Logistic Regression

Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)=0.4$. This means (check all that apply):

- igcup Our estimate for $P(y=0|x;\theta)$ is 0.4.
- Our estimate for $P(y = 1|x; \theta)$ is 0.6.
- lacksquare Our estimate for $P(y=1|x;\theta)$ is 0.4.
- lacksquare Our estimate for $P(y=0|x;\theta)$ is 0.6.

Question 2

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

 $oldsymbol{arPsi}$ Adding polynomial features (e.g., instead using $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2+ heta_4x_1x_2+ heta_5x_2^2)$) could increase how well we can fit the training data.

If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(X^{(i)}>1)$.

At the optimal value of θ (e.g., found by fminunc), we will have $J(\theta)\geq 0$.

Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)) \text{ would increase } J(\theta) \text{ because we are now summing over more terms.}$

Question 3

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j}J(\theta)=\frac{1}{m}\sum_{i=1}^m \left(h_\theta(x^{(i)})-y^{(i)}\right)x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

- $igcup heta := heta lpha rac{1}{m} \sum_{i=1}^m (heta^T x y^{(i)}) x^{(i)}.$
- $igcup heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) y^{(i)}) x^{(i)}$ (simultaneously update for all j.
- $oxed{M} heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) y^{(i)}) x_j^{(i)}$ (simultaneously update for all j).
- $oxed{M} heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (rac{1}{1+e^{- heta^T z^{(i)}}} y^{(i)}) x_j^{(i)}$ (simultaneously update for all j).

Question 4

Which of the following statements are true? Check all that apply.

- lacksquare The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradent/BFGS/L-BFGS/etc).
- ightharpoonup The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.

Question 5

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=-6$, $\theta_1=0$, $\theta_2=1$. Which of the following figures represents the decision boundary found by your classifier?

