(b) Draw the trend by semi-average method using the given data: (CO5)

Year	· Production (in Tons)
1998	253
1999	260
2000	255
2001	266
2002	259
2003	264

(c) Calculate 3 yearly moving averages or trend values for the following data: (CO5)

Year	Value
1998	3
1999	5
2000	7
2001	10
2002	12
2003	14
2004	15
2005	16

- MALLANDER - INC.		
	Roll No.	

TBC-405

B. C. A. (FOURTH SEMESTER) END SEMESTER EXAMINATION, June, 2023

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: Three Hours

Maximum Marks: 100

Note: (i) All questions are compulsory.

- (ii) Answer any two sub-questions among (a), (b) and (c) in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each sub-question carries 10 marks.
- 1. (a) Describe absolute and relative and percentage errors. Find the absolute, percentage and relative errors if x is rounded-off to three decimal digits. Given x = 0.005998. (CO1)

- (b) Find a real root of the equation $x^3-2x-5=0$ by the method of false position up to three places of decimal. (CO1)
- (c) Find a real root correct upto four decimal places of the equation $2x \log_{10} x 7 = 0$ using iteration method. (CO)
- 2. (a) Solve the following system of linear equations: (CO2)

$$2x+4y-6z=-4$$
$$x+5y+3z=10$$
$$x+3y+2z=5$$

using Gauss Elimination method.

(b) Using Newton forward difference formula, find a cubic polynomial which takes the following data: (CO2)

x	f(x)
0	facility (a)
and and and	0
2 Decimber	hine signification
3 2 1	10

(3) TBC-405

(c) Find f(10) using the following data: (CO2)

x ·	f(x)
5	12
6	13
9	14
11	16

3. (a) Find f'(1.1) from the following data: (CO3)

x	f(x)
1.0	0
1.2	0.1280
1.4	0.5440
1.6	1.2960
1.8	2.4320
-2.0	4.000

(b) Solve the integral

(CO3)

$$\int_0^1 \frac{1}{1+x^2} dx$$

using Simpson's 1/3 rule. Also solve it using analytical method and find the error.

(c) Find the solution of the differential equation: (CO3)

$$\frac{dy}{dx} = y - x$$

given y(0) = 2 using Runge Kutta method at x = 0.2.

4. (a) Find the curve of best fit of the type $y = ae^{bx}$ to the following data by the method of least squares: (CO4)

x .	y
1	10
5	15
7	12
9	15
12	21

- (b) Define the following terms:
 - (i) Histogram
 - (ii) Regression analysis and correlation

(CO4)

(c) Calculate Karl Pearson's coefficient of correlation between X and Y from the following data: (CO4)

X	Y y
65	67
66 .	68
67	65
67	68
68 69	72
69	72
70	69
72	71

- 5. (a) Describe the following components of Time Series: (CO5)
 - (i) Secular Trend or Long Term Movement (T)
 - (ii) Seasonal Variation or Seasonal Movement (S)
 - (iii) Cyclical Fluctuation or Cyclic Variation (C)
 - (iv) Residual, Irregular of Random Movement (I)