MOwNiT – funkcje sklejane

Przygotował:

Maksymilian Zawiślak

Dla poniższej funkcji:

$$f(x) = \sin(mx) \cdot \sin\left(\frac{kx^2}{\pi}\right)$$

gdzie:

$$k = 1, \quad m = 2, \quad [0,3\pi]$$

wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia.

Wykres głównej funkcji

Wykres 1: Wykres głównej funkcji

W zadaniu wykorzystano dwa rodzaje warunków granicznych

- Naturalne granice (Natural Boundary) pochodne na krańcach przedziału są równe 0
- Zaciśnięte granice (Clamped Boundary) pierwsze pochodne na krańcu przedziału są znane, bądź przybliżone są ilorazami różnicowymi

Interpolacja sześcienna

Interpolacja musi spełniać następujące warunki:

1)
$$s_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3$$

2)
$$s_i(x_{i+1}) = f_i(x_{i+1}) = y_i$$

3)
$$s_i(x_{i+1}) = s_{i+1}(x_{i+1})$$

4)
$$s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$$

5)
$$s_i''(x_{i+1}) = s_{i+1}''(x_{i+1})$$

$$s_i(x_i) = a_i + b_i(x_i-x_i) + c_i(x_i-x_i)^2 + d_i(x_i-x_i)^3$$

$$s_i(x_i) = a_i$$

 $s_i(x)$ to funkcja sześcienna, wiec $s_i''(x)$ jest liniowa na przedziale $[x_i, x_{i+1}]$, $h_i = x_{i+1}$ - x_i wiec zachodzi takie równanie:

$$s_i''(x) = s_i''(x_i) \frac{x_{i+1} - x_i}{h_i} + s_i''(x_{i+1}) \frac{x - x_i}{h_i}$$

Po podwójnym całkowaniu powyższego równania otrzymuje się wzór

$$s_{i}(x) = \frac{s_{i}''(x)}{6h_{i}}(x_{i+1}-x_{i})^{3} + \frac{s_{i}''(x_{i+1})}{6h_{i}}(x-x_{i})^{3} + C(x-x_{i}) + D(x_{i+1}-x_{i})^{3}$$

C i D to stałe po całkowaniu, można je wyliczyć korzystając z warunku 2, $s_i(x_i) = f_i(x_i)$ oraz $s_i(x_{i+1}) = f_i(x_{i+1})$

$$\begin{split} s_{i}(x) \; &= \; \frac{s_{i}^{"}(x)}{6h_{i}} (x_{i+1} - x_{i})^{3} + \frac{s_{i}^{"}(x_{i+1})}{6h_{i}} (x - x_{i})^{3} + \left(\frac{y_{i+1}}{h_{i}} - \frac{s_{i}^{"}(x_{i+1})h_{i}}{6}\right) (x - x_{i}) \\ &+ \left(\frac{y_{i}}{h_{i}} - \frac{s_{i}^{"}(x)h_{i}}{6}\right) (x_{i+1} - x) \end{split}$$

W powyższym wzorze nie znane jest $s_i^{"}(x)$. Aby je wyliczyć należy skorzystać z warunku ciągłości pierwszej pochodnej. Wyniki po zróżniczkowaniu to:

$$s_i'(x_i) = -\frac{h_i}{3}s_i''(x) - \frac{h_i}{6}s_i''(x_{i+1}) - \frac{y_i}{h_i} + \frac{y_{i+1}}{h_i}$$

Dla przejrzystości wyprowadzić można symbole: $\sigma_i = \frac{1}{6} s_i''(x)$ oraz $\Delta_i = \frac{y_{i+1} \cdot y_i}{h_i}$

$$s_i'(x_i) = -2\sigma_i h_i - \sigma_{i+1} h_i + \Delta_i$$

$$s_i'(x_i) = \Delta_i - h_i(2\sigma_i + \sigma_{i+1})$$

$$s_{i-1}(x_i) = \Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1})$$

Z warunku 4 dochodzi do równości:

$$\Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1}) = \Delta_i - h_i(2\sigma_i + \sigma_{i+1})$$

Wynika z tego układ n-2 równań linowych, ale jako że jest n niewiadomych σ_i , konieczne jest określenie dwóch dodatkowych warunków skrajnych. Wartość A w macierzach to miejsce na warunki graniczne.

$$\begin{bmatrix} A & A & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & A & A \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} A \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ A \end{bmatrix}$$

Warunek zaciśniętych granic dla funkcji sześciennych

 $C_1(x)$ – funkcja sześcienna przez pierwsze 4 punkty

 $C_n(x)$ – funkcja sześcienna przez ostatnie 4 punkty

$$s'''(x_1) = C_1''', s'''(x_n) = C_n'''$$

Stałe $C_1^{"}$ oraz $C_n^{"}$ mogą być wyznaczone bez znajomości $C_1(x)$ oraz $C_n(x)$

$$\begin{split} \Delta_i &= \frac{y_{i+1} \cdot y_i}{x_{i+1} \cdot x_i}\text{, przybliża }f^{'} \\ \Delta_i^{(2)} &= \frac{\Delta_{i+1} \cdot \Delta_i}{x_{i+2} \cdot x_i}\text{, } 2\Delta_i^{(2)}\text{przybliża }f^{''} \\ \Delta_i^{(3)} &= \frac{\Delta_{i+1}^{(2)} \cdot \Delta_i^{(2)}}{x_{i+3} \cdot x_i}\text{, } 6\Delta_i^{(3)}\text{przybliża }f^{'''} \end{split}$$

Po zróżniczkowaniu wzoru $s_i^{"}(x) = s_i^{"}(x_i) \frac{x_{i+1} \cdot x_i}{h_i} + s_i^{"}(x_{i+1}) \frac{x \cdot x_i}{h_i}$ otrzymywany jest wzór:

$$s_i^{""}(x) = \frac{-s_i^{"}(x_i)}{h_i} + \frac{s_i^{"}(x_{i+1})}{h_i} = \frac{-6\sigma_i}{h_i} + \frac{6\sigma_{i+1}}{h_i}$$

wtedy

$$\begin{split} s^{"'}(x_1) &= c_1^{"'}(x_1) \Rightarrow \frac{6}{h_1}(\sigma_2 - \sigma_1) = 6\Delta_1^{(3)} \\ s^{"'}(x_n) &= c_n^{"'}(x_n) \Rightarrow \frac{6}{h_{n-1}}(\sigma_n - \sigma_{n-1}) = 6\Delta_{n-3}^{(3)} \\ & (h_1\sigma_2 - h_1\sigma_1) = h_1^2 \Delta_1^{(3)} \\ & (h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n) = -h_n^2 \Delta_{n-3}^{(3)} \\ \begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_n^2 \Delta_{n-3}^{(3)} \end{bmatrix} \end{split}$$

$$s''(x_1) = s''(x_n) = 0$$

Korzystając z warunku 5 wynika że

$$\begin{split} s^{"}(x_1) &= s^{"}(x_1) = 0 \Rightarrow \sigma_1 = 0 \\ s^{"}(x_n) &= s^{"}(x_n) = 0 \Rightarrow \sigma_n = 0 \\ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix} \end{split}$$

Interpolacja kwadratowa

Interpolacja musi spełniać następujące warunki:

1)
$$s_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2$$

2)
$$s_i(x_{i+1}) = f_i(x_{i+1}) = y_i$$

3)
$$s_i(x_{i+1}) = s_{i+1}(x_{i+1})$$

4)
$$s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$$

$$s_i(x_i) = a_i + b_i(x_i-x_i) + c_i(x_i-x_i)^2$$

 $s_i(x_i) = y_i = a_i$

Po zróżniczkowaniu tego wyrażania dochodzi do wzoru:

$$s_{i}(x_{i}) = b_{i} + 2c_{i}(x-x_{i})$$

Więc korzystając z warunku 4 otrzymana równość to:

$$\begin{aligned} b_{i+1} + 2c_{i+1}(x_{i+1} - x_{i+1}) &= b_i + 2c_i(x_{i+1} - x_i) \\ b_{i+1} - b_i &= 2c_i(x_{i+1} - x_i) \\ \\ \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)} &= c_i \end{aligned}$$

Następnie korzystając z warunku 3

$$\begin{split} a_{i+1} + b_{i+1}(x_{i+1} - x_{i+1}) + c_{i+1}(x_{i+1} - x_{i+1})^2 &= a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 \\ y_{i+1} &= y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 \\ y_{i+1} &= y_i + b_i(x_{i+1} - x_i) + \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}(x_{i+1} - x_i)^2 \\ y_{i+1} &= y_i + (x_{i+1} - x_i) \left(b_i + \frac{b_{i+1} - b_i}{2}\right) \\ 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i} &= b_{i+1} + b_i \\ \theta_{i+1} &= \frac{y_{i+1} - y_i}{x_{i+1} - x_i}, \qquad 2\theta_{i+1} &= b_{i+1} + b_i \end{split}$$

$$\begin{bmatrix} A & A & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} A \\ 2\theta_2 \\ \vdots \\ 2\theta_{n-1} \\ 2\theta_n \end{bmatrix}$$

W macierzy widać że jest n-1 równań, a n niewiadomych. W macierzy jest b_n , które uniemożliwia obliczenie b_{n-1} . Aby rozwiązać układ trzeba dodać równanie, korzystając z warunków granicznych.

Warunek zaciśniętych granic dla funkcji kwadratowych

W tym warunku brzegowym zakłada się że pierwsze pochodne na krańcach są znane.

$$S_1'(x_1) = f_1' \text{ lub } S_n'(x_n) = f_n'$$

$$S_1'(x_1) = \frac{y_2 - y_1}{x_2 - x_1}$$

$$S_i'(x_i) = b_i + 2c_i(x - x_i)$$

Po połączeniu tych wzorów dochodzi się do warunku brzegowego:

$$\frac{y_2 - y_1}{x_2 - x_1} = b_1 + 2c_1(x_1 - x_1)$$

$$\frac{y_2 - y_1}{x_2 - x_1} = b_1 = \theta_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} \theta_2 \\ 2\theta_2 \\ \vdots \\ 2\theta_{n-1} \\ 2\theta_n \end{bmatrix}$$

Analogicznie będzie dla przypadku $S_n'(x_n) = f_n'$

Warunek naturalnych granic dla funkcji kwadratowych

$$S_1'(x_1) = 0 \text{ lub } S_n'(x_n) = 0$$

 $S_i'(x_i) = b_i + 2c_i(x-x_i)$

Po połączeniu tych wzorów dochodzi się do warunku brzegowego:

$$\begin{aligned} b_1 + 2c_1(x_1 - x_1) &= 0 \\ b_1 &= 0 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} 0 \\ 2\theta_2 \\ \vdots \\ 2\theta_{n-1} \\ 2\theta_n \end{bmatrix}$$

Analogicznie będzie dla przypadku $S_{n}^{\ \ }(x_{n})=0$

Interpolacje

Interpolacje na 4 węzłach równoległych

Wykres 2: Wykresy interpolacji funkcjami sklejanymi na 4 węzłach równoległych

Na wykresie 2 interpelacja jest prostą linia, dzieje się tak gdy węzły trafiają w wartość związane z liczbą π , tutaj węzły są na wartościach $[0,\pi,2\pi,3\pi]$. Analogiczna prosta linia występowała dla interpolacji Newtona, Lagrange'a oraz Hermit'a.

Interpolacje na 5 węzłach równoległych

Wykres 3: Wykresy interpolacji funkcjami sklejanymi na 5 węzłach równoległych

Widać że wykresy zaczynają się różnić w zależności od rodzaju interpolacji ale także w zależności od warunku granicznego.

Interpolacje na 10 węzłach równoległych

Wykres 4: Wykresy interpolacji funkcjami sklejanymi na 10 węzłach równoległych

Wykres 3 oraz 4 pokazują że zastosowanie funkcji sklejanych przeciwdziała występowaniu efektu Rungego, który w przypadku interpolacji Hermit'a pojawiał się już przy 5 węzłach interpolacji, a dla interpolacji Lagrange'a oraz Newtona dla 10 węzłów.

Interpolacje na 15 węzłach równoległych

Wykres 5: Wykresy interpolacji funkcjami sklejanymi na 15 węzłach równoległych

Na przedstawionych wyżej wykresach można zaobserwować że interpolacje funkcjami sklejanymi drugiego i trzeciego stopnia są miedzy sobą bardziej podobne w zależności od warunku granicznego niż od rodzaju interpolacji. Największe różnice przy tych samym warunkach granicznych można zobaczyć na końcach przedziałów interpolacji.

Interpolacje na 39 węzłach równoległych

Wykres 6: Wykresy interpolacji funkcjami sklejanymi na 39 węzłach równoległych

Wykres 7: Wykresy interpolacji Lagrange'a oraz Newtona na 39 węzłach równoległych

Na wykresie 6 interpolacje funkcjami sklejanymi są prawie dokładne z dana funkcją, gdzie interpolacja Lagrange'a i Newtona dla tej samej liczby węzłów są już ekstremalnie niedokładne.

Błędy obliczeniowe

Liczba	Naturalne granice		Zaciśnięte granice	
węzłów	Błąd maksymalny	Błąd sumy kwadratów	Błąd maksymalny	Błąd sumy kwadratów
4	0.997662	3.837342	0.997662	3.837342
5	1.135079	3.262593	1.270987	3.626906
11	1.086372	1.180893	1.398269	1.287586
12	1.213437	1.198861	1.486975	1.270141
15	1.112085	0.760890	1.288334	0.803551
20	0.723908	0.364619	0.712308	0.355153
30	0.241311	0.053609	0.463905	0.079200
40	0.131268	0.019622	0.143280	0.020318
50	0.078169	0.012968	0.053546	0.012321
60	0.053668	0.010337	0.053185	0.010090
75	0.052226	0.008138	0.052327	0.008077
100	0.051995	0.006073	0.051998	0.006063
200	0.052066	0.003033	0.052066	0.003032
300	0.052068	0.002022	0.052068	0.002022
400	0.052068	0.001516	0.052068	0.00151

Tabela 1: Wyniki błędów interpolacji sześciennej

Liczba	Naturalne granice		Zaciśnięte granice	
węzłów	Błąd maksymalny	Błąd sumy kwadratów	Błąd maksymalny	Błąd sumy kwadratów
4	0.997662	3.837342	0.997662	3.837342
5	2.099195	4.398656	2.324764	5.111037
11	3.079799	2.822248	3.276233	3.130432
12	1.528804	1.318254	1.415550	1.283674
15	1.315155	1.006169	1.291032	0.992279
20	0.821747	0.372853	0.875740	0.391736
30	0.295243	0.072990	0.322131	0.079831
40	0.088412	0.020153	0.094058	0.022025
50	0.071206	0.012867	0.067456	0.013360
60	0.054560	0.010285	0.057056	0.010431
75	0.052965	0.008125	0.052838	0.008154
100	0.053838	0.006075	0.054536	0.006079
200	0.052293	0.003034	0.052366	0.003034
300	0.052140	0.002023	0.052180	0.002023
400	0.052097	0.001517	0.052094	0.001517

Tabela 2: Wyniki błędów interpolacji kwadratowej

Najmniejsze wartości błędów w tabeli 1 oraz 2 można zaobserwować dla 400 węzłów interpolacji.

Wykres 8: Wykresy interpolacji funkcjami sklejanymi na 400 węzłach równoległych

Widać na wykresie 8 że nie ważna jaka interpolacja została użyta oraz bez względu na zastosowany warunek brzegowy wykresy są identyczne z dana funkcja startową.

Do obliczeń oraz wizualizacji został wykorzystany język programowania Pyhton wraz z bibliotekami NumPy, math, pandas oraz matplotlib. Wszystko zostało wykonane pod system Windows 10 na procesorze i5-1135G7 2.40GHz oraz 16GB pamięci operacyjnej. Wykresy były generowane przy użyciu 944 punktów. Punkty były co 0.01 na całym przedziale.