COMP 6661

Combinatorial Algorithms

Winter 2023

Assignment 1

Due January 30, 2023, 11:55 PM

- 1. Given the following graphs:
 - The complete graph K_n on n vertices.
 - The complete bipartite graph $K_{m,n}$ on m+n vertices.
 - The *n*-vertex wheel W_n .
 - The hypercube Q_n .
 - a) Which of the above graphs are Eulerian? Justify.
 - b) Which of the above graphs are Hamiltonian? Justify.
- 2. The line graph L(G) of a graph G has a vertex for each edge of G, and two of these vertices are adjacent iff the corresponding edges in G have a vertex in common.
 - a) Prove that if a simple graph G is Eulerian, then its line graph L(G) is also Eulerian.
 - b) Prove or disprove. The line graph of any graph is Eulerian.
 - c) Prove that a graph with more than two vertices of odd degree does not contain an Eulerian path (or trail).
- 3. Draw the specified graph or prove that it does not exist:
 - a) An 8-vertex simple graph with more than 8 edges that is both Eulerian and Hamiltonian.
 - b) An 8-vertex simple graph with more than 8 edges that is Eulerian but not Hamiltonian.
 - c) An 8-vertex simple graph with more than 8 edges that is Hamiltonian but not Eulerian.
 - d) An 8-vertex simple Hamiltonian graph that does not satisfy the conditions of Ore's theorem.
 - e) A 6-vertex simple graph with 10 edges that is not Hamiltonian.
- 4. Run BFS rooted at the all zero vertex, i.e. (00...0) of the k-dimensional hypercube Q_k . What is the number of vertices at distance i from the root, for all i = 0, 1, 2, ..., k, ...? What is the number of edges between level i and i + 1? Prove your answers.
- 5. Prove by induction on e (number of edges) that a planar graph is bipartite iff every face has even length.
- 6. Prove that if graph G has n vertices then $\chi(G) + \chi(\bar{G}) \leq n + 1$, where \bar{G} is the complimant of graph G.
- 7. a) Let G = (V, E) be a loop-free undirected graph with $|V| = n \ge 3$, and $\deg(x) + \deg(y) \ge n 1$ for all nonadjacent vertices $x, y \in V$. Prove that there is a path of length at most 2 between each pair of vertices of G.
 - b) Prove that a graph with n vertices and at least $\frac{(n-1)(n-2)}{2} + 1$ edges is connected.