Технология Hot Sync

Технология параллельной работы ИБП

Бесперебойность питания ответственных нагрузок — залог стабильности бизнеса наших клиентов. Даже при использовании одного ИБП надежность защиты может быть увеличена, например, за счет модульности его конструкции (когда внутренние силовые модули образуют систему с резервированием). В этом случае при возникновении проблемы с одним модулем остальные смогут выполнять его функции.

Для увеличения надежности защиты рекомендуется создавать параллельные системы, когда два или более ИБП одновременно питают нагрузку. В случае отказа одного из них неисправный источник отключается от системы, а нагрузка равномерно распределяется между оставшимися. Большинство продуктов, представленных сегодня на рынке, поддерживают технологию параллельной работы, построенную по принципу master-slave. Этот принцип предполагает наличие общего блока управления, который контролирует работу всех ИБП в системе. Однако такая технология имеет один серьезный недостаток («точку отказа»): при неисправности блока управления вся параллельная система выходит из строя и прекращает питать нагрузку. Уровень надежности системы гарантированного электроснабжения можно довести до 100% благодаря использованию запатентованной Eaton технологии Hot Sync® (Рис. 1).

Технология Hot Sync позволяет организовать параллельную систему с резервированием по схеме N+1 (например, два модуля для защиты нагрузки и один для резервирования), обеспечивающую надежную круглосуточную защиту электропитания ответственных нагрузок. Технология Hot Sync также может применяться для создания масштабируемых параллельных систем, учитывающих возможность увеличения мощности защищаемой нагрузки в будущем.

Технология Hot Sync исключает недостаток традиционных параллельных систем (точку отказа): все источники могут работать в параллель и абсолютно синхронно питать единую нагрузку при отсутствии каких-либо управляющих кабелей между ними.

Преимущества технологии Hot Sync

- реализована в одно- и трехфазных ИБП Eaton, может применяться для построения систем мощностью до 2,5 МВА (400 В)
- простой (модульный) подход к модернизации, решающий задачи увеличения мощности или обеспечения дополнительного резервирования
- нет единой точки отказа системы

Рис. 1. Доступность электропитания при использовании различных конфигураций ИБП в условиях «загрязненной» сети и частых отключений электроэнергии.

Технология Hot Sync

Управляющий цифровой процессор (DSP) каждого ИБП работает по определенному алгоритму, благодаря которому все источники в параллельной системе автоматически синхронизируются и делят нагрузку поровну. Если имеется общий байпас, то он используется в качестве источника синхронизации. При отсутствии общего байпаса каждый из процессоров, управляя инвертором на основе данных собственных измерений выходных параметров, плавно изменяет фазу своей выходной синусоиды так, чтобы синхронизировать ее с другими источниками и сбалансировать нагрузку. Как показано на рис. 2, существует связь между неравномерным распределением мощности и разницей между фазами входных напряжений.

Р1 Снижается разница уровней мощности

Р2 Частота непрерывно регулируется в соответствии с Р1 и Р2

Напряжение не в фазе

Выходы синхронизированы

УИБП 1

Рис. 2. Равномерное распределение нагрузки достигается путем регулировки выходных частот; таким образом, разница между фазами выходных напряжений параллельно подключенных ИБП сводится к нулю.

Внутреннее выходное сопротивление ИБП имеет индуктивный характер, т.е. его можно представить в виде индуктивности, включенной последовательно с источником напряжения. Если фазы выходного напряжения отличаются, это значит, что между устройствами присутствует поток мощности, который и приводит к неравномерному распределению нагрузки. На рис. 3 представлены два устройства с равными амплитудами выходных напряжений, при этом имеется фазовый сдвиг их выходного напряжения.

Напряжение Vdiff и ток Idiff между устройствами образуют смещение фазы на 90°, что связано с сопротивлением индуктивного элемента. Напряжение сети (V1 или V2) и ток между устройствами Idiff находятся в фазе, вызывающей активный поток мощности.

Чем больше фазовый сдвиг, тем хуже распределяется мощность. Разность фаз можно уменьшить с помощью микропроцессора, управляющего инвертором ИБП. Чтобы обеспечить равномерное распределение нагрузки, необходимо снизить разницу фаз до нуля, а для этого используется корректировка выходной частоты ИБП. Для ускорения процесса изменения частоты и синхронизации ИБП в управляющий алгоритм микропроцессора вводится дополнительный коэффициент, учитывающий степень изменения нагрузки как отклик системы на изменение частоты.

На рис. 4 показан процесс распределения нагрузки. Выполняется мониторинг выходной мощности, новая частота рассчитывается 3000 раз в секунду. Эти же измерения, основанные на вычислении мгновенной мощности, также используются в целях диагностики и определения вышедшего из строя модуля.

Отрицательное значение, возникающее даже на короткий промежуток времени, свидетельствует о внутренней поломке,

например, о коротком замыкании в инверторе IGBT. В этом случае ИБП сразу отключается, максимально снижая негативное влияние на нагрузку. Это называется «селективным отключением».

Кроме того, технология Hot Sync позволяет производить последовательное техническое обслуживание резервных модулей ИБП без использования внешнего сервисного байпаса. При этом не нужно отключать питание нагрузки.

Рис. 3. Сдвиг фаз между напряжениями параллельно подключенных ИБП (V1 и V2) приводит к образованию электрического тока между устройствами, нарушая равномерность распределения нагрузки.

Рис. 4. При использовании алгоритма Hot Sync угол фазы инвертора регулируется выходной мощностью и коэффициентом ее изменения.

Главной характеристикой, определяющей надежность системы защиты, является точное и равномерное распределение нагрузки независимо от того, используется ли она для обеспечения резервирования или увеличения мощности. С технологией Hot Sync можно создавать полностью избыточные параллельные системы, в которых резервирование осуществляется на уровне самих ИБП, объединенных только выходными силовыми кабелями и нагрузкой. За счет отсутствия кабелей связи в подобной системе исключается вероятность образования единой точки отказа, а соответственно сводятся к минимуму убытки, которые может вызвать неожиданный выход из строя системы гарантированного энергоснабжения.