(1) Veröffentlichungsnummer:

0 231 904

A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87101310.8

(5) Int. Cl.4: A23D 5/00 , A23C 11/04

2 Anmeldetag: 30.01.87

3 Priorität: 31.01.86 DE 3603000

Veröffentlichungstag der Anmeldung: 12.08.87 Patentblatt 87/33

Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB GR IT LI LU NL SE

1 Anmelder: MILUPA AKTIENGESELLSCHAFT

D-6382 Friedrichsdorf/Taunus(DE)

② Erfinder: Schweikhardt, Friedrich, Dr. Falkenweg 1
D-6382 Friedrichsdorf 2(DE)

D-6382 Friedrichsdorf 2(DE Erfinder: Harzer, Gernd, Dr. Im Rosengärtchen 144 D-6370 Oberursel(DE) Erfinder: Haug, Martin, Dr. Am Salzpfad 17c D-6382 Friedrichsdorf(DE)

Vertreter: Brauns, Hans-Adolf, Dr. rer. nat. et al Hoffmann, Eitle & Partner, Patentanwälte Arabellastrasse 4 D-8000 Munich 81(DE)

Neue Polyensäure-reiche Fettmischung und deren Verwendung bei der Herstellung von Säuglingsnahrungen.

© Die Erfindung betrifft eine Fettmischung für Säuglingsnahrungen und ist dadurch gekennzeichnet, daß sie die hoch ungesättigten Fettsäuren Arachidon-und Docosahexaensäure aus Fetten tierischen oder pflanzlichen Ursprungs in einem Verhältnis der Docosahexaen-zur Arachidonsäure von 1:2,0 bis 1:3,0 enthält, wobei der Gehalt an Arachidonsäure in der Fettmischung 0,12 bis 1,0 Gew.% und der an Docosahexaensäure 0,05 bis 0,5 Gew.% bei einem Gesamtgehalt an beiden Säuren von 0,17 bis 1,5 Gew % beträgt.

Die Fettmischung ist für die Zubereitung einer Säuglings-und Frühgeborenen-Nahrung besonders geeignet.

EP 0 231 904 A2

Neue Polyensäure-reiche Fettmischung und deren Verwendung bei der Herstellung von Säuglingsnahrungen

Die Erfindung betrifft eine Fettmischung mit einem hohen Gehalt an ungesättigten Polyenfettsäuren und Cholesterin mit einem Verhältnis von Docosahexaen-zu Arachidonsäure von 1:2,0 bis 1:3,0, die bislang nicht für die menschliche Ernährung zur Verfügung stand. Sie betrifft weiterhin ein Verfahren zu deren Herstellung sowie deren Verwendung bei der Zubereitung einer Säuglingsnahrung.

Herkömmliche Säuglingsnahrungen enthalten maximal 0,1 Gew.% Arachidon-und 0,05 Gew.% Docosahexaensäure, sowie maximal 10 mg Cholesterin pro 100 ml. Da bekannt ist, daß der wachsende Organismus zur Synthese neuen Zellwandmaterials, insbesondere bei der Entwicklung des Gehims, große Mengen dieser Substanzen (Cholesterin, Arachidonsäure, Docosahexaensäure) in einem bestimmten Verhältnis zueinander benötigt, wird in Frage gestellt, ob herkömmliche Säuglingsmilchnahrungen in jedem Fall optimal sind.

Hoch ungesättigte Polyenfettsäuren werden im menschlichen Organismus durch Kettenverlängerung und Desaturierung aus den essentiellen Fettsäuren Linol-und Linolensäure synthetisiert. Diese Eigensynthese der hoch ungesättigten Polyenfettsäuren ist beim rasch wachsenden Organismus des Säuglings jedoch noch stark eingeschränkt. Daher ist das Neugeborene -insbesondere das Frühgeborene -auf die exogene Zufuhr von hoch ungesättigten Polyenfettsäuren wie z.B. Arachidon-und Docosahexaensäure angewiesen. Eine unzureichende Versorgung mit hoch ungesättigten Polyenfettsäuren führt beim Säugling dazu, daß andere verfügbare Fettsäuren wie z.B. Öl-oder Linolsäure in die Lipide der Zellmembranen eingebaut werden. Dies kann Veränderungen der Eigenschaften der Zellmembran hervorrufen, die zu verminderter Membranstabilität, Fluidität und einer veränderten Aktivität membrangebundener Enzyme führen können.

Auch der Cholesteringehalt der Säuglingsnahrung ist neben dem Vorhandensein der hoch ungesättigten Polyenfettsäuren von Bedeutung für die Entwicklung des Säuglings. Cholesterin ist ein Bestandteil der Zellmembranen und damit wie die hoch ungesättigten Polyenfettsäuren von Bedeutung für deren physiochemische Eigenschaften. Aufgrund des raschen Zellwachstums in der Neonatalphase wird während dieses Zeitraums ein erhöhter Bedarf an Cholesterin angenommen. Exogen zugeführtes Cholesterin ist zudem von Bedeutung für die Reifung des Lipidstoffwechsels.

Aufgabe der Erfindung ist es, eine Fettmischung zur Verfügung zu stellen, die im Gegensatz zu üblichen für Säuglingsmilchnahrungen verwendeten Fettmischungen größere Mengen der physiologisch wichtigen hoch ungesättigten Polyenfettsäuren und Cholesterin enthalten. Verbunden mit dieser Aufgabe ist es unter Einsatz dieser Fettmischung gelungen, eine Säuglingsnahrung herzustellen, die im Gegensatz zu herkömmlichen Formelnahrungen größere Mengen oben genannter Fettsäuren und Cholesterin enthält.

Die Erfindung betrifft eine Fettmischung für Säuglingsnahrungen, die dadurch gekennzeichnet ist, daß sie die hoch ungesättigten Fettsäuren Arachidon-und Docosahexaensäure aus Fetten tierischen oder pflanzlichen Ursprungs in einem Verhältnis der Docosahexaen-zur Arachidonsäure von 1:2,0 bis 1:3,0 enthält, wobei der Gehalt an Arachidonsäure in der Fettmischung 0,12 bis 1,0 Gew.% und der an Docosahexaensäure 0,05 bis 0,5 Gew % bei einem Gesamtgehalt an beiden Säuren von 0,17 bis 1,5 Gew % beträgt.

Die erfindungsgemäße Fettmischung enthält vorzugsweise einen Gehalt an Arachidonsäure von 0,12 bis 1,0 Gew.% und an Docosahexaensäure von 0,05 bis 0,5 Gew.%, wobei der Gesamtgehalt an beiden Säuren im Bereich von 0,17 bis 1,5 Gew.% liegt. Weiterhin ist in der erfindungsgemäßen Fettmischung Cholesterin aus Fetten tierischen oder pflanzlichen Ursprungs vorzugsweise in einer Menge von 3 bis 20 mg/g Fett enthalten.

Die erfindungsgemäße Fettmischung, enthaltend die vorgenannten ungesättigten Fettsäuren und Cholesterin, erhält man durch Computer-optimiertes Mischen tierischer und pflanzlicher Fette, wobei als Grundlage vor allem Fette dicotyler und monocotyler Pflanzen, die ausreichend Öl-, Linol-und Linolensäure haben, Verwendung finden. Die gleichzeitige Verwendung von Milchfett erlaubt eine begrenzte Anhebung des Cholesterins. Das Einbringen von Arachidonsäure und Docosahexaensäure gelingt nur durch die Verwendung von Fetten aus Algen (Laminaria-, Fucus-, Phaeophyta, Rhodophyta-Arten), Fischölen, insbesondere Herings-, Dorsch-, Hai-, Makrele, Rotbarschöle und Fischleberölen. Eine wichtige Quelle für die genannten Fettsäuren, vor allem auch für Cholesterin, sind ferner Organfette aus Rindern und Schweinen. Ferner eignen sich hoch raffinierte und desodorierte Eieröle und Eilecithinfraktionen.

Die erfindungsgemäße Fettmischung kann somit erhalten werden, indem man folgende Fette verwendet:

- -Fischöle aus Dorsch, Hai, Hering, Makrele, Rotbarsch sowie entsprechende Fischleberöle -Eieröl, Eilecithin
- -Rinderleber-bzw. -nierenfett, Schweineleber-bzw. -nierenfett, Rinderhirnfett, Schweinehirnfett
- -Pflanzenöle (Palmöl, Sojaöl, Baumwollsaatöl, Kokosfett, Maiskeimöl, Sonnenblumenöl, Palmkernfett)
- -Oleo Oil (Rinderfettfraktion)
- -Algenöle (Laminaria-, Fucus-, Phaeophyta-, Rhodophyta).

Die Erstellung der Fettmischungen setzt voraus daß zuvor eine detaillierte Analyse der Fettsäuren, des Cholesterins und der Phospholipide in den genannten Ausgangsfetten vorgenommen wird. Die Analysen der Lipide können mittels Kapillar-Gaschromatographie und/oder Hochdruckflüssigkeitschromatographie durchgeführt werden. Aus den entsprechenden analytischen Daten kann man dann, unter Verwendung eines geeigneten Computerprogramms, eine optimale Mischung der Ausgangsfette mit den unter Ansprüchen 1 und 2 genannten Kennzahlen berechnen.

Gemäß einer vorteilhaften Ausführungsform stabilisiert man die erfindungsgemäße Fettmischung mit alpha-Tocopherol. Tocopherol ist dabei vorzugsweise in einer Menge von 150 bis 300 ppm bezogen auf die Fettmischung vorhanden.

Weiterhin ist es vorteilhaft zur Stabilisierung Ascorbylpalmitat zu verwenden, das allein oder zusätzlich zu alpha-Tocopherol angewendet werden kann, wobei die angewendete Menge vorzugsweise im Bereich von 150 bis 300 ppm bezogen auf die Fettmischung liegt.

Bei der Herstellung der erfindungsgemäßen Fettmischung gemäß dem nachfolgenden Fettmischungsbeispiel werden die einzusetzenden Fette und Öle erwärmt, gemischt und dann zur Stabilisierung mit je 250 ppm Ascorbylpalmitat und alpha-Tocopherol versetzt.

25

10

Fettmischungsbeispiel2,0 % Leberfett (Rind, Schwein) 5,5 % Eieröl/Eilecithin 1,0 % Fischöl (desodoriert, entvitaminiert) 28,0 % Oleo Oil 4,5 % Maiskeimöl 6,0 % Sojaöl 38,0 % Palmöl, flüssig

15,0 % Kokos-/Palmkernfett

35

40

45

50

Fettsäurezusammensetzung (in Gew.%)

5				
	Laurinsäure	C12	6,46	
	Myrîstinsāure	C14	3,78	
10	Palmitinsäure	C16	. 25,6	
	Stearinsäure	c18	8,42	
	ölsäure	C18:1w9	35,5	
15	Linolsäure	C18:2w6	12,7	
	Linolensäure	C18:3w3	0,91	
	Arachidonsäure	C20:4w6	0,39	
20	Docosahexaensāure	C22:6w3	0,15	
	P/S-Quotient		0,32	
	C22:6w3/C20:4w6-Quotient		1:2,5	
25				
	Cholesterin (mg/g Fett)		4,2	
	(= 15 mg Cholesterin in 100 ml Flüssignahrung)			

Die erfindungsgemäße Fettmischung ist für die Herstellung einer Säuglings-und Frühgeborenennahrung geeignet. Die Erfindung betrifft somit auch die Verwendung der erfindungsgemäßen Fettmischung für die Zubereitung einer Säuglingsnahrung.

Die mit dieser Fettmischung herzustellende Säuglingsnahrung auf der Basis pflanzlichen oder tierischen Eiweißes liegt in Form eines sofort löslichen Pulvers oder einer Flüssigmilch vor. Das flüssige Produkt wird in üblicher Weise sterilisiert oder bei Ultrahochtempteratur (UHT) sterilisiert und aseptisch abgefüllt.

Die Substanzen, die hierbei eingesetzt werden, können beispielhaft folgende sein:

- a) Demineralisiertes Molkenpulver
- b) Milchzucker
- c) Magermilch, flüssig (8,5 %)
- d) Mineralsalze
- e) Vitamine
- f) erfindungsgemäße Fettmischung

Die folgenden Tabellen zeigen die typische Zusammensetzung einer flüssigen Säuglingsnahrung, die unter Verwendung der Fettmischung aus dem Beispiel hergestellt wurde.

50

30

40

45

15	<u>Tabelle I</u>		
	Wassergehalt	87,4 %	
20	Proteine	1,5 %	
	Lipide	3,6 %	
	Kohlenhydrate	7,2 %	
25	Mineralsalze	0,26 %	
	Brennwert	285 kJ/100 mt	
	Cholesterin	1.5 mg/100 mt	
30	<u>Tabelle II</u> Fettsäi	urezusammensetzung (in G	Sew.%)
	Laurinsäure	c12	6,46
35	Myristinsäure	C14	3,78
	Palmitinsäure	C 16	25,60
	Stearinsäure	C 18	8,42
40	ölsäure .	C18:1w9	35,50
	Linolsäure	C18:2w6	12,70
	Linolensäure	C18:3w3	0,91
	Arachidonsäure	C20:4w6	0,39

Docosahexaensäure

. C22:6w3

0,15

Tabelle III Gehalt an Mineralsalzen (mg/100 ml)

5	Natrium	25	
	Kalium	50	
	Calcium	60	
10	Magnesium	6	
	Phosphor	40	
	Chlorid	20	
15	Tabelle IV Vitamine	(/100 ml)	
	Vitamin A	201 I.E.	
20	Vitamin B ₁	0,04 mg	
	Vitamin 8 ₂	0.05 mg	
	Vitamin 8 ₆	0,03 mg	
25	Vitamin 8 ₁₂	0,15 ug	
	Vitamin C	5,97 mg	
	Vitamin D ₃	40,2 I.E.	
30	Vitamin E	0,61 mg	•
30	Biotin	1,12 ug	
	Ca-D-Pantothenat	0,40 mg	
	Folsäure	10,13 mg	
35	Niacinamid	0,40 mg	•

Die Zusammensetzung der Standardauflösung (13 g Pulver/90 ml Wasser) des pulverförmigen Produktes ist die gleiche wie die des flüssigen Produktes.

Vergleich der Fettsäurezusammensetzung (in Gew.%) und des Cholesteringehaltes (in mg/100 ml) von herkömmlicher und neuer Formelnahrung

10		herkömmlich	neu
•	c12	5,2	4,7
15	C14	3,8	3,7
	C 16	28,1	28,5
	C18	8,4	9,2
20	C18:1w9	33,2	36,5
	C18:2w6	12,6	. 11,7
	C18:3w3	0,77	0,63
	C20:3w6	ND	0,04
25	C20:4w6	ND	0,23
	C22:5w3	ND	0,05
	C22:6w3	ND	0,08
30	P/S-Quotient	0,29	0,28
	C22:6w3/C20:4w6-Quotient		0,35
35	Cholesterin	4,0	18,0

ND = nicht nachweisbar

40 Ansprüche

- 1. Fettmischung für Säuglingsnahrungen, dadurch gekennzelchnet, daß sie die hoch ungesättigten Fettsäuren Arachidon-und Docosahexaensäure aus Fetten tierischen oder pflanzlichen Ursprungs in einem Verhältnis der Docosahexaen-zur Arachidonsäure von 1: 2,0 bis 1: 3,0 enthält, wobei der Gehalt an Arachidonsäure in der Fettmischung 0,12 bis 1,0 Gew.% und der an Docosahexaensäure 0,05 bis 0,5 Gew.% bei einem Gesamtgehalt an beiden Säuren von 0,17 bis 1,5 Gew.% beträgt.
- 2. Fettmischung gemäß Anspruch 1, dadurch gekennzeichnet, daß der Gehalt an Cholesterin aus Fetten tierischen oder pflanzlichen Ursprungs 3 bis 20 mg/g Fett beträgt.
- 3. Fettmischung gemäß Ansprüchen 1 und 2, dadurch gekennzeichnet , daß sie zusätzlich alpha-Tocopherol in einer Menge von 150 bis 300 ppm enthält.
- 4. Fettmischung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie zusätzlich Ascorbylpalmitat in einer Menge von 150 bis 300 ppm enthält.
- 5. Verfahren zur Herstellung der Fettmischung nach Anspruch 1, dadurch gekennzeichnet, daß man zu deren Herstellung Fischöle, Eieröl, Eilecithin, Fettfraktionen des Rinder-und Schweinehirns sowie Organfett (Niere, Leber) von Rindern oder Schweinen, Pflanzenöle dicotyler und monocotyler Pflanzen, Oleo Oil und/oder Algenöle, verwendet und dabei das Verhältnis der jeweiligen Öle bzw. Fette so abstimmt, daß das Verhältnis von Docosahexaen-zu Arachidonsäure 1:2,0 bis 1:3,0 beträgt.

6. Verwendung der Fettmischung gemäß Ansprüchen 1 bis 4 für die Zubereitung einer Säuglings-und Frühgeborenennahrung.

55 .-