决策树(Decision Tree)

一、分类(Classification)

• 1、分类的意义

数据库

>	X J/D/·				
編號	性別	年齡	婚姻	家庭 人數	購買 RV房 車
A0001	Male	45	未婚	1	是
A0002	Male	52	已婚	7	是
A0003	Female	38	已婚	5	是
A0004	Male	25	已婚	5	否
A0005	Female	48	已婚	4	是
A0006	Male	32	未婚	3	是
A0007	Female	65	已婚	4	否
A0008	Male	33	已婚	3	是
A0009	Male	45	已婚	4	是
A0010	Female	52	未婚	1	是
A0011	Male	38	未婚	1	否
	•••				
Z0099	Male	22	未婚	4	是

预测

分类模型— 决策树

分类模型— 聚类

了解类别属性 与特征

2、决策树分类技术

数据库 分类标记 購買 家庭 性别 RV房 年齡 婚姻 編號 性別 人數 車 Female Male A0001 45 未婚 是 Male A0002 Male 52 已婚 7 是 A0003 Female 已婚 是 年龄 婚姻 已婚 否 A0004 Male 5 A0005 Female 48 已婚 4 是 A0006 未婚 是 Male A0007 Female 65 已婚 4 否 <35 ≥35 已婚 是 8000A 已婚 Male 33 3 A0009 已婚 是 Male 45 4 未婚 是 A0010 Female A0011 未婚 否 Male 38 1 是 是 否 否 Z0099 未婚 4 是 Male

3、分类的程序

- 模型建立(Model Building)
- 模型评估(Model Evaluation)
- 使用模型(Use Model)

决策树分类的步骤

数据库

	編號	性別	年齡	婚姻	家庭	購買 RV房	
					人数	車	
	A0001	Male	45	未婚	1	是	
П	A0002	Male	52	已婚	7	是	
	A0003	Female	38	已婚	5	是	
	A0004	Male	25	已婚	5	否	
	A0005	Female	48	已婚	4	是	
	A0006	Male	32	未婚	3	是	
	A0007	Female	65	已婚	4	否	
Ц	A0008	Male	.3.3	戸婚	.3		
	A0009	Male	45	已婚	4	是	Г
	A0010	Female	52	未婚	1	是	
	A0011	Male	38	未婚	1	否	
		•••				•••	
	Z0099	Male	22	未婚	4	是	

4、分类算法的评估

- 预测的准确度: 指模型正确地预测新的或先前未见过的数据的类标号的能力。
 - 训练测试法(training-and-testing)
 - 交叉验证法(cross-validation)
 - 例如,十折交叉验证。即是将数据集分成十份, 轮流将其中9份做训练1份做测试,10次的结果的 均值作为对算法精度的估计,一般还需要进行多 次10倍交叉验证求均值,例如10次10倍交叉验证, 更精确一点。

- 速度: 指产生和使用模型的计算花费。
 - 建模的速度、预测的速度
- 强壮性:指给定噪声数据或具有缺失值的数据, 模型正确预测的能力。
- 可诠释性: 指模型的解释能力。

二、决策树(Decision Tree)

- 决策树归纳的基本算法是贪心算法,它以自顶向下 递归各个击破的方式构造决策树。
 - 贪心算法: 在每一步选择中都采取在当前状态下最好/优的选择。
- 在其生成过程中,分割方法即属性选择度量是关键。 通过属性选择度量,选择出最好的将样本分类的属性。
- 根据分割方法的不同,决策树可以分为两类:基于信息论的方法(较有代表性的是ID3、C4.5算法等)和最小GINI指标方法(常用的有CART、SLIQ及SPRINT算法等)。

(一) 决策树的结构

(二) 决策树的形成

算法: Generate_decision_tree 由给定的训练数据产生一棵判定树。

输入: 训练样本samples, 由离散值属性表示; 候选属性的集合attribute_list。

输出:一棵判定树。

方法:

- (1) 创建节点N;
- (2) if samples 都在同一个类C then
- (3) 返回N作为叶节点,以类C标记;
- (4) if attribut_list 为空 then
- (5) 返回N作为叶节点,标记为 samples中最普通的类; //多数表决
- (6) 选择attribute_list中具有最高信息增益的属性test_attribute;
- (7) 标记节点 N 为test_attribute;
- (8) for each test_attribute 中的已知值a, //划分 samples
- (9) 由节点 N长出一个条件为 test_attribute = a,的分枝;
- (10) 设s,是samples 中test_attribute =a,的样本的集合; //一个划分
- (11) if s, 为空 then good and g
- (12) 加上一个树叶, 标记为samples中最普通的类;
- (13) else 加上一个由 Generate_decision_tree(s, attribute_list-test_attribute)返回的节点;

例:

年齢	性別	家庭	購買RV
- -	11± 771	所得	房車
<35	Male	小康	否
≧35	Female	小康	否
≧35	Female	小康	否
≥35	Female	低所得	否
<35	Male	高所得	否
≥35	Female	低所得	否
<35	Female	低所得	否
<35	Female	高所得	是
≥35	Male	小康	是
<35	Male	高所得	否
≥35	Female	小康	否
<35	Male	低所得	否
≥35	Female	小康	否
\ ≧35	Male	低所得	是
\≧35 /	\ Male /	∖小康	是
≥35/	Female	低所得	否
	\ /		

- 根部节点
- 中间节点
- 停止分支

(三) ID3算法(C4.5,C5.0)

- Quinlan(1979)提出,以Shannon(1949)的信息论 为依据。
- ID3算法的属性选择度量就是使用信息增益,选择最高信息增益的属性作为当前节点的测试属性。
- 信息论: 若一事件有k种结果,对应的概率为 P_i 。则此事件发生后所得到的信息量I(视为Entropy)为:

$$I = -(p_1 * log_2(p_1) + p_2 * log_2(p_2) + ... + p_k * log_2(p_k))$$

Example 1:

Example 2:

Example 3:

• 设 $k=4 \rightarrow p_1=1, p_2=0, p_3=0, p_4=0$ $I=-(1*log_2(1))=0$

信息增益

设U为u个元组的集合,类别属性中的分类有m个,设 u_i 是分别属于这m个

类的样本数, $\frac{u_i}{u}$ 是U中样本属于该分类的概率的估计值,那么对于这个给定的

样本分类的信息熵是

$$I(u_1, u_2, ..., u_m) = -\sum_{i=1}^{m} \frac{u_i}{u} \log_2 \frac{u_i}{u}$$

具有值域 $\{a_1,a_2,...,a_v\}$ 的属性A可以用来将U划分为子集 $\{U_1,U_2,...,U_v\}$,其中, U_j 包含U中A值为 a_j 的那些样本,设 U_j 包含第i类给定样本分类的 u_{ij} 个样本。则根据A划分的期望信息称作A的熵为

$$E(A) = \sum_{j=1}^{\nu} \frac{u_{1j} + \ldots + u_{mj}}{u} I(u_{1j}, \ldots, u_{mj})$$

根据 A 进行的划分获得的信息增益为

$$Gain(A) = I(u_1, u_2, \dots, u_m) - E(A)$$

$$n=16$$

Example(Gain) $n_1 = 2$

 $I(16,4) = -((4/16)*log_2(4/16)+(12/16)*log_2(12/16))=0.8113$

E(年龄)=(6/16)*I(6,1)+(10/16)*I(10,3)=0.7946

Gain(年龄)=I(16,4)-E(年龄)=0.0167

年齡	性別	家庭	購買RV
十四	12 //1	所得	房車
<35	Male	小康	否
≥35	Female	小康	否
≥35	Female	小康	否
≥35	Female	低所得	否
<35	Male	高所得	否
≥35	Female	低所得	否
<35	Female	低所得	否
<35	Female	高所得	是
≥35	Male	小康	是
<35	Male	高所得	否
≥35	Female	小康	否
<35	Male	低所得	否
≥35	Female	小康	否
≧35	Male	低所得	是
≧35	Male	小康	∖是 /
≥35	Female	低所得	李

■ Gain(年龄)=0.0167 ■

Gain(性别)=0.0972

Gain(家庭所得)=0.0177

■ Max:作为第一个分类依据

Example(续)

年齢	性別	家庭	購買RV
í	12.774	所得	房車
<35	Male	小康	否
<35	Male	低所得	否
<35	Male	高所得	否
<35	Male	高所得	否
≧35	Male	小康	是
≧35	Male	小康	是
≧35	Male	低所得	是

			/~_
年齡	性別	家庭 所得	購買RV 房車
<35	Female	低所得	否
<35	Female	高所得	是
≥35	Female	小康	否
≥35	Female	小康	否
≥35	Female	小康	否
≥35	Female	小康	否
≥35	Female	低所得	否
≥35	Female	低所得	否
≥35	Female	低所得	否

 $I(7,3) = -((3/7) * log_2(3/7) + (4/7) * log_2(4/7)) = 0.9852$

■ Gain(家庭所得)=0.688

 $I(9,1) = -((1/9) * \log_2(1/9) + (8/9) * \log_2(8/9)) = 0.5032$

■ Gain(年龄)=0.2222

Gain(家庭所得)=0.5032

Example(end)ID3算法

资料

年齢	性別	家庭 所得	購買RV 房車
<35	Male	小康	否
≧35	Female	小康	否
≥35	Female	小康	否
≥35	Female	低所得	否
<35	Male	高所得	否
≥35	Female	低所得	否
<35	Female	低所得	否
<35	Female	高所得	是
≥35	Male	小康	是
<35	Male	高所得	否
≧35	Female	小康	否
<35	Male	低所得	否
≥35	Female	小康	否
≧35	Male	低所得	是
≥35	Male	小康	是
≧35	Female	低所得	否

Decision Tree

分类规则:

IF性别=Female AND家庭所得= 低所得THEN购买RV房车=否

IF性别=Female AND家庭所得= 小康THEN购买RV房车=否

IF性别=Female AND家庭所得= 高所得THEN购买RV房车=是

IF性别=Male AND年龄<35 THEN购买RV房车=<mark>否</mark>

IF性别=Male AND年龄≥35 THEN购买RV房车=是

(四) Decision Tree的建立过程

- 1、决策树的停止
- 决策树是通过递归分割 (recursive partitioning)建立而成,递归分割是一种把数据分割成不同小的部分的迭代过程。
- 如果有以下情况发生,决策树将停止分割:
 - 该群数据的每一笔数据都已经归类到同一类别。
 - 该群数据已经没有办法再找到新的属性来进行节点分割。
 - 该群数据已经没有任何尚未处理的数据。

2、决策树的剪枝(pruning)

- 决策树学习可能遭遇模型过度拟合(over fitting) 的问题,过度拟合是指模型过度训练,导致模型记 住的不是训练集的一般性,反而是训练集的局部特 性。
- 如何处理过度拟合呢? 对决策树进行修剪。
- 树的修剪有几种解决的方法,主要为先剪枝和后剪枝方法。

(1) 先剪枝方法

- 在先剪枝方法中,通过提前停止树的构造(例如,通过决定在给定的节点上不再分裂或划分训练样本的子集)而对树"剪枝"。一旦停止,节点成为树叶。
- 确定阀值法:在构造树时,可将信息增益用于评估 岔的优良性。如果在一个节点划分样本将导致低于 预定义阀值的分裂,则给定子集的进一步划分将停 止。
- 测试组修剪法:在使用训练组样本产生新的分岔时, 就立刻使用测试组样本去测试这个分岔规则是否能 够再现,如果不能,就被视作过度拟合而被修剪掉, 如果能够再现,则该分岔予以保留而继续向下分岔。

(2) 后剪枝方法

- 后剪枝方法是由"完全生长"的树剪去分枝。
 通过删除节点的分枝,剪掉叶节点。
- 案例数修剪是在产生完全生长的树后,根据最小案例数阀值,将案例数小于阀值的树节点剪掉。
- 成本复杂性修剪法是当决策树成长完成后, 演算法计算所有叶节点的总和错误率,然后 计算去除某一叶节点后的总和错误率,当去 除该叶节点的错误率降低或者不变时,则剪 掉该节点。反之,保留。

应用案例: 在农业中的应用

表 1 农业总产值信息表

省和城市	乡村劳动力 /万人	耕地面积 /khm²	农业生产总值 /亿元	省和城市	乡村劳动力 /万人	耕地面积 /khm²	农业生产总值 /亿元
北京	67. 7	399. 5	176 58	河南	2 940. 3	6 805. 8	1 822 99
天津	79 4	426 1	156 17	湖北	1 232 9	3 358 0	1 147. 51
河北	1 635 5	6 517. 3	1 505 94	湖南	2 062 9	3 249. 7	1 232 75
山西	639 9	3 645. 1	359 15	广东	1 508 2	2 317. 3	1 614 64
内蒙古	512 4	5 491. 4	534 39	广西	1 604. 1	2 614. 2	865. 91
辽宁	633 0	3 389. 7	969 79	海南	170. 2	429. 2	242 54
吉林	517. 0	3 953. 2	666 47	四川	2 811. 9	6 189. 6	1 394 14
黑龙江	760 3	8 995. 3	736 34	贵州	1 388 4	1 840 0	402 29
上海	76 3	290 0	206 78	云南	1 661. 8	2 870. 6	614. 50
江苏	1 531 5	4 448 3	1 849 19	西藏	89. 3	222 1	42 34
浙江	1 102 7	1 617. 8	1 003 71	陕西	1 047. 4	3 393. 4	479. 36
安徽	1 992 9	4 291. 1	1 202 27	甘肃	683. 8	3 482 5	335. 79
福建	776 8	1 204 0	973 39	青海	138 2	589. 9	60. 78
江.西	1 073 7	2 308 4	734 87	宁夏	146.6	807. 2	78. 76
山东	2 487. 0	6 696 0	2 174 54	新疆	310. 7	3 128 3	498. 41

第一步:属性离散化

省和城市	乡村劳动力 分类	耕地面积 分类	农业生产 总值分类	省和城市	乡村 劳动力 分类	耕地面积 分类	农业生产 总值分类
北京	1	1	1	河南	3	3	3
天津	1	1	1	湖北	2	2	2
河北	2	3	2	湖南	2	2	2
山西	1	2	1	广东	2	2	2
内蒙古	1	3	1	广西	2	2	2
辽宁	1	2	2	海南	1	1	1
吉林	1	2	1	四川	3	3	2
黑龙江	1	3	1	贵州	2	2	1
上海	1	1	1	云南	2	2	1
江苏	2	2	3	西藏	1	1	1
浙江	2	2	2	陕西	2	2	1
安徽	2	2	2	甘肃	1	2	1
福建	1	2	2	青海	1	1	1
江西	2	2	1	宁夏	1	1	1
山东	3	3	3	新疆	1	2	1

第二步: 概化 (泛化)

区域	乡村劳	耕地	农业生	区域	乡村劳	耕地	农业生
- 区域	动力	面积	产总值	区域	动力	面积	产总值
华北	少	小	低	中南	多	大	南
华北	少	小	低	中南	中	中	中
华北	中	大	中	中南	中	中	中
华北	少	中	低	中南	中	中	中
华北	少	大	低	中南	中	中	中
东北	少	中	中	中南	少	小	低
东北	少	中	低	西南	多	大	中
东北	少	大	低	西南	中	中	低
华东	少	小	低	西 南	中	中	低
华东	中	中	高	西南	少	小	低
华东	中	中	中	西北	中	中	低
华东	中	中	中	西北	少	中	低
华东	少	中	中	西北	少	4\	低
华东	中	中	低	西北	少	小	低
华东	多	大	高	西北	少	中	低

第三步: 计算各属性的期望信息

=(17/30)*LOG((17/30),2)+(10/30)*LOG((10/30),2)+(3/30)*LOG((3/30),2)

$$Info(D) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$
 (1)

根据式 (1), 得 Info(D) = -1.3249

2) 计算每个属性的期望信息需求

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$
 (2)

根据式 (2), 得 $Info_{\boxtimes \sharp}(D) = 0.933.9$

同理可得 $Info_{\phi h \bar{p} \bar{n} \bar{n} \bar{n} \bar{n} \bar{n}} (D) = 1.0301$

计算各属性的信息增益

计算该划分的各信息增益量

$$Gain(A) = Info(D) - Info(D)$$
 (3)

根据式 (3), 得

$$Gain(区域) = Info(D) - Info_{区域}(D) =$$

$$1 \ 324 \ 9 - \ 0 \ 933 \ 9 = \ 0 \ 391 \ 0$$

$$Gain(乡村劳动力) = Info(D) -$$

$$Info_{\%}$$
村劳动力 $(D) = 1 3249 -$

$$1\ 030\ 1 = 0\ 294\ 8$$

$$1 \ 324 \ 9 - 1 \ 033 \ 2 = 0 \ 291 \ 7$$

第四步: 决策树

案例2:银行违约率

		表 1	训练数技	居集	
标识	利润情况	企业类别	企业规模	经营行业	类: 违约记录
1	亏	国有	大	制造业	н
2	亏	国有	大	商业	н
3	ヺ	外资	大	制造业	L
4	亏	个体	中	制造业	L
5	盈	个体	小	制造业	L
6	盈	个体	小	商业	н
7	盈	外资	小	商业	L
8	亏	国有	中	制造业	н
9	盈	国有	小	制造业	L
10	盈	个体	中	制造业	L
11	盈	国有	中	商业	L
12	亏	外资	中	商业	L
13	盈	外资	大	制造业	L
14	亏	个体	中	商业	н

案例3 对电信客户的流失率分析

- 1、影响客户流失的最为关键的因素是客户在网时间,在网时间短的客户, 其流失比例较大,在网时间越长的客户越稳定,越不容易流失;
- 2、如果在网时长小于 12 个月,通话时长变化率小于-0.5 的用户,那么其流失概率是 100%;
- 3、如果如果在网时长大于等于 12 个月,通话时长变化率大于等于-0.5 的用户,那么其流失概率是 2.8%;
- 4、如果在网时长大于等于 12 个月,通话时长变化率小于-0.5,并且年龄小于等于 30 岁的用户,那么其流失概率为 0%;
- 5、如果在网时长大于等于 12 个月,通话时长变化率小于-0.5,并且年龄大于 30 岁,主叫通话变化率在-0.5 和 0.5 之间的用户,那么其流失概率为 10%;
- 6、如果在网时长大于等于 12 个月,通话时长变化率小于-0.5,并且年龄大于 30 岁,主叫通话变化率小于-0.5,长途占比等于 0 的用户,那么其流失概率为 20%;
- 7、如果在网时长大于等于 12 个月,通话时长变化率小于-0.5,并且年龄大于 30 岁,主叫通话变化率小于-0.5,长途占比大于 0 的用户,那么其流失概率为 0,即该类用户 100%不会流失。

案例4: 在银行中的应用

下图是一棵典型的决策树,它用于根据申请贷款的客户信息来决策是否为该用户发放 贷款。若一个客户年收入5万,信誉等级一般,申请贷款期限为短期,那么根据该决策树 的判断就应该为该客户发放贷款。

个人信用评级决策树

(五) 其他算法

- C4.5与C5.0算法
- Gini Index算法
- CART算法
- PRISM算法
- CHAID算法

1、C4.5与C5.0算法

ID3 算法存在如下缺点:在信息增益的计算中,属性 A 将 U 划分为子集 $\{U_1, U_2, ..., U_r\}$,当每一集合中所有记录得出的结果相同。那么根据 A 划分的期望信息 E(A) 就为 0,此时增益 Gain(A) 就为最大值。为了避免这种情况,算法 C4.5 使用了信息增益比例作为属性选择度量

$$Gainratio = \frac{Gain(A)}{I(u_1, u_2, \dots, u_m)}$$
 类别属性的信息熵

• C5.0算法则是C4.5算法的修订版,适用在处理大数据集,采用Boosting(提升)方式提高模型准确率,又称为Boosting Trees,在软件上的计算速度比较快,占用的内存资源较少。

2、Gini Index算法

- ID3 and PRISM适用于类别属性的分类方法。
- Gini Index能数值型属性的变量来做分类。着重解 决当训练集数据量巨大,无法全部放人内存时,如 何高速准确地生成更快的,更小的决策树。

Gini Index算法

• 集合T包含N个类别的记录,那么其Gini指标就是

 $gini(T)=1-\sum_{j=1}^{N}p_{j}^{2}$ p_{j} 为j类別出现的频率

• 如果集合T分成两部分N1 和 N2。则此分割的 Gini就是

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

先对数值型字段排序,假设排序后的结果为 ν_1,ν_2,\cdots,ν_m ,因为分裂只会发生在两个节点之间,所以有n-1种可能性。通常取中点 $(\nu_i+\nu_{i+1})/2$ 作为分裂点.从小到大依次取不同的split point,取Information Gain指标最大(gini最小)的一个就是分裂点。

3、CART算法

- 由Friedman等人提出,1980年以来就开始发展, 是基于树结构产生分类和回归模型的过程,是 一种产生二元树的技术。
- CART与C4.5/C5.0算法的最大的区别是: 其在每一个节点上都是采用二分法, 也就是一次只能够有两个子节点, C4.5/5.0则在每一个节点上可以产生不同数量的分枝。

设训练样本集 $L = \{X_1, X_2, ..., X_n, Y\}$, 其中, X_i (i = 1, 2, ..., n) 称为属性向量; Y 称为标签向量或类别向量. 当 Y 是有序的数量值时, 称为回归树; 当 Y 是离散值时, 称为分类树.

非纯度指标用 Gini

指数来衡量

 (t)

 分裂规则

 (t)

 (t)

$$i(t) = \sum_{i \neq j} p(i \mid t) p(j \mid t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

其中, i(t)是节点 t 的 Gini 指数, p(i|t)表示在节点 t 中属于 i 类的样本所占的比例, p(j|t)是节点 t 中属于 i 类的样本所占的比例。 假定节点 t 的下一代子节点分为 t 和 t i i 则非纯度指标的下降量表示为:

$$\Delta i(t) = i(t) - i(t_L)p(i|L) - i(t_R)[1 - p(i|L)]$$

其中: $\Delta i(t)$ 是非纯度的下降量; t_L 和 t_R 分别是节点 t 的左右子
结点, $i(t_L)$ 和 $i(t_R)$ 分别是左右子节点的不纯度指数。 $p(i|L)$

- (2) 用该分裂变量和分裂阈值把根节点 t1 分裂成 t2 和 t3。
- (3)如果在某个节点 t_i 处,不可能再有进一步非纯度的显著降低,则节点 t_i 成为叶结点。否则像步骤(1) 那样,寻找它的最优分裂变量和分裂阈值继续进行分裂。

为节点 t 分到左子节点的样本所占的比例。

(4) 当叶节点中只有一个类, 那么这个类就作为叶节点所属 的类, 若节点中有多个类中的样本存在, 根据叶节点中样本最多 的那个类来确定节点所属的类别。