# Laser additive manufacturing Thermal Field Prediction (LTFP)

Jun Fan, Weihao Liu NERS 570 Final Project December 4, 2023



#### Content

- Background
- Methods
- Programming
- \* Result and Discussion
- Summary and Future Work



#### **Background**



❖ <u>L</u>aser <u>A</u>dditive <u>M</u>etal <u>M</u>anufacturing (LAMM):

Involves a set of metal additive manufacturing processes

> Harness high power density of lasers to melt and fuse the metal powder and build the

structure layer by layer

Unprecedented geometry flexibility & rapid prototyping capability

#### Laser Beam Scans Pattern:

Various scan patterns are developed trying to improve product quality



#### **Background**



- Different scan pattern leads to different temperature distribution in the material, leading to different grain growth
- Grain growth is difficult to monitor during the printing
  - > Simulation is essential to revealing the grain formation process
  - Numerical models can be used to improve the scan path design by predicting the grain distribution before part is actually printed





Scan path design

Numerical model

- Residual stress concentration
- Micro-defects
- Deformation of the printed part
- Grain formation

Xiao, Zhen, et al. "Recent progress on microstructure manipulation of aluminium alloys manufactured via laser powder bed fusion." *Virtual and Physical Prototyping* 18.1 (2023): e2125880.

#### Motivation



- Thermal field is essential to the prediction of grain growth and other phenomena during LAMM
- ❖ Cellular Automata (CA) model
  - > Relays on precomputed thermal field
  - Lack of interaction with CA model
  - > Low flexibility
- ❖ Laser scan Thermal Field Prediction (LTFP)
  - Interact with the CA model
  - Various boundary conditions and domain increment
  - High efficiency (Parallelization)

# Grain growth prediction workflow

Grain distribution Laser heat source

Thermal model

Cellular Automata (predict grain growth)

#### Method



- ❖ <u>Finite Volume Method</u> (FVM):
  - > Computational domain is divided into non-overlapping control volumes
  - > The state is stored in each cell, typically the mean value
- Diffusion Equation:

> 1D Case: 
$$\frac{\partial u}{\partial t} = \frac{k}{\rho} \frac{\partial^2 T}{\partial x^2} + \dot{q}$$

 $\triangleright u(T)$ : specific internal energy dependent on temperature

$$\int_{l}^{r} \frac{\partial u}{\partial t} \, dx = \int_{l}^{r} \frac{k}{\rho} \frac{\partial^{2} T}{\partial x^{2}} \, dx + \int_{l}^{r} \dot{q} \, dx \quad \Rightarrow$$

> Define: 
$$\bar{X} \equiv \frac{1}{\Delta x} \int_{x}^{x} X \, dx$$



$$ightharpoonup$$
 Define:  $ar{X} \equiv rac{1}{\Delta x} \int_{l}^{r} X \; \mathrm{d}x$   $\qquad rac{\mathrm{d}ar{u}}{\mathrm{d}t} = rac{1}{
ho\Delta x} \left[ rac{k_r \left( T_\mathrm{R} - T_\mathrm{M} 
ight)}{\delta x_\mathrm{R}} - rac{k_l \left( T_\mathrm{M} - T_\mathrm{L} 
ight)}{\delta x_\mathrm{L}} 
ight] + ar{q}$ 

#### Method



- ❖ <u>Finite Volume Method</u> (FVM) in 3D:
- Governing equation:  $\frac{\partial u}{\partial t} = \frac{k}{\rho} \nabla^2 T + \dot{q}$
- $\clubsuit$  Also define:  $\bar{X} \equiv \frac{1}{V} \int_{C} X \ dV$
- $\bigstar$  Recall 1D case:  $\frac{\mathrm{d} \bar{u}}{\mathrm{d} t} = \frac{1}{\rho \Delta x} \left( k \left. \frac{\partial T}{\partial x} \right| k \left. \frac{\partial T}{\partial x} \right|_{L} \right) + \bar{q}$
- Similarly, we have (with central discretization):

$$\frac{\mathrm{d}\bar{u}}{\mathrm{d}t} = \frac{1}{\rho\Delta V} \left[ \frac{k_{x^+} \left( T_{x^+} - T_{\mathrm{M}} \right)}{\delta x_+} \Delta y \Delta z + \frac{k_{x^-} \left( T_{x^-} - T_{\mathrm{M}} \right)}{\delta x_-} \Delta y \Delta z \right] + \frac{k_{y^+} \left( T_{y^+} - T_{\mathrm{M}} \right)}{\delta y_+} \Delta z \Delta x + \frac{k_{y^-} \left( T_{y^-} - T_{\mathrm{M}} \right)}{\delta y_-} \Delta z \Delta x + \frac{k_{z^-} \left( T_{z^-} - T_{\mathrm{M}} \right)}{\delta y_-} \Delta z \Delta x + \frac{k_{z^+} \left( T_{z^+} - T_{\mathrm{M}} \right)}{\delta z_+} \Delta x \Delta y + \frac{k_{z^-} \left( T_{z^-} - T_{\mathrm{M}} \right)}{\delta z_-} \Delta x \Delta y} \right] + \bar{q} \implies \frac{\mathrm{d}\bar{u}}{\mathrm{d}t} = \cdots \equiv f(T)$$



Source: https://row1.ca/pixels-and-their-neighbors

$$\implies \frac{\mathrm{d}\bar{u}}{\mathrm{d}t} = \dots \equiv f(T)$$

#### Method



- ❖ Time stepping:  $\frac{\mathrm{d}\bar{u}}{\mathrm{d}t} = \cdots \equiv f(T)$ ➤ Forward Euler (FE):  $\frac{\mathrm{d}\bar{u}}{\mathrm{d}t} = f(T) \implies \left[\bar{u}_{i,j,k}^{(n+1)} = \bar{u}_{i,j,k}^{(n)} + \Delta t_{i,j,k}^{(n)} f\left(T_{i,j,k}^{(n)}\right)\right]$

- > Von Neumann stability Criterion:  $\Delta t_{i,j,k}^{(n)} \leq \min \left| \frac{(\Delta x)^2}{6k^{(n)}/\rho}, \frac{(\Delta y)^2}{6k^{(n)}/\rho}, \frac{(\Delta z)^2}{6k^{(n)}/\rho} \right|$
- ❖ Cooling rate and temperature gradient are needed for the grain growth model:

$$-\frac{\partial T^{(n)}}{\partial t} = \frac{T^{(n-1)} - T^{(n)}}{\Delta t}, \quad \nabla T^{(n)} = \left(\frac{T_{i+1,j,k}^{(n)} - T_{i-1,j,k}^{(n)}}{2\Delta x}, \frac{T_{i,j+1}^{(n)} - T_{i,j-1}^{(n)}}{2\Delta y}, \frac{T_{i,j,k+1}^{(n)} - T_{i,j,k-1}^{(n)}}{2\Delta z}\right)$$

#### Flowchart





## Code Algorithm



#### Object-oriented design and programming using



- All modules of simulation are written as class objects
- Make most modules singleton to provide global access
- Modules can be reassembled differently to meet different simulation needs
- Uses <u>inherited class</u> + <u>singleton manager</u> to keep track of different types of objects in the same module and provide unified interface





#### Code Algorithm



Structure of thermal boundary module (diagrams generated by Doxygen)

## UML diagram of Boundary Manager object | vector < LTFP::ThermalBoundary \* > | bool |





#### Simulation result – 1D diffusion



#### 1D diffusion test

- Constant diffusion coefficient
- ❖ Initial temperature: 0 K
- Dirichlet boundary at

$$> x + : 0 K$$

$$> x^-: 100 \text{ K}$$

➤ Analytical solution:

$$T^*(t,x) = \sum_{n=1}^{+\infty} \left\{ \frac{200}{n\pi} \left[ \frac{(-1)^n}{n\pi} - 1 \right] \sin(n\pi x) \right.$$
$$\times e^{-\frac{k}{c_p \rho} (n\pi)^2 t} \right\} + 100 - 100x$$



#### Simulation result – 1D diffusion



- ❖ Temperature, cooling rate and temperature gradient with respective to the x-axis (diffusion direction)
- Cooling rate and temperature gradient behave as expected



#### Simulation result - Conservation



- Conservation test case with Neumann boundary on all surfaces. All flux is summed up to zero.
- Applied temperature-dependent thermal conductivity and specific heat.





#### Simulation result – Multi-layer scan test



Multi-layer scan on a block steel with domain increment

Temperature [K]



Laser power distribution [W]



#### Parallelization performance



- Loops are parallelized with OpenMP
- ❖ The multilayer scan case is timed in WSL running on Ryzen 7950X, 16c32t, @5.4GHz



## Parallelization performance



❖ Time consumption of solving thermal equations is greatly reduced after parallelization, but still takes a significant part of comptutation



#### Documentation

Vector3

LTFP::ThermalBoundary Class Reference

Base class of thermal boundaries. More..

#include <ThermalBoundary.hpp>

Inheritance diagram for LTFP::ThermalBoundary:



#### Documentation is generated using Doxygen



# LTFP::ThermalBoundaryConvection LTFP::ThermalBoundaryDirichlet LTFP::ThermalBoundaryMirror LTFP::ThermalBoundaryNeumann LTFP::ThermalBoundaryRadiation [legend]

#### **Member Function Documentation**

• getFlux()

 $\textbf{Real} \ \texttt{LTFP::} Thermal Boundary:: getFlux \ (\ const \ \textbf{Vector3r} \ \& \ \ \textbf{pos,}$ 

const **Real** &

temp

Compute the simple flux thought the boundary.

#### **Parameters**

pos Position of the boundary neighboring cell

temp Temperature of boundary neighboring cell

#### Returns

Flux though the boundary

Reimplemented in LTFP::ThermalBoundaryRadiation, LTFP::ThermalBoundaryRadiation

#### **GitHub**

Code is managed on GitHub



WORK BETTER

### Summary



- Designed algorithm and completed coding of LTFP
  - Using the object-oriented programming language
  - Combined with parallelization
- Preliminarily tested the model
  - 1D case
  - Energy-conserved case
  - Functional test
- Generated git repo and documentation

#### **Future work**



#### Work in progress

- ❖ Add more advanced and stable **solvers**: RK2, RK4, ...
- ❖ Analysis and improve <u>parallelization</u> performance
- More <u>analysis</u> on generated thermal field and different scan patterns

#### **Future work**

- Validation using experiment data
- Integrate LTFP into the grain prediction model
- Uneven domain increment
- Z-ordered data storage

