Álgebra Linear

米	5/5	
Universidade do Minho Escola de Ciências		
Departamento de Aplicações	de Matemática	

Mestrado Integrado em Engenharia Informática Departamento de Departamento de		Ciências nto de Mate	
Exame - A 23 janeiro 2017	e Aplicaçõe Duração:		ras
	·		
Nome:	Número:		
1			
Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeir assinalando a opção conveniente.	ra (V) ou	falsa	(F),
As respostas incorretamente assinaladas têm cotação negativa.			
Questão 1. Considere a matriz $A=\left(\begin{array}{ccc} 1 & 0 & 0\\ -3 & 1 & 2\\ 3 & 0 & -1 \end{array}\right).$		Y /	_
		V	F
a) $car A = 2$.		0	0
b) $A^2 = I_3$.		\bigcirc	\bigcirc
c) A é equivalente por linhas à matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.		\bigcirc	\bigcirc
d) O sistema $A\mathbf{x}=0$ tem apenas a solução nula.		\bigcirc	\bigcirc
e) 0 é valor próprio de A .		\bigcirc	\bigcirc
Questão 2. Seja $f:\mathbb{R}^4 o \mathbb{R}^4$ uma aplicação linear cuja matriz associada é			
$A = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 2 & 5 & 4 & 3 \\ 1 & 2 & 1 & 0 \\ 4 & 9 & 6 & 4 \end{array}\right).$		V	F
a) $\det A = -5$.		\bigcirc	\circ
b) $f(1,0,-1,0) = (0,-2,0,-2)$.		\bigcirc	\bigcirc
c) f é injetiva.		\bigcirc	\bigcirc
d) $\dim \operatorname{Im} f = 3$.		\bigcirc	\bigcirc
e) O vetor ${\bf u}=(5,14,4,23)$ pertence ao espaço imagem de f .		\bigcirc	\circ
Questão 3. Considere a matriz $A_k=\left(egin{array}{ccc}-1&2&3\\2&-4&k-1\\1&-1&k+2\end{array} ight)$, com $k\in\mathbb{R}.$		V	F
a) Se $k \neq -5$, então A_k é invertível.		\bigcirc	\cap
b) As colunas da matriz A_1 são linearmente independentes.		0	0
$c) (1,2,3) \in \mathcal{N}(A_1).$		\bigcirc	\circ

d) O complemento algébrico do elemento na posição (3,2) da matriz $A_{\rm 0}$ é 5 .

e) O elemento na linha 2 coluna 3 da matriz A_0^{-1} é igual a $\frac{1}{2}$.

Questão 4. Considere o sistema

$$\begin{cases} x - y + 2z = \beta \\ 2x + \alpha z = 2 \\ x + y + z = 1 \end{cases}$$

nas incógnitas x, y, z, onde $\alpha, \beta \in \mathbb{R}$.

a) O sistema é possível e determinado para $\alpha \neq 3$.

 \cap \cap

 \bigcirc

b) Se $\alpha=0$ e $\beta=4$, a única solução do sistema é (0,-1,1).

0 0

c) O sistema é possível e indeterminado para $\alpha=3$ e $\beta=1$.

d) Se $\alpha = 3$, o sistema homogéneo associado tem grau de indeterminação 1.

 \circ

e) Se $\alpha = 2$ e $\beta = 1$, o sistema é impossível.

0 0

П

Responda às questões deste grupo numa folha de teste.

Questão 1. Seja S o subespaço do espaço vetorial \mathbb{R}^4 gerado pelos vetores

$$\mathbf{u} = (1, 2, 1, 3), \ \mathbf{v} = (3, 8, 11, 11), \ \mathbf{w} = (1, 3, 5, 4), \ \mathbf{z} = (2, 3, -2, 5).$$

- a) Verifique se os vetores $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ são linearmente independentes.
- b) Determine uma base de S.
- c) Diga, justificando, se $S = \{(x, y, z, w) \in \mathbb{R}^4 : 7x 4y + z = 0\}$.
- d) Indique uma base de \mathbb{R}^4 que inclua os vetores \mathbf{u} e \mathbf{v} .

Questão 2. Considere as matrizes
$$A = \left(\begin{array}{ccc} 2 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{array} \right)$$
 e $P = \left(\begin{array}{ccc} 1 & -1 & -1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{array} \right)$.

- a) Calcule P^{-1} , usando o método de Gauss-Jordan e verifique que $P^{-1}AP=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- b) Justifique, sem efetuar quaisquer cálculos, que 1 e 2 são valores próprios de A, com multiplicidades algébricas 2 e 1, respetivamente. O que pode dizer sobre as correspondentes multiplicidades geométricas? Justifique.
- c) Indique quais os valores próprios da matriz $(A-2I_3)^3$.

Questão 3.

- a) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear injetiva e sejam v_1, v_2, \dots, v_n vetores linearmente independentes de \mathbb{R}^n . Mostre que $f(v_1), f(v_2), \dots, f(v_n)$ são vetores linearmente independentes de \mathbb{R}^m .
- b) Apresente, caso exista, uma aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que Im $f = \operatorname{\mathsf{Nuc}} f$.