

基本放大电路思路梳理

1 放大原理概述

分析内容:

静态分析: 直流通路求静态工作点 $Q: U_{BE}, I_B, I_C, U_{CE}$

其中: 硅管 $|U_{BE}| = 0.7V$, 锗管 $|U_{BE}| = 0.3V$ ——无需求解

U_{RE} 发射极与基极电压

 I_B 基极电流

I_C 集电极电流

U_{CE} 管压降

动态分析: 求动态性能指标: A_u, R_i, R_0

 A_u 放大倍数

 R_i 输入电阻

Ro 输出电阻

1.1 微变等效电路模型

低频小信号的微变等效电路模型电路图:

当三极管工作在放大区时,则有:

$$\begin{aligned} \dot{I_c} &= \beta \dot{I_b} \\ \dot{I_e} &= (1 + \beta) \dot{I_b} \\ \dot{I_e} &= \dot{I_b} + \dot{I_c} \end{aligned}$$

画出微变等效电路方法:

step1: 画出交流通路,电容看做短路,直流电源作"去源"处理,擦去三极管;

step2: 将三极管用微变等效电路替换

B与E之间为输入电阻 r_{be} ,C与E之间为受控电流源,下图中的 R_L 为负载电阻。

注意 E 端口的接地符号, 别忘记画

其中, r_{be} 为输入电阻,计算公式:

$$r_{be} \approx r_{bb'} + (1+\beta) \frac{26\{mV\}}{I_E\{mA\}}$$

 $r_{bb'}$ 为基区体电阻,一般来说题目会给出。

2 BJT 双极型三极管共射放大电路

共射电路:基极输入,集电极输出

2.1 固定偏置式共射放大电路

理论分析:

BJT 双极型三极管固定偏置式共射放大电路图:

2.1.1 静态工作点求解 (I_B, I_C, U_{CE})

将交流电源去源短接,电容器视作断路,作静态分析电路图。

先求解 I_B : 列写回尔霍夫方程

$$I_B = \frac{U_{CC} - U_{BE}}{R_B}$$

再通过三极管内部约束求解Ic

$$I_C = \beta I_B$$

最后求解管压降 U_{CE} ,列写输出回路的基尔霍夫方程

$$U_{CE} = U_{CC} - R_C I_C$$

双极性三极管共射偏置式放大电路静态工作点求解方法总结:

2.1.2 动态工作点求解(A,,, R_i, R₀)

将直流电源去源短接,电容器视作短路,利用微变等效模型作动态分析电路图。

先求解放大倍数 A_u :

$$A_{u} = \frac{\dot{U_{0}}}{\dot{U_{L}}} = \frac{-\dot{I_{c}}(R_{C}//R_{L})}{\dot{I_{b}}r_{be}} = \frac{-\beta\dot{I_{b}}(R_{C}//R_{L})}{\dot{I_{b}}r_{be}} = \frac{-\beta(R_{C}//R_{L})}{r_{be}}$$

注意,固定偏置式放大电路中的 A_u 为负数,故该电路也被成为反相放大器。 求解输入电阻 R_i

$$R_{i} = \frac{\dot{U}_{l}}{\dot{I}_{l}} = \frac{\dot{I}_{l}(R_{B}//r_{be})}{\dot{I}_{l}} = R_{B}//r_{be} \approx r_{be}$$

求解输出电阻 R_L :将负载视作开路,若有独立电源,则作"去源"处理,有:

$$R_0 = \frac{\dot{I_C}R_C}{\dot{I_C}} = R_C$$

双极性三极管共射偏置式放大电路动态工作点求解方法总结:

2.2 变式: 带有发射极电阻的固定偏置式放大电路

放大电路图:

2.2.1 静态工作点分析:

画出静态工作电路图:

先求 I_B ,对输入回路列写基尔霍夫电压方程

$$-U_{CC} + I_B R_B + U_{BE} + I_E R_E = 0$$

$$\overline{m}I_E = (1+\beta)I_B$$

故有:

$$-U_{CC} + I_B R_B + U_{BE} + (1 + \beta)I_B R_E = 0$$

求得:

$$I_B = \frac{U_{CC} - U_{BE}}{R_B + (1+\beta)R_E}$$

再通过三极管约束条件求 I_c :

$$I_C = \beta I_B = \beta \frac{U_{CC} - U_{BE}}{R_B + (1 + \beta)R_E}$$

再求管压降 U_{CE} ,对输出回路列写基尔霍夫电压方程

$$-U_{CC} + I_C R_C + U_{CE} + (1 + \beta)I_B R_E = 0$$

解得:

$$U_{CE} = U_{CC} - I_C R_C - (1+\beta)I_B R_E$$

2.2.2 动态工作点分析

画出动态工作电路图:

先求 A_u

$$A_{u} = \frac{\dot{U_{0}}}{\dot{U_{i}}} = \frac{-\beta \dot{I_{b}}(R_{C}//R_{L})}{\dot{I_{b}}r_{be} + (1+\beta)\dot{I_{b}}R_{E}} = \frac{-\beta(R_{C}//R_{L})}{r_{be} + (1+\beta)R_{E}}$$

求输入电阻 R_i :

$$\begin{split} R_i &= \frac{\dot{U}_l}{\dot{I}_l} = \frac{\dot{U}_l}{\frac{\dot{U}_L}{R_B} + \dot{I}_b} = \frac{\dot{I}_b r_{be} + (1+\beta)\dot{I}_b R_E}{\frac{\dot{I}_b r_{be} + (1+\beta)\dot{I}_b R_E}{R_B} + \dot{I}_b} = \frac{1}{\frac{1}{R_B} + \frac{1}{r_{be} + (1+\beta)R_E}} \\ &= R_B / / (r_{be} + (1+\beta)R_E) \end{split}$$

求输出电阻 R_0 :

$$R_0 = R_0 = \frac{\dot{I_C}R_C}{\dot{I_C}} = R_C$$

2.3 比较

物理量	不带射极电阻的固定偏置式共射 放大电路	带有射极电阻的固定偏置式共射 放大电路
I_B	$rac{U_{CC}-U_{BE}}{R_B}$	$\frac{U_{CC} - U_{BE}}{R_B + (1 + \beta)R_E}$
I_C	$eta I_B$	
U_{CE}	$U_{CC} - I_C R_C$	$U_{CC} - I_C R_C - (1+\beta)I_B R_E$
A_u	$\frac{-\beta(R_C//R_L)}{r_{be}}$	$\frac{-\beta(R_C//R_L)}{r_{be} + (1+\beta)R_E}$

交通运输工程学院辅学——模拟电子技术

R_i	$R_B//r_{be}$	$R_B//(r_{be}+(1+\beta)R_E)$
R_0	R_C	

2.4 分压偏置式共射放大电路

放大电路:

2.4.1 静态分析

静态分析基于直流通路进行,使用条件为 $I_{R_{B_1}}$ 和 $I_{R_{B_2}}$ 均远大于(5 ~ 10) I_{BQ} 且 $V_{BQ} \geq (3 \sim 5)U_{BEQ}$,即可认为此时基极电流几乎为0。

静态分析过程如下:

先画出直流通路,交流电源短路,电容视为开路,得到直流通路如下图所示:

由于我们考虑到 I_{BQ} 近似为 0,故可看做 R_{B_2} 与 R_{B_1} 直接并联在 V_{CC} 两端,先求得 V_{BQ} :

$$V_{BQ} = \frac{R_{B_1}}{R_{B_1} + R_{B_2}} V_{CC}$$

再通过输入回路求 I_C 与 I_E :

$$-V_{BQ} + U_{BEQ} + I_{EQ}(R_E + R_F) = 0$$

求得:

$$I_{EQ} = \frac{V_{BQ} - U_{BEQ}}{R_F + R_F}$$

由于 $I_B \approx 0$,

$$I_{CQ} \approx I_{EQ} = \frac{V_{BQ} - U_{BEQ}}{R_E + R_F}$$

此时反回来估算 I_{BO} :

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{I_{EQ}}{\beta + 1}$$

此时的放大倍数很大,β或者β+1对最终数值的影响可忽略不计

再通过输出回路求 U_{CEO}

$$-V_{CC} + I_{CO}R_C + U_{CEO} + I_{EO}(R_E + R_F) = 0$$

得到:

$$U_{CEQ} = V_{CC} - I_{CQ}R_C - I_{\{EQ\}(R_E + R_F)}$$

验证估算法使用条件:

$$I_{R_2} = \frac{V_{CC} - V_{BQ}}{R_{B_2}}$$

$$I_{R_1} = \frac{V_{BQ}}{R_{B_1}}$$

均应远大于I_{BO}

2.4.2 动态分析

电容视作短路,直流电源短路,可画出微变等效电路:

三极管输入电阻:

$$r_{be} = r_{bb'} + (1 + \beta) \frac{26\text{mV}}{I_{EO}}$$

电压放大倍数:

$$A_u = -\frac{\beta(R_C//R_L)}{r_{he} + (1+\beta)R_F}$$

与上述带射极电阻的固定偏置式放大电路相同

输入电阻:

$$R_i = R_{B_1} / / R_{B_2} / / R_i'$$

其中,

$$R_i' = r_{be} + (1 + \beta)R_F$$

输出电阻:

$$R_0 = R_C$$

信号源内阻对性能指标的影响

若存在信号源内阻 $R_s=1k\Omega$,可以根据定义求源电压放大倍数 A_{us} :

$$A_{us} = \frac{U_0}{U_s} = \frac{U_0}{U_i} \cdot \frac{U_i}{U_s} = A_u \frac{R_i}{R_i + R_s}$$

3 BJT 双极型三极管共集放大电路

共集电路: 基极输入、发射极输出

(a) 共集放大电路

3.1.1 静态分析

由输入回路:

$$-V_{CC} + I_B R_B + U_{BE} + (1 + \beta) R_E I_B = 0$$

得到:

$$I_B = \frac{V_{CC} - U_{BE}}{R_B + (1 + \beta)R_E}$$
$$I_C = \beta I_B$$

由输出回路:

$$-V_{CC} + U_{CE} + (1 + \beta)I_B R_E = 0$$

得到:

$$U_{CE} = V_{CC} - (1 + \beta)I_B R_E$$

3.1.2 动态分析

电压放大倍数:

$$A_u = \frac{U_0}{U_i} = \frac{(1+\beta)I_b(R_E//R_L)}{I_b r_{be} + (1+\beta)I_b(R_E//R_L)} = \frac{(1+\beta)(R_E//R_L)}{r_{be} + (1+\beta)(R_E//R_L)} \approx 1$$
输入电阻:

$$R_i = R_B / / R_i' = R_B / / \left(r_{be} + \frac{U_0}{I_h} \right) = R_B / / [r_{be} + (1 + \beta)(R_E / / R_L)]$$

输出电阻:

求输出电阻的电路如下:

$$R'_{0} = \frac{U_{0}}{I_{E}} = \frac{I_{b}r_{be} + I_{b}(R_{S}//R_{B})}{(1+\beta)I_{b}} = \frac{r_{be} + R_{S}//R_{B}}{(1+\beta)}$$

$$R_{0} = R'_{0}//R_{E} = R_{E}//\frac{r_{be} + R_{S}//R_{B}}{(1+\beta)}$$

共集电路的特性:

- 1. 电压放大倍数接近于1, 电路放大能力差, 因此也被称作射极跟随器
- 2. 但该电路输入电阻大,输出电阻小,带负载能力强

4 BJT 双极型三极管共基放大电路

共基电路:射极输入、集电极输出 放大电路如下图所示:

4.1.1 静态分析

直流电路: 等同于分压式偏置电路 $\rightarrow I_{BQ} \approx 0$

得到:

$$I_{CQ} pprox I_{EQ} = rac{U_B - U_{BEQ}}{R_E}$$

$$I_{BQ} = rac{I_{EQ}}{1 + \beta}$$

由输出回路的基尔霍夫电压方程:

$$-V_{CC} + I_{CQ}R_C + U_{CEQ} + I_{EQ}R_E = 0$$

得到:

$$U_{CEO} = V_{CC} - I_{CO}R_C - I_{EO}R_E$$

4.1.2 动态分析

交流通路:

电压放大倍数:

$$A_u = \frac{U_0}{U_i} = \frac{\beta I_b (R_C / / R_L)}{I_b r_{be}} = \frac{\beta (R_C / / R_L)}{r_{be}}$$

输入电阻:

$$R_i = R_E / \frac{U_i}{I_e} = R_E / \frac{I_b r_{be}}{(1+\beta)I_b} = R_E / \frac{r_{be}}{(1+\beta)}$$

输出电阻:

此时将电压源短路, $I_b=0$,受控源开路,则:

$$R_0 = R_C$$