NUMERYCZNA ALGEBRA LINIOWA SPRAWOZDANIE 2

Rozwiązać układ równań Ax = b gdy A jest macierzą rzadką (najlepiej), a wektor wyrazów wolnych otrzymać dla wektora rozwiązań postaci: $x = [1, 1, ..., 1]^T$. Macierz A symetryczną i dodatnio określoną (i rzeczywistą) wybrać jako jedną z macierzy specjalnych dostępnych w MATLAB'ie.

Układ rozwiązać za pomocą każdej z metod:

- Metoda Jacobiego
- Metoda Gaussa-Seidela
- Metoda $SOR(\omega)$
- Metoda najszybszego spadku
- Metoda sprzężonych gradientów

Dla rozmiarów układu odpowiednio n=[50; 100; 200; 400; 800; 1600] przy zadanej tolerancji $tol=10^{-3}$ oraz $tol=10^{-6}$. Zadać maksymalną liczbę iteracji 1000.

W sprawozdaniu powinny się znaleźć:

- \bullet Macierz wybrana do rozwiązania problemu (przykład dla wymiaru 4×4)
- Współczynnik uwarunkowania macierzy
- Kod programu zastosowanego do przeprowadzenia sprawozdania
- Norma błędu $||x^{(n)}-x^*||_2$ oraz $||x^{(n)}-x^*||_\infty$
- Liczba potrzebnych iteracji do rozwiązania układu
- Wnioski