AD-U1-FPEPS

Xingyu Zhang 2022.07.22

Hubbard model

$$\hat{H} = -t \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} \left(c^{\dagger}_{\mathbf{j}\sigma} c_{\mathbf{l}\sigma} + c^{\dagger}_{\mathbf{l}\sigma} c_{\mathbf{j}\sigma} \right) + U \sum_{\mathbf{j}} n_{\mathbf{j}\uparrow} n_{\mathbf{j}\downarrow} - \mu \sum_{\mathbf{j}} (n_{\mathbf{j}\uparrow} + n_{\mathbf{j}\downarrow})$$

• $\mu = \frac{0}{2}$, Particle-hole symmetry

U=4 half-filled

U=4 half-filled

- D = 2.4 is lower, but D = 3 is higher in contrast with ITE
- AD optimization is not stable at end (maybe for insufficient χ)
- 0.02 higher than other method, may need large D
- $D \ge 6$ is hard to achieve without symmetry for large memory usage

$$D = 4 \ 3 - 4h$$
$$D = 5 \ 24h$$

U1-tensor block division

• *Z*2 → *U*1

• iPEPS

state	Sz	Pn
0	0	0
1	+1	1
\downarrow	-1	1
$\uparrow\downarrow$	0	2

$$0 1 2 3$$

 $9 = 3 + 3 + 3$
 $= 1 + 4 + 3 + 1$

Physical bond division is decided by Hamiltonian, but virtual bond division is arbitrary.

U=12 half-filled use U1-symmetry

More division is better than bigger dimension

Mean field BCS

$$\hat{H} = -t \sum_{\langle i,j,\sigma \rangle} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{H.c.}) + \sum_{\langle i,j \rangle} \gamma_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} - \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\uparrow}^{\dagger} + \text{H.c.})$$

- Can be exact solved by diagonalized
- Only need 1×1 cell

- Small division converges quickly, more division is better but hard to achieve
- Difficulty for fermion model is ability expression rather than ability of optimization
- For large *D*, the difficulty is how to divide the U1 block

divide the U1 block use SVD

- Merge two legs of U1 tensor will increase number of blocks.
- Sort S from different blocks, keep largest D value may decrease number of blocks.
- So after split to origin leg, block would be divided differently from original one.

Open question

- Optimize U1 iPEPS block with AD
- Divide U1 boundary MPS block in VUMPS
- Optimize U1 code for large D with more division blocks

• Momentum space tensor network for fermion?

Optimize U1 iPEPS block with AD

• Merge two iPEPS → ansatz: two-site iPEPS

Divide U1 MPS block in VUMPS

Last step TEBD

- Easy to realize but increased computation cost
 3-leg FL,FR→4-leg FL,FR
- use this trick after one AD Optimization

Thank you for listening!

Q&A?