Exercice 1. Simplifier les expressions suivantes.

$$1. \ln e^{-1}$$

$$2. \ln \epsilon$$

3.
$$\ln \sqrt{}$$

2.
$$\ln e^2$$
 3. $\ln \sqrt{e}$ 4. $\ln \frac{1}{\sqrt{e}}$ 5. $e^{\ln 2}$ 6. $e^{-\ln 3}$ 7. $e^2 \ln 2$ 8. $e^{\frac{1}{2} \ln 3}$

5.
$$e^{ln2}$$

3.
$$e^{-\ln 3}$$

7.
$$e^2 \ln$$

8.
$$e^{\frac{1}{2}\ln 3}$$

Exercice 2.

Résoudre les équations et inéquations suivantes dans \mathbb{R} .

1.
$$\ln t + \frac{1}{2} = 0$$

2.
$$e^t - 2 = 0$$

3.
$$e^{2t} - 4e^t + 3 = 0$$

4.
$$2 \ln x = \ln 3 + \ln(2x + 3)$$

$$5. \ln \frac{1}{t} \ge -2$$

6.
$$\ln(x-3) < 2$$

7.
$$\ln(4t^2 - 16) = \ln(1 - 2t)$$

8.
$$\ln(2x^2 - 5x + 1) > \ln(1 + 2x)$$

Exercice 3. Calculer les limites suivantes si elles existent :

$$1. \lim_{x \to +\infty} \ln(2x+1)$$

$$3. \lim_{x \to 0} (x - \ln x)$$

2.
$$\lim_{x \to 0} \ln(2x+1)$$

4.
$$\lim_{x \to +\infty} (x - \ln x)$$

Exercice 4. On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{1}{2}x + 1 + \ln x$.

- 1. Étudier les limites de f en 0 et $+\infty$. En déduire les asymptotes éventuelles.
- 2. Étudier les variations de f et dresser son tableau de variation complet.
- 3. Tracer la courbe de f dans un repère orthogonal.

Exercice 5. Mêmes questions avec f définie sur $]0; +\infty[$ par $f(x) = \frac{x}{\ln x}$.

Exercice 6. Soit f la fonction définie sur l'intervalle [1; e] par $f(x) = x^2 \ln x$.

- 1. Calculer f'(x). Étudier son signe et en déduire le sens de variation de f.
- 2. Tracer la courbe représentant f dans un repère orthogonal d'unités 2 cm en abscisses et 1 cm en ordonnées.
- 3. Démontrer qu'il existe un unique réel a dans l'intervalle [1; 2] tel que f(a) = 1. Donner une valeur approchée de $a \ a \ 10^{-2}$ près.

Exercice 7. n est un entier naturel. Résoudre les inéquations :

1.
$$1, 1^n \ge 2$$

$$2. \left(1 - \frac{3}{100}\right)^n \le \frac{1}{2}$$

Exercice 8. Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{2(1 + \ln x)}{x}$.

- 1. (a) Résoudre dans $[0; +\infty[$ l'équation f(x) = 0. Donner la valeur exacte et une valeur approchée à 10^{-2} près de la solution.
 - (b) Résoudre dans $]0; +\infty[$ l'inéquation f(x) > 0.
- 2. On donne le tableau de variation de f sur $]0; +\infty[$. Justifier tous les éléments contenus dans le tableau (variations, limites, valeurs numériques).

x	0		1		$+\infty$
f'(x)		+	0	_	
f(x)	-∞		2		, <u>ō</u>

3. Dans une entreprise, on a modélisé par la fonction f sur $[0.2; +\infty[$ le bénéfice mensuel (éventuellement négatif) réalisé en vendant x milliers d'objets fabriqués.

Ce bénéfice est exprimé en milliers d'euros.

En utilisant les résultats des questions précédentes :

- (a) Quel nombre minimal d'objets l'entreprise doit-elle fabriquer pour que le bénéfice soit positif?
- (b) Combien faut-il fabriquer d'objets pour rendre le bénéfice maximal? Quel en est le montant?