Regression in Gaussian Processes

SRIKANTH GADICHERLA 29TH JANUARY 2016

Agenda

- Why Gaussian Processes?
- What are Gaussian Processes?
- Weight Space view
 - Bayesian way of Regression
- ▶ Function Space view
 - ▶ Prior distribution over functions + calculating posterior distribution

Why Gaussian Processes?

What are Gaussian Processes?

- ▶ A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.
- ▶ One can loosely think of a function as a very long vector, each entry in the vector specifying the function value f(x).
- A Gaussian process is completely defined by mean m(x) and covariance function k(x, x').

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

$$m(x) = E[f(x)]$$

 $k(x, x') = E[(f(x) - m(x)) (f(x') - m(x'))]$

Gaussians provide the linear algebra of inference

- products of Gaussians are Gaussians
- marginals of Gaussians are Gaussians
- conditionals of Gaussians are Gaussians
- ▶ linear projections of Gaussians are Gaussians

Ridge Regression

Training set:

$$\mathcal{D} = \{(x_i, y_i) \mid i = 1, ..., n\}$$

Linear regression:

$$f(x) = \langle w, \phi(x) \rangle$$

Ridge regression:

$$\widehat{w} = \underset{w \in \mathcal{K}}{\operatorname{argmin}} \sum_{i=1}^{m} (y_i - \langle \phi(x_i), w \rangle)^2 + \lambda \|w\|^2$$

The Gaussian Process is a Bayesian Generalization of the Ridge Regression!

Weight-view Space

Bayesian Way of Regression

- > So, how do Bayesians use the Gaussian Processes?
 - ▶ Start with a prior
 - See your data, get likelihood.
 - ▶ Compute the posterior
- Get inferences from the posterior

lacktriangle Consider a training set $oldsymbol{\mathcal{D}}$ of n observations,

$$\mathcal{D} = \{(x_i, y_i) \mid i = 1, ..., n\}$$

where $x \in \mathbb{R}^D$ denotes the input vector (covariates), y denotes the target variable.

Design Matrix:
$$X = [x_1 | ... | x_n] \in \mathbb{R}^D$$

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

Standard linear model can be written as

$$f(x) = x^T \cdot w, \qquad y = f(x) + \varepsilon,$$

Assumed that observed y differs from function value f(x) by additive noise ε , further assumed that it's i.i.d with σ_n^2 is noise level

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

The noise assumption together with the model directly gives rise to the likelihood.

$$p(y|X,w) = \prod_{i=1}^{n} p(y_i|x_i,w)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma_n} \exp(-\frac{(y_i - x_i^T w)^2}{2\sigma_n^2})$$

$$= \frac{1}{(2\pi\sigma_n^2)^{n/2}} \exp(-\frac{|y - X^T w|^2}{2\sigma_n^2})$$

$$= \mathcal{N}(X^T w, \sigma^2 I)$$

▶ Bayesian formalism have to specify prior over the parameters. Taking zero mean Gaussian with \sum_{p} covariance.

$$w \sim \mathcal{N}(0, \sum_{p})$$

Calculate the posterior

$$p(w|X,y) = \frac{p(y|X,w)p(w)}{p(y|X)}$$

$$= \frac{p(y|X,w)p(w)}{\int p(y|X,w)dw}$$

$$= \frac{\mathcal{N}_{y}(X^{T}w,\sigma^{2}I_{n})\mathcal{N}(0,\Sigma_{p})}{\int \mathcal{N}_{y}(X^{T}w,\sigma^{2}I_{n})\mathcal{N}(0,\Sigma_{p})dw}$$

$$\propto \mathcal{N}_{y}(X^{T}w,\sigma^{2}I_{n})\mathcal{N}(0,\Sigma_{p})$$

$$p(w|X,y) \propto \mathcal{N}_{y}(X^{T}w,\sigma^{2}I_{n})\mathcal{N}(0,\Sigma_{p})$$

$$\propto \exp\left\{\frac{-1}{2\sigma^{2}}(y-X^{T}w)^{T}(y-X^{T}w)\right\} \exp\left\{w^{T}\Sigma_{p}^{-1}w\right\}$$

$$\propto \exp\left\{\frac{-1}{2}(w-\overline{w})^{T}\underbrace{\left(\frac{1}{\sigma^{2}}XX^{T}+\Sigma_{p}^{-1}\right)(w-\overline{w})}_{A}\right\}$$

$$\propto \mathcal{N}_{w}(-\overline{w},A^{-1})$$
 ("Completing the square")

where
$$\overline{w} = \sigma^{-2} \underbrace{(\sigma^{-2}XX^T + \sum_p^{-1})^{-1}}_{A^{-1} \in \mathbb{R}^D \times D} Xy \in \mathbb{R}^D$$

$$A = (\sigma^{-2}XX^T + \sum_p^{-1}) \in \mathbb{R}^D \times D$$

- To make predictions for a test case we average over all possible parameter values, weighted by their posterior probability.
- The predictive distribution $f_* riangleq f(x_*)$ at x_* is given by averaging the output of all possible linear models w.r.t to Gaussian posterior

$$p(f_*|x_*, X, y) = \int p(f_*|x_*, w) p(w|X, y) dw$$

$$= \mathcal{N}_{f_*} (\frac{1}{\sigma_n^2} x_*^T A^{-1} X y, x_*^T A^{-1} x_*)$$

$$= \mathcal{N}_{f_*} (x_*^T \overline{w}, x_*^T A^{-1} x_*)$$

The predictive uncertainties grow with the magnitude of the test input, as one would expect in a linear model.

Note : *Posterior covariance doesn't depend on y.*

Projection into Feature Space

Bayesian linear model suffers from limited expressiveness.

To overcome this problem, inputs are projected to feature space and then linear model is applied.

explicit features: $\emptyset(x) = [1, x, x^2, x^3, ...]$ or Chebyshev Polynomials

Implicit features: $k(\bar{x}, \bar{y}) = \exp(-\|\bar{x} - \bar{y}\|^2)$ "kernels"

"Linear in the parameters"

As long as the projections are fixed functions (i.e., independent of parameter **w**) the model is 'linear in parameters' and therefore analytically tractable.

Computational savings is high when dimensionality of feature space large when compared to data samples

Projection into Feature Space

Explicit features: Now, the model is

$$y = \emptyset(x)^T w + \epsilon$$

▶ The predictive distribution is

$$p(f_*|x_*,X,y) = \mathcal{N}_{f_*}(\emptyset(x_*)^T \overline{w},\emptyset(x_*)^T A^{-1}\emptyset(x_*))$$

$$\emptyset(x_*)^T w$$

$$\overline{w} = \sigma^{-2} \underbrace{(\sigma^{-2} \emptyset(X) \emptyset(X)^T + \sum_{p}^{-1})^{-1}}_{A^{-1} \in \mathbb{R}^{N \times N}} \emptyset(X) y \in \mathbb{R}^D$$

$$A = (\sigma^{-2}\emptyset(X)\emptyset(X)^T + \sum_{p}^{-1}) \in \mathbb{R}^{N \times N}$$

Projection into Feature Space

ightharpoonup Alternative formalism, to avoid $N \times N$ matrix inversion

$$\mathcal{N}_{f_*}((\emptyset_*^T \Sigma_p \phi)(K + \sigma^2 I_n)^{-1} y, (\emptyset_*^T \Sigma_p \phi) - (\emptyset_*^T \Sigma_p \phi)(K + \sigma^2 I_n)^{-1} (\phi^T \Sigma_p \phi_*))$$

$$\mathbb{R}^{N \times N} \quad \mathbb{R}^{N \times N} \quad \mathbb{R}^{N \times N} \quad \mathbb{R}^{N \times N} \quad \mathbb{R}^{N \times N}$$

Function-view Space

Motivation

- ▶ Get inferences directly in the function space.
- Gaussian process is used to describe a distribution over functions.

Gaussian Processes in Function Space

▶ For each $x \in \mathbb{R}^D$ a Guassian variable f(x) is associated such that

$$f(x) \sim \mathcal{N}_{f(x)} (m(x), k(x, x))$$

$$\begin{bmatrix} f(x) \\ f(\tilde{x}) \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f(x) \\ f(\tilde{x}) \end{bmatrix}} \left\{ \begin{bmatrix} m(x) \\ \widetilde{m(x)} \end{bmatrix}, \begin{bmatrix} k(x,x) & k(\tilde{x},x) \\ k(x,\tilde{x}) & k(\tilde{x},\tilde{x}) \end{bmatrix} \right\}$$

Bayesian Linear Model...revisited!

"Bayesian linear model is a Gaussian Process"

$$f(x) = \emptyset(x)^T w \in \mathbb{R}$$
$$w \sim \mathcal{N}(0, \Sigma_p)$$

where $\emptyset(x)$, $w \in \mathbb{R}^N$

▶ $[f(x_1), ..., f(x_k)]$ are jointly Gaussian $\forall x_1, ..., x_k$, thus f is a GP.

$$\mathbb{E}[f(x)] = \emptyset(x)^T \mathbb{E}[w] = 0$$

$$\mathbb{E}[f(x)f(x')] = \emptyset(x)^T \mathbb{E}[ww^T]\emptyset(x') = \emptyset(x)^T \sum_p \emptyset(x') = k(x, x')$$

Bayesian Linear Model...revisited!

Covariance function: Squared Exponential

$$cov(f(x_p), f(x_q)) = k(x_p, x_q) = \exp(-\frac{1}{2}|x_p - x_q|^2)$$

Intuition: variables close to each other are highly correlated (close to unity) than others.

Note, that covariance between output is written as a function of the inputs

Noiseless Data Predictions

ightharpoonup Consider a training set $\mathcal D$ of n noise-free observations,

$$\mathcal{D} = \{(x_i, y_i) \mid i = 1, ..., n\}$$

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times D}; \quad f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \in \mathbb{R}^n \quad \text{and targets}$$

$$X_* = \begin{bmatrix} x_{*1}^T \\ \vdots \\ x_{*m}^T \end{bmatrix} \in \mathbb{R}^{m \times D}; \quad f_* = \begin{bmatrix} f_{*1} \\ \vdots \\ f_{*m} \end{bmatrix} \in \mathbb{R}^m \quad m \text{ testing inputs and targets}$$

Noiseless Data Predictions

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} 0_n \\ 0_m \end{bmatrix}, \underbrace{\begin{bmatrix} k(X,X) & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix}}_{\in \mathbb{R}^{m+n \times m+n}} \right\}$$

Aim: to get the posterior $p(f_* | X_*, X, f)$

- One way is to restrict the joint prior distribution to contain only those functions which agree with the data
- Calculate posterior analytically

Noiseless Data Predictions

$$p(f_*|X_*,X,f) \sim \mathcal{N}_{f_*}(k(X_*,X)k(X,X)^{-1}f, k(X_*,X_*) - k(X_*,X)k(X,X)^{-1}k(X,X_*))$$

Remarks:

- 1. Covariance here is zero as the data is noise free.
- 2. The result is similar to one derived in explicit feature.

$$\mathcal{N}_{f_*}((\emptyset_*^T \Sigma_p \phi)(K + \sigma^2 I_n)^{-1} y, k(X_*, X_*) - (\emptyset_*^T \Sigma_p \phi)(K + \sigma^2 I_n)^{-1} k(X, X_*)(\phi^T \Sigma_p \phi_*))$$

Noisy Data Predictions

- Model: $y = f(x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ Assuming, the noise is i.i.d Gaussian noise with variance σ_n^2 .
- The joint distribution of the observed target values and test functions

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} y \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} 0_n \\ 0_m \end{bmatrix}, \underbrace{\begin{bmatrix} k(X,X) + \sigma^2 I_n & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix}}_{\in \mathbb{R}^{m+n \times m+n}} \right\}$$

Noisy Data Predictions

▶ The posterior for the noisy data is

$$p(f_*|X,y,X_*) \sim \mathcal{N}_{f_*}(\bar{f}_*,cov(f_*))$$
 where $f_* \triangleq E(f_*|X,y,X_*) = k(X_*,X)(k(X,X) + \sigma^2 I_n)^{-1}y$
$$cov(f_*) = k(X_*,X_*) - k(X_*,X)(k(X,X) + \sigma^2 I_n)^{-1}k(X,X_*)$$

Noisy Data Predictions

Numerical computation considerations

```
input: X (inputs), \mathbf{y} (targets), k (covariance function), \sigma_n^2 (noise level), \mathbf{x}_* (test input)

2: L := \text{cholesky}(K + \sigma_n^2 I)

\alpha := L^\top \setminus (L \setminus \mathbf{y})

4: \bar{f}_* := \mathbf{k}_*^\top \alpha

\mathbf{v} := L \setminus \mathbf{k}_*

6: \mathbb{V}[f_*] := k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^\top \mathbf{v}

\log p(\mathbf{y}|X) := -\frac{1}{2}\mathbf{y}^\top \alpha - \sum_i \log L_{ii} - \frac{n}{2}\log 2\pi

eq. (2.30)

8: return: \bar{f}_* (mean), \mathbb{V}[f_*] (variance), \log p(\mathbf{y}|X) (log marginal likelihood)
```

Varying the Hyperparameters

Covariance Function

Consider the covariance function,

$$k_y(x_p, x_q) = \sigma_f^2 \exp\left(-\frac{1}{2l^2}(x_p - x_q)^2\right) + \sigma_n^2 \delta_{pq}$$

The above equation has a few free parameters.

Covariance Function

Decision Theory of Regression

- ▶ Define a loss function, $\mathcal{L}(y_{true}, y_{guess})$
- ▶ Goal is to make the point prediction y_{guess} which incurs smallest loss.

How is it possible if we don't know y_{true} ?

Instead, we minimize the expected loss by averaging w.r.t our model opinion as to what the truth might be

$$\tilde{R}_{\mathcal{L}}(y_{guess}|x_*) = \int \mathcal{L}(y_*, y_{guess}) \ p(y_*|x_*, \mathcal{D})$$