Nonparametric Kernel Density Estimation for the Metropolis- Hastings Algorithm

Arkajyoti Bhattacharjee* Nitin Garg* Suchismita Roy*

Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

April 16, 2022

Contents

- Introduction
 - The Metropolis-Hastings Algorithm
 - Kernel Density Estimation (KDE)
- Density Estimation for the M-H algorithm
- Bandwidth Selection
 - Plug-in Method
 - Bump-killing
- Applications
- 6 References

- One of the most widely used Markov Chain Monte Carlo (MCMC) algorithms is the Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)) algorithm.
- The Markov transition kernel of the M-H chain, $P_X(A)$ is:

$$P_X(A) := P(X_{i+1} \in A | X_i = x) = \int_A \alpha(x, y) q(x, y) dy + r(x) \mathbf{1}_{\{x \in A\}}, \quad (1)$$

where $r(x) := \int (1 - \alpha(x, y)q(x, y))dy =: 1 - a(x)$.

The ith step transition kernel is given by,

$$P_X^{(i)}(A) := P(X_{j+i} \in A | X_i = x) = \int_A \tilde{p}_X^{(i)}(y) dy + r(x)^i \mathbf{1}_{\{X \in A\}}.$$

- 1: **Input:** $X_n = x$
- 2: Draw $Y \sim Q(x,.)$ and independently $U \sim \mathcal{U}(0,1)$.
- 3: **if** $U < \alpha(x,y) = min\{1, \frac{f(y)q(y,x)}{f(x)q(x,y)}\}$, **the**
- 4: set X_{n+1}
- 5: else
- 7: Output: X...

- One of the most widely used Markov Chain Monte Carlo (MCMC) algorithms is the Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)) algorithm.
- The Markov transition kernel of the M-H chain, $P_X(A)$ is:

$$P_X(A) := P(X_{i+1} \in A | X_i = x) = \int_A \alpha(x, y) q(x, y) dy + r(x) \mathbf{1}_{\{x \in A\}}, \quad (1)$$

where $r(x) := \int (1 - \alpha(x, y)q(x, y))dy =: 1 - a(x)$.

The ith step transition kernel is given by,

$$P_x^{(i)}(A) := P(X_{j+i} \in A | X_i = x) = \int_A \tilde{p}_x^{(i)}(y) \, dy + r(x)^i \mathbf{1}_{\{x \in A\}}.$$

- 1: **Input:** $X_0 = x$.
- 2: Draw $Y \sim Q(x,.)$ and independently $U \sim \mathcal{U}(0,1)$.
- 3: **if** $U < \alpha(x,y) = min\{1, \frac{f(y)g(y,x)}{f(x)g(x,y)}\}$, **the**
- 4: Set
- 5: else
- 6: set $X_{n+1} = x$.
- 7: **Output:** X_{n+1} .

- One of the most widely used Markov Chain Monte Carlo (MCMC) algorithms is the Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)) algorithm.
- The Markov transition kernel of the M-H chain, $P_X(A)$ is:

$$P_X(A) := P(X_{i+1} \in A | X_i = x) = \int_A \alpha(x, y) q(x, y) dy + r(x) \mathbf{1}_{\{x \in A\}}, \quad (1)$$

where $r(x) := \int (1 - \alpha(x, y)q(x, y))dy =: 1 - a(x)$.

• The ith step transition kernel is given by,

$$P_x^{(i)}(A) := P(X_{j+i} \in A | X_i = x) = \int_A \tilde{p}_x^{(i)}(y) dy + r(x)^i \mathbf{1}_{\{x \in A\}}.$$

- 1: **Input:** $X_0 = x$.
- 2: Draw $Y \sim Q(x,.)$ and independently $U \sim \mathcal{U}(0,1)$.
- 3: **if** $U < \alpha(x,y) = min\{1, \frac{f(y)q(y,x)}{f(x)q(x,y)}\}$, **ther**
- 4: 50
- 5: **else**
- 6: set $X_{n+1} = x$.
- 7: **Output:** X_{n+1} .

- One of the most widely used Markov Chain Monte Carlo (MCMC) algorithms is the Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)) algorithm.
- The Markov transition kernel of the M-H chain, $P_x(A)$ is:

$$P_X(A) := P(X_{i+1} \in A | X_i = x) = \int_A \alpha(x, y) q(x, y) dy + r(x) \mathbf{1}_{\{x \in A\}}, \quad (1)$$

where $r(x) := \int (1 - \alpha(x, y)q(x, y))dy =: 1 - a(x)$.

• The ith step transition kernel is given by,

$$P_x^{(i)}(A) := P(X_{j+i} \in A | X_i = x) = \int_A \tilde{p}_x^{(i)}(y) dy + r(x)^i \mathbf{1}_{\{x \in A\}}.$$

- 1: **Input:** $X_n = x$.
- 2: Draw $Y \sim Q(x,.)$ and independently $U \sim \mathcal{U}(0,1)$.
- 3: **if** $U < \alpha(x,y) = min\{1, \frac{f(y)q(y,x)}{f(x)q(x,y)}\}$, **then**
- 4: set $X_{n+1} = v$.
- 5: **else**
- 6: set $X_{n+1} = x$.
- 7: **Output:** X_{n+1} .

- Suppose $X_1, \ldots, X_n \sim f$.
- KDE:

$$\hat{f}(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} K_h(x, X_i) \stackrel{\text{sym}}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right).$$

• Properties:

$$0 \le K_h(x, u) < \infty \ \forall \ x, u \in \mathbb{R}.$$
$$\int_{-\infty}^{\infty} K_h(x, u) dx = 1.$$

- Suppose $X_1, \ldots, X_n \sim f$.
- KDE:

$$\hat{f}(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} K_h(x, X_i) \stackrel{\text{sym}}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right).$$

• Properties:

$$0 \le K_h(x,u) < \infty \ \forall \ x,u \in \mathbb{R},$$
$$\int_{-\infty}^{\infty} K_h(x,u) dx = 1.$$

- Suppose $X_1, \ldots, X_n \sim f$.
- KDE:

$$\hat{f}(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} K_h(x, X_i) \stackrel{\text{sym}}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right).$$

Properties:

$$0 \le K_h(x,u) < \infty \ \forall \ x,u \in \mathbb{R},$$
$$\int_{-\infty}^{\infty} K_h(x,u) dx = 1.$$

- Suppose $X_1, \ldots, X_n \sim f$.
- KDE:

$$\hat{f}(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} K_h(x, X_i) \stackrel{\text{sym}}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right).$$

Properties:

$$0 \le K_h(x,u) < \infty \ \forall \ x,u \in \mathbb{R},$$
$$\int_{-\infty}^{\infty} K_h(x,u) dx = 1.$$

How KDE works?

Figure: Kernel estimate showing the contributions of the symmetric Gaussian (left) and the asymmetric Gamma (right) kernels evaluated for the individual observations with bandwidths h = 0.4, 0.05 respectively.

Some common symmetric kernels

Figure: Density estimates of the Old Faithful Geyser eruption data based on common symmetric kernels imposed on a histogram of the data.

Bandwidth Selection

Figure: Density estimates of the Old Faithful Geyser eruption data based on different bandwidths imposed on a histogram of the data.

Measures of Discrepancy and Asymptotic Expansions: Independent Data

MSE (local measure):

$$\begin{split} \textit{MSE}(\hat{f}(u)) &:= \mathbb{E}(f(u) - \hat{f}(u))^2 = \textit{Var}(\hat{f}(u)) + \textit{Bias}(\hat{f}(u))^2 \\ &= \frac{\mu_{0,2}f(u)}{nh} + \frac{1}{4}h^4\mu_{2,1}f''(u)^2 + o\left(\frac{1}{nh}\right) + o(h^4), \end{split}$$

valid as $h \to 0$, $nh \to \infty$ and where $\mu_{i,j} = \int x^i K(x)^j dx$.

MISE (global measure):

$$\begin{split} \textit{MISE}(\hat{f}) =: \mathbb{E} \int (f(u) - \hat{f}(u))^2 du &= \int \textit{Var}(\hat{f}(u)) du + \int \textit{Bias}(\hat{f}(u))^2 du \\ &= \frac{\mu_{0,2}}{nh} + \frac{1}{4} h^4 \mu_{2,1} ||f''(u)||_2^2 + o\left(\frac{1}{nh}\right) + o(h^4), \end{split}$$

as $h \to 0$, $nh \to \infty$.

We minimize MISE with respect to h, to get the optimal bandwidth.

Measures of Discrepancy and Asymptotic Expansions: Independent Data

MSE (local measure):

$$\begin{split} \textit{MSE}(\hat{f}(u)) &:= \mathbb{E}(f(u) - \hat{f}(u))^2 = \textit{Var}(\hat{f}(u)) + \textit{Bias}(\hat{f}(u))^2 \\ &= \frac{\mu_{0,2}f(u)}{nh} + \frac{1}{4}h^4\mu_{2,1}f''(u)^2 + o\left(\frac{1}{nh}\right) + o(h^4), \end{split}$$

valid as $h \to 0$, $nh \to \infty$ and where $\mu_{i,j} = \int x^i K(x)^j dx$.

• MISE (global measure):

$$\begin{aligned} \textit{MISE}(\hat{f}) &=: \mathbb{E} \int (f(u) - \hat{f}(u))^2 du = \int \textit{Var}(\hat{f}(u)) du + \int \textit{Bias}(\hat{f}(u))^2 du \\ &= \frac{\mu_{0,2}}{nh} + \frac{1}{4} h^4 \mu_{2,1} ||f''(u)||_2^2 + o\left(\frac{1}{nh}\right) + o(h^4), \end{aligned}$$

as $h \to 0$, $nh \to \infty$.

We minimize MISE with respect to h, to get the optimal bandwidth.

Measures of Discrepancy and Asymptotic Expansions: Independent Data

MSE (local measure):

$$MSE(\hat{f}(u)) := \mathbb{E}(f(u) - \hat{f}(u))^{2} = Var(\hat{f}(u)) + Bias(\hat{f}(u))^{2}$$
$$= \frac{\mu_{0,2}f(u)}{nh} + \frac{1}{4}h^{4}\mu_{2,1}f''(u)^{2} + o\left(\frac{1}{nh}\right) + o(h^{4}),$$

valid as $h \to 0$, $nh \to \infty$ and where $\mu_{i,j} = \int x^i K(x)^j dx$.

MISE (global measure):

$$\begin{split} \textit{MISE}(\hat{f}) =& : \mathbb{E} \int (f(u) - \hat{f}(u))^2 du = \int \textit{Var}(\hat{f}(u)) du + \int \textit{Bias}(\hat{f}(u))^2 du \\ = & \frac{\mu_{0,2}}{nh} + \frac{1}{4} h^4 \mu_{2,1} ||f''(u)||_2^2 + o\left(\frac{1}{nh}\right) + o(h^4), \end{split}$$

as $h \to 0$, $nh \to \infty$.

We minimize MISE with respect to h, to get the optimal bandwidth.

Measures of Discrepancy and Asymptotic Expansions: Dependent/ Time Series Data

- By stationarity, the bias is not affected by the dependence in the data.
- For results on the variance, two assumptions on the dependence structure of the sequence are applied in the vast majority of this literature:

Assumption (Restricting the local dependence)

Here, it is assumed that (X_i, X_{i+j}) has a bounded bivariate density for all j > 0.

Assumption (Restricting the long-range dependence)

Here, it is assumed that the process satisfies a certain mixing condition and that the mixing coefficients decay at a sufficiently fast rate.

• To further ensure that we can construct a consistent estimate, we need:

Assumption

The sequence is stationary and ergodic.

- **Assumption 1 fails**: Based on the form of P_X in (1), due to the rejection step of M-H, (X_i, X_{i+1}) will not a have bounded bivariate density. Infact, the transition density does not exist w.r.t the Lebesgue measure.
- So, Density Estimation for MH requires some special attention
- We present the theory relating KDE of MH samples with that of i.i.d. samples and provide expressions for plug-in bandwidth, h_{mh} and variable KDE based bandwidth, h_{bk}.

Figure: Plot of true density and KDE of M-H samples with proposal $g(y,x) \propto x^2 e^{-1.7x}$ for target $f(x) = x^2 e^{-x}/2$ based on h_{iid} , h_{mh} and h_{bk} .

- **Assumption 1 fails**: Based on the form of P_X in (1), due to the rejection step of M-H, (X_i, X_{i+1}) will not a have bounded bivariate density. Infact, the transition density does not exist w.r.t the Lebesgue measure.
- So, Density Estimation for MH requires some special attention.
- We present the theory relating KDE of MH samples with that of i.i.d. samples and provide expressions for plug-in bandwidth, h_{mh} and variable KDE based bandwidth, h_{bk}.

Figure: Plot of true density and KDE of M-H samples with proposal $g(y,x) \propto x^2 e^{-1.7x}$ for target $f(x) = x^2 e^{-x}/2$ based on h_{iid} , h_{mh} and h_{bk} .

- **Assumption 1 fails**: Based on the form of P_X in (1), due to the rejection step of M-H, (X_i, X_{i+1}) will not a have bounded bivariate density. Infact, the transition density does not exist w.r.t the Lebesgue measure.
- So, Density Estimation for MH requires some special attention.
- We present the theory relating KDE of MH samples with that of i.i.d. samples and provide expressions for plug-in bandwidth, h_{mh} and variable KDE based bandwidth, h_{bk} .

Figure: Plot of true density and KDE of M-H samples with proposal $g(y,x) \propto x^2 e^{-1.7x}$ for target $f(x) = x^2 e^{-x}/2$ based on h_{iid} , h_{mh} and h_{bk} .

- **Assumption 1 fails**: Based on the form of P_X in (1), due to the rejection step of M-H, (X_i, X_{i+1}) will not a have bounded bivariate density. Infact, the transition density does not exist w.r.t the Lebesgue measure.
- So, Density Estimation for MH requires some special attention.
- We present the theory relating KDE of MH samples with that of i.i.d. samples and provide expressions for plug-in bandwidth, h_{mh} and variable KDE based bandwidth, h_{bk} .

Figure: Plot of true density and KDE of M-H samples with proposal $g(y,x) \propto x^2 e^{-1.7x}$ for target $f(x) = x^2 e^{-x}/2$ based on h_{iid} , h_{mh} and h_{hk} .

Local Assumptions

• Fix $u \in \mathbb{R}$ and suppose there are functions $V : \mathbb{R} \to \mathbb{R}^+$, $R : \mathbb{N} \to (0,1)$ and constants $\varepsilon > 0$, $M < \infty$ such that uniformly for $x \in [u - \varepsilon, u + \varepsilon]$ and for $i = 0, 1, \ldots$

Assumption (L1)

$$|\tilde{p}_y^{(i)} - f(x)| < V(y)R(i)$$
 and $\sum_{i=0}^{\infty} R(i) < M$.

Assumption (L2)

f(x), $\frac{1}{a(x)}$, $p^{(i)}(x)$, V(x), $\mathbb{E}[V(X_0)]$ all are bounded by M.

Assumption (L3)

a(x) and f(x) are uniformly continuous.

Assumption (L4)

f(x) has a bounded third derivative in $x \in [u - \varepsilon, u + \varepsilon]$.

Local Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions L1-L3,

$$\mathbb{V}(\hat{f}(u)) = A(u) \frac{\mu_{0,2} f(u)}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A(u) \mathbb{V}(\hat{f}_{iid}(u)) \qquad \text{as } n \to \infty \text{ and } h \to 0.$$

where, $A(u) := \left(\frac{2}{a(u)} - 1\right)$ and a(u) denotes probability of accepting a move from u.

Additionally, under Assumption L4, we get the asymptotic bias

$$\mathbb{E}(\hat{f}(x)) - f(u) = \frac{1}{2}\mu_{2,1}h^2f''(u) + o\left(\frac{1}{n}\right) + o(h^2), \text{ as } n \to \infty \text{ and } h \to 0.$$

• **Comment:** Variance of kernel density estimator based on i.i.d. samples is multiplied by the factor A(u), which is always greater than or equal to 1 and inversely proportional with the acceptance probability.

Local Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions L1-L3,

$$\mathbb{V}(\hat{f}(u)) = A(u)\frac{\mu_{0,2}f(u)}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A(u)\mathbb{V}(\hat{f}_{iid}(u)) \qquad \text{as } n \to \infty \text{ and } h \to 0.$$

where, $A(u) := \left(\frac{2}{a(u)} - 1\right)$ and a(u) denotes probability of accepting a move from u.

Additionally, under Assumption L4, we get the asymptotic bias,

$$\mathbb{E}(\hat{f}(x)) - f(u) = \frac{1}{2}\mu_{2,1}h^2f''(u) + o\left(\frac{1}{n}\right) + o(h^2), \text{ as } n \to \infty \text{ and } h \to 0.$$

• **Comment:** Variance of kernel density estimator based on i.i.d. samples is multiplied by the factor A(u), which is always greater than or equal to 1 and inversely proportional with the acceptance probability.

Local Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions L1-L3,

$$\mathbb{V}(\hat{f}(u)) = A(u)\frac{\mu_{0,2}f(u)}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A(u)\mathbb{V}(\hat{f}_{iid}(u)) \qquad \text{as } n \to \infty \text{ and } h \to 0.$$

where, $A(u) := \left(\frac{2}{a(u)} - 1\right)$ and a(u) denotes probability of accepting a move from u.

Additionally, under Assumption L4, we get the asymptotic bias,

$$\mathbb{E}(\hat{f}(x)) - f(u) = \frac{1}{2}\mu_{2,1}h^2f''(u) + o\left(\frac{1}{n}\right) + o(h^2), \text{ as } n \to \infty \text{ and } h \to 0.$$

• Comment: Variance of kernel density estimator based on i.i.d. samples is multiplied by the factor A(u), which is always greater than or equal to 1 and inversely proportional with the acceptance probability.

Global Assumptions

• Suppose there are functions $V : \mathbb{R} \mapsto \mathbb{R}^+$, $R : \mathbb{N} \mapsto (0,1)$ and constants $\varepsilon > 0$, $M < \infty$ such that uniformly for $(x,y) \in \mathbb{R}^2$ and for i = 0,1,...

Assumption (G1)

$$\int \frac{|\tilde{p}_y^{(i)}(x) - \pi(x)|}{a(x)} dx \le V(y) R(i) \text{ and } \sum_{i=0} R^{1-\varepsilon} < M.$$

Assumption (G2)

$$p^{(i)}(x)$$
, $\pi(x)$, $\tilde{p}_y^{(i)}(x)$, $E[V(X_i)]$ and $E[\frac{1}{a^2(X_i)}]$ are bounded by M for $x \in \mathbb{R}$ and $\frac{1}{a(x)} < M$ on the support of $p^{(0)}$.

Assumption (G3)

 $\pi^{(3)}(x)^2$ is bounded by an integrable function which is monotone for large enough |x|.

Global Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions G1 and G2,

$$\int Var[\hat{f}(u)]du = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A\int Var[\hat{f}_{iid}(u)]du \text{ as } n \to \infty \text{ and } h \to 0.$$

where,
$$A = \left(\mathbb{E}\left[\frac{2}{a(u)}\right] - 1\right)$$
.

Additionally, under Assumption G3, we get the asymptotic integrated squared bias

$$\int \mathbb{E}[\hat{f}(x) - \pi(x)]^2 dx = \frac{1}{4} h^4 \mu_{2,1}^2 ||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2).$$

Mean Integrated Square Error is given by

$$\mathit{MISE} = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right) + \frac{1}{4}h^4\mu_{2,1}^2||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2)$$

Global Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions G1 and G2,

$$\int Var[\hat{f}(u)]du = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A\int Var[\hat{f}_{iid}(u)]du \text{ as } n \to \infty \text{ and } h \to 0.$$

where, $A = \left(\mathbb{E}\left[\frac{2}{a(u)}\right] - 1\right)$.

Additionally, under Assumption G3, we get the asymptotic integrated squared bias

$$\int \mathbb{E}[\hat{f}(x) - \pi(x)]^2 dx = \frac{1}{4} h^4 \mu_{2,1}^2 ||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2).$$

Mean Integrated Square Error is given by

$$MISE = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right) + \frac{1}{4}h^4\mu_{2,1}^2||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2)$$

Global Asymptotic Variance and Bias Expansion for the M-H algorithm

Theorem (Sköld and Roberts (2003))

Under Assumptions G1 and G2,

$$\int Var[\hat{f}(u)]du = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right)$$
$$= A\int Var[\hat{f}_{iid}(u)]du \text{ as } n \to \infty \text{ and } h \to 0.$$

where, $A = \left(\mathbb{E}\left[\frac{2}{a(u)}\right] - 1\right)$.

Additionally, under Assumption G3, we get the asymptotic integrated squared bias

$$\int \mathbb{E}[\hat{f}(x) - \pi(x)]^2 dx = \frac{1}{4} h^4 \mu_{2,1}^2 ||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2).$$

Mean Integrated Square Error is given by,

$$MISE = A\frac{\mu_{0,2}}{nh} + o\left(\frac{1}{nh}\right) + \frac{1}{4}h^4\mu_{2,1}^2||f''(u)||_2^2 + O\left(\frac{1}{n}\right) + o(h^2).$$

Optimal Bandwidth for MH Chain

Minimising the MISE, we get the optimal bandwidth of M-H Chain as,

$$h_{\text{M-H}} = \left[\frac{A\mu_{0,2}}{\mu_{2,1}^2 ||\pi''||_2^2 n}\right]^{1/5} = A^{1/5} h_{\text{i.i.d.}}$$
 (2)

• **Comment:** Since the factor *A* is inversely proportional to the acceptance probability, we should smooth the region of lower acceptance probability more. It is likely to introduce a mode in the curve in the region of lower probability under the target, that is not present in the true density.

Optimal Bandwidth for MH Chain

Minimising the MISE, we get the optimal bandwidth of M-H Chain as,

$$h_{\text{M-H}} = \left[\frac{A\mu_{0,2}}{\mu_{2,1}^2 ||\pi''||_2^2 n}\right]^{1/5} = A^{1/5} h_{\text{i.i.d.}}$$
 (2)

Comment: Since the factor A is inversely proportional to the acceptance
probability, we should smooth the region of lower acceptance probability
more. It is likely to introduce a mode in the curve in the region of lower
probability under the target, that is not present in the true density.

Based on the expression of h_{MH} in (2), we require the following estimation steps:

• Estimating A:

$$\hat{A} = \frac{1}{n} \sum_{i=0}^{n-1} (2T_i - 1)$$
, where $T_i = \sum_{j=i}^{n-1} \mathbb{I}_{\{X_i = X_j\}}$.

• Estimating $||\pi^{''}||_2^2$ by \hat{l}_k :

$$\hat{l}_k = \frac{(-1)^k}{n^2 g_k^{2k+1}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} K^{(2k)} \left[\frac{X_i - X_j}{g_k} \right] , \text{ where } g_k = \left| \frac{2AK^{(2k)}(0)}{\mu_{2,1} I_{k+1} n} \right|^{1/(2k+3)}.$$

Based on the expression of h_{MH} in (2), we require the following estimation steps:

• Estimating A:

$$\hat{A} = \frac{1}{n} \sum_{i=0}^{n-1} (2T_i - 1)$$
, where $T_i = \sum_{j=i}^{n-1} \mathbb{I}_{\{X_i = X_j\}}$.

• Estimating $||\pi''||_2^2$ by \hat{I}_k :

$$\hat{I}_k = \frac{(-1)^k}{n^2 g_k^{2k+1}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} K^{(2k)} \left[\frac{X_i - X_j}{g_k} \right] , \text{ where } g_k = \left| \frac{2AK^{(2k)}(0)}{\mu_{2,1} I_{k+1} n} \right|^{1/(2k+3)}.$$

Based on the expression of h_{MH} in (2), we require the following estimation steps:

• Estimating A:

$$\hat{A} = \frac{1}{n} \sum_{i=0}^{n-1} (2T_i - 1)$$
, where $T_i = \sum_{j=i}^{n-1} \mathbb{I}_{\{X_i = X_j\}}$.

• Estimating $||\pi^{''}||_2^2$ by \hat{l}_k :

$$\hat{I}_k = \frac{(-1)^k}{n^2 g_k^{2k+1}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} K^{(2k)} \left[\frac{X_i - X_j}{g_k} \right] , \text{ where } g_k = \left| \frac{2AK^{(2k)}(0)}{\mu_{2,1} I_{k+1} n} \right|^{1/(2k+3)}.$$

Based on the expression of h_{MH} in (2), we require the following estimation steps:

• Estimating A:

$$\hat{A} = \frac{1}{n} \sum_{i=0}^{n-1} (2T_i - 1)$$
, where $T_i = \sum_{j=i}^{n-1} \mathbb{I}_{\{X_i = X_j\}}$.

• Estimating $||\pi^{"}||_2^2$ by \hat{l}_k :

$$\hat{I}_k = \frac{(-1)^k}{n^2 g_k^{2k+1}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} K^{(2k)} \left[\frac{X_i - X_j}{g_k} \right] , \text{ where } g_k = \left| \frac{2AK^{(2k)}(0)}{\mu_{2,1} I_{k+1} n} \right|^{1/(2k+3)}.$$

Bump-killing

 To account for long rejection periods and nullify bumps that are produced, we can use a different bandwidth for each data point:

$$\tilde{p}(u) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{h_{bk}(i)} K \left[\frac{X_i - u}{h_{bk}(i)} \right],$$
where $h_{bk}(i) = (2T_i - 1)^{1/5} h_{i.i.d.}$

Estimating h_{bk}:

$$\hat{h}_{bk}(i) = \left[\frac{(2T_i - 1)\mu_{0,2}}{\mu_{2,1}^2 \hat{l}_2 n} \right]^{1/5}.$$

Efficiently kills bumps but can over-smooth the estimate

Bump-killing

 To account for long rejection periods and nullify bumps that are produced, we can use a different bandwidth for each data point:

$$\tilde{p}(u) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{h_{bk}(i)} K \left[\frac{X_i - u}{h_{bk}(i)} \right],$$
where $h_{bk}(i) = (2T_i - 1)^{1/5} h_{i.i.d.}$

Estimating h_{bk}:

$$\hat{h}_{bk}(i) = \left[\frac{(2T_i - 1)\mu_{0,2}}{\mu_{2,1}^2 \hat{l}_2 n} \right]^{1/5}.$$

Efficiently kills bumps but can over-smooth the estimate.

Bump-killing

 To account for long rejection periods and nullify bumps that are produced, we can use a different bandwidth for each data point:

$$\tilde{p}(u) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{h_{bk}(i)} K \left[\frac{X_i - u}{h_{bk}(i)} \right],$$
where $h_{bk}(i) = (2T_i - 1)^{1/5} h_{i.i.d.}$

Estimating h_{bk}:

$$\hat{h}_{bk}(i) = \left[\frac{(2T_i - 1)\mu_{0,2}}{\mu_{2,1}^2 \hat{l}_2 n} \right]^{1/5}.$$

• Efficiently kills bumps but can over-smooth the estimate.

Example 1: h_{iid} fails, h_{mh} works

Figure: Trace plot (left) and KDEs (right) based on MH samples generated using $\mathcal{N}(10,100)$ for the target $\mathcal{N}(0,1)$. Clearly, h_{iid} is a poor smoothing parameter and h_{mh} is more effective.

Example 2: Bump-killing

Figure: Trace plot (left) and KDEs (right) based on MH samples generated using skew- $\mathcal{N}(0,0.54,10)^2$ for the target log- $\mathcal{N}(0,1)$. Bump-killing effectively kills the bumps in h_{mh} and is quite smoother than h_{iid} .

$${}^{2}f(x;\xi,\omega,\alpha) = \frac{2}{\omega\sqrt{2\pi}}e^{-\frac{(x-\xi)^{2}}{2\omega^{2}}}\int_{-\infty}^{\alpha\left(\frac{x-\xi}{\omega}\right)}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}dt$$

- Hastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. *Biometrika*, 57(1):97–109.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092.
- Sköld, M. and Roberts, G. O. (2003). Density estimation for the metropolis—hastings algorithm. *Scandinavian journal of statistics*, 30(4):699–718.