

Outline

- Introduction to Deep Learning (DL)
- The History of DL
- Programming Tools
- Artificial Neural Networks
- Convolutional Neural Networks

CONVOLUTIONAL NEURAL NETWORKS

2011

• Google's Artificial Brain Learns to Find Cat Videos

0 0 2014

• Clune and his then-PhD student Anh Nguyen at Cornell University

• Images and numbers!

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110	67	31	34	152	213	206	208	221
243	242	123		94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69			201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138			234	249	241	245
237	236	247	143		78		94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138	65		156	239	255
190	107		102	94	73	114					137
			148	168	203	179					
17	26	12	160	255	255	109	22	26	19	35	24

An image is just a matrix of number [0,255]

- Tasks in computer vision
 - Regression: output variable takes continuous value.
 - Classification: output variable takes class label. Can produce probability of belonging to a particular class.
 - Which US president is in the image?

High level feature extraction

• Let's identify key features in each image category.

Nose, Eyes, Mouth

Wheels, License Plate,

Headings, Door Windows, Steps

However, it is not easy always!

Recall ANN

- 1. Select a set of **data** randomly.
- 2. Feedforwarding
- 3. Compute the **cost function**
- 4. Backpropatation
- 5. Change the **weights** and **biases**

Convolutional Neural Network

- a.k.a **ConvNet or CNN**
- CNN was inspired by the organization of the Visual Cortex
- CNN is a Deep Learning algorithm
- CNN:
 - Takes in an input image,

Assign importance (learnable weights and biases) to various aspects/objects in the

image

• Differentiate one from the other.

- Input layer
- Filter or Kernel, e.g. learned by DL.
- Convolutional Layers
- ReLU
- Pooling
- Padding
- Fully connected layers
- Output layer

Input layer

- Input: a " $m \times m \times r$ " image
- Color images: 3D mtrix:
 e.g. 1080 × 1080 × 3 RGB

• Computationally intensive: $8K (7680 \times 4320)$

Convolution Layer

- Convolution layer:
 - The first layer to **extract features** from an input image.
- Convolution preserves the relationship between pixels
 - By learning image **features** using small squares of input data.
- It is a **mathematical** operation
 - Takes two inputs such as **image** matrix and a **filter** or **kernel**.
- Objective: to extract the high-level features such as edges, from the input image.

Convolution Layer

- Green: resembles the $5 \times 5 \times 1$ input image
- Yellow: Kernel/Filter, a $3 \times 3 \times 1$ matrix.
 - the kernel has the same **depth** as the input image

1,	1 _{×0}	1,	0	0
0 _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

- **Stride Length** = 1, one step movement.
- Every time: a matrix multiplication between the kernel and the portion of the image over which the kernel is hovering.

Convolution layers; convolution two signals e.g,

Kernel / Filter

$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2].g[x-n_1,y-n_2]$$

The filter moves to the right with a certain **Stride Value** till it parses the complete width.

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input channel #1 (red)

Input channel #2 (green)

Input channel #3 (blue)

-1	-1	1
0	1	-1
0	1	1

Kernel channel #1

Kernel channel #2

Kernel channel #3

$$164 + 1 = -25$$

Bias

Stride

• Stride: the amount by which the kernel is moved by as the kernel is passed over the image.

Convolution Operation with Stride Length = 1

Convolution Operation with Stride Length = 2

The Rectified Linear Unit (ReLU)

- A supplementary step to the convolution operation.
- Just changes all the negative activations to 0.
- Rectifier function: to increase the non-linearity in our images.

Padding

- Results:
 - the convolved feature is **reduced** in dimensionality as compared to the input,
 - the dimensionality is either **increased** or remains the **same**.
- Valid Padding; in case of the former,
- Same Padding; in the case of the latter.

 $5 \times 5 \times 1$ image is padded with 0s to create a $6 \times 6 \times 1$ image

Pooling Layer

- Responsible for reducing the spatial size of the Convolved Feature.
- Goal: to decrease the computational power required to process the data through dimensionality reduction.

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Pooling Layer

- Types:
 - Max Pooling
 - Average Pooling.

Classification — Fully Connected Layer (FC Layer)

- FC layer: for learning non-linear combinations of the high-level features as represented by the output of the convolutional layer.
- Over a series of epochs, the model is able to distinguish between dominating and certain low-level features in images and classify them using the Softmax
 Classification technique.

Dropout Layers

• Drops out a random set of activations in that layer by setting them to zero.

- CNN Architecture:
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet
 - ZFNet

Convolution filter by image

- Put the filter
- The depth of the filter **equal to** the images.
- Calculate the **inner product** of the filter and a part of the image that is covered by the filter and store the result.
 - e.g. the similarity between the filter and image pixels, the higher similarity, the higher inner product.
- Move the filter by one pixel and calculate the inner production again.
- The results of all inner products form an matrix that is known as **Activation Map**.

- The result of the inner production:
 - Multiplication of two vectors with 75 dimensions + the bias
- Every multiplication result is stored in a neuron.
- So, the next layer is the neurons which are the results of the inner production of the

Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

=

- Result: $28 \times 28 \times 1$ dimension matrix,
 - because our filter is $5 \times 5 \times 3$ and the **image** is $32 \times 32 \times 3$, so, 2 pixel from each part will be **ignored**

- Every time we may use different filters to detect different parts of the image.
- The result of convolutions of every filter by the images will be a different activation map.

Image

 $32 \times 32 \times 3$

By putting all the activation maps together, we will have a new image in $28 \times 28 \times 6$ size

Activation maps

$$28 \times 28 \times 1$$

• The activation function: Rectified Linear Unit (ReLU).

$$y = \max(0, x)$$

ReLU

- Common in CNNs.
- Linear (identity) for all positive values, and zero for all negative values.
- Cheap to compute as there is no complicated math.
- Less time to train or run a model.
- Converges faster.

- CNN:
 - A series of convolution layers
 - Activation functions between them.
- Every step, the images get smaller and smaller!
 - Solution: padding

The rule of filters:

- Each filter extract some features from the image
- e.g. a filter finds diagonal lines.
- Filters are learnt by Deep learning process.

CNN

Each filter => an activation map

Convolution layers; convolution two signals e.g,

$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2].g[x-n_1,y-n_2]$$

Image Kernels

the representative of the 6 pixels in the output layer.

Consider;

- **Image** 7 × 7
- Filter 3×3
- Step size 2

• Output: a 3×3 image

• Output image size

$$\frac{(N-F)}{stride} + 1$$

$$N = 7, F = 3$$

stride 1 => $(7 - 3) / 1 + 1 = 5$ OK
stride 2 => $(7 - 3) / 2 + 1 = 3$ OK
stride 3 => $(7 - 3) / 3 + 1 = 2.33$ NOT possible

- Apply padding
- Example: image 7×7
- Filter 3×3
- Stride 1
- We expand the borders by one pixel as Zeros
- Then, the size of output is 7×7

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

• In general, the convolution layers with 1 stride, the size of filter $F \times F$ and padding is $\frac{F-1}{2}$.

• Example)

- Filter $3 \times 3 =>$ zero border one pixel
- Filter $5 \times 5 =>$ zero border 2 pixels
- Filter $7 \times 7 =>$ zero border 3 pixels

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

• Padding: a solution to overcome the issue of size reduction!

Convolution Layer

Example:

- Image size: $32 \times 32 \times 3$
- 10 filters, 5×5
- Padding 2 pixels
- Output size?

$$\frac{32 - 5 + 2 \times 2}{1} + 1 = 32$$

Size of each activation maps

• Number of parameters:

(each filter)
$$5 \times 5 \times 3 = 75$$
 (digit) $+ 1$ (bias) $= 76$ 76×10 (filters) $= 760$

• If we want to use fully connected networks we have to have

$$3072 \times 10 = 30720$$

So, CNN has less number of parameters.

Summary

Input: width, height, depth: $W_1 \times H_1 \times D_1$

We need 4 parameters:

- Number of filters *K*
- Filter dimensions $F \times F$
- Stride S
- Padding P

Output: $W_2 \times H_2 \times D_2$

$$W_{2} = \frac{W_{1} - F + 2P}{S} + 1$$

$$H_{2} = \frac{(H_{1} - F + 2P)}{S} + 1$$

$$D_{2} = K$$

Weights for each filter: $F \times F \times D_1$

Total **weights**:
$$(F \times F \times D_1) \times K$$

Convolution with more depth

From Neuron perspective

Pooling

- Merge layer: reduce the size of output
- Apply on each activation map separately

Pooling

- Merge layer: reduce the size of output
- Apply on each activation map separately

Merge layer

Input:
$$W_1 \times H_1 \times D_1$$

We need 2 parameters:

Filter dimensions $F \times F$

Stride S

Output : $W_2 \times H_2 \times D_2$

$$H_2 = (H_1 - F)/S + 1$$

$$W_2 = \frac{W_1 - F}{S} + 1$$

$$D_2 = D_1$$

 $Number\ of\ parameters\ =\ 0$

Padding is not recommended for the merge layers.

Sources

- M. Graph, Deep Learning with Python
- G. Bonaccorso, Mastering Machine Learning Algorithms
- U. Michelucci, Advanced Applied Deep Learning
- http://cs231n.stanford.edu/

Office: #432, Dayang AI Center,

Phone: 010-8999-8586,

email: piran@sejong.ac.kr