CS220 Assignment-4

1) 3 bit gray code Counter

Gray code Counter is a type of counter in which at a time, only one binary digit changes its value.

Clock is acting as the input signal according to which states will change.

State Assignment

Digit	Gray Code	Assigned State		
0	000	S0		
1	001	S1		
2	011	S2		
3	010	S3		
4	110	S4		
5	111	S5		
6	101	S6		
7	100	S7		

State Table

Present State			Next state			
Q2	Q1	Q0	Q2	Q1	Q0	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	

1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Excitation and Output Table

Present State		Next State		Flip Flop Excitations			Output		
Q2	Q1	Q0	Q2'	Q1'	Q0'	D2	D1	D0	Z
0	0	0	0	0	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1	0
0	1	0	1	1	0	1	0	0	0
1	1	0	1	1	1	0	0	1	0
1	1	1	1	0	1	0	1	0	0
1	0	1	1	0	0	0	0	1	0
1	0	0	0	0	0	1	0	0	1

• K maps

D0

D1

D2

Z(output)

Circuit Diagram

