Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3215		К работе допущен			
Студент Васильков Д.А., Лавренов Д.А.Работа выполнена					
Преподаватель	Тимофеева Э.О.	Отчет принят			

Рабочий протокол и отчет по лабораторной работе № 3.11

Вынужденные электромагнитные колебания в последовательном колебательном контуре

1. Цели работы

- 1. Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
- 2. Построение резонансной кривой и определение резонансной частоты.
- 3. Определение активного сопротивления и добротности колебательного контура.

2. Задачи, решаемые при выполнении работы

- Выполнить прямые измерения.
- Проанализировать полученные данные.
- Построить графики по полученным данным.
- Построить резонансную кривую и определить резонансную частоту.
- Определить активное сопротивление и добротность колебательного контура.

3. Объект исследования

Колебательный контур.

4. Метод экспериментального исследования

Расчетно-аналитический.

5. Рабочие формулы и исходные данные

$$Q = \frac{\Omega_0}{\Delta\Omega}$$

$$\frac{U_{C_{res}}}{\varepsilon} = \frac{\sqrt{LC}}{RC} = \frac{1}{R} \sqrt{\frac{L}{C}} = Q$$

R = 75 Om

$$L = 100 M\Gamma H$$

$$f_{res} = \frac{1}{2 \pi \sqrt{LC}}$$

$$f_{res} = \frac{1}{2 \pi \sqrt{LC}} \qquad \qquad \Omega_{res}^2 = \left(\frac{1}{L}\right) \cdot \frac{1}{C} - \frac{R^2}{4 L^2}$$

Схема установки

Рисунок 1. Схема лабораторной установки

6. Расчет результатов прямых измерений (таблицы, примеры расчетов)

$$f_{
m pacu.}$$
 (резонансная) = 1591.5 Гц

$$\Omega_{\rm res}$$
 (C = 1 нФ) = 12390 ГЦ
 $\Omega_{\rm res}$ (C = 3 нФ) = 7600 ГЦ
 $\Omega_{\rm res}$ (C = 10 нФ) = 3990 ГЦ
 $\Omega_{\rm res}$ (C = 30нФ) = 2280 ГЦ
 $\Omega_{\rm res}$ (C = 100 нФ) = 1220 ГЦ
 $\Omega_{\rm res}$ (C = 300 нФ) = 660 ГЦ

<i>f</i> , Гц	U_{0} , м B	<i>f</i> , Гц	U_{0} , м ${ m B}$
600	288	1400	704
700	2,16	1500	592
800	100	1600	496
900	50	1700	416
1000	400	1800	368
1100	648	1900	320
1200	880	2000	300
1300	832		

7. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

$$\Omega = f_{\text{эксп.}} = 1200 \ \Gamma$$
ц

$$\Delta\Omega$$
 = 391 Гц

$$Q = \frac{\Omega_0}{\Lambda\Omega} = \frac{1200}{391} = 3,069$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{75} \sqrt{\frac{100 \cdot 10^{-3}}{0, 1 \cdot 10^{-6}}} = 13,333$$

$$L = \frac{153512100}{10^9} \cdot 10^3 = 100 \text{ M}\Gamma\text{H}$$

$$R = \sqrt{140625 \cdot 4L^2}$$
 R = 75 Om

8. Графики

y=10x-140625

9. Окончательные результаты

$$\Omega_{\rm res}$$
 (теор.) = 1591,5 Гц $\Omega_{\rm res}$ (эксп.) = 1200 Гц

$$Q_{\text{(Teop.)}} = 3,069$$
 $Q_{\text{(ЭКСП.)}} = 13,333$

$$R$$
 (исх.) = 75 Oм R (эксп.) = 75 Ом

$$L$$
 (исх.) = 100 м Γ н L (эксп.) = 100 м Γ н

10. Выводы и анализ результатов работы

В данной лабораторной работе мы изучали вынужденные колебания резонанс напряжений в последовательном колебательном контуре. Построив резонансную кривую, мы определили резонансную частоту.

Также определили активное сопротивление и добротность колебательного контура. Получившиеся погрешности связаны с тем, что при экспериментальном расчёте индуктивности катушки и сопротивления в цепи мы использовали коэффициент затухания β , а при теоретическом – нет. Также можно учесть нагревание проводника, и как следствие изменение его сопротивления.

= 159#,5 B No = JLC SU Ty UMB lyery 400 1,1 h Jy 648 1,21 880 832 1,4 404 1,5 592 0,9 283 996 7,6 0,8 2,16 416 7,4 0,4 100 1,8 36 18 50 0,6 32 U 1, 9 Jalpens Bannes 28 Remini duly 300 Styword M325

(H wax) C 49 12,39 4,6 3,99 10 30 2,28 100 1,22 300 0,66