

72302 Access DB# _____

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Krishnan Examiner #: 79271 Date: 8/1/02
 Art Unit: 1623 Phone Number 305-4837 Serial Number: 09890348
 Mail Box and Bldg/Rm Location: 8.DD8 Results Format Preferred (circle): PAPER DISK E-MAIL
8B19

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Method of producing cellulose sulfacetate derivatives and products and mixtures thereof.

Title of Invention: derivatives and products and mixtures thereof.

Inventors (please provide full names): Gaelle Chauvelon; Luc Saulnier;
Alain Buleon; Jean-Francois Thibault

Earliest Priority Filing Date: _____

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please search claims 1-22.

Point of Contact:
 Moni Smith
 Technical Information Specialist
 CM1 6A01
 Tel 208 3278

BEST AVAILABLE COPY

 STAFF USE ONLY

Searcher: M. Smith
 Searcher Phone #: _____
 Searcher Location: _____
 Date Searcher Picked Up: 8/2/02
 Date Completed: 8/20/02
 Searcher Prep & Review Time: 30
 Clerical Prep Time: _____
 Online Time: 35

Type of Search	Vendors and cost where applicable
NA Sequence (#)	<input checked="" type="radio"/> STN
AA Sequence (#)	<input checked="" type="radio"/> Dialog
Structure (#)	Questel/Orbit _____
Bibliographic	Dr.Link _____
Litigation	Lexis/Nexis _____
Fulltext	Sequence Systems _____
Patent Family	WWW/Internet _____
Other	Other (specify) _____

=> fil hcaplu
FILE 'HCAPLUS' ENTERED AT 10:08:08 ON 20 AUG 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 20 Aug 2002 VOL 137 ISS 8
FILE LAST UPDATED: 19 Aug 2002 (20020819/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> d stat que 16 1-15
'1-15' IS NOT VALID HERE
For an explanation, enter "HELP DISPLAY QUERY".

=> d stat que 16
L1 2 SEA FILE=REGISTRY CELLULOSE(L) SULFOACET?
L6 15 SEA FILE=HCAPLUS L1 OR CELLULOSESULFOACET? OR CELLULOSE(W) SULFO ACET?

=> d ibib abs hitrn 16 1-15

L6 ANSWER 1 OF 15 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:491761 HCAPLUS
TITLE: Method for production of water-soluble
cellulose sulfoacetate salt
INVENTOR(S): Shishova, I. I.; Pyatakina, N. K.; Bon, A. I.;
Zhil'tsova, I. A.; Solodikhin, N. I.; Gorlova, G. L.
PATENT ASSIGNEE(S): Russia
SOURCE: Russ., No pp. given
CODEN: RUXXE7
DOCUMENT TYPE: Patent
LANGUAGE: Russian
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2171812	C2	20010810	RU 1998-120318	19981112

AB FIELD: cellulose derivs. SUBSTANCE: after termination of synthesis, product is isolated from reaction mixt. by filtration followed by washing with water under dialysis filtration conditions with repetition factor 7-8 on polymer membranes characterizing by selectivity 97-99% for proteins with mol. wt. 20000. Process is conducted at 20-25 C and pressure from 0.1 to 0.7 MPa. Product is then concd. to desired content of water-sol. **cellulose sulfoacetate.** EFFECT: improved product purity. 2 cl, 2 dwg, 1 tbl, 3 ex.

L6 ANSWER 2 OF 15 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:16077 HCPLUS
 DOCUMENT NUMBER: 134:223618
 TITLE: Dynamic membranes based on poly(N-isopropylacrylamide-co-heptadecyl vinyl ketone): preparation and properties
 AUTHOR(S): Savitskaya, T. A.; Epshtein, O. L.; Kulinkovich, O. G.; Tret'yakova, S. M.
 CORPORATE SOURCE: Department of Chemistry, Belarus State University, Minsk, 220050, Belarus
 SOURCE: Colloid Journal (Translation of Kolloidnyi Zhurnal) (2000), 62(6), 746-750
 CODEN: CJRSEQ; ISSN: 1061-933X
 PUBLISHER: MAIK Nauka/Interperiodica Publishing
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Dynamic membranes were prep'd. from poly(N-isopropylacrylamide-co-heptadecyl vinyl ketone) having a lower crit. soln. temp. in an aq. soln. and being a micelle-forming surfactant. The dependence of the crit. concn. of the copolymer micellization on temp. was shown to have an extreme character, with a min. at the lower crit. soln. temp. of the copolymer. The dynamic membranes are formed on both the hydrophilic (cellulose) and hydrophobic (polyacrylonitrile) supports. For the penetrants studied, it was found that the dynamic membrane formed on the hydrophobic support favors the rejection of a PEG6000, while that formed on the hydrophilic support rejects more effectively albumin and sodium **cellulose sulfoacetate.** We failed to realize a completely reversible thermal control of transport properties of the dynamic membranes obtained, while it was readily accomplished for the membranes obtained by grafting N-isopropylamide onto a cellulose matrix.

IT 145268-50-4D, Sodium **cellulose sulfoacetate**, colored reaction products with (2,5-Dinitrophenyl)hydrazine
 RL: NUU (Other use, unclassified); USES (Uses)
 (rejection of; prepn. and properties of dynamic membranes based on poly(N-isopropylacrylamide-co-heptadecyl vinyl ketone))

REFERENCE COUNT: 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 3 OF 15 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2000:535182 HCPLUS
 DOCUMENT NUMBER: 133:137001
 TITLE: Method for producing **cellulose**

sulfoacetate derivatives and products and mixtures thereof

INVENTOR(S): Chauvelon, Gaelle; Saulnier, Luc; Buleon, Alain; Thibault, Jean-Francois

PATENT ASSIGNEE(S): Institut National de la Recherche Agronomique (INRA), Fr.

SOURCE: PCT Int. Appl., 26 pp. instant Appn.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000044791	A1	20000803	WO 2000-FR205	20000128
W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM	RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			
FR 2789080	A1	20000804	FR 1999-1049	19990129
FR 2789080	B1	20010420		
EP 1165618	A1	20020102	EP 2000-901672	20000128
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
BR 2000007802	A	20020205	BR 2000-7802	20000128
PRIORITY APPLN. INFO.:			FR 1999-1049	A 19990129
			WO 2000-FR205	W 20000128

AB A method for directly producing a mixt. of cellulose sulfoacetate derivs. by esterification of cellulosic material, is characterized in that it comprises the following steps: i) the cellulosic material is suspended in a glacial acetic acid soln. and the excess acetic acid is eliminated, ii) the cellulosic acid that is swollen with acetic acid is suspended in a sulfuric acid soln. in glacial acetic acid, and iii) the cellulose material is made to react by adding acetic anhydride. This process provides products with controlled acetylation degree, sulfation 0.2-0.6, controlled d.p., good solv. in polar solvents, good rheol. properties., and retention of water in presence of salt.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 4 OF 15 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1993:41009 HCAPLUS
 DOCUMENT NUMBER: 118:41009
 TITLE: Fractionation of sodium salt of cellulose sulfoacetate and its molecular characteristics
 AUTHOR(S): Pavlov, G. M.; Grinshpan, D. D.; Pavlov, A. N.; Stepchenkova, T. A.; Makarevich, S. E.
 CORPORATE SOURCE: St.-Petersburg. Gos. Univ., St. Petersburg, Russia

SOURCE: Khim. Drev. (1992), (4-5), 12-17
CODEN: KHDRDQ; ISSN: 0201-7474

DOCUMENT TYPE: Journal

LANGUAGE: Russian

AB Water-sol. sample of Na cellulose sulfoacetate (I) was fractionated in water-dioxane soln., and the intrinsic viscosity and sedimentation coeffs. of the I fractions were detd. in 0.2 M NaCl. The mol. wts. were calcd. using the hydrodynamic invariant. The Kuhn-Mark-Houwink equations were also detd. for the I fractions. Polydispersity of I was low.

IT 145268-50-4

RL: USES (Uses)
(fractionation and viscosity and polydispersity of)

L6 ANSWER 5 OF 15 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1992:241903 HCAPLUS

DOCUMENT NUMBER: 116:241903

TITLE: Characterization of chloroacetylated/sulfonated cellulose membranes for hemodialysis by spectroscopical methods

AUTHOR(S): Kraemer, S.; Dietel, R.; Haupold, G.; Lukas, J.; Malsch, G.; Paul, D.

CORPORATE SOURCE: Inst. Polym. Chem., Teltow, O-1530, Germany

SOURCE: Acta Polym. (1992), 43(1), 58-60
CODEN: ACPODY; ISSN: 0323-7648

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Surface characterization techniques (ATR-IR, ESCA and SEM-EDX) have been used to obtain information of the surface chem. compn. of modified cellulosic dialysis membranes. Chem. modification of membranes can be defined and controlled correlations between surface chem. and hemocompatibility of membranes can be made.

IT 141532-96-9P

RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. and spectroscopic characterization of, for hemodialysis membranes)

L6 ANSWER 6 OF 15 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1972:528338 HCAPLUS

DOCUMENT NUMBER: 77:128338

TITLE: Synthesis and study of the properties of cellulose sulfoacetates

AUTHOR(S): Mirlas, D. L.

CORPORATE SOURCE: USSR

SOURCE: Tr. Vses. Nauch.-Issled. Inst. Tsellyul.-Bum. Prom. (1971), No. 59, 15-19

CODEN: TNTBAQ

DOCUMENT TYPE: Journal

LANGUAGE: Russian

AB Acetylation of cotton in the presence of H₂SO₄ as the catalyst gave mixed esters: cellulose acetate sulfates (I) [9032-44-4]; I contg. 17.2% of chem. bonded H₂SO₄ was insol. in acetone. The hydrolysis of I with 98-9% AcOH soln., without neutralization of the sulfate groups and of the free (occluded) H₂SO₄, gave I contg. 1.0% chem. bonded H₂SO₄ which was sol. in

acetone and had properties similar to cellulose diacetate used in the textile industry.

L6 ANSWER 7 OF 15 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1949:12204 HCAPLUS
DOCUMENT NUMBER: 43:12204
ORIGINAL REFERENCE NO.: 43:2432e-g
TITLE: Spinning cellulose acetate fibers. XVI. Ion interchange of the **cellulose sulfoacetate**
AUTHOR(S): Araki, Tsunao
SOURCE: (1944), 47, 416-18
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The property of ion interchange of the **cellulose sulfoacetate** gel has been studied. The relation between the interchange velocity and the interchange conditions in the water washing or in the treatment with salts soln. has been tabulated. The condition of ion-interchange equil. has also been examd. The ion interchange is carried out under almost the same condition as that of other materials having the ion-interchange property. But it has been confirmed that the ideal ion-interchange equil. condition is not obtained.

L6 ANSWER 8 OF 15 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1949:12203 HCAPLUS
DOCUMENT NUMBER: 43:12203
ORIGINAL REFERENCE NO.: 43:2432d-e
TITLE: Spinning cellulose acetate fibers. XV. Alkali saponification of the **cellulose sulfoacetate** aqueous solution
AUTHOR(S): Araki, Tsunao
SOURCE: (1944), 47, 414-16
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The homogeneous alk. sapon. reaction velocity of the **cellulose sulfoacetate** aq. soln. has been measured and has been compared with the unhomogeneous alk. sapon. reaction velocity of cellulose acetate. The former is 10 times larger than the latter. This difference in the reaction velocity depends mainly upon the interference of migration of reaction particle and that of diffusion and osmosis of alkali.

L6 ANSWER 9 OF 15 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1949:12202 HCAPLUS
DOCUMENT NUMBER: 43:12202
ORIGINAL REFERENCE NO.: 43:2432c-d
TITLE: Spinning cellulose acetate fibers. XIV. Properties of aqueous solution of **cellulose sulfoacetate**
AUTHOR(S): Araki, Tsunao
SOURCE: (1944), 47, 412-14
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Surface activity and the viscosity of aq. solns. of **cellulose sulfoacetate** have been studied. This aq. soln. shows a remarkable

fall of surface tension though it is not as marked as in the case of methylcellulose and effervesces. The thixotropy phenomenon is observed in the concd. soln.; that is, the concd. soln. is gelatinized by being allowed to stand, and becomes a liquid sol. again with shaking and heating.

L6 ANSWER 10 OF 15 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1949:12198 HCAPLUS
 DOCUMENT NUMBER: 43:12198
 ORIGINAL REFERENCE NO.: 43:2431f-h
 TITLE: Spinning cellulose acetate fibers. X. Measurement of acetic acid content in **cellulose sulfoacetate**
 AUTHOR(S): Araki, Tsunao; Tadenuma, Sueo
 SOURCE: J. Soc. Chem. Ind. Japan (1942) 935-43
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable
 AB The AcOH content of cellulose acetate contg. large amts. of H₂SO₄ was analyzed with an alk.- and an acid-sapon. method, and the results were compared. It was found that the results of the 2 methods agreed when the SO₄ radical was of the Na-salt or Ca-salt type and they differed by the amt. of NaOH required to neutralize SO₄H radical to SO₄Na in case SO₄ radical was of acid type. In all cases the liberation of free acid was observed only to a very slight extent. In general, **cellulose sulfoacetate** is unstable, and in analysis the days which have elapsed after the prepn. must be taken into account. Of the samples, the one that contained the Na-salt type H₂SO₄ was most stable and endured over 10 weeks' preservation, the one that contained the Ca-salt type H₂SO₄ came next in stability, while the one contg. free SO₄H radical was very unstable and decompd. very quickly.

L6 ANSWER 11 OF 15 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1940:46414 HCAPLUS
 DOCUMENT NUMBER: 34:46414
 ORIGINAL REFERENCE NO.: 34:7107c-e
 TITLE: The acetylation of cellulose. I. The acetylation mechanism and the properties of intermediate products
 AUTHOR(S): Araki, Tunao
 SOURCE: J. Soc. Chem. Ind. Japan (1940), 43, Suppl. binding 49-52
 DOCUMENT TYPE: Journal
 LANGUAGE: German
 AB Pretreatment of cotton with H₂O for 0.5 hr. followed by a treatment with 85% AcOH for 0.5 hr. and finally with glacial AcOH has a great effect on the acetylation reaction with regard to the homogeneity and the reaction velocity. Cotton pretreated in this way dissolves within 75 min. while untreated cotton still contains unswollen fibers after 10 hrs.' acetylation. At the beginning of the acetylation, large amts. of H₂SO₄ are taken up by the cellulose with the formation of sulfoacetate. As acetylation proceeds, the sulfonic acid groups are split off again. When 80% H₂SO₄ based on cellulose is used in a mixt. of 120 g. Ac₂O and 80 g. AcOH for 10 g. pretreated cotton at an acetylation temp. of 25.degree., a **cellulose sulfoacetate** completely sol. in H₂O is obtained after 20 min., contg. 33.5% total acid and 22.85% H₂SO₄. This

sulfoacetate (as the Na salt) is ptd. from its aq. soln. with NaCl.

L6 ANSWER 12 OF 15 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1931:34303 HCPLUS
DOCUMENT NUMBER: 25:34303
ORIGINAL REFERENCE NO.: 25:3827b-c
TITLE: Cellulose acetate
AUTHOR(S): Rudy, H.
SOURCE: Kunstseide (1930), 12, 420-2
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Referring to a paper by Roos and Friese (cf. C. A. 24, 1973, 5151), the author points out that Ac₂O and H₂SO₄ react to give AcOSO₃H (I) which is later converted to HO₃SCH₂CO₂H (II). Water decomposes I into AcOH and H₂SO₄, but II is stable toward boiling dil. acids and alkalies. The conversion of I into II can be followed by pptg. the H₂SO₄ with BaCl₂. Curves are given showing the influence of various concns. of AcOH on the formation of II. The possibility of forming cellulose sulfoacetate from cellulose and II is discussed.

L6 ANSWER 13 OF 15 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1931:17914 HCPLUS
DOCUMENT NUMBER: 25:17914
ORIGINAL REFERENCE NO.: 25:1989e
TITLE: Some remarks on acetylcellulose
AUTHOR(S): Ohl, Fritz
SOURCE: Farbe n. Lack (1931) 51, 64
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB A review. To test for the presence of cellulose sulfoacetate O. dyes the sample with a 1% aq. soln. of methylene blue. Particles contg. sulfoacetate are dyed a darker blue than acetate particles.

L6 ANSWER 14 OF 15 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1922:12804 HCPLUS
DOCUMENT NUMBER: 16:12804
ORIGINAL REFERENCE NO.: 16:2221i, 2222a-c
TITLE: Detection and determination of free sulfuric acid and of sulfoacetate in cellulose acetate
AUTHOR(S): Entat, M.; Vulquin, E.
SOURCE: Ann. chim. anal. chim. appl. [2] (1922), (4), 131-5
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Cellulose sulfoacetates are mixed esters, the chem. constitution of which has not yet been definitely established, but of which there seem to be 3 contg. 5, 10 and 25% combined H₂SO₄, resp. They are not plastic and are unstable, decompg. spontaneously with liberation of H₂SO₄ which saponifies the acetate and liberates AcOH. Extn. of the cellulose acetate with water dissolves part of the sulfoesters, but also the alk.-earth sulfates from the wash waters; so that pptn. with BaCl₂ gives unreliable results, both qualitatively and quantitatively. E. and V. obtain the true H₂SO₄ content by electrometric titration with Ba(OH)₂ by means of a rotating H electrode. Eastman, Bayer von Heyden, A. G. F.

A., Verein usines du Rh.acte.one, Dreyfus, and Cl.acte.ement-Rivi`ere cellulose acetates were tested. For free H₂SO₄, 10 g. were digested with 200 cc. of distd. water below 15.degree. for half an hr., filtered, and titrated. None was found in any of the samples. For sulfoacetate, 10 g. were hydrolyzed for 5 hrs. at 125-150.degree. with 50 cc. distd. water, filtered, washed, and titrated. The A. G. F. A. sample was free from sulfoacetate, which was to be expected, as their patent covers the use of Br as catalyst. The other samples yielded 0.0045-0.0327% H₂SO₄. The sulfoacetate present in properly prep'd. cellulose acetate is probably that contg. about 5% H₂SO₄, so that well prep'd. com. cellulose acetates should always contain less than 0.60% of sulfoacetate.

L6 ANSWER 15 OF 15 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1916:7330 HCPLUS

DOCUMENT NUMBER: 10:7330

ORIGINAL REFERENCE NO.: 10:1407g-h

TITLE: Medicinal, cosmetic, or edible salve-like products

INVENTOR(S): Flugger, Reichhold; Lackfabrik, Boecking Stadlauer

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

AT 70772 19151227 AT

AB Aq. alc. soln. of cellulose hydroacetates or **cellulose sulfoacetates** are mixed, preferably with heating, with therapeutically active substances, perfumes, sweetening, or taste correctives, which either possess themselves a solvent power for the particular acetyleneellulose, or dissolve in indifferent solvents or softening agents, or combine therewith during the process of manuf.

show files
 File 155:MEDLINE(R) 1966-2002/Aug W2
 File 34:SciSearch(R) Cited Ref Sci 1990-2002/Aug W3
 (c) 2002 Inst for Sci Info
 File 144:Pascal 1973-2002/Aug W3
 (c) 2002 INIST/CNRS
 File 315:ChemEng & Biotec Abs 1970-2002/Jun
 (c) 2002 DECHEMA
 File 345:Inpadoc/Fam.& Legal Stat 1968-2002/UD=200232
 (c) 2002 EPO
 File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
 (c) 1998 Inst for Sci Info
 File 440:Current Contents Search(R) 1990-2002/Aug 19
 (c) 2002 Inst for Sci Info

?ds

Set	Items	Description
S1	6	CELLULOSE(W) SULFOACET? OR CELLULOSESULFOACET?
S2	3	RD (unique items)

?t2/3 ab/1-3

>>>No matching display code(s) found in file(s): 345

2/AB/1 (Item 1 from file: 34)
 DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
 (c) 2002 Inst for Sci Info. All rts. reserv.

09274221 Genuine Article#: 387JJ Number of References: 16
 Title: Dynamic membranes based on poly(N-isopropylacrylamide-co-heptadecyl vinyl ketone): Preparation and properties (ABSTRACT AVAILABLE)
 Author(s): Savitskaya TA (REPRINT) ; Epshtein OL; Kulinkovich OG;
 Tret'yakova SM
 Corporate Source: Belarussian State Univ,Dept Chem,Ul Leningradskaya
 14/Minsk 220050//Byelarus/ (REPRINT); Belarussian State Univ,Dept
 Chem,Minsk 220050//Byelarus/
 Journal: COLLOID JOURNAL, 2000, V62, N6 (NOV-DEC), P746-750
 ISSN: 1061-933X Publication date: 20001100
 Publisher: MAIK NAUKA/INTERPERIODICA, C/O KLUWER ACADEMIC-PLENUM
 PUBLISHERS, 233 SPRING ST, NEW YORK, NY 10013-1578 USA
 Language: English Document Type: ARTICLE
 Abstract: Dynamic membranes were prepared from
 poly(N-isopropylacrylamide-co-heptadecyl vinyl ketone) having a lower
 critical solution temperature in an aqueous solution and being a
 micelle-forming surfactant. The dependence of the critical
 concentration of the copolymer micellization an temperature was shown
 to have an extreme character with a minimum at the lower critical
 solution temperature of thr copolymer. The dynamic membranes are formed
 on both the hydrophilic (cellulose) and hydrophobic (polyacrylonitrile)
 supports. For the penetrants studied. it was found that the dynamic
 membrane formed on the hydrophobic support favors the rejection of a
 PEG(6000). while that formed on the hydrophilic support rejects more
 effectively albumin and sodium cellulose sulfoacetate . We failed to
 realize a completely reversible thermal control of transport properties
 of the dynamic membranes obtained, while it was readily accomplished
 for the membranes obtained by grafting N-isopropylamide onto a
 cellulose matrix.

2/AB/2 (Item 1 from file: 345)
 DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat
 (c) 2002 EPO. All rts. reserv.

16128859

Basic Patent (No, Kind, Date): WO 200044791 A1 20000803 <No. of Patents: 006>

METHOD FOR PRODUCING CELLULOSE SULFOACETATE DERIVATIVES AND PRODUCTS AND MIXTURES THEREOF (English)

Patent Assignee: AGRONOMIQUE INST NAT RECH (FR); CHAUVELON GUELLE (FR); SAULNIER LUC (FR); BULEON ALAIN (FR); THIBAULT JEAN FRANCOIS (FR)

Author (Inventor): CHAUVELON GUELLE (FR); SAULNIER LUC (FR); BULEON ALAIN (FR); THIBAULT JEAN-FRANCOIS (FR)

Designated States : (National) AE; AL; AM; AT; AU; AZ; BA; BB; BG; BR; BY ; CA; CH; CN; CR; CU; CZ; DE; DK; DM; EE; FI; GB; GD; GE; GH; GM; HR; HU; ID; IL; IN; IS; JP; KE; KG; KP; KR; KZ; LC; LK; LR; LS; LT; LU; LV; MA; MD; MG; MK; MN; MW; MX; NO; NZ; PL; PT; RO; RU; SD; SE; SG; SI; SK; SL; TJ; TM; TR; TT; UA; UG; US; UZ; VN; YU; ZA; ZW (Regional) GH; GM; KE; LS; MW; SD; SL; SZ; TZ; UG; ZW; AM; AZ; BY; KG; KZ; MD; RU; TJ; TM; AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; BF; BJ; CF; CI; CM; GA; GN; GW; ML; MR; NE; SN; TD; TG

Filing Details: WO 100000 With international search report

IPC: *C08B-007/00; C08B-003/06

CA Abstract No: *133(10)137001K; 133(10)137001K

Derwent WPI Acc No: *C 00-543366; C 00-543366

Language of Document: French

Patent Family:

Patent No	Kind	Date	Appli No	Kind	Date
AU 200022997	A5	20000818	AU 2222997	A	20000128
BR 200007802	A	20020205	BR 20007802	A	20000128
EP 1165618	A1	20020102	EP 2000901672	A	20000128
FR 2789080	A1	20000804	FR 991049	A	19990129
FR 2789080	B1	20010420	FR 991049	A	19990129
WO 200044791	A1	20000803	WO 2000FR205	A	20000128 (BASIC)

Priority Data (No, Kind, Date):

FR 991049 A 19990129

WO 2000FR205 W 20000128

2/AB/3 (Item 2 from file: 345)

DIALOG(R) File 345: Inpadoc/Fam.& Legal Stat

(c) 2002 EPO. All rts. reserv.

12923000

Basic Patent (No, Kind, Date): RU 2047622 C1 951110 <No. of Patents: 001>

CELLULOSE SULFOACETATE FOR PREPARING NANOFILTERING MEMBRANE (English)

Patent Assignee: GALTSEVA OLGA V (SU); GRISHIN EDUARD P (SU); NOSOVA LARISA I (SU); PYATAKINA NINA K (SU); SHISHOVA IRINA I (SU); BON ALEKSANDR I (SU)

Author (Inventor): GALTSEVA OLGA V (SU); GRISHIN EDUARD P (SU); NOSOVA LARISA I (SU); PYATAKINA NINA K (SU); SHISHOVA IRINA I (SU); BON ALEKSANDR I (SU)

IPC: *C08B-007/00; C02F-001/42

CA Abstract No: 124(24)319956X

Derwent WPI Acc No: C 96-275878

Language of Document: Russian

Patent Family:

Patent No	Kind	Date	Appli No	Kind	Date
RU 2047622	C1	951110	RU 5055119	A	920716 (BASIC)

Priority Data (No, Kind, Date):

SU 5055119 A 920716

?