ANN Supported Source Separation

Ilya Sklyar

ilya.sklyar@rwth-aachen.de

Selected Topics in Human Language Technology and Pattern Recognition 27.06.2017

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

Introduction
Literature
Mathematical formulation
Conventional methods
Multiclass regression
Permutation invariant training
Deep clustering
Evaluation and discussion
Summary

Introduction

- ► Cocktail party problem [Cherry 57]
 - Overlapping mixture of sounds
 - Arbitrary number of sources
 - ▶ Properties of sources are not known in advance
 - > Sources can have very similar nature (i.e. two female speakers)
 - Single channel: no spatial information
- ▶ Wide range of applications
 - ∨ Virtual assistants
 - ▶ Hearing aids
 - Meeting transcriptions
 - Automatic captioning for audio/video recordings
 - General audio separation

Motivation: separating mixture of two female speakers

Clean

Mixture

Conventional

ANN-supported

Literature

[Hershey & Chen⁺ 16]: Deep clustering: Discriminative embeddings for segmentation and separation. *ICASSP 2016*.

- Generation of the embeddings via ANN that learns similarity stricture of time-frequency bins in the mixture
- ► Clustering of the embeddings to obtain binary masks that distinguish sources

[Isik & Roux⁺ 16]: Single-channel multi-speaker separation using deep clustering.

- ► Enhancement network for signal reconstruction
- End-to-end training

[Chen & Luo⁺ 16]: Deep attractor network for single-microphone speaker separation.

- ► Attractor points estimation in the embedding space
- More efficient end-to-end training

Literature

[Yu & Kolbæk⁺ 16]: Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation.

- ► Mixture is represented as a set of sources
- ► Label assignment is performed simultaneously with error evaluation

[Kolbæk & Yu⁺ 17]: Multi-talker Speech Separation and Tracing with Permutation Invariant Training of Deep Recurrent Neural Networks

- ► All frames of the same speaker are aligned to the same output layer
- ► LSTM network is used to learn long-term dependencies in the mixture

[Yu & Chang⁺ 17]: Recognizing Multi-talker Speech with Permutation Invariant Training.

- Separation is performed implicitly in ASR framework
- Direct recognition of multiple streams of speech

Mathematical Formulation of the Problem

- lacksquare Mixed signal $x(t) = \sum_{c=1}^C s_c(t)$
- lacktriangle The goal of source separation is to estimate individual source signals $s_c(t)$
- Separation is performed on the time-frequency representations of signals obtained with short-time Fourier transformation (STFT)
- ▶ Given mixture $X_i = \sum_{c=1}^C S_{c,i}$ the task is to recover STFT spectral magnitudes of the source signals $S_{c,i}$ for all c and i
 - $\triangleright i = (t, f), i \in 1, ..., N$ is time-frequency bin
 - $\triangleright t \in 1,...,T$ is time frame
 - ho $f\in 1,...,F$ is frequency bin
 - $\triangleright N = T \times F$
- lacktriangle Problem: infinite number of possible combinations of $S_{c,i}$ that yield same X_i
- ightharpoonup Solution: learn regularities between pairs of $S_{c,i}$ and X_i from training data

Conventional methods

- ► Computational Auditory Scene Analysis (CASA) [Hu & Wang 13]:
 - > Spectral segmentation based on perceptual grouping cues
 - Advantage: no overfitting
 - Disadvantage: requires very careful tuning
- ► Spectral clustering [Bach & Jordan 06]:
 - ▶ Multiple kernel learning for approximating similarity matrices
 - ▶ Eigenvalue Decomposition (EVD) and k-means clustering
 - ▶ High complexity
- ► Non-negative matrix factorization (NMF) [Le Roux & Weninger+ 15]:
 - Dimensionality reduction technique that learns useful properties of sound
 - Requires modelling for each type of sound
 - ▶ Fails in speaker-independent conditions

Motivation for Deep Learning

- Conventional methods suffer from strong applicability limitations and lack of generalization
- Artificial Neural Networks (ANNs) achieved significant results in other speech processing tasks such as recognition and enhancement
- State-of-the-art Speech vs. Noise separation is done in regression framework:

Multiclass regression attempt to perform two-talker speech separation

- ▶ Given T frames of mixed speech ANN model $h_{\theta}(X)$ infers one frame t of the mask $H_c(t)$ for each of the sources c via MSE training criterion
- lacktriangle Reconstruction formula: $ilde{S}_c(t) = H_c(t) \circ X(t)$
 - ▷ is element-wise multiplication

Result

► Multiclass regression model with ANN fails to separate two-speaker mixture

Encountered Problems

- ▶ Permutation problem
 - ▶ Order of sources is irrelevant: mixture A+B is described correctly by both permutations (A,B) and (B,A)
 - ▶ Which target output to use for each source?
 - ▶ Random assignment produces conflicting gradients in the training phase
- Output dimension mismatch problem
 - Cocktail party processor must separate speech signals belonging to arbitrary many sources
 - ▶ Fixed output dimension is not flexible to adapt to the arbitrary number of sources

Permutation Invariant Training [Yu & Kolbæk⁺ 16]

- **▶** Solves permutation problem:
 - ▶ Represents reference streams in a set instead of an ordered list
 - > Performs label assignment simultaneously with error evaluation

adopted from [Yu & Kolbæk⁺ 16]

PIT Recipe

▶ Compute C^2 pairwise mean squared errors (MSE) between each target source S_l and each reconstructed source \tilde{S}_r :

$$J_{r,l} = rac{1}{T \cdot F} \left\| ilde{S}_r - S_l
ight\|_F^2$$

$$\triangleright r, l \in 1, ..., C$$

▶ Construct a set of C! possible assignments between target and estimated sources and estimate total error of each assignment $a \in \{1, ..., C!\}$:

$$J_a = rac{1}{C} \sum_{(r,t) \in a} J_{r,t}$$

Chose an optimal assignment to optimize network parameters

$$a_{opt} = rg\min_a J_a$$

PIT with ASR [Yu & Chang⁺ 17]

- ▶ PIT can be integrated into ASR system to recognize multi-talker speech
- ► Error between target and estimated senone posterior probabilities is minimized via cross-entropy (CE) criterion, separation is performed implicitly

Deep Clustering [Hershey & Chen⁺ 16]

- ► First major success in the history of ANN-supported source separation
- Solves both permutation and output dimension mismatch problem

[DC]

DC Model Description

- Neural network $V=h_{ heta}(X)$ performs a mapping of global input signal $X\in\mathbb{R}^N$ into embedding space $V\in\mathbb{R}^{N\times D}$ with embedding dimension D and unit norm $|v_i|=1$ for all i
- ▶ Resulting embedding is used to generate a $N \times N$ affinity matrix VV^T that represents similarity structure of input data

DC Training Recipe

▶ Partition-based objective function forces learned affinity matrix VV^T to match the target binary affinity matrix YY^T :

$$C_Y(V) = \left\| VV^T - YY^T
ight\|_F^2$$

- $lackbox{Y} = \{y_{i,c}\}$ indicates a mapping between each time-frequency bin i and one of the C clusters c: $y_{i,c} = 1$ if $i \in c$ and $y_{i,c} = 0$ if $i \notin c$
- ▶ Therefore YY^T represents cluster assignments in permutation-independent way : $(YY^T)_{i,j}=1$ if $i,j\in c$ and $(YY^T)_{i,j}=0$ if $i\in c,j\in c'$ and $c\neq c'$
- Expanding Frobenius norm and applying polarization identity results in more intuitive formulation of the training criterion:

$$C_Y(V) = \sum_{i,j: y_i = y_j} (|v_i - v_j| - 1) + \sum_{i,j} < v_i, v_j >$$
 pulls same cluster embeddings closer pushes all embeddings apart

DC Evaluation Recipe

- $lackbox{ During evaluation embeddings } V = h_{ heta}(\overline{X})$ are generated on the test mixture \overline{X}
- $lackbox{ t Rows } v_i \in \mathbb{R}^{\mathbb{D}}$ of the matrix V are clustered using k-means loss function:

$$\overline{Y} = rg \min_{Y} K_V(Y) = \left\| V - YM
ight\|_F^2$$

- ▶ Means of the clusters are defined as $C \times D$ matrix M = UA:
 - ho Normalizer $U = (Y^TY)^{-1}$
 - ightharpoonup Accumulator $A = Y^T V$
- Inferred cluster assignments \overline{Y} are used as binary masks that separate the mixture \overline{X} into different sources

Deep Clustering with Enhancement Network [Isik & Roux+ 16]

- ► Problem: binary masks disregard features from weaker sources
- ► Solution: enhancement network on top of DC is a way to go
- **▶** DC is extended with following steps:
 - \triangleright For each source c separated amplitude spectrogram \hat{S}_c is concatenated with the mixture X and passed to enhancement network that outputs $z_{c,i}$
 - $ilde{R}$ All outputs are normalized via softmax, yielding reconstruction masks: $H_{c,i}=e^{z_{c,i}}/\sum_{c'}e^{z_{c',i}}$
 - riangleright Enhanced separated signals are computed: $ilde{S}_{c,i} = H_{c,i} \cdot X_i$
- ► Separation error is directly optimized by enhancement cost function:

$$C_E = \min_{\pi \in \mathcal{P}} \sum_{c,i} \left(S_{c,i} - ilde{S}_{\pi(c),i}
ight)^2$$

 $\triangleright \mathcal{P}$ represents all possible permutations on the set of sources $\{1,...,C\}$

Deep Attractor Network [Chen & Luo⁺ 16]

- Problem: DC+ suffers from overcomplicated architecture and inefficient mapping between input signal and separated sources
- ➤ Solution: more efficient end-to-end training recipe for DC algorithm called Deep Attractor Network (DANet)

- Biologically inspired by the Perceptual Magnet Effect
- ► Forms a perceptual magnet (attractor) for each source in the embedding space that draws together all TF bins belonging to this source
- Masks for the sources are estimated based on the similarity between TF bins and attractor points

DANet Training Recipe

▶ Embedding generation with DC-related objective

$$C_Y(V) = \left\| Y^T - MV^T
ight\|_F^2$$

Attractor estimation

$$A_{c,d} = rac{\sum_{i} V_{d,i} \cdot Y_{c,i}}{\sum_{i} Y_{c,i}}$$

Mask estimation

$$H_{c,i} = g(\sum_d A_{c,d} \cdot V_{i,d})$$

- $\triangleright g$ is sigmoid for two speaker separation and softmax for multi-speaker
- Separation error minimization

$$L = \sum_{c,i} \left(S_{c,i} - H_{c,i} \cdot X_i
ight)^2$$

DANet Inference Strategies

- ▶ With *k*-means as in DC:
 - > Requires attractor estimation at test time
- With fixed attractors:

[Chen & Luo⁺ 16]

- Location of attractors in embedding space is relatively stable
- Two attractor pairs were learned by the algorithm on a set of 10,000 mixture examples
- Fixed attractor pair reduces DANet to a classification network
- ► Empowers real-time performance, but brings back permutation problem

Experimental setup

- ▶ Data is generated from the Wall Street Journal corpus by randomly mixing utterances from different speakers: WSJ0-2mix and WSJ0-3mix
- ► Most common source separation metric is signal-to-distortion ratio (SDR), measured in dB [Vincent & Gribonval⁺ 06]:
 - ▶ Defined as scale-invariant signal-to-noise ratio (SNR)
 - Compares the level of a desired signal to the level of an interfering signal and a background noise
- Ideal ratio mask (IRM) defines an upper bound performance achievable on this task
- ► All state-of-the-art methods employ BLSTM networks
 - > Variable length of utterances
 - > Long-range dependencies in the context

Evaluation results for two speaker separation

Method	SDR
Oracle NMF ¹	5.1
CASA 1	3.1
DC ²	9.1
fix-DANet ²	9.5
DANet ²	10.5
DC+ ³	10.8
PIT ⁴	10.0
IRM ⁴	12.7

- ► ANN-based approaches outperform conventional baselines by a large margin
- ► Most algorithmically complex DC+ achieves the best result
- ► fix-DANet compensates real-time implementation with slightly worse performance

¹[Hershey & Chen⁺ 16]

²[Chen & Luo⁺ 16]

³[Isik & Roux⁺ 16]

⁴[Kolbæk & Yu⁺ 17]

Evaluation results for three speaker separation

Method	SDR
Oracle NMF ¹	4.5
DC ²	6.3
DC+ ³	7.1
DANet ²	8.8
PIT ⁴	7.7
IRM ⁴	12.8

- **▶** DANet demonstrates the strongest generalization ability
- ► The most significant drop in performance is shown by DC+
- ▶ PIT performs better than both vanilla DC and DC+

¹[Hershey & Chen⁺ 16]

²[Chen & Luo⁺ 16]

³[Isik & Roux⁺ 16]

⁴[Kolbæk & Yu⁺ 17]

ASR experiments on speech separated with DC+

WER improvements on WSJ0-2mix [Isik & Roux⁺ 16]

Method	WER	
Baseline	89.1	
DC+	30.8	
Clean	19.9	

- ► Kaldi toolkit with GMM-based clean speech models was used to decode reconstructed streams
- ► Unprecedented performance gain in 63.2% relative WER

WER improvements on AMI mixed dataset achieved with PIT-ASR

[Yu & Chang⁺ 17]

Method	WER
Baseline	83.9
PIT-ASR	54.8
Clean	26.6

- ► Two-talker dataset is generated from the AMI IHM corpus of meetings
 - ▶ 80 hours of training data
 - > 8 hours of evaluation data
- ► Input features are 40-dimensional log filter banks
- ▶ Baseline setup includes acoustic model with 3-layer 512-unit BLSTM network and trigram language model
- ▶ PIT-ASR model contains 10 BLSTM layers with 768 hidden units in each layer
- Senone alignment is obtained with standard Kaldi model
- ▶ 34.7% relative WER improvement, but still far from single-talker quality

Future Work

- ► Hierarchical clustering of the embeddings
- ► Attractor codebook for more challenging tasks
- Representative embeddings for robust attractor estimation
- ► Incorporating spatial information via beam-forming in multi-channel setup
- Passing LM down from the recognition to the separation stage and searching for the optimal recognized sequence across all speech streams

Summary

- Historical perspective on source separation problem has shown it to be very challenging
- ► First attempts to apply ANNs failed due to permutation problem
- ► MERL's speech team revolutionized the field with deep clustering and restored the faith in feasibility of the cocktail-party problem
- ANN supported source separation has been studied extensively in the last two years
- ► Two proposed speech separation paradigms (DC and PIT) have their own merits and demerits: no clear winner yet
- **▶** Large number of possible applications
- Further developments of the methods is necessary to make them suitable for practical use

Thank you for your attention

Ilya Sklyar

ilya.sklyar@rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

References

- [Bach & Jordan 06] F.R. Bach, M.I. Jordan: Learning Spectral Clustering, With Application To Speech Separation. *Journal of Machine Learning Research*, Vol. 7, pp. 1963–2001, Dec. 2006. 8
- [Chen 15] Z. Chen: Seminar Talk on Deep Clustering: Discriminative Embeddings for Segmentation and Separation. https://labrosa.ee.columbia.edu/cuneuralnet/chen111815.pdf, Nov. 2015. Accessed: 2017-06-18. 9, 11, 12, 17
- [Chen & Luo⁺ 16] Z. Chen, Y. Luo, N. Mesgarani: Deep attractor network for single-microphone speaker separation. *CoRR*, Vol. abs/1611.08930, Nov. 2016. 5, 21, 23, 25, 26
- [Cherry 57] C. Cherry: On Human Communication: A Review, a Survey, and a Criticism. Studies in communication. Technology Press of Massachusetts Institute of Technology, 1957. 3
- [DC] Deep Clustering Model. http://www.merl.com/public/img/news/photo-1203.jpg. Accessed: 2017-06-18.16

- [Dem] Deep Clustering Demo. http://www.merl.com/demos/deep-clustering. Accessed: 2017-06-18. 4
- [Hershey & Chen⁺ 16] J.R. Hershey, Z. Chen, J. Le Roux, S. Watanabe: Deep Clustering: Discriminative Embeddings for Segmentation and Separation. In *2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 31–35, Shanghai, China, March 2016. IEEE. 5, 16, 25, 26
- [Hu & Wang 13] K. Hu, D. Wang: An Unsupervised Approach to Cochannel Speech Separation. *IEEE Transactions on Audio, Speech, and Language Processing*, Vol. 21, No. 1, pp. 122–131, Jan. 2013. 8
- [Isik & Roux⁺ 16] Y. Isik, J.L. Roux, Z. Chen, S. Watanabe, J.R. Hershey: Single-Channel Multi-Speaker Separation using Deep Clustering. *CoRR*, Vol. abs/1607.02173, July 2016. 5, 20, 25, 26, 27
- [Kolbæk & Yu⁺ 17] M. Kolbæk, D. Yu, Z. Tan, J. Jensen: Multi-talker Speech Separation and Tracing with Permutation Invariant Training of Deep Recurrent Neural Networks. *CoRR*, Vol. abs/1703.06284, March 2017. 6, 10, 25, 26
- [Le Roux & Weninger⁺ 15] J. Le Roux, F.J. Weninger, J.R. Hershey: Sparse NMF half-baked or well done? Technical Report TR2015-023, Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA, March 2015. 8

- [Vincent & Gribonval⁺ 06] E. Vincent, R. Gribonval, C. Fevotte: Performance Measurement in Blind Audio Source Separation. *IEEE Transactions on Audio, Speech, and Language Processing*, Vol. 14, No. 4, pp. 1462–1469, July 2006. 24
- [Yu & Chang⁺ 17] D. Yu, X. Chang, Y. Qian: Recognizing Multi-talker Speech with Permutation Invariant Training. *CoRR*, Vol. abs/1704.01985, March 2017. 6, 15, 28
- [Yu & Kolbæk⁺ 16] D. Yu, M. Kolbæk, Z. Tan, J. Jensen: Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation. *CoRR*, Vol. abs/1607.00325, July 2016. 6, 13

PIT-ASR Training

▶ Output of the BLSTM network with N layers H_N is used to compute C output layers of excitations for each source:

$$oldsymbol{\mathsf{H}}^{c}_{o} = Linear(oldsymbol{\mathsf{H}}_{N}), c = 1,...,C$$

▶ Final C output layers with senone posterior probabilities for each stream c are computed via softmax:

$$\mathbf{O}^c = Softmax(\mathbf{H}_o^c), c=1,...,C$$

▶ Output senone probabilities O^c are compared with correct label sequences l_c via CE criterion:

$$J = rac{1}{C} \min_{c' \in permute(C)} \sum_{c} \sum_{t} CE(l_t^{c'}, \mathbf{O}_t^c), c = 1, ..., C$$

- ▶ Forces the system to choose label assignment with minimum loss
- ▶ Computes the loss for each assignment on the whole utterance

Objective function derivation

$$egin{aligned} C_Y(V) &= ig\|VV^T - YY^Tig\|_F^2 = \sum_{i,j} (< v_i, v_j > - < y_i, y_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j > - < y_i, y_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j > - < y_i, y_j >)^2 + \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (1 - 2 < v_i, v_j >) + \sum_{i,j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i \neq y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_j} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v_j >)^2 = \sum_{i,j: y_i = y_i} (< v_i, v$$

Polarization identity:

$$< v_i, v_j> = rac{1}{2}(|v_i|^2 + |v_j|^2) - |v_i - v_j|^2)$$

Applying polarization identity to dot product $\langle v_i, v_j \rangle$ leads to more intuitive formulation of training criterion:

$$C_Y(V) = \sum_{i,j: y_i = y_j} (|v_i - v_j| - 1) + \sum_{i,j} < v_i, v_j >$$

Efficient Implemenataion

- ▶ Number of TF bins N is in order of magnitudes larger than embedding dimension D:
 - \triangleright For a 10s audio file processed with 129-dimensional STFT and 10ms window N=129000
- ▶ Low-rank nature of affinity matrix VV^T allows efficient implementation of the training criterion:

$$C_Y(V) = \left\|VV^T - YY^T
ight\|_F^2 = \left\|V^TV
ight\|_F^2 - 2\left\|V^TY
ight\| + \left\|Y^TY
ight\|_F^2$$

▶ DC training criterion can be viewed as an efficient direct optimization of a low-rank affinity matrix in spectral clustering

Deep Clustering with End-to-End Training

- ▶ Problem: joint training of embedding and enhancement networks is restricted by undifferentiable k-means clustering step in between
- ightharpoonup Solution: substitute hard k-means clustering with a weighted EM algorithm with pooled covariances
 - \triangleright Expectation step: soft assignment $\gamma_{i,c}$ of each embedding v_i to each cluster c:

$$\gamma_{i,c} = rac{e^{-lpha|v_i - \mu_c|^2}}{\sum_{c'} e^{-lpha|v_i - \mu_{c'}|^2}}$$

- $\circ \alpha$ defines hardness of clustering
- \triangleright Maximization step: recomputation of means μ_c for each cluster with respect to assignments:

$$\mu_c = rac{\sum_i \gamma_{i,c} w_i v_i}{\sum_i \gamma_{i,c} w_i}$$

- $\circ w_i = 0$ for silence and $w_i = 1$ for speech
- ► Steps of EM are unfolded in clustering network that enables gradient flow
- ► Final model is called DC+

Experimental setup

- ► Features are obtained with 129-dimensional magnitude STFT spectra
- ▶ All DC-based approaches share the same network architecture with 4 BLSTM layers with 600 units and one 2580-unit (20×129) feed-forward layer with embedding dimension D=20
- ▶ DC+ and DANet are trained with curriculum learning
 - ▶ Pre-training on 100-frames segments
 - ▶ Fine-tuning on 400-frames segments
- **▶** DC+ employs feed-forward and recurrent dropout
- ▶ PIT details
 - > 3 BLSTM layers with 896 units
 - Regularization via feed-forward dropout with rate control

Details on SDR and IRM

► SDR

$$SDR = 10 \log_{10} rac{\left\|s_{target}
ight\|^2}{\left\|e_{interf} + e_{noise} + e_{artif}
ight\|^2}$$

- $|s|^2$ is energy of the signal s
- $\triangleright s_{target}$ is part of the signal coming from the wanted source s
- $hd e_{interf}$ is part of the signal coming from other unwanted sources
- $\triangleright e_{noise}$ is part of the signal coming from sensor noise
- $\triangleright e_{artif}$ is part of the signal coming from other causes
- ► IRM

$$IRM_{c,i} = rac{S_{c,i}}{\sum_{c\prime=1}^{C} S_{c\prime,i}}$$