EE-UY 4423: Introduction to Machine Learning Midterm 2, Fall 2016

- 1. (a) The scatter plot is shown in Fig. 1.
 - (b) A simple classifier is to use the boundary $x_2 = 0.5$, shown on the figure. So, we take

$$z_i = x_2 - 0.5 = \mathbf{w}^\mathsf{T} \mathbf{x} + b,$$

where $\mathbf{w} = [0, 1]$ and b = -0.5.

(c) We have

$$P(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{z_i}} \Rightarrow P(y_i = 0 | \mathbf{x}_i) = 1 - \frac{1}{1 + e^{z_i}} = \frac{1}{1 + e^{-z_i}}.$$

Hence, we can write

$$P(y_i|\mathbf{x}_i) = \frac{1}{1 + e^{-u_i}}, \quad u_i = \begin{cases} z_i & \text{if } y_i = 1, \\ -z_i & \text{if } y_i = 0 \end{cases}$$

Since $1/(1+e^{-u})$ is increasing in u, the likelihood will be minimized for the sample where u_i is the smallest. We calculate u_i for each sample using the following table:

Income (thousands \$), x_{i1}	30	50	70	80	100
Num websites, x_{i2}	0	1	1	2	1
Donate (1=yes or 0=no), y_i	0	1	0	1	1
$z_i = x_{i2} - 0.5$	-0.5	0.5	0.5	1.5	0.5
u_i	0.5	0.5	-0.5	1.5	0.5

We see u_i is smallest for sample i = 3, which is the misclassified point.

(d) Let z'_i be the new values of the linear discriminant under the new parameters. We have,

$$z_i' = (\mathbf{w}')^\mathsf{T} \mathbf{x}_i + b' = \alpha \left[\mathbf{w}^\mathsf{T} \mathbf{x}_i + b \right] = \alpha z_i.$$

Since $\alpha > 0$, the sign of z'_i is the same as z_i . Therefore \hat{y}_i does not change. However, the probabilities do change. Since $\alpha > 1$,

$$z_i > 0 \Rightarrow z_i' > z_i$$
$$z_i < 0 \Rightarrow z_i' < z_i.$$

Hence, for samples where $P(y_i = 1|\mathbf{x}_i) > 0.5$, the probability will increase. For samples where $P(y_i = 1|\mathbf{x}_i) < 0.5$, the probability will decrease.

Num websites x_2

Figure 1: Scatter plot of the data points where the red circles are $y_i = 1$ and blue are $y_i = 0$

(e) You can use the following code:

```
import numpy as np
def gen_rand(X,w,b):
    z = X.dot(w)+b[:,None]
    p = 1/(1+np.exp(-z))
    n = X.shape[0]
    u = np.random.rand(n)
    y = (u < p)
    return y</pre>
```

2. Consider the data set with scalar features x_i and binary class labels $y_i = \pm 1$.

x_i	0	1	3	4	6
y_i	1	-1	1	1	1

A support vector classifier is of the form

$$\hat{y} = \begin{cases} 1 & z > 0 \\ -1 & z < 0, \end{cases} \quad z = \sum_{i} \alpha_i y_i K(x_i, x),$$

where K(x, x') is the radial basis function, $K(x, x') = e^{-\gamma(x-x')^2}$, and $\gamma > 0$ is a parameters and the dual coefficients are $\alpha = [1, 1, 1, 0, 0]$

(a) A linear classifier would be of the from

$$\hat{y} = \begin{cases} 1 & z > 0 \\ -1 & z < 0, \end{cases} \quad z = wx + b,$$

for some weight w and bias b. The classifier would thus separate x into two regions: $\{x > t\}$ and $\{x < t\}$, where t = b/w. In this data, for any threshold, there would be at least one point that would be misclassified, so it is not linearly separable.

Figure 2: Discriminant z vs. x

- (b) The support vectors are the first three samples since they have the non-zero α_i values.
- (c) Each function $K(x, x_i)$ is a bell curve centered around x_i . Since γ is large, the width of the bell curve is narrow.

Hint: If γ is large, then

$$e^{-\gamma(x-x_i)^2} \gg e^{-\gamma(x-x_j)^2}$$
 if $|x-x_i| < |x-x_j|$.

- (d) For what values of x is $\hat{y} = 1$?
- (e) Complete the following python code to output a vector yhat of the predicted values of an SVM classifier at a vector of test values x. The SVM uses training data xtr,ytr, a radial basis function scale factor gam and coefficient alpha. Assume that the data is scalar so that x and xtr are a numpy 1D arrays. For full credit, vectorize all operations and write the code without any for loops.

```
import numpy as np
def rbf_predict(xtr,ytr,x,gam,alpha):
    ...
    return yhat
```

Hint: For the most efficient implementation, use python broadcasting to first create a matrix D with components D[i,j]=x[i]-xtr[j].

3. An audio engineer wants to design a speech classification system using a neural network. A speaker says one of K = 10 words and the system is suppose to determine which word was spoken. For training data, the engineer collects N = 50000 samples (\mathbf{x}_i, y_i) , i = 1, ..., N where each \mathbf{x}_i is a vector of 120 features of the sound and $y_i = 1, ..., K$ is the word label. She then tries to fit a neural network of the form,

$$egin{aligned} \mathbf{z}_i^{\scriptscriptstyle \mathrm{H}} &= \mathbf{W}^{\scriptscriptstyle \mathrm{H}} \mathbf{x}_i + \mathbf{b}^{\scriptscriptstyle \mathrm{H}}, & \mathbf{u}_i^{\scriptscriptstyle \mathrm{H}} &= g_{\mathrm{act}}(\mathbf{z}_i^{\scriptscriptstyle \mathrm{H}}), \ \mathbf{z}_i^{\scriptscriptstyle \mathrm{O}} &= \mathbf{W}^{\scriptscriptstyle \mathrm{O}} \mathbf{u}_i^{\scriptscriptstyle \mathrm{H}} + \mathbf{b}^{\scriptscriptstyle \mathrm{O}}, & \hat{y}_i &= g_{\mathrm{out}}(\mathbf{z}_i^{\scriptscriptstyle \mathrm{O}}), \end{aligned}$$

where the activation function is a sigmoid,

$$u_{ij}^{\text{H}} = g_{\text{act}}(z_{ij}^{\text{H}}) = \frac{1}{1 + z_{ij}^{\text{H}}},$$

and the output is the argmax,

$$\hat{y}_i = g_{\text{out}}(\mathbf{z}_i^{\text{O}}) = \underset{k=1,\dots,K}{\text{arg max}} z_{ik}^{\text{O}}.$$

- (a) Suppose the network uses $N_h = 50$ hidden units. What are the dimensions of the parameters \mathbf{W}^{H} , \mathbf{b}^{H} , \mathbf{W}^{O} , \mathbf{b}^{O} .
- (b) Given a set of parameters θ , what is a possible loss function $L(\theta)$ that can be used for training the data?
- (c) Draw the computation graph showing the mapping from the inputs \mathbf{x}_i and the parameters θ to the loss function, L. Indicate which terms are data and parameters.
- (d) Suppose that in backpropagation, you have already computed the derivative, $\partial L/\partial \mathbf{u}_i^{\mathrm{H}}$. Write an expression to compute $\partial L/\partial \mathbf{z}_i^{\mathrm{H}}$. What are the dimensions of $\partial L/\partial \mathbf{u}_i^{\mathrm{H}}$ and $\partial L/\partial \mathbf{z}_i^{\mathrm{H}}$?
- (e) Suppose that you have computed $\partial L/\partial \mathbf{z}_i^{\mathrm{H}}$ for all i. Write an expression for the gradients $\nabla_{\mathbf{W}^{\mathrm{H}}} L$ and $\nabla_{\mathbf{b}^{\mathrm{H}}} L$. What are the dimensions of the gradients?