Háló, Boole-algebra

A György-féle feladatsor megoldókulcsa

Új fogalmak: háló (1.), félháló (3.), korlátos háló (2.c), részháló (5.), izomorf hálók (8.), disztributív háló (8.), komplemens elemek hálóban (11.), Boole-algebra (12.)

1. $A = \{1, 2, 3, 6, 7, 14, 21, 42\}$. Vizsgáljuk az (A; lnko, lkkt) algebrát. Igazoljuk, hogy háló. Adjunk meg a hálón parciális rendezést. Igazoljuk, hogy a háló korlátos.

Megjegyzések

lnko: legnagyobb közös osztó; lkkt: legkisebb közös többszörös

algebra = algebrai struktúra = struktúra = egy halmaz és ezen a halmazon értelmezett műveletek = egy halmaz, és olyan műveletek, amelyek nem vezetnek ki a halmazból, azaz amelyekre a halmaz zárt.

Átgondolható, hogy A zárt az lnko ill. lkkt műveletekre: bármely két A-beli elem lnko-ja és lkkt-je A-ban van. Pl. lnko(3,7) = 1, lkkt(3,7) = 21 stb. "Baj lenne", ha pl. $8 \in A$ lenne: ekkor pl. $lkkt(3,8) = 24 \notin A$ teljesülne, tehát a művelet kivezetne a halmazból, és ez esetben nem beszélhetnénk algebráról.

A hálónak két definícióját is használjuk.

1. definíció: A háló olyan (A; ≤) parciálisan rendezett halmaz, amelyben bármely két elemnek van infimuma és szuprémuma.

<u>2. definíció</u>: A *háló* olyan $(A; \land, \lor)$ kétműveletes algebrai struktúra, amelyben a két művelet mindegyike kétváltozós, továbbá mindegyik kommutatív, asszociatív, idempotens és teljesülnek rájuk az abszorpciós törvények.

<u>Tétel</u>: A két definíció egyenértékű.

Egyrészt: Ha az $(A; \leq)$ parciálisan rendezett halmaz háló, akkor az $x \wedge y = \inf(x, y), x \vee y = \sup(x, y)$ definíciókkal $(A; \wedge, \vee)$ algebrai értelemben is háló $(x, y \in A)$.

Másrészt: ha az $(A; \land, \lor)$ algebra háló, akkor az $x \le y$, ha $x \land y = x$ definícióval $(A; \le)$ parciálisan rendezett halmaz és háló $(x, y \in A)$.

1. Mo.:

Először belátjuk, hogy a fenti algebra a 2. def. értelmében háló. Ehhez belátjuk, hogy az lnko és lkkt műveletek mindegyike kommutatív, asszociatív, idempotens, továbbá teljesülnek rájuk az abszorpciós törvények. Az áttekinthetőséget nehezíti, hogy a szereplő műveleti jeleket (lnko ill. lkkt) eléírással és nem $k\ddot{o}z\acute{e}$ írással használjuk (pl. lnko(x,y)-t írunk és nem x lnko y-t). Ezért célszerű mindig az általános műveleti jelekkel is megfogalmazni, amit bizonyítani szeretnénk: ld. mindig keretezve!

lnko kommutatív, mert $\forall x, y \in A$ esetén lnko(x, y) = lnko(y, x) (triviális) $x \land y = y \land x$

lnko asszociatív, mert $\forall x, y, z \in A$ esetén lnko(x, lnko(y, z)) = lnko(lnko(x, y), z), ugyanis mindegyik egyenlő lnko(x, y, z)-vel. $x \land (y \land z) = (x \land y) \land z$

lnko idempotens, mert $\forall x \in A$ esetén lnko(x,x) = x (triviális) $x \land x = x$

lkkt kommutatív, mert $\forall x, y \in A$ esetén lkkt(x, y) = lkkt(y, x) (triviális) $x \lor y = y \lor x$

lkkt asszociatív, mert $\forall x, y, z \in A$ esetén lkkt(x, lkkt(y, z)) = lkkt(lkkt(x, y), z), ugyanis mindegyik egyenlő lkkt(x, y, z)-vel. $x \lor (y \lor z) = (x \lor y) \lor z$

lkkt idempotens, mert $\forall x \in A$ esetén lkkt(x,x) = x (triviális) $x \lor x = x$

abszorpció: lnko(x, lkkt(x, y)) = x, hiszen a "jobboldali" x osztója a "benti" x-nek és lkkt(x, y)-nak is, tehát közös osztó, és x-nek nincs x-nél nagyobb osztója; $x \land (x \lor y) = x$

lkkt(x, lnko(x, y)) = x, hiszen a "jobboldali" x többszöröse a "benti" x-nek és lnko(x, y)-nak is, tehát közös többszörös, és x-nek nincs x-nél kisebb többszöröse. $x \lor (x \land y) = x$

Ezzel beláttuk, hogy az algebra háló.

2. Mo.:

Gyakorlásképpen az 1. definíció szerint is belátjuk, hogy hálóról van szó!

Tehát oszthatósági relációról van szó. IN tetszőleges részhalmazán az oszthatóság parciális rendezési reláció, ezért a fenti *A* halmazon is.

Lássuk be, hogy bármely két elemnek van infimuma és szuprémuma! A gyors meghatározáshoz tekintsük a rendezés Hasse-diagramját:

Az egymással relációban lévő elempároknak triviálisan mindig van infimuma és szuprémuma, így elég az egymással relációban nem lévő elempárokat vizsgálni: Tételesen:

$$\inf(2,3) = 1$$
 $\sup(2,3) = 6$
 $\inf(2,7) = 1$ $\sup(2,7) = 14$
 $\inf(2,21) = 1$ $\sup(2,21) = 42$
 $\inf(3,7) = 1$ $\sup(3,7) = 21$
 $\inf(3,14) = 1$ $\sup(3,14) = 42$
 $\inf(6,7) = 1$ $\sup(6,7) = 42$
 $\inf(6,14) = 2$ $\sup(6,14) = 42$
 $\inf(6,21) = 3$ $\sup(6,21) = 42$
 $\inf(14,21) = 7$ $\sup(14,21) = 42$

Beláttuk, hogy az 1. definíció szerint is hálóról van szó.

Másképp: a Hasse-diagram alapján az (*A*; *lnko*, *lkkt*) algebra Boole-algebra, tehát háló. (ld.: **12.**)

- **2.** Döntse el, hogy az alábbi, parciálisan rendezett halmazok hálót alkotnak-e az inf és sup műveletekkel:
 - (a) $A_1 = \{3, 6, 9, 10, 20, 30\}, a \le b$, ha b osztható a-val, $a, b \in A_1$

Mo.: Hasse-diagram:

Nem háló, pl. $\nexists \inf(6,10)$, $\nexists \sup(3,20)$

(b) $A_2 = \{1, 2, 3, 4, 6, 12\}, b \le a$, ha b osztható a-val, $a, b \in A_2$

Mo.: Hasse-diagram:

Háló. Bármely két elemnek van infimuma és szuprémuma:

$$\inf(a,b) = lkkt(a,b), \sup(a,b) = lnko(a,b)$$

(c) Az előző két példa közül az egyik nem háló. Egészítse ki a megfelelő halmazt olyan, minimális számú elemmel, hogy az így megadott halmaz az adott rendezéssel már háló legyen. Melyek ezek az elemek? Korlátos-e a háló?

Mo.: Az (a)-beli rendezésről van szó. Elég két elemmel bővítenünk az A_1 halmazt: vegyük hozzá az inf $\{3,6,9,10,20,30\} = lnko(3,6,9,10,20,30) = 1$ ill. sup $\{3,6,9,10,20,30\} = lkkt(3,6,9,10,20,30) = 180$ elemeket a halmazhoz. Az $A_3 = \{1,3,6,9,10,20,30,180\}$ halmaz már háló az adott parciális rendezési relációval.

Hasse-diagram:

<u>def.</u>: *legkisebb elem*. Egy háló legkisebb eleme, ha létezik, egy olyan elem, amely a háló minden elemével relációban áll, és mindegyiknél kisebb vagy egyenlő. (ált. jel: $\mathbb O$)

 $\underline{\text{def.}}$: $legnagyobb\ elem$. Egy háló legnagyobb eleme, ha létezik, egy olyan elem, amely a háló minden elemével relációban áll, és mindegyiknél nagyobb vagy egyenlő. (ált. jel: \mathbb{I})

<u>def.</u>: *korlátos háló*. Egy háló korlátos (más néven: egységelemes), ha van legkisebb és legnagyobb eleme.

A kiegészítéssel kapott háló korlátos: legkisebb eleme 1, legnagyobb eleme 180.

(Azaz:
$$\mathbb{O} = 1$$
 és $\mathbb{I} = 180$)

megj.: Vigyázat, a "kisebb vagy egyenlő", "nagyobb vagy egyenlő" kifejezés tartalma parciális rendezési relációk esetében (és így hálók esetében is) a megszokottól eltérő is lehet. Tekintsük ugyanis pl. az alábbi hálót:

$$A = \{1, 2, 3, 6\}$$
 halmazon $a \le b$, ha $b | a$.

Hasse-diagram:

Ebben a rendezésben pl. $6 \le 2$ teljesül, tehát itt "6 kisebb vagy egyenlő, mint 2".

Továbbá $\mathbb{O} = 6$ és $\mathbb{I} = 1$. (Vö.: **2.b**)

3. Az alábbi ábrák egy-egy parciális rendezés Hasse-féle diagramjai. Melyek alkotnak hálót, illetve félhálót a *sup* és *inf* műveletekkel?

Mo.: mindig elég az egymással relációban nem lévő elempárokat vizsgálni (ld. 1.)

- a) Háló. $\inf(c,d) = b$, $\sup(c,d) = e$
- b) Háló. $\inf(b,c) = \inf(b,d) = \inf(c,d) = a, \ \sup(b,c) = \sup(b,d) = \sup(c,d) = e$
- c) Félháló az inf műveletre, de nem háló. $\inf(a,b) = c$, de $\nexists \sup(a,b)$
- d) Nem háló, nem félháló. $\nexists \sup(a,b), \nexists \inf(c,d), \text{ sőt } \nexists \inf(a,b) \ (!), \nexists \sup(c,d) \ (!)$

megj.: Vigyázat! A (d)-beli példa is jelzi, hogy óvatosan kell eljárnunk elempárok infimuma és szuprémuma vizsgálatakor. Attól, hogy egy parciális rendezési relációnak "szép" a Hasse-diagramja, még nem biztos, hogy hálóról van szó. Lásd az alábbi példát:

- **4.** Igazoljuk, hogy egy $(L; \land, \lor)$ véges elemszámú háló mindig korlátos. Írjuk fel a korlátos háló \mathbb{I} és \mathbb{O} elemeit a háló többi elemének segítségével. (Elméleti kérdés)
- **5.** $L = \{0, a, c, b, e, d, I\}$. Az $(L; \leq)$ parciálisan rendezett halmazban a legkisebb ill. legnagyobb elemek: 0 ill. I. A rákövetkező elemek: $0 \ll a$, $0 \ll b$, $a \ll c$, $b \ll c$, $a \ll d$, $b \ll e$, $d \ll I$, $c \ll I$ és $e \ll I$.

Igazolja, hogy az (L; inf, sup) struktúra háló.

Az alábbiak közül melyek részhálói *L*-nek?

- (a) $L_1 = \{0, a, b, I\}$
- (b) $L_2 = \{0, a, e, I\}$
- (c) $L_3 = \{a, c, d, I\}$
- (d) $L_4 = \{0, c, d, I\}$
- (e) $L_5 = \{0, a, d, e, I\}$

megj.: most tehát: $\mathbb{O} = 0$ és $\mathbb{I} = I$

megj.: Rákövetkező elem: $x \ll y$, ha $x \le y$, $x \ne y$ és nincs köztük "közvetítő tag" (azaz nincs olyan, tőlük különböző z, amelyre $x \le z$ és $z \le y$). Az egymással rákövetkező viszonyban lévő elempárok tkp. a Hasse-diagram éleit fogalmazzák meg.

Ez alapján $(L; \leq)$ Hasse-diagramja:

<u>def.</u>: $r\acute{e}szh\acute{a}l\acute{o}$. Egy L háló egy S részhálója egy olyan $S\subseteq L$ halmaz, amelyre igaz, hogy tetszőleges két $a,b\in S$ elemre az L-beli (!) $\inf(a,b)$ és $\sup(a,b)$ is S-ben van. Átfogalmazva: egy olyan S részhalmaz, amelyben bármely két elem "magával hozta" S-be az eredeti, L-beli infimumát és szuprémumát.

Mo.: Belátjuk, hogy *L* bármely két elemének van infimuma és szuprémuma.

Az egymással relációban lévő elempároknak triviálisan mindig van infimuma és szuprémuma, így elég az egymással relációban nem lévő elempárokat vizsgálni: Tételesen:

$$\inf(a,b) = 0$$
 $\sup(a,b) = c$
 $\inf(a,e) = 0$ $\sup(a,e) = I$
 $\inf(d,e) = 0$ $\sup(d,e) = I$
 $\inf(d,c) = a$ $\sup(d,c) = I$

Szimmetria okok miatt elég ezeket a párokat megvizsgálni. Kaptuk: L háló.

(a) NEM. L_1 nem részhálója L-nek, mert $\sup(a,b)=c\notin L_1$

(b) IGEN. L_2 részhálója L-nek, $\inf(a,e)=0\in L_2$, $\sup(a,e)=\mathrm{I}\in L_2$

(c) IGEN. L_3 részhálója L-nek, $\inf(c,d)=a\in L_3$, $\sup(c,d)=\mathrm{I}\in L_3$

(d) NEM. L_4 nem részhálója L-nek, mert $\inf(d,c) = a \notin L_4$

(e) IGEN. L_5 részhálója L-nek, mert $\inf(a,e) = \inf(d,e) = 0 \in L_5$, $\sup(a,e) = \sup(d,e) = \mathrm{I} \in L_5$

6. A $H = \{1,3,6,9,10,20,30,180\}$ halmaz elemein $a \le b$, ha b osztható a-val. Válassza ki az alábbi halmazok közül azokat, amelyek a fenti rendezés szerinti inf és sup műveletekkel hálót alkotnak, és azokat, amelyek az eredeti (H; inf, sup) háló részhálói:

$$H_1 = \{1,3,9,10,20,30,180\}$$

$$H_2 = \{1,3,6,10,20,30\}$$

$$H_3 = \{1,3,6,10,30\}$$

$$H_4 = \{1,9,20,180\}$$

$$H_5 = \{1,6,9,10,30,180\}$$

$$H_6 = \{1,6,20,30,180\}$$

$$H_7 = \{1,9,20,30,180\}$$

Mo.: H Hasse-diagramja (ld. még 2.c):

A halmaz	Hasse-diagram	Háló-e?	Részhálója-e <i>H</i> -nak?
	9 3 30 20		
H_1	1	IGEN	IGEN
	30 20		
H_2	1	NEM ∄sup(20,30)	NEM mert nem is háló

A halmaz	Hasse-diagram	Háló-e?	Részhálója-e <i>H</i> -nak?
	30		
	6		
	3 10		
H_3	1	IGEN	IGEN
	180		
	9 20		
	20		
H_4	1	IGEN	IGEN
	180		
	$9 \bigcirc 6$		
7.7	10	ICENT	NTD (
H_5	1	IGEN	NEM pl. $\inf(6,9) = 3 \notin H_5$
	30		
	6 20		
H_6	1	IGEN	NEM $\inf(20,30) = 10 \notin H_6$ Vö.: H_3 !
	180		
	9 4 30 20		
H_7	1	IGEN	NEM $\inf(9,30) = 3 \notin H_7$

- 7. Írja le, hogy mik a kritériumai annak, hogy egy L hálónak részhálója legyen egy L_1 háló! (Elméleti kérdés)
- **8.** Igazolja, hogy az alábbi háló nem disztributív:

megj.: egy $(H; \land, \lor)$ háló disztributív, ha tetszőleges $x, y, z \in H$ -ra

i)
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

és

ii)
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

megj.: az **1.** feladatbeli tétel alapján: $x \wedge y = \inf(x, y)$, $x \vee y = \sup(x, y)$

1. mo.: Az

$$x \longrightarrow 0$$

jelöléseket alkalmazva, pl. próbálgatással vizsgálhatjuk az i) egyenlőséget.

Próbálgatás:

I,y,z elemekkel:
$$\begin{bmatrix} I \lor (y \land z) \stackrel{?}{=} (I \lor y) \land (I \lor z) \\ \text{b.o.: } I \lor (y \land z) = I \lor 0 = I \\ \text{j.o.: } (I \lor y) \land (I \lor z) = I \land I = I \end{bmatrix}$$
 TELJESÜL

$$\begin{split} \text{I,y,0 elemekkel:} & \left[\begin{array}{l} \text{I} \lor (y \land 0) \stackrel{?}{=} (\text{I} \lor y) \land (\text{I} \lor 0) \\ \text{b.o.:} & \text{I} \lor (y \land 0) = \text{I} \lor 0 = \text{I} \\ \text{j.o.:} & (\text{I} \lor y) \land (\text{I} \lor 0) = \text{I} \land \text{I} = \text{I} \end{array} \right. \end{split}$$

$$x,y,z$$
 elemekkel:
$$\begin{bmatrix} x \lor (y \land z) \stackrel{?}{=} (x \lor y) \land (x \lor z) \\ \text{b.o.: } x \lor (y \land z) = x \lor 0 = x \\ \text{j.o.: } (x \lor y) \land (x \lor z) = I \land I = I \end{bmatrix}$$
 NEM TELJESÜL!

Kaptuk: a háló nem disztributív.

2. mo.:

Birkhoff tétele szerint (ld.: **9.**) egy háló pontosan akkor disztributív, ha a köv. két háló egyikével sincs izomorf részhálója:

Egy háló önmagával triviálisan izomorf, ezért

nem disztributív.

3. mo.: Nem disztributív, mert van olyan elem, amelynek több komplementuma is van: pl. x' = y és x' = z

9. Ismertesse Birkhoff tételét! (Elméleti kérdés)

Tétel (Birkhoff)

Egy háló pontosan akkor disztributív, ha a köv. két háló egyikével sincs izomorf részhálója:

10. Válassza ki Birkhoff tétele alapján a **6.** feladat hálói közül azokat, amelyek nem disztributívak! Jelölje B_1 ill. B_2 a tételben szereplő két hálót:

Az egyszerűbb esetekkel kezdve:

 H_3 nem disztributív, mert $H_3 \cong B_2$.

 H_6 nem disztributív, mert $H_6 \cong B_2$.

 H_7 nem disztributív, mert $H_7 \cong B_1$.

 H_2 nem disztributív, mert nem is háló.

Maga a H háló sem disztributív, mert neki H_3 részhálója, és $H_3\cong B_2$.

*H*₄ disztributív, mert Hasse-diagramja alapján Boole-algebra.

 H_5 nem disztributív, mert belőle a 6 elemet elhagyva H_5 egy olyan H_5^* részhálóját kapjuk, amelyik izomorf a B_2 hálóval.

 H_1 nem disztributív. Ennek bizonyítását lássuk négyféleképpen:

- Nem disztributív, mert van olyan eleme, amelynek több komplementuma is van. Pl. 20' = 9, 20' = 3
- Nem disztributív, mert a komplementumos elemek H_1^* halmaza nem részháló.

$$H_1^* = \{1, 3, 9, 10, 20, 180\}, \text{ és pl. } \sup(3, 10) = 30 \notin H_1^*$$

• Nem disztributív, mert a 10 ill. 30 elemek elhagyásával kapott H_1^{**} háló H_1 -nek részhálója, és $H_1^{**} \cong B_2$.

• Nem disztributív, mert $10 \lor (20 \land 9) \neq (10 \lor 20) \land (10 \lor 9)$

Kaptuk: a felsoroltak közül kizárólag H₄ disztributív.

megj.: Disztributív háló minden részhálója is disztributív.

11. Határozzon meg az **5.** feladat *L* hálója és a **6.** feladat *H* hálója elememeinek komplemensei közül néhányat. Állapítsa meg e hálókról, hogy komplementumosak-e vagy sem!

<u>def.</u>: *elem komplementuma*. Korlátos háló x elemének egy komplementuma (vagy komplemense) a hálónak egy olyan, szokás szerint x'-vel jelölt eleme, amellyel $x \wedge x' = \mathbb{O}$ és $x \vee x' = \mathbb{I}$.

megj.: Egy elemnek lehet több komplementuma is, de az is lehet, hogy egy elemnek nincs komplementuma.

<u>def.</u>: *komplementumos háló*. Egy háló komplementumos, ha minden elemének van (legalább egy) komplementuma.

Mo.:

Az L hálóban:

A H hálóban:

$$1' = 180$$

 $3' = 20$
 $6' = 20$
 $9' = 10$ és $9' = 20$
 $10' = 9$
 $20' = 3$ és $20' = 6$ és $20' = 9$
 $\cancel{1}{30'}$
 $\cancel{1}{80'} = 1$

Egyik háló sem komplementumos: L-ben $\nexists c'$, H-ban $\nexists 30'$.

megj.: két háló összehasonlítását segíti, ha Hasse-diagramjaikat egységes elvek szerint rajzoljuk fel. Ehhez lásd pl.:

12. Példatár: 4.4.6., 4.4.7., 4.4.8. feladatok

<u>def.</u>: *Boole-algebra*. Egy $(B; \land, \lor, ')$ háromműveletes algebra Boole-algebra, ha $(B; \land, \lor)$ disztributív, komplementumos háló $(\mathbb{O}$ ill. \mathbb{I} korlátelemekkel) és x' az x elem komplementumát jelöli. (Boole-algebrában tehát ' egy egyváltozós művelet.)

- 4.4.6. Igazolja, hogy az alábbi struktúrák Boole-algebrák:
 - a) egy $A \neq \emptyset$ halmaz hatványhalmaza az unió, metszet és komplementer műveletekkel;
 - b) az n-változós ($n \neq 0$) kétértékű logikai függvények halmaza a konjunkció, diszjunkció és a negáció műveletekkel.

Mo.: Nem bizonyítjuk. Ld. az előadás anyagát!

- 4.4.7. Legyenek az A halmaz elemei 715 pozitív osztói; $(A; \lor, \land)$ műveletei pedig legyenek a következők: $a \lor b = lkkt(a,b)$ és $a \land b = lnko(a,b)$.
 - a) Legyen az *A* halmazon egy egyváltozós művelet (') értelmezve, amelyre $a' = \frac{715}{a}$. Igazolja, hogy az $(A; \vee, \wedge, ')$ struktúra Boole-algebra.

Mo.: Nem bizonyítjuk.

Útmutatás: $A = \{1, 5, 11, 13, 55, 65, 143, 715\}$ $a \le b \Leftrightarrow a \mid b$

Hasse-diagram:

b) Határozza meg a fent definiált Boole-algebrában az $(5') \land (13 \lor 143)$ kifejezés eredményét.

Mo.:
$$(5') \land (13 \lor 143) = 143 \land (13 \lor 143) = 143 \land 143 = 143$$

4.4.8. Boole-algebrát alkot-e $(A; \vee, \wedge, ')$, ha $A = \{42 \text{ pozitív osztói}\}$, \vee a legkisebb közös többszörös, \wedge a legnagyobb közös osztó és $a' = \frac{42}{a}$?

Mo.: Igen. (Nem bizonyítjuk.)

Útmutatás: $A = \{1, 2, 3, 6, 7, 14, 21, 42\}$ $a \le b \Leftrightarrow a \mid b$

Hasse-diagram:

(ld.: **1.**)

megj.: Véges Boole-algebrák elemszáma mindig 2^n valamilyen $n \in \mathbb{N}$ -nel.

megj.: Kis elemszámú Boole-algebrák Hasse-diagramjai:

