Thesis Title
Institution Name

Author Name

Day Month Year

Abstract

Abstract goes here

Dedication

To mum and dad

Declaration

I, AHMAD BILAL CIIT/FA15-BPH-019/ISB, hereby declare that this project neither as a whole nor as a part there of has been copied out from any source. It is further declared that I have developed this thesis and the accompanied report entirely on the basis of my personal efforts made under the sincere guidance of my supervisors. No portion of the work presented in this report has been submitted in support of any other degree of qualification of this or any other University or Institute of learning, if found I shall stand responsible.

Signature of Student:			
Signature of Student.	Ahmad Bilal, Ph.D. CIIT/FA15-BPH-019/ISB		
		Data	

Acknowledgements

I want to thank...

Contents

1	Intr	roduction	7
	1.1	Resonators	7
		1.1.1 Explaination	7
	1.2	Optical Resonators	7
		1.2.1 Different Geometeries	8
	1.3	Fabry-Perot Resonators	8
		1.3.1 Explaination	8
	1.4	Ring Resonators	8
		1.4.1 All-Pass	8
		1.4.2 Add drop	9
		1.4.3 Coupled Ring	9
	Refe	erences	9
2	\mathbf{Are}	ea of Study	10
	2.1	·	10
			10
			10
	2.2		11
			11
			11
	2.3		11
3	Cor	pled Resonators with Gain	12
	3.1	-r	12^{-1}
	0.1	1	1 2
	3.2		$\frac{12}{12}$
	9.2	, –	12 13
		9	13 13

	3.2.3 For triple	13
	3.3 Coupling Regimes	14
4	Electromagnetically Induced Transparecy	15
	4.1 EIT in Atoms	15
	4.1.1 Two level Atoms	15
	4.2 EIT in ring resonators	15
	4.3 EIT in Coupled resonators(CRIT)	16
	4.4 CRIT with gain	
	4.5 Results	16
5	Electromagnetically Induced Absorbption	18
	5.1 EIA concepts	18
	5.1.1 EIA in atoms	18
	5.1.2 EIA Quantum phenomena	18
	5.2 EIA in resonators	
	5.2.1 Coupled resontors induced Absorption	19
	5.3 CRIA with gain	19
6	Conclusion	21
\mathbf{A}	Abrevations	23

Introduction

1.1 Resonators

Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

1.1.1 Explaination

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

1.2 Optical Resonators

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath

1.2.1 Different Geometeries

is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

1.3 Fabry-Perot Resonators

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

1.3.1 Explaination

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

1.4 Ring Resonators

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

1.4.1 All-Pass

1.4.2 Add drop

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

1.4.3 Coupled Ring

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

References

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

Area of Study

2.1 The Fabry-Perot Interferometer

Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

2.1.1 Theory of Fabry-Perot interferometer

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

2.1.2 Finese, Q-factor

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision

and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

2.2 Gain incorporation in Resonators

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision

2.2.1 Beer's Law

binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

2.2.2 Beer's law study as gain

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

2.3 Gain medium

Coupled Resonators with Gain

3.1 Coupled resontaor with Gain medium

Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

3.1.1 Gain element

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

3.2 Calculation/Equations

the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

3.2.1 For single

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

3.2.2 For coupled

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

3.2.3 For triple

3.3 Coupling Regimes

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

Electromagnetically Induced Transparecy

4.1 EIT in Atoms

Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

4.1.1 Two level Atoms

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

4.2 EIT in ring resonators

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

4.3 EIT in Coupled resonators(CRIT)

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

4.4 CRIT with gain

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

4.5 Results

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision

and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

Electromagnetically Induced Absorbption

5.1 EIA concepts

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some

5.1.1 EIA in atoms

understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are.

5.1.2 EIA Quantum phenomena

This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and

some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are.

5.2 EIA in resonators

This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

5.2.1 Coupled resontors induced Absorption

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

5.3 CRIA with gain

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are.

This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis.

Conclusion

Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision

and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

To perform more advanced calculations, it is important to have some understanding of how mpmath works internally and what the possible sources of error are. This section gives an overview of arbitrary-precision binary floating-point arithmetic and some concepts from numerical analysis. Most of the time, using mpmath is simply a matter of setting the desired precision and entering a formula. For verification purposes, a quite (but not always!) reliable technique is to calculate the same thing a second time at a higher precision and verifying that the results agree.

Appendix A

Abrevations

EIT Electromagnetically Induced Transparency

EIA Electromagnetically Induced Absorption

CRIT Coupled Resonator Induced Transparency

CRIA Coupled Resonator Induced Absorption

FSR Free Spectral Range

MRR Micro Ring Resonator

MZI Mach Zehnder Interferometer

FWHM Full width at half maximum

CMT Coupled Mode Theory