Aluminium – Copper – Erbium

Paola Riani, Laura Arrighi, Pierre Perrot

Literature Data

A critical review of the literature data up to 1989 has been made by [1991Ran] and later literature considered in a general review of the crystallochemical and phase equilibria of the R-Cu-Al systems (R = rare-earth) by [2003Ria]. Different compounds have been identified and their crystal structures determined: (1) ErCuAl by [1968Dwi, 1973Oes, 1989Kuz], with a high pressure modification reported by [1987Tsv1, 1987Tsv2], (2) ErCuAl₃ by [1988Kuz, 1989Kuz], (3) ErCu₄Al by [1978Tak], (4) Er₂Cu₇Al₁₀ by [1982Pre, 1989Kuz], (5) ErCu₄Al₈ by [1976Bus, 1979Fel, 1989Kuz], (6) ErCu₆Al₆ by [1980Fel, 1981Fel] and (7) ErCu_{0.9}Al_{2.1} reported by [1992Kuz].

The alloys generally were prepared from 99.5% to 99.9 mass% Er and higher purity Cu and Al. They were melted either by arc melting or under argon protection in induction furnaces using MgO crucibles; followed by homogenization heat treatments. [1989Kuz] studied the phase equilibria at 600°C by X-ray powder analysis on 107 samples and reported trends in the lattice parameters for a number of solid solutions. [1974Oes] studied the homogeneity ranges of $\text{Er}(\text{Cu}_{1-x}\text{Al}_x)_2$ and $\text{Er}(\text{Cu}_x\text{Al}_{1-x})_2$ and determined the limits of solubility by the appearance of X-ray diffraction lines characterizing a new phase. The results reveal that copper in $\text{Er}(\text{Cu}_2$ can be replaced by up to about 1.5 mole% aluminium and that in $\text{Er}(\text{Al}_2)$ up to about 15 mole% aluminium can be replaced by copper.

Binary Systems

The reported ternary experimental data are limited and can be summarized in the isothermal section at 600°C, which is consistent in its binary boundaries with (a) the Al-Er phase diagram by [1988Gsc], the Al-Cu phase diagram by [2003Gro] and Er-Cu as reported by [1994Sub]. Amendments have been made to the reported crystal structure data based on [2003Ria].

Solid Phases

According to [1980Fel] the ThMn₁₂ type structure is observed for RCu₄Al₈ and RCu₆Al₆, where R = rare earth from Gd to Lu and Y. From the literature it is not always explicit whether the two compositions 1:4:8 and 1:6:6 correspond to two different phases or whether they are the limits of a solid solution range. [1989Kuz] found τ_1 ,ErCu₄Al₈ to be stoichiometric and did not confirm the existence of τ_1 ,ErCu₆Al₆. However, on the basis of [1980Fel], we considered the τ_1 ,Er(Cu_xAl_{1-x})₁₂ as non stoichiometric with 0.33 $\leq x \leq 0.5$. Obviously its range changes with the temperature, as [1980Fel] and [1989Kuz] observed it at different compositions at different temperatures, see Table 1. The existence of a homogeneity range for the compounds R(Cu_xAl_{1-x})₁₂, where R is a rare earth, was recently suspected by the same team for R = Y [2003Kra] and confirmed for R = Sc [2003Kan].

The crystal structure of the RCu₄Al phases (R = La to Sm and Gd to Tm) has been studied by [1978Tak]; this composition is included by [1989Kuz] in the homogeneity range of the phase τ_3 , Er(Cu_xAl_{1-x})₅ with $0.46 \le x \le 0.82$.

Subsequently [1992Kuz] determined the crystal structure of the τ_4 ,ErCu_{0.9}Al_{2.1} phase as pertaining to the PuNi₃ type (hR36).

Crystallographic data for all solid phases are given in Table 1.

Isothermal Sections

Figure 1, an isothermal section at 600° C is based on the work of [1989Kuz], corrected at the Al-Cu boundary to be in agreement with the accepted binary diagram. At the Cu-Er edge of the ternary isothermal section, however, the two compounds Er_2Cu_7 and Er_2Cu_9 are omitted, although they are reported in the accepted binary, as they were not observed at this temperature in the ternary alloys by [1989Kuz]. These

Landolt-Börnstein
New Series IV/11A1

MSIT®

two compounds, designated Er_2Cu_7 and Er_2Cu_9 by [1994Sub] have been designated as $ErCu_x$ and $ErCu_y$ by [1970Bus], who assumes that $ErCu_x$ forms peritectically at 940°C, that $ErCu_y$ melts congruently at 1010°C. By lack of data in the Cu-Er system these assumptions are based on the melting behavior of other similar rare earth-copper compounds.

Inside the ternary system there are four ternary solid solutions: (1) τ_1 ,Er(Cu_xAl_{1-x})₁₂ (ThMn₁₂ type), which is shown as a stoichimetric phase at this temperature according to [1989Kuz], (2) τ_2 , Er₂(Cu_xAl_{1-x})₁₇ with Th₂Zn₁₇ type structure and a solution range of 0.41 $\leq x \leq$ 0.56, (3), τ_3 , Er(Cu_xAl_{1-x})₅ in a range of 0.46 $\leq x \leq$ 0.82 and with a CaCu₅ type structure and (4) the τ_6 , ErCuAl with a small solubility range and ZrNiAl type structure.

Three stoichiometric compounds have been found. (I) $Er_5Cu_6Al_9$ (PuNi₃ type) for which [1992Kuz] suggested that it assimilates with $ErCu_{0.9}Al_{2.1}(\tau_4)$ (PuNi₃ type) in samples annealed at 600°C, (II) the τ_5 , $ErCuAl_3$ being of HoCuAl₃ type structure and (II) the τ_7 , $Er_2Cu_3Al_5$ whose structure is unknown. At 600°C $ErCu_2$ dissolves up to ~1 at.% aluminium, ErCu dissolves up to ~20 at.% aluminium and $ErAl_2$ up to about 13 at.% copper. The τ_8 , $Er_6Cu_{16}Al_7$ (Th₆Mn₂₃ type) identified by [1990Ste] has not been observed at 600°C by [1989Kuz]. Its position in the phase diagram is shown in Fig. 1, but it is not possible to draw reliable equilibrium lines between τ_8 and its surrounding phases.

Notes on Materials Properties and Applications

[1979Fel] studied the magnetism and hyperfine interactions of 151 Eu, 155 Gd, 161 Dy, 166 Er and 170 Yb in RCu₄Al₈ and [1995Cac] reported neutron spectroscopy studies of crystal-field interaction in RT₄Al₈ compounds (R = Tb, Ho, Er; T = Mn, Fe, Cu).

[1973Oes] measured the Curie temperature of the ErCuAl compound as 17 K. [1996Jav] found that ErCuAl orders ferromagnetically below T_c = 6.8 K with the magnetic moments parallel to the c-axis, a behavior which [1998Jav] confirmed later by measuring susceptibility, magnetization and specific heat.

[1996Mit] studied the interaction of H_2 with RCuAl (R = Dy, Ho, Er).

For the ErCu₄Al₈ compound, a type 1 antiferromagnetic structure is observed by neutron powder diffraction in [1997Bai].

References

- [1931Pre] Preston, G.D., "An X-ray Investigation of some Copper-Aluminium Alloys", *Philos. Mag.*, **12**, 980-993 (1931) (Crys. Structure, Experimental, 11)
- [1968Dwi] Dwight, A.E., Mueller, M.H., Conner, R.A., JR., Downey, J.W., Knott, H., "Ternary Compounds with the Fe₂P-Type Structure", *Trans. Met. Soc. AIME*, **242**, 2075-2080 (1968) (Crys. Structure, Experimental, 14)
- [1970Bus] Buschow, K.H.J., "The Erbium-Copper System", *Philips J. Res.*, **25**, 227-230 (1970) (Equi. Diagram)
- [1973Oes] Oesterreicher, H., "Structural and Magnetic Studies on Rare Earth Compounds RNiAl and RCuAl", *J. Less-Common Met.*, **30**, 225-236 (1973) (Crys. Structure, Magn. Prop., Experimental, 21)
- [1974Oes] Oesterreicher, H., "Constitution of Aluminum Base Rare Earth Alloys RT₂-RAl₂ (R = Pr, Gd, Er; T = Mn, Fe, Co, Ni, Cu)", *Inorg. Chem.*, **13**, 2807-2811 (1974) (Equi. Diagram, Crys. Structure, Experimental, 30)
- [1976Bus] Buschow, K.H.J., van Vucht, J.H.N., van Den Hoogenhof, W.W., "Note on the Crystal Structure of the Ternary Rare Earth 3d Transition Metal Compounds of the Type RT₄Al₈", *J. Less-Common Met.*, **50**, 145-150 (1976) (Crys. Structure, Experimental, 2)
- [1978Tak] Takeshita, T., Malik, S.K., Wallace, W.E., "Crystal Structure of RCu₄Ag and RCu₄Al (R = Rare Earth) Intermetallic Compounds", *J. Solid State Chem.*, **23**, 225-229 (1978) (Crys. Structure, Experimental, 8)
- [1979Fel] Felner, I., Nowik, I., "Magnetism and Hyperfine Interactions of ⁵⁷Fe, ¹⁵¹Eu, ¹⁵⁵Gd, ¹⁶¹Dy, ¹⁶⁶Er and ¹⁷⁰Yb in RM₄Al₈ Compounds (R=Rare Earth or Y, M=Cr, Mn, Fe, Cu)", *J. Phys. Chem. Solids*, **40**, 1035-1044 (1979) (Crys. Structure, Magn. Prop., Experimental, 8)

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

- [1980Fel] Felner, I., "Crystal Structure of Ternary Rare Earth 3d Transition Metal Compounds of the RT₆Al₆ Type", *J. Less-Common Met.*, **72**, 241-249 (1980) (Crys. Structure, Experimental, 10)
- [1981Fel] Felner, I., Seh, M., Rakavy, M., Nowik, I., "Magnetic Order and Hyperfine Interactions in RFe₆Al₆ (R = Rare Earth)", *J. Phys. Chem. Solids*, **42**, 369-377 (1981) (Crys. Structure, Experimental, Magn. Prop., 6)
- [1982Pre] Prevarsky, A.P., and Kuz'ma, Yu.B., "New Compounds with Th₂Sn₁₇ Type Structure in REM-Al-Cu Systems", *Russ. Metall.*, **6**, 155-156 (1982) (Crys. Structure, Experimental, 5)
- [1985Mur] Murray, J.L., "The Aluminum-Copper System", *Int. Met. Rev.*, **30**(5), 211-233 (1985) (Equi. Diagram, Crys. Structure, Review, 230)
- [1987Tsv1] Tsvyashchenko, A.V., Fomicheva, L.N., "High Pressure Synthesis and Structural Studies of Rare Earth (R) Compounds RCuAl", *J. Less-Common Met.*, **134**, L13-L15 (1987) (Crys. Structure, Experimental, 10)
- [1987Tsv2] Tsvyashchenko, A.V., Fomicheva, L.N., "New Polymorphic Modifications of the Compounds RTAl (R = r.e.m., T = Cu, Ni)", *Inorg. Mater.*, **23**, 1024-1027 (1987), translated from *Izv. Akad. Nauk SSSR, Neorg. Mater.*, **23**, 1148-1152 (1987) (Crys. Structure, Experimental, 15
- [1988Gsc] Gschneidner Jr, K.A., Calderwood, F.W., "The Al-Er (Aluminum-Erbium) System", *Bull. Alloy Phase Diagrams*, **9**, 676-678 (1988) (Equi. Diagram, Review, 29)
- [1988Kuz] Kuz'ma, Yu.B., Stel'makhovich, B.M., "New RCuAl₃ Compounds (R = Tb, Dy, Ho, Er, Tm, Yb) and Their Crystal Structure" (in Russian), *Dokl. Akad. Nauk Ukr. SSR, B: Geol. Khim. Biol.*, (11), 40-43 (1988) (Crys. Structure, Experimental, 4)
- [1988Sub] Subramanian, P.R., Laughlin, D.E., "The Cu-Er (Copper-Erbium) System", *Bull. Alloy Phase Diagrams*, **9**, 337-342 (1988) (Equi. Diagram, Review, 17)
- [1989Kuz] Kuz'ma, Yu.B., Pan'kiv, T.V., "X-Ray Structural Study of the Er-Cu-Al System", *Russ. Metall.*, (3), 208-210 (1989), translated from *Izv. Akad. Nauk SSSR Met.*, (3), 218-219 (1989) (Equi. Diagram, Crys. Structure, Experimental, 5)
- [1989Mee] Meetsma, A., De Boer, J.L., van Smaalen, S., "Refinement of the Crystal Structure of Tetragonal Al₂Cu", *J. Solid State Chem.*, **83**(2), 370-372 (1989) (Crys. Structure, Experimental, 17)
- [1990Ste] Stel'makhovych, B.M., Kuz'ma, Y.B., "New Compounds La₆(CuAl)₂₃ and their Crystal Structure", *Dopov. Akad. Nauk. URSR*, (6), 63-65 (1990) (Crys. Structure, Experimental, 4)
- [1991Ell] Ellner, M., Kolatschek, K., Predel, B., "On the Partial Atomic Volume and the Partial Molar Enthalpy of Aluminium in Some Phases with Cu and Cu₃Au Structures", *J. Less-Common Met.*, **170**, 171-184 (1991) (Experimental, Crys. Structure, 57)
- [1991Ran] Ran, Q., "Aluminium-Copper-Erbium", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.12785.1.20, (1991) (Crys. Structure, Equi. Diagram., Assessment, 13)
- [1992Kuz] Kuz'ma, Y.B., Stel'makhovych, B.M., Babizhetsky, V.S., "New Compounds with PuNi₃-Type Structure in REM-Cu-Al Systems", *Russ. Metall.*, **1**, 196-199 (1992), translated from *Izv. Ross. Akad. Nauk Metally*, (2), 227-230, 1992 (Experimental, Crys. Structure, 7)
- [1994Mur] Murray, J.L., "Al-Cu (Aluminum-Copper)" in "*Phase Diagrams of Binary Copper Alloys*", Subramanian, P.R., Chakrabarti, D.T., Laughlin, D.E. (Eds.), ASM Intl., Materials Park, OH, 18-42 1994 (Equi. Diagram, Review, 226)
- [1994Sub] Subramanian, P.R., Laughlin, D.E., "Cu-Dy (Copper-Dysprosium)" in "Monograph Series on Alloy Phase Diagrams Phase Diagrams of Binary Copper Alloys", Subramanian, P.R., Chakrabarti, D.T., Laughlin, D.E. (Eds.), ASM Intl., Vol. 10, 154-157 (1994) (Equi. Diagram, Review, 23)

Landolt-Börnstein
New Series IV/11A1

MSIT®

[1995Cac]	Caciuffo, R., Amoretti, G., Buschow, K.H.J., Moze, O., Murani, A.P., Paci B., "Neutron
	Spectroscopy Studies of the Crystal-Field Interaction in RET ₄ Al ₈ Compounds (RE = Tb,
	Ho or Er; T = Mn, Fe, or Cu)", J. Phys.: Condens. Matter, 7, 7981-7989 (1995)
	(Experimental, Crys. Structure, 23)

- [1996Goe] Gödecke, T., Sommer, F., "Solidification Behaviour of the Al₂Cu Phase", *Z. Metallkd.*, **87**(7), 581-586 (1996) (Equi. Diagram, Crys. Structure, 8)
- [1996Jav] Javorský, P., Burlet, P., Ressouche, E., Sechovský, V., Michor, H., Lapertot, G., "Magnetic Structure Study of ErCuAl and ErNiAl", *Physica B*, **225**, 230-236 (1996) (Magn. Prop., Experimental, 16)
- [1996Mit] Mitrokhin, S.V., Shlychkov, A.P., Verbetskii, V.N., "Interaction of Hydrogen with RCuAl Compounds of Dysprodium, Holmium and Erbium", *Vest. Moskov. Univ. Ser. 2 Khim.*, **37**(3), 294-297 (1996) (Experimental)
- [1997Bai] Baio, G., Moze, O., Amoretti, G., Sonntag, R., Stüßer, N., Bschow, K.H.J., "Neutron Diffraction Study of RMn₄Al₈ (R=Nd, Dy, Ho, Er), ErCr₄Al₈ and ErCu₄Al₈", *Z. Phys. B*, **102**, 449-459 (1997) (Crys. Structure, Experimental, Magn. Prop., 20)
- [1998Jav] Javorský, P., Havela, L., Sechovský, V., Michor, H., Jurek, K., "Magnetic Behaviour of RCuAl Compounds", *J. Alloys Compd.*, **264**, 38-42 (1998) (Experimental, Magn. Prop., Crys. Structure, 15)
- [1998Liu] Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K., "Phase Equilibria in the Cu-rich Portion of the Cu-Al Binary System", *J. Alloys Compd.*, **264**(1-2), 201-208 (1998) (Equi. Diagram, Crys. Structure, 25)
- [2002Gul] Gulay, L.D., Harbrecht, B., "The Crystal Structures of the ζ_1 and ζ_2 Phases in the Al-Cu System", Abstr. VIII Int. Conf. "Crystal Chemistry of Intermetallic Compounds", September 2002, Lviv, P139, 73 (2002) (Crys. Structure, Experimental, 5)
- [2003Gro] Gröbner, J., "Al-Cu (Aluminium Copper)", MSIT Binary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, to be published, (2003) (Equi. Diagram, Review, Assessment, 68)
- [2003Kan] Kang, Y.M., Chen, N.X., "Site Preference and Vibrationnal Properties of ScCu_xAl_{12-x}", *J. Alloys Compd.*, **349**, 41-48 (2003) (Crys. Structure, Experimental, Thermodyn., 29)
- [2003Kra] Krachan, T., Stel'makhovych, B., Kuz'ma, Yu., "The Y-Cu-Al System", *J. Alloys Compd.*, **349**, 134-139 (2003) (Equi. Diagram, Crys. Structure, #, 25)
- [2003Ria] Riani, P., Arrighi, L., Marazza, R., Mazzone, D., Zanicchi, G., Ferro, R., "Ternary Rare Earth Aluminum Systems with Copper: a Review and a Contribution to Their Assessment" submitted to *J. Phase Equilib.* (Review, 267)

Table 1: Crystallographic Data of Solid Phases

Phase/	Pearson Symbol/	Lattice Parameters	Comments/References
Temperature Range	Space Group/	[pm]	
[°C]	Prototype		
(Al)	cF4	a = 404.96	at 25°C [Mas2]
<660.45	$Fm\overline{3}m$		Cu solubility 2.48 at.% [Mas2]
	Cu		no appreciable solubility of Er [1988Gsc]
(Cu)	cF4	a = 361.46	at 25°C [Mas2],
< 1084.62	$Fm\overline{3}m$		0 to 19.7 at.% Al [Mas2]
	Cu		no appreciable solubility of Er [1994Sub]
$Cu_{1-x}Al_x$		<i>a</i> = 361.52	[1991EII], $x = 0$, quenched from 600°C
1 30 30		a = 365.36	[1991E11], $x = 0.152$, quenched from
			600°C

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
(Er) <1529	hP2 P6 ₃ /mmc Mg	a = 355.92 c = 558.50	pure Er at 25°C [1994Sub] solubility: < 1 at.% Al, [1988Gsc] <0.5 at.% Cu [1994Sub]
β, Cu ₃ Al(h) 1049-559	cI2 Im3m W	<i>a</i> = 294.6 <i>a</i> = 295.64	~70 to 82 at.% Cu [1985Mur], [1998Liu] at 580°C at 672°C in two-phase (Cu)+β alloy
$\alpha_2, Cu_{100-x}Al_x < 363$	t** TiAl ₃ long period super-lattice	a = 366.8 c = 368.0	22 \le x \le 23.5 [1985Mur] 76.5 to 78.0 at.% Cu at 76.4 at.% Cu (subcell only)
$ \gamma_0, Cu_{100-x}Al_x $ $ Cu_{-2}Al $ $ 1037-800 $	cI52 <i>I</i> 43 <i>m</i> Cu ₅ Zn ₈		$31.5 \le x \le 37$ [Mas2], $32 \le x \le 38$ [1998Liu]
γ ₁ , Cu ₉ Al ₄ < 890	<i>cP</i> 52 <i>P</i> 43 <i>m</i> Cu ₉ Al ₄	a = 870.23	62 to 68 at.% Cu [Mas2, 1998Liu]; from single crystal [V-C2] at 68 at.% Cu
δ, Cu _{100-x} Al _x < 686	hR^* $R\overline{3}m$	a = 1226 c = 1511	$38.1 \le x \le 40.7 \text{ [1985Mur]}$ 59.3 to 61.9 at.% Cu at $x = 38.9 \text{ [V-C2]}$
ε ₁ , Cu _{100-x} Al _x 958-848	cubic?		37.9 ≤ <i>x</i> ≤ 40.6 59.4 to 62.1 at.% Cu [Mas2, 1985Mur]
ε ₂ , Cu _{2-x} Al 850-560	<i>hP</i> 6-x <i>P6₃/mmc</i> Ni ₂ In	a = 414.6 c = 506.3	0.47 ≤ <i>x</i> ≤ 0.78 55 to 61 at.% Cu [Mas, 1985Mur, V-C2], NiAs in [Mas2, 1994Mur]
ζ ₁ , ~Cu _{47.8} Al _{35.5} (h) 590-530	oF88 - 4.7 Fmm2 Cu _{47.8} Al _{35.5}	a = 812 b = 1419.85 c = 999.28	55.2 to 57 at.% Cu [Mas2, 2003Gro] structure: [2002Gul]
ζ_2 , $Cu_{11.5}Al_9(r)$ < 570	oI24 - 3.5 Imm2 Cu _{11.5} Al ₉	a = 409.72 b = 703.13 c = 997.93	55.2 to 56.3 at.% Cu [Mas2, 1985Mur] structure: [2002Gul]
η ₁ , CuAl(h) 624-560	o*32	a = 408.7 $b = 1200$ $c = 863.5$	49.8 to 52.4 at.% Cu [V-C2, Mas2, 1985Mur] Pearson symbol: [1931Pre]
η ₂ , CuAl(r) < 560	<i>mC</i> 20 <i>C2/m</i> CuAl	a = 1206.6 b = 410.5 c = 691.3 $\beta = 55.04^{\circ}$	49.8 to 52.3 at.% Cu [V-C2]
θ, CuAl ₂ < 591	<i>tI</i> 12 <i>I4/mcm</i> CuAl ₂	a = 606.7 $c = 487.7$	32.05 to 32.6 at.% Cu at 549°C 31.9 to 33 at.% Cu at 250°C [1996Goe] single crystal [V-C2, 1989Mee]

Landolt-Börnstein
New Series IV/11A1

MSIT®

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
$ErCu_{1-x}Al_x$	cP2	a = 343.1	at $x = 0$ [1994Sub]
ErCu	$Pm\overline{3}m$		$0 \le x \le 0.4$ at 600° C [1989Kuz]
< 1065	CsCl	a = 341.0	at $x = 0$
		a = 347	at $x = 0.4$
$Er(Cu_{1-x}Al_x)_2$	oI12		$0 \le x \le 0.015 $ (1 at.% Al) [1974Oes]
ErCu ₂	Imma	a = 427.4	at $x = 0$, [1988Sub] [1994Sub]
< 935	CeCu ₂	b = 673.3	
		c = 726.6	
Er ₂ Cu ₇ < 940	?		[1994Sub]
Er ₂ Cu ₉ < 1010	?		[1994Sub]
ErCu ₅	cF24	a = 700.3	[1994Sub]
<1005	$F\overline{4}3m$		at 600°C dissolves up to ~2 at.% Al
	AuBe ₅		according to the figure in [1989Kuz]
ErAl ₃	cP4	a = 421.4	[1988Gsc]
< 1070	$Pm\overline{3}m$		
	AuCu ₃		
ErAl ₂	cF24		$0 \le x \le 0.38 \ (\sim 19 \ at.\% \ ErCu_2) \ at \ 600^{\circ}C$
< 1455	$Fd\overline{3}m$		[1989Kuz]
$ErCu_xAl_{2-x}$	Cu ₂ Mg	a = 779.3	at $x = 0$ [1988Gsc, 1989Kuz]
		a = 773.7	at $x = 0.38$ [1989Kuz]
ErAl	oP16	a = 580.1	[1988Gsc]
< 1140	Pbcm	b = 1127	
	ErAl	c = 557.0	
Er ₃ Al ₂	tP20	a = 812.3	[1988Gsc]
< 1060	$P4_2/mnm$	c = 748.4	
	Gd_3Al_2		
Er ₂ Al	oP12	a = 651.6	[1988Gsc]
< 1040	Pnma	b = 501.5	
	Co ₂ Si	c = 927.9	
* τ_1 , Er(Cu _x Al _{1-x}) ₁₂	tI26		$0.33 \le x \le 0.5$ (x range tentatively
	I4/mmm		assigned)
ErCu ₄ Al ₈	ThMn ₁₂	a = 866.3	$x = 0.33$ at 600° C [1989Kuz]
		c = 510.5	
		a = 869.1	at $x = 0.33$, as-cast sample [1979Fel]
		c = 511.9	
ErCu ₆ Al ₆		a = 863.0 c = 502.9	at $x = 0.5$ at 800°C [1980Fel]
$* \tau_2, \text{Er}_2(\text{Cu}_x\text{Al}_{1-x})_{17}$	hR57		$0.41 \le x \le 0.56$ at 600° C [1989Kuz]
-2, =-2(\cdot \cd	$R\overline{3}m$	a = 880.4	at $x = 0.41$ [1982Pre]
	Th_2Zn_{17}	c = 1285.1	[]
	۷ 1/	a = 871.0	at $x = 0.56$ [1989Kuz]
		c = 1274.6	

MSIT®

Landolt-Börnstein
New Series IV/11A1

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
* τ_3 , Er(Cu _x Al _{1-x}) ₅	hP6 P6/mmm CaCu5	a = 502.9 c = 413.9	$0.46 \le x \le 0.82$ at 600° C [1989Kuz] at $x = 0.82$ [1989Kuz]
ErCu ₄ Cu	cucus	a = 503.9 c = 413.9	at $x = 0.8$ [1978Tak]
		a = 524.1 c = 407.1	at $x = 0.46$ [1989Kuz]
* τ_4 , ErCu _{0.9} Al _{2.1}	<i>hR</i> 36 <i>R</i> 3 <i>m</i> PuNi ₃	a = 542.1 c = 2529.9	[1992Kuz] Previously reported as Er ₅ Cu ₆ Al ₉ [1989Kuz]
* τ ₅ , ErCuAl ₃	oI10 Immm HoCuAl ₃	a = 418.4 b = 411.2 c = 977.3	[1988Kuz]
* τ_6 , ErCuAl ErCu _{1+x} Al _{1-x}	hP9 P62m ZrNiAl	a = 697.40 c = 400.19	x = 0 [1968Dwi] -0.02 $\le x \le 0.1$ at 600°C [1989Kuz]
* τ ₇ , Er ₂ Cu ₃ Al ₅			[1989Kuz]
* τ ₈ , Er ₆ Cu ₁₆ Al ₇	$cF116$ $Fm\overline{3}m$ Th_6Mn_{23}	a = 1224.0	[1990Ste]. Not observed by [1989Kun] in the investigation of the isothermal section at 600°C

