

Karnaugh Maps

COMP311 Connor McMahon

Announcements

- Homework 2 due 2/8
- Lab 1 due 2/14
- Midterm 1 on 2/16

Brief aside: wiring notation

How to read K-map

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $\bar{A}B\bar{C}$

How to read K-map

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

ĀBC

How to read K-map

A	В	C	Y	
0	0	0	0	
0	0	1	0	
0	1	0	1	$\bar{A}B\bar{C}$
0	1	1	1	ĀBC
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

	BC				
Α		00	01	11	10
	0	0 0	0 1	1 3	1 2
	1	0 4	0 5	0 7	0 6

$$Y = \bar{A}B\bar{C} + \bar{A}BC$$

Simplification using k-map

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $\bar{A}B\bar{C}$

ĀBC

The literals that the boxes have in common are A = 0 and B = 1

$$Y = \bar{A}B$$

All squares in each circle must contain 1's

Groups may be horizontal or vertical, but not diagonal

Groups must contain 2^n cells where n = 0, 1, 2, etc.

Each group must be as large as possible

Each cell containing a 1 must be in at least one group

Groups may wrap around the table

Every circle should contain at least one unique 1

AB

	Α	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
2 3 4 5	0	0	1	1	1
4	0	1	0	0	1
	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

	Α	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
2 3 4 5 6 7	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

	A	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2 3	0	0	1	0	1
3	0	0	1	1	1
4 5	0	1	0	0	1
	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

	A	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12 13	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

$$Y = B\bar{C} + \bar{A}\bar{B}C + \bar{B}C\bar{D}$$

	A	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
2 3 4 5	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

Q1: Reading a K-Map

Q1: Reading a K-Map

	CD				
AB		00	01	11	10
	00	1	0	0	0
	01	1	1	1	0
	11	1	1	1	1
	10	1	0	0	0

$$Y = \bar{C}\bar{D} + BD + AB$$

Q2: Reading a K-Map

Q2: Reading a K-Map

	CD				
AB		00	01	11	10
	00 .	1	1	1	1
	01	1	1	1	1
	11	0	0	0	0
	10	1)	0	0	1

 $Y = \bar{A} + \bar{B}\bar{D}$

Q3: Reading a K-Map

Q3: Reading a K-Map

	CD				
AB		00	01	11	10
	00	0	0	1	1
	01	1	1	1	1
	11	1	1	0	0
	10	0	0	1	1

$$Y = B\bar{C} + \bar{B}C + \bar{A}C$$

	CD				
AB		00	01	11	10
	00	0	0	1	1
	01	1	1	1	1
	11	1	1	0	0
	10	0	0	1	1

$$Y = B\bar{C} + \bar{B}C + \bar{A}B$$

Definition: Implicant

Any product term that is a 1 for a given Boolean Equation (i.e. any group of 1s)

	BC				
Α		00	01	11	10
	0	0	0	1	0
	1	0	1	1	0

<u>Implicants</u>

 $\bar{A}BC$

 $A\overline{B}C$

ABC

BC

AC

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

Yes!

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

No, it can be covered by another group

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

An implicant that is not a subset of any other implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this a prime implicant?

No, it can be covered by another group

Definition: Essential Prime Implicant

A prime implicant with at least one element that is not covered by one or more prime implicants (i.e. we must use this group in our final solution in order to cover all 1s)

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this an essential prime implicant?

Definition: Essential Prime Implicant

A prime implicant with at least one element that is not covered by one or more prime implicants

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this an essential prime implicant?

Yes!

Definition: Essential Prime Implicant

A prime implicant with at least one element that is not covered by one or more prime implicants

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this an essential prime implicant?

Definition: Essential Prime Implicant

A prime implicant with at least one element that is not covered by one or more prime implicants

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Q: Is this an essential prime implicant?

No!

Definition: Non-Essential Prime Implicant

Prime implicant that has no element that cannot be covered by other prime implicant

	CD				
AB		00	01	11	10
	00	1	1	0	0
	01	0	1	1	0
	11	1	1	1	0
	10	1	1	0	0

Formal K-Map Procedure

- 1. Convert truth table to K-map
- 2. Include all essential primes
- 3. Include non-essential primes as needed to completely cover all ones

Revisiting Q3

Essential Prime Implicants

Revisiting Q3

To cover the remaining ones, we will choose one of these non-essential prime implicants

Recall: Sum of Products

SOP

$$Y = ABC + AB\overline{C}\overline{D} + D + B\overline{C}$$

Not SOP

$$Y = A(B + C)$$

$$Y = (A+D)(B+C)$$

$$Y = \overline{AB + C}$$

$$Y = \overline{AB}D$$

Simplify the Following Boolean Equation

$$Y = \overline{A + \overline{B} + C + \overline{D}} + ABC\overline{D} + BC + \overline{AB} + \overline{C} + \overline{D}$$

Simplify the Following Boolean Equation

$$Y = \overline{A} + \overline{B} + C + \overline{D} + ABC\overline{D} + BC + \overline{AB} + \overline{C} + \overline{D}$$

$$Y = \overline{A}B\overline{C}D + ABC\overline{D} + BC + AB(C + D)$$

$$Y = \overline{A}B\overline{C}D + ABC\overline{D} + BC + ABC + ABD$$

$$Y = \overline{A}B\overline{C}D + ABC\overline{D} + BC + ABD$$

$$Y = \overline{A}B\overline{C}D + BC + ABD$$

Is this the most simplified equation?

We can always plug it into a K-Map to check!

Using a K-Map to Simplify an Equation

$$Y = \bar{A}B\bar{C}D + BC + ABD$$

CD

AB

	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

	Α	В	С	D	Y
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

Using a K-Map to Simplify an Equation

$$Y = \bar{A}B\bar{C}D + BC + ABD$$

	CD				
λB		00	01	11	10
	00	0 0	0 1	0 3	0 2
	01	0 4	1 5	1 7	1 6
	11	0	1	1 15	1 14
	10	0 8	0 9	0	0

Y	=	BI	D -	+ /	BC
		וע		1 4	\mathcal{O}

	Α	В	С	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Recall: Don't Cares

Priority Circuit Truth Table

A_3	A_2	A ₁	A_0	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	X	0	1	0	0
1	X	X	X	1	0	0	0

A "don't care" value (X) indicates that the input does not affect the output

Output Values Can Also Be Don't Care!

	Y	В	A
Man A and Dage 4	1	0	0
When A and B are 1 the output can be 0	X	1	0
or 1!	0	0	1
	0	1	1

Output Values Can Also Be Don't Care!

There are two possible implementations of this truth table

A	В	Y
0	0	1
0	1	X
1	0	0
1	1	0

We can treat a don't care value as either 0 or 1. An X can be circled if it helps us cover the 1s with fewer or larger circles, but they do not have to be circled if they are not helpful.

	CD				
AB		00	01	11	10
	00	0	0	0	0
	01	0	1	X	0
	11	0	1	X	0
	10	0	0	0	0

We can treat a don't care value as either 0 or 1. An X can be circled if it helps us cover the 1s with fewer or larger circles, but they do not have to be circled if they are not helpful.

If we group the 1s on their own, we have the equation $Y = B\bar{C}D$

If we group the 1s with the X's, we have the equation Y = BD

The left equation requires more gates, so it would be better to use the right equation.

$$Y = B\bar{C}D$$
 $Y = BD$

For the input combinations that produce a don't care output in the k-map, the circuit would output a 0 using the left implementation and a 1 using the right implementation.

i.e. when A = 0, B = 1, C = 1, D = 1 -> Y = 0 for the left and 1 for the right

and when A = 1, B = 1, C = 1, D = 1 -> Y = 0 for the left and 1 for the right

We can treat a don't care value as either 0 or 1. An X can be circled if it helps us cover the 1s with fewer or larger circles, but they do not have to be circled if they are not helpful.

	CD				
AB		00	01	11	10
	00	1	0	X	1
	01	0	1	X	1
	11	1	1	X	X
	10	1	1	X	X

We can treat a don't care value as either 0 or 1. An X can be circled if it helps us cover the 1s with fewer or larger circles, but they do not have to be circled if they are not helpful.

$$Y = A + C + \overline{B}\overline{D} + BD$$