Lezione 7 Geometria 2

Federico De Sisti 2025-03-17

0.1 Cotntinuo sulla topologia prodotto

Teorema 1

Siano P,Q spazio topologico, sia $P \times Q$ con topologia prodotto

- 1. $B = \{U \times V \mid U \subseteq P \text{ aperto }, V \subset Q \text{ aperto }\}$ è una base della topologia prodotto.
- 2. Per ogni $x_0 \in P, y_0 \in Q$ le applicazioni

$$p|_{P\times\{y_0\}}: P\times\{y_0\}\to P$$
$$(x,y_0)\to x$$

$$p|_{\{x_0\}\times Q}: \{x_0\}\times Q\to P$$
$$(x_0,y)\to y$$

sono omomorfismi (dove $P \times \{y_0\}$ e $\{x_0\} \times Q$ hanno topologia di sottospazio)

- 3. le proieizoni $p: P \times Q \rightarrow P$ $q: P \times Q \rightarrow Q$ sono aperte
- 4. Sia X spazio topologico $f: X \to P \times Q$ allora $f \ \grave{e}$ continua se e solo se lo sono le sue componenti $p \circ f$ e $q \circ f$

Dimostrazione

1) Dimostriamo prima di tutto che esiste una topologia T su $P \times Q$ che ha B per base.

Verifichiamo le condizioni date in una proposizione precedente

- a) $P \times Q$ dev'essere unione di elementi di B, è vero perché $P \times Q \in B$
- b) Siano $U, U' \subseteq P$ aperti, $V, V' \subseteq Q$ aperti, allora l'intersezione.

$$(U \times V) \cap (U' \times V').$$

(è l'intersezione di due elementi qualsiasi di B) si deve poter scrivere come unione di elementi di B:

$$(U \cap U') \times (V \cap V').$$

quindi questa intersezione è un elemento di B.

Abbiamo dimostrato che esiste T che ha B per base.

Confrontiamo T con la topologia con la topologia prodotto. Prima cosa: dimostriamo che p e q sono continue se su $P \times Q$ mettiamo T.

 $Vediamo\ p: P \times Q \rightarrow P$

 $sia\ A \subseteq P\ aperto,\ allora\ p^{-1}(A) = A \times Q$

è un aperto di T, Quindi p è continua.

Analogamente q è continua.

Seque T è più fine della topologia prodotto (per definizione della topologia prodotto).

T topologia prodotto

 $Dimostriamo\ T \subseteq topologia\ prodotto$

Dimostriamo che $B \subseteq topologia prodotto$

Siano $U \subseteq P$ aperto, $V \subseteq Q$ aperto

quindi $Y \times V \in B$ allora:

$$U \times Q = p^{-1}(U)$$
.

dev'essere aperto anche in topologia prodotto.

Anche $P \times V = q^{-1}(V)$ dev'essere aperto in topologia prodotto.

$$U \times V = (U \times Q) \cap (P \times V).$$

unione arbitraria di aperti è aperta, quindi $T \subseteq topologia$ prodotto. Quindi B è base della topologia prodotto

2) Dimostriamo che

$$p|_{P\times\{y_0\}}P\times\{y_0\}\to P.$$

è omeomorfismo.

Quest'applicazione è biettiva, è continua perché è restrizione (su un sottospazio) di un'applicazione continua

Dobbiamo dimostrare che l'inversa è continua

$$\varphi: P \to P \times \{y_0\}$$
$$x \to (x, y_0)$$

Basta verificare che le controimmagini di elementi della base sono aperti (esercizi settimanali).

Inoltre una base del sottospazio $P \times \{y_0\}$ è ottenuta intersecando gli elementi elementi dalla base B al sottospazio (esercizi settimanali). Sia $U \times V \in B$ ($U \subseteq P$ aperto, $V \subseteq Q$ aperto) e considero

$$A = (U \times V) \cap (P \times \{y_0\}).$$

Abbiamo
$$A = \begin{cases} U \times \{y_0\} & se \ y_0 \in V \\ \emptyset & se \ y_0 \notin V \end{cases}$$

segue che $p|_{R\times\{y_0\}}$ è un omeomorfismo. Analogamente lo è anche $q|_{\{x_0\}\times Q}$

3)Dimostriamo che p, q sono aperti

 $Su\ A \subseteq P \times Q$ aperto considero

$$A = \bigcup_{y_0 \in Q} A \cap (P \times y_0).$$

$$p(A) = \bigcup_{y_0 \in Q} p(A \cap (P \times y_0)).$$

$$= \bigcup_{y_0 \in Q} p|_{P \times \{y_0\}} (A \cap (P \times \{y_0\})).$$

Ora l'insieme $A \cap (P \times \{y_0\})$ è aperto nel sottospazio $P \times \{y_0\}$, e $p|_{P \times \{y_0\}}$ è omemorfismo.

quindi $p|_{P \times \{y_0\}}(A \cap (P \times \{y_0\}))$ è aperto di P.

Segue: p(A) aperto in P. Cioè p è aperta analogamente q è aperta

4) Abbiamo Se f è continua allora lo sono le mappe $p \circ f, q \circ f$

Viceversa, supponiamo $p \circ f$ continua. ALlora dimostriamo f continua. Di nuovo usiamo B, quindi $U = \subseteq P$ aperto, $V \subseteq Q$ aperto, dimostriamo che $f^{-1}(U \times V)$ è aperto in X. Abbiamo

$$f^{-1}(U \times V) = (p \circ f)^{-1}(U) \cap (q \times f)^{-1}(V).$$

è aperto per continuità di $p \circ f$ e $q \circ f$

Osservazione

Siano P,Q spazi topologici, siano B_P base della topologia di P e B_Q base della topologia di Q allora

$$\{U \times V | U \in B_P, V \in B_O\}.$$

è una base della topologia prodotto.

Esempi

1) $P = Q = \mathbb{R}$ con topologia euclidea prendiamo le basi $B_P = B_Q = \{]a, b[\mid a, b \in \mathbb{R} \mid a < b \}$ della topologia euclidea su \mathbb{R}

Per l'osservazione $\{|a,b| \times |c,d| | a,b,c,d \in \mathbb{R} \mid a < b, c < d\}$

è base della topologia prodotto su $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

Sappiamo anche che questa è una base della topologia euclidea su \mathbb{R}^2 quindi questa è la topologia prodotto.

ANalogamente, la topologia euclidea su \mathbb{R}^n è la topologia prodotto su

$$\mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}.$$

2) Considero \mathbb{R} con topologia di Zarinksi, allora la topologia prodtto su

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$
.

dove ogni \mathbb{R} ha la topologia di Zarinski non è la topologia di Zarinksi su \mathbb{R}^2

Definizione 1 (Spazi di Hausdoff)

Uno spazio topologico X si dice di Hausdoff (o T2) se $\forall x, y \in X$ con $x \neq y$, $\exists U$ intorno di x, V intorno di y t.c. $U \cap V = \emptyset$.

Esempi

- 1) Ogni spazio metrico è T2, basta prendere $U = B_{d(x,y)/2}(x) \ V = B_{d(x,y)/2}(y)$
- 2) $X = \emptyset$ di Hausdoff
- 3) X qualsiasi con topologia banale allora:
 - se $|X| \le 1$ allora X è T2
 - se $|X| \ge 2$ allora X non è T2
- 4) Se X ha topologia cofinita.
 - $\bullet\,$ se X è un insieme finito allora la topologia è discreta e X è T2
 - se X è infinito allora X non è T2.

Osservazione

Dati $x, y \in X$ con $x \neq y$

se esistono intorni U di x,V di y con $U\cap V=\emptyset$ allora esistono aperti $(x\in)A(\subseteq U)$ e $(y\in)B(\subseteq V)$ e sono disgiunti.

Quindi X è T2 se e solo se $\forall x,y\in X$ con $x\neq y$ $\exists U$ intorno aperto di x V intorno aperto di y con $U\cap V=\emptyset$

Lemma 1

Se X spazio topologico è T2, tutti i suoi sottoinsiemi finiti sono chiusi.

Dimostrazione

Sia $x \in X$ per ogni $y \in X$ sceqliamo intorni aperti

$$U \ni x, V \ni y$$
.

 $con\ U \cap V = \emptyset\ V \not\ni x,\ quindi\ V \subseteq (X \setminus \{x\})$

 $Cioè\ X\setminus\{x\}\ e\ interno\ di\ ogni\ suo\ punto.$

Segue $\{x\}$ è chiuso.

Allora tutti i sottoinsiemi finiti sono chiusi

Proposizione 1

Sottospazi e prodotti di spazi di Hausdoff sono di Hausdoff

Dimostrazione

Sia X T2 sia Y \subseteq X sottospazio. Siano $y, y' \in$ Y con $y \neq y'$ Scegliamo $U \ni y, U' \ni y'$ aperti in X e disgiunti $U \cap U' = \emptyset$

allora $U \cap Y$ e $U' \cap Y$ sono aperti in Y, disgiunti, e contengono rispettivamente y e y', Allora Y è T2.

Siano ora P,Q spazi topologici, entrambi T2, siano $(a,b) \neq (c,d) \in P \times Q$ Supponiamo $a \neq c$

siano $U \ni a, U' \ni x$ aperti in $P, U \cap U' = \emptyset$. Allora $U \times Q$ e $U' \times Q$ sono aperti disgiunti contenenti (a,b) e (c,d) rispettivamente.

Se a = c allora $b \neq d$ e la dimostrazione è analoga con spazi del tipo $P \times U, P \times U'$

Teorema 2

Sia X spazio topologia, considero $X \times X$ con topologia prodotto e la diagonale $\Delta = \{(a,a) \in X \times X \mid a \in X\}$

Vale: X T2 se e solo se Δ è chiusa in $X \times X$

Idea intuitiva dell'enunciato, parte \Rightarrow .

sia $x \in X$ un punto che "si muove" (ad esempio è un termine di una successione).

Supponiamo x "tende" ad un limite $a \in X$, cioè entra progressivamente in ogni intorno di a. Se x "tende" anche a $b \in X$ e X è T2, allora a = b (perché se $a \neq b$ allora hanno intorni disgiunti).

Allora potrò dire che (x,x) "tende" alla coppia (a,b) e la proprietà T2 implica a=b, cioè la diagonale $\{(x,x)\mid$ è chiusa $\}$

Dimostrazione

 \Rightarrow suppongo X T2, dimostriamo che $(X \times X) \setminus \Delta$ è aperto in topologia prodotto Sia $(x,y) \in (X \times X) \setminus \Delta$, cioè $x \neq y$

Siano U, V aperti di X disgiunti con $U \ni x, V \ni y$, allora $U \times V$ è aperto in $X \times X$, contiene (x, y)

Inoltre $(U \times V) \cap \Delta = \emptyset$, perché

$$(U \times V) \cap \Delta = \{(z, z) \in X \times X \mid z \in U \ z \in V\}.$$

è vuoto perché z apparterrebbe a $U \cap V = \emptyset$

Quindi $(X \times X) \setminus \Delta$

è intorno di ogni suo punto, cioè è chiuso

 (\Leftarrow) Suppongo Δ chiuso, cioè $(X \times X) \setminus \Delta$ aperto di $X \times X$. Siano $x \neq y$ di X, allora $(x,y) \in (X \times X) \setminus \Delta$

Per la base B vista per la topologia prodotto esiste $U \times V \subseteq (X \times X) \setminus \Delta$ tale che $U \times V$ aperto di $X, U \times V \ni (x, y)$. Allora $U \cap V = \emptyset$

(ragionamento di prima, non esistono punti come z). Inoltre $x \in U$, $y \in V$. Segue $X \in T2$.

Osservazione

Ricordo $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$ è chiusa perché $C = f^{-1}(\{1\})$ dove

f:
$$R^2 \to \mathbb{R}$$

 $(x,y) \to xy$

Pi u in generale siano X,Yspazi topologici $f:X\to Y$ continua. Suppongo Y di Hausdoff e sia $y\in Y$

Allora $\{y_0\}$ è chiuso in Y, quindi

$$\{x \in X \mid f(x) = y_0\} = f^{-1}(\{y_0\})$$
 è chiuso.

Corollario 1

X,Y spazi topologici.

Siano $f, g: X \to Y$ continue, e l'insieme

$$C = \{ x \in X \mid f(x) = g(x) \}.$$

Dimostrazione

Consideriamo

$$\varphi: X \to Y \times Y$$

 $x \to (f(x), g(x))$

Per il primo teorema della lezione, questa è continua. Allora $C=\varphi^{-1}(\Delta)$ che è la diagonale in $Y\times Y$

 $\it Ma\ la\ diagonale\ {\it e}\ chiusa\ quindi\ C\ {\it e}\ chiuso$