© Eskil Johnson, Göteborg 2002.

1.

$$f(u,v,w,x,y,z) =$$

$$= wx + u'v'w + u'wy + u'v'x'z$$

2.
$$f'(x,y,z,w) = xyw' + [(xy)' \cdot (y+z')]$$
 $f(x,y,z,w) = (x'+y'+w) \cdot (xy+y'z)$

f(x,1,-,0) = x'x

Statisk 0-hasard för övergången mellan (0100) och (1100)

f(1,y,1,1) = y + y

Statisk 0-hasard för övergången mellan (0110) och (1110) Statisk 1-hasard för övergången mellan (1011) och (1111)

f(1,y,0,0) = y'y

Statisk 0-hasard för övergången mellan (1000) och (1100)

 $f(1,y,1,0) = y' \cdot (y + y')$

Dynamisk hasard för övergången mellan (1010) och (1110)

3

δ (λ)	00	01	11	10
00	00 (0)	01 (1)	00 (1)	10 (1)
01	01 (0)	01 (1)	01 (1)	01 (0)
11	-	-	-	-
10	10 (0)	10 (0)	10(1)	10 (1)

Kopplingsschema på nästa sida. Fortsättning exempel 3.

4.

Maximala förenlighetsmängder: $\{1,3\}$, $\{1,5\}$, $\{2,3,4,6\}$, $\{2,5\}$

C _i	I(C _i)
{1,3}	Φ
{1,5}	{2,5}
{2,3,4,6}	{1,3}
{2,5}	{2,4}, {3,4}

Förenlighetsmängderna {1,3}, {2,3,4,6} och {2,5} bildar en minimal, sluten och täckande uppsättning av förenlighetsmängder.

$\delta(\lambda)$	00	01	11	10
$A = \{1,3\}$	A (0)	C (-)	A (-)	AvB (-)
$B = \{2,3,4,6\}$	B (1)	B (-)	A (-)	A (-)
$C = \{2,5\}$	C (0)	B (-)	B (-)	B (-)

5.

$\delta(\lambda)$	x = 0	x = 1
A	A(0)	B(0)
В	A(0)	C(0)
С	D(0)	E(0)
D	A(0)	B(1)
Е	A(0)	E(0)

A = starttillstånd

Kodning enligt tumregler:

δ (λ)	x = 0	x = 1
000 = A	000(0)	100(0)
010	-	-
110	-	-
100 = B	000(0)	111(0)
001 = D	000(0)	100(1)
011	-	-
111 = C	001(0)	101(0)
101 = E	000(0)	101(0)

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$					00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
00	0	1	1	0	00	0	0	0	0	00	0	0	0	0	00	0	0	1	0	
01	-	-		-	01	-	-	-	-	01	-	-	-	-	01	-	-	·	-	
q q 1 211	-	-	1	0	q q 1 2 ₁₁	-	-	0	0	q q	Ŀ	-	1	1	q q	-	-	0	0	
10	0	1	1	0	10	0	1	0	0	10	0	1	1	0	10	0	0	0	0	
$q_1^+ = x$				$q_2^+ = q_1 q'_3 x$				$q_3^+ = q_2 + q_1 x$						$u = q'_1 q_3 x$						

Fortsättning nästa sida

Fortsättning uppgift 6.

δ (λ)	00	01	11	10
00	00(00)	00(00)	01(0-)	10(00)
01	00(0-)	01(01)	01(01)	01(01)
11	10(-0)	11(10)	11(10)	11(10)
10	10(00)	00(00)	11(-0)	10(00)

	00	01 01	X 11	.10 ,		00	01 X	x 11	10		00	01 X	x 11	10		00	01 X ₁	x 11	10
00	0	0	0	1	00	0	0	1	0	00	0	0	0	0	00	0	0	-	0
01	0	0	0	0	01	0	1	1	1	01	0	0	0	0	01	<u>-</u>	1	1	1
q q	1	1	1	1	_q q 1 2 ₁₁	0	1	1	1	q q	-	1	1	1	q q	0	0	0	0
10_	1	0	1	1	_ 10	0	0	1	0	10	0	0	-	0	10	0	0	0	0
q		$x_1 x_1 - x_1 x_2 = x_1 x_1 x_2 + x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_1 x_1 x_1 x_1 x_1 x_1 x_1 x_1$		q_2^+		$x_1 + x_1 + x_1 + x_2$		c ₂ +	y_1	=q	$q_{1}q_{2}$			y_2	= <i>q</i>	$'_{1}q_{2}$			