

Design process of control systems

Figure 4 (ch.1): Design process of control systems.

Outline

- 1. Introduction
- 2. General Form of an LTI System Response
- 3. Time Characteristics of a System's Response
- 4. First-Order Systems
- 5. Second Order Systems: Introduction
 - 1. Overdamped response
 - Underdamped response
 - 3. Undamped response
 - 4. Critically damped response
- 6. Second Order System: General Analysis
- 7. Underdamped Second-Order System (0 < ξ < 1)
- 8. System Response with Additional Poles

3

Objectives

- Find the time response of a system from its transfer function.
- Use poles and zeros to determine the system's response.
- Describe quantitatively the transient response of first and second-order systems.

1. Introduction

- A system's transient response is very important as it allows to verify if the system satisfies certain desired (design) criteria.
- This chapter is dedicated to analyze the transient responses of several types of control systems.

Definitions, [1, p. 159]

Poles and Zeros of a First-Order System: An Example

Poles of a TF

- Values of the Laplace transform variable, s, that cause the TF to become infinite
- Any roots of the denominator of the TF that are common to the roots of the numerator

Figure: a. system showing input & output, b. pole-zero plot of the system; c. evolution of a system response

Definitions, [1, p. 159]

Zeros of a TF

- Values of the Laplace transform variable, s, that cause the TF to become zero
- Any roots of the numerator of the TF that are common to the roots of the denominator

Figure: a. system showing input & output, b. pole-zero plot of the system; c. evolution of a system response

2. General Form of an LTI System Response

This section is a generalization of the textbook's section 4.2.

Consider an LTI system with

- p real non-zero poles $\alpha_1, \alpha_2, \ldots, \alpha_p$ with multiplicities m_1, m_2, \ldots, m_p respectively; and
- q pairs of complex conjugate poles $(\beta_1 \mp j\omega_1), \ldots, (\beta_q \mp j\omega_q)$ with multiplicities n_1, n_2, \ldots, n_q , respectively, where $\omega_i > 0$, $i = 1, \ldots, q$ (see Fig. 1)

Figure 1: Pole distribution on the s-plane

8

Then, the system's transfer function is in the form of:

$$G(s) = \frac{N(s)}{(s - \alpha_1)^{m_1} \cdots (s - \alpha_p)^{m_p} [(s - \beta_1 - j\omega_1)(s - \beta_1 + j\omega_1)]^{n_1} \cdots [(s - \beta_q - j\omega_q)(s - \beta_q + j\omega_q)]^{n_q}},$$

where N(s) is a polynomial in s.

Assume that the order of N(s) is less than the order of the system (i.e., order of $N(s) < m_1 + m_2 + \ldots + m_p + 2n_1 + 2n_2 + \ldots + 2n_q$).

For an input R(s), the output C(s) = R(s)G(s).

If R(s) = 1/s, and assuming that the system has no pole at s = 0, the output can be expressed as (after partial fraction expansion)

$$C(s) = \underbrace{\frac{1}{S}}_{C_f(s)} + \underbrace{\frac{N'(s)}{(s-\alpha_1)^{m_1}\cdots(s-\alpha_p)^{m_p}\left[(s-\beta_1-j\omega_1)(s-\beta_1+j\omega_1)\right]^{n_1}\cdots\left[(s-\beta_q-j\omega_q)(s-\beta_q+j\omega_q)\right]^{n_q}}_{C_n(s)},$$

where N'(s) is a polynomial in s.

$$C_f(s) \equiv$$
 forced response, $C_n(s) \equiv$ natural response

- The forced response represents the contribution of the input to the system's response.
- The natural response represents the contribution of the transfer function G(s) to the system's response.
- Hence, the general form of the system's response to a step input is

$$c(t) \equiv c_f(t) + c_n(t)$$

where

$$c_f(t) \equiv A_r u(t)$$

for some real gain A_r ; and

Consider RL circuit,

$$V(s) = (R + Ls)I(s)$$

$$H(s) = \frac{I(s)}{V(s)} = \frac{1}{Ls + R} = \frac{1/R}{s(L/R) + 1}$$

■ Time constant: Characterizes the response to a step input of a firstorder system.

$$\tau = \frac{L}{R}$$

Put the denominator in the form $\tau S + 1$

Impulse response: $v(t) = \delta(t) \Rightarrow V(s) = 1$

$$I(s) = \frac{1}{R} \frac{1}{\tau s + 1} = \frac{1}{\tau R} \left(\frac{1}{s + \frac{1}{\tau}} \right) \quad S = -\frac{1}{2}$$

The pole is $s = -1/\tau$. The time response is:

$$i(t) = \frac{1}{\tau R} e^{-\frac{t}{\tau}}$$

Step response:
$$v(t) = u(t) \Rightarrow V(s) = \frac{1}{s}$$

$$I(s) = \frac{1}{\tau R} \left(\frac{1}{s} \frac{1}{s + \frac{1}{2}} \right) = \frac{1}{\tau R} \left(\frac{1}{s} \right) \left(\frac{1}{s + \frac{1}{2}} \right) = \frac{1}{\tau R} \left(\frac{k_1}{s} + \frac{k_2}{s + \frac{1}{2}} \right)$$

Solving for the partial fraction coefficients: $k_1 = \tau$, $k_2 = -\tau$, thus:

$$i(t) = \frac{1}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$

Conclusions

- The real parts of the poles are responsible for the convergence or divergence of the response.
- The imaginary parts are responsible for the oscillations.

Diverging amplitude:

- At least one pole on the RHS of the s-plane or at the origin: or
- At least one pair of complex conjugate poles on the j ω -axis with multiplicity 2 or more.

or
$$\xrightarrow{\stackrel{\hat{\times}}{(2)}}$$

Converging response:

All the poles are on the LHS of the s-plane.

Oscillatory response with constant amplitude:

At least one pair of complex conjugate poles on the j ω -axis; and

 $\xrightarrow{\times}$

- No poles on the RHS of the s-plane; and
- All the poles which are on the j ω -axis have a multiplicity of 1.

14

3. Time Characteristics of a System's Response

Definition (Time constant)

The time constant is the time for a step response to reach 63% of its final value.

time constant
$$\approx \frac{1}{|Re(pole)|}$$
 depends on pole only!

Definition (Settling time)

The settling time T_s is the time for the response to reach and stay within $\pm 2\%$ of its final value. (Certain references consider 5%)

Definition (Rise time)

The rising time T_r is the time taken by the response to go from 10% to 90% of its final value.

All the parameters are illustrated in Fig. 2.

Figure 2: Time characteristics of a system's response

162

Chapter 4 Time Response

4.3 First-Order Systems

Consider the following first-order system where a > 0,

$$G(s) = \frac{b}{s+a} \xrightarrow{R(s)} \xrightarrow{R(s)} \xrightarrow{G(s)} C(s) \xrightarrow{j\omega \uparrow} s \text{ plane}$$

$$\xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \sigma$$

Let R(s) = 1/s (unit step)

$$C(s) = \frac{b}{s(s+a)} = \frac{b}{a} \left[\frac{1}{s} + \frac{-1}{s+a} \right] \qquad \Rightarrow c(t) = c_f(t) + c_n(t) = \frac{b}{a} (1 - e^{-at})$$

⇒ A non-oscillatory and convergent output.

Rise time

For a first-order system, the rising time T_r may be approximated as

 $T_r \approx 2.2 \times \text{time constant}$ depends on pole only!

Settling time

For a first- or second-order system, the settling time T_s may be approximated as

Figure 3: First-order system response to a unit step (Fig. 4.5 of [Nise, 2015])

Exercise 1

A system has a transfer function G(s) = 50 / (s + 50). Find the time constant, settling time, and rise time.

Verification

Listing 4: Matlab Code s=tf([1 0],1); first_order=50/(s+50); step(first_order);

4.4 Second-Order Systems: Introduction

In general, a second order system can be represented in the form:

⇒ 4 interesting possibilities.

Second order system response.

5.1. Overdamped response

2 negative real poles, $-\sigma_1 < 0$ and $-\sigma_2 < 0$.

⇒ 2 time constants:

$$\tau_1 = \frac{1}{|\text{pole}_1|} = \frac{1}{|-\sigma_1|}$$
 $\tau_2 = \frac{1}{|\text{pole}_2|} = \frac{1}{|-\sigma_2|}$

$$c(t) = c_f(t) + c_n(t),$$

 $c_n(t)$ is made of two exponential signals with the two time constants.

$$\Rightarrow c_n(t) = k_1 e^{-\sigma_1 t} + k_2 e^{-\sigma_2 t}$$

See Fig. 4(b).

Figure 4: Responses of a second order system to a unit step input (Fig. 4.7 of [Nise, 2015].)

5.2. Underdamped response

2 conjugate complex poles, $-\sigma_d \pm j\omega_d$.

⇒ 1 time constant:

$$\tau = \frac{1}{|\text{poles}|} = \frac{1}{|-\sigma_d|}$$

In this case, $c_n(t) = Ae^{-\sigma_d t}\cos(\omega_d t - \phi)$

⇒ A natural response in the form of a damped sinusoidal signal with an exponential term.

See Fig. 4(c).

Pole-zero plot

Response

Figure 4 (c): Underdamped Response

5.3. Undamped response

2 imaginary poles at $\pm j\omega_d$.

In this case,
$$c_n(t) = A\cos(\omega_1 t - \phi)$$

 \Rightarrow An undamped sinusoidal natural response with a frequency ω_1 .

5.4. Critically damped response

2 real negative poles, $-\sigma_1$.

⇒ 1 time constant:

$$\tau = \frac{1}{|\text{poles}|} = \frac{1}{|-\sigma_1|}$$

In this case,

$$c_n(t) = k_1 t e^{-\sigma_1 t} + k_2 e^{-\sigma_1 t}$$

⇒ A critically damped response is the fastest response to reach steady state without oscillations.

See Fig. 4(e).

Figure 4 (e): Critically Damped Response

A graphical illustration of the 4 types of these responses is shown in Fig. 5.

Figure 5: Responses of a second-order system (Fig. 4.10 of [Nise, 2015])

4.5 The General Second-Order System

The general form of a second-order system transfer function is

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2},$$

 $\omega_n \equiv$ system's natural frequency (response frequency in the case of no damping) $\xi \equiv$ damping ratio

The system's poles are

$$p_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Definition

The **Natural Frequency** of a pole at $p = \sigma + i\omega_d$ is $\omega_n = \sqrt{\sigma^2 + \omega_d^2}$.

- for $\hat{y}(s) = \frac{1}{s^2 + as + b} \frac{1}{s}$, $\omega_n = \sqrt{b}$.
- Radius of the pole in complex plane.

Resonant Frequency.

Also known as resonant frequency

Definition

The **Damping Ratio** of a pole at $p = \sigma + i\omega$ is $\zeta = \frac{|\sigma|}{\omega_n}$.

- for $\hat{y}(s) = \frac{1}{s^2 + as + b} \frac{1}{s}$, $\zeta = \frac{a}{2\sqrt{b}}$.
- Gives the ratio by which the amplitude decreases per oscillation (almost...).

$$p_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Effect of ξ

 $\xi = 0 \Leftrightarrow \text{undamped system}$ $0 < \xi < 1 \Leftrightarrow \text{underdamped system}$ $\xi = 1 \Leftrightarrow \text{critically damped system}$ $\xi > 1 \Leftrightarrow \text{overdamped system}$

Fig. 6 shows a second-order system step response as a function of the damping ratio.

Figure 6: Second-order step response as a function of damping ratio (Fig. 4.11 of [Nise, 2015])

$$\begin{array}{c|c} j\omega & s\text{-plane} \\ \hline X & & j\omega_n\sqrt{1-\zeta^2} \\ \hline & & -\zeta\omega_n \\ \hline & & \\ X & & -j\omega_n\sqrt{1-\zeta^2} \end{array}$$

$$\square \ \omega_n = \sqrt{\sigma_d^2 + \omega_d^2}$$

- \square The 2 poles: $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 1}$
- ☐ In all cases, except in the case of overdamped system

$$\zeta = \frac{\sigma_d}{\omega_n} = \cos\theta$$
, $0 \le \zeta \le 1$.

 $\omega_d \equiv$ damped frequency of oscillations $\sigma_d \equiv$ exponential decay frequency

The practical meanings of ω_d and σ_d are illustrated graphically in Fig. 7.

Figure 7: Second-order step response components generated by complex poles (Fig. 4.8 of [Nise, 2015]).

7. Underdamped Second-Order System (0 $< \xi < 1$)

In this part, we study the **step response** of an underdamped second-order system.

Note that the time response c(t) depends on two parameters only: ω_n and ξ (i.e., on the pair of conjugate poles).

The effect of the damping ratio on the step response of an underdamped system is illustrated in Fig. 8.

Figure 8: Secondorder underdamped step-responses for various damping ratio values. (Fig. 4.13 of [Nise, 2015])

- The oscillation magnitude is inversely proportional to the value of ξ (0 < ξ < 1).
- In addition to the time constant, rise time (T_r) , and settling time (T_s) , which have the same definitions as in first-order systems, the step-response of an underdamped second-order system is also characterized by two other characteristics: the percent overshoot (%OS) and the peak time (T_p) . (See Fig. 9)

Figure 9: Second-order underdamped step-response specifications. (Fig. 4.14 of [Nise, 2015])

Definition (Overshoot)

The percent overshoot %OS is the ratio of the difference between the maximum value and the steady-sate value of the output to the steady-state value (expressed in %).

$$\%OS = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100\% \quad \text{(by definition)}$$

$$\Rightarrow \%OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100\% = e^{-\pi / \tan \theta} \times 100\% \quad \text{(exact value)}$$

Definition (Peak time)

The peak time T_p is the time required to reach the first (maximum) peak.

$$T_p = \frac{\pi}{|\text{Im(poles)}|} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$
 (exact value)

Settling time *T*_S

$$T_s \approx 4 \times \text{time constant} = \frac{4}{|\text{Re(poles)}|} = \frac{4}{\zeta \omega_n} \left|, \frac{1}{\omega_n \sqrt{1 - \zeta^2}}\right|$$

Rising time T.

$$t_r = \frac{1}{\omega_d} \tan^{-1} \left(\frac{\omega_d}{-\sigma} \right) = \frac{\pi - \beta}{\omega_d}$$

where angle β is defined in Figure above. Clearly, for a small value of t_r , v_d must be large.

Note

All these parameters: %OS, T_p , T_s , T_r , and the time constants depend only on the poles of the system.

Figure 10: Lines of constant T_p , T_s , and %OS, Note: $T_{s2} < T_{s1}$; $T_{p2} < T_{p1}$; $\%OS_1 < \%OS_2$ (Fig. 4.18 of [Nise, 2015])

Hint

Take a look at this triangle if you're confused.

$$\sin\theta = \sqrt{1 - \zeta^2}$$
$$\cos\theta = \zeta$$

$$c(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} sin(\omega_d t + \theta)$$

&

$$\theta = \cos^{-1}\zeta = \sin^{-1}\sqrt{1-\zeta^2}$$

Matlab

The Matlab code ch4p1 (in Appendix B and SCS) shows how to generate a polynomial of a second order from 2 conjugate complex poles and how to extract the polynomial coefficients to calculate T_p , T_s , and %OS.

```
'(ch4p1) Example 4.6'
                                       % Display label.
p1 = [13 + 7*i];
                                       % Define polynomial containing
                                       % first pole.
p2=[13-7*i]:
                                       % Define polynomial containing
                                       % second pole.
deng=conv(p1,p2);
                                       % Multiply the two polynomials to
                                       % find the 2nd order polynomial,
                                       % as^2 + bs + c.
omegan=\operatorname{sqrt}(\operatorname{deng}(3)/\operatorname{deng}(1))
                                       % Calculate the natural frequency,
                                       % sqrt(c/a).
zeta=(deng(2)/deng(1))/(2*omegan)
                                       % Calculate damping ratio,
                                       \% ((b/a)/2*wn).
Ts=4/(zeta*omegan)
                                       % Calculate settling time,
                                       % (4/z*wn).
Tp=pi/(omegan*sqrt(1-zeta^2))
                                       % Calculate peak time,
                                       \% pi/wn*sqrt(1-z^2).
pos=100*exp(-zeta*pi/sqrt(1-zeta^2))
                                       % Calculate percent overshoot
                                       \% (100*e^{(-z*pi/sqrt(1-z^2))}).
pause
```


Example 2

A system has a transfer function $G(s) = 36/(s^2 + 4.2s + 36)$. Find the natural frequency and damping ratio.

System: second_order Solution Peak amplitude: 1.31 nse Overshoot (%): 30.9 $\omega_n^2 = 36 \implies \omega_n = 6$ At time (seconds): 0.548 $2\zeta\omega_n = 4.2 \Rightarrow \zeta = 0.35$ 1.2 System: second order Settling time (seconds): 1.83 Verification Amplitude 9.0 Listing 6: Matlab Code $s=tf([1 \ 0],1);$ second_order=36/ 0.4 $(s^2 + 4.2*s + 36);$ step(second_order); 0.5 2.5 Time (seconds)

Example 3

A system has a transfer function $G(s) = 100/(s^2 + 15s + 100)$ Find the peak time, settling time, and the overshoot.

Solution

$$\omega_n = 10$$
 and $\xi = 0.75$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

$$\%OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$

$$\%OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$

$$T_s = \frac{4}{\zeta \omega_n}$$

$$\Rightarrow T_p = 0.475$$

$$\Rightarrow$$
 %0S = 2.833

$$\Rightarrow T_{s = 0.533}$$

Verification

Listing 8: Matlab Code

s=tf([1 0],1);
second_order=100/(s^2 + 15*s + 100);
step(second_order);

Example 4

The poles of a second-order system are $3 \pm j7$. Find the peak time, settling time, the overshoot, the natural frequency, and the damping ratio.

Solution

$$\zeta = \cos \theta = \cos[\arctan(7/3)] = 0.394$$

 $\omega_n = \sqrt{7^2 + 3^2} = 7.616$

$$T_p = \frac{\pi}{\omega_d} = \frac{\pi}{7} = 0.449 \text{ second}$$

$$\%OS = e^{-(\zeta\pi/\sqrt{1-\zeta^2})} \times 100 = 26\%$$

The approximate settling time is

$$T_s = \frac{4}{\sigma_d} = \frac{4}{3} = 1.333$$
 seconds

Verification

Listing 10: Matlab Code

```
s=tf([1 0],1);
second_order=1/((s+3-7i)*(s+3+7i));
step(second_order);
```


Example 5

A control system is composed of a plant G(s) = K / (s(s + 1)) and a feedback sensor of transfer function H(s) = 0.5. Find K so that the system is:

- 1. critically damped
- 2. Undamped

Solution

Verification

Listing 12: Matlab Code

```
s=tf([1 0],1);
K=0.5;
G=1/(s*(s+1));
H=0.5;
second_order=feedback(K*G,H);
                                              System: second_order
step(second_order);
                                               Settling time (seconds): 11.7
                         1.8
                         1.6
                         1.4
                      Amplitude 1.2 1 0.8
                         8.0
                         0.6
                         0.4
                         0.2
                           0
                                                                            14 52 16
                                                        8
                                                              10
                                                                     12
                               Hitham Jleed
                                          4
                                                 Time (seconds)
```


Exercise 2

A control system is composed of a plant G(s) = K / (s(s + a)) and a feedback sensor of transfer function H(s) = 5. Find the positive gains K and A so that the following conditions are simultaneously satisfied:

- 1. an overshoot less than 5%
- 2. a settling time less than 0.5 s

On the s-plane, indicate the regions of the poles corresponding to these specifications.

Verification

Listing 14: Matlab Code

```
s=tf([1 0],1);
a=18;
K=30;
G=K/(s*(s+a));
H=5;
second_order=feedback(G,H);
step(second_order);
```


■ Example

Determine the differential equations in the state variables $x_1(t)$ and $x_2(t)$ for the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u.$$

Find the undamped natural frequency ω_n and damping ratio ζ for this system.

Solution

For this system

$$[sI - A] = \begin{bmatrix} s+1 & 2\\ -2 & s+3 \end{bmatrix}$$

and

$$\det{[sI - A]} = s^2 + 4s + 7$$

and therefore for state variable $x_1(t)$:

$$\frac{d^2x_1}{dt^2} + 4\frac{dx_1}{dt} + 7x_1 = \frac{du}{dt} + 3u.$$

and for $x_2(t)$:

$$\frac{d^2x_2}{dt^2} + 4\frac{dx_2}{dt} + 7x_2 = 2u.$$

By inspection, $\omega_n^2 = 7$, and $2\zeta\omega_n = 4$, giving $\omega_n = \sqrt{7}$ rad/s, and $\zeta = 2/\sqrt{7} = 0.755$.

8. System Response with Additional Poles

the question

What is the effect of adding one (or more) pole(s) on the step-response of a second-order system? $i\omega$

Consider the following 2nd order system with poles

$$p_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

$$\Rightarrow G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

Suppose that a third pole $p_3 = -\alpha_r$ is added to the system.

 \Rightarrow the system becomes of order 3.

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta \omega_n s + \omega_n^2)(s + \alpha_r)}$$

After some mathematical manipulations and applying partial-fraction expansion, the system's step response can be expressed as:

$$C(s) = \frac{A}{s} + \underbrace{\frac{B(s + \zeta \omega_n) + C\omega_d}{(s + \zeta \omega_n)^2 + \omega_d^2} + \frac{D}{s + \alpha_r}}_{\text{forced response}}$$

The effect of the term $De^{-\alpha_r t}$ on the original 2nd order system's response is illustrated in Fig. 12.

Practically, when $\alpha_r \geq 5\sigma_d$, the effect of pole $p_3 = -\alpha_r$ can be considered to be negligible.

 \Rightarrow In this case, the pole p_3 can be simply ignored so that the third-order system is approximated by the original 2nd order system. (p_1 and p_2 are called the dominant poles)

$$G(s) = \frac{N(s)}{(s + \alpha_r)(s^2 + 2\zeta\omega_n s + \omega_n^2)} \stackrel{\text{if } \alpha_r > 5\sigma_d}{\Longrightarrow} G(s) \approx \frac{N'(s)}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

Figure 12: Component responses of a three-pole system. (Fig. 4.23 of [Nise, 2015]) 59

Exercise 3

Which of the following transfer functions can be approximated by a second-order model?

$$G(s) = \frac{700}{(s+15)(s^2+4s+100)}$$

$$G(s) = \frac{360}{(s+4)(s^2+2s+90)}$$

Verification

Solved problems:

- A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20 kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine
 - (a) undamped natural frequency in rad/s and Hz
 - (b) damping factor
 - (c) damped natural frequency n rad/s and Hz.

If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three cycles of free vibration.

Solution:

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{20 \times 10^3}{0.05}} = 632.46 \text{ rad/s}$$

$$f_n = \frac{\omega_n}{2\pi} = \frac{632.46}{2\pi} = 100.66 \,\text{Hz}$$

$$\zeta = \frac{c}{2\sqrt{km}} = \frac{20}{2\sqrt{20 \times 10^3 \times 0.05}} = 0.32$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 632.46 \sqrt{1 - 0.32^2} = 600 \,\text{rad/s}$$

$$f_d = \frac{\omega_d}{2\pi} = \frac{600}{2\pi} = 95.37 \text{ Hz}$$

$$y(t) = Ae^{-\zeta\omega_n t} = 0.1e^{-0.32 \times 632.46t}$$

Summary

- Definitions of Transient-Response Specifications: Frequently, the performance characteristics of a control system are specified in terms of the transient response to a unit-step input, since it is easy to generate and is sufficiently drastic. it is common to specify the following:
- 1. time constant, t_d
- 2. Rise time, t_r
- 3. Settling time, t_s
- 4. Peak time, t_p
- 5. percent overshoot %*OS*

■ 2ND-ORDER SYSTEM DYNAMICS

https://controlsystemsacademy.com/0024/0024.html#zeta1

References

Nise, N. S. (2015). Control Systems Engineering. Wiley, 7 edition.