

Intended learning objectives

- 1.List and explain the pathophysiology of the five cardinal signs of acute inflammation.
- 2.Demonstrate an understanding of the major processes of acute inflammation.
- 3. List the main types of inflammatory mediators involved in inflammation.
- 4. Describe the different types of acute inflammation and exudation.

What is inflammation?

The body's response to infection, irritation or injury

Acute inflammation

- Rapid response to injury Onset in seconds to minutes
- Non-specific response

 Innate immune mechanisms
- Functions
 - **Delivery** of biological mediators and leukocytes to site of inflammation
 - Destruction of pathogens
 - **Breakdown and removal** of damaged tissue and debris

Causes of inflammation

Physical injury

- Trauma
- · Tissue death
- · Thermal, electrical, radiation or chemical injury

Foreign material

Infection

Viral, bacterial, protozoal, fungal infections

Immunological reaction (hypersensitivity)

- Abnormal reaction to environmental substances (allergy)
- Abnormal reaction to own tissues (autoimmune)

6

The cardinal signs of inflammation

Defined by Celsus, 6 A.D:

7

The cardinal signs of inflammation

Defined by Celsus, 6 A.D:

- Rubor (Redness)
 Vessel dilation and increased blood flow
- Calor (Heat)
 Vessel dilation and increased blood flow

The cardinal signs of inflammation

Defined by Celsus, 6 A.D:

- Rubor (Redness)
 Vessel dilation and increased blood flow
- Calor (Heat)
 Vessel dilation and increased blood flow
- 3. Tumor (Swelling)

 Accumulation of oedema
- 4. Dolor (Pain)

 Chemical mediators,

 Pressure on nerve endings

9

The cardinal signs of inflammation

Defined by Celsus, 6 A.D:

- Rubor (Redness)
 Vessel dilation and increased blood flow
- Calor (Heat)
 Vessel dilation and increased blood flow
- Tumor (Swelling)
 Accumulation of oedema/exudate fluid
- 4. Dolor (Pain)

 Chemical mediators,

 Pressure on nerve endings

5. Functio Laesa (Loss of function)

10

The cardinal signs of inflammation

Defined by Celsus, 6 A.D:

- Rubor (Redness)
 Vessel dilation and increased li
- Calor (Heat)
 Vessel dilation and increased blood flow
- 3. Tumor (Swelling)

 Accumulation of oedema/excuate
- Dolor (Pain)
 Chemical mediators,
 Pressure on nerve endings

Inflammatory mediators Autacoids (fast, short-acting, hormone-like factors) - Histamine - Bradykinin - Substance P Eicosanoids (arachidonic acid metabolites) - Prostaglandins - Leukotrienes Cytokines (cell-signalling molecules) - Tumour-necrosis factor (TNF) - Interleukin 1 (IL-1) Many, many other mediators as well!

Eicosanoids - Leukotrienes Synthesized from arachidonic acid by lipoxygenases (LOX) • Leukotriene B₄ — Produced by neutrophils — Attracts and activates neutrophils • Leukotrienes C₄, D₄ and E₄ — Produced by mast cells and eosinophils — Increase vascular permeability — Cause vasconstriction — Cause bronchoconstriction

Acute-phase cytokines

Mediators of inflammation secreted by leukocytes

- Tumour necrosis factor (TNF)
- Interleukin 1 (IL-1)

Actions

- Increase vascular permeability
- Promote leukocyte release and activation
- Promote leukocyte extravasation (exit from vessels)
- Increase production of other inflammatory mediators (autacoids, eicosanoids)
- Induce fever
- · Promote coagulation

19

Acute inflammatory response

Key components

- 1. Vasodilation
- 2. Increased vascular permeability
- 3. Emigration of leukocytes (mostly neutrophils)

Purpose

To allow leukocytes and inflammatory mediators to localize at the site of inflammation

Step 1: Vasodilation Mediated by: • Autacoids (histamine/bradykinin) Prostaglandins (PGD₂, PGE₂, PGI₂) Nitric oxide Effect: Perfuses tissue with inflammatory mediators and leukocytes Slows blood flow to allow leukocyte margination

21

Appearance of vasodilation

Localized

- · Engorged vessels
- Reddening of tissues (rubor)
- Blood flow to tissue increases temperature (calor)

22

Appearance of vasodilation

Localized

- · Engorged vessels
- Reddening of tissues (rubor)
- Blood flow to tissue increases temperature (calor)

Systemic (sepsis)

- Generalized tissue congestion
- · Anaphylaxis and shock
 - Decreased blood pressurePoor tissue perfusionCan lead to death

Step 2: Increased vascular permeability Leaking due to disruption of endothelial barrier NC Allows release of plasma proteins and leukocytes from blood vessels Mechanisms: • Endothelial cell retraction Increased intercellular gaps mostly in venules Immediate response due to histamine Delayed (approx. 2-8 hours) due to eicosanoids, bradykinin, complement and cytokines Endothelial injury Damage leads to prolonged leakage until repair Can result from initial injury or damage by leukocytes

24

Step 3: Emigration of leukocytes 1. Endothelial activation Expression of adhesion molecules (selectins, integrins) Induced by cytokines (TNF, IL-1), tissue damage

25

Step 3: Emigration of leukocytes

- 1. Endothelial activation
- Expression of adhesion molecules (selectins, integrins)
 Induced by cytokines (TNF, IL-1), tissue damage
- 2. Leukocyte rolling
- Allows loose attachment of leukocytes via selectins
- Gradual slowing of leukocyte

Step 3: Emigration of leukocytes

- 1. Endothelial activation
- Expression of adhesion molecules (selectins, integrins)
- Induced by cytokines (TNF, IL-1), tissue damage
- 2. Leukocyte rolling
- Allows loose attachment of leukocytes via selectins
- Gradual slowing of leukocyte

27

Step 3: Emigration of leukocytes

- 1. Endothelial activation
- Expression of adhesion molecules (selectins, integrins)
 Induced by cytokines (TNF, IL-1), tissue damage
- 2. Leukocyte rolling
- Allows loose attachment of leukocytes via selectins Allows loose attachment of the Gradual slowing of leukocyte

3. Adhesion

- · Firm attachment via integrins
- 4. Transmigration
- Migration (chemotaxis) between endothelial cells into interstitium
- Attracted by chemical signals (chemokines)

28

Effects of increased vascular permeability

Fluid leakage into tissues

- Oedema
 - Fluid accumulation in tissue
 - Tissue become swollen and gelatinous (tumor)
 Can be due to inflammatory or non-inflammatory causes
 Usually also leukocytes when inflammatory

Effects of increased vascular permeability

Fluid leakage into body cavities → Effusion

- Transudate (tube on left)
 Mild increase in permeability

 - Leakage of fluid +/- protein
 - Low-moderate protein, few cells present
 - Mild inflammation or can be non-inflammatory (eg. heart failure)
- Exudate (eg. pus tube on right)
 - Large increase in permeability
 - Leakage of fluid and protein with cell migration
 - High protein, many cells
 Typically inflammatory

30

What's in an exudate?

- Fluid

 Water containing mixture of salts to dilute toxins and pathogens
 Drains via lymphatics and lymph nodes for immune surveillance
 Plasma proteins
 Inflammatory mediators and artimicrobial molecules
 Antibodies
 Citotting factors
 Fibrin
 Fibrin
 Fibrin
 Formed from circulating precursor protein, fibrinogen
 Polymenies via blood coagulation cascade
 Forms clot composed of filamentous, insoluble protein
 Methwork blocks migration of bacteria and aids migration of leut
 Leukcoytes

31

Pathological classifications of acute inflammation

According to nature of exudate:

- Serous
 Least severe; mild inflammation
 Only water and low MW solutes pass out of plasma
 Formation of transudate

33

Pathological classifications of acute inflammation

- Catarrhal
 - Exudate formed on mucosal surfaces
 Hypersecretion of mucus intermixed with serous fluid
 plus cell debris and inflammatory cells

34

Pathological classifications of acute inflammation

- Fibrinous

 - FIDTINOUS

 Leakage of fibrin from vessels

 Fibrinogen converted to fibrin

 Yellow gel which gradually becomes more solid over time

 Typically coats serosal or mucosal surfaces

 Ground glass' (mild) or 'bread and butter' appearance

Pathological classifications of acute inflammation Suppurative Purulent exudate (pus) - Contains Large numbers of neutrophils Dead cell debris

36

Pathological classifications of acute inflammation

- Abscess
 - Localised collection of pus caused by suppurative inflammation

 - Response to pyogenic bacteria
 Confined by wall of fibrous tissue when chronic

Pathological classifications of acute inflammation

- Empyema
 - Accumulation of pus within a body cavity

Cat: pyothorax

Other features of inflammation

Pain

- One of the cardinal signs of inflammation (dolor)
- · Specific nerves signal pain
- Local stimulation
- Damage/injury to peripheral nerve endings
 Effect of inflammatory mediators on nerve endings
 Pressure on nerve endings from tissue swelling
 Heightened pain sensitivity in inflammation

 - Hypersensitivity of nerve endings
 - Amplification of pain pathways in the spinal cord
 Caused by mediators such as prostaglandin E2, IL-1
- · Neurogenic inflammation:
 - Inflammatory mediators such as substance P released from nerve endings

39

Other features of inflammation

ltch

- · Different nerve fibres to pain
 - Puriceptors
- · Itch may accompany local skin inflammation
- Caused by:
 - Inflammatory mediators activating nerve endings
 - e.g. histamine, serotonin, prostaglandins
 - Substance P releases histamine from mast cells
- · Scratching leads to self trauma and more inflammation

40

Other features of inflammation

Itch

- · Different nerve fibres to pain
- Itch may accompany local skin inflammation
- · Caused by:
 - Inflammatory mediators activating nerve endings
 - e.g. histamine, serotonin, prostaglandins
 - Substance P releases histamine from mast cells
- · Scratching leads to self trauma and more inflammation

Other features of inflammation

Fever (pyrexia; febrile response)

Purpose

- Increases motility of leukocytes, phagocytosis
 Increases proliferation of T cells
- Impairs growth of temperature-sensitive pathogens

Mechanism

- Induced by pyrogens
 Endogenous: cytokines, such as IL-1. TNF
 Exogenous: e.g. bacterial toxin, lipopolysac
 Pyrogen causes a release of PGE2
- Programment actives a nirease of rOE2
 PGE2 acts on the hypothalamus in the brain:
 Increases physiological "thermostat"
 Results in systemic responses to increase temperature
 Shivering
 Peripheral vasconstriction

42

Resolution of inflammation

- · Reduced stimulus for leukocyte migration
- · Apoptosis of neutrophils in tissue
- Lipoxins
 - Alternative arachidonic acid metabolism
 "Stop signal" to suppress neutrophil activity
- · Anti-inflammatory cytokines
 - IL-10 from regulatory T cells
 - $-\ \ TGF\mbox{-}\beta$ from anti-inflammatory macrophages

43

Outcomes of acute inflammation

Resolution (ideal outcome)

Insult is resolved without significant tissue damage, or damaged area is replaced by tissue with normal structure and function.

Fibrous repair (scar tissue)

- Tissue architecture destroyed; original cell types cannot re-grow
- Usual response to substantial tissue damage (non-specialised)

Chronic inflammation

- Damaging agent and tissue destruction persists
 Ongoing attempts to heal by fibrous repair
- Ongoing immune responses

