Introduction

Topic of the lecture

Reasoning about norm violation

- Contrary-to-duties, CTDs
- Importance for NMAS
 - Sanctions; norm enforcement
- Importance for deontic logic
- Notion hard to formalize

Aim of the lecture

Explain the problem(s)

Layout

- Introduction
- The CTD problem
 - how to detach an obligation in a violation context
- Solution
- Groundwork for next lecture on 2-D modal logic
- Chapter in the handbook

A bit of terminology (1)

Unconditional obligation:

- A: a fact; ○: a 'monadic' modal operator

Conditional obligation:

- \square \bigcirc (B/A)
- \bigcirc (-/-) is 'dyadic'

A bit of terminology (1)

Unconditional obligation:

- ()*A*
- A: a fact; ○: a 'monadic' modal operator

Conditional obligation:

- **■** ○(*B*/*A*)
- \bigcirc (-/-) is 'dyadic'
- $\bigcirc(-/-)$ can be defined in terms of \bigcirc , or the other way around.

Here: the second; $\bigcirc A$ abbreviates $\bigcirc (A/\top)$.

Introduction

A bit of terminology (2)

A so-called **primary** obligation:

Ex : breastfeeding

A contrary-to-duty (or secondary, CTD) obligation

An according-to-duty (ATD) obligation

 $\bigcirc(B/A)$ 2 glasses of wine per week

A contrary-to-contrary-to-duty obligation

$$\bigcirc (C/\neg A \land \neg B)$$

Bump nicely

Examples from literature

•

- Chisholm, 1963

 It is obligatory that you go the assistance of your neighbours
 - It is obligatory that, if you go, you tell them that you are coming
 - It is obligatory that, if you do not go, you do not tell them that you are coming
 - You do not go

Forrester, 1984

- It is obligatory not to kill
- It is obligatory that, if you kill, you do it gently

Prakken and Sergot, 1996

- There should be no dog
- If there is a dog, there should be a warning sign
- If there is a dog and no warning sign, there should be high fence

Chap. 3 of Relations in Public (1971)

- Social life as norm-governed
- "Territories of the self"
 - Personal space
 - Possessionnal territory
 - Etc
- Remedial interchange
 - Offensive → acceptable
 - Social order

Reasoning about norm violation

Introduction

A: "Can I use your phone to make a local call?"

B: "Sure, go ahead"

A: "That's very good of you"

B: "It's okay"

remedy A: "Can I use your phone to make a local call?"

relief B: "Sure, go ahead"

appreciation A: "That's very good of you"

minimization B: "It's okay"

remedy A: "Can I use your phone to make a local call?"

relief B: "Sure, go ahead"

appreciation A: "That's very good of you"

minimization B: "It's okay"

Goffman's suggestion

By making a move, I put the other participant under the obligation to make the next one.

Dialogue game rules are soft rather than hard constraints More flexible than the standard ACL approach in MAS.

Logical representation

	Normative premisses (α)	Integrity constraints (β)
(I)	$\bigcirc \neg o$	
(II)	$\bigcirc(r_1/o)$	\Box ($r_1 \rightarrow o$)
	$\bigcirc (r_2/o \wedge r_1)$	$\Box(r_2\to(o\wedge r_1))$
(III)	\bigcirc (a/o \land $r_1 \land r_2$)	$\Box(a \to (o \land r_1 \land r_2))$
	$\bigcirc (m/o \wedge r_1 \wedge r_2 \wedge a)$	$\Box(m \to (o \land r_1 \land r_2 \land a))$
with	o = offence r_2 = relief	m= minimization
	r_1 = remedy a = appreciation	

Strengthening of the Antecedent Deontic Detachment

$$\frac{\bigcirc (B/A) \qquad \Box (C \to A)}{\bigcirc (B/C)} (SA) \qquad \frac{\bigcirc (B/A) \qquad \bigcirc (C/B)}{\bigcirc (C/A)} (DD)$$

Strengthening of the Antecedent Deontic Detachment

$$\frac{\bigcirc (B/A) \qquad \Box (C \rightarrow A)}{\bigcirc (B/C)} (SA) \qquad \frac{\bigcirc (B/A) \qquad \bigcirc (C/B)}{\bigcirc (C/A)} (DD)$$

Chisholm set

$$\bigcirc a$$
, $\bigcirc (t/a)$, $\bigcirc (\neg t/\neg a)$

Strengthening of the Antecedent Deontic Detachment

$$\frac{\bigcirc (B/A) \qquad \Box (C \rightarrow A)}{\bigcirc (B/C)} \ (SA) \qquad \frac{\bigcirc (B/A) \qquad \bigcirc (C/B)}{\bigcirc (C/A)} \ (DD)$$

Chisholm set

$$\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a)$$

$$(DD) \frac{\bigcirc a \qquad \bigcirc (t/a)}{\bigcirc (SA) \frac{\bigcirc t}{\bigcirc (t/\neg a)}}$$

Strengthening of the Antecedent Deontic Detachment

$$\frac{\bigcirc (B/A) \qquad \Box (C \to A)}{\bigcirc (B/C)} (SA) \qquad \frac{\bigcirc (B/A) \qquad \bigcirc (C/B)}{\bigcirc (C/A)} (DD)$$

Chisholm set

$$\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a)$$

Intuitively, the set is consistent!

Strengthening of the Antecedent Deontic Detachment

$$\frac{\bigcirc (B/A) \qquad \Box (C \to A)}{\bigcirc (B/C)} (SA) \qquad \frac{\bigcirc (B/A) \qquad \bigcirc (C/B)}{\bigcirc (C/A)} (DD)$$

Chisholm set

$$\bigcirc a$$
, $\bigcirc (t/a)$, $\bigcirc (\neg t/\neg a)$

In this lecture: focus on another similar, albeit slightly different, problem

Factual Detachment

$$\frac{\bigcirc (B/A)}{\bigcirc B} \quad A \quad (FD)$$

$$\frac{A o B}{B}$$
 (MP)

Factual Detachment

$$\frac{\bigcirc (B/A)}{\bigcirc B}$$
 (FD) $\frac{A \rightarrow B}{B}$ (MP)

"How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?" (van Eck, 1982, p. 263).

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD) \qquad \qquad \frac{A \rightarrow B \qquad A}{B} (MP)$$

"How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?" (van Eck, 1982, p. 263).

Detachment: constitutive of the concept of the notion of conditional (Boghossian, 2000)

Weakening the Consequent

$$\frac{\bigcirc (B/A) \quad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \quad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Weakening the Consequent

$$\frac{\bigcirc (B/A) \quad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \quad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Forrester set

$$\bigcirc \neg k, \bigcirc (k \land g/k), k$$

Weakening the Consequent

$$\frac{\bigcirc (B/A) \qquad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Forrester set

$$\bigcirc \neg k, \bigcirc (k \land g/k), k$$

$$\frac{\bigcirc \neg k}{\bigcirc \neg (k \wedge g)}$$
 (WC)

$$\frac{\bigcirc (k \land g/k) \qquad k}{\bigcirc (k \land g)} (FD)$$

Weakening the Consequent

$$\frac{\bigcirc (B/A) \quad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \quad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Forrester set

$$\bigcirc \neg k, \bigcirc (k \land g/k), k$$

$$\frac{\bigcirc \neg k}{\bigcirc \neg (k \wedge g)}$$
 (WC)

$$\frac{\bigcirc (k \land g/k) \qquad k}{\bigcirc (k \land g)} (FD)$$

'Gentle murderer' scenario

$$\{\bigcirc \neg k, \bigcirc (k \land g/k), k\} \vdash \bot$$

Deontic Detachment
$$\bigcirc(B/A)$$
 $\bigcirc(C/B)$ $\bigcirc(DD)$

Chisholm set

$$\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a$$

$$\frac{\bigcirc a \quad \bigcirc (t/a)}{\bigcirc t} (DD) \qquad \frac{\bigcirc (\neg t/\neg a) \quad \neg a}{\bigcirc \neg t} (FD)$$

Beyond consistency (1)

Inside: the CTD problem in SDL

Standard Deontic Logic (SDL)

von Wright 1951, Kripke 1963
The first deontic logic
Unable to deal with CTDs, and thus very quickly rejected:
Chisholm - 1963

Beyond consistency (2)

Chisholm set:
$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\}$$

Below \rightarrow is material implication, and O is like \square

Two candidate definitions

Option 1
$$\bigcirc$$
 $(B/A) =_{def} O(A \rightarrow B)$
Option 2 \bigcirc $(B/A) =_{def} A \rightarrow OB$

Usual representation of Chisholm set:

$$\{\bigcirc a, O(a \rightarrow t), \neg a \rightarrow O \neg t, \neg a\} \vdash \bot$$

Why option 1 + option 2?

Beyond consistency (2)

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\}$$

option 1 + option 1:

$$\{\bigcirc a, O(a \rightarrow t), O(\neg a \rightarrow \neg t), \neg a\}$$

option 2 + option 2:

$$\{\bigcirc a, a \rightarrow Ot, \neg a \rightarrow O\neg t, \neg a\}$$

option 2 + option 1:

$$\{\bigcirc a, a \rightarrow Ot, O(\neg a \rightarrow \neg t), \neg a\}$$

Beyond consistency (2)

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\}$$

option 1 + option 1:

$$\{\bigcirc a, O(a \rightarrow t), O(\neg a \rightarrow \neg t), \neg a\}$$

option 2 + option 2:

$$\{\bigcirc a, a \rightarrow Ot, \neg a \rightarrow O\neg t, \neg a\}$$

option 2 + option 1:

$$\{\bigcirc a, a \rightarrow Ot, O(\neg a \rightarrow \neg t), \neg a\}$$

Why 1+2? Answer:

Ways out

$$\frac{\bigcirc (B/A)}{\bigcirc B} \qquad A \qquad (FD)$$

$$\frac{\bigcirc A \qquad \bigcirc (B/A)}{\bigcirc B} (DD)$$

$$\frac{\bigcirc(B/A) \qquad \Box(B \rightarrow C)}{\bigcirc(C/A)} (WC)$$

Keep (FD) - perhaps in a qualified form - but

Easy way: give up (DD)/(WC)

So-called non-normal modal logic (Forrester)

Hard way: make (FD) coexist with (DD)/(WC)

- Both rules allowed
- In case of conflict, (FD) overrides (WC)
 - Next lecture: 2-D modal logic (D. Gabbay)
 - This lecture: another way to do it

Adding time

Basic idea

before the violation \neq after the violation

Åqvist's system DARB: DDL supplemented with \oplus ("next") and \boxed{s} ("settledness")

Semantics of DARB (1)

Frame

- (*Tree*, <): a tree-like structure, where
 - *Tree*: a set of moments, m_1 , m_2 , ...
 - <: temporal relation (says which moment is next to which)</p>
 - h: a history (a maximal chain of moments)
 - \blacksquare H_m : the set of histories passing through moment m.
- ≥: a ranking of histories in terms of betterness

NB: Truth-value of formulae made relative to pairs m/h

 $\mathfrak{M}, m/h \models A$: in model \mathfrak{M} , formula A is true at moment m in history h

 $[A]_m$: the set of histories making A true at m

Semantics of DARB (2)

Evaluation rules

$$\mathfrak{M}, m/h \models \oplus A \Leftrightarrow \mathfrak{M}, m+1/h \models A$$

$$\mathfrak{M}, m/h \models \boxed{s}A \Leftrightarrow (\forall h' \in H_m)(\mathfrak{M}, m/h' \models A)$$

$$\mathfrak{M}, m/h \models \bigcirc(B/A) \Leftrightarrow \mathsf{best}_{\geq}([A]_m) \subseteq [B]_m.$$

Semantics of DARB (2)

Evaluation rules

$$\mathfrak{M}, m/h \models \oplus A \Leftrightarrow \mathfrak{M}, m+1/h \models A$$

$$\mathfrak{M}, m/h \models \boxed{s}A \Leftrightarrow (\forall h' \in H_m)(\mathfrak{M}, m/h' \models A)$$

$$\mathfrak{M}, m/h \models \bigcirc(B/A) \Leftrightarrow \mathsf{best}_{\geq}([A]_m) \subseteq [B]_m.$$

To evaluate $\bigcirc(B/A)$ at m/h:

- 1 determine set of histories passing through m where A holds
- 2 zoom into the subset of those that are best
- 3 check whether B holds in all of them at m

Example

Example

Example

$$m_0/h_1 \models \bigcirc (q/p) m_0/h_1 \models \bigcirc (\oplus \neg q/p)$$

Example

$$\begin{array}{l}
m_0/h_1 \models \bigcirc (q/p) \\
m_0/h_1 \models \bigcirc (\oplus \neg q/p) \\
m_0/h_1 \models \bigcirc (?/\neg q)
\end{array}$$

Old representation	New representation
OA	$\bigcirc \oplus A$
${\it O}({\it A} ightarrow {\it B})$	$\bigcirc(\oplus B/\oplus A)$
eg A o O eg B	$\oplus \bigcirc (\neg B/\neg A)$
$\neg A$	$\oplus \neg A$

Case where A and B (will) occur simultaneously

New representation Old representation OA $\cap \oplus A$ $O(A \rightarrow B)$ $\neg A \rightarrow O \neg B$ \bigcirc ($\oplus B/ \oplus A$) $\oplus \bigcirc (\neg B/\neg A)$ $\oplus \neg A$

Conclusion on 'FD vs DD'

Basic idea

before the violation \neq after the violation

In a nutshell

Before the violation: DD gives $\bigcirc \oplus B$

When the violation occurs: FD supports $\oplus \bigcirc \neg B$

Main message

Not an abstract solution
Obligations may change over time!
Ex: Picking up the kids from school

Consequent-before-the-antecedent

Chisholm example

In DARB: qualified version of the factual detachment rule: move from $\bigcirc(B/A)$ and A to $\bigcirc B$ warranted only if A occurs no later than the time of being in force of $\bigcirc(B/A)$.

Basics

Two senses of "ought"

- actual
- ideal or prima facie

Y modality: goes backwards in time

Material reading: Synthese paper on Moodle.

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$< t, t> \models Ob(\neg B/\neg A)$$
 $< t, t> \models \neg A$
 $< t, t> \models Ob\neg B$
 $\downarrow \downarrow$
actual "ought"
 $< 1, t>$