

Infraestructura computacional

Infraestructura de TI: diseño - procesamiento

Diseño: Clusters

- Propósito:
 - Alta disponibilidad: recuperarse rápidamente de fallas menores;
 puede haber breve discontinuidad en el servicio
 - Tolerancia a fallas: continuar con el servicio a pesar del surgimiento de fallas; eventualmente con algún grado de degradación
 - Escalabilidad: responder a condiciones variables de carga
 - Desempeño: incrementar la capacidad de cómputo

Diseño: Clusters

- Tipos:
 - Failover: el servicio migra automáticamente ante una falla
 - Balanceo de carga: el mismo servicio es prestado por un conjunto de servidores
 - Cómputo: un conjunto de servidores se reparten los cómputos que se deben realizar
 - Aplicación: como los anteriores pero implementados en una aplicación específica (bases de datos, etc).

- Tener alta disponibilidad en procesamiento implica:
 - Redundancia de servidores
 - Conjunto de servidores presta un conjunto de servicios
 - Las relaciones servicio-servidor no son estáticas
 - Equilibrio en escalabilidad horizontal-vertical

- Manejo del estado:
 - Instancias independientes: sin estado compartido, crecimiento horizontal.
 - Instancias con alguna compartición: estado compartido por memoria
 - Estado compartido por disco: cluster de failover, crecimiento vertical.

- Escalamiento:
 - Vertical: aumentar recursos en una máquina
 - Horizontal: aumentar número de máquinas
 - Diagonal

Failover vs. balanceo

Failover vs. balanceo

Escalamiento horizontal

- Failover:
 - Recuperación ante fallas
 - Persistencia por almacenamiento compartido
 - Solución genérica
 - Escala verticalmente
 - Grandes servidores con hardware redundante

- Balanceo de carga:
 - Recuperación ante fallas
 - Sin estado
 - Solución específica
 - Escala horizontalmente
 - Servidores sencillos y baratos

- Reacción ante fallas usual
- Hardware:
 - reparar y reboot
- SO
 - reboot
- Aplicación
 - relanzar

- Reacción ante fallas cluster
 - migrar el servicio
 - migrar el servicio
 - Relanzar, eventualmente migrar el servicio

- Respuestas ante falla de aplicación:
 - Ignorar, y descartar aplicación
 - Notificar a quien puede decidir
 - Intentar volver a arrancar un cierto número de veces, y si no es posible:
 - Ignorar y descartar aplicación
 - Enviar notificación
 - Empezar failover
 - Reboot del servidor
 - Detener servidor
 - Empezar failover sin intentar volver a arrancar

Activo - Pasivo:

Funcionamiento:

Funcionamiento - Monitores

- Funcionamiento:
 - Nodo preferido: los servicios tienen un "nodo base"
 - Estado del cluster compartido: todo nodo conoce la localización de todos los servicios
 - Comunicación intracluster: servicio de comunicación dedicado
 - Latido: monitoreo sistemático del servidor
 - Síndrome de cerebro dividido: falla del sistema de clustering (del latido)
 - Dispositivos de quorum: mecanismo redundante de monitoreo
 - Conectividad externa: el cluster debe revisar las comunicaciones con el mundo externo
 - Dependencias entre los servicios: puede ser necesario levantar los servicios en un cierto orden

Administración de los servicios:
 Diseño centrado en servicios

Servicios:

- Identidad de red
- Almacenamiento
- Procesos

Servidores

- Administración de los servicios:
 - Declaración del servicio: procesos permanentes y esporádicos que se deben arrancar, volúmenes de almacenamiento, direcciones IP, etc.
 - Activación del servicio: es realizada por el software del cluster; el servicio no necesita proveer código para esto
 - Chequeo de los servicios: el software del cluster revisa la disponibilidad del servicio a intervalos definidos.
 - Desactivación del servicio: se detienen los procesos del servicio, y se le retiran los recursos (volúmenes, interfaces de red, etc.)
 - Relanzamiento del servicio: desactivación del servicio, y reactivación en el mismo nodo.
 - Migración del servicio: se detiene el servicio y se lanza en otro nodo

- Administración de los servicios:
 Requerimientos sobre la aplicación:
 - Independencia del host físico: las aplicaciones no deben usar características específicas de la máquina física (hostid, IP)
 - Localización de archivos: los archivos deben estar en el almacenamiento compartido
 - Aprovisionamiento: la aplicación no debe depender de acciones durante el arranque del sistema operativo
 - Acciones de start-stop-restart disponibles para cada recurso

- Servicios sin estado: un requerimiento puede asignarse a cualquier nodo
- Dispositivo de balanceo de carga: para distribuir la carga entre los nodos
- Mejora de la productividad y del desempeño
- Se pueden combinar con failover clusters

Balanceo con failover:

adecuado (Cookie o URL)

Técnicas de balanceo de carga
DNS
Balanceadores IP
Proxies inversos

- DNS
 - Directorio distribuido
 - Nombre de host dirección IP
 - Nombre de dominio servidor de nombres
 - Admite redundancia:
 - Direcciones IP
 - Servidores de nombres
 - "Distribución" más que "balanceo"

- Balanceadores IP
 - Conmutadores de nivel 3 de alto nivel
 - Enrutan direcciones IP
 - Hacen traducción de direcciones de red

- Proxies inversos
 - Trabajan a nivel de aplicación
 - Reciben requerimientos y los reenvían (eventualmente los reescriben)
 - Tipos
 - Transparentes
 - Semitransparentes
 - Visibles

- Servicios adicionales de los balanceadores:
 - Asignación de cargas diferenciales: configurar la carga que recibe cada servidor
 - Activación y retiro de servidores: según si se requieren más (por aumento de la carga) o si alguno ha fallado
 - Prioridad diferencial al tráfico: asignar prioridades dependiendo del tipo de tráfico
 - Encaminamiento dependiente del URL
 - Filtrado de contenidos

- Selección de blancos
 - Aleatorio: se selecciona un destino al azar
 - Circular: se seleccionan los destinos en orden uno tras otro
 - Circular ponderado: la capacidad del servidor determina la frecuencia con la que se le envían requerimientos
 - Más rápido: se selecciona el que responda más rápido
 - Menor número de conexiones: se selecciona el que tenga menor carga
 - Menor número de conexiones ponderado: se envía según la capacidad del servidor pero morigerado por su carga
 - Balanceo adaptativo: se determina la carga dinámicamente

Diseño: Clusters – bases de datos

- Almacenamiento compartido (shared disk)
- Multi-maestro
- Maestro esclavo
- Shared-nothing

Diseño: Clusters - bases de datos

Diseño: Clusters – bases de datos

Multi-maestro Escritura Escritura Escritura **Servidores Clientes** Lectura Replicador Lectura Escritura

Diseño: Clusters - bases de datos

Maestro - esclavo

Diseño: Clusters – bases de datos

Disponibilidad:

Disponibilidad	Definición	Descripción
99%	Local	Stand alone
99.5%	Local + RD estándar	Réplica local
99.9%	AD local	Cluster
99.95%	AD Remota	Cluster extendido
99.99%	AD local + Remoto	Cluster local con failover remoto
99.999%	AD local + AD Remoto	Cluster local – cluster remoto

RD = Recuperación de Desastres

AD = Alta Disponibilidad

Referencia:

Infrastructure Architecture, IASA Associate Course

- Clusters:
 - Escalamiento vertical:
 - Mejores recursos o mayor capacidad
 - Multiprocesamiento (solución concurrente)
 - Cluster de procesamiento (solución concurrente)
 - Cluster de failover
 - Cluster de balanceo de carga
 - Sin redundancia en el balanceador
 - Con redundancia en el balanceador

Clusters:

Solución	Desempeño	Capacidad		Disponibilidad	Escalabilidad
		Productividad	Carga		
Esc. vertical					
más recursos	X	X	Χ		
multiproc.	Χ	X		X	X
Cluster					
cómputo	X	X	Χ		
failover				X	
balanceo					
con redund.		X	X	X	X
sin redund.		X	Χ		X

- Balanceo de carga
 - DNS
 - Fácil
 - No es flexible (distribución más que balanceo)
 - Disponibilidad del balanceador incorporada
 - No garantiza disponibilidad automática de servidores

Balanceo de carga

Balanceo	Flexibilidad	Velocidad	Cuello de botella
IP			
Enrut. directo	-	+	-
NAT	-	+	+
Proxy inverso	+	-	+

Bases de datos

Solución	Desempeño	Balanceo	Disponibilidad	Escalabilidad
Shared disk	+	+	+	+/-(6)
Replicación				
multi-maestro	+(1)	+(1)	+	+(1)
maestro-esclavo	+(1)	+(1)	+(4)	+(1)
Shared nothing	+(2)	+/-(3)	+(5)	+(2)

- (1)= para las lecturas
- (2)= depende del shipping y la distribución
- (3)= estático; depende de patrones de acceso
- (4)= puede ser lento
- (5)= solo si hay esclavos; puede ser lento
- (6)= limitada por sincronización

Referencias por temas

Alta disponibilidad. Clusters. High availavility and disaster recovery, Klaus Schmidt, Ed. Springer, 2006. Capítulo 6 (hasta página 165 y 176-187)