Universidad Peruana Cayetano Heredia

FACULTAD DE CIENCIAS Y FILOSOFÍA

Construcción de modelos de aprendizaje automático químicamente interpretativos en la clasificación de moléculas de colorantes naturales de celdas solares sensibilizadas por tintes basados en relaciones estructura-propiedad

Proyecto de tesis

Autor: Bach. Dan Santivañez Gutarra

Asesora: Dra. María Quintana Caceda

> Lima - Perú 2022

Índice

1.	Introducción		
	1.1.	Problemática	
	1.2.	Justificación	
	1.3.	Antecedentes	
2.	Hipótesis de investigación y objetivos		
	2.1.	Hipótesis de investigación	
	2.2.	Objetivos	
3.	Mar	co Teórico	
	3.1.	Celdas solares sensibilizadas por tintes (CSPT)	
		3.1.1. Componentes de las CSPT	
		3.1.2. Funcionamiento de las CSPT	
		3.1.3. Tipos de sensibilizantes	
	3.2.	Colorantes naturales	
		3.2.1. Características físicas y químicas	
		3.2.2. Familias de colorantes naturales usados como sensibilizantes	
	3.3.	Enfoque de investigación direccionado por datos	
		3.3.1. Tipos de enfoques de investigación en química	
		3.3.2. Tipos de estructuras de datos en química	
		3.3.3. Extracción y preprocesamiento de datos	
		3.3.4. Tratamiento de datos	
		3.3.5. Descubrimiento y análisis de características	
		3.3.6. Entrenamiento y evaluación de modelos	
		3.3.7. Validadores estadísticos de los modelos	
	3.4.	Modelos de aprendizaje automático	
		3.4.1. Naturaleza de los modelos de aprendizaje automático	
		3.4.2. Interpretatividad de los modelos de aprendizaje automático	
		3.4.3. Clasificadores clásicos	
		3.4.4. Clasificadores ensamblados	
		3.4.5. Evaluadores de los resultados de clasificación	
4.	Mat	seriales y métodos	
		4.0.1. Extracción de datos	
		4.0.2. Preprocesamiento de datos	
		4.0.3. Descubrimiento y análisis de características	
		4.0.4. Entrenamiento y evaluación del modelo 1	
		4.0.5. Entrenamiento y evaluación del modelo 2	
		4.0.6. Entrenamiento y evaluación del modelo 3	
		4.0.7. Comparación de modelos	
	4.1.	Análisis estadístico	
		4.1.1. Pruebas de normalidad	
5.	Refe	erencias bibliográficas 1	
6.	Cro	nograma de trabajo 1	
7	Dro	Eupuosto y financiamiento	

Resumen

Las celdas solares son dispositivos que convierten energía lumínica en energía eléctrica útil a través de fenómenos electroquímicos. El desarrollo de materiales sostenibles y con mayor eficiencia es un reto de investigación y también ambiental, ya que resolverlo conlleva explorar miles de millones de compuestos y hallar dicho tipos de materiales favorecerían el consumo de energías limpias. Esta exploración requiere recursos humanos y materiales que muchos investigadores no pueden proporcionarse, es entonces que las simulaciones computacionales y el enfoque dirigido por datos cobran importancia. El uso de experimentos in silico han ...

1. Introducción

1.1. Problemática

La dependencia de los combustibles fósiles traería consigo problemas como la inseguridad energética y el incremento de la temperatura global a causa del aumento de los gases de efecto invernadero. Las sociedades que concentran la producción de los combustibles fósiles podrían controlar geopolítica y económicamente a otras [1], esta inseguridad energética se evidenció en la crísis del petróleo de 1973 [2] y en la disputa entre Rusia y la Unión Europea por el suministro de gas en este año [3]. En contraste, el problema del incremento de la temperatura global es un problema mediáticamente más discreto pero no menos alarmante. Tanto así que, en el 2018, la Intergovernmental Panel on Climate Change (IPCC) emitió un informe sobre los impactos que causaría dicho incremento en 1.5°C con respecto a los niveles preindustriales para el 2040, que en resumidas cuentas, se prevé un detrimento crítico y sin retorno de la civilización y la biósfera [4]. A fin de hacer frente a estos problemas, la transición hacia una matriz energética mundial donde predominen fuentes energéticas menos contaminantes y descentralizadas es la solución.

Las fuentes renovables reunen dichas características, por lo que muchos gobiernos y organizaciones han tomado acciones para aprovecharlas. En ese marco, la *International Renewable Energy Agency* (IRENA) realizó un análisis multisectorial en el 2020 donde propuso una hoja de ruta para que las energías renovables generen el 86 % de la electricidad global [5]. En ese documento también se menciona que esta cifra no se alcanzaría sin la investigación ni el desarrollo de tecnologías que aprovechen dichas fuentes para hacerlas sostenibles y comercialmente viables.

Hace un año, la energía hidroeléctrica generó más de 4 mil tera-vatios por hora (TWh) en el mundo, lo que representó más del 50 % de la generación de todas las renovables [7]. No obstante, no es posible extender la construcción de centrales hidroeléctricas dado que muchas comunidades no cuentan cuencas hidrográficas o caídas de agua que puedan aprovecharse. Sin contar esta fuente, las energías eólica y solar son las que encabezan la producción energética. Con el propósito de contextualizar el crecimiento del uso de estas fuentes renovables geográfica y temporalmente se muestra la Figura 1. En ella se visualizan los porcentajes de potencia consumida provenientes de tres grupos de fuentes renovables no hídroeléctricas: La eólica, solar y otras (GeoBiomasaOtros). Estos porcentajes se distribuyen desde el 2012 hasta el 2021 y se comparan las tendencias en el Perú, Sudamérica y el mundo. Se aprecia el aumento del consumo energético de la eólica y solar sobre las demás, y de entre estas dos, la eólica es mayor. No obstante, también es evidente que la energía solar ha tenido un crecimiento sostenido en el tiempo y esto se debe, entre otras razones, a la disponibilidad de nuevas tecnologías más comercial y ambientalmente más viables que aprovechan la luz solar.

Existen dos tipos de tecnlogías solares: La termosolar y la fotovoltaica [8]. En la primera se usa la energía térmica de un fluído calentado por concentradores solares para generar electricidad por medio del movimiento de turbinas contectadas a generadores electromagnéticos. Pese a los esfuerzos por reducir los costos de construcción y mantenimiento de las centrales termosolares, solo países con alta demanda energética industrial y la geografía apta pueden hacer rentables estas tecnologías [9].

En contraste a la termosolar, en la fotovoltaica se aprovecha directamente la radiación solar mediante fenómenos fotoeléctricos y de transporte de cargas, mimetizando la fotosíntesis. Si las plantas tienen a las células con clorofila en sus hojas como sus unidades generadoras de energía, en los sistemas fotovoltaicos estas serían las células o celdas solares. La estructura de una celda solar depende de los mecanismos de generación eléctrica y trasporte de carga, y estos a su vez, de la naturaleza de los materiales donde suceden estos mecanismos. El interés por desarrollar tecnologías fotovoltaicas se da por dos razones: Por su versatilidad, es decir que pueden ser

Figura 1: Comparación del porcentaje de la cantidad de potencia consumida por tipo de energía renovable sin considerar la hidroeléctrica. Fuente: Our World in Data [6]

usadas para fines domésticos o industriales, y porque reducirán notablemente las emisiones de CO_2 /kWh, por ejemplo esta reducción sería cercana al 90 % para sistemas que sustituyan al gas natural [10].

Las celdas solares llevan en el mercado más de 60 años, desde su descubrimiento en los Laboratorios Bell en 1954 [11] y su primer uso comercial en el satélite Vanguard [12] en 1958, estos se han diversificado en su composición, por ende, también en su eficiencia y estabilidad. Según la clasificación del National Renewable Energy Labotatories (NREL) los tipos de celdas se pueden agrupar en cinco familias: Cristalinas de silicio, de unión simple de galio (Ga) y arsénico (As), de unión múltiple, basadas en películas delgadas y emergentes [13]. Los puntos en común de estas familias son la similitud de sus componentes, arquitecturas y/o coetaniedad [14]. Cabe mencionar que en adelante solo se tomarán en cuenta tecnologías fotovoltaicas que no tengan concentradores.

En primer lugar se encuentra la familia de las celdas basadas en cristales de silicio que congrega a las celdas de monocristal [15], multicristal[16], con heteroestructuras de silicio [17] y con películas delgadas de silicio cristalino [18]. Segundo, las celdas de unión simple (Ga-As) en donde están las que se basan en cristales y las de películas delgadas [19]. Tercero, las celdas de unión múltiple que tienen celdas con arquitecturas con dos, tres y cuatro a más uniones [20, 21]. Cuarto, en las celdas basadas en películas delgadas están las celdas de cobre-indiogalio-selenio (CIGS) [22], cadmio-teluro (CdTe) [23] y silicio amorfo hidrogenado (a-Si:H) [24]. Y en quinto lugar, las celdas emergentes, que se caracteriza por agrupar las tecnologías que

llevan menos tiempo siendo investigadas tales como las celdas sensibilizadas por tintes (CSPT) [25], las inorgánicas basadas en kesterita $Cu_2ZnSn(S,Se)_4$ (CZTSSe) [26], las celdas orgánicas [27], orgánicas tipo $s\'{a}ndwich$ [28], las celdas perovskitas [29], perovskitas-CIGS monolítica tipo $s\'{a}ndwich$ [30], perovskitas-SI monolítica tipo $s\'{a}ndwich$ [30] y celdas con quantum-dots [31].

Figura 2: Serie de tiempo de las mejores eficiencias obtenidas en la investigación de las celdas solares según la agrupación dada por NREL. Fuente: National Renewable Energy Laboratory [13]

Para contrastar dichas tecnlogías se pueden usar las mejores eficiencias de conversión energética de estos dispositivos obtenidos en el laboratorio que fueron recopilados por la NREL entre los años de 1980 y 2021 (Figura 2). En esa gráfica se observa que las tecnologías con mayor rendimiento han sido las celdas de unión múltiple, esto se debe a que sus arquitecturas fueron diseñadas para que haya un efecto sinérgico gracias a la apilación de los mejores materiales fotoeléctricos y de transporte de carga que existían en su época, no obstante, estos serían más costosos que los demás por la mayor cantidad y diversidad de materiales que se demandan para fabricarlos. También se aprecia que las tendencias de investigación de las celdas de silicio cristalino y las películas delgadas han desacelerado el aumento de sus rendimientos a diferencia de las celdas de unión simple Ga-As o emergentes. Es probable que esto sea consecuencia del descubrimiento de nuevos materiales con menores costos de producción, ambiental y con buen desempeño, por ejemplo: Moléculas orgánicas aceptoras-donadoras o quantum dots.

Es un hecho que las tecnlogías emergentes están igualando, en términos de performance en el laboratorio, a las celdas comercialmente más comúnes como lo son las que se silicio multicristalino y las películas de Ga-As [32]. Es por ello que es importante seguir investigándolas, pero como se mencionó anteriormente, esta familia reune diversas tecnologías y por tal motivo es importante sopesarlas desde el punto de vista de la sostenibilidad.

Con los datos del NREL se construyó una serie de tiempo de las mejores eficiencias que muestran en el laboratorio todos los tipos de celdas que pertenecen a las tecnologías emergentes (Figura 3). En dicha gráfica se da cuenta que las celdas basadas en perovskitas encabezan a las demás y a su vez son las más recientes en ser exploradas, este material está compuesto por átomos de titanio y calcio dispuestos ortorrómbicamente cuando es cristalino, tiene un bandgap de 1.5 eV, un alta constante dieléctrica, capacidad de separar rápidamente la carga y de ser funcionalizados con CIGS, Si, Sn y/o Pb para extender el rango de absorción del expectro solar (300-800 nm) y

aumentar el coeficiente de absorción (10^5cm^{-1}) [33]. A pesar de que estas ventajas han hecho de las celdas de perovskitas las más promisorias de las emergentes, la exposición al ambiente de estos dispositivos serían tóxico para la salud de los seres vivos, debido al Sn o Pb [34]. Otras celdas que presentan el mismo problema son las que tienen quantum dots[35] o compuestos inorgánicos CZTSSe[26], ya contienen Cd y Sn respectivamente, aparte que hay esfuerzos por mejorar su estabilidad y disminuir sus costos de fabricación, los cuales dificultan su comercialización.

Contrario a las ya mencionadas tecnologías emergentes, las celdas orgánicas y sensibilizadas por tintes son más sostenibles gracias a la capacidad de degradación de los polímeros que los componen, además tienen otras ventajas como es su fabricación modular que permite alternar

Figura 3: Serie de tiempo de las mejores eficiencias obtenidas en la investigación de las tecnologías emergentes de celdas solares. Fuente: National Renewable Energy Laboratory [13]

Figura 4: Serie de tiempo de las mejores eficiencias obtenidas en la investigación de las celdas solares según la agrupación dada por NREL. Fuente: National Renewable Energy Laboratory [6]

Finalmente, la tercera generación agrupa a las celdas más recientes tales como aquellas ba-

sadas en concentradores, nano cristales, polímeros y sensibilizadas por tintes. Las celdas por concentradores son dispositivos rígidos que aprovechan la radiación y el calor que se generan en al incidir luz en lentes convexos [36], si bien tiene viabilidad comercial se demandan mejoras en los materiales fotovoltaicos. Las celdas basadas en nano cristales o quantum dots (QD) pueden capturar mejor la luz mientras suprimen fenómenos de recombinación además de tener un rendimiento estable por encima del $20\,\%$, no obstante no son comercialmente viables porque son costosos de fabricar [37]. Por el contrario, las celdas de polímero se caracterizan por su flexibilidad pero sus rendimientos estan en promedio por debajo del $10\,\%$ y a su vez son inestables porque son sensibles a cambios de temperatura y presión [38]. Por último, las celdas sensibilizadas por tintes son dispositivos que tienen semiconductores fotosensibilizados y ensamblados a un sistema electrolítico que permite un flujo continuo de electrones [39], se caracterizan por su construcción versátil y de bajo costo gracias a la diversidad materiales de sus componentes, sin embargo sus rendimientos aún no se equiparan a las comerciales de silicio [25].

Las celdas sensibilizadas por tintes (CSPT) pueden ser

... debido a todas estas razones, la investigación de nuevos materiales y procesos de fabricación para celdas solares sensibilizadas por tintes más costo eficientes cobran relevancia.

Las estructura de las celdas solares

Es claro que deben de validarse experimentalmente los resultados obtenidos por los métodos compuacionales, pero estos pueden discriminar cientos de candidat

pero dado un grado de precisión razonable en la predicción de la propiedad del material, estos modelos computcionales aceleran el proceso de elegir mejores estructuras o moléculas candidatas con la correcta combinación de propiedades necesarias para cumplir satisfactoriamente con el propósito para las que fueron hechas *Leon R. Devereux*.

1.2. Justificación

La referencia es citada en [40]

Los procesos en el descubrimiento de celdas solares con mayor eficiencia de producción energética y sostenibilidad tales como el diseño, la prospección, la construcción son lentos, costosos y poco eficientes. Y el tiempo que toma que estas nuevas celdas solares tengan rentabilidad comercial para las partes que financiaron la investigación es reducido [41].

La ciencia de materiales dirigida por datos

1.3. Antecedentes

En los antecedentes se

Figura 5: Serie de tiempo de las mejores eficiencias obtenidas en la investigación de las celdas solares según la agrupación dada por NREL. Fuente: National Renewable Energy Laboratory [6]

Etapas:

- 1. Recopilación de datos en fuentes bibliográficas o simulaciones computacionales.
- 2. Limpieza, tratamiento e ingeniería de datos
- 3. Análisis estadístico de las variables características y objetivo.
- 4. Entrenamiento y evaluación de los modelos de aprendizaje automático.
- 5. Análisis de interpretabilidad química q de los modelos de aprendizaje automático.
- 6. Extracción del modelo de aprendizaje automático interpretativo con mejor desempeño.

Figura 6: Serie de tiempo de las mejores eficiencias obtenidas en la investigación de las celdas solares según la agrupación dada por NREL. Fuente: National Renewable Energy Laboratory [6]

2. Hipótesis de investigación y objetivos

- 2.1. Hipótesis de investigación
- 2.2. Objetivos
- 3. Marco Teórico
- 3.1. Celdas solares sensibilizadas por tintes (CSPT)
- 3.1.1. Componentes de las CSPT
- 3.1.2. Funcionamiento de las CSPT
- 3.1.3. Tipos de sensibilizantes
- 3.2. Colorantes naturales
- 3.2.1. Características físicas y químicas
- 3.2.2. Familias de colorantes naturales usados como sensibilizantes
- 3.3. Enfoque de investigación direccionado por datos
- 3.3.1. Tipos de enfoques de investigación en química
- 3.3.2. Tipos de estructuras de datos en química
- 3.3.3. Extracción y preprocesamiento de datos
- 3.3.4. Tratamiento de datos
- 3.3.5. Descubrimiento y análisis de características
- 3.3.6. Entrenamiento y evaluación de modelos
- 3.3.7. Validadores estadísticos de los modelos
- 3.4. Modelos de aprendizaje automático
- 3.4.1. Naturaleza de los modelos de aprendizaje automático
- 3.4.2. Interpretatividad de los modelos de aprendizaje automático
- 3.4.3. Clasificadores clásicos
- 3.4.4. Clasificadores ensamblados
- 3.4.5. Evaluadores de los resultados de clasificación

4. Materiales y métodos

- 4.0.1. Extracción de datos
- 4.0.2. Preprocesamiento de datos
- 4.0.3. Descubrimiento y análisis de características
- 4.0.4. Entrenamiento y evaluación del modelo 1
- 4.0.5. Entrenamiento y evaluación del modelo 2
- 4.0.6. Entrenamiento y evaluación del modelo 3
- 4.0.7. Comparación de modelos
- 4.1. Análisis estadístico
- 4.1.1. Pruebas de normalidad

La verificación de la normalidad de la distribución de un conjunto de datos se puede obtener a través de técnicas gráficas y por pruebas.

En primer lugar, aquellas basadas en gráficas tienen como

Data

La cien Actualmente, cerca del $50\,\%$ de las nuevas publicaciones de artículos son de acceso abierto y estimaciones hechas por (Ref $33\,Y\,34$) indican que estás casi en su totalidad lo serán también para el 2040.

Herramientas de libre acceso

El software de acceso abierto es el conjunto de herramientas computacionales que permiten las operaciones de la ciencia de datos basada en datos. Este tipo de software adquiere importancia desde la aparición pública del internet y el sistema operativo LINUX en 1990, cuyos desarrollos fueron netamente colaborativos. Adicionalmente, el nacimiento de herramientas de control de versiones y lenguajes de programación de alto nivel permitieron el nacimiento de repositorios proyectos científicos (46), notebooks electrónicos (47), paquetes de simulacón y experimentos(49) y librerías de aprendizaje automático y ciencia de datos (50).

5. Referencias bibliográficas

Referencias

- 1. Mayer A. Fossil fuel dependence and energy insecurity. Energy, Sustainability and Society 2022; 12:1-13
- 2. Vernon R. Oil Crisis. 1976
- 3. Rodriguez-Fernandez L, Carvajal ABF y Tejada VF de. Improving the concept of energy security in an energy transition environment: Application to the gas sector in the European Union. The Extractive Industries and Society 2022; 9:101045
- 4. Guilyardi E, Lescarmontier L, Matthews R, Point SP, Rumjaun AB, Schlüpmann J y Wilgenbus D. IPCC Special Report "Global Warming of 1.5° C": Summary for Teachers. 2018
- 5. Asmelash E, Prakash G, Gorini R y Gielen D. Role of IRENA for global transition to 100% renewable energy. Accelerating the transition to a 100% renewable energy era. Springer, 2020:51-71
- 6. Ritchie H, Roser M y Rosado P. Energy. Our World in Data 2020. https://ourworldindata.org/energy
- 7. IRENA. Renewable Energy Statistics 2022. Renewable Energy Target Setting, Abu Dhabi, UAE 2022
- 8. Hammarström L. Overview: capturing the sun for energy production. Ambio 2012; 41:103-7
- Xu Y, Pei J, Yuan J y Zhao G. Concentrated solar power: technology, economy analysis, and policy implications in China. Environmental Science and Pollution Research 2022; 29:1324-37
- Tawalbeh M, Al-Othman A, Kafiah F, Abdelsalam E, Almomani F y Alkasrawi M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment 2021; 759:143528
- 11. Green MA. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in photovoltaics: research and applications 2009; 17:183-9
- Singh GK. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013;
 53:1-13

- 13. NREL. National Renewable Energy Laboratory Best Research-Cell Efficiency Chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Accessed on: 2022 Sep 26]
- 14. Blakers A, Zin N, McIntosh KR y Fong K. High efficiency silicon solar cells. Energy Procedia 2013; 33:1-10
- 15. Gul M, Kotak Y y Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation 2016; 34:485-526
- Möller HJ, Funke C, Rinio M y Scholz S. Multicrystalline silicon for solar cells. Thin Solid Films 2005; 487:179-87
- 17. Sark Wv, Korte L y Roca F. Introduction—Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. *Physics and technology of amorphous-crystalline heterostructure silicon solar cells.* Springer, 2012:1-12
- 18. Brendel R. Thin-film crystalline silicon solar cells: physics and technology. John Wiley & Sons. 2011
- Konagai M, Sugimoto M y Takahashi K. High efficiency GaAs thin film solar cells by peeled film technology. Journal of crystal growth 1978; 45:277-80
- 20. Dimroth F y Kurtz S. High-efficiency multijunction solar cells. MRS bulletin 2007; 32:230-5
- 21. Philipps SP, Dimroth F y Bett AW. High-efficiency III–V multijunction solar cells. *McE-voy's handbook of photovoltaics*. Elsevier, 2018:439-72
- 22. Wada T, Hashimoto Y, Nishiwaki S, Satoh T, Hayashi S, Negami T y Miyake H. Highefficiency CIGS solar cells with modified CIGS surface. Solar Energy Materials and Solar Cells 2001; 67:305-10
- 23. Ferekides C, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H y Morel D. CdTe thin film solar cells: device and technology issues. Solar energy 2004; 77:823-30
- 24. Krč J, Smole F y Topič M. Analysis of light scattering in amorphous Si: H solar cells by a one-dimensional semi-coherent optical model. Progress in photovoltaics: Research and Applications 2003; 11:15-26
- 25. Sharma K, Sharma V y Sharma S. Dye-sensitized solar cells: fundamentals and current status. Nanoscale research letters 2018; 13:1-46
- 26. Suryawanshi M, Agawane G, Bhosale S, Shin SW, Patil P, Kim JH y Moholkar A. CZTS based thin film solar cells: a status review. Materials Technology 2013; 28:98-109
- 27. Hoppe H y Sariciftci NS. Organic solar cells: An overview. Journal of materials research 2004; 19:1924-45
- 28. Ameri T, Dennler G, Lungenschmied C y Brabec CJ. Organic tandem solar cells: A review. Energy & Environmental Science 2009; 2:347-63
- 29. Jung HS y Park NG. Perovskite solar cells: from materials to devices. small 2015; 11:10-25
- 30. Li H y Zhang W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chemical Reviews 2020; 120:9835-950
- 31. Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB y col. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022; 375:302-6
- 32. Chowdhury MS, Rahman KS, Chowdhury T, Nuthammachot N, Techato K, Akhtaruzzaman M, Tiong SK, Sopian K y Amin N. An overview of solar photovoltaic panels' end-of-life material recycling. Energy Strategy Reviews 2020; 27:100431

- 33. Velilla E, Ramirez D, Uribe JI, Montoya JF y Jaramillo F. Outdoor performance of perovskite solar technology: Silicon comparison and competitive advantages at different irradiances. Solar Energy Materials and Solar Cells 2019; 191:15-20
- 34. Wang X, Dong B, Feng M, Xue DJ y Wang SM. Sustainable management of lead in perovskite solar cells. Journal of Materials Chemistry A 2022; 10:15861-4
- 35. Pan Z, Mora-Seró I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X y Bisquert J. High-efficiency "green" quantum dot solar cells. Journal of the American Chemical Society 2014; 136:9203-10
- Bertolli M. Solar Cell Materials. Course: Solid State II. Department of Physics, University of Tennessee 2008
- 37. Jean J, Xiao J, Nick R, Moody N, Nasilowski M, Bawendi M y Bulović V. Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics. Energy & Environmental Science 2018; 11:2295-305
- 38. Gusain A, Faria RM y Miranda PB. Polymer solar cells—Interfacial processes related to performance issues. Frontiers in chemistry 2019; 7:61
- 39. Suhaimi S, Shahimin MM, Alahmed Z, Chyskỳ J y Reshak A. Materials for enhanced dye-sensitized solar cell performance: Electrochemical application. Int. J. Electrochem. Sci 2015; 10:2859-71
- 40. Wen Y, Fu L, Li G, Ma J y Ma H. Accelerated Discovery of Potential Organic Dyes for Dye-Sensitized Solar Cells by Interpretable Machine Learning Models and Virtual Screening. Solar RRL 2020; 4:2000110
- 41. Eagar TW. Bringing new materials to Market. en. ABI/INFORM Global 1995; 98:42

6. Cronograma de trabajo

7. Presupuesto y financiamiento