Chapter 4 SAMPLING OF CT SIGNALS

Main Topics

- 1 Periodic sampling
- 2 Discrete-time processing of continuous-time signals
- 3 Continuous-time processing of discrete-time signal
- 4 Digital processing of analog signals
- 5 Changing the sampling rate using discrete-time processing

4.1 Periodic Sampling

Ideal sample

$$x[n] = x_c(t)_{t=nT} = x_c(nT)$$

T: sample period

 $f_s=1/T$: sample frequency

 $\Omega_s = 2\pi/T$: sample rate

Time Normalization $t \rightarrow t/T=n$

mathematic model for ideal C/D

4.2 F-DOMAIN REPRESENTATION OF SAMPLING

Time domain:

Sampling period: T

Sampling frequency:

Frequency domain:

$$X_c(t) \leftarrow \xrightarrow{CTFT} X_c(j\Omega)$$

$$s(t) \leftarrow \xrightarrow{F.S.} a_k = \frac{1}{T}$$
 (Periodic signal)

$$s(t) \leftarrow \xrightarrow{CTFT} S(j\Omega) = \sum_{k=\infty}^{+\infty} 2\pi a_k \delta(\Omega - k\Omega_s) = \sum_{k=\infty}^{+\infty} \Omega_s \delta(\Omega - k\Omega_s)$$

$$X_{s}(t) \leftarrow \xrightarrow{CTFT} X_{s}(j\Omega) = \frac{1}{2\pi} [X_{c}(j\Omega) * S(j\Omega)]$$

$$= \frac{\Omega_{s}}{2\pi} \sum_{k=-\infty}^{+\infty} X(j(\Omega - k\Omega_{s}))$$

$$= \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\Omega - k\Omega_{s}))$$

Frequency domain:

No aliasing

$$\Omega_s - \Omega_N < \Omega_N$$

Aliasing

aliasing frequency

$$X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$$
 以 \(\Omega_{s} \text{ 为周期}\)

$$\omega = \Omega T = \frac{\Omega}{f_s}$$

Frequency Normalization 以2π为周期

$$X(e^{j\omega}) = X_s(j\Omega)|_{\Omega = \omega/T}$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\omega - k2\pi)/T)$$

1. Nyquist sampling theorems

let $X_c(t)$ be a bandlimite d signal with $X_c(j\Omega) = 0, |\Omega| \ge \Omega_N$

then $x_c(t)$ is uniquely determined by its samples

$$x[n] = x_c(nT), n = 0, \pm 1, \pm 2, \cdots$$

if $\Omega_{\varsigma} - \Omega_{N} \geq \Omega_{N}$, that is

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N$$

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N \qquad \left(\text{or } f_s = \frac{1}{T} \ge 2 f_N \right)$$

 $\Omega_s/2$: Nyquist frequency

 $2\Omega_N$: Nyquist rate

 $\Omega_{\rm s} > 2\Omega_{\rm N}$: oversampling

 $\Omega_{s} < 2\Omega_{N}$: undersampling

e.g.

1. The highest frequency of analog signal ,which wav file with sampling rate 16kHz can show , is:

8kHz

2. According to what you know about the sampling rate of MP3 file , judge the sound we can feel frequency rangeB (

```
(A) 20~44.1kHz (B) 20~20kHz
(C) 20~4kHz (D) 20~8kHz
```

The higher sampling rate of audio files, the better fidelity.

Period = 2π in frequency domain : $w=2.1\pi$ and $w=0.1\pi$ are the same

 $\cos(2.1\pi n) = \cos(0.1\pi n)$

2. Ideal reconstruction

Ideal reconstruction in frequency domain

3. Aliasing

e.g. aliasing from frequency domain

e.g. Aliasing from time-domain interpolation

e.g.
$$x_a(t) = \cos(2\pi * 5t), 0 \le t \le 1, f = 5 Hz$$

Sampling frequency:8Hz

Reconstruct frequency: f' = 8 - 5 = 3 Hz

4.3 RECONSTRUCTION OF A BANDLIMITED SIGANL FROM ITS SAMPLES

mathematic model for ideal D/C

in f-domain
$$X_r(j\Omega) = X_s(j\Omega)H_r(j\Omega)$$

$$H_r(j\Omega) = \begin{cases} T & |\Omega| \leq \Omega_c \\ 0 & |\Omega| > \Omega_c \end{cases}$$

$$X_r(j\Omega) = X_s(j\Omega)H_r(j\Omega)$$

in t-domain

$$h_{r}(t) = IFT \{ H_{r}(j\Omega) \}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} H_{r}(j\Omega) e^{j\Omega t} d\Omega = \frac{1}{2\pi} \int_{-\Omega_{c}}^{\Omega_{c}} T e^{j\Omega t} d\Omega$$

$$= \sin(\Omega_{c}t) - \sin(\pi t/T)$$

$$=\frac{\sin(\Omega_c t)}{\pi t/T}=\frac{\sin(\pi t/T)}{\pi t/T}$$

$$x_{r}(t) = x_{s}(t) * h_{r}(t)$$

$$= \left[\sum_{n=-\infty}^{\infty} x[n] \delta(t - nT) \right] * \frac{\sin(\pi t/T)}{\pi t/T}$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left[\delta(t - nT) * \frac{\sin(\pi t/T)}{\pi t/T} \right]$$

$$=\sum_{n=-\infty}^{\infty}x[n]\frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

Interpolation in t-domain

$$\begin{array}{c|c}
\hline
x[n] & D/C \\
\hline
T & T
\end{array}$$

$$X(e^{j\omega}) = X_s(j\Omega)|_{\Omega = \omega/T}$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\omega - k2\pi)/T)$$

$$X_{r}(j\Omega) = \sum_{n \to \infty}^{\infty} x[n] H_{r}(j\Omega) e^{-j\Omega T n}$$
$$= H_{r}(j\Omega) X(e^{j\Omega T})$$

Digital processing of analog signals

e.g.

$$x_a(t) = \cos(10\pi t), 0 \le t < 1, f = 5Hz$$

 $f_s = 10Hz(T = 0.1s)$
 $draw x[n] = x_a(nT) = \cos(10\pi nT) = \cos(\pi n)$
 $draw reconstruction signal :$

$$y(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

Matlab codes to realize interpolation

```
T=0.1;
n=0:10;
x=cos(10*pi*n*T);
stem(n,x);
dt=0.001;
t=ones(11,1)* [0:dt:1];
n=n'*ones(1,1/dt+1);
y=x*sinc((t-n*T)/T);
hold on;
plot(t/T,y,'r')
```


4.4 Discrete-Time Processing of Continuous-Time Signals

$$Y_{r}(j\Omega) = H_{r}(j\Omega)Y(e^{j\Omega T})$$

$$= H_{r}(j\Omega)H(e^{j\Omega T})X(e^{j\Omega T})$$

$$= H_{r}(j\Omega)H(e^{j\Omega T})\frac{1}{T}\sum_{k=\infty}^{\infty}X_{c}(j\Omega - j\frac{2\pi k}{T})$$

$$\stackrel{k=0}{=}H(e^{j\Omega T})X_{c}(j\Omega) \qquad |\Omega| < \frac{\pi}{T}$$

$$H_{eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}) & |\Omega| < \pi/T \\ 0 & |\Omega| \ge \pi/T \end{cases}$$

$$H_{eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}) & |\Omega| < \pi/T \\ 0 & |\Omega| \ge \pi/T \end{cases}$$

conditions : LTI;

no aliasing or aliasing occurred outside the pass band of filters

e.g.

e.g.

Aliasing occurred outside the pass band of digital filters satisfies the equivalent relation of frequency response mentioned before.

4.5 Continuous-Time Processing of Discrete-Time Signal

$$h[n], H(e^{j\omega})$$

$$x_c(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

$$y_c(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

$$X_c(j\Omega) = TX(e^{j\Omega T}) |\Omega| < \frac{\pi}{T}$$

$$X_{c}(j\Omega) = TX(e^{j\Omega T}) \quad |\Omega| < \frac{\pi}{T} \qquad Y_{c}(j\Omega) = X_{c}(j\Omega)H_{c}(j\Omega) \qquad |\Omega| < \frac{\pi}{T}$$

$$Y(e^{j\omega}) = \frac{1}{T}Y_c(\frac{j\omega}{T}) \qquad |\omega| < \pi$$

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad for |\omega| < \pi$$

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad for |\omega| < \pi$$

e.g. noninteger delay

$$H(e^{j\omega})=e^{-j\omega\Delta}, \quad |\omega|<\pi$$

$$H_{c}(j\Omega) = H(e^{j\Omega T}) = e^{-j\Omega \Delta T}$$

$$y_{c}(t) = x_{c}(t - \Delta T)$$

$$y[n] = y_{c}(nT) = x_{c}(nT - \Delta T)$$

$$h[n] = \frac{\sin \pi (n - \Delta)}{\pi (n - \Delta)}, - \infty < n < \infty$$

4.6 Changing The Sampling Rate Using Discrete-time

 Sampling rate reduction by an integer factor (downsampling, decimation)

2. Increasing the sampling rate by an integer factor (upsampling, interpolation)

3. Changing the sampling rate by a noninteger factor

4.6.1 Sampling rate reduction by an integer factor

(downsampling, decimation)

$$x_d[n] = x[nM]$$

a sampling rate compressor:

time-domain of downsampling : decrease the data , reduce the sampling rate

frequency-domain of downsampling : take aliasing into consideration

$$X_{d}\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\omega-2\pi i)/M}\right)$$

e.g.
$$M=2$$
 $X_d(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega/2}) + X(e^{j(\omega-2\pi)/2}) \right]$

e.g.
$$M=3$$

$$X_{d}(e^{j\omega}) = \frac{1}{3} \left[X(e^{j\omega/3}) + X(e^{j(\omega-2\pi)/3)} + X(e^{j(\omega-4\pi)/3)} \right]$$

e.g. M=3 , aliasing

frequency spectrum after decimation:

period= 2π , M times wider, 1/M times higher

4.6.2 Increasing the sampling rate by an integer factor

(upsampling, interpolation)

$$x_{e}[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L \cdots \\ 0 & other \end{cases}$$

or,
$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$$

a sampling rate expander:

$$x[n] \longrightarrow x_{\varepsilon}[n]$$

Time-domain of upsampling : increase the data , raise the sampling rate

Frequency-domain of upsampling: need not take aliasing into consideration $X_{e}(e^{j\omega}) = X(e^{jL\omega})$

Frequency-domain of upsampling

Transverse axis is 1/L timer shorter.

Magnitude has no change.

$$\frac{1}{T'} = \frac{L}{T} \qquad \frac{\pi}{T} \qquad \pi \qquad 2\pi \qquad \omega = \Omega T'$$

total upsampling system: total system

time-domain explanation of reverse mirror-image filter : slowly-changed signal by interpolation

$$h_{i}[n] = IFT[H(e^{j\omega})] = \frac{\sin(\pi n/L)}{\pi n/L}$$

$$x_{i}[n] = x_{e}[n] * h_{i}[n] = (\sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]) * h_{i}[n]$$

$$= \sum_{k=-\infty}^{\infty} x[k](\delta[n-kL] * h_{i}[n])$$

$$= \sum_{k=-\infty}^{\infty} x[k]h_{i}[n-kL] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin(\frac{\pi(n-kL)}{L})}{\frac{\pi(n-kL)}{L}}$$

e.g.

Time-domain process of mirror-image filter

4.6.3 Changing the sampling rate by a noninteger factor

e.g. change 400Hz's signal to 300HzL=3, M=4

Advantages of decimation after interpolation :

- 1. Combine antialiasing and reverse mirror-image filter
- 2.Lossless information for upsampling

Application of multi-rate signal processing

Sampling system:

Reconstruction system :

(e)

Requirements and difficulties:

- sampling processing in time and frequency domain , frequency spectrum chart;
- comprehension and application of sampling theorem;
- frequency response in discrete-time processing system of continuous-time signals;

summary

- Representation in time domain and changes in frequency domain of sampling and reconstruction.
- Sampling theorem educed from aliasing in frequency domain.
- Analog signal processing in digital system or digital signal in analog system, to explain some digital systems, their frequency responses are linear in dominant period

Exercises

第二版

4.2

4.15

4.17

4.24

第三版

4.2

4.15

4.17

4.30