Computer Architecture

Instruction: Language of the Computer

Part 3. 코드 최적화 및 ARM 프로그램 예제

Kyusik Chung

kchung@ssu.ac.kr

2장 Contents

Part 1: ARM 명령어 기초

- ARM 명령어 종류
- ARM 내부구조
- 숫자표현
- CPU 연산후 상태 비트 계산

Part 2:ARM assembly programming

■ ARM 명령어 사용법 소개

Part3: 코드 최적화 및 ARM assembly program 예제

- 간단한 코드 최적화
- 함수호출
- Sorting 예제

2장-Part 3. Contents

Part3: 코드 최적화 및 ARM assembly program 예제

- 간단한 코드 최적화
- 함수호출
- Sorting 예제

[복습]ARM 프로세서의 레지스터

■ 레지스터

- ❖ 프로세서가 연산 작업을 하는데 사용되는 값을 임시로 저장하는 공간
- ❖ ARM에는 32비트 길이의 37개의 레지스터가 있다.

[복습] ARM 레지스터 집합

[복습] ARM 명령어 사용법 이해

ARM 어셈블리 언어

종류	명령어	예	의미	비고
산술	add	ADD r1,r2,r3	r1 = r2 + r3	레지스터 피연산자 3개
	subtract	SUB r1,r2,r3	r1 = r2 - r3	레지스터 피연산자 3개
	load register	LDR r1, [r2,#20]	r1 = Memory [r2 + 20]	워드를 메모리에서 레지스터로
	store register	STR r1, [r2,#20]	Memory[r2 + 20] = r1	워드를 레지스터에서 메모리로
	load register halfword	LDRH r1, [r2,#20]	r1 = Memory [r2 + 20]	하프워드를 예모리에서 레지스터로
	load register halfword signed	LDRHS r1, [r2,#20]	r1 = Memory [r2 + 20]	하프워드를 메모리에서 레지스터로
데이터	store register halfword	STRH r1, [r2,#20]	Memory[r2 + 20] = r1	하프워드를 레지스터에서 메모리로
전송	load register byte	LDRB r1, [r2,#20]	r1 = Memory [r2 + 20]	바이트를 메모리에서 레지스터로
	load register byte signed	LDRBS r1, [r2,#20]	r1 = Memory [r2 + 20]	바이트를 메모리에서 레지스터로
	store register byte	STRB r1, [r2,#20]	Memory[r2 + 20] = r1	바이트를 레지스터에서 메모리로
	swap	SWP r1, [r2,#20]	r1 = Memory [r2 + 20] , Memory [r2 + 20] = r1	레지스터와 메모리 간의 원자적 교환
	mov	MOV r1, r2	r1 = r2	값을 레지스터로 복사
	and	AND r1, r2, r3	rl = r2 & r3	레지스터 피연산자 3개; 비트 대 비트 AND
	or	ORR r1, r2, r3	r1 = r2 r3	레지스터 피연산자 3개; 비트 대 비트 OR
논리	not	MWN r1, r2	r1 = ~ r2	레지스터 피연산자 3개; 비트 대 비트 NOT
는데	logical logical shift left (optional operation)	LSL r1, r2, #10	rl = r2 << 10	상수만큼 좌측 자리이동
	logical shift right (optional operation)	LSR r1, r2, #10	rl = r2 >> 10	상수만큼 우측 자리이동
	compare	OMP r1, r2	cond.flag = r1 - r2	조건부 분기를 위한 비교
조건부 분기	branch on EQ, NE, LT, LE, GT, GE, LO, LS, HI, HS, VS, VC, MI, PL	BBQ 25	if (r1 == r2) go to PC + 8 + 100	조건테스트; PC-상대 주소
O.T.N	branch (always)	B 2500	go to PC + 8 + 10000	분기
무조건 분기	branch and link	BL 2500	r14 = PC + 4; go to PC + 8 + 10000	프로시지 호출용

[복습]명령어 **set 1**

종류	명령어	예	의미	비고
산술	add	ADD rl,r2,r3	rl = r2 + r3	레지스터 피연산자 3개
LL and	subtract	SUB r1,r2,r3	r1 = r2 - r3	레지스터 피연산자 3개
	load register	LDR r1, [r2,#20]	r1 = Memory [r2 + 20]	워드를 메모리에서 레지스터로
	store register	STR r1, [r2,#20]	Memory [r2 + 20] = r1	워드를 레지스터에서 메모리로
	load register halfword	LDRH r1, [r2,#20]	r1 = Memory [r2 + 20]	하프워드를 메모리에서 레지스터로
	load register halfword signed	LDRHS r1, [r2,#20]	r1 = Memory [r2 + 20]	하프워드를 메모리에서 레지스터로
데이터	store register halfword	STRH rl, [r2,#20]	Memory [r2 + 20] = r1	하프워드를 레지스터에서 메모리로
전송	load register byte	LDRB r1, [r2,#20]	r1 = Memory [r2 + 20]	바이트를 메모리에서 레지스터로
	load register byte signed	LDRBS r1, [r2,#20]	r1 = Memory [r2 + 20]	바이트를 메모리에서 레지스터로
	store register byte	STRB r1, [r2,#20]	Memory [r2 + 20] = r1	바이트를 레지스터에서 메모리로
	swap	SWP rl, [r2,#20]	r1 = Memory [r2 + 20], Memory [r2 + 20] = r1	레지스터와 메모리 간의 원자적 교혼
	mov	MOV r1, r2	r1 = r2	값을 레지스터로 복사

[복습]명령어 set 2

논리	and	AND r1, r2, r3	r1 = r2 & r3	레지스터 피연산자 3개; 비트 대 비트 AND	
	or	ORR r1, r2, r3	r1 = r2 r3	레지스터 피연산자3개; 비트 대 비트 OR	
	not	MVN r1, r2	r1 = ~ r2	레지스터 피연산자 3개; 비트 대 비트 NOT	
	logical logical shift left (optional operation)	LSL r1, r2, #10	r1 = r2 << 10	상수만큼 좌측 자리이동	
	logical shift right (optional operation)	LSR r1, r2, #10	r1 = r2 >> 10	상수만큼 우측 자리이동	
	compare	CMP rl, r2	cond. flag = r1 - r2	조건부 분기를 위한 비교	
조건부 분기	branch on EQ, NE, LT, LE, GT, GE, LO, LS, HI, HS, VS, VC, MI, PL	BEQ 25	if (r1 == r2) go to PC + 8 + 100	조건 테스트; PC-상대 주소 = 25*4	
무조건 분기	branch (always)	B 2500	go to PC + 8 + 10000	= 2500*4	
	branch and link	BL 2500	r14 = PC + 4; go to PC + 8 + 10000	프로시져 호출용	

If문 컴파일하기

Compiled ARM code:

```
CMP r3, r4

BNE Else ; go to Else if i ≠ j

ADD r0, r1, r2 ; f = g + h (skipped if i ≠ j)

B Exit ; go to Exit

Else SUB r0, r1, r2 ; f = g - h (skipped if i = j)

Exit
```

If문 컴파일하기 [Branch 명령 제거]

■ if 문장을 branch 명령으로 실행한 ARM Code

```
CMP r3, r4

BNE Else ; go to Else if i \neq j

ADD r0, r1, r2 ; f = g + h (skipped if i \neq j)

B Exit ; go to Exit

Else: SUB r0, r1, r2 ; f = g - h (skipped if i = j)

Exit:
```

■ Branch 명령을 제거한 ARM Code

```
CMP r3, r4

ADDEQ r0, r1, r2 ; f = g + h (skipped if i \neq j)

SUBNE r0, r1, r2 ; f = g - h (skipped if i = j)
```

■ Branch 명령이 파이프라인 프로세서의 성능을 떨어뜨린다. → Branch 명령을 제거하는 것이 좋다.

Loop문 컴파일하기

- C code: | r₃ | r₅ | while (save[i] == k) i += 1;
 - ❖ 변수 i는 r3, k는 r5, 배열 save의 시작주소는 r6에 할당되었다고 가정
- Compiled ARM code:

```
Loop LDR r0, [r6, r3, LSL #2]

CMP r0, r5

BNE Exit

ADD r3, r3, #1

B Loop

Exit
```

Loop문 컴파일하기 [Branch 명령 제거]

C code:

while (save[i]
$$==$$
 k) i $+=$ 1;

❖ 변수 i는 r3, k는 r5, 배열 save의 시작주소는 r6에 할당되었다고 가정

Compiled ARM code:

```
Loop LDR r0, [r6, r3, LSL #2]
CMP r0, r5
ADDEQ r3, r3, #1
BEQ Loop
Exit
```

2장-Part 3. Contents

Part3: 코드 최적화 및 ARM assembly program 예제

- 간단한 코드 최적화
- 함수호출
- Sorting 예제

함수 호출

- 스택을 이용한 Procedure call (함수호출)
- Recursive call (중첩 호출)

함수 호출 과정

- 호출자 함수(caller)가 인수 값들을 r0-r3에 넣는다.
- BL X를 사용하여 함수 X (callee)로 점프한다.
- 피호출 함수(callee)는 계산을 수행한다.
- 수행 결과를 r0 와 r1에 넣는다.
- MOV pc, Ir을 이용하여 호출자 함수에게 제어를 넘 긴다.
- 여기 Ir에는 호출자 함수가 BL X 수행시 BL X 다음 명령어 번지가 들어가 있음. 예를 들어 BL X가 1000 번지에 있었다면 그 다음 명령어는 1004번지에 들어 있으므로 Ir에는 1004가 들어가 있음.

[복습]PUSH(STMFD)/POP(LDMFD) 사용

PUSH/POP 사용

- Return from a leaf subroutine call
 - ♦ MOV pc, r14; r14 = LR 인데, BX LR 명령어와 동일한 결과
- Return from nested subroutine call
 - * f1 PUSH {r4-r6, r14} ; save work regs and link
 # PUSH 명령어 수행하면 f2를 call 하기전 r14 뿐만 아니라 r4-r6를
 # 스택에 저장. r14를 저장한 이유는 f1 call한 다음 명령어 번지로
 # 정확하게 return하기 위함. r4-r6 저장한 이유는 f1 수행시
 # 그 레지스터들을 사용하는데 f1 수행끝나고 return시 f1 들어올 때
 # r4-r6 값을 원래 값대로 복원하기 위함

BL f2

POP {r4-r6, pc }; restore work regs and return # POP 명령어 수행하면 PC에는 스택에 저장되었던 r14 값이 들어감. # 이는 MOV PC, LR 또는 BX LR 명령어 사용한 것과 동일한 효과 17

스택의 필요성

- 레지스터 스필링 (Register Spilling) 레지스터 내용을 메 모리에 저장하기
 - ❖ 한 함수가 사용한 모든 레지스터를 해당 함수가 호출되기 전 상태로 깨끗이 복구해 놓은 방법
 - ❖ 레지스터 스필링을 위한 이상적인 자료 구조는 스택이다
- ARM의 레지스터 스필링
 - ❖ ARM에서 구동되는 소프트웨어는 레지스터를 두 종류로 분리
 - ◆ r0-r3, r12: 함수 호출 시, 피호출 함수(callee)가 값을 보존해 주지 않는 인수 또는 스크래치 레지스터
 - ◆ r4-r11: 함수 호출 전과 후에 레지스터 값이 동일하게 유지되어야 하는 변수 레지스터 8개(피호출 함수가 이 레지스터를 사용하면 원 래 값을 저장했다가 원상 복구해야 한다.)

[복습] APCS

ARM Procedure Call Standard

	레지스터	APCS	역 할	비고	
	r0	a1	argument 1 / integer result / scratch register	Caller save	
	r1	a2	argument 2 / scratch register	Caller save	
	r2	а3	argument 3 / scratch register	Caller save	
	r3	a4	argument 4 / scratch register	Caller save	
Г	r4	v1	register variable 1	Callee save	
	r5	v2	register variable 2	Callee save	
	r6	v3	register variable 3	Callee save	
	r7	v4	register variable 4	Callee save	
	r8	v5	register variable 5	Callee save	
	r9	sb/v6	static base / register variable 6	Callee save	
	r10	sl/v7	stack limit / register variable 7	Callee save	
	r11	fp	frame pointer	Callee save	
	r12	ip	scratch reg. / new sb in inter-link-unit calls	Caller save	
	r13	sp	Lower end of current stack frame	-	
	r14	lr	link address / scratch register	Caller save	
	r15	рс	program counter	-	

APCS 이해

```
글로벌 변수는 RW
     데이터 영역에 할당
                                                  4개 이상의 인자는
                      r0 ~ r3의 함수 인자 용
                                                    스택에 할당
                        레지스터에 할당
Int gv1 = 100;
int function (int a1, int a2, int a3, int a4, int a5, int a6, int a7)
       int v1, int v2, int v3, int v4, int v5, int v6, int v7;
       int v8, int v9, int v10;
                                     로컬 변수의 사용량이
       int ret;
                                     늘어나면 스택에 할당
                                                                r4 ~ r10의 변수용
                                                                레지스터에 할당
       v10 = qv1 + v4;
       ret = v7 - v1;
       return ret; *
                            - r0를 통해서 결과 값 전달
```

스택의 구조

스택 포인터(Stack Pointer)

- ❖ 스택 포인터는 'sp'로 표시하며, reg13에 할당
- ❖ 스택에 데이터를 넣은 작업을 'push'
- ❖ 스택에서 데이터를 꺼내는 작업을 **`pop'**
- ❖ 스택은 높은 주소에서 낮은 주소 쪽으로 성장
 - ◆ 스택에 데이터를 푸쉬할 때는 스택 포인터 값을 감소,
 - ◆ 스택에서 데이터를 팝할 때는 스택 포인터 값을 증가

최하단(Leaf) 프로시저 예

C code:

```
int leaf_example (int g, h, i, j)
{ int f;
    f = (g + h) - (i + j);
    return f;
}
```

- ❖ 함수 인자 g, ..., j는 레지스터 r0, ..., r3에 할당된다
- ❖ 자동 변수 f 는 레지스터 r4에 할당된다
- ❖ 함수 리턴값은 r0에 저장한다

최하단(Leaf) 프로시저 예

le	af_exa	mple:		
	SUB	sp,	sp, #12	
	STR	r6,	[sp, #8]	
	STR	r5,	[sp, #4]	
		r4,		
	ADD	r5,	r0, r1	
	ADD	r6,	r2, r3	
	SUB	r4,	r5, r6	
	MOV	r0,	r4	
	LDR	r4,	[sp, #0]]
	LDR	r5,	[sp, #4]	
	LDR	r6,	[sp, #8]	
	ADD	sp,	sp, #12	
	MOV	pc,	1r	

[,] PUSH {r4, r5, r6}와 동일

프로시저 레이블

- 스택에 3개 워드(12bytes) 저장할 자리

나중에 사용할 수 있도록 r4, r5, r6 값을 스택에 임시 저장

프로시저 연산 과정

return f; 과정, 최종 결과값을 r0에 복사

임시로 저장해 두었던 값을 스택에서 꺼내어 레지스터로 원상 복귀

스택 포인터 3개 워드를 delete

Jump back to calling routine

POP {r4, r5, r6}와 동일

최하단(Leaf) 프로시저 예 [STM/LDM 버전]

leaf_example:	
SUB sp, sp, #12	
STR r6, [sp, #8] STR r5, [sp, #4] STR r4, [sp, #0] ADD r5, r0, r1	leaf_example: STMFD sp!,{r4-r6}
ADD r5, r0, r1 ADD r6, r2, r3 SUB r4, r5, r6 MOV r0, r4	ADD r5, r0, r1 ADD r6, r2, r3 SUB r4, r5, r6 MOV r0, r4
LDR r4, [sp, #0] LDR r5, [sp, #4]	LDMFD sp!,{r4-r6} MOV pc, lr
LDR r6, [sp, #8] ADD sp, sp, #12 MOV pc, lr	STMFD sp! 대신 PUSH, LDMFE sp! 대신 POP을 사용해도 됩니다

- 다른 프로시저들을 호출하는 프로시저들
- 중첩된 호출인 경우, 호출자는 스택에 다음 항목들을 저장해야 한다:
 - 호출자의 복귀 주소
 - ❖ 프로시저 호출 이후에 필요한 파라미터들과 임시 계산값들
- 프로시저 호출 후에 스택으로부터 상기 항목들을 복구해야 한다
- recursive factorial 함수 코드를 이용하여 스택에 저장, 복구 하는 사례를 학습한다.

C code:

```
int fact (int n)
{
   if (n < 1) return 1;
   else return n * fact(n - 1);
}</pre>
```

- ❖ 함수 인자 n은 r0에 할당된다
- ❖ 함수 리턴값은 **r0**에 할당된다

(n < D) return 1 ARM code: fact ; adjust sp to push 2 items SUB sp, sp #8 비최하단 ; save the return address STR lr, [sp, #4] 프로시저기 STR r0, [sp, #0] ; \$ave the argument n 코드 CMP r0, #1 ; compare n to 1 ; if n >= 1, go to L1 BGE L1 MOV r0, #1 ; return 1' 최하단 프 ADD sp, sp, #8 ; pop 2 items off stack 로시저 코 MOV pc,lr ; return to the caller L1 SUB r0, r0, #1 ; $n \ge 1$: argument gets (n-1)BL fact ; call fact with (n-1) ; save the return value MOV r12, r0 비최하단 LDR r0, [sp, #0]; restore argument n 프로시저ㅓ LDR lr, [sp, #4]; restore the return address 코드 ADD sp, sp, #8; adjust sp to pop 2 items MUL r0, r0, r12 ; return n * fact (n-1)pc, 1r return to the caller MOV

비최하단(Non-Leaf) 프로시저 예 [STM/LDM 버전]

return 1

2 x fact(1)

- main C 코드, fact 어셈블리 코드, 스택의 각각 **왼쪽 또는 오른쪽 빨간**

0x3000

0x2FFC

0x2FF8

- 가정: main C 코드는 메모리 1000번지부터, fact() 어셈블리 코드는 2000번지부터, 스택포인터는 3000번지에 위치
- ① main C 코드에서 fact(2) call
- ② fact(2) 어셈블리 코드에서 2000~ 2008 번지 명령어 수행후 스택모습이 상단 그림

메모리 배치

- 텍스트: 프로그램 기계어 코드
- 정적 데이터: 전역 변수들
 - ⋄ 예: C 정적 변수들, 상수 배 열들, 문자열들
- 동적 데이터: 힙(heap)
 - ❖ 예: C의 malloc 함수, Java 의 new 연산자
 - ❖ Memory leak: free 함수
- 스택: 자동 저장소 (automatic storage)

2장-Part 3. Contents

Part3: 코드 최적화 및 ARM assembly program 예제

- 간단한 코드 최적화
- 함수호출
- Sorting 예제

bubble sort(방법1)

bubble sort (방법2-교재내용)

C Sort Example to Put It All Together

- C Sort Example
- Illustrates use of assembly instructions for a C bubble sort function
- Swap procedure (leaf)

```
void swap(int v[], int k)
{
  int temp;
  temp = v[k];
  v[k] = v[k+1];
  v[k+1] = temp;
}
```

The Procedure Swap

Assembler directive

```
v RN 0 ; 1st argument address of v
```

k RN 1; 2nd argument index k

temp RN 2; local variable

temp2 RN 3; temporary variable for v[k+1]

vkAddr RN 12; to hold address of v[k]

Procedure body

```
swap: ADD vkAddr, v, k, LSL \#2 ; reg vkAddr = v + (k * 4) ; reg vkAddr has the address of v[k] LDR temp, [vkAddr, \#0] ; temp (temp) = v[k] temp2, [vkAddr, \#4] ; temp2 = v[k + 1] ; refers to next element of v STR temp2, [vkAddr, \#0] ; v[k] = temp2 sTR temp, [vkAddr, \#4] ; v[k+1] = temp
```

	Procedure return
MOV pc, 1r	; return to calling routine

The Sort Procedure in C

Non-leaf (calls swap)

```
void sort (int v[], int n)
{
  int i, j;
  for (i = 0; i < n; i ++ ) {
    for (j = i - 1; j >= 0; j --) {
      if (v[j] > v[j + 1]) swap(v,j);
    }
  }
}
```

이 bubble sorting에 대한 어셈블리코드(P29-P31)는 Lab3에서 실습하게 됨

Register allocation and saving registers for sort

```
Register allocation
                   RN0
                                      ; 1st argument address of v
V
                                      ; 2<sup>nd</sup> argument index n
                   RN 1
n
                   RN 2
                                      ; local variable i
                                      ; local variable j
                   RN 3
                   RN 12
                                      ; to hold address of v[j]
vjAddr
                   RN 4
                                      ; to hold a copy of v[j]
νj
vj1
                   RN 5
                                      ; to hold a copy of v[j+1]
                                      ; to hold a copy of v
                   RN 6
vcopy
                                      ; to hold a copy of n
                   RN 7
ncopy
```

		Saving registers	
sort:	STR STR STR	sp,sp,#20 lr, [sp, #16] ncopy, [sp, #12] vcopy, [sp, #8] j, [sp, #4] i, [sp, #0]	<pre>; make room on stack for 5 registers ; save lr on stack ; save ncopy on stack ; save vcopy on stack ; save j on stack ; save i on stack</pre>

Procedure body — sort (int v[], int n)

```
int i, j;

for (i = 0; i < n; i ++)

for (j = i - 1; j >= 0; j --)

if (v[j] > v[j + 1]) swap(v,j);

}
```

Move parameters		MOV	vcopy, v		ter v into vcopy (save/r0)
Wove parameters		MOV	ncopy, n	/; copy paramet	ter n into ncopy (save r1)
		MOV	i, #0	; i = 0	
Outer loop	for1tst:	CMP	i, n 🎉	; if i ≥ n	
·		BGE	exit1	go to exit1	if i ≥ n
		SUB	j, i, #1 🖊	; j = i - 1	
	for2tst:	CMP	j, ∦ 0	; if j < 0/	
		BLT	exit2 ; go to	exit2 if $j < 0$	
		ADD	vjAddr, v, j,	LSL #2	; reg vjAddr = v + (j * 4)
Inner loop		LDR	vj, [vjAddr,#0)] /	;/reg vj = v[j]
		LDR	vjl, [vjAddr,#	^[4]	= reg vj1 = v[j + 1]
		CMP	vj, vj1	/; if vj ≤ vj/	,
		BLE	exit2	; go to exit2	if vj ≤ vj1
Dana wawanatawa		MOV	rO, vcopy	; first swap pa	arameter is v
Pass parameters		MOV	r1, j	; second swap	parameter is j
and call		BL	swap	; swap code show	vn in Figure 2.23
Inner loop		SUB	j, j, #1	;/j -= 1	
		В	for2tst	/; branch to te	est of inner loop
Outer loop	exit2:	ADD	i, i, #1 📈	; i += 1	
		В	for1tst	; branch to te	est of outer loop

Restoring registers and return - sort

```
i, [sp, #0]
exit1:
      LDR
                                        : restore i from stack
         LDR
               j, [sp, #4]
                                        ; restore j from stack
                                        ; restore vcopy from stack
        LDR
               vcopy, [sp, #8]
        LDR
               ncopy, [sp, #12]
                                        ; restore ncopy from stack
        LDR
               lr, [sp, #16]
                                        ; restore 1r from stack
                sp,sp,#20
         ADD
                                        ; restore stack pointer
```

		Procedure return
MOV	pc. lr	; return to calling routine

부록 1. - MIPS 명령어/ARM v8 명령어 소개

- 배경설명
 - ❖ 본 강의 4장부터는 MIPS 명령어로 설명 (교재 원본)
 - ❖ ARM 버전이 추가로 나와서 처음에 32 비트인 ARM v7 로 설명한 교 재가 나왔다가 현재는 64 비트인 ARM v8 버전의 부분집합인 LEGv8 명령어 사용
 - ❖ 본 강의 2장은 ARM v7 어셈블리 언어 및 프로그래밍을 다룸
 - ❖ 버전에 상관없이 교재에서 사용하는 CPU hardware는 동일
- MIPS 명령어 소개
 - * ARM 명령어와의 비교
- ARM v8 & LEG v8 명령어 소개

ARM Instructions and MIPS Instructions

- ARM: the most popular embedded core
- Similar basic set of instructions to MIPS

	ARM	MIPS
Date announced	1985	1985
Instruction size	32 bits	32 bits
Address space	32-bit flat	32-bit flat
Data alignment	Aligned	Aligned
Data addressing modes	9	3
Registers	15 × 32-bit	31 × 32-bit
Input/output	Memory mapped	Memory mapped

ARM vs MIPS

교재 4장에서 사용되는 MIPS 명령어

BEQ, B

beq, j

	명령어 이름	ARM	MIPS	
	Add	ADD	addu, addiu	
	Add (trap if overfl ow)	ADDS: 2WIV	add	
	Subtract	SUB	subu	
	Subtract (trap if overfl ow)	SUBS; SWIVS	sub	
	Multiply	MUL	mult, multu	
	Divide	_	div. divu	
레지스터-레지스터	And	AND	and	
	Or	ORR	or	
	Xor	EOR	xor	
	Load high part register	MOVT	lui	
	Shift left logical	LSL ¹	sllv, sll	
	Shift right logical	LSR ¹	srlv, srl	
	Shift right arithmetic	ASR ¹	srav, sra	
	Compare	CMP, CMN, TST, TEQ	slt/i, slt/iu	
	Load byte signed	LDRSB	lb	
	Load byte unsigned	LDRB	Ibu	
	Load halfword signed	LDRSH	lh	
	Load halfword unsigned	LDRH	lhu	
데이터 전송	Load word	LDR	lw	
	Store byte	STRB	sb	
	Store halfword	STRH	sh	
	Store word	STR	SW	
	Read, write special registers	MRS, MSR	move	
	Atomic Exchange	SWP, SWPB	II;sc	

Set on less than

MIPS 명령어

Category	Instruction	Example	Meaning	Comments	
	add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three register operands	
Arithmetic	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three register operands	
	add immediate	addi \$s1,\$s2,100	\$s1 = \$s2 + 100	Used to add constants	
	load word	lw \$s1,100(\$s2)	\$s1 = Memory[\$s2 + 100]	Word from memory to register	
	store word	sw \$s1,100(\$s2)	Memory[$$s2 + 100$] = $$s1$	Word from register to memory	
	load half	1h \$s1,100(\$s2)	\$s1 = Memory[\$s2 + 100]	Halfword memory to register	
Data transfer	store half	sh \$s1,100(\$s2)	Memory[$$s2 + 100$] = $$s1$	Halfword register to memory	
	load byte	1b \$s1,100(\$s2)	\$s1 = Memory[\$s2 + 100]	Byte from memory to register	
	store byte	sb \$s1,100(\$s2)	Memory[$$s2 + 100$] = $$s1$	Byte from register to memory	
	load upper immed.	lui \$s1,100	\$s1 = 100 * 2 ¹⁶	Loads constant in upper 16 bits	
	and	and \$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND	
	or	or \$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Three reg. operands; bit-by-bit OR	
	nor	nor \$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR	
Logical	and immediate	andi \$s1,\$s2,100	\$s1 = \$s2 & 100	Bit-by-bit AND reg with constant	
	or immediate	ori \$s1,\$s2,100	\$s1 = \$s2 100	Bit-by-bit OR reg with constant	
	shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant	
	shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant	
	branch on equal	beq \$s1,\$s2,25	if (\$s1 \$s2) go to PC + 4 + 100	Equal test; PC-relative branch	
Conditional	branch on not equal	bne \$s1,\$s2,25	if (\$s1 != \$s2) go to PC + 4 + 100	Not equal test; PC-relative	
branch	set on less than	slt \$s1,\$s2,\$s3	If (\$sZ < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than; for beq, bne	
	set less than immediate	slti \$s1,\$s2,100	if (\$s2 < 100) \$s1 = 1; else \$s1 = 0	Compare less than constant	
	jump	j 2500	go to 10000	Jump to target address	
Uncondi- tional jump	jump register	jr \$ra	go to \$ra	For switch, procedure return	
donar jump	jump and link	jal 2500	\$ra = PC + 4; go to 10000	For procedure call	

MIPS 명령어

MIPS Reference Data

CORE INSTRUCT	MNE-						cacco
	MNE- MON-	EOR					PUNC
NAME	IC.	MAT		RATION	in Venilog)		(Hex)
Add	A56	R	R[nl] = Rl			(1)	0/20
Add Immediate	a461	1	R[n] = R[1)(2)	Spec
Add Imm. Unsigned		1	R[n] - R[(2)	9,00
Add Unsigned	a tidu	R	R[nl] = R	Transfel.		0.00	0/216
And	and	R	R[nl] - R				0/24
						770	
And Immediate	andi	10	R[n] - R[EXMINER.	(3)	Flore
Branch On Equal	hed:	1		4+Branch/	Addr	(4)	fee
Branch On Not Tigus	dbow	1	if(R[n))=1	E(rij) 4+Branch/	Like .	(4)	Spec
Jump		1	PC=Jump		1	(3)	200
Jump And Link	tal	1	R[31]-PC		madde	(5)	Jan
		R			- Accessed	100	0/0%
Jump Register	24		PC-R[n] R[n]=(24	NO APPEA	,		
Load Byte Unsigned	lite	1		igaExtlmo		(2)	24 ₅₄₄
Load Halfword Unsigned	Ibu	1	R[n]-(16	The second second	1	(2)	25 _{hrs}
Load Upper Imm.	Tor-	1	R[rt] = [ir	The State of the Land of the L		1375	Sm
Load Word	1.	1	R[n] - M			(2)	23 _{bes}
Nor	DOE	R	R[nd] = -				0/27
Or	are .	R	R[nl] - R				0/25
Or Immediate	ori	1	R[n] = R[Section 1		(3)	don
Set Less Thon	alt	R	NAME OF TAXABLE PARTY.			1,00	0 / 25
SCI LESS LISTS	841		R[nl] = (R R[nl] = (R				
Set Less Than Iron.	slti	- 1	w(u) - (w)	71:0	CALL STREET	(2)	Plant
Set Less Than Iron. Unsigned	eltin	1	$\mathbb{R}[n] - (\mathbb{R}$			2)(6)	b _{im}
Set Less Thon Unsigned	sltu	R	$\mathbb{R}[rd] - (\mathbb{R}$	[m] < R[m	071:0	(6)	0 / 2b _b
Shift Left Logical	:11	R	R[nl] = R	rt) << shar	nt		0700h
Shift Right Logical	sei	R	R[nd] = R	n] >> shar	nt		0 / 02%
Store Byte	40	1	M[R[n]+			(2)	25,00
Store Halfword	Ab .	1	M[R[m]+5		n](15:0) = R[n](15:0)	(2)	29 _{hm}
Store Word	(total)	1	M[R[rs]+5	ignEstlm:	m] = R[m]	(2)	2bbes
Subtract	multi	R	$\mathbb{H}(\mathrm{rd}) - \mathbb{H}$	TO CHARGO		(1)	0/22
Subtract Unsigned	subo	R	R(nt) - Rt				0/23
	(I) Ma	y cau	se overflow	exception			
	(5) Zei (4) Bri (5) Jun	roExtl anchA anchA	mm = (16 mm = (16 ddr = (14) dr = (PC s comidero	(15/0), im immediate -4(31/28).	mediate } {15}), imn address, 2	nedim	e, 290 J
BASIC INSTRUCT							
R speode	19		п	nd	shoret	7	funct
H 16		21.20		1,200	1 10	6.5	
1 npcode	75		rt.		immedi		

Branch On Equal	beq	1	rt(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equ	ual bne	1	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	3	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}

- (1) May cause overflow exception
- (2) SignExtImm = { 16{immediate[15]}, immediate }
- (3) ZeroExtImm = { 16{1b'0}, immediate }
- (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 }
- (5) $JumpAddr = \{ PC+4[31:28], address, 2'b0 \}$
- (6) Operands considered unsigned numbers (vs. 2's comp.)

MIPS Register Convention

Name	Register Number	Usage
\$zero	0	the constant value 0
\$at	1	reserved for assembler
\$v0-\$v1	2-3	values for results and expression evaluation
\$a0-\$a3	4-7	arguments
\$t0-\$t9	8-15,24-25	temporaries
\$s0-\$s7	16-23	saved
\$k0-\$k1	26-27	reserved for operating system
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	return address

Example: A[300]=h+A[300];

• lw \$t0,1200(\$t1) # Temporary reg. \$t0 gets **A[300]** add \$t0,\$\$2/,\$t0 # Temporary reg. \$t0 gets h+A[300] sw \$t0,1200(\$t1) # Stores h+A[300] back into A[300] t1 레지스터는 배열 A 시작주소를 가짐 1200**2** 300 (index 값) x 4 (word 당 차지하는 주소 개수)에서 나온 것임 \$t1 대신 \$2가 올 수 있슴. 이는 레지스터 2번을 의미

Addressing in Branches and Jumps

J-type instruction format

- Pseudo-direct addressing
 - Upper 4 bits of PC are unchanged.
 - Address boundary of 256 MB
 - Jump address

	from PC	from instruction	00
4	bits	26 bits	2 bits

PC의 상위 4 비트는 바꾸지 않고 하위 28비트만 바꾸어서 32 비트 주소 생성

Branch Address

PC-relative addressing mode

- ❖ Branch target address = (PC+4) + Branch offset
- New PC = (PC+4) $\pm 2^{15}$ word

	op	rs	rt	(word) address
_	6 bits	5 bits	5 bits	16 bits

부록 2. - ARM v8(64비트 CPU) 명령어 소개

- -ARM v8(64비트 CPU) 명령어 set
 - ARM v8(64비트 CPU) 에서 사용하는 명령어
 - 32비트로 표현

ARM v8 Instruction Format

Field	opcode	Rm	shamt	Rn	Rd			
Bit positions	31:21	20:16	15:10	9:5	4:0			
a. R-type instruction								
Field	1986 or 1984	address		Rn	Rt			
Bit positions	31:21	20:12 1		9:5	4:0			
b. Load or store	b. Load or store instruction							
Field	180	address		Rt				
Bit positions	31:26		4:0					

c. Conditional branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and conditional branch) use three different instruction formats. The unconditional branch instruction uses another format, which we will discuss shortly. (a) Instruction format for R-format instructions, have three register operands: Rn, Rm, and Rd. Fields Rn and Rm are sources, and Rd is the destination. The ALU function is in the opcode field and is decoded by the ALU control design in the previous section. The R-type instructions that we implement are ADD, SUB, AND, and ORR. The shamt field is used only for shifts; we will ignore it in this chapter. (b) Instruction format for load (opcode = 1986_{ten}) and store (opcode = 1984_{ten}) instructions. The register Rn is the base register that is added to the 9-bit address field to form the memory address. For loads, Rt is the destination register for the loaded value. For stores, Rt is the source register whose value should be stored into memory. (c) Instruction format for compare and branch on zero (opcode = 180). The register Rt is the source register that is tested for zero. The 19-bit address field is sign-extended, shifted, and added to the PC to compute the branch target address.

Full ARM v8 instruction set(1/4)

There is also a version of the MOV wide instructions (MOVN) that complements all 64 bits that are created from the 16-bit constant; that is, the other 48 bits are one instead of zeros and the 16-bit immediate field is complemented too, which bumps the count to 53.

165

Туре	Mnemonic	Instruction	Туре	Mnemonic	Instruction
	ADD	Add		ANDI	Bitwise AND Immediate
er	ADDS	Add and set flags	ate	ANDIS	Bitwise AND and set flags Immediate
Arithmetic Register	SUB	Subtract	Logical	ORRI	Bitwise inclusive OR Immediate
Re	SUBS	Subtract and set flags	mm C	EORI	Bitwise exclusive OR Immediate
ietic	CMP	Compare	_	TSTI	Test bits Immediate
thu	CMN	Compare negative	po	LSL	Logical shift left Immediate
Ari	NEG	Negate	Shift Register Shift Immed	LSR	Logical shift right Immediate
	NEGS	Negate and set flags	# =	ASR	Arithmetic shift right Immediate
	ADDI	Add Immediate	Shi	ROR	Rotate right Immediate
c e	ADDIS	Add and set flags Immediate	ster	LSRV	Logical shift right register
neti	SUBI	Subtract Immediate	6818	LSLV	Logical shift left register
Arithmetic Immediate	SUBIS	Subtract and set flags Immediate	ft R	ASRV	Arithmetic shift right register
ΨĒ	CMPI	Compare Immediate	Shi	RORV	Rotate right register
	CMNI	Compare negative Immediate	te e	MOVZ	Move wide with zero
	ADD	Add Extended Register	Wide d iate	MOVK	Move wide with keep
0 0	ADDS	Add and set flags Extended	Move Wide Immed iate	MOVN	Move wide with NOT
neti Ide	SUB	Subtract Extended Register	ž E	MOV	Move register
Arithmetic Extended	SUBS	Subtract and set flags Extended		BFM	Bitfield move
ĀΜ	CMP	Compare Extended Register	#	SBFM	Signed bitfield move
	CMN	Compare negative Extended	tract	UBFM	Unsigned bitfield move (32-bit)

Full ARM v8 instruction set(2/4)

	ADC	Add with carry	⊗ Ex	BFI	Bitfield insert
with th	ADCS	Add with carry and set flags	0.0500	BFXIL	Bitfield extract and insert low
15 tic	SBC	Subtract with carry	Insert	SBFIZ	Signed bitfield insert in zero
Carry	SBCS	Subtract with carry and set flags	- Field	SBFX	Signed bitfield extract
Arithmetic with Carry	NGC	Negate with carry	Bit Fi	UBFIZ	Unsigned bitfield insert in zero
	NGCS	Negate with carry and set flags	8	UBFX	Unsigned bitfield extract
	AND	Bitwise AND		EXTR	Extract register from pair
	ANDS Bitwise AND and set flags ORR Bitwise inclusive OR	0.00	SXTB	Sign-extend byte	
		Extend	SXTH	Sign-extend halfword	
ster	EOR	Bitwise exclusive OR	EX	SXTW	Sign-extend word
Register	BIC	Bitwise bit clear	Sign	UXTB	Unsigned extend byte
Te Co	BICS	Bitwise bit clear and set flags	07	UXTH	Unsigned extend halfword
Logical	ORN	Bitwise inclusive OR NOT		CLS	Count leading sign bits
	EON	Bitwise exclusive OR NOT	uo	CLZ	Count leading zero bits
	MVN	Bitwise NOT	Operation	RBIT	Reverse bit order
	TST	Test bits	Ope	REV	Reverse bytes in register
			Bit	REV16	Reverse bytes in halfwords
				REV32	Reverses bytes in words

FIGURE 2.41 The list of assembly language instructions for the integer operations in the full ARMv8 instruction set.

To manipulate fields of bits, the full ARMv8 instruction set includes instructions that can extract a bit field from a register and insert it into another

Full ARM v8 instruction set(3/4)

The final set of data transfer instructions for integers perform exclusive access to memory in multiprocessor environments. We saw two examples earlier in LDXR and STXR. In addition to providing exclusive access to doublewords, there are

	LDUR	Load register (unscaled offset)		LDXR	Load Exclusive register
	LDURB	Load byte (unscaled offset)		LDXRB	Load Exclusive byte
	LDURSB	Load signed byte (unscaled offset)	a)	LDXRH	Load Exclusive halfword
Unscaled	LDURH	Load halfword (unscaled offset)	Sive	LDXP	Load Exclusive Pair
	LDURSH	Load signed halfword (unscaled offset)	se Exclusive	STXR	Store Exclusive register
	LDURSW	Load signed word (unscaled offset)		STXRB	Store Exclusive byte
	STUR	Store register (unscaled offset)		STXRH	Store Exclusive halfword
	STURB	Store byte (unscaled offset)		STXP	Store Exclusive Pair
	STURH	Store halfword (unscaled offset)		LDAXR	Load-aquire Exclusive register
	STURW	Store word (unscaled offset)	Aquire/Release	LDAXRB	Load-aquire Exclusive byte
	LDA	Load address	/Re	LDAXRH	Load-aquire Exclusive halfword
FOST-	LDR	Load register	uire	LDAXP	Load-aquire Exclusive Pair
	LDRB	Load byte		STLXR	Store-release Exclusive register
e Š	LDRSB	Load signed byte	Exclusive	STLXRB	Store-release Exclusive byte
	LDRH	Load halfword	clus	STLXRH	Store-release Exclusive halfword
ended, Indexed	LDRSH	Load signed halfword	Ď	STLXP	Store-release Exclusive Pair
Extended, Indexed	LDRSW	Load signed word		LDP	Load Pair
saled,	STR	Store register	Pair	LDPSW	Load Pair signed words
	STRB	Store byte		STP	Store Pair
	STRH	Store halfword	PC	ADRP	Compute address of 4KB page at a PC-relative offset
				ADR	Compute address of label at a PC-relative

X11 contains 100,000_{ten}

LDR X10, [X11, #16] // scaled addressing mode

will load the double word (8 bytes) at address 100,128 $_{ten}$ (100,000 + 8*16) into register X10.

er data transfer operations in the full a pseudoinstruction, and bold italic means it is a

offset

Full ARM v8 instruction set(4/4)

Type Mnemonic

The next nine instructions store a value into a register based on the condition codes. If the condition is true, the destination register gets the first register. If not, it gets the second register. The idea behind condition select instructions is to replace conditional branches, which can cause problems in pipelined execution if they can't be predicted (see Chapter 4). After adding the nine condition select instructions, we're up to 19.

The final four instructions are similar to the conditional select instructions, except the destination for these instructions is the condition codes. That is, these

	B.cond	Branch conditionally		USEL	Conditional select
ona th	CBZ Compare	Compare and branch if nonzero	12	CSINC	Conditional select increment
anc		Compare and branch if zero	Select	CSINV	Conditional select inversion
Con	TBNZ	Test bit and branch if nonzero	Se	CSNEG	Conditional select negation
0	TBZ	Test bit and branch if zero	onal	CSET	Conditional set
=	В	Branch unconditionally	Jitio	CSETM	Conditional set mask
Unconditional Branch	BL	Branch with link	Condition	CINC	Conditional increment
onditio	BLR	Branch with link to register	0	CINV	Conditional invert
00 m	BR	Branch to register		CNEG	Conditional negate
5	RET	Return from subroutine	<u>a</u> a	CCMP	Conditional compare register
			tiona	CCMPI	Conditional compare immediate
			Sonditiona Compare	CCMN	Conditional compare negative register
			000	CCMNI	Conditional compare negative immediate

FIGURE 2.43 The list of assembly language instructions for the branches of the ARMv8 instruction set. Bold means the instruction is also in LEGv8, italic means it is a pseudoinstruction, and bold italic means it is a pseudoinstruction that is also in LEGv8.

LEG v8 instruction set(1/2)

LEGv8 instructions	Name	Format	Pseudo LEGv8	Name	Format
add	ADD	R	move	MOV	R
subtract	SUB	R	compare	CMP	R
add immediate	ADDI	1	compare immediate	CMPI	1
subtract immediate	SUBI	1	load address	LDA	M
add and set flags	ADDS	R	100 2000 11 12 2000 1000 2000 1		
subtract and set flags	SUBS	R			
add immediate and set flags	ADDIS	1			
subtract immediate and set flags	SUBIS	1			
load register	LDUR	D			
store register	STUR	D			
load signed word	LDURSW	D			
store word	STURW	D			
load half	LDURH	D			
store half	STURH	D			
load byte	LDURB	D			
store byte	STURB	D			
load exclusive register	LDXR	D			
store exclusive register	STXR	D			

LEG v8 instruction set(2/2)

move wide with zero	MOVZ	IM
move wide with keep	MOVK	IM
and	AND	R
inclusive or	ORR	R
exclusive or	EOR	R
and immediate	ANDI	1
inclusive or immediate	ORRI	1
exclusive or immediate	EORI	1
logical shift left	LSL	R
logical shift right	LSR	R
compare and branch on equal 0	CBZ	CB
compare and branch on not equal 0	CBNZ	СВ
branch conditionally	B.cond	СВ
branch	В	В
branch to register	BR	R
branch with link	BL	В

FIGURE 2.45 The LEGv8 instruction set covered so far, with the real LEGv8 instructions on the left and the pseudoinstructions on the right. Section 2.19 describes the full ARMv8 architecture. Figure 2.1 shows more details of the LEGv8 architecture revealed in this chapter. The information given here is also found in Columns 1 and 2 of the LEGv8 Reference Data Card at the front of the book.

Register Operands

Arithmetic instructions use register operands

- LEGv8 has a 32 × 64-bit register file
 - Use for frequently accessed data
 - & 64-bit data is called a "doubleword"
 - 31 x 64-bit general purpose registers X0 to X30
 - 32-bit data called a "word"
 - 31 x 32-bit general purpose sub-registers W0 to W30

LEGv8 Registers

- X0 X7: procedure arguments/results
- X8: indirect result location register
- X9 X15: temporaries
- X16 X17 (IP0 IP1): may be used by linker as a sc ratch register, other times as temporary register
- X18: platform register for platform independent co de; otherwise a temporary register
- X19 X27: saved
- X28 (SP): stack pointer
- X29 (FP): frame pointer
- X30 (LR): link register (return address)
- XZR (register 31): the constant value 0

Register Operand Example

C code:

```
f = (g + h) - (i + j);

• f, ..., j in X19, X20, ..., X23
```

Compiled LEGv8 code:

```
ADD X9, X20, X21
ADD X10, X22, X23
SUB X19, X9, X10
```

ARM v8(64비트 CPU) 명령어 갯수

within the same architecture. In assembly language, programmers use registers named W0, W1, ... instead of the X0, X1, ... to specify 32-bit operations. Thus, this 64-bit operation

Figure 2.40 counts this as one assembly language instruction but two machine language instructions since they have different opcodes.

Class	Loads/Stores		Operations		Branches		Total	
	AL	ML	AL	ML	AL	ML	AL	ML
Integer	49	145	74	105		_	123	250
Floating Point & Int Mul/Div	0	18	63	156		_	63	174
SIMD/Vector	16	166	229	371		_	245	537
System/Special	11	55	52	40		_	63	95
_	_	_			23	14	23	14
Total	76	384	418	672	23	14	517	1070

- AL: counts for Assembly Language instructions
- ML: counts for Machine Language instructions

ARM vs MIPS

ARM v7

MIPS (교재 **4**장에서 사용)

- ADM vO		BEQ, B	beq, j	
- ARM v8	명령어 이름	ARM	MIPS	
* ADD	Add	ADD	addu, addiu	-
	Add (trap if overfl ow)	ADDS: 2WIV	add	_
* SUB	Subtract	SUB	subu	-
	Subtract (trap if overfl ow)	SUBS; SWIVS	sub	_
	Multiply	MUL	mult, multu	_
* AND	Divide	_	div. divu	_
♦ ORR ^{레지스터-레지스터}	And	AND	and	_
* OKK	Or	ORR	or	_
	Xor	EOR	xor	_
* CBZ	Load high part register	MOVT	lui	-
	Shift left logical	LSL ¹	sllv, sll	_
(compare	Shift right logical	LSR1	srlv, srl Set	on less than
& branch	Shift right arithmetic	ASR ¹	srav, sra {imr	nediate, unsigned}
on z ero)	Compare	CMP, CMN, TST, TEQ	slt/i, slt/iu	-
on z ero)	Load byte signed	LDRSB	lb Slt	\$s1, \$s2, \$s3
	Load byte unsigned	LDRB	Ibu	-
	Load halfword signed	LDRSH		\$s2 < \$s3) \$s1=1;
	Load halfword unsigned	LDRH	Ihu else	§ \$s1=0
❖ LDUR 데이터 전송	Load word	LDR	lw	_
	Store byte	STRB	sb	_
	Store halfword	STRH	sh	_
STUR	Store word	STR	sw	_
	Read, write special registers	MRS, MSR	move	_
	Atomic Exchange	SWP, SWPB	II;sc	63

부록 3 - 2장 내용 복습

어셈블리 프로그래밍?

- C 프로그래밍 vs ARM 어셈블리 프로그래밍
 - ❖ (예) 자동차 운전, AUTO (자동) 운전 vs STICK(수동) 운전
- C 프로그래밍에서 추상화 vs 어셈블리 프로그래밍에서 구체화
 - ❖ C 프로그램에서 사용하는 변수, 배열, pointer등은 추상화의 예제. 이 추상화된 용어에 대한 어셈블리 프로그램에서 구체화된 내용은 메모 리에 저장된 값임. 이 값에 접근하려면 메모리 주소가 필요함.
 - ❖ 변수값을 갖고 오는 것은 해당 변수값이 저장된 메모리에서 가서(메모리 주소) 그 값을 갖고 오는 것임. 변수 별로 각기 다른 메모리 번지가할당됨
 - ❖ 배열, pointer도 각각 메모리 번지를 할당함

어셈블리 프로그래밍 - 레지스터 활용

■ 어셈블리 프로그래밍에서 레지스터 활용

- 성능이 높은 어셈블리 프로그램을 위해서는 매우 중요
- ❖ 명령어에서 operand는 메모리 또는 레지스터에 있는 데이터를 사용
- ❖ 레지스터에 있는 값들을 ALU 이용하여 연산하는 동작은 CPU 1 클럭 소모.
- ❖ 메모리에 있는 값들 연산의 경우는 1) 일단 레지스터로 copy 해오는 데 CPU 1 클럭 소모, 2) 레지스터 값들을 ALU 이용하여 연산하는 데 CPU 1 클럭 소모. 총 CPU 2개 클럭소모
- ❖ 자주 사용하는 변수는 메모리 대신에 레지스터에 위치하게 함. 소모 하는 CPU 클럭 개수를 줄이는 효과
- ❖ 똑 같은 일을 하는 프로그램 A와 B 의 성능 비교
 - ◆ 총 기계어 코드 갯수 갯수가 작을 수록 적은 숫자의 CPU 클럭 소모
 - ◆ 수행도중 메모리 참조(memory read 또는 memory write) 총 횟수 횟 수가 작을 수록 적은 숫자의 CPU 클럭 소모
 - ◆ compiler 에서 코드 최적화한다는 의미는 생성된 코드 총 갯수를 줄이 면서 메모리참조 총 횟수를 줄이는 것을 의미함
- ❖ 어셈블리 프로그래밍한다는 것은 complier가 하는 것과 동일한 **잟**업 임

C 코드의 수행과정?

- C 프로그램 z= x + y 코드의 하드웨어 위에서 수행과정
 - ❖ 기계어 코드로 변환 (by compiler)
 - ❖ 기계어 코드를 수행 (by CPU)
 - ❖ (예) C 코드에서 int x=1, y=2, z; 선언후 z=x + y; 수행
 - ❖ (예) 변수 x가 저장된 주소를 r3가 갖고 있다고 가정, 변수 y는 변수 x가 저장된 주소+4에 있다고 가정, 변수 z는 변수 x가 저장된 주소 +8에 있다고 가정
 - ❖ (예) ARM 어셈블리(명령어) 코드 예제
 - ◆ LDR r0, [r3]; x 갖고 오기 (r3가 x 저장된 메모리 번지 갖는다고 가정)
 - ◆ LDR r1, [r3, #4]; y 갖고 오기
 - ◆ ADD r2, r0, r1; ro와 r1를 더한 결과를 r2에 저장하기
 - ◆ STR r2, [r3, #8]; z에 저장하기
 - ❖ ARM 어셈블리 코드에서 각 명령어 수행과정은 ?

ARM 명령어 수행과정?

- ARM 에서 명령어 수행과정은 ?
 - 명령어 갖고 오기 (fetch): (예) 메모리 1000 번지에 저장된 명령어를 CPU 로 읽어온다.
 - 2. 명령어 해독하기(decode): CPU 내 control unit(제어유닛)이 읽어온 명령어를 해독한다. (예) 만일 "ADD R3, R1, R2" 이라면 R1값과 R2값을 더하여결과를 R3 저장하는 덧셈 명령어임을 알게 된다.
 - 3. 명령어 수행하기(execute): ALU를 이용하여 연산 또는 논리동작을 수행한다. (예) R1 값과 R2 값을 꺼내어 ALU 입력단으로 보내어 덧셈을 수행한다.
 - 4. 수행결과 저장하기(store): 수행결과를 레지스터 또는 메모리에 저장한다. (예) 앞에서 수행한 덧셈 결과를 R3에 저장한다.
 - 각 단계는 CPU 클럭 1개씩을 소모

ARM 구조의 특이점

- 조건부 명령어 지원
 - * (예) ADDEQ r0, r1, r2 ; f = g + h (skipped if i ≠ j)
 - * (예) SUBNE r0, r1, r2 ; f = g h (skipped if i = j)
 - ❖ Branch 명령어가 나타나면 Pipeling 성능이 저하될 수 있다 (4장 내용). 이를 방지하기 위한 방법임
- Shift 횟수 무관하게 Shift 동작을 하드웨어로 구현
 - ❖ (예) ANDR3,R1,R0,ASR 1에서 shift 횟수 1 대신 31이 오더라도 똑 같은 시간내에 수행된다. Shift 횟수에 상관없이 동일한 시간에 수행됨. 그 이유는 shift 동작을 하드웨어로 구현함. 오른쪽 그림에서 Barrel Shifter가 그 역할 담당
 - ❖ 레지스터 R0가 ALU 입력단으로 전달되는 중간단계에서 Barrel Shifter가 ASR 1을 수 행. Shift 횟수를 31으로 변경해도 Barrel Shifter 가 조합회로로 구현되어 있어서 동일 한 시간에 처리함

