Conceptos básicos

Métodos numéricos

Camilo Cubides

 $\verb|eccubidesg@unal.edu.co|$

Research Group on Artificial Life – Grupo de investigación en vida artificial – (Alife)

Departamento de Ingeniería de Sistemas e Industrial

Facultad de Ingeniería

Universidad Nacional de Colombia

(Intersemestral 2016)

Agenda

Conceptos básicos

Outline

1 Conceptos básicos

Camilo Cubides

Definition (Límite)

Supóngase que f(x) está definida en un conjunto S de números reales. Se dice que tiene **límite** L en $x=x_0$, lo que se escribe

$$\lim_{x \to x_0} f(x) = L$$

si, dado cualquier $\epsilon>0$, existe $\delta>0$ tal que $|f(x)-L|<\epsilon$ siempre que $x\in S$ y $0<|x-x_0|<\delta.$

イロト (部) (を) (を) (を)

Definition (Continuidad)

Supóngase que f(x) está definida en un conjunto S de números reales y sea $x_0 \in S$. Se dice que f es **continua en** $x = x_0$ si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Se dice que f es continua en S si es continua en cada punto $x \in S$. Se denota por C(S) al conjunto de todas las funciones f que son continuas en S. Cuando S sea un intervalo, por ejemplo [a,b], entonces se usará la notación C[a,b].

Definition (Límite de sucesión)

Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de números reales. Se dice que la sucesión tiene límite L, lo que se escribe

$$\lim_{n \to \infty} x_n = L$$

si, dado cualquier $\epsilon>0$, existe un número natural $N\in\mathbb{N}$ tal que si n>N entonces $|x_n-L|<\epsilon$.

Cuando una sucesión tiene límite, se dice que es una **sucesión convergente**, en otro caso se dice que es una **sucesión divergente**. Otra notación habitual para denotar la existencia del límite de una sucesión es que " $x_n \to L$ cuando $n \to \infty$ ".

Theorem

Supóngase que f(x) está definida en el conjunto S y que $x_0 \in S$. Entonces las siguientes afirmaciones son equivalentes:

- f es continua en x_0 .
- $Si \{x_n\}_{n=1}^{\infty} \subset S \text{ y } \lim_{n \to \infty} x_n = x_0, \text{ entonces } \lim_{n \to \infty} f(x_n) = f(x_0).$

Theorem (del valor intermedio)

Supóngase que $f \in C[a,b]$ y que L es cualquier número entre f(a) y f(b). Entonces existe un número c en (a,b) tal que f(c)=L.

Theorem (de Bolzano)

Supóngase que $f\in C[a,b]$ y supóngase que f(a) y f(b) tienen signos opuestos. Entonces existe por lo menos un número c en (a,b) tal que f(c)=0.

Theorem (de los valores extremos para una función continua o de Weierstrass)

Supóngase que f es una función continua definida en un intervalo compacto (cerrado y acotado), es decir, $f \in C[a,b]$. Entonces existen una cota inferior M_1 , una cota superior M_2 y dos números $x_1,x_2 \in [a,b]$ tales que

$$M_1=f(x_1)\leq f(x)\leq f(x_2)=M_2; \quad ext{para cada } x\in [a,b].$$

Definition

Supóngase que f(x) está definida en un intervalo abierto que contiene a x_0 . Se dice que f es diferenciable en x_0 si existe el límite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Cuando este límite existe, se denota por $f'(x_0)$ y se llama la **derivada** de f en x_0 .

El número $m = f'(x_0)$ resulta ser la pendiente de la recta tangente a la gráfica de la función f en el punto $(x_0, f(x_0))$.

◆□▶ ◆□▶ ◆필▶ ◆필▶ · 필

Remark

Se denota f''(x) al resultado de derivar dos veces consecutivas la función f(x), si esto es posible, análogamente, f'''(x) = ((f'(x))')' si es posible efectuar estas derivadas. $f^{(n)}(x)$ es la n-ésima derivada de f(x) si es posible hallar estas n derivadas. Por definición $f^{(0)}(x) = f(x)$.

Remark

Una función que tiene derivada en cada punto de un conjunto S se dice que es **derivable** o **diferenciable** en S. Se denota por $C^{(n)}(S)$ el conjunto de todas la funciones f tales que f y sus primeras n derivadas son continuas en S. Cuando S sea un intervalo, por ejemplo [a,b], entonces se usa la notación $C^{(n)}[a,b]$, por definición se tiene que $C^{(0)}(S)=C(S)$.

Theorem

Si f(x) es derivable en $x = x_0$, entonces f(x) es continua en $x = x_0$.

Theorem (de Rolle)

Supóngase que $f \in C[a,b]$ y que f'(x) existe para todo $x \in (a,b)$. Si f(a) = f(b) = 0, entonces existe un número $c \in (a,b)$ tal que f'(c) = 0.

Theorem (del valor medio o de Lagrange)

Supóngase que $f \in C[a,b]$ y que f'(x) existe para todo $x \in (a,b)$. Entonces existe un número $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

イロト (部) (を) (を) (を)

Theorem (primer teorema fundamental o regla de Barrow)

Si f es continua en [a,b] y F es una primitiva cualquiera de f en [a,b] (es decir F'(x) = f(x)), entonces

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Theorem (segundo teorema fundamental)

Si f es continua en [a,b] y $x \in (a,b)$, entonces

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

Theorem (del valor medio para integrales)

Supóngase que $f \in C[a,b]$. Entonces existe un número $c \in (a,b)$ tal que

$$\frac{1}{b-a} \int_{a}^{b} f(x) \ dx = f(c)$$

El valor f(c) es el valor medio de f en el intervalo [a,b].

Theorem (de Taylor)

Supóngase que $f \in C^{(n+1)}[a,b]$ y sea $x_0 \in [a,b]$. Entonces, para cada $x \in (a,b)$ se verifica que

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

el cual se denomina el polinomio de Taylor, la serie de Taylor o **fórmula de Taylor** de grado n de f alrededor de x_0 , y

$$R_n(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

es la forma integral del residuo de la serie.

Theorem (de Taylor)

Supóngase que $f\in C^{(n+1)}[a,b]$ y sea $x_0\in [a,b]$. Entonces, para cada $x\in (a,b)$, existe un número c=c(x) que está entre x_0 y x y que verifica que

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

el cual se denomina el polinomio de Taylor, la serie de Taylor o fórmula de Taylor de grado n de f alrededor de x_0 , y

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

es la forma Lagrange del residuo de la serie.

Definition (Raíz de una ecuación, cero de una función)

Supóngase que f(x) es una función definida sobre los reales, cualquier número r tal que f(r)=0 se llama raíz de la ecuación f(x)=0; también se dice que r es un cero de la función f(x). Al conjunto de todas las raíces se le denomina **conjunto solución** de la ecuación.

Teorema fundamental del álgebra I

Theorem (Teorema fundamental del álgebra)

Toda ecuación polinomial no constante de grado n>0 con coeficientes complejos, tiene siempre al menos un número complejo como solución.

Corollary

Toda ecuación polinomial no constante de grado n>0 con coeficientes complejos, tiene exactamente n raíces complejas, no necesariamente distintas, teniendo en cuenta su orden de multiplicidad.

Corollary

Todo polinomio con coeficientes complejos puede ser expresado como el producto de factores lineales complejos (que pueden ser reales).

《中》《部》《意》《意》

Teorema fundamental del álgebra II

Corollary

Dado un polinomio con coeficientes reales, si el número complejo a+bi (con a y b números reales) es una raíz del polinomio, entonces el conjugado a-bi también es una raíz del polinomio.

Corollary

Todo polinomio con coeficientes reales puede ser expresado como el producto de factores lineales reales o cuadráticos reales.

Corollary

Todo polinomio con coeficientes reales y de grado n impar tiene por lo menos una raíz real.

éricos – UN (Intersemestral 2016

Teorema sobre los ceros racionales de un polinomio

Theorem

Si el polinomio

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

tiene coeficientes **enteros** y p/q es un cero racional de P(x) tal que p y q no poseen un factor en común (i.e., son primos relativos), entonces

- El numerador p del cero es un factor del término constante a_0 del polinomio.
- 2 El denominador q del cero es un factor del término principal a_n del polinomio.

Evaluación de polinomios

Supóngase que se tiene un polinomio $P\in\mathbb{C}[x]$, tal que

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Remark

Todo polinomio $P(x) \in \mathbb{C}[x]$ se puede reescribir como:

$$P(x) = ((\cdots((a_nx + a_{n-1})x + a_{n-2})x + \cdots)x + a_1)x + a_0$$

Theorem (Método de Horner o regla de Ruffini o división sintética)

Sea $P(x) \in \mathbb{C}[x]$ y sea x=c un valor para el cual se desee hallar P(c); si $b_n=a_n$ y

$$b_k = a_k + cb_{k+1}$$
, para $k = n - 1, n - 2, \dots, 1, 0$

entonces $b_0 = P(c)$.

Notación "O" grande y "o" pequeña para sucesiones

Definition

Sean $\{x_n\}_{n=1}^{\infty}$ y $\{y_n\}_{n=1}^{\infty}$ dos sucesiones distintas.

① Se dice que la sucesión $\{x_n\}$ es **de orden** $\{y_n\}$, lo que se denota por $x_n = O(y_n)$ (que se lee notación O grande ú O mayúscula ú O de Landau), si existen constantes C > 0 y $N \in \mathbb{N}$ tales que

si
$$n > N$$
 entonces $|x_n| \le C|y_n|$.

2 se dice que x_n es una o pequeña ú o minúscula, lo que se denota por $x_n=o(y_n)$, si $\lim_{n\to\infty}\frac{x_n}{y_n}=0$.

Notación "O" grande y "o" pequeña para ..., (conti.)

Remark

- Si $x_n = O(y_n)$ y $y_n \neq 0$, para todo n, esto significa que la razón $\left| \frac{x_n}{y_n} \right|$ permanece acotada por C cuando $n \to \infty$.
- Cuando las dos sucesiones convergen a cero: $x_n \to 0$, $y_n \to 0$ y $x_n = O(y_n)$, entonces x_n converge a cero "al menos tan rápido" como lo hace y_n .
- Si $x_n = o(y_n)$, entonces x_n converge a cero "más rápido" que y_n .

Example

- $\bullet \ \frac{\sin n}{n} = O\left(\frac{1}{n}\right).$
- $\bullet \ \frac{1}{n} = o(\frac{1}{\ln n}).$

Notación "O" grande para funciones

Definition

Sean f y g dos funciones tales que $f,g:D\to\mathbb{R}$, $D\subset\mathbb{R}^+$, para todo $h\in D$.

• Se dice que f es una ${\pmb O}$ grande de g cuando $h \to h_0$ y se escribe $f(h) = \mathop{O}\limits_{h \to h_0} \bigl(g(h)\bigr)$, si existen las constantes C>0 y $\delta>0$ tales que

$$|f(h)| \leq C|g(h)| \quad \text{para todo} \quad h \in D \quad \text{con} \quad h \neq h_0 \quad \text{y} \quad |h - h_0| < \delta.$$

Notación "o" pequeña para funciones

Definition

Sean f y q dos funciones tales que $f, q: D \to \mathbb{R}, D \subset \mathbb{R}^+$, para todo $h \in D$.

• Se dice que f es una o pequeña de g cuando $h \to h_0$ y se escribe $f(h) = \mathop{o}\limits_{h o h_0} \bigl(g(h)\bigr)$, si para toda constante C>0, existe $\delta>0$ tal

$$\left|\frac{f(h)}{g(h)}\right| \leq C \quad \text{para todo} \quad h \in D \quad \text{con} \quad h \neq h_0 \quad \text{y} \quad |h-h_0| < \delta$$

es decir si $\lim_{h \to h_0} \frac{f(h)}{g(h)} = 0$.

Métodos numéricos - UN (Intersemestral 2016)

Notación "O" grande y "o" pequeña para funciones

Remark

- Si $f(h) = O\big(g(h)\big)$, para todo $h \in D$, esto significa que la razón $\left|\frac{f(h)}{g(h)}\right|$ permanece acotada por C.
- Cuando las dos funciones tienden a cero: $f(h) \to 0$, $g(h) \to 0$, cuando $h \to 0$ y $f(h) = O\big(g(h)\big)$, entonces f(h) tiende a cero "al menos tan rápido" como lo hace g(h).
- Si f(h) = o(g(h)), entonces f(h) tiende a cero "más rápido" que g(h).

Example

- $h^3 + 2h^2 = O_{h\to 0}(h^2)$.
- $h^3 = o_{h\to 0}(h^2)$.