Program Verification using Coq

Daniel Britten

September 21, 2017

Example: Plus

```
Fixpoint plus (n : nat) (m : nat) : nat :=
  match n with
    \mid O \Rightarrow m
    |S n' \Rightarrow S (plus n' m)
  end.
Theorem plus_n = 0: \forall n : nat, n = n + 0.
Proof.
  intros n induction n as [n'] [Hn'].
  - reflexivity.
  - simpl. rewrite ← IHn'. reflexivity. Qed.
Source: Software Foundations Textbook.
```

Example: Even numbers - 'How'

```
Fixpoint evenb (n : nat) : bool := match n with
\mid 0 \Rightarrow true
\mid 1 \Rightarrow false
\mid S(Sn) \Rightarrow evenb n
end.
```

```
Definition Even (n : nat) : Prop := \exists m, n = 2 \times m.
```

Example: Even numbers - 'Correctness'

Lemma evenb_correct : \forall n, evenb n = true \leftrightarrow Even n.

```
Lemma lemma_one : \forall n, evenb (S \ n) = negb (evenb n).
Proof.
induction n as [n'].
 - Base case: n=0
   reflexivity.
- Inductive case: for some n', n = S n'
   rewrite IHn' simpl.
   destruct (evenb n') eqn:SubCase.
     + Sub-case (evenb n') = true
         reflexivity.
     + Sub-case (evenb n') = false
         reflexivity.
Qed.
```

Lemma $lemma_two: \forall n, Even (S n) \leftrightarrow \neg Even n.$ Proof. split.

- induction n as [|n'|].
- + Base case: n=0: unfold *Even*. intros. destruct H. destruct x. inversion H. simpl in H. rewrite $\leftarrow plus_n_Sm$ in H. discriminate H.
- + Inductive case: for some n', n = S n': intros. unfold *not*. intros. apply IHn'. exact H0. unfold Even. destruct H. destruct x. simpl in H. discriminate H. $\exists x$. simpl in H. rewrite $\leftarrow plus_n_Sm$ in H. inversion H. simpl. reflexivity.
- induction n. intros. unfold Even in H. exfalso. apply H. \exists 0. reflexivity.

intros. apply NNPP. unfold not. intros. apply H. apply IHn. unfold not. intros. apply H0. unfold Even in H. destruct H1. unfold Even. $\exists (S \times)$ rewrite H1. simpl. rewrite $\leftarrow plus_n_Sm$. reflexivity. Qed.

```
Lemma evenb_correct: \forall n, evenb n = true \leftrightarrow Even n.
Proof.
induction n.
 - firstorder. unfold Even. ∃ 0. reflexivity.
- split
    + intros. rewrite \rightarrow lemma_one in H. rewrite
lemma_two. unfold not. intros. apply IHn in H0. rewrite H0
in H. simpl in H. discriminate H.
    + intros. apply lemma_two in H. rewrite lemma_one.
destruct (evenb n) eqn: Case.
         \times exfalso. apply H. apply IHn. reflexivity.
         \times reflexivity.
Qed.
```

Example: Even numbers - 'What+How'

Next Obligation.

firstorder. ∃ 0. reflexivity. Qed.

Next Obligation.

firstorder. inversion H. destruct x. inversion H. simpl in H. rewrite $\leftarrow plus_n Sm$ in H. inversion H. Qed.

Next Obligation.

induction n.

- firstorder. unfold Even. \exists 1. reflexivity.
- split.
- + intros. rewrite \rightarrow lemma_one in H. rewrite lemma_two. unfold not. intros. apply IHn in H0. rewrite H0 in H. simpl in H. discriminate H.
- + intros. apply lemma_two in H. rewrite lemma_one. destruct (evenb n) eqn: Case.
 - \times exfalso. apply H. apply IHn. reflexivity.
 - \times reflexivity.

Qed.

Software Foundations

https://softwarefoundations.cis.upenn.edu/

- VellVM
- ► CompCert
- ► Spark Ada (e.g. Air traffic management systems)
- Model Checking

DeepSpec

