T.P. IV -Fonctions & Suites

Code Capytale: 62c9-794137

I - Fonctions

Solution de l'exercice 1.

1.

```
import numpy as np

def g(x):
    if x < 0:
        return 0
    else:
        return np.exp(-2 * x)</pre>
```

2. Utilisez le script précédent pour afficher les valeurs de g(-1) et $g(\ln(2))$.

```
print(g(-1))
print(g(np.log(2)))
```

Solution de l'exercice 2.

1.

```
import numpy as np
import matplotlib.pyplot as plt

def f(x):
    return x**n/(1+x)

X = np.linspace(0, 1, 100)

for n in [1, 5, 10, 20, 50]:
    plt.plot(X, f(X), "--", label=r"fn pour n="+str(n))
```

```
plt.legend()
plt.show()
```

- **2.** Comme la fonction f_n est positive, l'intégrale I_n est égale à l'aire comprise entre l'axe des abscisses, la courbe représentative de f et les droites d'abscisse x = 0 et x = 1.
- 3. En utilisant le graphique, on conjecture que l'aire tend vers 0, soit $\lim_{n\to +\infty} I_n = 0.$

II - Suites

Solution de l'exercice 3.

1. En factorisant le numérateur, on obtient

$$c_n = 2 - \frac{3^n}{4^{n-1}} \left(1 + \frac{25}{3^n} \right)$$
$$= 2 - \left(\frac{3}{4} \right)^n \times 4 \times \left(1 + \frac{25}{3^n} \right).$$

Comme $3^n \to +\infty$, alors $1 + \frac{25}{3^n} \to 1$. Comme $\frac{3}{4} \in]0,1[$, alors $(\frac{3}{4})^n \to 0$.

D'après les théorèmes d'addition des limites,

$$\lim_{n \to +\infty} c_n = 2.$$

2. Avant la boucle conditionnelle, n contient la valeur 1 et c la valeur c_1 . Ensuite, on incrémente n et on calcule les valeurs de c_n . La boucle s'arrête dès que $c_n \ge 1.95$. Ainsi, la valeur renvoyée est le plus petit rang n pour lequel $c_n \ge 1.95$. Ce plus petit rang vaut donc 16.

Solution de l'exercice 4. La variable sert à stocker la valeur de $\mathfrak u$ avant qu'on ne la modifie. Ainsi, à l'issue du $\mathfrak i^e$ passage dans la boucle, $\mathfrak u$ contient la valeur de u_i et $\mathfrak v$ contient la valeur de u_{i-1} .

III - Suites et fonctions : la dichotomie

Solution de l'exercice 5.

1. La fonction h est dérivable sur \mathbb{R}_+^* et

$$h'(x) = 3x^{2} - \frac{3}{x^{4}} = \frac{3}{x^{4}}(x^{6} - 1)$$
$$= \frac{3}{x^{4}}(x^{3} - 1)(x^{3} + 1).$$

D'une part, $\frac{3}{r^4} > 0$.

D'autre part, comme x > 0, alors $x^3 + 1 > 0$.

Enfin, $x^3 - 1 \ge 0$ si et seulement si $x^3 \ge 1$ si et seulement si $x \ge 1$.

On obtient ainsi le tableau de variations suivant :

x	0		1		$+\infty$
h'(x)		_	0	+	
h(x)	_		-1		<i>→</i>

2. Comme $\lim_{x\to +\infty} x^3 = +\infty$, alors $\lim_{x\to +\infty} \frac{1}{x^3} = 0$. D'après les théorèmes d'addition des limites, $\lim_{x \to +\infty} h(x) = +\infty$.

D'après la définition de h, h(1) = -1.

La fonction h est continue et strictement croissante de $[1, +\infty]$ dans $[-1,+\infty[.$ Comme $0\in[-1,+\infty[,$ il existe un unique réel α tel que $h(\alpha) = 0.$

3. Comme $h(2) = 2^3 + \frac{1}{2^3} - 3 = 5 + \frac{1}{8}$, alors $\alpha \le 2$. On cherche donc α entre 1 et 2.

```
\mathbf{def} \ h(x):
    return x**3 + 1/x**3 - 3
a = 1
b = 2
while (b - a) > 10**(-5):
    m = (a + b)/2
    if h(m) * h(a) <= 0:
         b = m
    else:
         a = m
print(a)
```

IV - Introduction au produit matriciel

Solution de l'exercice 6.

1. D'après la définition,

$$C_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

2. D'après la définition des suites (u_n) et (v_n) ,

$$C_{n+1} = \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix}$$
$$= \begin{pmatrix} u_n + v_n \\ 2u_n \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$
$$= AC_n.$$

3. On montre la propriété par récurrence sur n.

Initialisation. Lorsque n=0, montrons que $C_0=A^0C_0$.

D'après la définition des puissances de matrices, $A^0=I$. Ainsi, d'après les propriétés de la matrice identité,

$$A^0 C_0 = I C_0 = C_0.$$

La propriété est donc vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $C_n = A^n C_0$. Montrons que $C_{n+1} = A^{n+1} C_0$. Or,

 $C_{n+1} = AC_n$, d'après la question **2.** = $A \times A^n C_0$, d'après l'hypothèse de récurrence = $A^{n+1}C_0$, d'après la définition des fonctions puissance

Ainsi, la propriété est vraie à l'ordre n+1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, C_n = A^n C_0.$$

4.