Which one is more structured?

	Information is more structured, while data is not.	
	Data is more structured, while information is not.	
	Both information and data are structured at the same level.	
	Both information and data not structured at all.	
A rein	terpretable representation of information in a formalized manner suitable for communication, interpretation	on, or processing is
	Data.	
	Information.	
	Drawings.	
	SQL code.	
_		
A coll	ection of data organized according to a conceptual structure describing the characteristics	s of these data is
A coll	ection of data organized according to a conceptual structure describing the characteristics	s of these data is
A coll		s of these data is
A coll	Database.	s of these data is
A coll	Database. Database management system.	s of these data is
	Database. Database management system. Application.	
	Database. Database management system. Application. Operation system.	
	Database. Database management system. Application. Operation system. em, based on hardware and software, for defining, creating, manipulating, controlling, managing, and	
	Database. Database management system. Application. Operation system. em, based on hardware and software, for defining, creating, manipulating, controlling, managing, and Database.	

Wh	ich ones are database management systems?	
	Microsoft Windows, Linux.	
	MySQL, Microsoft SQL Server.	
	T-SQL, PL/SQL.	
	Sparx Enterprise Architect, MySQL Workbench.	
A data	abase model is	
	A reinterpretable representation of information in a formalized manner suitable for	communication, interpretation, or processing
	A pattern of structuring data in a database according to the formal descriptions in i	ts information system.
	A system, based on hardware and software, for defining, creating, manipulating, co	ntrolling, managing, and using databases.
	A collection of data organized according to a conceptual structure describing the cl	naracteristics of these data.
A conc	eptual (infological) database modelling level is	
	A level of consideration at which all aspects deal with the interpretation and manipulation of i discourse or entity world in an information system.	nformation describing a particular universe of 🛛 🗸
	A level of consideration at which all aspects deal with a database and its architecture, consiste corresponding information base, but abstract from its physical implementation.	nt with a conceptual schema and the
	A level of consideration at which all aspects deal with the physical representation of data structure storage organizations and their access operations in a data processing system.	tures and with mapping them on corresponding
	A collection of data organized according to a conceptual structure describing the characteristic	es of these data.
A logic	al (datalogical) database modelling level is	
	A level of consideration at which all aspects deal with the interpretation and manipulation discourse or entity world in an information system.	of information describing a particular universe of
	A level of consideration at which all aspects deal with a database and its architecture, consi corresponding information base, but abstract from its physical implementation.	stent with a conceptual schema and the
	A level of consideration at which all aspects deal with the physical representation of data st storage organizations and their access operations in a data processing system.	ructures and with mapping them on correspondin
	A collection of data organized according to a conceptual structure describing the characteri	stics of these data.

A physical o	database modelling level is	
	vel of consideration at which all aspects deal with the interpretation and manipulation of information d ourse or entity world in an information system.	escribing a particular universe of
	vel of consideration at which all aspects deal with a database and its architecture, consistent with a con esponding information base, but abstract from its physical implementation.	ceptual schema and the
	vel of consideration at which all aspects deal with the physical representation of data structures and wite esponding storage organizations and their access operations in a data processing system.	th mapping them on
O A co	llection of data organized according to a conceptual structure describing the characteristics of these da	ita.
A cond	ceptual (infological) database modelling level describes	
	Subject matter regardless database type.	
0	Subject matter regarding database type or DBMS.	
	Technical aspects regarding DBMS.	
	Philosophical aspects regarding DBMS.	
~		
A logi	cal (datalogical) database modelling level describes	
0	Subject matter regardless database type.	
	Subject matter regarding database type or DBMS.	
	Technical aspects regarding DBMS.	
0	Philosophical aspects regarding DBMS.	

A phy	rsical database modelling level describes	
	Subject matter regardless database type.	
	Subject matter regarding database type or DBMS.	
	Technical aspects regarding DBMS.	
	Philosophical aspects regarding DBMS.	
A rela	itional model is	
	A data model whose structure is based on a set of r	relations.
	A database management system configuration app	proach.
	An application development design pattern.	
	A DevOps technique for high-loaded distributed da	tabases management.
Typica	l representation techniques for the conceptual (infological)	database modelling level are
	Lists, tables, schemas (semantic, graph, entity-relation).	
	Data specifications, special formats, UML schemas.	
	UML schemas, IDEF1X schemas, specific technics dependi	ng on particular DBMS.
	User stories, use cases.	

Typica	l representation techniques for the logical (datalogical) database modelling level are
	Lists, tables, schemas (semantic, graph, entity-relation).
	Data specifications, special formats, UML schemas.
0	UML schemas, IDEF1X schemas, specific technics depending on particular DBMS.
	User stories, use cases.
Typica	l representation techniques for the physical database modelling level are
	Lists, tables, schemas (semantic, graph, entity-relation).
	Data specifications, special formats, UML schemas.
	UML schemas, IDEF1X schemas, specific technics depending on particular DBMS.
	User stories, use cases.
Funda	amental database requirements include
~	Subject matter adequacy.
	Performance.
	ISO 9001-012 compliance.
	UML representation.
~	

Whil	le creating any database you absolutely should pay	y attention to
	IDEF1X schemas.	
	Semantic representation.	
/	Technical usability.	
	Data safety.	
The	following may influence database performance	
~	Data types.	
	Field names.	
~	Materialized views configuration.	
~	Fields size.	
✓ An ord	lered collection of data in the form of records, each of which provide	es information about a database object, is
	Card-index database.	
	Network (graph) database.	
	Hierarchical database.	
	Relational database.	
~		

A database wherein multiple member records or files can be linked to multiple owner files and vice versa is
Card-index database.
Network (graph) database.
Hierarchical database.
Relational database.
A database that uses a one-to-many relationship for data elements, i.e. a tree structure that links a number of several elements to one is Card-index database.
Network (graph) database.
Hierarchical database.
Relational database.
A database based on the relational model of data (which is based on a set of relations) is
Card-index database.
Network (graph) database.
Hierarchical database.
Relational database.
A database that processes multi-dimensional analytical queries for business intelligence purposes is
OLAP database.
Object-oriented database.
O Deductive database.
NoSQL database.

OLAP database.	
Object-oriented database.	
Deductive database.	
NoSQL database.	
A database that can make deductions (i.e. conclude additional facts) based on rules and facts that already sto	ored in the database is
OLAP database.	
Object-oriented database.	
Deductive database.	
NoSQL database.	
A database that can accommodate a wide variety of data models, including key-value, document, columnate	and graph formats is
OLAP database.	
Object-oriented database.	
Deductive database.	
NoSQL database.	
✓ Typical modern analogies of card-index database are	
Excel spreadsheet, a single table in a relational database.	
AllegroGraph, Amazon Neptune, JanusGraph, Neo4j.	
Apache Directory, OpenLDAP, BaseX.	
MySQL, MariaDB, MS SQL Server, Oracle Database, PostgreSQL.	

A database that manipulates information represented by objects (literally like in OOP approach) is...

Typic	al network (graph) database management systems are
0	Excel spreadsheet, a single table in a relational database.
	AllegroGraph, Amazon Neptune, JanusGraph, Neo4j.
	Apache Directory, OpenLDAP, BaseX.
	MySQL, MariaDB, MS SQL Server, Oracle Database, PostgreSQL.
~	
Typica	al hierarchical database management systems are
0	Excel spreadsheet, a single table in a relational database.
0	AllegroGraph, Amazon Neptune, JanusGraph, Neo4j.
	Apache Directory, OpenLDAP, BaseX.
0	MySQL, MariaDB, MS SQL Server, Oracle Database, PostgreSQL.
Typica	al relational database management systems are
0	Excel spreadsheet, a single table in a relational database.
	AllegroGraph, Amazon Neptune, JanusGraph, Neo4j.
0	Apache Directory, OpenLDAP, BaseX.
	MySQL, MariaDB, MS SQL Server, Oracle Database, PostgreSQL.

Typical OLAP database management systems are...

	Dundas BI, Sisense, IBM Cognos Analytics, InetSoft, SAP Business Intelligence.
	InterSystems Cache, Google Cloud Storage for Firebase, dBASE PLUS, Apache OODT.
	CORAL, LDL++, SQUALID, TensorLog.
	Apache Ignite, Redis, MemcacheDB, MongoDB, Cassandra.
Typica	al object-oriented database management systems are
0	Dundas BI, Sisense, IBM Cognos Analytics, InetSoft, SAP Business Intelligence.
	InterSystems Cache, Google Cloud Storage for Firebase, dBASE PLUS, Apache OODT.
	CORAL, LDL++, SQUALID, TensorLog.
	Apache Ignite, Redis, MemcacheDB, MongoDB, Cassandra.
✓ Typica	al deductive database management systems are
	Dundas BI, Sisense, IBM Cognos Analytics, InetSoft, SAP Business Intelligence.
0	InterSystems Cache, Google Cloud Storage for Firebase, dBASE PLUS, Apache OODT.
	CORAL, LDL++, SQUALID, TensorLog.
	Apache Ignite, Redis, MemcacheDB, MongoDB, Cassandra.
~	

Dundas BI, Sisense, IBM Cognos Analytics, InetSoft, SAP Business Intelligence. InterSystems Cache, Google Cloud Storage for Firebase, dBASE PLUS, Apache OODT. CORAL, LDL++, SQUALID, TensorLog. Apache Ignite, Redis, MemcacheDB, MongoDB, Cassandra. Relational model is... A database wherein multiple member records or files can be linked to multiple owner files and vice versa. A data model whose structure is based on a set of graphs. A data model whose structure is based on a set of relations. A database that uses a one-to-many relationship for data elements, i.e. a tree structure that links a number of several elements to one. Relational model is... Relational model describes... A logical, not a physical one. Hierarchical rules. A physical, not a logical one. Data structures. Both semantic and graph. Data integrity rules. Both network and hierarchical. Data manipulation rules.

Typical NoSQL database management systems are...

Relation	onal model pros are that
	Relational databases require less of memory and CPU power, compared to other databases.
~	Relational model is based on a simple set of basic structures.
	Some structures (trees, graphs and so on) are easy to implement in this model.
✓	Relational model implies independency from internal structures.
Relat	tional model cons are that
	Relational model uses strict mathematical approaches.
~	Relational model is hard to deal with in case of large databases.
	Relational databases require a lot of memory and CPU power.
	Relational model implies independency from internal structures.