

Quantum Invariant and Equivariant Graph Neural Networks for HEP Analysis

Google Summer of Code (GSOC) Contributor under the Machine Learning for Science (ML4SCI) Organization

Roy T. Forestano

ML4SCI Quantum Machine Learning for HEP (QMLHEP) Group University of Florida Department of Physics

Overview

- 1. Data Structure
- 2. Model Theory: Invariance and Equivariance
- 3. Model Theory: Graph Neural Networks
- 4. Model Implementation
- 5. Results and Analysis
- 6. Resources, Software, and Code

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

(Jet (n), Multiplicity (m), Feature (l))

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

Multiplicity $(m) \equiv \text{Nodes with Features (/)}$ $\mathbf{x}_{\alpha}^{(il)} \in \{\mathbf{p}_{T}, \eta, \phi, \mathbf{m}_{p}\}$

(1)

(Jet (n), Multiplicity (m), Feature (/))

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

 $(1, m_1, l)$

Multiplicity $(m) \equiv$ Nodes with Features (/)

$$x_{\alpha}^{(il)} \in \{p_T, \eta, \phi, m_p\}$$
 (1)

$\mathbf{Jet}(n) \equiv \mathbf{Graph} \ \mathbf{with} \ \mathbf{Labels} \ \mathbf{(not \ shown)}$

 $y_n \in \{0,1\}$ for Binary Classification (2)

(Jet (n), Multiplicity (m), Feature (/))

(1,1,l) (1,2,l)

Data Distributions & Feature Engineering @

Data Distributions & Feature Engineering

Data Distributions & Feature Engineering

Feature set $h_{\alpha}^{(il)}$ with $l = 0, 1, 2, \dots, 7$: $h_{\alpha}^{(il)} \equiv \{p_{T,\alpha}^{(i)}, y_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}$ $m_{T,\alpha}^{(i)} = \sqrt{m_{\alpha}^{(i)2} + p_{T,\alpha}^{(i)2}},$ $E_{\alpha}^{(i)} = m_{T,\alpha}^{(i)} \cosh(y_{\alpha}^{(i)}),$ $p_{x,\alpha}^{(i)} = p_{T,\alpha}^{(i)} \cos(\phi_{\alpha}^{(i)}),$ $p_{\mathbf{v},\alpha}^{(i)} = p_{T,\alpha}^{(i)} \sin(\phi_{\alpha}^{(i)}),$ $p_{Z,\alpha}^{(i)} = m_{T,ii} \sinh(y_{\alpha}^{(i)}) \}$

Data Distributions & Feature Engineering

Feature set
$$h_{\alpha}^{(il)}$$
 with $l=0,1,2,\ldots,7$:

$$egin{aligned} h_{lpha}^{(il)} &\equiv \{ m{p}_{T,lpha}^{(i)}, m{y}_{lpha}^{(i)}, m{\phi}_{lpha}^{(i)}, \ m_{T,lpha}^{(i)} &= \sqrt{m_{lpha}^{(i)2} + m{p}_{T,lpha}^{(i)2}}, \ E_{lpha}^{(i)} &= m_{T,lpha}^{(i)} \mathrm{cosh}(m{y}_{lpha}^{(i)}), \ m{p}_{x,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{cos}(m{\phi}_{lpha}^{(i)}), \ m{p}_{y,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{sin}(m{\phi}_{lpha}^{(i)}), \ m{p}_{z,lpha}^{(i)} &= m_{T,ij} \mathrm{sinh}(m{y}_{lpha}^{(i)}) \} \end{aligned}$$

Edge Connections a_{ij}

$$\Delta R_{lpha}^{(jj)} = \sqrt{\left(\phi_{lpha}^{(i)} - \phi_{lpha}^{(j)}
ight)^2 + \left(y_{lpha}^{(i)} - y_{lpha}^{(j)}
ight)^2}$$

• Only consider jets with at leat 10 particles \implies N=2 million to 1,997,445 jets.

- Only consider jets with at leat 10 particles \implies N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum p_T .

- Only consider jets with at leat 10 particles \implies N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum p_T .
- Quantum entangled state scales as $2^n \implies$ choose $n_\alpha = 3$ with $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$

- Only consider jets with at leat 10 particles \implies N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum p_T .
- Quantum entangled state scales as $2^n \implies$ choose $n_\alpha = 3$ with $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$
- Choose a subset to test the models: N = 12,500

- Only consider jets with at leat 10 particles \implies N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum p_T .
- Quantum entangled state scales as $2^n \implies$ choose $n_\alpha = 3$ with $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$
- Choose a subset to test the models: N = 12,500

Data Splits

	N	$N_{quark:1}$	$N_{gluon:0}(0)$
Training	10,000	4,982	5,018
Validation	1,250	658	592
Testing	1,250	583	667

Invariance and Equivariance

Definition

A function $\varphi: X \to Y$ is **equivariant** with respect to a set of group transformations $T_g: X \to X$, $g \in G$, acting on the input vector space X, if there exists a set of transformations $S_g: Y \to Y$ which similarly transform the output space Y, i.e.

$$\varphi(T_g x) = S_g \varphi(x). \tag{3}$$

A function is said to be **invariant** when for all $g \in G$, S_g becomes the set containing only the trivial mapping, i.e. $S_g = \{\mathbb{I}_G\}$, where $\mathbb{I}_G \in G$ is the identity element of the group G.

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

Input Embedding

Classical

Quantum

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,a_{ij})
ightarrow \underline{\hspace{1cm}}$$

$$\mathcal{U}_{ij}(x_i,x_j) \rightarrow$$

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,\sigma_{ij},\boxed{|\mathbf{x}_i-\mathbf{x_j}|})$$

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

$\begin{array}{ll} \textbf{Input Embedding} \\ & \textbf{Classical} & \textbf{Quantum} \\ & \mathbf{m}_{ij}(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij}) \rightarrow & \mathcal{U}_{ij}(\mathbf{x}_i, \mathbf{x}_j) \rightarrow \\ & \mathbf{m}_{ij}(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij}, \boxed{|\mathbf{x}_i - \mathbf{x_j}|}) & \mathcal{U}_{ij}(\boxed{|\mathbf{x}_i - \mathbf{x_j}|}) \end{array}$

Equivariance

Equivariance

A function φ is equivariant with respect to group G, G' transformations $g \in T_g \subset G, g' \in S_g \subset G'$ if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_g \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

$\begin{tabular}{ll} \textbf{Input Embedding} \\ \hline \textbf{Classical} & \textbf{Quantum} \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij}) \rightarrow & \mathcal{U}_{ij}(\textbf{x}_i,\textbf{x}_j) \rightarrow \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij}, \boxed{|\textbf{x}_i-\textbf{x}_{\mathbf{j}}|}) & \mathcal{U}_{ij}(\boxed{|\textbf{x}_i-\textbf{x}_{\mathbf{j}}|}) \\ \hline \end{tabular}$

Equivariance

Equivariance

A function φ is equivariant with respect to group G,G' transformations $g\in T_g\subset G, g'\in \mathcal{S}_g\subset G'$ if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for

Layer Structure

Classical	Quantum
$gx_i^I o$	$\mathcal{U}(gx) ightarrow$
$gx_i^l + C\sum_{i\neq j}(gx_i^l - gx_j^l)\phi_X(\mathbf{m}_{ij})$	$\mathcal{U}_g\mathcal{U}(x)\mathcal{U}_g^\dagger$

Equivariant coordinate update function

Proposition

Let $T_g:X \to X$ be the set of translational and rotational group transformations with elements $g \in T_g \subset G$ which act on the vector space X. The function $\varphi:X \to X$ defined by

$$\varphi(x) = x_i + C \sum_{j \neq i} (x_i - x_j)$$
 (6)

is equivariant with respect to T_g .

Equivariant coordinate update function

Proposition

Let $T_g:X \to X$ be the set of translational and rotational group transformations with elements $g \in T_g \subset G$ which act on the vector space X. The function $\varphi:X \to X$ defined by

$$\varphi(x) = x_i + C \sum_{j \neq i} (x_i - x_j)$$
 (6)

is equivariant with respect to T_g .

Proof

Let a general transformation $g \in T_g$ of this form act on X by gX = RX + T,

$$\varphi(gx) = (gx_i) + C \sum_{j \neq i} (gx_i - gx_j)$$

$$= (Qx_i + T) + C \sum_{j \neq i} (Qx_i + T - Qx_j - T)$$

$$= Qx_i + C \sum_{j \neq i} Q(x_i - x_j) + T$$

$$= Q[x_i + C \sum_{j \neq i} (x_i - x_j)] + T$$

$$= g\varphi(x),$$

where $\varphi(gx)=g\varphi(x)$ shows φ transforms equivariantly under transformations $g\in T_a$ acting on X.

Graph Neural Network Theory [3, 2, 6]

Graph Neural Network (GNN)

Message Passing GCNN Layer

Nodes $v_i \in \mathcal{V}$, edges $e_{ij} \in \mathcal{E}$

$$\mathbf{m}_{ij} = \phi_{\Theta}(\mathbf{h}_i^I, \mathbf{h}_j^I, a_{ij}) \tag{7}$$

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{8}$$

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{9}$$

where \mathbf{h}_i are node features, α_{ij} are edge attributes, $\mathcal{N}(i)$ is the set of neighbors of node v_i , and ϕ_e , ϕ_h are edge and node operations typically approximated using Multiplayer Perceptrons (MLPs) (Kipf & Welling 2016, Gilmer et al. 2017).

Graph Neural Network Theory [3, 2, 6]

Graph Neural Network (GNN)

Message Passing GCNN Layer

Nodes $v_i \in \mathcal{V}$, edges $e_{ij} \in \mathcal{E}$

$$\mathbf{m}_{ij} = \phi_{\mathbf{e}}(\mathbf{h}_i^I, \mathbf{h}_j^I, \mathbf{a}_{ij}) \tag{7}$$

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{8}$$

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{9}$$

where \mathbf{h}_i are node features, α_{ij} are edge attributes, $\mathcal{N}(i)$ is the set of neighbors of node v_i , and ϕ_e , ϕ_h are edge and node operations typically approximated using Multiplayer Perceptrons (MLPs) (Kipf & Welling 2016, Gilmer et al. 2017).

SE(2) Equivariant GNN (EGNN)

Message Passing EGCNN Layer

Nodes $v_i \in \mathcal{V}$, edges $e_{ij} \in \mathcal{E}$

$$\mathbf{m}_{ij} = \phi_{\Theta}(\mathbf{h}_i^l, \mathbf{h}_j^l, \alpha_{ij}, |\mathbf{x}_i^l - \mathbf{x}_j^l|)$$
 (10)

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{11}$$

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + C \sum_{j \neq i} (\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}) \phi_{x}(\mathbf{m}_{ij})$$
 (12)

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{13}$$

where we update the coordinates via x_i^{l+1} , include the invariant distance $|\mathbf{x}_i^l - \mathbf{x}_j^l|$ in ϕ_e , and ϕ_x is the coordinate MLP. The equivariant regularization parameter C(n) < 1.

Quantum GNN Theory [8]

Quantum GNN (QGNN)

QGCNN Layer

Nodes $v_i \in \mathcal{V}$, edges $e_{ii} \in \mathcal{E}$

$$H(\mathcal{W}_{ij}, \mathcal{M}_{i}, \mathcal{Q}_{0}) = \underbrace{\sum_{(i,j) \in \mathcal{E}} \mathcal{W}_{ij} \sigma_{i}^{z} \sigma_{j}^{z} + \sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Interactions}} + \mathcal{Q}_{0} \underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Nodes}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Quibits}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$
(14)

$$U_{ij} = \phi_u(\mathcal{W}_{ij}, \mathcal{M}_i, \mathcal{Q}_0) = e^{-i\sum_{q=1}^{Q} \gamma_{iq} H_q(\mathcal{W}_{ij}, \mathcal{M}_i, \mathcal{Q}_0)},$$
(15)

$$|\psi'^{+1}\rangle = \phi_{|\psi\rangle}(|\psi'\rangle, U_{ij}) = U'_{\theta}U_{ij}U^{\dagger}_{\theta}|\psi'\rangle \tag{16}$$

where $\mathcal{W}, \mathcal{M}, \mathcal{Q}$ are pre-determined or learned, γ_{lq} is a learnable infinitesimal parameter, $|\psi_l^l(\mathbf{h}_l)\rangle$ is the quantum state at layer l, and U_θ^l is a trainable unitary matrix. Applying this transformation Q times will correspond to running our network over P layers, thus, building up a full trainable unitary parameter transformation (Verdon et al. 2019).

Equivariant Quantum GNN Theory [4]

Equivariant Quantum GNN (EQGNN)

EOGCNN Laver

Nodes $v_i \in \mathcal{V}$, edges $e_{ii} \in \mathcal{E}$

$$H(A_{ij}, \mathcal{M}_{i}, \mathcal{Q}_{0}) = \underbrace{\sum_{(i,j) \in \mathcal{E}} A_{ij} \sigma_{i}^{z} \sigma_{j}^{z}}_{\text{Interactions}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Node}} + \mathcal{Q}_{0} \underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} N_{i} \sigma_{i}^{z}}_{\text{Uniteractions}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Uniteractions}} +$$

$$U_{ij} = \phi_u(A_{ij}, \mathcal{M}_i, \mathcal{Q}_0) = e^{-i\sum_{q=1}^{Q} \gamma_{lq} H_q(A_{ij}, \mathcal{M}_i, \mathcal{Q}_0)},$$
(18)

$$|\psi'^{+1}\rangle = \phi_{|\psi\rangle}(|\psi'\rangle, U_{ij}) = U_{\theta}'U_{ij}U_{\theta}^{\dagger}|\psi'\rangle \tag{19}$$

$$U_{ij}(\mathcal{U}_g A_{ij} \mathcal{U}_g^{\dagger}) = \tilde{\mathcal{U}}_{g'} U_{ij}(A_{ij}) \tilde{\mathcal{U}}_{g'}^{\dagger} \implies U_{ij}(A_{ij}) = \tilde{\mathcal{U}}_{g'}^{\dagger} U_{ij}(\mathcal{U}_g A_{ij} \mathcal{U}_g^{\dagger}) \tilde{\mathcal{U}}_{g'}$$
(20)

where we restrict the trainable interaction matrix to the adjacency matrix of the graph, i.e. $\mathcal{W}_{ij} \to A_{ij}$, such that $\mathcal{U}_g \in \mathbb{C}^{n \times n}$ and $\tilde{\mathcal{U}}_{g'} \in \mathbb{C}^{2^n \times 2^n}$ are different representations of group $\mathcal{T}_g \cong \mathcal{S}_g$ elements $\mathcal{U}_g \in \mathcal{T}_g, \tilde{\mathcal{U}}_{g'} \in \mathcal{S}_g$.

A Note on Permutation Equivariance

Fact

A GNN is permutation equivariant with respect to the sum of the graphically transformed node features corresponding to each graph. This can be written as a map $\varphi: V^{m \times n} \to V^n$ which takes the node feature matrix of each graph to a single feature vector such that $\varphi(\mathbf{h}^P) = \sum_i \mathbf{h}_i^P$.

Proposition

For V a commutable vector space, the product state $\bigotimes_{i=1}^m \mathbf{v}_i : V^n \times \cdots \times V^n \to V^{n^m}$ is permutation equivariant with respect to the sum of its entries. We prove the n=2 case for all $m \in \mathbb{Z}_{>0}$.

Note: Here, m is the number of nodes per graph and n is the number of features.

Hamiltonian and its General Linear Form

With inspiration from quantum unconstrained binary optimization (QUBO) problems which utilize Ising Hamiltonians, we choose a Hamiltonian which best exploits the properties of a graph by mapping the classical scalar form to the quantum operator form

$$H(a_{ij}) = \underbrace{\sum_{(i,j)\in\mathcal{E}} a_{ij} \left(\frac{\hat{\mathbb{I}}_i - \sigma_i^z}{2} - \frac{\hat{\mathbb{I}}_j - \sigma_j^z}{2}\right)^2}_{H_C} + \underbrace{\sum_{i\in\mathcal{V}} \sigma_i^x}_{H_T}$$
(21)

GNN

EGNN

EQGNN

Results

Table: Metric comparison between the classical and quantum graph models.

Model	$ \Theta $	N_h	Р	Train ACC	Val ACC	Test AUC
GNN	5122	10	5	74.25%	74.80%	63.36 %
EGNN	5252	10	4	73.66%	74.08%	67.88 %
QGNN	5156	8	6	74.00%	73.28%	61.43 %
EQGNN	5140	8	6	74.42%	72.56%	75.17 %

Conclusion and Outlook

Takeaways

- Statement: Quantum GNNs exhibit enhanced classifier performance over their classical GNN
 counterparts based on the best test AUC scores produced after the training of the models
 while relying on a similar number of parameters, hyperparameters, and model structures.
- However, the community requires a significant improvement in quantum APIs.
 - E.g. Pennylane does not support broadcastable operators, i.e. train on one graph at a time.
 - Quantum algorithms took nearly 100 times as long to train.
 - Difficult to construct the quantum layers with enough trainable parameter flexibility.
- Model improvements include
 - Further theoretical foundations for complex quantum algorithms.
 - More general equivariance, e.g. unitary SU(2), Lorentz SO(1,3) etc.
 - Greater complexity, e.g. quantum attention mechanism (AT).
 - Testing among different tasks, e.g. classification, regression, etc.
 - Improved quantum optimizers and API integration.

Resources and Software

Developing and Documentation

Computing and Testing

Blogging and Connecting

Resources and Code

Figure: Code (left) and website (right).

References I

- [1] El Amine Cherrat et al. "Quantum Vision Transformers". In: (2022). arXiv: 2209.08167 [quant-ph].
- [2] Justin Gilmer et al. "Neural Message Passing for Quantum Chemistry". In: (2017). arXiv: 1704.01212 [cs.LG].
- [3] Thomas N. Kipf and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks". In: (2017). arXiv: 1609.02907 [cs.LG].
- [4] Peter Mernyei, Konstantinos Meichanetzidis, and Ismail Ilkan Ceylan. "Equivariant Quantum Graph Circuits". In: Proceedings of the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022, pp. 15401–15420. URL: https://proceedings.mlr.press/v162/mernyei22a.html.

References II

- [5] Johannes Jakob Meyer et al. "Exploiting Symmetry in Variational Quantum Machine Learning". In: *PRX Quantum* 4.1 (2023). DOI:
 - 10.1103/prxquantum.4.010328. URL:
 - https://doi.org/10.1103%2Fprxquantum.4.010328.
- [6] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. "E(n) Equivariant Graph Neural Networks". In: (2022). arXiv: 2102.09844 [cs.LG].
- [7] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics". In: Machine Learning: Science and Technology 2.2 (2021), p. 021001. DOI: 10.1088/2632-2153/abbf9a. URL: https://doi.org/10.1088%2F2632-2153%2Fabbf9a.
- [8] Guillaume Verdon et al. "Quantum Graph Neural Networks". In: (2019). arXiv: 1909.12264 [quant-ph].