

Kongeriget Danmark

Patent application No.:

PA 2003 00435

Date of filing:

21 March 2003

Applicant:

(Name and address)

Novozymes A/S Krogshøjvej 36

DK-2880 Bagsværd

Denmark

Title: Subtilases.

IPC: -

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

Patent- og Varemærkestyrelsen Økonomi- og Erhvervsministeriet

.15 March - 2004

Pia Petersen

PATENT- OG VAREMÆRKESTYRELSEN

Modtaget PVS 2 1 MRS. 2003

SUBTILASES

5

10

15

20

25

30

35

FIELD OF THE INVENTION

The present invention relates to JP170 and BPN' like subtilases and to methods of construction such variants with altered properties, such as stability (e.g. thermostability or storage stability), Ca²⁺ dependency, pH dependent activity, improved performance in washing and cleaning applications.

BACKGROUND OF THE INVENTION

Enzymes have been used within the detergent industry as part of washing formulations for more than 30 years. Proteases are from a commercial perspective the most relevant enzyme in such formulations, but other enzymes including lipases, amylases, cellulases or mixtures of enzymes are also often used.

To improve the cost and/or the performance of proteases there is an ongoing search for proteases with altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.) etc.

The search for proteases with altered properties include both discovery of naturally occurring proteases, i.e. so called wild-type proteases but also alteration of well-known proteases by e.g. genetic manipulation of the nucleic acid sequence encoding said proteases. Knowledge of the relationship between the three-dimensional structure and the function of a protein has improved the ability to evaluate which areas of a protein to alter to affect a specific characteristic of the protein.

One family of proteases, which are often used in detergents, are the subtilases. This family has previously been further grouped into 6 different sub-groups by Siezen RJ and Leunissen JAM, 1997, Protein Science, 6, 501-523. One of these sub-groups is the Subtilisin family which includes subtilases such as BPN', subtilisin 309 (SAVINASE®, NOVOZYMES A/S), subtilisin Carlsberg (ALCALASE®, NOVOZYMES A/S), subtilisin S41 (a subtilase from the psychrophilic Antarctic *Bacillus* TA41, Davail S et al. 1994, The Journal of Biological Chemistry, 269(26), 99. 17448-17453), subtilisin S39 (a subtilase from the psychrophilic Antarctic *Bacillus* TA39, Narinx E et al. 1997, Protein Engineering, 10 (11), pp. 1271-1279) and TY145 (a subtilase from Bacillus sp. TY145, NCIMB 40339 described in WO 92/17577).

However, despite the sequence homology between the subtilases belonging to the Subtilisin subgroup of subtilases, modelling of the three-dimensional structure of one subtilase

10

15

20

25

30

35

on the basis of the three-dimensional structure of another subtilase may result in an incorrect three-dimensional model structure because of structural differences.

Recently the three-dimensional structure of subtilase TY145 have been elucidated and it was found that there are several differences between this and the three-dimensional structure of BPN' also belonging to the Subtilisin subgroup of subtilases (Danish application PA 2003 00119).

The differences between the three-dimensional structures of TY145 and BPN' are confirmed by the three-dimensional structure of the subtilase "sphericase" from *Bacillus sphaericus* (PDB NO:1EA7, Protein Data Bank). The overall structure and many details of this subtilase are very homologous with the TY145 subtilase structure.

Now the inventors of the present invention disclose the three-dimensional structure of the subtilase JP170. This subtilase also has great structural differences compared to BPN' and TY145.

The subtilase JP170 and subtilases similar to JP170 are already known in the art, but the three-dimensional structure of the present invention has not been disclosed for such subtilases.

The JP170 subtilase was first described as protease A in WO 88/01293 to Novo Nordisk. Later the patent application WO 98/56927 to Novo Nordisk Biotech disclosed the amino acid (polypeptide) sequence of JP170 and the DNA sequence encoding JP170. The patents JP7-62152 and JP 4197182 to Lion Corp. disclosed the alkaline app. 46 kD protease Y produced by *Bacillus sp.* Y that is homologous to JP170 and the DNA sequence encoding protease Y. And in addition US 6,376,227 to Kao Corp. discloses physical characteristics as well as DNA and polypeptide sequences of alkaline proteases KP43, KP1790 and KP9860 which are also homologous to JP170. Recently variants of the KP43, KP9860, SD-521 and Y proteases among others were disclosed in EP 1209233. These variants have the accession numbers aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080. These proteases are highly homologous, and an alignment of KP43, KP9860, SD-521, Y and JP170 revealed at least 90% homology. Therefore JP170, Y (aay44619) and SD-521 (aam50084) represent these proteases in the alignments of the present application.

In the literature, modelling based on three-dimensional structures of proteins has been used to transfer advantageous properties from one protein to another. Miyazaki K et al.

2000, J Mol Biol, 297, pp.1015-1026 discloses enhancement of the thermostability and activity of the psychrophilic protease subtilisin S41 by methods of directed evolution.

Wintrode TL et al. 2000, Journal of Biological Chemistry, 275 (41), pp. 31635-31640 discloses conversion of a mesophilic subtilisin-like protease from *Bacillus sphaericus* SSII into its psychrophilic counterpart by methods of directed evolution. Wintrode et al. constructed the three-dimensional structural model of the SSII subtilase on basis of its homology with subtilisins Carlsberg, Savinase, BPN' and Thermitase, but according to the disclosure of the three-dimensional structure of the TY145 subtilase, the SSII subtilase pertain to the new group of TY145 like subtilases.

10

15

.20

25

35

BRIEF DESCRIPTION OF THE INVENTION

The inventors have modified the amino acid sequence of a subtilase to obtain variants with improved properties, based on the three-dimensional structure of the subtilases JP170 and BPN'. The variants have altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.) etc.

Accordingly, the object of the present invention is to provide a method for constructing subtilases having altered properties, in particular to provide a method for constructing subtilases having altered properties as described above.

Thus, in its broadest aspect, the present invention relates to a method for constructing a variant of a parent subtilase, wherein the variant has at least one altered property as compared to said parent subtilase, which method comprises:

- i) analyzing the three-dimensional structure of the subtilase to identify, on the basis of an evaluation of structural considerations, at least one amino acid residue or at least one structural region of the subtilase, which is of relevance for altering said property;
- ii) constructing a variant of the subtilase, which as compared to the parent subtilase, has been modified in the amino acid residue or structural part identified in i) so as to alter said property; and
- 30 iii) testing the resulting subtilase variant for said property.

Although it has been described in the following that modification of the parent subtilase in certain regions and/or positions is expected to confer a particular effect to the thus produced subtilase variant, it should be noted that modification of the parent subtilase in any of such regions may also give rise to any other of the above-mentioned effects. For example,

any of the regions and/or positions mentioned as being of particular interest with respect to, e.g., improved thermostability, may also give rise to, e.g., higher activity at a lower pH, an altered pH optimum, or increased specific activity, such as increased peptidase activity.

Further aspects of the present invention relates to variants of a subtilase, the DNA encoding such variants and methods of preparing the variants. Still further aspects of the present invention relates to the use of the variants for various industrial purposes, in particular as an additive in detergent compositions. Other aspects of the present invention will be apparent from the below description as well as from the appended claims.

BRIEF DESCRIPTION OF FIGURES AND APPENDIX

Figure 1, Alignment of 3D sequences of protease JP170 (mature sequence from Appendix 1), SD-521 (aam50084 from EP 1209233) and protease Y (aay44619 from WO99/67370). By 3D sequences is meant that the position of homologous residues are chosen by superposition of the 3D structures and subsequently the amino acid sequences are aligned based on these homologous positions.

Figure 2, Superposition of JP170 and Savinase 3D structures, with indication of calcium binding sites. JP170: light structure and three ion-binding sites. Savinase: dark structure and two ion-binding sites.

20

5

10

15

Figure 3, Matrix of homology between subtilases pertaining to the JP170 and BPN' subgroups. The sequences are identified by sequence database accession numbers.

APPENDIX 1 shows the structural coordinates for the solved crystal structure of JP170.

25

, 30

35

DEFINITIONS

Prior to discussing this invention in further detail, the following terms and conventions will first be defined.

For a detailed description of the nomenclature of amino acids and nucleic acids, we refer to WO 00/71691 page 5, hereby incorporated by reference. A description of the nomenclature of modifications introduced in a polypeptide by genetic manipulation can be found in WO 00/71691 page 7-12, hereby incorporated by reference.

The term "subtilases" refer to a sub-group of serine protease according to Siezen *et al.*, *Protein Engng.* 4 (1991) 719-737 and Siezen et al. *Protein Science* 6 (1997) 501-523. Serine proteases or serine peptidases is a subgroup of proteases characterised by having a serine in the active site, which forms a covalent adduct with the substrate. Further the subtilases (and the serine proteases) are characterised by having two active site amino acid residues apart from the serine, namely a histidine and an aspartic acid residue.

Subtilases are defined by homology analysis of more than 170 amino acid sequences of serine proteases previously referred to as subtilisin-like proteases. The subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.

The Subtilisin family (EC 3.4.21.62) may be further divided into 3 sub-groups, i.e. I-S1 ("true" subtilisins), I-S2 (highly alkaline proteases) and intracellular subtilisins. Definitions or grouping of enzymes may vary or change, however, in the context of the present invention the above division of subtilases into sub-division or sub-groups shall be understood as those described by Siezen et al., *Protein Engng.* 4 (1991) 719-737 and Siezen et al. *Protein Science* 6 (1997) 501-523.

15

20

10

5

The term "parent" is in the context of the present invention to be understood as a protein, which is modified to create a protein variant. The parent protein may be a naturally occurring (wild-type) polypeptide or it may be a variant thereof prepared by any suitable means. For instance, the parent protein may be a variant of a naturally occurring protein which has been modified by substitution, chemical modification, deletion or truncation of one or more amino acid residues, or by addition or insertion of one or more amino acid residues to the amino acid sequence, of a naturally-occurring polypeptide. Thus the term "parent subtilase" refers to a subtilase which is modified to create a subtilase variant.

The term "variant" is in the context of the present invention to be understood as a protein which has been modified as compared to a parent protein at one or more amino acid residues.

The term "modification(s)" or "modified" is in the context of the present invention to be understood as to include chemical modification of a protein as well as genetic manipulation of the DNA encoding a protein. The modification(s) may be replacement(s) of the amino acid side chain(s), substitution(s), deletion(s) and/or insertions in or at the amino acid(s) of interest. Thus the term "modified protein", e.g. "modified subtilase", is to be understood as a protein which contains modification(s) compared to a parent protein, e.g. subtilase.

30

15

. 20 . .

25

30

35

The term "JP170 subtilase" or "JP170 like subtilase" should in the context of the present invention be understood as a subtilase belonging to the Subtilisin group according to Siezen et al. *Protein Science* 6 (1997) 501-523 and which has at least 58% homology to JP170 SEQ ID NO:1. Thus, among others the alkaline proteases KP43, KP1790, KP9860, Y and SD-521 are subtilases belonging to the JP170 subgroup of subtilases. In the context of the present invention a JP170 subtilase has three ion-binding sites. However, the number of ion-binding sites may vary in similar structures depending on the medium used for crystallisation. It appears e.g. that two of five ion-binding sites of *Bacillus sphaericus* "sphericase" (PDB NO:1EA7, Protein Data Bank) were due to a calcium containing crystallisation medium.

The term "(a) BPN' subtilase" or "(a) BPN' like subtilase" should in the context of the present invention be understood as a subtilase belonging to the Subtilisin group according Siezen et al. Siezen et al. Protein Science 6 (1997) 501-523 and which has at least 61% homology to BPN' SEQ ID NO:5. Such a BPN' like subtilase is for example Savinase. In the context of the present invention a BPN' subtilase has two ion-binding sites. A BPN' like subtilase may, in the context of the present invention, belong to branch I-S of the subtilisins i.e. to branch I-S1, the "true" subtilisins or I-S2, the highly alkaline proteases (Siezen et al., Protein Engng. 4 (1991) 719-737).

"Homology" or "homologous to" is in the context of the present invention to be understood in its conventional meaning and the "homology" between two amino acid sequences should be determined by use of the "Similarity" defined by the GAP program from the University of Wisconsin Genetics Computer Group (UWGCG) package using default settings for alignment parameters, comparison matrix, gap and gap extension penalties. Default values for GAP penalties, i.e. GAP creation penalty of 3.0 and GAP extension penalty of 0.1 (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711). The method is also described in S.B. Needleman and C.D. Wunsch, Journal of Molecular Biology, 48, 443-445 (1970). Identities can be extracted from the same calculation. The homology between two amino acid sequences can also be determined by "identity" or "similarity" using the GAP routine of the UWGCG package version 9.1 with default setting for alignment parameters, comparison matrix, gap and gap extension penalties can also be applied using the following parameters: gap creation penalty = 8 and gap extension penalty = 8 and all other parameters kept at their default values. The output from the routine is besides the amino acid alignment the

30

calculation of the "Percent Identity" and the "Similarity" between the two sequences. The numbers calculated using UWGCG package version 9.1 is slightly different from the version 8.

- The term "position" is in the context of the present invention to be understood as the number of an amino acid in a peptide or polypeptide when counting from the N-terminal end of said peptide/polypeptide. The position numbers used in the present invention refer to different subtilases depending on which subgroup the subtilase belongs to.
- As mentioned above the alkaline subtilases KP43, KP1790, KP9860, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233 belong to the JP170 subgroup, based on sequence homology. Due to the extensive homology only subtilase Y and SD-521 are aligned with JP170. The Y subtilase and SD-521 subtilase are numbered according to SEQ ID NO:2 and 3 respectively.

Likewise other subtilases belonging to the JP170 subgroup are numbered individually according to their own sequence. However in order to determine homologous positions in such other subtilases an alignment with the each of SEQ ID's NO:1, 2 and 3 is conducted according to the GAP procedure described above. Subsequently the homologous positions are determined with reference to the most homologous of SEQ ID's NO:1, 2 and 3.

Alternatively subtilases belonging to the JP170 subgroup can be numbered by reference to the positions of JP170 subtilase (SEQ ID NO:1).

Subtilases belonging to the BPN' subgroup refers to the positions of Subtilisin Novo (BPN') from B. amyloliquefaciens.

DETAILED DESCRIPTION OF THE INVENTION

Despite the great homology of the subtilases described above the inventors of the present invention have elucidated the three-dimensional structure of JP170, SEQ ID NO:1 by X-ray crystallography and found that there are several differences between this and the three-dimensional structure of BPN'. The inventors of the present invention have further compared the sequence homology of subtilases belonging to the Subtilisin subgroup. This is shown in Figure 3 of the present invention.

On the basis of this comparison the inventors of the present invention suggest to divide the Subtilisin subgroup so that the JP170 subtilases become a separate subgroup in addition to the subgroups of BPN' subtilases and TY145 subtilases (DKPTO, PA 2003 00119).

5 JP170 subtilases

10

15

20

25

30

As described above a JP170 like subtilase is in the context of the present invention to be understood as a subtilase which has at least 58% homology to SEQ ID NO:1. In particular said JP170 subtilase may have at least 60% homology to SEQ ID NO:1, such as at least 65%, at least 70%, at least 75%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to JP170, i.e. to SEQ ID NO:1.

In a first embodiment of the present invention a JP170 subtilase suitable for the purpose described herein may be a subtilase homologous to the three-dimensional structure of JP170, i.e. it may be homologous to the three-dimensional structure defined by the structure coordinates in Appendix 1.

As it is well-known to a person skilled in the art that a set of structure coordinates for a protein or a portion thereof is a relative set of points that define a shape in three dimensions, it is possible that an entirely different set of coordinates could define an identical or a similar shape. Moreover, slight variations in the individual coordinates may have little or no effect on the overall shape.

These variations in coordinates may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates of JP170 (Appendix 1) may be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above. Alternatively, said variations may be due to differences in the primary amino acid sequence.

If such variations are within an acceptable standard error as compared to the structure coordinates of Appendix 1 said three-dimensional structure is within the context of the present invention to be understood as being homologous to the structure of Appendix 1. The standard error may typically be measured as the root mean square deviation of e.g. conserved backbone residues, where the term "root mean square deviation" (RMS) means the square root of the arithmetic mean of the squares of the deviations from the mean.

10

15

..20 ..

25

30

35

As it is also well-known to a person skilled in the art that within a group of proteins which have a homologous structure there may be variations in the three-dimensional structure in certain areas or domains of the structure, e.g. loops, which are not or at least only of a small importance to the functional domains of the structure, but which may result in a big root mean square deviation of the conserved residue backbone atoms between said structures.

Thus it is well known that a set of structure coordinates is unique to the crystallised protein. No other three dimensional structure will have the exact same set of coordinates, be it a homologous structure or even the same protein crystallised in different manner. There are natural fluctuations in the coordinates. The overall structure and the inter-atomic relationship can be found to be similar. The similarity can be discussed in terms of root mean square deviation of each atom of a structure from each "homologous" atom of another structure. However, only identical proteins have the exact same number of atoms. Therefore, proteins having a similarity below 100% will normally have a different number of atoms, and thus the root mean square deviation can not be calculated on all atoms, but only the ones that are considered "homologous". A precise description of the similarity based on the coordinates is thus difficult to describe and difficult to compute for homologous proteins. Regarding the present invention, similarities in 3D structure of different subtilases can be described by the content of homologous structural elements, and/or the similarity in amino acid or DNA sequence. For sequences having no deletions or insertions a RMS for the calcium atoms can be calculated.

Examples of JP170 like subtilases include the alkaline proteases KP43, KP1790, KP9860, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233, however to the best of our knowledge the three-dimensional structure has not been solved for any of these subtilases.

Accordingly, a preferred embodiment of the present invention is a parent subtilase or a subtilase variant which is at least 58% homologous to the sequence of SEQ ID NO:1, preferably at least 60, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homologous to the sequence of SEQ ID NO:1, and optionally said subtilase further comprises the following structural characteristics:

15

. 20

25

30

35

- a) a twisted beta-sheet with 7 strands,
- b) six alpha helices,
- c) three ion-binding sites and

not comprising the Strong and Weak ion-binding site of the BPN' like subtilases, and with the exception of the subtilases JP170, KP1790, KP9860, KP43, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233.

The JP170 subtilase of the present invention is encoded by an isolated nucleic acid sequence, which nucleic acid sequence encodes a subtilase which has at least 58% homology to SEQ ID NO:1. In particular said nucleic acid sequence encodes a subtilase that has at least 60% homology to SEQ ID NO:1, such as at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to SEQ ID NO:1, i.e. to the amino acid sequence of JP170.

Further the isolated nucleic acid sequence encoding a JP170 subtilase of the invention hybridizes with a complementary strand of a nucleic acid sequence encoding the amino acid sequence of SEQ ID NO:1 preferably under low stringency conditions, at least under medium stringency conditions, at least under medium/high stringency conditions, at least under very high stringency conditions.

Suitable experimental conditions for determining hybridization at low, medium, or high stringency conditions between a nucleotide probe and a homologous DNA or RNA sequence involves presoaking of the filter containing the DNA fragments or RNA to hybridize in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 µg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) *Anal. Biochem.* 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/µg) probe for 12 hours at ca. 45°C. The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least * 55°C (low stringency), more preferably at least 60°C (medium stringency), still more preferably at least 65°C (medium/high stringency), even more preferably at least 70°C (high stringency), and even more preferably at least 75°C (very high stringency).

15

... 20 . .

25

30

35

BPN' subtilases

As described above a BPN' subtilase is in the context of the present invention to be understood as a subtilase which has at least 61% homology to SEQ ID NO:4. In particular said BPN' subtilase may have at least 65%, such as at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to BPN', i.e. to SEQ ID NO:4.

In one embodiment of the present invention a BPN' subtilase suitable for the purpose described herein may be a subtilase homologous to the three-dimensional structure of BPN' as defined by the structure coordinates given in PDB Nos. 1SBT and 1GNS (Protein Data Bank), or one of the several other structures of BPN' that are accessible from the Protein Data Bank. Variations between homologous structures may occur for several reasons as described above. Thus a BPN' subtilase within the context of the present invention is to be understood as any subtilase having the structural characteristics pertaining to the BPN' subtilases as described above, and in addition such subtilases does preferably not have further structural characteristics which are not present in the BPN' subtilases as described herein. Further a BPN' subtilase of the present invention may have the necessary percentage of similarity with SEQ ID NO:4.

Examples of BPN' like subtilases include the subtilisin 309 (PDB NO:1SVN, SAVINASE®, NOVOZYMES A/S) and subtilisin Carlsberg (ALCALASE®, NOVOZYMES A/S), among others.

In figure 1 of R.J. Siezen and J.A.M Leunissen (Protein science, Vol. 6 (3), pp. 501-523, 1997) page 502 a structure of subtilases is described. A subtilase consists of 6-8 helices, 11 strands of which 7 are central in a twisted beta-sheet. Two ion-binding sites are mentioned, the so called "Strong" and "Weak" calcium-binding sites. It was later discovered that for some structures (subtilisin DY PDB no. 1BH6, 1998), the Weak calcium-binding site was shown to be a Na (sodium) binding site when the calcium concentration in the crystal-lization medium was low. Thus, in the following we refer to ion-binding sites instead of calcium-binding sites.

The BPN' subtilase of the present invention is encoded by an isolated nucleic acid sequence, which nucleic acid sequence encodes a subtilase which has at least 61% homology to SEQ ID NO:4. In particular said BPN' subtilase may have at least 65%, such as at

least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to BPN', i.e. to SEQ ID NO:4.

Further the isolated nucleic acid sequence encoding a BPN' subtilase of the invention hybridizes with a complementary strand of the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO:4 preferably under low stringency conditions, at least under medium stringency conditions, at least under medium/high stringency conditions, at least under very high stringency conditions.

10

15

20

25

Three-dimensional structure of JP170 subtilases

The JP170 subtilase was used to elucidate the three-dimensional structure forming the basis for the present invention.

The structure of JP170 was solved in accordance with the principle for x-ray crystallographic methods, for example, as given in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989.

The structural coordinates for the solved crystal structure of JP170 are given in standard PDB format (Protein Data Bank, Brookhaven National Laboratory, Brookhaven, CT) as set forth in Appendix 1. It is to be understood that Appendix 1 forms part of the present application. In the context of Appendix 1, the following abbreviations are used: CA refers to calpha (carbon atoms) or to calcium ions, (however to avoid misunderstandings we use the full names "c-alpha atoms" and "calcium" or "ion" in the present specification). Amino acid residues are given in their standard three-letter code. The attached structural coordinates contain the protease structure, and an inhibitor structure CI2 as well as water molecules. The protease coordinates has a chain identification called A, whereas the CI2 inhibitor is called B, the calcium ions are called C, and the water is W. In the following the positions of the mentioned residues refer to the sequence of JP170 as disclosed in SEQ ID NO:1.

The JP170 structure consists of two domains, a catalytic domain and a C-terminal domain. The structure of the catalytic domain shows the same overall fold as found in the S8 family of subtilisins. The structure comprises a twisted beta-sheet with 7 strands arranged in the following sequential order S2, S3, S1, S4, S5, S6, S7.

There are six alpha helices in the catalytic domain structure of which number H1 contains residues 9-17, H2 contains residues 68-76, H3 contains residues 110-119, H4 contains residues 139-150, H5 contains residues 253-273 and H6 contains residues 281-291.

The C-terminal domain comprises a strand motif, a so called "beta sandwich" consisting of sheets a and b. The sheet in this domain is combined of strands in an anti-parallel fashion, whereas the strand in the catalytic domain is combined in parallel. The sequential order of the strands can be denoted as: S1a-S1b-S3a-S3b-S4b-S4a-S2b-S2a with the beta sandwich organised as to the two sheets S1a, S3a, S4a, S2a and S1b, S3b, S4b, S2b.

The JP170 subtilases are shown to lack the well-known Strong and Weak ion-binding sites of the BPN' subtilases. However, the JP170 subtilases have three ion-binding sites which are not present in the BPN' subtilisin structures. This can be seen in the structural alignment presented in Figure 2. These three ion-binding sites are hereinafter referred to as Site 1, which is placed in the catalytic domain, and Site 2 and 3 which are placed in the non-catalytic C-terminal domain.

Thus in relation to the atomic coordinates disclosed in Appendix 1, the ion-binding sites of JP170 are located at:

Site 1 - calcium atom named A601 CA

20 Site 2 - calcium atom named A603 CA, and

25

30

Site 3 - calcium atom named A602 CA in the PDB table (Appendix 1).

The position of an ion-binding site can be defined by the distance to four specific atoms in the core structure. The distance from the ion-binding site to the c-alpha atoms of the three active site residues has been chosen. Throughout the subtilases the residues Ser, His and Asp in the active site are highly conserved. In JP170 they are Asp30, His68 and Ser254. The fourth distance chosen is the distance to the c-alpha atom of the amino acid residue coming first after the active site serine residue in the sequence (herein after called "next to Ser"); in the 3D structure of JP170 it is Met255.

In a preferred embodiment of the present invention, the distance between:

- a) ion-binding site 1 and i) Asp c-alpha atom is 26.70-28.70Å, ii) His c-alpha atom is 22.10-24.10Å, iii) Ser c-alpha atom is 16.95-18.95Å, iv) next to Ser c-alpha atom is 15.30-17.30Å,
- b) ion-binding site 2 and i) Asp c-alpha atom is 33.50-35.50Å, ii) His c-alpha atom is 37-35 Å, iii) Ser c-alpha atom is 29.40-31.40Å, iv) next to Ser c-alpha atom is 30.70-

32.70Å.

c) ion-binding site 3 and i) Asp c-alpha atom is 41.50-43.50Å, ii) His c-alpha atom is 42.90-44.90Å, iii) Ser c-alpha atom is 34.50-36.50Å, iv) next to Ser c-alpha atom is 35-37Å.

5

Below are the specific distances between the four chosen c-alpha atoms and the three ion binding sites of the JP170 subtilase given in Å:

		site 1	site 2	site 3
	Met255	16.34	31.68	36.02
10	His68	23.12	38.03	43.87
	Asp30	27.69	34.49	42.48
	Ser254	17.95	30.41	35.51
	site 1	0	35.29	32.92
	site 2	35.29	0	14.08
15	site 3	32.92	14.08	0

However these distances may vary from one subtilase to the other. The present distances are given with a calcium ion in the structure. If a sodium ion was bound instead the distances would be shifted a little bit. Generally the distances can vary ± 0.80 Å, preferably ± 0.70 Å, ± 0.60 Å, ± 0.50 Å, ± 0.40 Å, or most preferably ± 0.30 Å.

Further, in the JP170 like subtilases, the peptide structure circumventing ion-binding site 1 up to a distance of 10 Å is composed of the amino acid residues placed in positions 183-189, 191-204 and 224-225.

25

20

The peptide structure circumventing ion-binding site 2 up to a distance of 10 Å is composed of residues 378-393.

The peptide structure circumventing ion-binding site 3 up to a distance of 10 Å is composed of residues 348, 350, 352, 363-370, 380-383, 391-400 and 414-420.

30 I

In comparison with the BPN' like subtilase structures the structure of the JP170 like subtilases can be divided into a "core subtilase-like" region, an "intermediate" region and a "nonhomologous" region.

The active site can be found in the core subtilase-like region, which is structurally closely related to the BPN' structures. The core subtilase-like region is composed of residues 17-

35

34, 197-209 and 216-232, and contains the alpha-helix H3 and the central alpha-helix H5 in

which the active site serine residue is situated in the N-terminal part. The core subtilaselike region has an RMS lower than 1.2.

Outside the core subtilase-like region the structure of the JP170 like subtilase differs from the BPN' structures to a greater extent.

5

The intermediate region consists of residues 42-46, 150-186, 245-272 and 278-296. The intermediate region has an RMS bigger than 1.2 and less than 1.8. The relationships between the three-dimensional structure and functionality are potentially difficult to predict in this region of the JP170 like subtilases.

10

The nonhomologous region consists of residues 1-16, 35-41, 47-149, 187-196, 210-215, 233-244, 273-277 and 297-316. The nonhomologous region has a RMS higher than 1.8. The relationships between the three-dimensional structure and functionality are very difficult to predict in this region of the JP170 like subtilases.

15

25

35

Many loops in the 3D structure of the JP170 like subtilases differ significantly from the BPN' type structures, both in length and in content of amino acid residues. The following loops or protein sequence stretches of JP170 are compared to Savinase (in parenthesis):

G32-H43 (G34-H39)

20 E44-Y54 (P40-A48)

G57-G67 (V51-G63)

N79-N82 (I75-V81)

196-P107 (V95-S105)

A108-S119 (106-N117)

A131-Y137 (S128-S132)

T138-D152 (A133-G146)

E162-1169 (S156-1165)

G173-T180 (A169-A176)

E185-N199 (D181-N184)

30 G208-D218 (G193-D197)

S232-K246 (G211-T213)

D294-N303 (S256-L262)

The loops N79-N82 (I75-V81) and G208-D218 (G193-D197) are in contact with a ion-binding site in Savinase, but not in JP170. Similarly the loop E185-N199 (D181-N184) is in

contact with a ion-binding site in JP170, but not in Savinase. This knowledge opens for possibilities of adding or removing ion-binding sites to subtilases of the JP170 and BPN' like types.

A good example of the difference is the loop S232-K246 which has 15 residues compared to the corresponding BPN' type loop G211-T213 (in Savinase), which has only three residues. In the JP170 like subtilases, the loop folds back to the substrate binding site, especially the P' parts of the substrate binding site. The loop is situated close to the substrate as illustrated by the CI2 inhibitor bound in the 3D structure attached (Appendix 1).

10

The location of loop S232-K246 can be described in relation to the four specific residues as described above. The distance from the CA atom of residue W240 in the loop to the CA atoms of the active site residues are:

Residue	H68	D30	S254	M255
Distance, Å	11.45	18.51	13.06	11.94

As mentioned above, distances like these can vary ±0.80Å, preferably ±0.70Å, ±0.60Å, ±0.50Å, ±0.40Å, or most preferably ±0.30Å.

Furthermore, distances from the residues of JP170 loop S232-K246 to atoms of the CI2 inhibitor can be calculated. These distances are:

from CA atom of W240 to CA atom of R62 in Cl2 is 7.49Å, from CA atom of F239 to CA atom of R62 in Cl2 is 8.39Å, from CA atom of S238 to CA atom of R62 in Cl2 is 8.42Å, from CA atom of S237 to CA atom of R62 in Cl2 is 9.44Å, from CA atom of S238 to CA atom of E60 in Cl2 is 9.42Å.

25

30

The distances from JP170 active site residue S254 to atoms of the Cl2 inhibitor, as placed in the 3D coordinates of Appendix 1, are:

from CA atom of S254 to CA atom of E60 in Cl2 is 5.25Å,

from CA atom of S254 to CA atom of R62 in Cl2 is 11.55Å.

from CA atom of S254 to CA atom of T58 in CI2 is 7.06Å.

from CA atom of S254 to CA atom of M59 in Cl2 is 4.71Å.

The distances can vary ± 0.80 Å, preferably ± 0.70 Å, ± 0.60 Å, ± 0.50 Å, ± 0.40 Å, or most preferably ± 0.30 Å.

A preferred JP170 like subtilase variant has a deletion in the region S232-K246, and the subsequent insertion of one or more residues to partly or completely remove the loop. Preferred variants comprises the deletion of L233-S245 + insertion of Asn, deletion of L233-D244 + insertion of Gly or deletion of S232-D244 + insertion of Gly.

5

10

15

20

25

30

Homology building of JP170 and BPN' subtilases

A model structure of a JP170 like subtilase or a BPN' like subtilase can be built using the Homology program or a comparable program, e.g., Modeller (both from Molecular Simulations, Inc., San Diego, CA). The principle is to align the amino acid sequence of a protein for which the 3D structure is known with the amino acid sequence of a protein for which a model 3D structure has to be constructed. The structurally conserved regions can then be built on the basis of consensus sequences. In areas lacking homology, loop structures can be inserted, or sequences can be deleted with subsequent bonding of the necessary residues using, e.g., the program Homology. Subsequent relaxing and optimization of the structure should be done using either Homology or another molecular simulation program, e.g., CHARMm from Molecular Simulations.

Methods for designing JP170 and BPN' subtilase variants

Comparisons of the molecular dynamics of different proteins can give a hint as to which domains are important or connected to certain properties pertained by each protein.

The present invention comprises a method of producing a variant of a parent JP170 like subtilase, the variant having at least one aftered property as compared to the parent JP170 like subtilase, the method comprising:

- a) modelling the parent JP170 subtilase on the three-dimensional structure of a JP170 subtilase to produce a three-dimensional structure of the parent JP170 subtilase;
- identifying on the basis of the comparison in step a) at least one structural part of the parent JP170 subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- c) modifying the nucleic acid sequence encoding the parent JP170 subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
- d) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 subtilase;
- 35 e) isolating the produced subtilase;

- f) purifying the isolated subtilase and
- g) recovering the purified subtilase.

Further the present invention comprises a method of producing a variant of a parent Subtilisin family subtilase, such as a BPN' like subtilase, the variant having at least one altered property as compared to the parent Subtilisin family subtilase, the method comprising:

- a) modelling the parent Subtilisin family subtilase on the three-dimensional structure of a Subtilisin family subtilase to produce a three-dimensional structure of the parent Subtilisin family subtilase;
- b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a JP170 like subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent Subtilisin family subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- d) modifying the nucleic acid sequence encoding the parent Subtilisin family subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant Subtilisin family subtilase,
 - f) isolating the produced subtilase,

20

30

35

- g) purifying the isolated subtilase and
- h) recovering the purified subtilase.
- Further the present invention comprises a method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
 - a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 like subtilase to produce a three-dimensional structure of the parent JP170 like subtilase;
 - comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a Subtilisin family subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent JP170 like subtilase, wherein an alteration in said structural part is predicted to result in an altered property;

- d) modifying the nucleic acid sequence encoding the parent JP170 like subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
- e) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 like subtilase;
 - f) isolating the produced subtilase;
 - g) purifying the isolated subtilase and
 - h) recovering the purified subtilase.

15

20

35

Stability - alteration of ion-binding sites

As described above the JP170 subtilases has three new ion-binding sites not present in the BPN' subtilisin structures but lacks the Strong and Weak ion-binding site of the BPN' subtilases. Stability of the ion-binding site is of crucial importance for the functionality of the enzyme. Therefore alterations of the ion-binding sites are likely to result in alterations of the stability of the enzyme.

Improved stability

380-383

391-400

Stabilisation of a JP170 subtilase may possibly be obtained by alterations in the positions close to the ion-binding sites. Thus a preferred variant of the present invention has a modification in one or more of the positions located at a distance of 10Å to the ion-binding sites of JP170 (SEQ ID NO:1). The positions are:

	Site 1:	183-189	(i.e. positions 183, 184, 185, 186, 187, 188, 189),
25		191-204	(i.e. positions 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
			201, 202, 203, 204),
		224-225;	
	Site 2:	378-393	(i.e. positions 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
30			388, 389, 390, 391, 392, 393);
	Site 3:	348, 350, 3	352,
		363-370	(i.e. positions 363, 364, 365, 366, 367, 368, 369, 370)

(i.e. positions 380, 381, 382, 383),

(i.e. positions 391, 392, 393, 394, 395, 396, 397, 398, 399, 400),

10

25

35

414-420 (i.e. positions 414, 415, 416, 417, 418, 419, 420).

In detergent compositions calcium chelaters contribute to removal of calcium from the subtilases with subsequent inactivation of the enzyme as the result. To decrease the inactivation due to calcium removal of e.g. calcium chelaters variants with improved calcium stability was constructed.

Preferred variants stabilised in ion-binding site 1 are S193Q,Y; H200D,N and H200D,N+D196N.

Preferred variants stabilised in ion-binding site 2 are N390D and N391D, and preferred variants stabilised in ion-binding site 3 are G394N,Q,F,Y,S and W392S,N,Q.

Alteration of thermostability

A variant with improved stability (typically increased thermostability) may be obtained by substitution with proline, introduction of a disulfide bond, altering a hydrogen bond contact, altering charge distribution, introduction of a salt bridge, filling in an internal structural cavity with one or more amino acids with bulkier side groups (in e.g. regions which are structurally mobile), substitution of histidine residues with other amino acids, removal of a deamidation sites, or by helix capping.

20 Regions with increased mobility:

The following regions of JP170 have an increased mobility in the crystal structure of the enzyme, and it is presently believed that these regions can be responsible for stability or activity of JP170. Especially thermostabilisation may possibly be obtained by altering the highly mobile regions. Improvements of the enzyme can be obtained by mutation in the below regions and positions. Introducing e.g. larger residues or residues having more atoms in the side chain could increase the stability, or, e.g., introduction of residues having fewer atoms in the side chain could be important for the mobility and thus the activity profile of the enzyme.

Two methods are used extract the highly mobile regions from a 3D structure. One is a molecular dynamics calculation of the isotropic fluctuations, and the other is an analysis of the B-factors. The B-factors are listed in the PDB file and give a value to the uncertainty of determination of the location of the various atoms of the structure. The uncertainty relates to the mobility of the atoms in the molecules in the crystal lattice. This mobility reflects the thermal motion of the atoms and thus indicates possible sites for thermostabilisation of the enzyme.

Thus, by analysing the B-factors taken from the coordinate file in Appendix 1, (see "in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989") the following mobile regions in the JP170 structure were revealed:

```
13-18
                    (i.e. positions 13, 14, 15, 16, 17, 18),
     37-43
                    (i.e. positions 37, 38, 39, 40, 41, 42, 43),
     47-50
                    (i.e. positions 47, 48, 49, 50),
     57-59
                    (i.e. positions 57, 58, 59),
     96-103
                    (i.e. positions 96, 97, 98, 99, 100, 101, 102, 103),
10
     131-134
                    (i.e. positions 131, 132, 133, 134),
      152-153
      162-166
                    (i.e. positions 162, 163, 164, 165, 166),
      188-195
                    (i.e. positions 188, 189, 190, 191, 192, 193, 194, 195),
     210
15
     234-246
                    (i.e. positions 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,
                    246),
     372-378
                    (i.e. positions 372, 373, 374, 375, 376, 377, 378),
      387-392
                    (i.e. positions 387, 388, 389, 390, 391, 392),
     406-407
20
     419.
```

Molecular dynamics simulation at 300K and 400K of JP170 reveals the following highly mobile regions:

```
37-42
25
                    (i.e. positions 37, 38, 39, 40, 41, 42),
     57-60
                    (i.e. positions 57, 58, 59, 60),
     66-67.
     98-103
                    (i.e. positions 98, 99, 100, 101, 102, 103).
     107-111
                    (i.e. positions 107, 108, 109, 110, 111),
      188-193
30
                    (i.e. positions 188, 189, 190, 191, 192, 193),
     236-240
                    (i.e. positions 236, 237, 238, 239, 240),
     326-332
                    (i.e. positions 326, 327, 328, 329, 330, 331, 332),
     337-342
                    (i.e. positions 337, 338, 339, 340, 341, 342),
     355-360
                    (i.e. positions 355, 356, 357, 358, 359, 360),
     372-377
35
                    (i.e. positions 372, 373, 374, 375, 376, 377),
```

10

25

30

35

384-388 (i.e. positions 384, 385, 386, 387, 388), 404-411 (i.e. positions 404, 405, 406, 407, 408, 409, 410, 411).

Thus, a preferred JP170 subtilase variant of the present invention has been modified in one or more of the above mentioned positions of SEQ ID NO:1. Further preferred variants comprises one or more alterations in the regions 57-60, 66-67, 107-111, 236-240, 326-332, 355-360, 372-377, 384-388, 404-411. Especially preferred is variant W240H,Y and variants modified in the region 355-360, such as variants comprising one or more of the modifications: G355A,S; S356T,N; T357N,Q,D,E,P; T358S; A359S,T,N,Q and S360T,N.

Variants modified in the region 355-360 may be produced in accordance with the method for random mutagenesis by use of the DOPE program as described herein. To obtain variants comprising 1-3 modifications in region 355-360 one may introduce the substitutions with the following frequencies:

15	wild-type	<u>modified</u>	
	95%	5%	G355A,S
	90%	10%	S356T,N
	80%	20%	T357N,Q,D,E,P
	90%	10%	T358S
.20	80%	20%	A359S,T,N,Q
	80%	20%	S360T,N.

Disulfide bonds:

A JP170 variant of the present invention with improved stability, e.g. thermostability, as compared to the parent JP170 subtilase may be obtained by introducing new inter-domain or intra-domain bonds, such as by establishing inter- or intra-domain disulfide bridges.

Thus a further aspect of the present invention relates to a method for producing a variant of a parent JP170 comprising the methods described in the paragraph "Methods of preparing JP170 like or BPN' like subtilase variants" herein.

According to the guidelines mentioned above the below mentioned amino acid residues identified in the amino acid sequence of SEQ ID NO:1 are considered as being suitable for cysteine replacement. With one or more of these substitutions with cysteine, disulfide bridges may possibly form in a variant of JP170. The substitutions are: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C,

A27C/A122C, A45C/G78C, V72C/P258C, G78C/A229C, D98C/G104C, Q111C/Y147C, G135C/G167C, R142C/P354C, V144C/A178C, G182C/P217C, A183C/G223C, A195C/Y225C, F271C/P279C, A287C/A430C, A293C/S310C, E322C/S428C, S324C/A332C, S327C/P424C, D352C/N397C, G255C/T362C, G291C/S314C.

5 Preferred variants comprise one or more of the substitutions: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C, A4C/P222C and A27C/V117C.

Similar residues suitable for cysteine replacement in subtilases homologous with JP170 can be elucidated by finding the homologous positions in the alignment of Figure 1. Concerning another JP170 like sequence the homologous positions suitable for cysteine replacement can be selected by aligning said JP170 like sequence with all of the sequences of Figure 1 using the GAP analysis method as described above. The suitable residues can then be selected in accordance with the homologous positions in the most homologous of SEQ ID's NO:1, 2 and 3 which are the sequences of the subtilases aligned in Figure 1.

Surface charge distribution

A variant with improved stability (typically improved thermostability) as compared to the parent subtilase may be obtained by changing the surface charge distribution of the subtilase. For example, when the pH is lowered to about 5 or below histidine residues typically become positively charged and, consequently, unfavorable electrostatic interactions on the protein surface may occur. By engineering the surface charge of the subtilase one may avoid such unfavorable electrostatic interactions that in turn lead to a higher stability of the subtilase.

25

30

10

15

20

Therefore, a further aspect of the present invention relates to method for constructing a variant of a parent subtilase, the method comprising:

- a) identifying, on the surface of the parent subtilase, preferably a JP170 like or a BPN' like subtilase, at least one amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His;
- b) substituting, on the surface of the parent subtilase, at least one amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His with an uncharged amino acid residue;
- c) optionally repeating steps a) and b) recursively;

10

15

. 20.

25

30

- d) optionally, making alterations each of which is an insertion, a deletion or a substitution of an amino acid residue at one or more positions other than b);
- e) preparing the variant resulting from steps a) d);
- f) testing the stability of said variant; and
- g) optionally repeating steps a) f) recursively; and
 - h) selecting a subtilase variant having increased stability as compared to the parent subtilase.

As will be understood by the skilled person it may also, in some cases, be advantageous to substitute an uncharged amino acid residue with an amino acid residue bearing a charge or, alternatively, it may in some cases be advantageous to substitute an amino acid residue bearing a charge with an amino acid residue bearing a charge of opposite sign. Thus, the above-mentioned method may easily be employed by the skilled person also for these purposes. In the case of substituting an uncharged amino acid residue with an amino acid residue bearing a charge the above-mentioned method may be employed the only difference being steps a) and b) which will then read:

- a) identifying, on the surface of the parent subtilase, at least one uncharged amino acid residue;
- substituting, on the surface of the parent subtilase, at least one uncharged amino acid residue with a charged amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His.

Also in the case of changing the sign of an amino acid residue present on the surface of the subtilase the above method may be employed. Again, compared to the above method, the only difference being steps a) and b) which, in this case, read:

- a) identifying, on the surface of the parent subtilase, at least one charged amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His;
- substituting, on the surface of the parent subtilase, at least one charged amino acid residue identified in step a) with an amino acid residue having an opposite charge.

Thus, Asp may be substituted with Arg, Lys or His; Glu may be substituted with Arg, Lys or His; Arg may be substituted with Asp or Glu; Lys may be substituted with Asp or Glu; and His may be substituted with Asp or Glu.

20

25

30

In order to determine the amino acid residues of a subtilase, which are present on the surface of the enzyme, the surface accessible area are measured using the DSSP program (Kabsch and Sander, *Biopolymers* (1983), 22, 2577-2637). All residues having a surface accessibilty higher than 0 is regarded a surface residue.

Amino acid residues found on the surface of JP170 using the above method are N76, N316, L381, K246, K9, K313 and K83. We consider the substitutions N79D, N316D and L381D of particular interest for stabilisation by introduction of salt bridges, whereas the substitutions K246R, K9R, K313R and K83R are of particular interest for the stabilisation at high pH.

Similar substitutions may be introduced in equivalent positions of other JP170 like subtilases.

Substitution with proline residues

Improved thermostability of a subtilase can be obtained by subjecting the subtilase in question to analysis for secondary structure, identifying residues in the subtilase having dihedral angles ϕ (phi) and ψ (psi) confined to the intervals [-90°< ϕ <-40° and -180°< ψ <180°], preferably the intervals [-90°< ϕ <-40° and 120°< ψ <180°] or [-90°< ϕ <-40° and -50°< ψ <10°] and excluding residues located in regions in which the subtilase is characterized by possessing α -helical or β -sheet structure.

After the dihedral angles ϕ (phi) and ψ (psi) for the amino acids have been calculated, based on the atomic structure in the crystalline subtilases, it is possible to select position(s) which has/have dihedral phi and psi angles favorable for substitution with a proline residue. The aliphatic side chain of proline residues is bonded covalently to the nitrogen atom of the peptide group. The resulting cyclic five-membered ring consequently imposes a rigid constraint on the rotation about the N-C_{α} bond of the peptide backbone and simultaneously prevents the formation of hydrogen bonding to the backbone N-atom. For these structural reasons, proline residues are generally not compatible with α -helical and β -sheet secondary conformations.

If a proline residue is not already at the identified position(s), the naturally occurring amino acid residue is substituted with a proline residue, preferably by site directed mutagenesis applied on a gene encoding the subtilase in question.

In the group of JP170 like subtilases proline residues can advantageously be introduced at positions 22, 44, 110, 139, 140, 166, 198, 201, 203, 231, 282, 356, 357 and 378. Accordingly, a preferred JP170 variant has one or more of the substitutions: Q22P, E44P, L110P,

T139P, D140P, S166P I198P, V201P, Q203P, S231P, S282P, S356P, T357P and K378P. Especially preferred are variants comprising one or more of: E44P, Q203P and S356P.

Improved activity of JP170 subtilases

As mentioned the JP170 subtilases differ greatly from the BPN' like subtilases in having a long apparently non-catalytic C-terminal. A possible truncation of JP170 is the removal of approx. 115 residues including two ion-binding sites, which can be obtained by deletion of or within the region 311-433, which is non-catalytic C-terminal. Preferred deletions are of the regions 317-433 or 315-433. Preferably the new C-terminal will be within the region of 311-325. Further, the deletion can be optimised with additional substitutions, such as one or more of L283N,Q; A290S,N and W306H,Y,K.

Preferred truncations comprise:

- a) deletion of region 317-433 and the substitutions L283N + A290S + W306H,
- b) deletion of region 315-433 and the substitutions L283N + A290S + W306H.

Substrate binding site

15

20 ·

25

The substrate binding site is identified by the residues in contact with a substrate model, such as the Cl2 inhibitor. The 3D structure coordinates of the JP170 subtilase with Cl2 bound in the active site can be found in Appendix 1. Without being limited to any theory, it is presently believed that binding between a substrate and an enzyme is supported by favorable interactions found within a sphere 10 Å from the substrate molecule. Examples of such favorable bonds are hydrogen bonds, strong electrostatic interaction and/or hydrophobic interactions.

The following residues of the JP170 subtilase (SEQ ID NO:1), are within a distance of 10Å from the CI2 inhibitor which is bound to the substrate binding site. These residues are thus believed to be involved in interactions with said substrate:

```
29-32,
                    (i.e. residues 29, 30, 31, 32)
     64-72,
                    (i.e. residues 64, 65, 66, 67, 68, 69, 70, 71, 72)
     93,
                    (i.e. residues 96, 97, 98)
30
     96-98,
      100-110,
                    (i.e. residues 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110)
     113-114,
     127-136,
                    (i.e. residues 127, 128, 129, 130, 131, 132, 133, 134, 135, 136)
     138-141.
                    (i.e. residues 138, 139, 140, 141)
35
     144, 157, 174,
```

15

20

25

```
180-183, (i.e. residues 180, 181, 182, 183)
191, 193-194,
202-207, (i.e. residues 202, 203, 204, 205, 206, 207)
211,
223-226, (i.e. residues 223, 224, 225, 226)
234-241, (i.e. residues 234, 235, 236, 237, 238, 239, 240, 241)
249-258 (i.e. residues 249, 250, 251, 252, 253, 254, 255, 256, 257, 258).
```

In an embodyment of the present invention a variant comprises a modification in one or more of the above mentioned positions. A preferred variants is W129L.

JP170 with extra ion-binding site

The Strong ion-binding site from the BPN' subtilases can be transplanted into JP170 (or other subtilases in JP170 subgroup) by deletion of N79-N82 and subsequent insertion of LNNSIGV, followed by the substitution A45D,N and optionally the substitutions E44P,T and/or R47Q.

Removal of ion-binding site in JP170

By removing an ion-binding site it is possible to decrease the enzymes dependency of calcium in the media. The ion-binding sites in JP170 (or others from JP170 group) can be removed with guidance from the three-dimensional structure of BPN' and Savinase (or others in BPN' group), and of TY145 like subtilases.

Removal of ion-binding site 1 can be done by deletion of N186-N199 and subsequent insertion of at least three amino acid residues, preferably the sequence SSN. Preferably, but not mandatory one or both of the substitutions I7Q and V3Y is further added.

The ion-binding site 1 can be removed from a wild-type JP170 subtilase or a JP170 subtilase truncated as described above.

Subtilases free of ion-binding sites

With guidance from the three-dimensional structure of JP170 like subtilases and of TY145 like subtilases, the Strong and Weak ion-binding sites in BPN' like subtilases can be removed. Likewise, as described above, with guidance from the three-dimensional structure of BPN' and Savinase (or others in BPN' group), and of TY145 like subtilases, all three ion-binding sites can be removed from the wild-type JP170 subtilase or from JP170 like subti-

15

25

lases. The same approach can be used to remove the ion-binding sites from TY145 like subtilases.

Exemplified in Savinase, the removal can be done by altering the loops A194-L196 and L75-L82 either by a) insertion or deletion of a number of amino acid residues in the loops or b) by deletion of the entire loop or part of the loop and subsequent insertion of a number of residues from a corresponding loop of a JP170 or TY145 like subtilase.

Preferably the ion-binding sites of Savinase can be removed by either

- i) deletion of or in the region A194-L196 (BPN' numbers) and insertion of three or more
 residues chosen from JP170 positions P209-P217 and
 deletion of or in the region L75-L82 (BPN' numbers) and insertion of at least one residue chosen from TY145 positions H83-Y92 or
 - ii) deletion of or in the region A194-L196 (BPN' numbers) and insertion of three or more residues chosen from JP170 positions P209-P217 and deletion of or in the region L75-L82 (BPN' numbers) and insertion of at least one residues chosen from JP170 positions N79-K83.

Combined modifications

The present invention also encompasses any of the above mentioned subtilase variants in combination with any other modification to the amino acid sequence thereof. Especially combinations with other modifications known in the art to provide improved properties to the enzyme are envisaged.

Such combinations comprise the positions: 222 (improves oxidation stability), 218 (improves thermal stability), substitutions in the Ca²⁺-binding sites stabilizing the enzyme, e.g. position 76, and many other apparent from the prior art.

In further embodiments a subtilase variant described herein may advantageously be combined with one or more modification(s) in any of the positions:

30 27, 36, 56, 76, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 120, 123, 159, 167, 170, 206, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 (BPN' numbering).

Specifically, the following BLSAVI, BLSUBL, BSKSMK, and BAALKP modifications are considered appropriate for combination:

K27R, *36D, S56P, N76D, S87N, G97N, S101G, S103A, V104A, V104I, V104N, V104Y, H120D, N123S, G159D, Y167, R170, Q206E, N218S, M222S, M222A, T224S, A232V, K235L, Q236H, Q245R, N248D, N252K and T274A.

Furthermore variants comprising any of the modifications S101G+V104N. S87N+S101G+V104N. K27R+V104Y+N123S+T274A, N76D+S103A+V104I N76D+V104A, or other combinations of the modifications K27R, N76D, S101G, S103A, V104N, V104Y, V104I, V104A, N123S, G159D, A232V, Q236H, Q245R, N248D, N252K, T274A in combination with any one or more of the modification(s) mentioned above exhibit 10 improved properties.

A particular interesting variant is a variant, which, in addition to modifications according to the invention, contains the following substitutions:

S101G+S103A+V104I+G159D+A232V+Q236H+Q245R+N248D+N252K.

Moreover, subtilase variants of the main aspect(s) of the invention are preferably combined with one or more modification(s) in any of the positions 129, 131 and 194, preferably as 129K, 131H and 194P modifications, and most preferably as P129K, P131H and A194P modifications. Any of those modification(s) are expected to provide a higher expression level of the subtilase variant in the production thereof.

Stabilization by modification of Asn-Gly pairs

It is known that at alkaline pH, the side chain of Asn may interact with the NH group of a sequential neighbouring amino acid to form an isoAsp residue where the backbone goes through the Asp side chain. This will leave the backbone more vulnerable to proteolysis. The deamidation is much more likely to occur if the residue that follows is a Gly. Changing the Asn in front of the Gly or the Gly will prevent this from happening and thus improve the stability, especially as concerns thermo- and storage stability.

The invention consequently further relates to a subtilase, in which either or both residues of any of the Asn-Gly sequence appearing in the amino acid sequence of the parent RP-II protease is/are deleted or substituted with a residue of a different amino acid.

The Asn and/or Gly residue may, for instance, be substituted with a residue of an amino acid selected from the group consisting of A, Q, S, P, T and Y.

.. 20...

25

30

10

15

20

25

30

Modification of Tyrosine residues

In relation to wash performance it has been found that the modification of certain tyrosine residues to phenylalanine provides an improved wash performance. Without being bound by any specific theory, it is believed that titration of these Tyr residues in the alkaline wash liquor has negative effects that are alleviated by replacing the Tyr residues with other residues, especially Phe or Trp, particularly Phe.

Methods of preparing JP170 like or BPN' like subtilase variants

The subtilase variants, i.e. the JP170 and BPN' variants of the present invention may be produced by any known method within the art and the present invention also relates to nucleic acid encoding a subtilase variant of the present invention, a DNA construct comprising said nucleic acid sequence.

In general natural occurring proteins may be produced by culturing the organism expressing the protein and subsequently purifying the protein or it may be produced by cloning a nucleic acid, e.g. genomic DNA or cDNA, encoding the protein into an expression vector, introducing said expression vector into a host cell, culturing the host cell and purifying the expressed protein.

Typically protein variants may be produced by site-directed mutagenesis of a parent protein, introduction into expression vector, host cell etc. The parent protein may be cloned from a strain producing the polypeptide or from an expression library, i.e. it may be isolated from genomic DNA or prepared from cDNA, or a combination thereof.

In general standard procedures for cloning of genes and/or introducing mutations (random and/or site directed) into said genes may be used in order to obtain a parent subtilase, or subtilase or subtilase variant of the invention. For further description of suitable techniques reference is made to Molecular cloning: A laboratory manual (Sambrook et al. (1989), Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds.)); Current protocols in Molecular Biology (John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.)); Molecular Biological Methods for Bacillus (John Wiley and Sons, 1990); DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); A Practical Guide To Molecular Cloning (B. Perbal, (1984)) and WO 96/34946.

35 Further, variants could be constructed by:

10

15

20

25

30

Random Mutagenesis

Random mutagenesis is suitably performed either as localized or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a parent subtilase may be conveniently performed by use of any method known in the art.

In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a parent subtilase, wherein the variant exhibits an altered property, such as increased thermostability, increased stability at low pH and at low calcium concentration, relative to the parent subtilase, the method comprising:

- (a) subjecting a DNA sequence encoding the parent subtilase to random mutagenesis,
- (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- (c) screening for host cells expressing a subtilase variant which has an altered property relative to the parent subtilase.

Step (a) of the above method of the invention is preferably performed using doped primers. For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions that are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide

10

15

20

25

30

can be incorporated into the DNA encoding the subtilase enzyme by any published technique, using, e.g., PCR, LCR or any DNA polymerase and ligase as deemed appropriate. Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and modification in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% modifications in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, *inter alia*, ensures that introduction of stop codons is avoided (L.J. Jensen et al. *Nucleic Acid Research*, 26, 697-702 (1998).

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent subtilase enzyme is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., *Technique*, 1, 1989, pp. 11-15).

A mutator strain of *E. coli* (Fowler et al., *Molec. Gen. Genet.*, 133, 1974, 179-191), *S. cereviseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the subtilase by, e.g., transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism.

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent subtilase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harbored in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

10

25

30

Subsequent to the incubation with or exposure to the mutagenising agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, Streptomyces lividans or Streptomyces murinus; and gram negative bacteria such as E. coli.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

Localised random mutagenesis

The random mutagenesis may be advantageously localised to a part of the parent subtilase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localised or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

General method for random mutagenesis by use of the DOPE program

The random mutagenesis may be carried out by the following steps:

- 1. Select regions of interest for modification in the parent enzyme
 - 2. Decide on mutation sites and non-mutated sites in the selected region
 - 3. Decide on which kind of mutations should be carried out, e.g. with respect to the desired stability and/or performance of the variant to be constructed
 - 4. Select structurally reasonable mutations
- 35 5. Adjust the residues selected by step 3 with regard to step 4.

20

25

30

35

- 6. Analyse by use of a suitable dope algorithm the nucleotide distribution.
- 7. If necessary, adjust the wanted residues to genetic code realism, e.g. taking into account constraints resulting from the genetic code, e.g. in order to avoid introduction of stop codons; the skilled person will be aware that some codon combinations cannot be used in practice and will need to be adapted
- 8. Make primers
- 9. Perform random mutagenesis by use of the primers
- 10. Select resulting subtilase variants by screening for the desired improved properties.
- Suitable dope algorithms for use in step 6 are well known in the art. One such algorithm is described by Tomandl, D. et al., 1997, Journal of Computer-Aided Molecular Design 11:29-38. Another algorithm is DOPE (Jensen, LJ, Andersen, KV, Svendsen, A, and Kretzschmar, T (1998) Nucleic Acids Research 26:697-702).

15 Expression vectors

A recombinant expression vector comprising a nucleic acid sequence encoding a subtilase variant of the invention may be any vector that may conveniently be subjected to recombinant DNA procedures and which may bring about the expression of the nucleic acid sequence.

The choice of vector will often depend on the host cell into which it is to be introduced. Examples of a suitable vector include a linear or closed circular plasmid or a virus. The vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini chromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, pACYC184, pUB110, pE194, pTA1060, and pAMß1. Examples of origin of replications for use in a yeast host cell are the 2 micron origin of replication, the combination of CEN6 and ARS4, and the combination of CEN3 and ARS1. The origin of replication may be one having a mutation which makes it function as temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75:1433).

Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Vectors which are integrated into the genome of the host cell may contain any

20

25

nucleic acid sequence enabling integration into the genome, in particular it may contain nucleic acid sequences facilitating integration into the genome by homologous or non-homologous recombination. The vector system may be a single vector, e.g. plasmid or virus, or two or more vectors, e.g. plasmids or virus', which together contain the total DNA to be introduced into the genome of the host cell, or a transposon.

The vector may in particular be an expression vector in which the DNA sequence encoding the subtilase variant of the invention is operably linked to additional segments or control sequences required for transcription of the DNA. The term, "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in a promoter and proceeds through the DNA sequence encoding the subtilase variant. Additional segments or control sequences include a promoter, a leader, a polyadenylation sequence, a propeptide sequence, a signal sequence and a transcription terminator. At a minimum the control sequences include a promoter and transcriptional and translational stop signals.

The promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

Examples of suitable promoters for use in bacterial host cells include the promoter of the *Bacillus subtilis* levansucrase gene (sacB), the *Bacillus stearothermophilus* maltogenic amylase gene (amyM), the *Bacillus licheniformis* alpha-amylase gene (amyL), the *Bacillus amyloliquefaciens* alpha-amylase gene (amyQ), the *Bacillus subtilis* alkaline protease gene, or the *Bacillus pumilus* xylosidase gene, the *Bacillus amyloliquefaciens* BAN amylase gene, the *Bacillus licheniformis* penicillinase gene (penP), the *Bacillus subtilis* xylA and xylB genes, and the prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proceedings of the National Academy of Sciences USA 75:3727-3731). Other examples include the phage Lambda P_R or P_L promoters or the E. coli lac, trp or tac promoters or the Streptomyces coelicolor agarase gene (dagA). Further promoters are described in "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; and in Sambrook et al., 1989, supra.

Examples of suitable promoters for use in a filamentous fungal host cell are promoters obtained from the genes encoding *Aspergillus oryzae* TAKA amylase, *Rhizomucor miehei* aspartic proteinase, *Aspergillus niger* neutral alpha-amylase, *Aspergillus niger* acid stable alpha-amylase, *Aspergillus niger* or *Aspergillus awamon* glucoamylase (glaA), *Rhizomucor miehei* lipase, *Aspergillus oryzae* alkaline protease, *Aspergillus oryzae* triose phosphate isomerase, *Aspergillus nidulans* acetamidase, *Fusarium oxysporum* trypsin-like protease

15

20

(as described in U.S. Patent No. 4,288,627, which is incorporated herein by reference), and hybrids thereof. Particularly preferred promoters for use in filamentous fungal host cells are the TAKA amylase, NA2-tpi (a hybrid of the promoters from the genes encoding *Aspergillus niger* neutral (-amylase and *Aspergillus oryzae* triose phosphate isomerase), and glaA promoters. Further suitable promoters for use in filamentous fungus host cells are the ADH3 promoter (McKnight et al., The EMBO J. 4 (1985), 2093 - 2099) or the tpiA promoter. Examples of suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255 (1980), 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1 (1982), 419 - 434) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al., eds.), Plenum Press, New York, 1982), or the TPI1 (US 4,599,311) or ADH2-4c (Russell et al., Nature 304 (1983), 652 - 654) promoters.

Further useful promoters are obtained from the *Saccharomyces cerevisiae* enolase (ENO-1) gene, the *Saccharomyces cerevisiae* galactokinase gene (GAL1), the *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the *Saccharomyces cerevisiae* 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8:423-488. In a mammalian host cell, useful promoters include viral promoters such as those from Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus, and bovine papilloma virus (BPV).

Examples of suitable promoters for use in mammalian cells are the SV40 promoter (Subramani et al., Mol. Cell Biol. 1 (1981), 854-864), the MT-1 (metallothionein gene) promoter (Palmiter et al., Science 222 (1983), 809 - 814) or the adenovirus 2 major late promoter.

An example of a suitable promoter for use in insect cells is the polyhedrin promoter (US 4,745,051; Vasuvedan et al., FEBS Lett. 311, (1992) 7 - 11), the P10 promoter (J.M. Vlak et al., J. Gen. Virology 69, 1988, pp. 765-776), the Autographa californica polyhedrosis virus basic protein promoter (EP 397 485), the baculovirus immediate early gene 1 promoter (US 5,155,037; US 5,162,222), or the baculovirus 39K delayed-early gene promoter (US 5,155,037; US 5,162,222).

The DNA sequence encoding a subtilase variant of the invention may also, if necessary, be operably connected to a suitable terminator.

The recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.

15

20

25

30

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e.g. antibiotics like ampicillin, kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, neomycin, hygromycin, methotrexate, or resistance to heavy metals, virus or herbicides, or which provides for prototrophy or auxotrophs. Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, resistance. A frequently used mammalian marker is the dihydrofolate reductase gene (DHFR). Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. A selectable marker for use in a filamentous fungal host cell may be selected from the group including, but not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), trpC (anthranilate synthase), and glufosinate resistance markers, as well as equivalents from other species. Particularly, for use in an Aspergillus cell are the amdS and pyrG markers of Aspergillus nidulans or Aspergillus oryzae and the bar marker of Streptomyces hygroscopicus. Furthermore, selection may be accomplished by co-transformation, e.g., as described in WO 91/17243, where the selectable marker is on a separate vector.

To direct a subtilase variant of the present invention into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector. The secretory signal sequence is joined to the DNA sequence encoding the enzyme in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the enzyme. The secretory signal sequence may be that normally associated with the enzyme or may be from a gene encoding another secreted protein.

The procedures used to ligate the DNA sequences coding for the present enzyme, the promoter and optionally the terminator and/or secretory signal sequence, respectively, or to assemble these sequences by suitable PCR amplification schemes, and to insert them into suitable vectors containing the information necessary for replication or integration, are well known to persons skilled in the art (cf., for instance, Sambrook et al.)

More than one copy of a nucleic acid sequence encoding an enzyme of the present invention may be inserted into the host cell to amplify expression of the nucleic acid sequence. Stable amplification of the nucleic acid sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome using methods well known in the art and selecting for transformants.

The nucleic acid constructs of the present invention may also comprise one or more nucleic acid sequences which encode one or more factors that are advantageous in the expression of the polypeptide, e.g., an activator (e.g., a trans-acting factor), a chaperone, and a processing protease. Any factor that is functional in the host cell of choice may be used in the present invention. The nucleic acids encoding one or more of these factors are not necessarily in tandem with the nucleic acid sequence encoding the polypeptide.

Host cells

10

15

25

30

35

The DNA sequence encoding a subtilase variant of the present invention may be either homologous or heterologous to the host cell into which it is introduced. If homologous to the host cell, i.e. produced by the host cell in nature, it will typically be operably connected to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment. The term "homologous" is intended to include a DNA sequence encoding an enzyme native to the host organism in question. The term "heterologous" is intended to include a DNA sequence not expressed by the host cell in nature. Thus, the DNA sequence may be from another organism, or it may be a synthetic sequence.

The host cell into which the DNA construct or the recombinant vector of the invention is introduced may be any cell that is capable of producing the present subtilase variants, such as prokaryotes, e.g. bacteria or eukaryotes, such as fungal cells, e.g. yeasts or filamentous fungi, insect cells, plant cells or mammalian cells.

Examples of bacterial host cells which, on cultivation, are capable of producing the subtilase variants of the invention are gram-positive bacteria such as strains of Bacillus, e.g. strains of B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or strains of Streptomyces, such as S. lividans or S. murinus, or gramnegative bacteria such as Escherichia coli or Pseudomonas sp.

The transformation of the bacteria may be effected by protoplast transformation, electroporation, conjugation, or by using competent cells in a manner known per se (cf. Sambrook et al., supra).

When expressing the subtilase variant in bacteria such as *E. coli*, the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or it may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be

10

15

20 .

25

30

35

recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.

When expressing the subtilase variant in gram-positive bacteria such as *Bacillus* or *Streptomyces* strains, the enzyme may be retained in the cytoplasm, or it may be directed to the extracellular medium by a bacterial secretion sequence. In the latter case, the enzyme may be recovered from the medium as described below.

Examples of host yeast cells include cells of a species of Candida, Kluyveromyces, Saccharomyces, Schizosaccharomyces, Pichia, Hansehula, or Yarrowia. In a particular embodiment, the yeast host cell is a Saccharomyces carlsbergensis. Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis or Saccharomyces oviformis cell. Other useful yeast host cells are a Kluyveromyces lactis, Kluyveromyces fragilis, Hansehula polymorpha, Pichia pastoris, Yarrowia lipolytica, Schizosaccharomyces pombe, Ustilgo maylis, Candida maltose, Pichia guillermondii and Pichia methanolio cell (cf. Gleeson et al., J. Gen. Microbiol. 132, 1986, pp. 3459-3465; US 4,882,279 and US 4,879,231). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980. The biology of yeast and manipulation of yeast genetics are well known in the art (see, e.g., Biochemistry and Genetics of Yeast, Bacil, M., Horecker, B.J., and Stopani, A.O.M., editors, 2nd edition, 1987; The Yeasts, Rose, A.H., and Harrison, J.S., editors, 2nd edition, 1987; and The Molecular Biology of the Yeast Saccharomyces, Strathern et al., editors, 1981). Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153:163; and Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920.

Examples of filamentous fungal cells include filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra), in particular it may of the a cell of a species of Acremonium, such as A. chrysogenum, Aspergillus, such as A. awamori, A. foetidus, A. japonicus, A. niger, A. nidulans or A. oryzae, Fusarium, such as F. bactridioides, F. cerealis, F. crookwellense, F. culmorum, F. graminearum, F. graminum, F. heterosporum, F. negundi, F. reticulatum, F. roseum, F. sambucinum, F. sarcochroum, F. sulphureum, F. trichothecioides or F. oxysporum, Humicola, such as H. insolens or H. lanuginose, Mucor, such as M. miehei, Myceliophthora, such as M. thermophilum, Neuro-

30

35

spora, such as N. crassa, Penicillium, such as P. purpurogenum, Thielavia, such as T. terrestris, Tolypocladium, or Trichoderma, such as T. harzianum, T. koningii, T. longibrachiatum, T. reesei or T. viride, or a teleomorph or synonym thereof. The use of Aspergillus spp. for the expression of proteins is described in, e.g., EP 272 277, EP 230 023.

Examples of insect cells include a *Lepidoptera* cell line, such as *Spodoptera frugiperda* cells or *Trichoplusia ni* cells (cf. US 5,077,214). Culture conditions may suitably be as described in WO 89/01029 or WO 89/01028. Transformation of insect cells and production of heterologous polypeptides therein may be performed as described in US 4,745,051; US 4, 775, 624; US 4,879,236; US 5,155,037; US 5,162,222; EP 397,485).

Examples of mammalian cells include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, COS cells, or any number of other immortalized cell lines available, e.g., from the American Type Culture Collection. Methods of transfecting mammalian cells and expressing DNA sequences introduced in the cells are described in e.g. Kaufman and Sharp, J. Mol. Biol. 159 (1982), 601 - 621; Southern and Berg, J. Mol. Appl.
Genet. 1 (1982), 327 - 341; Loyter et al., Proc. Natl. Acad. Sci. USA 79 (1982), 422 - 426; Wigler et al., Cell 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., N.Y., 1987, Hawley-Nelson et al., Focus 15 (1993), 73; Ciccarone et al., Focus 15 (1993), 80; Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al., EMBO J. 1 (1982), 841 - 845. Mammalian cells may be transfected by direct uptake using the calcium phosphate precipitation method of Graham and Van der Eb (1978, Virology 52:546).

Methods for expression and isolation of proteins

To express an enzyme of the present invention the above mentioned host cells transformed or transfected with a vector comprising a nucleic acid sequence encoding an enzyme of the present invention are typically cultured in a suitable nutrient medium under conditions permitting the production of the desired molecules, after which these are recovered from the cells, or the culture broth.

The medium used to culture the host cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The media may be prepared using procedures known in the art (see, e.g., references for bacteria and yeast; Bennett, J.W. and LaSure, L., editors, More Gene Manipulations in Fungi, Academic Press, CA, 1991).

10

15

20

25

30

35

If the enzymes of the present invention are secreted into the nutrient medium, they may be recovered directly from the medium. If they are not secreted, they may be recovered from cell lysates. The enzymes of the present invention may be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gelfiltration chromatography, affinity chromatography, or the like, dependent on the enzyme in question.

The enzymes of the invention may be detected using methods known in the art that are specific for these proteins. These detection methods include use of specific antibodies, formation of a product, or disappearance of a substrate. For example, an enzyme assay may be used to determine the activity of the molecule. Procedures for determining various kinds of activity are known in the art.

The enzymes of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction (see, e.g., Protein Purification, J-C Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

When an expression vector comprising a DNA sequence encoding an enzyme of the present invention is transformed/transfected into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme. An advantage of using a heterologous host cell is that it is possible to make a highly purified enzyme composition, characterized in being free from homologous impurities, which are often present when a protein or peptide is expressed in a homologous host cell. In this context homologous impurities mean any impurity (e.g. other polypeptides than the enzyme of the invention) which originates from the homologous cell where the enzyme of the invention is originally obtained from.

DETERGENT APPLICATIONS

The enzyme of the invention may be added to and thus become a component of a detergent composition.

The detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be

10

15

.20

25

30

35

formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.

In a specific aspect, the invention provides a detergent additive comprising the enzyme of the invention. The detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e.g., a laccase, and/or a peroxidase.

In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.

<u>Proteases</u>: Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from *Bacillus*, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the *Fusarium* protease described in WO 89/06270 and WO 94/25583.

Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274.

Preferred commercially available protease enzymes include Alcalase[™], Savinase[™], Primase[™], Duralase[™], Esperase[™], and Kannase[™] (Novo Nordisk A/S), Maxatase[™], Maxacal[™], Maxapem[™], Properase[™], Purafect[™], Purafect OxP[™], FN2[™], and FN3[™] (Genencor International Inc.).

<u>Lipases</u>: Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from *Humicola* (synonym *Thermomyces*), e.g. from *H. lanuginosa* (*T. lanuginosus*) as described in EP 258 068 and EP 305 216 or from *H. insolens* as described in WO 96/13580, a *Pseudomonas* lipase, e.g. from *P. alcaligenes* or *P. pseudoalcaligenes* (EP 218 272), *P. cepacia* (EP 331 376), *P. stutzeri* (GB 1,372,034), *P. fluorescens*, *Pseudomonas sp.* strain SD 705 (WO 95/06720 and WO 96/27002), *P. wisconsinensis* (WO 96/12012), a *Bacillus*

10

15

30

lipase, e.g. from *B. subtilis* (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), *B. stearothermophilus* (JP 64/744992) or *B. pumilus* (WO 91/16422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.

Preferred commercially available lipase enzymes include Lipolase[™] and Lipolase Ultra[™] (Novo Nordisk A/S).

Amylases: Suitable amylases (α and/or β) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, α -amylases obtained from *Bacillus*, e.g. a special strain of *B. licheniformis*, described in more detail in GB 1,296,839.

Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.

Commercially available amylases are Duramyl[™], Termamyl[™], Fungamyl[™] and BAN[™] (Novo Nordisk A/S), Rapidase[™] and Purastar[™] (from Genencor International Inc.).

20 <u>Cellulases</u>: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera *Bacillus*, *Pseudomonas*, *Humicola*, *Fusarium*, *Thielavia*, *Acremonium*, e.g. the fungal cellulases produced from *Humicola insolens*, *Myceliophthora thermophila* and *Fusarium oxysporum* disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757 and WO 89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.

Commercially available cellulases include Celluzyme[™], and Carezyme[™] (Novo Nordisk A/S), Clazinase[™], and Puradax HA[™] (Genencor International Inc.), and KAC-500(B)[™] (Kao Corporation).

15

30

35

Peroxidases/Oxidases: Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.

5 Commercially available peroxidases include Guardzyme™ (Novo Nordisk A/S).

The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e. a separate additive or a combined additive, can be formulated e.g. as a granulate, a liquid, a slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.

Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials 20 suitable for application by fluid bed techniques are given in GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.

The detergent composition of the invention may be in any convenient form, e.g., a bar, a 25 tablet, a powder, a granule, a paste or a liquid. A liquid detergent may be aqueous, typically containing up to 70 % water and 0-30 % organic solvent, or non-aqueous.

The detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants are typically present at a level of from 0.1% to 60% by weight.

When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.

10

15

20

25

30

When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides").

The detergent may contain 0-65 % of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst).

The detergent may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-Noxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

The detergent may contain a bleaching system which may comprise a H₂O₂ source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of e.g. the amide, imide, or sulfone type.

The enzyme(s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.

The detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.

In the detergent compositions any enzyme, in particular the enzyme of the invention, may be added in an amount corresponding to 0.01-100 mg of enzyme protein per litre of wash liquor, preferably 0.05-5 mg of enzyme protein per litre of wash liquor, in particular 0.1-1 mg of enzyme protein per litre of wash liquor.

The enzyme of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference.

5

10

15

20

25

MATERIALS AND METHODS

Textiles

Standard textile pieces are obtained from EMPA St. Gallen, Lerchfeldstrasse 5, CH-9014 St. Gallen, Switzerland. Especially type EMPA 116 (cotton textile stained with blood, milk and ink) and EMPA 117 (polyester/cotton textile stained with blood, milk and ink).

Method for producing a subtilase variant

The present invention provides a method of producing an isolated enzyme according to the invention, wherein a suitable host cell, which has been transformed with a DNA sequence encoding the enzyme, is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.

When an expression vector comprising a DNA sequence encoding the enzyme is transformed into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme of the invention. Thereby it is possible to make a highly purified subtilase composition, characterized in being free from homologous impurities.

The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed subtilase may conveniently be secreted into the culture medium and may be recovered there-from by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

30

35

EXAMPLE 1

Removal of ion-binding sites from BPN' like subtilases

The below mentioned regions in JP170 and TY145 have been selected for transfer from JP170 and TY145 to Savinase. By use of the molecular methods of preparing subtilase variants as described herein, the Savinase regions (BPN' numbering) are deleted and the

JP170 and TY145 regions are inserted instead. Since the Savinase regions are in contact with ion-binding sites, the purpose of the modifications is to remove the ion-binding site from Savinase.

5 Savinase

region A194-L196

JP170

region P209-P217 and

Savinase

region L75-L82

TY145

region H83-Y92,

10 alternatively the modification can be

Savinase

region A194-L196

JP170

region P209-P217 and

Savinase

region L75-L82

15 JP170

20

25

region N79-K83.

EXAMPLE 2

Purification and assessment of enzyme concentration

After fermentation, purification of subtilisin variants is accomplished using Hydrophobic Charge Induction Chromatography (HCIC) and subsequent vacuum filtration.

To capture the enzyme, the HCIC uses a cellulose matrix to which 4-Mercapto-Ethyl-Pyridine (4-MEP) is bound.

Beads of the cellulose matrix sized 80-100 µm are mixed with a media containing yeast and the transformed *B. subtilis* capable of secreting the subtilisin variants and incubated at pH 9.5 in Unifilter® microplates.

As 4-MEP is hydrophobic at pH > 7 and the subtilisin variants are hydrophobic at pH 9.5 a hydrophobic association is made between the secreted enzyme and the 4-MEP on the beads. After incubation the media and cell debris is removed by vacuum filtration while the beads and enzyme are kept on the filter.

To elute the enzyme from the beads the pH is now lowered by washing the filter with an elution buffer (pH 5). Hereby the enzymes part from the beads and can be retrieved from the buffer.

The concentration of the purified subtilisin enzyme variants is assessed by active site titration (AST).

The purified enzyme is incubated with the high affinity inhibitor CI-2A at different concentrations to inhibit a varying amount of the active sites. The protease and inhibitor binds to each other at a 1:1 ratio and accordingly the enzyme concentration can be directly related to the concentration of inhibitor, at which all protease is inactive. To measure the residual protease activity, a substrate (0.6 mM Suc-Ala-Ala-Pro-Phe-pNA in Tris/HCI buffer) is added after the incubation with inhibitor and during the following 4 minutes the development of the degradation product pNA (paranitrophenol) is measured periodically at 405 nm on an Elisa Reader.

EXAMPLE 3

10

15

20

25

Wash performance of detergent compositions comprising modified enzymes

Wash performance of detergent compositions comprising enzyme hybrids or enzyme variants of the present is tested at low washing temperature.

AMSA

The enzyme variants of the present application are tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress. For further description see WO 02/42740 especially the paragraph "Special method embodiments" at page 23-24.

The assay is conducted under the experimental conditions specified below:

Detergent base	Standard European detergent
Detergent dosage	1.5 g/l
Test solution volume	160 micro I
рН	10-10.5 adjusted with NaHCO₃
Wash time	12 minutes
Temperature	20°C

Water hardness	9°dH
Enzyme concentration in test solution	5 nM, 10 nM and 30 nM
Test material	EMPA 117

After washing the textile pieces are flushed in tap water and air-dried.

The performance of the enzyme variant is measured as the brightness of the colour of the textile samples washed with that specific enzyme variant. Brightness can also be expressed as the intensity of the light reflected from the textile sample when luminated with white light. When the textile is stained the intensity of the reflected light is lower, than that of a clean textile. Therefore the intensity of the reflected light can be used to measure wash performance of an enzyme variant.

Colour measurements are made with a professional flatbed scanner (*PFU DL2400pro*), which is used to capture an image of the washed textile samples. The scans are made with a resolution of 200 dpi and with an output colour dept of 24 bits. In order to get accurate results, the scanner is frequently calibrated with a *Kodak reflective IT8 target*.

To extract a value for the light intensity from the scanned images, a special designed software application is used (*Novozymes Color Vector Analyzer*). The program retrieves the 24 bit pixel values from the image and converts them into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

$$Int = \sqrt{r^2 + g^2 + b^2}$$

20

25

30

10

15

The wash performance (P) of the variants is calculated in accordance with the below formula:

$$P = Int(v) - Int(r)$$

where

Int(v) is the light intensity value of textile surface washed with enzyme variant and Int(r) is the light intensity value of textile surface washed with the reference enzyme e.g. subtilisin 309 (BLSAVI).

Performance Scores (S) are summing up the performances (P) of the tested enzyme variants as:

S (2) which indicates that the variant performs better than the reference at all three

concentrations (5, 10 and 30 nM) and

S (1) which indicates that the variant performs better than the reference at one or two concentrations.

5 Mini wash assay

A millilitre scale wash performance assay is conducted under the following conditions:

Detergent base	Standard European detergent powder
Detergent dose	1.5 g/l
pН	"as is" in the current detergent solution and is not adjusted.
Wash time	14 min.
Temperature	20°C
Water hardness	9°dH, adjusted by adding CaCl ₂ *2H ₂ O; MgCl ₂ *6H ₂ O; Na-HCO ₃ (Ca ²⁺ :HCO ³⁻ = 2:1:6) to milli-Q water.
Enzyme conc.	5 nM, 10 nM
Test system	125 ml glass beakers. Textile dipped in test solution. Continuously up and down, 50 times per minute
Textile/volume	1 textile piece (13 x 3 cm) in 50 ml test solution
Test material	EMPA 117 textile swatches

After wash the measurement of remission from the test material is done at 460 nm using a

Zeiss MCS 521 VIS spectrophotometer. The measurements are done according to the
manufacturer's protocol.

CLAIMS

10

15

20

25

- 1. A JP170 like subtilase which is at least 58% homologous to the sequence of SEQ ID NO:1, comprising the overall subtilisin fold and the following structural characteristics:
- 5 a) a twisted beta-sheet with 7 strands,
 - b) six alpha helices,
 - c) three ion-binding sites, and not comprising the Strong and Weak ion-binding sites of the BPN' like subtilases, and with the exception of the subtilases JP170, KP1790, KP9860, KP43, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233.
 - 2. The subtilase of claim 1, wherein the positions of said three ion-binding sites in the three-dimensional structure of the subtilase is defined by the distance to the c-alpha atoms of the three active site amino acid residues of the subtilases, that is Ser, His and Asp, and the c-alpha atom of the amino acid residue next to the active site Ser residue (next to Ser), wherein said distances between:
 - a) ion-binding site 1 and i) Asp c-alpha atom is 26.70-28.70Å, ii) His c-alpha atom is 22.10-24.10Å, iii) Ser c-alpha atom is 16.95-18.95Å, iv) next to Ser c-alpha atom is 15.30-17.30Å,
 - b) ion-binding site 2 and i) Asp c-alpha atom is 33.50-35.50Å, ii) His c-alpha atom is 37-39Å, iii) Ser c-alpha atom is 29.40-31.40Å, iv) next to Ser c-alpha atom is 30.70-32.70Å,
 - c) ion-binding site 3 and i) Asp c-alpha atom is 41.50-43.50Å, ii) His c-alpha atom is 42.90-44.90Å, iii) Ser c-alpha atom is 34.50-36.50Å, iv) next to Ser c-alpha atom is 35-37Å.
 - 3. A subtilase according to claim 2 wherein the positions of the three ion-binding sites are defined by the distance to the c-alpha atoms of amino acid residues Asp30, His68, Ser254 and Met255 of SEQ ID NO:1 or by the distances to the c-alpha atoms of equivalent amino acid residues in another subtilase of the invention in accordance with claim 1, wherein the distance between
 - a) ion-binding site 1 and i) Asp c-alpha atom is 27.69Å, ii) His c-alpha atom is 23.12Å, iii) Ser c-alpha atom is 17.95Å, iv) next to Ser c-alpha atom is 16.34Å,
- b) ion-binding site 2 and i) Asp c-alpha atom is 34.49Å, ii) His c-alpha atom is 38.03Å, iii)

15

20

Ser c-alpha atom is 30.41Å, iv) next to Ser c-alpha atom is 31.68Å,

c) ion-binding site 3 and i) Asp c-alpha atom is 42.48Å, ii) His c-alpha atom is 43.87Å, iii) Ser c-alpha atom is 35.51Å, iv) next to Ser c-alpha atom is 36.02Å, and wherein the variation on the above mentioned distances are ±0.80Å, preferably ±0.70Å, more preferably ±0.60Å, more preferably ±0.50Å, more preferably ±0.40Å, or most preferably ±0.30Å.

- 4. A method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
 - a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 subtilase to produce a three-dimensional structure of the parent JP170 like subtilase:
 - b) identifying on the basis of the comparison in step a) at least one structural part of the parent JP170 subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
 - c) modifying the nucleic acid sequence encoding the parent JP170 subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - d) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 subtilase;
 - e) isolating the produced subtilase;
 - f) purifying the isolated subtilase and
- 25 g) recovering the purified subtilase.
 - 5. A method according to claim 4, wherein the JP170 subtilase on which the parent JP170 subtilase is modelled in step a) is at least 58% homologous to SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.

- 6. A method according to claim 4 or 5, wherein the JP170 subtilase on which the parent JP170 subtilase is modelled in step a) is defined in accordance with claim 3.
- 7. A method of producing a variant of a parent Subtilisin family subtilase, the variant having at least one altered property as compared to the parent Subtilisin family subtilase, the method comprising:
 - a) modelling the parent Subtilisin family subtilase on the three-dimensional structure of a Subtilisin family subtilase to produce a three-dimensional structure of the parent Subtilisin family subtilase:
- b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a JP170 like subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent Subtilisin family subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- d) modifying the nucleic acid sequence encoding the parent Subtilisin family subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant Subtilisin family subtilase,
 - f) isolating the produced subtilase,
 - g) purifying the isolated subtilase and
 - h) recovering the purified subtilase.
- 8. A method according to claim 7, wherein the Subtilisin family subtilase on which the parent Subtilisin family subtilase is modelled in step a) is at least 61% homologous to SEQ ID NO:4, preferably at least 63% homologous, preferably at least 65% homologous, more preferably at least 70%, more preferably at least 74%, more preferably at least 80%, more preferably at least 91%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:4.

10

15

20

- 9. A method according to any of claim 7 and 8, wherein the JP170 subtilase of step b) is defined in accordance with claim 3.
- 10. A method according to any of claims 7-9, wherein the JP170 subtilase in step b) is at least 58% homologous with the sequence of SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.
- 11. A method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
- a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 like subtilase to produce a three-dimensional structure of the parent JP170 like subtilase;
- b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a Subtilisin family subtilase;
 - identifying on the basis of the comparison in step b) at least one structural part of the parent JP170 like subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
 - d) modifying the nucleic acid sequence encoding the parent JP170 like subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 like subtilase;
- 30 f) isolating the produced subtilase;
 - g) purifying the isolated subtilase and
 - h) recovering the purified subtilase.
- 12. A method according to claim 11, wherein the Subtilisin family subtilase of step b) is at least 61% homologous to SEQ ID NO:4, preferably at least 63% homologous, preferably at

10

15

25

30

least 65% homologous, more preferably at least 70%, more preferably at least 74%, more preferably at least 80%, more preferably at least 83%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:4.

- 13. A method according to any of claim 11 and 12, wherein the parent JP170 like subtilase is defined in accordance with claim 3.
- 14. A method according to any of claims 11-13, wherein the parent JP170 like subtilase is at least 58% homologous with the sequence of SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 85%, more preferably at least 95%, more preferably at least 92%, more preferably at least 92%, more preferably at least 93%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.
- 15. A variant subtilase comprising an alteration in one or more positions located at a distance of not more than 10Å to one of the ion-binding sites of JP170, wherein the positions, as specified in SEQ ID NO:1, located at a distance of not more than 10Å to:
 - a) ion-binding site 1 are: 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 224 and 225,
 - b) ion-binding site 2 are: 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392 and 393,
 - c) ion-binding site 3 are: 348, 350, 352, 363, 364, 365, 366, 367, 368, 369, 370, 380, 381, 382, 383, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 414, 415, 416, 417, 418, 419, 420.
 - 16. A subtilase variant according to claim 15 comprising one or more of the substitutions: S193Q,Y; H200D,N; H200D,N+D196N; N390D; N391D; G394N,Q,F,Y,S and W392S,N,Q.
- 17. A JP170 like subtilase variant comprising the introduction of a ion-binding site corresponding to the Strong ion-binding site of the BPN' like family subtilases, wherein said vari-

15

20

25

ant has a deletion of or in the region N79-N82 of SEQ ID NO:1 and subsequent insertion of one or more amino acid residues, preferably insertion of the sequence LNNSIQV followed by the substitution A45D,N and optionally the substitutions E44P,T and/or R47Q.

- 18. A JP170 like subtilase variant in which one or more ion-binding sites have been removed, wherein said variant comprises deletion of or in the region N186-N199 of SEQ ID NO:1 and subsequent insertion of one or more amino acid residues, preferably insertion of the sequence SSN, and preferably further comprising one or both of the substitutions I7Q and V3Y.
 - 19. A BPN' like subtilase variant in which the ion-binding sites has been removed, wherein said variant comprises:
 - a) deletion of or in the region A194-L196 (Savinase in BPN' numbering) or a corresponding region in another BPN' like subtilase and insertion of three or more amino acid residues, preferably insertion of P209-P217 from JP170 or a corresponding region in another JP170 like subtilase and deletion of or in the region L75-L82 (Savinase in BPN' numbering) or a corresponding region in said other BPN' like subtilase and insertion of one or more amino acid residues, preferably insertion of H83-Y92 from TY145 or a corresponding region in another TY145 like subtilase or
 - b) deletion of or in the region A194-L196 (Savinase in BPN' numbering) or a corresponding region in another BPN' like subtilase and insertion of three or more amino acid residues, preferably insertion of P209-P217 from JP170 or a corresponding region in another JP170 like subtilase and deletion of or in the L75-L82 (Savinase in BPN' numbering) or a corresponding region in said other BPN' like subtilase and insertion of one or more amino acid residues, preferably insertion of N79-K83 from JP170 or a corresponding region in another JP170 like subtilase.
- 20. A JP170 like subtilase variant comprising an alteration in one or more of the following positions:

13, 14, 15, 16, 17, 18,

37, 38, 39, 40, 41, 42, 43,

47, 48, 49, 50,

35 57, 58, 59,

```
96, 97, 98, 99, 100, 101, 102, 103, 131, 132, 133, 134, 152, 153 162, 163, 164, 165, 166, 5 188, 189, 190, 191, 192, 193, 194, 195, 210 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 372, 373, 374, 375, 376, 377, 378, 387, 388, 389, 390, 391, 392, 10 406, 407 and 419.
```

21. A JP170 like subtilase variant comprising an alteration in one or more of the following positions:

37, 38, 39, 40, 41, 42, 15 57, 58, 59, 60, 66, 67, 98, 99, 100, 101, 102, 103, 107, 108, 109, 110, 111, 188, 189, 190, 191, 192, 193, 20 236, 237, 238, 239, 240, 326, 327, 328, 329, 330, 331, 332, 337, 338, 339, 340, 341, 342, 355, 356, 357, 358, 359, 360, 25 372, 373, 374, 375, 376, 377, 384, 385, 386, 387, 388, 404, 405, 406, 407, 408, 409, 410, 411.

- 22. A subtilase variant according to claim 21 comprising one or more of the modifications: W240H,Y; G355A,S; S356T,N; T357N,Q,D,E,P; T358S; A359S,T,N,Q and S360T,N.
- 23. A variant subtilase comprising an alteration in one or more positions which are within a distance of 10Å from a CI2 inhibitor which is bound to the active site of JP170, wherein the positions, as specified in SEQ ID NO:1 are:

15

20

25

29, 30, 31, 32, 64, 65, 66, 67, 68, 69, 70, 71, 72, 93, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 114, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 144, 157, 174, 180, 181, 182, 183, 191, 193, 194, 202, 203, 204, 205, 206, 207, 211, 223, 224, 225, 226, 234, 235, 236, 237, 238, 239, 240, 241, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, preferably comprising the substitution W129L.

24. A JP170 like subtilase variant comprising one or more disulfide bridges introduced by one or more of the following modifications: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C, A27C/A122C, A45C/G78C, V72C/P258C, G78C/A229C, D98C/G104C, Q111C/Y147C, G135C/G167C, R142C/P354C, V144C/A178C, G182C/P217C. A183C/G223C, A195C/Y225C, F271C/P279C, A287C/A430C, A293C/S310C, E322C/S428C, S324C/A332C, S327C/P424C, D352C/N397C, G255C/T362C, G291C/S314C, A4C/P222C and A27C/V117C, wherein the positions correspond to the positions in SEQ ID NO:1

25. A JP170 like subtilase variant comprising an alteration in one or more of the positions N76, N316, L381, K246, K9, K313 and K83, preferably comprising one or more of the substitutions N79D, N316D, L381D, K246R, K9R, K313R and K83R of SEQ ID NO:1.

26. A JP170 like subtilase variant comprising an alteration in one or more of the positions 22, 44, 110, 139, 140, 166, 198, 201, 203, 231, 282, 356, 357 and 378, preferably comprising one or more of the substitutions: Q22P, E44P, L110P, T139P, D140P, S166P I198P, V201P, Q203P, S231P, S282P, S356P, T357P and K378P.

27. A JP170 like subtilase variant comprising a deletion of the region 311-433, preferably deletion of positions 317-433 or 315-433, further comprising one or more of the substitutions L283N,Q; A290S,N and W306H,Y,K.

- 30 28. A subtilase variant according to claim 27, comprising
 - a) deletion of positions 317-433 and the substitutions L283N, A290S and W306H, or
 - b) deletion of region 315-433 and the substitutions L283N, A290S and W306H.
- 29. An isolated nucleic acid sequence comprising a nucleic acid sequence, which encodes
 for the subtilase variant defined or produced in any of the preceding claims.

15

- 30. An isolated nucleic acid sequence according to claim 29, wherein the nucleic acid sequence is selected form the group consisting of:
- a) a nucleic acid sequence encoding an enzyme having at least 58% homology with the amino acid sequence shown in SEQ ID NO:1, and
- b) a nucleic acid sequence which hybridizes under low stringency conditions, preferably under medium stringency conditions, in particular under high stringency conditions, with a complementary strand of the nucleic acid sequence encoding an enzyme having at least 58% homology with the amino acid sequence shown in SEQ ID NO:1, or
- 10 c) a subsequence of any of a) or b) of at least 100 nucleotides.
 - 31. An isolated nucleic acid construct comprising a nucleic acid sequence as defined in any of claims 29-30, operably linked to one or more control sequences capable of directing the expression of the polypeptide in a suitable expression host.
 - 32. A recombinant host cell comprising the nucleic acid construct of claim 31.
 - 33. A method for producing the variant defined in any of the preceding claims, the method comprising:
- 20 a) cultivating the recombinant host cell of claim 32 under conditions conducive to the production of the subtilase variant; and
 - b) recovering the variant.
 - 34. A detergent composition comprising a JP170 like subtilase variant or a BPN' like subtilase variant.
 - 35. Use of a JP170 like subtilase variant or a BPN' like subtilase variant in cleaning or washing applications.

Modtaget PVS

2 1 MRS. 2003

ABSTRACT

The present invention relates to methods for producing variants of a parent JP170 subtilase and of a parent BPN' subtilase and to JP170 and BPN' variants having altered properties as compared to the parent JP170/BPN' subtilase.

5

10

15

20 ...

25

30

2 1 MRS. 2003

Figure 1, Alignment of 3D sequences of protease JP170 (mature sequence from App. 1), SD-521 (aam50084 from EP 1209233) and protease Y (aay44619 from WO99/67370).

		1				
5	aam50084	_	DUNONBRIGIA	G0G0:#:***	mar pmanima	50
J			DVAQNNYGLY			
	aay44619		DVAQNNYGLY			
	JP170	NDVARGIVKA	DVAQNNFGLY	GOGQIVAVAD	TGLDTGRNDS	SMHEAFRGKI
		r				
10	50004	51				100
10	aam50084		NANDPNGHGT			
	aay44619		NASDPNGHGT		_	
	JP170	TALYALGRIN	NANDPNGHGT	HVAGSVLGNA	TNKGMAPQAN	LVFQSIMDSG
		101				
15	50004	101				150
15	aam50084		NTLFSQAWNA			
	aay44619		NTLFSQAWNA			
	JP170	GGLGGLPANL	QTLFSQAYSA	GARIHTNSWG	APVNGAYTTD	SRNVDDYVRK
20		151				200
20	aam50084		NEGPNSGTIS		-	
	aay44619		NEGPNSGTIS			
	JP170	NDMTILFAAG	NEGPGSGTIS	APGTAKNAIT	VGATENLRPS	FGSYADNINH
25		201				250
25	aam50084		RDGRIKPDVT			
	aay44619	- -	RDGRIKPDVT			=
	JP170	VAQFSSRGPT	RDGRIKPDVM	APGTYILSAR	SSLAPDSSFW	ANHDSKYAYM
30		251				300
30	aam50084		AGNVAQLREH			
	aay44619		AGNVAQLREH			
	JP170	GGTSMATPIV	AGNVAQLREH	FVKNRGVTPK	PSLLKAALIA	GAADVGLGFP
35	50001	301				350
35	aam50084		LDKSLNVAYV			
	aay44619	-	LDKSLNVAYV			
	JP170	NGNQGWGRVT	LDKSLNVAFV	NETSPLSTSQ	KATYSFTAQA	GKPLKISLVW
		254				
40		351				400
40	aam50084		YTLVNDLDLV			
	aay44619		YTLVNDLDLV	_		
	JP170	SDAPGSTTAS	LTLVNDLDLV	1 TAPNGTKYV	GNDFTAPYDN	NWDGRNNVEN
		407				
45		401	·	D04D05555	433	
40	aam50084		YTIEVQAYNV			
	aay44619		YIIEVQAYNV	_		
	JP170	VFINAPQSGT	YTVEVQAYNV	PVSPQTFSLA	I V H	

Figure 2, Superposition of JP170 and Savinase 3D structures, with indication of calcium binding sites. JP170: light structure and three ion-binding sites. Savinase: dark structure and two ion-binding sites.

5

2 1 MRS. 2003

Figure 3, Matrix of homology between subtilases pertaining to the JP170, TY145 and BPN' subgroups. The sequences are identified by sequence database accession numbers:

00: aam50084; Subtilase derived from Bacillus sp. strain SD-521

- 5 0: aaw89547; Subtilase derived from Bacillus sp. JP170
 - 1: q45681; Subtilase derived from B. subtilis (BSTA41)
 - 2: p28842; Psychrophilic subtilisin derived from Antarctic Bacillus strain (BSTA39)
 - 3: abb77095; Subtilase derived from Bacillus sp. (TY145)
 - 4: p00783; Subtilase derived from Bacillus subtilis var. amylosacchariticus (BSAMY)
- 10 5: p29142; Subtilase derived from Bacillus stearothermophilus (BSSJ)
 - 6: p35835; Subtilase derived from Bacillus subtilis var. natto. (BSNAT)
 - 7: p07518; Subtilase derived from Bacillus pumilus (B. mesentericus) (BPMES)
 - 8: p00782; Subtilase derived from Bacillus amyloliquefaciens (BPN')
 - 9: p00780; Subtilase derived from Bacillus licheniformis (BLSCAR)
- 15 10: p41363; Subtilase derived from Bacillus halodurans (BHSAH)
 - 11: aaw62222; Subtilase derived from Bacillus lentus (BLS147)
 - 12: p29600; Subtilase derived from Bacillus lentus (BLSAVI, BLS309)
 - 13: p27693; Subtilase derived from Bacillus alcalophilus (BAALKP)
 - 14: q99405; Subtilase derived from Bacillus sp. strain KSM-K16 (BSKSMK)
- 20 15: p29599; Subtilase derived from Bacillus lentus (BLSUBL).

			٥٥ .	0	1	2 .	3	4	5	6	7	8	9	10	11	12	13	14	15
	00	aam50084	100	94	53	53	51	53	53	52	52	53	55	52	52	51	51	51	50
	0	aaw89547		100	52	53	53	51	51	49	50	51	51	50	54	54	53	54	54
25	1	q45681			100	93	76	51	50	51	55	52	54	58	58	59	57	60	60
	2	p28842				100	75	52	52	52	56	53	55	58	58	61	58	62	61
	3	abb77095					100	60	60	60	58	60	62	58	57	59	59	62	59
	4	P00783						100	99	99	97	91	76	63	69	74	66	74	74
Ş	5	p29142							100	99	97	90	76	69	74	66	74	74	56
30	6	p35835								100	98	91	77	63	69	74	66	74	74
	7	p07518									100	88	79	69	67	74	74	74	74
	8	p00782										100	77	66	71	74	67	74	74
	9	P00780											100	64	69	74	67	73	73
	10	p41363												100	99	76	72	76	76
35	11	aaw62222													100	76	76	76	76
	12	2 p29600														100	99	99	99
	13	p27693															100	99	99
	14	q99405																100	98
	15	p29599																:	100

SEQUENCE LISTING <110> Novozymes A/S <120> Novel subtilases 10321.000-DK <130> <160> <170> PatentIn version 3.2 <210> <211> 433 <212> <213> Bacillus sp. JP170 <220> <221> **PEPTIDE** (1)..(433) JP170 subtilase <400> Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn 1 10 15 Phe Gly Leu Tyr Gly Gln Gly Gln Ile Val Ala Val Ala Asp Thr Gly 20 25 30 Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly 35 40 Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Asn Asp 50 60 Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala 65 70 75 80 Thr Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile 85 90 95 Met Asp Ser Gly Gly Leu Gly Gly Leu Pro Ala Asn Leu Gln Thr 100 105 Leu Phe Ser Gln Ala Tyr Ser Ala Gly Ala Arg Ile His Thr Asn Ser 115 120 125

Asp Asp Tyr Val Arg Lys Asn Asp Met Thr Ile Leu Phe Ala Ala Gly 145 150 150 Asn Glu Gly Pro Gly Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys 165 170 175

Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Thr Asp Ser Arg Asn Val 130 135 140

Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Leu Arg Pro Ser Phe Gly 180 180 Ser Tyr Ala Asp Asn Ile Asn His Val Ala Gln Phe Ser Ser Arg Gly
195 200 205 Pro Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Met Ala Pro Gly Thr 210 215 220 Tyr Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 225 230 240 Ala Asn His Asp Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 245 250 255 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Val 260 265 270 Lys Asn Arg Gly Val Thr Pro Lys Pro Ser Leu Leu Lys Ala Ala Leu 275 280 285 Ile Ala Gly Ala Ala Asp Val Gly Leu Gly Phe Pro Asn Gly Asn Gln 290 295 Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Phe Val 305 315 320 Asn Glu Thr Ser Pro Leu Ser Thr Ser Gln Lys Ala Thr Tyr Ser Phe 325 330 335 Thr Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Ser Asp 340 345 350 Ala Pro Gly Ser Thr Thr Ala Ser Leu Thr Leu Val Asn Asp Leu Asp 365 Leu Val Ile Thr Ala Pro Asn Gly Thr Lys Tyr Val Gly Asn Asp Phe 370 380 Thr Ala Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 385 390 395 Val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Thr Val Glu Val Gln
405 410 415 Ala Tyr Asn Val Pro Val Ser Pro Gln Thr Phe Ser Leu Ala Ile Val 420 425 430

His

<210> <211> 433 Bacillus sp. Y <220> <221> <222> PEPTIDE (1)..(433) Subtilase Y <400> Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn 1 10 15 Tyr Gly Leu Tyr Gly Gln Gly Gln Leu Val Ala Val Ala Asp Thr Gly 20 25 30 Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly 35 40 Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Ser Asp 50 60 Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala 65 70 75 80 Leu Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile 85 90 95 Met Asp Ser Ser Gly Gly Leu Gly Gly Leu Pro Ser Asn Leu Asn Thr 100 105 110Leu Phe Ser Gln Ala Trp Asn Ala Gly Ala Arg Ile His Thr Asn Ser 115 120 125 Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Ala Asn Ser Arg Gln Val Asp Glu Tyr Val Arg Asn Asp Met Thr Val Leu Phe Ala Ala Gly 145 150 155 Asn Glu Gly Pro Asn Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys 165 170 175 Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Tyr Arg Pro Ser Phe Gly 180 185 190 Ser Ile Ala Asp Asn Pro Asn His Ile Ala Gln Phe Ser Ser Arg Gly
195 200 205 Ala Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Thr Ala Pro Gly Thr 210 215 220

Page 3

Phe Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 225 230 235 240 Ala Asn Tyr Asn Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 245 250 255 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Ile 260 265 270 Lys Asn Arg Gly Ile Thr Pro Lys Pro Ser Leu Ile Lys Ala Ala Leu 275 280 285 Ile Ala Gly Ala Thr Asp Val Gly Leu Gly Tyr Pro Ser Gly Asp Gln 290 295 300 Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Tyr Val 305 310 315 320 Asn Glu Ala Thr Ala Leu Ala Thr Gly Gln Lys Ala Thr Tyr Ser Phe 325 330 335 Gln Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Thr Asp 340 345 350 Ala Pro Gly Ser Thr Thr Ala Ser Tyr Thr Leu Val Asn Asp Leu Asp 365 Leu Val Ile Thr Ala Pro Asn Gly Gln Lys Tyr Val Gly Asn Asp Phe 370 380 Ser Tyr Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 385 395 400 Val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Ile Ile Glu Val Gln
405 410 415 Ala Tyr Asn Val Pro Ser Gly Pro Gln Arg Phe Ser Leu Ala Ile Val 420 425 430

His

<210> 3 <211> 433 <212> PRT <213> Bacillus sp. SD-521 <220> <221> PEPTIDE <222> (1)..(433) <223> Subtilase SD-521 <400> 3

Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn 1 10 15 Tyr Gly Leu Tyr Gly Gln Gly Gln Val Val Ala Val Ala Asp Thr Gly
20 25 30 Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly 35 40 45 Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Asn Asp 50 55 60 Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala 65 70 75 80 Leu Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile 85 90 95 Met Asp Ser Ser Gly Gly Leu Gly Gly Leu Pro Ser Asn Leu Asn Thr 100 105 110 Leu Phe Ser Gln Ala Trp Asn Ala Gly Ala Arg Ile His Thr Asn Ser 115 120 125 Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Ala Asn Ser Arg Gln Val 130 140 Asp Glu Tyr Val Arg Asn Asp Met Thr Val Leu Phe Ala Ala Gly 145 150 155 Asn Glu Gly Pro Asn Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys
165 170 175 Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Tyr Arg Pro Ser Phe Gly 180 185 Ser Leu Ala Asp Asn Pro Asn His Ile Ala Gln Phe Ser Ser Arg Gly 195 200 Ala Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Thr Ala Pro Gly Thr 210 220 Phe Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 225 230 235 Ala Asn Tyr Asn Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 245 250 255 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Ile Page 5

Lys Asn Arg Gly Ile Thr Pro Lys Pro Ser Leu Ile Lys Ala Ala Leu 275 280 285 Ile Ala Gly Ala Thr Asp Val Gly Leu Gly Tyr Pro Ser Gly Asp Gln 290 295 300

Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Tyr Val 305 310 315 320

Asn Glu Ala Thr Ala Leu Ala Thr Gly Gln Lys Ala Thr Tyr Ser Phe 325 330 335

Gln Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Thr Asp 340 345 350

Ala Pro Gly Ser Thr Thr Ala Ser Tyr Thr Leu Val Asn Asp Leu Asp 355 360 365

Leu Val Ile Thr Ala Pro Asn Gly Gln Lys Tyr Val Gly Asn Asp Phe 370 380

Ser Tyr Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 385 395 400

Val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Thr Ile Glu Val Gln 405 410 415

Ala Tyr Asn Val Pro Ser Gly Pro Gln Arg Phe Ser Leu Ala Ile Val 420 425 430

His

<210> <211> 275

Bacillus amyloliquefaciens

<220>

<221> <222> **PEPTIDE**

(1)..(275)

<220>

PEPTIDE

<222> (1)..(275)

<223> Subtilase BPN'

Ala Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu 1 5 10 15

10321 SEQ list.ST25
His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp
20 25 30 Ser Gly Ile Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala 35 40 45 Ser Met Val Pro Ser Glu Thr Asn Pro Phe Gln Asp Asn Asn Ser His 50 55 60 Gly Thr His Val Ala Gly Thr Val Ala Ala Leu Asn Asn Ser Ile Gly 65 70 75 80 Val Leu Gly Val Ala Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu
85 90 95 Gly Ala Asp Gly Ser Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu 100 105 Trp Ala Ile Ala Asn Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly 115 120 Pro Ser Gly Ser Ala Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala 130 140 Ser Gly Val Val Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly 145 150 155 160 Ser Ser Ser Thr Val Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala 165 170 175 Val Gly Ala Val Asp Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val 180 185 Gly Pro Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr 195 200 Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser 210 220 Pro His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn 225 230 240 Trp Thr Asn Thr Gln Val Arg Ser Ser Leu Glu Asn Thr Thr Lys 245 250 255 Leu Gly Asp Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala 260 265 270 Ala Ala Gin 275

2 1 MRS. 2003

APPENDIX 1

```
REMARK Complex of JP170 and CI2A inhibitor
REMARK Contents of asymmetric unit subtilisin 2x (433 a.a. x 2)
REMARK CI2A inhibitor 2x (a.a. 16 - 83 and 21 - 83)
REMARK small peptide (autodigestion product, a.a. KPSLL, 280 - 284)
REMARK Ca ions 6x, H2O 1115 x
REMARK Crystallization conditions: (AMB) Hanging drop vapour diffusion REMARK method where the drop consists of 2 \mul of 15 - 20 mg.ml-1
REMARK protein concentration, 10 mm Na cacodylate - HCl buffer, pH 6.5
REMARK and 1 µl of the well solution, 20% w/v PEG 4000, 0.1 M Hepes
REMARK buffer, pH 7.5, 10% v/v isopropanol.
HEADER
          ----
                                                  XX-XXX-XX
COMPND
REMARK
         3
REMARK
        3 REFINEMENT.
REMARK 3
             PROGRAM
                        : REFMAC 5.1.24
                       : MURSHUDOV, VAGIN, DODSON
REMARK
             AUTHORS
         .3
REMARK
REMARK
             REFINEMENT TARGET : MAXIMUM LIKELIHOOD
REMARK
REMARK
         3 DATA USED IN REFINEMENT.
            RESOLUTION RANGE HIGH (ANGSTROMS) :
REMARK
                                                  1.90
             RESOLUTION RANGE LOW (ANGSTROMS) : 19.96
REMARK
REMARK
         3 DATA CUTOFF
                                   (SIGMA(F)) : NONE
REMARK 3
            COMPLETENESS FOR RANGE
                                         (%): 76.65
             NUMBER OF REFLECTIONS
REMARK
         3
                                               : 59444
REMARK
         3
REMARK
         3 FIT TO DATA USED IN REFINEMENT.
REMARK
            CROSS-VALIDATION METHOD
                                              : NULL
             FREE R VALUE TEST SET SELECTION : NULL
REMARK
         3
                      (WORKING + TEST SET) : 0.12256
REMARK
             R VALUE
             R VALUE
REMARK
                              (WORKING SET) : 0.12256
REMARK
             FREE R VALUE
REMARK
             FREE R VALUE TEST SET SIZE
         3
                                          (%) : NULL
REMARK
             FREE R VALUE TEST SET COUNT
                                              : NULL
REMARK
REMARK
        3 FIT IN THE HIGHEST RESOLUTION BIN.
            TOTAL NUMBER OF BINS USED
REMARK
         3
                                                        20
REMARK
             BIN RESOLUTION RANGE HIGH
         3
                                                      1.901
REMARK
             BIN RESOLUTION RANGE LOW
         3
                                                      1.950
REMARK
            REFLECTION IN BIN
                                  (WORKING SET) :
                                                      940
REMARK
             BIN R VALUE
                                   (WORKING SET) :
REMARK
         3
             BIN FREE R VALUE SET COUNT
                                                          റ
REMARK
             BIN FREE R VALUE
                                                 : -999.000
REMARK
REMARK
         3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK
            ALL ATOMS
                                            8694
REMARK
         3 B VALUES.
REMARK
            FROM WILSON PLOT
REMARK
                                        (A**2) : NULL
REMARK
             MEAN B VALUE (OVERALL, A**2): 16.479
         3
REMARK
             OVERALL ANISOTROPIC B VALUE.
         3
REMARK
              B11 (A**2) : 0.05
REMARK
             B22 (A**2) :
         3
                              0.06
             B33 (A**2) :
REMARK
         3
                              -0.11
REMARK
              B12 (A**2) :
```

0.00

```
REMARK
              B13 (A**2) : 0.00
REMARK
              B23 (A**2) :
                                 0.00
         3
REMARK
REMARK
         3 ESTIMATED OVERALL COORDINATE ERROR.
            ESU BASED ON R VALUE
                                                                   (A):
                                                                          0.151
REMARK
                                                                   (A): NULL
             ESU BASED ON FREE R VALUE
REMARK
              ESU BASED ON MAXIMUM LIKELIHOOD
                                                                   (A): 0.052
REMARK
              ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2):
                                                                          1.828
REMARK
REMARK
         3 CORRELATION COEFFICIENTS.
              CORRELATION COEFFICIENT FO-FC
REMARK
                                                      0.969
REMARK
              CORRELATION COEFFICIENT FO-FC FREE : NULL
REMARK
REMARK
         3 RMS DEVIATIONS FROM IDEAL VALUES
                                                       COUNT
                                                                 RMS
             BOND LENGTHS REFINED ATOMS
REMARK
                                                   (A): 7733; 0.014; 0.021
              BOND LENGTHS OTHERS
REMARK
                                                   (A): 6857; 0.001; 0.020
REMARK
              BOND ANGLES REFINED ATOMS
                                            (DEGREES): 10540 ; 1.478 ; 1.936
             BOND ANGLES OTHERS
REMARK
                                            (DEGREES): 15972; 0.815; 3.000
             TORSION ANGLES, PERIOD 1
CHIRAL-CENTER RESTRAINTS
REMARK
                                           (DEGREES): 997;15.784; 5.000
                                              (A**3): 1197; 0.106; 0.200
(A): 8819; 0.007; 0.020
(A): 1500; 0.008; 0.020
REMARK
REMARK
              GENERAL PLANES REFINED ATOMS
REMARK
             GENERAL PLANES OTHERS
REMARK 3
             NON-BONDED CONTACTS REFINED ATOMS (A): 1552; 0.221; 0.300
             NON-BONDED CONTACTS OTHERS
                                                   (A): 8282; 0.265; 0.300
REMARK
                                                   (A): 4417; 0.089; 0.500
(A): 1391; 0.198; 0.500
              NON-BONDED TORSION OTHERS
REMARK
             H-BOND (X...Y) REFINED ATOMS
REMARK
              POTENTIAL METAL-ION REFINED ATOMS (A):
                                                         25 ; 0.145 ; 0.500
REMARK
              SYMMETRY VDW REFINED ATOMS
         3
                                                   (A):
                                                           10 ; 0.129 ; 0.300
                                                   (A):
              SYMMETRY VDW OTHERS
REMARK
         3
                                                           57 ; 0.268 ; 0.300
              SYMMETRY H-BOND REFINED ATOMS
                                                           87 ; 0.272 ; 0.500
REMARK
                                                   (A):
REMARK
             ISOTROPIC THERMAL FACTOR RESTRAINTS. COUNT RMS WEIGHT MAIN-CHAIN BOND REFINED ATOMS (A**2): 4985; 0.697; 1.500 MAIN-CHAIN ANGLE REFINED ATOMS (A**2): 8031; 1.205; 2.000 SIDE-CHAIN BOND REFINED ATOMS (A**2): 2746; 1.963; 3.000
REMARK
         3 ISOTROPIC THERMAL FACTOR RESTRAINTS.
                                                                         WEIGHT
REMARK
REMARK
REMARK
              SIDE-CHAIN ANGLE REFINED ATOMS (A**2): 2509; 3.180; 4.500
REMARK
REMARK
REMARK
            NCS RESTRAINTS STATISTICS
             NUMBER OF NCS GROUPS : NULL
REMARK
REMARK
REMARK
REMARK
            TLS DETAILS
             NUMBER OF TLS GROUPS : NULL
REMARK
REMARK
REMARK
REMARK
         3
            BULK SOLVENT MODELLING.
REMARK
             METHOD USED : BABINET MODEL WITH MASK
             PARAMETERS FOR MASK CALCULATION
REMARK
REMARK
              VDW PROBE RADIUS : 1.40
              ION PROBE RADIUS
REMARK
                                      0.80
              SHRINKAGE RADIUS
REMARK
                                      0.80
REMARK
         3 OTHER REFINEMENT REMARKS:
REMARK
REMARK
        3 HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS
REMARK
CISPEP
         1 GLY A 163
                          PRO A 164
                                                            0.00
         2 ALA A 171
                          PRO A 172
CISPEP
                                                            0.00
CISPEP 3 PHE A 191
                          GLY A 192
                                                            0.00
```

```
CISPEP
         4 ASN A 199
                          HIS A 200
                                                           0.00
CISPEP
         5 GLY A
                                                           0.00
                   208
                           PRO A
                                  209
CISPEP
         6 LYS A
                           PRO A
                                  217
                                                           0.00
                   216
CISPEP
         7 ASP A
                                                           0.00
                   236
                           SER A
                                  237
CISPEP
         8 ASP A
                   244
                           SER A
                                  245
                                                           0.00
CISPEP
         9 PHE A
                   299
                           PRO A
                                  300
                                                           0.00
CISPEP
        10 SER A
                   327
                           THR A
                                  328
                                                           0.00
CISPEP
        11 ALA A
                   386
                           PRO A
                                  387
                                                           0.00
CISPEP
        12 GLU A
                           VAL A
                   414
                                  415
                                                           0.00
CISPEP
        13 GLY A
                   423
                           PRO A
                                                           0.00
                  ASN B 316
LINK
                                                  LYS B 318
                                                                             gap
LINK
                  GLU B
                        330
                                                  ALA B 332
                                                                             gap
LINK
                  LEU B 337
                                                  LYS B 340
                                                                             gap
LINK
                  GLU D 330
                                                  ALA D 332
                                                                             gap
LINK
                  LEU D 337
                                                  LYS D 340
                                                                             gap
CISPEP
        14 GLY C
                   163
                          PRO C
                                  164
                                                           0.00
        15 ALA C
CISPEP
                   171
                           PRO C
                                  172
                                                           0.00
CISPEP
        16 PHE C
                   191
                           GLY C
                                  192
                                                           0.00
        17 ASN C
CISPEP
                   199
                           HIS C
                                  200
                                                           0.00
CISPEP
        18 GLY C
                   208
                           PRO C
                                                           0.00
                                  209
CISPEP
        19 LYS C
                   216
                           PRO C
                                  217
                                                           0.00
        20 ASP C
                           SER C
CISPEP
                                                           0.00
                   236
                                  237
CISPEP
        21 ASP C
                   244
                           SER C
                                  245
                                                           0.00
        22 PHE C
CISPEP
                   299
                           PRO C
                                  300
                                                           0.00
CISPEP
        23 SER C
                           THR C
                   327
                                  328
                                                           0.00
        24 ALA C
                           PRO C
CISPEP
                   386
                                  387
                                                           0.00
        25 GLU C
CISPEP
                   414
                           VAL C
                                  415
                                                           0.00
        26 GLY C 423
CISPEP
                           PRO C 424
                                                           0.00
         58.387 151.411
                           64.054 90.00 117.11 90.00 P 1 21 1
CRYST1
SCALE1
             0.017127 0.000000
                                  0.008768
                                                   0.00000
SCALÉ2
             0.000000
                       0.006605
                                  0.000000
                                                   0.00000
SCALE3
             0.000000
                      0.000000
                                  0.017539
                                                   0.00000
                                  18.066 20.808 -3.996 1.00 14.87
18.461 22.053 -3.689 1.00 14.47
HETATM
          1 N
                  ASN A
                                                                             Α.
                          1
                                                                                   N
HETATM
          2
             C9
                 ASN A
                                  18.461
                                           22.053
                                                   -3.689
                                                            1.00 14.47
                           1
HETATM
              010 ASN A
                                                           1.00 13.33
          3
                                  19.168
                                          22.251
                                                                                   O
                           1
                                                   -2.661
HETATM
              011 ASN A
                                  18.108 23.029
                                                           1.00 14.69
                                                   -4.423
                                                           1.00 14.35
HETATM
          5
              CA ASN A
                                  18.499
                                          19.635
                                                   -3.189
                           1
                                                                             A
HETATM
           6
              CB
                  ASN A
                                  18.164
                           1
                                           18.329
                                                   -3.883
                                                            1.00 14.69
                                                                             A
                                                            1.00 14.08
HETATM
          7
              CG
                 ASN A
                                  16.670
                           1
                                           18.063
                                                   -4.031
                                                                             Α
                                                                                   C
HETATM
           8
              ND2 ASN A
                                  16.271
                                           17.100
                                                   -5.019
                                                            1.00 12.20
                           1
                                                                             Α
                                  15.768
HETATM
          9
              OD1 ASN A
                           ı
                                           18.701
                                                   -3.206
                                                           1.00 14.76
                                                                             Α
                                                                                   O
HETATM
         10
              С
                  ASN A
                           ı
                                  19.990
                                           19.659
                                                   -2.890
                                                            1.00 14.84
                                                                             A
                                                                                   C
HETATM
         11
              0
                  ASN A
                           ı
                                  20.353
                                           19.313
                                                   -1.601
                                                            1.00 14.20
                                                                             Α
                                                                                   O
ATOM
         12
              N
                  ASP A
                           2
                                  20.881
                                           19.935
                                                   -3.834
                                                            1.00 15.84
                                                                             А
                                                                                   N
ATOM
              CA
         13
                  ASP A
                           2
                                  22.306
                                          19.835
                                                   -3.520
                                                           1.00 16.82
                                                                             A
                                                                                   C
                                                   -4.763
MOTA
         14
              CB
                  ASP A
                           2
                                  23.178
                                           20.088
                                                           1.00 17.53
                                                                             А
                                                                                   C
ATOM
          15
              CG
                  ASP A
                           2
                                  23.121
                                           18.947
                                                   -5.783
                                                            1.00 18.18
                                                                                   C
                                                                             Α
ATOM
         16
              OD1 ASP A
                                           17.811
                                                           1.00 20.58
                           2
                                  22.652
                                                   -5.493
                                                                             А
                                                                                   O
ATOM
         17
              OD2 ASP A
                                  23.544
                                                           1.00 22.02
                                           19.106
                                                   -6.931
                                                                             А
                                                                                   0
ATOM
         18
              C
                  ASP A
                           2
                                  22:712
                                          20.816
                                                   -2.413
                                                           1.00 17.23
                                                                             Α
                  ASP A
ATOM
         19
              O
                           2
                                  23.671
                                           20.562
                                                   -1.703
                                                            1.00 18.17
                                                                             Α
                                                                                   0
         20
ATOM
              N
                  VAL A
                           3
                                  22.018
                                           21.952
                                                   -2.304
                                                            1.00 17.05
                                                                             Α
                                                                                   N
                                                           1.00 16.07
ATOM
         21
              CA
                  VAL A
                           3
                                  22.374
                                           22.945
                                                                                   C
                                                   -1.311
                                                                             Α
ATOM
         22
              CB
                  VAL A
                           3
                                  21.974
                                           24.356
                                                   -1.701
                                                            1.00 16.60
MOTA
         23
              CG1 VAL A
                                                   -0.560
                                                                                   C
                                  22.327
                                           25.323
                                                           1.00 16.25
                                                                             А
                           3
MOTA
         24
              CG2
                  VAL A
                           3
                                  22.676
                                           24.770
                                                    -3.003
                                                            1.00 18.81
                                                                             Α
                                                                                   C
MOTA
         25
              С
                  VAL A
                                                                                   C
                           3
                                  21.749
                                           22.565
                                                     0.033
                                                            1.00 15.65
ATOM
         26
                  VAL A
                                  22.431
                                           22.603
                                                    1.090
                                                           1.00 14.41
                                                                                   0
```

ATOM	27	N	ALA	A	4	20.497	22.119	-0.012	1.00 13.75	A	N
ATOM	28	CA	ALA	A	4	19.824	21.664	1.196	1.00 14.03	A	C
ATOM	29	CB	ALA	A	4	18.388	21.260	0.881	1.00 13.78	A	С
MOTA	30	С	ALA	Α	4	20.544	20.512	1.876	1.00 14.28	A	C
ATOM	31	0	ALA	A	4	20.548	20.406	3.110	1.00 14.07	A	0
ATOM	32	Ŋ	ARG	Α	5	21.093	19.617	1.064	1.00 13.74	A	N
MOTA	33	CA	ARG	Α	5	21.807	18.445	1.553	1.00 14.95	A	С
ATOM	34	CB	ARG	Α	5	22.395	17.709	0.349	1.00 15.61	A	C
ATOM	35	CG	ARG	Α	5	23.452	16.639	0.631	1.00 17.28	A	·C
ATOM	36	CD	ARG	A	5	23.873	15.945	-0.672	1.00 20.73	A	С
ATOM	37	NE	ARG	Α	5	24.802	14.852	-0.459	1.00 21.95	A	N
MOTA	38	CZ	ARG		5	26.128	14.986	-0.513	1.00 24.69	A	С
ATOM	39	NHl	ARG	A	5	26.687	16.173	-0.793	1.00 25.62	A	N
ATOM	40	NH2	ARG		5	26.898	13.933	-0.290	1.00 22.96	A	N
ATOM	41	С	ARG	A	5	22.918	18.840	2.515	1.00 14.83	A	С
ATOM	42	0	ARG	A	5	23.135	18.195	3.546	1.00 14.86	A	0
ATOM	43	N	GLY	Α	6	23.641	19.897	2.166	1.00 15.33	A	N
ATOM	44	CA	GLY	A	6	24.677	20.416	3.044	1.00 15.34	A	C
MOTA	45	C	GLY	Α	6	24.094	21.124	4.257	1.00 15.01	A	С
	46	0	GLY	Α	6	24.609	20.980	5.362	1.00 14.62	A	0
ATOM	47	N	ILE		7	23.018	21.879	4.062	1.00 14.44	A	N
MOTA	48	CA	ILE		7	22.411	22.613	5.168	1.00 13.98	A	C
ATOM	49	CB	ILE		7	21.266	23.505	4.698	1.00 13.68	A	С
ATOM	50		ILE		7	21.813	24.676	3.864	1.00 13.35	A	C
ATOM	51		ILE		7	20.794	25.294	2.972	1.00 14.08	A	С
ATOM	52	CG2	ILE		7	20.511	24.072	5.873	1.00 12.51	A	C
ATOM	53	C	ILE	А	7	21.970	21.664	6.305	1.00 15.04	Α	C
ATOM	54	0	ILE		7	22.273	21.906	7.469	1.00 13.35	A	0
ATOM	55	N	VAL		8	21.320	20.558	5.952	1.00 15.03	A	N
MOTA	56	CA	VAL		8	20.795	19.628	6.969	1.00 14.89	A	C
ATOM	57	CB	VAL		8	19.419	19.047	6.545	1.00 14.63	A	С
MOTA	58		VAL		8	18.472	20.135	6.246	1.00 14.63	A	C
ATOM	59	CG2	VAL		8	19.526	18.151			· A	С
ATOM	60	C	VAL		8	21.770	18.511	7.356	1.00 14.75	A	С
ATOM	61	0	LAV		8	21.438	17.645	8.168	1.00 15.23	A	0
ATOM	62	N	LYS		9	22.983	18.568	6.804	1.00 14.02	A	N
ATOM	63	CA	LYS		9	24.061	17.627	7.118	1.00 14.55	A .	C
ATOM	64	CB	LYS		9	24.374	17.560	8.621	1.00 15.28	A.	С
ATOM	65	CG	LYS		9	24.553	18.888	9.299	1.00 18.34	A.	С
ATOM	66	CD	LYS		9	25.757	19,608	8.810	1.00 23.66	A	C
ATOM	67	CE	LYS		9	26.025	20.904	9.618	1.00 28.33	A	C
MOTA	68	NZ	LYS		9	27.283	21.559	9.079	1.00 31.91	A	N
ATOM	69	C	LYS		9	23.798	16.226	6.616	1.00 13.77	A	C
ATOM	70	0	LYS		9	24.391	15.256	7.132	1.00 13.96	A	0
ATOM	71	N	ALA		10	22.979	16.109	5.569	1.00 13.98	A	N
ATOM	72	CA	ALA		10	22.816	14.830	4.886	1.00 14.34	A	C
ATOM	73	CB	ALA		10	21.649	14.866	3.848	1.00 14.47	A	C
ATOM	74	C	ALA		10	24.141	14.437	4.205	1.00 14.55	A	C
ATOM ATOM	75 76	0	ALA		10	24.409	13.264	4.015	1.00 13.73	A	0
	76	N	ASP ASP		11	24.967	15.423	3.860	1.00 16.04	A	N
ATOM ATOM	77 78	CA CB	ASP		11	26.278	15.153	3.265	1.00 17.11	A	C
ATOM	78 79	CG	ASP		11	26.899	16.419	2.667	1.00 17.53	A	C
ATOM					11	27.059	17.547	3.680	1.00 19.89	A	С
	80 81		ASP		11	27.845	18.461	3.375	1.00 23.81	A	0
ATOM ATOM	81 82		ASP ASP		11	26.434	17.635	4.773	1.00 20.19	A	0.0
ATOM		C			11	27.219	14.489		1.00 17.57	A	C
	83 84	O N	ASP VAL		11	27.941	13.540	3.947	1.00 17.08	A	N N
MOTA	04	N	vAL	А	12	27.153	14.945	5.528	1.00 17.31	A.	7.4

MOTA	85	CA	VAL	A	12	27.926	14.338	6.607	1.00 17.86	A	С
MOTA	86	CB	VAL		12 '	27.850	15.193	7.893	1.00 18.12	A	С
MOTA	87	CG1	VAL	A	12	28.577	14.533	9.081	1.00 18.00	A	C
MOTA	88		VAL		12	28.385	16.633	7.631	1.00 19.36	A	С
MOTA	89	C	VAL		12	27.428	12.898	6.835	1.00 18.14	A	C
ATOM	90	0	VAL		12	28.233	11.956	6.925	1.00 18.38	A	0
ATOM	91	N	ALA		13	26.117	12.696	6.870	1.00 17.13	A	N
MOTA	92	CA	ALA		13	25.572	11.353	7.076	1.00 17.08	A	C
MOTA	93	CB	ALA		13	24.070	11.400	7.101	1.00 17.00	A	С
MOTA	94	C	ALA		13	26.044	10.394	5.981	1.00 17.57	A	C
ATOM	95	0	ALA		13	26.472	9.237	6.254	1.00 16.79	A	0
MOTA	96	N	GLN		14	25.934	10.862	4.740	1.00 17.24	A	N
MOTA	97	CA	GLN		14	26.420	10.107	3.582	1.00 17.55	A	C
MOTA	98	CB	GLN		14	25.972	10.825	2.309	1.00 17.74	A	C
ATOM ATOM	99	CG CD	GLN GLN		14	24.485	10.673	2.031	1.00 17.61	A	C
ATOM	100 101	OEl	GLN		14	23.995	11.535	0.887	1.00 20.02	A	C
ATOM	101	NE2	GLN		14 14	24.788 22.679	11.949 11.789	0.028 0.850	1.00 19.60 1.00 19.07	A A	Ŋ
ATOM	103	C	GLN		14	27.949	9.876	3.576	1.00 19.07	A	C
ATOM	103	0	GLN		14	28.413	8.729	3.489	1.00 18.95	Ä	ō
ATOM	105	N	ASN		15	28.730	10.950	3.658	1.00 10.01	A	N
ATOM	106	CA	ASN		15	30.185	10.847	3.469	1.00 20.71	A	Ċ
ATOM	107	CB	ASN		15	30.828	12.222	3.244	1.00 20.45	A	č
ATOM	108	CG	ASN		15	30.404	12.869	1.959	1.00 22.21	A	Č
ATOM	109		ASN		15	30.098	12.201	0.976	1.00 25.39	A	ō
MOTA	110		ASN		15	30.390	14.182	1.953	1.00 23.97	A	N
ATOM	111	С	ASN		15	30.865	10.185	4.653	1.00 20.49	A	c
ATOM	112	0	ASN		15	31.705	9.362	4.469	1.00 21.06	A	0
MOTA	113	N	ASN	A	16	30.495	10.559	5.869	1.00 21.00	A	N
ATOM	114	CA	ASN	Α	16	31.148	10.056	7.073	1.00 21.90	A	С
MOTA	115	CB	ASN	A	16	31.205	11.146	8.136	1.00 22.29	A	С
ATOM	116	CG	ASN	Α	16	32.100	12.313	7.751	1.00 26.21	A	C
MOTA	117	OD1	ASN	Α	16.	32.261	13.260	8.533	1.00 32.71	A	0
MOTA	118	ND2	ASN	Α	16	32.672	12.268	6.567	1.00 28.57	A	N
MOTA	119	С	ASN	A	16	30.491	8.811	7.692	1.00 21.95	A	С
MOTA	120	0	ASN	A	16	31.152	8.065	8.404	1.00 22.21	A	0
ATOM	121	N	PHE		17	29.203	8.578	7.438	1.00 20.66	A	N
ATOM	122	CA	PHE		17	28.550	7.392	8.003	1.00 20.24	A	C
MOTA	123	CB	PHE		17	27.415	7.815	8.938	1.00 21.09	A	C
ATOM	124	CG	PHE		17	27.890	8.591	10.134	1.00 19.81	A	· C
ATOM	125		PHE		17	28.110	7.953	11.348	1.00 24.93	A	C
ATOM	126	_	PHE		17	28.556	8.679	12.459	1.00 25.33	A	C
ATOM	127	CZ	PHE		17	28.779	10.016	12.344	1.00 23.90	A	C
ATOM	128		PHE		17	28.564	10.651	11.155	1.00 22.65	A	C
MOTA MOTA	129 130	CD2	PHE		17	28.111	9.936	10.052	1.00 20.02	A	C
ATOM		0	PHE		17	28.061	6.385	6.977	1.00 19.13	A	C
ATOM	131 132	Ŋ			17	27.607	5.336	7.337	1.00 20.18	A	0
ATOM	133	CA	GLY GLY		18	28.205	6.685	5.692	1.00 17.84	A	N
ATOM	134	C	GLY		18 18	27.740 26.220	5.790 5.654	4.640 4.496	1.00 17.25 1.00 16.27	. A	C
ATOM	135	0	GLY		18	25.755	4.667	3.948	1.00 16.27	A A	Ö
ATOM	136	N	LEU		19	25.453	6.651	4.955	1.00 14.47	A	Ŋ
ATOM	137	CA	LEU		19	23.980	6.550	5.007	1.00 13.24	Ä	C
ATOM	138	CB	LEU		19	23.456	7.222	6.270	1.00 14.33	A	c
ATOM	139	CG	LEU		19	24.013	6.680	7.569	1.00 15.58	A	C
ATOM	140		LEU		19	23.691	7.633	8.721	1.00 15.00	A	C
ATOM	141		LEU		19	23.417	5.294	7.793	1.00 15.86	Ä	c
ATOM	142	C	LEU		19	23.305	7.203	3.820	1.00 13.82	A	Ċ
		-						~ ~ ~			_

ATOM	143	0	LEU	A	19	23.183	8.427	3.775	1.00 13.96	A	0
MOTA	144	N	TYR	Α	20	22.874	6.400	2.854	1.00 13.81	A	N
ATOM	145	CA	TYR	Α	20	22.156	6.917	1.714	1.00 14.22	A	C
ATOM	146	CB	TYR	A	20	22.841	6.499	0.386	1.00 14.36	A	C
MOTA	147	CG	TYR	A	20	24.254	7.034	0.241	1.00 14.09	A	С
ATOM	148	CD1	TYR		20	25.351	6.353	0.792	1.00 16.48	A	C
ATOM	149	CE1	TYR		20	26.661	6.858	0.663	1.00 16.91	A	С
ATOM	150	CZ	TYR		20	26.859	8.041	-0.034	1.00 18.57	A	С
ATOM	151	ОН	TYR		20	28.126	8.567	-0.171	1.00 21.21	A	0
ATOM	152	CE2	TYR		20	25.788	B.735	-0.575	1.00 17.45	A	C
ATOM	153	CD2	TYR		20	24.495	8.217	-0.461	1.00 16.03	A	С
ATOM	154	C	TYR		20	20.715	6.433	1.702	1.00 14.55	A	C
ATOM	155	0	TYR		20	19.994	6.688	0.723	1.00 14.48	A	0
ATOM	156	N	GLY		21	20.297	5.710	2.746	1.00 14.18	A	N
MOTA	157	CA	GLY		21	18.947	5.172	2.802	1.00 14.23	A	С
MOTA	158	C	GLY		21	18.749	3.775	2.207	1.00 14.56	A	С
ATOM	159	0	GLY		21	17.611	3.315	2.054	1.00 13.53	A	0
ATOM	160	N	GLN		22	19.838	3.084	1.883	1.00 14.57	A	N
ATOM	161	CA	GLN		22	19.722	1.726	1.334	1.00 14.82	A	C
ATOM	162	CB	GLN		22	21.095	1.130	0.978	1.00 15.45	A	C
ATOM	163	CG	GLN		22	21.054	-0.151	0.150	1.00 17.91	A	C
ATOM	164	CD	GLN		22	20.669	-1.376	0.976	1.00 21.79	A	C
ATOM	165		GLN		22	20.892	-1.414	2.185	1.00 22.42	A	0
ATOM	166	NE2			22	20.091	-2.379	0.317	1.00 23.11	A	N
ATOM	167	C	GLN		22	19.011	0.831	2.331	1.00 14.04	A	C
ATOM	168	0	GLN		22	19.341	0.824	3.516	1.00 14.39	A	0
ATOM	169	N	GLY		23	18.019	0.110	1.836	1.00 14.26	A	N
ATOM ATOM	170	CA	GLY		23	17.236	-0.859	2.628	1.00 14.81	A	C
ATOM	171	С	GLY GLY		23 23	15.957	-0.245	3.176	1.00 14.12	A	C
ATOM	172 173	o N	GLN		24	15.086	-0.948	3.718	1.00 14.17	A	0
ATOM	174	CA	GLN		24	15.836 14.620	1.077 1.773	3.057	1.00 13.54 1.00 13.27	A A	N C
ATOM	175	CB	GLN		24	14.963	3.090	3.500 4.182	1.00 13.27	- A	c.
ATOM	176	CG	GLN		24	15.806	2.945	5.450	1.00 12.64	- A A	C .
ATOM	177	CD	GLN		24	15.150	2.100	6.505	1.00 15.72	A	ç
ATOM	178	OE1			24	14.015	2.387	6.921	1.00 14.73	A	Ô
ATOM	179		GLN		24	15.839	1.026	6.927	1.00 13.89	A	N
ATOM	180	C	GLN		24	13.619	2.022	2.352	1.00 13.19	A	Ċ
ATOM	181	Õ.	GLN		24	14.005	2.126	1.184	1.00 13.48	A	ō
ATOM	182	N	ILE		25	12.324	2.066	2.692	1.00 13.28	A	N
ATOM	183	CA	ILE		25	11.280	2.319	1.720	1.00 13.25	A	Ċ
ATOM	184	CB	ILE	Α	25	10.404	1.077	1.507	1.00 13.64	A	Ċ
ATOM	185	CG1	ILE	A	25	11.267	-0.108	1.030	1.00 15.44	A	Ċ
ATOM	186	CD1	ILE	Α	25	10.508	-1.518	0.962	1.00 14.73	A	С
ATOM	187	CG2	ILE	Α	25	9.303	1.387	0.503	1.00 13.37	A	С
ATOM	188	С	ILE	A	25	10.447	3.491	2.209	1.00 13.24	A	C
ATOM	189	0	ILE	A	25	9.884	3.430	3.285	1.00 12.93	A	0
ATOM	190	N	VAL	A	26	10.438	4.573	1.432	1.00 12.43	A	N
ATOM	191	CA	VAL	A	26	9.656	5.754	1.737	1.00 12.49	A	С
ATOM	192	CB	VAL	A	26	10.480	7.034	1.585	1.00 12.90	A	C
ATOM	193		VAL		26	9.671	8.231	2.059	1.00 11.57	A	C
ATOM	194	CG2	VAL	Α	26	11.796	6.928	2.395	1.00 15.53	A	С
ATOM	195	C	VAL	A	26	8.465	5.823	0.804	1.00 12.34	A	C
ATOM	196	0	VAL		26	8.601	5.646	-0.418	1.00 11.99	A	0
ATOM	197	N	ALA	A	27	7.297	6.044	1.387	1.00 12.40	A	N
MOTA	198	CA	ALA	A	27	6.080	6.289	0.624	1.00 12.49	A	С
ATOM	199	CB	ALA		27	4.846	5.650	1.284	1.00 11.39	A	С
ATOM	200	C	ALA	A	27	5.892	7.790	0.546	1.00 12.17	A	С

Α	TOM	201	0	ALA	Α	27	6.077	8.501	1.526	1.00 1	1.39	A	0
Α	TOM	202	N	VAL	A	28 .	5.540	8.243	-0.643	1.00 1	1.79	. A	N
Α	TOM	203	CA	VAL	Α	28	5.168	9.612	-0.910	1.00 1	1.63	A	С
	TOM	204	CB	VAL		28	6.054	10.176	-2.003	1.00 1		Α	C
	TOM	205	CG1			28	5.629	11.625	-2.440	1.00 1		A	C
	TOM	206	CG2	VAL		28	7.514	10.079	-1.594	1.00 1		A	С
	TOM	207	С	VAL		28	3.729	9.580	-1.458	1.00 1		A	C
	TOM.	208	0	VAL		28	3.470	8.936	-2.459	1.00 1	0.72	Α	0
	TOM	209	N	ALA		29	2.817	10.294	-0.831	1.00 1	0.64	A	N
	TOM	210	CA	ALA		29	1.468	10.435	-1.365	1.00 1		A	С
	TOM	211	CB	ALA		29	0.441	10.151	-0.298	1.00 1		A	С
	TOM	212	С	ALA		29	1.326	11.842	-1.909	1.00 1		A	С
	TOM	213	O	ALA		29	1.404	12.826	-1.161	1.00 1		A	0
	TOM	214	N	ASP		30	1.186	11.937	-3.229	1.00 1		Α	N
	TOM	215	CA	ASP		30	1.266	13.221	-3.917	1.00 1		A	С
	TOM	216	CB	ASP		30	2.718	13.715	-3.958	1.00 1		A	C
	TOM	217	CG	ASP		30	2.802	15.221	-3.852	1.00 1		A	С
	TOM	218		ASP		30	3.385	15.726	-2.871	1.00 1		A	0
	TOM	219		ASP		30	2.226	15.973	-4.682	1.00 1		A	0
	TOM	220	С	ASP		30	0.665	13.113	-5.327	1:00 13		A	С
	TOM	221	0	ASP		30	0.068	12.086	-5.671	1.00 1		A	0
	TOM	222	N	THR		31	0.811	14.162	-6.151	1.00 1		A	N
	TOM	223	CA	THR		31	-0.004	14.263	-7.353	1.00 1		A	С
	TOM	224	CB	THR		31	0.302	15.554	-8.182	1.00 1		A	С
	TOM	225	OG1	THR		31	1.709	15.702	-8.423	1.00 1		A	0
	TOM	226	CG2	THR		31	-0.099	16.789	-7.424	1.00 1		Α	С
	TOM	227	C	THR		31	0.126	13.041	-8.225	1.00 13		A	C
	TOM	228	0	THR		31	-0.868	12.341	-8.494	1.00 1		A	0
	TOM	229	N	GLY		32	1.360	12.810	-8.665	1.00 1		A	N
	TOM	230	CA	GLY		32	1.694	11.788	-9.617	1.00 1		A	C
	TOM	231	C	GLY		32	3.202	11.763	-9.729	1.00 1		A	C
	TOM	232	0	GLY		32	3.885	12.607	-9.135	1.00 1		A	0
	TOM	233		- LEU		33	3.711		-10.501	1.00 1		A	N
	TOM	234	CA	LEU		33	5.139	10.622		1.00 1		A	c
	TOM	235	CB	LEU		33	5.625	9.397	-9.899	1.00 1		A	C
	TOM	236	CG	LEU		33	7.148	9.234	-9.900	1.00 1		A	C
	TOM	237	CD1			33	7.768	10.273	-8.964	1.00 1		A	C
	TOM	23B	CD2	LEU		33	7.497	7.818	-9.437	1.00 1		A	C
	TOM	239	C	LEU		33	5.517		-12.151		3.89	A	C
	TOM	240	0	LEU		33	5.374		-12.765	1.00 1		A	0
	TOM	241	Ŋ	ASP		34	6.009		-12.696	1.00 1		A	N
	TOM	242	CA	ASP		34	6.455		-14.087	1.00 1		A	C
	TOM TOM	243	CB CG	ASP ASP		34	7.899		-14.224	1.00 1		A	C
	TOM	244	OD1	ASP		34	8.516		-15.598		5.30	A	
	TOM	245		ASP		34	9.260		-16.148	1.00 1		A	0
	TOM	246				34	8.268		-16.207	1.00 1		A	O C
		247	C	ASP		34	5.470		-15.060	1.00 1		A	
	TOM TOM	248	0	ASP		34	4.297		-15.124	1.00 1		A	0
	TOM	249 250	N CA	THR		35 35	5.927 5.083		-15.816 -16.813	1.00 1		A	N C
	TOM	251	CB	THR		35	5.912		-17.786	1.00 1		A	
	TOM	252		THR								A	C
	TOM	252 253	CG2	THR		35 35	6.700 6.922		-17.051	1.00 1		A	o C
	TOM	253 254	CGZ	THR					-18.593			A A	C
	TOM	255	0	THR		35 35	4.005 3.111		-16.229	1.00 1		A A	0
	TOM	255 256		GLY			4.104		-16.946	1.00 1			
	TOM TOM		N CA			36			-14.948	1.00 1		A	N C
	TOM	257 258	CA	GLY		36	3.094		-14.360	1.00 1		A	C
~	1 OM	250	_	GLY	A	36	3.308	5.002	-14.660	1.00 I	1.50	Α	C

MOTA	259	0	GLY	Α	36	2.432	4.984	-14.383	1.00	17.55		7 0	
MOTA	260	N	ARG	Α	37	4.473	5.465	-15.200	1.00	18.31	,	A N	
ATOM	261	CA	ARG	Α	37	4.748	4.091	-15.575	1.00	19.42	7	A C	
MOTA	262	CB	ARG	Α	37	4.763	3.940	-17.088	1.00	20.37	1	A C	
ATOM	263	CG	ARG	Α	37	3.436	4.298	-17.742	1.00	23.71	7	A C	
ATOM	264	CD	ARG		37	3.283		-19.140		31.29		. C	
ATOM	265	NE	ARG		37	4.324		-20.024		34.29		A N	
ATOM	266	CZ	ARG		37	4.322		-20.575		38.63		4 C	
ATOM	267	NH1			37	5.331		-21.361	1.00				
										39.90		N	
MOTA	268	NH2	ARG		37	3.305		-20.362		40.23		A N	
MOTA	269	C	ARG		37	6.072		-14.998	1.00	19.41		<i>I</i> . C	
MOTA	270	0	ARG		37	7.065		-15.150	1.00	18.12		<i>A</i> 0	
MOTA	271	N	ASN		38	6.067		-14.334	1.00	19.47		A N	
MOTA	272	CA	ASN		38	7.254	1.998	-13.703	1.00	20.37	1	4 C	
MOTA	273	CB	ASN		38	6.917	1.215	-12.431	1.00	20.71	1	4 C	
MOTA	274	CG	ASN	A	38	8.161	0.841	-11.658	1.00	21.12	7	A C	
ATOM	275	OD1	ASN	A	38	9.248	1.337	-11.968	1.00	18.41	7	4 0	
ATOM	276	ND2	ASN	Α	38	8.023	-0.072	-10.684	1.00	20.60	1	A N	
ATOM	277	С	ASN	A	38	7.984	1.134	-14.700	1.00	21.21	1	4 C	
MOTA	278	0	ASN	A	38	7.918	-0.099	-14.63B	1.00	21.03	,	A 0	
ATOM	279	N	ASP	А	39	8.659		-15.625		21.69		A N	
ATOM	280	CA	ASP		39	9.363		-16.718		23.22		A C	
ATOM	281	СВ	ASP		39	8.405		-17.882		23.19	. ,		
ATOM	282	CG	ASP		39	7.806		-18.526		24.66		A C	
ATOM	283		ASP		39	6.796		-19.248		26.50		. 0	
ATOM	284		ASP		39	8.246		-18.372		27.03		4 0	
ATOM		C	ASP		39								
	285					10.480		-17.156		24.00		A C	
ATOM	286	0	ASP		39	10.843		-16.434		23.68		4 0	
ATOM	287	N	SER		40	11.003		-18.355		24.67		A N	
MOTA	288	CA	SER		40	12.166		-18.847		24.80		A C	
ATOM	289	CB	SER		40	12.777		-20.041		25.30		4 C	
ATOM	290	OG	SER		40	11.925	1.881	-21.163	1.00	25.60		4 O	
ATOM	291	С	SER		40 -	11.815	3.984	19.228	1.00	23.51	. 1	4 · C	
ATOM	292	0	SER	Α	40	12.687	4.805	-19.375	1.00	24.41	7	4 0	
ATOM	293	N	SER	Α	41	10.532	4.308	-19.317	1.00	23.14	1	A N	
ATOM	294	CA	SER	Α	41	10.097	5.670	-19.621	1.00	21.75	1	A C	
ATOM	295	CB	SER	Α	41	8.620	5.679	-20.037	1.00	22.84	1	A C	
ATOM	296	OG	SER	Α	41	7.725	5.739	-18.919	1.00	21.43	1	O A	
ATOM	297	С	SER	A	41	10.262	6.639	-18.427	1.00	21.13	1	4 C	
ATOM	298	0	SER	Α	41	10.299	7.863	-18.603	1.00	19.88	1	A 0	
ATOM	299	N	MET	A	42	10.359		-17.223		19.68		A N	
ATOM	300	CA	MET		42	10.381		-15.996	1.00	18.70		A C	
MOTA	301	CB	MET		42	10.295		-14.782	1.00	18.20		a c	
MOTA	302	CG	MET		42	10.451		-13.423		17.87		. C	
ATOM	303	SD	MET		42	9.190		-13.030	1.00	16.31		A S	
ATOM	304	CE	MET		42	7.658		-13.134	1.00	15.38		A C	
ATOM	305	C	MET		42							A C	
						11.607		-15.897		17.89			
MOTA	306	0	MET		42	12.728		-16.223		17.28		A 0	
MOTA	307	N	HIS		43	11.381		-15.421		17.69		A N	
ATOM	308	CA	HIS		43	12.479		-15.081		17.38		4 C	
ATOM	309	CB	HIS		43	11.942		-14.196		17.29		4 C	
ATOM	310	CG	HIS		43	12.896		-13.981		16.73		4 C	
MOTA	311		HIS		43	12.576		-14.321		16.98		A N	
ATOM	312		HIS		43	13.566		-13.971		13.61	7	A C	
ATOM	313		HIS		43	14.521	13.523	-13.426	1.00	17.49	1	A N	
ATOM	314	CD2	HIS	Α	43	14.113	12.207	-13.397	1.00	13.70	1	A C	
MOTA	315	С	HIS		43	13.647	9.209	-14.381	1.00	16.64	1	<i>4</i> C	
ATOM	316	0	HIS	A	43	13.453	8.389	-13.479	1.00	15.82		. O	

MOTA	317	N	GLU	A	44	14.858	9.559	-14.818	1.00	16.35	A	N
ATOM	318	CA	GLU	A	44	16.112	8.985	-14.358	1.00	16.74	A	С
MOTA	319	CB	GLU	A	44	17.293	9.763	-14.988	1.00	17.71	A	C
MOTA	320	CG	GLU	A	44	17.268	11.270	-14.753	1.00	18.20	Α	
MOTA	321	CD	GLU	A	44	18.445	12.004	-15.418	1.00	22.20	A	С
MOTA	322	OE1	GLU	A	44	18.997	11.455	-16.397	1.00	20.94	A	0
ATOM	323	OE2	GLU	A	44	18.843	13.110	-14.933	1.00	20.93	A	0
ATOM	324	C	GLU	Α	44	16.280	8.982	-12.823	1.00	17.11	A	C
ATOM	325	0	GLU	Α	44	16.944	8.104	-12.259	1.00	17.08	A	0
ATOM	326	N	ALA	Α	45	15.665	9.954	-12.152	1.00	16.39	A	N
ATOM	327	CA	ALA	Α	45	15.774	10.061	-10.696	1.00	16.01	A	С
ATOM	328	CB	ALA	Α	45	15.122	11.354	-10.198	1.00	15.44	A	
MOTA	329	С	ALA	Α	45	15.155	8.864	-9.971	1.00	16.39	A	
ATOM	330	0	ALA	Α	45	15.538	8.564	-8.857	1.00	14.42	A	
MOTA	331	N	PHE		46	14.184	8.218	-10.595	1.00	16.01	A	N
MOTA	332	CA	PHE	Α	46	13.411	7.139	-9.971	1.00	16.28	A	С
ATOM	333	СВ	PHE	Α	46	11.958	7.562	-9.882	1.00	16.14	A	C
ATOM	334	CG	PHE	A	46	11.780	8.959	-9.396	1.00	14.90	A	
ATOM	335	CD1	PHE	Α	46	12.036	9.275	-8.078	1.00	14.17	A	
ATOM	336	CE1	PHE	A	46	11.897	10.586	-7.628	1.00	13.19	A	
MOTA	337	CZ	PHE	Α	46	11.525	11.592	-8.504	1.00	14.92	A	
ATOM	338	CE2	PHE	Α	46	11.291	11.299	-9.809	1.00	16.01	A	
MOTA	339	CD2	PHE	Α	46	11.416	9.971	-10.261	1.00	15.93	A	С
ATOM	340	C	PHE	Α	46	13.466	5.791	-10.697	1.00	17.23	A	
ATOM	341	0	PHE	Α	46	13.017		-10.172	1.00	16.06	A	0
ATOM	342	N	ARG	Α	47	13.986	5.781	-11.917	1.00	18.87	Α	N
ATOM	343	CA	ARG	A	47	13.963	4.566	-12.723	1.00	20.32	A	C
MOTA	344	CB	ARG	A	47	14.659	4.833	-14.062	1.00	21.00	A	
ATOM	345	CG	ARG		47	14.309	3.871	-15.173	1.00	24.13	A	
ATOM	346	CD	ARG		47	14.468	4.517	-16.570	1.00	28.53	A	
ATOM	347	NE	ARG		47	15.803		-16.813		32.22	A	
MOTA	348	CZ	ARG	Α	47	16.105	6.229	-17.359	1.00	34.45	А	С
ATOM	349	NH1	ARG	A	47	15.171	7.109	-17.703	1.00	33.97	А	N
ATOM	350	NH2	ARG	A	47	17.384	6.558	-17.527	1.00	33.82	А	N
MOTA	351	С	ARG	Α	47	14.674	3.437	-12.000	1.00	20.49	A	C
MOTA	352	0	ARG	A	47	15.784	3.619	-11.523	1.00	21.38	A	0
MOTA	353	N	GLY	Α	48	14.032	2.280	-11.898	1.00	21.45	A	N
MOTA	354	CA	GLY	A	48	14.642	1.105	-11.274	1.00	21.59	A	С
MOTA	355	С	GLY	A	48	14.583	1.091	-9.741	1.00	21.98	A	C
MOTA	356	0	GLY	Α	48	15.072	0.145	-9.102	1.00	21.74	A	0
MOTA	357	N	LYS	Α	49	13.984	2.117	-9.136	1.00	21.05	A	. N
MOTA	358	CA	LYS	Α	49	13.950	2.197	-7.662	1.00	20.90	A	C
MOTA	359	CB	LYS	Α	49	14.915	3.305	-7.180	1.00	22.03	A	C
MOTA	360	CG	LYS	Α	49	14.366	4.713	-7.161	1.00	24.83	A	C
ATOM	361	CD	LYS	A	49	15.447	5.815	-6.761	1.00	27.45	A	С
ATOM	362	CE	LYS	Α	49	15.957	5.680	-5.358	1.00	27.82	A	С
ATOM	363	NZ	LYS		49	17.024	4.667	-5.220	1.00	28.25	A	N
ATOM	364	С	LYS	Α	49	12.523	2.329	-7.077	1.00	19.90	A	C
MOTA	365	0	LYS	Α	49	12.339	2.667	-5.890	1.00	19.91	A	0
ATOM	366	N	ILE	Α	50	11.523	1.999	-7.900	1.00	18.63	A	. N
MOTA	367	CA	ILE	Α	50	10.121	2.078	-7.533	1.00	17.48	A	
ATOM	368	CB	ILE	Α	50	9.284	2.650	-8.695	1.00	17.67	A	. С
MOTA	369	CG1	ILE	Α	50	9.738	4.076	-9.050	1.00	17.24	A	
MOTA	370	CD1	ILE	A	50	9.083	4.630	-10.302	1.00	17.34	A	
MOTA	371	CG2	ILE	Α	5 0	7.807	2.723	-8.319		17.29	A	
ATOM	372	С	ILE	Α	50	9.562	0.730	-7.090		17.96	A	
ATOM	373	0	ILE	Α	50	9.339	-0.161	-7.909	1.00	18.69	A	. 0
MOTA	374	N	THR	Α	51	9.355	0.583	-5.784	1.00	17.09	A	N

-	MOTA	375	CA	THR	A	51	8.731	-0.601	-5.218	1.00 17.60		A	С
	MOTA	376	CB	THR	Α	51	8.700	-0.423	-3.690	1.00 18.38		A	С
	MOTA	377	OG1	THR	A	51	10.033	-0.380	-3.205	1.00 17.39		A	0
	ATOM	378	CG2	THR	A	51	8.054	-1.617	-3.014	1.00 17.34		A	С
	ATOM	379	С	THR	Α	51	7.301	-0.746	-5.646	1.00 17.50		A.	С
	ATOM	380	0	THR		51	6.827	-1.834	-5.903	1.00 18.10		A	0
	ATOM	381	N	ALA		52	6.578	0.369	-5.670	1.00 16.93		A	N
	ATOM	382	CA	ALA		52	5.179	0.338	-6.052	1.00 17.34		A	Ċ
	MOTA	383	CB	ALA		52	4.314	-0.132	-4.884	1.00 17.41		A	č
	ATOM '	384	c	ALA		52	4.753	1.725	-6.501	1.00 17.46		A	C
	ATOM	385	ō	ALA		52	5.187	2.730	-5.928	1.00 16.50		A	ō
	ATOM	386	N	LEU		53	3.921	1.760	-7.539	1.00 10.30		Ã	N
	ATOM	387	CA	LEU		53	3.369	2.987	-8.081	1.00 17.19		A	C
	ATOM	388	CB	LEU		53	4.004	3.309	-9.430	1.00 16.66		A	c
	ATOM	389	CG	LEU		53	3.490	4.525		1.00 16.83		À	c
	ATOM	390		LEU		53	3.523	5.796	-9.401	1.00 15.83		A	c
	ATOM	391	CD2	LEU		53	4.303	4.720	-11.476	1.00 13.83		A	c
	ATOM	392	C	LEU		53	1.868	2.779	-8.212			A	c
	ATOM	393	0	LEU		53				1.00 17.28			
	ATOM	394	N	TYR		54	1.421	2.057	-9.097	1.00 17.43		A	0
							1.101	3.393	-7.303	1.00 17.28		A	N
	ATOM	395	CA	TYR TYR		54	-0.350	3.200	-7.230	1.00 16.87		A	C
	ATOM	396	CB			54	-0.774 -0.268	2.944	-5.789	1.00 16.88		A	C
	ATOM	397	CG	TYR		54		1.679	-5.144	1.00 15.63		Α	C
	ATOM	398	CD1	TYR		54	-0.411	0.448	-5.770	1.00 15.86		A	C
	ATOM	399	CE1	TYR		54	0.037	-0.698	-5.192	1.00 15.12		A	C
	ATOM	400	CZ	TYR		54	0.666	-0.647	-3.946	1.00 15.32		A	C
	ATOM	401	ОĤ	TYR		54	1.093	-1.815	-3.374	1.00 14.97		A	0
	ATOM	402	CE2	TYR		54	0.856	0.558	-3.312	1.00 15.70		A	C
	MOTA	403	CD2	TYR		54	0.384	1.718	-3.908	1.00 15.59		A	C
	MOTA	404	C	TYR		54	-1.098	4.411	-7.712	1.00 17.11		A	C
	ATOM	405	0	TYR		54	-0.733	5.546	-7.387	1.00 16.78		Α	0
	ATOM	406	N	ALA		55	-2.161	4.184	-8.483	1.00 17.01		A	N.
	ATOM	407	CA	ALA		5 5 ·	-3.032		8.926	1.00 17.49		Α	C -
	MOTA	408	CB	ALA		55	-3.355		-10.437	1.00 17.43		A	С
	MOTA	409	С	ALA		55	-4.323	5.272	-8.100	1.00 18.26		A	C
	ATOM	410	0	ALA		55	-5.174	4.400	-8.269	1.00 19.60		A	0
	ATOM	411	N	LEU		56	-4.481	6.267	-7.230	1.00 17.69		A	N
	MOTA	412	CA	LEU		56	-5.641	6.353	-6.368	1.00 17.32		A	С
	ATOM	413	CB	LEU		56	-5.224	6.779	-4.965	1.00 16.99		A	С
	ATOM	414	CG	LEU		56	-4.452	5.752	-4.129	1.00 17.97		A	C
	ATOM	415		LEU		56	-3.120	5.532	-4.719	1.00 20.33		A	C
	ATOM	416		LEU		56	-4.329	6.225	-2.662	1.00.19.18		Α	С
	ATOM	417	С	LEU		56	-6.662	7.360	-6.867	1.00 17.28		A	C
	MOTA	418	0	LEU		56	-7.839	7.192	-6.653	1.00 17.95		A	0
	ATOM	419	N	GLY	A	57	-6.204	8.430	-7.485	1.00 17.26		A	N
	ATOM	420	CA	GLY	Α	57	-7.068	9.541	-7.802	1.00 17.53		A	C
	ATOM	421	С	GLY	A	57	-7.662	9.430	-9.199	1.00 17.74		A	С
	ATOM	422	0	GLY	Α	57	-8.758	9.905	-9.446	1.00 17.69		A	0
	ATOM	423	N	ARG	Α	58	-6.921	8.825	-10.109	1.00 18.54		A	N
	MOTA	424	CA	ARG	Α	58	-7.361	8.659	-11.502	1.00 19.44		A	С
	MOTA	425	CB	ARG		58	-6.572	9.555	-12.466	1.00 18.56		A	C
	ATOM	426	CG	ARG	A	58	-6.873	11.036	-12.371	1.00 18.16		A	C
	ATOM	427	CD	ARG	A	58	-5.685	11.912	-12.787	1.00 17.99	•	A	С
	MOTA	428	NE	ARG	A	58	-4.505	11.593	-11.990	1.00 17.16		A	N
	MOTA	429	CZ	ARG	A	58	-3.248	11.716	-12.392	1.00 18.78		A	C
	MOTA	430	NH1	ARG	Α	58	-2.967	12.194	-13.591	1.00 18.96		A	N
	ATOM	431	NH2	ARG	Α	58	-2.253	11.339	-11.584	1.00 17.60		A	N
	ATOM	432	С	ARG	A	58	-7.123		-11.909	1.00 19.97		A	С

MOTA	433	0	ARG	A	58	-6.007	6.754 -11.878	1.00 20.06	A	0
ATOM	434	N	THR	A	59	-8.183	6.575 -12.324	1.00 22.06	A	N
ATOM	435	CA	THR	A	59	-8.091	5.180 -12.688	1.00 22.88	A	С
ATOM	436	CB	THR		59	-9.479	4.693 -13.142	1.00 24.04	A	C
ATOM	437	OG1	THR		59	-10.330	4.643 -11.984	1.00 25.24	A	0
ATOM	438	CG2	THR		59	-9.406	3.250 -13.657	1.00 25.24	A	C
ATOM	439	С	THR		59	-7.009	4.919 -13.733	1.00 22.06	А	С
ATOM	440	0	THR		59	-7.020	5.482 -14.835	1.00 22.93	A	0
ATOM	441	N	ASN		60	-6.074	4.068 -13.332	1.00 21.27	A	N
MOTA	442	CA	ASN		60	-4.939	3.618 -14.124	1.00 21.57	A	С
MOTA	443	CB	ASN		60	-5.400	2.788 -15.326	1.00 22.51	A	C
MOTA	444	CG	ASN		60	-5.861	1.401 -14.927	1.00 24.76	. А	C
ATOM	445		ASN		60	-5.546	0.908 -13.835	1.00 27.82	A	0
MOTA	446		ASN		60	-6.624	0.773 -15.801	1.00 25.97	A	N
MOTA MOTA	447 448	C	ASN ASN		60 60	-4.038	4.744 ~14.614	1.00 20.35	A	C
ATOM	449	N	ASN		61	-3.369 -4.023	4.589 -15.629 5.852 -13.897	1.00 20.71 1.00 18.43	A A	O N
ATOM	450	CA	ASN		61	-3.217	6.996 -14.300	1.00 18.43	A	N C
ATOM	451	CB	ASN		61	-4.095	8.062 -14.972	1.00 17.54	A	Ċ
ATOM	452	CG	ASN		61	-3.278	9.194 -15.580	1.00 17.54	Ä	Č
ATOM	453		ASN		61	-3.832	10.171 -16.141	1.00 22.44	A	Ö
ATOM	454		ASN		61	-1.968	9.081 -15.481	1.00 15.52	A	N
ATOM	455	C	ASN		61	-2.520	7.586 -13.088	1.00 16.75	A	Ĉ
ATOM	456	0	ASN		61	-3.159	8.213 -12.260	1.00 16.00	A	ō
ATOM	457	N	ALA		62	-1.219	7.357 -12.988	1.00 16.29	A	N
MOTA	458	CA	ALA	A	62	-0.418	7.910 -11.902	1.00 16.34	A	С
MOTA	459	CB	ALA	A	62	0.310	6.804 -11.183	1.00 16.55	А	С
MOTA	460	C	ALA	A	62	0.584	8.948 -12.405	1.00 16.52	A	C
MOTA	461	0	ALA	Α	62	1.583	9.221 -11.728	1.00 15.61	A	0
MOTA	462	N	ASN	A	63	0.344	9.515 -13.593	1.00 15.91	A	N
MOTA	463	CA	ASN		63	1.276	10.465 -14.157	1.00 15.75	А	С
MOTA	464	CB	ASN		63	1.251	10.471 -15.720	1.00 15.36	A	C
MOTA	465	CG	ASN		63		11.165 16.307		A	С
ATOM	466		ASN		63	-0.617	11.982 -15.643	1.00 14.50	A	0
ATOM	467		ASN		63	-0.274	10.833 -17.584	1.00 15.36	A	Ŋ
ATOM	468	C	ASN		63	1.115	11.858 -13.518	1.00 15.21	A	C.
ATOM	469	0	ASN		63	0.168	12.108 -12.762	1.00 15.63	A	0
ATOM ATOM	470 471	N CA	ASP ASP		64	2.047	12.753 -13.828	1.00 15.12	A	N
ATOM	472	CB	ASP		64 64	2.192 3.450	14.015 -13.102 13.990 -12.233	1.00 15.29	A A	c c
MOTA	473	CG	ASP		64	3.532	15.161 -11.300	1.00 14.59 1.00 15.31	A	c
ATOM	474		ASP		64	2.476	15.813 -11.058	1.00 13.31	A	Ö
ATOM	475		ASP		64	4.626	15.516 -10.776	1.00 14.37	A	ő
ATOM	476	C	ASP		64	2.236	15.206 -14.061	1.00 15.53	A	Č
ATOM	477	ŏ	ASP		64	3.315	15.713 -14.423	1.00 16.54	A	ō
ATOM	478	N	PRO		65	1.065	15.644 -14.476	1.00 16.18	A	N
MOTA	479	CA	PRO		65	0.950	16.813 -15.343	1.00 17.33	A	C
MOTA	480	СВ	PRO		65	-0.509	16.776 -15.807	1.00 17.19	A	Č
MOTA	481	CG	PRO		65	-1.225	15.953 -14.808	1.00 17.73	A	C
MOTA	482	CD	PRO	Α	65	-0.249	15.043 -14.172	1.00 17.21	A	С
MOTA	483	C	PRO	A	65	1.228	18.102 -14.607	1.00 17.72	A	C
MOTA	484	0	PRO	A	65	1.515	19.081 -15.250	1.00 17.98	A	0
MOTA	485	N	ASN		66	1.150	18.065 -13.279	1.00 18.27	A	N
MOTA	486	CA	ASN		66	1.314	19.217 -12.426	1.00 19.24	A	C
MOTA	487	CB	ASN		66	0.536	18.958 -11.111	1.00 20.48	Α	C
MOTA	488	CG	ASN		66	0.790	19.993 -10.068	1.00 22.89	A	С
ATOM	489		ASN		66	1.942	20.281 -9.721	1.00 23.54	A	0
MOTA	490	ND2	ASN	Α	66	-0.287	20.591 -9.566	1.00 25.20	A	N

MOTA	491	C ASN	A 66	2.806	19.457 -12.153	1.00 18.71	A C
MOTA	492	O ASN	A 66	3.314	20.549 -12.353	1.00 18.84	A O
MOTA	493	N GLY	A 67	3.500	18.426 -11.698	1.00 17.55	A N
MOTA	494	CA GLY		4.917	18.503 -11.406	1.00 16.38	A C
ATOM	495	C GLY		5.234	18.455 -9.916	1.00 15.32	A C
ATOM	496	O GLY		6.383	18.167 -9.542	1.00 15.11	A O
MOTA	497	N HIS		4.230	18.722 -9.075	1.00 13.44	A N
ATOM	498	CA HIS		4.406	18.776 -7.608	1.00 12.51	A C
ATOM	499	CB BHIS		3.109	19.121 -6.891	0.50 12.22	A C
ATOM	-500	CB AHIS		3.048	19.078 -6.930	0.50 12.48	A C
ATOM	501	CG BHIS		3.266	19.371 -5.417	0.50 10.61	A C
ATOM	502	ND1BHIS		3.140	19.398 -5.464	0.50 10.86 0.50 5.34	A C
ATOM	503 504	ND1BHIS		2.741 3.742	18.522 -4.453 18.559 -4.548	•	A N
ATOM ATOM		CE1BHIS		3.742	19.016 -3.254	0.50 7.56 0.50 6.59	A N A C
ATOM	506	CEIAHIS		3.674	19.102 -3.341	0.50 2.00	A C
ATOM	507	NE2BHIS		3.678	20.158 -3.403	0.50 2.00	A N
ATOM	508	NE2AHIS		3.061	20.277 -3.442	0.50 6.21	AN
ATOM	509	CD2BHIS		3.845	20.405 -4.745	0.50 5.10	A C
ATOM	510	CD2AHIS		2.697	20.471 -4.756	0.50 8.79	A C
ATOM	511	C HIS		4.986	17.474 -7.064	1.00 12.70	A C
ATOM	512	O HIS		6.025	17.471 -6.401	1.00 12.91	A 0
MOTA	513	N GLY		4.315	16.374 -7.317	1.00 13.22	A N
ATOM	514	CA GLY		4.709	15.094 -6.739	1.00 13.52	A C
ATOM	515	C GLY		6.039	14.574 -7.181	1.00 13.01	A C
ATOM	516	O GLY	A 69	6.751	13.894 -6.418	1.00 13.80	A O
ATOM	517	N THR	A 70	6.391	14.865 -8.432	1.00 13.25	A N
ATOM	518	CA THR	A 70	7.651	14.425 ~8.970	1.00 12.89	A C
MOTA	519	CB THR	A 70	7.688	14.638 -10.507	1.00 13.93	A C
ATOM	520	OG1 THR	A 70	6.592	13.940 -11.116	1.00 14.34	A O
MOTA	521	CG2 THR	A 70	8.895	13.977 -11.110	1.00 13.50	A C
ATOM	522	C THR		8.769	15.192 -8.309	1.00 12.86	A C
ATOM .	523	O THR		9.816	14.6228.013	1.00 13.63	- A - O
ATOM	524	N HIS		8.560	16.498 -8.093	1.00 12.19	A N
ATOM	525	CA HIS		9.580	17.341 -7.486	1.00 11.80	A C
ATOM	526	CB HIS		9.125	18.796 -7.555	1.00 11.41	A C
ATOM	527	CG BHIS		10.185	19.784 -7.212	0.50 11.89	A C
ATOM	528	CG AHIS		10.189	19.775 -7.181	0.50 9.73	A C
ATOM	529	ND1BHIS		10.926	19.709 -6.050	0.50 12.60	A N
ATOM ATOM	530	ND1AHIS		10.236	20.388 -5.942	0.50 5.89	AN
ATOM	531 532	CE1BHIS CE1AHIS		11.791 11.281	20.706 -6.025 21.192 -5.898	0.50 13.16 0.50 7.95	A C A ·C
ATOM	533	NESBHIS		11.618	21.192 -5.696	0.50 7.95	A C
ATOM	534	NE2AHIS		11.018	21.107 -7.054	0.50 14.18	A N
ATOM	535	CD2BHIS		10.617	20.883 -7.869	0.50 10.14	A C
ATOM	536	CD2AHIS		11.258	20.231 -7.874	0.50 6.22	A C
MOTA	537	C HIS		9.806	16.875 -6.018	1.00 12.35	A C
ATOM	538	O HIS		10.935	16.698 -5.538	1.00 12.45	A 0
ATOM	539	N VAL		8.697	16.657 -5.331	1.00 12.33	A N
ATOM	540	CA VAL		8.704	16.204 -3.960	1.00 12.62	A C
ATOM	541	CB VAL		7.279	16.056 -3.469	1.00 12.75	A C
ATOM	542	CG1 VAL		7.248	15.256 -2.202	1.00 12.50	A C
ATOM	543	CG2 VAL		6.647	17.430 -3.262	1.00 12.97	A C
ATOM	544	C VAL		9.431	14.864 -3.799	1.00 13.01	A C
ATOM	545	O VAL		10.333	14.707 -2.947	1.00 12.02	A O
ATOM	546	N ALA		9.054	13.888 -4.615	1.00 12,23	A N
ATOM	547	CA ALA		9.664	12.572 -4.521	1.00 12.29	A C
ATOM	548	CB ALA	A 73	8.986	11.617 -5.440	1.00 12.32	A C

ATOM	549	¢	ALA	Α	73	11.180	12.682	-4.850	1.00	11.78	A.	C
ATOM	550	0	ALA	Α	73	11.985	11.992	-4.280	1.00	11.60	A	0
ATOM	551	N	GLY	A	74	11.553	13.583	-5.742	1.00	12.04	A	N
ATOM	552	CA	GLY	A	74	12.961	13.760	-6.069	1.00	11.92	A	С
MOTA	553	C	GLY		74	13.768	14.190	-4.845	1.00	12.13	A	C
ATOM	554	ō	GLY		74	14.936	13.816	-4.693		11.64	A	ō
ATOM	555	N	SER		75	13.157	15.015	-3.994		12.08	Ą	N
ATOM	556	CA	SER		75	13.844	15.546	-2.827		12.08	A	Ċ
ATOM	557	CB	SER		75 75	13.095	16.748	-2.267		11.53	A.	c
ATOM	558	OG	SER		75 75		17.915				A.	
						13.254		-3.077		13.29		0
MOTA	559	C	SER		7 5	14.033	14.477	-1.739		12.05	A •	С
ATOM	560	0	SER		75	14.984	14.540	-0.927		12.73	A	0
ATOM	561	N	VAL		76	13.112	13.524	-1.676		11.61	A	N
ATOM	562	CA	VAL		76	13.272	12.407	-0.748		11.87	A	С
ATOM	563	CB	VAL		76	12.023	11.519	-0.691		12.06	A	C
ATOM	564		VAL		76	12.224	10.396	0.324		12.75	A	С
ATOM	565	CG2	VAL		76	10.799	12.319	-0.316	1.00	11.56	A	C
MOTA	566	С	VAL	Α	76	14.415	11.501	-1.173	1.00	12.11	A	С
ATOM	567	0	VAL	Α	76	15.280	11.158	-0.372	1.00	10.37	A	0
ATOM	568	N	LEU	Α	77	14.410	11.085	-2.437	1.00	12.79	A	N
ATOM	5 69	CA	LEU	A	77.	15.234	9.934	-2.809	1.00	12.61	A	C
ATOM	570	CB	LEU	A	77	14.532	8.627	-2.425	1.00	13.05	A	C ·
ATOM	571	CG	LEU	A	77	13.050	8.419	-2.774	1.00	11.85	A	С
ATOM	572	CD1	LEU	Α	77	12.868	8.361	-4.281	1.00	12.80	A	С
ATOM	573	CD2	LEU	A	77	12.512	7.140	-2.114	1.00	14.07	A	C
ATOM	574	С	LEU	A	77	15.676	9.847	-4.267	1.00	13.21	A	c
ATOM	575	0	LEU		77	16.181	8.810	-4.656		13.59	A ·	0
ATOM	576	N	GLY		78	15.586	10.935	-5.022		13.72	A	N
ATOM	577	CA	GLY		78	16.045	10.945	-6.415		14.19	A	C
ATOM	578	C.	GLY		78	17.486	10.505	-6.506		14.88	A	č
ATOM	579	Ö	GLY		78	18.322	10.998	-5.718		14.70	A	ō
ATOM	580	N	ASN		79	17.800	9.587	-7.420		15.24	A	N
ATOM	581	CA	ASN		79	19.172	9.066			16.71	A	C
ATOM	582	CB	ASN				7.542					
					79	19.204		-7.263		16.08	A A	C
ATOM	583	CG	ASN		79 70	20.615	7.023	-6.904		16.70	A	C
ATOM	584		ASN		79	21.438	7.754	-6.372		15.21	A •	0
ATOM	585		ASN		79	20.881	5.749	-7.181		15.92	A	N
ATOM	586	C	ASN		79	19.877	9.353	-8.852		18.12	A -	C
ATOM	587	0	ASN		79	20.735	B.576	-9.267		18.96	A	0
MOTA	588	N	ALA		80	19.559	10.458	-9.513		18.68	A	N
ATOM	589	CA	ALA		80	20.316		-10.723		19.08	A	С
MOTA	590	CB	ALA		80	19.381		-11.876		19.15	A	С
ATOM	591	C	ALA		80	21.261		-10.376		18.85	A	С
MOTA	592	0	ALA		80	22.245	11.795	-9.663		18.76	A	0
ATOM	593	N	THR		81	20.973		-10.841	1.00	18.39	A	Ŋ
MOTA	594	CA	THR	Α	81	21.647		-10.305	1.00	18.1 8	A	С
ATOM	595	CB	THR		81	22.229		-11.444		18.72	A	С
ATOM	596	OG1	THR	A	81	21.202		-12.379	1.00	17.48	A	0
ATOM	597	CG2	THR	Α	81	23.229	14.420	-12.289		21.52	A	С
MOTA	598	С	THR	Α	81	20.650	15.185	-9.470	1.00	17.64	A	С
MOTA	599	0	THR	Α	81	19.466	14.858	-9.423	1.00	17.77	A	0
MOTA	600	N	ASN	Α	82	21.115	16.238	-8.803	1.00	16.86	A	N
ATOM	601	CA	ASN	A	82	20.271	16.947	-7.842	1.00	16.82	A	С
ATOM	602	CB	ASN		82	19.279	17.840	-8.574		16.90	A	C
ATOM	603	CG	ASN		82	19.962	18.782	-9.552		18.05	A	Ċ
ATOM	604		ASN		82	19.861		-10.804		20.14	A	ō
ATOM	605		ASN		82	20.650	19.760	-9.005		12.31	A	N
ATOM	606	C	ASN		82	19.541	15.941	-6.930		16.16	A	C
-		-										_

ATOM	607	0	ASN	A	82	18.325	15.985	-6.772	1.00 16.88	A	0
ATOM	608	N	LYS	Α	83	20.310	15.022	-6.366	1.00 15.41	A	N
ATOM	609	CA	LYS	A	83	19.76 7	13.853	-5.710	1.00 15.60	A	C
ATOM	610	CB	LYS	Α	83	20.907	12.919	-5.287	1.00 15.95	A	С
ATOM	611	CG	LYS	Α	83	21.665	12.168	-6.415	1.00 16.19	A	С
ATOM	612	CD	LYS	Α	83	22.815	11.339	-5.811	1.00 19.24	Α	С
MOTA	613	CE	LYS	A	83	23.806	10.791	-6.833	1.00 21.12	A	С
ATOM	614	NZ	LYS	A	83	23.076	9.941	-7.791	1.00 20.88	A	N
ATOM	615	С	LYS	Α	83	18.966	14.243	-4.453	1.00 14.74	A	С
ATOM	616	0	LYS	A	83	19.243	15.248	-3.801	1.00 13.71	A	0
ATOM	617	N	GLY	A	84	18.000	13.402	-4.117	1.00 14.66	A	N
ATOM	618	CA	GLY	Α	84	17.337	13.439	-2.833	1.00 14.40	A	С
ATOM	619	С	GLY	Α	84	18.240	13.078	-1.664	1.00 14.38	A	C
ATOM	620	0	GLY	Α	84	19.372	12.683	-1.853	1.00 14.68	A	0
ATOM	621	N	MET	Α	85	17.734	13.231	-0.439	1.00 13.41	Α	N
ATOM	622	CA	MET	Α	85	18.586	13.079	0.753	1.00 13.39	A	С
ATOM	623	CB	MET	Α	85	17.865	13.660	1.970	1.00 13.62	A	С
MOTA	624	CG	MET	Α	85	17.446	15.132	1.799	1.00 14.10	A	С
ATOM	625	SD	MET	Α	85	18.823	16.235	1.480	1.00 15.77	А	S
MOTA	626	CE	MET	A	85	18.801	16.373	-0.341	1.00 16.54	A	С
ATOM	627	C	MET	Α	85	18.946	11.600	1.022	1.00 13.55	A	C
ATOM	628	0	MET	A	85	19.975	11.302	1.623	1.00 13.91	A	0
MOTA	629	N	ALA	Α	86	18.078	10.685	0.586	1.00 13.51	A	N
MOTA	630	CA	ALA	A	86	18.290	9.250	0.774	1.00 13.69	A	С
ATOM	631	CB	ALA	Α	86	17.223	8.682	1.717	1.00 13.63	A	C
ATOM	632	С	ALA	Α	86	18.200	8.571	-0.589	1.00 13.59	A	C
MOTA	633	0	ALA	A	86	17.258	7.821	-0.868	1.00 14.50	A	0
ATOM	634	N	PRO	Α	87	19.175	8.818	-1.445	1.00 14.33	A	· N
MOTA	635	CA	PRO	Α	87	19.068	8.409	-2.859	1.00 14.18	A	С
MOTA	636	CB	PRO	A	87	20.236	9.152	-3.515	1.00 14.93	A	С
ATOM	637	CG	PRO	A	87	21.263	9.267	-2.393	1.00 14.56	A	C
MOTA	638	CD	PRO	Α	87	20.446	9.524	-1.148	1.00 13.97	A	C
MOTA	.639	С	PRO	A	87	19.146	6.901 -	3.123	1.00 14.68	A	С
MOTA	640	0	PRO		87	18.943	6.474	-4.260	1.00 15.65	A	0
ATOM	641	N	GLN		88	19.424	6.099	-2.109	1.00 15.11	Α	N
ATOM	642	ÇA	GLN		88	19.436	4.639	-2.266	1.00 16.35	A	С
MOTA	643	CB	GLN		88	20.748	4.050	-1.733	1.00 16.73	A	C
MOTA	644	CG	GLN		88	21.900	4.262	-2.703	1.00 19.50	A	C
MOTA	645	CD	GLN		88	23.267	3.916	-2.161	1.00 21.39	A	. C
ATOM	646	OE1			88	23.427	2.933	-1.439	1.00 22.79	Α	0
MOTA	647	NE2	GLN		88	24.272	4.709	-2.547	1.00 22.41	A	N
MOTA	648	C	GLN		88	18.228	3.976	-1.621	1.00 16.49	A	C
MOTA	649	0	GLN		88	18.080	2.754	-1.644	1.00 16.50	A	0
ATOM	650	N	ALA		89	17.347	4.786	-1.044	1.00 16.72	A	N
ATOM	651	CA	ALA		89	16.056	4.279	~0.599	1.00 16.78	A	C
ATOM	652	CB	ALA		89	15.380	5.277	0.375	1.00 17.28	A	C
ATOM	653	C	ALA		89	15.139	3.996	-1.792	1.00 16.32	A	C
ATOM	654	0	ALA		89	15.212	4.648	-2.826	1.00 16.81	A	0
ATOM	655	N	ASN		90	14.248	3.037	-1.634	1.00 15.45	A	N
ATOM	656	CA	ASN		90	13.264	2.756	-2.658	1.00 15.40	A	C
MOTA	657 659	CB	ASN		90	13.036	1.247	-2.756	1.00 16.05	A	C
ATOM	658	CG	ASN		90	14.076	0.549	-3.658	1.00 19.92	A	C
ATOM	659		ASN		90	15.039	1.155	-4.106	1.00 25.00	A	0
ATOM	660		ASN		90	13.892	-0.736	-3.873	1.00 28.28	A	N
ATOM	661	C	ASN		90	11.942	3.486	-2.367	1.00 14.01	A	C
ATOM	662	0	ASN		90	11.668	3.834	-1.234	1.00 12.81	A	0
ATOM	663	N	LEU		91	11.150	3.705	-3.410	1.00 13.02	A	N
ATOM	664	CA	LEU	A	91	9.964	4.542	-3.381	1.00 13.78	А	С

ATOM	665	CB	LEU	A	91	10.022	5.524	-4.540	1.00 13.95	A	С
MOTA	666	CG	LEU	Α	91	8.861	6.472	-4.765	1.00 12.85	A	C
MOTA	667	CD1	LEU	Α	91	8.669	7.375	-3.571	1.00 15.80	A	С
ATOM	668				91	9.077	7.287	-6.026	1.00 13.13	A	С
ATOM	669	С	LEU		91	8.661	3.762	-3.524	1.00 14.15	A	С
ATOM	670	0	LEU		91	8.503	2.953	-4.437	1.00 15.63	A	0
ATOM	671	N	VAL		92	7.716	4.055	-2.649	1.00 13.69	A	N
MOTA	672	CA	VAL		92	6.327	3.692	-2.872	1.00 14.00	A	C
MOTA	673	CB	VAL		92	5.737	3.031	-1.662	1.00 13.15	A	C
ATOM	674	CG1	VAL		92	4.197	3.018	-1.767	1.00 15.32	A	C
ATOM	675	CG2	VAL		92	6.260	1.621	-1.546	1.00 13.02	A	C
MOTA	676	C	VAL		92	5.615	5.001	-3.175	1.00 13.45	A	C
MOTA	677	0	VAL		92	5.687	5.942	-2.376	1.00 13.53	A	0
ATOM	678	N	PHE		93	4.984	5.107	-4.346	1.00 13.19	A	N
ATOM ATOM	679 680	CA CB	PHE		93 93	4.293	6.351	-4.714	1.00 13.05	A	C
ATOM	681	CG	PHE		93	4.899 4.484	6.964 8.388	-5.985 -6.206	1.00 13.57 1.00 13.50	A A	C
MOTA	682		PHE		93	5.331	9.439	-5.861	1.00 13.00	A	C
ATOM	683	CEI	PHE		93	4.941	10.748	-6.023	1.00 13.00	Ä	C
ATOM	684	CZ	PHE		93	3.680	11.030	-6.515	1.00 12.71	A	c
ATOM	685	CE2			93	2.832	9.998	-6.881	1.00 12.22	A	Ċ
MOTA	686	CD2	PHE		93	3.226	8.679	-6.710	1.00 12.44	A	č
ATOM	687	C	PHE		93	2.793	6.150	-4.872	1.00 13.51	A	č
ATOM	688	0	PHE		93	2.350	5.285	-5.632	1.00 13.61	A	Ö
MOTA	689	N	GLN	A	94	2.021	6.949	-4.150	1.00 13.35	A	N
MOTA	690	CA	GLN	Α	94	0.567	6.903	-4.197	1.00 13.55	A	С
MOTA	691	CB	GLN	Α	94	-0.034	6.775	-2.786	1:00 12.95	А	С
MOTA	692	CG	GLN	Α	94	. 0.383	5.493	-2.078	1.00 13.25	A	C
MOTA	693	CD	GLN	A	94	0.065	5.494	-0.589	1.00 14.07	A	С
MOTA	694	OE1	GLN	Α	94	0.598	6.311	0.157	1.00 16.83	A	0
MOTA	695	NE2	GLN	A	94	-0.813	4.578	-0.158	1.00 13.83	A	N
ATOM	696	C,	GLN		94	0.118	8.195	-4.841	1.00 13.81	A	С
ATOM	697	0	GLN		94	0.197	9.289		1.00 12.11	A	0
MOTA	698	N 	SER		95	-0.266	8.072	-6.110	1.00 14.33	A	N
MOTA	699	CA	SER		95	-0.793	9.190	-6.893	1.00 14.08	A	C
ATOM	700	CB	SER		95	-0.743	8.850	-8.380	1.00 13.95	A	C
ATOM	701	OG	SER		95	-1.337	9.864	-9.152	1.00 11.92	A	0
MOTA	702	C	SER		95	-2.221	9.519	-6.494	1.00 14.82	A	C
ATOM ATOM	703 704	O N	SER		95 96	-3.150	8.743	-6.780	1.00 14.73	A	0
ATOM	705	N CA	ILE		96 96	-2.404 -3.699	10.681 11.049	-5.852 -5.277	1.00 15.21 1.00 15.55	· A A	N C
ATOM	706	CB	ILE		96	-3.560	11.482	-3.782	1.00 15.92	A	Ċ
ATOM	707		ILE		96	-2.466	12.548	-3.782	1.00 15.92	Ā	c
ATOM	708	CD1	ILE		96	-2.367	13.122	-2,196	1.00 17.02	A	Č
ATOM	709	CG2	ILE		96	-3.257	10.273	-2.915	1.00 16.70	A	č
ATOM	710	C	ILE		96	-4.398	12.158	-6.043	1.00 15.93	A	ċ
ATOM	711	0	ILE	Α	96	-5.475	12.590	-5.660	1.00 14.84	A	ō
ATOM	712	N	MET	Α	97	-3.797	12.640	-7.119	1.00 16.32	A	N
ATOM	713	CA	MET		97	-4.440	13.700	-7.889	1.00 18.17	A	C
ATOM	714	CB	MET	A	97	-3.471	14.346	-8.884	1.00 18.20	А	С
MOTA	715	CG	MET	A	97	-4.107	15.480	-9.688	1.00 21.58	А	С
MOTA	716	SD	MET	Α	97	-2.949	16.297	-10.814	1.00 25.41	A	s
MOTA	717	CE	MET	А	97	-3.900	16.196	-12.225	1.00 31.75	A	С
MOTA	718	C	MET		97	-5.647	13.114	-8.641	1.00 18.32	A	С
MOTA	719	0	MET		97	-5.537	12.054	-9.249	1.00 18.26	A	0
MOTA	720	N	ASP		98	-6.780	13.807	-8.568	1.00 19.35	A	N
ATOM	721	CA	ASP		98	-8.020	13.369	-9.217	1.00 20.45	A	C
MOTA	722	CB	ASP	Α	98	-9.268	13.714	-8.375	1.00 20.39	A	С

ATOM	723	CG	ASP	Α	98	-9.367	15.170	-8.021	1.00	21.41		A	C
ATOM	724		ASP		98	-9.234	16.024	-8.928		22.52		A	0
ATOM	725		ASP		98	-9.599	15.575	-6.847		20.32		A	0
ATOM	726	С	ASP		98	-8.093		-10.592		20.49		A	C
ATOM	727	0	ASP		98	-7.168		-10.996	1.00	19.61		A	0
MOTA	728	N	SER		99	-9.170	13.747	-11.321	1.00	21.70		A	N
ATOM	729	ÇA	SER		99	-9.252		-12.703		23.74		A	С
ATOM	730	CB	SER		99	-10.202		-13.510	1.00	24.07		A	C
MOTA	731	OG	SER		99	-11.497	13.436	-12.986	1.00	25.19		A	0
MOTA	732	С	SER		99	-9.727		-12.749	1.00	24.80		A	C
MOTA	733	0	SER		99	-9.696	16.286	-13.812		27.46		A	0
MOTA	734	N			100	-10.152		-11.611		24.38		A	N
MOTA	735	CA			100	-10.425		-11.488		25.17		A	С
ATOM	736	C			100	-9.262		-10.968		25.36		A	C
MOTA	737	0			100	-9.475	19.606	-10.557	1.00	26.29		A	0
MOTA	738	N			101	-8.047	17.933	-10.964		25.13		A	N
ATOM	739	CA			101	-6.873	18.715	-10.573	1.00	24.90		A	C
MOTA	740	С			101	-6.541	18.760	-9.076	1.00	24.55		A	C
ATOM	741	0			101	-5.425	19.133	-8.713	1.00	26.15		A	0
ATOM	742	N			102	-7.490	18.406	-8.221		22.32		A	N
MOTA	743	CA			102	-7.258	18.339	-6.783		21.84		A	С
ATOM	744	C			102	-6.703	17.008	-6.267		20.73		A	C
MOTA	745	0			102	-6.172	16.204	-7.021	1.00	19.11		A	0
ATOM	746	N			103	-6.814	16.794	-4.959		19.97		A	N
MOTA	747	CA			103	-6.225	15.634	-4.294		19.19		A	С
MOTA	748	CB			103	-5.346	16.094	-3.131	1.00	18.87		A	C
MOTA	749	CG			103	-4.169	16.986	-3.552	1.00	18.31		A	C
MOTA	750		LEU		103	-3.298	17.397	-2.354	1.00	17.54		A	C
MOTA	751		LEU			-3.341	16.297	-4.607		19.64		A	C
ATOM	752	C			103	-7.307	14.676	-3.809		19.31		A	C
ATOM	753	0			103	-7.179	14.018	-2.750	1.00	18.44		A	0
MOTA	754	N	GLY		104	-8.371	14.586	-4.604		18.93		A	N
MOTA	755	CA			104	-9.537	13.780			18.78		A	C
MOTA	756	C			104	-9.259	12.298	-4.234		18.26	. •	A	С
MOTA	757	0			104	-10.078	11.506	-3.780		19.17		A	0
MOTA	758	N			105	-8.094	11.886	-4.703		17.54		A	N
ATOM	759	CA	GLY		105	-7.698	10.500	-4.520		17.23		A	C
ATOM	760	C			105	-7.395	10.091	-3.075		16.85		A	C
ATOM	761	0			105	-7.319	8.895	-2.731		15.88		A	0
MOTA	762	N	LEU		106	-7.263	11.067	-2.194		16.62		A	N
ATOM	763	CA			106	-7.137	10.729	-0.777		16.79		A	C
MOTA	764	CB			106	-6.892	11.975	0.048		16.05		A	C
ATOM	765	CG	LEU		106	-5.519	12.560	-0.204		14.68		A	C
ATOM	766		LEU			-5.479	13.986	0.274				A	C
MOTA MOTA	767 768	CDZ	LEU		-	-4.425	11.707	0.507		13.15		Α	C
	769	0			106	-8.423	10.056	-0.304	1.00	17.90		A	C
ATOM					106	-9.513	10.553	-0.587		18.63		A	0
ATOM ATOM	770 771	N CA			107 107	-8.318	8.932	0.387		18.42		A	N
ATOM						-9.506	8.280	0.977				A	C
ATOM	772 773	CB CG			107 107	-8.963 -7.537	6.932	1.430		19.15		A N	C
ATOM	774	CD			107	-7.537 -7.089	7.286	1.774		19.19		A N	C
ATOM	77 4 775	CD			107	-7.089 -10.070	8.162 9.036	0.640		18.63		A	C
ATOM	776				107			2.178		18.88		A	C
ATOM	776 777	O N			107	-9.340	9.724	2.886		19.33		A	0
ATOM	778	N	ALA			-11.367	8.910	2.408		19.46		A	N
ATOM		CA				-12.022	9.562	3.530		19.50		A	C
,	779	CB	ALA			-13.514	9.168	3.585		20.76		A	C
ATOM	780	С	ΑцΑ	А	108	-11.359	9.229	4.875	1.00	18.72		A	С

ATOM	781	0	ALA	Α	108	-11.229	10.093	5.727	1.00 1	9.17	7	A.	0
ATOM	782	N	ASN	Α	109	-11.007	7.964	5.069	1.00 1	8.94	i	A	N
ATOM	783	CA	ASN	Α	109	-10.193	7.535	6.209	1.00 1	9.10	i	A	С
ATOM	784	CB	ASN	Α	109	-10.691	6.206	6.773	1.00 1	9.41	i	A.	C
ATOM	785	CG	ASN	Α	109	-9.990	5.834	8.073	1.00 2	2.66	7	A.	C
ATOM	786	OD1	ASN	A	109	-8.872	6.295	8.349	1.00 1	9.31	7	A.	0
ATOM	787	ND2	ASN	Α	109	-10.665	5.018	8.908	1.00 2	5.73	7	A.	N
ATOM	788	C	ASN	Α	109	-8.731	7.392	5.804	1.00 1	7.97	1	A	С
ATOM	789	0	ASN	Α	109	-8.353	6.446	5.088	1.00 1	7.31	i	A.	0
ATOM	790	N	LEU	Α	110	-7.895	8.325	6.245	1.00 1	6.66	i	A	N
ATOM	791	CA	LEU	Α	110	-6.489	8.277	5.862	1.00 1	5.50	i	A	C
ATOM	792	CB	LEU	A	110	-5.738	9.502	6.406	1.00 1	5.65	i	A.	С
ATOM	793	CG	LEU	Α	110	-6.096	10.831	5.749	1.00 1	3.74	1	A.	С
ATOM	794	CD1	LEU	A	110	-5.294	11.932	6.373	1.00 1	6.06	1	A.	С
ATOM	795	CD2	LEU	A	110	-5.873	10.768	4.256	1.00 1	3.53	2	A	С
MOTA	796	C	LEU	Α	110	-5.784	7.006	6.285	1.00 1	5.96	i	A	C
ATOM	797	0	LEU	Α	110	-4.750	6.660	5.719	1.00 1	6.04	,	Ą	0
ATOM	798	N	GLN	Α	111	-6.297	6.283	7.276	1.00 1	6.18	1	A	N
ATOM	799	CA	GLN	A	111	-5.635	5.034	7.655	1.00 1	6.61		A	С
ATOM	800	CB	GLN	A	111	-6.317	4.377	8.871	1.00 1	7.82	7	A.	С
ATOM	801	CG	GLN	Α	111	-6.337	5.320	10.077	1.00 1	7.25	i	A	С
ATOM	802	CD	GLN	A	111	-6.584	4.625	11.399	1.00 2	0.40		A.	С
ATOM	803	OE1	GLN	Α	111	-5.934	3.635	11.699	1.00 2	1.99	1	A.	0
ATOM	804	NE2	GLN	Α	111	-7.513	5.163	12.202	1.00 1	9.23		A	N
ATOM	805	С	GLN	Α	111	-5.560	4.086	6.461	1.00 1	7.45	i	Α	C
ATOM	806	0	GLN	Α	111	-4.601	3.323	6.312	1.00 1	7.74	i	A	0
ATOM	807	N	THR	A	112	-6.522	4.195	5.548	1.00 1	6.47		A.	N
MOTA	808	CA	THR	Α	112	-6.483	3.418	4.309	1.00 1	6.12	1	A.	C
ATOM	809	CB	THR	Α	112	-7.756	3.733	3.510	1.00 1	6.21	;	A.	С
MOTA	810	OG1	THR	A	112	-8.900	3.480	4.333	1.00 1	7.07	i	A	0
MOTA	811	CG2	THR	Α	112	-7.909	2.838	2.305	1.00 1	6.70		A.	C
ATOM	812	С	THR	Α	112	-5.252	3.711	3.442	1.00 1	5.86		A	C
MOTA	813	0	THR	Α	112	-4.623	2.789	2.869	1.00 1	5.50	7	A	0
MOTA	814	N			113	-4.933	4.995	3.303	1.00 1	4.75		A	N
MOTA	815	CA	LEU	A	113	-3.742	5.413	2.558	1.00 1	4.05		A	C
ATOM	816	CB	LEU	Α	113	-3.677	6.941	2.557	1.00 1	4.27		A	С
ATOM	817	CG	LEU	Α	113	-2.549	7.597	1.807	1.00 1	4.53		A	С
ATOM	818	CD1	LEU	A	113	-2.840	7.473	0.297	1.00 1	6.65		A	C
MOTA	819	CD2	LEU	A	113	-2,412	9.039	2.212	1.00 1	3.95		A	С
ATOM	820	C	LEU	Α	113	-2.478	4.836	3.212	1.00 1	3.77		A	C
MOTA	821	0	LEU	Α	113	-1.625	4.238	2.550	1.00 1	3.55		A	0
MOTA	822	N	PHE	Α	114	-2.361	5.016	4.523	1.00 1	2.95		A	N
MOTA	823	CA	PHE	Α	114	-1.182	4.528	5.223	1.00 1	3.04		A	C
MOTA	824	CB			114	-1.154	5.049	6.645	1.00 1	2.56		A	C
MOTA	825	CG	PHE	Α	114	-1.331	6.551	6.743	1.00 1	1.79		A	C
MOTA	826	CD1	PHE	A	114	-0.639	7.402	5.902	1.00 1	2.07		A	C
MOTA	827	CE1	PHE	Α	114	-0.785	8.781	5.986	1.00 1	2.47		A	С
ATOM	828	CZ	PHE	Α	114	-1.662	9.323	6.921	1.00 1	3.57		A	С
ATOM	829	CE2	PHE	Α	114	-2.365	8.470	7.754	1.00 1	1.94		A	С
MOTA	830	CD2	PHE	Α	114	-2.186	7.100	7.663	1.00	9.85		A	С
MOTA	831	С	PHE	A	114	-1.060	3.003	5.171	1.00 1	3.86		A	С
MOTA	832	0	PHE	A	114	0.063	2.461	5.004	1.00 1	2.73		A	0
ATOM	833	N	SER	A	115	-2.196	2.306	5.277	1.00 1	4.04		A	N
MOTA	834	CA	SER	A	115	-2.148	0.848	5.292	1.00 1	4.17		A	C
ATOM	835		BSER			-3.527	0.252	5.640	0.50 1	3.81		A	C
MOTA	836	CB 2	ASER	A	115	-3.457	0.215	5.769	0.50 1	4.55		A	С
MOTA	837		BSER			-3.970	0.566	6.958	0.50 1	0.51		A	0
MOTA	838	OG 2	ASER	A	115	-4.544	.0.608	4.978	0.50 1	8.03		À	0

ATOM	839	C	SER	Α	115	-1.677	0.296	3.943	1.00 1	4.11	A	C
MOTA	840	0	SER	Α	115	-0.932	-0.663	3.909	1.00 1	3.43	A	0
ATOM	841	N	GLN	Α	116	-2.108	0.890	2.832	1.00 1	4.73	A	N
ATOM	842	CA	GLN	Α	116	-1.656	0.442	1.513	1.00 1	4.53	A	С
ATOM	843	CB	GLN	Α	116	-2.394	1.234	0.417	1.00 1	5.81	A	С
ATOM	844	CG	GLN	Α	116	-1.947	0.951	-1.038	1.00 1	5.88	A	C
ATOM	845	CD	GLN	Α	116	-2.601	1.886	-2.007	1.00 1	6.75	A	С
ATOM	846	OE1	GLN	A	116	-2.629	3.086	-1.747	1.00 1	4.56	A	
ATOM	847		GLN			-3.200	1.346	-3.106	1.00 1		A	N
ATOM	848	C			116	-0.131	0.571	1.375	1.00 1		A	c
ATOM	849	Ō			116	0.554	-0.336	0.861	1.00 1		A	ō
ATOM	850	N			117	0.407	1.679	1.862	1.00 1		A	N
ATOM	851	CA			117	1.838	1.930	1.795	1.00 1		A	Ċ
ATOM	852	СВ			117	2.152	3.408	2.151	1.00 1		A	č
ATOM	853	C			117	2.608	0.972	2.714	1.00 1		A	Ċ
ATOM	854	ŏ			117	3.666	0.472	2.344	1.00 1		A	Õ
ATOM	855	N			118	2.071	0.740	3.908	1.00 1		A	
ATOM	856	CA			118	2.679	-0.161	4.877	1.00 1		A	C
ATOM	857	CB			118	1.878	-0.177	6.190	1.00 1		A	C
ATOM	858	CG			118	2.636	-0.861	7.324	1.00 1		A	
ATOM	859	CD1	TYR			2.472	-2.216	7.589	1.00 2		A	
ATOM	860	CE1	TYR			3.186	-2.839	B.640	1.00 2		A	
ATOM	861	CZ			118	4.041	-2.071	9.409	1.00 2		A	
ATOM	862	OH			118	4.762	-2.631	10.442	1.00 2		Ā	
ATOM	863		TYR			4.194	-0.725	9.155	1.00 2		A	
ATOM	864		TYR									C
		CDZ			118	3.501 2.782	-0.135	8.136	1.00 1		A	
MOTA	865					•	-1.576	4.294	1.00 1		A	
ATOM	866	0			118	3.838	-2.228	4.363	1.00 1		A	0
ATOM	867	N			119	1.705	-2.024	3.669	1.00 1		A	
ATOM	868	CA			119	1.684	-3.358	3.064	1.00 1		A	
ATOM	869	CB			119	0.288	-3.660	2.544	1.00 1		A	
ATOM	870	OG			119	-0.609	-3.744	3.638	1.00 1		A	
MOTA	871	C			119	2.752	-3.531 -		1.00 1		. A	
MOTA	872	0			119	3.313	-4.602	1.818	1.00 1		A	
MOTA	873	N			120	3.052	-2.461	1.254	1.00 1		A	
MOTA	874	CA			120	4.085	-2.488	0.204	1.00 1		A	
ATOM	875	CB			120	3.847	-1.352	-0.759	1.00 1		A	
MOTA	876	C			120	5.504	-2.405	0.767	1.00 1		A	
ATOM	877	0			120	6.474	-2.473	0.030	1.00 1		A	
ATOM	878	N			121	5.626	-2.249	2.083	1.00 1		A	
ATOM	879	CA			121	6.917	-2.249	2.747	1.00 1		A	
ATOM	880	C			121	7.400	-0.883	3.247	1.00 1		A	
ATOM	881	0			121	8.466	-0.811	3.893	1.00 1		A	
ATOM	882	N			122	6.665	0.195	2.977	1.00 1		Α	
ATOM	883	CA			122	7.110	1.522	3.443	1.00 1		A	
ATOM	884	CB			122	6.273	2.632	2.831	1.00 1		A	
ATOM	885	C			122	7.057	1.635	4.964	1.00 1		A	
ATOM	886	0			122	6.078	1.230	5.574	1.00 1		Α	. 0
ATOM	887	N			123	8.077	2.223	5.570	1.00 1		A	
MOTA	888	CA			123	8.013	2.499	7.008	1.00 1		A	
ATOM	889	CB			123	9.065	1.689	7.761	1.00 1		A	
MOTA	890	CG			123	8.870	0.162	7.597	1.00 1		A	
ATOM	891	CD			123	7.584	-0.334	8.290	1.00 1	4.35	A	C
ATOM	892	NE			123	7.396	-1.786	8.187	1.00 1		A	
ATOM	893	CZ	ARG	A	123	6.676	-2.389	7.253	1.00 1	6.63	A	C
ATOM	894		ARG			6.039	-1.678	6.337	1.00 1	5.68	A	N
ATOM	895	NH2	ARG			6.579	-3.719	7.240	1.00 1		A	N
ATOM	896	С	ARG	Α	123	8.132	3.987	7.298	1.00 1	2.72	A	C

MOTA	897	0	ARG	Α	123	8.116	4.418	8.448	1.00	12.15	7	4 O
ATOM	898	N	ILE	A	124	8.225	4.773	6.234	1.00	12.67	7	A N
ATOM	899	CA	ILE	Α	124	8.177	6.218	6.346	1.00	12.97	7	A C
ATOM	900	CB	ILÉ	Α	124	9.554	6.814	6.025	1.00	12.64	7	A C
ATOM	901	CG1	ILE	A	124	10.619	6.262	6.985	1.00	13.71	1	
ATOM	902	CD1	ILE	A	124	12.068	6.395	6.480	1.00	14.82		A C
ATOM	903	CG2	ILE	A	124	9.478	8.348	6.061	1.00			À C
MOTA	904	C			124	7.160	6.695	5.324	1.00			, c
ATOM	905	ŏ			124	7.132	6.195	4.210	1.00			. o
ATOM	906	N			125	6.365	7.696	5.671	1.00			A N
ATOM	907	CA			125	5.252	8.100	4.823	1.00			A C
ATOM	908	CB			125	3.894	7.549	5.353	1.00			. c
MOTA	909	CG			125	2.806	7.650	4.334	1.00			
ATOM	910		HIS			2.428			1.00			
ATOM	911		HIS				8.850	3.783				A N
						1.547	8.632	2.821	1.00			, C
ATOM	912		HIS			1.312	7.333	2.756	1.00			N
ATOM	913		HIS			2.072	6.699	3.705	1.00			, c
ATOM	914	C			125	5.223	9.620	4.828	1.00			4 C
ATOM	915	0			125	5.053	10.202		1.00		Į.	
MOTA	916	N			126	5.401	10.268	3.674	1.00			A N
MOTA	917	CA			126	5.527	11.738	3.641	1.00			4 C
MOTA	918	CB			126	6.984	12.142	3.302	1.00			y C
MOTA	919		THR			7.121	13.560	3.334	1.00			4 0
MOTA	920		THR			7.395	11.747	1.864	1.00		2	4 C
MOTA	921	С			126	4.498	12.426	2.735	1.00	12.60	7	J C
MOTA	922	0	THR			4.166	11.931	1.652	1.00	12.62	7	4 O
ATOM	923	N			127	4.010	13.572	3.200	1.00	12.52	7	A N
ATOM	924	CA			127	2.778	14.189	2.696	1.00	12.84	Į	
MOTA	925	CB			127	1.599	13.811	3.605	1.00	13.04	7	A C
MOTA	926	CG	ASN	Α	127	1.433	12.325	3.720	1.00	13.25	2	J C
ATOM	927	OD1	ASN	Α	127	1.916	11.686	4.690	1.00	13.15	2	4 O
MOTA	928	ND2	ASN	Α	127	0.814	11.740	2.712	1.00	9.82	7	A N
MOTA	929	C	ASN	A.	127	2.894	15.706 -	2.637	1.00	12.70	. 7	A C
MOTA	930	0	ASN	A	127	2.798	16.390	3.661	1.00	13.27	7	4 O
MOTA	931	N	SER	Α	128	3.103	16.211	1.435	1.00	12.76	7	A N
MOTA	932	CA	SER	Α	128	3.277	17.640	1.162	1.00	13.02	7	A C
ATOM	933	CB	SER	A	128	4.308	17.831	0.043	1.00	12.57		
ATOM	934	OG	SER	A	128	5.608	17.510	0.485	1.00	12.52	7	O 4
ATOM	935	С	SER	Α	128	1.927	18.238	0.748	1.00	13.42	3	4 C
MOTA	936	0	SER	Α	128	1.763	18.767	-0.372	1.00		7	A 0
ATOM	937	N	TRP	A	129	0.968	18.129	1.663	1.00			A N
ATOM	938	CA	TRP	A	129	-0.392	18.616	1.465	1.00		7	A C
ATOM	939	CB	TRP	Α	129	-1.215	17.648	0.602	1.00			4 C
ATOM	940	CG			129	-1.130	16.180	0.964	1.00			A C
ATOM	941		TRP			-0.305	15.232	0.391	1.00			A C
MOTA	942		TRP			-0.531	13.997	0.956	1.00			A N
ATOM	943		TRP			-1.518	14.122	1.900	1.00		7	
ATOM	944		TRP			-1.924	15.480	1.921	1.00			4 C
ATOM	945		TRP			-2.948	15.857	2.806	1.00			A C
ATOM	946		TRP			-3.504	14.910	3.614	1.00			. c
ATOM	947		TRP			-3.082	13.566	3.559	1.00			, C
ATOM	948		TRP			-2.101	13.158	2.711	1.00			y C
MOTA	949	C			129	-1.089	18.859	2.711	1.00			7 C
MOTA	950	0			129							
ATOM	950 951	Ŋ			130	-0.612	18.460	3.876	1.00			4 0
						-2.224	19.538	2.694	1.00			A N
ATOM	952	CA			130	-3.004	19.834	3.866	1.00			<i>y</i> C
ATOM ATOM	953 954	C O			130	-4.173	20.744	3.563	1.00			, c
AIUM	734	J	GLI	M	130	-4.203	21.394	2.518	1.00	10.04	F	4 0

MOTA	955	N	ALA	A	131	-5.139	20.754	4.478	1.00 16.87	A	N
ATOM	956	CA	ALA	A	131	-6.222	21.733	4.484	1.00 18.19	A	C
MOTA	957	CB	ALA	A	131	-7.515	21.097	4.983	1.00 17.33	A	С
MOTA	958	C-	ALA	A	131	-5.843	22.852	5.423	1.00 19.54	A	С
ATOM	959	0	ALA	Α	131	-5.562	22.590	6.592	1.00 20.18	A	0
ATOM	960	N			132	-5.869	24.090	4.942	1.00 20.97	A	N
MOTA	961	CA			132	-5.513	25.253	5.763	1.00 21.46	A	C
ATOM	962	CB			132	-5.260	26.346	4.724	1.00 21.95	A	C
ATOM	963	CG			132	-6.060	25.967	3.546	1.00 22.18	A	Ċ
ATOM	964	CD			132	-6.220	24.462	3.564	1.00 21.43	A	č
ATOM	965	Ċ			132	-6.595	25.676	6.753	1.00 22.74	A	Ċ
MOTA	966	ō			132	-7.272	26.703	6.555	1.00 24.13	A	Ö
ATOM	967	N			133	-6.708	24.912	7.833	1.00 22.71	·A	N
ATOM	968	CA			133	-7.723	25.086	8.850	1.00 23.39	A	Ċ
ATOM	969	CB	-		133	-8.349	23.712	9.223	1.00 23.48	Ä	C
MOTA	970		VAL			-9.115	23.133	8.045	1.00 25.68	A	Č
ATOM	971	CG2	VAL			-7.269	22.750	9.687	1.00 24.53	A	C
ATOM	972	C			133	-7.223	25.742	10.150	1.00 23.23	A	C
MOTA	973	0			133	-7.855	25.599	11.185	1.00 23.23	A	Ö
MOTA	974	N			134				1.00 23.10	A	
MOTA	975	CA			134	-6.094 -5.660	26.437	10.098 11.201	1.00 23.10	A A	N
	976	CB					27.279 28.512				C
ATOM ATOM	977	CG			134	-6.583		11.310	1.00 24.40	A	C
	978		ASN			-6.491	29.413	10.082	1.00 26.68	A	
ATOM						-7.489	30.000	9.650	1.00 34.40	A	0
ATOM ATOM	979	ND2	ASN			-5.315	29.478	9.482	1.00 28.87	A	N
	980	C			134	-5.588	26.561	12.535	1.00 22.43	A	C
MOTA	981	0			134	-6.210	26.971	13.510	1.00 21.30	A	0
MOTA	982	N			135	-4.844	25.458	12.574	1.00 21.06	A	N
ATOM	983	CA			135	-4.548	24.840	13.846	1.00 20.36	A	C
MOTA	984	C			135	-5.541	23.818	14.308	1.00 19.66	A	C
ATOM	985	0			135	-5.320	23.200	15.327	1.00 18.95	A	0
MOTA	986	N			136	-6.613	23.595	13.557	1.00 19.08	A	N
ATOM	987	CA			136	-7:609	22.643		1.00 19.00	A	C -
ATOM	988	CB			136	-8.925	22.778	13.199	1.00 19.34	A	C
MOTA	989	C			136	-7.098	21.206	13.893	1.00 19.31	A	C
ATOM	990	0			136	-6.354	20.851	12.952	1.00 18.44	A	0
MOTA	991	Ň			137	-7.568	20.407	14.841	1.00 18.56	A	N
MOTA	992	CA			137	-7.341	18.979	14.907	1.00 18.99	A	C
MOTA	993	CB			137	-7.112	18.588	16.367	1.00 18.67	A	C
ATOM	994	CG			137	-6.637	17.175	16.588	1.00 19.68	A	C
ATOM	995	CD1	TYR			-7.537	16.173	16.885	1.00 19.55	A	C
ATOM	996	CEI			137	-7.112	14.855	17.099	1.00 21.07	A	C
ATOM	997	CZ			137	-5.765	14.548	17.045	1.00 20.92	A	C
MOTA	998	ОН			137	-5.371	13.250	17.265	1.00 20.20	A	0
MOTA	999	CE2			137	-4.837	15.538	16.754	1.00 20.35	A	C
ATOM	1000	CD2			137	-5.278	16.848	16.522	1.00 19.75	A	С
MOTA	1001	С			137	-8.600	18.314	14.337	1.00 18.91	A	C
MOTA	1002	0			137	-9.648	18.229	14.994	1.00 18.41	A	Ó
ATOM	1003	N			138	-8.481	17.872	13.091	1.00 18.62	A	N
ATOM	1004	CA			138	-9.608	17.401	12.329	1.00 17.86	A	C
ATOM	1005	CB			138	~9.480	17.836	10.897	1.00 18.02	A	С
MOTA	1006		THR	A	138	-8.271	17.308	10.321	1.00 16.63	A	0
ATOM	1007	CG2				~9.308	19.330	10.788	1.00 17.63	A	C
ATOM	1008	С			138	-9.593	15.888	12.407	1.00 18.43	A	C
ATOM	1009	0	THR	Α	138	-8.662	15.296	12.954	1.00 17.82	A	0
ATOM	1010	N	THR	Α	139	-10.624	15.278	11.843	1.00 18.06	· A	N
MOTA	1011	CA	THR	A	139	-10.713	13.843	11.705	1.00 17.69	A	С
ATOM	1012	CB	THR	Α	139	-12.020	13.472	10.947	1.00 18.57	A	С

ATOM	1013	OG1	THR	Α	139	-13.162	13.907	11.705	1.00 20	0.05		A	0
MOTA	1014	CG2	THR	Α	139	-12.173	11.933	10.828	1.00 19	9.16		A	C
MOTA	1015	С	THR	Α	139	-9.496	13.285	10.989	1.00 1	5.78		Α	С
ATOM	1016	0	THR	А	139	-9.037	12.183	11.307	·1.00 1	7.05		A	0
MOTA	1017	N	ASP	Α	140	-8.976	14.002	10.002	1.00 1	5.81		A	N
MOTA	1018	CA	ASP	A	140	-7.758	13.544	9.351	1.00 19	5.65		A	С
ATOM	1019	CB	ASP	Α	140	-7.391	14.429	8.177	1.00 19	5.45		A	С
MOTA	1020	CG			140	-8.279	14.209	6.984	1.00 16			A	Ċ
MOTA	1021		ASP			-8.495	15.189	6.263	1.00 18			A	ō
ATOM	1022		ASP			-8.781	13.102	6.702	1.00 1			A	ŏ
ATOM	1023	C			140	-6.567	13.504	10.352	1.00 19			A	· C
ATOM	1024	ō			140	-5.823	12.532	10.332	1.00 1			A	Ö
ATOM	1025	N			141	-6.395	14.555	11.133	1.00 1				
ATOM	1025	CA			141	-5.375						A	N
							14.548	12.187	1.00 15			A	C
ATOM	1027	CB			141	-5.428	15.823	13.006	1.00 14			A	C
ATOM	1028	og			141	-5.275	16.936	12.173	1.00 16			A	0
ATOM	1029	C			141	-5.514	13.375	13.157	1.00 19			Α	C
MOTA	1030	0			141	-4.511	12.754	13.558	1.00 19			A	0
MOTA	1031	N			142	-6.754	13.100	13.546	1.00 19			A	N
MOTA	1032	CA	ARG	Α	142	-7.053	11.998	14.462	1.00 19	5.97		Α	С
MOTA	1033	CB	ARG	Α	142	-8.539	12.004	14.843	1.00 16	5.78		А	С
MOTA	1034	CG	ARG	Α	142	-8.882	11.091	16.022	1.00 18	3.90		A	С
MOTA	1035	CD	ARG	Α	142	-10.365	11.103	16.436	1.00 22	2.40		A	C
MOTA	1036	NE	ARG	A	142	-10.533	10.384	17.704	1.00 29	5.70		A	N
MOTA	1037	CZ	ARG	А	142	-10.549	9.057	17.839	1.00 29	9.38		Α	C
ATOM	1038	NH1	ARG	Α	142	-10.423	8.249	16.786	1.00 30	0.26		A	N
ATOM	1039		ARG			-10.685	8.524	19.048	1.00 30	0.56		Α	N
ATOM	1040	С			142	-6.703	10.643	13.860	1.00 1			A	С
ATOM	1041	0			142	-6.107	9.778	14.534	1.00 14			A	. 0
ATOM	1042	N			143	-7.068	10.437	12.593	1.00 14			A	N
ATOM	1043	CA			143	-6.699	9.187	11.926	1.00 14			A	Ċ
ATOM	1044	CB			143	-7.451	9.062	10.593	1.00 1			A	č
MOTA	1045	CG			143	-8.952		10.803	1.00 1			A	c
MOTA	1046		ASN			-9.842	9.204	10.096	1.00 20		• •	A	o
ATOM	1047		ASN			-9.206	7.828					A	Ŋ
ATOM	1047	C			143			11.746	1.00 19				C,
ATOM	1048	o				-5.183	8.986	11.754	1.00 19			A	
ATOM					143	-4.691	7.854	11.879	1.00 19			A	. 0
	1050	N			144	-4.438	10.060	11.450	1.00 14			A	N
ATOM	1051	CA			144	-2.976	9.987	11.467	1.00 1			A	C
MOTA	1052	CB			144	-2.319	11.347	11.177	1.00 14			Α	C
ATOM	1053		VAL			-0.803	11.272	11.422	1.00 12			Α	C
ATOM	1054		VAL			-2.625	11.818	9.748	1.00 1			A	C
MOTA	1055	C			144	-2.478	9.507	12.843	1.00 14			A	C
ATOM	1056	0			144	-1.608	8.653	12.938	1.00 13	3.96		A	0
MOTA	1057	N			145	-3.021	10.077	13.916	1.00 14	1.48		А	N
ATOM	1058	CA			145	-2.548	9.745	15.256	1.00 14	1.49		Α	С
ATOM	1059	CB	ASP	A	145	-3.123	10.711	16.249	1.00 14	1.81		Α	С
MOTA	1060	CG	ASP	Α	145	-2.406	12.033	16.218	1.00 19	5.70		А	С
MOTA	1061		ASP			-1.332	12.107	15.545	1.00 14	1.69		A	0
ATOM	1062	OD2	ASP	A	145	-2.845	13.048	16.803	1.00 14	1.46		A	0
MOTA	1063	C			145	-2.849	8.331	15.654	1.00 19			Α	С
MOTA	1064	0			145	-1.999	7.622	16.183	1.00 14			A	0
MOTA	1065	N			146	-4.065	7.906	15.361	1.00 19			A	N
MOTA	1066	CA	ASP			-4.470	6.545	15.608	1.00 1			A	c
ATOM	1067	CB	ASP			-5.931	6.400	15.184	1.00 16			À	č
ATOM	106B	CG	ASP			-6.565	5.107	15.705	1.00 1			A	C
ATOM	1069		ASP			-6.337	4.735	16.879	1.00 18			A	Ö
ATOM	1070		ASP			-7.277	4.401	14.981	1.00 2				0
ATOM	10/0	UDZ	wir	•	T-10	-1.211	4.4VI	14.701	1.00 2.			A	U

ATOM	1071	С.	ASP	Α	146	-3.562	5.571	14.849	1.00	16.07	7	C C	
ATOM	1072	Ο.	ASP	Α	146	-3.047	4.607	15.408	1.00	16.60	7	. 0	
MOTA	1073	N	TYR	Α	147	-3.324	5.842	13.576	1.00	15.73	1	N	
ATOM	1074	CA	TYR	A	147	-2.463	4.988	12.772	1.00	15.49	7	. C	
ATOM	1075	CB	TYR	Α	147	-2.387	5.486	11.314	1.00	15.22	7	A C	
ATOM	1076				147	-1.759	4.421	10.459	1.00	16.31	2	. C	
ATOM	1077	CD1	TYR	A	147	-0.400	4.394	10.249	1.00	17.35		C	
ATOM	1078				147	0.180	3.380	9.506	1.00			. c	
ATOM	1079				147	-0.599	2.364	9.004	1.00			. c	
ATOM	1080				147	-0.022	1.354	8.281	1.00			. 0	
MOTA	1081				147	-1.944	2.346	9.227	1.00			, c	
ATOM	1082				147	-2.523	3.364	9.947	1.00			. C	
-						-1.025	4.833						
MOTA	1083				147			13.309	1.00				
ATOM	1084				147	-0.491	3.719	13.385	1.00			. 0	
ATOM	1085				148	-0.399	5.953	13.652	1.00			N	
ATOM	1086				148	0.975	5.950	14.144	1.00			, C	
ATOM	1087				148	1.534	7.390	14.262	1.00			. C	
ATOM	1088	CG1				2.953	7.397	14.909	1.00			7 C	
ATOM	1089				148	1.600	8.044	12.899	1.00			A C	
ATOM	1090				148	1.063	5.206	15.488	1.00			y C	
MOTA	1091				148	2.022	4.481	15.765	1.00		7	4 O	
MOTA	1092	N .	ARG	Α	149	0.061	5.356	16.331	1.00	16.70	7	A N	
MOTA	1093	CA.	ARG	Α	149	0.109	4.628	17.589	1.00	18.28	1	y C	
ATOM	1094	CB .	ARG	Α	149	-0.920	5.133	18.600	1.00	18.33	7	Y C	
ATOM	1095	ÇG	ARG	A	149	-0.585	4.657	20.002	1.00	19.51	1	4 C	
ATOM	1096	CD	ARG	A	149	-1.566	5.035	21.071	1.00	20.84	1	A C	
ATOM	1097	NE	ARG	Α	149	-0.987	4.731	22.383	1.00	22.92	1	A N	
MOTA	1098	CZ	ARG	Α	149	-1.661	4.491	23.504	1.00	24.06	i	A C	
ATOM	1099	NHl	ARG	Α	149	-2.985	4.521	23.538	1.00	25.69	1	A N	
MOTA	1100	NH2	ARG	Α	149	-0.987	4.221	24.616	1.00	23.61	2	A N	
ATOM	1101	C .	ARG	Α	149	-0.035	3.126	17.382	1.00	18.63	1	<i>y</i> C	
ATOM	1102				149	0.517	2.346	18.156		18.97		A 0	
ATOM	1103				150.	-0.739	2.720 -		1.00			A N	
ATOM	1104				150	-0.991	1.294	16.087	1.00			A C	
ATOM	1105				150	-2.373	1.092	15.438		19.89		À C	
ATOM	1106				150	~3.576	1.358	16.389		21.34		A C	
ATOM	1107				150	-4.902	0.972	15.736	1.00			. c	
ATOM	1108				150	-6.136	1.437	16.531		27.20		A C	
ATOM	1109				150	-7.373	1.614	15.668		30.36		A N	
ATOM	1110				150	0.123	0.622	15.250		18.99		A C	
ATOM	1111				150	0.296	-0.577	15.305		17.16		. O	
ATOM	1112				151	0.916	1.407	14.526		19.09		A N	
ATOM	1113				151	1.834	0.850	13.538		19.75		. C	
ATOM	1114				151	1.225	0.950	12.130		20.10		. C	
ATOM	1115	-			151	-0.141	0.299	12.130		19.86		. C	
ATOM	1116	OD1				-0.239	-0.905	11.855		19.33		A 0	
ATOM	1117	ND2				-1.198	1.090	12.167		19.31		A N	
ATOM	1117				151			13.557				A C	
												-	
MOTA MOTA	1119				151 152	3.193 4.239	2.807	13.793	1.00	20.04		A O	
	1120						0.911	13.299				и е	
ATOM	1121				152	5.508	1.595	13.319		20.51		A C	
ATOM	1122	CB B				6.571	0.640	13.830		20.16		A C	
ATOM	1123	CB A				6.645	0.666	13.762		21.56		A C	
ATOM	1124	CG B				6.199	0.067	15.205		19.09		4 C	
ATOM	1125	CG A				7.225	-0.117	12.631	0.65			4 C	
ATOM	1126	OD1B				5.318	0.654	15.901		15.06		4 0	
ATOM	1127	OD1A				6.404	-0.719	11.924		27.77		A 0	
ATOM	1128	OD2B	ASP	Α	152	6.703	-0.977	15.653	0.35	16.81	7	A 0	

MOTA	1129	OD2	AASP	Α	152	8.471	-0.170	12.353	0.65	27.40	Α	0
ATOM	1130	С	ASP	A	152	5.822	2.270	11.959	1.00	19.32	A	С
ATOM	1131	0	ASP	Α	152	6.748	1.916	11.253	1.00	20.60	A	0
MOTA	1132	N	MET	Α	153	4.988	3.250	11.628	1.00	16.58	A	N
MOTA	1133	CA	MET	A	153	5.154	4.050	10.437	1.00	16.03	A	C
MOTA	1134	CB	MET	Α	153	3.876	4.007	9.619	1.00	16.23	A	С
ATOM	1135	CG	MET	A	153	3.885	4.921	8.432	1.00	18.33	A	С
MOTA	1136	SD	MET	A	153	4.694	4.182	7.030	1.00	21.72	A	s
ATOM	1137	CE	MET	Α	153	3.290	3.549	6.297		21.74	A	С
MOTA	1138	С	MET	A	153	5.443	5.482	10.871		14.80	A	С
MOTA	1139	0	MET	Α	153	4.684	6.058	11.646	1.00	13.50	A	0
MOTA	1140	N	THR	A	154	6.525	6.059	10.368		13.34	A	N
MOTA	1141	CA	THR	Α	154	6.813	7.482	10.638	1.00	13.08	A	С
ATOM	1142	CB	THR	Α	154	8.324	7.699	10.652	1.00	13.02	A	С
MOTA	1143	OG1	THR	Α	154	8.886	6.949	11.724	1.00	11.51	А	0
MOTA	1144	CG2	THR	Α	154	8.693	9.145	10.963	1.00	14.36	А	С
ATOM	1145	С	THR	Α	154	6.153	8.310	9.573	1.00	12.50	A	С
ATOM	1146	0	THR	Α	154	6.396	8.108	8.371		12.64	A	0
MOTA	1147	N	ILE	Α	155	5.290	9.227	9.987	1.00	12.34	A	N
MOTA	1148	CA	ILE	A	155	4.492	10.002	9.037	1.00	13.00	A	С
MOTA	1149	CB	ILE	Α	155	2.983	9.799	9.346	1.00	13.05	А	С
ATOM ·	1150	CG1	ILE	Α	155	2.637	8.307	9.279	1.00	13.73	A	C
MOTA	1151	CD1	ILE	Α	155	1.121	8.017	9.274	1.00	12.93	A	С
ATOM	1152	CG2	ILE	A	155	2.121	10.578	8.371	1.00	13.58	A	С
ATOM	1153	С	ILE	Α	155	4.861	11.480	9.137	1.00	13.01	A	С
ATOM	1154	0	ILE	Α	155	4.894	12.038	10.233	1.00	12.79	A	0
ATOM	1155	N	LEU	A	156	5.125	12.117	8.001	1.00	12.16	A	N
ATOM	1156	CA	LEU	Α	156	5.509	13.528	7.982	1.00	12.88	A	С
ATOM	1157	CB	LEU	Α	156	6.903	13.692	7.354	1.00	12.18	A	С
ATOM	1158	CG	LEU	A	156	8.089	12.960	8.007	1.00	13.25	А	С
ATOM	1159	CD1	LEU	Α	156	8.365	11.607	7.326	1.00	11.24	A	С
ATOM	1160	CD2	LEU	Α	156	9.339	13.796	7.910	1.00	13.01	A	С
ATOM	1161	C	LEU	A	156	4.485	14.328	·· 7.192	1.00	13.49	A	C
ATOM	1162	0	LEU	Α	156	3.982	13.850	6.160	1.00	14.76	A	0
MOTA	1163	N	PHE	A	157	4.197	15.540	7.659	1.00	12.79	A	N
ATOM	1164	CA	PHE	Α	157	3.282	16.451	7.003	1.00	13.07	A	C
MOTA	1165	CB	PHE	Α	157	1.938	16.564	7.772	1.00	13.62	A	C
MOTA	1166	CG			157	0.957	15.504	7.401	1.00	13.90	A	C
ATOM	1167	CD1	PHE	Α	157	0.191	15.636	6.272	1.00	11.22	A	С
MOTA	1168	CE1	PHE	Α	157	-0.678	14.632	5.896	1.00	14.22	A	C
ATOM	1169	CZ			157	-0.743	13.441	6.630	1.00	14.61	Α	C
MOTA	1170	CE2	PHE	Α	157	0.013	13.296	7.743	1.00	15.64	A	C
MOTA	1171		PHE			0.891	14.312	8.122	1.00	14.56	A	С
MOTA	1172	С	PHE	Α	157	3.899	17.852	6.928	1.00	13.18	A	C
ATOM	1173	0			157	4.527	18.318	7.867	1.00	12.04	A	. 0
MOTA	1174	N	ALA		158	3.700	18.500	5.793	1.00	13.46	A	N
ATOM	1175	CA	ALA	Α	158	3.958	19.921	5.623	1.00	13.31	A	С
MOTA	1176	CB	ALA			3.509	20.334	4.235	1.00	14.02	A	C
ATOM	1177	С	ALA			3.181	20.703	6.672	1.00	13.75	A	С
MOTA	1178	0	ALA			2.031	20.380	6.965		13.75	A	0
MOTA	1179	N	ALA			3.787	21.752	7.215		13.45	Α	N
MOTA	1180	CA	ALA			3.122	22.582	8.210		13.81	A	C
MOTA	1181	CB	ALA			4.151	23.495	8.944		13.64	A	С
ATOM	1182	C	ALA			2.043	23.473	7.628		14.14	A	С
MOTA	1183	0	ALA			1.175	23.924	8.364		14.00	Α	0
MOTA	1184	N	GLY			2.131	23.753	6.330		15.19	A	N
ATOM	1185	CA	GLY			1.230	24.680	5.652		15.34	A	С
ATOM	1186	С	GLY	Α	160	1.957	25.941	5.236	1.00	14.93	A	С

ATOM	1187	0	GLY	A	160	3.041	26.238	5.736	1.00	14.62	A	0
MOTA	1188	N			161	1.371	26.686	4.307	1.00	15.04	A	
ATOM	1189	CA	ASN	A	161	1.983	27.902	3.789	1.00	15.84	A	C
MOTA	1190	CB			161	2.072	27.872	2.261		15.91	A	
ATOM	1191	CG			161	3.048	26.851	1.712		17.40	A	
MOTA	1192	ODI	ASN	A	161	3.001	26.550	0.490	1.00	21.70	A	0
MOTA	1193		ASN			3.888	26.267	2.569	1.00	11.15	A	
MOTA	1194	С			161	1.131	29.114	4.123	1.00	16.84	A	C
MOTA	1195	0			161	9.956	29.965	3.286	1.00	17.07	A	
MOTA	1196	N			162	0.575	29.179	5.324		18.36	A	
ATOM	1197	CA			162	-0.392	30.213	5.668	1.00	18.85	A	
ATOM	1198	CB			162	-1.672	29.537	6.211		19.64	A	
ATOM	1199	CG			162	-2.431	28.723	5.150		22.12	A	-
MOTA	1200	CD			162	-1.756	27.381	4.788		26.12	A	
MOTA	1201		GLU			-1.585	26.545	5.702		28.48	A	
ATOM	1202		GLU			-1.405	27.149	3.590		26.75	A	
MOTA	1203	С			162	0.147	31.262	6.657		19.39	A	
MOTA	1204	0			162	-0.633	32.031	7.225		18.80	A	
ATOM	1205	N			163	1.472	31.338	6.820		19.39	A	
ATOM	1206	CA			163	2.082	32.322	7.705		20.03	A	
ATOM	1207	C			163	2.224	33.699	7.048		21.41		
ATOM	1208	0			163	1.822	33.866	5.877		20.72	A	
ATOM	1209	N			164	2.835	34.671	7.737		21.93	A	
ATOM	1210	CA			164	3.496	34.491	9.053		22.22	A	
ATOM	1211	CB			164	4.575	35.577	9.050		22.99	Ā	
ATOM	1212	CG			164	3.945	36.720	8.171		23.13	A	
ATOM	1213	CD			164	2.976	36.047	7.209		22.03	A	
MOTA	1214	. C			164	2.681	34.621	10.329		22.18	A	
ATOM	1215	0			164	3.289	34.603	11.414		21.36	A	
MOTA	1216	N			165	1.363	34.702	10.239		21.66	A	
ATOM ATOM	1217	CA C			165	0.537	34.844	11.414		21.84	A	
ATOM	1218	0			165	0.522	33.581	12.243		22.27	A A	
MOTA	1219 1220	и			165 166	0.680· 0.305	32.440 - 33.762	- 11.713 13.543		22.20	A A	
ATOM	1221	CA			166	0.290	32.645	14.470		21.96	A	
ATOM	1222	CB			166	0.344	33.167	15.917		23.25	A	
ATOM	1223	OG			166	-0.948	33.579	16.367		25.13	A	
ATOM	1224	C			166	-0.954	31.807	14.241		21.45	A	
ATOM	1225	ō			166	-1.949	32.311	13.716		21.15	A	
ATOM	1226	N			167	-0.879	30.515	14.574		20.07	A	
ATOM	1227	CA			167	-2.032	29.639	14.548		19.63	A	
ATOM	1228	C			167	-2.478	29.248	13.140		19.18	A	
ATOM	1229	0			167	-3.652	29.051	12.911		18.57	Ā	
ATOM	1230	N			168	-1.541	29.140	12.200		18.31	A	
MOTA	1231	CA	THR	A	168	~1.893	28.857	10.810	1.00	17.13	A	c
ATOM	1232	CB			168	-1.295	29.958	9.908		17.32	A	
ATOM .	1233	OG1	THR	Α	168	0.077	30.172	10.261	1.00	14.44	A	
ATOM	1234	CG2	THR	A	168	-1.988	31.299	10.156	1.00	17.60	A	C
ATOM	1235	С			168	-1.496	27.465	10.306		16.75	A	
MOTA	1236	0	THR	A	168	-1.462	27.213	9.091	1.00	16.26	A	. 0
ATOM	1237	N	ILE	A	169	-1.265	26.540	11.234	1.00	15.95	A	
ATOM .	1238	CA			169	-0.863	25.191	10.871	1.00	15.48	A	
MOTA	1239	CB			169	-0.454	24.378	12.127	1.00	15.09	A	C
ATOM	1240	CG1	ILE	A	169	0.626	25.109	12.942	1.00	14.88	A	. c
ATOM	1241	CD1	ILE	Α	169	2.021	25.201	12.267	1.00	16.38	A	C
ATOM	1242	CG2	ILE			0.021	22.988	11.720	1.00	13.45	A	
ATOM	1243	С			169	-2.004	24.477	10.137	1.00	15.22	A	
MOTA	1244	0	ILE	A	169	-3.146	24.470	10.590	1.00	14.50	A	. 0

ATOM	1245	N	SER	A	170		-1.681	23.857	9.018	1.00	14.94	A	N
ATOM	1246	CA	SER	Α	170		-2.665	23.060	8.310	1.00	15.41	A	С
MOTA	1247	CB	SER	Α	170		-2.299	23.004	6.821	1.00	16.02	A	С
ATOM	1248	OG	SER	Α	170		-1.040	22.404	6.585	1.00	16.03	A	0
ATOM	1249	C			170		-2.855	21.660	8.904	1.00	15.05	A	С
ATOM	1250	0			170		-1.986	21.137	9.616		13.80	A	0
ATOM	1251	N			171		-3.992	21.036	8.582		14.65	A	N
ATOM	1252	CA			171		-4.244	19.651	8.933		14.75	A	C
ATOM	1253	CB			171		-5.700	19.507	9.443		15.62	A	C
ATOM	1254	C			171		-4.043	18.750	7.740		15.02	A	C
ATOM	1255	0			171		-4.475	19.096	6.652		14.12	A	0
ATOM	1256	N			172		-3.482	17.548	7.899		15.48	A.	N
MOTA	1257	ÇA			172		-3.078	16.913	9.167		15.17	A	C
ATOM	1258 1259	CB			172		-3.080	15.411	8.796		15.90	A	C
MOTA MOTA	1260	CD			172		-3.707	15.336	7.456		15.73	A	C
ATOM	1261	CD			172 172		-3.401 -1.724	16.614 17.260	6.768 9.788		15.43	A A	C
ATOM	1262	0			172		-1.724	16.499	10.651		14.85	A A	0
ATOM	1263	N			173		-1.086	18.352	9.382		14.01	A	N
ATOM	1264	CA			173		0.078	18.895	10.064		13.48	A A	C
ATOM	1265	C			173		-0.158	19.147	11.553		13.91	À	C
ATOM	1266	ō			173	,	0.809	19.174	12.339		14.08	A	õ
ATOM	1267	N			174		-1.419	19.291	11.956		13.50	A	N
ATOM	1268	CA	THR	A	174		-1.758	19.475	13.375		13.19	A	C
ATOM	1269	CB	THR	A	174		-3.137	20.125	13.530		13.66	A	C
MOTA	1270	OG1	THR	Α	174		-4.104	19.394	12.743	1.00	13.16	A	0
ATOM	1271	CG2	THR	Α	.174		-3.114	21.510	12.957	1.00	14.22	A	C
ATOM	1272	C	THR	Α	174		-1.774	18.188	14.172	1.00	12.85	A	С
ATOM	1273	0	THR	Α	174		-1.909	18.227	15.390	1.00	12.08	Α	0
ATOM	1274	N	ALA	Α	175		-1.696	17.040	13.505	1.00	12.94	A	N
ATOM	1275	CA	ALA	Α	175		-1.614	15.772	14.213	1.00	12.90	A	C
ATOM	1276	CB			175		-1.422	14.641	13.211		13.54	A	C
ATOM ·	1277	С			175.		-0.484		-15.264		12.44	A	C
ATOM	1278	0			175		0.601	16.233	15.043		13.06	A	0
MOTA	1279	N			176		-0.739	15.131	16.398		13.08	A	N
ATOM	1280	CA -			176		0.269	15.057	17.466		13.00	A	C
ATOM	1281	CB			176		-0.383	14.511	18.719		12.78	A	C
ATOM	1282	CG			176		-1.406	15.392	19.366		13.87	A	C
ATOM ATOM	1283	CD			176		-2.044	14.693	20.553		15.77	A	С
ATOM	1284 1285	NZ			176 176		-3.179 -3.738	13.722 13.048	20.173 21.388		16.63	A A	C N
ATOM	1286	C			176		1.433	14.107	17.115		16.58 13.10	A A	C
ATOM	1287	0			176		2.559	14.289	17.538		12.98	A	Ö
ATOM	1288	N			177		1.119	13.047	16.390		12.81	A	N
ATOM	1289	CA			177		2.047	11.933	16.187		12.78	A	Ċ
ATOM	1290	CB			177		1.278	10.628	16.301		12.48	A	Ċ
ATOM	1291	CG			177		0.733	10.382	17.718		12.12	A	Ċ
ATOM	1292		ASN				1.135	11.043	18.682		12.31	A	ō
ATOM	1293		ASN				-0.179	9.416	17.844		10.81	A	N
MOTA	1294	С	ASN	Α	177		2.822	11.966	14.876		12.68	A	С
ATOM	1295	0			177		3.692	11.097	14.621		13.33	A	0
ATOM	1296	N	ALA	A	178		2.483	12.933	14.029		12.80	A	N
ATOM	1297	CA	ALA	Α	178		3.234	13.208	12.801	1.00	12.70	A	C
ATOM	1298	CB	ALA	A	178		2.382	13.938	11.817	1.00	12.83	A	C
ATOM	1299	С			178		4.439	14.052	13.141		12.18	A	C
MOTA	1300	0			178		4.471	14.685	14.188		12.29	A	0
ATOM	1301	N			179		5.458	13.985	12.293		11.71	A	N
ATOM	1302	CA	ILE	Α	179		6.531	14.966	12.283	1.00	11.72	A	С

MOTA	1303	CB	ILE	Α	179	7.838	14.364	11.812	1.00	11.54	i	Ą	С
MOTA	1304	CGl	ILE	Α	179	8.251	13.222	12.712	1.00	13.45	1	A.	С
MOTA	1305	CD1	ILE	A	179	9.472	12.467	12.196	1.00	14.82	1	A	С
MOTA	1306	CG2	ILE	A	179	8.927	15.437	11.783	1.00	12.00	1	Ą	C
MOTA	1307	С			179	6.085	16.076	11.317	1.00	11.98	1	A	С
MOTA	1308	Ō			179	5.943	15.852	10.109	1.00			Ą	ō
ATOM	1309	N			180	5.813	17.248	11.871	1.00			Ą	N
MOTA	1310	CA			180	5.357	18.383	11.074	1.00			A	Ċ
MOTA	1311	CB			180	4.260	19.120	11.818	1.00			A.	c
MOTA	1312		THR			3.166	18.214	12.084	1.00		-	A.	Ö
ATOM	1312		THR			•							
						3.603	20.224	10.929	1.00			A	C
MOTA	1314	C			180	6.530	19.306	10.690	1.00			A.	C
MOTA	1315	0			180	7.286	19.762	11.533	1.00			A	0
ATOM	1316	N			181	6.662	19.590	9.401	1.00			A	N
ATOM	1317	CA			181	7.830	20.305	8.899	1.00			A	C
MOTA	1318	CB			181	8.492	19.464	7.814	1.00			Ą	C
MOTA	1319		VAL			9.744	20.118	7.309	1.00	12.42	ž	A	С
ATOM	1320	CG2	VAL	Α	181	8.757	18.055	8.351	1.00	12.33	2	A	С
MOTA	1321	C	VAL	Α	181	7.511	21.680	8.302	1.00	11.62		A.	C
MOTA	1322	0	VAL	A	181	6.667	21.800	7.399	1.00	12.16	1	A	0
ATOM	1323	N	GLY	A	182	8.187	22.704	8.812	1.00	11.59		Ą	N
MOTA	1324	CA	GLY	Α	182	8.095	24.042	8.273	1.00	12.80		A	C
MOTA	1325	С	GLY	Α	182	9.296	24.352	7.391	1.00	13.72		Ą	C
ATOM	1326	0	GLY	A	182	10.243	23.574	7.344	1.00			Ą	0
MOTA	1327	N			183	9.264	25.492	6.700	1.00			Ā	N
MOTA	1328	CA			183	10.312	25.837	5.776	1.00			A.	Ĉ
ATOM	1329	СВ			183	9.709	26.166	4.401	1.00			A	Č
MOTA	1330	C			183	11.205	27.001	6.238	1.00			A.	C
MOTA	1331	Ö			183	10.717	28.110	6.498	1.00			A	ō
ATOM	1332	N			184	12.512	26.737	6.293	1.00			Α.	Ŋ
MOTA	1333	CA			184	13.513	27.799	6.294		-		A	C
MOTA		CB			184				1.00				
	1334					14.743	27.451	7.159	1.00			A.	C
ATOM	1335		THR			15.180	26.103		1.00			A.	0.
MOTA	1336		THR			14.383	27.474	8.636	1.00			A	C
MOTA	1337	C			184	13.905	28.018	4.841	1.00			A.	C
MOTA	1338	0			184	13.380	27.354	3.934	1.00			A	0
MOTA	1339	N			185	14.861	28.919	4.618.	1.00			A	N
MOTA	1340	CA			185	15.328	29.246	3.290	1.00	14.03		A	С
MOTA	1341	CB	GLU	A	185	15.696	30.766	3.230	1.00	13.82		A	С
MOTA	1342	CG	GLU	A	185	14.492	31.673	3.495	1.00	15.09		A	С
MOTA	1343	CD	GLU	A	185	14.785	33.172	3.329	1.00	14.09		A	C
ATOM	1344	OE1	GLU	A	185	15.911	33.541	2.985	1.00	15.60		A	0
MOTA	1345	OE2	GLU	Α	185	13.871	33.984	3.528	1.00	14.21		A	0
MOTA	1346	С	GLU	A	185	16.511	28.376	2.863	1.00	13.70		A	С
MOTA	1347	0	GLU	A	185	17.387	28.011	3.675	1.00	14.17		A	0
MOTA	1348	N	ASN	Α	186	16.521	28.008	1.587	1.00	12.64		A	N
MOTA	1349	CA			186	17.707	27.452	0.959	1.00			A	С
MOTA	1350	CB	ASN	Α	186	17.345		-0.353	1.00			A	Ç
ATOM	1351	CG			186	18.293	25.630	-0.717	1.00			A	č
ATOM	1352		ASN			19.084	25.169	0.099	1.00			A.	ō
ATOM	1353		ASN			18.189		1.970	1.00			A.	N
MOTA	1354	C			186	18.652	28.603	0.681	1.00				C
ATOM		0										A.	
	1355				186	18.244	29.769	0.711	1.00			A	0
MOTA	1356	N Cr			187	19.920	28.298	0.470	1.00			A	Ŋ
MOTA	1357	CA			187	20.892	29.352	0.213	1.00			A.	C
MOTA	1358	CB			187	22.144	29.144	1.018	1.00			A	C
MOTA	1359	CG			187	23.144	30.319	0.975	1.00			A	C
MOTA	1360	CD1	LEU	A	187	22.504	31.587	1.469	1.00	18.56		A	C

										•			
ATOM	1361	CD2	LEU	A	187	24.394	29.973	1.816	1.00	20.46	7	. C	
MOTA	1362	С	LEU	Α	187	21.205	29.360	-1.279	1.00	14.80	7	A C	
MOTA	1363	0	LEU	A	187	22.106	28.692	-1.734	1.00	14.07	7	. 0	
MOTA	1364	N	ARG	A	188	20.398	30.083	-2.023	1.00	15.63	7	N N	
ATOM	1365	CA	ARG	A	188	20.631	30.308	-3.454	1.00	17.55	7	4 C	
MOTA	1366	CB	ARG	A	188	19.658	29.484	-4.273	1.00	17.02	2	A C	
ATOM	1367	CG	ARG	A	188	19.842	27.989	-4.168	1.00	17.82	7	A C	
ATOM	1368	CD	ARG	Α	188	19.063	27.213	-5.267	1.00	19.96	7	y C	
ATOM	1369	NE	ARG	Α	188	19.315	25.782	-5.224	1.00	18.26	7	A N	
ATOM	1370	CZ	ARG	A	188	20.339	25.172	-5.814	1.00	19.52	7	, C	
MOTA	1371	NHl	ARG	A	188	21.235	25.846	-6.530	1.00	17.91	2	N A	
ATOM	1372	NH2	ARG	A	188	20.475	23.867	-5.693	1.00	19.41	7	N A	
MOTA	1373	С	ARG	A	188	20.387	31.804	-3.694	1.00	17.89	7	4 C	
MOTA	1374	0	ARG	A	188	19.379	32.189	-4.251	1.00	18.33	7	A 0	
MOTA	1375	N	PRO	A	189	21.273	32.646	-3.181	1.00	19.58	7	A N	
ATOM	1376	CA	PRO	Α	189	20.990	34.082	-3.061	1.00	20.68	7	4 C	
ATOM	1377	CB	PRO	Α	189	22.179	34.613	-2.239	1.00	21.07	2	4 C	
ATOM	1378	CG	PRO	A	189	23.271	33.608	-2.417	1.00	21.15	7	Y C	
ATOM	1379	CD	PRO	A	189	22.599	32.288	-2.657	1.00	20.12	7	A C	
MOTA	1380	С	PRO	Α	189	20.833	34.863	-4.373	1.00	21.39	7	A C	
MOTA	1381	0	PRO	Α	189	20.276	35.975	-4.347	1.00	20.51	1	A 0	
MOTA	1382	N	SER	A	190	21.285	34.307	-5.492	1.00	22.89	7	N N	
MOTA	1383	CA	SER	Α	190	21.033	34.940	-6.796	1.00	24.65	7	J C	
MOTA	1384	CB	SER	Α	190	21.685	34.135	-7.932	1.00	24.76	7	A C	
MOTA	1385	OG			190	21.082	32.831	-8.046	1.00	25.85	7	4 O	
MOTA	1386	С	SER	A	190	19.525	35.098	-7.028	1.00	25.23	1	A C	
MOTA	1387	0	SER	Α	190	19.080	35.918	-7.850	1.00	26.47	7	4 O	
MOTA	1388	N	PHE	A	191	18.723	34.365	-6.258	1.00	25.36	I	A N	
MOTA	1389	CA			191	17.264	34.446	-6.389	1.00	25.28	7	, C	
MOTA	1390	CB	PHE	A	191	16.643	33.046	-6.156	1.00	25.00	7	<i>y</i> C	
MOTA	1391	CG	PHE	A	191	16.841	32.089	-7.310	1.00	23.34		A C	
ATOM	1392	CD1	PHE	Α	191	17.565	30.932	-7.159	1.00	21.81	7	A C	
ATOM	1393	CE1	PHE	Α	191 ·	17.735	30.052	-8.218	1.00	22.63	- 2	4- C	
MOTA	1394	cz			191	17.180	30.341	-9.470		21.46	7	<i>y</i> C	
ATOM	1395	CE2	PHE			16.449	31.484	-9.631	-	22.61	7	<i>y</i> C	
ATOM	1396	CD2	PHE			16.288	32.361	-8.562		25.47		J C	
ATOM	1397	С			191	16.388	35.561	-5.720		25.71		4 C	
ATOM	1398	0			191	15.184	35.500	-5.877		27.33		4 0	
ATOM	1399	N			192	16.823	36.552	-4.944		26.98		A N	
MOTA	1400	CA			192	17.639	36.484	-3.783		26.29		đ C	
ATOM	1401	C			192	16.795	36.445	-2.478		25.37		J C	
MOTA	1402	0			192	17.008	35.528	-1.733		25.24		4 0	
ATOM	1403	N			193	15.858	37.355	-2.179		24.49		A N	
ATOM	1404	CA			193	15.332	37.444	-0.778		24.39		A C	
ATOM	1405	CB			193	14.452	38.689	-0.554		24.51		A C	
ATOM	1406	OG	SER		193	13.058	38.407	-0.623		25.19		4 0	
ATOM	1407	C		_	193	14.664	36.176	-0.133		23.94	_	A C	
ATOM	1408	0			193	14.740	35.973	1.085		22.27		4 0	
ATOM	1409	N			194	14.037	35.331	-0.949		23.39		A N	
ATOM	1410	CA			194	13.497	34.046	-0.477		23.08		A C	
ATOM	1411	CB			194	12.407	33.559	-1.439		23.87		J C	
ATOM	1412	CG			194	11.044	34.129	-1.144		27.80		A C	
ATOM	1413		TYR			10.563	35.240	-1.832		31.12		4 C	
ATOM	1414		TYR			9.317	35.775	-1.554		32.91		A C	
MOTA	1415	CZ			194	8.525	35.182	-0.591		34.12		4 C	
ATOM	1416	OH			194	7.282	35.696	-0.311		38.22		0	
ATOM	1417		TYR			8.974	34.076	0.108		33.28		<i>y</i> C	
MOTA	1418	CD2	TYR	А	194	10.229	33.556	-0.169	1.00	31.26		A C	

ATOM	1419	С	TYR	A	194	14.545	32.930	-0.289	1.00	21.59	A	С
ATOM	1420	0	TYR	Α	194	14.225	31.848	0.236	1.00	20.33	A	0
ATOM	1421	N	ALA	A	195	15.785	33.185	-0.695	1.00	20.44	A	N
ATOM	1422	CA	ALA	Α	195	16.838	32.181	-0.610	1.00	20.47	A	С
MOTA	1423	CB	ALA	Α	195	16.915	31.365	-1.892	1.00	20.41	A	C
MOTA	1424	C	ALA			18.222	32.757	-0.270		19.93	A	Ċ
ATOM	1425	Ō	ALA			19.230	32.354	-0.877		19.21	A	ō
ATOM	1426		ASP			18.264	33.615	0.750		19.15	A	N
ATOM	1427	CA	ASP			19.472	34.355	1.126		19.86	À	С
ATOM	1428	CB	ASP			19.264	35.861	0.919		20.04	A	Ċ
ATOM	1429	CG	ASP			18.198	36.453	1.814		22.11.	A	Ċ
ATOM	1430		ASP			18.040	37.693	1.696		23.87	A A	0
ATOM	1431		ASP			17.461	35.822	2.649		19.55	A A	Ö
ATOM	1432	C	ASP			20.025	34.163	2.549		19.90		
ATOM	1433	o	ASP			21.092	34.705				A.	C
ATOM	1434	N	ASN					2.869		19.61	A.	0
ATOM	1435	CA	ASN			19.326 19.790	33.410	3.394		18.85	A.	N
ATOM	1436	CB	ASN				33.177	4.757		18.29	A	C
ATOM						19.410	34.369	5.644		18.68	A	Ç
	1437	CG	asn asn			20.123	34.360	7.001		19.48	A •	C
ATOM	1438					20.221	33.319	7.630		16.60	A	0
ATOM	1439		ASN			20.603	35.541	7.455		14.55	A	N
ATOM	1440	C			197	19.198	31.861	5.304		17.30	A	C
ATOM	1441	0	ASN			17.986	31.734	5.463		16.96	A	0
ATOM	1442	N			198	20.066	30.901	5.608		16.67	A	N
ATOM	1443	CA			198	19.606	29.557	5.993		16.04	A	C
ATOM	1444	CB			198	20.771	28.571	6.020		15.64	A	С
ATOM	1445		ILE			21.724	28.885	7.179		16.27	A	С
ATOM	1446		ILE			22.734	27.781	7.490		18.08	A	С
ATOM	1447	CG2	ILE			21.459	28.530	4.679	1.00	16.50	A	С
ATOM	1448	С			198	18.897	29.560	7.352	1.00	15.03	A	С
MOTA	1449	0			198	18.222	28.605	7.723	1.00	15.12	A	0
ATOM	1450	N	ASN	Α	199	19.054	30.642	8.102	1.00	14.78	A	N
ATOM	1451	CA	ASN	Α	199.	18.316	-30.794 -	9.344	1.00	14.68	A	C
ATOM	1452	CB	ASN			19.180	31.609	10.332	1.00	14.98	A	С
ATOM	1453	CG	ASN	A	199	20.487	30.948	10.708	1.00	15.69	A	C .
ATOM	1454	OD1	ASN	Α	199	20.560	29.757	10.907	1.00	14.98	A	0
MOTA	1455	ND2	ASN	A	199	21.526	31.768	10.903	1.00	20.04	A	N
MOTA	1456	С	ASN	Α	199	17.036	31.597	9.311	1.00	14.49	A	C
MOTA	1457	0	ASN	A	199	16.239	31.490	10.227	1.00	14.69	A	0
ATOM	1458	N	HIS	Α	200	16.736	32.328	8.241	1.00	15.73	A	N
MOTA	1459	CA	HIS	Α	200	15.375	32.648	7.854	1.00	14.99	A	C
ATOM	1460	CB	HIS	Α	200	15.338	33.612	6.641	1.00	15.17	A	С
MOTA	1461	CG	HIS	Α	200	16.005	34.942	6.871	1.00	17.24	A	C
ATOM	1462	NDl	HIS	Α	200	16.242	35.840	5.842	1.00	16.94	A	N
ATOM	1463	CE1	HIS	Α	200	16.842	36.916	6.327	1.00	19.73	A	C
ATOM	1464	NE2	HIS	Α	200	17.009	36.751	7.628	1.00	17.79	A	N
ATOM	1465		HIS			16.469	35.538	7.999		18.37	A	С
ATOM	1466	С	HIS	Α	200	14.327	31.581	7.730		15.01	A	C
ATOM	1467	0	HIS			14.472	30.673	6.965		14.41	A	ō
ATOM	1468	N	VAL			13.251	31.772	8.496		15.72	A	N
ATOM	1469	CA	VAL			12.004	31.059	8.294		16.37	A	c
ATOM	1470	CB	VAL			11.103	31.185	9.523		16.41	A	C
ATOM	1471		VAL			9.780	30.428	9.297		16.12	A	c
ATOM	1472		VAL			11.841	30.668	10.783		18.01	A	c
MOTA	1473	C	VAL			11.313	31.683	7.089		16.94	A	c
ATOM	1474	0	VAL			11.250	32.900	6.973		17.09	A A	0
ATOM	1475	N	ALA			10.872	30.865	6.143		17.70		
ATOM	1476	CA	ALA			10.872	31.396	4.949		17.70	A A	N C
- + T OI.1	7110	C-73		-	£ U £	¥U.433	コエ.コヲロ	4.747	1.00	11.02	<u></u>	·

ATOM	1477	CB	ALA	A	202	9.85	9 3	30.265	4.018	1.00	18.76		A	C
MOTA	1478	С	ALA	Α	202	9.00	0 3	32.169	5.383	1.00	17.84		A	С
MOTA	1479	0			202	8.26	3 3	31.734	6.263	1.00	16.60		A	0
ATOM	1480	N		-	203	8.77		33.332	4.783	1.00	18.20		A	N
ATOM	1481	CA			203	7.62		34.135	5.192	1.00	19.45		A	C
ATOM	1482		BGLN			7.54	2	35.347	4.260		19.94		A	С
ATOM	1483		AGLN			7.52		35.467	4.445	0.60	20.39		Α	C
MOTA	1484		BGLN			7.52		36.681	4.943	0.40	22.36		A	C
ATOM	1485		AGLN			6.74	8	36.514	5.261		24.58		A	С
ATOM	1486		BGLN			6.37	79 3	37.556	4.452		25.52		A	C
ATOM	1487		AGLN		-	7.55	3 3	37.090	6.439		28.39		A	C
MOTA	1488	OE1	BGLN	Α	203	5.56		37.122	3.624	0.40	27.97		A	0
MOTA	1489		AGLN			8.52		37.816	6.236	0.60	33.69		A	0
ATOM	1490		BGLN			6.29		38.772	4.972		24.61		A	N
ATOM	1491		AGLN			7.15		36.751	7.655	0.60	31.16		A	N
ATOM	1492	С			203	6.29		33.391	5.152		18.58		A	С
ATOM	1493	0			203	5.45	8 :	33.580	6.028	1.00	18.67		A	0
ATOM	1494	N			204	6.09		32.533	4.163		17.22		A	N
ATOM	1495	CA			204	4.80		31.833	4.027	1.00	16.75		A	C
ATOM	√1496	CB			204	4,.60		31.335	2.589	1.00	16.25		Α	C
ATOM	1497	CG			204	5.72		30.475	2.093		16.52		Α	C
ATOM	1498		PHE			5.89		29.158	2.526		16.66		A	С
ATOM	1499		PHE			6.89		28.378	2.083		17.13		A	С
ATOM	1500	CZ			204	7.85		28.909	1.234	1.00	14.67		A	С
ATOM	1501		PHE			7.74		30.231	0.816		16.10		A	С
ATOM	1502		PHE		_	6.69		31.009	1.267		15.39		A	C
ATOM	1503	С			204	4.67		30.647	5.018		16.21		A	C
ATOM	1504	0			204	3.57		30.150	5.198		15.42		A	0
ATOM	1505	N			205	5.79		30.223	5.688		15.36		Α	Ŋ
ATOM	1506	CA			205	5.69		28.983	6.508	1.00			A	С
ATOM	1507	CB			205	7.06		28.579	7.063		15.27	-	A	C
ATOM	1508	OG			205	7.04		27.254	7.585		15.10		A	0
ATOM	. 1509	C			205	4.65		29.103		1.00	14.84		A	С
ATOM	1510	0			205	4.61		30.092	8.319	1.00	16.26		A	.0
ATOM	1511	N			206	3.76		28.141	7.753		15.82		A	N
ATOM	1512	CA			206	2.75		28.237	8.818		15.73		Α	C
ATOM	1513	CB			206	1.7		27.117	8.735		16:10		A	C
ATOM	1514	OG			206	0.81		27.350	7.655	1.00			A	0
MOTA	1515	C			206	3.42		28.221	10.186		15.92		A	C
ATOM	1516	0			206	4.48		27.589	10.362		15.30		A	0
ATOM	1517	N			207	2.78		28.928	11.113		15.72		A	N
ATOM	1518	CA			207	3.28		29.140	12.455	1.00	16.34		A	C
ATOM	1519	CB			207	3.51		30.636	12.715	1.00	16.50		A	C
ATOM	1520	CG			207	4.18		31.375	11.542	1.00	18.52		A	C
ATOM	1521	CD			207	5.60		30.916	11.227	1.00			A	C
MOTA ATOM	1522	NE			207	6.14		31.519	10.012		22.13		A	И
ATOM	1523 1524	CZ			207	6.82		32.643	9.981		22.20		A	C
		NH1			207				11.080		25.41		A	N
MOTA MOTA	1525		ARG		207	7.25		33.124	8.838		24.08		A	N
ATOM	1526 1527	C			207	2.33 1.09		28.556			15.97		A	C
ATOM	1527	O N			207			28.605	13.301		15.01		A	0
ATOM	1528	CA			208	2.90		27.974	14.521		15.16		A N	N
ATOM	1529	CA			208	2.13		27.523	15.655		16.14		Α	C
ATOM	1530	0				1.62		28.688	16.476		16.50		A.	C
ATOM					208 209	1.75		29.830	16.059		17.36		A N	O N
ATOM	1532 1533	N CA			209	0.99		28.423	17.617		17.42		A	N
ATOM	1533	CB				0.72		27.067	18.089 19.579		17.56 17.58		A.	C
A L Ull	1334	CB	FKU	А	209	0.40	,, ,	27.269	エフ・ラ/タ	1.00	エ/. ング		A	Ę.

MOTA	1535	CG	PRO	Α	209	-0.088	28.644	19.701	1.00	18.85	2	A C
ATOM	1536	CD	PRO	Α	209	0.477	29.457	18.545	1.00	17.85	1	
MOTA	1537	С	PRO	Α	209	-0.483	26.483	17.368	1.00	17.50	7	A C
MOTA	1538	0	PRO	A	209	-1.094	27.157	16.558	1.00	18.18	7	9 0
MOTA	1539	N	THR	A	210	-0.816	25.240	17.652	1.00	16.70	7	A N
MOTA	1540	CA			210	-2.050	24.690	17.186	1.00	17.34	2	y C
ATOM	1541	CB	THR	Α	210	-2.042	23.181	17.356	1.00	16.73	7	A C
MOTA	1542	OG1			210	-1.848	22.859	18.734	1.00	18.34	7	
MOTA	1543	CG2			210	-0.833	22.540	16.574	1.00	16.90	1	A C
ATOM	1544	C			210	-3.206	25.327	17.987		17.55	1	A C
MOTA	1545	0	THR	Α	210	-2.990	26.095	18.930	1.00	16.40	7	4 0
MOTA	1546	N	ARG	Α	211	-4.421	24.979	17.623		18.89	1	y N
MOTA	1547	CA			211	-5.595	25.577	18.264	1.00	20.56	1	A C
MOTA	1548	CB			211	-6.884	25.056	17.638		21.16	7	A C
ATOM	1549	CG			211	-8.149	25.719	18.255	1.00	25.92	2	A C
ATOM	1550	CD			211	-9.325	25.804	17.301		31.08		A C
MOTA	1551	NE			211	-8.956	26.457	16.042		35.63	7	
MOTA	1552	CZ			211	-9.626	26.296	14.905		38.91		A C
MOTA	1553		ARG			-10.707	25.516	14.876		40.64		A N
ATOM	1554		ARG			-9.225	26.911	13.795		37.74		A N
MOTA	1555	C			211	-5.591	25.308	19.768		20.16		4 C
MOTA	1556	0			211	-5.983	26.180	20.539		19.93		A 0
MOTA	1557	N			212	-5.120	24.121	20.185		19.40		A N
MOTA	1558	CA			212	-5.031	23.791	21.616		18.64		A C
ATOM	1559	CB			212	-5.346	22.306	21.877		18.58		A C
MOTA	1560	CG			212	-4.318	21.356	21.254		16.59		A C
ATOM	1561		ASP			-4.255	20.180	21.679		16.40		A 0
ATOM	1562		ASP			-3.545	21.688	20.339		17.56		4 0
MOTA	1563	C			212	-3.693	24.160	22.255		18.83		A C
ATOM	1564	0			212	-3.387	23.707	23.370		19.22		A 0
ATOM	1565	N			213	-2.902	24.966	21.556		18.29		A N
MOTA	1566	CA			213	-1.698	25.572	22.111		18.10		A C
MOTA	1567	C			213	-0.439		22.065		17.75		A C
MOTA	1568	0			213	0.517	24.998	22.785		18.06		A . O
MOTA	1569	N			214	-0.431	23.665	21.242		16.43		A N
ATOM	1570	CA			214	0.757	22.826	21.110		16.72		A C
MOTA	1571	CB			214	0.403		20.536		16.17		A C
MOTA	1572	CG			214	-0.276	20.553	21.473		16.40		A C
ATOM	1573	CD			214	-0.753	19.301	20.814		16.61		4 C
ATOM ATOM	1574	NE			214	-1.771	19.613	19.826		16.67		A N
ATOM	1575 1576	CZ			214	-1.740	19.297	18.531		16.71		A C
ATOM	1577		ARG ARG			-0.720 -2.762	18.628	17.981 17.776		16.55 14.42		A N A N
ATOM	1578	C			214	1.772	19.664 23.493	20.203		16.16		A C
ATOM	1579	o			214	1.403	24.306	19.344		16.86		A. O
ATOM	1580	Ŋ			215	3.046	23.168	20.396		15.82		A N
ATOM	1581	CA			215	4.107	23.160	19.516		15.40		A C
ATOM	1582	CB			215	5.503				16.18		A C
MOTA	1583		ILE			5.600	23.498 24.351	21.454		17.35		_
ATOM	1584		ILE			5.526	25.842	21.181		20.01		A C
ATOM	1585		ILE			6.606	23.898	19.191		15.87		A C
MOTA	1586	C			215	4.100	22.834	18.214		15.40		A C
ATOM	1587	Ö			215	4.316	21.616	18.227		14.96		A 0
ATOM	1588	И			216	3.841	23.536	17.117		14.61		A N
ATOM	1589	CA			216	4.072	23.062	15.745		14.64		A C
MOTA	1590	CB			216	2.765	22.616	15.067		13.98		A C
MOTA	1591	CG			216	2.190	21.271	15.526		13.46		A C
ATOM	1592	CD			216	3.073	20.102	15.117		14.36		A C
			~			2.073	20.102				4	

MOTA	1593	CE	LYS	A	216	2.427	18.754	15453	1.00 13.2	4 A	C
MOTA	1594	NZ	LYS	A	216	3.042	17.577	14.739	1.00 8.0	8 A	N
ATOM	1595	C	LYS	Α	216	4.632	24.269	14.984	1.00 14.7	0 A	C
ATOM	1596	0	LYS	Α	216	4.336	25.428	15.358	1.00 13.9	2 A	0
MOTA	1597	N	PRO	A	217	5.410	24.032	13.921	1.00 14.5	9 A	N
MOTA	1598	CA	PRO	Α	217	5.788	22.691	13.468	1.00 13.6	5 A	С
MOTA	1599	CB	PRO	Α	217	6.452	22.944	12.115	1.00 14.5	8 A	C
ATOM	1600	CG	PRO	Α	217	6.934	24.356	12.178	1.00 15.2	3 A	
ATOM	1601	CD	PRO	Α	217	6.012	25.077	13.086	1.00 14.4	4 A	C
MOTA	1602	. C	PRO	Α	217	6.818	22.089	14.401	1.00 12.9	9 A	C
ATOM	1603	0	PRO	Α	217	7.262	22.738	15.379	1.00 12.1	1 A	0
MOTA	1604	N	ASP	A	218	7.201	20.847	14.126	1.00 11.7	4 A	N
ATOM	1605	CA	ASP	Α	218	8.188	20.214	14.974	1.00 11.3	5 A	C
ATOM	1606	CB	ASP	A	218	8.033	18.694	14.962	1.00 11.4	7 A	C
ATOM	1607	CG	ASP	Α	218	6.672	18.241	15.451	1.00 11.8	2 A	С
ATOM	1608	QD1	ASP	A	218	6.440	18.370	16.680	1.00 10.5	7 A	0
MOTA	1609	OD2	ASP	Α	218	5.810	17.726	14.671	1.00 11.5	0 A	0
ATOM	1610	C	ASP	Α	218	9.619	20.566	14.610	1.00 11.3	0 A	С
MOTA	1611	0	ASP	Α	218	10.441	20.772	15.501	1.00 10.8	5 A	0
MOTA	1612	N	VAL	Α	219	9.928	20.516	13.314	1.00 11.6	1 A	N
MOTA	1613	CA	VAL	Α	219	11.254	20.829	12.815	1.00 12.3	7 A	C
ATOM	1614	CB	VAL	Α	219	12.118	19.589	12.602	1.00 12.1	9 A	
MOTA	1615	CG1	VAL	A	219	12.401	18.867	13.933	1.00 14.2	4 A	
MOTA	1616		VAL			11.485	18.660	11.587	1.00 13.5	4 A	
MOTA	1617	С			219	11.148	21.568	11.471	1.00 12.3	3 A	C
MOTA	1618	0			219	10.083	21.624	10.851	1.00 12.3	4 A	. 0
MOTA	1619	N			220	12.266	22.139	11.057	1.00 11.7	A 8	
ATOM	1620	CA	MET			12.365	22.930	9.852	1.00 11.8	9 A	
ATOM	1621	CB	MET			12.798	24.371	10.167	1.00 11.3		
ATOM	1622	CG	MET	Α	220	12.025	25.058	11.255	1.00 11.6	4 A	
MOTA	1623	SD	MET			10.310	25.322	10.860	1.00 12.0	2 A	
ATOM	1624	CE	MET			10.416	26.727	9.791	1.00 11.3		
MOTA	1625	C			220		22.343		1.00 12.2		. · C
MOTA	1626	0			220	14.368	21.731	9.321	1.00 12.2		
MOTA	1627	N			221	13.175	22.556	7.613	1.00 12.6	0 A	
MOTA	1628	CA			221	14.198	22.324	6.605	1.00 12.9		
ATOM	1629	CB			221	14.098	20.912	6.081	1.00 12.2		
ATOM	1630	C			221	14.064	23.341	5.464	1.00 13.7		
MOTA	1631	0			221	13.029	24.027	5.312	1.00 14.4		
ATOM	1632	N			222	15.116	23.487	4.687	1.00 13.9		
ATOM	1633	CA			222	15.059	24.393	3.543	1.00 14.7		
ATOM	1634	CB			222	16.387	24.159	2.845	1.00 13.6		
MOTA	1635	CG			222	17.290	23.676	3.892	1.00 15.0		
MOTA	1636	CD			222	16.433	22.855	4.830	1.00 14.3		
ATOM	1637	C			222	13.896	24.044	2.622	1.00 14.8		
MOTA	1638	0			222	13.719	22.847	2.284	1.00 15.2		
MOTA	1639	И			223	13.178	25.069	2.193	1.00 14.5		
ATOM	1640	CA			223		24.910		1.00 15.0		
ATOM	1641	C			223	11.779		0.383	1.00 14.8		
ATOM	1642 1643	O N			223 _. 224	10.661			1.00 15.6		
ATOM		N				12.822	26.799	0.049			
MOTA MOTA	1644	CA			224	12.706	27.772	-1.007			
	1645	CB			224	12.912		-0.517			
ATOM	1646		THR			14.220	29.350	0.047			
	1647		THR			11.952	29.585	0.597			
ATOM	1648	C			224	13.729	27.449		1.00 14.0		
ATOM	1649	0			224 225	14.813	26.932	-1.791			
MOTA	1650	N	IIK	H	225	13.389	27.786	-3.308	1.00 14.7	3 A	N

ATOM	1651	CA	TYR	Α	225	14.270	27.528	-4.441	1.00 14	.78	A	C
ATOM	1652	CB	TYR	A	225	15.197	28.726	-4.686	1.00 15	. 26	A	С
ATOM	1653	CG	TYR	Α	225	14.502	29.848	-5.398	1.00 15	.90	A	С
MOTA	1654	CD1	TYR	Α	225	14.027	30.940	-4.692	1.00 18	.12	A	С
MOTA	1655	CE1	TYR	Α	225	13.349	31.960	-5.301	1.00 18	. 57	A	С
MOTA	1656	CZ	TYR	Α	225	13.100	31.918	-6.659	1.00 19	.46	A	С
ATOM	1657	OH	TYR	Α	225	12.391	32.974	-7.207	1.00 20	.70	A	0
ATOM	1658	CE2	TYR	Α	225	13.510	30.844	-7.404	1.00 18	.30	A	C
ATOM	1659	CD2				14.225	29.788	-6.771	1.00 19		A	С
ATOM	1660	С			225	15.022	26.196	-4.331	1.00 14		A	С
ATOM	1661	Ō	TYR			16.252	26.119	-4.395	1.00 15		A	O
ATOM	1662	N			226	14.248	25.130	-4.186	1.00 15		A	N
MOTA	1663	CA			226	14.773	23.759	-4.155	1.00 14		A	Ċ
ATOM	1664	CB			226	13.904	22.866	-3.254	1.00 14		A	Ċ
ATOM	1665	CG1	ILE			13.906	23.341	-1.789	1.00 15		A	č
ATOM	1666		ILE			15.239	23.250	-1.085	1.00 16		A	č
ATOM	1667		ILE			14.312	21.400	-3.377	1.00 10		A	Ċ
MOTA	1668	C			226	14.780		-5.580	1.00 14		Ä	C
		0			226		23.205					Ö
ATOM ATOM	1669 1670		LEU			13.778	23.188	-6.245	1.00 13		A	
		N				15.937	22.753	-6.022	1.00 14		A	И
ATOM	1671	CA	LEU			16.141	22.230	-7.359	1.00 14		A	C
MOTA	1672	CB			227	17.541	22.653	-7.827	1.00 15		A	C
ATOM	1673	CG			227	17.950	22.137	-9.196	1.00 16		A	C
ATOM	1674		LEU			16.899		-10.231	1.00 16		A	C
MOTA	1675		LEU			19.340	22.669	-9.559	1.00 18		A	C
ATOM	1676	C			227	16.010	20.708	-7.284	1.00 14		A	C
ATOM	1677	0			227	16.803	20.038	-6.602	1.00 15		A	
ATOM	1678	N			228	14.970	20.179	-7.924	1.00 14		A	N
ATOM	1679	CA			228	14.665	18.752	-7.871	1.00 14		A	C
MOTA	1680	CB			228	13.701	18.448	-6.701	1.00 13	.81	A	С
MOTA	1681	OG			228	13.631	17.038	-6.453	1.00 12	.38	A	0
MOTA	1682	C			228	14.061	18.319	-9.208	1.00 14	. 98	A	С
MOTA	1683	0			228	13.971	19.115	10.133	1.00 15	.43	· A	0
MOTA	1684	N	ALA	Α	229	13.626	17.067	-9.278	1.00 14	. 57	A	N
ATOM	1685	CA	ALA	Α	229	13.155	16.454	-10.516	1.00 14	. 87	A	⟨ C
ATOM	1686	CB	ALA	Α	229	12.824	14.945	-10.268	1.00 14	.78	A	C
ATOM	1687	C	ALA	Α	229	11.939	17.135	-11.086	1.00 14	.83	A	C
MOTA	1688	0	ALA	Α	229	10.939	17.411	-10.376	1.00 14	.22	A	0
ATOM	1689	N	ARG	Α	230	12.027	17.381	-12.394	1.00 14	.42	A	N
ATOM	1690	CA	ARG	Α	230	10.974	18.013	-13.155	1.00 14	.49	A	С
MOTA	1691	CB	ARG	Α	230	11.553	19.008	-14.137	1.00 14	.60	A	C
MOTA	1692	CG	ARG	A	230	10.516	19.626	-15.065	1.00 16	.55	A	C
ATOM	1693	CD	ARG	Α	230	11.044	20.792	-15.934	1.00 19	.98	A	С
ATOM	1694	NE	ARG	Α	230	9.940		-16.751	1.00 19		Α	N
ATOM	1695	CZ	ARG	Α	230	9.692		-16.995	1.00 21	. 34	A	С
ATOM	1696		ARG			10.502		-16.545	1.00 21		A	N
ATOM	1697		ARG			8.617	-	-17.730	1.00 20		А	
ATOM	1698	C			230			-13.948	1.00 14		A	
ATOM	1699	ō			230	10.838		-14.762	1.00 14		A	ō
ATOM	1700	N			231	8.931		-13.703	1.00 14		A	N
ATOM	1701	CA			231	8.106		-14.463	1.00 15		Ā	
ATOM	1701	CB			231	6.660		-14.463	1.00 15		A	c
ATOM	1702	OG			231	5.836		-14.030	1.00 15		A	o
ATOM	1703	C			231						A	
ATOM	1704				231	8.176		-15.956 -16.306	1.00 15			
		O N				8.087			1.00 13		A	O N
ATOM	1706	N			232	8.295		-16.802	1.00 15		A	N
ATOM	1707	CA			232	8.323		-18.255	1.00 16		A	C
MOTA	1708	CB	SER	Α	232	8.682	14.156	-18.906	1.00 16	. 29	A	С

ATOM	1709	OG	SER	A	232	7.610	13.191 -1	8.730	1.00	16.72	A	. 0
ATOM	1710	С	SER	A	232	7.004	16.050 -1		1.00	18.10	A	
ATOM	1711	0	SER			6.970	16.540 -1		1.00	18.08	A	
MOTA	1712	N	LEU			5.924	16.005 -1		1.00	18.99	A	
MOTA	1713	CA	LEU			4.647	16.550 -1		1.00	19.87	A	
MOTA	1714	СВ	LEU			3.503	15.655 -1			20.52	A	
ATOM	1715	CG	LEU			3.579	14.202 -1			22.45	A	
MOTA	1716		LEU			2.344	13.472 -1			25.84	A	
ATOM	1717		LEU			3.683	14.146 -1			26.24	A	
ATOM	1718	С	LEU			4.357	17.956 -1			20.22	2 4	
ATOM	1719 1720	0	LEU			3.365	18.546 -1			20.30	A	
ATOM ATOM	1721	N	ALA			5.164 4.768	18.485 -1			18.84 19.34	A	
ATOM	1721	CA CB	ALA			5.297	19.731 -1 19.781 -1			18.58	A A	
ATOM	1723	C	ALA			5.197	20.991 -1			19.93		
ATOM	1724	ō	ALA			6.300	21.037 -1			20.41	A	
ATOM	1725	N	PRO			4.325	21.989 -1			20.75	A	
ATOM	1726	CA	PRO			4.642	23.288 -1			21.88	A	
ATOM	1727	CB	PRO			3.271	23.921 -1			21.83	A	
ATOM	1728	CG	PRO			2.429	23.326 -1			21.93	A	
ATOM	1729	CD	PRO			2.947	21.944 -1		1.00	21.22	A	
MOTA	1730	С			235	5.495	24.199 -1			22.70	A	
ATOM	1731	0	PRO	A	235	5.513	23.970 -1	5.671	1.00	21.06	A	0
ATOM	1732	N	ASP	A	236	6.150	25.204 -1	7.489	1.00	24.00	A	N
ATOM	1733	CA	ASP	A	236	6.960	26.228 -1	6.795	1.00	24.41	7	C C
ATOM	1734	CB	ASP	A	236	7.455	27.332 -1	7.750	1.00	24.21	A	C
ATOM	1735	CG	ASP	A	236	8.603	26.838 -1	8.636	1.00	25.42	2	C C
MOTA	1736		ASP			9.214	27.656 -1	9.365	1.00	25.18	A	0
MOTA	1737		ASP			8.990	25.634 -1	8.674	1.00	23.87	P	
ATOM	1738	С	ASP			6.263	26.644 -1			24.33	A	
ATOM	1739	0	ASP			6.919	27.035 -1		1.00	24.16	A	
ATOM	1740	N	SER			4.933	26.677 -1		1.00	25.32	A	
ATOM	1741	CA			237	. 4.179	27.723 1			24.89	. A	
ATOM	1742	CB			237	2.801	27.926 -1		1.00	25.98	A	
ATOM ATOM	1743 1744	OG	SER		237	2.035	26.723 -1		1.00	27.95	7	_
ATOM	1745	С О	SER			4.027 3.588	26.960 -1 27.516 -1			24.14	A A	
ATOM	1746	N	SER			4.363	25.660 -1			22.59	Þ	
ATOM	1747	CA	SER			4.313	24.861 -1		1.00	22.41	7	
ATOM	1748	СВ	SER			4.238	23.344 -1			22.11	7	
ATOM	1749	OG	SER			3.046	22.968 -1			22.38	7	
ATOM	1750	C	SER			5.543	25.045 -1			21.86	7	
ATOM	1751	ō	SER			5.550	24.542 -1	•		22.29	7	
ATOM	1752	N	PHE	A	239	6.568	25.744 -1			21.32	7	
ATOM	1753	CA	PHE	Α	239	7.847	25.899 -1	1.108	1.00	20.67	7	
MOTA	1754	CB	PHE	A	239	8.966	25.299 -1	1.966	1.00	20.17	7	
MOTA	1755	CG	PHE	A	239	8.736	23.854 -1	2.294	1.00	20.18	A	
MOTA	1756	CD1	PHE	Α	239	8.964	22.881 -1	1.344	1.00	18.34	A	C C
MOTA	1757	CE1	PHE	Α	239	8.686	21.573 -1	1.600	1.00	15.67	7	C C
ATOM	1758	CZ			239	8.194	21.184 -1	2.814	1.00	16.81	P	
MOTA	1759		PHE			7.924	22.128 -1			16.81	P	
MOTA	1760		PHE			8.194	23.466 -1			18.63	P	
ATOM	1761	C			239	8.124	27.370 -1			20.81	P	
ATOM	1762	0			239	7.589	28.283 -1			19.94	7	
MOTA	1763	N			240	8.927		9.743		20.46	7	
MOTA	1764	CA	TRP			9.420		9.382		21.13	,A	
ATOM	1765	CB			240	10.192		8.055		21.05	7	
MOTA	1766	CG	TRP	А	240	9.324	28.850 -	6.857	1.00	22.76	7	, с

ATOM	1767	CD1	TRP	Α	240	8.027	28.446	-6.782	1.00	23.97	I	. C
ATOM	1768	NEl	TRP			7.548	28.624	-5.509	1.00	24.62	7	
ATOM	1769	CE2			240	8.547	29.148	-4.726	1.00	24.31	I	-
MOTA	1770		TRP			9.677	29.302	-5.537	1.00	23.24	Į	
ATOM	1771	CE3			240	10.839	29.811	-4.966	1.00	24.95	7	-
ATOM	1772	CZ3	TRP	Α	240	10.833	30.146	-3.637	1.00	24.14	I	
MOTA	1773	CH2	TRP			9.682	29.991	-2.85 7	1.00	23.89	Į	
MOTA	1774	CZ2	TRP			8.542	29.483	-3.378	1.00	25.05	7	
ATOM	1775	С			240	10.355		-10.461		20.95	7	
ATOM	1776	0			240	10.419		-10.703		20.42	7	7 0
MOTA	1777	N			241	11.097		-11.080	1.00	21.11	1	
MOTA	1778	CA			241	12.022		-12.149		21.52	7	
MOTA	1779	CB			241	13.243		-11.606		21.93	7	-
ATOM	1780	С			241	12.466		-12.801		21.79	7	
ATOM	1781	0			241	12.440		-12.169		22.05	7	_
MOTA	1782	N			242	12.929		-14.040		22.09	7	
ATOM	1783	CA			242	13.481		-14.800		22.74	7	
MOTA	1784	СВ			242	13.397		-16.322		22.69	7	
MOTA	1785	CG	ASN			11.960		-16.828		22.96	7	
MOTA	1786		ASN			11.024		-16.198		21.33	7	
MOTA	1787		ASN			11.782		-17.969		21.31		N
MOTA	1788	C	ASN			14.927		-14.458		23.18	7	
MOTA	1789	0			242	15.634		-13.902		23.35		
MOTA	1790	N			243	15.375		-14.820		24.21	7	
ATOM	1791	CA			243	16.802		-14.862		25.06	7	
ATOM	1792	CB			243	17.234		-13.653		25.31	7	_
ATOM	1793	CG			243	18.703		-13.595		27.16	1	
MOTA	1794		HIS			19.599		-13.086	1.00		7	
MOTA	1795		HIS			20.820		-13.152		30.29	2	
MOTA	1796		HIS			20.752		-13.713		29.63	1	
ATOM	1797		HIS			19.442		-14.008		28.73	7	
MOTA MOTA	1798 1799	C O			243	17.158		-16.162		26.02	. 2	
MOTA	1800				243	17.851		17.003		25.77		
MOTA	1801	N CA			244 244	16.711		-16.299		26.20	2	
ATOM	1802	CB			244	16.757 17.972		-17.584 -17.646		27.35 28.02	7	
ATOM	1803	CG	ASP			18.211		-16.546		29.28		
MOTA	1803 1804		ASP			19.393		-16.099		34.73	1	
ATOM	1805		ASP			17.310		-16.056		28.43		7 0
MOTA	1806	C			244	15.427		-17.760		27.57	,	
ATOM	1807	Ö			244	14.751		-16.721		27.11		7 0
ATOM	1808	N			245	15.290		-18.836		27.83	ĵ	
ATOM	1809	CA			245	14.559		-19.209		26.73		, C
ATOM	1810	CB			245	15.083		-20.483		26.99		. c
ATOM	1811	OG			245	15.792		-20.481		27.12		. 0
ATOM	1812	C	SER			14.234		-18.102		25.28		a C
ATOM	1813	Ö			245	13.146		-18.152		24.66		. o
ATOM	1814	N			246	15.122		-17.176		23.51	_	N
ATOM	1815	CA			246	14.918		-16.177		22.90		. C
ATOM	1816	CB			246	15.977		-16.332		23.64		. C
MOTA	1817	CG			246	15.852		-17.600		26.42		, c
ATOM	1818	CD			246	17.094		-17.859		29.39		, c
ATOM	1819	CE			246	16.880		-19.018		32.94		. c
ATOM	1820	NZ			246	18.070		-19.908		37.30		N A
MOTA	1821	C			246	14.812		-14.740		21.77	1	
ATOM	1822	0			246	14.396		-13.828		19.24	7	
MOTA	1823	N			247	15.126		-14.452		20.43	,	
MOTA	1824	CA			247	15.144		-13.079		19.83		A C
									·			

ATOM	1825	CB	TYR	A	247	16.541	19.398	-12.456	1.00 19.35		A	С
ATOM	1826	CG	TYR	Α	247	17.007	17.966	-12.434	1.00 19.14		A ·	C
MOTA	1827	CD1	TYR	Α	247	17.784	17.442	-13.482	1.00 21.08		A	С
MOTA	1828	CE1	TYR	A	247	18.170	16.121	-13.489	1.00 17.97		A	С
ATOM	1829	CZ	TYR	Α	247	17.780	15.292	-12.458	1.00 19.97		Α	С
ATOM	1830	OH			247	18.159		-12.465	1.00 18.06		A	ō
MOTA	1831	CE2				16.999		-11.417	1.00 18.19		A	Ċ
ATOM	1832	CD2	TYR			16.630		-11.408	1.00 19.09		A	č
ATOM	1833	C			247	14.697		-13.069	1.00 18.89		A	c
ATOM	1834	ō			247	15.017		-13.994	1.00 18.71		A	ō
ATOM	1835	N			248	13.936		-12.046	1.00 17.07		A	Ŋ
ATOM	1836	CA			248	13.512		-11.893	1.00 16.28		A	C
MOTA	1837	CB			248	12.294		-12.733	1.00 15.85		A	C
ATOM	1838	C			248	13.253		-10.425	1.00 15.75		A	C
MOTA	1839	0			248	13.358	22.236	-9.549	1.00 15.81		A	0
MOTA	1840	N			249	12.956		-10.174	1.00 15.33		A	N
MOTA	1841	CA			249	12.910	24.949	-8.832	1.00 15.08		A	C
MOTA	1842	CB			249	13.520	26.336	-8.802	1.00 15.54		A	C
MOTA	1843	CG			249	14.999	26.398	-9.087	1.00 15.33		Α	C
MOTA	1844		TYR			15.470		-10.370	1.00 17.29		A	С
MOTA	1845		TYR			16.829	26.754		1.00 16.19		Α	C
ATOM	1846	CZ .			249	17.741	26.557	-9.608	1.00 18.72		Α	C
ATOM	1847	OH			249	19.088	26.649	-9.839	1.00 21.92		Α	0
ATOM	1848		TYR			17.306	26.287	-8.330	1.00 18.20		A	C
ATOM	1849	CD2			249	15.930	26.207	-8.070	1.00 17.03		Α	C
MOTA	1850	С	TYR	Α	249	11.497	25.078	-8.358	1.00 15.50		Α	C
MOTA	1851	0	TYR	Α	249	10.599	25.480	-9.122	1.00 16.06		Α	0
AŢOM	1852	N	MET	Α	250	11.291	24.749	-7.082	1.00 15.10		Α	N
ATOM	1853	CA	MET	Α	250	10.015	24.967	-6.430	1.00 15.40		Α	C
MOTA	1854	CB	MET	Α	250	9.153	23.703	-6.542	1.00 15.90		A	C
ATOM	1855	CG	MET	Α	250	7.677	23.947	-6.729	1.00 19.64		Α	C
ATOM	1856	SD	MET	Α	25 0	6.677	22.370	-6.869	1.00 23.44	-	Α	s
ATOM	1857	CE	MET	Α	250	7. 321	21.709	8.163	1.00 22.96		Α	C
ATOM	1858	С	MET	Α	250	10.274	25.318	-4.966	1.00 15.09		A	С
ATOM	1859	0	MET	Α	250	11.366	25.081	-4.440	1.00 15.78		Α	0
ATOM	1860	N	GLY	Α	251	9.279	25.888	-4.314	1.00 14.69		A	N
ATOM	1861	CA	GLY	Α	251	9.373	26.203	-2.902	1.00 13.76		Α	C
ATOM	1862	С	GLY	Α	251	8.026	26.058	-2.248	1.00 14.49		A	C
ATOM	1863	0	GLY	Α	251	6.984	26.057	-2.933	1.00 13.60		A	0
ATOM	1864	N	GLY	Α	252	8.056	25.926	-0.920	1.00 12.84		A	N
ATOM	1865	CA	GLY	Α	252	6.879	25.694	-0.101	1.00 13.22		A	C
ATOM	1866	С	GLY	Α	252	7.242	24.765	1.058	1.00 12.42		A	C
ATOM	1867	0	GLY	Α	252	8.354	24.185	1.073	1.00 11.46		A	0
ATOM	1868	N	THR	Α	253	6.328	24.598	2.008	1.00 12.37		Α	N
ATOM ·	1869	CA	THR	Α	253	6.518	23.583	3.043	1.00 12.51		А	С
ATOM	1870	CB			253	5.543	23.697	4.256	1.00 13.05		Α	C
ATOM	1871	OG1			253	4.138	23.788	3.858	1.00 11.78		A	o
ATOM	1872	CG2	THR	A	253	5.837			1.00 13.23		A	Ċ
ATOM	1873	C			253	6.463	22.211	2.396	1.00 12.60		A	Ċ
ATOM	1874	ŏ			253	6.945	21.239	2.966	1.00 12.54		Α	ō
ATOM	1875	N			254	5.902	22.158	1.187	1.00 12.69		A	Ŋ
ATOM	1876	CA			254	5.905	20.957	0.357	1.00 12.54		A	Ċ
ATOM	1877	CB			254	5.228	21.233	-0.994	1.00 12.41		A	č
ATOM	1878	0G			254	3.822	21.002	-0.960	1.00 11.90		A	ō
ATOM	1879	c			254	7.298	20.445	0.050	1.00 12.52		A	č
ATOM	1880	ō			254	7.459	19.253	-0.150	1.00 12.45		A	Ö
ATOM	1881	Ŋ			255	8.255	21.361	-0.054	1.00 12.43		A	N
ATOM	1882	CA			255	9.640	21.062	-0.385	1.00 13.23		A	Ċ
	-002					2.040	_1.002	0.505	VO IJ.EJ			_

ATOM	1883	СВ	MET	A	255	10.260	22.231	-1.164	1.00 13.16	A	С
ATOM	1884	CG	MET	A	255	9.955	22.255	-2.667	1.00 13.61	A	С
ATOM	1885	SD	MET	Α	255	8.220	22.693	-3.027	1.00 16.25	A	S
ATOM	1886	CE	MET	A	255	7.683	21.071	-3.591	1.00 13.35	A	С
ATOM	1887	С	MET	A	255	10.478	20.759	0.873	1.00 13.32	A	С
ATOM	1888	0	MET	A	255	11.396	19.934	0.847	1.00 13.21	A	0
ATOM	1889	N	ALA	A	256	10.162	21.415	1.981	1.00 12.98	A	N
MOTA	1890	CA	ALA	Α	256	10.904	21.16İ	3.213	1.00 12.47	A	C
MOTA	1891	CB	ALA	A	256	10.516	22.175	4.265	1.00 11.99	A	С
MOTA	1892	С	ALA	Α	256	10.645	19.737	3.717	1.00 11.89	A	C
ATOM	1893	0	ALA	Α	256	11.553	19.018	4.179	1.00 11.48	A	0
ATOM	1894	N	THR	Α	257	9.390	19.341	3.629	1.00 11.55	A	N
MOTA	1895	CA	THR	Α	257	8.944	18.065	4.146	1.00 11.50	A	C
MOTA	1896	CB	THR	Α	257	7.423	17.938	3.908	1.00 12.07	A	С
ATOM	1897	OG1	THR	Α	257	6.754	19.013	4.569	1.00 13.08	A	0
MOTA	1898	CG2	THR	Α	257	6.838	16.661	4.540	1.00 12.46	A	С
MOTA	1899	С	THR	Α	257	9.705	16.849	3.587	1.00 11.20	A	С
ATOM	1900	0	THR	Α	257	10.172	16.018	4.382	1.00 11.03	A	0
MOTA	1901	N	PRO	Α	258	9.781	16.686	2.259	1.00 11.22	A	N
MOTA	1902	CA	PRO	Α	258	10.466	15.521	1.687	1.00 10.92	A	С
ATOM	1903	CB	PRO	Α	258	10.200	15.644	0.182	1.00 10.45	A	С
ATOM	1904	CG	PRO	Α	258	9.884	17.057	-0.029	1.00 11.62	A	C
ATOM	1905	CD	PRO	A	258	9.164	17.504	1.207	1.00 10.92	A	С
MOTA	1906	С	PRO	Α	258	11.969	15.503	1.976	1.00 10.83	A	C
MOTA	1907	0	PRO	A	258	12.524	14.417	2.020	1.00 9.95	A	0
MOTA	1908	N	ILE	A	259	12.605	16.665	2.160	1.00 11.19	A	N
ATOM	1909	CA	ILE	Α	259	14.004	16.711	2.597	1.00 11.51	A	С
MOTA	1910	CB	ILE	Α	259	14.439	18.183	2.712	1.00 11.81	A	C
MOTA	1911	CG1	ILE	A	259	14.492	18.843	1.314	1.00 14.15	A	Ċ
MOTA	1912	CD1	ILE	Α	259	15.690	18.403	0.504	1.00 17.31	A	C
ATOM	1913	CG2	ILE	Α	259	15.790	18.313	3.375	1.00 11.02	A	C
MOTA	1914	C	ILE	Α	259	14.147	15.975	3.950	1.00 11.56	A	C
MOTA	1915	0	ILE	Α	259	15.038	15.133 -	4.124	1.00 11.81	· A	0
MOTA	1916	N	LAV	A	260	13.259	16.295	4.886	1.00 11.02	A	N
ATOM	1917	CA	VAL	Α	260	13.244	15.668	6.199	1.00 12.26	A	С
MOTA	1918	CB			260	12.301	16.412	7.150	1.00 12.30	A	С
MOTA	1919		VAL			12.286	15.743	8.557	1.00 12.78	A	C
ATOM	1920	CG2	VAL	A	260	12.721	17.855	7.268	1.00 13.51	. A	С
ATOM	1921	С	VAL	Α	260	12.847	14.185	6.106	1.00 12.24	A	С
MOTA	1922	0	VAL	Α	260	13.412	13.339	6.786	1.00 12.79	A	0
MOTA	1923	N	ALA	Α	261	11.922	13.864	5.217	1.00 12.41	A	· N
ATOM	1924	CA	ALA	Α	261	11.530	12.480	4.997	1.00 11.93	A	C
MOTA	1925	CB	ALA	Α	261	10.426	12.376	3.920	1.00 12.16	A	C
ATOM	1926	С			261	12.750	11.661	4.585	1.00 11.91	A	C
MOTA	1927	0	ALA	Α	261	12.943	10.560	5.055	1.00 11.34	A	0
MOTA	1928	N			262	13.550	12.186	3.665	1.00 12.22	A	N
MOTA	1929	CA	GLY	Α	262	14.794	11.533	3.291	1.00 12.29	A	С
ATOM	1930	С	GLY	Α	262	15.786	11.431	4.447	1.00 12.34	A	C
MOTA	1931	0			262	16.414	10.386	4.660	1.00 11.90	A	0
ATOM	1932	N	ASN	A	263	15.901	12.490	5.243	1.00 12.20	A	N
MOTA	1933	CA			263	16.744	12.433	6.435	1.00 11.84	A	C
ATOM	1934	CB			263	16.772	13.773	7.170	1.00 12.31	A	С
ATOM	1935	CG			263	17.389	14.887	6.351	1.00 13.12	A	С
ATOM	1936		ASN			18.326	14.681	5.525	1.00 15.95	A	0
MOTA	1937		ASN			16.924	16.073	6.600	1.00 9.15	A	N
MOTA	1938	С	ASN	Α	263	16.289	11.348	7.396	1.00 11.83	A	С
ATOM	1939	0			263	17.112	10.672	8.020	1.00 11.88	A	0
ATOM	1940	N	VAL	Α	264	14.983	11.181	7.517	1.00 11.77	A	N

ATOM	1941	CA	VAL	A	264	14.425	10.138	8.367	1.00 1	2.33	1	A.	С
MOTA	1942	CB	VAL	Α	264	12.893	10.268	8.506	1.00 1	2.44	7	A.	С
MOTA	1943		VAL			12.280	9.045	9.178	1.00 1	2.44	1	ž.	C
MOTA	1944		VAL			12.543	11.471	9.323	1.00 1	3.22	7	A	C
MOTA	1945	C			264	14.817	8.754	7.843	1.00 1		7	A	C
ATOM	1946	0			264	15.164	7.896	8.625	1.00 1		1	A.	0
ATOM	1947	N			265	14.813	8.553	6.527	1.00 1				N
ATOM	1948	CA			265	15.279	7.292	5.966	1.00 1				C
ATOM	1949	CB			265	15.018	7.237	4.460	1.00 1				С
MOTA	1950	C			265	16.746	7.046	6.293	1.00 1				С
ATOM	1951	0			265	17.139	5.932	6.592	1.00 1				0
ATOM	1952	N			266	17.571	8.091	6.262	1.00 1				N
ATOM ATOM	1953 1954	CA CB			266 266	18.999	7.940	6.586	1.00 1				C
ATOM	1955	CG			266	19.782 19.786	9.230	6.311	1.00 1				C
ATOM	1956	CD			266	20.548	9.691	4.865	1.00 1				C
ATOM	1957		GLN			21.762	11.011 11.028	4.671 4.352	1.00 1				С 0
ATOM	1958	NE2			266	19.857	12.088	4.853		8.53			N
ATOM	1959	C			266	19.159	7.571	8.046	1.00 1				C
MOTA	1960	ŏ			266	19.927	6.688	8.398	1.00 1				0
ATOM	1961	N			267	18.463	8.305	8.898	1.00 1				N
ATOM	1962	CA			267	18.473	B.049	10.317	1.00 1				C
ATOM	1963	CB			267	17.624	9.107	11.014	1.00 1				c
ATOM	1964	CG	LEU	A	267	17.550	9.097	12.540	1.00 1				Č
MOTA	1965				267	. 18.918	9.293	13.116	1.00 1				C
MOTA	1966	CD2	LEU	A	267	16.616	10.187	13.009	1.00 1	2.84	1		C
ATOM	1967	С	LEU	Α	267	17.984	6.649	10.654	1.00 1	2.72	1		С
MOTA	1968	0	LEU	Α	267	18.581	5.972	11.497	1.00 1	2.91	1	A	0
MOTA	1969	N	ARG	Α	268	16.872	6.219	10.044	1.00 1	2.54	1	A.	N
MOTA	1970	CA	ARG	A	268	16.295	4.886	10.321	1.00 1	2.31	7	A	С
ATOM	1971	CB			268	14.961	4.722	9.577	1.00 1	2.21	7	¥.	С
ATOM	1972	CG			268	14.016	3.635	10.155	1.00 1		,	A	С
MOTA	1973	CD			268	12.652	3.605		$\cdot 1.001$. 1	4	C
ATOM	1974	NE			268	11.781	2.591	10.105	1.00 1				N
ATOM	1975	CZ			268	11.837	1.306	9.829	1.00 1				С
ATOM	1976		ARG			12.697	0.829	8.942	1.00 1				N
MOTA MOTA	1977		ARG			10.993	0.483	10.432	1.00 1				N
ATOM	1978 1979	C			268	17.284	3.763	9.929	1.00 1				C
ATOM	1980	N			268 269	17.533 17.846	2.837	10.689	1.00 1				0
MOTA	1981	CA			269	18.965	3.870 3.026	8.729 8.306	1.00 1				N C
ATOM	1982	CB			269	19.561	3.537	6.993	1.00 1				C
MOTA	1983	CG			269	20.764	2.715	6.542	1.00 1				Ċ
ATOM	1984	CD			269	21.477	3.260	5.335	1.00 1				Ċ
ATOM	1985					21.277	4.447	5.007	1.00 1				ō
ATOM	1986	OE2	GLU	A	269	22.246	2.479	4.711	1.00 1				ō
ATOM	1987	С	GLU			20.082	2.954	9.354	1.00 1				Č
MOTA	1988	0	GLU	Α	269	20.596	1.875	9.645	1.00 1		7		ō
ATOM	1989	N	HIS			20.482	4.104	9.894	1.00 1				N
ATOM	1990	CA	HIS	A	270	21.556	4.119	10.859	1.00 1				С
MOTA	1991	CB	HIS	Α	270	21.918	5.531	11.289	1.00 1	2.76	7		С
MOTA	1992		BHIS			23.160	5.583	12.120	0.50 1	0.01	,		С
MOTA	1993		HIS			23.195	5.601	12.063	0.50 1	5.58	7		C
ATOM	1994		BHIS			23.186	6.137	13.385	0.50	7.23	1		N
MOTA	1995		HIS			23.243	5.459	13.432	0.50 2		7	4	N
MOTA	1996		BHIS			24.404	6.019	13.885		6.26	1		С
MOTA	1997		HIS			24.498	5.548	13.839	0.50 2		7	4	С
ATOM	1998	NE2E	BHIS	Α	270	25.163	5.387	13.000	0.50	8.61	I	ł.	N

MOTA	1999	NE2	HIS	A	270	25.265	5.744	12.783	0.50	20.61	7	N A
ATOM	2000	CD2E	BHIS	Α	270	24.405	5.102	11.888	0.50	6.18	7	C C
ATOM	2001	CD27	HIS	Α	270	24.475	5.782	11.659	0.50	18.53	P	
ATOM	2002	С			270	21.210	3.294	12.099		12.75	7	
ATOM	2003	ō	HIS			22.031	2.541	12.562		12.88	2	
ATOM	2004	N	PHE			20.009	3.468	12.666		12.25	7	
ATOM	2005	CA			271		2.680					
						19.642		13.834		12.36	7	
ATOM	2006	CB			271	18.274	3.114	14.370		12.01	7	
ATOM	2007	CG	PHE			18.328	4.292	15.293		11.54	7	
ATOM	2008		PHE			18.557	4.127	16.643	1.00	12.44	7	C.
ATOM ·	2009	CEI	PHE	Α	271	18.601	5.229	17.500	1.00	13.55	P	A C
MOTA	2010	\mathbf{cz}	PHE	Α	271	18.400	6.479	17.016	1.00	11.92	7	. C
ATOM	2011	CE2	PHE	Α	271	18.145	6.655	15.663	1.00	15.14	7	
ATOM	2012		PHE			18.096	5.567	14.820	1.00	13.90	7	
MOTA	2013	C			271	19.620	1.178	13.492		13.05	7	
ATOM	2014	ō			271	20.147	0.341	14.240		15.06	F	
ATOM	2015	N	VAL			19.007	0.850	12.371		12.88	, P	
ATOM	2015	CA	VAL			18.765						
							-0.526	11.961		13.79	7	
ATOM	2017	CB			272 .	17.856	-0.539	10.706		13.45	7	
ATOM	2018		VAL			17.977	-1.840	9.953		15.25	7	
ATOM	2019		VAL			16.429	-0.264	11.112	1.00	13.55	7	Z C
ATOM	2020	С			272	20.068	-1.276	11.689	1.00	14.17	7	7 C
ATOM	2021	0	VAL	Α	272	20.242	-2.415	12.162	1.00	14.67	7	0
ATOM	2022	N	LYS	Α	273	20.992	-0.619	10.990	1.00	14.25	7	A N
ATOM	2023	CA	LYS	Α	273	22.255	-1.217	10.606	1.00	14.60	. 7	L C
ATOM	2024	CB	LYS	Α	273	22.759	-0.664	9.267		14.93	7	
ATOM	2025	CG			273	21.893	-1.085	8.052		15.97	J	
ATOM	2026	CD	LYS			22.432	-0.488	6.729		14.97	7	
ATOM	2027	CE	LYS			21,735						
							-1.010	5.482		16.43	7	
ATOM	2028	NZ			273	22.131	-0.162	4.300		13.02	7	
ATOM	2029	C	LYS			23.366	-1.133	11.645		14.97	F	
MOTA	2030	0			273	24.172	-2.075	11.740		12.32	7	
ATOM	2031	N	ASN			23.402	-0.033 -	12.403	1.00	14.72	·	
ATOM	2032.	CA	ASN			24.556	0.298	13.225	1.00	15.62	7	, C
MOTA	2033	CB	ASN	Α	274	25.197	1.649	12.786	1.00	16.07	7	7 C
MOTA	2034	CG	ASN	Α	274	25.555	1.662	11.290	1:00	17.59	I	A C
ATOM	2035	OD1	ASN	Α	274	25.285	2.647	10.543	1.00	18.70	7	. 0
ATOM	2036		ASN			26.124	0.561	10.839		13.05	7	
ATOM	2037	С	ASN			24.253	0.365	14.694		15.60	7	
ATOM	2038	ō	ASN			25.165	0.449	15.465		15.70		
ATOM	2039	Ŋ			275	22.979	0.348	15.092		14.80	7	
ATOM	2040	CA	ARG									
						22.670	0.517	16.505		15.19	7	
ATOM	2041	CB	ARG			22.046	1.883	16.723		14.89	F	
ATOM	2042	CG	ARG			22.925	3.001	16.141		17.88	7	
ATOM	2043	CD	ARG			22.682	4.354	16.748		17.97	7	
ATOM	2044	NE			275	23.098	4.391	18.146	1.00	15.44	Į	
ATOM	2045	CZ	ARG	Α	275	22.783	5.383	18.977	1.00	18.17	7	A C
ATOM	2046	NHl	ARG	Α	275	22.080	6.422	18.540	1.00	17.27	7	N
MOTA	2047	NH2	ARG	Α	275	23.191	5.356	20.239	1.00	17.72	7	N A
ATOM	2048	С	ARG			21.796	-0.573	17.088		14.64	7	
ATOM	2049	ō	ARG			21.382	-0.456	18.212		15.75	7	
ATOM	2050	N	GLY			21.459	-1.577	16.283		14.66	7	
ATOM	2051	CA	GLY			20.880		16.203				
ATOM							-2.825			14.63	7	
	2052	C	GLY			19.403	-2.811	17.060		14.40	7	
ATOM	2053	0	GLY			18.863	-3.751	17.664		13.52	I	
ATOM	2054	N	VAL			18.729	-1.745	16.638		14.10	7	
ATOM	2055	CA	VAL			17.318	-1.618	16.894		14.10	F	
ATOM	2056	CB	VAL	Α	277	17.021	-0.657	18.097	1.00	14.71	7	Y C

ATOM	2057	CG1	VAL	A	277	17.768	-1.058	19.354	1.00 14.49	A	C	
MOTA	2058	CG2	LAV	A	277	17.268	0.771	17.733	1.00 15.67	A	С	
ATOM	2059	С	VAL	A	277	16.547	-1.097	15.689	1.00 13.79	A	С	
ATOM	2060	0			277	17.082	-0.372	14.853	1.00 14.29	A	0	
ATOM	2061	N			278	15.273	-1.472	15.607	1.00 14.21	A	N	
ATOM	2062	CA			278	14.325	-0.778	14.749	1.00 14.50	A	С	
MOTA	2063	CB			278	13.187	-1.700	14.301	1.00 15.23	A	С	
ATOM	2064	OG1				13.744	-2.825	13.607	1.00 19.10	A	0	
ATOM	2065					12.304	-0.986	13.245	1.00 17.53	A	C	
ATOM	2066	C			278 .	13.760	0.394	15.526	1.00 13.49	A	С	
ATOM	2067	0			278 .	13.028	0.210	16.485	1.00 13.51	A	0	
MOTA	2068	N			279	14.104	1.612	15.134	1.00 12.55	A	N	
ATOM	2069	CA			279	13.679	2.803	15.896	1.00 11.32	A	C	
ATOM ATOM	2070 2071	CB CG			279 279	14.520	3.920 3.493	15.277	1.00 11.71	A	C	
ATOM	2071	CD			279	14.682 14.817	1.975	13.842	1.00 11.40	A	C C	
ATOM	2073	C			279	12.211	3.055	13.895 15.672	1.00 12.28 1.00 11.90	A A	c	
ATOM	2074	0			279	11.786	3.053	14.516	1.00 11.90	A	0	
ATOM	2075	N			280	11.438	3.212	16.743	1.00 12.19	Ä	N	
ATOM	2076	CA			280	10.020	3.518	16.639	1.00 12.77	Ä	C	
ATOM	2077	СВ	LYS			9.354	3.389	18.024	1.00 13.46	A	Ċ	
MOTA	2078	CG			280	9.324	1.993	18.573	1.00 15.21	A	č	
ATOM	2079	CD			280	8.273	1.192	17.861	1.00 20.42	A	Ċ	
ATOM	2080	CE			280	8.012	-0.146	18.555	1.00 23.45	A	C	
ATOM	2081	NZ	LYS	Α	280	6.935	-0.858	17.808	1.00 26.12	A	N	
ATOM	2082	С	LYS	Α	280	9.811	4.951	16.120	1.00 11.96	A	C	
MOTA	2083	0	LYS	Α	280	10.710	5.782	16.200	1.00 13.23	A	0	
ATOM	2084	N	PRO	Α	281	8.666	5.233	15.512	1.00 12.23	A	N	
MOTA	2085	CA	PRO	A	281	8.370	6.608	15.073	1.00 11.69	Α	С	
MOTA	2086	CB			281	6.897	6.540	14.763	1.00 12.25	A	С	
MOTA	2087	CG	PRO			6.755	5.162	14.210	1.00 12.66	A	C	
MOTA	2088	CD			281	7.592	4.300	15.126	1.00 11.87	A	С	
ATOM	2089	C			281	8.682		16.105	1.00 11.94	A	Ċ	•
ATOM	2090	0	PRO			9.287	8.708	15.734	1.00 11.60	A	0	
ATOM	2091	N			282	8.303	7.447	17.374	1.00 11.91	A	N	
ATOM	2092	CA			282	8.579	8.404	18.442	1.00 11.78	A	C	
ATOM	2093 2094	CB			282	8.017	7.930	19.789	1.00 11.85	A	C	
ATOM ATOM		OG C	SER			8.503	6.639	20.117	1.00 12.30	A	0	
ATOM	2095 2096	0	SER			10.049	8.704	18.654	1.00 11.36	A	C	
ATOM	2090	N	LEU			10.402 10.896	9.835 7.696	19.014 18.498	1.00 11.10 1.00 11.81	A A	O N	
MOTA	2098	CA			283	12.332	7.889	18.642	1.00 11.66	A	C	
ATOM	2099	СВ	LEU			13.042	6.532	18.856	1.00 11.73	Ä	c	
ATOM	2100	CG	LEU			14.575	6.628	18.893	1.00 11.60	A	Č	
ATOM	2101		LEU			15.029	7.501	20.001	1.00 10.08	Α .	Č	
MOTA	2102		LEU			15.180	5.233	19.066	1.00 15.86	A	Ċ	
MOTA	2103	C	LEU			12.953	8.650	17.465	1.00 11.15	A	Ċ	
ATOM	2104	0	LEU	Α	283	13.812	9.515	17.644	1.00 11.72	A	Ō	
MOTA	2105	N	LEU	Α	284	12.575	8.305	16.244	1.00 11.65	A	N	
ATOM	2106	. CA	LEU	Α	284	13.056	9.058	15.088	1.00 10.89	A	. C	
ATOM	2107	CB	LEU	Α	284	12.493	8.470	13.802	1.00 10.71	A	С	
MOTA	2108	CG	LEU			13.010	7.059	13.442	1.00 10.82	` A	C	
ATOM	2109		LEU			12.102	6.419	12.399	1.00 10.74	A	С	
MOTA	2110		LEU			14.425	7.107	12.953	1.00 10.79	A	С	
ATOM	2111	C	LEU			12.741	10.568	15.245	1.00 10.24	A	С	
MOTA	2112	0	LEU			13.591	11.414	15.013	1.00 9.64	Α	0	
ATOM	2113	N	LYS			11.527	10.868	15.682	1.00 10.77	A	N	
MOTA	2114	CA	LYS	A	285	11.054	12.217	15.890	1.00 10.81	A	С -	

ATOM	2115	CB	LYS	A	285	9.544	12.188	16.152	1.00 10.59	A	С
MOTA	2116	CG	LYS	A	285	8.909	13.531	16.527	1.00 10.18	A	С
ATOM	2117	CD	LYS	Α	285	7.372	13.380	16.583	1.00 12.54	A	C
ATOM	2118	CE	LYS	Α	285	6.660	14.630	17.085	1.00 11.16	A	С
MOTA	2119	NZ	LYS	Α	285	5.159	14.525	16.941	1.00 9.27	A	N
MOTA	2120	C			285	11.816	12.886	17.037	1.00 10.86	A	Ċ
MOTA	2121	ō			285	12.287	13.995	16.888	1.00 11.16	A	ō
MOTA	2122	N			286	11.964	12.194	18.156	1.00 10.94	Ä	N
ATOM	2123	CA			286	12.744	12.722	19.280	1.00 13.34	À	C
ATOM	2124	CB			286	12.657					C
					286		11.813	20.437	1.00 11.37	A	
ATOM	2125	C				14.206	12.952	18.897	1.00 10.98	A	C
ATOM	2126	0			286	14.794	13.947	19.275	1.00 10.07	A	0
MOTA	2127	N			287	14.778	12.048	18.115	1.00 11.61	A	N
MOTA	2128	CA			287	16.175	12.206	17.679	1.00 12.13	A	С
ATOM	2129	CB			287	16.692	10.922	17.034	1.00 11.58	A	С
MOTA	2130	C			287	16.349	13.411	16.742	1.00 12.42	A	С
ATOM	2131	0			287	17.310	14.165	16.873	1.00 11.82	A	0
MOTA	2132	N			288	15.407	13.623	15.826	1.00 12.37	A	N
MOTA	2133	CA			288	15.473	14.808	14.956	1.00 13.09	A	C
ATOM	2134	CB	LEU	Α	288	14.357	14.775	13.917	1.00 13.67	A	C
ATOM	2135	CG	LEU	Α	288	14.552	13.833	12.736	1.00 15.39	A	С
ATOM	2136	CD1	LEU	A	288	13.379	14.033	11.840	1.00 19.44	A	С
ATOM	2137	CD2	LEU	A	288	15.842	14.113	11.974	1.00 15.17	A	С
ATOM	2138	С	LEU	A	288	15.329	16.105	15.747	1.00 12.69	A	С
ATOM	2139	0	LEU	A	288	16.014	17.107	15.481	1.00 12.69	A	0
ATOM	2140	N			289	14.412	16.096	16.704	1.00 12.33	A	N
ATOM	2141	CA			289	14.195	17.261	17.546	1.00 12.69	A	Ċ
ATOM	2142	СВ			289	12.920	17.084	18.397	1.00 12.55	A	Ċ
ATOM	2143		ILE			11.688	17.178	17.488	1.00 11.46	Ā	č
MOTA	2144		ILE			10.404	16.725	18.104	1.00 10.00	A	c
ATOM	2145		ILE			12.869	18.098	19.506	1.00 13.54	A	Ċ
ATOM	2146	C			289	15.412	17.596	18.426	1.00 13.34	A	C
MOTA	2147	Ö			289	15.844	18.746 -				0
ATOM	2148	N			290				1.00 13.36	A	
ATOM	2149					15.975	16.612	19.132	1.00 11.71	A	N
		CA			290	17.132	16.854	19.976	1.00 11.73	A	C
MOTA	2150	CB			290	17.529	15.593	20.698	1.00 12.08	A.	C
MOTA	2151	C			290	18.326	17.370	19.191	1.00 11.95	,A	C
ATOM	2152	0			290	19.114	18.198	19.689	1.00 10.65	A	0
MOTA	2153	N			291	18.472	16.866	17.979	1.00 11.84	A	N
MOTA	2154	·CA			291	19.633	17.207	17.171	1.00 12.60	A	С
ATOM	2155	C			291	19.466	18.506	16.400	1.00 12.44	A	C
ATOM	2156	0			291	20.437	19.018	15.847	1.00 11.56	A	0
ATOM	2157	N			292	18.249	19.056	16.378	1.00 12.96	A	N
ATOM	2158	ÇA			292	17.960	20.238	15.562	1.00 13.11	A	C
ATOM	2159	CB	ALA	Α	292	16.454	20.468	15.434	1.00 12.99	Α	C
ATOM	2160	C	ALA	Α	292	18.655	21.499	16.075	1.00 13.45	Α	C
ATOM	2161	0	ALA	A	292	18.954	21.612	17.252	1.00 13.95	A	0
ATOM	2162	N	ALA	Α	293	18.848	22.456	15.173	1.00 13.18	A	N
ATOM	2163	CA	ALA	Α	293	19.567	23.694	15.450	1.00 13.43	A	С
ATOM	2164	CB	ALA	A	293	. 20.508	24.012	14.284	1.00 13.22	A	C
MOTA	2165	C	ALA			18.611	24.866	15.637	1.00 13.54	A	Ċ
ATOM	2166	0	ALA			17.739	25.107	14.812	1.00 13.39	A	ō
ATOM	2167	N	ASP			18.838	25.626	16.691	1.00 13.60	A	N
ATOM	2168	CA	ASP			18.167	26.895	16.899	1.00 14.04	A	C
ATOM	2169	CB	ASP			18.590	27.428	18.270	1.00 14.33	A	C
ATOM	2170	CG			294	17.918	28.728	18.634	1.00 14.83		C
ATOM	2171		ASP			18.142	29.160	19.799	1.00 14.83	A A	
ATOM	2172		ASP				29.160			A	0
AION	C 1 / C	UDZ	MOL	ų	<i>434</i>	17.144	23.300	17.861	1.00 10.92	A	0

ATOM	2173	C			294	18.620	27.814	15.774	1.00	13.72		A	С
ATOM	2174	0	ASP	Α	294	19.801	28.075	15.636	1.00	14.66		A	0
MOTA	2175	N	VAL	Α	295	17.696	28.304	14.956	1.00	14.43		A.	N
ATOM	2176	CA	VAL	A	295	18.057	29.217	13.853	1.00	14.05		A	С
MOTA	2177	CB	VAL	Α	295	16.957	29.283	12.730	1.00	13.77		A	С
ATOM	2178	CG1	VAL	Α	295	16.670	27.907	12.184		13.93		A	Ċ
ATOM	2179		VAL			15.680	29.956	13.255		12.53		A	Č
ATOM	2180	C			295	18.352	30.622	14.346	_	14.82		A.	c
ATOM	2181	ō			295	18.707	31.497	13.558		15.77		A.	
MOTA	2182	N			296								0
						18.190	30.857	15.646		14.99		A	N
ATOM	2183	CA			296	18.450	32.159	16.208		15.10		A.	C
ATOM	2184	C			296	17.282	32.821	16.906		15.03		A	C
MOTA	2185	0			296	17.458	33.886	17.489		15.00		A	0
ATOM	2186	N			297	16.114	32.180	16.88 7		16.05		A	N
MOTA	2187	CA			297	14.903	32.728	17.501	1.00	15.2 1		A	С
MOTA	2188	CB			297	13.704	32.420	16.605	1.00	14.95		A	C
ATOM	2189	CG	LEU	Α	297	13.881	32.962	15.179	1.00	17.47		A	C
MOTA	2190	CD1	LEU	A	297	12.718	32.507	14.330	1.00	19.73		A	С
ATOM	2191	CD2	LEU	Α	297	13.939	34.500	15.204	1.00	18.75		A	С
MOTA	2192	С	LEU	A	297	14.645	32.187	18.903		15.26		A	С
ATOM	2193	0	LEU	Α	297	13.782	32.682	19.636		14.95		A	0
ATOM	2194	N			298	15.380	31.152	19.266		15.28		A	N
ATOM	2195	CA			298	15.251	30.546	20.570		15.27		A	C
ATOM	2196	C			298	14.024	29.691	20.721		15.55		A	C
MOTA	2197	ō			298	13.173	29.572	19.817		15.07		A.	ō
ATOM	2198	N			299	13.173	29.090	21.894		15.47		A.	
ATOM	2199	CA			299			22.266		_			N
ATOM						12.820	28.269			16.76		A	C
	2200	CB			299	13.279	26.818	22.539		16.33		A	C
MOTA	2201	CG			299	14.108	26.237	21.435		16.07		A	C
MOTA	2202		PHE			13.572	26.047	20.167		15.70		A	С
ATOM	2203		PHE			14.349	25.544	19.132		15.95		A	C
MOTA	2204	CZ			299	15.660	25.233	19.357	1.00	15.27		A	С
MOTA	2205		PHE			16.217	25.432	20.610	1.00	15.20	٠.	A.	С
ATOM	2206		PHE	Α	299	15.436	25.929	21.642	1.00	17.28		A	C
MOTA	2207	C	PHE	Α	299	12.200	28.872	23.504	1.00	17.91		A	C
MOTA	2208	0	PHE	Α	299	12.886	29.548	24.280	1.00	19.79		A.	0
ATOM	2209	N	PRO	Α	300	10.904	28.683	23.680	1.00	19.34		A	N
MOTA	2210	CA	PRO	Α	300	10.054	27.945	22.747	1.00	20.29		A	С
ATOM	2211	CB	PRO	Α	300	8.819	27.671	23.583	1.00	20.94		A	C
ATOM	2212	CG	PRO	Α	300	8.712	28.898	24.513		19.43		A	Ċ
ATOM	2213	CD	PRO	Α	300	10.120	29.311	24.758		20.25		A	Ċ
MOTA	2214	С			300	9.672	28.834	21.581		20.84		A.	Ċ
MOTA	2215	Õ			300	9.921	30.043	21.655		21,44		A	ŏ
ATOM	2216	N			301	9.076	28.282	20.524		21.28		A	N
MOTA	2217	CA	ASN			8.874	29.078	19.319		21.53		A	C
ATOM	2218	CB			301	10.198							
ATOM	2219		ASN		_		29.173	18.567		21.34		A.	C
		CG				10.320	30.458	17.764		20.14		A	C
MOTA	2220	ODI				9.875	30.553	16.607		17.42		A	0
ATOM	2221		ASN			10.920	31.454	18.371		22.84		A	N
ATOM	2222	C			301	7.823	28.534	18.355		22.14		A	С
ATOM	2223	0			301	7.868	27.379	17.978		23.49		A	0
ATOM	2224	N			302	6.970	29.416	17.854	1.00	22.24		A	N
MOTA	2225	CA			302	5. 9 12	29.031	16.932	1.00	21.65		A	С
ATOM	2226	С			302	6.292	29.165	15.475	1.00	20.83		A.	C
ATOM	2227	0	GLY	A	302	5.574	28.669	14.603	1.00	21.22		A.	0
ATOM	2228	N	ASN	A	303	7.446	29.787	15.225		19.62		A	N
ATOM	2229	CA			303	7.981	30.005	13.886		17.66		A	C
MOTA	2230	CB	ASN			8.705	31.349	13.816		17.45		A	c
													-

MOTA	2231	CG	ASN	A	303	7.872	32.473	14.381	1.00	20.84	7	4	С
ATOM	2232		ASN			6.802	32.779	13.847	1.00	21.34	7	.	0
ATOM	2233		ASN			8.305	33.033	15.530		22.58	Į	.	N
ATOM	2234	С			303	B.926	28.922	13.414		15.61	1	4	С
ATOM	2235	0			303	8.831	28.481	12.239	1.00	13.70	I	4	0
ATOM	2236	N			304	9.841	28.506	14.298	1.00	14.18	Į	\	N
ATOM	2237	CA			304	10.855	27.513	13.946	1.00	13.13	7	4	C
ATOM	2238	CB			304	12.235	28.005	14.316	1.00	13.28	7	4	C
ATOM	2239	CG			304	12.556	27.976	15.811	1.00	12.80	7	١.	С
ATOM	2240	CD			304	14.020	28.087	16.123		11.63	7	4	C
MOTA	2241		GLN			14.842	27.582	15.386		13.19	Į	4	0
ATOM	2242	NE2				14.352	28.794	17.223	1.00	9.76	7		N
ATOM	2243	C			304	10.601	26.128	14.582		13.52	2		С
ATOM	2244	0			304	11.372	25.208	14.381		13.66	7		0
MOTA	2245	N			305	9.537	25.972	15.343		12.81	Į		N
ATOM	2246	CA			305	9.351	24.745	16.101		12.54	I		C
ATOM	2247	C			305	10.578	24.498	16.970		12.99	7		C
MOTA	2248	0			305	11.062	25.409	17.633		11.36	I		0
ATOM	2249	N			306	11.107	23.272	16.926		12.12	7		N
ATOM	2250	CA			306	12.286	22.898	17.701		12.07	7		С
ATOM	2251 2252	CB			306	12.130	21.473	18.254		12.05	7		C
ATOM ATOM	2252	CG CD1			306 306	10.866	21.349	19.092 18.805		11.34	7		C
ATOM	2253	NE1			306	9.755 8.812	20.611 20.766	19.794		12.28	Į.		C
ATOM	2255	CE2	TRP		306	9.316	20.766	20.761		13.42	7		N C
ATOM	2256	CD2	TRP		306	10.616	21.963	20.359		13.78	7		C
ATOM	2257	CE3	TRP			11.344	22.822	21.183		13.41	7		C
ATOM	2258	CZ3	TRP		306	10.780		22.365		12.96	7		Ċ
ATOM	2259	CH2			306	9.488	22.854	22.735		13.70	ĵ		C
ATOM	2260	CZ2			306	8.744	22.035	21.945		14.65	7		Č
ATOM	2261	С			306	13.562	23.046	16.890		12.73	Į		c
MOTA	2262	0	TRP	Α	306	14.632	22.620	17.318		14.46	1		0
ATOM	2263	N	GLY	Α	307	. 13.479	23.716	15.741		13.10		.	Ν.
MOTA	2264	CA	GLY	Α	307	14.679	24.111	15.015	1.00	12.18	7	.	С
MOTA	2265	C	GLY	A	307	14.871	23.392	13.685	1.00	11.91	7	4	С
ATOM	2266	0	GLY	A	307	14.008	22.628	13.238	1.00	11.20	I	4	0
ATOM	2267	N			308	16.007	23.658	13.046	1.00	11.60	Į		N
ATOM	2268	CA			308	16.299	23.167	11.70 1	1.00	12.01	7	4	C
MOTA	2269	CB			308	17.153	24.223	10.961		12.63	7	ł	C
ATOM	2270	CG			308	17.388	23.970	9.462		13.43	7		C
ATOM	2271	CD			308	18.284	25.025	8.807		13.61	2		C
ATOM	2272	NE			308	19.563	25.031	9.510		16.45	Į		N
ATOM	2273	CZ			308	20.127	26.086	10.086		16.43	Į		C
ATOM ATOM	2274		ARG ARG			21.257	25.902	10.762		14.45	,		N
ATOM	2275 2276	NH2 C	ARG		308	19.660	27.319	9.902		13.23	Į.		N
ATOM	2277	0			308	17.055 18.094	21.837	11.770		12.38	7		C
ATOM	2278	Ŋ			309		21.742	12.434		12.82	. 7		O
MOTA	2279	CA	VAL			16.549 17.170	20.817 19.498	11.080		11.99			C
ATOM	2280	CB			309	16.553	18.573	10.051		11.35	1		C
ATOM	2281		VAL			17.354	17.272	9.961		11.45	1		C.
ATOM	2282		VAL			15.047	18.335	10.377		11.38	7		C
ATOM	2283	c			309	18.667	19.545	10.868		12.28	7		c
ATOM	2284	ō			309	19.148	20.157	9.930		11.94	7		ō
MOTA	2285	N			310	19.393	18.904	11.760		13.11			N
ATOM	2286	CA			310	20.854	18.814	11.675		12.86	7		C
ATOM	2287	CB	THR	Α	310	21.471	19.719	12.723		13.26	ļ		Ç
ATOM	2288	OG1	THR	Α	310	21.044	21.090	12.516		12.98	7		Ō

MOTA	2289	CG2	THR	A	310	22.962	19.747	12.610	1.00 13.68	A	С
MOTA	2290	С	THR	A	310	21.197	17.347	11.911	1.00 13.94	A	C
MOTA	2291	0	THR	A	310	21.411	16.896	13.064	1.00 14.93	A	0
MOTA	2292	N	LEU	Α	311	21.269	16.601	10.818	1.00 13.28	A	N
ATOM	2293	CA	LEU	A	311	21.110	15.149	10.879	1.00 14.11	A	С
MOTA	2294	CB	LEU	Α	311	20.956	14.589	9.463	1.00 13.67	A	C
MOTA	2295	CG	LEU	Α	311	20.879	13.078	9.311	1.00 13.50	A	С
MOTA	2296		LEU			19.749	12.522	10.109	1.00 15.11	Α	С
MOTA	2297	CD2	LEU	A	311	20.749	12.688	7.849	1.00 14.22	A	С
ATOM	2298	C	LEU	A	311	22.252	14.455	11.605	1.00 14.58	A	С
MOTA	2299	0	LEU	A	311	22.012	13.521	12.345	1.00 14.74	Α	0
MOTA	2300	N			312	23.483	14.959	11.462	1.00 15.58	A	N
ATOM	2301	CA	ASP	A	312	24.624	14.307	12.111	1.00 16.68	Α	C
MOTA	2302	CB	ASP	Α	312	25.984	14.797	11.582	1.00 16.93	A	C
MOTA	2303	CG	ASP	Α	312	26.222	16.245	11.822	1.00 19.05	A	С
MOTA	2304	OD1	ASP	Α	312	27.394	16.614	11.755	1.00 25.94	Α	0
MOTA	2305	OD2	ASP	Α	312	25.348	17.090	12.090	1.00 18.31	A	0
MOTA	2306	С	ASP	A	312	24.560	14.330	13.615	1.00 16.48	A	С
ATOM	2307	0	ASP	Α	312	24.965	13.381	14.241	1.00 17.40	A	0
ATOM	2308	N	LYS	Α	313	23.976	15.364	14.202	1.00 16.32	A	N
ATOM	2309	CA	LYS	Α	313	23.755	15.366	15.641	1.00 16.35	Α	C
MOTA	2310	CB	LYS	A	313	23.363	16.773	16.130	1.00 17.66	A	С
MOTA	2311	CG	LYS	Α	313	24.430	17.848	15.938	1.00 20.65	. A	C
ATOM	2312	CD	LYS	A	313	24.735	18.590	17.250	1.00 28.29	A	C
ATOM	2313	CE	LYS	Α	313	25.619	17.746	18.162	1.00 31.10	A	C
ATOM	2314	NZ	LYS	Α	313	26.458	18.529	19.131	1.00 32.31	A	N
ATOM	2315	C	LYS	Α	313	22.666	14.379	16.100	1.00 15.36	A	C
ATOM	2316	0	LYS	Α	313	22.662	13.968	17.258	1.00 15.49	Α	0
MOTA	2317	N	SER	Α	314	21.755	14.007	15.212	1.00 14.12	A	N
MOTA	2318	CA	SER	Α	314	20.700	13.047	15.537	1.00 13.37	A	С
MOTA	2319	CB	SER	Α	314	19.497	13.217	14.590	1.00 13.56	A	С
ATOM	2320	OG			314	18.889	14.489	14.723	1.00 11.16	A	0
MOTA	2321	C ·			314	21.148	11.581	15.505	1.00 14.53	A	C.
ATOM	2322	0			314	20.507	10.717	16.112	1.00 14.30	A	0
ATOM	2323	N			315	22.209	11.285	14.77 1	1.00 14.58	A	N
MOTA	2324	CA			315	22.563	9.896	14.484	1.00 15.64	A	C
ATOM	2325	СВ			315	23.750	9.824	13.505	1.00 15.15	Α	C
MOTA	2326	CG			315	23.506	10.436	12.143	1.00 14.88	A	C
MOTA	2327		LEU			24.834	10.445	11.360	1.00 16.67	A	· C
MOTA	2328		LEU			22.401	9.683	11.411	1.00 16.28	A	C
MOTA	2329	C			315	22.905	9.095	15.733	1.00 16.16	A	C
MOTA	2330	0			315	22.442	7.956	15.894	1.00 16.79	A	0
ATOM	2331	N			316	23.692	9.686	16.631	1.00 17.60	A	N
MOTA	2332	CA			316	24.235	8.915	17.749	1.00 17.99	Α	C
MOTA	2333	CB			316	25.757	8.837	17.694	1.00 19.59	A	c
ATOM	2334	CG			316	26.264	7.879	16.601	1.00 22.56	A	C
MOTA	2335		ASN			25.736	6.732	16.397	1.00 21.64	A	0
MOTA	2336		ASN			27.321	8.320	15.910	1.00 23.13	A	N
MOTA	2337	C			316	23.732	9.396	19.116	1.00 17.61	A	C
MOTA	2338	0			316	24.390	9.212	20.152	1.00 15.93	A	0
MOTA	2339	N			317	22.505	9.912	19.123	1.00 15.75	A	N
MOTA	2340	CA			317	21.820	10.220	20.389	1.00 15.40	A	C
MOTA	2341	CB			317	20.360	10.675	20.150	1.00 15.21	A	C
MOTA	2342		VAL			20.335	11.940	19.350	1.00 16.28	A	C
MOTA	2343		VAL			19.547	9.600	19.458	1.00 16.07	A	C
ATOM	2344	C			317	21.803	8.995	21.323	1.00 14.67	A	C
ATOM	2345	0			317	21.675	7.864	20.868	1.00 14.77	A	0
ATOM	2346	N	ALA	Α	318	21.932	9.225	22.627	1.00 13.95	A	N

ATOM	2347	CA	ALA	Α	318	21.623	8.186	23.603	1.00 13.64		A	С
MOTA	2348	CB	ALA	A	318	22.196	8.523	24.940	1.00 13.50		A	С
ATOM	2349	С	ALA	Α	318	20.087	8.130	23.652	1.00 13.19		Α	С
ATOM	2350	0	ALA	Α	318	19.416	9.168	23.498	1.00 13.46		A	0
ATOM	2351	N	PHE	Α	319	19.512	6.952	23.853	1.00 12.88		A	N
ATOM	2352	CA			319	18.076	6.824	23.633	1.00 12.66		A	С
ATOM	2353	СВ			319	17.815	6.531	22.137	1.00 12.79		A	Č
MOTA	2354	CG			319	18.267	5.158	21.700	1.00 14.03		A	č
ATOM	2355		PHE			19.504	4.980	21.107	1.00 12.44		Α	c
ATOM	2356		PHE			19.930	3.725	20.718	1.00 15.58		A	C
MOTA	2357	CZ			319	19.115	2.619	20.921	1.00 15.26		Α	C
ATOM	2358		PHE			17.887	2.777	21.524	1.00 14.77		A	C
MOTA	2359		PHE			17.461	4.047	21.905	1.00 15.05		A	C
ATOM	2360	С			319	17.349	5.799	24.461	1.00 12.38		A	С
ATOM	2361	0			319	17.947	4.918	25.055	1.00 12.11		A	0
MOTA	2362	N	VAL	A	320	16.032	5.947	24.488	1.00 12.04		A	N
ATOM	2363	CA	VAL	Α	320	15.125	4.909	24.949	1.00 12.42		A	C
ATOM	2364	CB	VAL	Α	320	14.391	5.323	26.252	1.00 13.15		A	Ç
ATOM	2365	CG1	VAL	A	320	13.237	4.331	26.589	1.00 13.46		A	С
ATOM	2366	CG2	VAL	A	320	15.401	5.395	27.416	1.00 13.91		Α	С
ATOM	2367	С	VAL	Α	320	14.137	4.758	23.802	1.00 11.88		A	C
ATOM	2368	ō			320	13.668	5.749	23.271	1.00 10.13		A	ō
ATOM	2369	N			321	13.824	3.520	23.441	1.00 11.82		Α	N
ATOM	2370	CA			321	13.018	3.205	22.261	1.00 11.75		A	Ċ
ATOM	2371	CB			321	13.858	2.323	21.313	1.00 11.75		A	C
	2372				321							c
ATOM		CG				13.214	2.117	19.944	1.00 12.10		A	
ATOM	2373		ASN			12.506	3.005	19.437	1.00 12.86		A	0
ATOM	2374		ASN			13.451	0.919	19.328	1.00 10.43		A	N
ATOM	2375	C			321	11.711	2.463	22.637	1.00 12.63		A	C
MOTA	2376	0			321	11.509	1.311	22.260	1.00 12.41		Α	0
MOTA	2377	N			322	10.835	3.130	23.380	1.00 12.99		A	N
ATOM	2378	CA	GLU	A	322	9.542	2.552	23.760	1.00 13.23		Α	С
ATOM	-2379	CB	GLU	A	322	8.601	2.415.	22.528	1.00 13.10		Α	С
ATOM	2380	CG	GLU	Α	322	8.146	3.794	22.013	1.00 12.18		А	C
MOTA	2381 -	CD	GLU	Α	322	7.072	3.781	20.933	1.00 14.48		A	C
MOTA	2382	OEl	GLU	Α	322	6.747	4.884	20.429	1.00 15.20		Α	0
ATOM	2383	OE2	GLU	Α	322	6.564	2.690	20.588	1.00 14.00		A	0
MOTA	2384	С			322	9.654	1.239	24.556	1.00 14.04	-	A	С
ATOM	2385	0			322	8.778	0.385	24.468	1.00 12.70		A	ō
ATOM	2386	N			323	10.688	1.122	25.387	1.00 13.33		A	N
ATOM	2387	CA			323	10.907	-0.101	26.145	1.00 14.72		A	Ċ
ATOM	2388	CB			323	12.375	-0.466	26.173	1.00 14.45		A	Č
ATOM	2389		THR			13.168	0.721	26.401	1.00 14.45		A	ō
ATOM	2390	CG2			323	12.813	-0.980		1.00 15.39		A	Č
MOTA	2391	C			323							c
						10.397	-0.045	27.589	1.00 15.63		A	
ATOM	2392	0			323	10.572	-1.011	28.319	1.00 14.71		A	0
ATOM	2393	N			324	9.796	1.073	28.002	1.00 15.41		A	N
ATOM	2394	CA			324	9.176	1.159		1.00 15.78		A	C
ATOM	2395	CB			324	10.008	2.045	30.272	1.00 15.94		A	C
ATOM	2396	OG			324	11.281	1.460	30.594	1.00 17.86		Α	0
MOTA	2397	C	SER	Α	324	7.739	1.723	29.257	1.00 15.74		A	С
ATOM	2398	0	SER	A	324	7.558	· 2.937	29.315	1.00 15.93		Α	0
ATOM	2399	N	PRO	Α	325	6.729	0.864	29.118	1.00 16.08		A	N
ATOM	2400	CA	PRO	Α	325	5.326	1.306	29.170	1.00 17.17		A	С
ATOM	2401	CB			325	4.525	0.035	28.823	1.00 17.76		A	C
ATOM	2402	CG			325	5.454	-1.106	29.084	1.00 17.45		A	č
ATOM	2403	CD			325	6.845	-0.585	28.885	1.00 16.38		A	č
ATOM	2404	C			325	4.926	1.815	30.548	1.00 17.68		A	. c
		~				2.720	~. • • •	20.240	~. V U I / . U U		5-4	_

ATOM	2405	0	PRO	А	325	5.27 <i>7</i>	1.211	31.553	1.00 18.68	А	0
ATOM	2406	N	LEU	Α	326	4.204	2.916	30.596	1.00 18.30	A	N
ATOM	2407	CA	LEU	Α	326	3.796	3.491	31.871	1.00 18.53	A	С
MOTA	2408	CB	LEU	Α	326	4.410	4.890	32.059	1.00 18.37	A	C
ATOM	2409	CG			326	5.938	5.027	32.161	1.00 19.30		Č
ATOM	2410		LEU			6.350	6.502	32.200	1.00 20.03		č
MOTA	2411	CD2	LEU			6.471	4.338	33.387	1.00 17.55		č
MOTA	2412	C			326	2.287	3.605	31.982	1.00 19.08		C
ATOM	2413	0			326	1.589	3.926	30.989	1.00 18.42		0
MOTA	2414	N			327	1.810	3.326	33.201	1.00 19.13		N
ATOM	2415	CA			327	0.438	3.607	33.672	1.00 19.58	А	С
ATOM	2416	CB	SER	Α	327	-0.123	2.391	34.397	1.00 19.04	A	С
ATOM	2417	OG	SER	Α	327	-0.176	1.357	33.434	1.00 19.38	А	0
ATOM	2418	С	SER	Α	327	0.558	4.902	34.476	1.00 19.58	A	С
ATOM	2419	0	SER	Α	327	1.609	5.154	35.075	1.00 18.88		Ō
ATOM	2420	N			328	-0.505	5.696	34.595	1.00 20.38		N
MOTA	2421	CA			328	-0.861	6.454	35.789	1.00 19.96		Ĉ
ATOM	2422	CB			328	-2.343	6.678	35.951	1.00 20.43		Ċ
ATOM	2423	OG1			328	-2.870					
							7.047	34.681	1.00 20.32		0
ATOM	2424	ÇG2			328	-2.602	7.922	36.842	1.00 21.84		C
MOTA	2425	C			328	-0.102	6.262	37.084	1.00 19.51		C
ATOM	2426	0 .			328	-0.223	5.222	37.739	1.00 19.59		0
ATOM	2427	N			329	0.732	7.268	37.356	1.00 18.40	A	N
ATOM	2428	CA	SER	A	329	1.489	7.464	38.588	1.00 19.19	A	С
MOTA	2429	CB I	BSER	Α	329	0.679	7.017	39.818	0.50 19.34	A	C
ATOM	2430	CB Z	ASER	Α	329	0.629	7.141	39.833	0.50 19.52	А	C
MOTA	2431	OG 1	BSER	Α	329	0.653	5.599	39.887	0.50 18.73	A	0
ATOM	2432	OG 2	ASER	Α	329	-0.672	7.722	39.718	0.50 20.52	A	0
ATOM	2433	С	SER	Α	329	2.792	6.686	38.588	1.00 18.71		C
ATOM	2434	0			329	3.533	6.753	39.550	1.00 18.11		O
ATOM	2435	N			330	3.066	5.936	37.524	1.00 17.70		N ·
ATOM	2436	CA			330	4.339	5.250	37.420	1.00 17.71		Ċ
ATOM	2437	СВ			330	4.193	4.001		1.00 17.71		Ċ
MOTA	2438	CG			330	3.233					
							2.970	37.168	1.00 17.60		Ç
ATOM	2439	CD.			330	3.116	1.700	36.319	1.00 18.11		C
MOTA	2440		GLN			3.305	1.763	35.119	1.00 16.08		0
ATOM	2441		GLN			2.762	0.550	36.952	1.00 15.56		N
ATOM	2442	C			330	5.401	6.195	36.83 7	1.00 18.14		C
MOTA	2443	0			330	5.103	7.308	36.423	1.00 18.07	А	0
ATOM	2444	N	LYS	Α	331	6.643	5.750	36.842	1.00 18.66	A	N
ATOM	2445	CA	LYS	Α	331	7.710	6.524	36.276	1.00 19.23	A	C
ATOM	2446	CB	LYS	Α	331	8.229	7.550	37.289	1.00 20.19	А	С
MOTA	2447	CG	LYS	Α	331	8.972	6.934	38.450	1.00 23.65	. A	С
MOTA	2448	αD	LYS	A	331	9.071	7.912	39.625	1.00 28.70	A	С
ATOM	2449	CE	LYS	Α	331	9.954	7.332	40.754	1.00 31.64		С
ATOM	2450	NZ			331	10.409	8.388	41.729	1.00 34.93		Ŋ
ATOM	2451	С			331	8.804	5.589	35.820	1.00 18.87		Ĉ
MOTA	2452	ŏ	_		331	8.887			1.00 18.18		Ô
ATOM											
	2453	N Ca			332	9.587	6.091	34.873	1.00 17.37		N
MOTA	2454	CA			332	10.797	5.406	34.412	1.00 17.82		C
MOTA	2455	CB			332	10.689	5.068	32.941	1.00 17.06		c
ATOM	2456	C			332	11.991	6.324	34.650	1.00 17.33		C
ATOM	2457	0			332	11.999	7.480	34.213	1.00 16.52		0
ATOM	2458	N			333	13.005	5.805	35.325	1.00 17.85		N
ATOM	2459	ÇA			333	14.108	6.643	35.784	1.00 17.61	A	С
ATOM	2460	CB	THR	Α	333	14.194	6.544	37.304	1.00 18.03	A	С
ATOM	2461	OG1	THR	Α	333	12.956	6.966	37.902	1.00 19.93	A	0
ATOM	2462		THR			15.234	7.490	37.851	1.00 18.18		C

MOTA	2463	С	THR	A	333	15.410	6.186	35.159	1.00 17.36	A	С
MOTA	2464	0	THR	A	333	15.727	4.987	35.162	1.00 17.40	A	0
MOTA	2465	N	TYR	A	334	16.176	7.135	34.628	1.00 17.05	A	N
ATOM	2466	CA	TYR	A	334	17.437	6.840	33.986	1.00 17.42	A	C
MOTA	2467	CB	TYR	Α	334	17.308	6.975	32.464	1.00 16.94	A	С
MOTA	2468	CG	TYR	A	334	16.144	6.230	31.860	1.00 16.41	A	C
MOTA	2469		TYR			16.273	4.891	31.458	1.00 14.43	A	C
MOTA	2470	CE1	TYR	Α	334	15.205	4.205	30.912	1.00 14.63	A	C
MOTA	2471	CZ	TYR	A	334	13.977	4.846	30.772	1.00 15.02	A	С
ATOM	2472	OH	TYR	A	334	12.929	4.188	30.216	1.00 16.23	A	0
ATOM	2473	CE2	TYR	Α	334	13.819	6.147	31.153	1.00 15.62	A	С
ATOM	2474	CD2	TYR	Α	334	14.907	6.835	31.718	1.00 16.76	A	C
ATOM	2475	C	TYR	Α	334	18.542	7.767	34.455	1.00 17.66	A	С
MOTA	2476	0	TYR	A	334	18.279	8.840	34.991	1.00 16.79	A	0
MOTA	2477	N	SER	A	335	19.783	7.375	34.169	1.00 17.44	A	N
MOTA	2478	CA	SER	Α	335	20.939	8.218	34.442	1.00 18.62	A	С
ATOM	2479	CB 1	BSER	Α	335	21.879	7.537	35.433	0.50 18.54	A	С
ATOM	2480	CB 2	ASER	Α	335	21.916	7.518	35.393	0.50 18.59	A	С
MOTA	2481	OG I	BSER	Α	335	22.697	6.585	34.783	0.50 18.97	A	0
ATOM	2482	OG 2	ASER	Α	335	21.316	7.174	36.629	0.50 19.43	A	0
MOTA	2483	С	SER	Α	335	21.680	8.538	33.128	1.00 18.52	A	С
ATOM	2484	0	SER	Α	335	21.698	7.720	32.221	1.00 18.14	A	0
ATOM	2485	N	PHE	Α	336	22.298	9.715	33.049	1.00 17.92	A	N
MOTA	2486	CA	PHE	Α	336	23.115	10.092	31.911	1.00 18.36	A	C
ATOM	2487	CB	PHE	Α	336	22.324	10.949	30.900	1.00 18.52	A	C
ATOM	2488	CG	PHE	Α	336	23.150	11.401	29.753	1.00 17.47	A	C
MOTA	2489	CD1	PHE	Α	336	23.733	12.667	29.739	1.00 18.88	A	С
ATOM	2490	CEl	PHE	А	336	24.529	13.067	28.654	1.00 18.14	A	C
ATOM	2491	cz	PHE	Α	336	24.749	12.198	27.591	1.00 18.35	A	C
ATOM	2492	CE2	PHE	Α	336	24.174	10.936	27.601	1.00 18.49	Α	С
MOTA	2493	CD2	PHE	Α	33,6	23.386	10.543	28.681	1.00 19.03	A	С
ATOM	2494	С	PHE	А	336	24.314	10.898	32.403	1.00 18.74	Α	С
ATOM	2495	0			336	-24.159	11.810 -	33.195	1.00 18.98	A	0
ATOM	2496	N			337	25.504	10.547	31.938	1.00 19.28	Α	N
ATOM	2497	CA			337	26.733	11.219	32.364	1.00 19.77	A	С
ATOM	2498	CB			337	27.879	10.201	32.343	1.00 20.11	A	C
ATOM	2499	OG1			337	27.609	9.175	33.321	1.00 19.75	A	0
ATOM	2500	CG2			337	29.159	10.857	32.796	1.00 21.58	A	С
ATOM	2501	С			337	27.096	12.369	31.440	1.00 20.14	A	C
ATOM	2502	0			337	27.266	12.163	30.253	1.00 20.10	A	0
ATOM	2503	N			338	27.181	13.571	32.000	1.00 19.74	A	N
ATOM	2504	CA			338	27.487	14.793	31.259	1.00 20.23	A	c
ATOM	2505	CB			338	26.468	15.858	31.588	1.00 19.43	A	C
ATOM	2506	C			338	28.881	15.292	31.633	1.00 20.94	A	C
MOTA	2507	0			338	29.389	14.991	32.710	1.00 19.43	A	0
ATOM	2508	N			339	29.503	16.042	30.741	1.00 22.51	A	N
ATOM	2509	CA			339	30.750	16.711	31.070	1.00 23.12	A	C
ATOM	2510	CB			339	31.893	16.162	30.230	1.00 24.34	A	C
ATOM	2511	CG			339	32.591	14.904	30.726	1.00 29.11	A	C
ATOM	2512	CD			339	34.116	14.923	30.437	1.00 36.99	A	C
ATOM	2513		GLN			34.841	13.991	30.825	1.00 41.39	A	0
ATOM	2514		GLN			34.597	15.995	29.778	1,00 36.90	A	N
ATOM	2515	C			339	30.543	18.167	30.722	1.00 23.27	A	C
ATOM	2516	0			339	30.034	18.485	29.641	1.00 23.02	A	0
ATOM	2517	N	ALA			30.922	19.061	31.619	1.00 22.60	A	N
ATOM	2518	CA		-	340	30.793	20.492	31.347	1.00 22.71	A	C
ATOM	2519	CB			340	31.311	21.296	32.535	1.00 22.84	A	C
ATOM	2520	С	ALA	А	340	31.524	20.916	30.076	1.00 22.30	A	С

ATOM	2521	0	ALA	A	340		32.474	20.270	29.650	1.00	22.44		A	0
ATOM	2522	N	GLY	A	341	•	31.063	21.996	29.455	1.00	23.38		A	N
ATOM	2523	CA			341		31,738	22.554	28.283	1.00	23.73		A	C
ATOM	2524	¢			341		30.989	22.425	26.956		24.15		A.	C
ATOM	2525	0			341		31.457	22.902	25.917		24.10		A	0
ATOM	2526	N			342		29.829	21.774	26.970		24.05		A	N
ATOM	2527	CA			342		29.038	21.637	25.743		24.39		A	С
ATOM	2528	CB			342		29.643	20.545	24.861		25.08		A	C
ATOM	2529	CG			342		29.610	19.148	25.496		27.13		A	C
ATOM	2530	CD			342		30.471	18.173	24.723		29.40		A	C
ATOM	2531	CE			342		30.254	16.725	25.182		29.96		A	С
ATOM ATOM	2532 2533	NZ C			342 342		30.738	16.515	26.576		32.09		A	N
ATOM	2534	0			342		27.552 27.220	21.373 20.861	26.058 27.144		23.40		A	C
MOTA	2535	Ŋ			343		26.652	21.755	25.151		22.09		A	N O
ATOM	2536	CA			343		25.219	21.683	25.450		21.01		A A	C
ATOM	2537	СВ			343		24.557	22.206	24.163		21.58		A	c
ATOM	2538	CG			343		25.613	23.026	23.492		22.06		A	c
ATOM	2539	CD			343		26.902	22.348	23.820		22.30		A	Ċ
ATOM	2540	C			343		24.729	20.279	25.756		19.35		A	Č
ATOM	2541	0			343		25.311	19.298	25.317		17.82		A	ō
ATOM	2542	N	LEU	Α	344		23.645	20.223	26.521	1.00	18.12		A	N
ATOM	2543	CA	LEU	Α	344		22.945	18.988	26.790	1.00	17.07		A	C
ATOM	2544	CB	LEU	Α	344		23.019	18.680	28.278	1.00	17.12		A ·	C
ATOM	2545	CG	LEU	Α	344		22.250	17.476	28.788	1.00	16.96		A	C
MOTA	2546		LEU				22.743	16.188	28.128	1.00	16.29		A	С
MOTA	2547		LEU				22.399	17.414	30.336	1.00	17.28		A	С
ATOM	2548	С			344		21.484	19.168	26.360	1.00	16.41		A	C
ATOM	2549	0			344		20.814	20.029	26.870		17.49		A	0
MOTA	2550	N			345	~	21.013	18.336	25.440		15.23		A	N
ATOM	2551	CA			345		19.638	18.405	24.943		14.51		A	C
ATOM	2552	CB			345		19.644	18.807	23.474		14.84		A	C
MOTA	2553	CG			345		20.104	20.235			13.82	-	A	C ·
ATOM ATOM	2554 2555	CE			345 345		19.987	20.664	21.795		16.32		A	C
ATOM	2556	NZ			345		18.599 18.513	21.126 21.491	21.423 19.992		13.96 17.70		A	C
ATOM	2557	C			345		18.929	17.066	25.135		14.25		A A	N C
ATOM	2558	Ö			345		19.399	16.033	24.658		14.33		A	0
ATOM	2559	N			346		17.821	17.084	25.870		13.41		A	N
ATOM	2560	CA			346		17.031	15.888	26.116		13.30		A	c
ATOM	2561	CB			346		16.983	15.589	27.619		13.25		A	Č
ATOM	2562	CG1			346		18.376	15.444	28.197		13.74		A	Č
ATOM	2563	CD1	ILE	A	346		18.459	15.807	29.637	1.00	15.75		A	С
MOTA	2564	CG2	ILE	Α	346		16.180	14.329	27.874	1.00	13.54		A.	С
MOTA	2565	С	ILE	Α	346		15.598	16.084	25.601	1.00	13.26		A	C
ATOM	2566	0	ILE	A	346		14.900	17.010	26.020	1.00	13.15		A	0
ATOM	2567	N	SER	A	347		15.159	15.197	24.714	1.00	12.65		A	N
ATOM	2568	CA			347			15.262			12.47		A	С
ATOM	2569		BSER				13.838	15.473	22.654	0.35	12.36		A	C
MOTA	2570		ASER				13.813	15.524	22.662		12.73		Α	С
MOTA	2571		BSER				12.569	15.297	22.042		10.59		Α	0
ATOM	2572		ASER				14.655	16.634	22.329		13.18		A	0
MOTA	2573	C			347		13.032	13.983	24.491		11.72		A	C
ATOM	2574	0			347		13.511	12.881	24.219		11.81.		A	0
ATOM	2575	N			348		11.830	14.165	25.026		11.03		A	Ŋ
ATOM	2576	CA	LEU		348 348		10.864	13.121	25.289		10.93		A	C
ATOM ATOM	2577 2578	CB CG	LEU				10.302 9.054	13.274	26.706		10.96		A	C
7 T Oly	22/0	-0	ں جو سد	~	240		J.UJ4	12.502	27.097	1.00	TO. 60		A i	·

MOTA	2579	CD1	LEU	A	348	9.396	11.029	27.180	1.00 13	.05	A	С
MOTA	2580	CD2	LEU	A	348	8.542	12.969	28.443	1.00 12	.50	A	С
MOTA	2581	C	LEU	Α	348	9.735	13.231	24.287	1.00 11	. 09	A	С
MOTA	2582	Ο.	LEU	Α	348	9.152	14.302	24.140	1.00 12	.01	A	0
MOTA	2583	N			349	9.389	12.127	23.631	1.00 10	.58	A	N
MOTA	2584	CA			349	8.327	12.142	22.638	1.00 11	32	A	C
MOTA	2585	CB			349	8.876	12.223	21.185	1.00 11		A	C
MOTA	2586		VAL			7.745	12.102	20.169	1.00 12		A	С
MOTA	2587	CG2				9.653	13.511	20.961	1.00 11		A	С
MOTA	2588	C			349	7.522	10.873	22.768	1.00 11		A	С
MOTA	2589	0			349	8.099	9.802	22.870	1.00 12		A	0
MOTA	2590	N			350	6.200	10.993	22.768	1.00 11		A	N
MOTA	2591	CA			350	5.354	9.813	22.662	1.00 11		A	c
MOTA	2592	CB			350	4.719	9.442	24.002	1.00 13		A	C
ATOM	2593	CG CD1			350	3.822	10.448	24.628	1.00 11		A	C
MOTA	2594 2595	NE1			350 350	2.457	10.378	24.720	1.00 12		A	C
MOTA MOTA	2596	CE2			350	1.961 3.015	11.469 12.262	25.386 25.774	1.00 12		A	N C
MOTA	2597	CD2			350	4.208	11.640	25.774	1.00 13		A A	c
ATOM	2598	CE3			350	5.440	12.249	25.593	1.00 12		A	c
ATOM	2599	CZ3			350	5.444	13.449	26.311	1.00 12		A	C
ATOM	2600		TRP			4.248	14.022	26.767	1.00 13		A	c
ATOM	2601		TRP			3.022	13.427	26.507	1.00 13		A	Ċ
MOTA	2602	C .			350	4.314	9.883	21.536	1.00 11		A	č
MOTA	2603	ō			350	3.905	10.953	21.077	1.00 11		A	ő
ATOM	2604	N			351	3.921	8.707	21.071	1.00 13		A	N
ATOM	2605	CA			351	2.889	8.607	20.070	1.00 12		A	C
ATOM	2606	СВ			351	3.182	7.496	19.070	1.00 12		A	Č
MOTA	2607	OG	SER	Α	351	4.356	7.772	18.310	1.00 11		A	0
MOTA	2608	C	SER	Α	351	1.636	8.378	20.884	1.00 12		A	C
ATOM	2609	0	SER	A	351	1.360	7.285	21.375	1.00 12	.72	Α	0
MOTA	2610	N	ASP	Α	352	0.947	9.477	21.115	1.00 13	.75	Α	N
ATOM	2611	CA	ASP	Α	352	-0.205	9.532 -	21.982	1.00 14	.48	Α	. C.
MOTA.	2612	CB	ASP	Α	352	-0.508	11.003	22.225	1.00 14	.84	A	C
ATOM	2613	CG			352	-1.480	11.251	23.385	1.00 16		Ά	C
MOTA	2614		ASP			-1.655	10.366	24.260	1.00 15	5.50	A	0
MOTA	2615		ASP			-2.115	12.329	23.458	1.00 15		Α	0
MOTA	261 6	C			352	-1.427	8.842	21.389	1.00 15		Α	Ç
ATOM	2617	0			352	-1.569	8.678	20.155	1.00 19		A	0
ATOM	2618	N_			353	-2.331	8.434	22.273	1.00 15		A	N
ATOM	2619	CA			353	-3.689	8.074	21.853	1.00 15		A	C
ATOM	2620	CB			353	-4.526	7.801	23.051	1.00 19		Α	C
ATOM	2621 2622	C			353 353	-4.325	9.197	21.018	1.00 15		A	С
ATOM		0			354	-4.076	10.374	21.264	1.00 15		A	0
MOTA MOTA	2623 2624	N CA			354	-5.157 -5.858	8.840	20.041 19.235	1.00 16		A	N
ATOM	2625	CB			354	-6.724	9.841	18.287			A	C
MOTA	2626	CG			354	-6.790	9.003		1.00 17		A	
MOTA	2627	CD			354	-5.499	7.646 7.456	18.897 19.640	1.00 17		A A	C C
ATOM	2628	C			354	-6.723	10.771	20.073	1.00 18		A	C
ATOM	2629	Õ			354	-7.420	10.771	20.957	1.00 17		A	Õ
ATOM	2630	N			355	-6.629	12.074	19.819	1.00 18		A	Ŋ
ATOM	2631	CA			355	-7.392	13.071	20.527	1.00 20		A	C
ATOM	2632	C.			355	-8.773	13.285	19.936	1.00 20		A	C
ATOM	2633	ō			355	-9.095	12.758	18.880	1.00 22		A	ŏ
MOTA	2634	N			356	-9.598	14.050	20.628	1.00 22		A	Ŋ
ATOM	2635	CA			356	-10.939	14,377	20.145	1.00 23		A	Ĉ
ATOM	2636	СВ			356	-11.924	14.555	21.319	1.00 24		A	č

ATOM	2637	OG	SER	A	356	-12.771	15.696	21.117	1.00 26.8	15	A	0
ATOM	2638	C	SER	A	356	-10.901	15.654	19.320	1.00 24.0	14	Ą	C
MOTA	2639	0	SER	A	356	-10.151	16.583	19.635	1.00 23.5	4	A.	0
ATOM	2640	N	THR	Α	357	-11.714	15.684	18.261	1.00 24.6	1	Α :	N
ATOM	2641	CA	THR	Α	357	-11.826	16.846	17.396	1.00 25.5	88 2	A	С
ATOM	2642	CB			357	-12.423	16.436	16.032	1.00 25.8	36 ₋ 2		C
ATOM	2643	OG1	THR			-13.673	15.748	16.218	1.00 25.9			0
MOTA	2644	CG2	THR			-11.534	15.392	15.334	1.00 25.3			C
ATOM	2645	C			357	-12.687	17.982	18.000	1.00 26.5			C
ATOM	2646	0			357	-12.812	19.035	17.398	1.00 26.2			0
ATOM	2647	N			358	-13.276	17.771	19.175	1.00 27.5			N
MOTA	2648	CA			358	-14.113	18.816	19.779	1.00 28.3			C
ATOM	2649	CB			358	-15.575	18.335	19.938	1.00 28.2			C
MOTA MOTA	2650 2651	OG1 CG2	THR			-15.606	17.065	20.606	1.00 28.6			0
ATOM	2652	C			358	-16.192 -13.605	18.066	18.587	1.00 27.9			C C
ATOM	2653	Ö			358	-13.954	19.321 20.424	21.118 21.524	1.00 28.7			0
ATOM	2654	N			359	-13.954	18.548	21.795	1.00 29.2			N
MOTA	2655	CA			359	-12.311	18.925	23.133	1.00 27.9			C
MOTA	2656	CB			359	-11.668	17.739	23.814	1.00 28.6			C
ATOM	2657	C			359	-11.349	20.100	23.099	1.00 27.9			c
ATOM	2658	ō			359	-10.738	20.393	22.060	1.00 27.6			õ
ATOM	2659	N			360	-11.213	20.785	24.241	1.00 27.1			N
ATOM	2660	CA			360	-10.301	21.916	24.344	1.00 27.0			c
ATOM	2661	CB			360	-10.351	22.564	25.737	1.00 27.5			Ċ
MOTA	2662	OG	SER	A	360	-11.688	22.840	26.125	1.00 31.5	4		0
MOTA	2663	С	SER	A	360	-8.858	21.485	24.060	1.00 25.1	.4	A	С
MOTA	2664	0	SER	Α	360	-8.115	22.230	23.446	1.00 24.2	27	A.	O
MOTA	2665	N	LEU	Α	361	-8.478	20.307	24.553	1.00 23.7	14	A.	N
MOTA	2666	CA	LEU	Α	361	-7.100	19.812	24.453	1.00 23.5	4		C
MOTA	2667	CB			361	-6.480	19.583	25.840	1.00 23.8	17		C
ATOM	2668	CG			361	-6.119	20.802	26.702	1.00 27.3			C
ATOM	2669		LEU			-5.434	20.335	27.980	1.00 28.6			C ·
MOTA	2670		LEU			-5.217	21.827	25.975	1.00 28.8			С
ATOM	2671	C			361	-7.097	18.493	23.701	1.00 21.7			C
MOTA	2672	0			361	-7.942	17.611	23.961	1.00 21.7			0
ATOM	2673	N			362	-6.141	18.325	22.790	1.00 19.6			N
ATOM	2674	CA			362	-6.053	17.058	22.066	1.00 18.7			C
ATOM ATOM	2675 2676	CB OG1			362 362	-5.433	17.230	20.657	1.00 19.4			C
ATOM	2677	CG2	THR			-4.100 -6.174	17.707 18.305	20.786 19.862	1.00 17.5			0 C
MOTA	2678	C			362	-5.261	16.023	22.819	1.00 20.2			C
ATOM	2679	ō			362	-5.411	14.858	22.530	1.00 17.2			o
ATOM	2680	N			363	-4.398	16.448	23.761	1.00 16.6			N
ATOM	2681	CA	LEU			-3.560	15.505	24.484	1.00 16.3			C
MOTA	2682	CB			363	-2.547	16.213	25.411	1.00 16.3			c
ATOM	2683	CG	LEU	Α	363	-1.460	15.318	25.990	1.00 16.6			Ĉ
MOTA	2684	CD1	LEU	Α	363	-0.380	14.960	24.939	1.00 16.3			Ċ
ATOM	2685	CD2	LEU	A	363	-0.838	15.936	27.236	1.00 15.8			С
MOTA	2686	C.	LEU	A	363	-4.424	14.536	25.280	1.00 17.1			C
MOTA	2687	0	LEU	A	363	-5.404	14.936	25.911	1.00 17.3	.5 .		0
MOTA	2688	N			364	-4.068	13.253	25.249	1.00 16.5	. 0	A	N
MOTA	2689	CA	VAL			-4.829	12.263	25.975	1.00 16.0			C
MOTA	2690	CB			364	-5.285	11.121	25.030	1.00 15.7			С
MOTA	2691		VAL			-5.871	9.933	25.826	1.00 17.2			С
MOTA	2692		VAL			-6.288	11.651	24.020	1.00 16.2			С
ATOM	2693	C			364	-3.983	11.744	27.139	1.00 15.6			С
ATOM	2694	0	VAL	A	364	-4.329	11.942	28.309	1.00 15.1	.7 .	A	0

MOTA	2695	N	ASN	Α	365	-2.875	11.085	26.809	1.00	14.41	A	. N
MOTA	2696	CA	ASN	Α	365	-1.931	10.614	27.804	1.00	14.31	A	C
MOTA	2697	CB	ASN	Α	365	-1.302	9.286	27.354	1.00	14.31	A	, c
ATOM	2698	CG	ASN	A	365	-2.342	8.161	27.214	1.00	16.21	A	C
ATOM	2699	OD1	ASN	Α	365	-3.298	8.081	28.004	1.00	13.31	A	. 0
MOTA	2700	ND2	ASN	Α	365	-2.158	7.283	26.206	1.00	14.49	A	N
ATOM	2701	С	ASN	Α	365	-0.858	11.690	28.088	1.00	14.80	A	C
ATOM	2702	0	ASN	Α	365	-0.174	12.190	27.172	1.00	14.01	A	. 0
ATOM	2703	N	ASP	Α	366	-0.696	12.015	29.360	1.00	14.06	A	N
ATOM	2704	CA	ASP	Α	366	0.158	13.115	29.783	1.00	15.00	A	C
ATOM	2705	CB	ASP	A	366	-0.632	14.068	30.672	1.00	14.40	A	, C
ATOM	2706	CG	ASP	Α	366	0.105	15.346	30.990	1.00	15.13	A	
MOTA	2707	OD1	ASP	Α	366	1.344	15.467	30.710	1.00	13.15	A	. 0
MOTA	2708	OD2	ASP	Α	366	-0.491	16.284	31.609	1.00	17.79	A	. 0
ATOM	2709	С	ASP	Α	366	1.367	12.568	30.548	1.00	14.89	A	C
MOTA	2710	0	ASP	Α	366	1.257	12.132	31.708	1.00	15.57	P	. 0
MOTA	2711	N	LEU	Α	367	2.501	12.562	29.865	1.00	14.16	A	N
MOTA	2712	CA	LEU	A	367	3.772	12.248	30.462	1.00	14.65	A	C
MOTA	2713	CB	LEU	Α	367	4.581	11.333	29.520	1.00	14.37	A	
ATOM	2714	CG	LEU	Α	367	3.990	10.005	29.077	1.00	13.06	7	C
ATOM	2715	CD1	LEU	Α	367	5.063	9.220	28.244	1.00	12.20	7	C C
MOTA	2716	CD2	LEU	Α	367	3.485	9.123	30.239	1.00	15.25	7	
ATOM	2717	С	LEU	Α	367	4.523	13.555	30.710	1.00	14.15	P	C C
MOTA	2718	0	LEU	Α	367	4.271	14.546	30.045	1.00	14.17	7	0
ATOM	2719	N	ASP	Α	368	5.441	13.556	31.677	1.00	14.04	P	N A
ATOM	2720	CA	ASP	Α	368	6.271	14.705	31.980	1.00	14.28	A	
ATOM	2721	CB	ASP	Α	368	5.959	15.284	33.354	1.00	15.52	7	
ATOM	2722	CG	ASP	Α	368	4.529	15.726	33.515	1.00	17.54	P	C C
ATOM	2723		ASP			3.909	16.253	32.540		14.48	7	. 0
ATOM	2724	OD2	ASP	Α	368	4.006	15.624	34.642	1.00	17.39	7	
ATOM	2725	C			368	7.724	14.275	32.057	1.00	14.49	F	
ATOM	2726	0	ASP	Α	368	8.034	13.203	32.58 7	1.00	13.94	7	. 0
ATOM	2727	N			369	· 8:603	15.108	31.520	1.00	14.32	. 7	
ATOM	2728	CA			369	10.044	14.937	31.645		14.31	P	
MOTA	2729	CB			369	10.735	15.448	30.380		13.72	7	
MOTA	2730	CG			369	12.238	15.284	30.298		12.96	7	
ATOM	2731		LEU			12.572	13.850	30.345		12.52	7	
ATOM	2732		LEU			12.749	15.953	28.980		14.11	7	
ATOM	2733	С			369	10.539	15.733	32.854		15.02	7	
ATOM	2734	0			369	10.218	16.922	33.012		15.50	P	
ATOM	2735	N			370	11.315	15.085	33.698		15.26	F	
ATOM	2736	CA			370	11.875	15.729	34.905		15.63	F	
MOTA	2737	CB			370	11.144	15.278	36.180		15.95	7	
ATOM	2738		VAL			11.679	16.020	37.425		17.73	Į	
MOTA	2739		VAL		370	9.687	15.487	36.024		15.57	7	
ATOM	2740	C			370	13.359	15.388	34.975		15.46	7	
MOTA	2741	0			370	13.767	14.219	35.042		15.96	7	
MOTA	2742	N			371		16.422	34.908		15.15	,	
MOTA	2743	CA			371	15.608	16.261	34.858		14.98	,	
MOTA	2744	CB			371	16.171	17.036	33.669		14.71	7	
MOTA	2745		ILE			15.509	16.589	32.336		14.63	7	
ATOM ATOM	2746		ILE			15.600	15.075	32.072 33.614		14.66	Į	
	2747		ILE		371	17.674	16.922				7	
ATOM	2748	C				16.145	16.835	36.155		15.95	7	
MOTA	2749	0			371	15.648	17.853	36.618		16.74	Į	
MOTA	2750	N			372	17.150	16.174	36.727		16.86	7	
ATOM	2751	CA			372	17.858	16.671	37.897		17.19	,	
MOTA	2752	CB	IHK	н	372	17.618	15.748	39.089	T.00	17.36	7	٠ .

ATOM	2753	OG1	THR	A	372	16.212	15.514	39.265	1.00	18.17	A	0
MOTA	2754	CG2	THR	A	372	18.044	16.409	40.372	1.00	17.84	A	C
MOTA	2755	C	THR	A	372	19.364	16.729	37.634	1.00	17.65	A	С
ATOM	2756	0	THR	Α	372	19.962	15.725	37.262	1.00	18.44	A	0
ATOM	2757	N			373	19.971	17.891	37.870	1.00	17.80	A	N
MOTA	2758	CA			373	21.376	18.118	37.606	1.00	18.13	A	
MOTA	2759	CB			373	21.643	19.607	37.475		18.43	A	
MOTA	2760	С			373	22.175	17.545	38.767		19.16	A	
ATOM	2761	0			373	21.601	17.188	39.780		18.57	A	
ATOM	2762	N			374	23.479	17.368	38.581		19.84	A	
ATOM	2763	CA			374	24.348	16.857	39.642		20.99	A	
ATOM	2764	CB			374	25.727	16.884	39.001		20.60	A	
ATOM	2765 2766	CG			374	25.434	16.700	37.530		20.96	A	
ATOM ATOM	2765	CD			374	24.174	17.460	37.286		20.29	A	
ATOM	2768	C 0			374 374	24.266	17.647	40.948		22.06	A	
ATOM	2769	N			375	24.303	17.039	42.011		23.95	A	
ATOM	2770	CA			375	24.024 23.910	18.954 19.770	40.873 42.058		23.03	A A	
MOTA	2771	CB			375	24.515	21.165	41.790		24.03	A	
ATOM	2772	CG			375	23.581	22.096	40.993		26.93	A	
MOTA	2773		ASN			22.515	21.689	40.492		28.51	A	-
ATOM	2774		ASN			23.987	23.362	40.878		27.28	A	
ATOM	2775	C			375	22.471	19.898	42.563		23.07	A	
ATOM	2776	ō			375	22.208	20.711	43.430		22.92	A	
MOTA	2777	N			376	21.541	19.120	42.010		21.76	A	
MOTA	2778	CA			376	20.166	19.165	42.469		21.43		
ATOM	2779	C	GLY	A	376	19.197	20.077	41.724		20.91	A	
ATOM	2780	0	GLY	A	376	17.990	20.006	41.937		19.94	A	
ATOM	2781	N	THR	Α	377	19.696	20.909	40.828	1.00	21.29	A	N
MOTA	2782	CA	THR	A	377	18.793	21.785	40.090	1.00	21.36	A	С
MOTA	2783	CB	THR	A	377	19.571	22.738	39.220	1.00	21.19	· A	С
ATOM	2784	OG1	THR	A	377	20.423	23.532	40.054	1.00	22.26	A	0
· ATOM	2785	CG2	THR	A	377	18.635	23.724	38.538	1.00	20.97	A	¢
ATOM	2786	С	THR	Α	377	17.818	20.971	39.239	1.00	20.56	A	C
MOTA	2787	0			377	18.206	20.058	38.541	1.00	19.93	A	0
MOTA	2788	N			378	16.558	21.345	39.315	1.00	20.68	A	
MOTA	2789	CA	LYS			15.488	20.630	38.644		21.64	A	
ATOM	2790	CB			378	14.321	20.503	39.594		22.42	A	
ATOM	2791	CG	LYS			13.709	19.168	39.611		28.13	A	
MOTA	2792	CD			378	14.144	18.449	40.913		33.32	A	
ATOM	2793	CE			378	13.743	17.001	40.854		34.92	A	
ATOM ATOM	2794	NZ			378	14.605	16:111	41.699		38.61	A	
ATOM	2795 2796	С О			378	14.990	21.344	37.397		20.06	A	
ATOM	2797	N			378 379	14.902	22.553	37.388		19.59	A	
ATOM	2798	CA			379	14.623 14.009	20.568 21.088	36.378 35.155		18.59 17.87	A A	
ATOM	2799	CB			379	15.030	21.111	34.011		17.25	A	
ATOM	2800	CG	TYR			16.382	21.654	34.386		17.53	A	-
ATOM	2801		TYR			17.297	20.864	35.052		18.58	A	
ATOM	2802		TYR			18.537	21.352	35.417		19.05	A	
MOTA	2803	CZ			379	18.895	22.655	35.417		21.25	A	
ATOM	2804	OH			379	20.160	23.104	35.465		20.46	A	
ATOM	2805		TYR			18.004	23.459	34.399		19.58	A	
ATOM	2806		TYR			16.751	22.953	34.060		18.07	A	
ATOM	2807	C			379	12.852	20.198	34.732		17.42	A	
ATOM	2808	0			379	12.967	18.973	34.766		18.13	A	
ATOM	2809	N	VAL			11.732	20.787	34.340		16.44	A	
ATOM	2810	CA	VAL			10.653	19.989	33.750		16.11	A	

ATOM	2811	CB	VAL	A	380	9.320	20.114	34.514	1.00	16.66	A.	C
ATOM	2812	CG1	VAL	A	380	9.521	19.742	36.000	1.00	17.64	A	С
MOTA	2813	CG2	VAL	A	380	8.716	21.505	34.369	1.00	16.52	A	C
ATOM	2814	С			380	10.466	20.353	32.283	1.00	14.93	A.	C
MOTA	2815	0	VAL			10.876	21.425	31.826	1.00	15.17	A.	0
ATOM	2816	N	GLY			9.868	19.436	31.547		14.19	A	N
ATOM	2817	CA	GLY			9.761	19.541	30.101		13.85	A	С
ATOM	2818	C	GLY			9.132	20.847	29.647		13.74	A.	C
ATOM	2819	0			381	8.096	21.259	30.153		13.57	A.	0
ATOM	2820	N	ASN			9.813	21.509	28.729		13.87	À	N
ATOM	2821	CA	ASN			9.332	22.719	28.064		14.08	A.	C
ATOM	2822	CB	ASN			8.002	22.451	27.344		13.91	A	C
ATOM ATOM	2823 2824	CG	ASN ASN			8.148	21.436	26.209		14.03	A	C
ATOM	2825		ASN			9.250 7.041	21.181 20.850	25.757 25.770		13.23	A N	0
ATOM	2826	C	ASN			9.232	23.942	28.966		14.58	A A	N C
ATOM	2827	o	ASN			8.682	24.981	28.556		14.15	A.	0
MOTA	2828	N	ASP			9.796	23.869	30.178		14.75	A.	И
ATOM	2829	CA	ASP			9.813	25.057	31.017		14.97	A.	C
ATOM	2830	CB	ASP			9.593	24.709	32.499		15.34	A	č
ATOM	2831	CG	ASP			9.580	25.952	33.388		15.81	A	č
ATOM	2832		ASP			9.786	27.082	32.845		16.83	A.	ō
MOTA	2833	OD2	ASP	A	383	9.394	25.897	34.636		15.84	A	0
ATOM	2834	C	ASP	A	383	11.127	25.813	30.810	1.00	15.13	A	С
MOTA	2835	0	ASP			12.160	25.490	31.398	1.00	15.46	A	0
ATOM	2836	N	PHE	A	384	11.074	26.859	30.000	1.00	15.11	A	N
ATOM	2837	CA	PHE	Α	384	12.284	27.559	29.589	1.00	15.10	A	С
MOTA	2838	CB	PHE			12.178	27.818	28.086	1.00	16.52	A	C
ATOM	2839	CG	PHE			12.247	26.560	27.240	1.00	14.23	A	C
ATOM	2840		PHE			13.440	25.910	27.059	1.00	19.41	A.	С
MOTA	2841		PHE			13.516	24.782	26.273		19.08	Ą	С
ATOM	2842	CZ	PHE		384	12.395	24.303	25.685		18.05	A.	C
ATOM	2843		PHE			11.208	24.943			14.73	A	C.
ATOM	2844		PHE			11.140	26.070	26.602		16.74	A.	C
ATOM	2845	C			384	12.546	28.857	30.389		15.96	A	C
ATOM ATOM	2846 2847	O N	PHE			13.547	29.558	30.152		15.13	A.	0
ATOM	2848	CA			385	11.666 11.820	29.151 30.294	31.350 32.264		16.18 17.37	A A	N C
ATOM	2849	CB			385	10.519	31.097	32.400		17.19	A.	C
ATOM	2850	OG1	THR			9.520	30.295	33.030		17.19	A.	Ö
ATOM	2851	CG2	THR			9.922	31.491	31.028		18.21	A.	C
MOTA	2852	C			385	12.238	29.868	33.689		17.95	A	č
ATOM	2853	0			385	11.703	28.890	34.252		17.41	A.	ō
ATOM	2854	N	ALA			13.197	30.599	34.250		18.54	A	N
ATOM	2855	CA ·	ALA			13.743	30.266	35.565		19.43	A	С
ATOM	2856	CB	ALA	Α	386	15.056	30.971	35.792	1.00	19.87	A	С
ATOM	2857	С	ALA	Α	386	12.728	30.697	36.594		20.06	A	С
ATOM	2858	0	ALA	Α	386	12.078	31.735	36.409	1.00	21.03	A	0
ATOM	2859	N	PRO			12.525	29.897	37.635	1.00	19.71	A	N
ATOM	2860	CA	PRO	Α	387	13.134	28.582	37.766	1.00	20.17	A.	С
ATOM	2861	CB	PRO	A	387	12.951	28.269	39.250	1.00	20.90	A	C
MOTA	2862	CG			387	11.609	28.910	39.587		20.16	A	С
ATOM	2863	CD			387	11.670	30.223	38.796		21.11	A	С
ATOM	2864	C			387	12.413	27.549	36.890		19.33	A	С
ATOM	2865	0	PRO			11.237	27.688	36.612		18.07	A	0
ATOM	2866	N	TYR			13.144	26.521	36.491		19.24	A	N
ATOM	2867	CA	TYR			12.781	25.672	35.365		19.24	A.	C
MOTA	2868	CB	TYR	Α	388	14.059	25.211	34.661	1.00	18.91	A	C

ATOM	2869	CG	TYR	A	388	14.912	26.363	34.177	1.00 18.51	A	С
ATOM	2870	CD1	TYR	A	388	16.128	26.625	34.761	1.00 16.61	A	С
MOTA	2871	CE1	TYR	A	388	16.912	27.701	34.350	1.00 17.76	A	C
ATOM	2872	CZ	TYR	Α	388	16.462	28.511	33.312	1.00 15.12	A	C
ATOM	2873	OH	TYR	Ą	388	17.242	29.565	32.918	1.00 17.69	A	0
ATOM	2874	CE2		A	388	15.241	28.276	32.723	1.00 14.50	A	C
ATOM	2875	CD2			388	14.462	27.229	33.154	1.00 14.33	A	С
ATOM	2876	С			388	11.934	24.467	35.745	1.00 19.73	A	C
ATOM	2877	0			388	11.688	23.598	34.913	1.00 19.79	A	0
ATOM	2878	N			389	11.422	24.442	36.972	1.00 20.38	A	N
ATOM	2879	CA			389	10.605	23.327	37.430	1.00 21.41	A	С
ATOM	2880	CB			389	11.346	22.547	38.507	1.00 22.04	A	С
ATOM	2881	CG			389	11.504	23.343	39.796	1.00 24.83	A	C
ATOM ATOM	2882		ASP ASP			11.618	22.706	40.869	1.00 27.95	A	0
ATOM	2883 2884	C CD2			389	11.523	24.595	39.822	1.00 24.63	A	0
ATOM	2885	0			389	9.246	23.724	37.968	1.00 21.64	A	C
ATOM	2886	N			390	8.629 8.759	22.947 24.908	38.709 37.618	1.00 22.12 1.00 21.45	A	0
ATOM	2887	CA			390	7.455	25.326	38.130	1.00 21.43	A A	N C
ATOM	2888	CB			390	7.555	26.664	38.892	1.00 22.14	A	C
ATOM	2889	CG			390	7.965	27.825	37.989	1.00 23.08	A	c
ATOM	2890		ASN			8.404	27.620	36.847	1.00 22.98	A	0
ATOM	2891		ASN			7.816	29.050	38.491	1.00 23.21	A	N
MOTA	2892	С			390	6.356	25.402	37.060	1.00 22.16	A	Ċ
ATOM	2893	0			390	5.181	25.500	37.405	1.00 21.88	A	Ö
ATOM	2894	N	ASN	Α	391	6.717	25.340	35.772	1.00 21.51	A	N
ATOM	2895	CA	ASN	A	391	5.705	25.411	34.713	1.00 20.98	A	C
ATOM	2896	CB	ASN	A	391	5.986	26.567	33.728	1.00 21.22	A	C
ATOM	2897	CG	ASN	Α	391	6.221	27.924	34.426	1.00 22.34	A	C
ATOM	2898	OD1	ASN	A	391	7.345	28.481	34.388	1.00 22.21	A	0
ATOM	2899		ASN			5.151	28.490	35.029	1.00 23.08	A	N
ATOM	2900	С			391	5.611	24.072	33.978	1.00 20.79	A	C
ATOM	2901	0			391	6.295	23.818	32.978	1.00 21.08	· A	0
ATOM	2902	N			392	4.741	23.211	34.467	1.00 20.10	A	N
MOTA	2903	CA			392	4.601	21.862	33.928	1.00 20.04	A	С
ATOM	2904	CB			392	3.893	20.979	34.926	1.00 20.74	A	C
ATOM ATOM	2905 2906	CG	TRP			4.629	20.757	36.231	1.00 24.30	A	C
ATOM	2906	CD1 NE1			392	4.687	21.605	37.309	1.00 28.54	A	C
ATOM	2908	CE2			392	5.435	21.038	38.317	1.00 30.71	A	N
ATOM	2909	CD2			392	5.870 5.367	19.804 19.594	37.902 36.598	1.00 28.29 1.00 27.17	A A	C
ATOM	2910	CE3			392	5.695	18.400	35.937	1.00 27.17	A	C
ATOM	2911	CZ3			392	6.456	17.447	36.608	1.00 28.54	A	c
ATOM	2912	CH2	TRP			6.922	17.683	37.904	1.00 30.49	A	Č
ATOM	2913	CZ2	TRP			6.643	18.857	38.566	1.00 30.31	A	c
ATOM	2914	C			392	3.767	21.890	32.661	1.00 19.03	A	Č
ATOM	2915	0	TRP	Α	392	2.828	22.678	32.552	1.00 19.40	A	ō
MOTA	2916	N	ASP	Α	393	4.107	21.020	31.709	1.00 17.66	A	N
MOTA	2917	CA	ASP	Α	393	3.416	20.958	30.424	1.00 16.59	A	С
MOTA	2918	CB	ASP	A	393	4.431	20.669	29.332	1.00 16.47	A	С
MOTA	2919	CG			393	3.813	20.660	27.930	1.00 15.80	A	С
ATOM	2920		ASP			4.350	21.364	27.045	1.00 14.98	A	0
ATOM	2921		ASP			2.817	19.975	27.629	1.00 15.12	A	0
MOTA	2922	C			393	2.324	19.888	30.425	1.00 16.46	A	C
MOTA	2923	0			393	2.606	18.716	30.648	1.00 15.65	A	0
MOTA	2924	N			394	1.080	20.302	30.178	1.00 15.96	A	N
ATOM	2925	CA	GLY			-0.029	19.384	30.014	1.00 16.13	A	C
MOTA	2926	С	GLY	Α	394	-0.747	19.498	28.675	1.00 16.27	A	С

MOTA	2927	0	GLY	A	394	-1.936	19.255	28.601	1.00 1	6.15	7	\	0
MOTA	2928	N	ARG	A	395	-0.030	19.864	27.617	1.00 1	7.31	2	A.	N
MOTA	2929	CA	ARG	A	395	-0.607	19.978	26.264	1.00 1	7.68	7	4	C
MOTA	2930	CB	ARG	A	395	-0.588	21.437	25.783	1.00 1	9.08	7		С
- MOTA	2931	CG	ARG	Α	395	-1.434	22.408	26.518	1.00 2	6.02	2	4	C
ATOM	2932	ÇD	ARG	A	395	-1.172	23.839	26.066	1.00 3	1.34	7	Ą	C
ATOM	2933	NE	ARG	Α	395	-1.802	24.813	26.969	1.00 3	7.30	7	A	N
MOTA	2934	CZ	ARG	Α	395	-3.026	25.331	26.821	1.00 4	0.58	7	4	C
MOTA	2935	NHl	ARG	Α	395	-3.478	26.216	27.717	1.00 4	4.12	7	A.	N
ATOM	2936		ARG	Α	395	-3.805	24.983	25.805	1.00 4	0.20	7	Ą	N
ATOM	2937	C	ARG	Α	395	0.176	19.240	25.165	1.00 1	5.80	1		C
MOTA	2938	0			395	-0.418	18.827	24.176	1.00 1	6.01		4	0
ATOM	2939	N			396	1.502	19.212	25.282		4.41	7	4	N
ATOM	2940	CA			396	2.389	18.645	24.251	1.00 1	3.89	1	4	С
ATOM	2941	CB			396	3.662	19.483	24.133		3.10		j.	С
ATOM	2942	CG			396	3.408	20.889	23.585	1.00 1		7		С
MOTA	2943		ASN			3.129	21.075	22.374		1.53		4	0
ATOM	2944	ND2				3.550	21.897	24.463	1.00 1			4	N
ATOM	2945	C			396	2.806	17.197	24.475		3.64		A	C
ATOM	2946	0			396	2.995	16.743	25.634		4.92		A	0
MOTA	2947	N			397	2.973	16.452	23.376	1.00 1			A	N
MOTA	2948	CA			397	3.539	15.085	23.451	1.00 1			A	C
MOTA	2949	CB			397	2.705	14.080	22.672	1.00 1			A	C
ATOM	2950	CG			397	2.539	14.450	21.192		3.07		A .	С
ATOM	2951		ASN			2.243	15.594	20.849		2.07		À	0
ATOM	2952		ASN			2.683	13.466	20.324		3.08		Ą	N
MOTA	2953	C			397	5.011	15.077	23.010	1.00 1			Ą	C
MOTA MOTA	2954	0			397	5.607	14.010	22.663		1.34		A	0
	2955	N			398	5.577	16.291	23.028		2.66		Ą	N
ATOM	2956	CA			398	6.992	16.524	22.914	1.00 1			A	С
ATOM ATOM	2957 2958	CB CG1			398 398	7.329	17.261	21.626	1.00 1			A	C
ATOM	2959		VAL			8.835	17.523	21.533	1.00 1	2.98		4	C
ATOM	2960	C			398	6.846 7.381	16.476 - 17.412	20.408 24.105	1.00 1				C
ATOM	2961	0			398	6.819	18.501	24.103	1.00 1			4	0
ATOM	2962	N			399	8.288	16.913	24.272	1.00 1			· •	N
ATOM	2963	CA			399	8.797	17.666	26.107	1.00 1			À	C
ATOM	2964	СВ			399	8.339	17.054	27.452	1.00 1			,	C
MOTA	2965	CG			399	6.870	17.340	27.793	1.00 1			À	C
ATOM	2966				399	6.538	17.357	29.284	1.00 1			A.	c
ATOM	2967	OE1			399	5.312	17.324	29.635	1.00 1			A	ō
ATOM	2968	OE2			399	7.471	17.421	30.112		4.20		A.	ŏ
ATOM	2969	С	GLU	A	399	10.307	17.680	26.052	1.00 1			A.	C
ATOM	2970	0			399	10.920	16.624	25.929	1.00 1		ī	A.	0
ATOM	2971	N	ASN	Α	400	10.890	18.883	26.174	1.00 1	2.69	i	A.	N
ATOM	2972	CA	ASN	Α	400	12.326	19.098	26.073	1.00 1	2.36	1	4	С
MOTA	2973	СВ	ASN	Α	400	12.636	19.953	24.822	1.00 1	2.37	7	4	С
MOTA	2974	CG .	ASN	A	400	12.185	19.302	23.559	1.00 1	4.26	1	A	С
ATOM	2975		ASN			12.621	18.213	23.247	1.00 1	6.94		A.	0
ATOM	2976	ND2	ASN	A	400	11.302	19.964	22.817	1.00 1	4.56	i	A	N
ATOM	2977	C	ASN	A	400	12.959	19.820	27.254	1.00 1			Ą	С
ATOM	2978	0	ASN	Α	400	12.363	20.716	27.867	1.00 1	1.03	,	4	0
ATOM	2979	N	VAL	A	401	14.200	19.448	27.543	1.00 1	1.83	i	A	N
ATOM	2980	CA			401	15.042	20.183	28.494	1.00 1	1.67	7	4	С
MOTA	2981	CB	VAL	A	401	15.230	19.394	29.804	1.00 1	1.24	ž	Ą	C
ATOM	2982	CG1	VAL	A	401	16.317	20.017	30.668	1.00 1	3.18	1	Ą	C
MOTA	2983	CG2	JAV			13.962	19.359	30.558	1.00 1	1.36	1	Ą	С
MOTA	2984	С	VAL	А	401	16.351	20.372	27.792	1.00 1	2.10	i	Ą	С

ATOM	2985	0	VAL	A	401 -	17.022	19.394	27.471	1.00	12.05	A	0
ATOM	2986	N	PHE	Α	402	16.693	21.634	27.528	1.00	12.69	A	N
MOTA	2987	CA	PHE	A	402	17.841	22.019	26.744	1.00	14.06	A	C
ATOM	2988	CB	PHE	A	402	17.401	22.853	25.517	1.00	14.70	A	С
ATOM	2989	CG	PHE	A	402	16.602	22.079	24.464	1.00	12.42	A	C
ATOM	2990	CD1	PHE			15.936	22.764	23.455	1.00	15.18	A	С
MOTA	2991	CE1	PHE			15.222	22.069	22.468	1.00	12.37	A	C
ATOM		CZ	PHE			15.195	20.700	22.489	1.00	11.68	A	C
MOTA	2993	CE2	PHE			15.841	20.022	23.493	1.00	14.06	A	C
ATOM	2994	CD2	PHE			16.534	20.698	24.465		10.95	A	С
MOTA	2995	C	PHE			18.725	22.896	27.641		15.85	A	С
ATOM	2996	0	PHE			18.356	24.021	27.952		16.80	A	0
ATOM	2997	N.	ILE			19.886	22.379	28.028		16.60	A	N
ATOM	2998	CA	ILE			20.787	23.062	28.963		17.41	A	C
ATOM	2999	CB	ILE			21.088	22.167	30.160		16.74	A	C
ATOM	3000	CG1	ILE			19.802	21.886	30.944		17.16	A	Ċ
ATOM	3001	CD1	ILE		403	19.946	20.733	31.931		15.43	A	C
MOTA MOTA	3002 3003	CG2 C	ILE			22.143	22.809	31.095		17.20	A	C
ATOM	3003	0	ILE			22.064	23.395	28.240		17.62	A	C
MOTA	3005	N	ASN			22.812	22.520 24.678	27.854		17.97 18.39	A	0
ATOM	3005	CA	ASN			23.429	25.112	28.026 27.231		19.61	A A	N C
MOTA	3007	CB	ASN			23.255	26.599	26.874		20.94	A	C
ATOM	3008	CG	ASN			24.297	27.071	25.913		26.59	A	C
ATOM	3009					24.339	26.618	24.752		32.24	A	Ö
ATOM	3010		ASN			25.177	27.980	26.381		32.91	À	N
ATOM	3011	C	ASN			24.773	24.892	27.940		18.94	A	Ĉ
ATOM	3012	0.	ASN			25.769	24.575	27.296		18.69	A	ō
ATOM	3013	N	ALA			24.779	25.020	29.262		18.60	A	N
MOTA	3014	CA	ALA	A	405	26.011	24.902	30.044		19.42	A	C
MOTA	3015	CB	ALA	A	405	26.450	26.317	30.582		19.40	A	С
ATOM	3016	C	ALA	A	405	25.787	23.934	31.217		19.12	A	С
MOTA	3017	0	ALA	A	405	25.582	24.364 -	32.360	1.00	18.74	 A	0
ATOM	3018	N	PRO	A	406	25.782	22.632	30.936	1.00	19.16	A	N
MOTA	3019	CA	PRO	A	406	25.508	21.629	31.977	1.00	19.37	A	C
ATOM	3020	CB	PRO	A	406	25.266	20.351	31.156	1.00	19.25	A	C
ATOM	3021	CG	PRO	Α	406	26.120	20.546	29.977	1.00	19.80	A	С
ATOM	3022	CD	PRO	Α	406	26.033	22.010	29.631	1.00	18.90	A	C
ATOM	3023	С	PRO			26.689	21.437	32.923	1.00	19.45	A	C
MOTA	3024	0	PRO			27.815	21.833	32.607		19.95	A	0
ATOM .	3025	N	GLN			26.437	20.819	34.072		19.97	A	N
MOTA	3026	CA	GLN			27.490	20.446	35.016		20.20	A	C
ATOM	3027	CB	GLN			26.908	20.387	36.413		21.02	A	C
ATOM	3028	CG	GLN			26.155	21.620	36.805		22.32	A	C
ATOM	3029	CD	GLN			25.122	21.323	37.849		23.76	A	C
ATOM ATOM	3030 3031	OE1	GLN			25.320	20.443	38.713		21.20	A	0
ATOM						24.016	22.040	37.789		22.99	A	N
ATOM	3032 3033	С 0	GLN GLN			28.062 27.392	19.075 18.232	34.675		20.27	A	C
ATOM	3033	N	SER				18.232	34.057		19.75	A	0
ATOM	3034	CA	SER			29.294 29.869	17.491	35.099 35.033		20.30	A A	N C
ATOM	3036	CB	SER			31.393	17.538	35.212		20.55	A	C
ATOM	3037	OG	SER			32.042	18.067	34.072		19.34	A	0
ATOM	3038	C	SER			29.269	16.615	36.120		19.97	A	C
ATOM ·	3039	ō	SER			29.130	17.043	37.268		20.96	A	ō
ATOM	3040	N	GLY			28.980	15.362	35.775		19.80	A	И
ATOM	3041	CA	GLY			28.447	14.392	36.715		18.94	A	C
ATOM	3042	c	GLY			27.216	13.697	36.160		19.28	À	Č
		-										_

MOTA	3043	0	GLY	Α	409	27.026	13.646	34.940	1.00 18.32	A	0
MOTA	3044	N	THR	Α	410	26.350	13.224	37.058	1.00 18.72	A	N
MOTA	3045	CA	THR	A	410	25.226	12.396	36.678	1.00 18.26	A	С
ATOM	3046	CB	THR	Α	410	25.105	11.220	37.631	1.00 17.98	A	С
ATOM	3047		THR	A	410	26.334	10.466	37.637	1.00 16.34	A	
ATOM	3048	CG2			410	24.038	10.227	37.136	1.00 18.99	A	Č
MOTA	3049	C			410	23.923	13.183	36.687	1.00 18.19		Č
ATOM	3050	ō			410	23.510	13.735	37.718	1.00 18.85		ō
ATOM	3051	N			411	23.274	13.241	35.524	1.00 17.34	Ä	N
ATOM	3052	CA			411	21.942	13.783	35.430	1.00 17.34	À	C
ATOM	3053	CB			411						
ATOM		CG				21.731	14.459	34.067	1.00 16.84	A	C
	3054				411	22.286	15.869	34.025	1.00 16.33	A	C
ATOM	3055		TYR			21.458	16.953	34.156	1.00 16.27		C
ATOM	3056		TYR			21.956	18.231	34.131	1.00 16.41		C
MOTA	3057	CZ			411	23.319	18.438	33.994	1.00 17.03	A	C
ATOM	3058	OH			411	23.789	19.744	34.031	1.00 17.03	A	0
ATOM	3059		TYR			24.172	17.380	33.880	1.00 16.15	A	
MOTA	3060					23.660	16.099	33.889	1.00 17.36	A	C
MOTA	3061	С			411	20.956	12.627	35.606	1.00 16.14	A	C
MOTA	3062	0	TYR	Α	411	21.157	11.557	35.041	1.00 15.95	A	0
MOTA	3063	N	THR	Α	412	19.920	12.841	36.399	1.00 15.50	A	- N
MOTA	3064	CA	THR	Α	412	18.760	11.959	36.418	1.00 16.39	Α	С
MOTA	3065	СВ	THR	Α	412	18.107	12.037	37.808	1.00 16.73	A	C
MOTA	3066	OG1	THR	Α	412	19.041	11.544	38.783	1.00 ⁻ 16.43	A	0
MOTA	3067	CG2	THR	Α	412	16.877	11.115	37.946	1.00 18.16	A	С
MOTA	3068	C	THR	Α	412	17.764	12.397	35.344	1.00 16.26	A	С
MOTA	3069	0	THR	Α	412	17.404	13.568	35.286	1.00 15.84	A	0
ATOM	3070	N	VAL	A	413	17.313	11.444	34.516	1.00 16.67	A	N
ATOM	3071	CA	VAL	Α	413	16.342	11.672	33.452	1.00 15.75	A	С
ATOM	3072	CB	VAL	Α	413	16.924	11.246	32.066	1.00 16.41	A	С
ATOM	3073	CG1	VAL	Α	413	15.914	11.476	30.914	1.00 15.53		
ATOM	3074	CG2	VAL	A	413	18.240	11.946	31.773	1.00 15.42	· A	
ATOM	3075	C.	VAL	Α	413	15.134	10.811	33.791	1.00.16.95	A	
ATOM	3076	0	VAL	Α	413	15.232	9.574	33.667	1.00 18.21		
ATOM	3077	N	GLU	Α	414	14.040	11.439	34.256	1.00 16.21		Ŋ
ATOM	3078	CA	GLU	A	414	12.803	10.774	34.736	1.00 17.01		С
MOTA	3079	CB	GLU	Α	414	12.467	11.202	36.134	1.00 16.06		
ATOM	3080	CG			414	11.518	10.244	36.767	1.00 18.61		
ATOM	3081	CD			414	11.626	10.318	38.265	1.00 17.99		Ċ
ATOM	3082		GLU			11.212	11.334	38.830	1.00 20.38		
ATOM	3083		GLU			12.198	9.404	38.810	1.00 18.55		
ATOM	3084	C			414	11.715	11.142	33.729	1.00 16.05		
ATOM	3085	ō			414	11.428	12.301	33.528	1.00 15.27		
ATOM	3086	Ň			415	11.037	10.172	33.145	1.00 16.93		
ATOM	3087	CA			415	9.622	10.184	32.847	1.00 16.73		
ATOM	3088	CB			415	9.472	9.367	31.526	1.00 17.17		
ATOM	3089		VAL			8.168	9.660	30.813	1.00 16.00		
ATOM	3090		VAL			10.652	9.660		1.00 16.72		
ATOM	3091	C			415	8.540	9.769	33.787	1.00 16.72		
ATOM	3092	0								A	C
MOTA					415	8.463	8.634	34.185	1.00 16.19		
	3093	N			416	7.684	10.736	34.077	1.00 16.05		
ATOM	3094	CA			416	6.553	10.579	34.989	1.00 16.43		
ATOM	3095	CB			416	6.519	11.747	35.981	1.00 16.01		
ATOM	3096	CG			416	7.786	11.832	36.802	1.00 16.27		
ATOM	3097	CD			416	7.821	12.929	37.827	1.00 17.22		
MOTA	3098		GLN			6.912	13.762	37.905	1.00 16.47		
ATOM	3099		GLN			8.933	12.972	38.601	1.00 16.72		
ATOM	3100	С	ULD	Α	416	5.232	10.504	34.235	1.00 17.01	A	С

ATOM	3101	0	GLN	A	416	4.899	11388	33.440	1.00 16.94	A	0
ATOM	3102	N	ALA	A	417	4.461	9.462	34.522	1.00 17.66	A	N
ATOM	3103	CA	ALA	A	417	3.122	9.307	33.953	1.00 18.17	A	C
ATOM	3104	CB	ALA	Α	417	2.770	7.857	33.891	1.00 18.16	Α	C
ATOM	3105	C	ALA	Α	417	2.092	10.083	34.790	1.00 19.19	A	С
ATOM	3106	0	ALA	A	417	1.542	9.565	35.775	1.00 18.61	Α	0
MOTA	3107	N	TYR	A	418	1.859	11.338	34.437	1.00 19.27	A	N
ATOM	3108	CA	TYR	Α	418	0.944	12.153	35.234	1.00 20.10	A	С
ATOM	3109	CB	TYR	Α	418	0.985	13.618	34.803	1.00 20.65	A	С
ATOM	3110	CG	TYR	Α	418	0.021	14.496	35.570	1.00 23.36	Α	C
ATOM	3111	CD1	TYR	Α	418	0.255	14.818	36.908	1.00 26.20	Α	С
ATOM	3112	CE1	TYR	Α	418	-0.645	15.610	37.625	1.00 29.96	Α	С
MOTA	3113	cz	TYR	Α	418	-1.772	16.099	36.990	1.00 31.45	A	C
MOTA	3114	ОН	TYR	Α	418	-2.659	16.888	37.685	1.00 34.45	Α	0
ATOM	3115	CE2	TYR	Α	418	-2.018	15.804	35.652	1.00 29.32	Α	С
ATOM	3116	CD2	TYR			-1.123	15.002	34.957	1.00 26.35	Α	С
ATOM	3117	C	TYR	Α	418	-0.477	11.623	35.158	1.00 19.95	Α	С
MOTA	3118	0	TYR	Α	418	-1.142	11.445	36.190	1.00 19.83	A	0
ATOM	3119	N	ASN	Α	419	-0.928	11.332	33.945	1.00 19.39	Α	N
ATOM	3120	CA			419	-2.284	10.855	33.708	1.00 19.40	A	C
ATOM	3121	CB			419	-3.243	12.051	33.629	1.00 20.03	Α	C
ATOM	3122	CG			419	-4.705	11.625	33.611	1.00 21.53	A	Č
ATOM	3123		ASN			-5.094	10.758	34.354	1.00 23.42	A	ō
ATOM	3124		ASN			-5.493	12.212	32.727	1.00 22.67	A	N
ATOM	3125	С	ASN	Α	419	-2.374	10.079	32.402	1.00 19.75	A	С
ATOM	3126	0	ASN	Α	419	-2.186	10.646	31.317	1,00 19,24	A	ō
ATOM	3127	N			420	-2.703	8.795	32.486	1.00 19.24	A	N
MOTA	3128	CA	VAL			-2.744	7.948	31.295	1.00 18.57	A	C
ATOM	3129	CB			420	-1.533	6.986	31.288	1.00 18.55	A	Č
ATOM	3130		VAL			-1.504	6.086	30.040	1.00 17.15	A	C
ATOM	3131		VAL			-0.196	7.799	31.402	1.00 20.43	A	Č
ATOM	3132	C			420	-4.067	7.165	31.234	1.00 18.55	A	Ċ
ATOM	3133	ō			420		5.996			 A.	0 -
ATOM	3134	N			421	-5.132	7.816	30.776	1.00 18.79	A	N
ATOM	3135	CA			421	-6.444	7.169	30.635	1.00 19.54	A	C
ATOM	3136	CB			421	-7.397	8.324	30.288	1.00 19.65	A	Č
MOTA	3137	CG			421	-6.540	9.394	29.746	1.00 19.70	A	Ċ
ATOM	3138	CD			421	-5.175	9.239	30.396	1.00 18.68	A	č
ATOM	3139	C			421	-6.507	6.141	29.530	1.00 19.68	A	Ċ
ATOM	3140	Õ			421	-7.411	5.318	29.565	1.00 20.15	A	ō
ATOM	3141	N			422	-5.592	6.178	28.566	1.00 19.04	A	N
MOTA	3142	CA			422	-5.594	5.180	27.505	1.00 18.85	A	С
ATOM	3143	CВ			422	-5.990	5.781	26.146	1.00 18.35	A	c
MOTA	3144		VAL			-6.200	4.653	25.091	1.00 18.91	A	Ċ
ATOM	3145	CG2				-7.264	6.616	26.285	1.00 18.28	A	Č
ATOM	3146	C			422	-4.226	4.509	27.448	1.00 19.38	A	č
ATOM	3147	ō			422	-3.435	4.713	26.505	1,00 18.38	A	ō
ATOM	3148	N			423	-3.957	3.707		1.00 19.46	A	N
ATOM	3149	CA			423	-2.642	3.150	28.702	1.00 19.62	A	C
ATOM	3150	C			423	-2.510	1.665	28.496	1.00 19.72	A	Č
ATOM	3151	ō			423	-3.464	0.954	28.162	1.00 13.72	A	ō
ATOM	3152	N			424	-1.307	1.174	28.695	1.00 19.10	A	Ŋ
ATOM	3153	CA			424	-0.142	1.999	29.040	1.00 17.55	A	C
ATOM	3154	СВ			424	0.876	0.969	29.467	1.00 17.33	A	
ATOM	3155	CG			424	0.510	-0.258	28.696	1.00 19.87	A	C
MOTA	3156	CD			424	-0.988	-0.255	28.649	1.00 19.26	A	c
ATOM	3157	CD			424	0.396	2.842	27.899	1.00 15.26	A	C
ATOM	3158	0			424	0.396	2.642	26.733	1.00 15.87	A	0
	2230	_		~	727	0.036	2.000	20.133	1.00 1/.20	-	0

ATOM	3159	N	GLN	Α	425	1.248	3.798	28.239	1.00 15.38	A	N
ATOM	3160	CA	GLN	A	425	1.848	4.678	27.240	1.00 14.36	A	C
ATOM	3161	CB	GLN	A	425	1.507	6.140	27.559	1.00 14.88	A	C
MOTA	3162	CG	GLN	A	425	2.070	7.202	26.576	1.00 14.70	A	С
ATOM	3163	CD	GLN	A	425	1.512	7.043	25.180	1.00 16.71	A	C
ATOM	3164	OE1	GLN	A	425	0.321	7.321	24.956	1.00 15.27	A	0
ATOM	3165	NE2	GLN	Α	425	2.349	6.580	24.235	1.00 11.93	A	N
MOTA	3166	С	GLN	Α	425	3.341	4.470	27.252	1.00 13.10	A	C
MOTA	3167	0	GLN	Α	425	3.987	4.662	28.283	1.00 12.18	A	0
MOTA	3168	N	THR	A	426	3.887	4.036	26.112	1.00 12.88	A	N
ATOM	3169	CA	THR	Α	426	5.320	4.008	25.913	1.00 12.90	A	С
ATOM	3170	CB	THR	A	426	5.737	2.949	24.890	1.00 12.37	А	С
ATOM	3171	OG1	THR	Α	426	5.134	3.254	23.626	1.00 12.70	A	0
ATOM	3172	CG2	THR	A	426	5.232	1.573	25.283	1.00 13.56	A	C
MOTA	3173	C	THR	A	426	5.796	5.370	25.413	1.00 13.16	A	С
ATOM	3174	0	THR	A	426	4.986	6.223	25.037	1.00 14.38	A	0
ATOM	3175	N	PHE	Α	427	7,115	5.551	25.401	1.00 12.86	A	N
ATOM	3176	CA	PHE	Α	427	7.741	6.823	25.036	1.00 12.44	A	С
ATOM	3177	CB	PHE	Α	427	7.802	7.778	26.240	1.00 12.42	A	С
ATOM	3178	CG	PHE	Α	427	8.612	7.235	27.366	1.00 12.82	A	С
ATOM	3179	CD1	PHE	A	427	9.988	7.361	27.365	1.00 15.21	· A	С
ATOM	3180	CEl	PHE	Α	427	10.768	6.801	28.381	1.00 15.74	A	С
ATOM	3181	CZ	PHE	Α	427	10.161	6.102	29.408	1.00 14.88	A	С
ATOM	3182	CE2	PHE	Α	427	8.766	5.987	29.427	1.00 16.39	А	C
ATOM	3183	CD2	PHE	Α	427	8.000	6.538	28.407	1.00 14.33	A	С
MOTA	3184	С	PHE	Α	427	9.149	6.532	24.549	1.00 12.14	A	С
ATOM	3185	0	PHE	Α	427	9.694	5.444	24.807	1.00 11.55	A	0
ATOM	3186	N	SER	Α	428	9.721	7.523	23.867	1.00 11.59	A	N
ATOM	3187	CA	SER	Α	428	11.116	7.528	23.480	1.00 11.99	A	С
ATOM	3188	CB	SER	Α	428	11.292	7.463	21.965	1.00 12.17	A	С
ATOM	3189	OG			428	10.837	6.219	21.442	1.00 12.32	A	0
ATOM	3190	С	SER	Α	428	11.804	B.776	24.031	1.00 12.57	A	С
MOTA	3191	0			428				1.00 11.91	. A	0 -
ATOM	3192	N	LEU	Α	429	13.103	8.620	24.278	1.00 12.35	A	N
ATOM	3193	CA			429	13.950	9.712	24.714	1.00 12.57	A	С
ATOM	3194	CB	LEU	Α	429	14.508	9.476	26.135	1.00 12.84	A	С
ATOM	3195	CG	LEU	Α	429	13.542	9.648	27.296	1.00 13.77	A	С
MOTA	3196	CD1	LEU	Α	429	14.046	8.907	28.520	1.00 15.69	A	С
ATOM	3197	CD2	LEU	Α	429	13.348	11.110	27.609	1.00 15.64	A	С
ATOM	3198	С	LEU	Α	429	15.098	9.756	23.768	1.00 11.82	A	С
ATOM	3199	0	LEU	Α	429	15.593	8.707	23.372	1.00 11.44	A	0
ATOM	3200	N	ALA	A	430	15.532	10.957	23.405	1.00 11.55	A	N
ATOM	3201	CA	ALA	Α	430	16.805	11.139	22.699	1.00 11.87	А	С
MOTA	3202	CB	ALA	A	430	16.581	11.528	21.235	1.00 12.63	A	С
MOTA	3203	C	ALA	A	430	17.613	12.215	23.404	1.00 12.76	A	С
ATOM	3204	0	ALA	Α	430	17.072	13.256	23.776	1.00 12.14	A	0
ATOM	3205	N	ILE	Α	431	18.907	11.943	23.584	1.00 12.52	A	N
ATOM	3206	CA	ILE	Α	431	19.813	12.835	24.287	1.00 13.32	А	С
ATOM	3207	CB			431	20.325	12.179	25.593	1.00 13.00	A	С
ATOM	3208		ILE			19.175	11.882	26.542	1.00 14.30	A	C
ATOM	3209		ILE			19.575	11.061	27.776	1.00 16.21	A	Č
ATOM	3210		ILE			21.292	13.123	26.288	1.00 14.86	A	C
MOTA	3211	C			431	21.005	13.176	23.392	1.00 12.92	A	Ċ
ATOM	3212	ō			431	21.728	12.288	22.937	1.00 11.26	A	ō
ATOM	3213	N			432	21.192	14.464	23.134	1.00 13.80	A	N
ATOM	3214	CA			432	22.387	14.966	22.483	1.00 15.20	Ā	C
ATOM	3215	CB			432	22.028	15.996	21.387	1.00 15.89	A	Č
ATOM	3216		VAL			23.293	16.591	20.809	1.00 15.25	A	Č
											•

A	TOM	3217	CG2	VAL	Α	432	21.167	15.361	20.293	1.00	15.39	Ą	С
A	MOT	3218	С	VAL	A	432	23.346	15.634	23.498	1.00	16.38	A	C
A	TOM	3219	0	VAL	A	432	22.923	16.472	24.298	1.00	16.49	A	0
A	MOT	3220	N	HIS	Α	433	24.633	15.257	23.458	1.00	17.45	A	N
A	TOM	3221	CA	HIS	Α	433	25.669	15.872	24.306	1.00	18.55	A	C
A	MOT	3222	CB	HIS	Α	433	25.637	15.240	25.711	1.00	19.21	A	C
A	MOT	3223	CG	HIS	A	433	26.553	15.885	26.707	1.00	19.32	A	С
A	MOT	3224	ND1	HIS	Α	433	26.497	17.233	27.015	1.00	18.22	A	N
A	MOT	3225	CE1	HIS	Α	433	27.378	17.497	27.969	1.00	18.90	A	С
A	MOT	3226	NE2	HIS	A	433	27.999	16.380	28.289	1.00	16.51	A	N
A	MOT	3227	CD2	HIS	Α	433	27.502	15.353	27.513	1.00	17.65	A	С
. A	MOT	3228	С	HIS	Α	433	27.031	15.627	23.684	1.00	19.74	Α	С
A	MOT	3229	0	HIS	A	433	27.664	16.546	23.133	1.00	21.68	A	0
A	MOT	3230	OXT	HIS	A	433	27.463	14.480	23.735	1.00	19.29	. А	0
T	ER	3230		HIS	A	433							
H	MTATE	3231	CA	CA	Α	601	15.429	35.876	3.369	1.00	16.92	A	CA
Н	ETATM	3232	CA	CA	Α	602	3.346	16.597	30.346		13.45	A	CA
Н	ETATM	3233	ÇA	CA	Α	603	9.615	28.353	34.891	1.00	17.30	A	CA
A	TOM	3234	N	ASP	В	16	3.955	53.303			49.01	В	N
A	TOM	3235	CA	ASP	В	16	4.171	51.870	-9.771		49.32	В	C
A	TOM	3236	СВ	ASP	В	16	5.553		-10.270		49.78	В	C
Α	MOT	3237	CG	ASP	В	16	6.176		-11.248	1.00	52.12	В	Ċ
A	MOT	3238	ODl	ASP	В	16	5.667		-12.399		54.86	В	ō
A	MOT	3239	OD2	ASP	В	16	7.151		-10.957		52.51	В	ŏ
А	TOM	3240	C	ASP	В	16	4.009	51.690	-B.232		48.45	В	Č
	TOM	3241	0	ASP		16	4.793	50.996	-7.567		47.87	В	Õ
	TOM	3242	N	ARG		17	2.959	52.301	-7.687		47.87	В	N
	TOM	3243	CA	ARG		17	2.863	52.592	-6.247		47.30	В	Ċ
	TOM	3244	СВ	ARG		17	2.430	54.064	-6.059		46.77	В	Č
	TOM	3245	CG	ARG		17	3.107	55.055	-7.028		44.50	В	č
	TOM	3246	CD	ARG		17	2.860	56.528	-6.691		39.98	В	C
A	TOM	3247	NE	ARG		17	3.266	56.891	-5.335		33.05	В	N
		3248	CZ	ARG		17	4.483	57.334			29.36	В	Ĉ
Α	TOM	3249		ARG		17	5.440	57.459	-5.915		28.07	В	Ŋ
	TOM	3250		ARG		17	4.752	57.650	-3.740	1.00	24.57	В	N
	MOT	3251	С	ARG		17	1.917	51.699	-5.415		48.01	В	Ċ
	MOT	3252	Ó	ARG		17	1.463	52.120	-4.342		47.42	• в	ō
	TOM	3253	N	HIS		18	1.616	50.486	-5.885		48.51	В	N
	TOM	3254	CA	HIS		18	0.770	49.573	-5.108		48.98	В	C
	TOM	3255	СВ	HIS		18	0.515	48.266	-5.875		49.29	В	Ċ
Α	TOM.	3256	CG	HIS		18	-0.510	48.388	-6.961	1.00	50.05	В	č
Α	TOM.	3257		HIS		18	-0.195	48.803	-8.238	1.00	51.24	В	N
	TOM	3258		HIS		18	-1.291	48.814	-8.979	1.00	51.27	В	C
	TOM.	3259		HIS		18	-2.305	48.419	-8.228	1.00	50.69	В	Ŋ
Α	TOM	3260		HIS		18	-1.844	48.147	-6.962	1.00	50.64	B	Ĉ
	TOM	3261	С	HIS		18	1.429	49.229	-3.770		49.16	В	C
	TOM	3262	O	HIS		18	2.598	48.822	-3.738		49.03	В	ō
	TOM	3263	N	ASN	_	19	0.690	49.386	-2.667		49.15	В	Ŋ
	TOM	3264	CA	ASN		19	1.167	48.868	-1.384		49.11	В	c
	TOM	3265	СВ	ASN		19	0.276	49.313	-0.205		49.60	В	č
	TOM	3266	CG	ASN		19	0.951	49.099	1.176		51.24	В	c
	TOM	3267		ASN		19	0.415	48.415	2.058		53.59	В	0
	TOM	3268		ASN		19	2.123	49.705	1.363		54.56	В	Ŋ
	TOM	3269	C	ASN		19	1.241	47.332	-1.459		48.22	В	C
	TOM	3270	Õ	ASN		19	0.443	46.685	-2.138		47.43	В	0
	TOM	3271	N	LEU		20	2.221	46.772	-0.762		47.20		
	TOM	3272	CA	LEU		20	2.393	45.772	-0.689		46.38	В	N
		3273	CB	LEU		20			-0.689		46.38	В	C
-	- 0	2213	CD	TIE (В	20	3.743	45.000	-0.055	1.00	40.9/	В	C

MOTA	3274	CG	LEU	В	20	4.896	45.800	-0.684	1.00 48.40	В	C
MOTA	3275	CD1	LEU	В	20	6.201	45.666	0.117	1.00 49.54	В	С
ATOM	3276	CD2	LEU	В	20	5.076	45.391	-2.158	1.00 48.69	В	С
ATOM	3277	С	LEU	В	20	1.235	44.792	0.141	1.00 44.75	В	C
MOTA	3278	0	LEU		20	1.113	45.092	1.342	1.00 45.26	В	0
MOTA	3279	N	LYS	В	21	0.338	44.073	-0.523	1.00 41.97	В	N
MOTA	3280	CA	LYS	В	21	-0.740	43.395	0.170	1.00 39.98	В	С
MOTA	3281	CB	LYS	В	21	-2.088	44.025	-0.183	1.00 40.54	В	С
ATOM	3282	CG	LYS	В	21	-3.225	43.550	0.700	1.00 41.63	В	С
MOTA	3283	CD	LYS	В	21	-4.257	44.620	0.878	1.00 43.44	В	C
ATOM	3284	CE	LYS	В	21	-5.391	44.131	1.718	1.00 44.82	В	С
MOTA	3285	NZ	LYS	В	21	-4.992	44.004	3.147	1.00 47.17	В	N
ATOM	3286	C	LYS	В	21	-0.710	41.917	-0.214	1.00 37.09	В	С
ATOM	3287	0	LYS	В	21	-0.679	41.588	-1.395	1.00 35.80	В	0
ATOM	3288	N	THR	В	22	-0.685	41.045	0.796	1.00 33.91	В	N
ATOM	3289	CA	THR	В	22	-0.642	39.592	0.593	1.00 31.44	B	C
ATOM	3290	CB	THR	В	22	0.734	39.046	1.030	1.00 31.70	В	C
ATOM	3291	OG1	THR	В	22	1.002	39.436	2.387	1.00 31.47	В	0
ATOM	3292	CG2	THR	В	22	1.857	39.681	0.211	1.00 31.30	В	C
MOTA	3293	С	THR	В	22	-1.739	38.843	1.342	1.00 29.57	В	C
ATOM	3294	0	THR	В	22	~1.830	37.617	1.246	1.00 28.17	В	0
ATOM	3295	N	GLU	В	23	-2.542	39.576	2.107	1.00 27.46	В	N
MOTA	3296	CA	GLU	В	23	-3.672	39.011	2.828	1.00 27.22	В	С
ATOM	3297	CB 2	BGLU	В	23	-3.280	38.728	4.282	0.50 27.51	В	C
MOTA	3298	CB 2	AGLU	В	23	-3.287	38.646	4.277	0.50 27.17	В	C
ATOM	3299	CG 1	BGLU	В	23	~2.826	37.304	4.512	0.50 29.10	В	C
MOTA	3300	CG 2	AGLU	В	23	-3.050	39.822	5.223	0.50 27.55	В	C
MOTA	3301	CD :	BGLU	В	23	-2.236	37.062	5.891	0.50 30.84	В	С
MOTA	3302	CD 7	AGLU	В	23	-3.020	39.396	6.689	0.50 28.07	В	C
MOTA	3303	OE1	BGLU	В	23	-1.959	38.040	6.614	0.50 32.02	В	0
MOTA	3304	OE1	AGLU	В	23	-2.853	38.186	6.954	0.50 28.41	В	0
ATOM	3305		BGLU		23	-2.054	35.879	6.241	0.50 31.16	В	0
ATOM	3306		AGLU		23	-3.182	40.264	7.579	0.50 28.60	В	0 -
ATOM	3307	C	GLU		23	-4.842	39.988	2.799	1.00 25.94	. В	C
ATOM	3308	0	GLU		23	-4.631	41.199	2.805	1.00 25.17	. В	0
ATOM	3309	N	TRP		24	-6.065	39.462	2.765	1.00 24.57	В	N
ATOM	3310	CA	TRP		24	-7.264	40.300	2.708	1.00 23.89	В	C
ATOM	3311	CB	TRP		24	- 7 .910	40.174	1.304	1.00 23.59	В	С
ATOM	3312	CG	TRP		24	-7.105	40.786	0.245	1.00 21.71	В	C
ATOM	3313	CD1			24	-7.232	42.050	-0.239	1.00 21.02	В	С
ATOM	3314	NE1			24	-6.293	42.276	-1.211	1.00 18.62	В	N
ATOM	3315	CE2			24	-5.544	41.148	-1.396	1.00 19.02	В	Ç
ATOM	3316	CD2			24	-6.006	40.190	-0.480	1.00 20.72	В	С
MOTA	3317	CE3			24	-5.387	38.941	-0.454	1.00 19.49	В	С
ATOM	3318	CZ3	TRP		24	-4.326	38.694	-1.313	1.00 20.25	В	C
ATOM	3319	CH2	TRP		24	-3.883	39.662	-2.207	1.00 21.63	В	С
ATOM	3320	CZ2		_	24	-4.477	40.911	-2.257	1.00 22.09	В	С
ATOM	3321	C	TRP		24	-8.294	39.948	3.789	1.00 23.91	В	С
ATOM	3322	0	TRP		24	-9.369	39.456	3.467	1.00 22.74	В	0
ATOM	3323	N	PRO		25	-7.986	40.196	5.070	1.00 24.64	В	N
ATOM	3324	CA	PRO		25	-8.918	39.850	6.161	1.00 25.12	В	C
MOTA	3325	CB	PRO		25	-8.176	40.312	7.448	1.00 25.87	В	C
ATOM	3326	CG	PRO		25	-7.011	41.163	7.002	1.00 26.08	В	С
ATOM	3327	CD	PRO		25	-6.737	40.807	5.562	1.00 25.49	В	С
ATOM	3328	C	PRO		25	-10.307	40.520	6.029	1.00 25.18	В	C
ATOM	3329	0	PRO		25	-11.310	39.978	6.469	1.00 24.94	В	0
ATOM	3330	N	GLU		26	-10.350	41.668	5.364	1.00 25.43	В	N
ATOM	3331	CA	GLU	В	26	-11.581	42.416	5.141	1.00 25.93	В	C

ATOM	3332	CB	GLU	В	26	-11.243	43.829	4.627	1.00	26.70		В	С
ATOM	3333	CG	GLU	В	26	-10.690	43.922	3.189	1.00	28.62		В	С
MOTA	3334	CD	GLU	В	26	-9.169	43.775	3.077	1.00	29.61		В	C
ATOM	3335	OE1	GLU	В	26	-8.535	43.174	3.985	1.00	28.68		В	0
MOTA	3336	OE2	GLU	В	26	-8.608	44.252	2.057	1.00	31.71		В	0
ATOM	3337	С	GLU	В	26	-12.571	41.705	4.193	1.00	25.60		В	С
ATOM	3338	0	GLU		26	-13.746	42.060	4.139	1.00	24.75		В	0
MOTA	3339	N	LEU		27	-12.119	40.672	3.483	1.00	24.52	•	В	N
ATOM	3340	CA	LEU		27	-12.957	40.024	2.483	1.00	23.54		В	C
ATOM	3341	CB	LEU		27	-12.104	39.593	1.287	1.00	23.84		В	С
ATOM	3342	CG	LEU		27	-11.506	40.722	0.430		23.08		В	С
ATOM	3343		LEU		27	-10.702	40.165	-0.732		22.31		В	С
ATOM	3344		LEU		27	-12.603	41.624	-0.097		23.37		В	С
ATOM	3345	C	LEU		27	-13.716	38.829	3.042		23.75		В	C
ATOM	3346	0	LEU		27	-14.504	38.205	2.334		23.33		В	0
ATOM	3347	N	VAL		28	-13.490	38.504	4.312		23.89		В	N
ATOM	3348	CA.	VAL		28	-14.143	37.357	4.918		24.64		В	С
ATOM	3349	CB	VAL		28	-13.571	37.050	6.359		24.78		В	C
ATOM	3350		VAL		28	-14.359	35.963	7.027		25.39		В	C
ATOM ATOM	3351 3352		VAL VAL		28	-12.099	36.634	6.272		25.78		В	C
ATOM	3353	C O	VAL		28 28	-15.612	37.694	4.992		24.75		В	C
ATOM	3354	Ŋ	GLY		29	-15.952 -16.468	38.791 36.797	5.424		25.68		В	0
ATOM	3355	CA	GLY		29	-17.916	37.000	4.516		24.86 24.80		В	N C
ATOM	3356	C	GLY		29	-18.493	37.638	4.539 3.274		25.07		B B	C
ATOM	3357	ò	GLY		29	-19.692	37.598	3.274		25.27		В	0
ATOM	3358	N	LYS		30	-17.630	38.203	2.429		25.21		В	N
ATOM	3359	CA	LYS		30	-18.025	38.782	1.146		24.62		В	C
ATOM	3360	CB	LYS		30	-16.952	39.780	0.679		25.65		В	c
ATOM	3361	CG	LYS		30	-16.716	40.964	1.606		28.42		В	Č
ATOM	3362	CD	LYS		30	-16.577	42.245	0.785		34.26		В	C
ATOM	3363	CE	LYS		30	-16.462	43.527	1.631		35.92		В	Č
ATOM	3364	NZ	LYS		30	-15.996	43.273	3.011		37.72		В	N
ATOM	3365	C	LYS		30	-18.188	37.728	0.065		23.30		В	Ĉ
ATOM	3366	Ο.	LYS		30	-17.670	36.623	0.166		22.29		В	ŏ
ATOM	3367	N	SER	В	31	-18.884	38.089	-1.001		21.94		В	N
ATOM	3368	CA	SER		31	-19.036	37.204	-2.145		20.89		В	C
ATOM	3369	CB	SER	В	31	-20.046	37.776	-3.143		21.21		В	C
ATOM	3370	OG	SER	В	31	-19.519	38.912	-3.815		20.40		В	Ō
MOTA	3371	С	SER	В	31	-17.726	37.017	-2.865	1.00	19.88		В	С
ATOM	3372	0	SER	В	31	-16.828	37.843	-2.800	1.00	18.67		В	0
MOTA	3373	N	VAL	В	32	-17.649	35.920	-3.588	1.00	20.34		В	N
MOTA	3374	CA	VAL	В	32	~16.487	35.617	-4.393	1.00	20.89		В	C
ATOM	3375	CB E	JAV	В	32	-16.717	34.256	-5.141	0.50	20.94		В	С
MOTA	3376		<i>LAV</i>		32	-16.555	34.234	-5.043	0.50	21.07		В	С
ATOM	3377	CG1E	JAVE	В	32	-16.023	34.221	-6.524	0.50	20.85		В	C
MOTA	3378		AVAL		32	-17.648 ·	34.180	-6.069	0.50	20.79		В	C
MOTA	3379	CG21	JAV	В	32	-16.276	33.087	-4.281	0.50	20.73		В	С
MOTA	3380	CG23	AVAL	В	32	-15.193	33.903	-5.657	0.50	21.36		В	С
MOTA	3381	C	VAL		32	-16.238	36.732	-5.431	1.00	20.83		В	С
MOTA	3382	0	VAL		32	-15.100	37.105	-5.681		20.37		В	0
MOTA	3383	N	GLU		33	-17.316	37.263	-6.011	1.00	21.19		В	N
MOTA	3384	CA	GLU		33	-17.205	38.264	-7.072	1.00	21.20		В	С
MOTA	3385	CB	GLU		33	-18.553	38.478	-7.767	1.00	21.59		В	С
MOTA	3386	CG	GLU		33	-19.045	37.271	-8.543	1.00	24.67		В	C
MOTA	3387	CD	GLU		33	-19.799	36.219	-7.708	1.00	29.01		В	С
MOTA	3388		GLU		33	-20.001	35.123	-8.275		36.54		В	0
ATOM	3389	OE2	GLU	В	33	-20.187	36.437	-6.517	1.00	27.7B		В	0

ATOM	3390	С.	GLU	В	33	-16.688	39.571	-6.497	1.00	20.62	E	3 C
ATOM	3391	0	GLÜ	В	33	-15.885	40.255	-7.130	1.00	20.20	E	
MOTA	3392	N	GLU	В	34	-17.124	39.910	-5.283	1.00	20.61	E	N N
ATOM	3393	CA	GLU	В	34	-16.627	41.131	-4.634	1.00	20.97	E	
ATOM	3394	CB	GLU	В	34	-17.456	41.533	-3.407	1.00	21.10	E	3 C
ATOM	3395	CG	GLU	В	34	-18.778	42.224	-3.722	1.00	25.82	F	3 C
MOTA	3396	CD	GLU	В	34	-18.615	43.546	-4.481	1.00	31.16	E	3 C
MOTA	3397		GLU		34	-17.968	44.484	-3.932	1.00	32.84	E	3 0
ATOM	3398		GLU		34	-19.135	43.645	-5.626	1.00	33.71	E	
ATOM	3399	С	GLU		34	-15.156	40.951	-4.257	1.00	19.67	E	3 C
ATOM	3400	0	GLU		34	-14.340	41.858	-4.438		18.91	E	3 0
MOTA	3401	N	ALA		35	-14.809	39.775	-3. 76 5		19.75	Ė	
ATOM	3402	CA	ALA		35	-13.414	39.485	-3.401		19.10	E	
ATOM	3403	CB	ALA		35	-13.311	38.127	-2.749	_	19.66	E	_
MOTA	3404	C	ALA		35	-12.457	39.581	-4.582		18.90	E	
ATOM	3405	0	ALA		35	-11.387	40.183	-4.470		18.82	E	
ATOM	3406	N	LYS		36	-12.839	38.993	-5.716		18.68	E	
ATOM	3407	CA	LYS		36	-11.991	38.978	-6.894		18.17	Ē	
ATOM	3408	CB	LYS		36	-12.659	38.220	-8.063		18.44	E	
ATOM	3409	CG	LYS		36	-12.714	36.693	-7.928		19.56	E	
ATOM ATOM	3410	CD CE	LYS		36	-13.304	36.026	-9.159		20.72	E	
ATOM	3411 3412	NZ	LYS		36 36	-13.194	34.496	-9.136		22.32	E	
ATOM	3413	C	LYS		36	-13.963 -11.648	40.406	-10.274 -7.316		20.54	E	
ATOM	3414	0	LYS		36	-10.500	40.406	-7.516		17.81	E	
ATOM	3415	N	LYS		37	-12.614	41.316	-7.254		17.52	E	
ATOM	3416	CA	LYS		37	-12.345	42.667	-7.746		17.32	E	
ATOM	3417	CB	LYS		37	-13.621	43.519	-7.870		17.35	E	
ATOM	3418	CG	LYS		37	-14.544	43.165	-9.036		17.43	Ē	
ATOM	3419	CD	LYS		37	-15.847	44.074	-9.064		15.06	E	
ATOM	3420	CE	LYS		37	-16.801	43.812	-7.921		16.48	Ē	
MOTA	3421	NZ	LYS		37	-18.031	44.685	-7.989		15.66	E	
MOTA	3422	C	LYS		37	-11.333	43.372	•		18.04	E	
ATOM	3423	0	LYS	В	37	-10.499	44.126	-7.354		18.33	E	
MOTA	3424	N	VAL	В	38	-11.436	43.174	-5.535	1.00	17.93	E	
ATOM	3425	CA	VAL	В	38	-10.525	43.824	-4.595	1.00	18.53	. 1	з с
ATOM	3426	CB	VAL	В	38	-11.024	43.636	-3.136	1.00	19.32	E	3 C
ATOM	3427	CG1	VAL	B	38	-9.975	44.055	-2.128	1.00	21.52	E	3 C
MOTA	3428	CG2	VAL	B	38	-12.310	44.445	-2.919	1.00	20.73	E	
ATOM	3429	С	VAL	В	38	-9.122	43.270	-4.742	1.00	18.91	E	C C
ATOM	3430	0	VAL		38	-8.135	44.013	-4.797	1.00	17.79	E	3 0
ATOM	3431	N	ILE		39	-9.033	41.947	-4.830	1.00	19.11	E	
ATOM	3432	CA	ILE		39	-7.747	41.304	-5.009		19.64	E	
ATOM		CB	ILE		39	-7.919	39.764	-4.973		19.43	E	
MOTA	3434		ILE		39	-8.288	39.324	-3.573		20.37	E	
MOTA	3435		ILE		39	-8.994	37.995	-3.564		21.36	E	
ATOM	3436		ILE		39	-6.657	39.024	-5.470		19.76	Ę	_
MOTA	3437	-	ILE	_	39	-7.077		-6.287		19.71	E	
MOTA	3438	0	ILE		39	-5.877	42.087	-6.266		19.70	E	
ATOM ATOM	3439	N	LEU		40	-7.816		-7.404		19.22		3 N
ATOM	3440	CA	LEU		40	-7.205	42.231			19.62	E	
ATOM	3441 3442	CB CG	LEU		40	-8.100	41.927	-9.888		19.18	E	
ATOM		CD1			40 40	-8.145 -9.235		-10.190		20.23	E	
ATOM	3444		LEU		40	-9.235 -6.799		-11.123 -10.725		19.43 21.26	E	
ATOM	3444	CD2	LEU		40	-6.840					E	
ATOM	3446		LEU		40	-5.939	43.716 44.144	-8.608 -9.300		19.20 19.48	E E	
ATOM	3447	N	GLN		41	-7.553		-9.300 -7.803		19.48	E	
	,			_			,	,	-			, 47

ATOM	3448	CA	GLN	В	41	-7.216	45.914	-7.622	1.00	20.69	2	з с	
ATOM	3449	CB	GLN	В	41	-8.286	46.641	-6.813	1.00	20.30	1	з с	
ATOM	3450	CG	GLN	В	41	-8.068	48.173	-6.731	1.00	20.90	1	3 C	
ATOM	3451	CD	GLN	В	41	-8.159	48.842	-8.083	1.00	21.54	J	3 C	
ATOM	3452	OE1	GLN	В	41	-9.070	48.529	-8.858	1.00	23.88	1	3 0	
MOTA	3453	NE2	GLN	В	41	-7.224	49.762	-8.384	1.00	20.95	1	3 N	
ATOM	3454	C	GLN	В	41	-5.880	46.050	-6.906	1.00	22.10	1	3 C	
ATOM	3455	0	GLN	В	41	-5.105	46.941	-7.213	1.00	22.64]	3 0	
ATOM	3456	N	ASP	В	42	-5.625	45.149	-5.955	1.00	22.70	1	3 N	
MOTA	3457	CA	ASP	В	42	-4.396	45.178	-5.161	1.00	23.28	1	3 C	
ATOM	3458	CB	ASP	В	42	-4.654	44.531	-3.800	1.00	22.77	1	3 C	
ATOM	3459	CG	ASP	В	42	-5.531	45.369	-2.928	1.00	24.12	1	з с	
ATOM	3460	OD1	ASP	В	42	-5.619	46.599	-3.174	1.00	27.20	1	3 0	
ATOM	3461	OD2	ASP	В	42	-6.206	44.899	-1.991	1.00	25.78	1	3 0	
ATOM	3462	С	ASP	В	42	-3.273	44.438	-5.859	1.00	23.19	1	з с	
MOTA	3463	0	ASP	В	42	-2.103	44.761	-5.700	1.00	24.27	3	3 0	
ATOM	3464	N	LYS	В	43	-3.629	43.444	-6.655	1.00	22.96]	3 N	
ATOM	3465	CA	LYS	В	43	-2.634	42.541	-7.203	1.00	23.10	1	3 C	
ATOM	3466	CB	LYS	В	43	-2.508	41.291	-6.299	1.00	23.07	3	з с	
MOTA	3467	CG	LYS	В	43	-1.376	40.306	-6.701	1.00	23.16	3	з с	
ATOM	3468	CD	LYS	В	43	-1.348	39.100	-5.750	1.00	24.15	3	3 C	
ATOM	3469	CE	LYS	В	43	-0.391	37.996	-6.217	1.00	25.40	1	з с	
ATOM	3470	NZ	LYS	В	43	1.031	38.403	-6.170	1.00	25.72		3 N	
ATOM	3471	C	LYS	В	43	~3.067	42.157	-8.593	1.00	23.00	1	з с	
MOTA	3472	0	LYS	В	43	-3.672	41.107	-8.782	1.00	22.17	3	3 0	
MOTA	3473	N	PRO	В	44	-2.772	43.010	-9.571	1.00	24.07]	3 N	
MOTA	3474	CA	PRO	В	44	-3.282	42.826	-10.948	1.00	24.35	3	в с	
ATOM	3475	CB	PRO	В	44	-2.632	43.985	-11.735	1.00	24.65	3	3 C	
ATOM	3476	CG	PRO	В	44	-2.197	44.997	-10.702	1.00	25.50	1	3 C	
ATOM	3477	CD	PRO	В	44	-1.960	44.238	-9.415	1.00	24.73	1	з с	
MOTA	3478	С	PRO	В	44	-2.929	41.486	-11.5B3	1.00	24.65	3	з с	
ATOM	3479	0	PRO	В	44	-3.680	40.967	-12.409	1.00	25.49	1	3 0	
ATOM	3480	N	GLU	В	45	-1.778	40.935 -	-11.206·	1.00	25.20	.]	3 N	
MOTA	3481	CA	GLU	В	45	-1.310	39.651	-11.725	1.00	25.70	3	3 C	
MOTA	3482	CB	GLU	В	45	0.226	39.599	-11.602	1.00	26.83	3	3 C	
MOTA	3483	CG	GLU	В	45	0.764	39.243	-10.206	1.00	28.74	1	3 C	
MOTA	3484	CD	GLU	В	45	0.925	40.423	-9.262	1.00	32.92]	3 C	
MOTA	3485	OE1	GLŲ	В	45	1.667	40.252	-8.253	1.00	34.10]	3 0	
MOTA	3486	OE2	GLU	В	45	0.316	41.511	-9.488	1.00	33.16	1	3 0	
MOTA	3487	C	GLU	В	45	-1.945	38.404	-11.048	1.00	25.32]	3 C	
MOTA	3488	0	GLU	В	45	-1.679	37.270	-11.452	1.00	25.52]	3 0	
MOTA	3489	N	ALA	В	46	-2.788	38.593	-10.034	1.00	24.59	1	3 N	
MOTA	3490	CA	ALA	В	46	-3.327	37.441	-9.309	1.00	23.90]	3 C	
MOTA	3491	CB	ALA	В	46	-4.271	37.895	-8.229	1.00	23.95	1	3 C	
MOTA	3492	C	ALA	В	46	-4.015	36.426	-10.216	1.00	23.75	1	3 C	
MOTA	3493	0	ALA	В	46	-4.777	36.788	-11.103	1.00	22.67	1	3 0	
MOTA	3494	N	GLN	В	47	-3.717	35.150	-9.982	1.00	23.77]	3 N	
MOTA	3495	CA	GLN	В	47	-4.438	34.035	-10.568	1.00	24.59	1	3 , C	
MOTA	3496	CB	GLN	В	47	-3.479	32.976	-11.105	1.00	25.29	3	з с	
MOTA	3497	CG	GLN	В	47	-2.425	33.498	-12.080	1.00	28.88	1	3 C	
ATOM	3498	CD	GLN		47	-3.025	33.975	-13.393	1.00	35.56	1	з с	
MOTA	3499	OE1	GLN	В	47	-3.624	33.176	-14.144	1.00	40.01	1	3 0	
ATOM	3500	NE2	GLN	В	47	-2.869	35.278	-13.686	1.00	38.46	1	N E	
MOTA	3501	C	GLN		47	-5.298	33.425	-9.460		23.84	1	3 С	
ATOM	3502	0	GLN	В	47	-4.786	32.790	-8.517	1.00	24.12	1	3 0	
MOTA	3503	N	ILE	В	48	-6.597	33.644	-9.559	1.00	22.91	1	3 N	
MOTA	3504	CA	ILE	В	48	-7.502	33.329	-8.463	1.00	23.01	1	з с	
MOTA	3505	CB	ILE	В	48	-8.486	34.462		1.00	22.88]	з с	

MOTA	3506	CG1	ILE	В	48	-7.708	35.747	-7.988	1.00 22.10	В	С
MOTA	3507	CD1	ILE	В	48	-8.568	36.992	-7.917	1.00 22.38	В	C
ATOM	3508	CG2	ILE	В	48	-9.391	34.161	-7.036	1.00 21.57	В	C
ATOM	3509	C	ILE	В	48	-8.230	32.047	-8.746	1.00 23.69	В	С
ATOM	3510	0	ILE	В	48	-8.685	31.820	-9.877	1.00 23.31	В	0
MOTA	3511	N	ILE	В	49	-8.277	31.206	-7.716	1.00 23.55	В	N
ATOM	3512	CA	ILE	В	49	-8.894	29.894	-7.746	1.00 24.95	В	C
ATOM	3513	CB	ILE	В	49	-7.803	28.812	-7.480	1.00 26.22	В	C
ATOM	3514	CG1	ILE	В	49	-6.723	28.868	-8.575	1.00 29.02	В	С
MOTA	3515	CD1	ILE	В	49	-7.264	28.733	-9.982	1.00 29.18	В	С
ATOM	3516	CG2	ILE	В	49	-8.409	27.422	-7.364	1.00 28.74	В	C
ATOM	3517	C	ILE	В	49	-9.903	29.851	-6.610	1.00 23.74	В	С
MOTA	3518	0	ILE	В	49	-9.620	30.348	-5.511	1.00 24.09	В	0
ATOM	3519	N	VAL	В	50	-11.045	29.224	-6.847	1.00 22.75	В	N
ATOM	3520	CA	VAL	В	50	-12.088	29.110	-5.838	1.00 22,00	В	C
MOTA	3521	CB	VAL	В	50	-13.441	29.682	-6.364	1.00 21.55	В	C
ATOM	3522	CG1	VAL	В	50	-14.583	29.378	-5.388	1.00 22.01	В	С
ATOM	3523	CG2	VAL	В	50	-13.338	31.190	-6.581	1.00 21.04	В	C
ATOM	3524	C	LAV	В	50	-12.273	27.639	-5.439	1.00 21.99	В	С
ATOM	3525	0	VAL	В	50	-12.375	26.780	-6.291	1.00 21.98	В	0
ATOM	3526	N	LEU	В	51	-12.318	27.363	-4.141	1.00 21.70	В	N
ATOM	3527	CA	LEU	В	51	-12.460	26.003	-3.643	1.00 22.26	В	С
ATOM	3528	CB	LEU		51	-11.110	25.407	-3.219	1.00 22.70	В	С
ATOM	3529	CG	LEU	В	51	-10.067	25.113	-4.267	1.00 25.11	В	С
ATOM	3530		LEU		51	-8.762	24.764	-3.495	1.00 25.85	В.	_
MOTA	3531	CD2	LEU	В	51	-10.513	23.968	-5.183	1.00 27.79	В	С
ATOM	3532	С	LEU	В	51	-13.312	25. 997	-2.406	1.00 21.80	В	С
ATOM	3533	0	LEU		51	-13.289	26.962	-1.646	1.00 21.46	В	0
MOTA	3534	N	PRO	В	52	-14.006	24.886	-2.163	1.00 21.76	В	. N
MOTA	3535	CA	PRO	В	52	-14.750	24.709	-0.921	1.00 22.13	В	С
MOTA	3536	СВ	PRO	B	52	-15.340	23.290	-1.071	1.00 23,06	В	С
MOTA	3537	CG	PRO		52	-15.389	23.059	-2.525	1.00 22.20	В	С
ATOM	3538	CD	PRO		52	-14.145	23.724 -	-3.058	1.00 22.25	В	С
ATOM	3539	С	PRO		52	-13.836	24.809	0.290	1.00 22.83	В	С
ATOM	3540	0	PRO		52	-12.682	24.367	0.252	1.00 22.05	В	0
ATOM	3541	N	VAL		53	-14.340	25.400	1.365	1.00 23.43	В	N
ATOM	3542	CA	VAL		53	-13.579	25.504	2.581	1.00 23.96	В	С
ATOM	3543	CB	VAL		53	-14.297	26.368	3.643	1.00 24.41	В	C
ATOM	3544	CG1			53	-15.583	25.692	4.134	1.00 25.13	В	С
MOTA	3545		VAL		53	-13.360	26.671	4.805	1.00 25.93	В	C
MOTA	3546	C	VAL		53	-13.324	24.083	3.068	1.00 24.12	В	C
ATOM	3547	0	VAL		53	-14.153	23.193	2.859	1.00 24.69	В	0
ATOM	3548	N	GLY		54	-12.158	23.867	3.657	1.00 22.87	В	N
ATOM	3549	CA	GLY		54	-11.765	22.548	4.117	1.00 22.48	В	c
ATOM	3550	C	GLY		54	-11.067	21.662	3.092	1.00 21.22	В	C
ATOM	3551	0	GLY		54	-10.597	20.606	3.453	1.00 21.63	В	0
ATOM	3552	N	THR		55	-10.977	22.091	1.837	1.00 20.24	В	N
MOTA	3553	CA	THR		55	-10.295	21.324	0.809	1.00 19.46	В	C
ATOM	3554	CB	THR		55	-10.469	22.006	-0.573	1.00 19.86	В	C
ATOM	3555		THR		55	-11.866	22.158	-0.875	1.00 22.41	В	0
MOTA MOTA	3556 3557		THR		55 55	-9.957	21.139	-1.701 1.077	1.00 19.94	В	C
ATOM	355 <i>1</i> 3558	C O	THR		55 55	-8.788	21.125		1.00 17.93	В	C
ATOM	3559	Ŋ	ILE		56	-8.057 -9.336	22.042	1.417	1.00 16.91	В	0
ATOM						-8.336	19.911	0.849	1.00 17.04	В	N
MOTA	3560 3561	CA CB	ILE		56 56	-6.929 -6.800	19.571	0.943	1.00 16.44 1.00 15.71	В	C
ATOM	3562		ILE				18.076	1.232		В	C
ATOM	3562 3563		ILE		56 56	-7.439 -7.353	17.782	2.600	1.00 17.41	В	C
AT OU	かつロコ	CDI	TIC	D	56	-7.353	16.319	3.098	1.00 17.17	В	C

•												
MOTA	3564	CG2	ILE	В	56	-5.347	17.684	1.247		16.77	В	C
MOTA	3565	С	ILE	В	56	-6.217	19.981	-0.336	1.00	16.51	В	C
MOTA	3566	0	ILE	В	56	-6.701	19.691	-1.434	1.00	17.03	В	0
MOTA	3567	N	VAL	В	57	-5.088	20.678	-0.203	1.00	15.94	В	N
ATOM	3568	CA	VAL	В	57	-4.342	21.200	-1.361	1.00	16.45	В	C
MOTA	3569	CB	VAL	В	57	-4.511	22.726	-1.488	1.00	16.21	В	C
MOTA	3570	CG1	VAL	В	57	-6.012	23.092	-1.672	1.00	16.73	В	С
ATOM	3571	CG2	VAL	В	57	-3.991	23.435	-0.236	1.00	18.16	В	C
ATOM	3572	С	VAL	В	57	-2.853	20.910	-1.205	1.00	16.63	B	
MOTA	3573	0	VAL	В	57	-2.393	20.624	-0.099	1.00	16.42	В	
MOTA	3574	N	THR	В	58	-2.106	20.982	-2.299	1.00	17.06	В	· N
ATOM	3575	CA	THR	В	58	-0.658	20.801	-2.247	1.00	16.63	В	
MOTA	3576	CB	THR	В	58	-0.069	20.712	-3.654		17.18	В	
ATOM	3577	OG1	THR		58	-0.660	21.718	-4.494		15.16	В	
ATOM	3578	CG2	THR		58	-0.423	19.426	-4.292		19.58	B	
ATOM	3579	C	THR		58	-0.093	22.017	-1.536		16.72	В	
ATOM	3580	Õ	THR		58	-0.756	23.071	-1.492		16.30	В	
ATOM	3581	N	MET		59	1.103	21.885	-0.960		16.38	E	
ATOM	3582	CA	MET		59	1.692	22.982	-0.180		16.07	B	
ATOM	3583	CB	MET		5 9	1.960	22.552	1.254		15.92	B	
ATOM	3584	CG	MET		59	0.668	22.365	2.012		16.14	В	
ATOM	3585	SD	MET		59	-0.197	23.961	2.251		17.09	E	
ATOM	3586	CE	MET		59	-1.612	23.424	3.218		17.23	ğ	
ATOM	3587	C	MET		59	2.911	23.607	-0.816		15.83	12	
MOTA	3588	ō	MET		59	3.884	23.983	-0.134		15.99	2	
ATOM	3589	N	GLU		60	2.837	23.794	-2.127		15.11	E	
ATOM	3590	CA	GLU		60	3.838	24.609	-2.795		15.22	E	
ATOM	3591	CB	GLU		60	4.155	24.079	-4.187		15.39	B	
ATOM	3592	CG	GLU		60	3.299	24.609	-5.334		15.29	E	
ATOM	3593	CD	GLU		60	1.845	24.166	-5.270		19.22	E	
ATOM	3594	OE1	GLU		60	1.435	23.486	-4.308		18.05	E	
MOTA	3595		GLU		60	1.087	24.526	-6.195		18.12	E	
ATOM	3596	C	GLU		60 .	. 3.344	26.081			15.50	Ē	
ATOM	3597		GLU		60	2.133	26.356	-2.798		15.17	E	
ATOM	3598	N	TYR		61	4.292	27.011	-2.721		16.00	2	
ATOM	3599	CA	TYR		61	3.982	28.431	-2.654		17.37	E	
ATOM	3600	CB	TYR		61	4.938	29.138	-1.699		17.67	- E	
ATOM	3601	CG	TYR		61	4.671	30.623	-1.493		18.81	E	
ATOM	3602		TYR		61	5.474	31.572	-2.103		21.63	Ē	
ATOM	3603	CE1	TYR		61	5.233	32.895	-1.943		21.96	E	
ATOM	3604	cz	TYR		61	4.207	33.299	-1.134		22.89	E	
ATOM	3605	ОН	TYR		61	4.007	34.644	-0.972		29.91	- E	
ATOM	3606	CE2	TYR		61	3.407	32.394	-0.507		20.81	E	-
ATOM	3607	CD2	TYR		61	3.637	31.059	-0.697		19.36	E	
MOTA	3608	c	TYR		61	4.067	29.037	-4.048		18.22	E	
ATOM	3609	ō	TYR		61	5.126	29.041	-4.654		18.04	Ē	
ATOM	3610	N	ARG		62	2.943	29.531	-4.564		19.75	E	
ATOM	3611	CA	ARG		62		30.226			21.16	Ē	
ATOM	3612	CB	ARG	В	62	1.909	29.625	-6.814		21.92	E	
ATOM	3613	CG	ARG		62	2.189	28.185	-7.196		25.65	. 15	
ATOM	3614	CD	ARG		62	1.385	27.694	-8.421		29.39	Ē	
MOTA	3615	NE	ARG		62	1.516	26.235	-8.639		32.04	Ē	
ATOM	3616	CZ	ARG		62	0.982	25.593	-9.675		33.94	E	
ATOM	3617		ARG		62	1.129	24.287	-9.798		37.42	E	
MOTA	3618		ARG		62	0.292	26.255	-10.586		34.66	E	
ATOM	3619	C	ARG		62	2.619	31.687	-5.652		21.86	E	
MOTA	3620	ŏ	ARG		62	1.491	32.033	-5.296		21.34	E	
ATOM	3621	N	ILE		63	3.609	32.547	-5.894		23.01	E	
	- -										_	

MOTA	3622	CA	ILE :	B 63	3.503	33.950	-5.502	1.00 24.71	В	С
MOTA	3623	CB	ILE	B 63	4.824	34.707	-5.709	1.00 25.05	В	С
MOTA	3624	CG1	ILE	B 63	4.790	36.033	-4.919	1.00 28.83	В	С
ATOM	3625	CD1	ILE :	B 63	6.158	36.609	-4.546	1.00 31.61	В	C
ATOM	3626	CG2	ILE :	B 63	5.047	34.966	-7.207	1.00 26.58	В	С
MOTA	3627	C ·	ILE	B 63	2.367	34.699	-6.216	1.00 24.34	В	С
ATOM	3628	0	ILE	B 63	1.860	35.675	-5.672	1.00 25.45	В	O
ATOM	3629	N	ASP .		1.961	34.240	-7.398	1.00 24.15	В	N
ATOM	3630	CA	ASP .		0.901	34.919	-8.153	1.00 24.63	В	Ċ
ATOM	3631		BASP		1.214	34.889	-9.664	0.40 24.94	В	č
ATOM	3632		AASP .		1.201	34.873	-9.650	0.60 24.96	В	Ċ
ATOM	3633		BASP		0.987		-10.307	0.40 25.65	В	Č
ATOM	3634		AASP		2.403	35.712	-10.026	0.60 25.91	В	Ċ
ATOM	3635		BASP		0.745		-11.536	0.40 27.17	В	0
ATOM	3636		AASP :		3.136		-10.950	0.60 27.52	В	0
MOTA	3637		BASP							
ATOM			AASP		1.054	32.426	-9.686	0.40 28.49	В	0
	3638		ASP :		2.704	36.782	-9.439	0.60 26.67	В	0
ATOM	3639	C			-0.514	34.361	-7.896	1.00 24.47	В	C
ATOM	3640	0	ASP :		-1.515	34.928	-8.392	1.00 24.83	В	0
ATOM	3641	N	ARG :		-0.601	33.269	-7.136	1.00 21.92	В	N
ATOM	3642	CA	ARG :		-1.876	32.615	-6.893	1.00 21.12	В	c
MOTA	3643	CB	ARG :		-1.677	31.101	-6.737	1.00 19.95	В	C
ATOM	3644	CG	ARG :		-2.946	30.305	-6.463	1.00 18.99	В	C
ATOM	3645	CD	ARG :		-2.730	28.808	-6.572	1.00 19.09	В	C
ATOM	3646	NE	ARG :		-1.784	28.369	-5.554	1.00 18.66	В	N
MOTA	3647	CZ	ARG		-1.130	27.214	-5.534	1.00 19.41	В	C
ATOM	3648		ARG :		-1.279	26.300	-6.470	1.00 19.74	В	N
MOTA	3649		ARG		-0.311	26.963	-4.522	1.00 21.82	В	N
MOTA	3650	С	ARG		-2.556	33.168	-5.662	1.00 20.36	В	C
ATOM	3651	0	ARG :		-1.896	33.515	-4.682	1.00 21.06	В	0
ATOM	3652	N	VAL :		-3.875	33.284	-5.727	1.00 20.04	В	N
ATOM	3653	CA	VAL :		-4.692	33.540	-4.560	1.00 19.79	В	С
- ATOM	3654	CB	VAL	B 66	-5.266	34.962	-4.510	1.00 19.88	В	C -
MOTA	3655	CG1	VAL	B 66	-6.036	35.1 6 0	-3.204	1.00 21.06	В	C
ATOM	3656	CG2	VAL :	B 66	-4.194	36.004	-4.607	1.00 20.96	В	C
MOTA	3657	C	VAL :	B 66	-5.846	32.525	-4.551	1.00 20.19	В	C
MOTA	3658	0	VAL		-6.733	32.512	-5.444	1.00 20.12	В	O.
ATOM	3659	N	ARG :	B 67	-5.832	31.654	-3.557	1.00 20.01	В	N
ATOM	3660	CA	ARG	B 67	-6.916	30.713	-3.394	1.00 20.45	В	Ç
MOTA	3661	CB	ARG :	B 67	-6.416	29.43 7	-2.740	1.00 20.71	В	С
MOTA	3662	CG	ARG	B 67	-5.572	28.538	-3.626	1.00 21.28	В	С
ATOM	3663	CD	ARG		-5.471	27.144	-3.016	1.00 23.63	В	С
MOTA	3664	NE	ARG	B 67	-4.539	26.204	-3.632	1.00 22.50	В	N
MOTA	3665	CZ	ARG	B 67	-3.326	25.921	-3.160	1.00 24.19	В	C
MOTA	3666	NH1	ARG	B 67	-2.589	24.992	-3.759	1.00 22.65	В	N
MOTA	3667	NH2	ARG	B 67	-2.837	26.571	-2.106	1.00 22.06	В	N
ATOM	3668	С	ARG	B 67	-8.001	31.368	-2.543	1.00 20.49	В	С
MOTA	3669	0	ARG :	B 67	-7.704	31.990	-1.529	1.00 20.17	В	0
MOTA	3670	N	LEU :	B 68	-9.255	31.253	-2.970	1.00 20.39	В	N
ATOM	3671	CA	LEU	B 68	-10.373	31.705	-2.148	1.00 21.05	В	С
ATOM	3672	CB	LEU :	B 68	-11.323	32.604	-2.957	1.00 21.11	В	C
ATOM	3673	CG	LEU :		-10.701	33.830	-3.627	1.00 21.59	В	C
MOTA	3674		LEU :		-11.745	34.523	-4.508	1.00 22.82	В	C
ATOM	3675		LEU		-10.187	34.785	-2.595	1.00 22.44	B	Ċ
ATOM	3676	C	LEU		-11.132	30.493	-1.648	1.00 21.12	B	č
ATOM	3677	ō	LEU		-11.663	29.709	-2.432	1.00 21.87	B	ŏ
MOTA	3678	N	PHE		-11.209	30.345	-0.345	1.00 21.61	В	N
ATOM	3679	CA	PHE		-11.937	29.226	0.233	1.00 21.97	В	Ċ
					,				-	~

ATOM	3680	CB	PHE	В	69	-11.151	28.647	1.422	1.00	22.17	В	С
ATOM	3681	CG	PHE	В	69	-9.896	27.905	1.028	1.00	19.89	В	С
ATOM	3682	CD1	PHE	В	69	-9.938	26.557	0.737	1.00	21.41	В	С
ATOM	3683	CE1	PHE	В	69	-8.788	25.862	0.370	1.00	20.29	В	С
ATOM	3684	CZ	PHE	В	69	-7.598	26.525	0.290	1.00	21.78	В	С
ATOM	3685	CE2	PHE	В	69	-7.542	27.879	0.575	1.00	21.52	В	C
ATOM	3686	CD2	PHE	В	69	-8.691	28.557	0.950	1.00	19.33	В	С
MOTA	3687	С	PHE	В	69	-13.321	29.725	0.664	1.00	23.11	В	C
MOTA	3688	0	PHE	В	69	-13.414	30.651	1.506	1.00	22.87	В	0
ATOM	3689	N	VAL	В	70	-14.371	29.105	0.111	1.00	24.00	В	N
MOTA	3690	CA	VAL	В	70	-15.755	29.578	0.289	1.00	25.82	В	C
ATOM	3691	CB	VAL	В	70	-16.442	29.958	-1.054	1.00	25.72	В	. C
ATOM	3692	CG1	VAL	В	70	-15.686	31.063	-1.756	1.00	26.70	В	C
ATOM	3693	CG2	VAL	В	70	-16.599	28.756	-1.958	1.00	26.63	В	C
ATOM	3694	C	VAL	В	70	-16.691	28.602	0.996	1.00	26.63	В	С
MOTA	3695	0	VAL	В	70	-16.532	27.380	0.899	1.00	27.14	В	0
ATOM	3696	N	ASP	В	71	-17.664	29.155	1.714	1.00	27.52	В	N
ATOM	3697	CA	ASP	В	71	-18.686	28.352	2.399	1.00	29.00	В	С
ATOM	3698	CB	ASP	В	71	-19.247	29.132	3.591	1.00	28.91	В	C
MOTA	3699	CG	ASP	В	71	-20.019	30.392	3.171	1.00	28.74	В	С
MOTA	3700	OD1	ASP	В	71	-20.161	31.290	4.018	1.00	29.94	В	0
ATOM	3701	OD2	ASP	В	71	-20.509	30.572	2.032	1.00	27.69	В	0
ATOM	3702	·C	ASP	В	71	-19.796	27.931	1.413	1.00	30.37	В	С
ATOM	3703	0	ASP	В	71	-19.646	28.098	0.217	1.00	29.90	В	0
ATOM	3704	N ·	LYS	В	72	-20.898	27.376	1.906	1.00	33.42	В	N
ATOM	3705	CA	LYS	В	72	-21.949	26.822	1.022	1.00	34.98	В	C
ATOM	3706	CB	LYS	В	72	-22.951	26.004	1.834	1.00	35.44	В	С
ATOM	3707	CG	LYS		72	-22.190	24.925	2.916	0.00	40.00	В	C
ATOM	3708	CD	LYS		72	-22.489	23.435	2.595	0.00	40.00	В	С
ATOM	3709	CE	LYS		72	-21.240	22.528	2.667	0.00	40.00	В	C
ATOM	3710	NZ	LYS		72	-21.120	21.662	1.456	0.00	40.00	В	N
MOTA	3711	С	LYS		72	-22.709	27.904	0.261	1.00	36.38	В	C
ATOM	3712	0	LŸS		72	23.332	27.627 -			37.77	В	۰.0
ATOM	3713	N	LEU		73	-22.640	29.138	0.753		37.07	В	N
ATOM	3714	CA	LEU		73	-23.306	30.286	0.114		37.22	В	С
MOTA	3715	CB	LEU		73	-23.759	31.265	1.201		37.50	В	С
ATOM	3716	CG	LEU		73	-24.711	30.678	2.254		40.20	В	С
ATOM	3717	CD1	LEU		73	-25.387	31.796	3.053		41.53	В	C
ATOM	3718		LEU		73	-25.782	29.775	1.612		41.89	В	С
ATOM	3719	C	LEU		73	-22.406	31.008	-0.890	1.00	36.59	В	C
ATOM	3720	0	LEU		73	-22.781	32.029	-1.482		36.18	В	0
MOTA	3721	N	ASP		74	-21.203	30.468	-1.076	1.00	36.33	В	N
ATOM	3722	CA	ASP		74	-20.192	31.084	-1.923		35.65	В	C
ATOM	3723	CB	ASP		74	-20.709	31.252	-3.342	1.00	36.81	В	C
MOTA	3724	CG	ASP	В	74	-20.063	30.283	-4.286		40.36	В	C
ATOM	3725		ASP		74	-19.429	30.756	-5.259		45.75	В	0
ATOM	3726		ASP		74	-20.108	29.032	-4.101		45.61	В	0
ATOM	3727	C	ASP		74	-19.646	32.399	-1.381		33.94	В	C
ATOM	3728	0	ASP		74	-19.147	33.249	-2.136		34.59	В	0
MOTA	3729	N	ASN		75	-19.696	32.546	-0.066		31.85	В	N
ATOM	3730	CA	ASN		75	-19.000	33.634	0.597		30.66	В	C
ATOM	3731	CB	ASN		75	-19.877	34.185	1.714		30.45	В	C
ATOM .	3732	CG	ASN		75	-21.170	34.793	1.176		30.77	В	C
ATOM	3733		ASN		75	-21.169	35.401	0.102		30.57	В	0
ATOM	3734 3735		ASN		75	-22.275	34.615	1.907		30.32	В	N
ATOM		C	ASN		75	-17.628	33.213	1.127		29.26	В	C
ATOM	3736	O N1	ASN		75 76	-17.433	32.073	1.553		29.07	В	0
MOTA	3737	N	ILE	Ħ	76	-16.685	34.143	1.086	1.00	27.83	В	N

ATOM	3738	CA ILE	B 76	-15.337	33.893	1.540	1.00 26.88	В	С
ATOM	3739	CB ILE	B 76	-14.511	35.182	1.455	1.00 26.51	В	С
ATOM	3740	CG1 ILE	B 76	-14.474	35.737	0.020	1.00 26.61	В	С
ATOM	3741	CD1 ILE	B 76	-14.130	34.728	-1.039	1.00 26.87	В	C
ATOM	3742	CG2 ILE	B 76	-13.137	34.927	1.993	1.00 25.62	В	C
ATOM	3743	C ILE	B 76	-15.401	33.382	2.993	1.00 26.59	В	Ċ
ATOM	3744	O ILE			34.017	3.838	1.00 26.12	В	ō
ATOM	3745	N ALA			32.237	3.263	1.00 26.58	В	N
ATOM	3746	CA ALA			31.582	4.576	1.00 26.79	В	Ċ
ATOM	3747	CB ALA			30.088	4.386	1.00 26.56	В	C
ATOM	3748	C ALA				5.467	1.00 26.89		
ATOM	3749				31.815			В	C
					31.751	6.677	1.00 27.73	В	0
ATOM	3750	N GLU			32.072	4.871	1.00 26.32	В	N
ATOM	3751	CA GLU			32.446	5.647	1.00 26.33	В	C
ATOM	3752	CB GLU			31.216	6.041	1.00 26.80	В	С
ATOM	3753	CG GLU			30.290	4.921	1.00 27.82	В	C
MOTA	3754	CD GLU			28.827	5.352	1.00 28.92	В	С
MOTA	3755	OE1 GLU			28.493	6.559	1.00 36.40	В	0
MOTA	3756	OE2 GLU			27.977	4.472	1.00 28.50	В	0
MOTA	3757	C GLU	B 78	-10.530	33.478	4.895	1.00 25.94	В	С
MOTA	3758	O GLU	B 78	-10.807	33.805	3.712	1.00 25.71	В	0
MOTA	3759	N VAL	B 79	-9.527	33.996	5.594	1.00 24.85	В	N
MOTA	3760	CA VAL	B 79	-8.712	35.088	5.102	1.00 24.88	В	C
MOTA	3761	CB VAL	B 79	-7.692	35.578	6.167	1.00 25.77	В	С
ATOM	3762	CG1 VAL	B 79	-6.814	36.672	5.583	1.00 25.38	В	C
ATOM	3763	CG2 VAL	B 79	8.396	36.073	7.456	1.00 26.10	В	C
ATOM	3764	C VAL	B 79		34.652	3.835	1.00 24.07	В	С
MOTA	3765	O VAL			33.742	3.883	1.00 23.32	В	ō
ATOM	3766	N PRO			35.271	2.699	1.00 23.27	B	N
ATOM	3767		B . 80		35.029	1.466	1.00 22.93	В	Ċ
ATOM	3768	CB PRO			35.856	0.426	1.00 23.15	В	C
ATOM	3769	CG PRO			36.042	1.005	1.00 23.83	В	C
MOTA	3770	CD PRO			36.194		1.00 23.63		C -
ATOM	3771	C PRO							
ATOM					35.512	1.601	1.00 22.05	В	C
	3772	O PRO			36.588	2.136	1.00 20.76	В	0
ATOM	3773	N ARG			34.691	1.190	1.00 21.54	В	N
MOTA	3774	CA ARG			35.135	1.074	1.00 22.93	В	Ċ
MOTA	3775	CB BARG			34.683	2.298	0.40 22.99	В	C ·
ATOM	3776	CB AARG			34.764	2.275	0.60 23.27	В	C
MOTA	3777	CG BARG			34.672	3.645	0.40 24.27	В	С
ATOM	3778	CG AARG			33.619	3.175	0.60 25.79	В	C
MOTA	3779	CD BARG			33.818	4.744	0.40 26.79	В	C
MOTA	3780	CD AARG			33.723	4.575	0.60 27.67	В	С
ATOM	3781	NE BARG		-3.975	33.234	5.664	0.40 28.96	В	N
ATOM	3782	NE AARG	B 83	-3.283	32.907	5.581	0.60 29.38	В	N
ATOM	3783	CZ BARG	B 83	-4.567	32.053	5.508	0.40 29.28	В	C
MOTA	3784	CZ AARG	B 83	-3.934	33.381	6.642	0.60 30.17	В	С
ATOM	3785	NH1BARG	B 83	-4.284	31.274	4.471	0.40 31.06	В	N
MOTA	3786	NH1AARG	B 83		34.680	6.867	0.60 31.08	В	N
MOTA	3787	NH2BARG	B 81		31.645	6.408	0.40 30.62	В	N
MOTA	3788	NH2AARG			32.545	7.486	0.60 31.16	В	N
MOTA	3789	C ARG			34.616	-0.178	1.00 21.97	B	C
ATOM	3790	O ARG			33.632	-0.761	1.00 21.68	В	ŏ
MOTA	3791	N VAL			35.286	-0.559	1.00 20.91	В	N
ATOM	3792	CA VAL			34.884	-1.679	1.00 20.31	. В	C
ATOM	3793	CB VAL			35.943	-1.952	1.00 21.03	В	c
ATOM	3794	CG1 VAL			35.435	-2.906	1.00 21.89	B	c
ATOM	3795	CG2 VAL						В	c
ALON	3,33	CGS AND	20 02	-0.734	37.243	-2.483	1.00 21.44	Б	C

NZ - 10321.000-DK

ATOM	3796	С	VAL	В	82	-0.583	33.532	-1.371	1.00 20.69	В	С
ATOM	3797	0	VAL	В	82	-0.235	33.255	-0.221	1.00 19.36	В	0
ATOM	3798	N	GLY	В	83	-0.469	32.694	-2.389	1.00 19.91	В	N
ATOM	3799		GLY	_		0.382	31.525	-2.331	1.00 20.16	В	С
ATOM	3800		GLY	_		-0.236	30.295	-2.955	1.00 20.11	В	С
ATOM	3801	_	GLY			-1.416	30.328	-3.319	1.00 20.36	В	0
	3802	_		_		0.468	29.294	-3.104	1.00 18.79	В	0