Lab 10

DSGA-1014: Linear Algebra and Optimization

CDS at NYU Zahra Kadkhodaie

Fall 2021

A with linearly independent columns

Assume $A \in \mathbb{R}^{n \times n}$ is full rank. We have learned that Ax = b has a unique solution.

Colum view:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

A with linearly independent columns

Assume $A \in \mathbb{R}^{n \times m}$ is full rank, where n > m (i.e. A is a tall matrix). In this case Ax = b is a system of equations with too many rows (i.e. more equations than variables). We call this system of equations over-determined, which happens a lot in practice. Describe the solution of this system.

A with linearly independent columns

How do we solve Ax = b when $b \notin Im(A)$? We can't! So we compromise and find the next best vector: x_{LS} such that Euclidean distance between Ax_{LS} and b is minimum. That is, x_{LS} is mapped to a vector on Im(A) which is as close to b as possible.

$$x_{LS} = \operatorname{argmin}_{x} ||Ax - b||^{2}$$

Show that Ax_{LS} is the projection of b onto Im(A). Show that error, e = Ax - b, is in $Im(A)^{\perp}$.

fine=
$$\|Ax - b\|^2$$
 is a convex function
so we can find the min analytically:

$$x = (A^TA)^TA^Tb \quad (from lecture 10)$$
=> $Ax = \frac{A(A^TA)^{-1}A^Tb}{Pojection} = \frac{A(A^TA)^Tb}{Pojection} = \frac{A(A^TA)^Tb}{Pojection} = \frac{A(A^TA)^Tb}{Pojection} = \frac{A(A^TA)^Tb}{Pojection$

Take ZER S.t. AZEJn(A)

A with linearly dependent columns

The least square solution presented above only works if A^TA is invertible. Since the $Ker(A^TA) = Ker(A)$, the least square as defined above only exists when columns of A are independent. Describe possible solutions.

A with linearly dependent columns: pseudo-inverse

To solve this problem, we define pseudo-inverse as $A^{\dagger} = V \Sigma' U^T$ where $\Sigma' \in R^{d \times n}$ with $\Sigma'_{ii} = 1/\Sigma_{ii}$ if $\Sigma_{ii} \neq 0$, and zero otherwise. Show that $A^{\dagger} \in R^{d \times n}$ is the only matrix in $R^{d \times n}$ such that

Z= [8, 120]

- 1. $AA^{\dagger}A = A$
- 2. $A^{\dagger}AA^{\dagger}=A^{\dagger}$
- 3. $AA^{\dagger} \in R^{n \times n}$ and $A^{\dagger}A \in R^{d \times d}$ are symmetric matrices.

Note: If A invertible:
$$A = A^{-1}$$
 $A = UZV^{T}$
 $A^{\dagger} = VZ^{\prime}U^{T}$

1) $AA^{\dagger}A = UZV^{T}VZ^{\prime}U^{T}UZ^{\prime} = UZUZ^{T}UZ^{\prime}U$

2) AAA = VZUTUZVTVZUT = VZZZZUT = VZUT = AT

AAA =
$$\sqrt{2}$$
 $\sqrt{2}$ \sqrt

projection also
rowspal(A)

$$AA = V \geq U U \geq V = V \geq Z \qquad = \begin{bmatrix} V_1 & \dots & V_r & \dots & V_r \\ 0 & \dots & \dots & \dots \end{bmatrix}$$

$$\begin{bmatrix} V_1 & \dots & V_r & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \end{bmatrix}$$

$$\begin{bmatrix} V_1 & \dots & V_r & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots \\$$

A with linearly dependent columns: pseudo-inverse

Using pseudo-inverse, we define the least square solution as $x_{LS} = A^{\dagger}y$.

- 1. Show that when columns of A are independent the two least square solutions are the same.
- 2. Show that x_{LS} is always in the row space of A.
- 3. Give the set of all vectors that minimize $||Ax y||^2$?

1) Show:
$$(AA) A y = Ay$$

$$(r \ge UU \ge V) V \ge U = V(\Xi \ge) V V \ge U$$

$$= V(\Xi \ge) \ge U = V V$$

All points are mapped to Azes (Same error) If Columns of A are independent => rank(A) =m => ranspace = domain = every = including x25 € 1300 sprea (A) If Columns of A are not independent: 215 = Ay = VEUY $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 \\$

$$\forall Z \in \text{Rer}(A)$$
: $A(x_{LS} + Z) = Ax_{LS} + AZ = Ax_{LS}$
All points in affine space $\text{Rer}(A) + x_{LS}$ give the same versor.

A with linearly dependent columns: pseudo-inverse

Note: pseudo-inverse is particularly useful when $A \in R^{n \times m}$ is a short matrix (n < m). In this case, Ax = b is an under-determined system of equations and even if A is full rank, rank(A) = n, columns of A are not independent and A^TA is not invertible.

Ridge regression

Sometimes the objective deviates from least square solution. In Ridge regression, we add a penalty term to least square objective to promote a solution with small norm.

$$x_{ridge} = \arg\min_{x} ||Ax - b||^2 + \lambda ||x||^2$$

Show that x_{ridge} is in the row space of A.

 $\frac{1}{2\pi i} = \frac{1}{2\pi i} = \frac{1$

Ridge regression

 Ax_{ridge} is no longer an orthogonal projection of b onto the Im(A). It is a modified projection where the component of the data in the direction of each left singular vector of the feature matrix is shrunk by a factor of $\sigma_i^2/(\sigma_i^2 + \lambda)$ where σ_i is the corresponding singular value. Show that

$$Ax_{ridge} = \sum_{i=1}^{m} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \langle b, u_i \rangle u_i$$

where u_i are the left singular vectors of A.

= UZ(ZZ+1)ZUy $= \bigcup_{\substack{\sigma_1^2 + \lambda \\ \sigma_1^2 + \lambda}} \bigcup_{\substack{\sigma_1^2 + \lambda}} \bigcup_{\substack{\sigma_1^2 + \lambda \\ \sigma_1^2 + \lambda}} \bigcup_{\substack{\sigma_1^2 + \lambda \\ \sigma_1^2 +$ $= \frac{V}{2} \frac{G_{i}^{2}}{\sigma_{i}^{2} + \lambda} \langle v_{i}, y \rangle u_{i}$

This reduces the influence of the directions corresponding to Smaller Singular values which are the ones responsible for more noise amplification.