NOIP 模拟赛 day2

—by wcy1122

第二试

竞赛时间: 2019年*月*日上午8:00-11:30

题目名称	小w与卡牌游戏	小w的作业	小w学图论
目录	card	line	graph
可执行文件名	card	line	graph
输入文件名	card.in	line.in	graph.in
输出文件名	card.out	line.out	graph.out
每个测试点时限	1秒	3 秒	1 秒
测试点数目	10	10	10
每个测试点分值	10	10	10
题目类型	传统	传统	传统
内存上限	512M	512M	512M

提交源程序须加后缀

对于 Pascal 语言	card.pas	line.pas	graph.pas
对于 C 语言	card.c	line.c	graph.c
对于 C++ 语言	card.cpp	line.cpp	graph.cpp

小w与卡牌游戏

空间限制: 512M 时间限制: 1s

【问题描述】

在昨天玩了数字游戏后,小w觉得不过瘾,叫上了小c一起来玩卡牌游戏。小w和小c各有n张扑克牌,每张牌上都有一个数字。游戏共进行n轮,每轮两人各会出一张扑克牌。对于每一轮,牌面上数字大的人获胜并获得一分。鉴于小w是卡牌高手,所以他会让着小c。因此如果两张牌面的数字相同,则小c获胜。

小w之所以能成为卡牌高手,是因为它有很强的第六感。他可以通过心灵感应获取了小c手上所有卡牌上的数字以及小c的出牌顺序。通过这些信息,小w可以安排自己的出牌顺序以获得尽量多的分数。

小 w 把这个任务交给了你,他想要知道一种出牌顺序,使得它的得分最多。 特别地,如果有多种合法的出牌顺序,他希望出牌顺序的字典序最大。

【输入文件】

第一行一个整数 n,表示游戏的轮数。

第二行 n 个整数,表示小 c 手上的卡牌 ci,卡牌按出牌顺序依次给出。

第三行 n 个整数,表示小w 手上的卡牌wi。

【输出文件】

n 个整数,表示得分最高且字典序最大的出牌顺序。

【输入样例1】

5

1 2 3 4 5

1 2 3 4 5

【输出样例1】

2 3 4 5 1

【输入样例 2】

5

3 4 5 6 7

1 3 5 7 9

【输出样例2】

9 5 7 3 1

【数据规模和约定】

对于 30%的数据, n<=10 对于另外 20%的数据, 数据保证只存在一种使小 w 得分最高的方案 对于 100%的数据, n<=1000 数据保证 1<=ci,wi<=10^9

【样例解释】

对于第一组样例,小w可以赢得前四局(2>1,3>2,4>3,5>4),输掉最后一局。注意如果小w按1,2,3,4,5的顺序出牌,他会输掉所有比赛。对于第二组样例,小w可以赢得前三局。可以证明这是赢得三局的情况下字典序最大的出牌顺序。

小w的作业

空间限制: 512M 时间限制: 3s

【问题描述】

小w在上数学课,他的老师布置了一道作业题。 在二维平面上有 n 个不同的点 a1,a2,...an。对于每一对点(ai,aj)(i<j),都 有一条通过 ai 和 aj 的直线 L_{ij} 。我们定义 A_{ij} 为从水平线开始逆时针旋转到 L_{ij} 的 角度,即 L_{ii} 和水平线的夹角。角度用弧度制表示。根据定义,显然 $0 <= A_{ii} < \pi$ 。

对于所有的总共 n*(n-1)/2 个角度 A_{ij} , 小 w 想要知道它们的中位数。即设 m=n*(n-1)/2, 若 m 为奇数则小 w 想知道第(m+1)/2 大的角度,若 m 为偶数则小 w 想知道第 m/2 和 m/2+1 大的角度的平均数。

【输入文件】

第一行一个整数 n,表示点的个数。接下来 n 行,每行两个整数 xi,yi,表示平面上的一个点。

【输出文件】

一个小数,即用弧度制表示的角度的中位数。 当输出结果与标准输出的相对误差或绝对误差小于 **1e-9**,即算正确。

【输入样例1】

3

0 0

0 1

1 0

【输出样例1】

1.5707963268949

【输入样例 2】

3

0 0

1 0

2 0

【输出样例2】

0

【数据规模和约定】

对于 40%的数据,保证 n<=1000 对于 100%的数据,保证 n<=5*10^4 数据保证,-10^9<=xi,yi<=10^9,任意两个点(xi,yi)互不相同。

小w学图论

空间限制: 512M 时间限制: 1s

【问题描述】

小w这学期选了门图论课,他在学习点着色的知识。他现在得到了一张无向图,并希望在这张图上使用最多n种颜色给每个节点染色,使得任意一条边关联的两个节点颜色不同。

小w获得一张n个节点m条边的基图,并得到了一份神秘代码。他会根据这份代码的内容构建完整的无向图。

```
while(1){
  int modify_tag=0;
  for(int x=1;x<=n;x++)
    for(int y=x+1;y<=n;y++)
    for(int z=y+1;z<=n;z++)

    if(edge(x,y) \in G && edge(x,z) \in G){
        add edge(y,z) to G
        modify_tag=1;
      }
  if(modify_tag==0) break;
}</pre>
```

即对于图上的任意三元组 x<y<z, 若(x,y), (x,z)在图中则在图上加上一条(y,z)的边,直至无法加边为止。

小 w 想要知道使用 n 种颜色给这张基图生成的完整无向图的染色方案数。小 w 太菜了,他无力解决这个难题,于是只好把它交给了你。

【输入文件】

第一行两个整数 n, m, 表示点数和边数。接下来 m 行,每行两个整数 u, v(1<=u, v<=n),表示基图中存在(u, v)这条边。

【输出文件】

一个整数,表示染色的方案数。鉴于答案可能很大,请输出方案数对 998244353 取模的结果。

【输入样例1】

- 5 5
- 1 3
- 1 4
- 2 5
- 3 2
- 4 5

【输出样例1】

540

【数据规模和约定】

对于 20%的数据,保证 n<=5,m<=n*(n-1)/2

对于 60%的数据,保证 n<=1000,m<=2000

对于 100%的数据,保证 n<=10^5,m<=2*10^5

数据保证初始图联通, 无重边无自环

【样例解释】

初始图完整图