

Name

This is another problem that tests your ability to analyze the cache behavior of C code. Assume we execute the three summation Functions copyA, copyB y copyC in Figure 1 under the following conditions:

- The machine has a 32-bytes cache with a 16-byte block size. 512 DRAM
- Within the two loops, the code uses memory accesses only for the array data a y b.
- The loop indices and the value sum are held in registers.
- Array a is stored starting at memory address SRAM 0x108.
- tmain= 30ns tcache=5ns

Fill in the table for the approximate **cache miss rate** for the cases ${\it N}=4$. Assume two machine.

Case 1 a machine with direct Mapped cache

Case 2:a machine with Two-Way Set-Associative Cache

N=4	Case 1: Miss Rate Direct Mapped Cache	Time Access memory	Case 2: Miss Rate Two-Way Set-Associative Cache	Time Access memory		
соруА						
соруВ						
соруС						

```
int a,b array_t[N][N];
void copyA(a,b)
    int i, j;
    short sum = 0;
    for (i = 0; i < N; i++)</pre>
       for (j = 0; j < N; j++) {
           a[i][j]= b[i][j];
   return;
void copyB (a,b)
    int i, j;
    int sum = 0;
    for (j = 0; j < N; j++)
       for (i = 0; i < N; i++) {
           a[i][j]= b[i][j];
       }
   return;
int copyC(a,b)
    int i, j;
    int sum = 0;
    for (j = 0; j < N; j += 2)
        for (i = 0; i < N; i += 2) {
           a[i][j]=
                            b[i][j]
            a[i + 1][j] =
                            b[i + 1][j]
                          b[i][j + 1]=
            a[i][j + 1] =
            a[i + 1][j + 1] = b[i + 1][j + 1];
       }
   return;
}
https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/start.html
```

- A) draw the conformation of the cache memory in both cases, indicating the sets B) indicate the total accesses and total failures for each of the three functions

			Α	В	С					Α	В				
	j	address							address			С	Da	ata	
•	J	0x100							0x190						
		0x104							0x194						
		0x104 0x108							0x198						
		0x108							0x19C						Н
		0x10C							0x19C 0x1A0						H
		0x110							0x1A0						H
		0x114 0x118													H
									0x1A8 0x1AC						Н
		0x11C													H
		0x120							0x1B0						
		0x124							0x1B4						-
		0x128			-				0x1B8						
		0x12C							0x1BC						
		0x130							0x1C0						
		0x134							0x1C4						
		0x138							0x1C8						
		0x13C							0x1CC						
		0x140							0x1D0						
		0x144							0x1D4						
		0x148							0x1D8						
		0x14C							0x1DC						
		0x150							0x1E0						
		0x154							0x1E4						
		0x158							0x1E8						
		0x15C							0x1EC						
		0x160							0x1F0						
		0x164							0x1F4						
		0x168							0x1F8						
		0x16C							0x1FC						
		0x170							0x200						
		0x174				1			0x204						
		0x178							0x208						
		0x17C							0x20C						
		0x180				1		1	0x210						
		0x184							0x214						
		0x188						\dagger	0x218						
		0x18C							0x21C						
	<u> </u>	OXTOC		<u> </u>		1			UXZIC				<u> </u>		L