Preliminaries from Set Theory and Logic Part 1

 ${\it Rafael Reno S. Cantuba, PhD} \\ {\it MTH541M - Bridging Course for Real Analysis / Advanced Calculus}$

Recall: Logical Connectives

р	$\neg p$
T	F
F	T

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	$p \oplus q$
T	T	T	T	T	T	F
T	F	F	T	F	F	T
F	T	F	T	T	F	T
F	F	F	F	T	T	F

The most important logical connective in Pure Math: The Mathematicians Arrow "⇒"

- The Conditional
 - **1** Usage: $p \Rightarrow q$ means any of the following:
 - \bigcirc If p, then q.
 - $oldsymbol{o}$ p implies q.
 - q if p.
 - $\mathbf{0}$ p only if q.
 - $\mathbf{0}$ q follows from p.
 - $\mathbf{0}$ p entails q.
 - A sufficient condition for q is p.
 - A necessary condition for p is q.
 - **②** Defining property: $p \Rightarrow q$ is false in one and only one combination of values: $p \equiv T$ and $q \equiv F$.
 - **3** Terminology: Given $p \Rightarrow q$, we have the following names:
 - for p: hypothesis, antecedent, premise
 - ② for q: conclusion, consequent, consequence

The Disjunctive Form of the Conditional

Theorem 1

For any propositions p, q, we have

$$p \Rightarrow q \equiv \neg p \lor q$$
.

[For the proof, truth tables may be used.]

Negation of a Conditional: Use De Morgan's Laws on the Disjunctive Form

Theorem 2

For any propositions p, q, we have

$$\neg(p \Rightarrow q) \equiv p \land \neg q.$$

The Converse and the Contrapositive

Definition 3

lacksquare The *converse* of the conditional statement $p \Rightarrow q$ is the statement

$$q \Rightarrow p$$
.

② The contrapositive of the conditional statement $p\Rightarrow q$ is the statement

$$\neg q \Rightarrow \neg p$$
.

- A conditional statement is NOT logically equivalent to its converse.
- A conditional statement is logically equivalent to its contrapositive.

Tautologies and Contradictions

Definition 4

A statement that is always true is called tautology.

Corollary: Two propositions are logically equivalent iff their biconditional is a tautology.

Definition 5

A statement that is always false is called a contradiction.

Definition 6

A statement that is neither a tautology nor a contradiction is a *contingency*.

Arguments

Definition 7

An argument is a compound proposition of the form

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q$$

where the propositions p_1, p_2, \ldots, p_n are called the *premises* of the argument and the proposition q is called the *conclusion* of the argument.

Notation

We write an argument $(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q$ as

 p_1

 p_2

:

 p_n

.. q

Arguments

Notation

We write an argument $(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q$ as

 p_1

 p_2

:

p_n

.·. q

The original expression $(p_1 \land p_2 \land \cdots \land p_n) \Rightarrow q$ is called the *propositional form* of the argument.

Arguments

Given the argument:

 p_1

*p*₂

*p*₃

*p*₄

∴ q

Are the following arguments different?

$$\begin{array}{cccc}
 & & & & & & p_1 \\
 & & & & & p_2 \\
 p_2 & & & & p_2 \\
 p_1 & & p_1 & & p_2 \\
 p_3 & & p_2 \wedge p_3 & & p_3 \\
 p_4 & & & p_4 & & p_4 \\
 \vdots & q & & & \vdots & q
\end{array}$$

Valid and Invalid Arguments

Definition 8

An argument is *valid* if its propositional form is a tautology. Otherwise, [if the propositional form is a contigency *or* a contradiction], the argument is said to be *invalid*, or to be a *fallacy*.

Example 9

Fallacy of the Converse [Fallacy of Affirming the Conclusion]

$$\begin{array}{c}
q \\
p \Rightarrow q \\
\hline
\therefore p
\end{array}$$

Some Standard Valid Arguments: The Rules of Inference

$$\begin{array}{c} p\Rightarrow q & \neg p \\ q\Rightarrow r & \\ \text{Hypothetical syllogism:} & \hline \therefore p\Rightarrow r & \text{Disjunctive syllogism:} \\ \hline \end{array}$$

Addition:
$$\frac{p}{\therefore p \lor q}$$
 Simplification: $\frac{p \land q}{\therefore p}$ Conjunction: $\frac{q}{\therefore p \land q}$

Rule of Conditional Proof (RCP): The arguments $p_1 \over p \Rightarrow q$ and $p_1 \over p \Rightarrow q$ are the same.

Proving Techniques [based on the properties of the conditional connective]

Standard theorem format: $p \Rightarrow q$.

- **① Direct proof:** Assume p is TRUE. Show that q is TRUE.
- **2 Proof by contraposition:** Assume the falsehood of q. Prove the falsehood of p.
- Proof by contradiction: Assume the truth of p, and the falsehood of q. Produce a contradiction.
- **4 Proof by cases:** If $p \equiv p_1 \lor p_2$ for some propositions p_1 , p_2 , then prove both $p_1 \Rightarrow q$ and $p_2 \Rightarrow q$.
- **9 Proof of a biconditional:** There are actually two theorems in $p \Leftrightarrow q$, which are necessity $p \Rightarrow q$, and sufficiency $q \Rightarrow p$. Both are to be proven.
- **Technique for disjunction in a conclusion:** The negation of one of the statements may be used as a hypothesis. Prove the other.

Quantifiers

- Universal Quantifier: All, each, any, arbitrary, etc.
- 2 Existential Quantifier: Some, "There exists..."

Example 10

Recall that a sentence of the following form is NOT a proposition:

$$(x+y)^2 = x^2 + y^2$$
,

but becomes a proposition when a quantifier is attached:

- For all real numbers x and y, we find that $(x + y)^2 = x^2 + y^2$.
- 2 There exist real numbers x and y such that $(x + y)^2 = x^2 + y^2$.

Quantifiers

Rule

To negate a quantified statement, "reverse" the quantifier first before negating the actual statement.

Example 11 (The Square of Opposition in Classical Logic)

- All women are mortal.
- 2 There exists a woman who is mortal.
- 3 All women are not mortal.
- There exists a woman who is not mortal.

In Mathematics, logic statements are about collections of objects

Some notions from Set Theory: Class vs. Set

Undefined terms in [one formulation of] Set Theory: class, element, and the membership relation \in

Definition 12

A set is a class that is also an element.

Proposition 13 (Russell's Paradox)

The Russell Class $\{S: S \notin S\}$ is not a set.

Proof.

Suppose otherwise. Then the Russell Class \mathcal{R} is either an element of itself or not.

If $\mathcal{R} \in \mathcal{R}$, then \mathcal{R} satisfies the defining condition $S \notin S$ for the Russell class, i.e., $\mathcal{R} \notin \mathcal{R}$.

Some notions from Set Theory: Proposiitonal Functions and Classes

Definition 14

A propositional function in n variables x_1, x_2, \ldots, x_n is a proposition $P(x_1, x_2, \ldots, x_n)$ whose truth value depends on the values of the variables x_1, x_2, \ldots, x_n . The collection of all objects from which the values of x_1, x_2, \ldots, x_n will be taken is called the domain of discourse, universe of discourse, or simply the universe.

Axiom 15 (Axiom of Class Construction)

For any propositional function P, the class $\{x : P(x)\}$ exists.

Symbolic Logic with Quantifiers

Definition 16

The universal quantification of the statement P(x) is the statement

 $\forall x \ P(x)$: P(x) is true for all x in the universe of discourse.

The existential quantification of the statement P(x) is the statement

 $\exists x \ P(x)$: There exists x in the universe of discourse such that P(x) is true.

Symbolic Logic with Quantifiers: Finite Universe of Discourse

Example 17

Let $S = \{1, 2, 3, 4\}$ denote the universe of discourse.

$$P(x)$$
 : x is even.
 $\forall x \ P(x) \Leftrightarrow P(1) \land P(2) \land P(3) \land P(4)$
 $\exists x \ P(x) \Leftrightarrow P(1) \lor P(2) \lor P(3) \lor P(4)$

In general, if the universe of discourse is a finite set $\{x_1, x_2, \dots, x_n\}$,

$$\forall x \ P(x) \Leftrightarrow P(x_1) \land P(x_2) \land \cdots \land P(x_n)$$

$$\exists x \ P(x) \Leftrightarrow P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)$$

Symbolic Logic with Quantifiers

Theorem 18

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

In general, if the universe of discourse is a finite set $\{x_1, x_2, \dots, x_n\}$,

$$\forall x \ P(x) \Leftrightarrow P(x_1) \land P(x_2) \land \cdots \land P(x_n)$$

$$\exists x \ P(x) \Leftrightarrow P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)$$

Symbolic Logic with Quantifiers

Theorem 19

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

In general, if the universe of discourse is a finite set $\{x_1, x_2, \dots, x_n\}$,

$$\neg \forall x \ P(x) \Leftrightarrow \neg P(x_1) \lor \neg P(x_2) \lor \cdots \lor \neg P(x_n)$$

$$\neg \exists x \ P(x) \Leftrightarrow \neg P(x_1) \land \neg P(x_2) \land \cdots \land \neg P(x_n)$$

Non-predicate Clauses

The statement " $x \in A$ " (for some x in the universe and some subset A of the universe)

$$\forall x \in A \ P(x) \Leftrightarrow \forall x \ (x \in A \Longrightarrow P(x))$$

 $\exists x \in A \ P(x) \Leftrightarrow \exists x \ (x \in A \land P(x))$

Rules of Inference for Quantifiers

Existential Instantiation (EI):

$$\frac{\exists x \ P(x)}{\therefore P(a)}$$

where the symbol a has no previous appearance in the proof

② Universal Instantiation (UI):

$$\frac{\forall x \ P(x)}{\therefore P(a)}$$

Second Second

$$\frac{P(a)}{\therefore \exists x \ P(x)}$$

Universal Generalization (UG):

$$\frac{P(a)}{\therefore \forall x \ P(x)}$$

where the symbol a is not a result of **EI**

Class Containment and Class Equality

Let A and B be classes.

Suppose $x \in A \Longrightarrow x \in B$.

 $\mathsf{UG} \colon \forall x \ [x \in A \Longrightarrow x \in B].$

Rule for non-predicate clauses: $\forall x \in A \ [x \in B]$.

Conversely:

Suppose $\forall x \in A \ [x \in B]$.

Rule for non-predicate clauses: $\forall x \ [x \in A \Longrightarrow x \in B]$.

UI: $x \in A \Longrightarrow x \in B$.

Therefore, $x \in A \Longrightarrow x \in B$ is equivalent to $x \in A \Longrightarrow x \in B$.

Definition 20

$$A \subseteq B \iff [x \in A \Longrightarrow x \in B],$$

$$A = B \iff [A \subseteq B] \land [B \subseteq A].$$

Relations

Let A and B be sets, and let a and b be elements.

Definition 21

$$(a,b) := \{a, \{a, b\}\},\$$

 $A \times B := \{(a,b) : a \in A, b \in B\}.$

Definition 22

A relation on a set A is a subset of $A \times A$

Notation: If ∞ is a relation on a set A, then we write $a \propto b$ if [and only if] $(a, b) \in \infty$. If $(a, b) \notin \infty$, then we write $a \propto b$.

If ∞ is a relation on A, then given $a \in A$, by the Axiom of Class Construction, $\{x : x \propto a\}$ exists, and $b \propto a$ iff $b \in \{x : x \propto a\}$.

$$\forall x \propto a \ P(x) \iff \forall x \ (x \propto a \Longrightarrow P(x))$$

 $\exists x \propto a \ P(x) \iff \exists x \ (x \propto a \land P(x))$

Functions

We say that $f \subseteq X \times Y$ is a function of X into Y, or a function from X to Y if [and only if] the following two conditions both hold:

$$\forall x \in X \quad \exists y \in Y \ [(x,y) \in f],$$

$$\forall (x_1, y_1), (x_2, y_2) \in f \ [x_1 = x_2 \implies y_1 = y_2].$$

Functions: Traditional Notation

We say that f is a function of X into Y, or a function from X to Y, in symbols $f: X \to Y$, if [and only if] the following two conditions both hold:

$$\forall x \in X \quad \exists y \in Y \ [y = f(x)],$$

$$\forall x_1, x_2 \in X \ [x_1 = x_2 \implies f(x_1) = f(x_2)].$$

Surjectivity:

$$\forall y \in Y \quad \exists x \in X \ [y = f(x)].$$

Injectivity:

$$\forall x_1, x_2 \in X \ [f(x_1) = f(x_2) \implies x_1 = x_2].$$

Notational Conventions on Functions

- In the symbolic notation $f: X \to Y$, if the name of a function or functions is not relevant, we often write $X \to Y$.

 e.g. Let \mathbb{R} denote the set of all real numbers, and \mathbb{N} the set of all positive integers. Sequences in \mathbb{R} are functions $\mathbb{N} \to \mathbb{R}$.
- ② An alternative to the traditional function notation y = f(x) is $x \mapsto f(x)$. e.g., Complicated function compositions: Given functions $M : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $v : \mathbb{R} \to \mathbb{R}$, we shall

consider the function $\mathbb{R} \to \mathbb{R}$ defined by the rule

$$t\mapsto M(\varphi(t,t),v(t)).$$

Alternative: define $F : \mathbb{R} \to \mathbb{R}$ by $F(t) = M(\varphi(t, t), t)$ for all $t \in \mathbb{R}$.

If the name of a function is still not relevant: e.g., the square root function is $x \mapsto \sqrt{x}$.

Image and Inverse Image

Consider a function $f: X \to Y$ and let $A \subseteq X$ and $B \subseteq Y$. The image of A under f is $f(A) := \{y : \exists x \in A \ [y = f(x)]\}.$

The inverse image of B under f is $f^{-1}(B) := \{x \in X : f(x) \in B\}$.

WARNING: $f^{-1}(B)$ exists for any $B \subseteq Y$, even if the inverse function f^{-1} does not [i.e, f is not surjective or not injective].

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2),$$
 $f(A_1 \cup A_2) = f(A_1) \cup f(A_2),$
 $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2),$ injectiveness is required for equality,
 $(f(A_1))^c \subseteq f(A_1^c),$ surjectiveness is required for equality.

$$B_{1} \subseteq B_{2} \implies f^{-1}(B_{1}) \subseteq f^{-1}(B_{2}),$$

$$f^{-1}(B_{1} \cup B_{2}) = f^{-1}(B_{1}) \cup f^{-1}(B_{2}),$$

$$f^{-1}(B_{1} \cap B_{2}) = f^{-1}(B_{1}) \cap f^{-1}(B_{2}),$$

$$(f^{-1}(B_{1}))^{c} = f^{-1}(B_{1}^{c}).$$

Order Relations

Definition 23

A partial order on a set A is a relation \propto on A that is:

- reflexive: $\forall a \in A \ [a \propto a]$;
- 2 antisymmetric: $\forall a, b \in A \ [\ [a \propto b \land b \propto a] \Longrightarrow a = b]$; and
- **3** transitive: $\forall a, b, c \in A \ [\ [a \propto b \land b \propto c] \Longrightarrow a \propto c].$

A partially ordered set is a set on which a partial order exists. If ∞ is a partial order on A, two elements a and b of A are said to be comparable if $a \propto b$ or $b \propto a$. A partially ordered set in which any two elements are comparable is said to be linearly ordered or totally ordered, and the underlying partial order is called a total order or linear order.

Suprema and Infima

Suppose \triangleleft is a partial order on a set A.

- **1** An element a of A is a *largest element* of A if [and only if] $\forall x \in A \ [a \lhd x \Longrightarrow x = a].$
 - If a is a largest element of A, then $\forall x \in A \ [x \lhd a]$ need not be true. e.g., $\exists c \in A \ [c \not \lhd a]$.
 - It is possible for a set to have several or no largest element under a given partial order.
- ② An element a of A is a least element of A if $\forall x \in A \ [x \lhd a \Longrightarrow x = a].$
- ③ If $\emptyset \neq B \subseteq A$, then $a \in A$ is an upper bound of B if $\forall b \in B \ [b \triangleleft a]$.
 - \bullet An upper bound of B need not be an element of B.

Suprema and Infima

Basic Uniqueness Proof

To prove that the element x of the universe of discourse is the unique element with property P, prove that

$$[P(x) \land P(y)] \Longrightarrow x = y. \tag{1}$$

Proposition 24

The least upper bound of a subset of a partially ordered set is unique.

Proof.

Let B be a subset of a set A partially ordered by \lhd . Let $\mathscr{U}(B)$ be the set of all upper bounds of B. Suppose B has two least upper bounds x and y. Since $y \in \mathscr{U}(B)$ and x is a least element of $\mathscr{U}(B)$, we have $x \lhd y$. Since $x \in \mathscr{U}(B)$ and y is a least element of $\mathscr{U}(B)$, we have $y \lhd x$. By anti-symmetry, we have x = y.

Suprema and Infima

- The least upper bound of a set is called the supremum of the set.
- We have analogous notions for *lower bound* and *greatest lower bound* or *infimum*.

Order Axioms for the Real Number System

Axiom 25

There exists a total order < on the set $\mathbb R$ of all real numbers such that

Other relations >, \leq and \geq are defined by

$$a > b \iff b < a$$

$$a \le b \iff [a < b \lor a = b],$$

$$a \ge b \iff [b < a \lor a = b].$$

Order Axioms for the Real Number System

Proposition 26

 $\forall a \in \mathbb{R} \ [a > 0 \Longleftrightarrow -a < 0].$

Proof.

By UG, a,b,c in the condition $a < b \Longrightarrow a+c < b+c$ is arbitrary. If we make replacements: $a \mapsto 0$, $b \mapsto a$ and $c \mapsto -a$, we have $a > 0 \Longrightarrow -a < 0$.

If we make the replacements, $a\mapsto -a$, $b\mapsto 0$ and $c\mapsto a$, we have $-a<0\Longrightarrow a>0$.

Proposition 27

 $\forall a, b, c \in \mathbb{R} \ [\ [a < b \land c < 0] \Longrightarrow ac > bc].$

Proof.

Exercise.