# คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานนิวเคลียร์ผลิตไฟฟ้า



# <u>รายการอุปกรณ์ชุดทดลอง</u>



## รายการอุปกรณ์

- 1. ชุด controlled rod และ ชุดแท่งเชื้อเพลิง
- 2. ตู้ควบคุม
- 3. หน้าจอแสดงผล
- 4. Emergency Switch
- 5. สวิตซ์ เปิด-ปิด เครื่อง

#### <u>หน้าจอแสดงผลและควบคุม</u>



- 1. ปรับระดับแท่งควบคุม
- 2. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 3. แสดงสถานะการเชื่อมต่อกับ Web Application
- 4. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- 5. แสดงผลระดับแท่งควบคุมและความร้อนของแท่งปฏิกรณ์
- 6. แสดงผลอุณหภูมิและความชื้น

#### Web application



- 1. ปุ่มปรับระดับแท่งควบคุม
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอุณหภูมิความร้อนแท่งปฏิกรณ์และระดับความสูง
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้านิวเคลียร์

#### หลักการและทฤษฎี

#### ปฏิกิริยานิวเคลียร์

ปฏิกิริยานิวเคลียร์ (Nuclear Reaction) คือ กระบวนการที่นิวเคลียสเกิดการเปลี่ยนแปลง องค์ประกอบซึ่งเกิดจากการยิงด้วยนิวคลีออน หรือกลุ่มนิวคลีออน หรือรังสีแกมมา แล้วทำให้มีนิวคลีออน เพิ่มเข้าไปในนิวเคลียสหรือออกไปจากนิวเคลียสหรือเกิดการเปลี่ยนแปลงจัดตัวใหม่ภายในนิวเคลียส สามารถ เขียนสมการของปฏิกิริยาได้ดังนี้

$$X + a \longrightarrow Y + b \quad \text{MSO} \quad X(a,b)Y$$

โดยที่  $\times$  เป็นนิวเคลียสที่เป็นเป้า , a คืออนุภาคที่วิ่งเข้าชนเป้า , b คืออนุภาคที่เกิดขึ้นใหม่หลังจากการชน และ Y คือนิวเคลียสของธาตุใหม่หลังจากการชน เช่น  ${}^{12}C(n,\gamma)^{13}_6C$  แสดงถึงว่า  ${}^{12}C$  เป็นนิวเคลียส เป้าหมายที่ถูกยิง  ${}^{6}C$  เป็นนิวเคลียสของธาตุใหม่ที่เกิดขึ้น n คือนิวตรอนเป็นอนุภาคที่ใช้ในการยิง และ เป็นรังสีที่เกิดขึ้นใหม่ เป็นต้น

ปฏิกิริยานิวเคลียร์ ส่วนมากเกิดจากการยิงอนุภาคแอลฟา โปรตอนและนิวตรอนเข้าไปในชน Nucleus ทำให้ Nucleus แตกออก ปฏิกิริยานิวเคลียร์ มีส่วนสำคัญคือ

- 1. ปฏิกิริยา Nuclear เกิดในนิวเคลียส ต่างจากปฏิกิริยาเคมี ซึ่งเกิดกับอิเลกตรอนภายในอะตอม
- 2. ปฏิกิริยา Nuclear ต้องใช้พลังงานเป็นจำนวนมากเพื่อจะทำให้เกิดการเปลี่ยนแปลงนิวเคลียส
- 3. แรงจากปฏิกิริยา Nuclear เป็นแรงแบบใหม่ เรียก แรงนิวเคลียร์ ซึ่งมีอันตรกริยาสูง และอาณา เขตกระทำสั้นมากและแรงนี้เกิดระหว่างองค์ประกอบของนิวเคลียสเท่านั้น
- 4. ในปฏิกิริยานิวเคลียส เราสามารถนำกฎต่างๆ มาใช้ได้เป็นอย่างดี คือ กฎการคงที่ของพลังงาน กฎ ทรงมวล และการคงที่ของประจุไฟฟ้า

#### ข้อควรจำ

1. ในสมการของปฏิกิริยานิวเคลียร์ทั้งหลายที่เกิดขึ้น ผลรวมของเลขอะตอมก่อนเกิดปฏิกิริยาและ ภายหลังปฏิกิริยาย่อมเท่ากัน และผลรวมของมวลอะตอมก่อนเกิดปฏิกิริยาและภายหลังปฏิกิริยาย่อมเท่ากัน เช่น ปฏิกิริยา  $^{14}_{7}N(\alpha,p)^{17}_{8}O$ 

| เขียนได้เป็น | $^{14}_{7}N + ^{4}_{2}He$ | <del></del> | $^{17}_{8}O+^{1}_{1}H$ |
|--------------|---------------------------|-------------|------------------------|
| เลขอะตอมคือ  | 7 + 2                     | =           | 8 + 1                  |
| มวลอะตอมคือ  | 14 + 4                    | =           | 17 + 1                 |

2. ในปฏิกิริยานิวเคลียร์นั้นพลังงาน หรือ มวล-พลังงาน (mass – energy) ก่อนปฏิกิริยาและหลัง ปฏิกิริยาจะต้องเท่ากันเสมอ ซึ่งเป็นไปตามกฎทรงพลังงาน ดังเช่น ในการยิงอนุภาคโปรตอนไปยังนิวเคลียส ของลิเทียมแล้วทำให้เกิดนิวเคลียสของฮีเลียม 2 นิวเคลียส ดังสมการ

$$_{3}^{7}Li+_{1}^{1}H$$
  $\longrightarrow$   $_{2}^{4}He+_{2}^{4}He$ 

มวลก่อนเกิดปฏิกิริยา 
$${}^{7}_{3}Li+{}^{1}_{1}H$$
 = 7.0160 u + 1.0078 u = 8.0238 u มวลหลังเกิดปฏิกิริยา  ${}^{4}_{2}He+{}^{4}_{2}He$  = 4.0026 u + 4.0026 u = 8.0052 u

มวลรวมก่อนเกิดปฏิกิริยามากกว่ามวลรวมหลังปฏิกิริยา = 8.0238 u - 8.0052 u = 0.0186 u แต่มวลสามารถเปลี่ยนเป็นพลังงานได้โดย E = 0.0186 u × 931 MeV = 17.32 MeV

โดยพลังงานที่ให้ออกมาอยู่ในรูปคลื่นแม่เหล็กไฟฟ้าที่ออกมาจากปฏิกิริยานิวเคลียร์ จึงเรียก ว่าพลังงาน นิวเคลียร์ ดังนั้นเขียนสมการข้างต้นใหม่ได้ว่า

$${}_{3}^{7}Li+{}_{1}^{1}H$$
  $\longrightarrow$   ${}_{2}^{4}He+{}_{2}^{4}He+17.32MeV$ 

ปฏิกิริยานิวเคลียร์บางปฏิกิริยาต้องดูดพลังงานเข้าไปจึงจะเกิดปฏิกิริยาขึ้นได้ เช่น

ปฏิกิริยา  ${}^{14}_{7}N(\alpha,p)^{17}_{8}O$  เขียนเป็นสมการได้

$$^{14}_{7}N + ^{4}_{2}He \longrightarrow ^{17}_{8}O + ^{1}_{1}H$$

โดยที่ 
$${}^{14}_{\phantom{0}}N$$
 มีมวล = 14.003074 น  ${}^{4}_{\phantom{0}}He$  มีมวล = 4.002603 น  ${}^{17}_{\phantom{0}}O$  มีมวล = 18.005677 น  ${}^{1}_{\phantom{0}}H$  มีมวล = 1.007825 น มวลก่อนเกิดปฏิกิริยา  ${}^{14}_{\phantom{0}}N+{}^{4}_{\phantom{0}}He$  = 14.003074 น + 4.002603 น = 18.005677 น มวลหลังเกิดปฏิกิริยา  ${}^{17}_{\phantom{0}}O+{}^{1}_{\phantom{0}}H$  = 18.005677 น + 1.007825 น = 18.006958 น ผลต่างของพลังงานก่อนเกิดปฏิกิริยากับหลังเกิดปฏิกิริยามีค่าดังนี้

$$E = (18.005677 \text{ u} - 18.006958 \text{ u}) \times 931 \text{MeV} = -1.193 \text{ MeV}$$

ดังนั้น เพื่อทำให้เกิดปฏิกิริยานิวเคลียร์นี้ขึ้นจะต้องให้พลังงานแก่  $^{14}_{7}N + ^{4}_{2}He$  โดยเขียนเป็นสมการได้

$$^{14}_{7}N + ^{4}_{2}He + 1.193 MeV$$
  $\longrightarrow$   $^{17}_{8}O + ^{1}_{1}H$ 



#### ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานนิวเคลียร์

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานนิวเคลียร์ สามารถสรุปได้ดังตารางดังนี้

| ข้อดี |                                             | ข้อจำกัด |                                          |  |
|-------|---------------------------------------------|----------|------------------------------------------|--|
| 1.    | เป็นแหล่งผลิตไฟฟ้าขนาดใหญ่ มีต้นทุนการ      | 1.       | ใช้เงินลงทุนในการก่อสร้างสูง             |  |
|       | ผลิตไฟฟ้าที่แข่งขันได้กับโรงไฟฟ้าชนิดอื่นๆ  | 2.       | จำเป็นต้องเตรียมโครงสร้างพื้นฐานและพัฒนา |  |
| 2.    | เป็นโรงไฟฟ้าที่สะอาด ไม่ก่อให้เกิดมลพิษ และ |          | บุคลากรเพื่อให้การดำเนินงานเป็นไปอย่างมี |  |
|       | ก๊าซเรือนกระจก                              |          | ประสิทธิภาพ                              |  |
| 3.    | ช่วยเสริมสร้างความมั่นคงให้ระบบผลิตไฟฟ้า    | 3.       | ต้องการการเตรียมการจัดการกากกัมมันตรังสี |  |
|       | ทำให้มีเสถียรภาพในการจัดหาเชื้อเพลิง และ    |          | และมาตรการควบคุมความปลอดภัยเพื่อ         |  |
|       | ราคาเชื้อเพลิงมีผลกระทบต่อต้นทุนการผลิต     |          | ป้องกันอุบัติเหตุ                        |  |
|       | น้อย                                        | 4.       | ยังไม่เป็นที่ยอมรับของประชาชน ประชาชนมี  |  |
| 4.    | มีแหล่งเชื้อเพลิงและราคาไม่ผันแปรมากเมื่อ   |          | ข้อกังวลใจในเรื่องความปลอดภัย            |  |
|       | เทียบกับเชื้อเพลิงฟอสซิล                    |          |                                          |  |

## ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON



3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา



4. เข้า Web application URL : <a href="https://encamppowerplant.com/lablite/nuclear">https://encamppowerplant.com/lablite/nuclear</a>



และกดปุ่มเชื่อมต่อ

### กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน



### เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่างๆ และคีย์การเชื่อมต่อ



และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect



5. กดปุ่ม ควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application



6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา



7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

### วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานนิวเคลียร์
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างการเกิดปฏิกิริยานิวเคลียร์ กับพลังงานที่สามารถผลิตได้

#### วิธีการทดลอง

- 1. เริ่มต้น ปรับตำแหน่งของชุด controlled rod ลงมาด้านล่าง รอจนกระทั่งชุด controlled rod เคลื่อนที่ลงมาจนสุด
- 2. ตั้งค่าปรับระยะตำแหน่งของชุด controlled rod ให้เคลื่อนที่ละระดับ ทำการบันทึกค่าอุณหภูมิ และกำลังไฟฟ้าของแกนปฏิกรณ์จำลอง อ่านค่าระยะที่เคลื่อนที่ขึ้น (อ่านและบันทึกผล 3 ค่า เพื่อ นำไปหาค่าเฉลี่ย)



- 3. ปรับตำแหน่งของชุด controlled rod อีก 2 ค่า ทำการบันทึกค่าอุณหภูมิและกำลังไฟฟ้าของแกน ปฏิกรณ์จำลอง วัดค่าระยะที่เคลื่อนที่ขึ้น
- 4. หยุดการทำงานของเครื่อง

### ตารางบันทึกผลการทดลอง

| ลำดับ | ระยะห่างของชุด<br>controlled rod<br>(cm.) | ระดับอุณหภูมิ<br>(°C) | กำลังไฟฟ้าที่ผลิตได้<br>(KW) |
|-------|-------------------------------------------|-----------------------|------------------------------|
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |
|       |                                           |                       |                              |

| การวิเคราะห์ผลการทดลอง |        |
|------------------------|--------|
|                        | •••••  |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        | •••••• |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
| สรุปผลการทดลอง         |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        | •••••  |
|                        | •••••  |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        |        |
|                        | •••••  |
|                        | •••••  |

.....