Presentation Skills Automatic Real-time Feedback Mechanisms

Thomas Meijers, Alessandra van Ree & Guido Linders Supervisor: Toto van Inge

University of Amsterdam

January 22, 2015

Introduction

Presentation Skills Automatic Real-time Feedback Mechanisms

- Give users automatic feedback on their presentations.
- ▶ What is a good presentation?
- Visuals and sound
- ▶ What to measure and how?
- Discussion

Literature review: Sound

- ► Volume
- ► Pitch
- ► Speed
- ► Intonation

Literature review: Visuals

- ► Nonverbal communication affects the clarity and powerfulness of the speaker's message
- ► Most important aspects:
 - Posture
 - Gestures
 - Eye contact
 - ► Facial expressions
- ▶ Our focus: posture, gestures, eye contact
- 'Good measurements' are difficult:
 - ▶ Differences when practicing vs on stage
 - Cultural differences

Results - Movement & Posture

- ▶ Posture: From static to nervous
- ▶ Static: Very little movement, easy to measure.
- ▶ Different between a dynamic or nervous presentation
- ► How to measure this:
 - ► Capturing frames every *n* seconds
 - Background subtraction combined with three-frame differincing¹
 - ► Analyse results and give feedback

¹Collins et al. (2000) - A System for Video Surveillance and Monitoring

Results - Movement & Posture

Differential imaging

Figure 1: Original three frames (top row), background subtraction and the end result (bottom row)

Results - Movement & Posture

Differential imaging - Analysing

► Static:

Mean: 4.160425290465355 Standard Dev: 2.1473045628850933

► Normal:

Mean: 5.140186529606581 Standard Dev: 3.494529689254688

Nervous::

Mean: 5.340183582156897

Standard Dev3: 4.562151108328613

Figure 2: Percentage of pixels moved per three frame analysis. Going from static to nervous

Results - Eye contact & Gestures

- Started implementing software to detect eyes
- ► Turned out to be too difficult
- ▶ Recognizing frontal face is a more stable alternative
- Focus on gestures
- ► Recognizing place of hands by color

Results -Sound

- ▶ FFT
 - ▶ Little tests: big differences when non montuous
 - ▶ Best time frame to take FFT on is still unclear
- ▶ Volume
 - Noise was very disturbing for results
 - ► Average dB for speech was 80

Conclusion, Discussion & Future work

- Small steps towards the ideal goal
- Spent too much time on:
 - Working with badly documented software
 - Trying to connect with Kinect and OpenCV
 - Trying to implement things that were too difficult
- ► Future work:
 - ► Implement software for detecting eyes/frontal face
 - ► Implement software for recognizing facial expressions
 - Extend software for recognizing gestures
 - ► Implement software for recognizing tempo/speed of speech
 - Combine all these software pieces in one scoring system
 - Give feedback to a user