

ISS **Projekt 2021/2022**

Tomáš Souček xsouce15

Cílem projektu bylo vyčistit signál od 4 rušivých frekvencí ve formě cosinusovek. Řešení projektu bylo implementováno v jazyce Python. Informace byly čerpány ze zadání, dokumentace a ze studijních podpor Ing. Žmolíkové.

4.1 Základy

Délka v sekundách: 2,144

Délka ve vzorcích: 34 304

Minimální hodnota: -2 601

Maximální hodnota: 4 520

Pro načtení signálu byla použita knihovny scipy.io. Délka v sekundách se vypočítala vydělením počtu vzorků a vzorkovací frekvencí.

4.2 Předzpracování a rámce

Signál byl podle zadání postupně ustředěn a následně normalizován na rozmezí -1 až 1. Rozdělení signálu na rámce proběhlo pomocí 2 cyklů, kde se kontrolovala podmínka, jestli index nepřesáhl hodnotu 512. Jako znělý byl vybrán 8. rámec, jelikož na něm jde pěkně vidět periodičnost.

4.3 DFT

DFT byla implementována pomocí 2 cyklů for. Výpočet jednotlivých dat proběhl pomocí všeobecného vzorce diskrétní Fourierovy transformace. Data se ukládala do pole.

Tuhle část hodnotím z celého projektu jako nejsložitější.

4.4 Spektrogram

Spektrogram byl implementován pomocí vestavěné funkce spectogram z knihovny scipy a pro zobrazení hodnot koeficientů byla použita barva. Na spektrogramu jdou ve formě vodorovných lajn pěkně vidět 4 rušivé frekvence.

4.5 Určení rušivých frekvencí

Po přiblížení spektrogramu byly určeny rušivé frekvence, které pěkně vycházely na celé tisíce.

F1 = 1 000 Hz

F2 = 2 000 Hz

F3 = 3 000 Hz

F4 = 4 000 Hz

Všechny frekvence jsou harmonicky vztažené.

4.6 Generování signálu

Do pole byly uloženy výsledky výpočtu podle vzorce 2*pi*f*t, které proběhly pro každou ze 4 frekvencí. Výsledný signál se skládá ze sumy jednotlivých výpočtů. Poslechem i porovnáním spektrogramů lze vidět, že určené frekvence jsou správné.

4.7 Čistící filtr

Čistění proběhlo pomocí 4 pásmových zádrží implementovaných pomocí funkcí ze scipy knihovny – butter a buttord. Jejich parametry byly určeny na základě doporučení ze zadání. Pro zobrazení jednotlivých filtrů byl použit jedničkový impuls.

Jednotlivé koeficienty jsou pro potřebu dokumentace zaokrouhleny na 3 desetinná místa.

Numerátory	1	-7,298	23,876	-45,649	55,748	-44,518	22,707	-6,769	0,904
Denominátory	0,951	-7,029	23,287	-45,088	55,759	-45,088	23,287	-7,029	0,951

Numerátory 1 -5,585 15,597 -27,222 32,309 -26,539 14,824 -5,175 32,309 Denominátory 0,95 -5,377 15,208 -26,884 32,316 -26,884 15,208 -5,377 0,95

Numerátory	1	-3,022	7,324	-10,563	12,703	-10,296	6,959	-2,799	0,903
Denominátory	0,95	-2,909	7,141	-10,431	12,707	-10,431	7,141	-2,909	0,85

Impulsní odezva filtru 3 000 Hz

Numer átory	1	- 9,8654 3051e- 08	3,89746 819e+00	- 2,8840 8527e- 07	5,69762 828e+00	- 2,8110 9362e- 07	3,70269 744e+00	- 9,1351 3920e- 08	9,0253 9605e- 01
Denom inátory	9,5002 0844e- 01	- 9,4940 4484e- 08	3,80008 338e+00	- 2,8482 1345e- 07	5,70012 507e+00	- 2,8482 1345e- 07	3,80008 338e+00	- 9,4940 4484e- 08	9,5002 0844e- 01

Impulsní odezva filtru 4 000 Hz

4.8 Nulové body a póly

Pro výpočet nul a pólů byla použita vestavěná funkce tf2zpk. Proběhlo také ověření, zda se jedná o stabilní filtry.

4.9 Frekvenční charakteristika

U frekvenční charakteristiky byla použita vestavěná funkce freqz. Podle grafů jde pěkně vidět, že jednotlivé filtry potlačují signál na správných frekvencích.

Frekvenční charakteristika filtru 1 000 Hz

Frekvenční charakteristika filtru 3 000 Hz

Frekvenční charakteristika filtru 4 000 Hz

4.10 Filtrace

Filtrování signálu proběhlo pomocí funkce filtfilt, která byla zavolána čtyřikrát – 4 pásmové zádrže.

Podle poslechu i grafu se signál vyčistil od rušivých elementů.