第五章 线性空间

一、 一组基到另一组基的过渡矩阵

1. 直接表出法.

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 和 $\beta_1,\beta_2,\cdots,\beta_n$ 分 别 为 基 , 若 $\beta_i=\sum_{j=1}^n c_{ji}\varepsilon_j$, ($1\leq i\leq n$), 则

 $(\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n)C$,所以 $C=(c_{ij})_{n\times n}$ 为基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到基 $\beta_1,\beta_2,\cdots,\beta_n$ 的过渡矩阵。

2. 在 R^n 中求过渡矩阵.

令 $C = (c_{ij})_{n \times n}$ 为 基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到 基 $\beta_1, \beta_2, \dots, \beta_n$ 的 过 渡 矩 阵 , 则 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n) \circ$

例: 求基
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 9 \end{pmatrix}$ 到基 $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 的过渡矩阵.

解:设C为基 $\alpha_1,\alpha_2,\alpha_3$ 到基 e_1,e_2,e_3 的过渡矩阵,即 $(e_1,e_2,e_3)=(\alpha_1,\alpha_2,\alpha_3)C$,所以C=

$$(\alpha_1, \alpha_2, \alpha_3)^{-1}(e_1, e_2, e_3) = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 5 & 3 & 9 \end{pmatrix}^{-1} = \begin{pmatrix} 3/2 & 7/2 & -2 \\ 1/2 & 1/6 & -1/6 \\ -1 & -2 & 1 \end{pmatrix}.$$

二、 向量组的极大无关组及秩的计算

- 1. 设 $\alpha_1, \cdots, \alpha_n$ 为 V 的基, $\beta_1, \beta_2, \cdots, \beta_s$ 为 V 中的向量组, $\beta_1, \beta_2, \cdots, \beta_s$ 在基 $\alpha_1, \cdots, \alpha_n$ 下的坐标分别为 $\gamma_1, \gamma_2, \cdots, \gamma_s$,则 $\beta_{i_1}, \beta_{i_2}, \cdots, \beta_{i_r}$ 为 $\beta_1, \beta_2, \cdots, \beta_s$ 的极大线性无关组 当且仅当 $\gamma_{i_1}, \gamma_{i_2}, \cdots, \gamma_{i_r}$ 为 $\gamma_1, \gamma_2, \cdots, \gamma_s$ 的极大线性无关组.
- 2. 已知 $\alpha_1, \cdots, \alpha_s$ 线性无关,则 $\alpha_1, \cdots, \alpha_s$ 为 $W = L(\alpha_1, \alpha_2, \cdots, \alpha_s)$ 的基,令

$$\beta_j = \sum_{i=1}^s k_{ij} \alpha_i = (\alpha_1, \cdots, \alpha_s) \begin{pmatrix} k_{1j} \\ \vdots \\ k_{sj} \end{pmatrix}, \quad 1 \leq j \leq t \;\;, \quad \Leftrightarrow \; \eta_j = \begin{pmatrix} k_{1j} \\ \vdots \\ k_{sj} \end{pmatrix}, \quad 1 \leq j \leq t \;\;, \quad \emptyset \ \, \text{th} \quad$$

 $\eta_{i_1}, \eta_{i_2}, \cdots, \eta_{i_s}$ 为 $\eta_1, \eta_2, \cdots, \eta_t$ 的 极 大 线 性 无 关 组 当 且 仅 当 $\beta_{i_1}, \beta_{i_2}, \cdots, \beta_{i_s}$ 为 $\beta_1, \beta_2, \cdots, \beta_t$ 的极大线性无关组.

例: 设 ε_1 , ε_2 , ε_3 , ε_4 为 4 维线性空间V 的一组基, 求向量组 α_1 = ε_1 + ε_3 , α_2 = ε_2 + ε_4 , α_3 = ε_1 , α_4 = ε_1 + ε_2 + ε_3 + ε_4 的极大线性无关组。

解: 因为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 在V 的基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的坐标分别为 $\eta_1 = (1,0,1,0)^T$, $\eta_2 = (0,1,0,1)^T$, $\eta_3 = (1,0,0,0)^T$, $\eta_4 = (1,1,1,1)^T$,可以求得 $\eta_1, \eta_2, \eta_3, \eta_4$ 的极大线性无关组为 η_1, η_2, η_3 ,所以 $\alpha_1, \alpha_2, \alpha_3$ 为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的极大线性无关组.

三、 求坐标

1. 直接表出。

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为线性空间V 的基,若 $\alpha=\sum_{i=1}^nk_i\alpha_i$,则 α 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标为 $x=(k_1,\cdots,k_n)^T$.

2. 利用过渡阵。

设基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 到基 $\beta_1, \beta_2, \cdots, \beta_n$ 的过渡矩阵为C,向量 α 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的坐标为x,则 α 在基 $\beta_1, \beta_2, \cdots, \beta_n$ 下的坐标为 $y = C^{-1}x$.

3. 在 R^n 中求坐标. 设向量 α 在基 $\alpha_1, \cdots, \alpha_n$ 下的坐标为 x ,即 $\alpha = (\alpha_1, \cdots, \alpha_n) x$,所以 $x = (\alpha_1, \cdots, \alpha_n)^1$ α

例: 求 α =(2,4,2,0)^T 在基 α_1 = (1,1,1,1)^T , α_2 =(0,1,1,1)^T , α_3 =(0,0,1,1)^T , α_4 =(0,0,0,1)^T 下的坐标。

解:设 α 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为x,于是有 α =($\alpha_1,\alpha_2,\alpha_3,\alpha_4$)x,将($\alpha_1,\alpha_2,\alpha_3,\alpha_4$)

看成矩阵得到
$$x=(\alpha_1, \alpha_2, \alpha_3, \alpha_4)^{-1}\alpha=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}^{-1}\begin{pmatrix} 2 \\ 4 \\ 2 \\ -2 \\ -2 \end{pmatrix}.$$

四、 求子空间的和与交的基

设V为F上的线性空间, $\varepsilon_1, \dots, \varepsilon_n$ 为V的一组基, W_1 , W_2 为V的两个子空间

1. 求 $W_1 + W_2$ 的基.

设 $W_1 = L(\alpha_1, \dots, \alpha_s)$, $W_2 = L(\beta_1, \dots, \beta_t)$, 于是得到 $W_1 + W_2 = L(\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t)$ 。

所以 $\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t$ 的极大线性无关组为 $W_1 + W_2 = L(\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t)$ 的基。设 $\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t$ 在 基 $\varepsilon_1, \dots, \varepsilon_n$ 下 的 坐 标 分 别 为 $\gamma_1, \dots, \gamma_s, \eta_1, \dots, \eta_t$, 可 以 求 得 $\gamma_1, \dots, \gamma_s, \eta_1, \dots, \eta_t$ 的极大线性无关组 $\gamma_{i_1}, \dots, \gamma_{i_t}, \eta_{j_t}, \dots, \eta_{j_r}$, 所以 $\alpha_{i_1}, \dots, \alpha_{i_t}, \beta_{j_t}, \dots, \beta_{j_r}$ 为 $\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t$ 的极大线性无关组,从而为 $W_1 + W_2$ 的基.

例: 设 ε_1 , ε_2 , ε_3 , ε_4 为V的一组基, α_1 = ε_1 + ε_3 , α_2 = ε_2 + ε_4 , α_3 = ε_1 , α_4 = ε_1 + ε_2 + ε_3 + ε_4 , 令 W_1 = $L(\alpha_1,\alpha_2)$, W_2 = $L(\alpha_3,\alpha_4)$, 求 W_1 + W_2 的基.

解:由己知, $W_1+W_2=L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$,且 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 在V的基 $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ 下的坐标分别为 $\eta_1=(1,0,1,0)^T$, $\eta_2=(0,1,0,1)^T$, $\eta_3=(1,0,0,0)^T$, $\eta_4=(1,1,1,1)^T$, $\eta_1,\eta_2,\eta_3,\eta_4$ 的极大线性无关组为 η_1,η_2,η_3 ,所以 $\alpha_1,\alpha_2,\alpha_3$ 为 $\alpha_1,\alpha_2,\alpha_3$,的极大线性无关组,从而为 W_1+W_2 的基.

2. 求 $W_1 \cap W_2$ 的基.

设 $\alpha_1, \cdots, \alpha_r$ 为 W_1 的基, β_1, \cdots, β_s 为 W_2 的基,且 $\alpha_1, \cdots, \alpha_r$ 和 β_1, \cdots, β_s 在V的基 $\varepsilon_1, \cdots, \varepsilon_n$ 下 的 坐 标 分 别 为 $\gamma_1, \cdots, \gamma_r$ 和 η_1, \cdots, η_s 。 设 $\zeta \in W_1 \cap W_2$, 则 $\zeta = x_1\alpha_1 + \cdots + x_r\alpha_r = y_1\beta_1 + \cdots + y_s\beta_s$ (*),所以 $x_1\gamma_1 + \cdots + x_r\gamma_r = y_1\eta_1 + \cdots + y_s\eta_s$,故

$$(\gamma_1,\cdots,\gamma_r,-\eta_1,\cdots,-\eta_s)\begin{pmatrix}x_1\\\vdots\\x_r\\y_1\\\vdots\\y_s\end{pmatrix}=0\,,\,\,\, 求解方程组得到基础解系 \,\xi_1,\cdots,\xi_k\,\,,\,\,\, 分别将 \,\xi_1,\cdots,\xi_k\,\, 的$$

前r个分量代入(*)式中得到 ζ_1,\dots,ζ_k ,则 ζ_1,\dots,ζ_k 为 $W_1\cap W_2$ 的基.

注: 若 $\dim(W_1 \cap W_2) = 1$ 时,只要求一个非零的向量 $\zeta \in W_1 \cap W_2$ 即可。

例: 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 为V的一组基, $\alpha_1 = \varepsilon_1 + \varepsilon_3$, $\alpha_2 = \varepsilon_2 + \varepsilon_4$, $\alpha_3 = \varepsilon_1$, $\alpha_4 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4$,令 $W_1 = L(\alpha_1, \alpha_2)$, $W_2 = L(\alpha_3, \alpha_4)$,求 $W_1 \cap W_2$ 的基.

解:由维数公式得到 $\dim(W_1 \cap W_2) = 1$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的坐标分别为 $\eta_1 = (1,0,1,0)^T$, $\eta_2 = (0,1,0,1)^T$, $\eta_3 = (1,0,0,0)^T$, $\eta_4 = (1,1,1,1)^T$, 由于 $\eta_1 + \eta_2 = \eta_4$, 所以 $\alpha_1 + \alpha_2 = \alpha_4$ 为为 $W_1 \cap W_2$ 的基.

例: 设 $\alpha_1 = (1,2,1,-2)^T$, $\alpha_2 = (2,3,1,0)^T$, $\alpha_3 = (1,2,2,-3)^T$, $\beta_1 = (1,1,1,1)^T$, $\beta_2 = (1,0,1,-1)^T$, $\beta_3 = (1,3,0,-4)^T$, 令 $W_1 = L(\alpha_1,\alpha_2,\alpha_3)$, $W_2 = L(\beta_1,\beta_2,\beta_3)$, 求 $W_1 + W_2$ 和 $W_1 \cap W_2$ 的基。

解: $W_1 + W_2 = L(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$,所以 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ 的极大无关组为 $W_1 + W_2$ 的基,将 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ 排成一个矩阵,用初等行变换将其化成阶梯阵,主元所对应的列为1,2,3,5,所以 $\alpha_1, \alpha_2, \alpha_3, \beta_2$ 为 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ 的极大无关组,从而为 $W_1 + W_2$ 的基。下面求 $W_1 \cap W_2$ 的基,假设 $\alpha \in W_1 \cap W_2$,则 $\alpha = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = y_1\beta_1 + y_2\beta_2 + y_3\beta_3$ 。于是 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 - y_1\beta_1 - y_2\beta_2 - y_3\beta_3 = 0$,或Az = 0,其中 $A = (\alpha_1, \alpha_2, \alpha_3, -\beta_1, -\beta_2, -\beta_3), \quad z = (x_1, x_2, x_3, y_1, y_2, y_3)^T$ 。求解方程组Az = 0,得到基础解系 $\eta_1 = (2, -1, -1, -1, 0, 0)^T$, $\eta_2 = (-5, 1, 2, 0, 0, -1)^T$ 。将 η_1, η_2 分别带入 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 - y_1\beta_1 - y_2\beta_2 - y_3\beta_3 = 0$ 中得到, $2\alpha_1 - \alpha_2 - \alpha_3 = -\beta_1$, $-5\alpha_1 + \alpha_2 + 2\alpha_3 = -\beta_3$,因此 $W_1 \cap W_2$ 的基为 β_1 , β_3 。

五、 $V = W_1 \oplus W_2$ 的证明

设V为F上的线性空间, W_1 , W_2 为V的两个子空间。

$$V = W_1 \oplus W_2 \qquad \Leftrightarrow \begin{cases} V = W_1 + W_2 \\ W_1 \cap W_2 = \{\theta\} \end{cases} , \quad$$
 或者
$$\begin{cases} W_1 \cap W_2 = \{\theta\} \\ \dim(W_1) + \dim(W_2) = \dim(V) \end{cases} , \quad$$
 或者
$$\begin{cases} V = W_1 + W_2 \\ \dim(W_1) + \dim(W_2) = \dim(V) \end{cases}$$

例 1: 设 $A \in M_{m \times n}(R)$, 证明 $R^m = R(A) \oplus N(A^T)$.

证明: 设 $\xi_0 = Ax_0 \in R(A) \cap N(A^T)$,所以 $A^T \xi_0 = A^T Ax_0 = 0$,由于 $A^T Ax = 0$ 和Ax = 0同解,所以 $\xi_0 = Ax_0 = 0$ 。因此 $R(A) \cap N(A^T) = \{0\}$,又 $\dim(R(A)) + \dim(N(A^T)) = m$,所以 $R^m = R(A) \oplus N(A^T)$.

例 2: 设 $A \in M_n(F)$ 满足 $A^2 = A$, 证明: $F^m = R(A) \oplus R(A - I)$.

证明:任意的 $x \in F^n$, $x = Ax - (A - I)x \in R(A) + R(A - I)$,所以 $F^n = R(A) + R(A - I)$. 又 $\dim(R(A)) = r(A)$, $\dim(R(A - I)) = r(A - I)$ 。由 A(A - I) = 0 ,得到 r(A) + r(A - I) $\leq n$ 。又由于 I = A - (A - I) ,可以得到 $r(A) + r(A - I) \geq n$,故 r(A) + r(A - I) = n 。所以 $\dim(R(A)) + \dim(R(A - I)) = r(A) + r(A - I) = n$ 。因此 $F^m = R(A) \oplus R(A - I)$ 。

六、 求正交补

设V 为欧氏空间, $\varepsilon_1,\cdots,\varepsilon_n$ 为V 的一组标准正交基,W 为V 的子空间, α_1,\cdots,α_r 为W 的基,求 W^\perp 的基。

- 1. 将W 的基 $\alpha_1, \dots, \alpha_r$ 扩充成V 的基 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_n$,用施密特正交化方法将其化成标准正交基 $\gamma_1, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_n$,由于 $W = L(\gamma_1, \dots, \gamma_r)$,故 $W^{\perp} = L(\gamma_{r+1}, \dots, \gamma_n)$.
- 2. 设 $\alpha = x_1 \mathcal{E}_1 + \dots + x_n \mathcal{E}_n \in W^{\perp}$,则 $\alpha \perp \alpha_1$, $\alpha \perp \alpha_2$,…, $\alpha \perp \alpha_r$,即 $\begin{cases} (\alpha_1, \alpha) = 0 \\ \vdots & , \ \bar{\chi} \\ (\alpha_r, \alpha) = 0 \end{cases}$

解该方程组得基础解系 η_1, \dots, η_t , 故 $(\varepsilon_1, \dots, \varepsilon_n) \eta_1$, \dots , $(\varepsilon_1, \dots, \varepsilon_n) \eta_t$ 为 W^{\perp} 的基.

例 1: 设 ε_1 , ε_2 , ε_3 , ε_4 为欧氏空间V 的一组标准正交基,令 $W = L(\varepsilon_1 + \varepsilon_2, \ \varepsilon_2 + \varepsilon_3)$,求 W^{\perp} . **方法一:** 将W 的基 $\varepsilon_1 + \varepsilon_2$, $\varepsilon_2 + \varepsilon_3$ 的基扩充成V 的基 $\varepsilon_1 + \varepsilon_2$, $\varepsilon_2 + \varepsilon_3$, ε_1 , ε_4 。用施密特正交化方法将基 $\varepsilon_1 + \varepsilon_2$, $\varepsilon_2 + \varepsilon_3$, ε_1 , ε_4 化成标准正交基:

正交化: $\beta_1 = \varepsilon_1 + \varepsilon_2$, $\beta_2 = -\frac{1}{2}\varepsilon_1 + \frac{1}{2}\varepsilon_2 + \varepsilon_3$, $\beta_3 = \frac{1}{3}\varepsilon_1 - \frac{1}{3}\varepsilon_2 + \frac{1}{3}\varepsilon_3$, $\beta_4 = \varepsilon_4$, 单位化得 到 γ_1 , γ_2 , $\gamma_3 = \frac{\sqrt{3}}{3}\varepsilon_1 - \frac{\sqrt{3}}{3}\varepsilon_2 + \frac{\sqrt{3}}{3}\varepsilon_3$, $\gamma_4 = \varepsilon_4$ 。所以 W^{\perp} 的基为 $\gamma_3 = \frac{\sqrt{3}}{3}\varepsilon_1 - \frac{\sqrt{3}}{3}\varepsilon_2 + \frac{\sqrt{3}}{3}\varepsilon_3$, $\gamma_4 = \varepsilon_4$.

方法二: 设 $\alpha=x_1\varepsilon_1+x_2\varepsilon_2+x_3\varepsilon_3+x_4\varepsilon_4\in W^\perp$,则 $\begin{cases} (\varepsilon_1+\varepsilon_2, \ \alpha)=0 \\ (\varepsilon_2+\varepsilon_3, \ \alpha)=0 \end{cases}$,即 $\begin{cases} x_1+x_2=0 \\ x_2+x_3=0 \end{cases}$,求得 该方程组的基础解系为: $\eta_1=(1,-1,1,0)$, $\eta_2=(0,0,0,1)$,所以 $(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)\eta_1=\varepsilon_1-\varepsilon_2+\varepsilon_3$, $(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)=\varepsilon_4$ 为 W^\perp 的 基 , 用 施 密 特 正 交 化 方 法 化 为 标 准 正 交 基

$$\frac{\sqrt{3}}{3}\varepsilon_1 - \frac{\sqrt{3}}{3}\varepsilon_2 + \frac{\sqrt{3}}{3}\varepsilon_3$$
, ε_4 .

例 2: 设 $A \in M_{m \times n}(R)$,证明 $R^m = R(A) \oplus N(A^T)$,且 $R(A)^\perp = N(A^T)$. (这个例子很重要,以后会用到。)

证明:由五的例 1, 得到 $R^m = R(A) \oplus N(A^T)$ 。故 $\dim N(A^T) = m - \dim R(A) = \dim R(A)^{\perp}$,

所以只要证明 $R(A) \perp N(A^T)$ 即可。任意取 $\alpha = Ax \in R(A)$, $\beta \in N(A^T)$,则

 $\alpha^T \cdot \beta = (Ax)^T \cdot \beta = x^T (A^T \beta) = 0$ 。故 $\alpha \perp \beta$,从而 $R(A) \perp N(A^T)$ 。得证。

练习题

- 1. 已知 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 为V的基,又 $\xi_1 = \varepsilon_1 + \varepsilon_3$, $\xi_2 = \varepsilon_2$, $\xi_3 = \varepsilon_1 + 2\varepsilon_2 + 2\varepsilon_3$; $\eta_1 = \varepsilon_1$, $\eta_2 = \varepsilon_1 + \varepsilon_2$, $\eta_3 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$ 。
 - (1) 证明 ξ_1 , ξ_2 , ξ_3 和 η_1 , η_2 , η_3 为V的基;
 - (2) 求 ξ_1 , ξ_2 , ξ_3 到 η_1 , η_2 , η_3 的过渡矩阵。
- 2. 证明下面三条中的任意两条成立,第三条也成立。
 - (1) 实方阵 A 对称; (2) 实方阵 A 正交; (3) $A^2 = I$.

3. 己知(I)
$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + x_4 = 0 \end{cases}$$
 (II)
$$\begin{cases} -2x_1 + x_2 + 6x_3 - x_4 = 0 \\ -x_1 + 2x_2 + 5x_3 - x_4 = 0 \end{cases}$$

- (1) 求(I)和(II)的解空间 N_1 和 N_2 的一组基;
- (2) 求 N_1+N_2 , $N_1 \cap N_2$ 的基。
- 4. 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 为欧氏空间V的一组标准正交基, $W = L(\alpha_1, \alpha_2)$,其中 $\alpha_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$, $\alpha_2 = \varepsilon_1 + \varepsilon_4$,求 W^{\perp} 的标准正交基。
- 5. 设 W_1 和 W_2 分别为方程组 $x_1+x_2+\dots+x_n=0$ 和 $\begin{cases} x_1-x_2=0\\ x_2-x_3=0\\ \vdots\\ x_{n-1}-x_n=0 \end{cases}$ 的解空间,证明: $F^n=W_1\oplus W_2.$

6. 设 $\alpha_1, \dots, \alpha_s$ 为欧氏空间V的n个向量,证明: $\alpha_1, \dots, \alpha_s$ 线性无关当且仅当 $\left((\alpha_i, \alpha_j)_{s \times s}\right)$

可逆。

- 7. 己知 $\alpha_{\rm l}$ =(1,1,0,0) T , $\alpha_{\rm l}$ =(0,1,1,0) T , 求 W = $L(\alpha_{\rm l}$, $\alpha_{\rm l}$) 在 $R^{\rm l}$ 中的正交补 W^{\perp} 。
- 8. 设 $A \in M_{m,n}(R)$,证明: $R(A)^{\perp} = N(A^{T})$, $R(A^{T})^{\perp} = N(A)$.