Bộ nhớ bán dẫn

Nguyễn Quốc Cường – 31

Semiconductor Memory

Nội dung

- RAM tĩnh
- RAM động ROM / PROM / EPROM

Sơ đồ khối của SRAM

RAM

RAM động (DRAM: Dynamic RAM):

- thông tin được lưu giữ trên một tụ cho một bit
- đọc/ghi thông tin thông qua một access transistor (hoặc pass transistor)
- điện tích trên tụ bị dò (qua các tiếp giáp bán dẫn) \rightarrow thông tin có thể bị mất \rightarrow cần một mạch "refresh" định kỳ vài mili giây

RAM tĩnh (SRAM: Static RAM):

- Cho phép đọc và ghi thông tin
- Không cần mạch làm refresh định kỳ như DRAM

- RAS: Row Address Select
- lựa chọn hàng (tích cực cao)
- CAS: Column Address Select
- lựa chọn cột (tích cực cao)
- transistor) P1, P2, P3, P4: pass transistor (access
- M1, M2: active-load

Đọc SRAM

- Cell lưu giữ giá trị 1:
- Q1 OFF: A = HIGH
- Q2 ON: B = LOW
- Đọc cell:
- RW = 0: Q3 ON
- RAS = 1: P1 và P2 ON
- CAS = 1: P3 và P4 ON
- cực gate của Q7 được nối với GND thông qua P4, P2 và Q2: Q7 sẽ turn-off → D_{OUT} = HIGH
- Tương tự

$$\overline{D_{OUT}} = LOW$$

Semiconductor Memory

7

Viết SRAM

- Cell lưu giữ giá trị 1:
- Q1 OFF: A = HIGH
- Q2 ON: B = LOW
- Viết giá trị 0 vào cell:
- RW = 1: Q3 ON
- RAS = 1: P1 và P2 ON
- CAS = 1: P3 và P4 ON
- bên trái) sẽ ON (do sử dụng đảo của DIN) → điện áp điểm A sẽ DIN = 0: Q4 OFF, tuy nhiên Q4' (của mạch read/write amplifier OFF sang ON giảm ightarrow Q2 sẽ chuyển từ ON sang OFF ightarrow Q1 sẽ chuyển từ
- Q1 ON, Q2 OFF → cell lưu giữ giá trị 0

CY6264 SRAM 8K x 8

Chu kỳ đọc

Switching Characteristics Over the Operating Range [4]

		626	6264-55	6264-70	1-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•					
^t RC	Read Cycle Time	55		70		Su
taa	Address to Data Valid		55		70	su
_С М	Data Hold from Address Change	5		5		Su
t _{ACE1}	CE ₁ LOW to Data Valid		55		70	Su
t _{ACE2}	CE ₂ HIGH to Data Valid		40		70	su
t₀oe	OE LOW to Data Valid		25		35	SU
t _{LZOE}	OE LOW to Low Z	3		5		su
tHZ0E	OE HIGH to High Z ^[5]		20		30	Su
tLZCE1	CE ₁ LOW to Low Z ^[6]	5		5		SU
t _{LZCE2}	CE ₂ HIGH to Low Z	3	\$	5		Su
ээгн	\overline{CE}_1 HIGH to High $Z^{[5, 6]}$ CE ₂ LOW to High Z	8	20		30	su
ηφυ	CE ₁ LOW to Power-Up	0		0		Su
t _{PD}	CE ₁ HIGH to Power-Down		25		30	ns

Semiconductor Memory

Chu kỳ viết

WRITE CYCLE[7]	7)					
twc	Write Cycle Time	50		70		ns
t _{SCE1}	CE ₁ LOW to Write End	40		60		ns
t _{SCE2}	CE ₂ HIGH to Write End	30		50		ns
t _{AW}	Address Set-Up to Write End	40		55		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
tpwe	WE Pulse Width	25		40		ns
t _{SD}	Data Set-Up to Write End	25		35		ns
t _{HD}	Data Hold from Write End	0		0		ns
tHZWE	WE LOW to High Z ^[5]		20		30	ns
tLZWE	WE HIGH to Low Z	5		5		ns

Semiconductor Memory

ⅎ

DRAM

- DRAM: xuất hiện vào những năm 1970s
- Ưu điểm:
- Mật độ cao hơn SRAMCông suất tiêu thụ nhỏ
- Nhược điểm:
- Tốc độ truy cập chậm hơn
- Cần mạch refresh

DRAM cell

Thường C_L gấp vài chục lần C_S ($C_S \sim 40 fF$, $C_L \sim 300 fF$) C_L charge điện áp = 5V: Nếu C_S được charge điện áp 4.5V (giá trị "1") \Rightarrow khi cân bằng điện áp $\sim 4.9 V$ Nếu C_S được charge điện áp 0V (giá trị "0") khi cân bằng điện áp $\sim 4.5 V$

Semiconductor Memory

15

Đọc RAM

- Tín hiệu P = high, sau đó P = low
- Ņ cực và ngược lại) tín hiệu dummy row tích cực (nêu lựa chọn hàng phía trên thì Dummy row Bottom phải tích Tín hiệu lựa chọn hàng tích cực high đồng thời
- ယ gate) tích cực high Tín hiệu SI (isolation signal) và SG (signal
- Tín hiệu CAS tích cực

Semiconductor Memory

17

Đọc DRAM

- Precharge:
- Tín hiệu P = high
- MP1 và MP2 dẫn: CL của Half bit line được nạp đến VDD
- charge băng 0 Cực D của MD1 và MD2 được charge đến 0 → CD1 và CD2
- Tín hiệu P = low: kết thúc precharge
- Tín hiệu selected row được kích hoạt (1 trong 128 tín hiệu): Giả sử row63 được lựa chọn
- Nếu cell lưu giá trị "1": $V_{CS} = 4.5V$
- Nếu cell lưu giá trị "0": V_{CS} = 0V

đọc giá trị "1" ($V_{CS} = 4.5V$)

- C_L được nối với C_S điện áp cân bằng VBLT \sim
- phân bố lại điện tích giữa C_L và C_{D2} , charge 0) Tín hiệu DB tích cực → VBLB ~ 4.75V (do sự
- Tín hiệu SI và SG tích cực:
- M_S , M_{S3} và M_{S4} dẫn
- Do VBLT > VBLB \Rightarrow M $_{\rm S2}$ dẫn còn M $_{\rm S1}$ không dẫn \Rightarrow VBLT giữ nguyên giá trị, VBLB = 0.
- Tín hiệu CAS tích cực:
- DATA = VBLT = "1"
- DATA (đảo của DATA) = VBLB = "0"

Semiconductor Memory

19

đọc giá trị "0"

- Phân bố lại điện tích giữa V_{CL} và V_{CS} → VBLT = 4.5V
- Phân bố lại điện tích giữa V_{CD2} và C_L → VBLB = 4.75V
- Tín hiệu SI và SG tích cực:
- $M_{\rm S}$, $M_{\rm S3}$ và $M_{\rm S4~d\tilde{a}n}$ Do VBLT < VBLB \Rightarrow $M_{\rm S1}$ dẫn còn $M_{\rm S2}$ không dẫn \Rightarrow VBLB giữ nguyên giá trị, VBLT = 0.
- Tín hiệu CAS tích cực:
- DATA = VBLT = "0"
- _DATA (đảo của DATA) = VBLB = "1"

đảo lại giá trị cất trong cell Nếu các cell bottom được lựa chọn thì giá trị xuất hiện tại DATA và _DATA sẽ cần phải lấy

Semiconductor Memory

2

viết giá trị vào DRAM

- Thông tin cần viết sẽ được đặt vào DATA và DATA
- Tín hiệu CAS tích cực → tụ C_L được charge
- Tín hiệu Row tích cực, tu C_S được charge thông qua điện tích trên C_L

refresh

- Điện tích trên C_S sẽ bị thay đổi (do các điện trở giữa gate và drain) \Rightarrow cần refresh các tụ
- Việc "refresh" được thực hiện liên tục theo một chu kỳ nhất định và được thực hiện theo hàng
- Đầu tiên các tụ C_L và C_D được precharge (giả thiết precharge các top row):
- $-V_{CL} = VDD$
- $-V_{CD1}$ và $V_{CD2} = 0$
- Tín hiệu Row và tín hiệu DB (dummy bottom) tích cực → phân bố lại điện tích của các C_L
- Sau đó tín hệu SI và SG tích cực \Rightarrow refresh tín hiệu điện áp của $C_{\rm S}$
- retresh Tín hiệu ČAS sẽ KHÔNG TÍCH CỰC trong chu kỳ

Semiconductor Memory

23

address S R Giải mã địa chỉ Control logic ROM Memory cells output buffer

ROM cell

MOS-NOR-ROM

Semiconductor Memory

25

- Thông tin các từ lấy ra tại bit line (BL)
- BL sẽ là NOR của các tín hiệu WL (Word line)
- được gọi là PROM (Programmable ROM) Các loại ROM dựa trên các kiểu cell kể trên
- Nhược điểm: chỉ lập trình được 1 lần.
- Khắc phục: sử dụng EPROM

Semiconductor Memory

27

MOS có cực gate để ngỏ

Semiconductor Memory

28

Điện áp ngưỡng của MOS

Semiconductor Memory

29

EPROM

- Khi bit nhớ chưa được lập trình, điều này có nghĩa là floating gate chưa được nạp điện tích thì control gate có tác dụng như là cực điều khiến bình thường. Nếu đặt một điện áp High (cỡ > 2V) vào cựa gate thì sẽ hình thành kệnh dẫn giữa D và S
- Để lập trình cho phần tử nhớ thì floating gate cần phải được nạp điện sao cho muốn hình thành kệnh dẫn giữa D và S thì điện áp đặt vào control gate phải lớn hơn rất nhiều lần 2V
- Điện áp cỡ 16V đến 20V (phụ thuộc vào công nghệ) cần được đặt giữa cực D và S. Đồng thời cực control gate cũng cần phải có điện áp cao (~25V hoặc bằng điện áp cực D) Khi phần tử nhớ là *chưa lập trình* thì điện áp cao đặt vào cực control gate sẽ làm cho MOSFET làm việc ở vùng pinch-off (vùng bão hoà) khi đó các điện tử sẽ chuyển đồng nhanh từ S đến D dưới tác dụng của điện tưường.
- Do tác động của điện trường do cực gate gây ra, một số điện tử sẽ xuyên qua vùng oxide cách điện và đến floating gate → cực được nạp điện tịch âm. Điều này sẽ làm giảm tác động của điện trường do cực control gây ra → cân bằng điện tích. Các điện tích âm sẽ bị giữ lại ở floating gate ngay cả khi các điện áp lập trình không còn tác động.

 Do floating gate tích điện âm → để tạo được kênh dẫn giữa D và S cần một điện áp đặt vào control gate cao hơn so với khi floating gate chưa bị nạp điện → như vậy phân tử nhớ đã được lập trình.
- Điện tích có thể bị giữ ở floating gate trong thời gian vài năm.
- Để xoá EPROM đưa các phần tử nhớ về unprogrammed state, các điện tử cần được giải phóng khỏi floating gate. Điều này được thực hiện bởi tác động của tìu cực tím lên phần tử nhớ (cỡ 20 phút). Các điện tử khi nhận được năng lượng của các photon sẽ thoát khỏi floating gate và trở về để. Các EPROM dọ đó được chế tạo với một cửa số để cho phép chiếu tia cực tím đến các phần tử nhớ.

Electrically Erasable PROM (EEPROM)

- Nhược điểm của EPROM:
- khi lập trình cần phải tháo ra khỏi mạch
- tuỳ thuộc vào cường độ của tia cực tím mà thời gian xoá ROM có thể lâu (1 giờ).
- EEPROM: cho phép xoá ROM bằng điện áp.

Semiconductor Memory

EEPROM

- 20nm) floating gate và Drain được đặt rất gần nhau (<
- nạp điện điện trong chất cách điện → floating gate được và D (nối đất), điện trường cao sẽ tạo ra dòng khi đặt một điện áp cỡ 20V lên cực control gate
- gate. Điện trường sẽ làm các điện tử rời khỏi để xoá (discharge) điện tích trên floating gate thì floating gate. một điện áp ngược được đặt vào D và control

Flash EEPROM

- Sử dụng các điện áp cao (20V) để xoá ROM là nhược điểm của EEPROM
- control gate và source nhau (cỡ 10nm) điều này cho phép discharge (xoá) bằng cách đặt các điện áp 12V giữa các cực control và floating được đặt rất gần Flash Memory là một biến thể của EEPROM với
- xoá: V_GS = -12V (S nối đất còn D để hở)
- lập trình: $V_{GS} = 12V$ (G nối đất) còn D nối 7V, giống như với EPROM các điện tử chuyện động trong kênh dẫn sẽ bị điện trường G làm chuyển động qua vùng oxide và đến cực floating gate

Semiconductor Memory

33

CMOS EEPROM 27C256

FIGURE 1-1: READ WAVEFORMS

Semiconductor Memory

35

TABLE 1-3: READ OPERATION AC CHARACTERISTICS

Output Hold from Address CE or OE, whichever goes first	CE or OE to O/P High Impedance	OE to Output Delay	CE to Output Delay	Address to Output Delay	raialletei		
тон	toff	to∈	tcE	tacc	- yiii	S I	
0	0	1			Min	27C2	AC Out Inpu Ami
1	30	40	90	90	Max	56-90*	AC Testing W Output Load: Input Rise an Ambient Tem
0	0	1	I	1	Min	27C2	AC Testing Waveform: Output Load: Input Rise and Fall Tin Ambient Temperature:
1	30	45	100	100	Max	27C256-90° 27C256-10° 27C256-12 27C256-15 27C256-20	AC Testing Waveform: VIH = Output Load: 1 TTL Input Rise and Fall Times: 10 ns Ambient Temperature: Comn Indus Auton
0	0	1	1		Min	27C2	VIH 1 T s: 10 I S: 10 I lndu
1	35	55	120	120	Max	56-12	VIH = 2.4V and VIL = 1 TTL Load + 100 pF 10 ns Commercial: Industrial: Automotive:
0	0	1	1	1	Min	27C2	/ and V d + 10 al: e:
	50	65	150	150	Max	56-15) pF
0	0	1	1		Min	27C2	45V; \ Tai Tai
1	55	75	200	200	Max	56-20	mb = ./OH = :/
SU	ns	ns	ns	su		5	WoH = 2.0V VoL = 0.8 Tamb = 0°C to +70°C Tamb = -40°C to +85°C Tamb = -40°C to +125°
		CE = VIL	OE = VIL	CE=OE =VIL	COllabolis		VIH = 2.4V and VIL = 0.45V; VOH = 2.0V VOL = 0.8V 1 TTL Load + 100 pF 10 ns Commercial: Tamb = 0°C to +70°C Industrial: Tamb = -40°C to +85°C Automotive: Tamb = -40°C to +125°C

FIGURE 1-2: PROGRAMMING WAVEFORMS (1)

TABLE 1-5: PROGRAMMING AC CHARACTERISTICS

for Program, Program Verify AC Testing Waveform: $V_{IH}=2.4V$ and $V_{IL}=0.4$ and Program Inhibit Modes Output Load: $1\ TTL\ Load + 100pF$ Ambient Temperature: $T_{Amb}=25^{\circ}C \pm 5^{\circ}C$ $V_{CC}=6.5V \pm 0.25V$, $V_{PP}=V_{H}=13.0V \pm 0.25V$	ŏ	VIH=2.4V and VIL= 1 TTL Load + 100p Tamb=25°C ± 5°C = VH = 13.0V ± 0.2	VIH=2.4V and VIL=0. 1 TTL Load + 100pF Tamb=25°C ±5°C = VH = 13.0V ± 0.25V	.45V; Vc	VIH=2.4V and VIL=0.45V; VOH=2.0V; VOL=0.8V 1 TTL Load + 100pF Tamb= 25° C \pm 5° C = VH = 13.0 V \pm 0.25 V
Parameter	Symbol	Min.	Max.	Units	Remarks
Address Set-Up Time	tas	2	_	μS	
Data Set-Up Time	tos	2		μS	
Data Hold Time	toH	2		μS	
Address Hold Time	taн	0		μS	
Float Delay (2)	tor	0	130	ns	
Vcc Set-Up Time	tvcs	2	-	μS	
Program Pulse Width (1)	tpw	95	105	μS	100 μs typical
CE Set-Up Time	tces	2		μS	
OE Set-Up Time	toes	2	1	μS	
VPP Set-Up Time	tvps	2		μS	
Data Valid from OE	to∈		100	ns	

Note 1: 2:

For express algorithm, initial programming width tolerance is 100 $\mu s \pm 5\%$. This parameter is only sampled and not 100% tested. Output float is defined as the point where data is no longer driven (see timing diagram).