Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

- Suppose your training examples are sentences (sequences of words). Which of the following refers
 to the jth word in the ith training example?
 - (i)<j>
 - () x (i>(j)
 - () x(j)<i>
 - $\bigcirc x^{< j > (i)}$
 - ✓ Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

4. You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- \bigcirc Estimating $P(y^{<1>}, y^{<2>}, \ldots, y^{< t-1>})$
- \bigcirc Estimating $P(y^{<t>})$
- (a) Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, ..., y^{< t-1>})$
- \bigcirc Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, ..., y^{< t>})$
 - ✓ Correc

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<L>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{v}^{<t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as û^{<L>}. (ii) Then pass this selected word to the next time-step.
 - ✓ Correct Yes!

6.	You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
	Vanishing gradient problem.
	Exploding gradient problem.
	ReLU activation function g(.) used to compute g(z), where z is too large.
	Sigmoid activation function g(.) used to compute g(z), where z is too large.
	✓ Correct
7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of $\Gamma_{\rm M}$ at each time step?
	O 1
	100
	○ 300
	O 10000
	\checkmark Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.
8.	Here're the update equations for the GRU.
	GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . i.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . i. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- $\textbf{ Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay. }$
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Yes. For the signal to backpropagate without vanishing, we need $e^{< t>}$ to be highly dependant on $e^{< t-1>}$

9. Here are the equations for the GRU and the LSTM:

GRU

GRU

$$\bar{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_{u} = \sigma(W_{u}[c^{< t-1>}, x^{< t>}] + b_{u})$$

$$\Gamma_r = \sigma(W_r[\;c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{} = \Gamma_v * \hat{c}^{} + (1 - \Gamma_v) * c^{}$$

$$a^{< t>} = c^{< t>}$$

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_{tr} = \sigma(W_{tr}[a^{< t-1>}, x^{< t>}] + b_{tr})$$

$$\Gamma_f = \sigma(W_f[\,a^{< t-1>},x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$a^{} = \Gamma_o * c^{}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and in the GRU. What should go in the the blanks?

- $igorup \Gamma_u$ and $1-\Gamma_u$
- $\bigcap \Gamma_u$ and Γ_r
- \bigcap $1 \Gamma_u$ and Γ_u
- $\bigcap \Gamma_r$ and Γ_u

Yes, correct!

- 10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?
 - Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
 - Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
 - (a) Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \ldots, x^{< t>}$, but not on $x^{< t+1>}, \ldots, x^{< 365>}$
 - . Unidirectional RNN, because the value of $y^{-t>}$ depends only on $x^{-t>}$, and not other days' weather.

✓ Correct Yes!