

对称矩阵特征值、

特征向量的性质

对称矩阵特征值、特征向量的性质

性质1. 对称矩阵的特征值为实数.

证 复数矩阵
$$X = \begin{pmatrix} x_{ij} \end{pmatrix}$$
, $\overline{X} = \begin{pmatrix} \overline{x}_{ij} \end{pmatrix}$. 设 $Ax = \lambda x$, $\begin{pmatrix} x \neq 0 \end{pmatrix}$ 用 $\overline{\lambda}$ 表示 λ 的共轭复数, $A\overline{x} = \overline{A}\overline{x} = \overline{A}\overline{x} = \overline{\lambda}\overline{x} = \overline{\lambda}\overline{x}$ 于是有 $\overline{x}^T A x = \overline{x}^T \left(Ax\right) = \overline{x}^T \lambda x = \lambda \overline{x}^T x$, $\overline{x}^T A x = \left(\overline{x}^T A^T\right) x = \left(A\overline{x}\right)^T x = \left(\overline{\lambda}\overline{x}\right)^T x = \overline{\lambda}\overline{x}^T x$ 两式相减,得 $\left(\lambda - \overline{\lambda}\right) \overline{x}^T x = 0$, $\overline{x}^T x = \sum_{i=1}^n |x_i|^2 \neq 0$,

性质 2 设 λ_1 , λ_2 是对称矩阵 A 的两个特征值, p_1 , p_2 是对应的特征向量. 若 $\lambda_1 \neq \lambda_2$, 则 p_1 与 p_2 正交.

证 $\lambda_1 p_1 = A p_1$, $\lambda_2 p_2 = A p_2$, $\lambda_1 \neq \lambda_2$.

因 A 对称,故 $\lambda_1 p_1^T = (\lambda_1 p_1)^T = (A p_1)^T = p_1^T A^T = p_1^T A$, 于是 $\lambda_1 p_1^T p_2 = p_1^T A p_2 = p_1^T (\lambda_2 p_2) = \lambda_2 p_1^T p_2$,

即 $(\lambda_1 - \lambda_2) p_1^T p_2 = 0$.但 $\lambda_1 \neq \lambda_2$,

故 $p_1^T p_2 = 0$, 即 p_1 与 p_2 正交.

 $P^{-1}AP = P^{T}AP = \Lambda$, 其中 Λ 是以 A 的 n 个

定理 设A为n阶对称矩阵,则必有正交阵P,使

特征值为对角元的对角矩阵。

推论 设A为n阶对称矩阵, λ 是A的特征方程的k重根,则矩阵 $A-\lambda E$ 的秩 $R(A-\lambda E)=n-k$,从而对应特征值 λ 恰有k个线性无关的特征向量。

证
$$A \sim \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

$$A - \lambda E \sim \Lambda - \lambda E = \operatorname{diag}(\lambda_1 - \lambda, \dots, \lambda_n - \lambda)$$

当 λ 是A的特征方程的k重根时,

 $\lambda_1, \dots, \lambda_n$ 这 n 个特征值中有 k 个等于 λ ,有 n-k 个不等于 λ ,

所以
$$R(A - \lambda E) = R(\Lambda - \lambda E) = n - k$$
.

对称矩阵的正文对

角化

n阶对称矩阵A正交对角化的步骤

- (1) 求出A的全部特征值,设为 $\lambda_1, \dots, \lambda_1$; $\lambda_2, \dots, \lambda_2$; … ; $\lambda_s, \dots, \lambda_s$. $\lambda_s, \dots, \lambda_s$ ($\lambda_1, \dots, \lambda_s$ 两两不同,且 $l_1 + \dots + l_s = n$)
- (2) 解 $(A \lambda_i E)x = 0$, 求A的 l_i 个线性无关的 λ_i -特征向量,
- (3) 各组内部正交化、单位化,

例 设
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 求一个正交阵 P ,使 $P^{-1}AP$ 为对角阵.

解
$$|A-\lambda E|= \begin{vmatrix} -\lambda & -1 & 1 \ -1 & -\lambda & 1 \ 1 & 1 & -\lambda \end{vmatrix} = -\left(\lambda-1\right)^2\left(\lambda+2\right)$$

得 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$.

 $\overline{\beta \lambda_1} = -2$ 时,解方程(A + 2E)x = 0,

特征向量
$$\xi_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
,将 ξ_1 单位化,得 $p_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.

当
$$\lambda_2 = \lambda_3 = 1$$
时,解方程 $(A - E)x = 0$,

得对应的线性无关特征向量
$$\xi_2=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
, $\xi_3=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$.

将 ξ ,, ξ ,正交化:取 η ,= ξ ,,

再将
$$\eta_2$$
, η_3 单位化,得 $p_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $p_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}$.

将
$$p_1, p_2, p_3$$
 构成正交阵

将
$$p_1, p_2, p_3$$
构成正交阵
$$P = (p_1, p_2, p_3) = \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix},$$

有
$$P^{-1}AP = P^TAP = \Lambda = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$
.

例设 $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, 求 A^n .

解 因 A 对称,故有可逆阵 P 及对角阵 Λ ,使 $P^{-1}AP = \Lambda$.

于是 $A = P\Lambda P^{-1}$,从而 $A^n = P\Lambda^n P^{-1}$.

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

得 $\lambda_1 = 1$, $\lambda_2 = 3$. 于是 $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$, $\Lambda^n = \begin{pmatrix} 1 & 0 \\ 0 & 3^n \end{pmatrix}$.

当
$$\lambda_1 = 1$$
 时,解方程 $(A - E)x = 0$,得特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,

当
$$\lambda_2 = 3$$
 时,解方程 $\left(A - 3E\right) x = 0$,得特征向量 $\xi_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $P = \begin{pmatrix} \xi_1, \xi_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$,

$$= \left(egin{aligned} \xi_1, \xi_2 \end{aligned}
ight) = \left(egin{aligned} 1 & 1 \ 1 & -1 \end{aligned}
ight), & P^{-1} = rac{1}{2} \left(egin{aligned} 1 & 1 \ 1 & -1 \end{aligned}
ight) \end{aligned}$$

$$A^{n} = P \Lambda^{n} P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1+3^{n} & 1-3^{n} \\ 1-3^{n} & 1+3^{n} \end{pmatrix}.$$

够

