Ejercicios sobre Pruebas de Hipótesis Cuarto Parcial Inferencia

1. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución con p.d.f dada por:

$$f(x \mid \theta, \nu) = \frac{\theta \nu^{\theta}}{r^{\theta+1}}$$
 ; $x > \nu$, $\theta, \nu > 0$,

con ν desconocido. Halle una prueba LRT para probar las hipótesis:

$$H_0: \theta = 1$$
 vs $H_1: \theta \neq 1$,

y su respectiva región de rechazo.

- 2. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una población con distribución de probabilidad $exp\left(\frac{1}{\theta}\right)$, con $\theta > 0$ y sea Y_1, Y_2, \dots, Y_m otra muestra aleatoria de una población con distribución de probabilidad $exp\left(\frac{1}{\lambda}\right)$, con $\lambda > 0$, ambas muestras aleatorias independientes entre si.
 - a) Halle el LRT para probar: $H_0: \theta = \lambda \text{ vs } H_1: \theta \neq \lambda$.
 - b) Muestre que el LRT de la parte a) equivale a un test con estadístico de prueba dado por:

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j}.$$

- c) Indique como sería la región de rechazo basada en T, para un nivel α dado.
- 3. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución $beta(\mu, 1)$ y sea Y_1, Y_2, \dots, Y_m otra muestra aleatoria de una distribución $beta(\theta, 1)$, ambas muestras aleatorias independientes entre si.
 - a) Encuentre una LRT para probar: $H_0: \theta = \mu \text{ vs } H_1: \theta \neq \mu$.
 - b) Muestre que el test de la parte a), puede escribirse en términos del estadístico:

$$T = \frac{\sum_{i=1}^{n} ln(X_i)}{\sum_{i=1}^{n} ln(X_i) + \sum_{i=1}^{m} ln(Y_i)}.$$

- c) Halle la región de rechazo para esta prueba, usando el estadístico T, hallado en la parte b), usando un nivel $\alpha = 0.05$.
- 4. Sea X una variable aleatoria cuyas distribuciones bajo H_0 y H_1 son:

X	1	2	3	4	5	6	7
$f(x H_0)$	I						
$f(x H_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use el lemma de N-P para encontrar una prueba UMP para probar H_0 vs H_1 , usando un $\alpha = 0.05$. Calcule la probabilidad de error tipo II para esta prueba.

- 5. Suponga que X es una observación de una distribución $Beta(\theta, 1)$.
 - a) Para probar las hipótesis $H_0: \theta \leq 1$ vs $H_1: \theta > 1$, encuentre el tamaño de la función de potencia del test que rechaza H_0 si $X > \frac{43}{50}$.
 - b) Encuentre la región de rechazo y el test UMP a un nivel α para probar:

$$H_0: \theta = 1$$
 vs $H_1: \theta = 3$.

6. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una población con distribución de probabilidad dada por:

$$f(x \mid \theta) = \frac{\theta}{(1+x)^{1+\theta}} \; ; \; x > 0 \; , \; \theta > 0 \; .$$

- Halle el estadístico LRT para probar $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.
- Halle un test UMP y la respectiva región de rechazo para α dado, para probar las hipótesis: $H_0: \theta = 3$ vs $H_1: \theta = 1$.
- 7. Sea X una variable aleatoria con p.d.f $exp\left(\frac{1}{\theta}\right)$. Sea X_1 , X_2 una muestra aleatoria de tamaño 2 de esta distribución. Considere las hipótesis:

$$H_0: \theta \leq 2 \quad vs \quad H_1: \theta > 2$$
.

Se rechaza H_0 si $(X_1, X_2) \in \{(X_1, X_2) \mid X_1 + X_2 > 9\}$. Encuentre la función de potencia para esta prueba.

8. Sea X una variable aleatoria con p.d.f dada por $f(x|\theta) = \theta x^{\theta-1}$, con 0 < x < 1, $\theta > 0$. Sea X_1, X_2 una muestra aleatoria de tamaño 2 de esta distribución. Considere las hipótesis:

$$H_0: \theta \leq 1 \quad vs \quad H_1: \theta > 1$$
.

Se rechaza H_0 si $(X_1, X_2) \in \{(X_1, X_2) | X_1 X_2 > \frac{4}{5}\}$. Encuentre la función de potencia para esta prueba.

- 9. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución $n(\theta, 1)$. Se desean probar las hipótesis: $H_0: \theta = 0$ vs $H_1: \theta = 1$. Usando el lema de N-P, encuentre la región de rechazo para un α dado.
- 10. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución exponencial con media λ . Considere las hipótesis: $H_0: \lambda = \lambda_0 \quad vs \quad H_1: \lambda \neq \lambda_0$. Encuentre el estadístico Score para probar este par de hipótesis y halle la región de rechazo para α dado.

- 11. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución $n(\mu, \sigma^2)$, con σ conocida. Encuentre un Test LRT para probar $H_0: \mu \leq \mu_0$ vs $H_1: \mu > \mu_0$. Para α dado, encuentre la respectiva región de rechazo, en función de un cuantil de una n(0, 1).
- 12. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución $n(\mu_X, \sigma^2)$ y sea Y_1, Y_2, \dots, Y_m otra muestra aleatoria de una distribución $n(\mu_Y, \sigma^2)$, ambas muestras aleatorias independientes entre si. Sea $\lambda = \mu_X \mu_Y$
 - a) Halle un estadístico LRT para probar las hipótesis $H_0: \lambda = 0$ vs $H_1: \lambda \neq 0$.
 - b) Exprese el estadístico de prueba del literal a) en la forma de una variable aleatoria T, cuya distribución es $t(\nu)$.
- 13. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución $n(0, \sigma_X^2)$ y sea Y_1, Y_2, \dots, Y_m otra muestra aleatoria de una distribución $n(0, \sigma_Y^2)$, ambas muestras aleatorias independientes entre si. Sea $\lambda = \frac{\sigma_X^2}{\sigma_Y^2}$.
 - a) Halle un estadístico LRT para probar las hipótesis $H_0: \lambda = \lambda_0$ vs $H_1: \lambda \neq \lambda_0$.
 - b) Exprese el estadístico de prueba del literal a) en la forma de una variable aleatoria F, cuya distribución es $f(\nu_1, \nu_2)$.
- 14. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una $Ber(\theta)$. Muestre que la prueba LRT para probar: $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ rechaza H_0 si $\sum_{i=1}^n X_i > b$.
- 15. Sea X una variable aleatoria con p.d.f dada por:

$$f(x|\theta) = \frac{exp(x-\theta)}{\{1 + exp(x-\theta)\}^2}.$$

Usando solo una observación para X, encuentre el test UMP de tamaño α para probar:

$$H_0: \theta = 0$$
 vs $H_1: \theta = 1$.