Big Data Analytics

Learning theory

Souhaib Ben Taieb

March 3, 2021

University of Mons

Table of contents

Infinite hypothesis set: can we improve on M?

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break point

Table of contents

Infinite hypothesis set: can we improve on M?

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break point

Training vs Testing

Testing:

$$P[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \varepsilon] \le 2e^{-2\varepsilon^2 N}$$

Training:

$$P[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \varepsilon] \le 2Me^{-2\varepsilon^2N}$$

Training vs Testing

Testing:

$$P[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \varepsilon] \le 2e^{-2\varepsilon^2 N}$$

Training:

$$P[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \varepsilon] \le 2Me^{-2\varepsilon^2N}$$

We would like to replace M by a quantity that is not useless with an infinite hypothesis set.

Review

The statement we would like to make is

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon]$$
 is small for the final hypothesis g .

We know that

$$|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon$$

$$|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$
 or $|E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$ \ldots or $|E_{\mathsf{in}}(h_M) - E_{\mathsf{out}}(h_M)| > \epsilon$

Overlap between bad events

Where did the M come from?

The \mathcal{B} ad events \mathcal{B}_m are

$$|E_{\rm in}(h_m) - E_{\rm out}(h_m)| > \epsilon''$$

The union bound:

$$\begin{split} \mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \\ \leq & \underbrace{\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]}_{\text{no overlaps: } M \text{ terms}} \end{split}$$

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 5

4/20

Can we improve on M?

What is E_{out} ? What is E_{in} ?

What is E_{out} ? E_{in} ?

Consider another (very similar) hypothesis. How will E_{out} and E_{in} change?

ΔE_{out} and ΔE_{in}

- ΔE_{out} is the change in E_{out} (yelllow area)
- ΔE_{in} is the change in labels of data points
- $|E_{\rm in}(h_1) E_{\rm out}(h_1)| > \varepsilon$ happens as often as $|E_{\rm in}(h_2) E_{\rm out}(h_2)| > \varepsilon$

Can we improve on M? Yes, bad events are very overlapping!

Table of contents

Infinite hypothesis set: can we improve on Mi

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break point

Instead of the whole input space, we consider a (finite) set of input points, and count the number of **dichotomies**.

The number of dichotomies is a candidate for replacing M.

Table of contents

Infinite hypothesis set: can we improve on M?

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break point

Dichotomies: mini-hypotheses

- A hyothesis $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy $h: \{x_1, \dots, x_N\} \rightarrow \{-1, +1\}$

Let $x_1, \ldots, x_N \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

$$\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)=\{(h(\mathbf{x}_1),\ldots,h(\mathbf{x}_N))|h\in\mathcal{H}\}.$$

For any \mathcal{H} , $\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N) \subseteq \{-1, +1\}^N$ (the set of all possible dichotomies on any N points).

The number of dichotomies is at most 2^N :

$$|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)| \leq |\{-1,+1\}^N| \leq 2^N.$$

The number of dichotomies is a candidate for replacing M.

The growth function

The growth function counts the \underline{most} dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$
.

If \mathcal{H} is capable of generating all possible dichotomies on $\mathbf{x}_1,\ldots,\mathbf{x}_N$, then $\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)=\{-1,1\}^N$ and we say that \mathcal{H} can shatter $\mathbf{x}_1,\ldots,\mathbf{x}_N$.

 $m_{\mathcal{H}}(N)$ is also known as the N-th shattering coefficient of \mathcal{H} .

The growth function for the perceptron (N=3)

$$m_{\mathcal{H}}(3) = ?$$

The growth function for the perceptron (N=3)

The growth function for the perceptron (N = 4)

$$m_{\mathcal{H}}(4) = ?$$

The growth function for the perceptron (N = 4)

The growth function for the perceptron

$$m_{\mathcal{H}}(3) = 8$$

$$m_{\mathcal{H}}(4) = 14$$

© M Greator: Yaser Abu-Mostafa - LFD Lecture 5

9/20

Table of contents

Infinite hypothesis set: can we improve on M?

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break poin

Example 1: positive rays

$$h(x) = -1$$

$$a \qquad h(x) = +1$$

$$h(x) = \operatorname{sign}(x - a)$$

$$m_{\mathcal{H}}(N) = ?$$

Example 1: positive rays

Example 2: positive intervals

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

$$m_{\mathcal{H}}(N) = ?$$

Example 2: positive intervals

Example 2: positive intervals

 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

Place interval ends in two of N+1 spots

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

© IIII Creator: Yaser Abu-Mostafa - LFD Lecture 5

12/20

Note that $m_{\mathcal{H}}(N)$ grows as the square of N, faster then the linear $m_{\mathcal{H}}(N)$ of the "simpler" positive ray case.

- • H consists of all hypotheses in two dimensions
 • h: ℝ² → {-1, +1} that are positive inside some convex set and negative elsewhere.
- A set is convex if the line segment connecting any two points in the set lies entirely within the set.

- \mathcal{H} consists of all hypotheses in two dimensions $h: \mathbb{R}^2 \to \{-1, +1\}$ that are positive inside some convex set and negative elsewhere.
- A set is convex if the line segment connecting any two points in the set lies entirely within the set.

- Because we chose the N points at random in the plane, many
 of the points are "internal", and we are not able to shatter all
 the points with convex hypotheses.
- Is there another choice for the points that provide more hypotheses?

Example 3: convex sets

$$\mathcal{H}$$
 is set of $h \colon \mathbb{R}^2 \to \{-1, +1\}$

$$h(\mathbf{x}) = +1$$
 is convex

$$m_{\mathcal{H}}(N) = 2^N$$

The N points are 'shattered' by convex sets

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 5

13/20

The 3 growth functions

The 3 growth functions

• ${\cal H}$ is positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

• ${\cal H}$ is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

H is convex sets:

$$m_{\mathcal{H}}(N) = 2^N$$

© Treator: Yaser Abu-Mostafa - LFD Lecture 5

14/20

 \rightarrow More complex ${\cal H}$ gives a bigger growth function

Back to the big picture

$$P[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \varepsilon] \le 2Me^{-2\varepsilon^2N}$$

In future lectures, we will see that $m_{\mathcal{H}}(N)$ can replace M. Our bound is now finite even for an infinite hypothesis set!

As a function of N, what is a good property of $m_{\mathcal{H}}(N)$?

Back to the big picture

$$P[|E_{\rm in} - E_{\rm out}| > \varepsilon] \le 2Me^{-2\varepsilon^2N}$$

In future lectures, we will see that $m_{\mathcal{H}}(N)$ can replace M. Our bound is now finite even for an infinite hypothesis set!

As a function of N, what is a good property of $m_{\mathcal{H}}(N)$?

If $m_{\mathcal{H}}(N)$ is polynomial (in N), this is good for learning!

In fact, for any real constants a and b such that a > 1,

$$\lim_{N\to\infty}\frac{N^b}{a^N}=0.$$

We will prove that $m_{\mathcal{H}}(N)$ is polynomial. The key notion to do that is the **break point**.

Table of contents

Infinite hypothesis set: can we improve on Mi

What can we replace M with?

Dichotomies and growth function

Examples of growth functions

The break point

Main result

Main result

No break point
$$\implies$$
 $m_{\mathcal{H}}(N) = 2^N$

Any break point
$$\implies$$
 $m_{\mathcal{H}}(N)$ is **polynomial** in N

© M Greator: Yaser Abu-Mostafa - LFD Lecture 5

The break point

Break point of $\ensuremath{\mathcal{H}}$

Definition:

If no data set of size k can be shattered by \mathcal{H} , then k is a $\mathit{break\ point}$ for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

For 2D perceptrons, k=4

A bigger data set cannot be shattered either

© M Creator: Yaser Abu-Mostafa - LFD Lecture 5

17/20

In general, it is easier to find a break point for ${\cal H}$ than to compute the full growth function for that ${\cal H}.$

Break point - the three examples

The 3 growth functions

ullet $\mathcal H$ is positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

ullet $\mathcal H$ is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

 \bullet ${\cal H}$ is convex sets:

$$m_{\mathcal{H}}(N) = 2^N$$

© M Greator: Yaser Abu-Mostafa - LFD Lecture 5

Break point - the three examples

Break point - the 3 examples

• Positive rays
$$m_{\mathcal{H}}(N) = N + 1$$

break point
$$k = 2$$

$$ullet$$
 Positive intervals $\ {m m}_{\mathcal H}(N) = {1\over 2} N^2 + {1\over 2} N + 1$

break point
$$k = 3$$

$$ullet$$
 Convex sets $m_{\mathcal{H}}(N)=2^N$

break point
$$k = \infty$$

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 5

Main result

Main result

No break point
$$\implies$$
 $m_{\mathcal{H}}(N) = 2^N$

Any break point
$$\implies$$
 $m_{\mathcal{H}}(N)$ is **polynomial** in N

© M Greator: Yaser Abu-Mostafa - LFD Lecture 5

Let us assume k=2 is a break point. What are the number of dichotomies on N=3 points? (Use \circ for -1 and \bullet for +1).

$$x_1 \ x_2 \ x_3$$

Let us assume k=2 is a break point. What are the number of dichotomies on N=3 points? (Use \circ for -1 and \bullet for +1).

Let us assume k=2 is a break point. What are the number of dichotomies on N=3 points? (Use \circ for -1 and \bullet for +1).

		\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
		0	0	0	0	0	0
	\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3	0	0	•	0	0	•
\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3	0 0 0	0	•	0	0	•	0
0 0 0	0 0 •	0	•	•	0	•	•

Two pairs of points are shattered \rightarrow this contradicts the fact that k=2 is a break point.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
0	0	0
0	0	•
0	•	0
•	0	0

No pair of points is shattered. Maximum 4 dichotomies.

If k=2 is a break point, the maximum number of dichotomies on ${\cal N}=3$ points is 4.

What about N = 4?

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0

Try to add a 6th dichotomy.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	•	•	0

If k=2 is a break point, the maximum number of dichotomies on ${\it N}=4$ points is 5.