Algoritmos y Estructuras de Datos III Primer cuatrimestre 2013

Algoritmos y Estructuras de Datos III Primer cuatrimestre 2013

(bienvenidos!)

1. Algoritmos:

- Definición de algoritmo. Máquina RAM. Complejidad.
 Algoritmos de tiempo polinomial y no polinomial. Límite inferior.
- ► Técnicas de diseño de algoritmos: divide and conquer, backtracking, algoritmos golosos, programación dinámica.
- Algoritmos aproximados y algoritmos heurísticos.

2. Grafos:

- Definiciones básicas. Adyacencia, grado de un nodo, isomorfismos, caminos, conexión, etc.
- Grafos eulerianos y hamiltonianos.
- Grafos bipartitos.
- Árboles: caracterización, árboles orientados, árbol generador.
- Planaridad. Coloreo. Número cromático.
- Matching, conjunto independiente, recubrimiento. Recubrimiento de aristas y vértices.

3. Algoritmos en grafos y aplicaciones:

- Representación de un grafo en la computadora: matrices de incidencia y adyacencia, listas.
- Algoritmos de búsqueda en grafos: BFS, DFS, A*.
- Mínimo árbol generador, algoritmos de Prim y Kruskal.
- Algoritmos para encontrar el camino mínimo en un grafo: Dijkstra, Ford, Floyd, Dantzig.
- Planificación de procesos: PERT/CPM.
- Algoritmos para determinar si un grafo es planar. Algoritmos para coloreo de grafos.
- Algoritmos para encontrar el flujo máximo en una red: Ford y Fulkerson.
- Matching: algoritmos para correspondencias máximas en grafos bipartitos. Otras aplicaciones.

4. Complejidad computacional:

- Problemas tratables e intratables. Problemas de decisión. P y NP. Máquinas de Türing no determinísticas. Problemas NP-completos. Relación entre P y NP.
- Problemas de grafos NP-completos: coloreo de grafos, grafos hamiltonianos, recubrimiento mínimo de las aristas, corte máximo, etc.

Bibliografía

- 1. G. Brassard and P. Bratley, *Fundamental of Algorithmics*, Prentice-Hall, 1996.
- 2. F. Harary, *Graph theory*, Addison-Wesley, 1969.
- J. Gross and J. Yellen, Graph theory and its applications, CRC Press, 1999.
- 4. R. Ahuja, T. Magnanti and J. Orlin, *Network Flows: Theory, Algorithms, and Applications*, Prentice-Hall, 1993.
- M. Garey and D. Johnson, Computers and intractability: a guide to the theory of NP- Completeness, W. Freeman and Co., 1979.

Algoritmos

- ¿Qué es un algoritmo?
- ▶ ¿Qué es un buen algoritmo?
- ▶ Dados dos algoritmos para resolver un mismo problema, ¿cuál es mejor?
- ¿Cuándo un problema está bien resuelto?

Complejidad computacional

Definición informal: La *complejidad* de un algoritmo es una función que representa el tiempo de ejecución en función del tamaño de la entrada del algoritmo.

- Complejidad en el peor caso.
- Complejidad en el caso promedio

Complejidad computacional

Definición informal: La *complejidad* de un algoritmo es una función que representa el tiempo de ejecución en función del tamaño de la entrada del algoritmo.

- Complejidad en el peor caso.
- Complejidad en el caso promedio (dijo "promedio"?).

Complejidad computacional

Definición informal: La *complejidad* de un algoritmo es una función que representa el tiempo de ejecución en función del tamaño de la entrada del algoritmo.

- Complejidad en el peor caso.
- Complejidad en el caso promedio (dijo "promedio"?).

Definición formal?

Máquina RAM (modelo de cómputo)

Definición: Máquina de registros + registro acumulador + direccionamiento indirecto.

Motivación: Modelar computadoras en las que la memoria es suficiente y donde los enteros involucrados en los cálculos entran en una palabra.

Máquina RAM (modelo de cómputo)

Definición: Máquina de registros + registro acumulador + direccionamiento indirecto.

Motivación: Modelar computadoras en las que la memoria es suficiente y donde los enteros involucrados en los cálculos entran en una palabra.

- Unidad de entrada: Sucesión de celdas numeradas, cada una con un entero de tamaño arbitrario.
- Memoria: Sucesión de celdas numeradas, cada una puede almacenar un entero de tamaño arbitrario.
- Programa no almacenado en memoria (aún así es una máquina programable!).

Máquina RAM - Instrucciones

- ► LOAD operando Carga un valor en el acumulador
- ► STORE operando Carga el acumulador en un registro
- ► ADD operando Suma el operando al acumulador
- ► SUB operando Resta el operando al acumulador
- MULT operando Multiplica el operando por el acumulador
- ▶ DIV operando Divide el acumulador por el operando
- lacktriangle READ operando Lee un nuevo dato de entrada ightarrow operando
- WRITE operando Escribe el operando a la salida
- JUMP label Salto incondicional
- ▶ JGTZ label Salta si el acumulador es positivo
- ► JZERO label Salta si el acumulador es cero
- ► HALT Termina el programa

Máquina RAM - Operandos

- ▶ LOAD = a: Carga en el acumulador el entero a.
- ► LOAD i: Carga en el acumulador el contenido del registro i.
- ► LOAD *i: Carga en el acumulador el contenido del registro indexado por el valor del registro i.

Complejidad en la Máquina RAM

- Asumimos que cada instrucción tiene un tiempo de ejecución asociado.
- ► Tiempo de ejecución de un algoritmo A: T_A(I) = suma de los tiempos de ejecución de las instrucciones realizadas por el algoritmo con la *instancia I*.
- ► Complejidad de un algoritmo A: $f_A(n) = \max_{I:|I|=n} T_A(I)$

Complejidad en la Máquina RAM

- Asumimos que cada instrucción tiene un tiempo de ejecución asociado.
- ► Tiempo de ejecución de un algoritmo A: T_A(I) = suma de los tiempos de ejecución de las instrucciones realizadas por el algoritmo con la *instancia I*.
- ► Complejidad de un algoritmo A: $f_A(n) = \max_{I:|I|=n} T_A(I)$ (pero debemos definir |I|!).

Tamaño de una instancia

Definición (incompleta): Dada una instancia I, se define |I| como el número de símbolos de un alfabeto finito necesarios para codificar I.

- Depende del alfabeto y de la base!
- ▶ Para almacenar $n \in \mathbb{N}$, se necesitan $\lceil \log_2(n+1) \rceil$ dígitos binarios.
- en una base b cualquiera, se necesitan $\lceil \log_b(n+1) \rceil$ dígitos.
- ▶ Si a y $b \neq 1$ entonces $\log_b N = \frac{\log_a N}{\log_a b} = \frac{1}{\log_a b} \times \log_a N$.

Tamaño de una instancia

- ▶ **Modelo uniforme:** Asumimos que los valores numéricos dentro de la instancia están acotados de antemano.
- Modelo logarítmico: Medimos el tamaño en bits de cada entero por separado, y no se asume una cota superior de antemano.

Notación O

Dadas dos funciones $f, g : \mathbb{N} \to \mathbb{R}$, decimos que:

- ▶ f(n) = O(g(n)) si existen $c \in \mathbb{R}_+$ y $n_0 \in \mathbb{N}$ tales que $f(n) \le c g(n)$ para todo $n \ge n_0$.
- ▶ $f(n) = \Omega(g(n))$ si existen $c \in \mathbb{R}_+$ y $n_0 \in \mathbb{N}$ tales que $f(n) \ge c g(n)$ para todo $n \ge n_0$.
- $f(n) = \Theta(g(n))$ si f = O(g(n)) y $f = \Omega(g(n))$.

Ejemplos

- ▶ Búsqueda secuencial: O(n).
- ▶ Búsqueda binaria: $O(\log(n))$.

Ejemplos

- ▶ Búsqueda secuencial: O(n).
- ▶ Búsqueda binaria: $O(\log(n))$.
- ▶ Ordenar un arreglo (bubblesort): $O(n^2)$.
- ▶ Ordenar un arreglo (quicksort): $O(n^2)$ en el peor caso (!).
- ▶ Ordenar un arreglo (heapsort): $O(n \log(n))$.

Ejemplos

- ▶ Búsqueda secuencial: O(n).
- ▶ Búsqueda binaria: $O(\log(n))$.
- ▶ Ordenar un arreglo (bubblesort): $O(n^2)$.
- ▶ Ordenar un arreglo (quicksort): $O(n^2)$ en el peor caso (!).
- ▶ Ordenar un arreglo (heapsort): $O(n \log(n))$.

Es interesante notar que $O(n \log(n))$ es la complejidad **óptima** para algoritmos de ordenamiento basados en comparaciones (cómo se demuestra?).

Recordemos: Si $A \in \mathbb{R}^{n \times n}$, se define su *determinante* por

$$\det(A) = \sum_{i=1}^{n} (-1)^{j+1} a_{ij} \det(A_{ij}),$$

donde $i \in \{1, \dots, n\}$ y A_{ij} es la submatriz de A obtenida al eliminar la fila i y la columna j.

Recordemos: Si $A \in \mathbb{R}^{n \times n}$, se define su *determinante* por

$$\det(A) = \sum_{i=1}^{n} (-1)^{j+1} a_{ij} \det(A_{ij}),$$

donde $i \in \{1, ..., n\}$ y A_{ij} es la submatriz de A obtenida al eliminar la fila i y la columna j.

Complejidad:
$$f(n) = \begin{cases} n f(n-1) + O(n) & \text{si } n > 1 \\ O(1) & \text{si } n = 1 \end{cases}$$

Recordemos: Si $A \in \mathbb{R}^{n \times n}$, se define su *determinante* por

$$\det(A) = \sum_{i=1}^{n} (-1)^{j+1} a_{ij} \det(A_{ij}),$$

donde $i \in \{1, ..., n\}$ y A_{ij} es la submatriz de A obtenida al eliminar la fila i y la columna j.

Complejidad:
$$f(n) = \begin{cases} n f(n-1) + O(n) & \text{si } n > 1 \\ O(1) & \text{si } n = 1 \end{cases}$$

= $O(n!)$ (oops!).

Algoritmo alternativo: Obtener la *descomposición LU*, escribiendo PA = LU. Entonces,

$$\det(A) = \det(P^{-1}) \det(L) \det(U),$$

y todos los determinantes del lado derecho son sencillos de calcular.

Algoritmo alternativo: Obtener la *descomposición LU*, escribiendo PA = LU. Entonces,

$$\det(A) = \det(P^{-1}) \det(L) \det(U),$$

y todos los determinantes del lado derecho son sencillos de calcular.

Complejidad:
$$f(n) = O(n^3) + 3O(n) = O(n^3)$$
 (ta-daaa!).

$$| n = 10 | n = 20 | n = 30 | n = 40 | n = 50$$

				n = 40	
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms

		n=10	n = 20	n = 30	n = 40	n = 50
_	O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
	$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	0.16 ms	0.25 ms

	n=10	n = 20	n = 30	n = 40	n = 50
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	0.16 ms	0.25 ms
$O(n^3)$	1.00 ms	8.00 ms	2.70 ms	6.40 ms	0.12 sg

	n=10	n = 20	n = 30	n = 40	n = 50
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	0.16 ms	0.25 ms
$O(n^3)$	1.00 ms	8.00 ms	2.70 ms	6.40 ms	0.12 sg
$O(n^5)$	0.10 sg	3.20 sg	24.30 sg	1.70 min	5.20 min

	n=10	n = 20	n = 30	n = 40	n = 50
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	0.16 ms	0.25 ms
$O(n^3)$	1.00 ms	8.00 ms	2.70 ms	6.40 ms	0.12 sg
$O(n^5)$	0.10 sg	3.20 sg	24.30 sg	1.70 min	5.20 min
$O(2^n)$	1.00 ms	1.00 sg	17.90 min	12 días	35 años

	n=10	n = 20	n = 30	n = 40	n = 50
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	0.16 ms	0.25 ms
$O(n^3)$	1.00 ms	8.00 ms	2.70 ms	6.40 ms	0.12 sg
$O(n^5)$	0.10 sg	3.20 sg	24.30 sg	1.70 min	5.20 min
$O(2^{n})$	1.00 ms	1.00 sg	17.90 min	12 días	35 años
$O(3^n)$	0.59 sg	58 min	6 años	3855 siglos	2×10^8 siglos!

Problemas bien resueltos

Conclusión: Los algoritmos polinomiales se consideran satisfactorios (cuanto menor sea el grado, mejor), y los algoritmos supra-polinomiales se consideran no satisfactorios.

Problemas bien resueltos

Conclusión: Los algoritmos polinomiales se consideran satisfactorios (cuanto menor sea el grado, mejor), y los algoritmos supra-polinomiales se consideran no satisfactorios.

- Si los tamaños de instancia son pequeños, ¿es tan malo un algoritmo exponencial?
- ► ¿Cómo se comparan $O(n^{85})$ con $O(1,001^n)$?
- ¿Puede pasar que un algoritmo de peor caso exponencial sea eficiente en la práctica? ¿Puede pasar que en la práctica sea el mejor?
- ¿Qué pasa si no encuentro un algoritmo polinomial?

Técnicas de diseño de algoritmos

- Algoritmos golosos
- Divide and conquer (dividir y conquistar)
- Recursividad
- Programación dinámica
- Backtracking (búsqueda con retroceso)
- Algoritmos probabilísticos

Algoritmos golosos

Idea: Construir una solución seleccionando en cada paso la mejor alternativa, sin considerar (o haciéndolo débilmente) las implicancias de esta selección.

Algoritmos golosos

Idea: Construir una solución seleccionando en cada paso la mejor alternativa, sin considerar (o haciéndolo débilmente) las implicancias de esta selección.

- Habitualmente, proporcionan heurísticas sencillas para problemas de optimización.
- ► En general permiten construir soluciones razonables, pero sub-óptimas.
- Sin embargo, en ocasiones nos pueden dar interesantes sorpresas!

Ejemplo: El problema de la mochila

Datos de entrada:

- ▶ Capacidad $C \in \mathbb{R}_+$ de la mochila (peso máximo).
- ▶ Cantidad $n \in \mathbb{N}$ de objetos.
- ▶ Peso $p_i \in \mathbb{R}_+$ del objeto i, para i = 1, ..., n.
- ▶ Beneficio $b_i \in \mathbb{R}_+$ del objeto i, para i = 1, ..., n.

Problema: Determinar qué objetos debemos incluir en la mochila sin excedernos del peso máximo C, de modo tal de maximizar el beneficio total entre los objetos seleccionados.

Ejemplo: El problema de la mochila

Algoritmo(s) goloso(s): Mientras no se haya excedido el peso de la mochila, agregar a la mochila el objeto *i* que ...

- ightharpoonup ... tenga mayor beneficio b_i .
- ightharpoonup ... tenga menor peso p_i .
- ightharpoonup ... maximice b_i/p_i .

Ejemplo: El problema de la mochila

Algoritmo(s) goloso(s): Mientras no se haya excedido el peso de la mochila, agregar a la mochila el objeto *i* que ...

- ightharpoonup ... tenga mayor beneficio b_i .
- ightharpoonup ... tenga menor peso p_i .
- ightharpoonup ... maximice b_i/p_i .

¿Qué podemos decir en cuanto a la calidad de las soluciones obtenidas por estos algoritmos? ¿Qué podemos decir en cuanto a su complejidad?

Problema: Un servidor tiene n clientes para atender, y los puede atender en cualquier orden. Para $i=1,\ldots,n$, el tiempo necesario para atender al cliente i es $t_i\in\mathbb{R}_+$. El objetivo es determinar en qué orden se deben atender los clientes para minimizar la suma de los tiempos de espera de los clientes.

Problema: Un servidor tiene n clientes para atender, y los puede atender en cualquier orden. Para $i=1,\ldots,n$, el tiempo necesario para atender al cliente i es $t_i \in \mathbb{R}_+$. El objetivo es determinar en qué orden se deben atender los clientes para minimizar la suma de los tiempos de espera de los clientes.

Si $I=(i_1,i_2,\ldots,i_n)$ es una permutación de los clientes que representa el orden de atención, entonces la suma de los tiempos de espera es

$$T = t_{i_1} + (t_{i_1} + t_{i_2}) + (t_{i_1} + t_{i_2} + t_{i_3}) + \dots$$

= $\sum_{k=1}^{n} (n - k + 1)t_{i_k}$.

Algoritmo goloso: En cada paso, atender al cliente pendiente que tenga menor tiempo de atención.

- ▶ Retorna una permutación $I_{GOL} = (i_1, ..., i_n)$ tal que $t_{i_j} \le t_{i_{j+1}}$ para j = 1, ..., n-1.
- ¿Cuál es la complejidad de este algoritmo?

Algoritmo goloso: En cada paso, atender al cliente pendiente que tenga menor tiempo de atención.

- ▶ Retorna una permutación $I_{GOL} = (i_1, ..., i_n)$ tal que $t_{i_j} \le t_{i_{j+1}}$ para j = 1, ..., n-1.
- ¿Cuál es la complejidad de este algoritmo?
- Este algoritmo proporciona la solución óptima! (cómo se demuestra?)

Divide and conquer

- ▶ Si la instancia / de entrada es pequeña, entonces utilizar un algoritmo ad hoc para el problema.
- En caso contrario:
 - **Dividir** I en sub-instancias I_1, I_2, \ldots, I_k más pequeñas.
 - ▶ Resolver recursivamente las *k* sub-instancias.
 - ► Combinar las soluciones para las *k* sub-instancias para obtener una solución para la instancia original *l*.

Ejemplo: Mergesort

Algoritmo divide and conquer para ordenar un arreglo A de n elementos (von Neumann, 1945).

- ▶ Si *n* es pequeño, ordenar por cualquier método sencillo.
- Si n es grande:
 - $ightharpoonup A_1 := \text{primera mitad de } A.$
 - ▶ A₂ := segunda mitad de A.
 - ▶ Ordenar recursivamente A_1 y A_2 por separado.
 - ► Combinar A_1 y A_2 para obtener los elementos de A ordenados (apareo de arreglos).

Ejemplo: Mergesort

Algoritmo divide and conquer para ordenar un arreglo A de n elementos (von Neumann, 1945).

- ▶ Si *n* es pequeño, ordenar por cualquier método sencillo.
- Si n es grande:
 - ▶ A₁ := primera mitad de A.
 - $A_2 :=$ segunda mitad de A.
 - ▶ Ordenar recursivamente A_1 y A_2 por separado.
 - ▶ Combinar A_1 y A_2 para obtener los elementos de A ordenados (apareo de arreglos).

Este algoritmo contiene todos los elementos típicos de la técnica divide and conquer.

Ejemplo: Mergesort

Algoritmo divide and conquer para ordenar un arreglo A de n elementos (von Neumann, 1945).

- ► Si *n* es pequeño, ordenar por cualquier método sencillo.
- Si n es grande:
 - $ightharpoonup A_1 := primera mitad de A.$
 - $A_2 :=$ segunda mitad de A.
 - ▶ Ordenar recursivamente A_1 y A_2 por separado.
 - ▶ Combinar A_1 y A_2 para obtener los elementos de A ordenados (apareo de arreglos).

Este algoritmo contiene todos los elementos típicos de la técnica divide and conquer.

- ▶ Sean $A, B \in \mathbb{R}^{n \times n}$. El algoritmo estándar para calcular AB tiene una complejidad de $\Theta(n^3)$.
- Durante muchos años se pensaba que esta complejidad era óptima.

- ▶ Sean $A, B \in \mathbb{R}^{n \times n}$. El algoritmo estándar para calcular AB tiene una complejidad de $\Theta(n^3)$.
- Durante muchos años se pensaba que esta complejidad era óptima.
- ► Sin embargo, Strassen (1969) pateó el tablero. Particionamos:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Definimos:

$$M_{1} = (A_{21} + A_{22} - A_{11}) (B_{22} - B_{12} + B_{11})$$

$$M_{2} = A_{11}B_{11}$$

$$M_{3} = A_{12}B_{21}$$

$$M_{4} = (A_{11} - A_{21}) (B_{22} - B_{12})$$

$$M_{5} = (A_{21} + A_{22}) (B_{12} - B_{11})$$

$$M_{6} = (A_{12} - A_{21} + A_{11} - A_{22}) B_{22}$$

$$M_{7} = A_{22} (B_{11} + B_{22} - B_{12} - B_{21}).$$

Definimos:

$$M_{1} = (A_{21} + A_{22} - A_{11}) (B_{22} - B_{12} + B_{11})$$

$$M_{2} = A_{11}B_{11}$$

$$M_{3} = A_{12}B_{21}$$

$$M_{4} = (A_{11} - A_{21}) (B_{22} - B_{12})$$

$$M_{5} = (A_{21} + A_{22}) (B_{12} - B_{11})$$

$$M_{6} = (A_{12} - A_{21} + A_{11} - A_{22}) B_{22}$$

$$M_{7} = A_{22} (B_{11} + B_{22} - B_{12} - B_{21}).$$

Entonces,

$$AB = \left(\begin{array}{cc} M_2 + M_3 & M_1 + M_2 + M_5 + M_6 \\ M_1 + M_2 + M_4 - M_7 & M_1 + M_2 + M_4 + M_5 \end{array} \right).$$

- ► Este algoritmo permite calcular el producto AB en tiempo $O(n^{\log_2(7)}) = O(n^{2,81})$ (!).
- ▶ Requiere 7 multiplicaciones de matrices de tamaño $n/2 \times n/2$, en comparación con las 8 multiplicaciones del algoritmo estándar.
- La cantidad de sumas (y restas) de matrices es mucho mayor.

- ► Este algoritmo permite calcular el producto AB en tiempo $O(n^{\log_2(7)}) = O(n^{2,81})$ (!).
- ▶ Requiere 7 multiplicaciones de matrices de tamaño $n/2 \times n/2$, en comparación con las 8 multiplicaciones del algoritmo estándar.
- ▶ La cantidad de sumas (y restas) de matrices es mucho mayor.
- ▶ El algoritmo asintóticamente más eficiente conocido a la fecha tiene una complejidad de $O(n^{2,376})$ (Coppersmith y Winograd, 1987).

Backtracking

Idea: Técnica para recorrer sistemáticamente todas las posibles configuraciones de un espacio asociado a soluciones candidatos de un problema computacional. Se puede pensar este espacio tiene forma de árboles dirigidos (o grafos dirigidos en general pero sin ciclos).

Backtracking

Idea: Técnica para recorrer sistemáticamente todas las posibles configuraciones de un espacio asociado a soluciones candidatos de un problema computacional. Se puede pensar este espacio tiene forma de árboles dirigidos (o grafos dirigidos en general pero sin ciclos).

- ▶ Habitualmente, utiliza un vector $a = (a_1, a_2, ..., a_k)$ para representar una solución candidata, cada a_i pertenece un dominio/conjunto ordenado y finito S_i .
- ► Se extienden las soluciones candidatas agregando un elemento más al final del vector *a*, las nuevas soluciones candidatas son sucesores de la anterior.

Backtracking: Esquema General

BT(a, k)

- 1. Si a es solución
- entonces solución:=a
- 3. debe_finalizar?:=verdadero
- 4. sino para cada $a' \in Sucesores(a, k)$
- 5. BT(a', k+1)
- 6. Si debe_finalizar?
- entonces retornar solucion

Backtracking: Esquema General

BT(a, k)

- 1. Si a es solución
- 2. entonces solución:=a
- 3. debe_finalizar?:=verdadero
- 4. sino para cada $a' \in Sucesores(a, k)$
- 5. BT(a', k+1)
- Si debe_finalizar?
- entonces retornar solucion
- > solución es una variable global que guarda la solución final.
- debe_finalizar? es una variable booleana global que indica que se encontró o no la solución final, inicialmente tiene valor falso.

Ubicar 8 reinas en el tablero de ajedrez (8×8) sin que ninguna "amenace" a otra.

Ubicar 8 reinas en el tablero de ajedrez (8×8) sin que ninguna "amenace" a otra.

L'Cuántas combinaciones del tablero hay que considerar?

Ubicar 8 reinas en el tablero de ajedrez (8×8) sin que ninguna "amenace" a otra.

¿Cuántas combinaciones del tablero hay que considerar?

$$\binom{64}{8} = 442616536$$

Sabemos que cada fila debe tener exactamente una reina. Entonces a_i es la posición (columna que está la reina de la fila i) o sea podemos usar el vector a = (a₁,..., a₈) representa una solución candidata.

Ubicar 8 reinas en el tablero de ajedrez (8×8) sin que ninguna "amenace" a otra.

¿Cuántas combinaciones del tablero hay que considerar?

$$\binom{64}{8} = 442616536$$

Sabemos que cada fila debe tener exactamente una reina. Entonces a_i es la posición (columna que está la reina de la fila i) o sea podemos usar el vector a = (a₁,..., a₈) representa una solución candidata.

Tenemos ahora $8^8 = 16777216$ combinaciones.

► Es más, una misma columna debe tener exactamente una reina!

Es más, una misma columna debe tener exactamente una reina!

Se reduce a 8! = 40320 combinaciones.

Es más, una misma columna debe tener exactamente una reina!

Se reduce a 8! = 40320 combinaciones.

¿Cómo chequear un vector a es una solución?

Es más, una misma columna debe tener exactamente una reina!

Se reduce a 8! = 40320 combinaciones.

¿Cómo chequear un vector a es una solución?

$$a_i - a_j \notin \{i - j, 0, j - 1\}, \forall i, j \in \{1, \dots, 8\} \text{ e } i \neq j.$$

Es más, una misma columna debe tener exactamente una reina!

Se reduce a 8! = 40320 combinaciones.

¿Cómo chequear un vector a es una solución?

$$a_i - a_j \notin \{i - j, 0, j - 1\}, \forall i, j \in \{1, \dots, 8\} \text{ e } i \neq j.$$

Ahora estamos en condición de implementar un algoritmo para resolver el problema!

Es más, una misma columna debe tener exactamente una reina!

Se reduce a 8! = 40320 combinaciones.

¿Cómo chequear un vector a es una solución?

$$a_i - a_j \notin \{i - j, 0, j - 1\}, \forall i, j \in \{1, \dots, 8\} \text{ e } i \neq j.$$

- ► Ahora estamos en condición de implementar un algoritmo para resolver el problema!
- ▶ ¿Cómo generalizar para el problema de *n* reinas?

Algoritmos probabilísticos

- Cuando un algoritmo tiene que hacer una elección a veces es preferible elegir al azar en vez de gastar mucho tiempo tratando de ver cual es la mejor elección.
- ► Algoritmos al azar para problemas numéricos: siempre da una respuesta aproximada. + tiempo proceso ⇒ + precisión (por ejemplo cálculo de integral)
- ► Algoritmos de Monte Carlo: siempre da una respuesta exacta no garantizada. + tiempo proceso ⇒ + probabilidad de acertar (por ejemplo determinar la existencia de un elemento mayor en un arreglo).

Algoritmos probabilísticos

- ► Algoritmos Las Vegas: la respuesta siempre es correcta pero puede no darla. + tiempo proceso ⇒ + probabilidad de obtener la respuesta (por ejemplo problema de 8 reinas)
- Algoritmos Sherwood : randomiza un algoritmo determinístico donde hay una gran diferencia entre el peor caso y caso promedio. Elimina la diferencia entre buenas y malas instancias (quicksort).

Heurísticas

- Dado un problema Π, un algoritmo heurístico es un algoritmo que intenta obtener soluciones para el problema que intenta resolver pero no necesariamente lo hace en todos los casos.
- Sea Π un problema de optimización, I una instancia del problema, x*(I) el valor óptimo de la función a optimizar en dicha instancia. Un algoritmo heurístico obtiene una solución con un valor que se espera sea cercano a ese óptimo pero no necesariamente el óptimo.
- Si H es un algoritmo heurístico para un problema de optimización llamamos x^H(I) al valor que devuelve la heurística.

Algoritmos aproximados

Decimos que H es un algoritmo ϵ – aproximado para el problema Π si para algún $\epsilon>0$

$$|x^{H}(I) - x^{*}(I)| = \epsilon |x^{*}(I)|$$

Algoritmos con certificados

- ¿Cómo podemos saber si la respuesta o el resultado de un algoritmo es correcto o no?
- Algoritmos que ordenan un arreglo
- Algoritmos que multiplican matrices
- Algoritmos que determinan un número natural es o no compuesto

Algoritmos con certificados

- ¿Cómo podemos saber si la respuesta o el resultado de un algoritmo es correcto o no?
- Algoritmos que ordenan un arreglo
- Algoritmos que multiplican matrices
- Algoritmos que determinan un número natural es o no compuesto
- Certificados y algoritmos de verificación o autenticación