

34th Chaos Communication Congress

Questions are very much welcome! Please interrupt me mid-sentence.

Ingo Blechschmidt (University of Augsburg) with thanks to Matthias Hutzler and Christian Ittner

- Genesis of mathematical logic
- 2 Truth and proof

3 True but unprovable statements

- 4 Fundamental incompleteness
- Outlook

The foundational crisis in mathematics


```
362
                                  PROLEGOMENA TO CARDINAL ARITHMETIC
                                                                                                                             PART II
 *54.42. F :: α ∈ 2. D :. β C α . π ! β . β + α . ≡ . β ∈ t "α
       Dem.
 \vdash .*54.4. \supset \vdash :: \alpha = \iota^{\iota}x \cup \iota^{\iota}y. \supset :.
                          \beta \subset \alpha \cdot \exists : \beta = \Lambda \cdot v \cdot \beta = \iota' x \cdot v \cdot \beta = \iota' y \cdot v \cdot \beta = \alpha : \exists : \beta :
 [*24·53·56.*51·161]
                                                 \equiv : \beta = \iota' x \cdot v \cdot \beta = \iota' y \cdot v \cdot \beta = \alpha
 F. *54·25 . Transp . *52·22 . ⊃ F: x + y . ⊃ . t'x ∪ t'y + t'x . t'x ∪ t'y + t'y :
[*13·12] \supset \vdash : \alpha = \iota'x \cup \iota'y . x + y . \supset . \alpha + \iota'x . \alpha + \iota'y
 \vdash . (1) . (2) . \supset \vdash :: \alpha = \iota^{\iota} x \cup \iota^{\iota} y . x + y . \supset :.
                                                             \beta \subset \alpha. \pi : \beta . \beta + \alpha . \equiv : \beta = \iota'x . \lor . \beta = \iota'y :
 [#51·235]
                                                                                                  \equiv : (\forall z), z \in \alpha, \beta = \iota^{\iota}z:
 f*37.61
                                                                                                  = : β e ι"α
                                                                                                                                 (3)
 F.(3).*11.11.35.*54.101. > F. Prop
 *54.43. F:. α, β ∈ 1. D: α ∩ β = Λ. ≡ , α ∪ β ∈ 2
       Dem.
             \vdash .*54 \cdot 26 \cdot \supset \vdash :. \alpha = \iota^{\iota}x \cdot \beta = \iota^{\iota}y \cdot \supset : \alpha \cup \beta \in 2 \cdot \equiv . x + y
             [*51:2311
                                                                                                  \equiv \iota'x \cap \iota'y = \Lambda.
             [*13 12]
                                                                                                 = \cdot \circ \circ \circ \circ \circ \circ \circ
             F.(1), #11:11:35.3
                      \vdash : \cdot (\exists x, y) \cdot \alpha = \iota^{\epsilon} x \cdot \beta = \iota^{\epsilon} y \cdot D : \alpha \cup \beta \in 2 \cdot \alpha \cap \beta = \Lambda
             +.(2).*11 54.*521.⊃+.Prop
       From this proposition it will follow, when arithmetical addition has been
defined that 1 + 1 = 2
*54 44. \vdash : : z, w \in \iota^{\iota} x \cup \iota^{\iota} y . \supset_{z,w} . \phi(z,w) : \equiv . \phi(x,x) . \phi(x,y) . \phi(y,x) . \phi(y,y)
       Dem.
             \vdash .*51.234.*11.62. \supset \vdash :.z, w \in \iota^{\iota} x \cup \iota^{\iota} y. \supset_{\iota.w} . \phi(z, w) : \equiv :
                                                             z \in \iota' x \cup \iota' y \cdot \mathsf{D}_z \cdot \phi(z, x) \cdot \phi(z, y):
             [*51.284.*10.29] \equiv : \phi(x,x) \cdot \phi(x,y) \cdot \phi(y,x) \cdot \phi(y,y) :. \supset \vdash. Prop.
*54.441. \vdash :: z, w \in \iota^{\iota} x \lor \iota^{\iota} y \cdot z + w \cdot D_{z,w} \cdot \phi(z,w) : \exists :: x = y : v : \phi(x,y) \cdot \phi(y,x)
       Dem.
\vdash .*5^{\circ}6 . \, \mathsf{D} \vdash :: z, w \in \iota^{\iota}x \cup \iota^{\iota}y \, . \, z + w \, . \, \mathsf{D}_{r,w} . \, \varphi \, (z,w) : \exists :.
                          z, w \in t^{i}x \cup t^{i}y \cdot \supset_{z,w} : z = w \cdot \mathbf{v} \cdot \phi(z, w) :.
[*54·44]
                          \equiv: x = x \cdot \mathbf{v} \cdot \phi(x, x): x = y \cdot \mathbf{v} \cdot \phi(x, y):
                                                                          y = x \cdot \mathbf{v} \cdot \phi(y, x) : y = y \cdot \mathbf{v} \cdot \phi(y, y) :
[*13.15]
                          \equiv: x = y \cdot \mathbf{v} \cdot \phi(x, y): y = x \cdot \mathbf{v} \cdot \phi(y, x):
[*13 \cdot 16 \cdot *4 \cdot 41] \equiv : x = y \cdot v \cdot \phi(x, y) \cdot \phi(y, x)
      This proposition is used in *163.42, in the theory of relations of mutually
exclusive relations.
*54 442. ト:: x+y. ⊃:. z, w e t'x ∪ t'y. z+w. ⊃<sub>z, w</sub>. φ(z, w): ≡. φ(x, y). φ(y, x)
                                                                                                                          [*54·441]
```

The foundational crisis in mathematics

"Let *U* be the set of all those sets which don't contain themselves."

The foundational crisis in mathematics

"Let *U* be the set of all those sets which don't contain themselves." Naive mathematics is **inconsistent**, rendering it **unreliable**. ©

The foundational crisis in mathematics

"Let *U* be the set of all those sets which don't contain themselves." Naive mathematics is **inconsistent**, rendering it **unreliable**. © Thus the **axiomatic method** was born.

The foundational crisis in mathematics

Truth and proof

A syntactic quality

A statement is **provable** if and only if it has a **formal proof** using only the **Peano axioms**.

Example.
$$1 + 1 = S(0) + S(0) = S(S(0) + 0) = S(S(0)) = 2$$
.

A semantic quality

A statement is **true** if and only if it holds in the **standard model**.

Mathematical induction and:

$$S(n) \neq 0$$
 $S(n) = S(m) \Rightarrow n = m$
 $n + 0 = n$ $n + S(m) = S(n + m)$
 $n \cdot 0 = 0$ $n \cdot S(m) = n \cdot m + n$

A syntactic quality

A statement is **provable** if and only if it has a **formal proof** using only the **Peano axioms**.

Example.
$$1 + 1 = S(0) + S(0) = S(S(0) + 0) = S(S(0)) = 2$$
.

A semantic quality

A statement is **true** if and only if it holds in the **standard model**.

Mathematical induction and:

$$S(n) \neq 0$$
 $S(n) = S(m) \Rightarrow n = m$
 $n + 0 = n$ $n + S(m) = S(n + m)$
 $n \cdot 0 = 0$ $n \cdot S(m) = n \cdot m + n$

A syntactic quality

A statement is **provable** if and only if it has a **formal proof** using only the **Peano axioms**.

Example.
$$1 + 1 = S(0) + S(0) = S(S(0) + 0) = S(S(0)) = 2$$
.

A semantic quality

A statement is **true** if and only if it holds in the **standard model**.

Provable statements are true.

True statements are **not** necessarily provable.

Part III

True but unprovable statements

- "This statement is not provable."But take care: Consider "This statement is not true".
- "Hercules can kill any hydra."
- "BB(9000) = x." (for any number x)
- "There is no proof of 1 = 0."
- "There is an infinity between $\mathbb N$ and $\mathbb R$."

Fundamental incompleteness

Gödel discovered:

Any consistent and recursively axiomatizable formal system is **incomplete**.

Fundamental incompleteness

Gödel discovered:

Any consistent and recursively axiomatizable formal system is **incomplete**.

Going deeper:

Peano arithmetic **cannot** prove "Peano arithmetic is consistent".

Fundamental incompleteness

Gödel discovered:

Going deeper:

Any consistent and recursively axiomatizable formal system is **incomplete**.

Peano arithmetic **cannot** prove "Peano arithmetic is consistent".

Proof idea: Get "this statement is not provable" to work.

- Express provability using numbers (think ASCII).
- Rewrite self-referentiality like this: "»yields an unprovable statement when preceded by its quotation« yields an unprovable statement when preceded by its quotation."

That statement is true, but neither it nor its negation are provable.

Part V

Outlook

- We use the axiomatic method to make maths reliable.
- But any axiomatization is incomplete.

