

Stand: 16. Juli 2018

Zusammenfassung

Dieses Dokument beschreibt die Studienpläne (Modulpläne) des Studiengangs **Informatik** der DHBW.

Dieser Studienplan ist gültig für die Jahrgänge ab 2017.

Dieses Dokument wird aus den in DUALIS (dem Verwaltungssystem der DHBW) hinterlegten Daten erzeugt.

Inhaltsverzeichnis

Studienrichtungen	3
Modulbeschreibung nach Modultitel	6
Modulbeschreibungen nach Modulcode	10
Modulbeschreibungen	13

Modul	Semester	Prüfungsformen	Beschreibung Prüfungsform	Lehrveranstaltungsstunden	Selbststudiumsstunden	ECTS-Punkte	
Kernmodule			3				
Mathematik I	1,2	Zwei Prüfungsleistungen	2 Klausurarbeiten	96	144	8	
Theoretische Informatik I	1	Klausurarbeit		60	90	5	
Theoretische Informatik II	2	Klausurarbeit		48	102	5	
Programmieren	1,2	Programmentwurf		96	174	9	
Schlüsselqualifikationen	1,2	Kombinierte Prüfung	(Klausurarbeit < 50 %)	84	66	5	
Technische Informatik I	2	Klausurarbeit		48	102	5	
Praxisprojekt I	1,2	Zwei Prüfungsleistungen	Projektarbeit + Ablauf- und Reflexionsbericht	4	596	20	
Mathematik II	3,4	Zwei Prüfungsleistungen	2 Klausurarbeiten	72	108	6	
Theoretische Informatik III	3	Klausurarbeit		72	108	6	
Software Engineering I	3,4	Programmentwurf		96	174	9	
Datenbanken	3	Prüfungswahl	Klausur oder Kombinierte	72	108	6	
Technische Informatik II	3,4	Klausurarbeit		96	144	8	
Kommunikations- und Netztechnik	3	Klausurarbeit		48	102	5	
Praxisprojekt II	3,4	Drei Prüfungsleistungen	Projektarbeit + Ablauf- und Reflexionsbericht + Mündliche Prüfung	5	595	20	
Software Engineering II	5	Programmentwurf	J	48	102	5	
IT-Sicherheit	6	Klausurarbeit		48	102	5	
Praxisprojekt III	5	Zwei Prüfungsleistungen	Hausarbeit + Bericht zum Ablauf und zur Reflexion der Praxisphase	4	236	8	
Studienarbeit	5,6	Studienarbeit		24	276	10	
Bachelorarbeit	6	Bachelorarbeit		6	354	12	
Allgemeine Profilmodule der Studienr	ichtungen						
Angewandte Informatik							
Web Engineering	1	Prüfungswahl	Klausurarbeit oder Kombinierte Prüfung	48	42	3	
Anwendungsprojekt Informatik	2	Kombinierte Prüfung	(Klausurarbeit < 50 %)	84	66	5	
Softwarequalität und Verteilte Systeme	5	Kombinierte Prüfung	(,	72	78	5	
Datenbanken II	6	Klausurarbeit		72	78	5	
Informatik						-	
APM1	1	Verantwortung jeweiliger Standort		48	42	3	
APM2	2	Verantwortung jeweiliger Standort		84	66	5	
APM3	3 Verantwortung jeweilige Standort			72	78	5	
APM4	6	Verantwortung jeweiliger Standort		72	78	5	
Informationstechnik							
Elektrotechnik	1	Klausurarbeit		48	42	3	
Physik	2	Klausurarbeit		84	66	5	

Systemarchitekturen der Informationstec	5	Kombinierte Prüfung	(Klausurarbeit < 50 %)	72	78	5
Computergraphik und Bildverarbeitung	6	Klausurarbeit		72	78	5
IT-Automotive						
Systemverständnis Fahrzeug	1	Referat		48	42	3
Elektronik	2	Prüfungswahl	Klausurarbeit oder Kombinierte Prüfung	84	66	5
Graphische Programmierung und Simula	5	Laborarbeit einschließlich Ausarbeitung		72	78	5
Fahrassistenz- und Sicherheitssysteme	6	Referat		72	78	5
Medizinische Informatik						
Medizinisches Grundwissen I	1	Referat		48	42	3
Medizinisches Grundwissen II	2	Klausurarbeit		84	66	5
Medizinische Informatik II	5	Klausurarbeit		72	78	5
Computergraphik und medizinische Bildv	6	Klausurarbeit		72	78	5
Lokale Profilmodule						
LPM1	1	siehe nächstes Register		84	66	5
LPM2	4	siehe nächstes Register		72	78	5
LPM3	4	siehe nächstes Register		72	78	5
LPM4	5	siehe nächstes Register		72	78	5
LPM5	5	siehe nächstes Register		72	78	5
LPM6	6	siehe nächstes Register		72	78	5
LPM7	6	siehe nächstes Register		72	78	5

Informatik (Curriculum 2017) Stand 03.01.2017

Semester 1	ECTS	SWS	PL (B,U)	Semester 2	ECTS	SWS	PL (B,U)	Semester 3	ECTS	SWS	PL (B,U)'	Semester 4	ECTS	SWS	PL (B,U)	Semester 5	ECTS	SWS	PL (B,U)	Semester 6	ECTS	SWS PL (B,U)
Kernmodule													_									
Mathematik I		4	В	Mathematik I	8	4	_	Mathematik II		3	-	Mathematik II	6	3	В							\perp
Theoretische Informatik I	5	5	В	Theoretische Informatik II	5	4		Theoretische Informatik III	6	6	В											
Programmieren		4		Programmieren	9	4	В	Software Engineering I		3		Software Engineering I	9	5	В	Software Engineering II	5	4	В	IT-Sicherheit	5	4 B
								Datenbanken	6	6	В					Studienarbeit		1		Studienarbeit	10	1 B
				Technische Informatik I	5	4	В	Technische Informatik II		3		Technische Informatik II	8	5	В							
Schlüsselqualifikationen		3	В	Schlüsselqualifikationen	5	4		Kommunikations- und Netztechnik	5	4	В											
Praxisprojekt I				•	20		U	Praxisprojekt II	-				20		U+B	Praxisprojekt III	8		U	Bachelorarbeit	12	В
Allgemeine Profilmodule																						
Angewandte Informatik																						
Web Engineering	3	4	В	Anwendungsprojekt Informatik	5	7	В									Softwarequalität und Verteilte Systeme	5	6	В	Datenbanken II	5	6 B
Informatik	•		•						•			•				. ,		_				$\neg \neg$
APM1	3	4	В	APM2	5	7	В									APM3	5	6	В	APM4	5	6 B
Informationstechnik												•									•	
Elektrotechnik	3	4	В	Physik	5	7	В									Systemarchitekturen der Informationstechnik	5	6	В	Computergraphik und Bildverarbeitung	5	6 B
IT-Automotive								•				•				,				,		$\overline{}$
Systemverständnis Fahrzeug	3	4	В	Elektronik	5	7	В									Graphische Programmierung und Simulation	5	6	В	Fahrassistenz- und Sicherheitssysteme	5	6 B
Medizinische Informatik												•				•				•		
Medizinisches Grundwissen I	3	4	В	Medizinisches Grundwissen II	5	7	В									Medizinische Informatik II	5	6	В	Computergraphik und medizinische Bildverarbeitung	5	6 B
Lokale Profilmodule																						
LPM1	5	7	В									LPM2	5	6	В	LPM4	5	6	U+	LPM6	5	6 B
												LPM3	5	6	В	LPM5	5	6	В	LPM7	5	6 B

PL (B,U)* Prüfungsleistung (Benotete Prüfungsleistung, Unbenotete Prüfungsleistung)

Modulbeschreibung nach Modultitel

A
Alternative Programmierkonzepte – T3INF4271
Angewandtes Informationsmanagement – T3INF4320
Anwendungen der Künstlichen Intelligenz – T3INF4338207
Anwendungen des Informationsmanagements – T3INF4328
Anwendungsprojekt Informatik – T3INF4103
Architekturen – T3INF4322
Aufbau und Programmierung von Steuergeräten – T3INF4280
$Ausgewählte\ Aspekte\ des\ Managements-T3INF4336\ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ausgewählte Kapitel der IT – T3INF4364
В
Bachelorarbeit – T3_3300301
Betriebliche IT-Systeme – T3INF4325
Business Process Management – T3INF4275
\mathbf{C}
Compilerbau – T3INF421187
Computergraphik und Bildverarbeitung – T3INF4303139
Computergraphik und medizinische Bildverarbeitung – T3INF4306
Consulting, technischer Vetrieb und Recht – T3INF4324180
D
Data Architectures – T3INF4349
Data Science - T3INF4318
Data Science – T3INF4333
Datenbanken – T3INF2004
Datenbanken II – T3INF4304
E - Business – T3INF4313
eBusiness/eGovernment - T3INF4274
Echtzeitsysteme und agile Prozessmodelle – T3INF4316
Echtzeitsysteme und sicherheitskritische Anwendungen – T3INF4347
Einführung in die Robotik – T3INF4367255
Eingebettete Systeme und Robotik – T3INF4339
Electronic Business – T3INF4218
Elektronik – T3INF4107
Elektrotechnik – T3INF4104
Entwicklung mobiler Applikationen – T3INF4310
Entwicklung von Businessystemen – T3INF4341
F
Fahrerassistenz- und Sicherheitssysteme – T3INF4309
Fortgeschrittene Algorithmen – T3INF4282
Funktionale Sicherheit – T3INF4332
G Geschäftsprozesse und Systemtheorie – T3INF4217

Graphische Programmierung und Simulation – T3INF4308	149
Grundlagen der Hard- und Software – T3INF4111	62
Grundlagen der Kommunikationsinformatik – T3INF4140	76
Grundlagen des Informationsmanagements – T3INF4351	
Grundlagen Digitaler Transformation – T3INF4317	167
Grundlagen Rechnungslegung – T3INF4235	105
Gundlagen Mobiler Applikationen – T3INF4311	$\dots 155$
т	
I	010
Informatik, Unternehmen und Gesellschaft – T3INF4344	
Informatik-Labor – T3INF4170	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
Informationssysteme – T3INF4355	
International Business – T3INF4219	
International Project – T3INF4219	
IT-Infrastruktur – T3INF4261	
IT-Sicherheit – T3INF3002	
11-Dienerheit 19101 9002	
K	
Künstliche Intelligenz – T3INF4334	199
Künstliche Intelligenz und interaktive Systeme – T3INF4323	178
Kommunikations- und Netztechnik – T3INF2006	
Kommunikations- und Netztechnik II – T3INF4321	174
Kommunikations- und Netztechnik III – T3INF4340	
T,	
Labor Digitale Transformation – T3INF4319	171
Leittechnische Systeme – T3INF4370	
Leittechnische Systeme – 131NF4370Leittechnische Systeme II – T31NF4371	
Letttechnische Systeme 11 – 1511\tr45/1	
M	
Management – T3INF4335	201
Maschinelles Lernen – T3INF4331	
Maschinenbau für Informatiker – T3INF4366	
Mathematik I – T3INF1001	13
Mathematik II – T3INF2001	
Medizinische Informatik – T3INF4250	
Medizinische Informatik II – T3INF4307	
Medizinisches Grundwissen I – T3INF4108	
Medizinisches Grundwissen II – T3INF4109	
Medizinisches Informationsmanagement – T3INF4353	
Mensch Maschine Interaktion – T3INF4348	
Messdatenerfassung und Auswertung – T3INF4252	
Methoden und Theorien der Künstlichen Intelligenz – T3INF4337	
Mobile Informationssysteme – T3INF4345	
Mobile Kommunikationstechnik – T3INF4346	
Multimedia – T3INF4354	235
N	
Naturwissenschaftliche Grundlagen – T3INF4161	80

Neue Konzepte der Informatik – T3INF4329	189
O Offensive Security – T3INF4342	215
P	
Physik – T3INF4105	52
Praxisprojekt I – T3_1000	
Praxisprojekt II – T3-2000	
Praxisprojekt III – T3_3000.	
Programmieren – T3INF1004	
Programmieren II – T3INF4272	
Programmiersprachen – T3INF4141	
Prozessautomatisierung II – T3INF4362	
1 Tozessautomatisierung 11 – 1 31W 4302	
R Rechnungswesen und Finanzierung – T3INF4236	107
Regelungs- und Simulationstechnik – T3INF4330	
Regelungstechnik – T3INF4363	
S CALLE A MOLAN TOTAL TOTAL CONTRACT	24
Schlüsselqualifikationen – T3INF1005	21
Schlüsselqualifikationen II – T3INF4190	
Signalverarbeitung und Kommunikationstechnik – T3INF4220	
Software Engineering I – T3INF2003	
Software Engineering II – T3INF3001	
Software-Praxis – T3INF4121	
Software-Praxis AI – T3INF4124	
Softwarequalität auf Systemebene – T3INF4365	251
Softwarequalität in der Programmierung – T3INF4356	239
Softwarequalität und Verteilte Systeme – T3INF4305	
Softwarequalität von Anwendungen – T3INF4357	
Sprach- und Bildverarbeitung – T3INF4278	
Sprach- und Wissensverarbeitung – T3INF4312	
Studienarbeit – T3_3100	
Studienarbeit – T3_3101	
Studienarbeit II – T3_3200	
Systemarchitekturen der Informationstechnik – T3INF4302	
System verstandins ramzeug – 15m r 4100	
T	0.0
Techniken der Informatik – T3INF4214	
Technische Informatik I – T3INF1006	
Technische Informatik III – T3INF 2005	
Technische Physik – T3INF4115	
Theoretische Informatik I – T3INF1002	
Theoretische Informatik II – T3INF1003	

Theoretische Informatik III – T3INF2002	
${f U}$	
Usability Engineering – T3INF4314	161
\mathbf{V}	
Verteilte Systeme – T3INF4390	
Vertiefung IT-Security – T3INF4343	
Vorgehensmodelle – T3INF4392	
\mathbf{W}	
Wahlmodul Business IT 3. SJ (LPM V) – T3INF4907	285
Wahlmodul Informatik (STG Jahr 2) – T3INF4901	273
Wahlmodul Informatik (STG Jahr 3) – T3INF4902	275
Wahlmodul Informatik 2. SJ (LPM III) – T3INF4905	281
Wahlmodul Informatik 2. SJ KA – T3INF4911	287
Wahlmodul Informatik 3. SJ (LPM VII) – T3INF4903	277
Wahlmodul Informatik 3. SJ KA – T3INF4900	271
Wahlmodul Informationstechnik I (MA 3. Jahr) – T3INF4904	279
Wahlmodul Informationstechnik II – T3INF4906	283
Wahlmodul Leittechnische Systeme – T3INF4372	261
Web Design – T3INF4117	68
Web Engineering – T3INF4101	
Web-Engineering – T3INF4251	113
Web-Engineering 2 und Anwendungen – T3INF4213	91
Web-Engineering II – T3INF4212	
Web-Technologien – T3INF4315	
Webengineering und Kommunikationsinformatik – T3INF4240	109
Webengineering und Systemnahe Programmierung – T3INF4216	
Wissenschaftliche Informationsverarbeitung – T3INF4116	
Wissensmanagement - T3INF4326	
Workflowmanagement - T3INF4122	

Modulbeschreibungen nach Modulcode

T3INF1001	_	Mathematik I	13
T3INF1002	_	Theoretische Informatik I	
T3INF1003	_	Theoretische Informatik II	17
T3INF1004	_	Programmieren	19
T3INF1005	_	Schlüsselqualifikationen Technische Informatik I	21
T3INF1006	_	Technische Informatik I	24
T3INF2001	_	Mathematik II	26
T3INF2002	_	Theoretische Informatik III	28
T3INF2003	_	Software Engineering I	30
T3INF2004	_	Datenbanken	32
T3INF2005	_	Technische Informatik II	34
T3INF2006	_	Kommunikations- und Netztechnik	
T3INF3001	_	Software Engineering II	39
T3INF3002	_	IT-Sicherheit	
T3INF4190	_	Schlüsselqualifikationen II	84
T3INF4101	_	Web Engineering	46
T3INF4103	_	Anwendungsprojekt Informatik	48
T3INF4104	_	Elektrotechnik	50
T3INF4105	_	Physik	
T3INF4106	_	Systemverständnis Fahrzeug	
T3INF4107	_	Elektronik	
T3INF4108	_	Medizinisches Grundwissen I	
T3INF4109	_	Medizinisches Grundwissen II	60
T3INF4111	_	Grundlagen der Hard- und Software	
T3INF4115	_	Technische Physik	64
T3INF4116	_	Wissenschaftliche Informationsverarbeitung	66
T3INF4117	_	Web Design	68
T3INF4121	_	Software-Praxis	
T3INF4122	_	Workflowmanagement	
T3INF4124	_	Software-Praxis AI	
T3INF4140	_	Grundlagen der Kommunikationsinformatik	
T3INF4141	_	Programmiersprachen	
T3INF4161	_	Naturwissenschaftliche Grundlagen	
T3INF4170	_	Informatik-Labor	
T3INF4190	_	Schlüsselqualifikationen II	
T3INF4211	_	Compilerbau	
T3INF4212	_	Web-Engineering II	
T3INF4213	_	Web Engineering 2 und rinwendungen	
T3INF4214	_	Techniken der Informatik	
T3INF4216	_	Webengineering und Systemnahe Programmierung	
T3INF4217	_	Geschäftsprozesse und Systemtheorie	
T3INF4218	_	Electronic Business	
T3INF4219	_	International Business	
T3INF4220	_	Signalverarbeitung und Kommunikationstechnik	
T3INF4235	_	Grundlagen Rechnungslegung	
T3INF4236	_	Rechnungswesen und Finanzierung	
T3INF4240	_	Webengineering und Kommunikationsinformatik	109

T3INF4250	_	Medizinische Informatik	111
T3INF4251	_	Web-Engineering	113
T3INF4252	_	Messdatenerfassung und Auswertung	
T3INF4260	_	Technische Informatik III	
T3INF4261	_	IT-Infrastruktur	
T3INF4271	_	Alternative Programmierkonzepte	
T3INF4272	_	Programmieren II	
T3INF4274	_	eBusiness/eGovernment	
T3INF4275	_	Business Process Management	
T3INF4276	_	Information Retrieval	
T3INF4278	_	Sprach- und Bildverarbeitung	
T3INF4280	_	Aufbau und Programmierung von Steuergeräten	
T3INF4282	_	Fortgeschrittene Algorithmen	
T3INF4302	_	Systemarchitekturen der Informationstechnik	
T3INF4303	_	Computergraphik und Bildverarbeitung	
T3INF4304	_	Datenbanken II	
T3INF4305	_	Softwarequalität und Verteilte Systeme	
T3INF4306	_	Computergraphik und medizinische Bildverarbeitung	
T3INF4307	_	Medizinische Informatik II	
T3INF4308	_	Graphische Programmierung und Simulation	
T3INF4309	_	Fahrerassistenz- und Sicherheitssysteme	
T3INF4310	_	Entwicklung mobiler Applikationen	
T3INF4311	_	Gundlagen Mobiler Applikationen	
T3INF4312	_	Sprach- und Wissensverarbeitung	
T3INF4313	_	E-Business	
T3INF4314	_	Usability Engineering	
T3INF4315	_	Web-Technologien	
T3INF4316	_	Echtzeitsysteme und agile Prozessmodelle	
T3INF4317	_	Grundlagen Digitaler Transformation	
T3INF4318	_	Data Science	
T3INF4319	_	Labor Digitale Transformation	
T3INF4320	_		
T3INF4321	_	Angewandtes Informationsmanagement Kommunikations- und Netztechnik II	174
T3INF4322	_	Architekturen	176
T3INF4323	_	Künstliche Intelligenz und interaktive Systeme	
T3INF4324	_	Consulting, technischer Vetrieb und Recht	
T3INF4325	_	Betriebliche IT-Systeme	
T3INF4326	_	Wissensmanagement	
T3INF4327	_	International Project	
T3INF4328	_	Anwendungen des Informationsmanagements	
T3INF4329	_	Neue Konzepte der Informatik	
T3INF4330	_	Regelungs- und Simulationstechnik	
T3INF4331	_	Maschinelles Lernen	
T3INF4332	_	Funktionale Sicherheit	
T3INF4333	_	Data Science	
T3INF4334	_	Künstliche Intelligenz	
T3INF4335	_	Management	
T3INF4336	_	Ausgewählte Aspekte des Managements	
T3INF4337	_	Methoden und Theorien der Künstlichen Intelligenz	

T3INF4338	– Anwendungen der Künstlichen Intelligenz	
T3INF4339	– Eingebettete Systeme und Robotik	209
T3INF4340	- Kommunikations- und Netztechnik III	211
T3INF4341	- Entwicklung von Businessystemen	213
T3INF4342	- Offensive Security	215
T3INF4343	- Vertiefung IT-Security	
T3INF4344	- Informatik, Unternehmen und Gesellschaft	
T3INF4345	- Mobile Informationssysteme	
T3INF4346	- Mobile Kommunikationstechnik	
T3INF4347	– Echtzeitsysteme und sicherheitskritische Anwendungen	
T3INF4348	- Mensch Maschine Interaktion	
T3INF4349	– Data Architectures	
T3INF4351	- Grundlagen des Informationsmanagements	
T3INF4353	- Medizinisches Informationsmanagement	
T3INF4354	- Multimedia	
T3INF4355	- Informationssysteme	
T3INF4356	– Softwarequalität in der Programmierung	
T3INF4357	- Softwarequalität von Anwendungen	241
T3INF4361	- Prozessautomatisierung	
T3INF4362	- Prozessautomatisierung II	
T3INF4363	- Regelungstechnik	
T3INF4364	- Ausgewählte Kapitel der IT	
T3INF4365	- Softwarequalität auf Systemebene	
T3INF4366	- Maschinenbau für Informatiker	
T3INF4367	- Einführung in die Robotik	
T3INF4370	- Leittechnische Systeme	
T3INF4371	- Leittechnische Systeme II	
T3INF4372	- Wahlmodul Leittechnische Systeme	
T3INF4382	- Informationsaustausch im Automobil	
T3INF4390	- Verteilte Systeme	
T3INF4391	- Seminar Informatik	
T3INF4392	- Vorgehensmodelle	
T3INF4900	- Wahlmodul Informatik 3. SJ KA	271
T3INF4901	- Wahlmodul Informatik (STG Jahr 2)	
T3INF4902	- Wahlmodul Informatik (STG Jahr 3)	
T3INF4903	- Wahlmodul Informatik 3. SJ (LPM VII)	
T3INF4904	- Wahlmodul Informationstechnik I (MA 3. Jahr)	
T3INF4905	- Wahlmodul Informatik 2. SJ (LPM III)	
T3INF4906	- Wahlmodul Informationstechnik II	283
T3INF4907	- Wahlmodul Business IT 3. SJ (LPM V)	
T3INF4911	- Wahlmodul Informatik 2. SJ KA	287
T3_1000 -	Praxisprojekt I	
T3_2000 -	Praxisprojekt II	291
T3_3000 -	Praxisprojekt III	
T3_3100 -	Studienarbeit	
T3_3101 -	Studienarbeit	297
T3_3200 -	Studienarbeit II	299
T3_3300 -	Bachelorarbeit	301

Baden-Württemberg Studienbereich Technik

Mathematik I (T3INF1001)

Formale Angaben zum Modul						
Studiengang	Studienrichtung	Vertiefung				
-	-	-				

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Mathematik I	Deutsch	T3INF1001	1	Prof. Dr. Reinhold Hübl

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Kernmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Zwei Prüfungsleistungen	
Beschreibung Prüfungen	
2 Klausurarbeiten	

	Workload und	ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
240,0	96,0	144,0	8

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren entwickelt. Sie verfügen über ein Grundverständnis der diskreten Mathematik, der linearen Algebra und der Analysis einer reellen Veränderlichen. Sie sind in der Lage, diese Kenntnisse auf Probleme aus dem Bereich der Ingenieurwissenschaften und Informatik anzuwenden.
Methodenkompetenz	Mathematik fördert logisches Denken, klare Strukturierung, kreative explorierende Verhaltensweisen und Durchhaltevermögen.
Personale und Soziale Kompetenz	
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, naturwissenschaftlich-technische Vorgänge mit Hilfe der diskreten Mathematik, der linearen Algebra und der Analysis zu beschreiben. Sie beginnen, Algorithmen der numerischen Mathematik zu nutzen und diese in lauffähige Programme umzusetzen.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Lineare Algebra	48,0	72,0
Analysis	48,0	72,0

Inhalte

- Grundlagen der diskreten Mathematik - Grundlegende algebraische Strukturen - Vektorräume und lineare Abbildungen - Determinanten, Eigenwerte, Diagonalisierbarkeit - Anwendungsbeispiele.

- Folgen und Reihen, Stetigkeit - Differentialrechnung einer Veränderlichen im Reellen - Integralrechnung einer Veränderlichen im Reellen - Anwendungsbeispiele

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

Literatur

- Beutelspacher: Lineare Algebra, Vieweg+Teubner - Fischer: Lineare Algebra, Vieweg+Teubner - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Lau: Algebra und Diskrete Mathematik 1, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 1. diskrete Mathematik und lineare Algebra, Springer - Kreußler, Pfister: Mathematik für Informatiker: Algebra, Analysis, Diskrete Strukturen, Springer

- Estep: Angewandte Analysis in einer Unbekannten, Springer - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Hildebrandt: Analysis 1, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Baden-Württemberg Studienbereich Technik

Theoretische Informatik I (T3INF1002)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Theoretische Informatik I	Deutsch	T3INF1002	1	Prof. Dr.rer.nat. Bernd Schwinn

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	120
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	60,0	90,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden können die theoretischen Grundlagen der Aussage- und Prädikatenlogik verstehen. Die Studierenden verstehen die formale Spezifikation von Algorithmen und ordnen diese ein. Die Studierenden beherrschen das Modell der logischen Programmierung und wenden es an.
Methodenkompetenz	Die Studierenden haben die Kompetenzen erworben, komplexere Unternehmensanwendungen durch abstraktes Denken aufzuteilen und zu beherrschen sowie fallabhängig logisches Schließen und Folgern einzusetzen.
Personale und Soziale Kompetenz	
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen in den Bereichen Logik, logische Folgerung sowie Verifikation und abstraktes Denken auf wissenschaftlichem Niveau auszutauschen.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen und Logik	60,0	90,0

- Algebraische Strukturen: Relationen, Ordnung, Abbildung Formale Logik: Aussagenlogik, Prädikatenlogik Algorithmentheorie; Komplexität, Rekusion, Terminierung, Korrektheit (mit Bezug zur Logik)
- Grundkenntnisse der deklarativen (logischen/funktionalen/....) Programmierung

	Besonderheiten und Voraussetzungen
Besonderheiten	

/oraussetzungen

- Siefkes, Dirk: Formalisieren und Beweisen: Logik für Informatiker, Vieweg
 Kelly, J.: The Essence of Logic, Prentice Hall
 Alagic, Arbib: The Design of Well-Structured and Correct Programs, Springer
 Clocksin, W.F.; Mellish, C.S.: Programming in Prolog, Springer

Baden-Württemberg Studienbereich Technik

Theoretische Informatik II (T3INF1003)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Theoretische Informatik II	Deutsch/Englisch	T3INF1003	1	Dr. rer. nat. Stephan Schulz

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	90
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	48,0	102,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden verfügen über vertieftes Wissen: - Algorithmenansätze für wichtige Problemklassen der Informatik - Komplexitätsbegriff und Komplezitätsberechnungen für Algorithmen - wichtige abstrakte Datentypen und ihre Eigenschaften	
Methodenkompetenz	Die Studierenden können die Notwendigkeit einer Komplexitätsanalyse für ein Program bewerten und ein angemessenes Maß für den Einsatz im beruflichen Umfeld wählen.	
Personale und Soziale Kompetenz	Die Studierenden können ihre Entscheidungs- und Fachkompetenz im Bereich Auswahl und Entwurf von Algorithmen und Datenstrukturen einschätzen und über diese Themen mit Fachvertretern und Laien effektiv und auf wissenschaftlichem Niveau zu kommunizieren.	
Übergreifende Handlungskompetenz	Die Studierenden haben die Kompetenz erworben: - effiziente Datenstruktuten für praktische Probleme auszuwählen und anzupassen - durch abstraktes Denken größere Probleme in überschaubare Einheiten aufzuteilen und zu lösen - Algorithmen für definierte Probleme zu entwerfen	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Algorithmen und Komplexität	48,0	102,0

Inhalte

- Grundbegriffe der Berechnungskomplexität O-Notation
 Algorithmen: Suchalgorithmen Sortieralgorithmen Hashing: offenes Hashing, geschlossenes Hashing
- Datenstrukturen: Mengen, Listen, Keller, Schlangen Bäume, binäre Suchbäume, balancierte Bäume Graphen: Spezielle Graphenalgortihmen, Semantische Netze Codierung: Kompression, Fehlererkennende Codes, Fehlerkorrigierende Codes

Besonderheiten

Voraussetzungen

Programmieren, Mathematische Grundlagen

- Robert Sedgewick, Kevin Wayne, Algorithms, Addison Wesley
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms, MIT Press
 Niklaus Wirth: Algorithmen und Datenstrukturen, Teubner Verlag

Baden-Württemberg Studienbereich Technik

Programmieren (T3INF1004)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Programmieren	Deutsch	T3INF1004	1	Prof. Dr. Alexander Auch

	Verortung des Moduls im Studienverlauf				
Semester	Semester Voraussetzungen für die Teilnahme Modulart Moduldauer				
1. Stj.		Kernmodul	2		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
270,0	96,0	174,0	9	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die Grundelemente der prozeduralen und der objektorientierten Programmierung. Sie können die Syntax und Semantik dieser Sprachen und können ein Programmdesign selbstständig entwerfen, codieren und ihr Programm auf Funktionsfähigkeit testen. Sie kennen verschiedene Strukturierungsmöglichkeiten und Datenstrukturen und können diese exemplarisch anwenden.		
Methodenkompetenz	Die Studierenden sind in der Lage, einfache Programme selbständig zu erstellen und auf Funktionsfähigkeit zu testen, sowie einfache Entwurfsmuster in ihren Programmentwürfen einzusetzen. Die Studierenden können eine Entwicklungsumgebung verwenden um Programme zu erstellen, zu strukturieren und auf Fehler hin zu untersuchen (inkl. Debugger).		
Personale und Soziale Kompetenz	Die Studierenden können ihren Programmentwurf sowie dessen Codierung im Team erläutern und begründen. Sie können existierenden Code analysieren und beurteilen. Sie können sich selbstständig in Entwicklungsumgebungen einarbeiten und diese zur Programmierung und Fehlerbehebung einsetzen.		
Übergreifende Handlungskompetenz	Die Studierenden können eigenständig Problemstellungen der Praxis analysieren und zu deren Lösung Programme entwerfen programmieren und testen.		

Lerneinheiten u	und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Programmieren	96,0	174,0

Inhalte

Kenntnisse in prozeduraler Programmierung:

- Algorithmenbeschreibung
- Datentypen
- E/A-Operationen und Dateiverarbeitung
- Operatoren
- Kontrollstrukturen Funktionen
- Stringverarbeitung
- Strukturierte Datentypen
- dynamische Datentypen
- Zeiger
- Speicherverwaltung

Kenntnisse in objektorientierter Programmierung:

- objektorientierter Programmentwurf
- Idee und Merkmale der objektorientierten Programmierung
- Klassenkonzept- Operatoren
- Überladen von Operatoren und Methoden
- Vererbung und Überschreiben von Operatoren
- Polymorphismus
- Templates oder Generics
- Klassenbibliotheken
- Speicherverwaltung, Grundverständnis Garbage Collection

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

- B.W. Kerninghan, D.M Richie: Programmieren in C, Hanser
- R. Klima, S. Selberherr: Programmieren in C, Springer
- Prinz, Crawford: C in a Nutshell, O'Reilly
- Günster: Einführung in Java, Rheinwerk Computing
- Habelitz: Programmieren lernen mit Java, Rheinwerk Computing
- Ullenboom: Java ist auch eine Insel, Rheinwerk Computing
- McConnell: Code Complete: A Practical Handbook of Software Construction, Microsoft Press

Baden-Württemberg Studienbereich Technik

Schlüsselqualifikationen (T3INF1005)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Schlüsselqualifikationen	Deutsch/Englisch	T3INF1005	2	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
1. Stj.		Kernmodul	2	

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Seminar, Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	-
Beschreibung Prüfungen	
Klausurarbeit (< 50 %)	

	Workload und	d ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
257,0	144,0	113,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.
Methodenkompetenz	Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Grundkompetenzen für Beruf und Studium erworben.
Personale und Soziale Kompetenz	Die Studierenden können ihre Standpunkte in einem (ggf. interdisziplinär und interkulturell zusammengesetzten) Team vertreten und respektieren andere Sichtweisen. Sie können sich selbst und ihre Projekte organisieren und mit Kritik und Konflikten angemessen umgehen.
Übergreifende Handlungskompetenz	Über die Sachkompetenz hinaus soll das Denken in fachübergreifenden Zusammenhängen geschult werden, sowie strategische Handlungskompetenz und unternehmerisches Denken vermittelt werden.

Lerneinheiten und Inh	alte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Schluesselqualifikationen	84,0	66,0
Betriebswirtschaftslehre	36,0	28,0
Fremdsprachen 1	24,0	19,0
Vortrags-, Lern- und Arbeitstechniken	24,0	19,0
Marketing 1	24,0	19,0
Marketing 2	24,0	19,0
Intercultural Communication 1	24,0	19,0
Intercultural Communication 2	24,0	19,0
Fremdsprachen 2	24,0	19,0
Projektmanagement 1	24,0	19,0
Projektmanagement 2	24,0	19,0
Einführung in technisch-wissenschaftliches Arbeiten	24,0	19,0

Inhalte

Grundlagen der Wirtschaftswissenschaften

- Einführung in die theoretischen Ansätze und Methoden
- Ziele und Planung in der Betriebswirtschaftslehre
- Rechtsformen
- Bilanzen / Gewinn- und Verlustrechnung / Kostenrechnung
- Finanzierung und Investition
- Marketing

Projektmanagement und Kommunikation

- Grundlegende PM Methoden
- Arbeiten in interdisziplinären und interkulturell zusammengesetzten Teams

Fachübergreifende Schlüsselkompetenzen

- Vortragstechniken
- Lern- und Arbeitstechniken
- Wissenschaftliches Arbeiten (in Ergänzung zu den Einheiten die den Praxismodulen zugeordnet sind, Experimente planen und Durchführen, etc.)
- Einführung in die theoretischen Ansätze und Methoden in der Betriebswirtschaftslehre
- Ziele und Planung in der Betriebswirtschaftslehre
- Führungsstile und konzepte
- Rechtsformen
- Bilanzen
- Gewinn- und Verlustrechnung
- Kostenrechnung
- Finanzierung und Investition
- Ganzheitliches Unternehmensplanspiel
- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren

-Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im

- Einführung in Marketing
- Marktforschung
- Marketingplanung
- Marketinginstrumentarium
- Produkt- und Sortimentspolitik
- Werbe- oder Kommunikationspolitik
- Preispolitik
- Distributionspolitik

Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.

- Major Theories of Intercultural Communications z.B. Hall Kluckhohn and Strodtbeck Hofstede Trompenaars and Hamden-Turner Exercises Role Place Case Studies - Small Group Work - Presentations
- Conflict Management Negotiation Exercises Role Place Case Studies Small Group Work Presentations
- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren
- Was ist Proiektmanagement?
- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Unterlagen für die Projektplanung
- Aufwandsschätzung
- Projektorganisation Projektphasenmodelle
- Planungsprozess und Methodenplanung
- Personalplanung
- Terminplanung
- Kostenplanung und betriebswirtschaftliche Hintergründe
- Einführung in Steuerung, Kontrolle und Projektabschluss
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Übungen zu den einzelnen Teilen
- Meetings, Teams und Konflikte
- Risikoplanung und Risikomanagement
- Qualitätsplanung
- Projekt Steuerung und Kontrolle
- $\label{projektabschluss} Projektrevision\ und\ finanzwirtschaftliche\ Betrachtungen$
- Weitere Projektmanagement Methoden

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

Besonderheiten

Entwede

- T3INF1005.0 als einzige Unit

- T3INF1005.1 Betriebswirtschaftlehre Pflicht und 2 weitere Units zur Wahl

Weitere Units:

T3INF4106.1 Techn Wissen Arbeiten T3INF1005.2 Fremdsprachen

T3INF1005.9 Fremdsprachen 2

Voraussetzungen

keine

Literatur

Günter Wöhe, "Einführung in die allgemeine Betriebswirtschaftslehre", Vahlen Verlag

Philip Kotler, Gary Armstrong, Lloyd C. Harris, Nigel Piercy, "Grundlagen des Marketing", Pearson Studium

Harald Meier, "Internationales Projektmanagement: Interkulturelles Management. Projektmanagement-Techniken. Interkulturelle Teamarbeit.", NWB Verlag Josef W. Seifert, "Visualisieren, Präsentieren, Moderieren.", Gabal Verlag GmbH, Offenbach Gloria Beck, "Rhetorik für die Uni", Eichborn AG, Frankfurt am Main

Peter Sedlmeier, Frank Renkewitz, "Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler", Pearson Studium

- Jürgen Härdler: Betriebwirtschaftlehre für Ingenieure: Lehr- und Praxisbuch, Hanser Fachbuch
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Adolf J. Schwab: Managementwissen für Ingenieure: Führung, Organisation, Existenzgründung, Springer

Entsprechend der gewählten Sprache

- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg
- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill - Stella Ting: Toomey und John G. Oetzel
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin

Entsprechend der gewählten Sprache

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen

Baden-Württemberg Studienbereich Technik

Technische Informatik I (T3INF1006)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Technische Informatik I	Deutsch	T3INF1006	1	Prof. DrIng. Thomas Neidlinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	
Beschreibung Prüfungen	
-	

	Workload und	ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	48,0	102,0	5

Qualifikationsziele und Kompetenzen	
Fachkompetenz	Die Studierenden bekommen ein grundlegendes Basiswissen vermittelt über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Diese Kenntnisse bilden die Grundlage zum Verständnis von Rechnerbaugruppen.
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.
Personale und Soziale Kompetenz	
Übergreifende Handlungskompetenz	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Digitaltechnik	48,0	102,0

Inhalte

- Zahlensysteme und Codes Logische Verknüpfungen und ihre Darstellung
- Schaltalgebra Schaltnetze
- Schaltwerke
- Schaltkreistechnik und Interfacing
- Halbleiterspeicher

	Besonderheiten und Voraussetzungen
Besonde	rheiten
-	

Voraussetzungen

keine

- Elektronik 4: Digitaltechnik, K. Beuth, Vogel Fachbuch
 Digitaltechnik, K. Fricke, Springer Vieweg
 Digitaltechnik, R. Woitowitz, Springer
 Grundlagen der Digitaltechnik, G. W. Wöstenkühler, Hanser

Baden-Württemberg Studienbereich Technik

Mathematik II (T3INF2001)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Mathematik II	Deutsch	T3INF2001	1	Prof. Dr. Reinhold Hübl

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Kernmodul	2

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung Prüfungsumfang (in min)	
Zwei Prüfungsleistungen	•
Beschreibung Prüfungen	
2 Klausurarbeiten	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
180,0	72,0	108,0	6

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren weiterentwickelt. Sie verfügen über Überblickswissen in Bezug auf für die Informatik wichtigen Anwendungsgebiete der Mathematik und Statistik und sind in der Lage, problemadäquate Methoden auszuwählen und anzuwenden.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, Aufgabenstellungen aus der Informatik mathematisch zu modellieren und Software-gestützt zu lösen. Sie können technische und betriebswirtschaftliche Vorgänge und Probleme mit Methoden der mehrdimensionalen Analysis, der Theorie der Differentialgleichungen und der Wahrscheinlichkeitsrechnung und Statistik beschreiben und beherrschen die grundlegenden Lösungsmethoden.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Angewandte Mathematik	36,0	54,0
Statistik	36,0	54,0

- Grundlagen der Differential- und Integralrechnung reeller Funktionen mit mehreren Veränderlichen sowie von Differentialgleichungen und Differentialgleichungssystemen
- Numerische Methoden und weitere Beispiele mathematischer Anwendungen in der Informatik
- Deskriptive Statistik Zufallsexperimente, Wahrscheinlichkeiten und Spezielle Verteilungen Induktive Statistik Anwendungen in der Informatik

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

Literatur

- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer - Sonar: Angewandte Mathematik, Modellbildung und Informatik, Vieweg+Teubner - Stoer, Bulirsch: Numerische Mathematik 1, Springer - Stoer, Bulirsch: Numerische Mathematik 2, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer - Hartmann: Mathematik für Informatiker, Springer - Fetzer, Fränkel: Mathematik 2, Springer

- Cramer, Kamps: Grundlagen der Wahrscheinlichkeitsrechnung und Statistik, Springer - Dümbgen: Stochastik für Informatiker, Springer - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Heise, Quattrocchi: Informations- und Codierungstheorie, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2, Springer - Fahrmeir, Heumann, Künstler, Pigeot, Tutz: Statistik: Der Weg zur Datenanalyse, Springer - Bamberg, Baur, Krapp: Statistik, Oldenbourg - Schwarze: Grundlagen der Statistik 1. Beschreibende Verfahren, MWB Verlag - Schwarze: Grundlagen der Statistik 2. Wahrscheinlichkeitsrechnung und induktive Statistik, MWB Verlag

Baden-Württemberg Studienbereich Technik

Theoretische Informatik III (T3INF2002)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Theoretische Informatik III	Deutsch	T3INF2002	1	Prof. Dr. Heinrich Braun

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Kernmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
180,0	72,0	108,0	6	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden verstehen die Grundlagen von Formale Sprachen und Automatentheorie. Sie können reguläre Sprachen einerseits durch einen regulären Ausdruck, eine Regex und eine Typ 3 Grammatik formal spezifizieren und andererseits durch einen endlichen Akzeptor entscheiden.			
	Kontextfreie Sprachen können Sie einerseits durch eine Typ 2 Grammatik spezifizieren. Andererseits verstehen sie die zugehörigen Kellerakzeptoren sowohl Top Down als auch Bottom up als Grundlage für den Übersetzerbau.			
	Sie kennen den Zusammenhang zwischen Typ 0 Sprachen und Turingmaschine als Grundlage der Berechenbarkeitstheorie.			
Methodenkompetenz	Die Studierenden können bei regulären Sprachen aus den verschiedenen Beschreibungsformen einen minimalen endlichen Akzeptor konstruieren. Bei kontextfreien Sprachen können Sie aus der Grammatik die Top Down und Bottom up Kellerakzeptoren (auch mit endlicher Vorausschau) für einfache Anwendungsfälle konstruieren. Sie verstehen die theoretischen Grundlagen der Übersetzerbauwerkzeuge Scanner und Parser für komplexe Anwendungsfälle.			
	Bei praxisnahen Anwendungen aus der Berechenbarkeitstheorie wie Halteproblem und Äquivalenzproblem können Sie erkennen, ob diese berechenbar bzw. entscheidbar sind.			
Personale und Soziale Kompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen im Bereich Formale Sprachen, erkennende Automaten sowie Methoden und Tools zu deren Umsetzung auf wissenschaftlichem Niveau auszutauschen.			
Übergreifende Handlungskompetenz	Die Studierenden können bei einer Anwendung die formale Sprache analysieren und insbesondere erkennen, zu welchem Chomsky-Typ diese gehört und welche formale Methoden (Generatoren und Übersetzerbauwerkzeuge) hierfür geeignet sind.			

Lernein	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Formale Sprachen und Automaten 1	48,0	72,0
Formale Sprachen und Automaten 2	24,0	36,0
Einführung Compilerbau	24,0	36,0

Inhalte

Formale Sprachen und Automaten:

- -Grammatiken
- Sprachklassen (Chomsky-Hierarchie)
- Erkennende Automaten Reguläre Sprachen:
- Reguläre Grammatiken
- Endliche Automaten
- Nicht deterministische / deterministische endliche Automaten Kontextfreie Sprachen:
- Kontextfreie Grammatiken
- Verfahren zur Analyse von kontextfreien Grammatiken (CYK)
- Kellerautomaten: Top down und Bottom up inklusive k-Vorausschau Anwendung an einfachen praxisnahen Beispielen
- Zusammenhang Turingmaschine, formale Sprachen vom Chomsky Typ 0 und Entscheidbarkeit
- Abgrenzung verschiedener Sprachklassen (Beweis durch Pumpinglemma) Kontextsensitive Sprachen
- Vertiefung Entscheidbarkeit und Berechenbarkeitstheorie
- Turingmächtigkeit von Programmiersprachen (welcher Sprachumfang genügt, um alle berechenbaren Funktionen implementieren zu können)
- Phasen des Compilers
- Lexikalische Analyse (Scanner)
- Syntaktische Analyse (Parser): Top-down Verfahren, Bottom-up Verfahren
- Syntaxgesteuerte Übersetzung: Z-Attributierung, IL-Attributierung, Kombination mit Syntaxanalyse-Verfahren
- Semantische Analyse: Typüberprüfung

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- J.R. Levine, T. Mason, D. Brown: lex & yacc, O'Reilly Media
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg
- Aho, Sethi, Ullmann: Compilers: Principles, Techniques, and Tools, Addison Wesley; US ed edition
- Helmut Herold: Linux-, Unix-Profitools awk, sed, lex, yacc und make , open source library

Baden-Württemberg Studienbereich Technik

Software Engineering I (T3INF2003)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Software Engineering I	Deutsch	T3INF2003	1	Prof. Dr. Phil. Antonius Hoof

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Kernmodul	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Programmentwurf (PE),	-	
Beschreibung Prüfungen		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
270,0	96,0	174,0	9	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die Grundlagen des Softwareerstellungsprozesses. Sie können eine vorgegebene Problemstellung analysieren und rechnergestützt Lösungen entwerfen, umsetzen, qualitätssichern und dokumentieren. Sie kennen die Methoden der jeweiligen Projektphasen und können sie anwenden. Sie können Lösungsvorschläge für ein gegebenes Problem konkurrierend bewerten und korrigierende Anpassungen vornehmen.		
Methodenkompetenz	Die Studierenden können sich mit Fachvertretern über Problemanalysen und Lösungsvorschläge, sowie über die Zusammenhänge der einzelnen Phasen austauschen. Sie können einfache Softwareprojekte autonom entwickeln oder bei komplexen Projekten effektiv in einem Team mitwirken. Sie können ihre Entwürfe und Lösungen präsentieren und begründen. In der Diskussion im Team können sie sich kritisch mit verschiedenen Sichtweisen auseinandersetzen und diese bewerten.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können sich selbsständig in Werkzeuge einarbeiten. Sie verbinden den Softwareentwicklungsprozess mit Techniken des Projektmanagement und beachten während des Projekts Zeit- und Kostenfaktoren.		

Lerneinheiten und Inh	alte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen des Software-Engineering	96,0	174,0

- Vorgehensmodelle

- Phasen des SW-Engineering und deren Zusammenhänge
 Lastenheft und Pflichtenheft, Anwendungsfälle
 Analyse- und Entwurfsmodelle (z.B. Modellierungstechniken von UML oder SADT)
- Softwarearchitekture, Schnittstellenentwurf
- Coderichtlinien und Codequalität: Reviewing und Testplanung, -durchführung und -bewertung Continuous Integration
 Versionsverwaltung

- Betrieb und Wartung
- Phasenspezifisch werden verschiedene Arten der Dokumentation behandelt

 Durchführung eines konkreten Softwareentwicklungsprojektes in Projektteams mittlerer Größe (z.B. eine Web Service / Web App, eine stand-alone Anwendung oder eine Steuerung)

Besonderheiten

Die einzelnen Inhalte der Lehrveranstaltung sollen anhand von einem Projekt vertieft werden. In den einzelnen Projektphasen soll auf den Einsatz von geeigneten Methoden, die Dokumentation sowie die Qualitätssicherung eingegangen werden. Geeignete Werkzeuge sollen zum Einsatz kommen. Bei den gruppenorientierten Laborübungen werden außerfachliche Qualifikationen geübt und (Teil) Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

_

- Helmut Balzert: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, Spektrum akademischer Verlag
- Helmut Balzert: Lehrbuch der Softwaretechnik: Softwaremanagement, Spektrum akademischer Verlag
- Ian Sommerville: Software Engineering, Pearson Studium
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
- Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG

Baden-Württemberg **Studienbereich Technik**

Datenbanken (T3INF2004)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Datenbanken	Deutsch	T3INF2004	1	Prof. Dr. Dirk Reichardt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Kernmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	120 Minuten
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
180,0	72,0	108,0	6

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die grundlegenden Theorien und Modelle von Datenbanksystemen. Sie können die Grundprinzipien von Datenbanksystemen systematisch darstellen und erläutern. Sie können diese zum Entwurf einer praktisch einsatzfähigen Datenbank nutzen und Datenbankentwürfe bewerten.		
Methodenkompetenz	Die Studierenden können die Stärken und Schwächen der Entwurfsmethoden für Datenbanken bewerten und diese bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.		
Personale und Soziale Kompetenz	Die Studierenden können ihre Entscheidungs- und Fachkompetenzen im Bereich der Datenbankentwicklung adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) in den Datenbankentwurf einbeziehen.		
Übergreifende Handlungskompetenz	Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der Datenbanken in praktische Anwendungen umzusetzen.		

Lerneinheiten (und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Datenbanken	72,0	108,0

- Grundkonzepte und Datenmodellierung (u.a Entity Relationship Modell) Relationales Datenmodell

- Normalformen
 Relationaler Datenbankentwurf
- Mehrbenutzerbetrieb und Transaktionskonzepte
- Architekturen von Datenbanksystemen Einführung in SQL (Praxisprojekt)

Besonderheiten

Das Modul besteht i.d.R. aus theoretischem und praktischem Anteil.

Voraussetzungen

Algorithmen und Datenstrukturen, sowie Grundlagen der Logik

- Ramez A. Elmasri, Shamkant B. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium
 Alfons Kemper, André Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg Verlag
 Nikolai Preiß: Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg Verlag
- Heide Fraeskorn-Woyke, Birgit Bertelsmeier, Petra Riemer, Elena Bauer, "Datenbanksysteme", Pearson Studium, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Technische Informatik II (T3INF2005)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Technische Informatik II	Deutsch	T3INF2005	1	DrIng. Alfred Strey

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Kernmodul	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		
-		

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
240,0	96,0	144,0	8	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden gewinnen ein grundlegendes Verständnis von den Aufgaben, der Funktionsweise und der Architektur moderner Rechnersysteme. In einem Übungsteil wird ihnen die systemnahe Programmierung anhand eines Beispielprozessors vermittelt. Abgerundet wird dieses hardwarenahe Wissen durch die Unit "Betriebssysteme", welche die Arbeitsweise von Rechenanlagen aus Sicht der Systemsoftware beleuchtet. Die Studierenden sind somit in der Lage, das Zusammenwirken von Hard- und Software in einem Rechner im Detail zu verstehen.	
Methodenkompetenz	Die Studierenden kennen mit Abschluss des Moduls die wissenschaftlichen Methoden aus den Bereichen der Rechnerarchitektur und der Betriebssysteme. Sie sind in der Lage, unter Einsatz dieser Methoden die Hard- und Systemsoftware moderner Rechnersysteme zu interpretieren und zu bewerten. Ferner können sie einfache maschinennahe Programme entwerfen und analysieren.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, die Leistungsfähigkeit eines Rechnersystems für eine Anwendung aus der Praxis zu beurteilen. Ferner ist es Ihnen möglich, die rasche Weiterentwicklung auf dem Gebiet der Rechnerhardware mitzuverfolgen und zu verstehen, welche Vor- bzw. Nachteile die Enführung einer neuen IT-Technologie hat. Auch sind sie in der Lage zu verstehen, wie die neue Technologie arbeitet bzw. sie können sich das dazu notwendige neue Wissen jederzeit selbst erarbeiten.	

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Rechnerarchitekturen 1	36,0	54,0		
Betriebssysteme	36,0	54,0		
Systemnahe Programmierung 1	24,0	36,0		

Inhalte

- Einführung
- Historie (mechanisch, analog, digital)
- Architektur nach von Neumann
- Systemkomponenten im Überblick
- Grobstruktur der Prozessorinterna
- Rechenwerk
- Addition: Halbaddierer, Volladdierer, Wortaddierer, Bedeutung des Carrybits, Carry Ripple und Carry Look-Ahead Addierer
- Subtraktion: Transformation aus Addition, Bedeutung des Carrybits
- Multiplikation: Parallel- und Seriell-Multiplizierer
- Division: Konzept
- Arithmetische-logische Einheit (ALU)
- Datenpfad: ALU mit Rechenregister und Ergebnisflags (CCR, Statusbits)
- Steuerwerk: Aufbau, Komponenten und Funktionswiese Befehlsdekodierung und Mikroprogrammierung
- Struktur von Prozessorbefehlssätzen
- Klassifizierung und Anwendung von Prozessorregistern (Daten-, Adress- und Status-Register)
- Leistungsbewertung und Möglichkeiten der Leistungssteigerung (z.B. Pipelining) Businterface: Daten-, Adress- und Steuerleitungen
- Buskomponenten
- Buszyklen: Lese- und Schreib-Zugriff, Handshaking (insbesondere Waitstates)
- Busarbitrierung und Busmultiplexing
- Fundamentalarchitekturen
- Konzept Systemaufbau und Komponenten: CPU, Hauptspeicher, I/O: Diskussion Anbindung externer Geräte (Grafik, Tastatur, Festplatten, DVD, ...)
- Halbleiterspeicher
- Wahlfreie Speicher: Aufbau, Funktion, Adressdekodierung, interne Matrixorganisation
- RAM: statisch, dynamisch, aktuelle Entwicklungen
- ROM: Maske, Fuse, EPROM, EEPROM, FEPROM, aktuelle Entwicklungen
- Systemaufbau
- Aufteilung des Adressierungsraumes
- Entwerfen von Speicherschemata und der zugehörigen Adress-Dekodierlogik
- Vitale System-Komponenten: Stromversorgung, Rücksetzlogik, Systemtakt, Chipsatz Schaltkreise: Interrupt- und DMA-Controller, Zeitgeber- und Uhrenbausteine
- Schnittstellen: Parallel und seriell, Standards (RS232, USB, ...)
- Einführung
- Historischer Überblick
- Betriebssystemkonzepte
- Prozesse und Threads
- Einführung in das Konzept der Prozesse
- Prozesskommunikation
- Übungen zur Prozesskommunikation: Klassische Probleme Scheduling von Prozessen
- Threads
- Speicherverwaltung
- Einfache Speicherverwaltung ohne Swapping und Paging
- Swapping
- Virtueller Speicher
- Segmentierter Speicher
- Dateisysteme
- Dateien und Verzeichnisse
- Implementierung von Dateisystemen
- Sicherheit von Dateisystemen
- Schutzmechanismen
- Neue Entwicklungen: Log-basierte Dateisysteme
- Ein- und Ausgabe: Grundlegende Eigenschaften der E/A- Festplatten
- Anwendung der Grundlagen auf reale Betriebssysteme: UNIX/Linux und Windows (NT, 2000, XP, Windows7)
- Programmiermodell für die Maschinenprogrammierung: Befehlssatz, Registersatz und Adressierungsarten
- Umsetzung von Kontrollstrukturen, Auswertung von Ergebnisflags
- Unterprogrammaufruf mit Hilfe des Stacks
- Konventionen
- Konzept und Umsetzung von HW- und SW-Interrupts: Diskussion von HW- und SW-Mechanismen und Automatismen, Interrupt-Vektortabelle, Spezialfall: Bootvorgang
- Diskussion User- und Supervisor-Modus von Prozessoren
- Praktische Übungen
- Einführung eines Beispielprozessors
- Aufbau des Übungsrechners
- Einarbeitung und Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von Maschinenprogrammen mit steigendem Schwierigkeits- und Strukturierungsgrad

Besonderheiten Voraussetzungen

Besonderheiten und Voraussetzungen

- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle, Oldenbourg Wissenschaftsverlag

- H. Müller, L. Walz: Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
 A. S. Tanenbaum: Computerarchitektur, Strukturen Konzepte Grundlagen, Pearson Studium
 W. Oberschelp, G. Vossen: Rechneraufbau und Rechnerstrukturen, Oldenbourg Wissenschaftsverlag
- T. Flik: Mikroprozessortechnik und Rechnerstrukturen, Springer
- W. Schiffmann, R. Schmitz: Technische Informatik 2, Springer
 A. Fertig: Rechnerarchitektur, Books on Demand

- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium Mandl P.: Grundkurs Betriebssysteme, Springer Vieweg Glatz E.: Betriebssysteme: Grundlagen, Konzepte, Systemprogrammierung, dpunkt Verlag
- Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall

Baden-Württemberg Studienbereich Technik

Kommunikations- und Netztechnik (T3INF2006)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Kommunikations- und Netztechnik	Deutsch/Englisch	T3INF2006	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Kernmodul	1

	Eingesetzte Lehr- und Prüfungsformen		
	Lehrformen	Vorlesung, Vorlesung, Labor, Vorlesung, Übung	
1	Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
225,0	72,0	153,0	5

	Qualifikationsziele und Kompetenzen				
Fachkompetenz	Das Modul vermittelt Grundlagenkenntnisse über Kommunikationsnetze. Mit Abschluss des Moduls verfügen die Studierenden über ein detailliertes Verständnis im Bereich der Kommunikations- und Netztechnik bzgl. Aufbau, Funktion, Zusammenwirken der einzelnen Komponenten, sowie über die bei der Kommunikation eingesetzten Technologien, Dienste und Protokolle.				
Methodenkompetenz					
Personale und Soziale Kompetenz					
Übergreifende Handlungskompetenz	Das Modul führt mehrere Disziplinen zusammen: Grundlagen aus Rechnertechnik bzw. Rechnernetze, Digitaltechnik, Programmieren sowie der Ansatz für Software-Architekturen. Das Modul erschließt komplexe und übergreifende Zusammenhänge.				

Lerneinheiten und Inh	alte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Netztechnik	36,0	39,0
Labor Netztechnik	12,0	63,0
Signale und Systeme 1	24.0	51.0

- Aufgaben der Kommunikations- und Netztechnik
- Referenzmodelle und deren Schnittstellen
- Netzelemente
- Normen und Standards
- Festnetze LAN/MAN: Unterscheidung, Aufbau, Funktion, Aktuelle Entwicklungen
- Protokolle TCP/IP mit IPv4 und IPv6
- Netzkopplung und Sicherheitstechniken

Das Labor Netztechnik ergänzt die Vorlesung durch praktische Übungen an Kommunikationsnetzen (z.B. Netzlabor). Aktuelle netzspezifische Themen werden im Rahmen des Selbststudiums erarbeitet.

Optional: Erarbeitung grundlegender Begriffe aus "Signale und Syteme", Systemantwort mit Faltungssumme bzw. Integral, Transformationen (Fourier, Laplace), verknüpft mit Übungs- und Laboreinheiten.

- Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme
- Fourier-Reihe
- Transformationen (Fourier, Laplace)

Besonderheiten und Voraussetzungen

Besonderheiten

- Die beiden Units Labor Netztechnik bzw. Signale und Systeme I werden alternativ angeboten

Voraussetzungen

Literatur

- Kurose, Ross: Computernetzwerke: Der Top Down Ansatz, Pearson Studium IT
- Tanenbaum, A.S:Computer Networks, Prentice Hall A.Sikora: Technische Grundlagen der Rechnerkommunikation, Hanser Fachbuch

Weiterführende Literatur wird über eine aktuelle Literaturrecherche beschafft (Internet, Online-Kataloge, Fachzeitschriften, Bibliotheken).

- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer
- D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch

Baden-Württemberg Studienbereich Technik

Software Engineering II (T3INF3001)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Software Engineering II	Deutsch	T3INF3001	1	Prof. Dr. Andreas Judt

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	90
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
164,0	44,0	120,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, können eine geeignete Softwarearchitektur mit relevanten Techniken entwickeln und nach aktuellen Verfahren zertifizieren.
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen und technisch sowie wirtschaftlich zu bewerten.
Personale und Soziale Kompetenz	Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können technische, theoretische und wirtschaftliche Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.
Übergreifende Handlungskompetenz	Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben und Teams zu integrieren. Die Studierenden überzeugen als selbstständig denkende und verantwortlich handelnde Persönlichkeiten mit kritischer Urteilsfähigkeit. Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Advanced Software Engineering	44,0	120,0

Inhalte

- Unified Process mit Phasen- und Prozesskomponenten Anwendungsfälle

- Entwurfsmuster Refactoring und Refactorings Design-Heuristiken und -Regeln
- Methoden der Softwarequalitätssicherung
- Requirements Engineering Usability/SW-Ergonomie SW Management (z.B. ITIL)

- Aktuelle Themen und Trends des Software Engineerings

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussotzungen	

- Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
 Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides, Design Patterns, Addison-Wesley
 Ivar Jacobson, Magnus Christerson, Patrik Jonsson und

- ITIL Service Lifecycle Publication Suite: German Translation, TSO Verlag
 Pohl/Rupp. Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level, dpunkt.verlag GmbH
- . Nielsen. Usability Engineering (Interactive Technologies), Morgan Kaufmann Richter und Flückiger. Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln (IT kompakt) , Springer Vieweg

Baden-Württemberg Studienbereich Technik

IT-Sicherheit (T3INF3002)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
IT-Sicherheit	Deutsch/Englisch	T3INF3002	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Labor
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	48,0	102,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls sensibilisiert bzgl. Sicherheit in wesentlichen Bereichen der IT. Sie sind in der Lage, nach einer Bedrohungsanalyse einzelne Schwachstellen zu erkennen und entsprechende Maßnahmen zu ergreifen, um eine angemessene IT-Sicherheit im Rahmen eines Sicherheitskonzeptes zu gewährleisten. Sie kennen die Stärken und Schwächen der möglichen Maßnahmen in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen. Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden.	
Methodenkompetenz		
Personale und Soziale Kompetenz	Die Studierenden haben die Kompetenz erworben, bei der Bewertung von Informationstechnologien auch gesellschaftliche und ethische Aspekte zu berücksichtigen. Dies gilt speziell für das Abwägen von Interessen der Sicherheit bei IT-Systemen gegenüber dem informationellen Selbstbestimmungsrecht der von der Datenverarbeitung betroffenen Personen.	
Übergreifende Handlungskompetenz	Das Modul führt die Studierenden zu einem bewussten und vorsichtigen Umgang mit Daten jeglicher Art. Entscheidungen werden stets vor dem Hintergrund der IT-Sicherheit getroffen.	
	Einüben wissenschaftlicher Arbeitsweise, Recherchieren und Bewerten aktueller Fachliteratur.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
IT-Sicherheit	48,0	102,0

Inhalte

- Grundlegende Begriffe und Sicherheitsprobleme
- Bedrohungsanalyse und Sicherheitskonzepte Basismechanismen (Verschlüsselung, Hash-Funktionen, Authentication Codes, Signaturalgorithmen, Public-Key Verfahren etc.) und deren kryptografische Grundlagen
- Sicherheitsmodelle
- Netzwerksicherheit und Sicherheitsprotokolle (z.B. X.509, OAuth)
 Sicherheit Web-basierter Anwendungen und Dienste (z.B. XSS, SQL-Injection, Rest, Soap)
 Datenschutz
- Embedded Security Aktuelle Themen

Besonderheiten und Voraussetzungen	
Besonderheiten	
Voraussetzungen	

- Jonathan Katz, Y. Lindell, Introduction to Modern Cryptography, Chapmann & Hall CRC Press, Cryptography and Network Security M. Bishop: Computer Security, Addison-Wesley-Longman C. Eckert: IT-Sicherheit, Oldenbourg

- C. ECKEIT: 11-SIGNEHIERT, UIGENDOURG
 W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education
 C. Pfleeger, S. Lawrence Pfleeger, Security in Computing
 Laurens Van Houtven, Crypto 101, www.crypto101.io
 Ivan Ristic, Bulletproof SSL nd TLS, Feisty Druck

Baden-Württemberg Studienbereich Technik

Schlüsselqualifikationen II (T3INF4190)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Schlüsselqualifikationen II	Deutsch/Englisch	T3INF4190	2	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Lokales Profilmodul	1
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt		

Prüfungsleistung	Prüfungsumfang (in min)	
Kombinierte Prüfung (KP)		
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
193,0	108,0	85,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften insbesondere im Bereich Marketing erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.		
Methodenkompetenz	Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Kompetenzen vertieft (vgl. Modul Schlüsselqualifikationen).		
Personale und Soziale Kompetenz	Die Studierenden können ihre Standpunkte in einem interdisziplinär und interkulturell zusammengesetzten Team vertreten und respektieren andere Sichtweisen. Sie können Verhaldlungstechniken und Konfliktmanagement-Techniken zielführend einsetzen.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Fremdsprachen 1	24,0	19,0
Vortrags-, Lern- und Arbeitstechniken	24,0	19,0
Marketing 1	24,0	19,0
Marketing 2	24,0	19,0
Intercultural Communication 1	24,0	19,0
Intercultural Communication 2	24,0	19,0
Fremdsprachen 2	24,0	19,0
Projektmanagement 1	24,0	19,0
Projektmanagement 2	24,0	19,0
Einführung in technisch-wissenschaftliches Arbeiten	24,0	19,0
Schlüsselqualifikationen II	84,0	66,0

- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren
- -Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im
- Einführung in Marketing
- Marktforschung
- Marketingplanung
- Marketinginstrumentarium
- Produkt- und Sortimentspolitik
- Werbe- oder Kommunikationspolitik
- Preispolitik
- Distributionspolitik

Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.

- Major Theories of Intercultural Communications z.B. Hall Kluckhohn and Strodtbeck Hofstede Trompenaars and Hamden-Turner Exercises Role Place Case Studies - Small Group Work - Presentations
- Conflict Management Negotiation Exercises Role Place Case Studies Small Group Work Presentations
- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren
- Was ist Projektmanagement?
- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele Unterlagen für die Projektplanung
- Aufwandsschätzung
- Projektorganisation
- Projektphasenmodelle
- Planungsprozess und Methodenplanung
- Personalplanung
- Terminplanung
- Kostenplanung und betriebswirtschaftliche Hintergründe
- Einführung in Steuerung, Kontrolle und Projektabschluss
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Übungen zu den einzelnen Teilen
- Meetings, Teams und Konflikte Risikoplanung und Risikomanagement
- Qualitätsplanung
- Projekt Steuerung und Kontrolle
- Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
- Weitere Projektmanagement Methoden

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren gualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut. Vertiefung der Inhalte des Moduls Schlüsselqualifikationen I mit besonderem Fokus in den zwei Kernbereichen:

Wirtschaftswissenschaftlige Grundlagen

- Grundlagen des Marketing
- Marketinginstrumentarium
- Werbe- oder Kommunikationspolitik
- Preis- und Distributionspolitik

Projektmanagement und Kommunikation

- Interkulturelle Kommunikation
- Arbeiten in interkulturellen und mehrsprachigen Teams
- Major Theories of Intercultural Communications
- Conflict Management
- Negotiation

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul ergänzt das Modul Schlüsselqualifikationen und vertieft Inhalte, die dort bisher nur grundlegend behandelt wurden.

- T3INF4190.0 als einzige Unit

- 3 andere Units zur Wahl

weitere Units:

T3INF1005.3 Vortrag/Lern-Arbeitstechniken

T3INF1005.7 Intercultural Comm 1

T3INF4103.2 Projektmanage 2

T3INF1005.2 Fremdsprachen

T3INF1005.9 Fremdsprachen 2

Voraussetzungen

Modul Schlüsselqualifikationen, insbesondere

- Grundlagen der Betriebswirtschaftslehre
- Grundlagen des Projektmanagements

Literatur

Entsprechend der gewählten Sprache

- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg
- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill - Stella Ting: Toomey und John G. Oetzel
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin

Entsprechend der gewählten Sprache

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
 Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg, 2006 Marion Steven: Bwl für Ingenieure, Oldenbourg, aktuelle Auflage
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford
- Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill Stella Ting: Toomey und John G. Oetzel
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin

Baden-Württemberg Studienbereich Technik

Web Engineering (T3INF4101)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web Engineering	Deutsch	T3INF4101	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung	
Laborarbeit, Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	60	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
90,0	48,0	42,0	3

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln			
Übergreifende Handlungskompetenz				

Lerneiı	nheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 1	36,0	39,0
Labor Webengineering 1	12,0	3,0

Inhalte

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.
- Praktische Übungen zu HTML-Grundlagen Praktische Übungen zu den/der im Rahmen der Vorlesung eingeführten Programmiersprache/EN

T3INF4101 -	W_{eb}	E_n	oine	ering
1 01111 4101 -	WCD	ப்ப	gmc	CHILIS

47

Besonderheiten und Voraussetzungen	
Besonderheiten	
-	
Voraussetzungen	
-	
Literatur	

- www.w3c.org - wiki.selfhtml.org

www.w3c.org de.selfhtml.org

Baden-Württemberg Studienbereich Technik

Anwendungsprojekt Informatik (T3INF4103)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Anwendungsprojekt Informatik	Deutsch	T3INF4103	1	Prof. Dr. Dirk Reichardt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung, Labor		
Lehrmethoden Projekt		

Britishadaistung	Priifungaumfang (in min)
Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
Klausurarbeit (< 50 %)	

Workload und ECTS			
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte			
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, die Grundlagen der Informatik in einfachen Anwendungsfällen geeignet zur Problemlösung einzusetzen.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, ein Anwendungsprojekt mit geeigneten, methodisch fundierten Vorgehensweisen des Projektmanagements zum erfolgreichen Abschluss zu bringen.			
Personale und Soziale Kompetenz	Die reflektierte, praktische Durchführung eines Anwendungsprojekts fördert die Selbständigkeit und Eigenverantwortlichkeit der Studierenden, sowie das Selbst- und Zeitmanagement.			
Übergreifende Handlungskompetenz	Durch die reflektierte, praktische Durchführung eines Anwendungsprojekts in kleinen Gruppen erwerben die Studierenden Kenntnis über fachübergreifende Zusammenhänge und Prozesse. Sie haben gelernt, sich schnell in neue Aufgaben, Teams und (Arbeits-)Kulturen zu integrieren.			

Lerneinheiten und Inhal	lte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Anwendungsprojekt Informatik	72,0	78,0

Inhalte

Management von Informatik-Projekten - Rahmenbedingungen

- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
 Meetings, Teams und Konflikte
- Projekt Steuerung und Kontrolle
- Weitere Projektmanagement Methoden

Lehre am Projektbeispiel

- Durchführen eines Informatikprojektes
 Praktische Vertiefung/Übung zu Grundlagenvorlesungen
 (i.e. Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen)
- Fachübergreifende Anwendung und Vertiefung von Grundlagen der Informatik am Beispielprojekt
- Einsatz von Methoden des Projektmanagements (ggf. Vertiefung eines Grundlagenmoduls Projektmanagement)

Besonderheiten und Voraussetzungen

Besonderheiten

Projektmanagementkompetenz und Vertiefung von Grundlagenkenntnissen der Informatik werden fachübergreifend vermittelt.

Grundlagenmodule der Informatik, insbesondere Programmieren. Algorithmen und Datenstrukturen kann ggf. parallel unterrichtet werden.

Literatur

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall

siehe Literatur gemäß Grundlagenmodulen Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen

Baden-Württemberg **Studienbereich Technik**

Elektrotechnik (T3INF4104)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Elektrotechnik	Deutsch	T3INF4104	1	Prof. DrIng. Thomas Neidlinger

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
1. Stj.		Studienrichtungsmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung Prüfungsumfang (in min)		
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
90,0	48,0	42,0	3

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die Grundlagen elektrotechnischer Größen und deren Einheiten, sowie Eigenschaften und Anwendungsbereiche von passiven Bauelementen. Sie kennen wichtige Sätze, Methoden und Berechnungsverfahren für elektrische Netzwerke in Gleich- und Wechselstromkreisen und können diese auf ausgewählte Probleme anwenden, Lösungsansätze finden und die Lösungen berechnen.			
Methodenkompetenz Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Elektrotechnik	48,0	42,0

Inhalte

- Elektrische Größen und ihre Einheiten Das elektrische Feld
- Gleichstromkreis, Zweipole

- Celeichstrümkeis, Zweipole
 Lineare Netzwerke und Berechungsmethoden
 Periodische und zeitabhängige Größen
 Das magnetische Feld
 Sprung- und Impulsantworten passiver Bauelemente
- Wechselstromkreis

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

- Grundgebiete der Elektrotechnik 1, A. Führer, K. Heidemann, W. Nerreter, Hanser
 Grundgebiete der Elektrotechnik 2, A. Führer, K. Heidemann, W. Nerreter, Hanser
 Theoretische Elektrotechnik, A. Reibiger, W. Mathis, K. Küpfmüller, Springer Vieweg

Baden-Württemberg Studienbereich Technik

Physik (T3INF4105)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Physik	Deutsch	T3INF4105	1	Prof. DrIng. Thomas Neidlinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die wesentlichen physikalischen Größen und Einheiten der Mechanik, Schwingungslehre und Optik sowie die zugehörigen physikalischen Grundgesetze und Prinzipien. Sie können physikalische Sätze auf ausgewählte - auch komplexere - Systeme und Problemstellungen anwenden, als Lösungsansatz formulieren und Lösungen mit sinnvoller Genauigkeit berechnen.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Physik 1	48,0	38,0
Physik 2	36,0	28,0

- Technische Mechanik
- Mechanische Größen und ihre Einheiten
- Koordinatensysteme
- Kinematik
- Newtonsche Axiome und Punktmechanik
- Zentralpotential und Kreisbewegung Erhaltungssätze Dynamik starrer Körper

- Schwingungen und Wellen 1
- Schwingungen in der Mechanik und Akustik Freie Schwingungen
- Gedämpfte und erzwungene Schwingungen
- Resonanz Ebene Wellen
- Zylinder und Kugelwellen
- Longitudinalwellen und Transversalwellen
- Schwingungen und Wellen 2
- Stehende Wellen
- Elektromagnetische Wellen und Felder
 Hertzscher Dipol
- Wellenleitung Wellenwiderstand
- Dopplereffekt Wellengruppen und Dispersion
- Glasfaserleiter
- Amplitudenmodulation und Frequenzmodulation Technische Optik Geometrische Optik

- Brechung und Brechungsindex

- Sphärische Linsen und Spiegel Wellenoptik und Huygenssches Prinzip Beugung an Spalt und Gitter
- Interferometer und Spektrometer
- Polarisation
- Interferenz in polarisiertem Licht
 Optische Wellenleiter
- Quantenoptik und Photoeffekt
- Laserprinzip He-Ne-Laser und Halbleiterlaser

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

keine

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer
- Physik, P. A. Tipler, G. Mosca, Springer Spektrum Physik für Ingenieure, H. Lindner, Hanser
- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer Physik, P. A. Tipler, G. Mosca, Springer Spektrum
- Physik für Ingenieure, H. Lindner, Hanser

Baden-Württemberg Studienbereich Technik

Systemverständnis Fahrzeug (T3INF4106)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Systemverständnis Fahrzeug	Deutsch	T3INF4106	1	Prof . Dr. Mario Babilon

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Referat (R),	-
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
90,0	48,0	42,0	3

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Der Studierende besitzt einen Überblick über Baugruppenvarianten in Aufbau, Funktion und deren Zusammenspiel. Er kennt die wesentlichen Rahmenbedingungen, wie z.B. gesetzliche Anforderungen, Zuverlässigkeits- und Komfortanspruch, sowie Sicherheits- und Wartungsaspekte. Er kann den Einsatz und Einfluss der Elektronik und Informationstechnik im Fahrzeug und seinen Baugruppen beurteilen.
Methodenkompetenz	
Personale und Soziale Kompetenz	
Übergreifende Handlungskompetenz	Der Studierende hat die vielfältigen Berührungspunkte des Systems Fahrzeug mit den zugrunde liegenden physikalischen Verfahren und den hierauf aufsetzenden Bereichen der Technik kennengelernt. Die Studierenden können fehlende, aktuelle, auch englischsprachige Informationen zusammentragen und sich in dem fachspezifischen Informationsangebot zurechtfinden.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Systemverständnis Fahrzeug	48,0	42,0

- Entwicklung von Fahrzeugen und ihr Hardware- / Software-Anteil Überblick über Aufbau und Funktion von Verbrennungsmotoren Aufbau und Wirkungsweise von Fahrzeugen mit Elektro- oder Hybridantrieb
- Grundlagen der Kraftübertragung (Getriebe, Kupplung)
- Fahrwerksysteme (Lenkung, Bremsen, Differentialsperren, Fahrstabilitätssysteme) Karosserie- und Sicherheitssysteme
- Fahrerinformations-, Navigations- und Komfortsysteme
- Aufgaben und Funktionen der Steuergeräte im Fahrezug Verteilte Systeme im Kraftfahrzeug

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- BOSCH Kraftfahrtechnisches Taschenbuch, Verlag Vieweg
 BOSCH-Fachbücher zur Kraftfahrzeugtechnik, Verlag Vieweg
 BOSCH Gelbe Reihe Kraftfahrzeugtechnik Erstausrüstung
- Heinrich Riedl: Lexikon der Kraftfahrzeugtechnik, Motorbuch Verlag
 Heinrich Hucho: Aerodynamik des Automobils, Verlag Vieweg
 Günter Merker: Verbrennungsmotoren, Verlag Teubner

- Kerle, Pittschellis: Einführung in die Getriebelehre, Verlag Teubner
- Johannes Volmer: Getriebetechnik Grundlagen, Verlag Technik
 Micknass, Popiol: Kupplung, Getriebe, Antriebswelle, Sprenger, Verlag Vogel
 Balzer, Ehlert: Handbuch der KFZ-Technik, 2 Bände, Motorbuch Verlag

Baden-Württemberg Studienbereich Technik

Elektronik (T3INF4107)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Elektronik	Deutsch	T3INF4107	1	Prof. DrIng. Thomas Neidlinger

	Verortung des Moduls im Str	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die physikalischen Grundlagen von Aufbau und Struktur der Materie sowie von Halbleitern, Isolatoren und Metallen. Sie verstehen grundlegende Zusammenhänge zwischen Atom- bzw. Kristallstruktur und den physikalischen Eigenschaften von Halbleitermaterialien. Die Studierenden kennen Grund- und typische Anwendungsschaltungen mit Halbleiter-Bauelementen und verstehen ihre Funktionsweise. Sie kennen Verfahren zur Analyse und Auslegung elektronischer Schaltungen und können Designparameter berechnen. Sie können Prototyp-Aufbauten realisieren, in Betrieb nehmen, systematische Funktionsprüfung und Fehlersuche vornehmen und das Schaltungsverhalten messen und geeignet protokollieren.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Elektronik	48,0	38,0
Schaltungstechnik	36,0	28,0

Inhalte

- Grundlagen zur Struktur der Materie Atom-, Festkörper- und Halbleiterphysik
- Physikalische und technische Eigenschaften von Halbleiterwerkstoffen Halbleiterdioden
- Transistoren
- Operationsverstärker
- Anwendungsschaltungen für Dioden
- Transistor Schaltungen, Analog und Digital
 Analoge und Digitale Schaltungen mit Operationsverstärkern

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer
 Physik, P. A. Tipler, G. Mosca, Springer Spektrum
 Elektronik für Ingenieure, E. Hering, K. Bressler, J. Gutekunst, Springer
- Elektronik für Ingenieure und Naturwissenschaftler, E. Hering, K. Bressler, J. Gutekunst, Springer Taschenbuch der Elektrotechnik und Elektronik, H. Lindner, H. Brauer, C. Lehmann, Hanser Elektronische Schaltungstechnik, W. Reinhold, Fachbuchverlag Leipzig

Baden-Württemberg Studienbereich Technik

Medizinisches Grundwissen I (T3INF4108)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Medizinisches Grundwissen I	Deutsch	T3INF4108	1	Prof. Dr. Johannes Freudenmann

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Referat (R),	-
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
90,0	48,0	42,0	3

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die menschliche Anatomie und Physiologie, sowie Grundzüge der Pathologie und der Biochemie. Die Studierenden kennen die wichtigsten diagnostischen Möglichkeiten. Die Studierenden haben einen Überblick bzgl. der Entstehung bzw. des Verlaufs von Krankheiten. Die Studierenden kennen die wichtigsten Wirkungsmechanismen von Medikamenten auf den menschlichen Körper.	
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden haben ein erstes Verständnis für die Fachterminologie der Medizin und können Unterhaltungen des medizinischen Personals (Ärzte, Pfleger) fachspezifisch folgen.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Medizin 1	48.0	42.0

Inhalte

- Biologische Grundlagen der Medizin
- Grundlagen der Anatomie Grundlagen der Physiologie

Besonderheiten und Voraussetzungen
Besonderheiten

Voraussetzungen	

- Faller, Der Körper des Menschen, Thieme Verlag Stuttgart
 Schmidt, Lang, Thews, Physiologie des Menschen mit Pathophysiologie, Springer Verlag Berlin
 Silbernagel, Taschenatlas der Physiologie, Thieme Verlag Stuttgart
 Lüllmann, Mohr, Taschena

Baden-Württemberg Studienbereich Technik

Medizinisches Grundwissen II (T3INF4109)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Medizinisches Grundwissen II	Deutsch	T3INF4109	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im Studi	enverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

	Workload und	d ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die menschliche Anatomie und Physiologie, sowie Grundzüge der Pathologie und der Biochemie. Die Studierenden kennen die wichtigsten diagnostischen Möglichkeiten. Die Studierenden haben einen Überblick bzgl. der Entstehung bzw. des Verlaufs von Krankheiten. Die Studierenden kennen die wichtigsten Wirkungsmechanismen von Medikamenten auf den menschlichen Körper. Sie verstehen die wichtigsten physikalischen Grundlagen.			
Methodenkompetenz				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden haben Verständnis für die Fachterminologie der Medizin und können den Unterhaltungen des medizinischen Personals (Ärzte, Pfleger) auch fachspezifisch folgen.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Medizin 2	48,0	38,0
Medizinische Physik	36,0	28,0

Inhalte

- Grundlagen Anatomie Grundlagen Physiologie Grundlagen Pathologie Grundlagen Pharmakologie
- Wellenlehre mit Ultraschall

- Atomphysik Kernphysik Strahlenphysik
- Optik Laserphysik

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

Medizinisches Grundwissen I

- Faller, Der Körper des Menschen, Thieme Verlag Stuttgart
 Schmidt, Lang, Thews, Physiologie des Menschen mit Pathophysiologie, Springer Verlag Berlin
 Silbernagel, Taschenatlas der Physiologie, Thieme Verlag Stuttgart
- Lüllmann, Mohr, Taschenatl
- Bille, Schlegel, Medizinische Physik, Band 1-3, Springer Verlag

Baden-Württemberg Studienbereich Technik

Grundlagen der Hard- und Software (T3INF4111)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Grundlagen der Hard- und Software	Deutsch	T3INF4111	1	Prof. Dr. Andreas Judt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Labor, Vorlesung, Übung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung Prüfungsumfang (in min)		
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte			
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können nach Abschluss des Moduls - die Struktur und Dienste der Hausrechnerumgebung aufzählen und beschreiben - die Unterschiede der gängigen Betriebssysteme erläutern - Betriebssysteme kofigurieren - anwendungsbezogene Methoden und Berechnungsverfahren der Elektrotechnik nutzen und auf Problemstellungen anwenden			
Methodenkompetenz	Die Studierenden können nach Abschluss des Moduls - die Konfiguration von Betriebssystemen Fachleuten und Anwendern gegenüber fachadäquat kommunizieren - sich mit Kollegen über Aufbau und Inbetriebnahme von Betriebssystemen austauschen - elektrotechnische Probleme modularisieren und in Form von Funktionsblöcken beschreiben - im Team arbeiten und Verantwortung übernehmen			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden können nach Abschluss des Moduls - sich in weitere Themen der Elektrotechnik selbstständig einarbeiten und diese vertiefen - das Wissen bezüglich Hard- und Software auf ihre Tätigkeiten im Beruf anwenden - bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Kooperationsbereitschaft mithelfen			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Elektronik	48,0	38,0	
Praktische Datenverarbeitung	36,0	28,0	
Elektrotechnik	48,0	38,0	

- Grundlagen zur Struktur der Materie
- Atom-, Festkörper- und Halbleiterphysik Physikalische und technische Eigenschaften von Halbleiterwerkstoffen
- Halbleiterdioden
- Transistoren
- Operationsverstärker
- Arbeiten mit mehreren Betriebssystemen
- Arbeiten mit Netzwerkdiensten, besonders mit dem Netzwerk der lokalen DH
- Grundlagen von LINUX
- Vertiefung und Anwendungen von LINUX
- Elektrische Größen und ihre Einheiten
- Das elektrische Feld
- Gleichstromkreis, Zweipole Lineare Netzwerke und Berechungsmethoden
- Periodische und zeitabhängige Größen
- Das magnetische Feld Sprung- und Impulsantworten passiver Bauelemente Wechselstromkreis

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer Physik, P. A. Tipler, G. Mosca, Springer Spektrum
- Elektronik für Ingenieure, E. Hering, K. Bressler, J. Gutekunst, Springer
- H. Herold: UNIX-Grundlagen, Addison-Wesley M. Kofler: LINUX, Addison-Wesley

- Grundgebiete der Elektrotechnik 1, A. Führer, K. Heidemann, W. Nerreter, Hanser Grundgebiete der Elektrotechnik 2, A. Führer, K. Heidemann, W. Nerreter, Hanser
- Theoretische Elektrotechnik, A. Reibiger, W. Mathis, K. Küpfmüller, Springer Vieweg

Baden-Württemberg Studienbereich Technik

Technische Physik (T3INF4115)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Technische Physik	Deutsch	T3INF4115	1	Prof . Dr. Mario Babilon

	Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
1. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung			
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	84,0	66,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Der Studierende kennt die Grundlagen elektrotechnischer Größen und deren Einheiten, sowie Eigenschaften und Anwendungsbereiche von passiven Bauelementen. Er kennt wichtige Sätze, Methoden und Berechnungsverfahren für elektrische Netzwerke in Gleich- und Wechselstromkreisen und kann diese auf ausgewählte Probleme anwenden, Lösungsansätze finden und die Lösung berechnen. Er kennt Grundund typische Anwendungsschaltungen mit Halbleiter-Bauelementen und versteht ihre Funktionsweise. Er kennt Verfahren zur Analyse und Auslegung elektronischer Schaltungen und kann Designparameter berechnen. Er kann Prototyp-Aufbauten realisieren, in Betrieb nehmen, systematische Funktionsprüfung und Fehlersuche vornehmen und das Schaltungsverhalten messen und geeignet protokollieren. Der Studierende kennt die wesentlichen physikalischen Größen der Schwingungslehre und Optik, sowie die zugehörigen physikalischen Grundgesetze und Prinzipien. Er kann physikalische Sätze auf ausgewählte - auch komplexere - Systeme und Problemstellungen anwenden, als Lösungsansatz formulieren und Lösungen mit sinnvoller Genauigkeit berechnen.			
Methodenkompetenz				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerne	inheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Physik 2	36,0	28,0
Elektrotechnik	48,0	38,0

- Schwingungen und Wellen 2
- Stehende Wellen Elektromagnetische Wellen und Felder Hertzscher Dipol
- Wellenleitung Wellenwiderstand
- Dopplereffekt Wellengruppen und Dispersion Glasfaserleiter
- Amplitudenmodulation und Frequenzmodulation
- Technische Optik Geometrische Optik
- Brechung und Brechungsindex
- Sphärische Linsen und Spiegel Wellenoptik und Huygenssches Prinzip
- Beugung an Spalt und Gitter
- Interferometer und Spektrometer
- Polarisation Interferenz in polarisiertem Licht
- Optische Wellenleiter
- Quantenoptik und Photoeffekt
- Laserprinzip
 He-Ne-Laser und Halbleiterlaser
- Elektrische Größen und ihre Einheiten
- Das elektrische Feld
- Gleichstromkreis, Zweipole
- Lineare Netzwerke und Berechungsmethoden Periodische und zeitabhängige Größen
- Das magnetische Feld
- Sprung- und Impulsantworten passiver Bauelemente
- Wechselstromkreis

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer
- Physik, P. A. Tipler, G. Mosca, Springer Spektrum
- Physik für Ingenieure, H. Lindner, Hanser

- Grundgebiete der Elektrotechnik 1, A. Führer, K. Heidemann, W. Nerreter, Hanser Grundgebiete der Elektrotechnik 2, A. Führer, K. Heidemann, W. Nerreter, Hanser Theoretische Elektrotechnik, A. Reibiger, W. Mathis, K. Küpfmüller, Springer Vieweg

Baden-Württemberg Studienbereich Technik

Wissenschaftliche Informationsverarbeitung (T3INF4116)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wissenschaftliche Informationsverarbeitung	Deutsch	T3INF4116	1	Prof. Joachim Schmidt

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Übung, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Übung		

Prüfungsleistung	Prüfungsumfang (in min)
Referat (R),	
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
90,0	48,0	42,0	3	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die verschiedenen wissenschaftlichen Methoden, erkenntnistheoretischen Modelle und logischen Schlussfolgerungsverfahren verstehen und in einem technisch-wissenschaftlichen sowie gesellschaftlichen Wirkungsumfeld planen und zielgerichtet umsetzen. Erkenntnistheoretische Modelle diskutieren und kritisch hinsichtlich ihrer praktischen Relevanz bewerten. Werkzeuge zum wissenschaftlichen Arbeiten, Recherche, Anayse, Falsifizierung und Dokumentation kennen und anwenden.			
Methodenkompetenz	Methoden wissenschaftlicher Arbeit analytisch und praktisch verstehen und unter Berücksichtigung ethischer Askekte zielgerichtet bei der Beurteilung und Lösung von Aufgaben und deren praktischer Umsetzung zielgerichtet anwenden UND kritisch refelktieren. Die Bausteine wissenschaftlicher Arbeit sowie die verschiedenen erkenntnistheoretischen Ansätze reflektieren und in der Dokumentation der Arbeit arbeitsorientiert umsetzen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team verantwortungsvoll, zielorientiert und nachhaltig in ihrem wissenschaftlichen und praktischen Umfeld handeln. Dabei sind sich Ihrer Rolle und Verantwortung in der Gesellschaft sowie den sie beeinflussenden wirtschaftlichen Prozessen und Zusammenhängen bewusst. Sie können ethische, wirtschaftliche und ökologische Fragestellungen gegeneinander abwiegen sowie verantwortungsbewusst und lösungsorientiert umsetzen.			
Übergreifende Handlungskompetenz	Aktuelle Internet-basierte Quellen- und Literaturrecherchemöglichkeiten, bevorzugt in fachgebietsrelevanten digitalen Datenbanke und Portalen recherchieren und die Ergebnisse kompetent ausweren und kommunizieren. Professionell Textsatz- und animierte Präsentationssysteme für die Erstellung wissenschaftlicher Dokumentationen und von Praxisberichten nutzen.			

	Lerneinheiten und Inhalte				
Lehr-	Lehr- und Lerneinheiten Präsenz Selbststudium				
Übung	en zur wissenschaftlichen Informationsverarbeitung	,0	4,0		
Einfüh	rung in technisch-wissenschaftliches Arbeiten	24,0	19,0		
Werkz	euge der wissenschaftlichen Informationsverarbeitung	24,0	19,0		

Elemente wissenschaftlicher Arbeit und ihrer Produkte

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut. Werkzeuge zur wissenschaftlichen Informationsverarbeitung kennen und anwenden Iernen, etwa - LaTeX für die Erstellung eigener Texte und Präsentationen, - Makrooder Shell-Programmierung, Linux Command Line Tools zur Datenaufbereitung (z.B. VBA, OpenOffice.org Basic, grep/sed/awk, gnuplot, Perl)

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

Werkzeuge zur wissenschaftlichen Informationsverarbeitung kennen und anwenden Iernen, etwa - LaTeX für die Erstellung eigener Texte und Präsentationen, - Makrooder Shell-Programmierung, Linux Command Line Tools zur Datenaufbereitung (z.B. VBA, OpenOffice.org Basic, grep/sed/awk, gnuplot, Perl)

	Besonderheiten und Voraussetzungen	
Besonderheiten		
-		

Voraussetzungen

- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Held: VBA Programmierung, Franzis Krumbein: Makros in OpenOffice.org 3, Galileo Computing
- Mittelbach, Goossens: Der LaTeX-Begleiter, Pearson Studium
- Schlosser: Wissenschaftliche Arbeiten schreiben mit LaTeX, mitp
- Wolf: Shell-Programmierung
- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Held: VBA Programmierung, Franzis Krumbein: Makros in OpenOffice.org 3, Galileo Computing
- Mittelbach, Goossens: Der LaTeX-Begleiter, Pearson Studium
- Schlosser: Wissenschaftliche Arbeiten schreiben mit LaTeX, mitp
- Wolf: Shell-Programmierung: Das um

Baden-Württemberg Studienbereich Technik

Web Design (T3INF4117)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web Design	Deutsch	T3INF4117	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	84,0	66,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen grundlegende Design-Prinzipien für Web-Seiten und Verfahren und Technologien zu deren Umsetzung kennen. Sie eignen sich grundlegendes Wissen über die Entwicklung und Gestaltung von Web-Seiten und -Anwendungen an und können dieses Wissen praktisch umsetzen.		
Methodenkompetenz			
Personale und Soziale Kompetenz	Die Studierenden berücksichtigen die Bedürfnisse der Benutzer in Form von funktionalen und nicht-funktionalen Anforderungen, etwa hinsichtlich der Barrierefreiheit von Web-Seiten.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Web-Engineering 1	36,0	39,0	
Labor Webengineering 1	12,0	3,0	
Mediengestaltung und Usability	36,0	24,0	

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.
- Praktische Übungen zu HTML-Grundlagen Praktische Übungen zu den/der im Rahmen der Vorlesung eingeführten Programmiersprache/EN
- Grundlagen der visuellen Wahrnehmung sowie der Bild- und Textgestaltung Kriterien für Benutzbarkeit spezifische Anforderungen für Webseiten und Web-basierte Anwendungen (z.B. Navigation, Formulare, Suchfunktion) Gestaltungsprinzipien für das

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

Literatur

- www.w3c.org
- wiki.selfhtml.org

www.w3c.org de.selfhtml.org

- Krug: Don't Make Me Think: A Common Sense Approach to Web Usability, New Riders - Loranger, Nielsen: Web Usability, Addison-Wesley - Puscher: Leitfaden Web-Usability, dpunkt - Scott, Neil: Designing Web Interfaces, O'Reilly

Baden-Württemberg Studienbereich Technik

Software-Praxis (T3INF4121)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Software-Praxis	Deutsch	T3INF4121	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
1. Stj.		Wahlmodul	1		

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	84,0	66,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können Projektarbeit als systematischen, zyklisch verlaufenden Lösungsweg konkreter Aufgaben verstehen und einsetzen. Sie kennen die grundlegende Projektmanagement-Methoden basierend auf einfachen Phasenmodellen und können sie anwenden. Sie erlangen grundlegende Erkenntnisse zur Erfassung, Bewertung und Behandlung von Projektrisiken und Projektstati. Die Studierenden kennen Methoden zur Anforderungserhebung, -Dokumentation und -Bewertung. Die Studierenden kennen qualitätssichernde Maßnahmen bei der Softwareproduktion und können fundierte Aussagen zur Softwarequalität treffen.		
Methodenkompetenz	Mitarbeit in Teams, Verstehen von Aufbau und Struktur von Projektteams, Grundlagen in der Zusammenarbeit mit Projektkunden. Eigenständiges Herangehen an Kundenprojekte und Mitarbeit in Projektteams. Die Studierenden erkennen unterschiedliche Kommunikationsmuster. Sie erlernen Abstraktionsebenen zu unterscheiden.		
Personale und Soziale Kompetenz	Die Studierenden setzen sich mit den Projektrisiken auch im sozialen Umfeld auseinander und schätzen Folgen ab.		
Übergreifende Handlungskompetenz	Verstehen von grundlegenden betriebswirtschaftlichen und organisatorischen Hintergründen zum Projektmanagement. Aufgrund der erlernten Fähigkeiten sollte es dem Studierenden möglich sein, sich in reale Projekte z.B. in der betrieblichen Praxis einbringen zu können und weitere Projektmanagement Methoden, projektbezogene Geschäftsprozesse und betriebswirtschaftliche Zusammenhänge erfassen zu können. Die Studierenden können Dokumente zielpersonengerecht formulieren und strukturiert erstellen. Sie besitzen ein Grundverständnis von prozessorientierten Vorgängen.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Projektmanagement 1	24,0	19,0
Projektmanagement 2	24,0	19,0
Requirements Engineering und Qualitätssicherung	36,0	28,0

- Was ist Projektmanagement?
- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Unterlagen für die Projektplanung
- Aufwandsschätzung
- Projektorganisation
- Projektphasenmodelle
- Planungsprozess und Methodenplanung
- Personalplanung
- Terminplanung
- Kostenplanung und betriebswirtschaftliche Hintergründe
- Einführung in Steuerung, Kontrolle und Projektabschluss Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Übungen zu den einzelnen Teilen
- Meetings, Teams und Konflikte
- Risikoplanung und Risikomanagement
- Qualitätsplanung
- Projekt Steuerung und Kontrolle Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
- Weitere Projektmanagement Methoden
- Requirements Engineering: Ausschreibungen verstehen und analysieren, Ausschreibungen formulieren, Angebote verstehen und analysieren, Angebote erstellen, Kundenanforderungen aufnehmen (Interviewtechniken, Beobachtung, Statusanalyse), Anforderungen priorisieren, Meta-Anforderungen bestimmen und anwenden

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- Balzert, Helmut. Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, Springer
- Hammerschall, Ulrike. Software Requirements, Pearson Studium-IT

Baden-Württemberg Studienbereich Technik

Workflowmanagement (T3INF4122)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Workflowmanagement	Deutsch	T3INF4122	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
1. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Labor, Seminar, Vorlesung, Übung, Labor			
Lehrmethoden Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt			

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	84,0	66,0	5		

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können Geschäftsprozesse erkennen, analysieren, modellieren und als Workflows umsetzen. Sie kennen Analyse- und Entwurfsmethoden für Workflows und können Use-Cases einordnen.		
Methodenkompetenz	Die Verantwortlichkeiten der einzelnen Mitarbeiter wird besser verstanden und Maßnahmen zur Optimierung von Abläufen können analytisch durchgeführt werden.		
Personale und Soziale Kompetenz	Die Rolle des Menschen in der Umsetzung von Geschäftsprozessen ist bekannt und die Problematik von Optimierungsmaßnahmen im Arbeitsumfeld kann fallweise eingeschätzt werden.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Geschäftsprozesse	36,0	39,0	
Workflow-Labor	24,0	13,0	
Proseminar Workflow	24,0	14,0	

Inhalte

- Grundlagen des Prozessmanagements
- Geschäftsprozesse in Unternehmen Modellierung von Geschäftsprozessen
- Modellierungssprachen und -Systeme
- Qualitative Prozessanalyse
 Quantitative Prozessanalyse
 Kriterien für den Einsatz von Workflow-Applikationen
- Automatisierung von Geschäftsprozessen
- Definition Gescäftsprozess
- Modellierung von Geschäftsprozessen mit einem Prozesswerkzeug und Transformation in Workflows
- Umsetzung İnnerhalb eines Workflow-Management-Systems Analyse und Optimierung von erstellen Lösungen

Neue Ansätze zur Modellierung, Realisierung und Optimierung von Workflows in Unternehmen werden anhand von technischen Berichten und Use-Cases erarbeitet und in einem Vortrag vorgestellt.

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

Literatur

- European Association of Business Process Management EABPM (Hrsg.), BPM CBOK®, Business Process Management BPM Common Body of Knowledge, Version 3.0, Leitfaden für das Prozessmanagement, Verlag Dr. Götz Schmidt

Allweyer, T., BPMN 2.0 - Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung, Books on Demand

- Becker et Al., Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Springer Gabler
- Gadatsch, Andreas: Grundkurs Geschäftsprozess-Management: Methoden und Werkzeuge für die IT-Praxis: Eine Einführung für Studenten und Praktiker. Vieweg+Teubner.
- van der Aalst, Wil. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer.

Baden-Württemberg Studienbereich Technik

Software-Praxis AI (T3INF4124)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Software-Praxis AI	Deutsch	T3INF4124	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen		Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethode	n	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen das systematische, strukturierte Arbeiten im Rahmen von Informatik-Projekten kennen und können dies selbständig anwenden.		
Methodenkompetenz	- Strukturiertes, analytisches Arbeiten		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inf	alte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Einführung in technisch-wissenschaftliches Arbeiten	24,0	19,0
Werkzeuge der wissenschaftlichen Informationsverarbeitung	24,0	19,0
Requirements Engineering und Qualitätssicherung	36,0	28,0

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
 Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut. Werkzeuge zur wissenschaftlichen Informationsverarbeitung kennen und anwenden lernen, etwa - LaTeX für die Erstellung eigener Texte und Präsentationen, - Makrooder Shell-Programmierung, Linux Command Line Tools zur Datenaufbereitung (z.B. VBA, OpenOffice.org Basic, grep/sed/awk, gnuplot, Perl)
- Requirements Engineering: Ausschreibungen verstehen und analysieren, Ausschreibungen formulieren, Angebote verstehen und analysieren, Angebote erstellen, Kundenanforderungen aufnehmen (Interviewtechniken, Beobachtung, Statusanalyse), Anforderungen priorisieren, Meta-Anforderungen bestimmen und anwenden

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
 Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
 Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Held: VBA Programmierung, Franzis Krumbein: Makros in OpenOffice.org 3, Galileo Computing
- Mittelbach, Goossens: Der LaTeX-Begleiter, Pearson Studium
- Schlosser: Wissenschaftliche Arbeiten schreiben mit LaTeX, mitp Wolf: Shell-Programmierung: Das um
- Balzert, Helmut. Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, Springer Hammerschall, Ulrike. Software Requirements, Pearson Studium- IT

Baden-Württemberg Studienbereich Technik

Grundlagen der Kommunikationsinformatik (T3INF4140)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Grundlagen der Kommunikationsinformatik	Deutsch	T3INF4140	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im Studienverlauf		
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Labor	
Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen			
Die Studierenden verfügen über grundlegendes Wissen im Aufbau und Funktion einfacher Rechnernetze, sowie die dabei erforderliche Protokolle für das Zusammenwirken der einzelnen Netzkomponenten. Wesentliche Parameter einer Kommunikation mit unterschiedlichen Technologien können identifiziert werden. Mit Hilfe einer geeigneten Programmiersprache können über vorgegebene Schnittstellen einfache Programme zur Kommunikation in einer Client-Server Architektur erstellt werden.			
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierende haben mit Abschluss des Moduls die Fähigkeit erworben, in Fachdiskussionen, z.B. im Rahmen von Praxiseinsätzen im Unternehmen, kompetent ihr Wissen in Theorie und Praxis bzgl. Aufbau, Einrichtung und Betrieb von kleineren Rechnernetzen einzubringen.		

Lerne	inheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Rechnernetze	60,0	47,0
Labor Rechnernetze	24,0	19,0

Inhalte

- Grundlegende Begriffe und Definitionen Grundlagen der Kommunikations- und Übertragungstechnik Grundlagen Informationstheorie
- Übertragungsmedien
- Aufbau und Funktion einfacher Rechnernetze

Im Rahmen des vorlesungsbegleitenden Labors (Grundlagen Rechnernetze) werden Rechnernetze mit den erforderlichen Netzkomponenten (Router, Switch) praktisch aufgebaut, getestet und deren Leistungsfähigkeit anhand typischer Parameter ermittelt.

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

- J.F Kurose, K.W. Ross, Computernetzwerke: Der Top Down Ansatz, Prentice Hall
 A.S: Tanenbaum, Computernetworks: International Version, Prentice Hall
 U. Freyer, Nachrichten-Übertragungstechnik: Grundlagen, Komponenten, Verfahren und Anwendungen der Informations-, Kommunikations- und Medientechnik, Hanser
- Geeignete Literatur wird in Form von Manuskripten ausgegeben.

Baden-Württemberg Studienbereich Technik

Programmiersprachen (T3INF4141)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Programmiersprachen	Deutsch/Englisch	T3INF4141	1	Prof. Dr. Ulrich Baum

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden haben Grundkenntnisse mehrerer Programmiersprachen mit unterschiedlichen Eigenschaften und Einsatzgebieten. Sie verstehen die dazugehörigen grundlegenden Programmier- und Sprachkonzepte. Sie sind in der Lage, kleinere Softwarekomponenten in den erlernten Sprachen zu implementieren.		
Methodenkompetenz	Die Studierenden können die Eignung verschiedener Programmiersprachen für eine bestimmte Anwendung bewerten. Sie sind in der Lage, sich schnell in weitere Programmiersprachen einzuarbeiten und deren wesentliche Eigenschaften und Besonderheiten zu erkennen.		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	Die Studierenden verstehen die Vielfalt und die dynamische Entwicklung auf dem Gebiet der Programmiersprachen und die daraus resultierende Notwendigkeit einer kontinuierlichen Weiterbildung.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Programmiersprachen	84,0	66,0

Einführung in einige ausgewählte höhere Programmiersprachen mit unterschiedlichen Eigenschaften:
- Logische Sprachen, z.B. Prolog
- Funktionale Sprachen, z.B. Haskell, SML, Elm

- Dynamisch getypte objektorientierte Sprachen, z.B. Ruby, Smalltalk
 Multiparadigmen-Sprachen, z.B. Scala, Racket, Python
 Moderne Sprachen zur Systemprogrammierung, z.B. Go, Rust

- Andere aktuelle Sprachen

(Hinweis: Die Auswahl der behandelten Sprachen soll primär unter didaktischen Gesichtspunkten erfolgen und Redundanzen zu anderen Modulen des Studiengangs vermeiden.)

Konzepte von Programmiersprachen - Programmierparadigmen

- Typkonzepte
- Übersetzung und Interpretation
 Metaprogrammierung und Domain Specific Languages

Besonderheiten und Voraussetzungen

Besonderheiten

Ziel dieses Moduls ist es, die Studierenden frühzeitig exemplarisch mit verschiedenen Programmiersprachen und -konzepten bekannt zu machen. Auf eine formal-theoretische Behandlung von Programmiersprachen wird hier weitgehend verzichtet

Voraussetzungen

Programmierung, Theoretische Informatik I

- Achim Clausing, Programmiersprachen, Springer. Robert Harper, Practical Foundations for Programming Languages, Cambridge University Press. Michael L. Scott: Programming Language Pragmatics, Morgan Kaufmann.
- Peter Pepper, Petra Hofstedt: Funktionale Programmierung Sprachdesign und Programmiertechnik, Springer.

Baden-Württemberg Studienbereich Technik

Naturwissenschaftliche Grundlagen (T3INF4161)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Naturwissenschaftliche Grundlagen	Deutsch	T3INF4161	1	Prof. DrIng. Thomas Neidlinger

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	84,0	66,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die wesentlichen physikalischen Größen und Einheiten der Mechanik, Schwingungslehre und Optik sowie die zugehörigen physikalischen Grundgesetze und Prinzipien. Sie können physikalische Sätze auf ausgewählte - auch komplexere - Systeme und Problemstellungen anwenden, als Lösungsansatz formulieren und Lösungen mit sinnvoller Genauigkeit berechnen. Die Studierenden kennen zudem die Grundlagen elektrotechnischer Größen und deren Einheiten, sowie Eigenschaften und Anwendungsbereiche von passiven Bauelementen. Sie kennen wichtige Sätze, Methoden und Berechnungsverfahren für elektrische Netzwerke in Gleich- und Wechselstromkreisen und können diese auf ausgewählte Probleme anwenden, Lösungsansätze finden und die Lösungen berechnen. Sie kennen Grund- und typische Anwendungsschaltungen mit Halbleiter-Bauelementen und verstehen ihre Funktionsweise. Sie kennen Verfahren zur Analyse und Auslegung elektronischer Schaltungen und können Designparameter berechnen. Sie können Prototyp-Aufbauten realisieren, in Betrieb nehmen, systematische Funktionsprüfung und Fehlersuche vornehmen und das Schaltungsverhalten messen und geeignet protokollieren.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneiı	nheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Physik	36,0	28,0
Elektrotechnik	48,0	38,0

- Technische Mechanik
- Mechanische Größen und ihre Einheiten
- Koordinatensysteme
- Kinematik
- Newtonsche Axiome und Punktmechanik
- Zentralpotential und Kreisbewegung Erhaltungssätze Dynamik starrer Körper

- Schwingungen und Wellen 1
- Schwingungen in der Mechanik und Akustik Freie Schwingungen
- Gedämpfte und erzwungene Schwingungen
- Resonanz Ebene Wellen
- Zylinder und Kugelwellen
- Longitudinalwellen und Transversalwellen
- Elektrische Größen und ihre Einheiten
- Das elektrische Feld
- Gleichstromkreis, Zweipole Lineare Netzwerke und Berechungsmethoden
- Periodische und zeitabhängige Größen
- Das magnetische Feld Sprung- und Impulsantworten passiver Bauelemente
- Wechselstromkreis

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

keine

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer Physik, P. A. Tipler, G. Mosca, Springer Spektrum
- Physik für Ingenieure, H. Lindner, Hanser
- Grundgebiete der Elektrotechnik 1, A. Führer, K. Heidemann, W. Nerreter, Hanser Grundgebiete der Elektrotechnik 2, A. Führer, K. Heidemann, W. Nerreter, Hanser
- Theoretische Elektrotechnik, A. Reibiger, W. Mathis, K. Küpfmüller, Springer Vieweg

Baden-Württemberg Studienbereich Technik

Informatik-Labor (T3INF4170)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Informatik-Labor	Deutsch/Englisch	T3INF4170	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Labor
Lehrmethoden	Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Laborarbeit einschließlich Ausarbeitung (LA),	-
Beschreibung Prüfungen	
-	

	Worklo	ad und ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
90,0	48,0	42,0	3

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die Komponeten eines Labors und können einfache Aufgaben in einem Labor lösen. Darüberhinaus kennen sie einfache Anwendungen in einem Labor und/oder können erste, einfache Programmierungen an einem Robozer durchfürhen.		
Methodenkompetenz	Das selbstständige Erlernen einfacher Aufgaben in einem Labor durch Literaturstudium (Handbücher, Anleitungen) können die Studierenden nach Abschluss des Moduls bewerkstelligen.		
Personale und Soziale Kompetenz	Die Studierenden können als Team die gestellten Aufgaben selbstständig lösen.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Einführung in ein Informatik-Labor	48,0	42,0

Inhalte

Kennenlernen des Aufbau eines Informatik-Labors mit (je nach Ausstattung)

- Router/Switchs
- Verkabelung Desktop-Rechner
- Server
- Roboter
- Diversen Anwendungen

Angeleitete Übungen mit den Komponenten und Anwendungen des Informatik-Labors wie z.B. Verkabelungen ändern, Anwendungen installieren und verwalten, Roboter

Selbstständiges Lösen von Aufgaben zu den Themen einfache Verkabelung, Installation von Anwendungen, einfache Roboteraufgaben, etc. in Gruppen

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul soll insbesonders am Anfang des Studiums dazu dienen, die Studierenden an die unterschiedlichen Themen der Informatik praktisch heranzuführen und zu lernen, als Gruppe ein einfaches Problem lösen zu können.

Voraussetzungen

Literatur

Literatur hängt von der Ausstattung des Labors ab, in der Regel Handbücher, Anleitungen, etc. der Komponenten und Anwendungen

Baden-Württemberg Studienbereich Technik

Schlüsselqualifikationen II (T3INF4190)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Schlüsselqualifikationen II	Deutsch/Englisch	T3INF4190	2	Prof. Dr. Jürgen Vollmer

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Lokales Profilmodul	1
1. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
193,0	108,0	85,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften insbesondere im Bereich Marketing erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.		
Methodenkompetenz	Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Kompetenzen vertieft (vgl. Modul Schlüsselqualifikationen).		
Personale und Soziale Kompetenz	Die Studierenden können ihre Standpunkte in einem interdisziplinär und interkulturell zusammengesetzten Team vertreten und respektieren andere Sichtweisen. Sie können Verhaldlungstechniken und Konfliktmanagement-Techniken zielführend einsetzen.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Fremdsprachen 1	24,0	19,0	
Vortrags-, Lern- und Arbeitstechniken	24,0	19,0	
Marketing 1	24,0	19,0	
Marketing 2	24,0	19,0	
Intercultural Communication 1	24,0	19,0	
Intercultural Communication 2	24,0	19,0	
Fremdsprachen 2	24,0	19,0	
Projektmanagement 1	24,0	19,0	
Projektmanagement 2	24,0	19,0	
Einführung in technisch-wissenschaftliches Arbeiten	24,0	19,0	
Schlüsselqualifikationen II	84,0	66,0	

- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren
- -Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im
- Einführung in Marketing
- Marktforschung
- Marketingplanung
- Marketinginstrumentarium
- Produkt- und Sortimentspolitik
- Werbe- oder Kommunikationspolitik
- Preispolitik
- . Distributionspolitik

Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.

- Major Theories of Intercultural Communications z.B. Hall Kluckhohn and Strodtbeck Hofstede Trompenaars and Hamden-Turner Exercises Role Place Case Studies - Small Group Work - Presentations
- Conflict Management Negotiation Exercises Role Place Case Studies Small Group Work Presentations
- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren
- Was ist Projektmanagement?
- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele Unterlagen für die Projektplanung
- Aufwandsschätzung
- Projektorganisation
- Projektphasenmodelle
- Planungsprozess und Methodenplanung
- Personalplanung
- Terminplanung
- Kostenplanung und betriebswirtschaftliche Hintergründe
- Einführung in Steuerung, Kontrolle und Projektabschluss
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Übungen zu den einzelnen Teilen
- Meetings, Teams und Konflikte Risikoplanung und Risikomanagement
- Qualitätsplanung
- Projekt Steuerung und Kontrolle
- Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
- Weitere Projektmanagement Methoden

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren gualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut. Vertiefung der Inhalte des Moduls Schlüsselqualifikationen I mit besonderem Fokus in den zwei Kernbereichen:

Wirtschaftswissenschaftlige Grundlagen

- Grundlagen des Marketing
- Marketinginstrumentarium
- Werbe- oder Kommunikationspolitik
- Preis- und Distributionspolitik

Projektmanagement und Kommunikation

- Interkulturelle Kommunikation
- Arbeiten in interkulturellen und mehrsprachigen Teams
- Major Theories of Intercultural Communications
- Conflict Management
- Negotiation

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul ergänzt das Modul Schlüsselqualifikationen und vertieft Inhalte, die dort bisher nur grundlegend behandelt wurden.

- T3INF4190.0 als einzige Unit

- 3 andere Units zur Wahl

weitere Units:

T3INF1005.3 Vortrag/Lern-Arbeitstechniken

T3INF1005.7 Intercultural Comm 1

T3INF4103.2 Projektmanage 2

T3INF1005.2 Fremdsprachen

T3INF1005.9 Fremdsprachen 2

Voraussetzungen

Modul Schlüsselqualifikationen, insbesondere

- Grundlagen der Betriebswirtschaftslehre
- Grundlagen des Projektmanagements

Literatur

Entsprechend der gewählten Sprache

- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg
- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill - Stella Ting: Toomey und John G. Oetzel
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin

Entsprechend der gewählten Sprache

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
 Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg, 2006 Marion Steven: Bwl für Ingenieure, Oldenbourg, aktuelle Auflage
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford
- Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill Stella Ting: Toomey und John G. Oetzel
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin

Baden-Württemberg Studienbereich Technik

Compilerbau (T3INF4211)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Compilerbau	Deutsch	T3INF4211	1	Prof. Dr. rer. nat. Martin Plümicke

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	In dem Modul werden Aufgaben und Methoden von Compilern kennen-, beurteilen und anwenden gelernt. Verfahren zur effizienten Transformation von Hochsprachen in maschinennahe Sprache werden erfasst und können umsetzt werden.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen im Bereich Compilerbau eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Der Compilerbau trägt zum Verständnis bei, wie Programme konkret auf einem Rechner ausgeführt werden. Die Studierenden haben diesen Zusammenhang gelernt und können daher beuteilen, wie sich Programmieransätze in der Hochsprache auf die Programmausführung auswirken.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Compilerbau	36,0	39,0
Labor Compilerbau	36,0	39,0

Inhalte

- Lexikalische Analyse
- Syntaktische Analyse Syntaxgesteuerte Übersetzung Semantische Analyse
- Laufzeit-Organisation Zwischencode-Erzeugung Code-Optimierung Code-Erzeugung

- Generatoren zur Strukturanalyse: LEX, Spezifikation regulärer Sprachen, YACC, Spezifikation kontextfreier Sprachen, Praktische Anwendungen Implementierung der Semantischen Analyse
- (Byte)Codegenerierung

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools, Addision-Wesley Verlag
- Reinhard Wilhelm, Dieter Maurer: Übersetzerbau, Springer Verlag
- Niklaus Wirth: Compilerbau: Eine Einführung, Teubner Verlag
- Bernhard Bauer, Riita Höllerer: Übersetzung objektorientierter Programmiersprachen: "Konzepte, Abstrakte Maschinen Und Praktikum "Java-Compiler"", Spinger Verlag
- Andrew W. Appel: Modern Compiler Implementation In Java, Cambridge University Press

- J.R. Levine, T. Mason, D. Brown: lex & yacc, O'Reilly Media T. Lindholm, F.Yellin, The JavaTM Virtual Machine Specification

Baden-Württemberg Studienbereich Technik

Web-Engineering II (T3INF4212)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web-Engineering II	Deutsch	T3INF4212	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen		Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethode	n	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	48,0	102,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.		
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln		
Übergreifende Handlungskompetenz			

Lernei	nheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Labor Webengineering 2	12,0	63,0

Inhalte

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Praktische Realisierungen in praxisnahen Szenarien. Projektartige Aufgaben in größeren Studierendengruppen sind möglich.

1 311 1 4212 - Web-Engineering 1.	T3INF4212 -	Web-Eng	gineering	II
-----------------------------------	-------------	---------	-----------	----

90

Besonderheiten und Voraussetzungen	
Besonderheiten	
Voraussetzungen	

Literatur

- www.w3c.org - de.selfhtml.org s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Baden-Württemberg Studienbereich Technik

Web-Engineering 2 und Anwendungen (T3INF4213)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web-Engineering 2 und Anwendungen	Deutsch	T3INF4213	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
275,0	132,0	143,0	5

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden erlernen die Erstellung von Server-seitigen Webanwendungen und deren Kommunikation mit Client-seitigen Inhalten. Hierbei werden die Server-seitige Speicherung von Objekten in relationale Datenbanken und die Übertragungssicherung von Daten berücksichtigt.		
Methodenkompetenz	Die Studierenden üben es, eigene Ideen im Projekt zu präsentieren und zu vertreten und diese im Team umzusetzen.		
Personale und Soziale Kompetenz	Die kritische Auseinandersetzung mit Datenmissbrauch im Webumfeld wird angeregt.		
Übergreifende Handlungskompetenz	Die Bedürfnisse verschiedener Interessenvertreter (engl., Stakeholder) werden erkannt und gemäß ihrer Wichtigkeit in Projekten berücksichtigt.		

Lerneinl	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Mainframe Integration	24,0	26,0
Labor Webengineering 2 kompakt	12,0	13,0
Grundlagen E-Business	24,0	26,0
Embedded SQL	36,0	39,0

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Umsetzung von Web-Applikationen auf einem Mainframe System.

Praktische Realisierungsübungen in praxisnahen Szenarien wie sie z.B. im Kontext des elektronischen Handels auftreten.

- Grundlagen des eBusiness
- weiterführende eBusiness-Konzepte (z.B. Long Tail, "brick-n-click"- Shops)
- Umsetzung eines webbasierten, elektronischen eCommerce-/eBusiness-Systems mit integrierten Zuliefer- oder B2B-Kommunikationsprozessen.
- Einführung in die Anwendungsentwicklung Grundlagen Embedded SQL DCLGEN Fehlerbehandlung Program Preparation Cursor-Verarbeitung AE-Umbebung EXPLAIN DB2-Utilities

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Literatur

- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Zack: "Windows2000 and Mainframe Integration", Macmillien Tech. Pub.

- Herrmann: "Einführung in z/OS und OS/390: Web-Services und Internet-Anwendungen für Mainframes", Oldenbourg
- Roshen: "SOA-Based Enterprise Integration: A Step-by-Step Guide to Services-Based Application", Mc Graw Hill
- Kollmann, Tobias: E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.
- Kollmann, Tobias. E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.
- Geisler, Geisler: Datenbanken Grundlagen und Design mitp 2009 Throll, Bartosch: Einstieg in SQL, Galileo Computing 2009 Jonathan. Sayles: Embedded SQL for DB2 Application Design and Programming, Wellesley QED1990

Baden-Württemberg Studienbereich Technik

Techniken der Informatik (T3INF4214)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Techniken der Informatik	Deutsch	T3INF4214	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz		
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und	I Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Compilerbau	36,0	39,0
Web-Engineering 2	36,0	39,0

Inhalte

- Lexikalische Analyse Syntaktische Analyse Syntaxgesteuerte Übersetzung
- Semantische Analyse
- Laufzeit-Organisation Zwischencode-Erzeugung
- Code-Optimierung
- Code-Erzeugung
- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

- Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools, Addision-Wesley Verlag
- Reinhard Wilhelm, Dieter Maurer: Übersetzerbau, Springer Verlag
- Niklaus Wirth: Compilerbau: Eine Einführung, Teubner Verlag
- Bernhard Bauer, Riita Höllerer: Übersetzung objektorientierter Programmiersprachen: "Konzepte, Abstrakte Maschinen Und Praktikum "Java-Compiler"", Spinger Verlag
- Andrew W. Appel: Modern Compiler Implementation In Java, Cambridge University Press

- www.w3c.org
- de.selfhtml.org
 s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Baden-Württemberg Studienbereich Technik

Webengineering und Systemnahe Programmierung (T3INF4216)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Webengineering und Systemnahe Programmierung	Deutsch	T3INF4216	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0 72,0 78,0 5					

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen nach Abschluss des Moduls gängige web-basierte Technologien und können deren Anwendung einer geeigneten hardwaretechnischen Umsetzung zuordnen.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Prax die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.		
Personale und Soziale Kompetenz -			
Übergreifende Handlungskompetenz	Die Studierenden können nach Abschluss des Moduls Lösungen für web-basierte Projekte entwickeln und getroffene Entscheidungen fachlich begründen. Sie sind in der Lage, neue Themen des Web-Engineering zu erarbeiten, selbständig zu vertiefen und auf neue Projektsituationen anzuwenden.		

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Web-Engineering 1	36,0	39,0		
Systemnahe Programmierung 2	36,0	39,0		

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.
- Praktische Übungen Einführung eines Beispielprozessors oder Mikrocontrollers
- Aufbau des Übungsrechners
- Einarbeitung in die Softwareentwicklungs- und Testumgebung für den Übungsrechner
 Selbständige Entwicklung von systemnahen Programmen mit steigendem Schwierigkeits- und Strukturierungsgrad

Diese Unit ergänzt und vertieft die Unit "Systemnahe Programmierung 1".

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

Literatur www.w3c.org - wiki.selfhtml.org

Baden-Württemberg Studienbereich Technik

Geschäftsprozesse und Systemtheorie (T3INF4217)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Geschäftsprozesse und Systemtheorie	Deutsch	T3INF4217	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Sem.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Labor, Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
175,0	72,0	103,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden können nach Abschluss des Moduls - die Grundlagen der Signal- und Systemtheorie zur Lösung von Aufgaben in der Kommunikationstechnik anwenden - Systemantworten auf Eingangssignale berechnen - Geschäftsprozesse darstellen - für eine Aufgabenstellung Geschäftsprozesse analysieren, modellieren und beschreiben
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.
Personale und Soziale Kompetenz	
Übergreifende Handlungskompetenz	Die Studierenden zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Geschäftsprozesse	36,0	39,0
Labor Geschäftsprozesse	12,0	13,0
Signale und Systeme 1	24,0	51,0

- Grundlagen des Prozessmanagements
- Geschäftsprozesse in Unternehmen
- Modellierung von Geschäftsprozessen Modellierungssprachen und -Systeme
- Qualitative Prozessanalyse
- Quantitative Prozessanalyse
 Kriterien für den Einsatz von Workflow-Applikationen
- Automatisierung von Geschäftsprozessen
- Toolunterstützte Geschäftsprozessmodellierung Toolunterstützte Unternehmensmodellierung Kennen und anwenden unterschiedlicher Diagramme der Modellierung Modellierung mit EPKs
- Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme
- Fourier-Reihe
- Transformationen (Fourier, Laplace)

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Mathematik I (T2INF1001), Mathematik II (T2INF2001)

Literatur

- European Association of Business Process Management EABPM (Hrsg.), BPM CBOK®, Business Process Management BPM Common Body of Knowledge, Version 3.0, Leitfaden für das Prozessmanagement, Verlag Dr. Götz Schmidt

Allweyer, T., BPMN 2.0 - Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung, Books on Demand

- Becker et Al., Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Springer Gabler
- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch

Baden-Württemberg Studienbereich Technik

Electronic Business (T3INF4218)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Electronic Business	Deutsch	T3INF4218	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden haben ein umfangreiches Wissen über die zur Umsetzung von elektronischen Geschäftstransaktionen notwendigen Systeme. Dies beinhaltet B2B- und B2C-Systeme z.B. aus den Bereichen Web-Shops, Logistik und Einzelhandel. Sie kennen die zum Aufbau und Betrieb notwendigen Hardware- und Software-Komponenten und können ein eBusiness-System selbständig planen und umsetzen. Dies beinhaltet u.a. die Modellierung von Workflows, Bezahlsysteme und die nötigen Sicherheitstechnologien und -Verfahren zur Umsetzung eines eBusiness-Systems.	
Methodenkompetenz	Die Studierenden haben im Team ein eBusiness-System entworfen und umgesetzt, einen Programmentwurf vorgetragen und erläutert. Sie kennen die Einschränkungen des von Ihnen erstellten Entwurfs.	
Personale und Soziale Kompetenz	Die Studierenden können ihre eigenen Aufgaben und Funktionen im modernen Umfeld der eBusiness-Prozesse einordnen und kritisch reflektieren.	
Übergreifende Handlungskompetenz	Die Studierenden können für einen vorgegebenen Anwendungsfall ein geeignetes eBusiness-Angebot entwerfen und realisieren. Sie können webbasierte (Client- und Server-seitige) Programme entwickeln und implementieren, sowie multimediale Inhalte und Datenbankinhalte geeignet integrieren.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Labor Webengineering 2 kompakt	12,0	13,0
Grundlagen E-Business	24,0	26,0

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Praktische Realisierungsübungen in praxisnahen Szenarien wie sie z.B. im Kontext des elektronischen Handels auftreten.

- Grundlagen des eBusiness weiterführende eBusiness-Konzepte (z.B. Long Tail, "brick-n-click"- Shops)
- Umsetzung eines webbasierten, elektronischen eCommerce-/eBusiness-Systems mit integrierten Zuliefer- oder B2B-Kommunikationsprozessen.

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- www.w3c.org de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben
- Kollmann, Tobias: E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.
- Kollmann, Tobias. E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.

Baden-Württemberg Studienbereich Technik

International Business (T3INF4219)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
International Business	Deutsch	T3INF4219	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar, Vorlesung, Übung	
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Kenntnisse über Kultur-spezifische und -übergreifende Verhaltensweisen, speziell im Umfeld internationaler Projekte, werden erworben.		
Methodenkompetenz	Die persönliche Wirkung in einer internationalen Umgebung wird erprobt.		
Personale und Soziale Kompetenz	Die Akzeptanz von kulturellen Unterschieden im Leben und Arbeiten wird erhöht.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
International Business Seminar	36,0	39,0
Intercultural Proficiency	36,0	39,0

Inhalte

Im Rahmen einer internationalen Begegnung oder eines Projekts wird das Arbeiten in internationalen Projektteams diskutiert und landestypische Verhaltensweisen analysiert und herausgearbeitet.

- Introduction to the course
- Working with cultural differences, Awareness of cultural differences, Identifying Synthetic culture profiles, Simulations with synthetic cultures
- Comparing different cultural characteristics of different countries. How we manage time? How far do we get involved? How do we accord status? How do we relate to nature?
- Identification of individual cultural indentity, Designing a cultural compass
- Five Challenges facing global teams, Managing cultural diversity, Handling geographic distance, Dealing with coordination and control, Maintaining good coordination, Developing and maintaining teamness

Be	esonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

- Hecht-El-Minshawi: "Interkulturelle Kompetenz: Soft Skills für die internationale Zusammenarbeit", Beltz.
 Hiller, Vogler-Lipp: "Schlüsselqualifikation Interkulturelle Kompetenz an Hochschulen: Grundlagen, Konzepte, Methoden", VS Verlag.
- Hofstede et al: "Lokales Denken, globales Handeln: Interkulturelle Zusammenarbeit und globales Management", DTV 2009 Trompenaars et al.: "Building Cross-Culture Competence", Wiley 2002

Baden-Württemberg Studienbereich Technik

Signalverarbeitung und Kommunikationstechnik (T3INF4220)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Signalverarbeitung und Kommunikationstechnik	Deutsch	T3INF4220	1	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
175,0	72,0	103,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden - kennen die Fourier- und Laplace-Transformation, - verstehen grundlegende Systemeigenschaften, - kennen die wichtigsten Methoden zur Systembeschreibung.			
	Sie kennen - Algorithmen und Protokolle zur Datenkommunikation, - Algorithmen und Protokolle zur Netzwerkadministration, - Verfahren der Netzwerkanalyse.			
Methodenkompetenz	Die Studierenden - können die in der Vorlesung erworbenen Fertigkeiten in unterschiedlichen Anwendungsgebieten wie Regelungstechnik oder Signalverarbeitung anwenden und sind damit in der Lage, Querverbindungen zwischen verschiedenen Anwendungen herzustellen, - sind in der Lage, verwandte Methoden und Verfahren der Systemtheorie, die über diejenigen der Vorlesung hinausgehen, in der Literatur ausfindig zu machen, zu verstehen und anzuwenden.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Der Studierende kann selbständig aktuellste Literatur im Bereich der Netztechnik und Systembeschreibungen und Signalverarbeitung recherchieren und analysieren. Der Studierende kann wirksam innerhalb einer Gruppe/eines Teams arbeiten und am Informations- und Ideenaustausch aktiv und flexibel teilnehmen.			

Lerneinheiten u	nd Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Advanced Internet Working	48,0	52,0
Signale und Systeme 1	24,0	51,0

- Wiederholung und Vertiefung von TCP/IP-basierten Netzwerkprotokollen
- Ethernet und WLAN in der praktischen Umsetzung L1/L2-Protokolle für den Einsatz in industriellen Netzen
- IP-Adressierung und Routing in der praktischen Umsetzung
- Einstellung de
- Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme Fourier-Reihe
- Transformationen (Fourier, Laplace)

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- "Routing-Protokolle und -Konzepte CCNA Exploration Companion Guide" von Rick Graziani und Allan Johnson von Addison-Wesley "LAN-Switching und Wireless" CCNA Exploration Companion Guide von Wayne Lewis von Addison -Wesley "Wide Area Networks CCNA Exploration Companion Guide" von Rick Graziani und Bob Vachon von Addison-Wesley

- "Industrielle Kommunikation mit Feldbus und Ethernet" von F. Klasen, V. Oestreich, und M. Volz von Vde-Verlag
- "Industrielle Netze: Ethernet-Kommunikation für Automatisierungsanwendungen" A. v. Bormann, I. Hilgenkamp, Hüthig-Verlag
- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch

Baden-Württemberg Studienbereich Technik

Grundlagen Rechnungslegung (T3INF4235)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Grundlagen Rechnungslegung	Deutsch/Englisch	T3INF4235	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, das Rechnungswesen als Informationsinstrument zu nutzen, die wichtigsten Methoden der Kostenrechnung anzuwenden und die Ergebnisse kritisch zu bewerten.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, die Systematik der doppelten Buchführung auf Geschäftsfälle aus unterschiedlichen Unternehmensbereichen anzuwenden. Des Weiteren können die Studierenden die wesentlichen buchhalterischen Vorarbeiten im Rahmen der Jahresabschlusserstellung durchführen. Die Studierenden kennen mit Abschluss des Moduls die wesentlichen Zusammenhänge zwischen internem und externem Rechnungswesen. Sie können gängige Methoden aus den Bereichen der Kostenarten-, Kostenstellen- und Kostenträgerrechnung anwenden.			
Personale und Soziale Kompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, ihr Wissen und Verstehen in den Bereichen Finanzbuchführung und Kosten- und Leistungsrechung anzuwenden und selbsta ndig Problemlo sungen zu erarbeiten.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Finanzbuchführung	36,0	39,0
Kosten- und Leistungsrechnung	36,0	39,0

- Grundkonzeption des Rechnungswesens
- Grundsätze ordnungsmäßiger Buchführung
- Bilanz als Grundlage der Buchfu"hrung
- Arten der Bilanzveränderung
- Vera nderungen des Eigenkapitalkontos
- Organisation und Technik des Industriekontenrahmens
- System der Umsatzsteuer
- Buchungen im Sachanlagenbereich
- Buchungen im Beschaffungs-, Produktions-, Absatz- und Personalbereich
- Besondere Buchungsfa"lle
- Jahreabschlussbuchungen
- EDV-gestu tzte Buchhaltung
- Grundlagen der Kostenrechnung
- Kostenartenrechnung
- Kostenstellenrechnung
- Kostentra"gerzeit- und Kostenträgerstückrechnung
- Vollkostenrechnung
- Grundlagen der Teilkosten-/Deckungsbeitragsrechnung

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Bornhofen, M.; Bornhofen, M. C.: Buchfu"hrung 1 DATEV-Kontenrahmen: Grundlagen der Buchfu"hrung fu"r Industrie- und Handelsbetriebe, Gabler, Wiesbaden, aktuellste Auflage.
- Bornhofen, M.; Bornhofen, M. C.: Buchfu hrung 2 DATEV-Kontenrahmen: Abschlu see nach Handels- und Steuerrecht Betriebswirtschaftliche Auswertung Vergleich mit IFRS, Gabler, Wiesbaden, aktuellste Auflage.
 Coenenberg, A.; Haller, A.; Mattner, G.; Schultze, W.: Einführung in das Rechnungswesen. Grundlagen der Buchführung und Bilanzierung, Schäffer Poeschel, Stuttgart,
- Coenenberg, A.; Haller, A.; Mattner, G.; Schultze, W.: Einführung in das Rechnungswesen. Grundlagen der Buchführung und Bilanzierung, Schäffer Poeschel, Stuttga aktuellste Auflage.
- Deitermann, M.; Schmolke, S.: Industrielles Rechnungswesen IKR: Finanzbuchhaltung, Analyse und Kritik des Jahresabschlusses, Kosten- und Leistungsrechnung; Einführung in die Praxis, Winklers, Braunschweig, aktuellste Auflage.
- Eisele, W.; Knobloch, A. P.: Technik des betrieblichen Rechnungswesens: Buchführung und Bilanzierung, Kosten- und Leistungsrechnung, Sonderbilanzen, Vahlen, München, aktuellste Auflage.
- Schweitzer, M.; Küpper, H.-U.; Friedl, G.; Hofmann, Ch.; Pedell, B.: Systeme der Kosten- und Erlösrechnung, Vahlen, München, aktuellste Auflage.

Baden-Württemberg Studienbereich Technik

Rechnungswesen und Finanzierung (T3INF4236)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Rechnungswesen und Finanzierung	Deutsch/Englisch	T3INF4236	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung			
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	•
Beschreibung Prüfungen	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, relevante Informationen über den Themenbereich "Finanzierung und Rechnungswesen" mit wissenschaftlichen Methoden zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren. Sie können aus den gesammelten Informationen wissenschaftlich fundierte Urteile ableiten und die eigene Position in dem Fachgebiet argumentativ begründen und verteidigen.			
Methodenkompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, die Relevanz von Methoden im Themenbereich "Finanzierung und Rechnungswesen" kritisch einzuschätzen sowie die Grenzen der theoretischen Ansätze und deren Praktikabilität fundiert zu beurteilen.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, selbstständig weiterführende Lernprozesse im Themenbereich "Finanzierung und Rechnungswesen" zu gestalten, ihr Wissen und Verstehen auf ihre Tätigkeit oder ihren Beruf anzuwenden und selbstständig Problemlösungen zu erarbeiten und zu entwickeln.			

Lerneir	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Bilanzierung	36,0	39,0
Finanzierung und Investition	36.0	39.0

- Jahresabschluss (Ziele und Aufgaben)
- Verhältnis von Handels- und Steuerbilanz
- bilanzielle Rechtsgrundlagen Ausweis-, Ansatz- und Bewertungsvorschriften (Pflichten, Verbote, Wahlrechte)
- vergleichende Darstellung der entsprechenden Merkmale und Regelungen nach IAS/IFRS
- Investitionsplanung
- statische und dynamische Investitionsrechnung
- wertorientierte Steuerung mit Unternehmensbewertung
- Finanzplanung
- Eigenfinanzierung
- Fremdfinanzierung
 Innenfinanzierung
- Außenfinanzierung
- Sonderformen der Finanzierung

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Coenenberg, Adolf G.; Haller, Axel; Schultze, Wolfgang: Jahresabschluss und Jahresabschlussanalyse. Betriebswirtschaftliche, handelsrechtliche, steuerrechtliche und internationale Grundlagen HGB, IAS/IFRS, US-GAAP, DRS. Schäffer-Poeschel, Stuttgart, aktuellste Auflage.
- Federmann, Rudolf: Bilanzierung nach Handelsrecht, Steuerrecht und IAS/IFRS. Gemeinsamkeiten, Unterschiede und Abhängigkeiten. Erich Schmidt, Berlin, aktuellste
- Schildbach, Thomas; Stobbe, Thomas; Brösel, Gerrit: Der handelsrechtliche Jahresabschluss. Wissenschaft & Praxis, Sternenfels, aktuellste Auflage.
- Perridon, Louis; Steiner, Manfred; Rathgeber, Andreas W.: Finanzwirtschaft der Unternehmung. Vahlen, München. (Neueste Auflage)
- Zantow, Roger; Dinauer, Josef: Finanzwirtschaft des Unternehmens. Die Grundlagen des modernen Finanzmanagements. Pearson, München. (Neueste Auflage)

Baden-Württemberg Studienbereich Technik

Webengineering und Kommunikationsinformatik (T3INF4240)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Webengineering und Kommunikationsinformatik	Deutsch	T3INF4240	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im S	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Praktikum, Vorlesung, Übung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Das Modul vermittelt sowohl Client- als auch Serverseitige Lösungsansätze für komplexe Web-Appplikationen. Im Mittelpunkt stehen Konzepte und Techniken von Metasprachen zur Dokumentenerstellung und Anbindung von Webapplikationen an Datenbanken bzw. Kommunikations- und IT-Systeme. Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Konzepte, Algorithmen und Architekturen zielgerichtet eigene Lösungen zu erstellen.			
Methodenkompetenz				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Web-Applikationen integrieren moderne Kommunikationstechniken. Das Modul vermittelt komplexe Zusammenhänge und zeigt den sinnvollen Zugang zu Kommunikations- und IT-Systemen. Die erworbenen Kenntnisse können auf aktuelle Fragestellungen in unterschiedlichen oder neuen Umgebungen übertragen werden.			

Lerneiı	nheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Labor Kommunikationsinformatik	36,0	39,0

Inhalte

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Im Labor Kommunikationsinformatik werden spezielle Themen aus parallel stattfindenden Vorlesungen aufgegriffen und mittles praktischen oder experimentellen Übungen vertieft und in einen funktionalen Zusammenhang gebracht. Die Laborprojekte enthalten sowohl einen Hard- als auch Softwareanteil.

	T3INF4240 -	Webengineer	ing und	Kommunikat	tions informatik
--	-------------	-------------	---------	------------	------------------

110

Besonderheiten und Voraussetzungen
Besonderheiten
-
Voraussetzungen

Literatur

- www.w3c.org
 - de.selfhtml.org
 s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Baden-Württemberg Studienbereich Technik

Medizinische Informatik (T3INF4250)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Medizinische Informatik	Deutsch	T3INF4250	1	Prof. Dr. Johannes Freudenmann

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	48,0	102,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können die Planung und den Aufbau klinischer Studien verstehen und analysieren. Die Studierenden kennen wichtige Ordnungssysteme sowie das Fallpauschalensystems. Die Studierenden können Dokumentationen und Ordnungssysteme hinsichtlich Anwendung, Mächtigkeit und Qualität beurteilen. Die Studierenden kennen die Methoden der Biometrie und können diese anwenden. Alternativ kennen sie die eingesetzten technischen Geräte, können deren technische Leistungsfähigkeit einschätzen und mit diesen Geräten umgehen.		
Methodenkompetenz	Die Studierenden kennen die Grundlagen der angewandten Statistik und die damit verbundenen Methoden. Sie können die Stärken und Schwächen der Methoden abschätzen und kennen deren Relevanz in ihrem Berufsfeld.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lernei	nheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Medizinische Dokumentation	24,0	51,0
Biometrie	24,0	51,0
Medizinische Gerätetechnik	24,0	51,0

Inhalte

- Grundlagen der Archivierung - Rechtliche Situation - Verschlüsselungssysteme - Qualitätssicherungsmaßnahmen

- Rechtliche Rahmenbedingungen - Studienarten, -planung, -durchführung und -auswertung - Klinisch-statistische Kennzahlen - Testverfahren in der Medizin

Die wichtigsten modernen medizinischen Geräte und ihre prinzipielle Funktion werden vorgestellt. Bsp: Stethoskop, Endoskop, EKG, EEG, Röntgenverfahen, Ultraschallverfahren, Roboter

- Magnetresonanzverfahren

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Medizinisches Grundwissen II

- Leiner, Gaus, Haus, Knaup-Gregori, Pfeiffer, Medizinische Dokumentation, Schatthauer Verlag Harms, Biomathematik, Statistik und Dokumentation, Harms Verlag Kiel
- Kundt, Krentz, Glass; Epidemiologie und Medizinische Biometrie; Shaker Verlag
- Kramme (Hrsg.); Medizintechnik, Verfahren Systeme Informationsverarbeitung; Springer

Baden-Württemberg Studienbereich Technik

Web-Engineering (T3INF4251)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web-Engineering	Deutsch/Englisch	T3INF4251	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
2. Stj.		Wahlmodul	1		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln	
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 1	36,0	39,0
Web-Engineering 2	36,0	39,0

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.
- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Besonderheiten und Voraussetzungen Besonderheiten -

Voraussetzungen

- www.w3c.org
- wiki.selfhtml.org
- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Baden-Württemberg Studienbereich Technik

Messdatenerfassung und Auswertung (T3INF4252)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Messdatenerfassung und Auswertung	Deutsch	T3INF4252	1	Prof . Dr. Zoltán Ádam Zomotor

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Laborarbeit einschließlich Ausarbeitung oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Grundlagen, Methoden, Fehlermöglichkeiten und Einsatzgebiete der Messtechnik. Der Student kann selbstständig entscheiden, bei welchem Messproblem er welches Verfahren einsetzt unter Berücksichtigung aller Anforderungen. Er kann Mathe Constitution und der Verfahren einsetzt unter Berücksichtigung aller Anforderungen.	
	Matlab/Simulink zur Auswertung und graphischen Darstellung der Messdaten nutzen.	
Methodenkompetenz	•	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Messdaten können mit modernen Methoden ausgewertet, bewertet und dargestellt werden.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Messdatenerfassung	36,0	39,0
Einführung in Matlab/Simulink	36,0	39,0

Inhalte

- Grundlagen der Messtechnik - Maße, Messgrößen, Einheiten, Definitionen, Vorschriften, Messwerke und Messgeräte analog und digital - Aufbau, Funktion, Spezifikation, Datenblattangaben - Messverfahren für elektrische Grundgrößen und Signale - Messbrück

- Einführung in Matlab und Simulink

- Erstellen eines Matlab/Simulink Projekts zur Lösung der gestellten Aufgabe

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Taschenbuch der Messtechnik, Hanser Fachbuchverlag, J. Hoffmann Elektrische Messtechnik, Springer Verlag, R. Lerch Messtechnik, Vieweg und Teubner, R. Parthier Elektrische und elektronische Meßtechnik, Hanser Fachbuchverlag, R. Felderhoff, U. Frey

- Wolfgang Schweizer: "MATLAB kompakt", Oldenbourg-Verlag
 Ottmar Beucher: "MATLAB und Simulink eine kursorientierte Einführung", Verlag: mitp
 Wolf Dieter Pietruszka: "MATLAB und Simulink in der Ingenieurpraxis: Modellbildung, Berechnung und Simulation", Springer Vieweg
 Ulrich Stein: "Programmieren mit MATLAB: Programmiersprache, Grafische Benutzeroberflächen, Anwendungen", Fachbuchverlag Leipzig im Carl Hanser Verlag

Baden-Württemberg Studienbereich Technik

Technische Informatik III (T3INF4260)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Technische Informatik III	Deutsch	T3INF4260	1	DrIng. Alfred Strey

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen den Aufbau und die Arbeitsweise von digitalen Rechenanlagen vertiefend kennen. In einem umfangreichen Übungsteil werden für einen Beispielprozessor oder Mikrocontroller systemnahe Programme geschrieben. Insbesondere werden hierbei auch typische E/A-Bausteine (Seriell, Parallel, Timer,) und Interrupts eingesetzt. Software-Entwicklungswerkzeuge für den Beispielprozessor werden vorgestellt und die Entwicklung mehrerer Maschinenprogramme mit steigenden Schwierigkeitsgrad wird durchgeführt.		
Methodenkompetenz	Die Studierenden bekommen einen soliden Überblick über hardwarenahe Programmiermethoden vermittelt und können sich somit jederzeit in die hardwarenahe Programmierung diverser Mikrocontrollern oder Maschinensteuerungen einarbeiten.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Systemnahe Programmierung 2	36,0	39,0
Rechnerarchitekturen 2	36,0	39,0

- Praktische Übungen
- Einführung eines Beispielprozessors oder Mikrocontrollers
- Aufbau des Übungsrechners Einarbeitung in die Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von systemnahen Programmen mit steigendem Schwierigkeits- und Strukturierungsgrad

Diese Unit ergänzt und vertieft die Unit "Systemnahe Programmierung 1".

- Vertiefung der Befehls- und Adressierungsarten moderner Prozessoren
 Aufbau, Funktionsweise und Programmierung typischer E/A-Bausteine (synchrone und asynchrone serielle Schnittstelle, paralleler Port, Zeitgeber/Zähler, ...)
- Interrupts und Ausnahmen
- Interrupts mit Prioritäten und Vektorinterrupts
 Arbeitsweise und Programmierung von Analog-/Digital- und Digital-/Analog-Wandlern
 Methoden des maschinennahen Software-Entwurfs
- Befehlssatz eines Beispielprozessors oder Beispiel-Mikrocontrollers
- optional: Architekturen verteilter Systeme, Multicomputer und Multiprozessor

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

- H. Müller, L. Walz, Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
- A. S. Tanenbaum, Computerarchitektur, Person Studium
- D. A. Patterson, J. L. Hennessy, Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle. Oldenbourg Wissenschaftsverlag K. Wüst: Mikroprozessortechnik: Grundlagen, Architekturen
- und Programmierung von Mikroprozessoren, Mikrocontrollern
- und Signalprozessoren, Vieweg und Teubner
- ? H. Bähring: Anwendungsorientierte Mikroprozessoren: Mikrocontroller und Digitale Signalprozessoren, Springer Verlag

Baden-Württemberg Studienbereich Technik

IT-Infrastruktur (T3INF4261)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
IT-Infrastruktur	Deutsch/Englisch	T3INF4261	1	Prof. Dr. Jan Michael Olaf

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	72,0	78,0	5		

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind in der Lage die Aufgaben kleiner, mittlerer und großer Rechenzentren zu verstehen und Verfahren und Tools zum Aufbau komplexer Applikationslandschaften zu planen, zu evaluieren, zu betreiben und zu monitoren. Insbesondere der Virtualisierung wird eine herausragende Bedeutung beigemessen. Daher sind die Studierenden in der Lage Virtualisierung theoretisch zu verstehen sowie praktisch in unterschiedlichen Betriebssystemumgebungen umzusetzen. Über das Monitoring der Systeme und Anwendungen können die Studierenden die Voraussetzung für die Automatisierung von Rechenzentren realisieren.		
Methodenkompetenz	Die Studierenden können sich durch Selbststudium zügig neue Sachverhalte oder Teilaspekte aneignen und das Erlernte anwenden.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können die Aspekte von Rechenzentrumsbetrieb und -automation einschließlich Monitoring auf der Basis unterschiedlicher Bertiebssysteme anwenden und übertragen.		

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Betrieb, Monitoring und Automatisierung von Applikationen	36,0	39,0		
Virtualisierung	36,0	39,0		

Inhalte

- Arten von Rechenzentren Anforderungen an Rechenzentren (Aspekt: Stromversorgung, Kühlung, Brandschutz, Zutrittssicherung etc.) Anforderungen und Aufbau einer SAN-Infrastruktur Software zum Betreiben/Verteilen von Applikationen in Rechenzentren Monitoring von Systemen und Applikationen
- Arten der Virtualisierung: Desktop-Virtualisierung, Server
- Virtualisierung, Applikations-Virtualisierung, Storage

- Virtualisierung
 Technische Grundlagen der Virtualisierung
 Virtualisierungsprodukte, Installation, Betrieb

Besonderheiten und Voraussetzungen			
Besonderheiten			
•			
Voraussetzungen			

- Mark Burgess: Principles of Network and System Administration, Wiley & Sons Thomas Harich: IT Sicherheitsmanagement: Arbeitsplatz IT Security Manager, mitp professional
- IT-Administrator : das Magazin für professionelle System- und Netzwerkadministration, Heinemann München
- Grundkurs Betriebssysteme: Architekturen, Betriebsmittelverwaltung, Synchronisation, Prozesskommunikation, Virtualisierung / von Peter Mandl, Springer Vieweg Das Virtualisierungs-Buch: [Konzepte, Techniken und Lösungen; VMware, MS, Parallels, Xen u.v.a.] / hrsg. von Fabian Thorns

Baden-Württemberg Studienbereich Technik

Alternative Programmierkonzepte (T3INF4271)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Alternative Programmierkonzepte	Deutsch	T3INF4271	1	Prof. Dr. rer. nat. Martin Plümicke

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	•
Beschreibung Prüfungen	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	72,0	78,0	5		

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Studierende erwerben in diesem Modul Kenntnisse alternativer Programmierkonzepte. Sie bekommen Einblicke in die theoretischen Grundlagen von Programmiersprachen. Dies weitet den Horizont im grundlegenden Verständnis des Programmierens. Die alterativen Konzepte ermöglichen den Studierenden viele Probleme effizienter und oftmals mit geringerer Fehlerzahl zu implementieren.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen im Bereich Alternative Programmierkonzepte eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Durch die vertiefenden Kenntnisse in alternativen Konzepten besitzen die Studierenden nach Abschluss des Moduls die Fähigkeit je nach Problemstellung, die für das Problem angemessene Programmiersprache zu verwenden.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Funktionale Programmierung	36,0	39,0
Logische Programmierung	36,0	39,0
Höhere Typkonzepte	36,0	39,0

- Programmieren mit Funktionen
- Rekursive Definitioner
- Pattern Matching
- Funktionen höherer Ordnung
- Funktionen map und fold
- Konzept der Monaden Funktionale
- Auswertungsstrategien: Strikte Auswertung (call-by-value), nicht-strikte Auswertung (Lazy-Evaluation, call-by-name, call-by-need)
- Logik und Programmierung
 die Programmiersprache PROLOG
- Unifikation
- Automatische Beweisverfahren Constrained Based Programming
- Anwendungsfelder, z.B. Expertensysteme, Planung, Linguistik
- Allgemeine Einführung
- generalisierte Typen
- existenzielle Typen
- Typinferenz in Funktionalen Sprachen
- Subtyping
- Objekt-orientierte Typsysteme (z.B. Java Typsystem)

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Thiemann, Peter, Grundlagen der funktionalen Programmierung, Teubner-Verlag
- Pepper, Peter; Hofstedt, Petra, Funktionale Programmierung Sprachdesign und Programmiertechnik, Springer, Berlin
- Simon Peyton Jones [editor], Haskell 98 language and libraries, the revised report, http://haskell.org/onlinereport
- Bryan O Sullivan, Donald Bruce Stewart, and John Goerzen, Real World Haskell. O' Reilly-Verlag
- Programming in Prolog: Using the ISO Standard 5th edition, Clocksin, W., Mellish, C.S., Heidelberg, Springer
- Clause and Effect: Prolog Programming For The Working Programmer, Clocksin, W., Heidelberg, Springer
- The Art of PROLOG: Advanced Programming Techniques, Sterling, L., Shapiro, E., Cambridge Mass., MIT Press The Craft of Prolog, O'Keefe, R., Cambridge Mass., MIT Press
- PROLOG Programming for Artificial Intelligence, Bratko, I., Harlow, Pearson
- Logic for Problem Solving, Kowalski, R., [Frühwirth, T., Hrg.], Norderstedt, Book on Demand Verlag
- Luca Cardelli, Peter Wegner: On Understanding Types, Data Abstraction, and Polymorphism. In: ACM Computing Surveys. 4/17/1985. ACM Press, New York/NY, S. 471-522
- Gosling, James; Joy, Bill and Steele, Guy and Bracha, Gilad, The Java Language Specification, Addison-Wesley
- Naftalin, Maurice; Wadler, Philip: Java Generics and Collections Speed Up the Java Development Process, O' Reilly-Verlag

Baden-Württemberg Studienbereich Technik

Programmieren II (T3INF4272)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Programmieren II	Deutsch	T3INF4272	1	Prof. DrIng. Olaf Herden

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können in C#, C++ oder Go Software entwickeln. Insbesondere lernen sie die wesentlichen Unterschiede zu Java. Im Modul Programmierung erlernte Sachkompetenzen werden vertieft. Weiterhin können die Studierenden parallele Programme entwerfen und implementieren.				
Methodenkompetenz	Durch das Erlernen einer weiteren Programmiersprache und des Konzepts der Parallen Programmierung wird der Blick der Studierenden auf das Themengebiet Softwareentwicklung erweitert, wodurch eine erheblich bessere Kommunikationsfähigkeit mit Fachleuten möglich ist.				
Personale und Soziale Kompetenz					
Übergreifende Handlungskompetenz	Durch umfangreiche Laboraufgaben haben die Studierenden mittels Literatur und Handbüchern gelernt sich umfangreiches Detailwissen selbstständig anzueigenen.				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
C# und .NET	48,0	52,0
C/C++	48,0	52,0
Paralleles Programmieren	24,0	26,0
Go	48,0	52,0

- .NET-Architektur
- IDE Visual Studio .NET
- Grundlagen von C#
- Objektorientierung in C#
- Mono-Framework
- Grundlagen C
- Grundlagen C++
- Objektorientierte Konzepte in C++
- Grundlagen und Modelle
- Parallele Programmiertechniken
 Parallele Algorithmen
- Entwurf paralleler Programme
- Praxis Parallelprogrammierung (z.B. in Java oder C#)
- Grundlagen
- First-Class-Functions und Closures
- Objektorientierte Programmierung, Interfaces
- Nebenläufigkeit
- Testen

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Albahari, Joseph und Ben Albahari: "C# 6.0 in a Nutshell: The Definitive Reference", O'Reilly Media
- Kühnel, Andreas: "C# 6 mit Visual Studio 2015: Das umfassende Handbuch", Rheinwerk Computing

- Nackey, Alex: "Introducing Net 4.5", Apress
 Theis, Thomas: "Einstieg in Visual C# 2017", Rheinwerk Computing
 Kernighan, Brian und Dennis Ritchie: "The C Programming Language", Prentice Hall International,
 Lischner, Ray: "C++ in a Nutshell", O'Reilly Media,
- Prinz, Peter und Tony Crawford: "C in a Nutshell: The Definitive Guide", O`Reilly Media,
- Stroustrup, Bjarne: "The C++ Programming Language", Addison-Wesley,
 Stroustrup, Bjarne: "Programming: Principles and Practice Using C++", Addison-Wesley,
- Goetz, Brian: "Java Concurrency in Practice", Addison-Wesley Professional,
 Grama, Ananth, Anshul Gupta, George Karypis und Vipin Kumar: "Introduction to Parallellel Computing", Pearson,
 Roestenburg, Raymond, Rob Bakker und Rob Williams: "Akka in Action", Manning Verlag,
- Alan Donovan, Brian Kernighan: "The Go Programming Language", Pearson Education
- Mat Ryer: "Go Programming Blueprints", Packt Publishing Ltd.

Baden-Württemberg Studienbereich Technik

eBusiness/eGovernment (T3INF4274)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
eBusiness/eGovernment	Deutsch	T3INF4274	1	Prof. Dr. Phil. Antonius Hoof

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Hausarbeit	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	- Die Studierenden kennen die inhaltlichen Grundlagen und Eigenheiten von E-Business. Sie können diese beschreiben und darstellen.	
	- Sie kennen die besondere Ausprägung und Herangehensweisen von E-Business für die öffentliche Hand als E-Government.	
Methodenkompetenz	Die Studierenden sind in der Lage, für standard Anwendungsfälle von E-Business/E-Commerce in der Praxis die angemessene Vorgehen und Methoden auszuwählen und anzuwenden.	
Personale und Soziale Kompetenz	Die Studierenden können mit Fachexperten für Betriebswirtschaft und Organisation sich über die Vor- und Nachteile von E-Business Anwendungen verständigen	
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
E-Business	72,0	78,0

- E-Business, E-Commerce und E-Government Klassifikationen (X2Y-Matrix)

- Elektronische Marktplätze Rahmenbedingungen für E-Business Sicherheit und Vertrauen in E-Business

- Zahlungssysteme
 E-Business-Architekture
 elektronischer Datenaustausch zwischen Unternehmen
- E-Business Standards
- Kategorisierung von E-Government: E-Administration und E-Democracy
 E-Government auf unterschiedlichen Ebenen: Bund, Land, Kommunen
- Definierte E-Government Prozesse und Standards

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

Literatur

- Wirtz, B.W., Electronic Business, Springer Gabler

- Wirtz, B.W., E-Government: Grundlagen, Instrumente, Strategien, Gabler

- Kollmann, T., E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft, Springer Gabler

Baden-Württemberg Studienbereich Technik

Business Process Management (T3INF4275)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Business Process Management	Deutsch	T3INF4275	1	Prof. Dr. Phil. Antonius Hoof

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Labor
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Hausarbeit	

	Workload un	d ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	 Die Studierenden sind vertraut mit den Konzepten und Theorien des Business Prozess Management und der Workflowautomatisierung Sie kennen die Ziele des Business Process Management Sie sind vertraut mit der Architektur von Workflowsystemen 	
Methodenkompetenz	 Die Studierenden kennen die g\u00e4ngigsten Methoden der Prozess- und Workflowmodellierung. Die Studierenden k\u00f6nnen Gesch\u00e4ftsprozesse identifizieren, analysieren, modellieren und optimieren. Sie k\u00f6nnen bei Bedarf diese Prozesse mittels Informationstechnologien automatisieren (z.B. Workflow implementieren). 	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Zur Analyse und Bewertung von Geschäftsprozessen können die Studenten Wirtschaftswissen (BWL) einsetzen. Sie können Interviewtechniken und sonstige Befragungstechniken zur Identifizierung, Analyse und Bewertung von Geschäftsprozessen einsetzen	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Geschäftsprozesse	36,0	39,0	
Workflow	36,0	39,0	

- Grundlagen des Prozessmanagements
- Geschäftsprozesse in Unternehmen
- Modellierung von Geschäftsprozessen Modellierungssprachen und -Systeme
- Qualitative Prozessanalyse
- Quantitative Prozessanalyse
 Kriterien für den Einsatz von Workflow-Applikationen
- Automatisierung von Geschäftsprozessen
- Workflow-Management-Systeme
- Workflow-Definitionssprachen
- Business Rules
- Business Reporting Business Process Execution
- Business Process Software

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- European Association of Business Process Management EABPM (Hrsg.), BPM CBOK®, Business Process Management BPM Common Body of Knowledge, Version 3.0, Leitfaden für das Prozessmanagement, Verlag Dr. Götz Schmidt

Allweyer, T., BPMN 2.0 - Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung, Books on Demand

- Becker et Al., Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Springer Gabler
- van der Aalst, Wil M.P., Workflow Management, MIT-Press
- Freund, Jakob, Götzer, Klaus, Vom Geschäftsprozess zum Workflow. ein Leitfaden für die Praxis, Carl Hanser Verlag GmbH & Co. KG
- Müller, Joachim, Workflow-based Integration: Grundlagen, Technologien, Management, Springer

Baden-Württemberg Studienbereich Technik

Information Retrieval (T3INF4276)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Information Retrieval	Deutsch/Englisch	T3INF4276	1	Prof. Dr. Phil. Antonius Hoof

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Hausarbeit	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die verschiedenen theoretische Modelle und Verfahren des Information Retrieval. Sie wissen wie IR-Systeme aufgebaut sind. Sie wissen um die Eigenheiten von gängigen Web Suchmaschinen.		
Methodenkompetenz	Die Studierenden können Information Retrieval Techniken gezielt für konkrete Anwendungsfälle bewerten und anwenden. Sie können Webseiten in Hinblick auf eine gute Auffindbarkeit für Suchmaschinen optimieren.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Information Retrieval	36,0	39,0
Suchmaschinen	36,0	39,0

- Klassifikation der Retrieval Systeme
- Anwendungsgebiete des IR Textanalyse und Bildanalyse für IR
- IR-Modelle (Boolsche, Vektor, Probabilistisch, usw.)
- Datentypen und Architekture für IR
- Suchmaschinen und ihre Architekturen
- Web Search und Meta Search Web Search Metrike
- Suchmaschineoptimierung für Webseiten
- Navigation und Visualisierung
- social Network Analysis collaborative filtering

Besonderheiten und Voraussetzungen	
Besonderheiten	
Voraussetzungen	

- Stock, Wolfgang G., Information Retrieval: Informationen suchen und finden, München, Wien
- R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, ACM Press, Addison-Wesley, New York
- Ferber, Reginald: Information retrieval : Suchmodelle und Data-Mining-Verfahren für Textsammlungen, Heidelberg
- Dirk Lewandowski, Handbuch Internet-Suchmaschinen, Heidelberg
- Mark Levene, An introduction to search engines and Web navigation, Hoboken
- Mario Fischer, Website Boosting 2.0: Suchmaschinen-Optimierung, usability, Online-Marketing, Heidelberg

Baden-Württemberg Studienbereich Technik

Sprach- und Bildverarbeitung (T3INF4278)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Sprach- und Bildverarbeitung	Deutsch	T3INF4278	1	Prof. Dr. rer. nat. Martin Plümicke

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die mathematischen und technischen Grundlagen zur Aufnahme, Transformation und Erzeugung von Sprachdaten und zur Aufnahme, Transformation und Auswertung digitaler Bilder. Sie kennen Standards und Systeme der digitalen Sprachverarbeitung und Bildverarbeitung und können diese bewerten.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen im Bereich digitale Sprach- und Bildverarbeitung eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.			
Personale und Soziale Kompetenz	Insbesondere im Bereich der Barrierefreiheit kommt die Sprachverarbeitung zum Einsatz. Die Studierenden erlenen sowohl die Grundlagen der Sprachein- als auch der Sprachausgabe.			
Übergreifende Handlungskompetenz	Die Studierenden erlernen die Grundlagen der Bild- und Spracherkennung. Viele neuartige IT-Systeme erlauben Spracheingaben oder basieren auf der Bilderkennung. Die Studierenden sind in der Lage Problemstellungen dieser Art zu bewerten und dementsprechende Systeme zu konstruieren und anzupassen.			

Lerneinheiten und Ir	nhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Digitale Bildverarbeitung	36,0	39,0
Digitale Sprachverarbeitung	36.0	39.0

Inhalte

- Einführung in die Methoden der Bildverarbeitung
- Bildaufnahme (Digitalisierung, Abtastung, Rasterung)

- Speicherung von Bilddaten (Datenkompressionsverfahren)
 Bildaufbereitung (Histogramm Glättung, Kontrastverstärkung)
 Operationen im Ortsbereich (lokale Operatoren, Faltungsfilter)
- Operationen im Frequenzbereich
- Segmentierung (Schwellwertverfahren, Kantendetektoren)

 Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)
- Klassifizierung (Neuronale Netze)

Die Lehrinhalte sind durch einen praktischen Übungsteil im PC-Labor zu vertiefen.

Die wichtigsten Grundlagen der Sprachsynthese und der Spracherkennung werden vorgestellt. Wie sieht das prinzipielle Vorgehen aus, welche Möglichkeiten ergeben sich. Grundkenntnisse in Linguistik, Phonetik, Morphologie, digitaler Signalverarbeitung bis hin zu neuronalen Netzen werden vermittelt.

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Gonzalez, Woods: Digital Image Processing. Prentice Hall Int.
- Gonzalez, Woods, Eddins: Digital Image Processing using Mathlab (Übungsbuch), Prentice-Hall
- Jähne: Digitale Bildverarbeitung. Springer Berlin W.Burger, M.Burge: Digitale Bildverarbeitung" X.media.press, Springer Vieweg K.Tönnis: Grundlagen der Bildverarbeitung, Pearson Studium
- Pfister, Kaufmann: Sprachverarbeitung, Grundlagen und Methoden der Sprachsynthese und Spracherkennung, aktuellste Auflage

- Reese, R.: Natural Language Processing with Java, Packt Publishing, aktuellste Auflage

 Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python, O'Reilly, aktuellste Auflage

 Jurafsky, D.; Martin, J.: Speech and Language Processing, Prentice Hall, aktuellste Auflage

 Chopra, D.; Joshi, N.; Mathur, I.: Mastering Natural Language Processing with Python, Packt Publishing, aktuellste Auflage
- Pfister, B.; Kaufmann, T.: Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung, Springer, aktuellste Auflage
- Barrière, C.: Natural Language Understanding in a Semantic Web Context, Springer, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Aufbau und Programmierung von Steuergeräten (T3INF4280)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Aufbau und Programmierung von Steuergeräten	Deutsch	T3INF4280	1	Prof . Dr. Mario Babilon

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Vorlesung, Übung, Labor			
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
140,0	72,0	68,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden haben ein detailliertes Fachwissen über Hardwarestruktur und Businterface von im Fahrzeug verwendeten Steuergeräten. Sie kennen Software-Architekturen und Vorgehensweisen bei der Programmierung von Steuergeräten. Sie sind mit den Qualitätssicherungsmethoden bei der Programmierung des Steuergeräts vertraut. Sie kennen Anforderungen, Ablauf und Werkzeuge bei der Applikation von Steuergeräten. Sie kennen die Notwendigkeit von Sicherheitsüberwachungen im Embedded-Bereich.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, den Einfluss der Programmierung und Applikation von Steuergeräten auf die Gesamtfunktion des Systems Fahrzeug abzuschätzen. Sie können fehlende, aktuelle, auch englischsprachige Informationen zusammentragen und sich in dem fachspezifischen Informationsangebot zurechtfinden.		

Lerneinheiten	und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Aufbau und Programmierung von Steuergeräten	48,0	42,0
Diagnose im Kraftfahrzeug	24,0	26,0

- Hardwarestruktur und -aufbau von elektronischen Steuergeräten im Fahrzeug - Anforderungen an Spannungsversorgung, Ein- und Ausgänge, techn. Realisierung - Busanbindung: Varianten, Funktionsmerkmale, Protokolle - Software-Architekturen von Steuergeräten - Programmierung eines Kfz-Steuergeräts (Randbedingungen, Vorgehensweisen) - Überwachungsfunktionen, Notlaufeigenschaften, Diagnoseverfahren - Sicherheitsklassifizierung elektronischer Steuergeräte und Systeme -Qualitätssicherungsmethoden (vom Entwurf bis zur Serienproduktion des Steuergeräts) - Freigabeablauf, Funktionsprüfverfahren, Fehler- und Störungssimulation -Applikationsverfahren, Parameter- und Variantencodierung, Werkzeuge

- Einführung in Bussysteme im Kraftfahrzeug (LIN, CAN, MOST)
- Key-Word-Protokoll (KWP 2000: ISO 14230) Universal Diagnostic Services (UDS: ISO 14229)
- Open Diagnostic Data Exchange (ODX: ISO 22901-1)
 On-Board-Diagnose (OBD: ISO 15031-6)
 Tool-Übersicht

Besonderheiten und Voraussetzungen		
Besonderheiten		
•		
Voraussetzungen		

- S. Krüger, W. Gessner: Advanced Microsystems for Automotive Applications, Springer Kraftfahrzeugtechnisches Taschenbuch, Robert Bosch GmbH Sicherheits- und Komfortsysteme, Robert Bosch GmbH
 W. Zimmermann und R. Schmidgall: Bussysteme in der Fahrzeugtechnik Protokolle, Standards und Softwarearchitektur, Springer Vieweg
 K. Borgeest: Elektronik in der Fahrzeugtechnik: Hardware, Software, Systeme und Projektmanagement, Springer Vieweg
 C. Marscholik und P Subke: Datenkommunikation im Automobil: Grundlagen, Bussysteme, Protokolle und Anwendungen, VDE Verlag

Baden-Württemberg Studienbereich Technik

Fortgeschrittene Algorithmen (T3INF4282)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Fortgeschrittene Algorithmen	Deutsch/Englisch	T3INF4282	1	Prof. Dr. Ulrich Baum

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden verfügen über ein vertieftes und aktuelles Fachwissen über fortgeschrittene Algorithmen und Datenstrukturen zur Lösung eines breiten Spektrums praxisrelevanter Probleme. Sie kennnen gängige Entwurfs- und Analysemethoden für Algorithmen und können diese anwenden.		
Methodenkompetenz	Die Studierenden können zur Lösung eines gegebenen Problems geeignete Algorithmen und Datenstrukturen auswählen oder mithilfe bekannter Entwurfstechniken selbst entwickeln. Sie sind in der Lage, die Korrektheit eines Algorithmus zu begründen sowie dessen Ressourcenaufwand systematisch zu analysieren.		
Personale und Soziale Kompetenz	Die Studierenden sind in der Lage, mit Fachvertretern kompetent und wissenschaftlich fundiert über komplexe algorithmische Problemlösungen zu diskutieren sowie neue Lösungsansätze zu formulieren und kritisch zu hinterfragen.		
Übergreifende Handlungskompetenz	Die Studierenden verstehen und berücksichtigen die zentrale Rolle der Algorithmen und Datenstrukturen bei Entwurf und Implementierung effizienter und skalierbarer Problemlösungen in der Informatik. Sie sind sich der heutigen Möglichkeiten und Grenzen praktikabler algorithmischer Problemlösungen bewusst.		

Lerneinheite	n und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Fortgeschrittene Algorithmen	72,0	78,0

Ausgewählte Algorithmen und Datenstrukturen aus folgenden Bereichen

- Arithmetik und Numerik Fortgeschrittene Graphenalgorithmen Lineare Optimierung und verwandte Probleme
- Kombinatorische Optimierung
- String- und Textverarbeitung
 Signal- und Bildverarbeitung, Algorithmische Geometrie
 Parallele und verteilte Algorithmen
- Verarbeitung großer Datenmengen (Big Data)
- Randomisierte und evolutionäre Algorithmen

Entwurfsmethoden

- Greedy Induktion
- Divide and conquer
- Dynamische Programmierung
- Branch and bound Randomisierung
- Approximationsverfahren und Heuristiken

Analysemethoden

- Korrektheitsbeweise
- Rekurrenzrelationen und erzeugende Funktionen
- Amortisierte Analyse
- Probabilistische Analyse

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Programmierung, Theoretische Informatik I und II, Mathematik I

- Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein: Algorithmen eine Einführung, Oldenbourg
- Robert Sedgewick, Kevin Wayne: Algorithmen, Pearson Studium
- Steven Skiena: The Algorithm Design Manual, Springer

Baden-Württemberg Studienbereich Technik

Systemarchitekturen der Informationstechnik (T3INF4302)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Systemarchitekturen der Informationstechnik	Deutsch	T3INF4302	1	Prof. Dr. Rolf Assfalg

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Labor, Vorlesung, Vorlesung, Übung, Vorlesung, Übung, Labor	
Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	120
Beschreibung Prüfungen	
Klausurarbeit (< 50 %)	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
400,0	180,0	220,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Systemkonzepte aufstellen und Systeme realisieren können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Analyse selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Systemarchitektur auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Ansätze einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.	
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Softwarequalität	36,0	64,0
Verteilte Systeme	36,0	39,0
Bussysteme	24,0	26,0
Labor Prozessautomatisierung	12,0	13,0
Ausgewählte Themen der Informatik	36,0	39,0
Moderne Konzepte der Informatik	36.0	39.0

- Qualitätsbegriffe QS nach TQM, Qualitätsmanagement unter dynamischer Marktentwicklung, Definitionen, Standards QualitätsAudit Qualitätssteigerung mit messbaren Faktoren - Methoden der QS, Produktlebenszyklus - mit dem QTK-Kreis, LeanProduction,
- Einführung in die verteilten Systeme
- Anforderungen und Modelle Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer
- Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
- Kommunikation in verteilten Systemen
- Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

Microprozessorbusse - Feldbusse - Leistungsmerkmale - Einsatzbereiche

Es werden ausgewählte Inhalte aus der Informatik, wie z.B. dem Web Engineering, Software Engineering, Compilerbau, etc. vertieft behandelt.

Ein aktuelles Konzept der Informatik wird herausgegriffen und detailliert vorgestellt und behandelt.

Besonderheiten und Voraussetzungen

Besonderheiten

Hier soll noch das Unit Parllelverarbeitung 9000.5 aufgenommen werden

Voraussetzungen

Literatur

- Peter Liggesmeyer: Software-Qualität:Testen, Analysieren und Verifizieren von Software, Spektrum akademischer Verlag R.Schmidt, T. Pfeifer: Qualitätsmanagement: Strategien, Methoden und Techniken, Hanser Fachbuch - R. Kneuper: Verbesserung
- Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson
- A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall
- S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag
- Gerhard Schnell, Bernhard Wiedemann (Herausgeber): Bussysteme in der Automatisierungs- und Prozesstechnik Grundlagen, Systeme und Anwendungen der industriellen Kommunikation, Wiesbaden

Ausgewählte Themen der Informatik

aktuelle Literatur wird in der Vorlesung bekanntgegeben.

Moderne Konzepte der Informatik

- Aktuelle Artikel aus wissenschaftlichen Zeitschriften

Baden-Württemberg Studienbereich Technik

Computergraphik und Bildverarbeitung (T3INF4303)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Computergraphik und Bildverarbeitung	Deutsch	T3INF4303	1	Prof . Dr. Marcus Strand

	Verortung des Moduls im Studienverlauf		
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen die Grundlagen der graphischen Datenverarbeitung kennen. Hierbei insbesondere Darstellungsverfahren und Manipulation von graphischen Objekten und die Interaktion mit graphischen Systemen. Es werden mathematische und technische Grundlagen zur Aufnahme, Transformation und Auswertung digitaler Bilder vermittelt und erarbeitet. Verschiedene Eingabemechanismen und Manipulationsmethoden an der Mensch - Maschine Schnittstelle als Grundlage des graphischen Dialogs sind den Studierenden bekannt. Sie kennen außerdem diverse Standards und Systeme in der graphischen Datenverarbeitung und der digitalen Bildverarbeitung und können sie bewerten.		
Methodenkompetenz			
Personale und Soziale Kompetenz	Die Studierenden können die Arbeitsweise marktüblicher Software auf diesem Fachgebiet verstehen und sie sind in der Lage eine Bewertung dieser Systeme durchzuführen.		
Übergreifende Handlungskompetenz	Durch die in diesem Modul erworbenen Fähigkeiten können die Absolventen die grundlegende Arbeitesweise vieler auf digitaler Grafik und Bildverarbeitung basierender Systeme verstehen, so z.B. CAD, Computerspiele, Bildanalyse etc.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Computergraphik	36,0	39,0
Digitale Bildverarbeitung	36,0	39,0

- Einführung in die interaktive 3D-Computergrafik
- Kurven- und Flächendarstellung (Polynom-, Bezier-, B-Spline- und Nurbs-Darstellung) Koordinatensysteme und Transformationen in 2D und 3D
- Visualisierungsverfahren
- Einführung in die Methoden der Bildverarbeitung
- Bildaufnahme (Digitalisierung, Abtastung, Rasterung)
- Speicherung von Bilddaten (Datenkompressionsverfahren) Bildaufbereitung (Histogramm Glättung, Kontrastverstärkung) Operationen im Ortsbereich (lokale Operatoren, Faltungsfilter)
- Operationen im Frequenzbereich
- Segmentierung (Schwellwertverfahren, Kantendetektoren)
 Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)
 Klassifizierung (Neuronale Netze)

Die Lehrinhalte sind durch einen praktischen Übungsteil im PC-Labor zu vertiefen.

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

- F.S. Hill/S.M. Kelley: Computer Graphics using OpenGL, Pearson Prentice Hall
- Gonzalez, Woods: Digital Image Processing. Prentice Hall Int. Gonzalez, Woods, Eddins: Digital Image Processing using Mathlab (Übungsbuch), Prentice-Hall
- Jähne: Digitale Bildverarbeitung. Springer Berlin
- W.Burger, M.Burge: Digitale Bildverarbeitung" X.media.press, Springer Vieweg K.Tönnis: Grundlagen der Bildverarbeitung, Pearson Studium

Baden-Württemberg Studienbereich Technik

Datenbanken II (T3INF4304)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Datenbanken II	Deutsch/Englisch	T3INF4304	1	Prof . Dr. Carmen Winter

	Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Studienrichtungsmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung	
Lehrmethoden Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können Konzepte von aktuellen Datenbankarchitekturen und Datenbankechnologien beurteilen. Die Studierenden kennen den Sinn und Zweck von Data Warehouse Konzepten und können komplexe DWH Architekturen beurteilen. Studierende verfügen über Kenntnisse über den Aufbau und den Betrieb eines DWH und über die Prinzipien der DHW-Datenmodellierung und -speicherung.		
Methodenkompetenz	Die Studierenden können die Stärken und Schwächen der aktuellen Datenbanktechnologien und Datenbankarchitekturen sowie Data Warehouse Konzepte bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.		
Personale und Soziale Kompetenz	Die Studierenden können mit ihrer Entscheidungs- und Fachkompetenzen im Bereich der Datenbanktechnologien und -Datenbankarchitekturen, sowie Data Warehouse aktuelle Konzepte adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) einbeziehen.		
Übergreifende Handlungskompetenz	Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der aktuellen Datenbankarchitelturen und Datenbanktechnologien sowie Data Warehouse Konzepte in praktische Anwendungen umzusetzen.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
DB-Implementierungen	36,0	39,0	
Data Warehouse	36,0	39,0	
Aktuelle Datenbankarchitekturen und -technologien	36,0	39,0	
Labor Aktuelle Datenbanktechnologien	36,0	39,0	

- Speicher- und Zugriffsstrukturen
- Transaktionen, Concurrency Control und Recovery Basisalgorithmen für Datenbankoperationen
- Anfrageoptimierung
- Einführung in DWH und Business Intelligence
- DWH-Architektur
- Multidimensionales Datenmodell
- Physische Umsetzung
- Daten-Integrationsprozess
- DB-Technologie für DWH
- Aktuelle Datenbankarchitekturen
- Aktuelle Datenbanktechnologien

Aktuelle Datenbank-Technologien sollen implementiert und mit diesen Übungen selbstständig und unter Anleitung durchgeführt werden (inklusive der Darstellung allgemeiner Konzepte wie z.B. MapReduce und konkreter Anwendungsbeispiele anhand verschiedener Datenbanksystem wie z.B. Redis, CouchDB, Hadoop, Apache Kafka

Besonderheiten und Voraussetzungen

Besonderheiten

In diesem Modul sind zwei der vier beschiebenen Units auszuwählen.

Voraussetzungen

Datenbanken I

Literatur

- Andreas Heuer und Gunter Saake: Datenbanken Konzepte und Sprachen, mitp-Verlag Gunter Saake Andreas Heuer und Kai-Uwe Sattler: Datenbanken Implementierungstechniken, mitp Verlag - Ramez Elmasri und Shamkant B. Navathe: Fundamentals of Database
- Connolly/Begg "Database Systems: A Practical Approach to Design, Implementation, and Management"
- Silberschatz/Korth/Sudarshan "Database System Concepts"

Es gilt jeweils die aktuelle Auflage.

- John Wiley: The Data Warehouse Toolkit William A. Giovinazzo: Data Warehouse Design, Prentice-Hall Jiawei Han und Micheline Kamper: Data Mining: Concepts and Techniques Morgan, Kaufmann Publishers
- Bauer/Günzel "Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung".
- Vaisman/Zimányi "Data Warehouse Systems: Design and Implementation"
- Gluchowski & Chamoni (Hrsg.): Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, Springer Gabler

Es gilt jeweils die aktuelle Auflage.

-Edlich, S., Friedland, A., Hampe, J., Brauer, B. & Brückner, M. NoSQL Einstieg in die Welt Nichtrelationaler WEB 2.0 Datenbanken. München: Carl Hanser Verlag, aktuellste Auflage.

- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg, aktuellste Auflage
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag, aktuellste Auflage.
- Redmond & Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers, aktuellste Auflage.
- White: Hadoop: The Definitve Guide; O'Reilly, aktuellste Auflage.
- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg, aktuellste Auflage.
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag, aktuellste Auflage.
- Redmond & Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers, aktuellste Auflage. White: Hadoop: The Definitve Guide; O'Reilly, aktuellste Auflage.

Baden-Württemberg Studienbereich Technik

Softwarequalität und Verteilte Systeme (T3INF4305)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Softwarequalität und Verteilte Systeme	Deutsch	T3INF4305	1	Prof. Dr. Johannes Freudenmann

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
175,0	72,0	103,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Programmsysteme erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen den Softwareentwurf selbständig durch und geben kritische Hinweise zur Qualität ihrer Ergebnisse.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Softwaresysteme eine angemessene Methode zur Qualitätsbeurteilung und -sicherung auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheit	en und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Softwarequalität	36,0	64,0
Verteilte Systeme	36.0	39.0

Inhalte

- Qualitätsbegriffe QS nach TQM, Qualitätsmanagement unter dynamischer Marktentwicklung, Definitionen, Standards QualitätsAudit Qualitätssteigerung mit messbaren Faktoren Methoden der QS, Produktlebenszyklus mit dem QTK-Kreis, LeanProduction,
- Einführung in die verteilten Systeme
- Anforderungen und Modelle
- Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
- Kommunikation in verteilten Systemen Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

Software Engineering I

- Peter Liggesmeyer: Software-Qualität:Testen, Analysieren und Verifizieren von Software, Spektrum akademischer Verlag R.Schmidt, T. Pfeifer: Qualitätsmanagement: Strategien, Methoden und Techniken, Hanser Fachbuch R. Kneuper: Verbesserung

- Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson
 A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall
 S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag

Baden-Württemberg Studienbereich Technik

Computergraphik und medizinische Bildverarbeitung (T3INF4306)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Computergraphik und medizinische Bildverarbeitung	Deutsch	T3INF4306	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im Studienver	erlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden lernen die mathematischen und technischen Grundlagen der graphischen Datenverarbeitung kennen. Hierbei insbesondere Darstellungsverfahren und Manipulation von graphischen Objekten und die Interaktion mit graphischen Systemen. Verschiedene Eingabemechanismen und Manipulationsmethoden als Grundlage des graphischen Dialogs sind den Studierenden bekannt. Sie kennen diverse Standards der digitalen Bildverarbeitung und insbesondere medizinische bildgebende Systeme (CT, MRT, usw) und können sie bewerten.			
Methodenkompetenz	Die Studierenden kennen die Grundlagen der Bildverarbeitung und der Computergrafik und die damit verbundenen Methoden. Sie können die Stärken und Schwächen der Methoden abschätzen und kennen deren Relevanz dieser Methoden im medizinischen Umfeld.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden können in der Diskussion im medizinischen Alltag Möglichkeiten und Grenzen grafischer und bildgebender Systeme darstellen.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Computergraphik	36,0	39,0
Medizinische Bildgebung und -verarbeitung	36,0	39,0

Inhalte

- Einführung in die interaktive 3D-Computergrafik
- Kurven- und Flächendarstellung (Polynom-, Bezier-, B-Spline- und Nurbs-Darstellung) Koordinatensysteme und Transformationen in 2D und 3D Visualisierungsverfahren

- Bildgebende Systeme in der Medizin Medizinische Bilddatenverarbeitung

T3INF4306 – Computergraphik und medizinische Bildverarbeitung	146
Besonderheiten und Voraussetzungen	
onderheiten	

Literatur

- F.S. Hill/S.M. Kelley: Computer Graphics using OpenGL, Pearson Prentice Hall

Voraussetzungen

- Morneburg, Bildgebende Systeme fu"r die medizinische Diagnostik, Wiley-VCH Verlag

Baden-Württemberg Studienbereich Technik

Medizinische Informatik II (T3INF4307)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Medizinische Informatik II	Deutsch	T3INF4307	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im Studienver	erlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Seminar, Vorlesung, Übung
Lehrmethoden	Fallstudien, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
325,0	156,0	169,0	5

Qualifikationsziele und Kompetenzen		
Pachkompetenz Die Komplexität eines KIS und dessen Teilkomponenten kennen. Die Einbindung eines KIS ins Krankenhaus versteher bewerten können. Ein KIS planen, ausschreiben und einführen können. Ein KIS betreiben und pflegen können. Möglich Architekturen von Krankenhausinformationssystemen kennen und beurteilen können. Stärken und Schwächen von verschiedenen technologischen Ansätzen der Informationsverarbeitung im Krankenhaus kennen. Optional werden entw die Eigenschaften eines KIS detaillierter verstanden oder die Anwendungsmöglichkeiten im Rahmen des Controlling.		
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inha	lte.	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Krankenhausinformationssysteme 1	36,0	39,0
Projektmanagement im Gesundheitswesen	24,0	26,0
Controlling im Gesundheitswesen	36,0	39,0
Krankenhausinformationssysteme 2	36,0	39,0

Inhalte

- Aufbau eines Krankenhausinformationssystems - Rahmenkonzepte von KIS - Komponenten eines KIS - Planung und Einführung eines KIS - Management von KIS - Kommunikation innerhalb eines KIS und interne/externe Schnittstellen - Clinical Pathways und klinische Geschäftsprozesse

Projektmangement im Krankenhaus - Projekte in heterogenen Teams - Rechtliche Rahmenbedingungen von IT-Projekten in Krankenäusern

- Hilfsmittel des Controlling kennenlernen
- die Rolle des C. bei der Entscheidungsunterstützung in Bezug auf Wirtschaftlichkeit und Wirksamkeit kennenlernen
- Technik und Aufbau kommerzieller KIS-Systeme

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Medizinische Informatik I

Literatur

- Haux, Lagemann, Knaup, Schmücker, Winter, Management von Informationssystemen, B.G. Teubner Verlag Stuttgart - Haas, Medizinische Informationssysteme und Elektronische Krankenakten, Springer Verlag Berlin

Schlegel, Steuerung der IT im Klinikmanagement, Vieweg+Teubner

- Zapp, Oswald: Controlling-Instrumente für Krankenhäuser; Kohlhammer Greiling, M.; Hofstetter, J.: Behandlungspfade optimieren Prozeßmanagement im Krankenhaus

Baden-Württemberg Studienbereich Technik

Graphische Programmierung und Simulation (T3INF4308)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Graphische Programmierung und Simulation	Deutsch	T3INF4308	1	Prof . Dr. Mario Babilon

	Verortung des Moduls im S	tudienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Laborarbeit einschließlich Ausarbeitung (LA),	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen eine graphische Programmiersprache und können sie anwenden. Sie können Modellierungswerkzeuge verstehen und einsetzen. Sie kennen komplexe Mess- und Regelsysteme in einer Simulation.	
Methodenkompetenz	Die Studiernden können für einen komplexen Anwendungsfall ein angemessenes Werkzeug auswählen und den Fall bearbeiten. Die Studierenden können die im Betrieb erfahrenen praktischen Tätigkeiten mit den Methoden und der Theorie dieses Faches einordnen und anwenden. Die Studierenden können mit einer graphischen Programmiersprache umgehen und Simulationen komplexer Mess- und Regelsysteme im Labor durchführen. Die Studierenden können die Arbeitsweise graphischer Programmiersprachen gegenüber nicht-graphischen Programmiersprachen abgrenzen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können fehlende, aktuelle, auch englischsprachige Informationen zusammentragen und sich in dem fachspezifischen Informationsangebot zurechtfinden.	

Lerneinheiten und	d Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Graphische Programmierung und Simulation	72,0	78,0

Inhalte

- Modellgetriebene Softwareentwicklung: Modellierung und Codegenerierung Funktionsumfang einer ausgewählten graphischen Programmiersprache
- Erstellung und Tests umfangreicher Projekte
- Simulation regelungstechnischer Vorgänge Portierung von erstelltem und getestetem Code auf selbständige Zielsysteme
- Vor-, Nachteile und Grenzen graphischer Programmiersprachen Aktuelle Modellierungswerkzeuge für Entwicklungen in der Kfz-Technik

T3INF4308 – Graphische Programmierung und Simula	lation
--	--------

150

Besonderheiten und Voraussetzungen	
sonderheiten	Besonderheiten
	-
aussetzungen	Voraussetzungen

Literatur

- Angermann: Matlab - Simulink - Stateflow Oldenbourg - Helmut. E. Scherf: Modellbildung und Simulation dynamischer Systeme, Oldenbourg

Baden-Württemberg Studienbereich Technik

Fahrerassistenz- und Sicherheitssysteme (T3INF4309)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Fahrerassistenz- und Sicherheitssysteme	Deutsch	T3INF4309	1	Prof . Dr. Mario Babilon

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungsmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen		Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethode	n	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Referat (R),	-
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
175,0	84,0	91,0	5

	Qualifikationsziele und Kompetenzen			
Fachkompetenz	Der Studierende kann die Anforderungen der Sicherheitsnormen im Produktlebenszyklus umsetzen. Er kennt die notwendigen Prozesse und Werkzeuge zur Beurteilung der funktionalen Sicherheit von Serienprodukten. Der Studierende hat ein umfassendes Fachwissen über die verschiedenen Sensorarten, ihre Funktionsweise, sowie ihren Einsatz im Fahrzeug. Er kenn die Auswertung von Sensorsignalen durch entsprechende elektrische Steuergeräte, er kann die Signalpfade und gegenseitigen Abhängigkeiten beschreiben. Er kann einschätzen, welches Bussystem für den jeweiligen Sensor/das jeweilige System angemessen ist. Er besitzt Grundkenntnisse in Elektromotoren, Elektroschalter und der Ansteuerung der Aktorik durch elektrische Steuergeräte. Er kennt mögliche Fehlerquellen und deren Diagnose mit Hilfe geeigneter Protokolle zur Fehlererfassung. Der Studierende hat einen detaillierten Überblick über existierende Sicherheitissysteme im Kraftfahrzeug.			
Methodenkompetenz	Der Studierende kann die im Betrieb erfahrenen praktischen Tätigkeiten mit den Methoden und der Theorie dieses Faches einordnen und anwenden. Der Studierende kann für einen vorgegebenen, einfachen Anwendungsfall einen Sensor auswählen und für den Fehlerfall ein geeignetes Diagnoseverfahren einsetzen. Der Studierende kann die Funktionen eines Sicherheitssystems analysieren und testen.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Der Studierende kann die Themen dieses Faches mit den Themenfeldern Regelungstechnik , Qualitätssicherung von Software, Aufbau von Steuergeräten und Vernetzung im Automobil in Verbindung setzen. Der Studierende kann sich fehlende bzw. aktuelle (englischsprachige) Informationen aus dem Internet holen und diese bewerten.			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Sicherheitstechnik	36,0	39,0	
Fahrerassistenz- und Sicherheitssysteme	24,0	26,0	
Sensoren und Aktoren im Kraftfahrzeug	24,0	26,0	

- Überblick über gültige Normen zur funktionalen Sicherheit von Anwendungen
- Überschneidung von Reifegradmodellen (z.B. CMMI, SPICE) mit Normen zur funktionalen Sicherheit
- Anwendung der Grundnorm zur funktionalen Sicherheit sicherheitsbezogener Anwendungen
- Entwicklung der Fahrerassistenz- und Sicherheitssysteme Aktive und passive Sicherheit im Kraftfahrzeug
- Funktionalität und technischer Aufbau (einschließlich Anbindung der Sensorik) von Fahrerassistenz- und Sicherheitssystemen
- Überwachungen auf mögliche Fehlfunktionen von Fahrerassistenz- und Sicherheitssystemen im Kraftfahrzeug
- Überblick über die Sensorarten
- Einsatzgebiete der verschiedenen Sensoren im Fahrzeug
- Physikalische Grundlagen und Funktionsweise von ausgewählten Sensoren
- Aufbau von ausgewählten Sensoren auf Chipebene
- Auswertung von Sensorsignalen durch elektronische Steuergeräte
- Grundprinzipien der Elektromotoren, Motorkennlinien
- Einsatzbeispiele im Fahrzeug

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Börcsök, J.: Funktionale Sicherheit Grundzüge sicherheitstechnischer Systeme; Hüthig, Heidelberg
- Löw, Pabst, Petry: Funktionale Sicherheit in der Praxis, dpunkt.verlag
- Hering, Triemel, Blank: Qualitätsmanagement für Ingenieure, Springer Verlag
- Kraftfahrzeugtechnisches Taschenbuch, Robert Bosch GmbH
- Sicherheits- und Komfortsysteme, Robert Bosch GmbH
- H.-J.Gevatter: Automatisierungstechnik, 3 Bde., Bd.1: Meß- und Sensortechnik, Springer
- W. Cassing, W. Stanek, L. Erd: Elektromagnetische Wandler und Sensoren, Expert Verlag
- Kraftfahrzeugtechnisches Taschenbuch, Robert Bosch GmbH
- Sicherheits- und Komfortsysteme, Robert Bosch GmbH H.-J.Gevatter: Automatisierungstechnik, 3 Bde., Bd.1 : Meß- und Sensortechnik, Springer
- W. Cassing, W. Stanek, L. Erd: Elektromagnetische Wandler und Sensoren, Expert Verlag

Baden-Württemberg Studienbereich Technik

Entwicklung mobiler Applikationen (T3INF4310)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Entwicklung mobiler Applikationen	Deutsch/Englisch	T3INF4310	1	Prof. Dr. Erik Behrends

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Labor	
Lehrmethoden	Laborarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Programmentwurf (PE),	•
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen			
Fachkompetenz	- Nach Abschluss des Moduls kennen die Studierenden die Grundkonzepte, Plattformen und Werkzeuge für die Erstellung mobiler Applikationen. Sie können Standardalgorithmen für ihren Einsatz in mobilen Applikationen analysieren, bewerten und unter dem Aspekt der Resourcen-Limitierung anpassen Die Studenten kennen die wichtigsten Elemente von Embedded Systemen und können diese in ihrer Einsatzfähigkeit bewerten und einplanen Die Studenten kennen die Besonderheiten, die sich bei der Vernetzung von Embedded Systemen ergeben.			
Methodenkompetenz	-			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden können für komplexe Projekte aus dem Bereich mobiler Applikationen die konzeptionellen Entwurfs- und Implementierungsalternativen beurteilen und durch eine geeignete Auswahl eine effizienzorientierte Projektrealisierung sicherstellen. Sie sind in der Lage sich effizient in neue Programmiersprachen, Plattformen und Frameworks zur Entwicklung mobiler Applikationen einzuarbeiten. Sie sind in der Kage ein Projekt für mobile Anwendungen aufzusetzen, inhaltlichzu planen und durchzuführen.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Labor Mobile Apps	36,0	39,0
Entwicklung mobiler Applikationen	36,0	39,0

Inhalte

In einem Projekt sollen die Studierenden die erlernten Methoden und Verfahren von Netzwerken, Betriebssystemen, Embedded Systemen und Framework zu Mobilen Applikationen auf ein reales und komplexes Anwendungsszenario anwenden.

- Konzepte User Interface, Speicherverwaltung, Resourcen-limitiertes Computing, Hybrider Ansatz, HTML5, Progressive Webapps, Native Apps
- Plattformen (z. B. iOS, Android, Windows Phone)
- Frameworks und Bibliotheken (z.B. React Native, PhoneGap/Ionic, Xamarin)

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussotzungen	

Literatur

Literatur aus den Module T3INF4311 Grundlagen mobiler Applikationen und T3INF4314: Usability Engineering sind auch hier einsetzbar

- Phillips, Bill; Stewart, Chris: Android Programming: The Big Nerd Ranch Guide, Pearson
 Conway, J.; Hillegass, A.: iPhone Programming: The Big Nerd Ranch Guide, Addison-Wesley Longman, Amster-dam.
 Mathias, Mathew; Gallagher, John: Swift Programming: The Big Nerd Ranch Guide; Pearson

- Wilkon, Jeremy: Ionic in Action; Manning
 Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, O'Reilly, Sebastopol

Jeweils aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Gundlagen Mobiler Applikationen (T3INF4311)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Gundlagen Mobiler Applikationen	Deutsch/Englisch	T3INF4311	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im S	studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die wichtigsten Komponenten von Embedded Systemen und können diese in ihrer Einsatzfähigkeit bewerten und einplanen. Sie kennen die Besonderheiten, die sich bei der Vernetzung von Embedded Systemen ergeben. Sie kennen die Grundkonzepte, Plattformen und Werkzeuge für die Erstellung mobiler Applikationen. Sie können Standardalgorithmen für ihren Einsatz in mobilen Applikationen analysieren, bewerten und unter dem Aspekt der Resourcen-Limitierung anpassen.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierendenykönnen aus dem Bereich mobiler Applikationen und Embedded Systeme die konzeptionellen Entwurfs- und Implementierungsalternativen beurteilen und durch eine geeignete Auswahl eine effizienzorientierte Projektrealisierung sicherstellen. Sie sind in der Lage sich effizient in neue Programmiersprachen, Stenläusen, Plattformen und Frameworks zur Entwicklung mobiler Applikationen einzuarbeiten.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Embedded Systems	36,0	39,0	
Netzwerke und Betriebssysteme für mobile Applikationen	36,0	39,0	

- Entwurf von Embedded Systemen
- Beschreibung des Systemkontexts und Systemzwecks
- Dienstspezifikationen
- Schnittstellenspezifikation
- Grundlagen der Firmwareentwicklung
- Modellierung (z.B. UML für Embedded)
- Benutzung von Peripherieeinheiten
- Teststrategien
- Einführung Hardware-Software-Co-Design
- Vernetzung von Embedded Systemen
- Aktuelle Technologien für Drahtlosnetze (wie z.B. WLAN, GPRS/EDGE, UMTS, LTE)
- Aktuelle Konzepte für Betriebssysteme auf mobilen Endgeräten Case Studies (mit z. B. Android, iOS, Windows Phone)
- Aktuelle Hardware (Smartphones, Tablets, Navigationssysteme, Car Information Systems)
- Aktuelle Infrastrukturkonzepte (z. B. Ad-Hoc-Netzwerke, Cloud-Computing, Technologien zur Positionsbestimmung, Near-Field-Communication)

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

Literatur

- Schaaf, B.: Mikrocomputertechnik, Carl-Hanser Verlag, aktuellste Auflage (oder vergleichbare Werke über andere Mikrocontrollerfamilien)
- Kupris, G.; Sikora, A.: ZigBee Datenfunk mit IEEE802.15.4 und ZigBee, Franzis-Verlag Poing, aktuellste Auflage
- Eißenlöffel, T.: Embedded-Software entwickeln: Grundlagen der Programmierung eingebetteter Systeme Eine Einführung für Anwendungsentwickler, dpunkt.verlag, aktuellste Auflage
- Dwivedi, H.; Clark, C.; Thiel, D.: Mobile Application Security, McGraw-Hill Professional, Columbus
 Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, O'Reilly, Sebastopol.
- Frederick, G. R.; Lal, R.: Beginning Smartphone Web Development: Building JavaScript, CSS, HTML and Ajax-Based Applications for iPhone, Android, Palm Pre,
- Blackberry, Windows Mobile, Apress, New York.

 Oelmaier, F.; Hörtreiter, J.; Seitz, A.: Apple's iPad im Enterprise-Einsatz: Einsatzmöglichkeiten, Programmierung, Betrieb und Sicherheit im Unternehmen, Springer, Berlin

 Sauter, M.: Grundkurs mobile Kommunikationssysteme: UMTS, HSDPA und LTE, GSM, GPRS und Wireless LAN, Vieweg+Teubner, Wiesbaden

Jeweils aktuelle Version

Baden-Württemberg Studienbereich Technik

Sprach- und Wissensverarbeitung (T3INF4312)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Sprach- und Wissensverarbeitung	Deutsch/Englisch	T3INF4312	1	Prof. Dr. Ralph Lausen

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Nach Abschluss des Modul können die Studierenden - die theoretischen Grundlagen wissensbasierter Systeme vergleichen - KI-Sprachen zielgerichtet einsetzen - Wissensrepräsentationstechniken und Inferenzmechanismen einsetzen - die Grundlagen der digitalen Signalverarbeitung in digitale Sprachverarbeitung und in Sprachverarbeitungssysteme umsetzen und anwenden - Kompressionsverfahren anwenden	
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Digitale Sprachverarbeitung	36,0	39,0
Grundlagen der Künstlichen Intelligenz	36,0	39,0

Die wichtigsten Grundlagen der Sprachsynthese und der Spracherkennung werden vorgestellt. Wie sieht das prinzipielle Vorgehen aus, welche Möglichkeiten ergeben sich. Grundkenntnisse in Linguistik, Phonetik, Morphologie, digitaler Signalverarbeitung bis hin zu neuronalen Netzen werden vermittelt.

- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
 Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz

	Besonderheiten und Vorauss	setzungen	
Besonderheiten			
-			
Voraussetzungen			

- Pfister, Kaufmann: Sprachverarbeitung, Grundlagen und Methoden der Sprachsynthese und Spracherkennung, aktuellste Auflage Reese, R.: Natural Language Processing with Java, Packt Publishing, aktuellste Auflage Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python, O'Reilly, aktuellste Auflage

- Jurafsky, D.; Martin, J.: Speech and Language Processing, Prentice Hall, aktuellste Auflage
 Chopra, D.; Joshi, N.; Mathur, I.: Mastering Natural Language Processing with Python, Packt Publishing, aktuellste Auflage
 Pfister, B.; Kaufmann, T.: Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung, Springer, aktuellste Auflage
- Barrière, C.: Natural Language Understanding in a Semantic Web Context, Springer, aktuellste Auflage

- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

E-Business (T3INF4313)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
E-Business	Deutsch	T3INF4313	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im S	studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
225,0	108,0	117,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den Theorien, Geschäftsmodellen und Diskursen im eBusiness und eCommerce praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, Projekte durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen erfolgreich umzusetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihrer Berufserfahrung auf.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Allgemeine Kompetenz im Projektmanagement wird weiterentwickelt.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
E-Business	72,0	78,0
Angewandtes Projektmanagement	36,0	39,0

Inhalte

- E-Business, E-Commerce und E-Government Klassifikationen (X2Y-Matrix)
- Elektronische Marktplätze
- Rahmenbedingungen für E-Business
- Sicherheit und Vertrauen in E-Business Zahlungssysteme
- E-Business-Architekture
- elektronischer Datenaustausch zwischen Unternehmen
- E-Business Standards
- Kategorisierung von E-Government: E-Administration und E-Democracy
- E-Government auf unterschiedlichen Ebenen: Bund, Land, Kommunen
- Definierte E-Government Prozesse und Standards

Alternativen zum klassischen Projektmanagement sollen in einem Projekt erfahren werden. Dabei sind insbesondere auch Aspekte wie Mitarbeitertypen, Steuerungsalternativen, Projektcontrolling, strategische Ausrichtung und Meetingkulturen zu berücksichtigen.

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Wirtz, B.W., Electronic Business, Springer Gabler
- Wirtz, B.W., E-Government: Grundlagen, Instrumente, Strategien, Gabler
- Kollmann, T., E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft, Springer Gabler
 Eckhart Hanser: Agile Prozesse: Von XP über Scrum bis MAP Tom DeMarco ...: Adrenalin-Junkies & Formular-Zombies : typisches Verhalten in Projekten Boris Gloger: Scrum : Produkte zuverlässig und schnell entwickeln

Baden-Württemberg Studienbereich Technik

Usability Engineering (T3INF4314)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Usability Engineering	Deutsch/Englisch	T3INF4314	1	Prof. Dr. Erik Behrends

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrwethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können die grundlegenden formale Methoden, Vorgehensmodelle, Entwicklungswerkzeuge, Komponenten und Aspekte des Software-Engineering anwenden. Die Studierenden kennen die fortgeschrittene Konzepte, Architekturen, Technologien, Methoden, Werkzeuge und Frameworks für die Entwicklung von Web-Anwendungen. Die Studierenden kennen die gängigen Methoden, Werkzeuge und Prozessmodelle des Usability Engineering und können deren Stärken und Schwächer benennen. Die Teilnehmer können Benutzerbedürfnisse erfassen und daraus Anforderungen für das Interaction Design ableiten. Die Teilnehmer können Designalternativen und interaktive Designstudien (Mockups) entwickeln und mit verschiedenen Methoden evaluieren.			
Methodenkompetenz	Die Studierenden haben ihre Kompetenz, Bedürfnisse und Wünsche von Benutzern zu erfassen und Lösungsmöglichkeiten zu kommunizieren, vertieft.			
Personale und Soziale Kompetenz	Die Studierenden können selbstständig im Besonderen User Interfaces für Webanwendungen und im Allgemeinem Problemlösungen in Zusammenarbeit mit Benutzern entwickeln.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Usability Engineering	36,0	39,0
Gamification	36,0	39,0

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen
- Ebenen der Mensch-Computer-Interaktion
- Ergonomische Grundlagen
- Grundlagen der Wahrnehmung und des Lernens beim Menschen Menschliche Fehlhandlungen Gestaltung von Systemfeedback

- Klassifikation der Ansätze zum User-centered Design
- Normen, Standards
- Analyse von exisistierenden Games, Gamification Konzepten
- Synthese von eigenen Gamification Konzept auf gewählten Anwendungsfall: Integrating game dynamics into your site, service, community, content or campaign, in order to drive participation.
- Psychologiesche Grundlagen Gamification
- Beispiele von Anwendungen Forschung in Gamification (Literatur)

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben
- Dahm, Markus: Grundlagen der Mensch-Computer-Interaktion. München; Pearson Studium (Software-Ergonomie), aktuellste Auflage Herczeg, Michael: Software-Ergonomie. Theorien, Modelle und Kriterien für gebrauchstaugliche interaktive Computersysteme, aktuellste Auflage
- Lidwell, William; Holden, Kritina; Butler, Jill: Universal Principles of Design; Rockport, aktuellste Auflage
- Norman, Don: The Design of Everyday Things; Basic Books, aktuellste Auflage
- Krug, Steve: Don't Make Me Think; New Riders, aktuellste Auflage
- Charles A. Coonradt: the game of work; Jane McGonigal: Reality is Broken

Baden-Württemberg Studienbereich Technik

Web-Technologien (T3INF4315)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Web-Technologien	Deutsch	T3INF4315	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
5. Sem.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung			
Lehrmethoden Lehrvortrag, Diskussion			

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Programmentwurf oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können nach Abschluss des Moduls Aufgaben mit mindestens einer Skriptsprache für die serverseitige Programmierung lösen, unterschiedliche Web Technologien beurteilen und kritisch vergleichen und geeignete Web Technologien für unterschiedliche Anwendungen bewerten.		
Methodenkompetenz	Die Studierenden können nach Abschluss des Moduls im Team aus dem breiten Spektrum moderner Web-Technologie geeignete Lösungsansätze konzipieren und umsetzen, das Potential der Web-Services einschätzen und Fachleuten und Anwendern kommunizieren, den Aufwand zur Erstellung eines Web-Anwendung abzuschätzen und begründen, im Team arbeiten und Verantwortung übernehmen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können nach Abschluss des Moduls, komplexe Web-Anwendungen implementieren, sich in neue Web Technologien einarbeiten und diese vertiefen, bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Kooperationsbereitschaft, Lern- und Arbeitstechniken in Teams qualifiziert einbringen.		

Lerne	inheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Web-Services	36.0	39.0

Inhalte

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Grundlegende Konzepte von Webservices und Service-orientierter Architektur (SOA) werden erläutert und beispielhaft erstellt. Definierte Dienste und Protokolle werden vorgestellt: - SOAP, Message-Protokoll - WSDL, Interface Beschreibung - UDDI, Verzeichnis - WSIL, Dezentrale Verzeichnisse - BPEL4WS.

Besonderheiten und Voraussetzungen

Voraussetzungen

Besonderheiten

Datenbanken I (T2INF2004), Software Engineering I (T2INF2003), Webengineering und, Systemnahe Programmierung (T2INF4216), Software Engineering II (T2INF3001)

- www.w3c.org
 de.selfhtml.org
 s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben
- Melzer, Eberhard, von Thiele; Service-orientierte Architekturen mit Web Services; Spektrum Akademischer Verlag.

Baden-Württemberg Studienbereich Technik

Echtzeitsysteme und agile Prozessmodelle (T3INF4316)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Echtzeitsysteme und agile Prozessmodelle	Deutsch	T3INF4316	1	Prof. Dr. Andreas Judt

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
5. Sem.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Labor, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können nach Abschluss des Moduls Echtzeitsysteme unter Berücksichtigung von Betriebssystemen und Spracheigenschaften entwerfen und implementieren, die Komplexität von parallelen Programmen prüfen, kritisch vergleichen und darstellen, Agile Prozessmodelle für den Einsatz in Projekten bewerten, die testgetriebene Entwicklung von SW-Projekten umsetzen			
Methodenkompetenz	Die Studierenden können nach Abschluss des Moduls Echtzeitsysteme Fachleuten gegenüber fachlich adäquat kommunizieren, auf der Basis von Prozessmodellen Aufgaben im Team analysieren und Lösungen implementieren, Verantwortung übernehmen.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden können nach Abschluss des Moduls Schnittstellen zu anderen Echtzeitkomponenten spezifizieren und implementieren, sich selbständig in neue agile Prozessmodelle einarbeiten, diese bewerten und projektspezifisch einsetzen, bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Lern- und Arbeitstechniken mithelfen			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Agile Prozessmodelle	36,0	39,0
Echtzeitsysteme	36,0	39,0

- Scrum
- Kanban
- Aktuelle agile Prozessmodelle
- Testgetriebene Entwicklung
- Durchführung eines Projekts mit einem erlernten agilen Prozessmodell
- Prozesslehre Parallelität
- Synchronisationsmechanismen
- Schritthaltende Verarbeitung
- Echtzeitsystem-Entwicklung
 Echtzeitsprachen
- Echtzeitbetriebssysteme
- Leitsysteme
- Zuverlässigkeit und Sicherheit Echtzeitkommunikation

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Programmieren (T2INF1004), Technische Informatik II (T2INF2005), Software Engineering I (T2INF2003), Software Engineering II (T2INF3001)

- Eckhart Hanser, Agile Prozesse: Von XP über Scrum bis MAP Springer-Verlag
- Lundak: Agile Prozesse, ebook
- R. Hruschka, Ch. Rupp, G.: Starke Agility kompakt Spektrum Akademischer Verlag Kent Beck: Test-Driven Development: By Example (Addison-Wesley Signature), Verlag: Addison-Wesley Professional
- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium, aktuellste Auflage
- Tanenbaum A.S.: Verteilte Betriebssysteme, Prentice Hall, München, London, New York, aktuellste Auflage
- Tanenbaum A.S., van Steen Marten: Verteilte Systeme. Grundlagen und Paradigmen, Pearson Studium, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Grundlagen Digitaler Transformation (T3INF4317)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Grundlagen Digitaler Transformation	Deutsch/Englisch	T3INF4317	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung	
Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz Nach Abschluss des Modul kennen die Studierenden die Begriffe "Internet of Things" und "Big Data". Sie können diese Begriffe in den Gesamtkontext von Industrie 4.0 einordnen.		
Methodenkompetenz	Die Studierenden kennen die wesentlichen Methoden udn Verfahren der Digitalen Transformation. Sie können darüberhinaus wesentliche Methoden und Verfahren der Digitalen Transformation auf übliche Problemstellungen anwenden.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten u	und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Big Data	36,0	39,0
Internet of Things	36,0	39,0

Big Data Programming

- Einführung in das Themengebiet Big Data-Programmierung
 Erläuterung der horizontalen Skalierung von Systemen bei der Verarbeitung digitaler Massendaten
 Einführung in die verteilte Verarbeitung digitaler Massendaten
- Einführung in Batch- und Stromverarbeitung
- Vorstellung aktueller Frameworks, Bibliotheken, Programmiersprachen, etc.
- Umsetzung von Praxisbeispielen

Big Data Storage

- Einführung in das Themengebiet Big Data-Storage Erläuterung der horizontalen Skalierung von Systemen bei der Speicherung digitaler Massendaten
- Einführung in die Speicherung digitaler Massendaten unter Nutzung verschiedener Speicher- und Zugriffsarten (Dateisysteme, Datenbanken, etc.)
- Vorstellung aktueller Frameworks, Bibliotheken, Programmier- und Abfragesprachen, etc. Umsetzung von Praxisbeispielen
- Einführung in IoT
- Anwendungsgebiete
- Technologien (auf einer aktuellen IoT-Plattform)
- Kommunikationsprotokolle
- Sensorik und Datenerfassung
- Plattformen

Besonderheiten und Voraussetzungen
Besonderheiten

Voraussetzungen

- Marz, N.; Warren, J.: Big Data:Principles and best practices of scalable realtime data systems, Manning
- Provost, F.; Fawcett, T.: Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly and Associates Mayer-Schönberger, M.: Big Data: A Revolution That Will Transform How We Live, Work and Think, Hodder and Stoughton Ltd.
- Marr, B.: Big Data: Using Smart Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, John Wiley & Sons
- Engelhardt, E.: Internet of Things Manifest: Das Handbuch zur digitalen Weltrevolution: 50+ Projekte für Arduino™, ESP8266 und Raspberry Pi, Franzis Verlag
- Sprenger, F.; Engemann, C.: Internet der Dinge: Über smarte Objekte, intelligente Umgebungen und die technische Durchdringung der Welt, transcript
- Ruppert, S.: IoT für Java-Entwickler, entwickler.press

Baden-Württemberg Studienbereich Technik

Data Science (T3INF4318)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Science	Deutsch/Englisch	T3INF4318	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

	Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung		Vorlesung, Übung
Lehrwertrag, Diskussion		Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen nach Abschluss des Moduls den Begriff Data Science und könne ihn in den Kontext von Digitaler Transformation einordnen. Sie sind in der Lage wesentliche Methoden und Verfahren des Data Science/Data Mining/Datenmodellierung einzusetzen und Simulationen darüber anzustoßen.		
Methodenkompetenz	Die Studierenden kennen gängige Methoden und Verfahren aus dem Data Science, dem Data Mining, der Modellierung von Daten und der Simulation.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Ausgewählte Methoden der Datenanalyse, Modellierung und Simulation	36,0	39,0		
Data Mining	36,0	39,0		

- Grundlagen in Datenmodellieriung: Datenqualität, Integrität, Ownership, Data Cleaning, Data Governance, Datenqualität und Genauigkeit bei Big Data Grunlagen der Datenanalyse; Daten und Beziehungen, Daten-Vorverarbeitung, Daten-Visualisierung, Korrelationen und Regression, Bayessche Verfahren, Vorhersagen Grundlagen in Simulation: Wahrscheinlichkeitstheorie, Bayes'sche Statistik, Graphen und Matrizen, Tiefen- und Breitensuche, Dijkstra-, Floyd-Warshall- und A*-Algorithmus, Monte-Carlo-Simulation
- Daten und Datenanalyse
- Clustering Classification
- Assoziationsanalyse
- Weitere Verfahren, z.B.:
- Regression Deviation Detection
- Visualisierung Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.

В	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Bättig, D.: Angewandte Datenanalyse: Der Bayes'sche Weg, Springer Spektrum
 Runkler, T.: Data Analytics: Models and Algorithms for Intelligent Data Analysis, Springer Vieweg
 Simsion, G.: Data Modeling Essentials, Morgan Kaufmann
 Scheuch, R. Gansor, T., Ziller C.: Master Data Management: Strategie, Organisation, Architektur, tdwi
 Templ, M.: Simulation for Data Science with R, Packt Publishing

- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
 Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
 Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.

Baden-Württemberg Studienbereich Technik

Labor Digitale Transformation (T3INF4319)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Labor Digitale Transformation	Deutsch/Englisch	T3INF4319	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Labor		
Lehrmethoden	Laborarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Laborarbeit einschließlich Ausarbeitung (LA),		
Beschreibung Prüfungen		

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
75,0	36,0	39,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können die erlernten Methoden und Verfahren von Digitaler Transformation (Big Data Architekturen/Programmierung, Data Mining Methoden und Analysemethoden und/oder Simulationen) auf ein reales und komplexes Anwendngsszenario anwenden.		
Methodenkompetenz	Die Methoden aus der Digitalen Transformation, dem Data Mining und dem Data Science sowie weitere Datenanalysemethoden, Datenmodellierung und Simulation können die Studierenden gemeinsam in einem Projekt zielführend anwenden.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Labor Digitale Transformation	36,0	39,0

Inhalte

Er werden Projekte rund um das Thema Digitale Transformation (Big Data Architekturen/Programmierung, Data Mining Methoden und Analysemethoden und/oder Simulationen) durchgeführt

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

	Literatur
Ī	Literatur ergibt sichaus den Units der Module T3INF4317: Grundlagen Digitaler Transformation, T3INF4318: Data Science

Baden-Württemberg Studienbereich Technik

Angewandtes Informationsmanagement (T3INF4320)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Angewandtes Informationsmanagement	Deutsch	T3INF4320	1	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden können die Begriffe Daten, Information und Wissen differenzieren. Sie kennen Methoden und Technologien zum Management und zur Transformation der Aggregationen. Sie beherrschen die Prozesse zum Umgang mit Informationen und Wissen und sind in der Lage aus großen Datenmengen neues Wissen zur erschliessen.	
Methodenkompetenz	Die Studierenden leben eine offen Kultur des Wissensaustausches.	
Personale und Soziale Kompetenz	Die Studierenden erkennen die Wichtigkeit des Faktors Mensch und der Unternehmenskultur beim Umgang mit Wissen und Daten.	
Übergreifende Handlungskompetenz	Die Studierenden verfügen über die interdisziplinären Kenntnisse und Fähigkeiten, die bei der Erstellung einer Wissensbilanz in Unternehmen nötig sind.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Data Mining	36,0	39,0
Wissensmanagement	36,0	39,0

Inhalte

- Daten und Datenanalyse
- Clustering

- Classification Assoziationsanalyse Weitere Verfahren, z.B.: - Regression
- Deviation Detection Visualisierung
- Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.
- Motivation und Begriffsbildung
- Von der Information zum Wissen
- Das TOM-Modell: Technik, Organisation, Mensch
- Wissen erheben, (re-)präsentieren, austauschen Wissensmanagementwerkzeuge
- Menschzentrierte Wissenskultur
- Motivation und Anreizgestalt

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
 Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.
- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin

Baden-Württemberg Studienbereich Technik

Kommunikations- und Netztechnik II (T3INF4321)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Kommunikations- und Netztechnik II	Deutsch	T3INF4321	1	Prof. Friedemann Stockmayer

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen Lehrformen Labor, Seminar, Vorlesung, Übung, Vorlesung, Übung, Labor Lehrmethoden Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	
---	--

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
279,0	144,0	135,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Das Modul vermittelt vertieftes Wissen in den Bereichen: Architekturen, Aufbau und Betrieb moderner Kommunikationsetze. Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe Funktionen in aktuellen Netzen zu verstehen und mittels spezieller Schnittstellen in neue Applikationen zu integrieren. Einflüsse unterschiedlicher Faktoren und Parameter können identifiziert und im Kontext des zu betrachtenden Systems bewertet werden, auch im Hinblick auf entsprechende Berücksichtigung in einer ggfs. zu erstellenden Spezifikation.	
Methodenkompetenz		
Personale und Soziale Kompetenz	Studierende begreifen neben den techn. Inhalten auch die Bedeutung moderner Kommunikationsnetze in der Gesellschaft.	
Übergreifende Handlungskompetenz		

Lerneinheiten un	d Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Labor Rechnernetze	24,0	19,0
Weitverkehrsnetze 1	24,0	26,0
Weitverkehrsnetze 2	24,0	26,0
Funknetze 1	24,0	26,0
Funknetze 2	24,0	26,0
Netzmanagement	24,0	26,0
Netzarchitekturen	24,0	26,0
Zugangsnetze	24,0	26,0
Formale Modelle und Konzepte der Kommunikationstechnik	24,0	26,0
Cloud Computing	24.0	26.0

Im Rahmen des vorlesungsbegleitenden Labors (Grundlagen Rechnernetze) werden Rechnernetze mit den erforderlichen Netzkomponenten (Router, Switch) praktisch aufgebaut, getestet und deren Leistungsfähigkeit anhand typischer Parameter ermittelt.

- Grundlagen der Weitverkehrsnetze Leitungsvermittlung Glasfasernetze & Laser Telekommunikationsnetze Zellvermittelnder WAN-Protokolle Quality of Service in Weitverkehrsnetzen
- Zugangsnetze: Techniken, Schnittstellen, Protokolle Übertragungssysteme (Vertiefung)

Einführung Funktechnik - Maxwell'sche Gleichungen - EM-Wellen (Nahfeld, Fernfeld) - Antennen - Ausbreitungseigenschaften Grundlagen Modulationstechniken - ASK, FSK, PSK - Codierungstechniken für Funknetze

Gliederung der Funknetze - WWAN, WLAN, SRWN Protokolle auf WWAN-Ebene Protokolle auf WLAN-Ebene (802.11) Protokolle für SRWN - ZigBee - Bluetooth - etc.

- Netzplanung als Grundlage eines effizienten Netzmanagements Ziele, Aktivitätenen und Umfang eines Netzmanagements Bestandteile eines Konzeptes zum Netzmanagement Managementarchitekturen, -protokolle und -dienste Geeignete Werkzeuge und deren Anwendung
- Ausgewählte Themen zu aktuellen Netztechnologien und Netzarchitekturen, z.B. Grafentheorie, Satellitenkommunikation, Next-Generation Networks, Network Clouds, Aufbau/Betrieb/ Wartung und Qualitätssicherung von Mobilfunknetzen, Software Defined Network
- Grundlagen der Zugangsnetze Aktuelle Technologien und Protokolle auf der Basis unterschiedlicher Übertragunsmedien (Symetrische Kabel, Koax, LWL, Funk) z.B. PPP PPDE, xDSL, ATM, SDH, NGA Schnittstellen zu Breitband-, Funknetze, Software Defined Networks
- Modellbildung und Analyse von Kommunikationsnetzen Modellierung von Ankunftsprozessen Bedien- und Warteschlangenkonzepte Verkehrsflussteuerung in Hochlastphasen - Leistungsbewertung und QOS-konzepte
- Basistechnologien u. Einsatzszenarien
- Infrastruktur, Plattformen
- Ansätze zur Virtualiserung
- Programmierung von Web-Services
- Migration in die Cloud
- Cloud Anwendungen
- Entwicklung und Betrieb
- Big Data in der Cloud

Besonderheiten und Voraussetzungen

Besonderheiten

Weitere wählbare Unit:

T3INF4302.7: Zugangsnetze

T3INF4302.8: Formale Modelle und Konzepte der Kommunikationsinformatik

T3INF4302.9: Cloud Computing

T3INF4140.2: Labor Rechnernetze

Voraussetzungen

- Kommunikations- und Netztechnik

Literatur

- Geeignete Literatur wird in Form von Manuskripten ausgegeben.
- A. Tanenbaum, "Computernetzwerke", Pearson-Studium D. Conrads, "Telekommunikation", Vieweg+Teubner Kristof Obermann, Datennetztechnologien für Next Generation Networks, Springer Vieweg Andreas Keller, Datenübertragug im Kabelnetz, Springer Berlin
- H.D. Lüke, J. Ohm, Signalübertragung: Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme, Springer R. Gessler, T. Krause, Wireless-Netzwerke für den Nahbereich, Springer Vieweg
- R. Gessler, T. Krause, Wireless-Netzwerke für den Nahbereich, Springer Vieweg J. Rech, "Wireless LANs: 802.11-WLAN-Technologie, Heise
- Netzwerk- und IT-Sicherheitsmanagement, Jochen Dinger, Hannes Hartenstein, KIT Scientific Publishing
- Literatur für ausgewählte Themen anhand aktueller Recherche sowie Empfehlung der Dozenten

Aktuelle Literaturrecherche und Empfehlung der Dozenten

Andreas Keller, Breitbandkabel und Zugangsnetze, Springer Verlag Kurose und Ross, Computernetzwerke, Pearson Verlag

Baden-Württemberg Studienbereich Technik

Architekturen (T3INF4322)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Architekturen	Deutsch	T3INF4322	1	Prof. Dr. Doris Nitsche-Ruhland

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Klausurarbeit (K),	-
Beschreibung Prüfungen	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Architekturprinzipien der Hard- und Software von IT-Systemen kennen und beurteilen können - Bedeutung der Aspekte Robustheit, Sicherheit, Hochverfügbarkeit, Wartbarkeit -RAS, Reliability, Availability, Serviceability kennen - Identifikation von Anforderungen für individuelle Anwendungsentwicklung - Architekturen von state-of-the-art Businessapplikationen identifizieren - Modulare Anwendungsentwicklung und Design Patterns verwenden	
Methodenkompetenz	- Integrität für das Produkt - Leidenschaft, die beste Lösung zu finden	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	- Prinzipien der Softwaremodellierung zur Entwicklung von Architekturen einsetzen können	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Architekturen von Rechnersystemen	36,0	39,0
Architekturen von Businesssystemen	36,0	39,0

Inhalte

- Großrechnerarchitekturen - Parallele Systeme (SMP, Cluster-Systeme) - Speichersysteme für Großrechneranlagen - Storage Area Network (SAN) und Network Attached Storage (NAS) - Betriebssysteme (Konzepte) für Großrechneranlagen - Operating von Großrechnera

- Einführung in Anwendungsarchitekturen - - Mobile Aspekte von Business-Anwendungen - WebServices - Business Patterns (B2B, B2C, B2E, ...) - CRM / SCM - Marktplätze - Portale - Enterprise Application Integration - PKI Infras

Baden-Württemberg Studienbereich Technik

Künstliche Intelligenz und interaktive Systeme (T3INF4323)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Künstliche Intelligenz und interaktive Systeme	Deutsch	T3INF4323	1	Prof. Dr. Doris Nitsche-Ruhland

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

	Eingesetzte Lehr- und Prüfungsformen		
Lehrformen		Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethode	n	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden kennen die verschiedenen Aspekte der Benutzerinteraktion und die wichtigsten Normen. Sie können interaktive Systeme nach diesen analysieren. Zur Gestaltung interaktive Systeme und Komponenten können sie geeignete Ansätze in den Entwicklungsansatz integrieren und Konzepte anwenden. Sie können interaktiver Systeme bezüglich ihrer Usability bewerten.
	Die Studierenden kennen die Einsatzgebiete und typischen Szenarien der künstlichen Intelligenz. Sie sind in der Lage zu erkennen, in welchen Anwendungen Methoden der künstlichen Intelligenz vorteilhaft sind. Die Studienrenden können grundlegende Methoden der künstlichen Intelligenz am praktischen Beispiel einsetzen.
Methodenkompetenz	Sie können gemeinsam mit den Benutzern deren Bedürfnisse in Bezug auf die Anforderungen an interaktive Systeme und die Usability analysieren, die Schnittstellen entwerfen und evaluieren. Sie können in interdisziplinären Teams arbeiten. Mit Fachvertretern und Laien können sie über fachliche Fragen und Problme diskutieren.
	Die Studierenden können Problemstellungen der realen Welt erfassen und mit Fachexperten das benötigte Wissen zur Implementierung einer intelligenten Anwendung extrahieren.
Personale und Soziale Kompetenz	Die Auswirkungen der Aspekte interaktiver Systeme auf die Gesellschaft und das soziale Miteinander können die Studierenden reflektierend analysieren und sich damit auseinandersetzen. Sie können interdisziplinäre Anforderungen an interaktive Systeme analysieren, entwickeln und evaluieren. Mit Fachvertretern und Laien können sie über fachliche Fragen und Problme diskutieren.
Übergreifende Handlungskompetenz	Sie können gemeinsam mit den Benutzern deren Bedürfnisse in Bezug auf die Anforderungen an interaktive Systeme und die Usability analysieren, die Schnittstellen entwerfen und evaluieren. Sie können in interdisziplinären Teams arbeiten.

Lerneinh	eiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Künstlichen Intelligenz	36,0	39,0
Interaktive Systeme	36,0	39,0

- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz

Interaktive Systeme: - - Normen und Richtlinien

- -Interaktionsformen Software-Ergonomie
- Software Usability und User Experience
- Barrierefreiheit
- Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)

	Besonderheiten und Voraussetzungen	
Besonderheiten		
-		

Voraussetzungen

- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.press
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press
- -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
 -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- -J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt

Baden-Württemberg Studienbereich Technik

Consulting, technischer Vetrieb und Recht (T3INF4324)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Consulting, technischer Vetrieb und Recht	Deutsch	T3INF4324	1	Prof. DrIng. Olaf Herden

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	- Kennen der Anforderungen und Rollen von internen und externen Consultants - Beurteilen der Aufgabenbereiche und Erfolgsfaktoren eines Consultants und der Strukturen und Zielsetzungen von Consulting-Unternehmen - Anwenden von Methoden des Consultings - Kennen der Anforderungen und der Struktur von Vertriebsprozessen - Anwendung und Vertiefung der Projektmanagement-Kenntnisse und -Methoden - Kennen der Grundlagen des deutschen Rechts insbesondere des Privatrechts und des Rechts des geistigen Eigentums		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	- Sensibilisierung für das Auftreten rechtlicher Fragestellungen und deren Beurteilung insbesondere auch im Hinblick auf die Fachrichtung Informatik		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Consulting und technischer Vertrieb	48,0	52,0	
Recht	24,0	26,0	

- Externes und Internes Consulting
- Vorgehensweise im Consulting
- Kommunikation im Consulting
- Technischer Vertrieb
- Der industrielle Kaufprozess
- Akquisitionsplanung und Account Management Kosten und Erlösrechnung
- Distribution und Vertriebswege
- Strategische Planung und Verkaufen im Top Management
- Soft-Skills Verhandlungsführung z.B. Harvard-Konzept
- Konfliktmanagement
- Vortragstechnik und Moderation
- Führung Selbstmarketing
- Vertiefung der Projektmanagementkenntnisse
- Einleitung
- Systematik des deutschen Rechts
- Zivilrecht und bürgerliches Recht
- Rechtssubjekte, Rechtsobjekte, Rechtsfähigkeit Vertragsrecht
- Allgemeines zur Vertragslehre
- Vertragsbegründung Stellvertretung
- Einbeziehung von AGB in den Vertrag
- Einwendungen
- Verbraucherschutz
- EContracting, Der Vertrag im Cyberlaw
- Leistungsstörungen
- Mängelhaftung im Kaufrecht, Urheberrecht, Gewerblicher Rechtsschutz
- Urheberrecht
- Recht am eigenen Bild
- Markenrecht
- Patente
- Gebrauchsmuster
- Geschmacksmuster
- Wettbewerbsrecht, Datenschutzrecht

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Cope, Mike: "The Seven Cs of Consulting", Perason Education Limited
- Ury, William: "Getting Past No", Bantam Verlag
- Scheer, August-Wilhelm und Alexander Köppen: "Consulting", Springer Verlag
- Kleinaltenkamp, Michael: "Technischer Vertrieb", Springer Verlag
- Karl E. Hemmer und Achim Wüst Basics Zivilrecht, Band 1, BGB AT und vertragliche Schuldverhältnisse, Hemmer/Wüst Verlagsgesellschaft
- Eugen Klunzinger Einführung in das Bürgerliche Recht Vahlen

 Ernst R. Führich Grundzüge des Privat- Handels- und Gesellschaftsrechts für Wirtschaftswissenschaftler und Unternehmenspraxis Vahlen
- Volker Ilzhöfer Patent- Marken- und Urheberrecht Vahlen
- Wolfgang Berlit Wettbewerbsrecht C.H. Beck
- Flemming Moos Datenschutzrecht schnell erfasst Springer
- Peter Gola und Christoph Klug Grundzüge des Datenschutzrechts C.H. Beck

Baden-Württemberg Studienbereich Technik

Betriebliche IT-Systeme (T3INF4325)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Betriebliche IT-Systeme	Deutsch	T3INF4325	1	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden lernen IT-Architekturen und -Technologien für den Unternehmenseinsatz und die Entwicklung komplexerer Anwendungen kennen und können diese in eigenen Projekten anwenden.			
Methodenkompetenz				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Grundlagen der Künstlichen Intelligenz	36,0	39,0		
Interaktive Systeme	36,0	39,0		
ERP-Systeme	36,0	39,0		
Web-Services	36,0	39,0		

- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz

Interaktive Systeme: - - Normen und Richtlinien

- -Interaktionsformen
- Software-Ergonomie
- Software Usability und User Experience
- Barrierefreiheit
- Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)
- Entwicklung und Marktübersicht von ERP-Systemen Modellierung von ERP-Systemen, ARIS-Haus
- Aufbau und Funktionsweise eines realen ERP-Systems (z.B. SAP)
- Schnittstellen zu anderen Anwendungssystemen

Grundlegende Konzepte von Webservices und Service-orientierter Architektur (SOA) werden erläutert und beispielhaft erstellt. Definierte Dienste und Protokolle werden vorgestellt: - SOAP, Message-Protokoll - WSDL, Interface Beschreibung - UDDI, Verzeichnis - WSIL, Dezentrale Verzeichnisse - BPEL4WS.

	Besonderheiten und Voraussetzungen	
Besonderheiten		
-		
Voraussetzungen		

- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.press
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press
- -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
 -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- -J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt
- Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP: Geschäftsprozessorientierte Einführung mit durchgehendem Fallbeispiel, Vieweg, aktuellste Auflage
- Görtz, Hesseler: Basiswissen ERP-Systeme: Auswahl, Einführung & Einsatz betriebswirtschaftlicher Standardsoftware, W3l, aktuellste Auflage Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von ERP-Systemen, De Gruyter Oldenbourg, aktuellste Auflage
- Melzer, Eberhard, von Thiele: Service-orientierte Architekturen mit Web Services: Spektrum Akademischer Verlag

Baden-Württemberg Studienbereich Technik

Wissensmanagement (T3INF4326)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wissensmanagement	Deutsch	T3INF4326	1	Prof. DrIng. Olaf Herden

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
2. Stj.		Wahlmodul	1		

	Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung, Vorlesung, Übung, Labor		Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethode	n	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden verfügen über vertieftes Wissen in den Gebieten Wissensmanagement und Data Mining und können diese auf betriebliche Sachverhalte anwenden.	
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Data Mining	36,0	39,0
Wissensmanagement	36,0	39,0
Grundlagen der Künstlichen Intelligenz	36,0	39,0

- Daten und Datenanalyse
- Clustering
- Classification
- Assoziationsanalyse
- Weitere Verfahren, z.B.:
- Regression Deviation Detection
- Visualisierung
- Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.
- Motivation und Begriffsbildung
- Von der Information zum Wissen
 Das TOM-Modell: Technik, Organisation, Mensch
- Wissen erheben, (re-)präsentieren, austauschen
- Wissensmanagementwerkzeuge
- Menschzentrierte Wissenskultur
- Motivation und Anreizgestalt
- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
 Praktische Anwendungen von Methoden der künstlichen Intelligenz

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers. Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.
- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer
- Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

International Project (T3INF4327)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
International Project	Deutsch	T3INF4327	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden lernen die Durchführung von Projekten unter internationalen Rahmenbedingungen.	
Methodenkompetenz	Die Studierenden kennen Methoden zur Leitung und Steuerung von Projekten im internationalen Umfeld.	
Personale und Soziale Kompetenz	Die Studierenden sind sich der Herausforderungen der Durchführung eines Projekts im internationalen Umfeld bewusst und berücksichtigen kulturelle Unterschieden bei der Durchführung von Projekten.	
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
International Conflict Resolution	36,0	39,0
International Business Project	36,0	39,0

Inhalte	
-	
-	

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen		
-		

Baden-Württemberg Studienbereich Technik

Anwendungen des Informationsmanagements (T3INF4328)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Anwendungen des Informationsmanagements	Deutsch	T3INF4328	1	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen die technischen, organisatorischen und architekturellen Rahmenbedingungen kennen und können diese gemäß Vorgaben gestalten und umsetzen.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Wissensmanagement	36,0	39,0	
IT-Service-Management	36,0	39,0	
Systemadministration	36,0	39,0	

- Motivation und Begriffsbildung
- Von der Information zum Wissen
- Das TOM-Modell: Technik, Organisation, Mensch
- Wissen erheben, (re-)präsentieren, austauschen
- Wissensmanagementwerkzeuge
- Menschzentrierte Wissenskultur
- Motivation und Anreizgestalt
- Begrifflichkeiten und Abhängigkeiten zu verwandten Gebieten (etwa Geschäftsprozesse) IT Infrastructure Library (ITIL Version 3) als Sammlung von Best Practices zur Umsetzung eines IT-Service Managements Service Support Service Delivery
- Grundlagen und Konzepte der Systemadministration
- Systemarchitektur
- System-Installation und -Konfiguration
- GNU- und Unix-Kommandos, Shell-Skripte File System
- wiederkehrende Administrationsaufgaben
- grundlegende Systemdienste grundlegende Netzwerk-Konfiguration, Fehlerbehandlung
- Backup und Restore

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin
- Ernst Tiemeyer: IT-Service Management, Spektrum Peter T. Köhler: ITIL Das IT-Servicemanagement Framework, Springer Roland Böttcher: IT-Servicemanagement mit ITIL v3, Heise Verlag - Martin Beims: IT-Servicemanagement in der Praxis mit ITIL v3 - Zie
- Aeleen Frisch: Essential System Administration, O'Reilly Tom Adlestein et al.: Linux System Administration, O'Reilly Mark Burgess: Principles of Network and System Administration, Wiley & Sons Thomas A. Limoncelli et al.: The Practice of System an

Baden-Württemberg Studienbereich Technik

Neue Konzepte der Informatik (T3INF4329)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Neue Konzepte der Informatik	Deutsch/Englisch	T3INF4329	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
3. Stj.		Wahlmodul	1		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Seminar		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Referat (R),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0 72,0 78,0 5					

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen nach Abschluss des Moduls neue Entwiclungen in der Angewandten Forschung im Fachbereich Informatik und in angrenzenden Gebieten. Sie sind in der Lage, diese Forschungsergebnisse zu kommunizieren und geeignete Anwendungsmöglichkeiten zu erkennen.			
Methodenkompetenz	Die Studierenden können neueste Methoden und Verfahren der Informatik verstehen und anwenden.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Angewandte Informatik-Forschung	72,0	78,0

In diesem Seminar werden neue Forschungsthemen aus dem Gebiet der Informatik vorgestellt und von den Studierenden in Gruppenarbeit erarbeitet

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen -

Literatur

Literatur hängt von den Themen ab. In der Regel werden es Konferenzbeiträge/Proceedings von den einschägigen Konferenz der Informatik sein.

Baden-Württemberg Studienbereich Technik

Regelungs- und Simulationstechnik (T3INF4330)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Regelungs- und Simulationstechnik	Deutsch	T3INF4330	1	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

	Eingesetzte Lehr- und Prüfungsformen	
Lehrfor	Lehrformen Vorlesung, Übung	
Lehrwertrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Theoretische Grundlagen von Regelstrecken und Regelkreisen verstehen und anwenden. Eigenschaften und Verhalten von Regelsystemen verstehen, analysieren und entwerfen.	
	Physikatische Zusammenhänge erkennen und in simulierbare Modelle umsetzen. Simulationen rechnergestützt durchführen und auswerten. Erlernen von Simulationsstrukturen und Anwenden von Simulationsprogrammen.	
Methodenkompetenz	Die Absolventen verfügen über ein grundlegendes Spektrum an regelungstechnischen Methoden und Techniken, um simulations- und regelungstechnische Problemstellungen lösen zu können.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Fähigkeit erworben sich mit Fachleuten auf wissenschaftlichem Niveau über mathematisch-physikalische Problemstellungen der zu simulierenden technischen Systeme zu unterhalten und sich auf diesem Gebiet autodidaktisch fortzubilden. Die Absolventen haben ein Verständnis für übergreifende Zusammenhänge und Prozesse. Sie können die Anwendbarkeit und Nutzen regelungstechnischer Methoden in der Praxis abschätzen.	

Lerneinheiten und	l Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Simulationstechnik	36,0	39,0
Regelungstechnik 1	36,0	39,0

- Anwendungsgebiete
- Prozessbeschreibung Modellierungsformalismen
- Klassische Simulationsmethoden
- Digitale Modellbildung
- Datenbasierte Modellierung
- Petri-Netze
- Zustandsverfahren
- Produktionssimulation
- Betriebliche Simulationen
- Simulationssprachen
- Grundlagen zur Systembeschreibung, -analyse und Regelungsentwurf
- Praktische Anwendung

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Ottmar Beucher: Signale & Systeme: Theorie, Simulation, Anwendungen, Springer Verlag
 Helmut Bode: Mathlab-Simulink: Analyse und Simulation dynamischer Systeme, Teubner Verlag
 Oliver Zirn: Modellbildung und Simulation mechatronischer Systeme,Expert Verlag
- Hartmut Bossel; Systeme Dynamik Simulation Modellbildung, Analyse und Simulation komplexer Systeme,
- Ottmar Beucher: MATLAB und Simulink, mitp
 Ulrich Kramer, Mihaela Neculau: Simulationstechnik, Fachbuchverlag Leipzig

- Reuter, M., Zacher, S.: "Regelungstechnik für Ingenieure", Vieweg
 Unbehauen, H.: "Regelungstechnik Bd.1-3", Vieweg
 Philippsen, H.-W.: "Einstieg in die Regelungstechnik", Hanser Fachbuchverlag
- Föllinger, O.: "Regelungstechnik", Hüthig Buch Verlag Heidelberg Franklin, G.F.: "Feedback Control of Dynamic Systems", Pearson Education Limited

Baden-Württemberg Studienbereich Technik

Maschinelles Lernen (T3INF4331)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Maschinelles Lernen	Deutsch/Englisch	T3INF4331	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Labor, Vorlesung, Übung, Labor		
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die grundlegenden Methoden und Verfahren des Maschinellen Lernens und können diese gemeinsam mit den Methoden der Künstlichen Intelligenz/Wissensrepräsentation und der digitalen Sprachverarbeitung auf eine Aufgabenstellung in einem Projekt anwenden.	
Methodenkompetenz	Die Methoden des Maschinellen Lernens sind den Studierenden bekannt und sie können diese mit asnderen Methoden und Verfahren in Zusammenhang bringen und anwenden.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinhei	iten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Labor Maschinelle Lernverfahren	36,0	39,0
Grundlagen Maschineller Lernverfahren	36,0	39,0

Die Methoden und Algorithmen aus der Unit T3INF9004.2 "Grundlagen Maschineller Lernverfahren" werden in dem Labor auf reale Anwendungsszenarien angewendet.

- Einführung in das Maschinelle Lernen
- Symbolische Lernverfahren Grundlagen Neuronaler Netze Probabilistische Lernmodelle

- Erweiterte Konzepte und Deep Learning Entwurf und Implementierung ausgewählter Techniken für eine Anwendung

Besonderheiten und Voraussetzungen

Besonderheiten

Klausurdauer nur 60 Minuten, da die andere Unit mit der Prüfungsform Laborarbeit (LA) abgenommen wird.

Voraussetzungen

- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage

- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
 Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
 Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Funktionale Sicherheit (T3INF4332)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Funktionale Sicherheit	Deutsch/Englisch	T3INF4332	1	Prof. Dr. Jan Michael Olaf

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die Grundlagen über ausfallsichere Systeme und die relevanten Anforderungen, die aus der Echtzeitfähigkeit resultieren und können redundante und skalierbare Anwendungssysteme konzipieren und aufbauen. Sie können Integrationsschnittstellen und -standards anwendungsbezogen entsprechend den Sicherheitsanforderungen konzipieren und realisieren.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden kennen den Gesamtkontext, in dem Anwendungen eingesetzt werden und können Aspekte der funktionalen Sicherheit auf diese Systeme anwenden.		

Lerneinh	neiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Sicherheitstechnik	36,0	39,0
Funktionale Sicherheit Labor	36,0	39,0

- Überblick über gültige Normen zur funktionalen Sicherheit von Anwendungen Überschneidung von Reifegradmodellen (z.B. CMMI, SPICE) mit Normen zur funktionalen Sicherheit Anwendung der Grundnorm zur funktionalen Sicherheit sicherheitsbezogener Anwendungen

In diesem Labor werden die erlenten sicherheitsrelevanten Methoden, Verfahren und Normen auf ein praktisches Problem angewendet.

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

- Börcsök, J.: Funktionale Sicherheit Grundzüge sicherheitstechnischer Systeme; Hüthig, Heidelberg
 Löw, Pabst, Petry: Funktionale Sicherheit in der Praxis, dpunkt.verlag
 Hering, Triemel, Blank: Qualitätsmanagement für Ingenieure, Springer Verlag

Baden-Württemberg Studienbereich Technik

Data Science (T3INF4333)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Science	Deutsch/Englisch	T3INF4333	1	Prof. Dr. Dirk Reichardt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz Die Studierenden verfügen über Grundlagenwissen zu Methoden und Techniken des Themenfelds Data Science.				
	Die Studierenden kennen Methoden und Techniken der automatischen Datenanalyse und haben vertiefte Kenntnisse in einem der Bereiche (Data Mining, Machine Learning, Internet der Dinge, Semantic Web)			
Methodenkompetenz	Die Studierenden verfügen über methodische Kenntnisse zur Datenanalyse, insbesodere zur Erhebung und Aufbereitung von Daten.			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Data Mining	36,0	39,0	
Grundlagen Data Science	36,0	39,0	
Grundlagen Maschineller Lernverfahren	36,0	39,0	
Big Data	36,0	39,0	
Semantic Web	36,0	39,0	
Internet of Things	36,0	39,0	

- Daten und Datenanalyse
- Clustering
- Classification
- Assoziationsanalyse
- Weitere Verfahren, z.B.:
- Regression Deviation Detection
- Visualisierung
- Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.
- Grundlagen von Data Science
- Einsatz von Tools (z.B. R Programming, Octave etc.)
 Datenerhebung und Aufbereitung
 Exploratory Data Analysis

- Statistische Inferenz
- Regressionsmodelle
- Machine Learning Algorithmen
- Data Mining
- Data Visualisation
- Text Mining and Analytics (u.a. Web, Social Media) Mustererkennung und Cluster Analyse
- Einführung in das Maschinelle Lernen
- Symbolische Lernverfahren
- Grundlagen Neuronaler Netze
- Probabilistische Lernmodelle
- Erweiterte Konzepte und Deep Learning
- Entwurf und Implementierung ausgewählter Techniken für eine Anwendung

Big Data Programming

- Einführung in das Themengebiet Big Data-Programmierung
- Erläuterung der horizontalen Skalierung von Systemen bei der Verarbeitung digitaler Massendaten Einführung in die verteilte Verarbeitung digitaler Massendaten
- Einführung in Batch- und Stromverarbeitung
- Vorstellung aktueller Frameworks, Bibliotheken, Programmiersprachen, etc.
- Umsetzung von Praxisbeispielen

Big Data Storage

- Einführung in das Themengebiet Big Data-Storage
- Erläuterung der horizontalen Skalierung von Systemen bei der Speicherung digitaler Massendaten
 Einführung in die Speicherung digitaler Massendaten unter Nutzung verschiedener Speicher- und Zugriffsarten (Dateisysteme, Datenbanken, etc.)
- Vorstellung aktueller Frameworks, Bibliotheken, Programmier- und Abfragesprachen, etc.
- Umsetzung von Praxisbeispielen
- Kurze Einfuehrung in Semantische Technologien
- die Idee von Linked Data
- Das Resource Description Framework (RDF): Tripel und URLs
- RDF Syntax: XML und TTL
- die Anfragesprache SPARQL Semantik in RDF: RDF Schema (RDFS) und die Web Ontology Language (OWL)
- Zusammenarbeit der einzelnen Komponenten: der Semantic Web Layer Cake
- Anwendung von Linked Data im Kontext von Industrie 4.0
- Einführung in IoT
- Anwendungsgebiete
- Technologien (auf einer aktuellen IoT-Plattform) Kommunikationsprotokolle
- Sensorik und Datenerfassung
- Plattformer

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Grundlagen von Datenbanksystemen und Algorithmen und Datenstrukturen sind vorhanden

Literatur

- -Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
 Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.
 Matthew A. Russel, "Mining the Social Web", O'Reilly
 Nina Zumel and John Mount, "Practical Data Science with R", Manning Publications

Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer

Nathan Yau, "Visualize This: The FlowingData Guide to Design, Visualization, and Statistics", Wiley

- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
- Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage
- Marz, N.; Warren, J.: Big Data:Principles and best practices of scalable realtime data systems, Manning
- Provost, F.; Fawcett, T.: Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly and Associates
- Mayer-Schönberger, M.: Big Data: A Revolution That Will Transform How We Live, Work and Think, Hodder and Stoughton Ltd.
- Marr, B.: Big Data: Using Smart Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, John Wiley & Sons
- Hitzler, Kroetzsch, Rudolph: Foundations of Semantic Web Technologies (CRC Press)
- Hitzler, Kroetzsch, Rudolph, Sure: Semantic Web Grundlagen (Springer) Grigoris Antoniou, Frank van Harmelen: A Semantic Web Primer (MIT Press)
- Steffen Staab, Rudi Studer: Handbook on Ontologies. (Springer)
- Tim Berners-Lee: Weaving the Web (Harper)
- Engelhardt, E.: Internet of Things Manifest: Das Handbuch zur digitalen Weltrevolution: 50+ Projekte für Arduino™, ESP8266 und Raspberry Pi, Franzis Verlag
- Sprenger, F.; Engemann, C.: Internet der Dinge: Über smarte Objekte, intelligente Umgebungen und die technische Durchdringung der Welt, transcript
- Ruppert, S.: IoT für Java-Entwickler, entwickler.press

Baden-Württemberg Studienbereich Technik

Künstliche Intelligenz (T3INF4334)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Künstliche Intelligenz	Deutsch/Englisch	T3INF4334	1	Prof. Dr. Dirk Reichardt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die Einsatzgebiete und typischen Szenarien der künstlichen Intelligenz. Sie sind in der Lage zu erkennen, in welchen Anwendungen Methoden der künstlichen Intelligenz vorteilhaft sind. Die Studienrenden können grundlegende Methoden der künstlichen Intelligenz am praktischen Beispiel einsetzen.		
	Die Studierenden verfügen je nach Unitwahl über vertiefte Fachkenntnisse zu Evolutionary Computing, Maschinellem Lernen, Agentensystemen oder Emotional Computing.		
Methodenkompetenz	Die Studierenden können Problemstellungen der realen Welt erfassen und mit Fachexperten das benötigte Wissen zur Implementierung einer intelligenten Anwendung extrahieren.		
	Die Studierenden habem methodische Kenntnisse erworben um intelligente Softwaresysteme zu entwickeln (abh. von Wahlunit).		
Personale und Soziale Kompetenz	Die Auswirkungen der Aspekte interaktiver intelligenter und autonomer Systeme auf die Gesellschaft und das soziale Miteinander können die Studierenden reflektierend analysieren und sich damit auseinandersetzen. Sie können mit Fachvertretern und Laien über fachliche Fragen und Probleme des Themenfelds KI diskutieren.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Grundlagen der Künstlichen Intelligenz	36,0	39,0	
Labor Künstliche Intelligenz	36,0	39,0	
Grundlagen Maschineller Lernverfahren	36,0	39,0	
Agentenbasierte Systeme	36,0	39,0	
Evolutionary Computing	36,0	39,0	
Emotion in Interaktiven Systemen	36,0	39,0	

- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz

Labor begleitend zur Unit Grundlagen der Künstlichen Intelligenz zur Vertiefung der gelehrten Methoden. Einzelne angrenzende Methoden können ergänzt und am Projektbeispiel vertieft werden.

- Einführung in das Maschinelle Lernen
- Symbolische Lernverfahren Grundlagen Neuronaler Netze
- Probabilistische Lernmodelle
- Erweiterte Konzepte und Deep Learning
- Entwurf und Implementierung ausgewählter Techniken für eine Anwendung
- Grundlagen von Agenten und Agentensystemen
- Aufbau von Agenten und Agentensystemen
- Kommunikation in Agentensystemen
- Co-operatives Problemlösen
- Grundlagen der Spieltheorie Agenten im Software Engineering
- Agentenframeworks
- Ontologien
- Mobile Agenten
- Historie und Einsatzgebiete von Evolutionären Algorithmen
 Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle)
- Anwendung genetischer Algorithmen auf einfache Praxis-Probleme
- Einführung und Motivation
- Psychologische Grundlagen der Emotion
- Emotionserkennung (Audio/Video/Physiolog. Sensorik etc.)
- Emotionsdarstellung (Avatare etc.) Grundlegende Emotionsmodelle
- Einsatz von Emotionalen Agenten in interaktiven Systemen
- Projekt zu Emotionen in Anwendungssystemen

Besonderheiten und Voraussetzungen

Besonderheiten

Die Studiengangsleitung legt abhängig von aktuellen Gegebenheiten die Wahlunit fest.

Voraussetzungen

- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
 Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence". Springer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
- Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage
- J. Russel, Peter Norvig, "Künstliche Intelligenz Ein moderner Ansatz", Pearson Studium, aktuelle Auflage
- M.Wouldridge, "An Introduction to Multi Agent Systems", John Wiley and Sons, aktuelle Auflage Gerhard Weiss (Ed.), "Multiagent Systems A Modern Approach to Distributed Artificial Intelligence", The MIT Press, aktuelle Auflage
- Yoav Shoham, Kevin Layton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations", Cambridge University Press, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- A.E.Eiben, J.E.Smith, "Introduction to Evolutionary Computing", Springer Verlag, aktuelle Auflage Friedemann Schulz von Thun, "Miteinander Reden 1 - Störungen und Klärungen", Rowohlt Verlag.
- S.L.Breazeal, "Designing Sociable Robots", MIT Press.
- Watzlawick, Beavin, Jackson, "Menschliche Kommunikation", Verlag Hans Huber, aktuellste Auflage.
- Rosalind Picard, "Affective Computing", aktuellste Auflage
- Byron Reeves, Clifford Nass, "The Media Equation", CSLI Publications, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Management (T3INF4335)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Management	Deutsch/Englisch	T3INF4335	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion, Fallstudien	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	
Beschreibung Prüfungen	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
225,0	108,0	117,0	5

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden haben nach dem Modul Controlling als Führungsunterstützung des Managements verstanden und können das strategische und operative Controlling-Instrumentarium zur Unternehmensführung anwenden und die Methoden kritisch hinterfragen. Die Studierenden haben die Rolle weitergehender Managementaspekte verstanden und können diese gezielt einsetzen.		
Methodenkompetenz	Die Studierenden können die Controlling-Instrumente und die Methoden des Managements anwenden. Ferner können die Studierenden sich selbständig in Methoden spezieller Themen des Managements einarbeiten.		
Personale und Soziale Kompetenz	Die Studierenden können die Instrumente der Fürhung kritisch reflektieren und soziale Belange erkennen.		
Übergreifende Handlungskompetenz	Die Studierenden können aus Sicht des Managements die aktuelle Situation des Unternehmens einordnen, analysieren und zum Marktumfeld in Beziehung setzen. Sie können ein aktuelles Thema in seiner jetzigen oder zukünftigen Relevanz für ihre Tätigkeit im Unternehmen beurteilen. Sie können die vermittelten Kenntnisse im Rahmen von Fallstudien einsetzen und anwenden.		

Lern	einheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Unternehmensführung	36,0	39,0
Businessplan	36,0	39,0
Innovationsmanagement	36.0	39.0

- Grundlagen der Unternehmensführung
- Controlling als Führungsaufgabe
- Strategische Unternehmensführung
- Operative Planung und Kontrolle
- Vernetztes Denken (Unternehmensplanspiel und/oder Fallstudien)
- Exemplarische Vertiefung und neuere Entwicklung
- Entwicklung einer neuen Geschäftsidee
- Ausarbeitung eines Businessplans incl. Dokumentation und Präsentation

Innovationsmanagement als Baustein im Entwicklungsprozess

- Merkmale einer Innovation
- Innovationsarten
- Innovationsstrategien
- Innovationsprozess

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Unit 1: Unternehmensführung ist Pflicht. Aus den beiden anderen Units (Unit 2: Businessplan und Unit 3: Innvationsmanagement) muss eine Unit ausgewählt werden.

Literatur

- Horvath, P.: Controlling, Vahlen, München, aktuellste Auflage.
- Schreyögg, G., v. Werder, A. (Hrsg.): Handwörterbuch Unternehmensführung und Organisation, in: Enzyklopädie der Betriebswirtschaftslehre Band 2, Schäfer-Poeschel, Stuttgart, aktuellste Auflage.
 - Steinmann, H.; Schreyögg, G.(Autoren); Koch, J. (Künstler): Management. Grundlagen der Unternehmensführung,
- Gabler, Wiesbaden, aktuellste Auflage.

Fach- und Lehrbücher sowie Beiträge aus Tagungsbänden und Fachzeitschriften entsprechend der Auswahl des Lehrinhalts.

- P. Willer: Businessplan und Markterfolg eines Geschäftskonzepts, Deutscher Universitätsverlag Gründerleitfaden, VDI/VDE Innovation und Technik GmbH, aktuellste Auflage.
- A. Nagel: Der Businessplan, Gabler Verlag, aktuellste Auflage.
- Paxmann , Stephan A. / Fuchs , Gerhard: Der unternehmensinterne Businessplan, Campus Verlag, aktuellste Auflage.
- Strebel, Heinz: Innovations- und Technologiemanagement, Wien WUV Universitätsverlag, aktuellste Auflage.
- Burkard Wördenweber, Wiro Wickord, Marco Eggert, und Andre Größer, Technologie- und Innovationsmanagement im Unternehmen: Lean Innovation, Springer, Berlin, aktuellste Auflage.
- Oliver Gassmann, Philipp Sutter, Praxiswissen Innovationsmanagement: Von der Idee zum Markterfolg, Hanser Wirtschaft, aktuellste Auflage.

Baden-Württemberg Studienbereich Technik

Ausgewählte Aspekte des Managements (T3INF4336)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Ausgewählte Aspekte des Managements	Deutsch	T3INF4336	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung			
Lehrmethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit			

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	•	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
175,0	84,0	91,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden besitzen nach Abschluss des Moduls umfassendes Faktenwissen zu Methoden der Geschäftsprozessmodellierung und -optimierung. Sie können die Anwendbarkeit der einzelnen Methoden in der Praxis beurteilen. Sie sind in der Lage den Zusammenhang zwischen Geschäftsprozessen udn einem ERP-System zu erkennen und zu beurteilen.		
Methodenkompetenz	Die Studierenden verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden zur Modellierung und zum Management von Geschäftsprozessen. Sie sind in der Lage, fallorientiert angemessene Methoden auszuwählen und anzuwenden. Bei einzelnen Methoden verfügen sie über vertieftes Fach- und Anwendungswissen. Sie erkennen in ERP-Systemen, wie Geschäftsprozesse umgesetzt und abgebildet wurden.		
Personale und Soziale Kompetenz	Die Studierenden verstehen, dass im Rahmen des Geschäftsprozessmanagements, der Geschäftsprozessmodellierung und vo ERP-Systemen viele Unternehmensbereiche konstruktiv zusammenarbeiten müssen. Sie kennen die Konflikte, die dabei entstehen können und wissen, dass eine kompetente Moderation zur Lösung dieser Konflikte erforderlich ist.		
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls einerseits die Kompetenz erworben, für das Modellieren, Managen und Optimieren der Prozesslandschaft mit ERP-Systemen im Unternehmen geeignete Methoden auszuwählen und selbständig Lösungen zu erarbeiten.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
ERP-Systeme	36,0	39,0
Geschäftsprozessmanagement	48,0	52,0

- Entwicklung und Marktübersicht von ERP-Systemen Modellierung von ERP-Systemen, ARIS-Haus
- Aufbau und Funktionsweise eines realen ERP-Systems (z.B. SAP)
- Schnittstellen zu anderen Anwendungssystemen
- Grundlagen Geschäftsprozessmanagement
- Geschäftsprozessanalyse Geschäftsprozessmodellierung

Besonderheiten und Voraussetzungen

Besonderheiten

Abweichend von der Präsenz- und Selbststudiumszeit in der Unit T3INF4353.2 wird diese Unit in diesem Modul nur mit 36 Stunden Präsenzzeit und 39 Stunden Selbststudiumszeit angeboten

Voraussetzungen

- Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP: Geschäftsprozessorientierte Einführung mit durchgehendem Fallbeispiel, Vieweg, aktuellste Auflage
- Görtz, Hesseler: Basiswissen ERP-Systeme: Auswahl, Einführung & Einsatz betriebswirtschaftlicher Standardsoftware, W3l, aktuellste Auflage Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von ERP-Systemen, De Gruyter Oldenbourg, aktuellste Auflage
- Gadatsch, Grundkurs Geschäftsprozessmodellierung, Vieweg Verlag Wiesbaden, aktuellste Auflage
- Scheer: ARIS- Modellierungsmethoden, Metamodelle, Anwendungen, Berlin, aktuellste Auflage Schmelzer/Sesselmann: Geschäftsprozessmanagement in der Praxis, München, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Methoden und Theorien der Künstlichen Intelligenz (T3INF4337)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Methoden und Theorien der Künstlichen Intelligenz	Deutsch/Englisch	T3INF4337	1	Prof. Dr. Phil. Antonius Hoof

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
2. Stj.		Wahlmodul	1		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Programmentwurf		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind vertraut mit grundlegenden Methoden und Theorien im Bereich der Künstlichen Intelligenz (KI). Sie können sie benennen und vergleichen.	
Methodenkompetenz	Die Studierenden können die gelehrten Methoden der KI auf vorgegebene kleinere Probleme anwenden und ggf. als Anwendung implementieren	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen der Künstlichen Intelligenz	36,0	39,0
Grundlagen Maschineller Lernverfahren	36,0	39,0
Agentenbasierte Systeme	36,0	39,0
Evolutionary Computing	36,0	39,0

- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz
- Einführung in das Maschinelle Lernen
- Symbolische Lernverfahren
- Grundlagen Neuronaler Netze
- Probabilistische Lernmodelle
- Erweiterte Konzepte und Deep Learning
- Entwurf und Implementierung ausgewählter Techniken für eine Anwendung
- Grundlagen von Agenten und Agentensystemen
- Aufbau von Agenten und Agentensystemen
- Kommunikation in Agentensystemen
- Co-operatives Problemlösen
- Grundlagen der Spieltheorie
- Agenten im Software Engineering
- Agentenframeworks
- Ontologien
- Mobile Agenten
- Historie und Einsatzgebiete von Evolutionären Algorithmen
- Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle)
- Anwendung genetischer Algorithmen auf einfache Praxis-Probleme

Besonderheiten und Voraussetzungen

Besonderheiten

Neben der Unit T3INF4307.1 Grundlagen der Künstlichen Intelligenz ist eine weitere Unit zur theoritschen Vertiefung auszuwählen

Voraussetzungen

- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage
- J. Russel, Peter Norvig, "Künstliche Intelligenz Ein moderner Ansatz", Pearson Studium, aktuelle Auflage
- M.Wouldridge, "An Introduction to Multi Agent Systems", John Wiley and Sons, aktuelle Auflage
- Gerhard Weiss (Ed.), "Multiagent Systems A Modern Approach to Distributed Artificial Intelligence", The MIT Press, aktuelle Auflage
- Yoav Shoham, Kevin Layton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations", Cambridge University Press, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- A.E.Eiben, J.E.Smith, "Introduction to Evolutionary Computing", Springer Verlag, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Anwendungen der Künstlichen Intelligenz (T3INF4338)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Anwendungen der Künstlichen Intelligenz	Deutsch/Englisch	T3INF4338	1	Prof. Dr. Phil. Antonius Hoof

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Programmentwurf	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die gelehrten Anwendungsbereichen in den Methoden der Künstlichen Intelligenz eingesetz werden. Sie können aufzeigen, wie KI in diesen Anwendungen eingesetzt wird.		
Methodenkompetenz	Relativ zu mindestens eines der gelehrten Anwendungsbereiche sind die Studierenden in der Lage selbst eine Lösung auf Basis von KI-Methoden selbst umzusetzen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Information Retrieval	36,0	39,0
Suchmaschinen	36,0	39,0
Data Mining	36,0	39,0
Semantic Web	36,0	39,0

- Klassifikation der Retrieval Systeme
- Anwendungsgebiete des IR
- Textanalyse und Bildanalyse für IR
- IR-Modelle (Boolsche, Vektor, Probabilistisch, usw.)
- Datentypen und Architekture für IR
- Suchmaschinen und ihre Architekturen
- Web Search und Meta Search
- Web Search Metrike
- Suchmaschineoptimierung für Webseiten
- Navigation und Visualisierung
- social Network Analysis
- collaborative filtering
- Daten und Datenanalyse Clustering
- Classification
- Assoziationsanalyse Weitere Verfahren, z.B.:
- Regression
- Deviation Detection
- Visualisierung
- Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.
- Kurze Einfuehrung in Semantische Technologien die Idee von Linked Data
- Das Resource Description Framework (RDF): Tripel und URLs
- RDF Syntax: XML und TTL
- die Anfragesprache SPARQL
- Semantik in RDF: RDF Schema (RDFS) und die Web Ontology Language (OWL)
- Zusammenarbeit der einzelnen Komponenten: der Semantic Web Layer Cake
- Anwendung von Linked Data im Kontext von Industrie 4.0

Besonderheiten und Voraussetzungen

Besonderheiten

Es sind zwei Units zu wählen.

Voraussetzungen

T3INF4337 ist nicht strikt notwendig, aber für ein gutes Verständnis sehr ratsam.

- Stock, Wolfgang G., Information Retrieval: Informationen suchen und finden, München, Wien
- R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, ACM Press, Addison-Wesley, New York
- Ferber, Reginald: Information retrieval : Suchmodelle und Data-Mining-Verfahren für Textsammlungen, Heidelberg
- Dirk Lewandowski, Handbuch Internet-Suchmaschinen, Heidelberg
- Mark Levene, An introduction to search engines and Web navigation, Hoboken
- Mario Fischer, Website Boosting 2.0: Suchmaschinen-Optimierung, usability, Online-Marketing, Heidelberg
- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
- lan H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers
- Hitzler, Kroetzsch, Rudolph: Foundations of Semantic Web Technologies (CRC Press)
- Hitzler, Kroetzsch, Rudolph, Sure: Semantic Web Grundlagen (Springer)
- Grigoris Antoniou, Frank van Harmelen: A Semantic Web Primer (MIT Press)
- Steffen Staab, Rudi Studer: Handbook on Ontologies. (Springer)
- Tim Berners-Lee: Weaving the Web (Harper)

Baden-Württemberg Studienbereich Technik

Eingebettete Systeme und Robotik (T3INF4339)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Eingebettete Systeme und Robotik	Deutsch/Englisch	T3INF4339	1	Prof. DrIng. Olaf Herden

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Vorlesung, Übung, Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS			
Workload insgesamt (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden verfügen über vertieftes Wissen in den Gebieten eingebettete Systeme und Robotik und können diese auf praktische Sachverhalte anwenden.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen im Bereich eingebetter Systeme und der Robotik eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.		
Personale und Soziale Kompetenz	Die Studierenden haben mit Abschluss des Moduls die Fähigkeit erworben mit Fachleuten auf wissenschaftlichem Niveau über Problemstellungen eingebetteter System und der Robotik zu diskutieren und sich auf diesem Gebiet autodidaktisch fortzubilden.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Embedded Systems	36,0	39,0
Robotik 1	36,0	39,0
Robotik 2	36,0	39,0

- Entwurf von Embedded Systemen
- Beschreibung des Systemkontexts und Systemzwecks
- Dienstspezifikationen
- Schnittstellenspezifikation
- Grundlagen der Firmwareentwicklung
- Modellierung (z.B. UML für Embedded)
- Benutzung von Peripherieeinheiten
- Teststrategien
- Einführung Hardware-Software-Co-Design
- Vernetzung von Embedded Systemen
- Prinzipieller Aufbau von Robotern
- Einsatzbereiche von Robotern (mit den unterschiedlichen Anforderungen)
- Sensorik, Aktorik
- Regelung und Steuerung von Robotern
- Programmierung von Robotern Navigationsverfahren
- Industrieroboter
- Intelligente R
- Bahnplanungsverfahren in statischen und dynamischen Umgebungen
- Bahnverfolgung
- Merkmalsextration aus Scanzeilen und 2D-Bildern
- Merkmalsextraktion aus Punktwolken und 3D-Bildern
- Lokalisierungsverfahren
- SLAM (Simultaneous Localization and Mapping

	Besonderheiten und Voraussetzungen	
Besonderheiten		
-		

Voraussetzungen

- Schaaf, B.: Mikrocomputertechnik, Carl-Hanser Verlag, aktuellste Auflage (oder vergleichbare Werke über andere Mikrocontrollerfamilien)
- Kupris, G.; Sikora, A.: ZigBee Datenfunk mit IEEE802.15.4 und ZigBee, Franzis-Verlag Poing, aktuellste Auflage
- Eißenlöffel, T.: Embedded-Software entwickeln: Grundlagen der Programmierung eingebetteter Systeme Eine Einführung für Anwendungsentwickler, dpunkt.verlag, aktuellste Auflage
- Weber, Wolfgang: Industrieroboter, Hanser, neuste Auflage
- Hesse, St.; Malisa, V.: Taschenbuch der Robotik, Hanser Verlag, neuste Auflage.
- Russell, Stuart; Norvig, Peter: Künstliche Intelligenz, Pearson Studium, neuste Auflage.
- Craig, J.J.: Introduction to Robotics: Mechanics and Control, neuste Auflage.
- Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag, neuste Auflage.
- Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag

Baden-Württemberg Studienbereich Technik

Kommunikations- und Netztechnik III (T3INF4340)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Kommunikations- und Netztechnik III	Deutsch	T3INF4340	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar, Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Das Modul vermittelt vertieftes Wissen in den Bereichen: Architekturen, Aufbau und Betrieb moderner Kommunikationsetze. Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe Funktionen in aktuellen Netzen zu verstehen und mittels spezieller Schnittstellen in neue Applikationen zu integrieren. Einflüsse unterschiedlicher Faktoren und Parameter können identifiziert und im Kontext des zu betrachtenden Systems bewertet werden, auch im Hinblick auf entsprechende Berücksichtigung in einer ggfs. zu erstellenden Spezifikation.		
Methodenkompetenz			
Personale und Soziale Kompetenz	Studierende begreifen neben den techn. Inhalten auch die Bedeutung moderner Kommunikationsnetze in der Gesellschaft		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Weitverkehrsnetze 1	24,0	26,0		
Weitverkehrsnetze 2	24,0	26,0		
Funknetze 1	24,0	26,0		
Funknetze 2	24,0	26,0		
Netzmanagement	24,0	26,0		
Netzarchitekturen	24,0	26,0		
Zugangsnetze	24,0	26,0		
Formale Modelle und Konzepte der Kommunikationstechnik	24,0	26,0		
Cloud Computing	24,0	26,0		

- Grundlagen der Weitverkehrsnetze Leitungsvermittlung Glasfasernetze & Laser Telekommunikationsnetze Zellvermittelnder WAN-Protokolle Quality of Service in Weitverkehrsnetzen
- Zugangsnetze: Techniken, Schnittstellen, Protokolle Übertragungssysteme (Vertiefung)

Einführung Funktechnik - Maxwell'sche Gleichungen - EM-Wellen (Nahfeld, Fernfeld) - Antennen - Ausbreitungseigenschaften Grundlagen Modulationstechniken - ASK, FSK, PSK - Codierungstechniken für Funknetze

Gliederung der Funknetze - WWAN, WLAN, SRWN Protokolle auf WWAN-Ebene Protokolle auf WLAN-Ebene (802.11) Protokolle für SRWN - ZigBee - Bluetooth - etc.

- Netzplanung als Grundlage eines effizienten Netzmanagements Ziele, Aktivitätenen und Umfang eines Netzmanagements Bestandteile eines Konzeptes zum Netzmanagement - Managementarchitekturen, -protokolle und -dienste - Geeignete Werkzeuge und deren Anwendung
- Ausgewählte Themen zu aktuellen Netztechnologien und Netzarchitekturen, z.B.Grafentheorie, Satellitenkommunikation, Next-Generation Networks, Network Clouds, Aufbau/Betrieb/ Wartung und Qualitätssicherung von Mobilfunknetzen, Software Defined Network
- Grundlagen der Zugangsnetze Aktuelle Technologien und Protokolle auf der Basis unterschiedlicher Übertragunsmedien (Symetrische Kabel, Koax, LWL, Funk) z.B. PPP PPPoE, xDSL, ATM, SDH, NGA - Schnittstellen zu Breitband-, Funknetze, Software Defined Networks
- Modellbildung und Analyse von Kommunikationsnetzen Modellierung von Ankunftsprozessen Bedien- und Warteschlangenkonzepte Verkehrsflussteuerung in Hochlastphasen - Leistungsbewertung und QOS-konzepte
- Basistechnologien u. Einsatzszenarien
- Infrastruktur, Plattformen
- Ansätze zur Virtualiserung
- Programmierung von Web-Services
- Migration in die Cloud
- Cloud Anwendungen
- Entwicklung und Betrieb
- Big Data in der Cloud

Besonderheiten und Voraussetzungen

Besonderheiten

Weitere wählbare Unit:

T3INF4302.7: Zugangsnetze

T3INF4302.8: Formale Modelle und Konzepte der Kommunikationsinformatik

T3INF4302.9: Cloud Computing

Voraussetzungen

Kommunikations- und Netztechnik

Literatur

- A. Tanenbaum, "Computernetzwerke", Pearson-Studium D. Conrads, "Telekommunikation", Vieweg+Teubner Kristof Obermann, Datennetztechnologien für Next Generation Networks, Springer Vieweg Andreas Keller, Datenübertragug im Kabelnetz, Springer Berlin
- H.D. Lüke, J. Ohm, Signalübertragung: Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme, Springer R. Gessler, T. Krause, Wireless-Netzwerke für den Nahbereich, Springer Vieweg
- R. Gessler, T. Krause, Wireless-Netzwerke für den Nahbereich, Springer Vieweg J. Rech, "Wireless LANs: 802.11-WLAN-Technologie, Heise
- Netzwerk- und IT-Sicherheitsmanagement, Jochen Dinger, Hannes Hartenstein, KIT Scientific Publishing
- Literatur für ausgewählte Themen anhand aktueller Recherche sowie Empfehlung der Dozenten

Aktuelle Literaturrecherche und Empfehlung der Dozenten

-Andreas Keller, Breitbandkabel und Zugangsnetze, Springer Verlag Kurose und Ross, Computernetzwerke, Pearson Verlag

Baden-Württemberg Studienbereich Technik

Entwicklung von Businessystemen (T3INF4341)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Entwicklung von Businessystemen	Deutsch/Englisch	T3INF4341	1	Prof. Dr. Dirk Reichardt

	Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Wahlmodul	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sollen - Architekturprinzipien der Software von IT-Systemen kennen und beurteilen können - Bedeutung der Aspekte Robustheit, Sicherheit, Hochverfügbarkeit, Wartbarkeit kennen - RAS, Reliability, Availability, Serviceability kennen - Architekturen von state-of-the-art Businessapplikationen identifizieren können - Modulare Anwendungsentwicklung und Design Patterns verwenden können - die Einsatzgebiete mobiler und webbasierter Businesssysteme kennen und deren Nutzen abschätzen können Zudem sollten die Studierenden - Architekturmuster und Konzepte moderner Webanwendungen kennen - serverseitige Programmierung von Webanwendungen durchführen können			
Methodenkompetenz	-			
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden sollten nach Abschluss des Moduls die Prinzipien der Softwaremodellierung zur Entwicklung von Architekturen einsetzen können			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Web-Engineering 2	36,0	39,0
Architekturen von Businesssystemen	36,0	39,0

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen
- Einführung in Anwendungsarchitekturen - Mobile Aspekte von Business-Anwendungen WebServices Business Patterns (B2B, B2C, B2E, ...) CRM / SCM Marktplätze Portale - Enterprise Application Integration - PKI Infras

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- www.w3c.org de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Baden-Württemberg Studienbereich Technik

Offensive Security (T3INF4342)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Offensive Security	Deutsch/Englisch	T3INF4342	1	Prof. Dr. Ulrich Baum

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Referat oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studieren kennen typische Angriffsmethoden auf IT-Systeme und verstehen deren Voraussetzungen, Möglichkeiten und Grenzen sowie geeignete Abwehrmaßnahmen.		
	Sie kennen Zielsetzung, Vorgehensweisen und rechtliche Rahmenbedingungen von Penetrationstests sowie aktuelle Werkzeuge zu deren Durchführung.		
	Sie haben erste Erfahrungen mit der praktischen Durchführung von Angriffen und Penetrationstests unter Laborbedingungen gesammelt.		
Methodenkompetenz	Die Studierenden sind in der Lage, Penetrationstests für IT-Systeme systematisch zu planen, durchzuführen und auszuwerten. Sie nehmen bei Entwurf, Implementierung und Betrieb von IT-Systemen auch die Perspektive eines Angreifers ein, um Verwundbarkeiten und Angriffe zu identifizieren und geeignete Abwehrmaßnahmen zu treffen.		
Personale und Soziale Kompetenz	Die Studierenden sind sich der ethischen Aspekte offensiver Sicherheitsmaßnahmen bewusst und verhalten sich bei deren praktischen Umsetzung angemessen.		
Übergreifende Handlungskompetenz	Die Studierenden nutzen Penetrationstests als Bestandteil eines ganzheitlichen Ansatzes zur Verbesserung der Informationssicherheit.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Angriffsmethoden	36,0	39,0	
Penetration Testing	36,0	39,0	

- Grundbegriffe und Klassifikation von Angriffsmethoden
- Verwundbarkeiten: in Software, Hardware, Protokollen
- Angriffsmethoden und deren Abwehr: Lokale Angriffe, Netzwerkbasierte Angriffe, Malware, Denial of Service, Angriffe auf Authentifikationsmechanismen, Angriffe auf verteilte Anwendungen und Dienste, Angriffe auf mobile/eingebettete Systeme, Social Engineering
- Verschleierungstechniken und Anti-Forensik
- Übung/Labor: Demonstration ausgewählter Angriffe unter Laborbedinungen

Grundlagen der Penetrationstests

- Begriffsbestimmung und Zielsetzung
 Rechtliche und vertragliche Rahmenbedingungen
- Vorgehensweise, Methoden und Standards
- Informationsquellen zu Verwundbarkeiten und Exploits
- Planung, Durchführung, Dokumentation, Auswertung
- Automatisierung
- Umgang mit gefundenen Schwachstellen (responsible disclosure)

Labor Penetrationstests

- Aktuelle Werkzeuge und Arbeitsumgebungen für Penetrationstests
- Exemplarische Durchführung von Penetrationstests unter Laborbedingungen

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Programmierung, Betriebssysteme, Kommunikations- und Netztechnik I, Mathematische Grundlagen, Grundkenntnisse der IT-Sicherheit und Kryptographie

- Bastian Ballmann: Understanding Network Hacks, Springer
- Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, Oldenbourg
- Patrick Engebretson: Hacking Handbuch, Franzis
- Jon Erickson: Hacking The Art of Exploitation, No Starch Press William Stallings: Network Security Essentials, Pearson
- Bastian Ballmann: Understanding Network Hacks, Springer
- Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, Oldenbourg
- Patrick Engebretson: Hacking Handbuch, Franzis
- Jon Erickson: Hacking The Art of Exploitation, No Starch Press Peter Kim: The Hacker Playbook 2, CreateSpace
- William Stallings: Network Security Essentials, Pearson
- Georgia Weidman: Penetration Testing: A Hands-On Introduction to Hacking, No Starch Press

Baden-Württemberg Studienbereich Technik

Vertiefung IT-Security (T3INF4343)

	Formale Angaben zum	Modul	
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Vertiefung IT-Security	Deutsch/Englisch	T3INF4343	1	Prof. Dr. Ulrich Baum

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Referat oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden besitzen ein tiefes und aktuelles Fachwissen in ausgewählten Aspekten der IT-Security. Dieses kann ihnen als Grundlage dafür dienen, sich nach Abschluss des Studiums zu Experten auf diesem Gebiet weiterzuentwickeln.			
Methodenkompetenz	Die Studierenden können Risiken und Handlungsbedarfe hinsichtlich IT-Security einschätzen, geeignete Sicherheitsmaßnahmen entwerfen bzw. auswählen und umsetzen. Sie erkennen und berücksichtigen Sicherheitsaspekte bei Entwurf, Implementierung und Betrieb von IT-Systemen.			
Personale und Soziale Kompetenz	Den Studierenden ist bewusst, dass IT-Security ein sehr dynamisches Gebiet ist, in dem Wissen schnell veraltet und permanentes Lernen unabdingbar ist.			
Übergreifende Handlungskompetenz	Die Absolventen sind in der Lage, komplexe und aktuelle Aspekte der IT-Security bei ihrer beruflichen Tätigkeit zu berücksichtigen. Sie verstehen die ethischen und sozialen Herausforderungen der IT-Security und sind diesbezüglich zu verantwortungsvollem Handeln befähigt.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Ausgewählte Themen der IT-Security	72,0	78,0

Inhalte

Behandelt werden ausgewählte aktuelle Themen aus dem Bereich der IT-Security, beispielsweise: - Aktuelle Angriffsarten und Schutzmaßnahmen

- Moderne kryptographische Verfahren und ihre Anwendungen Hardwaresicherheit
- Sicherheit von Webanwendungen
- Entwicklung sicherer Software
- Analyse und Design von Sicherheitsprotokollen Sicherheit mobiler Geräte
- Sicherheit von Embedded Systems/Internet of Things
- Zensur, Überwachung und Ånonymität im Internet Blockchain und ihre Anwendungen
- Formale Sicherheits- und Angriffsmodelle
- IT-Security-Management
- IT-Forensik Ethische und soziale Aspekte der IT-Security

Besonderheiten und Voraussetzungen Besonderheiten

Voraussetzungen

Programmierung, Betriebssysteme, Kommunikations- und Netztechnik, Mathematische Grundlagen, Grundkenntnisse der IT-Sicherheit und Kryptographie

- Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, Oldenbourg
 Christof Paar, Jan Pelzl: Kryptographie verständlich, Springer
 William Stallings: Network Security Essentials, Pearson

Baden-Württemberg Studienbereich Technik

Informatik, Unternehmen und Gesellschaft (T3INF4344)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Informatik, Unternehmen und Gesellschaft	Deutsch/Englisch	T3INF4344	1	Prof. Dr. Klemens Schnattinger

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar, Vorlesung, Übung	
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)		
Referat (R),			
Beschreibung Prüfungen			
-			

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Nach Abschluss des Moduls können die Studierenden die wesentlichen Methoden zum Management von IT-Systemen und zur Bereitstellung von IT-Services und IT-Sicherheit benennen und grundsätzlich erläutern. Sie können die grundlegenden Rollen, Komponenten und Prozesse, die erforderlich sind, um IT-Dienstleistungen zu erbringen, zu messen und zu verbessern, darstellen und einordnen. Ferner können die Studierenden IT-Sicherheit unter dem Management-Aspekt bewerten und realisieren. Die Studierenden kennen darüberhinaus den rechtlichen, gesellschaftlichen und ethischen Diskussionsstand zum Thema Informatikeinsatz.		
Methodenkompetenz	Die Studierenden können die Methoden und Verfahren der Teilgebiete eines IT-Service-Management-Frameworks (wie z.B. ITIL) verstehen, zuordnet und einschätzen, welche für den Einsatz in unterschiedlichen Unternehmen sinnvoll sind. Sie sind darüberhinaus in der Lage, einen fundierten Beitrag zur Diskussion zum Einsatz von IT zu geben.		
Personale und Soziale Kompetenz	Die Studierenden können selbstständig Teilgebiete des IT-Management bearbeiten und mit anderen Personen diskutieren. Rechtliche, ethische un gesellschaftliche Aspekte können sie verstehen und einordnen.		
Übergreifende Handlungskompetenz	Die Studierenden können die erworbenen Kenntnisse auf praxisorientierte Fragestellungen zu den Themen IT-Management und/oder IT-Sicherheitsmanagement anwenden und selbstständig oder im Team Problemlösungen erarbeiten. Dabei sind Sie auch in der Lage, rechtliche, ethische und weiterführende gesellschaftliche Fragestellungen zu berücksichtigen		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten		Präsenz	Selbststudium
Informatik, Ethik und Gesellschaft		36,0	39,0
IT-Management		36,0	39,0

In diesem Seminar sollen Themen wie die folgenden behandlet werden:

- Verhaltensrichtlinien für Programmierer und IT-Spezialisten
- Computerkriminalität
- Geistiges Eigentum und Eigentum an Software
- Privatsphäre und Anonymität
- Computer und Verantwortung
- Technikabhängigkeit
- Verteilungsgerechtigkeit
- Demokratie und Partizipation
- Computer und Bildung
- Automatisierung und Arbeit
- Be- und Enthinderung
- Roboterethik
- Wertbeitrag der IT im Unternehmen
- IT-Strategie
 IT-Organisation und -Governance
- IT-Outsourcing
- IT-Service-Management und ITIL
- Fallstudie

Besonderheiten und Voraussetzungen

Voraussetzungen

Besonderheiten

Literatur

- Kienle, A. & Kunau, G.: Informatik und Gesellschaft: Eine sozio-technische Perspektive, De Gruyter Oldenbourg
- Weizenbaum, J.: Die Macht der Computer und die Ohnmacht der Vernunft, Suhrkamp Verlag
- Bynum, T.: Computer and Information Ethics. In: Edward N. Zalta (Hrsg.): The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/ Gless, S., Silverman, E., Weigend, T.: If Robots cause harm, Who is to blame? Self-driving Cars and Criminal Liability, New Criminal Law Review 19 (2016), 3, 412-436.
- Gless, S., Seelmann, K. (Hrsg.): Intelligente Agenten und das Recht, Baden-Baden: Nomos Verlag, 256.
- Hauck, R., Hofmann, F., Zech, H.: Verkehrsfähigkeit digitaler Güter, Zeitschrift für Geistiges Eigentum 8 (2016), 141ff.
 Hofmann, F., Hauck, R., Zech, H.: Tagungsbericht: Verkehrsfähigkeit digitaler Güter, Juristen-Zeitung 71 (2016), 4, 197-198.
- Müller-Hengstenberg, C., Kirn, S,: Rechtliche Risiken autonomer und vernetzter Systeme Eine Herausforderung, De Gruyter

Weiteres Infomaterial gibt es bei zahlreicdhen Verbänden und Zentren wie z.B.

- Computer Professionals for Social Responsibility
- Forum InformatikerInnen für Frieden und gesellschaftliche Verantwortung
- Gesellschaft für Informatik Fachgruppe Informatik und Ethik
- International Society for Ethics and Information Technology International Center for Information Ethics
- http://www.productivity.de/view/prod-industrie4.0
- http://ethicsinsociety.stanford.edu/

Jeweils aktuelle Auflage

- Beims, M., Ziegenbein, M.: IT-Service-Management in der Praxis mit ITIL, Hanser
- Austin, R.; Nolan, R., O'Donnell, S.: The Adventures of an ITLEader, Harvard Business Press
- Johanning, V.: IT-Strategie, Springer Vieweg McKeen, J., Smith, H.: IT Strategy Issues and Practices, Pearson

Jeweils aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Mobile Informationssysteme (T3INF4345)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Mobile Informationssysteme	Deutsch	T3INF4345	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Labor		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Der Studierende kann sich mit der kommunikativen und navigatorischen Absicht hinter einer medialen Erscheinung und ihrer Formgebung auseinandersetzen. Er kann vorgegebene Informationsarchitektur erfassen und selber eine solche niedriger Komplexität erstellen. Er kann Benutzerführung und Informationsarchitektur in Navigationsdesign überführen und ausarbeiten. Der Studierende kennt die verschiedenen Organisationsformen von Information und Beispiele für ihren Einsatz. Er kennt verschiedene Arten von Navigationsdesigns und kann diese Designs bei Aufgabenstellungen medienadäquat anwenden. Er kennt mehrere Methoden und Tools der Informationsarchitektur und des Informationsdesigns, um Informationen und Benutzerführung zu gestalten und kann sie bei Entwicklungsprozessen gezielt einsetzen. Er ist in der Lage, Skizzen für Navigationsdesign und Seitenlayouts von informationsorientierten Seiten zu erstellen und diese mit adäquaten Tools auszuarbeiten.		
Methodenkompetenz	Der Studierende ist grundsätzlich in der Lage, die gewählte Gestaltungsart und Datenaufbereitung zu begründen und im Team Lösungen zu entwickeln.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Benutzerführung versehen. Der Transport zwischen Datenquelle und mobilem Gerät wird mit XML-Technologien anforderungsgerecht umgesetzt		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Mobile Datenverarbeitung	36,0	39,0
Information Design	36,0	39,0

Inhalte

Bereitstellung von Datenquellen und Sensorik über Common Gateway Interface oder ähnliche Technologien Betrachtung von Leistungs- und Hochleistungsaspekten Vergleich und Bewertung verschiedener serverseitiger Programmiertechnologien Konzeption von XML basierten Austausch-Schnittstellen Aufbau lokaler Datenquellen auf mobilen Geräten Konzeption von (Teil-)Replikationen Übungen: Konzeption und Implementierung von Datenquellen für mobile Anwendungen Serverseitige Datenbankanbindungen lokale (Teil-)Replikation auf mobile Endgeräte

Information, Informationsarchitektur, Organisationsformen der Information, Baumstrukturen und Netzstrukturen, mentales Modell, informationsorientierte und handlungsorientierte Seiten im Web, Navigationstypen und Navigationsdesigns, Such-Design, Sitemap, Mindmap, Wireframe, Prozessdiagramm, medienadäquate Gestaltung von Mengentexten, iteratives Vorgehen, Interaktionsabläufe: Analyse/Modellierung, Use Cases, Personas, Szenarien, Interaktionsdesign, Labelling und Wording (Sprache & Bamp; Design), Werkzeuge und Methoden der Designentwicklung: visuelle Sprache, Moodboards, Styleguide

Besonderheiten und Voraussetzungen Besonderheiten Voraussetzungen

- Sascha Kersken: Apache 2.4: Skalierung, Performance-Tuning, CGI, SSI, Authentifizierung, Sicherheit, Vmware, Galileo Computing Yannis Papakonstantinou: Patterns for Data-Driven Web Apps, O'Reilly
- Christopher Wells: Securing Ajax Applications: Ensuring the Safety of the Dynamic Web, O'Reilly

- Stefan Koch: JavaScript: Einführung, Programmierung und Referenz, dpunkt
 Helmut Vonhoegen: Einstieg in XML: Grundlagen, Praxis, Referenz (Galileo Computing), Galileo Computing
 Meike Klettke und Holger Meyer: XML & Datenbanken. Konzepte, Sprachen und Systeme, dpunkt
- Jürgen Wolf: Linux-UNIX-Programmierung: Das umfassende Handbuch, Galileo Computing
- Jürgen Wolf: Grundkurs C: C-Programmierung verständlich erklärt, Galileo Computing
- Arndt, H.: Integrierte Informationsarchitektur.
- Brown, Dan M.: Konzeption und Dokumentation erfolgreicher Webprojekte. Götz, Veruschka: Raster für das Webdesign, Reinbek
- Jacobsen, J.: Website-Konzeption.

- Kahn, P., Lenk, K.: Websites visualisieren.
 McKelvey, Roy: Hypergraphics, Reinbek: rowohlt.
 Mok, Clement: Designing Business, San Jose (California): Adobe Press.
- Morville, P., Rosenfeld, L.: Information Architecture for the World Wide Web: Designing Large-Scale Web Sites.
- Neutzling, Ulli: Typo und Layout im Web, Reinbek: rowohlt. Schweizer, Peter: Handbuch der Webgestaltung. Bonn: Galileo Press.
- Stapelkamp, T.: Web X.0: Erfolgreiches Webdesign und professionelle Webkonzepte. Gestaltungsstrategien, Styleguides und Layouts.
- Thissen, Frank: Kompendium Screen-Design, Heidelberg: Springer.
- Weber, W.: Kompendium Informationsdesign. Wirth, Th.: Missing Links: Über gutes Webdesign

Baden-Württemberg Studienbereich Technik

Mobile Kommunikationstechnik (T3INF4346)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Mobile Kommunikationstechnik	Deutsch	T3INF4346	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Labor, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden beherrschen die Fachterminologie der Sensorik und Aktorik und deren Prinzipien. Die Studierenden können Sensoren und Aktoren für eine gegebene Aufgabenstellung auswählen und fachlich begründen.		
Methodenkompetenz	Systematische Anwendung von Fachwissen zur Lösung von Problemstellung in kommenden Technologien		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, um selbständig Lösungen für technische Problemstellungen zu entwickeln und diese systematisch umzusetzen. Sie sind in der Lage, die eigene Vorgehensweise im Entwurf von Systemen bzw. Prozessen kritisch zu reflektieren, zu bewerten und Optimierungspotenziale zu nutzen.		

Lerneinheiten und Inhal	Ite	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Mobile Netzwerkarchitekturen	36,0	39,0
Mobile Sensorik und Aktorik	36,0	39,0

Inhalto

Eine Auswahl moderner Netzwerkarchitekturen und Kommunikationstechniken, jeweils dem Stand der Technik angepasst: -Radio Frquency Identification (RFID), aktiv und passiv, -Kontaktlose Identifikationssysteme, -Voice over IP (VoIP), -Peer-to-Peer Netzwerke zur effizienten Datenorganisation und -verteilung, -Cloud Computing Prinzipien von Sensoren und Aktoren, A-D und D-A Wandlung, Sensoren der Automatisierungs- und Regelungstechnik, Sensorsysteme. Eine Auswahl aus: Typische Sensorkennlinien -Ausgewählte Sensoren (z.B. Länge, Temperatur, Kraft, Druck, Dehnung, Feuchte, Durchfluss) -Anpassungs- und Linearisierungsschaltungen für Sensoren -Messsignalvorverarbeitung -Messwertübertragung -Mess- und Testsignale, Normierung, Signalübertragung -Messkette (insbesondere Empfindlichkeit, Übertragungsverhalten) -Umgang mit Störquellen und Rauschen in Sensorsystemen -Digitale Messwertverarbeitung -Systematische und statistische Messfehler, Messgerätefähigkeit -Aktoren der Regelungs- und Automatisierungstechnik -Elektromagnetische Aktoren (Relais, Schütze, etc) -Elektrodynamische Aktoren (z.B. Voice-Coil -Elektrochemische Aktoren) u. Ansteuersysteme -Fluidtechnische Aktoren (pneumatisch, hydraulisch) u. Ansteuersysteme -Thermobimetalle -Mikroaktoren -Elektrochemische Aktoren

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

- Martin Sauter: 3G, 4G and Beyond: Bringing Networks, Devices and the Web Together, Wiley
 Ulrich Trick, Frank Weber: SIP, TCP/IP und Telekommunikationsnetze: Next Generation Networks und VoIP konkret, Oldenbourg
 Klaus Finkenzeller: RFID-Handbuch: Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC, Hanser
 Peter Mahlmann, Christian Schindelhauer: P2P Netzwerke: Algorithmen Und Methoden, Springer
 Gottfried Vossen, Till Haselmann und Thomas Hoeren: Cloud-Computing für Unternehmen: Technische, wirtschaftliche, rechtliche und organisatorische --Aspekte, dpunkt
- Heimann, Gerth & Popp: Mechatronik, Fachbuch-Verlag Leipzig Gevatter: Automatisierungstechnik 1 Meß- und Sensortechnik, Springer Verlag Tränkler, Obermeier: Sensortechnik, Springer Verlag
- Tränkler: Taschenbuch der Messtechnik, Oldenbourg

Baden-Württemberg Studienbereich Technik

Echtzeitsysteme und sicherheitskritische Anwendungen (T3INF4347)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Echtzeitsysteme und sicherheitskritische Anwendungen	Deutsch	T3INF4347	1	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Labor, Vorlesung, Übung, Labor	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	72,0	78,0	5		

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können nach Abschluss des Moduls Echtzeitsysteme unter Berücksichtigung von Betriebssystemen und Spracheigenschaften entwerfen und implementieren, die Komplexität von parallelen Programmen prüfen, kritisch vergleichen und darstellen. Anwendungen für ein sicherheitskritisches Umfeld planen, analysieren und steuern.		
Methodenkompetenz	Die Studierenden können nach Abschluss des Moduls Fachleuten gegenüber fachlich adäquat kommunizieren und sicherheitskritische, echtzeitfähige Anwendungen im Team konzipieren und Lösungen, Analysen und Steuerungen implementieren, sowie Verantwortung übernehmen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können nach Abschluss des Moduls Schnittstellen zu anderen Echtzeitkomponenten und sicherheitskritischen Anwendungen spezifizieren und implementieren, bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Lern- und Arbeitstechniken mithelfen.		

Lerneinhe	iten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Echtzeitsysteme	36,0	39,0
Sicherheitskritische Anwendungen	36,0	39,0

Inhalte

- Prozesslehre Parallelität
- Synchronisationsmechanismen
- Schritthaltende Verarbeitung Echtzeitsystem-Entwicklung Echtzeitsprachen

- Echtzeitbetriebssysteme
- Leitsysteme
- Zuverlässigkeit und Sicherheit Echtzeitkommunikation (Zeitserver, NTP, PTP, etc.)

-Harte Echtzeitsysteme -Softwarearchitekturen für sicherheitskritische Systeme -Beitriebssysteme für harte Echtzeitanwendungen -Planung, Entwurf und Entwicklung von Kommunikationssystemen -Zuverlässigkeit von Softwaresystemen aktueller Anwendungsgebiete Ü

Besonderheiten und Voraussetzungen			
Besonderheiten			
-			
Voraussetzungen			

-Gevatter, H.-J. (Hrsg.): Handbuch der Mess- und Automatisierungstechnik. Springer Verlag, aktuellste Auflage - Wörn, H.; Brinkschulte, U.: Echtzeitsysteme. eXamen.press, Springer Verlag, aktuellste Auflage - Cheng, Albert M. K.: Real-Time Systems. John Wiley & amp;amp; Sons, Inc., aktuellste Auflage

- Giorgio C Buttazzo: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, Springer
- Clifton A. Ericson, II: Concise Encyclopedia of System Safety: Definition of Terms and Concepts, Wiley
- Vera Gebhardt, Gerhard M. Rieger, Jürgen Mottok und Christian Gießelbach: Funktionale Sicherheit nach ISO 26262: Ein Praxisleitfaden zur Umsetzung, dpunkt Verlag Josef Börcsök: Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme, VDE Verlag Leanna Rierson: Developing Safety-Critical Software: A Practical Guide for Aviation Software and Do-178c Compliance, Crc Pr Inc

- Britta Herbig, André Büssing: Informations- und Kommunikationstechnologien im Krankenhaus: Grundlagen, Umsetzung, Chancen und Risiken, Schattauer -Lehmann et. al.: Handbuch der Medizinischen Informatik, Hanser Verlag

Baden-Württemberg Studienbereich Technik

Mensch Maschine Interaktion (T3INF4348)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Mensch Maschine Interaktion	Deutsch/Englisch	T3INF4348	1	Prof. Dr. Dirk Reichardt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	72,0	78,0	5		

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die verschiedenen Aspekte der Benutzerinteraktion und die wichtigsten Normen. Sie können interaktive Systeme nach diesen analysieren. Zur Gestaltung interaktive Systeme und Komponenten können sie geeignete Ansätze in den Entwicklungsansatz integrieren und Konzepte anwenden. Sie können interaktiver Systeme bezüglich ihrer Usability bewerten.			
	Entsprechend der Unitauswahl, haben die Studierenden vertiefte Kenntnisse im Themenfeld Gamification und Information Design.			
Methodenkompetenz	Sie können gemeinsam mit den Benutzern deren Bedürfnisse in Bezug auf die Anforderungen an interaktive Systeme und die Usability analysieren, die Schnittstellen entwerfen und evaluieren. Sie können in interdisziplinären Teams arbeiten. Mit Fachvertretern und Laien können sie über fachliche Fragen und Probleme diskutieren.			
	Entsprechend der Unitauswahl sind die Studierenden in der Lage ein System zu entwickeln, welches a) Elemente der Gamification enthält, b) besonderen Wert auf das Information Design legt und c) (am Beispielprojekt) die Rolle der HMI in der digitalen Transformation veranschaulicht.			
Personale und Soziale Kompetenz	Sie setzen sich mit den Auswirkungen interaktiver Systeme in der Gesellschaft auseinander.			
Übergreifende Handlungskompetenz	Studierenden reflektierend analysieren und sich damit auseinandersetzen. Sie können interdisziplinäre Anforderungen an interaktive Systeme analysieren, entwickeln und evaluieren. Mit Fachvertretern und Laien können sie über fachliche Fragen und Problme diskutieren.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Interaktive Systeme	36,0	39,0
Information Design	36,0	39,0
Labor Intelligente Interaktive Systeme	36,0	39,0
Gamification	36.0	39.0

Inhalte

Interaktive Systeme: - - Normen und Richtlinien

- -Interaktionsformen
- Software-Ergonomie
- Software Usability und User Experience
- Barrierefreiheit
- Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)

Information, Informationsarchitektur, Organisationsformen der Information, Baumstrukturen und Netzstrukturen, mentales Modell, informationsorientierte und handlungsorientierte Seiten im Web, Navigationstypen und Navigationsdesigns, Such-Design, Sitemap, Mindmap, Wireframe, Prozessdiagramm, medienadäquate Gestaltung von Mengentexten, iteratives Vorgehen, Interaktionsabläufe: Analyse/Modellierung, Use Cases, Personas, Szenarien, Interaktionsdesign, Labelling und Wording (Sprache & Design), Werkzeuge und Methoden der Designentwicklung: visuelle Sprache, Moodboards, Styleguide

Erarbeitung von exemplarischen, intelligenten interaktiven Systemen i.d.R. in Gruppenarbeit

Theoretische Grundlagen (am praktischen Beispiel) (ggf. Ergänzung zu SWE und Interaktive Systeme)

- Interaction Design Grundlagen
- Kreativität und Design Thinking
- User Experience und Usability Testing
- Interaktions- und Visualisierungstechniken
- Social and Emotional Interaction
- Adaptive Systeme
- Integration von Sensorik für moderne Interaktion
- Rolle des HMI in der Digitalen Transformation
- Analyse von exisistierenden Games, Gamification Konzepten
- Synthese von eigenen Gamification Konzept auf gewählten Anwendungsfall: Integrating game dynamics into your site, service, community, content or campaign, in order to drive participation.
- Psychologiesche Grundlagen Gamification
- Beispiele von Anwendungen
- Forschung in Gamification (Literatur)

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Literatur

- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.press
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press
- -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
- -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt
- Arndt, H.: Integrierte Informationsarchitektur.
- Brown, Dan M.: Konzeption und Dokumentation erfolgreicher Webprojekte.
- Götz, Veruschka: Raster für das Webdesign, Reinbek
- Jacobsen, J.: Website-Konzeption.
- Kahn, P., Lenk, K.: Websites visualisieren.
- McKelvey, Roy: Hypergraphics, Reinbek: rowohlt.
- Mok, Clement: Designing Business, San Jose (California): Adobe Press.
- Morville, P., Rosenfeld, L.: Information Architecture for the World Wide Web: Designing Large-Scale Web Sites. Neutzling, Ulli: Typo und Layout im Web, Reinbek: rowohlt.
- Schweizer, Peter: Handbuch der Webgestaltung. Bonn: Galileo Press.
- Stapelkamp, T.: Web X.0: Erfolgreiches Webdesign und professionelle Webkonzepte. Gestaltungsstrategien, Styleguides und Layouts. Thissen, Frank: Kompendium Screen-Design, Heidelberg: Springer.
- Weber, W.: Kompendium Informationsdesign.
- Wirth, Th.: Missing Links: Über gutes Webdesign.

Yvonne Rogers, Helen Sharp, Jenny Preece, "Interaction Design: Beyond Human-Computer Interaction", Wiley John + Sons

Alan Cooper, "About Face: Interface und Interaction Design", mitp

Charles A. Coonradt: the game of work: - Jane McGonigal: Reality is Broken

Baden-Württemberg Studienbereich Technik

Data Architectures (T3INF4349)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Architectures	Deutsch/Englisch	T3INF4349	1	Prof. Dr. Dirk Reichardt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sollen traditionelle und moderne Architekturen von Rechnersysteme zur Massendatenverarbeitung kennen und bewerten können.		
	Abhängig von der Wahl der Vertiefung sollte die zugehörige - Hardware		
	- Big Data Technologien und Methoden		
	- Grundlagen der Data Science		
	im Kontext der Datenarchitekturen vertieft werden.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lernein	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Architekturen von Rechnersystemen	36,0	39,0
Grundlagen Data Science	36,0	39,0
Big Data	36,0	39,0

- Großrechnerarchitekturen Parallele Systeme (SMP, Cluster-Systeme) Speichersysteme für Großrechneranlagen Storage Area Network (SAN) und Network Attached Storage (NAS) - Betriebssysteme (Konzepte) für Großrechneranlagen - Operating von Großrechnera
- Grundlagen von Data Science
- Einsatz von Tools (z.B. R Programming, Octave etc.)
- Datenerhebung und Aufbereitung
- Exploratory Data Analysis
- Statistische Inferenz
- Regressionsmodelle
- Machine Learning Algorithmen
- Data Mining
- Data Visualisation
- Text Mining and Analytics (u.a. Web, Social Media)
- Mustererkennung und Cluster Analyse

Big Data Programming

- Einführung in das Themengebiet Big Data-Programmierung
- Erläuterung der horizontalen Skalierung von Systemen bei der Verarbeitung digitaler Massendaten Einführung in die verteilte Verarbeitung digitaler Massendaten
- Einführung in Batch- und Stromverarbeitung
- Vorstellung aktueller Frameworks, Bibliotheken, Programmiersprachen, etc.
- Umsetzung von Praxisbeispielen

Big Data Storage

- Einführung in das Themengebiet Big Data-Storage
- Erläuterung der horizontalen Skallerung von Systemen bei der Speicherung digitaler Massendaten
 Einführung in die Speicherung digitaler Massendaten unter Nutzung verschiedener Speicher- und Zugriffsarten (Dateisysteme, Datenbanken, etc.)
- Vorstellung aktueller Frameworks, Bibliotheken, Programmier- und Abfragesprachen, etc.
- Umsetzung von Praxisbeispielen

Besonderheiten und Voraussetzungen

Besonderheiten

Die Wahl der Units obliegt der Studiengangsleitung.

Voraussetzungen

Literatur

Matthew A. Russel, "Mining the Social Web", O'Reilly

Nina Zumel and John Mount, "Practical Data Science with R", Manning Publications
Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer Nathan Yau, "Visualize This: The FlowingData Guide to Design, Visualization, and Statistics", Wiley

- Marz, N.; Warren, J.: Big Data:Principles and best practices of scalable realtime data systems, Manning
 Provost, F.; Fawcett, T.: Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly and Associates
- Mayer-Schönberger, M.: Big Data: A Revolution That Will Transform How We Live, Work and Think, Hodder and Stoughton Ltd.
- Marr, B.: Big Data: Using Smart Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, John Wiley & Sons

Baden-Württemberg Studienbereich Technik

Grundlagen des Informationsmanagements (T3INF4351)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Grundlagen des Informationsmanagements	Deutsch	T3INF4351	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische An- wendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Einführung in das Informationsmanagement	36,0	39,0
Inhaltserschließung und Dokumentenmanagement	36,0	39,0

Inhalte

- Perspektiven des im Was ist Information?
- Desicion-Support-Systeme Groupware
- Geschäftsprozesse und Workflow-Management
- EDI CRM

- Aufbau von Datenbasen
 Organisationsformen und Aufgaben von Informationsvermittlern
- Online-Retrieval
- Retrievalmodelle (Boole, Vektor, Fuzzy, Probabilistisches Retrieval)
 Grundlagen der Dokumentations- und Ordnungslehre
 Digitale Bibliotheken

- Ontologiebasierte Informationsysteme

Besonderheiten und Voraussetzungen Besonderheiten -

Voraussetzungen

Literatur

- Krcmar, H.: Informationsmanagement, Springer

G. Salton, M. J. McGill: Grundlegendes für Informationswissenschaftler; McGraw-Hill

Baden-Württemberg Studienbereich Technik

Medizinisches Informationsmanagement (T3INF4353)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Medizinisches Informationsmanagement	Deutsch	T3INF4353	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung			
Lehrwethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit			

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
200,0	96,0	104,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.			
Methodenkompetenz	Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
BWL im Gesundheitswesen	24,0	26,0	
Geschäftsprozessmanagement	48,0	52,0	
Qualitätsmanagement im Gesundheitswesen	24,0	26,0	

Inhalte

- Aufbau und Organisation des deutschen Gesundheitswesens Aufbau und Organisationsformen von Krankenhäusern Krankenhausfinanzierung Krankenhausrecht
- Grundlagen Geschäftsprozessmanagement
- Geschäftsprozessanalyse
- Geschäftsprozessmodellierung
- Grundlagen des QM Techniken des QM Normen und Zertifizierung

234

Describeriellen und Voraussetzungen			
Besonderheiten			
•			
Voraussetzungen			

Literatur

Gadatsch, Grundkurs Geschäftsprozessmodellierung, Vieweg Verlag Wiesbaden, aktuellste Auflage
 Scheer: ARIS- Modellierungsmethoden, Metamodelle, Anwendungen, Berlin, aktuellste Auflage
 Schmelzer/Sesselmann: Geschäftsprozessmanagement in der Praxis, München, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Multimedia (T3INF4354)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Multimedia	Deutsch	T3INF4354	1	Prof. Dr. Rolf Assfalg

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen				
Lehrformen	Vorlesung, Übung			
Lehrmethoden Lehrvortrag, Diskussion				

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	72,0	78,0	5		

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe Probleme der Datenkompression zu lösen.			
	Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Mediengestaltung	36,0	39,0		
Web- und Multimediabasierte Informationssysteme	36,0	39,0		

Inhalte

- Grundlagen der Gestaltung Farben Visuelles Design Psychologische Aspekte Software- und Medien-Ergonomie Gestaltung von Benutzeroberflächen Navigation und Orientierung in Informationssystemen Interaktionsgestaltung Praktische Übungen zum Web-Design
- Text- und Bildarstellung und ihre Formate Kompressions- und Approximationsverfahren Audio und Video Multimedia-Programmierung (z.B. Flash, 3dsMax, Blender, Camtasia o.ä.)

Besonderheiten und Voraussetzungen				
esonderheiten				
oraussetzungen				
Literatur				
ster A. Henning: Taschenhuch Multimedia				

Baden-Württemberg Studienbereich Technik

Informationssysteme (T3INF4355)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Informationssysteme	Deutsch	T3INF4355	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis der Entwicklung von Informationsystemen, so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Methoden auswählen und deren Machbarkeit beispielhaft darstellen können. Sie geben selbständig kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.		
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.		
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.		
Übergreifende Handlungskompetenz			

Lerneinhei	ten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Informationsvisualisierung und Data-Mining	24,0	26,0
Geschäftsmodelle im Kontext von Industrie 4.0	24,0	26,0
DB-Programmierschnittstellen	24,0	26,0

- Grafik versus Tabelle Koordinatendarstellungen und Ikonographische Methoden Hierarchien und Bäurne Klassifikation, Cluster, Regression und Werkzeuge
- Elektronische Informationsgüter
- Geschäftsmodelle
- Organisationsmodelle Von Creative Commons bis Open Access Industrie 4.0
- Internet der Dienste
- Grundlegende Paradigmen der DB-Programmierung
- ODBC
- Programmierung von DB-Schnittstellen in Scriptsprachen
- Nebenläufigkeit in der DB-Programmierung

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

Literatur

- Data Mining: Concepts and Techniques Morgan-Kaufmann Publishers Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers Lehmann, D., Albuquerque, G., Eisemann, M., Tatu, A., Keim, D., Schumann, H., Magnor, M., Theisel, H., Visualisier
- Semar, Wolfgang: E-Commerce. In: Kuhlen, Rainer; Seeger, Thomas; Strauch, Dieter (Hrsg.): Grundlagen der praktischen Information und Dokumentation. Band 1: Handbuch zur Einführung in die Informationswissenschaft und -praxis. München: K G Saur, S. 657 665

Dietmar Abts: Masterkurs Client/Server-Programmierung mit Java: Anwendungen entwickeln mit Standard-Technologien: JDBC, UDP, TCP, HTTP, XML-RPC, RMI, JMS und JAX-WS; Teubner

Baden-Württemberg **Studienbereich Technik**

Softwarequalität in der Programmierung (T3INF4356)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Softwarequalität in der Programmierung	Deutsch/Englisch	T3INF4356	1	Prof. Dr. Jan Michael Olaf

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Kombinierte Prüfung (KP)		
Beschreibung Prüfungen		

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die wichtigsten Verfahren und Normen zur Sicherstellung von Softwarequalität in der Programmierung.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, Normen der Softwarequalität in der Programmierung anzuwenden und Tests zu konzipieren und durchzuführen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können Softwarequalität beim Programmieren im Gesamtkontext in ein Anwendungsszenario integrieren.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Verfahren, Normen und Vorgehensweisen beim Testing in der Programmierung	36,0	39,0
Softwarequalität Programmierung Labor	36,0	39,0

- Spezielle Testmethoden für die Programmierung (in einer Programmiersprache wie Java oder C#) Normen für Ausfallsicherheit in der Programmeirung Testmetriken für die Programmierung

Eine Aufgabenstellung zum Thema Softwarequalität/Testing wird von den Studierenden selbstständig erfüllt

Besonderheiten	
besonderneiten	

Voraussetzungen	

- http://www.cert.org/secure-coding/publications/index.cfm
 Long, F.; Mohindra, D.; Seacord, R.; Sutherland, D.; Svoboda, D.: The CERT Oracle Secure Coding Standard for Java (SEI Series in Software Engineering),
 Addison-Wesley Professional
 Seacord, R.: Secure Coding in C and C++ (SEI Series in Software Engineering), Addison Wesley

- http://www.cert.org/secure-coding/publications/index.cfm
 Long, F.; Mohindra, D.; Seacord, R.; Sutherland, D.; Svoboda, D.: The CERT Oracle Secure Coding Standard for Java (SEI Series in Software Engineering), Addison-Wesley Professional
 - Seacord, R.: Secure Coding in C and C++ (SEI Series in Software Engineering), Addison Wesley

Baden-Württemberg Studienbereich Technik

Softwarequalität von Anwendungen (T3INF4357)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Softwarequalität von Anwendungen	Deutsch/Englisch	T3INF4357	1	Prof. Dr. Jan Michael Olaf

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Kombinierte Prüfung (KP)	-	
Beschreibung Prüfungen		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die wichtigsten Verfahren und Normen zur Sicherstellung von Softwarequalität in Anwendungen.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, Normen der Softwarequalität in Anwendungen anzuwenden und Tests zu konzipieren und durchzuführen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können Softwarequalität im Gesamtkontext in ein Anwendungsszenario integrieren.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Verfahren, Normen und Vorgehensweisen beim Testing von Anwendungen	36,0	39,0
Softwarequalität Anwendungen Labor	36,0	39,0

Inhalte

- Spezielle Testmethoden für Anwendungen
- Normen für Ausfallsicherheit von Anwendungen
- Testmetriken für Anwendungen

Eine Aufgabenstellung zum Thema Softwarequalität/Testing wird von den Studierenden selbstständig erfüllt

	Besonderheiten und Voraussetzungen	
Besonderheiten		
-		
Voraussetzungen		

20.06.2018

- Knott, D.: Mobile App Testing: Praxisleitfaden für Softwaretester und Entwickler mobiler Anwendungen, dpunkt verlag
 Daigl, M.; Glunz, R.: ISO 29119: Die Softwaretest-Normen verstehen und anwenden, dpunkt verlag
 Liggesmeyer, P.: Software-Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
 Knott, D.: Mobile App Testing: Praxisleitfaden für Softwaretester und Entwickler mobiler Anwendungen, dpunkt verlag
 Daigl, M.; Glunz, R.: ISO 29119: Die Softwaretest-Normen verstehen und anwenden, dpunkt verlag
 Liggesmeyer, P.: Software-Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag

Baden-Württemberg Studienbereich Technik

Prozessautomatisierung (T3INF4361)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Prozessautomatisierung	Deutsch/Englisch	T3INF4361	1	Prof . Dr. Marcus Strand

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

	Eingesetzte Lehr- und Prüfungsformen
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden kennen die Strukturen und Eigenschaften von Automatisierungssystemen. Sie haben Kenntnisse im Bereich der Echtzeitsysteme erworben und können Methoden der Echtzeitsystementwicklung anwenden. Funktionsprinzipien und Messverfahren zur Messung grundlegender physikalischer Größen mit Hilfe von Sensoren sind ihnen bekannt. Weiterhin verfügen Sie über Kenntnisse hinsichtlich Messkette, Signalwandlung, -aufbereitung und -übertragung. Die Grundprinzipien verschiedener Aktorsystemen sind ihnen bekannt.
Methodenkompetenz	
Personale und Soziale Kompetenz	Die Studierenden haben mit Abschluss des Moduls die Fähigkeit erworben sich mit Fachleuten auf wissenschaftlichem Niveau über mathematphysikalische Problemstellungen der Prozessautomatisierung zu unterhalten und sich auf diesem Gebiet autodidaktisch fortzubilden.
Übergreifende Handlungskompetenz	

Lernein	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Echtzeitsysteme	36,0	39,0
Sensorik und Aktorik	36,0	39,0

Inhalte

- Prozesslehre
- Parallelität
- Synchronisationsmechanismen
- Schritthaltende Verarbeitung
- Echtzeitsystem-Entwicklung
- Echtzeitsprachen Echtzeitbetriebssysteme
- Leitsysteme
- Zuverlässigkeit und Sicherheit
- Echtzeitkommunikation

- Sensorik: Klassifikationen
- Physikalische Funktionsprinzipien
- Ausgewählte Sensoren und Sensorsysteme
- Auswertung der Sensorsignale

- Begriffsdefinitionen
- Elektrische Antriebe Hydraulische und pneumatische Antriebe

Übertragungsprotokolle und Schnittstellenstandards

Besonderheiten und Voraussetzungen

Besonderheiten

Die Nummer I wird nicht mehr verwendet!

Voraussetzungen

- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium, aktuellste Auflage
- Tanenbaum A.S.: Verteilte Betriebssysteme, Prentice Hall, München, London, New York, aktuellste Auflage
- Tanenbaum A.S., van Steen Marten: Verteilte Systeme. Grundlagen und Paradigmen, Pearson Studium, aktuellste Auflage
- Mechatronik, Grundlagen und Anwendungen Technischer Systeme, Horst Czichos
- FDI Field Device Integration: Handbook for the unified Device Integration Technology; VDE Verlag von D. Großmann (Autor), M. Braun (Autor), B. Danzer (Autor), A. Kaiser (Autor), M. Riedl (Autor)

Baden-Württemberg **Studienbereich Technik**

Prozessautomatisierung II (T3INF4362)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Prozessautomatisierung II	Deutsch	T3INF4362	1	Prof . Dr. Marcus Strand

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden können die Grundlagen der diskreten Signal- und Systemtheorie in technische Anwendungen umsetzen. Sie kennen die auf den verschiedenen Ebenen der Prozessautomatisierung eingesetzten Bussysteme und deren Einsatzgebiete. Sie können anhand praktischer Beispiele Problemstellungen in Automatisierungssystemen lösen.
Methodenkompetenz	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, als auch im Team zielorientiert und nachhaltig arbeiten.
Übergreifende Handlungskompetenz	Die Studierenden können die Systemantwort auf Eingangssignale mit Hilfe von Funktionaltransformationen berechnen, sowie die Auswahl des am besten geeigneten Bussystemes für einen konkreten Anwendungsfall treffen.

Lerne	inheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Bussysteme	24,0	26,0
Labor Prozessautomatisierung	12,0	13,0
Signale und Systeme 2	36,0	39,0

Inhalte

Microprozessorbusse - Feldbusse - Leistungsmerkmale - Einsatzbereiche

- Einführung in Signale und Systeme (Diskret) Diskrete Fourier-Transformation
- Z-Transformation
- Nichtrekursive- und rekursive Systeme Digitale Filter Wavelet-Transformation

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussotzungen	

- Gerhard Schnell, Bernhard Wiedemann (Herausgeber): Bussysteme in der Automatisierungs- und Prozesstechnik Grundlagen, Systeme und Anwendungen der industriellen Kommunikation, Wiesbaden

- Werner, M.: Signale und Systeme, Vieweg
 Unbehauen, R.: Systemtheorie 1, Oldenburg
 Oppenheim, A.V., Schafer, R.W.: Zeitdiskrete Signalverarbeitung, Pearson
 D.Ch. von Grünigen, Digitale Signalverarbeitung: Bausteine, Systeme, Anwendungen

Baden-Württemberg **Studienbereich Technik**

Regelungstechnik (T3INF4363)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Regelungstechnik	Deutsch	T3INF4363	1	Prof . Dr. Zoltán Ádam Zomotor

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Theoretische Grundlagen von Regelstrecken und Regelkreisen verstehen und anwenden. Eigenschaften und Verhalten von Regelsystemen verstehen, analysieren und entwerfen.	
Methodenkompetenz	Die Absolventen verfügen über ein grundlegendes Spektrum an regelungstechnischen Methoden und Techniken, um regelungstechnische Problemstellungen lösen zu können.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Absolventen haben ein Verständnis für übergreifende Zusammenhänge und Prozesse. Sie können die Anwendbarkeit und Nutzen regelungstechnischer Methoden in der Praxis abschätzen.	

Lerneir	heiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Regelungstechnik 1	36,0	39,0
Regelungstechnik 2	36,0	39,0

- Grundlagen zur Systembeschreibung, -analyse und Regelungsentwurf Praktische Anwendung
- Weiterführende Methoden der Regelungstechnik
- Praktische Anwendung

Besonderheiten und Voraussetzungen	
Besonderheiten	

Voraussetzungen

- Reuter, M., Zacher, S.: "Regelungstechnik für Ingenieure", Vieweg
 Unbehauen, H.: "Regelungstechnik Bd.1-3", Vieweg
 Philippsen, H.-W.: "Einstieg in die Regelungstechnik", Hanser Fachbuchverlag
 Föllinger, O.: "Regelungstechnik", Hüthig Buch Verlag Heidelberg
 Franklin, G.F.: "Feedback Control of Dynamic Systems", Pearson Education Limited

- Reuter, M., Zacher, S.: "Regelungstechnik für Ingenieure", Vieweg

 Unbehauen, H.: "Regelungstechnik Bd.1-3", Vieweg

 Philippsen, H.-W.: "Einstieg in die Regelungstechnik", Hanser Fachbuchverlag

 Föllinger, O.: "Regelungstechnik", Hüthig Buch Verlag Heidelberg

 Franklin, G.F.: "Feedback Control of Dynamic Systems", Pearson Education Limited

Baden-Württemberg Studienbereich Technik

Ausgewählte Kapitel der IT (T3INF4364)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Ausgewählte Kapitel der IT	Deutsch	T3INF4364	1	Prof. Dr. Rolf Assfalg

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
525,0	219,0	306,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.	
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Medizinische Gerätetechnik	24,0	51,0	
Netzmanagement	24,0	26,0	
Wissenschaftliches Publizieren	24,0	26,0	
Business Englisch	24,0	26,0	
Simulationstechnik	24,0	26,0	
DB-Programmierschnittstellen	24,0	26,0	
Medizinischer Datenschutz	25,0	25,0	

Inhalte

Die wichtigsten modernen medizinischen Geräte und ihre prinzipielle Funktion werden vorgestellt. Bsp: Stethoskop, Endoskop, EKG, EEG, Röntgenverfahen, Ultraschallverfahren, Roboter

- Magnetresonanzverfahren
- Netzplanung als Grundlage eines effizienten Netzmanagements Ziele, Aktivitätenen und Umfang eines Netzmanagements Bestandteile eines Konzeptes zum Netzmanagement - Managementarchitekturen, -protokolle und -dienste - Geeignete Werkzeuge und deren Anwendung
- Was ist Wissenschaft?
- wie funktioniert der Wissenschaftsbetrieb?
- die Rolle der verschiedenen wissenschaftlichen Publikationsformen
- Formaler Aufbau und Gliederung wissenschaftlicher Arbeiten
- Umgang mit wissenschaftlicher Literatur und richtiges Zitieren.
- Englisch in Wort und Schrift
- Anwendungsgebiete
- Prozessbeschreibung
- Modellierungsformalismen
- Klassische Simulationsmethoden
- Analoge Modellbildung
- Digitale Modellbildung
- Datenbasierte Modellierung
- Petri-Netze
- Zustandsverfahren
- Produktionssimulation
- Betriebliche Simulationen
- Simulationssprachen
- Grundlegende Paradigmen der DB-Programmierung
- ODBC
- Programmierung von DB-Schnittstellen in Scriptsprachen
- JDBC
- Nebenläufigkeit in der DB-Programmierung
- Einführung in den Datenschutz
- Datenschutzgesetze in der Medizin
- Säulen des Datenschutzes jeweils mit Besonderheiten in der Medizin
- Datenschutzmanagement
- Datenschutzkonzept für IT-Systeme
- Orientierungshilfe KIS
- Forschung
- Besonderheiten be

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Literatur

- Kramme (Hrsg.); Medizintechnik, Verfahren Systeme Informationsverarbeitung; Springer
- Netzwerk- und IT-Sicherheitsmanagement, Jochen Dinger, Hannes Hartenstein, KIT Scientific Publishing
- Literatur für ausgewählte Themen anhand aktueller Recherche sowie Empfehlung der Dozenter
- E. Standop: Die Form der wissenschaftlichen Arbeit. 2002
- Hartmut Bossel: Systeme Dynamik Simulation; Modellbildung, Analyse und Simulation komplexer Systeme,
- Ottmar Beucher: MATLAB und Simulink, Pearson Studium Scientific Tools,
- Ulrich Kramer, Mihaela Neculau: Simulationstechnik, Fachbuchverlag Leipzig

Dietmar Abts: Masterkurs Client/Server-Programmierung mit Java: Anwendungen entwickeln mit Standard-Technologien: JDBC, UDP, TCP, HTTP, XML-RPC, RMI, JMS un JAX-WS; Teubner

- Datenschutz Eine Vorschriftensammlung BvD e.V., TÜV Media
- Münch: Technisch-Organisatorischer Datenschutz, Datakontext
- Witt: Datenschutz kompakt und verständlich, Vieweg+Teubner Verlag
- Gesundheitsdatenschutz eine Vorschriftensammlung BvD e.V., E-Book, www.tuev-media.de
- Buchner: Datenschutz im Gesundheitswesen, AOK Verlag
- Hauser/Haag: Datenschutz im Krankenhaus, Deutsche Krankenhausverlagsgesellschaft mbH

Baden-Württemberg Studienbereich Technik

Softwarequalität auf Systemebene (T3INF4365)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Softwarequalität auf Systemebene	Deutsch/Englisch	T3INF4365	1	Prof. Dr. Jan Michael Olaf

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	-
Beschreibung Prüfungen	
zusätzlich benotete Laborarbeit	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die wichtigsten Verfahren und Normen zur Sicherstellung von Softwarequalität auf Systemebene.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, Normen der Softwarequalität auf Systemebene anzuwenden und Tests zu konzipieren und durchzuführen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können Softwarequalität im Gesamtkontext auf Systemebene in ein Anwendungsszenario integrieren.	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Verfahren, Normen und Vorgehensweisen des Testings auf der Systemebene	36,0	39,0	
Softwarequalität Systemebene Labor	36,0	39,0	

Inhalte

- Spezielle Testmethoden für die Systemebene (Betriebssystem) einer Anwendung
- Normen für Ausfallsicherheit der Systemebene
- Testmetriken für die Systemebene

Eine Aufgabenstellung zum Thema Softwarequalität/Testing wird von den Studierenden selbstständig erfüllt

Besonderheiten und Voraussetzungen	
Besonderheiten	

Voraussetzungen	

- Musa, J.; Iannino, A.; Okumoto, K.: Engineering and Managing Software with Reliability Measures, McGraw-Hill Book Company
- Schneider, K.: Abenteuer Softwarequalität: Grundlagen und Verfahren für Qualitätssicherung und Qualitätsmanagement, d.punkt verlag

 Gessler, R.: Entwicklung Eingebetteter Systeme: Vergleich von Entwicklungsprozessen für FPGA- und Mikroprozessor-Systeme Entwurf auf Systemebene, Springer Viewer

 Musa, J.; Iannino, A.; Okumoto, K.: Engineering and Managing Software with Reliability Measures, McGraw-Hill Book Company

 Schneider, K.: Abenteuer Softwarequalität: Grundlagen und Verfahren für Qualitätssicherung und Qualitätsmanagement, d.punkt verlag

 Gessler, R.: Entwicklung Eingebetteter Systeme: Vergleich von Entwicklungsprozessen für FPGA- und Mikroprozessor-Systeme Entwurf auf Systemebene, Springer Viewer

Baden-Württemberg Studienbereich Technik

Maschinenbau für Informatiker (T3INF4366)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Maschinenbau für Informatiker	Deutsch	T3INF4366	1	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Mündliche Prüfung (MP),	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Studierende der Informatik haben die spezifischen Denk- und Arbeitsweisen eines Ingenieurs inbes. eines Maschinenbauers kennengelernt und können ihr Informatikwissen bei der Lösung von vorwiegend maschinenbaulichen Fragen einbringen, so dass zukunftsweisende Verbundlösungen geschaffen werden können.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Entwicklern und Entscheidern im Ingenieursumfeld auf wissenschaftlichem Niveau auszutauschen.		

Lerneinheiten	und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Konstruktion und Entwicklung	36,0	39,0
Werkstoffe und Verarbeitungstechnologie	36,0	39,0

Studierende der Informatik haben die spezifischen Denk- und Arbeitsweisen eines Ingenieurs inbes. eines Maschinenbauers kennengelernt und können ihr Informatikwissen bei der Lösung von vorwiegend maschinenbaulichen Fragen einbringen, so dass zukunftsweisende Verbundlösungen geschaffen werden können.

Die typischen Aufgaben und Kenntnisse eines Maschinenbauers sollen exemplarisch am Aufbau einer konkreten Anlage vorgestellt werden. Dazu gehören

- Konstruktionslehre (Verbindungen, Lager, Zeichnungslesen, CAD/CAM, Normung, Recycling)
- Beanspruchung (Arten, Lebensdauer, Auslegung)
- Qualitätsmanagement
- Werkstoffkunde (Werkstoffgruppen, Eigenschaften, Kennwerte, Prüfung, Festigkeitslehre)
- Produktion (Trennen, Fügen, Urformen, Umformen) Product-Lifecycle-Management

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Dubbel: Taschenbuch für den Maschinenbau; Springer-Verlag
 J. Feldhusen, B. Gebhardt: Product Lifecycle Management für die Praxis, Springer, Berlin-Gross, Hauger, Schröder, Wall: Technische Mechanik 1, Springer Verlag
- -Gross, Hauger, Schröder, Wall: T
- Hornbogen: Werkstoffe, Springer, Berlin Fritz, A. et al.: Fertigungstechnik, Springer-Verlag, Berlin Heidelberg New York Masing, Walter: Handbuch Qualitätsmanagement, Hanser

Baden-Württemberg Studienbereich Technik

Einführung in die Robotik (T3INF4367)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Einführung in die Robotik	Deutsch/Englisch	T3INF4367	1	Prof. Dr. Klemens Schnattinger

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung, Vorlesung, Übung, Labor			
Lehrmethode	n	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	•
Beschreibung Prüfungen	
-	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können nach Abschluss der Moduls die einzelnen Komponenten eines Roboters beschreiben und programmieren. Sie sind in der Lage, eine Roboter-Anwendung mithilfe einer gängigen Entwicklungsumgebung zu erstellen.		
Methodenkompetenz	Die Studierenden können gängige Methoden und Verfahren unterschiedlicher Roboteranwendungen (wie z.B. Bewegungen, Sehen, Hören, Planen) in Programmierung umsetzen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Robotik 1	36,0	39,0
Robotik 2	36,0	39,0

- Prinzipieller Aufbau von Robotern
- Einsatzbereiche von Robotern (mit den unterschiedlichen Anforderungen) Sensorik, Aktorik
- Regelung und Steuerung von Robotern
- Programmierung von Robotern
- Navigationsverfahren Industrieroboter
- Intelligente R
- Bahnplanungsverfahren in statischen und dynamischen Umgebungen
- Bahnverfolgung
- Merkmalsextration aus Scanzeilen und 2D-Bildern
 Merkmalsextraktion aus Punktwolken und 3D-Bildern
- Lokalisierungsverfahren
- SLAM (Simultaneous Localization and Mapping

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	
Voraussetzungen	

- Weber, Wolfgang: Industrieroboter, Hanser, neuste Auflage
 Hesse, St.; Malisa, V.: Taschenbuch der Robotik, Hanser Verlag, neuste Auflage.
 Russell, Stuart; Norvig, Peter: Künstliche Intelligenz, Pearson Studium, neuste Auflage.
- Craig, J.J.: Introduction to Robotics: Mechanics and Control, neuste Auflage.
 Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag, neuste Auflage.
- Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag

Baden-Württemberg Studienbereich Technik

Leittechnische Systeme (T3INF4370)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Leittechnische Systeme	Deutsch	T3INF4370	1	Prof. Joachim Schmidt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Theoretische Zusammenhänge und praxisrelevante Einflüsse innerhalb von Problemstellungen differenzieren und darauf aufbauend neue Anwendungsszenarien entwerfen und kommuizieren.
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen differenzierte sowie angemessene Methoden auszuwählen und zielgerichtet anzuwenden. So können sie die Implikationen, Praxistauglichkeit / Angemessenheit und Grenzen der eingesetzten Methoden einschätzen und ggf. optionale Handlungsalternativen aufzeigen.
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Dabei ist die Bedeutung und Berücksichtigung der gesellschaftlichen Praxis und die soziale und ökologische Nachhaltigkeit bei der Auswahl und Umsetzung von Handlungen zu beachten.
Übergreifende Handlungskompetenz	Die Studerenden können nach dem Abschluss dieses Moduls ihre Kenntnisse und Leittechnisches Fachwissen praxisbezogen anwenden bei: -der Projektierung von Prozessleitsystemen - wichtigen Komponenten in der Automatisierung von Prozessen (wichtige Aktoren und ihre Antriebstechnik, Sensoren) - dem Verständnis für Funktionalität, Struktur und Komponenten von Prozessleitsystemen - dem Informationsflüsse "von Sensor bis ins ERP" unterscheiden können - den Anforderungen bezüglich der Echtzeit-Eigenschaften, der Zuverlässigkeit und der Sicherheit - der Planung un Realisierung von IT-Security relevanten Komponenten. Die praktische Fähigkeiten der Studeirenden umfassen dann Vertiefung und Anwendung der erlernten Grundlagen im Labor (zentrale Leitwarte für Prozess-, Gebäude- und Netzleittechnik) - Handhabung und Bearbeitung von Systemen der Prozess- und Netzleitautomatisierung im Labor (u. a. Integration von OPC C/S-, BACnet- und IEC 60870-Umgebungen) - Anwendung, Betrieb und datentechnische Einbindung der im Labor und in den Außenanlagen vorhandenen erneuerbaren Energiesysteme (Photovoltaikanlage, Windkraftanlage und Wetterstation) - Praktikum an einem Leitsystem (Prozess-, Gebäude- und Netzleitsystem): Einführung in die Leitsystemsoftware, Programmierübung; Projektierung, Realisierung und Inbetriebnahme einer Leitsystemapplikation für die vorhandenen Anlagen - Professionelle Leitsystem-Dokumentation lesen und erstellen sowie: - Dokumentation und Rechtfertigung der erzielten Ergebnisse in Projektgesprächen - Beschaffung von englischsprachigen Informationen aus geeigneten Quellen (DIN, EN, ISO, Namur etc.) - Anwendung und Entwicklung von Leitsystem-Software

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Leittechnische Systeme 1	24,0	26,0
Nachhaltige Energiesysteme	48,0	52,0

Einführung - Definition der Grundbegriffe, Übersicht zu relevanten Modellen (Pyramide, Phasen, Ablauf, LT, Software) und Elementen - Arten von Prozessen (Fertigung, Verfahrenstechnik, Verteilung, Überwachung) - Automatisierungstechnik – Leittechnik (MSR +Kommunikation) - Notationen zur Beschreibung, Identifikation und Visualisierung von Prozesskomponenten (AKZ, KKS, Narmur) - Automatisierungsgrad und Rechner-Einsatzarten - Automatisierung technischer Prozesse und technischer Anlagen - Bestandteile eines Prozessautomatisierungssystems - Ebenen der Prozessführung und Automatisierungsfunktionen - Grundtypen von Vorgängen in technischen Systemen - Praktische Beispiele für Prozessautomatisierungssysteme - Auswirkungen der Prozessautomatisierung auf Mensch, Gesellschaft und Umwelt (Mensch-Maschine-Umwelt Systeme) Projektierung und Leittechnik - Projektierungsphasen - Projektmanagement - Engineering Systeme und CAD-Unterstützung bei der Projektierung - Anlagen- und Projektdokumentation sowie marktgängige Werkzeuge zu deren Erstellung - Aspekte des internationalen Projektmanagements (Grundlagen) Methoden und Konzepte der Leittechnik - Begriffe, Benennungen, Sinnbilder - Regelungen - Steuerungen, Analyse und Synthese - Visualisieren, Bedienen und Beobachten Sicherheits-, Qualitäts- und Zuverlässigkeitskonzepte Gerätesysteme und Strukturen der Leittechnik - Arten von Prozess-Signalen und Darstellung der Prozessdaten in Automatisierungssystemen - Automatisierungs-HW, SW- und LT-Komponenten im Detail - Zentrale und dezentrale Automatisierungsstrukturen -

Automatisierungshierarchien - Verteilte Automatisierungssysteme - Überwachte und gesicherte Redundanzsysteme Prozessperipherie (PNK) - Schnittstellen zwischen dem technischen Prozess und dem Automatisierungs-Computersystem - Sensoren und Aktoren - Feldbussysteme (Profibus, Interbus-S, CAN, EIB/KNX, LON) - Ein-/Ausgabe vor analogen, binären und digitalen Signalen - Übertragungsmedien (Twisted Pair-Kabel, koaxiale Medien, optische Systeme, RF/Wireless LAN) - Störbeeinflussungen auf Prozess-Signalleitungen - Maßnahmen gegen Störbeeinflussungen (EMV, Sicherheitsnormen und Standards, gesetzliche Auflagen)

Besonderheiten und Voraussetzungen

Besonderheiten

Die Nummer I wird nicht mehr verwendet

Voraussetzungen

- Bergmann, J.; Automatisierungs- und Prozessleittechnik: eine Einführung für Ingenieure und Betriebswirtschaftler; Fachbuchverlag Leipzig
- Crastan, V.; Elektrische Energieversorgung 2, Springer.
- Favre-Bulle, B.; Automatisierung komplexer Industrieprozesse: Systeme, Verfahren und Informationsmanagement; Springer. Felleisen, M.; Prozessleittechnik für die Verfahrensindustrie; Oldenbourg-Industrieverlag.
- Freyberger, F.; Leittechnik Grundlagen, Komponenten, Systeme; Pflaum.
- Früh, K.; Handbuch der Prozessautomatisierung: Prozessleittechnik für verfahrenstechnische Anlagen; Deutscher Industrieverlag.
- Gevatter, H.-J.; Handbuch der Mess- und Automatisierungstechnik; Springer.
- Gruhler, G; Feldbusse und Gerätekommunikationssysteme; Franzis. Heinecke, A.; Mensch-Computer-Interaktion; Carl Hanser Verlag.
- Kaspers/Küfner; Messen-Steuern-Regeln; Vieweg
- Langmann, R.; Prozesslenkung; Vieweg. Langmann, R.; Taschenbuch der Automatisierung; Carl Hanser Verlag.
- Lauber, R.; Prozessautomatisierung 1; Springer
- Lauber, R.; Prozessautomatisierung 2; Springer. Linders, M.; Aufgabenorientierte Visualisierungen in den Bedienoberflächen zur Führung von elektrischen Energieversorgungsnetzen; Shaker Verlag.
- Rumpel, D.; Netzleittechnik: Informationstechnik für den Betrieb elektrischer Netze; Springer.
- Schnell, G.; Prozessvisualisierung unter Windows: Überwachung und Steuerung technischer Prozesse (SCADA); Vieweg.
- Schnell, G.; Bussysteme in der Automatisierungs- und Prozesstechnik; Vieweg + Teubner Verlag. Strohrmann, G.; Automatisierungstechnik 1; Vieweg+Teubner Verlag.
- Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 1: Produktion, Springer Vieweg.
- Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 2: Automatisierung, Springer Vieweg.
- Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 4: Allgemeine Grundlagen, Springer Vieweg.

Baden-Württemberg Studienbereich Technik

Leittechnische Systeme II (T3INF4371)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Leittechnische Systeme II	Deutsch	T3INF4371	1	Prof. Joachim Schmidt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Theoretische Zusammenhänge und praxisrelevante Einflüsse innerhalb von Problemstellungen differenzieren und darauf aufbauend neue Anwendungsszenarien entwerfen und kommuizieren.
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen differenzierte sowie angemessene Methoden auszuwählen und zielgerichtet anzuwenden. So können sie die Implikationen, Praxistauglichkeit / Angemessenheit und Grenzen der eingesetzten Methoden einschätzen und ggf. optionale Handlungsalternativen aufzeigen.
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Dabei ist die Bedeutung und Berücksichtigung der gesellschaftlichen Praxis und die soziale und ökologische Nachhaltigkeit bei der Auswahl und Umsetzung von Handlungen zu beachten.
Übergreifende Handlungskompetenz	Die Studerenden können nach dem Abschluss dieses Moduls ihre Kenntnisse und Leittechnisches Fachwissen praxisbezogen anwenden bei: -der Projektierung von Prozessleitsystemen - wichtigen Komponenten in der Automatisierung von Prozessen (wichtige Aktoren und ihre Antriebstechnik, Sensoren) - dem Verständnis für Funktionalität, Struktur und Komponenten von Prozessleitsystemen - dem Informationsflüsse "von Sensor bis ins ERP" unterscheiden können - den Anforderungen bezüglich der Echtzeit-Eigenschaften, der Zuverlässigkeit und der Sicherheit - der Planung un Realisierung von IT-Security relevanten Komponenten. Die praktische Fähigkeiten der Studeirenden umfassen dann Vertiefung und Anwendung der erlernten Grundlagen im Labor (zentrale Leitwarte für Prozess-, Gebäude- und Netzleittechnik) - Handhabung und Bearbeitung von Systemen der Prozess- und Netzleitautomatisierung im Labor (u. a. Integration von OPC C/S-, BACnet- und IEC 60870-Umgebungen) - Anwendung, Betrieb und datentechnische Einbindung der im Labor und in den Außenanlagen vorhandenen erneuerbaren Energiesysteme (Photovoltaikanlage, Windkraftanlage und Wetterstation) - Praktikum an einem Leitsystem (Prozess-, Gebäude- und Netzleitsystem): Einführung in die Leitsystemsoftware, Programmierübung; Projektierung, Realisierung und Inbetriebnahme einer Leitsystemapplikation für die vorhandenen Anlagen - Professionelle Leitsystem-Dokumentation lesen und erstellen sowie: - Dokumentation und Rechtfertigung der erzielten Ergebnisse in Projektgesprächen - Beschaffung von englischsprachigen Informationen aus geeigneten Quellen (DIN, EN, ISO, Namur etc.) - Anwendung und Entwicklung von Leitsystem-Software

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Leittechnische Systeme 2	72,0	78,0

Echtzeitprogrammierung - Problemstellung - Echtzeit-Programmierverfahren - Rechenprozesse (Tasks) - Zeitliche Koordinierung (Synchronisierung) von Rechenprozessen - Kommunikation zwischen Rechenprozessen - Strategien zur Zuteilung des Prozessors an ablaufbereite Rechenprozesse (Scheduling-Verfahren) Programmiersprachen für die Prozessautomatisierung - Grundbegriffe - Höhere Programmiersprachen für die Prozessautomatisierung (KOP, FUP, AWL) - Programmierung von Speicherprogrammierbaren Steuerungen (SPS/PLC siehe u.a. DIN EN 61131-xx) Zuverlässigkeit und Sicherheit von Prozessautomatisierungssystemen - Grundlagen - Zuverlässigkeits- und sicherheitstechnische Konzepte - Verfahren zur Realisierung sicherer und verfügbare System - Sicherheits-Nachweisverfahren und Standards (SIL etc.) - Verfügbarkeit, Redundanz, Diversität und Ausfallsicherheit in der Leittechnik - Moderne Sicherheitsarchitekturen (Firewall, Verschlüsselung, VPN Tunnel) Konzepte, Methoden, Verfahren und Techniken bei Automatisierungs-Projekten - Automatisierungsprojekte - Modellierungskonzepte - Automatisierungsverfahren Rechnerunterstützung für Automatisierungsprojekte - Vorgehensweise in den Anfangsphasen eines Automatisierungsprojekts - Vorgehensweise in der Entwurfsphase - Vorgehensweise in der Implementierungs- und Inbetriebnahmephase Anwendungsbereiche der Leittechnik - Produktionsleittechnik (Fertigungsleittechnik, Verfahrensleittechnik, Kraftwerksleittechnik) - Leittechnik in Verteilsystemen (DMS: Netzleittechnik für Gas, Strom, Wärme usw.) - Gebäudeleittechnik - Verkehrsleittechnik Datenkommunikationsnetzwerke

Besonderheiten und Voraussetzungen
Besonderheiten

Voraussetzungen

Teilnahme / Belegung des Moduls "Leittechnik 1" (T3INF 4370)

- Bergmann, J.; Automatisierungs- und Prozessleittechnik: eine Einführung für Ingenieure und Betriebswirtschaftler; Fachbuchverlag Leipzig.
- Crastan, V.; Elektrische Energieversorgung 2; Springer.
- Favre-Bulle, B.; Automatisierung komplexer Industrieprozesse: Systeme, Verfahren und Informationsmanagement; Springer
- Felleisen, M.; Prozessleittechnik für die Verfahrensindustrie; Oldenbourg-Industrieverlag.
- Freyberger, F.; Leittechnik Grundlagen, Komponenten, Systeme; Pflaum.
- Früh, K.; Handbuch der Prozessautomatisierung: Prozessleittechnik für verfahrenstechnische Anlagen; Deutscher Industrieverlag.
- Gevatter, H.-J.; Handbuch der Mess- und Automatisierungstechnik; Springer.
- Gruhler, G; Feldbusse und Gerätekommunikationssysteme; Franzis
- Heinecke, A.; Mensch-Computer-Interaktion; Carl Hanser Verlag.
- Kaspers/Küfner; Messen-Steuern-Regeln; Vieweg.
- Langmann, R.; Prozesslenkung; Vieweg. Langmann, R.; Taschenbuch der Automatisierung; Carl Hanser Verlag.
- Lauber, R.; Prozessautomatisierung 1; Springer.
- Lauber, R.; Prozessautomatisierung 2; Springer.
- Linders, M.; Aufgabenorientierte Visualisierungen in den Bedienoberflächen zur Führung von elektrischen Energieversorgungsnetzen; Shaker Verlag. Rumpel, D.; Netzleittechnik: Informationstechnik für den Betrieb elektrischer Netze; Springer.
- Schnell, G.; Prozessvisualisierung unter Windows: Überwachung und Steuerung technischer Prozesse (SCADA); Vieweg.

- Schnell, G.; Bussysteme in der Automatisierungs- und Prozesstechnik; Vieweg + Teubner. Strohrmann, G.; Automatisierungstechnik 1; Vieweg+Teubner Verlag. Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 1: Produktion, Springer Vieweg.
- Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 2: Automatisierung, Springer Vieweg.
- Vogel-Heuser, B.: Handbuch Industrie 4.0 Bd. 4: Allgemeine Grundlagen, Springer Vieweg.

Baden-Württemberg Studienbereich Technik

Wahlmodul Leittechnische Systeme (T3INF4372)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Leittechnische Systeme	Deutsch/Englisch	T3INF4372	1	Prof. Joachim Schmidt

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

	Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Theoretische Zusammenhänge und praxisrelevante Einflüsse innerhalb von Problemstellungen differenzieren und darauf aufbauend neue Anwendungsszenarien entwerfen und kommuizieren.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Dabei ist die Bedeutung und Berücksichtigung der gesellschaftlichen Praxis und die soziale und ökologische Nachhaltigkeit bei der Auswahl und Umsetzung von Handlungen zu beachten.			
Übergreifende Handlungskompetenz	Nach dem Abschluss dieses Moduls können die Studierenden ihr Kenntnisse und praktischen Fähigkeiten anwenden, z. B in folgenden Bereichen: - Interaktionshardware - Verständnis für die Gestaltung, Funktionalität und Komponenten von graphischen Bedienoberflächen - Kennenlernen der Evaluationsverfahren für komplexe Bedienoberflächen - Kenntnisse über die grafischen Symbole und Kennbuchstaben für die Prozessleittechnik - Kennenlernen der Leittechnik-Begriffe - Verstehen und anwenden des KKS Kraftwerk-Kennzeichnungssystems - Normen und Richtlinien für funktionale Sicherheit in der Prozessindustrie gebrauchen Praktische Fähigkeiten - Entwicklung von mentalen Modellen zur Modellierung des Nutzungskontextes und deren Berücksichtigung beim Entwurf von der graphischen Bediensysteme - Konfektionierung der Bedienungshardware hinsichtlich deren Verfügbarkeit im Bedienumfeld - Benutzerorientierte Entwicklung von graphischen Bediensystemen - Lesen und Erstellen von professionellen System-Dokumentationen Handhabung von Gestaltungsgesetzen und relevanten Style Guides Fachübergreifende Fähigkeiten - Dokumentation und Protokollierung von Anforderungen und Entwicklungsentscheidungen in Projektgesprächen - Beschaffung von englischsprachigen Informationen aus geeigneten Quellen (DIN, EN, ISO, ANSI, DoD, IEEE, EIA / TIA, etc. Standards) - interkulturelle Kompetenz und sozialkompetente Kommunikation auf internationaler Ebene und in multikulturell besetzten Projektteams.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Normen, Standards und Gesetze in der Leittechnik	36,0	39,0
Ausfallsichere Systeme	36,0	39,0
Technisches Englisch für die Prozessautomatisierung	36,0	39,0
Arbeiten im internationalen Umfeld	36,0	39,0
Entwurf Graphischer Bedienoberflächen	36,0	39,0

- Nationale und internationale Standardisierungsgremien für die Leit- und Automatisierungstechnik und ihre Produkte kennen und verstehen Übersicht zu den verschiedenen Standardisierungsverfahren und ihre Akteure - Übersicht zu technische Standards der L
- Harte und weiche Echtzeitanforderungen und -Architekturen in HW und SW Erweiterte Sicherheitsanforderungen für Produktions- und Verteilsysteme Aufbau redundanter und skalierbarer Automatisierungs- und Visualisierungssysteme - Unterscheidungsmerkmale
- Technische Begriffe der Leit- und Automatisierungstechnik
- Englische Bezeichnung von Elementen, Geräten und Systemen des Fachgebiets
- Standardisierungsgremien und ihre Produkte kennen und verstehen
- Angemessene Formulierungen für technische Dokumente
- Im Zuge der Globalisierung vernetzt sich die Arbeitswelt immer mehr; so ist es heute normal, in international besetzten Teams zu arbeiten, Kunden in aller Welt zu betreuen oder Einkäufe jenseits der Grenzen zu tätigen. - Unsere modernen Kommunikationsm

Die Interaktion des Menschen hat sich auf Grund der rasanten Weiterentwicklung im Bereich der Computer- und Informationstechnologie stark verändert. Die Mensch-Computer-Interaktion prägt zunehmend unseren Alltag und unser Berufsleben. Beispielsweise erfolgt die Bedienung von System, wie beispielsweise ein Prozessleitstand, über berüh-rungsempfindliche Monitore. Ein Ende dieser Entwicklung ist derzeit nicht absehbar. Allerdings besitzen sehr viele graphische Bediensysteme eine unzulängliche Benutzerführung. Folglich verläuft die Mensch-Computer-Interaktion bestenfalls suboptimal. Basierend auf dieser Motivation soll die Vorlesung "Entwurf von grafischen Oberflächen" den Studenten und Studentinnen Grundlagen vermitteln, die sie bei der Einwicklung von Programmen benötigen, um eine benutzerfreundliche Mensch-Computer-Interaktion zu realisieren. Um diesen Aspekten Rechnung zu tragen, unterteilt sich die Vorlesung in drei Abschnitte. - Im ersten Teil werden Grundlagen der Mensch-Computer-Interaktion erarbeitet. Hierzu gehört eine geschichtlich orien-tierte Einführung in das Fach. Anschließend wird die Software-Ergonomie vorgestellt. Der weitaus größte Bereich stellt die Informationsverarbeitung des Menschen aus physiologischer und psychologischer Sicht dar. Abschließend werden die menschliche Handlungsprozesse und die mentale Modelle, als zentrales Konzept für den Entwurf von graphischen Bedienoberflächen, erläutert. - Der zweite Teil der Vorlesung fokussier die Benutzerschnitte. Basierend auf der Beschreibung der verfügbaren Interaktions-Hardware, wie beispielsweise Computer-Maus und Bildschirm, werden dann die Eingabe-/Ausgabe-Ebene, die Dialogebene, die Werkzeug-Ebene und die Gestaltung von Multimedialen Dialogen besprochen. - Im dritten und letzen Teil der Vorlesung werden dann die Aspekte der Benutzerunterstützung, der Organisationsebene und der benutzerorientierte Systementwicklung dargestellt sowie Evaluationsmethoden für graphische Bedienoberflächen vorgestellt.

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- ISO/IEC 15408 Information Technology, Security Techniques ISO/IEC 27001ff: 2005 Information Technology, Security Techniques, Information Security Management Systems - IEC/PAS 62443-3 Security for industrial Process Measurement and Control - NIST SP 80
- Börcsök, J.: Elektronische Sicherheitssysteme; Hüthig, Heidelberg.
- Börcsök, J.: Funktionale Sicherheit, Grundzüge sicherheitstechnischer Systeme; Hüthig, Heidelberg
- Wratil, P.; Kieviet, M.: Sicherheitstechnik für Komponenten und System
- Hill, B.; Geddes, M.: Englisch ganz leicht.
- Adam, B.: Business Englisch. Argumentieren. Korrespondieren. Verhandeln.
- Bonamy, D.: Technical English 1 + 2; Longman Group.
- Hornby, S.: Oxford Advanced Learner's Dictionary.
- R. Gesteland: Global Business Behaviour, Piper Verlag.
- R. Gesteland: Cross-Cultural Business Behaviour, Copenhagen Business School Press.
- Georges Mikes: How to Be an Alien, Penguin Paperback
- Michel Tournier: Le bonheur en Allemagne, Gallimard Verlag
- Heinecke, A.; Mensch-Computer-Interaktion; Fachbuchverlag Leipzig im Carl Hanser Verlag; München u.a.
- Herczeg, M.; Interaktionsdesign; Gestaltung interaktiver und multimedialer Systeme, Oldenbourg-Verlag, München, Wien,
- Herczeg, M.; Software-Ergonomie: Grundlagen der Mensch-Computer-Kommunikation; Oldenbourg Wissenschaftsverlag

Baden-Württemberg Studienbereich Technik

Informationsaustausch im Automobil (T3INF4382)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Informationsaustausch im Automobil	Deutsch	T3INF4382	1	Prof . Dr. Mario Babilon

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Sem.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz		
Methodenkompetenz		
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten u	nd Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Fahrerinformationssysteme	36,0	39,0
Vernetzung im Automobil	36,0	39,0

Inhalte

- Methoden der Informations- und Entwicklung der Fahrerinformationssysteme - Abgrenzung gegenüber Sicherheitssystemen - Assistenzfunktionen und Unterhaltungssysteme - Funktionsumfang und Bedienung eines Fahrerinformationssystems - Aufbau eines Fahrerinformationssystems - Einbindung des Systems ins Kfz - Vernetzung im Kfz und Interaktion mit anderen Systemen - Sensoren: Gyroscope, Odometer - Galileo Grundlagen - Koppelortung - Map Matching - Routensuche (Algorithmen) - TMC, RDS, DAB und Nachfolge - HMI (Human Machine Interface)

- Übersicht über die seriellen Bussysteme im Kfz - Einsatzgebiete der seriellen Bussysteme im Kfz - Behandlung der Protokolle einiger ausgewählter Bussysteme - Gesamtvernetzung und Elektronikarchitektur - Datenverwaltung - Verbindung mit Sensoren, Aktoren - Bussysteme und elektronische Steuergeräte im Kfz - OSEK: Einführung in den Betriebssystemstandard - Treiber: Initialisierung, Senden und Empfangen, Fehlerbehandlung - Transportschicht: Segmentieren, Assemblieren, Data Flow - Netzwerkmanagement: Sleep und WakeUp

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen	

Literatur

-Bosch Kraftfahrzeugtechnisches Taschenbuch, Robert Bosch GmbH -Sicherheits- und Komfortsysteme, Robert Bosch GmbH

- Audio, Navigation und Telematik für Kraftfahrzeuge, Robert Bosch GmbH - Balzer, Ehlert: Handbuch der KFZ-Technik, 2 Bände, Fahrwerk, Bremsen, Karosserie, Elektronik Motorbuch Verlag - Etschberger, Konrad: Controller Area Network. Carl Hanser Verlag - Lawrenz, Wolfhard: CAN Controller Area Networking, Hüthig Verlag - ISO 11898 (Controller Area Network) - LIN Specification - FlexRay Specification

Baden-Württemberg Studienbereich Technik

Verteilte Systeme (T3INF4390)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Verteilte Systeme	Deutsch	T3INF4390	1	Prof. Friedemann Stockmayer

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Vorlesung, Übung, Labor	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in min)	
Klausurarbeit (K),	-	
Beschreibung Prüfungen		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	60,0	90,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Das Modul vermittelt die Grundlagen verteilter IT-Systeme, deren Architekturen (Middleware), zentraler Dienste, Algorithmen zur Synchronisation und Datenhaltung. Dabei werden die Konzepte der IT-Sicherheit berücksichtigt. Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden. Die Studierenden sind mit Abschluss des Moduls in der Lage, Kernaspekte einer Spezifikation zu analysieren, um eine geeignete IT-Architektur auszuwählen oder zu entwickeln. Schwerpunkte bilden dabei die einzelnen Komponenten und deren Zusammenwirken in einem heterogenen und verteilten System.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inha	lte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Verteilte Systeme	36,0	39,0
Labor Verteilte Systeme	24,0	51,0

- Einführung in die verteilten Systeme
- Anforderungen und Modelle Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer
- Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
 Kommunikation in verteilten Systemen
- Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

Praktische Vertiefung der Vorlesungsinhalte, Entwurf einer Beispielanwendung auf Basis einer Middleware-Architektur

Besonderheiten und Voraussetzungen		
Besonderheiten		

Voraussetzungen

- Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag

Baden-Württemberg Studienbereich Technik

Seminar Informatik (T3INF4391)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Seminar Informatik	Deutsch/Englisch	T3INF4391	1	Prof. Dr. rer. nat. Martin Plümicke

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar	
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in min)
Referat (R),	-
Beschreibung Prüfungen	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.	
Methodenkompetenz	Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Seminar Algorithmik	36,0	39,0	
Seminar Praktische Informatik	36,0	39,0	
Seminar Theoretische Informatik	36,0	39,0	

Im Rahmen der Lehrveranstaltung können sich Studierende in Kleingruppen selbständig ein fortgeschrittenes Thema aus dem Bereich Algorithmen und Datenstrukturen erarbeiten und es zusammen mit einer eigenen Beispielimplementierung präsentieren. In der Vorlesung können auch typische Aufgaben von Programmierwettbewerben vorgestellt werden, die in Gruppenarbeit gelöst werden.

In dem Seminar werden moderne Themen der praktischen Informatik aus den Bereichen:

- Datenbanken
- Programmiersprachen Netzen

besprochen

Registermaschine, Turingmaschine, Churchsche These - Unentscheidbarkeit (Halteproblem, Postsches Korrespondenzproblem) - Rekursive und rekursiv aufzählbare Sprachen - Reduzierbarkeit, Satz von Rice - Theorie der NP-Vollständigkeit - Komplexitätsklassen

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

Literatur

- Bird: Pearls of Functional Algorithm Design, Cambridge University Press - Cormen, Leiserson, Rivest, Stein: Algorithmen - Eine Einführung, Oldenbourg - Gerdes, Klawonn, Kruse: Evolutionäre Algorithmen: Genetische Algorithmen - Strategien und Opt

Wechselnde Literatur je nach Themengebiet

- Wegener; Theoretische Informatik; Teubner Schöning, Uwe: Ideen der Informatik, Oldenburg Hopcroft, Motwani, Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley

Baden-Württemberg Studienbereich Technik

Vorgehensmodelle (T3INF4392)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Vorgehensmodelle	Deutsch/Englisch	T3INF4392	1	Prof. Dr. Eckhart Hanser

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
3. Stj.		Wahlmodul	1		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Labor, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt		

Prüfungsleistung	Prüfungsumfang (in min)	
Prüfungswahl	-	
Beschreibung Prüfungen		
Klausurarbeit oder Kombinierte Prüfung		

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
150,0	72,0	78,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Teilnehmer sind in der Lage, klassische Vorgehensmodelle und Reifegradmodelle und agile Ansätze zu beschreiben, einzusetzen und voneinander abzugrenzen.			
Methodenkompetenz	Klassische und agile Methoden der Software-Entwicklung können angewandt werden.			
Personale und Soziale Kompetenz	Die Teilnehmer können ihre eigene Teamfähigkeit in modernen Software-Entwicklungsprojekten einschätzen.			
Übergreifende Handlungskompetenz	Der Umgang mit klassischen und agilen Praktiken ist im studentischen Projektteam erprobt.			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Agile Prozessmodelle	36,0	39,0	
Klassische Vorgehensmodelle	36,0	39,0	

Inhalte

- ΧP
- Kanban

- Aktuelle agile Prozessmodelle Testgetriebene Entwicklung Durchführung eines Projekts mit einem erlernten agilen Prozessmodell
- V-Modell nach Boehm V-Modell XT CMMI Reifegrad-Modell

	Besonderheiten und Voraussetzungen
В	esonderheiten
-	

Voraussetzungen

Grundlegende Kenntnisse des Software-Engineerings sind vorhanden.

Literatur

- Eckhart Hanser, Agile Prozesse: Von XP über Scrum bis MAP Springer-Verlag

- Lundak: Agile Prozesse, ebook
 R. Hruschka, Ch. Rupp, G.: Starke Agility kompakt Spektrum Akademischer Verlag
 Kent Beck: Test-Driven Development: By Example (Addison-Wesley Signature), Verlag: Addison-Wesley Professional

Reinhard Höhn, Stephan Höppner: Das V-Modell XT (Springer); J. Friedrich et.al.: Das V-Modell XT (Springer); Ralf Kneuper: CMMI, Verbesserung von Software- und Systementwicklungsprozessen mit Capability Maturity Model Integration (dpunkt); Mary Beth Crissis et.al.: CMMI, Guidelines for Process Integration and Product Improvement

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik 3. SJ KA (T3INF4900)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik 3. SJ KA	Deutsch	T3INF4900	1	Prof. Dr. Johannes Freudenmann

	Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
3. Stj.		Wahlmodul	2		

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Seminar, Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Prüfung (KP)	
Beschreibung Prüfungen	
-	

	Workload un	d ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, im Rahmen der von ihnen gewählten Units, zu den genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.	
Methodenkompetenz	Die Absolventen verfügen über das in den ausgewählten Units aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz		

Lerne	einheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
ERP-Systeme	36,0	39,0
Games and Gaming	36,0	39,0
Web-Services	36,0	39,0
Evolutionäre Algorithmen	36,0	39,0
Seminar Theoretische Informatik	36,0	39,0
Robotik 1	36.0	39.0

- Entwicklung und Marktübersicht von ERP-Systemen
- Modellierung von ERP-Systemen, ARIS-Haus
- Aufbau und Funktionsweise eines realen ERP-Systems (z.B. SAP)
- Schnittstellen zu anderen Anwendungssystemen

In diesem Kurs sollen die erlernten Kenntnisse aus den verschiedenen Vorlesungen wie Gamification, (Advanced) Software-Engineering, Programmierung, Web-Engineering, Datenbanken, Kommunikation & Netze unter Berücksichtigung aktueller Technologien im Spielebereich projektbezogen umsetzt werden, um Teilaspekte verschiedener Technologien zu durchleuchten (z.B. Vorstellung verschiedener Spiel-Technologien). Da dieser Kurs sehr starkes Vorwissen und selbst-regulierendes Lerner voraussetzt, ist davon abzuraten, sich hier anzumelden, wenn man nicht willig ist, viel Zeit zu investieren und aktiv die Qualität des Kurses mitzulenken. Lernziele werden am Anfang des Kurses durch die Teilnehmer selbst definiert. Unter anderem werden folgende Bereiche abgedeckt: Teams müssen sich auf bestimmte Technologien spezialisieren und das gewonnene Know-how mit den anderen teilen. - Plattformen (jMonkey, unity3D, libgdx, ...) - Game-State-Pattern bzw. spezielle Patterns für Spiele (psychologische Ebene) - Game-State-Pattern bzw. spezielle Patterns für Spiele (technische Implementierungen) - Texturen, Animation, 3D-Objekte (State-of-the-Art-Software) (z. B. bekommen Studenten von Autodesk professionelle (Industriestandard) 3D-Animationssoftware kostenlos zur Verfügung gestellt) Förderung persönlicher Kompetenzen wie eigenverantwortliches Arbeiten und gruppendynamische MethodenNote und Abschlussprüfung bestehen aus einer Projektarbeit, die vorher festgelegte Kriterien erfüllen muss. Zusätzlich werden pro Team Tutorials erstellt, die zukünftigen Klassen zur Verfügung stehen werden, um somit über die Zeit hinweg eine Knowledge- Datenbank aufzubauen, die den Unterricht anreichert.

Grundlegende Konzepte von Webservices und Service-orientierter Architektur (SOA) werden erläutert und beispielhaft erstellt. Definierte Dienste und Protokolle werden vorgestellt: - SOAP, Message-Protokoll - WSDL, Interface Beschreibung - UDDI, Verzeichnis - WSIL, Dezentrale Verzeichnisse - BPEL4WS

- Historie und Grundprinzipien von Evolutionären Algorithmen Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle) - Anwendung genetischer Algorithmen auf einfache Probleme (Systemidentifikation
- Registermaschine, Turingmaschine, Churchsche These Unentscheidbarkeit (Halteproblem, Postsches Korrespondenzproblem) Rekursive und rekursiv aufzählbare Sprachen - Reduzierbarkeit, Satz von Rice - Theorie der NP-Vollständigkeit - Komplexitätsklassen
- Prinzipieller Aufbau von Robotern
- Einsatzbereiche von Robotern (mit den unterschiedlichen Anforderungen)
- Sensorik, Aktorik
- Regelung und Steuerung von Robotern
- Programmierung von Robotern
- Navigationsverfahren
- Industrieroboter
- Intelligente R

Besonderheiten und Voraussetzungen

Besonderheiten

Weitere Units

- T3INF9000 1 Web-Services
- T3INF9000.2 Evolutionäre Systeme
- T3INF9000.3 Seminar Theoretische Informatik
- T3INF9000.4 Robotik I T3INF9000.5 Parallelverarbeitung
- T3INF9000.6 CCNA-Security
- T3INF9000.7 Ausgewählte Themen der IT-Security
- T3INF9000.9 Psychologische Grundlagen für Informatiker T3INF9000.10 Energie-Informatik
- T3INF9004.6 Ausgewählte Themen der Informatik
- T3INF9006.6 Gamification
- T3INF9006.7 High Performance Computing
- T3INF9006.8 Moderne Konzepte der Informatik
- T3INF9007.5 Robotik 2

Voraussetzungen

- Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP: Geschäftsprozessorientierte Einführung mit durchgehendem Fallbeispiel, Vieweg, aktuellste Auflage
- Görtz, Hesseler: Basiswissen ERP-Systeme: Auswahl, Einführung & Einsatz betriebswirtschaftlicher Standardsoftware, W3l, aktuellste Auflage
- Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von ERP-Systemen, De Gruyter Oldenbourg, aktuellste Auflage
- Lewis, Chris: Irresistible Apps: Motivational Design Patterns for Apps, Games, and Web-based Communities. Apress.
- Funge, John; Millington, Ian: Artificial Intelligence for Games. CRC Press. Luna, Frank: Introduction to 3D Game Programming.
- Melzer, Eberhard, von Thiele; Service-orientierte Architekturen mit Web Services; Spektrum Akademischer Verlag.
- Weicker; Evolutionäre Algorithmen, Leitfäden der Informatik; Vieweg.
- Wegener; Theoretische Informatik; Teubner
- Schöning, Uwe: Ideen der Informatik, Oldenburg
- Hopcroft, Motwani, Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley
- Weber, Wolfgang: Industrieroboter, Hanser, neuste Auflage
- Hesse, St.: Malisa, V.: Taschenbuch der Robotik, Hanser Verlag, neuste Auflage,
- Russell, Stuart; Norvig, Peter: Künstliche Intelligenz, Pearson Studium, neuste Auflage.
- Craig, J.J.: Introduction to Robotics: Mechanics and Control, neuste Auflage
- Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag, neuste Auflage.

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik (STG Jahr 2) (T3INF4901)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik (STG Jahr 2)	Deutsch/Englisch	T3INF4901	1	Prof. Friedemann Stockmayer

	Verortung des Moduls im	Studienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Labor, Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

	Workload un	d ECTS	
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Im Rahmen eines vorgegebenen Auswahlkataloges besteht die Möglichkeit zur spezifischen Erweiterung oder Vertiefung des Curriculums. Die Absolventen verfügen über das in den jew. Wahlunits aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach oder auch Randgebiete, aus denen sie angemessene Methoden auswählen und anwenden, mit Bekanntem verknüpfen, um neue Lösungen zu erarbeiten.	
Methodenkompetenz		
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.	
Übergreifende Handlungskompetenz	Die Studierenden haben die Möglichkeit ihre vorwiegend berufliche Handlungskompetenz zu erweitern. Dies gelingt entweder durch Aufgreifen von Spezialthemen (Vertiefung), oder Erschließung neuer Themen (auch Randgebiete).	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Assemblerprogrammierung	36,0	39,0
Linux 1	36,0	39,0
Cross Plattform Web Development	36,0	39,0

- Prozessorfamilie 8051
- Entwicklungsumgebung, z.B. μ Vision der Firma Keil in der Demo Version
- Unbewertete Übungen : z. B. Serielle Schnittstelle, Analog Digital Umsetzer
- Bewerteter Programmentwurf : Bearbeitungszeitraum ca. 3 Wochen
- Weitere aktuellen Themen nach Absprache
- Grundsätzliches/Einleitung: Geschichte, Was ist eigentliche Linux, Unterschiede Windows/Linux, Lizenzen, Distributionen, Support, Dokumentationskonzepte
- Installation und erste praktische Erfahrungen: Knoppix, Suse oder eine andere Major-Distribution, K
- Grundlagen JavaScript
- Grundlagen Node.js HTTP Server mit Express JS
- MongoDB und Mongoose Angular JS
- Ionic Framework
- Apache Cordova
- Websockets und evtl. Wunschthemen. Die Inhalte werden stets praktisch angewendet, so wird während der Vorlesung gemeinsam eine beispielhafte Anwendung entwickelt.

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul beinhaltet zwei wählbare Units aus einem vorgegebenen Auswahlkatalog, davon kann eine durch die Studiengangsleitung vorgegeben werden.

T3INF9001.1: Assemblerprogrammierung T3INF9001.2: C#/.NET

T3INF9001.3: C++

T3INF9001.6: Linux-1

T3INF9002.4: Linux-2

T3INF9001.7: Programmierbare Logik

T3INF9002.1: Diskrete Mathematik

T3INF9002.2: Diskrete Mathematik 2

T3INF9002.4: Linux-2

T3INF9003.2: Bioinformatik 1

T3INF9003.3: Bioinformatik 2

T3INF9003.5: Advanced Management

T3INF9003.7: Spoken Language Processing

T3INF9004.1: Al Game Development

T3INF9004.2: Grundlagen Maschineller Lernverfahren

T3INF9004.3: Agentenbasierte Systeme

T3INF9004.4: Evolutionary Computing

T3INF9004.5: Emotion in Interaktiven Systemen

T3INF9005.9: 3D-Modeling and Animation 2

T3INF9006.3: 3D-Modeling und Animation 1

T3INF9006.6: Gamification

T3INF4960.1: Labor Intelligente Interaktive Systeme

T3INF4930.1: Grundlagen Data Science T3INF9007.1: Parallele Programmierung

T3INF9007.2: Mikrocontrollerprogrammierung mit Arduino

T3INF9007.3: Cloud Computing
T3INF9007.6: Cross Platform Web Development

T3INF9007.8: Programmiertechniken für eingebettete Systeme

T3INF9007.9: Semantic Web

T3INF9009.2: Cloud-Anwendungen, DevOps und Bigdata

T3INF9009.3: Internet of Things

T3INF9009.4: Progressive Web App Development

T3INF9010.1: Microservices mit Docker und Node.js: Eine Praktische Einführung T3INF9010.2: App-Entwicklung mit Swift

T3INF4211.2: Labor Compilerbau

T3INF4240.2: Labor Kommunikationsinformatik 2

T3INF4241.1: Skriptsprachen
T3INF4925.1: Labor Künstliche Intelligenz

T3INF4308.1: Data Mining

T3INF4382.1: Fahrerinformationssysteme T3INF4382.2: Vernetzung im Automobil

T3INF3001.1: Softwarequalität

T3INF4212.2: Signale und Systeme 2 T3INF4301.1: Verteilte Systeme

Voraussetzungen

- Kofler, M: Linux: Debiam Fedore, openSue, Ubuntu, Addison-Wesley,
- Kofler, M: Linux- Kommandoreferenz, Addison-Wesley
- D.J. Barett, Torsten Wilhelm: Lunix kurz und gut, O'Reilly

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik (STG Jahr 3) (T3INF4902)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik (STG Jahr 3)	Deutsch/Englisch	T3INF4902	1	Prof. Friedemann Stockmayer

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Labor, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung Prüfungsumfang (in min)	
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0 72,0 78,0 5					

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Im Rahmen eines vorgegebenen Auswahlkataloges besteht die Möglichkeit zur spezifischen Erweiterung oder Vertiefung des Curriculums. Die Absolventen verfügen über das in den jew. Wahlunits aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach oder auch Randgebiete, aus denen sie angemessene Methoden auswählen und anwenden, mit Bekanntem verknüpfen, um neue Lösungen zu erarbeiten.		
Methodenkompetenz			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.		
Übergreifende Handlungskompetenz	Die Studierenden haben die Möglichkeit ihre vorwiegend berufliche Handlungskompetenz zu erweitern. Dies gelingt entweder durch Aufgreifen von Spezialthemen (Vertiefung), oder Erschließung neuer Themen (auch Randgebiete).		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Assemblerprogrammierung	36,0	39,0
Linux 1	36,0	39,0
Cross Plattform Web Development	36,0	39,0

- Prozessorfamilie 8051
- Entwicklungsumgebung, z.B. μ Vision der Firma Keil in der Demo Version
- Unbewertete Übungen : z. B. Serielle Schnittstelle, Analog Digital Umsetzer
- Bewerteter Programmentwurf : Bearbeitungszeitraum ca. 3 Wochen
- Weitere aktuellen Themen nach Absprache
- Grundsätzliches/Einleitung: Geschichte, Was ist eigentliche Linux, Unterschiede Windows/Linux, Lizenzen, Distributionen, Support, Dokumentationskonzepte
- Installation und erste praktische Erfahrungen: Knoppix, Suse oder eine andere Major-Distribution, K
- Grundlagen JavaScript
- Grundlagen Node.js HTTP Server mit Express JS
- MongoDB und Mongoose Angular JS
- Ionic Framework
- Apache Cordova
- Websockets und evtl. Wunschthemen. Die Inhalte werden stets praktisch angewendet, so wird während der Vorlesung gemeinsam eine beispielhafte Anwendung entwickelt.

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul beinhaltet zwei wählbare Units aus einem vorgegebenen Auswahlkatalog, davon kann eine durch die Studiengangsleitung vorgegeben werden.

T3INF9001.1: Assemblerprogrammierung T3INF9001.2: C#/.NET

T3INF9001.3: C++

T3INF9001.6: Linux-1

T3INF9002.4: Linux-2

T3INF9001.7: Programmierbare Logik

T3INF9002.1: Diskrete Mathematik

T3INF9002.2: Diskrete Mathematik 2

T3INF9002.4: Linux-2

T3INF9003.2: Bioinformatik 1

T3INF9003.3: Bioinformatik 2

T3INF9003.5: Advanced Management

T3INF9003.7: Spoken Language Processing

T3INF9004.1: Al Game Development

T3INF9004.2: Grundlagen Maschineller Lernverfahren

T3INF9004.3: Agentenbasierte Systeme

T3INF9004.4: Evolutionary Computing

T3INF9004.5: Emotion in Interaktiven Systemen

T3INF9005.9: 3D-Modeling and Animation 2

T3INF9006.3: 3D-Modeling und Animation 1

T3INF9006.6: Gamification

T3INF4960.1: Labor Intelligente Interaktive Systeme

T3INF4930.1: Grundlagen Data Science T3INF9007.1: Parallele Programmierung

T3INF9007.2: Mikrocontrollerprogrammierung mit Arduino

T3INF9007.3: Cloud Computing
T3INF9007.6: Cross Platform Web Development

T3INF9007.8: Programmiertechniken für eingebettete Systeme

T3INF9007.9: Semantic Web

T3INF9009.2: Cloud-Anwendungen, DevOps und Bigdata

T3INF9009.3: Internet of Things

T3INF9009.4: Progressive Web App Development

T3INF9010.1: Microservices mit Docker und Node.js: Eine Praktische Einführung

T3INF9010.2: App-Entwicklung mit Swift

T3INF4211.2: Labor Compilerbau T3INF4240.2: Labor Kommunikationsinformatik 2

T3INF4241.1: Skriptsprachen
T3INF4925.1: Labor Künstliche Intelligenz

T3INF4308.1: Data Mining

T3INF4382.1: Fahrerinformationssysteme T3INF4382.2: Vernetzung im Automobil

T3INF3001.1: Softwarequalität

T3INF4212.2: Signale und Systeme 2 T3INF4301.1: Verteilte Systeme

Voraussetzungen

- Kofler, M: Linux: Debiam Fedore, openSue, Ubuntu, Addison-Wesley,
- Kofler, M: Linux- Kommandoreferenz, Addison-Wesley
- D.J. Barett, Torsten Wilhelm: Lunix kurz und gut, O'Reilly

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik 3. SJ (LPM VII) (T3INF4903)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik 3. SJ (LPM VII)	Deutsch	T3INF4903	1	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
,0	,0	,0	5

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Studierende haben ein Gebiet der Informatik, das für sie persönlich oder für ihre Ausbildungsfirma interessant ist, vertiefter kennengelernt. Entsprechend den eigenen Interessen und der weiteren Karriereplanung werden Kompetenzen von einem vertieften Verständnis ausgewählter Gebiete angeboten.		
Methodenkompetenz	Der Studierende kann sich in ein spezifisches Fachgebiet einarbeiten und sich die entsprechenden Kentnisse zügig aneignen. In einem Fachgebiet wird vertiefte Kompetenz erworben.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
E-Business	72,0	78,0
Wissensmanagement	36,0	39,0
Interaktive Systeme	36,0	39,0
ERP-Systeme	36,0	39,0
Ausgewählte Themen der IT-Security	36,0	39,0
Software Architecture Management	36,0	39,0

- E-Business, E-Commerce und E-Government Klassifikationen (X2Y-Matrix)
- Elektronische Marktplätze
- Rahmenbedingungen für E-Business
- Sicherheit und Vertrauen in E-Business
- Zahlungssysteme
- F-Business-Architekture
- elektronischer Datenaustausch zwischen Unternehmen
- E-Business Standards
- Kategorisierung von E-Government: E-Administration und E-Democracy
- E-Government auf unterschiedlichen Ebenen: Bund, Land, Kommunen
- Definierte E-Government Prozesse und Standards
- Motivation und Begriffsbildung
- Von der Information zum Wissen
- Das TOM-Modell: Technik, Organisation, Mensch
- Wissen erheben, (re-)präsentieren, austauschen
- Wissensmanagementwerkzeuge
- Menschzentrierte Wissenskultur
- Motivation und Anreizgestalt

Interaktive Systeme: - - Normen und Richtlinien

- -Interaktionsformen
- Software-Ergonomie
- Software Usability und User Experience
- Barrierefreiheit
- Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)
- Entwicklung und Marktübersicht von ERP-Systemen
- Modellierung von ERP-Systemen, ARIS-Haus
- Aufbau und Funktionsweise eines realen ERP-Systems (z.B. SAP)
- Schnittstellen zu anderen Anwendungssystemen

Ausgewählte Themen bzw. vertiefte Behandlung von Themen aus den Bereichen: - Kryptographie, Schlüsselmanagement - Authentifizierung, Zugriffskontrolle -Virenschutzmaßnahmen, VPN, Firewall, IDS - Security Engineering and Management

Software-Architektur ist die nächste Abstraktionsstufe nach Anwendungsprogrammierung: Es geht um den übergreifenden Einsatz von Bausteinen, Stilen und Vorgehensweisen um gleichartige Lösungen für gleichartige (insbesondere nicht-funktionale) Anforderungen darzustellen. Ziel ist die von Geschäftszielen abgeleitete Gestaltung von Anwendungslandschaften.

Gliederung:

- Was sind Software-Architekturen?
- Aufgaben des Software-Architekten Dokumentation von Software-Architekturen
- Architektur-Stile (-Muster)
- Architektur-Bausteine
- Bewertung von Software-Architekturen Standards, Technologien und Werkzeuge
- Beispiele von Software-Architekturen
- Ausblick: Enterprise Architecture Management

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

- Wirtz, B.W., Electronic Business, Springer Gabler
- Wirtz, B.W., E-Government: Grundlagen, Instrumente, Strategien, Gabler
- Kollmann, T., E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft, Springer Gabler
- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer
- Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin
- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.press
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press
- -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
 -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt
- Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP: Geschäftsprozessorientierte Einführung mit durchgehendem Fallbeispiel, Vieweg, aktuellste Auflage Görtz, Hesseler: Basiswissen ERP-Systeme: Auswahl, Einführung & Einsatz betriebswirtschaftlicher Standardsoftware, W3l, aktuellste Auflage
- Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von ERP-Systemen, De Gruyter Oldenbourg, aktuellste Auflage M. Bishop: Computer Security, Addison-Wesley-Longman - C. Eckert: IT-Sicherheit, Oldenbourg - W. Stallings, L. Brown: Computer Security: Principles and Practice,
- Pearson * Education C. Pfleeger, S. Lawrence Pfleeger: Security in Computing
- iSAQB Curriculum für Certified Professional for Software Architecture (CPSA), http://www.isaqb.org/downloads/pdf/isaqb-Lehrplan-foundation.pdf Reussner, Ralf und Hasselbring, Wilhelm (Hrsg.) Handbuch der Software-Architektur, dpunkt. Verlag.

Baden-Württemberg Studienbereich Technik

Wahlmodul Informationstechnik I (MA 3. Jahr) (T3INF4904)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informationstechnik I (MA 3. Jahr)	Deutsch	T3INF4904	1	Prof. Joachim Schmidt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Theoretische Zusammenhänge und praxisrelevante Einflüsse innerhalb von Problemstellungen differenzieren und darauf aufbauend neue Anwendungsszenarien entwerfen und kommuizieren.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen differenzierte sowie angemessene Methoden auszuwählen und zielgerichtet anzuwenden. So können sie die Implikationen, Praxistauglichkeit / Angemessenheit und Grenzen der eingesetzten Methoden einschätzen und ggf. optionale Handlungsalternativen aufzeigen.	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Dabei ist die Bedeutung und Berücksichtigung der gesellschaftlichen Praxis und die soziale und ökologische Nachhaltigkeit bei der Auswahl und Umsetzung von Handlungen zu beachten.	
Übergreifende Handlungskompetenz	Die Studierenden haben die Möglichkeit ihre vorwiegend berufliche Handlungskompetenz zu erweitern. Dies gelingt entweder durch Aufgreifen von Spezialthemen (Vertiefung), oder Erschließung neuer Themen (auch Randgebiete).	

Lerneinhe	eiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Linux 1	36,0	39,0
Linux 2	36,0	39,0
Betriebs- und Organisationspsychologie 1	36,0	39,0
Betriebs- und Organisationspsychologie 2	36,0	39,0
Recht 1	36,0	39,0
Recht 2	36.0	39.0

- Grundsätzliches/Einleitung: Geschichte, Was ist eigentliche Linux, Unterschiede Windows/Linux, Lizenzen, Distributionen, Support, Dokumentationskonzepte
- Installation und erste praktische Erfahrungen: Knoppix, Suse oder eine andere Major-Distribution, K

Fortsetzung von Linux 1 mit Vertiefung/Ergänzung der Themen.

- Grundlagen der Psychologie: Psychologische Schulen zur Tiefenpsychologie und Typenlehren,, Psychologie heute, Sozialisationstheorien, Faktoren und Auswirkungen der Sozialisation auf die Persönlichkeit und die Zusammenarbeit im Betrieb - Soziale Gebilde

Die Themen der Unit 1 werden vertieft und erweitert.

- Einleitung Systematik des deutschen Rechts Zivilrecht und bürgerliches Recht Rechtssubjekte, Rechtsobjekte, Rechtsfähigkeit Vertragsrecht Allgemeines zur Vertragslehre - Vertragsbegründung - Stellvertretung - Einbeziehung von AGB in den
- Verbraucherschutz EContracting, Der Vertrag im Cyberlaw Leistungsstörungen Mänglhaftung im Kaufrecht, Urheberrecht, Gewerblicher Rechtsschutz -Urheberrecht - Recht am eigenen Bild - Markenrecht - Patente - Gebrauchsmuster - Geschmacksmust

Besonderheiten und Voraussetzungen

Besonderheiten

Mit diesen Modul werden besonderen Anforderungen und Wünsche des Dualen Partners am Standort berücksichtigt. Hierbei ist die heterogene Zusammenstellung der verschiedenen Units zu berücksichtgen bzw. in ihr begründet.

Fachlich keine,aber wenn ein Studierender die Units "x II" belegt möchte ist zuvor die Unit "x I" zu belegen

- Kofler, M : Linux: Debiam Fedore, openSue, Ubuntu, Addison-Wesley,
- Kofler, M: Linux- Kommandoreferenz, Addison-Wesley
- D.J. Barett, Torsten Wilhelm: Lunix kurz und gut, O'Reilly
- Kofler, M: Linux 2011: Debiam Fedore, openSuSE, Ubuntu, Addison-Wesley
- Kofler, M: Linux- Kommandoreferenz, Addison-Wesley
- D.J. Barett, Torsten Wilhelm: Lunix kurz und gut, O'Reilly.
- Karl E. Hemmer und Achim Wüst Basics Zivilrecht, Band 1, BGB AT und vertragliche Schuldverhältnisse
- Hemmer/Wüst Verlagsgesellschaft
- Eugen Klunzinger Einführung in das Bürgerliche Recht Vahlen
- Ernst R. Führich Grundzüge des Privat- Handels- und Gesellschaftsrechts für Wirtschaftswissenschaftler und Unternehmenspraxis Vahlen Volker Ilzhöfer Patent- Marken- und Urheberrecht Vahlen
- Wolfgang Berlit Wettbewerbsrecht C.H. Beck
- Köhler, Arndt, Fetzer Recht des Internet CF Müller Verlag; Wien Internetrecht Gabler Verlag
- Haug Internetrecht Kohlhammer Verlag Gennen, Völkel Recht der IT Verträge CF Müller Verlag
- Dörr, Schwartmann Medienrecht CF Müller Verlag
- Barton Multimediarecht Kohlhammerverlag
- Bücking, Angster Domainrecht Kohlhammer Verlag
- Schwartmann, Gennen, Völkel- IT- und Internetrecht (Vorschriftensammlung)- CF Müller Verlag
- Haug Internetrecht Kohlhammer Verlag
- Gennen, Völkel Recht der IT Verträge CF Müller Verlag
- Dörr, Schwartmann Medienrecht CF Müller Verlag
- Barton Multimediarecht Kohlhammerverlag
- Bücking, Angster Domainrecht- Kohlhammer Verlag
- Schwartmann, Gennen, Völkel- IT- und Internetrecht (Vorschriftensammlung)- CF Müller Verlag;

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik 2. SJ (LPM III) (T3INF4905)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik 2. SJ (LPM III)	Deutsch	T3INF4905	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar, Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
350,0	168,0	182,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	In diesem Modul erweitern und vertiefen die Studierenden ihre Programmierkenntnisse.		
Methodenkompetenz			
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können die neu erworbenen Kenntnisse in anderen Gebieten wie z.B. dem Software-Engineering zur Lösung komplexer Probleme anwenden.		

Lerne	einheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenz	Selbststudium
OO Best Practice	48,0	52,0
ABAP-Programmierung	36,0	39,0
Seminar Algorithmik	36,0	39,0
Funktionale Programmierung	36,0	39,0
Entwicklung mobiler Applikationen	36,0	39,0
Digitale Sprachverarbeitung	36,0	39,0

Ausgewählte aktuelle Inhalte aus der objektorientierten Programmierung und dem objektorientierten Softwareengineering werden vertieft vermittelt.

Grundlagen von SAP-Systemen - Einführung in die Programmierung mit ABAP - Objektorientierung in ABAP

Im Rahmen der Lehrveranstaltung können sich Studierende in Kleingruppen selbständig ein fortgeschrittenes Thema aus dem Bereich Algorithmen und Datenstrukturen erarbeiten und es zusammen mit einer eigenen Beispielimplementierung präsentieren. In der Vorlesung können auch typische Aufgaben von Programmierwettbewerben vorgestellt werden, die in Gruppenarbeit gelöst werden.

- Programmieren mit Funktionen
- Rekursive Definitionen
- Pattern Matching
 Funktionen höherer Ordnung
- Funktionen map und fold
- Konzept der Monaden Funktionale
- Auswertungsstrategien: Strikte Auswertung (call-by-value), nicht-strikte Auswertung (Lazy-Evaluation, call-by-name, call-by-need)
- Konzepte User Interface, Speicherverwaltung, Resourcen-limitiertes Computing, Hybrider Ansatz, HTML5, Progressive Webapps, Native Apps
- Plattformen (z. B. iOS, Android, Windows Phone)
- Frameworks und Bibliotheken (z.B. React Native, PhoneGap/Ionic, Xamarin)

Die wichtigsten Grundlagen der Sprachsynthese und der Spracherkennung werden vorgestellt. Wie sieht das prinzipielle Vorgehen aus, welche Möglichkeiten ergeben sich. Grundkenntnisse in Linguistik, Phonetik, Morphologie, digitaler Signalverarbeitung bis hin zu neuronalen Netzen werden vermittelt.

Besonderheiten und Voraussetzungen		
Besonderheiten		
-		
Various et aun sien		

Voraussetzungen

Literatur

OO Best Practice

- Ian Sommerville: Software Engineering, Addison-Wesley, München
- Thomas Grechenig, Mario Bernhart, Roland Breiteneder, Karin Kappel: Softwaretechnik Mit Fallbeispielen aus realen Projekten Pearson Studium, München
- Keller: ABAP Objects, SAP Press Kühnhauser: Discover ABAP, SAP Press
- Bird: Pearls of Functional Algorithm Design, Cambridge University Press Cormen, Leiserson, Rivest, Stein: Algorithmen Eine Einführung, Oldenbourg Gerdes, Klawonn, Kruse: Evolutionäre Algorithmen: Genetische Algorithmen Strategien und Opt
- Thiemann, Peter, Grundlagen der funktionalen Programmierung, Teubner-Verlag
- Pepper, Peter; Hofstedt, Petra, Funktionale Programmierung Sprachdesign und Programmiertechnik, Springer, Berlin
- Simon Peyton Jones [editor], Haskell 98 language and libraries, the revised report, http://haskell.org/onlinereport
- Bryan O Sullivan, Donald Bruce Stewart, and John Goerzen, Real World Haskell. O' Reilly-Verlag
- Phillips, Bill; Stewart, Chris: Android Programming: The Big Nerd Ranch Guide, Pearson
- Conway, J.; Hillegass, A.: iPhone Programming: The Big Nerd Ranch Guide, Addison-Wesley Longman, Amster-dam. Mathias, Mathew; Gallagher, John: Swift Programming: The Big Nerd Ranch Guide; Pearson
- Wilkon, Jeremy: Ionic in Action; Manning
- Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, O'Reilly, Sebastopol

Jeweils aktuelle Auflage

- Pfister, Kaufmann: Sprachverarbeitung, Grundlagen und Methoden der Sprachsynthese und Spracherkennung, aktuellste Auflage Reese, R.: Natural Language Processing with Java, Packt Publishing, aktuellste Auflage
- Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python, O'Reilly, aktuellste Auflage

- Jurafsky, D.; Martin, J.: Speech and Language Processing, Prentice Hall, aktuellste Auflage
 Chopra, D.; Joshi, N.; Mathur, I.: Mastering Natural Language Processing with Python, Packt Publishing, aktuellste Auflage
 Pfister, B.; Kaufmann, T.: Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung, Springer, aktuellste Auflage
- Barrière, C.: Natural Language Understanding in a Semantic Web Context, Springer, aktuellste Auflage

Baden-Württemberg Studienbereich Technik

Wahlmodul Informationstechnik II (T3INF4906)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informationstechnik II	Deutsch	T3INF4906	1	Prof. Joachim Schmidt

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung, Vorlesung, Übung, Labor		Vorlesung, Übung, Vorlesung, Übung, Labor
Lehrmethoden		Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	•
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Theoretische Zusammenhänge und praxisrelevante Einflüsse innerhalb von Problemstellungen differenzieren und darauf aufbauend neue Anwendungsszenarien entwerfen und kommuizieren.			
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.			
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Dabei ist die Bedeutung und Berücksichtigung der gesellschaftlichen Praxis und die soziale und ökologische Nachhaltigkeit bei der Auswahl und Umsetzung von Handlungen zu beachten.			
Übergreifende Handlungskompetenz	Die Studierenden haben nach Abschluss des Moduls die Möglichkeit ihre vorwiegend berufliche Handlungskompetenz zu erweitern. Sie können - sich in weitere Themen der jeweiligen Units selbstständig einarbeiten und diese vertiefen - das Wissen bezüglich der spezifischen Methoden, Konzepte und Verfahren auf ihre Tätigkeiten im Beruf anwenden, - bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Internet-Recherchen, Expertenbefragungen und Kreativitätstechniken mitwirken			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Wissensmanagement	36,0	39,0	
Interaktive Systeme	36,0	39,0	
Evolutionäre Algorithmen	36,0	39,0	
Robotik 1	36,0	39,0	
Ausgewählte Themen der IT-Security	36,0	39,0	
Parallele Programmierung	36,0	39,0	

- Motivation und Begriffsbildung
- Von der Information zum Wissen
- Das TOM-Modell: Technik, Organisation, Mensch
- Wissen erheben, (re-)präsentieren, austauschen
- Wissensmanagementwerkzeuge Menschzentrierte Wissenskultur
- Motivation und Anreizgestalt

Interaktive Systeme: - - Normen und Richtlinien

- -Interaktionsformen
- Software-Ergonomie
- Software Usability und User Experience
- Barrierefreiheit
- Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)
- Historie und Grundprinzipien von Evolutionären Algorithmen Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle) - Anwendung genetischer Algorithmen auf einfache Probleme (Systemidentifikation,
- Prinzipieller Aufbau von Robotern
- Einsatzbereiche von Robotern (mit den unterschiedlichen Anforderungen)
- Sensorik, Aktorik
- Regelung und Steuerung von Robotern
- Programmierung von Robotern
- Navigationsverfahren
- Industrieroboter
- Intelligente R

Ausgewählte Themen bzw. vertiefte Behandlung von Themen aus den Bereichen: - Kryptographie, Schlüsselmanagement - Authentifizierung, Zugriffskontrolle -Virenschutzmaßnahmen, VPN, Firewall, IDS - Security Engineering and Management

-Parallele Architekturen - Mehrkernprozessoren - Simulaneous Multithreading/Hyperthreading - Multimedia/Vektoreinheiten - Cluster -Parallele Programmierung mit praktischen Übungen - Datenparallele Programmierung - Java Threads -Altrenative konzepte - Automatische Paralliesierung - Design Patterns - OpenMP - MPI-Speicherhierarchie und Prozessor Features

- Single Instruction Multiple Data
- Matrix Multiplikation
- Parallelrechner und Programmiermodelle
- Shared Memory und Threads
- Aspekte paralleler Programme
- Shared Memory und OpenMP
- Abstraktion der Kommunikationsoperationen
- Distributed Memory Netzwerke Distributed Memory MPI
- MapReduce & Hadoop
- GPU Programmierung

Besonderheiten und Voraussetzungen

Besonderheiten

Mit diesen Modul werden besonderen Anforderungen und Wünsche des Dualen partners am Standort berücksichtigt. Hierbei ist die heterogene Zusammenstellung der verschiedenen Units zu berücksichtgen bzw. in ihr begründet.

Voraussetzungen

Literatur

- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer
- Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin
- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.pres
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
- -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- -J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt
- Weicker; Evolutionäre Algorithmen, Leitfäden der Informatik; Vieweg.
- Weber, Wolfgang: Industrieroboter, Hanser, neuste Auflage
- Hesse, St.; Malisa, V.: Taschenbuch der Robotik, Hanser Verlag, neuste Auflage
- Russell, Stuart; Norvig, Peter: Künstliche Intelligenz, Pearson Studium, neuste Auflage.
- Craig, J.J.: Introduction to Robotics: Mechanics and Control, neuste Auflage.
- Hertzberg, et.al.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag, neuste Auflage.
- M. Bishop: Computer Security, Addison-Wesley-Longman C. Eckert: IT-Sicherheit, Oldenbourg W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education - C. Pfleeger, S. Lawrence Pfleeger: Security in Computing

wird vom Dozenten bereitgestellt

Baden-Württemberg Studienbereich Technik

Wahlmodul Business IT 3. SJ (LPM V) (T3INF4907)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Business IT 3. SJ (LPM V)	Deutsch	T3INF4907	1	Prof. Dr. Holger D. Hofmann

	Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Wahlmodul	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor		Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor
	Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in min)
Prüfungswahl	-
Beschreibung Prüfungen	
Klausurarbeit oder Kombinierte Prüfung	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	72,0	78,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden erwerben vertiefende Kenntnisse für die Arbeit mit IT-Systemen in einem professionellen Umfeld. Dabei ist die Nähe zu betriebswirtschaftlichen Aspekten bei der Umsetzung wesentlich.		
Methodenkompetenz Die Arbeit in Projektteams wird gefördert.			
Personale und Soziale Kompetenz	Der verantwortungsvolle Umgang mit neuen Technologien im betrieblichen Umfeld wird geschult.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Data Mining	36,0	39,0		
Angewandtes Projektmanagement	36,0	39,0		
Corporate Systems	36,0	39,0		
Marketing und Vertrieb	36,0	39,0		
Mobile Business	36,0	39,0		
Grundlagen der Künstlichen Intelligenz	36,0	39,0		

- Daten und Datenanalyse
- Clustering
- Classification
- Assoziationsanalyse
- Weitere Verfahren, z.B.:
- Regression
- Deviation Detection
- Visualisierung
- Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden.

Alternativen zum klassischen Projektmanagement sollen in einem Projekt erfahren werden. Dabei sind insbesondere auch Aspekte wie Mitarbeitertypen,

Steuerungsalternativen, Projektcontrolling, strategische Ausrichtung und Meetingkulturen zu berücksichtigen.

Corporate Systems umfasst alle Systeme zur Organisation und Steuerung von Unternehmen. Dies sind im Besonderen Systeme für ERP, CRM, SCM, Personalmanagemei Projektsteuerung, Produktionsplanung. Es werden dazu Einsatzgebiete, Architekturen und Systemgrenzen betrachtet und Systeme einer Kategorie verglichen.

- Einführung
- Marktforschung
- Marketingplanung
- Marketinginstrumentarium ("die fünf Ms")
- Produkt- und Sortimentspolitik
- Werbe- oder Kommunikationspolitik
- Preispolitik
- Distributionspolitik
- Packaging/Deployment
- Strategien und Geschäftsmodelle für M-Business
- Design von M-Business-Systemen
- Content-Technologien
- M-Marketing
- Sicherheitsaspekte
- Grundlagen und Definition von Wissen und Modellbildung
- Einsatz von Logik und automatischer Beweisführung
- Einsatz von Heuristiken (u.a. heuristische Suche)
- Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme)
- Analogie und Ähnlichkeit
- Grundlagen des Maschinelles Lernens
- Anwendungsgebiete Künstlicher Intelligenz
- (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion)
- Praktische Anwendungen von Methoden der künstlichen Intelligenz

Besonderheiten und Voraussetzungen

Besonderheiten

-

Voraussetzungen

- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
- Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.
- Eckhart Hanser: Agile Prozesse: Von XP über Scrum bis MAP Tom DeMarco ...: Adrenalin-Junkies & Formular-Zombies : typisches Verhalten in Projekten Boris Gloger Scrum : Produkte zuverlässig und schnell entwickeln
- Applegate, et al.: Corporate Information Systems Management: Text and Cases: Issues Facing Senior Executives, McGrawHill.
- Zheng et al: Managing Corporate Information Systems Evolution and Maintenance, IGI Publishing
- Marcus Görtz und Martin
- Peter Winkelmann: Marketing und Vertrieb: Fundamente für die Marktorientierte Unternehmensführung, Oldenbourg
- Ewald Lang: Die Vertriebs-Offensive: Erfolgsstrategien für umkämpfte Märkte, Gabler
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Turowski, Klaus; Pousttchi, Key: Mobile Commerce: Grundlagen Und Techniken. Springer
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage

Baden-Württemberg Studienbereich Technik

Wahlmodul Informatik 2. SJ KA (T3INF4911)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Wahlmodul Informatik 2. SJ KA	Deutsch	T3INF4911	1	Prof. Dr. Johannes Freudenmann

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Wahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung Prüfungsumfang (in min)		
Kombinierte Prüfung (KP)	•	
Beschreibung Prüfungen		
-		

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
500,0	216,0	284,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, im Rahmen der von ihnen gewählten Units, zu den genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.		
Methodenkompetenz	Die Absolventen verfügen über das in den ausgewählten Units aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswähler und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Geschäftsprozesse	36,0	39,0		
Web-Engineering 2	36,0	39,0		
OO Best Practice	48,0	52,0		
Workflow	36,0	39,0		
Signale und Systeme 1	24,0	51,0		
Signale und Systeme 2	36,0	39,0		

- Grundlagen des Prozessmanagements
- Geschäftsprozesse in Unternehmen
- Modellierung von Geschäftsprozessen
- Modellierungssprachen und -Systeme
- Qualitative Prozessanalyse
- Quantitative Prozessanalyse
- Kriterien für den Einsatz von Workflow-Applikationen
- Automatisierung von Geschäftsprozessen
- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Ausgewählte aktuelle Inhalte aus der objektorientierten Programmierung und dem objektorientierten Softwareengineering werden vertieft vermittelt.

- Workflow-Management-Systeme
- Workflow-Definitionssprachen
- Business Rules
- **Business Reporting**
- **Business Process Execution**
- **Business Process Software**
- Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme
- Fourier-Reihe
- Transformationen (Fourier, Laplace)
- Einführung in Signale und Systeme (Diskret)
- Diskrete Fourier-Transformation
- Z-Transformation
- Nichtrekursive- und rekursive Systeme
- Digitale Filter Wavelet-Transformation

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul beinhaltet einen Auswahlkatalog wählbarer Units.

Die Studierenden müssen zwei der vor Ort angebotenen Units wählen

Voraussetzungen

Literatur

- European Association of Business Process Management EABPM (Hrsg.), BPM CBOK®, Business Process Management BPM Common Body of Knowledge, Version 3.0, Leitfaden für das Prozessmanagement, Verlag Dr. Götz Schmidt

Allweyer, T., BPMN 2.0 - Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung, Books on Demand

- Becker et Al., Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Springer Gabler
- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

OO Best Practice

- lan Sommerville: Software Engineering. Addison-Wesley, München
- Thomas Grechenig, Mario Bernhart, Roland Breiteneder, Karin Kappel: Softwaretechnik Mit Fallbeispielen aus realen Projekten Pearson Studium, München
- van der Aalst, Wil M.P., Workflow Management, MIT-Press
- Freund, Jakob, Götzer, Klaus, Vom Geschäftsprozess zum Workflow. ein Leitfaden für die Praxis, Carl Hanser Verlag GmbH & Co. KG
- Müller, Joachim, Workflow-based Integration: Grundlagen, Technologien, Management, Springer
- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer
- D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch
- Werner, M.: Signale und Systeme, Vieweg
- Unbehauen, R.: Systemtheorie 1, Oldenburg
 Oppenheim, A.V., Schafer, R.W.: Zeitdiskrete Signalverarbeitung, Pearson
- D.Ch. von Grünigen, Digitale Signalverarbeitung: Bausteine, Systeme, Anwendungen

Baden-Württemberg

-

Praxisprojekt I (T3_1000)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Praxisprojekt I	Deutsch	T3_1000	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
1. Stj.		Kernmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Praktikum, Seminar
Lehrmethoden	Lehrvortrag, Diskussion, Projekt

Prüfungsleistung	Prüfungsumfang (in min)
Projektarbeit (PA),	-
Beschreibung Prüfungen	
Zwei separate Prüfungsleistungen (beide unbenotet) - Projektarbeit (unbenotet) - Ablauf- und Reflexionsbericht (unbenotet)	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
600,0	4,0	596,0	20

	Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt. Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen. Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erfäutern.			
Methodenkompetenz	Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.			
Personale und Soziale Kompetenz	Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.			
Übergreifende Handlungskompetenz	Die Studierenden zeigen Handlungskompetenz, indem sie ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Projektarbeit I	,0	560,0
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wicconchaftlished Arbeitan I	4.0	36.0

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Voraussetzungen

Literatur

Web-based Training "Wissenschaftliches Arbeiten"

Baden-Württemberg

Praxisprojekt II (T3_2000)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Praxisprojekt II	Deutsch	T3_2000	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Kernmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Praktikum, Seminar
Lehrmethoden	Lehrvortrag, Diskussion, Projekt

Prüfungsleistung	Prüfungsumfang (in min)
-	Siehe Prüfungsordnung

Beschreibung Prüfungen

Drei separate Prüfungsleistungen (1x unbenotet, 2 x benotet)

- Projektarbeit (benotet)
 Ablauf- und Reflexionsbericht (unbenotet)
 Mündliche Prüfung (benotet)

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
600,0	4,0	596,0	20

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.		
Methodenkompetenz	Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.		
Personale und Soziale Kompetenz	Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.		
Übergreifende Handlungskompetenz	Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Projektarbeit II	,0	560,0	
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.			
Wissenschaftliches Arbeiten II	4,0	36,0	

Das Seminar "Wissenschaftliches Arbeiten II " findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit Vorbereitung der Mündlichen T2000 Prüfung

Besonderheiten und Voraussetzungen

Besonderheiten

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg
(DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

I	voraussetzungen
ı	

Literatur
-
_

Baden-Württemberg

-

Praxisprojekt III (T3_3000)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Praxisprojekt III	Deutsch	T3_3000	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Praktikum, Seminar		
Lehrmethoden	Lehrvortrag, Diskussion, Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Hausarbeit (HA),	Siehe Prüfungsordnung
Beschreibung Prüfungen	
Zwei Prüfungsleistungen (beide unbenotet)	

Hausarbeit (unbenotet)
 Bericht zum Ablauf und zur Reflexion der Praxisphase (unbenotet)

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
240,0	4,0	236,0	8	

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.
Methodenkompetenz	Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.
Personale und Soziale Kompetenz	Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.
Übergreifende Handlungskompetenz	Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Projektarbeit III	,0	220,0
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten III	4,0	16,0

Das Seminar "Wissenschaftliches Arbeiten III " findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

In der Projektarbeit kann die Bachelorarbeit mit einer ersten Literaturrecherche vorbereitet und die grundsätzliche Gliederung der Bachelorarbeit entwickelt werden, die vom Dozenten des Seminars "Wissenschaftliches Arbeiten" bewertet ("bestanden" / "nicht bestanden") wird.

Voraussetzungen

Literatur

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M. (2008): Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, 1. Auflage, Bern 2008.
- Minto, B. (2002): The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London 2002.
- Zelazny, G. (2001): Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Baden-Württemberg

-

Studienarbeit (T3_3100)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	-	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Studienarbeit	Deutsch	T3_3100	1	Prof. DrIng. Joachim Frech

	Verortung des Moduls im St	udienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Kernmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Individualbetreuung	
Lehrmethoden	Projekt	

Prüfungsleistung	Prüfungsumfang (in min)
Studienarbeit (S),	Siehe Prüfungsordnung
Beschreibung Prüfungen	
Studienarbeit (benotet)	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	6,0	144,0	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können sich unter begrenzter Anleitung in ein recht komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.		
	Sie können sich Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.		
	Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.		
Methodenkompetenz	Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.		
Personale und Soziale Kompetenz	Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen. Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.		
Übergreifende Handlungskompetenz			

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Studienarbeit	6,0	144,0

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Voraussetzungen

Literatur

Baden-Württemberg

-

Studienarbeit (T3_3101)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	-	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Studienarbeit	Deutsch	T3_3101	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Kernmodul	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Individualbetreuung			
Lehrmethoden Projekt			

Prüfungsleistung	Prüfungsumfang (in min)
Studienarbeit (S),	Siehe Prüfungsordnung
Beschreibung Prüfungen	
Studienarbeit (benotet)	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
300,0	12,0	288,0	10	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.			
	Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.			
	Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.			
Methodenkompetenz	Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.			
Personale und Soziale Kompetenz	Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen. Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Studienarbeit	12,0	288,0

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit I" und "Studienarbeit II" verwendet werden.

Voraussetzungen

Literatur

Kornmeier, M. (2011): Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, 4. Auflage, Bern 2011.

298

Baden-Württemberg

-

Studienarbeit II (T3_3200)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Studienarbeit II	Deutsch	T3_3200	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Kernmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Individualbetreuung			
Lehrmethoden	Projekt		

Prüfungsleistung	Prüfungsumfang (in min)
Studienarbeit (S),	Siehe Prüfungsordnung
Beschreibung Prüfungen	
Studienarbeit (benotet)	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	6,0	144,0	5	

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.			
	Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.			
	Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.			
Methodenkompetenz	Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.			
Personale und Soziale Kompetenz	Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen. Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.			
Übergreifende Handlungskompetenz				

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Studienarbeit	6,0	144,0

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Voraussetzungen

Literatur

DUALE HOCHSCHULE Baden-Württemberg

_

Bachelorarbeit (T3_3300)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	-	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Bachelorarbeit	Deutsch	T3_3300	1	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
3. Stj.		Kernmodul	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Individualbetreuung		
Lehrmethoden	Projekt		

Prüfungsleistung	Prüfungsumfang (in min)
Bachelorarbeit (B)	Siehe Prüfungsordnung
Beschreibung Prüfungen	
Bachelor-Arbeit (benotet)	

Workload und ECTS				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte	
360,0	6,0	354,0	12	

Qualifikationsziele und Kompetenzen				
Fachkompetenz				
Methodenkompetenz				
Personale und Soziale Kompetenz				
Übergreifende Handlungskompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Bachelorarbeit	6,0	354,0		

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) findet bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Voraussetzungen

Literatur