КРИПТОГРАФИЧЕСКИ СТОЙКИЕ ГЕНЕРАТОРЫ

1. Понятие генератора

(k,l(k))-Генератором называется функция $f:(Z_2)^k \to (Z_2)^{l(k)},\ l(k)>k$, где l(X) — некоторый полином, значение которой можно вычислить за полиномиальное относительно k время (рассматривается семейство функций при растущем параметре безопасности k). Генератор f называется псевдослучайным, если строка $f(s),\ s\in\{0,1\}^k$ при случайном выборе s практически неотличима от строки той же длины (это свойство уточняется ниже), выбираемой случайно из множества $\{0,1\}^{l(k)}$. Тогда значение функции f(s) называют - псевдослучайной битовой строкой, а значение $s\in(z_2)^k$ ее зерном, Таким образом, при случайном выборе зерна строка f(s) должна выглядеть как случайный набор бинарных символов. В данной лекции изучаются псевдослучайные генераторы.

2. Полиномиально неразличимые вероятностные распределения

Сначала поясним, как мы понимаем полиномиальную неразличимость вероятностных распределений.

Пусть p_0 и p_1 два – вероятностных распределения на множестве бинарных строк длины l(k), $\mathbf{A}:(Z_2)^{l(k)}\to\{0,1\}$ – вероятностный алгоритм, Такой алгоритм может быть, например, вероятностной машиной Тьюринга. полиномиальный относительно l(k), ϵ – константа, $\epsilon>0$. Определим математические ожидания условных вероятностей $p_j(\mathbf{A}(z_1,\ldots z_{l(k)})=1|(z_1,\ldots z_{l(k)})),\ j\in\{0,1\}$ при распределениях p_0 и p_1 на множестве $(Z_2)^{l(k)}$

$$E_{\mathbf{A}}(p_j(\mathbf{A}(z_1, \dots z_{l(k)}) = 1 | (z_1, \dots z_{l(k)}))) =$$

$$= \sum_{(z_1, \dots z_{l(k)}) \in (z_2)^{l(k)}} p_j(z_1, \dots, z_{l(k)}) \times p(\mathbf{A}(z_1, \dots z_{l(k)}) = 1 | (z_1, \dots z_{l(k)})), j \in \{0, 1\}.$$

Следует обратить внимание, что эти средние значения выхода алгоритма A при условии, что на его вход поступают определенным образом распределенные наборы, зависят от параметра безопасности k, поскольку условная вероятность в этой формуле зависит не только от случайных величин, используемых при работе алгоритма, но и от от выбранной строки $(z_1, \ldots z_{l(k)})$ и ее длины l(k).

Примечание. Если алгоритм A детерминированный, то условная вероятность

$$p(\mathbf{A}(z_1, \dots z_l(k)) = 1 | (z_1, \dots z_{l(k)}))$$

принимает только два значения 0 или 1. Вероятностный алгоритм «догадывается» о значении j и величина $E_{\mathbf{A}}(p_j)$ определяет среднее значение выхода алгоритма при условии, что на его вход поступают наборы в соответствии с распределением вероятностей p_i , j=0,1.

Алгоритм **A** называется ϵ -различителем для p_0 и p_1 , если

$$|E_{\mathbf{A}}(p_0) - E_{\mathbf{A}}(p_1)| \ge \epsilon.$$

Распределения p_0 и p_1 называются ϵ -различимыми, если для них существует ϵ -различитель.

Пусть p_0 – равномерное распределение на множестве $(Z_2)^{l(k)}$, а p_1 - распределение значения $f(s) \in (Z_2)^{l(k)}$ при равновероятном выборе зерна $s \in (Z_2)^k$. (Предположим для простоты, что при этом все выбираемые значения различны). Распределение p_1 очень далеко от равномерного: хотя 2^k двоичных наборов из $(Z_2)^{l(k)}$ выбираются с равными вероятностями $1/2^k$, остальные $2^{l(k)} - 2^k$ наборов не выбираются никогда.

Несмотря на то, что распределения p_0 и p_1 могут сильно различаться, можно тем не менее установить, что они в некоторых случаях при достаточно больших значениях параметра безопасности k ϵ -различимы только при малых ϵ , таких что $\epsilon < \frac{1}{p(k)}$, где p(X) - n n o o u полином от переменной X над полем действительных чисел. Тогда говорят, что вероятностные распределения p_0 и p_1 полиномиально неразличимы.

Формально это понятие описывается предикатом

$$\forall p(X) \in R[X] \; \exists N \; \forall k \ge N \; |E_{\mathbf{A}}(p_0) - E_{\mathbf{A}}(p_1)| \ge \epsilon \to \epsilon < \frac{1}{p(k)}.$$

Здесь абсолютная разность математических ожиданий зависит от параметра безопасности k и с его ростом становится исчезающе малой. Если же распределения p_0 и p_1 ϵ -различимы при $\epsilon \geq \frac{1}{p(k)}, hboxp(X)$ – некоторый полином над полем действительных чисел, то эти распределения называются полиномиально различимыми. Формально:

$$\exists p(X) \in R[X] \forall N \ \exists k \ge N \ |E_{\mathbf{A}}(p_0) - E_{\mathbf{A}}(p_1)| \ge \epsilon \ge \frac{1}{p(k)}.$$

Приведем пример полиномиально различимых вероятностных распределений.

Пример 1 Пусть генератор f(k, l(k)) производит двоичные наборы четной длины c одина-ковым числом нулей u единиu.

Будем использовать полиномиальный от l(k) (детерминированный) алгоритм **A**, реализующий функцию

$$\mathbf{A}(z_1,\dots,z_{l(k)}) = \left\{ egin{array}{ll} 1, & ext{если в наборе } (z_1,\dots,z_{l(k)}) \ l(k)/2 \end{array}
ight.$$
 нулей, $0, & ext{в остальных случаях.} \end{array}
ight.$

В этом случае

$$E_{\mathbf{A}}(p_0) = \frac{\binom{l(k)}{l(k)/2}}{2^{l(k)}}$$

u

$$E_{\mathbf{A}}(p_1) = 1.$$

Так что

$$|E_{\mathbf{A}}(p_0) - E_{\mathbf{A}}(p_1)| = |1 - \frac{\binom{l(k)}{l(k)/2}}{2^{l(k)}}| \ge \frac{1}{2}.$$

Таким образом, такой генератор псевдослучайным не является. Не являются псевдослучайными и генераторы, значениями которых являются начальные отрезки длины l(k) линейных рекуррентных последовательностей или начальные отрезки бинарных последовательностей, образуемых младшими разрядами $JK\Pi$.

Понятие псевдостлучайного (криптографически стойкого) генератора связано с понятием односторонней функции.

Односторонние функции f определяются в классе функций $f_k: Z_2^k \to Z_2^{l(k)},$ где l(X) – некоторый полином.

Функция называется *честной*, если существует полином q(X), такой, что $k \leq q(l(k))$. Это означает, что такая функция не слишком сильно «сжимает» входные значения. Честная функция f_k называется односторонней, если

1) Существует полиномиальный алгоритм (алгоритм, исполняющий не более P(k) элементарных операций при вычислении значения функции, P(X) есть некоторый полином), вычисляющий ее значение f(x) при любом $x \in \{0,1\}^k$.

2) Для любого полиномиального вероятностного алгоритма A и случайно выбранной строки $x \in_R Z_2^k$ и любого полинома P(x) при достаточно больших значениях параметра безопасности k

$$E(p(f(A(f(x))) = f(x)|x)) = \sum_{x \in \mathbb{Z}_2^k} 2^{-k} p(f(A(f(x))) = f(x)|x) < 1/P(k).$$

 $(C_{M}.[1].)$

Заметим, что данное определение не исключает существования полиномиального алгоритма вычисления прообраза для исчезающе малой доли значений функции.

Ясно, что псевдослучайный генератор должен быть односторонней функцией. Импальяццо, Левин и Луби, а также Хостад в 1989-1990 г.г. доказали, что существование односторонней функции также и достаточно для существования криптографически стойкого генератора.

Теорема 1 Криптографически стойкие генераторы существуют тогда и только тогда, когда существуют односторонние функции.

Существование односторонних функций (а значит и псевдослучайных генераторов) не доказано. Практически используются функции, "обращение"которых эквивалентно трудным проблемам теории чисел, например, проблеме факторизации и проблеме квадратичного вычета.

3. Предсказатель следующего бита

Пусть f есть (k,l(k))-генератор. Пусть имеется некоторый вероятностный алгоритм $\mathbf{B}_i:(Z_2)^{i-1}\to\{0,1\}$, который, получая первые i-1 двоичных символов (z_1,z_2,\ldots,z_{i-1}) , формируемых генератором f, предсказывает значение i-го символа z_i . Алгоритм определён на множестве $\{0,1\}^{i-1}$ всех двоичных наборов длины i-1.

Такой алгоритм \mathbf{B}_i называется ϵ -предсказателем следующего бита при заданном (k,l(k))-генераторе, если при равновероятном выборе зерна s он определяет значение i-элемента строки f(s) по первым i-1 ее элементам с вероятностью не менее $1/2+\epsilon$, при $\epsilon>0$.

Теорема 2 При заданном (k, l(k))-генераторе алгоритм \mathbf{B}_i является ϵ -предсказателем следующего бита тогда и только тогда, когда

$$\sum_{(z_1,\ldots,z_{i-1})\in(Z_2)^i} p_1(z_1,\ldots,z_{i-1}) \times p(\mathbf{B}(z_1,\ldots,z_{i-1}) = z_i | (z_1,\ldots,z_{i-1})) \ge \frac{1}{2} + \epsilon.$$

Здесь условная вероятность определяется выбором строки (z_1, \ldots, z_{i-1}) и случайными величинами при работе вероятностного алгоритма.

Если распределение двоичных наборов длины i-1 равномерно, то любой вероятностный предсказывающий алгоритм определит следующий бит с вероятностью, равной 1/2. Если распределение вероятностей отличается от равномерного, то появляется возможность создания предсказателя с большей вероятностью угадывания,

Предсказатель ${\bf B}_i$ следующего бита можно использовать в различающем алгоритме ${\bf A}$ в качестве подпрограммы по следующей схеме.

ВХОД: бинарный набор
$$z_1, \dots z_{l(k)}$$
. ВЫХОД: $\mathbf{A}(z_1, \dots z_{l(k)}) \in \{0, 1\}$ Вычислить $z = \mathbf{B}_i(z_1, \dots z_{i-1})$ (0.1) Если $z = z_i$, то $\mathbf{A}(z_1, \dots, z_{l(k)}) = 1$ иначе $\mathbf{A}(z_1, \dots z_{l(k)}) = 0$.

Теорема 3 Пусть \mathbf{B}_i – ϵ -предсказатель следующего бита для (k, l(k))-генератора f. Пусть p_1 – вероятностное распределение на множестве двоичных наборов $(Z_2)^{l(k)}$, порождаемое генератором f, а p_0 – равномерное распределение вероятностей на этом множестве. Тогда различающий алгоритм \mathbf{A} из (0.1) является ϵ -различителем для p_1 и p_0 .

Доказательство. Заметим. что

$$\mathbf{A}(z_1, \dots, z_{l(k)}) = 1 \iff \mathbf{B_i}(z_1, \dots, z_{i-1}) = z_i.$$

Кроме того выход алгоритма **A** не зависит от $z_{i+1}, \ldots z_{l(k)}$.

Поэтому можно вычислить

$$E_{\mathbf{A}}(p_1) = \sum_{(z_1, \dots z_{l(k)}) \in (Z_2)^{l(k)}} p_1(z_1, \dots z_{l(k)}) \times p(\mathbf{A} = 1 | (z_1, \dots z_{l(k)})) =$$

$$= \sum_{(z_1, \dots z_i) \in (Z_2)^i} p_1(z_1, \dots z_i) \times p(\mathbf{A} = 1 | (z_1, \dots z_i)) =$$

$$= \sum_{(z_1, \dots z_{i-1}) \in (Z_2)^{i-1}} p_1(z_1, \dots z_{i-1}) \times p(\mathbf{B}_i(z_1, \dots z_{i-1}) = z_i | (z_1, \dots z_{i-1})).$$

По теореме 2

$$E_{\mathbf{A}}(p_1) \geq \frac{1}{2} + \epsilon.$$

С другой стороны, каждый предсказатель B_i предсказывает i-ый бит строки из равномерно распределенного множества $\{0,1\}^{l(k)}$ с вероятностью $\frac{1}{2}$. Не трудно видеть поэтому, что $E_{\mathbf{A}}(p_0) = \frac{1}{2}$. Отсюда $|E_{\mathbf{A}}(p_0) - E_{\mathbf{A}}(p_1)| \geq \epsilon$.

Обратим внимание, что и в данном случае абсолютная разность средних значений зависит от параметра безопасности k.

 ϵ -Предсказатель следующего бита называется *полиномиальным*, если $\epsilon \geq \frac{1}{p(k)}$, где p(x) – некоторый полином.

Следствие 1 Вероятностные распределения p_0 и p_1 полиномиально различимы тогда и только тогда, когда для распределения p_1 существует полиномиальный ϵ -предсказатель следиющего бита.

Главным результатом теории генераторов является то, что предсказатель следующего бита является универсальным тестом. То есть такой генератор является криптографически стойким тогда и только тогда, когда не существует полиномиального ϵ -предсказателя следующего бита.

Необходимость определяется предыдущей теоремой, а достаточность утверждается следующей.

Теорема 4 Если существует ϵ -различитель вероятностного распределения p_1 на множестве двоичных наборов $(Z_2)^{l(k)}$, индуцируемых (k,l(k))-генератором f, и равномерного распределения p_0 на том же множестве двоичных наборов, то для некоторого $i,1 \le i \le l(k)$, существует полиномиальный $\epsilon/l(k)$ -предсказатель следующего бита $\mathbf{B_i}$ для f.

Доказательство. Определим вероятностное распределение $q_i, 0 \le i \le l(k)$ на $(Z_2)^2$ такое, что первые i бит производятся генератором f, а остальные l(k) - i двоичных знаков выбираются случайно. Тогда $q_0 = p_0$ и $q_{l(k)} = p_1$. Мы имеем

$$|E_{\mathbf{A}}(q_0) - E_{\mathbf{A}}(q_{l(k)})| \ge \epsilon.$$

Учитывая неравенство треугольника, получим

$$|E_{\mathbf{A}}(q_0) - E_{\mathbf{A}}(q_{l(k)})| \le \sum_{i=1}^{l(k)} |E_{\mathbf{A}}(q_{i-1}) - E_{\mathbf{A}}(q_i)|.$$

Отсюда хотя бы для одного значения $i \le i \le l(k)$ выполняется

$$|E_{\mathbf{A}}(q_{i-1}) - E_{\mathbf{A}}(q_i)| \ge \epsilon/l(k).$$

Не нарушая общности, будем считать. что

$$E_{\mathbf{A}}(q_{i-1}) - E_{\mathbf{A}}(q_i) \ge \epsilon/l(k). \tag{0.2}$$

(Если

$$E_{\mathbf{A}}(q_i) - E_{\mathbf{A}}(q_{i-1}) \ge \epsilon/l(k),$$

то выход предсказателя просто инвертируется и получается предыдущий случай)

Построим предсказатель i-го бита ${f B}_i$ в виде следующего вероятностного алгоритма.

ВХОД: бинарный набор
$$(z_1, \dots z_{i-1})$$
.
ВЫХОД: $\mathbf{B}_i(z_1 \dots z_{i-1}) \in \{0, 1\}$.
Выбрать случайно набор $(z_i, z_{i+1}, \dots z_{l(k)}) \in (Z_2)^{l(k)-i+1}$.
Вычислить $z = \mathbf{A}(z_1, \dots z_{l(k)})$.
Определить $\mathbf{B}_i(z_1, \dots, z_{i-1}) = (z + z_i) \bmod 2$.

Логику алгоритма (0.3) можно пояснить следующим образом. Генератор формирует двоичный набор длины l(k) в соответствии с распределением вероятностей q_{i-1} . Ответ 0 алгоритма **A** означает, что алгоритм считает, что этот набор скорее всего был образован в соответствии с распределением вероятностей q_i . (Это следует из условия (0.2)) Распределения q_{i-1} и q_i отличаются только способом порождения i-го бита: в q_{i-1} он индуцируется случайно, а в q_i – (k,l(k))-генератором. Следовательно, если **A** отвечает 0, то он предполагает, что z_i должен быть произведен (k,l(k))-генератором, а при ответе 1, что он случаен. В первом случае i-ый бит предсказывается как z_i , а во втором – как $1 \oplus z_i$.

Вычислим вероятность правильного предсказания i-го бита. Очевидно, что при ответе "0"алгоритма **A**, предсказание корректно с вероятностью

$$p_1(z_i|(z_1,\ldots,z_{i-1})),$$

где p_1 есть вероятностное распределение, порождаемое генератором f. При ответе "1"вероятность правильного предсказания есть

$$1 - p_1(z_i|(z_1,\ldots,z_{i-1})).$$

Будем сокращенно обозначать $\mathbf{z} = (z_1, \dots, z_{l(k)})$. Заметим, что

$$q_{i-1}(\mathbf{z}) \times p_1(z_i|(z_1,\ldots,z_{i-1})) = \frac{q_i(\mathbf{z})}{2}.$$

Действительно,

$$q_{i-1}(z_1, \dots, z_{l(k)}) \times p_1(z_i | (z_1, \dots, z_{i-1})) =$$

$$= q_{i-1}(z_1, \dots, z_{i-1}) \times \frac{1}{2^{l(k)-i+1}} \times p_1(z_i | (z_1, \dots, z_{i-1})) =$$

$$= q_i(z_1, \dots, z_{i-1}, z_i) \times \frac{1}{2^{l(k)-i+1}} = \frac{q_i(z_1, \dots, z_{l(k)})}{2}.$$

Теперь можно вычислить вероятность правильного предсказания.

$$\begin{split} p(z_i = \mathbf{B}_i(z_1, \dots, z_{i-1})) = \\ = \sum_{\mathbf{z} \in (z_2)^{l(k)}} q_{i-1}(\mathbf{z}) [p(\mathbf{A} = 0 | \mathbf{z}) \times p_1(z_i | (z_1, \dots, z_{i-1})) + \\ + p(\mathbf{A} = 1 | \mathbf{z}) \times (1 - p_i(z_1 | (z_1, \dots, z_{i-1})))] = \\ = \sum_{\mathbf{z} \in (Z_2)^{l(k)}} \frac{q_i(\mathbf{z})}{2} \times p(\mathbf{A} = 0 | \mathbf{z}) + \sum_{\mathbf{z} \in (Z_2)^{l(k)}} q_{i-1}(\mathbf{z}) \times p(\mathbf{A} = 1 | \mathbf{z}) - \\ - \sum_{\mathbf{z} \in (Z_2)^{l(k)}} \frac{q_i(\mathbf{z})}{2} \times p(\mathbf{A} = 0 | \mathbf{z}) + \sum_{\mathbf{z} \in (Z_2)^{l(k)}} q_{i-1}(\mathbf{z}) \times p(\mathbf{A} = 1 | \mathbf{z}) + \\ + \sum_{\mathbf{z} \in (Z_2)^{l(k)}} \frac{q_i(\mathbf{z})}{2} \times p(\mathbf{A} = 1 | \mathbf{z}) - \sum_{\mathbf{z} \in (Z_2)^{l(k)}} q_i(\mathbf{z}) \times p(\mathbf{A} = 1 | \mathbf{z}) = \\ = \sum_{\mathbf{z} \in (Z_2)^{l(k)}} \frac{q_i(\mathbf{z})}{2} \times (p(\mathbf{A} = 0 | \mathbf{z}) + p(\mathbf{A} = 1 | \mathbf{z}) + E_{\mathbf{A}}(q_{i-1}) - E_{\mathbf{A}}(q_i) = \\ \end{bmatrix}$$

$$= \frac{1}{2} + E_{\mathbf{A}}(q_{i-1}) - E_{\mathbf{A}}(q_i) \ge \frac{1}{2} + \epsilon/l(k).$$

4. Стойкие криптографические системы

Пусть $d_k(m)$ - шифртекст длины l(n), полученный зашифрованием симметричной криптографической системой открытого текста m той же длины на ключе k длины n. Для ее криптоанализа используется полиномиальный вероятностный алгоритм A, получающий на входе шифртекст d и вырабатывающий пару (i,σ) , i=1,2,...,l(n), $\sigma \in \{0,1\}$.

Криптосистема называется cmoйκoй, если при равномерном выборе ключа $k \in_R \{0,1\}^n$ и равномерном выборе открытого текста $m \in_R \{0,1\}^{l(n)}$ для любого полинома P(X) и всех достаточно больших n

$$p(A(d) - (i, \sigma) \& \sigma = m_i) | m \in_R \{0, 1\}^{l(n)} < \frac{1}{2} + \frac{1}{P(n)}.$$

Эта вероятность также зависит и от случайных величин, выбираемых алгоритмом A в процесса работы.

Ясно, что стойкие криптосистемы существуют тогда и только тогда, когда существуют псевдослучайные генераторы.

Действительно, стойкой является криптосистема формирующая $d = M \oplus f(s)$ при равномерном выборе зерна s в качестве ключа k (здесь \oplus -операция поразрядного сложения битовых строк длины l(k)). И наоборот, при случайном выборе ключа k и фиксированном открытом тексте m криптограмма d может рассматриваться как значение f(k) генератора.

Следствие 2 Криптосистема является стойкой тогда и только тогда, когда при случайном выборе ключа и при достаточно большой длине l(n) криптограмма d полиномиально неотличима от случайно выбираемой битовой строки той же длины l(n).

Примером криптографически стойкой криптосистемы является криптосистема Блюма-Гольдвассер, использующая BBS-генератор.

5. Криптографическая стойкость BBS-генератора

BBS-генератор. Рассмотрим называемый Blum-Blum-Shub - генератор (BBS-генератор) и докажем его криптографическая стойкость в предположении, что проблема квадратичного вычета не имеет полиномиального алгоритма решения. Предположение о существовании полиномиального ϵ -различителя для вероятностного распределения, индуцируемого таким генератором, и для равномерного распределения приводит к противоречию с общепринятым мнением о не существовании полиномиального алгоритма для этой проблемы. Напомним эту проблему: является ли число a, имеющее равный 1 символ Якоби по модулю составного числа $n = p \times q$, (p и q — простые числа) квадратичным вычетом по модулю n? Иными словами, является это число квадратом некоторого числа $a \in \mathbb{Z}_n^*$ или же оно есть псевдо-квадрат по модулю n. (В первом случае символы Лежандра чисел p и q равны 1, а во втором они равны -1).

BBS-генератор это (k, l(k))-генератор, осуществляющий вычисления по следующему алгоритму.

BХОД: k, l

ВЫХОД: псевдослучайное двоичное число $(z_1, z_2, \dots z_l)$ длины l.

Сформировать два секретных и разных простых числа p и q

длиной k/2 бит, конгруэнтных 3 по модулю 4.

Вычислить $n = p \cdot q$.

Выбрать случайное число $r \in [1, n-1]$

взаимно простое с числом n (НОД(r, n) = 1.

Вычислить "зерно" $s=r^2 \mod n$ и принять $x_0=s$

Для $i = \bar{1,l}$ выполнять

$$x_i = x_{i-1}^2 \mod n.$$

$$z_i = x_i \mod 2$$
.

Как видим,

$$z_i = (s^{2^i} \mod n) \mod 2, \ 1 \le i \le l.$$

Рассмотрим пример конкретного *BBS*-генератора [1].

Пусть $n = 192649 = 383 \times 503$, r = 101355 и $s = 101355^2 \mod n = 20749$. Первые 20 битов, производимые этим BBS-генератором представления в следующей таблице;

i	x_i	z_i	i	x_i	z_i	i	x_i	z_i	i	x_i	z_i
0	20749	1									
1	143135	1	6	80649	1	11	137922	0	16	133015	1
2	177671	1	7	45663	1	12	123175	1	17	106065	1
3	97048	0	8	69442	0	13	8630	0	18	45870	0
4	89992	0	9	186894	0	14	114386	0	19	137171	1
5	174051	1	10	177046	0	15	14863	1	20	48060	0

Используемые в BBS-генераторе составные числа вида n=pq, где p и q – различные простые числа, конгруэнтные 3 по модулю 4 называются числами Блума.

Напомним, что множество квадратичных вычетов Q_n по модулю n есть множество чисел $a,a\in Z_n^*$ таких, что в Z_n^* имеется число x такое, что $a=x^2 \mod n$.)

Рассмотрим и докажем следующие свойства чисел Блума $1)\left(\frac{-1}{p}\right)=\left(\frac{-1}{q}\right)=-1,$ следовательно, $\left(\frac{-1}{n}\right)=1;$

2)
Для
$$y\in Z_n^*,$$
 если $\left(\frac{y}{n}\right)=1,$ то либо $y\in Q_n,$ либо $y\in \bar{Q}_n,$

3) каждый вычет $y \in Q_n$ имеет 4 квадратных корняv, -v, u, -u, такие, что

$$a)\left(\frac{u}{p}\right)=1,\,\left(\frac{u}{q}\right)=1,\,$$
то есть $v,u\in Q_n;$

$$6)\left(\frac{-u}{p}\right) = 1, \left(\frac{-u}{q}\right) = 1;$$

B)
$$\left(\frac{v}{p}\right) = -1, \ \left(\frac{v}{q}\right) = 1;$$

 $\Gamma\left(\frac{-v}{p}\right) = 1, \ \left(\frac{-v}{q}\right) = -1.$

4) функция $f(x) = x^2 \pmod{n}$ есть перестановка на Q_n ;

Доказательство. 1) Используем критерий Эйлера $\left(\frac{u}{p}\right)=u^{\frac{p-1}{2}}$. Получим $\left(\frac{-1}{p}\right)=-1^{\frac{4k+3-1}{2}}=-1^{2k-1}=-1$. Аналогично, $\left(\frac{-1}{q}\right)=-1$. Отсюда $\left(\frac{-1}{n}\right)=1$.

- $2)\left(\frac{y}{n}\right)=1$ влечет $\left(\frac{y}{p}\right)=\left(\frac{y}{q}\right)=1$ или $\left(\frac{y}{p}\right)=\left(\frac{y}{q}\right)=-1$. В первом случае $y\in Q_n$, во втором случае $-y\in Q_n$
- 3) Обозначим $\pm u$ и $\pm v$ 4 квадратных корня из $y \in Q_n$. Только один из них (тот, который имеет символы Лежандра 1 как по модулю p, так и по модулю q) принадлежит Q_n .
 - 4) Следует из 3.

Таким образом, по свойству 3) если n – число Блума, то каждое число $a \in Q_n$ имеет точно 4 квадратных корня по модулю n, точно один из них принадлежит Q_n . Указанный единственный корень, принадлежащий Q_n называется *главным* корнем.

Свойство 4), что преобразование $x_i = x_{i-1}^2$ является перестановкой на множестве Q_n квадратичных вычетов и используется для обоснования криптографической стойкости BBS-генератора.

Предсказатель предыдущего бита. Предсказатель предыдущего бита для (k, l(k))-BBS генератора, получая на входе l(k) псевдослучайных двоичных знаков, выработанных генератором при неизвестном предсказателю "зерне"s, пытается угадать (предсказать) значение $z_0 = s \mod 2$. предсказатель предыдущего бита может быть вероятностным алгоритмом. Предсказатель \mathbf{B}_0 предыдущего бита называется ϵ -предсказателем предыдущего бита, если вероятность правильного угадывания значения z_0 не менее $1/2+\epsilon$, $\epsilon>0$, при вычислении этой вероятности по всем возможным "зернам"s.

Следующая теорема, аналогичная теореме 11.4 приводится без доказательства.

Теорема 5 Пусть **A** является ϵ -различителем вероятностных распределений p_1 и p_0 , где p_1 – распределение, индуцируемое на $(Z_2)^{l(k)}$ (k,l(k))-BBS генератором f, а p_0 - случайное равномерное распределение на этом же множестве. Тогда существует $\epsilon/l(k)$ -предсказатель предыдущего бита для f.

 ϵ -предсказатель ${\bf B}_0$ предыдущего бита можно использовать для построения вероятностного алгоритма B, который отличает квадратичный вычет по модулю n от псевдоквадрата по модулю n с вероятностью $1/2+\epsilon$, $\epsilon>0$. Алгоритм B использует B_0 как подпрограмму-оракула и имеет вид:

ВХОД: $x \in Z_n^*$ такое, что $\left(\frac{x}{n}\right) = 1$. ВЫХОД: ответ " $x \in Q_n$ " или " $x \in \tilde{Q}_n$ ". Вычислить $s = x^2 \mod n$ и вычислить $z_0 = s \mod 2$. С помощью BBS-генератора вычислить $z_1, \dots, z_{l(k)-1}$ для данного "зерна"s. Вычислить $z = \mathbf{B}_0(z_0, \dots, z_{l(k)-1})$. Если $(x \mod 2) = z$, то ответ $= x \in Q_n$ " иначе ответ $= x \in \tilde{Q}_n$."

Теорема 6 Пусть \mathbf{B}_0 есть предсказатель предыдущего бита для (k,l(k))-BBS генератора f. Тогда приведённый алгоритм \mathbf{B} определяет, является ли x квадратичным вычетом, правильно c вероятностью не менее $1/2+\epsilon$, $\epsilon>0$, при вычислении этой вероятности по всем возможным входам $x\in Q_n\cup \tilde{Q}_n$.

Доказательство. Поскольку n=pq и $p\equiv q\equiv 3 \mod 4$, то $\left(\frac{-1}{n}\right)=1$, так что $-1\in \tilde{Q}_n$. Следовательно, если

$$\left(\frac{x}{n}\right) = 1,$$

то главный корень числа $s=x^2$ есть x, если $x\in Q_n$ и -x, если $x\in \tilde{Q}_n.$ Но

$$(-x \mod n) \mod 2 \neq (x \mod n) \mod 2$$
,

Отсюда следует, что алгоритм ${\bf B}$ даёт правильный ответ тогда и только тогда, когда ${\bf B}_0$ правильно предсказывает z. Отсюда немедленно следует заключение теоремы.

Вероятностные алгоритмы для проблемы квадратичного вычета. Рассмотренная теорема показывает, как можно бы было различать псевдоквадраты и квадратичные вычеты с вероятностью не менее $1/2 + \epsilon$, $\epsilon > 0$, если бы существовал ϵ -предсказатель предыдущего бита.

Это приводит к алгоритму Монте-Карло, дающему правильный ответ с вероятностью не менее $1/2 + \epsilon$, $\epsilon > 0$: для любого $x \in Q_n \cup \tilde{Q}_n$ приведенный ниже алгоритм Монте-Карло \mathbf{Q} даст правильный ответ с вероятностью не менее $1/2 + \epsilon$, $\epsilon > 0$. При этом алгоритм может ошибаться в обе стороны (является не предвзятым, unbiased). Алгоритм \mathbf{Q} использует предыдущий алгоритм \mathbf{B} в качестве подпрограммы.

```
ВХОД: x \in Z_n^*, такое, что \left(\frac{x}{n}\right) = 1. ВЫХОД: ответ "x \in Q_n" или "x \in \tilde{Q}_n". Выбрать случайное число r \in Z_n^*. Вычислить с вероятностью 1/2 x' = r^2 x \mod n или x' = -r^2 x \mod n. Вычислить \mathbf{B}(x') \in \{Q, \tilde{Q}\}. Если \mathbf{B}(x') = Q и x' = r^2 x \mod n или \mathbf{B}(x') = \tilde{Q} и x' = -r^2 x \mod n или \mathbf{B}(x') = \tilde{Q} и x' = -r^2 x \mod n, то ответ = x \in Q_n" иначе ответ = x \in \tilde{Q}_n".
```

Теорема 7 Если алгоритм **B** определяет, является ли x квадратичным вычетом, правильно c вероятностью не менее $1/2 + \epsilon$, $\epsilon > 0$ то алгоритм Монте-Карло **Q** решает проблему квадратичного вычета c вероятностью ошибки не более $1/2 - \epsilon$.

Доказательство. Для каждого заданного входа $x \in Q_n \cup \tilde{Q}_n$ случайно выбирается элемент x', о котором известно, является он квадратичным вычетом или псевдоквадратом. Это позволяет принять решение о статусе элемента x с вероятностью ошибки не более $1/2 - \epsilon$.

Осталось показать, как использовать алгоритм, решающий проблему квадратичного вычета с вероятность ошибки не более $1/2-\epsilon$ для построения алгоритма, решающего эту проблему со сколь угодно малой вероятностью ошибки δ .

Идея построения такого алгоритма состоит в том, чтобы принимать решения по результатам 2m+1 "прогонов"этого базового алгоритма на основе мажоритарного принципа. При этом необходимо установить зависимость величин ϵ, m и δ .

Теорема 8 Пусть алгоритм Монте Карло \mathbf{Q} , вероятность ошибки которого не превышает $1/2 - \epsilon$, $\epsilon > 0$, применяется t = 2m+1 раз при одних и тех же исходных данных I и в качестве окончательного результата выбирается наиболее часто встречающийся его ответ. Тогда вероятность ошибки итогового алгоритма не превышает

$$\frac{(1-4\epsilon^2)^m}{2}.$$

Доказательство. Вероятность получения i правильных ответов при t испытаниях не превышает

$$\binom{n}{i} \left(\frac{1}{2} + \epsilon\right)^i \left(\frac{1}{2} - \epsilon\right)^{t-i}.$$

Вероятность того. что наиболее частый ответ окажется неправильным, равна вероятности того, что число правильных ответов в t испытаниях не превысит m. Следовательно, эту

вероятность ошибки p_{OIII} можно вычислить следующим образом.

$$\begin{split} p_{\text{OIII}} & \leq \sum_{i=0}^{m} \binom{n}{i} \left(\frac{1}{2} + \epsilon\right)^{i} \left(\frac{1}{2} - \epsilon\right)^{2m+1-i} = \\ & = \left(\frac{1}{2} + \epsilon\right)^{m} \left(\frac{1}{2} - \epsilon\right)^{m+1} \sum_{i=0}^{m} \binom{n}{i} \left(\frac{1/2 - \epsilon}{1/2 + \epsilon}\right)^{m-i} \leq \\ & \leq \left(\frac{1}{2} + \epsilon\right)^{m} \left(\frac{1}{2} - \epsilon\right)^{m+1} \sum_{i=0}^{m} \binom{n}{i} = \\ & = \left(\frac{1}{2} + \epsilon\right)^{m} \left(\frac{1}{2} - \epsilon\right)^{m+1} 2^{2m} = \\ & = \left(\frac{1}{4} - \epsilon^{2}\right)^{m} \left(\frac{1}{2} - \epsilon\right) 2^{2m} = \\ & = (1 - 4\epsilon^{2})^{m} \left(\frac{1}{2} - \epsilon\right) \leq \\ & \leq \frac{(1 - 4\epsilon^{2})^{m}}{2}, \end{split}$$

что и требуется.

Допустим, что требуется понизить вероятность ошибки до некоторого значения $\delta,\ 0<\delta<1/2-\epsilon.$ Мы должны выбрать m так, чтобы выполнялось неравенство

$$\frac{(1-4\epsilon^2)^m}{2} \le \delta,$$

Достаточно взять

$$m = \left\lceil \frac{1 + \log_2 \delta}{\log_2(1 - 4\epsilon^2)} \right\rceil.$$

Таким образом, если алгоритм ${\bf A_1}$ используется 2m+1 раз, то голосование ответов приводит к ошибке с вероятностью не более δ . Можно показать. что значение m при этом не превышает $c/(\delta\epsilon^2)$, где c – некоторая константа. Таким образов число "прогонов" алгоритма ${\bf A}$ полиномиально относительно $1/\delta$ и $1/\epsilon$.

Пример 2 Пусть мы имеем алгоритм Монте-Карло, дающий правильный ответ с вероятностью 0,55, то есть $\epsilon = 0,05$. Если требуется принимать решения с вероятностью ошибки не более 0,05, то достаточно принять m = 230 и t = 461.

Заключение. Таким образом, предположение о существовании ϵ предсказателя предыдущего бита приводит к заключению о возможности построения полиномиального вероятностного алгоритма для проблемы квадратичного вычета, что противоречит современным представлениям о сложности
этой проблемы. Противоречие свидетельствует о криптографической стойкости
ВВS-генератора. Его производительность можно повысить, используя в каждой

итерации $m \leq \log_2 \log_2$ младших двоичных знаков текущего значения x_1 . Например, при $n \approx 10^{160}$ можно использовать до 9 младших двоичных знаков.

Контрольные вопросы

- 1. Какой генератор битовых строк называется криптографически стойким?
- 2. Какие вероятностные распределения называются полиномиально неразличимыми?
- 3. Как связаны понятия *epsilon*-предсказателя следующего бита и *epsilon*различителя вероятностных распределений
- 4. Дайте определение криптографически стойкой криптосистемы, как это понятие связано с понятием псевдослучайного генератора.
- 5. Как построить BBS-генератор. Как обосновать криптографическую стойкость BBS-генератора?
- 6. Каким образом алгоритм Монте Карло позволяет понижать вероятность ошибки в определении свойства быть квадратичным вычетом?

Литература

1. Введение в криптографию.

Под ред. В.В.Ященко. – М: МЦНМО-Черо, 1998.

- 1.Stinson D.R. Cryptography: theory and practice. CRC Press LLC, Boca Raton, 1995.
- 2. Menezes A.J., van Oorschoft P., Vanstone S.A. Handbook of Applied Cryptography. CRC Press, Boca Raton, New York, London, Tokio, 1997.