UNIVERSITY OF PETROLEUM & ENERGY STUDIES

2021-22 Batch

	Design and Analysis of Algorithms	L	Т	Р	С			
Version 1.0		3	0	0	3			
Pre-requisites/Exposure	Basic knowledge Mathematics and data structure							
Co-requisites								

Course Objectives

- 1. To understand the necessity of the algorithm design.
- 2. To write the algorithm to solve a problem.
- 3. To analyze the performance of the algorithm.
- 4. To implement the algorithm in C/C++.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Apply mathematical techniques to find the complexity of an algorithm.
- CO2. Analyze algorithms and express asymptotically different case behavior.
- CO3. Demonstrate good principles of algorithm designs.
- CO4. Design appreciate data structures to reduce the complexity of an algorithm.
- CO5. Differentiate among P, NP Hard and NP Complete problems.

Catalog Description

This course deals with various aspects of designing algorithms and their mathematical characteristics. The broad focus lies on computational complexity, divide-and-conquer approach, dynamic programing, greedy approach and backtracking algorithms. The clear distinction among P, NP Hard and NP Complete problems are covered in detail.

Course Content

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

2021-22 Batch

UNIT I:

Introduction 9 Lecture Hours

Algorithm, Psuedo code, Performance Analysis- Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation with numerical, different algorithm design techniques, recurrence relation, solving methods: substitution, recursion tree, master theorem with numerical.

UNIT II

Divide And Conquer

6 Lecture Hours

Binary search, Quick sort: best case & worst case analysis, Merge sort, Strassen's matrix multiplication

UNIT III:

Greedy Method

6 Lecture Hours

Activity selection problem, knapsack problem, Minimum cost spanning trees: Prims and kruskal, Single source shortest path problem: Bellman ford, dijkstra's, Huffman codes.

UNIT IV

DYNAMIC PROGRAMMING

5 Lecture Hours

Matrix chain multiplication, 0/1 knapsack problem, All pairs shortest path problem, largest common subsequence.

UNIT V

Sorting In Linear Time

6 Lecture Hours

Lower Bounds For Sorting, Counting Sort, Radix Sort, bucket sort

Backtracking: N-queen problem, sum of subsets problem

UNIT VI

Branch and Bound Method And Its Applications

4 Lecture Hours

Travelling salesman problem

NP-Hard and NP-Complete problem and concepts

Text Books

- 1. Thomas H. Cormen (2009) Introduction to Algorithm (Third Edition), The MIT Press. ISBN: 978-0-262-03384-8
- 2. John Kleinberg and Eva Tardos (2005), Algorithm Design, ISBN: 0-321-29535-8

B.TECH (CSE) with Specialization in Cloud Computing & Virtualization Technology

Page 88 of 429

This document is the Intellectual Property of University of Petroleum & Energy Studies and its contents are protected under the 'Intellectual Property Rights'.

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

2021-22 Batch

Reference Books

1. Rajesh K. Shukla (2015) Analysis and Design of Algorithms: A Beginner's Approach, Wiley, ISBN-10: 8126554770

2. S.Sridhar (2014), Design and Analysis of Algorithms 1st Edition, Publisher: Oxford University Press ISBN: 9780198093695, 0198093691

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Internal	Mid Term	ESE	Total
Weightage (%)	30%	20%	50%	100%

Relationship between the Course Outcomes (COs), Program Outcomes (POs) and Program Specific Objectives(PSOs)

Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
CO1	3	3	1	2									3	1	
C02	3	3	2	2									3	1	
C03	2	2	2	1									3	1	
CO4	2	3	2	1									3	1	
C05	3	2	1	3									3	1	
Average	2.6	2.6	1.6	1.8									3	1	

1=weak 2= moderate 3=strong