In the Claims

(Currently Amended) A compound represented by Formula (I):

$$\mathbb{R}^{8}$$
 \mathbb{R}^{7}
 \mathbb{R}^{6}
 \mathbb{R}^{6}
 \mathbb{R}^{1}
 \mathbb{R}^{6}

or a pharmaceutically acceptable salt thereof, wherein

HET is one of the following heterocycles:

Rl is

- (a) H;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl,C₃-C₆-cycloalkyl, or C₁-C₄-alkyl-[C₃-C₆-cycloalkyl], any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) -O-C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-

- C₄)alkyl, S(O)_{0.2}-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;
- (e) -OH;
- (f) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, l, ii) -CN, iii) -NO2, iv) -C(=O)(Ra), v) -ORa, vi) -NRaRb, vii) -C0_4alkyl-CO-ORa, viii) -(C0_4alkyl)-NH-CO-OR^a, ix) -(C_0 _4alkyl)-CO-N(R^a)(R^b), x) -S(O)_{0.2} R^a , xi) -SO₂N(R^a)(R^b), xii) -NRaSO2Ra, xiii) -C1-10alkyl, and xiv) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR a -, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R a)-, - $N(R^a)$ -C(O)-, $-N(R^a)$ -C(O)- $N(R^a)$ -, -C(O)-, -CH(OH)-, $-C\underline{H}$ = $C\underline{H}$ -, or -C=C-;
- (g) $-OCON(R^a)(R^b)$, or $-OSO_2N(R^a)(R^b)$;
- (h) -SH, or -SCON(R^b)(R^b);
- (i) NO₂;
- (j) NR^aR^b , $-N(COR^a)R^b$, $-N(SO_2R^a)R^b$, $-N(R^a)SO_2N(R^a)_2$, $-N(OR^a)CONR^aR^b$, $-N(R^a)SO_2R^a$ or $-N(R^a)SO_2R^a$ $N(R^a)CON(R^b)_2$;
- (k) $-CH(OR^a)R^a$, $-C(OR^b)CF_3$, $-CH(NHR^b)R^a$, $-C(=O)R^a$, $C(=O)CF_3$, $-SOCH_3$, $-SO_2CH_3$, COOR^a, CN, CONR^aR^b, -COCONR^aR^b, -SO₂NR^aR^b, -CH₂O-SO₂NR^aR^b, SO₂N(R^a)OR^a, -C(=NH)NH₂, -CR^a=N-OR^a, CH=CHCONR^aR^b;
- (1) -CONR^a(CH₂)₀₋₂C(R^a)(R^b)(CH₂)₀₋₂CONR^aR^b;
- (m) tetrazolyl, tetrazolinonyl, triazolyl, triazolinonyl, imidazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrazolonyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, or phenyl, any of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)R^a, v) C₁-C₆-alkyl, vi) -O-R^a, vii) - NR^aR^b , viii) - C_0 - C_4 -alkyl -CO-O R^a , ix) -(C_0 - C_4 -alkyl)-NH-CO-O R^a , x) -(C_0 - C_4 -alkyl)-CO-NRa Rb, xi) -S(O)_{0.2}Ra, xii) -SO₂NRaRb, xiii) -NHSO₂Ra, xiv) -C₁-C₄-perfluoroalkyl, and xv) -O-C₁-C₄-perfluoroalkyl;
- (n) $-C(R^a)=C(R^b)-COOR^a$, or $-C(R^a)=C(R^b)-CONR^aR^b$;

(o)

<u>or</u>

(p) piperidin-1-yl, morpholin-4-yl, pyrrolidin-1-yl, piperazin-1-yl or 4-susbstituted piperazin-1-yl, any of which is optionally substituted with 1-3 substituents selected from i) -CN, ii) -C(=O)(R²), iii) C₁-C₆-alkyl, iv) -OR², v) -NR²R³, vi) -C₀-C₄-alkyl-CO-OR², vii) -(C₀-C₄-alkyl)-NH-CO-OR², viii) -(C₀-C₄-alkyl)-CON(R²)(R³), ix) -SR², x) -S(O)₀₋₂R², xi) -SO₂N(R²)(R³), xii) -NR²SO₂R² xiii) -C₁-C₄-perfluoroalkyl and xiv) -O-C₁-C₄-perfluoroalkyl;

Rª is

- (a) H;
- (b) C₁-C₄-alkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, -OCONH₂, -OCONH(C₁-C₄alkyl), -OCON(C₁-C₄alkyl), -OCON(C₁-C₄alkyl), -OCONHC₁-C₄alkyl-aryl), NH₂, NH(C₁-C₄alkyl), N(C₁-C₄alkyl)(C₁-C₄alkyl), NH(C₁-C₄alkyl), NH(C₁-C₄alkyl), NHCONH₂, NHCONH(C₁-C₄alkyl), NHCONH(C₁-C₄alkyl-aryl), -NHCON(C₁-C₄alkyl))(C₁-C₄alkyl), NHCONH(C₁-C₄alkyl-aryl), N(C₁-C₄alkyl)CON(C₁-C₄alkyl)(C₁-C₄alkyl), N(C₁-C₄alkyl), N(C₁-C₄alkyl), N(C₁-C₄alkyl), CON(C₁-C₄alkyl), COO-(C₁-C₄-alkyl), COO-(C₁-C₄-alkyl), COO-(C₁-C₄-alkyl), COOH, CN, CONH₂, CONH(C₁-C₄alkyl), CON(C₁-C₄alkyl)(C₁-C₄alkyl), SO₂NH₂, SO₂NH(C₁-C₄alkyl), SO₂NH(C₁-C₄alkyl-aryl), SO₂N(C₁-C₄alkyl)(C₁-C₄alkyl), NHSO₂NH₂, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxazolyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) C₀-C₄-alkyl-(C₁-C₄)-perfluoroalkyl; or
- (d) C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(C₁-C₄-alkyl), v) -O(C₁-C₄-alkyl), vi) -N(C₁-C₄-alkyl)(C₁-C₄-alkyl), vii) -C₁-10alkyl, and viii) -C₁-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C-;

R^b is

- (a) H; or
- (b) C₁-C₆-alkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, -OCONH₂, -OCONH(C₁-C₄alkyl), NH₂, NH(C₁-C₄alkyl), N(C₁-C₄alkyl)(C₁-C₄alkyl), NHCONH₂, NHCONH(C₁-C₄alkyl), -NHCON(C₁-C₄alkyl)(C₁-C₄alkyl), COO-(C₁-C₄-alkyl), COOH, CN, and CONH₂;

R² is:

- (a) H;
- (b) -C₁-C₄-alkyl, -C₃-C₆-cycloalkyl or -C₁-C₄-alkyl-(C₃-C₆)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₂-(C₁-C₄)alkyl, O-CONR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl and piperazinyl;
- (c) $-C_0-C_4$ -alkyl- C_1-C_4 -perfluoroalkyl;
- (d) aryl or -(C₁-C₄-alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀-4alkyl-CO-OR^a, viii) -(C₀-4alkyl)-NH-CO-OR^a, ix) -(C₀-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁0alkyl, and xiv) -C₁₋₁0alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C-; or
- (e) $-C(=O)(R^a)$, $-CONR^aR^b$, $COO-(C_1-C_4)$ alkyl, $-SO_2R^a$, $-SO_2N(R^a)(R^b)$;

R³ is

- (a) H;
- (b) -C₁-C₄-alkyl, -C₃-C₆-cycloalkyl or -C₁-C₄-alkyl-(C₃-C₆)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^aR^b)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^aR^b)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;

- (d) aryl or -(C₁-C₄-alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)(Ra), v) -ORa, vi) -NRaRb, vii) -C0-4alkyl-CO-ORa, viii) -(C0-4alkyl)-NH-CO-OR^a, ix) -(C₀-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NRaSO2Ra, xiii) -C1-10alkyl, and xiv) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NRa-, -O-, -S(O)1.2-, -O-C(O)-, -C(O)-O-, -C(O)-N(Ra)-, - $N(R^a)$ -C(O)-, $-N(R^a)$ -C(O)- $N(R^a)$ -, -C(O)-, -CH(OH)-, $-C\underline{H}$ = $C\underline{H}$ -, or -C=C-;
- (e) -O-C₁-C₄-alkyl, -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, -O-aryl or -O(C₁-C₄-alkyl)-aryl; or
- (f) -C(=O)(R^a), -SO₂R^a, -SO₂N(R^a)(R^b), CN, NR^aR^b, NO₂, F, Cl, Br, I, OH, OCONR^aR^b, O(C₁-C4-alkyl)CONRaRb, -OSO2NRaRb, COOR, or CONRBRb;

R⁴ and R⁵ each independently is:

- (a) H;
- (b) -C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or -C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₂, O-(C₂-G₄)alkyl, CN, N(R^a)(R^b); N(R^a)CO (C₄ C₄)alkyl, COOR^b; CON(R^a)(R^b) or phonyl;
- (e) O Co Co alkyl, O aryl, or O Co Co alkyl aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) CN, iii) NO2, iv) C(-O)(R⁶), v) OR⁶, vi) NR⁶R⁶, vii) C0_4alkyl CO OR⁶, viii) (C0_ 4alkyl)-NH-CO-OR^a, ix) (C₀-4alkyl)-CO-N(R^a)(R^b), x)-S(O)_{0.2}R^a, xi)-SO₂N(R^a)(R^b), xii) NR SO2R, xiii) -C1_10alkyl, and xiv) -C1_10alkyl, wherein one or more of the alkyl carbons can be replaced by a NRa, O, S(O), 2, O C(O), C(O) O, C(O) N(Ra), $-N(R^a) - C(O)$, $N(R^a) - C(O) - N(R^a)$, C(O), CH(OH), C-C, or C=C;
- (d) Co-C4-alkyl-C1-C4-perfluoroalkyl, or O-C0-C4-alkyl-C1-C4-perfluoroalkyl; or
- (e) CN, NH2, NO2, F, Cl, Br, L, OH, OCON(R⁶)(R^b) O(C4-C4-alkyl)CONR⁶R^b, OSO2N(R⁶)(R^b), COORb, CON(Rb), or aryl, wherein aryl is phonyl, pyridyl, pyrimidinyl, furyl, thionyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F. Cl. Br. I. ii) CN. iii) NO2, iv) C(O)(R^a), v) OR^a, vi) NR^aR^b, vii) C₀ 4alkyl CO OR^a, viii) (C₀ 4alkyl) NH-CO-OR⁰, ix) -(C₀₋₄alkyl) CO-N(R⁰)(R^b), x) -S(O)₀₋₂R⁰, xi) -SO₂N(R⁰)(R^b), xii) NR SO2R , xiii) -C1 10alkyl, and xiv) -C1 10alkyl, wherein one or more of the alkyl earbons can be replaced by a NR^a, O, S(O)_{1,2}, O C(O), C(O) O, C(O) N(R^a), N(R^a) C(O), N(R^a) C(O) N(R^a), C(O), CH(OH), C-C, or C=C; and

- R6, R7 and R8 each independently is:
- (a) H, provided at least one of R⁶, R⁷ and R⁸ is not hydrogen;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₃-C₄-alkynyl or C₃-C₆-cycloalkyl, any of which is optionally substituted all substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, OCON(R^a)(R^b), NR^aR^b, COOR^a, CN, CONR^aR^b, N(R^a)CONR^aR^b, N(R^a)SO₂NR^aR^b, SO₂NR^aR^b, S(O)₀₋₂(C₁-C₄-alkyl), -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (c) -O- C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl, or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, NH₂, NH(C₁-C₄-alkyl), N(C₁-C₄-alkyl)₂, COOH, CN, CONH₂, CONH(C₁-C₄-alkyl), CONH(C₁-C₄-alkyl)₂, SO₂NH₂, SO₂NH(C₁-C₄-alkyl), tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl; or
- (e) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NRaSO2Ra, xiii) -C1-10alkyl, and xiv) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, - $N(R^a)-C(O)-$, $-N(R^a)-C(O)-N(R^a)-$, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C; (f) CN, $N(R^a)(R^b)$, NO_2 , F, Cl, Br, I, $-OR^a$, $-SR^a$, $-OCON(R^a)(R^b)$, $-OSO_2N(R^a)(R^b)$, $COOR^b$, $CON(R^a)(R^b)$, $-N(R^a)CON(R^a)(R^b)$, $-N(R^a)SO_2N(R^a)(R^b)$, $-C(OR^b)R^a$, $-C(OR^a)CF_3$, - $C(NHR^a)CF_3$, $-C(=O)R^a$, $C(=O)CF_3$, $-SOCH_3$, $-SO_2CH_3$, $-NHSO_2(C_{1-6}-alkyl)$, $-NHSO_2-aryl$, $SO_2N(R^a)(R^b)$, $-CH_2OSO_2N(R^a)(R^b)$, $SO_2N(R^b)-OR^a$, $-C(=NH)NH_2$, $-CR_a=N-OR_a$, -CH=CH or aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)(R^a), v) -ORa, vi) -NRaRb, vii) -C0-4alkyl-CO-ORa, viii) -(C0-4alkyl)-NH-CO-ORa, ix) -(C0-4alkyl)-CO-N(R^a)(R^b), x) -S(O)_{0.2}R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁0alkyl, and xiv) -C₁₋₁0alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR³-, - O_{-} , $-S(O)_{1-2-}$, $-O_{-}C(O)_{-}$, $-C(O)_{-}O_{-}$, $-C(O)_{-}N(R^a)_{-}$, $-N(R^a)-C(O)$, $-N(R^a)-C(O)-N(R^a)$, -C(O), -CH(OH)-, $-C\underline{H}=C\underline{H}$ -, or $-C\equiv C$; or when R^6 and

R7 are present on adjacent carbon atoms, R6 and R7, together with the benzene ring to which

they are attached, may form a bicyclic aromatic ring selected from naphthyl, indolyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzofuryl, benzothienyl, benzoxazolyl, benzothiazolyl, and benzimidazolyl, any aromatic ring of which is optionally substituted with 1-4 independent substituents selected from i) halogen, ii) -CN, iii) -NO2, iv) -CHO, v) -O-C₁_4alkyl, vi) -N(C₀_4alkyl)(C₀_4alkyl), vii) -C₀_4alkyl-CO-O(C₀_4alkyl), viii) -(C₀_ 4alkyl)-NH-CO-O(C0-4alkyl), ix) -(C0-4alkyl)-CO-N(C0-4alkyl)(C0-4alkyl), x) -S(C0-4alkyl), xi) -S(O)(C 1-4alkyl), xii) -SO2(C0-4alkyl), xiii) -SO2N(C0-4alkyl)(C0-4alkyl), xiv) -NHSO2(C0_4alkyl)(C0_4alkyl), xv) -C1_10alkyl and xvi) -C1_10alkyl in which one or more of the carbons can be replaced by a -N(C₀-6alkyl)-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(C₀-6alkyl)-, -N(C₀-6alkyl)-C(O)-, -N(C₀-6alkyl)-C(O)-N(C₀-6alkyl)-, -C(O)-, -CH(OH), -CH=CH-, or -C≡C-.

2(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

3(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

- 4. Canceled.
- 5. Canceled.

- Canceled. 6.
- 7. Canceled.

8(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

R⁶ is other than H and is attached at the ortho position.

9(Currently Amended). A compound represented by

10(Currently Amended)

A compound according to Claim 1- which is

represented by

R ⁶	R ²	R ¹
Cl	Н	Н
Cl	Н	COOEt
Cl	Н	CONH₂
Cl	Н	CONH-tBu

R ⁶	R ²	R ¹
CI .	Н	N S S
CI	Н	NH ₂
CF ₃	Н	COOEt
CF ₃	Н	CONH ₂
CF ₃	H	Н
CF ₃	Н	NH ₂
OCF ₃	Н	CH ₃
OCF ₃	Н	Н
OCF ₃	Н	NH ₂
OCF ₃	н	CONMe ₂
OCF ₃	CI	CH ₃
OCF ₃	н	NHSO₂CH3
OCF ₃	н	CH₂OH
O-Ph	н	CONH ₂
CF ₃	Н	NHCONH-iPr
OCF ₃	Н	NHCONH-iPr
OCF ₃	Н	NHCOCH ₃
CF ₃	Н	NHCOCH ₃
OCF ₃	Н	CH₂COOEt
OCF ₃	Н	CH₂CN
OCF ₃	Н	CH₂CONH₂
CF ₃	Н	CH₂CONH₂
OCF ₃	н	NHCONMe ₂
OCF ₃	Н	им ин
OCF ₃	Н	2-Pyrimidyl
OCF ₃	Н	2-Pyridyl
OCF ₃	Н	2-Oxazolyi
OCF ₃	Н	2-Imidazolyl
OCF ₃	Н	2-Pyrazolyl
OCF ₃	Н	2-(1-Methyl)-
		imidazolyl

R ⁶	R ²	R¹
OCF ₃	Н	F F F F F F F F F F F F F F F F F F F
OCF ₃	Н	N, or
OCF ₃	Н	, N

11(Currently Amended).

A compound represented by

12(Currently Amended).

A compound according to Claim 1 represented

bν

R ₆	R ₂	R ₁
CF ₃	Н	Н
CF ₃	Н	COOEt
CF ₃	Н	CONH ₂
CF ₃	Н	CONHCH ₃
CF ₃	COOEt	CH ₃
CF ₃	CONH ₂	CH ₃
OCF ₃	Н	Н
OCF ₃	Н	COOCH ₃
OCF ₃	Н	CONH₂

R ₆	R ₂	R ₁
OCF ₃	Н	СООН
OCF ₃	н	CH₂OH
OCF ₃	H	CONH(CH ₂)₃OH, or
O-Ph	Н	CONH ₂

- 13. Canceled.
- 14. Canceled.
- 15. Canceled.
- 16. Canceled.

17(Original). A pharmaceutical composition comprising a therapeutically effective amount of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- 18. Canceled.
- 19. Withdrawn.
- 20. Withdrawn.
- 21. Withdrawn.
- 22 Withdrawn.
- 23. Withdrawn.
- 24. Withdrawn.
- 25. Withdrawn.

- 26. Withdrawn.
- 27. Withdrawn.
- Withdrawn. 28.
- 29. Withdrawn.
- 30. Withdrawn.
- 31. Withdrawn.