MI-PAA

úkol č.3

Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem

Zadání

Naprogramujte řešení problému batohu:

- 1. metodou větví a hranic (B&B) tak, aby omezujícím faktorem byla hodnota optimalizačního kritéria.
- 2. metodou dynamického programování
- 3. modifikujte tento program tak, aby pracoval s omezenou přesností zobrazení vah nebo cen aproximativní algoritmus.

Řešení

Branch and Bound

K původní implementaci vytvořené k úkolu č.1 byly přidány omezující podmínky – průběžně bylo kontrolováno, zda již neexistuje lepší řešení, či zda jistě není možné lepšího řešení dosáhnout.

Dynamické programování

Zvolil jsem metodu dekompozice dle váhy, pro měření byla každá instance měřena vícekrát po sobě, jinak by nebylo možné naměřit hodnoty větší než chyba měření.

Dynamické programování s omezenou přesností

Původní řešení bylo rozšířeno o možnost omezení uvažovaných bitů – bity byly odstřihávány od nejmenšího, pro snadnou implementaci to fakticky znamenalo vydělení libovolným číslem a zaokrouhlení dolů.

Implementace

Pro implementaci byl použit jazyk C++ na platformě GNU/Linux. Údaje byly měřeny na desktopové stanici s dostatečným množstvím DDR2 1066MHz paměti, procesorem je Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz.

Naměřené výsledky

velikost instance	prumerny cas brute force [s]	prumerny cas dynamicky [s]	prumerny cas b&b [s]
4	0,00000030754505157474	0,00000169930076599000	0,00000033548011780000
10	0,00001055717470000000	0,00000389735155106000	0,00000733083944321000
15	0,00033995151522000000	0,00000874921636581000	0,00023622423791880000
20	0,01077801227566000000	0,00001428734745979000	0,01078719139100000000
22	0,04590893268584000000	0,00001551963763237000	0,04158598423000000000
25	0,36850724697110000000	0,00002046244339943000	0,33582431793200000000
27	1,38243263244640000000	0,00002501946840286000	1,42278566837300000000
30	11,15385844707490000000	0,00003051051964760000	11,62431035518600000000
32	44,30237143516530000000	0,00003618223886490000	47,57183345794700000000
35	359,73628925800300000000	0,00004473661155701000	
37		0,00004953073616028000	
40		0,00005767884211540000	

Zde nejsou výsledky měření s omezenou přesností, budou v samostatné části.

V rámci metody Branch and Bound navzdory očekávání nedošlo v podstatě k žádnému zrychlení, což si nedokážu přesvědčivě vysvětlit. Jedním ze způsobů, jak mohlo dojít ke zrychlení, je průběžné počítání některých hodnot, jako aktuální váha a cena batohu; což si však nemyslím, že spadá přímo do této metody, neboť to považuji za vlastnosti batohu, které není třeba pokaždé znovu přepočítávat. Díky tomuto jsem měl již původní řešení hrubou silou částečně zrychlené, a je tedy možné, že díky tomuto k žádnému velkému zrychlení na daných instancích nedošlo. Je však možné, že to bylo opravdu způsobeno těmito instancemi, a na jiných by výsledky vypadaly jinak.

Dynamický výpočet má cca lineární tendenci, nicméně u tohoto algoritmu nezáleží pouze na počtu dostupných prvků, ale také na parametru, kterým je v mém případě maximální kapacita batohu. V grafu je vidět průměrný čas trvání výpočtu v závislosti na instanci.

V algoritmu s omezenou přesností jsem postupně umazával zanedbávané bity, a čímž se postupně i zvětšovala chyba proti původní exaktní verzi.

count	precision	time		prumerna chyba	nedelene casy	!
	4 1		.64278898239120	,	0	0,1642788982
	4 2	0,000001	31593661308280	0,0078300	395	0,1315936613
	4 4		84014053344760			0,0840140533
	4 8	0,000000	73178110122640	0,0609334	397	0,0731781101
	4 16	0,000000	58484339714080	0,1799714	929	0,0584843397
	4 32	0,000000	59403219223140			0,0594032192
	4 64	0,000000	56048331260640	0,3269632	235	0,0560483313
	4 128	0,000000	53517041206340	0,5291088	486	0,0535170412
1	10 1	0,000003	89120244979820		0	0,389120245
1	10 2	0,000002	286389622688320	0,012042	215	0,2863896227
1	10 4	0,000001	81486158371000	0,0391212	954	0,1814861584
1	10 8	0,000001	44856438636800	0,0660289	D88	0,1448564386
1	10 16	0,000001	23839702606140	0,1381727	328	0,1238397026
1	10 32	0,000001	13928751945520	0,2103856	957	0,1139287519
1	LO 64	0,00001	10102624893240	0,227477	249	0,1101026249
1	LO 128	0,000001	.07475075721800	0,2287157	427	0,1074750757
1	15 1	0,000008	889426980018540		0	0,88942698
1	15 2	0,000005	71086144447340	0,006540	472	0,5710861444
1	15 4	0,000004	104693388938900	0,0154809)32	0,4046933889
1	15 8	0,000002	262049541473360	0,0264599	391	0,2620495415
1	15 16	0,000002	215198740959220	0,0509780	924	0,215198741
	15 32	0,00001	.71777720451400	0,0522383)94	0,1717777205
	L5 64	0,00001	.60238251686040	0,0522383)94	0,1602382517
2	L5 128	0,000001	57330603599580	0,0522383)94	0,1573306036
2	20 1	0,000014	62203221321120		0	1,4622032213
	20 2	0,000008	88813977241540	0,0108539	343	0,8888139772
	20 4	0,000006	522496476173400	0,0264074	215	0,6224964762
	20 8		129881134033140			0,429881134
	20 16		290376834869400			0,2903768349
	20 32		235144944190980			0,2351449442
	20 64	•	210418372154240			0,2104183722
	20 128	•	200661787986760	·		0,200661788
	22 1		318223052024840		0	1,618223052
	22 2		987675929069560			0,9876759291
	22 4		73394284248400			0,6733942842
	22 8		174742674827600			0,4747426748
	22 16		319356060028080			0,31935606
	22 32		250734581947280			0,2507345819
	22 64		25290865898060			0,2252908659
	22 128		215349159240760	·		0,2153491592
	25 1		26188888549820		0	2,1261888885
	25 2		253543276786820			1,2535432768
	25 4		35348801612800			0,8353488016
	25 8		68569045066840			0,5685690451
	25 16	•	371185841560400	·		0,3711858416
	25 32		297811322212220			0,2978113222
	25 64		261051368713340			0,2610513687
2	25 128	0,000002	247110614776640	0,1189622	200	0,2471106148

count	precision	time	e	prumerna chyba	nedelene casy
	27	1	0,00002583705029487640	•	
	27	2	0,00001500319657325740		
	27	4	0,00000961569433212340	0,0278482187	
	27	8	0,00000672151608467100		
	27	16	0,00000416563501358040		
	27	32	0,00000321213517189020		
	27	64	0,00000284049987792940		
	27	128	0,00000264427165985120		
	30	1	0,00003215476498603840	0	3,2154764986
	30	2	0,00001840767879486080		
	30	4	0,00001138560299873420	0,0303150508	1,1385602999
	30	8	0,00000809022889137300	0,0614804255	0,8090228891
	30	16	0,00000489026923179600		
	30	32	0,00000373382616043020		
	30	64	0,00000313273329734800		
	30	128	0,00000314901094436660		
	32	1	0,00003776525402069080		3,7765254021
	32	2	0,00002160883460044840		2,16088346
	32	4	0,00001327495269775420		
	32	8	0,00000897296233177240		
	32	16	0,00000547991104125940	•	•
	32	32	0,00000412321329116840		·
	32	64	0,00000339742617607060		•
	32	128	0,00000308252649307240		
	35	1	0,00004724961233139020		
	35	2	0,00002587586355209460		
	35	4	0,00001568081383705120		
	35	8	0,00000980606150627180		
	35	16	0,00000698938708305340		
	35	32	0,00000454312257766740		•
	35	64	0,00000376304054260260		
	35	128	0,00000338954682350140	0,1098944704	0,3389546824
	37	1	0,00005230215797424380	0	
	37	2	0,00002950778141021660	0,00872166	2,950778141
	37	4	0,00001769937644004840	0,0232483483	1,769937644
	37	8	0,00001076752953529340	0,0490042668	1,0767529535
	37	16	0,00000757979412078840	0,0989897993	0,7579794121
	37	32	0,00000532808504104560	0,1004940537	0,5328085041
	37	64	0,00000401665816307040	0,1004940537	0,4016658163
	37	128	0,00000366042261123640	0,1004940537	0,3660422611
	40	1	0,00006120403013229300	0	6,1204030132
	40	2	0,00003447230629920980	0,0097192713	3,4472306299
	40	4	0,00002031943640708920	0,0272026838	2,0319436407
	40	8	0,00001254349904060320	0,0570666368	1,2543499041
	40	16	0,00000881899390220620	0,112136805	0,8818993902
	40	32	0,00000555189194679300	0,1147759333	0,5551891947
	40	64	0,00000455152325630180	0,1147759333	0,4551523256
	40	128	0,00000388875446319600	0,1147759333	0,3888754463

presnost

V grafu jsou pro každý typ instance dva sloupce, ten vlevo nám zobrazuje čas, který postupně roste pro rostoucí počet prvků v instanci, leč na druhou stranu s klesající přesností podle očekávání klesá. Průměrná chybovost však samozřejmě s rostoucím počtem zanedbaných částí postupně roste.

Lepší graf se mi pro výsledky nepodařilo vymyslet, a ani jak jej vytvořit, aby byl co nejlépe čitelný.

Závěry

Pro dané instance si myslím že byla nejvhodnější metoda dynamického programování, bez jakýchkoli heuristik či zobecnění/zanedbání, nicméně však s tou podmínkou, že nebyla uvažována spotřeba paměti, které bylo dostatečné množství.

V případě omezené paměti bych nejspíše volil zanedbávání bitů, což jsem již dříve mimo tento předmět využil, v rámci počítání batohu s reálnými a nikoli celými čísly.

Branch and Bounds považuji za základní a zásadní metodu, která se tedy v mém případě nijak neprojevila, nicméně počítat cokoli hrubou silou bez alespoň minimální aplikace tohoto, považuji za skutečně zbytečný výpočet.