

Teaching Objectives

- Fundamental knowledge about machine learning and pattern recognition, from Bayesian approaches to deep learning frameworks through lectures, quizzes and assignments
- Machine learning system development methods with Python through labs and projects
- Model-based and data-driven machine learning system design and integration skills through the final project, literature surveys and reports

Lecture Schedule

Section 0	Course Introduction	
Section 1	Preliminary	(HW1)
Section 2	Probability Distributions	(HW2)
Section 3	Linear Regression and Classification	(HW3, HW4)
Section 4	Neural Networks	(HW5)
Section 5	Sparse Kernel Machine	(HW6)
Midterm Exam		
Section 6	Mixture Models and EM learning	(HW7)
Section 8	Sequential Data (Hidden Markov Model)	(HW8)
Section 9	Bayesian Networks	
Section 10	Markov Decision Process	
Section 11	Reinforcement Learning	
Final Exam		

Lab Schedule

Section 0 Lab Introduction
Section 1 Preliminary
Section 2 Bayes

Section 3 Regression

--Final Project Proposal--

Section 4 Decision Tree

Section 5 Support Vector Machine

Section 6 Convolution Neural Network

Section 7 K-Mean Clustering

Section 8 Gaussian Mixture Model

Section 9 Markov Decision Process

Section 10 Reinforcement Learning

--Final Project Report--

Final Projects

- [1] Reinforcement learning based planning using a self-driving car simulator
- [2] Segmentation of 2D/3D measurements for self-driving applications
- [3] Detection and recognition of traffic signs for self-driving applications
- [4] Detection and tracking of 2D/3D objects for self-driving applications
- [5] Generation of annotated self-driving datasets with the CARLA simulator

Machine Learning

Framework

Reinforcement Learning

The Whole Picture

History

Machine learning

Machine Learning—minimization of some loss function for generalizing data sets with models.

Datasets —annotated, indexed, organized

Models —tree, distance, probabilistic, graph, bio-inspired

Optimization —algorithms can minimize the loss.

Datasets

- **■** Collection
- Storage
- Annotation
- Indexing
- Organization
- Access

Simulators

- Data visualization
- Generate training data
- Algorithm evaluation

Benchmark Metrics

- System functionalities
- System scalability
- System robustness
- System efficiency

Models

- Tree Models
- Distance-based Models
- Probabilistic Models
- Neural Network Models
- Graph-based Models

Models

- Boosting
- Ensemble Learning

Model Comparison

■ Matching data and model complexity

Machine learning and Optimization

Machine Learning—minimization of some loss function for generalizing data sets with models.

Datasets —annotated, indexed, organized

Models —tree, distance, probabilistic, graph, bio-inspired

Optimization —algorithms can minimize the loss.

Problem Statement

Problem: Predict the label \widehat{Y} and data \widehat{X} with training set (X,Y)?

Y is known and Dim(Y) > Dim(X): dimensionality reduction

Optimization

Finding (one or more) minimizer of a function subject to constraints

$$arg \min_{x} f_0(x)$$

$$s.t. f_i(x) \le 0, i = \{1, ..., k\}$$

$$s.t. h_i(x) = 0, j = \{1, ..., l\}$$

Most of the machine learning problems are, in the end, optimization problems

Lagrange Method

☐ Minimize an object function *s. t.* constraints of inequality

$$\min_{x} f(x)$$
 s.t. $g(x) \ge 0$

 \blacksquare By Introducing a Lagrange multiplier $\lambda \ge 0$, then we will have

$$\min_{x} \max_{\lambda \ge 0} \{ \mathcal{L}(x, \lambda) = f(x) - \lambda g(x) \}$$

■ When certain conditions are satisfied, its dual problem is

$$\max_{\lambda \ge 0} \min_{x} \left\{ \mathcal{L}(x, \lambda) = f(x) - \lambda g(x) \right\}$$

 \square By setting derivatives of \mathcal{L} w.r.t. x equal to 0, we will have

$$x = h(\lambda)$$
, and then the problem becomes $\lambda^* = \max_{\lambda \ge 0} Q(\lambda)$

 \square Finally, $x^* = h(\lambda^*)$ is the solution

Bayes

K-Nearest Neighbors

☐ Use training data for classification

K-Means

■ Mean-shift

Decision Tree

□ Types of Decision Tree:

SVM

☐ Linear SVM:

$$\arg\min_{w} \sum_{i=1}^{n} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$1 - y_{i} x_{i}^{T} w \leq \xi_{i}$$

$$\xi_{i} \geq 0$$

Boosting

Ensemble Learning

$$y = \sum_{j=1}^{L} w_j d_j$$

Linear Statistical Learning

PCA

$$A_i \perp A_j$$

ICA

 $\max I(X)$

NMF

Data
$$Y = AX$$
 Coefficients

A, X > 0

Bayesian Networks

Nonlinear Statistical Learning

Manifold learning

Deep Neural Networks

Task: recognition

Dataset: ILSVRC

■ Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[J]. arXiv preprint arXiv:1608.06993, 2016.

Generative Adversarial Networks

Long Short Term Memory

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh(C_t)$$

 C_t : cell state

 \tilde{C}_t : cell state prediction

 f_t : forget gate

 i_t : input gate

 o_t : output gate

 h_t : output

 x_t : input

Recurrent Neural Networks

$$h_t = f(Ux_t + Wh_{t-1} + b)$$

 \mathbf{h}_t : output

 x_t : input

Reinforcement Learning

State, action, and Reward

Update: Policy Function

Value Function

TD Error: Temporal Difference between Real Reward and Estimated Reward

PCA-Encoder

Auto-Encoder

Gaussian Models

- Joint and Marginal Models
 - ✓ Joint probability
 - ✓ Marginal probability
- Conditional Models
 - ✓ Conditional probability
 - ✓ Posterior probability
- Predictive Models
 - ✓ Prior predictive
 - ✓ Posterior predictive
- Conjugate Prior Model
 - ✓ Gaussian
 - ✓ Gaussian-Gamma
 - ✓ Gaussian-Washart

Bernoulli and 1-out-of-K Models

- Probability Models
 - ✓ Bernoulli
 - ✓ 1-out-of-K
- Conjugate Prior Model
 - ✓ Beta
 - ✓ Dirichlet

Bayesian Machine Learning

Maximum Likelihood

- ✓ Dataset
- ✓ Error square cost function (model parameters)

Maximum A Posterior

- ✓ Dataset
- ✓ Cost function and regularization (model parameters)

Expectation and Maximization

- ✓ Expectation (hidden variables)
- ✓ Maximization (model parameters)

Gaussian Mixture

ML Solution to Gaussian Mixtures

$$p(x, C_1) = p(C_1)p(x|C_1) = \pi N(x|\mu_1, \Sigma)$$
$$p(x, C_2) = p(C_2)p(x|C_2) = (1 - \pi)N(x|\mu_2, \Sigma)$$

Likelihood
$$p(t, X | \pi, \mu_1, \mu_2, \Sigma) = \prod_{n=1}^{N} [\pi N(x_n | \mu_1, \Sigma)]^{t_n} [(1 - \pi)N(x_n | \mu_2, \Sigma)]^{1-t_n}$$

$$\Rightarrow \qquad \pi = \frac{1}{N} \sum_{n=1}^{N} t_n = \frac{N_1}{N} \qquad \qquad \mu_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n x_n \qquad \qquad \mu_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - t_n) x_n$$

$$\Sigma = \pi \Sigma_1 + (1 - \pi) \Sigma_2$$
 $\Sigma_i = \frac{1}{N_i} \sum_{x_n \in C_i} (x_n - \mu_i) (x_n - \mu_i)^T$ $i=1,2$

Generative: MAP Gaussian Mixtures

$$\pi_0 = \frac{N_{10}}{N_{10} + N_{20}} \qquad x \in C_i \sim \mathcal{N}(x | \mu_{i0}, \Sigma_{i0})$$

$$\pi_{MAP} = \frac{N_1 + N_{10}}{N + N_0} = \frac{N_1 + N_{10}}{N_1 + N_2 + N_{10} + N_{20}}$$

$$\begin{bmatrix}
\Sigma_{iMAP}^{-1} & = & \Sigma_{iML}^{-1} + \Sigma_{i0}^{-1} \\
\Sigma_{iMAP}^{-1} \mu_{iMAP} & = & \Sigma_{iML}^{-1} \mu_{iML} + \Sigma_{i0}^{-1} \mu_{i0}
\end{bmatrix}$$

$$\Sigma = \pi \Sigma_1 + (1 - \pi) \Sigma_2$$

Logistic Regression

 When there are only two classes we can model the conditional probability of the positive class as

$$p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$
 where $\sigma(z) = \frac{1}{1 + \exp(-z)}$

 If we use the right error function, something nice happens: The gradient of the logistic and the gradient of the error function cancel each other:

$$E(\mathbf{w}) = -\ln p(\mathbf{t} \mid \mathbf{w}), \qquad \nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \mathbf{x}_n$$

ML Solution to Logistic Regression

$$p(C_0|\phi) = y(\phi) = \sigma(w^T\phi) \qquad p(C_1|\phi) = 1 - p(C_1|\phi)$$
 where
$$\frac{d\sigma(a)}{da} = \sigma(1-\sigma)$$

$$p(t|w) = \prod_{n=1}^N y_n^{t_n} (1-y_n)^{1-t_n}$$

$$E(w) = -\ln p(t|w) = -\sum_{n=1}^N [t_n \ln y_n + (1-y_n) \ln(1-y_n)] \qquad \text{Likelihood}$$

$$\nabla E(w) = \sum_{n=1}^N (y_n - t_n) \phi_n \qquad H = \nabla \nabla E(w) = \sum_{n=1}^N y_n (1-y_n) \phi_n \phi_n^T$$

$$w_{ML} \longleftarrow w^{new} = w^{old} - H^{-1} \nabla E(w) \qquad q(w) = N(w|w_{ML}, H^{-1})$$

MAP Solution to Logistic Regression

$$p(w) = N(w|m_0, S_0) p(w|t) \propto p(w)p(t|w)$$

$$E(w) = -\ln p(w|t) = \frac{1}{2}(w - m_0)^T S_0^{-1} (w - m_0) - \sum_{n=1}^{N} [t_n \ln y_n + (1 - y_n) \ln(1 - y_n)]$$

$$\nabla E(w) = S_0^{-1}(w - m_0) + \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

$$H = \nabla \nabla E(w) = S_0^{-1} + \sum_{n=1}^{N} y_n (1 - y_n) \phi_n \phi_n^{T}$$

$$w_{MAP} \leftarrow w^{new} = w^{old} - H^{-1}\nabla E(w)$$
 $q(w) = N(w|w_{MAP}, H^{-1})$

Feed-forward Network Functions

Goal: to extend linear model by making the basis functions depend on parameters, allow these parameters to be adjusted.

Feed-forward Network Functions

☐ The overall network function, comprising two stage processing, becomes a linear regression model with adaptive basis functions

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Adaptive basis functions

Bayesian Neural Networks I

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = N(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}) \qquad p(\mathbf{w}) = N(\mathbf{w}|0, \alpha^{-1}I) \qquad p(\mathbf{w}|t) \propto p(\mathbf{w})p(t|\mathbf{x}, \mathbf{w}, \beta)$$

$$E(\mathbf{w}) = -\ln p(\mathbf{w}|\mathbf{t}) = \frac{\alpha}{2}\mathbf{w}^T\mathbf{w} + \frac{\beta}{2}\sum_{n=1}^{N}[y_n(\mathbf{x},\mathbf{w}) - y_n]^2 + Constant$$

$$\nabla E(\mathbf{w}) = \alpha \mathbf{w} + \beta \sum_{n=1}^{N} (y_n - t_n) \mathbf{g}_n$$
 $\mathbf{g} = \nabla_{\mathbf{w}} y(\mathbf{x}, \mathbf{w})$

$$A = \nabla \nabla E(\mathbf{w}) = \alpha \mathbf{I} + \beta \mathbf{H}$$

$$\mathbf{w}_{MAP} \leftarrow \mathbf{w}^{new} = \mathbf{w}^{old} - \mathbf{A}^{-1} \nabla E(\mathbf{w}) \qquad q(\mathbf{w}) = N(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{A}^{-1})$$

Bayesian Neural Networks I

$$y(\mathbf{x}, \mathbf{w}) \simeq y(\mathbf{x}, \mathbf{w}_{MAP}) + \mathbf{g}^{T}_{MAP}(\mathbf{w} - \mathbf{w}_{MAP})$$
$$p(t|\mathbf{x}, \mathbf{w}, \beta) = N(t|y(\mathbf{x}, \mathbf{w}_{MAP}) + \mathbf{g}^{T}_{MAP}(\mathbf{w} - \mathbf{w}_{MAP}), \beta^{-1})$$

$$p(t|\mathbf{x}, D, \alpha, \beta) = \int p(t|\mathbf{x}, \mathbf{w}, \beta)q(\mathbf{w})d\mathbf{w}$$

 $q(\mathbf{w}) = N(\mathbf{w}|\mathbf{w}_{MAP}, \mathbf{A}^{-1})$

$$p(t|\mathbf{x}, D, \alpha, \beta) = N(t|y(\mathbf{x}, \mathbf{w}_{MAP}), \mathbf{g}^{T}_{MAP}\mathbf{A}^{-1}\mathbf{g}_{MAP} + \beta^{-1})$$

Bayesian Neural Networks II

$$p(\mathbf{w}) = N(\mathbf{w}|0, \alpha^{-1}I) \quad p(\mathbf{w}|t) \propto p(\mathbf{w})p(t|\mathbf{w})$$

$$E(w) = -\ln p(w|t) = \frac{\alpha}{2} w^{T} w - \sum_{n=1}^{N} [t_n \ln y_n + (1 - tn) \ln(1 - yn)]$$

$$\nabla E(w) = \alpha w + \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{g}_n$$

$$\mathbf{A} = \nabla \nabla E(\mathbf{w}) = \alpha \mathbf{I} + \mathbf{H}$$
 $\mathbf{H} = \sum_{n=1}^{N} y_{n}(1 - y_{n}) \mathbf{g}_{n} \mathbf{g}_{n}^{T}$

$$\mathbf{w}_{MAP} \leftarrow \mathbf{w}^{new} = \mathbf{w}^{old} - \mathbf{A}^{-1} \nabla E(\mathbf{w}) \qquad q(\mathbf{w}) = N(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{A}^{-1})$$

The Kullback-Leibler Divergence

$$\begin{aligned} \operatorname{Cross Entropy C}(p||q) & \operatorname{Entropy H}(p) \\ \operatorname{KL}(p||q) & = & -\int p(\mathbf{x}) \ln q(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) \, \mathrm{d}\mathbf{x}\right) \\ & = & -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} \, \mathrm{d}\mathbf{x} \\ & \operatorname{Cross Entropy} & \operatorname{Negative Entropy} \\ \operatorname{KL}(p||q) & \simeq \frac{1}{N} \sum_{n=1}^{N} \left\{-\ln q(\mathbf{x}_n|\boldsymbol{\theta}) + \ln p(\mathbf{x}_n)\right\} \\ \operatorname{KL}(p||q) & \geqslant 0 & \operatorname{KL}(p||q) \not\equiv \operatorname{KL}(q||p) \end{aligned}$$

KL divergence describes a distance between model p and model q

Cross Entropy for Machine Learning

```
Goal of Machine Learning: p(real data) \approx p(model / \theta)
```

we assume: $p(training data) \approx p(training data)$

Operation of Machine Learning: $p(training \ data) \approx p(model \ | \ \theta)$

```
\min_{\theta} \mathsf{KL}(p(\mathit{training data}) \mid\mid p(\mathit{model}\mid\theta))
```



```
\min_{\theta} C(p(training data) || p(model | \theta))
```

as H(p(training data)) is fixed

Cross Entropy for Machine Learning

 $C(p(training data) || p(model | \theta))$

Bernoulli model: $p(model \mid \theta) = \rho^t (1 - \rho)^{1-t}$

 t_n : training data

Cross entropy: $C = -\frac{1}{N}\sum_{n} t_n \ln \rho + (1 - t_n) \ln(1 - \rho)$

ρ: model parameter

Gaussian model: $p(model / \theta) \propto e^{-0.5(t-\mu)^2}$

 t_n : training data

Cross entropy: $C \propto \frac{1}{N} \sum_{n} (t_n - \mu)^2$

μ: model parameter

SVM v.s. Logistic Regression I

For data points on the correct side, $\xi = 0$ For the remaining points, $\xi = 1 - y_n t_n$

$$C\sum_{n=1}^{N} \xi_{n} + \frac{1}{2} \|\mathbf{w}\|^{2} \Longrightarrow \sum_{n=1}^{N} E_{SV}(y_{n}, t_{n}) + \lambda \|\mathbf{w}\|^{2}$$

$$\text{where } \lambda = (2C)^{-1}$$

$$E_{SV}(y_{n}, t_{n}) = [1 - y_{n}t_{n}]_{+} \text{: hinge error function}$$

$$\text{where } [\cdot]_{+} \text{ denotes the positive part}$$

SVM v.s. Logistic Regression II

☐ From maximum likelihood logistic regression

$$p(t=1|y) = \sigma(y)$$

$$p(t=-1|y) = 1 - \sigma(y) = \sigma(-y)$$

$$\Rightarrow p(t|y) = \sigma(yt)$$

■ Error function with quadratic regularization

$$\sum_{n=1}^{N} E_{LR}(y_n t_n) + \lambda \|\mathbf{w}\|^2$$
where $E_{LR}(yt) = \ln(1 + \exp(-yt))$

SVM v.s. Logistic Regression III

Cross-Entropy

y: Bernoulli parameter

a: natural parameter

$$-\ln p(t|y) = -t \ln y - (1-t)\ln(1-y)$$

$$-\ln p(t|a) = -\ln \sigma(at) = \ln(1 + e^{-at}) \qquad y = \sigma(a)$$

Cross-Entropy with prior

$$-\ln p(t|y) + \alpha^{-1} \mathbf{w}^{T} \mathbf{w} = -t \ln y - (1-t) \ln(1-y) + \alpha^{-1} \mathbf{w}^{T} \mathbf{w}$$

$$-\ln p(t|a) + \alpha^{-1}\mathbf{w}^T\mathbf{w} = \ln(1 + e^{-at}) + \alpha^{-1}\mathbf{w}^T\mathbf{w}$$

softplus:
$$\ln(1+e^{-x})$$

Comparison of Error Functions

Comparison of Error Functions

Reduction of Dimensionality (PCA)

$$\min_{A_i} A_i^T COV(Y_i) A_i$$

A: rotation

$$A_i^{*T}COV(Y_i)A_i^* = \lambda_i$$

 A_i^* : optimal solution

$$s.t. A_i^T A_i = 1 E[Y_i] = \mathbf{0}$$

Feature Extraction (Contrastive Loss)

t=1: two vectors belong to the same category; []₊: non-negative

EM for Gaussian Mixtures

EM for Gaussian Mixtures

- ☐ Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters
 - 1. Initialize the means μ_k , covariance Σ_k and mixing coefficients π_k
 - 2. E step

$$V(z_{nk}) = \frac{\pi_k N(\mathbf{x_n} | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x_n} | \mu_j, \Sigma_j)}$$

3. M step

$$\mu_{k}^{new} = \frac{1}{N_{k}} \sum_{n=1}^{N} \mathbf{Y}(\boldsymbol{z}_{nk}) \boldsymbol{x}_{n}$$

$$\sum_{k}^{new} = \frac{1}{N_{k}} \sum_{n=1}^{N} \mathbf{Y}(\boldsymbol{z}_{nk}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{new}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{new})^{T}$$

$$\boldsymbol{\pi}_{k}^{new} = \frac{N_{k}}{N}$$

$$N_{k} = \sum_{n=1}^{N} \mathbf{Y}(\boldsymbol{z}_{nk})$$

4. Evaluate the log likelihood

$$\ln p(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\Pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) \right\}$$

EM for Bernoulli Mixtures

$$\ln p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} p(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}) \right\}$$

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\mu}) = \prod_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\mu_k})^{z_k} \quad (\mathbf{z} = (z_1, \dots, z_K)^T \text{ is a binary indicator variables})$$

$$p(\mathbf{z} \mid \boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_k}$$

(complete - data log likelihood function):

$$\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln (1 - \mu_{ki}) \right] \right\} \\
E_{\mathbf{Z}} \left[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln (1 - \mu_{ki}) \right] \right\} \\
(E - \text{step}) \quad \gamma(z_{nk}) = E[z_{nk}] = \frac{\pi_{k} p(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k})}{\sum_{j=1}^{K} \pi_{j} p(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j})}, \quad N_{k} = \sum_{n=1}^{N} \gamma(z_{nk}), \quad \overline{\mathbf{x}}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n} \\
(M - \text{step}) \quad \boldsymbol{\mu}_{k} = \overline{\mathbf{x}}_{k}, \quad \pi_{k} = \frac{N_{k}}{N}$$

* In contrast to the mixture of Gaussians, there are no singularities in which the likelihood goes to infinity

Hidden Markov Models

Conditional distribution for latent variable

$$p(\mathbf{z}_n|\mathbf{z}_{n-1,\mathbf{A}}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j}z_{nk}}$$

$$p(\mathbf{z}_1|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{1k}}$$

$$\sum_{k} \pi_k = 1$$

A means transition probabilities

As in the case of a standard mixture model, the latent variables are the discrete multinomial variables zn using 1-of-K coding scheme

a model whose latent variables have three possible states corresponding to the three boxes. The black lines denote the elements of the transition matrix Ajk

EM for HMM

EM algorithm

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})
\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})
\gamma(z_{nk}) = \mathbb{E}[z_{nk}] = \sum_{\mathbf{z}} \gamma(\mathbf{z}) z_{nk}
\xi(z_{n-1,j}, z_{nk}) = \mathbb{E}[z_{n-1,j} z_{nk}] = \sum_{\mathbf{z}} \gamma(\mathbf{z}) z_{n-1,j} z_{nk}$$

$$\pi_{k} = \frac{\gamma(z_{1k})}{\sum_{j=1}^{K} \gamma(z_{1j})} \qquad \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

$$A_{jk} = \frac{\sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nk})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nl})} \qquad \Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

Sum-Product v.s. Max-Product

- Sum-Product Algorithm (evaluation)
 - ✓ Compute the joint distribution from the Product
 - ✓ Infer marginal distributions from the Sum

$$p(x_1, x_2) = \sum_{x_3} p(x_1, x_3) p(x_2, x_3)$$

- Max-Product Algorithm (decoding)
 - ✓ Compute the joint distribution from the Product
 - ✓ Perform ML estimation from the Max

$$x_1^* = \max_{x_1} p(x_1, x_3) p(x_2, x_1)$$

Sum-Product for HMMs

☐ Transforming the directed graph into a factor graph

$$\mu_{f_n \to \mathbf{z}_n}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n-1}} f_n(\mathbf{z}_{n-1}, \mathbf{z}_n) \mu_{f_{n-1} \to \mathbf{z}_{n-1}}(\mathbf{z}_{n-1})$$

$$\alpha(\mathbf{z}_n) = \mu_{f_n \to \mathbf{z}_n}(\mathbf{z}_n)$$

Sum-Product for HMMs

Transforming the directed graph into a factor graph

$$\mu_{f_{n+1}\to f_n}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} f_{n+1}(\mathbf{z}_n, \mathbf{z}_{n+1}) \mu_{f_{n+2}\to f_{n+1}}(\mathbf{z}_{n+1})$$

$$\beta(\mathbf{z}_n) = \mu_{f_{n+1} \to \mathbf{z}_n}(\mathbf{z}_n)$$

$$p(\mathbf{z}_n, \mathbf{X}) = \mu_{f_n \to \mathbf{z}_n}(\mathbf{z}_n) \mu_{f_{n+1} \to \mathbf{z}_n}(\mathbf{z}_n) = \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)$$

$$\gamma(\mathbf{z}_n) = \frac{p(\mathbf{z}_n, \mathbf{X})}{p(\mathbf{X})} = \frac{\alpha(\mathbf{z}_n)\beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

Latent Sequence Estimation

□ Decoding:

Given a HMM model $\theta = \{\pi, A, \phi\}$, what is the most likely latent sequence $\{\mathbf{z}_1, ..., \mathbf{z}_N\}$ for an observation sequence $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$?

Viterbi Algorithm

$$\omega(\mathbf{z}_n) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} \ln p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

$$\omega(\mathbf{z}_{n+1}) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_n} \ln p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_{n+1}, \mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{z}_{n+1})$$

$$\omega(\mathbf{z}_{n+1}) = \ln p(\mathbf{x}_{n+1}|\mathbf{z}_{n+1}) + \max_{\mathbf{z}_n} \left\{ \ln p(\mathbf{z}_{n+1}|\mathbf{z}_n) + \omega(\mathbf{z}_n) \right\}$$

$$\omega(\mathbf{z}_1) = \ln p(\mathbf{z}_1) + \ln p(\mathbf{x}_1|\mathbf{z}_1)$$

Viterbi Algorithm

- lacktriangle Note that maximization over \mathbf{z}_n must be performed for each of K possible values of \mathbf{z}_{n+1}
- lacksquare Denote this function by $\psi(k_n)$, where $k \in \{1,\ldots,K\}$
- lacksquare Once we find the most probable value of \mathbf{z}_N , we can trackback along the chain

$$k_n^{\max} = \psi(k_{n+1}^{\max})$$

 \square Reduce the computational cost from $O(K^N)$ to O(KN)

Example

☐ Given an HMM and an observation sequence, how to perform evaluation and decoding

Transition A

Emission B

Hidden States Z

Observations X

 $\begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$

 $\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}$

{bull, bear}

{up, down}

If Z is stationary, then π = [3/7, 4/7]. We also can assume π = [1/2, 1/2]

An observation sequence: {up, up, down}

Evaluation (Sum-Product)

$$\alpha(z_1) = p(z_1, x_1) = p(x_1|z_1)p(z_1)$$

$$\begin{aligned} x_1 &= \mathsf{up}, z_1 = \mathsf{bull} \text{ or bear} \end{aligned} = \begin{bmatrix} 0.8 \\ 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.8 \times 0.5 \\ 0.1 \times 0.5 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.05 \end{bmatrix}$$

$$\alpha(z_2) &= p(z_2, x_1, x_2) = p(x_2|z_2) \sum_{z_1} p(z_2|z_1) \, \alpha(z_1) \\ x_2 &= \mathsf{up}, z_2 = \mathsf{bull} \text{ or bear} \end{aligned} = \begin{bmatrix} 0.8 \\ 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \times 0.4 \\ 0.4 \times 0.4 \\ 0.4 \times 0.4 \\ 0.4 \times 0.4 \end{bmatrix} + \begin{bmatrix} 0.204 \\ 0.0195 \end{bmatrix} = \begin{bmatrix} 0.204 \\ 0.0195 \end{bmatrix}$$

$$\alpha(z_3) &= p(z_3, x_1, x_2, x_3) = p(x_3|z_3) \sum_{z_2} p(z_3|z_2) \, \alpha(z_2)$$

$$x_3 &= \mathsf{down}, z_2 &= \mathsf{bull} \text{ or bear} \end{aligned} = \begin{bmatrix} 0.2 \\ 0.9 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \times 0.204 \\ 0.4 \times 0.204 \\ 0.4 \times 0.204 \\ 0.204 \end{bmatrix} + \begin{bmatrix} 0.3 \times 0.0195 \\ 0.7 \times 0.0195 \\ 0.7 \times 0.0195 \end{bmatrix} = \begin{bmatrix} 0.02565 \\ 0.085725 \end{bmatrix}$$

$$p(x_1, x_2, x_3) = \sum_{z_3} \alpha(z_3) = 0.111375$$

Decoding (Max-Product)

$$\delta(z_1) = p(z_1, x_1) = p(x_1|z_1)p(z_1)$$

$$x_1 = \text{up, } z_1 = \text{bull or bear} \qquad = \begin{bmatrix} 0.8 \\ 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.8 \times 0.5 \\ 0.1 \times 0.5 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.05 \end{bmatrix}$$

$$\delta(z_2) = p(z_2, x_1, x_2) = p(x_2|z_2) \max_{z_1} p(z_2|z_1)\delta(z_1)$$

$$x_2 = \text{up, } z_2 = \text{bull or bear} \qquad = \begin{bmatrix} 0.8 \\ 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \times 0.4 \\ 0.4 \times 0.4 \end{bmatrix} = \begin{bmatrix} 0.192 \\ 0.016 \end{bmatrix}$$

$$\phi(z_2) = \arg\max_{z_1} p(z_2|z_1)\delta(z_1) = \begin{bmatrix} bull \rightarrow bull \\ bull \rightarrow bear \end{bmatrix}$$

$$\delta(z_3) = p(z_3, x_1, x_2, x_3) = p(x_3|z_3) \max_{z_2} p(z_3|z_2)\delta(z_2)$$

$$x_3 = \text{down, } z_2 = \text{bull or bear} \qquad = \begin{bmatrix} 0.2 \\ 0.9 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \times 0.192 \\ 0.4 \times 0.192 \end{bmatrix} = \begin{bmatrix} 0.02304 \\ 0.06912 \end{bmatrix}$$

$$\phi(z_3) = \arg\max_{z_2} p(z_3|z_2)\delta(z_2) = \begin{bmatrix} bull \rightarrow bull \\ bull \rightarrow bear \end{bmatrix}$$

$$\phi(z_3) = \arg\max_{z_2} p(z_3|z_2)\delta(z_2) = \begin{bmatrix} bull \rightarrow bull \\ bull \rightarrow bear \end{bmatrix}$$

$$Optimal solution: bull \rightarrow bear$$

Kalman Filtering

EM for LDS

$$\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \ln p(\mathbf{z}_1|\boldsymbol{\mu}_0, \mathbf{V}_0) + \sum_{n=2}^{N} \ln p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}, \boldsymbol{\Gamma})$$
$$+ \sum_{n=1}^{N} \ln p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{C}, \boldsymbol{\Sigma})$$

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \mathbb{E}_{\mathbf{Z}|\boldsymbol{\theta}^{\text{old}}} \left[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right]$$

EM Algorithm in General

The EM Algorithm in General (I)

- Direct optimization of p $(X|\theta)$ is difficult while optimization of complete data likelihood p $(X, Z|\theta)$ is significantly easier.
- \square Decomposition of the likelihood p (X| θ)

$$\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \ln p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}) + \ln p(\mathbf{X}|\boldsymbol{\theta})$$

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||p)$$

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

$$\mathrm{KL}(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

$$\mathrm{KL}(q||p) \geqslant 0 \quad \Longrightarrow \quad \mathcal{L}(q, \bar{\boldsymbol{\theta}}) \leqslant \ln p(\mathbf{X}|\boldsymbol{\theta})$$

The EM Algorithm in General (II)

- (E step) The lower bound $\mathcal{L}(q, \theta_{old})$ is maximized while holding θ_{old} fixed. Since $\ln p(X|\theta)$ does not depend on q(Z), $\mathcal{L}(q, \theta_{old})$ will be the largest when KL(q||p) vanishes (i.e. when q(Z) is equal to the posterior distribution $p(Z|X, \theta_{old})$)
- (M step) q(Z) is fixed and the lower bound $\mathcal{L}(q, \theta_{old})$ is maximized wrt. θ to θ_{new} . When the lower bound is increased, θ is updated making KL(q||p) greater than 0. Thus the increase in the log likelihood function is greater than the increase in the lower bound.
- ☐ In the M step, the quantity being maximized is the expectation of the complete-data log-likelihood

Graphical Model – Bayesian Regression

Graphical Model – Factor Graph

Factor Graph for Solving Equations

$$x_1 + 2x_2 + x_3 = 4$$
 $x_2 + 2x_3 = 3$

$$x_1 + x_2 = 2$$

(1)
$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 0$

(2)
$$f_1 \rightarrow x_1$$
: $x_1 = 4 - 2x_2 - x_3 = 2$
 $f_1 \rightarrow x_2$: $x_2 = (4 - x_1 - x_3)/2 = 1.5$
 $f_1 \rightarrow x_3$: $x_3 = 4 - 2x_2 - x_1 = 1$

$$f_2 \rightarrow x_2$$
: $x_2 = 3 - 2x_3 = 3$
 $f_2 \rightarrow x_3$: $x_3 = 3 - 2x_2 = 1$

$$f_3 \rightarrow x_1$$
: $x_1 = 2 - x_2 = 1$
 $f_3 \rightarrow x_2$: $x_2 = 2 - x_1 = 1$

(3)
$$x_1 = (1+2+1)/3 = 4/3$$

$$x_2 = (1+1.5+3+1)/4 = 6.5/4$$
 $x_3 = (0+1+1)/3 = 2/3$

$$x_3 = (0+1+1)/3 = 2/3$$

Factor Graph for Computing Means

$$S_i = x_i N_i$$

$$S_1 = 11 \quad N_1 = 10$$

$$S_2 = 10 \quad N_2 = 10$$

$$S_1 = 11$$
 $N_1 = 10$ $S_2 = 10$ $N_2 = 10$ $S_3 = 18$ $N_3 = 20$

$$x_1 = x_2 = x_3$$

$$x_2 = x_3$$

$$x_1 = x_3$$

(2)
$$f_1 \rightarrow x_1$$
: $S_1 = 28$ $N_1 = 30$

$$f_1 \rightarrow x_2$$
: $S_2 = 29$ $N_2 = 30$

$$f_1 \rightarrow x_3$$
: $S_3 = 21$ $N_3 = 20$

$$f_2 \rightarrow x_2$$
: $S_2 = 18$ $N_2 = 20$

$$f_2 \rightarrow x_3$$
: $S_3 = 10$ $N_3 = 10$

$$f_3 \rightarrow x_1$$
: $S_1 = 18$ $N_1 = 20$

$$f_3 \rightarrow x_3$$
: $S_3 = 11$ $N_3 = 10$

(3)
$$S_1 = 57$$
 $N_1 = 60$ $S_2 = 57$ $N_2 = 60$ $S_3 = 60$ $N_3 = 60$

Factor Graph for Belief Aggregation

$$\mathbf{x}_1 = x_2 = x_3$$

(1)
$$x_1 \sim \mathcal{N}(m_1, \Sigma_1)$$
 $x_2 \sim \mathcal{N}(m_2, \Sigma_2)$
(2) $f_1 \rightarrow x_1$: $x_3 \sim \mathcal{N}(m_3, \Sigma_3)$
 $\hat{\Sigma}_1^{-1} = \Sigma_2^{-1} + \Sigma_3^{-1}$ $\hat{\Sigma}_1^{-1} \hat{m}_1 = \Sigma_2^{-1} m_2 + \Sigma_3^{-1} m_3$
 $f_1 \rightarrow x_2$:
 $\hat{\Sigma}_2^{-1} = \Sigma_1^{-1} + \Sigma_3^{-1}$ $\hat{\Sigma}_2^{-1} \hat{m}_2 = \Sigma_1^{-1} m_1 + \Sigma_3^{-1} m_3$
 $f_1 \rightarrow x_3$:

$$\begin{array}{c} (3) \\ \bar{\Sigma}_{1}^{-1} = \Sigma_{1}^{-1} + \hat{\Sigma}_{1}^{-1} & \bar{\Sigma}_{1}^{-1} \bar{m}_{1} = \Sigma_{1}^{-1} m_{1} + \hat{\Sigma}_{1}^{-1} \hat{m}_{1} \\ \\ \bar{\Sigma}_{2}^{-1} = \Sigma_{2}^{-1} + \hat{\Sigma}_{2}^{-1} & \bar{\Sigma}_{2}^{-1} \bar{m}_{2} = \Sigma_{2}^{-1} m_{2} + \hat{\Sigma}_{2}^{-1} \hat{m}_{2} \\ \\ \bar{\Sigma}_{3}^{-1} = \Sigma_{3}^{-1} + \hat{\Sigma}_{3}^{-1} & \bar{\Sigma}_{3}^{-1} \bar{m}_{3} = \Sigma_{3}^{-1} m_{3} + \hat{\Sigma}_{3}^{-1} \hat{m}_{3} \end{array}$$

 $\hat{\Sigma}_{3}^{-1} = \Sigma_{1}^{-1} + \Sigma_{3}^{-1}$ $\hat{\Sigma}_{2}^{-1} \hat{m}_{2} = \Sigma_{1}^{-1} m_{1} + \Sigma_{3}^{-1} m_{3}$

Markov Decision Process

		+0
		-1
START		

MDP Model

0	1	2	3
4	5	6	7
8	9	10	11

- a) Position 3: reward = 0 for any action
- b) Positions 5 and 7: wall, reward = -1
- c) reward = 0.1 for each step in other states
- d) action = {up/0, down/1, left/2, right/3}

transition probabilities:

```
{x: {u_1: (x', p(x'|x, u_1), r), u_2: (x', p(x'|x, u_2), r), u_3: (x', p(x'|x, u_3), r), u_4: (x', p(x'|x, u_4), r) }}
```

```
{0: {0: (0, 1.0, -0.1), 1: (4, 1.0, -0.1), 3: (1, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 1: {0: (1, 1.0, -0.1), 1: (1, 1.0, -1), 3: (2, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 2: {0: (2, 1.0, -0.1), 1: (6, 1.0, -0.1), 3: (3, 1.0, -0.1), 2: (1, 1.0, -0.1)}, 3: {0: (3, 1.0, 0), 1: (3, 1.0, 0), 3: (3, 1.0, 0), 2: (3, 1.0, 0)}, 4: {0: (0, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (4, 1.0, -1), 2: (4, 1.0, -0.1)}, 5: {0: (1, 1.0, -0.1), 1: (9, 1.0, -0.1), 3: (6, 1.0, -0.1), 2: (4, 1.0, -0.1)}, 6: {0: (2, 1.0, -0.1), 1: (10, 1.0, -0.1), 3: (6, 1.0, -1), 2: (6, 1.0, -1)}, 7: {0: (3, 1.0, -0.1), 1: (11, 1.0, -0.1), 3: (7, 1.0, -1), 2: (6, 1.0, -0.1)}, 8: {0: (4, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (9, 1.0, -0.1), 2: (8, 1.0, -0.1)}, 9: {0: (9, 1.0, -1), 1: (9, 1.0, -0.1), 3: (10, 1.0, -0.1), 2: (8, 1.0, -0.1)}, 10: {0: (6, 1.0, -0.1), 1: (10, 1.0, -0.1), 3: (11, 1.0, -0.1), 2: (10, 1.0, -0.1)}}
```

Value Iteration (I)

Value Function V⁰

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$V^0(0) = 0.0$$

$$V^1(0) = -0.1$$

$$r(0, up) + V^{0}(0)*p(0|0,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, do) + V^{0}(4)*p(4|0,do) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, rig) + V^{0}(1)*p(1|0,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, lef) + V^{0}(0)*p(0|0,lef) = -0.1 + (-0.0)*1 = -0.1$$

$$V^0(1) = 0.0$$
 $V^1(1) = -0.1$

$$r(1, up) + V^{0}(1)*p(1|1,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, do) + V^{0}(1)*p(1|1,do) = -1.0 + (-0.0)*1 = -1.0$$

$$r(1, rig) + V^{0}(2)*p(2|1,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, lef) + V^{0}(0)*p(0|1,lef) = -0.1 + (-0.0)*1 = -0.1$$

Value Iteration (II)

Value Function V¹

- 0.1	- 0.1	- 0.1	0.0
- 0.1	0.0	-0.1	0.0
- 0.1	- 0.1	- 0.1	- 0.1

$$V^1(0) = -0.1$$
 $V^2(0) = -0.2$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1+(-0.1)*1=-0.2$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1+(-0.1)*1=-0.2$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1+(-0.1)*1=-0.2$$

$$V^{1}(1) = -0.1 \quad V^{2}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.1)*1 = -1.1$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.1)*1 = -0.2$$

Value Iteration (III)

Value Function V²

- 0.2	- 0.2	- 0.1	0.0
- 0.2	0.0	- 0.2	0.0
- 0.2	- 0.2	- 0.2	- 0.2

$$V^2(0) = -0.2$$
 $V^3(0) = -0.3$

$$r(0, up) + V^{2}(0)*p(0|0,up) = -0.1+(-0.2)*1=-0.3$$

$$r(0, do) + V^{2}(4)*p(4|0,do) = -0.1+(-0.2)*1=-0.3$$

$$r(0, rig) + V^{2}(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V^{2}(0)*p(0|0,lef) = -0.1+(-0.2)*1=-0.3$$

$$V^{2}(1) = -0.2 V^{3}(1) = -0.2$$

$$r(1, up) + V^{2}(1)*p(1|1,up) = -0.1+ (-0.2)*1 = -0.3$$

$$r(1, do) + V^{2}(1)*p(1|1,do) = -1.0+ (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{2}(2)*p(2|1,rig) = -0.1+ (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{2}(0)*p(0|1,lef) = -0.1+ (-0.2)*1 = -0.3$$

Value Iteration (IV)

Value Function V³

- 0.3	- 0.2	- 0.1	0.0
- 0.3	0.0	- 0.2	0.0
- 0.3	- 0.3	- 0.3	- 0.3

$$V^3(0) = -0.2$$
 $V^4(0) = -0.3$

$$r(0, up) + V^{3}(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V^{3}(4)*p(4|0,do) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, rig) + V^{3}(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V^{3}(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V^{3}(1) = -0.2 \qquad V^{4}(1) = -0.2$$

$$r(1, up) + V^{3}(1)*p(1|1,up) = -0.1+ (-0.2)*1 = -0.3$$

$$r(1, do) + V^{3}(1)*p(1|1,do) = -1.0+ (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{3}(2)*p(2|1,rig) = -0.1+ (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{3}(0)*p(0|1,lef) = -0.1+ (-0.3)*1 = -0.4$$

Value Iteration (V)

Value Function V⁴

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.4	- 0.4	- 0.3	- 0.4

$$V^4(0) = -0.2$$
 $V^5(0) = -0.3$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V^{4}(1) = -0.2 \qquad V^{5}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.3)*1 = -0.4$$

Stationary Value Function

Stationary Value Function

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.5	- 0.4	- 0.3	- 0.4

$$V(0) = -0.3$$

$$r(0, up) + V(0)*p(0|0,up) = -0.1+(-0.3)*1=-0.4$$

 $r(0, do) + V(4)*p(4|0,do) = -0.1+(-0.4)*1=-0.5$
 $r(0, rig) + V(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$
 $r(0, lef) + V(0)*p(0|0,lef) = -0.1+(-0.3)*1=-0.4$

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

 $r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.2)*1=-1.0$
 $r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$
 $r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$

Optimal Policy for Value Iteration

Stationary Value Function

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

$$V(0) = -0.3$$

Optimal Action: right →

$$r(0, up) + V(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V(0)*p(1|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

Optimal Policy

$$V(1) = -0.2$$

Optimal Action: right →

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

$$r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.0)*1=-1.0$$

$$r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$$

Policy Iteration

- ☐ Often the optimal policy has been reached long before the value function has converged.
- Policy iteration (1) calculates a new policy based on the current value function and (2) then calculates a new value function based on this policy.
 - (1) Policy improvement $\pi^* = \underset{\pi}{\operatorname{argmax}} R_T^{\pi}(x_t)$
 - (2) Policy evaluation $R_{T}^{\pi}(x_{t}) = E \left[\sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi \left(z_{1:t+\tau-1} u_{1:t+\tau-1} \right) \right]$
- Often converges faster to the optimal policy.

Policy Iteration (I)

Policy π^0

Policy π^1

Policy π^2

Policy π^3

Policy Iteration (II)

Policy π^4

Policy π^5

Value Function

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

Partially Observable MDP

More Course Links

Stanford Machine Learning:

https://see.stanford.edu/Course/CS229/47

MIT Machine Learning: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/index.htm

Stanford CNN for Vision: http://cs231n.stanford.edu

Stanford Deep Learning: http://cs230.stanford.edu/syllabus.html

MIT Deep Learning: http://introtodeeplearning.com/