第七章 代数系统

以前学过许多代数:

初等代数、高等代数(线性代数)、

集合代数、命题代数、等等

它们研究的对象分别是实数、矩阵、集合、命题等等,以及在这些对象上定义的各种运算。

这一章我们将代数的研究引导到更高的层次,即抛 开具体对象以及具体运算去研究代数——抽象代 数。

第一节 二元运算基本概念

首先,我们研究运算的概念,看看如何将具体的运算抽象化。

我们先看几个例子:

整数集合上的 相反数运算

自然数集合上 的加法运算

集合中任何一个或两个元素都可以进行运算,且运算的结果惟一。

1、运算的概念

运算定义

设 X 是集合, $f: X^n \to Y$ 是个映射,则称 $f \in X$ 上的 n 元运算。

如果 $Y \subseteq X$,则称运算f在X上封闭。

特别地,当 n=2 时,称 f 是 X 上的二元运算。

思考

减法-是自然数集合N上封闭 的二元运算?

除法÷是整数集合 1上的二元运算?

除法÷是实数集合R上封闭的 二元运算?

2、运算的表示及运算表

- ❖ 解析公式:可以用★、*、●、◆、⊗、△、○等表示运算
- ❖ 如果用"★"表示二元运算f 时,可将 $f(\langle x,y \rangle) = z$ 写成 $x \star y = z$ 。
 - ❖ 运算表: 用来表示有穷集合上的运算。

٥	a_i
a_1	$^{\circ}a_{1}$
a_2	$^{\circ}a_{2}$
a_n	$^{\circ}a_{n}$

0	a_1	a_2	ş	a_n
a_1	$a_1 \circ a_1$	$a_1 \circ a_2$	¥	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	$a_2 \circ a_2$		$a_2 \circ a_n$
		···		300
a_n	$a_n \circ a_1$	$a_n \circ a_2$		$a \circ a_n$

二元运算表举例

例1 令 A={a,b}, P(A)上的∩运算表如图 所示。

Λ	Φ	{a}	{b}	{a,b}
Φ	Φ	Ф	Ф	Ф
{a}	Φ	{a}	Φ	{a}
{b}	Φ	Ф	{b}	{b}
{a,b}	Φ	{a}	{b}	{a,b}

例2 令X={S,R,A,L}, 分别表示"起始位置","向右转","向后转","向左转";"o"表示复合运算;

0	S	R	A	L	
S	S	R	A	L	
R	R	A	L	S	
A	A	L	S	R	
L	L	S	R	A	

第一节 结束