# Technologies for Autonomous Vehicles Assignment

Massimo Violante Jacopo Sini

Politecnico di Torino

Dip. Automatica e Informatica

# Assignment

- Using Python and MediaPipe you are asked to implement the following functionalities:
- Compute EAR and PERCLOS
  - If EAR > 80% for 10 seconds, print an alarm message indicating the driver is drowsy
- Compute Eyes and Head gaze positions using rotation matrices
  - We suggest using 3D calculations for head gaze and 2D calculations for eyes gazes.
- If the combination of Eyes and Head gaze angles differs more than +/- 30° to rest angles (0,0,0), print an alarm message indicating the driver is distracted
- Prepare a short report (3 pages max) to describe the script.



### **EAR and PERCLOS**

#### **Eye Aspect Ratio (EAR)**





EAR = 
$$\frac{|Y_2 - Y_6| + |Y_3 - Y_5|}{2 \cdot |X_1 - X_4|}$$

The vertical (Y-axis) distances between the points  $p_2$ ,  $p_3$ ,  $p_5$ , and  $p_6$  are calculated for the numerator and the horizontal distance between the points  $p_1$  and  $p_6$  are determined for the denominator.

Whenever a person blinks or closes their eyes, we can observe that the horizontal distance between the points  $p_1$  and  $p_6$  remains the same, while the vertical distance between the points  $p_2$ ,  $p_6$  and  $p_3$ ,  $p_5$  will decrease.

#### **PERCLOS**

To determine if drivers are drowsy or not it is possible to comply with PERCLOS standard threshold values, which are

- P70 considering the proportion of time when the eyes are closed at least 70 %
- P80 considering the proportion of time when the eyes are closed at least 80 %.

PERCLOS can be computed as:

$$PERCLOS = \frac{t_3 - t_2}{t_4 - t_1}$$

#### where:

- $t_1$ the time that the eyes are open from largest to 80%
- *t*<sub>2</sub> from 80 % to 20 % open
- $t_3$  the time from 20 % closed to 20 % open
- $t_4$  the time of eye opening from 20% to 80% open



# PERCLOS $t_{\{1-4\}}$ explanation



$$PERCLOS = \frac{t_3 - t_2}{t_4 - t_1}$$

- • $t_1$  the time that the eyes are open from largest to 80%
- •t2 from 80% to 20% open
- •t₃ the time from 20% closed to 20% open
- •t4 the time of eye opening from 20% to 80% open



# Assignment upload instructions

- Are allowed groups of a maximum two people.
- The assignment has to be delivered through the "Portale della Didattica" "Elaborati" section up to the end of the lecture of this and next week (17/04/2025).
- In case of a group of two people, only one member has to upload it in zip format. The zip archive has to include:
  - the Python script
  - the PDF file of the report.

