Machine learning Homework- Deep Learning

Abinav Ravi Venkatakrishnan - 03694216 and Abhijeet Parida - 03679676

December 15, 2018

1 Activation Function

Problem 1:

The matrix operation $w^T + b$ is essentially a linear operation. When we stack linear operations over other linear operations we essentially get a linear function. It is impossible to approximate complex functions with just linear operations, therefore non-linearity is introduced to overcome this problem.

Problem 2:

The sigmoid activation function is

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

The tanh activation is

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$tanh(\frac{x}{2}) = \frac{e^{x} - 1}{e^{x} + 1}$$

$$tanh(\frac{x}{2}) = \frac{1 - e^{-x}}{1 + e^{-x}}$$

$$tanh(\frac{x}{2}) = (1 - e^{-x})\sigma(x)$$

Problem 3:

From the previous problem we know that,

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Taking derivative on both sides we get,

$$\frac{d}{dx}(tanh(x)) = \frac{d}{dx}(\frac{e^x - e^{-x}}{e^x + e^{-x}})$$

$$= (e^x + e^{-x})(e^x + e^{-x})^{-1} - (e^x + e^{-x})^{-2}(e^x - e^{-x})(e^x - e^{-x})$$

$$= 1 - (\frac{e^x - e^{-x}}{e^x + e^{-x}})^2$$

$$= 1 - (tanh(x))^2$$

The advantage is that it is easy to compute the gradients during backpropagation.

2 Numerical Stability

Problem 4:

Problem 5:

Problem 6: