

Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет телекоммуникаций и информатики"

Кафедра вычислительных систем

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Оптимизация синхронизации параллельных программ для

вычислительных систем с общей памятью

Выполнил

студент группы ИВ-222 Гайдай Анатолий Валерьевич

Руководитель — Кулагин И.И.

Новосибирск – 2016

АКТУАЛЬНОСТЬ РАБОТЫ

- При разработке параллельных программ для обеспечения их корректной работы необходимо избегать возникновения ситуации гонки за данными (data race). Для этой цели используются механизмы взаимного исключения мьютексы
- Реализация мьютексов в текущей версии (glibc 2.23) не учитывает динамически изменяющиеся характеристики критических секций

МЬЮТЕКСЫ


```
// Пользовательская хэш-таблица
hash_t hash;
pthread_mutex_t mut;
// Мьютекс закрыт
pthread_mutex_lock (&mut);
// Начало критической секции
          ***
// Изменение хэш-таблицы
hash_t_add (&hash, value);
          ***
// Конец критической секции
// Мьютекс закрыт
pthread_mutex_unlock (&mut);
```


Мьютекс открыт

Кэш 1 уровня

Ядро 1

Потоки

Кэш 1 уровня

Ядро 2

Потоки

((())

Мьютекс открыт

Кэш 1 уровня

Мьютекс cостояние (shared)

Ядро 1

Кэш 1 уровня

Мьютекс coстояние (shared)

Ядро 2

Поток 1

ИДЕАЛЬНЫЙ СЛУЧАЙ

Работа потока в

критической секции

Успех

lock

mutex

Время

ИДЕАЛЬНЫЙ СЛУЧАЙ

Потоки

N - 2

5

Потоки в режиме ожидания

Поток 2

5

Поток 1

5

	l .	
Поток в режиме ожидания	lock	Работа потока в
	mutex	критической секции
	ı	

Успех

Успех Успех

lock	Работа потока в	unlock	Работа потока вне
mutex	критической секции	mutex	критической секции

Время

ПОСТАНОВКА ЗАДАЧИ

• Целью бакалаврской работы была реализация алгоритма, уменьшающего время операции захвата мьютекса при работе параллельной программы в вычислительной системе с общей памятью, за счёт предварительного профилирования программы и анализа возникающих конфликтных ситуаций

ПОСТАНОВКА ЗАДАЧИ

- Ознакомится с методикой профилирования мьютексов в пользовательском пространстве операционной системы
- Разработать программный пакет «mutexoptimizer» состоящий из двух модулей: профилирования и оптимизации
- Провести экспериментальное исследование эффективности алгоритма, с помощью синтетических тестов (microbenchmark)

ОПИСАНИЕ РАЗРАБОТКИ

Схематичное представление алгоритма

ПРОФИЛИРОВАНИЕ

ПРОФИЛИРОВАНИЕ

ОПТИМИЗАЦИЯ

Статистика конфликтных ситуаций Оптимизация Результирующая программа

ФУНКЦИОНАЛЬНАЯ СТРУКТУРА

- Тесты запускались на персональном компьютере под управлением ОС Linux (Fedora 22)
- GCC version 5.3.1
- Процессор: Intel® CoreTM i5 2450M
 (2.5 ГГц, 35 Вт)
- Количество ядер: 2
- Оперативная память: 4 Гб SO-DIMM DDR3 1333 МГц

ЭКСПЕРИМЕНТ № 1 (НА ПЕРСОНАЛЬНОМ КОМПЬЮТЕРЕ)

ЭКСПЕРИМЕНТ № 2 (НА ПЕРСОНАЛЬНОМ КОМПЬЮТЕРЕ)

- Запуск тестов на кластере Jet
- ОС на вычислительном узле Linux (Fedora 20)
- GCC version 4.8.3
- Процессор: 2 x Intel® Xeon® CPU E5420
 (2.50 ГГц)
- Количество ядер: 8
- Оперативная память: 8 GB (4 x 2GB PC-5300)

ЭКСПЕРИМЕНТ № 1 (НА КЛАСТЕРЕ ЈЕТ)

ЭКСПЕРИМЕНТ № 2 (НА КЛАСТЕРЕ ЈЕТ)

ЗАКЛЮЧЕНИЕ

- В ходе бакалаврской работы поставленные цели были достигнуты, задачи выполнены
- Экспериментально подтверждена эффективность разработанного программного пакета «mutex-optimizer»
- Изучены основы оптимизации синхронизации параллельных программ для вычислительных систем с общей памятью
- Освоена методика профилирования работы мьютексов в пользовательском пространстве операционной системы

ПУБЛИКАЦИИ

- Гайдай А.В. Алгоритм оптимизации использования мьютексов по результатам предварительного профилирования // Материалы международной научной студенческой конференции (МНСК-2016), Новосибирск, 2016
- Гайдай А.В. Адаптивный алгоритм операции захвата мьютекса. // Российская научно-техническая конференция «инновации и научно-техническое творчество молодёжи», Новосибирск, 2016

СПАСИБО ЗА ВНИМАНИЕ!