

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2022/2023

TEST - ETAP WOJEWÓDZKI

- Na wypełnienie testu masz 120 min.
- Arkusz liczy 12 stron (w tym brudnopis) i zawiera 16 zadań.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania czytaj uważnie i ze zrozumieniem.
- Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym miejscu.
- Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Przy każdym zadaniu podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.
- Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.
- Nie używaj korektora. Jeśli pomylisz się w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz poprawną.
- Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.

Powodzenia

Maksymalna liczba punktów - 100

,	•	
Liczba	uzyskanych punktów	
lmię i r		omisja Konkursowa po zakończeniu sprawdzenia prac
Podpis	y członków komisji sprawdz	ających prace:
1	(imię i nazwisko)	(podpis)
2	(imie i nazwisko)	(podpis)

Zadanie nr 1

Dokończ zdanie tak aby było fałszywe.

Iloczyn wszystkich liczb pierwszych mniejszych niż 100 jest

- A. liczbą podzielną przez 30.
- B. liczbą podzielną przez 66.
- C. liczbą podzielną przez 39.
- D. liczbą podzielną przez 45.
- E. liczbą podzielną przez 210.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 2

Ile jest liczb całkowitych wśród liczb:

$$\frac{\frac{1}{2} - 4 \cdot \frac{1}{8}}{\frac{1}{2} \cdot \frac{1}{4}}, \frac{\frac{1}{2} \cdot \frac{1}{4}}{(\frac{1}{2} - 4) \cdot \frac{1}{8}}, \frac{\frac{1}{4} \cdot \frac{1}{2}}{\frac{1}{4} \cdot \frac{1}{2}}, \frac{(\frac{1}{2} - 4) \cdot \frac{1}{8}}{\frac{1}{4} \cdot \frac{1}{2}}$$

- A. Zero
- B. Jedna
- C. Dwie
- D. Trzy
- E. Cztery

		4 pkt.
--	--	--------

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 3

Egzamin, który rozpoczyna się o godzinie 9:00 składa się z dwóch części. Na rozwiązanie pierwszej części egzaminu zdający mają $1h\ 20\ min$, po 10 minutach przerwy rozpoczyna się druga część, która trwa półtorej godziny.

Z powodu problemów technicznych czas pierwszej części wydłużono zdającym o 15%. W wyniku zamieszania przerwa wydłużyła się w stosunku do planu o 250%. Krzysiek wyszedł z egzaminu po wykorzystaniu 80% czasu przeznaczonego na drugą część egzaminu. O której godzinie Krzysiek wyszedł z egzaminu?

A. 12:19

B. 12:09

C. 12:00

D. 11:44

E. 11:54

...../ 4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 4

Nauczyciel matematyki w klasie Ani robił statystyki wyników egzaminu z podziałem na rok urodzenia zdających. Obliczył, że 16 osób urodzonych w 2008 roku uzyskało średnio 43 punkty a 9 osób urodzonych w 2009 uzyskało średnio 41 punktów. Następnie zorientował się, że Ania, która urodziła się w 2008 roku, była błędnie przypisana do rocznika 2009. Musiał więc poprawić swoje rachunki. Po korekcie średni wynik grupy osób urodzonych w 2008 roku nie zmienił się. Jaki był średni wynik osób urodzonych w 2009?

A. 40,75

B. 41,2

C. 42

D. 36,9

E. 40,47

...../ 4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 5

Wyrażenie $(2\sqrt{3} + \sqrt{27} + 1)^2$ można zapisać jako: .

A. 40

B. 76

C. $76 + 10\sqrt{3}$

D. $76 + 5\sqrt{3}$

E. $(2\sqrt{30} + 1)^2$

...../ 4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 6

Co wynika z danych przedstawionych na rysunku?

- A. Wszystkie trzy trójkąty są przystające.
- B. Trójkaty 1 i 2 są przystające, ale trójkat 3 nie jest do nich przystający
- C. Trójkaty 1 i 3 są przystające, ale trójkat 2 nie jest do nich przystający
- D. Trójkąty 3 i 2 są przystające, ale trójkąt 1 nie jest do nich przystający
- E. Nie mamy pewności, że jest tu choć jedna para trójkątów przystających

																		./	1	4	ŗ)	k	t	
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---	---	---	---	---	---	--

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 7

Samochód pokonał trasę długości $\sqrt{50}~km$ w kierunku północno-wschodnim (pod kątem 45° od kierunku wschodniego) a następnie 15~km na południe. Z miejsca, do którego dotarł wrócił najkrótszą możliwą drogą do punktu startu. Ten ostatni fragment drogi miał długość

- A. między 9 a 10 kilometrów.
- B. między 10 a 11 kilometrów.
- C. między 11 a 12 kilometrów.
- D. między 12 a 13 kilometrów.
- E. między 13 a 14 kilometrów.

...../ 4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 8

Rozwiązaniem równania $x + 2 - \sqrt{8} = \sqrt{2}x$ jest

- A. liczba mniejsza niż −1
- B. liczba większa niż -1 i mniejsza od 0
- C. liczba większa niż 0 i mniejsza od 1
- D. liczba większa niż 1 i mniejsza od 2
- E. liczba większa niż 2 i mniejsza od 3

...../ 4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 9

Oblicz pole P trójkąta, którego wierzchołkami są punkty $A(0, \sqrt{75} - 2)$, $B(0, 5\sqrt{3} + 6)$ oraz $C(\sqrt{23}, \sqrt{19})$

A.
$$P = 4\sqrt{19}$$

B.
$$P = 4\sqrt{23}$$

C.
$$P = 8\sqrt{19}$$

D.
$$P = 8\sqrt{23}$$

E.
$$P = 2\sqrt{19}$$

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 10

Z sześcianu o krawędzi 6dm wydrążono największy możliwy ostrosłup prawidłowy czworokątny (porównaj rysunek).

W ten sposób powstały cztery bryły (ostrosłupy tro	ójkątne). Objętość V każdej z nich
jest równa	
0	

A. $V = 216dm^3$

B. $V = 72dm^3$

C. $V = 18dm^3$

D. $V = 24dm^3$

E. $V = 36dm^3$

																			.,	1	4	p	k	ίt	
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---	---	---	---	----	--

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 11

Podstawą niebieskiego walca o wysokości 1 dm jest koło, w które wpisano sześciokąt foremny o polu równym $\frac{27}{2}\sqrt{3}~\mathrm{dm^2}$. Podstawą zielonego walca o wysokości 22,5 cm jest koło, na którym opisano kwadrat o polu równym $8dm^2$ Który walec ma większą objętość? Wskaż właściwą odpowiedź A-C oraz jej uzasadnienie 1-3.

А	niebieski		1	$3^2 \cdot 1 = 2^2 \cdot 2,25$
В	zielony	ponieważ	2	$3^2 \cdot 1 > 2 \cdot 2,25$
С	objętości obu walców są równe		3	$\left(\frac{3}{2}\sqrt{3}\right)^2 \cdot 1 < 2^2 \cdot 2,25$

Odpowiedź:	ponieważ	
Α,	B lub C	1,2 lub 3
	/ 4 pkt.	

(liczba uzyskanych punktów / maksymalna liczba punktów)

Pizzeria sprzedaje pizzę w trzech rozmiarach

- Mała (średnica 24 cm) za 28,4 zł
- Średnia (średnica 32 cm) za 41 zł
- Duża (średnica 42 cm) za 48,30 zł

Finaliści Wojewódzkiego Konkursu Przedmiotowego z matematyki wyliczyli, że potrzebują minimum $2000\pi~cm^2$ pizzy. Jaka jest minimalna kwota jaką muszą zapłacić, by kupić potrzebną ilość pizzy? Odpowiedź uzasadnij.

110	<i>,</i> _ ~ ~	iąza	

Rozwiązanie:
/ 16 pkt.
/liezho uzvekonyeh punktów / makovmalna liezho punktów

Laura i Filon wskazali swoje ulubione liczby. Laura wskazała liczbę pierwszą, Filon liczbę parzystą. Jeśli do średniej arytmetycznej wskazanych liczb dodamy większą z nich, to otrzymamy liczbę cztery razy mniejszą niż 166. Natomiast jeśli od średniej arytmetycznej wskazanych liczb odejmiemy mniejszą z nich, to otrzymamy $\sqrt{169} \cdot 2^{-1}$. Ułóż odpowiedni układ równań równań. Jaką liczbę wskazała Laura a jaką Filon?

Rozwiązanie:
/ 11 pkt.
(liczba uzyskanych punktów / maksymalna liczba punktów)

Trójkąt Sierpińskiego to zbiór, który powstaje poprzez stopniowe usuwanie z trójkątów równobocznych odpowiednich trójkątów równobocznych. Nie da się narysować trójkąta Sierpińskiego a jedynie kolejne jego przybliżenia jak na poniższym rysunku:

- a) Oblicz pole trzeciego przybliżenia trójkąta Sierpińskiego, jeśli trójkąt będący pierwszym przybliżeniem ma bok długości 5cm
- b) Wyznacz pole n-tego przybliżenia trójkąta Sierpińskiego, jeśli trójkąt będący pierwszym przybliżeniem ma pole równe P

Rozwiązanie:

/ 5 pkt.
(liczba uzyskanych punktów / maksymalna liczba punktów

Podstawą trzech różnych graniastosłupów prostych trójkątnych jest trójkąt prostokątny o przyprostokątnych równych $5\ dm$ i $12\ dm$. Każdy z graniastosłupów ma jedną ścianę boczną, która jest kwadratem. Wyznacz najmniejszą liczbę naturalną H, dla której objętość stożka o promieniu 6dm i wysokości H jest większa niż suma objętości rozważanych graniastosłupów.

Rozwiązanie:
/ 12 pkt.
(liczba uzyskanych punktów / maksymalna liczba punktów)

BRUDNOPIS