Лабораторная работа №8

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Топонен Никита Андреевич

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	8
Ответы на контрольные вопросы	12
Выводы	14
Список литературы	15

Список иллюстраций

1	Вывод функции encryption											11
2	Вывод функции decryption.											11

Список таблиц

Цель работы

1. Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом

Задание

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P_1 и P_2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе ; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Теоретическое введение

Для выполнения данной лабораторной нет специальной теории. Необходимы общие знания в области компьютерных наук.

Выполнение лабораторной работы

```
import numpy as np
import operator as op
import sys
s1 = "С Новым Годом, друзья!"
s2 = "С Рождеством, друзья!!"
def encryption(text1, text2):
   print("Открытый текст 1: ", text1)
   new_text1 = []
    for i in text1:
        new_text1.append(i.encode("cp1251").hex())
    print("\nOткрытый текст 1 в 16-ой системе: ", new_text1)
   print("\nOткрытый текст 2: ", text2)
   new text2 = []
    for i in text2:
        new text2.append(i.encode("cp1251").hex())
    print("\nOткрытый текст 2 в 16-ой системе: ", new text2)
    r = np.random.randint(0, 255, len(text1))
```

```
key = \lceil hex(i) \rceil 2: \rceil for i in r
    new_key = []
    for i in key:
            new key.append(i.encode("cp1251").hex().upper())
    print("\nКлюч в 16-ой системе: ", key)
    xor_text1 = []
    for i in range(len(new text1)):
        xor_text1.append("{:02x}".format(int(key[i], 16) ^ int(new_text1[
    print("\nШифротекст 1 в 16-ой системе: ", xor_text1)
    en_text1 = bytearray.fromhex("".join(xor_text1)).decode("cp1251")
    print("\nШифротекст 1: ", en_text1)
    xor text2 = []
    for i in range(len(new_text2)):
        xor_text2.append("{:02x}".format(int(key[i], 16) ^ int(new_text2[
    print("\nШифротекст 2 в 16-ой системе: ", xor text2)
    en text2 = bytearray.fromhex("".join(xor text2)).decode("cp1251")
    print("\nШифротекст 2: ", en text2)
    return key, xor_text1, en_text1, xor_text2, en_text2
def decryption(c1, c2, p1):
    print("Шифротекст 1: ", c1)
    new c1 = \lceil \rceil
    for i in c1:
        new c1.append(i.encode("cp1251").hex())
    print("\nШифротекст 1 в 16-ой системе: ", new c1)
```

```
print("\nШифротекст 2: ", c2)
    new_c2 = []
    for i in c2:
        new c2.append(i.encode("cp1251").hex())
    print("\nШифротекст 2 в 16-ой системе: ", new c2)
    print("\n0ткрытый текст 1: ", p1)
    new_p1 = []
    for i in p1:
        new_p1.append(i.encode("cp1251").hex())
    print("\n0ткрытый текст 1 в 16-ой системе: ", new_p1)
    print("\nHaxowy второй открытый текст...")
    xor_tmp = []
    sp2 = []
    for i in range(len(p1)):
        xor_tmp.append("{:02x}".format(int(new_c1[i], 16) ^ int(new_c2[i]
        sp2.append("{:02x}".format(int(xor tmp[i], 16) ^ int(new p1[i], 1
    print("\n0ткрытый текст 2 в 16-ой системе: ", sp2)
    p2 = bytearray.fromhex("".join(sp2)).decode("cp1251")
    print("\nОткрытый текст 2: ", p2)
    return p2, sp2
k, t1, et1, t2, et2 = encryption(s1, s2)
s3 = decryption(et1, et2, s1)
 Результаты работы программы:
```

```
[, Открытый текст 1: С Новым Годом, друзья!

Открытый текст 1: 16-ой системе: ['d1', '20', 'cd', 'ee', 'e2', 'fb', 'ec', '20', 'c3', 'ee', 'e4', 'ee', 'ec', '2c', '20', 'e4', 'f6', 'f3', 'e7', 'fc', 'ff', '21']

Открытый текст 2: С Рождеством, друзья!!

Открытый текст 2: 16-ой системе: ['d1', '20', 'd0', 'ee', 'e6', 'e4', 'e5', 'f1', 'f2', 'e2', 'ee', 'ec', '2c', '20', 'e4', 'f6', 'f3', 'e7', 'fc', 'ff', '21']

Ключ в 16-ой системе: ['a7', 'fd', '50', '26', '6a', '80', '80', '43', 'd3', '3f', 'ec', '80', 'dc', 'ef', 'b7', 'a9', '35', '71', '62', 'a2', '99', '49']

Шифротекст 1: 16-ой системе: ['76', 'dd', '9d', 'c8', '88', '7b', '6c', '63', '10', 'd1', '08', '6e', '30', 'c3', '97', '4d', 'c5', '82', '85', '5e', '66', '68']

Шифротекст 2: VЭЖИ€{L@N0F-ME,_^fh

Шифротекст 2: VЭЖИВde[198]pПSYX-h]eh
```

Рис. 1: Вывод функции encryption

```
□ Шифротекст 1: VЭЙИ€{1cBn0F-HE,_^fh
Шифротекст 1: B 16-ой системе: ['76', 'dd', '9d', 'c8', '88', '7b', '6c', '63', '10', 'd1', '08', '6e', '30', 'c3', '97', '4d', 'c5', '82', '85', '5e', '66', '68']
Шифротекст 2: VЭЙИМФЕ![ЭВ]рПБУХ-h]ēh
Шифротекст 2: B 16-ой системе: ['76', 'dd', '80', 'c8', '8c', '64', '65', 'b2', '21', 'dd', '02', '6c', 'f0', 'cf', '53', '59', 'c6', '96', '9e', '5d', 'b8', '68']
Открытый текст 1: C Новым Годом, друзья!
Открытый текст 1: B 16-ой системе: ['d1', '20', 'cd', 'ee', 'e2', 'fb', 'ec', '20', 'c3', 'ee', 'e4', 'ee', 'ec', '2c', '20', 'e4', 'f0', 'f3', 'e7', 'fc', 'ff', '21']
Нахожу второй открытый текст...
Открытый текст 2: В 16-ой системе: ['d1', '20', 'd0', 'ee', 'e6', 'e4', 'e5', 'f1', 'f2', 'e2', 'ee', 'ec', '2c', '20', 'e4', 'f0', 'f3', 'e7', 'fc', 'ff', '21']
Открытый текст 2: С Рождеством, друзья!!
```

Рис. 2: Вывод функции decryption

Ответы на контрольные вопросы

- 1. Как, зная один из текстов (P_1 или P_2), определить другой, не зная при этом ключа? Для этого надо воспользоваться формулой: $C_1.xorC_2.xorP_1=P_1.xorP_2.xorP_1=P_2$, где $*_1*$ и $*_2*$ шифротексты. Как видно, ключ в данной формуле не используется.
- 2. Что будет при повторном использовании ключа при шифровании текста? В таком случае мы получим исходное сообщение.
- 3. Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов?Он реализуется по следующей формуле: $C_1=P_1.xorK$, $C_2=P_2.xorK$, где $*_1*$ и $*_2*$ шифротексты, K ключ шифрования.
- 4. Перечислите недостатки шифрования одним ключом двух открытых текстов. Во-первых, имея на руках одно из сообщений в открытом виде и оба шифротекста, злоумышленник способен расшифровать каждое сообщение, не зная ключа. Во-вторых, зная шаблон сообщений, злоумышленник получает возможность определить те символы сообщения $*P_2*$, которые находятся на позициях известного шаблона сообщения $*P_1*$. В соответствии с логикой сообщения $*P_2*$, злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения $*P_2*$. Таким образом, применяя формулу из п. 1, с подстановкой вместо $*P_1*$ полученных на предыдущем шаге новых символов сообщения $*P_2*$ злоумышленник если не прочитает оба сообщения, то значительно уменьшит пространство их поиска. Наконец, зная ключ, злоумышленник смоет расшифровать все

- сообщения, которые были закодированы при его помощи.
- 5. Перечислите преимущества шифрования одним ключом двух открытых текстов. Такой подход помогает упростить процесс шифрования и дешифровки. Также, при отправке сообщений между 2-я компьютерами, удобнее пользоваться одним общим ключом для передаваемых данных.

Выводы

В ходе данной лабораторной работы я освоил применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы

• Кулябов Д. С., Королькова А. В., Геворкян М. Н Лабораторная работа №8