

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics: Game Engineering

Thesis title

Sofia

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics: Game Engineering

Thesis title

Titel der Abschlussarbeit

Author: Sofia
Supervisor: Supervisor
Advisor: Stepan

Submission Date: 15th March 2022

I confirm that this bachelor's thesis in in and I have documented all sources and I	formatics: game engineering is my own work material used.
Munich, 15th March 2022	Sofia

Abstract

Contents

A	Acknowledgments							
A۱	bstrac	ct	iv					
1	Intr	Introduction						
	1.1	Background and Motivation	1					
	1.2	Goals and Aims	1					
	1.3	Delimitation	1					
	1.4	Structure and Approach	1					
2	A B	A Brief Summary of PCI-Express						
	2.1	Hardware	2					
	2.2	Software	2					
3	Bandwidth Benchmark							
	3.1	Concept	3					
	3.2	Implementation	3					
	3.3	Results	3					
	3.4	Discussion	3					
		3.4.1 successes	3					
		3.4.2 shortcomings	3					
4	NVML Counters							
	4.1	Concept	4					
	4.2	Implementation	4					
	4.3	Results	4					
	4.4	Discussion	4					
		4.4.1 successes	4					
		4.4.2 shortcomings	4					
5	Link Saturation							
	5.1	Concept	5					
	5.2	Implementation	5					

Contents

			ts				
	5.4						
			successes				
		5.4.2	shortcomings	5			
6	Sum	nmary		6			
Lis	st of	Figures	s	. 5 . 5			
Lis	List of Tables						

1 Introduction

1.1 Background and Motivation

1.2 Goals and Aims

- develop lightweight tool that has few requirements to gain insight to data movements in a PCIe link

1.3 Delimitation

- Heterogeneous systems have many different interconnects - Focus on PCIE-interface in this thesis - (why)? not sure yet, figure something out

1.4 Structure and Approach

- three approaches / benchmarks - bandwidth: for measuring the raw bandwidth capacity of the system - nvml: for measuring pcie link activity - copy: for measuring pcie link activity

2 A Brief Summary of PCI-Express

- 2.1 Hardware
- 2.2 Software

3 Bandwidth Benchmark

3.1 Concept

- Measures raw theoretical maximum bandwidth of pcie link by measuring the duration of memory copies of various chunk sizes - Checks at which chunk sizes the bandwidth of the link is fully saturated

3.2 Implementation

- Compensates for delay - 1 packet with 4B measured as delay - Pageable and pinned memory benchmarks measured - Warmup-feature: first transfer usually has some sort of longer delay, compensates for that (windows-finding, verify on p6000)

3.3 Results

- Transfer durations don't really increase until 8kb - Due to the nature of the PCI-E packet having a max payload of 4kb - First transfer usually has a bit longer delay (warmup?) - On windows: not executable that calls functions, but rather nvcuda64.dll - requires compiling on windows and then using a profiling tool like AMDUprof to look at the program

3.4 Discussion

3.4.1 successes

- gives accurate reading of pcie bandwidths - non-linear scaling of packet transfer durations (2 packets does not equal double the duration of one packet)

3.4.2 shortcomings

- does not really compensate for other bottlenecks, as seen on time-x with gen4 link bandwidth speeds

4 NVML Counters

4.1 Concept

- nvidia has hardware counters, accessible via nvml library - counters measure average bandwidth over the last 20ms, in kb/sec - Transmit and Receive have seperate counters

4.2 Implementation

- method call to read counters takes about 20ms - to increase data granularity and measurement consistency, measuring of TX and RX was done in parallel

4.3 Results

- graphs

4.4 Discussion

4.4.1 successes

- measures bandwidths accurately to some degree - introduces little overhead (probably, still to be measured)

4.4.2 shortcomings

- granularity of method calls prevent more accurate readings -> short memory transfers may be not detected -

5 Link Saturation

5.1 Concept

- if bandwidth is saturated, copy operations should slow down - full duplex, so HtoD and DtoH both need measuring

5.2 Implementation

- Started as a thread that just continuously monitored the counters for set duration of time and printed output into console - Added wrapper and file output in subsequent versions to simplify data-gathering - Added chunk size options for the buffer copy chunks to get as little overhead as possible while getting most consistent data gathering - Delays are measured, no clear correlation between delay and bandwidth - Overhead yet to be properly assessed, however, introduces somewhat significant overhead. TODO: ASSESS OVERHEAD - Measure transmit and receive in the same thread, sequentially

5.3 Results

- graphs - descriptors of graphs

5.4 Discussion

5.4.1 successes

- gives somewhat detailed going-on about PCIe link activities

5.4.2 shortcomings

- introduces some overhead due to occupying PCIe link - Delay compensation sometimes leads to negative values due to delay inconsistencies

6 Summary

Outlook

List of Figures

List of Tables