ID23-5311 Kubernetes Workshop

Wolfgang Ofner

Simon Birrer

Wolfgang Ofner

Freelance Cloud Architect, Toronto, Canada Focus on Azure, Kubernetes, DevOps and .NET

https://programmingwithwolfgang.com

https://www.linkedin.com/in/wolfgangofner

https://twitter.com/wolfgang_ofner

Agenda

- Docker
 - Theory
 - Practice Time
- Kubernetes
 - Theory
- Lunch Break
- Kubernetes
 - Theory
 - Practice Time
- Advanced Tools and Learning Path

Challenges of modern Software

Deploy 100 times a day

Versioning

Dependencies

Easy to test

Fast to set up on target machine

Monolithic software

Database deployments

Freighter transport before 1956

Invention of the Container (1956)

Container Solutions

Docker

Podman

Lxc

Crio

Rancher Desktop

Docker Containers

Dockerfile: blueprint

Container: Instance of this blueprint

Versioned artifact

Container image is always bit by bit identical when deployed

Docker Containers

Images for different build platforms, e.g. x86, x64, ARM

OCI (Open Container Initiative) compliant

Abstracts underlying infrastructure

Fast start up times

Pet vs. Kettle

Virtual Machine vs. Container

Virtual Machine vs. Container

Dockerfile

Blueprint to build Docker Image

Can be based on existing images

Commands to update the base OS and install additional software

Build artifacts to include, such as a developed application

Command to run when the container is launched

Dockerfile

```
FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
RUN dotnet restore "CustomerApi/CustomerApi.csproj"
COPY . .
WORKDIR "/src/CustomerApi"
RUN dotnet build "CustomerApi.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "CustomerApi.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CustomerApi.dll"]
```

```
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
COPY ["CustomerApi.Data/CustomerApi.Data.csproj", "CustomerApi.Data/"]
COPY ["CustomerApi.Domain/CustomerApi.Domain.csproj", "CustomerApi.Domain/"]
COPY ["CustomerApi.Service/CustomerApi.Service.csproj", "CustomerApi.Service/"]
COPY ["CustomerApi.Messaging.Send/CustomerApi.Messaging.Send.csproj", "CustomerApi.Messaging.Send/"]
COPY ["CustomerApi.Database.Build/CustomerApi.Database.Build.csproj", "CustomerApi.Database.Build/"]
COPY ["Tests/CustomerApi.Test/CustomerApi.Test.csproj", "Tests/CustomerApi.Test/"]
COPY ["Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj", "Tests/CustomerApi.Service.Test/"]
COPY ["Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj", "Tests/CustomerApi.Data.Test/"]
COPY ["CustomerApi/nuget.config", ""]
COPY ["*.props", "./"]
ARG PAT=localhost
RUN sed -i "s|</configuration>|<packageSourceCredentials><MicroserviceDemoNugets><add key=\"Username\" value=\"PAT\" /><add key=\"ClearTextPassword\" value=\"${PAT}\" /></MicroserviceDemoNugets></p
RUN dotnet restore "CustomerApi/CustomerApi.csproj" --configfile "./nuget.config"
RUN dotnet restore "CustomerApi.Database.Build/CustomerApi.Database.Build.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Test/CustomerApi.Test.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj" --configfile "./nuget.config"
COPY . .
RUN dotnet build "CustomerApi/CustomerApi.csproj" -c Release -o /app/build --no-restore
RUN dotnet build "Tests/CustomerApi.Test/CustomerApi.Test.csproj" -c Release --no-restore
RUN dotnet build "Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj" -c Release --no-restore
RUN dotnet build "Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj" -c Release --no-restore
FROM build AS dacpac
ARG BuildId=localhost
LABEL dacpac=${BuildId}
WORKDIR /src
RUN dotnet build "CustomerApi.Database.Build/CustomerApi.Database.Build.csproj" -c Release -o /dacpacs --no-restore
FROM build AS test
ARG BuildId=localhost
LABEL test=${BuildId}
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutput
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results2.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutpu
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results3.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutpu
FROM build AS publish
RUN dotnet publish "CustomerApi/CustomerApi.csproj" --no-restore -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CustomerApi.dll"]
```

FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base

WORKDIR /app EXPOSE 80 EXPOSE 443

```
RUN DEBIAN FRONTEND=noninteractive apt-get update
RUN DEBIAN FRONTEND=noninteractive apt-get upgrade -y
RUN DEBIAN FRONTEND=noninteractive apt-get install -y -qq --no-install-recommends \
   apt-transport-https \
   apt-utils \
   ca-certificates \
   curl \
   git \
   iputils-ping \
   ja \
   lsb-release \
   software-properties-common \
   wget
RUN curl -sL https://aka.ms/InstallAzureCLIDeb | bash
RUN wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -0 packages-microsoft-prod.deb
RUN dpkg -i packages-microsoft-prod.deb
RUN rm packages-microsoft-prod.deb
RUN echo 'deb http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/xUbuntu 20.04/ /' | tee /et
RUN curl -fsSL https://download.opensuse.org/repositories/devel:kubic:libcontainers:stable/xUbuntu 20.04/Release.key
RUN apt-get update
RUN apt-get install -y dotnet-sdk-6.0
RUN apt-get install -y dotnet-sdk-7.0
RUN apt -y install podman fuse-overlayfs
```

FROM ubuntu:20.04

Docker Demo

Every command is a new layer

Layers can be cached

Faster builds

Every command is a new layer

Layers can be cached

Faster builds

```
FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
RUN dotnet restore "CustomerApi/CustomerApi.csproj"
COPY
WORKDIR "/src/CustomerApi"
RUN dotnet build "CustomerApi.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "CustomerApi.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CustomerApi.dll"]
```

Every command is a new layer

Layers can be cached

Faster builds

```
FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
RUN dotnet restore "CustomerApi/CustomerApi.csproj"
WORKDIR "/src/CustomerApi"
RUN dotnet build "CustomerApi.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "CustomerApi.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CustomerApi.dll"]
```

WORKDIR /app

EXPOSE 80

FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base

ENTRYPOINT ["dotnet", "CustomerApi.dll"]

Every command is a new layer

Layers can be cached

Faster builds

```
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
RUN dotnet restore "CustomerApi/CustomerApi.csproj"
WORKDIR "/src/CustomerApi"
RUN dotnet build "CustomerApi.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "CustomerApi.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
```

11 Layer

```
EXPOSE 80
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
                                                                                                     57 Layer
COPY ["CustomerApi/CustomerApi.csproj", "CustomerApi/"]
COPY ["CustomerApi.Data/CustomerApi.Data.csproj", "CustomerApi.Data/"]
COPY ["CustomerApi.Domain/CustomerApi.Domain.csproj", "CustomerApi.Domain/"]
COPY ["CustomerApi.Service/CustomerApi.Service.csproj", "CustomerApi.Service/"]
COPY ["CustomerApi.Messaging.Send/CustomerApi.Messaging.Send.csproj", "CustomerApi.Messaging.Send/"]
COPY ["CustomerApi.Database.Build/CustomerApi.Database.Build.csproj", "CustomerApi.Database.Build/"]
COPY ["Tests/CustomerApi.Test/CustomerApi.Test.csproj", "Tests/CustomerApi.Test/"]
COPY ["Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj", "Tests/CustomerApi.Service.Test/"]
COPY ["Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj", "Tests/CustomerApi.Data.Test/"]
COPY ["CustomerApi/nuget.config", ""]
COPY ["*.props", "./"]
ARG PAT=localhost
RUN sed -i "s|</configuration>|<packageSourceCredentials><MicroserviceDemoNugets><add key=\"Username\" value=\"PAT\" /><add key=\"ClearTextPassword\" value=\"${PAT}\" /></MicroserviceDemoNugets></p
RUN dotnet restore "CustomerApi/CustomerApi.csproj" --configfile "./nuget.config"
RUN dotnet restore "CustomerApi.Database.Build/CustomerApi.Database.Build.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Test/CustomerApi.Test.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj" --configfile "./nuget.config"
RUN dotnet restore "Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj" --configfile "./nuget.config"
COPY . .
RUN dotnet build "CustomerApi/CustomerApi.csproj" -c Release -o /app/build --no-restore
RUN dotnet build "Tests/CustomerApi.Test/CustomerApi.Test.csproj" -c Release --no-restore
RUN dotnet build "Tests/CustomerApi.Service.Test/CustomerApi.Service.Test.csproj" -c Release --no-restore
RUN dotnet build "Tests/CustomerApi.Data.Test/CustomerApi.Data.Test.csproj" -c Release --no-restore
FROM build AS dacpac
ARG BuildId=localhost
LABEL dacpac=${BuildId}
WORKDIR /src
RUN dotnet build "CustomerApi.Database.Build/CustomerApi.Database.Build.csproj" -c Release -o /dacpacs --no-restore
FROM build AS test
ARG BuildId=localhost
LABEL test=${BuildId}
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutput
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results2.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutpu
RUN dotnet test --no-build -c Release --results-directory /testresults --logger "trx;LogFileName=test results3.trx" /p:CollectCoverage=true /p:CoverletOutputFormat=json%2cCobertura /p:CoverletOutpu
FROM build AS publish
RUN dotnet publish "CustomerApi/CustomerApi.csproj" --no-restore -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CustomerApi.dll"]
```

FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base

WORKDIR /app

Inspect Layers

Docker history < IMAGE_ID>

Dive: https://github.com/wagoodman/dive

Tags

Decide what version you run at any given time

"Latest" by default

Used for versioning

Tags

Decide what version you run at any given time

"Latest" by default

Used for versioning

Container Registry

Repository to store container images

Docker Hub

Best Match

Filters

Products

Images

Extensions

Plugins

Trusted Content

Docker Official Image

Verified Publisher

Sponsored OSS

Operating Systems

Linux

Windows

Architectures

ARM

ARM 64

1 - 15 of 15 results for wolfgangofner.

wolfgangofner/microservicedemo • ₹ 100K+ • ★ 0

By wolfgangofner • Updated 3 years ago

Linux x86-64

wolfgangofner/customerapi • ₹ 3.3K • ☆0

By wolfgangofner • Updated 17 days ago

Image for my NET 6 Microservice demo.

Linux x86-64

wolfgangofner/kubernetesdeploymentdemo • ₹ 2.1K • ★ 0

By wolfgangofner • Updated 4 years ago

Linux x86-64

Container Registry

Repository to store container images

Docker Hub

Public vs. private registry

Azure Container Registry (ACR)

Additional functionalities like:

- Geo-replication
- Retention Policies
- Security scanning

Docker Compose

YAML file

Define container dependencies

Run all dependent containers

Docker Compose

YAML file

Define container dependencies

Run all dependent containers

Advantages

- Configure dependencies between containers
- Restart policy
- Easy to start

Disadvantages

- Monitoring
- Load Balancing
- Deployment
- SSL Certificate

Docker Compose

YAML file

Define container dependencies

Run all dependent containers

Advantages

- Configure dependencies between containers
- Restart policy
- Easy to start

Disadvantages

- Monitoring
- Load Balancing
- Deployment
- SSL Certificate

```
version: "3.9"
services:
 wordpress:
    image: wordpress
   restart: always
    ports:
      - 8080:80
    environment:
     WORDPRESS DB HOST: db
     WORDPRESS DB USER: exampleuser
      WORDPRESS DB PASSWORD: examplepass
     WORDPRESS DB NAME: exampledb
   volumes:
      wordpress:/var/www/html
 db:
    image: mysql:5.7
   restart: always
    environment:
     MYSQL DATABASE: exampledb
      MYSQL USER: exampleuser
     MYSQL PASSWORD: examplepass
      MYSQL RANDOM ROOT PASSWORD: '1'
   volumes:
      db:/var/lib/mysql
```

Docker Recap

Small images

Fast start up and deployment

Reusable and portable

Immutable → "Works on my machine"

Containers allow you to run your software even if your infrastructure provider does not support it

Docker Commands

List running containers

docker ps

List images

docker image Is

Download an image from a registry

docker pull wolfgangofner/customerapi

Build an image from a Dockerfile

docker build . [-f CustomerApi/Dockerfile]

Tag an image

docker tag customerapi wolfgangofner/customerapi

Push an image to a registry

docker push wolfgangofner/customerapi

Start a container

docker run -p 32789:80 -p 32788:443 wolfgangofner/customerapi

Docker Compose Demo

Exercise

Docker Exercise

- Run an image from Dockerhub
- ullet Create a new application and build it in a Dockerfile ullet I
- Upload your image to Dockerhub
- Build and run a docker-compose file
- Use different docker commands to interact with images

Multi-Node Management

Resource Management

Load balancing

Monitoring and Self Healing

Zero Downtime Deployments

Manage SSL certificates

Multi-Node Management

Resource Management

Load balancing

Monitoring and Self Healing

Zero Downtime Deployments

Manage SSL certificates

Kubernetes

Docker Swarm

Marathon

Multi-Node Management

Resource Management

Load balancing

Monitoring and Self Healing

Zero Downtime Deployments

Manage SSL certificates

Kubernetes

Docker Swarm

Marathon

Kubernetes is an open-source system for automating computer application deployment, scaling, and management of container applications

Kubernetes is an open-source system for automating computer application deployment, scaling, and management of container applications

First Release on 10 July 2015

Based on Google's Borg

Designed by Google and is now maintained by the Cloud Native Computing Foundation

Kubernetes is an open-source system for automating computer application deployment, scaling, and management of container applications

First Release on 10 July 2015

Based on Google's Borg

Designed by Google and is now maintained by the Cloud Native Computing Foundation

Written in Go

Open-source

"K8s" \rightarrow K-8 character-s

Multiple distribution

- K3s
- MicroK8s
- RedHat OpenShift
- Mirantis
- Azure Kubernetes Service
- Amazon Elastic Kubernetes
- Google Kubernetes Engine

K3s:

- Lightweight
- Great for Edge and IoT
- Easy to install

K3s:

- Lightweight
- Great for Edge and IoT
- Easy to install

curl -sfL https://get.k3s.io | sh -

Kubernetes Features

Self-healing

Service discovery and load balancing

Secret and configuration management

Horizontal scaling

Zero downtime deployments

Batch execution

Namespaces

Easily extensible

Configuration in JSON or YAML

Self-healing Demo

Master Node (Control Plane)

- kube-apiserver
- etcd
- kube-scheduler
- kube-control-manager
- Master Node is managed by cloud vendor

Master Node (Control Plane)

- kube-apiserver
- etcd
- kube-scheduler
- kube-control-manager
- Master Node is managed by cloud vendor

Worker Node

- kubelet
- kube-proxy
- Container runtime

Addons

- DNS
- Networking
- Storage
- Dashboard
- •

Cloud controller manager (optional)

Controller manager

et (persistence store)

kubelet

kube-proxy

Scheduler

Control plane

Node

Pod

A pod is the smallest unit in K8s

Pods wrap one ore more containers

Provides a way to set environment variables and mount storage

Containers inside a pod can communicate via localhost

Multiple containers should only be combined in a pod if they are interdependent

Pods and Containers

Kubernetes Networking

The default network IP range for pods is 10.244.0.0/16

Kubernetes Networking

The default network IP range for pods is 10.244.0.0/16

Network CIDR range can be configured with addon:

- Cilium
- Flannel
- Calico

Namespaces

Used to create virtual cluster inside a physical cluster

Namespaces

Used to create virtual cluster inside a physical cluster

- Isolation
- Resource Segregation
- Multiple Environments
- Resource Quotas
- Default Namespace

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Hey Kubernetes, run 3 pods of wolfgangofner/customerapi

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Hey Kubernetes, run 3 pods of wolfgangofner/customerapi

Let me check if I am already running your pods

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Hey Kubernetes, run 3 pods of wolfgangofner/customerapi

Let me check if I am already running your pods

Currently there is one pod of wolfgangofner/customerapi running

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Hey Kubernetes, run 3 pods of wolfgangofner/customerapi

Let me check if I am already running your pods

Currently there is one pod of wolfgangofner/customerapi running

Starting two more pods of wolfgangofner/customerapi

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Configuration Handling

- YAML or JSON files
- Kubernetes CLI called kubectl
- Kubectl communicates with the Kubernetes API

Kubernetes Configuration

Declarative Model and Desired State

- Tell Kubernets what you want
- Kubernetes will figure out a way to get to the desired state
- Etcd holds the current status of any K8s component

Configuration Handling

- YAML or JSON files
- Kubernetes CLI called kubectl
- Kubectl communicates with the Kubernetes API

kubectl

Kube Control

Kube Cuddle

```
apiVersion: v1
kind: Service
metadata:
  name: kubernetesdemo-service
spec:
  type: LoadBalancer
  selector:
    app: kubernetesdemo
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80
```

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kubernetesdemo-deployment
  labels:
    app: kubernetesdemo
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kubernetesdemo
  template:
    metadata:
      labels:
        app: kubernetesdemo
    spec:
      containers:
      - name: kubernetesdemo
        image: wolfgangofner/kubernetesdeploymentdemo:start
        ports:
        - containerPort: 80
```

Labels and Annotations

Labels

- Key value pairs that are bound to objects like deployments or pods with a maximum of 63 character
- app:MyAppName
- Used to filter or select objects
- Can be changed or deleted at any times

Labels and Annotations

Labels

- Key value pairs that are bound to objects like deployments or pods with a maximum of 63 character
- app:MyAppName
- Used to filter or select objects
- Can be changed or deleted at any times

Annotations

- Also key value pairs but without the character limitation
- Can not be used for filtering or selecting objects

Labels and Annotations

Labels

- Key value pairs that are bound to objects like deployments or pods with a maximum of 63 character
- app:MyAppName
- Used to filter or select objects
- Can be changed or deleted at any times

Annotations

- Also key value pairs but without the character limitation
- Can not be used for filtering or selecting objects

```
metadata:
    creationTimestamp: "2021-10-17T11:58:22Z"
    labels:
        component: apiserver
        provider: kubernetes
```


Services

Pods come and go

IP addresses will change

Services

Pods come and go

IP addresses will change

Service stay for the entire lifetime of the application

Persistent entry point

Fixed IP address

Load Balancing

Load Balancer Demo

Services

Pods come and go

IP addresses will change

Service stay for the entire lifetime of the application

Persistent entry point

Fixed IP address

Load Balancing

Pods and Services are matched using Labels

Services

Four types of Services

- LoadBalancer: exposes the Service using an external load balancer
- ClusterIP: makes the Services accessible only from within the cluster
- NodePort: exposes the Service at each node's IP at a static port
- ExternalName: maps the service to an existing DNS FQDN

kubernetesdemo-deployment-599d8f48c-gl4t9 a

/swagger/v1/swagger.json

A collection of Web APIs

Values

Kubectl Commands

Get resource

kubectl get pods/service/deployment

Delete resource

kubectl delete pod/service/deployment

Display information about resource

kubectl desrcibe pod/node/service resource-name

Add/update new resource

kubectl apply -f myfile.yaml [namespace=my-namespace]

Set current namespace

kubectl configt set-context --current --namespace=my-namespace

Kubernetes Cheat Sheet: https://kubernetes.io/docs/reference/kubectl/cheatsheet

Exercise

Exercise

Get Kubernetes up and running

Create a new namespace

kubectl create ns my-namespace

Apply provided YAML file to your namespace

kubectl apply --f filepath --namespace=my-namespace

kubectl get all --n my-namespace

Set Replicas to 3 and check what happens

Replace image in Deployment

Lunch Break

Recap

Questions about what we have learned so far?

Recap

Container are immutable objects

Pods run containers in Kubernetes

Services are an entry point and route requests to pods

kubernetesdemo-deployment-599d8f48c-gl4t9 ***

/swagger/v1/swagger.json

A collection of Web APIs

Values

Recap

Container are immutable objects

Pods run containers in Kubernetes

Services are an entry point and route requests to pods

Needed for production environment:

- Secret Management
- Health Checks
- SSL Certificates
- Deployments
- Resource Management

Secrets

Base64 encoded

Automatically decrypted when attached to pod

Can be used in config file or environment variable

Secrets

Base64 encoded

Automatically decrypted when attached to pod

Can be used in config file or environment variable

```
Config and Storage > Secrets > kedademoapi-tls

Kedademoapi-tls

Summary Metadata Resource Viewer YAML

1 ---
2 apiVersion: v1
3 data:
4 tls.crt: LS@tLS1CRUdJTiBDRVJUSUZJQ@FURS@tLS@tCk1JSUZXVENDQkVHZ@F3SUJBZ@1T
5 tls.key: LS@tLS1CRUdJTiBSU@EgUFJJVkFURSBLRVktLS@tLQpNSU1Fb2dJQkFBS@NBUUVB
6 kind: Secret
```

Cert-Issuer

Kubernetes resource

Handles certificate requests

Supported sources:

- Let's Encrypt
- HashiCorp Vault
- Venafi
- private PKI (Public Key Infrastructure)

Cert-Issuer

Kubernetes resource

Handles certificate requests

Supported sources:

- Let's Encrypt
- HashiCorp Vault
- Venafi
- private PKI (Public Key Infrastructure)

```
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: letsencrypt
spec:
  acme:
    server: https://acme-v02.api.letsencrypt.org/directory
    email: <Your Email>
    privateKeySecretRef:
      name: letsencrypt
    solvers:
    - http01:
        ingress:
          class: nginx
          podTemplate:
            spec:
              nodeSelector:
                "kubernetes.io/os": linux
```

Cert-Manager

Manages obtaining and renewing of certificates

Can use variety of CAs like Let's Encrypt, HashiCorp Vault, and Venafi

Updates certificates at a configured time before expiry

Uses Cert Issuer to issue certificates

Cert-Manager

kedademoapi-tls

Summary Metadata Resource Viewer YAML apiVersion: v1 data: tls.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUZXVENDQkVHZ0F3SUJBZ0lTQS tls.key: LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSU1Fb2dJQkFBS0NBUUVBNC kind: Secret metadata: annotations: cert-manager.io/alt-names: test.kedademo.programmingwithwolfgang.com cert-manager.io/certificate-name: kedademoapi-tls 10 11 cert-manager.io/common-name: test.kedademo.programmingwithwolfgang.com cert-manager.io/ip-sans: "" 12 cert-manager.io/issuer-group: cert-manager.io 13 cert-manager.io/issuer-kind: ClusterIssuer 14 15 cert-manager.io/issuer-name: letsencrypt cert-manager.io/uri-sans: "" 16 creationTimestamp: "2021-10-17T12:07:46Z" 17

Customer

Ingress Controller

Entry point into the cluster

Processes HTTPS traffic

Reverse proxy redirects requests to Application

Ingress Controller

Entry point into the cluster

Processes HTTPS traffic

Reverse proxy redirects requests to Application

Popular Ingress Controller:

- NGINX
- Traefik
- HAProxy

Pull Request Demo

Pod Deployment

Pods are not directly deployed

Deployment / Replicate Set create pods

Pod Deployment

Pod Deployment

Pods are not directly deployed

Deployment / Replicate Set create pods

Deployments manage ReplicaSets

Manages stateless applications

DaemonSet, CronJob, StatefullSet

Alternatively to Deployments, pods can be run using DaemonSets, CronJobs, and StatefullSets

DaemonSet, CronJob, StatefullSet

Alternatively to Deployments, pods can be run using DaemonSets, CronJobs, and StatefullSets

CronJobs can be scheduled to start pods

StatefullSets manage stateful applications

DaemonSet, CronJob, StatefullSet

DaemonSets run pods on every node in the cluster

- Logging
- Monitoring
- Backup
- Reports
- Automated testing

Horizontal Pod Autoscaler (HPA)

Queries resource utilization, e.g. CPU and RAM usage Instructs ReplicationSet to scale out or scale in Configures minimum and maximum number of pods

Horizontal Pod Autoscaler (HPA)

Queries resource utilization, e.g. CPU and RAM usage Instructs ReplicationSet to scale out or scale in Configures minimum and maximum number of pods

```
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
   name: customerapi
spec:
   maxReplicas: 10
   minReplicas: 1
   scaleTargetRef:
     apiVersion: apps/v1
     kind: Deployment
     name: customerapi
   targetCPUUtilizationPercentage: 50
```


Auto Scaling Demo

Docker Health Checks

Docker provides a simple health check

- --interval=DURATION
- --timeout=DURATION
- --start-period=DURATION
- --retries should be set to N

Docker Health Checks

Problems with simple health checks:

- Application startup may be longer than expected
- Different startup and health check
- Specific port for checks

Liveness Probe

Checks if pod is alive

Sends HTTP request to check pod

Alive if answer >= HTTP 200 & < HTTP 400

Pod will be restarted if dead

Liveness Probe

Checks if pod is alive

Sends HTTP request to check pod

Alive if answer >= HTTP 200 & < HTTP 400

Pod will be restarted if dead

Configuration part of the Deployment

```
livenessProbe:
   httpGet:
   path: /health
   port: http
   initialDelaySeconds: 15
```

Readiness Probe

Checks if pod is ready to receive traffic

Sends HTTP request to check pod

Alive if answer >= HTTP 200 & < HTTP 400

Traffic will be routed to the pod when ready

Readiness Probe

Checks if pod is ready to receive traffic

Sends HTTP request to check pod

Alive if answer >= HTTP 200 & < HTTP 400

• Traffic will be routed to the pod when ready

Configuration part of the Deployment

```
readinessProbe:
| httpGet:
| path: /health
| port: http
| initialDelaySeconds: 15
```

1000 Millicores = 1 Core

Memory is defined in bytes

Mebibyte = ~1MB

Configured in Deployment

Resource Requests

- Describe how many free resources a node has to have
- CPU and/or RAM

Resource Requests

- Describe how many free resources a node has to have
- CPU and/or RAM

Resource Limits

- Maximum resources a pod is allowed to use
- Pods gets throttled when it uses too many resources
- CPU and/or RAM

Resource Requests

- Describe how many free resources a node has to have
- CPU and/or RAM

Resource Limits

- Maximum resources a pod is allowed to use
- Pods gets throttled when it uses too many resources
- CPU and/or RAM

Resource Quotas

Limit resource usage within a namespace Configured in the ResourceQuota object

Resource Quotas

Limit resource usage within a namespace Configured in the ResourceQuota object

Restrict the following resources:

- Number of pods
- CPU and RAM per request
- Total CPU and RAM

10 Min Break

Blue Green deployment

Blue Green deployment

Blue Green deployment

Blue Green deployment

Blue Green deployment

Start all new pods and then switch

Pod Container Pod Container Pod Container

Rolling deployment

Rolling deployment

Rolling deployment

Replace old pods with new ones until all are replaced

Pod' Container

Rolling deployment

Rolling deployment

Rolling deployment

Rolling deployment

- Default deployment mode
- Application must support two versions

Canary deployment

- Route only a small percentage of traffic to the new version
- Reduce the blast radius of a bad deployment
- Increase percentage of traffic gradually
- A/B testing

Zero Downtime Deployment Demo

maxSurge:

- Max number of pods that can be created at a time
- Absolut number or percentage
- Default: 25%

Deployment Strategies

maxSurge:

- Max number of pods that can be created at a time
- Absolut number or percentage
- Default: 25%

maxUnavailable:

- Max number of pods that can be available during the deployment
- Absolut number or percentage
- Default: 25%

Considerations when using K8s

Cloud-native architecture

Microservices

.NET Full Frameworks vs .NET Core

DevOps process and culture

Deploy fast and often

Fast paced development and deployment

Cloud hosted vs. on-premises

When not to use Kubernetes

Skills and experience of the team

Application that will be barely change

Big monolithic applications

Quick results

Very simple applications

Cloud hosted vs. on-premises

Exercice

Deploy your own Image from Dockerhub

Change ports in the Service

Deploy a new version of your container

Change Service Type to ClusterIP

Implement an HPA and test autoscaling

Readiness / Liveness Probe

Create an AKS cluster

Kubectl Commands

Get resource

kubectl get pods/service/deployment

Delete resource

kubectl delete pod/service/deployment

Display information about resource

kubectl desrcibe pod/node/service resource-name

Add/update new resource

kubectl apply -f myfile.yaml [namespace=my-namespace]

Set current namespace

kubectl configt set-context --current --namespace=my-namespace

Kubernetes Cheat Sheet: https://kubernetes.io/docs/reference/kubectl/cheatsheet

Advanced Tools and Learning Path

Certification

Kubernetes Fundamentals Training (35 hours):

https://training.linuxfoundation.org/training/kubernetesfundamentals

Certified Kubernetes Administrator (CKA):

https://training.linuxfoundation.org/certification/certified-kubernetes-administrator-cka

Certified Kubernetes Application Developer (CKAD):

https://training.linuxfoundation.org/certification/certified-kubernetes-application-developer-ckad

Helm

Kubernetes Package Manager

Use Helm charts to define application

Share Helm charts

Open-source

Public Helm charts can be found on https://artifacthub.io

Documentation: https://helm.sh

Kustomize

Kubernetes configuration management tool

Scalable for various deployment sizes

Efficient configuration management

Enables customization without directly editing manifest files

Documentation: https://kustomize.io

GitOps

Automation using Git and CI/CD pipelines

Configuration as code

History of config changes + Pull Request reviews

ArgoCD: https://argo-cd.readthedocs.io

Flux: https://fluxcd.io

KEDA

Kubernetes Event-driven Autoscaling

Enables autoscaling workloads based on external events

- Azure Service Bus
- Apache Kafka
- Redis Streams
- MongoDB
- Azure DevOps Pipeline

KEDA

Optimize resource usage

64 built in scalers

Can be used without any changes in applications

Open-source

Documentation: https://keda.sh

Cilium

Networking, security and observability

Layer 3 to layer 7 security policies

mTLS between pods

Visibility into network and application layer interactions

Open-source

Documentation: https://cilium.io

Service Mesh

Manage communication between applications and pods

Service discovery

Failure handling

Observability: metrics, logging, tracing

Security: encryption, authentication, authorization

Service Mesh

Open-source Services:

Istio: https://istio.io

Linkerd: https://linkerd.io

Consul: https://developer.hashicorp.com/consul

Secret Management

Secrets are not encrypted by default Secrets should be encrypted to keep them secret

- Database connection strings
- Passwords
- Certificates

Secret Management

Tools:

- Azure Key Vault Provider for Secrets Store CSI Driver: <u>https://learn.microsoft.com/en-us/azure/aks/csi-secrets-store-driver</u>
- HashiCorp Vault: https://www.vaultproject.io
- Sealed Secrets: https://github.com/bitnami-labs/sealed-secrets

Monitoring

Metrics

Logs

Traces

Alerting

Monitoring

Tools:

- Grafana: https://grafana.com
- Prometheus: https://prometheus.io
- Elastic Stack (ELK Stack):
 https://www.elastic.co/elastic-stack
- Jaeger: https://www.jaegertracing.io
- Zipkin: https://zipkin.io

Azure Arc

Manage Kubernetes with Azure

Run Azure services on your Kubernetes cluster on-premises

- Azure App Service
- Azure Machine Learning
- Azure Managed SQL Database

Authentication with Azure

Access cluster which is hidden behind a firewall

https://learn.microsoft.com/en-us/azure/azurerc/kubernetes/overview

Kubernetes Operations

Resource utilization

Tagging

Namespace limits

Pod security policies

Networking policies

RBAC policies

Logging

Checklist: https://learnk8s.io/production-best-practices

More Resources

Kubernetes: https://kubernetes.io

Docker: https://www.docker.com

K3s: https://k3s.io

Networking: https://www.cni.dev/docs

Graphics: https://shipit.dev/posts/kubernetes-overview-

diagrams.html

Code:

https://code.komaxgroup.com/global/training/innovation-days/2023/id23-5311-kubernetes-workshop

Exercice for the Fast Ones

Helm

 Install Helm, create a Helm chart, check content, deploy helm chart, download public Helm chart

Keda Demo

 Azure Service Bus, Scale to zero, Azure DevOps Agent Scaling

Use a dashboard to see what's going on in your cluster Install Istio and try out the demo

