## Semiconductor Nanostructures

A.A. 2024/2023 5

Course overview and objectives

1

**Semiconductor Nanostructures** 

29/10/2

## Lectures overview

# 1: Bulk semiconductors



### 2: Semiconductor Nanostructures

#### Bandstructure

- Overview of bond formation
- Tight-binding
- •K-dot-P
- •Bandstructure of relevant semiconductors

# Semiconductor alloys

- Bulk alloys
- •Heterojunction: band alignment at semicondutor interfaces

# Quantum confinement

- Low dimensional heterostructures
- Effective mass approximation

#### Strain

- •Strain effects on the bandstructure
- •Degeneracy removal and effective mass modification

## **Bulk semiconductors**



**Semiconductor Nanostructures** 

29/10/2

## Effective mass

Bandstructure



➤ Carrier mobility

$$v_d = \frac{q\tau_s}{m^*} E_{field}$$

ho Carrier density  $DOS \propto (m^*)^{3/2}$ 

$$DOS \propto (m^*)^{3/2}$$

➤ Quantum confinement energy

$$E_{QW} = \frac{\hbar^2}{2m^*} \left(\frac{\pi}{a}\right)^2 n^2$$

# Semiconductor alloys





Semiconductor Nanostructures

29/10/2

# Band alignment



## **Quantum Confinement**

### Envelope function approximation



$$-\frac{\hbar^{2}}{2}\nabla\cdot\left[\frac{1}{m_{eff}}\nabla\Psi_{env}(\mathbf{r},t)\right]+V(\mathbf{r})\Psi_{env}(\mathbf{r},t)=i\hbar\frac{\partial}{\partial t}\Psi_{env}(\mathbf{r},t)$$

 $\Psi_{env}$  continuous

$$\frac{1}{m_{\rm eff}} \nabla \Psi_{\rm env} \ {\rm continuous}$$

7

**Semiconductor Nanostructures** 

29/10/2

# **Quantum Confinement**

# Quantum confined Stark effect



Split-gate quantum dots



Quantum cascade laser



**Semiconductor Nanostructures** 

29/10/2

# **Epitaxial strain**



Semiconductor Nanostructures

29/10/2

# Strain engineering



R

### **Semiconductor Nanostructures**

29/10/2

## Contact information and teaching material

#### Contact information:

Giovanni Isella

Tel: 031 332 7303/7612

e-mail: giovanni.isella@polimi.it

http://lness.como.polimi.it

Question time: Thursday morning

https://politecnicomilano.webex.com/meet/giovanni.isella

### Recommended (but not mandatory) bibliography:

"Electronic and optoelectronic properties of semiconductors structures" Jasprit Singh Ed. Cambridge University Press

"The physics of low-dimensional semiconductors-an introduction" John H. Davies Ed. Cambridge University Press

Exam: written + oral

11

**Semiconductor Nanostructures** 

29/10/2

## Contact information and teaching material

### WeBeep

For each lecture there will be an associated folder with the related teaching material that will be updated lecture-by-lecture

097511 - SEMICONDUCTOR NANOSTRUCTURES (ISELLA GIOVANNI) {097512 - PHYSICS OF SEMICONDUCTOR NANOSTRUCTURES [I.C.] [sezione A]}

#### Introduction

The course provides a conceptual framework for understanding the essential Physics of low-dimensional semiconductors where quantum confinement and strain effects are exploited for tailoring electronic and optical properties.

The physical properties of a variety of semiconducting materials, including compound semiconductors and heterostructures, will be analysed on the base of their electronic bandstructure outlining their potentiality in opto-electronics, photovoltaics and spintronics applications.

The effect of quantum confinement in 2-dimensional (quantum wells), 1-dimensional (quantum wires) 0-dimensional (quantum dots) heterostructures will be analyzed also in view of their application in intersubband photodetectors and optical modulators.

Strain effects on the bandstructure will be addressed with a focus on strained-Si technology and strain effects on lasing both in III-V and group IV semiconductors.

#### Materials

Check the materials provided by the professor

#### Notice boar

Check course announcements. Interact with the professor, tutors and your fellow students via the forum

## Lectures Booklet

A booklet with the lecture's notes is being prepared: it's a work-in-progress far from being complete!

## Contents

| 1 | Semiconductor systematics                                 |                                                                |    |  |  |  |  |
|---|-----------------------------------------------------------|----------------------------------------------------------------|----|--|--|--|--|
|   | 1.1                                                       | The arithmetic of semiconducting materials                     | 3  |  |  |  |  |
|   | 1.2                                                       | Lattice parameters and bandgaps                                | 5  |  |  |  |  |
|   | 1.3                                                       | III-V and II-VI semiconductors                                 | 6  |  |  |  |  |
|   | 1.4                                                       | Substrates and epilayers                                       | 8  |  |  |  |  |
| 2 | Tight-binding calculation of semiconductors bandstructure |                                                                |    |  |  |  |  |
|   | 2.1                                                       | Linear combination of atomic orbitals                          | 10 |  |  |  |  |
|   | 2.2                                                       | The tight-binding approximation for a 1D atomic chain          | 16 |  |  |  |  |
|   | 2.3                                                       | Tight-binding approximation for a diamond lattice and $sp^3$   |    |  |  |  |  |
|   |                                                           | orbitals                                                       | 23 |  |  |  |  |
|   | 2.4                                                       | Spin-orbit interaction and valence band structure              | 31 |  |  |  |  |
| 3 | The                                                       | k·p method and the effective mass approximation                | 35 |  |  |  |  |
|   | 3.1                                                       | The $\mathbf{k} \cdot \mathbf{p}$ method                       | 35 |  |  |  |  |
|   | 3.2                                                       | Effective Mass                                                 |    |  |  |  |  |
|   |                                                           | 3.2.1 Electron effective mass in single and multi-valley semi- |    |  |  |  |  |
|   |                                                           | conductors                                                     | 38 |  |  |  |  |
|   |                                                           | 3 2 2 Hole effective mass                                      | 12 |  |  |  |  |

13

**Semiconductor Nanostructures** 

29/10/2