Bài Tập (Các phép toán số học cho số nguyên)

---oOo---

Các bài tập chương này được trích dẫn và dịch lại từ:

Computer Organization and Design: The Hardware/Software Interface, Patterson, D. A., and J. L. Hennessy, Morgan Kaufman, Third Edition, 2011.

Bảng 1:

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Bài số 1

Cho bảng sau với các số được viết trong hệ nhị phân

	A	В
a.	01000101	01011010
b.	01100110	00101100
c.	11001000	01100111
d.	11110111	11101101

- 1. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **có dấu** dùng bù hai. Tính A + B Trả lời:
- a) $A = 0100 \ 0101 = 69 \ (dec)$

$$B = 0101 \ 1010 = 90 \ (dec)$$

$$=> A + B = 1001 1111 => Tràn số$$

(Do cộng hai số dương mà tổng là số âm -> Tràn)

(Kiểm chứng: 69 (dec) + 90 (dec) = 159 (dec) mà giá trị dương lớn nhất của số có dấu dùng 8 bits bù hai là 127, nên phép toán bị tràn)

b)
$$A = 0110 \ 0110 = 102 \ (dec)$$

$$B = 0010 \ 1100 = 44 \ (dec)$$

$$=> A + B = 1001 \ 0010 => Tràn số$$

(Do cộng hai số dương mà tổng là số âm -> Tràn)

(Kiểm chứng: 102 (dec) + 44 (dec) = 146 (dec) mà giá trị dương lớn nhất của số có dấu dùng 8 bits bù hai là 127, nên phép toán bị tràn)

c)
$$A = 1100 \ 1000 = -56 \ (dec)$$

```
B = 0110\ 0111 = 103\ (dec)
=> A + B = 0010 1111 = 47 (dec)
(Tổng của một số dương và một số âm không bao giờ xảy ra tràn)
(Kiểm chứng: -56 (dec) + 103 (dec) = 47 (dec)
d) A = 1111 \ 0111 = -9 \ (dec)
  B = 1110 \ 1101 = -19 \ (dec)
\Rightarrow A + B = 1110 0100 = -28 (dec)
(Tổng của 2 số âm ra kết quả là một số âm => Không xảy ra tràn số)
(Kiểm chứng: -9 (dec) + (-19) (dec) = -28 (dec)
2. Giả sử A và B là số dùng 8 bit lưu trữ, theo dang số có dấu dùng bù hai. Tính A – B
   Trả lời:
a) A = 0100 \ 0101 = 69 \ (dec)
  B = 0101 \ 1010 = 90 \ (dec)
  Bù 2 của B = 1010\ 0110
=> A - B = A + bù 2 của B = 1110 1011 = -21 (dec)
(Phép trừ hai số dương, tức tổng của một số dương và một số âm thì không bao giờ bị tràn)
(Kiểm chứng: 69 (dec) - 90 (dec) = -21 (dec))
b) A = 0110 \ 0110 = 102 \ (dec)
  B = 0010 \ 1100 = 44 \ (dec)
  Bù 2 của B = 1101 0100
=> A - B = A + bù 2 của B = 0011 1010 = 58 (dec)
(Phép trừ hai số dương, tức tổng của một số dương và một số âm thì không bao giờ bi tràn)
(Kiểm chứng: 102 (dec) - 44 (dec) = 58 (dec)
c) A = 1100 \ 1000 = -56 \ (dec)
  B = 0110\ 0111 = 103\ (dec)
  Bù 2 của B = 1001 1001
  A - B = A + bù 2 của B = 0110 0001 = 97 => Tràn số
(Đây là phép toán trừ của một số âm và một số dương, hay nói cách khác là công hai số
âm, mà tổng lai là số dương => Tràn số)
(Kiểm chứng: -56 (dec) -103 (dec) = -159 (dec) mà giá trị âm nhỏ nhất của số có dấu 8
bit bù 2 là -128 \Rightarrow Tràn số)
d) A = 1111 \ 0111 = -9 \ (dec)
  B = 1110 \ 0111 = -19 \ (dec)
  Bù 2 của B = 0001 0011
=> A - B = A + bù 2 của B = 0000 1010 = 10 (dec)
(Đây là phép toán trừ 2 số âm, tức là phép toán công một số âm cho một số dương => Chắc
chắn không bi tràn)
(Kiểm chứng: -9 (dec) - (-19) (dec) = 10 (dec))
3. Giả sử A và B là số dùng 8 bit lưu trữ, theo dang số không dấu. Tính A + B (chỉ tính cho c và d)
a) A = 0100 \ 0101 = 69 \ (dec)
  B = 0101 \ 1010 = 90 \ (dec)
```

 \Rightarrow A + B = $\frac{0}{1001}$ 1111 = 159 (dec) \Rightarrow Không bị tràn

(Kiểm chứng: 69 (dec) + 90 (dec) = 159 (dec), tầm giá trị của số không dấu 8 bits là từ 0 tới 255 nên phép toán này không bị tràn)

$$=> A + B = 0 1001 0010 = 146 (dec) => Không bị tràn$$

(Kiểm chứng : 102 (dec) + 44 (dec) = 146 (dec), tầm giá trị của số không dấu 8 bits là từ 0 tới 255 => Không tràn)

c)
$$A = 1100\ 1000 = 200\ (dec)$$

$$B = 0110\ 0111 = 103\ (dec)$$

$$=> A + B = 100101111 (dec) = 303 (dec) => Tràn số$$

(Kiểm chứng: 200 (dec) + 103 (dec) = 303 (dec) mà giá trị lớn nhất của số không dấu 8 bit là 255 => Tràn số)

d)
$$A = 1111 \ 0111 = 247 \ (dec)$$

$$B = 1110 \ 1101 = 237 \ (dec)$$

$$=> A + B = 1 1110 0100 = 484 (dec) => Tràn số$$

(Kiểm chứng: 247 (dec) + 237 (dec) = 484 (dec) mà giá trị lớn nhất của số không dấu 8 bit là 255 => Tràn số)

Bài số 2

Cho các số như bảng sau:

CHO	eno cue so miu bung suu.				
a	50(8)	23 ₍₈₎			
b	66(8)	04 ₍₈₎			
c	110110 ₍₂₎	101100 ₍₂₎			
d	30(8)	07(8)			

1. Giả sử số biểu diễn theo kiểu **không dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1 (sử dụng cho hàng a, b trong bảng trên)

A = 50 (oct) = 101000

B = 23 (oct) = 010011

Iteration	Step	Multiplier	Multiplicand	Product
0	initial values	010 01 <mark>1</mark>	000 000 101 000	000 000 000 000
1	pro = prod + mcand	010 011	000 000 101 000	000 000 101 000
	shift right multiplier	001 00 <mark>1</mark>	000 000 101 000	0000 00 101 000
2	pro = prod + mcand	001 001	000 001 010 000	000 001 111 000
	shift right multiplier	000 10 <mark>0</mark>	000 010 100 000	000 001 111 000
3	lsb = 0, no operation	000 100	000 010 100 000	000 001 111 000
	shift right multiplier	000 01 <mark>0</mark>	000 101 000 000	000 001 111 000
4	lsb = 0, no operation	000 010	000 101 000 000	000 001 111 000
	shift right multiplier	000 00 <mark>1</mark>	001 010 000 000	000 001 111 000
5	lsb = 0, no operation	000 001	001 010 000 000	001 011 111 000
	shift right multiplier	000 00 <mark>0</mark>	010 100 000 000	001 011 111 000
6	lsb = 0, no operation	000 000	010 100 000 000	001 011 111 000
	shift right multiplier	000 000	101 000 000 000	001 011 111 000

Kết quả: A x B =
$$0010111111000 = 1370_{(8)}$$

b.

$$\begin{array}{l} A = 66_{(8)} = 110110 \\ B = 04_{(8)} = 000100 \end{array}$$

Iteration	Step	Multiplier	Multiplicand	Product
0	initial values	000 100	000 000 110 110	000 000 000 000
1	lsb = 0, no operation	000 100	000 000 110 110	000 000 000 000
	shift right multiplier	000 010	000 000 110 110	000 000 000 000
2	lsb = 0, no operation	000 010	000 000 110 110	000 000 000 000
	shift right multiplier	000 001	000 011 011 000	000 000 000 000
3	pro = prod + mcand	000 001	000 011 011 000	000 011 011 000
	shift right multiplier	000 000	000 110 110 000	000 011 011 000
4	lsb = 0, no operation	000 000	000 110 110 000	000 011 011 000
	shift right multiplier	000 000	001 101 100 000	000 011 011 000
5	lsb = 0, no operation	000 000	001 101 100 000	000 011 011 000
	shift right multiplier	000 000	001 011 000 000	000 011 011 000
6	lsb = 0, no operation	000 000	001 011 000 000	000 011 011 000
	shift right multiplier	000 000	000 110 000 000	000 011 011 000

Kết quả: A x B = 0000 1101 1000= $330_{(8)}$

2. Giả sử số biểu diễn theo kiểu **có dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1 (sử dụng cho hàng c, d trong bảng trên)

c.
$$A = 110110_{(2)}$$

$$B = 101100_{(2)}$$

Interation	Step	Multiplier	Multiplicand	Product
0	Initial values	101 100	000 000 110 110	000 000 000 000
1	lsb = 0, no operation	101 100	000 000 110 110	000 000 000 000
	sll multiplicand	101 100	000 001 101 100	000 000 000 000
	slr miltiplier	010 110	000 001 101 100	000 000 000 000
2	lsb = 0, no operation	010 110	000 001 101 100	000 000 000 000
	sll multiplicand	010 110	000 011 011 000	000 000 000 000
	slr miltiplier	001 011	000 011 011 000	000 000 000 000
3	prod = prod + mcand	001 011	000 011 011 000	000 011 011 000
	sll multiplicand	001 011	000 110 110 000	000 011 011 000
	slr miltiplier	000 101	000 110 110 000	000 011 011 000
4	prod = prod + mcand	000 101	000 110 110 000	001 010 001 000
	sll multiplicand	000 101	001 101 100 000	001 010 001 000
	slr miltiplier	000 010	001 101 100 000	001 010 001 000
5	lsb = 0, no operation	000 010	001 101 100 000	001 010 001 000
	sll multiplicand	000 010	011 011 000 000	001 010 001 000
	slr miltiplier	000 001	011 011 000 000	001 010 001 000
6	prod = prod + mcand	000 001	011 011 000 000	100 101 001 000
	sll multiplicand	000 001	110 110 000 000	100 101 001 000
	slr miltiplier	000 000	110 110 000 000	100 101 001 000

Kết quả: $A \times B = 1001 \ 0100 \ 1000$

d.
$$A = 30_{(8)} = 011\ 000$$

$$B = 07_{(8)} = 000 \ 111$$

Interation	Step	Multiplier	Multiplicand	Product
0	Initial values	000 111	000 000 011 000	000 000 000 000
1	prod = prod + mcand	000 111	000 000 011 000	000 000 011 000
	sll multiplicand	000 111	000 000 110 000	000 000 011 000
	slr miltiplier	000 011	000 000 110 000	000 000 011 000
2	prod = prod + mcand	000 011	000 000 110 000	000 001 001 000
	sll multiplicand	000 011	000 001 100 000	000 001 001 000
	slr miltiplier	000 001	000 001 100 000	000 001 001 000
3	prod = prod + mcand	000 001	000 001 100 000	000 010 101 000
	sll multiplicand	000 001	000 011 000 000	000 010 101 000
	slr miltiplier	000 000	000 011 000 000	000 010 101 000
4	lsb = 0, no operation	000 000	000 011 000 000	000 010 101 000
	sll multiplicand	000 000	000 110 000 000	000 010 101 000
	slr miltiplier	000 000	000 110 000 000	000 010 101 000
5	lsb = 0, no operation	000 000	000 110 000 000	000 010 101 000
	sll multiplicand	000 000	001 100 000 000	000 010 101 000
	slr miltiplier	000 000	001 100 000 000	000 010 101 000
6	lsb = 0, no operation	000 000	001 100 000 000	000 010 101 000
	sll multiplicand	000 000	011 000 000 000	000 010 101 000
	slr miltiplier	000 000	011 000 000 000	000 010 101 000

Kết quả: $A \times B = 0000 \ 1010 \ 1000 = 250_{(8)}$

1. Cho A =
$$50_{(16)}$$

$$B = 23_{(16)}$$

Giả sử số biểu diễn theo kiểu **không dấu 8 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

 $A = 50_{16} = 0101\ 0000_2$

 $B=23_{16}=0010\ 0011_2$

Iteration	Step	Multiplicand	Product/ Multiplier
0	Initial values	0101 0000	0000 0000 0010 0011
1	Prod = Prod + Mcand	0101 0000	0101 0000 0010 0011
	Shift right Product	0101 0000	0010 1000 0001 0001
2	Prod = Prod + Mcand	0101 0000	0111 1000 0001 0001
	Shift right Product	0101 0000	0011 1100 0000 1000
3	lsb = 0, no op	0101 0000	0011 1100 0000 1000
	Shift right Product	0101 0000	0001 1110 0000 0100
4	lsb = 0, no op	0101 0000	0001 1110 0000 0100
	Shift right Product	0101 0000	0000 1111 0000 0010
5	lsb = 0, no op	0101 0000	0000 1111 0000 0010
	Shift right Product	0101 0000	0000 0111 1000 0001
6	lsb = 0, no op	0101 0000	0101 0111 1000 0001
	Shift right Product	0101 0000	0010 1011 1100 0000
7	lsb = 0, no op	0101 0000	0010 1011 1100 0000
	Shift right Product	0101 0000	0001 0101 1110 0000
8	lsb = 0, no op	0101 0000	0001 0101 1110 0000
	Shift right Product	0101 0000	0000 1010 1111 0000

Vậy A x B = 0000 1010 1111 0000 = $AF0_{(16)}$

2.
$$A = 66_{(16)}$$

 $B = 04_{(16)}$

Giả sử số biểu diễn theo kiểu **không dấu 8 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

$$A = 66_{16} = 0110 \ 0110_2$$

 $B = 04_{16} = 0000 \ 0100_2$

Iteration	Step	Multiplicand	Product/ Multiplier
0	Initial values	0110 0110	0000 0000 0000 0100
1	lsb = 0, no op	0110 0110	0000 0000 0000 0100
	Shift right Product	0110 0110	0000 0000 0000 0010
2	Prod = Prod + Mcand	0110 0110	0000 0000 0000 0010
	Shift right Product	0110 0110	0000 0000 0000 0001
3	lsb = 0, no op	0110 0110	0110 0110 0000 0001
	Shift right Product	0110 0110	0011 0011 0000 0000
4	lsb = 0, no op	0110 0110	0011 0011 0000 0000
	Shift right Product	0110 0110	0001 1001 1000 0000
5	lsb = 0, no op	0110 0110	0001 1001 1000 0000
	Shift right Product	0110 0110	0000 1100 1100 0000
6	lsb = 0, no op	0110 0110	0000 1100 1100 0000
	Shift right Product	0110 0110	0000 0110 0110 0000
7	lsb = 0, no op	0110 0110	0000 0110 0110 0000
	Shift right Product	0110 0110	0000 0011 0011 0000
8	lsb = 0, no op	0110 0110	0000 0011 0011 0000
	Shift right Product	0110 0110	0000 0001 1001 1000

Vậy A x B = 0000 0001 1001 1000 = $198_{(16)}$

Bài số 4

Thực hiện phép chia không dấu A/B theo cấu trúc phần cứng như hình, biết máy tính dùng 6 bit biểu diễn các số.

	A	В
a. Hệ bát phân	40(8)	21 ₍₈₎
b. Hệ bát phân	44(8)	25 ₍₈₎
c. Hệ thập phân	55 (110111)	4
d. Hệ thập phân	41 (101001)	3

Lưu ý: câu b, khi thực hiện A/B, dùng 6 bit, chạy theo giải thuật chia sẽ không đúng; nếu dùng lớn hơn 6 bit thì đúng.

Sinh viên trả lời các câu hỏi sau:

- Vì sao lại không đúng? Gợi ý các giải pháp để giải quyết trường hợp này
- Thực hiện lại câu b lần lượt với hai trường hợp sau:
 - \circ **B** = **34**(8)
 - \circ B = 44₍₈₎ và A, B dùng số 8 bit để biểu diễn
- $\bullet \quad A = 40_{(8)} = 100\ 000$

$$B = 21_{(8)} = 010\ 001$$

Step	Action	Quotient	Divisor	Remainder
0	Initial values	000 000	010 001 000 000	000 000 100 000
1	R = R - D	000 000	010 001 000 000	101 111 100 000
	R < 0, $R = R + D$, dịch trái Q 1 bit	000 000	010 001 000 000	000 000 100 000
	Dịch phải D 1 bit	000 000	001 000 100 000	000 000 100 000
2	R = R - D	000 000	001 000 100 000	111 000 000 000
	R < 0, $R = R + D$, dịch trái Q 1 bit	000 000	001 000 100 000	000 000 100 000
	Dịch phải D 1 bit	000 000	000 100 010 000	000 000 100 000
3	R = R - D	000 000	000 100 010 000	111 100 010 000
	R < 0, $R = R + D$, dịch trái Q 1 bit	000 000	000 100 010 000	000 000 100 000
	Dịch phải D 1 bit	000 000	000 010 001 000	000 000 100 000
4	R = R - D	000 000	000 010 001 000	111 110 011 00
	R < 0, $R = R + D$, dịch trái Q 1 bit	000 000	000 010 001 000	000 000 100 000
	Dịch phải D 1 bit	000 000	000 001 000 100	000 000 100 000
5	R = R - D	000 000	000 001 000 100	111 111 011 100
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 001 000 100	000 000 100 000

	Dịch phải D 1 bit	000 000	000 000 100 010	000 000 100 000
6	R = R - D	000 000	000 000 100 010	111 111 111 110
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 000 100 010	000 000 100 000
	Dịch phải D 1 bit	000 000	000 000 010 001	000 000 100 000
7	R = R - D	000 000	000 000 010 001	000 000 001 111
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 001	000 000 010 001	000 000 001 111
	Dịch phải D 1 bit	000 001	000 000 001 000	000 000 001 111

 $A = 44_{(8)} = 100 \ 100$ $B = 25_{(8)} = 010 \ 101$

Step	Action	Quotient	Divisor	Remainder
0	Initial values	000 000	010 101 000 000	000 000 100 100
1	R = R - D	000 000	010 101 000 000	101 011 100 100
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	010 101 000 000	000 000 100 100
	Dịch phải D 1 bit	000 000	001 010 100 000	000 000 100 100
2	R = R - D	000 000	001 010 100 000	110 110 000 100
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	001 010 100 000	000 000 100 100
	Dịch phải D 1 bit	000 000	000 101 010 000	000 000 100 100
3	R = R - D	000 000	000 101 010 000	111 011 010 100
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 101 010 000	000 000 100 100
	Dịch phải D 1 bit	000 000	000 010 101 000	000 000 100 100
4	R = R - D	000 000	000 010 101 000	111 101 111 100
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 010 101 000	000 000 100 100
	Dịch phải D 1 bit	000 000	000 001 010 100	000 000 100 100
5	R = R - D	000 000	000 001 010 100	111 111 010 000
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 001 010 100	000 000 100 100
	Dịch phải D 1 bit	000 000	000 000 101 010	000 000 100 100
6	R = R - D	000 000	000 000 101 010	111 111 111 010
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 000 101 010	000 000 100 100
	Dịch phải D 1 bit	000 000	000 000 010 101	000 000 100 100
7	R = R - D	000 000	000 000 010 101	000 000 001 111
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 001	000 000 010 101	000 000 001 111
	Dịch phải D 1 bit	000 001	000 000 001 010	000 000 001 111

• $A = 55_{(10)} = 110 \ 111$ $B = 4_{(10)} = 000 \ 100$

Step	Action	Quotient	Divisor	Remainder
0	Initial values	000 000	000 100 000 000	000 000 110 111
1	R = R - D	000 000	000 100 000 000	111 100 110 111
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 100 000 000	000 000 110 111
	Dịch phải D 1 bit	000 000	000 010 000 000	000 000 110 111
2	R = R - D	000 000	000 010 000 000	111 110 110 111
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 010 000 000	000 000 110 111
	Dịch phải D 1 bit	000 000	000 001 000 000	000 000 110 111
3	R = R - D	000 000	000 001 000 000	111 111 110 111
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 001 000 000	000 000 110 111
	Dịch phải D 1 bit	000 000	000 000 100 000	000 000 110 111

4	R = R - D	000 000	000 000 100 000	000 000 010 111
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 001	000 000 100 000	000 000 010 111
	Dịch phải D 1 bit	000 001	000 000 010 000	000 000 010 111
5	R = R - D	000 001	000 000 010 000	000 000 000 111
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 011	000 000 010 000	000 000 000 111
	Dịch phải D 1 bit	000 011	000 000 001 000	000 000 000 111
6	R = R - D	000 011	000 000 001 000	111 111 111 111
	R < 0, $R = R + D$, dịch trái Q 1 bit	000 110	000 000 001 000	000 000 000 111
	Dịch phải D 1 bit	000 110	000 000 000 100	000 000 000 111
7	R = R - D	000 110	000 000 000 100	000 000 000 011
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	001 101	000 000 000 100	000 000 000 011
	Dịch phải D 1 bit	001 101	000 000 000 010	000 000 000 011

• $A = 41_{(10)} = 101\ 001$ $B = 3_{(10)} = 000\ 011$

Step	Action	Quotient	Divisor	Remainder
0	Initial values	000 000	000 011 000 000	000 000 101 001
1	R = R - D	000 000	000 011 000 000	111 101 101 001
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 011 000 000	000 000 101 001
	Dịch phải D 1 bit	000 000	000 001 100 000	000 000 101 001
2	R = R - D	000 000	000 001 100 000	111 111 001 001
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 001 100 000	000 000 101 001
	Dịch phải D 1 bit	000 000	000 000 110 000	000 000 101 001
3	R = R - D	000 000	000 000 110 000	111 111 111 001
	R < 0, R = R + D, dịch trái Q 1 bit	000 000	000 000 110 000	000 000 101 001
	Dịch phải D 1 bit	000 000	000 000 011 000	000 000 101 001
4	R = R - D	000 000	000 000 011 000	000 000 010 001
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 001	000 000 011 000	000 000 010 001
	Dịch phải D 1 bit	000 001	000 000 001 100	000 000 010 001
5	R = R - D	000 001	000 000 001 100	000 000 000 101
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	000 011	000 000 001 100	000 000 000 101
	Dịch phải D 1 bit	000 011	000 000 000 110	000 000 000 101
6	R = R - D	000 011	000 000 000 110	111 111 111 111
	R < 0, R = R + D, dịch trái Q 1 bit	000 110	000 000 000 110	000 000 000 101
	Dịch phải D 1 bit	000 110	000 000 000 011	000 000 000 101
7	R = R - D	000 110	000 000 000 011	000 000 000 010
	$R > 0$, dịch trái Q 1 bit, $Q_0 = 1$	001 101	000 000 000 011	000 000 000 010
	Dịch phải D 1 bit	001 101	000 000 000 001	000 000 000 010