

Ambient Intelligence and Domotics Domotics Exam Project

Domotics Exam Project Report

Project Overview

The project focuses on **Supervised Human Activity Recognition** to classify Activities. The following Pipeline of the Project:

- 1. Exploratory Data Analysis (EDA)
- 2. Data Preprocessing: Denoising, Normalization, Segmentation, Balancing the dataset.
- 3. Feature Engineering: Handcrafted feature extraction.
- 4. Training the Models:
 - a. Baseline Model (MLP)
 - b. Conv1D model
 - c. LSTM model
 - d. Combined Conv1dLSTM

HARTH Dataset

The Human Activity Recognition Trondheim (HARTH) dataset is a professionally annotated dataset containing 22 subjects wearing two 3-axial accelerometers for around 2 hours in a free-living setting. The sensors were attached to the right thigh and lower back. The professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.

Dataset Characteristics Multivariate, Time-Series

Subject Area Computer Science

Associated Tasks Classification

Feature Type Real

Instances 6461328

Features 8

Dataset Information For what purpose was the dataset created?

The dataset was created to train machine learning classifiers for human activity recognition based on professional annotations of activities in a free-living setting.

Who funded the creation of the dataset?

NTNU Helse

Additional Information

The HARTH dataset contains recordings of 22 participants wearing two 3-axial Axivity AX3 accelerometers for around 2 hours in a free-living setting. One sensor was attached to the right front thigh and the other to the lower back. The provided sampling rate is 50Hz. Video recordings of a chest-mounted camera were used to annotate the performed activities frame-by-frame.

Each subject's recordings are provided in a separate .csv file. One such .csv file contains the following columns:

- 1. timestamp: date and time of recorded sample
- 2. back_x: acceleration of back sensor in x-direction (down) in the unit g
- 3. back_y: acceleration of back sensor in y-direction (left) in the unit g
- 4. back_z: acceleration of back sensor in z-direction (forward) in the unit g
- 5. thigh_x: acceleration of thigh sensor in x-direction (down) in the unit g
- 6. thigh_y: acceleration of thigh sensor in y-direction (right) in the unit g
- 7. thigh_z: acceleration of thigh sensor in z-direction (backward) in the unit g
- 8. label: annotated activity code

The dataset contains the following annotated activities with the corresponding coding: 1: walking 2: running 3: shuffling 4: stairs (ascending) 5: stairs (descending) 6: standing 7: sitting 8: lying 13: cycling (sit) 14: cycling (stand) 130: cycling (sit, inactive) 140: cycling (stand, inactive)

Has Missing Values?: No

Data Loading and Preprocessing

For the data loading you i use two piece of code one for google colab Environment and one for Kaggle. because Kaggle give more computation power and time.

1. **Preprocessing:** Denoising, Normalization, Segmentation, Balancing the dataset.

Segmentation:

I performs data segmentation by dividing the dataset into fixed-size windows of 50 samples each. For each window, it extracts six features (back_x, back_y, back_z, thigh_x, thigh_y, thigh_z), determines the most frequent label and subject, and appends these to separate lists. The segmented data, labels, and subjects are then converted into NumPy arrays, with X_segments shaped as (num_samples, window_size, num_features).

Distribution of dataset:

Activity map:

```
1 activities_map={
   1: 'walking',
   2: 'running',
   3: 'shuffling',
   4: 'stairs (ascending)',
 5
   5: 'stairs (descending)',
 7
   6: 'standing',
   7: 'sitting',
   8: 'lying',
10
   13: 'cycling (sit)',
11 14: 'cycling (stand)',
12 | 130: 'cycling (sit, inactive)',
13 140: 'cycling (stand, inactive)'
14 }
```

The distribution of activities in dataset:

The distribution of activities is showing clear that the dataset is unbalanced

Data Distribution by Subject

Data Balancing:

Data balancing is a crucial step in machine learning, particularly when dealing with imbalanced datasets. An imbalanced dataset can lead to biased models that perform poorly on minority classes. I use this method: Synthetic Minority Over-sampling Technique (SMOTE).

Let's Plot the distribution again after balancing.

We can notice that the distribution become better but not perfect.

Feature Engineering

In The project employs automatic feature extraction methods with conv1d and LSTM models and combined model Conv1D-LSTM. is compared against a baseline model that uses handcrafted feature extraction.

Model Training and Evaluation

Models Used:

- 1. Baseline MLP (Multi-Layer Perceptron): Uses handcrafted features.
- 2. Conv1D: Conv1D is highly effective in detecting local patterns and features in time-series data due to its convolutional filters
- 3. LSTM (Long Short-Term Memory LSTMs are designed to capture long-term dependencies in sequential data.

Combined Conv1D and LSTM: Combining Conv1D and LSTM leverages the strengths of both architectures. Conv1D layers can efficiently extract local features and patterns from the input sequences, while LSTM layers can capture long-term dependencies and temporal dynamics

Training Process:

for the epochs I use few numbers of epochs because the data set is large, and I have computational environments very limited. Even that I got a good performance.

The baseline model trained with handcrafted feature extraction data.

The advanced model trained Conv1D and LSTM and Conv1D-LSTM trained balanced data

Evaluation Metrics:

The project includes code to plot confusion matrices and model architectures to visualize the results. It is observed that the automatic feature extraction models (Conv1D, LSTM, and their combination) outperform the baseline MLP model.

Results Table

Model	Overall Accuracy	Overall Recall	Overall F1 Score
Baseline MLP	0.7391	0.5127	0.4542
Conv1D	0.8219	0.6041	0.5557
LSTM	0.7975	0.5578	0.5056

Combined Conv1D 0.8106 0.5780 0.5249 and LSTM

Confusion Matrix Comparisons

Below are the placeholders for confusion matrix images comparing the performance of different models. Please insert the respective images in these placeholders.

Baseline MLP Confusion Matrix

Conv1D Confusion Matrix

	Confusion Matrix for Conv1D Model													
п-	21426	126	915	337	202	799	42	18	73	26	16	17		
2 -	1110	14137	5	204	894	2	0	2	246	97	0	0	- 500	000
m -	1718	15	1425	129	66	2857	104	11	57	30	26	17		
4 -	2679	83	108	7366	28	606	1	122	725	190	1	7	- 400	000
20 -	2233	108	9	50	5162	7	0	0	22	24	0	1		
True 6	489	10	799	35	15	12926	200	8	203	42	55	59	- 300	000
7 -	- 53	0	29	7	3	121	57625	19	174	8	5	7		
ω -	1	1	0	1	0	0	86	8489	0	0	0	0	- 200	000
13	275	7	23	299	20	84	102	0	6758	156	85	73		
14	65	10	11	111	6	45	0	0	1088	11417	282	25	- 100	000
130	40	0	13	13	2	159	12	12	3847	428	108	16		
140	673	0	720	192	105	1675	311	0	924	163	51	39		
	i	2	3	4	5	6 Pred	7 icted	8	13	14	130	140	- 0	

LSTM Confusion Matrix

	Confusion Matrix for LSTM Model													
1	- 19625	350	1112	480	1111	1005	37	8	57	12	8	192		
2	- 851	15075	20	116	438	53	0	0	17	127	0	0		- 50000
ъ	- 1282	26	1558	178	99	3025	93	4	52	19	21	98		
4	- 4714	143	245	5023	844	409	4	97	224	16	79	118		- 40000
2	- 1346	469	13	272	5349	10	1	0	10	1	0	145		
_	- 335	10	870	113	10	12803	212	3	82	82	104	217		- 30000
True 7	- 33	0	11	19	1	26	57458	47	179	21	29	227		
œ	- 3	2	0	0	1	0	253	8313	2	1	3	0		- 20000
13	- 19	4	7	367	10	152	96	1	6767	84	144	231		
14	- 10	542	5	76	34	67	0	5	379	11500	288	154		- 10000
130	- 14	0	2	10	1	232	1100	1	2509	621	42	118		10000
140	- 360	0	97	54	0	2784	327	0	940	62	77	152		
	i	2	3	4	5	6 Pred	7 icted	8	13	14	130	140		- 0

Combined Conv1D and LSTM Confusion Matrix

Confusion	Matrix	for	Combined	Conv1D	and LSTM	Model
Comusion	Manix	101	Combined	COUNTD	allu LSTM	Model

г -	20650	237	1354	498	569	446	43	10	118	32	12	28	
~ -	953	14695	6	272	458	1	1	1	6	304	0	0	- 50000
m -	1513	19	2572	121	70	1895	85	7	47	15	26	85	
4 -	4009	106	737	6514	103	192	1	5	112	137	0	0	- 40000
۰ ک	1843	465	43	53	5170	8	0	0	24	5	0	5	
e 9 -	517	13	1862	109	13	11698	144	3	138	60	41	243	- 30000
True 7	47	2	22	9	4	27	57203	467	144	9	20	97	
∞ -	3	4	0	0	0	0	16	8555	0	0	0	0	- 20000
13	30	14	14	478	34	71	117	5	6780	112	142	85	
- 14	12	286	7	228	31	36	1	1	1963	10081	352	62	- 10000
130	1	6	10	30	2	129	1912	1	1555	772	177	55	10000
140	470	0	1300	286	326	955	376	22	951	118	1	48	
	í	2	3	4	5	6 Pred	7 icted	8	13	14	130	140	- 0

Model Comparison

Conclusion

The project concludes that automatic feature extraction models, particularly those combining Conv1D and LSTM layers, perform better than the baseline model that relies on handcrafted features. This highlights the effectiveness of deep learning techniques in extracting and leveraging features from raw data for classification tasks in home automation.

Final Remarks

I enjoy work on this project I learned a lot. But I faced a lot of problems and difficulties because the dataset Too large and computation environments I have is not suitable for big projects and large dataset. I trued my best to manage the situation. I kept switching between the platform Kaggle and google colab.

Future work and improvement.

With a powerful environment we can use advanced model and method and techniques. also perform a better balancing for the data set also more complex preprocessing.

Table des matières

Project Overview	2
HARTH Dataset	2
Data Loading and Preprocessing	3
Segmentation:	3
Distribution of dataset:	4
Data Balancing:	5
Feature Engineering	6
Model Training and Evaluation	6
Results Table	
Confusion Matrix Comparisons	7
Baseline MLP Confusion Matrix	
Conv1D Confusion Matrix	8
LSTM Confusion Matrix	9
Combined Conv1D and LSTM Confusion Matrix	10
Model Comparison	
Conclusion	11
Final Remarks	11
Future work and improvement	11