Data Exploration

HI 743

Ryan Gallagher

Department of Health Informatics and Administration Zilber College of Public Health University of Wisconsin - Milwaukee

February 13, 2025

Overview

- 1. Introduction to Data Exploration
- 2. Data Quality Report
- 3. Getting to Know the Data
 - 3.1 The Normal Distribution
- 4. Identifying Data Quality Issues
- 5. Handling Data Quality Issues
- 6. Advanced Data Exploration
- **7.** Lab
 - 7.1 GitHub Introduction
 - 7.2 Data Exploration & Tidyverse

Data Exploration

- Data exploration is the initial step in analyzing a dataset.
 - It involves summarizing key characteristics, detecting anomalies, and understanding distributions.
- Helps identify potential data quality issues before model building.
- Essential for effective feature selection and data preprocessing.

Relationship to CRISP-DM Methodology

- Falls under the Data Undestanding & Data Preparation.
- A critical step. Poor data quality at this stage leads to unreliable models.

Goals of Data Exploration

- Understand the **structure** of the dataset:
 - Number of features (columns) and instances / observations(rows).
 - Types of variables: categorical vs. continuous.
 - Summary statistics: mean, median, standard deviation, missing values, etc...

Detect potential issues:

- Missing or inconsistent values.
- Outliers or extreme values.
- Data entry errors, duplicate records.

Guide data preprocessing decisions:

- Whether normalization or standardization is needed.
- Features selection & alignment with objective.

The Data Quality Report

- A structured summary of dataset characteristics.
- Helps identify inconsistencies, missing data, and errors before modeling.
- Serves as a **documentation tool** for tracking dataset changes.
- Provides insights into whether additional data cleaning or preprocessing is needed.

Components of a Data Quality Report

- Tabular Summaries for Features
 - Overview of numerical and categorical variables.
 - Summary statistics:
 - Continuous variables: mean, median, standard deviation, min, max, quartiles.
 - Categorical variables: unique values, mode, frequency distribution.

Statistical Measures for Data Quality

- Missing values: Count and percentage of missing data.
- Cardinality: Number of unique values in categorical features.
- Outliers: Extreme values outside expected ranges.
- **Correlations**: Detecting redundant features.

Data Visualizations for Exploration

- **Histograms**: Visualize feature distributions.
- Box Plots: Identify outliers and spread of data.
- Bar Charts: Categorical feature distributions.
- Scatter Plots: Detect relationships between numerical variables.

- **Example scenario**: Predict fraudulent motor insurance claims.
- Initial data review:
 - Identify missing or inconsistent claim details.
 - Assess frequency distributions of claim types.
 - Detect patterns in high-claim amounts and fraudulent cases.
- **Goal**: Guide data preprocessing for better fraud detection models.

ID	ТҮРЕ	INC.	MARITAL STATUS	NUM. CLMNTS.	INJURY TYPE	HOSPITAL STAY	CLAIM AMT.	TOTAL CLAIMED	NUM CLAIMS	NUM. SOFT TISS.	% SOFT TISS.	CLAIM AMT. RCVD.	FRAUI
1	ci	0		2	soft tissue	no	1,625	3,250	2	2	1.0	0	1
2	ci	0		2	back	yes	15,028	60,112	1		0	15,028	0
3	ci	54,613	married	1	broken limb	no	-99,999	0	0	0	0	572	0
4	ci	0		4	broken limb	yes	5,097	11,661	1	1	1.0	7,864	0
5	ci	0		4	soft tissue	no	8,869	0	0	0	0	0	1
						:							
300	ci	0		2	broken limb	no	2,244	0	0	0	0	2,244	0
301	ci	0		1	broken limb	no	1,627	92,283	3	0	0	1,627	0
302	ci	0		3	serious	yes	270,200	0	0	0	0	270,200	0
303	ci	0		1	soft tissue	no	7,668	92,806	3	0	0	7,668	0
304	ci	46,365	married	1	back	no	3,217	0	0		0	1,653	0
						:					:		
458	ci	48,176	married	3	soft tissue	yes	4,653	8,203	1	0	0	4,653	0
459	ci	0		1	soft tissue	yes	881	51,245	3	0	0	0	1
460	ci	0		3	back	no	8,688	729,792	56	5	0.08	8,688	0
461	ci	47,371	divorced	1	broken limb	yes	3,194	11,668	1	0	0	3,194	0
462	ci	0		1	soft tissue	no	6,821	0	0	0	0	0	1
			1			1					:		
496	ci	0		1	soft tissue	no	2,118	0	0	0	0	0	1
497	ci	29,280	married	4	broken limb	yes	3,199	0	0	0	0	0	1
498	ci	0		1	broken limb	yes	32,469	0	0	0	0	16,763	0
499	ci	46,683	married	1	broken limb	no	179,448	0	0		0	179,448	0
500	ci	0		1	broken limb	no	8,259	0	0	0	0	0	1

Figure: Portion of Motor Insurance Claim Data

		%			1 58			3 rd		Std.
Feature	Count	Miss.	Card.	Min	Qrt.	Mean	Median	Qrt.	Max	Dev.
INCOME	500	0.0	171	0.0	0.0	13,740.0	0.0	33,918.5	71,284.0	20,081.5
NUM. CLAIMANTS	500	0.0	4	1.0	1.0	1.9	2	3.0	4.0	1.0
CLAIM AMOUNT	500	0.0	493	-99,999	3,322.3	16,373.2	5,663.0	12,245.5	270,200.0	29,426.3
TOTAL CLAIMED	500	0.0	235	0.0	0.0	9,597.2	0.0	11,282.8	729,792.0	35,655.7
NUM. CLAIMS	500	0.0	7	0.0	0.0	0.8	0.0	1.0	56.0	2.7
NUM. SOFT TISSUE	500	2.0	6	0.0	0.0	0.2	0.0	0.0	5.0	0.6
% SOFT TISSUE	500	0.0	9	0.0	0.0	0.2	0.0	0.0	2.0	0.4
AMOUNT RECEIVED	500	0.0	329	0.0	0.0	13,051.9	3,253.5	8,191.8	295,303.0	30,547.2
FRAUD FLAG	500	0.0	2	0.0	0.0	0.3	0.0	1.0	1.0	0.5
b) Categorical Features									2nd	2nd
		%				Mode	Mode	2^{nd}	Mode	Mode
Feature	Count	Miss.	C	ard.	Mode	Freq.	%	Mode	Freq.	%
INSURANCE TYPE	500	0.0)	1	ci	500	1.0		-	-
MARITAL STATUS	500	61.2		4	married	99	51.0	single	48	24.7
INJURY TYPE	500	0.0		4 b	roken limb	177	35.4	soft tissue	172	34.4
HOSPITAL STAY	500	0.0		2	no	354	70.8	ves	146	29.2

Figure: Data Quality Report for Motor Insurance Claim Data

Understanding and Exploring the Data

- Identify the types and distributions of features in the dataset.
- Differentiate between **continuous** and **categorical** features.
- Assess skewness, central tendency, and variability.
- Use statistical summaries and visual tools (histograms, bar charts, box plots) to examine data characteristics.

Feature Types and Statistical Measures

Continuous Features:

- Examples: Age, Income, Temperature.
- Use histograms, box plots, and summary statistics (mean, median, standard deviation) for insights.

Categorical Features:

- Examples: Gender, Product Category.
- Use frequency tables, bar plots, and pie charts to explore distributions.
- Detect class imbalances that may impact predictive modeling.

The Normal Distribution: Overview

- Defined by two parameters:
 - Mean (μ) : The central location of the distribution.
 - Standard deviation (σ): Measures the spread of data.
- Characterized by its symmetric, bell-shaped curve, and common in natural phenomena such as heights, test scores, and financial returns.

The Normal Distribution: Properties

• Empirical Rule:

- 68% of data falls within 1σ of the mean.
- 95% within 2σ .
- 99.7% within 3σ .

Statistical Applications:

- Basis for parametric statistical tests (e.g., t-tests, ANOVA).
- Used in probabilistic modeling and hypothesis testing.

Central Limit Theorem (CLT):

- Explains why sample means tend to be normally distributed.
- Justifies using normal-based methods in inferential statistics ($n \ge 30$).

Detecting and Handling Deviations from Normality

Identifying Non-Normality:

- Visual methods: Histograms, QQ-plots.
- Statistical tests: Shapiro-Wilk, Kolmogorov-Smirnov.

Implications of Non-Normal Data:

- May violate assumptions of statistical models.
- Can impact performance of machine learning algorithms.

Transformations to Normalize Data:

- Log transformation for right-skewed data.
- Box-Cox transformation for general adjustments.
- Standardization (z-score normalization) for mean-centering.

Different Distributions

Identifying Data Quality Issues

- Poor data quality can negatively impact model performance and insights.
- Key data quality issues include:
 - Missing values
 - Irregular cardinality
 - Outliers and anomalies
- Addressing these issues is crucial for reliable data-driven decision making.

The structure of a data quality plan.

Feature	Data Quality Issue	Potential Handling Strategies	

Missing Values: Causes and Consequences

Causes of Missing Data:

- Human error in data entry.
- Data corruption or loss during processing.
- Non-response in surveys or experiments.

Types of Missing Data:

- Missing Completely at Random (MCAR)
- Missing at Random (MAR)
- Missing Not at Random (MNAR)

Consequences:

- Reduces data usability.
- Can bias analytical results if not handled properly.

Irregular Cardinality in Categorical Variables

• **Definition**: Cardinality refers to the number of unique values a categorical feature can take.

Potential Issues:

- High cardinality: Many unique values can cause overfitting and increase model complexity.
- Low cardinality: May indicate redundancy or poor feature utility.

Detection Methods:

- Frequency distribution analysis.
- Visualizing unique values with bar plots.

Outliers and Anomalies

• **Definition**: Outliers are extreme values that deviate significantly from the rest of the data.

Causes:

- Data entry errors.
- Genuine rare events.
- Sensor or measurement errors.

• Detection Methods:

- Statistical techniques: Z-scores, IQR method.
- Visualization techniques: Box plots, scatter plots.

Handling Data Quality Issues

- Addressing data quality issues improves model reliability and accuracy.
- Common techniques include:
 - Imputing missing values.
 - Managing irregular cardinality in categorical features.
 - Handling outliers effectively.
- How could prediction be used to fill missing fields for imputation? Could correlation help with this?

Handling Missing Values

- Strategies for Handling Missing Data:
 - Deletion: Remove rows or columns with excessive missing values.
 - Imputation:
 - Mean, median, or mode substitution.
 - Predictive modeling (e.g., KNN imputation, regression imputation).
 - Indicator Variable Method: Add a new feature indicating missingness.
- Consider the missing data mechanism (MCAR, MAR, MNAR) before applying a strategy.

Managing Irregular Cardinality

- High Cardinality Issues:
 - Increases computational complexity and risk of overfitting.
 - Common in features like zip codes, product IDs, or names.
- Techniques for Handling High Cardinality:
 - Grouping: Merge rare categories into an "Other" category.
 - Encoding:
 - One-hot encoding (useful for small cardinality features).
 - Target encoding or frequency encoding for high cardinality features.

Handling Outliers and Anomalies

Identifying Outliers:

- Statistical methods: Z-score, IQR method.
- Visual methods: Box plots, scatter plots.

Strategies for Handling Outliers:

- Truncation: Cap values within a predefined range.
- Transformation: Apply log transformation to reduce skewness.
- Model-based approaches: Use robust algorithms less sensitive to outliers (e.g., decision trees, random forests).
- Choose the appropriate method based on whether the outliers are data errors or meaningful anomalies.

Advanced Data Exploration

- Data exploration goes beyond basic summaries to uncover deeper patterns that impact model performance.
- Traditional summary statistics provide useful insights, but advanced techniques help:
 - Detect complex relationships between variables.
 - Identify hidden structures in the dataset.
 - Improve feature selection and engineering decisions.
- Why it matters:
 - Machine learning models rely on clean, well-structured input features.
 - Poorly understood data can lead to bias, overfitting, and misleading conclusions.

Visualizing Relationships Between Features

- Graphical representations reveal hidden patterns and dependencies.
- Common visualization techniques:
 - **Scatter Plots**: Show relationships between continuous variables.
 - Pair Plots: Matrix of scatter plots for multiple features.
 - Box Plots: Compare distributions across categorical groups.
 - **Heatmaps**: Visualize correlation matrices.

(a) Career Stage and Shoe Sponsor

(b) Position and Shoe Sponsor

Measuring Covariance and Correlation

Covariance:

- Measures the direction of a linear relationship between two variables.
- A positive covariance indicates both variables increase together.
- A negative covariance indicates one increases while the other decreases.

Correlation:

- Standardized measure of the strength and direction of a relationship.
- Ranges from -1 (strong negative) to +1 (strong positive).
- Pearson, Spearman, and Kendall correlation methods.

Figure: A scatter plot matrix showing scatter plots of the continuous features from the professional basketball team dataset with correlation coefficients included.

Identifying Multicollinearity

- Multicollinearity occurs when independent variables are highly correlated.
- Issues caused by multicollinearity:
 - Inflates variance in regression coefficients.
 - Reduces model interpretability.
- Detection Methods:
 - Variance Inflation Factor (VIF): Higher VIF values indicate multicollinearity.
 - Eigenvalue decomposition of correlation matrix.
- Handling multicollinearity:
 - Removing highly correlated features.
 - Principal Component Analysis (PCA) for dimensionality reduction.

Lab: Introduction to Git and GitHub

- **Git**: A command-line version control system for tracking changes in files. "Saves Progress" in projects, and allows for version roll-backs.
- **GitHub**: A cloud-based platform for hosting Git repositories. Stores code for personal or public sharing. The standard for sharing projects and code.
- Benefits of Git/GitHub:
 - Enables collaboration on projects by managing user privleges by project.
 - Provides a detailed history of changes.
 - Facilitates code backup and versioning.

Setting Up a Local Repository with GitHub

Let's Set-Up Git/Github for our Projects.

Basic Git Command-Line Workflow

- A simple workflow for tracking changes using Git:
 - 1. Initialize a repository: 'git init'
 - 2. Check the status: 'git status'
 - 3. Stage changes: 'git add <file>'
 - 4. Commit changes: 'git commit -m "Commit message" '
 - 5. View commit history: 'git log'
 - 6. Push to remote repository: 'git push'

Lab: Data Exploration & Tidyverse

Worksheet