## Лабораторная работа №4

Эмуляция и измерение задержек в глобальных сетях

Тазаева Анастасия Анатольевна

### Содержание

| 1 | . Цель работы |       |                                                                                             |     |  |  |  |  |  |  |
|---|---------------|-------|---------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|
| 2 | Зад           | ание  |                                                                                             | 7   |  |  |  |  |  |  |
| 3 |               |       | ие лабораторной работы                                                                      | 8   |  |  |  |  |  |  |
|   | 3.1           |       | ж лабораторной топологии                                                                    | 8   |  |  |  |  |  |  |
|   | 3.2           |       | рактивные эксперименты                                                                      | 10  |  |  |  |  |  |  |
|   |               |       | сети                                                                                        | 10  |  |  |  |  |  |  |
|   |               | 3.2.2 | Изменение задержки в эмулируемой глобальной сети                                            | 12  |  |  |  |  |  |  |
|   |               | 3.2.3 | Добавление значения дрожания задержки в интерфейс подключения к эмулируемой глобальной сети | 14  |  |  |  |  |  |  |
|   |               | 3.2.4 |                                                                                             |     |  |  |  |  |  |  |
|   |               |       | в интерфейс подключения к эмулируемой глобальной сети .                                     | 15  |  |  |  |  |  |  |
|   |               | 3.2.5 | 1 11 11 11                                                                                  | 4.0 |  |  |  |  |  |  |
|   |               | _     | эмулируемой глобальной сети                                                                 | 16  |  |  |  |  |  |  |
|   | 3.3           | _     | ооизведение экспериментов                                                                   | 17  |  |  |  |  |  |  |
|   |               | 3.3.1 | Предварительная подготовка                                                                  | 17  |  |  |  |  |  |  |
|   |               | 3.3.2 | Добавление задержки для интерфейса, подключающегося к                                       |     |  |  |  |  |  |  |
|   |               |       | эмулируемой глобальной сети                                                                 | 18  |  |  |  |  |  |  |
| 4 | Выв           | воды  |                                                                                             | 24  |  |  |  |  |  |  |

## Список иллюстраций

| 3.1  | Подключение к mininet                                         | 8  |
|------|---------------------------------------------------------------|----|
| 3.2  | Исправление прав запуска Х-соединения                         | 8  |
| 3.3  | Создание топологии                                            | 9  |
| 3.4  | if config h 1                                                 | 9  |
| 3.5  | ifconfig h2                                                   | 9  |
| 3.6  | Проверка подключения ping h1 -> h2                            | 10 |
| 3.7  | Задержка для хоста h1                                         | 10 |
| 3.8  | Задержка для хоста h1. Проверка                               | 11 |
| 3.9  | Задержка для хоста h2                                         | 11 |
| 3.10 | Задержка для хоста h1(+задержка от хоста h2. Проверка         | 12 |
| 3.11 | Изменение задержки для хоста h1                               | 12 |
| 3.12 | Изменение задержки для хоста h2                               | 12 |
| 3.13 | Задержка для хоста h1 после изменения задержки. Проверка      | 13 |
| 3.14 | Удаление задержки для хоста h1                                | 13 |
| 3.15 | Удаление задержки для хоста h2                                | 13 |
|      | Задержка для хоста h1 после удаления задержки. Проверка       | 14 |
| 3.17 | Установка задержки для хоста h1 с случайным отклонением       | 14 |
| 3.18 | Задержка для хоста h1 с случайным отклонением. Проверка       | 14 |
| 3.19 | Удаление задержки для хоста h1                                | 15 |
| 3.20 | Установка задержки для хоста h1 с значением корреляции        | 15 |
| 3.21 | Задержка для хоста h1 с значением корреляции. Проверка        | 16 |
| 3.22 | Установка задержки для хоста h1 и задание нормального         |    |
|      | распределения                                                 | 16 |
| 3.23 | Задержка для хоста h1 с нормальным распределением. Проверка . | 17 |
| 3.24 | Обновление репозиториев                                       | 17 |
| 3.25 | Установка пакета geeqie                                       | 18 |
| 3.26 | Создание каталога для размещения файлов эксперимента          | 18 |
| 3.27 | Создание каталога imple-delay                                 | 19 |
| 3.28 | lab_netem_i.py                                                | 19 |
| 3.29 | lab_netem_i.py. Продолжение                                   | 20 |
| 3.30 | ping_plot                                                     | 20 |
| 3.31 | Изменение прав для файла скрипта                              | 20 |
| 3.32 | Makefile                                                      | 21 |
| 3.33 | Make                                                          | 21 |
| 3.34 | График с большой разницей первого значения с последующими .   | 22 |
| 3.35 | График                                                        | 22 |
| 3 36 | campet ny                                                     | 23 |

| 3.37 Makefile. измененный |  |  |  |  |  |  |  |  |  |  |  |  |  | 23 |
|---------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
| 3.38 samost.py выполнение |  |  |  |  |  |  |  |  |  |  |  |  |  | 23 |

## Список таблиц

### 1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

### 2 Задание

- 1. Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.
- 2. Проведите интерактивные эксперименты по добавлению/изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети.
- 3. Реализуйте воспроизводимый эксперимент по заданию значения задержки в эмулируемой глобальной сети. Постройте график.
- 4. Самостоятельно реализуйте воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Постройте графики.

### 3 Выполнение лабораторной работы

#### 3.1 Запуск лабораторной топологии

1. Запустила виртуальную среду с mininet. Из основной ОС подключилась к виртуальной машине (рис. 3.1).

```
[aatazaeva@aatazaeva ~]$ ssh -Y mininet@192.168.56.101

Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

New release '22.04.5 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

Last login: Sat Nov 30 00:59:49 2024
```

Рис. 3.1: Подключение к mininet

2. Исправила права запуска Х-соединения (рис. 3.2).

```
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 354e0b0b8205dd1dad6e57cd32216f64
mininet@mininet-vm:~$ sudo -i
root@mininet-vm:~# xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 b12887d838599f0b89841942b78a6ed6
root@mininet-vm:~# xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 354e0b0b820
5dd1dad6e57cd32216f64
root@mininet-vm:~# xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 354e0b0b8205dd1dad6e57cd32216f64
root@mininet-vm:~# exit
logout
```

Рис. 3.2: Исправление прав запуска X-соединения

3. Создала простейшую тополонию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 (рис. 3.3). Терминалы коммутатора и контроллера закрыла.

```
nininet@mininet-vm:~$ sudo mn --topo=single,2 -x
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:
s1
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Running terms on localhost:10.0
*** Starting controller
c0
                                            I
*** Starting 1 switches
*** Starting CLI:
mininet>
```

Рис. 3.3: Создание топологии

4. На хостах h1 и h2 ввела команду ifconfig (рис. 3.4 и 3.5), чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам. В дальнейшем при работе с NETEM и командой tc будут использоваться интерфейсы h1-eth0 и h2-eth0.

```
root@mininet-vm:/home/mininet#_ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
ether 7a:02:e8:8a:45:41 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.4: ifconfig h1

```
root@mininet-vm:/home/mininet# ifconfig
h2-eth0: flags=4163-UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
ether 62:a7:c8:a5:a0:36 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.5: ifconfig h2

5. Проверила подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6 (рис. 3.6).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.529 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.035 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.051 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.042 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.051 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.047 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5103ms
rtt min/avg/max/mdev = 0.035/0.125/0.529/0.180 ms
```

Рис. 3.6: Проверка подключения ping h1 -> h2

6. Минимальное(=0.035 ms), среднее(=0.125 ms), максимальное(=0.529 ms) и стандартное(=0.180 ms) отклонение времени приёма-передачи (RTT).

#### 3.2 Интерактивные эксперименты

# 3.2.1 Добавление/изменение задержки в эмулируемой глобальной сети

1. На хосте h1 добавила задержку в 100 мс к выходному интерфейсу (рис. 3.7): sudo tc qdisc add dev h1-eth0 root netem delay 100ms

Рис. 3.7: Задержка для хоста h1

Здесь: - sudo: выполнить команду с более высокими привилегиями; - tc: вызвать управление трафиком Linux; - qdisc: изменить дисциплину очередей сетевого планировщика; - add: создать новое правило; - dev h1-eth0: указать интерфейс, на котором будет применяться правило; - netem: использовать эмулятор сети; - delay 100ms: задержка ввода 100 мс.

2. Проверила, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1. Минимальное(=100.221 ms), среднее(=100.647 ms), максимальное(=101.032 ms) и стандартное(=0.329 ms) отклонение времени приёма-передачи (RTT) (рис. 3.8).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms
65 packets transmitted, 6 received, 0% packet loss, time 5010ms
67 rtt min/avg/max/mdev = 100.221/100.647/101.032/0.329 ms
```

Рис. 3.8: Задержка для хоста h1. Проверка

3. Для эмуляции глобальной сети с двунаправленной задержкой необходимо к соответствующему интерфейсу на хосте h2 также добавить задержку в 100 миллисекунд (рис. 3.9):

sudo tc gdisc add dev h2-eth0 root netem delay 100ms

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h2-eth0 root netem delay 1 00ms \_
```

Рис. 3.9: Задержка для хоста h2

4. Проверила, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1 ), повторив команду ping с параметром -с 6 на терминале хоста h1 . Минимальное(=200.238 ms), среднее(=200.904 ms), максимальное(=201.980 ms) и стандартное(=0.632 ms) отклонение времени приёма-передачи (RTT) (рис. 3.10).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=200 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=200 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=200 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=200 ms
65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=200 ms
66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=200 ms
67 bytes from 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5007ms
68 rtt min/avg/max/mdev = 200.238/200.904/201.980/0.632 ms
```

Рис. 3.10: Задержка для хоста h1(+задержка от хоста h2. Проверка

#### 3.2.2 Изменение задержки в эмулируемой глобальной сети

1. Изменила задержку со 100 мс до 50 мс для отправителя h1 (рис. 3.11):

```
sudo tc qdisc change dev h1-eth0 root netem delay 50ms и для получателя h2 (рис. 3.12):
```

sudo tc qdisc change dev h2-eth0 root netem delay 50ms

```
root@mininet-vm:/home/mininet# sudo tc qdisc change dev h1-eth0 root netem dela y 50ms
```

Рис. 3.11: Изменение задержки для хоста h1

root@mininet-vm:/home/mininet# sudo tc qdisc change dev h2-eth0 root netem dela
y 50ms

Рис. 3.12: Изменение задержки для хоста h2

2. Проверила, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1 . На (рис. 3.13) выделила минимальное, среднее, макси-мальное и стандартное отклонение времени приёма-передачи (RTT).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
67 bytes from 10.0.0.2 ping statistics ---
67 packets transmitted, 6 received, 0% packet loss, time 5001ms
68 bytes from 10.0.0.2 ping statistics ---
68 packets transmitted, 6 received, 0% packet loss, time 5001ms
69 bytes from 10.0.0.2 ping statistics ---
69 packets transmitted, 6 received, 0% packet loss, time 5001ms
```

Рис. 3.13: Задержка для хоста h1 после изменения задержки. Проверка

##Восстановление исходных значений (удаление правил) задержки в эмулируемой глобальной сети#

1. Восстановила конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса. Для отправителя h1 (рис. 3.14):

sudo tc qdisc del dev h1-eth0 root netem

Для получателя h2 (рис. 3.15):

sudo tc qdisc del dev h2-eth0 root netem

root@mininet-vm:/home/mininet# sudo tc qdisc del dev hl-eth0 root netem

Рис. 3.14: Удаление задержки для хоста h1

root@mininet-vm:/home/mininet# sudo tc qdisc del dev h2-eth0 root netem

Рис. 3.15: Удаление задержки для хоста h2

2. Проверила, что соединение между хостом h1 и хостом h2 не имеет явноустановленной задержки, используя команду ping с параметром -с 6 с терминала хоста h1. На (рис. 3.16) выделила минимальное, среднее, макси-мальное и стандартное отклонение времени приёма-передачи (RTT).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=102 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=102 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

67 bytes from 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5001ms

rtt min/avg/max/mdev = 100.880/101.279/101.860/0.323 ms
```

Рис. 3.16: Задержка для хоста h1 после удаления задержки. Проверка

# 3.2.3 Добавление значения дрожания задержки в интерфейс подключения к эмулируемой глобальной сети

1. Добавила на узле h1 задержку в 100 мс со случайным отклонением 10 мс (рис. 3.17):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms

Рис. 3.17: Установка задержки для хоста h1 с случайным отклонением

2. Проверила, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -с 6 . На (рис. 3.18) видно минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи (RTT).

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=94.8 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=96.5 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=94.7 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=94.3 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5004ms
rtt min/avg/max/mdev = 94.316/97.667/103.460/3.769 ms
```

Рис. 3.18: Задержка для хоста h1 с случайным отклонением. Проверка

3. Восстановила конфигурацию интерфейса по умолчанию на узле h1 (рис. 3.19).

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
```

Рис. 3.19: Удаление задержки для хоста h1

# 3.2.4 Добавление значения корреляции для джиттера и задержки в интерфейс подключения к эмулируемой глобальной сети

1. Добавила на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции в 25% (рис. 3.20):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25%

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev hl-eth0 root netem delay 1
```

Рис. 3.20: Установка задержки для хоста h1 с значением корреляции

2. Убедилась, что все пакеты, покидающие устройство h1 на интерфейсе h1-eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Используйте для этого в терминале хоста h1 команду ping с параметром -с 20. На (рис. 3.21) видно минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи (RTT).

```
root@mininet-vm:/home/mininet# ping -c 20 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=99.9 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=91.0 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=106 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=110 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=93.0 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=96.7 ms
64 bytes from 10.0.0.2: icmp seq=12 ttl=64 time=91.1 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64 time=95.2 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64 time=99.5 ms
64 bytes from 10.0.0.2: icmp seq=15 ttl=64 time=108 ms
64 bytes from 10.0.0.2: icmp_seq=16 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=17 ttl=64 time=105 ms
64 bytes from 10.0.0.2: icmp_seq=18 ttl=64 time=107 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=99.9 ms
64 bytes from 10.0.0.2: icmp_seq=20 ttl=64 time=91.5 ms
--- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19031ms
rtt min/avg/max/mdev = 91.013/100.438/110.377/5.811 ms
```

Рис. 3.21: Задержка для хоста h1 с значением корреляции. Проверка

3. Восстановила конфигурацию интерфейса по умолчанию на узле h1.

## 3.2.5 Распределение задержки в интерфейсе подключения к эмулируемой глобальной сети

NETEM позволяет пользователю указать распределение, которое описывает, как задержки изменяются в сети. В реальных сетях передачи данных задержки неравномерны, поэтому при моделировании может быть удобно использовать некоторое случайное распределение, например, нормальное, парето или паретонормальное.

1. Задала нормальное распределение задержки на узле h1 в эмулируемой сети (рис. 3.22):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 20ms distribution normal

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev hl-eth0 root netem delay 1
```

Рис. 3.22: Установка задержки для хоста h1 и задание нормального распределения

2. Убедилась, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Используйте для этого команду ping на терминале хоста h1 с параметром -с 10 (рис. 3.23).

```
root@mininet-vm:/home/mininet# ping -c 10 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=96.4 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=98.7 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=97.1 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=88.5 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=82.2 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=84.6 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=84.6 ms
65 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=84.6 ms
66 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=84.6 ms
67 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=84.6 ms
```

Рис. 3.23: Задержка для хоста h1 с нормальным распределением. Проверка

3. Восстановила конфигурацию интерфейса по умолчанию на узле h1 и завершила работу mininet в интерактивном режиме.

#### 3.3 Воспроизведение экспериментов

#### 3.3.1 Предварительная подготовка

1. Обновила репозитории программного обеспечения на виртуальной машине (рис. 3.24):

sudo apt-get update

```
mininet@mininet-vm:-$ sudo apt-get update
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Get:2 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [3,30 4 kB]
Hit:3 http://us.archive.ubuntu.com/ubuntu focal InRelease
Get:4 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
```

Рис. 3.24: Обновление репозиториев

2. Установила пакет geeqie — понадобится для просмотра файлов png (рис. 3.25):

sudo apt install geeqie

```
mininet@mininet-vm:~$ sudo apt install geeqie
Reading package lists... Done
Building dependency tree
```

Рис. 3.25: Установка пакета geeqie

3. Для каждого воспроизводимого эксперимента expname создала свой каталог, в котором будут размещаться файлы эксперимента (рис. 3.26):

```
mkdir -p ~/work/lab_netem_i/expname
```

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/expname
```

Рис. 3.26: Создание каталога для размещения файлов эксперимента

# 3.3.2 Добавление задержки для интерфейса, подключающегося к эмулируемой глобальной сети

С помощью API Mininet воспроизвела эксперимент по добавлению задержки для интерфейса хоста, подключающегося к эмулируемой глобальной сети.

1. В виртуальной среде mininet в своём рабочем каталоге с проектами создала каталог simple-delay и перешла в него (рис. 3.27):

```
mkdir -p ~/work/lab_netem_i/simple-delay
cd ~/work/lab_netem_i/simple-delay
```

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:~$ ls
mininet mininet.orig oflops oftest openflow pox work
mininet@mininet-vm:~$ cd work/
mininet@mininet-vm:~/work$ ls
lab_iperf3 lab_netem_i
mininet@mininet-vm:~/work$ cd lab_netem_i/
mininet@mininet-vm:~/work/lab_netem_i$ ls
expname
mininet@mininet-vm:~/work/lab_netem_i$ $
S: command not found
mininet@mininet-vm:~/work/lab_netem_i$ mkdir simple-delay
mininet@mininet-vm:~/work/lab_netem_i$ ls
expname simple-delay
mininet@mininet-vm:~/work/lab_netem_i$ cd simple-delay/
mininet@mininet-vm:~/work/lab_netem_i/simple-delay/
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py
```

Рис. 3.27: Создание каталога imple-delay

2. Создала скрипт для эксперимента lab\_netem\_i.py (рис. 3.28 и 3.29).

```
GNU nano 4.8

"""

Simple experiment.
Output: ping.dat
"""

from mininet.node import Controller
from mininet.long import SetLogLevel, info
import time

def emptyNet():

"Create an empty network and add nodes to it."

net = Mininet( controller=Controller, waitConnected=True )

info( '*** Adding controller\n')

net.addController( 'c0')

info( '*** Adding hosts\n')

h1 = net.addHost( 'h1', ip='10.0.0.1')

h2 = net.addHost( 'h2', ip='10.0.0.2')

info( '*** Adding switch\n')

s1 = net.addSwitch( 's1')

net.addSwitch( 's1')

info( '*** Creating links\n')

net.addLink( h1, s1)

net.addLink( h2, s1)

info( '*** Starting network\n')

net.start()

info( '*** Starting network\n')

h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms')

h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms')
```

Рис. 3.28: lab\_netem\_i.py

```
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem detay 100ms' )

time.sleep(10) # Wait 10 sec

info( '*** Ping \n')
h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\' |sed of the info( '*** Stopping network' )
net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    emptyNet()
```

Рис. 3.29: lab\_netem\_i.py. Продолжение

- В каких строках скрипта задается значение задержки для интерфейса хоста?
  - h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms' )
    h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms' )
- Каким образом формируется файл с результатами эксперимента для последующего построения графиков?

Создала скрипт для визуализации ping\_plot результатов эксперимента (рис.
 3.30).

```
GNU nano 4.8 ping_plot
#!/usr/bin/gnuplot --persist

set terminal png crop
set output 'ping.png'
set xlabel "Sequence number"
set ylabel "Delay (ms)"
set grid
plot "ping.dat" with lines
```

Рис. 3.30: ping\_plot

5. Задала права доступа к файлу скрипта (рис. 3.31).

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ chmod +x ping_plot
```

Рис. 3.31: Изменение прав для файла скрипта

6. Создала Makefile для управления процессом проведения эксперимента (рис. 3.32).

Рис. 3.32: Makefile

7. Выполнила эксперимент (рис. 3.33).

make

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make

sudo python lab_netem_i.py

*** Adding controller

*** Adding hosts

*** Adding switch

*** Creating links

*** Starting network

*** Configuring hosts

*** Starting controller

*** Starting ontroller

*** Starting 1 switches

*** Starting 1 switches

*** Waiting for switches to connect

*** Waiting for switches to connect

*** Set delay

*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms',)

*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)

*** Ping

*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=/g\' -e \'s/icmp_seq=/g\' >ping.dat')

*** Stopping network*** Stopping 1 controllers

*** Stopping 2 links

...

*** Stopping 1 switches

*** Stopping 2 hosts

h1 h2

*** Done

sudo chown mininet:mininet ping.dat
./ping_plot
```

Рис. 3.33: Make

8. Получился следущий график (рис. 3.34).



Рис. 3.34: График с большой разницей первого значения с последующими

9. Из файла ping.dat удалила первую строку и заново построила график (рис. 3.35):

make ping.png



Рис. 3.35: График

10. Разработала скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени (рис. 3.36 и 3.38) и изменила файл Makefile (рис. 3.37).

Рис. 3.36: samost.py

Рис. 3.37: Makefile. измененный

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make samost sudo python samost.py
min: 200
max: 202
avg: 201.06060606060606
std: 0.49110832210880684
```

Рис. 3.38: samost.py выполнение

12. Очистила каталог от результатов проведения экспериментов:

make clean

### 4 Выводы

Познакомилась с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получила навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.