```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

# pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 30)
pd.set_option('display.float_format', '{:,.2f}'.format)

df_vaccination = pd.read_csv('country_vaccinations.csv')

#data is from kaggle : https://www.kaggle.com/gpreda/covid-world-vaccination-progress
#Display first 5 rows

df_vaccination.head()
```

country	iso_code	date	total_vaccinations	people_vaccinated	<pre>people_fully_vaccinated</pre>	daily_vaccinations_raw	daily_vaccination
0 Afghanistan	AFG	2021- 02-22	0.00	0.00	NaN	NaN	Nal
1 Afghanistan	AFG	2021- 02-23	NaN	NaN	NaN	NaN	1,367.0
2 Afghanistan	AFG	2021- 02-24	NaN	NaN	NaN	NaN	1,367.0
3 Afghanistan	AFG	2021- 02-25	NaN	NaN	NaN	NaN	1,367.0
4 Afghanistan	AFG	2021- 02-26	NaN	NaN	NaN	NaN	1,367.0

df_vaccination.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 86512 entries, 0 to 86511
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	country	86512 non-null	object
1	iso_code	86512 non-null	object
2	date	86512 non-null	object
3	total_vaccinations	43607 non-null	float64
4	<pre>people_vaccinated</pre>	41294 non-null	float64
5	<pre>people_fully_vaccinated</pre>	38802 non-null	float64
6	daily_vaccinations_raw	35362 non-null	float64
7	daily_vaccinations	86213 non-null	float64
8	total_vaccinations_per_hundred	43607 non-null	float64
9	<pre>people_vaccinated_per_hundred</pre>	41294 non-null	float64
10	<pre>people_fully_vaccinated_per_hundred</pre>	38802 non-null	float64
11	daily_vaccinations_per_million	86213 non-null	float64
12	vaccines	86512 non-null	object
13	source_name	86512 non-null	object
14	source_website	86512 non-null	object
dtyp	es: float64(9), object(6)		
memo	ry usage: 9.9+ MB		

 $\hbox{\#Find the number or rows and columns}\\$

 ${\tt df_vaccination.shape}$

#There are 76095 rows and 15 columns

(86512, 15)

```
df_vaccination.isnull().sum()
```

#There are no empty rows for country, iso_code or date columns.

country	0
iso_code	0
date	0
total_vaccinations	42905
people_vaccinated	45218
people_fully_vaccinated	47710
daily_vaccinations_raw	51150
daily_vaccinations	299
total_vaccinations_per_hundred	42905
people_vaccinated_per_hundred	45218
<pre>people_fully_vaccinated_per_hundred</pre>	47710
daily_vaccinations_per_million	299
vaccines	0
source_name	0
source_website	0
dtype: int64	

General Overview of the calculations in data

df_vaccination.describe()

	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	daily_vaccinations	total_vaccinations_pe
count	43,607.00	41,294.00	38,802.00	35,362.00	86,213.00	
mean	45,929,644.64	17,705,077.79	14,138,299.85	270,599.58	131,305.49	
std	224,600,360.18	70,787,311.50	57,139,201.72	1,212,426.60	768,238.77	
min	0.00	0.00	1.00	0.00	0.00	
25%	526,410.00	349,464.25	243,962.25	4,668.00	900.00	
50%	3,590,096.00	2,187,310.50	1,722,140.50	25,309.00	7,343.00	
75%	17,012,303.50	9,152,519.75	7,559,869.50	123,492.50	44,098.00	
max	3,263,129,000.00	1,275,541,000.00	1,240,777,000.00	24,741,000.00	22,424,286.00	

#drop the source_name,source_website and vaccine columns

df_vaccine_country = df_vaccination.drop(['source_name','source_website','vaccines'],axis=1)
df_vaccine_country.head()

	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	daily_vaccination
0	Afghanistan	AFG	2021- 02-22	0.00	0.00	NaN	NaN	Nal
1	Afghanistan	AFG	2021- 02-23	NaN	NaN	NaN	NaN	1,367.0
2	Afghanistan	AFG	2021- 02-24	NaN	NaN	NaN	NaN	1,367.0
3	Afghanistan	AFG	2021 - 02-25	NaN	NaN	NaN	NaN	1,367.0
4	Afghanistan	AFG	2021- 02-26	NaN	NaN	NaN	NaN	1,367.0

```
\mbox{\tt\#} convert Date column to date type and fill na values with 0 for calculation
```

```
\label{lem:df_vaccine_country["date"] = pd.to_datetime(df_vaccine_country["date"], format = '%Y-%m-%d')} \\
```

 $\label{eq:df_vaccine_country} $$ df_vaccine_country.replace([np.inf, -np.inf], np.nan) $$ df_vaccine_country = df_vaccine_country.fillna(0) $$ df_vaccine_country.isnull().sum() $$$

country0iso_code0date0total_vaccinations0people_vaccinated0

```
people fully vaccinated
                                            0
     daily vaccinations raw
                                            0
     daily_vaccinations
                                            0
     total_vaccinations_per_hundred
                                            0
     people_vaccinated_per_hundred
                                            0
     people_fully_vaccinated_per_hundred
                                            0
     daily_vaccinations_per_million
                                            0
     dtype: int64
#Function to find total, avergae, maximum and minimum of different vaccinations status by country
def vaccination_country(col_name,func_name):
    Function that requires vaccination column name, and sum/mean/max/min function name as string arguments.
    if func_name == 'sum':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .sum()
                                 .sort_values(by=col_name,ascending= False)
                                 .reset index()
    elif func name == 'mean':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .mean()
                                 .sort_values(by=col_name,ascending= False)
                                 .reset_index()
    elif func_name == 'max':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .max()
                                 .sort_values(by=col_name,ascending= False)
                                 .reset_index()
    elif func_name == 'min':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .min()
                                 .sort_values(by=col_name,ascending= False)
                                 .reset_index()
# Calculating different vaccinations for visualizations
max_total_vaccinations = vaccination_country('total_vaccinations','max')
sum_people_vaccinated = vaccination_country('people_vaccinated','sum')
sum_people_fully_vaccinated = vaccination_country('people_fully_vaccinated','sum')
avg_total_vaccinations = vaccination_country('total_vaccinations_per_hundred','mean')
avg_people_vaccinated = vaccination_country('people_vaccinated_per_hundred','mean')
avg_people_fully_vaccinated = vaccination_country('people_fully_vaccinated_per_hundred','mean')
avg_daily_vaccinations = vaccination_country('daily_vaccinations_per_million','mean')
#Function for Country with maximum and minimum daily vaccinations
def daily_vaccination_country(col_name,func_name):
    A function that requires daily_vaccination column and max/min function name as string arguments.
    daily_vaccination = (df_vaccine_country
                                 .pivot_table(index='country',columns='date',values=col_name)
    if func name == 'max':
        daily_vaccination['Highest Daily Vaccination'] = daily_vaccination.max(axis=1)
        daily_vaccination['Date - Highest Daily Vaccination'] = daily_vaccination.idxmax(axis=1)
        daily_vaccination.sort_values(by='Highest Daily Vaccination',ascending=False,inplace=True)
        daily_vaccination.rename_axis('',axis=1,inplace=True)
        return daily_vaccination[['Highest Daily Vaccination','Date - Highest Daily Vaccination']].reset_index()
    elif func_name == 'min':
```

```
daily_vaccination.replace(0.00,np.nan,inplace=True)
        daily_vaccination['Lowest Daily Vaccination'] = daily_vaccination.min(axis=1)
        daily_vaccination['Date - Lowest Daily Vaccination'] = daily_vaccination.idxmin(axis=1)
        daily_vaccination.sort_values(by='Lowest Daily Vaccination',ascending=False,inplace=True)
        daily_vaccination.rename_axis('',axis=1,inplace=True)
        return daily_vaccination[['Lowest Daily Vaccination','Date - Lowest Daily Vaccination']].reset_index()
#Calculating highest and lowest daily vaccination and the respective dates.
highest_daily_vaccination = daily_vaccination_country('daily_vaccinations','max')
lowest_daily_vaccination = daily_vaccination_country('daily_vaccinations','min')
#Set sns theme and default figsize for all the sns visualizations.
sns.set_theme(style='whitegrid')
sns.set(rc={'figure.figsize' : (12,5)})
fig, axes = plt.subplots(2,1)
sns.barplot(x='country',y='total\_vaccinations',data=max\_total\_vaccinations.head(),ax=axes[0])
axes[0].set(xlabel = '', ylabel = 'Total Vaccinations', title ='Top 5 Countries in terms of total vaccinations!')
sns.barplot(x='country',y='total_vaccinations',data=max_total_vaccinations.tail(),ax=axes[1])
axes[1].set(xlabel = '', ylabel = 'Total Vaccinations', title ='Bottom 5 Countries in terms of total vaccinations!')
fig.tight_layout()
plt.show()
```


fig, axes = plt.subplots(2,1)

```
sns.barplot(x='country',y='people_vaccinated',data=sum_people_vaccinated.head(),ax=axes[0])
axes[0].set(xlabel = '', ylabel = 'People Vaccinated', title ='Top 5 Countries in terms of people vaccinated!')
sns.barplot(x='country', y='people_vaccinated',data=sum_people_vaccinated.tail(),ax=axes[1])
axes[1].set(xlabel = '', ylabel = 'People Vaccinated', title ='Bottom 5 Countries in terms of people vaccinated!')
fig.tight_layout()
plt.show()
```


fig.tight_layout()
plt.show()

fig, axes = plt.subplots(2,1)

plt.show()

```
sns.barplot(x='country', y='total_vaccinations_per_hundred',data=avg_total_vaccinations.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='Average Vaccinations per 100', title='Top 5 Countries in terms of average vaccinations per hundred!')
sns.barplot(x='country', y='total_vaccinations_per_hundred',data=avg_total_vaccinations.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='Average Vaccinations per 100', title='Bottom 5 Countries in terms of average vaccinations per hundred!')
fig.tight_layout(h_pad=3)
```


fig, axes = plt.subplots(2,1)

sns.barplot(x='country', y='people_vaccinated_per_hundred',data=avg_people_vaccinated.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='People Vaccinated per 100', title='Top 5 Countries in terms of average people vaccinated per hundred!')

sns.barplot(x='country', y='people_vaccinated_per_hundred',data=avg_people_vaccinated.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='People Vaccinated per 100', title='Bottom 5 Countries in terms of average people vaccinated per hundred!')

fig.tight_layout()
plt.show()

fig, axes = plt.subplots(2,1)

sns.barplot(x='country', y='people_fully_vaccinated_per_hundred',data=avg_people_fully_vaccinated.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='People Fully Vaccinated per 100', title='Top 5 Countries in terms of average people fully vaccinated per hundr

sns.barplot(x='country', y='people_fully_vaccinated_per_hundred',data=avg_people_fully_vaccinated.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='People Fully Vaccinated per 100', title='Bottom 5 Countries in terms of average people fully vaccinated per hu

fig.tight_layout(h_pad=3)
plt.show()

fig, axes = plt.subplots(2,1)

```
sns.barplot(x='country', y='daily_vaccinations_per_million',data=avg_daily_vaccinations.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='Daily Vaccinations per Million', title='Top 5 Countries in terms of daily vaccinations per million!')
sns.barplot(x='country', y='daily_vaccinations_per_million',data=avg_daily_vaccinations.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='Daily Vaccinations per Million', title='Bottom 5 Countries in terms of daily vaccinations per million!')
fig.tight_layout(h_pad=3)
plt.show()
```


from plotly.offline import init_notebook_mode
import plotly.express as px
init_notebook_mode(connected=True)

```
#Top 5 country with highest total vaccinations
list(max_total_vaccinations['country'].head())

['China', 'India', 'United States', 'Brazil', 'Indonesia']

# Filter the top 5 countries and find their 30 day rolling average of total_vaccinations
top5_country_total = ['China', 'India', 'United States', 'Brazil', 'Indonesia']
top5_country_total_day = df_vaccine_country[df_vaccine_country['country'].isin(top5_country_total)].copy()
top5_country_total_day['30 - Day Rolling'] = top5_country_total_day['total_vaccinations'].rolling(window=30).mean()

#Plotting scatterplot matrix using Seaborn
#create dataframe with important features.
#f_vaccination['total_vacc'] = np.log10(df_vaccination['total_vaccinations'])

df_vaccination['people_vacc'] = np.log10(df_vaccination['people_vaccinated'])

df_vaccination['people_fully_vacc'] = np.log10(df_vaccination['people_fully_vaccinated'])

#drop the original nontransformed columns

df_vaccination = df_vaccination.drop(columns = ['total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated', 'daily_vaccinations'])
```

```
covid_features = df_vaccination[['date', 'total_vacc', 'people_vacc' , 'people_fully_vacc' , 'daily_vacc']]
sns.set_theme(style="ticks")
sns.pairplot(covid_features)
```

/usr/local/lib/python3.10/dist-packages/pandas/core/arraylike.py:402: RuntimeWarning:

divide by zero encountered in log10

 $/usr/local/lib/python 3.10/dist-packages/pandas/core/arraylike.py: 402: \ Runtime Warning: \\$

divide by zero encountered in log10

/usr/local/lib/python3.10/dist-packages/pandas/core/arraylike.py:402: RuntimeWarning:

divide by zero encountered in log10

<seaborn.axisgrid.PairGrid at 0x794c64bc71c0>

vaccine_records=pd.read_csv('country_vaccinations.csv')
vaccine_records.head()

	country	iso_code	date	total_vaccinations	<pre>people_vaccinated</pre>	<pre>people_fully_vaccinated</pre>	daily_vaccinations_raw	daily_vaccination
0	Afghanistan	AFG	2021- 02-22	0.00	0.00	NaN	NaN	Nal
1	Afghanistan	AFG	2021- 02-23	NaN	NaN	NaN	NaN	1,367.0
2	Afghanistan	AFG	2021- 02-24	NaN	NaN	NaN	NaN	1,367.0
3	Afghanistan	AFG	2021- 02-25	NaN	NaN	NaN	NaN	1,367.0
	records.sha	. – - oe	2021-)
(86	512, 15)							

vaccine_records.describe()

	total_vaccinations	people_vaccinated	<pre>people_fully_vaccinated</pre>	daily_vaccinations_raw	daily_vaccinations	total_vaccinations_pe
count	43,607.00	41,294.00	38,802.00	35,362.00	86,213.00	
mean	45,929,644.64	17,705,077.79	14,138,299.85	270,599.58	131,305.49	
std	224,600,360.18	70,787,311.50	57,139,201.72	1,212,426.60	768,238.77	
min	0.00	0.00	1.00	0.00	0.00	
25%	526,410.00	349,464.25	243,962.25	4,668.00	900.00	
50%	3,590,096.00	2,187,310.50	1,722,140.50	25,309.00	7,343.00	
75%	17,012,303.50	9,152,519.75	7,559,869.50	123,492.50	44,098.00	
max	3,263,129,000.00	1,275,541,000.00	1,240,777,000.00	24,741,000.00	22,424,286.00	

vaccine_records['vaccines'].value_counts()

Johnson&Johnson, Moderna, Oxford/AstraZeneca, Pfizer/BioNTech	7608
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech	6263
Oxford/AstraZeneca	6022
Oxford/AstraZeneca, Pfizer/BioNTech	4629
Johnson&Johnson, Moderna, Novavax, Oxford/AstraZeneca, Pfizer/BioNTech	3564
Johnson&Johnson, Oxford/AstraZeneca, Sinovac	312
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sputnik V	311
Johnson&Johnson, Moderna	251
Johnson&Johnson, Pfizer/BioNTech, Sinopharm/Beijing	228
EpiVacCorona, Oxford/AstraZeneca, QazVac, Sinopharm/Beijing, Sputnik V, ZF2001 Name: vaccines, Length: 84, dtype: int64	190

vaccine_records['country'].value_counts()

Norway	482						
Latvia	480						
Denmark							
United States	471						
Russia	470						
Bonaire Sint Eustatius and Saba	146						
Tokelau	114						
Saint Helena	92						
Pitcairn	85						
Falkland Islands	67						
Name: country, Length: 223, dtype:	int64						

#FINDING THE NULL ENTRIES#
vaccine_records.isnull().sum()

country 0 iso_code 0 date 0

```
total_vaccinations
                                      42905
people_vaccinated
                                      45218
people_fully_vaccinated
                                      47710
daily_vaccinations_raw
                                      51150
daily_vaccinations
                                        299
total_vaccinations_per_hundred
                                      42905
people_vaccinated_per_hundred
                                      45218
people_fully_vaccinated_per_hundred
                                      47710
daily_vaccinations_per_million
                                        299
vaccines
                                          0
source_name
                                          0
source_website
                                          0
dtype: int64
```

Dropping missing values in data_frame

clean_data=vaccine_records.dropna()
clean_data.isnull().sum()

country	0
iso_code	0
date	0
total_vaccinations	0
people_vaccinated	0
people_fully_vaccinated	0
daily vaccinations raw	0
daily_vaccinations	0
total vaccinations per hundred	0
people vaccinated per hundred	0
people_fully_vaccinated_per_hundred	0
daily vaccinations per million	0
vaccines	0
source name	0
source website	0
dtype: int64	
**	

sub_records=clean_data[["country","date","total_vaccinations"]]
sub_records.head(10)

	country	date	total_vaccinations	
94	Afghanistan	2021-05-27	593,313.00	ıl.
101	Afghanistan	2021-06-03	630,305.00	
339	Afghanistan	2022-01-27	5,081,064.00	
433	Albania	2021-02-18	3,049.00	
515	Albania	2021-05-11	622,507.00	
516	Albania	2021-05-12	632,676.00	
517	Albania	2021-05-13	638,338.00	
518	Albania	2021-05-14	653,330.00	
522	Albania	2021-05-18	688,947.00	
523	Albania	2021-05-19	697,811.00	

sub_entries=clean_data[["vaccines","date","total_vaccinations"]]
sub_entries.head(10)

```
date total_vaccinations
                                                                                         \overline{\Box}
                                             vaccines
      94 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi... 2021-05-27
                                                                            593,313.00
                                                                                         th
sub_records.isnull().sum()
     country
                           0
     date
                           0
     total_vaccinations
                           0
     dtype: int64
sub_entries.isnull().sum()
                           0
     vaccines
     date
                           0
     total_vaccinations
                           0
     dtype: int64
           Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, ... 2021-05-19
                                                                            697,811.00
sub_records.shape
     (30847, 3)
sub_entries.shape
     (30847, 3)
Albania_records=sub_records.loc[sub_records['country']=='Albania']
print(Albania_records)
                         date total_vaccinations
          country
     433 Albania 2021-02-18
                                          3,049.00
     515 Albania 2021-05-11
                                        622,507.00
                                        632,676.00
     516 Albania 2021-05-12
     517 Albania 2021-05-13
                                        638,338.00
     518 Albania 2021-05-14
                                        653,330.00
              . . .
                                      2,639,523.00
     787 Albania 2022-02-07
     794 Albania 2022-02-14
                                      2,665,804.00
     795 Albania 2022-02-15
                                      2,669,695.00
                                      2,673,183.00
     796 Albania 2022-02-16
     823 Albania 2022-03-15
                                      2,737,859.00
     [123 rows x 3 columns]
```

```
plt.xlabel("Dates",color='black')
plt.ylabel("Total Vaccinations",color='black')
x=Albania_records["date"]
y=Albania_records["total_vaccinations"]
plt.title("Covid Vaccination Progress of Albania",color="red")
plt.plot(x,y)
plt.grid()
plt.show()
```



```
x=sub_entries["vaccines"]
y=sub_entries["total_vaccinations"]
plt.title("Total vaccinations of each category of vaccines",color="orange")
plt.xlabel("Vaccines",color="black")
plt.ylabel("Total Vaccinations",color="black")
plt.bar(x,y,width=5,edgecolor='black')
plt.xticks(rotation=90)
plt.grid()
plt.show()
```

