Ejs Práctico 5

1)

a)

Primer programa:

 $\begin{array}{ll} Var \ i,r: \ Int; \\ \ell_1 & i,r:=0,0; \\ \ell_2 & do \ i \leq N \rightarrow \\ \ell_3 & r:=r+i; \\ \ell_4 & i:=i+1; \\ \ell_5 & od \end{array}$

Segundo programa:

 $Var \ r:Int; \\ \ell_1 \quad r:=N*(N+1)/2$

b) Tablas de estados:

Primer programa:

linea	nombre del estado	${\rm estado/guardas}$	aclaracion
_	σ_0	$N \mapsto 3$	Estado inicial
ℓ_1	σ_1	$N\mapsto 3, i\mapsto 0, r\mapsto 0$	
ℓ_2		True	Evaluo guarda
ℓ_3	σ_2	$N\mapsto 3, i\mapsto 0, r\mapsto 0$	
ℓ_4	σ_3	$N\mapsto 3, i\mapsto 1, r\mapsto 0$	
ℓ_2		True	Evaluo guarda
ℓ_3	σ_4	$N\mapsto 3, i\mapsto 1, r\mapsto 1$	
ℓ_4	σ_5	$N\mapsto 3, i\mapsto 2, r\mapsto 1$	
ℓ_2		True	Evaluo guarda
ℓ_3	σ_4	$N\mapsto 3, i\mapsto 2, r\mapsto 3$	
ℓ_4	σ_5	$N\mapsto 3, i\mapsto 3, r\mapsto 3$	
ℓ_2		True	Evaluo guarda
ℓ_3	σ_4	$N\mapsto 3, i\mapsto 3, r\mapsto 6$	
ℓ_4	σ_5	$N\mapsto 3, i\mapsto 4, r\mapsto 6$	
ℓ_2		False	Evaluo guarda

Segundo Programa:

linea	nombre del estado	estado/guardas	aclaracion
-	σ_0	$N \mapsto 3$	Estado inicial
ℓ_1	σ_1	$N\mapsto 3, r\mapsto 6$	Estado final

- c) Si, el valor final de las variables depende de su valor inicial.
- 2)
- a)

 $Var\ r, i:Int$

 $\ell_1 \quad i, r := 1, 1;$

 ℓ_2 do $i \leq N \rightarrow$

 $\ell_3 \qquad r = r * i;$

 $\ell_4 \qquad i = i+1;$

 ℓ_5 od

b)

 $Var\ r, i:Int$

 ℓ_1 i, r := 1, 1;

 ℓ_2 do $i \leq N \rightarrow$

 ℓ_3 r = i * r;

 $\ell_4 \qquad i = i + 1;$

 ℓ_5 od

c)

linea	nombre del estado	estado/guardas	aclaracion
		, ,	
-	σ_0	$N \mapsto 5$	Estado inicial
ℓ_1	σ_1	$N \mapsto 5, i \mapsto 1$	
ℓ_2	σ_2	$N\mapsto 5, i\mapsto 1, r\mapsto 5$	
ℓ_3		True	Evaluo guarda
ℓ_4	σ_3	$N\mapsto 5, i\mapsto 1, r\mapsto 20$	
ℓ_5	σ_4	$N\mapsto 5, i\mapsto 2, r\mapsto 20$	
ℓ_3		True	Evaluo guarda
ℓ_4	σ_5	$N\mapsto 5, i\mapsto 2, r\mapsto 60$	
ℓ_5	σ_6	$N\mapsto 5, i\mapsto 3, r\mapsto 60$	
ℓ_3		True	Evaluo guarda
ℓ_4	σ_7	$N\mapsto 5, i\mapsto 3, r\mapsto 120$	
ℓ_5	σ_8	$N\mapsto 5, i\mapsto 4, r\mapsto 120$	
ℓ_3		True	Evaluo guarda
ℓ_4	σ_9	$N\mapsto 5, i\mapsto 4, r\mapsto 120$	
ℓ_5	σ_{10}	$N\mapsto 5, i\mapsto 5, r\mapsto 120$	Estado final
ℓ_3		False	Evaluo guara

3)

$$\begin{array}{ll} \text{a)} \ \ Var \ i,p,m:Int \\ \ell_1 & i,p,m:=N,0,0; \\ \ell_2 & do \ i < M \rightarrow \\ \ell_3 & if \ i\%2 == 0 \rightarrow \\ \ell_4 & p:=p+i; \\ \ell_5 & if \ i\%3 == 0 \rightarrow \\ \ell_6 & m:=m+i; \\ \ell_7 & i:=i+1 \\ \ell_8 & od \end{array}$$

b)

linea	nombre del estado	estado/guardas	aclaracion
-	σ_0	$N\mapsto 25, M\mapsto 30$	Estado inicial
ℓ_1	σ_1	$i\mapsto 25, p\mapsto 0, m\mapsto 0$	
ℓ_2		True	Evaluo guarda
ℓ_3		False	
ℓ_5		False	
ℓ_7	σ_2	$i\mapsto 26, p\mapsto 0, m\mapsto 0$	
ℓ_2		True	Evaluo guarda
ℓ_3		True	
ℓ_4	σ_3	$i\mapsto 26, p\mapsto 26, m\mapsto 0$	
ℓ_5		False	
ℓ_7	σ_4	$i\mapsto 27, p\mapsto 26, m\mapsto 0$	
ℓ_2		True	Evaluo guarda
ℓ_3		False	
ℓ_5		True	
ℓ_6	σ_5	$i\mapsto 27, p\mapsto 26, m\mapsto 27$	
ℓ_7	σ_6	$i\mapsto 28, p\mapsto 26, m\mapsto 27$	
ℓ_2		True	Evaluo guarda
ℓ_3		True	
ℓ_4	σ_7	$i\mapsto 28, p\mapsto 54, m\mapsto 27$	
ℓ_5		False	
ℓ_7	σ_8	$i\mapsto 29, p\mapsto 54, m\mapsto 27$	
ℓ_2		True	Evaluo guarda
ℓ_3		False	
ℓ_5		False	
ℓ_7	σ_2	$i\mapsto 30, p\mapsto 54, m\mapsto 27$	
ℓ_2		False	Evaluo guarda

4)

- a) Es correcta ya que {P} S {True} siempre vale si el programa termina. En este caso como la sentencia es una asignacion, podemos afirmar que termina, y por ende la terna es valida.
- b) La terna es valida ya que x * x siempre da un resultado mayor o igual a 0.
- c) La terna es valida ya que x*x siempre da un resultado mayor o igual a 0.
- d) La terna no es valida ya que $x \ast x$ siempre da un resultado mayor o igual a 0
- e) La terna no es valida ya que x*x siempre da un resultado mayor o igual a 0.
- f) La terna vale ya que x * x siempre da un resultado mayor o igual a 0

- 5)
- a) $\{P\}$ S $\{r:=\langle \Sigma i:0\leq i\leq n:i\rangle\}$
- b) No, ya que el programa no funciona con x < 0.
- 6) $\{N \ge 0\}$ S $\{r = N!\}$