縱向資料分析 作業

410978002 統計三 謝元皓

第一題

(a) Model 1

由下面的表格可以看出, AFT MR 這兩項變數對 RCAF 有顯著的影響,因為這兩個因子之主效果 P 值皆小於 0.05; 反之,Age sex 這兩項變數對 RCAF 沒有顯著的影響,因為這兩個因子之主效果 P 值皆大於 0.05。所以可以看出 AFT MR 是造成心導管灼燒術後纖顫復發的兩項因子。

來源	DF	類型 III SS	均方	F值	Pr > F
Age	1	297.594466	297.594466	2.12	0.1470
AFT	1	4228.117840	4228.117840	30.15	<.0001
sex	1	426.836151	426.836151	3.04	0.0828
MR	1	4129.124353	4129.124353	29.44	<.0001

透過下面參數估計表可以看出參數 B_0 (截距項) AFT(x_2) 和 MR (x_4) 的 P-value 均<0.001,所以有充分證據顯示參數 B_0 X_2 X_4 均顯著不為 0,可以用這三個參數 建模。反之,AGE(x_1) 和 sex (x_3) 的 P-value 不顯著,所以不宜取這兩個參數建立模型。

參數	估計值	標準 誤差	t 值	Pr > t
截距	69.68299296	4.76890305	14.61	<.0001
Age	-0.11741548	0.08060455	-1.46	0.1470
AFT	-11.87046995	2.16192681	-5.49	<.0001
sex	-3.29996983	1.89158555	-1.74	0.0828
MR	-7.53986928	1.38957327	-5.43	<.0001

(b) Model 2

由下面的表格可以看出, AFT MR LAD 這三項變數對 RCAF 有顯著的影響,因為這三個因子之主效果 P 值皆小於 0.05;反之,Age sex 這兩項變數對 RCAF 沒有顯著的影響,因為這兩個因子之主效果 P 值皆大於 0.05。所以可以看出 AFT MR LAD 是造成心導管灼燒術後纖顫復發的三項 因子。

來源	DF	類型 III SS	均方	F值	Pr > F
Age	1	124.367849	124.367849	1.02	0.3140
AFT	1	1378.268909	1378.268909	11.30	0.0009
sex	1	838.423593	838.423593	6.87	0.0095
MR	1	1168.826344	1168.826344	9.58	0.0023
LAD	1	3393.549067	3393.549067	27.82	<.0001

透過下面參數估計表可以看出參數 B_0 (截距項) $AFT(x_2)$ MR (x_4) 和 $LAD(x_5)$ sex (x_3) 的 P-value 均 <0.05,所以有充分證據顯示參數 B_0 X_2 X_3 X_4 X_5 均顯著不為 0,可以用這五個參數建模。反之, $AGE(x_1)$ 的 P-value 不顯著,所以不宜取這一個參數建立模型。

		標準		
參數	估計值	誤差	t值	Pr > t
截距	94.21976735	6.43563967	14.64	<.0001
Age	-0.07631119	0.07557193	-1.01	0.3140
AFT	-7.36140901	2.18988001	-3.36	0.0009
sex	-4.67523812	1.78319296	-2.62	0.0095
MR	-4.41166545	1.42512817	-3.10	0.0023
LAD	-0.72863912	0.13813756	-5.27	<.0001

(c) Model 3

由下面的表格可以看出, AGE AFT LAS 這三項變數對 RCAF 有顯著的影響,因為這三個因子之主效果 P值皆小於 0.05;反之, sex MR 這兩項變數對 RCAF 沒有顯著的影響,因為這兩個因子之主效果 P值皆大於 0.05。所以可以看出 AGE AFT LAS 是造成心導管灼燒術後纖顫復發的三項因子。

來源	DF	類型 III SS	均方	F值	Pr > F
Age	1	1090.32920	1090.32920	15.77	0.0001
AFT	1	413.30581	413.30581	5.98	0.0155
sex	1	150.60777	150.60777	2.18	0.1417
MR	2	132.47742	66.23871	0.96	0.3856
LAS	1	12666.75897	12666.75897	183.24	<.0001

透過下面參數估計表可以看出參數 B_0 (截距項) AFT Age LAS 的 P-value 均 <0.05,所以有充分證據顯示參數 B_0 X_1 X_6 均顯著不為 0,可以用這四個參數建模。反之,SEX MR 的 P-value 不顯著,所以不宜取這兩個參數建立模型。

			標準		
參數	估計值		誤差	t值	Pr > t
截距	80.74924716	В	3.51572727	22.97	<.0001
Age	-0.22796341		0.05739977	-3.97	0.0001
AFT	-3.98251032		1.62871467	-2.45	0.0155
sex 1	-1.98475587	В	1.34464382	-1.48	0.1417
sex 0	0.00000000	В			
MR 1	-1.13432504	В	1.78813429	-0.63	0.5267
MR 2	-2.86014019	В	2.16490208	-1.32	0.1882
MR 0	0.00000000	В			
LAS	-0.38469056		0.02841860	-13.54	<.0001

(d) Model4

由下面的表格可以看出, AGE AFT LAS 這三項變數對 RCAF 有顯著的影響,因為這三個因子之主效果 P 值皆小於 0.05; 反之, sex MR LAD 這三項變數對 RCAF 沒有顯著的影響,因為這三個因子之主效果 P 值皆大於 0.05。所以可以看出 AGE AFT LAS 是造成心導管灼燒術後纖顫復發的三項 因子。

來源	DF	類型 III SS	均方	F值	Pr > F
Age	1	1271.337192	1271.337192	18.63	<.0001
AFT	1	537.066946	537.066946	7.87	0.0056
sex	1	67.299708	67.299708	0.99	0.3221
MR	2	209.011760	104.505880	1.53	0.2191
LAS	1	9664.417998	9664.417998	141.60	<.0001
LAD	1	223.608780	223.608780	3.28	0.0720

透過下面參數估計表可以看出參數 B_0 (截距項) AFT Age LAS 的 P-value 均 <0.05,所以有充分證據顯示參數 B_0 X_1 X_2 X_6 均顯著不為 0,可以用這四 個參數建模。反之,SEX MR LAD 的 P-value 不顯著,所以不宜取這三個 參數建立模型。

			標準		
参勲	估計值		誤差	t值	Pr > t
截距	73.75560247	В	5.20882860	14.16	<.0001
Age	-0.25368502		0.05877781	-4.32	<.0001
AFT	-4.65941815		1.66098784	-2.81	0.0056
sex 1	-1.36907288	В	1.37869739	-0.99	0.3221
sex 0	0.00000000	В			
MR 1	-1.27331285	В	1.77840410	-0.72	0.4749
MR 2	-3.59776738	В	2.18937375	-1.64	0.1021
MR 0	0.00000000	В			
LAS	-0.42403156		0.03563357	-11.90	<.0001
LAD	0.23852628		0.13177736	1.81	0.0720

第二題

比較 model1 跟 moded2 之間的差異。

- (1) 觀察兩模型的 F 檢定後可看出,顯著性 p 直均遠小於 0.05,所以得到兩組模型中的所有參數均有顯著的差異。
- (2) 由下表可觀察到,在 model 2 中,R square 的值大於 model 1,所以得知 model 2 模型的解釋能力比 model 1 好。
- (3) Model 1 的 C.V. 微大於 model 2 的 C.V., 得知 Model 1 的離散程度稍微比 Model 2 來的大。
- (4) Model2 的 MSE 稍微比 Model1 的 MSE 來的小,所以相比之下 Model2 的估計量比 Model1 來的準確。

Model 1

來源		DI	平	方和		均方	F值	Pr > F
模型		ć	13576.3	2046	2715	.26409	19.41	<.0001
誤差		178	3 24902.2	3780	139	9.90021		
已校正	已校正的總計		38478.5	5826				
	R平	方	變異係數	根	MSE	LAEF 3	平均值	
	0.3528	28	23.55654	11.8	2794	50	.21087	

Model 2

來源	DF	平方和	均方	F值	Pr > F
模型	6	16802.27021	2800.37837	22.87	<.0001
誤差	177	21676.28805	122.46490		
已校正的總計	183	38478.55826			

R 平方	變異係數	根 MSE	LAEF 平均值
0.436666	22.03982	11.06639	50.21087

第三題

比較 model1 跟 model3 之間的差異。

- (1) 觀察兩模型的 F 檢定後可看出,顯著性 p 直均遠小於 0.05,所以得到兩組模型中的所有參數均有顯著的差異。
- (2) 由下表可觀察到,在 model 3 中,R square 的值大於 model 1,所以得知 model 3 模型的解釋能力比 model 1 好。
- (3) Model 1 的 C.V. 大於 model 2 的 C.V.,得知 Model 1 的離散程度比 Model 3 來的大。
- (4) Model3 的 MSE 比 Model1 的 MSE 來的小,所以相比之下 Model3 的估計量比 Model1 來的準確。

Model 1

來源	DF	平方和	均方	F值	Pr > F
模型	5	13576.32046	2715.26409	19.41	<.0001
誤差	178	24902.23780	139.90021		
已校正的總計	183	38478.55826			

R 平方	變異係數	根 MSE	LAEF 平均值	
0.352828	23.55654	11.82794	50.21087	

Model 3

來源	DF	平方和	均方	F值	Pr > F
模型	6	26243.07943	4373.84657	63.27	<.0001
誤差	177	12235.47883	69.12700		
已校正的總計	183	38478.55826			

R 平方	變異係數	根 MSE	LAEF 平均值
0.682018	16.55870	8.314265	50.21087

第四題

比較 model1 跟 model4 之間的差異。

- (1) 觀察兩模型的 F 檢定後可看出,顯著性 p 直均遠小於 0.05,所以得到兩組模型中的所有參數均有顯著的差異。
- (2) 由下表可觀察到,在 model 4 中,R square 的值大於 model 1,所以得知 model 4 模型的解釋能力比 model 1 好。
- (3) Model 1 的 C.V. 大於 model 4 的 C.V. ,得知 Model 1 的離散程度比 Model 4 來的大。
- (4) Model 4 的 MSE 比 Model 1 的 MSE 來的小,所以相比之下 Model 4 的估計量比 Model 1 來的不偏且集中。

Model 1

來源	DF	平方和	均方	F值	Pr > F
模型	5	13576.32046	2715.26409	19.41	<.0001
誤差	178	24902.23780	139.90021		
已校正的總計	183	38478.55826			

R 平方	變異係數	根 MSE	LAEF 平均值
0.352828	23.55654	11.82794	50.21087

Model 4

來源	DF	平方和	均方	F值	Pr > F
模型	7	26466.68821	3780.95546	55.40	<.0001
誤差	176	12011.87005	68.24926		
已校正的總計	183	38478.55826			

R 平方	變異係數	根 MSE	LAEF 平均值
0.687830	16.45323	8.261311	50.21087

第五題

根據分析上面四組模型後,我會選擇模型四。因為其各項數居均顯示其模型估計得比其他三組精確;再者,模型四含有的變數較多,較能顯示出其真實的樣貌,所以我會推薦模型四去做估計。

第六題

根據上述分析,可得到每組模型均有不顯著的參數值。我建議將這 些參數值透過像是標準化之類的統計方法進行調整後再訪入模型 中。如此一來,模型中的參數才會更具代表性及解釋力。