

深圳市明微电子股份有限公司

SHENZHEN SUNMOON MICROELETRONICS CO.,LTD

Address: High-tech Industrial Park in Southern District, Shenzhen High-tech South State Building Micro 5 floor ADD: Shenzhen High-tech Industrial Park, South Area GaoxinS.Ave.1 st , Guowei Building.

fax Fax: 0755-26991336 phone Tel: 0755-26991391 Zip Code: 518057 URL: www.chinaasic.com

E-mail Email: sunmoon@ssmec.com

SM74HC595D

A brief

SM74HC595D It is a kind 8 Bit latch, 8 Bit serial input, 8 Bit serial / parallel output string - And shift register and the output of the common tristate led Driver chip. have 8 Bit shift register memory and a tri-state output. The shift register memory and a clock, respectively. Data SCK The rising edge of the input, in RCK Rising edge to go into the storage registers. The shift register has a serial input shift (SER), And a serial output (Q7'), And an asynchronous reset low, there is a parallel storage register 8 Bits, with three-state output bus, when the enable G

(Low), the output data stored in the register to the bus. It can be manufactured by other companies 74HC595 Fully compatible.

Second, the functional characteristics:

- have 8 Bit serial input;
- have 8 Bit serial and parallel output;
- A shift register directly cleared to "zero" function;
- And it has a latch 3 State output;
- Through 50MHz Shift clock;
- Operating Voltage: 2V-6V

Third, the pin map

Fourth, pin function definitions

Pin Number	symbol	Pin Function
10	SCLR	Reset terminal
11	SCK	The shift register clock, the rising edge of the shift
12	RCK	Latch register clock rising edge of the
13	G	An output enable terminal, so that a low level, the output of the gate; is high Level, the output of 3 state
14	SER	Serial data input terminal
15 , 17	Q0 Q7	Parallel outputs
9	Q7`	Serial Output
8	GND	Logically
16	V cc	Power supply terminal

Fifth, the truth table function

RCK	SCK	SCLR	G	Features
Х	Х	Х	Н	Q0 Q7 for 3 state,
Х	Х	L	L	The shift register is cleared to "zero" Q7` = 0
Х	1	Н	L	Shift register memory, Q N- Q N-1 , Q A- SER
1	Х	Н	L	Values stored in the shift register

V0903A WWW.DataSheet4U.com

Six, logic diagram

Seven, work timing diagram

www.DataSheet4U.com

Eight, DC Characteristics

symbol	parameter	condition	VCC	T = 25 ₀	unit
				Typical values	
V IH	Enter the most high		2.0V	1.5	
	low voltage		4.5V	3.15	
			6.0V	4.2	
V ⊩	Most low-level input		2.0 V	0.5	V
	high voltage		4.5V	1.35	
			6.0V	1.8	
V он	The most high output	VIV= VIH Of VIL	2.0V	1.9	
	Small value	Ιουτ _Ι ≤ 20 uA	4.5V	4.4	
			6.0V	5.9	
	Q7`	VIV= VIH Of VIL	4.5V	3.84	
		Ιουτլ ≤ 4.0 mA Ιουτ	6.0V	5.34	
		_l ≤ 5.2 mA			
	Q0 Q7	VIV= VIH OF VIL	4.5V	3.84	
		Го ∪т ј ≤ 6.0 mA Го∪т	6.0V	5.34	
		₁ ≤ 8.2 mA			
V ol	Most low-level output	VIV= VIH OF VIL	2.0V	0.1	T .,
	Great value	Гоитլ ≤ 20 uA	4.5V	0.1	V
		•	6.0V	0.1	
	Q7`	VIV= VIH OF VIL	4.5V	0.33	
		Іо ит ≤ 4.0 mA Іоит	6.0V	0.33	
		_l ≤ 5.2 mA			V
	Q0 Q7	VIV= VIH OF VIL	4.5V	0.33	
		Гошт _I ≤ 6.0 mA Гошт	6.0V	0.33	
		ı ≤ 7.8 mA			
Lin	Maximum input current	V _{IN} = VCC or GND	6.0V	± 1.0	uA
loz	maximum 3 State Outputs	V out = VCC or GND	6.0V	± 5.0	uA
	Leakage Current	 G = V _{IH}			
Icc	+		6.01/	80	
I CC	The maximum quiescent curren	lout = 0 uA	6.0V	80	uA

Nine, AC Electrical Characteristics

$\underline{\text{GND}} = 0$, $\underline{\text{T}}_{\underline{r}} = \underline{\text{T}}_{\underline{f}} = \underline{\text{6ns}}$, $\underline{\text{C}}_{\underline{L}} = \underline{\text{50}}$ PF VCC = 4.5V

	7		T temperature				
symbol	parameter		+ 25 ₀	unit	Waveform cha		
		Least	Typical maxim	ium			
tPHL/ tPLH	Shift clock edge to Q7` Output delay	-	15	twenty two		Map 1	
tpHL/tpLH	Memory clock edge to Output Delay	-	16	twenty two		Map 2	
t PHL	To reset valid edge Q7` Output delay	-	- 20 40 - twenty one 35			Map 4	
t PZH/ t PZL	3 State of the output enable signal to the active edge time	-				Map 5	
t PZH / t PZL	3 State of the time disable signal is active the output edge	-	18	30	20	Map 5	
tw	Shift clock width	10	20	-	ns	Map 1	
tw	Store clock width	10	20	-		Map 2	
tw	Reset time width	15	25	-		Map 4	
t su	Data storage setup time	16	25	-		Map 3	
t su	Shift data setup time	16	25	-	_	Map 2	
th	Data Hold Time	3	12	-		Map 3	
t rem	Reset the time shift clock	10	17	-		Map 4	
f _{max}	The maximum clock frequency RCK or SCK	30	52	-	MHz Map	1,2	

X. AC waveform diagram characteristic

The first 6 Total 7 page WWW.DataSheet4U.com

XI schematic package

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	L _p	Q	V	w	у	Z ⁽¹⁾	e
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.39 0.38	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°