

Introducción a Sistemas de Control: Linealización

ALEJANDRO S. GHERSIN

Puntos de Equilibrio

Dado un sistema

$$\dot{x} = f(x, u)$$

si x_e, u_e son tales que $f(x_e, u_e) = 0$ entonces representan un punto de equilibrio.

- Si el sistema tiene como condiciones iniciales a x_e, u_e entonces el mismo permanecerá en ese punto.
- En torno a esos valores, se llevará a cabo la linealización.

Linealización Jacobiana

$$\frac{dx}{dt} = f(x,u), \quad x \in \mathbb{R}^n, u \in \mathbb{R}, \quad x = x_e, \quad u = u_e$$

$$y = h(x,u), \quad y \in \mathbb{R},$$

$$z = x - x_e, \quad v = u - u_e, \quad w = y - h(x_e, u_e)$$

$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)}, \quad B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)}, \quad C = \frac{\partial h}{\partial x}\Big|_{(x_e, u_e)}, \quad D = \frac{\partial h}{\partial u}\Big|_{(x_e, u_e)}$$

$$\frac{dz}{dt} = Az + Bv, \qquad w = Cz + Dv,$$

Linealización: Ejemplo del tanque de agua

Ejemplo Dorf pág. 94 (125 pdf 13ra Ed.)

Densidad y Gravedad:	$\rho = 1000 \frac{kg}{m^3}$	$g = 9,81 \frac{m}{s^2}$
Secciones transversales:	$A_1 = \frac{\pi}{4}m^2$	$A_2 = \frac{\pi}{400} m^2$
Valores de equilibrio:	$H^* = 1m$	$Q^* = 34,77 \frac{kg}{s}$

Masa de agua:	$m = \rho A_1 H$
Variación de masa: Derivada con respecto al tiempo.	$\dot{m} = \rho A_1 \dot{H}$ $\dot{m} = Q_1 - Q_2$
Bernoulli : Balance de energías	$\frac{1}{2}\rho v_1^2 + P_1 + \rho gH = \frac{1}{2}\rho v_2^2 + P_2$
Simplificaciones:	$P_1=P_2=0$, porque son presiones relativas y $v_1=0$ se desprecia, por ser "chica".
Por definición:	$Q_2 = \rho A_2 v_2$
De donde se obtiene:	$gH = \frac{1}{2}v_2^2$
	$v_2 = \sqrt{2g} \cdot \sqrt{H}$

Derivada de la masa con respecto al tiempo:

$$\dot{m} = \rho A_1 \dot{H}$$

$$\dot{m} = Q_1 - \rho A_2 v_2$$

$$v_2 = \sqrt{2g} \cdot \sqrt{H}$$

Operando sobre la ecuación anterior:

$$\rho A_1 \dot{H} = Q_1 - \rho A_2 v_2$$

$$\dot{H} = -\left(\frac{A_2}{A_1}\sqrt{2g}\right)\sqrt{H} + \frac{1}{\rho A_1}Q_1$$

$$\dot{H} = -\left(\frac{A_2}{A_1}\sqrt{2g}\right)\sqrt{H} + \frac{1}{\rho A_1}Q_1$$

$k_1 = -\left(\frac{A_2}{A_1}\sqrt{2g}\right)$	$k_2 = \frac{1}{\rho A_1}$
$k_3 = \rho \sqrt{2g} A_2$	x = H
$u = Q_1$	$y = Q_2$

$$\dot{x}(t) = f(x, u) = k_1 \sqrt{x(t)} + k_2 u(t)$$

$$y = h(x, u) = k_3 \sqrt{x}$$

Simplificamos el problema:

$$k_1 = -1, k_2 = k_3 = 1$$

$$\dot{x}(t) = f(x, u) = -\sqrt{x(t)} + u(t)$$

$$y = h(x, u) = \sqrt{x}$$

Para
$$x_e=1$$
, $u_e=1$, $y_e=1$, la linealización queda:

$$\dot{z} = -\frac{1}{2}z + v$$

$$w = \frac{1}{2}z$$

- Verificar el resultado como ejercicio.
- Calcular el valor de x_e y de y_e para un u_e genérico.

Simulink del Problema

Gráfico de la Simulación, no lineal vs. Linealizado.

