

Inclusivity in Job Recommendation: Recommending Jobs for Differently-Abled Individuals through Feature and Transformer based Approaches

Thesis Stage 3 Presentation

June 20, 2022

Kamal Shrestha, CS21MTECH16001

Thesis Supervisor : Dr. Maunendra Sankar Desarkar

Department of Computer Science and Engineering (CSE)

IIT Hyderabad

Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

C2C Based Jobs Platform connecting PwDs with Job Opportunities

other iob

or

providers

Recommended Jobs (Top-k)

Consumer or job seekers Find appropriate jobs based multiple features and

preferences like disabilities, skills, locations, experiences and training to get hired

Given a job-providing platform that focuses on connecting individuals with disabilities to odd jobs, **this work focuses developing a recommendation system**

Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

Hybrid Recommendation System (HRS) with pre-computed similarity matrices

CandidateDetails			
FIELD NAME	DATA TYPE		
CandidateId (Primary Key)	int identity		
DateOfBirth	datetime		
Address	nvarchar		
PreferredJobLocation	int		
DisabilityTypeId	int		
Trainings	nvarchar		
SkillsCovered	nvarchar		

JobOpenings				
FIELD NAME	DATA TYPE			
JobId (Primary Key)	int identity			
JobTitle	nvarchar			
JobDesc	ntext			
JobType	tinyint			
Experience	tinyint			
JobLocation	int			
NoOfVacancies	smallint			
DisabilityTypeId	tinyint			
startdate	datetime			
enddate	datatime			
SkillSet	nvarchar			

User - User Similarity Matrix

Job - Job Similarity Matrix

Candidate Job Pooling based on **User similarity Matrix (U2U)**

Candidate Job Pooling based on Job similarity Matrix (J2J)

Combine candidate pool and recommend Top-K jobs

Job Recommendation Engine V1.0

☐ Input: User ID (q), No. of Recommendations (k)

Output: k recommendations

Synthetic Input Data Based on statistics

[ARRAYS and LISTS]

☐ Factors considered in recommendation:

- Disability(ies)
- Location
- Skills
- Age
- Jobs applied to by similar users
- Jobs similar to jobs that are applied to by the same user

Heuristics Approach Similarity Matrix Calculation

☐ Sample

API

call:

- ☐ Recommendation: [URL]/recommend?q=ID&k=num
- Addition of Users: [URL]/addUser
- Addition of Jobs: [URL]/addJobs

API EndpointsSystem Integrations

Similarity calculations based on individual features in heuristics approach

```
Algorithm 1 Heuristics Based Similarity Matrix Calculation Algorithm
Require: Users, U = \{U_1, \dots, U_M\}
Require: Columns (field names) for similarity calculation b/w users
Require: Column weights, W_c = \{w_{c1}, w_{c2}, w_{c3}, \ldots\}
 1: matrix = \{\}
 2: for each User, U_i do score = 0
       for each User, U_i : i \neq j do
           for each column, c_k in Columns do
               score += W_c[c_k] * SimilarityFunction(U_i[c_k], U_i[c_k])
           end for
           Normalize score by dividing it by the number of columns
           matrix[U_i][U_i] = score
           matrix[U_i][U_i] = score
       end for
10:
       matrix[U_i][U_i] = 1
12: end for
    // Similarity function differs based on each column; Jaccard Similarity is used for columns with
```

multiple values, like disability, skills, and talents.

UT, Users Table or Numpy array F1 FN g2(Um[F2], Un[F2]) For Users Um, Un g1(Um[F1], Un(F1]) gN(Um(FN), Un(FN)) W1 sim(Um, Un)

// For columns with only one text value, Fuzzy String Matching with Token Sort Ratio is used. $\sin(U_m, U_n) = \sum_{finF} w_f * g(U_T[U_m][f], U_T[U_n][f]) \forall (m,n) \in [U_1, U_M]$

Job Recommendation Engine V1.0

☐ Input: User ID (q), No. of Recommendations (k)

Output: k recommendations

Synthetic Input Data Based on statistics

[ARRAYS and LISTS]

☐ Factors considered in recommendation:

- Disability(ies)
- Location
- Skills
- Age
- Jobs applied to by similar users
- Jobs similar to jobs that are applied to by the same user

Heuristics Approach Similarity Matrix Calculation

☐ Sample

API

call:

- ☐ Recommendation: [URL]/recommend?q=ID&k=num
- Addition of Users: [URL]/addUser
- Addition of Jobs: URL]/addJobs

API EndpointsSystem Integrations

Observations in Heuristic Approach

Zero similarity:

Handle Missing values
OR
Missing values resulting in 0 similarity score

Fixed Feature Weights: Might lead to feature bias

Limited Personalization: Each feature is independent Does Not consider the correlation between features like disability and skills

Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

Transformer (Custom-distilBERT) based learning approach

Algorithm 2 Transformer Based Similarity Matrix Calculation Algorithm Require: Users, $U = \{U_1, \dots, U_M\}$

Require: Trained custom architecture (CustomBERT) model weights

Require: Columns used for similarity calculation between users

```
Require: Trained custom architecture (CustomBERT) model weights
```

```
1: set matrix = \{\}, embeddings = \{\}
 2: Load the saved trained model weights // Should match with custom architecture
    // Generate the embeddings for all users
3: for each User, U, do
       for each column in Columns do
           Tokenize column, c_k
       end for
       Combine the column tokens to get T<sub>i</sub> for user, U<sub>i</sub>
       Pass T_i to the CustomBERT & get the embeddings for user, U_i
       set embeddings[U_i]
10: end for
    // Calculate the similarity matrix
11: for each User, U_i do
       for each User, U_i : i \neq j do
12:
           score = CosineSimilarity b/w embeddings[U_i] and embeddings[U_i]
13:
           set matrix[U_i][U_j] = score
14:
       end for
15:
       set matrix[U_i][U_i] = 1
16:
17: end for
```


Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

System Architecture

Training and Computational Pipeline - OFFLINE

Training Data Generation - Triplet Pairs


```
Algorithm 4 Training Data Generation
Require: Users, U = \{U_1, \dots, U_M\}, Applications, A // from database
Require: S_s = 0.4, S_d = 0.6, th_s = 0.9, th_d = 0.1
Ensure: Preprocess Users, Applications
1: From Applications, filter, only those users that are selected for at least one
   job, U_{selected} = \{U_1, ..., U_m\}
2: Group the users based on the jobs they applied, G = \{J_1 : \{U_{11}, U_{12}, \ldots, J_n : \}
    \{U_{n1}, U_{n2} \ldots\}\}
3: for Job, Ji in G do
       Get all the users that applied to J_i: {U_{i1}, U_{i2}, ...}
       Create a 2-user combination of all users for J_i, C = [..., (U_{ix}, U_{iy}), ...]
       for (U_{ix}, U_{iy}) in C do
           set anchor as U_{ix}
 7:
           Calculate similarity of skills and disability between anchor, U_{in}
 8:
           if S_s * similarity(Skills) + S_d * similarity(disability) <math>\geq th_s then
9:
               set positive as U_{in}
10:
               for other users, U_k : U_k \neq (anchor or positive) do
11:
                   Calculate similarity of skills, disability between anchor, U_{ix} \& U_k
12:
                   Calculate similarity of skills, disability between positive, U_{in} \& U_k
13:
                   Calculate the average similarity of these two similarity scores
14:
                   if average similarity < th_d then
15:
                       set negative as U_k
16:
                       Add triplets [anchor (U_{ix}), positive (U_{iy}), negative (U_k)] in
17:
   training data
                   end if
18:
               end for
           end if
```

end for

22: end for

Triplet Margin Loss Formulation

Triplet Margin Loss =
$$\sum_{i=1}^{N} \max \left(0, \|\operatorname{anchor}_{i} - \operatorname{positive}_{i}\|_{p} - \|\operatorname{anchor}_{i} - \operatorname{negative}_{i}\|_{p} + \operatorname{margin}\right)$$

The distance between (anchor and negative) >= distance (anchor, positive) + Margin

Loss = 0 if Distance(anchor, negative) >= [Distance(anchor, positive) + Margin]

= x otherwise

Idea is to bring similar users close to each other, and take dissimilar users as far as possible

Fine Tuning Custom-distilBERT with Triplet Margin Loss

Validation Accuracy and F1 Score

Best F1 Score = **0.9389**

(c) Validation F₁ Score (Epochs Vs. F₁ Score)

Best Accuracy = **0.9391**

(b) Validation Accuracy (Epochs Vs. Accuracy)

Triplet Loss Curves

(a) User Training Loss (Iterations Vs. Loss)

(d) Training and Testing Loss across Epoch 41 (Blue = Training Loss, Red = Testing Loss)

Calculate Similarity Matrices using Trained Transformer Model

Mixing and Recommendation Pipeline - ONLINE

Recommendation Pipeline - ONLINE

Execution Time - Cold Start and Warm Start

(b) Warm Execution of Recommendation Engine (Jobs pool available)

Incremental Updates on Similarity Matrices

Combination of both approaches yields best results

TRANSFORMER

Similar User Analysis - Both approaches

Type of User	user id	Disability Type	Skills	Talent	Score
QUERY	30292	LD(OH/ LD) - Upper Limb, Chronic Neurological Conditions	C++, Java, Asp.net, Ms Word, MS Excel, Data Entry, Computer Basics	Cooking	-
BERT	296	LD (OH/LD) - Trunk (Spinal Cord)	Computer Basics, Customer Service, Ms Word, Ms Excel, Java, Email And Chat, Data Entry, Organization	Drawing	0.97
	344	LD(OH/LD) - Upper Limb Data Entry, Ms Word, MS Excel, Computer Basics		nan	0.959
	234	LD (OH/LD) - Upper Limb, LD(OH/LD) - Lower Limb	Ms Excel, Ms Word, Powerpoint Presentation, Social Media, Computer Basics	Video Creation	0.944
	56756	LD(OH/LD) - Lower Limb	Data Entry, Ms Excel, Computer Basics, Basic Math, Android, Social Media	Singing	0.943
	2343	LD(OH/LD) - Lower Limb	Computer Basics, Ms Word, MS Excel, Email And Chat, Data Entry	Art	0.937
	5676	LD(OH/LD) - Upper Limb	Ms Word, MS Excel, Data Entry, Powerpoint Presentation	nan	0.571
HERUSITICS	43567	LD(OH/LD) - Upper Limb	Basic Math, Android, Social Media	Cooking	0.548
HEROSTTICS	345	LD(OH/LD) - Upper Limb	Computer Basics, Data Entry, Email And Chat, Ms Excel, Ms Word, Powerpoint Presentation, Social Media, Technical Skills	nan	0.546
	7689	LD(OH/LD) - Upper Limb LD(OH/LD) - Lower Limb	nan	nan	0.531
	34534	LD(OH/LD) - Upper Limb	nan	nan	0.524

Job Recommendations for a query user

user id	Disability	Skills	Talents	Preferred Location	Experience
291001	LD (OH/ LD) - Lower Limb	Data Entry, Ms Excel, Ms Word, Powerpoint Presentation	nan	Visakhapatnam	3, 7

Job ID	Job Title	\mathbf{Type}	Disability	Location	last Date
6273c47	Cognizant-Digital Marketing	Full Time	LD (OH/ LD) - Upper Limb, LD (OH/ LD) - Lower Limb, LD (OH/ LD) - Trunk (Spinal Cord), Dwarfism, Acid Attack Victim	Visakhapatnam	2023-06-28
6273c2f	Practitioner - Finance and Administration Delivery	Full Time	LD(OH/ LD) - Upper Limb, LD (OH/ LD) - Lower Limb	Delhi Visakhapatnam, Noida	2023-06-26
6273c4c	Top E-Commerce MNC-Billing Analyst	Full Time	LD (OH/ LD) - Upper Limb, LD (OH/ LD) - Lower Limb, Deaf and Hearing Impairment(HI), Low-Vision (LV)	nan	2023-06-17
6273c4a	Customer Support Officer	Full Time	LD (OH/LD) - Upper Limb, LD (OH/LD) - Lower Limb, LD (OH/LD) - Trunk (Spinal Cord), Dwarfism	Hyderabad, Bangalore	2023-06- 20
673b2a0	Sales Executive	Full Time	Physical Disability	Mumbai	2023-06- 21
6273c49	Top E-Commerce MNC-Senior Financial Operations Analyst	Full Time	LD (OH/ LD) - Upper Limb, LD (OH/ LD) - Lower Limb, LD (OH/LD) - Trunk (Spinal Cord), Dwarfism, Acid Attack Victim	Hyderabad	2023-06- 19
6273c4e	Practitioner/Senior - Finance and Administration	Full Time	LD (OH/ LD) - Lower Limb, LD (OH/LD) - Upper Limb	Noida	2023-06- 21
6273c31	Backend Sales	Full Time	LD (OH/ LD) - Lower Limb, Dwarfism, Acid Attack Victim	New Delhi	2023-06- 27

Overview

- 1 PROBLEM STATEMENT
- 2 STAGE 2 HEURISTICS BASED APPROACH
- 3 TRANSFORMER BASED APPROACH
- 4 IMPLEMENTATION DETAILS
- 5 CONCLUSION AND FUTURE DIRECTIONS

Conclusion

Hybrid Recommendation system with precomputed similarity matrices

An initial and innovative approach to address the challenges of personalized job recommendations by considering users' preferences, skills, and disabilities.

Automatic Triggers and Incremental Updates for adaptive and response to changes

Seamless integration with existing jobs platform with minimal space requirements

Future Directions

Not just structured data, Work with other user activity data like CTRs, Session Times

Not just job recommendations, extend to recommendation of training programs, certification, networking events

Skills Hierarchy to organize skills and better capture similarity

Better handle missing data - Required during Registrations

References

- 1. R. Kessler, N. Béchet, M. Roche, J.-M. Torres-Moreno, and M. El-Bèze. A hybrid approach to managing job offers and candidates. Information processing & management.
- 2. J. C. Valverde-Rebaza, R. Puma, P. Bustios, and N. C. Silva. Job Recommendation Based on Job Seeker Skills: An Empirical Study.
- 3. A. Gugnani and H. Misra. Implicit skills extraction using document embedding and its use in job recommendation. In Proceedings of the AAAI conference on artificial intelligence.
- 4. S. Ahmed, M. Hasan, M. N. Hoq, and M. A. Adnan. User interaction analysis to recommend suitable jobs in career-oriented social networking sites. In 2016 International Conference on Data and Software Engineering (ICoDSE).
- 5. Y. Zhang, C. Yang, and Z. Niu. A Research of Job Recommendation System Based on Collaborative Filtering. In 2014 Seventh International Symposium on Computational Intelligence and Design.
- 6. W. Lin, L. Shou, M. Gong, P. Jian, Z. Wang, B. Byrne, and D. Jiang. Transformer-Empowered Content-Aware Collaborative Filtering
- 7. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web.

Thanks!

Any questions?

You can find me at:

• cs21mtech16001@iith.ac.in

Academic and Professional Updates at:

shresthakamal.com.np