LISTA DE EXERCÍCIOS 1 MAC0427 PROGRAMAÇÃO NÃO LINEAR REVISÃO E CONDIÇÕES DE OTIMALIDADE

Entrega: somente dos exercícios 4, 6, 15 e 18, nos primeiros 15 minutos da aula de 17/03.

Exercícios adaptados dos livros listados como "Material para estudo" no PACA e do livro "Optimization: Insights and Applications" de Brinkhuis e Tikhomirov.

Exercício 1. Seja $c \in \mathbb{R}^n$ um vetor e $A \in \mathbb{R}^{n \times n}$ uma matriz. Calcule o gradiente e o hessiano das funções $f(x) = c^{\mathsf{T}}x$ e $g(x) = x^{\mathsf{T}}Ax$. Simplique sua resposta quando A é simétrica, isto é, quando $A = A^{\mathsf{T}}$. (Suas respostas finais devem ser expressas de $forma\ compacta$: devem caber todas numa única linha.)

Revisão: O gradiente de uma função $f: \mathbb{R}^n \to \mathbb{R}$ em um ponto $x \in \mathbb{R}^n$ é o vetor $\nabla f(x)$ em \mathbb{R}^n cuja i-ésima coordenada é a derivada parcial de f com relação a x_i , ou seja,

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

(Estamos supondo que todas essas derivadas parciais existem e são contínuas.)

Revisão: O hessiano de uma função $f: \mathbb{R}^n \to \mathbb{R}$ em um ponto $x \in \mathbb{R}^n$ é a matriz simétrica $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ cuja ij-ésima entrada é a derivada parcial de 2a. ordem de f com relação a x_i e x_j , ou seja,

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

(Estamos supondo que todas essas derivadas parciais existem e são contínuas.)

Exercício 2. Considere a função de duas variáveis $f(x,y) = 100(y-x^2)^2 + (1-x)^2$. Encontre todas as soluções para a equação $\nabla f(x,y) = 0$. Dentre elas, quais são os minimizadores globais de f(x,y) sobre \mathbb{R}^2 ? Prove a otimalidade de cada um dos minimizadores, se algum.

Exercício 3. Separe o número 8 em duas partes não-negativas x e y (ou seja, a soma de tais partes é 8) de forma a maximizar xy(x-y).

Note: você precisa provar que existe um jeito ótimo de separar 8 e encontrar as soluções ótimas globais. Você pode usar a seguinte condição de otimalidade vista em Cálculo I: se $f:[a,b] \to \mathbb{R}$ é contínua em [a,b] e diferenciável em (a,b), então qualquer minimizador local x^* de f sobre [a,b] satisfaz $x^* \in \{a,b\}$ ou $f'(x^*) = 0$.

Data: 22 de fevereiro de 2016.

Exercício 4. Mostre que o PNL

$$\begin{array}{ll}
\text{Minimizar} & \frac{1}{x^2} + e^x \\
\text{sujeito a} & x > 0
\end{array}$$

possui uma solução ótima global.

Dica: entenda bem a prova do teorema sobre coercividade e adapte a (ideia da) prova a esse problema específico.

Exercício 5. Prove que, dentre todos os paralelepípedos retangulares de volume unitário, existe algum que tem a menor área de superfície.

Dica: Elimine uma variável para chegar a um PNL equivalente com função objetivo $f(x,y)=2(xy+x^{-1}+y^{-1})$ e as seguintes restrições: x>0 e y>0. Mostre que, para uma família "interessante" de valores de $\gamma\in\mathbb{R}$, o conjunto $\{(x,y)\in\mathbb{R}^2:f(x,y)\leq\gamma,\,x>0,\,y>0\}$ é fechado e limitado

Exercício 6. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica. Mostre que o PNL

Minimizar
$$\frac{x^{\mathsf{T}}Ax}{\|x\|^2}$$
 sujeito a $x \in \mathbb{R}^n \setminus \{0\}$

possui uma solução ótima e determine o valor ótimo e uma solução ótima em termos de alguma decomposição espectral de A.

Exercício 7. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica positiva definida. Seja $b \in \mathbb{R}^n$. Determine todas as soluções ótimas globais para a minimização irrestrita de $\frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x$, se alguma existir.

Exercício 8. Sejam A,B,C os vértices de um triângulo em \mathbb{R}^2 . Considere o problema de encontrar um ponto P em \mathbb{R}^2 com a menor soma de distâncias aos pontos A,B,C. Mostre que tal ponto existe e que, ou $P \in \{A,B,C\}$, ou os ângulos $\angle APB$, $\angle APC$ e $\angle BPC$ são todos de 120 graus.

Exercício 9. Para cada valor de um parâmetro $\beta \in \mathbb{R}$, determine todos os minimizadores globais de $f(x,y) := x^2 + y^2 + \beta xy + x + 2y$ sobre \mathbb{R}^2 .

Exercício 10. Prove que, se $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, então $\det(A)$ é o produto de todos os autovalores de A. Logo, se A for positiva definida, então $\det(A) > 0$ e, se A for positiva semidefinida, então $\det(A) \geq 0$.

Exercício 11. Desenhe a curva de nível $\{x \in \mathbb{R}^2 : x^\mathsf{T} A x = 1\}$, onde

$$A := \frac{1}{2} \begin{bmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 5 \end{bmatrix}.$$

Note que $\frac{1}{2} \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}$ é um autovetor de A.

Exercício 12. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica. Prove que, se $A \succeq 0$ e $A_{ii} = 0$ para algum $i \in \{1, \dots, n\}$, então $A_{ij} = 0$ para todo $j \in \{1, \dots, n\}$.

Dica: você pode usar o seguinte critério: uma matriz simétrica A é positiva semidefinida se e somente se, para todo $S \subseteq \{1, \ldots, n\}$, vale que $\det(A[S]) \ge 0$; aqui, $A[S] \in \mathbb{R}^{S \times S}$ é a submatriz principal de A indexada por S.

Exercício 13. Determine todos os minimizadores e maximizadores locais da função

$$f(x,y) = 2x^3 - 3x^2 - 6xy(x - y - 1).$$

Exercício 14. Considere $f: x \in \mathbb{R}^2 \mapsto (x_1 - x_2^2)(x_1 - \frac{1}{2}x_2^2)$. Para cada $d \in \mathbb{R}^2$, mostre que $0 \in \mathbb{R}$ é um minimizador local de $\phi(\alpha) := f(\alpha d)$. Mostre que, no entanto, $0 \in \mathbb{R}^2$ não é minimizador local de f.

Dica: considere $f(x_t)$ onde $x_t = \begin{bmatrix} \mu t^2 \\ t \end{bmatrix}$ para alguma constante μ .

Exercício 15. Prove que a função $f: x \in \mathbb{R}^2 \mapsto (x_2 - x_1^2)^2 + x_1^5$ não tem minimizadores locais nem maximizadores locais.

Exercício 16. Seja $F: \mathbb{R}^n \to \mathbb{R}^n$ uma função continuamente diferenciável. Mostre que, se \bar{x} é um minimizador local de $||F(x)||^2$ tal que o jacobiano de F em \bar{x} é não-singular, então $F(\bar{x}) = 0$.

Exercício 17. Se for possível, determine números reais α e β de modo que $f(x) = x^3 + \alpha x^2 + \beta x$ tenha 0 como maximizador local e 1 como minimizador local.

Exercício 18. Seja $X \subseteq \mathbb{R}^n$ um conjunto convexo e seja $f: X \to \mathbb{R}$ uma função convexa. Tome $v^* := \inf\{f(x) : x \in X\}$, o valor ótimo de um PNL. Prove que o conjunto $\{x \in X : f(x) = v^*\}$ de minimizadores globais de f sobre X é convexo.

Exercício 19. Seja $X \subseteq \mathbb{R}^n$ um conjunto convexo e seja $f: X \to \mathbb{R}$ uma função. Prove que f é convexa se e somente se, para todos $x, d \in \mathbb{R}^n$, a função $\phi(\alpha) := f(x + \alpha d)$, com domínio $\{\alpha \in \mathbb{R} : x + \alpha d \in X\}$, é convexa.

Exercício 20. Considere um PNL irrestrito com função objetivo $f(x) := \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + \alpha$, onde $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, $b \in \mathbb{R}^n$ e $\gamma \in \mathbb{R}$. Mostre que todo minimizador local de f sobre \mathbb{R}^n é também um minimizador global de f sobre \mathbb{R}^n .