1. Definición matemática

En el modelo SIR homogéneo:

$$R_0 = \frac{\beta}{\gamma}$$

- β : tasa de transmisión (probabilidad de contagio \times contactos/día).
- γ : tasa de recuperación (1/periodo infeccioso).
- β/γ mide casos nuevos generados por infectado.

2. Interpretación epidemiológica

- $R_0 > 1$: cada caso infecta a más de uno -> crecimiento epidémico.
- $R_0 = 1$: situación endémica estable (casos constantes).
- R_0 < 1: la epidemia decae y tiende a extinguirse.

3. Factores que determinan R_0

- Agente biológico: infectividad, tiempo de incubación.
- Comportamiento humano: contacto social, control (mascarillas, distancia).
- Estructura poblacional: densidad, movilidad, mezcla entre grupos.

4. Estimación de R_0 en la práctica

- Ajuste exponencial temprano: $I(t) \approx I_0 e^{rt}$, con $r = \beta \gamma$. $R_0 = 1 + \frac{r}{\gamma}$.
- Cadenas de transmisión: reconstruir quién infecta a quién.
- Modelos de contacto: matrices sociales + parámetros biológicos.

5. Relación con el número reproductivo efectivo R_t

Cuando la población ya no es totalmente susceptible:

$$R_t = R_0 \times \frac{S(t)}{N}.$$

- Si $R_t < 1$, la transmisión disminuye aunque $R_0 > 1$.

6. Implicaciones para control e inmunidad de grupo

Umbral de inmunidad de grupo p_c :

$$p_c=1-\frac{1}{R_0}.$$

Ej.: $R_0 = 4 - > p_c = 1 - \frac{1}{4} = 0.75$ (75% inmunes necesarios).

7. Resumen

- R₀ mide la transmisibilidad en población susceptible.
- Guía políticas de control (vacunación, distanciamiento).
- Evoluciona según $R_t = R_0 S/N$.
- Determina el umbral de inmunidad de grupo p_c .