Листок 2 МАТЕМАТИЧЕСКИЙ АНАЛИЗ-I

Натуральные числа, аксиома непрерывности, архимедовы поля, теорема о вложенных отрезках, открытые и замкнутые множества, связность, плотность

1. Докажите неравенство Бернулли

$$(1+x)^n \geqslant 1+nx$$
,

при x>-1 и $n\in\mathbb{N}$. Докажите, что равенство возможно тогда и только тогда, когда либо n=1, либо x=0.

- **2.** Докажите, что теорема о существовании верхней грани эквивалентна аксиоме непрерывности. Иными словами, упорядоченное множество, у которого каждое ограниченное сверху множество имеет точную верхнюю грань есть \mathbb{R} .
- **3.** Докажите архимедовость полей $\mathbb{Q}, \mathbb{Q}(\sqrt{3})$ и неархимедовость поля рациональных функций с отношением порядка определённым на лекции.
- **4.** Докажите, что последовательность вещественных чисел $(q^n)_{n\in\mathbb{N}}$, где |q|<1, стремится к нулю.
- **5.** Пусть F упорядоченное поле, для которого выполнена аксиома Архимеда. Доказать, что для любого $x \in F$ последовательности $x_n = x/n, x_n = \frac{x}{2^n}$ стремятся к 0. Приведите пример неархимедова поля, для которого данное свойство не выполнено.
- **6.** Пусть есть упорядоченное поле, удовлетворяющее следующим свойствам: каждая последовательность вложенных отрезков имеет непустое пересечение и выполняется аксиома Архимеда. Докажите, что это поле $-\mathbb{R}$.
- **7.** Назовем множество *чудесным*, если оно одновременно и открыто и замкнуто. Докажите, что в \mathbb{R} есть единственное чудесное непустое подмножество всё \mathbb{R} . Покажите, что \mathbb{R} связно.
- **8.** Докажите, что в если в упорядоченном поле \mathbb{F} есть единственное чудесное (см. предыдущую задачу) непустое подмножество (всё \mathbb{F}), то $\mathbb{F} = \mathbb{R}$.
- **9.** Пусть \mathbb{F} упорядоченное поле такое, что любое объединение интервалов вида (a,x) с общим левым концом a это или интервал (a,b), или луч $\{x\in\mathbb{F}\mid x>a\}$. Докажите, что $\mathbb{F}=\mathbb{R}$, то есть в \mathbb{F} выполнена аксиома непрерывности.
- **10.** Система множеств называется *центрированной*, если каждая её конечная подсистема имеет непустое пересечение. Докажите, что на отрезке каждая центрированная система из замкнутых множеств имеет непустое пересечение.
 - 11. Докажите, что упорядоченное поле рациональных функций не связно.
 - **12.** Докажите, что множество чисел вида $a + b\sqrt{2}$, где $a, b \in \mathbb{Z}$, всюду плотно на прямой.
- 13. Докажите, что замкнутое множество на $\mathbb R$ совпадает со множеством всех предельных точек некоторой последовательности.