AleynikovaEP 29112024-140940

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 383 МГц, частота ПЧ 46 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 337 MΓц
- 2) 1103 MΓ_{II}
- 3) 2298 ΜΓη
- 4) 46 MΓη.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4797 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1105 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 15520 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3589 МГц до 3691 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -67 дБм 2) -70 дБм 3) -73 дБм 4) -76 дБм 5) -79 дБм 6) -82 дБм 7) -85 дБм 8) -88 дБм 9) -91 дБм

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 16 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 60 МГц?

Варианты ОТВЕТА:

1) 51 πΦ 2) 70.4 πΦ 3) 55.2 πΦ 4) 40 πΦ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.49445 + 0.22127i, s_{31} = -0.22189 + 0.49585i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -47 дБн 2) -49 дБн 3) -51 дБн 4) -53 дБн 5) -55 дБн 6) -57 дБн 7) -59 дБн 8) -61 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

- $1) \ \{8; 19\} \quad 2) \ \{17; -65\} \quad 3) \ \{5; -9\} \quad 4) \ \{14; -44\} \quad 5) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{14; -58\} \quad 8) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{14; -58\} \quad 8) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{14; -58\} \quad 8) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{14; -58\} \quad 8) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{14; -58\} \quad 8) \ \{17; -23\} \quad 6) \ \{17; -65\} \quad 7) \ \{19; -23\} \quad 9) \ \{19$
- 9) $\{17; -16\}$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.4 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 24 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 10.1 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 1.7 дБ 2) 2.3 дБ 3) 2.9 дБ 4) 3.5 дБ 5) 4.1 дБ 6) 4.7 дБ 7) 5.3 дБ 8) 5.9 дБ 9) 6.5 дБ