\triangleleft

Homework 8

姓名: 方嘉聪 学号: 2200017849

Problem 1. 给定 $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$, 其中 $y_i = \alpha + \beta x_i + \varepsilon_i$, ε_i 相互独立, 且服从 Laplace 分布, 其概率密度函数 (参考作业三第五题) 满足, 对于任意实数 $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2b}e^{-|x|/b}.$$

这里 α, β 和 b > 0 是未知参数. 证明 α, β 的最大似然估计量为

$$\underset{\alpha,\beta}{\operatorname{argmin}} \sum_{i=1}^{n} |y_i - (\alpha + \beta x_i)|.$$

Solution. 似然函数为

$$L(\alpha, \beta, b) = \prod_{i=1}^{n} f(\varepsilon_i) = \frac{1}{(2b)^n} \exp\left(-\frac{1}{b} \sum_{i=1}^{n} |y_i - (\alpha x_i + \beta)|\right)$$

由于 b>0, 那么 $L(\alpha,\beta)$ 关于 $\sum_{i=1}^n |y_i-(\alpha x_i+\beta)|$ 单调递减, 故 α,β 的最大似然估计量为

$$\underset{\alpha,\beta}{\operatorname{argmin}} \sum_{i=1}^{n} |y_i - (\alpha + \beta x_i)|.$$

证毕.

Problem 2. 给定 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n), \, \diamondsuit \, \hat{\alpha}, \hat{\beta}$ 为最小二乘估计量, $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$ 为 y_i 的预 测值. $\diamondsuit \, \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i, \, \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$, 证明

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2.$$

提示: 利用正规方程, 并证明 $\hat{y}_i = \bar{y} + \hat{\beta}(x_i - \bar{x})$.

Solution. 由正规方程, 我们有

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}, \quad \hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

那么

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i = \bar{y} - \hat{\beta}\bar{x} + \hat{\beta}x_i = \bar{y} + \hat{\beta}(x_i - \bar{x}).$$

又有

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}).$$

 \triangleleft

而

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_{i=1}^{n} \hat{\beta}(x_i - \bar{x})(y_i - \bar{y} - \hat{\beta}(x_i - \bar{x}))$$
$$= \hat{\beta} \left[\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) - \hat{\beta} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] = 0.$$

故有 $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$. 证毕.

Problem 3. 给定 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, 其中 $y_i = \alpha + \beta x_i + \varepsilon_i$, $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$. 沿用第二题中的记号, 并令 $s^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$, $s_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$.

(1) 令

$$q_1 = \begin{bmatrix} 1/\sqrt{n}, 1/\sqrt{n}, \cdots, 1/\sqrt{n} \end{bmatrix}^{\top} \in \mathbb{R}^n,$$

$$q_2 = \begin{bmatrix} \frac{x_1 - \bar{x}}{\sqrt{s_{xx}}}, \frac{x_2 - \bar{x}}{\sqrt{s_{xx}}}, \cdots, \frac{x_n - \bar{x}}{\sqrt{s_{xx}}} \end{bmatrix}^{\top} \in \mathbb{R}^n.$$

证明: 存在 $q_3, q_4, \dots, q_n \in \mathbb{R}^n$, 使得 $q_1, q_2, q_3, \dots, q_n$ 构成 \mathbb{R}^n 的一组标准正交基.

- (2) 将 y 视作 \mathbb{R}^n 中的一个向量. 对于 $1 \le i \le n$, 令 $z_i = q_i^\top y$, 也即 $z = Qy \in \mathbb{R}^n$, 其中 $Q \in \mathbb{R}^{n \times n}$ 的第 i 行为 $q_i \in \mathbb{R}^n$. 给出 n 维随机变量 z 服从的分布. 提示: 计算随机向量 y 的数学期望, 并验证其与 q_3, q_4, \dots, q_n 的正交性.
- (3) 证明: $z_1 = \sqrt{n}\bar{y}, z_2 = \sqrt{s_{xx}}\hat{\beta}$.
- (4) 利用第二题中提示和结论, 证明 $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2 = z_2^2$ 及 $(n-2)s^2 = \sum (y_i \hat{y}_i)^2 = \sum_{i=3}^{n} z_i^2$.
- (5) 给出 $(n-2)s^2/\sigma^2$ 服从的分布, 并证明 s^2 与 $\hat{\alpha},\hat{\beta}$ 均相互独立.
- (6) 当 $\beta = 0$, 给出统计量 $t = \frac{\hat{\beta}}{\sqrt{s^2/\sqrt{s_{xx}}}}$ 服从的分布.
- (7) 若 σ^2 未知, 考虑假设检验问题, 原假设 $H_0:\beta=0$, 备择假设 $H_1:\beta\neq 0$. 拒绝域为

$$W = \{((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)) \mid |t| \ge c\},\$$

其中 c 是待定常数. 若显著性水平为 α , 给出 c 的取值.

Solution. (1) 显然 q_1, q_2 的模长均为 1, 且有

$$q_1^{\top} q_2 = \frac{1}{\sqrt{n}\sqrt{s_{xx}}} \sum_{i=1}^n (x_i - \bar{x}) = 0.$$

故 q_1,q_2 正交. 由于 q_1,q_2 线性无关,故存在非零向量 q_3',q_4',\cdots,q_n' 使得 q_1,q_2,q_3',\cdots,q_n' 构成 \mathbb{R}^n 的一组基. 对其进行 Schmidt 正交化 (并归一化),即可得到一组标准正交基,注意到在正交化 过程中, q_1,q_2 保持不变. 故存在 q_3,q_4,\cdots,q_n 使得 q_1,q_2,q_3,\cdots,q_n 构成 \mathbb{R}^n 的一组标准正交基.

(2) 记 $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \in \mathbb{R}^n$. 待定系数, 设

$$y = (\alpha + \beta x_1 + \varepsilon_1, \cdots, \alpha + \beta x_n + \varepsilon_n) = k_1 q_1 + k_2 q_2 + \varepsilon.$$

解得:

$$y = \sqrt{n}(\alpha + \beta \bar{x}) \cdot q_1 + \beta \sqrt{s_{xx}} \cdot q_2 + \varepsilon.$$

那么有

$$z_1 = q_1^\top y = \sqrt{n}(\alpha + \beta \bar{x}) \cdot ||q_1||^2 + q_1^\top \varepsilon \sim \mathcal{N}(\sqrt{n}\alpha + \sqrt{n}\beta \bar{x}, \sigma^2),$$

$$z_2 = q_2^\top y = \beta \sqrt{s_{xx}} \cdot ||q_2||^2 + q_2^\top \varepsilon \sim \mathcal{N}(\beta \sqrt{s_{xx}}, \sigma^2).$$

对于 $i \in \{3, 4, \dots, n\}$, 由正交性有 $q_i^{\top} q_1 = q_i^{\top} q_2 = 0$, 故 (注意到 q_i 的模长为 1)

$$z_i = q_i^{\top} y = q_i^{\top} \varepsilon \sim \mathcal{N}(0, \sigma^2).$$

ਸੋਟ
$$z_1'=z_1-\sqrt{n}\alpha-\sqrt{n}etaar{x}\sim\mathcal{N}(0,\sigma^2), z_2'=z_2-eta\sqrt{s_{xx}}\sim\mathcal{N}(0,\sigma^2).$$
 ਏਟ

$$z' = (z'_1, z'_2, z_3, \cdots, z_n) = (q_1^{\top} \varepsilon, q_2^{\top} \varepsilon, q_3^{\top} \varepsilon, \cdots, q_n^{\top} \varepsilon) = Q \varepsilon.$$

我们来证明随机变量 $z_1', z_2', z_3, \cdots, z_n$ 是相互独立的. 设 $t = (t_1, t_2, \cdots, t_n) \in \mathbb{R}^n$, 有

$$f_{z'}(z'=t) = f_{z'}(Q\varepsilon = t) = f_{\varepsilon}(\varepsilon = Q^{\top}t)$$

$$= \prod_{i=1}^{n} f_{\varepsilon_i}(\varepsilon_i = q_i^{\top}t) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left(-\frac{1}{2\sigma^2}\|Q^{\top}t\|^2\right).$$

而

$$\prod_{i=1}^{2} f_{z_i'}(z_i' = t_i) \cdot \prod_{i=3}^{n} f_{z_i}(z_i = t_i) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} ||t||^2\right).$$

由于 Q 是正交矩阵, 故 $||Q^{\mathsf{T}}t||^2 = ||t||^2$, 故

$$f_{z'}(z'=t) = \prod_{i=1}^{2} f_{z'_i}(z'_i=t_i) \cdot \prod_{i=3}^{n} f_{z_i}(z_i=t_i).$$

故 $z_1', z_2', z_3, \dots, z_n$ 是相互独立的. 又我们有

$$z = (z_1', z_2', z_3, \dots, z_n)^{\top} + (\sqrt{n}\alpha + \sqrt{n}\beta \bar{x}, \beta \sqrt{s_{xx}}, 0, \dots, 0)^{\top}.$$

故 $z \sim \mathcal{N}(\mu, \Sigma)$, 其中 $\mu = (\sqrt{n}\alpha + \sqrt{n}\beta \bar{x}, \beta \sqrt{s_{xx}}, 0, \cdots, 0)^{\top}, \Sigma = \sigma^2 I_n$.

(3) 注意到 $\hat{\beta} = s_{xy}/s_{xx}$, 故

$$z_1 = q_1^{\top} y = \frac{1}{\sqrt{n}} \sum_{i=1}^n y_i = \sqrt{n} \bar{y},$$

$$z_2 = q_2^{\top} y = \frac{1}{\sqrt{s_{xx}}} \sum_{i=1}^n (x_i - \bar{x}) y_i = \frac{1}{\sqrt{s_{xx}}} \sum_{i=1}^n (x_i - \bar{x}) (y_i - \hat{y}_i) = \sqrt{s_{xx}} \hat{\beta}.$$

(4) 第二题中有 $\hat{y}_i = \bar{y} + \hat{\beta}(x_i - \bar{x})$, 那么有

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} \hat{\beta}^2 (x_i - \bar{x})^2 = \hat{\beta}^2 \cdot s_{xx} = z_2^2.$$

由于 Q 为正交矩阵, 故有 $||z||^2 = ||Qy||^2 = ||y||^2$, 即

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} z_i^2 \implies \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = \sum_{i=1}^{n} z_i^2 - z_1^2 = \sum_{i=2}^{n} z_i^2.$$

故我们有

$$(n-2)s^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \bar{y})^2 - \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = \sum_{i=2}^n z_i^2 - z_2^2 = \sum_{i=3}^n z_i^2.$$

证毕.

 $(5) \ \texttt{在} \ (2) \ \texttt{中我们证明了对于} \ i \in \{3,4,\cdots,n\}, \ z_i \overset{\text{i.i.d}}{\sim} \mathcal{N}(0,\sigma^2) \implies z_i/\sigma \overset{\text{i.i.d}}{\sim} \mathcal{N}(0,1). \ \texttt{故}$

$$\frac{(n-2)s^2}{\sigma^2} = \sum_{i=3}^n \left(\frac{z_i}{\sigma}\right)^2 \sim \chi^2(n-2).$$

由于 z_1, z_2 与 z_3, z_4, \cdots, z_n 相互独立, 而

$$s^{2} = \frac{1}{n-2} \sum_{i=3}^{n} z_{i}^{2}, \quad \hat{\beta} = \frac{z_{2}}{\sqrt{s_{xx}}}, \quad \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} = \frac{z_{1}}{\sqrt{n}} - \frac{z_{2}}{\sqrt{s_{xx}}}\bar{x}.$$

故 s^2 与 $\hat{\alpha}$, $\hat{\beta}$ 均相互独立.

(6) 当 $\beta = 0$ 时, $z_2 \sim \mathcal{N}(0, \sigma^2) \implies z_2/\sigma \sim \mathcal{N}(0, 1)$, 由 (5) 知 $(n-2)s^2/\sigma^2 \sim \chi^2(n-2)$. 且 z_2/σ 与 $(n-2)s^2/\sigma^2$ 相互独立, 故

$$t = \frac{\hat{\beta}}{\sqrt{s^2/\sqrt{s_{xx}}}} = \frac{z_2/\sqrt{s_{xx}}}{\sqrt{s^2/\sqrt{s_{xx}}}} = \frac{z_2/\sigma}{\sqrt{\frac{(n-2)s^2}{\sigma^2}/(n-2)}} \sim t(n-2).$$

(7) 当 σ^2 未知时, 给定显著性水平 α , 原假设成立时, $t \sim t(n-2)$, 故由 Neyman-Pearson 原则有

$$\mathbb{P}(|t| \ge c) = \alpha \implies c = t_{\alpha/2}(n-2).$$

其中 $t_{\alpha/2}(n-2)$ 表示自由度为 n-2 的 t 分布上侧 $\alpha/2$ 分位点,即 $\mathbb{P}(t \geq t_{\alpha/2}(n-2)) = \alpha/2$.

 \triangleleft