Boolean logic

Introduction to Computer Yung-Yu Chuang

with slides by Sedgewick & Wayne (Introcs.cs.princeton.edu), Nisan & Schocken (www.nand2tetris.org) and Harris & Harris (DDCA)

NOT

Digital gate diagram for NOT:

Boolean Algebra

Based on symbolic logic, designed by George Boole Boolean variables take values as 0 or 1. Boolean expressions created from:

NOT, AND, OR

AND

X·Y XY

X	Υ	$\mathbf{X} \wedge \mathbf{Y}$
F	F	F
F	T	F
T	F	F
T	T	T

Digital gate diagram for AND:

3

Х	Υ	$X \vee Y$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Digital gate diagram for OR:

Operator Precedence

Examples showing the order of operations: NOT > AND > OR

Expression	Order of Operations
$\neg X \lor Y$	NOT, then OR
$\neg(X \lor Y)$	OR, then NOT
$X \vee (Y \wedge Z)$	AND, then OR

Use parentheses to avoid ambiguity

Defining a function

Description: square of x minus 1

Algebraic form: x^2-1

Enumeration:

×	f(x)
1	0
2	3
3	8
4	15
5	24
:	:

Defining a function

Description: number of days of the x-th month of a

non-leap year

Algebraic form: ? Enumeration:

X	f(x)
1	31
2	28
3	31
4	30
5	31
6	30
7	31
8	31
9	30
10	31
11	30
12	31

Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
 N inputs ⇒ 2^N rows.

x	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

AND truth table

Proving the equivalence of two functions

Prove that $x^2-1=(x+1)(x-1)$

Using algebra: (you need to follow some rules) $(x+1)(x-1) = x^2+x-x-1 = x^2-1$

Using enumeration:

×	(x+1)(x-1)	x ² -1
1	0	0
2	3	3
3	8	8
4	15	15
5	24	24
:	:	:

Important laws

$$x + 1 = 1$$

$$x + 0 = x$$

$$x + \overline{x} = 1$$

$$x + y = y + x$$

 $x + (y+z) = (x+y) + z$

$$\times \cdot y = y \cdot x$$

$$x \cdot 0 = 0$$

$$x \cdot y = y \cdot x$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

$$x \cdot \overline{x} = 0$$

$$x \cdot (y+z) = xy + xz$$

DeMorgan Law

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Simplifying Boolean Equations

Example 1:

•
$$Y = AB + \overline{AB}$$

COMBINATIONAL LOGIC DESIGN

Simplifying Boolean Equations

Example 1:

•
$$Y = AB + \overline{AB}$$

= $B(A + \overline{A})$
= $B(1)$

= B

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <13>

Simplifying Boolean Equations

Example 2:

DESIGN

DESIGN

• Y = A(AB + ABC)

o bigital besign and compater Arenteetare, 2 Eartist, 2012

3>

Simplifying Boolean Equations

Example 2:

•
$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$= AB$$

ELSEVIER

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

COMBINATIONAL LOGIC DESIGN

Bubble Pushing

• Backward:

- Body changes
- Adds bubbles to inputs

• Forward:

- Body changes
- Adds bubble to output

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <17>

a.L

Bubble Pushing

DESIGN

DESIGN

2/907

• What is the Boolean expression for this circuit?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <18>

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing Example

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <21>

Bubble Pushing Example

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <22>

Bubble Pushing Example

Bubble Pushing Example

© Digital Design and Computer Architecture, 2nd Edition, 2012

Truth Tables (1 of 3)

A Boolean function has one or more Boolean inputs, and returns a single Boolean output. A truth table shows all the inputs and outputs of a Boolean function

Example: $\neg X \lor Y$

Х	¬х	Υ	¬x ∨ y
F	Т	F	Т
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т

Truth Tables (2 of 3)

Example: $X \land \neg Y$

X	Y	$\neg_{\mathbf{Y}}$	X∧¬Y
F	F	Т	F
F	Т	F	F
Т	F	Т	Т
Т	Т	F	F

25

Truth Tables (3 of 3)

When s=0, return x; otherwise, x = x = x = x = x = x

Example: $(Y \land S) \lor (X \land \neg S)$

Two-input multiplexer

X	Y	S	$Y \wedge S$	\neg s	X∧¬S	$(Y \wedge S) \vee (X \wedge \neg S)$
F	F	F	F	Т	F	F
F	Т	F	F	T	F	F
T	F	F	F	T	Т	Т
T	Т	F	F	T	T	T
F	F	Т	F	F	F	F
F	Т	Т	Т	F	F	Т
Т	F	Т	F	F	F	F
Т	Т	Т	Т	F	F	Т

Truth Table for Functions of 2 Variables

Truth table.

■ 16 Boolean functions of 2 variables. every 4-bit value represents one

х	У	ZERO	AND		х		У	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth table for all Boolean functions of 2 variables

х	У	NOR	EQ	У'		x'		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth table for all Boolean functions of 2 variables

All Boolean functions of 2 variables

Function	x	0	0	1	1
Function	y	0	1	0	1
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \overline{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\overline{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \overline{y} + \overline{x} \cdot y$	0	1	1	0
Or	x + y	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y + \overline{x} \cdot \overline{y}$	1	0	0	1
Not y	\bar{y}	1	0	1	0
If y then x	$x + \overline{y}$	1	0	1	1
Not x	\overline{X}	1	1	0	0
If x then y	$\overline{x} + y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 1: Boolean Logic

slide 29

Sum-of-Products

Sum-of-products. Systematic procedure for representing a Boolean function using AND, OR, NOT.

- Form AND term for each 1 in Boolean function.
- OR terms together.

	У	z	MAJ	x'yz	xy'z	xyz'	xyz	x'yz + xy'z + xyz' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

expressing MAJ using sum-of-products

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables. every 4-bit value represents one
- 256 Boolean functions of 3 variables.
- 2^(2^n) Boolean functions of n variables!

х	У	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

some functions of 3 variables

Universality of AND, OR, NOT

Fact. Any Boolean function can be expressed using AND, OR, NOT.

- {AND, OR, NOT} are universal.
- Ex: XOR(x,y) = xy' + x'y.

Notation	Meaning		
x'	NOT x		
ху	x AND y		
x + y	x OR y		

Expressing XOR Using AND, OR, NOT

x	У	x'	У'	х'у	xy'	x'y + xy'	x XOR y
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Exercise. Show {AND, NOT}, {OR, NOT}, {NAND}, {NOR} are universal.

Hint. DeMorgan's law: (x'y')' = x + y.

From Math to Real-World implementation

We can implement any Boolean function using NAND gates only.

We talk about abstract Boolean algebra (logic) so far.

Is it possible to realize it in real world?

The technology needs to permit switching and conducting. It can be built using magnetic, optical, biological, hydraulic and pneumatic mechanism.

Implementation of gates

Fluid switch (http://www.cs.princeton.edu/introcs/lectures/fluid-computer.swd

Digital Circuits

What is a digital system?

Analog: signals vary continuously.

Why digital systems? 0.07

- Accuracy and reliability.
- Staggeringly fast and cheap.

Basic abstractions.

- On, off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Wires

Wires.

- On (1): connected to power.
- Off (0): not connected to power.
- If a wire is connected to a wire that is on, that wire is also on.
- Typical drawing convention: "flow" from top, left to bottom, right.

Controlled Switch

Controlled switch. [relay implementation]

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.
- Control wire affects output wire, but output does not affect control; establishes forward flow of information over time.

Relay

38

Circuit Anatomy

Logic Gates: Fundamental Building Blocks

symbol

NOT gate

NOT

OR

$$OR = x+y$$

Series relays = NOR

AND

AND

Logic Gates: Fundamental Building Blocks

47

What about parallel relays? =NAND

Can we implement AND/OR using parallel relays?

Now we know how to implement AND,OR and NOT. We can just use them as black boxes without knowing how they were implemented. Principle of information hiding.

$$x \longrightarrow x' \quad x \longrightarrow xy \longrightarrow xy \longrightarrow xy$$

Multiway Gates

Multiway gates.

• OR: 1 if any input is 1; 0 otherwise.

• AND: 1 if all inputs are 1; 0 otherwise.

• Generalized: negate some inputs.

Multiway Gates

Multiway gates.

• OR: 1 if any input is 1; 0 otherwise.

• AND: 1 if all inputs are 1; 0 otherwise.

• Generalized: negate some inputs.

Multiway Gates

Multiway gates.

- Can also be built from 2-way gates (less efficient but implementation independent)
- Example: build 4-way OR from 2-way ORs

Translate Boolean Formula to Boolean Circuit Sum-of-products. XOR.

$$XOR = x'y + xy'$$

X	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Circuit

Translate Boolean Formula to Boolean Circuit Sum-of-products. XOR.

$$XOR = x'y + xy'$$

Translate Boolean Formula to Boolean Circuit Sum-of-products. XOR.

$$XOR = x'y + xy'$$

Gate logic

Interface

а	b	out	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))

ODD Parity Circuit

- ODD(x, y, z).

 1 if odd number of inputs are 1.
- 0 otherwise.

ODD Parity Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

x	У	z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Expressing ODD using sum-of-products

ODD Parity Circuit

- ODD(x, y, z).

 1 if odd number of inputs are 1.
- 0 otherwise.

ODD Parity Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- . Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

Translate Boolean Formula to Boolean Circuit Sum-of-products. Majority.

Translate Boolean Formula to Boolean Circuit

Sum-of-products. Majority.

MAJ = x'yz + xy'z + xyz' + xyz

×	y	z	HAJ
0	9	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table

Circuit

6

Translate Boolean Formula to Boolean Circuit

Sum-of-products. Majority.

MAJ = x'yz + xy'z + xyz' + xyz

Translate Boolean Formula to Boolean Circuit

Sum-of-products. Majority.

MAJ = x'yz + xy'z + xyz' + xyz

Simplification Using Boolean Algebra

Every function can be written as sum-of-product

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - number of switches (space)
 - depth of circuit (time)

Boolean expression simplification

AB

Karnaugh map

 $\begin{array}{c|cccc}
B & & & & \\
0 & & & & \\
1 & & & & \\
\end{array}$

CD				
	00	01	11	10
00				
01				
11				
10				

COMBINATIONAL LOGIC DESIGN

COMBINATIONAL LOGIC DESIGN

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- $PA + P\overline{A} = P$

			1
Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <69>

K-Map

LOGIC DESIGN

COMBINATIONAL LOGIC DESIGN

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

ELSEVIER

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <70>

3-Input K-Map

Truth Table					
Α	В	С	Υ		
0	0	0	0		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

ELSEVIER

3-Input K-Map

Y	B 00	01	11	10
			ABŌ	
1	ABC	ABC	ABC	ABC

Truth Table				
Α	В	С	Y	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

	up		
B 00	01	11	10
0	1	1	0
0	1	0	0
	00	0 1	0 1 1

K-Man

$$Y = \overline{A}B + B\overline{C}$$

COMBINATIONAL LOGIC DESIGN

COMBINATIONAL LOGIC DESIGN

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

Chapter 2 <73>

4-Input K-Map

TOGIC DESIGN

COMBINATIONAL LOGIC DESIGN

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1 0
0	1	0		1
0	1	1	1	1
0	1	1	1	1 1 1 1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1 0
1	1	0	0	0
1	1 1 1	0		0
0 0 0 0 0 0 0 1 1 1 1 1	1	1	1 0	0
1	1	1	1	0

Chapter 2 <74>

© Digital Design and Computer Architecture, 2nd Edition, 2012

4-Input K-Map

				ı
Α	В	С	D	Y
0	0	0	0	
0	0	0	1	0
0	0	1	1 0	1
0	0	1		1
0	1	0	1 0	0
0	1 1 1 0	0	1	1
0	1	1	1 0	1
0	1	1		1
1	0	0	1 0 1 0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	1 0	0
1	1	0		0
0 0 0 0 0 0 0 0 1 1 1 1 1	1 1	0 0 1 1 0 0 1 1 0 0 1 1 0	1 0	1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
1	1	1	1	0

4-Input K-Map

© Digital Design and Computer Architecture, 2nd Edition, 2012

Α	В	С	D	Y
	0	0	0	1
0	0	0		0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1		1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1 0 1 1 1 1 0 0 0
1	1	1	1	0
	A 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0 0 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OMBINATIONAL LOGIC DESIGN

COMBINATIONAL LOGIC DESIGN

K-Maps with Don't Cares

Α	В	С	D	Υ
0	0	0	0	1
0	0	0		0
0	0	1	1 0	1
0	0	1	1	1 1 0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	X 1
0	1	1	1	1
1	0	1 0	1 0 1 0	1
1 1 1	0	0	1	1
1	0	1	0	X
1	0	1	1 0	X
1	1	0	0	Х
1 1 1 1	1	0	1 0	Х
1	1	1		X
1	1	1	1	Х

Y CD A	B 00	01	11	10
CD A				
01				
11				
10				

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <77>

K-Maps with Don't Cares

Α	В	С	D
0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	
0	1	0	1 0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	
1	0	1	1 0
1	0	1	1
1	1	0	1 0
1	1	0	1
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0
1	1	1	1

LOGIC DESIGN

Υ				
CD	B 00	01	11	10
00	1	0	Х	1
01	0	х	Х	1
11	1	1	Х	х
10	1	1	Х	х

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <78>

K-Maps with Don't Cares

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1	1	1
0	1	0	1 0	0
0	1 1 1	0	1	Х
0	1	1	1 0	1
0	1	1 1		1
1	1 0	0	1 0	1
1	0			1
1	0	1	1 0	Х
1 1 1 1	0	0 1 1 0		Х
1	1	0	1 0	Х
1	1	0	1	Х
1 1 1	1 1	1 1	1 0	1 0 1 1 0 X 1 1 1 X X X X X X X X
1	1	1	1	х

X	y	Z	MAJ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - number of switches (space)
 - depth of circuit (time)

MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.

Layers of Abstraction

Layers of abstraction.

- Build a circuit from wires and switches.
 [implementation]
- Define a circuit by its inputs and outputs. [API]
- To control complexity, encapsulate circuits.

Layers of Abstraction

Layers of abstraction.

- Build a circuit from wires and switches.
 [implementation]
- Define a circuit by its inputs and outputs. [API]
- To control complexity, encapsulate circuits.

Specification

Chip name: Xor
Inputs: a, b
Outputs: out
Function: If a ≠ b then out=1 else out=0.

- Step 1: identify input and output
- Step 2: construct truth table
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit/implement it using HDL.

You would like to test the gate before packaging.

02

HDL

HDL program (xor.hdl)	Test script (xor.tst)	Output file (xor.out)
<pre>/* Xor (exclusive or) gate: If a<>b out=1 else out=0. */ CHIP Xor { IN a, b; OUT out; PARTS: Not(in=a, out=nota); Not(in=b, out=notb); And(a=a, b=notb, out=w1); And(a=nota, b=b, out=w2); Or(a=w1, b=w2, out=out); }</pre>	load Xor.hdl, output-list a, b, out; set a 0, set b 0, eval, output; set a 0, set b 1, eval, output; set a 1, set b 0, eval, output; set a 1, set b 1, eval, output;	a b out 0 0 0 0 1 1 1 0 1 1 1 0

Example: Building an And gate

When running your .hdl on our .tst, your .out should be the same as our .cmp.

```
And.hdl

CHIP And
{ IN a, b;
OUT out;
// implementation missing
}
```


Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 86

Building an And gate

And.hdl CHIP And { IN a, b; OUT out; // implementation missing }

Building an And gate

And.hdl CHIP And { IN a, b; OUT out; // implementation missing }

Building an And gate

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 89

Building an And gate

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 90

Hardware simulator (demonstrating Xor gate construction)

Hardware simulator

Hardware simulator

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 93

Project 1 tips

- Read the Introduction + Chapter 1 of the book
- Download the book's software suite
- Go through the hardware simulator tutorial
- Do Project O (optional)
- You're in business

Project materials: www.nand2tetris.org

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 94

Gates for project #1 (Basic Gates)

Chip name: Not Inputs: in Outputs: out

Function: If in=0 then out=1 else out=0.

Chip name: And
Inputs: a, b
Outputs: out

Function: If a=b=1 then out=1 else out=0.

Chip name: Or
Inputs: a, b
Outputs: out

Function: If a=b=0 then out=0 else out=1.

Chip name: Xor
Inputs: a, b
Outputs: out

Function: If a≠b then out=1 else out=0.

Gates for project #1

Chip name: Mux

Inputs: a, b, sel

Outputs: out

Function: If sel=0 then out=a else out=b.

Chip name: DMux
Inputs: in, sel
Outputs: a, b

Function: If sel=0 then {a=in, b=0} else {a=0, b=in}.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide 97

Gates for project #1 (Multi-bit version)

Chip name: Not16 Inputs: in[16] // a 16-bit pin Outputs: out[16] Function: For i=0..15 out[i]=Not(in[i]). Chip name: And16 Inputs: a[16], b[16] Outputs: out[16] Function: For i=0..15 out[i]=And(a[i],b[i]). Chip name: Or16 Inputs: a[16], b[16] Outputs: out[16] Function: For i=0...15 out[i]=Or(a[i],b[i]). Chip name: Mux16 Inputs: a[16], b[16], sel Outputs: out[16]

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

Function: If sel=0 then for i=0..15 out[i]=a[i] else for i=0..15 out[i]=b[i].

slide 98

Gates for project #1 (Multi-way version)

Chip name: Or8Way
Inputs: in[8]
Outputs: out

Function: out=Or(in[0],in[1],...,in[7]).

Gates for project #1 (Multi-way version)

Figure 1.10 4-way multiplexor. The width of the input and output buses may vary.

Figure 1.11 4-way demultiplexor.

Gates for project #1 (Multi-way version)

Chip name: Mux4Way16

Inputs: a[16], b[16], c[16], d[16], sel[2]

Outputs: out[16]

Function: If sel=00 then out=a else if sel=01 then out=b

else if sel=10 then out=c else if sel=11 then out=d

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Chip name: Mux8Way16

Inputs: a[16],b[16],c[16],d[16],e[16],f[16],g[16],h[16],

sel[3]

Outputs: out[16]

Function: If sel=000 then out=a else if sel=001 then out=b

else if sel=010 out=c ... else if sel=111 then out=h

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

101

olido

Perspective

- Each Boolean function has a canonical representation
- The canonical representation is expressed in terms of And, Not, Or
- And, Not, Or can be expressed in terms of Nand alone
- Ergo, every Boolean function can be realized by a standard PLD consisting of Nand gates only
- Mass production
- Universal building blocks, unique topology
- Gates, neurons, atoms, ...

Gates for project #1 (Multi-way version)

Chip name: DMux4Way

Inputs: in, sel[2]

Outputs: a, b, c, d

Function: If sel=00 then {a=in, b=c=d=0}
else if sel=01 then {b=in, a=c=d=0}
else if sel=10 then {c=in, a=b=d=0}
else if sel=11 then {d=in, a=b=c=0}.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

slide

End notes: Canonical representation

Whodunit story: Each suspect may or may not have an alibi (a), a motivation to commit the crime (m), and a relationship to the weapon found in the scene of the crime (w). The police decides to focus attention only on suspects for whom the proposition Not(a) And (m Or w) is true.

Truth table of the "suspect" function $s(a, m, w) = \overline{a} \cdot (m + w)$

а	m	w	minterm	suspect(a,m,w)= not(a) and (m or w)
0	0	0	$m_0 = \overline{a} \overline{m} \overline{w}$	0
0	0	1	$m_1 = \overline{a} \overline{m} w$	1
0	1	0	$m_2 = \overline{a}m\overline{w}$	1
0	1	1	$m_3 = \overline{a}mw$	1
1	0	0	$m_4 = a \overline{m} \overline{w}$	0
1	0	1	$m_5 = a\overline{m}w$	0
1	1	0	$m_6 = am\overline{w}$	0
1	1	1	$m_7 = a m w$	0

<u>Canonical form:</u> $S(a, m, w) = \overline{a} \overline{m} w + \overline{a} m \overline{w} + \overline{a} m w$ Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

End notes: Canonical representation (cont.)

$$s(a, m, w) = \overline{a}\overline{m}w + \overline{a}m\overline{w} + \overline{a}mw$$

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 1: Boolean Logic

elide

End notes: Programmable Logic Device for 3-way functions

■ Two-level logic: ANDs followed by ORs

■ Example: Y = ABC + ABC + ABC

End notes: Programmable Logic Device for 3-way functions

PLD implementation of $f(a,b,c)=a \overline{b} c + \overline{a} b \overline{c}$

(the on/off states of the fuses determine which gates participate in the computation)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic 106

slide