Apellido y nombre:	
Padrón:	Nota final:
1) Explique qué es el Teorema Maestro, soluciones. Justifique de la manera mas de Quicksort .	cómo se aplica y cuáles son las posibles detallada posible la complejidad computaciona
	tre cómo funcionan los diferentes casos de ío, inserte en orden (y muestre el estado luego c

- 3) Dado el ABB implementado en el cuatrimestre, agregue una función a la interfaz que permita iterar los elementos del ABB por niveles. Muestre y explique el código. Justifique la complejidad computacional.
- **4)** Dados los siguientes recorridos de un mismo **ABB**, defina un algoritmo (no se pide el código) que reconstruya el **ABB** original. Muestre el árbol final y explique el procedimiento justificando el resultado.

Preorden = $[\#, \$, @, +, \blacksquare, \bullet, X, \blacktriangle]$ Inorden = $[\$, \#, \blacksquare, +, @, X, \blacktriangle, \bullet]$

5) Escriba un algoritmo recursivo (sin utilizar **for**, **while**, **etc**) que recibe un string **texto** y un string **palabra** e imprime por pantalla la posición de cada ocurrencia de palabra dentro de texto. No se pueden utilizar funciones de la bilioteca estandar (excepto printf).

Algoritmos 2, Curso Mendez ~ 1er Recuperatorio, 1er Cuatrimestre 2025 ~ 2025-06-12 Apellido y nombre: ______

Nota final:

Padrón: _____

cada inserción) los elementos

- 1) Explique qué es el **Teorema Maestro**, cómo se aplica y cuáles son las posibles soluciones. Justifique de la manera mas detallada posible la complejidad computacional de **Quicksort**.
- 2) Explique qué es un árbol AVL y muestre cómo funcionan los diferentes casos de inserción. Comenzando por un árbol vacío, inserte en orden (y muestre el estado luego de cada inserción) los elementos

$$V = [8, 1, 3, 5, 7, 6, 9]$$

- 3) Dado el ABB implementado en el cuatrimestre, agregue una función a la interfaz que permita iterar los elementos del ABB por niveles. Muestre y explique el código. Justifique la complejidad computacional.
- **4)** Dados los siguientes recorridos de un mismo **ABB**, defina un algoritmo (no se pide el código) que reconstruya el **ABB** original. Muestre el árbol final y explique el procedimiento justificando el resultado.

Preorden = $[\#,\$,@,+,\blacksquare,\bullet,X,\blacktriangle]$ Inorden = $[\$,\#,\blacksquare,+,@,X,\blacktriangle,\bullet]$

5) Escriba un algoritmo recursivo (sin utilizar **for**, **while**, **etc**) que recibe un string **texto** y un string **palabra** e imprime por pantalla la posición de cada ocurrencia de palabra dentro de texto. No se pueden utilizar funciones de la bilioteca estandar (excepto printf).