

UNIVERSITÉ Grenoble

Biological Sequence Modeling with Convolutional Kernel Networks

Dexiong Chen [†] Laurent Jacob [‡] Julien Mairal [†]

[†]Inria - firstname.lastname@inria.fr

[‡]CNRS - firstname.lastname@univ-lyon1.fr

Overview

Biological sequence modeling as a **supervised learning** problem

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f)$$

- $x_1, \ldots x_n \in \mathcal{X}$ are biological sequences (DNA or proteins).
- Each sequence x_i is associated to some measurement $y_i \in \mathbb{R}$.

Goal: learning a **predictive** and **interpretable** function f.

CNNs and Kernel methods

CNNs [1]:

- $\mathcal{F} = \{f(x) = W_2 \max_i (\text{ReLU}(W_1 x[i:i+k] + b_1)) + b_2 \mid W_1, W_2, b_1, b_2 \}.$
- Yields a non-convex optimization problem in huge dimension.
- Provides good representations via backpropagation in practice.
- Open problems: Interpretation? Robustness?

Kernel Methods:

- \mathcal{F} is a Hilbert space endowed with a Hibertian norm.
- Generic and flexible to type of data.
- Relatively easy to regularize by controlling $||f||_{\mathcal{F}}^2$.
- Lack of scalability.

Our approach [2]: mixing CNNs with kernel methods

- Build deep models (special case of CNNs) that are easy to regularize when **few data** are available.
- No tricks: no dropout, no batch normalization, parameter-free initialization.
- Two ways of learning:
 - Simple unsupervised representation learning algorithm without backpropagation (but high dimensions).
- Supervised learning with back-propagation (low dimensions).
- Leverage interpretation from classical string kernels.

From mismatch kernel to convolutional kernel

String mismatch kernel:

$$K(x, x') = \frac{1}{|x||x'|} \sum_{i=1}^{|x|} \sum_{j=1}^{|x'|} K_0(x[i:i+k], x'[j:j+k])$$

- K_0 equals to 1 if two k-subsequences are identical up to some mismatches otherwise 0.
- K_0 is fixed, thus not data or task-adaptive.
- Lacks scalability and interpretability in terms of motifs.

Convolutional kernel:

- K_0 becomes a Gaussian kernel over one-hot representations of k-subsequences.
- A natural feature map of x is $|x|^{-1} \sum_{j=1}^{|x|} \phi_0(x[j:j+k])$.
- K_0 is differentiable but still fixed, still not data or task-adaptive.
- Still lacks scalability and interpretability.

Software

Our Pytorch code is freely available at https://gitlab.inria.fr/dchen/CKN-seq

Convolutional kernel network

Nyström approximation for CKN

 $\psi_0(x) := K_{ZZ}^{-\frac{1}{2}} K_Z(x),$

where $[K_{ZZ}]_{ij} = K_0(z_i, z_j)$,

 Regular Nyström approximation: randomly choose and fix p samples $Z:=(z_1\ldots z_p)$, then

$$K_0(x, x') \simeq \langle \psi_0(x), \psi_0(x') \rangle,$$

and solve the linear problem.

 Convolutional kernel is differentiable, we can optimize over the filters Z

$$\min_{\beta \in \mathbb{R}^q, \mathbf{Z}} \sum_{i=1}^n L(\beta^\top \psi(x_i), y_i) + \lambda \|\beta\|^2,$$

$$\psi(x) := |x|^{-1} \sum_{j=1}^{|x|} \psi_0(x[j:j+k]).$$

CKN variants

Unsupervised CKN (uCKN)

- Learns z_j with K-means over subsampled k-subsequences.
- Outperforms supervised CKN on some small-scale tasks.

Data augmented CKN (CKN+)

• Define a perturbation distribution Δ of sequences (e.g. adding SNPs), then augment each sequence x by $x + \delta$ with $\delta \sim \Delta$.

Hybrid CKN between uCKN and CKN+ (CKN++)

 Data augmented version, but we use the prediction of unsupervised CKN instead of y_i for $x_i + \delta, \delta \neq 0$.

Applications

DNA Transcription factor binding site prediction:

Protein homology detection on SCOP1.67

Method	auROC	auROC50
Mismatch LA-kernel	0.878 0.919	0.543 0.686
LSTM	0.942	0.773
CNN (128 filters) CKN-seq (128 filters) CKN-seq (128 filters) + BLOSUM62 unsup CKN-seq (32768 filters)	0.960 0.965 0.973 0.958	0.799 0.819 0.835 0.806
Profile-based methods Mismatch-profile on SCOP 1.53 SW-PSSM on SCOP 1.53 CKN-seq (128 filters) + profile unsup CKN-seq (4096 filters) + profile	0.980 0.982 0.986 0.968	0.794 0.904 0.906 0.863

Reference

- [1] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 2015.
- [2] D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel networks. Bioinformatics, February 2019.