CSC/MAT-220: Class Activity Cantor's Theorem

November 1, 2017

Theorem. Let A be a set. If $f: A \to \mathcal{P}(A)$, then f is not onto.

Proof. To show that f cannot be onto, we must find a set $B \in \mathcal{P}(A)$, such that there is no $a \in A$ that satisfies f(a) = B. Define

$$B = \{ x \in A \colon x \notin f(x) \}$$

and suppose there is an $a \in A$ such that f(a) = B. Show that

- If $a \in B$, then we arrive at a contradiction.
- If $a \notin B$, then we arrive at a contradiction.

Then, make a concluding argument to complete the proof.