Modèles statistiques à variables latentes pour l'écologie

Examen de 2 heures

29 mars 2022

Les notes de cours et une calculatrice sont autorisées, à l'exclusion de tout autre appareil électronique (téléphone compris).

Algorithme EM pour l'ACP probabiliste 1

Modèle et notations. On considère le modèle d'analyse en composantes principales (ACP) probabiliste suivant:

$$\{Z_i\}_{1 \leq i \leq n} \text{ iid}: \qquad \qquad Z_i \sim \mathcal{N}(0_q, I_q)$$

$$\{Y_i\}_{1 < i < n} \text{ indépendants} \mid \{Z_i\}_{1 < i < n}: \qquad (Y_i \mid Z_i) \sim \mathcal{N}(AZ_i, \sigma^2 I_p)$$

$$(1)$$

où q < p, A est de dimension $p \times q$, les variables Z_i sont latentes alors que les Y_i sont observées. On note

- $Z = [Z_{ik}]_{1 \le i \le n, 1 \le k \le q}$ la matrice $n \times q$ contenant les variables latentes, $Y = [Y_{ij}]_{1 \le i \le n, 1 \le j \le p}$ la matrice $n \times p$ contenant les variables observées,
- $\theta = (A, \sigma^2)$ l'ensemble des paramètres de ce modèle,
- Σ et Γ les matrices :

$$\Sigma = AA^{\mathsf{T}} + \sigma^2 I_p, \qquad \Gamma = A^{\mathsf{T}} A + \sigma^2 I_q.$$

On se propose d'établir un algorithme EM pour l'estimation de θ .

Questions préliminaires.

- 1. Montrer que $A^{\dagger}\Sigma^{-1} = \Gamma^{-1}A^{\dagger}$.
- 2. Montrer que $I_q A^{\mathsf{T}} \Sigma^{-1} A = \sigma^2 \Gamma^{-1}$.

Estimation par EM.

- 3. Écrire la log-vraisemblance complète $\log p_{\theta}(Y, Z)$ du modèle (1).
- 4. Déterminer la loi jointe d'un couple (Y_i, Z_i) pour $1 \le i \le n$ quelconque.
- 5. En déduire que

$$M_i := \mathbb{E}(Z_i \mid Y) = \Gamma^{-1} A^{\mathsf{T}} Y_i, \qquad Q_i := \mathbb{E}(Z_i Z_i^{\mathsf{T}} \mid Y) = \sigma^2 \Gamma^{-1} + M_i M_i^{\mathsf{T}}. \tag{2}$$

- 6. Écrire l'espérance conditionnelle de la log-vraisemblance complète $\mathbb{E}_{\theta}(\log p_{\theta}(Y, Z) \mid Y)$ en fonction des M_i et Q_i .
- 7. En déduire les formules de mise à jour à l'étape h de A^h et $(\sigma^2)^h$ en fonction des moments conditionnels M_i^{h-1} et Q_i^{h-1} calculés à l'étape précédente.

Estimation alternative.

8. En combinant les formules obtenues à la question précédente avec l'équation (2), montrer que les estimateurs du maximum de vraisemblance \widehat{A} et $\widehat{\sigma}^2$ satisfont les équations de point fixe suivantes :

$$\widehat{A} = S\widehat{A} \left(\widehat{\sigma}^2 I_q + \widehat{\Gamma}^{-1} \widehat{A}^{\intercal} S \widehat{A} \right)^{-1}, \qquad \widehat{\sigma}^2 = \operatorname{tr} \left(S - S \widehat{A} \widehat{\Gamma}^{-1} \widehat{A} \right) / p.$$

où $\widehat{\Gamma} = \widehat{A}^{\mathsf{T}} \widehat{A} + \widehat{\sigma}^2 I_q$ et S est la matrice de covariance empirique : $S = (\sum_i Y_i Y_i^{\mathsf{T}}) / n$.

9. En déduire un algorithme alternatif à EM pour l'estimation de $\theta=(A,\sigma^2)$ par maximum de vraisemblance.

2 Distribution jointe d'absence et d'abondance d'espèces

Modèle et notations. On s'intéresse à la présence et à l'abondance de p espèces animales dans n sites. On observe pour cela

- $Y_{ij} =$ le nombre (éventuellement nul) d'individus de l'espèce j observés dans le site i ($Y_{ij} \in \mathbb{N}$) et
- x_i = vecteur de covariables environnementales (incluant une constante) décrivant le site i ($x_i \in \mathbb{R}^d$).

On définit \widetilde{Y}_{ij} la variable indicatrice d'absence de l'espèce j dans le site i :

$$\widetilde{Y}_{ij} = \mathbb{I}\{Y_{ij} = 0\}$$

et on note

- $Y = [Y_{ij}]_{1 \le i \le n, 1 \le j \le p}$ la matrice $n \times p$ des abondances,
- $X = [x_{ik}]_{1 \leq i \leq n, 1 \leq k \leq d}$ la matrice $n \times d$ des covariables
- $\widetilde{Y} = [\widetilde{Y}_{ij}]_{1 \le i \le n, 1 \le j \le p}$ la matrice $n \times p$ des absences.

Questions.

- 1. Rappeler le modèle Poisson log-normal permettant de décrire les abondances en fonction des covariables environnementales et des interactions entre espèces.
- 2. Proposer un modèle analogue au modèle Poisson log-normal permettant de décrire les absences en fonction des covariables environnementales et des interactions entre espèces.
- 3. Proposer un modèle décrivant conjointement les absences et les abondances en fonction des covariables environnementales et des interactions entre espèces.

Tracer le modèle graphique orienté associé à ce modèle et interpréter chacun de ses paramètres.

3 Classification non supervisée de génotypes

Modèle et notations. On considère un échantillon de n=74 souris ($mus\ musculus$) dont on a relevé le génotype pour p=15 marqueurs génétiques (nommés Aat, Amy, Es1, Es2, Es10, Hbb, Gpd1, Idh1, Mod1, Mod2, Mpi, Np, Pgm1, Pgm2 et Sod, qui peuvent être vus comme des variables catégorielles). On cherche à identifier des individus issus de groupes génétiquement distincts. On se propose d'utiliser à cette fin un modèle de mélange de lois multinomiales.

On note

- Y_{ij} le génotype de l'individu i au marqueur j pour $1 \le i \le n$ et $1 \le j \le p$,
- m_i le nombre d'allèles du j-ème marqueurs $(1 \le j \le p)$.

On suppose le modèle de mélange à K groupes suivant

$$(Z_i)_{1 \leq i \leq n}$$
 iid: $Z_i \sim \mathcal{M}(1, \pi),$ (3)
 $(Y_i)_{1 \leq i \leq n, 1 \leq j \leq p}$ independants $|(Z_i):$ $(Y_{ij} | Z_i = k) \sim \mathcal{M}(1, \gamma_{kj})$

où $\pi \in [0,1]^K$, $\sum_{k=1}^K \pi_k = 1$, et pour chaque $1 \leq j \leq p$, $\gamma_{kj} \in [0,1]^{m_j}$, $\sum_{a=1}^{m_j} \gamma_{kja} = 1$.

Questions.

- 1. Interpréter chacun des paramètres π_k et γ_{kja} de ce modèle.
- 2. Discuter les hypothèses d'indépendances.

Questions.

3. La figure suivante donne les valeurs de la log-vraisemblance (\bullet) , du critère BIC (\Box) et du critère ICL (\bigcirc) du modèle (3) pour K allant de 1 à 10 groupes.

Justifier le choix de $\hat{K} = 3$.

4. La figure suivante donne les estimations des fréquences alléliques γ_{ja} pour le modèle à K=3 classes pour les marqueurs Hbb et Mod2. Abcsisse = allèle du marqueur, ordonnée = fréquence. Légende : \bullet = fréquence de chaque allèle dans l'échantillon total, \circ = fréquence estimée dans le groupe 1, \square = dans le groupe 2, \diamond = dans le groupe 3.

Quels groupes du mélange chacun de ces marqueurs permet-il le mieux de distinguer?

5. Les proportions estimées pour le modèle à 3 groupes valent

$$\widehat{\pi} = [0.324, 0.270, 0.406].$$

Pour les marqueurs Gpd1 et Mpi, on obtient les estimations suivantes pour les fréquences alléliques γ_{kja} dans chaque groupe :

Marqueur Gpd1	a=1	a = 2	a = 3	a = 4	a = 5	a = 6
k = 1	0	0	0	1	0	0
k = 2	0.05	0.95	0	0	0	0
k = 3	0.033	0.167	0.2	0.301	0.167	0.133
Population	0.027	0.324	0.081	0.446	0.068	0.054

	Marqueur Mpi	a=1	a=2	a = 3	a = 4
	k = 1	0	1	0	0
	k = 2	0.05	0	0.4	0.55
	k = 3	0	1	0	0
•	Population	0.014	0.73	0.108	0.149

A partir de ces valeurs, donner une estimation, selon de modèle (3), de la probabilité conditionnelle qu'un individu du groupe k porte simultanément les deuxièmes allèles des marqueurs Gpd1 et Mpi : $\Pr\{Y_{i,Gpd1} = Y_{i,Mpi} = 2 \mid Z_i = k\}$ pour chaque k = 1, 2, 3.

En déduire une estimation de la probabilité marginale $\Pr\{Y_{i,Gpd1} = Y_{i,Mpi} = 2\}$.

6. Comparer ce résultat avec les fréquences alléliques moyennes dans la population et commenter.

Comparaison avec des sous-espèces connues. On sait par ailleurs que les 74 individus de l'échantillon appartiennent en fait à trois sous-espèces connues (castaneus, domesticus et musculus) et à une population vivant près du lac Casitas (Californie). Le tableau suivant croise l'appartenance à ces populations avec les groupes obtenus par le modèle de mélange :

	Casitas	castaneus	domesticus	musculus	Total
k = 1	1	0	23	0	24
k = 2	0	11	0	9	20
k = 3	29	0	1	0	30
Total	30	11	24	9	74

Questions.

- 7. Les marqueurs permettent-ils de distinguer les sous-espèces connues entre elles ? Quelles sont les sous-espèces génétiquement les plus proches ?
- 8. La population vivant près du lac Casitas peut-elle être rattachée à une sous-espèce connue.