ESALO

B Título do Trabalho de Lo Conclusão de Curso

NOME DO ALUNO: WANDERLEI JOSÉ BOLZAN

NOME DO ORIENTADOR: PROF. MARCOS DOS SANTOS

Apresentação

- Objetivo
- Contextualização do problema
- Apresentação do método Mult-Critério MAIRCA
- Explicação dos critérios a serem analisados: Rentabilidade, Risco, Volatilidade, Liquidez
- Abordagem referente aos recursos utilizados na linguagem R, para manipular os dados

Objetivo

O objetivo dessa pesquisa é adquirir séries temporais de séries históricas ou atuais do site da bovespa, através dos recursos da linguagem R, como os comandos yf() e o getSymbols().

Através dessas informações adquiridas da API bovespa, serão criados índices tais como:

- Índices de Retorno, para que seja possível validar que esses ativos deram como resultado em sua série histórica
- Obter os índices que serão usados como critérios no método MAIRCA que são: Rentabilidade, Risco, Volatilidade e Liquidez

Uma vez obtidas essas informações, será possível executar o método MAIRCA, para se obter um ranking de desempenho, e tomar uma decisão de compra.

Contextualização do Problema

Conforme comentado na parte inicial desse TCC, temos: onde observamos no item Introdução que: Ao longo do século XX, e início de XXI ocorreram outras crises globais, das quais os principais motivos para essas crises foram por, fraude (corrupção), má gestão, guerras, como o que ocorreu nos Estados Unidos, que provocou falência de grandes bancos e contaminou o mundo todo, o calote da Argentina com relação ao não pagamento de sua dívida externa, etc.

Apresentação do método Mult-Critério

De acordo com o que foi abordado nessa pesquisa, temos os passos necessários para a obtenção das matrizes que são pré-requisitos para a geração do ranking de opções, esses passos foram retirados dos artigos:

An integrated approach for fuzzy failure modes and effects analysisusing fuzzy AHP and fuzzy MAIRCA Soumava Boral..., Ian Howard..., Sanjay K. Chaturvedi., Kristoffer McKee., V.N.A. Naikan.

MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) Capitão-Tenente Arthur Pinheiro de Araujo Costa Mestrando em Sistemas em Computação -IME

Passos previstos para obtenção do MAIRCA

Passo1: Determinar a Matriz de Decisão;

Passo2: Definição de preferências para a escolha de alternativas PAi;

Passo3: Determinar a Matriz de DecisãoTeórica(Tp);

Passo4: Determinar a Matriz de Decisão Real(Tr);

Passo5: Determinar a Matriz de Decisão do Gap(G);e

Passo6: Ranqueamento das alternativas.

Apresentação da Matriz de Decisão – Carteira

Matriz de decisão				
A+:	Custo	Lucro	Custo	Lucro
Ativos	risco	rentabilidade	volatilidade	liquidez
ALPA4.SA	-0.0724	-0.0027	0.5066	-0.0809
MGLU3.SA	-0.1049	0.0020	0.8132	-0.0061
AMER3.SA	-0.1006	0.0015	0.9168	-0.0505
CEAB3.SA	-0.0858	0.0013	0.5595	-0.0057
LREN3.SA	-0.0560	-0.0050	0.3401	-0.1099
AMAR3.SA	-0.0866	0.0023	0.4993	-0.0144

Passo 2 - Definição de preferências para a escolha de alternativas PAi

	Matriz de d	lecisão normali:	zada		
Ativos	Lucro	Lucro	Custo	Lucro	
Auvos	risco	rentabilidade	volatilidade	liquidez	$\frac{1}{n^{x}} = \begin{cases} \frac{\min x_{kj}}{x_{ij}} & if j \in \mathcal{B} \end{cases}$
ALPA4.SA	1.4493	1.8327	0.6714	1.3581	$x = \int \frac{k}{x_{ij}} if j \in \mathcal{B}$
MGLU3.SA	1.0000	-2.4530	0.4183	18.1277	$\frac{n_{ij}^{x} = \begin{cases} \frac{x_{ij}^{x_{ij}}}{m_{\text{over}}} & \text{if } j \in \mathcal{H} \end{cases}$
AMER3.SA	1.0429	-3.2028	0.3710	2.1755	$\max_{k} x_{kj}$
CEAB3.SA	1.2226	-3.9537	0.6079	19.4142	^
LREN3.SA	1.8711	1.0000	1.0000	1.0000	
AMAR3.SA	1.2112	-2.1738	0.6812	7.6481	

Para se obter esse índice, que deve ser gerado através da

fómula: $P_{A_i} = \frac{1}{m}; \sum_{i=1}^{n} P_{A_i}$

 $P_{A_i} = \frac{1}{m}; \sum_{i=1}^{m} P_{A_i} = 1, i = 1, 2, ..., m$

dessa forma temos: 1/6

portanto teremos: 0,16

Passo3: Determinar a Matriz de Decisão Teórica (Tp)

Lucro	Lucro	Lucro	Lucro	Lucro
Valor	Rentabilidade	Risco	Volatilidade	Liquidez
0,02996	0,1717	0,0478	0,0955	0,0644

Uma vez obtidos os índices, temos condições de criar a matriz de decisão Real e para isso, temos as fórmulas a serem seguidas como constam o presente artigo:

$$t_{rij} = t_{pij} \cdot \left(\frac{x_{ij} - x_j^{\min}}{x_j^{\max} - x_j^{\min}} \right)$$

$$t_{rij} = t_{pij} \cdot \left(\frac{x_{ij} - x_j^{\text{max}}}{x_j^{\text{min}} - x_j^{\text{max}}} \right)$$

$$T_r = egin{array}{ccccc} & C_1 & C_2 & ... & C_n \ & A_1 & t_{r11} & t_{r12} & ... & t_{r1n} \ & t_{r21} & t_{r22} & & t_{r2n} \ & ... & ... & ... & ... \ & t_{rm1} & t_{rm2} & ... & t_{rmn} \ \end{bmatrix}$$

Matriz de Decisão Real

Matriz de decisão Real (Tr)				
Ativos	Custo	Lucro	Custo	Lucro
Ativos	risco	rentabilidade	volatilidade	liquidez
ALPA4.SA	0.0020	0.0183	0.0461	0.0102
MGLU3.SA	0.0061	0.0568	0.0117	0.0366
AMER3.SA	0.0056	0.0530	0.0000	0.0209
CEAB3.SA	0.0037	0.0506	0.0402	0.0367
LREN3.SA	0.0000	0.0000	0.0648	0.0000
AMAR3.SA	0.0038	0.0590	0.0469	0.0337

Memorial de Cálculos

Pesos de cada critério			
W1	0.1303		
W2	0.3211		
W3	0.3438		
W4	0.2047		

Obtenção dos Pesos

$$w_j = \frac{E_j}{\sum_k E_k}$$

Formula 1 – Quadro 1, quando o critério maximiza o lucro, Temos:

=\$D\$15*(D5-MÍNIMO(\$D\$5:\$D\$10)) /
(MÁXIMO(\$D\$5:\$D\$9)- MÍNIMO(\$D\$5:\$D\$9))
Formula 2 – Quadro 1, quando o critério minimiza o lucro, Temos:

=\$G\$15*(G5-

(MÁXIMO(\$G\$5:\$G\$10)))/(MÍNIMO(\$G\$5:\$G\$9)-(MÁXIM O(\$G\$5:\$G\$9)))

- Nota 1 Esse mesmo processo de ocorrer para cada critério, de cada linha.
- Nota 2 Para calcular a matriz (TP), é necessário obter os pesos de cada critério, portanto, usa – se o critério que se deseja calcular e divide – se pelo índice PAI.

Passo 5: Determinar a Matriz de Decisão do Gap(G)

Matriz de decisão do Gap (G = Tp - Tr)				
Ativos	risco	rentabilidade	volatilidade	liquidez
ALPA4.SA	0.0041	0.0406	0.0187	0.0265
MGLU3.SA	0.0000	0.0021	0.0532	0.0001
AMER3.SA	0.0005	0.0060	0.0648	0.0158
CEAB3.SA	0.0024	0.0084	0.0247	0.0000
LREN3.SA	0.0061	0.0590	-0.0059	0.0367
AMAR3.SA	0.0023	0.0000	0.0120	0.0031

Para compor esta tabela, temos que seguir a fórmula abaixo:

$$G = T_p - T_r = \begin{bmatrix} g_{11} & g_{12} & \dots & g_{1n} \\ g_{21} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{m1} & g_{m2} & \dots & g_{mn} \end{bmatrix} = \begin{bmatrix} t_{p11} - t_{r11} & t_{p12} - t_{r12} & \dots & t_{p1n} - t_{r1n} \\ t_{p21} - t_{r21} & t_{p22} - t_{r22} & \dots & t_{p2n} - t_{r2n} \\ \dots & \dots & \dots & \dots \\ t_{pm1} - t_{rm1} & t_{pm2} - t_{rm2} & \dots & t_{pmn} - t_{rmn} \end{bmatrix}$$

Em outras palavras, essa fórmula é a diferença de cada critério da matriz(TP), pelo valor de cada elemento da matriz(TR)

Passo 6: Ranqueamento das alternativas

Para compor esta tabela, temos que seguir a fórmula abaixo:

• Basta somar as linhas para cada critério da matriz (Gap)

Somatório d	Rank	
ALPA4.SA	0.0899	2
MGLU3.SA	0.0554	4
AMER3.SA	0.0872	3
CEAB3.SA	0.0354	5
LREN3.SA	0.0959	1
AMAR3.SA	0.0174	6

Etapa – 1 - Criação do Banco de dados do Projeto (DataSet)

- Cria se um data frame, através da função yf() do R e incorporando as ações que fazem parte da matriz: Acoes
- Transformar esse data frame num table, chamado: pesquisa.

Etapa – 2- Criação das colunas(Critérios)

- risco Para criar essa informação foi usado como ponto de partida a variável price_adjusted. E no que diz respeito ao risco foi usada a função da linguagem R, denominada sd() que corresponde ao desvio padrão. Portanto, através do Script R abaixo, cria-se a informação risco.
- Atribuindo a coluna risco para a base pesquisa, criando através da função sd() o Desvio padrão, "entendido como media de Risco a partir da coluna - price_adjusted. pesquisa[, risco := sd(price_adjusted), by = ticker]

Etapa – 2- Criação das colunas(Critérios)

- risco Para criar essa informação foi usado como ponto de partida a variável price_adjusted. E no que diz respeito ao risco foi usada a função da linguagem R, denominada sd() que corresponde ao desvio padrão. Portanto, através do Script R abaixo, cria-se a informação risco.
- Atribuindo a coluna risco para a base pesquisa, criando através da função sd() o Desvio padrão, "entendido como media de Risco a partir da coluna - price_adjusted. pesquisa[, risco := sd(price_adjusted), by = ticker]

Etapa – 2- Criação das colunas(Critérios)

rentabilidade - Para calcular a rentabilidade de um determinado ativo, deve - se antes obter os retornos gerados por ele, ou seja, a quantidade de receita que esse ativo gerou na linha do tempo. Abaixo pode - se observar o Script R responsável por obter os retornos de um determinado ativo gerando como output um data frame denominado Ret que contém índices que correspondem ao percentual de rendimento, podendo ser +, caso houve rendimento, - caso seu valor de venda tenha sido menor ao seu valor de compra.

Abaixo, podemos observar uma pequena amostra dos dados que são gerados

através do script abaixo:

Ret <-data.frame(retorno(pesquisa))

Etapa – 2- Criação das colunas(Critérios)

```
    FUNÇÃO retorno
        retorno = function(Df){
            ret <- Df %>%
            Cl() %>%
            log() %>%
            diff()
            return(ret)
        }
```


Etapa – 2- Criação das colunas(Critérios)

Volatilidade

Para obter o cálculo desse índice, foi usada a função do R chamada: ugarchspec(), que segundo a documentação, diz respeito a uma especificação GARCH univariada. A especificação GARCH, trata - se de um modelo de previsão de volatilidade. Uma vez aplicado esse conceito presente no script R, o objeto DF_gspec, criado:

DF_gspec <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model=list("sGARCH"), distribution.model = "norm")

Etapa – 2- Criação das colunas(Critérios)

Volatilidade

Na sequência, cria - se um novo objeto, chamado Df_gfit, através da função do R: ugarchfit(), que na sua documentação diz respeito ao ajuste GARCH univariado.

Df_gfit <- ugarchfit(data = Ret, spec = DF_gspec).

Observa - se que, foi passado para função para popular o parâmetro data, o data frame Ret, criado anteriormente, que faz uso dos retornos das ações, e o parâmetro spec, que recebe o objeto criado anteriormente que faz referência ao modelo GARCH.

Etapa – 2- Criação das colunas(Critérios)

Volatilidade

Após definir esses objetos, então, cria-se a variável volat, contendo os índices de volatilidade através do script:

volat <- sigma(Df_gfit) * sqrt(252)</pre>

A função sigma() do R, de acordo com a sua documentação, é usada para, extrair o desvio padrão residual, e no caso do sqrt(252), significa que se trata de um desvio anual. Portanto, o objeto volat, criado anteriormente, contém a volatilidade.

