Remarks:

(1) If E is a Hilbert space and $(u_k)_{k\in K}$ is a total orthogonal family in E, there is a simpler argument to prove that u=0 if $\langle u,u_k\rangle=0$ for all $k\in K$ based on the continuity of $\langle -,-\rangle$. The argument is to prove that the assumption implies that $\langle v,u\rangle=0$ for all $v\in E$. Since $\langle -,-\rangle$ is positive definite, this implies that u=0. By continuity of $\langle -,-\rangle$, for every $\epsilon>0$, there is some $\eta>0$ such that for every finite subset I of K, for every family $(\lambda_i)_{i\in I}$, for every $v\in E$,

$$\left| \langle v, u \rangle - \left\langle \sum_{i \in I} \lambda_i u_i, u \right\rangle \right| < \epsilon$$

whenever

$$\left\|v - \sum_{i \in I} \lambda_i u_i\right\| < \eta.$$

Since $(u_k)_{k\in K}$ is dense in E, for every $v\in E$, there is some finite subset I of K and some family $(\lambda_i)_{i\in I}$ such that

$$\left\|v - \sum_{i \in I} \lambda_i u_i\right\| < \eta,$$

and since by assumption, $\langle \sum_{i \in I} \lambda_i u_i, u \rangle = 0$, we get

$$|\langle v, u \rangle| < \epsilon.$$

Since this holds for every $\epsilon > 0$, we must have $\langle v, u \rangle = 0$

(2) If V is any nonempty subset of E, the kind of argument used in the previous remark can be used to prove that V^{\perp} is closed (even if V is not), and that $V^{\perp \perp}$ is the closure of V.

We will now prove that every Hilbert space has some Hilbert basis. This requires using a fundamental theorem from set theory known as *Zorn's lemma*, which we quickly review.

Given any set X with a partial ordering \leq , recall that a nonempty subset C of X is a chain if it is totally ordered (i.e., for all $x, y \in C$, either $x \leq y$ or $y \leq x$). A nonempty subset Y of X is bounded iff there is some $b \in X$ such that $y \leq b$ for all $y \in Y$. Some $m \in X$ is maximal iff for every $x \in X$, $m \leq x$ implies that x = m. We can now state Zorn's lemma. For more details, see Rudin [140], Lang [109], or Artin [7].

Proposition A.6. (Zorn's lemma) Given any nonempty partially ordered set X, if every (nonempty) chain in X is bounded, then X has some maximal element.