F F	Project stage 1.5 Literature review First paper Haider, N.S., Singh, B.K., Periyasamy, R. et al. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm. J Med Syst 43, 255 (2019). https://doi.org/10.1007/s10916-019-1388-0.
f s s	The research paper uses 55 recordings consisting of 30 COPD and 25 healthy subject data. The paper tells that detecting COPD is a challenging task and the prediction is affected by variety of factors like spirometry is affected by patient's age of weaknesses. The study extracts 39 features from lung sound and 3 spirometry based features. Firstly, it states that the noise can degrade the quality of the sound, so applies Savitzky-Golay filter to the breath sound to remove noise. After that 13 frequency cepstral coefficients are extracted, linear predictive coefficients (LPC1 and LPC2) and other 24 features (like spectral centroid, min, max, peak value, dominant frequency, std, etc.). It then uses statistical approaches to determine the misginificant features to diagnose COPD. It uses t-test and Mann-Whitney U test. Finally, machine learning classification algorithms are applied for training and doing predictions (SVM, Logistic Regression, etc.). The best modles got on average means of the second paper. Second paper Rocha, B.M. et al. (2018). A Respiratory Sound Database for the Development of Automated Classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds) Precision Medicine Powered by pHealth and Connected Health. ICBHI 2017. IFI Proceedings, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-7419-6_6.
i s - (The paper talks overall about the respiratory sounds and the development of automated classification. It provides wider idea about crackles and wheezes. Specifically, crackles are discontinuous, explosive, and non-musical sounds that occur free in cardiorespiratory diseases (diseases affecting the heart and the respiratory system lungs and airways). Based on the duration, loudness and the pitch of the crackle doctors diagnose and understand lung conditions. Wheezes are musical respiratory diseases such as asthma or COPD. So the characteristics of lung sound are affected by the respiratory diseases. Third paper Cátia Pinho, Ana Oliveira, Cristina Jácome, João Rodrigues, Alda Marques, Automatic Crackle Detection Algorithm Based on Fractal Dimension and Box Filtering, Procedia Computer Science, Volume 64, 2015, Pages 705-712, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2015.08.592. The third paper concentrates on detecting crackles and provides some ways to analyze them. The algorithm is based on the following three steps: 1) Extraction of a window of interest of a potential crackle (based on fractal dimension and box filter to the price of the concentration of a window of interest of a potential crackle (based on fractal dimension and box filter to the price of the crackles and provides some ways to analyze them.
2 3 1	techniques), 2) Veritification of the validity of the potential crackle based on some respiratory sound analysis established criteria, 3) Charcaterisation and extraction of crackle parameters. The data consists of 24 10-second files were selected from 10 patients with pneumonia and cystic fibrosis. The performance metric used for evaluating the model was obtained by the agreement among three experts. The method got F index=92 The key interesting factor in this paper is the extraction of potential crackles from the recording. Data description
3 3	Respiratory sounds are important indicators of respiratory health and respiratory disorders. The sound emitted when a person breathes is directly related to air movement, changes within lung tissue and the position of secretions within the lung. The dataset contains 920 annotated respiratory varying length recordings taken from digital stethoscopes and other recording techniques. It includes both clean sounds as well as noisy recordings that simulate real life conditions. The patients are age groups - children, adults and the elderly. Some important notes and background information about the dataset: Audio file format is the following: PatientN_RecIndex_ChestLoc_AcquisitionMode_RecEquipment.wav • Patient number: (101,102,,226) indicates the unique id of the patient, as well as, is an indicator for the disease the patient is having (taken from the patient diagnosis.csv file)
F	 Recording index Chest location: Trachea (Tc), Anterior left (Al), Anterior right (Ar), Posterior left (Pl), Posterior right (Pr), Lateral left (Ll), Lateral right (Lr). Probably shows the area of the chest where the recordings are taken. Acquisition mode: single channel (sc) or multichannel (mc). Indicates whether the recording is single channel or multichannel. Recording equipment: AKG C417L Microphone (AKGC417L), 3M Littmann Classic II SE Stethoscope (LittC2SE), 3M Litmmann 3200 Electronic Stethoscope (Litt3200), WelchAllyn Meditron Master Elite Electronic Stethoscope (Meditron). Indicates whether the recording was made. There are also annotation text files of format: PatientN_RecIndex_ChestLoc_AcquisitionMode_RecEquipment.txt
7	 Beginning of respiratory cycle(s) End of respiratory cycle(s) Presence/absence of crackles (presence=1, absence=0) Presence/absence of wheezes (presence=1, absence=0) The respiratory cycle, also known as the breathing cycle or respiratory rhythm, refers to the complete sequence of events involved in breathing. It encompasses the process of inhaling (inspiration) and exhaling (expiration) air in and out of the lun (ChatGPT) So, as a conclusion, there are lots of annotations available that can be used to explore the respiratory sounds deeper.
[1]: : : : :	Importing the libraries Librosa is a popular package for audio analysis and processing. It contains bunch of useful functions that can be used to work with audio. import librosa import numpy as np import matplotlib.pyplot as plt import pandas as pd
[2]: #	Counting the lengths of the recordings Most recordings had similar sizes or even identical sizes, we want to check what percent of the recordings have same length. # Defining the original data folder path recording_folder_path = './Respiratory_Sound_Database/audio_and_txt_files/' # Getting all recordings' paths from the data folder
[4]: 7	recording_paths = glob(recording_folder_path + '*.wav') # Getting the lengths of the recordings # List to keep the lengths length_list = [] # List to keep the sampling rates sr_list = [] # For path in the paths list for path in recording_paths:
	<pre># Load the wav file using librosa with original sampling rate and original number of channels audio, sr = librosa.load(path, sr=None, mono=False) if len(audio.shape) == 2: print(f'{path} is a multichannel recording') # Append the length of the audio to the list length_list.append(len(audio)/sr) # Append the sr of the audio to the list sr_list.append(sr)</pre>
[5]: #	While stated in the source of the data that some recordings are multichannel, way files are all mono, in other words, have just one channel. # Plot the distribution of recording lengths plt.ylabel('Count of recording lengths') plt.xlabel('Recording lengths') plt.title('The distribution of recording lengths') plt.hist(length_list, bins=20) plt.show() The distribution of recording lengths
	800 - 700 - 500 - 600 - 400 -
	300 - 200 - 100 - 100 - 20 30 40 50 60 70 80 90 Recording lengths
6]: 1 7]: #	The distribution plot of the recording lengths shows that most of the recordings are 20-second-length. from collections import Counter # Count the number of each length occurences length_counts = dict(Counter(length_list)) # Length counts dictionary length_counts {20.0: 801, 15.0561
	15.856: 1, 25.584: 1, 18.48: 1, 15.024: 1, 22.96: 1, 23.728: 1, 20.336: 2, 19.952: 1, 16.944: 2, 17.456: 1, 17.648: 1, 30.0: 6, 71.45: 1,
	32.3: 1, 32.4: 2, 75.25: 1, 20.00002267573696: 16, 67.85: 1, 33.6: 1, 29.36: 1, 14.576: 4, 15.728: 1, 20.848: 2, 19.632: 3, 21.936: 1, 15.472: 1,
	18.352: 1, 12.528: 2, 20.08: 1, 12.464: 2, 66.75: 2, 86.2: 1, 67.4: 2, 11.248: 1, 18.224: 2, 17.264: 2, 9.584: 1, 7.856: 1, 19.97: 1,
	16.24: 1, 19.98: 1, 65.05: 2, 66.5: 1, 63.1: 2, 19.83: 1, 62.05: 2, 57.8: 1, 62.5: 2, 18.864: 1, 16.368: 1, 21.68: 1, 16.752: 1,
	18.672: 1, 23.024: 1, 19.376: 1, 18.736: 1, 24.24: 1, 26.928: 1, 24.624: 1, 21.872: 1, 19.87: 1, 19.82: 1, 19.95: 1, 19.84: 1, 71.05: 2, 82.5: 1,
1	68.95: 2, 28.464: 1, 28.08: 1, 74.45: 1, 69.45: 1, 73.35: 1, 33.9: 2, 33.2: 2, 32.9: 2} More than 80% of the recordings have length of 20 seconds, there are also some recordings that have length very close to 20 seconds. As the recordings contain respiratory cycles (each recording may contain 1 or more cycles) we can work with varying length recordings, since the cycles are the point of interest and they should be extracted from the recordings.
9]: 1 0]: 7	Understanding the sampling rate of the recordings Most of recordings have a sampling rate of 44100, we can check if all 20-second recordings have the same sampling rate. from collections import defaultdict # Plot the distribution of recording lengths plt.ylabel('Count of recording lengths')
1	plt.xlabel('Recording lengths') plt.title('The distribution of recording lengths') plt.hist(sr_list, bins=20) plt.show() The distribution of recording lengths 800 - 7
	onto O - O - O - O - O - O - O - O - O - O
\$	# Count the sampling rates sr_counts = dict(Counter(sr_list)) # Dictionary count results
2]:	{44100: 824, 4000: 90, 10000: 6} Most of the recordings (824) have 44100 sampling rate, 96 recordings have other sampling rate. For further analysis, we should make them have the same sampling rate, if there is no other problem-specific reason for them being different. Counting the labels We count the labels to understand the imbalance in the data. There are in total 8 labels to classify the recordings to.
4]: # 5]: #	# The path to the directory of the labels label_path = './Respiratory_Sound_Database/' # Reading the label data label_csv = pd.read_csv(label_path + 'patient_diagnosis.csv') # Printing the data label_csv =
1	1 102 Healthy 2 103 Asthma 3 104 COPD 4 105 URTI 121 222 COPD 122 223 COPD 123 224 Healthy
1: 1: .6]: #	124 225 Healthy 125 226 Pneumonia 126 rows × 2 columns # Creating a label dictionary with mapping 'PatientID': 'Disease' label_dict = dict(zip(label_csv['ID'], label_csv['Disease'])) # Printing the results label_dict
<i>'</i>].	<pre>{101: 'URTI', 102: 'Healthy', 103: 'Asthma', 104: 'COPD', 105: 'URTI', 106: 'COPD', 107: 'COPD', 108: 'LRTI', 109: 'COPD', 110: 'COPD', 111: 'Bronchiectasis', 112: 'COPD', 113: 'COPD', 114: 'COPD', 115: 'COPD', 116: 'COPD', 117: 'COPD', 118: 'COPD', 119: 'COPD', 119: 'COPD', 1110: 'COPD', 1111: 'COPD', 111</pre>
	114: 'COPD', 115: 'LRTI', 116: 'Bronchiectasis', 117: 'COPD', 118: 'COPD', 119: 'URTI', 120: 'COPD', 121: 'Healthy', 122: 'Pneumonia', 123: 'Healthy', 124: 'COPD', 125: 'Healthy', 126: 'Healthy', 127: 'Healthy', 127: 'Healthy',
	128: 'COPD', 129: 'URTI', 130: 'COPD', 131: 'URTI', 132: 'COPD', 133: 'COPD', 134: 'COPD', 135: 'Pneumonia', 136: 'Healthy', 137: 'URTI', 138: 'COPD', 138: 'COPD', 139: 'COPD', 139: 'COPD', 140: 'Pneumonia',
	141: 'COPD', 142: 'COPD', 143: 'Healthy', 144: 'Healthy', 145: 'COPD', 146: 'COPD', 147: 'COPD', 148: 'URTI', 149: 'Bronchiolitis', 150: 'URTI', 151: 'COPD', 152: 'Healthy', 153: 'Healthy',
	154: 'COPD', 155: 'COPD', 156: 'COPD', 157: 'COPD', 158: 'COPD', 159: 'Healthy', 160: 'COPD', 161: 'Bronchiolitis', 162: 'COPD', 163: 'COPD', 164: 'URTI', 165: 'URTI', 166: 'COPD',
	167: 'Bronchiolitis', 168: 'Bronchiectasis', 169: 'Bronchiectasis', 170: 'COPD', 171: 'Healthy', 172: 'COPD', 173: 'Bronchiolitis', 174: 'COPD', 175: 'COPD', 176: 'COPD', 177: 'COPD', 177: 'COPD', 178: 'COPD', 179: 'Healthy',
	180: 'COPD', 181: 'COPD', 182: 'Healthy', 183: 'Healthy', 184: 'Healthy', 185: 'COPD', 186: 'COPD', 187: 'Healthy', 188: 'URTI', 189: 'COPD', 190: 'URTI', 191: 'Pneumonia', 191: 'COPD', 192: 'COPD',
	193: 'COPD', 194: 'Healthy', 195: 'COPD', 196: 'Bronchiectasis', 197: 'URTI', 198: 'COPD', 199: 'COPD', 200: 'COPD', 201: 'Bronchiectasis', 202: 'Healthy', 203: 'COPD', 204: 'COPD', 205: 'COPD', 206: 'COPD', 206: 'COPD', 207: 'COPD', 208: 'COPD', 209: 'COPD',
	206: 'Bronchiolitis', 207: 'COPD', 208: 'Healthy', 209: 'Healthy', 210: 'URTI', 211: 'COPD', 212: 'COPD', 213: 'COPD', 214: 'Healthy', 215: 'Bronchiectasis', 216: 'Bronchiolitis', 217: 'Healthy',
8]: 7	<pre>218: 'COPP', 219: 'Pneumonia', 220: 'COPP', 221: 'COPP', 222: 'COPP', 223: 'COPP', 224: 'Healthy', 225: 'Healthy', 226: 'Pneumonia'} # Label counter default dict label_counter = defaultdict(int)</pre>
1	<pre># For each recording for path in recording_paths: # Find the ID of the recording from the name rec_id = int(path.split('\\')[-1][:3]) # Find the mapping of the label from ID label = label_dict[rec_id] # Add 1 to the value of that certain label we found label_counter[label] += 1 # Printing dictionary label counter</pre>
9]: {	<pre>dict(label_counter) {'URTI': 23, 'Healthy': 35, 'Asthma': 1, 'COPD': 793, 'LRTI': 2, 'Bronchiectasis': 16, 'Pneumonia': 37, 'Bronchiolitis': 13} Very imbalanced data, there is just one recording for class 'Asthma' and two recordings for 'LRTI' class. It is very unlikely that we can train something from such few data, so we may need to remove them later.</pre>
0]: 7 (1): 7 (2]: 7	Understanding the patient demographics # The main path to the demographics file demographics_path = './Respiratory_Sound_Database/' # Read the demographics as pandas dataframe demographics_df = pd.read_csv(demographics_path + 'demographic_info.txt', sep=' ', header=None, names=['PatientID', 'Age', 'Gender', 'Adult BMI (kg/m2)', 'Child Weight (kg)', 'Child Height (cm) # Show the dataframe demographics_df
2]:	
1 1 1 1;	122 223 NaN NaN NaN NaN 123 224 10.00 F NaN 32.3 143.0 124 225 0.83 M NaN 7.8 74.0 125 226 4.00 M NaN 16.7 103.0
3]: F (C (C (C (C	demographics_df.isnull().sum() PatientID 0 Age 1 Gender 1 Adult BMI (kg/m2) 51 Child Weight (kg) 82 Child Height (cm) 84 dtype: int64 # The row with the missing values corresponds to which label label_dict[223] 'COPD'
	There is just one person that we don't know anything about him and that person belongs to class 'COPD' from which we have bunch of data. So, we may need to remove that person's data if we decide to use demographics. Demographics data is an important indicator for predictions, because whether the patient is an adult or a child can have a big impact. Some work should be done on the dataframe, we can calculate Child BMI, merge it with Adult BMI and add a loculum indicating whether the patient is an adult or not. Understanding a recording # Taking an example recording
5]:	<pre>ex_rec_path = recording_paths[25] ex_rec_path './Respiratory_Sound_Database/audio_and_txt_files\\107_2b4_Pr_mc_AKGC417L.wav' # Loading the wav file audio, sr = librosa.load(ex_rec_path, sr=None, mono=False) # Load the annotations txt file and create a pandas dataframe from it txt_file = ex_rec_path[:-3] + 'txt' txt_df = pd.read_csv(txt_file, sep='\t', header=None, names=['cycle_start', 'cycle_end', 'crackle', 'wheeze'])</pre>
1 8]: 1 2 3	# Looking to the annotations file txt_df cycle_start cycle_end crackle wheeze 0 1.018 3.411 1 0 1 3.411 5.827 1 0 2 5.827 8.339 1 0 3 8.339 10.923 1 0 4 10.923 13.292 16.018 1 0
9]: 7	5
	- audio: the recording from which to extract the cycle - sr: the sampling rate - cycle_start: (in seconds) the start of the cycle - cycle_end: (in seconds) the end of the cycle Returns: The breathing cycle extracted from the recording. Note: In the case of floating numbers, the start index is rounded to down, the end index is rounded to up.
1]: #	<pre>cycle = audio[int(cycle_start * sr): int(np.ceil(cycle_end*sr))] return cycle # The index of the cycle to take from the annotations index = 2 # Cut a cycle from the audio based on the cycle index given cycle = cut_cycle(audio, sr, txt_df.loc[index, 'cycle_start'], txt_df.loc[index, 'cycle_end']) print(f"Cycle {index} contains crackles = {txt_df.loc[index, 'crackle']} and wheezes = {txt_df.loc[index, 'wheeze']}") Cycle 2 contains crackles = 1 and wheezes = 0</pre>
2]: 7	Cycle 2 contains crackles = 1 and wheezes = 0 # Plot the cycle plt.plot(cycle) plt.show() 1.00 -
	0.50 -
3]: 1 4]: 7	-1.00 - 0 20000 40000 60000 80000 100000 from IPython.display import Audio # Play the cycle in jupyter notebook listen_audio = Audio(data=cycle, rate=sr) display(listen_audio)
33]: 1 34]: 7	from IPython.display import Audio # Play the cycle in jupyter notebook listen_audio = Audio(data=cycle, rate=sr)
33]: 1	from IPython.display import Audio # Play the cycle in jupyter notebook listen_audio = Audio(data=cycle, rate=sr) display(listen_audio) • 0:00 / 0:02 • • • • • • • • • • • • • • • • • • •