# DETECCIÓN DE REGIONES GENÓMICAS RESPONSABLES DE LA ADAPTACIÓN LOCAL



JOSÉ LUIS BLANCO PASTOR

#### Las marcos teóricos de la genética evolutiva poblacional para el análisis de la adaptación local:

- **Genética poblacional molecular** (análisis de diferenciación):
  - Cambios brusco en las frecuencias alélicas de uno en uno. Hard sweep model.
    - Versiones modernas incluyen "soft sweeps" (cambios lentos en las frecuencias alélicas, alelos seleccionados no fijados).
- **Genética cuantitativa** (asociación genotipo-ambiente GEAs).
  - Cambios sutiles de las frecuencias alélicas en múltiples genes a la vez. Infinitesimal model, "soft shifts".
    - Versiones modernas incluyen "large effect loci" (cambios rápidos en las frecuencias alélicas, alelos seleccionados próximos a la fijación).





### 1. Genética poblacional → "Population differentiation methods"



 $Fst = \frac{Variation\ between\ pops. - Variation\ within\ pops}{Variation\ between\ pops.}$ 



1. Genética poblacional → "Population differentiation methods"



Fst-based tests are blind tests

- Caso facil:
  - Flowering locus T
- Caso dificil:
  - PF01535//PF12854//PF13041// PF14432 –
    PPR repeat (PPR) // PPR repeat (PPR\_1) //
    PPR repeat family (PPR\_2) // DYW family of
    nucleic acid deaminases (DYW\_deaminase)



- 1. Genética poblacional → Population differentiation methods
- 2. Genética cuantitativa > Métodos de asociación





| Test                                      | Original references                                                          |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| 1. Population differentiation methods     |                                                                              |  |  |  |
| Bayescan2/ Bayescan3                      | Beaumont and Balding (2004); Foll and Gaggiotti (2008)                       |  |  |  |
| PCAdapt                                   | Duforet-Frebourg et al. (2014) Luu et al (2017)                              |  |  |  |
| FLK                                       | Bonhomme et al. (2010)                                                       |  |  |  |
| OutFLANK                                  | Whitlock and Lotterhos (2015)                                                |  |  |  |
| SelEstim                                  | Vitalis et al. (2013)                                                        |  |  |  |
| 2. Association methods (logistic, linear) |                                                                              |  |  |  |
| SAM/SAMβADA                               | Joost et al. (2007); Stucki (2014)                                           |  |  |  |
| Bayenv/Bayenv2                            | Coop et al. (2010); Günther and Coop (2013)                                  |  |  |  |
| BayPass                                   | Gautier (2015)                                                               |  |  |  |
| RDA                                       | Rao (1964); <b>Forester et al. (2016)</b>                                    |  |  |  |
| LFMM                                      | Frichot et al. (2013); Frichot and François (2015); Gain and François (2021) |  |  |  |

2. Genética cuantitativa → Métodos de asociación ambiental – "Genotype Environment Association analyses (GEAs)"



Genética cuantitativa -> Métodos de asociación ambiental - "Genotype Environment Association analyses (GEAs)"

> 16 500 17 000 17 500 18 000 18 500 19 000 19 500 20 000 Solar radiation [kJ/m<sup>2</sup>/day]



Rellstab et al. 2015. Molecular Ecology

utlizando descriptores

*bioclimáticos* 

#### 2. Genética cuantitativa -> Métodos de asociación

Las diferencias fenotípicas dentro de una especie van a venir determinadas por presiones selectivas y por el reparto diferencial de linages genéticos causado por la pérdida de flujo genético entre las poblaciones.

### **Traditional Mixed Model (GWAS)**



#### 2. Genética cuantitativa -> Métodos de asociación



Rellstab et al. 2015. Molecular Ecology

#### **GEA**



Environmental information across populations (fixed effect)

p-values obtained from the distribution of (standardized) regression coefficients of environmental effects

2. Genética cuantitativa -> Métodos de asociación

### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
  - Bonferroni correction

$$\alpha_{\text{corregido}} = \frac{\alpha}{n \text{úmero de tests independientes}};$$

Por definición de p-value:

Para un  $\alpha$  = 0.05 hay un 5% de probabilidad de rechazar la hipótesis nula siendo esta verdadera

Ejemplo:

 $\alpha$  = 0.05 en GEAs con 10.000 SNPs obtendríamos 500 falsos positivos

Con Bonferroni:

 $\alpha_{corregido} = 0.000005$ 

La corrección Bonferroni es demasiado conservadora para estudios genómicos

#### 2. Genética cuantitativa -> Métodos de asociación

#### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
  - False Discovery rate (FDR), método Benjamini & Hochberg (1995)
     Proporción esperada de falsos positivos
    - Ordenar los n test de menor a mayor p-value (p<sub>1</sub>, p<sub>2</sub>, ... p<sub>n</sub>)
    - Se define k como la última posición para la que se cumple que  $p \le \alpha \frac{i}{n}$  (where  $\alpha = 0.05$ , i is the test index and n is the number of tests = 10)
    - Se consideran significativos todos los p-value hasta la posición k ( $p_1, p_2, ... p_k$ )

| Ejemplo:                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \text{Significativos para p-value} < 0.05 \\ \text{con corrección Bonferroni} \\ \alpha_{\text{corregido}} = 0.005 \end{array} $ |
|                                                                                                                                                     |

Significativos para un p-value < 0.05

| test    | p_values | Index (i) | α*i/n | Significance |
|---------|----------|-----------|-------|--------------|
| test_4  | 0.0001   | 1         | 0.005 | TRUE         |
| test_10 | 0.0002   | 2         | 0.010 | TRUE         |
| test_7  | 0.0100   | 3         | 0.015 | TRUE         |
| test_3  | 0.0130   | 4         | 0.020 | TRUE         |
| test_9  | 0.0300   | 5         | 0.025 | FALSE        |
| test_6  | 0.0400   | 6         | 0.030 | FALSE        |
| test_2  | 0.0700   | 7         | 0.035 | FALSE        |
| test_8  | 0.1500   | 8         | 0.040 | FALSE        |
| test_5  | 0.2600   | 9         | 0.045 | FALSE        |
| test_1  | 0.5200   | 10        | 0.050 | FALSE        |

Significativos para un FDR = 0.05

#### 2. Genética cuantitativa -> Métodos de asociación

#### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
  - False Discovery rate (FDR), método q-value, Storey & Tibshirani (2003)



### 2. Genética cuantitativa -> Métodos de asociación

#### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
  - False Discovery rate (FDR), método q-value, Storey & Tibshirani (2003)

$$FDR = \frac{no. falsos positivos}{no. total positivos}$$



En experimentos genómicos los p-valores nulos no tienen una distribución uniforme. Los p-valores estan "inflados" a causa de la estratificación (estructura genética neutral, estructura poblacional, kinship, etc.) no capturada en el modelo.



#### 2. Genética cuantitativa -> Métodos de asociación

#### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
  - False Discovery rate (FDR), método q-value, Storey & Tibshirani (2003)

$$FDR = \frac{no. falsos positivos}{no. total positivos}$$

$$\widehat{q}(p_i) = \widehat{\text{FDR}} = \frac{\widehat{\pi}_0 * all \ pvalues * \alpha}{no. \ pvalues \le \alpha}$$

$$\hat{\pi}_0 = \frac{\sum pvalues > \lambda}{all \ pvalues * (1 - \lambda)}$$



#### a No stratification



#### **b** Stratification



Price et al. 2010. Nature Reviews Genetics





Divide by the Genomic Inflation Factor (GIF)



Not all stratification is captured here



2. Genética cuantitativa -> Métodos de asociación

#### Desafíos de los métodos de asociación

- 2. Cuando los valores ambientales (y/o valores de los caracteres fenotípicos) co-varían con la estructura poblacional
  - Bajo poder estadístico (corrección excesiva).
  - Exceso de falsos positivos (corrección insuficiente).

Population structure (random effect)

Vector of SNPs across populations

 $y = S\alpha + Qv + e$ 

Environmental information across populations (fixed effect)

2. Genética cuantitativa -> Métodos de asociación

### Desafíos de los métodos de asociación

- 2. Cuando los valores ambientales (y/o valores de los caracteres fenotípicos) co-varían con la estructura poblacional
  - Bajo poder estadístico (corrección excesiva).
  - Exceso de falsos positivos (corrección insuficiente).



Population structure (random effect)

Vector of SNPs across populations

 $y = S\alpha + Qv + e$ 

Environmental information across populations (fixed effect)



2. Genética cuantitativa → Métodos de asociación

#### Desafíos de los métodos de asociación

- 1. Necesidad de corrección de pruebas múltiples
- 2. Los valores ambientales (y/o valores de los caracteres fenotípicos) co-varían con la estructura poblacional

Aplicar corrección por FDR (no Bonferroni que es demasiado conservadora) o bien, ningún tipo de corrección de pruebas múltiples

Evidencia a partir de diferentes aproximaciones analíticas en la que una de ellas (o todas) no aplique(n) corrección por estructura poblacional

Evidencia a partir de fuentes de datos diferentes (e.g. variables ambientales y fenotípicas)

## **RDA**

- 1. multiple linear regression of loci on bioclimatic data
- **2. PCA** de los valores ajustados  $(\hat{Y})$ .

RDA axes are linear combinations of <u>bioclimatic data</u> that maximize genotypic variation

Ordenación donde los loci outliers son identificados por una excesiva dispersion con respecto al resto (distancia al centro de los ejes RDA)



### **RDA** – Rao (1964); Forester *et al.* (2015)

(b) Ordination of y (single axis) under constraint of X: multiple regression





## HANDS ON!



#### **GEA + GWAS**



**Environmental variables** at sites of origin of populations

#### **CANCOR** test



RESOURCE ARTICLE



## Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass

José Luis Blanco-Pastor<sup>1</sup> | Philippe Barre<sup>1</sup> | Thomas Keep<sup>1</sup> | Thomas Ledauphin<sup>1</sup> | Abraham Escobar-Gutiérrez<sup>1</sup> | Anna Maria Roschanski<sup>2</sup> | Evelyn Willner<sup>2</sup> | Klaus J. Dehmer<sup>2</sup> | Matthew Hegarty<sup>3</sup> | Hilde Muylle<sup>4</sup> | Elisabeth Veeckman<sup>4,5,6</sup> | Klaas Vandepoele<sup>4,5,7</sup> | Tom Ruttink<sup>4</sup> | Isabel Roldán-Ruiz<sup>4,6</sup> | Stéphanie Manel<sup>8</sup> | Jean-Paul Sampoux<sup>1</sup>





#### **CANCOR** test

