

Chapitre Sécu_cnx Connexions sécurisées à distance

ssh SSL, TLS Pare-feux VPN

Contenu du chapitre Sécu_cnx

- Connexion à distance
 - Déport de terminal
- Méthode 1: ssh
 - Fonctionnement de ssh
 - Partage de connexion ssh: « tunnel ssh »
- Méthode 2: TLS
- Notion de pare-feu
- Méthode 3: VPN

telnet, ssh: terminal à distance

Menaces & solutions

Crypto-4

- R. Groz veut se connecter sur paserveur. Oscar pourrait:
 - 1. Se faire passer pour poserveur vis à vis de groz
 - 2. Se faire passer pour groz vis à vis de peserveur
 - 3. Observer l'envoi d'un mot de passe, ou toutes les commandes et réponses
- •3. « snoop » : observation du contenu des échanges
 - <u>Chiffrer</u> les informations sur la ligne
- •1.&2. « spoof » : usurpation d' identité (de machine, d' utilisateur)
 - Authentifier: s'assurer de l'identité des (deux) interlocuteurs

Authentification à clé publique

- Alice envoie un défi aléatoire a, à usage unique
- Bernard le chiffre avec d: (a) d mod n
- Alice vérifie que (ad) e mod n = a

CONTRAINTE: Alice doit connaître la clé publique de Bernard

- Enregistrée avant (ssh)
- Par certificat (SSL/TLS) R. GROZ

Sécurité dans ssh

grozr@ens: ssh pcserveur

- 1. ens <u>authentifie</u> pcserveur avec la clé publique de pcserveur (fic. ~/.ssh/known hosts sur ensi-ens)
- 2. Création de clé secrète entre ens et pcserveur par Diffie-Helman, pour chiffrer toute la suite de la session
- 3. Login de grozr sur pcserveur: <u>authentifier</u> grozr
 - authentification avec la clé publique de grozr si installée sur pcserveur ~/.ssh/authorized_keys N.B. Création clé publique par ssh-keygen grozr s' authentifie en envoyant nom + id-session chiffré avec sa clé privée (~/.ssh/id_rsa)
 - Sinon, par mot de passe (chiffré cf 2.)

Cf TP sécurité

Connexion directe

ens% ssh pcserveur

ens.ensimag.fr

pcserveur

Clé publique de pcserveur, stockée sur ens (codage base64):

~/.ssh/known_hosts: pcserveur ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDLsv5
XA+fMcJs...

/YosCYGerlZenEBYucfy9pXeRsa7DQQvgV

NB: la clé privée de grozr est dans:

~/.ssh/id rsa

Clé publique de grozr dans:

~/.ssh/authorized_keys: ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAqW
TsNmJr1EsRsHoB3+XP02/I7WcAml
... RmMdyk7pZfeWCZe0=
grozr@sixte.imag.fr

Sécu_cnx-7

Echanges du protocole SSH (exemple)

Pourquoi n'y a-t-il pas de faille?

grozr@ens:ssh

--→ pcserveur

- 1. ens authentifie pcserveur avec la clé publique de pcserveur (fic. known_hosts sur ens)

 Oscar laisse faire l'authentification, puis usurpe l'adresse IP de pcserveur
- 2. Création de clé secrète entre ens et *Oscar* par Diffie-Helman, pour chiffrer toute la suite de la session *Oscar intercepte tous les messages, et en parallèle il fait un Diffie-Helman avec pcserveur en jouant le rôle de ens*
- 3. Login de grozr sur pcserveur

 Oscar renvoie les informations à pcserveur pour transmettre en retour les «bonnes» réponses à ens. Oscar voit tout passer

 Attaque de l'homme au milieu (Man in the Middle)

 Mais elle échoue: pourquoi?

ssh: offre 2 services

- Login à distance sécurisé (remplace telnet, rlogin)
 - Authentification de la machine distante et de l'utilisateur
 - chiffrement de la connexion à l'aide d'une clé de session secrète
 - port 22, échappement: ~
- On peut exécuter une commande (défaut=login)
 - Ex: ssh machine distante date

Mais ssh offre plus qu'un simple terminal de login:

les mécanismes de sécurité peuvent être utilisés en parallèle (partagés) pour acheminer des flux de communication pour d'autres applications

- « Tunnels » et redirection de connexions
 - ≈ connexion TCP sécurisée: port local <-> port distant
 - transfert chiffré pour d'autres applications:
 - courrier, fichier, etc
 - sessions X11 sécurisées
 - Possibilité de passer par un « bastion » d'entrée vers un réseau isolé par un pare-feu

Sécu_cnx-10

Redirection d'un port local

portable1% ssh -L 1234:zimbra.UGA.fr:110 pcserveur.ensimag.fr Configurez Thunderbird sur portable1 pour lire le courrier par POP sur: localhost, port 1234

Il sera en fait lu sur zimbra mais chiffré lors de son passage sur le réseau via ssh

Partage du « tunnel » chiffré

Accès ssh via proxy (bastion)

```
~/.ssh/config (sur ordigroz):
   Host ensipc* *.ensimag.fr

ProxyCommand ssh -q ens.ensimag.fr nc %h 22
```


ssh

- Excellente sécurité
 - chiffrement et authentification
 - a remplacé telnet/rlogin
- Intégration facile avec d'autres applications
 - courrier, X11 (par ssh -X ou ssh -Y ...)
 - Multiplexage de connexions chiffrées sur le même tunnel ssh

Autre commande utile (copie de fichier à distance):

```
ens% scp fichier1 groz@ligtwo:repert/fic
```

Session X11 chiffrée:

```
ssh -X ou bien (plus sûr) ssh -Y ens.ensimag.fr
```

«tout simplement », et ssh se charge de positionner le DISPLAY pour le shell de connexion, et de connecter les ports utilisés par X11

Contenu du chapitre Sécu_cnx

- Connexion à distance
 - Déport de terminal
- Méthode 1: ssh
 - Fonctionnement de ssh
 - Partage de connexion ssh: « tunnel ssh »
- Méthode 2: TLS
- Notion de pare-feu
- Méthode 3: VPN

SSL-TLS: sessions chiffrées

- Ssh: sécurisé lorsqu'on possède un compte sur machine distante
- Commerce électronique: comment sécuriser accès à site marchand?
 - Nouveaux clients (humains) n'ont pas créé de compte
 - Clients ne sont pas experts pour faire du tunnel ssh
 - Garder accès Web (pages, navigateur etc)
- •Solution: SSL (1995) devenu TLS (1999)
 - Couche 5 session au-dessus de TCP
 - Authentification du serveur par <u>certificat</u>
 - Puis chiffrement symétrique par clé calculée par client (processus TLS) puis partagée avec serveur

Sécu_cnx-16

TLS – Transport Layer Security

- Protocole de niveau session (OSI-5) s' intercalant entre l'application HTTP et TCP; http+tls=https (port 443)
 - Ex: https://webmail.grenoble-inp.org
 - NB: utilisable par d'autres applis (pop, imap, smtp)
- Authentification du serveur
 - Les navigateurs connaissent les clés publiques de CA racines
 - Le navigateur demande au serveur un certificat
 - Le navigateur extrait du certificat la clé publique du serveur
 - Le navigateur authentifie le serveur par un défi de session
- Authentification du client: ad libitum (certif. ou login)
- Chiffrement et intégrité des données
 - Le client propose une clé préliminaire aléatoire de 384 bits, chiffrée avec la clé publique du serveur
 - le serveur (et le navigateur) calculent une clé symétrique à partir de cette clé préliminaire et du défi de l'authentification
 - les messages suivants sont chiffrés et signés

Contenu du chapitre Sécu_cnx

- Connexion à distance
 - Déport de terminal
- Méthode 1: ssh
 - Fonctionnement de ssh
 - Partage de connexion ssh: « tunnel ssh »
- Méthode 2: TLS
- Notion de pare-feu
- Méthode 3: VPN

Pare-feux

• Filtrage des flux de communication / réseau

• Flux définis par adresses: niveau 3 (IP) ou 4 (ports) le plus souvent

```
deny src-ip 10.0.0.0/24,127.0.0.1/8 allow in proto tcp to any port www
```

R. GROZ NF1-19

Pare-feux et DMZ

DMZ: Zone DéMilitarisée:

 Contient des serveurs accessibles de l'Internet pour certains services

- Peut contenir des passerelles sécurisées pour accès vers le réseau privé (ex: <u>bastion ssh</u>, serveur

R. GROZ NF1-20

Contenu du chapitre Sécu_cnx

- Connexion à distance
 - Déport de terminal
- Méthode 1: ssh
 - Fonctionnement de ssh
 - Partage de connexion ssh: « tunnel ssh »
- Méthode 2: TLS
- Notion de pare-feu
- Méthode 3: VPN

VPN=Virtual Private Network (fr: RPV)

- Au sens général, structure de réseau privé (multi-site)
 bâtie au-dessus d'un réseau public
 - Avec ou sans tunnel, mais l'opérateur garantit au moins l'isolation des flux
 - Alternative virtuelle moins chère que la solution physique de câbles et fibres physiques à longue distance
- Ne se limite donc pas à de la connexion chiffrée à distance=tunnel VPN (ce que vous utilisez)
- Même pour les tunnels VPN, il y a beaucoup de solutions différentes
 - OpenVPN sur UDP n'en est qu'une (Cisco en a d'autres, possibilité d'utiliser IPsec etc).

Tunnel VPN: exemple OpenVPN ensimag

- La table de routage d'ordigroz est modifiée pour envoyer trafic vers intranet par utun4
- Tous les paquets échangés avec l'intranet sont chiffrés et réencapsulés dans UDP

Tunnel VPN: structure d'encapsulation

OpenVPN Ensimag: tables de routage

Table sans VPN		
Destination	Gateway	Netif
default	livebox.home	en(
127	localhost	100
localhost	localhost	100
169.254	link#4	en(
192.168.1	link#4	en(
192.168.1.1/32	link#4 box	en(
livebox.home	8c:fd:de:bc:1c:8	en(
192.168.1.14/32	link#4 ordigroz	en(
255.255.255.255/32	link#4	en(
Notes:		

- Au départ, le client VPN contacte le serveur, et l'authentifie et négocie les clés par TLS (sur OpenVPN sur UDP)
- Puis il modifie les tables de routage
- Ordigroz a ensuite:
 - une interface réelle en0 sur le réseau Wifi, avec adresse 192.168.1.14
 - une interface virtuelle utun4, sur un autre réseau (privé) VPN, avec adresse 10.42.24.16, pour le trafic vers l'intranet Ensimag

lable avec VPN		
Destination	Gateway	Netif
0/1	livebox.home	en0
default	livebox.home	en0
10.42.24/23	10.42.24.16 ordigro	OZ _{utun4}
127	localhost	100
localhost	localhost	100
130.190.254/23	10.42.24.1	utun4
147.171.104/21	10.42.24.1 vpn-en	S utun4
147.171.112/24	10.42.24.1	utun4
169.254	link#4	en0
192.168.1	link#4	en0
192.168.1.1/32	link#4	en0
livebox.home	8c:fd:de:bc:1c:8d	en0
192.168.1.14/32	link#4	en0
195.220.30	10.42.24.1	utun4
195.221.227	10.42.24.1	utun4
195.221.228	10.42.24.1	utun4
195.221.228.195/32	livebox.home	en0
195.221.229	10.42.24.1	utun4
195.221.230	10.42.24.1	utun4
255.255.255.255/32	link#4	en0

- Seul le trafic vers les adresses Ensimag sera envoyé par utun4
- Tout autre trafic passera par défaut par la route normale (box) Sécu cnx-25

R. GROZ

Bilan chapitre Sécu_cnx: notions essentielles

- Sécurisation d'une connexion à distance
 - Savoir se servir de ssh-keygen, et gérer les fichiers de clés (known_hosts, authorized_keys): vu en TP
- Notion de tunnel chiffré (ssh ou VPN)
- Principe de TLS
- Pare-feux