Моделирование электрического пробоя методом диффузной границы

Пономарев А.С. под руководством Савенкова Е.Б., Зипуновой Е.В.

группа Б05-029, 4 курс МФТИ

05.03.2024

Физическое явление

Электрический пробой

Явление резкого возрастания тока в диэлектрике при приложении электрического напряжения выше критического.

- Рассматриваем твердый диэлектрик
- Деградация диэлектрических свойств материала
- Процесс развивается в ограниченной зоне канале
- Сложная физическая природа

Математическая модель

Модель типа диффузной границы

Вещество находится в разных фазах. Состояние вещества приближается гладкой функцией $\phi(\omega,t)$ – фазовым полем. Динамика процесса – изменение фазового поля.

- $oldsymbol{oldsymbol{\phi}} \phi = 1$ неповрежденная среда
- ullet $\phi=0$ полностью разрушенная среда
- ullet Зона $\phi \in (0,1)$ диффузная граница

Математическая модель

Модель, предложенная в работе [1]:

 $\Omega\subset\mathbb{R}^3$ — ограниченная область пространства $f(\phi)=4\phi^3-3\phi^4$ — интерполирующая функция

$$\epsilon(\omega, t) = \frac{\epsilon_0(\omega)}{f(\phi(\omega, t)) + \delta}$$
 $\Pi = \int_{\Omega} \pi d\omega$

$$\pi = -rac{1}{2}\epsilon[\phi](
abla\Phi,
abla\Phi) + \Gammarac{1-f(\phi)}{l^2} + rac{\Gamma}{4}(
abla\phi,
abla\phi)$$

Математическая модель

Уравнения модели

Уравнение электрического потенциала Ф:

$$\mathsf{div}(\epsilon[\phi]\nabla\Phi)=0$$

Уравнение фазового поля ϕ :

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)(\nabla \Phi, \nabla \Phi) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma \triangle \phi$$

Пример вычислительного эксперимента

Одномерная задача

$$\Omega = [0, w]_x \times [0, h]_y \times I_z$$

$$\Phi|_{y=0} = \Phi^- \in \mathbb{R}, \quad \Phi|_{y=h} = \Phi^+ \in \mathbb{R}$$

Подходит функция электрического потенциала

$$\Phi(\omega,t) = \Phi^- + \frac{y}{h}(\Phi^+ - \Phi^-)$$

Тогда уравнение на ϕ принимает вид

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}K_{\Phi}^{2}\epsilon'(\phi) + \frac{\Gamma}{l^{2}}f'(\phi) + \frac{1}{2}\Gamma\frac{\partial^{2}\phi}{\partial x^{2}}$$

Будем считать $\epsilon_0 = {\sf const.}$

Анализ положений равновесия

Исследуем положения равновесия вида $\phi(x,t) \equiv C$. Положению равновесия соответствует ноль С функции

$$\chi(\phi) = \frac{1}{2} K_{\Phi}^2 \epsilon'(\phi) + \frac{\Gamma}{l^2} f'(\phi)$$

$$0 \le \frac{K_{\Phi}^2 I^2 \epsilon_0}{2\Gamma} < \delta^2$$

$$0 \leq rac{{\mathcal K}_{\Phi}^2 l^2 \epsilon_0}{2\Gamma} < \delta^2 \qquad \delta^2 < rac{{\mathcal K}_{\Phi}^2 l^2 \epsilon_0}{2\Gamma} < (1+\delta)^2 \qquad (1+\delta)^2 < rac{{\mathcal K}_{\Phi}^2 l^2 \epsilon_0}{2\Gamma}$$

$$(1+\delta)^2 < \frac{K_{\Phi}^2 l^2 \epsilon_0}{2\Gamma_{\text{coll}}}$$

Анализ положений равновесия

«Слабое» напряжение

 $\phi \equiv 0$ неустойчивое $\phi \equiv 1$ устойчивое

«Среднее» напряжение

 $\phi \equiv 0$ устойчивое

 $\phi \equiv \mathrm{C}_3$ неустойчивое

 $\phi \equiv 1$ устойчивое

«Сильное» напряжение

 $\phi \equiv 0$ устойчивое

 $\phi \equiv 1$ неустойчивое

Разностная схема

Разностная задача

$$\begin{split} \frac{1}{m} \frac{\phi_a^{b+1} - \phi_a^b}{\tau} &= \frac{1}{2} K_\phi^2 \epsilon'(\phi_a^b) + \frac{\Gamma}{l^2} f'(\phi_a^b) + \frac{\Gamma}{2} \frac{\phi_{a+1}^b - 2\phi_a^b + \phi_{a-1}^b}{h^2} \\ \phi_a^0 &= \phi_0(ah); \quad \phi_0^b = \phi_l(b\tau); \quad \phi_{w/h}^b = \phi_r(b\tau) \end{split}$$

Сетка регулярная; t — шаг по времени, h — шаг по пространству.

Явная разностная схема первого порядка по времени, второго — по пространству.

Оценка устойчивости

Рассмотрим возмущенное решение $\phi_a^b + \delta_a^b$. Линеаризуем уравнение на возмущение δ_a^b в точке $\phi_a^b = P$:

$$\delta_a^{b+1} = \delta_a^b + m\tau \left(\frac{1}{2} K_{\Phi}^2 \epsilon''(P) \delta_a^b + \frac{\Gamma}{l^2} f''(P) \delta_a^b + \frac{\Gamma}{2} \frac{\delta_{a+1}^b - 2\delta_a^b + \delta_{a-1}^b}{h^2} \right)$$

Применим спектральный признак устойчивости:

$$1 > \lambda(\theta) = 1 + m\tau \left(\frac{1}{2} K_{\Phi}^2 \epsilon''(P) + \frac{\Gamma}{l^2} f''(P) - \frac{2\Gamma}{h^2} \sin^2 \frac{\theta}{2} \right)$$

Исследуем вблизи 0.

Оценка устойчивости

Условие устойчивости

$$\tau \leq \frac{1}{\frac{2.2mK_{\Phi}^2\epsilon_0}{\delta^{5/3}} + \frac{2m\Gamma}{h^2}}$$

Упрощенное условие устойчивости

$$\tau \leq \min\left(\frac{\delta^{5/3}}{4.4mK_{\Phi}^2\epsilon_0}, \frac{h^2}{4m\Gamma}\right)$$

Вычисления: типичное решение

Вычисления: проверка устойчивости

$$\tau \leq \left(\frac{2.2mK_{\Phi}^2\epsilon_0}{\delta^{5/3}} + \frac{2m\Gamma}{h^2}\right)^{-1}$$

Вычисления: проверка сходимости

Проводится ряд вычислений, затем результаты сравниваются по норме с лучшим в ряду.

Вычисления: проверка сходимости

Здесь, согласно оценке устойчивости, $au = rac{h^2}{4m\Gamma}$

Вычисления: положения равновесия

$$0 \leq rac{\mathcal{K}_{\Phi}^2 I^2 \epsilon_0}{2\Gamma} < \delta^2$$
 — «слабое» напряжение

$$\phi \equiv 0$$

неустой чивое

$$\phi\equiv 1$$

устойчивое

05.03.2024

Вычисления: положения равновесия

$$\delta^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma} < (1+\delta)^2$$
 — «среднее» напряжение

 $\phi \equiv 0$ устойчивое

 $\phi \equiv \mathit{C}_3$ неустойчивое

$$\phi \equiv 1$$
 устойчивое

Вычисления: положения равновесия

$$(1+\delta)^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma}$$
 — «сильное» напряжение

$$\phi\equiv 0$$

устойчивое

$$\phi \equiv 1$$

неустойчивое

Свободная энергия

$$\Pi(t) = \int\limits_{\Omega} \pi(x,t) dx$$

$$\pi(x,t) = \pi_1(x,t) + \pi_2(x,t) + \pi_3(x,t)$$

$$\pi_1(x,t) = -\frac{K_{\Phi}^2}{2} \epsilon(\phi(x,t)) - \text{плотность энергии электрического поля;}$$

$$\pi_2(x,t) = \Gamma \frac{1-f(\phi(x,t))}{l^2} - \text{плотность энергии роста пробоя в глубину;}$$

$$\pi_3(x,t) = \frac{\Gamma}{4} \left(\frac{\partial \phi}{\partial x}(x,t) \right)^2 - \text{плотность энергии образования граничной зоны пробоя}$$

плотность энергии электрического поля

плотность энергии роста в глубину

Литература

Е.В. Зипунова и Е.Б. Савенков. *О моделях диффузной границы* для описания динамики объектов высшей коразмерности.

Препринты ИПМ им. М.В.Келдыша. Москва, 2020. DOI:

https://doi.org/10.20948/prepr-2020-122.eprint:

https://keldysh.ru/papers/2020/prep2020_122.pdf.

