EXAM

- Wednesday Dec 8: Exam #3
 - Bring a calculator (no phone etc.)
 - Allowed to bring one single-page letter-size
 (8.5x11) sheet with you. What you put on it is up to you, but it has to be your own sheet (we'll collect it)
- If you take exam at CDR, please sign up now!

EXAM

- Material covered
 - Everything from Nov 3 (More Bivariate Hypothesis Testing, Hypothesis Testing When Using a Sample) to Dec 6 (next Monday)

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

LINEAR REGRESSION

- General form: y = a + b * x
 - y: dependent variable
 - a: intercept
 - b: slope
 - x: independent variable
- Interpretation
 - Slope: For every one unit increase in x, y changes by b units
 - Intercept: When x=0, y takes the value a
- Caveat
 - Linear relationships

R-SQUARE

 R² tells us how much variation of the dependent variable is explained by the independent variable (in a linear regression)

USING SAMPLES

- Bivariate relationship between two variables in sample
- Is this a real relationship that we would find in the population as well, or is it something that only shows up in our sample?

HYPOTHESIS

- H₀: In the population, there is no relationship between dependent and independent variable
 - If there is a difference in the sample, it is due to random sampling error
- H_A : There *is* a relationship between the independent and dependent variable in the population

ERRORS

ERRORS

IDEA

- We start out thinking H₀ is true
 - No relationship between X and Y in population
- We ask: If H_0 is true, how likely is it that a random sample would produce an effect as large (or larger) than the one we have observed?
 - If less than 5% (p<0.05): we reject H_0
 - If more than 5% (p>0.05): we don't reject H_0

T-STATISTIC

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

- H_A: observed relation between X and Y in sample
- H₀: relation between X and Y if H₀ is true

SIGNIFICANCE TEST

- We reject H₀ if t<-1.96 or t>1.96
- This is equivalent to p<0.05

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

BIVARIATE RELATIONSHIP

Partisanship

Evaluation of Afghanistan involvement

 Zero-order effect: Non-Democrats are 22.2% more likely to agree that Afghanistan involvement was beneficial than Democrats

MAYBE THIS IS GOING ON?

W more likely to be Democrats than M

Gender (Z)

W might be more critical of benefits of war than

Partisanship (X)

Maybe partisanship by itself has no effect on climate change position

Afghanistan position (Y)

TERMINOLOGY

 <u>Controlled effect</u>: relationship between an independent variable (X) and a dependent variable (Y) within one value of another independent variable (Z)

Afghanistan war was beneficia

CONTROLLED COMPARISON TABLE

	Female		Male			
	Dem 22.	Non-	Total	Dem 21.	Non- 7% Pem	Total
Agree	18.9%	41.2%	25.9%	20.0%	41.7%	29.6%
Agree	(7)	(7)	(14)	(3)	(5)	(8)
Disagree	81.1% (30)	58.8% (10)	74.1% (40)	80.0% (12)	58.3% (7)	70.4% (19)
Total	100%	100% (17)	100% (54)	100% (15)	100% (12)	100% (27)

CONTROLLED EFFECT

- Even when looking just among men, and just among women, partisanship still has an effect on Afghanistan evaluation
- Effect of partisanship holds when "controlling for" gender

SPURIOUS RELATIONSHIP

- Once we control for gender, no independent effect of partisanship
- All controlled effects zero or close to zero

ADDITIVE RELATIONSHIP

- Both partisanship and gender determine Y
- Controlled effects not zero and of roughly same size

INTERACTIVE RELATIONSHIP

Partisanship (X)

- Gender determines how much partisanship affects Y
- Controlled effects not zero and of different size

MULTIPLE REGRESSION

- Another way to control for potential confounding variables: multiple regression
 - Allows us to control for many potential confounders

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	101.8	60.8	1.68
Liberal- Conservative	-0.44	0.15	-2.93
Age	-1.89	3.08	-0.61
Gender (Male)	11.66	6.29	1.85

R²: 0.15

EFFECT OF LIB/CONS

- Coefficient: -0.44
- Interpretation: For every one point increase on the liberal-conservative scale, the evaluation of J. Biden decreases by 0.44 points, holding all other independent variables constant

EFFECT OF LIB/CONS

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

$$t = \frac{-0.44 - 0.00}{0.15} = -2.93$$

• We reject H_0 , so effect of liberal-conservative on evaluation is significant at the 5% level

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	101.8	60.8	1.68
Liberal- Conservative	-0.44	0.15	-2.93
Age	-1.89	3.08	-0.61
Gender (Male)	11.66	6.29	1.85

R²: 0.15

EFFECT OF GENDER

- Coefficient: -11.66
- Interpretation: If someone is male, their evaluation of J. Biden is expected to be 11.66 points higher than if someone is female, holding all other indpendent variables constant

EFFECT OF GENDER

- t-value: 1.85
- We do not reject H_0 , so effect of gender on evaluation is not significant at the 5% level

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	101.8	60.8	1.68
Liberal- Conservative	-0.44	0.15	-2.93
Age	-1.89	3.08	-0.61
Gender (Male)	11.66	6.29	1.85

R²: 0.15

PREDICTED VALUE

- Evaluation = 101.8 0.44*Lib/Cons 1.89*Age
 + 11.66*Gender (Male)
- Expected approval for someone who is:
 - 50 on Lib/Cons scale
 - 22 years old
 - Male

PREDICTED VALUE

- Evaluation = 101.8 0.44*Lib/Cons 1.89*Age
 + 11.66*Gender (Male)
- Expected approval for someone who is:
 - 50 on Lib/Cons scale
 - 22 years old
 - Male
- Evaluation = 101.8 0.44*50 1.89*22 + 11.66*1 = 49.88

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	101.8	60.8	1.68
Liberal- Conservative	-0.44	0.15	-2.93
Age	-1.89	3.08	-0.61
Gender (Male)	11.66	6.29	1.85

R²: 0.15

OBSERVATIONAL RESEARCH DESIGN

- Linear regression is (usually) used in observational research design
 - Takes data as we find it in the world
 - Regression isolates the independent effect of X on Y, controlling for other variables (=potential alternative explanations)

OBSERVATIONAL RESEARCH DESIGN

- Can never be sure we controlled for all potential alternative explanations
 - Potentially low internal validity

EXPERIMENTAL RESEARCH DESIGN

- Researchers actively decide assignment of the independent variable
- Treatment and control groups
 - Subjects randomly allocated

EXPERIMENTAL RESEARCH DESIGN

- On average, treatment and control group are the same on every variable we can think of
 - Except on the independent variable of interest,
 where researcher assigns treatment and control
 - Unlikely that differences in Y between treatment and control groups caused by other variables
 - High internal validity

TYPES OF EXPERIMENTS

- Field Experiment
- Lab Experiment
- Survey Experiment

ISSUES WITH EXPERIMENTS

- May lack external validity
- Ethics issues
- Cannot study many things we are interested in experimentally