Aula 4

2024-09-19

Função Exponencial

Seja $f: \mathbb{R} \to \mathbb{R}_+$ uma função do tipo y=f(x), com $y=a\cdot b^{x+c}+d$, onde a,b,c e $d\in\mathbb{R}$. Note que

 $\Rightarrow b$ é chamado de **base**

 \Rightarrow O valor x+c, neste caso, é chamado de expoente.

"A base é um valor fixo e o expoente é variável."

Quando b>1, a função é crescente.

A base da função exponencial determina o comportamento da função. Se $f(x)=a^x$, então a>0 e $a\neq 1$.

 \Rightarrow Se a>1, então a função f é **crescente**

 \Rightarrow Se 0 < a < 1, então a função f é **decrescente**

Por exemplo, $f(x)=4^x+5\Rightarrow f$ é crescente. Já $g(x)=2^{-2x}+4\Rightarrow g(x)=\left(\frac{1}{2}\right)^{2x}+4\Rightarrow$ g é decrescente. Em g(x), a base (2) a princípio parece ser maior que 1, mas, pelo expoente negativo, este não é o caso.

Exemplo 1

$$y = 2^x$$

x	$y-2^x$
-3	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$
-2	$2^{-2} = \frac{1}{2^2} = \frac{1}{4}$
-1	$2^{-1} = \frac{1}{2^1} = \frac{1}{2}$
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$
3	$2^3 = 8$

$$D = \mathbb{R}$$
$$I = \mathbb{R}_+^*$$

Exemplo 2 $y = \left(\frac{1}{2}\right)^x$

$$y = \left(\frac{1}{2}\right)^x$$

x	$y = \left(\frac{1}{2}\right)^x$
-3	$\left(\frac{1}{2}\right)^{-3} = 2^{+3} = 8$
-2	$\left(\frac{1}{2}\right)^{-2} = 2^2 = 4$
-1	$\left(\frac{1}{2}\right)^{-1} = 2^1 = 2$
0	$\left(\frac{1}{2}\right)^0 = 1$
1	$\left(\frac{1}{2}\right)^1 = \frac{1}{2}$
2	$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$
3	$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$

Função Logarítmica

Antes de iniciar o estudo da função vamos entender algumas propriedades do logaritmo.

O logaritmo retorna o expoente ao qual uma base está sendo elevada.

Exemplos

Exemplo 1

Neste exemplo, a base é 2, o logaritm
ando é 4 e o logaritmo é x. Ou seja, busca-se saber o logaritmo de 4 na base 2.

$$\log_2^4 = x \Leftrightarrow 2^x = 4$$

$$2^x = 2^2$$

$$x = 2$$

$$\log_2^4 = 2$$

Exemplo 2

$$\log_3^{81} = x \Leftrightarrow 3^x = 81$$
$$3^x = 3^4$$
$$x = 4$$

Exemplo 3

$$\log_5 \frac{1}{625} = x \Leftrightarrow 5^x = \frac{1}{625}$$
$$5^x = \frac{1}{5^4} \Rightarrow 5^x = 5^{-4} \Rightarrow x = -4$$

Propriedades do logaritmo

Se a é a base do logaritmo, onde a>0 e $a\neq 1$, então:

1)
$$\log_a^1 = x \Leftrightarrow \mathbf{x}^x = 1 = \mathbf{x}^0 \Rightarrow x = 0 : \log_a^1 = 0$$

2)
$$\log_a^a = x \Leftrightarrow \aleph^x = \aleph^1 \Rightarrow x = 1 : \log_a^a = 1$$

3)
$$\log_a^{b \cdot c} = \log_a^b + \log_a^c$$

4)
$$\log_a^{\left(\frac{b}{c}\right)} = \log_a^b - \log_a^c$$

5)
$$\log_a^{b^n} = n \cdot \log_a^b$$

Exercício

Considerando que $\log_a^b = 0, 5$ e $\log_a^c = -2,$ resolva:

$$\begin{split} \log_a \frac{a^3 \cdot b^5 \cdot c^4}{\sqrt{a} \cdot b^3 \cdot c^2} &= \log_a \frac{a^3 \cdot b^2 \cdot c^2}{a^{\frac{1}{2}}} \\ &= \log_a \left(a^3 \cdot b^2 \cdot c^2 \right) - \log_a a^{\frac{1}{2}} \\ &= \log_a a^3 + \log_a b^2 + \log_a c^2 - \log_a a^{\frac{1}{2}} \\ &= 3\log_a a + 2\log_a b + 2\log_a c - \frac{1}{2}\log_a a \\ &= 3 \cdot 1 + 2 \cdot 0, 5 + 2 \cdot (-2) - \frac{1}{2} \cdot 1 \\ &= 3 + 1 - 4 - \frac{1}{2} \\ &= 3 + 1 - 4 - \frac{1}{2} \\ &= 3 + 1 - 4 - \frac{1}{2} \end{split}$$

Função logarítmica

Sobre a função logarítmica, saemos que se y=f(x), com y = $\log_a x$, $a\in\mathbb{R}$ é a base e deve obedecer às seguintes condições:

a>0e $a\neq 1.$ NO caso da função logarítmica $D=\mathbb{R}_+^*$ e $I=\mathbb{R}.$

Exemplos

Exemplo 1

$$y = \log_2 x$$

x	$y = \log_2 x$
$\frac{1}{4}$	$\log_2 \frac{1}{4} = -2$
$\frac{1}{2}$	$\log_2 \frac{1}{2} = -1$

1	0
2	$\log_2 2 = 1$
4	$\log_2 4 = 2$

Exemplo 2

Gráfico de $y_1 = \log_2 x$ e $y_2 = 2x$

Resolução do exercício 1 da lista de aplicação

$$\begin{split} N(t) &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}} \\ N(28) &= \frac{1}{2} \cdot N_0 \\ N(t) &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}} \\ N(28) &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{28}{T}} \\ \frac{1}{2} \cdot N_0 &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{28}{T}} \\ \left(\frac{1}{2}\right)^1 &= \left(\frac{1}{2}\right)^{\frac{28}{T}} \Rightarrow 1 = \frac{28}{T} = T = 28 \end{split}$$

Portanto, a regra fica como

$$\begin{split} N(t) &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{28}} \\ t &=? \ N(t) = \frac{1}{4}N_0 \ (25\% \ \text{de} \ N_0) \\ \frac{1}{4} \cdot N_0 &= N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{28}} \\ \frac{1}{4} &= \left(\frac{1}{2}\right)^{\frac{t}{28}} \\ \left(\frac{1}{2}\right)^2 &= \left(\frac{1}{2}\right)^{\frac{t}{28}} \\ a &= \frac{t}{28} \\ t &= 28 \cdot 2 \\ t &= 56 \ \text{anos} \end{split}$$