Final Project Submission

Please fill out:

- Student name: Sue Lim
- · Student pace: self paced
- Scheduled project review date/time: Fri, Feb 17, 2023, 11:30 AM 12:15 PM
- Instructor name: Mark Barbour
- Blog post URL: https://medium.com/@limsue9123/which-movie-to-create-for-your-new-business-7bb1440cd7e6
 (https://medium.com/@limsue9123/which-movie-to-create-for-your-new-business-7bb1440cd7e6

Which Movie to Create?

I. Introduction

Microsoft sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't know anything about creating movies. I am charged with exploring what types of films are currently doing the best at the box office. I must then translate those findings into actionable insights that the head of Microsoft's new movie studio can use to help decide what type of films to create.

```
In [1]: # Import relevant libraries and set options
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    pd.set_option('float_format', '{:,.0f}'.format)

In [18]: # Import raw data files

budget_gross = pd.read_csv("zippedData/tn.movie_budgets.csv")
    genre = pd.read_csv("zippedData/imdb.title.basics.csv")
    gross_studio = pd.read_csv("zippedData/hom.movie_gross.csv")
    people = pd.read_csv("zippedData/imdb.title.principals.csv")
    people_names = pd.read_csv("zippedData/imdb.name.basics.csv")
    # ratings = pd.read_csv("zippedData/imdb.novies.csv", index_col = 0)
```

II. Analysis Overview

To determine which type of movies to create for the new business, I explore which genres were linked to the greatest gross revenue. I use gross revenue because it is an objective indicator of popularity, and it is crucial for the new business to create high-impact popular movies that would boost its reputation, enabling its subsequent movies to receive attention. For this reason, I prioritize gross revenue over profit.

Once I determine which genre of movies to produce, I investigate which actors/actresses or directors are associated with the greatest average gross revenue. This is to offer preliminary guidance on whom to hire for the new movies.

Finally, I analyze the relationship between the runtime and gross revenue, and identify the optimal range of runtime for a movie.

III. Data

Box Office Mojo (https://www.boxofficemojo.com/) provides gross revenue information for movies.

In [69]: # Gross revenue data 1

gross_studio

Out[69]:

	title	studio	domestic_gross	foreign_gross	year	total_gross
0	Toy Story 3	BV	415,000,000	652000000	2010	1,067,000,000
1	Alice in Wonderland (2010)	BV	334,200,000	691300000	2010	1,025,500,000
2	Harry Potter and the Deathly Hallows Part 1	WB	296,000,000	664300000	2010	960,300,000
3	Inception	WB	292,600,000	535700000	2010	828,300,000
4	Shrek Forever After	P/DW	238,700,000	513900000	2010	752,600,000
3382	The Quake	Magn.	6,200	NaN	2018	6,200
3383	Edward II (2018 re-release)	FM	4,800	NaN	2018	4,800
3384	El Pacto	Sony	2,500	NaN	2018	2,500
3385	The Swan	Synergetic	2,400	NaN	2018	2,400
3386	An Actor Prepares	Grav.	1,700	NaN	2018	1,700

3387 rows × 6 columns

However, the list is not comprehensive, and there is another data source that The Numbers (https://www.the-numbers.com/) provides.

In [6]: # Gross revenue data 2

budget_gross

Out[6]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041

5782 rows × 6 columns

 $\underline{\text{IMDB (https://www.imdb.com/)}}, provides genre and runtime information on movies.$

In [13]: # Dataset containing genre information
genre

Out[13]:

	tconst	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	nan	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80	Comedy, Drama, Fantasy
					•••	
146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123	Drama
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	nan	Documentary
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	nan	Comedy
146142	tt9916730	6 Gunn	6 Gunn	2017	116	NaN
146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	nan	Documentary

146144 rows × 6 columns

IMDB also offers data on people associated with each movie.

In [16]: # Dataset on people associated with each movie

people

Out[16]:

	tconst	ordering	nconst	category	job	characters
0	tt0111414	1	nm0246005	actor	NaN	["The Man"]
1	tt0111414	2	nm0398271	director	NaN	NaN
2	tt0111414	3	nm3739909	producer	producer	NaN
3	tt0323808	10	nm0059247	editor	NaN	NaN
4	tt0323808	1	nm3579312	actress	NaN	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	NaN	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	NaN	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	NaN	NaN
1028184	tt9692684	4	nm6009913	writer	writer	NaN
1028185	tt9692684	5	nm10441595	producer	producer	NaN

1028186 rows × 6 columns

However, the list above does not have the persons' actual names, so I use the dataset below from IMDB to identify the names.

```
In [20]: # Mapping between "nconst" and actual names
people_names
```

Out[20]:

	nconst	primary_name	birth_year	death_year	primary_profession	known_for_titles
0	nm0061671	Mary Ellen Bauder	nan	nan	miscellaneous,production_manager,producer	tt0837562,tt2398241,tt0844471,tt0118553
1	nm0061865	Joseph Bauer	nan	nan	composer,music_department,sound_department	tt0896534,tt6791238,tt0287072,tt1682940
2	nm0062070	Bruce Baum	nan	nan	miscellaneous,actor,writer	tt1470654,tt0363631,tt0104030,tt0102898
3	nm0062195	Axel Baumann	nan	nan	$camera_department, cinematographer, art_department$	tt0114371,tt2004304,tt1618448,tt1224387
4	nm0062798	Pete Baxter	nan	nan	production_designer,art_department,set_decorator	tt0452644,tt0452692,tt3458030,tt2178256
606643	nm9990381	Susan Grobes	nan	nan	actress	NaN
606644	nm9990690	Joo Yeon So	nan	nan	actress	tt9090932,tt8737130
606645	nm9991320	Madeline Smith	nan	nan	actress	tt8734436,tt9615610
606646	nm9991786	Michelle Modigliani	nan	nan	producer	NaN
606647	nm9993380	Pegasus Envoyé	nan	nan	director,actor,writer	tt8743182

606648 rows × 6 columns

IV. Process Steps

I combine the datasets introduced above to use it for different analyses. As the first step, I stack the two gross revenue datasets and calculate the total gross for a movie. Then, I merge it in the genre dataset. This will be the first final dataset.

```
In [21]: # Stack two datasets containing gross revenue figures for movies,
    # after calculating the total gross revenue and deriving release years

gross_studio["total_gross"] = gross_studio["domestic_gross"].fillna(0) + pd.to_numeric(gross_studio["foreign_gross"].studio.groupby("studio")["total_gross"].mean().sort_values(ascending = False)

budget_gross[["worldwide_gross", "domestic_gross"]] = budget_gross[["worldwide_gross", "domestic_gross"]].apply(lambda budget_gross["total_gross"] = budget_gross["worldwide_gross"]
budget_gross["year"] = pd.to_numeric(budget_gross["release_date"].apply(lambda x: x[-4:]))

gross = pd.concat([gross_studio, budget_gross.rename(columns = {"movie": "title"})])
gross = gross.sort_values(by = "total_gross")
gross = gross.drop_duplicates(subset = "title", keep = "first")
In [22]: # Merge the dataset containing genres for movies and the stacked gross revenue dataset

merged = genre.merge(gross, left on = ["primary title", "start year"], right on = ["title", "year"], how = "inner")
```

The second final dataset will be the first final dataset with the genre variable split into multiple variables. Often, movies are associated with multiple genres and I split them to be able to analyze the movies by unique genre.

```
In [23]: # As there can be more than one genre for a movie, split the genre field into multiple variables,
# and make the merged dataset wide to long

merged[["genre_1", "genre_2", "genre_3"]] = merged["genres"].str.split(",", expand=True)
merged0 = pd.melt(merged, id_vars = list(merged.columns[:-3]), value_vars = ["genre_1", "genre_2", "genre_3"])
merged1 = merged0.dropna(subset = ["value"])
```

The third final dataset is the dataset that maps between people associated with a movie to the movie's genre, gross revenue, etc.

```
In [24]: # Next, to explore directors and actors/actresses,
    # merge the main dataset with a dataset mapping between movies and people associated with them

people_names0 = people.merge(people_names[["nconst", "primary_name"]], on = "nconst") # Identify names for people list
    merged2 = merged.merge(people_names0, on = "tconst", how = "inner")
```

The following is a custom function for generating a bar chart.

```
In [25]: # Barplot function

def bplot(var1, var2, title, xlabel, ylabel):
    fig, ax = plt.subplots(figsize = [10, 5])
    sns.barplot(x = var1, y = var2, data = chart_data, ax = ax)
    ax.yaxis.set_major_formatter('${x:,.0f}')
    ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.show()
```

V. Results

To begin with, below shows the average gross revenue by unique movie genre. We can see that Animation, Sci-Fi, and Adventure are the top 3 movies with the biggest revenue, close to \$300M. Therefore, we want to pay attention to them.

However, we already know that many movies are associated with multiple genres. Is a movie more likely to succeed when it has more unique genres? Yes, it is seen below that gross revenue tends to be bigger for multi-genre movies.

```
In [27]: # Calculate and plot average gross revenue by number of genres

merged["num_genres"] = merged["genres"].str.count(",").fillna(0)+1

fig, ax = plt.subplots(figsize = [10, 5])
    sns.boxplot(x = "num_genres", y = "total_gross", data = merged, ax = ax)
    ax.yaxis.set_major_formatter('${x:,.0f}')
    ax.xaxis.set_major_formatter('{x:,.0f}')
    ax.set_title("Grosss Revenue by Number of Genres")
    ax.set_xlabel("Number of Genres")
    ax.set_xlabel("Number of Genres")
    ax.set_ylabel("Average Gross Revenue")
    plt.show()
```


More numerically, the average gross revenue for a single-genre movie is \$26M, and average gross revenue for a movie with two genres is \$47M. Lastly, the average gross revenue for multi-genre movies is much higher, reaching approximately \$132M.

```
In [35]: # Show average gross revenue by number of unique genres in a table
    table_data = merged.groupby("num_genres")["total_gross"].mean().reset_index()
    table_data.columns = ["Number of Genres", "Average Gross Revenue"]
    table_data
```

Out[35]:

	Number of Genres	Average Gross Revenue
0	1	26,115,463
1	2	46,557,601
2	3	132,475,218

Therefore, it is advisable to invest in a movie that is associated with multiple genres. Then, which combination of genres is most lucrative? Below, we can see that "Adventure, Fantasy" yielded approximately \$700M on average. However, there are only three data points. The next one with more data points is "Action, Adventure, Sci-Fi" with an average gross revenue of \$569M. I propose that the firm create a movie in the genre.

```
In [36]: # Show average gross revenue by combination of genres in a table

table_data = merged.groupby("genres")["total_gross"].agg({"size", "mean"}).sort_values(by = "mean", ascending = False)
table_data.columns = ["Genre(s)", "Number of Movies", "Average Gross Revenue"]
table_data
```

Out[36]:

	Genre(s)	Number of Movies	Average Gross Revenue
0	Adventure, Fantasy	700,555,074	3
1	Adventure, Drama, Sci-Fi	648,239,688	2
2	Action, Adventure, Sci-Fi	568,881,925	53
3	Action,Comedy,Mystery	544,100,000	1
4	Action,Adventure,Fantasy	417,156,525	33
5	Adventure, Mystery, Sci-Fi	402,448,265	1
6	Biography, Drama, Musical	386,665,550	1
7	Adventure,Family,Fantasy	377,654,807	13
8	Adventure, Animation, Comedy	376,649,886	74
9	Action, Adventure, Thriller	370,897,668	18
10	Action,Sci-Fi	370,500,000	1
11	Action,Adventure,Animation	370,142,697	20
12	Action, Mystery, Sci-Fi	348,300,000	1
13	Animation,Comedy,Family	347,942,098	6
14	Action,Fantasy,War	330,780,051	1
15	Action,Adventure,Comedy	308,345,490	32
16	Adventure, Drama, Fantasy	303,383,333	6
17	Action,Drama,Family	263,880,341	1
18	Action,Adventure,Family	255,506,507	6
19	Adventure,Comedy,Sci-Fi	229,853,000	2

It is consistently proven that the movie genre "Action, Adventure, Sci-Fi" results in substantial gross revenue. The table below shows that 25th percentile of the gross revenue is over \$100M.

```
In [38]: # Distribution of gross revenue for movies from Action, Adventure, or Sci-Fi
genres = ["Action", "Adventure", "Sci-Fi", "Action, Adventure", "Adventure, Sci-Fi", "Action, Adventure, Sci-Fi"]
table_data = merged[merged["genres"].isin(genres) == True]["total_gross"].describe().reset_index()
table_data.columns = ["Statistic", "Gross Revenue"]
table_data
```

Out[38]:

	Statistic	Gross Revenue
0	count	67
1	mean	452,413,274
2	std	397,610,918
3	min	0
4	25%	110,981,879
5	50%	375,700,000
6	75%	693,898,853
7	max	1,403,013,963

For reference, below are top 10 movies in that genre.

```
In [70]: # Calculate and plot gross revenue for top 10 movies from Action, Adventure, or Sci-Fi

merged["title_genres"] = merged["title"]+"\n("+merged["genres"]+")"
    chart_data = merged[merged["genres"].isin(genres) == True].sort_values(by = "total_gross", ascending = False)[:15]

bplot("title_genres", "total_gross", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, Or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, Or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, Or Sci-Fi", "Movie", "Gross Revenue for Top 15 Movies from Action, Adventure, Or Sci-Fi", "Movies from Action, Adven
```


The next step is to identify which actors/actresses are associated with higher gross revenue. The chart below demonstrates that Chris Hemsworth ("Avengers: Age of Ultron", "Avengers: Infinity War", etc.), Mark Ruffalo ("Avengers: Age of Ultron", "Thor: Ragnarok", etc.), and Robert Downey Jr. ("Avengers: Age of Ultron", "Iron Man 3", etc.) are the top 3 actors. Here, I excluded actors/actresses who acted in only one movie with high gross revenue because it is unclear if the actor/actress contributed to the movie's success, or it was because of luck.

```
In [41]: # Identify actors/actresses from Action, Adeventure, or Sci-Fi who acted in more than one movie
    # Calculate and plot average gross revenue by actor/actress

merged2a = merged2[["category"].str.startswith("act") == True) & (merged2["genres"].isin(genres) == True)]
    actors = merged2a.groupby("primary_name")["primary_name"].count()
    actors_with_mult_movies = actors[actors>1].keys()
    merged2a = merged2a[merged2a["primary_name"].isin(actors_with_mult_movies)]
    chart_data = merged2a.groupby(["primary_name", "category"])["total_gross"].mean().sort_values(ascending = False)[:30].

bplot("primary_name", "total_gross", "Average Gross Revenue by Actor/Actress from Action, Adventure, or Sci-Fi", "Actor.")
```


I also identified which directors are associated with higher gross revenue. The chart below demonstrates that Michael Bay ("Transformers: Dark of the Moon", "Transformers: Age of Extinction", etc.), Joe Russo ("Captain America: Civil War", "Captain America: The Winter Soldier", etc.), and Anthony Russo ("Captain America: Civil War", "Captain America: The Winter Soldier", etc.) are the top 3 directors. Here, I excluded directors who directed only one movie with high gross revenue because it is unclear if the director contributed to the movie's success, or it was because of luck.

```
In [53]: # Identify directors from Action, Adeventure, or Sci-Fi who directed more than one movie
# Calculate and plot average gross revenue by director

merged2b = merged2[[merged2["category"].str.startswith("director") == True) & (merged2["genres"].isin(genres) == True)
directors = merged2b.groupby("primary_name")["primary_name"].count()
directors_with_mult_movies = directors[directors>1].keys()
merged2b = merged2b[merged2b["primary_name"].isin(directors_with_mult_movies)]
chart_data = merged2b.groupby(["primary_name", "category"])["total_gross"].mean().sort_values(ascending = False)[:30]...
bplot("primary_name", "total_gross", "Average Gross Revenue by Director from Action, Adventure, or Sci-Fi", "Director"
```


Lastly, I plotted the movie runtime and gross revenue in all genres. It can be generally seen that successful movies are not under 75 minutes and over 175 minutes. Therefore, the optimal range of runtime would be 75-175 minutes.

```
In [72]: oss revenue by runtime

    plt.subplots(figsize = [10, 5])
    erplot(x = "runtime_minutes", y = "total_gross", data = merged[merged["genres"] == "Action, Adventure, Sci-Fi"], ax = ax)
    set_major_formatter('${x:,.0f}')
    ("Scatter Plot between Runtime and Gross Revenue")
    l("Runtime in Minutes")
    l("Gross Revenue")
)
```


Future Improvement Ideas

- 1. It was not readily verifiable if the genre "Action, Adventure, Sci-Fi" is produced by only a handful of studios or not. If this is the case, it could mean that a small number of studios with appropriate expertise can produce the successful movies, and the barrier entry is high for a new player like Microsoft. Therefore, additional research or a more reliable dataset in this regard can be useful for future improvements.
- 2. In identifying actors/actresses with high gross revenue, I identified them regardless of whether they are main characters or supporting characters. If we decide to proceed with the genre "Action, Adventure, Sci-Fi", it makes sense to refine the list based on their roles.