

AIRLINE DELAYS

TEAM:

Ashley, Gopi, Kiena, Tracy, Zainab

BOARDING PASS

• FLIGHT

B345

• GATE

D8

• SEAT

29E

Project Overview

Airlines Dataset to predict Delays & Airline Delays with Weather and Airport Detail

In the present world the major components of a transportation system include a passenger airline. With time, we have evolved and improved the airline transportation system and operations.

However, even in today's day and time, flight delays cause a lot of inconvenience to our modern passengers. Every year approximately 25-30% of flights are delayed, costing passengers and the operations approximately more than \$28 billion in money and their time.

Flights:
EEPIK | FLATICON | STORYSET |
WEPIK | VIDRY

Purpose/Problem Statement

The purpose of this project is to predict whether a given flight will be delayed, given the information of the scheduled departure.

01 02

Which airline has the most delayed flights?

Which routes have the most delayed occurrences?

••••••

Will flying time impact delay

Which date of the week will have the most delay? Weekend vs Weekday

Which airport (departure/arrival) is the worst?

BOARDING PASS

Purpose/Problem Statement

NOTE:

By conducting an analysis of flight times and metrics regarding airlines, day of travel, and airport arrivals/ departures we can predict what flights are more likely to experience delays. Once patterns are identified, solutions can be developed to address the issues.

- FLIGHT
- B345
- GATE
- D8
- SEAT
- 29E

ne Roles

NOTE:

Zainab

Circle -

- Square -
- Gopi
- Triangle -Ashley/ **Tracy**
- X -Kiena

Ashley, Gopi, Kiena, Tracy, Zainab

BOARDING PASS

• FLIGHT

B345

• GATE

D8

SEAT

29E

BOARDING PASS

Proposal of Machine Learning Model

Supervised Learning- Logistic Regression- binary result Delayed/Not delayed

What variables will be used for the machine learning model?

```
y= "Dep_Del15"
```

X= other columns (Carrier and Airport columns need to be converted to numerical data)

Proposal of Machine Learning Model

NOTE:

- 1) Create a model with LogisticRegression().
- 2) Train the model with model.fit().
- 3) Make predictions with model.predict().
- 4) Validate the model with accuracy_score().

BOARDING PASS

Tableau Dashboard

https://public.tableau.com/views/Book1 TC/DelayOcc urencesvsDistanceGroup?:language=en-GB&publish =yes&:display count=n&:origin=viz share link

- FLIGHT
- B345
- GATE
- **D8**
- SEAT
- 29E

