1. Let P(n) be the statement that the train stops at station n. Basis step: We are told that P(1) is true. Inductive step: We are told that P(n) implies P(n+1) for each $n \ge 1$. Therefore, by the principle of mathematical induction, P(n) is true for all positive integers n. **3.** a) $1^2 = 1 \cdot 2 \cdot 3/6$ b) Both sides of P(1)

positive integer n. 5. Let P(n) be " $1^2 + 3^2 + \cdots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$." Basis step: P(0) is true because $1^2 = 1 = (0+1)(2 \cdot 0+1)(2 \cdot 0+3)/3$. Inductive step: Assume that P(k) is true. Then $1^2 + 3^2 + \cdots + (2k+1)^2 + [2(k+1)+1]^2 = (k+1)(2k+1)(2k+3)/3 + (2k+3)^2 = (2k+3)[(k+1)(2k+1)/3 + (2k+3)] = (2k+3)(2k^2+9k+10)/3 = (2k+3)(2k+5)(k+2)/3 = [(k+1)+1][2(k+1)+1][2(k+1)+3]/3$.

7. Let P(n) be " $\sum_{j=0}^{n} 3 \cdot 5^{j} = 3(5^{n+1} - 1)/4$." Basis step: P(0) is true because $\sum_{j=0}^{0} 3 \cdot 5^{j} = 3 = 3(5^{1} - 1)/4$. Inductive step: Assume that $\sum_{j=0}^{k} 3 \cdot 5^{j} = 3(5^{k+1} - 1)/4$. Then $\sum_{j=0}^{k+1} 3 \cdot 5^{j} = (\sum_{j=0}^{k} 3 \cdot 5^{j}) + 3 \cdot 5^{k+1} = 3(5^{k+1} - 1)/4 + 3 \cdot 5^{k+1} = 3(5^{k+1} + 4 \cdot 5^{k+1} - 1)/4 = 3(5^{k+2} - 1)/4$. 9. a) $2 + 4 + 4 + 4 \cdot 5^{k+1} = 3(5^{k+1} - 1)/4$.

 $(-1)^k(k+1)(k+2)/2$. **15.** Let P(n) be " $1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1) = n(n+1)(n+2)/3$." *Basis step:* P(1) is true because $1 \cdot 2 = 2 = 1(1+1)(1+2)/3$. *Inductive step:* Assume that P(k) is true. Then $1 \cdot 2 + 2 \cdot 3 + \cdots + k(k+1) + (k+1)(k+2) = [k(k+1)(k+2)/3] + (k+1)(k+2) = (k+1)(k+2)[(k/3)+1] = (k+1)(k+2)(k+3)/3$. **17.** Let P(n) be the statement that

(k+1)(k+2)(k+3)/3. **17.** Let P(n) be the statement that $1^4+2^4+3^4+\cdots+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30$. P(1) is true because $1\cdot 2\cdot 3\cdot 5/30=1$. Assume that P(k) is true. Then $(1^4+2^4+3^4+\cdots+k^4)+(k+1)^4=k(k+1)(2k+1)(3k^2+3k-1)/30+(k+1)^4=[(k+1)/30][k(2k+1)(3k^2+3k-1)+30(k+1)^3]=[(k+1)/30](6k^4+39k^3+91k^2+89k+30)=[(k+1)/30](k+2)(2k+3)[3(k+1)^2+3(k+1)-1]$. This demonstrates that P(k+1) is true. **19. a)** $1+\frac{1}{4}<2-\frac{1}{2}$ **b)** This is true be-

because k > 4. 23. By inspection we find that the inequality $2n + 3 \le 2^n$ does not hold for n = 0, 1, 2, 3. Let P(n) be the proposition that this inequality holds for the positive integer n. P(4), the basis case, is true because $2 \cdot 4 + 3 = 11 \le 16 = 2^4$. For the inductive step assume that P(k) is true. Then, by the inductive hypothesis, $2(k + 1) + 3 = (2k + 3) + 2 < 2^k + 2$. But because $k \ge 1$, $2^k + 2 \le 2^k + 2^k = 2^{k+1}$. This shows that P(k+1) is true. 25. Let P(n) be " $1 + nh \le (1+h)^n$, h > -1."

P(k+1) is true. **25.** Let P(n) be " $1+nh \le (1+h)^n$, h > -1." Basis step: P(0) is true because $1+0 \cdot h = 1 \le 1 = (1+h)^0$. Inductive step: Assume $1+kh \le (1+h)^k$. Then because (1+h) > 0, $(1+h)^{k+1} = (1+h)(1+h)^k \ge (1+h)(1+kh) = 1 + (k+1)h + kh^2 \ge 1 + (k+1)h$. **27.** Let P(n) be

multiple of 2 (by definition), hence, divisible by 2. **33.** Let P(n) be " $n^5 - n$ is divisible by 5." Basis step: P(0) is true because $0^5 - 0 = 0$ is divisible by 5. Inductive step: Assume that P(k) is true, that is, $k^5 - 5$ is divisible by 5. Then $(k+1)^5 - (k+1) = (k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1) - (k+1) = (k^5 - k) + 5(k^4 + 2k^3 + 2k^2 + k)$ is also divisible by 5, because both terms in this sum are divisible by 5. **35.** Let P(n) be

fore, $x \in \left(\bigcap_{j=1}^k B_j\right) \cap B_{k+1} = \bigcap_{j=1}^{k+1} B_j$. 41. Let P(n) be " $(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B)$." Basis step: P(1) is trivially true. Inductive step: Assume that P(k) is true. Then $(A_1 \cup A_2 \cup \cdots \cup A_k \cup A_{k+1}) \cap B = [(A_1 \cup A_2 \cup \cdots \cup A_k) \cup A_{k+1}] \cap B = [(A_1 \cup A_2 \cup \cdots \cup A_k) \cap B] \cup (A_{k+1} \cap B) = [(A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_k \cap B)] \cup (A_{k+1} \cap B) = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_k \cap B) \cup (A_{k+1} \cap B).$

59. Basis step: For k = 0, $1 \equiv 1 \pmod{m}$. Inductive step: Suppose that $a \equiv b \pmod{m}$ and $a^k \equiv b^k \pmod{m}$; we must show that $a^{k+1} \equiv b^{k+1} \pmod{m}$. By Theorem 5 from Section 4.1, $a \cdot a^k \equiv b \cdot b^k \pmod{m}$, which by definition says that $a^{k+1} \equiv b^{k+1} \pmod{m}$. **61.** Let P(n) be " $[(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land (p_3 \rightarrow$

*Warning: 63 is a pretty long problem

 $(p_1 \wedge \cdots \wedge p_{k-1} \wedge p_k) \rightarrow p_{k+1}$ follows from this. **63.** We will first prove the result when n is a power of 2, that is, if $n = 2^k$, $k = 1, 2, \dots$ Let P(k) be the statement $A \ge G$, where A and G are the arithmetic and geometric means, respectively, of a set of $n = 2^k$ positive real numbers. Basis step: k = 1 and n = 1 $2^1 = 2$. Note that $(\sqrt{a_1} - \sqrt{a_2})^2 \ge 0$. Expanding this shows that $a_1 - 2\sqrt{a_1a_2} + a_2 \ge 0$, that is, $(a_1 + a_2)/2 \ge (a_1a_2)^{1/2}$. *Inductive step:* Assume that P(k) is true, with $n = 2^k$. We will show that P(k + 1) is true. We have $2^{k+1} = 2n$. Now $(a_1 + a_2 + \dots + a_{2n})/(2n) = [(a_1 + a_2 + \dots + a_n)/n + (a_{n+1} + a_n)/n]$ $a_{n+2} + \cdots + a_{2n}/n$]/2 and similarly $(a_1 a_2 \cdots a_{2n})^{1/(2n)} =$ $[(a_1 \cdots a_n)^{1/n}(a_{n+1} \cdots a_{2n})^{1/n}]^{1/2}$. To simplify the notation, let A(x, y, ...) and G(x, y, ...) denote the arithmetic mean and geometric mean of x, y, ..., respectively. Also, if $x \le x'$, $y \le y'$, and so on, then $A(x, y, ...) \le A(x', y', ...)$ and $G(x, y, ...) \le G(x', y', ...)$. Hence, $A(a_1, ..., a_{2n}) =$ $A(A(a_1, \ldots, a_n), A(a_{n+1}, \ldots, a_{2n})) \ge A(G(a_1, \ldots, a_n),$ $G(a_{n+1}, \ldots, a_{2n})) \geq G(G(a_1, \ldots, a_n), G(a_{n+1}, \ldots, a_{2n})) =$ $G(a_1, \ldots, a_{2n})$. This finishes the proof for powers of 2. Now if n is not a power of 2, let m be the next higher power of 2, and let a_{n+1}, \ldots, a_m all equal $A(a_1, \ldots, a_n) = \overline{a}$. Then we have $[(a_1 a_2 \cdots a_n) \overline{a}^{m-n}]^{1/m} \le A(a_1, \dots, a_m)$, because m is a power of 2. Because $A(a_1, \ldots, a_m) = \overline{a}$, it follows that $(a_1 \cdots a_n)^{1/m} \overline{a}^{1-n/m} \leq \overline{a}^{n/m}$. Raising both sides to the (m/n)th power gives $G(a_1, ..., a_n) \le A(a_1, ..., a_n)$. 65. Basis step: