ACTOnco® + Report

PATIENT	
Name: 蘇玉中	Patient ID: 47613774
Date of Birth: Apr 28, 1964	Gender: Male
Diagnosis: Metastatic carcinoma with neuroendocrine	
ORDERING PHYSICIAN	
Name: 陳明晃醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11121996A Collection site: Ln, axillary	Type: FFPE tissue
Date received: Jul 05, 2022 Lab ID: AA-22-03908	D/ID: NA

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
MET Amplification	-	-	Capmatinib, Crizotinib, Tepotinib

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CDK6 Amplification	Abemaciclib, Palbociclib	-
MET Amplification	Cabozantinib	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab, Cetuximab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 23

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
TP53	R342*	18.7%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr7	CDK6	Amplification	15
Chr7	MET	Amplification	17

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	3.2 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 30% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **23**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations Therapies		Effect
Level 3A		
MET Amplification	Capmatinib, Crizotinib, Tepotinib	sensitive
MET Amplification	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib	resistant
Level 3B		
CDK6 Amplification	Abemaciclib, Palbociclib	sensitive
MET Amplification	Cabozantinib	sensitive
Level 4		
MET Amplification	Cetuximab, Panitumumab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **23**

Project ID: C22-M001-02017 Report No.: AA-22-03908 ONC

Date Reported: Jul 18, 2022

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing quidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 23

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

VARIANT INTERPRETATION

TP53 R342*

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[1]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[2].

R342* mutation results in a premature truncation of the p53 protein at amino acid 342 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[3].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[4]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[5].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[6][7][8]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[9]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[10][11]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[12].

CDK6 Amplification

Biological Impact

CDK6 encodes the cyclin-dependent kinase 6, a serine/threonine kinase that controls the checkpoint at G1-S phase. Binding of CDK4/6 to cyclin D is negatively regulated by p16INK4a, a cyclin-dependent kinase inhibitor encoded by CDKN2A^{[13][14]}. As CDK4 and CDK6 play overlapping and redundant physiological roles in the regulation of cell cycle, increased CDK6 activity could also promote tumorigenesis in a way similar to CDK4^[15]. Amplification of CDK6 has been observed in esophageal carcinoma^{[16][17][18]}, leukemia and lymphoma^{[19][20][21]}.

Therapeutic and prognostic relevance

CDK6 amplification has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in several types of solid tumors (NCT02693535).

Results from two cohort studies (n=45 and n=46) showed that CDK6 overexpression was correlated with shorter median time to progression in ER+ breast cancer patients who had received fulvestrant (2.5 vs. 8.2 months and 3.4 vs. 8.9 months for CDK6 overexpression vs. normal expression) but was not correlated with other lines of treatment (N=68, tamoxifen or endocrine therapy). In vitro study further confirmed that cells exhibiting upregulation of CDK6 were resistant to fulvestrant^[22].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908 ONC

Date Reported: Jul 18, 2022

MET Amplification

Biological Impact

The Mesenchymal-Epithelial Transition (MET) is an oncogene that encodes the MET receptor tyrosine kinase (c-MET, also called HGFR, hepatocyte growth factor receptor). Binding of HGF leads to autophosphorylation and activation of MET and downstream effectors through the PI3K/AKT and RAS/RAF/MEK pathways, which regulates cell growth, proliferation, migration, and angiogenesis[23][24]. Gene amplification or overexpression of the MET occur in a wide range of cancers, including breast cancer[25], non-small cell lung cancer (NSCLC)[26], prostate cancer[27], renal papillary carcinoma^{[28][29]}, glioblastoma^[30], hepatocellular carcinoma^[31], and gastric cancer^[32].

Therapeutic and prognostic relevance

MET amplification is known as an acquired mechanism conferring resistance to 1) EGFR-directed tyrosine kinase inhibitors including gefitinib, afatinib, erlotinib, and osimertinib, in patients with NSCLC[33][34][35][36]; 2) anti-EGFR mAb therapies in colorectal cancer (CRC) and head and neck cancer[37][38][39][40][41]; and 3) sunitinib, a multi-targeted tyrosine kinase inhibitor in renal cell carcinoma cells[42][43]. Furthermore, MET amplification and overexpression has been implicated as a causative factor in acquired cetuximab resistance in head and neck squamous cell carcinoma.

Several agents, including small molecules inhibitors and monoclonal antibodies, have been developed to target c-Met or HGFR. Crizotinib is a multi-targeted tyrosine kinase inhibitor (TKI) for ALK, MET, ROS, and RON. The U.S. FDA has approved it for the treatment of patients with ALK- or ROS1-rearranged advanced NSCLC[44][45][46][47]. In NCCN guidelines for NSCLC, high-level MET amplification has been suggested as an emerging biomarker for crizotinib in patients with metastatic NSCLC^[48](DOI: 10.1200/jco.2014.32.15_suppl.8001). In addition, results from clinical studies of squamous cell carcinoma of lung (SCC), and esophagogastric adenocarcinoma also showed that patients with METamplified tumors responded to crizotinib^{[49][50]}.

Combinations of EGFR TKIs like gefitinib, erlotinib, osimertinib, and icotinib with c-MET inhibitor crizotinib were proposed to overcome the acquired resistance induced by EGFR-directed TKIs mediated MET amplification and were successfully evaluated in clinical settings[51][52][53][54][55][56]. Besides, there is a case report showed that EGFR-mutated NSCLC patients with acquired MET amplification responded to combination therapy with bevacizumab and erlotinib[57].

In NCCN guidelines for NSCLC, MET amplification has been suggested as an emerging biomarker for capmatinib and tepotinib. In the phase 2 GEOMETRY mono-1 study (NCT02414139), patients with high-level MET-amplified advanced NSCLC showed responses to capmatinib in both treated and treatment naïve cohorts. The DOR, PFS, and OS were similar in both treated and treatment naïve patients (DOR: ~8 months; PFS: ~4 months. OS: ~10 months)[58]. In addition, results of the phase II VISION trial (NCT02864992) indicated that tepotinib showed meaningful efficacy in advanced NSCLC patients with MET amplification. The overall response rate is 41.7% and the mPFS is 4.2 months (Journal of Clinical Oncology 39, no. 15_suppl 9021-9021).

A phase Ib/II trial in NSCLC patients who failed EGFR inhibitor therapy showed that patients with mutated EGFR and MET amplification (copy number >6) responded to the combination treatment with capmatinib and gefitinib (Overall response rate: 47%, disease control rate: 75%)^[59].

MET amplification and exon 14 splice site mutations are associated with higher c-Met protein expression and poor prognosis in patients with NSCLC and esophageal squamous cell carcinoma^{[60][61]}. Besides, the plasma level of c-MET was associated with poor outcome in patients with hepatocellular carcinoma^[62].

Cabozantinib is a small molecule inhibitor of MET, VEGFR2, KIT and RET and was approved by the U.S. FDA for the treatment of progressive, metastatic medullary thyroid cancer [63][64]. MET amplification has been selected as an inclusion criteria for the trial examining cabozantinib in NSCLC with brain metastases (NCT02132598) (NCT03911193).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)		
monarchE	HR-positive, HER2-negative		
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36 months(%): 86.1 vs. 79.0]		
MONARCH 3 ^[65]	Breast cancer (Approved on 2018/02/26)		
NCT02246621	HR-positive, HER2-negative		
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]		
MONARCH 2 ^[66]	Breast cancer (Approved on 2017/09/28)		
NCT02107703	HR-positive, HER2-negative		
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]		
MONADOU 4[67]	Breast cancer (Approved on 2017/09/28)		
MONARCH 1 ^[67]	HR-positive, HER2-negative		
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]		

Cabozantinib (COMETRIQ)

Cabozantinib is a small molecule inhibitors of multiple tyrosine kinases, including RET, MET, VEGFR-1, -2 and -3, KIT, TRKB, FLT-3, AXL, and TIE-2. Cabozantinib is developed and marketed by Exelixis under the trade names COMETRIQ (capsule) and CABOMETYX (tablet).

- FDA Approval Summary of Cabozantinib (COMETRIQ)

FXAM [68]	Thyroid cancer (Approved on 2012/11/29)
270 001	-
NCT00704730	Cabozantinib vs. Placebo [PFS(M): 11.2 vs. 4]

Cabozantinib (CABOMETYX)

Cabozantinib is a small molecule inhibitors of multiple tyrosine kinases, including RET, MET, VEGFR-1, -2 and -3, KIT, TRKB, FLT-3, AXL, and TIE-2. Cabozantinib is developed and marketed by Exelixis under the trade names COMETRIQ (capsule) and CABOMETYX (tablet).

- FDA Approval Summary of Cabozantinib (CABOMETYX)

00000000044	Differentiated thyroid cancer (dtc) (Approved on 2021/09/17)						
COSMIC-311	-						
NCT03690388	Cabozantinib vs. Placebo [PFS(M): 11 vs. 1.9, ORR(%): 18.0 vs. 0]						
	Renal cell carcinoma (Approved on 2021/01/22)						
CHECKMATE-9ER	-						
NCT03141177	Nivolumab + cabozantinib vs. Sunitinib [ORR(%): 55.7 vs. 27.1, PFS(M): 16.6 vs. 8.3, OS(M): NR vs. NRI						

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 7 of 23

ACTOnco® + Report

CELESTIAL [69]	Hepatocellular carcinoma (Approved on 2019/01/14)						
NCT01908426	-						
NC101900420	Cabozantinib vs. Placebo [OS(M): 10.2 vs. 8]						
CAPOCUM[70]	Renal cell carcinoma (Approved on 2017/12/09)						
CABOSUN ^[70] NCT01835157	-						
NC101035157	Cabozantinib vs. Sunitinib [PFS(M): 8.6 vs. 5.3]						
METEOD[71]	Renal cell carcinoma (Approved on 2016/04/25)						
METEOR ^[71]	/						
NCT01865747	Cabozantinib vs. Everolimus [PFS(M): 7.4 vs. 3.8]						

Capmatinib (TABRECTA)

Capmatinib is an orally bioavailable inhibitor of the proto-oncogene c-Met (also known as hepatocyte growth factor receptor (HGFR)) with potential antineoplastic activity. Capmatinib is developed and marketed by Novartis under the trade name TABRECTA.

- FDA Approval Summary of Capmatinib (TABRECTA)

CEONETRY 4[58]	Non-small cell lung carcinoma (Approved on 2020/05/06)
GEOMETRY mono-1 ^[58] NCT02414139	MET exon 14 skipping
NC102414139	Capmatinib [ORR (Treatment naive) (%): 68, ORR (Previously treated)(%): 41]

Crizotinib (XALKORI)

Crizotinib is an inhibitor of the tyrosine kinases anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1), by competitively binding with the ATP-binding pocket. Crizotinib is developed and marketed by Pfizer under the trade name XALKORI.

- FDA Approval Summary of Crizotinib (XALKORI)

	Alk fusion-positive anaplastic large cell lymphoma (alcl) (Approved on 2021/01/14)					
ADVL0912	ALK fusion					
NCT00939770	Crizotinib [ORR(%): 88.0, DOR(M): 39 (maintained response for at least 6 months) vs. 22					
	(maintained response for at least 12 months)]					
	Non-small cell lung carcinoma (Approved on 2016/03/11)					
PROFILE 1001 ^[72]	ROS1-positive					
NCT00585195	Crizotinib [ORR(%): 66.0]					
	Non-small cell lung carcinoma (Approved on 2015/03/20)					
PROFILE 1014 ^[73]	ALK-positive					
NCT01154140	Crizotinib vs. Pemetrexed + cisplatin or pemetrexed + carboplatin [PFS(M): 10.9 vs. 7]					
	Non-small cell lung carcinoma (Approved on 2013/11/20)					
PROFILE 1007 ^[74]	ALK-positive					
NCT00932893	Crizotinib vs. Pemetrexed or docetaxel [PFS(M): 7.7 vs. 3]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC

Date Reported: Jul 18, 2022

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[75]	Breast cancer (Approved on 2017/03/31)
NCT01740427	ER+, HER2-
NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
PALOMA-3 ^[76]	Breast cancer (Approved on 2016/02/19)
	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Tepotinib (TEPMETKO)

Tepotinib is a potent and selective c-Met inhibitor. Tepotinib is developed and marketed by EMD Serono, Inc. under the trade name TEPMETKO.

- FDA Approval Summary of Tepotinib (TEPMETKO)

MISION	Non-small cell lung carcinoma (Approved on 2021/02/03)
VISION	MET exon 14 skipping
NCT02864992	Tepotinib [ORR (Treatment naive)(%): 43, ORR (Previously treated)(%): 43]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **10** of **23**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage	
TP53	R342*	10	c.1024C>T	NM_000546	COSM11073	18.7%	310	

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-03908

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page 11 of 23

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ALK	T1012M	18	c.3035C>T	NM_004304	-	55.2%	1615
ARID1A	A165V	1	c.494C>T	NM_006015	-	58.2%	79
AXIN1	A740T	9	c.2218G>A	NM_003502	COSM143814	46.4%	573
BRIP1	L340F	8	c.1018C>T	NM_032043	-	43.1%	1080
CSF1R	R921W	21	c.2761C>T	NM_005211	-	13.0%	554
CUL3	I658M	14	c.1974A>G	NM_003590	-	49.2%	720
FLT3	Splice donor	4	c.483_484+5del	NM_004119	-	8.6%	666
MEF2B	R64C	5	c.190C>T	NM_005919	-	45.1%	944
MET	R1040Q	15	c.3119G>A	NM_001127500	-	82.1%	4000
MUC16	K9429*	3	c.28285A>T	NM_024690	-	5.1%	3240
POLD1	D644E	16	c.1932C>G	NM_001256849	-	55.3%	635
POLE	Splice region	-	c.2865-8T>C	NM_006231	-	61.3%	741
PRDM1	P362A	5	c.1084C>G	NM_001198	-	50.9%	1610
PRKCQ	H358Q	11	c.1074T>A	NM_006257	COSM1581540	52.2%	1511
RAC1	T108A	5	c.322A>G	NM_006908	-	5.1%	1663
RAD51D	D30Y	2	c.88G>T	NM_002878	-	43.6%	1666
RECQL4	Splice region	-	c.2463+3T>C	NM_004260	-	49.4%	89
RICTOR	R1480*	34	c.4438C>T	NM_001285439	-	26.7%	1152
USH2A	S2131N	33	c.6392G>A	NM_206933	-	6.6%	1687

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **23**

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Jun 2022Facility retrieved: 臺北榮總

H&E-stained section No.: S11121996A

Collection site: Ln, axillary

- Examined by: Dr. Chien-Ta Chiang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 5%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 30%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 1096x
- Target Base Coverage at 100x: 95%

RNA test

Average unique RNA Start Sites per control GSP2: 119

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page **13** of **23**

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC

Date Reported: Jul 18, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage $\geq 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908 ONC

Date Reported: Jul 18, 2022

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師張筑芫 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

Sign Off

醫檢師張筑芫 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 23

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
ЕРНА2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митүн	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **16** of **23**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Abemaciclib, Palbociclib

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Crizotinib, Cabozantinib, Capmatinib, Tepotinib; 2: Cabozantinib; 3: Crizotinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 23

REFERENCE

- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- PMID: 21125671; 2011, J Pathol;223(2):137-46
 Haplo-insufficiency: a driving force in cancer.
- PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 5. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 9751050; 1998, Nature; 395(6699):237-43
 Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a.
- PMID: 11124804; 2000, Genes Dev;14(24):3115-25
 Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors.
- PMID: 15315761; 2004, Cell;118(4):493-504
 Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6.
- 16. PMID: 21593195; 2011, Clin Cancer Res;17(13):4513-22
 Early G□ cyclin-dependent kinases as prognostic markers and potential therapeutic targets in esophageal adenocarcinoma.
- PMID: 22450065; 2012, Ann Thorac Surg;93(4):1101-6
 Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma.
- 18. PMID: 24423610; 2014, Clin Cancer Res;20(5):1114-24
 LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

ACTOnco® + Report

- PMID: 9422538; 1998, Am J Pathol; 152(1):209-17
 Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia.
- 20. PMID: 10879740; 2000, Lab Invest;80(6):893-900
 Expression of cyclin-dependent kinase 6 (cdk6) and frequent loss of CD44 in nasal-nasopharyngeal NK/T-cell lymphomas: comparison with CD56-negative peripheral T-cell lymphomas.
- 21. PMID: 16782810; 2006, Proc Natl Acad Sci U S A;103(26):9976-81

 Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development.
- 22. PMID: 27252418; 2016, Clin Cancer Res;22(22):5514-5526 High CDK6 Protects Cells from Fulvestrant-Mediated Apoptosis and is a Predictor of Resistance to Fulvestrant in Estrogen Receptor-Positive Metastatic Breast Cancer.
- PMID: 25770121; 2015, J Biochem;157(5):271-84
 Hepatocyte growth factor and Met in drug discovery.
- PMID: 23867513; 2013, Cancer J;19(4):316-23
 Targeting the hepatocyte growth factor/c-Met signaling pathway in renal cell carcinoma.
- 25. PMID: 15455388; 2005, Int J Cancer;113(4):678-82
 C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu.
- PMID: 9699182; 1998, Lung Cancer;20(1):1-16
 Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers.
- PMID: 10454259; 1999, Cancer Lett;141(1-2):173-8
 Progression-linked overexpression of c-Met in prostatic intraepithelial neoplasia and latent as well as clinical prostate cancers.
- PMID: 24812413; 2014, Clin Cancer Res;20(13):3361-3
 MET as a target in papillary renal cell carcinoma.
- 29. PMID: 24658158; 2014, Clin Cancer Res;20(13):3411-21 MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array.
- PMID: 18772890; 2008, Nature;455(7216):1061-8
 Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
- PMID: 24222167; 2013, Anticancer Res;33(11):5179-86
 A survey of c-MET expression and amplification in 287 patients with hepatocellular carcinoma.
- PMID: 9759658; 1998, Lab Invest;78(9):1143-53
 Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization.
- 33. PMID: 25806347; 2015, Transl Lung Cancer Res;4(1):67-81 Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review.
- 34. PMID: 18093943; 2007, Proc Natl Acad Sci U S A;104(52):20932-7
 MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib.
- PMID: 17463250; 2007, Science;316(5827):1039-43
 MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
- 36. PMID: 30676858; 2019, J Clin Oncol;37(11):876-884
 Clonal MET Amplification as a Determinant of Tyrosine Kinase Inhibitor Resistance in Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer.
- PMID: 24913799; 2014, Mol Oncol;8(6):1084-94
 Acquired resistance to EGFR-targeted therapies in colorectal cancer.

CAP ACCREDITED COLLEGE of AMERICAN PATHOLOGISTS 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

ACTOnco® + Report

- PMID: 23729478; 2013, Cancer Discov;3(6):658-73
 Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer.
- PMID: 24714091; 2014, Int J Mol Sci;15(4):5838-51
 Cetuximab-induced MET activation acts as a novel resistance mechanism in colon cancer cells.
- PMID: 25293556; 2014, Cancer Discov;4(11):1269-80
 Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution.
- PMID: 30694565; 2019, Int J Cancer;145(3):748-762
 MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer.
- PMID: 26434595; 2016, Oncogene;35(21):2684-6
 TAMing resistance to multi-targeted kinase inhibitors through Axl and Met inhibition.
- PMID: 26364599; 2016, Oncogene;35(21):2687-97
 Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma.
- PMID: 25576294; 2015, Lung Cancer;87(2):89-95
 Management of crizotinib therapy for ALK-rearranged non-small cell lung carcinoma: an expert consensus.
- PMID: 25115305; 2014, Ann Oncol;25 Suppl 3():iii27-39
 Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
- PMID: 23054877; 2012, J Natl Compr Canc Netw;10(10):1236-71
 Non-small cell lung cancer.
- PMID: 25671264; 2015, N Engl J Med;372(7):683-4
 Crizotinib in ROS1-rearranged non-small-cell lung cancer.
- 48. PMID: 21623265; 2011, J Thorac Oncol;6(5):942-6
 Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification.
- PMID: 22042947; 2011, J Clin Oncol;29(36):4803-10
 MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib.
- 50. PMID: 24192513; 2014, Lung Cancer;83(1):109-11

 Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement.
- 51. PMID: 30638795; 2019, Clin Lung Cancer;20(3):e251-e255

 Combined Use of Crizotinib and Gefitinib in Advanced Lung Adenocarcinoma With Leptomeningeal Metastases Harboring MET Amplification

 After the Development of Gefitinib Resistance: A Case Report and Literature Review.
- 52. PMID: 30797494; 2019, Lung Cancer;129():72-74

 Mutation tracking of a patient with EGFR-mutant lung cancer harboring de novo MET amplification: Successful treatment with gefitinib and crizotinib.
- 53. PMID: 30791921; 2019, J Transl Med;17(1):52 Crizotinib with or without an EGFR-TKI in treating EGFR-mutant NSCLC patients with acquired MET amplification after failure of EGFR-TKI therapy: a multicenter retrospective study.
- 54. PMID: 30881166; 2019, Lung Cancer (Auckl);10():21-26
 Differential response to a combination of full-dose osimertinib and crizotinib in a patient with EGFR-mutant non-small cell lung cancer and emergent MET amplification.
- 55. PMID: 30915273; 2019, Front Oncol;9():132

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 23

Project ID: C22-M001-02017 Report No.: AA-22-03908_ONC Date Reported: Jul 18, 2022

ACTOnco® + Report

Phase II Trial of Cabozantinib Plus Erlotinib in Patients With Advanced Epidermal Growth Factor Receptor (EGFR)-Mutant Non-small Cell Lung Cancer With Progressive Disease on Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy: A California Cancer Consortium Phase II Trial (NCI 9303).

- PMID: 29571987; 2018, Lung Cancer;118():105-110
 Clinical analysis by next-generation sequencing for NSCLC patients with MET amplification resistant to osimertinib.
- 57. PMID: 30792648; 2019, Case Rep Oncol;12(1):91-97
 Promising Combination Therapy with Bevacizumab and Erlotinib in an EGFR-Mutated NSCLC Patient with MET Amplification Who Showed Intrinsic Resistance to Initial EGFR-TKI Therapy.
- PMID: 32877583; 2020, N Engl J Med;383(10):944-957
 Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer.
- 59. PMID: 30156984; 2018, J Clin Oncol;36(31):3101-3109
 Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib After Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients With EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer.
- 60. PMID: 26847053; 2016, Clin Cancer Res;22(12):3048-56
 MET Amplification and Exon 14 Splice Site Mutation Define Unique Molecular Subgroups of Non-Small Cell Lung Carcinoma with Poor Prognosis.
- 61. PMID: 30855149; 2019, Org Lett;21(7):2139-2142
 Trematosphones A and B, Two Unique Dimeric Structures from the Desert Plant Endophytic Fungus Trematosphaeria terricola.
- 62. PMID: 30738047; 2019, Gastroenterology;156(6):1731-1741
 Biomarkers Associated With Response to Regorafenib in Patients With Hepatocellular Carcinoma.
- PMID: 23902240; 2013, Future Oncol;9(8):1083-92
 Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer.
- 64. PMID: 28192597; 2017, Cancer;123(11):1979-1988 A phase 2 and biomarker study of cabozantinib in patients with advanced cholangiocarcinoma.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 66. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 67. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- PMID: 24002501; 2013, J Clin Oncol;31(29):3639-46
 Cabozantinib in progressive medullary thyroid cancer.
- PMID: 29972759; 2018, N Engl J Med;379(1):54-63
 Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma.
- PMID: 28199818; 2017, J Clin Oncol;35(6):591-597
 Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial.
- PMID: 26406150; 2015, N Engl J Med;373(19):1814-23
 Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma.
- PMID: 25264305; 2014, N Engl J Med;371(21):1963-71
 Crizotinib in ROS1-rearranged non-small-cell lung cancer.

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 23

ACTOnco® + Report

- PMID: 25470694; 2014, N Engl J Med;371(23):2167-77
 First-line crizotinib versus chemotherapy in ALK-positive lung cancer.
- PMID: 23724913; 2013, N Engl J Med;368(25):2385-94
 Crizotinib versus chemotherapy in advanced ALK-positive lung cancer.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **23** of **23**