Part 1

Introduction

- 1.1 What is an operating system
- 1.2 History of operating systems
- 1.3 Computer hardware review
- 1.4 The operating system zoo
- 1.5 Operating system concepts
- 1.6 System calls
- 1.7 Operating System Structure

1.1 What is an operating system

What is An Operating System

A modern computer consists of:

- One or more processors
- Main memory
- Disks
- Printers
- Various input/output devices

Managing all these components requires a layer of software – the **operating system**

What is an Operating System

The Operating System as an Extended Machine

- Hides the messy details which must be performed
- Presents user with a virtual machine, easier to use

The Operating System as a Resource Manager

- Allow multiple programs to run at the same time
- Manage and protect memory, I/O devices, and other resources
- Includes multiplexing (sharing) resources in two different ways:
 - In time
 - In space

1.2 History of Operating Systems

History of Operating Systems

- First generation 1945 1955
 - vacuum tubes, plug boards
- Second generation 1955 1965
 - transistors, batch systems
- Third generation 1965 1980
 - ICs and multiprogramming
- Fourth generation 1980 present
 - personal computers

History of Operating Systems First generation 1945 - 1955

- Computers:ENIAC, UNIVAC...
- Operating System: No OS,
- Machine Language: plugboards
- Single group: designed, built, programmed, operated and maintained each machine

History of Operating Systems Second Generation 1955 – 1965 (1)

- Computers: IBM 1401, IBM 7094...
- Operating System : FMS (Fortran Monitor System), IBSYS for Computer 7094
- Batch Systems
 - Function of Early Batch System
 - Structure of a typical FMS job
- Separation between designers, builders, programmers, operators and maintenance personnel

History of Operating Systems

Second Generation 1955 – 1965 (2)

Early batch system

- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output

History of Operating Systems Second Generation 1955 – 1965 (3)

• Structure of a typical FMS job – 2nd generation

History of Operating Systems Third generation 1965 – 1980 (1)

- Computers: System/360, IBM370, IBM4300...
- Operating System:
 - OS/360: to work on all models
 - Multiprogamming
 - Time Sharing:
 - CTSS (Compatible Time Sharing System),
 - MULTICS (MULTiplexed Information and Computing Service),
 - Unix

History of Operating Systems Third generation 1965 – 1980 (2)

- Multiprogramming system
 - three jobs in memory -3^{rd} generation

History of Operating Systems Third generation 1965 – 1980 (3)

History of Operating Systems Fourth generation 1980 – present

- Computers: IBM PC 80x86, Macintosh...
- Operating System:
 - 1977: CP/M (Control Program for Microcomputer)
 - 1980: DOS (Disk Operating System)
 - GUI with Macintosh
 - 1985-1995: Window 3.x
 - 1995: Window 95
 - 1996: Window NT 4.0
 - 1999: Window 2000
 - Window 2003
 - Unix

1.3 Computer Hardware Review

Computer Hardware Review

- CPU
- Memory
- I/O Devices
- Buses

Computer Hardware Review

• Components of a simple personal computer

Computer Hardware Review The CPU (1)

- PC Program Counter
- SP Stack Pointer
- PSW Program Status Word
- General Registers
- Instruction Cycle
- Pipeline
- Superscalar
- System Call

Computer Hardware Review The CPU (2)

Computer Hardware Review The CPU (3)

- (a) A three-stage pipeline
- (b) A superscalar CPU

Computer Hardware Review The CPU (4)

Computer Hardware Review The CPU (5)

- **Dual-mode** operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as **privileged**, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user

Computer Hardware Review The CPU (6)

Transition from User to Kernel Mode

Computer Hardware Review Memory (1)

- Typical memory hierarchy
 - numbers shown are rough approximations

Computer Hardware Review Memory (2)

- Storage systems organized in hierarchy.
 - Speed
 - Cost
 - Size
 - Volatility

Computer Hardware Review Memory (3)

Registers:

- Small number, Fast
- Capacity:
 - X*32 bit on 32-bit CPU
 - Y*64 bit on 64-bit CPU

Computer Hardware Review Memory (4)

Caching – copying information into faster storage system; main memory can be viewed as a last *cache* for secondary storage.

Computer Hardware Review Memory (5)

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Computer Hardware Review Memory (6)

Main Memory

- RAM (Random Access Memory)
- Problem:
 - How protect the program from one another and the kernel from them all
 - How to handle relocation
- Solution: CPU equipped with two special registers
- Base Register and Limit Register
- MMU (Memory Management Unit) convert Virtual Address to Physical Address
- Context Switch; switching from one to another

Computer Hardware Review Memory (7)

Relocation and Protection

- Cannot be sure where program will be loaded in memory
 - address locations of variables, code routines cannot be absolute
 - must keep a program out of other processes' partitions
- Use base and limit values
 - address locations added to base value to map to physical addr
 - address locations larger than limit value is an error

Computer Hardware Review Memory (8)

One base-limit pair and two base-limit pairs

Computer Hardware Review Memory (9)

Computer Hardware Review Memory (10)

Other memory in computer

- ROM (Read Only Memory)
- EEPROM (Electrically Erasable ROM):
 - BIOS Basic Input Output System
- CMOS:
 - Real time clock
 - Configuration Information

Computer Hardware Review Memory (11)

Structure of a disk drive

Computer Hardware Review Memory (12)

Disk: Cylinder, Track, sector

Computer Hardware Review I/O Devices (1)

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an *interrupt*.

Computer Hardware Review I/O Devices (2)

How interrupts happens. Connections between devices and interrupt controller actually use interrupt lines on the bus rather than dedicated wires

Computer Hardware Review I/O Devices (3)

Example of Interrupt processing for PC

Computer Hardware Review I/O Devices (4)

Common Functions of Interrupts

- Interrupt transfers control to the **interrupt service routine** generally, through the *interrupt vector table*, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are *disabled* while another interrupt is being processed to prevent a *lost interrupt*.
- A *trap* is a software-generated interrupt caused either by an error or a user request.
- An operating system is *interrupt* driven.

Computer Hardware Review I/O Devices (5)

- (a) Steps in starting an I/O device and getting interrupt
- (b) How the CPU is interrupted

Computer Hardware Review I/O Devices (6)

Operation of a DMA transfer DMA (Direct Memory Access)

Computer Hardware Review I/O Devices (7)

DMA

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than the one interrupt per byte.

Computer Hardware Review

Structure of a large Pentium system

Computer Hardware Review BUS

- Cache BUS
- Local BUS
- System BUS
- ISA Industry Standard Architecture
- PCI Peripheral Component Interconnect
- USB Universal Serial BUS
- SCSI Small Computer System Interface
- IDE Integrated Drive Electronic

Computer Hardware Review Personal Computer (PC)

Chipset: North Bridge, South Bridge, & Firmware Hub

1.4 The Operating System Zoo

The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Handheld computer operating systems
- Embedded operating systems
- Sensor Node operating systems
- Real-time operating systems
- Smart card operating systems

The Operating System Zoo Mainframe operating systems

- batch
- multiprogrammed
- time-sharing, multitasking
- Application: High-End Web Server, Servers for Business-To- Business transactions
- Example: OS/390

The Operating System Zoo Server operating systems

The Operating System Zoo Multiprocessor operating systems

- Multiple CPU
- Share computer bus, clock
- Advantage:
 - High system throughput
 - High availability
 - Multiprocessor system and Multicomputer system

The Operating System Zoo

Personal computer operating systems

- Many I/O devices
- Interface to single user
- Modern Personal computer operating systems support multiprogramming
- Examples: MS Windows, Mac OS, Solaris,
 Linux,....

The Operating System Zoo Handheld Computer operating systems

- Personal digital assistant (PDA): Palmtop,
 Pocket-PC, Cellular phones
- Restriction of memory size, speed of CPU,
 screen size, powers
- Operating System: PalmOS, Windows CE (Consumer Electronic)

The Operating System Zoo

Embedded operating systems

- Run on the computers that control device
- Typical examples are microwave ovens, TV set, MP3 players..
- All the software is in ROM, no untrusted software
- Examples: QNX, VxWork

The Operating System Zoo Sensor Node Operating systems

- Network of tiny sensor nodes
 - Sensor nodes are the computer that communicate with each other and with a base station using wireless communication
 - Examples: guard national borders, measure temperature for weather forecasting
- Restriction of memory size, speed of CPU,
 Powers (Batteries)
- Example: TinyOS

The Operating System Zoo Real-time operating systems

- Time is a key parameter
- Two types of real-time system
 - Hard real-time system for industrial process control system...
 - Soft real-time system for multimedia system

The Operating System Zoo Smart card operating systems

- CPU chips on Card
- Severe processing power and memory constraint
- Specific Application:
 - Single function: electronic payments
 - Multiple function: proprietary systems
 - Java oriented: holds interpreter JVM

1.5 Operating System Concepts

OS Components

- Process Management
- Main Memory Management (Address Spaces)
- File management
- I/O Management
- Protection and Security
- Operating System Services (The Shell)

Operating System Concepts OS Components (1)

Process Management

- Process is a Program in execution
- A process needs certain resources, including CPU time, memory, files, and I/O devices, to accomplish its task.
- Tasks of process management of OS:
 - Process creation and deletion.
 - process suspension and resume
 - Provision of mechanisms for:
 - Process synchronization
 - Interprocess communication
 - Prevent or avoid deadlock

Operating System Concepts OS Components (2)

• Main Memory Management:

- Motivations:
 - Increase system performance
 - Maximize memory utilization
- Task of main memory management:
 - Keep track of which parts of memory are currently being used and by whom.
 - Decide which processes to load when memory space becomes available.
 - Allocate and deallocate memory space as needed

Operating System Concepts OS Components (3)

• File management

- File system
 - File
 - Directory
- Task of file management of OS:
 - Create and delete File/Dicrectory
 - Manipulate: rename, copy, move, new,...
 - Mapping files onto secondary storage.
 - File backup on stable (nonvolatile) storage media

Operating System Concepts OS Components (4)

• I/O Management

- Hide the specialty of H/W devices
- Task of I/O Management of OS:
 - Manage main memory for the devices using caching, buffering, and spooling
 - Maintain and provide a general device-driver interfaces
 - Drivers for specific hardware devices.

Operating System Concepts OS Components (5)

Protection and Security

- Protection any mechanism for controlling access of processes or user's resources defined by the OS
- **Security** defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms,
 viruses, identity theft, theft of service

Operating System Concepts OS Components (7)

Protection and Security

- Systems generally first distinguish among users, to determine who can do what
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, processes of that user to determine access control
 - Group identifier (group ID) allows set of users to be defined and controls managed, then also associated with each process, file
 - Privilege escalation allows user to change to effective ID with more rights

Operating System Concepts Operating System Services

- One set of operating-system services provides functions that are helpful to the user:
 - User interface Almost all operating systems have a user interface (UI)
 - Varies between Command-Line (CLI), Graphics User Interface (GUI)
 - Program execution The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)
 - Control access to I/O device.
 - File-system manipulation

Operating System Concepts Operating System Services

- Communications Processes may exchange information, on the same computer or between computers over a network
- Error detection OS needs to be constantly aware of possible errors

_ ...

1.6 System Calls

System Calls

- Making System Calls
- Major POSIX System Calls (Lab)
- Examples of System Calls (Lab)

System Calls

Making System Calls (1)

There are 11 steps in making the system call read (fd, buffer, nbytes)

System Calls

Making System Calls (2)

• C program invoking printf() library call, which calls write() system call

System Calls Examples

UNIX	Win32	Description
fork	CreateProcess	Create a new process
waitpid	WaitForSingleObject	Can wait for a process to exit
execve	(none)	CreateProcess = fork + execve
exit	ExitProcess	Terminate execution
open	CreateFile	Create a file or open an existing file
close	CloseHandle	Close a file
read	ReadFile	Read data from a file
write	WriteFile	Write data to a file
Iseek	SetFilePointer	Move the file pointer
stat	GetFileAttributesEx	Get various file attributes
mkdir	CreateDirectory	Create a new directory
rmdir	RemoveDirectory	Remove an empty directory
link	(none)	Win32 does not support links
unlink	DeleteFile	Destroy an existing file
mount	(none)	Win32 does not support mount
umount	(none)	Win32 does not support mount
chdir	SetCurrentDirectory	Change the current working directory
chmod	(none)	Win32 does not support security (although NT does)
kill	(none)	Win32 does not support signals
time	GetLocalTime	Get the current time

The Win32 API calls that roughly correspond to the UNIX calls

- Monolithic systems
- Layered Systems
- Microkernel
- Client-server model
- Virtual Machines
- Exokernel

Monolithic system (1)

Simple structuring model for a monolithic system

Operating System Structure Monolithic system (2)

Structure of Operating System:

- A main program that invokes the requested service procedure.
- A set of service procedures that carry out the system calls.
- A set of utility procedures that help the service procedures.

Monolithic system (3): Example

Monolithic

- MS-DOS written to provide the most functionality in the least space:
 - not divided into modules;
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated

Operating System Structure Layered System (1)

- Many Layers
- Each layer has well defined functions
- Upper layer can only calls functions of closely lower layer
- Advantages:
 - Easier to extend
 - Easier to debug from lower to upper layer

Operating System Structure Layered System (2): Example

Layer	Function	
5	The operator	
4	User programs	
3	Input/output management	
2	Operator-process communication	
1	Memory and drum management	
0	Processor allocation and multiprogramming	

Structure of the THE operating system

Microkernel: Example

Microkernel

- Structure of the MINIX 3 system.
 - Moves as much from the kernel into "user" space
 - kernel \rightarrow microkernel

Operating System Structure Client-server model (1)

The client-server model

Client-server model (2)

The client-server model in a distributed system

Operating System Structure Virtual Machine (1)

Non-virtual machine system model

Virtual machine system model

Operating System Structure Virtual Machine (2)

- A *virtual machine* takes the layered approach to its logical conclusion. It treats hardware and the operating system kernel as though they were all hardware
- A virtual machine provides an interface *identical* to the underlying bare hardware
- The operating system creates the illusion of multiple processes, each executing on its own processor with its own (virtual) memory

Operating System Structure Virtual Machine (3)

- The resources of the physical computer are shared to create the virtual machines
 - CPU scheduling can create the appearance that users have their own processor
 - Spooling and a file system can provide virtual card readers and virtual line printers
 - A normal user time-sharing terminal serves as the virtual machine operator's console

Operating System Structure Virtual Machine (4)

(a) A type 1 hypervisor. (b) A type 2 hypervisor.

Operating System Structure Exokernel

- Give user a subset of the resources
- The program, running in kernel mode called the exokernel
- Exokernel need only keep track of which virtual machine assigned which resource
- Example: Pentium virtual 8086