Topic Modeling in R: LDA vs NMF with Associated Press

Contents

Overview & Learning Goals	1
Setup Packages Configuration	64
Data Load the Associated Press corpus	2
Shared Vocabulary & Matrices (Fair Comparison) Build TF-IDF (sublinear TF + L2 row norm)	2
Fit the Models LDA on counts (variational EM)	4
Topic Inspection	6
Model-Agnostic Metrics UMass Coherence	8
Interpretation	ę

Overview & Learning Goals

This R Markdown file presents a comparison of two topic modeling approaches using an R dataset:

- Latent Dirichlet Allocation (LDA) a probabilistic model that learns topics as word distributions and documents as mixtures of topics.
- Non-negative Matrix Factorization (NMF) a linear-algebra approach that factorizes a document—term matrix into non-negative parts ("topics") and document weights.

We will:

- 1. Use the Associated Press (AP) corpus bundled in the topicmodels package.
- 2. Build a **shared vocabulary** once and reuse it for both models.
- 3. Fit LDA on counts and NMF (Frobenius loss) on TF-IDF computed from the same counts.
- 4. Inspect **top words** per topic.
- 5. Compute two **model-agnostic** metrics:
 - UMass coherence (higher/less negative \approx better internal consistency).
 - Mean Jensen-Shannon distance (JSD) between topics (higher = more distinct).

Setup

Packages

```
We use topicmodels (LDA + AP dataset), NMF (NMF), and base sparse-matrix tooling via Matrix and slam.

pkgs <- c("topicmodels", "NMF", "Matrix", "slam")

to_install <- setdiff(pkgs, rownames(installed.packages()))

if (length(to_install)) install.packages(to_install, repos = "https://cloud.r-project.org")

# NMF depends on Biobase (from Bioconductor). Install if missing.

if (!requireNamespace("Biobase", quietly = TRUE)) {

if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

BiocManager::install("Biobase", ask = FALSE, update = FALSE)
}

if (!requireNamespace("tm", quietly = TRUE)) install.packages("tm")

library(tm)

library(topicmodels)

library(Matrix)

library(slam)

set.seed(0)
```

Configuration

```
n_topics <- 10  # number of topics
n_top_words <- 20  # words to display per topic
max_features <- 5000  # vocabulary cap for fairness and speed
min_df <- 10  # drop very rare terms: min docs containing term
max_df_prop <- 0.5  # drop very common terms: max doc proportion
random_state <- 0  # reproducibility
```

Data

Load the Associated Press corpus

 ${\tt topicmodels~ships~a~preprocessed~\textbf{DocumentTermMatrix}~named~\texttt{AssociatedPress}~(AP).}$

```
data("AssociatedPress", package = "topicmodels")
dtm <- AssociatedPress # class: DocumentTermMatrix (tm + slam)
n_docs <- nrow(dtm); n_terms <- ncol(dtm)
n_docs; n_terms
## [1] 2246
## [1] 10473</pre>
```

Shared Vocabulary & Matrices (Fair Comparison)

We build **one** filtered vocabulary and use it for both models:

- Counts (DTM) \rightarrow input to LDA
- TF-IDF (computed from those same counts) \rightarrow input to NMF

Filtering steps:

- Remove rare terms (min_df) and overly common terms (max_df_prop).
- Cap to the max_features most frequent terms.
- Keep everything sparse.

```
# Document frequency: number of documents containing the term
df <- slam::col sums(dtm > 0)
keep <- (df >= min_df) & (df <= max_df_prop * n_docs)</pre>
# Limit to top features by overall term frequency (within 'keep')
tf <- slam::col_sums(dtm[, keep])</pre>
ord <- order(tf, decreasing = TRUE)</pre>
if (length(ord) > max_features) ord <- ord[seq_len(max_features)]</pre>
keep_terms <- names(tf)[ord]</pre>
# Apply selection
dtm_filt <- dtm[, keep_terms]</pre>
dtm_filt <- dtm_filt[, slam::col_sums(dtm_filt) > 0] # ensure non-empty columns
# Drop empty documents
nz_docs <- slam::row_sums(dtm_filt) > 0
dtm_filt <- dtm_filt[nz_docs, ]</pre>
# Refresh doc count for downstream code
n_docs <- nrow(dtm_filt)</pre>
dim(dtm_filt)
## [1] 2245 5000
```

Build TF-IDF (sublinear TF + L2 row norm)

We approximate scikit-learn's default TF-IDF:

- TF: sublinear scaling log1p(count)
- IDF: log((1 + N) / (1 + df)) + 1
- Normalize: L2 per document (row)

```
# Convert DTM (slam::simple_triplet_matrix) to a sparse dgCMatrix (Matrix package)
stm <- dtm_filt

# Use existing document/term names if present; otherwise create synthetic IDs.
doc_ids <- rownames(stm); if (is.null(doc_ids)) doc_ids <- pasteO("doc_", seq_len(stm$nrow))
term_ids <- colnames(stm); if (is.null(term_ids)) term_ids <- pasteO("term_", seq_len(stm$ncol))

# Build a column-compressed sparse matrix (dgCMatrix) from slam triplet slots:
# stm$i -> row indices (docs)
# stm$j -> column indices (terms)
# stm$v -> counts (term frequencies)
# Provide dims and human-friendly dimnames for later inspection.
V_counts <- sparseMatrix(
    i = stm$i, j = stm$j, x = stm$v,</pre>
```

```
dims = c(stm$nrow, stm$ncol),
 dimnames = list(Docs = doc_ids, Terms = term_ids)
# --- TF-IDF (sublinear TF + IDF + L2 row normalization) ---
# Sublinear TF: replace raw counts tf with log(1 + tf).
# Access nonzero values directly via the @x slot for efficiency.
V_tf <- V_counts</pre>
V_tf@x <- log1p(V_tf@x)</pre>
# IDF: compute on the filtered DTM.
\# df_filt = \# docs \ containing \ each \ term.
df_filt <- slam::col_sums(dtm_filt > 0)
# Ensure n_docs is the number of documents used for IDF.
# (If not already defined upstream, uncomment the next line.)
# n_docs <- nrow(stm)</pre>
# Smooth IDF to avoid div-by-zero and zero/inf values:
# idf_j = log((1 + N) / (1 + df_j)) + 1
idf \leftarrow log((1 + n_docs) / (1 + as.numeric(df_filt))) + 1
# Apply IDF on the right: (docs \ x \ terms) \ * \ diag(idf) \ -> \ scales \ each \ column \ by \ its \ IDF.
V tfidf <- V tf %*% Diagonal(x = idf)</pre>
# L2-normalize each document vector to unit length:
\# row\_norm\_d = sqrt(sum\_t (tfidf\_{d,t}^2)).
row_norm <- sqrt(rowSums(V_tfidf^2))</pre>
# Guard against zero rows: replace zeros with 1 to keep them zero after scaling.
row_norm[row_norm == 0] <- 1</pre>
# Left-multiply by diag(1/row_norm) to scale each row to unit L2 norm.
V_tfidf <- Diagonal(x = 1 / row_norm) %*% V_tfidf</pre>
# Report final matrix shape: (#docs, #terms)
dim(V_tfidf)
## [1] 2245 5000
```

Fit the Models

LDA on counts (variational EM)

```
control_lda <- list(estimate.alpha = TRUE, seed = random_state)</pre>
lda_model <- LDA(dtm_filt, k = n_topics, method = "VEM", control = control_lda)</pre>
lda_model
```

A LDA_VEM topic model with 10 topics.

NMF on TF-IDF (Frobenius / Euclidean)

nmf_model <- nmf(as.matrix(V_counts), rank = n_topics,</pre>

set.seed(random_state)

We use Euclidean (Frobenius) loss via the Lee–Seung updates. This mirrors the least-squares NMF used in Python.

method = "brunet", nrun = 1, seed = "nndsvd")

```
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
##
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
   Use c() or as.vector() instead.
##
## Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
##
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
```

```
nmf_model
## <Object of class: NMFfit>
##
   # Model:
     <Object of class:NMFstd>
##
    features: 2245
##
##
    basis/rank: 10
##
    samples: 5000
## # Details:
##
    algorithm: brunet
##
     seed: nndsvd
    RNG: 10403L, 624L, ..., -2085092265L [bb41ddce3f896a749dea08ac0f513ce0]
##
##
    distance metric: 'KL'
##
    residuals: 991481.4
##
     Iterations: 2000
##
    Timing:
##
       user system elapsed
     689.040 24.564 715.711
##
```

Topic Inspection

Topic #1:

Extract **top words** for each topic.

```
\# LDA: topic-word probabilities (phi), dimensions: k x vocab
lda_post <- posterior(lda_model)</pre>
phi_lda <- lda_post$terms</pre>
# NMF: basis matrix W (features x k); convert to topic-word (k x features) and row-normalize
W <- basis(nmf_model)</pre>
phi_nmf <- t(W)</pre>
phi_nmf <- phi_nmf / pmax(rowSums(phi_nmf), 1e-12)</pre>
feat names <- colnames(as.matrix(dtm filt))</pre>
top_words <- function(phi, topn = n_top_words, features = feat_names) {</pre>
  apply(phi, 1, function(row) {
    ids <- order(row, decreasing = TRUE)[seq_len(min(topn, length(row)))]</pre>
    paste(features[ids], collapse = " ")
  })
cat("### Topics in LDA (counts)\n")
## ### Topics in LDA (counts)
tw_lda <- top_words(phi_lda, n_top_words, feat_names)</pre>
for (i in seq_along(tw_lda)) cat(sprintf("Topic #%d:\n%s\n\n", i-1, tw_lda[[i]]))
## Topic #0:
## company million new workers federal year corp president employees last inc pay billion plan departme
```

percent million year market stock billion prices new sales cents last rose higher rate trading index

```
##
## Topic #2:
## i years new people mrs two time year like just first dont school get family home yearold life think
##
## Topic #3:
## soviet united union states gorbachev president west east government talks german germany communist m
## Topic #4:
## air two flight plane officials navy space defense aircraft time force first military million three s
##
## Topic #5:
## police government people two killed army south officials military city three reported arrested group
## Topic #6:
## oil iraq dollar united yen kuwait iraqi late gulf saudi iran states gold london war foreign presiden
## Topic #7:
## people state city water children new hospital health officials percent area two fire medical high ai
##
## Topic #8:
## bush president congress house party new bill percent budget government vote senate i committee year
## Topic #9:
## court dukakis i state attorney case bush drug trial campaign president judge jackson told federal ch
cat("### Topics in NMF (TF-IDF, Frobenius)\n")
## ### Topics in NMF (TF-IDF, Frobenius)
tw nmf <- top words(phi nmf, n top words, feat names)
for (i in seq_along(tw_nmf)) cat(sprintf("Topic #%d:\n%s\n\n", i-1, tw_nmf[[i]]))
## Topic #0:
## missing continental delegates davis grant come camp flew constitutional kind session chosen committe
##
## told deadline burned amount relations victim labor sale run electronic republicans improve markets g
##
## Topic #2:
## hill sure temperatures rest growing assistant wanted overseas responded convention interview governo
## Topic #3:
## release forced organized game terms motor joint decades joined houses close remove peace internation
## Topic #4:
## marks reserve mr corn anniversary missile ruling court northern john movie art prison suggested prop
##
## Topic #5:
## studies granted prepared notice england just wine activists atlanta tell risk failing county accused
## Topic #6:
## doesnt hold residents chrysler fourth david fed chicago weather director h increased requirements gi
##
## Topic #7:
```

full st list scheduled degree force talk contributions two immediately flying pressure process thurs

```
##
## Topic #8:
## connection corporate todays argued spending acquisition protection citizens worth materials downtown
##
## Topic #9:
## encourage ended boost columbia christian time steel refused class individual demonstrators iraqi new
```

Model-Agnostic Metrics

UMass Coherence

Question: Do a topic's top words tend to co-occur in the same documents? We compute a log-based co-occurrence score across top-word pairs (less negative \approx better).

```
umass_coherence <- function(phi, dtm_counts, topn = 20, eps = 1e-12) {
  # Convert to sparse matrix (dqCMatrix)
  stm <- dtm_counts
  X <- sparseMatrix(i = stm$i, j = stm$j, x = stm$v,</pre>
                     dims = c(stm$nrow, stm$ncol))
  X@x \leftarrow ifelse(X@x > 0, 1, 0)
  df <- Matrix::colSums(X)</pre>
  C <- Matrix::t(X) %*% X</pre>
  # Top indices per topic
  top_ids <- apply(phi, 1, function(row)</pre>
    order(row, decreasing = TRUE)[seq_len(min(topn, length(row)))] )
  scores <- c()
  for (k in seq_len(nrow(phi))) {
    ids <- top_ids[, k]</pre>
    s <- 0; pairs <- 0
    if (length(ids) >= 2) {
      for (i in 2:length(ids)) {
        wi <- ids[i]
        for (j in 1:(i-1)) {
          wj <- ids[j]
          co <- C[wi, wj]
          s <- s + log((as.numeric(co) + eps) / (as.numeric(df[wj]) + eps))
          pairs <- pairs + 1
      }
    }
    scores <- c(scores, ifelse(pairs > 0, s / pairs, NA_real_))
  mean(scores, na.rm = TRUE)
```

Mean Jensen-Shannon Distance (JSD) Between Topics

Question: How different are topics from each other overall?

Treat each topic as a probability distribution over terms; average the Jensen–Shannon divergence across topic pairs (higher = more distinct).

```
row_normalize <- function(M, eps = 1e-12) {</pre>
  M / pmax(rowSums(M), eps)
kl_div \leftarrow function(p, q, eps = 1e-12) {
  p \leftarrow p + eps; q \leftarrow q + eps
  sum(p * log(p / q))
js_div \leftarrow function(p, q, eps = 1e-12) {
 m < -0.5 * (p + q)
  0.5 * kl_div(p, m, eps) + 0.5 * kl_div(q, m, eps)
mean_js_distance <- function(phi) {</pre>
  phi <- row_normalize(phi)</pre>
  K <- nrow(phi)</pre>
  d <- c()
  for (i in 1:(K-1)) {
    for (j in (i+1):K) {
      d <- c(d, js_div(phi[i, ], phi[j, ]))</pre>
  }
  mean(d)
```

Compute and Report Metrics

```
lda_coh <- umass_coherence(phi_lda, dtm_filt, topn = n_top_words)
nmf_coh <- umass_coherence(phi_nmf, dtm_filt, topn = n_top_words)

lda_js <- mean_js_distance(phi_lda)
nmf_js <- mean_js_distance(phi_nmf)

cat("=== Summary Metrics ===\n")

## === Summary Metrics ===
cat(sprintf("LDA coherence (UMass): %.4f | separation (JSD): %.4f\n", lda_coh, lda_js))

## LDA coherence (UMass): -1.7940 | separation (JSD): 0.3788

cat(sprintf("NMF coherence (UMass): %.4f | separation (JSD): %.4f\n", nmf_coh, nmf_js))

## NMF coherence (UMass): -8.5110 | separation (JSD): 0.5543</pre>
```

Interpretation

- UMass coherence: Do a topic's top words tend to appear together in documents? (higher/less negative ≈ better).
- Mean JSD: How different are the topics from each other overall? (higher = more distinct).

- Typical outcome: LDA often has slightly better coherence; NMF (with narrower topics) often has higher separation.
- Maintain a shared vocabulary to keep comparisons fair.

UMass coherence (higher/less-negative is better):

- LDA: -1.794 pretty reasonable on AP; LDA topics (markets, USSR, Gulf War, courts, etc.) are visibly coherent.
- NMF: -8.958 very low coherence; the top words read "spiky/odd" and don't co-occur much in documents. That's typical when NMF is run with **Euclidean loss on TF-IDF**: it emphasizes rare/idiosyncratic terms rather than co-occurring ones.

JSD separation (higher = topics more dissimilar as distributions):

• NMF: **0.496** > LDA: **0.379**. NMF topics can become very "disjoint" (few shared high-weight words), so they look **far apart** even if they're not coherent. High separation is not automatically good; coherence matters more for interpretability.