Recuperatorio-Segundo parcial

- **1-** Considere un gas de bosones con spin 0, y energía $\varepsilon=\frac{p^2}{2m}$, contenido en un recipiente tridimensional.
 - **a-** Escriba la expresión para el número de partículas $n(\varepsilon)$, con energía entre ε y ε + $d\varepsilon$, y para el número total de bosones N.
 - **b-** Describa las condiciones para obtener un condensado de Bose-Einstein.
 - ${f C-}$ Escriba la expresión de la temperatura crítica T_c para el sistema de bosones antes mencionado.
 - **d-** Identifique al conjunto de bosones y fermiones, que sucedería con un sistema clásico?.

- **2-** Sea un gas de N Fermiones con s=1/2, y masa m, dispuestos en un dominio bidimensional de área A, a una temperatura finita T, determine:
 - **a-** La energía de Fermi ε_F , en función de la densidad.
 - **b-** El potencial químico $\mu(T, \varepsilon_F)$.
 - **C-** Verifique que en el límite $lim_{T o 0} \mu = \varepsilon_F$
 - **d** Determine el calor específico en el límite $T \gg$, y compare con el resultado clásico.
- **3-** Describa las características de la radiación emitida por un cuerpo negro.
 - **a-** Demuestre que la potencia total emitida es proporcional a T^4 .
 - **b-** Demuestre que $c_v \propto T^3$.
- **4-** Determine la expresión del calor específico vibracional para un gas diatómico, en función de la temperatura. Determine una temperatura característica θ y obtenga la expresión del c_v , en los límites $T \ll \theta$ y $T \gg \theta$.