Lecture 1 - Microprocessors and Microcontrollers

Topics

- · Classification of computer architecture
- · Characteristics of a microprocessor
- · Characteristics of a microcontroller

Basic Operation of a Computing System

- The Central processing unit (CPU) carries out all computation
 - Fetches instructions from the program memory and executes
 - May require access to data in data memory

Basic Operation of a Computing System

- The input/output block provides interface with the outside world
 - Allows users to interact with the computing system
 - Observe the output results

Instructions sets

- Any CPU has an instruction set architecture (ISA)
- This is one way in which to classify computers
- · CISC complex instruction set computer
 - Typically in desktops, laptops, serveys
 - Intel dominated
- RISC reduced instruction set computers
 - Typically used in microcontrollers that are used to build embedded systems

Memory categorization

- Two different types of memory
- Random Access Memory (RAM)
 - Volatile
 - Used for data memory in microcontroller
- Read Only Memory (ROM)
 - Non-volatile
 - Use for program memory in microntrollers

CPU hardware architectures

- Broadly two types of architectures
- 1. Von Neuman Architecture
 - Both instruction and data are stored in the same memory
 - This model is followed in conventional computing systems

CPU hardware architectures

2. Harvard Architecture

- Instructions and data are stored in separate memories
- Typically followed in microcontrollers
- Instructions are stored in a ROM (permanent)
- Temporary data is stored in RAM

CPU hardware architectures

Von Neumann Architecture

Harvard Architecture

What is a microproccesor?

- · A CPU fabricated on a single chip
 - Consists of a set of registers to store temporary data
 - Consists of an arithmetic logic unit (ALU)
 - Some mechanism to interface external devices (memory and I/O) through busses (address, data and control)
 - Consists of a control unit (pointer) that synchronizes the operation

Microprocessor architecture

What is microcomputer

A computer that is built using a microprocessor

What is microcomputer

- Since a microprocess does not contain memory and I/O, we have to interface these separately to build a microcomputer
 - Too complex and expensive for very small and low-cost embedded systems

What is a Microcontroller

- It is basically a computer on a single chip
 - Very inexpensive, small, low power
 - Convenient for embedded system design

What is a Microcontroller

 It operates on data that are fed through it serial or parallel input ports, controlled by the software stored in onchip memory

More detailed architecture

Microcontroller packaging

How Microcontrollers are different from PCs?

- When a PC executes a program, the program is in SSD/HDD into an allocated section of memory
 - Usually the program is loaded part by part to conserve memory space
 - There is a complicated operating system that handles all low-level operations

How Microcontrollers are different from PCs?

- In a microcontroller there is no disk to read from
 - On-chip ROM stores the program that is to be executed
 - Size of the ROM limits the maximum size of the program
 - No operating system

Where are Microcontrollers Used?

- Typically in applications where processing power is not critical
 - Modern day household has 50 such devices
- One third of the applications are in the office automation segment
- Rest one third in automotive and communication applications

Evolution of Microcontrollers

- Microcontrollers evolved from a microprocessor-based board-eleve design to a sing chip in the mid 1970's
- In the mid 1980's, microcontrollers got embedded into a larger ASIC
 - Microcontrollers are fabricated as a module inside a larger chip

Advantages of using Microcontrollers

- Fast and effective
- Low cost/Low power
- Compatibility
 - Opcodes and binaries are the same for all 80x51/AR/PIC variants