

338.001, VL Logic, Martina Seidl / Wolfgang Schreiner / Wolfgang Windsteiger, 2022W

Dashboard / My courses / 2022W338001 / Module SAT: Propositional Logic / SAT2Q (Quiz 2)

Quiz navigation

Show one page at a time Finish review

Started on Monday, 24 October 2022, 7:15 PM

Completed on Monday, 24 October 2022, 7:27 PM

Time taken 11 mins 35 secs

Grade 2.83 out of 5.00 (**56.67**%)

Question 1

Partially correct Mark 0.33 out of

Flag question

Which of the following formulas are subformulas of

$$(a \rightarrow \neg (\neg b \lor \neg \neg c)) \lor (a \land b \lor c) \land d?$$

Select one or more:

- □ 1. a ∧ b
- 2. (a → ¬ (¬b ∨ ¬¬c)) ∧ d?
- \blacksquare 4. (a → ¬ (¬b ∨ ¬¬c)) ∨ (a ∧ b ∨ c) ∧ d?
- □ 5. a ∧ b ∨ c

Die Antwort ist teilweise richtig.

The correct answers are: a \land b, a \land b \lor c, (a \rightarrow ¬ (¬b \lor ¬¬c)) \lor (a \land b \lor c) \land d?

Question $\bf 2$

Partially correct Mark 1.50 out of

▼ Flag question

Which of the following statements hold?

Select one or more:

- I. ¬(b ∨ ¬c) ⇔ (¬b ∧ c) ∨ ⊥
- 2. a ∧ (b ∨ a) ⇔ b
- 3. ¬(b ∨ ¬⊥) ⇔ (¬b ∨ ⊥)
- 4. ¬a ∧ (b ∨ ¬c) ⇔ (¬a ∧ b) ∨ (¬a ∧¬c)

Die Antwort ist teilweise richtig.

You have selected too many options.

The correct answers are: $\neg a \land (b \lor \neg c) \Leftrightarrow (\neg a \land b) \lor (\neg a \land \neg c), \neg (b \lor \neg c) \Leftrightarrow (\neg b \land c) \lor \bot$

Question 3

Mark 1.00 out of

Flag question

Given formulas $\psi 1$, $\psi 2$, $\psi 3$ over variables x, y, z as defined in the truth table below.

x	y	z	ψ1	ψ2	ψ3
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0
	0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0	0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0

Which statements hold?

Select one or more:

- 1. ¬ψ3 is valid.
- 2. ψ1 is satisfiable.
- \square 3. ψ 2 \wedge ψ 3 is satisfiable.

Die Antwort ist richtig.

The correct answers are: $\neg \psi 3$ is valid., $\psi 1$ is satisfiable.

Finish review

SAT1B

Jump to...

Policies

Johannes Kepler Universität Linz

Hilfe

Finish review

SAT2B ►

Policies
Impressum