PLANIFICACIÓN Y ADMINISTRACIÓN DE REDES 0370

Administración de Sistemas Informáticos en Red

Fundamentos de Redes y Niveles del Modelo OSI/ TCP/IP

Contenidos

I. Nivel Fisico y Aspectos Basicos de la Transmision de Datos	31
2. Nivel de Enlace: Objetivos, Tramas y Protocolos	34
3. Nivel de Red: Direccionamiento y Protocolos	36
4. Nivel de Transporte: Protocolos TCP y UDP	39
5. Niveles Superiores: Sesión, Presentación y Aplicación	40
6. Ejercicios	42
7. Test de Conocimientos	44

3. Fundamentos de Redes y Niveles del Modelo OSI/TCP/IP

1. Nivel Físico y Aspectos Básicos de la Transmisión de Datos

1.1. Introducción al Nivel Físico

El **nivel físico** es esencial en la comunicación de redes, ya que se encarga de transmitir **datos** en forma de señales (eléctricas, ópticas o de radio). No interpreta el contenido de los datos, solo asegura que las señales lleguen correctamente.

Objetivos Principales:

- Transmisión de Bits: Convierte los datos digitales en señales físicas.
- Definición de Medios Físicos: Establece las características del medio de transmisión (como cables o frecuencia de ondas).
- Sincronización: Asegura que el emisor y receptor estén coordinados.

Sin un nivel físico eficiente, las otras capas del modelo OSI no pueden funcionar correctamente.

1.2. Modos de Transmisión

Los modos de transmisión determinan cómo fluye la información entre dispositivos.

- · Simplex: Comunicación unidireccional (Ejemplo: televisión).
- Half-Duplex: Comunicación bidireccional, pero solo un dispositivo transmite a la vez (Ejemplo: walkie-talkies).
- Full-Duplex: Comunicación bidireccional simultánea (Ejemplo: llamada telefónica).

El modo full-duplex es el más eficiente para redes modernas.

1.3. Medios Físicos: Cables Metálicos

Los cables metálicos son comunes para redes locales, como los que conectan ordenadores al router.

- · Cable Coaxial: Usado en televisión por cable, es resistente a interferencias pero menos utilizado hoy en día.
- Cables de Pares Trenzados (UTP, STP, FTP): Usados en redes Ethernet, con distintas protecciones contra interferencias.

Ventajas: Económicos, fáciles de instalar y compatibles con la mayoría de los dispositivos.

1.4. Medios Físicos: Fibra Óptica

La fibra óptica usa luz para transmitir datos, ofreciendo alta velocidad y calidad.

· Características:

- · Alta capacidad de transmisión.
- · Resistencia a interferencias.
- · Ideal para largas distancias.

Tipos:

- · Monomodo: Para largas distancias.
- · Multimodo: Para distancias cortas.

1.5. Medios Inalámbricos

Los medios inalámbricos transmiten datos por ondas electromagnéticas (como radio o Wi-Fi).

- · Tipos:
 - · Ondas de Radio: Usadas en Wi-Fi y Bluetooth.
 - · Microondas: Para enlaces punto a punto.
 - · Infrarrojo: Para distancias cortas (Ejemplo: mando a distancia).

Ventajas:

- · Movilidad y flexibilidad, puedes usar tus dispositivos en cualquier lugar con cobertura.
- · Fácil instalación, sin necesidad de cables.

Desventajas:

- · Seguridad: Son más vulnerables a ataques si no se configuran correctamente.
- Interferencias: Se ven afectadas por obstáculos y condiciones climáticas, como cuando pierdes la señal Wi-Fi al alejarte del router.

1.6 Conectores Utilizados en Redes

Los **conectores** son los enchufes que se usan para conectar los cables a los dispositivos de red. Son como los enchufes que usas para conectar tus aparatos eléctricos.

· Conectores Más Comunes:

- RJ-45: Usado en cables UTP y STP para redes Ethernet. Es el conector más común en redes de ordenadores.
- LC, SC y ST: Usados en fibra óptica. Son conectores más pequeños y precisos.
- BNC: Conector coaxial, usado en redes antiguas y televisión por cable.

El uso de conectores de **buena calidad** es crucial para evitar pérdida de señal.

1.7 Factores que Afectan la Transmisión

La transmisión de datos puede verse afectada por varios **factores**, como si la carretera por donde viajan los datos tuviera baches, curvas o tráfico.

· Factores Clave:

- Atenuación: La señal se debilita a medida que viaja por el medio, como cuando el sonido se hace más bajo al alejarte de la fuente.
 - > Solución: Se pueden usar repetidores o amplificadores para aumentar la señal.
- Ruido: Interferencias externas que degradan la señal, como cuando hay estática en la radio.

- > Ejemplo: Señales electromagnéticas de otros dispositivos.
- Distorsión: La señal se deforma al viajar por el medio, como cuando una imagen se ve borrosa.

Estos factores afectan la calidad de la transmisión y deben tenerse en cuenta al diseñar una red.

1.8. Ancho de Banda y Tasa de Transferencia

- Ancho de Banda: Es la cantidad máxima de datos que un medio puede transmitir en un segundo, como la capacidad de una carretera.
 - · Se mide en Mbps o Gbps (Megabits o Gigabits por segundo).
- Tasa de Transferencia: Es la velocidad real a la que se transmiten los datos, como la velocidad a la que circulan los coches por la carretera.

Por ejemplo, un cable **Cat6** puede soportar hasta **1 Gbps** de ancho de banda.

1.9. Comparación de Medios Físicos

La elección del medio físico depende de factores como la distancia, velocidad y entorno.

- · Recomendaciones:
 - · UTP: Para redes locales.
 - Fibra Óptica: Para largas distancias o altas velocidades.

La elección adecuada mejora la velocidad y fiabilidad de la red.

1.10. Introducción a los Medios Inalámbricos

Los medios inalámbricos permiten la conexión sin cables, esenciales para la movilidad.

- · Usos Comunes:
 - · Wi-Fi: Para redes domésticas y empresariales.
 - Bluetooth: Para conectar dispositivos cercanos.
 - · Redes Celulares (4G/5G): Para acceso a Internet móvil.

Ventajas:

- · Movilidad y flexibilidad, puedes usar tus dispositivos en cualquier lugar con cobertura.
- · Reducción de costos en cables.

1.11. Configuración Básica de Medios Físicos

Para configurar una red física, hay que seguir varios pasos, como si estuvieras construyendo una carretera.

- · Pasos:
 - 1. Selección del Medio: Elegir el cable adecuado (UTP, fibra óptica).
 - 2. Diseño del Cableado: Planificar la ruta para evitar interferencias.

- 3. Instalación de Conectores: Asegurar una conexión correcta.
- 4. Pruebas de Conectividad: Verificar que todo funcione correctamente.

1.12. Configuración Básica de Medios Inalámbricos

Para configurar una red inalámbrica, hay que seguir algunos pasos, como si estuvieras instalando una antena de radio.

· Pasos:

- 1. Seleccionar el Punto de Acceso: Dispositivo que crea la red Wi-Fi.
- 2. Configurar el SSID: Nombre de la red Wi-Fi.
- 3. Establecer la Seguridad: Contraseña y cifrado.
- Configurar el Canal: Elegir un canal libre de interferencias.
- 5. Prueba de Cobertura: Asegurar que la señal llegue a todos los lugares deseados.

1.13. Factores de Diseño de una Red Física

Al diseñar una red física, ten en cuenta:

- 1. Requerimientos de Ancho de Banda: Estimar la cantidad de datos a transmitir.
- 2. Escalabilidad: Asegurar que la red pueda crecer.
- 3. Gestión de Interferencias: Minimizar interferencias externas.
- 4. Seguridad Física: Proteger cables y dispositivos.

1.14. Consideraciones de Medios Inalámbricos

Al usar medios inalámbricos, considera:

- Distancia y Obstáculos: La señal puede debilitarse con la distancia.
- · Interferencias: Otras señales pueden interferir.
- **Seguridad:** Usar contraseñas y cifrado para proteger la red.
- Capacidad de Usuarios: Asegurarse de que la red soporta múltiples dispositivos conectados.

2. Nivel de Enlace: Objetivos, Tramas y Protocolos

2.1. Introducción al Nivel de Enlace

El **nivel de enlace** se asegura de que los datos viajen correctamente entre dispositivos directamente conectados. Es como un sistema de control de tráfico que guía el paso de los vehículos.

Responsabilidades principales:

- 1. Control de Acceso al Medio: Regula qué dispositivo puede transmitir datos en cada momento para evitar colisiones, como un semáforo.
- 2. Detección y Corrección de Errores: Asegura que los datos no se corrompan durante la transmisión.
- 3. Segmentación de Redes: Divide las redes en partes más pequeñas para mejorar la eficiencia.

2.2. Tramas en el Nivel de Enlace

Una **trama** es el formato que usan los datos para viajar en este nivel. Contiene la información necesaria para que los datos lleguen correctamente al destino.

Estructura de una Trama:

- 1. Cabecera: Contiene direcciones de origen y destino y otra información de control.
- 2. Datos: La información que se transmite.
- 3. Tráiler: Código que detecta errores.

Tipos de Direccionamiento:

- · Unicast: A un solo dispositivo.
- Multicast: A un grupo de dispositivos.
- Broadcast: A todos los dispositivos en la red.

2.3. Protocolos del Nivel de Enlace

Los protocolos definen las reglas de comunicación en el nivel de enlace, como las normas de tráfico.

Protocolos clave:

- IEEE 802.3 (Ethernet): Usado en redes LAN, el más común.
- PPP (Point-to-Point Protocol): Para conexiones punto a punto.
- · HDLC (High-Level Data Link Control): Para redes WAN.

2.4. Ethernet en el Nivel de Enlace

Ethernet es el protocolo más utilizado en redes LAN, actuando como el principal sistema de comunicación en redes de ordenadores.

Características:

- Topologías: Compatible con varias formas de conectar dispositivos.
- Acceso al Medio: Utiliza CSMA/CD para evitar colisiones.
- · Velocidades: Desde 10 Mbps hasta 400 Gbps.

2.5. Control de Acceso al Medio

En redes compartidas, el **control de acceso al medio** evita que los dispositivos se interfieran entre sí.

CSMA/CD:

- 1. Carrier Sense: Los dispositivos detectan si el medio está libre antes de transmitir.
- 2. Multiple Access: Varios dispositivos comparten el mismo medio.
- 3. Collision Detection: Detecta y resuelve colisiones.

2.6. Redes Segmentadas con Switches

Un switch divide una red en dominios de colisión, mejorando la eficiencia y reduciendo interferencias.

Ventajas de los Switches:

- Eliminación de Colisiones: Cada puerto es independiente.
- Mayor Ancho de Banda: No hay interferencias entre dispositivos.
- · Seguridad Mejorada: Los datos solo van a su destino.

2.7. Aplicaciones del Nivel de Enlace

El nivel de enlace es crucial en muchas aplicaciones, como:

- · Redes LAN en oficinas.
- Conexiones punto a punto entre dos lugares.
- Seguridad de red, controlando el acceso de dispositivos.

3. Nivel de Red: Direccionamiento y Protocolos

3.1. Introducción al Nivel de Red

El **nivel de red** es la tercera capa del **modelo OSI** y se encarga de determinar la **ruta** que los datos deben seguir para llegar a su destino. Su principal función es permitir la **comunicación entre redes diferentes**, como ocurre en **Internet**.

Funciones principales:

- 1. Enrutamiento de Paquetes: Encuentra la mejor ruta para enviar datos utilizando algoritmos y tablas de enrutamiento
- 2. Direccionamiento Lógico: Asigna direcciones IP únicas a los dispositivos para identificarlos.
- 3. Encapsulación de Datos: Los datos se encapsulan en paquetes que contienen la dirección de origen y destino.
- 4. Control de Congestión: Evita que la red se sature por tráfico excesivo.

3.2. Direccionamiento IPv4

La dirección IPv4 es un identificador único de 32 bits dividido en 4 octetos separados por puntos (ejemplo: 192.168.1.1).

Tipos de Direcciones IPv4:

- Privadas: Uso interno en redes LAN. Ejemplo: 192.168.0.0/16.
- Públicas: Asignadas para Internet por organismos como IANA.
- · Especiales:
 - Broadcast: Envía datos a todos los dispositivos de la red (ejemplo: 192.168.1.255).
 - **Loopback:** Para pruebas internas del dispositivo (ejemplo: 127.0.0.1).

Máscaras de Red: Definen qué parte de la dirección corresponde a la **red** y cuál al **host**. Ejemplo: **255.255.255.0** (equivalente a /24).

3.3. Direccionamiento Dinámico (DHCP)

El DHCP (Dynamic Host Configuration Protocol) asigna direcciones IP dinámicas a dispositivos de una red.

Ventajas de DHCP:

- Facilidad de Configuración: No requiere asignar direcciones manualmente.
- · Optimización: Reutiliza direcciones IP no utilizadas.
- · Configuración Centralizada: Permite gestionar la red desde un servidor DHCP.

Ejemplo: En una oficina con 50 dispositivos, el servidor DHCP asigna direcciones del rango **192.168.1.100 - 192.168.1.150** automáticamente.

3.4. Protocolo IP

El protocolo IP (Internet Protocol) es el encargado de enviar los paquetes a su destino, atravesando múltiples redes.

Características de IP:

- Direccionamiento: Incluye direcciones IP de origen y destino en cada paquete.
- No Confiable: No garantiza la entrega de los paquetes.
- · Independencia del Medio: Funciona en diferentes tecnologías como Ethernet y Wi-Fi.

Formato del Datagrama IP:

- · Cabecera: Contiene información de enrutamiento, como direcciones IP y TTL.
- Datos: Información útil que se transmite.

Ejemplo: Un correo electrónico viaja como un datagrama IP desde el remitente hasta el destinatario.

3.5. Protocolos de Resolución de Direcciones (ARP y RARP)

- ARP (Address Resolution Protocol): Traduce direcciones IP a direcciones MAC. Ejemplo: Un dispositivo usa ARP para obtener la dirección MAC del receptor en la red local.
- RARP (Reverse ARP): Traduce direcciones MAC a IP. Es menos común y usado en sistemas sin almacenamiento local.

Importancia: Ambos protocolos permiten la comunicación correcta en una red local.

3.6. Protocolo ICMP

El ICMP (Internet Control Message Protocol) permite la comunicación de errores y pruebas de conectividad en la red.

Usos comunes:

- Ping: Comprueba la conectividad entre dos dispositivos.
- · Mensajes de Error: Notifica problemas como rutas inalcanzables o TTL agotado.
- Diagnóstico: Utiliza herramientas como traceroute para identificar la ruta de los paquetes.

Ejemplo: Un administrador usa **ping** para verificar la conexión con un servidor.

3.7. Encaminamiento IP

El **encaminamiento** permite que los paquetes viajen desde la **red origen** hasta la **red destino** utilizando **tablas de en- rutamiento**.

Elementos del Encaminamiento:

- Tablas de Enrutamiento: Incluyen la red destino, máscara de red y siguiente salto.
- · Protocolos de Enrutamiento:
 - Estáticos: Configurados manualmente por el administrador.
 - Dinámicos: Ajustan rutas automáticamente. Ejemplos: OSPF, BGP.

Ejemplo: Un router usa su tabla de enrutamiento para decidir si envía un paquete por Ethernet o WAN.

3.8. Subnetting y VLSM

- Subnetting: Divide una red grande en subredes más pequeñas para optimizar el uso de direcciones IP y mejorar la seguridad.
- · VLSM (Variable Length Subnet Mask): Permite usar máscaras de diferentes tamaños en una misma red.

Ejemplo: La red 192.168.1.0/24 puede dividirse en:

- **192.168.1.0/26** (64 hosts).
- · 192.168.1.64/27 (32 hosts).

Importancia: Subnetting y VLSM son esenciales para un diseño eficiente de redes modernas.

3.9. IPv6: La Evolución del Direccionamiento

IPv6 es la versión más reciente del protocolo IP, creada para resolver el agotamiento de direcciones IPv4.

Ventajas de IPv6:

- Espacio Mayor: Usa direcciones de 128 bits, frente a los 32 bits de IPv4.
- Autoconfiguración: Los dispositivos pueden asignarse direcciones automáticamente.
- · Seguridad Integrada: Soporte nativo para IPsec.

Formato de Dirección IPv6:

Ejemplo: 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

Uso Actual: Aunque **IPv6** se implementa cada vez más, muchas redes siguen utilizando **IPv4** debido a problemas de **compatibilidad**.

4. Nivel de Transporte: Protocolos TCP y UDP

4.1. Introducción al Nivel de Transporte

El **nivel de transporte** es la cuarta capa del **modelo OSI** y es crucial para garantizar que los datos lleguen de manera **confiable** y **ordenada** al destinatario. Funciona como un servicio de mensajería que entrega los datos a la aplicación correcta en el dispositivo correcto.

· Funciones Principales:

- 1. **Segmentación y Reensamblaje:** Divide los datos en segmentos más pequeños para transmitirlos y los reensambla en el destino.
 - > Ejemplo: Es como dividir un mensaje largo en varias cartas y unirlas en el destino.
- 2. **Control de Flujo:** Evita que un emisor rápido abrume a un receptor más lento ajustando la velocidad de transmisión.
 - > Ejemplo: Hablar despacio si la otra persona no entiende.
- 3. Corrección de Errores: Detecta y retransmite los segmentos en caso de pérdida o corrupción.
 - > Ejemplo: Volver a pedir algo si no se ha entendido.

· Protocolos Clave:

- TCP (Transmission Control Protocol): Proporciona fiabilidad y control en la entrega de los datos.
- UDP (User Datagram Protocol): Prioriza la velocidad sobre la fiabilidad.

4.2. Protocolo TCP: Fiabilidad y Control de Conexiones

El **TCP** es un protocolo **orientado a la conexión** que garantiza la entrega correcta y ordenada de los datos. Es el protocolo más utilizado en el nivel de transporte.

· Características Principales:

- Establecimiento de Conexión: Utiliza el three-way handshake (SYN, SYN-ACK, ACK) para iniciar la comunicación.
- Control de Flujo: Ajusta la velocidad del emisor para evitar saturar al receptor.
- Corrección de Errores: Retransmite los segmentos que no han sido confirmados por el receptor.
- Ordenamiento de Segmentos: Asegura que los datos lleguen en el orden correcto.
- **Ejemplo Práctico:** La descarga de un archivo desde un servidor web utiliza **TCP** para garantizar que todos los segmentos lleguen completos y ordenados.

4.3. Protocolo UDP: Velocidad sin Conexión

El **UDP** es un protocolo **no orientado a la conexión**, más rápido pero menos confiable que TCP, ya que no garantiza la entrega ni el orden de los datos.

· Características de UDP:

- Sin Conexión: No establece una conexión previa para enviar datos.
- Baja Sobrecarga: Consume menos recursos al no verificar la entrega.

· Velocidad: Ideal para aplicaciones donde la rapidez es prioritaria.

· Usos Comunes:

- Streaming de video/audio en tiempo real.
- Juegos en línea, donde la rapidez es más importante que la pérdida ocasional de datos.
- DNS (Domain Name System): Para resolver nombres de dominio de forma rápida.
- Ejemplo Práctico: Una transmisión de video en vivo utiliza UDP para evitar retrasos, aun si algunos paquetes se pierden.

4.4. Puertos y Multiplexación

Los **puertos** permiten identificar a qué **aplicación** o **servicio** pertenecen los datos en un dispositivo, facilitando la comunicación simultánea entre varias aplicaciones.

· Conceptos Clave:

- Puertos Bien Conocidos (0-1023): Reservados para servicios estándar, como HTTP (80) y HTTPS (443).
- Puertos Registrados (1024-49151): Utilizados por aplicaciones específicas.
- Puertos Dinámicos (49152-65535): Asignados temporalmente para conexiones salientes.
- Multiplexación: Permite que múltiples aplicaciones usen la misma conexión simultáneamente.
 - Ejemplo: Navegar por Internet mientras se envían correos electrónicos.

4.5. Sockets en el Nivel de Transporte

Un **socket** es la combinación de una **dirección IP** y un **puerto**, permitiendo que las aplicaciones se comuniquen de manera precisa. Es como la dirección completa de una persona, incluyendo calle, número de casa y nombre.

· Función:

· Identificar el destino exacto para enviar o recibir datos.

5. Niveles Superiores: Sesión, Presentación y Aplicación

5.1. Introducción a los Niveles Superiores

Los **niveles superiores** del modelo OSI (sesión, presentación y aplicación) se encargan de las funciones más cercanas al **usuario**.

- Nivel de Sesión: Establece, gestiona y termina las sesiones entre aplicaciones.
 - Ejemplo: Un recepcionista que conecta a dos personas para hablar.
- Nivel de Presentación: Traduce, cifra y comprime los datos.
 - Ejemplo: Un traductor que asegura que el mensaje sea entendible.
- Nivel de Aplicación: Proporciona servicios de red al usuario final.

• Ejemplo: Un departamento de atención al cliente que ayuda a los usuarios.

5.2. Protocolos de Aplicación

Los protocolos de aplicación permiten que las aplicaciones se comuniquen entre sí utilizando reglas específicas.

- · Ejemplos:
 - DNS (Domain Name System): Traduce nombres de dominio a direcciones IP.
 - HTTP/HTTPS: Transfiere páginas web; HTTPS añade cifrado para mayor seguridad.
 - FTP (File Transfer Protocol): Transfiere archivos entre dispositivos.
 - SMTP/POP/IMAP: Envía y recibe correos electrónicos.
- Ejemplo Práctico: Al acceder a una página web, se usa DNS para resolver el dominio y HTTP/HTTPS para transferir la información.

5.3. Modelos de Comunicación

Existen tres modelos principales de comunicación:

1. Modelo Cliente/Servidor:

- El cliente solicita un recurso y el servidor lo proporciona.
- · Ejemplo: Un navegador solicita una página web.

2. Modelo Peer-to-Peer (P2P):

- · Los dispositivos actúan como clientes y servidores simultáneamente.
- Ejemplo: Redes de intercambio de archivos como BitTorrent.

3. Modelo Híbrido:

- Combina características de cliente/servidor y P2P.
- Ejemplo: Servicios de streaming que usan servidores iniciales y P2P para distribución.

5.4. Comparación OSI vs. TCP/IP

- Modelo OSI: Teórico, con 7 capas, ayuda a entender cómo funcionan las redes.
- · Modelo TCP/IP: Práctico, con 4 capas, se utiliza en Internet.

5.5. Configuración de Aplicaciones Clientes

Para utilizar aplicaciones de red correctamente, es necesario configurar sus parámetros.

- · Ejemplo: Configuración de un Cliente de Correo Electrónico:
 - · Credenciales del usuario.
 - Configurar servidores SMTP (saliente) y POP/IMAP (entrante):
 - > SMTP: mail.ejemplo.com (puerto 587).
 - > IMAP: mail.ejemplo.com (puerto 993).

· Activar cifrado SSL/TLS para mayor seguridad.

5.6. Aplicaciones de los Niveles Superiores

Los niveles superiores permiten aplicaciones esenciales como:

- · Navegación web.
- · Correo electrónico.
- · Transferencia de archivos.
- · Videoconferencias.
- · Juegos en línea.

En **resumen**, los niveles superiores del modelo OSI se enfocan en la **comunicación entre aplicaciones**, la **representación de datos** y en brindar **servicios directos** al usuario.

6. Ejercicios

Ejercicio 1:¿Cuáles son los principales objetivos del nivel físico en el modelo OSI?

Ejercicio 2: Explica la diferencia entre los modos de transmisión simplex, half-duplex y full-duplex.

Ejercicio 3:¿Qué factores afectan la transmisión en medios físicos?

Ejercicio 4:¿Qué diferencia hay entre una dirección IP pública y una privada?

Ejercicio 5:¿Qué es una máscara de red y para qué se utiliza?

Ejercicio 6: Describe las principales características de IPv6.

Ejercicio 7:¿Cuál es la función del protocolo TCP en el nivel de transporte?

Ejercicio 8:¿Qué rol desempeña el protocolo UDP en el nivel de transporte?

Ejercicio 9: Explica la importancia del nivel de enlace en el modelo OSI.

Ejercicio 10:¿Qué diferencia hay entre unicast, multicast y broadcast?

Ejercicio 11:¿Qué es el protocolo ICMP y cuáles son sus usos comunes?

Ejercicio 12:¿Qué es una tabla de encaminamiento y cómo funciona?

Ejercicio 13:¿Qué son las máscaras de longitud variable (VLSM) y por qué se utilizan?

Ejercicio 14:¿Qué ventajas tiene Ethernet como protocolo de nivel de enlace?

Ejercicio 15:¿Qué función tiene el protocolo DHCP en una red?

Ejercicio 16:¿Cuál es el propósito del three-way handshake en TCP?

Ejercicio 17:¿Qué características hacen al modelo TCP/IP adecuado para Internet?

Ejercicio 18:¿Qué diferencias prácticas existen entre los modelos OSI y TCP/IP?

Ejercicio 19: Configura una dirección IP estática en un dispositivo con los siguientes parámetros:

Dirección IP: 192.168.1.100

Máscara de Subred: 255.255.255.0

Puerta de Enlace Predeterminada: 192.168.1.1 1

Ejercicio 20: Usa Wireshark para capturar un paquete ICMP generado por el comando ping. Describe su contenido.

Ejercicio 21: Configura un servidor DHCP en una máquina virtual usando Packet Tracer.

Ejercicio 22: Diseña una red LAN con tres subredes usando VLSM. Calcula las direcciones y asigna rangos.

Ejercicio 23: Realiza una prueba de conectividad entre dos dispositivos en redes diferentes utilizando un router en Packet Tracer.

Ejercicio 24: Configura un adaptador de red Wi-Fi en Windows para conectarse a una red con las siguientes credenciales:

SSID: MiRedWiFi

Contraseña: 12345WPA3

Ejercicio 25: En Wireshark, captura un paquete ARP y describe cómo se resuelve la dirección MAC. **Ejercicio 26:** Configura un router para usar NAT y permitir el acceso a Internet desde una red local.

Ejercicio 27: Crea y verifica un cable cruzado utilizando las normas T568A y T568B.

7. Test de Conocimientos

1. ¿Cuál de las siguientes NO es una función principal del nivel físico?

- Definir las características del medio de transmisión.
- · Controlar el acceso al medio.
- · Transmitir bits como señales.
- · Sincronizar la comunicación.

2. ¿Qué modo de transmisión permite la comunicación bidireccional pero solo en una dirección a la vez?

- Simplex
- · Half-duplex
- Full-duplex
- Multiplex

3. ¿Cuál de los siguientes cables ofrece mayor resistencia a las interferencias?

- UTP
- STP
- · Cable coaxial
- · Fibra óptica monomodo

4. ¿Qué afirmación sobre la fibra óptica es FALSA?

- · Utiliza luz para transmitir datos.
- · Es susceptible a interferencias electromagnéticas.
- · Ofrece alta capacidad de transmisión.
- · Puede ser monomodo o multimodo.

5. ¿Cuál de los siguientes NO es un factor que afecta la transmisión en medios inalámbricos?

- Distancia
- Obstáculos
- Interferencias
- · Tipo de conector

6. ¿Qué protocolo se encarga de traducir direcciones IP a direcciones MAC?

- DHCP
- ARP
- ICMP
- TCP

7. ¿Cuál es la función principal del nivel de red?

- · Enrutar paquetes.
- · Controlar el acceso al medio.
- · Segmentar los datos.
- · Establecer conexiones.

8. ¿Qué afirmación sobre IPv6 es CORRECTA?

- Utiliza direcciones de 32 bits.
- Es menos seguro que IPv4.
- Ofrece un espacio de direccionamiento mayor que IPv4.
- · No permite la autoconfiguración.

9. ¿Cuál de los siguientes es un protocolo de enrutamiento dinámico?

- · Enrutamiento estático
- RIP
- OSPF
- VLSM

10. ¿Qué protocolo de transporte ofrece una comunicación confiable y orientada a la conexión?

- TCP
- UDP
- IP
- ICMP