Лабораторная работа №6

Модель эпидемии

Крутова Е. Д. 24 февраля 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Изучить и построить модель эпидемии.

Задание

Постройте графики изменения числа особей в каждой из трех групп I, R, S. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если I(0) <= I*,
- 2) если I(0) > I*.

```
Python Console >> (1032216536 % 70) + 1
37
```

Рис. 1: Выбор варианта

Выполнение работы

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 600) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=160, А число здоровых людей с иммунитетом к болезни R(0)=56. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Случай I(0) <= I*

Рис. 2: Julia

Рис. 3: Modelica

Случай I(0) > I*

Рис. 4: Julia

Рис. 5: Modelica

Вывод

В ходе выполнения лабораторной работы была изучена модель эпидемии и построена модель на языках Julia и Open Modelica. В итоге проделанной работы мы построили графики зависимости численности особей трех групп S, I, R для случаев, когда больные изолированы и когда они могут заражать особей группы S.