Задача А. Суммы и XOR-ы на отрезках

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Задан числовой массив a[1..n]. Необходимо выполнить m операций вычисления суммы или хог на отрезке [l,r].

Справка: операция хог — побитовое исключающее или — равно 0, если биты равны и 1 иначе. Существует во всех современных языках программирования, например, в языках C++, Java и Python она обозначена как « $\hat{}$ », в Pascal — как «хог».

Пример:

 $a = 01101000_2$ $b = 10101001_2$ $c = 11000001_2$

гле $c = a \hat{b}$.

Формат входных данных

Первая строка входного файла содержит число n – размерность массива.

Во второй строке записаны n чисел – элементы массива.

Третья строка содержит число m – количество запросов суммы/хог. Следующие m строк содержат тройку чисел: q_i – 1, если запрос суммы, и 2, если запрос хог-а; l_i и r_i ($1 \le l_i \le r_i \le n$), описывающие отрезки. Все числа во входных данных натуральные, не превосходящие $5 \cdot 10^5$.

Формат выходных данных

В выходной файл для каждого запроса на новой строке выведите результат суммы на отрезке для всех запросов типа 1 и хог-а – для запросов типа 2.

стандартный вывод
2
15
8

Задача В. 2D суммы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана прямоугольная матрица целых чисел размером $M \cdot N$. Необходимо выполнить K операций вычисления суммы в прямоугольнике, принадлежащем исходной матрице, с координатами левого верхнего угла (x1, y1) и правого нижнего -(x2, y2).

Формат входных данных

В первой строке входного файла записаны 3 числа: N и M — число строк и столбцов матрицы $(1 \leqslant N, M \leqslant 1000)$ и K — количество запросов $(1 \leqslant K \leqslant 10^5)$.

Каждая из следующих N строк содержит по M чисел — элементы A_{ij} соответствующей строки матрицы $(1 \le A_{ij} \le 10^4)$. Последующие K строк содержат по 4 целых числа — y1, x1, y2 и x2 — запрос на сумму элементов в прямоугольнике $(1 \le y1 \le y2 \le N, 1 \le x1 \le x2 \le M)$.

Формат выходных данных

В выходной файл для каждого запроса в отдельной строке выведите результат суммы.

стандартный ввод	стандартный вывод
4 3 2	28
1 2 3	21
4 5 6	
7 8 9	
10 11 12	
2 2 3 3	
1 1 2 3	

Задача С. Коровы — в стойла

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На прямой расположены стойла, в которые необходимо расставить коров так, чтобы минимальное расстояние между коровами было как можно больше.

Формат входных данных

В первой строке вводятся числа N (2 \leq N \leq 100000) — количество стойл и K (1 < K \leq N) — количество коров.

Во второй строке задаются N различных натуральных чисел в порядке возрастания — координаты стойл (координаты не превосходят 10^9).

Формат выходных данных

Выведите одно число — наибольшее возможное допустимое расстояние.

стандартный ввод	стандартный вывод
6 3	9
2 5 7 11 15 20	

Задача D. Таблица умножения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Петя составил таблицу умножения размера $n \cdot n$. Ячейка в i-й строке и j-м столбце содержит значение $i \cdot j$. Петю заинтересовал вопрос: какое число в таблице является k-м по возрастанию? Помогите Пете ответить на этот вопрос.

Формат входных данных

Ввод содержит два целых числа n и k $(1 \le n \le 10^5, 1 \le k \le n^2)$.

Формат выходных данных

Выведите одно число — k-е число по возрастанию в таблице.

стандартный ввод	стандартный вывод
3 4	3
5 16	10

Задача Е. Разделение массива

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив из n положительных целых чисел. Нужно разбить его на k отрезков так, чтобы максимальная сумма на отрезке была минимально возможной.

Формат входных данных

Первая строка содержит целые числа n и k ($1 \le k \le n \le 10^5$). Вторая строка содержит элементы массива a_i ($1 \le a_i \le 10^9$).

Формат выходных данных

Выведите одно число — минимально возможную максимальную сумму на отрезке.

стандартный ввод	стандартный вывод
10 4	12
1 3 2 4 10 8 4 2 5 3	

Задача F. Закраска прямой

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На числовой прямой окрасили n отрезков. Известны координаты левого и правого концов каждого отрезка $[l_i; r_i]$. Найти длину окрашенной части числовой прямой.

Формат входных данных

В первой строке находится число n, в следующих n строках — пары l_i и r_i . l_i и r_i — целые, $-10^9 \leqslant l_i \leqslant r_i \leqslant 10^9, 1 \leqslant n \leqslant 10^5$.

Формат выходных данных

Вывести одно число — длину окрашенной части прямой.

стандартный ввод	стандартный вывод
1	10
10 20	
1	0
10 10	
2	40
0 20	
10 40	

Задача G. Кассы

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На одном из московских вокзалов билеты продают N касс. Каждая касса работает без перерыва определенный промежуток времени по фиксированному расписанию (одному и тому же каждый день). Требуется определить, на протяжении какого времени в течение суток работают все кассы одновременно.

Формат входных данных

Сначала вводится одно целое число $N(1 \le N \le 10^5)$.

В каждой из следующих N строк через пробел расположены 6 целых чисел, первые три из которых обозначают время открытия кассы в часах, минутах и секундах (часы — целое число от 0 до 23, минуты и секунды — целые числа от 0 до 59), оставшиеся три — время закрытия в том же формате. Числа разделены пробелами.

Время открытия означает, что в соответствующую ему секунду касса уже работает, а время закрытия — что в соответствующую секунду касса уже не работает. Например, касса, открытая с 10 ч 30 мин 30 с до 10 ч 35 мин 30 с, ежесуточно работает 300 секунд.

Eсли время открытия совпадает с временем закрытия, то касса работает круглосуточно. Eсли первое время больше второго, то касса начинает работу до полуночи, а заканчивает — на следующий день.

Формат выходных данных

Требуется вывести одно число — суммарное время за сутки (в секундах), на протяжении которого работают все N касс.

стандартный ввод	стандартный вывод
3	7200
1 0 0 23 0 0	
12 0 0 12 0 0	
22 0 0 2 0 0	
2	0
9 30 0 14 0 0	
14 15 0 21 0 0	
2	1
14 0 0 18 0 0	
10 0 0 14 0 1	

Задача Н. Межрегиональная олимпиада

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На межрегиональной олимпиаде по программированию роботов соревнования проводятся в один тур и в необычном формате. Задачи участникам раздаются последовательно, а не все в самом начале тура, и каждая i-я задача становится доступной участникам в свой момент времени s_i . При поступлении очередной задачи каждый участник должен сразу определить, будет ли он ее решать или нет. В случае, если он выбирает для решения эту задачу, то у него есть t_i минут на то, чтобы сдать ее решение на проверку, причем в течение этого времени он не может переключиться на решение другой задачи. Если же участник отказывается от решения этой задачи, то в будущем он не может к ней вернуться. В тот момент, когда закончилось время, отведенное на задачу, которую решает участник, он может начать решать другую задачу, ставшую доступной в этот же момент, если такая задача есть, или ждать появления другой задачи. При этом за правильное решение i-й задачи участник получает c баллов.

Артур, представляющий на межрегиональной олимпиаде один из региональных центров искусственного интеллекта, понимает, что важную роль на такой олимпиаде играет не только умение решать задачи, но и правильный стратегический расчет того, какие задачи надо решать, а какие пропустить. Ему, как и всем участникам, до начала тура известно, в какой момент времени каждая задача станет доступной, сколько времени будет отведено на ее решение и сколько баллов можно получить за ее решение.

Требуется написать программу, которая определяет, какое максимальное количество баллов Артур сможет получить при оптимальном выборе задач, которые он будет решать, а также количество и перечень таких задач.

Формат входных данных

Первая строка входного файла содержит два целых числа n ($1 \le n \le 10^5$) – количество задач на олимпиаде и c ($1 \le c \le 10^9$) – сколько баллов получит участник за решение каждой задачи.

Последующие n строк содержат описания задач, по два числа на каждой строке: s_i – момент появления i-й задачи в минутах; t_i — время, отведенное на ее решение в минутах ($1 \le s_i, t_i \le 10^9$).

Формат выходных данных

Первая строка выходного файла должна содержать одно число – максимальное количество баллов, которое сможет получить Артур на олимпиаде.

Вторая строка должна содержать одно целое число m — количество задач, которые надо решить при оптимальном выборе.

Третья строка должна содержать m разделенных пробелом целых чисел — номера этих задач в порядке их решения. Задачи пронумерованы, начиная с единицы, в порядке их описания во входном файле.

Если оптимальных ответов несколько, необходимо вывести любой из них.

ный вывод