Limites des fonctions usuelles

Fonction carré : $f(x) = x^2$

- f est définie sur \mathbb{R} .
- $\lim_{x \to \infty} (x^2) = +\infty$; $\lim_{x \to \infty} (x^2) = +\infty$.
- · Courbe représentative :

Fonction cube : $f(x) = x^3$ • f est définie sur \mathbb{R} .

- $\lim_{x \to 0} (x^3) = -\infty$; $\lim_{x \to 0} (x^3) = +\infty$.
- Courbe représentative :

Fonction inverse : $f(x) = \frac{1}{x}$ • f est définie sur chacun des intervalles

- $]-\infty$; 0[et]0; $+\infty$ [. $\lim_{x \to -\infty} \left(\frac{1}{x} \right) = 0 ; \lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0.$
- $\lim_{\substack{x \to 0 \\ x \neq 0}} \left(\frac{1}{x}\right) = -\infty; \lim_{\substack{x \to 0 \\ x \neq 0}} \left(\frac{1}{x}\right) = +\infty.$
- · Courbe représentative :

• f est définie sur chacun des intervalles

- $]-\infty$; a[et $]a; +\infty[$.
- $\lim_{x \to -\infty} \left(\frac{1}{x-a} \right) = 0$; $\lim_{x \to +\infty} \left(\frac{1}{x-a} \right) = 0$.
- $\lim_{x \to a} \left(\frac{1}{x a} \right) = -\infty; \quad \lim_{x \to a} \left(\frac{1}{x a} \right) = +\infty.$ · Courbe représentative :
- Fonction logarithme népérien : f(x) = In(x)
- f est définie sur \mathbb{R} . • $\lim_{x \to 0} \ln(x) = -\infty$; $\lim_{x \to +\infty} \ln(x) = +\infty$.
- $x \rightarrow 0$ Courbe représentative :

- Fonction exponentielle : $f(x) = e^x$
- f est définie sur \mathbb{R} . • $\lim_{x \to -\infty} (e^x) = 0$; $\lim_{x \to +\infty} (e^x) = +\infty$.
- Courbe représentative :