浙江大学 2014 - 2015 学年 春夏 学期 《数字系统设计》课程期末考试试卷

课程号: 111C0120 , 开课学院: 信息与电子工程学院

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √闭、开卷 (请在选定项上打 √), 允许带 计算器 入场

考试日期: 2015 年 7 月 8 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

考生	姓名:	2.11		学	号:_			所	属院系	(专)	业): _			_
题片	F		=	三	pr		Fi.	六	七	八	九		总分	
得分	+													
评卷	人													
	判断是	题: (]	15分)	在下	方的表	格中邓	付应题	号填	λ / (正确)	或×	(错误	是)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
/	X	X	X	✓	X	\	X	V	X	X	X	X	X	/

- 1. 处理器可以分为两个部分:数据通路和控制电路。
- 2. 一般 TTL 门电路的输出端可以直接相连,实现线与。
- 3. CMOS 与非门和 TTL 与非门的逻辑功能不一样。
- 4. JK 触发器在时钟脉冲的作用下,如果要使 $Q^{n+1}=Q^n$,则输入信号 JK 应为 $J=Q^n$, $K=Q^n$
- 5. 具有记忆功能的各类触发器是构成时序逻辑电路的基本单元。
- 6. 石英晶体多谐振荡器的振荡频率与电路中的 R、C 乘积成正比。
- 7. 状态简化中, 若 S1、S2 两状态的输出不同,则 S1、S2 两状态肯定不等价。
- 8. 由两个 TTL 或非门构成的基本 RS 触发器, 当 R=S=0 时, 触发器的状态为不定。
- 9. 格雷码具有任何相邻码只有一位码元不同的特性。
- 10. 组合逻辑电路中产生竞争冒险的主要原因是输入信号受到尖峰干扰。
- 11. 对于一个存储容量位 32K×16 位的 RAM 有 512K 个地址单元。
- 12. 或非门多余的输入端均可以悬空。
- 13. 单稳态触发器的暂稳态时间与输入触发脉冲宽度成正比。
- 14. 由与、或、非门电路构成的逻辑电路一定是组合逻辑电路。
- 15. 冯诺依曼结构和哈佛结构的区别是:前者将程序存储和数据存储放在同一物理存储空间,后者将程序和数据存储分别放在不同的物理存储空间。

二、(15 分)设计一位-8421BCD 码的判奇电路,当输入的 4 个码中含奇数个"1"时,输出为 1,否则为 0。设输入为 A,B,C,D,输出为 Y。要求使用两种方法实现:g'(1) 用最少<u>与非门</u>实现,画出卡诺图,推导用与非门实现电路的最终表达式(电路图可以不画)。 g-2h7v-f'

7′(2)以A,B,C作为高位到低位地址变量,用一片8选1数据选择器74LS151实现(必要时可以使用反相器),画出电路图。**为低的和**50°套·数据选择器74LS151实现

(2) Y = AD'+ BC'D'+ BCD+ B'CD'+ A'B'C'D = ABC(D+D') + ABC'(D') + AB'C(D') + AB'C'D' + A'BC(D) + A'BC'D' + A'B'CD' + A'B'C'D

 $D_0 = D \quad D_1 = D' \quad D_2 = D' \quad D_3 = D \quad D_4 = D'$ $D_3 = D' \quad D_6 = D' \quad D_7 = 1$ $D_0 = D' \quad D_7 = 1$ $D_0 = D' \quad D_7 = 1$ $D_0 = D' \quad D_7 = 1$

Y = AD'+ BC'D' + BCD + B'CD' + A'B'C'D

卡诺国称志表4、引证的才程4、自启的2、电路图2、

三、(12 分) 用四个 JK 触发器 $Q_3Q_2Q_1Q_0$ 设计一个移位寄存器,要求该电路能在任意 $Q_3Q_2Q_1Q_0$ 都回到 $1100 \rightarrow 0110 \rightarrow 0011 \rightarrow 1001 \rightarrow 1100$ 的状态循环中(即要求能自启动),且所用门电路要求最少。要求写出设计过程,并画出电路图。

105

(2) $\pm S = \frac{1}{2} = \frac{1}$

四、(15分)如图所示电路中, EPROM 存储器 2716 内的数据待填写。现需要采用该 电路循环输出二进制码 15→13→12→8→6→4→2→1→ 15→13→12...,且输出二进制 码的循环频率要尽量接近 100kHz。

- $\psi'(1)$ 已知反相器 $G_1, G_2, ... G_n$ 的时延 t=23ns,请问反相器个数 n 为多少最合适? CP 的 实际工作频率是多少?
- 7'(2) 画出在 CP 作用下 $Q_2Q_1Q_0$ 的状态转换图;
- 4(3) 填写 EPROM 的数据。

74LS161 计数器功能表(4 位二讲)

RD'	LD'	EP	ET	工作状态					
0	X	X	X	置零					
1	0	X	X	预置数					
1	1	0	1	保持					
1	1	v	0	保持					
1	1	Λ	U	(但C=0)					
1	1	1	1	计数					
		0 X	RD' LD' EP 0 X X 1 0 X	RD' LD' EP ET 0 X X X 1 0 X X 1 1 0 1					

母:(1) 环形振荡器周期 T = 2ntpd

= 进利作外部第2、CPin 1/8.

极有	т ′		
h =	2 tpd	Ztop.	tpd
		1	ns = 2].1/
	2 X 8 X 10	00 KH2 X23	ns

及相器必须为奇数了. 故有 n=27

(3) EPROM 数据表

	地址		数据						
A_2	A_1	A_0	D_3	D_2	D_1	D_0			
0	0	0	1	1	1	1			
0	0	1	1	1	0	1			
0	1	0	1	1	U	0			
0	1	1	1	0	0	0			
1	0	0	0	1	1	0			
1	0	1	0	1	0	0			
1	1	0	D	0	1	0			
1	1	1	0	0	D	1			

A	fy:	<u>'</u>	=	2n-tpd	ı	2x27x24ns	-	805.153 KHZ
14	TY	T		2n tpd		2x2/x24h3		

(2) 状态转换图.

五、控制器设计(15分)

下图为某一控制器的算法流程图,请设计一个多路选择器(MUX)型控制器。其中, X 为输入信号, c1、c2 为输出控制信号。

- 4′(1) 请写出状态转移表;
- 8′(2) 写出各 MUX 的输入端表达式,以及输出表达式;(3′,3′,1′,1′)

0, 8,

MUX

六、测试 (8分)

如题 6 图所示,或非门组成的电路可能出现固定型 SA1 与 SA0 故障,需要写出寻找图中故障点的测试向量。

在三输入的8种测试信号组合中,能测试该电路所有可能故障的最小测试集是什么? (注:最小测试集是指最少数量的输入信号W1,W2,W3的二进数字组合。)

七、Verilog HDL (10分)

考虑下列一个数字子系统的 Verilog 描述:

```
module SUBX(EN, I, A, E0);
  input
         EN;
  input
         [3:0] I;
  output [1:0] A;
  output
         E0;
  always @ (EN or I or A or E0)
    begin
         if (EN = 0) begin E0 = 0; A = 0; end
         else
             begin
                    E0 = 1; A = 0;
                    if (I[0] = 1) begin E0 = 0; A = 0; end
                   if (I[1] = 1) begin E0 = 0; A = 1; end
                   if (I[2] = 1) begin E0 = 0; A = 2; end
                   if (I[3] = 1) begin E0 = 0; A = 3; end
             end
    end
endmodule
```

7′(1)理解该 SUBX 模块实现的功能,完成下表;(注意:这不是一个完整的真值表)

I_3	I_2	I_1	I_0	EN	\mathbf{A}_1	\mathbf{A}_{0}	E0
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	-1
0	0	0	1	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	0
0	0	1	0	1	0	1	0
1	0	0	0	0	0	0	0
1	0	0	0	1	1	1	0
1	0	0	1	0	0	D	0
1.	0	0	1	1	1	1	0

八、(10分)题 8 图是用两片 555 定时器以及一些外部器件组成的电路。已知 S 是常 闭开关,会被外部力量触发而短时间打开; G₁是 CMOS 反相器,输出高电平、低电 平分别为 V_{OH}=12V、V_{OL}=0V;扬声器在一定频率方波信号驱动下会发出声音。

4'い'か(1) 在 S 被打开 1sec 和 30sec 后再闭合的两种情况下,分别计算左边第一个 NE555 电路第3脚输出控制信号的低电平脉冲时间宽度;

6'(2)计算右边第二个 NE555 电路第 3 脚输出信号的波形占空比,并计算扬声器发出 声音的频率,

2′(3)分析该电路的工作原理以及其用途。

恕:(1) S被打开、VC、电压上升 V(t) = V(00) + [V(01) - V(00)] · e-t/t = 12 (1-et/t) T = IMAXIONF = 10 sec

15 st = I see by. Vis = 1.14V t = 30 sec mf. Vis = 11. pV.

 $| V_{T+} = \frac{2}{3} \text{ Vice} = 8 \text{ V}$ $| V_{T-} = \frac{1}{3} \text{ Vice} = 4 \text{ V}$

两的 \$ 5\$了开15ec 再闭合,不及的角地的门路, NE555内部电路框图 12、第3时的设有低电中的水冲, tw=05ec 当5打开305ec 再闭合、Vc, 电尼达到了Vcc时、写新生化风电平。 文色时 to= This = 10.986 Sec. な文成映印が沖寛秀的 tw=30-to=19.014 Sec (2) 10.3 多語格語語。

充地时间丁,=(R2+R3)·G2·6n2= 放地时间 $T_2 = R_3 \cdot C_2 \cdot ln^2 = \frac{10K}{12K} = \frac{10K}{13K} = \frac{10}{3}$ 抗肠原介 f= - = (R2+2R3)·C2·6n2=9.62K

(3)这些一个这时报警器 开关5岁前后、经过约1153色附后 扬声器云始发出声音.如果在延迟时间的重转闭合. 12. Speaker 7. 4 %.

九、附加题(10分)(注: 计入总分,但总分最多不超过100分)

已知某一控制器的算法流程图如题 9 图所示,请设计一个微码控制器,写出设计过程。其中,X、Y 为输入信号,OUT0~OUT4 为输出控制信号。

- (1) 请设计微指令格式;
- 1'(2) 画出微程序流程图;
- ·(3) 按下表格式写出,对应这种微指令格式的控制器微程序代码。

