

Welcome

Back to the classroom

Agenda

- Introduction to AIML world
- Demystify Machine Learning
- Relate many popular problems
- Abstracting the problems
- Understand the common structure
- Three Simple Algorithms (that still work in real world)
- Discussions

Introduction

Where are we now?

Al and ML at Work

Autonomous Cars and Navigation

"Alexa", "Siri", "Cortana" etc.

Al and ML at Work

Creativity: Generated Images

Playing Games better than Human

Modern Al: End 2 End Driving

What is Modern Al and ML?

Modern "Al"

Computer Vision

Speech Processing

Robotics

A Simplified View

A simple question

- 1, 3, 5, 7, 9, ... What is the next number?
 - Ans: 11 Odd numbers 2x + 1
 - 1, 3, 9, 19, 33, ... What is the next number?

Ans: 51
$$2x^2 + 1$$

A simple question

- How do we solve such problems?
- Find a pattern from the examples
 - (function f(n) = $2x^2 + 1$ or model the data)

- Use it to predict the next number (or solve the problem)
- How do we design a computational procedure?

A Simplified View of ML

A simple question (cont.)

• We know: 1, 3, 9, 19, 33, ... What is the next number? Ans: 51 $2x^2 + 1$

0.99, 3.02, 9.00, 18.98, 33.01, ... What next?

A simple question (cont.)

Consider a series of 2D points

- (1,3), (2,6), (3,9), (4,12),
- What is the next point?
- (x,3x) Or
 - Function:

$$Y = f(X) = 3.X$$

What makes it Difficult?

- When numbers are "uncertain"
 - Noise in measurements
 - Missing values
- When numbers are not just "simple numbers"
 - 2D points, 3D points
 - 100 Dimensional points

What makes it Difficult?

- When the function is complex or function nature is unknown
 - Simple linear functions are easy to guess.
 - \circ Eg. F(x) = $W_1x + W_2$
 - Finding "best" parameters/coefficients can be hard.
 - What is the best "w" that suits the data?

More Examples

- Given a set of numbers {7,26,17,11,25,32,5,8,92},
 partition into two sets: (Unsupervised Learning)
 - Odd (7,17,11,25,5) and Even (26,32,8,92)

- Why this? Why not single and two digit?
- Both mine and your solutions can be right?

More Examples

- Given a set of male people with and without anemia,
 their hemoglobin levels are: (Supervised Learning)
 - Positive cases: {8.5.9.2.7.4.7.8}
 - Negative cases: {15.0, 14.9, 14.2,13.8}
 - Does a patient with 7.7 have anemia?
 - Classification is simple: "anemia if f(x) < 10"
 - Why 10? Why not 12?
 - Multiple solutions. Both works well now. Future?

Closer Look...

- Who gives samples/examples?
 - The Data
 - Data + interpretations (X,Y)=(sample, label)
 - Interpretations are the "supervisory signals"
- Who gives functional form?
 - Most problems need complex functions

(Note that simple "Linear" solutions are also good in many cases.)

Closer Look...

- How to find the "optimal" parameters?
 - Optimization problem
 - Find the best "w" (coefficients) for a given data/problem?
 - Training
 - Computing
- How do we expect that it will work well in the future?

"Classification": A popular problem

- Example:
 - Given medical records, predict presence of Malaria
- Data: A set of Samples { X } labeled by experts.
- Performance: Predict accurately on unseen data
- {0,1} classification
 - "Yes" or "No"
 - \circ Yes if f(x) > 0
- Multiclass classification
- Many more variants

Problem Space

- **Feature Extraction**: Find *X* corresponding to an entity/item *I* (such as an image, web page, ECG etc.)
- Classification: Find a parameterized function $f_w(X)$ which can make the right predictions Y
- End to End: Can we learn Y directly from I

Traditional Programming

Machine Learning

Machine Learning

AI-ML Avatars

- A branch of Artificial Intelligence
 - The design and development of algorithms
 - computers to capture and model behaviors
 - based on empirical data
- Intelligence require Knowledge
 - It is necessary for the computers to acquire Knowledge
 - Learn from external world; "teachers" etc. and solve problems
 - Data provides knowledge in many cases

- A very popular area now
 - Lots of data
 - Many recent success stories

- [Arthur Samuel, 1959]
 - Study that gives computers the ability to learn without being explicitly programmed

- [Kevin Murphy] algorithms that
 - Automatically detect patterns in data
 - Use the uncovered patterns to predict future data or other outcomes of interest

- [Tom Mitchell] algorithms that
 - Improve their performance (P)
 - At some task (T)
 - With experience (E)

Problem Space

- **Feature Extraction**: Find *X* corresponding to an entity/item *I* (such as an image, web page, ECG etc.)
- Classification: Find a parameterized function $f_w(X)$ which can make the right predictions Y
- End to End: Can we learn Y directly from I

Spam Detection

Spam Detection

Medical Diagnosis

Medical Diagnosis

Stock Trading

Stock Trading

etc

Sentiment Analysis

Sentiment Analysis

Disease Confirmation

Disease Confirmation

Product Recommendation

Product Recommendation

Loan Approval

Loan Approval

Face Recognition

Speech Recognition

ML is the "intelligent" block in a large software system

A bit more formal look

The Machine Learning Framework

 Apply a prediction function to a feature representation of the "sample" to get the desired output:

The Machine Learning Framework

Training: given a training set, estimate the prediction function **f** by minimizing the prediction error

Testing: apply f to never before seen test example x and output predicted value y = f(x)

The underlying abstraction

$$y = f(x)$$

- What are x, y for spam detection?
- What are x, y for image classification?
- What are x, y for sentiment analysis?
- What are x, y for <insert your problem here>?

The underlying abstraction

$$y = f(x)$$

- What are f, x, y for the classification tasks?
- X is often a vector (column matrix).
- Y is either 0 or 1 (binary) or {1,2,...,p} (multiclass)

The underlying abstraction

$$y = f(w, x)$$

- What is really f()? (*This is what we need to find.*)
- Who gives w? (Data gives.)
- Who gives the form of f ()? (eg. Quadratic, linear etc.?)

Regression and Time series

Regression

Predicting a real number is regression

Time series Forecasting

Predicting based on prior time tagged data

Training and Testing

— Creating and Evaluating Models ——

Steps

Training

Steps(Cont..)

Testing

Training and testing

Data acquisition

Practical Usage

Training Set (Observed)

Testing Set (Unobserved)

Training and testing

- Training is the process of making the system able to learn
- Assumptions:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Two Prominent Learning Paradigms

 Supervised learning: It is the machine learning task of inferring a function from labeled training data

 Unsupervised Learning: Learn patterns from unlabeled data. Often look for a structure

A 'toy' classification problem

- Apples vs Oranges
- We have measured colour, sphericity
- Some labeled data
- Given unlabeled data decide which fruit it is

Visualizing a Sample in 2D INTERACTIONAL INSTITUTE OF INFORMATION TECHNOLOGY OUTREACH DIVISION

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY HYDE LA A B A D OUTBEACH DIVISION

Sample/Point and Representation

A sample is easy to visualize in 2D

$$x=(x,y)or(x_1,y_2) \quad x=\begin{bmatrix} x_1\\x_2 \end{bmatrix}$$
 and sometime in 3D with some effort $\quad x=\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$

And we often need much larger dimensionality in practice

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{100} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

Examples of Learned Function or Model

```
bool f(x) {
    Z = 0
    for i in 1..d:
        Z = Z + w[i]*x[i]
    if(z>0)
        return "apple"//1
    else
        return "orange"//-1
    }
```

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{w} \cdot \mathbf{x} = x_1 \cdot w_1 + x_2 \cdot w_2 + \dots x_d \cdot w_d$$

$$f(\mathbf{w}, \mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x})$$

Examples of Learned Model


```
bool f(x) {
    Z = 0
    for i in 1..d:
        Z = Z + w[i]*x[i]
    if(z>0)
        return "apple"//1
    else
        return "orange"//-1
    }
}
```

In general ...


```
bool f(x) {
                                            \leftarrow \{X_1, X_2, \dots X_N\}
    many computations
// involving w1 to wd
return y
    also learns real valued
//functions (regression),
                                            \left[ \leftarrow \left\{ Y_{1}, Y_{2} ... Y_{N} \right\} \right]
    integer, vector,
    sequence functions
```


Classification Algorithms

KNN, Linear Classifier and Decision tree

Goal: Assign label for unknown samples

Data:

- Training data (10+10)
 - Apples (red) and Oranges (blue)
- Test (5): Unknown label. Black

Attributes (assume):

Sphericity and Color

(Tester, User) knows the truth for unknowns

Goal: Assign label for unknown samples

Idea:

• Like people groups

Method:

- Look 3 Nearest Neighbours
- Assign majority label

What is the accuracy?

- 3 out of 5 got correct:
 - Accuracy = 60%
 - Error = 40%
- (A random guess could have given 50%!!)

Comments

- We "assumed" k = 3. It can also be 5, 7 or any number (often odd. Why?)
- The data can have many more classes (fruits). Apples,
 Oranges and Mangoes
- Distances need not be Euclidean. Many other distance functions exists in the literature

Will another K help? Some times.

Idea:

• Try different k and pick best

Method:

- Try k =5
- (only two shown)
- Accuracy = 80%

K Nearest Neighbours (KNN)

Given K, Data and Distance Function

- Find the distance from z to all the samples in X
- Identify the K-nearest neighbours (smallest distances) and their class labels
- Classify z as the majority label from the K-nearest neighbours

Decision Tree


```
if (weight is >350)
    it is an apple
else
    if (sphericity > 0.1)
        it is an orange
        else
        it is an apple
```


Decision Tree

- Splitting Criterion 1: Based on color?
- Splitting Criterion 2: Based on Sphericity?

Pseudo code for Decision Tree

- Place the best attribute of the dataset at the root of the tree
- Split the training set into subsets
- Repeat step 1 and step 2 on each subset until you find leaf nodes in all the branches of the tree

Decision tree at level-1

Accuracy = 29.6%

Decision tree at level-2

Simple Linear Classifier

Data:

- Apples (red) and Oranges (blue)
- Test: Unknown label black

Goal:

Find a line that can separate

Best Solution: $2x_1 - 4x_2 - 5 = 0$

What is the error/accuracy?

On the test data: 40% error

On the training data (resubmission error): 10% error

Best Solution: $x_1 + 2x_2 + 2 = 0$

What is the error/accuracy?

On the test data: 0% error

On the training data (resubmission error): 25% error

Simple method to predict/test/evaluate

```
bool f(x) {
   z = 0
   for i in 1..d:
       Z = Z + w[i]*x[i]
   if(z>0)
       return "apple"//1
   else
       return "orange"//-1
```

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{W} \cdot \mathbf{X} = X_1 \cdot W_1 + X_2 \cdot W_2 + \dots X_d \cdot W_d$$

$$f(\mathbf{w}, \mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x})$$

What is the "learning" problem?

Find the best line given (only) the training data

Find
$$w_1, w_2, w_0$$
 in
 $w_1.x_1 + w_2.x_2 + w_0 = 0$

Data gives w through the "training" process

```
bool f(x) {
   z = 0
   for i in 1..d:
       Z = Z + w[i]*x[i]
   if(z>0)
       return "apple"//1
   else
       return "orange"//-1
```


Comments

Comments - KNN

KNN: n distance computations each of O(d)

- Too many operations
- Needs all the samples at test time; Storage intensive

n: Total number of samples

d: Total number of features or dimensionality

Comments - Linear Classifier

- Linear Classifier: (d 1) additions; d multiplications
- Simple at test time.
- Needs an additional "offline" training to find w

n: Total number of samples

d: Total number of features or dimensionality

Comments - Decision Tree (ID3 alg.)

- Decision Tree:
 - Simple Human understandable solution
- Training: Finding the best tree
- Testing: (loosely) d attributes provided tests to allow the instances to be differentiated into required bins
 n: Total number of samples d: Total number of features or dimensionality

94

Understanding Linear Classifier as "Neuron"

Neural Networks

- Biologically inspired networks.
- Complex function
 approximation through
 composition of functions.
- Can learn arbitrary Nonlinear decision boundary

A Peep into Deep Neural Networks

hidden layer 2 hidden layer 1

Thanks!

Questions?