

SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41477-018-0189-7

In the format provided by the authors and unedited.

Previsual symptoms of *Xylella fastidiosa* infection revealed in spectral plant-trait alterations

P. J. Zarco-Tejada¹*, C. Camino², P. S. A. Beck¹, R. Calderon², A. Hornero^{2,3}, R. Hernández-Clemente³, T. Kattenborn⁴, M. Montes-Borrego², L. Susca⁵, M. Morelli⁶, V. Gonzalez-Dugo², P. R. J. North³, B. B. Landa¹², D. Boscia⁶, M. Saponari⁶ and J. A. Navas-Cortes²

¹European Commission, Joint Research Centre, Directorate D-Sustainable Resources, Ispra, Italy. ²Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain. ³Department of Geography, Swansea University, Swansea, UK. ⁴Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany. ⁵Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti dell'Università di Bari, Bari, Italy. ⁶CNR, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy. *e-mail: pablo.zarco@ec.europa.eu; pablo.zarco@gmail.com

Supplementary Figures and Tables

Supplementary Fig. 1. Boxplots for each of the inverted plant traits from the hyperspectral imagery using radiative transfer models, as a function of *Xylella fastidiosa* disease severity. Notches were added to each box to highlight significant differences among a trait expression and Xf severity levels. In the box plots, the black line within the box represents the median, and the top and bottom of the box are the 75^{th} and 25^{th} quartiles, respectively. The whiskers represent the upper and lower limits based on the difference with the interquartile ranges (Q±1.5xIQR). The outliers, represented as circles, correspond to the values out of the upper and lower limits. The number of tree spectra used for the inversion of the plant traits was n=1,442 spectra (DS=0), n=762 spectra (DS=1), n=802 spectra (DS=2), n=250 spectra (DS=3), and n=72 spectra (DS=4).

Supplementary Fig. 2. Relationship between fluorescence quantum efficiency (Fi) calculated with FluorFLIGHT at 1 nm (a), and 6.5 nm (b) vs. solar-induced chlorophyll fluorescence (SIF) (n=300 simulations).

Supplementary Fig. 3. Leaf-level data measured in the field on asymptomatic and *Xylella fastidiosa* (*Xf*)-symptomatic plant material for chlorophyll a+b (C_{a+b}), flavonols, NBI, and NPQI indices as a function of severity levels (0 to 4). The sample size for C_{a+b} , flavonols and NBI measured using the Dualex sensor was n=1,473 leaf measurements. The sample size for the NPQI index calculated from the leaf reflectance measurements using the PolyPen RP400 was n=199 leaf spectra. The averages for each severity level were compared by one-sided Tukey's HSD test at 5%. Severity levels sharing the same letter were not significantly different in Tukey's HSD post-hoc test with a *p-value*<0.05. In the box plots, the black line within the box is the median, the top and bottom of the box is the 75^{th} and 25^{th} quartile, respectively. The whiskers represent the upper and lower limits based on the difference with the interquartile ranges ($Q\pm1.5xIQR$). The outliers, represented as circles, correspond to values out of the upper and lower limits. The average values are shown with a red point over the box plot.

Supplementary Table 1. Narrow-band hyperspectral indices (NBHI) derived from hyperspectral and thermal data included in this study and their formulations¹³.

Hyperspectral indices	Equation	Reference
Structural indices		
Normalized Difference Veg. Index	$NDVI = (R_{800} - R_{670})/(R_{800} + R_{670})$	Rouse <i>et al.</i> (1974)
Renormalized Difference Veg. Index	$RDVI = (R_{800} - R_{670}) / \sqrt{(R_{800} + R_{670})}$	Roujean & Breon (1995)
Optimized Soil-Adjusted Veg. Index	$OSAVI = ((1 + 0.16) \cdot (R_{800} - R_{670}) / (R_{800} + R_{670}) + 0.16))$	Rondeaux et al. (1996)
Modified Soil-Adjusted Vegetation Index	$MSAVI = \frac{2 \cdot R_{800} + 1 - \sqrt{(2 \cdot R_{800} + 1)^2 - 8(R_{800} - R_{670})}}{2}$	Qi et al. (1994)
Triangular Vegetation Index	$TVI = 0.5 \cdot [120 \cdot (R_{750} - R_{550}) - 200 \cdot (R_{670} - R_{550})]$	Broge & Leblanc (2001)
Modified Triangular Veg. Index 1	$MTVI1 = 1.2[1.2(R_{800} - R_{550}) - 2.5(R_{670} - R_{550})]$	Haboudane et al. (2004)
Modified Triangular Veg. Index 2	$= \frac{MTVI2}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} - 5\sqrt{R_{670}}) - 0.5}}$	Haboudane et al. (2004)
Modified Chlorophyll Abs. Index	$MCARI = [(R_{700} - R_{670}) - 0.2(R_{700} - R_{550})] \cdot (R_{700}/R_{670})$	Haboudane et al. (2004)
Modified Chlorophyll Abs. Index 1	$\begin{aligned} \textit{MCARI1} &= 1.2[2.5(R_{800} - R_{670}) \\ &- 1.3(R_{800} - R_{550})] \end{aligned}$	Haboudane et al. (2004)
Modified Chlorophyll Abs. Index 2	$ = \frac{1.5[2.5(R_{800} - R_{670}) - 1.3(R_{800} - R_{550})]}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} - 5\sqrt{R_{670}}) - 0.5}} $	Haboudane et al. (2004)
Simple Ratio	•	Jordan (1969)
Modified Simple Ratio	$SR = R_{800}/R_{670}$ $MSR = \frac{R_{800}/R_{670} - 1}{(R_{800}/R_{670})^{0.5} + 1}$	Chen (1996)
Enhanced Vegetation Index	$EVI = 2.5 \cdot (R_{800} - R_{670}) / (R_{800} + 6 \cdot R_{670} - 7.5 \cdot R_{800})$	Liu & Huete (1995)
	+1)	
_		
	$VOG1 = R_{740}/R_{720}$	Vogelmann et al. (1993)
	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$	Vogelmann et al. (1993)
ogelmann indices	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$	Vogelmann <i>et al.</i> (1993) Vogelmann <i>et al.</i> (1993)
ogelmann indices	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$	Vogelmann <i>et al</i> . (1993) Vogelmann <i>et al</i> . (1993) Gitelson & Merzlyak (1997)
/ogelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$	Vogelmann <i>et al.</i> (1993) Vogelmann <i>et al.</i> (1993)
Yogelmann indices Gitelson & Merzlyak indices Gransformed Chlorophyll Absorption in Geflectance Index Gransformed Chlorophyll Absorption in Geflectance Index/ Optimized Soil-	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002)
Vogelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil- Adjusted Vegetation Index	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI}$ $= \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002)
Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Reflectance Index/ Chlorophyll Index Chlorophyll Index Red Edge	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI}$ $= \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Haboudane et al. (2002)
Togelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Reflectance Vegetation Index Chlorophyll Index Red Edge Simple Ratio Pigment Index	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI}$ $= \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1992)
Vogelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Reflectance Index/ Optimized Soil-Reflectance Vegetation Index Chlorophyll Index Red Edge Simple Ratio Pigment Index Normalized Phaeophytinization Index	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI} = \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$ $SRPI = R_{430}/R_{680}$ $NPQI = (R_{415} - R_{435})/(R_{415} + R_{435})$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1992) Peñuelas et al., (1995)
Vogelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Adjusted Vegetation Index Chlorophyll Index Red Edge Simple Ratio Pigment Index Normalized Phaeophytinization Index	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI} = \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$ $SRPI = R_{430}/R_{680}$ $NPQI = (R_{415} - R_{435})/(R_{415} + R_{435})$ $NPCI = (R_{680} - R_{430})/(R_{680} + R_{430})$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1995) Peñuelas et al., (1995)
Vogelmann indices Gitelson & Merzlyak indices Fransformed Chlorophyll Absorption in Reflectance Index Fransformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Reflectance Index/ Optimized Soil-Reflectance Index Red Edge Chlorophyll Index Red Edge Simple Ratio Pigment Index Normalized Phaeophytinization Index	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI} = \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$ $SRPI = R_{430}/R_{680}$ $NPQI = (R_{415} - R_{435})/(R_{415} + R_{435})$ $NPCI = (R_{680} - R_{430})/(R_{680} + R_{430})$ $CTRI1 = R_{695}/R_{420}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1992) Peñuelas et al., (1995) Peñuelas et al. (1995) Carter (1994)
Vogelmann indices Gitelson & Merzlyak indices Transformed Chlorophyll Absorption in Reflectance Index Transformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil- Adjusted Vegetation Index Chlorophyll Index Red Edge Simple Ratio Pigment Index Normalized Phaeophytinization Index Carter indices	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI} = \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$ $SRPI = R_{430}/R_{680}$ $NPQI = (R_{415} - R_{435})/(R_{415} + R_{435})$ $NPCI = (R_{680} - R_{430})/(R_{680} + R_{430})$ $CTRI1 = R_{695}/R_{420}$ $CAR = R_{695}/R_{760}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1992) Peñuelas et al., (1995) Carter (1994) Carter et al. (1996)
Pigment indices Vogelmann indices Gitelson & Merzlyak indices Transformed Chlorophyll Absorption in Reflectance Index Transformed Chlorophyll Absorption in Reflectance Index/ Optimized Soil-Adjusted Vegetation Index Chlorophyll Index Red Edge Simple Ratio Pigment Index Normalized Phaeophytinization Index Carter indices Reflectance band ratio indices	$VOG1 = R_{740}/R_{720}$ $VOG2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $VOG3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $GM1 = R_{750}/R_{550}$ $GM2 = R_{750}/R_{700}$ $TCARI = 3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})$ $\frac{TCARI}{OSAVI} = \frac{3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})}{((1 + 0.16) \cdot (R_{800} - R_{670})/(R_{800} + R_{670} + 0.16)}$ $CI = R_{750}/R_{710}$ $SRPI = R_{430}/R_{680}$ $NPQI = (R_{415} - R_{435})/(R_{415} + R_{435})$ $NPCI = (R_{680} - R_{430})/(R_{680} + R_{430})$ $CTRI1 = R_{695}/R_{420}$	Vogelmann et al. (1993) Vogelmann et al. (1993) Gitelson & Merzlyak (1997) Gitelson & Merzlyak (1997) Haboudane et al. (2002) Haboudane et al. (2002) Peñuelas et al., (1995) Barnes et al. (1992) Peñuelas et al., (1995) Peñuelas et al. (1995) Carter (1994)

Carotenoid Reflectance Indices	$\begin{split} CRI_{550} &= (1/R_{510}) - (1/R_{550}) \\ CRI_{700} &= (1/R_{510}) - (1/R_{700}) \\ CRI_{550,515} &= (1/R_{515}) - (1/R_{550}) \\ CRI_{700,515} &= (1/R_{515}) - (1/R_{700}) \\ RNIR \cdot CRI_{550} &= (1/R_{510}) - (1/R_{550}) \cdot R_{770} \end{split}$	Gitelson et al. (2003; 2006) Gitelson et al. (2003; 2006) Gitelson et al. (2006) Gitelson et al. (2006) Gitelson et al. (2003, 2006)
	DNUD CDI (A/D) (A/D) D	Gitelson <i>et al.</i> (2003, 2006)
Plant Senescencing Reflectance Index	RNIR · $CRI_{700} = (1/R_{510}) - (1/R_{700}) \cdot R_{770}$ PSRI = $(R_{680} - R_{500})/R_{750}$	Merzlyak et al. (1999)
Pigment Specific Simple Ratio Chlorophyll a	$PSSRa = R_{800}/R_{675}$	Blackburn (1998)
Pigment Spec. Simple Ratio Chl. b Pigment Specific Simple Ratio Carot.	$PSSRb = R_{800}/R_{650}$ $PSRRc = R_{800}/R_{500}$	Blackburn (1998) Blackburn (1998)
Pigment Specific Normalized Difference	$PSNDc = (R_{800} - R_{470})/(R_{800} + R_{470})$	Blackburn (1998)
Xanthophyll indices		
Photochemical Refl. Index (570) Photochemical Refl. Index (515) Photochemical Refl. Index (512) Photochemical Refl. Index (600) Photochemical Refl. Index (670) Photochemical Refl. Index (670 and 570)	$\begin{split} PRI_{570} &= (R_{570} - R_{531})/(R_{570} + R_{531}) \\ PRI_{515} &= (R_{515} - R_{531})/(R_{515} + R_{531}) \\ PRI_{m1} &= (R_{512} - R_{531})/(R_{512} + R_{531}) \\ PRI_{m2} &= (R_{600} - R_{531})/(R_{600} + R_{531}) \\ PRI_{m3} &= (R_{670} - R_{531})/(R_{670} + R_{531}) \\ PRI_{m4} &= (R_{570} - R_{531} - R_{670})/(R_{570} + R_{531} + R_{670}) \end{split}$	Gamon et al. (1992) Hernández-Clemente et al. (2011) Hernández-Clemente et al. (2011) Gamon et al. (1992) Gamon et al. (1992) Hernández-Clemente et al. (2011)
Normalized Photoch. Refl. Index	$PRI_n = PRI_{570} / [RDVI \cdot (R_{700} / R_{670})]$	Zarco-Tejada et al. (2013)
Carotenoid/Chlorophyll Ratio Index	$PRI \cdot CI = (R_{570} - R_{530}) / (R_{570} + R_{530}) \cdot ((R_{760} / R_{700}) - 1)$	Garrity et al. (2011)
R/G/B indices		
Redness Index	$R = R_{700}/R_{670}$	Gitelson et al. (2000)
Greenness Index	$G = R_{570} / R_{670}$	Calderon et al. (2013)
Blue Index	$B = R_{450} / R_{490}$	Calderon <i>et al.</i> (2013)
Blue/green indices	$BGI1 = R_{400}/R_{550}$	Zarco-Tejada <i>et al</i> . (2005)
Diversity of the disease	$BGI2 = R_{450}/R_{550}$	Zarco-Tejada <i>et al.</i> (2005)
Blue/red indices	$BRI1 = R_{400}/R_{690}$	Zarco-Tejada <i>et al.</i> (2012)
DF1	$BRI2 = R_{450}/R_{690}$	Zarco-Tejada <i>et al</i> . (2012)
BF1	$BF1 = R_{400}/R_{410}$	This study
BF2	$BF2 = R_{400}/R_{420}$	This study This study
BF3	$BF3 = R_{400}/R_{430}$	•
BF4	$BF4 = R_{400}/R_{440}$	This study
BF5	$BF5 = R_{400}/R_{450}$	This study
Red/green indices	$RGI = R_{690}/R_{550}$	Zarco-Tejada <i>et al.</i> (2005)
Ratio Analysis of Reflectance Spectra Lichtenthaler Index	$RARS = R_{746}/R_{513}$	Chappelle et al. (1992)
Lichtenthaler maex	$LIC1 = (R_{800} - R_{680})/(R_{800} + R_{680})]$	Lichtenhaler et al. (1996)
	$LIC2 = R_{440}/R_{690}$ $LIC3 = R_{440}/R_{740}$	Lichtenhaler <i>et al</i> . (1996) Lichtenhaler <i>et al</i> . (1996)
Chlorophyll flygrosomes		(,
Chlorophyll fluorescence	CHD = (D D) / D ²	Zamas Tainda et al (2000)
Reflectance Curvature Index SIF	$CUR = (R_{675} \cdot R_{690}) / R_{683}^2$ FLD2(750; 762)	Zarco-Tejada <i>et al</i> . (2000) Plascyk (1975)
Plant disease index		
	(D D) / 1	
Healthy-index	$HI = \frac{(R_{534} - R_{698})/}{R_{534} + R_{698}} - \frac{1}{2} \cdot R_{704}$	Mahlein et al. (2013)
Canopy temperature	$HI = \frac{(R_{534} - R_{698})}{R_{534} + R_{698}} - \frac{1}{2} \cdot R_{704}$	Mahlein <i>et al</i> . (2013)

Supplementary Table 2. Values and ranges used for the model inversion and look-uptable (LUT) generation.

Parameter	Abbreviation	Value / range
Chlorophyll content [µg/cm²]	C_{a+b}	5–70
Carotenoid content [µg/cm²]	C_{x+c}	3–15
Anthocyanin content [µg/cm²]	A_{nth}	0.1–6.0
Dry matter content [g/cm²]	$C_{\rm m}$	0.0022
Water content [g/cm²]	$C_{\rm w}$	0.005
Mesophyll struct. coef.	N	1.7–2.4
Leaf Area Index [m²/m²]	LAI	1–5
Average leaf angle [deg.]	Lidf _a	30–70
Hot spot parameter	Hot	0.1
Soil reflectance	Rsoil	PROSAIL dry soil spectra
Observer angle [deg.]	Tto	0
Sun zenith angle [deg.]	Tts	66.9
Relative azimuth angle [deg.]	Psi	0

Supplementary Table 3. Nominal values and range of variation used in FluorFLIGHT simulation analysis based on field data measurements.

Parameter	Abbreviation	Nominal values	Range
FLUSPECT			
Mesophyll structure	N	2.9	_
Chlorophyll content	$C_{a+b} (\mu g/cm^2)$	35	5-80
Carotenoid content	$C_{x+c} (\mu g/cm^2)$	8	5–12
Water content	$C_{\rm w}$ (mg/cm ²)	0.013	-
Dry matter	$C_{dm} (mg/cm^2)$	0.024	-
Senescent material	$C_{\rm s}$	0	0
Fluor. quantum efficiency	F_{i}	0.04	0-0.1
FLIGHT			
Solar zenith, view zenith (°)	$\theta_{\rm s}, \theta_{ m v}$	31.3, 0.0	-
Solar and view azimuth (°)	$\Phi_{\rm s},\Phi_{\rm v}$	30.44, 0.0	-
Total LAI		3.15	0–3
		0.015, 0.045, 0.074,	
Leaf angle distribution	LAD[1-9]	0.1, 0.123, 0.143,	
-		0.158, 0.168, 0.174	
Fractional cover (%)	FC	20	
Crowns shape	CSh	ellipsoid	
Crown radius and centre to top	E E ()	20.15	
distance	$E_{xy}, E_{z} (m)$	2.0, 1.5	
Tree height	Hmin, Hmax	4, 5	
Soil reflectance	ρ _{λsoil}	ASD measurements	
Soil roughness	$\Theta_{ m soil}$	0	
Solar irradiance	$\rho_{\lambda s}$	ASD measurements	

Supplementary Table 4. Accuracy of the support vector machine (SVM), neural network (NN) and linear discriminant analysis (LDA) to distinguish among disease severity (DS) classes of olive quick decline syndrome caused by *Xylella fastidiosa* for assessing the separation of asymptomatic (AS) vs. symptomatic trees (AF; affected) using flux-based traits fluorescence and temperature (PSFT), pigment- and structure-based Functional Traits (PS) and RGB-NIR indices (SVI) plant trait pools.

Asymp Xf-syı		I demneratiire_nased Riinctional Traits					Pigment- and Structure-based Functional Traits (PS)						Standard RGB-NIR bandset (SVI)						
		PREC	ISION	REC	ALL	OVER	ALL	PREC	ISION	REC	ALL	OVERALL		PRECISION		RECALL		OVERALL	
		P (%)	P (%)	R (%)	R (%)	OA	κ	P (%)	P (%)	R (%)	R (%)	OA	κ	P (%)	P (%)	R (%)	R (%)	OA	κ
		(AS)	(AF)	(AS)	(AF)	(%)		(AS)	(AF)	(AS)	(AF)	(%)		(AS)	(AF)	(AS)	(AF)	(%)	
SVM	TR	90.19	72.58	80.35	85.62	82.34	0.64	87.7	68.88	77.79	81.83	79.31	0.57	75.23	56.69	68.34	64.81	66.96	0.32
SVIVI	TS	91.36	68.35	77.73	86.75	80.95	0.61	87.74	67.34	76.46	81.97	78.51	0.56	75.77	52.86	66.02	64.34	65.4	0.29
NN	TR	79	65.14	73.8	71.39	72.82	0.45	80.16	56.21	69.47	69.51	69.48	0.37	74.36	52.34	65.98	62.16	64.54	0.27
ININ	TS	78.55	62.96	71.94	70.83	71.49	0.42	79.67	55.22	68.26	69.2	68.6	0.36	72.7	49.49	63.5	60	62.2	0.23
LDA	TR	81.36	56.18	69.77	70.8	70.13	0.38	77.48	52.91	67.16	65.4	66.53	0.31	73.66	49.68	64.53	60.28	62.97	0.24
LDA	TS	81.62	51.18	66.89	69.72	67.84	0.34	75.49	46.13	62.88	60.89	62.2	0.22	71.59	47.14	62.08	57.85	60.52	0.19

SVM: Support vector machine; NN: Neural network, Models: LDA: Linear discriminant analysis.

P(AS): Precision asymptomatic (0); P(AF): Precision all affected (AF; DS=1,2,3,4); R(AS): Recall asymptomatic (0); R(AF): Recall all affected (AF; DS=1,2,3,4); OA: Overall accuracy; κ=kappa coefficient; TR: Training (80% dataset); TS: Test (20% dataset).

Number of trees for each sample: Case A: AS=4049, AF=3266.

Supplementary Table 5. Accuracy of the support vector machine (SVM), neural network (NN) and linear discriminant analysis (LDA) to distinguish among disease severity (DS) classes of olive quick decline syndrome caused by *Xylella fastidiosa* for assessing the separation of Initial *Xf*-symptoms (IN) vs. advanced *Xf*-symptoms trees (AD; advanced symptoms) using flux-based traits fluorescence and temperature (PSFT), pigment- and structure-based Functional Traits (PS) and RGB-NIR indices (SVI) plant trait pools.

Initial advan <i>Xf-</i> syn	ced	`	-		d Functio	scence an onal Trait		Pigment- and Structure-based Functional Traits (PS)							Standard RGB-NIR bandset (SVI)					
		PREC	ISION	REC	ALL	OVER	ALL	PREC	ISION	RECALL		OVERALL		PRECISION		RECALL		OVER	ALL	
		P (%)	P (%)	R (%)	R (%)	OA	κ	P (%)	P (%)	R (%)	R (%)	OA	κ	P (%)	P (%)	R (%)	R (%)	OA	к	
		(IN)	(AD)	(IN)	(AD)	(%)		(IN)	(AD)	(IN)	(AD)	(%)		(IN)	(AD)	(IN)	(AD)	(%)		
CNIM	TR	71.45	76.79	70.86	77.31	74.44	0.48	71.07	75.83	69.89	76.85	73.73	0.47	46.18	77.82	62.18	64.68	63.86	0.25	
SVM	TS	69.78	75.95	71.85	74.07	73.06	0.46	71.22	72.78	69.72	74.19	72.05	0.44	46.04	75.95	62.75	61.54	61.95	0.22	
NINI	TR	64.66	74.26	66.48	72.68	70.02	0.39	58.09	75.59	65.27	69.55	67.87	0.34	46.26	72.75	57.28	63.16	61.06	0.19	
NN	TS	65.47	72.78	67.91	70.55	69.36	0.38	56.12	72.78	64.46	65.34	64.98	0.29	44.6	70.89	57.41	59.26	58.59	0.16	
IDA	TR	70	67.63	63.07	74.06	68.68	0.37	66.11	65.28	60.06	70.92	65.64	0.31	58.85	62.87	55.59	65.93	61.1	0.22	
LDA	TS	70.5	68.99	66.67	72.67	69.7	0.39	67.63	63.92	62.25	69.18	65.66	0.31	55.4	63.29	57.04	61.73	59.6	0.19	

SVM: Support vector machine; NN: Neural network, Models: LDA: Linear discriminant analysis.

P(IN): Precision Initial *Xf*-symptoms (1); P(AD): Precision advanced *Xf*-symptoms (DS=2,3,4); R(IN): Recall Initial *Xf*-symptoms (1); R(AD): Recall advanced *Xf*-symptoms (DS=2,3,4);

OA: Overall accuracy; κ=kappa coefficient; TR: Training (80% dataset); TS: Test (20% dataset).

Number of trees for each sample: Case A: IN=1449, AD=1817.

Supplementary Table 6. Results of the field assessment (Visual) and the remote sensing physiological-traits model (SVM-PSFT) for the detection of non-infected (qPCR=0) and *Xylella fastidiosa*-infected trees (qPCR=1). The table reports the number and percentage of trees correctly classified against the infection status determined by qPCR. The *Xf*-infected trees were split between infected visually asymptomatic (qPCR=1; Disease Severity, DS=0) and infected visually symptomatic trees (qPCR=1; DS≥1). The qPCR dataset was collected from samples across eight orchards thorough the study sites (n=100).

	Xf-non-infected trees (qPCR=0)	Xf-infected trees (qPCR=1)									
	n=42		n=58								
		All	Asymptomatic	Symptomatic							
		(DS≥0)	(DS=0)	(DS≥1)							
		n=58									
Visual assessment	33 (78.6%)	44 (75.9%)	0 (0%)	44 (100%)							
Remote Sensing SVM-PSFT model	39 (92.9%)	57 (98.3%) 13 (92.9%) 44 (100%)									

Supplementary Table 7. Revisit study comparing the classification accuracy of true negative (TN) and false positive (FP) trees affected by olive quick decline syndrome caused by *Xylella fastidiosa* based on remote sensing physiological traits on four visual assessment dates using the Support vector machine (SVM) model.

	TEMPORAL REVISIT ANALYSIS												
	June (flight-based classification)	ight-based October 2016 (field revisit)			2017 evisit)	June (field r		July 2017 (field revisit)					
	Asymptomatic	Asymptomatic	Symptomatic	Asymptomatic	Symptomatic	Asymptomatic	Symptomatic	Asymptomatic	Symptomatic				
TRUE	818	501	317	422	79	314	108	179	135				
NEGATIVES (TN)	82.13%	61.25%	38.75%	84.23%	15.77%	74.41%	25.59%	57.01%	42.99%				
FALSE	178	70	108	36	34	21	15	7	14				
POSITIVES (FP)	17.87%	39.33%	60.67%	51.43%	48.57%	58.33%	41.67%	33.33%	66.67%				