Lógica El

	Teste — 28 de maio de 2021 -		— duração: 2 horas
nome:		número: .	

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que $subf(\varphi)$ tem quatro elementos e $var(\varphi) = \{p_0\}.$

Resposta:

2. Seja $\Gamma = \{p_1 \land \neg p_0, p_2 \to p_0\}$. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que φ não é contradição e $\Gamma \cup \{\varphi\}$ é um conjunto inconsistente.

Resposta:

3. Seja $\Gamma = \{p_1 \land \neg p_0, p_2 \to p_0\}$. Dê exemplo de uma valoração v tal que v satisfaz Γ .

Resposta:

4. Considere a fórmula $\varphi = p_0 \to \neg (p_1 \vee \neg p_2)$. Dê exemplo de uma fórmula ψ do Cálculo Proposicional tal que $\psi \Leftrightarrow \varphi$ e cujos conetivos estão no conjunto $\{\neg, \land\}$.

Resposta:

Nas restantes questões deste grupo, considere o tipo de linguagem $L = (\{c, s, f\}, \{P\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(f) = 2$ e $\mathcal{N}(P) = 1$, e considere a L-estrutura $E = (\mathbb{N}, \overline{})$ tal que:

$$\begin{split} \overline{\mathsf{c}} &= 1 \\ \overline{\mathsf{s}} &: \mathbb{N} \to \mathbb{N} \text{ tal que } \overline{\mathsf{f}}(m,n) = m + 2n \\ \overline{\mathsf{s}} &: \mathbb{N} \to \mathbb{N} \text{ tal que } \overline{\mathsf{s}}(n) = n + 1 \end{split}$$

- 5. Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = 2i$. Indique o valor de: $\mathsf{f}(\mathsf{f}(x_1,\mathsf{c}),\mathsf{s}(x_2))$ $[a]_E$.
- 6. Indique uma fórmula de tipo L válida em E que represente a afirmação: Para qualquer número par o seu sucessor é um número ímpar.

Resposta:

Resposta:

- 7. Seja φ a L-fórmula: $\forall x_0 \, \mathsf{P}(\mathsf{f}(x_0, x_1)) \to \forall x_1 \, \neg \mathsf{P}(\mathsf{f}(x_1, x_0))$. Calcule $\varphi[s(x_1)/x_0]$. Resposta:
- 8. Seja φ a L-fórmula: $\forall x_0 \, \mathsf{P}(\mathsf{f}(x_0, x_1)) \to \forall x_1 \, \neg \mathsf{P}(\mathsf{f}(x_1, x_0))$. Indique um L-termo t tal que x_1 não está livre para t em φ .

Resposta:

Grupo II

Responda às 6 questões deste grupo na folha de exame, **justificando** convenientemente as respostas.

- 1. Seja ψ uma fórmula proposicional tal que $var(\psi) = \{p_0\}$. Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $var(\varphi) = var(\varphi[\psi/p_0])$.
- 2. Indique uma forma normal conjuntiva logicamente equivalente à fórmula $(p_1 \to \neg p_2) \leftrightarrow (p_3 \lor \bot)$. (Justifique.)
- 3. Diga se: $p_1 \wedge (p_2 \vee p_3), p_1 \rightarrow \neg p_2 \models p_3$. (Justifique.)
- 4. Seja $\varphi = p_0 \to (p_1 \to p_2)$.
 - (a) Construa uma demonstração em DNP da fórmula $\varphi \to ((p_0 \land p_1) \to p_2)$.
 - (b) Mostre que $\{\varphi, p_0, p_1 \land \neg p_2\}$ é sintaticamente inconsistente.
- 5. Considere o tipo de linguagem $L = (\{c, s, f\}, \{P\}, \mathcal{N})$ e a L-estrutura $E = (\mathbb{N}, \overline{})$ do Grupo I. Seja φ a L-fórmula: $P(x_1) \to \forall x_0 P(f(x_1, x_0))$.
 - (a) Prove que φ é válida em E.
 - (b) Mostre que φ não é universalmente válida.
- 6. Sejam L um tipo de linguagem, φ e ψ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\varphi)$. Prove que: $\forall x (\varphi \lor \psi), \neg \varphi \models \forall x \psi$.

Cotações	II (8 valores)	II (12 valores)
Cotações	1+1+1+1+1+1+1+1	1.75+1.75+1.75+3.25+2.5+1