Show your work to get credit. An answer with no work will not get credit.

- (1) Define the following:
 - (a) eigenvalue.

(b) eigenvector.

(c) a linear operator $S \colon V \to V$ is diagonalizable.

(d) the three elementary row operations.

(e) the Smith Normal Form of a matrix over a Euclidean domain.

(f) The quotient vector space V/W where W is a subspace of the vector space V.

2)	State the following (a) The uniqueness theorem for n -linear alternating functions on $M_{n\times n}(R)$ where R is communitive ring.	a
	(b) The rank plus nullity theorem.	
	(c) The formula for $\dim(U \cap W)$ where U and W are subspaces of a vector space V .	
	(d) The Cayley-Hamilton theorem.	
	(e) The fundemential theorem of arithmetic in a Euclidean domain.	

(3) Let V be a vector space and let $v_1, \ldots, v_n \in V$. Let $w \in V$ be a vector so that $w = a_1v_1 + a_2v_2 + \ldots a_nv_n$ for scalars a_1, \ldots, a_n with $a_n \neq 0$. Show $\text{Span}\{v_1, \ldots, v_{n-1}, v_n\} = \text{Span}\{v_1, \ldots, v_{n-1}, w\}$

\ /		ector spaces and S :		1 1	-, 9	
	(a) If Sv_1, Sv_2, Sv_3	3 are linearly indep	endent show tha	at v_1, v_2, v_3 are 1	inearly independe	ent.

(b) If v_1, v_2, v_3 are linearly independent and $\mathrm{Span}\{v_1, v_2, v_3\} \cap \ker S = \{0\}$ show that Sv_1, Sv_2, Sv_3 are linearly independent.

(c) Given an example where v_1, v_2, v_3 are linearly independent, but Sv_1, Sv_2, Sv_3 are linearly dependent.

(5) Let A be an $n \times n$ matrix with $A^2 = 0$. Show that $\operatorname{rank}(A) \leq n/2$.

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

Then find a basis of $\{v_1\}^{\perp} \subset \mathbf{R}^{3*}$.

(8) Let

$$A = \begin{bmatrix} 0 & 2 & -4 \\ 0 & 1 & 0 \\ 1 & -2 & 5 \end{bmatrix}$$

Then for A find

- (a) The elementary divisors.
- (b) The minimal polynomial.
- (c) The rational canonical form.

(9) Prove Cramer's rule for solving the 3×3 linear system

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

using nothing but elementary properties of the determinant.

- (10) Let V be a finite dimensional vector space and $S: V \to V$ a linear operator on V. Let W be a non-trival subspace of V that is invarant under S and let $S_1 := S|_W$ be the restriction of S to W.
 - (a) Show that the minimal polynomial $\min_{S_1}(x)$ of S_1 divides the minimal polynomial $\min_{S}(x)$ of S.

(b) Show that if S is diagonalizable, then so is S_1 . (You may use the fact that a linear operator is diagonalizable if and only if its minimal polynomial factors into linear factors.)

(11) Let $\mathcal{P}_2 = \text{Span}\{1, x, x^2\}$ be the real polynomials of degree ≤ 2 . Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$T(p)(x) = e^{-x} \frac{d}{dx} (e^x p(x)).$$

Let \mathcal{P}_2^* be the dual space to \mathcal{P}_2 and let $\Lambda \in \mathcal{P}_2^*$ be the functional

$$\Lambda(p) = p(2).$$

Then compute $\langle x^2, T^*\Lambda \rangle$.