Open DC Grid Project

2021 April

James Gula - jlgula@papugh.com Martin Jäger – martin@libre.solar Chris Moller – chris.moller@evonet.com

Agenda

- CANVERTER/OwnTech Jean Alinei / Luiz Villa
- ODG Test Microgrid
- Related Standards / Industry Developments

CANVERTER/OwnTech

Visit Jean Alinei / Luiz Villa presentation.

ODG Test Microgrid

Microgrid Configurations – Expected Behavior

CC	BS	LM	Voltage	Notes
off	off	off	0	Null grid
on	off	off	12	CC activates bus for dumb loads
off	on	off	battery	BS activates bus for dumb loads
off	off	on	0	No power source
on	on	off	battery	CC charging battery
on	off	on	12	CC powers loads if sufficent power available
off	on	on	battery	BS powers loads if sufficent power available
on	on	on	battery	BS charge or discharge depending on load

5

Libre.Solar MPPT-2420-HC Charge Controller / Microgrid Bridge

6

Reverse polarity protection and PV reverse current blocking

High-side load switch

Libre.Solar BMS-8s50-ic Battery Management System

Droop Control Basics

$$\begin{split} v_{\rm load} &= v_s - i_{\rm dc1} R_{d1} - i {\rm dc_1} R_{\rm line1} \\ v_{\rm load} &= v_s - i_{\rm dc2} R_{d2} - i {\rm dc_2} R_{\rm line2} \\ \\ \frac{i_{\rm dc1}}{i_{\rm dc2}} &= \frac{R_{d2} + R_{\rm line2}}{R_{d1} + R_{\rm line1}} \approx \frac{R_{d2}}{R_{d1}}. \end{split}$$

 $v_{sj} = v_s - i_{dcj}R_{dj}$ where j = 1, 2,

From Rashad et al.

Rev 2 8 April 13, 2021

Battery vs. droop-controlled source

Battery equivalent circuit

- Actual battery e.g. Ri = 10-50 m Ω
- Droop-controlled source e.g. Ri = 100 m Ω

Droop Control in Test Microgrid?

$$R_{bms} = R_{bat} + R_{ds(Q_{10})} + R_{ds(Q_{12})} \approx .045 \Omega$$
 $\frac{I_{bms}}{I_{cc}} \approx \frac{R_{cc}}{R_{bms}}$

Fast response, no provision for priorities. (MPPT-2040-HC does not currently support droop on 12V side.)

Message-based Control

Devices communicate with CAN messages

Virtual grid manager allocates power

Manager is SW only, no HW required

Any source is potential manager

First source assumes manager role

Manager role can move on disconnect

Price used to assign priorities

Potentially virtual only - no actual money

May or may not reflect real world \$

Message Protocols

		LPD		ODG		
Load Requests Power	Source	Dest	Message	Source	Dest	Message
						Request buy W1
	GM	All	Price	Load	GM	watts at price P
	Load	GM	Request W1 watts	GM	Load	Grant or fail
	GM	Load	Grant W2 watts			
				GM	Load	Renegotiate
		LPD			ODG	
CC/BM Sources Power	Source	LPD Dest	Message	Source	ODG Dest	Message
CC/BM Sources Power	Source			Source		
CC/BM Sources Power	Source			Source		Message
CC/BM Sources Power		Dest	Message		Dest	Message Request sell W1
CC/BM Sources Power		Dest	Message		Dest	Message Request sell W1 watts at price P
CC/BM Sources Power	СС	Dest GM	Message Price	CC	Dest GM	Message Request sell W1 watts at price P Grant W2 <= W1

Related Standards / Industry Developments

13

- * P2030.10
 - Recirculation response in work
- * LFEnergy
 - * Microgrid SIG architecture focus on Hyphae
 - * Spring summit Apr 14 Jim/Martin presentation on ODG, Zephyr
- * Zephyr Developer Summit June 8 June 10
 - * Mini-conference on Zephyr-driven power electronics planned
- * OwnTech Open Digital Power
 - * Presentation to ODG April 13
- * P2030.10.1
 - Getting ready for ballot no recent activity
- * GOGLA Interop activities -?
- * OpenPAYGO Link -?
- * Angaza Nexus Channel / Nexus Channel Core -?
- * Open Connectivity Foundation / <u>IoTivity</u> -?

Next Meeting / Feedback

- * Next Meeting
 - * 11 May 2021 <u>1400 UTC</u>
 - * Zoom Meeting ID 87518284403 password: opendcgrid
- Sharing Portals
 - * Web site: https://open-dc-grid.org/
 - * GitHub: https://github.com/open-dc-grid