

Advanced Macroeconomics

Section 4 - Fluctuations (II): Keynesian and New-Keynesian theories

Daniele Girardi King's College London

AY 2024-25, Semester I

'Old school' Keynesian theory

- ▶ Developed in the 1940s to formalise Keynes' ideas
- Was dominant and guided policy until the 1970s
- Simple models built up from sensible assumptions about relations between macroeconomic variables, but no explicit microfoundations
- ► IS-LM model + Phillips Curve
- Aggregate demand determines the level of output, inflation-unemployment trade-off

New Keynesian theory

- Micro-founded rational-expectations framework (like RBC)
- but introduces nominal rigidities (sticky prices/wages) and imperfect competition
- ► Baseline 3-equations DSGE model
 - 1. New Keynesian IS curve
 - 2. New Keynesian Phillips Curve
 - 3. Central Bank reaction function
- real effects of monetary policy (unlike RBC and somehow similar to old Keynesian models)
- also the effects of other shocks (technology and fiscal policy) differ from the plain RBC model.

The plan

- 1. Old school IS-LM model and Lucas critique
- 2. New Keynesian IS-LM model
- 3. Phillips Curve(s)
- IS-LM-PC: A simplified model in the spirit of New Keynesian macro
- The canonical DSGE New Keynesian model

The 'old-school' IS-LM model

- ► Model of output determination in the short-run
- John Hicks (1937) formalisation of (his interpretation of) Keynes.
 - o Neoclassical synthesis
- ▶ Became the dominant model of output determination since the 1940s and is still the model taught in intermediate classes.
- ▶ Notation:
- o Y = output
- o Z = aggregate demand
- o C = consumption
- o I = aggregate investment
- o G = government spending

- o τ = tax rate
- o i = nominal interest rate
- o r = real interest rate
- o M = quantity of money
- o P = price level

Goods market equilibrium

- **▶** Definition:
 - o Aggregate demand $Z_t \equiv C_t + I_t + G_t$.
- ► Behavioural equations:
 - o Consumption function: $C_t = c_0 + c_1(1 \tau_t)Y_t$
 - o Investment function: $I_t = a_0 a_1 r_t$.
 - o G and τ taken as given: $G_t = G$, $\tau_t = \tau$.
- ► Equilibrium:

Equilibrium condition Y = Z implies equilibrium output is

$$Y_t = \frac{1}{1 - c_1(1 - \tau)} [c_0 + (a_0 - a_1 r) + G] = A - ar_t$$

Where
$$A = \frac{c_0 + a_0 + G}{1 - c_1(1 - \tau)}$$
 and $a = \frac{a_1}{1 - c_1(1 - \tau)}$.

The old school IS curve

goods' market equilibrium:

$$Y = A - ar$$
 (IS curve)

- A change in the interest rate is a movement along the IS curve
- A change in government spending or autonomous consumption shifts the IS curve up or down

Money market equilibrium

$$\frac{M_t}{P_t} = \alpha Y_t - \beta i_t \quad \Rightarrow \quad i_t = bY_t - c\frac{M_t}{P_t} \qquad (LM curve)$$

(Where $b = \alpha/\beta$ and $c = 1/\beta$)

- ▶ M and P exogenous constants ($P_t = P$, $M_t = M$).
- ▶ Higher Y \rightarrow higher demand for $M \rightarrow$ higher equilibrium i

- ► Given fixed price assumption, i = r.
- Can be used to evaluate the effect of fiscal and monetary policy.
- Fiscal expansion (increase in G or decrease in τ) raises Y and i.
- Monetary expansion (increase in M) raises Y and lowers i.

The Lucas (1976) critique

- Old-school Keynesian models lack microfoundations
- Relations between aggregates are assumed, without specifying how they arise from individual goal-oriented behavior.
- Policy evaluation might be flawed: policy change might change expectations & behaviour, altering aggregate relations.
- Example: In evaluating effect of fiscal expansion, old-Keynesian theory assumes a given propensity to save. But if stimulus is temporary, utility-maximizing agents might save most of it, so propensity to save is not stable.
- The equations of a macro model should be derived explicitly from a microeconomic model of individual behavior.

The New-Keynesian IS-LM model

▶ One-good economy with no *K*, large number of identical firms, and fixed number of identical infinitely lived households.

The New-Keynesian IS-LM model

- ▶ One-good economy with no *K*, large number of identical firms, and fixed number of identical infinitely lived households.
- ▶ Production function: Y = C = F(L); F'(L) > 0; $F''(L) \le 0$

The New-Keynesian IS-LM model

- ▶ One-good economy with no *K*, large number of identical firms, and fixed number of identical infinitely lived households.
- ▶ Production function: Y = C = F(L); F'(L) > 0; $F''(L) \le 0$
- Representative household's lifetime utility:

$$U = \sum_{t=0}^{\infty} \beta^{t} \left[U(C_{t}) + \Gamma\left(\frac{M_{t}}{P_{t}}\right) - V(L_{t}) \right], \quad 0 < \beta < 1$$

- U'(.) > 0 and U''(.) < 0;
- $\Gamma'(.) > 0$ and $\Gamma''(.) < 0$;
- V' > 0 and V''(.) > 0.
- ► Choice variables: C and M;
- ► L exogenous (for now);

Evolution of household's wealth

- ► Two assets: Central Bank money M (gold coins) and a bond B (a claim on M).
- Evolution of household's wealth:

$$A_{t+1} = M_t + B_t(1+i_t)$$

= $M_t + (A_t + W_tL_t - P_tC_t - M_t)(1+i_t)$

- o A_{t+1} is wealth at the start of period t+1;
- o M_t and B_t are money and bonds held during period t;

Household's behavior: Euler equation

Assuming CRRA utility, the infinite-horizon utility function implies

$$\ln C_t = \ln C_{t+1} - \frac{1}{\theta} \ln[(1+r_t)\beta]$$

$$\Downarrow$$

$$\ln Y_t = a + \ln Y_{t+1} - \frac{1}{\theta} r_t$$

(because Y = C and $\ln(1+r) \approx r$, and with $a = -(\frac{1}{\theta}) \ln \beta$)

► See demonstration in Romer Section 6.1

The New-Keynesian IS curve

$$\ln Y_t = a + \ln Y_{t+1} - \frac{1}{\theta} r_t$$

- ▶ negative relation between Y_t and r_t .
- differences with old-school IS curve:
 - conceptual: driven by intertemporal substitution, not income multiplier effect.
 - o practical: $ln Y_{t+1}$ term.
 - o here, IS interpretation requires assuming fixed Y_{t+1} .

John Cochrane on the New Keynesian IS curve:

This new-Keynesian model is an utterly and completely different mechanism and story [relative to the old-keynesian model]. (...)

The marginal propensity to consume is exactly and precisely zero in the new-Keynesian model. There is no income at all on the right hand side [of the Euler equation]. (...)

John Cochrane on the NK IS curve (continued):

The old-Keynesian model is driven completely by an income effect with no substitution effect. Consumers don't think about today vs. the future at all. The new-Keynesian model is based on the intertemporal substitution effect with no income effect at all. (...)

[a lower r_t] induces consumers to spend their money today rather than in the future (...). Now, lowering consumption growth is normally a bad thing. But new-Keynesian modelers assume that the economy reverts to trend, so lowering growth rates is good, and raises the level of consumption today with no ill effects tomorrow.

[from John Cochrane's 'New vs. Old Keynesian Stimulus' (on Keats)]

Household's money demand

- \triangleright Optimization requires that marginal increase in M_t/P_t (given total wealth) has no effect on utility.
- ► To leave wealth unchanged, $\Delta C_t = -\left(\frac{i}{1+i}\right)\Delta m$
- So in equilibrium:

$$\Gamma'\left(\frac{M_t}{P_t}\right)\Delta m = U'(C_t)\left(\frac{i_t}{1+i_t}\right)\Delta m$$

$$\Downarrow$$

$$\frac{M_t}{P_t} = Y_t^{\theta/\chi}\left(\frac{1+i_t}{i_t}\right)^{1/\chi}$$

- Real money demand is positive function of Y and negative function of i as in the old-Keynesian model.
- ▶ P and M are fixed, so implies i increasing function of Y.

New-Keynesian IS-LM

Price of consumption good is assumed fixed:

$$P_t = \bar{P} \implies i_t = r$$

► So both IS and money-demand are in terms of r and Y;

$$Y_t = f(r_t)$$
 with $f' < 0$ (IS curve)

$$r_t = g(Y_t)$$
 with $g' > 0$ (LM curve)

19

New-Keynesian IS-LM

but remember this is based on the assumption of unchanged (expectation of) Y_{t+1} !

20

New-Keynesian IS-LM

Figure: Effect of a temporary increase in money supply

A more realistic LM "curve"

► In reality, money is endogenous and the Central Bank sets the interest rate.

▶ IS relation: $Y_t = f(r_t)$ with f' < 0

► LM relation: $r = i = \bar{i}$

- ► After adding a model of inflation (Phillips Curve), can be enriched by the Central Bank reaction function
- ▶ CB sets the interest rate based on inflation and output.

Phillips Curve(s)

- IS-LM framework (old or new) needs to be completed with a theory of inflation.
- ▶ Phillips Curve: A relation between inflation & unemployment/output.
- 'Traditional' Phillips Curve:

$$\pi_t = \alpha - \beta u_t$$

'Accelerationist' Phillips Curve:

$$\pi_t - \pi_{t-1} = \alpha - \beta u_t$$

New Keynesian Phillips Curve:

$$\pi_t = k y_t + \beta E_t \pi_{t+1} \tag{1}$$

Very different implications for policy.

Historical origins of the Phillips Curve

- ▶ PC originally derived from empirical observation, not formal theory.
- ▶ 1958: A.W. Phillips uncovers negative correlation between inflation and unemployment in UK 1861-1957 data.
- ▶ 1960: Samuelson & Solow replicate it on 1900-1960 US data.
- ► In the 1970s the relation breaks down, which inspires the development of an 'accelerationist' Phillips Curve.

1948-1969: the 'original' Phillips Curve

1970-2010: the disappearance of the 'original' PC

1970-2010: Accelerationist PC

Phillips Curve(s): Theoretical foundations

- Theoretical explanations of the PC focus on wage and price-setting processes.
- \triangleright Models of wage and price-setting imply relations between π , $E(\pi)$ and u
- \triangleright specific form of the PC depends on how agents form $E(\pi)$
 - fixed ('anchored') expectations -> original PC
 - adaptive expectations -> accelerationist PC
 - 3. rational expectations -> New-Keynesian PC
- ► Traditional & accelerationist PC can be derived from a simple macro model, while New Keynesian PC can be derived from the (more complicated) Calvo model of pricing.

Phillips Curve: a simple framework

- Traditional and accelerationist PC can be derived from a very simple macro model.
- ► Central idea: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t$.
- ▶ if it stops here, we have the 'original' PC

Phillips Curve: a simple framework

- Traditional and accelerationist PC can be derived from a very simple macro model.
- ► Central idea: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t$.
- ▶ if it stops here, we have the 'original' PC
- ▶ BUT with adaptive expectations, inflationary spiral: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t \Rightarrow$ increase in $E(\pi_{t+1}) \Rightarrow$ increase in $W_{t+1} \Rightarrow ...$
- 'accelerationist' PC

Basic model:

$$Y_t = N_t$$

$$P_t = (1+m)W_t$$

$$\frac{W_t}{E(P_t)} = 1 - \beta u_t \quad \Rightarrow \quad W_t = E(P_t)(1 - \beta u_t)$$

- Y = output;
- N = employment;
- ► W = nominal wage;
- P = price of the good;
- ightharpoonup m = mark-up;
- $u = 1 \frac{L}{N}$ = unemployment rate;

► Combine price-setting & wage-setting:

$$P_t = E(P_t)(1+m)(1-\beta u_t)$$

rewrite (approximately) in terms of π :

$$\pi_t = E(\pi_t) + m - \beta u_t$$

▶ What determines $E(\pi_t)$?

'Generic' Phillips Curve:

$$\pi_t = E(\pi_t) + m - \beta u_t$$

Assume fixed expectations

$$E(\pi) = \bar{\pi}$$

► Then we have

$$\pi_t = \alpha - \beta u_t$$
 (with $\alpha = \bar{\pi} + m$)

- ▶ 'original' (old-Keynesian) Phillips curve
- Inflation-unemployment trade-off for policy.

The PC and its mutations

'Generic' Phillips Curve:

$$\pi_t = E(\pi_t) + m - \beta u_t$$

Assume adaptive expectations

$$E(\pi) = \pi_{t-1}$$

'Accelerationist' PC:

$$\pi_t - \pi_{t-1} = \alpha - \beta u_t$$

► Lower unemployment leads to higher *change* in the inflation rate (like in the 1970s).

An interpretation of the history of inflation in the US

1948-1969

- ▶ inflation not persistent;
- wage-setters assumed inflation would revert to mean $\bar{\pi}$;
- ► $E(\pi) \approx \bar{\pi} \Rightarrow$ Original PC.

after 1970

- inflation became persistent (oil shocks);
- wage-setters started taking persistence into account;
- ► $E(\pi_t) \approx \pi_{t-1} \Rightarrow$ accelerationist PC.

The equilibrium unemployment rate

In this model, a unique unemployment rate makes inflation equal expected inflation:

$$\pi_t = \mathbb{E}(\pi_t) \to u_t^{\star} = \frac{m}{\beta}$$

Implications for traditional PC:

- ▶ Possible to sustain $u < u_t^*$ only as long as $\pi > \mathbb{E}(\pi)$.
- ▶ But if π > $\mathbb{E}(\pi)$ is persistent, wage-setters would surely update their expectations!
- ► Traditional PC with anchored expectations unlikely to be stable unless $u = u^*$.

The equilibrium unemployment rate

In this model, a unique unemployment rate makes inflation equal expected inflation:

$$\pi_t = \mathbb{E}(\pi_t) \to u_t^{\star} = \frac{m}{\beta}$$

Implications for accelerationist PC:

- ▶ When $u = u^*$, inflation is stable over time $(\pi_t = \pi_{t-1})$.
- ▶ $u < u^*$ leads to accelerating inflation (increasing over time).
- ▶ $u > u^*$ leads to deflation (decreasing over time).
- ▶ Disinflation is painful: to bring down π , you need $u > u^*$ for a period of time.

Calvo price setting model

- New Keynesian PC is derived from a more complex model of dynamic price setting.
- Calvo (1983) "Staggered prices in a utility-maximizing framework".
- Sticky prices: they cannot be adjusted in all periods.
- Opportunities to change prices arrive randomly.
 - o Poisson process: same probability of price adjustment in every period.
- ► A bit arbitrary: chosen as the baseline model of prices not because realistic, but because it happens to deliver a convenient PC that works well in a DSGE model.

Framework (1/3)

- A monopolistic competition model
- Production function

$$Y_t = L_t$$

Closed economy with no government and no capital:

$$C_t = Y_t$$

Exogenous nominal expenditure (aggregate demand)

$$M_t = Y_t P_t$$

Labor supply curve

$$\frac{W_t}{P_t} = BY_t^{\theta + \gamma - 1}$$

Monopolistic pricing

$$\frac{P_{it}^{\star}}{P_t} = \frac{\eta}{\eta - 1} \frac{W_t}{P_t}$$

Framework (2/3)

Time-dependent price-adjustment:

- Firms cannot adjust their prices in all periods.
- ▶ P_i set at time 0 has probability $q_t \ge 0$ of remaining in effect at time t > 0.
- ▶ $p_t \equiv In(P_t)$.
- ▶ firm sets p_i as a weighted average of expected future p_t^{\star} 's:

$$p_i = \sum_{t=0}^{\infty} \tilde{\omega}_t E[p_t^{\star}]$$
 with $\tilde{\omega}_t \equiv \frac{\beta^t q_t}{\sum_{\tau=0}^{\infty} \beta^{\tau} q_{\tau}}$

Framework (3/3)

Profit-maximizing price is a mark-up over the wage

$$\frac{P_{it}^{\star}}{P_t} = \frac{\eta}{\eta - 1} \frac{W_t}{P_t} \quad \Rightarrow \quad p_t^{\star} = \ln\left[\frac{\eta}{\eta - 1}\right] + w_t$$

Substitute in the (log of the) labor supply curve

$$w_t = p_t + \ln B + (\theta + \gamma - 1)y_t \quad \Rightarrow \quad p^* = p + \ln \frac{\eta}{\eta + 1} + \ln B + (\theta + \gamma - 1)y_t$$

► Given that m = y + p, and assuming for simplicity $\ln \frac{\eta}{\eta - 1} + \ln B = 0$,

$$p_t^{\star} = \phi m_t + (1 - \phi) p_t$$
 with $\phi = (\theta + \gamma - 1)$

optimal 'sticky' price to set at time 0:

$$p_i = \sum_{t=0}^{\infty} \tilde{\omega}_t E_0[\phi m_t + (1-\phi)p_t]$$

Deriving π

ightharpoonup Each period share lpha of firms, randomly chosen, adjusts prices

aggregate price level:
$$p_t = \alpha x_t + (1 - \alpha)p_{t-1}$$

inflation:
$$\pi_t = p_t - p_{t-1} = \alpha(x_t - p_{t-1})$$

Deriving π

lacktriangle Each period share lpha of firms, randomly chosen, adjusts prices

aggregate price level:
$$p_t = \alpha x_t + (1 - \alpha)p_{t-1}$$

inflation: $\pi_t = p_t - p_{t-1} = \alpha(x_t - p_{t-1})$

optimal 'sticky' prices:

$$x_t = \sum_{j=0}^{\infty} \tilde{\omega}_j E(p_{t+j}^{\star})$$
 with $\tilde{\omega}_j = \frac{\beta^j q_j}{\sum_{k=0}^{\infty} \beta^k q_k}$

Poisson process implies $q_j = (1 - \alpha)^j$

42

Calvo model - deriving π

...plugging in:

$$x_t = [1-eta(1-lpha)]\sum_{j=0}^{\infty}eta^j(1-lpha)^jE_t
ho_{t+j}^{\star}$$

▶ Rewrite in terms of p_t^* and $E_t x_{t+1}$:

$$\begin{aligned} x_t &= [\mathbf{1} - \beta(\mathbf{1} - \alpha)] \left(p_t^* + \beta(\mathbf{1} - \alpha) \left[\sum_{j=0}^{\infty} \beta^j (\mathbf{1} - \alpha)^j E_t p_{t+1+j}^* \right] \right) = \\ &= [\mathbf{1} - \beta(\mathbf{1} - \alpha)] p_t^* + \beta(\mathbf{1} - \alpha) [\mathbf{1} - \beta(\mathbf{1} - \alpha)] \left[\sum_{j=0}^{\infty} \beta^j (\mathbf{1} - \alpha)^j E_t p_{t+1+j}^* \right] = \\ &= [\mathbf{1} - \beta(\mathbf{1} - \alpha)] \mathbf{p}_t^* + \beta(\mathbf{1} - \alpha) \mathbf{E}_t \mathbf{x}_{t+1} \end{aligned}$$

Deriving π

$$x_t = [1 - \beta(1 - \alpha)]p_t^{\star} + \beta(1 - \alpha)E_t x_{t+1}$$

► Express in terms of π_t , using $\pi_t = \alpha(x_t - p_{t-1})$ and $p^* = \phi m_t + (1 - \phi)p_t$

$$\pi_t = ky_t + \beta E_t \pi_{t+1}$$
 with $k = \frac{\alpha [1 - (1 - \alpha)\beta]\phi}{1 - \alpha}$

- ► New-Keynesian Phillips Curve
- Inflation depends on expected inflation & output (as in all PCs);
- ▶ Difference: it is $E_t \pi_{t+1}$ that matters here: expectation of future inflation.

3 Phillips Curves and their implications

- 1. Old-Keynesian PC: $\pi_t = \alpha + \lambda y_t$
- output-inflation trade-off: disinflation requires permanently lower y;
- 2 Accelerationist PC: $\pi_t = \pi_{t-1} + \lambda(y_t y_t^{\star})$
- ▶ painful disinflation: requires $y < y^*$ for some time (inflation inertia);
- 3 New-Keynesian PC: $\pi_t = ky_t + \beta E_t \pi_{t+1}$
- ▶ expansionary disinflation: $E_t(\pi_{t+1})$ down → y_t up.

New Keynesian models of fluctuations

- IS curve & Phillips curve are the key building blocks of Keynesian & New Keynesian macroeconomics.
- They can be integrated to build dynamic models of fluctuations.
- We will consider two:
 - 1. A simplified New Keynesian model
 - 2. The canonical New Keynesian DSGE model