分子结构和次级键介绍(下)

五、次级键

1、定义

- 2、分子间作用力/范德华力
- (1)定义
- (2)分子间作用力的组成
- ①取向力
- ②诱导力
- ③色散力

- (3)分子间作用力大小
- (4)分子间作用力影响

3、氢键

- (1)氢键的形成与定义
- (2)氢键对物理性质的影响
- ①熔沸点

②溶解性

例1 下列过程需要克服分子之间作用力的是()

- A. HCl气体溶于水
- B. 液氯气化
- C. 氯化镁受热熔化
- D. 二氧化硅受热熔化

例2 下列推论正确的()

- A. SiH_4 的沸点高于 CH_4 ,可推测 PH_3 的沸点高于 NH_3
- B. NH_4^+ 为正四面体,可推测出 PH_4^+ 也为正四面体结
- C. CO,是分子类物质,可推测SiO,也是分子类物质
- D. C_2H_6 是碳链为直线型的非极性分子,可推测 C_3H_8 也 是碳链为直线型的非极性分子

例3 下列叙述正确的是()

- A. NH3是极性分子,分子中N原子处在3个H原子所组成 的三角形的中心
- B. CCl₄是非极性分子,分子中C原子处在4个Cl原子所组 成的正方形的中心
- C. H₂O是极性分子,分子中O原子不处在2个H原子所连 成的直线的中央
- $D. CO_2$ 是非极性分子,分子中C原子不处在2个O原子所 连成的直线的中央

例4 关于氢键,下列说法不正确的是()

- A. 每一个水分子内含有两个氢键
- B. 冰、水中都存在氢键
- C. 水是一种非常稳定的化合物,这是由于水分子之 间能形成氢键
- D. 由于N、O、F的吸电子能力很强,所以NH、、 H₂O、HF分子间都可以形成氢键

例5 $SiCl_4$ 的分子结构与 CCl_4 类似,对其做出如下推断:① SiCl₄是分子类物质;②常温常压SiCl₄不是气体;③SiCl₄ 分子是由极性键构成的非极性分子; ④SiCl₄熔点高于 CCl₄。其中正确的是(

- A. 只有① B. 只有①②
- C. 只有②③ D. ①②③④

例6 下列各组物质中,都是由极性键构成的非极性分子的一 组的()

- A. CH₄和H₂O B. CO₂和Cl₂
- C. NH_3 $\# H_2S$ D. CS_2 $\# BF_3$

例7 下列事实与氢键有关的是()

- A. 水加热到很高温度都难以分解
- B. 水结成冰体积膨胀,密度变小
- C. CH₄、SiH₄、GeH₄、SnH₄熔点随相对分子质量增大 而升高
- D. NH₃的热稳定性比PH₃强

例8 根据等电子原理,由短周期元素组成的粒子,只要其电 子总数相同,均可互称为等电子体。等电子体之间结构 相似、物理性质也相近。以下各组粒能互称为等电子体 的是()

- A. O_3 $\# ISO_2$ B. $CO \# IN_2$
- C. CO和NO D. N_2H_4 和 C_2H_4

化学学习qq群:34573930

答疑邮箱:zhengrui@100tal.com