Why do EDA

- Model building
- Analysis and reporting
- Validate assumptions
- Handling missing values
- feature engineering
- · detecting outliers

Remember it is an iterative process

Column Types

- Numerical Age, Fare, PassengerId
- Categorical Survived, Pclass, Sex, SibSp, Parch, Embarked
- Mixed Name, Ticket, Cabin

Univariate Analysis

Univariate analysis focuses on analyzing each feature in the dataset independently.

- **Distribution analysis**: The distribution of each feature is examined to identify its shape, central tendency, and dispersion.
- Identifying potential issues: Univariate analysis helps in identifying potential problems with the data such as outliers, skewness, and missing values

Dispersion is a statistical term used to describe the spread or variability of a set of data. It measures how far the values in a data set are spread out from the central tendency (mean, median, or mode) of the data.

There are several measures of dispersion, including:

- Range: The difference between the largest and smallest values in a data set.
- Variance: The average of the squared deviations of each value from the mean of the data set.

- **Standard Deviation**: The square root of the variance. It provides a measure of the spread of the data that is in the same units as the original data.
- Interquartile range (IQR): The range between the first quartile (25th percentile) and the third quartile (75th percentile) of the data.

Dispersion helps to describe the spread of the data, which can help to identify the presence of outliers and skewness in the data.

Steps of doing Univariate Analysis on Numerical columns

- **Descriptive Statistics**: Compute basic summary statistics for the column, such as mean, median, mode, standard deviation, range, and quartiles. These statistics give a general understanding of the distribution of the data and can help identify skewness or outliers.
- **Visualizations**: Create visualizations to explore the distribution of the data. Some common visualizations for numerical data include histograms, box plots, and density plots. These visualizations provide a visual representation of the distribution of the data and can help identify skewness an outliers.
- Identifying Outliers: Identify and examine any outliers in the data. Outliers can be identified using visualizations. It is important to determine whether the outliers are due to measurement errors, data entry errors, or legitimate differences in the data, and to decide whether to include or exclude them from the analysis.
- **Skewness**: Check for skewness in the data and consider transforming the data or using robust statistical methods that are less sensitive to skewness, if necessary.
- **Conclusion**: Summarize the findings of the EDA and make decisions about how to proceed with further analysis.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/train.csv')
df.head()
```


Descriptive Statistics df['Age'].describe()

count 714.000000 29.699118 mean 14.526497 std 0.420000 min 25% 20.125000 50% 28.000000 75% 38.000000 80.000000 max Name: Age, dtype: float64

Visualizations

df['Age'].plot(kind='hist', bins=25)

df['Age'].plot(kind='kde')

7.9250

2404202


```
# Identifying Outliers
df['Age'].plot(kind='box')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f6531bfdfa0>

df[df['Age'] > 65]

```
2/15/23, 9:03 PM
                                                   Basic EDA - Colaboratory
               PassengerId Survived Pclass
                                                             Sex Age SibSp Parch Ticket
                                                                                                 Fare
   # missing values
   df['Age'].isnull().sum()
        177
   df['Age'].isnull().sum()/len(df['Age'])
        0.19865319865319866
   Age
   conclusions
       • Age is normally(almost) distributed
       • 20% of the values are missing

    There are some outliers

   df['Fare'].describe()
        count
                  891.000000
                   32.204208
        mean
                   49.693429
        std
                    0.000000
        min
        25%
                   7.910400
        50%
                   14.454200
        75%
                  31.000000
                  512.329200
        max
        Name: Fare, dtype: float64
   df['Fare'].plot(kind='hist', bins=20) # right skewed
```



```
# skew checking
df['Fare'].plot(kind='kde')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f65319ffbb0;</pre>

skew checking
df['Fare'].skew() # highly positively skewed

4.787316519674893

outlier
df['Fare'].plot(kind='box') # got a lot of outliers

<matplotlib.axes. subplots.AxesSubplot at 0x7f65319ced90>

df[df['Fare'] > 250]

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
2	27 28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000
8	38 89			Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000
2	58 259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
df['Far	e'].isnull().su	m()								
0				Roue						

Fair column

conclusions

- The data is highly (positively) skewed.
- Fare column actually contains the group fare and not the individual fare(can be a issue)
- we need to create a new column called individual fare
- no missing value found.

Steps of doing Univariate Analysis on Categorical columns

Descriptive Statistics: Compute the frequency distribution of the categories in the column. This will give a general understanding of the distribution of the categories and their relative frequencies.

Visualizations: Create visualizations to explore the distribution of the categories. Some common visualizations for categorical data include count plots and pie charts. These visualizations provide a visual representation of the distribution of the categories and can help identify any patterns or anomalies in the data.

Missing Values: Check for missing values in the data and decide how to handle them. Missing values can be imputed or excluded from the analysis, depending on the research question and the data set.

Conclusion: Summarize the findings of the EDA and make decisions about how to proceed with further analysis.

Survived

conclusions

- Parch and SibSp cols can be merged to form a new col call family_size
- Create a new col called is_alone

survived column

df['Survived'].value_counts()

0 5491 342

Name: Survived, dtype: int64

df['Survived'].value_counts().plot(kind='bar')

<matplotlib.axes. subplots.AxesSubplot at 0x7f6531936460</pre>

df['Survived'].value_counts().plot(kind='pie', autopct='%0.1f%%')

<matplotlib.axes._subplots.AxesSubplot at 0x7+65318ab+d0>


```
# missing values
df['Survived'].isnull().sum()
     0
df['Survived'].describe()
              891.000000
     count
     mean
                0.383838
                0.486592
     std
                0.000000
     min
     25%
               0.000000
     50%
                0.000000
     75%
                1.000000
                1.000000
     max
     Name: Survived, dtype: float64
```

Pclass column

conclusion

• surprisingly class 1 is more travelling than class 2. Why?

```
df['Pclass'].describe()
     count
              891.000000
     mean
                2.308642
     std
               0.836071
     min
                1.000000
     25%
               2.000000
     50%
                3.000000
     75%
                3.000000
                3.000000
     Name: Pclass, dtype: float64
df['Pclass'].value_counts()
          491
          216
          184
     Name: Pclass, dtype: int64
df['Pclass'].value_counts().plot(kind='bar')
```


Sex column

conclusion

```
df['Sex'].describe()
```

count 891 unique 2 top male freq 577

Name: Sex, dtype: object

df['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

```
df['Sex'].value_counts().plot(kind='pie', autopct='%0.1f%%')
```



```
df['Sex'].value_counts().plot(kind='bar')
```



```
# missing values
df['Sex'].isnull().sum()
```

0

SibSp column

```
df['SibSp'].describe()

count 891.000000
mean 0.523008
```

std 1.102743 min 0.000000 25% 0.000000 50% 0.000000

```
75%
                1.000000
                8.000000
     max
     Name: SibSp, dtype: float64
df['SibSp'].isnull().sum()
     0
```

df['SibSp'].value_counts()

```
0
      608
      209
2
       28
      18
       16
8
```

Name: SibSp, dtype: int64

df['SibSp'].value_counts().plot(kind='bar')

df['SibSp'].value_counts().plot(kind='pie')

<matplotlib.axes. subplots.AxesSubplot at 0x7f653143fa60>

Parch column

conclusion

- Parch col and SibSp cols can be merge to form a new col called family_size
- Create a new col called is_alone

```
df['Parch'].describe()
              891.000000
     count
     mean
                0.381594
                0.806057
     std
                0.000000
     min
     25%
                0.000000
     50%
                0.000000
     75%
                0.000000
                6.000000
     max
     Name: Parch, dtype: float64
df['Parch'].value_counts()
          678
     0
     1
          118
     2
           80
     6
            1
     Name: Parch, dtype: int64
df['Parch'].isnull().sum()
     0
df['Parch'].value_counts().plot(kind='bar')
```


Ebarked column

644

168 77

Name: Embarked, dtype: int64

C

conclusion

• 2 missing values found

```
df['Embarked'].describe()

count 889
unique 3
top S
freq 644
Name: Embarked, dtype: object

df['Embarked'].isnull().sum()

2

df['Embarked'].value_counts()
```

```
https://colab.research.google.com/drive/1HwHYTNJnyEQtFGrMgFdo3ctlzvcrLUpB#scrollTo=fkqeGhHFl8uo&printMode=true
```

df['Embarked'].value_counts().plot(kind='bar')

<matplotlib.axes. subplots.AxesSubplot at 0x7f6531c0c460>

df['Embarked'].value_counts().plot(kind='pie', autopct='%0.1f%%')

<matplotlib.axes._subplots.AxesSubplot at 0x7f65313a3790>

mixed columns

• firstly have to do Feature Engineering for Analysis

- Steps of doing Bivariate Analysis
 - Select 2 cols
 - Understand type of relationship
 - 1. Numerical Numerical
 - a. You can plot graphs like scatterplot(regression plots), 2D histplot, 2D KDEplots
 - b. Check correlation coefficent to check linear relationship
 - 2. **Numerical Categorical** create visualizations that compare the distribution of the numerical data across different categories of the categorical data.
 - a. You can plot graphs like barplot, boxplot, kdeplot violinplot even scatterplots
 - 3. Categorical Categorical
 - a. You can create cross-tabulations or contingency tables that show the distribution of values in one categorical column, grouped by the values in the other categorical column.
 - b. You can plots like heatmap, stacked barplots, treemaps
 - Write your conclusions

df

sns.heatmap(pd.crosstab(df['Survived'], df['Pclass'], normalize='columns')*100)

categorical - categorical column (Bivariate Analysis)

create cross-tabulations or contingency tables

pd.crosstab(df['Survived'], df['Pclass'])

Pclass Survived

0 80 97 372

pd.crosstab(df['Survived'], df['Pclass'], normalize='columns')*100

Pclass

Survived

0 37.037037 52.717391 75.763747

pd.crosstab(df['Survived'], df['Sex'], normalize='columns')*100

373450

Numerical - categorical (Bivariate Anlysis)

```
# Survived and age

df[df['Survived'] == 1]['Age'].plot(kind='kde', label='Survived')

df[df['Survived'] == 0]['Age'].plot(kind='kde', label='Not Survived')

plt.legend()
plt.show()
```


df[df['Pclass'] == 1]['Age'].mean()

38.233440860215055

```
df[df['Pclass'] == 1]['Age'].plot(kind='kde', label='Pclass1')
df[df['Pclass'] == 2]['Age'].plot(kind='kde', label='Pclass2')
df[df['Pclass'] == 3]['Age'].plot(kind='kde', label='Pclass3')
plt.legend()
plt.show()
```


df[df['Pclass'] == 1]['Age'].value_counts().plot(kind='hist', bins=15)

df[df['Pclass'] == 3]['Age'].value_counts().plot(kind='hist', bins=30)

Feature Enginnering on Fear column

df['SibSp'].value_counts()

608209

2/15/23, 9:03 PM Basic EDA - Colaboratory 2 28 18 16 8 Name: SibSp, dtype: int64 df[df['SibSp']==8] PassengerId Survived Pclass Age SibSp Parch Ticket Sage, Master. CA. 0 3 159 160 male NaN 8 2 69.55 2343 Thomas Henry 69.55 Sage, Mr. CA. 0 2 69.55 201 202 male NaN 8 2343 Frederick df[df['Ticket']=='CA..2343']

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
159	160	0	3	Sage, Master. Thomas Henry	male	NaN	8	2	CA. 2343	69.55
180	181	0	3	Sage, Miss. Constance Gladys	female	NaN	8	2	CA. 2343	69.55
201	202	0	3	Sage, Mr. Frederick	male	NaN	8	2	CA. 2343	69.55
4										•

df[df['Name'].str.contains('Sage')]

		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket Fa	re
	159	160	0	3	Sage, Master. Thomas Henry	male	NaN	8	2	CA. 2343 69.	55
		read_csv('/cor oncat([df,df1]		.csv')	Sane						
		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
	1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7
	2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	
	3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	5
	4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	
											→
df[d	f['Tic	:ket']=='CA. • 2	2343'1								
о [G											

		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far	е
	159	160	0.0	3	Sage, Master. Thomas Henry		NaN	8	2	CA. 2343	69.5	5
	180	181	0.0	3	Sage, Miss. Constance Gladys	female	NaN	8	2	CA. 2343	69.5	5
df[df	['Tic	ket']=='CA 21	L44']									
		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
	59	60	0.0	3	Goodwin, Master. William Frederick	male	11.0	5	2	CA 2144	46.9	I
	71	72	0.0	3	Goodwin, Miss. Lillian Amy	female	16.0	5	2	CA 2144	46.9	1
	386	387	0.0	3	Goodwin, Master. Sidney Leonard	male	1.0	5	2	CA 2144	46.9	ľ
	1	_	_		_					_		•
df['i	ndivi	new column dual_fare'] = dual_fare']	= df['Fare'	'] / (df	['SibSp']+	df['Pard	:h']+1)				
	0 1 2 3 4 413 414 415 416 417 Name:	3.625000 35.641650 7.925000 26.550000 8.050000 8.050000 7.250000 7.452767 individual_f	fare, Lengi	th: 1309	, dtype: f	loat64						
df['i	ndivi	dual_fare'].d	describe()									
	count mean	1308.0000 20.5182										

```
      std
      35.774337

      min
      0.000000

      25%
      7.452767

      50%
      8.512483

      75%
      24.237500

      max
      512.329200
```

Name: individual_fare, dtype: float64

df[['Fare','individual_fare']].describe()

Fare individual fare

count	1308.000000	1308.000000
mean	33.295479	20.518215
std	51.758668	35.774337
min	0.000000	0.000000
25%	7.895800	7.452767
50%	14.454200	8.512483
75%	31.275000	24.237500
max	512.329200	512.329200

df

```
PassengerId Survived Pclass
                                                            Age SibSp Parch
                                            Braund,
       0
                     1
                             0.0
                                       3
                                          Mr. Owen
                                                      male 22.0
                                                                            0
                                                                                  A/5 21171
                                             Harris
# featuring engineering
# new column called family_size
df['family_size'] = df['SibSp']+df['Parch']+1
df
```

```
# creating family_type column
# 1 -> alone
# 2-4 -> small
# >5 -> large

def transform_family_size(num):
    if num == 1:
        return 'alone'
    elif num>1 and num<5:
        return 'small'
    else:
        return 'large'

Mrs.

df['family_type'] = df['family_size'].apply(transform_family_size)
    df
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599 7
2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282

Futrelle Mrs

pd.crosstab(df['Survived'], df['family_type'], normalize = 'columns')*100

fa	amily_type	alone	large	small	7/2					
	Survived									
	0.0	69.646182	83.870968	42.123288						
	1.0	30.353818	16.129032	57.876712						
4	13	1305	NaN	3	' male	NaN	0	0	A.5. 3236	

a = pd.crosstab(df['Survived'], df['family_type'], normalize = 'columns')*100
a.plot(kind='bar')

Feature Engineering -> working with Name column
df['Name'].str.split(',')

```
[Braund, Mr. Owen Harris]
     0
            [Cumings, Mrs. John Bradley (Florence Briggs ...
                                    [Heikkinen, Miss. Laina]
              [Futrelle, Mrs. Jacques Heath (Lily May Peel)]
                                  [Allen, Mr. William Henry]
     413
                                        [Spector, Mr. Woolf]
                              [Oliva y Ocana, Dona. Fermina]
     414
     415
                              [Saether, Mr. Simon Sivertsen]
     416
                                       [Ware, Mr. Frederick]
     417
                                  [Peter, Master. Michael J]
     Name: Name, Length: 1309, dtype: object
df['surname'] = df['Name'].str.split(',').str.get(0)
df
```

```
Survived Pclass
                                                                   Ticket
                                                                               Fare Cabin Embai
                                          Age SibSp Parch
                         Braund,
          0.0
                    3
                        Mr. Owen
                                    male 22.0
                                                    1
                                                           0
                                                                 A/5 21171
                                                                             7.2500
                                                                                      NaN
                           Harris
                                                                                      C85
                       Heikkinen,
                                                                STON/O2
# Name title
df['title'] = df['Name'].str.split(',').str.get(1).str.strip().str.split(' ').str.get(0)
df['title'].value_counts()
     Mr.
                  757
     Miss.
                  260
     Mrs.
                  197
     Master.
                    61
     Rev.
                     8
                     8
     Dr.
     Col.
                    4
                     2
     Mlle.
     Major.
                     2
                     2
     Ms.
                     1
     Lady.
     Sir.
                     1
                     1
     Mme.
     Don.
                     1
     Capt.
                     1
     the
                     1
     Jonkheer.
                     1
     Dona.
     Name: title, dtype: int64
                                                                  3101262
# not worked
1 = ['Dr.','Col.','Major.','Don.','Capt.','the','Jhonkheer.']
def transform_title(1):
  return df['title'].str.replace(1, 'other')
                        Master. male NaN
                                                                     2668
                                                                            22.3583
                                                                                      NaN
df['title'].apply(transform_title)
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
30	31	0.0	1	Uruchurtu, Don. Manuel E	male	40.0	0	0	PC 17601	27.72
245	246	0.0		Minahan, Dr. William Edward	male	44.0	2	0	19928	90.00
317	318	0.0	2	Moraweck, Dr. Ernest	male	54.0	0	0	29011	14.00
398	399	0.0	2	Pain, Dr. Alfred	male	23.0	0	0	244278	10.50
449	450	1.0	1	Peuchen, Major. Arthur Godfrey	male	52.0	0	0	113786	30.50
536	537	0.0	1	Butt, Major. Archibald Willingham	male	45.0	0	0	113050	26.55
632	633	1.0	1	Stahelin- Maeglin, Dr. Max	male	32.0	0	0	13214	30.50
647	648	1.0	1	Simonius- Blumer, Col. Oberst Alfons	male	56.0	0	0	13213	35.50
				Frauenthal,					PC	

df[df['other_title']]

С→

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
30	31	0.0	1	Uruchurtu, Don. Manuel E	male	40.0	0	0	PC 17601	27.72
245	246	0.0		Minahan, Dr. William Edward	male	44.0	2	0	19928	90.00
317	318	0.0	2	Moraweck, Dr. Ernest	male	54.0	0	0	29011	14.00
398	399	0.0	2	Pain, Dr. Alfred	male	23.0	0	0	244278	10.50
449	450	1.0	1	Peuchen, Major. Arthur Godfrey	male	52.0	0	0	113786	30.50
536	537	0.0	1	Butt, Major. Archibald Willingham	male	45.0	0	0	113050	26.55
632	633	1.0	1	Stahelin- Maeglin, Dr. Max	male	32.0	0	0	13214	30.50
647	648	1.0	1	Simonius- Blumer, Col. Oberst Alfons	male	56.0	0	0	13213	35.50
660	661	1.0	1	Frauenthal, Dr. Henry William	male	50.0	2	0	PC 17611	133.65
694	695	0.0	1	Weir, Col. John	male	60.0	0	0	113800	26.55
745	746	0.0	1	Crosby, Capt. Edward Gifford	male	70.0	1	1	WE/P 5735	71.00
759	760	1.0	1	Rothes, the Countess. of (Lucy Noel Martha Dye	female	33.0	0	0	110152	86.50
766	767	0.0	1	Brewe, Dr. Arthur Jackson	male	NaN	0	0	112379	39.60

temp_df = df[df['title'].isin(['Mr.','Miss.','Mrs.','Master.'])]
temp_df

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1.0		Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0		0	PC 17599 7
2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803 5
4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450
412	1304	NaN	3	Henriksson, Miss. Jenny Lovisa	female	28.0	0	0	347086
413	1305	NaN	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236
415	1307	NaN	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262
416	1308	NaN	3	Ware, Mr. Frederick	male	NaN	0	0	359309
417	1309	NaN	3	Peter, Master. Michael J	male	NaN	1	1	2668 2

1275 rows × 18 columns

pd.crosstab(temp_df['Survived'], temp_df['title'], normalize='columns')*100 # percentage

 \blacktriangleright

```
title Master.
                                        Mr.
                                             Mrs.
      Survived
         0.0
                   42.5 30.21978 84.332689
                                              20.8
         1.0
                                              79.2
pd.crosstab(temp_df1['Survived'], temp_df1['title'],normalize='columns')*100 # percentage
         title Capt. Col. Don.
                                         Dr. Major.
      Survived
         0.0
                100.0
                       50.0 100.0 57.142857
                                                 50.0
                                                        0.0
         1.0
                               0.0 42.857143
# df['title'] = df['title'].str.replace('Rev.','other')
# df['title'] = df['title'].str.replace('Dr.','other')
# df['title'] = df['title'].str.replace('Col.','other')
# df['title'] = df['title'].str.replace('Major.','other')
# df['title'] = df['title'].str.replace('Capt.','other')
# df['title'] = df['title'].str.replace('the','other')
# df['title'] = df['title'].str.replace('Jonkheer.','other')
# ,'Dr.','Col.','Major.','Don.','Capt.','the','Jonkheer.']
# cabin column
df['Cabin'].isnull().sum()
     1014
df['Cabin'].isnull().sum()/len(df['Cabin'])
     0.774637127578304
df['Cabin'].value counts().head(20)
     C23 C25 C27
                        6
                        5
     G6
     B57 B59 B63 B66
                        5
     C22 C26
     F33
                        4
     F2
                        4
     B96 B98
                        4
     C78
                        4
     F4
                        4
     D
                        4
     E34
     B58 B60
     A34
```

```
E101
     C101
     B51 B53 B55
     C31
                         2
     C55 C57
                         2
     D37
                         2
     C54
     Name: Cabin, dtype: int64
df['Cabin'].fillna('M', inplace=True)
df['Cabin'].value_counts()
                         1014
     C23 C25 C27
                            6
     B57 B59 B63 B66
     G6
     F33
     A14
     E63
                            1
     E12
     E38
                            1
     C105
     Name: Cabin, Length: 187, dtype: int64
df['deck'] = df['Cabin'].str.get(0)
df['deck'].value_counts()
          1014
     С
            94
     В
            65
     D
            46
     Ε
            41
            22
     Α
            21
     G
             1
     Name: deck, dtype: int64
pd.crosstab(df['deck'],df['Pclass'])
```


pd.crosstab(df['deck'], df['Survived'], normalize='index').plot(kind='bar')

<matplotlib.axes. subplots.AxesSubplot at 0x7f652e5f7310>

pd.crosstab(df['deck'], df['Survived'], normalize='index').plot(kind='bar', stacked=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f652b419dc0>

sns.heatmap(df.corr())

