

Workshop

Intro & Setup

Architecture

- 3 devices producing telemetry
 - Electricity
 - Gas
 - Weather conditions
- Simulated using a Python script

- Azure (Student) account
- Python >= 3.9
- Optional
 - Git
 - Azure CLI
 - Azure IoT Explorer
 - Azure Storage Explorer
 - Power BI Desktop

https://github.com/kspeeckaert/tt_hogent_22_23

Clone

(if you have git installed)

- or -

Download

https://portal.azure.com

Azure Portal

Workshop

Part I - Simulation

Architecture

Setup

- 1. Resource Group
- 2. IoT Hub
 - Create devices
 - Grab connection strings
- 3. Azure Maps
 - Grab Client ID and Primary Key
- 4. Configure simulation script
- 5. Run!

simul_config.json

```
"gas": {
    "conn str": "HostName=hub-hogent.azure-devices.net;DeviceId=
    "interval": 10
"electricity":
    "conn str": "HostName=hub-hogent.azure-devices.net;DeviceId=
    "interval": 5
"weather": {
    "conn str": "HostName=hub-hogent.azure-devices.net;DeviceId="""
    "interval": 120,
    "coordinates": {
        "lat": 51.0330995,
        "lon": 3.6865697
    "az_maps": {
        "subscription_key": "yKFMwhs3orp
                                                       9rBKGxQ2FG
        "client id": "55bca85b-
                                              -30cbf091b695'
```


pip install -U -r requirements.txt

python device_simulators.py

Check incoming data

- Use Azure IoT Explorer
 - Login
 - Select IoT Hub
 - Select device, then Telemetry
 - Click Start

• Open Windows Terminal / Command prompt

az iot hub monitor-events --hub-name hub-hogent

Anyone spot the issue?

Store raw telemetry data

1. Create Storage Account

- Select the resource group
- Region: West Europe
- Redundancy: Locally redundant storage (LRS)

2. Create blob container

3. Configure message routing in IoT Hub

- Define custom endpoint (blob container)
- Define route to endpoint

- Navigate to the blob container in Azure Portal
- Use Azure Storage Explorer
 - Login
 - Expand Storage Accounts
 - Select the storage account
 - Expand Blob Containers
 - Select the blob container

Workshop

Part II – Streaming Analytics

Architecture

Azure Stream Analytics

"Azure Stream Analytics is a fully managed stream processing engine that is designed to analyze and process large volumes of streaming data with submillisecond latencies"

Stream Analytics

- Input(s)
- Output(s)
- Query

Actions

- Aggregate
- Enrich
- Apply ML

Outputs

- Real-time dashboards
- Websites / applications
- Data lakes / Data stores

— ...

- 1. Create Stream Analytics Job
- 2. Add IoT Hub as input
- 3. Add blob container as output
 - Store in a separate folder
- 4. Define the query to aggregate the data
 - Calculate average consumption for the last 60 seconds
 - Output every 5 seconds
- 5. Run!

Hopping window

Calculate average consumption for the last 60 seconds Output every 5 seconds

```
SELECT System.Timestamp() AS timestamp
,ID as ean
,IoTHub.ConnectionDeviceId as device_type
,CASE IoTHub.ConnectionDeviceId
    WHEN 'Electricity' THEN AVG(L1_Cons)
    WHEN 'Gas' THEN AVG(current_cons)
    ELSE NULL
    END as avg_value
FROM [hub-hogent]
TIMESTAMP BY timestamp
WHERE IoTHub.ConnectionDeviceId IN ('Gas', 'Electricity')
GROUP BY ID
    ,IoTHub.ConnectionDeviceId
    ,HoppingWindow(second, 50)
```


Workshop

Part III - Data Explorer

Architecture

"Azure Data Explorer is a fully managed, highperformance, big data analytics platform that makes it easy to analyze high volumes of data in near real time."

- · High performance, optimised for big data
- Append-only, immutable data
- Batch and streaming ingestion
- Ideal for
 - structured or semi-structured data
 - time series analysis
- Uses Kusto Query Language (KQL)

https://aka.ms/kustofree

- 1. Setup Data Explorer cluster
- 2. Create a database
- 3. Ingest raw data from blob container
- 4. Query data

Ingest data

Ingest into 2 tables

- Raw data (electricity, gas and weather)
- Averaged utility data (generated by ASA)

Split raw data into

- electricity data
- gas data
- weather data

• Create 3 tables

- util_electric
- util_gas
- weather

Sample query

- Can you figure out the others?
- Weather needs a little more... unpacking

Kusto QL

Kusto Detective Agency: https://detective.kusto.io

- SQL Police Department: https://sqlpd.com
- SQL Murder Mystery: https://mystery.knightlab.com
- The Schemaverse: https://schemaverse.com

30 Days to Learn It
 https://developer.microsoft.com/en-us/offers/30-days-to-learn-it

