Versuch 302

Elektrische Brückenschaltungen

Nico Schaffrath Mira Arndt nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 19.11.2019 Abgabe: 26.11.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

Lit	Literatur		
4	Diskussion	4	
3	Auswertung 3.1 Wheatstonesche Brücke	3	
2	Durchführung	3	
1	Theorie	3	

1 Theorie

[1]

2 Durchführung

3 Auswertung

Bei der Berechnung der jeweiligen Größen wurd

3.1 Wheatstonesche Brücke

Mit denen verwendeten Widerständen, die in Tabelle 1 aufgeführt wurden, lassen sich durch Gleichung (VERWEIS AUF GLEICHUNG) folgende Werte für den unbekannten Widerstandswert R_x berechnen: (Fehlerhafter AUSDRUCK)

$$R_{x,1} = 491,821\,\Omega$$

$$R_{x.2} = 492,794\,\Omega$$

$$R_{x,3}=490,313\,\Omega$$

Über die zuvor aufgeführte Gleichungen (VERWEIS AUF GLEICHUNGEN) lässt sich der Mittelwert

$$\bar{R_r} = 491,643\,\Omega$$

samt zugehörigem Fehler der Standartabweichung

$$\Delta \bar{R} = 0,722\,\Omega$$

Das zusammengefasste Ergebnis für den, mithilfe der Wheatstonesche Brückenspannung berechneten, Widerstandswert lautet, wie folgt:

$$R_x = (491, 643 \pm 0, 722)\,\Omega$$

samt zugehörigem Fehler der Standartabweichung berechnen:

Messung	R_2/Ω	R_3 / Ω	R_4 / Ω
1	332	597	403
2	664	426	574
3	1000	329	671

Tabelle 1: Text

4 Diskussion

Literatur

- [1] TU Dortmund. Versuchsanleitung Brückenschaltungen.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [4] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.