N	Inter	valos	f	F
1	9	11	7	7
2	12	14	5	12
3	15	17	7	19
4	18	20	11	30
5	21	23	5	35
6	24	26	5	40

Simbolo	Definición
n	Número de datos
k	Proporción en el conjunto de datos, donde k es la parte a tomar y N el número de
\overline{N}	partes a dividir (cuartil 3: $\frac{3}{4}$, percentil 4: $\frac{4}{10}$)
U_{Q_j}	Ubicación del cuartil "j"
Q_{j}	Valor del cuartil "j"
i	Número del intervalo o posición del intervalo donde se encuentra el elemento número ${\cal U}_{Q_j}$
L_i	Limite inicial del intervalo con posición \emph{i}
L_{S}	Limite superior del intervalo con posición i
$F_{(i-1)}$	Frecuencia Acumulada del intervalo anterior al de la posición $i\ (i-1)$
f_i	Frecuencia Absoluta del intervalo en la posición \emph{i}
A_i	Amplitud del intervalo en la posición i

Q3: $n = 40$	$U_{Q_j} = \frac{kn}{N}; Q_j = L_i + \frac{U_{Q_j} - F_{(i-1)}}{f_i} A_i$
$U_{Q_3} = \frac{3(40)}{4} = 30$	Resolvemos:
$i = 4$ $F_i = 30$	$U_{Q_3} = F_i$
$L_s = 20$	$Q_3 = L_i + \frac{F_i - F_{(i-1)}}{f_i} A_i$
	$Q_3 = L_i + \frac{f_i}{f_i} A_i$
	$Q_3 = L_i + A_i$
	$Q_3=L_S$

Los siguientes datos corresponden al número de autos que llegan a diario al taller de la empresa
Toyota, para su reparación durante los meses de marzo y abril (40 días) de lunes a viernes.
 10, 17, 10, 11, 12, 11, 22, 18, 14, 25, 19, 17, 22, 10, 24, 18, 15, 20, 24, 21, 24, 15, 21, 19, 15, 20, 22, 14,
25, 18 20 13 11, 19, 20, 10, 19, 17, 16, 12.

2. Hallar la tabla de frecuencias.

No	intervalos		3 f	fa	X	f*X	fr	fra	X-14	(x-m
1	a	-195	7	7	10	70	CAS	0,175	-+ 1	The Real Property lies
2	17	14	5	12	13	65	0125	0,3	-4	16
3	15	177	7	19	14	112	0.95	0,475	-1	7
4	18	20	11	30	19	209	0.775	0,75	2	4
5	01	77	5	35	22	110	0,125	0,875	5	25
6	711	76	5	40	75	175	0,125	1	8	64

