

Credit Risk Analysis Supervised Learning

INTELIGÊNCIA ARTIFICIAL

PROFESSOR LUÍS PAULO REIS

Grupo 39

Mariana Ramos – up201806869

Pedro Ferreira – up201806506

Pedro Ponte – up201809694

Especificação do Projeto

O objetivo deste trabalho é utilizar *Supervised Learning* para prever se um empréstimo será pago ou não (*default_ind*). Para isso, contamos com um *dataset* de 855969 amostras de empréstimo. Estas amostras contêm os 73 atributos, sendo alguns dos mais importantes:

- loan_amnt Quantidade de dinheiro solicitada pelo cliente;
- int_rate Taxa de juros do empréstimo;
- grade Grau do empréstimo, com valores A, B, C, D, E,
 F, G. Quanto mais próximo de A for o grau do empréstimo, menor será o risco deste não ser pago;

- > annual inc Rendimento anual do cliente;
- purpose Motivo principal para o pedido de empréstimo;
- installment Valor pago por mês pelo empréstimo;
- term tempo até o empréstimo estar pago.

Tirando partido dos diferentes valores destes atributos, utilizaremos vários classificadores para avaliar o *default_ind* cada empréstimo, com uma taxa de acerto aceitável.

Detalhes da implementação

Ferramentas

Para o desenvolvimento deste projeto iremos usar **Python** e as suas bibliotecas que tornam mais simples o desenvolvimento de projetos de aprendizagem supervisionada.

- Scikit-learn ML Algorithms
- Keras biblioteca dedicada a redes neuronais;
- Pandas –análise de dados;
- Numpy –análise de dados;
- Matplolib visualização de dados.
- Seachorn visualização de dados

Ambiente de desenvolvimento - Jupyter Notebook

Data Set - https://www.kaggle.com/rameshmehta/credit-risk-analysis

Análise de dados

O nosso problema apresenta algumas propriedades:

- Atributos Nominais e Discretos binários
- Dimensão : 73 colunas
- Tamanho: mais de 850.000 registos
- > Sem outliers significativos
- Bastantes dados com valores nulos (como mostra a figura ao lado)

Pré-processamento de dados

Foi feita uma seleção prévia das colunas pertinentes:

- Removemos as colunas com valores pouco relevantes para a previsão/valores futuros
- Removemos colunas com a maioria dos valores nulos (verification_status_joint, annual_inc_joint, dti_joint, il_util, mths_since_rcnt_il, total_bal_il, inq_last_12m, open_acc_6m ...).
- Colunas com alguns valores a nulo substituímos pela mediana da coluna.

Para além desta limpeza inicial também recorremos à técnica de **encoding**:

Usando a função LabelEncoder da biblioteca *scikitlearn* transformamos as colunas *verification_values* e home_*ownership*, mapeando strings para valores numéricos representativos, de modo a poderem ser usados nos algoritmos de supervised learning.

Divisão dos dados teste e treino

Depois do pré-processamento dos dados dividimo-los em conjuntos de treino e de teste, com uma percentagem respetiva de 80/20 do número total de linhas.

Análise de dados

O gráfico ao lado representa a correlação para cada par de atributos do empréstimo, onde a cor mais amarelada corresponde a níveis maiores de correlação e a cor mais roxa a níveis menores.

NOTA:

Dado o elevado número de linhas que o *dataset* continha, optamos por utilizar um *subset* com 5% dos dados do *dataset* original. Após selecionar aleatoriamente o *subset*, fazemos ainda um balanceamento dos dados de maneira a que este possua a mesma quantidade de dados com default *ind* a 0 e a 1, para que não existisse *overfitting*.

Classification report: precision recall f1-score support 0.86 0.93 3322 0 1.00 0.87 1.00 0.93 3168 1 0.93 6490 accuracy 0.93 0.93 6490 macro avg 0.94 weighted avg 0.94 0.93 0.93 6490

Decision Tree

Como técnicas de *tuning* decidimos usar a função *GridSearchCV* com 10 *splits* no nosso processo de treino.

Os melhores parâmetros encontrados foram:

➤ Criterion: gini

>Max_depth: 19

>Max_features: 10

➤ Splitter: best;

K-Nearest Neighbors (k-NN)

Support Vector Machine (SVM)

Os melhores parâmetros encontrados para este algoritmo foram :

- > Algorithm: ball_true
- N_neighbors:5
- Weights:distance

pro	ecision	2.2			
P		recall	f1-score	support	
0	1.00	0.84	0.91	3322	
1	0.86	1.00	0.92	3168	
accuracy			0.92	6490	
macro avg	0.93	0.92	0.92	6490	
weighted avg	0.93	0.92	0.92	6490	

Os melhores parâmetros encontrados para este

algoritmo foram:

Confusion Matrix

Predicted Grades

Classificatio	n report: precision	recall	f1-score	support	
0 1	1.00 1.00	1.00 1.00	1.00 1.00	3322 3168	
accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	6490 6490 6490	

	precision	recall	f1-score	support
0 1	0.96 0.87	0.86 0.96	0.91 0.91	3322 3168
accuracy macro avg weighted avg	0.91 0.92	0.91 0.91	0.91 0.91 0.91	6490 6490 6490

Neural Networks

Como técnicas de *tuning* decidimos usar a função *GridSearchCV* com 10 *splits* no nosso processo de treino.

Os melhores parâmetros encontrados foram:

- > Activation: tanh
- hidden_layer_size: (100)
- > Solver: adam

Comparação de Algoritmos

Após a implementação de todos os algoritmos concluímos que o Support Vector Machine obtém os melhores resultados apesar de terem sido usados os valores default dos paramêtros e de ser o mais demorado.

Algorithm	Accuracy Normal	Accuracy Improved
DTC	0.9661645422943221	0.9386635766705291
KNN	0.9104673619157976	0.917110853611433
SVM	1	1
NN	0.8237929702587872	0.8237929702587872

Referências e Trabalho Relacionado

- https://www.kaggle.com/rameshmehta/credit-risk-analysis
- https://rstudio-pubs-static.s3.amazonaws.com/190551 15f6124632824534b7e397ce7ad2f2b8.html
- https://rstudio-pubs-static.s3.amazonaws.com/263968 5057ec1f5a2e48a89aab7f568fc37ade.html
- > Slides das aulas teóricas e fichas realizadas nas aulas teórico-práticas
- https://pandas.pydata.org/, https://scikit-learn.org/stable/, https://numpy.org/, https://matplotlib.org/,

https://keras.io/