Variables Separables.

Probleme. Resolver
$$\int_{0}^{\infty} \frac{\partial^{2}(x)}{\partial x^{2}} = \frac{\partial^{2}(x)}{\partial x^{2}}$$

donnée & d h son sunciones continues (lo que garantire existensie y unicidad de soluciones al PVI considerato.)

hb) to de (xoide) tel quy de xo & points)

votar que le EDO:

otan yy be
$$200$$
:

 $42(x) = 9(x)$
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600

de mode çue: Buscamos Hb) 7 5(x)

$$H'(y) = h(y) \iff H(y) = \int h(y)dy + C$$

$$5'(x) = g(x) \iff 5(x) = \int g(x)dx + C.$$

Entense h (0)
$$J^{(k)} = H^{(k)} J^{(k)}$$

= $\frac{d}{dx} (H \circ J)(x)$

$$(=) \frac{d}{dx}(H \circ f)(x) = 5^{1}(x) = \frac{d}{dx} 6(x)$$

$$\frac{\lambda}{4\times}\left[\left(H\circ \right)\left(\times_{1}-6\times_{1}\right)\right]=0$$

Teorema:

En las condisiones dadas para las funciones

tiene solucion dada por

$$H(2(x)) - 6(x) = conntante$$

dende Hafson tale gy

Exemple: $\int_{1}^{1} (x) = \frac{\lambda}{\lambda}$ Agné [FIX1]12 D) (Xe7 désan ser visités cours voriebles - prindependientes) Scor Ar = { (x10) & 122 = 270} A2 = {(x1) = 12 = 2 < 0} Enforch (como of (xi))= -x (Agui & verioble independiente) Por tents Fy 25 son antinuos un Ar & Ar & d PUI: \\ \notare \text{\formall be} = \frac{\times}{\dagger} 7 8 (x0) = 20 time unict solucion por (xo, xo & A, o (10,70) & Az,

à como en la solución? resimos variables separables.

) soluciones Implicites !!

Ezemps:

Figures:

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{(x-1)(x+3)} = \frac{(\partial x_{1})^{2}}{(x-1)(x+3)}$$

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{\partial x} = \frac{(\partial x_{1})^{2}}{(x-1)(x+3)}$$

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{(x-1)(x+3)}$$

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{\partial x}$$

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{$$

se pude en gy f & 35 son antimas

en los 3 regiones correxos que x indicen

: -3 < x < 1 } A2 2 3 (x12)

A3 = 1 (x.7)

Del Terrema le Extitencia y unicidal. 5 (x0,70) & A1, il cossespondiente Pui tiene virica solución. Por exemplo: $\int_{1}^{1} \int_{1}^{1} (x + 3) (x - 1)$ (xo2-4) 7 (-4) = 2 Lo misano encede si (xo.70) e Az o (x0.70) & A3 Antes de buscas la solución el PVI, rennes el comportemiente de les soluciones. Como $f(x,y) = \frac{y^2}{(x+y)(x-y)}$, et velor real de f(xij) depende solamente de x pues 22 >0. (x +3) - + + (x-1) - - +

31(x/ + 1 - 1 +

Esdecis, los curvos solucions de cualquier 2.2. PVI con le

ser à siempre creciente 7 - (xo. 70) & A1

seré u decseciente: - (xo.75) & Az

- (x-ir) = Az II u creciente: 7

Burgueurs soluciones para $\frac{3(x) = \frac{3}{3^2} (x-1)}{(x+3)(x-1)}$

Tenema yer $f(x_1)$? $\frac{2}{h(y_1)}$ denude $\frac{1}{h(y_1)}$? $\frac{1}{h(y_1)}$? $\frac{1}{h(y_1)}$?

 $= \int \frac{dx}{(x+y)(x-1)} \wedge H(0) = \int \frac{dx}{dx} = -\frac{1}{2}$

 $\frac{1}{(x-1)(x+3)} = \frac{1/4}{x-1} + \frac{(-1/4)}{x+3} = \frac{A}{x+3} + \frac{B}{x-1}$

 $\int \frac{dx}{(x+3)(x-1)} = \frac{1}{4} \ln|x-1| - \frac{1}{4} \ln|x+3| = \ln\left|\frac{x-1}{x+3}\right|$

 $G(x) = \ln \left| \frac{x-1}{x+3} \right|^{1/4}$

$$\frac{dx}{dx} = \frac{x^2}{(x-y)(x+3)}$$

$$\frac{dx}{dx} = \frac{dx}{(x-y)(x+3)}$$

$$\int \frac{dx}{3^{2}} = \int \frac{dx}{(x-y)(x+3)}$$

$$= \int \frac{y}{y}dx + \int \frac{(x-y)}{(x+3)}dx$$

$$= \frac{1}{3}\ln|x-1| - \frac{1}{3}\ln|x+3|$$

$$-\frac{1}{3}+\kappa_{1} = \frac{1}{3}\ln|\frac{x-1}{x+3}| + \kappa_{1}$$

$$|-\frac{1}{3}| = \frac{1}{3}\ln|\frac{x-1}{x+3}| + C$$

lero estamos resolviendo en un entorno del Panto (4,2) L puer queremos yy 2-4,1=2] Por tento, $\left(\frac{x-1}{x+3}\right)$ = $\left(\frac{-5}{-1}\right) = 5$ $\times = -4$

Avi $\left|\frac{x-1}{x+3}\right| = \frac{x-1}{x+3}$ paratodo x cersono 4 a - 4.

2 entouses $\ln \left| \frac{x-1}{x+3} \right|^{1/4} = \ln \left(\frac{x-1}{x+3} \right)^{1/4}$

Advincés: $H(a) = -\frac{1}{7}$. Por taints

$$||H_{Q(X)}||_{-6(X)} = ||X||$$

$$||X|| \frac{1}{7} - \frac{1}{4} \ln \left(\frac{x-1}{x+3}\right) = |X|$$

$$||X|| = |X|$$

1ero 21-41=2, por tanto: - 1/2 - 1/4 lu 5 = K.

$$\frac{1}{3} = \frac{1}{2} + \frac{1}{2} \ln |5| - \frac{1}{4} \ln \left(\frac{x-1}{x+3} \right) =$$

$$= \frac{1}{3} = \frac{1}{2} + \frac{1}{3} lm \left(\frac{s(x+3)}{x-1} \right)$$

Así, le unice solucion el PVI dello, viene dade implieitemente por:

$$\frac{1}{3} - \frac{1}{2} = \frac{1}{4} \ln \left(\frac{5 \left(x + 3 \right)}{x - 1} \right)$$

$$\frac{1}{3} = \frac{1}{2}$$

$$\frac{1}{3} = \frac{1}{2}$$

$$\frac{1}{3} = \frac{1}{2}$$

$$\frac{1}{3} = \frac{1}{2}$$

$$(=) \frac{2-7}{27} = \frac{1}{4} \ln \left[\frac{5(x+3)}{x-1} \right]. \quad \text{Em}$$

Observe que pare x=-4, se obtions

$$\frac{1}{2^{(-1)}} - \frac{1}{2} = \frac{1}{2} \exp(1) = \frac{1}{2^{(-1)}} - \frac{1}{2} = 5$$

$$\frac{1}{3(-4)^2} \frac{1}{2}$$

$$\frac{1}$$

005. Existen diversos métodos pare le busquede de solucientes de ERO MO lineales de primer onder.

Listados 7 ponte 1 2 ponte 2! VER