B)$$

4) Несовместные события - не имеют ничего общего с независимыми!

ω_1	ω_2	ω_3	•••	ω_n

ω_1	ω_2	ω_3	• • •	ω_n
1	1	1		1
<u> </u>	<u> </u>	<u></u> -		* <u>*******</u> **
n	n	n		n

ω_1	ω_2	ω_3	•••	ω_n
1	1	1		1
<u></u>	2 <u>0 - </u>	<u> </u>		
n	n	n		n

$$P(A) = \frac{|A|}{n}$$

ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	
1	1	1	1	1	1	
$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	

А - выпало число большее или равное 2

$$P(A) = ?$$

ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	
$\frac{1}{6}$	$\left(\frac{1}{\epsilon}\right)$	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{\epsilon}\right)$	$\left(\frac{1}{6}\right)$	

А - выпало число большее или равное 2

$$P(A) = ?$$

ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	
$\frac{1}{6}$	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{6}\right)$	335	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{6}\right)$	

А - выпало число большее или равное 2

$$P(A) = \frac{5}{6}$$

ω_1	ω_2	ω_3	• • •	ω_n
$\overline{p_1}$	p_2	p_3	• • •	p_n

ω_1	ω_2	ω_3	• • •	ω_n
p_1	p_2	p_3	•••	p_n

$$P(A) = \sum_{\omega_i \in A} p_i$$

ω_1	ω_2	ω_3	• • •	ω_n
p_1	p_2	p_3	•••	p_n

$$P(A) = \sum_{\omega_i \in A} p_i$$

M	N	O	P	
2	3	1	3	
$\overline{7}$	$\frac{1}{7}$	$\overline{14}$	$\overline{14}$	

M	N	O	P	
2	3	1	3	
$\overline{7}$	$\overline{7}$	$\overline{14}$	$\overline{14}$	

А - получить согласную букву

$$P(A) = ?$$

M	N	O	P	
2	3	1	3	
$\overline{7}$	$\overline{7}$	$\overline{14}$	$\overline{14}$	

$$P(A) = \frac{2}{7} + \frac{3}{7} + \frac{3}{14} = \frac{13}{14}$$

Независимые события - напоминание

Независимые события

$$P(A)P(B) = P(A \cap B)$$

Зависимые события

Зависимые события

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Зависимые события

Зависимые события

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- $P(A \cap B) = P(A|B) * P(A) = P(B|A) * P(B)$
- $P(A|B) = P(A) \Leftrightarrow A$ и B независимые

Теорема Байеса

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Теорема Байеса

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Вероятность поломки

 p_1

 p_2

 p_3

Купили лампочку, она сломалась. Какова вероятность, что это была лампочка производителя Х?

Формула полной вероятности

Если

$$A_1,A_2,...,A_n$$
 - несовместные

$$A_1 \cup A_2 \cup ... \cup A_n = \Omega$$

то выполняется:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)$$

$$x + a = b$$

$$x + a = b$$

$$x = b - a$$

$$x + a = b$$
 \Rightarrow $x = b - a$

$$x^2 + 3x + 2 = 0$$

$$x + a = b$$
 \Rightarrow $x = b - a$

$$x^2 + 3x + 2 = 0 \implies x_1 = -2, x_2 = -1$$

$$x + a = b$$
 \Rightarrow $x = b - a$

$$x^2 + 3x + 2 = 0 \implies x_1 = -2, x_2 = -1$$

X

$$x + a = b \Rightarrow x = b - a$$

$$x^{2} + 3x + 2 = 0 \Rightarrow x_{1} = -2, x_{2} = -1$$

$$X \Rightarrow \frac{\begin{vmatrix} 3 & 4 & 5 & 6 \\ \frac{1}{3} & \frac{2}{9} & \frac{2}{9} & \frac{2}{9} \end{vmatrix}}{\frac{1}{9}}$$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Вероятность каждого эл.исхода - $\frac{1}{36}$

2	3	4	5	6	7	8	9	10	11	12

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Вероятность каждого эл.исхода - $\frac{1}{36}$

								11	
		1							
I	ı	9	I	I	I	I	ı	I	I

Случайная величина: интуиция

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Вероятность каждого эл.исхода - $\frac{1}{36}$

									11	
1	1	1	1	5	1	5	1	1	1	1
									$\overline{18}$	

Характеристики случайной величины

Значение	3	6	
Количество результатов			

Значение	3	6	
Количество результатов	5000	1000	

Значение	3	6	
Количество результатов	5000	1000	

$$\frac{5000 \times 3 + 1000 \times 6}{6000} = 3.5$$

X	x_1	x_2	•••	x_n
P(X)	p_1	p_2	•••	p_n

X	x_1	x_2	• • •	x_n
P(X)	p_1	p_2	***	p_n

$$E(X) = \sum_{i=1}^{n} p_i \times x_i = p_1 \times x_1 + p_2 \times x_2 + \dots + p_n \times x_n$$

X	x_1	x_2	• • •	x_n
P(X)	p_1	p_2	***	p_n

$$E(X) = \sum_{i=1}^{n} p_i \times x_i = p_1 \times x_1 + p_2 \times x_2 + \dots + p_n \times x_n$$

X	1	3	5	
P(X)	1	1	2	
	W	<u> </u>	39 <u></u> 9	
	6	6	3	

X	60	61	62	63	64	
P(X)	1	2	4	2	1	
	$\overline{10}$	$\overline{10}$	$\overline{10}$	$\overline{10}$	$\overline{10}$	ı

$$E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 3 + \frac{2}{3} \times 5 = \frac{24}{6} = 4$$

Характеристики случайной величины: среднее. Свойства

$$E(X + Y) = E(X) + E(Y)$$

Характеристики случайной величины: среднее. Свойства

$$E(X+Y) = E(X) + E(Y)$$

$$E(aX) = aE(X)$$

Характеристики случайной величины: среднее. Свойства

$$E(X+Y) = E(X) + E(Y)$$

$$E(aX) = aE(X)$$

Среднее бросков двух кубиков:

$$E(X) = 3.5$$

$$E(Y) = 7$$

$$E(X + Y) = 7 + 3.5 = 10.5$$

		3		1	1	0	1	
P(X)	1	1	P(Y)	1	2	4	2	1
P(X)	$\overline{2}$	$\overline{2}$	P(Y)	10	10	10	$\overline{10}$	$\overline{10}$

	1	3	Y	-2	-1	0	1	2
P(X)	1	1	P(Y)	1	2	4	2	1
I(X)	2	2	1 (1)	$\overline{10}$	$\overline{10}$	$\overline{10}$	10	10

	1	3	Y	-2	-1	0	1	2
P(X)	1	1	P(Y)	1	2	4	2	1
I(X)	2	2	1 (1)	$\overline{10}$	$\overline{10}$	$\overline{10}$	10	10

$$Var(X) = E((X - \mu)^2)$$

i=1

$$Var(X) = E((X - \mu)^2) = \sum_{i=1}^{n} p_i \times (x_i - \mu)^2$$

$$Var(X) = E((X - \mu)^2) = \sum_{i=1}^{n} p_i \times (x_i - \mu)^2$$

$$\sigma = \sqrt{(Var(X))}$$

$$E(X) = E(Y) = 3$$

$$E(X) = E(Y) = 3$$

$$Var(X) = \frac{1}{5} * (1-3)^2 + \frac{1}{5} * (2-3)^2 + \frac{1}{5} * (3-3)^2 + \frac{1}{5} * (4-3)^2 + \frac{1}{5} * (5-3)^2 = 2$$

$$E(X) = E(Y) = 3$$

$$Var(X) = \frac{1}{5} * (1-3)^2 + \frac{1}{5} * (2-3)^2 + \frac{1}{5} * (3-3)^2 + \frac{1}{5} * (4-3)^2 + \frac{1}{5} * (5-3)^2 = 2$$
$$Var(Y) = \frac{1}{10} * (1-3)^2 + \frac{2}{10} * (2-3)^2 + \frac{4}{10} * (3-3)^2 + \frac{2}{10} * (4-3)^2 + \frac{1}{10} * (5-3)^2 = 1.2$$

X	1	2	3	4	5	
P(X)	1/5	1/5	1/5	1/5	1/5	_
Y	1	2		3	4	5
P(Y)	1/10	2/10	0 4/	/10	2/10	1/10

X	1	2	3	4	5	
P(X)	1/5	1/5	1/5	1/5	1/5	_
Y	1	2		3	4	5
P(Y)	1/10	2/10	0 4/	/10	2/10	1/10

$$Var(X + Y) = Var(X) + Var(Y)$$

$$Var(X + Y) = Var(X) + Var(Y)$$

только если эти события независимы

$$Var(X + Y) = Var(X) + Var(Y)$$

только если эти события независимы

$$Var(aX) = a^2 Var(X)$$

$$Var(X + Y) = Var(X) + Var(Y)$$

только если эти события независимы

$$Var(aX) = a^2 Var(X)$$

$$Var(X) = E(X^2) - E(X)^2$$

X	x_1	x_2	• • •	x_n
P(X)	p_1	p_2	•••	p_n

X^2	$ x_1^2 $	x_2^2	•••	$ x_n ^2$
P(X)	p_1	p_2	•••	p_n

1. Эксперимент, описываемый случайной величиной Бернулли повторяется несколько раз

- 1. Эксперимент, описываемый случайной величиной Бернулли повторяется несколько раз
- 2. Разные итерации эксперимента независимы друг от друга

- 1. Эксперимент, описываемый случайной величиной Бернулли повторяется несколько раз
- 2. Разные итерации эксперимента независимы друг от друга
- 3. Вероятность успеха в каждом эксперименте одинакова

X	0	1	• • •	n
P(X)			•••	

X	0	1	•••	n
P(X)			• • •	

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Биномиальное распределение

$$X$$
 0 1 ... n $P(X)$ $\binom{n}{0}$ $\binom{n}{0}$ $\binom{n}{1}$ $p(1-p)^{n-1}$... $\binom{n}{n}$ p^n

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Биномиальное распределение

$$X$$
 0 1 ... n $P(X)$ $\binom{n}{0}$ $\binom{n}{0}$ $\binom{n}{1}$ $p(1-p)^{n-1}$... $\binom{n}{n}$ p^n

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

X	0	1	•••	6
P(X)			•••	

$$p = 0.3$$
$$q = 1 - p = 0.7$$

X	0	1	•••	6
P(X)			•••	

$$p = 0.3$$
$$q = 1 - p = 0.7$$

$$P(X = 2) = ?$$

X	0	1	•••	6
P(X)			•••	

$$q = 1 - p = 0.7$$

p = 0.3

$$P(X=2) = {6 \choose 2} (0.3)^2 (0.7)^4 = 0.324135$$

X	0	1	•••	6
P(X)			•••	

$$p = 0.3$$
$$q = 1 - p = 0.7$$

$$P(1 < X < 6) = ?$$

X	0	1	•••	6
P(X)			•••	

$$p = 0.3$$
$$q = 1 - p = 0.7$$

$$P(1 < X < 6) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

X	0	1	•••	6
P(X)			•••	

$$p = 0.3$$

 $q = 1 - p = 0.7$

$$P(1 < X < 6) = 0.324 + 0.185 + 0.059 + 0.01 = 0.578$$

Распределение Бернулли

Распределение Бернулли

X	1	0
P(X)	p	\overline{q}

$$egin{array}{c|cccc} X & 1 & 0 \\ \hline P(X) & p & q \\ \hline \end{array}$$

1. Бросок монетки

$$egin{array}{c|cccc} X & 1 & 0 \\ \hline P(X) & p & q \\ \hline \end{array}$$

- 1. Бросок монетки
- 2. Брак в продукте

$$egin{array}{c|cccc} X & & 1 & & 0 \ \hline P(X) & p & & q \ \hline \end{array}$$

- 1. Бросок монетки
- 2. Брак в продукте
- 3. Звонок в call-центр

$$egin{array}{c|cccc} X & 1 & 0 \\ \hline P(X) & p & q \\ \hline \end{array}$$

- 1. Бросок монетки
- 2. Брак в продукте
- 3. Звонок в call-центр

$$E(X) = p$$

$$Var(X) = p(1-p)$$

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

$$E(X_i) = p$$

$$Var(X_i) = p(1-p)$$

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

$$E(X_i) = p$$

$$Var(X_i) = p(1-p)$$

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

$$E(X_i) = p$$

$$Var(X_i) = p(1-p)$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

$$n \to \infty$$
$$p \to 0$$

$$p \rightarrow 0$$

$$\sum_{p \to 0}^{n \to \infty} E(X) = np = \lambda$$

$$\sum_{p \to 0}^{n \to \infty} E(X) = np = \lambda$$

$$\begin{array}{ll}
n \to \infty \\
p \to 0
\end{array} \qquad E(X) = np = \lambda$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$\begin{array}{ll}
n \to \infty \\
p \to 0
\end{array} \qquad E(X) = np = \lambda$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Распределение Пуассона: дисперсия

$$p \to \infty$$
 $E(X) = np = \lambda$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$Var(X) = np(1-p) = \lambda(1-p) = \lambda$$

$$\lambda = 1$$

$$\lambda = 1$$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} = \frac{1^k e^{-1}}{k!} = \frac{e^{-1}}{k!}$$

$$\lambda = 1$$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} = \frac{1^k e^{-1}}{k!} = \frac{e^{-1}}{k!}$$

$$P(X=0) = \frac{e^{-1}}{1} = 0.368$$

$$\lambda = 1$$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} = \frac{1^k e^{-1}}{k!} = \frac{e^{-1}}{k!}$$

$$P(X=2) = \frac{e^{-1}}{2} = 0.184$$