In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

In [2]:

```
df=pd.read_csv("adult.csv",na_values='?')
```

In [3]:

df.head()

Out[3]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship
0	90	NaN	77053	HS-grad	9	Widowed	NaN	Not-in-family
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family
2	66	NaN	186061	Some- college	10	Widowed	NaN	Unmarried
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child
4								•

In [4]:

df.shape

Out[4]:

(32561, 15)

In [5]:

```
df.isnull().sum()
```

Out[5]:

age	0
workclass	1836
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	1843
relationship	0
race	0
sex	0
capital.gain	0
capital.loss	0
hours.per.week	0
native.country	583
income	0
dtype: int64	

In [6]:

```
df.isin(['?']).sum()
```

Out[6]:

age	0
workclass	0
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	0
relationship	0
race	0
sex	0
capital.gain	0
capital.loss	0
hours.per.week	0
native.country	0
income	0
dtvpe: int64	

In [7]:

```
df['workclass'].value_counts()
```

Out[7]:

Private 22696 Self-emp-not-inc 2541 Local-gov 2093 State-gov 1298 Self-emp-inc 1116 Federal-gov 960 Without-pay 14 Never-worked Name: workclass, dtype: int64

In [8]:

df['occupation'].value_counts()

Out[8]:

Prof-specialty 4140 Craft-repair 4099 Exec-managerial 4066 Adm-clerical 3770 Sales 3650 Other-service 3295 Machine-op-inspct 2002 Transport-moving 1597 Handlers-cleaners 1370 Farming-fishing 994 Tech-support 928 649 Protective-serv Priv-house-serv 149 Armed-Forces 9

Name: occupation, dtype: int64

In [9]:

```
plt.figure(figsize=(10,6))
sns.heatmap(df.isna().transpose(),
           cmap="crest")
```

Out[9]:

<AxesSubplot:>

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
    Column
                   Non-Null Count Dtype
                    -----
0
    age
                    32561 non-null int64
1
    workclass
                    30725 non-null object
2
    fnlwgt
                    32561 non-null int64
3
    education
                    32561 non-null object
4
    education.num
                    32561 non-null
                                   int64
5
    marital.status 32561 non-null object
                    30718 non-null object
6
    occupation
7
                    32561 non-null object
    relationship
8
    race
                    32561 non-null object
9
                    32561 non-null object
    sex
10 capital.gain
                    32561 non-null int64
                    32561 non-null int64
11
    capital.loss
12
    hours.per.week 32561 non-null int64
13
    native.country 31978 non-null object
                    32561 non-null object
14 income
```

dtypes: int64(6), object(9) memory usage: 3.7+ MB

In [11]:

```
df.columns
```

Out[11]:

```
Index(['age', 'workclass', 'fnlwgt', 'education', 'education.num',
          'marital.status', 'occupation', 'relationship', 'race', 'sex', 'capital.gain', 'capital.loss', 'hours.per.week', 'native.country',
          'income'],
        dtype='object')
```

In [12]:

```
df.describe().T
```

Out[12]:

	count	mean	std	min	25%	50%	75%
age	32561.0	38.581647	13.640433	17.0	28.0	37.0	48.0
fnlwgt	32561.0	189778.366512	105549.977697	12285.0	117827.0	178356.0	237051.0
education.num	32561.0	10.080679	2.572720	1.0	9.0	10.0	12.0
capital.gain	32561.0	1077.648844	7385.292085	0.0	0.0	0.0	0.0
capital.loss	32561.0	87.303830	402.960219	0.0	0.0	0.0	0.0
hours.per.week	32561.0	40.437456	12.347429	1.0	40.0	40.0	45.0
4							•

```
In [13]:
numerical_feature=[i for i in df.columns if df[i].dtype!='0']
categorical_feature=[i for i in df.columns if df[i].dtype=='0']
In [14]:
numerical_feature
Out[14]:
['age',
 'fnlwgt',
 'education.num',
 'capital.gain',
 'capital.loss',
 'hours.per.week']
In [15]:
categorical_feature
Out[15]:
['workclass',
 'education',
 'marital.status',
 'occupation',
 'relationship',
 'race',
 'sex',
 'native.country',
 'income']
```

Univariate analysis

In [16]:

```
plt.figure(figsize=(18,18))
plt.suptitle('Univariate Analysis of Numerical Features', fontsize=20, fontweight='bold', a
for i in range(0, len(numerical_feature)):
    plt.subplot(3, 2, i+1)
    sns.distplot(df[numerical_feature[i]],label='income')
    plt.xlabel(numerical_feature[i])
    plt.tight_layout()
```

Univariate Analysis of Numerical Features

In [17]:

```
plt.figure(figsize=(18,18))
plt.suptitle('Univariate Analysis of Numerical Features', fontsize=20, fontweight='bold', a
for i in range(0, len(numerical_feature)):
    plt.subplot(3, 2, i+1)
    sns.kdeplot(x=df[numerical_feature[i]],shade=True,data=df)
    plt.xlabel(numerical_feature[i])
    plt.tight_layout()
```

Univariate Analysis of Numerical Features

In [18]:

```
def cate_feature(df,categorical_feature):
    plt.figure(figsize=(22,8))
    a=df[df['income']=='<=50K'][categorical_feature].value_counts() # Below 50k salary</pre>
    b=df[df['income']=='>50K'][categorical_feature].value_counts() # Above 50k salary
    plt.subplot(1,2,1)
    plt.title('Below 50K salary')
    sns.barplot(a.index,a.values)
    plt.subplot(1,2,2)
    plt.title('Above 50K salary')
    sns.barplot(b.index,b.values)
    plt.show()
```

In [19]:

```
for i in categorical_feature:
    print(i,':\n')
    cate_feature(df,i)
```

workclass:

education :

Below 50K salary

Above 50K salary

In [20]:

```
plt.figure(figsize=(18,18))
plt.suptitle('Univariate Analysis of Categorical Features', fontsize=20, fontweight='bold',
for i in range(0, len(categorical_feature)):
    plt.subplot(5, 2, i+1)
    sns.countplot(x=df[categorical_feature[i]],data=df)
    plt.xlabel(categorical_feature[i])
    plt.tight_layout()
```

Univariate Analysis of Categorical Features

In [21]:

```
plt.figure(figsize=(16,6))
sns.countplot(x="education",hue="income",data=df)
```

Out[21]:

<AxesSubplot:xlabel='education', ylabel='count'>

In [22]:

```
plt.figure(figsize=(16,6))
sns.countplot(x="workclass",hue="income",data=df)
```

Out[22]:

<AxesSubplot:xlabel='workclass', ylabel='count'>

In [23]:

```
plt.figure(figsize=(15,8))
sns.set_theme(style="darkgrid")
sns.lineplot(x='age', y='hours.per.week',
             hue="income",
             data=df)
```

Out[23]:

<AxesSubplot:xlabel='age', ylabel='hours.per.week'>

In [24]:

```
plt.figure(figsize=(15, 10))
sns.heatmap(df.corr(), annot=True, cmap="PuOr", annot_kws={"size": 10})
plt.show()
```


Feature Engineering

In [25]:

```
df=df.dropna(axis=0)
```

```
In [26]:
```

```
plt.figure(figsize=(10,6))
sns.heatmap(df.isna().transpose(),
           cmap="PiYG")
```

Out[26]:

<AxesSubplot:>

Label Encoding for Categorical feature

```
In [27]:
```

```
from sklearn.preprocessing import LabelEncoder
```

```
In [28]:
```

```
le=LabelEncoder()
```

```
In [29]:
```

```
for i in categorical feature :
    df[i] = le.fit_transform(df[i])
```

```
In [30]:
```

```
df=df.drop(['marital.status','relationship','capital.gain','capital.loss',],axis=1)
```

Out[37]:

(9954,)

```
In [31]:
df.head()
Out[31]:
        workclass
                  fnlwgt education education.num occupation race sex hours.per.week
 1
    82
                2 132870
                                 11
                                                           3
                                                                4
                                                                     0
                                                                                   18
 3
    54
                2 140359
                                 5
                                                           6
                                                                4
                                                                     0
                                                                                   40
                                                4
                2 264663
                                                           9
                                                                                   40
 4
    41
                                 15
                                               10
                                                                4
                                                                     0
                2 216864
                                                           7
                                                                4
                                                                                   45
 5
    34
                                                9
                                                                     0
                                 11
    38
                2 150601
                                 0
                                                6
                                                           0
                                                                4
                                                                                   40
 6
                                                                     1
                                                                                    •
In [32]:
X=df.drop(['income'],axis=1)
y=df['income']
In [33]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=100)
In [34]:
X_train.shape
Out[34]:
(20208, 10)
In [35]:
y_train.shape
Out[35]:
(20208,)
In [36]:
X_test.shape
Out[36]:
(9954, 10)
In [37]:
y_test.shape
```

localhost:8888/notebooks/Machine Learning/Ensemble Methods/Adult%2BCensus%2BIncome%2BClassification%2BWith%2BEnsemble Meth... 15/29

```
In [38]:
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier,VotingClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import ExtraTreesClassifier
```

Decision Tree Classifier

```
In [39]:
dc=DecisionTreeClassifier()
In [40]:
dc.fit(X_train,y_train)
Out[40]:
▼ DecisionTreeClassifier
DecisionTreeClassifier()
In [41]:
dc.score(X_train,y_train)
Out[41]:
0.9998020585906572
In [42]:
dc_pred=dc.predict(X_test)
In [43]:
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.model selection import cross val score
```

```
In [44]:
```

```
accuracy_score(y_test,dc_pred)
```

Out[44]:

0.7458308217801889

In [45]:

```
print(classification_report(y_test,dc_pred))
              precision
                            recall f1-score
                                                support
           0
                    0.83
                              0.83
                                         0.83
                                                   7458
           1
                    0.49
                              0.50
                                         0.50
                                                   2496
    accuracy
                                         0.75
                                                   9954
                                         0.66
                                                   9954
   macro avg
                   0.66
                              0.66
weighted avg
                    0.75
                              0.75
                                         0.75
                                                   9954
```

In [46]:

```
grid_param_dc = {
    'criterion': ['gini', 'entropy'],
    'max_depth' : range(2,10,1),
    'min_samples_leaf' : range(1,8,1),
    'min_samples_split': range(2,8,1),
    'splitter' : ['best', 'random']
}
```

In [47]:

```
from sklearn.model_selection import GridSearchCV
grid search_dc=GridSearchCV(estimator=dc,param_grid=grid_param_dc,cv=3,verbose=1)
```

In [48]:

```
grid_search_dc.fit(X_train,y_train)
```

Fitting 3 folds for each of 1344 candidates, totalling 4032 fits

Out[48]:

```
GridSearchCV
▶ estimator: DecisionTreeClassifier
     ▶ DecisionTreeClassifier
```

In [49]:

```
grid_search_dc.best_params_
```

Out[49]:

```
{'criterion': 'entropy',
 'max_depth': 8,
 'min_samples_leaf': 7,
 'min samples split': 3,
 'splitter': 'random'}
```

```
In [50]:
```

```
dc_model_with_best_parm=DecisionTreeClassifier(criterion='gini',
max_depth= 5,
min_samples_leaf=6,
min_samples_split= 2,
splitter= 'best')
```

In [51]:

```
dc_model_with_best_parm.fit(X_train,y_train)
```

Out[51]:

```
DecisionTreeClassifier
DecisionTreeClassifier(max_depth=5, min_samples_leaf=6)
```

In [52]:

```
pred_dc_model_with_best_parm=dc_model_with_best_parm.predict(X_test)
```

In [53]:

```
print(accuracy_score(y_test,pred_dc_model_with_best_parm))
```

0.7976692786819369

In [54]:

```
print(classification_report(y_test,pred_dc_model_with_best_parm))
```

	precision	recall	f1-score	support
0	0.82	0.94	0.87	7458
1	0.67	0.38	0.49	2496
accuracy			0.80	9954
macro avg	0.74	0.66	0.68	9954
weighted avg	0.78	0.80	0.78	9954

In [55]:

```
print(confusion_matrix(y_test,pred_dc_model_with_best_parm))
```

```
[[6980 478]
[1536 960]]
```

RandomForestClassifier

In [56]:

```
rf= RandomForestClassifier()
```

```
11/21/22, 1:55 PM
                               Adult+Census+Income+Classification+With+Ensemble Methods - Jupyter Notebook
  In [57]:
  rf.fit(X_train,y_train)
  Out[57]:
  ▼ RandomForestClassifier
  RandomForestClassifier()
  In [58]:
  rf.score(X_train,y_train)
  Out[58]:
  0.9997525732383215
  In [59]:
  rf_pred=rf.predict(X_test)
  In [60]:
  print(accuracy_score(y_test,rf_pred))
  0.7958609604179224
  In [61]:
  rf_grid_param = {
      "n_estimators" : [90,100,110,120],
      'criterion': ['gini', 'entropy'],
      'max_depth' : range(2,20,1),
      'min_samples_leaf' : range(1,10,1),
      'min_samples_split': range(2,10,1),
      'max_features' : ['auto','log2']
  }
  In [62]:
  from tpot import TPOTClassifier
  In [63]:
```

```
rf_tpot_classifier = TPOTClassifier(generations= 5, population_size= 28, offspring_size= 14
                                 verbosity= 2, early_stop= 12,
                                 config_dict={'sklearn.ensemble.RandomForestClassifier': rf
                                 cv = 5, scoring = 'accuracy')
```

In [64]:

```
rf tpot classifier.fit(X train,y train)
Generation 1 - Current best internal CV score: 0.8133910201238885
Generation 2 - Current best internal CV score: 0.8133910201238885
Generation 3 - Current best internal CV score: 0.8134405985359614
Generation 4 - Current best internal CV score: 0.8138856042731719
Generation 5 - Current best internal CV score: 0.8138856042731719
Best pipeline: RandomForestClassifier(RandomForestClassifier(input_matrix, c
riterion=gini, max_depth=7, max_features=auto, min_samples_leaf=6, min_sampl
es_split=4, n_estimators=90), criterion=gini, max_depth=6, max_features=aut
o, min_samples_leaf=6, min_samples_split=5, n_estimators=110)
Out[64]:
                                TPOTClassifier
TPOTClassifier(config_dict={'sklearn.ehsemble.RandomForestClassifier':
{'criterion': ['gini',
'entropy'],
'max_depth': range(2, 20),
'max_features': ['auto',
'log2'],
In [65]:
rf_accuracy = rf_tpot_classifier.score(X_test, y_test)
print(rf_accuracy)
0.8089210367691381
In [66]:
rf_g_pred=rf_tpot_classifier.predict(X_test)
In [67]:
print(accuracy_score(y_test,rf_g_pred))
0.8089210367691381
In [68]:
#grid search rf=GridSearchCV(estimator=rf,param grid=rf grid param,cv=3,verbose=1)
```

```
In [69]:
```

```
#grid_search_rf.fit(X_train,y_train)
```

SVC

```
In [70]:
sv=SVC()
In [71]:
sv.fit(X_train,y_train)
Out[71]:
▼ SVC
SV¢()
In [72]:
sv.score(X_train,y_train)
Out[72]:
0.7519794140934284
In [73]:
sv_pred=sv.predict(X_test)
In [74]:
print(accuracy_score(y_test,sv_pred))
0.7492465340566606
In [75]:
sv_grid_param = {
    "C" : [0.1,1,2,5,10,100],
    'kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'],
    'gamma':['scale', 'auto']
}
In [76]:
#qrid search svm=GridSearchCV(estimator=sv,param grid=sv grid param,cv=3,verbose=1)
In [77]:
```

#grid_search_svm.fit(X_train,y_train)

```
In [78]:
```

```
#from sklearn.model selection import RandomizedSearchCV
```

In [79]:

```
#sv randomcv=RandomizedSearchCV(estimator=sv,param_distributions=sv_grid_param ,n_iter=100,
                               #random_state=100,n_jobs=-1)
```

In [80]:

```
#sv_randomcv.fit(X_train,y_train)
```

In [81]:

```
#sv_tpot_classifier = TPOTClassifier(generations= 5, population_size= 28, offspring_size= 1
                                 #verbosity= 2, early_stop= 12,
                                 #config_dict={'sklearn.svm.SVC': sv_grid_param},
                                 #cv = 5, scoring = 'accuracy')
```

In [82]:

```
#sv_tpot_classifier.fit(X_train,y_train)
```

BaggingClassifier

In [83]:

```
bg=BaggingClassifier(n_estimators=10, random_state=0)
```

In [84]:

```
bg.fit(X_train,y_train)
```

Out[84]:

```
Bagging(lassifier
BaggingClassifier(random_state=0)
```

In [85]:

```
bg.score(X_train,y_train)
```

Out[85]:

0.9825811559778306

In [86]:

```
bg_pred=bg.predict(X_test)
```

```
In [87]:
print(accuracy_score(y_test,bg_pred))
0.7858147478400643
In [88]:
bg_grid_param = {
    "n_estimators" : [10,20,30,50,100],
    'max_samples': range(1,10,1),
    'oob_score':[True,False]
}
In [89]:
grid_search_bg=GridSearchCV(estimator=bg,param_grid=bg_grid_param,cv=3,verbose=1)
In [90]:
grid_search_bg.fit(X_train,y_train)
Fitting 3 folds for each of 90 candidates, totalling 270 fits
Out[90]:
           GridSearchCV
 ▶ estimator: BaggingClassifier
       ▶ BaggingClassifier
In [91]:
grid_search_bg.best_params_
Out[91]:
{'max samples': 6, 'n estimators': 10, 'oob score': True}
In [92]:
bg with best parm=BaggingClassifier(n estimators=10,max samples=6,oob score=True)
In [93]:
bg with best parm.fit(X train,y train)
Out[93]:
                 BaggingClassifier
BaggingClassifier(max_samples=6, oob_score=True)
In [94]:
bg_with_best_parm_pred=bg_with_best_parm.predict(X_test)
```

```
In [95]:
```

In [102]:

#grid_search_et.fit(X_train,y_train)

```
print(accuracy_score(y_test,bg_with_best_parm_pred))
```

0.7427164958810528

ExtraTreesClassifier

```
In [96]:
et=ExtraTreesClassifier()
In [97]:
et.fit(X_train,y_train)
Out[97]:
▼ ExtraTree Classifier
ExtraTreesClassifier()
In [98]:
et_pred=et.predict(X_test)
In [99]:
print(accuracy_score(y_test,et_pred))
0.7878239903556359
In [100]:
grid_param_et = {
    'n_estimators':range(100,200,20),
    'criterion': ['gini', 'entropy', 'log_loss'],
    'max_depth' : range(2,10,1),
    'min_samples_leaf' : range(1,8,1),
    'min_samples_split': range(2,8,1),
    'max_features' : ['sqrt', 'log2']
}
In [101]:
#qrid search et=GridSearchCV(estimator=et,param grid=grid param et,cv=3,verbose=1)
```

In [103]:

```
et_tpot_classifier = TPOTClassifier(generations= 5, population_size= 28, offspring_size= 14
                                 verbosity= 2, early_stop= 12,
                                 config_dict={'sklearn.ensemble.ExtraTreesClassifier': grid
                                 cv = 5, scoring = 'accuracy')
```

In [104]:

```
et_tpot_classifier.fit(X_train,y_train)
```

Generation 1 - Current best internal CV score: 0.80616601653928

Generation 2 - Current best internal CV score: 0.8115597534964779

Generation 3 - Current best internal CV score: 0.8115597534964779

Generation 4 - Current best internal CV score: 0.8115597534964779

Generation 5 - Current best internal CV score: 0.8132422114200303

Best pipeline: ExtraTreesClassifier(ExtraTreesClassifier(ExtraTreesClassifie r(CombineDFs(input_matrix, input_matrix), criterion=gini, max_depth=7, max_f eatures=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=100), cr iterion=gini, max depth=6, max features=sqrt, min samples leaf=6, min sample s_split=3, n_estimators=140), criterion=entropy, max_depth=9, max_features=s qrt, min_samples_leaf=2, min_samples_split=5, n_estimators=140)

Out[104]:

```
TPOTClassifier
Treliton . [ Stut )
'entropy',
'log_loss'],
                                                                           'ma
x depth': range(2, 10),
                                                                           'ma
x_features': ['sqrt',
110011
```

In [105]:

```
et accuracy = et tpot classifier.score(X test, y test)
print(et_accuracy)
```

0.8086196503918023

In [106]:

```
et_g_pred=et_tpot_classifier.predict(X_test)
```

```
In [107]:
```

```
print(accuracy_score(y_test,et_g_pred))
```

0.8086196503918023

AdaBoostClassifier

```
In [108]:
from sklearn.ensemble import AdaBoostClassifier
In [109]:
ad=AdaBoostClassifier()
In [110]:
ad.fit(X_train,y_train)
Out[110]:
▼ AdaBoostClassifier
AdaBoostClassifier()
In [111]:
ad.score(X_train,y_train)
Out[111]:
0.8135886777513855
In [112]:
ad_pred=ad.predict(X_test)
In [113]:
print(accuracy_score(y_test,ad_pred))
0.8089210367691381
In [114]:
grid_param_ad = {
    'n_estimators':range(50,100,10),
    'learning_rate':[0.01,1.0,2.0,5.0,10.0,100.0],
    'algorithm':['SAMME','SAMME.R']
}
```

```
11/21/22, 1:55 PM
                               Adult+Census+Income+Classification+With+Ensemble Methods - Jupyter Notebook
  In [115]:
 grid_search_ad=GridSearchCV(estimator=ad,param_grid=grid_param_ad,cv=3,verbose=1)
 In [116]:
 grid_search_ad.fit(X_train,y_train)
 Fitting 3 folds for each of 60 candidates, totalling 180 fits
 Out[116]:
             GridSearchCV
   ▶ estimator: AdaBoostClassifier
         ▶ AdaBoost¢lassifier
  In [117]:
 grid_search_ad.best_params_
 Out[117]:
  {'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 90}
 In [118]:
 grid_search_ad_with_best_parm = AdaBoostClassifier(n_estimators =90,algorithm='SAMME.R', le
  In [119]:
 grid_search_ad_with_best_parm.fit(X_train,y_train)
 Out[119]:
            AdaBoostClassifier
  AdaBoostClassifier(n_estimators=90)
  In [120]:
 grid_search_ad_with_best_parm_pred = grid_search_ad_with_best_parm.predict(X_test)
  In [121]:
```

VotingClassifier

0.8081173397629093

```
In [122]:
```

```
#vt=VotingClassifier(estimators=[('DT',dc), ('RF',rf), ('SVM', sv),('ADABOOST',ad)],voting=
```

print(accuracy_score(y_test,grid_search_ad_with_best_parm_pred))

```
In [125]:
```

```
#vt.fit(X_train,y_train)
from sklearn.linear_model import LogisticRegression
```

```
In [126]:
```

```
estimaors=[
    ('RFC', RandomForestClassifier()),
    ('Lr',LogisticRegression()),
    ('ETC', ExtraTreesClassifier(criterion='gini', max_depth=10, min_samples_leaf=2, min_sample
    ('BGC', BaggingClassifier(base_estimator=LogisticRegression()))
]
```

In [131]:

```
vt = VotingClassifier(estimators=estimaors, voting='hard')
```

In [132]:

```
vt.fit(X_train,y_train)
```

Out[132]:

In [133]:

```
vt.score(X_train,y_train)
```

Out[133]:

0.7519794140934284

In [134]:

```
vt_pred = vt.predict(X_test)
```

In [135]:

```
print(accuracy_score(y_test,vt_pred))
```

0.7492465340566606

```
In [ ]:
```