Tensor Categories, Chapter 7

Marcelo De Martino

Ghent University

January 31, 2022

Recap

- 2 Section 7.10
- 3 Section 7.11
- 4 Section 7.12

Highlights of last time: (7.8) - (7.10)

Fix $\mathcal{C} = (\mathcal{C}, \otimes, \mathbf{1}, a, l, r)$ a tensor category. We wish to "understand" left \mathcal{C} -module categories $\mathcal{M} = (\mathcal{M}, \otimes, m, l)$.

- Algebras in C: A = (A, m, u)
- Right A-modules: M = (M, p)
- The left C-module category $Mod_{C}(A)$
- Notion of Morita equivalence of algebras

• Internal Hom in a module category
$$\mathcal{M}$$
: $\underline{\operatorname{Hom}}(M_1,M_2) \in \mathcal{C}$, $M_i \in \mathcal{M}$

$$- \otimes M_1 \qquad \qquad \underline{\mathcal{H}}(M_1,-)$$

$$\operatorname{Hom}_{\mathcal{M}}(X \otimes M_1,M_2) \cong \operatorname{Hom}_{\mathcal{C}}(X,\underline{\operatorname{Hom}}(M_1,M_2)) \qquad (\boxtimes)$$

- Products: $\underline{\mathsf{Hom}}(M_2,M_3)\otimes\underline{\mathsf{Hom}}(M_1,M_2)\to\underline{\mathsf{Hom}}(M_1,M_3)$
- Algebras $A_M := \underline{\mathsf{Hom}}(M,M)$, right-mods $\underline{\mathsf{Hom}}(M,N)$, $(M,N\in\mathcal{M})$

(Cat)
$$X=1$$
, $M_{i}=M$ H_{M} (18 M,M) \cong Hom (1, A_{M})

(d \longrightarrow U_{M}

Characterization of module categories in terms of algebras

Assume \mathcal{C} finite, \mathcal{M} a left \mathcal{C} -module category with $\mathcal{M} \in \mathcal{M}$ satisfying $\mathcal{C}(\mathbf{w})$. How $(\mathcal{M}_{\mathbf{w}})$ is right exact.

- $\begin{cases} (\mathbf{w}) & \underline{\mathsf{Hom}}(M,-) \text{ is right exact} \\ (\mathbf{w}) & \text{for all } N \in \mathcal{M} \text{ exists } X \in \mathcal{C} \text{ and a surjection } X \otimes M \to N. \end{cases}$
 - Theorem (7.10.1)

The functor $F_M: \underline{\mathcal{M}} \to \underline{\mathsf{Mod}}_{\mathcal{C}}(\underline{A}_M)$ given by

$$F_M(N) = \underline{\mathsf{Hom}}(M,N)$$

is an equivalence of cats.

Goals of today

- Discuss the proof.
- Discuss situations in which such *M* exists.
- Category of module functors (7.11).
- Dual tensor categories (7.12).
- Categorical Morita equivalence (7.12).

8: Alexis / 2 more

1 Recap

14/02 21/02 28/02 Revision: Gert

8.1 — 85: ALexis

86 — 89: Michael

2 Section 7.10

28/02 8.6 — 8.9: Michiel 04/03 8.10 — 8.14: Sam?

3 Section 7.11

14/03

9: 91 -95: Jari

4 Section 7.12

21/03

96-99: Marcelo

28/03

9,10 9.12 : Sigi

04/04

Fusion Cats: Gert

 $A = A_M$, $F = F_M \quad \underline{H}(M, x_{\infty}N) \simeq x_{\infty}\underline{H}(M)$ Proof of 7.10.1: (1) $\operatorname{Hom}_{\mathcal{M}}(N_1, N_2) \cong \operatorname{Hom}_{\mathcal{A}}(F(N_1), F(N_2))$ for $N_1 = X \otimes M$, any N_2 . $FN_1 = H(M, X \otimes M) \simeq X \otimes H(M, M) = X \otimes A$:. HA (FM, FN2) = HA (XBA, FN2) - He (X, FN2) = He (X, H (M, N2)) ~ Hu (XoM, Nr) and Forget. (2) $\operatorname{Hom}_{\mathcal{M}}(N_1, N_2) \cong \operatorname{Hom}_{A}(F(N_1), F(N_2))$ for all N_1, N_2 . YAM -> XOM -> N1 ->0 Hn (YoM, N2) = Hn (XoM, N2) = Hn (N1, N2) = 0 HA (YOA) FNZ) = HA (XOA, FNZ) = H(PN1, FNZ) =0 (3) The functor F is essentially surjective. Le Mode(A), Lis wher of You A -> L ->0 $H_{A}(Y_{\emptyset}A, X_{\emptyset}A) \cong H_{A}(F(Y_{\emptyset}M), F(X_{\emptyset}M)) \cong H_{M}(Y_{\emptyset}M, X_{\emptyset}M)$ YAM F XOM -N - O L = F(N), N wk. (f). aplyingf

Condition (\Re) on M of (7.10.1)

 $\underline{H}_j := \underline{Hom}(M,N_j)$

Note that (cat) eq $\underline{H}(M,-)$ is right adj to $-\otimes M \Rightarrow \underline{H}(M,-)$ is left exact.

Small Yoneda C abelia, A, B, C & C

if He (Y,A) for He (Y,B) for He (X,C) => A for B for C report.

0-> N1 -> N2 -> N3 -> 0 S.B.S. in M, if X&M proj. YXEC

Condition (\Re) on M of (7.10.1) (7.6.9)

Proposition (7.10.4)

If either (a) or (b) holds and \mathcal{M} indecomposable, then (\mathcal{H}) is equiv to [M]generates $Gr(\mathcal{M})$ as a \mathbb{Z}_+ -mod over $Gr(\mathcal{C})$.

Section 7.71

Corollary (7.10.5)

- (i) Let \mathcal{M} be finite. Then $\mathcal{M} \cong \mathsf{Mod}_{\mathcal{C}}(A)$ for some $A \in \mathcal{C}$.
- (ii) Let \mathcal{M} exact and $M \in \mathcal{M}$ s.t. [M] generates $Gr(\mathcal{M})$ as a \mathbb{Z}_+ -module over Gr(C). Then $\mathcal{M} \cong Mod_{\mathcal{C}}(A)$ where A = Hom(M, M).

- Recap
- 2 Section 7.10
- 3 Section 7.11
- 4 Section 7.12

Section 7.11

Definition

Let $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2)$ denote the full subcat of the cat of module functors consiting of right exact functors.

Proposition

The following is true regarding $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_1, \mathcal{M}_2)$:

(7.11.1) If
$$\mathcal{M}_i = \mathsf{Mod}_{\mathcal{C}}(A_i)$$
, then $\mathsf{Bimod}_{\mathcal{C}}(A_1, A_2) \cong \mathsf{Fun}_{\mathcal{C}}(\mathcal{M}_1, \mathcal{M}_2)$.

.(7.11.3) If $\mathcal{M}_j, j=1,2,3$ are exact the composition below is bi-exact:

$$(\underline{\mathsf{A}}\, \underline{\mathsf{G}},\underline{\mathsf{G}})^{\underline{\mathsf{I}}} \quad \mathsf{Fun}_{\mathcal{C}}(\mathcal{M}_2,\mathcal{M}_3) \times \mathsf{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2) \to \mathsf{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_3).$$

- (7.11.5) Any $F \in \operatorname{\mathsf{Fun}}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2)$ maps proj into proj if \mathcal{M}_j are exact.
- (7.11.6) If C is finite and \mathcal{M}_{j} exact then $\mathsf{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2)$ is finite.

Sketch of proof of Proposition

- Recap
- 2 Section 7.10
- 3 Section 7.11
- 4 Section 7.12

Dual tensor categories

Proposition

If $F: \mathcal{M} \to \mathcal{N}$ a module functor, \mathcal{M}, \mathcal{N} exact, then G, the right adjoint of F is a module functor.

Definition

The cat $\underline{\mathcal{C}}^*_{\mathcal{M}} := \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ is the dual tensor cat to \mathcal{C} w.r.t. $\underline{\mathcal{M}}$.

For nice properties: Mexact!

Dual tensor categories

Theorem (7.12.11)

Suppose \mathcal{M} is faithful. Then \mathcal{C} is equivalent to $(\mathcal{C}_{\mathcal{M}}^*)_{\mathcal{M}}^*$.

$$M$$
 exact ND $M = \bigoplus M_i$
 $i \in I$
 $C \ni I = \bigoplus I_i$
 $i \in I$
 M faithful if each I_i acts by a non-zero functor on M .

 $M \mapsto I_i \otimes M \in M$

Categorical Morita

Definition

Let \mathcal{C},\mathcal{D} be tensor categories. They are categorically Morita equivalent if there exists an exact module cat \mathcal{M} with $\mathcal{D}^{\mathsf{op}} \cong \mathcal{C}^*_{\mathcal{M}}$.

Proposition

Categorical Morita is an equivalence relation.