东南大学电工电子实验中心 实验报告

课程名称: 数字与逻辑电路实验 A

第五次实验

实验名称:	FPGA 小系统设计						
院 (系):	自动化	_专	业:	自动化			
姓 名:	邹滨阳	学	号:	08022305			
实验室:	金智楼电子技	一 5术 4	₹ 105	实验组别: _ 无_			
				- 2023年12月7日			
评定成绩:		— 审阅	教师:				

一、实验目的

- 1. 综合前面所学的各项内容
- 2. 了解掌握数字系统设计的流程和方法
- 3. 掌握复杂电路连接和调试技能

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

大致为把该数字系统进行分类:

绘制流程图如下:

根据流程我们可以划分出以下几个状态和对应编号

状态	编号	功能
SO SO	000	初始状态(显示 0)
S1	001	输入一个数据后的状态(显示载入的数据)
S2	010	输入运算后的状态(显示0)
S3	011	输入下一个数据后的状态(显示载入的数据)
S4	100	输入等于=后的状态(显示答案)

其实可以把 S4 和 S0 合并

状态	编号	功能
S0	00	初始状态(显示上一次的答案(没有则为0))
S1	01	输入一个数据后的状态(显示载入的数据)
S2	10	输入运算后的状态(显示0)
S3	11	输入下一个数据后的状态(显示载入的数据)

所以可以画出状态转移图:

Rar 清零 Ras 置数 Ra:数据1寄存器 Kn:0-9数字键 Rbr 清零 Rbs 置数 Rb:数据2寄存器 Ka:加号 Rps 置数 Rc:运算符寄存器 Kb:减号 Sar 清零 Sas 置数 Sa:第一位显示寄存器 Kc:乘法 Sbr 清零 Sbs 置数 Sb:第二位显示寄存器 Kd:等号 Kn=0 Ka=0,Kb=0,Kc=0 Sar=0 Sbr=0 Kn=0 Kd=0 Kn=1 Ka=1||Kb=1||Kc=1 Kn=1 **S2 SO S1 S3** Ras=0 Sas=0 Sbr=0 Rps=0 Sar=0 Rbs=0 Sas=0 Kd=1

Sas=0 Sbr=0

这里打错了应该是 Sbs=0

状	态			输入				状态组	编码						输出				
现	次	Ka	Kb	Kc	Kd	Kn	现态	次态	EN	LD	Sbs	Sbr	Sas	Sar	Rps	Rbs	Rbr	Ras	Rar
态	态	+	ı	*	=	1311	90751	300		ו	2	δ	0	ď	1,52	1	1101	1 (0)	itai
SO	S0	Ф	Ф	Φ	Ф	0	00	00	0	1	1	1	1	1	1	1	0	1	0
30	S1	0	0	0	0	1	00	01	1	1	1	0	0	1	1	1	1	0	1
	S1	0	0	0	Ф	Φ		01	0	1	1	1	1	1	1	1	1	1	1
S1		1	0	0	0	0	01		1	1	1	1	1	0	0	1	1	1	1
) J	S2	0	1	0	0	0	01	10	1	1	1	1	1	0	0	1	1	1	1
		0	0	1	0	0			1	1	1	1	1	0	0	1	1	1	1
S2	S2	Ф	θ	θ	Φ	0	10	10	0	1	1	1	1	1	1	1	1	1	1
32	S3	0	0	0	0	1	10	11	1	1	1	1	0	1	1	0	1	1	1
S3	S3	Ф	θ	θ	0	Ф	11	11	Ф	1	1	1	1	1	1	1	1	1	1
33	S0	0	0	0	1	0	11	00	0	0	0	1	0	1	1	1	1	1	1
			·						计数	置数	置数	清零	置数	清零	置数	置数	清零	置数	清零
											高位	显示	低位	显示	符号	数排	3 二	数扎	居 一

利用卡诺图计算相关的数据

(括号内是错误)(令 Ke=Ka+Kb+Kc

Q0

KeKn\Q1Q0	00	01	11_	10
00	0	1	Φ	0
01	1	1	0 (1
11	1	0	Φ ,	É
10	0	0	Φ	0

$$Q0=Kn\overline{Q0}+\overline{Ke}Q0$$

Kd\Q1Q0	00	01	11	10
0 <	Φ	Φ	1	Ф
1	Φ	Φ	0	Φ

$$Q0 = \overline{Kd}$$

$$Q0=(Kn\overline{Q0}+\overline{Ke}Q0)(\overline{Q1}+\overline{Q0})+\overline{Kd}Q1Q0$$

Q1

<u>~-</u>					
KeKn\Q1Q0	00	01	11	10	
00	0	0	Φ	1	
01	0	0	Φ	1	
11	0	1	1	1	
10	0	1		1/	·

$$Q1 = Q1 + KeQ0$$

Kd\Q1Q0	00	01	11	10
0 <	θ	Φ	1	$\bigoplus_{i \in \mathcal{A}} A_i$
1	Φ	Φ	0	Φ

$$Q1 = \overline{Kd}$$

$$Q1=(Q1+KeQ0)(\overline{Q1}+\overline{Q0})+\overline{Kd}Q1Q0$$

EN:

KeKn\Q1Q0	00	01	11	10
00	0	0	Φ	0
01	1	0	Φ (1
11	1	X	0	
10	0	J	0	0

$$EN = KnQ0 + KeQ0$$

Kd\Q1Q0	00	01	11	10
0	Φ	Φ	0	Φ
1	Φ	Φ	Φ	Φ

$$EN = 0$$

$$EN = (Kn\overline{Q0} + KeQ0)(\overline{Q1} + \overline{Q0})$$

LN:

KeKn\Q1Q0	00	01	11	10
00	1	1	Φ	1
01	1	1	Φ	1
11	1	1	Φ	1
10	1	1	Φ	1

$$LD = 1$$

Kd\Q1Q0	00	01	11	10
0	Ф	Φ	1	\bigcirc
1	Φ	Φ	0	Φ

$$LD = \overline{Kd}$$

$$LD=(\overline{Q1}+\overline{Q0})+\overline{Kd}Q1Q0$$

Sbs: 与LD 一致

Sbr:

KeKn\Q1Q0	00	01	11	10
00	1	1	1	1
01	0	1	(1	1
11	0	1	1	1
10	1	1	1/	1

$$Sbr = \overline{Kn} + Q1 + Q0$$

Sas:

KeKn\Q1Q0	-00	01	11	10
00	1	1	Φ \	1
01	0	1	Φ	0
11	0	1	Φ	0
10	1	1	Φ/	1

$$Sas = \overline{Kn} + Q0$$

Kd\Q1Q0	00	01	11	10
0	Θ	Φ	1	$\bigvee_{i \in \mathcal{A}_i} \mathbf{Q}_i$
1	Φ	Φ	0	Φ

$$Sas = \overline{Kd}$$

$$Sas = (\overline{Kn} + Q0)(\overline{Q1} + \overline{Q0}) + \overline{Kd}Q1Q0$$

Sar 与 Rps:

KeKn\Q1Q	0	00	01		11	10
00	/	1	1		1	
01		7	1	\mathcal{L}	1	1-1-
11	\	1 ,	0		1	1 / /
10		1	0		4	

$$Sar/Rps = \overline{Q0} + \overline{Ke} + Q1$$

Rbs:

KeKn\Q1Q0	00	01	11	10
00	***************************************	1	1	1
01	1		1	0
11	1	1	1	0
10	1	1	1_	1

$$Rbs = \overline{Kn} + \overline{Q1} + Q0$$

Rbr/Rar:

KeKn\Q1Q0	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	1	1
10	0	1	1	1

$$Rbr/Rar = Kn + Q1 + Q0$$

Ras:与 Sbr 相同

总结:

$$EN = (Kn\overline{Q0} + KeQ0)(\overline{Q1} + \overline{Q0})$$

$$_{ ext{che}/ ext{LD}} LD = (\overline{Q1} + \overline{Q0}) + \overline{Kd}Q1Q0$$

Sbs/LD:

$$Sbr = \overline{Kn} + Q1 + Q0$$

Sbr/Ras

$$Sas = (\overline{Kn} + Q0)(\overline{Q1} + \overline{Q0}) + \overline{Kd}Q1Q0$$

$$Sar/Rps = \overline{Q0} + \overline{Ke} + Q1$$

Sar/Rps

$$Rbs = \overline{Kn} + \overline{Q1} + Q0$$

Rbs

$$_{ extsf{Rbr/Rar:}}\ Rbr/Rar=Kn+Q1+Q0$$

为了使原本的 BCD 加减器能根据实际情况启用或者禁用,所以增加 Dudge 为 1 的时候启用,为 0 的时候禁用

这样修改后如果 judge 为 0,则输出全是 0

+: A 1010 -: B1011 *: C1100 =: D1101 最终电路图如下

仿真结果如下:

能够计算 1+7=8

三、实验内容

1. 实验基础部分(70%)

设计一个简易计算器,它具有下列运算功能:

- (1) 一位十进制数的相加;
- (2) 一位十进制数的相减;
- (3) 数值和运算符用 4×4 键盘输入(实验室提供接口程序), 其中 A 为 "+", B 为 "-", C 为 "×", E 为 "="
- (4) 数值用数码管以十进制形式显示,以加法为例,初始时显示全"0",先输入被加数,再输入运算符,按下运算符键后,数码管显示全"0",再输入加数,方法和前面一样,最后按下"=",数码管显示运算结果
- 2. 实验扩展部分(30%)
- (1) 一位十进制数的相乘,必须采用串行乘法实现;
- (2) 其他自选功能

四、实验使用仪器设备(名称、型号、规格、编号、使用状况)

FPGA 板 EP4CE6E22C8N

Quartus II

示波器

五、实验总结

0

六、参考资料(预习、实验中参考阅读的资料)

《数字集成电路数据手册》,国防工业出版社

《数字逻辑与数字系统》,王银城等编著,清华大学出版社

《数字逻辑与数字系统设计》,陈宏等编著,高等教育出版社