

COMPETENCES « MESURES PHYSIQUES 2° ANNEE » L'IUT DE BLOIS

L'étudiant en deuxième année « Mesures physiques » est un généraliste apte à intervenir dans tous les domaines de la mesure. Il a sa place dans tous les secteurs de l'industrie et de la recherche ; tels que les laboratoires de métrologie et d'analyse, dans les services de recherche et développement ou dans les services qualité de l'entreprise.

Sa formation lui permet de s'adapter rapidement à toutes les technologies existantes. Elle repose sur les trois points fondamentaux suivants :

- des bases théoriques universitaires pour des aptitudes variées ;
- de nombreux travaux pratiques comme première expérience des techniques de mesures ;
- des projets pour apprendre à s'organiser par rapport à un objectif donné.

Voici un aperçu des compétences acquises avant le stage de 2° année à l'IUT de Blois

Outils mathématiques et traitement du signal :

Une introduction à la représentation spectrale des signaux (Série et transformée de Fourier, propriété de convolution) et la numérisation des signaux ainsi que certaines notions et techniques (filtrage, échantillonnage, corrélation, DSP, rapport signal bruit...)

Optique ondulatoire :

- Polarisation (loi de Malus, lame quart d'onde et demi-onde...),
- Diffraction par un objet simple, analyse de figures de diffraction et conséquence sur la résolution,
- Interférences à 2 ondes, utilisation et applications d'un interféromètre (Michelson, Mach-Zenders...),
- Notion d'interférences à ondes multiples et applications (réseau, cavité Fabry-Perrot, filtres interférentiels...).

Mécanique des fluides et introduction aux techniques du vide

- Mécanique des fluides :
 - statique des fluides incompressibles
 - détermination des pertes de charges
 - o caractérisation des pompe
 - o étude des installations (
- Introduction aux techniques du vide :
 - vide primaire: dimensionnement des installations, détermination de la pression limite, du temps de pompage,
 - vide secondaire : dimensionnement des installations, détermination de la pression

- connaissance des principaux capteurs de pression, de vitesse et de débit (
- rhéologie : mesure de la viscosité, détermination du comportement du fluide par tracé et analyse des rhéogrammes
 - limite, du temps de pompage, et qualité du vide
- analyse par spectrométrie de masse
- connaissance des principales jauges de pression en vide primaire et secondaire

Energie et environnement

Introduction à la production des énergies renouvelables et décarbonées. Notion de qualité d'un milieu.

Métrologie, qualité et statistiques

- Mettre en œuvre des outils d'analyses statistiques,
- assurer la fiabilité des résultats de mesures produits.
- établir la traçabilité d'un résultat de mesure,

Electromagnétisme

S'initier aux lois de l'électromagnétisme et de l'électrostatique puis à leurs applications aux capteurs (inductifs, capacitifs...). Loi de Laplace, induction magnétique : applications.

Conditionnement de signaux et pilotage d'instruments

- Traitement électronique d'un signal analogique issu d'un capteur : amplification, filtrage, adaptation d'impédance, comparateur.
- Programmation avancée d'instruments et d'interfaces homme-machine pour l'échange de données entre un instrument de mesure et un ordinateur.

Matériaux et résistance des matériaux

- Etudier et comparer les propriétés des matériaux en relation avec les traitements physiques ou chimiques, et modifications dues à des traitements spécifiques lien avec leur structure et leur microstructure.
- Fondamentaux de la résistance des matériaux

Techniques spectroscopiques

- Identification et analyse par différentes méthodes spectroscopiques atomique et moléculaire (principe, instrumentation) : UV-Visible, Infrarouge, Raman, Fluorescence, , ...
- Analyses qualitative et quantitative ; identification de groupes fonctionnels.

Choix et mise en œuvre des composants d'une chaîne de mesure, d'essais en réponse à un cahier des charges :

- Synthèse des types et technologies de capteurs,
- Caractéristiques métrologiques d'une chaîne de mesure (capteur + conditionneur + traitement + acquisition),
- Chaîne de mesure en boucle fermée.

Mécanique vibratoire et acoustique :

- Mécanique vibratoire systèmes à 1 degré de liberté :
- Acoustique : bases physiques, équation d'onde, propagation, acoustique physiologique, niveaux acoustiques.

Techniques d'analyses chromatographiques et électrochimiques.

- Techniques chromatographiques : principes de séparation, chromatographie phase liquide (HPLC, CI), chromatographie phase gazeuse (CPG), analyse qualitative, analyse quantitative (étalonnage externe et étalonnage interne).
- Techniques électrochimiques : principes (électrolytes, systèmes d'électrodes, interfaces), analyse quantitative (courbes intensité potentiel, ...).

Gestion des moyens de contrôle

- Etablissement de procédures de contrôle selon normes
- Essai sur produits pour caractérisation catalogue, essais sur prototypes pour recherche et développement
- Maîtrise Statistique de Procédé : capabilité machine et procédé, établissement de cartes de contrôle.