

1A Low Dropout Linear Regulator

❖ GENERAL DESCRIPTION

AX1117 is a low dropout positive adjustable or fixed-mode regulator with minimum of 1A output current capability. The product is specifically designed to provide well-regulated supply for low voltage IC applications such as high-speed bus termination and low current 3.3V logic supply. AX1117 is also well suited for other applications such as VGA cards. AX1117 is guaranteed to have lower than 1.4V dropout at full load current making it ideal to provide well-regulated outputs of 1.25 to 5.0 with 6.4V to 12V input supply.

❖ FEATURES

- 1.4V maximum dropout at full load current
- Fast transient response
- Output current limiting
- Built-in thermal shutdown
- Good noise rejection
- 3-Terminal Adjustable or Fixed 1.5V, 1.8V, 2.5V, 3.3V, 5.0V
- Packages: SOT223, TO252

❖ BLOCK DIAGRAM

❖ PIN ASSIGNMENT

The packages of AX1117 are SOT223 and TO252; the pin assignment is given by:

Name	Description
Adj (GND)	A resistor divider from this pin to the V _{OUT} pin and ground sets the output voltage. (Ground only for Fixed-Mode)
V _{OUT}	The output of the regulator. A minimum of $10 \mu = 10 = 10 = 10 = 10 = 10 = 10 = 10 $
Vin	The input pin of regulator. Typically a large storage capacitor $(0.15\Omega \le ESR \le 20\Omega)$ is connected from this pin to ground to insure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be 1.4V higher than V_{OUT} in order for the device to regulate properly.

❖ ORDER/MARKING INFORMATION

❖ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	
DC Supply Voltage		V_{IN}	-0.3 to 12	V
Operating Junction Temperature Range		T _{OP}	0 to +125	°C
Maximum junction Temperature		T _M J	150	Ŝ
Power Dissipation(No heat sink ;No air flow)	SOT-223		850	mW
T _A =25°C, T _J =125°C, PD=(T _J -T _A) / θ _{JA}	TO-252		1050	11144
(multi-layer PCB cupper area 10mm*10mm)	SOT-223	P _D	1333	mW
T _A =25°C, T _J =125°C, PD=(T _J -T _A) / θ _{JA}	TO-252		1818	11144
Storage Temperature		T _{ST}	-65 to +150	°C

❖ ELECTRICAL CHARACTERISTICS

(T_A=25°C, Under Operating Conditions)

Characteristics	Conditions			Тур	Max	Units
Operation Input Voltage			2.75	-	12	V
Reference Voltage	AX1117-ADJ	T _J =25°C,(V _{IN} -OUT)=1.5V, I _{OUT} =10mA	1.225	1.250	1.275	V
	AX1117-1.5	I_{OUT} =10mA, T_J =25°C, $3V \le V_{IN} \le 12V$	1.470	1.500	1.530	V
	AX1117-1.8	I_{OUT} =10mA, T_J =25°C, 3.3V \leq V _{IN} \leq 12V	1.764	1.800	1.836	V
Output Voltage	AX1117-2.5	I_{OUT} =10mA, T_J =25°C, $4V \le V_{IN} \le 12V$	2.450	2.500	2.550	V
	AX1117-3.3	I_{OUT} = 10mA, T_J = 25°C, 4.8V \leq V _{IN} \leq 12V	3.235	3.300	3.365	V
	AX1117-5.0	I_{OUT} =10mA, T_{J} =25°C,6.5 $V \le V_{IN} \le 12V$	4.900	5.000	5.100	V
Line Regulation	AX1117-XXX	$V_{IN}=V_{OUT}+1.5V \sim 7V$, $I_{OUT}=10$ mA, $T_{J}=25$ °C		0.1	0.3	%
(Note 1,2)	AX1117-AAA	V_{IN} = V_{OUT} +1.5 V ~12 V , I_{OUT} =10 m A, T_{J} =25 $^{\circ}$ C		0.1	0.5	%
	AX1117-ADJ	V_{IN} =3V,Vadj=0,10mA< I_{OUT} <1A, T_{J} =25°C			1	%
	AX1117-1.5	V _{IN} = 3V, 10mA <lo<1a, t<sub="">J=25°C</lo<1a,>		12	15	mV
Load Regulation	AX1117-1.8	V _{IN} = 3.3V, 10mA <lo<1a, t<sub="">J=25°C</lo<1a,>		15	18	mV
(Note 1,2)	AX1117-2.5	V _{IN} = 4V, 10mA <lo<1a, t<sub="">J=25°C</lo<1a,>		20	25	mV
	AX1117-3.3	V_{IN} = 5V, 10mA \leq $I_{OUT} \leq$ 1A, T_J =25°C		26	33	mV
	AX1117-5.0	V_{IN} =6.5V, 10mA \leq I_{OUT} \leq 1A, T_J =25°C		40	50	mV
Dropout Voltage(V _{IN} -V _{OUT})	AX1117-XXX	$I_{OUT} = 1A$, $\Delta V_{OUT} = 1\%V_{OUT}$		1.3	1.4	V
Current Limit	AX1117-XXX	$(V_{IN}-V_{OUT})=3V$	1. 1	_		Α
Minimum Load Current	AX1117-XXX	0°C≦Tj≦125°C		5	10	mA
Ripple Rejection	F=120Hz,C _{OU}	_T =25uF Tantalum				
Trippie izejection	AX1117-XXX	V _{IN} =V _{OUT} +3V		60	70	dB

❖ ELECTRICAL CHARACTERISTICS (CONTINUED)

Temperature Stability	I _{OUT} =10mA	0.5	%
θ_{JA} Thermal			
Resistance	SOT-223	117	°C/W
Junction-to-Ambient(No	TO-252	92	0/ * *
heat sink ;No air flow)			
θ_{JA} Thermal Resistance	SOT-223	75	
Junction-to-Ambient	TO-252	55	°C/W
(Note 4)	10 202	55	
θ_{JC} Thermal	SOT-223	15	
Resistance	TO-252	10	°C/W
Junction-to-Case	10-202	10	

Note1: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing. Load regulation is measured at the output lead = 1/18" from the package.

Note2: Line and load regulation are guaranteed up to the maximum power dissipation of 15W. Power dissipation is determined by the difference between input and output differential and the output current. Guaranteed maximum power dissipation will not be available over the full input/output range.

Note3: Quiescent current is defined as the minimum output current required in maintaining regulation. At 12V input/output differential the device is guaranteed to regulate if the output current is greater than 10mA.

Note4: Output is connected to the multi-layer PCB cupper area 10mm*10mm separately. If you need large PD or lower Tc and Ti, please connect to the large cupper area >>10mm*10mm.

APPLICATION CIRCUIT

VOUT = VREF x
$$(1 + \frac{R2}{R1})$$

VREF = 1.250V

* TYPICAL CHARACTERISTICS

*** PACKAGE OUTLINES**

(1) SOT223-3L

Land Pattern Recommendation (Unit: mm)

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	1.8	-	-	0.071
A1	0.02	0.06	0.1	0.001	0.002	0.004
В	0.66	0.75	0.84	0.026	0.03	0.033
B1	2.9	3	3.1	0.114	0.118	0.122
С	0.23	0.315	0.35	0.009	0.012	0.014
D	6.3	6.5	6.7	0.248	0.256	0.264
Е	3.3	3.5	3.7	0.13	0.138	0.146
Н	6.7	7	7.3	0.264	0.278	0.287
L	0.75	-	-	0.03	-	-
K	1.5	1.75	2	0.059	0.069	0.079
е	2.3 Basic 0.091 Basic					
e1	4.6 Basic			0.181 Basic		

JEDEC outline: TO-261 AB

(2) TO252-3L

Symbol	Dimensions in Millimeters			Dimensions in Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
А	2.18	2.29	2.39	0.086	0.09	0.094	
A1	-	-	0.13	-	-	0.005	
b	0.51	0.71	0.89	0.02	0.028	0.035	
b2	4.95	5.21	5.46	0.195	0.205	0.215	
С	0.46	0.53	0.61	0.018	0.021	0.024	
C1	0.46	0.53	0.58	0.018	0.021	0.023	
D	5.33	5.46	6.22	0.21	0.215	0.245	
D1	4.57	-	-	0.18	-	-	
E	6.35	6.55	6.73	0.25	0.258	0.265	
е	2.29 BSC			0.090 BSC.			
e1	4.58 BSC			0.180 BSC.			
Н	9.4	9.7	10.4	0.37	0.382	0.41	
L	1.4	1.6	1.78	0.055	0.063	0.07	
L1	-	-	1.02	-	-	0.04	
L2	1.52	1.78	2.03	0.06	0.07	0.08	

Mold flash shall not exceed 0.005inch per side

JEDEC outline: TO-252