统计假设检验

统计假设检验的概念及步骤

- ▶为什么要假设检验?
 - ▶ 生产一批灯泡,标明寿命,怎么标?
 - ✓产品设计指标 (预期寿命)
 - ✓随机选 n 个产品,测出相关的参数
 - ✓检验是否合格
- ▶假设检验的一般步骤
 - > 先假设总体具有某种统计特征
 - > 然后再检验这个假设是否可信
 - ▶ 这种方法称为"统计假设检验方法"
- >统计假设检验在统计学中是有重要地位的

假设检验的步骤

- ➤做出假设——产品合格 \mathcal{H}_0 : $\mu = \mu_0$
- \triangleright 随机选择n个产品,测出均值 \bar{x} 与标准差s
- >构造统计量 $u = \sqrt{n}(\bar{x} \mu_0)/s$,满足N(0,1)分布
- >求出逆概率分布 $\int_{-K_{\alpha/2}}^{K_{\alpha/2}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx < 1 \alpha$

$$K_{lpha/2} = ext{norminv}(1-lpha/2,0,1),$$
 $K_{lpha/2} = ext{icdf('norm',} 1-lpha/2,0,1)$

》做出结论:若 $|u| < K_{\alpha/2}$, 不能拒绝假设

例9-34 工艺变化的强度检验

- ightharpoonup已知某产品的平均强度 $\mu_0 = 9.94 \mathrm{kg}$
- ▶现改变工艺,在新产品中随机抽取200件
 - ightharpoonup 平均强度为 $\bar{x}=9.73 \mathrm{kg}$
 - > 标准差为 $s=1.62 \mathrm{kg}$
- ▶问改变工艺对产品强度有无显著影响
- ▶引入两个命题:

 $\begin{cases} \mathcal{H}_0: \mu = \mu_0 & \text{no significant change} \\ \mathcal{H}_1: \text{reject } \mathcal{H}_0 \end{cases}$

假设检验 MATLAB 求解

>选取统计量 $u = \frac{\sqrt{n}(\bar{x} - \mu_0)}{n}$

$$\int_{-K_{\alpha/2}}^{K_{\alpha/2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx < 1 - \alpha \qquad |u| < K_{\alpha/2}$$

- ▶该统计量满足标准正态分布 N(0,1)
 - >> n=200; mu0=9.94; xbar=9.73; s=1.62;
 u=sqrt(n)*(mu0-xbar)/s
 alpha=0.02; K=norminv(1-alpha/2,0,1),
 H=abs(u)<K</pre>

两组数据是否有明显差异

- \rightarrow 有两组数据,第一组随机选 n_1 个样本,第二组 n_2
- ▶假设检验的步骤
 - ightharpoonup 做出假设(没有差异)—— $\mathcal{H}_0: \mu_1 = \mu_2$
 - ightharpoonup 构造T分布统计量 $t = \frac{\bar{x}_1 \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$

$$k = \min(n_1 - 1, n_2 - 1)$$

$$T_0 = \text{tinv}(\alpha/2, k)$$
, or $T_0 = \text{icdf}('t', \alpha/2, k)$

> 若 $|t| < |T_0|$, 不能拒绝

例9-35 失眠药物的药效评价

- >失眠病患者,随机分成两组,各10人
- >不同组使用不同的药物,测延长睡眠小时数

A	1.9	0.8	1.1	0.1	-0.1	4.4	5.5	1.6	4.6	3.4
В	0.7	-1.6	-0.2	-1.2	-0.1	3.4	3.7	0.8	0	2

▶两种药物是否有显著差异

假设检验与图解分析

- 》统计量计算公式 $t = \frac{\bar{x}_1 \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$
- ▶假设检验
 - >> n1=length(x); n2=length(y); k=min(n1-1,n2-1); t=(mean(x)-mean(y))... /sqrt(std(x)^2/n1+std(y)^2/n2)
 - a=0.05; T0=tinv(a/2,k), H=abs(t) < abs(T0)</pre>
- ▶图解分析
 - → >> boxplot([x.' y.'])

正态分布的均值假设检验

- ▶已知一组数据
- \triangleright 该数据符合正态分布,且已知其标准差为 σ
 - ➤ 假设其均值为_μ
 - \rightarrow 如何检验? $\mathcal{H}_0: \mu = \mu_0$

$$[H, s, \mu_{ci}] = ztest(X, \mu_0, \sigma, \alpha)$$

▶如果未知数据的标准差,如何检验?

$$[H, s, \mu_{ci}] = ttest(X, \mu_0, \alpha)$$

例9-36 正态分布的均值假设检验

- ▶生成一组400个正态分布随机数
 - ▶均值为1,标准差为2
 - \triangleright 由数据检验一下若标准差 $\sigma=2$,数据的均值是否为1
 - >> r=normrnd(1,2,400,1); [H,p,ci]=ztest(r,1,2,0.02)
 - ▶ 如果未知标准差,检验均值是否为1
 - >> [H,p,ci]=ttest(r,1,0.02)

正态性的假设检验

- >测得一组数据,检验其是否满足正态分布
 - ➤ Jarque-Bera假设检验

$$[H,s] = \mathsf{jbtest}(X,\alpha)$$

➤ Lilliefors假设检验

$$[H,s] = \text{lillietest}(X,\alpha)$$

>如果满足正态分布,则找出均值与方差

$$[\mu, \sigma, \mu_{ci}, \sigma_{ci}] = \text{normfit}(\boldsymbol{X}, \alpha)$$

 \blacktriangleright 图形验证 normplot(X)

例9-37 判定分布是否为正态分布

▶前面给出的表格,文件c9dlumen.dat

1067	919	1196	785	1126	936	918	1156	920	948	855	1092	1162	1170	929
950	905	972	1035	1045	1157	1195	1195	1340	1122	938	970	1237	956	1102
1022	978	832	1009	1157	1151	1009	765	958	902	923	1333	811	1217	1085
896	958	1311	1037	702	521	933	928	1153	946	858	1071	1069	830	1063
930	807	954	1063	1002	909	1077	1021	1062	1157	999	932	1035	944	1049
940	1122	1115	833	1320	901	1324	818	1250	1203	1078	890	1303	1011	1102
996	780	900	1106	704	621	854	1178	1138	951	1187	1067	1118	1037	958
760	1101	949	992	966	824	653	980	935	878	934	910	1058	730	980
844	814	1103	1000	788	1143	935	1069	1170	1067	1037	1151	863	990	1035
1112	931	970	932	904	1026	1147	883	867	990	1258	1192	922	1150	1091
1039	1083	1040	1289	699	1083	880	1029	658	912	1023	984	856	924	801
1122	1292	1116	880	1173	1134	932	938	1078	1180	1106	1184	954	824	529
998	996	1133	765	775	1105	1081	1171	705	1425	610	916	1001	895	709
610	916	1001	895	709	860	1110	1149	972	1002					

>正态性判定,并得出正态分布参数

- >> X=load('c9dlumen.dat'); [H,p]=jbtest(X,0.05)
- >> [mu1,sig1,mu_ci,sig_ci]=normfit(X,0.05)
- >> normplot(X)

例9-38 非正态分布的检验结果

- ▶生成一组400个Rayleigh分布数据
- ▶正态性检验的结果
 - >> X=raylrnd(1.5,400,1);
 [H,p,c,d]=jbtest(X,0.05)
- ▶图形验证
 - >> normplot(X)

任意分布的 Kolmogorov-Smirnov 检验

- ➤ Kolmogorov-Smirnov 检验是检验任意已知分布函数的一种有效的假设检验算法
 - > 函数调用格式:

```
[H,s] =kstest(\boldsymbol{X}, cdffun,\alpha)
```

- ▶ 其中,cdffun为两列的均值,第1列为自变量,第2列 应该为要检验的分布函数在自变量处的值
- ➤ 某些分布的图形验证 —— probplot()

例9-40 Rayleigh分布的检验

- ▶生成一组 Rayleigh 分布数据
 - > 对生成的随机数进行假设检验,是否满足该分布
 - > 生成Rayleigh分布的数据
 - >> r=raylrnd(1.5,400,1); b=raylfit(r)
 - > 假设进行检验
 - >> s=sort(r); [H,p]=kstest(s,[s raylcdf(s,b)],0.05)
 - > 图形验证
 - >> probplot('rayleigh',r)

