Prueba de clase 1

6 de marzo de 2020

Métodos Numéricos I_Doble Grado en Ingeniería Informática y Matemáticas_UGR

DURACIÓN: 50 minutos

MODELO 1

APELLIDOS Y NOMBRE:

DNI/PASAPORTE:

FIRMA:

PREGUNTA 1
0.4 puntos

Sea $\alpha>0$ y considera la función $\varphi:\mathbb{R}_{++}\longrightarrow\mathbb{R}$ definida por

$$\varphi(x) := x^{\alpha}, \qquad (x > 0).$$

- Decide razonadamente si está bien planteado el correspondiente problema: dado $y_0 > 0$, encontrar $x_0 > 0$ tal que $\varphi(x_0) = y_0$.
- \blacksquare Calcula el condicionamiento de dicho problema en todo punto donde tenga sentido. ¿Cómo influye el valor de α ?

PREGUNTA 2 0.6 puntos

Considera el sistema de punto flotante $\mathbb{F}(b,t,L,U), L \leq e \leq U$ y sea $x = (-1)^s b^e \sum_{n=1}^{\infty} a_n b^{-n} \in \mathbb{R}.$

Prueba que

$$\frac{|x - \operatorname{tr}(x)|}{|x|} \le \varepsilon_M$$

e ilustra este hecho con un ejemplo binario concreto.

Prueba de clase 1

6 de marzo de 2020

Métodos Numéricos I_Doble Grado en Ingeniería Informática y Matemáticas_UGR

DURACIÓN: 50 minutos

MODELO 2

APELLIDOS Y NOMBRE:

DNI/PASAPORTE:

FIRMA:

PREGUNTA 1
0.6 puntos

Para el sistema de números máquina $\mathbb{F}(b,t,L,U),\ L\leq e\leq U$ y $x=(-1)^sb^e\sum_{n=1}^\infty a_nb^{-n}\in\mathbb{R},$

demuestra que

$$\frac{|x - \operatorname{tr}(x)|}{|x|} \le \varepsilon_M.$$

¿Cómo influyen Ly Uen dicha estimación? ¿Y en su prueba?

PREGUNTA 2 0.4 puntos

Dado $\beta>0,$ sea $h:(0,+\infty)\longrightarrow\mathbb{R}$ la función definida por

$$h(x) := e^{\beta x}, \qquad (x > 0).$$

- Considera el problema correspondiente a h: dado $y_0 > 0$, encontrar $x_0 > 0$ tal que $h(x_0) = y_0$. ¿Es unisolvente? ¿Y estable? Razona tu respuesta.
- Halla el condicionamiento de dicho problema en todo punto donde sea posible e interpreta el resultado obtenido.