Advanced Machine Learning

Likhit Nayak

What is a SVM?

Support Vector Machines (SVMs) is a type of machine learning algorithm for:

- Supervised learning
- Classification tasks
- Regression tasks

The objective of an SVM algorithm is to find a *hyperplane* that separates the data points belong to different classes

What is a SVM?

Perceptron

Perceptron

Perceptron - Learning OR function

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$ $w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$

Perceptron - Learning OR function

Perceptron Learning Algorithm

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0:
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
    if x \in P and w.x < 0 then
     \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \geq 0 then
       \mathbf{w} = \mathbf{w} - \mathbf{x} \; ;
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathrm{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

Perceptron Learning Algorithm

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

So if
$$\mathbf{w}^T \mathbf{x} > 0 \implies \cos\alpha > 0 \implies \alpha < 90$$

Similarly, if $\mathbf{w}^T \mathbf{x} < 0 \implies \cos\alpha < 0 \implies \alpha > 90$

Perceptron Learning Algorithm

Where does a Perceptron fail?

Where does a Perceptron fail?

Learning the XOR function:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Solution to XOR function

<u>Learning the XOR function</u>: Using MLP (Multilayer Perceptron)

Support Vector Machines (SVM)

Question: For a linearly separable dataset, what is the best separating hyperplane?

Support Vector Machines (SVM)

<u>Answer:</u> It is the hyperplane that maximizes the margin, i.e., the distance from the hyperplane to the closest point across both classes

Support Vector Machine (SVM)

It works by minimizing hinge loss

