```
In [1]:
import pandas as pd
df=pd.read_csv("./datasets/original.csv")
                                                                                                                               Out[1]:
      clientid
                                              loan default
                    income
                                  age
            1 66155.925095 59.017015 8106.532131
   0
            2 34415.153966 48.117153 6564.745018
    1
   2
            3 57317.170063 63.108049 8020.953296
                                                         0
   3
            4 42709.534201 45.751972 6103.642260
                                                         0
   4
            5 66952.688845 18.584336 8770.099235
 1995
         1996 59221.044874 48.518179 1926.729397
 1996
         1997 69516.127573 23.162104 3503.176156
                                                         0
 1997
         1998 44311.449262 28.017167 5522.786693
                                                         1
         1999 43756.056605 63.971796 1622.722598
                                                         0
 1998
         2000 69436.579552 56.152617 7378.833599
 1999
2000 rows × 5 columns
                                                                                                                                 In [2]:
df.isna().sum()
                                                                                                                               Out[2]:
clientid 0
income
age
        3
loan
        0
default
dtype: int64
                                                                                                                                 In [3]:
df.dropna(inplace=True)
df
                                                                                                                               Out[3]:
      clientid
                     income
                                  age
                                              loan default
   0
            1 66155.925095 59.017015 8106.532131
                                                         0
            2 34415.153966 48.117153 6564.745018
    1
                                                         0
   2
            3 57317.170063 63.108049 8020.953296
   3
            4 42709.534201 45.751972 6103.642260
            5 66952.688845 18.584336 8770.099235
    4
                                                         1
         1996 59221.044874 48.518179 1926.729397
 1995
         1997 69516.127573 23.162104 3503.176156
 1996
 1997
         1998 44311.449262 28.017167 5522.786693
         1999 43756.056605 63.971796 1622.722598
                                                         0
 1998
1999
         2000 69436.579552 56.152617 7378.833599
1997 rows × 5 columns
                                                                                                                                 In [4]:
#2 points
features=df[["income","age","loan"]] #best contributors!
label=df[['default']]
                                                                                                                                 In [5]:
from sklearn.model_selection import train_test_split
```

In [6]:

x_train,x_test,y_train,y_test=train_test_split(features,label,test_size=0.2)

from sklearn.tree **import** DecisionTreeClassifier model=DecisionTreeClassifier() #Decision Tree

model.fit(x_train,y_train)				
DecisionTreeClassifier()	Out[7]: In [8]:			
model.score(x_test,y_test)				
0.9875	Out[8]:			
ans=model.predict(x_test)	In [9]:			
ans	Out[9]:			
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0				
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0])	I- [40].			
predicted=pd.DataFrame(ans) predicted.head(5)	In [10]:			
predicted.nead(5)	Out[10]:			
0				
0 0				
1 0				
2 0				
3 0				
actual_test=pd.DataFrame(y_test).reset_index(drop= True) actual_test.head(5)	In [11]:			
	Out[11]:			
default				
0 0				
1 0				
2 0				
3 0				
4 0				
pd.concat([predicted,actual_test],axis=1).sample(5)	In [12]:			

In [7]:

				Out[12]:
0 default				
126	0	(0	
103	0	(0	
29	0	(0	
51	1	1	1	
324	0	(0	
from sklearn.metrics import accuracy_score accuracy_score(actual_test,predicted)				In [13]:
0.987				Out[13]:
In [* from sklearn.metrics import confusion_matrix confusion_matrix(actual_test,predicted)				In [14]:
array([[341, 4],			Out[14]:	
ı	. ',	O 1]])		In []: