Rappels : espace euclidien

Espaces affin euclidiens

netries vectorienes

Isomètries affine:

M53 - Partie 2

septembre 2015

Rappels : espace euclidien Définition

Espaces affines euclidiens

Isometries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

isometries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $definie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

isometries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard),via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

Isometries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

euclidiens

Isometries vectorielles

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard),via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affine euclidiens

Isométries vectorielles

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{\mathbf{v}} | \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0,$
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

euclidiens

Isométries vectorielles

Icométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{\mathbf{v}} | \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels: norme euclidienne

- Rappels : espace euclidien
- Espaces affines
- Isométries vectorielles
- Innestries offices

- 1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : norme euclidienne

Rappels : espace euclidien Définition

Espaces affin

Isométries vectorielles

- 1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **E**t une formule inverse (de polarisation) est

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels: norme euclidienne

Rappels : espace euclidien Définition

Notations
Fenaces affin

euclidiens

Isomètries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \, \middle| \, \overrightarrow{w} \right\rangle \right| \le \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels: norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

Rappels : norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse *(de polarisation)* est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \right| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4 On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

Rappels : notations

Rappels : espace euclidien Définition

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp,$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : notations

Rappels : espace euclidien Définition

Espaces affines

Notations

Isométries vectorielles

Isométries affine

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp,$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\vec{\mathcal{F}}_1$ et $\vec{\mathcal{F}}_2$, noté $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \vec{\mathcal{F}}_2$, si $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2$ et $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2$. Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affine euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$
- $egin{aligned} \mathbf{B} & \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp \end{aligned}$
- \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^\perp = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^\perp = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

$$2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$$

$$\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$$

 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : notations

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

$$2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$$

$$\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$$

4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons :
$$\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$$

Rappels : notations

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

$$2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$$

$$\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$$

4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons :
$$\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$$

Rappels: notations

Notations

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

$$2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}^{\perp} = \big\{ \vec{v} \in \vec{\mathcal{E}} \, \big| \, \, \forall \vec{w} \in \vec{\mathcal{F}}, \, \vec{v} \perp \vec{w} \big\}.$$

$$\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$$

 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\vec{\mathcal{F}}_1$ et $\vec{\mathcal{F}}_2$, noté $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2$, si $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2$ et $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2$.

Nous avons :
$$\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$$
.

Rappels : notations

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}^{\perp} = \big\{ \vec{v} \in \vec{\mathcal{E}} \, \big| \, \, \forall \vec{w} \in \vec{\mathcal{F}}, \, \vec{v} \perp \vec{w} \big\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_1^\perp=\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_2^\perp=\overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien

Espaces affines euclidiens

Distance entre parties

Isométries vectorielle

Isométries affii

Définition

Un ensemble \mathcal{E} est metrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces aff euclidiens

Distance entr

Isométries vectorielles

Isométries affir

Définition

Un ensemble \mathcal{E} est metrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Isométries affir

Définition

Un ensemble \mathcal{E} est metrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Isométries affir

Définition

Un ensemble ${\mathcal E}$ est metrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens Définition

Isométries vectorielle

Isométries affin

Définition

Un ensemble $\mathcal E$ est metrique s'il est muni d'un application distance

$$\begin{array}{c} \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+ \\ (\textit{M},\textit{N}) \mapsto \textit{d}(\textit{M},\textit{N}) \end{array}$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens Définition

Isométries vectorielles

Isométries affir

Définition

Un ensemble $\mathcal E$ est metrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \left\| \overrightarrow{AB} \right\|.$$

Rappels : espace euclidien

Espaces affine euclidiens

Définition

Distance entre parties

isometries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M, N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A}, \mathcal{B}) = d(M, N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $MN \perp (A + B)$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ss $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Rappels : espace euclidien

Espaces aff euclidiens

Distance entre parties

Isomètries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $MN \perp (A + B)$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi: $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affineuclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée ?
- La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi. $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affin euclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée ?
- La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3 Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

Isométries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

1 (. 1 (0)

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précedente reste vrai pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : isométrie vectorielle

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définit

Petites dimens

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|$$

$$\mathbf{2} \ \forall \overrightarrow{v}, \overrightarrow{w} \in \overline{\mathcal{E}}$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie ϕ de \mathcal{E} présèrve un s.e.v. \mathcal{F} (c.-à-d. $\phi(\mathcal{F}) \subset \mathcal{F} \Leftrightarrow \overline{\phi}(\overline{\mathcal{F}}) = \overline{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overline{\phi}(\overline{\mathcal{F}}^{\perp}) = \overline{\mathcal{F}}^{\perp}$. En particulier, si $\overline{\mathcal{F}}$ n'est pas trivial, $\overline{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overline{\phi}: \overline{\mathcal{E}} = \overline{\mathcal{F}} \stackrel{\perp}{\oplus} \overline{\mathcal{F}}^{\perp}$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal Petites dimensions Forme standard

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$\mathbf{1} \ \forall \vec{\mathbf{v}} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \vec{w} \in \overline{\mathcal{E}}$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie ϕ de \mathcal{E} présèrve un s.e.v. \mathcal{F} (c.-à-d. $\phi(\mathcal{F}) \subset \mathcal{F} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Espaces affine euclidiens

Isométries vectorielles

Définit

Petites dimensi

Isométries affin

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$\mathbf{1} \ \forall \vec{\mathbf{v}} \in \vec{\mathcal{E}},$$

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie ϕ de \mathcal{E} présèrve un s.e.v. \mathcal{F} (c.-à-d. $\phi(\mathcal{F}) \subset \mathcal{F} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Espaces affine euclidiens

Isométries vectorielles

Définit

Groupe orthogona Petites dimension Forme standard

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$\mathbf{1} \ \forall \vec{\mathbf{v}} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\vec{\phi}$ de $\vec{\mathcal{E}}$ présèrve un s.e.v. $\vec{\mathcal{F}}$ (c.-à-d. $\vec{\phi}(\vec{\mathcal{F}}) \subset \vec{\mathcal{F}} \Leftrightarrow \vec{\phi}(\vec{\mathcal{F}}) = \vec{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\vec{\phi}(\vec{\mathcal{F}}^\perp) = \vec{\mathcal{F}}^\perp$. En particulier, si $\vec{\mathcal{F}}$ n'est pas trivial, $\vec{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\vec{\phi}: \vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^\perp$.

euclidiens

Isométries vectorielles

Définit

Petites dimension: Forme standard

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{2} \ \forall \overrightarrow{v}, \overrightarrow{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\vec{\phi}$ de $\vec{\mathcal{E}}$ présèrve un s.e.v. $\vec{\mathcal{F}}$ (c.-à-d. $\vec{\phi}(\vec{\mathcal{F}}) \subset \vec{\mathcal{F}} \Leftrightarrow \vec{\phi}(\vec{\mathcal{F}}) = \vec{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\vec{\phi}(\vec{\mathcal{F}}^\perp) = \vec{\mathcal{F}}^\perp$. En particulier, si $\vec{\mathcal{F}}$ n'est pas trivial, $\vec{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\vec{\phi}: \vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^\perp$.

Rappels : isométrie vectorielle

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définit

Petites dimens

Isométries affin

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$\mathbf{1} \ \forall \vec{\mathbf{v}} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ présèrve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Rappels : isométrie vectorielle

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définit

Petites dimens
Forme standar
Décomposition

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$\mathbf{1} \ \forall \vec{\mathbf{v}} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ présèrve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\dot{}}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Rappels : isométrie vectorielle

Rappels : espace euclidien

euclidiens

isometries vectorielle

Petites dimens Forme standar Décomposition

Isométries affin

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ présèrve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle présèrve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimension

Décompositio

Decomposition

Isométries affin

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.

with note $U^r(\mathcal{E})$ (resp. $U^r_{\mathcal{E}}$) Lensemble des isometries à determinant $U^r_{\mathcal{E}}$).

w De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^+(\mathcal{E})$ (resp. O_7^+).

 $(O^+(\vec{E})$ est un sous-groupe du groupe compact $O(\vec{E})$, mais $O^-(\vec{E})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

sométries vectorielles

Définition

Groupe orthogonal

Petites dimen

Forme standa

Décompositio

Isométries affin

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme stand

Décompositio

Isométries affi

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- $\blacksquare \ \, \mathsf{Soit} \ \, \overrightarrow{\phi} \in \mathit{O}(\overrightarrow{\mathcal{E}}) \mathsf{, \ alors \ } \mathsf{det}(\overrightarrow{\phi}) = \pm 1.$
 - On note $O^+(\mathcal{E})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\overline{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O^-_n).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Groupe orthogonal

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\overline{\mathcal{E}})$ (resp. O_p^+) l'ensemble des isométries à déterminant
 - \blacksquare De même l'ensemble des isométries à déterminant -1, dites

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimension Forme standard

Décomposition

Isométries af

tion

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\overrightarrow{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Groupe orthogonal Petites dimensions

Forme standard Décomposition

Isométries a

Isométries affin

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\mathcal{E})$ est un sous-groupe du groupe compact $O(\mathcal{E})$, mais $O^-(\mathcal{E})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal Petites dimensions

Forme standard Décomposition

Isométries a

Isométries affine

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Groupe orthogonal

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\widetilde{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^{-}(\vec{\mathcal{E}})$ (resp. O_{n}^{-}).

 $(O^+(\overline{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\overline{\mathcal{E}}), \text{ mais } O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Espaces affines euclidiens

Isométries vectorielles

Définitio

Groupe orthogo

Petites dimensions

Forme standard

Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$O_2 = O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \left\{ \overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \alpha \in \mathbb{R}/2\pi\mathbb{R} \right\}$$
 est le sous-groupe des rotations.

$$\bullet O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.

Les règles de composition sont

 $= K_{\alpha} \circ K_{\beta} = R_{\alpha + \beta},$

 $= \underline{S}_{\alpha} \circ S_{\beta} = R_{\alpha - \beta \circ \beta}$

euclidiens

sométries vectorielles

Définition

Groupe orthogo

Petites dimensions

Forme standard

Décompositio

Isométries affine

- $O_1 = \{1, -1\}.$
- $O_2 = O_2^+ \sqcup O_2^-$, où

$$O_2^+ = \{ \overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R}$$
 est le sous-groupe des rotations

Les règles de composition sont

- $=R_{\alpha}\circ R_{\beta}=R_{\alpha+\beta},$
- $= S_{\alpha} \circ S_{\beta} = R_{\alpha \beta},$
- $= S_{\alpha} \circ R_{\gamma} = S_{\alpha \gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma + \beta}.$

Rappels : espace euclidien

Espaces affine

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \left\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \right\}$$
 est le sous-groupe des rotations,

$$\bullet O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.

 $(S_lpha$ est la symétrie par rapport à la droite d'angle lpha/2.)

Les règles de composition sont :

$$\vec{R}_{\alpha} \circ R_{\beta} = R_{\alpha+\beta}$$

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$$

$$S_{lpha}\circ R_{\gamma}=S_{lpha-\gamma}$$
 et $R_{\gamma}\circ S_{eta}=S_{\gamma+eta}$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\bullet O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$$
 est le sous-groupe des rotations,

(${\sf S}_lpha$ est la symétrie par rapport à la droite d'angle lpha/2 .

Les règles de composition sont :

$$R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$$

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$$

$$lacksquare S_lpha \circ R_\gamma = S_{lpha - \gamma}$$
 et $R_\gamma \circ S_eta = S_{\gamma + eta}$,

Rappels : espace euclidien

Espaces affines euclidiens

lsométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\bullet O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$$
 est le sous-groupe des rotations,

•
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.

$$(\overline{S}_lpha$$
 est la symétrie par rapport à la droite d'angle $lpha/2.)$

es règles de composition sont :

- $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$
- $S_{\alpha} \circ R_{\gamma} = S_{\alpha \gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma + \beta}.$

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \left\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \right\}$$
 est le sous-groupe des rotations,

$$O_2^- = \left\{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \right\}$$
 est l'ensemble des réflexions.

$$(\overrightarrow{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$$

Les règles de composition sont :

- $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta}$,
- $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affin

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$$

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$$
 est le sous-groupe des rotations,

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha}\circ R_{\beta}=R_{\alpha+\beta}$$
,

$$\bullet S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$$
 est le sous-groupe des rotations,

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$$

$$\vec{S}_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$$
,

$$S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$$

$$\overrightarrow{S}_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\bullet O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) - \sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$$
 est le sous-groupe des rotations,

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ R_{\beta} = R_{\alpha+\beta},$$

$$\bullet \quad \overline{S}_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\vec{S}_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affin

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\mathbf{p}_a: \mathbf{z} \mapsto a\mathbf{z} \text{ avec } |\mathbf{a}| = 1, \text{ et dans ce cas c'est une rotation d'angle } \arg(\mathbf{z}),$
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

$$\sigma_{e^{i\theta}} = S_{\theta}$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affin

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(z)$,
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

- $\rho_{e^{i\theta}} = \overline{R}_{\theta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimensions

Isométries affine

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(z)$,
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $ho_{e^{i heta}}=R_{ heta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition

Groupe orthogo

Petites dimensie

Isométries affine

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(z)$,
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $\rho_{e^{i\theta}} = R_{\theta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Petites dimension Forme standard

Isométries affine

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(z)$,
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $\mathit{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogo
Petites dimension
Forme standard

Isométries affine

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(z)$,
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogo Petites dimension

Isométries affine

En identifiant l'espace euclidient \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'ecrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle arg(z),
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Espaces affines euclidiens

Isométries vectorielle

Définition
Groupe orthogonal
Petites dimensions

Décomposition

Isométries affine

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overline{\phi}=\overline{\rho}_{\,\overline{w},\alpha}$ est la rotation de α autour de l'axe orienté par \overline{w} .

 $\phi \in O^-(\overline{\mathcal{E}})$ ssi il existe une b.o.n $\{\overline{u}, \overline{v}, \overline{w}\}$ dans laquelle la matrice de ϕ est sous-la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Petites dimensions

Soit $\overline{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overline{\phi} \in O(\overline{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous-la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Dimension 3

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & -1
\end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{(\overrightarrow{u},\overrightarrow{v})}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Dimension 3

Rappels : espace euclidien

Espaces affines euclidiens

Définition

Groupe orthogonal

Petites dimensions

Forme standard

Décomposition

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Dimension 3

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielle

Forme standard
Décomposition

ométries

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}=\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous-la forme

$$\left(\begin{array}{ccc} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{array} \right).$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Forme standard des isométrie

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogona
Petites dimensions
Forme standard

Isométries affin

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

$$\begin{bmatrix} \cos(\alpha_1) - \sin(\alpha_1) \\ \sin(\alpha_1) & \cos(\alpha_1) \end{bmatrix} \\ \ddots \\ \vdots \\ \vdots \\ \vdots \\ \cos(\alpha_k) - \sin(\alpha_k) \\ \sin(\alpha_k) & \cos(\alpha_k) \end{bmatrix}$$

Et pour $\overline{\phi} \in O^{-}(\overline{\mathcal{E}})$, à la place d'un nombre impaire de 1 il y a des -1.

Forme standard des isométrie

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

sométries vectorielle
Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$, à la place d'un nombre impaire de 1 il y a des -1.

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition
Groupe orthog

Forme stand

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$

Si k est paire $\phi \in O^+(\overline{\mathcal{E}})$, si k est impaire $\phi \in O^-(\overline{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Isometries vectorielles

Groupe orthogo Petites dimensi

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$

Si k est paire $\phi \in O^+(\overline{\mathcal{E}})$, si k est impaire $\phi \in O^-(\overline{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition
Groupe orthogo
Petites dimension

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots$

Si k est paire $\phi \in O^+(\widetilde{\mathcal{E}})$, si k est impaire $\phi \in O^-(\widetilde{\mathcal{E}})$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Groupe orthogor Petites dimensio

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\widetilde{\mathcal{E}}$ de dimension dim $\widetilde{\mathcal{E}} = n$, et $\widetilde{\phi} \in O(\widetilde{\mathcal{E}})$. Alors $\widetilde{\phi}$ est le produit de $k(\leq n)$ réflexions : $\widetilde{\phi} = \rho_1 \circ \cdots \circ \rho_l$

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogor

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Propositior

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$ Si k est paire $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impaire $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$ Si k est paire $\phi \in O^+(\vec{\mathcal{E}})$, si k est impaire $\phi \in O^-(\vec{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

 $\textit{Soient } \overrightarrow{\mathcal{E}} \textit{ de dimension } \dim \overrightarrow{\mathcal{E}} = \textit{n, et } \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$.

Si k est paire $\phi \in O^+(\mathcal{E})$, si k est impaire $\phi \in O^-(\mathcal{E})$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogona Petites dimension Forme standard

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cette espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$.

Si k est paire $\vec{\phi} \in O^+(\vec{\mathcal{E}})$, si k est impaire $\vec{\phi} \in O^-(\vec{\mathcal{E}})$.

Définition

Définition-Proposition

On dit qu'une application affine $\phi \in Aff(\mathcal{E})$ est une isométrie si une des conditions équivalente est satisfaite.

$$\blacksquare \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$$

$$\phi \in O(\overrightarrow{\mathcal{E}}).$$

euclidiens

isometries vectorienes

Isométries affine

Définition

Propriéte

Structure

Petites dimension

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalente est satisfaite.

$$\blacksquare$$
 $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$

$$\vec{\phi} \in O(\vec{\mathcal{E}}).$$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overline{\mathcal{E}})$.

Définition

Définition-Proposition

On dit qu'une application affine $\phi \in Aff(\mathcal{E})$ est une isométrie si une des conditions équivalente est satisfaite.

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

euclidiens

isometries vectorienes

Isométries affin

Définition

Christia

Petites dimensi

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalente est satisfaite.

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\mathbf{P} \overrightarrow{\phi} \in \mathcal{O}(\overrightarrow{\mathcal{E}}).$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

euclidiens

somètries vectorielles

Isométries affine Définition

Structure

Petites dimension

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalente est satisfaite.

- \blacksquare $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\operatorname{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- Iso⁺(\mathcal{E}) est un sous-groupe de Iso(\mathcal{E}).
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc

Rappels : espace euclidien

euclidiens

isometries affine

Définition Propriétés

Structure

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'ill existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- l'oute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

isometries affin

Définition Propriétés

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- lacksquare Iso $^+(\mathcal{E})$ est un sous-groupe de Iso (\mathcal{E}) .
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in Aff(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- l'oute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

Isométries affine

Propriétés

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in Aff(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Définition Propriétés

Structure

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'i existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

isometries vectorienes

Isométries affin

Définition

Propriétés Structure

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

isomethes vectorienes

Isométries affin

Définition Propriétés

Structure

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

Isomètries affin

Propriétés

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions

Rappels : espace euclidien

euclidiens

Isométries affines

isometries affin

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions.

Rappels : espace euclidien

euciidiens

Lance Contract of Contract

Isomètries affin

Propriétés

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux refléxions.

Structure des isométrie affines

Rappels : espace euclidien

euclidiens

isometries vectorielles

Isométries affin

Définition

Structure

Structure

Petites dimensio

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacksquare soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de ϕ , tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède un point fixe.

Structure des isométrie affines

Structure

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacksquare soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- \blacksquare soit il existe un unique $\overrightarrow{v}(\neq 0)$, vecteur fixe de ϕ , tel que

Structure des isométrie affines

Rappels : espace euclidien

euclidiens

sométries vectorielles

Isométries affin

Propriétés

Structure Petites dimension

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède un point fixe.

Dimensions 1 et 2

Rappels : espace euclidien

euclidiens

isomethes vectoriene.

normetries arrilles

Définition

- roprietes

Petites dimensions

retites dimension

 $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$

 $(\phi \text{ est is compose a au plus 2 reflexions.})$

 $=\phi\in\operatorname{Iso}'(\operatorname{lk}^*)\operatorname{ssi}$

 $\phi \in Iso^-(\mathbb{R}^2)$ ssi

 $(\phi$ est la composé d'au plus 3 refléxions.

Petites dimensions

Espaces affineuclidiens

isometries vectorienes

Isométries affin

Définition

Commence

Petites dimensions

D/ ···

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)

 $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi

 $= \varphi \in ISO (IK^-) SSI$

(φ est la composé d'au plus 3 refléxions.

Espaces affine euclidiens

isometries vectorienes

Isométries affir

Définition

Structure

Petites dimensions

retites difficultion

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)
- - $\phi \in \mathrm{Iso}^-(\mathbb{R}^2)$ ssi

(φ est la composé d'au plus 3 refléxions.)

Espaces affineuclidiens

isometries vectorielles

Isométries affir

Définition

Propriete

Petites dimensions

Décommendado

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$

 $\phi = K_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou $\phi = T_{\nabla}$ est une translation.

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

w $\phi = S_{Y}$ est la symétrie par rapport à une droite affine D, ou w $\phi = T_{Y} \circ S_{Y}$ avec $\overline{V} \neq 0$ est un vecteur fixe par la symétrie $\overline{\phi}$, et dans ce cas on dit que ϕ est une symétrie glasses.

 $(\phi \ est \ la \ composé \ d'au \ plus \ 3 \ refléxions.)$

Espaces affines euclidiens

isomethes vectorienes

Isométries affir

Définition

Propriété

Structure

Petites dimensions

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)
- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{V}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

φ = S_D est to symmetric par topport a une directe attime P₁, ou
 φ = T_N = S_D avec N ≠ 0 est un vecteur fice par la symmetric φ, est une symmetric attacks.

 $(\phi \ est \ la \ composé \ d'au \ plus \ 3 \ refléxions.)$

Espaces affine euclidiens

isometries vectorienes

Isométries affir

Définition

Structure

Petites dimension

retites dimension

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)
- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\Omega,lpha}$ est la rotation de centre Ω d'angle lpha, ou

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

(φ est la composé d'au plus 3 refléxions.)

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- $\operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

euclidiens

isometries vectorielles

Isométries affines

Définition

Propriété

Structure

Petites dimension

• $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)

- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - lacktriangledown $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathrm{Iso}^-(\mathbb{R}^2)$ ssi

euclidiens

isomethes vectorienes

Isométries affir

Définition

Propriété

Petites dimension

Petites dimensio

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)
- $\blacksquare \operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2).$
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - ullet $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

■ $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou $\phi = T_{\overline{V}} \circ S_{\mathcal{D}}$ avec $\overline{V} \neq 0$ est un vecteur fixe par la symétrie $\overline{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D}_{\cdot} ou

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D}_{+} ou

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$ et

Espaces affines euclidiens

isometries vectoriene

Isométries affin

Définition

Structure

Petites dimension

• $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composé d'au plus 2 refléxions.)

- $\blacksquare \operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - ullet $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $lack \phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{D}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

 $(\phi \text{ est la composé d'au plus } 3 \text{ refléxions.})$

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composé d'au plus 2 refléxions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

(ϕ est la composé d'au plus 3 refléxions.)

Petites dimensions

 $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

Rappelle: Les application affines de l'espace euclidient \mathbb{C} sont de la forme

Les isométrie affines de C

Rappelle: Les application affines de l'espace euclidient \mathbb{C} sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

Rappelle: Les application affines de l'espace euclidient $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

Les isométrie affines de $\mathbb C$

Rappels : espace euclidien

euclidiens

isometries vectorielle

Isométries affin

Propriétés

Structure

Petites dimension

Rappelle : Les application affines de l'espace euclidient $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - **Sinon** ϕ est une symétrie glissée.

 $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

Rappelle: Les application affines de l'espace euclidient $\mathbb C$ sont de la forme

Les isométrie affines de $\mathbb C$

Rappels : espace euclidien

Espaces affines euclidiens

Isometries vectorielle

Isométries affine

Propriétés

Petites dimen

Petites dimensi

Rappelle : Les application affines de l'espace euclidient \mathbb{C} sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\overline{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Rappelle: Les application affines de l'espace euclidient $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - \blacksquare Sinon ϕ est une symétrie glissée.

Rappelle: Les application affines de l'espace euclidient \mathbb{C} sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Dimension 3

Rappels : espace euclidien

Espaces affine euclidiens

isometries vectorienes

Isométries affin

Définition

Structura

Petites dimensions

Dácomposition

 $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

 $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssii

 $(\phi$ est la composé d'au plus 4 refléxions.

Petites dimensions

■ $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.

 $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

Petites dimensions

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

Espaces affine euclidiens

Isometries vectorielles

Isométries affir

Définition

Structure

Petites dimensions

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D}_{+} ou
 - $\phi = I \forall$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\mathcal{D} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi=S_{\mathcal{H}}$ est la symétrie par rapport au plan aifine $\mathcal{H},$ ou
 - dans ce cas and thought estimate the part of symmetric by each of the control of
 - is $\phi = R_{D,N} \circ S_N$ avec $D \perp H$, at dans ce cas on dit que ϕ est une
 - $(\phi \text{ est la composé d'au plus } 4 \text{ refléxions.})$

Dimension 3

Petites dimensions

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - ullet $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou

Petites dimensions

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - ullet $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{V}}$ est une translation, ou

Espaces affin euclidiens

Isomètries vectorielles

Isométries affir

isometries ann

Définition

Structure

Petites dimensions

retites dimension

- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi=R_{\mathcal{D},lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\nabla} \circ R_{\mathcal{D},\alpha}$, avec $\mathcal{D} = \langle \overline{V} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que q est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in Iso^-(\mathbb{R}^3)$ ssi

φ = S_R est la symétrie par rapport au plan affine H, ou
 φ = T_V o S_R avec V ≠ 0 est un vecteur foe par la symétrie φ dans ce cas on dit que φ est une symétrie gisse.

 $\phi = R_{D,\alpha} \circ S_{\mathcal{H}}$ avec $D \perp \mathcal{H}$, et dans ce cas un dit que ϕ est une

 $(\phi \text{ est la composé d'au plus } 4 \text{ refléxions.})$

Petites dimensions

 $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

■ $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.

 $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou

 $\phi = T_{\vec{v}}$ est une translation, ou

 $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\mathcal{D} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ

Espaces affin euclidiens

Isométries vectorielle

Isométries affir

Difference

Propriétés

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi

 $m \ \phi := T_{V} \circ S_{H} \text{ avec } \vec{V}$ dans ce cas on dit que $n \ \delta := V - c S_{V} \text{ avec} T$

anti-rotation.

Espaces affin euclidiens

Isométries vectorielles

Isométries affir

nonneurics ann

Définition

Structure

Petites dimension

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi

 $(\phi$ est la composé d'au plus 4 refléxions.)

Espaces affine euclidiens

Isométries vectorielle

Isométries affin

Définition

Propriétés

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, \alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lacktriangledown \phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi \text{ est la composé d'au plus } 4 \text{ refléxions.})$

- \blacksquare Iso(\mathbb{R}^3) = Iso⁺(\mathbb{R}^3) \sqcup Iso⁻(\mathbb{R}^3).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\Phi = T_{\vec{v}}$ est une translation, ou
 - ullet $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Définition

Propriétés

Structure

retites dimension

- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - lacktriangledown $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Structure

Petites dimensio

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.
 - $m{\Phi} = \mathcal{R}_{\mathcal{D},\alpha} \circ \mathcal{S}_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Proprietes

Petites dimension

retites dimension

- - $\quad \bullet \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \, \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - lacksquare $\phi = \mathcal{R}_{\mathcal{D},\alpha} \circ \mathcal{S}_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Définition

Structure

Petites dimension

- - $\quad \bullet \in \mathsf{Iso}^+(\mathbb{R}^3) \mathsf{ ssi}$
 - ullet $\phi=R_{\mathcal{D},lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Propriétés Propriétés

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \phi \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi$ est la composé d'au plus 4 refléxions.)

Espaces affine euclidiens

Isometries vectorielle

Isométries affin

Définition

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi$ est la composé d'au plus 4 refléxions.)

euclidiens

Isometries vectorielle

Isométries affin

Définition

Propriété

Patitas dimansi

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi \text{ est la composé d'au plus } 4 \text{ refléxions.})$

Rappels : espace euclidien

euclidiens

isomethes vectorient

Isométries affine

Définition

Campan

Petites dimen

Décomposition

Rappelle : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k(\leq n+1)$ réflexions

$$\phi = \rho_1 \circ \cdots \circ \rho_k$$

Si k est paire $\phi \in Iso^+(\mathcal{E})$, et si k est impaire $\phi \in Iso^-(\mathcal{E})$

Décomposition

Rappelle : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

$$\phi = \rho_1 \circ \cdots \circ \rho_k$$

Décomposition

Rappelle : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$. Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Propriétés

Petites dimensi

Décomposition

Rappelle : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k \leq n+1$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est paire $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impaire $\phi \in \mathsf{Iso}^-(\mathcal{E})$.