

EC200T-CN&EC20 R2.1

兼容设计手册

LTE 系列

版本: EC200T-CN&EC20 R2.1_兼容设计手册_V1.1

日期: 2019-01-31

状态: 受控文件

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2019, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2019.

文档历史

修订记录

版本	日期	作者	变更描述
1.0	2019-01-24	桑伟/ 吴清	初始版本
1.1	2019-01-31	桑伟/ 吴疆	 更新了备注 2 中关于紧急呼叫功能的描述, EC200T-CN 不支持紧急呼叫(2.2 章节) 更新 EC200T-CN 的 23 脚(SD_INS_DET)的电压域为 1.8V/2.8V(表 4) 删除了关于 EC200T-CN (U)SIM 卡热插拔功能的备注 (4.4 章节)

目录

文档	当历史		2
目園	₹5		3
表格	格索引		4
	, , , , , ,		
1	引言		6
2	综述		7
	2.1.	产品简介	
	2.2.	功能概述	
	2.3.	引脚分配	Ç
3	引脚描	越上	11
4	硬件参	>考设计	16
	4.1.	供电电源	16
	4.	.1.1. 模块工作电压	16
	4.	.1.2. 供电电源设计	17
	4.2.	开关机	18
	4.2	.2.1. 开关机电路	18
	4.2	.2.2. AT 命令关机	19
	4.3.	复位	19
	4.4.	(U)SIM 接口	20
	4.5.	USB 接口	21
	4.6.	串口	21
	4.7.	PCM 和 I2C 接口	23
	4.8.	ADC 接口	24
	4.9.	网络状态指示	24
	4.10.	STATUS	25
	4.11.	USB_BOOT 接口	25
	4.12.	RF 接口	27
5		रेन	
	5.1.	推荐兼容封装	
	5.2.	安装示意图	30
6	附录A	1	31

表格索引

表 1:	模块基本信息对比	7
表 2:	主要性能参数对比	7
表 3:	I/O 参数定义	. 11
表 4:	引脚对比	. 11
表 5:	模块工作电压范围对比	. 16
表 6:	PCM 接口对比	. 23
表 7:	ADC 接口对比	. 24
表 8:	参考文档	. 31
表 9:	术语缩写	. 31

图片索引

图 1:	EC200T-CN &EC20 R2.1 引脚分配	9
图 2:	突发传输电源要求	. 16
	模块供电电路	
图 4:	供电输入参考设计	. 17
图 5:	开集驱动开机参考电路	. 18
图 6:	按键开机参考电路	. 18
图 7:	RESET_N 复位开集参考电路	. 19
图 8:	8-PIN (U)SIM 接口参考电路	. 20
	6-PIN (U)SIM 接口参考电路	
	· USB 接口参考设计	
	:电平转换芯片参考电路	
	:三极管电平转换参考电路	
	· PCM 和 I2C 接口电路参考设计	
图 14:	网络指示参考电路	. 24
	STATUS 参考电路	
图 16:	: USB_BOOT 接口参考电路设计	. 26
图 17:	. 射频参考电路	. 27
	: EC200T-CN & EC20 R2.1 底视图	
图 19:	: EC200T-CN & EC20 R2.1 推荐封装	. 29
图 20:	安装效果图	. 30

1 引言

移远通信的 LTE 模块 EC200T-CN 与 EC20 R2.1 相互兼容。本文档主要描述了 EC200T-CN 与 EC20 R2.1 之间的兼容设计。

2 综述

2.1. 产品简介

EC200T-CN 是一款带分集接收功能的 LTE-FDD/LTE-TDD/WCDMA/GSM 无线通信模块。EC20 R2.1 是一款带分集接收功能的 LTE-FDD/LTE-TDD/WCDMA/TD-SCDMA/EVDO/CDMA/GSM 无线通信模块。EC200T-CN 与 EC20 R2.1 采用兼容设计,用户可根据需求选择合适的产品作为终端应用。

表 1: 模块基本信息对比

模块	外观	封装	尺寸 (mm)	描述
EC200T-CN	EC200T-CN XX-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 个 LCC 引脚 64 个 LGA 引脚	29.0 × 32.0 × 2.4	多频段 LTE 模块
EC20 R2.1	CE FAG EC20CEFAG-512-50M5 SN-00000000000000000000000000000000000	80 个 LCC 引脚 64 个 LGA 引脚	29.0 × 32.0 × 2.4	多频段 LTE 模块

2.2. 功能概述

下表对比了 EC200T-CN 和 EC20 R2.1 的主要性能参数。

表 2: 主要性能参数对比

功能	EC200T-CN	EC20 R2.1
供电	供电电压: 3.4V~4.3V	供电电压: 3.3V~4.3V
供电	典型值: 3.8V	典型值: 3.8V

峰值电流	VBAT 最大电流: 2.0A	VBAT 最大电流: 2.0A
休眠耗流	功能开发中	1.11mA @ AT+CFUN=0 (USB 断开)
频段	LTE-FDD: B1/B3/B5/B8 LTE-TDD: B34/B38/B39/B40/B41 WCDMA: B1/B5/B8 GSM: 900/1800MHz	LTE-FDD: B1/B3/B5/B8 LTE-TDD: B34/B38/B39/B40/B41 WCDMA: B1/B8 TD-SCDMA: B34/B39 EVDO/CDMA: BC0 GSM: 900/1800MHz
GNSS	不支持	GPS, GLONASS, BeiDou/Compass, Galileo, QZSS
温度范围	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展工作温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展工作温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C
UART 接口	 主串口: ● 用于 AT 命令传送和数据传输 ● 波特率最大为 921600bps,默认为 115200bps ● 支持 RTS 和 CTS 硬件流控 调试串口: ● 用于部分日志输出 ● 波特率为 115200bps 	 主申口: ● 用于 AT 命令传送和数据传输 ● 波特率最大为 921600bps,默认为 115200bps ● 支持 RTS 和 CTS 硬件流控 调试申口: ● 用于 Linux 控制,日志输出 ● 波特率为 115200bps
(U)SIM 接口	支持(U)SIM 卡: 1.8V/3.0V	支持(U)SIM卡: 1.8V/3.0V
PCM 接口	用于音频使用,需要外接 Codec 芯片支持 16 位线性编码格式支持短帧模式支持主模式和从模式	 用于音频使用,需要外接 Codec 芯片 支持 16 位线性编码格式 支持长帧和短帧模式 支持主模式和从模式,但是在长帧下只可以用作主模式
USB 接口	兼容 USB 2.0 (只支持从模式),数据传输速率最大到 480Mbps	兼容 USB 2.0(只支持从模式),数据传输速率最大到 480Mbps
SD 卡接口	功能开发中	符合 SD 3.0 协议
SGMII 接口	不支持	支持 10M/100M/1000M 以太网工作模式
WLAN/BT 接口	不支持	支持低功耗 SDIO 3.0 WLAN 和 UART&PCM 蓝牙接口*
ADC 接口	提供两路模数转换接口* 电压范围: 0~1.3V 分辨率: 12 bits	提供两路模数转换接口 电压范围: 0.3V~VBAT_BB 分辨率: 15 bits
网络指示	NET_MODE 和 NET_STATUS 两个引脚指示网络状态	NET_MODE 和 NET_STATUS 两个引脚指示网络状态

分集接收天 线接口	支持 LTE 分集接收	支持 LTE/WCDMA 分集接收
天线接口	包括主天线接口(ANT_MAIN) 分集接收天线接口(ANT_DIV)	包括主天线接口(ANT_MAIN) 分集接收天线接口(ANT_DIV) GNSS 天线接口(ANT_GNSS)
软件升级	可通过 USB 接口或 FOTA*升级	可通过 USB 接口或 DFOTA 升级

备注

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输和紧急呼叫等功能,不会出现不可恢复的故障(EC200T-CN 不支持紧急呼叫);射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. "*"表示正在开发中。

2.3. 引脚分配

EC200T-CN 与 EC20 R2.1 模块的引脚分配图如下:

图 1: EC200T-CN &EC20 R2.1 引脚分配

备注

- 1. 蓝色标示的是 EC20 R2.1 比 EC200T-CN 多出的功能的引脚名称。
- 2. 1) 表示此引脚在模块开机成功前禁止上拉到高电平。EC200T-CN 除 USB_BOOT 引脚在模块开机成功前不能上拉外,其他均没有限制。
- 3. "*"表示相关的软件功能正在开发中。

3 引脚描述

本章节描述了 EC200T-CN 与 EC20 R2.1 的引脚定义及比较。

表 3: I/O 参数定义

类型	描述
Al	模拟输入
AO	模拟输出
DI	数字输入
DO	数字输出
Ю	双向端口
OD	漏极开路
PI	电源输入
РО	电源输出

下表描述了 EC200T-CN 和 EC20 R2.1 的引脚功能及电气特性对比:

表 4: 引脚对比

EC200T-CN				EC20 R2.1			
引脚号	引脚名	I/O	电压域	引脚号	引脚名	I/O	电压域
1	WAKEUP_IN*	DI	1.8V	1	WAKEUP_IN	DI	1.8V
2	AP_READY*	DI	1.8V	2	AP_READY	DI	1.8V
4	W_DISABLE#*	DI	1.8V	4	W_DISABLE#	DI	1.8V
5	NET_MODE	DO	1.8V	5	NET_MODE	DO	1.8V
6	NET_STATUS	DO	1.8V	6	NET_STATUS	DO	1.8V

7	VDD_EXT	РО	1.8V	7	VDD_EXT	РО	1.8V
8	GND	-	地	8	GND	-	地
9	GND	-	地	9	GND	-	地
10	USIM_GND	-	地	10	USIM_GND	-	地
11	DBG_RXD	DI	1.8V	11	DBG_RXD	DI	1.8V
12	DBG_TXD	DO	1.8V	12	DBG_TXD	DO	1.8V
13	USIM_ PRESENCE	DI	1.8V	13	USIM_ PRESENCE	DI	1.8V
14	USIM_VDD	РО	1.8V/3.0V	14	USIM_VDD	РО	1.8V/3.0V
15	USIM_DATA	Ю	1.8V/3.0V	15	USIM_DATA	Ю	1.8V/3.0V
16	USIM_CLK	DO	1.8V/3.0V	16	USIM_CLK	DO	1.8V/3.0V
17	USIM_RST	DO	1.8V/3.0V	17	USIM_RST	DO	1.8V/3.0V
19	GND	-	地	19	GND	-	地
20	RESET_N	DI	1.8V	20	RESET_N	DI	1.8V
21	PWRKEY	DI	VBAT 电压域	21	PWRKEY	DI	该引脚上电 后输出电压 为 0.8V
22	GND	-	地	22	GND	-	地
23	SD_INS_DET*	DI	1.8V/2.8V	23	SD_INS_DET	DI	1.8V
24	PCM_IN	DI	1.8V	24	PCM_IN	DI	1.8V
25	PCM_OUT	DO	1.8V	25	PCM_OUT	DO	1.8V
26	PCM_SYNC	Ю	1.8V	26	PCM_SYNC	Ю	1.8V
27	PCM_CLK	Ю	1.8V	27	PCM_CLK	Ю	1.8V
28	SD_DATA3*	Ю	1.8V/2.8V	28	SDC2_DATA3	Ю	1.8V/2.85V
29	SD_DATA2*	Ю	1.8V/2.8V	29	SDC2_DATA2	Ю	1.8V/2.85V
30	SD_DATA1*	Ю	1.8V/2.8V	30	SDC2_DATA1	Ю	1.8V/2.85V
31	SD_DATA0*	Ю	1.8V/2.8V	31	SDC2_DATA0	Ю	1.8V/2.85V
32	SD_CLK*	DO	1.8V/2.8V	32	SDC2_CLK	DO	1.8V/2.85V

33	SD_CMD*	Ю	1.8V/2.8V	33	SDC2_CMD	Ю	1.8V/2.85V
34	VDD_SDIO*	РО	1.8V/2.8V	34	VDD_SDIO	РО	1.8V/2.85V
35	ANT_DIV	Al	-	35	ANT_DIV	Al	-
36	GND	-	地	36	GND	-	地
37	RESERVED	-	-	37	BT_RTS*	DI	1.8V
38	RESERVED	-	-	38	BT_TXD*	DO	1.8V
39	RESERVED	-	-	39	BT_RXD*	DI	1.8V
40	RESERVED	-	-	40	BT_CTS*	DO	1.8V
41	I2C_SCL	OD	外部需 1.8V 上拉	41	I2C_SCL	OD	外部需 1.8V 上拉
42	I2C_SDA	OD	外部需 1.8V 上拉	42	I2C_SDA	OD	外部需 1.8V 上拉
43	NC	-	-	43	RESERVED	-	-
44	ADC1*	Al	0V~1.3V	44	ADC1	Al	0.3V~ VBAT_BB
45	ADC0*	Al	0V~1.3V	45	ADC0	Al	0.3V~ VBAT_BB
46	GND	-	地	46	GND	-	地
47	NC	-	-	47	ANT_GNSS	Al	-
48	GND	-	地	48	GND	-	地
49	ANT_MAIN	Ю	-	49	ANT_MAIN	Ю	-
50~54	GND	-	地	50~54	GND	-	地
55	NC	-	-	55	RESERVED	-	-
56	GND	-	地	56	GND	-	地
57	VBAT_RF	PI	3.4V~4.3V	57	VBAT_RF	PI	3.3V~4.3V
58	VBAT_RF	PI	3.4V~4.3V	58	VBAT_RF	PI	3.3V~4.3V
59	VBAT_BB	PI	3.4V~4.3V	59	VBAT_BB	PI	3.3V~4.3V
60	VBAT_BB	PI	3.4V~4.3V	60	VBAT_BB	PI	3.3V~4.3V
61	STATUS	OD	-	61	STATUS	OD	-
62	RI*	DO	1.8V	62	RI	DO	1.8V

63	DCD	DO	1.8V	63	DCD	DO	1.8V
64	CTS	DO	1.8V	64	CTS	DO	1.8V
65	RTS	DI	1.8V	65	RTS	DI	1.8V
66	DTR	DI	1.8V	66	DTR	DI	1.8V
67	TXD	DO	1.8V	67	TXD	DO	1.8V
68	RXD	DI	1.8V	68	RXD	DI	1.8V
69	USB_DP	Ю	-	69	USB_DP	Ю	-
70	USB_DM	Ю	-	70	USB_DM	Ю	-
71	USB_VBUS	PI	典型值 5.0V	71	USB_VBUS	PI	典型值 5.0V
72	GND	-	地	72	GND	-	地
85~112	GND	-	地	85~112	GND	-	地
113	NC	-	-	113	RESERVED	-	-
114	NC	-	-	114	RESERVED	-	-
115	USB_BOOT	DI	1.8V	115	USB_BOOT	DI	1.8V
116	NC	-	-	116	RESERVED	-	-
117	NC	-	-	117	RESERVED	-	-
118	NC	-	-	118	WLAN_SLP _CLK	DO	-
119	NC	-	-	119	EPHY_RST_N	DO	1.8V/2.85V
120	NC	-	-	120	EPHY_INT_N	DI	1.8V
121	NC	-	-	121	SGMII_MDATA	Ю	1.8V/2.85V
122	NC	-	-	122	SGMII_MCLK	DO	1.8V/2.85V
123	NC	-	-	123	SGMII_TX_M	АО	-
124	NC	-	-	124	SGMII_TX_P	AO	-
125	NC	-	-	125	SGMII_RX_P	AI	-
126	NC	-	-	126	SGMII_RX_M	AI	-
127	NC	-	-	127	PM_ENABLE	DO	1.8V

128	NC	-	-	128	USIM2_VDD	РО	1.8V/2.85V
129	NC	-	-	129	SDC1_DATA3	Ю	1.8V
130	NC	-	-	130	SDC1_DATA2	Ю	1.8V
131	NC	-	-	131	SDC1_DATA1	Ю	1.8V
132	NC	-	-	132	SDC1_DATA0	Ю	1.8V
133	NC	-	-	133	SDC1_CLK	DO	1.8V
134	NC	-	-	134	SDC1_CMD	DO	1.8V
135	NC	-	-	135	WAKE_ON_ WIRELESS	DI	1.8V
136	NC	-	-	136	WLAN_EN	DO	1.8V
137	NC	-	-	137	COEX_ UART_RX	DI	1.8V
138	NC	-	-	138	COEX_ UART_TX	DO	1.8V
139	NC	-	-	139	BT_EN*	DO	1.8V
140	NC	-	-	140	RESERVED	-	-
141	NC	-	-	141	RESERVED	-	-
142	NC	-	-	142	RESERVED	-	-
3, 18, 73~84, 143, 144	RESERVED	-	-	3, 18, 73~84, 143, 144	RESERVED	-	-

备注

- 1. 红色字体标示的引脚表示封装兼容但功能或电压域不同。
- 2. 黑色字体标示的引脚表示封装兼容且功能相同。
- 3. 预留的引脚和不使用的引脚请悬空。
- 4. "*"表示正在开发中。

4 硬件参考设计

本章节描述了 EC200T-CN 与 EC20 R2.1 主要功能的兼容设计。

4.1. 供电电源

4.1.1. 模块工作电压

下表为 EC200T-CN 和 EC20 R2.1 模块的工作电压范围:

表 5: 模块工作电压范围对比

模块	电源引脚	条件	最小值	典型值	最大值	单位
EC200T-CN	VBAT_BB & VBAT_RF	实际输入电压必须在最小、最大值范围内。	3.4	3.8	4.3	V
EC20 R2.1	VBAT_BB & VBAT_RF		3.3	3.8	4.3	V

考虑模块之间的兼容设计时,请确保模块输入电压最小不低于 3.4V,最大不超过 4.3V。下图是在 2G 网络下突发传输时电压跌落情况,3G 和 4G 网络下电压跌落比 2G 网络下小。

图 2: 突发传输电源要求

为了减少电压跌落,需要使用低 ESR(ESR=0.7Ω)的 100uF 滤波电容。同时建议分别给 VBAT_BB 和 VBAT_RF 预留 3 个(100nF、33pF、10pF)具有最佳 ESR 性能的片式多层陶瓷电容(MLCC),且电容靠近 VBAT 引脚放置。外部供电电源连接模块时,VBAT_BB 和 VBAT_RF 需要采用星型走线。VBAT_BB 走线宽度应不小于 1mm,VBAT_RF 走线宽度应不小于 2mm。原则上,VBAT 走线越长,线宽越宽。

另外,为了保证电源稳定,建议在电源前端加 V_{RWM}=4.7V,P_{PP}=2550W 的 WS4.5D3HV TVS 管。参考电路如下:

图 3: 模块供电电路

4.1.2. 供电电源设计

模块的电源设计对其性能至关重要。EC200T-CN 和 EC20 R2.1 必须选择至少能够提供 2A 电流能力的电源。若输入电压与模块供电电压之间的电压差不是很大,则建议选择 LDO 作为供电电源。若输入与输出电压之间存在比较大的电压差,则建议使用开关电源转换器。

下图是+5V 供电电路的参考设计。

图 4: 供电输入参考设计

4.2. 开关机

4.2.1. 开关机电路

EC200T-CN 和 EC20 R2.1 的开关机方式相同:

EC200T-CN 和 EC20 R2.1 可以通过拉低 PWRKEY 实现模块的开关机。推荐使用开集驱动电路来控制 PWRKEY 引脚。参考电路如下:

图 5: 开集驱动开关机参考电路

另一种控制 PWRKEY 引脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS 管用于 ESD 保护,参考电路如下:

图 6: 按键开关机参考电路

备注

- 1. 在拉低引脚 PWRKEY 之前,保证 VBAT 电压稳定。建议 VBAT 上电到引脚 PWRKEY 拉低之间的时间间隔不少于 30ms。
- 2. 如果客户需要上电自动开机且不需要关机功能,则可以把 PWRKEY 直接下拉到地,下拉电阻建议 10K。

4.2.2. AT 命令关机

EC200T-CN 和 EC20 R2.1 都可通过 AT+QPOWD 命令来实现关机。该命令关机过程等同拉低 PWRKEY 引脚关机过程。详情请参考文档 [2]或文档 [3]中的 AT+QPOWD 命令。

4.3. 复位

EC200T-CN 和 EC20 R2.1 的复位方式相同,都可以通过拉低 RESET_N 实现模块复位。同样推荐使用开集驱动电路来控制 RESET N 引脚。参考电路如下:

图 7: RESET_N 复位开集参考电路

备注

EC200T-CN 拉低 RESET_N 仅对模块内部的 BB 芯片复位, EC20 R2.1 拉低 RESET_N 对 PMU 电源复位。

4.4. (U)SIM 接口

EC200T-CN 和 EC20 R2.1 都默认支持 1.8V/3.0V 的(U)SIM 卡。

EC200T-CN 的(U)SIM 接口和 EC20 R2.1 的(U)SIM 接口相互兼容,通过 USIM_PRESENCE 引脚,模块可支持(U)SIM 卡热插拔功能。模块的 8-pin (U)SIM 接口兼容设计如下图所示:

图 8: 8-Pin (U)SIM 接口参考电路

如果无需使用(U)SIM 卡检测功能,请保持 USIM_PRESENCE 引脚悬空。下图为 6-pin (U)SIM 接口参考电路:

图 9: 6-pin (U)SIM 接口参考电路

4.5. USB 接口

EC200T-CN 和 EC20 R2.1 的 USB 接口符合 USB 2.0 规范,支持高速(480Mbps)和全速(12Mbps)模式。建议客户设计时预留测试点用于调试和软件升级,下图为 USB 接口参考设计:

图 10: USB 接口参考设计

建议在 MCU 与模块间串联一个共模电感 L1 防止 USB 信号产生 EMI 干扰;同时,建议串联 R3、R4 电阻到测试点以便于调试,电阻默认不贴。为了满足 USB 数据线信号完整性要求,L1/R3/R4 需要靠近模块放置,且 R3/R4 之间靠近放置,连接测试点的桩线尽量短。

在 USB 接口的电路设计中,为了确保 USB 的性能,在电路设计中建议遵循以下原则:

- USB 走线周围需要包地处理,走 90Ω 的阻抗差分线。
- 不要在晶振、振荡器、磁性装置和 RF 信号下面走 USB 线,建议走内层差分走线且上下左右立体 包地。
- USB 数据线上的 ESD 器件选型需特别注意,其寄生电容不要超过 2pF。
- USB 的 ESD 器件尽量靠近 USB 接口放置。

4.6. 串口

EC200T-CN 和 EC20 R2.1 模块都提供两路串口: 主串口和调试串口。下面描述了这两个串口的主要特性。

● 主串口支持 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps 和 921600bps 波特率,默认波特率为 115200bps, 用于数据传输和 AT 命令传送。

● 调试串口支持 115200bps 波特率,其中 EC200T-CN 用于部分日志输出, EC20 R2.1 用于 Linux 控制和日志输出。

EC200T-CN 和 EC20 R2.1 模块的串口电平为 1.8V。若客户主机系统电平为 3.3V,则需在模块和主机的串口连接中增加电平转换器,下图为使用电平转换芯片的参考电路设计。

图 11: 电平转换芯片参考电路

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 12: 三极管电平转换参考电路

备注

三极管电平转换电路不适用于波特率超过 460Kbps 的应用。

4.7. PCM 和 I2C 接口

EC200T-CN 和 EC20 R2.1 提供一个 PCM 接口和一个 I2C 接口。接口对比信息如下:

表 6: PCM 接口对比

功能	EC200T-CN	EC20 R2.1		
PCM 接口	用于音频使用,需要外接 Codec 芯片支持 16 位线性编码格式支持短帧模式支持主模式和从模式	 用于音频使用,需要外接 Codec 芯片 支持 16 位线性编码格式 支持长帧和短帧模式 支持主模式和从模式,但是在长帧下只可以用作主模式 		

下图为带外部 Codec 芯片的 PCM 和 I2C 接口的参考设计:

图 13: PCM 和 I2C 接口电路参考设计

备注

- 1. 建议在 PCM 的信号线上预留 RC (R=22Ω, C=22pF)电路,特别是 PCM_CLK 上。
- 2. EC200T-CN 和 EC20 R2.1 模块在与 I2C 接口有关的应用中只能作为主设备。

4.8. ADC 接口

EC200T-CN 和 EC20 R2.1 的 ADC 接口对比信息如下:

表 7: ADC 接口对比

功能	EC200T-CN	EC20 R2.1		
ADC 接口	提供两路模数转换接口电压范围: 0~1.3V分辨率: 12 bits	提供两路模数转换接口电压范围: 0.3V~VBAT_BB分辨率: 15 bits		

备注

- 1. 模块在 VBAT 不供电的情况下, ADC 接口不能直接接任何输入电压。
- 2. 建议 ADC 引脚采用分压电路输入。
- 3. EC200T-CN 模块的 ADC 软件功能正在开发中。

4.9. 网络状态指示

网络状态指示引脚主要用于驱动网络状态指示灯。EC200T-CN 和 EC20 R2.1 模块都有 NET_MODE 和 NET STATUS 两个网络状态引脚。如下两表分别描述了引脚定义和不同网络状态下的逻辑电平变化。

参考电路如下图所示。

图 14: 网络指示参考电路

4.10. STATUS

EC200T-CN 和 EC20 R2.1 都提供 STATUS 用于指示模块的工作状态,为开漏输出引脚。客户可将此引脚连接至设备带上拉的 GPIO 或下图所示的 LED 指示电路。当模块正常开机时,STATUS 会输出低电平。否则,STATUS 变为高阻抗状态。

下图为两种不同的 STATUS 参考电路设计,客户可根据应用需求选择其中任意一种。

图 15: STATUS 参考电路

备注

模块在 VBAT 不供电的情况下,STATUS 不能作为关机状态指示。

4.11. USB_BOOT 接口

EC200T-CN 和 EC20 R2.1 支持 USB_BOOT 功能。开发者可以在模块开机前将 USB_BOOT 上拉至 VDD_EXT,再开机时模块将进入紧急下载模式。在此模式下,模块可通过 USB 接口进行软件升级。

USB BOOT 接口参考设计如下:

图 16: USB_BOOT 接口参考电路设计

4.12. RF 接口

EC200T-CN 和 EC20 R2.1 的 ANT_MAIN 和 ANT_DIV 天线连接参考电路如下图所示。为获取更佳的射频性能,需预留 π 型匹配电路,电容默认不贴。

图 17: 射频参考电路

备注

- 1. 为提高接收灵敏度,需要保证主天线和分集接收天线距离合适。
- 2. 图中 π 型匹配元件 (R1&C1&C2, R2&C3&C4) 应尽靠近天线放置。

5 物理尺寸

本章节主要介绍了 EC200T-CN 和 EC20 R2.1 模块的推荐封装及钢网设计。所有的尺寸单位为毫米; 所有未标注公差的尺寸,公差为±0.05mm。

EC200T-CN 和 EC20 R2.1 模块焊盘部分对应的钢网厚度推荐为 0.18mm~0.20mm。详细信息请参考 文档 [4]。

5.1. 推荐兼容封装

EC200T-CN 和 EC20 R2.1 的底视图如下图所示:

图 18: EC200T-CN & EC20 R2.1 底视图

EC200T-CN 和 EC20 R2.1 兼容封装如下图所示:

图 19: EC200T-CN & EC20 R2.1 推荐封装

备注

- 1. EC200T-CN 和 EC20 R2.1 的封装完全兼容。
- 2. 73~84 焊盘(Keepout area)无需进行原理图和 PCB 设计。
- 3. 为保证模块能够正常安装,请保证 PCB 板上模块和其他元器件之间的距离至少为 3mm。

5.2. 安装示意图

EC200T-CN 与 EC20 R2.1 安装效果图如下所示:

图 20: 安装效果图

6 附录 A

表 8:参考文档

序号	文档名称	备注
[1]	Quectel_EC2x&EG9x&EM05_Power_Management_ Application_Note	EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 和 EM05 的电源管理应用 手册
[2]	Quectel_EC200T-CN_AT 命令手册	EC200T-CN AT 命令手册
[3]	Quectel_EC20_R2.1_AT_Commands_Manual	EC20 R2.1 AT 命令手册
[4]	移远通信模块贴片应用指导	移远通信模块贴片应用指导
[5]	Quectel_EC200T-CN_硬件设计手册	EC200T-CN 硬件设计手册
[6]	Quectel_EC200T-CN_参考设计手册	EC200T-CN 参考设计手册
[7]	Quectel_EC20_R2.1_硬件设计手册	EC20 R2.1 硬件设计手册
[8]	Quectel_EC20_R2.1_参考设计手册	EC20 R2.1 参考设计手册

表 9: 术语缩写

术语	描述
ADC	Analog-to-Digital Converter
bps	Bits Per Second
CTS	Clear to Send
DTR	Data Terminal Ready
EGSM	Extended GSM900 Band (including standard GSM900 band)
ESD	Electrostatic Discharge
GNSS	Global Navigation Satellite System

GPS	Global Positioning System
GSM	Global System for Mobile Communications
PCB	Printed Circuit Board
RF	Radio Frequency
Rx	Receive
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
(U)SIM	(Universal) Subscriber Identity Module
WCDMA	Wideband Code Division Multiple Access