	TP1 Pression - Marin Mrabet	Pt		A B C D	Note
ı	Préparation du travail				
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5
4	Quelle est la grandeur réglante ?	1	Α		0,5
5	Donner une grandeur perturbatrice.	1	Α		0,5
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1
_	alimentations, générateurs nécessaires. Faire apparaître les polarités.				_
II.	Etude du procédé				
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α		3
III.	Etude du régulateur				
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5
IV.	Performances et optimisation				
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Α		1,5
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	В		0,75
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	С		0,525
			Note	sur : 20	17,4

TP1 Pression

I. Préparation du travail

1/ Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2/ Quel est le nom de la grandeur réglée ?

La grandeur réglée est la pression dans la cuve.

3/ Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilisé pour mesurer la grandeur réglée est la déformation des membranes du capteur PT.

4/ Quelle est la grandeur réglante ?

La grandeur réglée est Qs, le débit en sortie.

5/ Donner une grandeur perturbatrice.

La grandeur perturbatrice est Qe, le débit en entrée.

6/ Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Etude du procédé

1 / Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

La sortie OP:

PID:

Entrée:

TagName	01M01_06		LIN Name	01M01_06	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	

2/ Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).

OP (%)	PV (%)
0	36,2
20	40,5
40	44,8
60	52,3
80	59,7
100	62,9

3/ En déduire le gain statique du procédé autour du point de fonctionnement.

Delta
$$s = 100 - 0 = 100\%$$

Delta $e = 62.9 - 36.2 = 26.7$

$$K = Delta e / Delta s = 26,7/100 = 0,267$$

4/ En déduire le sens d'action à régler sur le régulateur.

Lorsqu'on augmente la commande la mesure augmente donc le sens d'action du régulateur est inverse.

5/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

Delta
$$X = 4.8\%$$

Delta $Y = 10\%$

$$t0 = 10 : 41 : 06 = 0s$$

 $t1 = 10 : 41 : 11 = 5s$
 $t2 = 10 : 41 : 12 = 6s$

$$K = Delta X / delta Y = 4,8/10 = 0,48\%$$

Le retard
$$T = 2.8(5-0) - 1.8(6-0) = 3.2s$$

La constante de temps t = 5,5(6-5) = 5,5s

III. Etude du régulateur

1/ Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.

On a Kr = T /
$$t = 3.2/5.5 = 0.58$$

Alors T est plus grand que 0,5 donc c'est un PID mixte.

2/ En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.

$$Kr = T / t = 3,2/5,5 = 0,58$$

$$Ti = t + 0.4T = 5.5 + 0.4 * 3.2 = 6.78 s$$

$$Td = T / kr + 2.5 = 3.2 / 0.58 + 2.5 = 1.03 s$$

$$Xp = 100/A = 100/3,67 = 27,24 \%$$

IV. Performances et optimisation

1/ Programmer votre régulateur pour assurer le fonctionnement de la régulation.

2/ Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique.

Erreur statique = 20-20= 0% Dépassement = Inférieur à 1%

Temps de réponse =
$$11 : 18 : 16 = 0$$

 $11 : 18 : 57 = 39s$

Donc T rep =
$$39s$$

3/ Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.

$$Xp = 27 \%$$

 $Ti = 6.78 s$
 $Td = 1.03 s$

TimeBase	Secs	
XP	27.2	%
TI	6.78	
TD	1.03	

4/ Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.

Erreur statique = 20-15 = 5

Donc on observe que sur le premier graphique l'erreur statique est nul tandis que sur celui-ci elle est de 5.				