Trabajo Práctico 0: Infraestructura básica

Fabrizio Cozza, *Padrón Nro. 97.402* fabrizio.cozza@gmail.com

Kevin Cajachuán, *Padrón Nro. 98.725* kevincajachuan@hotmail.com

Luciano Giannotti, *Padrón Nro. 97.215* luciano_giannotti@hotmail.com.ar

1
er. Cuatrimestre de 2018 66.20 Organización de Computadoras — Práctica Viernes
 Facultad de Ingeniería, Universidad de Buenos Aires

1. Objetivos

Este Trabajo Práctico tiene el fin de ayudarnos a familiarizarnos con las herramientas de software que utilizaremos posteriormente en otros trabajos, como es el emulador **gxemul** para correr programas sobre una maquina MIPS con el Sitema Operativo NetBSD.

2. Programa

El software de este trabajo esta escrito en lenguaje C y permite dibujar **Julia Sets** o **Conjuntos de Julia** segun los parámetros que le pasamos por línea de comando. Estos parÃ;metros son la region del plano complejo: delimitada por un centro, un ancho y un alto; una semilla que afectara el calculo para cáda pixel; la resolución y la salida ya sea por pantalla o por archivo. El formato a usar es PGM o *portable gray format*, que resulta útil para describir imágenes digitales en escala de grises.

3. Implementación

Una vez recibidos los parámetros, para dibujar el Julia Set el programa obtiene de cada píxel de la ventana a un punto en el plano complejo. A ese punto se lo eleva al cuadrado y le suma la semilla mencionada en la sección anterior. Esto se repite hasta que el valor absoluto del resultado sea menor a 2, en cuyo caso se toma la cantidad de iteraciones y se imprime en el archivo PGM, representando el nivel de blanco de ese piíxel.

4. Código

En esta sección colocaremos el ciódigo fuente del programa en lenguaje C.

5. Pruebas

Para las pruebas compilamos el programa con gcc de la siguiente manera:

Ya que las pruebas son sobre las imágenes, las vamos a realizar a ojo.

5.1. Caso con los valores por defecto

Se obtiene una imagen como la primera figura del enunciado:

$$.\t p0 -o uno.pgm$$

Figura 1:

5.2. Caso de imagen con zoom y otro centro

Se obtiene una imagen como la segunda figura del enunciado:

```
\ .\tp0 -c 0.282-0.007i -w 0.005 -H 0.005 -o dos.pgm
```

Referencias

- [1] Intel Technology & Research, "Hyper-Threading Technology," 2006, http://www.intel.com/technology/hyperthread/.
- [2] J. L. Hennessy and D. A. Patterson, "Computer Architecture. A Quantitative Approach," 3ra Edicii; $\frac{1}{2}$ n, Morgan Kaufmann Publishers, 2000.
- [3] J. Larus and T. Ball, "Rewriting Executable Files to Mesure Program Behavior," Tech. Report 1083, Univ. of Wisconsin, 1992.

Figura 2: