Sistemas Cartográficos y Teledetección

Facultad de Ingeniería de Olavarría

Dr. Mauro Holzman CONICET-Instituto de Hidrología de Llanuras m.holzman@ihlla.org.ar

Objetivos de la asignatura

- Adquirir conocimientos de los principios de la percepción remota, con énfasis en el comportamiento de los elementos que intervienen.
- Conocer los diferentes sistemas de detección, sus características espectrales, temporales y espaciales y sus aptitudes para el uso en Agrimensura.
- Reconocer aptitudes y limitaciones de la teledetección.
- Desarrollar capacidades para el tratamiento digital de imágenes, con énfasis en correcciones radiométricas y geométricas e interpretación de imágenes.
- Desarrollar aptitudes para el trabajo interdisciplinario.

Esquema de módulos de la asignatura:

- 1) Introducción y objetivos. Teledetección, fotointerpretación.
- 2) Conceptos básicos. Radiación electromagnética, superficie, firmas espectrales.
- 3) Sistemas de teledetección. Misiones satelitales.
- 4) Flujo de trabajo e interpretación visual.

Primer parcial

- 5) Procesamiento digital de imágenes. Correcciones geométricas, radiométricas.
- 6) Corrección en el espectro solar y térmico.
- 7) Aplicaciones de la teledetección. Índices espectrales.

Segundo parcial

- Condiciones de la cursada-promoción
- Evaluación

Módulo 1. Introducción

Percepción remota-Definición

Sistema de obtención de información sobre un objeto o fenómeno a través del análisis de datos captados por dispositivos que no están en contacto con él.

Es el conjunto de conocimientos y técnicas (adquisición, procesamiento e interpretación) utilizadas para determinar características de los objetos del sistema terrestre a partir de mediciones realizadas a distancia, sin contacto con el objeto. Pueden ser detectadas por un avión o un satélite.

Definición de teledetección desde el punto de vista físico

Herramienta que permite conocer un objeto, o conjunto de objetos distribuidos espacialmente función de:

- i) un conjunto de <u>señales</u> electromagnéticas en distintas bandas de diferentes longitudes de onda
- ii) la <u>evolución</u> de la señal electromagnética en el tiempo (día, estación, año...)
- iii) la <u>distribución</u> de los objetos en el espacio geográfico
- iv) la <u>relación temporal</u> de los objetos con otros de diferente naturaleza

Mina Goldstrike, Nevada, sensor ASTER, misión TERRA. **Fuente:**

http://photojournal.jpl.nasa.gov/targetFamily/Earth

Elementos de la percepción remotateledetección

Radiación incidente
Radiación reflejada
Radiación emitida
Radiación transmitida

Sensores remotos

Los sensores remotos permiten formas diferentes de observar la superficie terrestre. Las imágenes captadas permiten observar el conjunto y un detalle de ésta. nos facilita analizar Esto diferentes escalas e identificar en las imágenes <u>diferentes</u> patrones espaciales, procesos y cambios. La información que brindan las imágenes es amplia considera todo el espectro electromagnético.

Temperatura de la superficie (sensor MODIS)

Imagen de temperatura del tope de nubes del huracán Irma, 09/08/2017. Fuente: SMN

Imagen de NDVI obtenida con cámara sobre UAV, Uruguay (Tetracam)

Teledetección, fotogrametría, fotointerpretación

Revisión de conceptos

Fotointerpretación: Es el proceso de <u>reconocer, identificar y delinear</u> objetos o fenómenos registrados en sensores remotos a bordo de vehículos aéreos y satelitales y deducir sus características y propiedades.

Etapas:

- Fotolectura (reconocimiento y ubicación de elementos)
- Fotoanálisis (aislamiento y estudio de los objetos: long., pendiente, etc.)
- Fotointerpretación o fotoidentificación (deducción e inducción)

Niveles de referencia:

- General: conocimiento general de la disciplina
- Particular: básicos de ciencias de la tierra y la vida
- Específico: sobre procesos y grupos de fenómenos en ciertas áreas (ej.: geólogos, forestales)

Imagen ASTER, volcán Ijen, Indonesia Fuente: photojournal.jpl.nasa.gov/targetFamily/Earth

Imagen ASTER, glaciares Indonesia Fuente: photojournal.jpl.nasa.gov/targetFamily /Earth

Criterios de fotointerpretación

- 1) Primer orden o fotográficamente puros
- Tono o color (monocromática vs color)
- Forma (naturales vs artificiales)
- Dimensión horizontal o vertical
- Posición relativa y situación espacial
- Textura (efecto de escala)
- Patrón
- Período de adquisición

Landsat 8, pancromática, Canadá

Imagen pancromática, Landsat 8, glaciares de Canadá

- 2) Segundo orden (pueden ser el objeto de estudio)
- Drenaje. Indicador de otros procesos (no sólo la red, sino los cambios temporales)
 -Patrones: erosionales (dendrítico, paralelo, etc.), de deposición o sedimentación (trensado, meándrico, etc.), especiales (desordenado, por montículos, etc.)
- Uso del suelo
- Vegetación (tipos, estado sanitario, indicador de otros procesos)
- Erosión (agua, viento, glaciares)

Algunas aplicaciones:

- Levantamientos expeditivos (mosaicos, índices, etc.)
- Actualización cartográfica
- Producción de cartografía temática
- Revalúos (identificación de parcelas, documentos catastrales, etc.)
- Control de evasión impositiva
- Planeamientos urbanísticos
- Trazados y obras
- Estudios ambientales, inventarios
- Valuaciones rurales (estudios de suelos, erosión, productividades)
 - -Tonalidad de suelos
 - -Drenaje
 - -Salinidad de suelos
 - -Obras realizadas y distancia a vías de acceso
 - -Vegetación

Imagen Landsat 8, 25/05/2014, Ciudad de azul y zona aledaña

Fotogrametría: ciencia aplicada que nos permite <u>obtener medidas fidedignas</u>, a partir de fotografías o imágenes aéreas, <u>de la forma/dimensiones y posición en el espacio</u> de objetos terrestres, como así también producir una <u>representación precisa</u> del objeto fotografiado.

Una tarea fundamental es producir una representación (mapa, plano, carta) de objetos de la superficie terrestre (productos cartográficos o numéricos como pendientes, volúmenes).

Requiere amplios conocimientos teóricos, métodos e instrumental que le son propios.

Mapas como productos a distintas escalas

Mapas a pequeña escala : Fines generales, planeamiento, vías de comunicación, fronteras, etc.

Mapas a escala media : Planeamientos y desarrollo, anteproyectos de ingeniería.

Mapas a escala grande : Proyectos de ingeniería detallados, catastros, servicios, etc.

Pareciera que la fotogrametría sería un subconjunto de la teledetección. Sin embargo, por haber tenido orígenes muy distintos y tratarse generalmente en ambientes distintos (cartográfico, la fotogrametría y "medioambiental", la teledetección) lo cierto es que son dos técnicas que han conservado cada una características propias hasta la actualidad.

Características:

-Según las imágenes que emplean

Fotogrametría	Teledetección
Analógicas, fotográficas y/o digitales	Digitales
Aéreas	De satélite
Baja altitud	Gran altitud
Gran resolución	Baja resolución
Escalas grandes	Escalas pequeñas
Monoespectrales	Multiespectrales
Estereoscópicas	Monoscópicas

-En cuanto <u>a los fines</u> que persiguen

Fotogrametría	Teledetección
Geométricos (determinar coordenadas X,Y,Z)	Temáticos (clasificación, coordenadas X,Y,Z, cualidades
	de fenómenos)

En los últimos años se han desarrollado técnicas y actividades comunes:

- -Cámaras fotogramétricas a bordo de satélites
- -Correlación automática de fotos aéreas o de imágenes de satélite
- -Fotointerpretación visual de imágenes de satélite
- -Cámaras fotogramétricas digitales
- -Cámaras multiespectrales en vuelos no tripulados

Las diferencias son más notables a nivel de especialidades profesionales.

	-Diferencias en la practica habitual
Fuente: adaptado de Villa, 2011	
Fotogrametría	

Utiliza frecuentemente la estereoscopía

Desprecia los valores radiométricos físicos

ruente. adaptat	io de villa, 2011
togramatria	
otogrametría	

Utiliza rutinariamente miles de

No valoriza el <u>concepto de color</u>

Trata con poco rigor y bastante

desconocimiento la radiometría

Considera la tercera dimensión

Los <u>sensores</u> se <u>fabrican en series</u>

largas y se venden en el mercado

Precios razonables

normalmente

Trata con mucho rigor y cuidado la

Teledetección

Utiliza el trabajo manual

<u>fotointerpretación</u>

<u>imágenes</u>

geometría

- Utiliza frecuentemente y valora la

- No valoriza la fotointerpretación

No valoriza el trabajo manual

Valora los valores radiométricos

Trata con poco rigor y bastante

desconocimiento la geometría

Precios poco razonables

Trata rigurosamente y cuidado la

Habitualmente desprecia la tercera

Los sensores se diseñan y fabrican

18

cientos de imágenes

radiometría

dimensión.

exclusivamente

Utiliza muy poco la estereoscopia

Generalmente utiliza pocas decenas o

En general, no valoriza el concepto de color

Ventajas de la teledetección

- complemento para trabajos de campo
- amplia cobertura espacial y visión panorámica (una imagen Landsat≈180x180 km, Sentinel-2: 290x290 km)
- bajo costo de mano de obra
- cobertura global
- información en regiones no visibles del espectro electromagnético
- frecuentes revisitas
- entrega de información en plazos cortos
- misiones actuales con alta resolución

Limitaciones

- Precisión y nivel de detalle en función de escala
- Requiere capacitación y conocimientos específicos
- Costos elevados de imágenes de alta resolución
- En general, imágenes aptas para grandes áreas

Algunas aplicaciones de la teledetección en la agrimensura:

- Planimetría (considerar resoluciones, 0,5-30m)
- Modelos digitales de elevación (múltiples aplicaciones, correcciones geométricas, etc.)
- Cartografía
- Evaluación de productividades
- Ocupación y uso del suelo (en áreas urbanas alta resolución, multiespectral)
- Gestión de recursos naturales
- Inventarios...

Breve reseña histórica de los sistemas de teledetección y desarrollo actual

- · 1859: Félix de Tournachon toma las 1° fotos aéreas desde un globo cautivo.
- · 1909: Wilbur Wright adquiere la 1° foto aérea desde un avión.
- · 1915: desarrollo de la 1º cámara aérea, con fines bélicos.
- · 1944: 2da. guerra mundial, desarrollo de películas infrarrojas y el radar.
- · 1957: comienza la era espacial con el lanzamiento del Sputnik, por Rusia.
- · 1960: primer satélite meteorológico, TIROS (NOAA, U.S.A.).
- · 1965: misiones Géminis (NASA, U.S.A.), con cámaras fotográficas.
- · 1969: misión Apolo-9: 1º fotos multiespectrales .
- · 1972: lanzamiento del primer satélite Landsat, primer satélite con registros no fotográficos.
- · 1986: lanzamiento del primer satélite SPOT (Francia).
- · 1995: múltiples sistemas comerciales: Spot, ERS-1 (E.S.A.), JERS-1 (Japón), etc.
- · 1999: Ikonos (resolución espacial de 1m en pancromático)
- · 2000: Primer satélite argentino para percepción remota: SAC-C.
- · 2001: Quickbird
- · 2002: Terra /Aster.
- · 2004: Envisat -1 (ESA).

Últimos años: serie Sentinel; plataformas de baja altitud (ej.: sistema láser activo LIDAR),

drones

Argentina: proyectos internacionales recientes como SACD-Aquarius, SAOCOM. Fuerte desarrollo de sistemas de radar.

Recreación. Fuente: ESA