

Forward Kinematics

- Denavit-Hartenberg convention

2D planar robot arm

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the page, and are not shown in the figure.

What's changed in 3D?

- 6 DOF
 - 3 "translation-units" along axes x,y and z
 - 3 "rotation-units" about axes x,y and z

$$- \operatorname{Eg.R}_{\mathsf{x},\alpha} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

- Still, $H = \begin{pmatrix} R & d \\ 0 & 1 \end{pmatrix}$, but now 4x4 matrix..
- Right-handedness

Homogeneous Transform

- Six "elements" 3 translation + 3 rotation
- Trans_{x,a} Trans_{y,b} Trans_{z,c} Rot_{x, α} Rot_{y, β} Rot_{z, θ}

Rotation in 3D

- Euler theorem..
- Euler angles ZYZ
- Roll-pitch-yaw (rpy) XYZ
- Axis-angle
- Quaternion
- Rotation matrices
- •

Singularities

Denavit-Hartenberg Convention

Figure 3.4: Denavit-Hartenberg frame assignment.

Denavit-Hartenberg Convention

Procedure

- 1. Assign coordinate frames to links
- 2. Extract DH parameters from kinematic model
- 3. Calculate transformation matrices Aⁱ_j between frames i and j
- 4. Find base-to-end effector transform as

$$T_{n}^{0} = A_{1}^{0} A_{2}^{1} ... A_{n}^{n-1}$$

NOTE: T_n^0 unique if base and end frames are the same – but intermediate A-matrices may not be..

The four DH parameters

- constrained specification

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

DH1 and DH2

• DH1:

Axis x_1 is perpendicular to axis z_0

• DH2:

Axis x₁ intersects axis z₀

DH: Assign coordinate frames to links

- 1. Assign z-axes to directions of joint movement
- 2. Start with base frame o_0 arbitrary x_0 - y_0 -axes
- 3. Assign frame i wrt. frame i-1
 - consider three different cases for z-axes
 - iterate from frame 0 to frame n-1
- 4. Frame n (end effector) positioned between eg. gripper fingers

DH: E.g. assign frame 1 wrt. frame 0

- 1) z_1 and z_0 not coplanar
 - origin is point on z_1 with shortest distance between z_1 and z_0
 - Here, x₁ can be chosen orthogonal to z₀ (along line from z₁ and z₀)
- 2) z_1 and z_0 parallel
 - origin chosen arbitrary on z₁
 - many choices for x_1
- 3) z_1 and z_0 intersect
 - origin is (often) point of intersection
 - x₁ chosen orthogonal to plane spanned by z₀ and z₁

NOTE: y-axis always assigned to obey right-handedness

Extract DH parameters from frames

Link	d_i	a_i	α_i	θ_i
1	0	0	-90	θ_1^{\star}
2	d_2	0	+90	$ heta_2^{\star}$
3	d_3^{\star}	0	0	0
4	0	0	-90	$ heta_4^{\star}$
5	0	0	+90	$ heta_5^{\star}$
6	d_6	0	0	θ_6^{\star}

^{*} joint variable

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

Calculate A-matrices from DH parameters

- $A^{i-1}_{i} = Rot_{z,\theta} Trans_{z,d} Trans_{x,a} Rot_{x,\alpha}$
- One unit for each DH parameter
- Note that θ and d are the joint variables for revolute and prismatic joints respectively.

Example: 2D planar robot arm

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the page, and are not shown in the figure.

Example: Robotics toolbox

Example – Human Arm modelling

Mandatory exercise 2

- Denavit-Hartenberg convention
 - Forward Kinematics
 - .. On the Crustcrawler
- Assistance available next week