

CHAPTER

Linear Inequality

- 1. If a, b, c are distinct +ve real numbers and $a^2 + b^2 + c^2 = 1$ then ab + bc + ca is [2002]
 - (a) less than 1
- (b) equal to 1
- (c) greater than 1
- (d) any real no.
- 2. If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$

is [2006]

(a) $\frac{1}{4}$

(b) 41

(c) 1

(d) $\frac{17}{7}$

3. Statement-1: For every natural number $n \ge 2$,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}.$$

Statement-2: For every natural number $n \ge 2$,

$$\sqrt{n(n+1)} < n+1.$$
 [2008]

- (a) Statement -1 is false, Statement-2 is true
- (b) Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
- (c) Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
- (d) Statement -1 is true, Statement-2 is false

Answer Key												
1	2	3										
(a)	(b)	(b)										

SOLUTIONS

- 1. (a) $(a-b)^2 + (b-c)^2 + (c-a)^2 > 0$ $\Rightarrow 2(a^2 + b^2 + c^2 - ab - bc - ca) > 0$ $\Rightarrow 2 > 2(ab + bc + ca) \Rightarrow ab + bc + ca < 1$
- 2. **(b)** $y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ $3x^2(y-1) + 9x(y-1) + 7y - 17 = 0$ $D \ge 0 : x \text{ is real}$ $81(y-1)^2 - 4 \times 3(y-1)(7y-17) \ge 0$ $\Rightarrow (y-1)(y-41) \le 0 \Rightarrow 1 \le y \le 41$

 \therefore Max value of y is 41

ALTERNATE SOLUTION

Given
$$f(x) = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$$

$$\Rightarrow f(x) = 1 + \frac{10}{3x^2 + 9x + 7}$$

Clearly f(x) is maximum when $g(x) = 3x^2 + 9x + 7$ is min.

Here
$$g(x) = 3\left(x^2 + 3x + \frac{9}{4}\right) + 7 - \frac{27}{4}$$

www.crackjee.xyz

M-22 Mathematics

$$= 3\left(x + \frac{3}{2}\right)^2 + \frac{1}{4}$$

which is minimum when $x = \frac{-3}{2}$

$$\therefore f_{\text{max}} = 1 + \frac{10}{3 \times \frac{9}{4} - 9 \times \frac{3}{2} + 7} =$$

$$1 + \frac{10 \times 4}{27 - 54 + 28} = 41$$

3. **(b)** Statement 2 is $\sqrt{n(n+1)} < n+1, n \ge 2$ $\Rightarrow \sqrt{n} < \sqrt{n+1}, n \ge 2$ which is true $\Rightarrow \sqrt{2} < \sqrt{3} < \sqrt{4} < \sqrt{5} < ----\sqrt{n}$

Now
$$\sqrt{2} < \sqrt{n} \Rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{n}}$$

$$\sqrt{3} < \sqrt{n} \Rightarrow \frac{1}{\sqrt{3}} > \frac{1}{\sqrt{n}}$$
;

$$\sqrt{n} \le \sqrt{n} \Rightarrow \frac{1}{\sqrt{n}} \ge \frac{1}{\sqrt{n}}$$

Also
$$\frac{1}{\sqrt{1}} > \frac{1}{\sqrt{n}}$$
 : Adding all, we get

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{n} > \frac{n}{\sqrt{n}} = \sqrt{n}$$

Hence both the statements are correct and statement 2 is a correct explanation of statement-1.