SECTION A.

Answer each of the following questions [Marks per questions as shown; 25% total]

1. (12 points) Suppose *X* and *Y* are random variables with the following joint distribution:

X	1	2
0	0.2	0.1
1	0.0	0.2
2	0.3	0.2

Compute each of the following, showing all your working.

- (a) (2 points) Compute the marginal distributions of X and Y, i.e. determine the values of $\mathbb{P}(X = x)$ for all x, and $\mathbb{P}(Y = y)$ for all y.
- (b) (2 points) Compute the conditional distribution of X given that the value Y = 2, i.e. compute the values of $\mathbb{P}(X = x | Y = 2)$ for all x.
- (c) (2 points) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- (d) (4 points) Compute $\mathbb{E}[XY]$.
- (e) (2 points) Are *X* and *Y* independent? Explain your answer.
- 2. (5 points) You have a large bucket which contains 999 fair coins and one biased coin. The biased coin is a two-headed coin (i.e. it always lands heads). Suppose you pick one coin out of the bucket, flip it 10 times, and get all heads.
 - (a) (1 point) State Bayes' rule.
 - (b) (1 point) State the Law of Total Probability.
 - (c) (3 points) What is the probability that the coin you choose is the two-headed coin?
- 3. (5 points)
 - (a) (1 point) In one or two sentences, explain what is the difference between the Bayesian and Frequentist approaches to parameter estimation.
 - (b) (1 point) In one or two sentences, explain what the maximum likelihood estimate for a parameter is.
 - (c) (1 point) In one or two sentences, explain what is a prior distribution in the context of Bayesian inference.
 - (d) (1 point) In one or two sentences, explain what the Maximum a posteriori (MAP) estimate for a parameter is.
 - (e) (1 point) In one or two sentences, explain the connections between MLE and the MAP estimates. (*Hint*: what priors should you use?)
- 4. (3 points) A biased coin is flipped until the first head occurs. Denote by Z the number of flips required with p being the probabilty of obtaining a head. Compute $\mathbb{P}(Z = k)$ stating clearly the possible values of k.

(*Hint*: Write down the probabilities of some possible outcomes.)

SECTION B.

Answer each of the following questions [Marks per questions as shown; 25% total]

5. (4 points) Suppose the random variables X and Y are related by the following probabilities $\mathbb{P}(X = x, Y = y)$:

X	0	1
0	1/3	1/3
1	0	1/3

Compute the following:

- (a) (2 points) H(X), H(Y).
- (b) (2 points) H(X|Y), H(Y|X).
- 6. (5 points)
 - (a) (3 points) What is a typical set? How does the typical set relate to the smallest delta-sufficient subset?
 - (b) (2 points) Is the most likely sequence always a member of the typical set? Explain your answer.
- 7. (3 points) Construct a Huffman code for the ensemble with alphabet $\mathcal{A}_X = \{a, b, c\}$ and probabilities $\mathbf{p} = (0.6, 0.3, 0.1)$. Show all your working.
- 8. (7 points) Suppose a single fair six-sided die is rolled, and let Y be the outcome.
 - (a) (3 points) Compute the expected value of Y and the variance of Y.
 - (b) (1 point) Calculate an upper bound for the quantity $\mathbb{P}(Y \ge 6)$ using Markov's inequality.
 - (c) (3 points) Calculate an upper bound for the quantity $\mathbb{P}(Y \ge 6)$ using Chebyshev's inequality and compare this to the answer obtained in part (*b*). Which is closer to the true value of $\mathbb{P}(Y \ge 6)$?
- 9. (6 points)
 - (a) (1 point) What is the purpose of the sigmoid function in logistic regression?
 - (b) (2 points) Suppose you have a trained logistic regression model with weights \mathbf{w} . Roman proposes to classify a new point \mathbf{x}_{new} as positive by checking if $\mathbf{x}_{new}^T\mathbf{w} > 0$. Alice proposes to classify it as positive by checking if $\sigma(\mathbf{x}_{new}\mathbf{w}) > 0.5$, where $\sigma(\cdot)$ is the sigmoid function. Will these result in the same prediction? Explain why or why not.
 - (c) (3 points) In one or two sentences, explain the relationship between logistic regression and the maximum entropy principle.

SECTION C.

Answer each of the following questions [Marks per questions as shown; 25% total]

- 10. (10 points) Suppose Y is an ensemble equipped with $\mathcal{A}_Y = \{a, b, c\}$ and probabilities $\mathbf{p} = (0.5, 0.25, 0.25)$.
 - (a) (2 points) Write down the alphabet and probabilities for the extended ensemble Y^2 .
 - (b) (3 points) Assuming the symbols for Y^2 are in alphabetical order, so that e.g. aa appears before ab, what is the binary interval for ab in a Shannon-Fano-Elias code for Y^2 ?
 - (c) (3 points) What is the smallest δ -sufficient subset for Y^2 when $\delta = 0.45$?
 - (d) (2 points) What is the essential bit content $H_{\delta}(Y^2)$ when $\delta = 0.45$?

11. (6 points)

- (a) (1 point) Is every prefix-free code uniquely decodable? If yes, explain why. If no, provide a counter-example.
- (b) (1 point) Is the code $C = \{0, 01, 011\}$ uniquely decodable? Explain your answer.
- (c) (2 points) Explain the difference between a lossless and uniquely decodable code.
- (d) (2 points) Consider a source $W = \{a, b, c, d, e\}$. Explain if it is possible to construct a prefix code for this source with the proposed lengths: $l_a = 1$, $l_b = 2$, $l_c = 3$, $l_d = 4$, $l_e = 4$, without actually giving an example of a code? (*Hint*: What conditions should you check?)
- 12. (9 points) Let X be an ensemble with alphabet $\mathcal{A}_X = \{a, b, c, d\}$ with probabilities $\mathbf{p} = (1/2, 1/4, 1/8, 1/8)$ and the code C = (0000, 01, 11, 0).
 - (a) (2 points) What is the entropy H(X) as a single number?
 - (b) (2 points) What is the expected code length L(C, X)?
 - (c) Which of these are Shannon codes? Justify your answers.
 - i. $(1 \text{ point}) A = \{0, 10, 110, 111\}$
 - ii. (1 point) $B = \{000, 001, 010, 111\}$
 - iii. (1 point) $C = \{0, 01, 001, 010\}$
 - (d) (2 points) Is the code A in part (c)[i] optimal? Explain why or why not.

SECTION D.

Answer each of the following questions [Marks per questions as shown; 25% total]

- 13. [5 points] Consider a (5, 3) block code C.
 - (a) (3 points) What is the length of each codeword in class C? How many codewords does class C define? Compute the rate for class C.
 - (b) (2 points) Do there exist codes with rate equal to that of class C, that can achieve arbitrarily small probability of block error over a channel of capacity 0.4? Justify your answer.
- 14. [15 points] Let $X = \{a, b\}$ and $\mathcal{Y} = \{a, b\}$ be the input and output alphabets for the following two channels:

$$R = \begin{bmatrix} 1 & 0.5 \\ 0 & 0.5 \end{bmatrix} \quad \text{and} \quad R^{\dagger} = \begin{bmatrix} 0.5 & 0 \\ 0.5 & 1 \end{bmatrix}$$

- (a) (2 points) Describe the behaviour of R and R^{\dagger} when each of the symbols a and b are used as input.
- (b) Define an arbitrary distribution $\mathbf{p}_{X} = (p, q)$ with $p \in [0, 1]$ and p + q = 1 over X. Express the following for R:
 - i. (2 points) The probabilities $\mathbb{P}(Y = \mathbf{a})$ and $\mathbb{P}(Y = \mathbf{b})$ in terms of p, where Y is a random variable denoting the output of the channel \mathcal{Y} .
 - ii. (2 points) The entropy of H(Y) in terms of the probability p and the function $H_2(\cdot)$ defined by

$$H_2(\vartheta) = -\vartheta \cdot \log_2 \vartheta - (1 - \vartheta) \cdot \log_2 (1 - \vartheta).$$

- iii. (2 points) The mutual information I(X;Y) in terms of p and the function H_2 defined above.
- (c) (4 points) Using the previous results or otherwise, compute the input distribution that achieves the channel capacity for R.
- (d) (3 points) Suppose you used the channels R and R^{\dagger} to send messges by first flipping a fair coin and sending a symbol through R if it landed heads and through R^{\dagger} if it landed tails. Construct a matrix Q that represents the channel defined by this process.
- 15. (5 marks) For an arbitrary noisy channel Q with N input symbols and M output symbols, show that its capacity ρ satisfies

$$\rho \leq \min\{\log_2 N, \log_2 M\}.$$