MATEMATIK

Chalmers tekniska högskola Tentamen Hjälpmedel: bifogat papper med engelsk-svensk ordlista

Datum: 171219 kl. 14.00 - 18.00 Telefonvakt: Felix Held

6792

MVE275 Linjär algebra AT

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Motivera dina svar. För godkänt på tentan krävs 25 poäng på tentamens första del (godkäntdelen). Bonuspoäng från 2017 räknas med, men maximal poäng på denna del är 32. För betyg 4 eller 5 krävs 33 poäng totalt varav minst 4 på överbetygsdelen, och för betyg 5 krävs 42 poäng totalt varav minst 6 på överbetygsdelen.

Examinator: Orsola Tommasi

Del 1: Godkäntdelen

- 1. Denna uppgift finns på separat blad på vilket lösningar och svar skall skrivas. Detta blad inlämnas (14p) tillsammans med övriga lösningar.
- 2. Låt

$$A = \begin{bmatrix} 2 & 6 & 2 & 8 \\ 2 & 2 & 1 & 5 \\ 1 & -1 & 0 & 2 \\ 3 & 1 & 4 - t & 6 \end{bmatrix}.$$

- (a) Definiera vad som menas med kolonnrummet till en matris.
- (b) Vad ska t ha för värde för att rank A < 4? (2p)
- (c) För detta värde på t, bestäm baser för kolonnrummet och nollrummet till A. (3p)
- 3. Låt M vara matrisen

$$M = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & -1 \end{bmatrix}.$$

- (a) Egenvärdena till M är -2 och 4. Bestäm alla egenvektorer till M. (2p)
- (b) Vad menas med en ortogonalt diagonaliserbar matris? (1p)
- (c) Är M ortogonalt diagonaliserbar? I så fall, diagonalisera M ortogonalt. (3p)

4. Låt
$$\mathbf{a} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}$ och $\mathbf{d} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

- (a) En linjär avbildning T avbildar punkterna a, b, c och d till punkterna $[0\ 0\ 0]^T$, $[-5\ -2\ -4]^T$, $[2\ 1\ 2]^T$ och $[0\ 0\ 1]^T$ (i den ordningen). Hitta T:s standardmatris. (3p)
- (b) Punkterna a, b, c och d spänner tillsammans upp en parallelepiped. Hur många gånger större eller mindre blir parallepipeds volym när T verkar på den? (2p)
- (c) En annan avbildning avbildar a, b, c och d på dessa punkter istället: $[1 \ 0 \ 0]^T$, $[2 \ 1 \ 0]^T$, $[1 \ -1 \ 1]^T$ och $[3 \ 0 \ 0]^T$. Är avbildningen linjär? (1p)

Del 2: Överbetygsdelen

Poäng på dessa uppgifter kan inte räknas in för att nå godkäntgränsen. Normalt krävs för poäng på uppgift att man redovisat en fullständig lösningsgång, som i princip lett, eller åtminstone skulle kunnat leda, till målet.

- 5. (a) Låt V vara vektorrummet av alla funktioner $f: \mathbb{R} \to \mathbb{R}$ och U vara mängden av alla elementer i V som uppfyller f(0) + f(1) = 0. Visa att U är ett underrum av V. (3p)
 - (b) Lös systemet av differentialekvationer

$$\begin{array}{rcl} x_1'(t) & = & -4x_1(t) - 9x_2(t) \\ x_2'(t) & = & 3x_1(t) + 8x_2(t) \end{array}$$

$$d\ddot{a}r \ x_1(0) = -5 \text{ och } x_2(0) = 3. \tag{3p}$$

- 6. Avgör vilka av följande påståenden som är sanna respektive falska. Alla svaren måste motiveras, rätt svar utan motivering belönas ej. Du får citera satser från boken i ditt resonemang. Om du hävdar att ett påstående är FALSKT så måste du även illustrera varför med ett exempel som motsäger påståendet.
 - (a) Om A och B är $n \times n$ -matriser, så är $(A+B)^2 = A^2 + 2AB + B^2$. (2p)
 - (b) Alla diagonaliserbara matrisen är inverterbara. (2p)
 - (c) Det finns ingen 3×5 -matris A sådan att dim(Nul A) = rank A. (2p)
- 7. (a) Bevisa att mängen av vektorer $\{\mathbf v_1,\dots,\mathbf v_p\}$ i $\mathbb R^n$ är linjärt beroende om p>n.
 - (b) Om A är en inverterbar matris, bevisa att $(A^{-1})^{-1} = A$ och $(A^T)^{-1} = (A^{-1})^T$. (3p)

Lycka till! Orsola Tommasi

7(b): se Sats 2.6 i boken.

Anonym kod	NATIONALL IN THE THEOLOG	sid nummer	Poäng
-	MVE275 Linjär algebra AT 171219	1	
(endast lösningar oc	opgifter skall korta lösningar redovisas, samt svar anges, på anvisad plats h svar på detta blad, och på anvisad plats, beaktas).		
	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix} \text{ och } \mathbf{w} = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} \text{ linjärt beroende eller oberoende?}$		(2p)
	om Gu+C2V+C3W= D har en ide-trivia		
Systemets & $\begin{bmatrix} 1 & -2 & 3 \\ -3 & 3 & -3 \\ 1 & -1 & 1 \end{bmatrix}$	oefficientmatris: $\begin{bmatrix} Q & -1 & 2 \\ Q & Q & Q \end{bmatrix}$ $\begin{bmatrix} Q & -1 & 2 \\ Q & Q & Q \end{bmatrix}$ $\begin{bmatrix} Q & -1 & 2 \\ Q & Q & Q \end{bmatrix}$ $\begin{bmatrix} Q & -1 & 2 \\ Q & Q & Q \end{bmatrix}$ $\begin{bmatrix} Q & -1 & 2 \\ Q & Q & Q \\ Q & Q & Q \end{bmatrix}$	det 2 det 10 icke	fri variabel finns e-triv. ningar
	, wär linjärt beroende		(3p)
(a) Borania in or	$A = egin{bmatrix} 1 & 0 & 3 \ 0 & 1 & 5 \ 1 & 0 & 2 \end{bmatrix}.$		
Lösning: A I] =	[103 100] 015 010 RHR-R3 [102 001] 002 001] RHR-R3 [00110-1]	$ \begin{array}{c} R_1 \longrightarrow R_1 \\ R_2 \longrightarrow R \end{array} $	-2R3 z-5R3
[100]	$\begin{bmatrix} -2 & 0 & 3 \\ -5 & 1 & 5 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} I & A & J \\ A & J & J \end{bmatrix}$		
Svar:	41 = [3 3 3]		
	$A = egin{bmatrix} 4 & 1 & -3 \ 6 & 0 & -6 \ 2 & 1 & -1 \end{bmatrix}.$		
För vilka hög Lösning:	erled ${f b}$ har systemet $A{f x}={f b}$ unik, inga, respektive oändligt många lösnir	ngar?	(2p)
(2) -3	liminering $\begin{bmatrix} 0 & -1 & -1 & b_1 - 2b_3 \\ b_1 & b_2 \\ b_3 & R_1 \rightarrow R_2 \rightarrow R_2 \\ b_3 & R_2 \rightarrow R_2 \rightarrow R_3 \end{bmatrix} \rightarrow$	[2 1 - 1 0 - 1 - 1 0 - 3 - 3	1 63 - 263 3 162-363
$R_3 \mapsto R_3 - 3R_2$	2 1 - 11 b3 lösbart om och 0 - 1 - 11 b1 - 263 b2 - 3b1 + 3b3 = 58 fall: x5 ar	endast O fri var	om
för b	p2-3b/+3b3+0 har systemet inga lösning 2-3b/+3b3=0 finns det oandligt många gen är aldrig unik. Var god	lösning	zar.

A är diagonaliserbour: A=PDP där D=[-207] och P= [3 1]

$$P^{1} = \frac{1}{3 \cdot 2 - 51} \begin{bmatrix} 2 - 1 \\ -53 \end{bmatrix} = \begin{bmatrix} 2 - 1 \\ -53 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ -10 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -7 & 3 \\ -10 & 4 \end{bmatrix}$$

Svar:
$$A = \begin{bmatrix} -7 & 3 \\ -10 & 4 \end{bmatrix}$$

(e) Bestäm koordinaterna för vektorn
$$\begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 i basen $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ och $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. (2p) Lösning:

Vi vill hitta q och ce så att Gb,+ ce b= [3/ $\begin{bmatrix} 1 & 2 & | & -2 \\ -1 & 0 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & -3 \\ 0 & 2 & | & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & -3 \\ 0 & | & 1 & 1/2 \end{bmatrix}$

svar: Koordinaterna är
$$c_1 = -3$$
 och $c_2 = \frac{1}{2}$.

(f) Ge ett exempel på en 2×2 -matris A som är ortogonal, dvs $A^T A = I$. Matrisen ska inte vara diagonal. Lösning:

$$A = [\alpha_1 \ \alpha_2] \text{ där } \{\alpha_1, \alpha_2\} \text{ är en on-bas till } \mathbb{R}^2$$

T. ex. $\alpha_1 = [\alpha_1], \alpha_2 = [\alpha_1] \text{ ger } A = [\alpha_1] \text{ Som}$

är en on-matris.

Svar:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(2p)

(2)
(a) Kolonnrummet till en matris A är mängden av alla linjärkombinationen av A:s kolonner.
av alla linjärkombinationen av A:s reotonne.
Ovs: for A= [a1. an] ar kolonnum
$Col A = Span Sa_1, \dots, a_n Y$
(b) rank A desfinieras som dem (COLA).
()
Gaugs-eliminating. $A = \begin{bmatrix} 2 & 6 & 2 & 8 \\ 2 & 2 & 1 & 5 \\ 2 & 2 & 1 & 5 \\ \hline{1} & -1 & 0 & 2 \\ \hline{3} & 1 & 4-t & 6 \end{bmatrix} \xrightarrow{R_1 \mapsto R_2 - 2R_3} \begin{bmatrix} 0 & 8 & 2 & 4 \\ 0 & 4 & 1 & 1 \\ \hline{1} & -1 & 0 & 2 \\ \hline{1} & -1 & 0 &$
$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & -1 & 0 & 2 \end{bmatrix} \qquad 3-t=0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Om _t = 3 : rank A = 4
Om t=3 : rank A=3<4 eftersom
[1-102] 0 4 1 1 0 0 0 0 0 0 0 0 0 * x x x x x x x x x x x x x x x x x x x
(c) Hol. 1,2,4 är pivotkolonner, så
$\left\{\begin{bmatrix} 2\\2\end{bmatrix}\begin{bmatrix} 6\\2\end{bmatrix}\begin{bmatrix} 8\\5\end{bmatrix}\right\}$ är en bas till Col A.

([3])[1]/[6] Radred trappstegsformen sfor A är => allmän lösning till A = 0 är $x = x_3 \begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix}$ så $\begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix}$ bildar en bas

4 yör Nul A.

(a) Egenvektorer till
$$\lambda_1 = -2$$
 är lösningar, $x \neq 0$
till $M x = -2x$, ohr $(M+2I)x = 0$

till
$$M = -2k$$
, and $(M = -2k)$, and $($

$$\mathcal{L}_{3}: \mathcal{L}_{4}=\begin{bmatrix} -2\\1\\0 \end{bmatrix}, \mathcal{L}_{2}=\begin{bmatrix} -1\\1 \end{bmatrix}$$
 spänner upp egenrummet till $\mathcal{L}_{4}=-2$

Egenvektorer till 2=4:

$$M-4L = \begin{bmatrix} -5 & 2 & 1 \\ 2 & -2 & 2 \\ 1 & 2 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & -3 & 6 \\ 0 & 3 & -6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{K_1 - K_3 = 0} \xrightarrow{K_2 - 2K_3 = 0} \xrightarrow{K_3 + ii}$$

$$x=x_3\begin{bmatrix}1\\2\\1\end{bmatrix}$$
 alla egenvektorer till $\lambda_2=4$ är multipla ar $\begin{bmatrix}2\\4\end{bmatrix}$.

- (b) Mär ortogonalt diagonaliserbar om M= PDPT där Där diagonal och Pär en N-matris.
- (c) M är ortogonalt diagonaliserbar eftersom A är symmetrisk (drs M-MT).

Kolonnerna av 7 måste bilda en ON-bas av egenrektorer till M

$$\lambda_1 = -2$$
: GS-processen: $\theta_1 = w_1$

$$\mathcal{C}_{2} = v_{2} - \frac{\mathcal{C}_{1} \cdot \mathcal{C}_{1}}{\mathcal{C}_{1} \cdot v_{2}} \mathcal{C}_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{5} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/5 \\ -2/5 \\ 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -1 \\ -2/5 \\ 1 \end{bmatrix}$$

längd: 1+4+25=30

$$\lambda_2 = 4$$
 $\theta_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $|\theta_3| = \sqrt{1 + 4 + 1} = 6$

$$P = \begin{bmatrix} -2\sqrt{5} & -1/\sqrt{5}0 & 1/\sqrt{6} \\ 1/\sqrt{5} & -2/\sqrt{5}0 & 2/\sqrt{6} \\ 0 & 5/\sqrt{5}0 & 1/\sqrt{6} \end{bmatrix}$$

$$D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

(a) Standardmatrisen our
$$[T(x_1) T(x_2) T(x_3)]$$

$$\mathcal{C}_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 0 \\ 1/2 \end{bmatrix} = \alpha + 2 \mathcal{C} \Longrightarrow T(\mathcal{C}_{1}) = T(\alpha) + 2T(\mathcal{C}) = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix}$$

$$e_{2} = b + e_{1} = b + 2c + d \Longrightarrow T(e_{2}) = T(b) + 2T(c) + T(d) =$$

$$= \begin{bmatrix} -5 \\ -2 \\ -4 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

$$=\begin{bmatrix} -5 \\ -2 \\ -4 \end{bmatrix} + 2\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$e_3 = 2 c \Rightarrow T(e_3) = 2\begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} 4\\2\\4 \end{bmatrix}$$

(b) Volymen blir multiplicerad med | det A|.

$$\det A = \begin{vmatrix} 4 & -1 \\ 2 & 0 \end{vmatrix} = -(-1)\begin{vmatrix} 2 & 2 \\ 5 & 4 \end{vmatrix} + 0 - (+1)\begin{vmatrix} 4 & 4 \\ 2 & 2 \end{vmatrix} = \\ + \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = (2 \cdot 4 - 5 \cdot 2) - 0 = -2$$

Ovs volymen blir 2 gånger större.

(c) Avbildningen kain inte vara linjär eftersom $\alpha = D$ avbildas i $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq D$.

(a) Vi vill visa att U uppfyller de tre villkor för att vara ett undernum. (i) $D \in U$ eftersom nollfunktionen D(t) = 0uppfyller $\Phi(0) + \Phi(1) = 0 + 0 = 0$. (ii) om f1, f2 ligger i U, så uppfyller f1+f2 (4,+42)(0)+(4,+42)(1)=4,(0)+4,(0)+6,(1)+6,(1) $= \frac{f_1(0) + f_1(1)}{11} + \frac{f_2(0) + f_2(1)}{11} = 0$ $(4_1 \in U) \qquad (4_2 \in U)$ Alltså ligger 4,+f2 i U. (iii) om $f \in U$ och $c \in \mathbb{R}$, så gäller (cf)(0)+(cf)(1)=cf(0)+cf(1)=c(f(0)+f(1))(feu) eAlltså ligger of i U. Härmed är Vett underrum. (b) Systemet kan skriivas som där $x = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ och $A = \begin{bmatrix} -4 & -9 \\ 3 & 8 \end{bmatrix}$ X = AK Egenvärden till A: $\det(A - \lambda I) = \begin{vmatrix} -4 - \lambda & -9 \\ 3 & 8 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda - 5 = (\lambda + 1)(\lambda - 5)$ $Så: \lambda_1 = -1$ och $\lambda_2 = 5$ är egenrövalena.

Egenvektorer:

$$\lambda_{1} = -1$$

$$A + I = \begin{bmatrix} -3 & -9 \\ 3 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \quad w_{1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix} \text{ ar en agenvekto}$$

$$\lambda_{2} = 5$$

$$A - 5I = \begin{bmatrix} -9 & -9 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad w_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ ar en egenvektor}$$

$$ellman \ \text{listing till systemet are}$$

$$x(t) = c_{1} e^{-t} \begin{bmatrix} -3 \\ 1 \end{bmatrix} + c_{2} e^{5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\chi(0) = \begin{bmatrix} -3c_1 - c_2 \\ c_1 + c_2 \end{bmatrix} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$
 på grundar legynnelserillkoret

$$\begin{bmatrix} -3 - 1 & | -5 \\ 1 & 1 & | 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & | 4 \\ 1 & 1 & | 3 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & | 1 \\ 0 & 1 & | 2 \end{bmatrix} \xrightarrow{C_2 = 2}$$

excetsà: lösningen au
$$k(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = e^{t} \begin{bmatrix} -3 \\ 1 \end{bmatrix} + 2e^{5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3e^{t} - 2e^{5t} \\ e^{t} + 2e^{5t} \end{bmatrix}.$$

(c) Enligt Sats 2.14 gäller: rank A+ dim Nul A=5 (= antalet av kolommer). Qa 5 + 2 rank A kan rank (A) och dim (Nul A) inte vara lika med varandra SANT