Diagnolization of the matrix

- We want to obtain the trans. mat (P) to diagnolize the matrix
- Find the eigen vectors of the matrix A
- then obtain the modal matrix M by placing the eigenvectors(colums)

• then do P(inverse) * A * P to obtain the matrix

This is independent of the fact of multiplicity

- if that comes out to be zero $\,$ - then use the second row $\,$ - if that comes out to be zero $\,$ - then use the third row

Case when eig vector are same

- say lambda 1 (lambda 2==lambda 3)
- find the eigen vector with lambda1
- find the eigen vector with lambda2
- Now to obtain the third eigen factors
 - differenciate the elements in co-factors matrix of 2 to get the third vector

- Then put the value [lambda1 | lambda2 | lambda 3]
- We will not be able to form full diagnol
- We will form jordan blocks

When multipliclity > 2

• matrix can be obtained as follows

State Model Using Intergrator Circuit

Pole Placement

What are poles?

- in TF put Den to zero to obtain char. eqn
- char eqn. cna be obtained using |lamda * I A| = 0
 - A is the state space model of the function
 - Why?
 - Explained by the method using
 - siminusa

- $\bullet\,$ Poles define the behaviour of the system
 - They define the dynamics of the sytemlike fast or slow

 - like rise time etc