Instituto Tecnológico de Costa Rica Diseño de Sistemas Digitales Andrea Bolaños Delgado - 2017158465 I Semestre 2022

Tarea 2

- Utilizando la memoria RAM HY 6264 construya un banco de memoria de 16KX8 bits

HY6264

RAM = (Numeros de bits necesitados) / (Numeros de bits por CI) = $(16K \times 8) / (8K \times 8)$ = 2 circuitos

 $2^n = 2 \rightarrow n = 1$ bus de direcciones A0 8 buses de datos D0 - D7

1 Utilizando memoria RAM HY 6262 con memoria 16 KX 86its RAM = N° bits necesitados = 16KXB = 2 circuitos RAM

N° bits por CI BKXB 2°=2 y n=1 por lo que solo hay 1 ennado Ao. Como hay 8 bits ensoncer hay 00-07 buses de datos AO D0...D7 Q0 : Q7 Este bit selecciona entre una memoria y la otra pero como CIK . Ílegan las direcciones a las memorias"? DO H QO : Y QO DZ 6 QZ CIK CIK 4 (QO-Q7 RIW

El CLK es un tipo de "sincronizador" entre los dispositivos del sistema. Es diferente a la señal de R/W procedente del sistema de control

Utilizando la memoria EPROM 2732 construya un banco de memoria de 16K X8 bits

		Connection Diagram 24-Pin DIP	
		A7 1	24 VCC
		A6 🗆 2	23 A8
		A5 🗖 3	22 A9
		A4 🗖 4	21 A11
Pin Names		A3 🗖 5	20 G/VPP
A0-A11 E G/VPP DQ0-DQ7 VCC VSS	Address Inputs Chip Enable (Power Down) Input Output Enable/+25 V Program Input Data Output/Programming Inputs +5 V Supply Ground	A2 46	19 A10
		A1 🗆 7 ()18 ÞĒ
		AO D B	17 007
		DQ0 🗆 9	16 2006
		DQ1 🗆 10	15 005
		DQ2 🗆 11	14 2004
		VSS 🗆 12	13 003

EPROM 2732

EPROM = (Numeros de bits necesitados) / (Numeros de bits por CI) = $(16K \times 8) / (4K \times 8)$ = 4 circuitos

 $2^n = 4 - n = 2$ buses de direcciones A0 y A1 8 buses de datos D0 - D7

