CAN207 Continuous and Discrete Time Signals and Systems

Lecture-3

Introduction to Signals_Part 1

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content

- 1. Introduction
 - signals, signal representation and examples.
- 2. Signal classification (properties)
 - continuity, periodicity, determinacy, symmetry, energy and power.
- 3. Signal operations (time-domain transformation)
 - time shifting, scaling and reversal.
- 4. Elementary signals and sequences
 - unit step, rectangular, signum, ramp, sinusoidal, sinc, exponential and unit impulse functions.

1.1 What are signals?

Signal

- can be broadly defined as any quantity that varies as a function of time (and/or space), and has the ability to convey information about a certain plysical phenomenon.
- In narrow sense, any series of measurements of a physical quantity is a signal (temperature measurements for instance).

The electrocardiogram (ECG)

Temperature in Xi'an, China

1.2 Signal representation

Signal representation:

- The most convenient way to represent a signal is via the concept of a function, let us say x(t). In this notation:
 - x(.) represents the dependent variable related to the physical phenomena (e.g., temperature, voltage, pressure, etc.)
 - t represents the independent variable (e.g., time, space, etc.).
- Roughly speaking, any realizable func -tion can be consider -ed as a signal.

Light Intensity from a

Q-Switched Laser

Binary Bit Stream

Car Strikes a Speed Bump

Car Bumper Height after

Manchester Encoded Baseband Binary Bit Stream

1.3 Examples of signals

3D signal: video signal

2. Classifications

Classification	Elemetary Signals	Operations
Continuous VS Discrete	 Unit step and rectangular func. 	Elementary operations
Periodic VS Aperiodic	 Signum and ramp func. 	Time Shifting
Deterministic VS Random	 Sinusoidal and sinc func. 	Time Scaling
Symmetric VS Asymmetric	 Real and complex exponential func. 	Time Reversal (folding)
Energy & Power	 Unit impulse func. 	 Combined operations

2.1 Continuous VS Discrete

• Analog (Analogue) VS Digital

2.2 Periodicity - CT (Continuous-Time) signal

• Periodic:

- A periodic signal is a function of time that repeat itself every certain period of time $T \neq 0$:

if
$$x(t + nT) = x(t)$$
 for all t , n is an integer

- The fundamental period is the smallest value of time for which the equation holds true, and it is simply known as the *period*.

$$x(t+T) = x(t)$$
 for all t

- The fundamental frequency of the periodic signal is

$$f = 1/T$$

• Aperiodic (non-periodic) signal:

if
$$x(t+T) \neq x(t)$$
 for whatever $T \neq 0$

2.2 Periodicity - CT Example

• Sine (Cosine) signals (also called *sinusoidal signals*)

$$x(t) = \sin(2\pi t)$$

Units:

– Period: T [s (second)]

– Frequency: F [1/second = Hz(hertz)]

 Ω [radians]

- Phase: [radians]

Quiz 1

- Are the following CT signals periodic or nonperiodic? Determine their periods if periodic.
 - $-1.\log(|t|)$
 - $-2.\sin(\sqrt{2}t)$
 - $-3.\sin(t) + \sin(\pi t)$
 - $-4. \sin(t^2)$
 - $-5.e^{j(2t+7)}$
 - $-6.5\cos(2\pi 1.5t) + 3\cos(2\pi 2.5t)$

2.2 Periodicity - DT (Discrete-Time) signal

- For DT (Discrete-Time) signals
 - A signal is periodic with period $N(N \in \mathbb{Z} \text{ and } N > 0)$: if x[n+kN] = x[n] for all n
 - The smallest value of N for which the above condition holds is called the (fundamental) *period*.

• A signal not satisfying the periodicity condition is called *nonperiodic* or *aperiodic*.

2.2 Periodicity - DT (Discrete-Time) signal

Sinusoidal sequences

$$x[n] = \cos(2\pi f n); \ \forall n \in \mathbb{Z}, f \text{ is digital frequency}$$

• For sinusoidal sequence to be periodic:

$$\cos[2\pi f(n+N)] = \cos(2\pi f n + 2\pi f N) \stackrel{?}{=} \cos(2\pi f n)$$

if f is a rational number, for some N, fN can be integer,
 therefore:

$$\cos(2\pi f n + 2\pi f N) = \cos(2\pi f n)$$

• A discrete-time sinusoidal is periodic only if its digital frequency *f* is a rational number.

2.2 Periodicity - DT sinusoidal sequences

• Example: $x[n] = \cos(2\pi f n)$; $\forall n \in \mathbb{Z}$

• The highest rate of oscillation is attained when f=1/2.

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

2.2 Periodicity - DT period calcualtion

- For discrete-time sinusoidal sequences, they are not always periodic.
 - To be periodic with period of N, must have: $\cos[2\pi f(n+N)] = \cos(2\pi f n)$
 - i.e. A discrete-time sinusoidal is periodic only if its digital frequency
 f is a rational number.
 - That is to have $2\pi f N = 2\pi m$, or equivalently: $f = \frac{m}{N}$;
 - where $f = \frac{m}{N}$ is a rational number.
 - The fundamental period of the signal: $N = \frac{m}{f} = m \left(\frac{2\pi}{\omega}\right)$
 - Assumes that m and N are integers without any factors in common.

2.2 Periodicity - DT Example

• Q1: Consider the following DT sequence

$$x[n] = 5\cos(\frac{\pi}{2}n)$$

Determine the fundamental period of the signal.

- Solution: $x[n] = 5\cos(\frac{\pi}{2}n) = 5\cos(2\pi \cdot \frac{1}{4}n)$
 - The digital frequency $f = \frac{m}{N} = \frac{1}{4}$, so the smallest integer to make fN an integer is N=4, which is the fundamental period.
- Q2: Consider a dual-frequency DT sequence

$$y[n] = 5\cos(\frac{\pi}{2}n) + 2\sin(\frac{\pi}{7}n)$$

$$N_1 = 4 \qquad N_2 = 14$$

$$N = LCM(N_1, N_2) = 28$$

Quiz 2

- Determine whether the following sequences are periodic. Find their fundamental periods if they are periodic.
 - $-1.\log(|n|)$
 - $-2.\sin(\sqrt{2}n)$
 - $-3. \sin(n-5)$
 - $-4. \sin(n^2)$
 - $-5.e^{j(2n+7)}$
 - $-6.5\cos(2\pi 1.5n) + 3\cos(2\pi 2.5n)$

2.3 Deterministic VS Random

- Deterministic and random signals:
 - If the signal can be described by a mathematical equation, it is a deterministic signal;
 - If we know how the signal will behave in future then it is deterministic;
 - Otherwise it is called a random signal

2.4. Symmetry - Odd VS Even

For real-valued signals:

• Even signal: if a signal is identical to its time-reversed counterpart, i.e., with its reflection about the origin:

$$x(t) = x(-t)$$
$$x[n] = x[-n]$$

• Odd signal: if a signal is opposite to its time-reversed counterpart:

$$x(t) = -x(-t)$$

$$x[n] = -x[-n]$$

2.4. Symmetry - Sum of odd and even signals

Important fact: any signal can be broken into a sum of two signals, one of which is even and one of which is odd.

$$\mathcal{E}v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

$$\mathcal{E}v\{x[n]\} = \frac{1}{2}[x[n] + x[-n]]$$

$$\Theta d\left\{x[n]\right\} = \begin{cases}
-\frac{1}{2}, & n < 0 \\
0, & n = 0 \\
\frac{1}{2}, & n > 0
\end{cases}$$

$$\frac{-3 - 2 - 1}{1} \quad \frac{1}{2} \quad \frac{1}{2} \quad \cdots$$

$$\mathcal{O}d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

$$Od\{x[n]\} = \frac{1}{2}[x[n] - x[-n]]$$

20

2.4. Symmetry - Conjugate-symmetry

- Conjugate-symmetric sequence: $x(t) = x^*(-t)$ and $x[n] = x^*[-n]$;
 - Real part: even;
 - Imaginary part: odd;
 - If x(t) or x[n] is real, then the symmetric is the same as conjugate-symmetric, and the signal is an even sequence.
- Conjugate-anti-symmetric sequence: $x(t) = -x^*(-t)$ and $x[n] = -x^*[-n]$;
 - Real part: odd;
 - Imaginary part: even;
 - If x(t) or x[n] is real, the signal is called anti-symmetric or odd sequence.

Quiz 3

• 1. What are the even and odd parts of the function

$$g(t) = t(t^2 + 3)$$

• 2. Prove that the integration of a CT odd signal with the range [-T, T] results in a zero value, i.e.

$$\int_{-T}^{T} g_o(t)dt = 0$$

• 3. Prove that the summation of a DT even signal with the range [-N, N] can be simplified as

2.5 Energy and power of signals - Energy

- The idea of the "size" of a signal is crucial to many applications. The first concept to be introduced is the "*energy*" of a signal.
 - 1. The *instantaneous power* for real-valued signal:
 - at $t = t_0$, for CT signal x(t): $p_{ins} = x^2(t_0)$;
 - at $n = n_0$, for DT signal x[n]: $p_{ins} = x^2[n_0]$.
 - 2. The *instantaneous power* for complex-valued signal:
 - at $t = t_0$, for CT signal x(t): $p_{ins} = |x(t_0)|^2$;
 - at $n = n_0$, for DT signal x[n]: $p_{ins} = |x[n_0]|^2$.
 - 3. The *energy* within a given time interval:
 - for CT signal: $E_{[T_1,T_2]} = \int_{T_1}^{T_2} |x(t)|^2 dt$ in interval $T_1 \le t \le T_2$;
 - for DT signal: $E_{[N_1,N_2]} = \sum_{n=N_1}^{N_2} |x[n]|^2$ in interval $N_1 \le n \le N_2$.
 - 4. The *total energy* of a signal is calculated over $(-\infty, \infty)$:
 - for CT signal: $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$;
 - for DT signal: $E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2$.

2.5 Energy - example

• Evaluate the energy of the signal x(t):

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

• Solve:

2.5 Energy and power of signals - Power

- Power is defined as energy per unit time.
 - 1. the *average power* over the interval $(-\infty, \infty)$ is expressed:
 - for CT signal: $P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$;
 - for DT signal: $P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$.
 - 2. for periodic signals, the *average power* can be calculated over one period of the signal:
 - for CT signal: $P_x = \frac{1}{T_0} \int_{\langle T_0 \rangle} |x(t)|^2 dt = \frac{1}{T_0} \int_{t_1}^{t_1 + T_0} |x(t)|^2 dt$;
 - for DT signal: $P_x = \frac{1}{N_0} \sum_{\langle N_0 \rangle} |x[n]|^2 = \frac{1}{N_0} \sum_{n_1}^{n_1 + N_0 1} |x[n]|^2$.
 - where t_1 is an arbitrary real number and n_1 is an arbitrary integer.

Quiz 4

• 1. Find the total energy of this rectangular pulse:

• 2. Find the average power of this periodic signal

2.5 Energy and Power Signals

- Energy vs. Power
 - "Energy signals" have finite energy \rightarrow zero average power.
 - "Power signals" have finite and non-zero power → infinite energy.

2.6 Summary

• A signal can usually be described by one word from each row from the following:

Continuous (Analogue)

Periodic

Deterministic

Finite energy

Symmetric (Odd/Even)

Discrete (Digital)

Aperiodic

Random

Finite power

Asymmetric

28

Next ...

- Introduction to Signals
 - 3. Signal operations (time-domain transformation)
 - time shifting, scaling and reversal.
 - 4. Elementary signals and sequences
 - unit step, rectangular, signum, ramp, sinusoidal, sinc, exponential and unit impulse functions.

