Fitting models

Abdul Samad Adapted from Prof. Simon Prince

Regression

• Univariate regression problem (one output, real value

Graph regression

• Multivariate regression problem (>1 output, real value)

Text classification

• Binary classification problem (two discrete classes)

Music genre classification

Multiclass classification problem (discrete classes, >2 possible values)

Loss function

Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$L[\boldsymbol{\phi}, f[\mathbf{x}_i, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}]$$

or for short:

Returns a scalar that is smaller when model maps inputs to outputs better

Training

• Loss function:

$$L\left[oldsymbol{\phi}
ight]$$
 Returns a scalar that is smaller when model maps inputs to outputs better

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right]$$

Example: 1D Linear regression loss function

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

"Least squares loss function"

This technique is known as gradient descent

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:

$$rac{\partial L}{\partial \phi} = egin{bmatrix} rac{\partial L}{\partial \phi_0} \\ rac{\partial L}{\partial \phi_1} \\ dots \\ rac{\partial L}{\partial \phi_N} \end{bmatrix}.$$

Step 2. Update the parameters according to the rule:

$$\phi \longleftarrow \phi - \alpha \frac{\partial L}{\partial \phi},$$

where the positive scalar α determines the magnitude of the change.

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

= step size or learning rate if fixed

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

= step size

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

= step size

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

= step size

Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$oldsymbol{\phi} \longleftarrow oldsymbol{\phi} - lpha rac{\partial L}{\partial oldsymbol{\phi}}$$

= step size

Gradient descent

Convex problems

Convex problems

Test for convexity is that 2nd derivative is positive everywhere

Convexity in higher dimensions

Test for convexity is that determinant of Hessian (2nd derivative matrix) is positive everywhere.

$$\mathbf{H}[oldsymbol{\phi}] = egin{bmatrix} rac{\partial^2 L}{\partial \phi_0^2} & rac{\partial^2 L}{\partial \phi_0 \partial \phi_1} \ rac{\partial^2 L}{\partial \phi_1 \partial \phi_0} & rac{\partial^2 L}{\partial \phi_1^2} \end{bmatrix}$$

$$\mathbf{H}[\boldsymbol{\phi}] = \frac{\partial^2 L}{\partial \phi_0^2} \frac{\partial^2 L}{\partial \phi_1^2} - \frac{\partial^2 L}{\partial \phi_0 \partial \phi_1} \frac{\partial^2 L}{\partial \phi_1 \partial \phi_0}$$

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Gabor model

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$

Gabor model

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$

- Gradient descent gets to the global minimum if we start in the right "valley"
- Otherwise, descent to a local minimum
- Or get stuck near a saddle point

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

IDEA: add noise

- Stochastic gradient descent
- Compute gradient based on only a subset of points – a mini-batch
- Work through dataset sampling without replacement
- One pass though the data is called an epoch

Stochastic gradient descent

Before (full batch descent)

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i=1}^I \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$

After (SGD)

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$

Fixed learning rate

Properties of SGD

- Can escape from local minima
- Adds noise, but still sensible updates as based on part of data
- Uses all data equally
- Less computationally expensive
- Seems to find better solutions

- Doesn't converge in traditional sense
- Learning rate schedule decrease learning rate over time

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Momentum

Weighted sum of this gradient and previous gradient

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$

$$\boldsymbol{\phi}_{t+1} \leftarrow \boldsymbol{\phi}_t - \alpha \cdot \mathbf{m}_{t+1}$$

Nesterov accelerated momentum

 Momentum is kind of like a prediction of where we are going

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

• Move in the predicted direction, THEN, measure the mgradient $+(1-\beta)\sum_{i\in\mathcal{B}_t}^{m}\frac{\partial^2 p_i}{\partial \phi}$

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

Fitting models

- Maths overview
- Gradient descent algorithm
- Linear regression example
- Gabor model example
- Stochastic gradient descent
- Momentum
- Adam

Adaptive moment estimation (Adam)

Normalized gradients

Measure mean and pointwise squared gradient

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$

$$\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$$

Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

Normalized gradients

Measure mean and pointwise squared gradient

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$

$$\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$$

Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

$$\mathbf{m}_{t+1} = \begin{vmatrix} 3.0 \\ -2.0 \\ 5.0 \end{vmatrix}$$

$$\mathbf{v}_{t+1} = \begin{bmatrix} 9.0\\4.0\\25.0 \end{bmatrix}$$

$$\frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon} = \begin{bmatrix} 1.0\\ -1.0\\ 1.0 \end{bmatrix}$$

Normalized gradients

Measure mean and pointwise squared gradient

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$
 $\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$

• Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

Adaptive moment estimation (Adam)

• Compute mean and pointwise squared gradients with momentum

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \frac{\partial L[\phi_t]}{\partial \phi}$$
$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1 - \gamma) \left(\frac{\partial L[\phi_t]}{\partial \phi} \right)^2$$

Moderate near start of the sequence

$$\tilde{\mathbf{w}}_{t+1} \leftarrow \frac{\mathbf{m}_{t+1}}{1 - \beta^{t+1}}$$

$$\tilde{\mathbf{v}}_{t+1} \leftarrow \frac{\mathbf{v}_{t+1}}{1 - \gamma^{t+1}}$$

Update the parameters

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\tilde{\mathbf{m}}_{t+1}}{\sqrt{\tilde{\mathbf{v}}_{t+1}} + \epsilon}$$

Adaptive moment estimation (Adam)

Hyperparameters

- Choice of learning algorithm
- Learning rate
- Momentum