

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Generative Inference

COMP4901Y

Binhang Yuan

Recall Language Modeling

- The classic definition of a *language model (LM)* is a probability distribution over sequences of tokens.
- Suppose we have a vocabulary $\mathcal V$ of a set of tokens.
- A language model P assigns each sequence of tokens $x_1, x_2, ..., x_L \in \mathcal{V}$ to a probability (a number between 0 and 1): $p(x_1, x_2, ..., x_L) \in [0,1]$.
- The probability intuitively tells us how "good" a sequence of tokens is.
 - For example, if the vocabulary is $\mathcal{V} = \{\text{ate, ball, cheese, mouse, the}\}\$, the language model might assign:

```
p(\text{the, mouse, ate, the, cheese}) = 0.02

p(\text{the, cheese, ate, the, mouse}) = 0.01

p(\text{mouse, the, the, chesse, ate}) = 0.0001
```


- Decoder-only models are our standard autoregressive language models.
- Given a prompt $x_{1:i}$ produces both contextual embeddings and a distribution over next tokens x_{i+1} , and recursively, over the entire completion $x_{i+1:L}$:

$$x_{1:i} \Rightarrow \emptyset(x_{1:i}), p(x_{i+1}|x_{1:i})$$

- Example: text autocomplete
 - [[CLS],the,movie,was] ⇒ great
- The probabily $p(x_{i+1}|x_{1:i})$ is usually determined by: $p(x_{i+1}|x_{1:i}) = \operatorname{softmax}(x_iW_{lm}), x_i \in \mathbb{R}^D, W_{lm} \in \mathbb{R}^{D \times |\mathcal{V}|}$

Autoregressive Generation

- LLM takes a sequence of text tokens as input and returns the probability distribution for the next token.
- A critical aspect of autoregressive generation with LLMs is *how to select the next token from this probability distribution*.
- There are many ways in this step as long as you end up with a token for the next iteration.
- The simplest way is to select the most likely token from the probability distribution.
- More complex solutions, e.g., applying a dozen transformations before sampling from the resulting distribution.

Autoregressive Generation

The quick brown => fox

The quick brown fox => jumps

Step 1 Step 2

Naïve Implementation

TransformerBlocks $(x \in R^{L \times D}) \rightarrow x' \in \mathbb{R}^{L \times D}$

For each inference request:

- -B = 1;
- *L* is the input sequence length;
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_h is the number of heads.

Generate the first token.

 $p(x_{L+1}|x_{1:L}) = \operatorname{softmax}(x_L W_{lm})$

Computation	Input	Output
$Q = xW^Q$	$x \in \mathbb{R}^{L \times D}$, $\mathbf{W}^Q \in \mathbb{R}^{D \times D}$	$Q \in \mathbb{R}^{L \times D}$
$K = xW^K$	$x \in \mathbb{R}^{L \times D}$, $\mathbf{W}^K \in \mathbb{R}^{D \times D}$	$K \in \mathbb{R}^{L \times D}$
$V = xW^V$	$x \in \mathbb{R}^{L \times D}$, $\mathbb{W}^V \in \mathbb{R}^{D \times D}$	$V \in \mathbb{R}^{L \times D}$
$[Q_1, Q_2 \dots, Q_{n_h}] = Partition_{-1}(Q)$	$Q \in \mathbb{R}^{L \times D}$	$Q_i \in \mathbb{R}^{L imes H}$, $i=1, \dots n_h$
$[K_1, K_2 \dots, K_{n_h}] = Partition_{-1}(K)$	$K \in \mathbb{R}^{L \times D}$	$K_i \in \mathbb{R}^{L \times H}, i = 1, \dots n_h$
$[V_1, V_2 \dots, V_{n_h}] = Partition_{-1}(V)$	$V \in \mathbb{R}^{L \times D}$	$V_i \in \mathbb{R}^{L imes H}$, $i=1, \dots n_h$
Score _i = softmax($\frac{Q_i K_i^T}{\sqrt{D}}$), $i = 1, n_h$	$Q_i, K_i \in \mathbb{R}^{L \times H}$	$score_i \in \mathbb{R}^{L \times L}$
$Z_i = \operatorname{score}_i V_i, i = 1, \dots n_h$	$score_i \in \mathbb{R}^{L \times L}, V_i \in \mathbb{R}^{L \times H}$	$Z_i \in \mathbb{R}^{L \times H}$
$Z = \text{Merge}_{-1} \left(\left[Z_1, Z_2 \dots, Z_{n_h} \right] \right)$	$Z_i \in \mathbb{R}^{L \times H}, i = 1, \dots n_h$	$Z \in \mathbb{R}^{L \times D}$
$Out = ZW^O$	$Z \in \mathbb{R}^{L \times D}$, $\mathbb{W}^O \in \mathbb{R}^{D \times D}$	$Out \in \mathbb{R}^{L \times D}$
$A = \operatorname{Out} W^1$	Out $\in \mathbb{R}^{L \times D}$, $\mathbb{W}^1 \in \mathbb{R}^{D \times 4D}$	$A \in \mathbb{R}^{L \times 4D}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{L \times 4D}$	$A' \in \mathbb{R}^{L \times 4D}$
$x' = A'W^2$	$A' \in \mathbb{R}^{L \times 4D}$, $\mathbb{W}^2 \in \mathbb{R}^{4D \times D}$	$x' \in \mathbb{R}^{L \times D}$

TransformerBlocks $(x \in R^{(L+1) \times D}) \rightarrow x' \in \mathbb{R}^{(L+1) \times D}$

For each inference request:

- -B = 1;
- *L*+1 is the current input sequence length;
- *D* is the model dimension;
- Multi-head attention: $D = n_H \times H$
- *H* is the head dimension;
- n_h is the number of heads.

Generate	the	second	to	ken
Generate	tiic	SCCOIIG	tU.	IXC11

 $p(x_{L+2}|x_{1:L+1}) = \text{softmax}(x_{L+1}W_{lm})$

Computation	Input	Output
$Q = xW^Q$	$x \in \mathbb{R}^{(L+1) \times D}$, $\mathbf{W}^Q \in \mathbb{R}^{D \times D}$	$Q \in \mathbb{R}^{(L+1) \times D}$
$K = xW^K$	$x \in \mathbb{R}^{(L+1) \times D}$, $\mathbf{W}^K \in \mathbb{R}^{D \times D}$	$K \in \mathbb{R}^{(L+1) \times D}$
$V = xW^V$	$x \in \mathbb{R}^{(L+1) \times D}$, $\mathbf{W}^V \in \mathbb{R}^{D \times D}$	$V \in \mathbb{R}^{(L+1) \times D}$
$\left[Q_1,Q_2\ldots,Q_{n_h}\right]=\operatorname{Partition}_{-1}(Q)$	$Q \in \mathbb{R}^{(L+1) \times D}$	$Q_i \in \mathbb{R}^{(L+1) imes H}$, $i=1, \dots n_h$
$[K_1, K_2 \dots, K_{n_h}] = Partition_{-1}(K)$	$K \in \mathbb{R}^{(L+1) \times D}$	$K_i \in \mathbb{R}^{(L+1) \times H}, i=1, \dots n_h$
$[V_1, V_2 \dots, V_{n_h}] = Partition_{-1}(V)$	$V \in \mathbb{R}^{(L+1) \times D}$	$V_i \in \mathbb{R}^{(L+1) imes H}$, $i=1, \dots n_h$
Score _i = softmax($\frac{Q_i K_i^T}{\sqrt{D}}$), $i = 1, n_h$	$Q_i, K_i \in \mathbb{R}^{(L+1) \times H}$	$score_i \in \mathbb{R}^{(L+1)\times(L+1)}$
$Z_i = \operatorname{score}_i V_i, i = 1, n_h$	$score_i \in \mathbb{R}^{(L+1) \times (L+1)}, V_i \in \mathbb{R}^{L+1 \times H}$	$Z_i \in \mathbb{R}^{(L+1) \times H}$
$Z = \text{Merge}_{-1} ([Z_1, Z_2, Z_{n_h}])$	$Z_i \in \mathbb{R}^{(L+1) \times H}, i = 1, \dots n_h$	$Z \in \mathbb{R}^{(L+1) \times D}$
$Out = ZW^O$	$Z \in \mathbb{R}^{(L+1) \times D}$, $\mathbb{W}^O \in \mathbb{R}^{D \times D}$	Out $\in \mathbb{R}^{(L+1)\times D}$
$A = \operatorname{Out} W^1$	Out $\in \mathbb{R}^{(L+1)\times D}$, $W^1 \in \mathbb{R}^{D\times 4D}$	$A \in \mathbb{R}^{(L+1) \times 4D}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{(L+1) \times 4D}$	$A' \in \mathbb{R}^{(L+1) \times 4D}$
$x' = A'W^2$	$A' \in \mathbb{R}^{(L+1) \times 4D}$, $W^2 \in \mathbb{R}^{4D \times D}$	$x' \in \mathbb{R}^{(L+1) \times D}$

Reuse KV Cache

Some Observation

- Only the last contextual embedding is needed to compute the probabilistic distribution of the next token.
- Contextual embedding for x_i can only depend **unidirectionally** on the left context $(x_{1:i-1})$. In the previous naïve implementation, most of the computation is redundant.
- State-of-the-art implementation splits the computation to two phrases:
 - <u>Prefill phrase</u>: the model takes a prompt sequence as input and engages in the generation of a key-value cache (KV cache) for each Transformer layer.
 - <u>Decode phrase</u>: for each decode step, the model updates the KV cache and reuses the KV to compute the output.

Prefill: TransformerBlocks $(x \in R^{L \times D}) \rightarrow x' \in \mathbb{R}^{L \times D}$

For each inference request:

- -B = 1;
- *L* is the input sequence length;
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_h is the number of heads.

Generate the first token.

 $p(x_{L+1}|x_{1:L}) = \operatorname{softmax}(x_L W_{lm})$

Computation	Input	Output
$Q = xW^Q$	$x \in \mathbb{R}^{L \times D}$, $\mathbb{W}^Q \in \mathbb{R}^{D \times D}$	$Q \in \mathbb{R}^{L \times D}$
$K = xW^K$	$x \in \mathbb{R}^{L \times D}$, $\mathbf{W}^K \in \mathbb{R}^{D \times D}$	$K \in \mathbb{R}^{L \times D}$
$V = xW^V$	$x \in \mathbb{R}^{L \times D}$, $\mathbf{W}^V \in \mathbb{R}^{D \times D}$	$V \in \mathbb{R}^{L \times D}$
$[Q_1, Q_2 \dots, Q_{n_h}] = Partition_{-1}(Q)$	$Q \in \mathbb{R}^{L \times D}$	$Q_i \in \mathbb{R}^{L \times H}, i = 1, \dots n_h$
$[K_1, K_2 \dots, K_{n_h}] = Partition_{-1}(K)$	$K \in \mathbb{R}^{L \times D}$	$K_i \in \mathbb{R}^{L \times H}, i = 1, \dots n_h$
$[V_1, V_2 \dots, V_{n_h}] = Partition_{-1}(V)$	$V \in \mathbb{R}^{L \times D}$	$V_i \in \mathbb{R}^{L imes H}$, $i=1, \dots n_h$
$Score_{i} = softmax(\frac{Q_{i}K_{i}^{T}}{\sqrt{D}}), i = 1, n_{h}$	$Q_i, K_i \in \mathbb{R}^{L \times H}$	$score_i \in \mathbb{R}^{L \times L}$
$Z_i = \operatorname{score}_i V_i, i = 1, \dots n_h$	$score_i \in \mathbb{R}^{L \times L}, V_i \in \mathbb{R}^{L \times H}$	$Z_i \in \mathbb{R}^{L \times H}$
$Z = \text{Merge}_{-1} ([Z_1, Z_2, Z_{n_h}])$	$Z_i \in \mathbb{R}^{L \times H}, i = 1, \dots n_h$	$Z \in \mathbb{R}^{L \times D}$
$Out = ZW^O$	$Z \in \mathbb{R}^{L imes D}$, $\mathbb{W}^{O} \in \mathbb{R}^{D imes D}$	$Out \in \mathbb{R}^{L \times D}$
$A = \operatorname{Out} W^1$	Out $\in \mathbb{R}^{L \times D}$, $\mathbb{W}^1 \in \mathbb{R}^{D \times 4D}$	$A \in \mathbb{R}^{L \times 4D}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{L \times 4D}$	$A' \in \mathbb{R}^{L \times 4D}$
$x' = A'W^2$	$A' \in \mathbb{R}^{L \times 4D}$, $\mathbb{W}^2 \in \mathbb{R}^{4D \times D}$	$x' \in \mathbb{R}^{L \times D}$

For each inference request:

- -B = 1;
- *L* is the current cached sequence length; it increases by 1 after each step.
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_h is the number of heads.

Update the KV cache:

 $K = \operatorname{concat}(K_{\operatorname{cache}}, K_d)$

 $V = \operatorname{concat}(V_{\operatorname{cache}}, V_d)$

Generate the second token:

$$p(x_{L+2}|x_{1:L+1}) = \text{softmax}(x_{L+1}W_{lm})$$

Output of last transformer block's t'.

Computationt	Input	Output
$Q = Q_d = tW^Q$	$t \in \mathbb{R}^{1 imes D}$, $\mathbb{W}^Q \in \mathbb{R}^{D imes D}$	$Q, Q_d \in \mathbb{R}^{1 \times D}$
$K_d = tW^K$	$t \in \mathbb{R}^{1 \times D}$, $\mathbf{W}^K \in \mathbb{R}^{D \times D}$	$K_d \in \mathbb{R}^{1 \times D}$
$K = \operatorname{concat}(K_{\operatorname{cache}}, K_d)$	$K_{\text{cache}} \in \mathbb{R}^{L \times D}, K_d \in \mathbb{R}^{1 \times D}$	$K \in \mathbb{R}^{(L+1) \times D}$
$V_d = tW^V$	$t \in \mathbb{R}^{1 \times D}$, $\mathbf{W}^V \in \mathbb{R}^{D \times D}$	$V_d \in \mathbb{R}^{1 \times D}$
$V = \operatorname{concat}(V_{\operatorname{cache}}, V_d)$	$V_{\mathrm{cache}} \in \mathbb{R}^{L \times D}, V_d \in \mathbb{R}^{1 \times D}$	$V \in \mathbb{R}^{(L+1) \times D}$
$\left[Q_1,Q_2\dots,Q_{n_h}\right]=\operatorname{Partition}_{-1}(Q)$	$Q \in \mathbb{R}^{1 \times D}$	$Q_i \in \mathbb{R}^{1 \times H}, i = 1, \dots n_h$
$[K_1, K_2 \dots, K_{n_h}] = Partition_{-1}(K)$	$K \in \mathbb{R}^{(L+1) \times D}$	$K_i \in \mathbb{R}^{(L+1) \times H}, i = 1, \dots n_h$
$[V_1, V_2 \dots, V_{n_h}] = Partition_{-1}(V)$	$V \in \mathbb{R}^{(L+1) \times D}$	$V_i \in \mathbb{R}^{(L+1) \times H}$, $i = 1, \dots n_h$
$Score_{i} = softmax(\frac{Q_{i}K_{i}^{T}}{\sqrt{D}}), i = 1, n_{h}$	$Q_i \in \mathbb{R}^{1 imes H}$, $K_i \in \mathbb{R}^{(L+1) imes H}$	$score_i \in \mathbb{R}^{1 \times (L+1)}$
$Z_i = \operatorname{score}_i V_i, i = 1, \dots n_h$	$score_i \in \mathbb{R}^{1 \times (L+1)}, V_i \in \mathbb{R}^{(L+1) \times H}$	$Z_i \in \mathbb{R}^{1 \times H}$
$Z = \text{Merge}_{-1} ([Z_1, Z_2, Z_{n_h}])$	$Z_i \in \mathbb{R}^{1 \times H}, i = 1, n_h$	$Z \in \mathbb{R}^{1 \times D}$
$Out = ZW^O$	$Z \in \mathbb{R}^{1 \times D}$, $\mathbb{W}^O \in \mathbb{R}^{D \times D}$	Out $\in \mathbb{R}^{1 \times D}$
$A = \operatorname{Out} W^1$	Out $\in \mathbb{R}^{1 \times D}$, $\mathbb{W}^1 \in \mathbb{R}^{D \times 4D}$	$A \in \mathbb{R}^{1 \times 4D}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{1 \times 4D}$	$A' \in \mathbb{R}^{1 \times 4D}$
$t' = A'W^2$	$A' \in \mathbb{R}^{1 \times 4D}$, $\mathbb{W}^2 \in \mathbb{R}^{4D \times D}$	$t' \in \mathbb{R}^{1 imes D}$

Reuse the KV Cache

- Performance analysis of this computation paradigm:
 - Prefill phrase: computation bounded.
 - Decode phrase: IO bounded.
 - What is the arithmetic intensity of each step? (Homework 3)
- The memory footprint of the generative inference computation:
 - Model parameters;
 - KV-cache. This will become more significant since the latest models are targeting long context comprehension.

Parallel Generative Inference

Pipeline Parallelism

- Similar to training, pipeline parallelism partitions the model into multiple stages and serves the inference computation as a pipeline, where each GPU or (group of GPUs) handles a stage.
- During the inference computation, the GPU(s) serving stage-(i) needs to send the activations to the GPU(s) serving stage-(i + 1).
- For inference computation, pipeline parallelism **cannot** reduce the completion time for a single request since only one stage can be active.

The number on each block represents the stage index.

Pipeline Parallelism

- P2P communication volume:
 - Assume the computation and the communication are all in FP16.
 - *L* is the input sequence length;
 - *D* is the model dimension.
 - Prefill stage: 2LD bytes.
 - Decode stage: 2D bytes for each generated token.

Tensor Model Parallelism

- Tensor model parallelism partitions the inference computation at the level of transformer layers over multiple GPUs, where the weight matrices are distributed both row-wisely and column-wisely.
- Two AllReduce operations are required to aggregate each layer's output activations:
 - One AllReduce for the Multihead-Attention.
 - One **AllReduce** for the MLP.
- Tensor model parallelism splits both the data scan and computation among a tensor model parallel group, which can effectively scale out the inference computation if the connection is fast among the group.

Multi-Head Attention in Tensor Model Parallelism

(b) Self-Attention

- f is the identity operator in the forward pass and the AllReduce operator in the backward pass.
- g is the AllReduce operator in the forward pass and the identity operator in the backward pass.

- f is the identity operator in the forward pass and the AllReduce operator in the backward pass.
- g is the AllReduce operator in the forward pass and the identity operator in the backward pass.

Tensor Model Parallelism

- Collective communication volume:
 - Assume the computation and the communication are all in FP16.
 - *L* is the input sequence length;
 - *D* is the model dimension.
 - Prefill stage:
 - For each layer, two AllReduces, where each aggregates 2LD bytes.
 - Decode stage:
 - For each generated token, each layer, two AllReduces, where each aggregates 2D bytes.

References

- https://arxiv.org/abs/2402.16363
- https://huggingface.co/docs/transformers/en/llm_tutorial