Problem Statement

A real estate agent want help to predict the house price for regions in USA. He gave us the dataset to work on to use linear regression model. create a model that helps him to estimate of what the house sell for.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
In [3]:

df = pd.read_csv("10_USA_Housing.csv")
df
```

Out[3]:

]:		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
	0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
	1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079∖nLake Kathleen, CA
	2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
	3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
	4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
	•••	•••	•••	•••	•••	•••	•••	•••
	4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653
	4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352
	4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01
	4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
	4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly,

> Avg. Avg. Area Avg. Area Avg. Area Area Number Area **Address** Number **Price Income** House of **Population** of Age **Bedrooms Rooms** NV 2...

5000 rows × 7 columns

In [4]: df.head()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386

Data cleaning and pre processing

```
In [5]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5000 entries, 0 to 4999
        Data columns (total 7 columns):
         #
             Column
                                            Non-Null Count Dtype
             Avg. Area Income
                                                            float64
                                            5000 non-null
             Avg. Area House Age
                                            5000 non-null
                                                            float64
             Avg. Area Number of Rooms
                                            5000 non-null
                                                            float64
             Avg. Area Number of Bedrooms
                                            5000 non-null
         3
                                                            float64
         4
             Area Population
                                            5000 non-null
                                                            float64
         5
             Price
                                            5000 non-null
                                                             float64
             Address
                                            5000 non-null
                                                            object
        dtypes: float64(6), object(1)
        memory usage: 273.6+ KB
In [6]:
```

df.describe()

-0	1.1	+	6	
- 0	и	L	0	

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75 %	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [8]: df.columns
```

Out[8]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')

EDA and VISUALIZATION

```
In [9]: sns.pairplot(df)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x190db374820>

In [10]: sns.distplot(df["Price"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
`distplot` is a deprecated function and will be removed in a future version. Please adap
t your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Price', ylabel='Density'>

Out[14]: <AxesSubplot:>

To train the model - model building

going to train linear Regression model

• first split the data into two variables x and y where x is independent variable (input) and y is dependent on x (output)

• we can ignore address column as it is not required for our model

split the data into training and test data

```
In [19]:
           x train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [24]:
           lr = LinearRegression()
           lr.fit(x train, y train)
Out[24]: LinearRegression()
In [26]:
           lr.intercept_
          -2639713.984629445
Out[26]:
In [27]:
           coeff = pd.DataFrame(lr.coef , x.columns, columns =['Co-efficient'])
           coeff
                                         Co-efficient
Out[27]:
                      Avg. Area Income
                                          21.577210
                   Avg. Area House Age
                                      165324.413148
             Avg. Area Number of Rooms 121051.833653
          Avg. Area Number of Bedrooms
                                         1227.694779
                       Area Population
                                          15.308496
In [28]:
           prediction = lr.predict(x_test)
           plt.scatter(y test, prediction)
```


In [29]:
lr.score(x_test,y_test)

Out[29]: **0.9164989189516786**