Differential Evolution und dichteste Kugelpackung (3D)

Inhalt

- 1. Problemstellung
- 2. Grundlagen und Konzept
- 3. Programmstruktur
 - Benutzeroberfläche
 - Initialisierung
 - Optimierung
- 4. Test und Ergebnisse
- 5. Demonstration

1. Problemstellung

optimale Anordnung von endlich vielen, gleich großen Kugeln im euklidischen

Raum

dichteste Kugelpackung

Differential Evolution

Allgemeine Funktionsweise				
Initialisierung:	Startpopulation			
Iterationsschritte:	Optimieren bis Abbruchkriterium erfüllt ist			
	Mutation	•		
	Rekombination			
	Selektion			

Differential Evolution

Allgemeine Funktionsweise

Iterationsschritte:	Optimieren bis Abbruchkriterium erfüllt ist	
	Mutation	

$$v_{ij}^t = M_1(x_{ij}^t) = x_{r1,j}^t + F \cdot (x_{r2,j}^t - x_{r3,j}^t)$$

Rekombination

Selektion

Differential Evolution

Allgemeine Funktionsweise				
Iterationsschritte:	Optimieren bis Abbruchkriterium erfüllt ist			
	Mutation	(R)		
	Rekombination			
	Individuum der ParentalgenerationMutiertes Individuum			
	Selektion	(PA		

Differential Evolution

Allgemeine Funktionsweise				
Iterationsschritte:	Optimieren bis Abbruchkriterium erfüllt ist			
	Mutation	H		
	Rekombination			
	Selektion			
	 Vergleich Individuum der Parentalgeneration Mutiertes Individuum Individuum mit den besseren Eigenschaften überle 	bt		

t Generation u Kind

x Individuum r zufälliges x

m Mittelpunkt F Skalierungsfaktor

CR Rekombinations- µ Populationsgröße konstante

- Strategie zur Optimierung: DE/rand/1/bin
 - DE: Differential Evolution
 - rand: Zufällige Auswahl der Basisvektoren
 - ▶ 1: Eine Differenzbildung innerhalb der Mutation
 - bin: Binomial-Schema bei der Rekombination

$$v_{ij}^t = M_1(x_{ij}^t) = x_{r1,j}^t + F \cdot (x_{r2,j}^t - x_{r3,j}^t)$$

c Generation u Kind
c Individuum r zufälliges x
m Mittelpunkt F Skalierungsfaktor
CR Rekombinations- μ Populationsgröße konstante

- Strategie zur Optimierung: DE/rand/1/bin
 - DE: Differential Evolution
 - rand: Zufällige Auswahl der Basisvektoren
 - ▶ 1: Eine Differenzbildung innerhalb der Mutation
 - bin: Binomial-Schema bei der Rekombination

$$v_{ij}^t = M_1(x_{ij}^t) = x_{r1,j}^t + F \cdot (x_{r2,j}^t - x_{r3,j}^t)$$

c Generation u Kind
c Individuum r zufälliges x
m Mittelpunkt F Skalierungsfaktor
CR Rekombinations- μ Populationsgröße konstante

- Strategie zur Optimierung: DE/rand/1/bin
 - DE: Differential Evolution
 - rand: Zufällige Auswahl der Basisvektoren
 - ▶ 1: Eine Differenzbildung innerhalb der Mutation
 - bin: Binomial-Schema bei der Rekombination

$$v_{ij}^t = M_1(x_{ij}^t) = x_{r1,j}^t + F \cdot (x_{r2,j}^t - x_{r3,j}^t)$$

c Generation u Kind
c Individuum r zufälliges x
m Mittelpunkt F Skalierungsfaktor
CR Rekombinations- μ Populationsgröße konstante

- Strategie zur Optimierung: DE/rand/1/bin
 - DE: Differential Evolution
 - rand: Zufällige Auswahl der Basisvektoren
 - ▶ 1: Eine Differenzbildung innerhalb der Mutation
 - bin: Binomial-Schema bei der Rekombination

$$u_{ij}^{t} = R_{bin}(v_{ij}^{t}) = \begin{cases} v_{ij}^{t} falls \, rand_{j}[0,1] < CR \\ x_{ij}^{t} \, sonst \end{cases}$$

t Generation u Kind

x Individuum r zufälliges x

m Mittelpunkt F Skalierungsfaktor

CR Rekombinations- μ Populationsgröße konstante

- Annahmen
 - Optimiert wird der Durchmesser (~DKP)
 - Individuum entspricht einer legalen Anordnung von n Kugeln
 - ▶ Gefäß entspricht einem Würfel
 - ▶ Legalität: Mittelpunkte der Kugeln befinden sich im Einheitswürfel
 - ► Kantenlänge entspricht 1 LE + 2·Radius
 - Population: Menge aller Kugelsammlungen
 - Addition und Multiplikation bezieht sich auf die Mittelpunkte der Kugeln eines Individuums

$$V = (1+d)^3$$

Generation u Kind

Individuum r zufälliges x

Mittelpunkt F Skalierungsfaktor

Rekombinations- µ Populationsgröße konstante

schematische Populationsstruktur sowie Softwarenotation für allgemeine Generationsdarstellung

3. Programmstruktur Benutzeroberfläche

Benutzeroberfläche

Benutzeroberfläche

Konfiguration des Szenarios

1 ≤ n – (zu packende) Kugelanzahl

3. Programmstruktur Benutzeroberfläche

- Konfiguration des Szenarios
 1 ≤ n (zu packende) Kugelanzahl
- Konfiguration der strategischen Parameter

```
0 \le F \le 1 - Skalierungsfaktor
```

 $0 \le CR \le 1 - Rekombinationskonstante$

 $0 \le \mu$ – Populationsgröße (initial: 10n)

0 ≤ max. Iterationen

Benutzeroberfläche

- Konfiguration des Szenarios
 - 1 ≤ n (zu packende) Kugelanzahl
- Konfiguration der strategischen Parameter
 - 0 ≤ F ≤ 1 Skalierungsfaktor
 - 0 ≤ CR ≤ 1 Rekombinationskonstante
 - 0 ≤ μ − Populationsgröße (initial: 10n)
 - 0 ≤ max. Iterationen
- Performance Algorithmus

$$\frac{n \cdot V_{Kugel}}{V_{W\ddot{u}rfel}}$$
 – Packungsdichte

Laufzeit

Benutzeroberfläche

- Konfiguration des Szenarios
 - 1 ≤ n (zu packende) Kugelanzah
- Konfiguration der strategischen Parameter
 - 0 ≤ F ≤ 1 Skalierungsfaktor
 - 0 ≤ CR ≤ 1 Rekombinationskonstante
 - 0 ≤ μ − Populationsgröße (initial: 10n)
 - 0 ≤ max. Iterationer
- Performance Algorithmus

$$\frac{n \cdot V_{Kugel}}{V_{W\ddot{u}rfel}}$$
 – Packungsdichte

Laufzeit

Ergebnisdarstellung
 grafische Darstellung der dichtesten Kugelpackung

3. Programmstruktur Initialisierung t Generation u Kind

x Individuum r zufälliges x

m Mittelpunkt F Skalierungsfaktor

CR Rekombinations- μ Populationsgröße konstante

3. Programmstruktur Initialisierung

t Generation u Kind
x Individuum r zufälliges x
m Mittelpunkt F Skalierungsfaktor
CR Rekombinations- μ Populationsgröße konstante

schematische Populationsstruktur sowie Softwarenotation für Parentalgeneration (t = 1)

3. Programmstruktur Initialisierung

t Generation u Kind

x Individuum r zufälliges x

m Mittelpunkt F Skalierungsfaktor

CR Rekombinations- µ Populationsgröße konstante

Initialisierungsvorschrift

$$m_{ij} = \begin{pmatrix} rand[0,1] \\ rand[0,1] \\ rand[0,1] \end{pmatrix}$$

schematische Populationsstruktur sowie Softwarenotation für Parentalgeneration (t = 1)

Programmstruktur Optimierung (*DE/rand/1/bin*)

Optimierung (DE/rand/1/bin)

schematisches Strukturdiagramm des Optimierungskonzeptes/-algorithmus

Optimierung (DE/rand/1/bin)

Mutationsvorschrift

$$v_{ij}^{t} = M_{1}(x_{ij}^{t}) = x_{r_{1,j}}^{t} + F \cdot (x_{r_{2,j}}^{t} - x_{r_{3,j}}^{t})$$

$$r_{1} = rand[0,1] \cdot \mu$$

$$r_{2} = rand[0,1] \cdot \mu$$

$$r_{3} = rand[0,1] \cdot \mu$$

$$r_{1} \neq r_{2} \land r_{1} \neq r_{3} \land r_{2} \neq r_{3}$$

Rekombinationsvorschrift

$$u_{ij}^{t} = R_{bin}(v_{ij}^{t}) = \begin{cases} v_{ij}^{t} \ falls \ rand_{j}[0,1] < CR \\ x_{ij}^{t} \ sonst \end{cases}$$

CR Rekombinationsk Generation
u Kind
r zufälliges x
F Skalierungsfaktor
μ Populationsgröße
konstante

schematisches Strukturdiagramm des Optimierungskonzeptes/-algorithmus

Optimierung (DE/rand/1/bin)

Überprüfung der Legalität

$$u_{ij,legal}^{t} = L(u_{ij}^{t}) = \begin{cases} \frac{x_{r1,j}^{t}}{2} falls u_{ij}^{t} < 0\\ \frac{(x_{r1,j}^{t} + 1)}{2} falls u_{ij}^{t} > 1\\ u_{ij}^{t} sonst \end{cases}$$

*Mutationsvorschrift

$$v_{ij}^t = M_1(x_{ij}^t) = x_{r1,j}^t + F \cdot (x_{r2,j}^t - x_{r3,j}^t)$$

t Generation u Kind
x Individuum r zufälliges x
m Mittelpunkt F Skalierungsfaktor
CR Rekombinations- μ Populationsgröße konstante

schematisches Strukturdiagramm des Optimierungskonzeptes/-algorithmus

Optimierung (DE/rand/1/bin)

Selektionsvorschrift

$$x_{ij}^{t+1} = S(u_{ij,legal}^t, x_{ij}^t) = \begin{cases} u_{ij,legal}^t falls f(u_{ij,legal}^t) \ge f(x_{ij}^t) \\ x_{ij}^t sonst \end{cases}$$

$$d_i^t = f(u_{ij,legal}^t)$$

$$f(x_{ij}^t) = min\{\Delta_{lm} | l, m = 1, 2, ..., n; l \neq m\} mit l = j$$

$$\Delta_{lm} = \sqrt{(x_l - x_k)^2 + (y_l - y_k)^2 + (z_l - z_k)^2}$$

schematisches Strukturdiagramm des Optimierungskonzeptes/-algorithmus

Optimierung (DE/rand/1/bin)

Ausgabe des Optimierungsalgorithmus für $\mathbf{n} = \mathbf{8}$. links: Anpassung des Kugeldurchmessers d_n über die Generationen t aufgetragen. rechts: grafische Darstellung des "besten" Individuums.

- Bestimmung der strategischen Parameter:
 - Skalierungsfaktor F
 - ► Rekombinationskonstante CR
 - Populationsgröße μ
- Orientierungswerte nach (Kommer 2008)
 - F = 0.5
 - ightharpoonup CR = 0.9
 - $\mu = 10n$

Parameterbestimmung F und CR (3 Kugeln)

Kugelanzahl (n)	F	CR	μ (10n)	Iteratrionen	Packungsdichte	Maximaler Durchmesser
	0,15	0,15	30	200	0,3156	1,4138
	0,15	0,5	30	200	0,3077	1,3825
	0,15	0,9	30	200	0,3077	1,3854
	0,5	0,15	30	200	0,3157	1,4142
3	0,5	0,5	30	200	0,3157	1,4142
	0,5	0,9	30	200	0,3157	1,4142
	0,9	0,15	30	200	0,3154	1,4128
	0,9	0,5	30	200	0,3157	1,4142
	0,9	0,9	30	200	0,3157	1,4142

Parameterbestimmung F und CR (9 Kugeln)

Kugelanzahl (n)	F	CR	μ (10n)	Iteratrionen	Packungsdichte	Maximaler Durchmesser
	0,15	0,15	90	2000	0,4703	0,8651
	0,15	0,5	90	2000	0,3288	0,6997
	0,15	0,9	90	2000	0,3223	0,6919
	0,5	0,15	90	2000	0,4707	0,8656
9	0,5	0,5	90	3000	0,4707	0,8657
	0,5	0,9	90	3000	0,4648	0,8589
	0,9	0,15	90	4000	0,4047	0,7895
	0,9	0,5	90	4000	0,3220	0,6915
	0,9	0,9	90	4000	0,2207	0,5636

Beste Kombinationen:

$$F = 0.15 / CR = 0.15$$

$$F = 0.5 / CR = 0.15$$

Abhängigkeit von der Populationsgröße

Kugelanzahl (n)	μ	Iterationen	Packungsdichte	Maximaler Durchmesser
	18	2000	0,2345	0,5818
	36	2000	0,4497	0,8415
	54	2000	0,3631	0,7407
	72	2000	0,4585	0,8516
9	90	2000	0,4705	0,8653
9	108	2000	0,4708	0,8657
	126	2000	0,4709	0,8658
	144	2000	0,4654	0,8595
	162	2000	0,4513	0,8434
	180	2000	0,4711	0,866

Beobachtung:

Ab $\mu=10n$ keine wesentliche Änderung bei der Packungsdichte

Beispielwerte

Kugelanzahl (n)	Packungsdichte	Maximaler Durchmesser
2	0,2659	1,7263
3	0,3006	1,3599
4	0,3801	1,3051
5	0,3629	1,0727
6	0,4080	1,0259
7	0,4581	1,0000
8	0,5236	1,0000
9	0,4682	0,8627
10	0,3721	0,7071
11	0,3929	0,6909
12	0,3587	0,6262
13	0,4793	0,7034
14	0,3983	0,6096
15	0,3967	0,5864
16	0,4099	0,5767

