16.49. Какова должна быть постоянная d дифракционной решетки, чтобы в первом порядке был разрешен дублет натрия $\lambda_1 = 589$ нм и $\lambda_2 = 589$,6 нм? Ширина решетки a = 2,5 см.

Решение:

Имеем $d = \frac{a(\lambda_2 - \lambda_1)}{\lambda_1}$ (см. задачу 16.48). Подставляя число-

вые данные, получим $d = 25.5 \cdot 10^{-6}$ м.

16.50. Постоянная дифракционной решетки d=2 мкм. Какую разность длин волн $\Delta\lambda$ может разрешить эта решетка в области желтых лучей ($\lambda=600$ нм) в спектре второго порядка? Ширина решетки a=2.5 см.

Решение:

Имеем
$$\frac{\lambda}{\Delta \lambda} = k \frac{a}{d}$$
 (см. задачу 16.48), откуда $\Delta \lambda = \frac{\lambda d}{ka} = 24 \cdot 10^{-12}$ м.

16.51. Постоянная дифракционной решетки d=2,5 мкм. Найти угловую дисперсию $\frac{d\varphi}{d\lambda}$ решетки для $\lambda=589$ нм в спектре первого порядка.

Решение:

Имеем $d\sin\varphi=k\lambda$. Дифференцируя, получим $d\cos\varphi d\varphi=0$

=
$$kd\lambda$$
 или $\frac{d\varphi}{d\lambda} = \frac{k}{d\cos\varphi}$. Подставляя числовые данные, по-

лучим $\sin \varphi = 0.236$, откуда $\varphi \approx 13.5^\circ$. Тогда $\cos \varphi = 0.972$ и $d\varphi$

$$\frac{d\varphi}{d\lambda} = 4.1 \cdot 10^5 \, \text{pag/M}.$$

16.52. Угловая дисперсия дифракционной решетки для $\lambda = 668$ нм в спектре первого порядка $\frac{d\varphi}{d\lambda} = 2,02\cdot 10^5$ рад'м. Найти период d дифракционной решетки.

Решение:

По формуле дифракционной решетки $d\sin\alpha = \lambda$ — (1). Кроме того, $\frac{d\varphi}{d\lambda} = \frac{1}{d\cos\varphi}$ — (2) (см. задачу 16.51). Из (1) найдем $\sin\varphi = \frac{\lambda}{d}$ или $\cos\varphi = \sqrt{1-\frac{\lambda^2}{d^2}}$ — (3). Подетавля (3) в (2), получим $\frac{d\varphi}{d\lambda} = \frac{1}{d\sqrt{1-\lambda^2/d^2}} = \frac{1}{\sqrt{d^2-\lambda^2}}$. Отсюда $d=\sqrt{\frac{1}{(d\varphi/d\lambda)^2}+\lambda^2} = 5\cdot 10^{-6}$ м.

16.53. Найти липейную дисперсию D дифракционной решетки в условиях предыдущей задачи, если фокусное расстояние линзы, проектирующей спектр на экран, равно F = 40 см.

Решение:

Линейная дисперсия D дифракционной решетки определяется по формуле $D=F\frac{d\varphi}{d\hat{\lambda}}$. Подставляя числовые данные, получим D=81 мкм/(H·м).

16.54. На каком расстоянии I друг от друга будут нахо инъся на экране две линии ртутной дуги ($\lambda_1 = 577$ нм и $\lambda_2 = 579.4$ им) в спектре первого порядка, получениом при номонии да фракционной решетки? Фокусное расстояние линъы, проектиру класи спектр на экран, F = 0.6 м. Постоянная решетки d = 2 мкм.

Решение:

422

Соглаено условию главных максимумов дифракционной решетки $d\sin\varphi=k\lambda$ — (1). В нашем случае k=1, по нему для первой и второй линии ртутной дуги из формули. (1) соответственно имеем $d\sin\varphi_1=\lambda_1$ и $d\sin\varphi_2=\lambda_2$, откуда

 $sin \varphi_1 = \frac{\lambda_1}{d}$ — (2) и $sin \varphi_2 = \frac{\lambda_2}{d}$ — (3). Поскольку расстояние от линзы до решетки f << F, где F — фокусное расстояние линзы, то $\frac{l_1}{F} = tg\varphi_1$ и $\frac{l_2}{F} = tg\varphi_2$, откуда $l_1 = Ftg\varphi_1$ — (4) и $l_2 = Ftg\varphi_2$ — (5). Расстояние между двумя линиями ртутной дуги на экране равно $l = l_2 - l_1$ — (6). Подставляя (4) и (5) в (6), получаем $l = F(tg\varphi_2 - tg\varphi_1)$ — (7). По определению $tg\varphi = \frac{sin \varphi}{cos \varphi}$ — (8) и, согласно основному тригонометрическому тождеству, $sin^2 \varphi + cos^2 \varphi = 1$, откуда $cos \varphi = \sqrt{1 - sin^2 \varphi}$ — (9). Подставляя (9) в (8), получаем $tg\varphi = \frac{sin \varphi}{\sqrt{1 - sin^2 \varphi}}$ — (10), затем, подставляя (2) и

(3) в (10), находим
$$tg\varphi_1 = \frac{\lambda_1}{\sqrt{d^2 - \lambda_1^2}}$$
 — (11) и

 $tg\varphi_2 = \frac{\lambda_2}{\sqrt{d^2 - \lambda_2^2}}$ — (12). Подставляя (11) и (12) в (7), окон-

чательно получаем
$$I = F\left(\frac{\lambda_2}{\sqrt{d^2 - \lambda_2^2}} - \frac{\lambda_1}{\sqrt{d^2 - \lambda_1^2}}\right) = 0.68$$
 мм.

16.55. На дифракционную решетку пормально падает пучок света. Красная липия ($\lambda_1 = 630$ нм) видна в спектре третьсго порядка под углом $\varphi = 60^\circ$. Какая спектральная липия λ_2 видна под этим же углом в спектре четвертого порядка? Какое число штрихов N_0 на единицу длины имеет дифракционная решетка?

Найти угловую дисперсию $\frac{d\varphi}{d\lambda}$ этой решетки для длины волны $\lambda_1 = 630$ нм в спектре третьего порядка.

Решение:

Из условия главных максимумов дифракционной решетки $d\sin\varphi=k\lambda$ — (1) имеем: $d\sin\varphi=k_1\lambda_1$ — (2) и $d\sin\varphi=k_2\lambda_2$ — (3), где $k_1=3$ и $k_2=4$. Приравнивая правые части уравнений (2) и (3), получаем $k_1\lambda_1=k_2\lambda_2$. Откуда $\lambda_2=\frac{k_1\lambda_1}{k_2}=472.5$ м. По определению число штримов на единицу длины $N_0=\frac{1}{d}$, откуда $d=\frac{1}{N_0}$ — (4). Подставляя (4) в (1), получаем $\frac{\sin\varphi}{N_0}=k\lambda$, откуда $N_0=\frac{\sin\varphi}{k\lambda}=458\,\mathrm{mm}^{-1}$. Дифференцируя уравнение (1), получаем $d\cos d\varphi=kd\lambda$, откуда угловая дисперсия дифракционной решетки $\frac{d\varphi}{d\lambda}=\frac{k}{d\cos\varphi}$ — (5). Подставляя (4) в (5), получаем $\frac{d\varphi}{d\lambda}=\frac{kN_0}{\cos\varphi}=2.75\cdot10^4\,\mathrm{pag/cm}$.

16.56. Для какой длины волны $\hat{\lambda}$ дифракционная решетка имеет угловую дисперсию $\frac{d\phi}{d\lambda} = 6.3 \cdot 10^5$ рад/м в спектре третьего порядка? Постоянная решетки d=5 мкм.

Решение:

Угловая дисперсия дифракционной решетки (см. залачу 16.55) $\frac{d\varphi}{d\lambda} = \frac{k}{d\cos\varphi}$, откула $\cos\varphi = \frac{k}{d}\frac{d\lambda}{d\varphi}$ — (1). По основного тригопометрического тождества (см. за иляу 16.54) $\cos\varphi = \sqrt{1-\sin^2\varphi}$ — (2). Приравнивая правые части уравнений (1) и (2), получаем $\frac{k}{d}\frac{d\lambda}{d\varphi} = \sqrt{1-\sin^2\varphi}$, откула

$$sin \varphi = \sqrt{1 - \left(\frac{k}{d}\right)^2 \left(\frac{d\lambda}{d\varphi}\right)^2}$$
 — (3). Из условия главных макенмумов дифракционной решетки $d \sin \varphi = k\lambda$ длина волны $\lambda = \frac{d}{k} \sin \varphi$ — (4). Подставляя (3) в (4). окончательно получаем $\lambda = \sqrt{\frac{d^2}{k^2} - \left(\frac{d\lambda}{d\varphi}\right)^2} = 508$ нм.

16.57. Какое фокусное расстояние F должна иметь линза, проектирующая на экран спектр, полученный при помощи дифракционной решетки, чтобы расстояние между двумя линиями калия $\lambda_1 = 404.4$ им и $\lambda_2 = 404.7$ им в спектре первого порядка было равным I = 0.1 мм? Постоянная решетки d = 2 мкм.

Решенис:

Расстояние от решстки до линзы равно расстоянию от линзы до экрана и равно фокусному расстоянию линзы F. Из рисунка видно, что расстояние

$$x_{\rm I} = Ftg\theta_{\rm I}$$
, a

 $x_2 = Ftg\theta_2$. Поскольку $x_2 - x_1 = l$, то можно записать $l = F(tg\theta_2 - tg\theta_1)$ — (1). Т. к. $tg\theta_2 - tg\theta_1$ есть приращение функции $f(\theta) = tg\theta$. то можно принять $tg\theta_2 - tg\theta_1 = -(tg\theta)' \cdot \Delta\theta$ — (2). Кроме того, $\Delta\theta = \frac{\sin\theta_2 - \sin\theta_1}{(\sin\theta)'}$ — (3).

Подставив (3) в (2) и вычислив производные, найдем $tg\theta_2 - tg\theta_1 = \frac{\sin\theta_2 - \sin\theta_1}{\cos^3\theta_1}$ — (4). По формуле дифракцион-

ной решетки $d\sin\theta_1=\lambda_1$; $d\sin\theta_2=\lambda_2$, откуда $\sin\theta_1=\frac{\lambda_1}{d}$. $_{\rm H}\sin\theta_2=\frac{\lambda_2}{d}$. Тогда уравнение (4) можно записать в виде $tg\theta_2-tg\theta_1=\frac{\lambda_2/d-\lambda_1/d}{\cos^3\theta_1}=\frac{\lambda_2-\lambda_1}{d\cos^3\theta_1}$ (5). Подставлен (5) в (1), получим $l=\frac{F(\lambda_2-\lambda_1)}{d\cos^3\theta_1}$, откуда $F=\frac{dl\cos^3\theta}{\lambda_2-\lambda_1}$ (6). Величину $\cos\theta_1$ найдем из соотношения $\cos\theta_1=\sqrt{1-\sin^2\theta_1}=\sqrt{1-\left(\frac{\lambda_1}{d}\right)^2}$; $\cos\theta_1=0.9793$. Подставлен

16.58. Найти угол $i_{\rm g}$ полной поляризации при отражении

света от стекла, показатель преломления которого n = 1.57.

ляя числовые данные в (6), получим $F = 0.65 \,\mathrm{M}$.

Решение:

Согласно закону Брюстера свет, отраженный от диэлектрика, полностью поляризован в том случае, если тапленс угла падения $tgi_{\rm B}=\frac{n_2}{n_{\rm I}}$, где $n_{\rm I}=1$ — показатель преломления воздуха, $n_2=1.57$ — показатель преломления стекла. Отсюда $i_{\rm B}=arctgh_2=57.5^\circ$.

16.59. Предельный угол полного внутреннего отражения для некоторого вещества $i=45^\circ$. Найти для этого вещества угол 45° полной поляризации.

Решение:

Предельный угол полного внутреннего отражения для траницы раздела вещество — воздух определяется соотноше-

нием
$$sini = \frac{1}{n}$$
. По условию $i = 45^{\circ}$, отсюда $n = \frac{2}{\sqrt{2}} = 1,4$. По закону Брюстера $tgi_{\overline{b}} = n$, откуда $i_{\overline{b}} = arctg(n) = 54,7^{\circ}$.

16.60. Под каким углом i_5 к горизонту должно находиться Солнце, чтобы его лучи, отраженные от поверхности озера, были наиболее полно поляризованы?

Решение:

Пусть i — угол падения солнечных лучей, $i_{\rm B}$ — угол между направлением на Солнце и горизонтом. По закону Брюстера $tgi_{\rm B}=n$, где n=1,33 — показатель преломления воды. Тогда $i=arctg(n)=53^\circ$. Отсюда $i_{\rm E}=90^\circ-i=37^\circ$.

16.61. Найти показатель преломления n стекла, если при **отражении** от него света отраженный луч будет полностью поля**ризован** при угле преломления $\beta = 30^{\circ}$.

Решение:

По закону Брюстера $tgi_{\rm B}=n$. В связи с обратимостью хода лучей можно записать $tg\beta=\frac{1}{n}$, откуда $n=\frac{1}{tg\beta}=1.73$.

16.62. Луч света проходит через жидкость, налитую в стеклянный (n=1,5) сосуд, и отражается от дна. Отраженный луч полностью поляризован при падении сто на дно сосуда под углом $i_{\rm B}=42^{\circ}37'$. Найти показатель преломления жидкости. Под каким углом i должен падать на дно сосуда луч света, идущий в этой жидкости, чтобы наступило полное внутреннее отражение?

Решение:

По закону Брюстера $tg(i_{\rm B})=\frac{n_2}{n_1}$ — (1), где $n_2=1.5$ — показатель преломления стекла, n_1 — показатель преломления жидкости. Из (1) найдем $n_1=\frac{n_2}{tg(i_{\rm B})}=1.63$. Полное видиреннее отражение наступает при условии $sini=\frac{n_2}{t}=0.92$.

реннее отражение паступает при условии $sini=\frac{n_s}{n_l}=0.92$, откуда угол падения $i\approx 67^\circ$.

16.63. Пучок поляризованного света ($\lambda=589\,\mathrm{HM}$) падает на пластинку исландского шпата перпендикулярно к его отол-ческой оси. Найти длины воли λ_{u} и λ_{e} обыкновенного и необыкновенного лучей в кристалле, если показатели прелогления исландского шпата для обыкновенного и для необыкновенного лучей равны $n_{\mathrm{u}}=1.66$ и $n_{\mathrm{e}}=1.49$.

Решение:

Имеем
$$\lambda_o = \frac{\lambda}{n_o} = 355$$
 нм, $\lambda_e = \frac{\lambda}{n_e} = 395$ нм.

16.64. Найти угол φ между главными илоскостями полоризатора и анализатора, если интенеивность естественного света, проходялеего через поляризатор и анализатор, уменьщается в 4 раза.

Решение:

Посли прохождения через поляризатор луч имеет интенсивность $I_1=0.5\,I_0$, где I_0 — интенсивность естествення через анализатор луч имеет интенсивность $I_2=I_1\cos^2\varphi=0.5I_0\cos^2\varphi$. По условию

$$\frac{I_2}{I_0} = 0.25$$
, тогда $\cos^2 \varphi = 0.5$ и $\varphi = 45^\circ$.

16.65. Естественный свет проходит через поляризатор и анализатор, поставленные так, что угол между их главными плоскостями равен φ . Как поляризатор, так и анализатор поглощают и отражают 8% падающего на них света. Оказалось, что интенсивность луча, вышедшего из анализатора, равна 9% интенсивности естественного света, падающего на поляризатор. Найти угол φ .

Решение:

Согласно закону Малюса интененвность света, прешедшего через поляризатор и анализатор, $I=I_0''\cos^2\varphi$ — (1), где I_0'' — интенсивность естественного света с учетом поглощения и отражения поляризатора и анализатора. Интенсивность света, прошедшего через поляризатор, равна $I_0'=(1-0.08)I_0=0.92I_0$ — (2). Интенсивность света, прошедшего через анализатор с учетом (2), равна $I_0''=0.92I_0'=0.8464I_0$ — (3). По условию интенсивность света, вышедшего из анализатора, $I=0.09I_0$ — (4). Из формулы (1) имеем: $\cos\varphi=\sqrt{\frac{I}{I_0''}}$, откуда угол между главными плоскостями поляризатора и анализатора $\varphi=\arccos\sqrt{\frac{I}{I_0''}}$ — (5). Подставляя (3) и (4) в (5), получаем $\varphi=70^\circ 54'$.

16.66. Найти коэффициент отражения ρ естественного свста, падающего на стекло (n=1.54) под углом $i_{\rm B}$ полной поляризации. Найти степень поляризации P лучей, прошедших в стекло.

Решение:

Коэффициент отражения падающего света $\rho = \frac{I}{I_0}$, где

$$I = I_{\perp} + I$$
, причем $I_{\perp} = 0.5I_0 \frac{\sin^2(i-\beta)}{\sin^2(i+\beta)}$, $I_{\perp} = 0.5I_0 \times I_0$

$$imes rac{tg^2(i-eta)}{tg^2(i+eta)}$$
 . В нашем случае при падении под углом водь

ной поляризации $tg(i_{\rm B})=n=1.54$; следовательно, $i_{\rm F}$ 57°. Т. к. $i_{\rm B}+\beta=90^\circ$, то угол преломления $\beta=32^\circ$ и

$$I_{\rm B} - \beta = 24^{\circ}$$
. Thostomy $I_{\perp} = 0.5I_0 \frac{\sin^2 24^{\circ}}{\sin^2 90^{\circ}} = 0 \text{ m. } I_{\rm b}$

$$I = 0.5 I_0 \frac{tg^2 24^\circ}{tg^2 90^\circ} = 0$$
, т. е. в отраженном свете при усле

надения, равном углу полной поляризации, колебания происходят только в плоскости, перпендикулярной к выос-

кости падения. При этом
$$\rho = \frac{I}{I_0} = \frac{I_\perp + I}{I_0} = 0.083$$
, т. с. стра-

жается от стекла только 8,3% энергии падающих еспественных лучей. Следовательно, энергия колебаний, перпендикулярных к плоскости падения и прошедших во вторую среду, будет составлять 41,7% от общей энергии лучей, упавших на границу раздела, а энергия колебаний, лежащих в плоскости падения, равна 50%. Степень поляризации лучей, прошедших во вторую среду,

$$P = \frac{I - I}{I + I_{\perp}} = \frac{0.083}{0.917} = 0.091 = 9.1\%.$$

16.67. Лучи естественного света проходят сквозь плоскопараллельную стеклянную пластицку (n=1.54), надая на нее под утном $i_{\rm B}$ полной поляризации. Найти стецень поляризации P лучей, прошедших сквозь пластицку.

Решение:

При падении естественного луча на стеклянную пластинку под углом полной поляризации преломленный луч вмеет интенсивность $I_1=0.917I_0$ (см. задачу 16.66). В этом преломлениом луче $0.417I_0$ составляют колебания, перт пендикулярные к плоскости падения, и $0.5I_0$ — колебания, 430

параллельные плоскости падения. Интенсивность луча, гразившегося от второй грани пластинки, $I_2=0.083\cdot 0.0917I_0=0.076I_0$. Интенсивность луча, вышедиего из пластинки в воздух, будет $I_3=0.917I_0-0.076I_0$, причем $0.5I_0$ составляют лучи с колебаниями, параллельными плоскости падения, и $0.341I_0$ — с колебаниями, перпендикулярными к плоскости падения. Тогда степень поляризации $P=\frac{I_0-I_1}{I_0+I_2}=\frac{0.159}{0.841}=18.9\%$, т. е. степень поляризации увеличилась. На этом основании в качестве

пяризации увеличилась. На этом основании в качестве поляризатора употребляется «стопа» плоскопараллельных стеклянных пластинок («стопа Столетова»).

16.68. Найти коэффициент отражения ρ и степень поляризации P_1 отражениых лучей при падении естественного света на стекло (n=1,5) под углом $i=45^\circ$. Какова степень поляризации P_2 преломленных лучей?

Решение:

Коэффициент отражения падающего света $\rho = \frac{I}{I_0}$ — (1),

где
$$I = I_{\perp} + I_{\parallel} - (2)$$
, причем $I_{\perp} = \frac{I_0}{2} \left[\frac{\sin(i-\beta)}{\sin(i+\beta)} \right]^2 - (3)$ и

$$I = \frac{I_0}{2} \left[\frac{tg(i-\beta)}{tg(i+\beta)} \right]^2$$
— (4). Показатель преломления среды

$$n = \frac{\sin i}{\sin \beta}$$
, откуда $\sin \beta = \frac{\sin i}{n}$ или $\beta = \arcsin\left(\frac{\sin i}{n}\right)$ — (5).

Подставляя (5) в (3) и (4), получаем

$$I_{\perp} = \frac{I_0}{2} \left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i + \arcsin(\sin(i)/n))} \right]^2 - (6) \text{ и}$$

$$I = \frac{I_0}{2} \left[\frac{tg(i - \arcsin(\sin(i)/n))}{tg(i + \arcsin(\sin(i)/n))} \right]^2$$
 (7). Подставляя (6) и (7) в (2), получаем
$$I = \frac{I_0}{2} \left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i)/n} \right]^2$$

(7) в (2), получаем
$$I = \frac{I_0}{2} \left\{ \left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i + \arcsin(\sin(i)/n))} \right]^2 + \left[\frac{tg(i - \arcsin(\sin(i)/n))}{tg(i + \arcsin(\sin(i)/n))} \right]^2 \right\}$$
 — (8). Подставляя (8) в (1),

окончательно получаем
$$\rho = \frac{1}{2} \left\{ \left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i + \arcsin(\sin(i)/n))} \right]^2 + \left[\frac{ig(i - \arcsin(\sin(i)/n))}{ig(i + \arcsin(\sin(i)/n))} \right]^2 \right\}; \qquad \rho = 0.0503 \cdot 100\% = 5.03\%.$$

Степень поляризации отраженных лучей
$$P_1 = \frac{I_{\perp} - I}{I_{\perp} + I}$$
 —

(9). Подставляя (6) и (7) в (9), получаем

$$P_{1} = \frac{\left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i + \arcsin(\sin(i)/n))}\right]^{2} - \left[\frac{tg(i - \arcsin(\sin(i)/n))}{tg(i + \arcsin(\sin(i)/n))}\right]^{2}}{\left[\frac{\sin(i - \arcsin(\sin(i)/n))}{\sin(i + \arcsin(\sin(i)/n))}\right]^{2} + \left[\frac{tg(i - \arcsin(\sin(i)/n))}{tg(i + \arcsin(\sin(i)/n))}\right]^{2}};$$

$$P_{1} = 0.84 \cdot 100\% = 84\%.$$
Степень поляризации предомлен-

 $P_1=0.84\cdot 100\%=84\%$. Степень поляризации преломлен ных лучей $P_2=\rho P_1=0.0422\cdot 100\%=4.22\%$.