

OneCAT – One Concept A Time

Bo-Rui Chen¹, Chun-Huan Chou¹, Shao-Xiang Yuan¹, Ye-Shin Yang² (B10901028, B10901025, B11901055, B10508026)

¹National Taiwan University Department of Electrical Engineering

²National Taiwan University Department of Biomedical Engineering

(1) Textual Inversion Training

(2) Custom Image Generation Pipeline

1. Initial image generation with validation prompt

2. Object detection for mask generation

3. Concept object(s) inpainting

Introduction

Current multi-concept personalization methods suffer from blending similar concepts, such as cats and dogs, which results in mixed features or the omission of certain concepts. To address this issue, we propose One Concept-A-Time (One CAT), a method that separates the generation of each concept to avoid blending while maintaining the natural and harmonious appearance of the entire image.

Methods

Our pipeline consists of three steps:

- **Draft Generation**: Similar to how humans sketch, we first create a "draft" using dummy tokens (e.g., "cat") to represent each concept.
- Mask Generation: Using a fast zero-shot object detection method, we generate binary masks to identify the regions of interest (bounding boxes of the dummy objects).
- Inpainting: With the masks, we perform inpainting to sequentially replace the dummy objects with the refined concepts generated via textual inversion.

"A <dog>, a <dog6>, a <cat2>" and a <cat> near a forest.

Figure 1. We can also generate four distinct concepts in the image.

Results

Figure 2. CLIP score comparison across different methods

Figure3. Comparison between each methods

A "<flower_1>" in a "<vase>"

Ablation Studies

Only use textual inversion

Figure 4. (left) Generate two cats instead of a cat and a dog.

Figure 5. (middle,right) Attention map for stable diffusion 2 model.

Using segmentation instead of detection

Figure 6. (left) Segmentation result for the dog. Figure 7. (Right) Inpainting based on segmentation results.

Adjusting Inpainting Hyperparameters.

Figure8. w/o and w/ Mask padding crop and Negative prompts

Discussions

Advantages		Limitations		
	Lttoot	Cause	Effect	Improvement
Our Method Object letection	Preventing merging between concepts	Complex Commands	Concepts vanish	Find better dummy tokens
npainting	Concepts blend seamlessly with the scene	Inpainting Failure	Concepts vanish	Negative prompts and mask padding
Not model- pecific	Can use any diffusion model with its textual inversions	Multiple Inpainting steps	Slower inference time	Inpaint simultaneously for disjoint masks