#创建需要的文件夹并 指定gpu 1. Make_dirs() 用到: --args.model_dir --args.log_dir --args.result_dir 2. device # 创建日志文件

#读取fixed图像,并 设置图像大小

Input_fixed 用到:

--atlas_file --batch_size

转成

torch.cuda.FloatTensor

#需要学会SimpleITK 库的用法

#创建配准网络(Unet) 和STN

1. nf_enc和nf_dec 用到:

--args.model

#注意此处是建立模型,是给__init__内传递参数

设置优化器和损失

Opt, sim_loss_fn, grad_loss_fn 用到:

--args.lr

--args.sim_loss

#编写train函数常用的 方法

Train.py文 件的基本 思路

训练循环

1. 选择输入图片,调整好格式,放入网络 UNet和STN。 2. 计算损失,并把损失打印并放入文件中。

3. 更新梯度

4. 保存迭代的配准结果(固定和迭代; STN后和固定)

注意保存文件的 写法

获得训练数据,并进行分派

1. 自己建立Dataset

2. 利用DataLoader进 行分配

用到:

--args.batch_size

#自己编写Dataset

Test.py文 件的基本 思路

#创建需要的文件夹并指定gpu

1. Make_dirs()
用到:
--args.model_dir
--args.log_dir
--args.result_dir

2. device
创建日志文件

#读取fixed图像,并设置图像大小

Input_fixed

--atlas_file
--batch size

转成torch.cuda.FloatTensor # 需要学会Simple I TK

用到:

库的用法