Adapting & Aligning Large Language Models to Targeted Code-Gen tasks.

Teodor Poncu^{1,2}, Vlad Florea^{1,2}

- University Politehnica of Bucharest, RO. 2 - Unakin.ai, UK.

Problem Setting

Specialized programming tasks, such as game development, often suffer from a scarcity of available online data and well-trained developers. This is particularly relevant when training LLMs, for two key reasons:

- Scarcity: Given the lack of accessible online data, unsupervised training is challenging due to the limited number of available training samples and out of distribution characteristics.
- Cost: High-quality instruction-output pairs are costly and require scarcely available specialists that can generate this data.

For our experimentation, we assemble several datasets:

- 1. A training set of roughly 1000 files extracted from permissively licensed Unity projects hosted on GitHub.
- 2. A test set that emulates a real-world scenario where we want to adapt to a production-grade codebase. To simulate this, we procure projects listed on the Unity Asset Store, collecting about 600 high-quality files.
- 3. An alignment assessment test set, for which we collect approximately 100 high-quality instruction pairs.

Approach

We experiment on the Llama-v2 [1] and Code-Llama [2] model variants. We aim to gauge the sensitivity of these models to a potential lack of specialization in the underlying language model. We utilise perplexity as a metric to benchmark our approach.

Our primary finding underscores the critical role of unsupervised pre-training in equipping the model with domain-specific knowledge. The key insights from our experimentation can be summarized as follows:

- Leveraging chat models as a foundational model offer a free lunch in terms of instruction-following capabilities when paired exclusively with unsupervised pre-training.
 - The usage of a static next-token prediction prompt hinders both alignment and overall model perplexity. We hypothesize that the static instruction works as a non-optimal tunable prefix during training.
- Not using a highly specialized base model does not lead to catastrophic results. We successfully narrow the performance gap between the original Llama-v2 and Code-Llama models to a substantial degree by employing a careful online training schedule (Fig. 1).

```
if micro_batch_loss > malformed_threshold:
  continue
if micro_batch_loss > spike_threshold:
  micro_batch_loss = scale_spike(micro_batch_loss)
microbatch_loss.backward()
accumulated_micro_batches += 1
if accumulated_micro_batches == n_micro_batches:
  opt.step()
```

Figure 1: Python-like pseudo-code for loss-scaling during training

Figure 2: Showcase of non-specialized model loss spikes under certain token sequences. We use a fully deterministic sampling procedure across all experiments.

We compare the effectiveness of full fine-tuning and parameter efficient fine-tuning. In this limited data regime we observe minor performance improvements when using PeFT like techniques.

We improve the computational efficiency (eq. 2) of all LoRA-like [3] methods (eq. 1). Furthermore, we note that setting a higher rank using a high dropout (i.e. > 0.5) yields improved perplexities. Concurrent works such as DyLoRa [4] showcase similar results.

$$\mathbf{H} = \mathbf{W}^{\mathrm{T}}\mathbf{X} + (\mathbf{A}\mathbf{B})^{\mathrm{T}} \mathrm{Dropout}(\mathbf{X})$$
 (1)

$$\mathbf{H} = (\mathrm{Dropout}(\mathbf{A}\mathbf{B})^{\mathrm{T}} + \mathbf{W}^{\mathrm{T}}) \mathbf{X}$$
 (2)

Figure 3: Quantitative comparison between various model families.

Alignment & Self-Instruction

We experiment with several methods of generating instruction fine-tuning using synthetic data [5, 6, 7]. We conducted experiments on two types of instruction and our key findings are:

• LLMs are not yet perfect encoder-decoders.

- We test several description and summarization seed prompts. Models cannot fully infer the original file content from their own descriptions. We also note that a **2x drop** in description length leads to an almost **10x** decrease in the model's ability to regenerate a script similar to the original one.
- Model scale is important when generating instructions. We rely on instruction back-translation [7] to generate synthetic input-output pairs. We use the 13B and 34B models both as generators and rankers.
 - The smaller model is consistently ranked lower than the larger model, with an average rating difference of **1.2** points (on a 1 to 5 scale).
 - O Self-rating leads to "fake-agreement". When using the same model as both generator and discriminator we notice that we get an approximate score of 5 (on a 1 to 5 scale).
- Humans provide poorer alignment signals on average. We rank the human annotated instructions with the 13B and 34B models, as well as with the 13B fine-tuned models.
 - The human annotators get an average score of 1.3, which is about 2x lower than the lowest performing model. A common explanation that the model provides is a lack of sufficient clarity and details in the instruction.

Conclusion

We find that we can adapt Instruction Following LLMs to highly specialised tasks without using instructions but solely through careful unsupervised pre-training.

The empirical evidence showcasing the effectiveness of online loss scaling suggests that general pre-training efficiency might benefit from better data or task curriculums. Given LoRA computes pseudo-gradients for the weight matrices, high-dropout rates loosely mimic gradient averaging. We believe meta-learning techniques might improve LLM training.

Self-instruction techniques, although showcasing great performance in general language modelling tasks, proved lacklustre for the task of complex code generation.

References

- [1] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023).
- [2] Rozière, Baptiste, et al. "Code Llama: Open Foundation Models for Code." arXiv preprint arXiv:2308.12950 (2023)
- [3] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021). [4] Valipour, Mojtaba, et al. "Dylora: Parameter efficient tuning of pre-trained models using dynamic search-free low-rank adaptation." arXiv preprint arXiv:2210.07558 (2022).
- [5] Taori, Rohan, et al. "Alpaca: A strong, replicable instruction-following model." Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html 3.6 (2023): 7.
- [6] Li, Xian, et al. "Self-Alignment with Instruction Backtranslation." arXiv preprint arXiv:2308.06259 (2023).
- [7] Lee, Harrison, et al. "RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback." arXiv preprint arXiv:2309.00267 (2023).