Machine Vision Technology

School of Computer Science
Beijing University of Posts and Telecommunications

1

3

Today's agenda

- Introduction to computer vision
- Course overview

Quiz?

5

What about this?

3D Reconstruction

Michaelangelo's David

Recognizing chairs

What is (computer) vision?

7

The goal of computer vision

• To bridge the gap between pixels and "meaning" 跨越语义鸿沟

W	hat	we	see
---	-----	----	-----

What a computer sees

Source: S. Narasimhan

What is (computer) vision?

9

1981: Nobel Prize in medicine 视觉认知是分层次的

Hubel & Wiesel

Dr. Hubel said:

There has been a myth that the brain cannot understand itself. It is compared to a man trying to lift himself by his own bootstraps. We feel that is nonsense. The brain can be studied just as the kidney can.

Human vision is superbly efficient

Potter, Biederman, etc. 1970s

11

Thorpe, et al. Nature, 1996

13

Change Blindness 运动视盲

Rensink, O'regan, Simon, etc.

Change Blindness

Rensink, O'regan, Simon, etc.

15

Segmentation 语义分割

Perception 认知能力

17

Motion without movement

19

What is (computer) vision?

21

The goal of computer vision

To bridge the gap between pixels and "meaning"

What we	see
---------	-----

What a computer sees

Source: S. Narasimhan

Origins of computer vision: an MIT undergraduate <u>summer project</u>

23

Pioneer in the field: David Marr (1945-1980)

提出了总体性框架

Computational theory: What is the goal of the computation (task) and what are the constraints that are 任务和约束

known or can be brought to bear on the problem?

Representations and algorithms: How are the input, output, and intermediate information represented, 表达与算法

and which algorithms are used to calculate the desired result?

Hardware implementation: How are the representations and algorithms mapped onto actual hardware, 硬件

e.g., a biological vision system or a specialized piece of silicon? Conversely, how can hardware

constraints be used to guide the choice of representation and algorithm?

《Vision: A Computational Investigation into the Human Representation and Processing of Visual Information》

What kind of information can we extract from an image?

- Metric 3D information
- Semantic information

25

Vision as measurement device

Most active topics of research in computer vision

Why study computer vision?

• Vision is useful: Images and video are everywhere!

Surveillance and security

Medical and scientific images

29

Special effects: shape and motion capture

ource: S. Se

3D urban modeling

Bing maps, Google Streetview

31

3D modeling

Face detection

- Many digital cameras now detect faces
 - Canon, Sony, Fuji, ...

33

Smile detection

The Smile Shutter flow Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression. Smile Captured! Smile Captured! Smile Captured! Smile Captured!

Sony Cyber-shot® T70 Digital Still Camera

Face recognition: Apple iPhoto software

http://www.apple.com/ilife/iphoto/

35

Biometrics

How the Afghan Girl was Identified by Her Iris Patterns

瞳孔采集相对困难

虹膜识别: 展开比较相似度

Source: S. Seitz

Biometrics

指纹采集: 依据指纹 中存在不同类型的 点,例如分岔点、汇 聚点、断点等。对其 进行定义, 然后根据 点的空间位置判断是

Face recognition systems now beginning to appear more widely iphone X just introduced face recognition

37

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

License plate readers pedia.org/wiki/Automatic number plate recognition

Google maps: Annotate all houses and streets

Avenue des Sapins

Goodfellow et al. 2014

39

Toys and Robots

Mobile visual search: iPhone Apps

41

Snapstacles and Google glasses

43

Automotive safety

Mobileye

Detection and tracking

45

Vision in supermarkets

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it..."

Amazon Go

47

双目立体视觉技术

Vision-based interaction (and games)

Microsoft's Kinect

Sony EyeToy

Assistive technologies

Augmented Reality

49

Virtual Reality

Vision for robotics, space exploration

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

ce: S. Seitz

51

Medical image recognition

Vision for meteorology

53

Course Overview

Syllabus organized from

- CS131 Computer Vision: Foundations and Applications
 http://vision.stanford.edu/teaching/cs131 fall1920/index.html
- CS231A: Computer Vision, From 3D Reconstruction to Recognition
 http://web.stanford.edu/class/cs231a/
- CS 543/ECE 549: Computer Vision http://slazebni.cs.illinois.edu/spring19/
- CS 376: Computer Vision http://vision.cs.utexas.edu/376-spring2018/

55

Grading policy

> Attendance: 10%

➤ Homework 1: 15%

> Homework 2: 15%

> Classroom test(open-book): 60%

Why should you take the class?

- Become a vision researcher
- CVPR 2020 conference
- ICCV 2020 conference
- Become a vision engineer in industry
- Perception team at Google AI
- Vision at Google Cloud
- Vision at Facebook AI
- Vision at SenseTime
- Vision at MEGVII
- Vision at Tencent AI Lab
- General interest

58

Overall Philosophy

Breadth

- Computer vision is a huge field
- > It can impact every aspect of life and society
- > It will drive the next information and AI revolution
- > Pixels are everywhere in our lives and cyber space
- > This course is meant as an broad overview course, we will not cover all topics of CV
- > Lectures are mixture of detailed techniques and high level ideas
- Speak our "language"

Depth

- > Computer vision is a highly technical field, i.e. know your math!
- ➤ Master bread-and-butter techniques: face recognition, corners, lines, features, optical flows, clustering and segmentation

Roadmap

Machine Vision Technology									
Semantic information				Metric 3D information					
Pixels	Segments	Images	Videos	Camera		Multi-view Geometry			
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking	Camera Model	Camera Calibration	Epipolar Geometry	SFM		
10	4	4	2	2	2	2	2		