Principal Component Regression (PCR)

Contents

- 1. Multiple Linear Regression-Quick Recap
- 2. The Problem of Multicollinearity
- 3. Principal Component Analysis General Approach
- 4. Principal Component Regression (PCR)
 - i. Introduction
 - ii. Statistical Model
- 5. PCR in Python

Multiple Linear Regression: Statistical Model

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p + e$$

Where,

: Dependent Variable

 $X_1, X_2, ..., X_p$

: Independent Variables

 $b_0, b_1, ..., b_n$: Parameters of Model

е

: Random Error

Component

Independent variables can either be Continuous or Categorical

Problem of Multicolinearity

Multicolinearity is detected using Variance Inflation Factor, VIF

Tolerance = 1- R_i²

VIF = 1/Tolerance

where R_i² (R Squared) is obtained using regression of Xi on other independent variables

Any VIF > 5, indicates presence of multicollinearity

Multicollinearity - Remedial Measures

The problem of Multicollinearity can be solved by different approaches:

Drop one of the independent variables, which is explained by others

Use Principal Component Regression in case of severe Multicollinearity

Use Ridge Regression

Principal Component Regression

In Principal Component Regression,

First k principal components are used as independent variables instead of original X variables

- Each PC is a linear combination of all X variables
- Final model is expressed in terms of original independent variables for ease of interpretation

Principal Component Regression

Transformatio n into PCs

The original **p** variables are transformed into a new set of orthogonal or uncorrelated variables called "Principal Components "

Regression Analysis

In the second step, after elimination of the least important principal components, a multiple regression analysis of the response variable against the reduced set of principal components is performed using the OLS estimation

Back Transformatio n

In the third step, model equation is back transformed in terms of original variables.

PCR-Statistical Model

Model in terms of original X variables:

$$Y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p + e$$

Model in terms of Principal Components:

$$Y = a_0 + a_1 PC_1 + a_2 PC_2 + \dots + a_k PC_k + e'$$

Case Study

Background

A company periodically records data for sales and expenses.
 The company wishes to model the relationship between its sales and sales related expenses and obtain predictions

Objective

 To predict incremental sales based on planned sales related expenses

Available Information

- Data available for 143 micro business zones
- Sales is the Dependent Variable
- Expenditure towards advertisements and promotions in the current and previous months are Predictors

Data Snapshot

		Dependent variable]	Independent variables					
	SRNC		SALES	AD	PRO	SALEXP		ADPRE	PROPR	E
		1	20.11	1.98	0.9		0.31	2.02	0	
	Columns		Description			-	Туре	vpe Measure ent		Possible values
-	SRNO		Serial Number				-	-		Intergers
	SALES		Incremental Sales		S	Nu	merical	INR Million		positive value
	AD		Current Advertising Expenses			Nu	merical	INR Million		positive value
	PRO		Current Promotional Expenses		nal	Numerical INR Millic		illion	positive value	
	SALEXP I		Misc. Sales Expenses		5	Nu	Numerical INR Million		illion	positive value
	ADP	RE	Previous Period's Advertising Expenses			Nu	merical	INR M	illion	positive values
	PROF	PRE	Previous Period's		5	Nu	merical	INR M	illion	Positive value

Importing csv file "pcrdata"

```
import pandas as pd
salesdata = pd.read_csv('pcrdata.csv')
```

Fit a Linear Model :

```
import statsmodels.formula.api as smf
predsales=smf.ols('SALES~AD+PRO+SALEXP+ADPRE+PROPRE',
data=salesdata).fit()
predsales.summary()
```

Output:

□ **smf.ols()** fits a linear regression model.

summary() generates model

Time: 11:13:37 Log-Likelihood: -2 No. Observations: 143 AIC: Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust	0.909			
Model: Method: Least Squares F-statistic: Date: Fri, 10 Jan 2020 Prob (F-statistic): 11:13:37 Log-Likelihood: No. Observations: 143 AIC: Df Residuals: Df Model: Covariance Type: nonrobust Servations: Indicates a squared: F-statistic: Adj. R-squared: F-statistic: Alic: Servatistic: 13:37 AIC: BIC: Servations: Topic a squared: Formall a squared: Formal a squared: Formall a squared: Formall a squared: Formall a sq				
Method: Least Squares F-statistic: Date: Fri, 10 Jan 2020 Prob (F-statistic): 2.6 Time: 11:13:37 Log-Likelihood: -2 No. Observations: 143 AIC: Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust				
Date: Fri, 10 Jan 2020 Prob (F-statistic): 2.0 Time: 11:13:37 Log-Likelihood: -2 No. Observations: 143 AIC: Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust	0.906			
Time: 11:13:37 Log-Likelihood: -2 No. Observations: 143 AIC: Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust	273.2			
No. Observations: 143 AIC: Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust	09e-69			
Df Residuals: 137 BIC: Df Model: 5 Covariance Type: nonrobust	226.08			
Df Model: 5 Covariance Type: nonrobust	464.2			
Covariance Type: nonrobust	481.9			
coef std err t P> t [0.025 (0.975]			
Intercept -10.8147 6.531 -1.656 0.100 -23.730	2.101			
AD 4.6762 1.410 3.316 0.001 1.888	7.464			
PRO 7.7886 1.263 6.168 0.000 5.292	10.286			
SALEXP 22.4089 0.770 29.089 0.000 20.886 2	23.932			
ADPRE 3.1856 1.244 2.560 0.012 0.725	5.646			
PROPRE 3.4970 1.370 2.553 0.012 0.789	6.205			
Omnibus: 8.788 Durbin-Watson:				
Prob(Omnibus): 0.012 Jarque-Bera (JB):	2.153 4.669			
Kurtosis: 2.247 Cond. No.	0.0909			
	0.0969 206.			

on:

Multiple R-Squared is 0.909, showing model to be a good fit.

Checking for Multicollinearity

```
from patsy import dmatrices
from statsmodels.stats.outliers_influence import
variance_inflation_factor
y, X = dmatrices('SALES~AD+PRO+SALEXP+ADPRE+PROPRE', data=salesdata,
return_type="dataframe")
vif = pd.Series([variance_inflation_factor(X.values, i)for i in
range(X.shape[1])],index=X.columns)
vif
```

Output of VIF

Intercept	4226.760949
AD	36.159771
PRO	31.846727
SALEXP	1.076284
ADPRE	24.781948
PROPRE	42.346468
dtype: float6	i 4

- patsy is a library that helps convert data frames into design matrices.
- dmatrices Construct two design matrices given a formula_like and data. By convention, the first matrix is the "y" data, and the second is the "x" data.
- variance_inflation_factor requires a design matrix as input to calculate vif.
- variance_iinflation_factor() calculates VIFs.

Interpretation:

VIF values are very high (>5, except for SALEXP) indicating severe multicollinearity problem.

```
# PCA in Python
# Subsetting data for PCA and using PCA function
```

Summary of PCA

```
import numpy as np
                                             Define names of columns as
names = ["PC"+str(i) for i in range(1,6)]
                                              PC1,PC2 and so on.
SD = list(np.std(pca.transform(X), axis=0))
VarProp = list(pca.explained_variance_ratio_)
CumProp = [np.sum(pca.explained variance ratio [:i]) for i in range(1,6)]

    Extract Standard Deviation and Proportion of variance explained.

         Define Cumulative proportion for the summary table
summar □ pca.transform(X) computes scores
columns=|'Standard Deviation','Proportion of Variance','Cumulative
Proportion'])
summary
```

Creates a dataframe of summary output

Output

	Standard Deviation	Proportion of Variance	Cumulative Proportion
PC1	1.301556	0.338810	0.338810
PC2	1.131848	0.256216	0.595026
PC3	1.070535	0.229209	0.824235
PC4	0.933433	0.174259	0.998494
PC5	0.086770	0.001506	1.000000

Interpretation:

The first three principal components explain 82% of the variation in the data. Therefore, we will use 3 components in PCR

Import library hoggorm for PCR in Python

```
import hoggorm
pcmodel = hoggorm.pcr.nipalsPCR(standardisedX, y)
           pcr.nipalsPCR() in library hoggorm performs Principal
           Component
          standardisedX is the X in the PCR model and y is object of
           dependent variable
          [3] is the number of components to be included in the model,
salesdata perpred | = pemodel. r predeat() | 3 |
salesdata.head()
                                     .Y_predCal() is used to get
                                     predictions using PCR.
```

Output

	SRNO	SALES	AD	PRO	SALEXP	ADPRE	PROPRE	pcrpred
0	1	20.11	1.98	0.9	0.31	2.02	0.0	21.290490
1	2	15.10	1.94	0.0	0.30	1.99	1.0	18.169736
2	3	18.68	2.20	0.8	0.35	1.93	0.0	21.271483
3	4	16.05	2.00	0.0	0.35	2.20	0.8	17.621114
4	5	21.30	1.69	1.3	0.30	2.00	0.0	22.979224

pcrpred column gives the predicted values of SALES using PCR.

Comparing Linear Regression Model and PCR model on Test data

```
# Importing Test Data
salesdata_test = pd.read_csv('pcrdata_test.csv')
# Getting RMSE of PCR model
salesdata test2=salesdata test.drop(['SRNO', 'SALES'], axis=1)
standardisedX2 = scale(salesdata test2)
salesdata test['pcrpredict'] = pcmodel.Y_predict(standardisedX2,
numComp=3)
salesdata_test['pcrres'] = salesdata_test['SALES'] -
salesdata test['pcrpredict']
                                    RMSE_pcr stores RMSE value using
import math
import statistics
                                    PCR Model.
RMSE pcr = math.sqrt(statistics.
# Getting RMSE of linear regression model
salesdata test['lmpred'] = predsales.predict(salesdata test)
salesdata test['lmres'] = salesdata test['SALES'] -
salesdata test['lmpred']
                                 RMSE Im stores RMSE using normal
RMSE lm= math.sqrt(statistic
                                 regression
```

Comparing Linear Regression Model and PCR model on Test data

Viewing data after adding predicted & residual variables

```
salesdata_test.head()
# Output
   SRNO
                                pcrpredict
        SALES
                 AD
                      PRO
                           . . .
                                              perres
                                                         lmpred
                                                                     lmres
        28.93
               2.75
                     1.00
                                 22.564787
                                            6.365213
                                                      32.313678
                                                                 -3.383678
0
     2 25.96
               1.73
                     1.06
                                 21.752245
                                            4.207755
                                                      34.369246
                                                                 -8.409246
                                26.662864
     3 31.25 2.19
                    1.26
                                            4.587136
                                                      32.298212 -1.048212
     4 25.05 1.82 1.45
                                 24.720436
                                            0.329564 35.217508 -10.167508
        27.32 2.38
                    1.01
                                 25.930237
                                            1.389763
                                                      28.226159
                                                                 -0.906159
4
```

```
RMSE_lm
[1] 9.111682179878775
RMSE_pcr
[1] 3.0135616853589267
```

Interpretation:

RMSE using PCR is less than RMSE using linear regression, we may conclude that PCR model predicts SALES better than linear regression model when multicollinearity exists.

Quick Recap

Multiple Linear Regression and Multicollinearity

- Fundamental assumption for building a good multiple linear regression model is to have non-correlated predictor variables.
- However, highly correlated predictor variables is a very frequent phenomenon in real world analytics.

Principal Component Regression

- Such severe multicolinearity can be effectively handled by combining the regression with Principal Component Analysis.
- PCR is a three way process where the variables are first transformed to principal components, regression is run by considering these components as regressors and finally, they are transformed back to their original forms.

PCR in Python

• pcr.nipalsPCR() function in library hoggorm performs PCR.

THANK YOU!