Data Stream Mining- Lecture 4 Classification of Data Streams

Peter Kiss, Teaching Assistant

Eötvös Loránd University, Budapest, Hungary

November 4, 2020

Classification

Source: [Bifet et al., 2018]

Online https:

//www.cms.waikato.ac.nz/~abifet/book/chapter_6.html

Classification

- supervised learning task
- given a list of groups (often called classes), classification seeks to predict which group a new instance may belong to
- output:
 - the given class
 - probability distribution over classes

examples - binary classification:

- spam filtering is a given email a spam?
- sentiment analysis is a tweet express positive or negative sentiment

< □ > < □ P < □ P < ≥ P < ≥ P

Training classfiers

- (x,y) is a training example, where $x=x_1,\ldots,x_d$ is a feature vector and $y\in C$ is the label, that is the indication of the class, and C is the set of classes
- the goal is to build a classifier : y = f(x)
- training:
 - load all the training data into the memory,
 - and making multiple passes over the data and fit classifier function f.

Classification of Stationary Data vs Streams

- a very important assumption in Data mining /ML an especially in classification is iid-ness, that is data is independently and identically distributed
- stationary distribution (doe snot change over time) producing the data in random order,
- In streaming environment not true at all: or certain time periods the labels or classes of instances are correlated.
 - In intrusion detection, there are long periods where all class labels are no-intrusion, mixed with infrequent, short periods of intrusion.

Baseline classifiers

- **Majority class** new instance will be predicted to be the most frequent class corresponds to random guess classifier in stationary learning
- **No-Change classifier** label of the new instance = last label (see intrusion detection example)

Naive Baves

Introduction and Problems

Bayes theorem:

$$posterior = \frac{prior \times likelihood}{evidence}$$
 (1)

$$Pr(c|d) = \frac{Pr(c) \cdot Pr(d|c)}{Pr(d)} \tag{2}$$

where Pr(c) prior the initial probability of event c, Pr(c|d) is the posterior, the probability after accounting d), Pr(d|c) is the *likelihood* of event d given that event c occurs, and Pr(d)

Derivation - from conditional probability

$$Pr(c \cap d) = \Pr(c)Pr(d|c) = Pr(d)Pr(c|d)$$
(3)

$$Pr(c|d) = \frac{Pr(c) \cdot Pr(d|c)}{Pr(d)} \tag{4}$$

Background

Building NB classifier

incremental -thus well suited for streaming

Let x_1, \ldots, x_d discrete attributes, assuming that x_i may take n_i different values.

Upon receiving an unlabelled instance $I=(x_1=v_1,\ldots,x_d=v_d)$ the naive Bayes classifier assigns the probability for I belonging to class $c\in C$

$$Pr(C = c|I) = Pr(C = c) \cdot \prod_{i=1}^{d} Pr(x_i = v_i|C = c)$$
 (5)

$$Pr(C=c|I) = Pr(C=c) \cdot \prod_{i=1}^{d} \frac{Pr(x_i = v_i \land C=c)}{Pr(C=c)}$$
 (6)

(7)

where Pr(C=c) and $Pr(x_i=v_i \land C=c)$ comes from simply counting the occurrences in the training data.

Naive Bayes example for sentiment analysis - Training

Training: First let us assume that we have 4 labelled example

ID	Text	Sentiment
T1	glad happy glad	+
T2	glad joyful glad	+
Т3	glad pleasant	+
T4	miserable sad glad	-

Then count how many times a given word appears in the example - transform into vector of attributes, where attributes are element of the dictionary, and values 0 or $1/\mathsf{true}$ or false:

Id	glad	happy	joyful	pleasant	miserable	sad	Sentiment
T1	1	1	0	0	0	0	+
T2	1	0	1	0	0	0	+
T3	1	0	0	1	0	0	+
T4	1	0	0	0	1	1	_

then check in how many examples of each class the words occur

Class	Value	glad	happy	joyful	pleasant	miserable	sad
+	1	3	1	1	1	0	0
+	0	0	2	2	2	3	3
_	1	1	0	0	0	1	1
-	0	0	1	1	1	0	0

ID	Text	Sentiment							
T5	glad sad miserable pleasant glad	?							
translating into a feature vector(feature = vocabulary)									

ID	glad	happy	joyful	pleasant	miserable	sad	Sentiment
T5	1	0	0	1	1	1	?

ID	glad	happy	joyful	pleasant	miserable	sad	Sentiment
T5	1	0	0	1	1	1	?

Probabilities:

$$Pr(+|T5) = Pr(+) \cdot Pr(glad = 1|+) \cdot Pr(joyful = 0|+) \cdot Pr(happy = 0|+)$$
(8)

$$Pr(pleasant = 1|+) Pr(miserable = 1|+) Pr(sad = 1|+)$$
(9)

$$= \frac{3}{4} \cdot \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{0}{3} \cdot \frac{0}{3} = 0$$
 (10)

where Pr(glad=1|+) means in what fraction of the positive cases occurs the attribute value glad=1 That is $Pr(glad=1 \land C=+)/Pr(glad=1 \land C=+)+Pr(glad=0 \land C=+)$.

Class	Value	glad	happy	joyful	pleasant	miserable	sad
+	1	(3)	1	1	1	0	0
+	0	0	2	2	2	3	3
_	1	1	0	0	0	1	1
_	0	0	1	1	1	0	0

ID	glad	happy	joyful	pleasant	miserable	sad	Sentiment
T5	1	0	0	1	1	1	?

$$Pr(-|T5) = Pr(-) \cdot Pr(glad = 1|-) \cdot Pr(joyful = 0|-) \cdot Pr(happy = 0|-)$$
(11)

$$\cdot Pr(pleasant = 1|-) \cdot Pr(miserable = 1|-) \cdot Pr(sad = 1|-) \tag{12}$$

$$= \frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{0}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} = 0$$
 (13)

Class	Value	glad	happy	joyful	pleasant	miserable	sad
+	1	3	1	1	1	0	0
+	0	0	2	2	2	3	3
_	1	1	0	0	0	1	1
_	0	0	1		1	0	0

There is a minor problem however:

$$Pr(-|T5) = \frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} = 0$$
 (14)

$$Pr(+|T5) = \frac{3}{4} \cdot \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{0}{3} \cdot \frac{0}{3} = 0$$
 (15)

There is a minor problem however:

$$Pr(-|T5) = \frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} = 0$$
 (14)

$$Pr(+|T5) = \frac{3}{4} \cdot \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{0}{3} \cdot \frac{0}{3} = 0$$
 (15)

Laplace correction : $Pr(d|c) = \frac{n_{dc}+1}{n_d+n_c}$, n_{dc} - how many times the given value occurs in cases where the class is c, n_c is number of classes, n_d number of occurrence of the class in practice we initialize the counting table with 1s:

Class	Value	glad	happy	joyful	pleasant	miserable	sad
+	1	4	2	2	2	1	1
+	0	1	3	3	3	4	4
_	1	2	1	1	1	2	2
_	0	1	2	2	2	1	1

$$Pr(+|T5) = Pr(+) \cdot Pr(glad = 1|+) \cdot Pr(joyful = 0|+) \cdot Pr(happy = 0|+)$$

$$(16)$$

$$\cdot Pr(pleasant = 1|+) \cdot Pr(miserable = 1|+) \cdot Pr(sad = 1|+)$$

$$= \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = 0.0128 \tag{18}$$

$$Pr(-|T5) = Pr(+) \cdot Pr(glad = 1|-) \cdot Pr(joyful = 0|-) \cdot Pr(happy = 0|-)$$

$$\cdot Pr(pleasant = 1|-) \cdot Pr(miserable = 1|-) \cdot Pr(sad = 1|-)$$
(20)

$$= \frac{1}{4} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0.0987$$
 (21)

Prediction: 0.0128 = Pr(+|T5|) < Pr(-|T5|) = 0.0987 - it therefore our prediction is negative. 4 D > 4 B > 4 B > 4 B > 9 Q P

Multinomial Naive Bayes (MNB) [McCallum et al., 1998]

- Extension for document classification
- a document is considered as bag of words

$$Pr(c|d) = \frac{Pr(c) \prod_{w \in d} Pr(w|c)^{n_{wd}}}{Pr(d)}$$
(22)

for Pr(d) normalization factor (thus we omit it usually), n_{wd} is the number of times that word w occurs in document d.

• Key difference is the interpretation of the likelihoods Pr(w|c) - here stands for number of occurrences of w in documents of class c over the total number of words in documents in c. That is the probability of observing w at any position of a document belonging to c.

MNB

$$Pr(c|d) = \frac{Pr(c) \prod_{w \in d} Pr(w|c)^{n_{wd}}}{Pr(d)}$$
 (23)

- \bullet Thus absence of a word in a document does not make any class more likely than any other, since it means that the exponent of the probability in 0
- n_{wd} , PR(w|c, Pr(c)) are trivial to estimate on a data stream, by keeping the appropriate counts.
- (Laplace correction can be also used, as we do here too)

MNB

ID	Text	Sentiment
T1	glad happy glad	+
T2	glad joyful glad	+
T3	glad pleasant	+
T4	miserable sad glad	-

compute the occurrences of \boldsymbol{w} per class \boldsymbol{c} (all the documents, all the occurrences)

Class	glad	happy	joyful	pleasant	miserable	sad	Total
+	6	2	2	2	1		8+6=14
_	2	1	1	1	2	2	3+6=9

Frame Title

Now the prediction:

$$Pr(+|T5) = Pr(+) \cdot Pr(glad = 1|+) \cdot Pr(joyful = 0|+) \cdot Pr(happy = 0|+)$$

$$\cdot Pr(pleasant = 1|+) \cdot Pr(miserable = 1|+) \cdot Pr(sad = 1|+)$$

$$(24)$$

$$\cdot Pr(pleasant = 1|+) \cdot Pr(miserable = 1|+) \cdot Pr(sad = 1|+)$$

$$(25)$$

$$= \frac{3}{4} \cdot (\frac{6}{14})^2 \cdot (\frac{2}{14})^1 \cdot (\frac{1}{14})^1 \cdot (\frac{1}{14})^1 = 10.04 \cdot 10^{-5}$$

$$(26)$$

$$Pr(-|T5) = Pr(+) \cdot Pr(glad = 1|-) \cdot Pr(joyful = 0|-) \cdot Pr(happy = 0|-)$$

$$\cdot Pr(pleasant = 1|-) \cdot Pr(miserable = 1|-) \cdot Pr(sad = 1|-)$$

$$(28)$$

$$= \frac{1}{4} \cdot (\frac{2}{9})^2 \cdot (\frac{1}{9})^1 \cdot (\frac{2}{9})^1 \cdot (\frac{2}{9})^1 = 6.77 \cdot 10^{-5}$$

$$(29)$$

thus now Pr(+|T5) > Pr(-|T5), and our prediction is **positive**.

Decision tree

- very popular, easy to interpret and visualize
- each internal node corresponds to an attribute that splits into a branch for each attribute value and the leaves correspond to classification predictor usually majority class classifiers.
- Building decision tree
 - if instances are classified perfectly stop
 - ${f 2}$ let attribute A be the best decision criterion of the actual leaf node
 - lacksquare for each value of A create a new leaf

Decision Tree - Spam classification example[Bifet et al., 2018]

Contains	Domain	Has	Time	
"Money"	"Money" type		received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Splitting nodes

How to pick A? Our goal is to have leaves in the tree, that sort data points into *pure* groups MEasures of purity:

- Entropy
- Giniindex

Split the nodes if it reduces impurity

Entropy

Entropy $H(S) = -\sum_c p_c \log(p_c)$ - a measurement of the impurity or randomness in the data points

Information gain

- which feature provides maximal information
- difference between entropy of the class before and after splitting
- after splitting the attribute: $H(S,A) = \sum_a H(S_a)|S_a|/|S|$ for S_a the subset of S where A=a
- the information gain IG(S,A)=H(S)-H(S,A) . for C4.5 DT algorithm

Gini

• Gini index =gini impurity calculates the amount of probability of a specific feature that is classified incorrectly when selected randomly. 0 means; purity 0.5 of the Gini Index shows an equal distribution of elements over some classes, that is the less is the better. It is a nonlinear measure of dispersion of C:

$$G(C) = \sum_{c} p_c (1 - p_c) = \sum_{c \neq c'} p_c p_{c'}$$

 Gini impurity reduction: difference between the Gini index before and after splitting the attribute (CART DT alg)

$$Gini(S, A) = \sum_{a \in A} \sum_{c \in C} p_c (1 - p_c) |S_a| / |S|$$
 (30)

$$= \sum_{a \in A} (1 - \sum_{c \in C} p_c^2) |S_a| / |S|$$
 (31)

(since
$$\sum_{c} p_c = 1$$
), with p_c here $p_c = Pr(C = c \land A = a)$

• Gini reduction or what : $\Delta Gini(S,A) = Gini(S) - Gini(S,A)$

Attribute selection

we want an attribute, where the sum of the gini / entropy is minimal if we split across that is

$$\max_{A} \Delta Gini(S, A) \qquad \text{or} \qquad \max_{A} IG(S, A)$$
 (32)

Hoeffding Tree

When should we split: confidence interval for estimating entropy of the node:

$$\epsilon = \sqrt{\frac{R^2 \ln 1/\delta}{2n}} \tag{33}$$

where R is the range of the random variable, δ the desired probability of an estimate not being within ϵ of its expected value, and n is the number of examples collected at the node. (using Hoeffding bound is formally incorrect but still widely used,) for Information gain the entropy is in the range $[0,\ldots,\log n_c]$

Hoeffding Tree - Streaming DT [Domingos and Hulten, 2000]

- maintain in each node statistics for splitting
- for discrete attributes it is the same as for NB: for each triple count (x_i, v_j, c) $n_{i,j,c}$ where $x_i = v_j$ and a one dimensional table for the counts C = c that is for a class a given attribute how many times takes the different possible values:

Class	Value	glad	happy	joyful	pleasant	miserable	sad
+	1	3	1	1	1	0	0
+	0	0	2	2	2	3	3
-	1	1	0	0	0	1	1
-	0	0	1	1	1	0	0

- memory depends on the number of leaves not examples
- if at the node the examples seen so far are not from the same class compute G for each attribute - (G=IG or Gini reduction(TODO name?))we want to split at the biggest "impurity"

if
$$G(best attribute) - G(second best attribut) > \sqrt{\frac{R^2 \ln 1/\delta}{2n}}$$
 split the node on the best

Very Fast Decision Tree (VFDT)

- \bullet Instead of computing the best attributes to split at every new instance, wait for n_{\min} instances
- \bullet to reduce memory usage deactivate least promising node: that is lowest number for $p_l \times e_l$ for
 - ullet p_l is the probability to reach leaf l
 - ullet e_l error in node l
- ullet method can be strarted from any existing tree o possibility to pretrain model on existing data (HT grows slowly and performance might be poor initially)

Numeric attirbutes

- much harder for streaming discretization:
 - Equal width equal length bins simplest but vulnerable to outliers and skewed distributions
 - equal frequency -same number of elements need for sorting elements more processing time
 - Fayyad and Irani's method finding best cutting points as in decision trees - first sort then take each pair as a candidate maximum IG - recursively - stop when intervals become clear

Ensemble

- combinations individual predictions of smaller models to form a final prediction
- voting, averaging, ...
- tend to improve prediction accuracy
- more time and memory
- parallelizable

Source: [Verikas et al., 2016]

Weighted voting

- simplest method
- returns most popular class
- for C_i being class predicted by ith model, for binary classification and a suitable threshold θ :

$$C(x) = \begin{cases} 1 & \text{if } \sum_{i} w_i C_i(x) > \theta \\ 0 & \text{otherwise} \end{cases}$$
 (34)

• weights can be fixed, or vary over time

Accuracy-Weighted Ensembles(AWE)[Wang et al., 2003]

- mine evolving datastreams using nonstreaming learners
- stream is processed in chunks
- new classifier for each chunk
- every time new classifier added, oldest removed
- [Wang et al., 2003] proposes to have $w_i \propto err_r err_i$ for err_r the error of random classifier

Bagging[Breiman, 1996]

- use a base learning algorithm to produce M model by bootstrapping:
 - take samples from the data with replacement
- prediction by majority vote

Source:

https://commons.wikimedia.org/wiki/File:Bagging.png

Online bagging

- difficult to implement sampling with replacement
- simulation instead:
 - \bullet in a bootstrap replica the number of copies K for each of the n samples:

$$P(K=k) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{n}^k (1-\frac{1}{n})^{n-k}$$
 (35)

• for large value of n sample ${\sf Binomial} {\rightarrow} {\sf Poisson}(1)$ distribution, for

$$\mathsf{Poisson}(1) = \frac{e^{-1}}{k!} \tag{36}$$

 OzaBag[Oza and Russell, 2001][Oza, 2005]: for each example the models will be updated with the weight of the example Poisson(1)

OzaBag

Online Bagging(Stream, M)

Input: a stream of pairs (x, y), parameter M = ensemble size Output: a stream of predictions \hat{y} for each x

```
1 initialize base models h_m for all m \in \{1, 2, ..., M\}

2 for each example (x, y) in Stream

3 do predict \hat{y} \leftarrow \arg \max_{y \in Y} \sum_{t=1}^{T} I(h_t(x) = y)

4 for m = 1, 2, ..., M

5 do w \leftarrow Poisson(1)

6 update h_m with example (x, y) and weight w
```

Bernoulli

Describes a single trial with 2 possible outcome: success ${\cal X}=1$ and failure ${\cal X}=0$

Pmf:
$$P(X=x) = p^x(1-p)^{1-x}$$
 for $x=0$ or 1 $\mu=p$ $\sigma^2=p(1-p)$

Significance

Common discrete prob distributions are built on the assumption of independent Bernoulli trials:

- ullet Binomial: number of successes in n independent Bernoulli trials,
- **Geometric**: distribution of the number of trials to get the first success in independent Bernoulli trials,
- **Negative Binomial**: distribution of the number of trials to get the *r*th success in independent Bernoulli trials.

Binomial Distribution

Assumptions

- n independent trials = an outcome does not give any information on other trials
- each trial result in one of two possible outcomes success or failure

$$p = P(success), P(failure) = 1 - p \\$$

Binomial distribution

number of successes in n independent Bernoulli trials has a binomial distribution

X represents the number of successes in n trials

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, for x = 1, \dots, n$$

$$\mu = \mathbb{E}(X) = np \ \sigma^2 = np(1-p)$$

$$p^{x}(1-p)^{n-x}$$
 probability of one specific ordering, and there are $\binom{n}{x}$ possible orderings

Poisson Distribution

Counting the number of occurrences of an event in a given unit of time.

Assumption

- events occur independently - given that one event happened gives no information at all when another even will occur

probability that an event occurs in a given length of time does not change over time

Poisson distribution

X the number of events in a fixed unit of time has a Poisson distribution

Pmf:
$$p(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{X!} x = 0, 1, ..., \infty$$

Mean: $\mu = \lambda$ Variance: $\sigma^2 = \lambda$

Binomial and Poisson

Relationship

- is useful to decide whether a variable has a Poisson distribution or not
- The Poisson distribution with $\lambda=np$ closely approximates the Binomial distribution if n large and p small
- that is Bin \rightarrow Poi, as $m \rightarrow \infty$, $p \rightarrow 0$,

YouTube - for the distributions

Bernoulli: https://www.youtube.com/watch?v=bT1p5tJwn_0&list=PLvxOuBpazmsNIHP5cz37oOPZxOJKyNszN&index=3
Binomial:https://www.youtube.com/watch?v=qIzC1-9PwQo&list=PLvxOuBpazmsNIHP5cz37oOPZxOJKyNszN&index=4
Poisson:

https://www.youtube.com/watch?v=jmqZG6roVqU&t=165s

Bibliography I

Bifet, A., Gavaldà, R., Holmes, G., and Pfahringer, B. (2018). *Machine Learning for Data Streams with Practical Examples in MOA*. MIT Press. https://moa.cms.waikato.ac.nz/book/.

Breiman, L. (1996).

Bagging predictors.

Machine learning, 24(2):123-140.

Domingos, P. and Hulten, G. (2000).

Mining high-speed data streams.

In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 71–80.

McCallum, A., Nigam, K., et al. (1998).

A comparison of event models for naive bayes text classification. In *AAAI-98 workshop on learning for text categorization*, volume 752, pages 41–48. Citeseer.

Oza, N. C. (2005).

Online bagging and boosting.

In 2005 IEEE international conference on systems, man and cybernetics, volume 3, pages 2340–2345. leee.

Background

Bibliography II

Oza, N. C. and Russell, S. (2001).

Experimental comparisons of online and batch versions of bagging and boosting. In *Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 359–364.

Verikas, A., Vaiciukynas, E., Gelzinis, A., Parker, J., and Olsson, M. C. (2016). Electromyographic patterns during golf swing: Activation sequence profiling and prediction of shot effectiveness. *Sensors*. 16:592.

Wang, H., Fan, W., Yu, P. S., and Han, J. (2003).

Mining concept-drifting data streams using ensemble classifiers. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 226–235.