Complemento de Cálculo (521234)

Certamen 1

7 de Mayo, 2002

- 1.- Sea la función $f(x) = \sin x$, para $0 \le x \le \pi/2$. Exprese el desarrollo en series de Fourier (sin necesariamente calcular las integrales asociadas a cada coeficiente) de :
 - a) la función $\frac{\pi}{2}$ -periódica que coincide con f en $[0,\pi/2]$;
 - b) la función $\bar{\pi}$ -periódica impar que coincide con f en $[0, \pi/2]$;

Haga un gráfico para cada caso, diga a que lugar converge cada una de estas series en el intervalo $[-\pi/2,\pi/2]$, y comente el tipo de convergencia que se tiene para (a) y (b). Justifique su respuesta.

30 puntos

2.- Sea el problema de Sturm-Liouville

$$\begin{cases} x^2y'' + \lambda y = 0, & \text{para } 1 \le x \le e, \\ y(1) = y(e) = 0. \end{cases}$$

- a) Determine los valores propios λ_n y las funciones propias $y_n(x)$.
- b) Determine la relación de ortogonalidad que verifican los y_n .
- c) Sea $f(x) \equiv 1 = \sum_{n=1}^{\infty} A_n y_n$, con 1 < x < e. Exprese cada coeficiente A_n en términos de una integral. Sin necesidad de calcular la integral, diga en que sentido converge la serie, y donde converge cuando $1 \le x \le e$.

30 puntos

3.- Utilizando el método de separación de variables, resuelva el problema del potencial ($\Delta u = f$) en el disco de radio 1 y centro 0 :

$$\begin{cases} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)u(r,\theta) = J_0(\alpha_1 r), & 0 < r < 1, & 0 \le \theta < 2\pi \\ u(1,\theta) = \sin 3\theta, & 0 \le \theta < 2\pi. \end{cases}$$

Donde J_0 es la función de Bessel de primera especie de orden 0 y α_1 su primera raiz. Indicación : escribir la solución como $u(r,\theta) = v(r,\theta) + w(r,\theta)$, donde $v(r,\theta)$ es solución del problema con término fuente nulo, y $w(r,\theta) = \sum_{n=1}^{\infty} A_n J_0(\alpha_n r)$ es solución del problema con C.B. nula.

40 puntos

Duración del Certamen: 100 minutos

MGC/MBB/MSC/msc