Filtro	H(s)	Características
Pasa bajos	$H(s) = \frac{K}{(s/\omega_P) + 1}$	$G = H(0) $ $ H(j \cdot \omega_P) \simeq G _{\mathrm{dB}} - 3\mathrm{dB}$
Pasa altos	$H(s) = K \cdot \frac{s}{(s/\omega_P)+1}$	$G = H(\infty) $ $ H(j \cdot \omega_P) \simeq G _{\mathrm{dB}} - 3\mathrm{dB}$
Pasa todo	$H(s) = K \cdot \frac{(s/\omega_P) - 1}{(s/\omega_P) + 1}$	$G = H(j \cdot \omega) \forall \omega \in \mathbb{R}$ $\underline{/H(j \cdot \omega_P)} = 90^{\circ}$

Tabla 1: Filtros de primer orden (G: ganancia en banda pasante, $K \in \mathbb{R} - \{0\})$

Filtro	H(s)	Características
Pasa bajos	$H(s) = \frac{K}{(s/\omega_P)^2 + 2 \cdot (\xi/\omega_P) \cdot s + 1}$	$G = H(0) $ $ H(j \cdot \omega_P) \simeq G _{\mathrm{dB}} - 6\mathrm{dB}$
Pasa altos	$H(s) = K \cdot \frac{s^2}{(s/\omega_P)^2 + 2 \cdot (\xi/\omega_P) \cdot s + 1}$	$G = H(\infty) $ $ H(j \cdot \omega_P) \simeq G _{\mathrm{dB}} - 6\mathrm{dB}$
Pasa todo	$H(s) = K \cdot \frac{(s/\omega_P)^2 - 2 \cdot (\xi/\omega_P) \cdot s + 1}{(s/\omega_P)^2 + 2 \cdot (\xi/\omega_P) \cdot s + 1}$	$G = H(j \cdot \omega) \forall \omega \in \mathbb{R}$ $/H(j \cdot \omega_P) = 180^{\circ}$
Pasa banda	$H(s) = K \cdot \frac{s}{(s/\omega_0)^2 + 2 \cdot (\xi/\omega_0) \cdot s + 1}$	$G = H(j \cdot \omega_0) $ $ H(j \cdot (\omega_0 \pm \Delta \omega/2)) \simeq G _{\mathrm{dB}} - 3\mathrm{dB}$
Notch	$H(s) = K \cdot \frac{(s/\omega_P)^2 + 1}{(s/\omega_P)^2 + 2 \cdot (\xi/\omega_P) \cdot s + 1}$	$G = H(0) = H(\infty) $ $ H(j \cdot \omega_P) = 0$
Low-pass notch	$H(s) = K \cdot \frac{(s/\omega_Z)^2 \pm 2 \cdot (\ell_Z/\omega_Z) \cdot s + 1}{(s/\omega_P)^2 + 2 \cdot (\ell_P/\omega_P) \cdot s + 1}$	$\omega_Z > \omega_P$ $G = H(0) $
High-pass notch	$H(s) = K \cdot \frac{(s/\omega_Z)^2 \pm 2 \cdot (\epsilon_Z/\omega_Z) \cdot s + 1}{(s/\omega_P)^2 + 2 \cdot (\epsilon_P/\omega_P) \cdot s + 1}$	$\omega_Z < \omega_P$ $G = H(\infty) $

Tabla 2: Filtros de segundo orden (G: ganancia en banda pasante, $K \in \mathbb{R} - \{0\}$)