	<mark>©©</mark> o Uledh
Name:	
Roll No.:	
Invigilator's Signature :	
CS/B.Tech (CHE)/SEM	-8/CHE-801/2012

2012 TRANSPORT PHENOMENA

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - If the Kronecker delta, δ_q^p , is mixed tensor then its rank is
 - a) 0

b) 1

c) 2

- d) none of these.
- If \hat{i} , \hat{j} , \hat{k} are the unit vectors in x, y and z directions respectively, then
 - a) $\hat{j} \times \hat{k} = 1$
- b) $\hat{j} \times \hat{k} = -1$
- c) $\hat{j} \times \hat{k} = \hat{i}$ d) $\hat{j} \times \hat{k} = -\hat{i}$.

8013 [Turn over

- a) is frictionless and incompressible
- b) is one, which obeys Newton's law of viscosity
- c) highly viscous
- d) none of these.
- iv) The continuity equation
 - a) is independent of the compressibility
 - b) is independent upon the viscosity of the fluid
 - c) represents the conversation of mass
 - d) none of these.
- v) Cross or Vector product of two identical vectors is
 - a) 1

b) 0

- c) infinity
- d) -1.
- vi) A fluid behaves as a shear thickening fluid when apparent viscosity
 - a) increases with increase in stress
 - b) increases with decrease of stress
 - c) increases with duration of stress
 - d) decreases with duration of stress.

8013

		CS/B.Tech (C			Utech \
vii)	Flow behaviour index (n) of pseudoplastic plastic is				
	a)	0	b)	< 1	VIL. 12 1-2-1
	c)	> 1	d)	infinity.	
viii)	The non-dimensional group that appears in viscon heating problem is				in viscous
	a)	Brinkman number	b)	Nusselt nur	nber
	c)	Biot number	d)	None of the	se.
ix)	In deriving the equation of continuity, the effect of gravitational force				ne effect of
	a)	is not required to be ta	ken i	nto account	
	b) is required to be taken into account for fluids very high density				fluids with
	c)	is required to be tal flowing upwards again			t for fluids
	d)	is required to be taker high viscosity.	into	account for	fluids with
x)	If the Reynolds number in a flow system is very high would mean that				very high, it
	a)	the flow is dominated l	oy co	nvection	
	b)	the flow is dominated l	oy dif	fusion	
	c)	the flow is isothermal			
	d)	none of these.			
8013		3			[Turn over

- xi) Wilkes equation for estimating mass diffusivity of liquid may be best used for
 - a) $CCl_4 H_2O$
- b) $H_2SO_4 H_2O$
- c) $KMnO_4 H_2O$
- d) none of these.
- xii) Newton's law of cooling is used to define
 - a) local heat transfer coefficient
 - b) overall heat transfer coefficient
 - c) both (a) & (b)
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Compare Fick's law of diffusion with Newton's law of visocity and Fourier's law of thermal conductivity. To what extent are these relations analogous?
- 3. What is RANS theorem ? Prove that $\nabla \cdot (\overrightarrow{A} \times \overrightarrow{r}) = \overrightarrow{r} \cdot curl \overrightarrow{A}$ if $\nabla \times \overrightarrow{A} = \overrightarrow{O}$.
- 4. Derive the continuity equation in Cartesian coordinate in terms of substantial derivative form, considering both of conductive and convective heat transfers.

8013

4

- 5. Show that the following equation describes the pressure field in an arbitrary fluid under the influence of gravity $-\nabla \rho + \rho g = 0, \text{ where the symbols have their usual meaning.}$
- 6. Consider steady state evaporation of chloropicrin $\left(\text{CCl}_3\ \text{NO}_2\right)$ liquid into air which may be considered to be a pure substance. The temperature is 25°C. The liquid chloropicrin is taken in a tube containing air. Calculate the rate of evaporation in gm hr $^{-1}$ of chloropicrin into air.

Data:

Total pressure : 770 mm Hg

Diffusivity [chloropicrin-air] : $0.088 \text{ cm}^2 \text{ sec}^{-1}$

Vapour pressure : 23.81 mm Hg

Distance from liquid level to

top of tube : 11.14 cm

Density of chloropicrin : 1.65 g cm⁻³

Surface area of liquid

exposed for evaporation : $2 \cdot 29 \text{ cm}^2$.

8013 5 [Turn over

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- $3 \times 15 = 45$
- a) Derive the expression for momentum boundary layer using boundary layer concept and Navier-Stokes equation.
 - b) Consider a laminar flow of a Newtonian fluid down an inclined plate with a free surface as half of the flow between two fixed parallel plates and obtain the expression for velocity profile and average velocity. 7 + 8
- 8. a) Heat is flowing through an annular wall of inside radius r_0 and radius r_1 . The thermal conductivity varies linearly with temperature from k_0 at T_0 to k_1 at T_1 . Develop an expression for heat flow through the wall.
 - b) Show that if $(r_1 r_0)/r_0$ is very small then

$$Q = 2\pi r_0 L \left(\frac{k_0 + k_1}{2}\right) \left(\frac{r_0 - r_1}{r_1 - r_0}\right).$$
 8 + 7

9. A liquid of constant density and viscosity is in a cylindrical container of radius R. The container is caused to rotate about its own axis at an angular velocity ω . The cylinder axis is vertical, so that $g_r = 0$, $g_\theta = 0$, $g_z = -g$ in which g is the magnitude of the gravitational acceleration. Stating with Navier-Stokes equation, find the shape of the free surface of the liquid when steady state has been established.

8013

- 10. a) Derive the relevant expression for heat conduction with a chemical heat source taking into account a chemical reaction being carried out in a tubular, fixed-bed flow reactor.
 - b) A thermocouple, inserted in a cylindrical well, is placed into a gas stream for measuring the gas temperature of the flowing gas through the pipe. Estimate the true temperature of the gas stream from the following supplied data:

Temperature indicated by thermocouple = 260°C

Pipe wall temperature = 176.6°C

Heat transfer coefficient = $587.546 \text{ kcal/hr.m}^2$.°C

Thermal conductivity of well wall = $293.773 \text{ kcal/hr.m.}^{\circ}\text{C}$ 10 + 5

11. a) An incompressible Newtonian fluid is flowing between two co-axial cylinders of which outer cylinder rotates with constant angular velocity ω . If the surfaces of the inner and outer cylinders are maintained at T_0 and T_b respectively, develop an expression for the temperature distribution due to viscous dissipation of heat inside the cylinders in terms of Brinkman number.

8013 7 [Turn over

Chlorine is being absorbed from a b) experimental wetted wall tower (13 cm height and 2.8 cm internal diameter). The absorbing fluid is water which is coming down from top with an average velocity of 17.7 cm sec^{-1} . What is the absorption rate in hr⁻¹ g-moles diffusion if coefficient $\rm D_{\rm Cl_2\text{-}H_2O}\text{=}1\cdot26\times10^{-5}~cm^2/sec$ in the liquid phase and if the saturation concentration of chlorine in water is $0.823~\mathrm{gm}~\mathrm{Cl}_2$ per 100 gm of water (temperature being 20°C) ? Ignore chemical reaction between Cl_2 and H_2O . 9 + 6