Exam 1

Denis Ostroushko

2022 - 10 - 26

Problem 1

1- A

Disbtribution of Complaint Rates per 1,000 Visits

Average: 1.33 Median: 0.98

Table 1: Summary of Numeric Variables

Variables	Min	Max	Mean	S.D
complaint_rate_1000	0.00	3.02	1.33	0.88
revenue	206.42	334.94	260.14	32.64
hours	589.00	1917.25	1417.40	326.98

Table 2: Correlation of Numeric Covariates

	Complaint Rate per 1,000	Revenue	Hours Worked
Complaint Rate per 1,000 Revenue	1.0000000 0.0305876	0.0305876 1.0000000	0.2788799 -0.0405506
Hours Worked	0.2788799	-0.0405506	1.0000000

Revenue

Relationship between Hours Worked and Complaint Rate

We have categorical predictors also:

- Residency has two levels: Y, N with 54.55%, 45.45% class presence respectively
- \bullet Gender has two levels: F, M with 27.27%, 72.73% class presence respectively

Overall comments on variables

Model Assumptions

- one
- two

Model Statement

$$E[Complaint \ Rate] = \hat{\beta}_0 + \hat{\beta}_1 * X_1 + \hat{\beta}_2 * X_2 + \hat{\beta}_3 * X_3 + \hat{\beta}_4 * X_4 = \hat{\beta}_4 * \hat{\beta}_4 *$$

 $E[Complaint \ Rate] = \hat{\beta}_0 + \hat{\beta}_1 * Revenue + \hat{\beta}_2 * Hours \ Worked + \hat{\beta}_3 * Gender + \hat{\beta}_4 * Residency + \hat{\beta}_5 * Residency$

Overall ANOVA

Source	SSR	DF	MS	F Statistic	$P(F^* > F)$
Regression	3.254294	4	0.8135735	1.04	0.3969
Error	30.386120	39	0.7791313	NA	NA
Total	33.640414	43	NA	NA	NA

^{*}three

• Null Hypothesis: $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1}$

• Alternative Hypothesis: H_a : Not all coefficients β_i are zero

• F-statistic: 1.04

• Cutoff F^* -statistic: 2.6123

• So, $F < F^*$, therefore we do not have enough evidence to reject the null hypothesis to conclude that some or all coefficients β_i are consistently different from zero.

• Moreover, $P(F^* > F) = 0.3969$

• Conclusion:

Regression Coefficients

Predictor	Estiamte	Standard Error	T Value	P value
(Intercept)	-0.064405	1.250366	-0.051509	0.959183
revenue	0.001351	0.004610	0.293122	0.770983
hours	0.000676	0.000461	1.467079	0.150373
genderM	0.197338	0.314907	0.626654	0.534537
$\operatorname{residency} Y$	-0.132728	0.329286	-0.403077	0.689093

• R square and 0.0967

• Adjusted R Square 0.0041

• Explain Coefficients

1- B

T-test for hours worked

• Null Hypothesis: $H_0: \hat{\beta}_4 = 0$

• Alternative Hypothesis: $H_a: \hat{\beta}_4 \neq 0$ \$

• $P(t^* > t) = 0.150373$

• Conclusion

Interpretation of coefficient One additional Hour worked results in 0.000676 additional complaints on average. However, it makes more sense to say look at 100 hours, which is 0.0676

C.I.

Using formula C.I. bounds = $Estimate \pm 1.96 * Standard Error$

C.I. for the estimate 0.000676 with a 0.000461 standard error is (-0.000256, 0.001609)

1- $^{
m C}$ Relationship between Hours Worked and Complaint Rate

 ${\bf 1-~D}$ Effect plots needed here, find a nice package

Added Variable Plot for the Number of Hours Worked

Problem 2

2 - A

Disbtribution of Vaccination Rates in Metro Area MN Counties

Average: 80.7 Median: 82.1

Disbtribution of Vaccination Rates in Outstate MN Counties

Average: 63.81 Median: 63.45

Outlier: Olmsted, Cook 88.5, 87.9

Olmsted includes Rochester Cook is by the Canadian Border

Table 3: Vaccination Rates Summary by County Type

Type	N	Mean	Median	S.D.
Outstate	80	63.81	63.45	7.08
Metro	7	80.70	82.10	3.63

• Normality of Vaccination Rates

In order to test outliers for normality we plot the residuals against expected values of residuals in a normally distributed random sample.

We can calculate these expected values using the formula:

$$\sqrt{Variance} \times z(\frac{Value - .375}{N + .25})$$

Correlation between Observed and Expected 0.977

Use T test here. No heavy tails or skewed distributions So nothing should affect the results of the T test In such samples wilcoxon only has 95% of statistical power that the t test brings, so we will use the t test

Test results summary and interpretation:

- Null Hypothesis: $H_0: Mean_{metro\ area} = Mean_{outstate}$
- Test statistic: $H_a: Mean_{metro\ area} \neq Mean_{outstate}$
- Metro area mean vaccination rate is 80.7, while outstate median vaccination mean is 63.81
- Estimated difference is -16.89, bounded by (-20.3959, -13.3841)
- Test statistic T: -10.6576166
- $P(T^* > T) = 0.000001$
- Conclusion:

2 - B

Disbtribution of Delta Death Rates in Metro Area MN Counties

Average: 0.21 Median: 0.21

Disbtribution of Delta Death Rates in Metro Area MN Counties

Average: 0.39 Median: 0.38

Outlier: Faribault

Faribault county is kind of an outlier

Death Rates for Outleir counties Olmsted and Cook 0.13, 0 $\,$

88.5, 87.9

Table 4: Vaccination Rates Summary by County Type

Type	N	Mean	Median	S.D.
Outstate	80	0.3936199	0.3761792	0.23
Metro	7	0.2085040	0.2144522	0.04

• Normality of Death Rates

In order to test outliers for normality we plot the residuals against expected values of residuals in a normally distributed random sample.

We can calculate these expected values using the formula:

$$\sqrt{Variance} \times z(\frac{DeathRate-.375}{N+.25})$$

Correlation between Observed and Expected 0.948

Test results summary and interpretation:

- Null Hypothesis: $H_0: Mean_{metro\ area} = Mean_{outstate}$
- Test statistic: $H_a: Mean_{metro\ area} \neq Mean_{outstate}$
- Metro area mean vaccination rate is 0.208504, while outstate median vaccination mean is 0.3936199
- Estimated difference is 0.185116, bounded by (0.1252, 0.2451)
- Test statistic T: 6.1920794
- $P(T^* > T) = 0$
- Conclusion:

2 - C

Model Specificantion

$$E[DeathRate] = \hat{\beta}_0 + \hat{\beta}_1 * X_1 + \hat{\beta}_2 * X_2 =$$

 $E[DeathRate] = \hat{\beta}_0 + \hat{\beta}_1 * Vaccination \ Rate + \hat{\beta}_2 * Metro \ Area \ County \ Indicator$

Overall ANOVA test

Source	SSR	DF	MS	F Statistic	$P(F^* > F)$
Regression	0.5740292	2	0.2870146	6.37	0.0027
Error	3.7854492	84	0.0450649	NA	NA
Total	4.3594784	86	NA	NA	NA

```
## Analysis of Variance Table

## Model 1: death_rate ~ 1

## Model 2: death_rate ~ v_rate + region

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 86 4.3595

## 2 84 3.7854 2 0.57403 6.3689 0.002659 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Null Hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_{p-1}$
- Alternative Hypothesis: H_a : Not all coefficients β_i are zero
- F-statistic: 6.37
- Cutoff F^* -statistic: 3.1052
- So, $F < F^*$, therefore we do not have enough evidence to reject the null hypothesis to conclude that some or all coefficients β_i are consistently different from zero.
- Moreover, $P(F^* > F) = 0.0027$
- Conclusion:

Model Estimates

Predictor	Estiamte	Standard Error	T Value	P value
(Intercept)	0.990663	0.214503	4.618412	0.000014
v_rate	-0.009357	0.003341	-2.800576	0.006329
region	-0.027083	0.100922	-0.268358	0.789081

- R square and 0.1317
- Adjusted R Square 0.111
- Null Hypothesis: $H_0: \hat{\beta}_2 = 0$
- Alternative Hypothesis: $H_a: \hat{\beta}_2 \neq 0$ \$
- Test statistic T: -0.268358
- $P(t^* > t) = 0.789081$
- Conclusion

Interpretation of coefficient

Metro Area expected to have 0.0271 deaths per 1,000

C.I.

Using formula C.I. bounds = $Estimate \pm 1.96 * Standard Error$

C.I. for the estimate -0.027083 with a 0.100922 standard error is (-0.227779, 0.173612)

2 - D