Name:	
Instructor:	

Math 10560, Final Review May 20, 3000

- \bullet The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 50 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 0 pages of the test.

Name:		
Instructor:		

Multiple Choice

1.(6 pts.) What can be said about the integrals

$$(i) \int_0^1 \frac{e^x}{x^2} dx;$$

$$(ii) \int_1^\infty \frac{\cos^2 x}{x^2} dx?$$

- (a) both (i) and (ii) converge
- (b) (i) diverges and (ii) converges
- (c) (i) converges and (ii) diverges
- (d) both (i) and (ii) diverge
- (e) neither integral (i) nor (ii) is improper

Solution:

$$\frac{e^x}{x^2} \ge \frac{1}{x^2}$$

which diverges by the p-test for series for intergrals since $2 \ge 1$, thus i diverges.

$$\frac{\cos^2(x)}{x^2} \le \frac{1}{x^2}$$

which converges by the p-test for series for intergrals since $2 \ge 1$, thus ii converges.

2.(6 pts.) The point $(2, \frac{7\pi}{3})$ in polar coordinates corresponds to which point below in Cartesian coordinates?

(a) $(\sqrt{3}, 1)$

(b) Since $\frac{7\pi}{3} > 2\pi$, there is no such point

(c) $(1, \sqrt{3})$

(d) $(-1, \sqrt{3})$

(e) $(-\sqrt{3}, 1)$

Solution:

$$x = r\cos(\theta) = 2\cos(7\pi/3) = 2\cos(\pi/3) = 1$$
$$y = r\sin(\theta) = 2\sin(7\pi/3) = 2\sin(\pi/3) = \sqrt{3}$$

3.(6 pts.) Which integral below gives the area inside the polar curve $r = \sin(3\theta)$?

(a)
$$\frac{1}{2} \int_0^{\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$
 (b) $\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$

(b)
$$\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$$

(c)
$$\frac{1}{2} \int_0^{\pi} \sin^2(3\theta) \ d\theta$$

(d)
$$\frac{1}{2} \int_0^{2\pi} \sin^2(3\theta) d\theta$$

(e)
$$\frac{1}{2} \int_0^{2\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$

Solution: If θ runs from 0 to π then the curve is drawn out. Thus the bounds of the integral are 0 and π , then using the formula

$$\int_0^\pi \frac{1}{2} r^2 d\theta$$

the answer is c

Name: _______
Instructor: ______

 $\mathbf{4.}(6 \text{ pts.})$ Which of the following gives the graph of the curve described by the polar equation

$$r = \cos(3\theta)$$
.

- (a) V
- (b) IV
- (c) II
- (d) I
- (e) III

Solution: When $\theta=0,\,r=1,$ thus that eliminates II, IV and V. Then at $\theta=\pi/3,$ r=-1, thus I must be the correct graph.

5.(6 pts.) The function $f(x) = x + \sqrt{x}$ is one-to-one. Find the tangent line to the inverse function $f^{-1}(x)$ at the point x=2.

(a)
$$y-2=\frac{3}{2}(x-1)$$

(b)
$$y-2-\sqrt{2}=\frac{3}{2}(x-2)$$

(c)
$$y-2-\sqrt{2}=\frac{2}{3}(x-2)$$

(d)
$$y-1=\frac{2}{3}(x-2)$$

(e)
$$y-1=\frac{3}{2}(x-2)$$

Solution: $f^{-1}(2) = 1$, since $1 + \sqrt{1} = 2$, and $f'(x) = 1 + \frac{1}{2}x^{-1/2}$, thus $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{2}{3}$

Thus the answer is clearly d

6.(6 pts.) Compute the integral

$$\int_0^1 4 \tan^{-1}(x) dx \ .$$

(a)
$$\pi - \ln 4$$

(b)
$$2\pi - \ln 2$$
 (c) $\frac{\pi}{\ln 2}$

(c)
$$\frac{\pi}{\ln 2}$$

(d)
$$\pi - 1$$

$$(e) \quad 0$$

Solution: Let $u = \arctan(x)$ and dv = 4dx, thus $du = \frac{dx}{1+x^2}$ and v = 4x, thus by Integration by Parts

$$\int_0^{\frac{\pi}{4}} \tan^2 x \sec^4 x \, dx = 4x \arctan(x)|_0^1 - \int_0^1 \frac{4x}{1+x^2} dx$$

$$= \pi - \int_1^2 \frac{2}{u} du$$

$$= \pi - 2\ln(u)|_1^2$$

$$= \pi - 2\ln(2)$$

$$= \pi - \ln(4)$$

Name:

Instructor:

7.(6 pts.) Find $\int_{0}^{\frac{\pi}{4}} \tan^{2} x \sec^{4} x \, dx$.

(a)
$$\frac{2}{5}$$

(b)
$$\frac{2}{3}$$

(a)
$$\frac{2}{5}$$
 (b) $\frac{2}{3}$ (c) $\frac{8}{15}$ (d) $\frac{2}{15}$

(d)
$$\frac{2}{15}$$

Solution: Let u = tan(x), thus du = sec(x)

$$\int_0^{\frac{\pi}{4}} \tan^2 x \sec^4 x \, dx = \int_0^{\frac{\pi}{4}} \tan^2 x \, (1 + \tan^2) \sec^2 x \, dx = \int_0^1 u^2 (1 + u^2) du = \int_0^1 u^2 + u^4 du$$
Thus

$$\int_0^1 u^2 + u^4 du = \frac{1}{3}u^3 + \frac{1}{5}u^5|_0^1 = \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$$

8.(6 pts.) Which equation below is the partial fraction decomposition of the rational function

$$\frac{5x^2 - 10x - 8}{(x - 2)(x^2 + 4)}.$$

(a)
$$\frac{-1}{x-2} + \frac{6x+2}{x^2+4}$$

(b)
$$\frac{-1}{x-2} + \frac{x+2}{x^2+4}$$

(c)
$$\frac{5}{x-2} + \frac{x+1}{x^2+4}$$

(d)
$$\frac{5}{x-2} + \frac{6x+1}{x^2+4}$$

(e)
$$\frac{-1}{x-2} + \frac{2}{x^2+4}$$

Solution:

$$\frac{5x^2 - 10x - 8}{(x - 2)(x^2 + 4)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4}$$

Thus

$$5x^{2} - 10x - 8 = A(x^{2} + 4) + (Bx + C)(x - 2)$$

When x = 2, -8 = 8A, thus A = -1, when x = 0, -8 = 4A - 2C = -4 - 2C, thus

When x = 3, 7 = (-1)(13) + (3B + 2)(1), thus 20 = 3B + 2, thus B = 6.

Thus the answer is a

Name: _____

Instructor:

9.(6 pts.) The length of the curve $y = \frac{x^3}{6} + \frac{1}{2x}$, $\frac{1}{2} \le x \le 1$, is given by:

(a)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{1 + (x + x^{-1})^2} dx$$

(b)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{(x^2 + x^{-2})} dx$$

(c)
$$\frac{1}{2} \int_{1/2}^{1} (x^2 + x^{-2}) dx$$

(d)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{1 + (x^2 + x^{-2})^2} dx$$

(e)
$$\frac{1}{2} \int_{1/2}^{1} (x + x^{-1}) dx$$

Solution:

$$y' = \frac{x^2}{2} - \frac{1}{2x^2}$$

$$\int_{1/2}^{1} \sqrt{1 + (\frac{x^2}{2} - \frac{1}{2x^2})^2} dx = \int_{1/2}^{1} \sqrt{(\frac{x^2}{2} + \frac{1}{2x^2})^2} dx = \frac{1}{2} \int_{1/2}^{1} (x^2 + x^{-2}) dx$$

10.(6 pts.) Find the area enclosed by the following cycloid and the x-axis:

$$x(t) = t - \sin t$$

$$x(t) = t - \sin t \qquad y(t) = 1 - \cos t \qquad 0 \le t \le 2\pi.$$

$$0 \le t \le 2\pi$$
.

(a)
$$2\pi$$

(b)
$$\pi$$

(c)
$$\frac{\pi^2}{3}$$

(d)
$$3\pi$$

(e)
$$\pi^2$$

Solution:

$$\int_0^{2\pi} (1 - \cos(t))^2 dt = \int_0^{2\pi} 1 - 2\cos(t) + \cos^2(t) dt = \int_0^{2\pi} 1 - 2\cos(t) + (\frac{1}{2} + \frac{1}{2}\cos(2t)) dt$$

Since $\sin(0) = \sin(2\pi) = 0$

$$\int_0^{2\pi} (1 - \cos(t))^2 dt = \int_0^{2\pi} \frac{3}{2} dt = 3\pi$$

11.(6 pts.) Let C be a constant. Which of the following is a solution to the differential equation $y' = x + \frac{1}{x}y$?

(a)
$$y = C$$

(b)
$$y = x + C$$

(b)
$$y = x + C$$
 (c) $y = \frac{x + C}{x}$

(d)
$$y = x(x + C)$$
 (e) $y = Cx^2$

(e)
$$y = Cx^2$$

Solution:

$$y' - \frac{1}{x}y = x$$

Then $\int -\frac{1}{x} = \ln(x^{-1})$, thus integral factor is $\frac{1}{x}$

$$\left(\frac{y}{x}\right)' = 1$$

$$\frac{y}{x} = x + C$$
$$y = x(x + C)$$

12.(6 pts.) Use Simpson's rule with step size $\Delta x = 1$ to appoximate the integral $\int_0^4 f(x)dx$ where a table of values for the function f(x) is given below.

Solution:

$$\frac{1}{3}\left(f(0) + 4f(1) + 2f(2) + 4f(3) + f(4)\right) = \frac{1}{3}\left(2 + 4 + 4 + 12 + 5\right) = 9$$

Name: ______Instructor: _____

13.(6 pts.) Which one of the following statements is TRUE?

- (a) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is divergent by ratio test.
- (b) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is absolutely convergent by root test.
- (c) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is divergent by comparison test.
- (d) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is absolutely convergent by ratio test.
- (e) none of the above

Solution: Compare to $\frac{1}{2n}$ for c. Check to see why the others are false.

14.(6 pts.) Which of the following statements is TRUE?

- (a) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ diverges.
- (b) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ converges conditionally.
- (c) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n}$ diverges by divergence test.
- (d) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ converges absolutely.
- (e) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n}$ converges conditionally.

Solution: Limit comparision test with $\frac{1}{\sqrt{n}}$ shows that b doesn't converge absolutely. But the sequences converges to 0 and it is decreasing thus passes AST. Thus the answer is b. Check to see why the others are false.

Name: ______

15.(6 pts.) Which line below is the tangent line to the parameterized curve $x = t - \cos t$, $y = t + \sin t$ when t = 0?

(a)
$$x = -1$$
, a vertical tangent

(b)
$$y = \frac{1 + \cos t}{1 + \sin t} (x+1)$$

(c)
$$y = 2x + 2$$

$$(d) \quad y = \frac{\pi}{2}x + \frac{\pi}{2}$$

(e)
$$y = \frac{t + \sin t}{t - \cos t} (x+1)$$

Solution:

$$\frac{dx}{dt}|_{t=0} = 1 + \sin(t)|_{t=0} = 1$$

$$\frac{dy}{dt}|_{t=0} = 1 + \cos(t)|_{t=0} = 2$$

Thus

$$\frac{dy}{dx}|_{t=0} = 2$$

Thus tangent line is y - 0 = 2(x - (-1)) or y = 2x + 2.

Name:		

Instructor: <u>ANSWERS</u>

Math 10560, Final Review May 20, 3000

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 50 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 0 pages of the test.

PLE	ASE	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(a)	(b)	(•)	(d)	(e)
3.	(a)	(b)	(●)	(d)	(e)
4.	(a)	(b)	(c)	(•)	(e)
5.	(a)	(b)	(c)	(•)	(e)
6.	(•)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(•)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(●)	(d)	(e)
10.	(a)	(b)	(c)	(•)	(e)
11.	(a)	(b)	(c)	(•)	(e)
12.	(•)	(b)	(c)	(d)	(e)
13.	(a)	(b)	(●)	(d)	(e)
14.	(a)	(●)	(c)	(d)	(e)
15.	(a)	(b)	(●)	(d)	(e)