Vetores

28.09.2022

Para somar/subtrair vetores, lembrese que os vetores são "livres". Ou seja, o representante pode ter sua origem colocada em qualquer ponto qualquer ponto

Regra do paralelogramo

Deve-se escolher representantes de e , respectivamente AB e AD, com origem em A e construir um paralelogramo ABCD.

Regra do paralelogramo

Deve-se escolher representantes de e , respectivamente AB e AD, com origem em A e construir um paralelogramo ABCD.

Regra do Polígono: Considere e dois vetores, com representantes. Vamos determinar o vetor

Regra do Polígono: Considere e dois vetores, com representantes dados pelos segmentos orientados *AB* e *BC*, respectivamente. A soma de com , denotada por , é o vetor que tem o segmento orientado *AC* como representante.

Para adicionarmos dois vetores pelo método do polígono translada-se um dos vetores colocando sua origem na extremidade do outro vetor formando um "caminho".

O vetor resultante terá sua origem comum ao primeiro vetor e sua extremidade comum à extremidade do último vetor.

O resultante fecha um polígono com os vetores somados.

Vetores com mesma direção. Sentidos opostos e mesmo módulo (comprimento/intensidade)

$$\bar{R} = \bar{f}_1 + \bar{f}_2 = \bar{0}$$
 \therefore $|\bar{R}| = 0 N$

Sentidos iguais.

Sentidos opostos e módulos (comprimento/intensidade) diferentes

$$\vec{R} = \vec{f}_1 + \vec{f}_2 \quad \therefore \quad |\vec{R}| = 70N$$

$$|\bar{f}_1| = 50N e |\bar{f}_2| = 120N$$

Diferença entre vetores

Diferença entre vetores

Diferença entre vetores

Assim, as diagonais do paralelogramo representam a soma e a diferença entre e

.

Vetor e seus múltiplos escalares.


```
Dado um vetor não nulo e um número real chama-se produto do número real pelo vetor, o vetor tal que:
```

- a) Se então tem mesma direção (é paralelo e sentido de e
- b) Se então tem mesma direção de , sentido oposto e

Todos os vetores acima tem mesma direção de Logo todos vetores acima são paralelos.

Se dois vetores e (não nulos) são paralelos então existe um número real (não nulo) tal que

Figura 1.22

DC está dividido em 5 segmentos congruentes em relação ao vetor ()

Veja o exemplo a seguir (p. 12 do livro)

Exemplos

1) Representados os vetores \vec{u} , \vec{v} e \vec{w} como na Figura 1.25(a), obter graficamente o vetor \vec{x} tal que $\vec{x} = 2\vec{u} - 3\vec{v} + \frac{1}{2}\vec{w}$.

(a)

Solução: Figura 1.25(b)

Veja o exemplo a seguir (p. 12 do livro)

Exemplos

1) Representados os vetores u, v e \overrightarrow{w} como na Figura 1.25(a), obter graficamente o vetor \overrightarrow{x} tal que $\overrightarrow{x} = 2\overrightarrow{u} - 3\overrightarrow{v} + \frac{1}{2}\overrightarrow{w}$.

Solução: Figura 1.25(b)

Figura 1.25

Exercício ex. 3, p. 14 eterminar os vetores abaixo,

expressando-os com origem no ponto A:

a)
$$\overrightarrow{OC}$$
 + \overrightarrow{CH}

e)
$$\overrightarrow{EO} + \overrightarrow{BG}$$

b)
$$\overrightarrow{EH} + \overrightarrow{FG}$$

f)
$$2\overrightarrow{OE} + 2\overrightarrow{OC}$$

c)
$$2\overrightarrow{AE} + 2\overrightarrow{AF}$$

g)
$$\frac{1}{2} \overrightarrow{BC} + \overrightarrow{EH}$$

d)
$$\overrightarrow{EH} + \overrightarrow{EF}$$

h)
$$\overrightarrow{FE} + \overrightarrow{FG}$$

i)
$$\overrightarrow{OG}$$
 - \overrightarrow{HO}

i)
$$\overrightarrow{AF} + \overrightarrow{FO} + \overrightarrow{AO}$$

Exercício ex. 4, p. 14

4) O paralelogramo ABCD (Figura 1.30) é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente. Determinar:

a)
$$\overrightarrow{AD} + \overrightarrow{AB}$$

d)
$$\overrightarrow{AN} + \overrightarrow{BC}$$

b)
$$\overrightarrow{BA} + \overrightarrow{DA}$$

e)
$$\overrightarrow{MD} + \overrightarrow{MB}$$

c)
$$\overrightarrow{AC}$$
 - \overrightarrow{BC}

f)
$$\overrightarrow{BM} - \frac{1}{2} \overrightarrow{DC}$$

Figura 1.30

- A cada vetor não nulo pode-se associar um vetor com mesma direção (paralelo) de
- Mesmo sentido de
- Unitário (comprimento 1)

??? tem:

tem:

mesma direção e sentido de

tem:

mesma direção e sentido de

?? tem:

mesma direção e sentido de

tem:

mesma direção e sentido de

?? tem:

mesma direção e sentido de

• Por exemplo, se

tem:

mesma direção e sentido de

Se

?? tem:

mesma direção e sentido de

Se

tem:

mesma direção e sentido de

Se

tem:

mesma direção e sentido de

O vetor unitário

De mesmo sentido de é o versor de

•

• Por exemplo, se

Então o versor de é

Considere o vetor Determinar o vetor paralelo a tal que :

a) Tenha o mesmo sentido de e 5 vezes o comprimento de

Considere o vetor Determinar o vetor paralelo a tal que :

b) Tenha o mesmo sentido de e módulo (comprimento) 5;

Considere o vetor Determinar o vetor paralelo a tal que :

c) Tenha sentido contrário ao de e módulo (comprimento)

10.

Considere o vetor Determinar o vetor paralelo a tal que :

a) Tenha o mesmo sentido de e 5 vezes o comprimento de

Multiplicação de Um Número Real por Vetor

Propriedades:

Multiplicação de Um Número Real por Vetor

Propriedades:

Multiplicação de Um Número Real por Vetor

Considere os escalares e os vetores São válidas as propriedades:

- 1)
- 2)
- 3)
- 4)

Vetores com mesma direção e sentido contrário

