11.7: Maximum and Minimum Values

Friday, September 11, 2020 10:49 AM

Def.
$$z = f(x, y)$$

1)
$$f$$
 has a $\frac{|oca|}{e}$ max. at a point $(a,b) \in \mathbb{R}^2$ if $f(x,y) \le f(a,b)$ for all $(x,y) \in D$, some disk D

centered at (a,b).

absolute maximum

$$x = f(x, y)$$

absolute maximum

 $x = f(a,b)$

absolute maximum

 $x = f(a,b)$

absolute minimum

 $x = f(a,b)$
 $x = f(a,b)$

2)
$$f$$
 has a local min at (a,b) if $f(x,y) \ge f(a,b)$ for all $(x,y) \in D$, where D some disk cent. at (a,b) .

If
$$f(x,y) \in f(a,b)$$
 for all (x,y) in domain of f , then $f(a,b)$ is an absolute max, of f ,

4) If
$$f(x,y) \ge f(a,b)$$
 $\forall (x,y)$ in domain of f , then $f(a,b)$ is an absolute min of f .

Thim If
$$f(x,y)$$
 has a local max/min at (a,b) , and if $f_{\chi}(a,b)$ and $f_{\chi}(a,b)$ both exist, then $f_{\chi}(a,b) = f_{\chi}(a,b) = 0$.

$$\frac{1}{2}(a,b) = \frac{1}{2}(a,b) - \frac{1}{2}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

f(1,3) = 4

f(1,3) = 4 ... min, max, never . $\int f(x, y) \geq f(1,3)$ $(x-1)^2+(y-3)^2+4 \ge 4$ $\rightarrow f(1,3)=4$ is an abs. $(x-1)^2 + (y-3)^2 \ge 0$ (and local) min. of f.

thin (Second Derivatives Test)

suppose 2nd partials of f are continuous on a disk cent. at (a,b), and $f_{x}(a,b) = f_{y}(a,b) = 0$.

(In particular, (a,b) is a crit pt of f).

Let
$$D = \left| f_{xx}(x,y) - f_{xy}(x,y) \right| = f_{xx} f_{yy} - f_{xy}$$
.
$$\left| f_{yx}(x,y) - f_{yy}(x,y) \right| = f_{xx} f_{yy} - f_{xy} f_{yy}(x,y)$$

(a) If D(a,b) > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local min.

(b) If D(a,b) > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local max

D(a,b) < 0, then f(a,b) is neither a local max nor

Def. In (c), for D(a,b) 20, the point (a,b) is a saddle point of f.

Note* If
$$D(a,b)=0$$
, the theorem is useless.

$$E_{X}$$
, $f(x,y) = x^2 + y^2 - 2x - 6y + 14$

(a)
$$f_{xx} = 2$$
, $f_{yy} = 2$, $f_{xy} = 0 = f_{yx}$

$$D(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = 4 - 0 = 4 \quad constant$$

$$\Rightarrow D(1,3) = 4 > 0$$
, Also $f_{xx}(1,3) = 2 > 0$

2nd Der. Test (a) =)
$$f(1,3) = \frac{14}{4} \log m(n.)$$

$$(b) f(x,y) = y^2 - x^2$$

hyperbolic paraboloid

$$D(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix} = -4$$

$$\Rightarrow D(0,0) = -4 < 0$$

2nd Der
$$=$$
 $f(0,0) = 0$ neither local min hor local max,
 $(0,0)$ saddle point

Absolute max & min values

Recall $f:(a,b] \longrightarrow \mathbb{R}$ continuous $\Longrightarrow f$ attains absolute max. & min. values in [a,b].

Def. 1) $A \subset \mathbb{R}^2$ is open if for any $(x_0, y_0) \in A$, there is a disk $D_g = \{(x,y): \int (x-x_0)^2 - (y-y_0)^2 < \varepsilon \}, \quad \varepsilon > 0$ where DCA.

2) $B \subset \mathbb{R}^2$ is <u>closed</u> if B^c is open, where $B^c = \{(x, y): (x, y) \text{ not in } B\}$

3) $C \subset \mathbb{R}^2$ is bounded if $C \in \mathbb{D}$ some disk

D of finite radius.

4) The boundary of ACR is the set of

Extreme Value Thim DCR2 closed and bounded.

If $f: D \longrightarrow \mathbb{R}$ is continuous on D, then f attains an abs. max. and an abs. min. on D.

 $f(x_1, y_1) = abs. min., f(x_2, y_2) = abs. max,$ $(x_1, y_1), (x_2, y_2) \in D.$ bound

Note Let $f: D \rightarrow R$, $D \in R^2$ closed & bdd.

If f_X and f_Y both exist at $(a,b) \in D$, and if f has an extreme value at (a,b), then either (a,b) is a critical pt of f, or $(a,b) \in \partial D$.

boundary of D

na is I for fine abs. max. & min. values on closed. & bild D

- 1) Find f values at every crit. pt.
- 2) Find extreme values of f on 2D

 $\frac{\exists x. \text{ Find absolute extrema of } f(x,y) = x^2 - 2xy + 2y \text{ on}}{D = \{(x,y): 0 \le x \le 3, 0 \le y \le 2\}.}$

 $\frac{Sol'n:}{Note} \text{ Note } f \text{ polyn.} \Rightarrow f \text{ continuous on all } \mathbb{R}^2$ $\Rightarrow f \text{ cont. on } D.$

Also D closed & bdd.

1) Deal w/D later. Find crit, pts inside D

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{x} = 2x - 2y = 0 \implies x = y$$

$$f_{y} = -2x + 2 = 0 \implies x = 1 = y \qquad (a_{j}b) = (1,1)$$

$$f_{y} = -2x + 2 = 0 \implies x = 1 = y \qquad (a_{j}b) = (1,1)$$

$$\vdots \quad 0_{n}|y \quad crit. \quad p't \quad inside \quad D \quad is \quad (1,1) \quad \longrightarrow f(1,1) = 1$$

2)(>)
$$f(x,y) = f(x,0) = x^2$$
, $0 \le x \le 3$
 x^2 has min. $x \le x^2$ max. values
 $f(0,0) = 0$ and $f(3,0) = x^2$

(a)
$$f(x,y) = f(3,y) = 9 - 6y + 2y = 9 - 4y$$
, $0 \le y \le 2$
is a linear func. of y, dec.
 $\Rightarrow 9 - 4y$ has max. $f(3,0) \ne 9$, min. $= f(3,2) \ne 1$

$$(((x))) f(x, 2) = x^{2} + 4x + 4, \quad 0 \le x \le 3$$

$$g(x) = (x - 2)^{2}, \quad g'(x) = 2(x - 2) = 0 \implies x = 2$$

$$\Rightarrow x^{2} + 4x + 4 \quad \text{has min. } f(2, 2) \ne 0,$$

$$g(0) \ne 4, \quad g(3) \ne 1$$

$$(\frac{4}{9}) f(0, y) = 2y, 0 \le y \le 2$$

has min $f(0, 0) = 0, \max = f(0, 2) = 4$

3) abs.
$$max = 9 = f(3,0)$$

abs. $min = 0 = f(0,0)$.