SC223 - Linear Algebra

Aditya Tatu

Lecture 34

November 1, 2023

Summary of Lecture 33

- Matrix Diagonalization: Existence of an eigenbasis, say E, is equivalent to $A=E\Lambda E^{-1}$, where Λ is the diagonal matrix.
- **Proposition 20**: Let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of $T \in \mathcal{L}(U)$. Then the eigenvectors v_1, \ldots, v_m associated with these eigenvalues are linearly independent.

Results on Eigenvectors and Eigenvalues **Proposition 21**: For $T \in \mathcal{L}(U)$, dim(U) = n, if $\sum_{i=1}^{m} AM(\lambda_i) = n$,

Let $\lambda \in \mathbb{F}$ st $C_{T}(\lambda) = 0$ & $C_{T}(n) = (n-\lambda)p(n)$ and $GM(\lambda_i) = AM(\lambda_i), i = 1, ..., m$, then T is diagonalizable.

with p(x) \$0 AM()=k; Assume G.M()=k+1=dim(N(T-X))

let {14, --; ver} be LI vectors from N(T-2I). $T_{\mathcal{V}_{i}^{\circ}} = \lambda \mathcal{V}_{i}, i=1,\cdots,k+1.$

let B= {U1, --, Uk+1, U1, --, Un-ck+1)} be a basis of U.

 $[T]_{B} = \begin{cases} \lambda & 0 & 0 \\ 0 & \lambda & k \\ 0 & 0 & 0 \end{cases}$ $[KH] \times (KH) \lambda \qquad = \begin{cases} \lambda & 1 \\ 0 & 0 \\ 0 & 0 \end{cases}$ $[KH] \times (KH) \lambda \qquad = \begin{cases} \lambda & 1 \\ 0 & 0 \\ 0 & 0 \end{cases}$ $[KH] \times (KH) \lambda \qquad = \begin{cases} \lambda & 1 \\ 0 & 0 \\ 0 & 0 \end{cases}$ $[KH] \times (KH) \lambda \qquad = \begin{cases} \lambda & 1 \\ 0 & 0 \\ 0 & 0 \end{cases}$

Results on Eigenvectors and Eigenvalues

- **Proposition 21**: For $T \in \mathcal{L}(U)$, dim(U) = n, if $\sum_{i=1}^{m} AM(\lambda_i) = n$, and $GM(\lambda_i) = AM(\lambda_i)$, i = 1, ..., m, then T is diagonalizable.
- **Proposition 22**: For $T \in \mathcal{L}(U)$, dim(U) = n, for any eigenvalue λ of T, $GM(\lambda) \leq AM(\lambda)$

• Coupled Differential Equations:

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

Assume that the rate of change of predator population is $a \in \mathbb{R}$ times the current predator population and $b \in \mathbb{R}$ times that of the prey population.

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

Assume that the rate of change of predator population is $a \in \mathbb{R}$ times the current predator population and $b \in \mathbb{R}$ times that of the prey population. Similarly, the rate of change of prey population is $c \in \mathbb{R}$ times the current predator population and $d \in \mathbb{R}$ times the prey population, compute the predator-prey population at any time t, given some initial population.

$$\frac{d}{dt}x(t) = \alpha x(t) + by(t)$$

$$\frac{d}{dt}y(t) = cx(t) + dy(t).$$

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

Assume that the rate of change of predator population is $a \in \mathbb{R}$ times the current predator population and $b \in \mathbb{R}$ times that of the prey population. Similarly, the rate of change of prey population is $c \in \mathbb{R}$ times the current predator population and $d \in \mathbb{R}$ times the prey population, compute the predator-prey population at any time t, given some initial population.

$$\frac{d}{dt} \left[\begin{array}{c} x(t) \\ y(t) \end{array} \right] = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} x(t) \\ y(t) \end{array} \right]$$

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

Assume that the rate of change of predator population is $a \in \mathbb{R}$ times the current predator population and $b \in \mathbb{R}$ times that of the prey population. Similarly, the rate of change of prey population is $c \in \mathbb{R}$ times the current predator population and $d \in \mathbb{R}$ times the prey population, compute the predator-prey population at any time t, given some initial population.

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

$$\frac{d}{dt} X(t) = A X(t)$$

d xer = a = a; dt us = e x(0)

- Coupled Differential Equations:
- ▶ Let x(t), y(t) denote the population of predators and prey in an environment at any time t.

Assume that the rate of change of predator population is $a \in \mathbb{R}$ times the current predator population and $b \in \mathbb{R}$ times that of the prey population. Similarly, the rate of change of prey population is $c \in \mathbb{R}$ times the current predator population and $d \in \mathbb{R}$ times the prey population, compute the predator-prey population at any time t, given some initial population.

$$\frac{dA^{E}}{dt} = A e^{At} \quad \frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \quad \text{at} \quad \frac{d}{dt} X(t) = A X(t) \quad = 1 + at + at^{2} \\ X(t) = \exp(At) X(0) \quad + \dots = 1 \\ \text{ct at} \quad \text{at} \quad \text{ct at} \quad \text{at} \quad \text{ct at} \quad \text{at} \quad \text{at}$$

Coupled Differential Equations:

Figure: Source: Differential Equations and Linear Algebra, by GB Gustafson.

$$\begin{array}{lclcrcl} i_1' & = & - & \left(\frac{R_2}{L_1}\right)i_2 & - & \left(\frac{R_3}{L_1}\right)i_3, \\ i_2' & = & - & \left(\frac{R_2}{L_2} + \frac{R_2}{L_1}\right)i_2 & + & \left(\frac{R_1}{L_2} - \frac{R_3}{L_1}\right)i_3, \\ i_3' & = & \left(\frac{R_1}{L_3} - \frac{R_2}{L_1}\right)i_2 & - & \left(\frac{R_1}{L_3} + \frac{R_3}{L_1} + \frac{R_3}{L_3}\right)i_3 \end{array}$$

- Coupled Differential Equations:
- Epidemics Modeling:
- ▶ Population can be divided into: Susceptible/Healthy (S), Infected (I), and Dead (D) classes.
- ▶ Susceptible $\xrightarrow{-a}$ Infected \xrightarrow{b} Susceptible: $\frac{d}{dt}S = -aS(t) + rI(t)$
- ▶ Infected $\xrightarrow{-d}$ Dead: $\frac{d}{dt}D = dI(t)$
- ▶ Infected: $\frac{d}{dt}I = aS(t) dI(t) rI(t)$

End of Clas-

• Page Rank/Importance:

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.
- ▶ Let x_i , i = 1, ..., 4 denote the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.
- ▶ Let x_i , i = 1, ..., 4 denote the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.
- ▶ Let x_i , i = 1, ..., 4 denote the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Model: If P_2 has links to P_3 and P_4 , a surfer go to these pages with equal probability. Source: pi.math.cornell.edu

$$\blacktriangleright \lim_{n\to\infty} A^n x_0 = y,$$

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.
- ▶ Let x_i , i = 1, ..., 4 denote the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Model: If P_2 has links to P_3 and P_4 , a surfer go to these pages with equal probability. Source: pi.math.cornell.edu

$$\blacktriangleright \lim_{n\to\infty} A^n x_0 = y, Ay = y,$$

- Page Rank/Importance:
- ▶ Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search.
- ▶ Let x_i , i = 1, ..., 4 denote the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Model: If P_2 has links to P_3 and P_4 , a surfer go to these pages with equal probability. Source: pi.math.cornell.edu

 $| \text{lim}_{n\to\infty} A^n x_0 = y, Ay = y, y = [0.38, 0.12, 0.29, 0.19]^T.$

Projection

ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W$.

Projection

- ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V, v = u + w, u \in U, w \in W, P_U(v) = u$.
- ullet Such a linear operator is called *Projection* on U along W, or on U with nullspace W.

Projection

- ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V, v = u + w, u \in U, w \in W, P_U(v) = u$.
- ullet Such a linear operator is called *Projection* on *U* along *W*, or on *U* with nullspace *W*.
- Properties:

• How do we measure length and angles between vectors in a Vector space?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- ullet This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?
- What are the necessary conditions for a function on vector space for it be called *length*?

● Definition: (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| \ ||x||.$
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- lacktriangle A vector space V with a valid norm $||\cdot||$ is called a **Normed vector space** and is denoted by $(V, ||\cdot||)$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- A vector space V with a valid norm $||\cdot||$ is called a **Normed vector** space and is denoted by $(V, ||\cdot||)$.
- Also note that given a NVS $(V, ||\cdot||)$, we can define distance between two vectors x and y as d(x, y) := ||x y||. Such a distance or metric is called the **induced metric**.

Examples of NVS

• 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- lacktriangledown max or the sup norm on \mathbb{R}^n : $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- max or the sup norm on \mathbb{R}^n : $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.
- L_2 norm on $\mathcal{P}_n([-1,1])$: $||x||_{L_2} = \sqrt{\int_{-1}^1 (x(t))^2 dt}$.