Physical Chemistry (Chem 132A)

Lecture 19 Wednesday, November 17

Homework #7 is due November 18

Midterm 2

- 1. Second Midterm exam: Wednesday, November 22 second midterm will cover Chapters 1—6, 19
 - there will be a seating chart
 - same procedures as midterm 1 1 page notes allowed bring calculator

Diffusion and Transport

Molecules move randomly in straight paths between collisions.

FLUX

Flux (J) is the quantity of a property passing through a given area in a given time interval divided by the area and the time duration.

Flux of matter---"diffusion" e.g. molecules/m²sec

Flux doesn't have to be matter---e.g. could be energy, etc.

Fick's Law

Empirically the flux is often related to the spatial first derivative of some related property.

$$J(matter) \approx \frac{dN}{dz}$$
 Fick's first law

Concentration Gradient Leads to Diffusion

Direction of Flux??

$$J(matter) = -D\frac{dN}{dz}$$
 D = Diffusion Coeficient

UNITS?

$$J(matter) = -D\frac{dN}{dz}$$

 $\frac{dN}{dz}$

Has units number •m⁻³m⁻¹= number •m⁻⁴

J should have units number•m⁻²sec⁻¹

This means the units of D are: m²sec⁻¹

Thermal Energy Flux

$$J(thermalenergy) = -\kappa \frac{dT}{dz}$$

K Is the coefficient of thermal conductivity

K Units are: $JK^{-1}m^{-1}s^{-1}$ $Js^{-1} = 1$ Watt

K Units are often: WK $^{-1}$ m $^{-1}$

Since units of dT/dz are Km⁻¹ the units of Thermal energy flux are: Wm⁻²s⁻¹

Variation of thermal conductivity for different gases

Table 19A.1* Transport properties of gases at 1 atm

	κ/(mW K ⁻¹ m ⁻¹) 273 K	$\eta/\mu P^{\ddagger}$	
2		273 K	293 K
Ar	16.3	210	223
CO_2	14.5	136	147
He	144.2	187	196
N_2	24.0	166	176

^{*} More values are given in the Resource section.

$$K \approx v_{\text{mean}}$$
 $v_{\text{mean}} = \left(\frac{8RT}{\pi M}\right)^{1/2}$

 $^{^{\}ddagger} 1 \mu P = 10^{-7} \text{ kg m}^{-1} \text{ s}^{-1}$.

FLUX OF MOMENTUM AND VISCOSITY

$$J(xmomentum) = -\eta \frac{dv_x}{dz}$$

 η = coeficient of viscosity

Expressions for Transport Coefficients

$$D = (1/3)\lambda v_{mean}$$
 Diffusion coefficient

$$K = (1/3)vv_{mean} \lambda Nk$$
 Thermal conductivity

$$\eta = (1/3)v_{\text{mean}} \lambda mN$$
 Viscosity

These expressions provide reasonable approximations for the transport coefficients.

Ion Mobilities

Text: Chapter 19B

S = uE E = applied field

u is the mobility

Table 19B.2* Ionic mobilities in water at 298 K, $u/(10^{-8} \,\mathrm{m}^2 \,\mathrm{s}^{-1} \,\mathrm{V}^{-1})$

$u/(10^{-8}\mathrm{m}^2\mathrm{s}^{-1}\mathrm{V}^{-1})$			$u/(10^{-8}\mathrm{m}^2\mathrm{s}^{-1}\mathrm{V}^{-1})$
H ⁺	36.23	OH-	20.64
Na^+	5.19	Cl-	7.91
K^{+}	7.62	Br^-	8.09
Zn^{2+}	5.47	SO_4^{2-}	8.29

Diffusion

Driving force for diffusion is a concentration gradient

The concentration gradient causes a spatial dependence to the chemical potential (µ)

Define a "Force"

$$F = -\left(\frac{\partial \mu}{\partial x}\right)_{T,p}$$

$$F = -RT \left(\frac{\partial \ln a}{\partial x} \right)_{T,p} = -RT \left(\frac{\partial \ln c}{\partial x} \right)_{T,p} = -\frac{RT}{c} \left(\frac{\partial c}{\partial x} \right)_{T,p}$$

Diffusion Equation

$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial^2 x}$$

Simple diffusion in one dimension with no convection

$$c(x,t) = \frac{n_0}{A(\pi Dt)^{1/2}} e^{\frac{-x^2}{4Dt}}$$

Figure 19C.5 The root-mean-square distance covered by particles with $D=5\times10^{-10}$ m² s⁻¹. Note the great slowness of diffusion.

THE END

SEE YOU MONDAY