FRFD

Usando le api di FRED (https://fred.stlouisfed.org// studiare il manuale delle API sul sito: (https://fred.stlouisfed.org/docs/api/fred/):

- Scrivere un package Python (https://packaging.python.org/en/latest/) con funzioni per:
 - Scaricare tutte le categorie a partire da una categoria data (la struttura è ad albero e la categoria root ha id=0)
 - o Scaricare tutti i titoli e gli id delle serie da una categoria data e salvarli su un db (es. sqlite)
 - o Scaricare le osservabili da una serie data e salvarli su un db
 - o Graficare l'andamento di una osservabile (se possibile)
 - [Per gruppi > 3 persone] Se sono presenti dei nan deve essere presente un parametro booleano per interpolarli opzionalmente in maniera lineare
 - Esempio [2, 5, nan, nan, 12, 7] → [2, 5, 7.33, 9.66, 12, 7]
 - Esempio [1, 4, nan, nan, nan, 17] → [1, 4, 7.25, 10.5, 13.75, 17]
 - La formula è $s_{k+j} = s_i + (s_k s_i)/(k-i+1) * j \; \forall j = [1, k-i] \; e \; s_k, s_i$ sono i valori ponte (k > i)
 - Graficare la media mobile (se possibile) di una osservabile a *n* giorni (*n* parametro)
 - [Per gruppi > 3 persone] Se sono presenti dei nan deve essere presente un parametro booleano per interpolarli linearmente
 - Salvare tutto ciò che si scarica su un database sglite (o altro):
 - Una tabella delle serie scaricate e/o analizzate (record json)
 - Una tabella con l'elenco delle serie scaricate
 - Una tabella con le osservabili delle serie scaricate e/o analizzate (record json)
 - o L'applicazione dovrà usare i dati locali qualora già scaricati
 - L'applicazione dovrà permettere di aggiornare una serie o una categoria su richiesta (update del database)
 - o Tutte le funzionalità dovranno essere raccolte in funzioni
 - o Scrivere un manuale d'uso delle funzioni generate
 - Scrivere un testo di relazione della modalità di lavoro (se in gruppo)
 - Allegare tutto il materiale (codice, database, relazioni) prodotto durante il lavoro
 - Case Study:
 - Usando le funzioni costruite, scaricare 3 serie da una singola (es. Categories > Money, Banking, & Finance > Exchange Rates > Daily Rates) e
 - Graficare le 3 serie su un solo grafico
 - Calcolare la covarianza (attenzione ai nan!)
 - Calcolare e graficare su un solo grafico per ogni serie la serie delle differenze prime $(s_{i+1}-s_i)$
 - Calcolare e graficare su un solo grafico per ogni serie la serie delle differenze prime percentuali $\frac{s_{i+1}-s_i}{s_i}$ fate attenzione agli ∞
 - Per ogni serie calcolare la retta di regressione
 - [Per gruppi > 3 persone] Introdurre due parametri temporali (data_inizio, data_fine) per disegnare tutti i grafici in un periodo temporale dato
- È ammesso l'uso di librerie ad alto livello (come pandas, numpy, matplotlib, ...) ma non è ammesso l'uso di librerie che già si interfacciano con FRED (es. fred 3.1, fred-api-wrapper, ecc.)
- La dimensione del gruppo dovrà influire sulla qualità del materiale prodotto nonché sulla proposta e creazione di ulteriori funzionalità a discrezione del gruppo stesso

Usando le api di WorldBank (https://datahelpdesk.worldbank.org/knowledgebase/articles/889392-about-the-indicators-api-documentation):

- Scrivere un package Python (https://packaging.python.org/en/latest/) con funzioni per:
 - Scaricare tutti i Topics
 - Scaricare tutti gli indicatori per topic dato e salvarli su un db (es. sqlite)
 - o Scaricare le osservabili di un indicatore data e salvarli su un db
 - o Graficare l'andamento di una osservabile (se possibile)
 - [Per gruppi > 3 persone] Se sono presenti dei nan deve essere introdotto un parametro booleano per interpolarli opzionalmente in maniera lineare
 - Esempio [2, 5, nan, nan, 12, 7] \rightarrow [2, 5, 7.33, 9.66, 12, 7]
 - Esempio [1, 4, nan, nan, nan, 17] → [1, 4, 7.25, 10.5, 13.75, 17]
 - La formula è $s_{k+j} = s_i + (s_k s_i)/(k-i+1) * j \; \forall j = [1, k-i] e s_k, s_i$ sono i valori ponte (k > i)
 - o Graficare la media mobile (se possibile) di una osservabile
 - [Per gruppi > 3 persone] Se sono presenti dei nan deve essere introdotto un parametro booleano per interpolarli linearmente
 - Salvare tutto ciò che si scarica su un database sqlite (o altro):
 - Una tabella delle serie scaricate e/o analizzate (record json)
 - Una tabella con l'elenco delle serie scaricate
 - Una tabella con le osservabili delle serie scaricate e/o analizzate (record json)
 - o L'applicazione dovrà usare i dati locali qualora già scaricati
 - L'applicazione dovrà permettere di aggiornare una serie o una categoria su richiesta (update del database)
 - Tutte le funzionalità dovranno essere raccolte in funzioni
 - Scrivere un manuale d'uso di tutte le funzioni generate
 - Scrivere un testo di relazione della modalità di lavoro (se in gruppo)
 - o Allegare tutto il materiale (codice, database, relazioni) prodotto durante il lavoro
 - Case Study:
 - Usando le funzioni costruite, scaricare 3 serie da un topic (es. topic Agriculture & Rural Development, indicators: Agricultural machinery, tractors | Fertilizer consumption (% of fertilizer production | ...))
 - Graficare le 3 serie su un solo grafico
 - Calcolare la covarianza (attenzione ai nan!)
 - Calcolare e graficare su un solo grafico per ogni serie la serie delle differenze prime $(s_{i+1}-s_i)$
 - Calcolare e graficare su un solo grafico per ogni serie la serie delle differenze prime percentuali $\frac{s_{i+1}-s_i}{s_i}$
 - Per ogni serie calcolare la retta di regressione
 - [Per gruppi > 3 persone] Introdurre due parametri temporali (data_inizio, data_fine) per disegnare tutti i grafici in un periodo temporale dato
- È ammesso l'uso di librerie ad alto livello (come pandas, numpy, matplotlib, ...) ma non è ammesso l'uso di librerie che già si interfacciano con WB (es. world-bank-data, wbgapi, wbdata, ecc.)
- La dimensione del gruppo dovrà influire sulla qualità del materiale prodotto nonché sulla proposta e creazione di ulteriori funzionalità a discrezione del gruppo stesso

Istruzioni

- 1. Formare un gruppo da [1] a 5 persone
- 2. Nominare un referente di gruppo
- 3. Il referente dovrà per prima cosa:
 - a. Inviare una e-mail a regoli@uniroma2.it con subject: [Progetto CPS]
 - b. Inserire nella e-mail l'elenco degli studenti appartenenti al gruppo (incluso sé stesso)
 - c. Specificare nella e-mail il progetto scelto
 - d. Specificare il nome del gruppo
- 4. Il referente riceverà una notifica
- 5. In referente dovrà successivamente:
 - a. Eseguire l'upload del file zippato contenente tutto il materiale richiesto sulla piattaforma Teams nella sezione attività (Consegna progetto fine corso) entro tre giorni prima della data dell'esame orale scelto
- 6. Tutti gli elementi di un gruppo dovranno svolgere l'esame nello stesso giorno
- 7. Durante la prova d'esame a ciascun membro del gruppo verranno fatte domande relative al lavoro svolto, pertanto, anche se il lavoro è in gruppo dovrete essere capaci di rispondere su ciascuna parte del codice prodotto
- 8. È prevista la possibilità di proporre un proprio progetto con le stesse modalità

Per ogni dubbio: regoli@uniroma2.it con subject [Dubbio CPS]