

Carnegie Mellon University

Tepper School of Business

46-886: Machine Learning Fundamentals

Amr Farahat

Recommender Systems: Model-Based Collaborative Filtering – Part 2

Much of this slide deck is derived/borrowed from course material I've co-taught at MIT

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>

Jose's <u>predicted</u> rating of movie Q

				Arc	chety	ype			
User	1	2	3	4	5	6	7	8	9
John									
Isabel									
Charles									
Paul									
Rahul									
Jose	.2	.3	.1	.9	3	4	.8	8	.7
Caroline									
Stephanie									

													N	lov	ie												
Archetype	A	В	C	D	\mathbf{E}	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	\mathbf{U}	V	W	X	Y	Z	
1																	3										
2																	2										
3																	4										
4																	5										
5																	3										
6																	2										
7																	1										
8																	4										
9																	3										

$$R_{\text{Jose, Q}} = .2 \times 3 + .3 \times 2 + .1 \times 4 + .9 \times 5 - .3 \times 3 - .4 \times 2 + .8 \times 1 - .8 \times 4 + .7 \times 3 = 4.1$$

Jose's observed rating of movie Q

													N	lov	vie –												
User	A	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	
John				5					1				3			4											
Isabel														4				4					1		2		
Charles			3				2				2				5												
Paul					1				1										4		5						
Rahul												2												4			
Jose		5				3											2			2						1	
Caroline								4							1							4					
Stephanie	3				2					2	2							3						5			
•••																											

Residual for model's predicted value for Jose of movie Q is

$$OBSR_{Jose,Q} - 4.1 = 2 - 4.1 = -2.1$$

Least Squares Fitting

- Question: Which objects do we need to determine?
 - $S_{a,m}$: supposed rating of movie m by archetype a
 - $w_{u,a}$: weight of archetype a in the linear combination of user u
- Let us compute these values to minimize the sum of squared residuals, namely the difference between observed and predicted user-movie ratings for all of the user-movie pairs in the observed ratings

```
minimize \sum_{\substack{\text{all observed}\\ \text{user-movie}\\ \text{pairs }(u,m)}} \left( \text{OBSR}_{u,m} - (\textcolor{red}{w_{u,1}S_{1,m}} + \textcolor{red}{w_{u,2}S_{2,m}} + \cdots + \textcolor{red}{w_{u,9}S_{9,m}}) \right)^2
```

Summary of Model-Based CF

1. Observed user-movie ratings

		Movie																									
User	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	
John				5					1				3			4											
Isabel														4				4					1		2		
Charles			3				2				2				5												
Paul					1		O	B	S	R_{i}	ιn	2							4		5						
Rahul						L					.,,,													4			
Jose		5				3											2			2						1	
Caroline								4							1							4					
Stephanie	3				2					2	2							3						5			

2. Archetype-movie ratings

3. User-archetype weights

		Archetype														
User		1	2	3	4	5	6	7	8	9						
John		.7	.1	<u></u>						.2						
Isabel	7	w_u								3						
Charles		u	\cdot, α							1.1						
Paul																
Rahul																
Jose		.2	.3	.1	.9	3	4	.8	8	.7						
Caroline																
Stephanie																

4. Least Squares Fitting

minimize
$$\sum_{\substack{\text{all observed}\\ \text{user-movie}\\ \text{pairs }(u,m)}} \left(\text{OBSR}_{u,m} - \left(\frac{w_{u,1}S_{1,m} + w_{u,2}S_{2,m} + \cdots + w_{u,9}S_{9,m}}{w_{u,2}S_{2,m} + \cdots + w_{u,9}S_{9,m}} \right) \right)^2$$

Model-Based Collaborative Filtering

- This modeling approach is an example of "model-based collaborative filtering"
 - collaborative: leverages other users' ratings to predict unobserved ones
 - filtering: of all the choices, filter the ones that's best for the individual
- We specify the number of archetypes k, and the model determines the archetypes and the user-archetype weights
 - This approach shares similarities with clustering in the sense that it produces customer archetypes that can be easy to "interpret"
- Active area of research and development