Data Mining Summer Term 2020 Institute of Neural Information Processing

PD Dr. F. Schwenker

Assignment 7 (Submission until June 23, 2020)

Exercise 1 (10 points): t-Distributed Stochastic Neighbor Embedding [Pen and Paper]

Exploring a dataset is very important and usually one of the first steps when tackling a new data mining problem. A visual representation can help here and offers insights in the dataset. However, it is quite common to deal with higher-dimensional data and we do not have a direct way of visualizing data points in more than three dimensions. Hence, we need to fall back on alternatives like projection methods which try to find good representations of the higher-dimensional data points in the lower-dimensional space. In this exercise, we want to take a look at the popular *t*-Distributed Stochastic Neighbor Embedding (*t*-SNE) algorithm.

In its heart, *t*-SNE is a non-linear dimensionality reduction algorithm with the main goal of creating useful visualizations. It is worth noting that this was the design principle from the beginning unlike, for example, Principal Component Analysis (PCA) which has other uses as well.

Mathematically, we have n data points $x_i \in \mathbb{R}^d$ in a high-dimensional space (feature space) and we want to calculate n projections $y_i \in \mathbb{R}^r$ in a low-dimensional space (projection space). r is usually 1, 2 or 3 allowing us to visualize the projections. t-SNE tries to perform this projection in a way so that the local structure of the high-dimensional data is also visible in the low-dimensional projections. This means, to some extent, that nearest-neighbour relationships are visible in the projections. However, neither distances nor density information is preserved by the projections and this was, again, a design choice. This is, for example, in contrast to the multidimensional scaling (MDS) algorithm which tries to preserve distances. For further details see e.g. [2].

Instead of comparing the x_i in the feature space directly with the points y_i in the projection space, t-SNE uses a probability distribution for each point (in both spaces) and compares those distributions instead. This is used to model the neighbourhood of each point with uncertainty allowing for smooth borders. This means that there is a chance, at least to some degree, that one point is the neighbour to another point. For the feature points x_i , this probability is defined as

$$p_{j|i} = \frac{e^{-\|x_i - x_j\|^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|^2 / 2\sigma_i^2}} \quad \text{with} \quad p_{i|i} = 0.$$
 (1)

This gives us a discrete probability distribution $P_i = (p_{1|i}, p_{2|i}, \dots, p_{n|i})$ for each point x_i . We can interpret $p_{j|i}$ as the probability that the point x_j is selected as a neighbour for the point x_i and that neighbours are selected proportionally to a probability density of a Gaussian distribution centred around the point x_i . Note that each point x_i has its own probability distribution satisfying

$$\sum_{j=1}^{n} p_{j|i} = 1 \quad \text{and} \quad \forall j : p_{j|i} \ge 0.$$
 (2)

In a similar way, we define a probability for each projection point y_i

$$q_{ij} = \frac{1}{n} \frac{\left(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|\mathbf{y}_i - \mathbf{y}_k\|^2\right)^{-1}} \quad \text{with} \quad q_{ii} = 0.$$
(3)

Even though the underlying idea is the same as before, there are some differences compared to Equation 1. For once, we don't feed the distances to a Gaussian function but rather to a Student's t-distribution with one degree of freedom. This means that we can interpret q_{ij} as the probability that the point y_i is selected as a neighbour for the point y_i and that neighbours are selected proportionally to a probability density of a Student's t-distribution with one degree of freedom centred around the point y_i . Don't worry, we come back to this point later and clarify what this means and why we choose a different underlying distribution in the projection space¹. Both underlying distributions are compared with each other in Figure 1.

The second difference is the prefactor 1/n. This changes the meaning a bit since we do not have n probability distributions like it was the case in Equation 1 but rather only one covering all point combinations. What is more, the distribution now satisfies

$$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} = 1 \quad \text{and} \quad \forall i, j : q_{ij} \ge 0.$$
 (4)

Actually, this is already what we want and we are going to see that Equation 1 is only an intermediate step before we also arrive at a single distribution for the feature space. You can also think of $p_{j|i}$ and q_{ij} as two $n \times n$ matrices P and Q with the row index i and the column index j. In this way, Equation 2 means that each row of P sums up to 1 whereby Equation 4 tells us that the whole matrix Q sums up to 1.

Generally speaking, our goal is to find n projection points y_i so that the corresponding probability matrix Q is as similar as possible to the matrix P. We do so by optimizing a cost function, calculating the gradients and applying gradient descent. We are approaching this goal step by step and also covering some important details on the way. As an example, we use the data points shown in Figure 4 and our goal is to get a one-dimensional projection of these points.²

1. Let's start with the probabilities $p_{j|i}$ in the feature space. There are two things we need to take care of before we can use these probabilities. First, note that each data point x_i uses its own scaling parameter σ_i in Equation 1. We need to find values for these parameters. Second, the corresponding matrix P, as noted before, does not sum up to 1 yet (only the rows). We need to fix this as well.

¹Note that you already know by now where *t*-SNE has its name from: we work with probabilities (hence stochastic in the name) and we use the Student's *t*-distribution (hence the *t* in the name).

²If you want additional information about *t*-SNE, there is, besides the original paper [3], also a video introduction worth pointing to.

Figure 1: Comparison between the standard normal distribution (blue) and the Student's t-distribution (orange) with one degree of freedom. Note that the constant factors $1/\sqrt{2\pi}$ and $1/\pi$ are not shown in Equation 1 respectively Equation 3 since they are not relevant here.

- a) The parameter σ_i defines a region around each data point x_i where other data points x_j have a chance to be selected as neighbours. You can think of this as a geometric way to control how many neighbours you want to consider in the corresponding probability distribution P_i . We define this parameter per data point and not globally because an appropriate value of σ_i depends on the density of the region around x_i . Smaller values of σ_i are usually more appropriate in dense regions and larger values of σ_i are better suited when the data points x_i are located further away from each other.
 - i. Show that Equation 2 is true.
 - ii. Take a look at this animation³ to get a feeling of how σ_i influences the probability distribution P_i . It uses the (arbitrarily chosen) data point x_9 and shows the distribution P_9 for varying σ_9 . Explain why the distribution P_9 has a high peak for the data point x_{13} for the very small value $\sigma_9 = 0.1$ even though this data point is not included in the "main Gaussian area". Is it a coincidence that the high peak occurs for the data point x_{13} ?
 - iii. Calculate the probability distribution for the extreme case $\lim_{\sigma_9 \to \infty} P_9$ (the result should be a vector with n = 13 elements).
 - iv. To be a little bit more precise, we have to name $p_{j|i}$ a conditional probability given x_i and retrieving the probability for the possible neighbour x_j . This is because Equation 1 is not symmetric in general, i.e. $p_{j|i} \neq p_{i|j}$ is possible. Explain

³https://milania.de/showcase/t-Distributed_Stochastic_Neighbor_Embedding#fig:tSNE_AnimationGaussian

why this is the case and name which part of Equation 1 is responsible for this behaviour.

b) We now know what the parameter σ_i does and why we need it. The remaining question is how we select it. *t*-SNE uses an indirect approach here. Each σ_i value leads to a different probability distribution P_i for the point x_i . For each distribution P_i we can calculate the corresponding entropy

$$H(P_i) = -\sum_{i=1}^{n} p_{j|i} \cdot \log_2(p_{j|i})$$

and for the entropy, we can calculate again something which is called the perplexity

$$Perp(P_i) = 2^{H(P_i)}.$$

The approach of *t*-SNE is to let the user define a global value for the perplexity so that the algorithm can derive the corresponding σ_i values for each data point x_i . That is, the σ_i values are adjusted in a way so that the new entropy $H(P_i)$ fits to the given perplexity value (which is the same for all data points). A binary search is used to find the σ_i values in the implementation⁴ but we are only interested in how we can interpret the relationship between $Perp(P_i)$ and σ_i here.

The authors of *t*-SNE describe this parameter as: "The perplexity can be interpreted as a smooth measure of the effective number of neighbors" [3, p. 2582]. This is because P_i has the information about the number of neighbours with influence and so we can interpret $H(P_i)$ as the number of bits we need to encode these neighbours. For example, with $H(P_i) = 3$ we have three bits to encode the neighbour number and since we can encode $2^3 = 8$ possible neighbours in this configuration, the perplexity $Perp(P_i)$ effectively measures the number of considered neighbours for each data point x_i .

- i. Figure 2 shows the relationship between the scaling factor and the perplexity for the two data points x_4 and x_{13} and Figure 3 the corresponding probability distributions P_i for the σ_i values which correspond to a given perplexity of (roughly) Perp = 2. Use this information to fill out the missing values in Table 1.
- ii. Explain why there is a plateau in both curves of Figure 2 at around $\sigma_i \in [0.5; 1.5]$ and why the blue line reaches this plateau before the orange line.
- iii. Sketch how the two curves of Figure 2 proceed further, i.e. how they look like for higher σ_i values. Hint: use the interpretation of the perplexity.

⁴An alternative approach would be to test a bunch of values in a limited range and select the one which comes closest to the target perplexity.

c) The next part is to adjust the matrix *P*. For this, we define new probabilities

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}.$$

This formula changes two aspects. For one thing, the whole matrix P now sums up to 1. For another thing, we symmetrize the conditional probabilities by averaging in both directions. The second adjustment makes the probabilities easier to handle and also results in simpler gradients which are faster to compute [3, p. 2584]. Show that Equation 4 does now also hold for the matrix P, i.e.

$$\sum_{i=1}^n \sum_{j=1}^n p_{ij} = 1 \quad \text{and} \quad \forall i, j : p_{ij} \ge 0.$$

2. Since we now have valid probability distributions P and Q in both spaces, we can enter the optimization step. We need to find projection points y_i where, ideally, we have equal probabilities $p_{ij} = q_{ij}$. Usually, this is something we cannot achieve in practice for all point combinations but the goal is to find a solution which reaches this state as close as possible. For this, we need a cost function which compares P and Q and tells us how good our current solution is. We use the Kullback–Leibler divergence

$$D_{Q}(P) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} \cdot \log_2\left(\frac{p_{ij}}{q_{ij}}\right)$$
 (5)

for this job. This is a measure designed to compare probability distributions and has its roots in the field of information theory. Note that p_{ij} is fixed since our probabilities from the feature space don't change anymore. However, q_{ij} depends on the current choice of our projection points y_i and this allows us to minimize Equation 5. The gradient based on this cost function is given as [3, p. 2586]

$$\frac{\partial D_Q(P)}{\partial y_i} = 4 \sum_{j=1}^n (p_{ij} - q_{ij})(y_i - y_j) \left(1 + \|y_i - y_j\|^2 \right)^{-1}.$$
 (6)

We can iteratively approach to a local minimum with gradient descent and randomly initialized starting positions for the projections points y_i . Based on a projection point y_i , we can interpret the gradient as a sum of attraction and repelling forces from all other projection points $y_{i\neq i}$ defined by $p_{ij}-q_{ij}$ in the scaled direction of y_i-y_j .

- a) To see how these forces interact and how Equation 6 behaves, we consider a new toy example dataset shown in Table 2. We are interested in the movement of the projection point y_1 and your task is to calculate the missing values of Table 2.
- b) Draw the projection points y_i in a 1D-plot and mark for each projection point $y_{j\neq 1}$ whether it exerts an attraction or repelling force on y_1 .

- c) Calculate the negative gradient $-\partial D_{Q}(P)/\partial y_{1}$ (negative because we want to a minimum and not a maximum) to see in which direction the projection point y_{1} moves.
- d) In another animation⁵, you can see how t-SNE evolves for the dataset shown in Figure 4. Note how the matrix Q becomes more and more similar to the matrix P with increasing iterations. Explain how you can tell from the matrix plot (Q or P) how many natural clusters there are in the dataset and how many data points each cluster contains.
- 3. We covered the complete t-SNE algorithm by now. One remaining aspect which needs clarification is why we use a Student's t-distribution instead of a Gaussian for the probabilities q_{ij} (Equation 3). The underlying reason for this choice is that it tries to solve the so-called crowding problem which can occur when mapping points from a high-dimensional to a low-dimensional space.
 - a) Let's look at the problem first. The thing is that higher dimensions offer just much more room for our data points than lower-dimensions. This has a critical impact on the distances between the points. For example, the number of choices to place points with similar distance to each other grows with the number of dimensions and there is no way to model this behaviour exactly in lower dimensions. This leads to imbalanced distance distributions.
 - To make this more concrete, we want to analyse the volume of a unit sphere (which serves as a measure for the number of data points) in different dimensions and measure the ratio between distances < 0.5 and distances > 0.5. Fill out Table 3 and explain how the distribution of distances changes with increasing dimensions.
 - b) By comparing the two distributions in Figure 1, we see that distances in the feature space (modelled by Gaussians) effectively map to different distances in the projection space (modelled by the Student's *t*-distribution). Based on this observation, we can define two regions:
 - I. The region R_1 where distances in the feature space map to smaller distances in the projection space and
 - II. the region R_2 where they map to larger distances.

Mark those two regions in Figure 1.

- c) Consider distances from the second region R_2 and explain why this leads to less crowded projection points.
- d) Figure 5 (b) shows two projections for the feature points shown in Figure 5 (a). One projection corresponds to the t-SNE algorithm with the use of a Student's t-distribution for q_{ij} and the other projection corresponds to the SNE algorithm [1]

⁵https://milania.de/showcase/t-Distributed_Stochastic_Neighbor_Embedding#fig:tSNE_Animation

where also a Gaussian distribution is used for q_{ij} . Explain which projection (A or B) maps to which algorithm (t-SNE or SNE).

References

- [1] Geoffrey E Hinton and Sam T. Roweis. "Stochastic Neighbor Embedding". In: *Advances in Neural Information Processing Systems 15*. Ed. by S. Becker, S. Thrun, and K. Obermayer. MIT Press, 2003, pp. 857–864. URL: http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf.
- [2] interpretation K-means clustering on the output of t-SNE Cross Validated. Feb. 23, 2018. URL: https://stats.stackexchange.com/questions/263539/k-means-clustering-on-the-output-of-t-sne (visited on 06/07/2018).
- [3] Laurens van der Maaten and Geoffrey Hinton. "Visualizing data using t-SNE". In: *Journal of machine learning research* 9.Nov (2008), pp. 2579–2605.

Table 1: Relationship between the scaling σ_i and the perplexity $Perp(P_i)$ for two data points. Decide about the scale factor σ_i , the probability distribution P_i of Figure 3 (C or D) and select which of the two curves in Figure 2 (A or B) fits to each point.

Data point x_i	Scaling σ_i	Distribution P_i	Entropy $H(P_i)$	Perplexity $Perp(P_i)$	Curve
x_4			0.993761	1.99137	
x_{13}			0.988433	1.98403	

Figure 2: Relationship between the scaling factor σ_i and the perplexity Perp(P_i). One curve belongs to the point x_4 and one to x_{13} .

Figure 3: Probability distributions for the two points x_4 and x_{13} with the corresponding σ_i value of Figure 2 which corresponds to a perplexity of (roughly) Perp = 2.

Figure 4: Example dataset used to explore the *t*-SNE algorithm. The colours correspond to clusters obtained by the k-means algorithm with k = 3.

Table 2: Toy example dataset consisting of four one-dimensional projection points y_i . The last column is intended for one summand, i.e. the product of the three factors in Equation 6. You can think of the corresponding data points (which are not shown) as a two-cluster set with the point x_2 in one and the points x_1 , x_3 and x_4 in a second cluster. Note that this is also reflected by the probabilities p_{1j} .

y_j	p_{1j}	q_{1j}	p_{1j} – q_{1j}	$y_1 - y_j$	$\left(1 + \left\ y_i - y_j\right\ ^2\right)^{-1}$	Summand
$y_1 = 0$	0.00					
$y_2 = 1$	0.04					
$y_3 = 2$	0.15					
$y_4 = 3$	0.20					

Table 3: The effect of the crowding problem analysed on a hyper-sphere. Based on the volume in different dimension, calculate the ratio of distances < 0.5 and distances > 0.5 for a hyper-sphere with unit length (r = 1).

Dimension	Volume	Distances < 0.5 (ratio)	Distances > 0.5 (ratio)
\mathbb{R}^1	2r		
\mathbb{R}^2	πr^2		
\mathbb{R}^3	$\frac{4}{3}\pi r^3$		

Figure 5: Dataset with corresponding projections obtained by using two different algorithms. The data points are arranged in a circle with one point in the centre (visualized as different classes). In both cases, a perplexity of Perp = 3 was specified and the algorithm was repeated multiple times with different initial starting points. Shown are the results with the lowest obtained loss.