🧙 Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 27-09-15

 Time: 3 Hours
 2014-P2-Model
 Max Marks: 180

PAPER-II KEY & SOLUTIONS

PHYSICS

1	В	2	В	3	С	4	С	5	В	6	A
7	C	8	C	9	В	10	D	11	В	12	A
13	C	14	С	15	A	16	В	17	A	18	A
19	С	20	A								

CHEMISTRY

	V										
21	D	22	D	23	D	24	C	25	D	26	С
27	C	28	В	29	C	30	D	31	C	32	A
33	A	34	В	35	A	36	В	37	A	38	C
39	D	40	В								

MATHS

41	D	42	В	43	C	44	В	45	В	46	С
47	C	48	D	49	C	50	D	51	В	52	C
53	В	54	D	55	В	56	В	57	D	58	В
59	D	60	С	JF	Ide	101	in 11A	Ŋ.			

PHYSICS

1. The energy stored in the spring when it is compressed to $\frac{L_0}{2}$ is converted into kinetic energy of the block

$$\frac{1}{2}mv^2 = \frac{1}{2}k\left(\frac{L_0}{2}\right)^2$$

2.
$$\vec{a} = \frac{\vec{F}}{m} \frac{F_0^2}{m} \left[\cos(t) \hat{i} + \sin(t) \hat{j} \right]$$

$$\vec{v} = \int_0^1 \vec{a} \ dt = \frac{F_0^2}{M} \left[\sin(t) \hat{i} + (1 - \cos t) \hat{j} \right]$$

$$K.E = \frac{1}{2}m(\vec{v}.\vec{v}) = \frac{1}{2}m\left[\frac{F_0^2}{m}(2-2\cos t)\right]$$

$$=\frac{F_0^2}{m}(1-\cos t)$$

3. The system is equivalent to the following solution

$$m_1$$
 M_2 M_2 M_2 M_3 M_4 M_2 M_3 M_4 M_4 M_5 M_5 M_5 M_5 M_6 M_6 M_6 M_7 M_8 M_8

- 4. $U = \int_0^T (-2x x^3) dx = x^2 + \frac{x^4}{4}$
 - Since there is no loss of energy, so

$$\frac{x^4}{4} + x^2 = E_i = \frac{1}{2}mv^2 = 3$$

$$x^4 + 4x^2 - 12 = 0$$

$$\Rightarrow x^2 = \frac{-4x\sqrt{16+48}}{2}$$

$$=\frac{-4\pm8}{2}=-6,+2$$

$$\Rightarrow x = \sqrt{2}$$

5. Just after collision with grund

Applying COE

$$\frac{1}{2}mv^{2} + mgx + \frac{1}{2}kx^{2} = \frac{1}{2}m(2gh) + 0 + 0$$

$$\Rightarrow \frac{1}{2}mv^{2} > 0$$

$$\Rightarrow h > 4mg/k$$

6. Let $x_1 = a \sin \omega t$ and $x_2 = a \sin (\omega t + \delta)$ be two S.H.M

$$\frac{a}{3} = a \sin \omega t \text{ and } \frac{-a}{3} = a \sin (\omega t + \delta)$$
$$\sin \omega t = \frac{1}{3} \text{ and } \sin (\omega t + \delta) = \frac{-1}{3}$$

Eliminating
$$t, \frac{1}{3}\cos\delta + \sqrt{1 - \frac{1}{9}}\sin\delta = \frac{-1}{3}$$

$$9\cos^2 \delta + 2\cos \delta - 7 = 0$$

 $\cos \delta = -1 \text{ or } 7/8 \text{ i.e } \delta = 180^{\circ} \text{ or } \cos^{-1}(7/9)$

Now
$$v_1 = a\omega \cos \omega t$$
 and $v_2 = a\omega \cos(\omega t + \delta)$

If we put
$$\delta = 180^{\circ}$$

We find that v_1 and v_2 are of opposite signs.

Hence $\delta = 180^{\circ}$ is not applicable

$$\delta = \cos^{-1}(7/9)$$

7. Thus
$$v_{\text{max}} = v\sqrt{2} = \sqrt{2}\omega A$$

- 8. The sphere, as it falls from a large height, has a large velocity when it enters the viscous liquid. So it experiences a large viscous force upwards. The velocity from then keeps on decreasing. Thus the viscous force and the magnitude of (negative) acceleration go on decreasing non-linearly. At a particular point of time, acceleration becomes zero and velocity remains constant. So, the best curve is C.
- 9. Thickness of annular space

$$= \frac{20.0628 - 20}{2}$$

$$= 0.0314 \text{ cm} = 0.000314 \text{ m}$$

In steady state

Gravitational force = viscous force

$$mg = \eta A \frac{\Delta v}{\Delta y}$$
Or
$$....(1)$$
But $A = 2\pi r \ell$

$$= 2 \times 3.14 \times (10 \times 10^{-2})(20 \times 10^{-2}) = 0.1256 m^{2}$$
From eq (1)

Sri Chaitanya IIT Academy

27-09-15_Sr.IPLCO_Jee-Adv_2014-P2_Key &Sol's

$$\therefore 1 \times 10 = (10 \times 10^{-1})(0.1256) \left(\frac{v - 0}{0.000314}\right)$$
$$\Rightarrow v = 0.025 \, \text{ms}^{-1} = 2.5 \, \text{cms}^{-1}$$

10. Buoyant force + viscous force = mg

$$yg + 6\pi \eta r V_T = xg$$

$$\Rightarrow V_T = \frac{(x-y)g}{r(6\pi\eta)}$$

$$\therefore V_T \propto \frac{x - y}{r}$$

11 & 12:Initially in equilibrium let the elongation in spring be y_0 , then mg = ky₀

$$\Rightarrow y_0 = \frac{mg}{k}$$

As the bullet strikes the block with velocity v_0 and gets embedded into it, the velocity of the combined mass can be computed by using the principle of momentum conservation.

$$\frac{m}{3}v_0 = \frac{4m}{3}v$$

$$\Rightarrow v = \frac{v_0}{4}$$

Let new mean position is at distance y from origin, then

$$ky = \frac{4m}{3}g$$

$$\Rightarrow y = \frac{4mg}{3k}$$

Now, the block executes S.H.M about mean position defined by $y = \frac{4mg}{3k}$ with time, period $T = 2\pi \sqrt{\frac{4m}{3k}}$. At t =0, the combined mass is at a displacement of y - y₀

Sri Chaitanya IIT Academy

27-09-15_Sr.IPLCO_Jee-Adv_2014-P2_Key &Sol's

from mean position and is moving with velocity v, then by using $v = \omega \sqrt{A^2 - x^2}$, we can find the amplitude of motion.

$$\left(\frac{v_0}{4}\right)^2 = \frac{3k}{4m} \left[A^2 - (y - y_0)^2 \right]$$

$$= \frac{3k}{4m} \left[A^2 - \left(\frac{mg}{3k}\right)^2 \right]$$

$$\Rightarrow \frac{mv_0^2}{12k} = A^2 - \left(\frac{mg}{3k}\right)^2$$

$$\Rightarrow A = \sqrt{\frac{mv_0^2}{12k} + \left(\frac{mg}{3k}\right)^2}$$

To compute the time taken by the combined mass from $y = \frac{mg}{k}$ to y = 0, we can either go for equation method or circular motion projection method.

Required time,
$$t = \frac{\theta}{\omega} = \frac{\alpha - \beta}{\omega}$$

$$t = \frac{\theta}{\omega} = \frac{\alpha - \beta}{\omega}$$

$$\cos \alpha = \frac{y - y_0}{A} = \frac{mg}{3kA}$$

$$\cos \beta = \frac{y}{A} = \frac{4mg}{3kA}$$

SO,
$$t = \frac{\cos^{-1}\left(\frac{mg}{3kA}\right) - \cos^{-1}\left(\frac{4mg}{3kA}\right)}{\cos^{-1}\left(\frac{4mg}{3kA}\right)}$$

$$= \sqrt{\frac{4m}{3k}} \left[\cos^{-1} \left(\frac{mg}{3kA} \right) - \cos^{-1} \left(\frac{4mg}{3kA} \right) \right]$$

13.

14. To compute the time taken by the block to cross mean position for the first time we can make use of circular motion representation:

$$t = \frac{\pi - \delta}{\omega} = \frac{\pi - \sin^{-1}\left(\frac{h}{A}\right)}{\sqrt{\frac{k}{m}}}$$

17. **Step I:**
$$v_{CM} = \frac{(3mv) - 3mv}{5m} = \frac{v}{5}$$

Step II: In COM frame

Initial velocity of $A = \left(-v - \frac{v}{5}\right)$

$$=-\frac{6v}{5}$$
 to left

Initial velocity of $B = v - \frac{v}{5} = \frac{4}{5}v$

$$=\frac{4}{5}v$$
 to right

Blocks are executing S.H.M in CM frame with initial position as equilibrium position

Step - III: Velocity variation of B in ground frame, considering right as +ve

From
$$\left(\frac{4v}{5} + \frac{v}{5}\right) = v$$
 to $\frac{4v}{5} + \frac{v}{5} = -\frac{3v}{5}$

So
$$|v_{B_{\text{min}}}| = v \& |v_{B_{\text{min}}}| = 0$$

Velocity variation A in ground frame

From
$$\left(\frac{6v}{5} + \frac{v}{5}\right) = \frac{7v}{5}$$
 to $\frac{-6v}{5} + \frac{v}{5} = -v$

Thus minimum velocity of A is $\frac{-\nu}{5}$ when spring is at maximum extension.

- 20. (a) i) Stoke's law, $F = 6\pi\eta rv$
 - (ii) Terminal velocity $V_T = \frac{2}{9} \cdot \frac{r^2 g(\rho_s \rho_L)}{\eta}$
 - (iii) Excess pressure inside a mercury drop is $\Delta p = \frac{2T}{r}$
 - (iv) Viscous force is $F_V = -\eta A \frac{dv}{dy}$

Hence
$$(i) \rightarrow pr, (ii) \rightarrow pqr, (iii) \rightarrow ps, (iv) \rightarrow rt$$