What can the BLIP-2 model do?

- Instructed zero-shot image-to-text generation
 - Visual conversation
 - Visual knowledge reasoning
 - Visual commensense reasoning
 - Storytelling
 - Personalized imageto-text generation

How is the BLIP-2 model pretrained?

- Querying Transformer (Q-Former) pre-trained in two stages:
 - Vision-language representation learning stage with a frozen image encoder
 - Vision-to-language generative learning stage with a frozen LLM.
- Q-Former=image transformer+ text transformer
- Queries interact with
 - each other and optionally text through self-attention layers
 - frozen image features through cross-attention layers

How is the BLIP-2 model pretrained?

- Pre-training dataset
 - · Same as BLIP
 - 129M images from COCO, Visual Genome, CC3M, CC12M, SBU
 - 115M images from LAION400M dataset
 - CapFilt method to create synthetic captions for the web images.

- Pre-trained image encoder
 - ViT-L/14 from CLIP
 - ViT-g/14 from EVA-CLIP
- Frozen language model
 - OPT for decoder-based LLMs
 - FlanT5 for encoder-decoder-based LLMs.

How does BLIP-2 model perform?

Models	#Trainable Params	Open- sourced?	Visual Question Answering VQAv2 (test-dev)	Image Captioning NoCaps (val)		Image-Text Retrieval Flickr (test)	
			VQA acc.	CIDEr	SPICE	TR@1	IR@1
BLIP (Li et al., 2022)	583M ✓ -			113.2	14.8	96.7	86.7
SimVLM (Wang et al., 2021b)	1.4B	X	_	112.2	2	2	·=1
BEIT-3 (Wang et al., 2022b)	1.9B	X	-	-	-	94.9	81.5
Flamingo (Alayrac et al., 2022)	10.2B	×	56.3	*	-	-	-
BLIP-2	188M	✓	65.0	121.6	15.8	97.6	89.7

Zero-shot vision-language tasks

- OPT prompt "Question: {} Answer:"
 FlanT5 prompt "Question: {} Short answer:"
- BLIP-2 > Flamingo80B by 8.7% on VQAv2, despite having 54x fewer trainable parameters.

Models	#Trainable Params	NoCaps Zero-shot (validation set)							COCO Fine-tuned		
		in-domain		near-domain		out-domain		overall		Karpathy test	
		C	S	C	S	C	S	C	S	B@4	C
OSCAR (Li et al., 2020)	345M	-	-	-	-	-	-	80.9	11.3	37.4	127.8
VinVL (Zhang et al., 2021)	345M	103.1	14.2	96.1	13.8	88.3	12.1	95.5	13.5	38.2	129.3
BLIP (Li et al., 2022)	446M	114.9	15.2	112.1	14.9	115.3	14.4	113.2	14.8	40.4	136.7
OFA (Wang et al., 2022a)	930M	12	-	2	2	-	-	-	2	43.9	145.3
Flamingo (Alayrac et al., 2022)	10.6B	-	-	-	-	-	-	-	-	-	138.1
SimVLM (Wang et al., 2021b)	$\sim 1.4 B$	113.7	-	110.9	-	115.2		112.2	-	40.6	143.3
BLIP-2 ViT-g OPT _{2.7B}	1.1B	123.0	15.8	117.8	15.4	123.4	15.1	119.7	15.4	43.7	145.8
BLIP-2 ViT-g OPT _{6.7B}	1.1B	123.7	15.8	119.2	15.3	124.4	14.8	121.0	15.3	43.5	145.2
BLIP-2 ViT-g FlanT5 _{XL}	1.1B	123.7	16.3	120.2	15.9	124.8	15.1	121.6	15.8	42.4	144.5

Madala	#Trainable		VQAv2		
Models	Params	test-dev	test-std		
Open-ended generation models					
ALBEF (Li et al., 2021)	314M	75.84	76.04		
BLIP (Li et al., 2022)	385M	78.25	78.32		
OFA (Wang et al., 2022a)	930M	82.00	82.00		
Flamingo80B (Alayrac et al., 2022)	10.6B	82.00	82.10		
BLIP-2 ViT-g FlanT5 _{XL}	1.2B	81.55	81.66		
BLIP-2 ViT-g OPT _{2.7B}	1.2B	81.59	81.74		
BLIP-2 ViT-g OPT _{6.7B}	1.2B	82.19	82.30		

How does BLIP-2 model perform?

Inaccurate knowledge (quote is from a different person)

Incorrect reasoning path (should have considered weather)

Information not up-to-date (this is iphone 14)

- Inaccurate knowledge from the LLM
- Activating the incorrect reasoning path
- Not having up-to-date information about new image content.

Summary

- BLIP-2: a generic and computeefficient method for vision-language pre-training that leverages frozen pretrained image encoders and LLMs.
- SOTA on various vision-language tasks while having a small amount of trainable parameters during pretraining.
- Emerging capabilities in zero-shot instructed image-to-text generation.
- https://github.com/salesforce/LAVIS/ tree/main/projects/blip2

- Thanks for watching!
- LinkedIn: http://aka.ms/manishgupta
- HomePage: https://sites.google.com/view/manishg/