Database Systems, Even 2020-21

Normalization

Persons(Man(M), Phone(P), Dogs_Like(D))

Person:	: Meaning of the tuples			
Man (M)	M) Phone (P) Dogs_Like (D) Man M have phones P and likes the dog D			
M1	P1/P2	D1/D2	M1 have phones P1 and P2, and likes the dogs D1 and D2	
M2	M2 P3 D2 M2 have phones P3, and likes the dog D2			
Key: MPD				

- There are no non-trivial FDs because all tributes are combined forming candidate key, i.e., MDP
- In the above relation, two multivalued dependency exists:
 - Man $\rightarrow \rightarrow$ Phones
 - Man →→ Dogs_Like
- A Man's phone are independent of the dogs they like
- But, after converting the above relation in single valued attribute, each of a man's phones appears with each of the dogs they like in all combinations

Post 1NF normalization					
Man (M)	Phone (P)	Dogs_Like (D)			
M1	P1	D1			
M1	P2	D2			
M2	P3	D2			
M2	P3	D2			
M1	P1	D2			
M1	P2	D1			

- If two or more independent relations are kept in a single relation, then multivalued dependency is possible
- For example, let there are two relations:
 - Student(SID, Sname) where SID → Sname
 - Course(CID, Cname) where CID → Cname
- There is no relation defined between Student and Course
- If we kept them in a single relations, named **Student_Course**, then MVD will exists because of *m:n cardinality*
- If two or more MVDs exists in a relation, then while converting into SVAs, MVDs exits

Student:			
SID	Sname		
S1	А		
S2	В		

Course:			
CID	Cname		
C1	С		
C2	В		

SID	Sname	CID	Cname
S1	А	C1	С
S1	А	C2	В
S2	В	C1	С
S2	В	C2	В

- Suppose we record names of children, and phone numbers for instructors:
 - inst_child(ID, child_name)
 - inst_phone(ID, phone_number)
- If we were to combine these schemas to get
 - inst_info(ID, child_name, phone_number)
 - Example data:

```
(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)
```

- This relation is in BCNF
 - Why?

Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The **multivalued dependency** $\alpha \rightarrow \rightarrow \beta$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

 $t_{3}[\beta] = t_{1}[\beta]$
 $t_{3}[R - \beta] = t_{2}[R - \beta]$
 $t_{4}[\beta] = t_{2}[\beta]$
 $t_{4}[R - \beta] = t_{1}[R - \beta]$

Example:

A relation of university courses, the books recommended for the course, and the lectures who will be teaching the course:

course $\rightarrow \rightarrow$ book course $\rightarrow \rightarrow$ lecturer

Course	Book	Lecturer	Tuples
AHA	Silberschatz	John D	t1
AHA	Nederpelt	William M	t2
AHA	Silberschatz	William M	t3
AHA	Nederpelt	John D	t4
AHA	Silberschatz	Christian G	
AHA	Nederpelt	Christian G	
oso	Silberschatz	John D	
oso	Silberschatz	William M	

MVD: Tabular Representation

• Tabular representation of $\alpha \rightarrow \beta$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

MVD

- Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets
 Y, Z, W
- We say that $Y \rightarrow Z$ (Y multidetermines Z) if and only if for all possible relations r(R) $< y_1, z_1, w_1 > \epsilon r$ and $< y_1, z_2, w_2 > \epsilon r$
- Then

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

Note that since the behavior of Z and W are identical it follows that

$$Y \rightarrow \rightarrow Z \text{ if } Y \rightarrow \rightarrow W$$

Example

In our example:

$$ID \rightarrow \rightarrow$$
 child_name
 $ID \rightarrow \rightarrow$ phone_number

• The above formal definition is supposed to formalize the notion that given a particular value of Y(ID) it has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and these two sets are in some sense independent of each other

Note:

- If $Y \rightarrow Z$ then $Y \rightarrow Z$
- Indeed we have (in above notation) $Z_1 = Z_2$ The claim follows

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - To test relations to determine whether they are legal under a given set of functional and multivalued dependencies
 - To specify constraints on the set of legal relations
 - We shall concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r

Theory of MVDs

Name			Rule	
C-	Complementation	:	If $X \rightarrow Y$, then $X \rightarrow \{R - (X \cup Y)\}$	
A-	Augmentation	:	If $X \to Y$ and $W \supseteq Z$, then $WX \to YZ$	
T-	Transitivity	:	If $X \rightarrow \rightarrow Y$ and $Y \rightarrow \rightarrow Z$, then $X \rightarrow \rightarrow (Z - Y)$	
	Replication	:	If $X \rightarrow Y$ and $X \rightarrow Y$ but the reverse is not true	
	Coalescence	:	If $X \to Y$ and there is a W such that $W \cap Y$ is empty, $W \to Z$, and $Y \supseteq Z$, then $X \to Z$	

- A MVD $X \rightarrow \rightarrow Y$ in **R** is called a trivial MVD is:
 - Y is a subset of $X(X \supseteq Y)$ or
 - $-X \cup Y = \mathbf{R}$
 - Otherwise, it is a non-trivial MVD and we have to repeat values redundancy in the tuples

Theory of MVDs

- From the definition of multivalued dependency, we can derive the following rule:
 - If $\alpha \to \beta$, then $\alpha \to \beta$

That is, every functional dependency is also a multivalued dependency

- The closure D+ of D is the set of all functional and multivalued dependencies logically implied by D
 - We can compute D+ from D, using the formal definitions of functional dependencies and multivalued dependencies
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules

Fourth Normal Form

- A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following hold:
 - $-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - α is a superkey for schema R
- If a relation is in 4NF, it is in BCNF

Restriction of Multivalued Dependencies

- The restriction of D to R_i is the set D_i consisting of
 - All functional dependencies in D+ that include only attributes of R_i
 - All multivalued dependencies of the form

$$\alpha \rightarrow \rightarrow (\beta \cap R_i)$$

where $\alpha \subseteq R_i$ and $\alpha \longrightarrow \beta$ is in D⁺

4NF Decomposition Algorithm

- For all dependencies $A \rightarrow \rightarrow B$ in D^+ , check if A is a superkey
 - By using attribute closure
- If not, then
 - Choose a dependency in F^+ that breaks the 4NF rules, say $A \rightarrow \rightarrow B$
 - Create $\mathbf{R}_1 = AB$
 - Create $\mathbf{R}_2 = A (\mathbf{R} (B A))$
 - Note that: $R_1 \cap R_2 = A$ and $A \longrightarrow AB$ (= R_1), so this is lossless decomposition
- Repeat for R₁ and R₂
 - By defining D₁⁺ to be all dependencies in F that contain only attributes in R₁
 - Similarly D_2^+

4NF Decomposition Algorithm

```
result := \{R\};
done := false;
compute D+;
Let D_i denote the restriction of D^+ to R_i
while (not done)
   if (there is a schema R; in result that is not in 4NF) then
     begin
         let \alpha \to \beta be a nontrivial multivalued dependency that holdson R_i such that \alpha \to R_i
                     is not in D_i, and \alpha \cap \beta = \emptyset;
          result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
   end
  else done:= true:
```

Note: Each R_i is in 4NF, and decomposition is lossless-join

Example of 4NF Decomposition

- Example:
- Persons_Modify(Man(M), Phone(P), Dogs_Like(D), Address(A))
- *FDs*:
 - FD1: $Man \rightarrow Phones$
 - FD2: Man →→ Dogs_Like
 - FD3: Man → Address
- Key: MPD
- All dependencies violate 4NF

Man (M)	Phone (P)	Dogs_Like (D)	Address (A)
M1	P1	D1	49-ABC, Bhiwani (HR.)
M1	P2	D2	49-ABC, Bhiwani (HR.)
M2	P3	D2	36-XYZ, Rohtak (HR.)
M1	P1	D2	49-ABC, Bhiwani (HR.)
M1	P2	D1	49-ABC, Bhiwani (HR.)

Post normalization

- In the above relations for both the MVD's, "X" is Man, which is again not the *superkey*, but as $X \cup Y = \mathbb{R}$, i.e., (*Man & Phone*) together make thee relations
- So, the above MVDs are trivial and in FD3,
 Address is functionally dependent on Man,
 where Man is the key in Person_Address,
 hence all the three relations are in 4NF

Example

- R = (A, B, C, G, H, I)
- $F = \{ A \rightarrow \rightarrow B \\ B \rightarrow \rightarrow HI \\ CG \rightarrow \rightarrow H \}$
- R is not in 4NF since $A \rightarrow \rightarrow B$ and A is not a superkey for R Decomposition

a)
$$R_1 = (A, B)$$
 (R_1 is in 4NF)
b) $R_2 = (A, C, G, H, I)$ (R_2 is not in 4NF, decompose into R_3 and R_4)
c) $R_3 = (C, G, H)$ (R_3 is in 4NF)
d) $R_4 = (A, C, G, I)$ (R_4 is not in 4NF, decompose into R_5 and R_6)

- $A \rightarrow \rightarrow B$ and $B \rightarrow \rightarrow HI \rightarrow A \rightarrow \rightarrow HI$, (MVD transitivity)
- And hence A →→ I (MVD restriction to R₄)

e)
$$R_5 = (A, I)$$
 (R_5 is in 4NF)
f) $R_6 = (A, C, G)$ (R_6 is in 4NF)

Design Goals

- Goal for a relational database design is:
 - BCNF/4NF
 - Lossless join
 - Dependency preservation
- If we cannot achieve this, we accept one of the following:
 - Lack of dependency preservation
 - Redundancy due to use of 3NF
- Interestingly, SQL does not provide a direct way of specifying functional dependencies other than superkeys
- Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any of the widely used databases!)
- Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently test a functional dependency whose left hand side is not a key

Further Normal Forms

Further NFs

- Elementary key normal form (EKNF)
- Essential tuple normal form (ETNF)
- Join dependencies and Fifth normal form (5NF)
- Sixth normal form (6NF)
- Domain/key normal form (DKNF)
- Join dependencies generalize multivalued dependencies
 - Lead to project-join normal form (PJNF) (also called fifth normal form)
- A class of even more general constraints, leads to a normal form called domain-key normal form
- Problem with these generalized constraints: are hard to reason with, and no set of sound and complete set
 of inference rules exists
- Hence rarely used

Overall Database Design Process

We have assumed schema R is given

- R could have been generated when converting ER diagram to a set of tables
- R could have been a single relation containing all attributes that are of interest (called universal relation)
- Normalization breaks R into smaller relations
- R could have been the result of some ad hoc design of relations, which we then test/convert to normal form

ER Model and Normalization

- When an ER diagram is carefully designed, identifying all entities correctly, the tables generated from the ER diagram should not need further normalization
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
 - Example: An employee entity with
 - Attributes: department_name and building
 - o Functional dependency: *department_name*→ *building*
- Good design would have made department an entity
- Functional dependencies from non-key attributes of a relationship set possible, but rare --most relationships are binary

Denormalization for Performance

- May want to use non-normalized schema for performance
- For example, displaying *prereqs* along with *course_id*, and *title* requires join of *course* with *prereq*
 - Course(course_id, title,...)
 - Prerequisite(course_id, prereq)
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes: Course(course_id, title, prereq)
 - Faster lookup
 - Extra space and extra execution time for updates
 - Extra coding work for programmer and possibility of error in extra code
- Alternative 2: Use a materialized view defined a course prereg
 - Course ⋈ Prerequisite
 - Benefits and drawbacks same as above, except no extra coding work for programmer and avoids possible errors

Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided:
 Instead of earnings (company_id, year, amount), use
 - earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings)
 - Above are in BCNF, but make querying across years difficult and needs new table each year
 - company_year (company_id, earnings_2004, earnings_2005, earnings_2006)
 - Also in BCNF, but also makes querying across years difficult and requires new attribute each year
 - o Is an example of a **crosstab**, where values for one attribute become column names
 - Used in spreadsheets, and in data analysis tools

Modeling Temporal Data

- Temporal data have an association time interval during which the data are valid
- A snapshot is the value of the data at a particular point in time
- Several proposals to extend ER model by adding valid time to
 - Attributes, e.g., Address of an instructor at different points in time
 - Entities, e.g., Time duration when a student entity exists
 - Relationships, e.g., Time during which an instructor was associated with a student as an advisor
- But no accepted standard
- Adding a temporal component results in functional dependencies like

$$ID \rightarrow street, city$$

- not holding, because the address varies over time
- A temporal functional dependency X → Y holds on schema R if the functional dependency X → Y holds on all snapshots for all legal instances r(R)

Modeling Temporal Data

- In practice, database designers may add start and end time attributes to relations
 - E.g., course(course_id, course_title) is replaced by
 course(course_id, course_title, start, end)
 - Constraint: No two tuples can have overlapping valid times
 - Hard to enforce efficiently
- Foreign key references may be to current version of data, or to data at a point in time
 - E.g., Student transcript should refer to course information at the time the course was taken

Extra

- 3NF decomposition algorithm is dependency preserving (since there is a relation for every FD in F_c)
- Decomposition is lossless
 - A candidate key (C) is in one of the relations R_i in decomposition
 - Closure of candidate key under F_c must contain all attributes in R
 - Follow the steps of attribute closure algorithm to show there is only one tuple in the join result for each tuple in R_i

- Claim: If a relation R_i is in the decomposition generated by the above algorithm, then R_i satisfies 3NF
- Proof:
 - Let R_i be generated from the dependency α → β
 - Let γ → B be any non-trivial functional dependency on R_i
 (We need only consider FDs whose right-hand side is a single attribute)
 - Now, B can be in either β or α but not in both
 - Consider each case separately

- Case 1: If B in β:
 - If γ is a superkey, the 2nd condition of 3NF is satisfied
 - Otherwise α must contain some attribute not in γ
 - Since $\gamma \to B$ is in F^+ it must be derivable from F_c , by using attribute closure on γ
 - Attribute closure not have used $\alpha \rightarrow \beta$
 - If it had been used, α must be contained in the attribute closure of γ , which is not possible, since we assumed γ is not a superkey
 - Now, using α→ (β- {B}) and γ → B, we can derive α → B
 (since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)
 - Then, B is extraneous in the right-hand side of $\alpha \to \beta$; which is not possible since $\alpha \to \beta$ is in F_{α}
 - Thus, if B is in β then γ must be a superkey, and the second condition of 3NF must be satisfied

- Case 2: B is in α
 - Since α is a candidate key, the third alternative in the definition of 3NF is trivially satisfied
 - In fact, we cannot show that γ is a superkey
 - This shows exactly why the third alternative is present in the definition of 3NF

Transactions

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in