Raíces de funciones con una variable

Marco V. Bayas

Noviembre 10, 2022

Ecuaciones no lineales en física

Máximo de la distribución de Planck

Distancia mínima en un proceso de dispersión con un potencial central

Exploración gráfica

Función:
$$f(x) = e^x \ln x - x^2$$

Algoritmo

Requerimientos:

- \bullet f(x)
- Intervalo [a, b] tal que f(a) * f(b) < 0
- El intervalo [a, b] debe contener una sola raiz
- 1. Definir el intervalo inicial: [a, b] y la tolerancia δ
- 2. Evaluar f(a) y f(b)
- 3. Evaluar $x_r = \frac{a+b}{2}$
- 4. Actualizar el intervalo [a, b]
 - ightharpoonup Evaluar $f(x_r)$
 - ▶ Si $f(x_r) * f(a) < 0$, entonces $b = x_r$, caso contrario $a = x_r$
- 5. Repetir los pasos 3 y 4 hasta que $|a b| < \delta$

Método de la Secante

$$f(x) = e^x \ln x - x^2$$

Método de la Secante

$$f(x) = e^x \ln x - x^2$$

Método de Van Wijngaarden-Dekker-Brent

Función: $f(x) = e^x \ln x - x^2$

Método de Van Wijngaarden-Dekker-Brent

Función: $f(x) = e^x \ln x - x^2$

Método de Van Wijngaarden-Dekker-Brent

Estimación de la raíz:

Dados tres valores de x: a, b, y c

$$x_r = b + \frac{P}{Q}$$

Donde:

$$P = \frac{f(b)}{f(a)} \left[\frac{f(a)}{f(c)} \left(\frac{f(b)}{f(c)} - \frac{f(a)}{f(c)} \right) (c - b) - \left(1 - \frac{f(b)}{f(c)} \right) (b - a) \right]$$

$$Q = \left(\frac{f(a)}{f(c)} - 1\right) \left(\frac{f(b)}{f(c)} - 1\right) \left(\frac{f(b)}{f(a)} - 1\right)$$

Demostración?

Sea una función f(x), continua y derivable

$$\rightarrow f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Si f(x) tiene una raíz x_r en la vecindad de x_0 , entonces:

$$f(x_r) \approx f(x_0) + f'(x_0)(x_r - x_0) \approx 0$$
$$\rightarrow x_r \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

La estimación puede mejorarse si se procede iterativamente

$$x_{k+1} \approx x_k - \frac{f(x_k)}{f'(x_k)}$$

$$f(x) = e^x \ln x - x^2$$

$$f(x) = e^x \ln x - x^2$$

Algoritmo

Requerimientos:

- f(x) y f'(x)
- Estimación inicial x₀
- 1. Definir la estimación inicial: x_0 y la tolerancia δ
- 2. Para cada valor de $k \ge 0$, evaluar:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

3. Repetir el paso 2 hasta que $|x_{k+1} - x_k| < \delta$

Cálculo numérico de la derivada

Esquema iterativo:
$$x_{k+1} \approx x_k - \frac{f(x_k)}{f'(x_k)}$$

Aproximación:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$\longrightarrow \underbrace{x_{k+1} \approx x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)}_{}$$

Método de la secante

Ejercicio

Calcular numéricamente el valor de la constante b en la ley de desplazamiento de Wein

$$\lambda_{max} = \frac{b}{T}$$

Sol: El máximo de la distribución de Planck esta determinado por la ecuación no lineal:

$$(x-5)e^x + 5 = 0 \qquad \text{con}$$

Raíz de la función:

 $x = \frac{hc}{k_B T} \frac{1}{\lambda}$

Método: Newton Raphson

Iteración	Raíz
0	4.5
1	5.38891
2	5.09246
3	4.97971
4	4.96533
5	4.96511
6	4.96511

$$ightarrow b = rac{hc}{4.96511k_B} pprox 2900 \,\mu$$
m K