Selected Problems Chapter 1 Real Mathematical Analysis, Pugh, Second Edition

Mustaf Ahmed

June 2, 2020

Problem 8 Statement. Suppose that the natural number k is not a perfect n^{th} .

- (a) Prove that its n^{th} root is irrational
- (b) Infer that the n^{th} root of a natural number is either a natural number or it is irrational. It is never a fraction.

Problem 8 (a).

Proof. We will prove this by contradiction. Suppose the n^{th} root of k is rational. Choose $p, q \in \mathbb{Z}$, where $q \neq 0$, such that the n^{th} root $r = \frac{p}{q}$. Then $k = r^n = \frac{p^n}{q^n}$. Since k is an integer, q must divide p. This r is an integer, and therefore k is a perfect n^{th} root, a contradiction. \square

Problem 8 (b).

A natural number is either a perfect n^{th} root or it is not. If it is not a perfect n^{th} root, By (a), we know the n^{th} root must be irrational. If it is a perfect n^{th} root, by definition the n^{th} root must be a an integer.

Problem 12 Statement. Prove that there exists no smallest positive real number. Does there exists a smallest positive rational number? Given a real number x, does there exist a smallest real number y > x?

Proof. We the first part by contradiction. Suppose there did exist a smallest positive real number $x \in \mathbb{R}$. Consider $y = \frac{x}{2}$. Clearly y < x. Similarly, given $x \in \mathbb{Q}$ we can define y = x - 1, another rational number, and it is clear that y = x - 1 < x.

We will prove the final part by contradiction. Suppose there did exist a smallest number y > x. We will construct an even smaller real number that satisfies this property. Let $z = x + \frac{|y-x|}{2}$. We have

$$z = x + \frac{|y - x|}{2}$$

$$< x + |y - x|$$

$$= y$$

Problem 13 Statement. Let b = l.u.b S, where S is a bounded nonempty subset of \mathbb{R} .

(a) Given $\epsilon > 0$ show that there exists an $s \in S$ with

$$b - \epsilon \le s \le b$$
.

(b) Can $s \in S$ always be found so that $b - \epsilon < s < b$.

Problem 13 (a).

Proof. Since $b = \operatorname{Sup} S$, it must be the case that there exist some $s \in S$ satisfying this property, otherwise b would no longer be the Sup for S.

Problem 13 (b).

Proof. No. Consider $S = \{1, 3\}$ and let $\epsilon = 1$. There does not exist $s \in S$ where

$$3 - 1 < s < 3$$
.

Problem 20 Statement. Prove that limits are unique, i.e., if (a_n) is a sequence of real numbers that converges to a real number b and also converges to a real number b', then b = b'.

Problem 20.

Proof. Assume that (a_n) converges to b and b' in \mathbb{R} . By the epsilon principle, we want :

$$\forall \epsilon > 0 \ , \ |b-b^{'}| < \epsilon.$$

Given $\epsilon > 0$ in \mathbb{R} , choose $N, N' \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, \text{ if } n \geq N, |a_n - b| < \frac{\epsilon}{2},$$

and

$$\forall n \in \mathbb{N}', \text{ if } n \geq N', |a_n - b'| < \frac{\epsilon}{2}.$$

Let M = max(N, N'), and choose $n \in \mathbb{N}$ such that $n \geq M$. Since $n \geq N, N'$, we have

$$|a_n - b'| < \frac{\epsilon}{2},$$

and

$$|a_n - b| < \frac{\epsilon}{2}.$$

Thus, we have

$$-\epsilon < b - a_n + a_n - b' < \epsilon,$$

which means that

$$|b-b'|<\epsilon.$$