iNeur**⊚**n

Score: 13/14 Quiz 7

To increase overfitting	Explanation
To prevent overfitting	Regularization is a technique used to prevent overfitting in machine learning models by adding a penalty term to the error function. It helps in controlling the model complexity and reduces the risk of overfitting by adding a penalty for large weights.
To improve model accuracy	
To speed up training	
. Which activation function is usually used neural network?	in the output layer of a binary classification
ReLU	Explanation
Sigmoid	In the output layer of a binary classification neural network, the sigmoid or logistic activatio function is commonly used to produce the probability of a sample belonging to a certain class (0 or 1).
Tanh	
Softmax	
A type of regularization technique	Explanation
A loss function for probability outputs A dimensionality reduction method	Cross-entropy is a measure of the difference between two probability distributions. In machine learning, it is commonly used as a los function for models that output probabilities of different classes. It penalizes the model based on the distance between the predicted and actual class probabilities.
An optimization algorithm	
. Which of the following machine learning of learning?	
Linear regression	Explanation

algorithm used for clustering data points into groups. It does not require labeled training data

Random forest	structures in the data.
Support vector machine (SVM)	
. In the context of machine learning, what d	oes the term 'bias' refer to?
The tendency of a model to learn noise in the training data	In machine learning, bias refers to the error introduced by approximating a real-world problem, which may be extremely complex, by much simpler model. It is the difference between the predicted output and the true output.
The variability of a model's predictions for a given input	
The amount of flexibility in a model to capture complex patterns	
The effect of an input on the model's output	
Polynomial kernel	While sigmoid, polynomial, and radial basis function (RBF) are commonly used kernel functions in SVM linear kernel is not a kernel
Sigmoid kernel	Explanation
Linear kernel	function (RBF) are commonly used kernel functions in SVM, linear kernel is not a kernel function in SVM. A linear kernel represents a linear decision boundary in the feature space.
Radial basis function (RBF) kernel	,
. What is the purpose of the k-fold cross-va	lidation technique in machine learning?
To prevent overfitting	Explanation
To maximize training accuracy	K-fold cross-validation is used to assess the performance and generalization capability of a machine learning model. It involves partitioning the dataset into k subsets, using k-1 subsets for training, and the remaining subset for validation. This process is repeated k times, and
To assess model performance and generalization	
To speed up model training	the performance measures are averaged.
3. Which of the following is an example of an learning?	ensemble learning technique in machine
learnings	
Support Vector Machine (SVM)	Explanation

K-nearest neighbors (KNN)	Random forest is an example of an ensemble learning technique in machine learning. It combines multiple decision trees to create a more robust and accurate model by reducing overfitting and increasing predictive
Random forest	
Logistic regression	performance.
). What is the main objective of dimensionali	ty reduction in machine learning?
To increase model complexity	Explanation
To improve interpretability of the model	The main objective of dimensionality reduction in machine learning is to reduce the number of random variables under consideration and to
To reduce overfitting and computational burden	remove redundant information while preserving important characteristics. This helps in
To introduce noise into the model	simplifying the model, reducing overfitting, and improving computational efficiency.
Parameters directly learned from the training data	Explanation
Performance measures for evaluating the model	Hyperparameters are parameters that are not directly learned from the training data but are set prior to the training process. They control the learning process and the behavior of the model.
External factors affecting the model predictions	Examples include learning rate, regularization strength, and the number of hidden layers in a neural network.
Parameters controlling the learning process and model behavior	
1. What is the purpose of the confusion matri	x in evaluating classification models?
To display the distribution of data classes	Explanation

To evaluate the performance of a

To visualize the decision boundary of a

classification model

classifier

true positive, true negative, false positive, and false negative predictions. It is used to calculate various performance metrics such as accuracy,

precision, recall, and F1 score.

Decision tree	Explanation
K-nearest neighbors (KNN)	In high-dimensional feature spaces, the knearest neighbors (KNN) algorithm is susceptible to overfitting due to the increased complexity and potential sparsity of data point which can lead to inaccurate distance calculations and predictions.
Naive Bayes	
Random forest	
regression tasks? Cross-entropy loss	Explanation
Mean Squared Error (MSE)	Mean Squared Error (MSE) is a commonly used loss function in training neural networks for regression tasks. It measures the average of the squares of the differences between the predicted and actual values, providing a measure of the model's performance in predicting continuous target variables.
Hinge loss	
Huber loss	
4. What is the purpose of feature scaling in the To improve model interpretability	he context of machine learning? Explanation
To speed up the model training process	Feature scaling is used to ensure that all input features contribute equally to the learning process and model performance, especially in algorithms that use distance-based calculations or gradient descent. It involves transforming the features to a similar scale,
To ensure uniform contribution of features	-