Particle spectrograph

Wave operator and propagator

								W	1 1	ĺ	1	1 1	l	ı													
$ au_{1^-}^{\#1}{}_{lpha} \qquad au_{1^-}^{\#2}{}_{lpha}$	0 0	0 0	0 0	$\begin{array}{c c} - & 2ik(t_1-2t_3) \\ \hline (1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)) \end{array}$	0	0	$\frac{2 k^2 (6k^2 (r_1 + r_5) + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1 t_3 + 2k^2 (r_1 + r_5) (t_1 + t_3))}$	Source constraints/gauge generators	reps Mult	$t_{0+}^{+} = 0$ 1 $t_{0+}^{+} - 2ik\sigma_{0+}^{+} = 0$ 1	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$ 3	0 =	0	0 ==	raints: 16	$\sigma_{0}^{\#1}$	- (1+	$\tau_0^{\#1} + \left \frac{i \sqrt{2} k}{(1+2k^2)^2 t_3} \right \frac{2k^2}{(1+2k^2)^2 t_3} \right 0 = 0$		$\sigma_{0}^{\#1} + \begin{bmatrix} 0 & 0 & -\frac{1}{t_1} \end{bmatrix}$	$\omega_{2}^{\#1}$ $f_{2}^{\#1}$ $\omega_{2}^{\#1}$ †	$+^{\alpha\beta}$	$0^{\#1}_{2} + \alpha\beta$ $\frac{t_1}{2}$ $\frac{ikt_1}{\sqrt{2}}$ 0	$f_{2}^{\#1} \alpha \beta$ $-\frac{i k t_{1}}{\sqrt{2}}$ $k^{2} t_{1}$ 0	$k^2 r_1$)	0 -t1
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$\frac{6k^2(r_1+r_5)+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$f_{1}^{\#1}{}_{lpha}\qquad f_{1}^{\#2}{}_{lpha}$	0 0	0 0	0 0	$0 \frac{1}{3} i k (t_1 - 2 t_3)$	$0 \frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3)$	0 0	0 $\frac{2}{3} k^2 (t_1 + t_3)$	σ	$^{#1}_{2^+}$ † $^{\alpha}_{2^+}$	$\begin{array}{c} \alpha\beta \\ \hline (1+ \\ \alpha\beta \\ \hline (1+ \\ 1+ \\ 1+ \\ 1+ \\ 1+ \\ 1+ \\ 1+ \\ 1+ $		(1	$ \tau_{2}^{\#1}_{2+\alpha\beta} $ $ 2i\sqrt{2}k +2k^{2})^{2}t $ $ 4k^{2} +2k^{2})^{2}t_{1} $ $ 0 $	- ($ \begin{array}{c} 1 \\ \alpha\beta\chi \\ 0 \\ 0 \\ 2 \\ r_1 + t_1 \end{array} $	$\omega_{0}^{\#1}$ $f_{0}^{\#1}$	t3 - j -	$f_{0}^{++} + f_{0}^{++} + f_{0}^{-++} = 0$	$\omega_{0}^{#1}$ + 0 0
$\sigma_{1^-}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{+2k^2(r_1+r_5)(t_1+t_3)}$	$\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2 k^2) (3t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$\omega_{1^-\alpha}^{\#2}$	0	0	0	$4t_3) \left \begin{array}{c} \frac{t_1-2t_3}{3\sqrt{2}} \end{array} \right $	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$,	$\partial_{\alpha\beta\chi}^{-}$	α 9f θ_	$+_{n}f_{\epsilon}$	+ 2	$^{\prime}$	×				
$ au_1^{\#1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	3 t 1 t 3	0 - (1+2 \kappa^2) (3	0	$0 \qquad \frac{1+2k^2)(3t}{(1+2k^2)(3t)}$	$\omega_{1^-}^{\#1}_{\alpha}$	0	0	0	$(6k^2(r_1+r_5)+t_1+4$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}$ ik (t ₁ - 2 t ₃)		χgα('') 9 + 1	$f = (\alpha \beta + 0) \omega$	$(\partial_{\theta}f_{\alpha}^{\beta} + 4t_{1}\partial'f^{\alpha}_{\alpha}\partial_{\theta}f)^{\theta}$	$^{\prime\prime}+3t_{1}\partial_{\theta}f_{\mu}$	$3t_1\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime}+6t_1\omega_{\alpha\theta\prime}(\omega^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime})$ - $8r_1\partial_{\beta}\omega_{\alpha\prime\theta}\partial^{\theta}\omega^{\alpha\beta\prime}+$	$+r_1 \sigma_{eta} \omega_{lpha eta_1} \sigma_{lpha} \omega_{lpha} - + r_1 \sigma_{lpha} \omega_{lpha eta_2} + r_1 \sigma_{lpha} \omega_{lpha eta_1} + r_1 \sigma_{eta} \omega_{lpha eta_1} + r_2 \sigma_{eta} \omega_{lpha eta_1} + r_2$	$^{\prime}_{\alpha}\partial_{\kappa}f_{\ \kappa}^{\ \kappa}$ - $6r_{5}\partial_{\alpha}\omega^{lpha\prime}\partial_{\kappa}\omega_{\ \kappa}^{\ \kappa}$ + $12r_{5}\partial^{ heta}\omega^{lpha\prime}$	$_{lpha}^{}\partial_{\kappa}\omega_{_{ heta}^{}}^{}))[t,x,y,z]$ dz dyd κ d t			
τ ₁	$-\frac{\overline{i}}{t_1}$							$f_1^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	$0 \frac{1}{6}$ (0	0	0	0		t, (1) K) + 6	9-213 W, K) + 0 J 9 fal + 11 t 10 21 f	$x_{\alpha} - 2t_1 \partial_j f^{\alpha j} \partial_{\theta} f_{\alpha}^{\beta j}$	$a'' + 3t_1 \partial_i f_{\alpha_i}$	$^{\alpha 1\theta} + 2 \partial^{\theta} f^{\alpha}$	ια υ ω · - 4 · 5 Γ ₅ Θ,ω _Α ^κ , Θ	$^{\prime}$ - $^{\prime}$ 6 $^{\prime}$ 5 $^{\prime}$ $^{\prime}$	$_{lpha}\partial_{\kappa}\omega_{eta}{}^{\kappa}_{,}))[t_{,}$			
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1}^{\#_{2}^{2}}$	$(5) - \frac{t_1}{2} - \frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	- :	_ '	$(\frac{1}{6}(2 \omega_{\alpha}(t_{1} \omega_{I} \theta^{-2} + 2t_{3} \omega_{I} \kappa) + 6)$ $(\frac{1}{6}(2 \omega_{\alpha} + 2t_{2} \omega_{I} \kappa) + 6)$ $(\frac{1}{6}(2 \omega_{I} + 2t_{2} \omega_{I} \kappa) + 6)$	$(1 + 4t_3 \partial_1 f^{\kappa} \partial_1 f^{\alpha})$	$t_1\partial_{lpha} f_{eta_{\!\scriptscriptstyle I}}\partial^{eta} f^{c}$	$5t_1~\omega_{lpha heta_I}~(\omega_1)$	$egin{align*} & egin{align*} egin{align*} & egin{align*} egin{alig$	$t_3 \partial' f^{\alpha}_{\ \alpha} \partial_{\kappa} f'$	$5 r_5 \partial_{lpha} \omega^{lpha i eta} \partial_{\kappa} \omega_{eta}^{\ \ \kappa} - 12 r_5 \partial^{eta} \omega^{lpha i} $			
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$		0	0	0	$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 (2 r_1 + r_5)$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	1 (2 - 2)	uadratic (tree) action $\lceil \lceil \lceil \lceil \frac{1}{2} \mid 2 \mid^{lpha_l} \mid \ell_{ ilde{t}} \mid $	$ j j \int_{0}^{+} (2 \omega_{\alpha} (t_{1} \omega_{i}))$	$\theta = \frac{1}{2} \int_{-\infty}^{\infty} dt + 4$, _θ θ _θ f ^{αι} - 3 i	$\int_{\alpha} \partial^{\theta} f^{\alpha \prime} + \epsilon$	$ u_{\alpha\theta_{l}}o^{\alpha}\omega^{-} + 4r_{1}\partial_{\theta}\omega^{-}$	$t_{t_3}\partial_j f^{\alpha j}\partial_k f_{\alpha}^{k} - 8t_3\partial^j f^{\alpha}$	$\omega^{lpha i heta} \partial_{\kappa} \omega_{ heta^{-k}}$			
	$_{1}^{\#1}+^{\alpha\beta}$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$\frac{\#1}{1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$		$+ + + \alpha \beta$	$^{\sharp 2}_{+} + ^{\alpha \beta}$	$_{+}^{\sharp 1} + ^{\alpha \beta}$	$\int_{1}^{\#1} +^{\alpha}$	$\int_{1}^{\#2} +^{\alpha}$	$\frac{1}{1}$	$\frac{1}{1}$		uadra [[[== JJJ	$2t_1\partial_i f^{\theta}$	$\delta t_1 \partial_{lpha} f$	$3t_1\partial_{\theta}f$	$\theta_{\omega}^{\dagger}$	t t3 0, f	$\delta r_5 \partial_{\alpha} c$			

Massive and massless spectra

Massive particle								
Pole residue:	$-\frac{\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))}>0$							
Polarisations:	3							
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$							
Spin:	1							
Parity:	Odd							

?	$J^{P} = 2^{-}$ k^{μ}	?
?	k^{μ}	?

	Massive particle									
?	Pole residue:	$-\frac{1}{r_1} > 0$								
	Polarisations:	5								
	Square mass:	$-\frac{t_1}{2r_1} > 0$								
	Spin:	2								
	Parity:	Odd								

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0 \&\& t_3 < -t_1 || t_3 > 0$