Regole derivate

$$\begin{aligned} & \operatorname{D}[\alpha f(x) + \beta g(x)] = \alpha f'(x) + \beta g'(x) \\ & \operatorname{D}[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x) \\ & \operatorname{D}\left[\frac{f(x)}{g(x)}\right] = f'(x) \cdot g(x) - f(x) \cdot \frac{g'(x)}{g(x)^2} \\ & \operatorname{D}\left[\frac{1}{f(x)}\right] = -\frac{f'(x)}{f(x)^2} \\ & \operatorname{D}[f^{-1}(y)] = \frac{1}{f'(x)} \\ & \operatorname{D}\left[f\left(g(x)\right)\right] = f'\left(g(x)\right) \cdot g'(x) \end{aligned}$$

Derivate fondamentali

$$\begin{aligned} D_x e^x &= e^x \\ D_x \sin(x) &= \cos(x) \\ D_x \cos(x) &= -\sin(x) \\ D_x \tan(x) &= \frac{\sin(x)}{\cos(x)} \\ D_x \cot(x) &= -\csc^2(x) \end{aligned}$$

$$D_x \sin^{-1} &= \frac{1}{\sqrt{1-x^2}}, x \in [-1, 1]$$

$$D_x \cos^{-1} &= \frac{-1}{\sqrt{1-x^2}}, x \in [-1, 1]$$

$$D_x \tan^{-1} &= \frac{1}{1+x^2}, \frac{-\pi}{2} \le x \le \frac{\pi}{2}$$

$$D_x \sec^{-1} &= \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$$

$$D_x \ln(x) &= \frac{1}{x}$$

Integrali

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int e^x dx = e^x + c$$

$$\int a^x dx = \frac{1}{\ln a} a^x + c$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + c$$

$$\int \cot(x) dx = -\ln|\cos(x)| + c$$

$$\int \cot(x) dx = \sin(x)| + c$$

$$\int \cos(x) dx = \sin(x) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1}(\frac{u}{a}) + c$$

$$\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$$

$$\int \ln(x) dx = (x \ln(x)) - x + c$$

Integrazione per sostituzione

Sia u = f(x) (può essere più di una variabile).

Determina: $du = \frac{f(x)}{dx} dx$ e risoli per dx. Poi, se l'integrale è definito, sostituisci i confini per u = f(x) per ciascun confine

Risolvi l'integrale usando u.

Integrazione per parti $\int u dv = uv - \int v du$

Sezione

Identità trigonometriche

$$\sin^2(x) + \cos^2(x) = 1$$

$$\begin{aligned} \sin(x\pm y) &= \sin(x)\cos(y)\pm\cos(x)\sin(y)\\ \cos(x\pm y) &= \cos(x)\cos(y)\pm\sin(x)\sin(y)\\ \tan(x\pm y) &= \frac{\tan(x)\pm\tan(y)}{1\mp\tan(x)\tan(y)}\\ \sin(2x) &= 2\sin(x)\cos(x) \end{aligned}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$\sin^{2}(x) = \frac{1-\cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1+\cos(2x)}{2}$$

$$\tan^{2}(x) = \frac{1-\cos(2x)}{1+\cos(2x)}$$

$$\sin(-x) = -\sin(x)$$

$$\cos(-x) = \cos(x)$$

$$\tan(-x) = -\tan(x)$$

Calculo 3 Concetti

Coordinate cartesiane 3D

dati due punti: (x_1, y_1, z_1) and (x_2, y_2, z_2) , Distanza fra di loro : $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$ V(t1 t2) + (91 92) + (71 12) Pt medio: $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$ Sfera di centro (h,k,m) and radius r: $(x-h)^2 + (y-k)^2 + (z-m)^2 = r^2$

Vettori

Vettore: \vec{u} Vettore unitario: $\hat{u} = \frac{\vec{u}}{||\vec{u}||}$ Norma: $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Prodotto scalare

 $\vec{u} \cdot \vec{v}$ produce uno Scalare (geometricamente, il prodotto scalare è il vettore proiezione) $\vec{u} = \langle u_1, u_2, u_3 \rangle$ $\vec{v} = \langle v_1, v_2, v_3 \rangle$ se $\vec{u} \cdot \vec{v} = \vec{0}$ significa che i due vettori sono Perpendicolari, θ è l'angolo compreso fra loro. $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$ $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ NOTE: $\hat{u} \cdot \hat{v} = \cos(\theta)$ $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$ $\begin{aligned} &||u|| &= u \cdot u \\ &\vec{u} \cdot \vec{v} &= 0 \text{ quando } \bot \\ &\text{Angolo fra } \vec{u} \in \vec{v} \text{:} \\ &\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||}) \\ &\text{Proiezione di } \vec{u} \text{ su } \vec{v} \text{:} \\ &pr_{\vec{v}} \vec{u} = (\frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2}) \vec{v} \end{aligned}$

Prodotto vettoriale

 $\vec{u} \times \vec{v}$

Produce un Vettore

(Geometricamente, il prodotto vettoriale = l'area del paralellogramma di dimensioni $||\vec{u}|| \in ||\vec{v}||$

 $\vec{u} = \langle u_1, u_2, u_3 \rangle$

 $\vec{v} = \langle v_1, v_2, v_3 \rangle$

$$ec{u} imes ec{v} = egin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

 $\vec{u} \times \vec{v} = \vec{0}$ significa che i vettori sono

Linee e Piani

Equazione del Piano

 (x_0,y_0,z_0) è un punto sul piano e $\langle A, B, C \rangle$ è un vettore normale

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

< $A, B, C > \cdot < x - x_0, y - y_0, z - z_0 > = 0$

$$Ax + By + Cz = D$$
 dove
 $D = Ax_0 + By_0 + Cz_0$

Equazione di una linea

Una linea richiede un Vettore Direzionale $\vec{u} = \langle u_1, u_2, u_3 \rangle$ e un punto (x_1, y_1, z_1) poi, le parametrizzazioni di una linea possono essere:

 $x = u_1 t + x_1$ $y = u_2t + y_1$ $z = u_3t + z_1$

Distanza di un Punto da un Piano

la distanza di un punto (x_0, y_0, z_0) da un piano Ax+By+Cz=D la posso esprimere attraverso la formula: $d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{|Ax_0 + By_0 + Cz_0 - D|}$ $\sqrt{A^2+B^2+C^2}$

Legami fra teoremi

Differenziabilità, derivabilità e continuità

TDT: se esiste intorno di un pt in cui f(x, y) ha derivate parziali continue nel pt, allora f(x, y) differenziabile nel pt. - Se f(x, y) differenziabile nel pt, allora f(x,y) continua nel pt. (no viceversa) - Se f(x, y) differenziabile nel pt, allora f(x, y) parzialmente derivabile nel pt. (no viceversa) - no legami fra derivate parziali e

continuità

Teor Schwarz Se f(x, y) definita in almeno un intorno del pt e sono definite e continue nel pt le derivate parziali prime, allora le derivate parziali seconde $f_{xy} = f_{yx}$

Titoletto

bla Titoletto

bla bla

Titoletto

bla bla

Titoletto

bla bla

Titoletto

bla bla

bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla

Titoletto

bla bla bla bla bla bla bla bla

Superfici

Ellissoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$

Iperboloide di Un Foglio

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

(Asse maggiore: Z in quanto ha segno -)

Iperboloide di Due Fogli

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (Asse maggiore: Z in quanto non ha

Paraboloide Ellittico $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (Asse maggiore: Z in quanto NON

Paraboloide Iperbolico

(Asse maggiore: Z in quanto non elevato al quadrato)

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

Cono Ellittico

(Asse Maggiore: Z in quanto unico con segno -)

Cilindro

se manca una delle variabili OPPURE

 $(x-a)^2 + (y-b^2) = c$

(Asse Maggiore è la variabile mancante)

Derivate Parziali

Si calcolano semplicemente tenendo ferme tutte le altre variabili (che si comportano come costanti per la derivata) e si calcola solo la derivata rispetto a una determinata variabile. Data z=f(x,y), la derivata parziale di z rispetto alla variabile x è:

 $f_x(x,y)=z_x=rac{\partial z}{\partial x}=rac{\partial f(x,y)}{\partial x}$ idem per la derivata parziale rispetto ad

$f_y(x,y) = z_y = \frac{\partial z}{\partial y} = \frac{\partial f(x,y)}{\partial y}$

(bla bla controllare) Per f_{xyy} , opera da dentro verso fuori f_x then f_{xy} , then f_{xyy} $f_{xyy} = \frac{\partial^3 f}{\partial x \partial^2 y},$

$$f_{xyy} = \frac{\partial^3 f}{\partial x \partial^2 y},$$

Per $\frac{\partial^3 f}{\partial x \partial x}$, opera da destra a sinistra nel $\Delta z = z - z_1$

denominatore bla bla (controllare)

Gradiente

Il Gradiente di una funzione in 2 variabili si indica con $\nabla f = \langle f_x, f_y \rangle$ Il Gradiente di una funzione in 3 variabili si indica con $\nabla f = \langle f_x, f_y, f_z \rangle$

Regola(e) della Catena

bla bla controllare. " regola di derivazione che permette di calcolare la derivata della funzione composta di due funzioni derivabili."

Limiti e Continuità

Limiti in 2 o più variabili

I limiti rilevati su un limite vettoriale possono essere valutati separatamente per ciascun componente del limite. Strategie per mostrare che il limite

esiste 1. Inserire i numeri, tutto a posto

2. Manipolazioni Algebriche

-fattorizzare dividere

-usa identit triangolari 3. Cambia in coord polari

se $(x, y) \rightarrow (0, 0) \Leftrightarrow r \rightarrow 0$

Strategie per mostrare che limite NE

1. Mostra che il limite è diverso se approssimato da percorsi diversi $(x=y, x=y^2, etc.)$

2. Cambia in coord Polari e mostra che il limite NE.

Continuità

Una fn, z = f(x, y), è continua in (a,b) se $f(a, b) = \lim_{(x,y)\to(a,b)} f(x,y)$ Che significa:

1. Il limite esiste

2. La funzione è definita in quel valore

3. Essi hanno lo stesso valore

Derivate Direzionali

Sia z=f(x,y) una funzione, (a,b) un punto nel dominio (un valido punto di input) e \hat{u} un vettore unitario (2D). La Derivata Direzionale è quindi la la derivata nel punto (a.b) con direzione di

 $D_{\vec{u}}f(a,b) = \hat{u} \cdot \nabla f(a,b)$ Ci restituirà uno scalare.

Piani Tangenti

Sia F(x,y,z) = k una superfice e P = (x_0, y_0, z_0) un punto su questa superficie.

L'equazione del Piano Tangente è $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle$

Approssimazioni

bla controllare Sia z = f(x, y) una funzione differenziabile differenziale totale di f = dz $dz = \nabla f \cdot \langle dx, dy \rangle$ Questa è la variazione approssimata in z

Il cambiamento reale in z è la differenza nei valori di z:

Massimi e Minimi controlla struttura

- Trovare estremi <u>relativi</u> di funzioni definite su insiemi aperti, derivabili ovunque
- Trovare estremi <u>assoluti</u> di funzioni continue e derivabili ovunque, definite su insiemi chiusi e limitati. Si risolve in 3 passi:
 - a) cerco pt di max/min interni (via annullamento delle derivate prime)
 - b) cerco pt di max/min sulla frontiera (via sostituzione o ML)
 - c) calcolo il valore della funzione in tutti i pt trovati in a) e b). Fra questi pt ci sono certamente i pt di max e min assoluto, che ∃ per teor. Weierstrass
- \bullet Trovare estremi relativi di funzione con vincolo
 - si risolve via sostituzione. I ML non bastano, danno condizioni solo necessarie

Risultati per punti interni

- c. necess: derivate parziali nel pt siano nulle

Utile su D aperto

- c. suff: se f(x,y) ammette derivate parziali prime e seconde continue in un intorno del pt e vale la c. necess., allora: a) c. suff. per cui pt sia pt minimo relativo interno è che $\begin{cases} f_{xx}(pt) > 0 \\ |H(pt)| > 0 \end{cases}$ a') c. suff. per cui pt sia pt massimo relativo interno è che $\begin{cases} f_{xx}(pt) < 0 \\ |H(pt)| > 0 \end{cases}$ non concludo nulla se $|H(pt)| \geq 0$ - un pt NON è pt di ottimo se |H(pt)| < 0

Max e min su frontiera del dominio \min/\max su $D\cap\{(x,y):g(x,y)=0\}$ I)metodo di sostituzione: se riesco esplicito g(x,y)=0 risp x o y ottenendo

espicito g(x,y) = 0 risp x o y ottenendo problema di max/min in una var soltanto II) metodo dei moltiplicatori di Lagrange: fornisce cond. necess. per punti di ottimo sul vincolo g(x,y) vedi Moltiplicatori di Lagrange

Punti Interni

1. Calcola le Derivate Parziali rispetto a x e y $(f_x$ e $f_y)$ (Puoi usare il gradiente) 2. Poni le derivate uguali a 0 e risolvi il sistema di equazioni rispetto x e y 3. Inserisci nell'equazione originaria in z. Usa Test delle Derivate Seconde per sapere se i punti sono massimi o minimi locali, o sella

Test delle Derivate Seconde Parziali

1. Trova tutti i punti (x,y) per cui $\nabla f(x,y) = \vec{0}$ 2. Sia $D = f_{xx}(x,y) f_{yy}(x,y) - f_{xy}^2(x,y)$ SE (a) D > 0 ET $f_{xx} < 0$, f(x,y) è massimo locale (b) D > 0 ET $f_{xx}(x,y) > 0$ f(x,y) è minimo locale

(c) D < 0, (x,y,f(x,y)) è un punto di sella
(d) D = 0, test inconclusivo
3. Determina se ciascun punto sul confine fornisce un min o max.

Tipicamente, dobbiamo parametrizzare il confine per ridurlo ad un problema di min/max di Analisi 1.

Quanto segue si applica solo se viene fornito un confine

- 1. Controlla i punti d'angolo
- 2. Controlla ciascuna linea (0 \leq x \leq 5 darebbe x=0 e x=5)

Sulle Equazioni Limitate, questo è il massimo/ minimo globale ... il test delle derivate seconde non è necessario.

Moltiplicatori di Lagrange

Data una funzione f(x,y) con il vincolo g(x,y), risolvi il seguente sistema di equazioni per trovare i punti di massimo e di minimo sul vincolo (NOTA: potrebbe essere necessario trovare anche punti interni):

From Recomply
$$\{ \nabla f = \lambda \nabla g \\ g(x,y) = 0 \quad (ok \text{ se \`e dato}) \}$$
Aggiungi eventuali pt singolari di $g(x,y)$
per cui $g(x,y) = 0$

Teor risparmia tempo su ML

Se f(x,y) = h(r(x,y)), con u = r(x,y) e se h'(u) > 0, allora i pt di massimo della f(x,y) sono gli stessi di quelli della g(x,y). Lo stesso per i pt di minimo.

Integrali Doppi

Rispetto all'asse xy, se prendiamo un integrale,

 $\int \int \bar{d}y dx$ sta tagliando in rettangoli verticali,

 $\int \int dx dy$ sta tagliando in rettangoli orizzontali

Coordinate Polari

Quando usiamo coordinate polari, $dA = r dr d\theta$

Area di superficie di una curva

Sia z = f(x,y) continua su S (a regione chiusa in dominio 2D)

L'area di superficie della z = f(x,y) su S

$$SA = \int \int_S \sqrt{f_x^2 + f_y^2 + 1} \, dA$$

Metodo Jacobiano

 $\int \int_G f(g(u,v),h(u,v)) |J(u,v)| du dv = \int \int_R f(x,y) dx dy$

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Line Integrals

C given by
$$x=x(t),y=y(t),t\in[a,b]$$

$$\int_c f(x,y)ds=\int_a^b f(x(t),y(t))ds$$
 where $ds=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt$ or $\sqrt{1+(\frac{dy}{dx})^2}dx$

Circonferenza unitaria

ultime parole ultime

Independence of Path

terms of the independent variable

Fund Thm of Line Integrals

or $\sqrt{1+(\frac{dx}{dy})^2}dy$

· solve integral

To evaluate a Line Integral,

(usually dv. dx. and/or dt)

(usually in terms of t, though in

· evaluate for the derivatives needed

· plug in to original equation to get in

exclusive terms of x or y is ok)

C is curve given by $\vec{r}(t), t \in [a, b]$; $\vec{r}'(t)$ exists. If $f(\vec{r})$ is continuously differentiable on an open set containing C, then $\int_{\mathbb{R}} \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{b}) - f(\vec{a})$

· get a paramaterized version of the line

Equivalent Conditions

 $\vec{F}(\vec{r})$ continuous on open connected set D. Then,

 $(a)\vec{F} = \nabla f$ for some fn f. (if \vec{F} is conservative)

 $\begin{array}{l} \Leftrightarrow (b) \int_c \vec{F}(\vec{r}) \cdot d\vec{r} is in dep. of path in D \\ \Leftrightarrow (c) \int_c \vec{F}(\vec{r}) \cdot d\vec{r} = 0 \text{ for all closed paths} \\ \text{in D.} \end{array}$

Conservation Theorem

 $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ continuously differentiable on open, simply connected set D.

 \vec{F} conservative $\Leftrightarrow \nabla \times \vec{F} = \vec{0}$ (in 2D $\nabla \times \vec{F} = \vec{0}$ iff $M_y = N_x$)

prova a caso

C given by $x = x(t), y = y(t), t \in [a, b]$ $\int_c f(x, y) ds = \int_a^b f(x(t), y(t)) ds$ where $ds = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$

or
$$\sqrt{1 + (\frac{dy}{dx})^2} dx$$

or $\sqrt{1 + (\frac{dx}{dy})^2} dy$

To evaluate a Line Integral,

• get a paramaterized version of the line ultime parole ultime parole

 (\cos, \sin) (0,1) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ $\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ 150° (-1,0)(1,0)360° 330 (0, -1)Originally Written By Daniel Kenner for

Originally Written By Daniel Kenner for MATH 2210 at the University of Utah. Source code available at

https://github.com/keytotime/Calc3_CheatSheet
Later modified and customized by Luca Buratto