Véletlen fizikai folyamatok, negyedik házi feladat

Horváth Bendegúz

2018. március 12.

Szimuláció

A program megírásához a Python nyelvet használtam, a számításokat és a vizualizációt is ebben a környezetben hajtottam végre.

Előszőr importáltam a szükséges csomagokat, és a személyre szabott βka^2 adatomat.

```
%pylab inline
i = 1
l = [0.14, 0.28, 0.56, 1.15]
betaka2 = 1[i]
```

Utána definiáltam egy redukált ΔE , azért redukált, mert leosztottam βka^2 -tel. Az argumentumai n és $n \pm 1$.

```
def DeltaE(n, npm1):
    return 1/2*(npm1**2-n**2)
```

Ezután implementáltam a szimulációs lépést, ami egy egész számot vár bemenetként, a részecske helyzetét.

```
def SimulationStep(n):
    r = random.random(1)
    direction = ((r-1/2)/abs(r-1/2))
    npm1 = int(n+direction)
    if DeltaE(n, npm1) < 0:
        n = npm1
    else:
        rand = random.random(1)
        if rand < exp(-betaka2*DeltaE(n, npm1)):
            n = npm1
        else:
            n = n
        return (n)</pre>
```

A szimuláció végrehajtása a SimulationStep(n) függvény folyamatos meghívásásával történik. Egy steps nevű tömbhöz minden egyes lépés után hozzácsatoltam a részecske helyzetét.

```
temp = 0
steps = []
for i in range(1000000):
    n = temp
    steps.append(temp)
    temp = SimulationStep(n)
steps.append(temp)
print(temp)

Output: 3
```

A számításokat a beépített függvényekkel végeztem el, a részecske távolról indítva 0 körüli egyensúlyi helyzetbe megy át a relaxációs idő alatt. Én a rácspont 200. pontjából indítottam, és a relaxációs időt a 0 pont elérésének vettem. Így az átlagokat a relaxációs idő letelte után számoltam.

```
for t in range(len(steps)):
    if steps[t] == 0:
        print(t)
        break
Output: 390
```

Egy összefoglaló táblázat a szimulációkról:

βka^2	lépések száma	$\langle x \rangle$	$\langle x^2 \rangle$	$\langle x^2 \rangle - \langle x \rangle^2$	relaxációs idő [lépés]	indulás helye [a]
0.14	1000000	0.00850842	7.21865690	7.21858450	403	200
0.28	1000000	0.00716580	3.59012874	3.59007739	392	200
0.56	1000000	-0.01202176	1.78234280	1.78219827	397	200
1.15	1000000	0.00061125	0.86798166	0.86798129	405	200

A táblázatban lévő adatokból az látszik, hogy az átlag a βka^2 növelésével egyre jobban közelít a 0-hoz, valamint a βka^2 növelésével fordítottan arányos a szórásnégyzet. A kísérleteket sokszor elvégezve ugyanezekkel a bemeneti paraméterekkel 5 tizedesjegyig ezeket az értékeket kaptam. A relaxációs idő és az indulás helyének adataiból is feltételezhetünk valami összefüggést a kettő között, és feltételezhetjük, hogy nem függ a hőmérséklettől. Ennek az összefüggésnek a vizsgálata érdekében csináltam még pár szimulációt.

indulás helye	relaxációs idő [lépés]
400	842
600	1227
1000	2062
0	0
-400	825
-600	1193
-1000	1967

1. ábra. A relaxációs idő az induláshelyének függvényében. Feltételezhtető egy $\tau=2\cdot|x_0|$ összefüggés.

2. ábra. Ábrázolva különböző βka^2 értékek mellett a részecske helyzete a lépések számának függvényében.

A valószínűségi eloszlás függvényt közelíthetjük a relatívgyakoriságokkal. Egyensúlyi helyzetben vizsgáljuk meg, hogy mi lehet $P^{(e)}(n)$. A bemeneti paraméterek: lépésszám = 1000000, $\beta ka^2=0.56$.

n	$P^{(e)}(n)$
-8	0
-7	0
-6	$1.799 \cdot 10^{-5}$
-5	0.0002519
-4	0.00355199
-3	0.02477197
-2	0.098436
-1	0.2256807
0	0.29858670
1	0.22449777
2	0.096939903
3	0.0235609
4	0.00336399663
5	0.000306999
6	$3.09999 \cdot 10^{-5}$
7	$9.999 \cdot 10^{-7}$
8	0

A relatív gyakoriságokat is egy függvénnyel számoltam:

```
def relative_frequency(lst, element):
    return lst.count(element) / float(len(lst))
```

Ábrázolva a az értékeket:

3. ábra. A $P^{(e)}(n)$ értékek, összekötve egyenes szakaszokkal.

Az ábrán látható pontok összekötve egy Gauss-görbe szerű függvényt adnak. Próbálkoztam valahogyan kombinálva a paramétereket egy olyan függvényt készíteni, ami a legjobban illik a pontjainkra. Az illesztett függvény meglepően jól fedi a pontjainkat.

4. ábra. A $P^{(e)}(n)$ értékek, és a ráillesztett függvény .

Az legjobban illeszkedő függvény a következő alakú volt:

$$P^{(e)}(n) = \frac{1}{\pi\sqrt{2 \cdot \beta ka^2}} e^{-\frac{n^2}{\pi\sqrt{2 \cdot \beta ka^2}}}$$