MATH 2242 (Calculus IV) Course Outline — Vector Calculus (Marsden)

1.5 n-Dimensional Euclidean Space

- \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n
- Addition

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- Scalar multiplication
- Inner/Dot Product

$$(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = \sum_{i=1}^n x_i y_i$$

- Norm/Length/Magnitude
 - $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$
- Standard basis vectors

$$\mathbf{e}_1 = (1, 0, \dots, 0), \, \mathbf{e}_2 = (0, 1, \dots, 0), \, \dots, \, \mathbf{e}_n = (0, 0, \dots, 1)$$

- Theorems
 - $(\alpha \mathbf{x} + \beta \mathbf{y}) \cdot \mathbf{z} = \alpha (\mathbf{x} \cdot \mathbf{z}) + \beta (\mathbf{y} \cdot \mathbf{z})$
 - Prove the above theorem.

 - $\mathbf{x} \cdot \mathbf{x} \ge 0$
 - $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$
 - $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$ (the Cauchy-Schwarz inequality)
 - (Example) Prove the Cauchy-Schwarz inequality.
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (the triangle inequality)
 - (Example) Prove the triangle inequality.
- Matrices

$$\blacksquare A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- Addition A + B
- Scalar Mutiplication αA
- \blacksquare Transposition A^T
- Vectors as Matrices

$$\mathbf{a} = (a_1, a_2, \dots, a_n) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
$$\mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Matrix Multiplication
 - If A has m rows and B has n columns, then M = AB is an $m \times n$ matrix.
 - Coordinate ij of M = AB is given by $m_{ij} = \mathbf{a_i} \cdot \mathbf{b_j}$ where $\mathbf{a_i}^T$ is the ith row of A and $\mathbf{b_j}$ is the jth column of B.
 - \blacksquare (Example 4) Compute AB and BA for

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 \blacksquare (Example 5) Compute AB for

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Matrices as Linear Transformations
 - An $m \times n$ matrix A gives a function from \mathbb{R}^n to \mathbb{R}^m : $\mathbf{x} \mapsto A\mathbf{x}$
 - This linear transformation satsifies $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$

■ (Example 7) Express
$$A$$
x where $x = (x_1, x_2, x_3)$ and $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$.

- (Example) Compute where the points (-1, -1, 0), (0, 1, 0), (1, -1, 1), and (2, 1, 1) in \mathbb{R}^3 get mapped to in \mathbb{R}^4 by $A\mathbf{x}$ from the previous example. Then plot the projections of the original points in \mathbb{R}^3 onto their first two coordinates in \mathbb{R}^2 , and compare this with the projection plot of their images in \mathbb{R}^4 onto their first two coordinates in \mathbb{R}^2 .
- Identity and Inverse
 - The $n \times n$ identity matrix I satisfies $i_{jj} = 1$ and $i_{jk} = 0$ when $j \neq k$. That is:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- If $AA^{-1} = A^{-1}A = I$, then A is invertable and A^{-1} is its inverse.
- Determinant
 - Let A_i be the submatrix of A with the first column and ith row removed. Then $\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} \det(A_i)$
 - (Example) Prove that

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

and

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$= (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1)$$

- (Example) Prove that the inverse of the matrix $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ is $\frac{1}{\det A} \begin{bmatrix} b_2 & -a_2 \\ -b_1 & a_1 \end{bmatrix}$.
- An $n \times n$ matrix is invertable if and only if its determinant is nonzero.
- HW: 1-18, 21-24

2.3 Differentiation

- Functions $\mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^m$
 - $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) \text{ where } f_i : \mathbb{R}^n \to \mathbb{R}$

• Partial Derivative Matrix

- We say **f** is differentiable at \mathbf{x}_0 if $\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) \approx \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)]\mathbf{h}$ whenever $\mathbf{h} \approx \mathbf{0}$.
- (Example) Prove that this is equivalent to saying $\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)](\mathbf{x} \mathbf{x}_0)$ whenever $\mathbf{x} \approx \mathbf{x}_0$.
- (Example) Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x,y) = (x^2 + y^2, xy)$, and let $\mathbf{T} = \mathbf{Df}(1,0)$. Compute $\mathbf{f}(1.1, -0.1)$ and $\mathbf{f}(1,0) + \mathbf{T}(0.1, -0.1)$.
- If each $\frac{\partial f_i}{\partial x_j}$: $\mathbb{R}^n \to \mathbb{R}$ is a continuous function near \mathbf{x}_0 , then we say \mathbf{f} is strongly differentiable or class C^1 at \mathbf{x}_0 . All C^1 functions are differentiable.
- Gradient
 - If $f: \mathbb{R}^n \to \mathbb{R}$, then the gradient vector function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\nabla f(\mathbf{x}) = (\mathbf{D}f(\mathbf{x}))^T = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$
- Linearizations and Tangent Hyperplanes
 - For $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and a point $\mathbf{x}_0 \in \mathbb{R}^n$, let the linearization of \mathbf{f} at \mathbf{x}_0 be $\mathbf{L}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)](\mathbf{x} \mathbf{x}_0)$. Note $\mathbf{f}(\mathbf{x}) \approx \mathbf{L}(\mathbf{x})$ whenever $\mathbf{x} \approx \mathbf{x}_0$.
 - (Example 5) Recall that the tangent plane to a surface z = f(x, y) given by $f : \mathbb{R}^2 \to \mathbb{R}$ passing through $\mathbf{x}_0 \in \mathbb{R}^3$ is given by the normal vector ∇f . Show that z = L(x, y) gives an equation for the tangent plane to the surface $z = x^2 + y^4 + e^{xy}$ at the point (1, 0, 2).
- HW: 1-3, 5-21

2.5 Properties of the Derivative

- Sum/Product/Quotient Rules
 - $\mathbf{D}[\alpha \mathbf{f}] = \alpha \mathbf{D} \mathbf{f}$

 - $\mathbf{D}[fg] = g\mathbf{D}f + f\mathbf{D}g$
 - $\mathbf{D}[\frac{f}{g}] = \frac{g\mathbf{D}f f\mathbf{D}g}{g^2}$
 - (Example) Prove the sum rule above.

- Chain Rule
 - $\quad \blacksquare \ \mathbf{D}[\mathbf{f} \circ \mathbf{g}] = \mathbf{D}\mathbf{f}(\mathbf{g})\mathbf{D}\mathbf{g}$
 - (Example) Find the rate of change of $f(x,y) = x^2 + y^2$ along the path $\mathbf{c}(t) = (t^2, t)$ when t = 1.
 - (Example 2) Verify the Chain Rule for $f(u, v, w) = u^2 + v^2 w$ and $\mathbf{g}(x, y, z) = (x^2y, y^2, e^{-xz})$.
 - (Example 3) Compute $\mathbf{D}[\mathbf{f} \circ \mathbf{g}](1,1)$ where $\mathbf{f}(u,v) = (u+v,u,v^2)$ and $\mathbf{g}(x,y) = (x^2+1,y^2)$.
- HW: 6-13, 15-16

3.2 Taylor's Theorem

• Single-variable Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f'(x_0)(x - x_0)^2 + \frac{1}{6}f'(x_0)(x - x_0)^3 + \dots$$

$$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)$$

• First-Order Taylor Formula

$$f(\mathbf{x}) \approx L(\mathbf{x}) = f(\mathbf{x}_0) + [\mathbf{D}f(\mathbf{x}_0)](\mathbf{x} - \mathbf{x}_0) = f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)(x_i - x_{0i})$$

• Second-Order Taylor Formula

■
$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)(x_i - x_{0,i}) + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0)(x_i - x_{0,i})(x_j - x_{0,j})$$

- (Example) Use the second-order Taylor formula for $f(x,y) = \sqrt{x+2y}$ near the point (2,1) to approximate $\sqrt{4.05}$.
- (Example 3) Find linear and quadratic functions of x, y which approximate $f(x, y) = \sin(xy)$ near the point $(1, \pi/2)$.
- HW: 3-7, 12

4.3 Vector Fields

• Vector Fields

- A vector field is a map $f: \mathbb{R}^n \to \mathbb{R}^n$ assinging an *n*-dimensional vector to each point in \mathbb{R}^n
- (Example 1) The velocity field of a fluid may be modeled as a vector field.
- (Example 2) Sketch the rotary motion given by the vector field $\mathbf{V}(x,y) = (-y,x)$.
- Gradient Vector Fields

 - (Example) The derivative of a scalar function $f : \mathbb{R}^n \to \mathbb{R}$ in the direction given by a unit vector \mathbf{v} is given by $\nabla f \cdot \mathbf{v}$. Show that the maximum value of a directional derivative for a fixed point is given by $\|\nabla f\|$ and attained by the direction $\frac{1}{\|\nabla f\|}\nabla f$.
 - (Example 4) If temperature is given by T(x, y, z), then the energy or heat flux field is given by $\mathbf{J} = -k\nabla T$ where k is the conductivity of the body. Level sets are called isotherms.
 - (Example 5) The gravitational potential of bodies with mass m, M is given by $V = -\frac{mMG}{r}$ where G is the gravitational constant and r is the distance between the bodies, and the gravitational force field is given by $\mathbf{F} = -\nabla V$. Show that $\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r}$, where \mathbf{r} is the vector pointing from the center of mass M to the center of mass m.
 - A vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is conservative iff there exists a potential function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.
 - (Example) Show that $\mathbf{W} = (2y + 1, 2x)$ is conservative.
 - (Example 7) Show that V = (y, -x) is not conservative.
- Flow Lines
 - A flow line for a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is a path $\mathbf{c}: \mathbb{R} \to \mathbb{R}^n$ satisfying $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$.
 - (Example 8) Show that $\mathbf{c}(t) = (\cos t, \sin t)$ is a flow line for $\mathbf{F} = (-y, x)$, and find some other flow lines.
- HW: 1-12, 17-21

4.4 Divergence and Curl

- Divergence
 - The divergence of a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is denoted by $\operatorname{div} \mathbf{F}: \mathbb{R}^n \to \mathbb{R}$ and defined by $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \sum_{i=1}^n \frac{\partial F_i}{\partial x_i}$

- (Examples 3-5) Compute the divergences of $\mathbf{F} = (x, y)$, $\mathbf{G} = (-x, -y)$ and $\mathbf{H} = (-y, x)$ at any point on \mathbb{R}^2 . How does divergence correspond with the motion described by the vector field plots?
- (Example) Compute the divergence of $\mathbf{F} = (x^2, y)$ various points and interpret those values against a plot of the vector field.

• Curl

- The curl of a three-dimensional vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is denoted by curl $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ and defined by curl $\mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}\right)$
- The scalar curl of a two-dimensional vector field $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ is denoted by scurl $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}$ and defined by scurl $\mathbf{F} = \text{curl } \mathbf{F} \cdot \mathbf{k} = \frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}$
- (Example) Compute the scalar curl of $\mathbf{F} = (x, y)$, $\mathbf{G} = (-x, -y)$ and $\mathbf{H} = (-y, x)$ at every point in \mathbb{R}^2 . How does this scalar curl correspond with the motion described by the vector field plots?
- (Example) Compute the curl of $\mathbf{F} = (y, -x, z)$ at every point in \mathbb{R}^3 . How does curl correspond with the motion described by the vector field plot?
- Facts about ∇f , div **F**, curl **F**
 - The curl of a conservative field is zero: curl $\nabla f = \nabla \times (\nabla f) = \mathbf{0}$.
 - (Example) Prove the above theorem.
 - (Example) Prove that $\mathbf{F} = (x^2 + z, y z, z^3 + 3xy)$ is not a conservative field.
 - The divergence of a curl field is zero: div curl $\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0$
 - Many identities on pg. 255 of Marsden text.
 - (Example) Sketch proof of identity #8: $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$.
- HW: 1-4, 9-17, 22-25, 29-30

5.3 The Double Integral Over More General Regions

- Hypervolume
 - The hypervolume $HV_1(D)$ of an interval D = [a, b] in \mathbb{R} is just its length b a.
 - The hypervolume of a well-behaved bounded subset $D \subseteq \mathbb{R}^{n+1}$ is defined for each $n \in \{1, 2, \dots\}$ by

$$HV_{n+1}(D) = \int_{x_i \in I} HV(D_i) dx_i = \int_{x_i = a}^{x_i = b} HV_n(D_i) dx_i$$

where I = [a, b] is an interval containing all values x_i included in the *i*th coordinate of D, and D_i is the projection of all points in D onto \mathbb{R}^n by removing the *i*th coordinate.

■ (Example) For n=1 and $D=\{(x,y)\in\mathbb{R}^2: a\leq x\leq b, f(x)\leq y\leq g(x)\}$, we have that

$$HV_2 = A = \int_{x \in [a,b]} g(x) - f(x) \, dx = \int_a^b g(x) - f(x) \, dx.$$

■ (Example) For n=2 and $D\subseteq R^3$ including values of x between a and b, we have that

$$HV_3 = V = \int_{x=a}^{x=b} A(x) dx$$

where A(x) is the area of the cross-section of D taken by fixing each value of x (or similar for y).

- Double Integrals
 - For a bounded region $D \subseteq \mathbb{R}^2$ and continuous nonnegative $f: D \to \mathbb{R}$, the double integral

$$\iint_D f \, dA$$

is defined to be the volume of $\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, 0 \le z \le f(x, y)\}.$

■ We may apply the definition of volume above to get

$$\iint_D F \, dA = \int_{x=a}^{x=b} A(x) \, dx$$

where D lies between the lines x = a and x = b.

■ If D is described by $a \le x \le b$ and $\phi_1(x) \le y \le \phi_2(x)$, then

$$\iint_D F \, dA = \int_{x=a}^{x=b} A(x) \, dx = \int_{x=a}^{x=b} \left[\int_{y=\phi_1(x)}^{y=\phi_2(x)} f(x,y) \, dy \right] \, dx$$

■ Similarly, if D is described by $c \le y \le d$ and $\psi_1(y) \le x \le \psi_2(y)$, then

$$\iint_D F \, dA = \int_{y=c}^{y=d} \left[\int_{x=\psi_1(y)}^{x=\psi_2(y)} f(x,y) \, dx \right] \, dy$$

- If f is sometimes negative on the domain D, then $\iint_D f dA$ is the net volume between z = f(x, y) and D (volume above the xy plane minus volume below) and the above formulas still hold.
- Iterated integrals

■ An iterated integral is a shorthand for the expansion of two or more nested integrals, that is:

$$\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y) \, dy \, dx = \int_{x=a}^{x=b} \left[\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} f(x,y) \, dy \right] \, dx$$

- (Example) Sketch the region of integration for $\int_0^\pi \int_{-x}^x \cos(y) \, dy \, dx$, evaluate it, and interpret it as the signed volume of a region in \mathbb{R}^3 .
- (Example) Express $\iint_R (12x^3y 1) dA$ where R is the rectangle with vertices (0,0), (3,0), (3,2), (0,2) as an interacted integral, then evaluate it.
- (Example) Express $\iint_T (12x^3y 1) dA$ where T is the triangle with vertices (0,0),(1,0),(1,1) as an interated integral, then evaluate it.
- Applications
 - $\iint_D 1 dA$ is the area of D
 - \blacksquare $\frac{1}{A(D)} \iint_D f(x,y) dA$ is the average value of the function f restricted to D
- Additivity
 - If $D \subseteq \mathbb{R}^2$ is the union of two subregions D_1, D_2 overlapping only on their boundary, then $\iint_D f \, dV = \iint_{D_1} f \, dV + \iint_{D_2} f \, dV$.
 - (Example) Prove that the area of the square with vertices (1,0), (0,1), (-1,0), and (0,-1) is two by setting it up as a double integral, then using additivity to split it up into two or more subregions.
- HW: 1-9

5.4 Changing the Order of Integration

- Rectangular regions of integration
 - For constant bounds of integration:

$$\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy$$

- (Example) Verify that $\int_0^1 \int_1^2 x^2 + 2xy \, dy \, dx = \int_1^2 \int_0^1 x^2 + 2xy \, dx \, dy$.
- Nonrectangular regions of integration
 - Bounds of integration cannot be directly swapped; however, by interpreting the region of integration new bounds may be found in the other order.

- (Example) Verify that $\int_0^4 \int_0^{\frac{4-y}{2}} x + y \, dx \, dy$ and $\int_0^2 \int_0^{4-2x} x + y \, dy \, dx$ share the same region of integration and are equal.
- (Example) Evaluate $\int_1^e \int_0^{\log x} \frac{(2x-e)\sqrt{1+e^y}}{e-e^y} dy dx$.
- Estimating double integrals
 - If $g(x,y) \le f(x,y) \le h(x,y)$ for $(x,y) \in D$, then $\iint_D g(x,y) dA \le \iint_D f(x,y) dA \le \iint_D h(x,y) dA$.
 - (Example 3) Prove that $\frac{1}{\sqrt{3}} \leq \iint_D \frac{1}{\sqrt{1+x^6+y^8}} dA \leq 1$ where D is the unit square.
 - (Example) Prove that $e \leq \iint_D e^{x^2y+y} dA \leq \frac{e^2}{2}$ where D is the unit square.
- HW: 1-5, 7-10

5.5 The Triple Integral

- Triple Integrals
 - For a bounded region $D \subseteq \mathbb{R}^3$ and nonnegative $f: D \to \mathbb{R}$, the triple integral

$$\iiint_D f \, dV$$

is defined to be the hypervolume of $\{(x,y,z,w)\in\mathbb{R}^4:(x,y,z)\in D, 0\leq w\leq f(x,y,z)\}.$

- Applications
 - $\iiint_D 1 \, dV$ is the volume of D
 - \blacksquare $\frac{1}{V(D)}\iiint_D f(x,y,z) dV$ is the average value of the function f restricted to D
 - If $\rho(x, y, z)$ gives the density of a solid at the coordinate (x, y, z), then $\iiint_D \rho(x, y, z) dV$ calculates its overall mass.
- Rectangular Boxes
 - If $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$, then

$$\iiint_B f \, dV = \int_{a_3}^{b_3} \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x, y, z) \, dx \, dy \, dz$$
$$= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{a_3}^{b_3} f(x, y, z) \, dz \, dx \, dy$$
$$= \text{etc.}$$

■ (Example) Write $\iiint_D e^{x+y+z} dV$ where $D = [0,4] \times [0,2] \times [1,3]$ as a few different iterated integrals, then evaluate one.

- General regions of integration
 - If $E \subseteq \mathbb{R}^2$ and $D = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in E, \gamma_1(x, y) \le z \le \gamma_2(x, y)\}$, then

$$\iiint_D f(x, y, z) dV = \iint_E \left[\int_{\gamma_1(x, y)}^{\gamma_2(x, y)} f(x, y, z) dz \right] dA$$

(and similar for x, y instead of z).

- (Example 5) Express $\iiint_W x \, dV$ where W is the solid for which x, y, z are positive and $x^2 + y^2 \le z \le 2$ as a few different iterated integrals.
- (Example 6) Express $\iiint_W x \, dV$ where W is the solid in \mathbb{R}^3 above the triangle with vertices (0,0,0),(1,0,0),(1,1,0) in the xy plane, and also between the surfaces $z=x^2+y^2$ and z=2, as an iterated integral. Then evaluate it.
- Additivity
 - If $D \subseteq \mathbb{R}^3$ is the union of two subregions D_1, D_2 overlapping only on their boundary, then $\iiint_D f dV = \iiint_{D_1} f dV + \iiint_{D_2} f dV$.
- HW: 1-6, 11-17, 25-28

1.4 Cylindrical and Spherical Coordinates

- Transformation of variables
 - A transformation of variables is a function $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$.
 - (Example) Sketch the integer lattice on the uv plane and its image in the xy plane for the transformation of variables $\mathbf{T}(u,v) = (x,y) = (u,u+v)$.
- Polar Coordinates
 - $\mathbf{p}(r,\theta) = (r\cos\theta, r\sin\theta)$
 - $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$
 - (Example) Convert $A = \mathbf{p}(4, 2\pi/3)$ from polar to Cartesian. Convert B = (3, -3) from Cartesian to polar. Plot both in the $r\theta$ and xy planes.
 - (Example) Express the curves $x = \sqrt{4 y^2}$ and y = 3 in terms of polar coordinates. Plot both in the $r\theta$ and xy planes.
- Cylindrical Coordinates
 - $\mathbf{c}(r,\theta,z) = (r\cos\theta, r\sin\theta, z)$
 - Usually, assume $r \ge 0$ and $0 \le \theta \le 2\pi$

- $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$
- (Example 1) Convert $A = \mathbf{c}(8, 2\pi/3, -3)$ from cylindrical to Cartesian. Convert B = (6, 6, 8) from Cartesian to cylindrical. Plot both in xyz space.
- (Example) Express the surfaces $x^2 + y^2 = 9$ and $z^2 = x^2 + y^2$ in terms of cylindrical coordinates. Plot both in xyz space.

• Spherical Coordinates

- $\mathbf{s}(\rho, \theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$
- Usually, assume $\rho \geq 0$, $0 \leq \theta \leq 2\pi$, and $0 \leq \phi \leq \pi$
- $\rho^2 = x^2 + y^2 + z^2$, $\tan \theta = \frac{y}{x}$, $\tan \phi = \frac{r}{z} = \frac{\sqrt{x^2 + y^2}}{z}$
- (Example 2) Convert A = (1, -1, 1) from Cartesian to spherical. Convert $B = \mathbf{s}(3, \pi/6, \pi/4)$ from spherical to Cartesian. Convert C = (2, -3, 6) from Cartesian to spherical. Convert $D = \mathbf{s}(1, -\pi/2, \pi/4)$ from spherical to Cartesian. Plot all four in xyz space.
- (Example 3) Express the surfaces xz = 1 and $x^2 + y^2 z^2 = 1$ in terms of spherical coordinates.
- HW: 1-11, 15

6.1 The Geometry of Maps from \mathbb{R}^n to \mathbb{R}^n

- Images of regions by transformations
 - (Example 1) Find the image of the rectangle $[0,1] \times [0,2\pi]$ in the $r\theta$ plane under the polar coordinate transformation **p**.
 - (Example 2) Find the image of the square $[-1,1]^2 = [-1,1] \times [-1,1]$ in the uv plane under the transformation $\mathbf{T}(u,v) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} (u,v)$

• One-to-one and Onto

- A one-to-one transformation sends each point in the domain to a distinct point in the range.
- An onto transformation sends something in the domain onto each point of the range.
- (Example 3) Show that the polar coordinate transformation **p** is onto but not one-to-one.
- (Example 4) Show that the transformation **T** from example 2 is both one-to-one and onto.

- (Example 5) Show that $\mathbf{T}(u,v) = (u,0)$ is neither one-to-one nor onto.
- (Example 7) Find a rectangle in the $r\theta$ plane which maps onto the region $\{(x,y): x,y \geq 0, a^2 \leq x^2 + y^2 \leq b^2\}$ in the Cartesian plane by the polar coordinate transformation.

• Linear transformations

- Transformations $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathbf{T}(\mathbf{u}) = A\mathbf{u}$ for an *n*-dimensional matrix A are called linear transformations.
- (Example 6) Find a region in the uv plane which maps onto the square with vertices (1,0), (0,1), (-1,0), (0,-1) in the xy plane by the linear transformation given in Example 2.
- Transformations $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathbf{T}(\mathbf{u}) = A\mathbf{u} + \mathbf{x}_0$ for an *n*-dimensional matrix A and n-dimensional vector \mathbf{x}_0 are called affine transformations. (Every linear transformation is affine.)
- (Example) Find an affine transformation which maps the unit square in the uv plane onto the square with vertices (1,0), (0,1), (-1,0), (0,-1) in the xy plane.
- An affine transformation is both one-to-one and onto exactly when det $A \neq 0$.
- (Example) Use this fact to reinvestigate examples 4 and 5.
- HW: 1-4, 8, 10

6.2 The Change of Variables Theorem

- Affine transformations of areas
 - An affine transformation with matrix M transforms hypervolumes by a factor of $|\det M|$.
 - (Example) Verify this fact for the parallelogram with vertices (2,0), (3,1), (1,3), (0,2) in the uv plane and its image in the xy plane under the transformation $\mathbf{T}(u,v) = (2u + v + 3, v u 2)$.
 - \blacksquare Put another way, $\iint_D 1\,dA = \iint_{D^*} |\det M|\,dA.$
- Affine transformations of single/double/triple integrals
 - (Example) Let $x = T(u) = mu + x_0$. Use substitution to prove that if the image of $[c_1, c_2]$ under T is $[b_1, b_2]$, then $\int_{b_1}^{b_2} f(x) dx = \int_{c_1}^{c_2} f(T(u)) |m| du$.
 - (Example) Use the previous fact to show that $\int_0^4 \sqrt{2x+1} \, dx = \int_1^9 \frac{1}{2} \sqrt{u} \, du$
 - For any 2D affine transformation **T** with matrix M transforming D^* to D, $\iint_D f(x,y) \, dA = \iint_{D^*} f(\mathbf{T}(u,v)) |\det M| \, dA.$

- (Example) Use an affine transformation to prove that $\int_0^2 \int_{y/2}^{(y+4)/2} 2y \, dx \, dy = \int_0^1 \int_0^1 16v \, dv \, du$ and compute both integrals directly to verify.
- (Example) Compute $\iint_D (x+y)(x-y-2) dA$ where T is the triangle with vertices (4,2), (3,1), (2,2).
- For any 3D affine transformation **T** with matrix M transforming D^* to D, $\iint_D f(x,y,z) \, dV = \iint_{D^*} f(\mathbf{T}(u,v,w)) |\det M| \, dV.$

• Jacobian

- The Jacobian $\frac{\partial \mathbf{T}}{\partial \mathbf{u}}$ of a transformation is defined to be the determinant of its partial derivative matrix: $\det(\mathbf{DT})$.
- (Example) Prove that for an affine transformation **T** with matrix M that $\mathbf{DT} = M$ and therefore $\frac{\partial \mathbf{T}}{\partial \mathbf{u}} = \det M$.
- For any 2D transformation **T** transforming D^* to D, $\iint_D f(\mathbf{x}) dA = \iint_{D^*} f(\mathbf{T}(\mathbf{u})) \left| \frac{\partial \mathbf{T}}{\partial \mathbf{u}} \right| dA$.
- For any 3D transformation **T** transforming D^* to D, $\iiint_D f(\mathbf{x}) dV = \iiint_{D^*} f(\mathbf{T}(\mathbf{u})) |\frac{\partial \mathbf{T}}{\partial \mathbf{u}}| dV$.
- (Example) Use a 2D transformation to compute $\iint_D e^x \cos(\pi e^x) dA$ where D is the region bounded by y = 0, $y = e^x 2$, $y = \frac{e^x 1}{2}$. (Hint: find a transformation from the unit square to the region bounded by y = 0, y = 1, $y = e^x 1$, $y = e^x 2$.)
- Polar, cylindrical, spherical change of variables
 - Polar coordinates: $\iint_D f(x,y) dA = \iint_{D^*} f(r\cos\theta, r\sin\theta) r dA$
 - \blacksquare Cylindrical coordinates: $\iint_D f(x,y,z)\,dV = \iint_{D^*} f(r\cos\theta,r\sin\theta,z) r\,dV$
 - Spherical coordinates: $\iint_D f(x, y, z) dV = \iint_{D^*} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi dV$
 - (Example) Compute the area of the triangle with vertices $(0,0), (\sqrt{3},1), (0,1)$ using polar coordinates.
 - (Example 4*) Evaluate $\iint_D \log_e(x^2 + y^2) dA$ where D is the region in the first quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = e^2$. (Hint: $\int \log_e x \, dx = x \log_e x + x + C$.)
 - (Example 6) Evaluate $\iiint_W \exp[(x^2+y^2+z^3)^{3/2}] dV$ where W is unit ball centered at the origin.
 - (Example) Prove that the formula for the volume of a cone with radius R and height H is $V = \frac{1}{3}\pi R^2 H$.
 - (Example 7) Prove that the formula for the volume of a sphere with radius R is $V = \frac{4}{3}\pi R^3$.
- HW: 1-3, 5-6, 11, 13-14, 21, 26

7.1 The Path Integral

- Path Integral with respect to Arclength
 - Recall that for a curve C defined by $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$, the arclength function $s: \mathbb{R} \to \mathbb{R}$ defined by $s(t) = \int_0^t \|\mathbf{r}'(\tau)\| d\tau$ gives the length of the curve from 0 to t.
 - (Example) Prove that $C = \pi D$ gives the circumference of a circle with diameter D.
 - If $f: C \to \mathbb{R}$ is a function defined along the curve C defined by $\mathbf{r}: [a,b] \to \mathbb{R}^n$, then

$$\int_{C} f \, ds = \int_{a}^{b} f(\mathbf{r}(t)) \frac{ds}{dt} \, dt$$

where $\frac{ds}{dt} = \|\frac{d\mathbf{r}}{dt}\|$. This represents the area of a ribbon with base C and height f at each point of C.

- (Example 1) Find the average value of the function $f(x, y, z) = x^2 + y^2 + z^2$ along the portion of the helix given by $\mathbf{c}(t) = (\cos t, \sin t, t)$ for $t \in [0, 2\pi]$.
- (Example 2) The base of a fence is given by the curve $\mathbf{c}(t) = (30\cos^3 t, 30\sin^3 t)$, and the height of the fence is given by $f(x,y) = 1 + \frac{y}{3}$. How much paint is required to cover both sides of this fence?
- HW: 1-8, 10-13

7.2 Line Integrals

- Line Integral with respect to a Curve
 - If $\mathbf{F}: C \to \mathbb{R}^n$ is a vector field defined along the curve C defined by $\mathbf{r}: [a, b] \to \mathbb{R}^n$, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} \, dt$$

represents the work done by a force \mathbf{F} over the curve C.

- (Example) An object is pushed around the unit circle with a force (-y, x) at each point (x, y). Compute the work done in pushing the box around 3 full counter-clockwise rotations.
- (Example 1) Let $\mathbf{r}(t) = (\sin t, \cos t, t)$ for $t \in [0, 2\pi]$ define the curve C, and define the vector field $\mathbf{F} = (x, y, z)$. Compute $\int_C \mathbf{F} \cdot d\mathbf{s}$.
- (Example 5) Let C be a circle in the yz plane centered at the origin. Show that no work is done by a force $\mathbf{F} = (x^3, y, z)$ acting on an object moving around the circle.

- Line integrals with respect to variables
 - If $f: \mathbb{R}^n \to \mathbb{R}$ is a function defined along the curve C defined by $\mathbf{r}: [a, b] \to \mathbb{R}^n$, and $\mathbf{s} = (x_1, \dots, x_n)$,

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{C} (F_{1}, \dots, F_{n}) \cdot (dx_{1}, \dots, dx_{n}) = \sum_{i=1}^{n} \int_{C} F_{i} \cdot dx_{i}$$

where

$$\int_C f \, dx_i = \int_a^b f(\mathbf{c}(t)) \frac{dx_i}{dt} \, dt.$$

- (Example 2) Evaluate and interpret $\int_C x^2 dx + xy dy + dz$ where C is the parabola defined by $\mathbf{c}(t) = (t, t^2, 1)$ for $t \in [0, 1]$.
- Reparametrizations and partitions
 - The value of $\int_C f \, ds$ is independent of the choice of parametrization $\mathbf{r}(t)$ regardless of orientation.
 - The value of $\int_C \mathbf{F} \cdot d\mathbf{s}$ is independent of the choice of parametrization $\mathbf{r}(t)$ provided it respects the orientation of C.
 - If C and -C represent the same curve with opposite orientations, then $\int_C \mathbf{F} \cdot d\mathbf{s} = -\int_{-C} \mathbf{F} \cdot d\mathbf{s}$.
 - If $C = C_1 + C_2$, then $\int_C f \, ds = \int_{C_1} f \, ds + \int_{C_2} f \, ds$ and $\int_C \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} \mathbf{F} \cdot d\mathbf{s} + \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$.
 - (Example 11) Compute $\int_C x^2 dx + xy dy$ where C is the perimeter of the unit square oriented counter-clockwise.
- HW: 1-5, 13, 17-18

8.1 Green's Theorem

- Green's Theorem
 - Let ∂D be the c.c.w. oriented boundary of a simple region $D \subseteq \mathbb{R}^2$. Then $\int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_D \operatorname{scurl} \mathbf{F} dA = \iint_D \operatorname{curl} \mathbf{F} \cdot \mathbf{k} dA = \iint_D \frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} dA$.
 - (The book assumes $\mathbf{F} = (F_1, F_2) = (P, Q)$.)
 - (Example 1) Verify Green's Theorem for $\mathbf{F} = (x, xy)$ and $D = \{(x, y) : x^2 + y^2 \le 1\}$.
 - (Example) Use Green's Theorem to prove that the area of D is $\frac{1}{2} \int_{\partial D} x \, dy y \, dx$.

- (Example 3) Compute the work done using a force $\mathbf{F} = (xy^2, y + x)$ in moving an object from the origin to (1,1) along the curve $y = x^2$ and then back to the origin along the line y = x.
- HW: 1-6, 9-10, 15

8.3 Conservative Fields

- Characterizations of Conservative Fields
 - These are all equivalent to $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ being conservative:
 - (1) There exists a potential function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$, and for any curve starting at A and ending at B, $\int_C \mathbf{F} \cdot d\mathbf{s} = [f]_A^B = f(B) f(A)$.
 - (2) $\operatorname{curl} \mathbf{F} = \mathbf{0}$.
 - (3) $\int \mathbf{F} \cdot d\mathbf{s}$ is path-independent: for any two curves C_1, C_2 which share starting and ending points, $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$.
 - (4) For any simple closed curve C, $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$.
 - (Example) Prove that (1) implies (2) above.
 - (Example) Prove that (3) implies (4) above.
 - (7.2 Example 9) Evaluate $\int_C y \, dx + x \, dy$ where C is the curve given by $\mathbf{r}(t) = (t^4/4, \sin^3(t\pi/2))$ for $t \in [0, 1]$.
 - (Example 4) Find $\int_C 2x \cos y \, dx x^2 \sin y \, dy$ where C is given by $\mathbf{r} : [1,2] \to \mathbb{R}^2$ defined by $x = e^{t-1}, y = \sin(\pi/t)$.
 - (Example 1) Show that $\int_C (y, z \cos yz + x, y \cos yz) \cdot d\mathbf{s} = 0$ for any simple closed curve C.
- HW: 1-2, 5-8, 10-11

7.3 Parametrized Surfaces

- Parametrization of a Surface
 - Let $S \subseteq \mathbb{R}^3$ be a surface and $D \subseteq \mathbb{R}^2$ be a two-dimensional region. Then $\Phi: D \to S$ is a parametrization of S by D.
 - (Example) Show that the surface given by z = f(x, y) has the parametrization $\Phi(x, y) = (x, y, f(x, y))$.
 - (Example 1) Show that the plane passing through the point $P \in \mathbb{R}^3$ and normal to the vector $\mathbf{a} \times \mathbf{b}$ has a parametrization $\Phi(u, v) = \mathbf{P} + \mathbf{a}u + \mathbf{b}v$.

- (Example 2) Show that the cone $z = \sqrt{x^2 + y^2}$ has a parametrization $\Phi(r, \theta) = (r \cos \theta, r \sin \theta, r)$ for $r \ge 0, 0 \le \theta \le 2\pi$.
- Surfaces which are conveniently described using cylindrical or spherical coordinates may be easily parameterized by adapting the relevant transformation.
- (Example) Use the cylindrical and spherical transformations to find parametrizations of the cone $z = \sqrt{x^2 + y^2}$.
- Tangent and Normal Vectors to a Surface
 - The tangent plane to a surface parameterized by Φ at the point $\Phi(\mathbf{u}_0)$ has parameterization

$$\mathbf{L}(\mathbf{u}) = \mathbf{\Phi}(\mathbf{u}_0) + [\mathbf{D}\mathbf{\Phi}(\mathbf{u}_0)]\mathbf{u} = \mathbf{\Phi}(\mathbf{u}_0) + \frac{\partial \mathbf{\Phi}}{\partial u}(u_0, v_0)u + \frac{\partial \mathbf{\Phi}}{\partial v}(u_0, v_0)v.$$

- (Example 3) Find a parameterization of the plane tangent to the surface defined by $\Phi(u, v) = (u \cos v, u \sin v, u^2 + v^2)$ at the point (1, 0, 1).
- \bullet $\frac{\partial \Phi}{\partial u}(u_0, v_0) \times \frac{\partial \Phi}{\partial v}(u_0, v_0)$ is a normal vector to the surface.
- (Example) Find an equation in x, y, z for the tangent plane in Example 3.
- (Example) Find a parameterization for the sphere cenetered at the origin with radius 3. Then describe the plane tangent to it at the point (1, -2, 2).
- HW: 1-3, 7-11

7.4 Area of a Surface

- Definition of Surface Area
 - The area of a surface parametrized by Φ with domain D is given by $\iint_D \|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\| dA$
 - (Example) Verify that this definition matches the area of the rectangle given by the vectors (3,0,-4) and (0,-2,0).
 - (Example 1) Show that the surface area of a cone with slant length L and radius R is given by the formula $A = \pi R^2 + \pi R L$.
 - (Example 2) Find that the area of a helicoid parameterized by $\Phi(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$ from $0 \le \theta \le 2\pi, 0 \le r \le 1$ is equal to $2\pi \int_0^1 \sqrt{r^2 + 1} \, dr$.
 - (Example) Prove that the surface area of a sphere of radius R is given by the formula $A = 4\pi R^2$.
- HW: 3, 6-10

7.5 Integrals of Scalar Functions over Surfaces

- Definition
 - If $f: \mathbb{R}^n \to \mathbb{R}$ is a scalar function defined on the surface S defined by $\Phi: D \to \mathbb{R}^n$ $(D \subseteq \mathbb{R}^2)$, then

$$\iint_{S} f(\mathbf{x}) dS = \iint_{D} f(\mathbf{\Phi}(u, v)) \left\| \frac{\partial \mathbf{\Phi}}{\partial u} \times \frac{\partial \mathbf{\Phi}}{\partial v} \right\| dA.$$

This represents the area of a solid with base S and thickness f at each point of S.

- (Example 1) Compute $\iint_S f \, dS$ where S is the helicoid parameterized by $\Phi(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$ from $0 \le \theta \le 2\pi, 0 \le r \le 1$ and $f(x,y,z) = \sqrt{x^2 + y^2 + 1}$.
- (Example 4) Compute $\iint_S x \, dS$ where S is the triangle with vertices (1,0,0), (0,1,0), (0,0,1).
- HW: 1-4, 6-7

7.6 Surface Integrals of Vector Fields

- Definition
 - The orientation of a surface is given by a unit vector field **N** normal to each point on the surface.
 - We say a paramaterization $\Phi: D \to \mathbb{R}^n$ preserves orientation if the orientation of the surface is given by unit vectors in the direction of $\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}$ at each point.
 - If $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}$ is a vector field defined on the surface S defined by $\mathbf{\Phi}: D \to \mathbb{R}^n$ $(D \subseteq \mathbb{R}^2)$ preserving orientation, then

$$\iint_{S} \mathbf{F}(\mathbf{x}) \cdot d\mathbf{S} = \iint_{S} (\mathbf{F}(\mathbf{x}) \cdot \mathbf{N}) d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{\Phi}(u, v)) \cdot \left(\frac{\partial \mathbf{\Phi}}{\partial u} \times \frac{\partial \mathbf{\Phi}}{\partial v} \right) dA.$$

This represents the flux of the vector field passing through the surface S with regards to its orientation.

- (Example 4) Suppose the temperature T(x,y,z) of a point $(x,y,z) \in \mathbb{R}^3$ is given by $x^2 + y^2 + z^2$. Compute the heat flux $\iint_S -k\nabla T \cdot d\mathbf{S}$ across the unit circle oriented outward if k=1.
- (Example) Suppose fluid is moving according to the velocity field $\mathbf{F}(x, y, z) = (x, y, z)$ through the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1). Compute the flux of the velocity field through the triangle.
- HW: 1-5, 13

8.2 Stokes' Theorem

- Stokes' Theorem
 - For an oriented surface S, let ∂S be its boundary oriented counter-clockwise with respect to the orientation **N** of S.

 - (Example 1) Let $\mathbf{F} = (ye^z, xe^z, xye^z)$. Prove that $\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = 0$ for any surface S.
 - (Example 3) Rewrite $\iint_S -ze^{xz} dy 2 dz$ as a definite integral of a single variable, where S is the surface $x^2 + y^2 + (z 1)^2 = 2$ above the xy plane and oriented upwards.

8.4 Gauss' Theorem

- Gauss'/Divergence Theorem
 - For a bounded region D in \mathbb{R}^3 , let ∂D be its outward-oriented boundary surface.

Overview of integration theorems

- $\int_C \nabla f \cdot d\mathbf{s} = [f]_{\partial C}$ $\int_{[a,b]} \frac{df}{dx} dx = [f]_{\partial [a,b]}$
- $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$ $\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \, dA = \int_{\partial D} \mathbf{F} \cdot d\mathbf{s}$
- $\iiint_D \operatorname{div} \mathbf{F} \, dV = \iint_{\partial D} \mathbf{F} \cdot d\mathbf{S}$