COMP/EECE 7/8740 Neural Networks

Topics:

- Fully connected to convolution layer
- Convolutional operations
 - Stride size and padding
- Convolutional Neural Networks
 - Convolution layers
 - Activation layers
 - Pooling layers

Md Zahangir Alom Department of Computer Science University of Memphis, TN

Fully Connected Layer

Locally Connected Layer **STATIONARITY?** Statistics is similar at different locations

Slide Credit: Marc'Aurelio Ranzato

edit: Marc'Aurelio Ranzato

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

16

Mathieu et al. "Fast training of CNNs through FFTs" ICLR 2014

Convolution

These are the network parameters to be learned.

1	0	0	0	0	1
0	~	0	0	~	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1
-1	7	1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

Dot

product

3

-1

6 x 6 image

Convolutio 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

stride=1

6 x 6 image

Filter 1

Convolutio

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images

Forming 2 v A v A matrix

Example: convolutional

Color image: RGB 3 channels

Convolution: output dimension

- Stride controls how the filter convolves around the input volume.
- The amount by which the filter shifts is the stride.

Output size: (N - F) / stride + 1 e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5 stride 2 => (7 - 3)/2 + 1 = 3 stride 3 => (7 - 3)/3 + 1 = ...

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

Output volume: ?

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

(N - F) / stride + 1

Output volume: (32 - 5) / 1 + 1 = 28, so: 28x28x5

How many weights for each of the 28x28x5

neurons?

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 2

Number of neurons: 5

Output volume: ?

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 2

Number of neurons: 5

Output volume: ?

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 2

Number of neurons: 5

(N - F) / stride + 1

Output volume: ? Cannot: (32-5)/2 + 1 = 14.5

Example

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

Output volume: ?

Source: Jie Chen slides

Example

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

(N - F) / stride + 1

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5

How many weights for each of the 10x10x5

neurons?

Source: Jie Chen slides

Example

Examples time:

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5

In practice: Common to apply zero padding

 Padding zero in the border of images (for each channels/ feature maps)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

Output dimension with padding

The mathematical representation with padding p as follows:

$$n_{out} = \left[\frac{n_{in} + 2p - k}{s} \right] + 1$$

 n_{in} : number of input features

 n_{out} : number of output features

k: convolution kernel size

p: convolution padding size

s: convolution stride size

In practice: Common to zero padding

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

(N - F) / stride + 1 = (9-3)/1 + 1 = 7

7x7 => preserved size!
in general, common to see stride 1, size F, and
zero-padding with (F-1)/2.
(Will preserve input size spatially)

Types of Convolution

"Same convolution" (preserves size)

Input [9x9]

3x3 neurons, stride 1, pad **1** =>[9x9] 3x3 neurons, stride 1, pad **1** =>[9x9]

- No headaches when sizing architectures
- Works well

"Valid convolution" (shrinks size)

Input [9x9]

3x3 neurons, stride 1, pad **0** =>[7x7] 3x3 neurons, stride 1, pad **0** =>[5x5]

- Headaches with sizing the full architecture
- Works Worse! Border information will "wash away", since those values are only used once in the forward function

Source: Jie Chen slides

A convolutional layer

A convolutional layer has a number of filters that does convolutional operation.

Convolution for feature extraction

Input Feature Map

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

(Between, 1x1 convolution layers make perfect sense)

Convolutional Neural Networks (CNN)

 A CNN is a neural network with some convolutional layers (and some other layers).

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Convolution as feature extraction

Input Feature Map

Key operations: Activation function

Rectified Linear Unit (ReLU)

Source: R. Fergus, Y. LeCun

Key operation: pooling

Source: R. Fergus, Y. LeCun

Input Image

Why Pooling

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

Key operations: pooling

- Max-pooling
 - · partitions the input image into a set of rectangles, and for each sub-region, outputs the maximum value
 - Non-linear down-sampling
 - The number of output maps is the same as the number of input maps, but the resolution is reduced
 - Reduce the computational complexity for upper layers and provide a form of translation invariance
- Average pooling can also be used
- for pool layers, use pool size 2x2 (more = worse)

LeNet-5

- Average pooling
- Sigmoid or tanh nonlinearity
- Fully connected layers at the end
- Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proc. IEEE 86(11): 2278–2324, 1998.

AlexNet model: feature visualization

Back-prop in Convolutional Network

Notes

https://www.cc.gatech.edu/classes/AY2018/cs7643_fall/slide
 s/L6_cnns_backprop_notes.pdf

FC Layer Implementation

Operations in fully connected layer

CNN layer Implementation

Im2col

Im2col

CNN layer Implementation

GEMM-framework

Computation parameters

Number of parameters in a CONV layer without bias:

$$(m * n)*k)$$

Number of parameters in a CONV layer with bias:

$$((m * n)+1)*k)$$

added 1 because of the bias term for each filter.

Here:

m: shape of width of the filter

n: shape of height of the filter

k: number of filters

Summary

- Convolution operations
- Stride size and padding
- Convolutional Neural Networks
- LeNet architecture and time distribution of AlexNet layers
- What's next?
 - Receptive field for convolution
 - CNN Architectures
 - Classification
 - Segmentation and
 - Detection