12

Для визначення тилу регресії необхідно скористатися тестом Г.ЧОУ. Для цього введемо деякі позначення і сформуемо з них таблицю. Цією таблицею можна користуватися для випадку трендів, від лінійного.

Модель з декилькох рівнянь:

$\mathcal{N}^{\underline{o}}$	вид	кількість	залишкова	к-сть пар-трів	к-сть ступенів свободи
рівняння:	рів-ня	спостережень	сума квадратів	у рівнянні	залишкової дисперсії
(1)	y^1	n_1	S^1	p_1	$n_1 - p_1$

(1)
$$y^1$$
 n_1 S^1 p_1 $n_1 - p_1$
(2) y^2 n_2 S^2 p_2 $n_2 - p_2$

Рівняння тренду за всією сукупністю даних:

$$(3) y^3 n S^3 p_3 n - p_2$$

Якщо розглядаеться модель лінійна, то $p_1 = p_2 = p_3 = 2$.

Залишкова сума квадратів на кусково-лінійной моделі дорівнює: $S = S^1 + S^2$, а відповідна кількість ступенів свободи є:

$$(n_1 - p_1) + (n_2 - p_2) = (n - p_1 - p_2)$$

При переході від одного рівняння тренду до кусково-лінійної моделі скорочення залишкової суми квадратів таке: $\Delta S = S^3 - S$.

Кількість ступенів свободі, що відповідає ΔS дорівнює: $n-p_3-(n-p_1-p_2)=p_1+p_2-p_3$ Розрахуєємо F_{CT} : $F_{CT}=\frac{\Delta S\left(n-p_1-p_2\right)}{S\left(p_1+p_2-p_3\right)}$

Якщо $F_{CT} > F_{KP} = F(\alpha; p_1 + p_2 - p_3; n - p_1 - p_2)$, то з йомовірностю $(1 - \alpha) * 100\%$ гіпотеза про структурну стабільність тенденції відхіляється, а вплив структурних змін на динаміку ряду зважають значущим. А це означає, що необхідно будувати кусково-лінійну модель. Якщо $F_{CT} < F_{KP}$, то модель структурно стабільна, тобто рівняння (1) і (2) описують одну і ту тенденцію і тому відмінність коефіцієнтів цих рівнянь статистично незначима.

Далі розглянемо випадкі структурної нестабільності тенденції. Для лінійної тенденції $y^1 = a_1 + b_1 t$, а $y^2 = a_2 + b_2 t$.

- 1. Якщо a_1 і a_2 значимо відрізняються, а b_1 і b_2 статистично значимо різняться, це геометрічно означає, що прямі y^1 і y^2 паралельні. Тобто відбулася стрибкоподібна зміна рівнів ряду y_t в момент часу t^* . При незміному середньому абсолютному прирості(мал.1)
- 2. Параметрі a_1 і a_2 статистично незначимо відрізняються, а b_1 і b_2 статистично значимо відрізняються. Це означає, що y^1 і y^2