Design and Analysis of Algorithms Introduction to graphs, representations of a graph

Course Teacher: Farrukh Salim Shaikh

Slides Provided By: Muhammad Atif Tahir

From

Haidong Xue

- Graphs are used a lot in computer science
 - Social network (face book, linked in)

- Graphs are used a lot in computer science
 - Computer networks

Graphs are used a lot in computer science

- Graphs are used a lot in computer science
 - Wireless sensors

What are graphs?

- A set of vertices V and a set of edges E
- Each edge is a ordered pair of two vertices
- G = (V, E)
- E.g.
 - $-V = \{1, 2, 3, 4, 5, 6\}$
 - E = {<1, 2>, <1, 4>, <2, 5>, <3, 6>, <3, 5>, <4, 2>, <5, 4>, <6, 6>}

What are graphs?

What are graphs?

- Undirected graph
 - A special graph
 - If $v_i \neq v_j < v_i$, $v_j > \in E$, $< v_j$, $v_i > \in E$
 - E.g.

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{<1, 2>, <1, 4>, <2, 5>, <3, 6>, <3, 5>, <4, 2>, <5, 4>, <6, 6>\}$$

 $\cup \{<2, 1>, <4, 1>, <5, 2>, <6, 3>, <5, 3>, <2, 4>, <4, 5>\}$

Use a undirected line to indicate a pair of edges or a self edge

- Adjacency-matrix
 - $A |V| \times |V|$ matrix
 - $-if < v_i, v_i > \in E$, the matrix element $a_{ij} = 1$
 - if< v_i , v_j >∉ E, the matrix element $a_{ij} = 0$
- E.g. ...

• E.g.

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

What is the space complexity? $S(n) = \Theta(|V|^2)$

- Adjacency-matrix
 - Advantage
 - Simple
 - For some operations, it is efficient, e.g.: isConnected($\langle v_i, v_i \rangle$)
 - Disadvantage
 - When |E| is small, $\Theta(|V|^2)$ is a waste of space

Can we improve the space complexity?

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

- Adjacency-list
 - A arc adjacency list(Adj[]) with a size of |V|
 - After each element in the adjacency list, there is a arc node list
 - A arc node is:
 - {Destination vertex;
 - Next arc node}
 - For each $\langle v_i, v_j \rangle \in E$, there is a arc node:
 - In the arc node list of Adj[i]
 - With the destination vertex j

- Adjacency-list
 - An adjacency list with size of |V|
 - After each arc head, there is a arc listFor each $\langle v_i, v_i \rangle \in E$, there is a arc node.

Adjacency-list