

By SLIIT Mathematics Unit Faculty of Humanities and Sciences

- Chi-squared tests are used for,
 - Discrete data
 - Categorical data

11

Used to find whether two factors are independent.

- The hypothesis for the test is,
 - H_0 : The factors are independent.
 - H_1 : The factors are not independent.
- Test Statistic,

Under H₀,

$$X^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim X_{d.f.}^{2}$$

- ullet O_{ij} Observed frequency for cell ij
- E_{ij} Expected frequency for cell ij
- df = (No of rows 1)(No of columns 1)

• Reject H_0 , if $X_{cal}^2 > X_{df,\alpha\%}^2$ (critical value)

Test:

- Find the expected frequencies for each cell.
- Calculate test statistic value.

Conclusion:

Compare calculated test statistic value with critical value and give the conclusion.

Important

Rule 01

All expected counts should be greater than 5.

Rule 02

- All expected counts should be greater than 1 & at least 80% of the cells should have expected count which is greater than or equal to 5.
- If not, categories can be joined.

The following table gives a classification according to religious affiliation and marital status for 500 randomly selected individuals. For $\alpha = 1\%$, test the null hypothesis that marital status and religious affiliation are independent.

		Religious Affiliation					
		A	В	С	D	None	
Marital Status	Single	39	19	12	28	18	
	Married	172	61	44	70	37	

Goodness of Fit Test

Used to find
whether a set of
discrete or
categorical data
follows a specified
distribution.

- The hypothesis for the test is,
 - H_0 : The data are consistent with the specified distribution.
 - H_1 : At least one category deviates from the specified distribution.
- Test Statistic,

Under H₀,

$$X^2 = \sum_{i=1}^n \frac{(o_i - E_i)^2}{E_i} \sim X_{d.f.}^2$$

- O_{ij} Observed frequency for cell ij
- E_{ij} Expected frequency for cell ij

- d.f. = No of classes No of parameters estimated 1
- Reject H_0 , if $X_{cal}^2 > X_{df,\alpha\%}^2$ (critical value)

- Test:
 - Find the expected frequencies for each category.
 - Calculate test statistic value.

Conclusion:

Compare calculated test statistic value with critical value and give the conclusion.

1) A die is rolled 60 times and the face values are recorded. The results are as follows.

Up Face	1	2	3	4	5	6
Frequency	8	11	5	12	15	9

Is the die balanced? Test using $\alpha = 0.05$.

2) The number of accidents in a month observed over a period of 10 years is given below.

No of accidents	0	1	2	3	4	5	6	≥7
Frequency	41	40	22	10	6	0	1	0

Is the data following a Poisson distribution? Test using $\alpha = 0.05$.

3) The grades of students in a class of 51 are given in the following table. Test the hypothesis that the grades are normally distributed with a mean of 75 and a standard deviation of 8. Use $\alpha = 0.05$.

Range	0-59.5	59.5- 69.5	69.5- 79.5	79.5- 89.5	89.5- 100
No of students	8	11	5	12	15

Thanks!

Any questions?