Докажите, что
$$n^3 - 3n^2 - n + 1 = \Theta(n^3)$$
.

[5] Упорядочите указанные в таблице функции в возрастающем порядке. При наличии двух или более функций одинакового порядка укажите их.

\sqrt{n}	n	2 ⁿ
nlogn	$n-n^3+7n^5$	$n^2 + \log n$
n^2	n^3	logn
$n^{1/3} + \log n$	$(\log n)^2$	n!
ln <i>n</i>	n/logn	log logn
(1/3)"	(3/2)"	6

[5] Для каждой из следующих функций f(n) найдите простую функцию g(n), при которой $f(n) = \Theta(g(n))$

$$f_1(n) = (1000)2^n + 4^n$$

$$f_2(n) = n + n \log n + \sqrt{n}$$

Расположите следующие функции в возрастающем асимптотическом порядке:

$$f_1(n) = n^2 \log_2 n$$
, $f_2(n) = n(\log_2 n)^2$, $f_3(n) = \sum_{i=0}^n 2^i$, $f_4(n) = \log_2(\sum_{i=0}^n 2^i)$