Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 30: July 10th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

Goal: Prove 5-Colour Theorem

Observation 1: If we consider a k-colouring of G and permute the colours, then such new colouring is a k-colouring of G.

Definition 30.1 Let G be a k-coloured graph using colours in 6. For $t, j \in 6, (i \neq j)$, the subgraph G(i, j) consists of all vertices in G that are coloured i or j, and all the edges that have ends coloured i and j

Observation 2: Let G be a k-coloured graph using colours in ζ . Suppose u, v are vertices coloured i and j, respectively $i \neq j$. If u and v are on different components of G(i,j), then there exists a k-colouring of G for which u and v have coloured t.

- 1. Consider a k-colouring of G
- 2. Look at G(i,j)
- 3. Swap colours in component containing v
- 4. Restore other colours / vertices of G

Theorem 30.2 5-colour Theorem: Every planar graph is 5-colourable

Proof:

Base: 0 vertices

I.H.: Every planar graph with at most n-1 vertices has a 5-colouring using $\zeta = \langle 1, \dots, 6 \rangle$

I.C.: Let G be a planar graph with n vertices and let v be a vertex of degree of at most 5. Consider a 5-colouring of G - v. We may assume that deg(v) = 5 and that the 5 colours are used to colour the neighbours of v (otherwise, we are down).

By permuting colours (if necessary), we may assume that colours 1, 2,3,4,5 occurs in a cyclic order at v_j in this planar embedding of G. Label neighbours of v as u_1, u_2, u_3, u_4, u_4 where u_i is coloured i

30 - 1