MATRICES DE TRANSFORMATIONS

N.B.

Les matrices de transformation T suivantes s'appliquent sur des vecteurs <u>lignes</u> V. Le résultat est donné par la relation : V · T

Si V est un vecteur colonne, le résultat de la transformation est donné par la relation : $\mathbb{T}^{\mathbb{T}} \cdot \mathbb{V}$.

Two-Dimensional Transformations

Translation by distance Tx and Ty:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ Tx & Ty & 1 \end{bmatrix}$$

Scaling by scale factors Sx and Sy:

$$\begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reflection across a coordinate axis:

Across the X axis
$$\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Across the Y axis
$$\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Rotation through angle θ around the origin :

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Three-Dimensional transformations

Translation by distance

Tx, Ty and Tz:

Scaling by scale factor

Sx, Sy and Sz:
$$\begin{bmatrix} Sx & 0 & 0 & 0 \end{bmatrix}$$

Reflection across a coordinate plane :

Across the X-Y plane

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation through angle θ around an axis :

Around the X axis

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) & 0 \\ 0 & -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Around the Z axis

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ -\sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic projection onto a coordinate plane:

Front View

(projecting along the Z axis)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(projecting along the X axis)

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Top View

(projecting along the Y axis)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cavalier Projection :

onto the X-Y plane

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\cos(\theta) & -\sin(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cabinet Projection :

onto the X-Y plane

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{\cos(\theta)}{2} & -\frac{\sin(\theta)}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective projection onto the X-Y plane with center of projection at (0, 0, d):

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$