Group Theory

Paolo Bettelini

Contents

1	Gro	Groups	
	1.1	Binary operations	2
	1.2	Cayley tables	2
		Definition	

1 Groups

1.1 Binary operations

Let G be a set. A binary operation \circ on G is a map

$$G \times G \to G$$
,

$$(x,y) \to x \circ y$$

1.2 Cayley tables

A binary operation \circ on a finite set G can be visualized using a $Cayley\ table$.

Example:
$$G = \{0, 1\}$$
 and $\circ \equiv$ multiplication.

1.3 Definition

A group (G, \circ) is a tuple containing a set G and a binary operation \circ where \circ satisfies.

1. Associative: $\forall a, b, c \in Ga \circ (b \circ c) = (a \circ b) \circ c$

2. **Identity**: $\exists e \mid \forall a \in G, ea = ae = a$

3. Inverse: $\forall a \in G \exists a^{-1} | a^{-1}a = aa^{-1} = e$