Enhancing the Causal Predictive Power in Recurrent Network Models of Neural Dynamics

Jiayi Zhang¹, Tatiana A. Engel²

¹Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA ² Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA

Motivations

Model replicates data

Model guides design of photostimulation

- Optogenetics allows single-cell res.
 observation and perturbation for behaving neural circuits.
- Need theory to guide perturbations.
- RNNs are fitted to replicate observed dynamics and serve as "twins" to the brain circuits.

Twins are no longer twins-

Dream: large effect size; accurate predictions **Reality:** large effect size; inaccurate predictions

The curse of dimensionality—

- Dimensionality of data (n) << Dimensionality of observed units/neurons (N)
- Low-D data cannot sufficiently constrain the full connectivity of twin models (N² paramerters).

Fitting models of varying dimensionalty Model size, n Corr. with the ground truth

Uniqueness and alignment with the ground truth

-Data uniquely constrain latent low-D connectivity in RNNs -

Inferring the latent conn.—

 Theory implies: low-D connectivity is a latent structure within the full connectivity.

$$Q^T W_{rec} Q \sim W_{rec}$$

-Conclusions

- Low-D data do not uniquely constrain high-dimensional RNNs, which undermines their interpretability and causal predictive power.
- Trained RNNs connectivity harbors unique low-dimensional structure, which offers maximal predictive power for guiding perturbations.

-Reference

Christopher Langdon, Tatiana A. Engel; *Latent circuit inference from heterogeneous neural responses during cognitive tasks*; bioRxiv 2022.01.23.477431; doi: https://doi.org/10.1101/2022.01.23.477431