Global geometry and gravitation

2025-08-16

SPEC-00-STR-GEOM-GRAV-0001 - Global Geometry & Gravitation (EVOL-00, 127 m)

Summary / Kurzfassung (EN/DE)

EN: Defines the overall geometry, hull layering and spin-derived gravity profile for Sphere Space Station **Earth ONE** (outer diameter **127 m**). Includes deck banding, comfort models and g-tables based on the EVOL-00 spin law (1 g at **DECK 012 / r = 52 m**).

DE: Definiert Geometrie, Hüllenaufbau und spin-basierte Gravitation für die Sphere Space Station **Earth ONE** (Außendurchmesser **127 m**). Enthält Deck-Bänder, Komfortmodelle und g-Tabellen gemäß EVOL-00 Spin-Law (1 g auf **DECK 012 / r = 52 m**).

Status: DRAFT Version: v0.1.0 Date: 2025-08-16 Scope: Geometrie der Sphere Space Station Earth ONE (Außendurchmesser 127,00 m), Hüllenaufbau (0,50 m), Deck-Bänder, künstliche Gravitation $a(r)=\omega^2 r$, Komfort-/Wohlfühlmodelle (grav-basiert + umweltbasiert), Tabellen mit aktuellen Werten je Deck inkl. Verweilzeit-Kategorien. Spin-Kalibrierung (EVOL-00): 1 g $(g_0=9.80665\,\mathrm{m/s^2})$ bei r = 52{,}00 m $\Rightarrow \omega=\sqrt{g_0/52,00}=0.43430\,\mathrm{s^{-1}}\Rightarrow$ 4,147 rpm.

1. Station & Hülle (Geometrie, Materialien)

- Stationsform: Kugel, Außendurchmesser 127{,}00 m → Außenradius 63{,}50 m.
- Druckhülle ("Hull"): nominelle Dicke 0{,}50 m; Schichten (außen→innen): MMOD-Bumper (Whipple/Stuffed-Whipple), Standoff/MLI, Druckwand (SiC-Verbund), innen Servicekanäle/Verkleidung.
- **Primärmaterialien:** Tragstruktur **SiC-Verbund** (lokal Stahl/Inconel an Lastknoten/Öffnungen); thermische Füll-/Isolationslagen **MLI/Aerogel/Polyimid**.
- **Sichtöffnungen:** optische Stacks (Fused Silica/Borosilikat; Evaluierung ALON/Spinell für Kick/Scratch-Panes), **Außenschotts/MDPS-Shutters** analog bemannter LEO-Module.
- Polar/Axial: DECK 000 ("Wormhole") Mikro-g-Korridor über die 127,00 m Achse (Docking/Transfer).

Normative Hinweise: MMOD-Auslegung per Stuffed-Whipple-Gleichungen; Umwelt-/Habitability-Leitwerte gem. **NASA-STD-3001 Vol. 2** (akt. Revision). Siehe Referenzen [1–3].

2. Künstliche Gravitation - Formeln (SI)

- Zentrifugalbeschleunigung: $a(r) = \omega^2 r$ mit r in m, ω in s⁻¹.
- Coriolisbeschleunigung: $|a_{\rm cor}|=2\,\omega\,v$ für Bewegung mit Geschwindigkeit v relativ zur
- Vertikal-Gradient (Kopf \leftrightarrow Fuß, stehende Person h): $\Delta a/a \approx h/r$ (aus $a=\omega^2 r$, $a_{\rm head} = \omega^2(r-h) {\rm).}$ • rpm-Bezug: ${\rm rpm} = \omega \cdot 60/(2\pi) {\rm .}$

3. EVOL-00 "Spin-Law"

Sollwert: $a = 9.80665 \, \mathrm{m/s^2}$ bei $r = 52.00 \, \mathrm{m}$. Ergebnis: $\omega = 0.43430 \, \mathrm{s^{-1}} \Rightarrow$ **4,147 rpm**. Human Factors (Kurzlage): ~4 rpm gelten als robust für breite Populationen; höhere Raten sind mit Adaption/Training möglich (Kurz-/Langzeitstudien). Siehe [7], [8].

4. Deck-Geometrien (EVOL-00)

- Deck-Band-Raster: konzentrische Bänder à 3{,}50 m, beginnend bei 10{,}50 m bis zur Innenhülle 63{,}00 m.
- Decks: 001 10,50-14,00 m 002 14,00-17,50 m 003 17,50-21,00 m 004 21,00-24,50 m · **005** 24,50-28,00 m · **006** 28,00-31,50 m · **007** 31,50-35,00 m · **008** 35,00-38,50 m · **009** 38,50-42,00 m · **010** 42,00-45,50 m · **011** 45,50-49,00 m · **012** 49,00-52,50 m · **013** 52,50-56,00 m · **014** 56,00-59,50 m · **015** 59,50-63,00 m.

4.1 g-Tabelle (Boden/Mitte/Decke pro Deck, EVOL-00, $\omega = 0.434\,\mathrm{s}^{-1} \approx$ 4,147 rpm)

Hinweis: Werte basieren noch auf der alten Referenz (1 g @ 38 m) und werden für DECK 012 aktualisiert. Konvention: "Boden" = äußere Deckgrenze (max. r); "Decke" = innere Deckgrenze (min. r). **Einheiten:** m/s² und in \mathbf{g}_0 (Erde = 1,000). Berechnung: $a(r) = \omega^2 r = g_0 \cdot r/52{,}00$. Ag (Kopf-Fuß) am Boden mit $h=2{,}0$ m: $100 \cdot h/r_{\mathsf{floor}}$.

Deck	$r_in \rightarrow r_mid \rightarrow r_out (m)$	g_floor (m/s² / g ₀)	g_mid (m/s² / g ₀)	g_ceiling (m/s² / g ₀)	Δg_Kopf-Fuß am Boden
001	10.50 → 12.25 → 14.00	3.613 / 0.368	3.161 / 0.322	2.710 / 0.276	14.29 %
002	14.00 → 15.75 → 17.50	4.516 / 0.461	4.065 / 0.414	3.613 / 0.368	11.43 %
003	17.50 → 19.25 → 21.00	5.419 / 0.553	4.968 / 0.507	4.516 / 0.461	9.52 %
004	21.00 → 22.75 → 24.50	6.323 / 0.645	5.871 / 0.599	5.419 / 0.553	8.16 %
005	24.50 → 26.25 → 28.00	7.226 / 0.737	6.774 / 0.691	6.323 / 0.645	7.14 %
006	28.00 → 29.75 → 31.50	8.129 / 0.829	7.678 / 0.783	7.226 / 0.737	6.35 %
007	31.50 → 33.25 → 35.00	9.032 / 0.921	8.581 / 0.875	8.129 / 0.829	5.71 %

-	r in → r mid →	g floor (m/s² /	g mid (m/s²	g ceiling (m/s²	Δg Kopf-Fuß
Deck	r_out (m)	g_0)	$/ g_0)$	$/g_0$	am Boden
800	35.00 → 36.75 →	9.936 / 1.013	9.484 /	9.032 / 0.921	5.19 %
	38.50		0.967		
009	38.50 → 40.25 →	10.839 /	10.387 /	9.936 / 1.013	4.76 %
	42.00	1.105	1.059		
010	42.00 → 43.75 →	11.742 /	11.291 /	10.839 / 1.105	4.40 %
	45.50	1.197	1.151		
011	45.50 → 47.25 →	12.645 /	12.194 /	11.742 / 1.197	4.08 %
	49.00	1.289	1.243	-	
012	49.00 → 50.75 →	13.549 /	13.097 /	12.645 / 1.289	3.81 %
	52.50	1.382	1.336	•	
013	52.50 → 54.25 →	14.452 /	14.000 /	13.549 / 1.382	3.57 %
	56.00	1.474	1.428	•	
014	56.00 → 57.75 →	15.355 /	14.904 /	14.452 / 1.474	3.36 %
	59.50	1.566	1.520		
015	59.50 → 61.25 →	16.258 /	15.807 /	15.355 / 1.566	3.17 %
0.20	63.00	1.658	1.612		3.17 70
015				15.355 / 1.566	3.17 %

Hinweise: • 1 g liegt exakt bei $r = 52\{,\}00$ m (innerhalb DECK 012 zwischen Decke und Boden). • Werte linear in r; Rundung auf 3 Dezimalstellen (intern \geq 1e-6).

5. Rechen- & Rundungsregeln

- Primärgleichung: $a(r)=g_0\cdot r/52{,}00.$ Rundung: Anzeige auf 3 Nachkommastellen (m/s²) bzw. 3 Dezimal in ${\bf g}_0$; interne Pipeline double-precision.
- Personenhöhe für Δg : h = 2.0 m (stehend).

6. "Gravitations-Wohlfühlformel" C_a

$$C_g = 0.50\,C_g^{(a)} + 0.25\,C_g^{(\nabla)} + 0.15\,C_g^{(\mathrm{cor})} + 0.10\,C_g^{(\omega)}. \label{eq:cg}$$

- Ziel-g-Abweichung: $C_g^{(a)} = 1 |g g_{\rm pref}|/g_{\rm pref}$, mit $g_{\rm pref} pprox 0.9\,g_0.$
- Vertikal-Gradient: $C_g^{(\nabla)}=1-(\Delta g/g)/0.20$ (linear bis 20 % toleriert). Coriolis (typ. v=1 m/s): $C_g^{(\text{cor})}=1-\frac{2\omega v}{0.2\,g_0}.$
- Spin-Term: $C_q^{(\omega)} = 1 \max(0, (\text{rpm} 4)/2).$

7. "Umwelt-Wohlfühlformel" $C_{\mathtt{env}}$ & Gesamtwert

- Umwelt-Güte: $C_{\text{env}} = \prod_i f_i(x_i)$, $i \in \{\text{Noise, CO}_2, \text{T/RH, Lux, Crowd, Light-Cycle}\};$ x_i in
- Gesamt: $C = 0.7 \, C_q + 0.3 \, C_{\rm env}.$

• **Leitnormen: NASA-STD-3001 Vol. 2** (Habitability, Health & Performance) – aktuellste Revision.

8. Wohlfühlen (Grav + Umwelt)

8.1 Gravitative Wohlfühlmatrix (EVOL-00)

Kategoriegrenzen: $A \ge 0.85 \cdot B \ 0.70 - 0.85 \cdot C \ 0.55 - 0.70 \cdot D \ 0.40 - 0.55 \cdot E \ 0.25 - 0.40$. **Hinweis:** Bei **4.852 rpm** wirken **Coriolis** und **Spin-Term** stärker als bei ≤ 4 rpm; Komfort-Peak liegt **nahe 0,9 g** (Decks 006-009).

Deck	C_g	Kat.	Empfohlene Nutzung / Verweilzeit (Richtwert)
001	0.36	Е	Transit, Technik-Gänge, ≤ 2 h; Kopfbewegungen langsam.
002-005 0.	45-0.67	D-	Werkstätten/Logistik, 4–8 h (innen höherer $ ilde{C}_{q}$); Training
		С	empfohlen.
006-009 0	73-0.79	В	Wohnen/Arbeit gemischt, bis 16 h; sehr gute Alltagstauglichkeit.
010-014 0.	.49-0.68	C-	Lab/Office/Produktion, 4-8 h; Pausen alle 2 h.
		D	
015	0.44	D	Schwerlast/kurze Einsätze, ≤ 4 h; Konditionierung sinnvoll.

Numerik nach Kap. 6 (Formel & Gewichte) und Kap. 4/5 (g-Profile). Forschungslage: ~4 rpm robust, höhere Raten mit Adaption/Training möglich. ([NSS][7], [PMC][8])

8.2 Umwelt-Wohlfühlen (Leitplanken)

- **Noise:** ≤ NC-50 in Arbeitsbereichen, Schlaf ≤ Hintergrund+10 dB.
- CO₂: Leitwerte gem. NASA-STD-3001; alarmgestützte Lüftungs-/Absorptionspfade.
- Licht: zirkadiane Profile, Lux-Zonen nach Tätigkeit.
- Dichte/Privatsphäre: Zielwerte nach Funktionsbereich (Crew/Visitor/OPS).

9. Sektoren-Layout & Systemintegration (DECK 013-015)

Sektorierung: $12 \times 30^\circ$ (A...L). **Radiale Druck/Brand-Schotts** entlang Sektorgrenzen; **HL-Schächte** @ $0^\circ/90^\circ/180^\circ/270^\circ$, **PAX-Schächte** @ $\pm 22.5^\circ$ etc.; **Servicetunnel** doppelt (inner/outer ring). **VENT/BOP** radial (keine tangentiale Druckentlastung). **HZ-Zonen:** HZ-1 normal, HZ-2 erhöht (Energie/Heiß), HZ-3 kritisch (Nuklear/Kryo/Explosion).

9.1 Hoch-g Deck-Rollen (Kurz)

- **DECK 013** Puffer/Service (Schild-Wasser, HX-Galerien, Dekon).
- **DECK 014 -** Nuklear-Primär (SMR-Containments, Primärkreise) + Power-Conversion/Verteilung.
- **DECK 015** Tankfarm & Thermik (Wasser-Großspeicher, Sekundär/Tertiär-Loops, Gase; Kryo bevorzugt hull-mounted).

9.2 Tabellen (Auszug)

DECK 015 - Tankfarm & Thermik (HZ-Schwerpunkte, D/E-Verweilzeit)

Sek- tor	HZ	Primärfunktion	Kern-Equip	Schäch	nt&ent/Relief	Kernauszüge Interfaces
Α	2	Wasser-Puffer / Heat-Sink	2× WTR 150 m³, HX-Module	HL-0	BOP-015-A	THM SecLoop-N; PWR DC-B1
E	3	Gase (O_2/N_2) getrennt	Verbund- Flaschenbänke	-	VENT-015- E→AII	$\begin{array}{l} {\rm GAS} \\ {\rm O_2/N_2\text{-}Header;} \\ {\rm SAFE\ EX} \end{array}$
F	3	Kryo-Interface	Manifolds → Hull-Pods	-	VENT-015-F	THM Cryo-Manifold
K	2	Wasser-Schildring	Ringtank 250 m³	_	BOP-015-K	THM Tie-in 014

DECK 014 - SMR & Conversion (kritisch, D/E-Verweilzeit)

Sek- tor	HZ	Primärfunktion	Kern-Equip	Schäc	:h t/ ent/Relief	Kernauszüge Interfaces
A	3	SMR-Zelle-1 (Containment)	RPV-1, Primär-Loop- N	HL-0	VENT-014- A→AII + Filter	THM Pri→Hull-HX-N; SAFE ESFAS
G	3	SMR-Zelle-2 (Containment)	RPV-2, Primär-Loop- S	HL- 180	VENT-014- G→AII + Filter	THM Pri→Hull-HX-S
C/I	2	Power-Conversion N/S	Bray- ton/Rankine- Skids	-	VENT-014-C/I	PWR DC-Main N/S

(Vollständige Sektor-Tabellen: interne SSOT-Anlage ../spec-00-str-deck-0xx-sector-layout....md.)

10. Rationale (nicht-normativ)

- Warum 014 für SMR, 015 für Tanks? 014 (~1,52 g mid) reduziert mechanische Lasten ggü. 015 (~1,61 g mid) bei gleicher Nähe zur Hülle/Radiatoren. 015 bietet dafür exzellentes Phasen-Settling und thermische Puffer für Loops.
- Sicherheitsprinzip: keine gemeinsame Ursache SMR und H₂/CH₄ strikt getrennt (Deck/Sektor/VENT-Trennung), radiale Entlastung direkt ins All.

11. Offene Punkte (TBD/TBC)

- MMOD-BLE-Feinauslegung (Partikel-Spektrum, Winkel, Dichte) je Hull-Zone.
- Gewichte C_q, C_{env} nach Crew-Trials feinjustieren (inkl. v-Abhängigkeit Coriolis).
- **Detail-ICDs**: VENT/BOP/PT/AL-C/HL/PAX-IDs mit Koordinaten & Prüfstatus.

12. Referenzen (Auswahl)

[1] **NASA-STD-3001 Vol. 2** – Human Systems Integration Requirements (aktuelle Revision). [2] **Christiansen, E.** Meteoroid/Debris Shielding – Whipple & Stuffed-Whipple Basics (NASA/JSC). [3]

NASA Materials/MDPS – Windows/Optics (Fused Silica, Borosilicate, ALON/Spinel), Cupola Shutters. [4] **Classical AG Physics** – Rotating frames, centrifugal/coriolis (Monograph/NTRS). [5] **Engineering Math** – $a(r)=\omega^2 r$, rpm-Umrechnung, Gradient h/r (Lehrwerke/Notes). [6] **Design Ops** – Safety zoning (HZ-1/2/3), pressure-tight doors PT-A/-B, airlocks AL-C (Projektstandard). [7] **Globus, A.; Hall, T.** Space Settlement Population Rotation Tolerance (NSS – Review/Position). [8] **Clément, G.** Artificial gravity as a countermeasure... (Review, peer-reviewed; z. B. npj Microgravity).