Радикальные оси

- П Внутри треугольника ABC отметили такую точку M, что $\angle ABM = \angle MAC$, $\angle CBM = \angle MCA$. Докажите, что точка M лежит на медиане, проведённой из вершины B.
- $\boxed{2}$ На гипотенузе AB прямоугольного равнобедренного треугольника ABC выбрана произвольная точка M. Докажите, что общая хорда окружностей с центром C и радиусом CA и с центром M и радиусом MC проходит через середину AB.
- $\boxed{3}$ Окружности s_1 , s_2 и s_3 проходят через точку A. Известно, что прямая, содержащая общую хорду s_1 и s_2 , проходит через центр s_3 , а прямая, содержащая общую хорду s_2 и s_3 через центр s_1 . Докажите, что прямая, содержащая общую хорду s_1 и s_3 , проходит через центр s_2 .
- [4] На сторонах BC, AC, AB треугольника ABC отмечены точки A_1 и A_2 , B_1 и B_2 , C_1 и C_2 . Оказалось, что четырёхугольники $A_1A_2B_2B_1$, $A_1A_2C_2C_1$ и $B_1B_2C_1C_2$ вписанные. Докажите, что шесть отмеченных точек лежат на одной окружности.
- [5] Дана неравнобокая трапеция ABCD ($AD \parallel BC$). Окружность, проходящая через точки B и C, пересекает боковые стороны трапеции в точках M и N, а диагонали в точках X и Y. Докажите, что прямые XY, MN и AD пересекаются в одной точке.
- $\boxed{6}$ В равнобедренном треугольнике ABC (AB=BC) проведена высота BH. Точка F основание перпендикуляра из точки H на сторону BC. Докажите, что прямая, перпендикулярная AF и проходящая через точку B, делит отрезок HF пополам.
- Точки B и C середины касательных, проведённых из точки A к окружности ω . На прямой BC выбрали точки X и Y. Из точек X и Y провели касательные к ω , пересекающиеся в точке F, причём ω располагается внутри четырёхугольника AXFY. Докажите, что в четырёхугольник AXFY можно вписать окружность.
- Вписанная окружность треугольника ABC касается сторон AB, AC, BC в точках C_1 , B_1 , A_1 соответственно. P произвольная точка плоскости. Серединный перпендикуляр к отрезку PA_1 пересекает прямую BC в точке A_2 . Аналогично определяются точки B_2 и C_2 . Докажите, что точки A_2 , B_2 и C_2 лежат на одной прямой.
- [9] Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, AC, BC в точках C_1 , B_1 , A_1 соответственно. Точка K середина отрезка A_1C_1 . Докажите, что центр описанной окружности треугольника BKB_1 лежит на прямой AC.

Посложнее

- Высоты AA_1 , BB_1 , CC_1 треугольника ABC пересекаются в точке H. На стороне BC выбрана произвольная точка X. Описанные окружности треугольников XCB_1 и XBC_1 повторно пересекаются в точке Y. Докажите, что четырёхугольник $XYHA_1$ вписанный.
- $\boxed{11}$ На сторонах треугольника ABC взято по две точки так, что шесть отрезков, соединяющих вершину с точкой на противолежащей стороне, равны. Докажите, что середины этих отрезков лежат на одной окружности.