МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра физики

Методические указания для проведений практических занятий по дисциплине

"Физика"

семестр 3 (электромагнетизм)

Для направлений подготовки:

01.03.02, 01.03.03, 04.03.01, 06.03.01, 08.03.01, 09.03.01, 09.03.02, 09.03.03, 09.03.04, 10.03.01, 12.03.01, 12.03.02, 12.03.04, 13.03.02, 15.03.01, 15.03.02, 15.03.04, 15.03.05, 15.03.06, 19.03.01, 20.03.01, 21.03.02, 22.03.01, 23.03.01, 23.03.02, 23.03.03, 24.03.02, 24.03.03, 27.03.01, 27.03.02, 29.03.03, 49.03.01, 10.05.03, 11.05.01, 15.05.01, 17.05.01, 17.05.02, 21.05.04, 23.05.01, 24.05.01, 24.05.02, 24.05.06

Методические указания подготовлены проф. Ю.Н. Колмаковым, доц. С.Е.Кажарской, доц. Е.В.Якуновой

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕс	тр.3
Семестр 3.	-
19. Расчет электростатических полей точечных зарядов	4
20. Расчет электростатических полей распределенных зарядов	5
21. Использование теоремы Гаусса для расчета электрических полей	7
22. Потенциал и энергия электрического поля. Конденсаторы	
23. Законы квазистационарного тока	
24. Разветвленные электрические цепи и правила Кирхгофа	
25. Расчет магнитных полей, созданных линейными токами	
26. Расчет магнитных полей с помощью теоремы о циркуляции	
27. Заряженная частица в электрическом и магнитном полях	
28. Явления электромагнитной индукции и самоиндукции	
29. Собственные электрические колебания	
30. Вынужденные электрические колебания	

ВВЕДЕНИЕ

В соответствии с рабочей программой в течение семестра студент должен выполнить две контрольные работы, включающие 5-6 задач в каждой работе по общим для разных направлений подготовки темам. Образцы решения таких задач, рекомендуемые для проведения практических занятий по физике, приводятся ниже. Выбор тем практических занятий и разделов задач контрольных работ соответствует конкретной рабочей программе направления (специальности) подготовки.

Для самостоятельной подготовки к контрольным работам примеры практических задач приведены также в пособии: --- Колмаков Ю. Н., Кажарская С.Е. Физика. Электромагнетизм: руководство к проведению самостоятельной работы студентов: учебн. пособие [Электронный ресурс]/ Электрон.текстовые данные. — Тула: Изд-во ТулГУ, 2017.— 156 с. .— ISBN 978–5–7679–33915–2.

Примерное содержание тем практических занятий в соответствии с рабочими программами приведено в следующей таблице:

Семестр 3		
№ занятия	Тема практического занятия	
1	Принцип суперпозиции и расчет электростатического поля для системы точечных зарядов и для заряда, распределенного непрерывно. Вычисление напряженности и потенциала электростатического поля.	
2	Применение теоремы Гаусса для расчета электростатических полей. Связь напряженности и потенциала. Работа по перемещению заряда в электростатическом поле. Энергия системы заряженных частиц и электрического поля. Емкость и энергия заряженных конденсаторов.	
3	Законы постоянного тока. Вычисление электрического заряда, протекающего по цепи и выделяющегося в электрической цепи джоулевого тепла. Закон Джоуля-Ленца. Квазистационарные токи (задачи с электрическими цепями, содержащими конденсатор).	
4	Разветвленные цепи. Правила Кирхгофа. Использование закона Ома в локальной форме.	
5	Расчет магнитных полей с помощью закона Био-Савара и с помощью теоремы о циркуляции.	
6	Силы Лоренца и Ампера. Движение заряженной частицы в стационарных электрическом и магнитном полях. Силы, действующие на электрический и магнитный диполь (контур с током).	
7	Явление электромагнитной индукции. Закон Фарадея. Явления самоиндукции и взаимной индукции. Вычисление индуктивности. Энергия магнитного поля.	
8	Собственные электрические колебания в цепях. Электрический колебательный контур и его параметры. Вынужденные электрические колебания.	

Семестр 3

19. Расчет электростатических полей точечных зарядов

Если задана система двух или нескольких **точечных** электрических зарядов, то на расстояниях r_1 и r_2 от зарядов их потенциалы складываются с учетом знака заряда,

$$\phi = \phi_1 + \phi_2 = \frac{q_1}{4\pi\epsilon_0\epsilon r_1} + \frac{-|q_2|}{4\pi\epsilon_0\epsilon r_2}$$
. Напряженности складываются векторно, $\vec{E} = \vec{E}_1 + \vec{E}_2$, где вели-

чины векторов (поля точечных зарядов)

$$\boxed{E_1=\frac{q_1}{4\pi\varepsilon_0\varepsilon r_1^2}}\,, \boxed{E_2=\frac{|q_2|}{4\pi\varepsilon_0\varepsilon r_2^2}}\,.$$
 Надо помнить, что вектор

 \vec{E}_1 поля положительного заряда $+q_1$ направлен от заряда, а вектор \vec{E}_2 поля отрицательного заряда $-q_2$ направлен к заряду, как показано на рис.2.1 (линии \vec{E} начинаются на положительных зарядах, а заканчиваются на отрицательных зарядах или уходят в бесконечность). В этих формулах $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/\mathrm{m}$ - электрическая постоянная, $\varepsilon-$ диэлектрическая постоянная среды, в которой находятся заряды (для воздуха $\varepsilon \cong 1$) Постоянная $1/4\pi\varepsilon_0 = 9 \cdot 10^9 \, \mathrm{m}/\Phi$.

На любой точечный заряд q, внесенный в это поле, будет действовать сила Кулона, равная $\overline{\vec{F} = q\vec{E}}$, а энергия внесенного заряда равна $\overline{W = q\phi}$.

Пример решения задач:

19.1. Точечные заряды $q_1 = +5$ мкКл и $q_2 = = +1$ мкКл находятся в вершинах квадрата со стороной a = 3 м, а заряд $q_3 = +2$ мкКл – в середине его стороны (см.рисунок). Найти а) величину кулоновской силы, действующей на заряд q_3 со стороны зарядов q_1 и q_2 ; б) угол между вектором этой силы и стороной квадрата; в) энергию заряда q_3 . Как изменятся результаты, если заряд q_1 поменяет знак?

Решени

Аккуратно делайте рисунок, отмечая на нем заданные в условии углы и направления векторов. Правильно сделанный рисунок – это 30-50% успешного решения задачи.

Как видно из рис.2.2, величины напряженностей $E_1 = \frac{q_1}{4\pi\epsilon_0 \cdot AC^2}$; $E_2 = \frac{q_2}{4\pi\epsilon_0 \cdot BC^2}$, где $BC = \frac{a}{2}$,

 $AC = \sqrt{AB^2 + BC^2} = \sqrt{5}a/2$. Проекции векторов на оси х и у равны $E_{1x} = E_1 \cos \beta$; $E_{1y} = E_1 \sin \beta$; $E_{2x} = E_2$; $E_{2y} = 0$. Из прямоугольного треугольника ABC следует, что $\cos \beta = BC/AC = 1/\sqrt{5}$; $\sin \beta = AB/AC = 2/\sqrt{5}$.

Проекции результирующего вектора $\vec{E} = \vec{E}_1 + \vec{E}_2$ в точке С равны

$$E_x = E_{1x} + E_{2x} = \frac{1}{4\pi\epsilon_0} \frac{4q_1}{5a^2} \cdot \frac{1}{\sqrt{5}} + \frac{1}{4\pi\epsilon_0} \frac{4q_2}{a^2} \; ; \; E_y = E_{1y} + E_{2y} = \frac{1}{4\pi\epsilon_0} \frac{4q_1}{5a^2} \cdot \frac{2}{\sqrt{5}} \; . \; \text{Сила Кулона, действующая на} \quad q_2 \frac{\text{B}}{\boxed{6}} \frac{q_3}{\boxed{6}}$$

заряд q_3 равна $F = q_3 E = q_3 \sqrt{E_x^2 + E_y^2} =$

$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{4q_3}{a^2} \sqrt{\left(\frac{q_1}{5\sqrt{5}} + q_2\right)^2 + \left(\frac{2q_2}{\sqrt{5}}\right)^2} = 9 \cdot 10^9 \cdot \frac{4 \cdot 2 \cdot 10^{-6}}{3^2} \sqrt{\left(\frac{5}{5\sqrt{5}} + 1\right)^2 + \left(\frac{2}{\sqrt{5}}\right)^2} \cdot 10^{-6} = 0,0136 \text{ H}.$$

Чтобы не запутаться в вычислениях, все величины при подстановке переводите в систему СИ, и выносите общие множители и степени, как это сделано выше.

Угол α между направлением вектора силы \vec{F} (или вектора \vec{E}) и осью x можно найти из соотношения $\log \alpha = E_y/E_x = 2q_1/\left(q_1 + 5\sqrt{5}q_2\right) = 0,0856$, откуда $\alpha = 4,89^\circ$.

Складывать векторы намного проще, не вычисляя их проекции на оси координат, а используя теорему косинусов: если известны две стороны а и b треугольника и угол θ между ними (puc.2.3), то противополож-

ная сторона равна $c = \sqrt{a^2 + b^2 - 2ab\cos\theta}$

Из рис.2.2 видно, что векторы \vec{E}_1 , \vec{E}_2 и \vec{E} образуют треугольник с углом $\pi - \beta$. Поэтому величина результирующей напряженности сразу следует из теоремы косинусов, где величины напряженностей каждого из зарядов $E_1 = \frac{4q_1}{4\pi\epsilon_0 \cdot 5a^2} = 4000$ В/м ,

$$E_2 = \frac{4q_2}{4\pi\varepsilon_0 \cdot a^2} = 4000 \text{ B/m} \; . \quad E = \sqrt{E_1^2 + E_2^2 - 2E_1E_2\cos\left(\pi - \beta\right)} = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\beta} \quad \text{if} \quad F = q_3E = 13,6 \text{ mH} \; .$$

Результирующий потенциал зарядов найти много проще, так как он будет суммой скалярных, а не векторных функций: $q_1 = q_2 = 1 + 2(q_1 = q_2) + 104 + 104 P$

$$\varphi = \varphi_1 + \varphi_2 = \frac{q_1}{4\pi\epsilon_0 \cdot AC} + \frac{q_2}{4\pi\epsilon_0 \cdot BC} = \frac{1}{4\pi\epsilon_0} \cdot \frac{2}{a} \left(\frac{q_1}{\sqrt{5}} + q_2\right) = 1,94 \cdot 10^4 \text{ B}.$$

Энергия заряда q_3 в электростатическом поле зарядов q_1 и q_2 будет равна $W=q_3\phi=q_3(\phi_1+\phi_2)=0,0388$ Дж.

Внимательно следите за знаками зарядов в условиях!

 $\it Ecли \ заряд \ q_1 \ \it uзменит \ \it знак, \ mo \ \it beкmop \ \vec E_1 \ \it nomensem \ \it hanpas \it \it nehue (puc. 2.4). \ \it Torda \ \it no \ \it meope-$

ме косинусов $F=q_3E=q_3\sqrt{E_1^2+E_2^2-2E_1E_2\cos\beta}=8,41\,\mathrm{mH}$. Потенциал заряда $\ q_1\$ изменит знак:

$$\phi = \phi_1 + \phi_2 = \frac{1}{4\pi\epsilon_0} \left(\frac{-|q_1|}{AC} + \frac{q_2}{BC} \right) = -7,42\cdot 10^3 \text{ B} \quad u \ W = q_3 \phi = -0,0148 \ \text{Дж} \ .$$

Примеры задач контрольной работы для самостоятельной подготовки:

19.2. Имеющие разные знаки точечные заряды $q_1 = q_3 = 2$ мкКл и $q_2 = -1$ мкКл находятся в вершинах равностороннего треугольника. На заряд q_3 со стороны зарядов q_1 и q_2 действует электрическая сила величиной F = 0.01 Н. Найти длину a стороны треугольника.

19.3. Точечные заряды одного знака $q_1 = 1$ мкКл, $q_2 = 2$ мкКл и q_3 находятся в вершинах прямоугольного треугольника с углом 60° и с прилежащим катетом a=1 м. Определить величину заряда q_3 , если величина электрической силы, действующей на него со стороны двух других зарядов q_1 и q_2 , равна F = 6 мН. Определить величину энергии заряда q_3 .

Ответ: 0.747 мкКл: 11.1 мВ.

19.4. Точечные заряды разного знака q_1 , q_2 , q_3 и q_4 находятся в вершинах квадрата со стороной a== 2 м. Определить величину положительного заряда q_1 , если модуль электрической силы, действующей на него со стороны трёх других зарядов q_2 , q_3 . и q_4 ., равен F=0,2 мН. Найти потенциал, созданный зарядами q_2 , q_3 и q_4 в точке, где находится заряд q_1 . Учесть, что $q_2 = q_4 = -2$ мкКл, $q_3 = +6$ мкКл.

Ответ: 0,518 мкКл, 1092 В.

19.5. Точечные заряды разного знака $q_1 = q_3 = +3$ мкКл, $q_2 = q_4 = -2$ мкКл находятся в вершинах ромба с углом 120° и с длиной каждой из сторон a=1 м. Найти величину электрической силы, действующей на заряд q_3 со стороны трёх других зарядов q_1, q_2 . и q_4 . Найти энергию заряда q_3 в поле трех остальных зарядов.

Ответ: 66,5 мН, −0,0145 Дж.

19.6. Точечные заряды q_1 , q_2 , q_3 . и q_4 . имеющие одинаковую величину и разный знак, расположены в двух вершинах и в серединах двух сторон квадрата с длиной стороны a=3 м, как показано на рисунке. Определить величину заряда q_1 , если модуль электрической силы, действующей на заряд q_4 со стороны трёх зарядов q_1, q_2 . и q_3 . равен F=1 мН. Найти потенциал, созданный зарядами q_2, q_3 и q_4 . в точке расположения заряда q_1 .

Ответ: 1,523 мкКл, 8,66 кВ.

20. Расчет электростатических полей распределенных зарядов

Если заряд распределен непрерывно по объему с плотностью р, то его можно разбить на крошечные участки dV, заряды которых можно считать **точечными** $dq = \rho dV$ (рис.2.5). Созданные ими напряженности $d\bar{E}$ и потенциалы $d\phi$ суммируются. Для бесконечно малых величин такая сумма превращает-

ся в интеграл: $\varphi = \int d\varphi = \int \frac{dq}{4\pi\varepsilon_0 r}$.

Чтобы избежать интегрирования по объему, в задачах контрольной работы рассматривается заряд, распределенный вдоль прямых линий или окружностей с линейной плотностью р [Кл/м]. На бесконечно малом участке линии длиной dl находится заряд $dq = \rho dl$, создающий в вакууме на удалении r потенциал

 $d\phi = \frac{dq}{4\pi\epsilon_0 r}$ и напряженность $dE = \frac{dq}{4\pi\epsilon_0 r^2}$ (рис.2.6). Интегрировать надо по всем участкам, на которых

находится ненулевой заряд $\rho \neq 0$, причем векторы $d\vec{E}$ надо складывать с учетом направления.

Примеры решения задач:

20.1. Электрический заряд распределен по очень тонкому стержню длины 2a = 1 м, вытянутому вдоль оси x Линейная плотность кэтого заряда меняется с координатой x по степенному закону

 $\rho = \begin{cases} \rho_0 \cdot \left(x/a \right)^3 \text{ при } - a \leq x \leq a, \\ 0 \text{ при } |x| > a, \end{cases}$ где $\rho_0 = 4$ мкКл/м. В центре стержня, совпадающем с началом координат 0, закреплён то-

чечный заряд q = 3 мкКл (см. рисунок). Найти проекцию на ось x электрической силы, с которой заряд стержня действует на заряд q. Найти потенциал, который заряд на стержне создает в точке 0.

Положительный заряд $dq = \rho(x)dx$, находящийся на расстоянии x справа от точки 0, создает в этой точке напряженность $d\vec{E}_{+}$, направленную от заряда против оси x (рис.2.7). Так

как по условию положительный и отрицательный заряд распределены симметрично, то ту же по величине напряженность $d\vec{E}_-$, направленную в ту же сторону, создает симметрично расположенный отрицательный заряд -|dq| слева от точки 0.

Используйте условия симметрии в распределении заряда. Достаточно вычислить поле заряда только одного знака. Положительный и отрицательный заряды создадут в точке 0 одинаковые поля:

$$E_{-} = E_{+} = \int dE_{+} = \int \frac{dq}{4\pi\epsilon_{0}x^{2}} = \frac{1}{4\pi\epsilon_{0}} \int_{0}^{a} \left(\rho_{0} \frac{x^{3}}{a^{3}} \right) \frac{dx}{x^{2}} = \frac{1}{4\pi\epsilon_{0}} \frac{\rho_{0}}{a^{3}} \int_{0}^{a} x dx = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{\rho_{0}}{2a} .$$
 Поэтому суммарная напряженность поля,

созданного зарядом на стержне в точке 0 равна $\vec{E}=2\vec{E}_+$, а проекция силы, действующей на заряд q, $F_x=qE_x=
ho_0q/(4\pi\epsilon_0a)=-0,216~{\rm H}$.

Нетрудно сообразить, что потенциалы симметрично расположенных положительного и отрицательного зарядов должны компенсировать друг друга, $\phi_+ = \int \frac{dq}{4\pi\epsilon_0 x} = \frac{1}{4\pi\epsilon_0} \int _0^a \frac{\rho dx}{x} = \frac{1}{4\pi\epsilon_0} \frac{\rho_0}{a^3} \int _0^a x^2 dx = \frac{1}{4\pi\epsilon_0} \cdot \frac{\rho_0}{3} = -\phi_-$. Суммарный потенциал в точке 0 равен нулю.

Решение

При решении подобных задач на полукольце выделяют крошечную дугу длины $dl=Rd\theta$, опирающуюся на бесконечно малый угол $d\theta$ (рис.1.8). На этом участке находится точечный заряд $dq=\rho dl$, создающий в центре 0 полукольца напряженность $dE=\frac{dq}{4\pi\epsilon_0R^2}$. В силу симметрии распределения за-

ряда слева и справа от вертикальной оси y, суммарная напряженность \vec{E} направлена против оси y, т.е. надо суммировать проекции на эту ось: $E = \int dE \sin \theta = \int_0^\pi \frac{1}{4\pi\epsilon_0} \frac{\rho(\theta) \cdot R d\theta}{R^2} \sin \theta = \frac{1}{4\pi\epsilon_0 R} \int_0^\pi \rho_0 \sin^2 \theta \cdot \sin \theta d\theta$.

При решении подобных задач часто встречаются интегралы вида $\int f(\cos\theta)\sin\theta d\theta$ или $\int f(\sin\theta)\cos\theta d\theta$, которые легко привести к простому виду заменой переменной $z=\cos\theta$, $\sin\theta d\theta=-dz$ или $z=\sin\theta$, $\cos\theta d\theta=dz$. При этом $\sin^2\theta=1-\cos^2\theta$.

Делая замену переменной $z=\cos\theta$ в полученном выше интеграле и меняя местами пределы интегрирования, чтобы убрать знак "—", получаем $E=\frac{\rho_0}{4\pi\epsilon_0R}\int\limits_{-1}^{1}\left(1-z^2\right)dz=\frac{1}{4\pi\epsilon_0}\frac{4\rho_0}{3R}$, откуда $F=qE=\frac{1}{4\pi\epsilon_0}\frac{4q\rho_0}{3R}=0,288~\mathrm{H}$ — это сила, действующая на заряд q в точке 0. Потенциал, созданный зарядом полукольца в его центре, вычисляется интегрированием. Так как

$$\int\limits_0^\pi \sin^2\theta \, d\theta = \int\limits_0^\pi \frac{1-\cos 2\theta}{2} \, d\theta = \frac{\pi}{2} \; , \; \text{to} \; \; \phi_0 = \int \frac{dq}{4\pi\epsilon_0 R} = = \int\limits_0^\pi \frac{1}{4\pi\epsilon_0} \frac{\rho \cdot R d\theta}{R} = \frac{1}{4\pi\epsilon_0 R} \int\limits_0^\pi \rho_0 \sin^2\theta d\theta = \frac{\rho_0}{8\epsilon_0 R} = 200 \; \text{kB}$$

20.3. Электрический заряд распределён по тонкому кольцу радиуса R=60 см так, что его линейная плотность меняется с углом θ по закону $\rho=\rho_0/\cos\theta$, где $\rho_0=1,18$ мкКл/м. В центре кольца помещён точечный электрический заряд q, на который заряд кольца действует с силой F=1 H . Найти величину заряда q.

Решение.

Выделяем на кольце крошечный участок дуги $dl=Rd\theta$ с точечным зарядом $dq=\rho dl=\rho Rd\theta$, который создает в центре 0 кольца напряженность $d\vec{E}$

(рис.2.9). Из-за симметрии в распределении заряда и положительный заряд на правой половине кольца, и отрицательный заряд на левой половине создают в точке 0 одинаковые напряженности $\vec{E}_+ = \vec{E}_-$, направленные против оси x. Их сумма (сумма проекций $d\vec{E}$ на ось x) имеет величину

$$E = E_{+} + E_{-} = 2E_{+} = 2\int dE \cdot \cos\theta = 2\int \frac{dq}{4\pi\epsilon_{0}R^{2}}\cos\theta = 2\int_{\theta = -\pi/2}^{\theta = +\pi/2} \frac{\rho R d\theta}{4\pi\epsilon_{0}R^{2}}\cos\theta = \frac{2\rho_{0}}{4\pi\epsilon_{0}R}\int_{-\pi/2}^{+\pi/2} d\theta = \frac{\rho_{0}}{2\epsilon_{0}R}.$$

Примеры задач контрольной работы для самостоятельной подготовки:

20.4. По тонкому стержню длины a=2 м, направленному вдоль оси x, неравномерно распределен отрицательный электрический заряд, линейная плотность которого меняется с координатой x по закону $\rho=\rho_0\cdot(x/a)^3$, где $\rho_0=-2$ мкКл/м. На левом краю стержня, совпадающем с началом координат 0, закреплён положительный точечный заряд q=+2 мкКл (см. рисунок). Найти проекцию на ось x электрической силы, с которой заряд на стержне действует на заряд q, а также потенциал, созданный зарядом на стержне в точке 0. *Ответ*: +9 мН, -6 кВ.

20.5. Тонкий стержень длины a направлен вдоль оси x. По стержню равномерно с линейной плотностью $\rho=0,2$ мкКл/м распределен положительный электрический заряд. На расстоянии a от правого конца стержня на оси x находится точечный заряд q=0,5 мкКл того же знака (см. рисунок). Заряд на стержне действует на заряд q с силой

 $\frac{+ + + + +}{0}$ $\stackrel{q}{a}$ $\stackrel{x}{\stackrel{}{=}}$

F = 0.9 Н. Найти длину a стержня, а также энергию заряда q.

Ответ: 0,5 м, 0,624 Дж.

20.6. Положительный точечный заряд q=7 мкКл находится в центре тонкого полукольца, по которому неравномерно, с линейной плотностью $\rho=\rho_0\cdot\cos\theta$, где $\rho_0=1,77$ мкКл/м, распределен другой электрический заряд (угол θ указан на рисунке). Найти радиус R полукольца, если заряд на нём действует на заряд q с силой, величина проекции которой на ось x равна $|F_x|=0,5$ H.

Ответ: 0,35 м.

20.7. Электрический заряд распределён по тонкому кольцу радиуса R=40 см так, что его линейная плотность меняется с углом θ по закону $\rho=\rho_0\cdot\sin\theta$, где $\rho_0=+2,95$ мкКл/м. В центре кольца помещён другой точечный заряд q=+24 мкКл. Найти величину электрической силы, с которой заряд на кольце действует на заряд q.

Ответ: 5 Н.

20.8. Электрический заряд распределён по тонкому полукольцу радиуса R=50 см с линейной плотностью $\rho=\rho_0\left(\theta/\pi\right)^3$, где $\rho_0=7{,}08$ мкКл/м, а угол θ меняется в пределах $0\leq\theta\leq\pi$. Найти энергию точечного заряда q=6 мкКл, находящийся в центре полукольца.

Ответ: 0,3 Дж.

20.9. Два очень тонких стержня длиной a=20 см каждый направлены вдоль взаимно перпендикулярных осей x и y и соединяются в начале координат 0, в котором закреплён точечный заряд q=2 мкКл (см. рисунок). По стержням неравномерно распределены электрические заряды, линейные плотности которых зависят от координат x и y соответственно: $\rho_1 = \rho_0 \cdot (x/a)^2$, $\rho_2 = \rho_0 \cdot (y/a)^2$, где $\rho_0 = 2$ мкКл/м. Найти величину электрической силы, действующей на заряд q, а также энергию этого заряда.

Ответ: 0,255 Н, 0,036 Дж.

21. Использование теоремы Гаусса для расчета электрических полей

В том случае, когда можно выбрать замкнутую поверхность, которую линии напряженности \vec{E} или линии электрической индукции \vec{D} пересекают под прямым углом, для расчета поля удобно использовать теорему Гаусса: поток вектора \vec{E} через любую замкнутую поверхность равен алгебраической сумме зарядов $\sum q$ (с учетом их знака!), находящихся внутри

этой поверхности, деленной на $εε_0$: $\boxed{\oint_S \vec{E} d\vec{S} = \sum q/εε_0}$. Для вектора \vec{D} такая же теорема имеет вид $\boxed{\oint_S \vec{D} d\vec{S} = \sum q}$.

Используйте теорему Гаусса в том случае, когда заряд распределен симметрично по шару, по длинному цилиндру, по нити или равномерно распределен по плоскости или плоскому слою.

Примеры решения задач:

21.1. По шару радиуса R равномерно с плотностью ρ распределен электрический заряд. На расстояниях $r_1=15$ см и $r_2=60$ см от центра шара величина напряжённости электрического поля, созданного этим зарядом, равна, соответственно, $E_1=24$ В/м и $E_2=12$ В/м. Чему равен радиус шара R, если известно, что $r_1 < R < r_2$? Решение.

Линии \vec{E} начинаются на всех зарядах внутри шара и направлены радиально (рис.2.10). Охватим шар сферической замкнутой поверхностью A с радиусом r > R. Если вектор \vec{E} составляет угол θ с вектором элементарной площадки $d\vec{S}$, то $\vec{E}d\vec{S} = E\cos\theta dS$. В нашей задаче элементы площади $d\vec{S}$ направлены параллельно линиям \vec{E} , а величина E в силу симметрии одинакова во всех точках сферы. Поэтому поток \vec{E} через замкнутую сферу равен произведению E на площадь поверхности сферы $4\pi r^2$, которую линии E пересекают нормально: $\oint \vec{E}d\vec{S} = E\cos 0^\circ \oint dS = E \cdot 4\pi r^2 = \sum q/\epsilon_0$. Сумма зарядов внутри сферы равна заряду шара $\sum q = \rho \cdot V_{\text{шара}} = \rho \cdot 4\pi R^3/3$, и вне шара напряженность $E_{\text{вне}} = \rho R^3/3\epsilon_0 r^2$ совпадает с напряженностью поля заряда, собранного в центр шара.

Рис.2.10

Вторую сферическую поверхность В с радиусом r < R выберем внутри шара. Внутри неё находится заряд заштрихованного на рис.2.10 шара радиуса r: $\sum q = \rho \cdot 4\pi r^3/3$. Применение теоремы Гаусса дает $E \cdot 4\pi r^2 = \sum q/\epsilon_0 = \rho \cdot 4\pi r^3/3\epsilon_0$. Поле внутри шара растет пропорционально расстоянию r: $E_{\rm внутри} = \rho r/3\epsilon_0$ (рис.2.11).

Согласно условию, на расстояниях r_1 и r_2 величины напряженностей различаются в два раза (рис.2.11): $E_1 = \rho r_1/3\varepsilon_0 = 2E_2 = 2\rho R^3/3\varepsilon_0 r_2^2 \text{ , откуда } R = \sqrt[3]{r_1 r_2^2/2} = 30 \text{ см} \text{ .}$

Если плотность заряда является функцией расстояния r, то данное решение не меняется, но сумма зарядов внутри сферы радиуса r вычисляется по формуле $\sum q = \lceil \rho(r) dV = \lceil \rho(r) \cdot 4\pi r^2 dr$.

21.2. По шару радиуса R=50 см из материала с диэлектрической проницаемостью $\varepsilon=2$ распределён электрический заряд, причём объёмная плотность такого заряда меняется с расстоянием r от центра шара по закону $\rho=\rho_0\cdot (r/R)^2$, где $\rho_0=$ const. На расстоянии r=5 см от центра заряд создаёт электрическое поле с величиной напряжённости E=20 В/м. Найти величину ρ_0 .

Решение.

Как и в предыдущей задаче, поток вектора \vec{E} через замкнутую сферическую поверхность радиуса r, находящуюся внутри шара, равен $E \cdot 4\pi r^2 = \sum q/\epsilon_0 \epsilon$ (надо учесть диэлектрическую проницаемость среды). Объем внутри $V = 4\pi r^3/3$,

элемент объема
$$dV = 4\pi r^2 dr$$
 . Заряд внутри поверхности $\sum q = \int \rho dV = \int\limits_0^r \rho_0 \left(\frac{r}{R}\right)^2 \cdot 4\pi r^2 dr = \frac{4\pi \rho_0}{R^2} \int\limits_0^r r^4 dr = \frac{4\pi \rho_0 r^5}{5R^2}$. Так как

$$\epsilon=2$$
 , то $E=rac{
ho_0 r^3}{10\epsilon_0 R^2}$ и $ho_0=rac{10\epsilon_0 \epsilon R^2 E}{r^3}=7,08$ мкКл/м 3 .

21.3. Две очень длинные цилиндрические поверхности с радиусами a=1 м и b=5 м с общей осью О ограничивают равномерно заряженный цилиндрический слой. Плотность электрического заряда в нём $\rho=4$ мКл/м³. Найти величину вектора электрической индукции D (вектора смещения) на расстоянии r=4 м от оси O.

Решение.

Рассмотрим вначале равномерно заряженный с плотностью ρ =const сплошной цилиндр. Окружим его соосной цилиндрической

поверхностью А длины l и большего радиуса r > R. Как и линии \vec{E} , линии индукции \vec{D} направлены по радиусам к общей оси 0 и пересекают боковую поверхность $S_{\text{бок}} = 2\pi r l$ нормально (рис.2.13). Внутри этой поверхности находится заряд из вырезанного поверхностью участка заряженного цилиндра $\sum q = \rho \cdot V_{\text{пилиндра}} = \rho \cdot \pi R^2 l$. Согласно теореме Гаусса

$$\oint \vec{D} d\vec{S} = D \cdot 2\pi r l = \sum q$$
 . Поэтому вне цилиндра $\, D_{\rm BHe} = \rho R^2 \big/ 2r$.

Цилиндрическая поверхность В меньшего радиуса r < R, охватывает заштрихованный на рис.2.13 участок цилиндра с зарядом $\sum q = \rho \cdot \pi r^2 l$. Теорема Гаусса для этой поверхности дает $D \cdot 2\pi r l = \sum q = \rho \pi r^2 l$ Поэтому внутри цилиндра $D_{\text{внутри}} = \rho r/2$.

В нашей задаче проводим замкнутую цилиндрическую поверхность радиуса r < b и длины l внутри цилиндрического слоя. Она охватывает заштрихованный на рис.2.12 участок с объемом $V = \pi r^2 l - \pi a^2 l$, имеющий заряд $\sum q = \rho V$. Теорема Гаусса позволяет просто определить индукцию D на этой поверхности: $D = \frac{\sum q}{2\pi r l} = \rho \left(r^2 - a^2\right) / 2r = 7,5$ мКл/м 2 .

21.4. Поверхностная плотность электрического заряда, равномерно распределенного по бесконечно длинной цилиндрической поверхности радиуса R=30 см, равна $\sigma=-2$ мкКл/м². По её оси протянута нить, равномерно заряженная с линейной плотностью $\lambda=4$ мкКл/м. На каком удалении г от оси напряженность электрического поля, созданного этими зарядами будет равна E=1 кВ/м?

Решение

Как и на рис.1.13, охватим эту систему зарядов замкнутой цилиндрической поверхностью длины l и радиуса r > R. Она охватывает участок цилиндра с зарядом $q_{\rm II} = \sigma \cdot 2\pi R l$ и участок нити с зарядом $q_{\rm II} = \lambda \cdot l$. Линии \vec{E} расходятся вдоль радиусов и перпендикулярны к выбранной поверхности. Согласно теореме Гаусса

$$E\cdot 2\pi r l = \sum q/arepsilon_0 = \left(q_{\mathrm{II}} + q_{\mathrm{H}}
ight) / arepsilon_0$$
 , откуда $r = \frac{2\pi R \sigma + \lambda}{2\pi arepsilon_0 E} = 4,14$ м .

При r < R поле создает только заряд нити. Одна нить создаёт слишком большое поле $E_{\text{нити}} = \frac{\lambda}{2\pi\epsilon_0 r}$, не удовлетворяющее условиям задачи.

21.5. На удалении z=1 м от бесконечного плоского слоя, заряженного равномерно с плотностью заряда $\rho=5$ мкКл/м³, находится точечный заряд q=4 мкКл. Чему равна толщина слоя h, если он действует на заряд q с электрической силой F=0.02 H?

Решение

И в случае равномерно заряженного с плотностью ρ слоя (рис.2.14,а), и в случае равномерно заряженной с поверхностной плотностью σ плоскости (рис.2.14,б), линии напряженности \vec{E} выходят нормально и пересекают только имеющие площадь S основания цилиндрической замкнутой поверхности, охватывающей заряды на заштрихованных участках. По теореме Гаусса поток \vec{E} через эту поверхность $\oint \vec{E} d\vec{S} = E \cdot 2S = \sum q/\epsilon_0 \epsilon$. Сумма зарядов на заштрихованных участках $\sum q = \rho \cdot hS$ для

слоя и
$$\sum q = \mathbf{\sigma} \cdot S$$
 для плоскости. Поэтому $E_{\text{слоя}} = \frac{\rho h}{2\varepsilon_0 \varepsilon}$ (рис.1.14,а) и $E_{\text{плоскости}} = \frac{\mathbf{\sigma}}{2\varepsilon_0 \varepsilon}$ (рис.1.14,б).

Величина E не зависит от расстояния до бесконечного слоя (или плоскости). Действующая на заряд q сила F=qE, и по условиям задачи ($\epsilon=1$) толщина слоя $h=2\epsilon_0 F/q\rho=1,77$ см.

Примеры задач контрольной работы для самостоятельной подготовки:

21.6. Заряд с плотностью $\rho = 3.75$ мКл/м³ равномерно распределён по шаровому слою, ограниченному двумя сферическими поверхностями с общим центром О и с радиусами a и b. Чему равен радиус a, если b = 9 м, а на расстоянии r = 5 м от центра О величина вектора электрической индукции поля, созданного этим зарядом, равна D = 6.2 мКл/м²?

Ответ: 1 м.

21.7. Очень длинный цилиндр радиуса R=4 см равномерно с плотностью $\rho=$ const заряжен по объёму. На расстоянии $r_1=3$ см от оси цилиндра напряжённость электрического поля, имеет величину $E_1=24$ В/м, а на расстоянии $r_2>r_1$ от оси $E_2=16$ В/м. Найти расстояние r_2 .

Ответ: 8 см.

- **21.8.** По двум параллельным бесконечным плоскостям равномерно распределены электрические заряды с поверхностными плотностями $\sigma_1 = +8$ мкКл/м² и $\sigma_2 = -4$ мкКл/м² разного знака. Во сколько раз величина вектора электрической индукции D между заряженными плоскостями больше величины вектора D слева от обеих плоскостей? *Ответ*: в 3 раза.
- **21.9.** Электрический заряд разного знака, равномерно распределён по двум бесконечно длинным цилиндрическим поверхностям с общей осью, которые имеют радиусы a=5 см и b=10 см. Поверхностные плотности таких зарядов $\sigma_1=-5.9$ нКл/м 2 и $\sigma_2=+4.72$ нКл/м 2 . Чему равна величина точечного заряда q, находящегося на расстоянии r=20 см от оси, если со стороны заряженных поверхностей на него действует электрическая сила F=3 мН?

Ответ: 30 мкКл.

21.10. Электрический заряд распределён в пространстве неравномерно: его плотность изменяется с расстоянием r от центра О по закону: $\rho = \begin{cases} \rho_0 \cdot (R/r)^3 \text{ при } r \geq R; \\ 0 \text{ при } r < R, \end{cases}$ где $\rho_0 = 2,36 \text{ нКл/м}^3; R = 50 \text{ см. Найти величину напряжённости электрического поля, созданного этим зарядом на расстоянии <math>r = 1 \text{ м}$ от центра O. $\varepsilon = 1$.

21.11. Электрический заряд распределён по объёму бесконечно длинного цилиндра радиуса R=20 см. Плотность заряда меняется с расстоянием r от оси цилиндра по закону $\rho=\rho_0\cdot (r/R)^2$, где $\rho_0=8$ мКл/м 3 . На каком расстоянии r от оси (внутри цилиндра) величина вектора электрической индукции равна D=3,2 мкКл/м 2 ?

Ответ: 4 см.

22. Потенциал и энергия электрического поля. Конденсаторы

При решении задач проще использовать дифференциальные операторы (производные). Например, напряженность поля можно определить, зная его потенциал: $\vec{E} = -\mathrm{grad}\,\phi \equiv -\vec{i}\,\frac{\partial\phi}{\partial x} - \vec{j}\,\frac{\partial\phi}{\partial y} - \vec{k}\,\frac{\partial\phi}{\partial z}$.

Зная напряженность, вычисляют плотность заряда, создающего электрическое поле:

$$\rho = \varepsilon_0 \varepsilon \operatorname{div} \vec{E} \equiv \varepsilon_0 \varepsilon \left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial x} + \frac{\partial E_z}{\partial z} \right).$$

Примеры решения задач:

22.1. Потенциал электростатического поля зависит от координат по закону $\phi = \phi_0 \cdot (\sin(\alpha x) + \sin(\beta y) + \sin(\gamma z))$, где $\phi_0 = 100$ B, $\alpha = \beta = \gamma = \pi/2$ рад/м. Найти плотности ρ электрического заряда в той точке, в которой потенциал поля равен $\phi = 100$ B, а также величину напряженности в точке x = y = z = 2 м. Диэлектрическая проницаемость среды $\varepsilon = 1$.

Решение.

Находим проекции вектора \vec{E} : $E_x = -\partial \phi/\partial x = -\alpha \phi_0 \cos(\alpha x)$;

 $E_{_{Y}}=-\partial\phi/\partial y=-\beta\phi_{0}\cos\left(\beta y\right); \quad E_{_{Z}}=-\partial\phi/\partial z=-\gamma\phi_{0}\cos\left(\gamma z\right).$ Плотность заряда пропорциональна дивергенции этого вектора и, так как $\alpha = \beta = \gamma$, во всех точках пропорциональна потенциалу:

$$\rho = \varepsilon_0 \left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial x} + \frac{\partial E_z}{\partial z} \right) = \varepsilon_0 \left(\alpha^2 \phi_0 \sin(\alpha x) + \beta^2 \phi_0 \sin(\beta y) + \gamma^2 \phi_0 \sin(\gamma z) \right) = \varepsilon_0 \alpha^2 \phi = 2,18 \text{ HK}_{\text{Л/M}}^3.$$

Величина напряженности:
$$E = \sqrt{E_x^2 + E_y^2 + E_z^2} = \sqrt{\left(\alpha^2 + \beta^2 + \gamma^2\right)\phi_0^2\cos^2\pi} = \sqrt{3}\alpha\phi_0 = 544$$
 В/м .

Работу по перемещению частицы с зарядом q из точки 1 в точку 2 в электростатическом поле можно вычислить с помощью силы Кулона: $A = \int_1^2 \vec{F} d\vec{r} = \int_1^2 q \vec{E} d\vec{r}$. Но проще найти её с помощью потенциала. Эта работа идет на изменение ки-

нетической энергии заряженной частицы:
$$A = q\left(\phi_{1} - \phi_{2}\right) = \frac{m v_{2}^{2}}{2} - \frac{m v_{1}^{2}}{2}.$$

Примеры решения задач:

22.2. Бесконечная прямая нить равномерно заряжена с линейной плотностью $\rho_{\pi} = 2$ мкКл/м. Покоившаяся первоначально на расстоянии $r_1 = 1$ м от нити частица с зарядом q = 5 мкКл и с массой m = 0,8 г удаляется от нити под действием электрической силы. На каком расстоянии r_2 от нити частица будет $\rho_{\rm N} = 0$ нити иметь скорость v = 30 м/с?

Решение.

Напряженности поля заряженного шара, плоскости, нити можно получить с помощью теоремы Гаусса.

В данной задаче напряженность поля нити $E_{\text{нити}} = \frac{\rho_{\text{л}}}{2\pi\epsilon_{\text{o}}r}$ (см. задачу 21.4). Поэтому

$$\frac{m \text{v}^2}{2} = A_{1 \to 2} = \int\limits_{r_1}^{r_2} qE dr = \frac{q \rho_{\pi}}{2\pi \epsilon_0} \int\limits_{r_1}^{r_2} \frac{dr}{r} = \frac{q \rho_{\pi}}{2\pi \epsilon_0} \ln \left(\frac{r_2}{r_1}\right).$$
 Избавиться от логарифма можно вычислив экспоненту от обеих частей

уравнения:
$$\exp\ln\left(\frac{r_2}{r_1}\right) \equiv \frac{r_2}{r_1} = \exp\left(\frac{\pi \epsilon_0 m \mathrm{v}^2}{q \rho_{\scriptscriptstyle \Pi}}\right)$$
, откуда $r_2 = 7,40$ м.

Плотность энергии электрического поля (или энергия единицы объема поля) $\boxed{\mathbf{w}_{\text{эл}} = \epsilon \epsilon_0 E^2/2}$. Энергия поля в объема ме V вычисляется как $|W = \int W_{3n} dV|$.

Примеры решения задач:

22.3. Диэлектрик с диэлектрической проницаемостью $\varepsilon = 4$ заполняет все пространство вокруг заряженного металлического шара радиуса R=3 см. Чему равна величина заряда q на шаре, если энергия созданного им электрического поля равна W = 60 Дж.

Внутри металлического шара поле отсутствует, а вне шара совпадает с полем точечного заряда, собранного в центр шара: $E=q/\left(4\pi\epsilon_0\epsilon r^2\right)$, при $r\geq R$. Поэтому энергия поля вне шара

$$W = \int \frac{\varepsilon \varepsilon_0 E^2}{2} \, dV = \int\limits_R^\infty \frac{\varepsilon \varepsilon_0}{2} \left(\frac{q}{4\pi \varepsilon \varepsilon_0 r^2}\right)^2 4\pi r^2 dr = \frac{q^2}{8\pi \varepsilon \varepsilon_0} \int\limits_R^\infty \frac{dr}{r^2} = \frac{q^2}{8\pi \varepsilon \varepsilon_0} \cdot \frac{1}{R} \,. \text{ Отсюда } q = \sqrt{8\pi \varepsilon \varepsilon_0 WR} = 40 \text{ мкКл} \,.$$

Вместо энергии поля иногда проще найти энергию системы зарядов, создающих данное поле. Эти энергии одинаковы.

Энергия заряда выражается через емкость проводника C и его потенциал φ : $W = C\varphi^2/2$, где $q = C\varphi$. Емкость уединенного шара $C_{\mathrm{mapa}} = 4\pi\epsilon\epsilon_0 R$, его потенциал $\phi = q/(4\pi\epsilon\epsilon_0 R)$. Подставляя, получаем уже найденную формулу

для энергии W.

Заряд q и емкость C конденсатора связаны с разностью потенциалов $U = \Delta \phi$ на его обкладках: |q = CU|. Энергия заряженного конденсатора $W = \frac{1}{2}qU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{q^2}{C}$. Емкость вычисляют, с помощью формулы, связывающей напряженность и потенциал поля: $\left| \phi_1 - \phi_2 = \int_1^2 \vec{E} d\vec{r} \right|$.

В плоском конденсаторе (рис.2.15,а) с площадью пластин S, расстоянием между пластинами d, заполненном диэлектриком с проницаемостью ϵ , напряженность поля между пластинами $|E_{\text{конл}} = \sigma/\epsilon \varepsilon_0|$, где $\sigma = q/S$ - поверхностная плотность заряда. Разность потенциалов на пластинах $U = \varphi_1 - \varphi_2 = \int_0^d E_{\text{конд}} dx = \frac{\sigma}{\varepsilon \varepsilon_0} d = \frac{qd}{\varepsilon \varepsilon_0 S}$. Ёмкость плоского конденсатора $\left| C_{\text{плоск}} = \frac{q}{U} = \frac{\varepsilon \varepsilon_0 S}{d} \right|$.

В сферическом конденсаторе (рис.2.15,б) пространство между металлическими сферами с радиусами r_1 и r_2 заполнено диэлектриком с $\varepsilon = \mathrm{const}$. Поле между ними создано

зарядом q на внутренней сфере: $E = \frac{q}{4\pi\epsilon\epsilon_0 r^2}$. Тогда $U = \varphi_1 - \varphi_2 = \int\limits_{r}^{r_2} \frac{q}{4\pi\epsilon\epsilon_0 r^2} dr = \frac{q}{4\pi\epsilon\epsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{q}{C}$. Ёмкость сферического конденсатора $C_{\text{cdep}} = 4\pi \epsilon \epsilon_0 r_1 r_2 / (r_2 - r_1)$.

Аналогичным вычислением покажите, что емкость цилиндрического конденсатора (две соосные цилиндрические поверхности с радиусами r_1 и r_2 большой длины l, рис.2.15,в) равна $C_{\text{цилин}} = \frac{2\pi\epsilon\epsilon_0 l}{\ln\left(r_2/r_1\right)}$.

Примеры решения задач:

22.4. Заряженный плоский конденсатор заполнен твердым диэлектриком и имеет энергию W = 0,2 Дж. Расстояние между его пластинами d=2 мм. Найти силу, притягивающую одну пластину к другой.

На пластину с зарядом q может действовать только заряд другой пластины (рис.2.15,a), создающий поле $E = \sigma/(2\epsilon\epsilon_0)$ (поле заряженной плоскости). Заряд конденсатора можно выразить через его энергию: $q^2 = 2CW = 2W \epsilon\epsilon_0 S/d$. Подставляя этот результат в формулу для силы $F = qE = q\sigma/(2\varepsilon\epsilon_0) = q^2/(2\varepsilon\epsilon_0 S)$, получаем F = W/d = 100 H.

22.5. Пространство между заряженным металлическим шаром радиуса $r_1 = 2$ см и металлической заземленной сферой с радиусом $r_2 = 4$ см заполнено неоднородным диэлектриком, диэлектрическая проницаемость которого меняется с расстоянием r от общего центра O по закону $\varepsilon = \alpha/r$, где $\alpha = 6$ см. Найти заряд q шара, если энергия такой системы заряженных проводников равна $W = 0.2~\mathrm{Дж}$.

На внутренней поверхности заземленной сферы окажется заряд -q, на котором будут заканчиваться все силовые линии \vec{E} , не проникая в металл. Система будет сферическим конденсатором, для которого разность потенциа-

лов
$$U = \varphi_1 - \varphi_2 = \int\limits_{r_1}^{r_2} \frac{q}{4\pi\epsilon\epsilon_0 r^2} dr = \frac{q}{4\pi\alpha\epsilon_0} \int\limits_{r_1}^{r_2} \frac{dr}{r} = \frac{q}{4\pi\alpha\epsilon_0} \ln\!\left(\frac{r_2}{r_1}\right).$$

Его энергия,
$$W = \frac{qU}{2} = \frac{q^2}{8\pi\alpha\epsilon_0} \ln\left(\frac{r_2}{r_1}\right)$$
, и $q = \sqrt{\frac{8\pi\alpha\epsilon_0 W}{\ln\left(r_2/r_1\right)}} = 1,96$ мкКл .

Ёмкость этого конденсатора не совпадает с ёмкостью конденсатора, заполненного однородным диэлектриком.

Примеры задач контрольной работы для самостоятельной подготовки:

22.6. Потенциал электростатического поля зависит от координат по закону $\varphi = \alpha \cdot xyz$, где $\alpha = \text{const.}$ Величина напряженности такого поля в точке с координатами $x_1 = y_1 = z_1 = 1$ м равна $E_1 = 30$ В/м. Найти величину напряжённости этого поля в точке с координатами $x_2 = 1$ м, $y_2 = 2$ м, $z_2 = 3$ м.

Ответ: 121 В/м.

22.7. Потенциал электростатического поля зависит от координат x, y по закону $\varphi = \varphi_0 \cdot (\sin(\alpha x) + \cos(\beta y))$, где $\varphi_0 = 100$ B, $\alpha = 2$ рад/м, $\beta = 3$ рад/м. Найти величину напряженности поля, а также плотность электрического заряда в точке с координатами x = y = 1 м.

Ответ: 93,4 В/м, -4.67 нКл/м^3 .

22.8. Частица с зарядом q=3 мкКл и с массой m=0,2 г покоилась на расстоянии $z_1=1$ см от очень большой плоской поверхности металла, по которой с поверхностной плотностью $\sigma = 3.54 \text{ нКл/м}^2$ распределен электрический заряд того же знака. Какую скорость приобретёт частица, удалившись на расстояние $z_2 = 4$ см от поверхности металла под действием электрической силы.

Ответ: 0,6 м/с.

- **22.9.** Заряженный плоский конденсатор, имеющий энергию W = 0,004 Дж, заполнен диэлектриком и отключен от источника напряжения. Чтобы вынуть диэлектрик, надо совершить работу $A = 0{,}003$ Дж. Чему равна диэлектрическая прони-Ответ: 1,75. цаемость диэлектрика?
- **22.10.** Расстояние между горизонтально расположенными пластинами плоского воздушного конденсатора d=1 см. Между пластин неподвижно висит заряженная пылинка с массой m = 0.05 г. Ёмкость конденсатора C = 0.03 мкФ, заряд на его пластинах q = 6 мкКл. Найти величину заряда пылинки. Принять g = 10 м/с².

Ответ: 3.30 м.

22.11. Однородная среда с диэлектрической проницаемостью $\varepsilon = 4$ заполняет пространство между металлическим шаром и заземленной металлической сферой радиуса $r_2 = 8$ м. На шар помещен заряд q == 6 мкКл, а потенциал электростатического поля в общем центре О шара и сферы имеет величину $\phi_0 =$ = 2,4 кВ. Чему равен радиус r_1 шара?

22.12. Металлический шар радиуса $r_1 = 2$ см и заземленная металлическая сфера радиуса $r_2 = 3$ см

имеют общий центр О. Диэлектрическая проницаемость непроводящей среды, заполняющей пространство между шаром и сферой, убывает с расстоянием r от центра O по закону $\varepsilon = a/r$, где a = 4 см. Найти ёмкость такой системы проводников (в пФ). Ответ: 11,0 пФ

22.13. Металлический шар с зарядом q = 4 мкКл окружен заземленной металлической сферой радиуса $r_2 = 5$ см. Между ними находится диэлектрик, диэлектрическая проницаемость которого убывает с расстоянием r от общего центра О по закону $\varepsilon = b/r^3$, где b = 150 см³. Энергия этой системы заряженных проводников равна W = 0.36 Дж. Найти радиус шара r_1 . Ответ: 3,16 см.

23. Законы квазистационарного тока

Ток, протекающий по участку цепи с сопротивлением R, создает на нем падение напряжения $\overline{U = IR}$. Мощность тока $|P = UI = I^2 R|$, а величина силы тока зависит от величины заряда, протекшего через сечение проводника за единицу времени: I = dq/dt.

Если ток зависит от времени, не используйте школьные формулы, записанные для постоянного тока!

Величина заряда, протекшего по цепи за время $0 \le t \le \tau$ будет равна $|q = \int I(t) dt|$, а величина выделившегося за это

время тепла $Q = \int I^2(t) R dt$

Примеры решения задач:

23.1. Ток, текущий по проводнику, возрастает прямо пропорционально времени t: $I = \alpha \cdot t$, где $\alpha = \text{const.}$ Чему равно сопротивление R проводника, если за промежуток времени $0 \le t \le \tau$, где $\tau = 4$ с, через поперечное сечение проводника протекает заряд q = 5 Кл, а в проводнике выделяется джоулево тепло O = 80 Дж?

Решение. Так как
$$q = \int_{0}^{\tau} I dt = \int_{0}^{\tau} \alpha t dt = \frac{\alpha \tau^{2}}{2}$$
; $Q = \int_{0}^{\tau} I^{2} R dt = \int_{0}^{\tau} \alpha^{2} t^{2} R dt = \frac{\alpha^{2} \tau^{3} R}{3}$, то $\frac{q^{2}}{Q} = \frac{3\tau}{4R}$ (исключили неизвестную α). Поэтому

$$R = \frac{3\tau Q}{4q^2} = 9,6 \text{ Om}.$$

Если зависимость силы тока от времени задана с помощью графика (в задачах обычно задана линейная зависимость), то е \ddot{e} надо выразить линейной функцией: I = a + bt. Параметры a и b этой зависимости определяют подстановкой числовых данных на осях графика.

Надо помнить, что интеграл равен площади под графиком подынтегральной функции. Например, протекший за время т заряд будет равен заштрихованной площади под графиком тока.

23.2. По проводнику с сопротивлением R = 2 Ом течёт ток, величина которого за интервал времени $0 \le t \le t_2 = 3$ с меняется по линейному закону от $I_1 = 2$ А до $I_2 = 5$ А (см. рисунок). Чему равно тепло Q, которое выделится в проводнике за указанный интервал времени $0 \le t \le t_2$ с, а также заряд q, который протечет по проводнику за это время?

Решение.

Так как I=a+bt , то при t=0 имеем $I_1=a$, а при $t=t_2$ $I_2=a+bt_2$. Отсюда $b=\left(I_2-I_1\right)/t_2=1$ А/с ; $a=I_1=2$ А .

Поэтому
$$Q = \int I^2 R dt = \int \left(a + bt\right)^2 R dt = R \left(a^2 \int\limits_0^{t_2} dt + 2ab \int\limits_0^{t_2} t dt + b^2 \int\limits_0^{t_2} t^2 dt\right) = R \left(a^2 t_2 + ab t_2^2 + b^2 t_2^3 / 3\right) = 78$$
 Дж.

Протекший заряд $q=\int Idt\,$ равен площади под графиком тока: $q=\frac{1}{2}\big(I_1+I_2\big)t_2=10,5\,$ Кл .

В случае, когда к источнику тока с **постоянной** ЭДС ϵ подключается внешняя нагрузка с сопротивлением $R_{\rm H}$, по цепи протекает постоянный ток $I = \epsilon/(R_{\rm H} + r)$. Помните, что у каждого источника тока имеется внутреннее сопротивление r. В этом случае за время Δt на нагрузке выделяется тепло $Q = I^2 R \Delta t$.

Примеры решения задач:

23.3. К клеммам источника постоянного тока с внутренним сопротивлением r=40 Ом сначала подключали нагрузку из двух одинаковых сопротивлений $R_1=R_2=R$, соединенных параллельно (рис.1), а потом соединённых последовательно (рис.2). В цепи на рис.1 за одну минуту на нагрузке выделялось тепло $Q_1=3,6$ кДж, а в цепи на рис.2 за то же время на нагрузке выделялось тепло $Q_2=2,5$ кДж. Чему равно каждое из сопротивлений R_1 или R_2 ? Какой заряд протекает через нагрузку в обоих случаях?

Решение.

При параллельном соединении резисторов сопротивление нагрузки равно $R_{\rm H1} = R_1 R_2 / (R_1 + R_2) = R/2$, а при после-

довательном —
$$R_{\mathrm{H2}} = R_{\mathrm{l}} + R_{\mathrm{2}} = 2R$$
 . Поэтому $Q_{\mathrm{l}} = I_{\mathrm{l}}^2 R_{\mathrm{H1}} \Delta t = \left(\frac{\varepsilon}{r + R/2}\right)^2 \frac{R}{2} \Delta t$; $Q_{\mathrm{2}} = I_{\mathrm{2}}^2 R_{\mathrm{H2}} \Delta t = \left(\frac{\varepsilon}{r + 2R}\right)^2 2R \Delta t$.

Отсюда
$$\frac{Q_1}{Q_2} = \frac{36}{25} = \frac{\left(r + 2R\right)^2}{4\left(r + R/2\right)^2}$$
, или $\frac{r + 2R}{r + R/2} = \frac{12}{5}$ и $R = \frac{7r}{4} = 70$ Ом.

Зная сопротивления, можно вычислить величину ЭДС, величину токов $I_1=\sqrt{2Q_1/R\Delta t}$; $I_2=\sqrt{Q_2/2R\Delta t}$, а также определить протекший за время Δt заряд: $q_1=I_1\Delta t=\sqrt{\frac{2Q_1\Delta t}{R}}=111$ Кл ; $q_2=I_2\Delta t=\sqrt{\frac{Q_2\Delta t}{2R}}=46,3$ Кл .

Если в условии задачи приведены удельное сопротивление проводника ρ или его удельная проводимость $\sigma = 1/\rho$, то можно использовать закон Ома в локальной форме: $|\vec{j} = \sigma \vec{E}|$.

Здесь \bar{E} - напряженность стороннего электрического поля, создающего ток, а j=dI/dS - плотность тока, текущего через поперечное сечение S проводника, которое может иметь произвольную форму (рис.2.16). Величина силы тока, текущего по проводнику $I = \int jdS$. Если плотность тока во всех точках сечения S одинакова, то I=jS, а падение напряжения на проводнике длины l равно $\phi_1 - \phi_2 = \int Edl = U = El$.

Подстановкой j и E из закона Ома в локальной форме легко получить обычную запись закона Ома U = IR, где сопротивление участка однородного проводника $R = \rho l/S = l/\sigma S$.

Примеры решения задач:

23.4. Когда проволока длины l_1 была подключена к источнику постоянного напряжения U, в ней каждую минуту выделялось джоулево тепло $Q_1 = 729$ Дж. Затем эту проволоку растянули до длины l_2 и подключили к тому же источнику напряжения U. Теперь каждую минуту в проволоке начало выделяться тепло $Q_2 = 625$ Дж. Во сколько раз была увеличена длина проволоки?

Решение

Текущий по проволоке ток I = U/R постоянен. Меняется сопротивление $R_1 = \rho l_1/S_1 \to R_2 = \rho l_2/S_2$, где S –сечение проволоки, уменьшающееся при её растяжении. Поэтому

$$\frac{Q_1}{Q_2} = \frac{U^2}{R_1} \Delta t / \frac{U^2}{R_2} \Delta t = \frac{R_2}{R_1} = \frac{l_2 S_1}{l_1 S_2}.$$

При растяжении не меняется объём проволоки $V=l_1S_1=l_2S_2$. Отсюда $\frac{S_1}{S_2}=\frac{l_2}{l_1}$ и $\frac{Q_1}{Q_2}=\left(\frac{l_2}{l_1}\right)^2$. Длина проволоки меняется в $l_2/l_1=\sqrt{Q_1/Q_2}=1{,}08$ раз.

23.5. Напряженность электрического поля внутри цилиндрического проводника с радиусом $r_0 = 4$ мм направлена вдоль его оси и во всех точках равна E = 0.5 мB/м. Удельная проводимость материала проводника возрастает с расстоянием rот оси проводника по закону $\sigma = \sigma_0 (r/r_0)^2$, где $\sigma_0 = 5.10^7 (\text{Ом·м})^{-1}$. Найти силу тока *I*, текущего по проводнику.

Выражая ток через его плотность $I = \int jdS$, где $dS = d\left(\pi r^2\right) = 2\pi r dr$, и используя закон Ома в локальной форме $j = \sigma E$,

получаем
$$I = \int\limits_0^{r_0} \sigma E \cdot 2\pi r dr = \frac{2\pi\sigma_0 E}{r_0^2} \int\limits_0^{r_0} r^3 dr = \frac{2\pi\sigma_0 E}{r_0^2} \cdot \frac{r_0^4}{4} = \frac{\pi\sigma_0 E r_0^2}{2} = 0,628 \; \mathrm{A} \; .$$

Примеры задач контрольной работы для самостоятельной подготовки:

23.6. По проводнику течёт ток, величина которого меняется со временем t, как показано на рисунке, где $I_0 = 0.6 \text{ A}, \tau = 3 \text{ c}$. Заряд какой величины q протечет через сечение проводника за интервал времени $0 \le t \le 2\tau$? Ответ: 1,8 Кл.

23.7. В начальный момент t = 0 по проводнику с сопротивлением R = 8 Ом начинает течь ток, причем величина протекшего через поперечное сечение проводника заряда q линейно растёт со временем t (см. рисунок). Найти величину заряда q_0 протекшего к моменту времени $\tau = 3$ с, если за промежуток времени $0 \le t \le \tau$ в проводнике выделится джоулево тепло $Q = 24 \, \text{Дж}$?

Ответ: 3 Кл.

23.8. Падение напряжения на участке проводника с сопротивлением R = 24 Ом вначале линейно возрастает со временем t, а потом постоянно и равно $U_0 = 12 \text{ B}$ (см. рисунок, где $\tau = 1$ мин). Какое джоулево тепло выделится в проводнике за промежуток времени $0 \le t \le 2\tau$?

Ответ: 480 Дж.

23.9. К клеммам источника постоянного тока подключена нагрузка с сопротивлением R = 30 Ом. За какой промежуток времени Δt в нагрузке выделится джоулево тепло Q = 15 Дж, если за это же время по цепи протечёт заряд q = 5 Кл? Ответ: 50 с.

23.10. Вначале сопротивление реостата, подключенного к источнику постоянного тока с эдс $\varepsilon = 36 \text{ B}$, было равно $R_1 = 100$ Ом. Движком реостата увеличили его сопротивление в 4 раза, и при этом падение напряжения на нем в возросло в k = 1.5 раз. Какое джоулево тепло стало после этого выделяться на реостате каждую секунду?

Ответ: 2,25 Дж. **23.11.** Два одинаковых резистора с сопротивлением R = 8 Ом каждый подключены к источнику постоянного тока сначала последовательно (рис.І), а потом параллельно (рис.ІІ). Во втором случае

23.12. Найти удельную проводимость σ однородного материала, из которого изготовлен цилиндрический проводник радиуса r_0 = 5 мм, если во всех точках проводника напряженность стороннего электрического поля равна E = 0.004 B/м, а по проводнику течет ток I = 10 A.

Ответ:
$$3,18 \cdot 10^7 (\text{Ом·м})^{-1}$$
.

23.13. Однородный проводник с удельным сопротивлением $\rho = 5 \cdot 10^{-6}$ Ом·м имеет поперечное сечение в форме квадрата со стороной a = 5 мм. Величина напряженности квазистационарного стороннего электрического поля, направленного вдоль проводника, меняется со временем t по линейному закону: E = At + B, где A = 5 В/м. Какой заряд протечет через поперечное сечение проводника за промежуток времени $0 \le t \le 2$ с?

Ответ: 80 Кл.

24. Разветвленные электрические цепи и правила Кирхгофа

При решении задач с разветвленными цепями делайте следующие действия, которые автоматически приведут Вас к правильному решению (для примера показана схема на рис.2.17).

1) Аккуратно нарисуйте схему разветвленной цепи и жирными точками обозначьте все узлы – точки, где соединяются три и более проводника (точки A, B, D, E на рис.2.17);

2) **Рядом** с каждым источником ЭДС ε_i поставьте его внутреннее сопротивление r_i . На каждом источнике обозначьте стрелку =>, выходящую из его плюсовой клеммы. Эта стрелка показывает направление тока I_i , создаваемое источником \mathcal{E}_i в неразветвленной цепи:

3) В каждой ветви - участке цепи между двумя узлами - стрелкой обозначьте направление текущего тока. На рис.2.17 видно 6 ветвей и 6 токов $I_1 - I_6$. Старайтесь проставить индексы токов

такими же, как индексы сопротивлений, по которым они текут. Вдоль одной ветви ток не дол-

жен менять ни величину, ни направление, как показано для тока I_1 . Не думайте в какую сторону действительно течет ток. Если Вы ошиблись с направлением, то в ответе получите этот ток с правильной величиной, но со знаком "минус".

4) Для каждого узла можно записать первое правило Кирхгофа: $\sum I_i = 0$: токи, входящие в узел записывайте со знаком"+", а выходящие — со знаком "-". Число токов равно числу проводников, соединяющихся в узле:

$$I_1+I_2-I_3=0$$
 для узла A; $I_3+I_6-I_4=0$ для узла B; $I_4-I_2-I_5=0$ для узла D и.т.п.

5) Выберите направление обхода (по часовой стрелке на рис 2.17) и запишите второе правило Кирхгофа для любого замкнутого контура цепи: $\sum U_i = \sum I_i R_i = \sum \epsilon_i$ (алгебраическая сумма падений напряжения в замкнутом контуре равна алгебраиче-

ской сумме ЭДС в этом же замкнутом контуре). В цепи на рис.2.17 имеется семь разных замкнутых контуров (рис.2.18).

Если выбранное направление стрелки тока совпадает с направлением обхода, то этот ток в сумме берется со знаком "+", если не совпадает – со знаком "-". Если стрелка ЭДС => совпадает с направлением обхода, то эта ЭДС входит в сумму со знаком "+", если не совпадает – со знаком "-". Менять направление уже

поставленных стрелок нельзя. Идите по направлению обхода и записывайте падения напряжения только для тех сопротивлений, которые Вы встретите в выбранном контуре. Пройдя по контуру второй раз, запишите все встреченные ЭДС с соответствующими знаками:

$$I_1R_6 + I_1r_6 + I_1R_1 + I_1r_1 - I_2R_2 - I_2r_2 + I_5R_5 + I_5r_5 = \varepsilon_1 + \varepsilon_2 - \varepsilon_5 - \varepsilon_6$$

(для контура 1 на рис.2.18);

$$I_1R_6 + I_1r_6 + I_1R_1 + I_1r_1 - I_2R_2 - I_2r_2 - I_4R_4 - I_6r_4 = \varepsilon_1 + \varepsilon_2 + \varepsilon_4 - \varepsilon_6$$

(для контура 6 на рис.2.18) и.т.п.

6) Число возможных уравнений (1-е правило Кирхгофа для 4 узлов и

2-е правило для 7 контуров в цепи на рис.2.17) превышает число неизвестных токов $I_1 - I_6$. Эти уравнения будут линейно зависимыми.

Линейно независимыми для цепи с N узлами будут уравнения 1-го правила Кирхгофа для любых N-1 узлов и уравнения 2-го правила Кирхгофа для самых маленьких контуров, пустых внутри.

Для цепи на рис.2.17 это, например, узлы A, B и D, и контуры 2, 3 и 4 (см. рис. 2.18). Остается без ошибок решить записанную систему линейных уравнений.

Как правило, в задаче контрольной работы надо рассчитать цепь с двумя узлами. В этом случае решается простая система из трех уравнений.

Примеры решения задач:

24.1. Внутренние сопротивления всех источников тока, приведенных на рисунке справа одинаковы: r_1 = r_2 = r_3 = 1 Ом. Найти величину сопротивления R_3 , если известно, что R_1 = 2 Ом; R_2 = = 3 Ом; ϵ_1 = 12 В; ϵ_2 = 8 В; ϵ_3 =10 В; I_2 = 2 А.

Решение.

Линейно независимой будут уравнения системы из 1-го правила Кирхгофа, записанного для узла В: $I_2+I_3-I_1=0$, и двух 2-х правил Кирхгофа, записанных для треугольных контуров САВ и ВАD: $I_1R_1+I_1r_1+I_2R_2+I_2r_2=\mathbf{\epsilon}_1+\mathbf{\epsilon}_2$; $I_3R_3+I_3r_3-I_2R_2-I_2r_2=\mathbf{\epsilon}_3-\mathbf{\epsilon}_2$.

(как и на рис.2.17, направление обхода – по часовой стрелке). Эта система из трех уравнений содержит три неизвестные величины I_1, I_3 и R_3 .

Решать такую систему в буквенных обозначениях всё ещё слишком громоздко. Если Вы уверены в записанных уравнениях – подставьте все числовые значения из условия в системе СИ. Тогда ответ также получится в системе СИ. Уравнения станут простыми, но проверить размерности Вы уже не сможете.

Из второго уравнения находим единственную не заданную в нем величину $I_1 = 4$ А . Подставляя её в первое уравнение, находим $I_3 = I_1 - I_2 = 2$ А .

Последнюю неизвестную R_3 находим из последнего уравнения, подставляя все найденные величины: $R_3 = 4~{
m Om}$.

24.2. Семь одинаковых источников тока с внутренним сопротивлением r=1 Ом каждый включены в разветвленную цепь, изображённую на рисунке. Найти величину ЭДС ϵ каждого из источников, если по левому проводнику протекает ток I=3,2 А.

Направим стрелки токов I_1 и I_2 вверх, как и стрелку тока I. Все токи сходятся в узле A (рис.2.19) $I+I_1+I_2=0$. Это означает, что направление каких-

то токов указано неверно и в процессе вычисления эти токи будут иметь разный знак. Для контуров слева и справа от линии АВ 2-е правило Кирхгофа имеет вид:

$$Ir+Ir+Ir-I_1r=\varepsilon+\varepsilon+\varepsilon-\varepsilon\;, \quad \ I_1r-I_2r-I_2r-I_2r=\varepsilon+\varepsilon-\varepsilon-\varepsilon\;.$$

Получили систему с тремя неизвестными I_1 , I_2 и ϵ :

$$\begin{cases} I_1 + I_2 = -I, \\ 2\varepsilon + I_1 r = 3Ir, \text{ Из последнего уравнения } I_2 = \frac{I_1}{3}, \text{ из первого } I_1 = -\frac{3}{4}I, \text{ из второго уравнения } \varepsilon = \frac{\left(3I - I_1\right)r}{2} = \frac{15Ir}{8} = 6 \text{ B}. \\ I_1 r - 3I_2 r = 0. \end{cases}$$

Токи $I_1 = -2,4$ A и $I_2 = -0,8$ A имеют правильную величину, но направления их мы не угадали.

24.3. Три источника тока с одинаковыми внутренними сопротивлениями $r_1 = r_2 = r_3 = 1$ Ом включены в разветвленную цепь, изображённую на рисунке. Найти величину падения напряжения U_3 на клеммах источника тока с ЭДС ε_3 =9 В и внутренним сопротивлением r_3 , если R_1 = 2 Ом; R_2 = 3 Ом; ε_1 =16 В; ε_2 =25 В.

Направления токов на рисунке уже заданы. 1-е правило Кирхгофа для левого узла имеет вид $I_3 - I_1 - I_2 = 0$. 2-е правило Кирхгофа для верхнего маленького контура $I_1R_1 + I_1r_1 + I_3r_3 = \mathcal{E}_1 - \mathcal{E}_3$, для нижнего маленького контура $-I_3r_3-I_2R_2-I_2r_2=\mathbf{\epsilon}_3-\mathbf{\epsilon}_2$ (обход – по часовой стрелке). После подстановки чи-

словых данных в СИ имеем простую систему: $\begin{cases} I_3 - I_1 - I_2 = 0, \\ 3I_1 + I_3 = 7, & \text{Решение этой системы дает } I_1 = 1 \text{ A} \; ; \; I_2 = 3 \text{ A} \; ; \; I_3 = 4 \text{ A} \; . \\ I_3 + 4I_2 = 16. \end{cases}$

Помните, что если ток I разряжает батарею с ЭДС ε и c внутренним сопротивлением r (рис. 2.20,a), то падение напряжения на её клеммах $U = \mathcal{E} - Ir$. Если же ток заряжает батарею (рис.2.20,6), то a) $\mathcal{E} = \mathcal{E} - Ir$

 $\overline{U = \varepsilon + Ir}$. Величина $U > \varepsilon$, иначе ток не потечет против источника ЭДС.

В нашей задаче, как видно из рисунка, ток I_3 направлен против источника ЭДС ε_3 , и напряжение на его клеммах $U_3 = \mathcal{E}_3 + I_3 r = 13 \text{ B}$.

Совет:

Если цепь содержит больше двух узлов и линейно независимых уравнений слишком много, расставьте все числовые данные задачи на схеме и определите узлы или контуры, для которых уравнения правил Кирхгофа включают только одну неизвестную величину.

24.4. Внутренние сопротивления всех источников тока, приведенных на рисунке справа одинаковы: $r_1 = r_2 = r_3 = r_4 = 1$ Ом. Найти величину падения напряжения на клеммах источника ϵ_2 , если известно, что ε_2 =7=B; ε_4 = 4 B; R_2 = 2 Ом; R_4 = 5 Ом; R_5 = 7 Ом; I_2 = 3 A; I_4 = 2 A.

Решение.

Обозначим все числовые данные задачи на схеме (рис.2.21). Теперь видно, что в уравнение 2-го правила Кирхгофа для правого контура входит единственная неизвестная величина – ток I_5 : $I_2R_2 + I_4(R_4 + r_4) - I_5R_5 = \mathcal{E}_4$, откуда легко найти $I_5 = 2 \text{ A}$.

Далее из уравнения 1-го правила Кирхгофа для узла D (рис.2.21) находим величину тока $I_6 = I_2 + I_5 = 5 \; \mathrm{A}$. Этот ток будет разряжать источник ϵ_2 , и падение напряжения на его клеммах согласно рис.1.20,а, равно $U_2 = \mathcal{E}_2 - I_6 r_2 = 4 \; \mathrm{B}$.

Примеры задач контрольной работы для самостоятельной подготовки:

24.5. Три одинаковых источника тока с внутренним сопротивлением r = 1 Ом каждый включены в разветвленную цепь, изображённую на рисунке справа. Найти величину ЭДС є каждого из источников тока, если R_1 = 1 Ом; R_2 = 2 Ом; R_3 = 3 Ом; I_3 = 5 А.

Ответ: 13 В.

24.6. Пять одинаковых источников тока с ЭДС $\varepsilon = 11~\mathrm{B}~$ каждый включены в разветвленную цепь, показанную на рисунке слева. Найти величину внутреннего сопротивления r источника тока, если R_1 = 2 Ом; R_2 = 6 Ом; I_1 = 1 А.

Ответ: 1,5 Ом

24.7. Внутренние сопротивления всех источников тока, приведенных на рисунке справа одинаковы: $r_1 = r_2 = r_3 = 1$ Ом. Найти величину тока I_1 , текущего через источник ε_1 , если известно, что R=5 Ом; ϵ_1 =8 B; ϵ_2 =4 B; ϵ_3 = 32 B. Ответ: 0 А.

24.8. Внутренние сопротивления всех источников тока, приведенных на рисунке слева одинаковы: $r_1 = r_2 = r_3 = 1$ Ом. Найти величину ЭДС ϵ_3 , , если известно, что $R_1 = 3$ Ом; $R_2 = 4$ Ом; $\epsilon_1 = 2$ В; $\epsilon_2 = 10$ В; $I_3 = 2 \text{ A}.$

Ответ: 12 В.

24.9. Внутренние сопротивления всех источников тока, приведенных на рисунке справа одинаковы: $r_1 = r_2 = r_3 = 1$ Ом. Найти величину тока I_2 , текущего через сопротивление R_2 , если известно, что R_1 = R_3 = 3 Ом; R_2 = 2 Ом; ϵ_1 =12 В; ϵ_2 =14 В; ϵ_3 = 4 В.

24.10. Внутренние сопротивления двух источников тока, приведенных на рисунке слева одинаковы: $r_1 = r_2 = 1$ Ом. Найти величину сопротивления R_2 , если известно, что R_1 = 2 Ом; R_3 = 2 Ом; ϵ_1 =9 В; ϵ_2 = 36 В; I_2 = 3 А. Ответ: 3 Ом.

Ответ: 1 А

24.11. Одиннадцать одинаковых источников ЭДС с внутренним сопротивлением r=12 Ом каждый соединяют в батарею вначале последовательно, а потом параллельно, и подключают к клеммам этих батарей одну и ту же нагрузку. Найти сопротивление нагрузки R, если при после-

довательном соединении источников ток в нагрузке в два раза больше, чем при параллельном.

Ответ: 28 Ом.

24.12. Три источника тока включены в разветвленную цепь, изображённую на рисунке. Найти величину сопротивления R_2 , если известно, что ϵ_1 =3 B; ϵ_2 =9 B; r_1 = r_2 = 1 Oм; R_1 = 2 Oм; I_1 = 2 A; I_3 = I_4 = 1 A. *Omeem*: R_2 = 2 Oм.

25. Расчет магнитных полей, созданных линейными токами

Элемент тока I длины $d\vec{l}$, направленный по току, создает на расстоянии \vec{r} магнитное поле с индукцией $d\vec{B} = \frac{\mu\mu_0 I}{4\pi} \frac{\left[d\vec{l}\,,\vec{r}\,\right]}{r^3}$ (рис.2.22). Здесь $\mu-$ магнитная проницаемость среды ($\mu=1$ в вакууме

или воздухе), $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma$ н/м - магнитная постоянная.

B задачах очень важно правильно определить направление вектора магнитной индукции \vec{B} в любой точке. Для этого надо поставить винт перпендикулярно току и радиус-вектору \vec{r} , про-

Рис.2.22

веденному в эту точку. Если вращать винт ближней стороной по направлению тока, как показано на рис.2.22, то направление его поступательного движения покажет направление вектора \vec{B} . Замкнутые линии \vec{B} охватывают проводник с током.

Чтобы найти индукцию \vec{B} всего тока надо взять интеграл по длине проводника: $\vec{B} = \int d\vec{B}$. В задачах контрольной работы встречаются токи, текущие по круговому или по прямому проводнику.

В центре 0 кругового витка радиуса R с током I (рис.2.23,a) получаем

$$B_0 = \frac{\mu \mu_0 I}{4\pi} \int \frac{r dl \sin 90^{\circ}}{r^3} = \frac{\mu \mu_0 I}{4\pi R^2} \oint_{-2\pi R} dl = \frac{\mu \mu_0 I}{2R} .$$

Для точки C, находящейся на расстоянии b от прямого отрезка с током I, как видно из треугольника на рис.2.23,6, выполняются соотношения $r = b/\cos\alpha$; $l = b \operatorname{tg} \alpha$; $dl = bd \left(\operatorname{tg} \alpha\right) = bd\alpha/\cos^2\alpha$. Угол β между радиус-вектором \vec{r} и элемен-

том тока
$$\vec{Idl}$$
 равен $\beta=90^{\circ}-\alpha$. Поэтому $B_C=\frac{\mu\mu_0I}{4\pi}\int\frac{rdl\sin\beta}{r^3}=\frac{\mu\mu_0I}{4\pi b}\int\limits_{-\alpha_1}^{\alpha_2}\cos\alpha d\alpha=\frac{\mu\mu_0I}{4\pi b}\left(\sin\alpha_1+\sin\alpha_2\right)$.

Пределы интегрирования $-\alpha_1$ и α_2 соответствуют граничным точкам A и D отрезка с током (точка 0 на рис.2.23,6 соответствует углу $\alpha=0$). Для бесконечного прямого проводника с током $\alpha_1,\alpha_2\to 90^\circ$ и $B_C=\frac{\mu\mu_0}{2\pi b}$.

Помимо индукции \vec{B} магнитное поле можно описать вектором напряженности \vec{H} , которая в неферромагнитной среде имеет вид $\vec{H} = \vec{B}/\mu\mu_0$.

Все полученные для индукции \vec{B} формулы будут справедливыми и для напряженности \vec{H} магнитного поля, если в них убрать множитель $\mu\mu_0$:

В задачах контрольной работы линейные токи состоят из отдельных участков круговых токов, прямолинейных отрезков с токами и прямых бесконечных проводников с токами.

Необходимо разбить систему на такие участки, определить величину u правильное направление вектора \vec{B} или \vec{H} , созданного током, текущим по каждому участку, а затем сложить все эти векторы.

Учтите, что на продолжении прямого тока (точка O на рис.2.22) поле не создается: $B_{\rm O} = 0$.

Примеры решения задач:

25.1. По бесконечному проводнику, согнутому в виде прямых проводников, как показано на рисунке, течет ток I=3 А. Найти величину напряженности магнитного поля, создаваемого этим током в точке O, если b=40 см.

 $\begin{array}{c|c}
 & 1 & 2 \\
\hline
I & b & 3 \\
\hline
R_1 & H_2 & b & 3
\end{array}$

Решение.

Разбиваем систему на отдельные прямолинейные участки 1, 2 и 3 (рис.2.24). Участок 1 — это полубесконечный ток, создающий в точке О напряженность $H_1 = \frac{1}{2} \cdot \frac{I}{2\pi b}$. Участок 2 — прямо-

линейный отрезок, находящийся на расстоянии $r = OA = b \cos 45^{\circ}$ от точки О. Его концы видны из

этой точки под углами $\alpha_1 = \alpha_2 = 45^\circ$. Он создает напряженность $H_2 = \frac{I}{4\pi r} \cdot 2\sin 45^\circ = \frac{I}{2\pi h}$. Точка О находится на продолжении прямого участка 3, и этот участок поля в ней не создает: $H_3 = 0$. Как видно из рис.2.24, направления векторов \vec{H}_1 и \vec{H}_2 совпадают и их сумма $H_0 = H_1 + H_2 = 3I/4\pi b = 1,79$ А/м .

25.2. По бесконечному проводнику, согнутому в виде прямых полубесконечных линий, двух дуг с радиусами $R_1 = 1$ м и $R_2 = 2$ м (внешняя дуга имеет угол $\alpha = 135^\circ$) и соединяющего их отрезка, как показано на рисунке, течет ток I = 3 A. Найти величину индукции магнитного поля, создаваемого этим током в центре 0 дуг.

Решение.

Прямые участки 3 и 5 на рисунке не создают полей в точке О на их продолжении. Поэтому

$$\vec{B}_{\mathrm{O}} = \vec{B}_{\mathrm{I}} + \vec{B}_{\mathrm{2}} + \vec{B}_{\mathrm{4}}$$
. Индукция полубесконечного тока 1 $B_{\mathrm{I}} = \frac{1}{2} \cdot \frac{\mu_0 I}{2\pi R_{\mathrm{I}}}$ и индукция половины кругового тока 2 $B_{\mathrm{2}} = \frac{1}{2} \cdot \frac{\mu_0 I}{2R_{\mathrm{I}}}$

направлены в одну сторону, а индукция, созданная участком 4, являющимся частью окружности, $B_4 = \frac{135^{\circ}}{360^{\circ}} \cdot \frac{\mu_0 I}{2R_2}$, направле-

на противоположно. Так как $R_2=2R_1$, то в точке О имеем $B_{\rm O}=\left|B_1+B_2-B_4\right|=\frac{\mu_0 I}{4R_1}\left|\frac{1}{\pi}+1-\frac{3}{8}\right|=0,889$ мкТл .

Eсли векторы $ec{B}$ или $ec{H}$ направлены под углом друг к другу, то удобно указать их направления в трех осях декартовой системы координат.

25.3. Бесконечный проводник согнут так, что текущий по нему ток I = 3 A вначале течет против оси z, затем поворачивает в начале координат O, образуя дугу окружности с углом 270° и с радиусом R=1м, лежащую в плоскости ху, а затем снова поворачивает в точке А и течет по прямой линии, направленной параллельно оси z. Найти величину индукции магнитного поля в центре дуги С. Решение.

Определяем направления полей, созданных отдельными участками (рис.2.25) с помощью винтов, острия которых должны находиться в точке С. Направление вращения винтов связаны с направлением токов (см.рис.2.22). Как видно, вектор индукции поля полубесконечного тока 1 имеет величину

$$B_1 = \frac{1}{2} \cdot \frac{\mu_0 I}{2\pi R}$$
 и направлен вдоль оси x ; вектор индукции, созданный $3/4$ кругового тока 2, и имеющий

Рис.2.25 величину $B_2 = \frac{3}{4} \cdot \frac{\mu_0 I}{2R}$ направлен против оси z; вектор индукции полубесконечного тока 3,

 $B_3 = \frac{1}{2} \cdot \frac{\mu_0 I}{2\pi R}$, направлен против оси y (рис.2.25). Все эти векторы взаимно перпендикулярны, а их векторная сумма имеет в

точке C величину
$$B_{\mathrm{C}} = \sqrt{B_{1}^{2} + B_{2}^{2} + B_{3}^{2}} = \frac{\mu_{0}I}{4R} \sqrt{\frac{1}{\pi^{2}} + \frac{9}{4} + \frac{1}{\pi^{2}}} = 1,48$$
 мкТл .

25.4. Ток $I_1 = 1$ А течёт по бесконечному проводнику, вначале совпадающему с осью y, затем образующему дугу в четверть окружности с радиусом R = 1 м, лежащую в плоскости уz. Далее проводник продолжается в виде прямой линии, параллельной оси у. Расстояние от центра дуги С до начала координат О равно 2R. Второй ток $I_2 = 3$ А течет по бесконечному проводнику вдоль оси x (см. рисунок). Найти величину напряженности магнитного поля, создаваемого этими токами в центре дуги С. Решение.

В точке С первый ток создает напряженность $H_1 = \frac{1}{4} \cdot \frac{I_1}{2R} + \frac{1}{2} \cdot \frac{I_1}{2\pi R}$, вектор которой направлен против оси x (это поле 1/4 кругового тока, протекающего по дуге и поле половины бесконечного прямого тока). Второй ток, находящийся на расстоянии 2R от точки C, создает напряженность $H_2 = \frac{I_2}{2\pi \cdot 2R}$, вектор которой направлен вдоль оси z. Величина суммы этих

векторов
$$H_{\rm C} = \sqrt{H_1^2 + H_2^2} = \frac{1}{4R} \sqrt{\left(\frac{I_1}{2} + \frac{I_1}{\pi}\right)^2 + \left(\frac{I_2}{\pi}\right)^2} = 0,314 \frac{\rm A}{\rm M}$$
.

Примеры задач контрольной работы для самостоятельной подготовки:

25.5. По бесконечному проводнику, согнутому, как показано на рисунке, течет ток I = 3 A. Найти величину индукции магнитного поля, создаваемого этим током в центре 0 дуги с радиусом R=20 см. Ответ: 3,21 мкТл.

25.6. По бесконечному проводнику, согнутому в виде двух параллельных прямых линий, двух полуокружностей с радиусами $R_1 = 50$ см и $R_2 = 1$ м и соединяющего их отрезка, как показано на рисунке, течет ток I = 5 А. Найти величину напряженности магнитного поля, создаваемого этим током в центре О полуокружностей.

Ответ: 1.648 А/м.

25.7. По замкнутому проводнику, согнутому в виде дуги с радиусом R = 20 см и соединяющей её концы хорды (см. рисунок), течет ток I = 3 А. Найти величину напряженности магнитного поля в центре О дуги, если угол $\alpha = 90^{\circ}$.

Ответ: 8,01 А/м.

25.8. По бесконечному проводнику, согнутому в виде полуокружности с радиусом R = 60 см, двух прямых отрезков и двух параллельных линий, течет ток I = 4 A. Найти величину индукции магнитного поля, создаваемого этим током в центре О полуокружности (см. рисунок), если b = 30 см.

Ответ: 4,76 мкТл.

25.9. По проводнику, согнутому в виде симметричной трапеции, течет ток I=3А. Размеры приведены на рисунке, где $r_1 = 20$ см, $r_2 = 50$ см, $\alpha = 90^\circ$. Найти величину индукции магнитного поля, создаваемого этим током в точке О.

Ответ: 1.8 мкТл.

25.10. По бесконечному проводнику, согнутому в виде двух параллельных линий, полуокружности с радиусом R = 40 см и прямого отрезка длины b = 50 см, течет ток I = 2 A (см. рисунок). Найти величину индукции магнитного поля, создаваемого током в центре О полуокружности.

Ответ: 0,849 мкТл.

25.11. По проводнику, согнутому в виде восьми круговых дуг с одинаковыми углами $\alpha = 45^{\circ}\,$ и с радиусами $R_1 = 40\,$ см и $R_2 = 80\,$ см, а также восьми соединяющих их прямых отрезков, как показано на рисунке, течет ток I = 5 A. Найти величину индукции магнитного поля в общем центре дуг О. Ответ: 5.89 мкТл.

25.12. По согнутым в кольца проводникам с радиусами $R_1 = R_2 = 1$ м текут одинаковые токи $I_1 = I_2 = 3$ А. Угол между плоскостями проводников $\alpha = 60^\circ$ (см. рисунок). Найти величину индукции магнитного поля, создаваемого токами в общем центре О колец.

Ответ: 3,26 мкТл.

Ответ: 1,41 А/м.

25.14. Бесконечный проводник согнут так, что ток I = 4 A течет по нему против оси x, поворачивает в начале координат O, протекая по окружности с радиусом R = 30 см, расположенной в плоскости уz, а затем течет против оси у (см.рисунок). Найти величину напряженности магнитного поля, создаваемого этим током в центре С окружности.

Ответ: 7,00 А/м

25.15. Ток I = 3 A течет по согнутому бесконечному проводнику против оси y, поворачивает в начале координат О, протекая по дуге окружности с углом 90° и с радиусом R = 50 см, расположенной в плоскости уz, снова поворачивает в точке A и течет по прямой линии, направленной вдоль оси x(см.рисунок). Найти величину индукции магнитного поля, создаваемого этим током в центре дуги С.

Ответ: 1,66 мкТл.

26. Расчет магнитных полей с помощью теоремы о циркуляции

Циркуляцией вектора \vec{B} по замкнутому контуру называется интеграл $\oint \vec{B} \cdot d\vec{l}$. Циркуляция вектора индукции \vec{B} магнитного поля равна произведению $\mu\mu_0$ на алгебраическую сумму токов, охватываемых контуром: $|\oint \vec{B} \cdot d\vec{l}| = \mu\mu_0 \sum I_i$

(для вектора напряженности \vec{H} циркуляция по замкнутому контуру равна $\left| \oint \vec{H} \cdot d\vec{l} \right| = \sum I_i$).

Чтобы определить знак тока в этой сумме, расположите винт перпендикулярно плоскости контура и вращайте его по направлению обхода контура. Если направление тока совпадает с направлением поступательного движения винта, то этот ток входит в сумму с положительным знаком. Если ток направлен противоположно движению винта, то он Совет входит в сумму со знаком "минус".

Например, на рис. 2.26 винт, вращающийся по направлению обхода контура, движется вверх. В эту сторону направлены токи I_1 и I_4 , охватываемые контуром, а противоположно – токи I_2 и I_3 . Согласно теореме о циркуляции $\oint \vec{B} \cdot d\vec{l} = \mu \mu_0 \left(I_1 - I_2 - I_3 + I_4 \right)$. Ток I_5 создает поле, но не охватывается контуром, и в сумму не входит.

Внимательно следите на рисунке, сколько раз линия замкнутого контура охватывает каждый ток. Если ток охватывается N раз, то в сумму он также входит N раз.

Примеры решения задач:

26.1. Замкнутый контур проходит по оси нескольких замкнутых круговых проводников с токами I_1 = 2 A, I_2 = 1 A, I_3 = 4 A и I_4 . Направление обхода контура и направления токов указаны на рисунке. Циркуляция вектора индукции магнитного поля $\oint \vec{B} d\vec{l}$ по этому контуру равна 5 мкТл·м. Найти величину тока I_4 .

На рис.2.27 дополнительными стрелками указаны направления токов I_i внутри охватывающего их замкнутого контура. Винт, вращаемый по направлению обхода контура, движется вниз. В эту сторону направлены токи I_2, I_3, I_4 . Здесь $\oint \vec{B}d\vec{l} = \mu_0 \left(-I_1 + I_2 + I_3 + I_4 \right)$ и $I_4 = I_1 - I_2 - I_3 + \oint \vec{B}d\vec{l} / \mu_0 = 0,979$ A.

26.2. На рисунке показан замкнутый контур, направление его обхода и прямолинейные проводники с токами I_1 = 3 A, I_2 , I_3 = 1 A, I_4 = 2 A. Циркуляция вектора индукции магнитного поля, созданного этими токами по указанному контуру отрицательна и равна $\oint \vec{B} d\vec{l} = -4$ мкТл·м. Найти величину тока I_2 .

Решение.

Приглядитесь к рисунку внимательно! Линия контура проходит за током I_1 , не охватывая его. Перед током I_4 эта линия проходит три раза, т.е. ток I_4 охватывается 3 раза, ток I_3 - 2 раза, ток I_2 - один раз.

Вращаемый по направлению обхода винт движется налево, вдоль токов I_2 и I_3 . Поэтому, согласно теореме о циркуляции $\oint \vec{B} d\vec{l} = \mu_0 \left(I_2 + 2I_3 - 3I_4\right)$, откуда $I_2 = 3I_4 - 2I_3 - \left|\oint \vec{B} d\vec{l} \right| / \mu_0 = 0.817$ А .

Теорему о циркуляции удобно применять для расчета магнитного поля токов с симметричным распределением плотности тока \vec{j} или поверхностной плотности тока \vec{i} .

26.3. По четырем тонким и очень длинным цилиндрическим проводящим поверхностям, имеющим радиусы a_1 = 1 см, a_2 = 2 см, a_3 = 3 см и a_4 =4 см протекают токи с поверхностными плотностями i_1 = 3 A/м, i_2 = = 4 A/м, i_3 =5 A/м и i_4 =6 A/м соответственно. Направления токов показаны на рисунке. На каком расстоянии r от общей оси 00° проводников величина индукции магнитного поля B = 0.5 мкТл, при условии, что $r > a_4$?

Поверхностная плотность тока задается формулой |i = dI/dI|, где dI – это ток, протекающий по полоске поверхности ширины dl. Поэтому величина тока, текущего по цилиндрической поверхности радиуса a равна $I = i \cdot 2\pi a$ (рис.2.28). Окружим цилиндр круговым замкнутым контуром радиуса r > R, совпадающим с линией индукции \vec{B} магнитного поля, созданного током I внутри контура. По теореме о циркуляции $\oint Bdl = B \cdot \oint dl = B \cdot 2\pi r = \mu_0 I$. Хотя ток и распределен в пространстве, он создает такое же поле, как и линейный ток I, проходящий по оси цилиндра. Подставив I, получим $B = \mu_0 i a / r$. В нашей задаче круго-

вой контур радиуса r охватит четыре проводника, по которым токи i_1, i_2, i_3 текут в одну сторону, а ток i_4 - в другую. Циркуляция $\oint \vec{B} d\vec{l} = B \cdot 2\pi r = \mu_0 2\pi \left(i_1 a_1 + i_2 a_2 + i_3 a_3 - i_4 a_4\right)$, откуда $r = \mu_0 \left(i_1 a_1 + i_2 a_2 + i_3 a_3 - i_4 a_4\right) / B = 5,03$ см .

26.4. По длинному прямому цилиндрическому проводнику радиуса a течёт постоянный ток с однородной плотностью $\vec{j} = \text{const}$. Величина напряжённости магнитного поля на расстоянии $r_1 = 4,8$ мм от оси проводника OO' в полтора раза больше величины напряженности на расстоянии $r_2 = 0.8$ мм от оси. Найти радиус a проводника, если $r_2 < a < r_1$.

Снова окружим проводник круговым замкунтым контуром радиуса r > a (рис.2.29), который охватит ток $I = j \cdot \pi a^2$, протекающий через все поперечное сечение проводника. Согласно теореме о циркуляции: $\phi \vec{H} d\vec{l} = H \cdot 2\pi r = I$. Поэтому вне проводника, при r > a , его поле совпадает с полем линейного тока

 $H_{\rm BHe} = \frac{I}{2\pi r} = \frac{ja^2}{2r}$. Внутри проводника, при $\,r < a\,$, линии $\,ec{H}\,$ также образуют круговой контур, но он

охватывает только ток $I = j \cdot \pi r^2$, протекающий через меньшее, заштрихованное на рис. 1.29 сечение. Получаем $H_{\rm BHYTDH} = I/2\pi r = jr/2$.

По условию
$$\frac{H_{\mathrm{BHe}}(r_1)}{H_{\mathrm{BHYDH}}(r_2)} = \frac{ja^2}{2r_1} \cdot \frac{2}{jr_2} = \frac{a^2}{r_1r_2} = \frac{3}{2}$$
. Радиус проводника $a = \sqrt{3r_1r_2/2} = 2,4$ мм .

26.5. В среде с $\mu = 1$ вдоль выделенной оси ОО' течёт постоянный ток, плотность которого меняется с расстоянием r от оси по закону $j = j_0 \cdot \sqrt{b/r}$, где b = 0.5 м, $j_0 = 3000$ А/м². Найти величину индукции B магнитного поля, созданного этим током на расстоянии r = 2 м от оси ОО'.

$$\begin{array}{ccc}
 & \xrightarrow{r} & \xrightarrow{j}(r) \\
 & \xrightarrow{0} & 0'
\end{array}$$

Решение

Если плотность тока \vec{j} симметрична относительно оси OO', то линии вектора \vec{B} , созданного этим током, охватывают ось OO' по кругу (рис.2.30). Запишем теорему о циркуляции для контура радиуса r, совпадающего с одной из линий \vec{B} : $\oint \vec{B} d\vec{l} = B \cdot 2\pi r = \mu_0 \sum I$. Величина тока, охватываемого этим контуром

$$\sum I = \int\limits_0^r jdS = \int\limits_0^r jd\left(\pi r^2\right) = \int\limits_0^r j\cdot 2\pi r dr$$
 . Подставляя заданную зависимость $j=j\left(r\right)$, находим

$$B \cdot 2\pi r = \mu_0 \int\limits_0^r j_0 \sqrt{\frac{b}{r}} \cdot 2\pi r dr = 2\pi \mu_0 j_0 \sqrt{b} \int\limits_0^r \sqrt{r} dr = 2\pi \mu_0 j_0 \sqrt{b} \cdot \frac{2}{3} r^{3/2} \text{ , откуда } B = 2\mu_0 j_0 \sqrt{br} / 3 = 2,51 \text{ мТл} \text{ .}$$

Примеры задач контрольной работы для самостоятельной подготовки:

равно внутреннее сопротивление r источника тока?

26.6. Резистор с сопротивлением R=10 Ом подключен длинными проводами к источнику тока с ЭДС ϵ и внутренним сопротивлением r=2 Ом. Циркуляция вектора \vec{B} , созданного протекающим по цепи током I, по замкнутому контуру, направление обхода которого показано на рисунке, равна $\oint \vec{B} d\vec{l} = 3$ мкТл·м. Найти величину ЭДС ϵ . *Ответ*: 3,18 В.

26.7. Источник тока с эдс $\varepsilon = 24$ В подключен к катушке из N = 8 витков, имеющей омическое сопротивление R = 10 Ом. По катушке течёт постоянный ток, а циркуляция вектора напряжённости магнитного поля по замкнутому контуру, показанному на рисунке, равна $\oint \vec{H} d\vec{l} = -30$ А. Чему

Ответ: 3,6 Ом.

26.8. Замкнутый контур проходит по оси нескольких замкнутых круговых проводников с токами I_1 = 1 A, I_2 = 2 A, I_3 = 3 A и I_4 (см. рисунок). Циркуляция вектора индукции магнитного поля по этому контуру отрицательна и равна $\oint \vec{B} d\vec{l} = -2$ мкТл·м. Найти величину тока I_4 .

Ответ: 1,41 А.

26.9. Провод с сопротивлением R=30 Ом равномерно навит на тороидальный сердечник из материала с магнитной проницаемостью $\mu=25$. Ток I, текущий по виткам получившейся катушки, имеющей N=600 витков, создаёт в сердечнике на удалении r=9 см от центра катушки О магнитное поле с индукцией B=0.05 Тл. Чему равно напряжение U, приложенное к концам провода?

Ответ: 45 В.

26.10. По осевому тонкому проводнику-жиле длинного прямого коаксиального кабеля течёт ток I=3 А. По второму тонкому цилиндрическому проводнику с радиусом a=4 мм протекает встречный ток с поверхностной плотностью i=100 А/м. На каком расстоянии r от оси кабеля ОО' напряженность магнитного поля равна H=3 А/м? Ответ: 2,58 см

 $\begin{array}{c|c}
 & r \\
\hline
I & R & \overrightarrow{j} & \longleftarrow \\
\hline
0 & \longleftarrow & \longrightarrow
\end{array}$

- **26.11.** Ток I=1 А протекает по длинному цилиндрическому проводнику радиуса R=1 см и имеет однородную плотность $\vec{j}=$ const . Чему равна величина индукции \vec{B} магнитного поля на расстоянии r=5 мм от оси проводника? Ответ: 10 мкТл.
- **26.12.** По длинному прямому цилиндрическому проводнику радиуса a=5 мм течёт ток с неоднородной плотностью $j=j_0\cdot \left(r/a\right)^3$, зависящей от расстояния r до оси проводника ОО'. На каком расстоянии r_1 от оси проводника напряжённость созданного током магнитного поля равна H=100 A/м? Известно, что $j_0\cdot=1,6\cdot10^6$ A/м².

Ответ: 2.5 мм или 8 см.

27. Движение заряженной частицы в электрическом и магнитном полях

В электромагнитном поле с напряженностью \vec{E} и индукцией \vec{B} на частицу с зарядом q и с массой m, движущуюся со скоростью $\vec{\mathrm{v}}$ действует сила Лоренца $\left[\vec{F} = \vec{F}_{\mathrm{элект}} + \vec{F}_{\mathrm{магн}} = q\vec{E} + q\left[\vec{\mathrm{v}},\vec{B}\right]\right]$, являющаяся суммой электрической и магнитной сил.

Чтобы решить задачу, аккуратно нарисуйте направления векторов $ec{E},ec{B}$ и $ec{ imes}$ в декартовой системе координат, правильно укажите направления сил и сообразите, по какой траектории будет двигаться частица под действием этих сил.

Примеры решения задач:

27.1. Положительно заряженная частица движется с постоянной скоростью $\vec{\mathrm{v}}$ в однородных электрическом и магнитном полях. Векторы напряженности \dot{E} и индукции \dot{B} взаимно перпендикулярны. Найти минимальную величину скорости частицы, если E = 100 В/м, B = 0.01 Тл.

 $\vec{F}_{\text{магн}} q \vec{F}_{\text{элект}}$ Так как по условию \vec{v} =const , то $\vec{F} = \vec{F}_{\text{элект}} + \vec{F}_{\text{магн}} = 0$. Направим вектор \vec{E} вдоль оси x, а вектор \vec{B} - вдоль оси z. Магнитная составляющая силы Лоренца компенсирует электрическую составляющую: $F_{\scriptscriptstyle \mathrm{3,DEKT}} = qE = F_{\scriptscriptstyle \mathrm{MAITH}} = q\mathrm{v}_{\perp}B$ (рис.2.31). Видно, что вектор скорости частицы $\vec{\mathrm{v}}_{\perp}$ направлен против оси y.

Определить направление $\vec{F}_{\text{MAГH}} = q \Big[\vec{\mathbf{v}}, \vec{B} \Big]$ (векторного произведения) для частицы cположительным зарядом проще с помощью "правила левой руки": если направить четыре пальца по первому вектору $\vec{\mathrm{v}}$, а второй вектор \vec{B} входит в ладонь, то большой палец показывает направление $\vec{F}_{\text{MAГH}}$ (puc.2.32,a). Для частицы c отрицательным зарядом используйте "правило правой руки" (рис.2.32,б).

Скорость $v_{\perp} = E/B = 10^4$ м/с будет минимальной скоростью, так как частица может иметь любую проекцию скорости v_z на ось z, параллельную вектору \vec{B} . Это не изменит решения, так как не изменит ни величину, ни направление силы $\vec{F}_{\text{магн}}$.

27.2. Частица с положительным зарядом q и с массой m движется в магнитном поле, индукция \vec{B} которого направлена вдоль оси y. В начальный момент $t_0 = 0$ она находилась в точке 0 начала координат и имела скорость \vec{v} , направленную вдоль оси x. В момент времени t_1 = 3 мс координата z частицы в первый раз становится максимальной и равной z_m = 10 см. Найти расстояние частицы от точки 0 в момент времени t_2 = 2 мс.

Решение.

Если скорость $\vec{v} \perp \vec{B}$ (рис.2.33), то в однородном магнитном поле частица движется по окружности, радиус R которой можно найти, подставляя нормальное ускорение $a_n = v^2/R$ в уравнение динамики: $ma_n = F_{\text{магн}}$ или $mv^2/R = qvB$, от-

куда
$$R = m v/q B$$
 . Период обращения частицы по этой окружности $T = \frac{2\pi R}{v} = \frac{2\pi m}{q B}$

Нарисовав направления векторов и траекторию согласно условиям задачи, видим, что $R = \frac{z_{\rm m}}{2}$. Время $t_1 = \frac{T}{2} = 3$ с. За это время частица пройдет половину окружности с углом 180° . А за время $t_2 = 2$ с она опишет дугу окружности с углом 120° и будет находиться в точке A на расстоянии $r = \sqrt{R^2 + R^2 - 2R \cdot R \cdot \cos 120^{\circ}} = \sqrt{3}R = \sqrt{3}z_{\rm m}/2 = 8,66$ см от точки 0.

27.3. Частица с отрицательным удельным зарядом $q/m = 2 \cdot 10^9$ Кл/кг, ускоренная разностью потенциалов $\Delta \varphi = 1$ кВ, в начальный момент $t_0 = 0$ находится в точке 0 (см. рисунок) и движется со скоростью v = 200 м/с, направленной вдоль оси z в однородном магнитном поле, индукция \vec{B} которого направлена вдоль оси x. В момент времени t = 5 мкс её скорость в первый раз будет направлена против оси y. На каком удалении от точки 0частица окажется в этот момент времени, и какой путь она пройдет за время t?

Решение.

Работа, совершаемая ускоряющим напряжением $U = \Delta \phi$, идет на изменение кинетической энергии частицы: $A = q\Delta \phi = mv^2/2$. Поэтому, проходя ускоряющую разность потенциалов $\Delta \phi$, частица приобретает скорость $\mathbf{v} = \sqrt{2q}\Delta\mathbf{\phi}/m$

Указывая направление силы $\vec{F}_{\text{магн}}$ и рисуя круговую траекторию частицы (рис.2.34), видим, что скорость будет направлена против оси у в точке А, когда частица пройдет четверть окружности за время $t = \frac{T}{4} = \frac{\pi m}{qB}$. Отсюда $B = \frac{\pi m}{qt}$. Подставляя найденное выражение для v, находим радиус траектории:

 $R = \frac{m \text{V}}{q B} = \frac{t}{\pi} \sqrt{\frac{2q \Delta \phi}{m}} = = 3,18 \text{ м}$. За время t частица проделает путь $2\pi R/4 = 5 \text{ м}$ и удалится от точки 0 на

расстояние $AO = \sqrt{2R} = 4,50 \text{ м}$.

27.4. Частица с зарядом q и массой m движется в однородном магнитном поле с индукцией B, направленной вдоль оси у, по винтовой траектории, у которой шаг равен радиусу. Найти угол а между векторами скорости $\vec{\mathbf{v}}$ частицы и индукции \vec{B} .

Разложим скорость \vec{v} частицы на две составляющие $\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel}$. Со скоростью v_{\perp} , перпендикулярной к направлению \vec{B} , частица будет вращаться по кругу радиуса $R = m v_{\perp}/qB$ вокруг линий \vec{B} . А так как скорость \vec{v}_{\parallel} параллельна \vec{B} , то $\vec{F} = q \lceil \vec{v}_{\parallel}, \vec{B} \rceil = 0$, и частица движется с постоянной скоростью \mathbf{v}_{\parallel} вдоль направления \vec{B} .

Сумма двух движений – винтовая линия (рис.2.35). Так как $v_{\perp} = v \sin \alpha$, $v_{\parallel} = v \cos \alpha$, то радиус траектории $R=m{
m v}\sinlpha/qB$, а её шаг h - это расстояние, которое частица пролетает со скоростью ${
m v}_{\parallel}$ за один период обращения по окружности: $h = v_{\parallel}T = 2\pi m \cdot v \cos \alpha/qB$. По условию их отношение $R/h = \operatorname{tg} \alpha/2\pi = 1$ и $\alpha = \operatorname{arctg}(2\pi) = 89,95^{\circ}$.

27.5. Частица с удельным зарядом $q/m = 3 \cdot 10^8 \text{ Кл/кг}$ ускорена разностью потенциалов $\Delta \phi$ и движется в магнитном поле с индукцией B = 0.4 Тл, направленной вдоль оси z. Скорость \vec{v} частицы направлена под углом $\alpha=45^{\circ}$ к оси z. Частица периодически пересекает ось z через равные интервалы $\Delta z=5$ см. Найти величину разности потенциалов $\Delta \phi$.

Решение.

Движение частицы происходит по винтовой линии (рис.2.36). Вращаясь вокруг линий \vec{B} , она периодически то пересекает ось z, то удаляется от неё на максимальное расстояние 2R. Интервал Δz – это шаг h, выражение которого получили в предыдущей задаче: $\Delta z = h = \frac{2\pi m \cdot v \cos \alpha}{aB}$, где

$$\mathrm{v} = \sqrt{\frac{2q\Delta\phi}{m}} - \mathrm{скорость, \ приобретаемая \ частицей \ после \ ускорения. \ Отсюда \ \ } \Delta\phi = \frac{q}{2m} \bigg(\frac{\Delta zB}{2\pi\mathrm{cos}\,\alpha}\bigg)^2 = 3{,}04\ \mathrm{kB}\ .$$

27.6. Вылетев из точки О на оси x с начальной скоростью v_0 , направленной перпендикулярно к этой оси, частица с зарядом q = 20 мкKл движется в электрическом и магнитном полях с напряжённостью $E = 20 \text{ B/м} \,$ и индукцией $B = 0.8 \text{ Тл} \,$ соответственно. Эти поля направлены вдоль оси $x \,$ (см. рисунок). Чему равна масса m частицы, если совершив N=8 полных витков траектории, она окажется на расстоянии x=400 м от точки О?

Под действием электрического поля частица приобретает постоянное ускорение $a_x = F_{\text{элект}}/m = qE/m$. Поэтому со временем растет проекция её скорости $\mathbf{v}_x = a_x t$, параллельная вектору \vec{B} , а траектория движения становится винтовой линией с постоянным радиусом $R = m v_0 / q B$ и с переменным шагом (рис.2.37). Частица пересекает ось x через каждый период обращения T в точках с координатами $x_n = a_x t^2 / 2 = a_x (nT)^2 / 2$. После восьмо-

оборота её координата $x = \frac{a_x \left(8T\right)^2}{2} = = \frac{qE}{m} \cdot 32 \left(\frac{2\pi m}{qB}\right)^2 = 128\pi^2 \frac{mE}{aB^2}$, откуда получаем величину

$$m = \frac{qB^2x}{128\pi^2E} = 0,203 \text{ M}\Gamma.$$

Примеры задач контрольной работы для самостоятельной подготовки:

27.7. Отрицательно заряженная частица с массой m = 0,4 мг двигалась с постоянной скоростью v = 300 м/с вдоль оси x в электрическом поле с напряженностью E = 600 В/м, направленной вдоль оси y, и в магнитном поле с индукцией В, направленной вдоль оси z. После выключения электрического поля частица продолжила вращение по окружности радиуса R = 2 м. Чему равна величина заряда частицы?

Ответ: 30 мкКл.

- **27.8.** Ускоренная разностью потенциалов $\Delta \varphi = 18 \text{ kB}$ заряженная частица движется по окружности радиуса R = 25 мм в однородном постоянном магнитном поле с индукцией B = 0.3 Тл. Чему равна величина q/m удельного заряда *Ответ*: 6,4·10⁸ Кл/кг. частицы?
- **27.9.** Частица с удельным зарядом $q/m = -4 \cdot 10^9$ Кл/кг была ускорена разностью потенциалов $\Delta \phi$ и оказалась в магнитном поле с индукцией B = 5 м T л, направленной вдоль оси z. B начальный момент $t_0 = 0$ частица находилась в точке 0 и двигалась со скоростью \mathbf{v} , направленной вдоль оси x (см. рисунок). В дальнейшем наибольшее удаление частицы от точки 0 равно 20 см. Чему равна величина ускоряющей разности потенциалов $\Delta \varphi$? Ответ: 500 В.

27.10. Частица с зарядом q=+5 мкКл движется в однородном магнитном поле, индукция B=3 Тл которого направлена вдоль оси y. В начальный момент частица находилась в точке 0 и двигалась вдоль оси z (см. рисунок). Через промежуток времени $\Delta t=0,2$ с скорость частицы в первый раз окажется направленной вдоль оси x. Чему равна масса m частицы?

Ответ: m = 0.637 мг.

27.11. Частица с массой m=0.02 мг была ускорена разностью потенциалов $\Delta \phi=1$ кВ и влетела под углом $\alpha=45^\circ$ в однородное магнитное поле с индукцией B=2 Тл, после чего начала двигаться по винтовой траектории с шагом h=2 м. Найти величину заряда частицы.

Oтвет: q = 49,3 мкКл.

27.12. Частица имеет удельный зарядом q/m = 3000 Кл/кг, ускорена разностью потенциалов $\Delta \phi = 6$ кВ и движется под углом $\alpha = 30^{\circ}$ к линиям индукции однородного магнитного поля, направленного вдоль оси x, периодически пересекая ось x через равные промежутки времени. Максимальное удаление частицы от оси x равно 2 м. Найти величину индукции B.

Ответ: B = 1 Тл.

28. Явление электромагнитной индукции и самоиндукции

ЭДС электромагнитной индукции возникает в **замкнутом** проводящем контуре, если в нем меняется поток магнитной индукции $\Phi = \int \vec{B} \cdot d\vec{S}$. Пусть контур (например, катушка) состоит из N витков любой формы с площадью S каждый и вращается с угловой скоростью ω в магнитном поле с индукцией \vec{B} (рис.2.38). В этом случае $\Phi = NS \cos \alpha$, где $\alpha = \omega t + \alpha_0$ – угол между векторами \vec{B} и \vec{S} (вектор площади витка \vec{S} имеет величину, равную площади витка, и направлен перпендикулярно к его плоскости).

Возникает ЭДС индукции $\boxed{\mathbf{\epsilon}_{\text{инд}} = -d\Phi/dt}$, причиной появления которой может быть или изменение величины индукции B, или изменение площади S контура, или изменение угла α между векторами \vec{B} и \vec{S} .

Если сопротивление проводящего контура равно R, то при этом в нем возникает индукционный ток

 $I_{\text{инд}} = |\varepsilon_{\text{инд}}|/R$, направленный в такую сторону, чтобы компенсировать изменение потока Φ .

Примеры решения задач:

 ${f 28.1.}$ Замкнутый проводящий контур из тонкого провода с сопротивлением R=9 Ом имеет вид равнобедренной трапеции с основаниями a=12 см, b=6 см и с высотой h=8 см. Контур вращается в магнитном поле с индукцией B=0,2 Тл вокруг оси, проходящей через большее основание трапеции и перпендикулярной к линиям \vec{B} . Найти величину угловой скорости вращения ω , если максимальная величина индукционного тока в контуре $I_{\max}=4$ мА.

Решение.

Контур состоит из одного витка с площадью (площадь трапеции) $S = \frac{(a+b)h}{2} = 72 \text{ см}^2$. При вращении в витке возникает ЭДС индукции $\varepsilon_{\text{инд}} = -\frac{d\left(BS\cos\omega t\right)}{dt} = BS\omega\sin\omega t$. Индукционный ток $I_{\text{инд}} = \frac{\varepsilon_{\text{инд}}}{R} = \frac{BS\omega}{R}\sin\omega t$ меняется по гармо-

ническому закону (такая система будет моделью генератора переменного тока). Его амплитуда $I_{\max} = BS\omega/R$, откуда $\omega = I_{\max}R/BS = 25$ рад/с.

28.2. Замкнутый проводящий контур образован двумя прямыми проводниками, согнутыми под углом $\alpha=45^\circ$ и проводником-перемычкой, скользящим со скоростью v=0.8 м/с (см. рисунок). Перпендикулярно к его плоскости создано магнитное поле. Единица длины каждого из проводников, образующих прямоугольный треугольник, имеет сопротивление $R_1=2$ Ом/м. Чему равна величина индукции магнитного поля B, если в контуре создаётся индукционный ток I=0.2 А?

Решение.

В этой задаче меняется площадь $S=b^2/2$ равнобедренного прямоугольного треугольника, так как меняется его катет $b=b_0+vt$. Одновременно меняется поток $\Phi=BS\cdot\cos 0^{\circ}$ (вектор \vec{S} параллелен вектору \vec{B}). Величина индукционного тока $I=\left|\frac{1}{R}\frac{d\Phi}{dt}\right|=\frac{B}{R}\frac{dS}{dt}=\frac{B}{R}b\frac{db}{dt}=\frac{B}{R}bv$.

Сумма всех сторон треугольника равна $b+b+\sqrt{2}b$, и его сопротивление $R=R_1\cdot \left(2+\sqrt{2}\right)b$ меняется вместе с катетом b. Подставляя эту величину в формулу для I, находим $B=IR_1\left(2+\sqrt{2}\right)/v=1,71$ Тл .

28.3. Угол между линиями индукции магнитного поля B=0,2 Тл и нормалью к плоскости не имеющей сопротивления проводящей П-образной рамки равен $\alpha=30^{\circ}$. По рамке без трения со скоростью v=9 м/с скользит проводящая перемычка с сопротивлением R=20 Ом. В ней возникает индукционный ток I=60 мА. Найти длину перемычки I, а также величину силы, с которой тянут перемычку.

Решение.

При движении перемычки меняется площадь S = l(a + vt) проводящего контура, заштрихованная на рис.2.39. Меняется поток магнитной индукции $\Phi = BS \cos \alpha$ и возникает ЭДС индукции $\mathcal{E}_{\text{инл}} = |-d\Phi/dt| = B\cos\alpha \cdot dS/dt = B\cos\alpha \cdot lv$.

Помните: если линии индукции \bar{B} магнитного поля составляют угол α с нормалью к плоскости движения проводника с поперечным размером l, то на его краях а образуется разность потенциалов, которая будет причиной появления ЭДС индукции $\overline{\Delta \varphi} = \varepsilon_{\text{инд}} = Blv \cos \alpha$.

Величина индукционного тока $I_{\text{инд}} = \varepsilon_{\text{инд}}/R = B l v \cos \alpha/R$. Отсюда $l = IR/B v \cos \alpha = 0,770$ м .

Индукционный ток направлен так, чтобы возникающая сила Ампера $\vec{F}_{AM\Pi} = I_{uH\Pi} \begin{bmatrix} \vec{l} & \vec{R} \end{bmatrix}$ препятствовала изменению потока Φ и тормозила перемычку (рис.1.39). Чтобы перемычка двигалась с постоянной скоростью, её надо тянуть с силой $F = F_{AMII} = I_{MHI} lB = B^2 l^2 v \cos \alpha / R = 9,24 \text{ MH}.$

Индукционный ток связан с величиной электрического заряда q, протекающего по замкнутому проводящему контуру при изменении магнитного потока Φ в нем: $I_{\text{инд}} = \frac{dq}{dt} = \frac{\varepsilon_{\text{инд}}}{R} = -\frac{1}{R} \frac{d\Phi}{dt}$. Интегрируя получившееся уравнение

$$\int dq = -rac{1}{R}\int d{\cal \Phi}$$
 , находим $q = rac{1}{R}ig({\cal \Phi}_{
m Haчaл} - {\cal \Phi}_{
m KOHe^{
m H}}ig)$.

Протекший заряд пропорционален разности начального и конечного значения магнитного потока.

Примеры решения задач:

28.4. Вначале замкнутая проводящая рамка, сделанная в виде квадрата из четырёх одинаковых тонких проводников с сопротивлением R = 3 Ом и длиной a = 15 см каждый, располагалась в магнитном поле так, что линии его индукции \vec{B} были перпендикулярны плоскости рамки. При повороте рамки на угол 180° вокруг одной из её сторон, по рамке протёк заряд q = 6 мКл. Найти величину индукции магнитного поля B.

До поворота вектор площади \vec{S} был параллелен вектору \vec{B} , и поток магнитной индукции был равен $\Phi_{\text{начал}} = Ba^2 \cos 0^\circ$. После поворота на 180° вектор \vec{S} поменял направление, и конечный поток $\Phi_{\text{конечн}} = Ba^2 \cos 180^\circ$. Суммарное сопротивление всех проводников равно 4R. Подстановка в формулу для протекшего заряда дает $q = 2Ba^2/4R$, откуда $B = 2qR/a^2 = 1,6$ Тл.

Текущий по замкнутому проводящему контуру ток I создает магнитное поле, индукция которого пропорциональна току: $B \sim I$. Поэтому и поток магнитной индукции будет пропорционален току: $\Phi = \int \vec{B} d\vec{S} \sim I$ или $|\Phi = LI|$. Коэффициент пропорциональности L называют коэффициентом индуктивности.

При изменении тока со временем меняется созданный им поток Φ и возникает ЭДС самоиндукции

$$\varepsilon_{\text{самоинд}} = -\frac{d\Phi}{dt} = -\frac{d}{dt}(LI).$$

 $Oбычно \$ эту формулу записывают в случае $\ L={
m const}$. Но причиной появления $\ {
m f \epsilon}_{{
m camoun}}$ может оказаться меняющаяся со временем величина индуктивности L.

Примеры решения задач:

28.5. Ферромагнитный сердечник извлекают из катушки таким образом, что её индуктивность уменьшается со временем t по закону $L(t) = \alpha/t$, где $\alpha = 4$ Гн·с. При этом ток, текущий по катушке, возрастает со временем: $I(t) = \beta \cdot t^3$, где $\beta = 3 \text{ A/c}^3$. Найти величину индуктивности катушки в тот момент времени, когда возникающая в ней ЭДС самоиндукции $\varepsilon = 8$ В.

Решение.

Подставляем приведенные в условии зависимости в формулу $\varepsilon = \left| -\frac{d}{dt}(LI) \right| = \alpha \beta \frac{d}{dt}(t^2) = 2\alpha \beta t$. Указанная величина ЭДС наблюдается в момент времени $t=\frac{\mathcal{E}}{2\alpha\beta}$. В этот момент $L=\frac{\alpha}{t}=\frac{2\alpha^2\beta}{\mathcal{E}}=12$ Гн.

Примеры задач контрольной работы для самостоятельной подготовки:

28.6. Виток из тонкого провода с радиусом r = 5 см вращается с угловой скоростью $\omega = 20$ рад/с в магнитном поле с индукцией B = 2 Тл. Чему равна величина сопротивления R витка, если ось вращения перпендикулярна к линиям индукции, а в витке создаётся индукционный ток с максимальной величиной $I_{\max} = 4$ мА?

28.7. Короткозамкнутая катушка из N=20~ витков вращается с угловой скоростью $\omega=15~$ рад/с в магнитном поле с индукцией B=4~ мТл. Ось вращения перпендикулярна как к линиям индукции, так и к оси катушки. Чему равен радиус витков катушки, если максимальная величина ЭДС электромагнитной индукции в ней $\epsilon_{\rm max}=4~$ мВ?

Ответ: 3,26 см.

28.8. В магнитном поле с индукцией B=0.25 Тл вращается замкнутый проводящий контур с сопротивлением R=6 Ом имеющий вид равнобедренного треугольника со стороной a=8 см и с углом $\alpha=30^{\circ}$ (см. рисунок). Ось вращения совпадает с биссектрисой угла α и перпендикулярна к линиям индукции \vec{B} . Индукционный ток в контуре имеет амплитуду $I_{\rm max}=5$ мА. Найти величину угловой скорости вращения ω .

Ответ: 75 рад/с.

28.9. Линии индукции магнитного поля с величиной B=2 Тл перпендикулярны плоскости П-образной проводящей рамки, не имеющей сопротивления. По рамке с постоянной скоростью без трения скользит проводящая перемычка длины l=60 см с сопротивлением R=8 Ом. Для этого перемычку тянут с силой F=0.9 Н. Чему равна скорость перемычки?

Ответ: 5 м/с.

28.10. Магнитное поле с индукцией B=1,5 Тл приложено к П-образной проводящей рамке, не имеющей сопротивления. Линии индукции перпендикулярны к плоскости рамки. По рамке без трения скользит проводящая перемычка длины l=40 см с сопротивлением R=15 Ом. Чему равна масса m перемычки, если в тот момент, когда её скорость равна v=3 м/с, она движется с ускорением a=4 м/с²?

Ответ: 18 г.

28.11. В магнитное поле с индукцией B=0,4 Тл поместили рамку из тонкого провода с сопротивлением R=18 Ом, имеющую вид прямоугольного треугольника с катетом b=15 см. Вначале линии индукции перпендикулярны плоскости рамки. При повороте рамки на угол $\alpha=60^\circ$ вокруг оси, проходящей через второй катет a, по рамке протёк заряд q=0,3 мКл. Чему равна длина гипотенузы c треугольника?

Ответ: 39 см.

28.12. Сердечник вдвигают внутрь катушки индуктивности таким образом, что её индуктивность возрастает со временем t по закону $L(t) = \alpha \cdot t$. При этом ток, текущий по катушке, убывает со временем: $I(t) = \beta/t^3$, где $\beta = 16 \text{ A} \cdot \text{c}^3$. Найти величину постоянной α , если в момент времени t = 2 с величина ЭДС самоиндукции, возникающей в катушке, была равна $\epsilon = 6$ В.

Ответ: 1,5 Гн/с.

29. Собственные электрические колебания

Электрический колебательный контур — это замкнутая цепь, которая содержит конденсатор ёмкости C и катушку с индуктивностью L. Такая цепь может иметь сопротивление R. В таком случае колебания, например,

C L R

заряда q на конденсаторе будут затухающими: $\left|q(t)=Ae^{-\beta t}\cos\left(\omega t+\alpha\right)\right|$ (рис.2.40,а). Их амплитуда $Ae^{-\beta t}$ экспоненциально уменьшается со временем t. Циклическая частота собственных затухающих колебаний имеет вид $\left[\omega=\sqrt{\omega_0^2-\beta^2}\right]$, где $\left[\omega_0=1/\sqrt{LC}\right]$ — цик-

лическая частота незатухающих колебаний (возникающих при R = 0), $\beta = R/2L$ – ко-

эффициент затухания колебаний. Период собственных затухающих колебаний $T = \frac{2\pi}{\omega} = 2\pi / \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$ увеличивается с

ростом сопротивления R, и становится бесконечным при критическом сопротивлении $R_{\rm kp} = 2\sqrt{L/C}$, при котором $\omega \to 0$. При $R \ge R_{\rm kp}$ колебания не наблюдаются (рис.2.40,б).

Скорость затухания колебаний характеризуют величиной логарифмического декремента затухания колебаний θ – это логарифм отношения амплитуды колебаний в момент времени t к амплитуде через период:

$$\theta = \ln\left(Ae^{-\beta t}/Ae^{-\beta(t+T)}\right) = \ln\left(e^{\beta T}\right)$$
, T.e. $\boxed{\theta = \beta T}$.

Примеры решения задач:

29.1. Напряжение на конденсаторе в колебательном контуре меняется со временем t по закону $U_C = U_0 \cdot \exp(-at) \cos(bt)$, где $U_0 = \text{const}$; $a = 10^4 \text{ c}^{-1}$; $b = 3 \cdot 10^4 \text{ рад/c}$. Ёмкость конденсатора $C = 4 \text{ мк}\Phi$. Найти сопротивление R контура.

Решение.

Падение напряжения на конденсаторе $U_C = q/C$ изменяется со временем по тому же приведенному выше закону,

что и заряд q на конденсаторе. Поэтому $a = \beta = \frac{R}{2L}$, $b = \omega = \sqrt{\omega_0^2 - \beta^2} = \sqrt{\frac{1}{LC} - a^2}$. Отсюда $L = \frac{1}{C(a^2 + b^2)}$, и

$$R = 2La = 2a/C(a^2 + b^2) = 5 \text{ Om}.$$

29.2. В колебательном контуре, изображённом на рисунке, замкнули ключ К. Во сколько раз уменьшился при этом период собственных электрических колебаний? L= 100 Гн; C= 50 мк Φ ; R= 1 кOм. Pewenue.

Помните правила вычисления суммарной ёмкости (или суммарного сопротивления) двух конденсаторов (или резисторов), соединенных последовательно или параллельно (рис.2.41):

(рис.2.41): При разомкнутом ключе в цепь был подключен один конденсатор с ёмкостью \wp - $C_{\rm I}=C$. После замыкания ключа подключены два параллельно соединенных конденсатора с об-

 R_1 R_2 $R_{\text{obin}} = R_1 + R_2$ R_1 R_2 $R_{\text{obin}} = \frac{R_1 R_2}{R_1 + R_2}$

 C_1 C_2 C_2 C_1+C_2

щей ёмкостью
$$C_{\rm II}=C+C=2C$$
 . Подставляя формулу для периода колебаний, находим, что он уменьшился в
$$\frac{T_{\rm I}}{T_{\rm II}}=\frac{2\pi}{\sqrt{\frac{1}{LC_{\rm I}}-\frac{R^2}{4L^2}}} / \frac{2\pi}{\sqrt{\frac{1}{LC_{\rm II}}-\frac{R^2}{4L^2}}}=\sqrt{\left(\frac{1}{LC_{\rm II}}-\frac{R^2}{4L^2}\right) / \left(\frac{1}{LC_{\rm I}}-\frac{R^2}{4L^2}\right)}$$
 раз.

Чтобы не запутаться с приставками и степенями при подстановке числовых данных,

делайте сложные вычисления по частям, находя отдельные слагаемые в системе СИ и только потом подставляя их в сложную формулу.

$$\frac{1}{LC_{\rm I}} = \frac{1}{100 \cdot 50 \cdot 10^{-6}} = 200 \text{ c}^{-1}; \ \frac{1}{LC_{\rm II}} = 100 \text{ c}^{-1}; \ \frac{R^2}{4L^2} = \left(\frac{10^3}{2 \cdot 100}\right)^2 = 25 \text{ c}^{-1}.$$
 Теперь нетрудно найти $\frac{T_{\rm I}}{T_{\rm II}} = \sqrt{\frac{200 - 25}{100 - 25}} = 1,53 \text{ раз.}$

29.3. В колебательном контуре, изображённом на рисунке, замкнули ключ К. При этом логарифмический декремент затухания собственных электрических колебаний увеличился в два раза. Чему равна индуктивность L контура? C = 0.8 мк Φ ; R = 5 кOм.

Решение.

Сопротивление контура после замыкания ключа равно $\frac{R \cdot R}{R+R} = \frac{R}{2}$. Логарифмический декремент был равен

$$\theta_1 = \beta_1 T_1 = 2\pi \frac{R}{2L} \bigg/ \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$
 . После изменения сопротивления $\theta_2 = \beta_2 T_2 = 2\pi \frac{R/2}{2L} \bigg/ \sqrt{\frac{1}{LC} - \frac{\left(R/2\right)^2}{4L^2}}$. Подставив эти выра-

жения в отношение $\theta_2/\theta_1=2$ и возводя в квадрат, чтобы избавиться от корня, получим $\frac{1}{LC}-\frac{R^2}{4L^2}=\frac{16}{LC}-\frac{R^2}{L^2}$, откуда $L=R^2C/20=1$ Гн .

29.4. Движок реостата "Ре" перемещают слева направо, увеличивая сопротивление R. При нулевом сопротивлении, $R=R_1=0$ Ом, циклическая частота собственных электрических колебаний в контуре была равна ω_1 . При сопротивлении $R=R_2=15$ кОм частота колебаний уменьшилась в два раза: $\omega_2=\omega_1/2$. При какой величине сопротивления реостата R_3 колебания прекратятся?

Решение.

При R=0 циклическая частота незатухающих колебаний равна $\omega_1=\omega_0=1/\sqrt{LC}$. При ненулевой величине сопротивления $R=R_2$ частота $\omega_2=\sqrt{\omega_0^2-\beta_2^2}=\sqrt{\omega_1^2-\beta_2^2}=\omega_1/2$. Возводя в квадрат обе части последнего равенства, находим $\omega_1^2-\beta_2^2=\frac{\omega_1^2}{4}$, откуда получаем $\beta_2=\frac{R_2}{2L}=\frac{\sqrt{3}\omega_1}{2}=\frac{1}{2}\sqrt{\frac{3}{LC}}$ и $\sqrt{\frac{L}{C}}=\frac{R_2}{\sqrt{3}}$. Колебания прекращаются, когда $\omega=\beta$ и сопротивление достигает критической величины $R_3=R_{\rm Kp}=2\sqrt{\frac{L}{C}}$. Поэтому $R_3=\frac{2R_2}{\sqrt{3}}=17,3$ кОм .

Примеры задач контрольной работы для самостоятельной подготовки:

29.5. В колебательном контуре заряд конденсатора меняется со временем t по закону $q = q_0 \cdot \exp(-bt) \sin(at)$, где q_0 , a, b – постоянные. Найти величину отношения b/a, если R = 2 кОм; L = 30 Гн; C = 6 мкФ. *Ответ*: 0,5.

29.6. В показанном на рисунке контуре замыкают ключ K, закорачивая сопротивление R_1 . Во сколько раз уменьшится при этом период собственных электрических колебаний? Соленоид в контуре имеет индуктивность L= 500 Γ н и активное сопротивление R= 10 кОм; C= 4 мк Φ ; R_1 = 10 кОм. *Ответ*: уменьшится в 2 раза.

29.7. В колебательном контуре, изображённом на рисунке, замкнули ключ К. При этом период собственных электрических колебаний уменьшился в полтора раза. Чему равна ёмкость C контура, если $L=27~\Gamma$ н; Ответ: 15 мкФ.

29.8. В цепь колебательного контура включен резистор с сопротивлением R=1,5 кОм, катушка с индуктивностью L и конденсатор с переменной ёмкостью C. Если величину ёмкости уменьшить от величины $C_1=18$ мк Φ до величины $C_2=4$ мк Φ , то циклическая частота собственных затухающих колебаний в контуре увеличивается в n = 3 раза. Чему равна индуктивность L катушки?

Ответ: 18 Гн.

29.9. Ключом К в колебательный контур с ёмкостью C=4 мк Φ включается или соленоид I, или соленоид II с одинаковыми активными сопротивлениями $R_1=R_2=R$ и с индуктивностями $L_1=3$ Γ н и $L_2=3L_1$ соответственно. При этом частота собственных электрических колебаний в контуре не меняется. Чему равна величина сопротивления R? Ответ: 1,5 кОм.

29.10. Логарифмический декремент затухания собственных электрических колебаний в контуре, изображённом на рисунке, $\theta = 2$. Чему равна ёмкость C контура, если $L = 44 \, \Gamma$ н; $R = 2 \, \text{кOm}$?

Ответ: 4,05 мкФ.

30. Вынужденные электрические колебания

Вынужденные колебания возникают, если в контур включена внешняя ЭДС с амплитудой ϵ_0 , меняющаяся, например, по гармоническому закону с циклической частотой $\,\omega_{_{\!{\footnotesize{BH}}}}\,.$

Величины заряда на конденсаторе и тока в цепи будут меняться с той же частотой $\omega_{_{\mathrm{BH}}}$. Амплитуды их колебаний постоянны во времени, но зависят от частоты внешней ЭДС:

$$q_0(\omega_{\rm BH}) = \frac{\varepsilon_0/L}{\sqrt{\left(\omega_{\rm BH}^2 - \omega_0^2\right)^2 + 4\beta^2 \omega_{\rm BH}^2}}$$

Графики такой зависимости приведены на рис.2.42.

Наблюдается резонанс – резкое увеличение амплитуды колебаний, когда частота внешней ЭДС сравнивается с резонансной частотой ω_{pes} . Резонансная частота для заряда или для напряжения на кон-

 $I_0(\omega_{
m BH})$ $\omega_{\text{pes}I} = \omega_0$ Рис.2.42

денсаторе
$$\omega_{pe3}$$

денсаторе
$$\omega_{\text{peз }q} = \sqrt{\omega_0^2 - 2\beta^2} = \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}$$
.

Резонансная частота для тока в цепи $\boxed{\omega_{\text{pes}\,I} = \omega_0 = 1/\sqrt{LC}}$. При этой частоте амплитуда тока достигает максимального значения, равного $I_{0 \text{ max}} = \varepsilon_0/R$ (рис.2.42,6).

Примеры решения задач:

30.1. Если ключ К находится в положении "1" и подключает к электрическому колебательному контуру источник ЭДС с амплитудой ε_0 и циклической частотой ω , то при частоте $\omega = \omega_1$ в наблюдается резонанс вынужденных колебаний тока, а при частоте $\omega = \omega_2$ - резонанс вынужденных колебаний напряжения на обкладках конденсатора. Когда ключ К переключают в положение "2", в контуре возникают собственные затухающие колебания с циклической частотой ω_3 . Найти отношение частот ω_1/ω_3 , если известно отношение частот $\omega_3/\omega_2=2$.

Решение.

Резонансная частота тока в цепи $\omega_1 = \omega_0$; резонансная частота напряжения U = q/C на конденсаторе $\omega_2 = \sqrt{\omega_0^2 - 2\beta^2}$; частота собственных затухающих колебаний при положении ключа "2" $\omega_2 = \sqrt{\omega_0^2 - \beta^2}$. По условию $\left(\frac{\omega_3}{\omega_2}\right)^2 = \frac{\omega_0^2 - \beta^2}{\omega_0^2 - 2\beta^2} = 2^2 = 4 \text{ . Находим отсюда, что } \beta^2 = \frac{3}{7}\omega_0^2 \text{ . Тогда } \frac{\omega_1}{\omega_3} = \frac{\omega_0}{\sqrt{\omega_0^2 - \beta^2}} = \frac{1}{\sqrt{1 - 3/7}} = \frac{\sqrt{7}}{2} = 1,32 \text{ .}$

30.2. В цепи, изображённой на рисунке, максимальная амплитуда тока наолюдается при циклической частоте внешней ЭДС $\omega = \omega_1$ =4000 рад/с, а при частоте $\omega = \omega_2$ =5000 рад/с амплитуда тока уменьшается $\omega = \omega_2$

Решение.

Из графика зависимости амплитуды тока от частоты внешней ЭДС (рис.2.43) видно, что при $\omega_1=\omega_0=1/\sqrt{LC}~$ амплитуда тока максимальна и равна $I_{0\,{
m max}}=\epsilon_0/R$, где $\,\epsilon_0$ – амплитуда ЭДС. При

частоте
$$\omega_2$$
 по условию $I_0\left(\omega_2\right) = \varepsilon_0 \bigg/ \sqrt{\left(\frac{1}{\omega_2 C} - \omega_2 L\right)^2 + R^2} = \frac{1}{2} \frac{\varepsilon_0}{R}$.

Возводя обе части уравнения в квадрат, получим $\left(\frac{1}{\omega_2 C} - \omega_2 L\right)^2 = 3R^2$.

Помните, что извлекая квадратный корень, Вы получаете два значения: $\sqrt{x^2} = \pm x$. Выбрав неверный знак, можно получить в ответе отрицательную величину сопротивления R, ёмкости C или индуктивности L.

Поэтому, извлекая корень, учтем оба знака: $\frac{1}{\omega_2 C} - \omega_2 L = \pm \sqrt{3}R$. Индуктивность L подставим из записанной

выше формулы $L = 1/\left(\omega_1^2 C\right)$, и находим $C = \pm \frac{1}{\sqrt{3}R} \left(\frac{1}{\omega_2} - \frac{\omega_2}{\omega_1^2}\right)$. После подстановки числовых данных видно, что правиль-

ным будет нижний знак, дающий положительное значение $C = 4,33 \; \mathrm{H}\Phi$.

30.3. На рисунке представлен график зависимости амплитуды тока I_0 от циклической частоты ω внешней ЭДС. Эта амплитуда имеет одинаковую величину $I_{01}=3I_{0\mathrm{m}}/5$ при двух значениях ω_1 и ω_2 частоты, где $I_{0\mathrm{m}}$ — максимальное возможное значение амплитуды тока при вынужденных колебаниях. Найти величину разности частот $\omega_2 - \omega_1$. Параметры контура: $\beta = R/2L = \omega_0 = 1/\sqrt{LC} = 9000 \text{ c}^{-1}$.

Решение.

Так как $I_{0\mathrm{m}}=\frac{{\cal E}_0}{R}$, то амплитуда тока $I_{01}={\cal E}_0\bigg/\sqrt{\left(\frac{1}{\omega C}-\omega L\right)^2+R^2}=\frac{3}{5}\frac{{\cal E}_0}{R}$. Возводя в квадрат обе части

этого равенства, получим $\left(\frac{1}{\omega C} - \omega L\right)^2 = \frac{16}{9}R^2$, откуда $\frac{1}{\omega C} - \omega L = \pm \frac{4}{3}R$. Последнее уравнение приводится к виду

 $\omega^2 \pm \frac{4}{3} \frac{R}{L} \omega - \frac{1}{LC} = 0$ или, согласно условию, $\omega^2 \pm \frac{8}{3} \omega_0 \omega - \omega_0^2 = 0$. Такое квадратное уравнение имеет два положительных

корня, если взять нижний знак: $\omega_1 = \omega_0/3$ и $\omega_2 = 3\omega_0$. Поэтому $\omega_2 - \omega_1 = 8\omega_0/3 = 24000$ с⁻¹ .

Примеры задач контрольной работы для самостоятельной подготовки:

30.4. В цепи, изображённой на рисунке, максимальная амплитуда напряжения на конденсаторе наблюдается при циклической частоте внешней ЭДС $\omega = \omega_1 = 2000 \text{ c}^{-1}$, а максимум амплитуды тока – при $\omega = \omega_2 = 3000 \text{ c}^{-1}$. Чему равно активное сопротивление R контура, если L = 2 Гн?

$$\begin{array}{c|c} R & C & L \\ \emptyset \sim E_0 \cos \omega t & \emptyset \end{array}$$

Ответ: 6,324 кОм.

30. 5. Вначале ключ К была замкнут в положении "1", и циклическая частота собственных электрических колебаний в образовавшемся контуре имела величину ω_1 =4000 с⁻¹. Затем ключ К переключили в положение "2" (см. рисунок), подключая внешнюю ЭДС. При какой циклической частоте $\omega_{\text{вн}}$ внешней ЭДС амплитуда тока в цепи будет максимальной, если амплитуда напряжения на конденсаторе максимальна при $\omega_{\text{вн}} = \omega_2 = 3000 \text{ c}^{-1}$?

Ответ: 4796 c⁻¹.

30.6. В колебательный контур включен источник внешней ЭДС с амплитудой ε_0 и с циклической частотой ф. Наибольшая величина амплитуды вынужденных колебаний напряжения на конденсаторе наблюдается при $\omega = \omega_1 = 1000 \text{ c}^{-1}$. При каком значении частоты ω достигается наибольшая величина амплитуды вынужденных колебаний тока в цепи? Активное сопротивление контура R=8 кOм, его индуктивность L=2 Гн.

Ответ: 3000 c⁻¹.

30.7. Амплитуда тока в электрическом колебательном контуре оказывается одинаковой при двух значениях циклической частоты внешней ЭДС: ω_1 =3000 рад/с и ω_2 =4000 рад/с. Чему равна ёмкость C контура, если его индуктивность $L = 1 \, \Gamma \text{H} \, ?$

Ответ: 83,3 нФ.

30.8. В цепи, изображённой на рисунке, максимальная амплитуда тока наблюдается при цикличе-30.8. В цепи, изоораженной на рисунке, максимальная амплитуда тока наолюдается при циклической частоте внешней ЭДС $\omega = \omega_1 = 2000$ рад/с, а при частоте $\omega = \omega_2 = 3000$ рад/с амплитуда тока уменьшается в три раза. Чему равно сопротивление R контура, если C = 2 мк Φ ?

Ответ: 49,1 Ом.