0.1 Building a Variable Length Collision Resistance hash Function

Figure 1: Merkle Damgard Transform

Let (Gen, h) be a fixed-length collision-resistant hash function for inputs of length $2\ell(n)$ and with output length $\ell(n)$. Construct a variable-length hash function (Gen, H) as follows: - Gen: remains unchanged. - H: on input a key s and a string $x \in \{0,1\}^*$ of length $L < 2^{\ell(n)}$, do the following (set $\ell = \ell(n)$ in what follows):

- 1. Set $B:=\left\lceil\frac{L}{e}\right\rceil$ (i.e., the number of blocks in x). Pad x with zeroes so its length is a multiple of ℓ . Parse the padded result as the sequence of ℓ -bit blocks x_1,\ldots,x_B . Set $x_{B+1}:=L$, where L is encoded using exactly ℓ bits.
 - 2. Set $z_0 := 0^R$.
 - 3. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1} || x_i)$.
 - 4. Output z_{B+1} .

This is known as the Merkle-Damgard Transform