PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-315055

(43) Date of publication of application: 06.11.2003

(51)Int.Cl.

G01C 21/00 G08G 1/137 G09B 29/00

(21)Application number: 2002-124115

(71)Applicant: AISIN AW CO LTD

(22)Date of filing:

25.04.2002

(72)Inventor: FUTAMURA MITSUHIRO

(54) NAVIGATION APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a navigation apparatus which shortens the time required for updating map data and which reduces costs for its updating by updating the map data for each region in a prescribed range.

SOLUTION: The navigation apparatus comprises a display control unit used to display a map, a search part used to search a route, and a data storage used to store the map data, and the map data are updated. The data storage stores unupdated map data together with updated map data, and the display control unit displays the route on a map corresponding to a wider region when a version of the map data corresponding to a map used to display the route is different from a version of the map data used for a search by the search part.

LEGAL STATUS

[Date of request for examination]

20.12.2004

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-315055 (P2003-315055A)

(43)公開日 平成15年11月6日(2003.11.6)

(51) Int.Cl. ⁷		酸別配号	FI.		Ť	73ド(参考)
G01C	21/00		C01C	21/00	Λ	2 C 0 3 2
G08G	1/137		C 0 8 G	1/137		2F029
G 0 9 B	29/00		C 0 9 B	29/00	Λ	5H180
					Z	

審査請求 未請求 請求項の数5 OL (全 19 頁)

(21)出顧番号	特願2002-124115(P2002-124115)	(71)出顧人	000100768
		Ì	アイシン・エィ・ダブリュ株式会社
(22) 出顧日	平成14年 4 月25日(2002.4.25)		愛知県安城市藤井町高根10番地
		(72)発明者	二村光宏
			愛知県岡崎市岡町原山6番地18 アイシ
			ン・エイ・ダブリュ株式会社内
		(74)代理人	100116207
		1	小田士 寿士 海明 (はりを)

最終頁に続く

(54) 【発明の名称】 ナビゲーション装置

(57)【要約】

【課題】所定範囲の領域毎に地図データを更新すること ができるようにして、該地図データを更新するための時 間が短く、更新するためのコストを低くすることができ るようにする。

【解決手段】地図を表示させる表示制御部と、経路を探 索する探索部と、地図データを格納するデータ格納部と を有し、地図データを更新可能なナビゲーション装置に おいて、前記データ格納部は、更新された地図データと ともに更新される前の地図データを格納し、前記表示制 御部は、経路を表示するための地図に対応する地図デー タと前記探索部が探索に使用した地図データとのバージ ョンが相違する場合、前記経路をより広い地域に対応す る地図上に表示させる。

【特許請求の範囲】

【請求項1】 (a)地図を表示させる表示制御部と、(b)経路を探索する探索部と、(c)地図データを格納するデータ格納部とを有し、(d)地図データを更新可能なナビゲーション装置において、(e)前記データ格納部は、更新された地図データとともに更新される前の地図データを格納し、(f)前記表示制御部は、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが相違する場合、前記経路をより広い地域に対応する地図上に表示させることを特徴とするナビゲーション装置。

【請求項2】 前記地図データは階層構造を備え、前記 更新された地図データにおいて、最下位レベルの地図データが指定された地域に対応し、上位レベルの地図データは下位レベルの地図データが対応する地域を含むより 広い地域に対応する請求項1に記載のナビゲーション装置。

【請求項3】 前記探索部は前記更新された地図データを使用して経路を探索し、前記表示制御部は、更新された最下位レベルの地図データに対応する地域外の経路を、前記探索部が探索に使用したレベルの更新された地図データに対応する地図上に表示させる請求項1又は2に記載のナビゲーション装置。

【請求項4】 前記表示制御部は、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが一致する場合、前記経路を最下位レベルの地図データに対応する地図上に表示させる請求項1~3のいずれか1項に記載のナビゲーション装置。

【請求項5】 (a)配信要求を受信すると、該配信要求において指定された地域の地図データを配信するデータセンタと、(b)更新された地図データとともに更新される前の地図データを格納するデータ格納部、経路を探索する経路探索部、及び、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが相違する場合、前記経路をより広い地域に対応する地図上に表示させる表示制御部を備え、前記指定された地域の地図データを前記データセンタから配信された地図データによって更新する車載装置とを有することを特徴とするナビゲーションシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ナビゲーション装置に関するものである。

[0002]

【従来の技術】従来、自動車等の車両に搭載されたナビゲーション装置においては、運転者等の操作者が所定の入力部を操作して目的地を設定すると、該目的地、及び、現在地検出処理部によって検出された車両の現在地

に基づいて、該現在地から目的地までの経路が探索され、探索された経路が案内される。したがって、経路案内に従って車両を走行させることができる。

【0003】この場合、前記ナビゲーション装置は、CD-ROM、DVD-ROM等の記憶媒体に格納された探索データ、道路データ等を含む地図データに基づいて、経路を探索する。そして、前記地図データに基づいて、表示部の画面に地図を表示し、該地図上に探索された経路を表示することによって、経路案内を行うようになっている。また、交差点等においては、音声による案内も行われる。

【0004】さらに、前記ナビゲーション装置は、前記地図データに基づいて、レストラン、ホテル等の各種の施設を検索することができるようになっている。この場合、検索された施設の情報が表示部の画面に表示されるだけでなく、位置も特定されるので、前記検索された施設を目的地として設定することによって、前記施設までの経路の探索も行われるようになっている。

【0005】これにより、操作者は、所望の目的地や施設までの経路、該経路における車両の現在地、前記施設の情報等を的確に把握することができ、容易に走行して前記目的地や施設に到達することができる。

[0006]

【発明が解決しようとする課題】しかしながら、前記従来のナビゲーション装置においては、前記記憶媒体に格納された地図データに基づいて経路を探索するようになっているので、新しい道路が開通した場合に、適切な経路を探索することができなくなってしまう。また、新しい施設ができた場合には、該施設が地図データに含まれていないので検索することができず、既存の施設が廃止された場合には、現時点において存在しない施設の情報や該施設までの経路を表示して、操作者に誤った情報を与えてしまう。

【0007】そこで、通信手段を利用して、新しいバージョンの地図データを受信して、記憶媒体に記憶された地図データを更新することができるナビゲーション装置が提案されている。これにより、随時、地図データを更新することができるので、新しい道路が開通したり、新しい施設ができたり、既存の施設が廃止されたような場合でも、適切な経路を探索したり、適切な施設を検索することができる。

【0008】しかし、地図データは、経路を適切に探索するために多量のデータを含むものであり、データ量が膨大となっている。そのため、例えば、日本全国の地図データを更新しようとすると、通信時間が極めて長くなってしまう。また、地図データの更新は有料なので、操作者の居住地域を含む限られた範囲内において経路を探索したり施設を検索することが一般的であるにも関わらず、日本全国の地図データを更新するようにすると、操作者は不必要な範囲の地図データを更新するためにも費

用を支払うことになり、操作者の経済的負担が大きくなってしまう。

【0009】本発明は、前記従来の問題点を解決して、 所定範囲の領域毎に地図データを更新することができる ようにして、該地図データを更新するための時間が短 く、更新するためのコストを低くすることができるナビ ゲーション装置を提供することを目的とする。

[0010]

【課題を解決するための手段】そのために、本発明のナビゲーション装置においては、地図を表示させる表示制御部と、経路を探索する探索部と、地図データを格納するデータ格納部とを有し、地図データを更新可能なナビゲーション装置において、前記データ格納部は、更新される前の地図データともに更新される前の地図データを格納し、前記表示制御部は、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが相違する場合、前記経路をより広い地域に対応する地図上に表示させる。

【0011】本発明の他のナビゲーション装置においては、さらに、前記地図データは階層構造を備え、前記更新された地図データにおいて、最下位レベルの地図データが指定された地域に対応し、上位レベルの地図データは下位レベルの地図データが対応する地域を含むより広い地域に対応する。

【0012】本発明の更に他のナビゲーション装置においては、さらに、前記探索部は前記更新された地図データを使用して経路を探索し、前記表示制御部は、更新された最下位レベルの地図データに対応する地域外の経路を、前記探索部が探索に使用したレベルの更新された地図データに対応する地図上に表示させる。

【0013】本発明の更に他のナビゲーション装置においては、さらに、前記表示制御部は、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが一致する場合、前記経路を最下位レベルの地図データに対応する地図上に表示させる。

【0014】本発明のナビゲーションシステムにおいては、配信要求を受信すると、該配信要求において指定された地域の地図データを配信するデータセンタと、更新された地図データとともに更新される前の地図データを格納するデータ格納部、経路を探索する経路探索部、及び、経路を表示するための地図に対応する地図データと前記探索部が探索に使用した地図データとのバージョンが相違する場合、前記経路をより広い地域に対応する地図上に表示させる表示制御部を備え、前記指定された地域の地図データを前記データセンタから配信された地図データによって更新する車載装置とを有する。

[0015]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照しながら詳細に説明する。

【0016】図1は本発明の第1の実施の形態における ナビゲーションシステムの構成を示す図である。

【0017】図において、14は乗用車、トラック、バ ズ、オートバイ等の車両に搭載され、ナビゲーション装 置として機能する車載装置であり、CPU、MPU等の 演算手段、半導体メモリ、磁気ディスク等の記憶手段、 CRT、液晶ディスプレイ、LED (Light Em itting Diode)ディスプレイ等の表示手 段、キーボード、ジョイスティック、タッチパネル、押 しボタン、回転ダイアル、リモートコントローラ等の入 力手段、入出力インターフェイス等を備える一種のコン ピュータである。また、車載装置は、実際には複数であ ってもよいが、図においては、説明の都合上一つだけが 示され、前記車載装置14が複数の車載装置を代表する ものとする。そして、前記車載装置14は、記憶媒体に 格納された探索データ、道路データ等を含む地図データ に基づいて、経路を探索したり、施設等を検索して、後 述される表示部35の画面に地図を表示し、該地図上に 探索された経路や施設等を表示することができるように なっている。

【0018】また、53は車両の運転者、同乗者、所有 者等の操作者が操作する操作端末であり、CPU、MP U等の演算手段、半導体メモリ、磁気ディスク等の記憶 手段、CRT、液晶ディスプレイ、LEDディスプレイ 等の表示手段、キーボード、ジョイスティック、タッチ パネル、押しボタン、回転ダイアル、リモートコントロ ーラ等の入力手段、入出力インターフェイス等を備える 一種のコンピュータである。前記操作端末53は、例え ば、パーソナルコンピュータ、携帯電話機、PHS(P ersonal Handy-Phone Syste m)電話機、据置電話機、PDA (Personal Digital Assistant)、電子手帳、携 帯情報端末、ゲーム機、デジタルテレビ等いかなる種類 のものであってもよい。また、前記操作端末53は、所 望のデータを外部記憶媒体55にダウンロードすること ができるようになっている。

【0019】ここで、該外部記憶媒体55は、例えば、フラッシュメモリ等の半導体メモリを備えるメモリカード、棒状メモリ等であるが、取り外し可能で、かつ、データの書き込み及び読み取り可能な記憶媒体であれば、磁気コア、半導体メモリ、磁気テープ、磁気ディスク、磁気ドラム、CD-R/RW、MD、DVD-RAM、DVD-R/RW、MO、ICカード、光カード等、いかなるものであってよい。なお、前記外部記憶媒体55に格納されたデータは、後述されるデータインターフェイス18を介して前記車載装置14にアップロードすることができる。

【0020】そして、前記操作端末53は、ネットワーク52を介してデータセンタ51に接続して、通信することができるようになっている。ここで、該データセン

タ51は、CPU、MPU等の演算手段、半導体メモリ、磁気ディスク等の記憶手段、CRT、液晶ディスプレイ、LEDディスプレイ等の表示手段、キーボード、タッチパネル等の入力手段、入出力インターフェイス等を備える一種のコンピュータである。前記データセンタ51は、地図データを配信する情報提供装置であり、例えば、ウェブサーバであるが、パーソナルコンピュータ、ワークステーション、分散型サーバ、汎(はん)用コンピュータ等であってもよく、いかなる種類のものであってもよい。

【0021】また、前記ネットワーク52は、有線又は無線の公衆通信回線網、専用通信回線網、インターネット、イントラネット、LAN(Local Area Network)、WAN(Wide Area Network)等のいかなる種類のものであってもよいし、複数種類のネットワークを適宜組み合わせたものであってもよい。この場合、前記ネットワーク52は大容量の高速通信が可能であるものが望ましく、例えば、前記ネットワーク52がインターネットである場合、数Mbps(Mega bit per second)以上の高速通信が可能なブロードバンドであるが、いかなる通信方式であってもよい。

【0022】本実施の形態において、前記データセンタ 51は、前記車載装置14において使用される地図デー タを配信するようになっている。この場合、前記車載装 置14はナビゲーション装置として機能するものであ り、記憶媒体に格納された探索データ、道路データ等を 含む地図データに基づいて、経路を探索する。そして、 前記地図データに基づいて、表示部35の画面に地図を 表示し、該地図上に探索された経路を表示することによ って、経路案内を行う。また、交差点等においては、音 声による案内も行われる。さらに、前記車載装置14 は、前記地図データに基づいて、レストラン、ホテル等 の各種の施設を検索することができる。そして、検索さ れた施設の情報が表示部35の画面に表示されるだけで なく、位置も特定されるので、前記検索された施設を目 的地として設定することによって、前記施設までの経路 の探索も行われる。

【0023】しかし、新しい道路が開通した場合に、適切な経路を探索することができなくなり、また、新しい施設ができた場合には、該施設が地図データに含まれていないので検索することができない。さらに、既存の施設が廃止された場合には、現時点において存在しない施設の情報や該施設までの経路を表示して、操作者に誤った情報を与えてしまう。そこで、本実施の形態においては、前記データセンタ51が新しいバージョン(版)の地図データを配信し、前記車載装置14の記憶媒体に記憶された地図データを更新することができるようになっている。これにより、随時、地図データを更新することができるので、新しい道路が開通したり、新しい施設が

できたり、既存の施設が廃止されたような場合でも、適 切な経路を探索したり、適切な施設を検索することがで きる。

【0024】そして、所定範囲の領域毎に地図データを 更新することができるように、前記データセンタ51 は、地域毎に分割された、例えば、都道府県単位に分割 された、新しいバージョンの地図データを配信するよう になっている。なお、前記地図データは、より狭い地域 毎に分割されるようにしてもよいし、より広い地域毎に 分割されるようにしてもよい。例えば、東京都の地図データを東半分と西半分に分割してもよいし、愛媛県、香 川県、徳島県及び高知県をまとめて四国地域の地図デー タとしてもよい。

【0025】ここで、前記データセンタ51は、操作端末53から受信した地図データの配信要求に応じ、該配信要求において指定された地域の地図データを前記操作端末53に送信する。なお、前記配信要求は、地域の指定の他に、地図データのバージョンの指定を含むものであってもよい。この場合、前記データセンタ51は、指定されたバージョンの地図データを前記操作端末53に送信する。さらに、新しいバージョンの地図データが配信可能となった時に、あらかじめ指定された地域の地図データを自動的に操作端末53に送信するようにしてもよい。

【0026】また、前記操作者は、操作端末53を操作して、ネットワーク52を介して、前記データセンタ51から受信した地図データを外部記憶媒体55にダウンロードする。ここで、前記地図データのデータ量が、外部記憶媒体55の記憶容量を上回っている場合、複数回に分割して、前記地図データをダウンロードすることができる。そして、前記操作者は、外部記憶媒体55を車載装置14にセットして、前記地図データを前記車載装置14にアップロードすることによって、後述されるデータ格納部16に格納された地図データがバージョンアップされる、すなわち、更新される。この場合、古いバージョンの地図データは、消去されることなく、前記データ格納部16に残存するようになっている。

【0027】なお、前記車載装置14がネットワーク52に接続可能であり、該ネットワーク52を介して、前記データセンタ51と通信することができる場合には、地図データをデータセンタ51から、車載装置14に直接ダウンロードすることもできる。これにより、随時、地図データを更新することができるので、新しい道路が開通したり、新しい施設ができたり、既存の施設が廃止されたような場合でも、適切な経路を探索したり、適切な施設を検索することができる。

【0028】次に、前記車載装置14の構成について説明する。

【0029】図2は本発明の第1の実施の形態におけるの車載装置の概念図、図3は本発明の第1の実施の形態

における経路探索データの構造を示す図、図4は本発明 の第1の実施の形態における車載装置の機能を示す図で ある。

【0030】図2に示されるように、車載装置14は、現在地を検出する現在地検出処理部15、道路データ、探索データ等を含む地図データが記録された記録媒体としてのデータ格納部16、入力された情報に基づいて、ナビゲーション処理等の各種の演算処理を行うナビゲーション処理部17、外部記憶媒体55に格納されたデータを読み込むためのデータインターフェイス18、入力部34、表示部35、音声入力部36、音声出力部37及び通信部38を有し、前記ナビゲーション処理部17に車速センサ41が接続される。

【0031】そして、前記現在地検出処理部15は、G PS(Global Positioning Sys tem)センサ21、地磁気センサ22、距離センサ2 3、ステアリングセンサ24、ビーコンセンサ25、ジ ャイロセンサ26、図示されない高度計等から成る。な お、前記GPSセンサ21、地磁気センサ22、距離セ ンサ23、ステアリングセンサ24、ビーコンセンサ2 5、ジャイロセンサ26、高度計等の中のいくつかは、 製造コスト等の観点から、適宜省略することもできる。 【0032】そして、前記GPSセンサ21は、人工衛 星によって発生させられた電波を受信することによって 地球上における現在地を検出し、前記地磁気センサ22 は、地磁気を測定することによって車両が向いている方 位を検出し、前記距離センサ23は、道路上の所定の位 置間の距離等を検出する。前記距離センサ23として は、例えば、図示されない車輪の回転数を測定し、該回 転数に基づいて距離を検出するもの、加速度を測定し、 該加速度を二回積分して距離を検出するもの等を使用す ることができる。

【0033】また、前記ステアリングセンサ24は、舵(だ)角を検出し、前記ステアリングセンサ24としては、例えば、図示されないステアリングホイールの回転部に取り付けられた光学的な回転センサ、回転抵抗センサ、車輪に取り付けられた角度センサ等が使用される。【0034】そして、前記ビーコンセンサ25は、道路に沿って配設されたビーコンからの位置情報を受信して現在地を検出する。前記ジャイロセンサ26は、車両の回転角速度、すなわち、旋回角を検出し、前記ジャイロをンサ26としては、例えば、ガスレートジャイロセンサ26によって検出された旋回角を積分することによって、車両が向いている方位を検出することができる。【0035】なお、前記GPSセンサ21及びビーコンセンサ25は、それぞれ、単独で現在地を検出すること

ができる。そして、距離センサ23によって検出された

距離と、地磁気センサ22及びジャイロセンサ26によ

って検出された方位とを組み合わせることによって現在

地を検出することもできる。また、距離センサ23によって検出された距離と、ステアリングセンサ24によって検出された舵角とを組み合わせることによって現在地を検出することもできる。

【0036】そして、前記データ格納部16は、各種のデータファイルから成る地図データを格納する。ここで、該地図データは、表示部35の画面に地図を表示したり、マップマッチングを行ったり、経路案内を行うための地図表示データ、経路案内に使用される交差点名称等を含む経路誘導データ、経路探索を行うための経路探索データ、施設リストや建物情報等を含み、電話番号検索、五十音検索、周辺検索等を行うための検索データ、経路案内用の音声や操作指示用の音声である固定音声、及び、交差点名称や道路名称などの固有名称用の音声である固有音声を含む音声データ、交差点又は経路における特徴的な写真、コマ図等を表示するための画像データ等を含むものである。なお、これらのデータの中のいくつかは、コスト等の観点から、適宜省略することもできる。

【0037】ここで、前記経路探索データには、図3に示されるように、交差点データ、道路データ、交通規制データ及び経路表示データが含まれる。そして、前記交差点データには、データが格納されている交差点の数に加え、それぞれの交差点に関するデータが交差点データとして、識別するための番号を付与されて格納されている。さらに、それぞれの前記交差点データには、該当する交差点に接続する道路、すなわち、接続道路の数に加え、それぞれの接続道路を識別するための番号を付与されて格納されている。なお、前記交差点データには、交差点の種類、すなわち、交通信号灯器の設置されている交差点であるか又は交通信号灯器の設置されていない交差点であるかの区別が含まれていてもよい。

【0038】また、前記道路データには、データが格納されている道路の数に加え、それぞれの道路に関するデータが道路データとして、識別するための番号を付与されて格納されている。そして、それぞれの前記道路データには、道路種別、それぞれの道路の長さとしての距離、それぞれの道路を走行するのに要する時間としての旅行時間等が格納されている。さらに、前記道路種別には、国道、県道、主要地方道、一般道、高速道路等の行政道路属性が含まれる。

【0039】そして、前記道路データには、道路自体について、幅員、勾(こう)配、カント、高度、バンク、路面の状態、中央分離帯があるか否か、道路の車線数、該車線数の減少する地点、幅員の狭くなる地点等のデータが含まれることが望ましい。そして、高速道路や幹線道路の場合、対向方向の車線のそれぞれが別個の道路データとして格納され、2条化道路として処理される。例えば、片側2車線以上の幹線道路の場合、2条化道路として処理され、上り方向の車線と下り方向の車線は、そ

れぞれ、独立した道路として道路データに格納される。 さらに、コーナについては、曲率半径、交差点、丁字 路、コーナの入口等のデータが含まれることが望まし い。また、踏切、高速道路出入口ランプウェイ、高速道 路の料金所、降坂路、登坂路等の道路属性が含まれてい てもよい。

【0040】また、前記ナビゲーション処理部17は、車載装置14の全体の制御を行うCPU、MPU等の演算素子31、該演算素子31が各種の演算処理を行うに当たりワーキングメモリとして、及び、制御プログラムの他、目的地までの経路の探索、経路中の走行案内、特定区間の決定、地点、施設等の検索等を行うための各種のプログラムデータが記録された記録媒体として使用されるメモリ32から成る。なお、前記プログラムデータは、ナビゲーション処理部17又は車載装置14の全体の制御を行うためのプログラム、表示部35の画面における画面意匠のためのビットマップデータ、ビープ音等の音声データを含むものである。

【0041】そして、前記ナビゲーション処理部17には、前記入力部34、表示部35、音声入力部36、音声出力部37及び通信部38が接続される。そして、経路の探索、経路中の走行案内、特定区間の決定、地点、施設等の検索等の各種処理を実行する。なお、前記音声入力部36、音声出力部37及び通信部38の中のいくつかは、製造コスト等の観点から、適宜省略することもできる。

【0042】ここで、前記データ格納部16は、単数又は複数の磁気ディスクから成るハードディスク装置であるが、格納されるデータを更新することができるものであれば、いかなる種類の記憶装置であってもよい。例えば、前記データ格納部16は、磁気コア、フラッシュメモリ等の半導体メモリ、磁気テープ、磁気ディスク、磁気ドラム、CD-R/RW、MD、DVD-RAM、DVD-R/RW、MO、ICカード、光カード、棒状メモリ、メモリカード等の各種の書き換え可能な記憶媒体を使用する記憶装置であってもよい。そして、前記記憶媒体や記憶装置は、車載装置14にあらかじめ据え付けられたものであってもよく、運転者等によって適宜交換可能なものであってもよい。

【0043】本実施の形態においては、前記メモリ32 に各種のプログラムが記録され、前記データ格納部16 に地図データ等の各種のデータが記録されるようになっている。そして、前記外部記憶媒体55に格納された地図データをデータインターフェイス18を介して読み込むことによって、前記データ格納部16に格納されている地図データを更新することができる。

【0044】さらに、前記通信部38は、FM送信装置、電話回線網、インターネット、携帯電話網等との間で各種のデータの送受信を行うためのものであり、例えば、図示されない情報センサ等によって受信した渋滞等

の道路情報、交通事故情報、GPSセンサ21の検出誤差を検出するD-GPS情報等の各種のデータを受信する。なお、前記通信部38は、ネットワーク52に接続可能なものであってもよい。この場合、地図データをデータセンタ51から、ネットワーク52を介して、車載装置14に直接ダウンロードすることもできる。

【0045】そして、前記入力部34は、走行開始時の位置を修正したり、施設や目的地を入力したりするためのものであり、車載装置14の本体に配設された操作キー、押しボタン、回転ダイアル、十字キー等から成るものであるが、リモートコントローラであってもよい。なお、表示部35がタッチパネルである場合には、前記表示部35の画面に表示された操作キー、操作メニュー等の操作スイッチから成るものであることが望ましい。この場合、通常のタッチパネルのように前記操作スイッチを押す(タッチする)ことによって、入力を行うことができる。

【0046】そして、前記表示部35の画面には、操作案内、操作メニュー、操作キーの案内、現在地から目的地までの経路、該経路に沿った案内情報等が表示される。前記表示部35としては、CRTディスプレイ、液晶ディスプレイ、LEDディスプレイ、プラズマディスプレイ、フロントガラスにホログラムを投影するホログラム装置等を使用することができる。

【0047】また、音声入力部36は、図示されないマイクロホン等によって構成され、音声によって必要な情報を入力することができる。さらに、音声出力部37は、図示されない音声合成装置及びスピーカを備え、音声情報、例えば、音声合成装置によって合成された音声から成る案内情報、変速情報等をスピーカから出力し、操作者に知らせる。なお、音声合成装置によって合成された音声の他に、各種の音、あらかじめテープ、メモリ等に録音された各種の案内情報をスピーカから出力することもできる。

【0048】本実施の形態において、車載装置14は、図4に示されるように、機能の観点から、ホテル、デパート、駅、建造物等の施設や、観光地、名所、旧跡等の地点など(以下「施設等」という。)の検索対象を検索する検索部11、出発地、現在地等から目的地、通過地点等までの経路を探索する探索部12、及び、地図、経路、施設等の情報、その他を所定の様式で表示部35に表示させるための表示制御部13を有する。

【0049】ここで、前記検索部11は、通常のナビゲーション装置において採用されている方法によって、前記データ格納部16に格納されている地図データに基づいて、施設等を検索するものであり、また、前記探索部12も、通常のナビゲーション装置において採用されている方法によって経路を探索するものであり、目的地等が設定されると、図3に示されるような経路探索データにアクセスして、現在地から目的地までの経路を設定す

るようになっている。なお、前記経路探索データを含む 地図データは、階層化されていて、前記探索部12は、 前記階層化された地図データを使用して経路を探索する ようになっている。また、表示制御部13は、更新され た地図データに対応する地域と、更新される前の地図デ ータに対応する地域とを識別可能に表示させるようにな っている。

【0050】次に、前記構成のナビゲーションシステムの動作について説明する。まず、車載装置14における 経路を探索する動作について説明する。

【0051】図5は本発明の第1の実施の形態における 階層化された地図データに基づいて経路を探索する動作 を示す図である。

【0052】ここでは、車載装置14が、車両の現在地 から、操作者によって設定された目的地までの経路を探 索する場合について説明する。この場合、前記地図デー タは、例えば、図5に示されるように、三層に階層化さ れ、最上層(最上レイヤー)は一つのブロックから成 り、全国の高速道路と主要国道のみから成る幹線道路ネ ットワークが格納される。そして、中間層(中間レイヤ ー)は、所定範囲の領域をカバーする複数のブロックか ら成り、各ブロックには、例えば、約90〔km〕四方 をカバーする範囲の高速道路、国道、主要地方道等から 成る基本道路ネットワークが格納される。また、最下層 (最下レイヤー) は所定範囲の領域をカバーする複数の ブロックから成り、各ブロックには、例えば、約18 [km]四方をカバーする範囲の高速道路、国道、県 道、細街路等から成る詳細道路ネットワークが格納され るようになっている。

【0053】このように、前記地図データは階層構造を 備え、下位レベルの層におけるブロックでは詳細なデー タを有する代わりにカバーする範囲が狭く、上位レベル の層におけるブロックでは大まかなデータしか有してい ない代わりにカバーする範囲が広くなっている。例え ば、最下位レベル (レベル1) の層におけるブロックで は細街路を含むほとんどすべての道路の道路データを有 するが市町村範囲しかカバーしておらず、最上位レベル (レベル3) の層におけるブロックでは国道以上の道路 の道路データしか有していないが日本全国をカバーする ようになっている。なお、各レベル、すなわち、前記最 上層、中間層及び最下層におけるブロックの大きさ、す なわち、ブロックのカバーする範囲の広さは、適宜決定 することができる。また、レベルの数、すなわち、層の 数も、必ずしも三層である必要はなく、適宜決定するこ とができるが、ここでは、説明の都合上、三層である場 合について説明する。

【0054】そして、前記探索部12は、目的地までの 距離が短距離(例えば、3[km]程度)の経路探索の 場合、現在地周辺の最下層のブロックだけ、すなわち、 一つのブロックを使用して経路を探索する。また、前記 探索部12は、目的地までの距離が中距離(例えば、50 [km]程度)の経路探索の場合、現在地及び目的地周辺の最下層のブロック、並びに、現在地から目的地までを含む中間層のブロックを、すなわち、合計三つのブロックを使用して経路を探索する。さらに、前記探索部12は、目的地までの距離が長距離(例えば、300 [km]程度)の経路探索の場合、現在地及び目的地周辺の最下層及び中間層のブロック、並びに、現在地から目的地までを含む最上層のブロックを、すなわち、合計五つのブロックを使用して経路を探索する。そのため、経路を探索するために使用する地図データの量を減少することができ、経路探索に必要な時間を短縮することができる。

【0055】また、前記探索部12は、経路を探索する際に、地図データにおける探索データ中の道路データを調査して、探索に使用されるブロックに含まれる道路についての探索コストを計算して、経路を探索する。ここで、探索コストとは、経路探索のための道路の重み付けであり、道路種別、有料/高速道路、道路の長さ、道路幅、右左折、旅行時間等に対して重み付けされる。例えば、道路の長さが探索コストの場合には、目的地までの道路の長さの総計が最も短いものが経路となる。また、旅行時間が探索コストの場合には、目的地までの旅行時間の総計が最も短いものが経路となる。

【0056】次に、地図データを更新する動作について 説明する。

【0057】図6は本発明の第1の実施の形態におけるデータセンタから配信される地図データの階層構造を示す図、図7は本発明の第1の実施の形態におけるデータセンタから配信される最下層の地図データの例を示す図、図8は本発明の第1の実施の形態におけるデータセンタから配信される中間層の地図データの例を示す図、図9は本発明の第1の実施の形態におけるデータセンタから配信される最上層の地図データの例を示す図である。

【0058】本実施の形態においては、データセンタ5 1が操作端末53から受信した地図データの配信要求に 応じ、該配信要求において指定された地域の地図データ を前記操作端末53に送信する場合について説明する。 また、前記地図データは前述されたように三層に階層化 されているものとし、最下層の地図データは前記指定さ れた地域に対応するものとする。なお、該地域は、県単 位で指定することができるものとし、例えば、操作者が 居住する愛知県が指定されたものとする。

【0059】まず、操作者は、操作端末53を操作して、自分が居住する愛知県について最も新しいバージョンの地図データを取得するための配信要求をネットワーク52を介してデータセンタ51に送信する。該データセンタ51は、配信要求を受信すると、愛知県について最も新しいバージョンの地図データを、ネットワーク5

2を介し、前記操作端末53に宛てて配信する。なお、前記地図データに関する課金処理は通常の方法で実行されるものとし、本実施の形態においては、課金処理に関する説明を省略する。

【0060】ここで、配信された地図データは、図6に示されるように、階層構造を備え、三層に階層化されている。また、最下位レベルの地図データが指定された地域に対応し、上位レベルの地図データは下位レベルの地図データが対応する地域を含むより広い地域に対応する。そして、レベル1に対応する最下層のブロックがカバーする範囲は、図7に示されるように、愛知県である。なお、最下層には複数のブロックが含まれていてもよい。この場合、それぞれのブロックは、例えば、約18[km]四方の範囲をカバーするようになっていてもよいし、市町村の範囲をカバーするようになっていてもよい。

【0061】また、レベル2に対応する中間層のブロックがカバーする範囲は、図8に示されるように、愛知県を含む地方としての中部地方である。なお、中間層には複数のブロックが含まれていてもよい。この場合、それぞれのブロックは、例えば、約90 [km]四方の範囲をカバーするようになっていてもよいし、県の範囲をカバーするようになっていてもよい。

【0062】さらに、レベル3に対応する最上層のブロックがカバーする範囲は、図9に示されるように、愛知県及び中部地方を含む地域としての日本全国である。

【0063】このように、最下位レベルであるレベル1では、指定された地域である愛知県の地図データのみが配信され、より上位のレベルであるレベル2では、指定された地域を含む地方としての中部地方の地図データが配信され、最上位レベルであるレベル3では、日本全国の地図データが配信される。なお、前記愛知県の地図データ、中部地方の地図データ及び日本全国の地図データは、いずれも、最も新しいバージョンの地図データである

【0064】この場合、前記配信された地図データは、地図表示データ、経路誘導データ、経路探索データ、検索データ、音声データ、画像データ等を含むものである。そして、前記地図表示データ及び経路探索データは、すべてのレベルの地図データ、すなわち、愛知県の地図データ、中部地方の地図データ及び日本全国の地図データに含まれる。また、前記経路誘導データは、最下位レベルであるレベル1の地図データ、すなわち、愛知県の地図データにだけ含まれる。さらに、前記音声データ及び画像データは、レベル1の地図データである愛知県の地図データにおける追加分だけが含まれる。

【0065】なお、検索データは、新しいバージョンの 地図データと古いバージョンの地図データとの差分であ る差分データだけが配信されるようになっている。ここ で、差分データは、新しくできた施設等に関するデータ であり新しいバージョンになって地図データに追加された追加データ、及び、廃止されたり消滅したりした施設等に関するデータであり新しいバージョンになって地図データから削除された削除データから成る。また、前記追加データは、施設等の地点に関するデータ、検索する方法のデータ等を含むものである。

【0066】ここで、最下位レベルであるレベル1の地 図データは、高速道路、国道、主要地方道、県道、細街 路等から成る詳細道路ネットワークを含むものであるか ら、カバーする範囲における単位面積当たりのデータ量 が多いものであるが、カバーする範囲が狭いので、全体 としてのデータ量が少なくなっている。また、より上位 のレベルであるレベル2の地図データは、カバーする範 囲が広くなっているが、該範囲における単位面積当たり のデータ量が少なくなっているので、全体としてのデー タ量が少なくなっている。さらに、最上位レベルである レベル3の地図データは、日本全国の地図データであ り、カバーする範囲が極めて広くなっているが、該範囲 における単位面積当たりのデータ量が非常に少ないの で、全体としてのデータ量が少なくなっている。そのた め、配信された地図データの合計のデータ量は比較的少 なく、ネットワーク52を介して前記操作端末53に宛 てて配信する際の通信時間も短くて済むようになってい

【0067】続いて、操作者は、配信された地図データを操作端末53が受信すると、外部記憶媒体55を操作端末53にセットして、前記地図データを外部記憶媒体55にダウンロードする。そして、操作者は、前記外部記憶媒体55を車載装置14にセットし、該車載装置14を操作して、外部記憶媒体55に格納されている配信された地図データを車載装置14にアップロードする。これにより、データ格納部16に格納された地図データがバージョンアップされる、すなわち、更新される。この場合、古いバージョンの地図データは、消去されることなく、前記データ格納部16に残存するようになっている。

【0068】なお、前記配信された地図データのデータ 量が、外部記憶媒体55の記憶容量を上回っている場 合、複数回に分割して、前記地図データをダウンロード することができる。この場合、車載装置14への前記地 図データのアップロードも複数回に分割して行われる。 そして、分割された前記地図データは、データ格納部1 6内において結合される。

【0069】次に、経路を探索する動作について説明する。

【0070】図10は本発明の第1の実施の形態における更新された地図データに基づいて経路を探索する動作を示す第1の図、図11は本発明の第1の実施の形態における更新された地図データに基づいて経路を探索する動作を示す第2の図である。

【0071】ここでは、操作者が車載装置14の入力部34を操作して目的地を設定し、探索部12が現在地から目的地までの経路を探索する場合について説明する。【0072】まず、第1の場合として、現在地及び目的地が前記指定された地域としての愛知県内である場合について説明する。

【0073】ここで、現在地から目的地までの距離が短距離であり、現在地及び目的地が最下位レベルであるレベル1における同一のブロックのカバーする範囲内にある場合、探索部12は、更新された新しいバージョンの地図データにおける前記ブロックを使用して経路を探索する。これにより、新しい道路が開通したような場合でも、適切な経路を探索することができる。

【0074】次に、第2の場合として、現在地と目的地とがレベル1における異なるブロックのカバーする範囲内にある場合について説明する。ここで、探索部12は、図10に示されるように、現在地及び目的地周辺のレベル1におけるブロック、並びに、現在地から目的地までを含むより上位のレベルであるレベル2におけるブロックを、すなわち、合計三つのブロックを使用して経路を探索する。この場合、愛知県を含む中部地方の地図データであるレベル2における地図データも更新された新しいバージョンの地図データであるから、前記三つのブロックは、更新された新しいバージョンの地図データにおけるものである。したがって、新しい道路が開通したような場合でも、適切な経路を探索することができる。

【0075】次に、第3の場合として、現在地は前記指定された地域としての愛知県内であるが、目的地は愛知県外、例えば、愛知県に隣接する静岡県にある場合について説明する。なお、現在地及び目的地がレベル2における同一のブロックのカバーする範囲内にあるものとする。

【0076】この場合、目的地周辺のレベル1におけるブロックの地図データは更新されておらず、古いバージョンの地図データである。一方、現在地周辺のレベル1におけるブロックの地図データ、及び、愛知県及び静岡県を含む中部地方の地図データであるレベル2における地図データは更新された新しいバージョンの地図データである。そのため、探索部12は、目的地周辺のレベル1におけるブロックの地図データを使用することができない。

【0077】通常、バージョンの異なる地図データ間では、経路の探索や案内を行うことができないようになっている

【0078】例えば、図3に示されるような経路探索データには、多数の道路のデータが含まれており、さらに、各道路は、三差路以上の交差点や道路種別が変更される点を境界にして区切られたリンクと呼ばれる多数の構成単位から構成される。そのため、前記リンクは極め

て多数となっている。なお、前記道路及びリンクのそれぞれには識別のための記号、番号等が付与されている。また、地図表示データも、例えば、多数のノード点に関する座標等のデータを含んでいる。そして、前記ノード点は、道路形状が分かる程度の間隔(例えば、数十メートル間隔であるが、道路が曲がっている箇所においてはより短い間隔であり、道路が直線状である箇所においてはより長い間隔である。)で道路上に設定されているので、極めて多数となっている。ここで、前記経路探索データと地図表示データとは互いに関連付けがなされているが、前記リンク及びノード点は共に極めて多数であるため、関連付けの工程数は極めて多く、関連付けの作業量は膨大なものとなる。

【0079】そのため、新しいバージョンの地図データを作成する場合、該新しいバージョンの地図データに含まれるデータ相互の関連付けだけでも、工程数が極めて多く作業量が膨大なものとなり、極めて長時間かかってしまう。そして、新しいバージョンの地図データと古いバージョンの地図データとの関連付けを行おうとすると、工程数が天文学的なものとなり、作業量が極めて膨大なものとなり、無限に時間がかかってしまう。そのため、新しいバージョンの地図データと古いバージョンの地図データとの関連付けを行うことは、理論上可能ではあるが、そのために必要な工程数、作業量、作業時間等を考えると、現実的ではない。したがって、バージョンの異なる地図データ間では、必然的に、経路の探索や案内を行うことができないようになっている。

【0080】このように、目的地周辺のレベル1におけるブロックの地図データを使用することができない場合、探索部12は、図11に示されるように、レベル2におけるブロックを使用して、目的地周辺までの経路を探索する。この場合、レベル2におけるブロックには、高速道路、国道、主要地方道等の主要道路についてのデータは含まれているが、県道以下の道路についてのデータが含まれていないので、目的地周辺までは主要道路を対象にして経路を探索する。なお、目的地の座標は把握されているので、該座標に基づいて、目的地に最も近い主要道路上の地点までの経路が探索される。

【0081】ところで、探索部12は、道路及びリンクのそれぞれに付与された記号、番号等を使用して経路を探索するようになっている。そして、前記目的地周辺のレベル1におけるブロックの地図データ及びレベル2におけるブロックの地図データは同一のバージョンのものであるため、それぞれに含まれる道路データにおける道路及びリンクに付与された記号、番号等は共通したものとなっている。そのため、現在地から目的地に最も近い主要道路上の地点までは、目的地周辺のレベル1におけるブロックの地図データを使用して、経路を探索することができ

る。しかし、前述されたように、目的地周辺のレベル1 におけるブロックの地図データは、バージョンが異なる ため、道路データにおける道路及びリンクに付与された 記号、番号等が共通でなく、経路を探索するために使用 することができない。そのため、探索部12は、目的地 周辺では、レベル1におけるブロックの地図データを使 用せず、レベル2におけるブロックの地図データだけを 使用して経路を探索するようになっている。

【0082】このように、現在地周辺、及び、目的地周辺までの主要道路を含む二つのブロックは、更新された新しいバージョンの地図データにおけるものであるから、新しい道路が開通したような場合でも、適切な経路を探索することができる。

【0083】次に、第4の場合として、目的地は前記指定された地域としての愛知県内であるが、現在地は愛知県外、例えば、愛知県に隣接する静岡県にある場合について、説明する。この場合、前記第3の場合において現在地と目的地とを入れ替えただけであり、他の点については同様であるので、説明を省略する。

【0084】最後に、第5の場合として、現在地は前記 指定された地域としての愛知県内であるが、目的地は愛 知県外、例えば、愛知県に隣接する静岡県にある場合で あっても、静岡県をカバーする範囲を有するレベル1に おけるブロックの地図データが更新されて新しいバージョンの地図データになっている場合について説明する。 この場合は、現在地及び目的地が愛知県内である前記第 1の場合と同様であるので説明を省略する。

【0085】ただし、現在地と目的地とが、互いに距離が離れていて、レベル2の地図データにおける単一のブロックのカバーする範囲に含まれない場合には、最上位レベルであるレベル3の地図データも使用される。この場合、探索部12は、図5に示されるように、現在地及び目的地周辺のレベル1及びレベル2のブロック、並びに、現在地から目的地までを含むレベル3のブロックを、すなわち、合計五つのブロックを使用して経路を探索する。

【0086】次に、施設等の検索対象を検索する動作について説明する。

【0087】まず、操作者が車載装置14の入力部34を操作して検索対象としての施設等の名称や地点のような検索条件を設定すると、検索部11は、検索条件に合致する施設等を検索する。この場合、検索部11は、更新された新しいバージョンの地図データに含まれる検索データをそれぞれ使用して、新しいバージョンの地図データに含まれる検索対象及び古いバージョンの地図データに含まれる検索対象及び古いバージョンの地図データに含まれる検索対象を検索する。

【0088】そして、検索部11は、検索された施設等が削除データに含まれるものであるか否かを確認する。 もし、検索された施設等が削除データに含まれるもので ある場合には、前記施設等が削除されている旨を表示部35の画面に表示したり、音声出力部37から音声によって出力したりして、操作者に知らせる。また、検索された施設等が削除データに含まれない場合には、前記施設等を検索結果として、表示部35の画面に表示する。なお、検索された施設等が新しいバージョンの地図データ及び古いバージョンの地図データに含まれるものである場合、前記施設等に関する情報が更新されているので、新しいバージョンの地図データに含まれる情報を前記施設等に関する情報として表示部35の画面に表示する。

【0089】また、前記施設等が更新された新しいバージョンの地図データに含まれる検索データから検索された場合には、その旨が表示部35の画面に表示されることが望ましい。これにより、操作者は、地図データを更新したことによる利点を実感することができる。

【0090】例えば、操作者が前記入力部34を操作して、検索条件として電話番号を入力した場合、すなわち、電話番号検索の場合、検索部11は、まず、更新された新しいバージョンの地図データに含まれる検索データを使用して検索を行い、次いで、古いバージョンの地図データに含まれる検索データをそれぞれ使用して検索を行うようになっている。そして、検索部11は、検索された施設等が削除データに含まれるものであるかを確認する。もし、検索された施設等が削除データに含まれるものである場合には、前記施設等が削除されている旨を表示部35の画面に表示したり、音声出力部37から音声によって出力したりして、操作者に知らせる。また、検索された施設等が削除データに含まれない場合には、前記施設等を検索結果として、表示部35の画面に表示する。

【0091】なお、前記施設等が更新された新しいバージョンの地図データに含まれる検索データから検索された場合には、その旨が表示部35の画面に表示されることが望ましい。これにより、操作者は、地図データを更新したことによる利点を実感することができる。

【0092】また、操作者が前記入力部34を操作して、検索条件として施設等の名称を表す文字列を入力した場合、すなわち、五十音検索の場合、検索部11は、文字が一つ入力される度に、該文字について、更新された新しいバージョンの地図データに含まれる検索データ、及び、古いバージョンの地図データに含まれる検索データをそれぞれ使用して検索を行う。そして、検索されたすべての施設等をリストにして、リストアップされた施設等の数とともに表示部35の画面に表示する。

【0093】なお、検索部11は、検索された施設等が削除データに含まれるものであるか否かを確認し、検索された施設等が削除データに含まれるものである場合には、前記施設等が削除されている旨を表示部35の画面に表示する。また、前記施設等が更新された新しいバー

ジョンの地図データに含まれる検索データから検索された場合には、その旨を表示部35の画面に表示することが望ましい。これにより、操作者は、地図データを更新したことによる利点を実感することができる。

【0094】次に、表示部35の画面に地図を表示する動作について説明する。

【0095】まず、操作者が入力部34を操作して表示 条件を設定すると、表示制御部13は、設定された表示 条件に従った様式で、地図を表示部35の画面に表示さ せる。なお、操作者が表示条件を設定しない場合は、あ らかじめ設定された初期条件としての様式(デフォルト 様式)で、地図を表示部35の画面に表示させる。

【0096】そして、画面中に更新された新しいバージョンの地図データに対応する地域と古いバージョンの地図データに対応する地域との境界が含まれる場合、前記表示制御部13は、カレントデータに対応する領域とそれ以外の領域とを識別することができるようにして地図を表示させる。ここで、カレントデータは、表示部35の画面に地図を表示させるための基準となるデータであり、新しいバージョンの地図データ、現在地を含む地域の地図データ、表示されている地図の中心位置を含む地域の地図データ等である。なお、前記カレントデータを操作者が入力部34を操作して選択することができるようにしてもよい。

【0097】ここでは、前述されたように、配信要求において指定された地域が愛知県であり、愛知県の地図データが新しいバージョンの地図データに更新された場合について説明する。

【0098】例えば、カレントデータが新しいバージョ ンの地図データであり、レベル1の地図データの地図が 表示されている場合、愛知県の地図だけが表示部35の 画面に表示されている時は、通常の状態で表示される。 また、愛知県と静岡県との地図が表示部35の画面に表 示されるようになると、静岡県の地図データは古いバー ジョンでありカレントデータではないので、静岡県の地 図は、愛知県の地図と識別することができるように表示 される。この場合、カレントデータ以外のデータに対応 する地域である静岡県をトーンダウンさせて表示するこ とによって、愛知県の地図と静岡県の地図とを容易に識 別することができる。なお、カレントデータ以外のデー タに対応する地域の地図の色を変更するようにしてもよ い。これにより、愛知県と静岡県との県境を境界とし て、愛知県の地図は高いトーンで表示され、静岡県の地 図は低いトーンで表示されるので、操作者は、愛知県の 地図データは新しいバージョンであり、静岡県の地図デ ータは古いバージョンであることを容易に把握すること ができる。そのため、愛知県の地図と静岡県の地図との 間に、バージョンの相違に起因する不整合が生じても、 操作者は戸惑うことがない。

【0099】また、地図上の道路も、カレントデータ以

外のデータに対応する地域では異なる方法で表示されるようにしてもよい。例えば、カレントデータに対応する地域では道路を実線で表示するのに対して、カレントデータ以外のデータに対応する地域では道路を破線で表示するようにしてもよい。これにより、バージョンの相違に起因する道路の不整合が生じても、操作者は戸惑うことがない。例えば、道路の表示に、愛知県と静岡県との県境においてずれが発生していても、操作者は、愛知県の地図データは新しいバージョンであり、静岡県の地図データは古いバージョンであることを理解することができるので、戸惑うことがない。

【0100】なお、スクロール表示の場合も同様である。例えば、該スクロール表示が行われ、画面の中心が愛知県から静岡県に向けて移動していく場合、愛知県と静岡県との県境を境界として、愛知県の地図は高いトーンで表示され、静岡県の地図は低いトーンで表示されながら画面中を移動していくようになる。そのため、操作者は、愛知県の地図と静岡県の地図とを容易に識別することができる。

【0101】また、カレントデータが変更された場合には、表示部35の画面に表示することによって、または、音声出力部37から出力される音声等によって、カレントデータが変更された旨が報知されることが望ましい。これにより、操作者は戸惑うことがない。

【0102】なお、操作者が入力部34を操作して表示条件を変更し、広域地図が表示されるようにしたことによって、レベル2の地図データの地図が表示された場合、中部地方の地図データは新しいバージョンの地図データなので、静岡県の地図データもカレントデータとなる。そのため、静岡県の地図もトーンダウンされることなく表示される。ただし、レベル2の地図データにおいて、中部地方以外の地図データは古いバージョンなので、例えば、中部地方と関東地方の地図が表示部35の画面に表示されると、関東地方の地図は、中部地方の地図と識別することができるように、トーンダウンして表示される。

【0103】さらに、レベル3の地図データの地図が表示された場合、日本全国の地図データは新しいバージョンの地図データなので、日本全国の地図データがカレントデータとなる。そのため、カレントデータ以外のデータに対応する地域の地図が表示されることはない。

【0104】このように、本実施の形態においては、指定された地域についての新しいバージョンの地図データがデータセンタ51からネットワーク52を介して配信され、配信された地図データを車載装置14にアップロードして、地図データを更新する。この場合、地図データは階層構造を有し、新しいバージョンの地図データとして、最下位レベルでは、指定された地域の地図データのみが配信され、より上位のレベルでは指定された地域を含む地方の地図データが配信され、最上位レベルでは

日本全国の地図データが配信されるようになっている。 【0105】そのため、配信された地図データの合計の データ量は比較的少なく、ネットワーク52を介して配 信する際の通信時間も短くて済むようになっている。そ して、操作者は所望の地域に対応する地図データを入手 して更新することができ、不要な地域に対応する地図データを入手 ータを入手する必要がないので、経済的な負担が軽減さ れる

【0106】また、古いバージョンの地図データは、消去されることなく、前記データ格納部16に残存するようになっている。そして、現在地又は目的地が新しいバージョンの地図データに対応する地域にある場合には、新しいバージョンの地図データに基づいて経路が探索されるので、新しい道路が開通したような場合でも、適切な経路が探索される。

【0107】さらに、新しいバージョンの地図データに対応する地域の地図と、古いバージョンの地図データに対応する地域とが同時に表示される場合、両方の地域の境界を識別することができるように表示されるので、操作者は、新しいバージョンの地図データに対応する地域と古いバージョンの地図データに対応する地域とを容易に識別することができる。そのため、表示された地図においてバージョンの相違に起因する不整合が生じても、操作者は戸惑うことがない。

【0108】さらに、施設等の検索をする場合、検索部11は、更新された新しいバージョンの地図データに含まれる検索データ、及び、古いバージョンの地図データに含まれる検索データをそれぞれ使用して検索を行うようになっている。そのため、適切な検索結果を得ることができる。

【0109】次に、本発明の第2の実施の形態について 説明する。なお、前記第1の実施の形態と同じ構造を有 するもの及び同じ動作については、その説明を省略す る。

【0110】図12は本発明の第2の実施の形態における地図データの階層構造を示す図、図13は本発明の第2の実施の形態におけるデータセンタから配信される地図データの階層構造を示す図である。

【0111】本実施の形態において、データ格納部16に格納されている地図データは、図12に示されるように五層に階層化されている。この場合、例えば、レベル1の層は2万分の1の地図に対応し、レベル2の層は8万分の1の地図に対応し、レベル4の層は128万分の1の地図に対応し、レベル4の層は128万分の1の地図に対応し、レベル5の層は512万分の1の地図に対応し、レベル5の層は512万分の1の地図に対応する。

【0112】そして、データセンタ51が操作端末53から受信した地図データの配信要求に応じ、指定された地域の地図データを前記操作端末53に送信する場合も、前記地図データは、図13に示されるように、五層

に階層化されている。この場合も、前記第1の実施の形 態と同様に、最下位レベルの地図データが前記指定され た地域に対応し、上位レベルの地図データは下位レベル の地図データが対応する地域を含むより広い地域に対応 する。すなわち、レベル1に対応する最下位レベルのブ ロックがカバーする範囲は、前記指定された地域であ . る。また、より上位のレベルであるレベル2のブロック は、前記指定された地域を含むより広い範囲の地域をカ バーし、さらに上位のレベルであるレベル3のブロック は、前記レベル2のブロックがカバーする地域を含むよ り広い範囲の地域をカバーし、さらに上位のレベルであ るレベル4のブロックは、前記レベル3のブロックがカ バーする地域を含むより広い範囲の地域をカバーし、さ らに上位のレベルであるレベル5のブロックは、前記レ ベル4のブロックがカバーする地域を含むより広い範囲 の地域をカバーする。

【0113】なお、前記地図データは、更に多層化することもでき、例えば、十層に階層化することもできる。 さらに、地図データに含まれる各種のデータに応じて、 階層の数を変化させることもできる。例えば、地図表示 データを十層に階層化されたものとし、経路探索データ を三層に階層化されたものとすることもできる。

【0114】次に、本発明の第3の実施の形態について 説明する。なお、前記第1及び第2の実施の形態と同じ 構造を有するもの及び同じ動作については、その説明を 省略する。

【0115】本実施の形態においては、経路を案内する動作について説明する。ここで、表示制御部13は、経路を表示するための地図に対応する地図データと探索部12が探索に使用した地図データとのバージョンが相違する場合、前記経路をより広い地域に対応する地図上に表示させるようになっている。なお、前記表示制御部13は、経路を表示するための地図に対応する地図データと前記探索部12が探索に使用した地図データとのバージョンが一致する場合、前記経路を最下位レベルの地図データに対応する地図上に表示させる。

【0116】まず、第1の場合として、探索部12が経路を探索するために使用した地図データと、前記経路を表示部35の画面に表示するために使用する地図データのバージョンが同一である場合について説明する。

【0117】車載装置14において、探索部12が探索した経路は、表示制御部13によって、表示部35の画面に表示された地図上に表示されて案内されるようになっている。この場合、地図は、通常、最下位レベルであるレベル1に対応する地図データに含まれる地図表示データを使用して表示される。例えば、前記第1の実施の形態において説明された経路を探索する動作における第1及び第2の場合、探索部12が経路を探索するために使用した地図データは、すべて愛知県に対応する更新された地図データである。また、現在地から目的地までの

経路は、すべて愛知県内であり、更新された最下位レベルであるレベル1に対応する地図表示データに含まれる。そのため、表示制御部13は、前記経路を更新された地図表示データに基づく地図上に表示させて案内する。

【0118】次に、第2の場合として、探索部12が経路を探索するために使用した地図データと、前記経路を表示部35の画面に表示するために使用する地図データのバージョンが異なる場合について説明する。例えば、前記第1の実施の形態において説明された経路を探索する動作における第3の場合、探索部12が経路を探索するかに使用した地図データは、すべて更新された地図データである。しかし、愛知県外においては、レベル1に対応する地図データが更新されていないので、探索部12は、レベル2に対応する更新された地図データを使用して経路を探索している。

【0119】そして、前記第1の実施の形態において説 明されたように、バージョンの異なる地図データ間で は、道路及びリンクに付与された記号、番号等が共通で なく、経路の案内を行うことができないようになってい る。そのため、表示制御部13は、前記探索された経路 を、愛知県内においてはレベル1に対応する地図表示デ ータに基づく地図上に表示させることができるが、愛知 県外においては、レベル1に対応する地図表示データに 基づく地図上に表示せることができなくなってしまう。 【0120】そこで、本実施の形態において、表示制御 部13は、前記探索された経路を、愛知県外において は、レベル2に対応する地図表示データに基づく地図上 に表示させるようになっている。すなわち、表示制御部 13は、更新された最下位レベルの地図データに対応す る地域の外に存在する経路を、探索部12が探索に使用 した上位レベルの更新された地図データに対応する地図 上に表示させる。

【0121】これにより、探索部12が経路を探索するために使用した地図データと、前記経路を表示部35の画面に表示するために使用する地図データのバージョンが異なる場合であっても、経路を案内することができる。

 $\{0122\}$ 次に、本発明の第4の実施の形態について説明する。なお、前記第1~第3の実施の形態と同じ構造を有するもの及び同じ動作については、その説明を省略する。

【0123】図14は本発明の第4の実施の形態における経路案内の動作を示す第1の図、図15は本発明の第4の実施の形態における経路案内の動作を示す第2の図、図16は本発明の第4の実施の形態における経路案内の動作を示す第3の図である。

【0124】前記第3の実施の形態においては、探索部 12が経路を探索するために使用した地図データと、前 記経路を表示部35の画面に表示するために使用する地 図データのバージョンが異なる場合、表示制御部13 は、更新された最下位レベルの地図データに対応する地域の外に存在する経路を、探索部12が探索に使用した上位レベルの更新された地図データに対応する地図上に表示させるようになっている。そのため、操作者は、地図データの更新を指定された地域外における経路を視認しづらくなってしまう。また、表示部35の画面に表示される地図の縮尺が切り替えられるので、操作者は戸惑ってしまう。

【0125】例えば、前記第1の実施の形態において説明された経路を探索する動作における第3の場合、経路上における現在地が愛知県を越えて静岡県に入ると、レベル2に対応する地図表示データに基づく地図に切り替えられるので、地図の縮尺が小さくなり、道路が詳細に表示されなくなってしまう。そのため、操作者は、静岡県内における経路を視認しづらくなり、また、県境を越えると表示部35の画面に表示される地図の縮尺が切り替えられるので戸惑ってしまう。

【0126】そこで、本実施の形態において、車載装置 14は、現在地が更新された最下位レベルの地図データ に対応する地域内にある時は、更新された地図データに 基づいて探索された経路を案内し、現在地が更新された 最下位レベルの地図データに対応する地域外にある時は、更新される前の地図データに基づいて探索された経路を案内するようになっている。ここで、表示制御部13は、更新された地図データに基づいて探索された経路を案内する場合、更新された最下位レベルの地図データに基づく地図上に前記経路を表示させ、更新される前の 地図データに基づいて探索された経路を案内する場合、更新される前の最下位レベルの地図データに基づく地図上に前記経路を表示させる。

【0127】そして、探索部12は、現在地が更新された最下位レベルの地図データに対応する地域を越えた時点で、更新される前の地図データに基づいて再探索を行うようになっている。そのため、現在地が更新された最下位レベルの地図データに対応する地域から該地域の外に出た時は、更新される前の地図データに基づいて再探索された経路が案内されるようになっている。また、探索部12は、現在地が更新された最下位レベルの地図データに対応する地域に入った時点で、更新された地図データに基づいて再探索を行うようになっている。そのため、現在地が更新された最下位レベルの地図データに対応する地域の外から地図データに対応する地域内に入った時は、更新された地図データに基づいて再探索された経路が案内されるようになっている。

【0128】まず、第1の場合として、図14(a)に示されるように、現在地が更新された新しいバージョンの最下位レベルの地図データに対応する地域57内にあり、設定された目的地が前記地域57の外の地域58にある場合について説明する。これは、前記第1の実施の

形態において説明された経路を探索する動作における第3の場合に相当するので、地域57は愛知県であり、地域58は静岡県であるとして説明する。

【0129】この場合、前記第1の実施の形態において図11を参照しながら説明したように、探索部12は、現在地周辺では、更新された新しいバージョンのレベル1におけるブロックの地図データを使用し、目的地周辺では、古いバージョンのレベル1におけるブロックの地図データを使用せず、更新された新しいバージョンのレベル2におけるブロックの地図データだけを使用して経路を探索する。そして、経路の案内が開始され、図14(b)に示されるように、現在地が愛知県である地域57内にある時、表示制御部13は、更新された最下位レベル(レベル1)の地図データに基づく地図上に前記経路を表示させる。なお、愛知県である地域57外の地図は、更新される前の地図データに基づいて表示されるので、愛知県である地域57外の経路は表示されない。

【0130】続いて、図14(c)に示されるように、現在地が愛知県である地域57と静岡県である地域58との境界を越えた時点で、探索部12は、更新される前の古いバージョンの地図データを使用して再探索を行う。そして、表示制御部13は、現在地が静岡県である地域58に入ると、更新される前の最下位レベル(レベル1)の地図データに基づく地図上に再探索された経路を表示させる。

【0131】次に、第2の場合として、図15(a)に示されるように、設定された目的地が更新された新しいバージョンの最下位レベルの地図データに対応する地域57内にあり、現在地が前記地域57の外の地域58にある場合について説明する。

【0132】この場合、探索部12は、更新される前の古いバージョンの地図データを使用して、現在地から目的地までの経路を探索する。そして、経路の案内が開始され、図15(b)に示されるように、現在地が静岡県である地域58内にある時、表示制御部13は、更新される前の古いバージョンの最下位レベル(レベル1)の地図データに基づく地図上に前記経路を表示させる。

【0133】続いて、図15(c)に示されるように、現在地が静岡県である地域58と愛知県である地域57との境界を越えた時点で、探索部12は、更新された新しいバージョンの地図データを使用して再探索を行う。そして、表示制御部13は、現在地が愛知県である地域57に入ると、更新された最下位レベル(レベル1)の地図データに基づく地図上に再探索された経路を表示させる

【0134】次に、第3の場合として、図16(a)に示されるように、現在地が更新された新しいバージョンの最下位レベルの地図データに対応する地域57内にあり、設定された目的地も更新された新しいバージョンの最下位レベルの地図データに対応する地域59内にある

場合について説明する。なお、前記地域57と地域59 とは互いに離れていて、中間に地域58が介在するものとする。ここでは、前記地域57及び地域59は、指定された地域としての愛知県及び山梨県であって、愛知県及び山梨県に対応するレベル1におけるブロックの地図データ、並びに、愛知県、山梨県及び静岡県を含む中部地方に対応するレベル2における地図データは更新された新しいバージョンの地図データであるが、静岡県である地域58に対応するレベル1におけるブロックの地図データは更新される前の古いバージョンあるものとして説明する。

【0135】この場合、探索部12は、現在地周辺及び目的地周辺で、更新された新しいバージョンのレベル1におけるブロックの地図データを使用して経路を探索する。なお、前記第1の実施の形態において図10を参照しながら説明したように、探索部12は、現在地から目的地までを含むより上位のレベルであるレベル2におけるブロックを使用して探索するので、新しいバージョンの地図データを使用して経路が探索される。そして、経路の案内が開始され、図16(b)に示されるように、現在地が愛知県である地域57内にある時、表示制御部13は、更新された最下位レベル(レベル1)の地図データに基づく地図上に前記経路を表示させる。なお、愛知県である地域57外の地図は、更新される前の地図データに基づいて表示されるので、愛知県である地域57外の経路は表示されない。

【0136】続いて、図16(c)に示されるように、 現在地が愛知県である地域57と静岡県である地域58 との境界を越えた時点で、探索部12は、更新される前 の古いバージョンの地図データを使用して再探索を行 う。そして、表示制御部13は、現在地が静岡県である 地域58に入ると、更新される前の最下位レベル(レベ ル1)の地図データに基づく地図上に再探索された経路 を表示させる。

【0137】続いて、現在地が静岡県である地域58と山梨県である地域59との境界を越えた時点で、探索部12は、更新された新しいバージョンの地図データを使用して再探索を行う。そして、表示制御部13は、現在地が山梨県である地域59に入ると、更新された最下位レベル(レベル1)の地図データに基づく地図上に再探索された経路を表示させる。

【0138】このように、本実施の形態において、表示制御部13は、更新された地図データに基づいて探索された経路を案内する場合、更新された最下位レベルの地図データに基づく地図上に前記経路を表示させ、更新される前の地図データに基づいて探索された経路を案内する場合、更新される前の最下位レベルの地図データに基づく地図上に前記経路を表示させるようになっている。

【0139】そのため、地図データの更新を指定された 地域の内外で同じように経路が表示されるので、操作者 にとって視認しやすく、また、表示部35の画面に表示される地図の縮尺が切り替えられることがないので、操作者が戸惑うことがない。

【0140】次に、本発明の第5の実施の形態について 説明する。なお、前記第1~第4の実施の形態と同じ構 造を有するもの及び同じ動作については、その説明を省 略する。

【0141】本実施の形態においては、更新された最下位レベルの地図データに対応する地域外では、経路を案内しないようになっている。例えば、前記第4の実施の形態における第1の場合、目的地が更新された最下位レベルの地図データに対応する地域である愛知県の外にあるので、表示制御部13は、探索された経路を表示部35の画面に表示させずに、現在地と目的地とを結ぶ直線を表示させる。なお、該直線の背景として、現在地と目的地とを含む縮尺の地図を表示部35の画面に表示させることもできる。

【0142】また、更新された最下位レベルの地図データに対応する地域内における経路の端点から、地図データに対応する地域外の目的地までを直線で結ぶようにしてもよい。例えば、前記第4の実施の形態における第1の場合、現在地からの経路が愛知県である地域57内において表示される。そして、前記経路の端点、すなわち、現在地が存在する愛知県である地域57と静岡県である地域58との境界上の点から、目的地までを直線で表示させる。これにより、操作者は、目的地の方向を把握することができる。

【0143】さらに、スクロール表示の際には、表示部35の画面に表示される地図に対応する地図データを使用して探索した経路を表示するようにしてもよい。この場合、前記第4の実施の形態における説明のように、探索部12は、表示部35の画面に表示される地図に対応する地図データ再探索を行い、表示制御部13は、スクロールされる地図上に前記経路を表示させる。

【0144】さらに、表示制御部13は、最下位レベルの地図データに基づく地図上に経路を表示させることなく、現在地から目的地までの全経路を一画面に表示させる全経路表示を行うこともできる。例えば、前記第4の実施の形態における第3の場合のように現在地と目的地とが離れていても、上位レベルの地図データを使用して経路が探索されるので、前記地図データに対応する地図を表示部35の画面に表示させ、その上に探索された経路を表示させることができる。

【0145】このように、本実施の形態においては、探索された経路を省略した形態で案内するようになっているので、車載装置14のナビゲーション処理部17によるデータ処理の負荷が低減され、処理速度が向上する。【0146】また、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除す

るものではない。

[0147]

【発明の効果】以上詳細に説明したように、本発明によれば、所定範囲の領域毎に地図データを更新することができるようにして、該地図データを更新するための時間が短く、更新するためのコストを低くすることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態におけるナビゲーションシステムの構成を示す図である。

【図2】本発明の第1の実施の形態におけるの車載装置の概念図である。

【図3】本発明の第1の実施の形態における経路探索データの構造を示す図である。

【図4】本発明の第1の実施の形態における車載装置の 機能を示す図である。

【図5】本発明の第1の実施の形態における階層化された地図データに基づいて経路を探索する動作を示す図である。

【図6】本発明の第1の実施の形態におけるデータセンタから配信される地図データの階層構造を示す図である。

【図7】本発明の第1の実施の形態におけるデータセンタから配信される最下層の地図データの例を示す図である

【図8】本発明の第1の実施の形態におけるデータセンタから配信される中間層の地図データの例を示す図である

【図9】本発明の第1の実施の形態におけるデータセンタから配信される最上層の地図データの例を示す図である

【図10】本発明の第1の実施の形態における更新された地図データに基づいて経路を探索する動作を示す第1の図である。

【図11】本発明の第1の実施の形態における更新された地図データに基づいて経路を探索する動作を示す第2の図である。

【図12】本発明の第2の実施の形態における地図データの階層構造を示す図である。

【図13】本発明の第2の実施の形態におけるデータセンタから配信される地図データの階層構造を示す図である。

【図14】本発明の第4の実施の形態における経路案内の動作を示す第1の図である。

【図15】本発明の第4の実施の形態における経路案内の動作を示す第2の図である。

【図16】本発明の第4の実施の形態における経路案内の動作を示す第3の図である。

【符号の説明】

12 探索部

13 表示制御部

14 車載装置

16データ格納部57、58、59地域

【図1】

フロントページの続き

F ターム(参考) 2C032 HB11 HB22 HB23 HB24 HB25 HC16 HC31 HD16 HD21 2F029 AA02 AB01 AB07 AB09 AC01 AC02 AC04 AC14 AC18 5H180 AA01 BB02 BB04 BB05 BB11 FF04 FF05 FF12 FF13 FF22

FF25 FF27 FF33

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.