Spectral Graph Theory An Invitation

Ivan Zaluzhnyy

Eigenvalues of a Graph?

Using content by

OUTLINE

Ol BASIC GRAPH THEORY

O3

FIEDLER VECTOR AND
FIEDLER VALUE
OF A GRAPH

GRAPH LAPLACIAN AND ITS BASIC PROPERTIES

02

SPECTRAL EMBEDDING & CLUSTERING

Basic Graph Theory

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{(v_1, v_2), (v_1, v_4), (v_2, v_3), \cdots, (v_5, v_1)\}$$

$$e_{1,2} = (v_1, v_2)$$

$$e_{2,1} = (v_2, v_1) \neq e_{1,2}$$

Degrees of Vertices and Connectivity

The graph has 2 connected components, but the graph itself is no longer connected.

Adjacency and Degree Matrices

$$\begin{pmatrix} \mathbf{3} & 0 & 0 & 1 & 0 \\ 0 & \mathbf{2} & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$A_{i,j} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$D_{i,j} = \begin{cases} d(v_i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Both matrices are real symmetric

Disconnected graphs have distinct block structure of adjacency matrix

This has interesting impact on eigenvalues and eigenvectors

Spectral Theory of Graphs

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces.

Source: Wikipedia

Real symmetric matrices are guaranteed to be diagonalizable with real eigenvalues

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
-0.44 - 0.71 & 0.56 & 0.0 \\
-0.56 & 0.0 - 0.44 - 0.71 \\
-0.56 & 0.0 - 0.44 & 0.71 \\
-0.44 & 0.71 & 0.56 & 0.0
\end{pmatrix} \begin{pmatrix}
2.6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1.6 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
-0.44 - 0.71 & 0.56 & 0.0 \\
-0.56 & 0.0 - 0.44 & 0.71 \\
-0.56 & 0.0 - 0.44 & 0.71 \\
-0.44 & 0.71 & 0.56 & 0.0
\end{pmatrix}$$

$$P = 1$$

Addition and subtraction retain real symmetric property

$$\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix} - \begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
2 - 1 - 1 & 0 \\
-1 & 3 - 1 - 1 \\
-1 - 1 & 3 - 1 \\
0 - 1 - 1 & 2
\end{pmatrix}$$
Laplacian matrix: \mathbf{L}

$$L = D - A$$

$$\lambda = f^{t}Lf$$

$$\lambda = \int_{j,i\sim j} f(i) - f(j)$$

$$\lambda = \int_{i}^{t} Lf = \sum_{i} f(i)(Lf)_{i}$$

$$\lambda = \sum_{i} (f(i) \sum_{j,i\sim j} (f(i) - f(j)))$$

• f is a function on graph vertices and an eigenvector of Laplacian

$$\lambda = \sum_{i} (f(i) \sum_{j,i \sim j} (f(i) - f(j)))$$

$$f(2) \qquad f(1)(f(1) - f(2)) + f(1)(f(1) - f(3)) + f(2)(f(2) - f(1)) + f(2)(f(2) - f(3)) + f(3)(f(3) - f(1)) + f(3)(f(3) - f(2)) + f(3)(f(3) - f(4)) + f(4)(f(4) - f(3))$$

• f is a vector and a function?

f(3)

$$\lambda = \sum_{i < j, i \sim j} (f(i) - f(j))^2$$

Observation 1: L is positive semi-definite.

$$\lambda_i > 0 \quad \forall i$$

Observation 2: 0 is always an eigenvalue of L.

$$f(i) = f(j) \quad \forall i, j$$

Observation 3a: The smaller the eigenvalue, the *smoother* the eigenvector.

Observation 3b: The smaller the eigenvalue, the less connected the graph.

Example: Disconnected Graph

$$v_2$$

 v_4

$$\lambda = 0 \qquad f_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} f_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} f_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} f_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Example: Vertices in a Row

Laplacian Operator

$$\nabla^2 f = \nabla \cdot \nabla f$$

$$\nabla^2 f(x) = \frac{d^2 f}{dx^2}$$

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f(x, y, z) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \qquad .$$

 Laplacian operator calculates the divergence of a gradient in Cartesian coordinates

Why is it called the Laplacian matrix?

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$$

$$(Lf)_i = \sum_{j,i \sim j} (f(i) - f(j))$$

$$(Lf)_2 = (f(2) - f(1)) + (f(2) - f(3)) + (f(2) - f(4))$$

An Application of Laplacian Matrix

Theorem 1: the Laplacian matrix L has an eigenvalue 0 with multiplicity k if and only if the graph has k connected components.

Fiedler Value and Vector of a Graph

$$f_2^T = \begin{pmatrix} 0.48 & 0.48 & 0.31 - 0.15 - 0.35 - 0.42 - 0.35 \end{pmatrix}$$

$$\lambda_2 = 0.36$$

Applications of Laplacian Matrix

$$\lambda_k = \sum_{i < j, i \sim j} w_{ij} (f_k(i) - f_k(j))^2$$

$$f_2 = \underset{f}{\operatorname{argmin}} f^T L f$$
, subject to $f^T 1 = 0, f^T f = 1$

$$f_3 = \underset{f}{\operatorname{argmin}} \ f^T L f$$
, subject to $f^T 1 = 0, f^T f_2 = 0, f^T f = 1$

$$f_k = \underset{f}{\operatorname{argmin}} \ f^T L f$$
, subject to $f^T 1 = 0, f^T f_2 = 0, \cdots, f^T f_{k-1} = 0, f^T f = 1$

 More generally looking for patterns in graph structure can be framed as an optimization problem with weights assigned to graph edges (weighted graph)

Spectral Embedding

Principal Component Analysis

Dimension reduction

Only on *covariance* matrix

Spectral Embedding

Graph partitioning

Works on any *similarity* matrix

On spectral clustering: Analysis and an algorithm

A Ng, M Jordan, Y Weiss

Advances in neural information processing systems 14

12420

2001

Spectral Clustering

An Invitation to Spectral Graph Theory: Summary

- Graphs can be represented by matrices
- Graph eigenvectors and eigenvalues offer insight into its structure
- Graph Laplacian is a way to perform more complex graph analytics
- Spectral clustering is an application of Spectral Graph Theory in Machine Learning

Special thanks to **Maxim Beketov** for guidance, lessons and careful review of slides

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

