验证讲义中定义的 \mathbb{F}_p 上的加法和乘法运算良定,并且使 \mathbb{F}_p 构成域.

Proof: Let $+: \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p, \bar{x} + \bar{y} \mapsto \overline{x+y}$, and $\cdot: \mathbb{F}_p^{\cdot} \times \mathbb{F}_p^{\cdot} \to \mathbb{F}_p^{*}, \bar{x} \cdot \bar{y} \mapsto \overline{xy}$. For any $\bar{x} = \bar{u}$ and $\bar{y} = \bar{v}$, $x+y \equiv u+v \pmod{p}$ and $xy \equiv uv \pmod{p}$, hence $+,\cdot$ are well-defined. Obviously $+,\cdot$ are both associative and communicative, (since so is addition and multiplication on \mathbb{Z}), and $\bar{0} + \bar{x} = \bar{x}$, $\bar{1} \cdot \bar{x} = \bar{x}$, $\bar{-x} + \bar{x} = \bar{0}$. The existence of multiplicative inverse comes from Bezout's theorem: for any $x \in \mathbb{Z}$ such that $\bar{x} \neq \bar{0}$, there exists $u,v \in \mathbb{Z}$ such that xu+vp=1, i.e. $\bar{x} \cdot \bar{u} = \bar{1}$. For any $x,y,z \in \mathbb{Z}$, $\bar{x} \cdot (\bar{y} + \bar{z}) = \bar{x} \cdot \bar{y} + \bar{z} = \overline{x(y+z)} = \overline{xy} + \bar{xz}$. Hence $(\mathbb{F}_p,+,\cdot)$ forms a (finite) field.