Problem Set #1

Reiko Laski

Exercise 1.	:К

 $\mathcal{G}_1 = \{A : A \subset \mathbb{R}, A \text{ open}\}$ is not an algebra.

Proof:

Let $B \in \mathcal{G}_1$. Then B is open, and its complement B^c is closed. Therefore, $B^c \notin \mathcal{G}_1$, so \mathcal{G}_1 is not closed under complements and is not an algebra.

 $\mathcal{G}_2 = \{A : A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$ is an algebra, but not a σ -algebra. *Proof:*

- 1. $\emptyset \in \mathcal{G}_2$
- 2. Let $B \subset \mathcal{G}_2$. Then its complement B^c is also of the form $(a, b], (-\infty, b]$, and (a, ∞) . Therefore, $B^c \in \mathcal{G}_2$, so \mathcal{G}_2 is closed under complements.
- 3. Let $E_1, E_2, ..., E_n \in \mathcal{G}_2$. Then their finite union $\bigcup_{i=1}^n E_i \in \mathcal{G}_2$, so \mathcal{G}_2 is closed under finite unions.
- 4. Let $E_1, E_2, ... \in \mathcal{G}_2$. Then their countable union $\bigcup_{i=1}^{\infty} E_i \notin \mathcal{G}_2$, so \mathcal{G}_2 is not closed under countable unions.

Therefore \mathcal{G}_2 is an algebra, but not a σ -algebra.

 $\mathcal{G}_3 = \{A : A \text{ is a countable union of } (a, b], (-\infty, b], \text{ and } (a, \infty)\} \text{ is a } \sigma\text{-algebra}.$ Proof:

- 1. $\emptyset \in \mathcal{G}_3$
- 2. Let $B \subset \mathcal{G}_3$. Then its complement B^c is also of the form $(a, b], (-\infty, b]$, and (a, ∞) . Therefore, $B^c \in \mathcal{G}_3$, so \mathcal{G}_3 is closed under complements.
- 3. Let $E_1, E_2, ..., E_n \in \mathcal{G}_3$. Then their finite union $\bigcup_{i=1}^n E_i \in \mathcal{G}_3$, so \mathcal{G}_3 is closed under finite unions.
- 4. Let $E_1, E_2, ... \in \mathcal{G}_3$. Then their countable union $\bigcup_{i=1}^{\infty} E_i \in \mathcal{G}_3$, so \mathcal{G}_3 is closed under countable unions.

Therefore \mathcal{G}_2 is a σ -algebra.

Exercise 1.7

 $\{\emptyset, X\}$ is the smallest σ -algebra.

Proof:

Let \mathcal{A} be a σ -algebra. By definition, $\emptyset \in \mathcal{A}$. Then $\emptyset^c = X \in \mathcal{A}$.

 $\mathcal{P}(X)$ is the largest σ -algebra.

Proof:

Suppose $\mathcal{P}(X)$ is the not largest σ -algebra. Then there exists a set $B \subset X$ such that $B \notin \mathcal{P}(X)$. This is a contradiction. Therefore $\mathcal{P}(X)$ is the largest σ -algebra. \square

Exercise 1.10

Let $\{S_{\alpha}\}$ be a family of σ -algebras on X. Then $\cap_{\alpha} S_{\alpha}$ is also a σ -algebra. *Proof:*

- 1. $\emptyset \in \mathcal{S}_{\alpha} \forall \alpha \implies \emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha} \text{ (contains } \emptyset)$
- 2. $S \in \cap_{\alpha} \mathcal{S}_{\alpha} \implies S \in \mathcal{S}_{\alpha} \forall \alpha \implies S^{c} \in \mathcal{S}_{\alpha} \forall \alpha \implies S^{c} \in \cap_{\alpha} \mathcal{S}_{\alpha}$ (closed under complements)
- 3. $S_1, S_2, ... \in \cap_{\alpha} S_{\alpha} \implies S_1, S_2, ... \in S_{\alpha} \forall \alpha \implies \bigcup_{i=1}^{\infty} S_i \in S_{\alpha} \forall S_{\alpha} \implies \bigcup_{i=1}^{\infty} S_i \in \bigcup_{i=1}^{\infty} S_{\alpha} \text{ (closed under finite and countable unions)}$

Exercise 1.17

Let (X, \mathcal{S}, μ) be a measure space. Then μ is monotone and countably subadditive. *Proof:*

- 1. Let $A, B \in \mathcal{S}$, and let $A \subset B$. Then $A \cup (B \cap A^c) = B$. These sets are disjoint, so $\mu(A) + \mu(B \cap A^c) = \mu(B) \implies \mu(A) \leq \mu(B)$.
- 2. Let $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$. Then $\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \cap A_1^c) \cup (A_3 \cap A_1^c \cap A_2^c) \cup \cdots$. Since these sets are disjoint, $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A_1) + \mu(A_2 \cap A_1^c) + \mu(A_3 \cap A_1^c \cap A_2^c) + \cdots \le \sum_{i=1}^{\infty} \mu(A_i)$

Exercise 1.18

Let (X, \mathcal{S}, μ) be a measure space. Let $B \in \mathcal{S}$. Show that $\lambda : \mathcal{S} \to [0, \infty]$ defined by $\lambda(A) = \mu(A \cap B)$ is also a measure (X, \mathcal{S}) . *Proof:*

- 1. $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$
- 2. Let $\{A_i\}_{i=1}^{\infty} \in \mathcal{S} \text{ s.t. } A_i \cap A_j = \emptyset, \forall i \neq j.$ $\lambda(\cup_{i=1}^{\infty} A_i) = \mu((\cup_{i=1}^{\infty} A_i) \cap B) = \mu((A_1 \cap B) \cup (A_2 \cap B) \cup \cdots) = \mu(A_1 \cap B) + \mu(A_2 \cap B) + \cdots = \sum_{i=1}^{\infty} \mu(A_i \cap B) = \sum_{i=1}^{\infty} \lambda(A_i)$

Exercise 1.20

Let μ be a measure on (X, \mathcal{S}) . Then it is continuous from below in the sense that: $(A_1 \supset A_2 \supset A_2 \supset \cdots, A_i \in \mathcal{S}, \mu(A_1) < \infty) \implies (\lim_{n \to \infty} \mu(A_n) = \mu(\cap_{i=1}^{\infty} A_i))$ Proof:

Let
$$B_n = A_n$$
. Note that $\bigcap_{i=1}^n A_i = B_n$.
 $\mu(\bigcap_{i=1}^n A_i) = \lim_{n \to \infty} \mu(\bigcap_{i=1}^n A_i) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n)$

Exercise 2.10

The theorem states that $\mu^*(B) \ge \mu^*(B \cap E) + \mu^*(B \cap E^c)$. The (*) in the theorem could be replaced by $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$, because we have that

 $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$ by the definition of the outer measure μ^* . **Exercise 2.14** Let \mathcal{O} denote the collection of open sets of \mathbb{R} . Then $\sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R})$ is the smallest σ -algebra containing all open sets of \mathbb{R} . $\sigma(\mathcal{A})$ is the σ -algebra generated by the family \mathcal{A} that include \mathcal{O} . Therefore, $\sigma(\mathcal{O}) \subset \sigma(\mathcal{A}) \subset \mathcal{M}$. Exercise 3.1 Let $a \in \mathbb{R}$. Then $\{a\} \subset [a-\epsilon, a+\epsilon] \ \forall \epsilon > 0$. Then $\bar{\mu}(a) \leq \bar{\mu}([a-\epsilon, a+\epsilon]) = 2\epsilon \implies$ $\bar{\mu}(a) = 0 \ \forall a \in \mathbb{R}. \ \text{Let} \ A = \{a : a \in \mathbb{R}\} = \bigcup_{n=1}^{\infty} \{a_n\}. \ \text{Then} \ \bar{\mu}(A) = \bar{\mu}(\bigcup_{n=1}^{\infty} \{a_n\}) = 0$ $\sum_{n=1}^{\infty} \bar{\mu}(a_n) = 0$. Therefore every countable subset of the real line has Lebesgue measure 0. Exercise 3.4 Let $\{x \in X : f(x) < a\}$ be measurable in \mathcal{M} . The set $\bigcap_{n=0}^{\infty} \{x \in X : f(x) < a + \frac{1}{n}\} = \{x \in X : f(x) \le a\}$ is measurable since \mathcal{M} is closed under countable intersection. The sets $\{x \in X : f(x) < a\}^c = \{x \in X : f(x) \ge a\}$ and $\{x \in X : f(x) \le a\}^c = \{x \in A\}$ X: f(x) > a are also measurable since \mathcal{M} closed under complements. Exercise 3.7 The measurability of f+g, $f \cdot g$, and |f| follow from the measurability of F(f(x), g(x)). The measurability of $\max(f,g)$ and $\min(f,g)$ follow from the fact that $\sup_{n\in\mathbb{N}} f_n(x)$ and $\inf_{n\in\mathbb{N}} f_n(x)$ are measurable. Exercise 3.14 Let $\epsilon > 0$. Since f is bounded, $\exists M \in \mathbb{N}$ s.t. f < M. Then $\frac{1}{2^N} < \epsilon$ and for all $n \geq N, |f(x) - s_n(x)| < \epsilon \ \forall x.$ Therefore the convergence in (1) is uniform. Exercise 4.13 By Property 4.5, since ||f|| < M on $E \in \mathcal{M}$ and $\mu(E) < \infty$, we know that $0 \le \int_E ||f|| d\mu < M\mu(E) < \infty$. Then $\int_E ||f||^+ d\mu$ and $\int_E ||f||^- d\mu$ are finite, so ||f|| is absolutely integrable with respect to μ . Exercise 4.14 Since $f \in \mathcal{L}^1(\mu, E)$, we know that both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are finite. Therefore, f must be finite almost everywhere on E. Exercise 4.15 Since $f, g \in \mathcal{L}^1(\mu, E)$ and $f \leq g$, we have that $\int_E f^- d\mu \leq \int_E g^- d\mu$ and $\int_E f^+ d\mu \leq \int_E g^- d\mu$ $\int_{E} g^{+} d\mu \implies \int_{E} f d\mu \le \int_{E} g d\mu.$

Exercise 4.16

 $\begin{array}{ll} \int_A f^- d\mu \ + \ \int_{A^c \cap E} \ \mathrm{and} \ \int_A f^+ d\mu \ + \ \int_{A^c \cap E} f^+ d\mu \ \mathrm{Since} \ f \in \mathscr{L}^1(\mu,E), \ \mathrm{we \ have \ that} \\ \int_E f^- d\mu \ \mathrm{and} \ \int_E f^+ d\mu \ \mathrm{are \ finite}. \ \mathrm{Since} \ A \subset E, E = A \cup (A^c \cap E) \ \Longrightarrow \ \int_{A \cup (A^c \cap E)} f^- d\mu \ \mathrm{and} \ \int_{A \cup (A^c \cap E)} f^+ d\mu \ \mathrm{are \ finite}. \ \mathrm{Therefore \ we \ know \ that} \ \int_A f^- d\mu \ \mathrm{and} \ \int_A f^+ d\mu \ \mathrm{are \ finite}, \ \mathrm{and \ thus} \ f \in \mathscr{L}^1(\mu,A). \end{array}$

Exercise 4.21

Since $f \in \mathcal{L}^1$, we can define measures $\lambda_1(A) := \int_A f^+ d\mu$ and $\lambda_2(A) := \int_A f^- d\mu$ $\Longrightarrow \lambda(A) = \lambda_1(A) - \lambda_2(A) = \int_A f d\mu$. Then since $\beta \subset A$, $A = B \cup (A - B) \Longrightarrow \lambda_i(A) = \lambda_i(B) + \lambda_i(A - B)$. By hypothesis, $\lambda_i(A - B) = 0 \Longrightarrow \int_A f d\mu = \lambda(A) = \lambda_1(A) - \lambda_2(A) = \lambda_1(B) - \lambda_2(B) = \lambda(B) = \int_B f d\mu$.