Системы рекомендаций

Катышев Алексей Школа анализа данных

Каков план?

- Рекомендательные системы
 - Что это?
 - Зачем это?
- Основные проблемы и методы их решения
- Типы рекомендательных систем
 - Плюсы и минусы каждого
- Оценка качества системы

Пример

- Клиент А
 - Купил конфеты
 - Нравится шоколад

- Клиент В
 - Купил шоколад
 - Рекомендуем конфеты

Механизм

- Пользователь может
 - Искать объекты (новости, музыка, видео, ...)
 - Покупать, скачивать, слушать, смотреть, ...
 - Оценивать (0-5, 1-10, «Мне нравится ♥»)
- Система
 - Предлагает список рекомендованных объектов

Длинный хвост (Long tail)

- О большинстве товаров пользователь даже не знает
- С появление on-line рекомендации эффект длинного хвоста в некоторых областях значительно снизился

Виды рекомендаций

- Общие для всех клиентов (physical)
 - Выбор эксперта/директора
 - Популярное, Топ10, Топ50, ...
 - Новое
 - «Смотрели только что» и т. п.
- Уникальным пользователям уникальные рекомендации (on-line)
 - Рассмотрим далее

Модель

- Множество клиентов С (customer, client)
- Множество объектов I (item)
- Множество возможных рейтингов R (rating)
 - -[0, 1]
 - 0-5 (обычно звёзды)
 - 0-1 (мне нравится)
- Функция пользы u (utility) : C × I → R
 - насколько данный объект полезен данному клиенту.

Матрица пользы

	12 Chairs	Operatio n "Y"	Lock, Stock and Two 	Snatch
User A	9		4	5
User B			9	9
User C	10	9		
User D		10	9	

Проблемы

- Заполнение матрицы данными
 - Оценки от пользователей
 - Оценка действий пользователя
- На основании заполненных ячеек попытаться предугадать (высокие) значения в незаполненных ячейках (экстраполяция)
- Измерить качество экстраполяции

Заполнение матрицы

- Оценки от пользователей
 - В действительности работает не очень хорошо
 - Приходится мотивировать пользователей или
 - Упрощать рейтинговую систему
- Оценка действий пользователя
 - Покупка однозначно высокий рейтинг
 - В остальном довольно сложно выявлять точные рейтинги

Вычисление пользы

- Проблемы:
 - Холодный старт в целом и для новых объектов
 - Матрица всё время очень разреженна

 Обычно метод вычисления пользы и определяет тип рекомендательной системы

Основные типы систем

- Content-based
 - Основывается на свойствах предлагаемых объектов
 - Похожесть объектов ≈ похожесть отдельных свойств
- Collaborative-Filtering
 - Рассматривает отношения пользователь-объект
 - Похожесть объектов ≈ насколько похожий рейтинг им дали одни и те же пользователи

Content-based, профиль объекта

- Профиль объекта набор свойств
- Фильмы главные актёры, режиссер, год, жанр, сценарист, ...
- Новости, статьи, книги набор важных или ключевых слов
 - Здесь часто применяется TF.IDF
- Картинки набор тегов

Похожесть объектов

- На самом деле профиль объекта бесконечный вектор из числовых значений (конечное количество которых ≠ 0)
- Как вариант косинусное расстояние

Рейтин г	Звёзда 1	Звезда 2	Звёзда 3	Режиссёр 1	Режиссёр 2
2.5	1	1	0	0	1
4	0	1	1	1	0

Похожесть ≈ 0.83

Профиль пользователя

- Как же вычислять полезность для определенного пользователя
- Ответ профиль пользователя
 - Это некое среднее профилей тех объектов, которые оценил пользователь
 - Может быть взвешенное среднее
 - Но чаще из весов вычитают средний рейтинг
- Полезность u(c, i) = cos(c, i)

Content-based, выводы

Плюсы

- Нет проблем с холодным стартом всей системы
- Рекомендует новые и непопулярные объекты
- Каждому пользователюсвои рекомендации
- Может явно показать причину рекомендации

Минусы

- Холодный старт для новых пользователей
- Выявление свойств трудоёмко
- Интересы пользователей усредняются
- Не используются рейтинги других пользователей

Collaborative-Filtering, user-user

- Для пользователя с
 - Имеется некоторое количество его оценок
 - Хочется заполнить строчку матрицы пользы
- Находим множество пользователей D, похожих на с по выставленным оценкам
- Тогда оценки пользователя с по неоценённым объектам ≈ средняя оценка пользователей из D по этим объектам

Похожесть пользователей

- r_c вектор рейтингов пользователя с
- Косинусное расстояние
 - $sim(x, y) = cos(r_x, r_y)$
- Можно нормализовать рейтинги
 - Вычесть из всех рейтингов средний рейтинг

• Есть разные варианты вычисления

Collaborative-Filtering, item-item

- Для объекта і аналогично ищутся похожие объекты
 - Заполняем матрицу пользы по вертикали
- Аналогичные метрики

 На практике доказано, что такой подход работает лучше

Пример

	12 Chairs	Operation "Y"	Lock, Stock and Two	Snatch
User A	9		4	5
User B			9	9
User C	10	9		
User D		10	9	

Что порекомендуем по "12 Chairs"? $cos(12 \text{ Chairs}, \text{ Operation Y}) \approx 0.5$ $cos(12 \text{ Chairs}, \text{ LockStock}) \approx 0.2$ $cos(12 \text{ Chairs}, \text{ Snatch}) \approx 0.3$

Collaborative-Filtering, выводы

Плюсы

- Не нужно выявлять свойства объектов
- Объекты могут быть любые

Минусы

- Холодный старт по всем фронтам
- Интересы пользователей усредняются

Вывод: Гибридные системы!

Оценка качества

3		5		8		6	
	4			3	7	4	
4	6	7			9		2
		3	5			5	
		8			2		
6			3	4			8

Оценка качества

3		5		8		6	
	4			3	7	4	
4	6	7			9		2
		3	5	?	?	?	?
		8		?	?	?	?
6			3	?	?	?	?

Оценка качества

- Берётся таблица с реальными данными
- Часть таблицы вырезается как тестовое множество
- Система пытается предугадать рейтинги в вырезанной части таблицы
- Вычисляется отклонение от реальных данных
 - Обычно это среднеквадратичное отклонение (RMSE)
 - Обычно вычисляется на топ10% рейтингов
 - Можно также считать разные дополнительные характеристики