

Books

Fundamentals of Data Structures in C, 2nd Edition.

(開發圖書, (02) 8242-3988)

Administration

Instructor:

- 曾學文資工系副教授
- Office: Room 908
- Email: hwtseng@nchu.edu.tw
- Tel: 04-22840497 ext. 908
- http://wccclab.cs.nchu.edu.tw/www/

Office Hours:

- (Monday)14:00~17:00; (Tuesday) 14:00~17:00.

Grade:

- Quiz 20%
- Computer-based Test 20%
- Homework 20%
- Midterm Exam 25%
- Final Exam 25%

Introductory

- Raise your hand is always welcome!
- No phone, walk, sleep, and late during the lecture time.
- Data structure is not the fundamental course for programming.
- Slides are not enough. To master the materials, page-by-page reading is necessary.

Outline

- Basic Concept
- Arrays and Structures
- Stacks and Queues
- Lists
- Trees
- Graphs
- Sorting
- Hashing

CHAPTER 1

BASIC CONCEPT

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C",

How to create programs

- Requirements
- Analysis: bottom-up vs. top-down
- Design: data objects and operations
- Refinement and Coding
- Verification
 - Program Proving
 - Testing
 - Debugging

Algorithm

Definition

An *algorithm* is a finite set of instructions that accomplishes a particular task.

Criteria

- input
- output
- definiteness: clear and unambiguous
- finiteness: terminate after a finite number of steps
- effectiveness: instruction is basic enough to be carried out

Data Type

- Data Type
 - A *data type* is a collection of *objects* and a set of *operations* that act on those objects.
- Abstract Data Type (ADT) An ADT is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from
 - the representation of the objects.
 - the implementation of the operations.

Specification vs. Implementation

- Operation specification
 - function name
 - the types of arguments
 - the type of the results
- Implementation independent

```
*Structure 1.1: Abstract data type Natural_Number
structure Natural Number is
  objects: an ordered subrange of the integers starting at zero and ending
           at the maximum integer (INT_MAX) on the computer
  functions:
    for all x, y \in Nat\_Number; TRUE, FALSE \in Boolean
    and where +, -, <, and == are the usual integer operations.
                                 ::= 0
    Nat_Num Zero ( )
    Boolean Is\_Zero(x) := if(x) return FALSE
                            else return TRUE
    Nat\_Num \text{ Add}(x, y) ::= if ((x+y) \le INT\_MAX) return x+y
                            else return INT_MAX
    Boolean Equal(x,y) ::= if (x==y) return TRUE
                            else return FALSE
    Nat\_Num Successor(x) ::= if (x == INT\_MAX) return x
                            else return x+1
    Nat\_Num Subtract(x,y) ::= if (x<y) return 0
                            else return x-y
  end Natural Number
```

Measurements

- Criteria
 - Is it correct?
 - Is it readable?
 - **–** ...
- Performance Measurement (machine dependent)
- Performance Analysis (machine independent)
 - space complexity: storage requirement
 - time complexity: computing time

Space Complexity $S(P)=C+S_{P}(I)$

- Fixed Space Requirements (C)
 Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements $(S_P(I))$ depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, local variables, return address

```
*Program 1.10: Simple arithmetic function
float abc(float a, float b, float c)
  return a + b + b * c + (a + b - c) / (a + b) + 4.00;
                                                          S_{abc}(I) = 0
This function has only fixed space requirements
*Program 1.11: Iterative function for summing a list of numbers
float sum(float list[], int n)
                                     S_{\text{sum}}(I) = 0
 float tempsum = 0;
                                     Recall: pass the address of the
 int i;
                                     first element of the array &
 for (i = 0; i < n; i++)
                                     pass by value
    tempsum += list [i];
 return tempsum;
```

Assumptions:

*Figure 1.1: Space needed for one recursive call of Program 1.12

Type	Name	Number of bytes
parameter: array pointer	list []	4
parameter: integer	n	4
return address:(used internally)		4 (unless a far address)
TOTAL per recursive call		12

Time Complexity

$$T(P)=C+T_P(I)$$

- Compile time (C) independent of instance characteristics
- Run (execution) time T_P
- Definition $T_P(n)=c_aADD(n)+c_sSUB(n)+c_lLDA(n)+c_{st}STA(n)$ A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.
- Example

$$- abc = a + b + b * c + (a + b - c) / (a + b) + 4.0$$

$$-abc = a + b + c$$

Regard as the same unit machine independent

Methods to compute the step count

- Introduce variable count into programs
- Tabular method
 - Determine the total number of steps contributed by each statement
 - step per execution × frequency
 - add up the contribution of all statements

Tabular Method

*Figure 1.2: Step count table for Program 1.11

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Iterative summing of a list of numbers

*Program 1.13: Program 1.11 with count statements

```
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++)
      count++; /*for the for loop */
     tempsum += list[i]; count++; /* for assignment */
  count++; /* last execution of for */
  count++; /* for return */
  return tempsum;
                                      2n + 3 steps
```

*Program 1.14: Simplified version of Program 1.13

```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i++)
        count += 2;
    count += 3;
    return 0;
}</pre>
```

Recursive summing of a list of numbers

*Program 1.15: Program 1.12 with count statements added

```
float rsum(float list[], int n)
       count++; /*for if conditional */
       if (n) {
               count++; /* for return and rsum invocation */
               return rsum(list, n-1) + list[n-1];
       count++;
       return list[0];
                                                  2n+2
```

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Matrix addition

*Program 1.16: Matrix addition

```
void add( int a[ ] [MAX_SIZE], int b[ ] [MAX_SIZE], int c [ ] [MAX_SIZE], int rows, int cols) { int i, j; for (i = 0; i < rows; i++) for (j= 0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; rows * cols }
```

Matrix Addition

*Figure 1.4: Step count table for matrix addition

Statement	s/e	Frequency	Total steps
Void add (int a[][MAX_SIZE] • • •) { int i, j; for (i = 0; i < row; i++) for (j=0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }	0 0 0 1 1 1 0	0 0 0 rows+1 rows • (cols+1) rows • cols	0 0 0 rows+1 rows • cols+rows rows • cols
Total	U		rows • cols+2rows+1

*Program 1.17: Matrix addition with count statements

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                int c[][MAX_SIZE], int row, int cols)
 int i, j;
                               2*rows*cols+2rows+1
 for (i = 0; i < rows; i++)
    count++; /* for i for loop */
    for (j = 0; j < cols; j++) {
      count++; /* for j for loop */
      c[i][j] = a[i][j] + b[i][j];
      count++; /* for assignment statement */
    count++; /* last time of j for loop */
 count++; /* last time of i for loop */
```

*Program 1.18: Simplification of Program 1.17

```
void add(int a[][MAX_SIZE], int b [][MAX_SIZE],
                int c[][MAX_SIZE], int rows, int cols)
  int i, j;
  for(i = 0; i < rows; i++) {
    for (j = 0; j < cols; j++)
      count += 2;
      count += 2;
  count++;
          2*rows \times cols + 2rows + 1
```

Suggestion: Interchange the loops when rows >> cols

*Program 1.19: Printing out a matrix

*Program 1.20:Matrix multiplication function

```
void mult(int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE])
{
   int i, j, k;
   for (i = 0; i < MAX_SIZE; i++)
      for (j = 0; j < MAX_SIZE; j++) {
        c[i][j] = 0;
      for (k = 0; k < MAX_SIZE; k++)
        c[i][j] += a[i][k] * b[k][j];
      }
}</pre>
```

O(MAX_SIZE)³

*Program 1.21:Matrix product function

???

*Program 1.22:Matrix transposition function

???

Asymptotic Notation (O)

■ Definition f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all n, $n \ge n_0$.

Examples

```
-3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */
-3n+3=O(n) /* 3n+3 \le 4n \text{ for } n \ge 3 */
-100n+6=O(n) /* 100n+6 \le 101n \text{ for } n \ge 6 */
-10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2 \text{ for } n \ge 5 */
-6*2^n+n^2=O(2^n) /* 6*2^n+n^2 \le 7*2^n \text{ for } n \ge 4 */
```

Example

- Complexity of $c_1 n^2 + c_2 n$ and $c_3 n$
 - for sufficiently large of value, $c_3 n$ is faster than $c_1 n^2 + c_2 n$
 - for small values of n, either could be faster
 - $c_1=1$, $c_2=2$, $c_3=100$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 98$
 - $c_1=1$, $c_2=2$, $c_3=1000$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 998$
 - break even point
 - no matter what the values of c1, c2, and c3, the n beyond which c_3n is always faster than $c_1n^2+c_2n$

- O(1): constant
- O(n): linear
- $O(n^2)$: quadratic
- $O(n^3)$: cubic
- \circ O(2ⁿ): exponential
- O(logn)
- O(nlogn)

*Figure 1.7:Function values

Instance characteristic n									
Time	Name	1	2	4	8	16	32		
1	Constant	1	1	1	1	1	1		
$\log n$	Logarithmic	0	1	2	3	4	5		
n	Linear	1	2	4	8	16	32		
$n \log n$	Log linear	0	2	8	24	64	160		
n^2	Quadratic	1	4	16	64	256	1024		
n^3	Cubic	1	8	64	512	4096	32768		
2 ⁿ	Exponential	2	4	16	256	65536	4294967296		
n!	Factorial	1	2	24	40326	20922789888000	26313×10^{33}		

Figure 1.7 Function values

*Figure 1.8:Plot of function values

Figure 1.8 Plot of function values

*Figure 1.9:Times on a 1 billion instruction per second computer

*							
Ð				$f(n)$ φ			
n÷	n√	n log2 n∉	n².	n³∻	n ⁴ ↔	n ¹⁰ .	2n4
10⊹	.01 μs↔	.03 μs⊹	.1 μs÷	1 μs+	10 μs⊬	10s←	1μs+
20↔	.02 μs↔	.09 μs⊹	.4 μs÷	8 μs÷	160 μs⊬	2.84h∻	1ms∻
30⊹	.03 μs↔	.15 μs⊹	.9 μs÷	27 μs+	810 μs⊬	6.83d∻	1s∻
40↔	.04 μs↔	.21 μs⊹	1.6 μs+	64 μs÷	2.56ms↔	121 d ←	18m∻
50⊹	.05 μs↔	.28 μs⊹	2.5 μs+	125 μs+	6.25ms↔	3.1y↔	13d∻
100⊹	.10 μs↔	.66 μs⊹	10 μs÷	1ms+	100ms⊬	3171y↔	4*10 ¹³ y↔
103₊	1 μs⊬	9.96 µs⊹	1 ms+	1s+	16.67m↔	3.17*10 ¹³ y↔	32*10 ²⁸³ y
10⁴÷	10 μs↔	130 μs⊹	100 ms+	16.67m+	115.7 d ↔	3.17*10 ²³ y↔	
10⁵₊	100 μs↔	1.66 ms↔	10s+	11.57 d ∻	3171y↔	3.17*10 ³³ y↔	
106∉	1ms₊	19.92ms∻	16.67m∻	31.71y	3.17*10 ⁷ y₽	3.17*10 ⁴³ y↔	
1							