Contents

1	. Halbleiter													2
	11.1 Niedrigdimensionale Elektronensysteme				 				 					3

Chapter 11

Halbleiter

Charakteristika:

- Metallischen Glanz aber kein Metall
- Negativer Temperatur Koeffizient $\rho \uparrow T \downarrow$
- Photoleitfähigkeit
- Eigenschaften können von Verunreinigungen empfindlich abhängen

Materialien: 4.hauptgruppe: Si,Se, Ga,Teller, P, B, Verbindungen III-V: GaAs, InSb II-VI: ZnS,CdS IV-IV: SiC Elektrischer Widerstand

Metall $\rho=10^{-7}$ bis $10^{-8}\Omega m$ isolator $\rho>10^{12}\Omega m$ Halbleiter $\rho=10^{-4}$ bis $10^{7}\Omega m$ \exists Bandlücke, kleiner als bei Isolatoren bei T=0 Halbleiter sind Isolatoren T¿0 Wahrscheinlichkeit für eine Termische Anregung $E_g>0,1...2eV$ $E\propto e^{-\frac{E_g}{2kT}}$

<u>Intrinsische Halbleiter</u>: Eigenschaften werden durch Thermische anregung bestimmt <u>Extrinsische Halbleiter</u>: Eigenschaften werden durch Dotierung von Frembatomen bestimmt

- 1) Intrinsische HL
 - a) Bandlücke und optische Abstände Indirekter Übergang Impuls wird durch Phonon gewährleistet;

 Kristallimpulserhaltung Übergang hängt von Phononenspektrum ab und daher von der Temperatur abhängig. Photon: große Energie, kleiner Impuls; Phonon: kleine Energie, großer Impuls

Direkter Übergang

schwache Temperaturabhängigkeit (vgl 1500 $nm \approx 0, 8eV$

b) Effektive Massen von Elektronen und Löchern

Bandkrümmung in der Nähe des Übergangs,; Parabolische Näherung:

$$E_n = E_L + \frac{\hbar^2 k^2}{2m^*}$$

mit n=Elektronen und p=Löcher. Elektronen im Leitungsband im

$$\begin{array}{ll} & \text{Transversal} & \text{Longitudinal} \\ \text{Si} & \frac{m_t^*}{m_e} = 0, 19 & \frac{m_l^*}{m_e} = 0, 19 \\ \text{Ge} & \frac{m_t^*}{m_e} = 0, 082 & \frac{m_l^*}{m_e} = 1, 57 \end{array}$$

Löcher im Valenzband Si $\begin{array}{ccc} & \text{Transversal} & \text{Longitudinal} \\ 0,16mc & 0,49mc \\ \text{leicht Loch} & \text{schweres Loch} \end{array}$

$$GaAs \begin{tabular}{lll} GaAs & L\"{o}cher & $\frac{m_t^*}{m_e}=0,12$ & $\frac{m_t^*}{m_e}=0,61$ \\ & & \text{leicht} & \text{schwer} \\ & & \text{leicht Loch} & \text{schweres Loch} \\ \end{tabular}$$

c) Metall-Halbleiter Übergang

Austrittsarbeit ϕ zum Vakuum. Die Austrittsarbeit bestimmti die el. Eigenschaft.

n-Dotiert: $\phi_{HL} > \phi_{ME}$ ohmscher Kontakt $\phi_{HL} < \phi_{ME}$ blokierender Kontakt (Schottky-Kontakt). An der Grenzfläche ensteht eine Hochohmige Verarmungszohne. Elektronen fließen ins Metall

p-Dotiert: genau andersherum

2) Dotierte HL

- a) Spezifischer Widerstandhängtstart von der Konzentration der Verunreinigung ab.
- b) Donatoren: liefern zusätzliche Elektronen ins Leitungsband: P, As, Sb; haben eine höhere Valenz Akzeptoren: liefern zustzliche Löcher in Valenzband. niedrigere Valenz als das Wirtsmaterial: B,Al,Ga,In

Modell: Donator verhält sich wie ein positiv geladenes Ion mit zusätzlichen Elektron. Bohr-Radius somit größer als beim H-Atom; Bindungsenergie $\approx 10 meV$

3) Inhomogene HL

- a) p-n Übergang
 - angleichung des chem. Potentials (E_F)
 - Verarmung freier Ladungsträger im Bereich des Übergangs durch rekombination mit Ladungsträgern von anderen Typ.
 - geladenen Störstellen bleiben zurück, es entwickelt sich eine Raumladungszone
- b) Schottky-Motell

Kastenförmiger Verlauf der Raumladungs-Zone; V(x) =Potentialverlauf, in y,z ∞ ausgedehnt Poisson Gl:

$$\Delta V(x) = \frac{-\rho(x)}{\epsilon_0}$$

selbstkonsistenzproblem: $\rho(x)$ hängt von V(x) und umgekehrt ab. Itaratir $\rho(x) \to V(x) \to \rho(x)$ Dicke der Raumladungszone $eV_D \simeq E_g \approx 1 eV, n = 10^{10}$ bis $10^{24}; d = 1 \mu m$ bis 10 nm; vergl. Atom-Atom $\epsilon \approx 10^{10} \frac{V}{m}$

c) Ströme in Gleichgewicht

Diffusionsstrom. El aus dem n-HL rekombinieren mit Löchern p-HL \Rightarrow Ladungs Feldstrom: Elektronen aus dem p-HL (Minoritätsladungsträder) werden durch das E-Feild in n-HL Im Gleichgewicht heben sie sich auf.

Ph Übergang unter Spannung

- $E_F + eU$ muss ausgeglichen sein
- Durchlassrichtung U rec die Potentialdifferenz
- Sperrichtung Pot-Diff vergrößert
- Diode Durchlassrichtung große lLeitfähigkeit; Sperrichtung kleine Leitfähigkeit

11.1 Niedrigdimensionale Elektronensysteme

z.B. Halbleiter- Heterostrukturen

'Modulation-doped heterostructure' (engl) z.B. 3D Metalle: $\frac{1}{k_F}\approx 1A$ 2DEG \equiv '2-dimensionales elektron gas'

$$\frac{1}{k_F} \approx 2\pi n)^{-\frac{1}{2}}$$

mit $n \approx 3, 5 \cdot 10^{15} m^{-2} \Rightarrow \frac{1}{k} \approx 100 A$! Die Gitterkonstante I und II möglichst wenig unterscheiden. z.B. AlGaAs/GaAs: 'mobility' [μ] (engl) Beweglichkeit: $u = \frac{|\vec{v}|}{\vec{\epsilon}} = \frac{e \tau_D}{m^*} \rightarrow$ bis zu $10^7 \frac{cm^2}{Vs}$ z-Quantisierung: $L_z \approx \frac{\lambda_F}{2} \approx 100 A$

 E_F turnalbe by Gate

1D system: 1D Kanal \rightarrow Quantisierung in y-Richtung

'Ballistic quantum wire' \rightarrow 1D Leiter

Im Dracht treten keine Streuprozesse auf und die Bewegung der e-nen erfolgt ballistisch (ohne Streung ohne WW).

 μ -Elektrochemisches Potential:

$$\Delta \mu = eV$$

Strom:

$$I = ne\langle v \rangle \tag{11.1}$$

$$=\frac{1}{L}\sum_{k}ev_{k}\tag{11.2}$$

$$= \frac{1}{L} \int_0^\infty \rho_k^{1D} e v_k \left[f(E + \frac{eV}{2} - f(E - \frac{eV}{2})) \right] dk$$

$$= \int_0^\infty \frac{e}{\pi} \frac{1}{\hbar} \frac{\partial E}{\partial k} dk \cdot eV$$
(11.4)

$$= \int_0^\infty \frac{e}{\pi} \frac{1}{\hbar} \frac{\partial E}{\partial k} dk \cdot eV \tag{11.4}$$

$$=\frac{2e^2}{h}V\tag{11.5}$$

mit $\rho_k^{1D}=\frac{2L}{2\pi};\,v(k)=\frac{1}{\hbar}\frac{\partial E(k)}{\partial k}$ 'conductance quantization'

$$\left.\frac{I}{V}\right|_{1 \text{ Kanal}} = \frac{2e^2}{h}$$

Leituwertsquantum; Widerstandsquantum: $R_Q=\frac{h}{2e^2}=12,906k\Omega$

für eine Spinrichtung: $R_Q^{\uparrow}=R_Q^{\downarrow}=25,812k\Omega$