Introdução à Probabilidade e Estatística

Analise Combinatória: Parte I

Carlos Trucíos ctruciosm.github.io

Universidade Federal do ABC (UFABC)

Semana 1 - Aula 1

Um sistema de comunicação é formado por n=5 antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito (1: antena sem defeito e 0: antena com defeito). Se m=2 das n antenas apresentam defeito:

Um sistema de comunicação é formado por n=5 antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito (1: antena sem defeito e 0: antena com defeito). Se m=2 das n antenas apresentam defeito:

• Quantas configurações possíveis existem para o sistema?

Um sistema de comunicação é formado por n=5 antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito (1: antena sem defeito e 0: antena com defeito). Se m=2 das n antenas apresentam defeito:

- Quantas configurações possíveis existem para o sistema?
- Quantas dessas configurações são funcionais?

Um sistema de comunicação é formado por n=5 antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito (1: antena sem defeito e 0: antena com defeito). Se m=2 das n antenas apresentam defeito:

- Quantas configurações possíveis existem para o sistema?
- Quantas dessas configurações são funcionais?
- Qual a probabilidade de que o sistema resultante seja funcional?

##		[,1]	[,2]	[,3]	[,4]	[,5]
##	[1,]	0	0	1	1	1
##	[2,]	0	1	0	1	1
##	[3,]	1	0	0	1	1
##	[4,]	0	1	1	0	1
##	[5,]	1	0	1	0	1
##	[6,]	1	1	0	0	1
##	[7,]	1	0	1	1	0
##	[8,]	1	1	0	1	0
##	[9,]	0	1	1	1	0
##	[10,]	1	1	1	0	0

- Quantas configurações possíveis existem para o sistema?
- Quantas dessas configurações são funcionais?
- Qual a probabilidade de que o sistema resultante seja funcional?

•
$$n = 10 \text{ e } m = 3$$

- n = 10 e m = 3
- n = 30 e m = 9

- n = 10 e m = 3
- n = 30 e m = 9
- n = 124 e m = 50

- n = 10 e m = 3
- n = 30 e m = 9
- n = 124 e m = 50

E se. . . .

- n = 10 e m = 3
- n = 30 e m = 9
- n = 124 e m = 50

Possuir um método eficaz para contar o número de formas pelas quais as coisas podem acontecer é bastante útil.

E se. . . .

- n = 10 e m = 3
- n = 30 e m = 9
- n = 124 e m = 50

Possuir um método eficaz para contar o número de formas pelas quais as coisas podem acontecer é bastante útil.

A teoria matemática de contagem é formalmente conhecida como **análise combinatória**

O princípio básico de contagem

Suponha a realização de dois experimentos $(E_1 \ e \ E_2)$. Se o E_1 pode gerar qualquer um de n_1 resultados possíveis e se, para cada um dos resultados de E_1 (ou seja, independentemente do resultado obtido em E_1), existem n_2 resultados possíveis do E_2 , então os dois experimentos possuem conjuntamente $n_1 \times n_2$ resultados possíveis

Exemplo

Suponha que se lançam dois dados (um convencional e outro com 8 faces) e que observamos o número da face superior. Qual o número de resultados possíveis que podem ser obtidos?

Generalização do princípio básico de contagem

Sejam r experimentos (E_1, E_2, \dots, E_r) tais que E_1 pode levar a qualquer um de n_1 resultados, E_2 pode levar a qualquer um de n_2 resultados (independente do resultado obtido no E_1), E_r pode levar a qualquer um de n_r resultados (independente do resultados obtido no E_1, \dots, E_{r-1}). Então, para os r experimentos teremos um total de $n_1 \times n_2 \times \dots \times n_r$ resultados possíveis.

Generalização do princípio básico de contagem

Sejam r experimentos (E_1, E_2, \dots, E_r) tais que E_1 pode levar a qualquer um de n_1 resultados, E_2 pode levar a qualquer um de n_2 resultados (independente do resultado obtido no E_1), E_r pode levar a qualquer um de n_r resultados (independente do resultados obtido no E_1, \dots, E_{r-1}). Então, para os r experimentos teremos um total de $n_1 \times n_2 \times \dots \times n_r$ resultados possíveis.

Exemplo

Outros exemplos

 Sabendo que cada placa de carro é formada por 7 caracteres (sendo os 3 primeiros espaços ocupados por letras e os 4 restantes por números).
 Quantas placas de carro distintas podem existir?

Outros exemplos

- Sabendo que cada placa de carro é formada por 7 caracteres (sendo os 3 primeiros espaços ocupados por letras e os 4 restantes por números).
 Quantas placas de carro distintas podem existir?
- Um experimento consiste em lançarmos uma moeda 5 vezes seguidas e observarmos em cada lançamento se foi obtido cara ou coroa. Qual é o número de resultados possíveis deste experimento?

Outros exemplos

- Sabendo que cada placa de carro é formada por 7 caracteres (sendo os 3 primeiros espaços ocupados por letras e os 4 restantes por números).
 Quantas placas de carro distintas podem existir?
- Um experimento consiste em lançarmos uma moeda 5 vezes seguidas e observarmos em cada lançamento se foi obtido cara ou coroa. Qual é o número de resultados possíveis deste experimento?
- Quantas placas de carro seriam possíveis se a repetição entre letras é proibida mas entre números é permitida?

Arranjos

Arranjos

Arranjos com repetição

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos arranjo com repetição dos m elementos, tomados de r a r, toda r-upla **ordenada** formada com elementos de M (**não necessariamente distintos**)

Arranjos

Arranjos com repetição

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos arranjo com repetição dos m elementos, tomados de r a r, toda r-upla **ordenada** formada com elementos de M (**não necessariamente distintos**)

Arranjos (sem repetição)

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos arranjo dos m elementos, tomados de r a r, toda r-upla **ordenada** formada com elementos **distintos** de M.

Suponha que temos 3 livros diferentes: Cálculo (C), Estatística (E) e Física (F). Os livros podem ser ordenados da seguinte forma

Suponha que temos 3 livros diferentes: Cálculo (C), Estatística (E) e Física (F). Os livros podem ser ordenados da seguinte forma

```
[,1] [,2] [,3]
##
## [1.]
         "C"
              "E"
                    "F"
## [2,]
         "C"
              "F"
                    "E"
## [3.]
         "F"
              "C"
                    "E"
## [4,]
         "F"
              "E"
                    "C"
## [5.]
              "F"
                    ייכיי
         "E"
## [6,] "E"
              "C"
                    "F"
```

Suponha que temos 3 livros diferentes: Cálculo (C), Estatística (E) e Física (F). Os livros podem ser ordenados da seguinte forma

O número de maneiras de ordenar n objetos distintos é

$$n(n-1)(n-2)\cdots 1=n!,$$

n! é chamado fatorial de n e por convenção 0! = 1

Permutação

Seja M um conjunto com m elementos. Chamamos de permutação (dos m elementos) a todo arranjo em que r=m.

Permutação

Seja M um conjunto com m elementos. Chamamos de permutação (dos m elementos) a todo arranjo em que r=m.

Exemplos

 Numa disputa por pênaltis entre Brasil e Alemanha, o técnico da seleção brasileira escolhe os 5 jogadores que participarão da disputa mas ainda não tem certeza da ordem na qual os jogadores irão chutar. De quantas formas diferentes essa ordenação pode ser feita?

Permutação

Seja M um conjunto com m elementos. Chamamos de permutação (dos m elementos) a todo arranjo em que r=m.

Exemplos

- Numa disputa por pênaltis entre Brasil e Alemanha, o técnico da seleção brasileira escolhe os 5 jogadores que participarão da disputa mas ainda não tem certeza da ordem na qual os jogadores irão chutar. De quantas formas diferentes essa ordenação pode ser feita?
- Quantos anagramas podemos formar com a palavra AMOR?

Estamos interessados em determinar o número de grupos diferentes de r objetos que podem ser formados a partir de um total de n objetos distintos.

• Sejam n = 5 objetos distintos (A, B, C, D, E) e queremos selecionar grupos de r = 3.

- Sejam n = 5 objetos distintos (A, B, C, D, E) e queremos selecionar grupos de r = 3.
- Se a ordem fosse importante teríamos: $5 \times 4 \times 3 = 60$ formas diferentes de selecionar os grupos de 3.

- Sejam n = 5 objetos distintos (A, B, C, D, E) e queremos selecionar grupos de r = 3.
- Se a ordem fosse importante teríamos: $5 \times 4 \times 3 = 60$ formas diferentes de selecionar os grupos de 3.
- Mas, neste problema a ordem dos elementos é irrelevante (ABC
 BCA são na verdade um mesmo grupo)

- Sejam n = 5 objetos distintos (A, B, C, D, E) e queremos selecionar grupos de r = 3.
- Se a ordem fosse importante teríamos: $5 \times 4 \times 3 = 60$ formas diferentes de selecionar os grupos de 3.
- Mas, neste problema a ordem dos elementos é irrelevante (ABC
 BCA são na verdade um mesmo grupo)
- Para evitar que, por exemplo o grupo formado por ABC seja contado
 3! vezes, precisamos remover o efeito da ordem.

- Sejam n = 5 objetos distintos (A, B, C, D, E) e queremos selecionar grupos de r = 3.
- Se a ordem fosse importante teríamos: $5 \times 4 \times 3 = 60$ formas diferentes de selecionar os grupos de 3.
- Mas, neste problema a ordem dos elementos é irrelevante (ABC
 BCA são na verdade um mesmo grupo)
- Para evitar que, por exemplo o grupo formado por ABC seja contado 3! vezes, precisamos remover o efeito da ordem.
- Então, o número de grupos diferentes de r=3 objetos que podem ser formados de um total de n=5 objetos distintos é

$$\frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

Em geral, $n(n-1)\cdots(n-r+1)$ representa o número de maneiras diferentes que um grupo de r elementos pode ser formado a partir de um total de n elementos distintos quando a ordem importa. Como cada grupo de r items será contado r! vezes, temos que o número de grupos **diferentes** de r itens que podem ser formados é dado por n

$$\frac{n(n-1)\cdots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r}$$

¹Assume-se que $\binom{n}{r} = 0$ se r < 0 ou r > n.

Em geral, $n(n-1)\cdots(n-r+1)$ representa o número de maneiras diferentes que um grupo de r elementos pode ser formado a partir de um total de n elementos distintos quando a ordem importa. Como cada grupo de r items será contado r! vezes, temos que o número de grupos **diferentes** de r itens que podem ser formados é dado por 1

$$\frac{n(n-1)\cdots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r}$$

• $\binom{n}{r}$: número de combinações possíveis de *n* objetos em grupos de *r* elementos.

¹Assume-se que $\binom{n}{r} = 0$ se r < 0 ou r > n.

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Exemplos

A P₁ de IPE possui 7 questões das quais o alumo deve escolher apenas
De quantas formas poderá escolher as 5 questões?

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Exemplos

- A P₁ de IPE possui 7 questões das quais o alumo deve escolher apenas
 De quantas formas poderá escolher as 5 questões?
- Uma sala possui 25 alunos (15 mulheres e 10 homens), de quantas formas podemos selecionar 5 alunos de forma que 3 sejam mulheres e 2 homens?

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Exemplos

- A P₁ de IPE possui 7 questões das quais o alumo deve escolher apenas
 De quantas formas poderá escolher as 5 questões?
- Uma sala possui 25 alunos (15 mulheres e 10 homens), de quantas formas podemos selecionar 5 alunos de forma que 3 sejam mulheres e 2 homens?

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Exemplos

- A P₁ de IPE possui 7 questões das quais o alumo deve escolher apenas
 De quantas formas poderá escolher as 5 questões?
- Uma sala possui 25 alunos (15 mulheres e 10 homens), de quantas formas podemos selecionar 5 alunos de forma que 3 sejam mulheres e 2 homens?

Combinação ou Arranjo?

• Combinação: ordem não importa

Combinação

Seja M um conjunto com m elementos (a_1, \dots, a_m) . Chamamos de combinação dos m elementos, tomados r a r, a todo subconjunto de M constituido de r elementos.

Exemplos

- A P₁ de IPE possui 7 questões das quais o alumo deve escolher apenas
 De quantas formas poderá escolher as 5 questões?
- Uma sala possui 25 alunos (15 mulheres e 10 homens), de quantas formas podemos selecionar 5 alunos de forma que 3 sejam mulheres e 2 homens?

Combinação ou Arranjo?

- Combinação: ordem não importa
- Arranjo: ordem importa

Arranjos, Permutações e Combinações: Resumo

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos, dependendo se o mesmo objeto pode ser escolhido mais de uma vez (amostragem com ou sem reposição) e se a ordem como os objetos são escolhidos importa ou não, pode ser resumida em:

Arranjos, Permutações e Combinações: Resumo

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos, dependendo se o mesmo objeto pode ser escolhido mais de uma vez (amostragem com ou sem reposição) e se a ordem como os objetos são escolhidos importa ou não, pode ser resumida em:

	Ordem importa	Ordem não importa
Com reposição	n ^r	$\binom{r+n-1}{n-1}$
Sem reposição	$n(n-1)\cdots(n-r+1)$	$\binom{n}{r}$

Considere o seguinte problema:

• Um conjunto de n elementos distintos deve ser dividido em r grupos de tamanhos n_1, n_2, \ldots, n_r , respectivamente tais que $\sum_{i=1}^r n_i = n$. De quantas formas possíveis isto pode ser feito?

Considere o seguinte problema:

- Um conjunto de n elementos distintos deve ser dividido em r grupos de tamanhos n_1, n_2, \ldots, n_r , respectivamente tais que $\sum_{i=1}^r n_i = n$. De quantas formas possíveis isto pode ser feito?
- Quantos anagramas podemos formar com a palavra ANA?

Considere o seguinte problema:

- Um conjunto de n elementos distintos deve ser dividido em r grupos de tamanhos n_1, n_2, \ldots, n_r , respectivamente tais que $\sum_{i=1}^r n_i = n$. De quantas formas possíveis isto pode ser feito?
- Quantos anagramas podemos formar com a palavra ANA?

Considere o seguinte problema:

- Um conjunto de n elementos distintos deve ser dividido em r grupos de tamanhos n_1, n_2, \ldots, n_r , respectivamente tais que $\sum_{i=1}^r n_i = n$. De quantas formas possíveis isto pode ser feito?
- Quantos anagramas podemos formar com a palavra ANA?

Resposta

$$\frac{n!}{n_1!n_2!\cdots n_r!}=\binom{n}{n_1,n_2,\cdots,n_r}$$

formas diferentes.

• Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.
- Para c/e dos dois primeiros grupos temos $\binom{n-n_1-n_2}{n_3}$ escolhas possíveis para o terceiro grupo

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.
- Para c/e dos dois primeiros grupos temos $\binom{n-n_1-n_2}{n_3}$ escolhas possíveis para o terceiro grupo
-

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.
- Para c/e dos dois primeiros grupos temos $\binom{n-n_1-n_2}{n_3}$ escolhas possíveis para o terceiro grupo
- . . .
- Para c/e dos r-1 primeiros grupos temos $\binom{n-n_1-n_2-\cdots-n_{r-1}}{n_r}$ escolhas possíveis para o r—ésimo grupo

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.
- Para c/e dos dois primeiros grupos temos $\binom{n-n_1-n_2}{n_3}$ escolhas possíveis para o terceiro grupo
- . . .
- Para c/e dos r-1 primeiros grupos temos $\binom{n-n_1-n_2-\cdots-n_{r-1}}{n_r}$ escolhas possíveis para o r—ésimo grupo

- Para o primeiro grupo temos $\binom{n}{n_1}$ escolhas possíveis
- Para c/e do primeiro grupo temos $\binom{n-n_1}{n_2}$ escolhas possíveis para o segundo grupo.
- Para c/e dos dois primeiros grupos temos $\binom{n-n_1-n_2}{n_3}$ escolhas possíveis para o terceiro grupo
- . . .
- Para c/e dos r-1 primeiros grupos temos $\binom{n-n_1-n_2-\cdots-n_{r-1}}{n_r}$ escolhas possíveis para o r—ésimo grupo

Aplicando a versão generalizada do principio básico de contagem

$$\binom{n}{n_1}\binom{n-n_1}{n_2}\cdots\binom{n-n_1-n_2-\cdots-n_{r-1}}{n_r}=\frac{n!}{n_1!n_2!\cdots n_r!}$$

Exemplos

• Quantos anagramas podemos formar com a palavra MATEMATICA?

Exemplos

- Quantos anagramas podemos formar com a palavra MATEMATICA?
- Uma urna contém 3 bolas verdes e 2 bolas azuis. Elas são extraídas uma a uma (sem reposição). Quantas sequências de cores podemos observar?

Exemplos

- Quantos anagramas podemos formar com a palavra MATEMATICA?
- Uma urna contém 3 bolas verdes e 2 bolas azuis. Elas são extraídas uma a uma (sem reposição). Quantas sequências de cores podemos observar?
- Em uma turma de 23 alunos, serão formados 3 grupos (A, B e C) com 8, 8 e 7 alunos, respectivamente. De quantas formas diferentes podem ser formados os grupos?

Leituras recomendadas

Leituras recomendadas

- Ross Cap. 1 (1.1 à 1.5)
- Degroot & Schervish Cap. 1 (1.7 à 1.9)

Para praticar

- Resolver os exercícios correspondetes ao Cap 1 do Ross
- Lista 1 do gradmat.ufabc.edu.br/disciplinas/ipe/listas/