Assignment -2

Python Programming

Assignment Date	26 September 2022
Student Name	A.Swetha
Student Roll Number	820419106064
Maximum Marks	2 Marks

1.Download Data set

2.Load the dataset

3. Perform Below Visualizations.

• Univariate Analysis

```
In [48]: sns.histplot(data, x="Balance")
Out[48]: <AxesSubplot:xlabel='Balance', ylabel='Count'>
```


• Bi - Variate Analysis

In [51]: sns.displot(data, x="Balance", y="Age")

Out[51]: <seaborn.axisgrid.FacetGrid at 0x181064ebd60>

4. Perform descriptive statistics on the dataset.

central Tendancy

In [5]: data.mean()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/531903386.py:1: FutureWarning: Dropping of nuisan
ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
will raise TypeError. Select only valid columns before calling the reduction.
 data.mean()

Out[5]:	RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited	5.000500e+03 1.569094e+07 6.505288e+02 3.892180e+00 7.648589e+04 1.530200e+00 7.055000e-01 5.151000e-01 1.000902e+05 2.037000e-01
	Exited dtype: float64	2.037000e-01

In [6]: data.median()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/4184645713.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

5.000500e+03 Out[6]: RowNumber 1.569074e+07 CustomerId 6.520000e+02 CreditScore Age 3.700000e+01 Tenure 5.000000e+00 9.719854e+04 Balance NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 1.001939e+05 EstimatedSalary Exited 0.000000e+00 dtype: float64

In [7]: data.mode()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

10000 rows × 14 columns

In [8]: data.skew()

 $\verb|C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/1188251951.py:1: Future \verb|Warning: Dropping of nuisa| | Particle | Particle$ nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.skew()

Out[8]: RowNumber

0.000000 CustomerId 0.001149 CreditScore -0.071607 1.011320 Age Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 1.471611 Exited dtype: float64

In [9]: data.kurt()

 $\verb|C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2907027414.py: 1: Future \verb|Warning: Dropping of nuisa| | Proposed | Propose$ nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi s will raise TypeError. Select only valid columns before calling the reduction. data.kurt()

Out[9]: RowNumber

-1.200000 -1.196113 CustomerId CreditScore -0.425726 1.395347 Age Tenure -1.165225 -1.489412 Balance NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 EstimatedSalary -1.181518 Exited 0.165671 dtype: float64

```
In [10]: data.var()
         C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/445316826.py:1: FutureWarning: Dropping of nuisan
         ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
         will raise TypeError. Select only valid columns before calling the reduction.
           data.var()
Out[10]: RowNumber
                            8.334167e+06
         CustomerId
                            5.174815e+09
         CreditScore
                            9.341860e+03
                           1.099941e+02
         Age
                            8.364673e+00
         Tenure
         Balance
                            3.893436e+09
         NumOfProducts
                            3.383218e-01
         HasCrCard
                            2.077905e-01
         IsActiveMember
                            2.497970e-01
         EstimatedSalary
                            3.307457e+09
                            1.622225e-01
         dtype: float64
```

```
In [11]: data.std()
                                          \verb|C:\Users\welcome\AppData\Local\Temp/ipykernel\_11976/2723740006.py:1: Future \verb|Warning: Dropping of nuisa| and the bound of the boun
                                          nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi
                                          s will raise TypeError. Select only valid columns before calling the reduction.
                                                  data.std()
Out[11]: RowNumber
                                                                                                                              2886.895680
                                          CustomerId
                                                                                                                           71936.186123
                                                                                                                                96.653299
                                         CreditScore
                                          Age
                                                                                                                                       10.487806
                                                                                                                                            2.892174
                                          Tenure
                                                                                                                        62397.405202
                                          Balance
                                                                                                                              0.581654
                                          NumOfProducts
                                          HasCrCard
                                                                                                                                           0.455840
                                          IsActiveMember
                                                                                                                                        0.499797
                                          EstimatedSalary
                                                                                                                          57510.492818
                                                                                                                                         0.402769
                                          dtype: float64
```

5. Handle the Missing values.

```
In [12]: data.isna().sum()
Out[12]: RowNumber
         CustomerId
                            0
         Surname
         CreditScore
         Geography
         Gender
         Age
         Tenure
         Balance
         NumOfProducts
         HasCrCard
         IsActiveMember
         EstimatedSalary
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

7. Check for Categorical columns and perform encoding

data.tail()#Gender categorical column												
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrO	
999	5 9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2		
999	6 9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1		
999	7 9998	15584532	Liu	709	France	Female	36	7	0.00	1		
999	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2		
999	9 10000	15628319	Walker	792	France	Female	28	4	130142.79	1		
(

Encoding

```
In [57]: data['Gender'].replace({'Female':1,'Male':0},inplace=True)
data.tail()
```

Out[57]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
9995	9996	15606229	Obijiaku	771	France	0	39	5	0.00	2	
9996	9997	15569892	Johnstone	516	France	0	35	10	57369.61	1	
9997	9998	15584532	Liu	709	France	1	36	7	0.00	1	
9998	9999	15682355	Sabbatini	772	Germany	0	42	3	75075.31	2	
9999	10000	15628319	Walker	792	France	1	28	4	130142.79	1	
4											+

```
In [58]: data_main=pd.get_dummies(data,columns=['Geography'])
data_main
```

Out[58]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveI
0	1	15634602	Hargrave	619	1	42	2	0.00	1	1	
1	2	15647311	Hill	608	1	41	1	83807.86	1	0	
2	3	15619304	Onio	502	1	42	8	159660.80	3	1	
3	4	15701354	Boni	699	1	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	1	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	0	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	0	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	1	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	0	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	1	28	4	130142.79	1	1	

10000 rows × 16 columns

8. Split the data into dependent and independent variables.

```
In [59]: y=data_main['Exited']
       y.head()
Out[59]: 0
           0
       1
           1
           0
           0
       Name: Exited, dtype: int64
  In [60]: x=data_main.drop(columns=['Exited'],axis=1)
         x.head()
  Out[60]:
           RowNumber Customerld Surname CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMem
         0 1 15634602 Hargrave 619 1 42 2 0.00
                 2 15647311 Hill
                                    608 1 41 1 83807.86
         2 3 15619304 Onio
                                    502 1 42 8 159660.80
                 4 15701354 Boni
                                    699 1 39 1 0.00
                                                                     2
                                                                             0
         3
              5 15737888 Mitchell 850 1 43 2 125510.82
         4
                                                                         1
```

9. Scale the independent variables

```
In [61]: x=data_main.drop(columns=['Surname',],axis=1)
       x.head()
Out[61]:
         RowNumber Customerld CreditScore Gender Age Tenure
                                                Balance NumOfProducts HasCrCard IsActiveMember Estim
                           619
                  15634602
                                   1 42
                                             2
                                                   0.00
                                     1 41 1 83807.86
                                                                      0
       1
               2 15647311
                            608
                                                               1
                                                                                 1
             3 15619304
                            502 1 42 8 159660.80
               4 15701354
                             699
                                    1 39 1
                                                                                 0
                                                 0.00
           5 15737888 850 1 43 2 125510.82
       4
```

10. Split the data into training and testing

```
In [63]: from sklearn.model_selection import train_test_split
In [64]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
In [65]: x_train.shape
Out[65]: (8000, 15)
In [66]: x_test.shape
Out[66]: (2000, 15)
In [67]: y_train.shape
Out[67]: (8000,)
In [98]: y_test.shape
Out[98]: (2000,)
```