| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

## FINAL EXAM

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard E1.

Mark:

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Standard E2.

Mark:

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix}$$

Standard E3.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Standard E4.

Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

## Standard V1. Mark:

Let V be the set of all polynomials with the operations, for any  $f, g \in V$ ,  $c \in \mathbb{R}$ ,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition:  $c \odot (f \oplus g) = c \odot f \oplus c \odot g$ .
- (b) Determine if V is a vector space or not. Justify your answer.

| Standard V2. | Mark: |
|--------------|-------|
|--------------|-------|

Determine if  $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$  can be written as a linear combination of the vectors  $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$ ,  $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$ , and  $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$ .

Standard V3.

Mark:
$$\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \text{ span } \mathbb{R}^3$$

Standard V4.

Mark:

Let W be the set of all  $\mathbb{R}^3$  vectors  $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$  satisfying x+y+z=1 (this forms a plane). Determine if W is a subspace of  $\mathbb{R}^3$ .

Standard S1.

Determine if the set of vectors  $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$  is linearly dependent or linearly independent

Mark:

Mark:

Standard S2.

Determine if the set  $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$  is a basis of  $\mathcal{P}^3$ .

Standard S3.  $\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$  Let  $W = \operatorname{span} \left\{ \begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\}$ . Find a basis for this vector space.

Standard S4. 
$$\begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -8 \\ -1 \end{bmatrix}$$
. Find the dimension of  $W$ .

Standard A1. Mark:

Let  $T: \mathbb{R}^4 \to \mathbb{R}^2$  be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of  $\mathbb{R}^4$  and  $\mathbb{R}^2$ .

Standard A2.

Mark:

Determine if  $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$  given by  $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - 3c$  is a linear transformation or not.

## Standard A3.

Mark:

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a)  $S: \mathbb{R}^2 \to \mathbb{R}^4$  given by the standard matrix  $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$ .
- (b)  $T: \mathbb{R}^4 \to \mathbb{R}^3$  given by the standard matrix  $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$

## Standard A4.

Mark:

Let  $T: \mathbb{R}^4 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = \begin{bmatrix} x + 3y + 3z + 7w \\ x + 3y - z - w \\ 2x + 6y + 3z + 8w \\ x + 3y - 2z - 3w \end{bmatrix}$$

Compute a basis for the kernel and a basis for the image of T.

Standard M1.

Mark:

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

| Standard M2.            | Ма                                               | rk:                                                 |                  |                                                   |                |
|-------------------------|--------------------------------------------------|-----------------------------------------------------|------------------|---------------------------------------------------|----------------|
| Determine if the matrix | $\begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ | $ \begin{array}{c} -1 \\ 1 \\ 1 \\ -2 \end{array} $ | 0<br>1<br>1<br>0 | $\begin{bmatrix} 4 \\ -1 \\ 3 \\ 0 \end{bmatrix}$ | is invertible. |

Mark: Standard M3.

Find the inverse of the matrix  $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}.$ 

Standard G1.

Mark:

Compute the determinant of the matrix  $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}.$ 

|              | Mark: |
|--------------|-------|
| Standard G2. |       |
|              |       |

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix  $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -5 & 2 & 0 \end{bmatrix}.$ 

Standard G3.

Mark:

Find the eigenspace associated to the eigenvalue 2 in the matrix  $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & 4 & 0 & 0 \\ 11 & -6 & 1 & -1 \\ -9 & 5 & 1 & 3 \end{bmatrix}$ .

Standard G4.

Mark:

Compute the geometric multiplicity of the eigenvalue 2 in the matrix  $A = \begin{bmatrix} 0 & -2 & -1 & 0 \\ -4 & -2 & -2 & 0 \\ 14 & 12 & 10 & 2 \\ -13 & -10 & -8 & -1 \end{bmatrix}$ .

Additional Notes/Marks