Algebraic Topology - Dunkin's Torus 6 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

November 5, 2021

Overview

The Fundamental Group The Borsuk-Ulam Theorem

- Deformation Retracts and Homotopy Type

Definition

- If x is a point of S^n , then it *antipode* is the point -x.
- A map $h: S^n \to S^m$ is said to be antipode-preserving if h(-x) = -h(x) for all $x \in S^n$.

Theorem (57.1)

If $h:S^1\to S^1$ is continuous and antipode-preserving, then h i not nulhomotopic.

Theorem (57.2)

There is no continuous antipode-preserving map $g:S^2\to S^1$.

Theorem (57.3, Borsuk-Ulam theorem for S^2)

Given a continuous map $f: S^2 \to \mathbb{R}^2$, there is a point x of S^2 such that f(x) = f(-x).

Theorem (57.4, The bisection theorem)

Given two bounded polygonal regions in \mathbb{R}^2 , there exists a line in \mathbb{R}^2 that bisects each of them.

Ex 57.2

Show that if $g:S^2\to S^2$ is continuous and $g(x)\neq g(-x)$ for all x, then g is surjective.

Ex 57.4

Suppose you are given the fact that for each n, no continuous antipode-preserving map $h: S^n \to S^n$ is nulhomotopic. Prove the following:

- (a) There is no retraction $r: B^{n+1} \to S^n$.
- (b) There is no continuous antipode-preserving map $g: S^{n+1} \to S^n$.
- (c) (Bousuk-Ulam theorem) Given a continuous map $f: S^{n+1} \to \mathbb{R}^{n+1}$, there is a point x of S^{n+1} such that f(x) = f(-x).

Lemma (58.1)

Let $h, k : (X, x_0) \to (Y, y_0)$ be continuous maps. If h and k are homotopic, and if the image of the base point x_0 of X remains fixed at y_0 during the homotopy, then the homomorphisms h_* and k_* are equal.

Theorem (58.2)

The inclusion map $j:S^n\to\mathbb{R}^{n+1}-0$ induces an isomorphism of fundamental groups.

Definition

Let A be a subspace of X.

- We say A is a deformation retract of X if there is a continuous map $H: X \times I \to X$ such that H(x,0) = x and $H(x,1) \in A$ for all $x \in X$, and $H(\alpha,t) = \alpha$ for all $\alpha \in A$.
- The homotopy H is called a *deformation retraction* of X onto A. The map $r: X \to A$ defined by r(x) = H(x, 1) is a retraction of X onto A, and H is a homotopy between the identity map of X and the map $j \circ r$ where $j: A \to X$ is inclusion.

Theorem (58.3)

Let A be a deformation retract of X; let $x_0 \in A$. Then the inclusion map

$$j:(A,x_0)\to(X,x_0)$$

induces an isomorphism of fundamental groups.

Example

Let B denote the z-axis in \mathbb{R}^3 . Consider the space \mathbb{R}^3-B . It has the punctured xy-plane $(\mathbb{R}^2-\mathbf{0})\times 0$ as a deformation retract.

$$H(x, y, z, t) = (x, y, (1 - t)z)$$

We conclude that the space \mathbb{R}^3 – B has an infinite cyclic fundamental group.

Example

Consider $\mathbb{R}^2 - p - q$, the doubly punctured plane. It has the figure eight space as a deformation retract.

Example

Another deformation retract of \mathbb{R}^2-p-q is the theta space

$$\theta = S^1 \cup (0 \times [-1,1])$$

Definition

Let $f: X \to Y$ and $g: Y \to X$ be continuous maps. Suppose that the map $g \circ f: X \to X$ is homotopic to the identity map of X, and the map $f \circ g: Y \to Y$ is homotopic to the identity map of Y.

• Then the maps f and g are called homotopy equivalences, and each is said to be a homotopy inverse of the other.

If $f: X \to Y$ is a homotopy equivalence of X with Y and $h: Y \to Z$ is a homotopy equivalence of Y with Z, then $h \circ f: X \to Z$ is a homotopy equivalence of X with Z.

• So we can say that two spaces have the same homotopy type if they are homotopy equivalent.

Lemma (58.4)

Let $h, k: X \to Y$ be continuous maps; let $h(x_0) = y_0$ and $k(x_0) = y_1$. If h and k are homotopic, there is a path α in Y from y_0 to y_1 such that $k_* = \hat{\alpha} \circ h_*$. Indeed, if $H: X \times I \to Y$ is the homotopy between h and k, then α is the path $\alpha(t) = H(x_0, t)$.

Corollary (58.5)

Let $h, k: X \to Y$ be homotopic continuous maps; let $h(x_0) = y_0$ and $k(x_0) = y_1$. If h_* is injective, or surjective, or trivial, so is k_* .

Corollary (58.6)

Let $h:X\to Y.$ If h is nulhomotopic, then h_* is the trivial homomorphism.

Theorem (58.7)

Let $f: X \to Y$ be continuous; let $f(x_0) = y_0$. If f is a homotopy equivalence, then

$$f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$$

is an isomorphism.

Ex 58.1

Show that if A is a deformation retract of X, and B is a deformation retract of A, then B is a deformation retract of X.

Ex 58.5

Recall that a space X is said to be *contractible* if the identity map of X to itself is nulhomotopic. Show that X is contractible if and only if X has the homotopy type of a one-point space.

Degree of $h:S^1\to S^1$

We define the degree of a continuous map $h:S^1\to S^1$ as follows:

Let b_0 be the point (1,0) of S^1 ; choose a generator γ for the infinite cyclic group $\pi_1(S^1,b_0)$. If x_0 is any point of S^1 , choose a path α in S^1 from b_0 to x_0 , and define $\gamma(x_0) = \hat{\alpha}(\gamma)$. The element $\gamma(x_0)$ is independent of the choice of the path α , since the fundamental group of S^1 is abelian.

Degree of $h: S^1 \to S^1$

Now given $h:S^1\to S^1$, choose $x_0\in S^1$ and let $h(x_0)=x_1$. Consider the homomorphism

$$h_*: \pi_1(S^1, x_0) \to \pi_1(S^1, x_1).$$

Since both groups are infinite cyclic, we have

$$h_*(\gamma(x_0)) = d \cdot \gamma(x_1) \quad \cdots (*)$$

for some integer d, if group is written additively. The integer d is called the degree of h and is denoted by deg h.

The degree of h is independent the choice of the generator γ ; choosing the other generator would merely change the sign of both sides of (*)

Ex 58.9

- (a) Show that d is independent of the choice of x_0 .
- (b) Show that if h, $k:S^1\to S^1$ are homotopic, they have the same degree.
- (c) Show that $deg(h \circ k) = (deg h)(deg k)$.
- (d) Compute the degrees of the constant map, the identity map, the reflection map $\rho(x_1, x_2) = (x_1, -x_2)$, and the map $h(z) = z^n$, where z is a complex number.
- (e) Show that if h, $k:S^1\to S^1$ have the same degree, they are homotopic.