Начупена линия

Азербайджан е известен с килимите си. Като майстор на килими вие искате да направите нов дизайн чрез начертаване на **начупена** л**иния**. Начупената линия е редица от t праволинейни отсечки в двумерната равнина, която се дефинира чрез редица от t+1 точки p_0, \ldots, p_t по следния начин:

За всяко $0 \le j \le t-1$ има отсечка, свързваща точките $p_j j$ и p_{j+1} .

За новия дизайн, вие вече имате маркирани n **точки** в двумерната равнина. Координатите на точките i ($1 \le i \le n$) са (x[i],y[i]). **Няма две точки с еднакви х или с еднакви у координати.**

Сега искате да намерите редица от точки $(sx[0],sy[0]),(sx[1],sy[1]),\dots,(sx[k],sy[k])$, която дефинира начупена линия, такава че:

- ullet започва от (0,0) (т.е., sx[0]=0 и sy[0]=0),
- съдържа всички точки (незадължително като крайни точки на отсечките от линията) и
- съдържа само хоризонтални или вертикални отсечки (две последователни точки, които дефинират начупената линия трябва да имат равна х или у координата).

За начупената линия е позволено да пресича или застъпва себе си, т.е. всяка точка от равнината може да принадлежи на произволен брой отсечки от начупената линия.

Тази задача е output-only. Дадени са 10 входни файла, задаващи разположение на точки. За всеки входен файл вие трябва да събмитнете изходен файл, описващ търсена начупена линия със зададените по-горе свойства. За всеки изходен файл, описващ валидна начупена линия, вашите точки зависят от **броя на отсечките**, които образуват начупената линия, което подробно е описано в раздела Оценяване. За тази задачи вие НЕ събмитвате сорс.

Вход

Всеки входен файл има следния формат:

- ред 1: *n*
- ред 1+i (за $1\leq i\leq n$): x[i] y[i]

Изход

Всеки изходен файл трябва да бъде в следния формат:

- ред 1: *k*
- ullet ред 1+i (за $1\leq i\leq k$): sx[i] sy[i]

Забележете, че вторият ред трябва да съдържа sx[1] и sy[1] (т.е изходът **HE** съдържа sx[0] и sy[0]). Всичките sx[i] и sy[i] трябва да са цели числа.

Пример

За примерния вход:

- 4
- 2 1
- 3 3
- 4 4
- 5 2

един възможен валиден изход е:

6 2 0 2 3 5 3 5 2 4 2 4 4

Забележка: този пример НЕ е измежду входовете, с които ще се тества задачата.

Ограничения

- $1 \le n \le 100\,000$
- $1 \le x[i], y[i] \le 10^9$
- ullet Всички стойности на x[i] и y[i] са цели числа.
- ullet Никои две точки нямат еднакви x или еднакви y координати, т.е. $x[i_1]
 eq x[i_2]$ и $y[i_1]
 eq y[i_2]$ за $i_1
 eq i_2$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- Размерът на всеки събмитнат от вас файл (даже и да е zip) не трябва да надминава 15МВ.

Оценяване

За всеки тест вие получавате максимално по 10 точки. Вашият изход за тест получава 0 точки, ако той не удовлетворява изискванията за начупена линия. В противен случай точките ви се определят чрез намаляваща редица c_1,\ldots,c_{10} , която е различна за различните тестове.

Ако приемем, че вашият изход е валидна начупена линия, състояща се от k отсечки. Тогава вие получавате

- ullet i точки, ако $k=c_i$ (за $1\leq i\leq 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ точки, ако $c_{i+1} < k < c_i$ (за $1 \leq i \leq 9$),
- ullet 0 точки, ако $k>c_1$,
- 10 точки, ако $k < c_{10}$.

По-долу е дадена редицата c_1, \ldots, c_{10} за всеки от тестовете:

Testcases	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7607	75 336	108 430	138292	150475
c_3	40	674	5213	50 671	72824	92801	100 949
c_4	37	651	5125	50 359	72446	92371	100 500
c_5	35	640	5 081	50 203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100 050
c_7	28	616	5020	50025	72044	91 918	100027
c_8	26	610	5012	50 014	72033	91 906	100 015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Визуализатор

В атачмънта за задачата има скрипт, чрез който може да визуализирате входа и изхода.

За да визуализирате входа, използвайте следната команда:

```
python vis.py [input file]
```

Вие може да визуализирате вашия изход за някои от входовете, чрез командата (по технически причини, предоставеният визузализатор може да показва само **първите** 1000 **отсечки** от вашия изход):

```
python vis.py [input file] --solution [output file]
```

Пример:

python vis.py examples/00.in --solution examples/00.out