Exercice 1 Soit $U \subset \mathbb{R}^n$ un ouvert borné et $g \in C(\partial U)$. On considère le problème de Laplace :

$$\begin{cases}
-\Delta u = 0 & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(1)

On note u_g une solution de ce problème.

- 1. Soit $g_1, g_2 \in C(\partial U)$. On suppose $g_1 \geq g_2$ sur ∂U et $g_1 \neq g_2$. Montrer que $u_{g_1} > u_{g_2}$ sur U.
- 2. Soit $g_1, g_2 \in C(\partial U)$. Montrer que $\forall x \in U, |u_{g_1}(x) u_{g_2}(x)| \leq \max_{\partial U} |g_1 g_2|$.
- 3. En déduire l'unicité du problème de Laplace dans $C^2(U) \cap C(\bar{U})$.

Exercice 2 [Formulation variationnelle.]

Problème de Poisson et Principe de Dirichlet.

Soit U un ouvert borné. On considère le problème aux limites suivant :

$$\begin{cases}
-\Delta u = f & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(2)

1. Montrer l'unicité de la solution. (Ici et dans les questions suivantes ∂U est C^1 .)

On veut montrer que la solution du problème de Poisson (2) peut être obtenue en minimisant une certaine fonctionnelle. Considérons donc la fonctionnelle d'energie

$$I[w] := \int_{U} \left(\frac{1}{2}|Dw|^2 - wf\right) dx,$$

w appartenant à l'espace

$$A := \{ w \in C^2(\bar{U}) | w = g \text{ sur } \partial U \}.$$

2. Montrer que si $u \in C^2(\bar{U})$ est une solution de (2) alors

$$I[u] = \min_{w \in A} I[w]. \tag{3}$$

3. Inversement, montrer que si $u \in A$ satisfait (3), alors u est solution du problème de Poisson (2).

Exercice 3 [Inégalité de Poincaré] On considère la suite de fonctions $v_n(x) = \sqrt{2}\sin(n\pi x)$ sur [0; 1[, pour $n \ge 0$.

1. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une base hilbertienne orthonormée dans $H_0^1(]0;1[)$.

2. Montrer qu'il existe une constante C > 0 telle que

$$\forall v \in H_0^1(0;1), \quad \|v\|_{L^2(0;1)} \le C \|v'\|_{L^2(0;1)} \tag{4}$$

3. Montrer, en utilisant la base hilbertienne $(v_n)_{n\in\mathbb{N}}$, que la meilleure constante C pour laquelle (4) est vérifiée est $C=1/\pi$.

Exercice 4 [Résolution d'un problème posé sous forme variationnelle.] Pour $u, v \in H^1(]0, 1[)$, on note Du, Dv leurs dérivées au sens des distributions et on pose

$$a(u,v) = \left(\int_0^1 DuDv\right) + \left(\int_0^1 uv\right) - \left(\int_0^1 u\right) \left(\int_0^1 v\right).$$

Soit $k \in \mathbb{R}$, $k \neq 1$. On pose $V = \{v \in H^1([0,1]); \gamma v(0) = k\gamma v(1)\}$.

- 1. Montrer que V est un sous espace vectoriel fermé de $H^1(]0,1[)$. Dans la suite, on munit V du produit scalaire de $H^1(]0,1[)$ (ce qui en fait un Hilbert).
- 2. Montrer qu'il existe C > 0 (ne dépendant que de k) telle que

$$\forall v \in V, \quad ||v||_{L^{\infty}(0,1)} \le C ||Dv||_{L^{2}(0,1)}.$$

<u>Indication</u>: On pourra commencer par montrer qu'il existe $C_1 > 0$ tel que

$$\forall v \in V, \quad |v(1)| \le C_1 \|Dv\|_{L^2(0,1)}.$$

3. Montrer que la forme bilinéaire a est coercive sur V. En déduire que, pour tout $f \in L^2(0,1)$, il existe un unique $u \in V$ tel que

$$\forall v \in V, \quad a(u,v) = \int_0^1 fv. \tag{5}$$

- 4. Soient $f \in L^2(0,1)$, et $u \in V$ la solution de (5). Montrer que $u \in H^2(]0,1[)$, i.e. $u \in H^1(]0,1[)$ et $Du \in H^1(]0,1[)$.
- 5. Soient $f \in C([0,1])$, et $u \in V$ la solution de (5). Montrer que u est l'unique solution du problème suivant

$$\begin{cases} u \in C^{2}([0,1]), \\ \forall x \in [0,1], -u"(x) + u(x) - \int_{0}^{1} u(y)dy = f(x), \\ u(0) = ku(1), u'(1) = ku'(0). \end{cases}$$

Exercice 5 (Injections de Sobolev) Le but de l'exercice est de montrer les trois résultats suivants :

- (i) $H^1(\mathbb{R})$ s'injecte continûment dans $L^p(\mathbb{R})$ pour tout $2 \leq p \leq +\infty$,
- (ii) $H^1(\mathbb{R}^2)$ s'injecte continûment dans $L^p(\mathbb{R}^2)$ pour tout $2 \leq p < +\infty$,
- (iii) $H^1(\mathbb{R}^3)$ s'injecte continûment dans $L^p(\mathbb{R}^3)$ pour tout $2 \le p \le 6$.

A- Cas de la dimension 1

- 1. Soit $u \in C_c^{\infty}(\mathbb{R})$. Montrer que $||u||_{\infty} \le ||u||_{H^1}$.
- 2. En déduire que $H^1(\mathbb{R})$ s'injecte continûment dans $L^{\infty}(\mathbb{R})$, puis que $H^1(\mathbb{R})$ s'injecte continûment dans $L^p(\mathbb{R})$, pour tout $2 \le p \le +\infty$.
- 3. Soit $u \in H^1(\mathbb{R})$. Montrer que $\lim_{|x| \to +\infty} u(x) = 0$.

B- Cas de la dimension 2

On rappelle que

$$\|\nabla u\|_{L^{2}(\mathbb{R}^{2})}^{2} = \left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}(\mathbb{R}^{2})}^{2} + \left\|\frac{\partial u}{\partial x_{2}}\right\|_{L^{2}(\mathbb{R}^{2})}^{2}$$
$$\|u\|_{H^{1}(\mathbb{R}^{2})}^{2} = \|u\|_{L^{2}(\mathbb{R}^{2})}^{2} + \|\nabla u\|_{L^{2}(\mathbb{R}^{2})}^{2}$$

1. Soient $u \in C_c^{\infty}(\mathbb{R}^2)$ et $t \geq 1$. Montrer que

$$||u||_{L^{2t}(\mathbb{R}^2)}^t \le t||u||_{L^{2(t-1)}(\mathbb{R}^2)}^{t-1} ||\nabla u||_{L^2(\mathbb{R}^2)}.$$

<u>Indication</u>: Considérer la norme L^2 de la fonction $|u|^{t-1}u$.

2. En déduire que

$$||u||_{L^{2t}(\mathbb{R}^2)} \le C \left(||u||_{L^{2(t-1)}} + ||\nabla u||_{L^2(\mathbb{R}^2)} \right),$$

où C ne dépend ni de u, ni de t.

<u>Indication</u>: Commencer par montrer pour $\alpha \in [0, 1]$,

$$\forall a, b \ge 0, \quad a^{\alpha}b^{1-\alpha} \le \alpha^{\alpha}(1-\alpha)^{1-\alpha}(a+b).$$

3. En déduire que pour une certaine constante C(q) dépendant de q on a

$$||u||_{L^q(\mathbb{R}^2)} \le C(q) ||u||_{H^1(\mathbb{R}^2)}$$

tout d'abord pour $2 \le q \le 4$, puis pour $2 \le q < +\infty$. Conclure à l'injection de $H^1(\mathbb{R}^2)$ dans $L^p(\mathbb{R}^2)$ pour tout $2 \le p < +\infty$.

4. Est-ce que $H^1(\mathbb{R}^2)$ s'injecte dans $L^{\infty}(\mathbb{R}^2)$?

C- Cas de la dimension 3

On rappelle que

$$\|\nabla u\|_{L^{2}(\mathbb{R}^{3})}^{2} = \left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}(\mathbb{R}^{3})}^{2} + \left\|\frac{\partial u}{\partial x_{2}}\right\|_{L^{2}(\mathbb{R}^{3})}^{2} + \left\|\frac{\partial u}{\partial x_{3}}\right\|_{L^{2}(\mathbb{R}^{3})}^{2}$$
$$\|u\|_{H^{1}(\mathbb{R}^{3})}^{2} = \|u\|_{L^{2}(\mathbb{R}^{3})}^{2} + \|\nabla u\|_{L^{2}(\mathbb{R}^{3})}^{2}$$

1. (Préliminaire). Soient $f_1, f_2, f_3 \in L^2(\mathbb{R}^2)$. On pose :

$$f(x_1, x_2, x_3) = f_1(x_2, x_3) f_2(x_1, x_3) f_3(x_1, x_2).$$

Vérifier que

$$||f||_{L^1(\mathbb{R}^3)} \le \prod_{i=1}^3 ||f_i||_{L^2(\mathbb{R}^2)}.$$

2. Soient $u \in C_c^{\infty}(\mathbb{R}^3)$ et $t \geq 1$. Montrer que

$$\|u\|_{L^{3t/2}(\mathbb{R}^3)}^t \leq t \|u\|_{L^{2(t-1)}(\mathbb{R}^3)}^{t-1} \ \prod_{i=1}^3 \left\|\frac{\partial u}{\partial x_i}\right\|_{L^2(\mathbb{R}^3)}^{\frac{1}{3}}.$$

 $\underline{\text{Indication}}$: Montrer d'abord que pour $f \in C_c^\infty(\mathbb{R}^3)$ on a

$$||f||_{L^{3/2}(\mathbb{R}^3)} \le \prod_{i=1}^3 \left\| \frac{\partial f}{\partial x_i} \right\|_{L^1(\mathbb{R}^3)}^{\frac{1}{3}}$$

puis considérer la norme $L^{3/2}$ de la fonction $|u|^{t-1}u$.

3. En faisant un bon choix pour t, en déduire qu'il existe C>0 tel que

$$\forall u \in C_c^{\infty}(\mathbb{R}^3), \quad ||u||_{L^6(\mathbb{R}^3)} \le C \, ||\nabla u||_{L^2(\mathbb{R}^3)}.$$

Conclure à l'injection de $H^1(\mathbb{R}^3)$ dans $L^6(\mathbb{R}^3)$.

4. Est-ce que $H^1(\mathbb{R}^3)$ s'injecte dans $L^{6+\varepsilon}$ avec $\varepsilon > 0$?

<u>Indication</u>: considérer la fonction de H^1 suivante sur $B(0, \frac{1}{2})$

$$u(x,y,z) = \frac{\left(\sqrt{x^2 + y^2 + z^2}\right)^{1-3/2}}{\ln\left(\sqrt{x^2 + y^2 + z^2}\right)}.$$