

Homework 9 Cryptography

Rick Staals 0716184 Erwin van Duijnhoven 0719562

November 27, 2013

Exercise 1

Prove that for (x_1, y_1) and (x_2, y_2) on the circle $x^2 + y^2 = 1$ also their sum $(x_1, y_1) + (x_2, y_2) = (x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$ is on the circle.

Answer 1

Let $C = \{(x,y)|x^2+y^2=1\}$. With the sum of two elements $(x_1,y_1), (x_2,y_2) \in C$ defined as

$$(x_1, y_1) + (x_2, y_2) = (x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$$

 \bigvee we need to prove that $(x_1y_2+y_1x_2,y_1y_2-x_1x_2) = (\tilde{x},\tilde{y}) \in C$. For this compute $\tilde{x}^2 + \tilde{y}^2$

$$\begin{split} &\tilde{x}^2 + \tilde{y}^2 \\ &= (x_1 y_2 + y_1 x_2)^2 + (y_1 y_2 - x_1 x_2)^2 \\ &= x_1^2 y_2^2 + y_1^2 x_2^2 + y_1^2 y_2^2 + x_1^2 x_2^2 + 2 x_1 y_2 y_1 x_2 - 2 y_1 y_2 x_1 x_2 \\ &= x_1^2 y_2^2 + y_1^2 x_2^2 + y_1^2 y_2^2 + x_1^2 x_2^2 \\ &= x_1^2 (y_2^2 + x_2^2) + y_1^2 (y_2^2 + x_2^2) = \begin{pmatrix} \mathbf{x}_1^2 + \mathbf{y}_1^2 \mathbf{y}_2^2 + \mathbf{y}_1^2 \mathbf{y}_2^2 + x_1^2 \mathbf{y}_2^2 \\ &= x_1^2 + y_1^2 = 1 \end{split}$$

Exercise 2

Find all points (x_1, y_1) on the Edwards curve $x^2 + y^2 = 1 - 5x^2y^2$ over \mathbb{F}_{13} . Verify that P = (6, 3) and Q = (3, 7) are on the curve. Compute R = 2P + Q.

Answer 2

Let $D = \{(x,y)|x^2 + y^2 = 1 - 5x^2y^2\}$ over \mathbb{F}_{13} with the sum of two elements $(x_1,y_1),(x_2,y_2) \in D$ defined in class as

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + y_1 x_2}{1 - 5x_1 y_1 x_2 y_2}, \frac{y_1 y_2 - x_1 x_2}{1 + 5x_1 y_1 x_2 y_2}\right)$$

Since it is symmetric in two ways we know that for every element $(x,y) \in D$ also (-x,y),(x,-y) & $(-x,-y) \in D$ and $(x,y) \in D \Leftrightarrow (y,x) \in D$

$\begin{bmatrix} & y \\ x & \ddots \end{bmatrix}$	0	1	2	3	4	5	6
0	0	1	4	9	3	12	10
1		7	12	3	6	8	9
2			10	11	2	9	6
3				7	4	2	1
4					12	0	7
5						3	11
6							0

Table 1: The results of $x^2 + y^2 + 5x^2y^2 \mod 13$

With the symmetric conditions we get the following elements to be points on the Edwards curve.

$$\{(0,1);(0,12);(1,0);(12,0);(3,6);(10,6);(3,7);(10,7);(6,3);(7,3);(6,10);(7,10)\}$$

Now with P=(6,3) and Q=(3,7) we want to compute R=2P+Q using the defined sum function.

$$2P + Q = P + P + Q$$

$$P+P=(6,3)+(6,3)=(\tfrac{36}{-1619},\tfrac{12}{1621})\equiv(\tfrac{10}{6},\tfrac{12}{9})\equiv(10\cdot11,12\cdot3)\equiv(6,10)\mod 13$$

$$P + P + Q \equiv (6, 10) + (3, 7) \equiv (\frac{72}{-6299}, \frac{52}{6301}) \equiv (\frac{7}{6}, 0) \equiv (7 \cdot 11, 0) \equiv (12, 0) \mod 13$$

Therefore R = (12, 0)