

Kvadratsetningene

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- 1 Kvadratsetningene
 - Første kvadratsetning
 - Andre kvadratsetning
 - Konjugatsetningen
 - Bruk av setningene

2 Faktorisering

3 Forkorting av rasjonale uttrykk

Første kvadratsetning

Første kvadratsetning

Om vi skal regne ut $(a+b)^2$ får vi:

$$(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2$$

= $a^2 + 2ab + b^2$.

Dette uttrykket dukker opp mange nok ganger til at vi skriver det opp som en regel.

Regel (Første kavdratsetning)

$$(a+b)^2 = a^2 + 2ab + b^2$$

Førsteårsstudentens drøm

Det er veldig vanlig når man skal regne ut $(a + b)^2$ at man ikke tenker seg om og skriver

$$(a+b)^2 = a^2 + b^2$$
.

Som vi så på forrige side er dette ikke riktig!

Denne feilen er såpass vanlig at den har sin egen Wikipedia-side kalt Freshman's Dream (Førsteårsstudentens drøm).

Førsteårsstudentens mareritt

$$(a+b)^2 \neq a^2 + b^2$$

Første kvadratsetning, eksempler

$$(x+3)^2 = x^2 + 2 \cdot x \cdot 3 + 3^2$$

$$= x^2 + 6x + 9$$

$$(2x+1)^2 = (2x)^2 + 2 \cdot (2x) \cdot 1 + 1^2$$

$$= 4x^2 + 4x + 1$$

$$(x-2)^2 = (x + (-2))^2$$

$$= x^2 + 2 \cdot x \cdot (-2) + (-2)^2$$

$$= x^2 - 4x + 4$$

Andre kvadratsetning

Andre kvadratsetning

Det siste eksempelet, hvor en av leddene har en minus, skjer ofte nok til at det får sin egen regel. Vi har:

$$(a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2$$

= $a^2 - 2ab + b^2$.

Igjen skriver vi det opp som sin egen regel.

Regel (Andre kvadratsetning)

$$(a-b)^2 = a^2 - 2ab + b^2$$

Andre kvadratsetning, eksempler

$$(x-2)^2 = x^2 - 2 \cdot x \cdot 2 + 2^2$$

$$= x^2 - 4x + 4$$

$$(2-x)^2 = 2^2 - 2 \cdot 2 \cdot x + x^2$$

$$= 4 - 4x + x^2$$

$$(2x-3)^2 = (2x)^2 - 2 \cdot (2x) \cdot 3 + 3^2$$

$$= 4x^2 - 12x + 9$$

To spesialtilfeller

- Legg merke til at $(x-2)^2$ og $(2-x)^2$ ga samme svar på forrige side.
- Dette vil alltid være sant,

$$(a-b)^2 = (b-a)^2.$$

Dette er fordi b - a = -(a - b), så vi får

$$(b-a)^2 = (-(a-b))^2 = (a-b)^2$$

Av nesten samme grunn får vi at

$$(-a-b)^2 = (a+b)^2.$$

Konjugatsetningen

Konjugatsetningen

Vi har nå sett på (a+b)(a+b) og (a-b)(a-b). Men hva med (a+b)(a-b)? Vi får:

$$(a+b)(a-b) = a^2 - ab + ab - b^2$$

= $a^2 - b^2$

Dette blir igjen en egen regel.

Regel (Konjugatsetningen)

$$(a+b)(a-b) = a^2 - b^2$$

Noen kaller også konjugatsetningen for «Tredje kvadratsetning».

Konjugatsetningen, eksempler

$$(x+2)(x-2) = x^{2} - 2^{2}$$

$$= x^{2} - 4$$

$$(2x+1)(2x-1) = (2x)^{2} - 1^{2}$$

$$= 4x^{2} - 1$$

$$(x-3)(x+3) = x^{2} - 3^{2}$$

$$= x^{2} - 9$$

$$(2x+3y)(2x-3y) = (2x)^{2} - (3y)^{2}$$

$$= 4x^{2} - 9y^{2}$$

Bruk av setningene

Hoderegning

Vi kan bruke setningene til å forenkle visse gangestykker.

$$29 \cdot 31 = (30 - 1)(30 + 1)$$

$$= 30^{2} - 1$$

$$= 900 - 1$$

$$= 899$$

$$19^{2} = (20 - 1)^{2}$$

$$= 20^{2} - 2 \cdot 20 \cdot 1 + 1^{2}$$

$$= 400 - 40 + 1$$

$$= 361$$

Å bruke kvadratsetningene baklengs

- Om vi bare skulle bruke kvadratsetningene til å regne ut uttrykk som $(x-2)^2$ hadde vi ikke trengt å skrive dem opp som regler.
- Det tar ikke så lang tid å bare gange sammen parentesene.
- Det vi ofte i stedet bruker dem til er å gå baklengs.
- Vi får $x^2 4x + 4$ fra oppgaven og tenker «Dette er jo andre kvadratsetning!»
- Fordi vi kan andre kvadratsetning kan vi derfor se at

$$x^2 - 4x + 4 = (x - 2)^2$$
.

■ Vi skal se mer på dette i de neste delkapitlene.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET