Cheatsheet: Matrices and Determinants (Exercise 3.4)

Class 11 Mathematics (Chapter 3)

Prepared by ExpertGuy

1. Matrix Types

Symmetric Matrix

- **Definition**: $A = A^t$ (square matrix, **Echelon Form** $a_{ij}=a_{ji}$).
- Example: $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.
- Property: $(A+B)^t = A+B \text{ if } A,B$ symmetric (Q1).

Skew-Symmetric Matrix

- **Definition**: $A^t = -A$ (diagonal elements are 0).
- Example: $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- **Property**: $A A^t$ is skew-symmetric (Q2, Q3).

Hermitian Matrix

- **Definition**: $(\overline{A})^t = A$ (complex entries).
- Example: $\begin{bmatrix} 0 & 2+i \\ 2-i & -2 \end{bmatrix}$ (Q6).
- **Property**: $A + (\overline{A})^t$ is Hermitian.

Skew-Hermitian Matrix

- **Definition**: $(\overline{A})^t = -A$.
- Example: $\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ (Q6).
- **Property:** $A (\overline{A})^t$ is skew-Hermitian.

Echelon and Reduced 2. **Echelon Forms**

- Conditions:
 - 1. Leading entry in each non-zero row is 1.
 - 2. Zeros before leading 1 increase in successive rows.
- Example: $\begin{bmatrix} 0 & 1 & -2 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Reduced Echelon Form

- Additional Condition: Column of leading 1 has zeros elsewhere.
- Example: $\begin{bmatrix} 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

3. Rank of a Matrix

- **Definition**: Number of non-zero rows in reduced echelon form (Q10).
- Steps:
 - 1. Apply row operations to reach echelon form.
 - 2. Count non-zero rows.
- **Example**: $\begin{bmatrix} 1 & -4 & -7 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$ has rank 2.

4. Matrix Properties

- $A + A^t$: Always symmetric (Q2, Q3).
- $A A^t$: Always skew-symmetric.
- AB: Symmetric if A, B symmetric and AB = BA (Q4).
- AA^t, A^tA : Symmetric for any matrix (Q5).
- A^2 : Symmetric if A is symmetric or skew-symmetric (Q7).

5. Matrix Inverse (Q9)

Adjoint Method

- $\frac{\operatorname{Adj} A}{|A|}$, where • Formula: Adj $A = (\text{cofactor matrix})^t$.
- Steps:
 - 1. Compute $|A| \neq 0$.
 - 2. Find cofactors $A_{ij} = (-1)^{i+j}$. minor.
 - 3. Transpose cofactor matrix.
 - 4. Divide by |A|.

Row/Column Operations

- Steps:
 - 1. Form [A|I].
 - 2. Use row/column operations to make $A \rightarrow I$.
 - 3. Right side becomes A^{-1} .
- Example: For $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 2 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} -1 & -1 & \frac{3}{2} \\ 0 & -\frac{1}{2} & 0 \\ -1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}.$

6. Complex Matrix Operations (Q8)

- Conjugate: \overline{A} replaces each entry a + bi with a - bi.
- Example: For $A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$, $A(\overline{A})^t = \overline{A}$ $\begin{bmatrix} 3 \\ 3-2i \\ 2+i \end{bmatrix}.$