1.2 Classwork: Segment Addition Postulate and solving for length

1. Given \overline{ABC} , AB = 8, and BC = 4.

(a) Find AC. Write your answer as an equation.

- (b) Name the postulate used in this problem: Segment Addition Postulate
- 2. Given \overline{RST} , RS = 5, and $RT = 7\frac{1}{2}$. Find ST.

5+2= 7=

- 3. Given \overline{DEF} , DE = x + 4, EF = x + 2, DF = 14. Find DE.
 - (a) Label the diagram with the given values.

(b) Write an equation:

(c) Solve for x

(d) Answer the question.

Find DE by substituting for x.

$$D\bar{e} = (4) + 4 = 8$$

$$EF = (4) + 2 = 6$$

$$8 + 6 = 14$$

- 4. The points shown are in a straight line, \overline{XYZ} .
 - (a) Measure and label the lengths XY and YZ to the nearest centimeter.

(b) Write an equation employing the Segment Addition Postulate. (fill in the blanks with values in centimeters)

$$XZ =$$
 $\frac{4}{}$ $+$ $\frac{2}{}$ $=$ $\frac{6}{}$ cm

5. Points P = 14 and Q = 47 are shown below. Find PQ.

6. Given \overline{LMN} , LM = 3x + 1, MN = 7, LN = 17. Find x.

$$L$$
 M N

- (a) Write down an equation to represent the situation.
- (b) Solve for x.

$$(3x+1)+7=17$$

 $3x+8=17$
 $3x=9$
 $x=3$

(c) Check your answer.
$$(3(3)+1)+7=17$$

$$|0+7=17|$$