程序代写代徵 CS编程辅导

Question 1

 $(7 \times 2 = 14 \text{ marks})$

inswer whether they are TRUE, FALSE, or OPEN For each of the foll (answer not currer ers should be justified.

(a) The following

DFA and N is a PDA and $L(M) \subseteq L(N)$

- (b) There exists a returnively enumerable language whose complement is regular. CStuttOTCS
- (c) Any countable union of recursively enumerable languages is recursively enumerable.
- (d) If P = NP ther all languages in Pare NP-complete. Exam Help
- (e) NL = AP
- (f) $NP \subseteq TIME(2$ Email: tutores@163.com

(g) If P = PSPACE then NP = BPP 749389476

Solution

- (a) FALSE: Taking M to be appropriate that accepts \(\sum_{\text{s}}^*\) gives a reduction from the universality of CPLs.
- (b) TRUE: Any regular language is recursively-enumerable and its complement is regular.
- (c) FALSE: All languages are countable
- (d) FALSE: Ø is not **NP**-complete
- (e) FALSE: Space-hierarchy theorem
- (f) OPEN: If P = NP then it would be true. If NP = EXPTIME then it would be false as then $TIME(2^{O(n)}) \subset NP$, but $TIME(2^{O(n)})$ is not closed under polynomial-time many-one reductions so they cannot be equal.
- (g) TRUE: If P = PSPACE then the polynomial-time hierarchy collapses and P = NP = BPP = PSPACE.

Question 2

 $(3 \times 5 = 15 \text{ marks})$

- (a) $\{0^n 1^m : n, m \ge 1 \text{ and } n = m \pmod{3}\}$
- (b) $\{0^n 1^m : n, m \geq m\}$
- (c) $\{0^n 1^m : n, m \ge 1000 \text{ m}\}$

Solution

(a) The language is regular. Here is an NFA that accepts the language:

Intuitively, the automaton "remembers" $n \pmod{3}$ and then checks to make sure $m \pmod{3}$ is equal 4 $n \pmod{3}$

Alternative proof

The langing transbe written of the sunion $L_2 \cup L_3$ where:

$$L_{1} = \{0^{3k+1}1^{3j+1} : k, j \in \mathbb{N}\} = L(0(000)^{*}1(111)^{*})$$

$$L_{2} = \{0^{3k+2}1^{3j+2} : k, j \in \mathbb{N}\} = L(00(000)^{*}11(111)^{*})$$

$$L_{3} = \{0^{3k+3}1^{3j+3} : k, j \in \mathbb{N}\} = L(000(000)^{*}111(111)^{*})$$

From this we can see that the language is matched by the regular expression:

$$0(000)^*1(111)^* \cup 00(000)^*11(111)^* \cup 000(000)^*111(111)^*$$

(b) This language is not context-free. We show this with the pumping lemma for CFLs.

Assume $L = \{0^n 1^m : n, m \ge 1 \text{ and } n \equiv 3 \pmod{m}\}$ is context-free, and satisfies the pumping lemma for context-free languages with pumping length p.

We will make use of the following result:

Lemma 程序代写代做 CS编程辅导

Let $p \in \mathbb{N}$ with $p \ge 1$, and let k = 2p + 1. Then for all a, b with $1 \le a \le n$ and $0 \le b \le n$ we have

 $(k-b) \nmid (k!-a)$

Proof of

Assume so (k-b)|k!, this statement is equivalent to saying $(k-b) \nmid a$ – contradiction.

Let k = 2p Was Consider the State of S³1^k $\in L$. By the Pumping Lemma for CFLs, there exists u, v, x, y, z such that:

- 0. w = uvxyAssignment Project Exam Help
- 1. $|vxy| \leq p$
- 2. |vy| > 0
- 3. uvixyiz Email: tutores@163.com

Suppose u, v, x, y, z satisfy conditions 0, 1 and 2 of the Pumping Lemma. We consider 3 tasks: 749389476

Case 1: v or y of the form $0^a 1^b$ where a, b > 0.

In this case uv^2xy^2z will not be of the form 0^n1^m and therefore not in L.

Case 2: uxy it the form the torcier Com

In this case, v and y are of the form $v = 1^a$ and $y = 1^b$ where at least one of a, b is greater than 0. Now, for i = k! + 3, we have $uv^i x y^i z = 0^n 1^m$ where

- n = k! + 3, and
- m > k! + 3

But then $n \equiv k! + 3 \not\equiv 3 \pmod{m}$, so $uv^i x y^i z \notin L$.

Case 3: uxy is of the form 0^n1^m where n < k! + 3 and $m \le k$.

In this case, let a = k! + 3 - n > 0 and $b = k - m \ge 0$. From condition 1 of the Pumping Lemma, we have $a, b \le p$. If $n \equiv 3 \pmod{m}$, then m|n-3. That is, (k-b)|(k!-a). From the above Lemma we have a contradiction, so $uxy \notin L$.

In all cases, we see that it is not possible to break w into uvxyz such that the conditions of the Pumping Lemma are satisfied. Therefore L is not context-free.

- (c) This languages context free put for the ular. Some the incompact free, we observe that it can be written as
 - $3n + x \text{ where } x \in \{0, 1, 2\}\}.$

It follows S by the grammar $(\{S, T\}, \{0, \})$ is the set of rules:

Tutor CS
$$ightarrow 0S111 \mid 0T111$$
 $ightarrow \epsilon \mid 0 \mid 00$

To show the language is not regular, we will use the Myhill-Nerode theorem. For each $i,j \in \mathbb{N}$ let:

- $u_i = 0^i$ WeChat: cstutorcs
- $w_{ij}=1^{3i}$

We see that if $i \neq j$ then $u_i w_{ij} = 0.13$ is in the language, but $u_j w_{ij} = 0.13$ is not in the language (as 3i div $3 = i \neq j$). Thus the syntactic equivalence relation of the language has infinite index, and by the Myhill-Nerode theorem, the language is not regular S

Question 3

QQ: 749389476

(14 marks)

Show that the following language is not in **coRE**:

https://tutores.com

Input: A Turing Machine M

Question: Does M halt in the reject state on input ϵ ?

Solution

The language is accepted by the following Turing Machine. On input $\langle M \rangle$:

- 1. Simulate M on input ϵ .
- 2. If *M* rejects then accept. If *M* accepts then reject.

Hence the language is recursively enumerable.

To show that it is undecidable, we show a reduction from the acceptance problem for Turing Machines:

$$\{\langle M, x \rangle : M \text{ accepts } x\}.$$

Given a pair $\langle M, x \rangle$ we construct a Turing Machine M_x as follows:

On any input, Faulate Evillin做x. CS编程辅导 If M accepts x then reject. If M rejects x then accept.

f, M accepts x. Thus this is a reduction from Clearly M_x reje the acceptance oblem. As we know the acceptance problem for Turing Mac le, it therefore follows that the our language is also undecida t decidable.

Question 4

(15 marks)

Show that the following problem is **NP**-complete:

Input: A finite collection C of finite sets, and a number $k \leq |C|$.

Question: Does A contain k sets S1. 15 Puch that S: Q SE Whene e

Solution

To show the problem in P-complete regular show that the problem in NP. and that it is **NP**-hard.

To show the problem is in **NP**, consider the following algorithm:

On input $C = \{T_1, T_2, ..., T_n\}$ and $k \le n$:

- Non-deterministically guess $C' \subseteq C$ nttps://tutorcs.com
- Check if |C'| = k. If not then reject.
- Check if $S \cap T = \emptyset$ for all $S, T \in C'$. If not, then reject
- Accept

This algorithm clearly decides the decision problem with a non-determinstic TM. It remains to show that it runs in polynomial time. If $m = \max |T_i|$ and n = |C| then the running time for each of these steps is at most O(n) + O(n) + O(n) $O(n^2m) = O(n^2m)$. As the input has size at least $\Omega(m+n)$, the running time of the algorithm is polynomial in the size of the input. Therefore, the problem is in NP.

To show the problem is **NP**-hard, we give a reduction from Independent Set:

INDEPENDENT程序代写代做 CS编程辅导

Input: A graph G = (V, E) and an integer k

Question: D vertices $V' \subseteq V$ such that $|V'| \ge k$ and for all $u, v \in V'$,

This was shown to tutorials.

Given an instar DEPENDENT SET, define the following instance (C, k') of our decision provides:

- $C = \{S_v : v \in V\}$ where $S_v = \{e \in E : v \in e\} \cup \{v\}$ • $C = \{S_v : v \in V\}$ where $S_v = \{e \in E : v \in e\} \cup \{v\}$
- $\bullet k' = k$

We can construct (S, V) from (V, F) Drin line (V, F) The polynomial-time mapping. Note that if $v \neq w$ then $S_v \neq S_w$. Also, note that $S_v \cap S_w = \emptyset$ if and only if v and w do not have an edge in common – i.e. if and only if $\{v, w\} \notin \mathbb{R}$

Suppose ((V, E), k) is a yes-instance which maps to (C, k'). Then there exists an independent set $V' \subseteq V$ of size at least k in (V, E). As a subset of an independent set is also arrived pendent set, we can assume that V' is of size exactly k. Consider $C = \{S_v : v \in V'\} \subseteq C$. As |V'| = k, we have |C'| = k = k'. As V' is an independent set, $\{v, w\} \notin E$ for all $v, w \in V'$, so $S_v \cap S_w = \emptyset$ for all $S_v, S_w \in C'$. Therefore (C, k') is a yes-instance of our problem.

Conversely, suppose (V, E), k) maps to (C, k') and (C, k') is a yes-instance. Let $C' \subseteq C$ be the collection of k' sets such that $S_v \cap S_w = \emptyset$ whenever $v \neq w$. Let $V' \subseteq V$ be the set of k' = k vertices such that $C' = \{S_v : v \in V'\}$. Then, from the definition of the S_v , it follows that $\{v, w\} \notin E$ for all $v, w \in V'$. Therefore V' is an independent set of size k. So ((V, E), k) is a yes-instance.

Therefore the mapping is a polynomial-time many-one reduction from INDE-PENDENT SET to our problem; and so the problem is **NP**-hard.

Question 5 $(2 \times 7 = 14 \text{ marks})$

Let MIN be the set of formulas ϕ of propositional logic such that there does not exist a shorter formula ψ with $\phi \equiv \psi$. (Here $\phi \equiv \psi$ means that the formulas are logically equivalent, i.e. they take the same truth value for all assignments of truth value to the variables.)

(a) Show that $MIN \in \mathbf{PSPACE}$

(b) Explain why the following argument does not show that Man Front: If $\phi \notin M$ in then there exists a shorter equivalent formula ψ . A nondeterministic machine can verify that $\phi \notin M$ in by guessing that formula.

Solution (a) In lectures MIN ∈ PSP. (b) The issue i ed" formula ψ still needs to be shown to be equivalent to φ (the existence of a shorter formula does not establish that φ ∉ MIN). In order to show the two formulas are equivalent, we must check if they agree on all truth assignments. This can be done non-deterministically but with a *universal* non-deterministic step. Whether it is possible to do so with existential non-determinism is, of course, an open problem. Assignment Project Exam Help

Question 6 Email: tutorcs@ $163.coff^{\times}$ 7 = 14 marks)

- (a) Show that the complement of an No graphete language is coNP-complete.
- (b) Show that for any language A, the complement of a language in \mathbf{NP}^A is in \mathbf{coNP}^A .

Solution https://tutorcs.com

- (a) Let L be an **NP**-complete language, and let L' denote its complement. Since $L \in \mathbf{NP}$, we have that $L' \in \mathbf{coNP}$.
 - To show that L' is **coNP**-hard. consider any language $K \in \mathbf{coNP}$. Because $K \in \mathbf{coNP}$, its complement, K' is in **NP**. Because L is **NP**-hard, there exists a polynomial-time many-one reduction, f, from K' to L. From the definition of a reduction, we observe that f is also a polynomial-time many-one reduction from K to L'. Therefore, $K \leq_P L'$ and so L' is **coNP**-hard.
- (b) Let $L \in \mathbf{NP}^A$. Then there is a non-deterministic, oracle-for-A Turing Machine M that accepts L in polynomial time. Consider the following co-non-deterministic, oracle-for A Turing Machine M':
 - *M'* has the same states as *M* except the accept and reject states are swapped.
 - M' has the same transitions as M but non-determinism is resolved universally rather than existentially (note: this only affects acceptance).

Oracle 程序对他妈妈CS编程辅导

We observe the following:

 $w \in \blacksquare$ Ins of w in M' end in M''s accept state in M in M and in M in M in M in M in M accept state in M in M accept state $\mathbb{L}(M)$

Therefore L accepts \overline{L} in polynomial time. Therefore M' is a polynomial-time, co-non-determinstic TM that accepts \overline{L} . So $\overline{L} \in \mathbf{coNP}^A$.

WeChat: cstutorcs

Question 7

 $(2 \times 7 = 14 \text{ marks})$

Assignment Project Exam Help

- (a) Show that if $L_1, L_2 \in \mathbf{BPP}$ then $L_1 \setminus L_2 \in \mathbf{BPP}$.
- (b) Show that if La Emzilihet Latores 2 163.com

Solution

- (a) If $L_1, L_2 \in \mathbf{BrP}$, let M_1 and M_2 be bounded-error, polynomial-time, probabilistic TMs that probabilistically accept L_1 and L_2 (respectively). By the Amplification Lemma, we can assume that M_1 and M_2 have bounded error $\frac{1}{6}$. That is,
 - If $w \in L_1$ then $P(M_1 \text{ accepts } w) \geq \frac{5}{6}$, and
 - If $w \notin L_1$ then $P(M_1 \text{ accepts } w) < \frac{1}{6}$,

and similarly for M_2 .

Consider the following probabilistic Turing Machine *M*:

On input *w*:

- Run M_1 on w
 - If M_1 rejects then REJECT
- Run M_2 on w
 - If M_2 accepts then REJECT
 - Else ACCEPT

As M_1 and M_2 run in polymonia time. M also the property of the state of the Also:

• If $w \in I$ • If $w \notin$

accepts
$$w$$
 and M_2 rejects w) $\geq \frac{5}{6} \cdot \frac{5}{6} > \frac{2}{3}$.

$$P(M \text{ rejects } w) \geq P(M_1 \text{ rejects } w) \geq \frac{5}{6} > \frac{2}{3}$$
 - $w \in L_1 \cap L_2$, in which case:

Assignment Project Exam $\overset{5}{\text{Help}}$

In either case $P(M \text{ accepts } w) = 1 - P(M \text{ rejects } w) < \frac{1}{3}$.

So M probabilities $L_1 \setminus L_2 \in$ BPP.

- (b) If $L_1, L_2 \in \mathbb{ZPP}$ then $L_1, L_2 \in \mathbb{CORP}$. For i = 1, 2, let M_i, N_i be the probabilistic polynomial time TMs where:
 - If $w \in L_i$ then $P(M_i, \text{accepts } w) > \frac{1}{2}$ and $P(N_i, \text{accepts } w) = 1$, and If $w \notin L_i$ then $P(M_i, \text{accepts } w) = 0$ and $P(N_i, \text{accepts } w) < \frac{1}{2}$.

That is, M_i shows $L_i \in \mathbf{RP}$ and N_i shows that $L_i \in \mathbf{coRP}$.

Consider the following probabilistic TMs:

M

On input w:

- Run M_1 on w
- Run M_2 on w
- If either M_1 or M_2 accepts then ACCEPT
- Else REJECT

N

On input w:

- Run N_1 on w
- Run N_2 on w
- If either N_1 or N_2 accepts then ACCEPT
- Else REJECT

As M_i and N_i run in polynomial time, it follows that M and N also do. Furthermore:

- ·IfweL檉序代写代做 CS编程辅导
 - $P(M \text{ accepts } w) \ge P(M_i \text{ accepts } w) \ge \frac{1}{2}$
 - $P(\bar{1} N_i \text{ accepts } w) = 1$
- Therefo
 - P(.
 - P()
- On the other hand, if $\omega \not\in L_1 \cup L_2$ then
 - P(M accepts w) = 0 as neither M_1 nor M_2 will accept w
 - $P(Nacepts x) = P(Nacepts x) = \frac{1}{2} \cdot \frac{1}{2} < \frac{1}{2}$

Thus M shows that $L_1 \cup L_2 \in \mathbb{RP}$ and N shows that $L_1 \cup L_2 \in \mathbb{CORP}$. Therefore $L_1 \cup L_2$ **PS1gnment Project Exam Help**

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com