Data Lake Analytics

Project Overview

In In today's data-driven world, the ability to efficiently process and analyse large volumes of data is crucial for businesses to gain insights and make informed decisions. This project aims to leverage the power of Azure Databricks and PySpark to perform data analytical tasks, including Extract, Transform, and Load (ETL) operations, on massive datasets.

About Project

This project revolves around the seamless orchestration of data movement, transformation, and analytics byintegrating Azure Data Factory (ADF) and Azure Databricks. The workflow involves moving data from Azure Blob Storage to Azure Data Lake Storage Gen2 (ADLS Gen2) using ADF, mounting the ADLS Gen2 within Databricks notebooks for data transformations and analytics, and finally, persisting the analytical results back to ADLS Gen2.

Architectural Diagram

Key-Components/Requirements of the projects

1. Azure Databricks:

- Azure Databricks provides a cloud-based platform for big data analytics and machine learning. It offers a collaborative environment for data engineers, data scientists, and analysts to work together seamlessly.
- Databricks provides managed Spark clusters, eliminating the need for infrastructure management and allowing teams to focus on data processing tasks.

2. PySpark:

- PySpark is the Python API for Apache Spark, a powerful open-source framework for distributed data processing. PySpark simplifies development tasks by providing a Python interface to Spark's capabilities.
- With PySpark, developers can write concise and expressive code to perform complex data transformations, aggregations, and analytics on large datasets.

3. Azure Data Factory:

- Data Factory (ADF) allows users to create, schedule, and manage data pipelines that can move data between various supported data stores.
 ADF provides a scalable, fully managed platform for orchestrating and automating data workflows.
- It has It has many features such as data orchestration, seamless integration with Azure services, hybrid data integration, security, scalability, monitoring, metadata management, and cost management, enabling users to create, automate, and manage data pipelines for diverse data workflows.

Azure Resources Used for this Project

1. Azure Blob Storage

 This is where the raw data is stored. Azure Blob Storage integral to Microsoft Azure's storage service, is a cloud-based solution tailored for managing vast amounts of unstructured data, encompassing both text and binary data. Termed "Blob" for "Binary Large Object," it signifies a compilation of binary data treated as a singular entity within a database.

2. Azure Data Factory

- Here, we use azure data factory for moving and organizing the data from blob storage to azure data lake gen 2. It provides essential tools to create pipelines for the movement of data.
- It also provides Cloud-based service for orchestrating, automating data workflows, enabling seamless movement, transformation, and integration across diverse sources.

3. Azure Data Lake Storage Gen2

 This is where the raw data is loaded by ADF and then the analytical data is also moved and organized here. Azure Data Lake Storage Gen2 provides a scalable and secure platform for storing large volumes of data. It enables us to manage, access, and analyse data effectively.

4. Azure Databricks

 Azure Databricks are used to develop essential notebooks that contains the pyspark code which perform transformation and analytical operations on the data based on the business requirement.

5. Databricks Cluster

- An Azure Databricks cluster process the data depending on the user instructions in the Azure Notebook. It serves as a computational resource facilitating the processing of extensive data and execution of analytics workloads through the Apache Spark platform within the Microsoft Azure cloud.
- Azure Databricks are used to develop essential notebooks that contains the pyspark code which perform transformation and analytical operations on the data based on the business requirement.

How It works

1. Setting Up Azure Databricks Factory:

 Sign in to the Azure portal and create an Azure Data Factory. Configure the settings, including pricing tier, region, and workspace name.

2. Movement of data:

• Raw data is stored in source storage (Azure Blob Storage)

 Ingest the data from the source storage(blob storage) to sink storage(Azure data lake gen 2) by creating a pipeline in the azure data factory with the following properties.

 Create the connection with the source storage and mention the right file path of the raw data.

 Create connection with sink storage and mention the path or container destination where the data has to be copy from source storage.

• Give pipeline details, review and start the copy process

 After the process gets finished we can see that the data in the source storage (blob storage) has copied to sink storage (Azure data lake)

3. <u>Developing Pyspark Notebook</u>

 Create a new PySpark notebook within the Databricks workspace. Begin writing PySpark code to perform ETL operations, data transformations, and data analytical tasks

4. Create cluster and connecting it to notebook

• The cluster is created with autoscaling is enabled which automatically adjust cluster size to accommodate changes in workload demand, allowing for seamless scalability without manual intervention.

5. Importing Necessary libraries and Creating Spark Session

 Use SparkSession.builder to configure and create a SparkSession. specify the application name using .appName() and configure any additional Spark options using .config(). Finally, call .getOrCreate() to either create a new SparkSession

```
# Import the necessary modules
from pyspark.sql import SparkSession
from pyspark.sql.functions import trim, when, col, regexp_replace,sum, count, avg, min, max
from pyspark.sql.window import Window

/ 46 minutes ago (<1s)

Cell 2

# Create a SparkSession
spark = SparkSession.builder.appName("DataLakeAnalytics").getOrCreate()
```

6. Extracting Data from Source storage

dbutils.fs.ls('/mnt/blobStorage')

- Connecting data source (Azure Blob Storage) by mounting it to the Databricks File System (DBFS) to simplify data access
- It helps to retrieve raw data for processing and analysis within the PySpark environment

```
# 1) Extracting the data from Data lake

# Mounting the Data Lake with Azure databricks

dbutils.fs.mount(

source = "wasbs://hexa1050sinkcontainer@hexa1050sinkstorage.blob.core.windows.net",

mount_point="/mnt/blobStorage",

extra_configs={"fs.azure.account.key.hexa1050sinkstorage.blob.core.windows.net":"FDVopi9Fy8FwvYxDFNCLDK1Yf/EoFaV@esH9nYNYXjATF7J/6kG

+FKP6yvNsuGu/ptbbglNm1/MF+AStSwcMFw=="})

True

A 3 minutes ago (<1s)

Cell 4

# Listing the File information to get file path
```


[FileInfo(path='dbfs:/mnt/blobStorage/Employee_data.csv', name='Employee_data.csv', size=10034689, modificationTime=1708969782000)]

7. Transforming the raw data

- Utilize PySpark DataFrame transformations and functions to cleanse, transform, and prepare the data for analysis.
- Implement business logic and data processing steps to transform raw dataset up to mark for data analysis purpose.

Transformations done:-

Removing the Duplicate records

Handling anonymous data

```
# Removing the anonymous data

print(RDD.count())

RDD = RDD.na.drop("any", subset=["EEID"])

print(RDD.count())

(6) Spark Jobs

RDD: pyspark.sql.dataframe.DataFrame = [EEID: integer, Full Name: string ... 10 more fields]

99996

99984
```

 Removing Extra spaces and filling the null data with proper messages

```
# Removing Leading and Trailing spaces from the data

RDD = RDD.withColumn("Full Name", trim("Full Name"))

RDD = RDD.withColumn("Job Title", trim("Job Title"))

RDD = RDD.withColumn("Department", trim("Department"))

RDD = RDD.withColumn("Gender", trim("Gender"))

RDD = RDD.withColumn("Ethnicity", trim("Ethnicity"))

RDD = RDD.withColumn("Ethnicity", trim("Country"))

PD = RDD.withColumn("Country", trim("Country"))
```

```
# Filling the null values with proper message

RDD = RDD.na.fill(value="Not Known", subset=["Full Name"])
RDD = RDD.na.fill(value="Not Known", subset=["Job Title"])
RDD = RDD.na.fill(value="Not Known", subset=["Department"])
RDD = RDD.na.fill(value="Prefer Not to say", subset=["Gender"])
RDD = RDD.na.fill(value="Not Known", subset=["Ethnicity"])
RDD = RDD.na.fill(value="Not Known", subset=["Country"])
RDD = RDD.na.fill(value="Not Known", subset=["Country"])
RDD = RDD.na.fill(value=0, subset=["Bonus %"])
RDD = RDD.withColumn('Hire Date', when(col('Hire Date').isNull(), ('No data provided')).otherwise(col('Hire Date')))
RDD = RDD.withColumn('Exit Date', when(col('Exit Date').isNull(), ('Currently Working')).otherwise(col('Exit Date')))

I = RDD: pyspark.sql.dataframe.DataFrame = [EEID: integer, Full Name: string ... 10 more fields]
```

 Handling the numerical columns and renaming USA to US to make dataset consistent

```
# Renaming USA as US

RDD=RDD.withColumn('Country', when(RDD.Country=='USA',regexp_replace(RDD.Country,'USA','US')).otherwise(RDD.Country))
print(RDD.select("Country").distinct().collect())

(3) Spark Jobs

| RDD: pyspark.sql.dataframe.DataFrame = [Country: string, Department: string ... 10 more fields]
[Row(Country='US'), Row(Country='UK'), Row(Country='Canada'), Row(Country='Australia')]
```

8. Data Analytics

 Data analytics is the collection, transformation, and organisation of data in order to draw conclusions, make predictions, and drive informed decision making.

Analytics Performed

Grouping the data based on country and department (count df)

```
Cell 14
       40 minutes ago (1s)
  # Employee count based on country and department
 count_df = RDD.groupBy("Country", "Department").agg(
     count("EEID").alias("Total employees"),
      sum(when(RDD["Gender"] == "Male", 1).otherwise(0)).alias("Male"),
      sum(when(RDD["Gender"] == "Female", 1).otherwise(0)).alias("Female"),
      sum(when(RDD["Gender"].isin("Male", "Female"), 0).otherwise(1)).alias("Prefer_not_to_say"),
      sum(when(RDD["Ethnicity"] == "Black", 1).otherwise(0)).alias("Black"),
      sum(when(RDD["Ethnicity"] == "White", 1).otherwise(0)).alias("White"),
     sum(when(RDD["Ethnicity"] == "Asian", 1).otherwise(0)).alias("Asian"),
     sum(when(RDD["Ethnicity"].isin("Black", "White", "Asian"), 0).otherwise(1)).alias("other_race"),
      sum(when(RDD["Age"] < 40, 1).otherwise(0)).alias("age_below_40"),</pre>
      sum(when(RDD["Age"] > 40, 1).otherwise(0)).alias("age_above_40")
  ).orderBy("Country", "Department")
 count_df.display()
(3) Spark Jobs
 ▶ ■ count_df: pyspark.sql.dataframe.DataFrame = [Country: string, Department: string ... 10 more fields]
```


Sorting the data by considering only working employees (working_employees_df)

 Sorting the data by considering only those employees who left the company (non_working_employees_df)

 Making the statistical data of Annual salary and Bonus percentage in each country based on department (salaries_df)

- 9. Loading and organizing the analytical data to the azure data lake
 - By using the mount point load and organize the data into the data lake
 - Use the appropriate folder path in the container for better organizing of analytical data and also use the appropriate names for the files

```
# writing the analytical data to the data lake

count_df = count_df.toPandas()
count_df.to_csv("/dbfs/mnt/blobStorage/output/total_employee.csv", index = False)

working_employees_df = working_employees_df.toPandas()
working_employees_df.to_csv("/dbfs/mnt/blobStorage/output/working_employee.csv", index = False)

non_working_employees_df = non_working_employees_df.toPandas()
non_working_employees_df.to_csv("/dbfs/mnt/blobStorage/output/non_working_employee.csv", index = False)

salaries_df = salaries_df.toPandas()
salaries_df.to_csv("/dbfs/mnt/blobStorage/output/salaries.csv", index = False)

\(\begin{align*}
\text{(18) Spark Jobs}
\end{align*}
\(\begin{align*}
\text{(18) Spark Jobs}
\end{align*}
\]
```

 We can see the analytical data files has been generated and organized in the appropriate output path in the azure data lake

10. <u>Unmounting the azure data lake</u>

```
# Unmounting the Data lake

dbutils.fs.unmount("/mnt/blobStorage")

/mnt/blobStorage has been unmounted.
True
```

Analytical data stored in Sink storage

1. Grouped data based on country and department

	А	В	С	D	Е	F	G	Н	1	J	K	L
1	Country	Departmer	Total_emp	Male	Female	Prefer_no	Black	White	Asian	other_race	age_below	age_above
2	Australia	Customer	2387	792	791	804	426	511	454	996	980	1356
3	Australia	Engineerin	2499	878	850	771	471	507	498	1023	1019	1427
4	Australia	Finance	2418	804	836	778	468	499	500	951	1008	1377
5	Australia	Human Re	2541	861	851	829	481	528	497	1035	1044	1436
6	Australia	IT	2484	817	864	803	520	500	466	998	990	1439
7	Australia	Legal	2480	866	826	788	473	488	499	1020	1007	1435
8	Australia	Marketing	2552	851	905	796	464	530	488	1070	1051	1451
9	Australia	Operation:	2462	761	860	841	495	490	500	977	1015	1406
10	Australia	Research a	2488	820	833	835	477	492	511	1008	1030	1406
11	Australia	Sales	2610	899	888	823	519	487	520	1084	1107	1456
12	Canada	Customer	2552	856	843	853	509	510	504	1029	1082	1418
13	Canada	Engineerin	2494	846	812	836	498	504	532	960	1050	1398
14	Canada	Finance	2557	850	826	881	500	509	519	1029	1075	1439
15	Canada	Human Re	2509	843	862	804	490	503	510	1006	1037	1414
16	Canada	IT	2566	845	874	847	507	473	552	1034	1120	1395
17	Canada	Legal	2597	858	904	835	526	537	513	1021	1085	1478
18	Canada	Marketing	2512	826	869	817	511	484	557	960	1023	1440
19	Canada	Operations	2469	822	851	796	505	509	497	958	1071	1359
20	Canada	Research a	2579	794	875	910	537	541	518	983	1078	1454
21	Canada	Sales	2572	830	840	902	515	507	542	1008	1083	1443
22	UK	Customer	2497	859	842	796	492	493	502	1010	1006	1437
23	UK	Engineerin	2445	815	849	781	471	496	479	999	1030	1361
24	UK	Finance	2508	877	817	814	484	502	526	996	1041	1411
25	UK	Human Re	2535	818	847	870	506	505	510	1014	1042	1462
26	UK	IT	2431	807	806	818	493	435	504	999	993	1395
27	UK	Legal	2434	802	847	785	486	499	478	971	1041	1352
4	>	total_emp	loyee	(+)								

2. <u>Currently Working employees data</u>

	Α	В	С	D	Е	F	G	Н	1	J	K
1	Country	Departmer	EEID	Full Name	Job Title	Gender	Ethnicity	Age	Hire Date	Annual Sal	Bonus %
2	Australia	Sales	45876	Jayant Dev	Sales Repr	Female	Black	24	#######	57866.08	4.18
3	Canada	IT	69030	Abram Ma	Software E	Male	Hispanic	44	########	48409.17	8.63
4	UK	Customer	39341	Kismat Kee	Customer	Female	Asian	40	#######	110918.4	4.94
5	Canada	Engineerin	86184	Stuvan Dut	Software E	Female	Black	69	########	41516.36	5.26
6	US	Operation:	78333	Ritvik Lank	Customer	Prefer Not	Not Know	43	########	90268.73	8.09
7	UK	Engineerin	75249	Arnav Mar	Project Ma	Male	Not Know	67	########	111875.2	8.71
8	Australia	Marketing	47025	Samar Cho	Marketing	Male	Not Know	60	#######	78734.94	9.19
9	Australia	Sales	12513	Ranbir Kibe	Sales Repr	Prefer Not	Hispanic	30	#######	53666.9	2.53
10	US	Operation:	18133	Anahi War	Customer	Prefer Not	Hispanic	40	#######	68894.55	1.68
11	UK	Marketing	15031	Kartik Sara	Marketing	Prefer Not	Black	44	#######	53166.22	9.55
12	Australia	Customer	54645	Tiya Gade	Customer	Prefer Not	Asian	40	########	43707.88	9.65
13	UK	Engineerin	31550	Siya Zacha	Data Analy	Female	Hispanic	62	########	84515.76	8.47
14	US	Operation:	65812	Piya Kuma	Operation	Male	Black	24	########	62979.41	8.08
15	Canada	Sales	28607	Ivan Sarma	Sales Repr	Female	Hispanic	29	#######	84558.07	2.3
16	Australia	Research a	42518	Yuvraj Gar	Software E	Male	Not Know	29	########	102204.7	9.71
17	UK	Human Re	31890	Ritvik Joha	Human Re	Male	Black	59	#######	46455.5	9.76
18	US	Research a	40954	Seher Man	Data Analy	Female	Asian	28	########	83268.53	5.85
19	UK	Operation:	74888	Hunar Hor	Operation	Prefer Not	Hispanic	31	########	65121.48	2.38
20	Canada	Finance	83192	Eva Sekho	Financial A	Female	White	39	#######	81679.57	2.97
21	Australia	Operation:	20880	Priyansh B	Customer	Prefer Not	Hispanic	20	#######	119436.5	4.13
22	Australia	Legal	43955	Kabir Bhat	Lawyer	Male	Black	22	########	46516.3	5.03
23	Canada	Human Re	69413	Rohan Das	Human Re	Female	Asian	37	#######	65418.6	4.48
24	Canada	Marketing	58853	Shamik She	Marketing	Female	Asian	68	#######	76597.36	0.01
25	UK	Sales	71315	Jivin Char	Sales Repr	Male	Hispanic	18	#######	49709.96	3.72
26	UK	Engineerin	46232	Samiha Ma	Software E	Male	Black	58	#######	93753.84	5.67
27	US	Operation:	78741	Bhamini Re	Customer	Prefer Not	Asian	40	#######	76528.79	0.4
		working_e	employee	(+)							

3. Non-Working employees data

1	А	В	C	D	E	F	G	Н		J	K	L
1	Country	Departmen	EEID	Full Name	Job Title	Gender	Ethnicity	Age	Hire Date	Annual Sal	Bonus %	Exit Date
2	Canada	Marketing	46400	Riya Grove	Data Analy	Female	Asian	25	########	75499.29	3.83	#######
3	UK	Engineerin	61085	Ira Wable	Project Ma	Female	Asian	18	########	110198.8	2.09	#######
4	US	IT	92676	Parinaaz K	Software I	Female	Asian	44	########	41026.82	5.31	#######
5	Canada	Research a	38396	Taran Buta	Software I	Female	White	68	########	105485.7	8.69	#######
6	Canada	Sales	22677	Samiha Va	Sales Repr	Female	Not Know	70	########	104495.8	5.83	#######
7	US	Customer	94951	Kabir Dey	Customer	Prefer Not	Not Know	40	########	49184.54	8.37	#######
8	UK	Sales	30669	Tarini Brah	Sales Repr	Male	White	64	########	64526.56	9.09	#######
9	UK	Sales	44291	Aradhya C	Sales Repr	Prefer Not	Not Know	29	########	71443.58	1.7	#######
10	Canada	Research a	20783	Rasha Aur	Data Analy	Female	White	40	########	118531.4	2.32	#######
11	Canada	Legal	38418	Ryan Sura	Lawyer	Prefer Not	Not Know	18	########	46707.41	4.8	#######
12	US	Operation:	45764	Adira Sahn	Customer	Male	Not Know	26	########	78001.94	2.36	#######
13	Australia	IT	86860	Navya She	Data Analy	Male	Hispanic	49	########	71266.08	4.21	#######
14	US	Legal	45864	Farhan Ba	Lawyer	Male	White	22	########	116168	5.35	#######
15	UK	Finance	31359	Anvi Ahluv	Accountar	Prefer Not	Asian	25	########	101659	9.25	#######
16	UK	Operation:	27549	Emir Tailo	Operation	Prefer Not	Black	64	########	68657.94	5.17	#######
17	Australia	Human Re	80691	Indrans La	Human Re	Male	White	66	########	103161.8	0.66	#######
18	Canada	Operation:	88868	Biju Sani	Operation	Male	Hispanic	70	########	59208.66	7.47	#######
19	UK	Finance	46756	Dhruv Cha	Financial A	Female	Not Know	32	########	82979.87	1.98	#######
20	UK	Customer	19905	Miraan Ka	Customer	Female	Hispanic	50	########	82354.25	1.93	#######
21	UK	Finance	81298	Jhanvi Edv	Accountar	Male	Hispanic	70	########	101083.8	0.45	#######
22	Canada	Legal	98088	Ehsaan Lo	Lawyer	Male	Hispanic	18	########	86847.62	3.76	#######
23	US	IT	99341	Navya Red	Data Analy	Female	Black	18	########	76176.64	7.18	#######
24	Australia	Operation:	83584	Parinaaz K	Customer	Female	Hispanic	28	#######	73740.33	4.41	#######
25	Australia	Marketing	41923	Fateh Yogi	Marketing	Prefer Not	White	60	########	77113.86	0.31	#######
26	Canada	Research a	94118	Tushar Bal	Data Analy	Male	Not Know	62	########	41376.64	2.14	#######
27	UK	Human Re	45580	Prisha Sara	Human Re	Male	Hispanic	42	########	62170.93	9.64	#######

4. <u>Statistical data of Annual salary and Bonus percentage in each country based on department</u>

	Α	В	С	D	Е	F	G	Н
1	Country	Departmer	Average_S	Min_Salar	Max_Salar	Average_E	Min_Bonu	Max_Bonus
2	US	Marketing	79991.36	40086.07	119939.6	4.877534	0	10
3	US	Operations	79234.16	40033.76	119974.6	5.003937	0	10
4	US	Sales	79589.62	40010.3	119984.9	5.026602	0.01	10
5	UK	Legal	81114.16	40056.76	119986.2	5.086401	0	10
6	UK	IT	80053.22	40055.65	119992.9	4.991617	0	9.99
7	Canada	Engineerin	79417.15	40023.06	119980.7	5.043031	0.01	10
8	US	IT	80151.05	40030.79	119971.9	5.014553	0	10
9	UK	Finance	79955.71	40025.58	119986.3	4.954274	0.01	10
10	US	Human Re	80656.29	40009.99	119998.6	4.992073	0.01	10
11	Canada	Research a	79711.05	40025.73	119994.2	5.02575	0	10
12	Australia	Marketing	80797.67	40031.52	119990.5	4.978946	0	10
13	Australia	Research a	79737.21	40077.18	119988.6	4.945374	0	10
14	Canada	Marketing	80176.44	40001.64	119995.3	5.083193	0	10
15	US	Legal	79972.82	40009.73	119962.3	5.040385	0	10
16	US	Research a	80220.45	40012.07	119950.1	5.053296	0	10
17	UK	Human Re	79940.91	40028.45	119989.3	4.944592	0	10
18	Australia	IT	80731.98	40006.42	119993.5	5.055221	0	10
19	Australia	Sales	80398.31	40023.93	119983	4.992402	0	10
20	US	Customer	79833.69	40021.43	119992.7	5.050272	0.01	9.99
21	Canada	IT	79490.89	40003.06	119973.7	4.946629	0	9.99
22	Australia	Legal	79828.55	40022.34	119971.5	4.955532	0	9.99
23	Canada	Human Re	79651.17	40000.48	119994.2	4.955126	0	9.98
24	Canada	Operation:	79540.82	40083.11	119928.6	5.04373	0.01	10
25	Australia	Operation:	80474.08	40011.58	119999.6	5.065658	0.01	9.99
26	UK	Engineerin	80462.75	40048.92	119980	4.979211	0	10
27	Canada	Finance	79834.22	40003.3	119915.1	4.933844	0	10
-	>	salaries	+					

Data visualization on analytical data (truncated data is used)

1. Count_df:

Bar graph of count_df with country at x-axis and count at y-axis

Pie chart of Departmental Statistical data based on gender

• Pie chart of Departmental Statistical data based on ethnicity

• Pie chart of Departmental Statistical data based on age

_

2. working_employee_df

• Representation of Departmental wise Annual Salary for each country

Representation of Departmental wise Bonus percentage for each country

3. non_working_employee_df

• Representation of Departmental wise Annual Salary for each country

• Representation of Departmental wise Bonus percentage for each country

4. salaries df

• Representation of Department wise Annual Salary for each country

• Representation of Department wise Bonus percentage for each country

Conclusion

In conclusion, this project showcases a cohesive data processing pipeline leveraging Azure Data Factory and Azure Databricks, seamlessly moving data from Azure Blob Storage to Azure Data Lake Storage Gen2 then processing the data by performing transformation and analytical operations through azure databricks, then loading and organizing the data back to Azure data lake storage.