Practical No.8

Implementation of Classifications Algorithms like Navie Bayes Theorem, K-Nearest Neighbour.

Implementing data analysis in R typically involves several key steps using various packages. Below is a simplified example using the popular `dplyr` and `ggplot2` packages for data manipulation and visualization. Assume you have a dataset called `my_data.csv`.

```
1. Loading Data:
 ```R
 # Install and load necessary packages
 install.packages(c("dplyr", "ggplot2"))
 library(dplyr)
 library(ggplot2)
 # Load data
 my data <- read.csv("my data.csv")
2. Data Exploration:
 # View the structure of the dataset
 str(my data)
 # Summary statistics
 summary(my data)
3. Data Cleaning:
 # Remove missing values
 my data <- na.omit(my data)
 # Filter or transform data as needed
 my data <- my_data %>% filter(column_name > 0)
4. Data Transformation:
 ```R
 # Create new variables
 my_data <- my_data %>% mutate(new variable =
some operation(existing variable))
5. Data Analysis:
 ```R
 # Use dplyr functions for analysis
 result <- my data %>%
 group by(category variable) %>%
 summarise(avg_value = mean(numeric_variable))
6. Data Visualization:
 # Create plots with ggplot2
```

```
ggplot(my_data, aes(x = x_variable, y = y_variable, color = category_variable)) +
geom_point() +
geom_smooth(method = "lm") +
labs(title = "Scatter Plot with Linear Fit") +
theme_minimal()
```

These are just basic examples. Depending on your specific analysis goals, you might perform more complex operations, statistical tests, or create more advanced visualizations. R offers a wide range of packages and functions tailored to different data analysis needs.

```
> library(e1071)
> NBdataset<-read.table("new_dataset.csv",header = TRUE,sep = ",")
> classifier<-naiveBayes(NBdataset[,1:4],NBdataset[,5])</pre>
> table(predict(classifier,NBdataset[,5]),NBdataset[,5],
 dnn= list('predicted', 'actual'))
 actual
predicted no yes
 no 0
 0
 yes 5
> classifier$tables
Soutlook
 Out look
NBdataset[, 5] Overcast Rainy Sunny
no 0.0000000 0.6000000 0.4000000
 yes 0.4444444 0.2222222 0.3333333
$Temp
 Temp
NBdataset[, 5] Cool Hot Mild
no 0.2000000 0.4000000 0.4000000
 yes 0.3333333 0.2222222 0.4444444
$Humidity
 Humidity
NBdataset[, 5] High Normal
no 0.8000000 0.2000000
 yes 0.3333333 0.6666667
SWindy
 Windy
NBdataset[, 5]
 no 0.4000000 0.6000000
 yes 0.6666667 0.3333333
> NBdataset[15,-5] <- as.factor(c(Outlook="Sunny", Temperature="Cool", Humidity="High", Wind="Strong"))
> print(NBdataset[15,-5])
 Outlook Temp Humidity Windy
 High Strong
 Sunny Cool
 > result<-predict(classifier,NBdataset[15,-5])</pre>
 > print(result)
 [1] yes
Levels: no yes
```

```
> library(ggplot2)
> library(ggfortify)
> View(iris)
> mydata <- select(iris,c(1,2,3,4))</pre>
> View(iris)
> wssplot <- function(data, nc=15, seed=1234){</pre>
 wss <- (nrow(data)-1)*sum(apply(data,2,var))
 for (i in 2:nc){
 set.seed(seed)
 wss[i] <- sum(kmeans(data, centers=i)$withinss)}
plot(1:nc, wss, type="b", xlab="Number of Clusters",
 ylab="Within groups sum of squares")</pre>
 WSS
+ }
> wssplot(mydata)
 [1] 681.37060 152.34795 78.85144 57.26562 46.46117 41.70442 40.66047 39.03110
> KM = kmeans(mydata,4)
> autoplot(KM, mydata, frame=TRUE)
> KM$centers
 Sepal.Length Sepal.Width Petal.Length Petal.Width
 6.264444
 2.884444
 4.886667
 1.666667
1
2
 5.532143
 2.635714
 3.960714
 1.228571
3
 5.006000
 3.428000
 1.462000
 0.246000
 3.096296
 5.918519
4
 7.014815
 2.155556
>
```

#### Digram:





*	Sepal.Length	Sepal.Width +	Petal.Length <sup>‡</sup>	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4,9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4,9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0,2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa

```
> df<-na.omit(df)
> d<-scale(df)
> head(d)
 Murder Assault UrbanPop
Alabama
 1.24256408 0.7828393 -0.5209066
Alaska 0.50786248 1.1068225 -1.2117642
Arizona 0.07163341 1.4788032 0.9989801
Arkansas 0.23234938 0.2308680 -1.0735927
California 0.27826823 1.2628144 1.7589234
Colorado 0.02571456 0.3988593 0.8608085
 Rape
Alabama -0.003416473
 2.484202941
Alaska
Arizona
 1.042878388
Arkansas -0.184916602
California 2.067820292
Colorado 1.864967207
```

```
> d<-dist(d,method="euclidean")
> hc<-hclust(d,method = "complete")
>
> plot(hc)
> d<-dist(d,method="euclidean")
> hc<-hclust(d,method = "complete")
>
```



plot(hc,cex=0.5,hang=-1)



```
KNN alogorithm
rm(list = ls())
install.packages("class",dependencies = TRUE)
library(class)
install.packages("caret")
library(caret)
diabetics=read.csv('pima-indians-diabetes.csv')
class(diabetics$mass)
 [1] "numeric"
str(diabetics)
 > str(diabetics)
 768 obs. of 9 variables:
 'data.frame':
 6 1 8 1 0 5 3 10 2 8 ...
 $ preg : int
 $ plas : int 148 85 183 89 137 116 78 115 197 125 ...
 $ pres : int 72 66 64 66 40 74 50 0 70 96 ...
 $ skin : int 35 29 0 23 35 0 32 0 45 0 ...
 $ test : int 0 0 0 94 168 0 88 0 543 0 ...
 $ mass : num 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
 $ pedi : num 0.627 0.351 0.672 0.167 2.288 ...
 $ age : int 50 31 32 21 33 30 26 29 53 54 ...
 $ class: int 1010101011...
diabetics[,'class']=factor(diabetics[,'class'])
str(diabetics)
 > str(diabetics)
 'data.frame':
 768 obs. of 9 variables:
 $ preg : int 6 1 8 1 0 5 3 10 2 8 ..
 $ plas : int 148 85 183 89 137 116 78 115 197 125 ...
$ pres : int 72 66 64 66 40 74 50 0 70 96 ...
 $ skin : int 35 29 0 23 35 0 32 0 45 0 ...
 $ test : int 0 0 0 94 168 0 88 0 543 0 ..
 $ mass : num 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
 $ pedi : num 0.627 0.351 0.672 0.167 2.288 ...
 $ age : int 50 31 32 21 33 30 26 29 53 54 ..
 $ class: Factor w/ 2 levels "0","1": 2 1 2 1 2 1 2 1 2 2 ...
test = diabetics[501:768,]
train=diabetics[1:500,]
pred test=knn(train[,-9],test[,-9],train$class,k=2)
 > pred_test
 \begin{smallmatrix} 133 \end{smallmatrix}] \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.
 [265] 0 0 1 0
 Levels: 0 1
```

```
pred test
 pred_test
 0
 0 129 33
 1 53 53
confusion=table(pred test,test$class)
Confusion
 pred_test
 0
 1
 0 129 33
 1 53 53
sum(diag(confusion))/nrow(test)
> sum(diag(confusion))/nrow(test)
 [1] 0.6791045
confusionMatrix(pred_test,test$class)
 > confusionMatrix(pred_test,test$class)
 Confusion Matrix and Statistics
 Reference
 Prediction
 0
 1
 0 129 33
 1 53 53
 Accuracy: 0.6791
 95% CI: (0.6196, 0.7346)
 No Information Rate: 0.6791
 P-Value [Acc > NIR] : 0.52917
 Kappa: 0.3063
 Mcnemar's Test P-Value: 0.04048
 Sensitivity: 0.7088
 Specificity: 0.6163
 Pos Pred Value: 0.7963
 Neg Pred Value: 0.5000
 Prevalence: 0.6791
 Detection Rate: 0.4813
 Detection Prevalence: 0.6045
 Balanced Accuracy: 0.6625
 'Positive' Class: 0
```

#### I. Linear Regression in R

- ▶ Regression analysis is a very widely used statistical tool to establish a relationship model between two variables.
- ▷ One of these variable is called predictor variable whose value is gathered through experiments.
- ▶ The other variable is called response variable whose value is derived from the predictor variable.
- ▷ Linear regression is used to predict the value of an outcome variable Y based on one or more input predictor variables X.
- ▶ Mathematically a linear relationship represents a straight line when plotted as a graph.
- ▶ The general mathematical equation for a linear regression is −
- $\Rightarrow =b0 + b1 *$
- ▶ Following is the description of the parameters used –
- oy is the response variable.
- ox is the predictor variable.
- $\circ$ b1 slope
- ∘b0 intercept
- oCollectively, they are called regression coefficients.
- $\triangleright$  For example, we want to predict weight (y) from height (x), the linear regression model can be represented by the following equation
- $\triangleright$  Weight= b0 + b1 \* height
- ob1 is called slope because it defines the slope of the line or how x translates into a y i.e by how much y is affected by change in x
- ▶ The goal is to find best estimates for the coefficients to minimize the error in predicting y from x

Download marshall adv. csv Dataset to perform operations

plot(tv,sales,pch=16,cex=1,col='blue',main='Tv vs Sales',xlab = 'TV',ylab = 'Sales')



model<-lm

summary(model)

## attributes(model)



### coefficients(model)

## abline(model)

```
> attributes(model)
Snames
[1] "coefficients" "residuals" "effects" "rank" "fitted.values" "assign" "qr"
[8] "df.residual" "xlevels" "call" "terms" "model"

Sclass
[1] "lm"
```

```
> coefficients(model)
(Intercept) tv
7.03259355 0.04753664
> |

> coefficients(model)
(Intercept) tv
7.03259355 0.04753664
> |

> coef(model)
(Intercept) tv
7.03259355 0.04753664
> |
```

