Abalone Age Prediction

DESCRIPTION

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope — a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Attribute Information

Given is the attribute name, attribute type, measurement unit, and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem.

Name / Data Type / Measurement Unit / Description

```
1- Sex / nominal / -- / M, F, and I (infant)
2- Length / continuous / mm / Longest shell measurement
3- Diameter / continuous / mm / perpendicular to length
4- Height / continuous / mm / with meat in shell
5- Whole weight / continuous / grams / whole abalone
6- Shucked weight / continuous / grams / weight of meat
7- Viscera weight / continuous / grams / gut weight (after bleeding)
8- Shell weight / continuous / grams / after being dried
9- Rings / integer / -- / +1.5 gives the age in years
```

2. Importing necessary packages and dataset

```
import pandas as pd
import numpy as np
import seaborn as sns

df=pd.read_csv('/content/abalone.csv')
```

Exploration of the dataset

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

df.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64
dtype: object	

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

3. Visualizations

- 1. Univariate Analysis
- 2. Bi-Variate Analysis
- 3. Multi-Variate Analysis

UNIVARIATE ANALYSIS

```
plt.scatter(df.index,df['Diameter'])
plt.show()
```


sns.scatterplot(x=df.index,y=df['Diameter'],hue=df['Sex'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f41478efdd0>

sns.set(rc={'figure.figsize': (7,7)})
sns.set (font_scale=1.5)
fig=sns.lineplot (x=df.index, y=df['Length'], markevery=1, marker='d', data=df, hue=df ['S fig.set(xlabel='index')

sns.stripplot (y=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f4145efa910>

sns.stripplot (x=df['Sex'], y=df['Height'])

sns.set(rc={'figure.figsize': (5,5)})
sns.swarmplot (x=df['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 61.6 warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4145eb9610>

plt.hist(df['Height'])


```
plt.figure (figsize=(5,5))
df ['Height'].plot (kind='density')
```

-- [..--o..-].p--- (..-... --..-) /

<matplotlib.axes._subplots.AxesSubplot at 0x7f414356ffd0>

fig, ax = plt.subplots()
sns.rugplot (df ['Height'])
ax.set_xlim (3,9)
plt.show()

plt.boxplot(df['Height'])

BIVARIATE ANALYSIS

sns.barplot(x='Sex',y='Height',data=df)
sns.countplot(x='Sex',data=df)

sns.violinplot (x="Sex", y="Length", data=df, size=8)
plt.show()

sns.boxplot (x='Sex',y='Diameter', data=df)
plt.show()

MULTIVARIATE ANALYSIS

sns.pairplot (df, hue="Sex", size=3)
plt.show()

4. PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
description = df.describe()
print(description)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Sł
count	4177.000	4177.000	4177.000	4177.000	4177.000	4.177e+03	
mean	0.524	0.408	0.140	0.829	0.359	1.806e-01	
std	0.120	0.099	0.042	0.490	0.222	1.096e-01	
min	0.075	0.055	0.000	0.002	0.001	5.000e-04	
25%	0.450	0.350	0.115	0.442	0.186	9.350e-02	
50%	0.545	0.425	0.140	0.799	0.336	1.710e-01	
75%	0.615	0.480	0.165	1.153	0.502	2.530e-01	
max	0.815	0.650	1.130	2.825	1.488	7.600e-01	
	Rings						
count	4177.000						
mean	9.934						
std	3.224						
min	1.000						
25%	8.000						
50%	9.000						
75%	11.000						
max	29.000						
4							•

5.Check for Missing values

df.isnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4177 rows × 9 columns

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	True	True	True	True	True	True	True	True	True
1	True	True	True	True	True	True	True	True	True
2	True	True	True	True	True	True	True	True	True
3	True	True	True	True	True	True	True	True	True
4	True	True	True	True	True	True	True	True	True
4172	True	True	True	True	True	True	True	True	True
4173	True	True	True	True	True	True	True	True	True
4174	True	True	True	True	True	True	True	True	True
4175	True	True	True	True	True	True	True	True	True
4176	True	True	True	True	True	True	True	True	True

4177 rows × 9 columns

sns.heatmap(df.isnull(),yticklabels=False,cbar=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4141754850>

6. Find the outliers and replace them outliers

sns.boxplot(df['Rings'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4141f23850>

df['Rings'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f414141af50>


```
fare_mean = df['Rings'].mean()
fare_std = df['Rings'].std()
low= fare_mean -(3 * fare_std)
high= fare_mean + (3 * fare_std)
fare_outliers = df[(df['Rings'] < low) | (df['Rings'] > high)]
fare_outliers.head()
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
6	F	0.530	0.415	0.150	0.777	0.237	0.141	0.330	20
72	F	0.595	0.475	0.170	1.247	0.480	0.225	0.425	20
00	В. Л	0.505	0.475	0.400	4 047	0.400	0.004	0.500	04

Q1 = df['Rings'].quantile(0.25)

Q3 = df['Rings'].quantile(0.75)

IQR = Q3 - Q1

whisker_width = 1.5

lower_whisker = Q1 -(whisker_width*IQR)

upper_whisker = Q3 +(whisker_width*IQR)

df['Rings']=np.where(df['Rings']>upper_whisker,upper_whisker,np.where(df['Rings']<lower_wh</pre>

sns.boxplot(df['Rings'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f41413b6d50>


```
Q1 = df['Rings'].quantile(0.10)
Q3 = df['Rings'].quantile(0.90)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
index=df['Rings'][(df['Rings']>upper_whisker)|(df['Rings']<lower_whisker)].index
df.drop(index,inplace=True)</pre>
```

7. Check for Categorical columns and perform encoding

from sklearn.compose import make_column_selector as selector

```
categorical columns selector = selector(dtype include=object)
categorical_columns = categorical_columns_selector(df)
categorical_columns
     ['Sex']
data_categorical = df[categorical_columns]
data_categorical.head()
         Sex
      0
          M
      1
          M
        F
      2
      3
        M
      4
          from sklearn.preprocessing import OrdinalEncoder
Sex_column = data_categorical[["Sex"]]
encoder = OrdinalEncoder()
Sex_encoded = encoder.fit_transform(Sex_column)
Sex_encoded
     array([[2.],
            [2.],
            [0.],
            . . . ,
            [2.],
            [0.],
            [2.]])
encoder.categories_
     [array(['F', 'I', 'M'], dtype=object)]
data_encoded = encoder.fit_transform(data_categorical)
data_encoded[:5]
     array([[2.],
            [2.],
            [0.],
            [2.],
            [1.]])
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
```

feature_names = encoder.get_feature_names_out(input_features=["Sex"])
Sex_encoded = pd.DataFrame(Sex_encoded, columns=feature_names)
Sex_encoded

	Sex_F	Sex_I	Sex_M
0	0.0	0.0	1.0
1	0.0	0.0	1.0
2	1.0	0.0	0.0
3	0.0	0.0	1.0
4	0.0	1.0	0.0
4172	1.0	0.0	0.0
4173	0.0	0.0	1.0
4174	0.0	0.0	1.0
4175	1.0	0.0	0.0
4176	0.0	0.0	1.0

4177 rows × 3 columns

```
data_encoded = encoder.fit_transform(data_categorical)
data_encoded[:5]
```

8. Split the data into dependent and independent variables

```
['F' 0.53 0.42 ... 0.2565 0.1415 0.21]
      ['M' 0.6 0.475 ... 0.5255 0.2875 0.308]
     ['F' 0.625 0.485 ... 0.531 0.261 0.296]
     ['M' 0.71 0.555 ... 0.9455 0.3765 0.495]]
y= df.iloc[ : , 4].values
print(y)
    [0.514 0.2255 0.677 ... 1.176 1.0945 1.9485]
9. Scale the independent variables
from sklearn import preprocessing
df.drop(labels="Sex",axis=1)
min_max_scaler = preprocessing.MinMaxScaler(feature_range =(0, 1))
new x= min max scaler.fit transform(x)
print ("\n VALUES AFTER MIN MAX SCALING: \n\n", new x)
     VALUES AFTER MIN MAX SCALING:
     [[0.51351351 0.5210084 0.0840708 ]
     [0.37162162 0.35294118 0.07964602]
     [0.61486486 0.61344538 0.11946903]
     [0.70945946 0.70588235 0.18141593]
     [0.74324324 0.72268908 0.13274336]
     [0.85810811 0.84033613 0.17256637]]
Standardisation = preprocessing.StandardScaler()
new x= Standardisation.fit transform(x)
print ("\n\n VALUES AFTER STANDARDIZATION : \n\n", new_x)
     VALUES AFTER STANDARDIZATION :
     [[-0.57455813 -0.43214879 -1.06442415]
     [-1.44898585 -1.439929 -1.18397831]
     [ 0.05003309  0.12213032 -0.10799087]
     [ 0.84118198  0.77718745  0.25067161]
```

10. Split the data into training and testing

```
X=df.iloc[:,:-1]
y=df.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.05, random_state=0)
```

X_train

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
678	F	0.450	0.380	0.165	0.817	0.250	0.192	0.265
3009	I	0.255	0.185	0.065	0.074	0.030	0.017	0.020
1906	I	0.575	0.450	0.135	0.825	0.338	0.211	0.239
768	F	0.550	0.430	0.155	0.785	0.289	0.227	0.233
2781	M	0.595	0.475	0.140	1.030	0.492	0.217	0.278
1033	M	0.650	0.525	0.185	1.622	0.664	0.323	0.477
3264	F	0.655	0.500	0.140	1.171	0.540	0.318	0.285
1653	M	0.595	0.450	0.145	0.959	0.463	0.206	0.254
2607	F	0.625	0.490	0.165	1.127	0.477	0.236	0.319
2732	I	0.410	0.325	0.110	0.326	0.133	0.075	0.101

3968 rows × 8 columns

y_train

678 15.5 3009 4.0 1906 11.0 768 11.0 2781 10.0 ... 1033 10.0 3264 12.0 1653 10.0 2607 9.0 2732 8.0

Name: Rings, Length: 3968, dtype: float64

11,12,13. Build the Model -> Train and test the model

```
train, test = train_test_split(df, test_size=0.25, random_state=1)
print('Train data points :', len(train))
print('Test data points :', len(test))
```

Train data points : 3132

```
train.Sex = train.Sex.replace({"M":1, "I":0, "F":-1})
test.Sex = test.Sex.replace({"M":1, "I":0, "F":-1})
numerical_features = ["Length", 'Diameter', 'Height', 'Whole weight',
                      'Shucked weight', 'Viscera weight', 'Shell weight']
categorical_feature = "Sex"
features = numerical_features + [categorical_feature]
target = 'Rings'
fig, axes = plt.subplots(ncols=2,figsize=(16, 5))
train[target].plot.hist(color='blue', ax=axes[0])
axes[0].set(title="Train")
test[target].plot.hist(color='blue', ax=axes[1])
axes[1].set(title="Test")
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(4,2,figsize=(16, 14))
axes = np.ravel(axes)
for i, c in enumerate(numerical_features):
    hist = train[c].plot(kind = 'hist', ax=axes[i], title=c, color='blue', bins=30)
plt.tight_layout()
plt.show()
idx = train.loc[train.Height>0.4].index
train.drop(idx, inplace=True)
idx = train.loc[train['Viscera weight']>0.6].index
train.drop(idx, inplace=True)
idx = train.loc[train[target]>25].index
train.drop(idx, inplace=True)
X_train = train[features]
y_train = train[target]
X_test = test[features]
y_test = test[target]
X train.head()
```

Test data points: 1045

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Sex
4014	0.625	0.480	0.175	1.065	0.486	0.259	0.285	1
3252	0.480	0.380	0.130	0.618	0.300	0.142	0.175	1
305	0.200	0.145	0.060	0.037	0.013	0.009	0.011	0
1857	0.505	0.400	0.145	0.705	0.334	0.142	0.207	0
439	0 500	0 415	0 165	0 689	0 249	0 138	0 250	1

```
from sklearn.linear_model import LinearRegression
from sklearn. linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor

models = {'linear_regression':LinearRegression(),

    'lasso':Lasso(random_state=1),

    'decision_tree':DecisionTreeRegressor(random_state=1),

    'random_forest':RandomForestRegressor(random_state=1),

    'xgboost':XGBRegressor(random_state=1),
}
```

14. Measure the performance using Metrics.

```
# Linear regression
lr_params = {'fit_intercept':[True,False]}
# Lasso
lasso params = {'alpha': [1e-4, 1e-3, 1e-2, 1, 10, 100]}
# Decision tree
dt params = {'max depth': [4, 6, 8, 10, 12, 14, 16, 20],
            'min samples split': [5, 10, 20, 30, 40, 50],
            'max_features': [0.2, 0.4, 0.6, 0.8, 1],
            'max_leaf_nodes': [8, 16, 32, 64, 128,256]}
# Random Forest
rf_params = {'bootstrap': [True, False],
             'max_depth': [2, 5, 10, 20, None],
             'max_features': ['auto', 'sqrt'],
             'min_samples_leaf': [1, 2, 4],
             'min_samples_split': [2, 5, 10],
             'n_estimators': [100, 150, 200, 250]}
# XGBoost
xgb params = {'n estimators':[100, 200, 300] ,
```

```
'max depth':list(range(1,10)) ,
             'learning rate':[0.006,0.007,0.008,0.05,0.09],
             'min child weight':list(range(1,10))}
from sklearn.model selection import RandomizedSearchCV
params = [lr_params, lasso_params, dt_params, rf_params, xgb_params]
# searching Hyperparameters
i=0
for name, model in models.items():
    print(name)
    regressor = RandomizedSearchCV(estimator = model,
                                   n_iter=10,
                                   param distributions = params[i],
                                   cv = 3,
                                   scoring = 'neg_root_mean_squared_error')
    search = regressor.fit(X_train, y_train)
    print('Best params :',search.best_params_)
    print("RMSE :", -search.best_score_)
    i+=1
    print()
     linear regression
     Best params : {'fit_intercept': True}
     RMSE: 1.850711478798481
     lasso
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:296: UserWa
       UserWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:296: UserWa
      UserWarning,
     Best params : {'alpha': 0.0001}
     RMSE: 1.8506688457783522
     decision tree
     Best params : {'min_samples_split': 30, 'max_leaf_nodes': 16, 'max_features': 0.8, 'n
     RMSE: 1.9493904303644696
     random forest
     Best params : {'n estimators': 200, 'min samples split': 5, 'min samples leaf': 4, 'n
     RMSE: 1.7791857070978347
     xgboost
     [10:42:32] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:33] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:33] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:33] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:34] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:35] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:36] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:36] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:36] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:36] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:37] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
```

```
[10:42:38] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:39] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:39] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:40] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:41] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:42] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:43] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:44] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:44] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:45] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:46] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:46] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     [10:42:46] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
     Best params : {'n_estimators': 200, 'min_child_weight': 2, 'max_depth': 4, 'learning_
     RMSE : 1.7699400041667699
                                                                                        •
rf_params = {'n_estimators': 200,
             'min samples split': 2,
             'min samples_leaf': 4,
             'max features': 'sqrt',
             'max_depth': None,
             'bootstrap': True}
model = RandomForestRegressor(random_state=1, **rf_params)
model.fit(X_train, y_train)
     RandomForestRegressor(max features='sqrt', min samples leaf=4, n estimators=200,
                           random state=1)
import pickle
with open("model.pkl", "wb") as f:
    pickle.dump(model, f)
y_pred = model.predict(X_test)
fig = plt.figure(figsize=(10, 6))
plt.scatter(range(y_test.shape[0]), y_test, color='red', label='y_true')
plt.scatter(range(y_test.shape[0]), y_pred, color='blue', label='y_pred')
plt.legend()
plt.show()
```

[10:42:38] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now


```
plt.figure(figsize=(10,5))
plt.hist(y_pred-y_test, bins=30)
plt.show()

def predict_age(x):
    x = pd.DataFrame([x], columns=features)
    age = model.predict(x)
    return round(age[0],2)

with open("model.pkl", 'rb') as f:
    model = pickle.load(f)
ex = [0.295 , 0.225 , 0.08 , 0.124 , 0.0485, 0.032 , 0.04 , 0.]
print("Estimated age : ",predict_age(ex))

Estimated age : 7.26
```