

Introduction to Data
Science and Artificial
Intelligence
Agent Decision Making
and Reinforcement
Learning

Assoc Prof Bo AN

Research area: artificial intelligence, computational game theory, optimization

www.ntu.edu.sg/home/boan *Email*: boan@ntu.edu.sg

Office: N4-02b-55

Lesson Outline

- **Utility Theory**
- Two methods for computing optimal policy
 - Value iteration
 - Policy iteration
- Temporal difference learning

Beliefs and Uncertainty

Maximum Expected Utility

Expected Utility

$$EU(A \mid E) = \sum_{i} P(Result_{i}(A) \mid E, Do(A))U(Result_{i}(A))$$

- Principle of Maximum Expected Utility
 - Choose action A with highest $EU(A \mid E)$

Example

Robot

Turn Right
$$\checkmark$$
 Hits wall (P = 0.1; U = 0)
Finds target (P = 0.9; U = 10)

Turn Left
$$\longrightarrow$$
 Fall water (P = 0.3; U = 0)
Finds target (P = 0.7; U = 10)

Choose action "Turn Right"

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, ...

Agent observes state at step t: $s_t \in S$

Produces action at step $t: a_t \in A(s_t)$

Gets resulting reward: $r_{t+1} \in \Re$

And resulting next state: S_{t+1}

$$S_{t} \xrightarrow{a_{t}} S_{t+1} \xrightarrow{s_{t+1}} S_{t+1} \xrightarrow{r_{t+2}} S_{t+2} \xrightarrow{r_{t+3}} S_{t+3} \xrightarrow{a_{t+3}} S_{t+3}$$

Making Complex Decisions

- Make a sequence of decisions
 - Agent's utility depends on a sequence of decisions
 - Sequential Decision Making
- Markov Property
 - Transition properties depend only on the current state, not on previous history (how that state was reached)
 - Markov Decision Processes

Markov Decision Processes

- Components:
 - Markov States s, beginning with initial state s₀
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - assumption: the probability of going to s' from s depends only on s
 and a and not on any other past actions or states
 - Reward function R(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP

Game Show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything

Game Show

- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?

$$0.1 * 61,100 + 0.9 * 0 = 6,110$$

What is the optimal decision?

Game Show

- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?

Grid World

R(s) = -0.04 for every non-terminal state

Transition model:

Goal: Policy

Grid World

Transition model:

R(s) = -0.04 forevery non-terminal state

Grid World

Optimal policy when R(s) = -0.04 for every non-terminal state

Question to think:

 Grid World is not a finite game and thus the backward induction approach cannot work. Please think about how we can compute optimal policy of the Grid World.

Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - **Policy** $\pi(s)$: mapping from states to actions
 - How to find the optimal policy?

Maximising Expected Utility

The optimal policy should maximise the *expected utility* over all possible state sequences produced by following that policy:

$$\sum_{\substack{\text{state sequences} \\ \text{starting from } s_0}} P(\text{sequence}) U(\text{sequence})$$

- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences

Utilities of State Sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states
- Problem: infinite state sequences
- **Solution:** discount the individual state rewards by a factor γ between 0 and 1:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

$$= \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \gamma} \qquad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- Helps algorithms converge

Utilities of States

Expected utility obtained by policy π starting in state s:

$$U^{\pi}(s) = \sum_{\substack{\text{state sequences} \\ \text{starting from s}}} P(\text{sequence})U(\text{sequence})$$

- The "true" utility of a state, denoted U(s), is the expected sum of discounted rewards if the agent executes an optimal policy starting in state s
- Reminiscent of minimax values of states...

Finding the Utilities of States

 What is the expected utility of taking action a in state s?

$$\sum_{s'} P(s'|s,a)U(s')$$

How do we choose the optimal action?

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{arg\,max}} \sum_{s'} P(s'|s, a) U(s')$$

What is the recursive expression for U(s) in terms of the utilities of its successor states?

$$U(s) = R(s) + \gamma \max_{a} \sum_{s} P(s'|s, a)U(s')$$

The Bellman Equation

 Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

End up here with P(s' | s, a)
Get utility U(s')
(discounted by γ)

The Bellman Equation

Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- For N states, we get N equations in N unknowns
 - Solving them solves the MDP
 - We could try to solve them through expectimax search, but that would run into trouble with infinite sequences
 - Instead, we solve them algebraically
 - Two methods: value iteration and policy iteration

Method 1: Value Iteration

- Start out with every U(s) = 0
- Iterate until convergence
 - During the ith iteration, update the utility of each state according to this rule:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values
 - In practice, don't need an infinite number of iterations...

Value Iteration

What effect does the update have?

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

Method 2: Policy Iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - **Policy evaluation:** calculate $U^{\pi_i}(s)$ for every state s
 - **Policy improvement:** calculate a new policy π_{i+1} based on the updated utilities

$$\pi^{i+1}(s) = \underset{a \in A(s)}{\arg \max} \sum_{s'} P(s'|s, a) U^{\pi_i}(s')$$

Question to think:

 Both value iteration and policy iteration require the knowledge of the transition model P(s' | s, a). Can we learn a good policy if we don't know the transition model P(s' | s, a)?

TD(Temporal difference) Prediction

Policy Evaluation (the prediction problem):

for a given policy p, compute the state-value function V^{π}

The simplest TD method, TD(0):

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

target: an estimate of the return

Simplest TD Method

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome
 - From incomplete sequences

Further Reading [AAAI'18: http://www.ntu.edu.sg/home/boan/papers/AAAI18_Malmo.pdf]

We Won 2017 Microsoft Collaborative Al Challenge

- Collaborative Al
 - How can AI agents learn to recognise someone's intent (that is, what they are trying to achieve)?
 - How can AI agents learn what behaviours are helpful when working toward a common goal?
 - How can they coordinate or communicate with another agent to agree on a shared strategy for problem-solving?

Further Reading

[AAAI'18: http://www.ntu.edu.sg/home/boan/papers/AAAI18_Malmo.pdf]

- Microsoft Malmo Collaborative Al Challenge
 - Collaborative mini-game, based on an extension "stag hunt"
 - Uncertainty of pig movement
 - Unknown type of the other agent
 - Detection noise (frequency 25%)
- Our team HogRider won the challenge (out of more than 80 teams from 26 countries)
 - learning + game theoretic reasoning + sequential decision making + optimisation

