Deep Learning Tutorial #2

Ref.

• LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

IAM

• 한상곤(Sangkon Han, sangkon@pusan.ac.kr), CS.

Day.2 (Example) LeNet-5 구현해보기

```
LeNet-5로 알려져 있는 Gradient-based learning applied to document recognition. 논문 구현
```

Index

- Day.1: (Intro) Hands-On
- Day.2: (Example) LeNet-5 구현해보기
- Day.3: (execrcise) Learning to Identify Electrons 재현 준비
- Day.4: (execrcise) Learning to Identify Electrons 재현
- Day.5: (practice) Learning to Isolate Muons 재현

Review #1

- Python을 활용한 실험환경 구성
 - 격리 (venv, conda)를 통한 재현
- 딥러닝
 - 퍼셉트론(혹은 인공신경)을 하나의 레이어(layer, 층)로 활용하여 여러 계층을 구성하여 학습을 진행하는 방식
- 딥러닝 프로젝트의 3가지 기본 구성
 - 데이터, 훈련, 평가

Review #2

- 은닉층을 여러개 쌓아 올린 인공 신경망을 심층 신경망(deep neural network, DNN)라 함
- 훈련(학습)이란 훈련 데이터로부 터 가중치 매개변수 의 최적값을 자동으로 획득하는 것으로 학습 결과는 손실 함수 에 의해서 결정

Review #3

- 초기 다층 신경망은 기울기 소실 문제로 훈련이 잘 되지 않음
- 1986년, 데이비드 루멜하트, 제프리 힌턴, 로날드 윌리엄스가 역전파 훈련 알고리즘 을 소개
 - Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
- 네트워크를 두 번(정방향 한 번, 역방향 한 번) 통과 하는 것만으로 모든 모델 파라미 터에 대한 네트워크 오차의 그레이디언트를 계산할 수 있는 방식을 제공
- 오차를 감소시키기 위해 각 연결 가중치와 편향값이 어떻게 바뀌어야 하는지 알 수 있음

0. 논문(Gradient-based learning applied to document recognition.) 살펴보기

0.1 Ab.

- Gradient-Based Learning Applied to Document Recognition 은 약 45p 정도이며, 문자 인식 업무에 CNN (convolutional neural network, 합성곱 신경망)이 효과적인 이유에 대해 기술.
- LeNet-5 은 1998년 Yann LeCun 의 논문 'Gradient-Based Learning Applied to Document Recognition'에 담겨있는 CNN 구조를 뜻함

우리는 CNN 구조 중에서 많은 연구자들이 인용하고 있고, CNN과 관련된 기초적인 정보를 제공하는 해당 논문을 통해서 LeNet-5 직접 구현과 동시에 CNN에 대한 이 해도를 높여보는 것이 목표

0.2 실험 환경은 Day1 참고

• 실험 환경 구성이 힘들다면 colab을 활용

1. Gradient-Based Learning Applied to Document Recognition

LeNet-5은 Yann LeCun이 손으로 적힌 우편 번호를 기계적으로 확인하기 위해 고안된 CNN 구조를 말하는 것으로, 패턴 인식에서 이용되는 전통적인 모델은 hand-designed feature extractor 로 특징을 추출하고, fully-connected multi-layer networks 를 분류 기로 사용

• 참고

- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature
 521.7553 (2015): 436-444.
- Yann LeCun(Meta), Geoffrey Hinton(Google), Yoshua Bengio(SAMSUNG)

1.1.a 기존 방식의 문제점

- Hand-designed feature extractor 는 제한된 특징만 추출 하지만, Yann LeCun은 feature extractor 그 자체에서 학습이 이루어 져야 한다고 주장
 - hand-designed feature extractor는 입력에서 관련 정보만 수집하고 무관한 정 보를 제거
 - 이는 사람이 설계한 feature extrator 가 추출한 정보만 분류기로 전달되므로 제한된 학습이 이루어짐

1.1.b 기존 방식의 문제점

- 하나의 이미지는 몇 백개의 변수(pixel)를 포함하고 있는데, fully-connected multi layer의 첫 번째 layer에 이미 몇 만개의 가중치를 포함
 - 많은 가중치를 저장해야 하므로 메모리 저장공간이 많이 필요하게 됨
 - 손글씨는 사람의 글쓰기 스타일에 따라 다르므로 많은 distortion(왜곡) 와 shift(이동) 가 생길텐데 fully-connected multi layer는 이러한 변동성과 관련된 결과값을 생성하도록 학습되지만, 입력 이미지 어디에서나 나타나는 특징을 검출하기 위해 비슷한 가중치 패턴을 가진 다수의 유닛으로 결과값을 출력해야함
 - 이 모든 가중치 패턴을 학습하는 것은 많은 변동을 커버하기 위해 많은 학습 instance(개체)가 필요하게 됨

1.1.c 기존 방식의 문제점

- 입력값의 topology(위상)를 완전히 무시
 - 이미지는 2D 구조를 갖고 있으므로 인접한 변수(pixel)들은 공간적으로 매우 큰 상관관계가 있음
 - fully-connected multi layer는 인접한 변수들을 단순히 배열하여 학습하므로 공 간적인 정보를 이용하지 못함

1.2 CNN 구조의 특징

CNN은 약간의 shift, scale, distortion 불변성을 갖기 위해 세 개의 아이디어인 Local receptive field, Shared-weight, sub-sampling을 결합

1.2.a Receptive Field(수용 영역)

- CNN은 hidden unit 의 receptive field를 local로 제한함으로써 local featrue를 추출
- 하나의 layer는 이전 layer의 제한 된 지역에 위치해 있는 유닛의 집 합을 입력으로 사용
- 추출된 특징들은 고차원의 특징 을 검출하기 위해 그 다음 layer에 서 결합

1.2.b feature map

- 이를 통해 shift, distortion이 발생하더라도 특징을 나타내는 배열이 receptive field에 검출 된다면, 해당 특징을 반영한 feature map을 만들어 낼 수 있음
- receptive field를 이용하면 parameter 수를 줄일 수 있게 됨

1.2.c shared weight(가중치 공유)

- feature map에 있는 unit은 동일한 weights와 bias를 공유하여 convolution kernel 로 이용하여 입력의 모든 위치에서 동일한 특징을 추출
- 예를 들어, 5x5 kernel은 5x5사이즈와 설정된 Stride에 맞춰 feature map를 돌아다니며 계산하지만, 5x5의 weight와 1개의 bias만 back propagation으로 학습을 함

1.2.d shared weight의 장점

- weight를 공유하게 되면 학습 파라미터가 느는 것이 아니라, kernel를 총 몇개로 설정하는가에 따라 output인 feature map의 수와 학습해야하는 parameter만 증가
- 이 기법을 사용하면 요구되는 계산 capacity를 줄여주고, 학습할 parameter 의 수를 **줄여줌**으로써 Overfitting를 방지하게 되어 test error와 training error 사이의 gap도 줄여줌
- 실제로 LeNet-5에는 340,908 connection이 존재하지만 60,000개의 trainable parameter만 존재
- 이 기법은 입력 이미지가 변환됬으면 feature map 의 결과값도 동일한 양만큼 변화되기 때문에 CNN은 입력의 왜곡과 변환에 대한 Robust를 갖게 됨

1.2.e sub-sampling(혹은 pooling)

- sub-sampling은 현대의 pooling을 의미하는 것으로 LeNet-5에서는 average pooling을 이용
- 논문에선 한번 특징이 검출되면 위치 정보의 중요성이 떨어짐
 - 예를 들어, 입력 이미지가 7 이면 좌측 상당에 수평적인 end-point, 우측 상단에 corner, 이미지의 아래 부분에 수직적인 end-point를 포함
 - 이러한 각 특징의 위치 정보는 패턴을 식별하는 것과 무관할 뿐만 아니라, 입력 값에 따라 특징이 나타나는 위치가 다를 가능성이 높기 때문에 잠재적으로 유 해

1.2.f filter

- feature map으로 encoding 되는 특징들의 위치에 대한 정확도를 감소시키기 위한 가장 간단한 방법은 feature map의 해상도를 감소시키는 것
- sub-sampling layer에서 local average와 sub-sampling을 수행하여 feature map의 해상도를 감소시키고 distortion과 shift에 대한 민감도를 감소시킬 수 있다고 말함
- 위치 정보를 소실시키면서 생기는 손실은, feature map size가 작아질수록 더 많은 filter를 사용하여 다양한 feature를 추출하여 상호보완할 수 있도록 함

LeNet-5의 구조

• LeNet-5는 32x32 크기의 흑백 이미지에서 학습된 7 layer Convolutional Neural Network 입니다.

Conv(C1) - Subsampling(S2) - Conv(C3) - Subsampling(S4) - Conv(C5) - FC - FC

LeNet-5 구현

Step1. 만들고자 하는 구조를 미리 정의하라.

- 데이터
- 훈련
- 평가

Step2. 데이터를 준비하고 전처리를 진행하라.

```
import tensorflow as tf
data = tf.keras.datasets.mnist.load_data()
...
# why?
train_X = train_X.reshape((60000, 28, 28, 1))
test_X = test_X.reshape((10000, 28, 28, 1))
```

Step2. 주의사항

Tensorflow/PyTorch를 사용할 경우 이미지를 입력받는 형태는 (width, height, channel)로 표현

Step3. 모델을 차례대로 구현하라.

a.합성곱

CNN의 가장 중요한 구성 요소인 '합성곱 층'으로 수용 영역에 있는 픽셀만 연결, 저수준에서 고수준으로 특성을 조합해서 나가도록 도와줌

outputs = tf.nn.conv2d(images, filters, strides=1, padding="SAME")

- filters 는 수용장 크기를 뜻하는(1을 제외하고 모두 무시) 것으로 특성맵을 만듬
- strides 는 수용장 사이의 간격을 뜻함
- padding 은 합성곱 층에 제로 패딩을 사용하는 여부

b. 활성화 함수

입력 신호의 총합을 출력 신호로 변환하는 함수로 입력 신호의 총합이 활성화를 일으키는지를 정하는 역할로 비선형 함수를 사용

- 선형 함수란 출력이 입력의 상수 배만큼 변화는 함수(1개의 곧은 직선)인데, 신경망에서 선형 함수를 이용하면 신경망의 층을 깊게하는 의미가 없어짐
- ReLU(Rectified Linear Unit)
 - 미분값이 0/1이기 때문에 계산이 빠르기 때문에 사용
- softmax
 - 0~1사이의 값으로 모두 정규화하며 출력 값들의 총합은 항상 1이 되는 특성을 가진 함수

c. 폴링 함수

폴링은 계산량과 메모리 사용량, 과대적합을 줄이기 위한 파라미터수를 줄이기 위한 축소본을 만드는 것으로 최대나 평균 같은 합산 함수를 사용해서 입력값을 계산하는 것이전부

d. 레이어 구성

```
class LeNet(Sequential):
    def __init__(self,num_classes):
        super().__init__()
        self.add(Conv2D(6,5,strides=1,activation='tanh',input_shape=(28,28,1),padding='same'))
        self.add(AveragePooling2D(2,strides=2))
        self.add(Conv2D(16,5,strides=1,activation='tanh'))
        self.add(AveragePooling2D(2,strides=2))
        self.add(Conv2D(120,5,strides=1,activation='tanh'))
        self.add(Flatten())
        self.add(Dense(84,activation='tanh'))
        self.add(Dense(num_classes,activation='softmax'))
        self.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics='accuracy')
```

e. 계산 그래프 관련

```
self.compile(optimizer='adam',
   loss='sparse_categorical_crossentropy',
   metrics='accuracy')
```

- 손실함수(loss)
 - 기본적으로 주어진 훈련 표본에 대한 예측 값과 계산된 값 사이의 차이를 합한 것으로 더 좋은 성능을 위해 뉴럴 네트워크가 손실을 최소화하도록 훈련하기 위해서 가중치와 매개변수를 조절
- 최적화(optimizer)
 - Adaptive Moment Estimation(Adam)은 딥러닝 최적화 기법 중 하나로써 Momentum과 RMSProp의 장점을 결합한 알고리즘
- 측정(metrics)
 - Accuracy은 전체 test set에서 긍정과 부정을 포함하여 몇개를 맞았는가로 계산

손실함수 정리

- binary_crossentropy
 - y값이 0/1인 이진 분류기를 훈련할 때 자주 사용되는 손실 함수
- categorical_crossentropy
 - 멀티클래스 분류에 사용되며 출력을 클래스 소속 확률에 대한 예측으로 이해할 수 있는 문제에서 사용

- sparse_categorical_crossentropy
 - 멀티 클래스 분류에 사용, one-hot encoding 된 상태일 필요 없이 정수 인코딩 된 상태에서 수행 가능
- mean_squared_error
 - \circ 신경망의 출력 (\hat{y}) 과 타겟(y)이 연속값인 회귀 문제에서 널리 사용하는 손실함수
 - MSE는 데이터가 평균으로부터 얼마나 떨어져있나를 보여주는 손실함수
 연속형 데이터를 사용할 때 주로 사용 (주식 가격 예측 등)

f. 최적화 함수

최적화 함수 정리

- Stochastic Gradient Descent
 - 최적의 매개변수 값을 찾는 단서로 매개변수의 기울기(미분)을 이용.
 - 매개변수의 기울기를 구해, 기울어진 방향으로 매개변수 값을 갱신하는 일을 계속 반복

Momentum

- SGD와 비교했을 때 지그재그 정도가 덜한 것
- Momentum 방식을 이용할 경우 위의 그림과 같이 local minima를 빠져나오는 효과가 있을 것이라고도 기대

AdaGrad

○ 학습률을 서서히 낮추는 가장 간단한 방법은 전체 학습률 값을 일괄적으로 낮 추는 것이지만, 이를 더 발전시킨 것이 AdaGrad

평가

model.evaluate(test_X, test_y)

• loss와 accuracy를 확인할 수 있음