讨论3: $C_1=C_2=C$, 求 u_0 与 u_1 的运算关系

也可先求传递函数 $(Z_C=1/sC)$,再利用 反拉氏变换求函数关系

$$\frac{\frac{1}{sC}}{R + \frac{1}{sC}} \dot{U}_{i} = \frac{R}{R + \frac{1}{sC}} \dot{U}_{o}$$

$$\dot{U}_{o} = \frac{1}{sRC} \dot{U}_{i}$$

• 同相端利用'虚断'原则

$$\frac{u_{\rm I} - u_{\rm P}}{R} = C \frac{\mathrm{d}u_{\rm P}}{\mathrm{d}t}$$

$$\frac{u_{\rm I} - u_{\rm P}}{R} = C \frac{\mathrm{d}u_{\rm P}}{\mathrm{d}t} \qquad \frac{u_{\rm I}}{R} = C \frac{\mathrm{d}u_{\rm P}}{\mathrm{d}t} + \frac{u_{\rm P}}{R}$$

• 反相端利用'虚断'原则

$$\frac{-u_{\rm N}}{R} = C \frac{\mathrm{d}(u_{\rm N} - u_{\rm O})}{\mathrm{d}t}$$

$$\frac{-u_{\rm N}}{R} = C \frac{\mathrm{d}(u_{\rm N} - u_{\rm O})}{\mathrm{d}t} \qquad C \frac{\mathrm{d}u_{\rm O}}{\mathrm{d}t} = C \frac{\mathrm{d}u_{\rm N}}{\mathrm{d}t} + \frac{u_{\rm N}}{R}$$

•利用'虚短'原则

$$u_{\rm N} = u_{\rm P}$$

$$C\frac{\mathrm{d}u_{\mathrm{O}}}{\mathrm{d}t} = \frac{u_{\mathrm{I}}}{R}$$

$$C\frac{\mathrm{d}u_{\mathrm{O}}}{\mathrm{d}t} = \frac{u_{\mathrm{I}}}{R} \qquad u_{\mathrm{O}} = \frac{1}{RC} \int u_{\mathrm{I}} \mathrm{d}t$$

同相积分

讨论4: K_2 闭合,然后断开; K_1 接到 u_I ,经过 t_1 毫秒后接至 u_{REF} ,再经过 t_2 毫秒后 $u_{O}=0$,求 t_2 。

电压一电流转换电路如图所示,已知集成运放为理想运放, R_2 = R_3 = R_4 = R_7 =R, R_5 =2R。求解 i_L 与 u_I 之间的函数关系。

$$u_{01} = (1 + \frac{R_2}{R_3})u_1 - \frac{R_2}{R_3}u_0 = 2u_1 - u_0$$

$$u_{02} = -\frac{R_5}{R} \cdot u_{01} = -4u_1 + 2u_0$$

$$i_L = \frac{u_1 - u_0}{R_3} + \frac{u_{02} - u_0}{R_7} = -\frac{3u_1}{R}$$

电路如图所示,已知集成运放为理想运放,求解等效输入电容的表达式: *1*

课外兴趣题1

1、有效值检测电路 设 $u_{\rm I}$ 为正弦波,周期为T=RC

验证:
$$u_{\text{O}} = \sqrt{\frac{1}{RC} \int_0^T u_{\text{I}}^2 dt}$$

课外兴趣题2

2、可以利用运算电路解方程21/2+1/46=0吗?

将x作为输入电压;

采用平方运算电路和同相求和电路组成两级放大电路; 调节输入x使输出电压为0,此时的输入电压值即为x的解。

课外兴趣题3

3、调幅电路

设高频载波信号 $u_c=U_{cm}\sin(2\pi f_c t)$,被调制的音频信号为 $u_i=U_{im}\sin(2\pi f_0 t)$ 。其中 $f_c=1$ MHz, $f_0=1$ kHz

验证:
$$u_0 = \frac{U_{\text{im}}U_{\text{cm}}}{2} [\cos 2\pi (f_c - f_0) - \cos 2\pi (f_c + f_0)]$$

课外兴趣题4(不作为讲课要求)

4、解调电路1:

设输入信号 u_i 为上题的输出信号同步信号为 u_c '=sin[$(2 \pi \times 1 M)t$]。 f_0 =1kHz。求 u_o

4、解调电路2:

设输入信号 u_i 为上题调幅电路的输出信号,同步信号为 u_c '= $\sin[2\pi(f_c+455k)t]$ 。其中 $f_c=1$ MHz, $f_0=1$ kHz。求 u_0

