Classification: Basic Concepts, Decision Trees, and Model Evaluation

Dr. Meng Qu Rutgers University

General Approach for Building Classification Model

Test Set

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Classification: Alternative Techniques

Bayesian Classifiers

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

- Given:
 - A doctor knows that C causes A 50% of the time
 - Prior probability of any patient having C is 1/50,000
 - Prior probability of any patient having A is 1/20
- If a patient has A, what's the probability he/she has C?

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)

 Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C|A_1A_2...A_n) = \frac{P(A_1A_2...A_n|C)P(C)}{P(A_1A_2...A_n)}$$

- Choose value of C that maximizes
 P(C | A₁, A₂, ..., A_n)
- Equivalent to choosing value of C that maximizes
 P(A₁, A₂, ..., A_n|C) P(C)
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j)$
 - Can estimate P(A_i| C_j) for all A_i and C_j.
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

Training dataset

Class:

C1:buys_computer=

'yes'

C2:buys_computer=

'no'

Data sample
X =(age<=30,
Income=medium,
Student=yes
Credit_rating=
Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: Example

Compute P(X|Ci) for each class

```
P(age="<30" | buys computer="ves") = 2/9=0.222
   P(age="<30" | buys computer="no") = 3/5 = 0.6
   P(income="medium" | buys computer="yes")= 4/9 =0.444
   P(income="medium" | buys computer="no") = 2/5 = 0.4
   P(student="yes" | buys computer="yes)= 6/9 =0.667
   P(student="yes" | buys computer="no")= 1/5=0.2
   P(credit rating="fair" | buys computer="yes")=6/9=0.667
   P(credit rating="fair" | buys computer="no")=2/5=0.4
 X=(age<=30, income =medium, student=yes, credit rating=fair)
P(X|Ci): P(X|buys computer="yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
          P(X|buys computer="no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
P(X|Ci)*P(Ci): P(X|buys computer="yes") * P(buys computer="yes") = 0.028
                 P(X|buys computer="no") * P(buys computer="no") = 0.007
X belongs to class "buys computer=yes"
```

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero.
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

c: number of classes

p: prior probability

m: parameter (equivalent sample size)

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

Classification: Model Overfitting and Classifier Evaluation

Dr. Meng Qu Rutgers University

Classification Errors

- Training errors (apparent errors)
 - Errors committed on the training set

- Test errors
 - Errors committed on the test set

- Generalization errors
 - Expected error of a model over random selection of records from same distribution

Example Data Set

Two class problem:

+, 0

3000 data points (30% for training, 70% for testing)

Data set for + class is generated from a uniform distribution

Data set for o class is generated from a mixture of 3 gaussian distributions, centered at (5,15), (10,5), and (15,15)

Decision Trees

Decision Tree with 11 leaf nodes

Decision Tree with 24 leaf nodes

Which tree is better?

Model Overfitting

Underfitting: when model is too simple, both training and test errors are largeOverfitting: when model is too complex, training error is small but test error is large

Mammal Classification Problem

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Mammal
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	
human	warm-blooded	hair	yes	no	no	yes	no	yes
python	cold-blooded	scales	no	no	no	no	yes	no
$_{ m salmon}$	cold-blooded	scales	no	yes	no	no	no	no
whale	warm-blooded	hair	yes	yes	no	no	no	yes
frog	cold-blooded	none	no	$_{ m semi}$	no	yes	yes	no
komodo	cold-blooded	scales	no	no	no	yes	no	no
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	yes
pigeon	warm-blooded	feathers	no	no	yes	yes	no	no
cat	warm-blooded	fur	yes	no	no	yes	no	yes
leopard	cold-blooded	scales	yes	yes	no	no	no	no
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	no
penguin	warm-blooded	feathers	no	$_{ m semi}$	no	yes	no	no
porcupine	warm-blooded	quills	yes	no	no	yes	yes	yes
eel	cold-blooded	scales	no	yes	no	no	no	no
$\operatorname{salamander}$	cold-blooded	none	no	$_{ m semi}$	no	yes	yes	no

Training Set

Decision Tree Model training error = 0%

Body

Effect of Noise

Example: Mammal Classification problem

Training Set:

Name	Body	Gives	Four-	Hibernates	Class
	Temperature	Birth	legged		Label
porcupine	warm-blooded	yes	yes	yes	yes
cat	warm-blooded	yes	yes	no	yes
bat	warm-blooded	yes	no	yes	no*
whale	warm-blooded	yes	no	no	no*
salamander	cold-blooded	no	yes	yes	no
komodo dragon	cold-blooded	no	yes	no	no
python	cold-blooded	no	no	yes	no
salmon	cold-blooded	no	no	no	no
eagle	warm-blooded	no	no	no	no
guppy	cold-blooded	yes	no	no	no

Test Set:

Name	Body	Gives	Four-	Hibernates	Class
	Temperature	Birth	legged		Label
human	warm-blooded	yes	no	no	yes
pigeon	warm-blooded	no	no	no	no
elephant	warm-blooded	yes	yes	no	yes
leopard shark	cold-blooded	yes	no	no	no
turtle	cold-blooded	no	yes	no	no
penguin	cold-blooded	no	no	no	no
eel	cold-blooded	no	no	no	no
dolphin	warm-blooded	yes	no	no	yes
spiny anteater	warm-blooded	no	yes	yes	yes
gila monster	cold-blooded	no	yes	yes	no

Lack of Representative Samples

Training Set:

Name	Body	Four-	Hibernates	Class
	Temperature	legged		Label
salamander	cold-blooded	yes	yes	no
guppy	cold-blooded	no	no	no
eagle	warm-blooded	no	no	no
poorwill	warm-blooded	no	yes	no
platypus	warm-blooded	yes	yes	yes

Test Set:

Name	Body	Four-	Hibernates	Class
	Temperature	legged		Label
human	warm-blooded	no	no	yes
pigeon	warm-blooded	no	no	no
elephant	warm-blooded	yes	no	yes
leopard shark	cold-blooded	no	no	no
turtle	cold-blooded	yes	no	no
penguin	cold-blooded	no	no	no
eel	cold-blooded	no	no	no
dolphin	warm-blooded	no	no	yes
spiny anteater	warm-blooded	yes	yes	yes
gila monster	cold-blooded	yes	yes	no

Lack of training records at the leaf nodes for making reliable classification

Effect of Multiple Comparison Procedure

- Consider the task of predicting whether stock market will rise/fall in the next 10 trading days
- Random guessing:

$$P(correct) = 0.5$$

• Make 10 random guesses in a row:

$$P(\#correct \ge 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547$$

Day 1	Up
Day 2	Down
Day 3	Down
Day 4	Up
Day 5	Down
Day 6	Down
Day 7	Up
Day 8	Up
Day 9	Up
Day 10	Down

Effect of Multiple Comparison Procedure

- Approach:
 - Get 50 analysts
 - Each analyst makes 10 random guesses
 - Choose the analyst that makes the most number of correct predictions

 Probability that at least one analyst makes at least 8 correct predictions

$$P(\#correct \ge 8) = 1 - (1 - 0.0547)^{50} = 0.9399$$

Effect of Multiple Comparison Procedure

- Many algorithms employ the following greedy strategy:
 - Initial model: M
 - Alternative model: M' = M $\cup \gamma$, where γ is a component to be added to the model (e.g., a test condition of a decision tree)
 - Keep M' if improvement, $\Delta(M,M') > \alpha$
- Often times, γ is chosen from a set of alternative components, $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_k\}$
- If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting

Notes on Overfitting

 Overfitting results in decision trees that are <u>more</u> <u>complex</u> than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating generalization errors

Estimating Generalization Errors

- Resubstitution Estimate
- Incorporating Model Complexity
- Estimating Statistical Bounds
- Use Validation Set

Resubstitution Estimate

 Using training error as an optimistic estimate of generalization error

Decision Tree, T_L

Decision Tree, T_R

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally by errors in data
 - Therefore, one should include model complexity when evaluating a model

Pessimistic Estimate

- Given a decision tree node t
 - -n(t): number of training records classified by t
 - -e(t): misclassification error of node t
 - Training error of tree T:

$$e'(T) = \frac{\sum_{i} \left[e(t_i) + \Omega(t_i) \right]}{\sum_{i} n(t_i)} = \frac{e(T) + \Omega(T)}{N}$$

- \bullet Ω : is the cost of adding a node
- N: total number of training records

Pessimistic Estimate

Decision Tree, T_L

Decision Tree, T_R

$$e'(T_L) = (4 + 7 \times 1)/24 = 0.458$$

$$e'(T_R) = (6 + 4 \times 1)/24 = 0.417$$

Minimum Description Length (MDL)

X	У	Yes No	V	
X ₁	1	0 B?	X	У
X_2	0	B_1 B_2	•	?
X_3	0	C? 1	X ₂	
X_4	1	$A \qquad c_1 \qquad c_2 \qquad B$	X ₃	?
			X ₄	?
X _n	1			
	<u> </u>		X _n	?

- Cost(Model, Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Using Validation Set

- Divide <u>training</u> data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set
- Drawback:
 - Less data available for training

Handling Overfitting in Decision Tree

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Handling Overfitting in Decision Tree

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree
- Subtree raising
 - Replace subtree with most frequently used branch

Example of Post-Pruning

Class = Yes	20	
Class = No	10	
Error = 10/30		

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Examples of Post-pruning

Decision Tree: depth = 1: breadth > 7 : class 1 breadth <= 7: breadth <= 3: ImagePages > 0.375 : class 0 ImagePages <= 0.375: totalPages <= 6 : class 1 totalPages > 6: breadth <= 1 : class 1 breadth > 1 : class 0 width > 3: MultilP = 0:| ImagePages <= 0.1333 : class 1 ImagePages > 0.1333 : breadth <= 6 : class 0 breadth > 6 : class 1 MultiIP = 1: TotalTime <= 361 : class 0 TotalTime > 361 : class 1 depth > 1: MultiAgent = 0: | depth > 2 : class 0 | depth <= 2 : MultiIP = 1: class 0 MultiIP = 0: breadth <= 6 : class 0 breadth > 6: RepeatedAccess <= 0.0322 : class 0 RepeatedAccess > 0.0322 : class 1 MultiAgent = 1: totalPages <= 81 : class 0 totalPages > 81 : class 1

```
depth = 1:
| ImagePages <= 0.1333 : class 1
| ImagePages > 0.1333 :
| breadth <= 6 : class 0
| breadth > 6 : class 1
| depth > 1 :
| MultiAgent = 0: class 0
| totalPages <= 81 : class 0
| totalPages > 81 : class 1
```

Subtree Replacement

Subtree

Raising

Evaluating Performance of Classifier

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error

Model Evaluation

- Performed after model has been constructed
- Purpose is to estimate performance of classifier on previously unseen data (e.g., test set)

Methods for Classifier Evaluation

Holdout

- Reserve k% for training and (100-k)% for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Bootstrap
 - Sampling with replacement
 - .632 bootstrap: $acc_{boot} = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times acc_i + 0.368 \times acc_s)$

Methods for Comparing Classifiers

• Given two models:

- Model M1: accuracy = 85%, tested on 30 instances
- Model M2: accuracy = 75%, tested on 5000 instances

Can we say M1 is better than M2?

- How much confidence can we place on accuracy of M1 and M2?
- Can the difference in performance measure be explained as a result of random fluctuations in the test set?

- Prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes
 - Coin toss head/tail
 - Prediction correct/wrong
 - Collection of Bernoulli trials has a Binomial distribution:
 - ◆ x ~ Bin(N, p) x: number of correct predictions
- Estimate number of events
 - Given N and p, find P(x=k) or E(x)
 - Example: Toss a fair coin 50 times, how many heads would turn up?

Expected number of heads = $N \times p = 50 \times 0.5 = 25$

- Estimate parameter of distribution
 - Given x (# of correct predictions)
 or equivalently, acc=x/N, and
 N (# of test instances),
 - Find upper and lower bounds of p (true accuracy of model)

- For large test sets (N > 30),
 - acc has a normal distribution with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

$$= 1 - \alpha$$

Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^2 \pm \sqrt{Z_{\alpha/2}^2 + 4 \times N \times acc - 4 \times N \times acc^2}}{2(N + Z_{\alpha/2}^2)}$$
 prove

- Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:
 - N=100, acc = 0.8
 - Let $1-\alpha = 0.95$ (95% confidence)
 - From probability table, $Z_{\alpha/2}$ =1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e₁
 - M2 is tested on D2 (size=n2), found error rate = e₂
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

- Approximate: $\hat{\sigma}_i^2 = \frac{e_i(1-e_i)}{n_i}$

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: d = e1 – e2
 - $d \sim N(d_t, \sigma_t)$ where d_t is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$\sigma_{t}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} \cong \hat{\sigma}_{1}^{2} + \hat{\sigma}_{2}^{2}$$

$$= \frac{e1(1-e1)}{n1} + \frac{e2(1-e2)}{n2}$$

– At (1-lpha) confidence level, $d_{i} = d \pm Z_{\alpha/2} \hat{\sigma}_{i}$

An Illustrative Example

- Given: M1: n1 = 30, e1 = 0.15
 M2: n2 = 5000, e2 = 0.25
- d = |e2 e1| = 0.1 (2-sided test)

$$\hat{\sigma}_{d} = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

• At 95% confidence level, $Z_{\alpha/2}$ =1.96

$$d_{1} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

=> Interval contains 0 => difference may not be statistically significant

Support Vector Machines (SVMs)

SVMs are a rare example of a methodology where geometric intuition, elegant mathematics, theoretical guarantees, and practical use meet.

Find a linear hyperplane (decision boundary) that separates the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

$$Margin = \frac{2}{\|\vec{w}\|^2}$$

- We want to maximize: $Margin = \frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables

• Need to minimize:
$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Mapping into a New Feature Space

$$\Phi: x \to X = \Phi(x)$$

$$\Phi(x_1, x_2) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

- Rather than run SVM on x_i , run it on $\Phi(x_i)$
- Find non-linear separator in input space
- What if $\Phi(x_i)$ is really big?
- Use kernels!

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Radial basis function kernel with width σ

$$K(x, y) = \exp(-||x - y||^2/(2\sigma^2))$$

- Sigmoid $K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$
 - It does not satisfy the Mercer condition on all κ and θ

Characteristics of SVMs

- Perform best on the average or outperform other techniques across many important applications
- The results are stable, reproducible, and largely independent of the specific optimization algorithm
- A convex optimization problem
 - Lead to the global optimum
- The parameter selection problem
 - The type of kernels (including its parameters)
 - The attributes to be included.
- The results are hard to interpret
- Computational challenge
 - Typically quadratic and multi-scan of the data