

При этом $P(B \setminus A) \ge 0$ — свойство монотонности вероятности.

4 Для любого события А

 $0 \leqslant P(A) \leqslant 1$

Доказательство.

 $P(A) \geqslant 0$ по аксиоме 1.

T.K. $A \subseteq \Omega$, to $P(A) \leqslant P(\Omega) = 1$.

$$P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

Полная группа событий

Определение

События A_1, A_2, \dots, A_n образуют полную группу событий в данном эксперименте, если они

- ullet они попарно несовместны, т.е. $A_iA_j=\varnothing,\ i\neq j$
- их сумма равна достоверному событию $A_1 + A_2 + \ldots + A_n = \Omega$
- $P(A_i) > 0, i \in \overline{1, n}$

Сумма вероятностей событий, образующих полную группу, равна единице.

Попарная независимость и независимость в совокупности

Определение

События A и B называются независимыми, если P(A/B) = P(A) или $P(A \cap B) = P(A \cdot B) = P(A) \cdot P(B)$.

Замечание

Если A не зависит от B, то и B не зависит от A.

Утверждение

Если события A и B несовместны, причем P(A) > 0 и P(B) > 0, то $P(A \cdot B) \neq P(A) \cdot P(B)$ (события зависимы).

