CS/ECE 374 Spring 2017 Homework 1 Problem 3 Lanxiao Bai (lbai5@illinois.edu) Renheng Ruan (rruan2@illinois.edu)

Let L_1, L_2 , and L_3 be regular languages over Σ accepted by DFAs $M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$, $M_2 = (Q_2, \Sigma, \delta_2, s_1, A_2)$, and $M_3 = (Q_3, \Sigma, \delta_3, s_3, A_3)$, respectively.

- 1. Describe a DFA $M=(Q,\Sigma,\delta,s,A)$ in terms of M_1,M_2 , and M_3 that accepts $L=\{w\mid w \text{ is in exactly two of }\{L_1,L_2,L_3\}\}$. Formally specify the components Q,δ,s , and A for M in terms of the components of M_1,M_2 , and M_3 .
- 2. Prove by induction that your construction is correct.

Solution: 1. For $M = (Q, \Sigma, \delta, s, A)$ that accepts exactly two of $\{L_1, L_2, L_3\}$,

We require that:

- $Q = Q_1 \times Q_2 \times Q_3$
- Σ to be the same as M_1, M_2, M_3
- $\delta: Q \times \Sigma \to Q$, that $\delta((q_1, q_2, q_3), a) = (\delta_1(q_1, a)), \delta_2(q_2, a), \delta_3(q_3, a)), a \in \Sigma, q_1 \in Q_1, q_2 \in Q_2, q_3 \in Q_3$
- $s = (s_1, s_2, s_3)$
- $A = (A_1 \times A_2 \times (Q_3 A_3)) \cup (A_1 \times (Q_2 A_2) \times A_3) \cup ((Q_1 A_1) \times A_2 \times A_3)$
- 2. **Proof:** Apply induction on the length of *w*.

Base case: When |w| = 0, namely, $w = \varepsilon$, $\delta(s, w) = \delta(s, \varepsilon) = (\delta_1(s_1, \varepsilon), \delta_2(s_2, \varepsilon), \delta_3(s_3, \varepsilon)) = (s_1, s_2, s_3) = s$.

If $w \in L$, without losing generality we can assume $w \in L_1, L_2$ only, so $\delta_1(s_1, w) = s_1 \in A_1, \delta_2(s_2, w) = s_2 \in A_2, \delta_3(s_3, w) = s_3 \notin A_3$. Thus, $s \in A$, which means M accepts w.

If *M* accepts *w*, then $s = (s_1, s_2, s_3) \in A$, which means that $s_1 \in A_1, s_2 \in A_2, s_3 \notin A_3$ or $s_1 \in A_1, s_2 \notin A_2, s_3 \in A_3$ or $s_1 \notin A_1, s_2 \in A_2, s_3 \in A_3$. Then exactly 2 of M_1, M_2, M_3 accepts *w*, so *w* in exactly 2 of L_1, L_2, L_3 . Hence, $w \in L$.

Suppose for all $|w| \le k$, if $w \in L$, then M accepts w. And if M accepts w, then $w \in L$.

Then when |w| = k + 1, let $w = w_0 \cdot a$, $a \in \Sigma$, $\delta(s, w) = \delta(\delta(s, a), w_0)$. By induction hypothesis, we know that $\delta(s, a)$ corrected judged if a should be accepted. And let $\delta(s, a) = q$, $\delta(q, w_0)$, since $|w_0| = k$, again, by induction hypothesis, we know that $\delta(q, w_0)$ corrected judged if w_0 should be accepted by M.

If M accepts w, then $\delta(s, w) \in A \Rightarrow (\delta_1(s_1, w), \delta_2(s_2, w), \delta_3(s_3, w)) \in A$. That means that $\delta_1(s_1, w) \in A_1, \delta_2(s_2, w) \in A_2, \delta_3(s_3, w) \notin A_3$ or $\delta_1(s_1, w) \in A_1, \delta_2(s_2, w) \notin A_2, \delta_3(s_3, w) \in A_3$ or $\delta_1(s_1, w) \notin A_1, \delta_2(s_2, w) \in A_2, \delta_3(s_3, w) \in A_3$, so exactly 2 of M_1, M_2, M_3 accepts w, so w in exactly 2 of L_1, L_2, L_3 . Hence $w \in L$.

In conclusion, the automata M described above is correct.