

Apresentação

Nesta aula, identificaremos e representaremos uma Equivalência lógica, bem como construiremos uma demonstração de Equivalência lógica usando Tabela verdade.

Objetivos

- Identificar e representar uma Equivalência Lógica.
- Construir demonstração de Equivalência lógica usando Tabela Verdade.

I EQUIVALÊNCIA LÓGICA

Atenção para não confundir a Implicação Lógica com a Equivalência Lógica.

Uma proposição P(p,q,r,....) é logicamente equivalente ou simplesmente equivalente a uma proposição Q(p,q,r,.....) se as Tabelas Verdade de ambas as proposições são rigorosamente iguais.

Utilizaremos, para indicar tal fato, a notação $P(p,q,r,....) \leftrightarrow Q(p,q,r,....)$. Então, você já concluiu que, se as duas proposições forem ambas tautológicas ou ambas contradições, elas são equivalentes.

Você, cada vez mais, domina os conteúdos e isso nos motiva ainda mais, a continuar nessa jornada solidária em busca do saber.

$p \Rightarrow p \lor q$	Adição
$p \land q \Rightarrow p \text{ ou } p \land q \Rightarrow q$	Simplificação
$(p \lor q) \land \neg p \Rightarrow q \text{ ou } (p \lor q) \land \neg q \Rightarrow p$	Silogismo Disjuntivo
$(p \to q) \wedge p \Longrightarrow q$	Modus ponens
$(p \to q) \land \neg q \Rightarrow \neg p$	Modus tolens
$(p \to q) \wedge (q \to r) \Longrightarrow p \to r$	Silogismo hipotético
$p \wedge \neg p \rightarrow f$	Principio da inconsistência

Exemplo 1:

Regra da dupla negação: as proposições ¬¬p e p são equivalentes. Para demonstrar tal fato, basta mostrarmos que ambas as proposições apresentam a mesma Tabela Verdade. Logo:

р	¬р	¬ ¬p
V	F	V
F	V	F

Exemplo 2:

As proposições ¬p → p e p são equivalentes, isto é, ambas apresentam a mesma Tabela Verdade. Logo, vamos mostrar que

р	¬р	¬p → p
V	F	V
F	V	F

Exemplo 3:

As proposições p \rightarrow q e ¬p $\,$ v q são logicamente equivalentes. Vejamos, mais uma vez a Tabela Verdade.

р	q	$p \rightarrow q$	¬р	¬p ∨ q
V	V	V	F	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

 $\mathbf{p} \rightarrow \mathbf{q}$ Se Marcos é alto, então Regina é esforçada.

¬p∨ q Marcos não é alto ou Regina é esforçada.

Exemplo 4:

As condicionais $p \to p \land q$ e $p \to q$ são logicamente equivalentes, reforçando que apresentam Tabelas Verdade idênticas. Veja:

р	q	p∧q	p → p ∧ q	p → q
V	V	V	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

Lembre-se: Simbolicamente podemos indicar: $p \rightarrow p \leftrightarrow p \rightarrow q$

Exemplo 5:

A bicondicional p \leftrightarrow q e a disjunção (p \land q) V (¬ p \land ¬q) são logicamente equivalentes; portanto, mostremos que apresentam a mesma Tabela Verdade.

			sempre será equivalente a p <> q					
р	q	p ↔ q	p∧q	¬р	¬q	¬p ∧ ¬q	(p ∧ q) v (¬p ∧ ¬q)	
V	V	V	V	F	F	F	V	
V	F	F	F	F	V	F	F	
F	V	F	F	V	F	F	F	
F	F	V	F	V	V	V	V	

Observando a terceira e a última coluna, concluímos que: $p \rightarrow q \leftrightarrow (p \land q) \lor (\neg p \land \neg q)$

Já estamos nos aproximando do término desta aula. Rápido, não? Mas, antes, vejamos mais uma importante Equivalência Lógica.

Exemplo 6:

A bicondicional $p \leftrightarrow q$ e a conjunção $(p \to q) \land (q \to p)$ são logicamente equivalentes. Mostremos, então, que as Tabelas Verdade são idênticas.

р	q	p → q	q → p	p ↔ q	(p → q) ∧ (q → p)
V	V	V	V	V	V

V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

Na tabela, mostramos que a bicondicional e a conjunção são logicamente equivalentes. Assim, chegamos ao término de mais uma etapa no nosso processo de aquisição de conhecimento.

Notas

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Título modal 1

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Referências

SOUZA, João. Lógica para ciência da computação. Ed. Elsevier.

Próxima aula

- Proposições recíprocas, contrárias e contrapositivas de determinada proposição;
- Negação conjunta e a disjunta de duas proposições.

Explore mais

Pesquise na internet sites, vídeos e artigos relacionados ao conteúdo visto. Se ainda tiver alguma dúvida, fale com seu professor online, utilizando os recursos disponíveis no ambiente de aprendizagem.