CPT108 Data Structures and Algorithms

Lecture 17

Trees

Insertion and Deletion

Insertion

- Insert a new key into the binary search tree (BST)
 - ▶ insert (22)
 - ▶ insert (14)


```
TREE-INSERT(T, z)

1  x = T.root // node being compare with z

2  y = NIL // y will be parent of z

3  while x \neq NIL

4  y = x

5  if z. key < x. key

6  x = x. left

7  else x = x. left

8  if y = NIL

9  T.root = z // tree T was empty

10  elseif z. key < y. key

11  y. left = z

12  else y. right = z
```

- Observation
 - ▶ The new key is always inserted as a *new* leaf

Binary search tree (BST)

Deletion

- When a node is deleted, we need to consider how we take care of the children of the deleted node
 - ► This has to be done such that the *property* of the binary search tree (BST) is maintained!

Binary search tree (BST)

Deletion (cont.)

Successor

- Given a BST, the successor of a node x is the node with the smallest key greater than x. key
- Or, in order word, it is the next node visited in an <u>inorder</u> tree walk (inorder traversal)
- Observation: A successor can have no children or only a right-child

• What is the successor of 20?

```
TREE-SUCCESSOR(x)
     if x. right \neq NIL
           // leftmost node in right subtree
          return TREE-MINIMUM(x. right)
  3
     else
           // find the lowest ancestor of x
  5
           // whose left child is an ancestor of x
          v = x.p
          while y \neq NIL and x == y. right
  8
                x = y
 10
                y = y.p
           return v
```

Deletion (cont.)

Three cases for deletion

Case 1: Node z is a leaf

Deletion (cont.)

Case 2: Node z has exactly 1 (left or right) child

Modify appropriate parent (z) to point to z's child (Parent adoption)

Deletion (cont.)

Case 3: Node z has 2 children

Step 1. Find successor y of z (i.e., y = successor(z))

Success y of z will have no child or only a right-child

Step 2. Swap the keys of *z* and *y*, then delete node *y* (which now has value *z*!) and connect its right-child of *z* to its parent

This deletion is either case I or case II

Deletion (cont.)

- If z is a node that we want to delete from a BST T
- Then, we have three cases:
 - ▶ If z has no children, then simply remove it by modifying its parent to replace z with null as its child
 - ► If z has just one child, then elevate that child to take z's position in the tree by modifying z's parent to replace z's child
 - If z has two children
 - Find z's successor y which must belong to z's right subtree
 - Move y to take z's position in the tree
 - The rest of z's original right subtree becomes y's new right subtree
 - Z's left subtree becomes y's new left subtree

Deletion: Example

The node x is a leaf.

• delete(D)

Deletion: Example (cont.)

The node x has one child.

• delete(*E*)

Deletion: Example (cont.)

The node x has two children.

• delete (J)

Deletion: Exercise

The node x has two children.

• delete (40)

Deletion (cont.)

Remark

- There is also another approach of using the largest element in the left subtree, i.e., the predecessor, to replace the deleted node
 - ⇒ refer to the reference book for details

Complexities

Operation	Complexity
find(x)	O(height of tree)
findMin(x)	O(height of tree)
findMax(x)	O(height of tree)
insert(x)	O(height of tree)
delete(x)	O(height of tree)
traverse	<i>O</i> (<i>n</i>)

Problems with BSTs

- Problem
 - How can we predict the height of the tree?
- Many trees of different shapes can be composed of the same data
- How to control the tree shape?

Problems with BSTs (cont.)

Problem of Lopsidedness

- Tree can be unbalanced
- Not all nodes have exactly 2 child nodes

Problems with BSTs (cont.)

Problem of Lopsidedness (cont.)

- Trees can be totally lopsided
- Suppose each node has a right child only
 - Degenerates into a linked list

⇒ Processing time affected by the shape of the tree

Problems with BSTs (cont.)

Balanced vs Unbalanced Tree

The trees below contain the same data

Tree₁: Balanced tree

Tree₂: Unbalanced tree

⇒ Which tree would you prefer to use? And why?

How Fast is Sorting in BST?

- n elements (n is large) are to be sorted by first constructing a BST and then read them in inorder manner
- Bad case: the input is more or less sorted
 - A rather linear tree is constructed
 - ► Total steps in constructing a BST: $1 + 2 + \cdots + n = \frac{n(n+1)}{2} \sim n^2$
 - ▶ Total steps in traversing the tree: *n*
 - \Rightarrow Total: $O(n^2)$
- Best case: the BST is constructed in a balanced manner
 - ▶ Depth after adding *i* numbers: Ig *i*
 - ► Total steps in constructing a BST: $\lg 1 + \lg 2 + \cdots + \lg n < \lg n + \lg n + \cdots + \lg n = n \lg n$
 - ► Total steps in traversing the tree: *n*
 - \Rightarrow Total: $O(n \lg n)$ much faster
- For any arbitrary input, one can indeed construct a rather balanced BST with some extra steps in insertion and deletion
 - ► E.g., an AVL tree (pp. 357–358, Cormen 2022)

Reading

• Chapter 12.3, Cormen (2022)