Detecting neutrons with less sensitivity to neutron emission energy and angular distribution: conceptual design of a novel gaseous scintillation neutron detector

陈建琪,景俊升,贡庸策 大湾区大学

chenjianqi@gbu.edu.cn 2024/11/17

第三届"粤港澳"核物理论坛,深圳

中子探测的原理

> 中子探测方法

1st step: 中子转换为带电粒子

中子不带电,无法直接探测中子,需要核反应将中子"转换"为带电粒子。

2nd step: 探测带电粒子

- 气体正比管和电离室
- 闪烁体探测器
- 半导体探测器

▶中子捕获截面超过500 barn的核

[Neutron Detectors for Scattering Applications[M]. Springer Nature, 2023]

•适合于中子探测的核素主要有3He, 10B, 和6Li

3
He + $^{1}_{0}$ n $\longrightarrow \ ^{1}$ P + 3 H + 0.764MeV
 10 B + $^{1}_{0}$ n $\longrightarrow \ ^{7}$ Li + 4 He + 2.792MeV 占 6.1%
 10 B + $^{1}_{0}$ n $\longrightarrow \ ^{7*}$ Li + 4 He + 2.31MeV 占 93.9%
 6 Li + $^{1}_{0}$ n $\longrightarrow \ ^{4}$ He + 3 H + 4.78MeV

³He管正比计数器

> 探测原理

▶脉冲幅度谱

• ³He管探测器具有高的探测效率,良好的n/gamma分辨本领

http://large.stanford.edu/courses/2012/ph241/lam1/images/f1big.png https://www.mirion.com/discover/knowledge-hub/articles/education/nuclear-measurement-fundamental-principle-neutron-detection-and-counting

"聚乙烯+3He"探测器的应用

▶東流监测

[NIM-A, 1969,72(2):161-166]

> 裂变中子多重数

[NIM-A, 2014,99-105]

>(n,n') 截面

[Physical Review C 83.6(2011):064617]

>(n,2n)截面

[强激光与粒子束,2017,29(12):149-154]

>β 缓发中子概率

[NIM-A, 422.1-3, 1999: 43-46]

▶(**γ**, **n**)截面

[核技术,2020,43(11):9]

• "聚乙烯+3He管"阵列探测器在核物理研究领域具有广泛应用

探测器性能的现状

▶探测效率vs出射中子能量

[Journal of Instrumentation 17.05 (2022): P05004.]

▶探测效率vs出射中子角度

[NIM-A 745 (2014): 99-105.]

- •大多数"聚乙烯+³He管"阵列探测器在1 MeV以上能区探测效率随中子能量增高显著下降(大多数材料在1 MeV以上弹散的截面下降),HeBGB探测器的特殊设计使得其在0-9 MeV能区具有较好的平坦度~1.17,但探测效率仅有7%。
- "聚乙烯+³He管"探测器的探测效率对出射中子的角分布敏感,HeBGB探测器相较具有较宽的角度不敏感区间,但角度不敏感区间随能量变化显著。

4/20

实验需求-例子: ¹³C(alpha, n)¹⁶O 测量

▶探测效率vs出射中子能量

▶探测效率vs出射中子

> 不确定分析

G4 模拟	效率外推	中子角分布	HPGe刻度	总的不确定度
2.5%	2.5%	1.5%	1.5%	5%

原因分析

> 低探测效率

- 3 He 管无法实现 ${}^{4}\pi$ 全空间覆盖,部分中子会从 3 He 管间隙逃逸。
- •不少比例的热中子被聚乙烯中的氢吸收,而非进入³He管。

> 效率能量依赖

•聚乙烯中C和H的中子弹性散射截面在快中子区有明显的下降,依赖中子能量。

> 效率角度依赖

- 慢化距离沿角度并不均匀
- 3He 管无法实现4π全空间覆盖, 部分中子会从3He 管间隙逃逸。

期望新的探测器:

En在[0.1, 10] MeV区间,高探测效率,同时效率不依赖中子能量和中子出射角度的分布。

6/20

新探测器设计的灵感

▶ 重水慢化 "³He+CF₄" 闪烁探测

- 应用重水慢化快中子
- $n + {}^{3}He \rightarrow p + t (Q = 0.764 \text{ MeV})$
- 质子和氚电离激发CF₄发光
- · 产生的光被周边PMTs符合测量(Maj-3)

[陈建琪,博士论文,基于直接中子法测量⁹³Nb(n,2n)^{92g+m}Nb 反应截面的实验研究]

[William PhD thesis neutron to hidden neutron oscillation_{7/20} in ultracold neutron beam]

为什么选择重水?

▶H和D的激发函数

- 弹散截面: D 比H有更 大平坦的区域
- (*n*, γ) 反应截面: D 的 (*n*, γ) 反应截面比H的 (*n*, γ) 低 2-3数量级,降低了中子吸收的比例。
- (n,2n)反应截面:当 $E_n > 3$ MeV时,可以打开 D的(n,2n)反应道,可以 有效的增加中子,平衡由 于弹散截面下降导致的中子数降低。

8/20

确定最优构型

$\geq E_{max} = 10 MeV$

Inner radius (cm) [Courtesy: 景俊升]

软件: MCNPX; 中子源位置: 探测器中心; 出射角度: 各向同性;

 $E_n = \{0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0\} MeV$

• 平均探测效率
$$\varepsilon_{av}(E_{max}) = \frac{1}{Num(E_i)} \sum_{E_i \leq E_{max}} \varepsilon(E_i)$$

• 平坦度
$$F(E_{\max}) = \frac{Max(\varepsilon(E_i))}{Min(\varepsilon(E_i))}$$

探测效率 $@D_2O_{th} = 70 \text{ cm}$

> 探测器构型示意图

➤ 探测效率 vs 中子能量

- $E_n = \{0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0\}$ MeV
- [Courtesy: 景俊升]

- 中子各向同性出射
- 构型参数: $\emptyset_{in} = 20 \text{ cm}$, $\emptyset_{out} = 160 \text{ cm}$, $\emptyset_{ch} = 8 \text{ cm}$, ${}^{3}\text{He}$ 厚度 3.2 cm

探测效率@0.8 cm Be + 70 cm D₂0

▶9Be 激发函数

>探测效率 vs 中子能量

• 在重水内侧增加 0.8 cm Be后, 效率曲线有所提升, 但在5 MeV处的小"凹陷"仍然存在。

探测效率@6 cm 11B + 0.8 cm Be + 70 cm D₂0

▶11B 激发函数

➤探测效率 vs 中子能量

• 在重水内侧,增加0.8 cm的Be和6 cm的¹¹B后,探测效率降至75%,平坦度有显著提升,达到1.02。

效率的角度依赖

▶最优构型

运行次数: 10⁷

➤ 探测效率 vs 中子出射角

Neutron emission angle (°) [Courtesy: 景俊升]

- 角度平坦度区间: [16°, 164°]
- 平坦区间与出射中子能量几乎无关

性能比较

>效率 vs 中子能量

>效率 vs 中子出射角度

- 重水慢化的" CF_4 +3He"气体闪烁探测器 (6 cm ^{11}B +0.2 cm Be+70 cm+2.8 cm 3 He) 具有更优的平坦度,能够达到 $^{1.02}$, 探测效率能够达到 $^{75\%}$ 。
- •重水慢化的"CF₄+3He"气体闪烁探测器具有更宽的角度不依赖区间。

替代构型 1-11_{B→ nat}cu

▶63Cu 激发函数

>效率 vs 中子能量

- [Courtesy: 景俊升]
- 应用10 cm natCu 替换 6 cm 11B后, 探测效率降至 50%, 效率曲线的平坦度在
- 1 MeV以下区间明显变差,在1 MeV以上区间有很好的平坦度。

替代构型 $2^{-11}B \rightarrow nat$ $c_u + D_2O \rightarrow c$

➤ C 激发函数曲线

▶效率vs中子能量

• 在应用Cu替代¹¹B的基础上,再应用65 cm厚的C(石墨)替代70 cm厚的重水,探测效率降至30%,效率平坦度在1 *MeV*以下区间依然较差,在1 MeV以上区间有很好的平坦度。

总结

▶优势

- 高的探测效率 75%(光产生和收集的效率还未考虑)
- •效率不依赖出射中子能量, [0.1, 10] MeV能量区间的平坦度: 1.02
- 效率不依赖出射中子角分布,角度不依赖区间:[16°,164°]

> 劣势

- 体积巨大 (6 cm ¹¹B + 0.2 cm Be +70 cm D₂O + 2.8 cm ³He(**约275 L**)@**4** atm)),造价高昂。
- 两个替代构型(10 cm nat Cu+0.6 cm Be+50 cm D_2 O and 10 cm nat Cu + 1.0 cm Be + 65 cm C) 探测效率较低,且在 E_n < 1 MeV 区间平坦度差。

▶现状

•混合气体气压最优比例, n/Gamma 分辨, 机械加工, 气体封装的密闭性, 稳定性等因素还未考虑。

下一步工作计划

[J. Res. Nat. Inst. Standards Tech. 113, 69 (2008)]

Light Yield: 1000 photon/MeV

[祁辉荣,COUSP2024 CONFERENCE]

招聘广告

▶特任研究员

聘期3年。特任研究员A类综合年薪不低于40万元,特任研究员B类综合年薪不低于30万元。课题组会根据应聘人的工作表现,比如发表文章,申请到项目或研究上有重要突破,发放一定的绩效和奖励。

>博士后

聘期2年。A类博士后综合年薪不低于45万元(含地方政府资助),B类博士后综合年薪不低于40万元。根据科研工作业绩表现,提供相应的科研绩效奖励。与清华大学深圳研究院和中国科学技术大学联合招聘,博士后出站颁发联合培养学校博士后证书。

▶访问学生

联系方式: <u>chenjianqi@gbu.edu.cn</u>

微信: weichenjian7

典型例子: BRIKEN探测器

BRIKEN探测器构型

³He 总体积: (约275 L)@4 atm

▶探测效率vs中子能量

[The BRIKEN collaboration, Jinst, 2017, 12]

• "聚乙烯+3He管"阵列探测器在1 MeV以下能区,探测效率几乎不随中子能量变化,1 MeV以上,探测效率随能量升高显著降低。

Toy Model

Geometry

 $E_i = \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 2, 3, 4, 5, 10\} MeV$

Direction: isotropic emission

Run number: 200000

Detection efficiency

- Leaking neutron increase with the increasing neutron energy.
- When $E_{\rm n} > 1 MeV$, detection efficiency drops apparently.

Toy Model

> Geometry

Neutron energy spectrum before and after ³He region

- $E_{\rm n}$ < 1MeV, incident neutron spectrum small difference in thermal neutron region.
- $E_{\rm n} > 1 MeV$, great difference.

HeBGB detector

> HeBGB detector configuration

[Journal of Instrumentation 17.05 (2022): P05004]

[Zach Meisel, IAEA technical meeting on (alpha, n) nuclear data]

Type	Manufacturer	Pressure [atm]	Sensitive Length [in]	Length [in]	Diameter [in]
³ He	Baker Hughes	4.00	14.00	16.19	1.00
BF ₃	Reuter-Stokes	0.723	12.25	14.44	1.00