Czwarte laboratorium

Aleksandra Nycz 226270

30.03.2017

1 Stos

Pomiar czasu trwania algorytmu obejmował następujące czynności; dodanie elementów i wypełnienie ich wartościami oraz wyszukanie wartości 0, która była wpisana w ostatni element stosu. Pomiary powtórzono 20 razy. Wyniki przedstawia pierwsza kolumna tabeli.

2 Lista

Stworzono listę jednokierunkową. Pomiar czasu trwania algorytmu obejmował następujące czynności; dodanie elementów na początek i wypełnienie ich wartościami oraz wyszukanie wartości 0, która była wpisana w ostatni element listy. Pomiary powtórzono 20 razy. Wyniki przedstawia druga kolumna tabeli.

3 Kolejka

Pomiar czasu trwania algorytmu obejmował następujące czynności; dodanie elementów na początek i wypełnienie ich wartościami oraz wyszukanie wartości 0, która była wpisana w ostatni element kolejki. Pomiary powtórzono 20 razy. Wyniki przedstawia trzecia kolumna tabeli.

4 Wyniki

n	Ts [ms]	Tk [ms]	Tl [ms]
10^{1}	0,0086	0,0146	0,0151
10^{2}	0,01908	0,02928	0,0259
10^{3}	0,029504	0,120964	0,0894
10^{4}	0,695675	1,0219	1,2718
10^{5}	2,27443	3,29139	3,4111
10^{6}	?	?	36,4083

Rysunek 1: Wykres

5 Wnioski

Implementacja nie jest najlepsza, ponieważ dla stosu i listy przy ilości danych na poziomie miliona wyskakuje błąd "Naruszenie ochrony pamięci". Dzieje się to przy pierwszym wywołaniu funkcji do Algorithm; program ją wykonuje po czym pojawia się błąd. Dla kolejki komputer się zacina przy ilości 10^7 . Po analizie wykresu widać, że złożoność obliczeniowa nie wynosi tylko w przybliżeniu O(n) jak powinna; początkowe rozmiary problemu psują obraz.

6 Problemy

- Do listy można dodawać tylko na początek, a usuwać z końca
- W kolejce nie działa funkcja neutralise, która pozawala na wykonanie pomiarów dla kilku różnych wartości zadanych bez wychodzenia z programu.