Predicting the limits of the ELT Defensio

Alarich Herzner

Supervisor: Univ.-Prof. João Alves, PhD Co-Supervisor: Dr. Kieran Leschinski, MSc

University of Vienna, Faculty of Physics

April 16, 2022

Outline

- Introduction
 - Goals
 - Motivation
 - Action Plan
- Simulation
 - Cluster
 - Time integration
 - Milky Way Potential

Goals

Primary objective

Estimate reliability limit for future IMF studies in the galactic centre using the ELT!

... what?

Goals

https://cdn.eso.org/images/banner1920/telescope-dome-landing.jpg

IMF

Reliability Limit

Motivation

- Universal IMF?
- estimate number of lower-mass stars
- understand star formation process

- N-body simulation with $N\gg 1$
- Clustering of time-dependent data

Action Plan

- Simulate stars
- Observe stars
- Analyze
- Measure performance

Parameters

using McLuster

- Plummer density profile
- virial equilibrium
- ullet Kroupa IMF $0.08\,M_\odot$ to $100\,M_\odot$
- Metallicity in range 0.5 2 solar
- No binaries
- N 1.3k 40.4k

1. Issue with large N

Direct summation $O(N^2)$

Barnes-Hut Algorithm $O(N \log(N))$

- approximate with macro particles
- $\frac{\textit{width}}{\textit{distance}} < \theta_{\textit{max}}$

http://arborjs.org/docs/img/example-space.png

Multi-component axis-symmetric potential

- components
 - Black hole: Keplerian potential
 - Disk: Miyamoto Nagai potential
 - Bulge: Hernquist potential
 - Dark matter halo: Navarro–Frenk–White potential
- needed for
 - Force from analytic derivatives
 - Initial conditions for field stars