			The TTES	F Procedure	е					
Variable: FP										
CR	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum			
В		12	0,8750	0,6287	0,1815	0,0700	2,2800			
G		12	2,4717	0,7920	0,2286	0,5800	3,5000			
Diff (1-2)	Pooled		-1,5967	0,7150	0,2919					
Diff (1-2)	Satterthwaite		-1,5967		0,2919					

CR	Method	Mean	95	95% CL Mean		Sto	d Dev 95		95% CL Std Dev		
В		0,8750	0.4	756	1.	2744	(0,6287	0,4	1453	1,0674
G		2,4717	1,9	684	2.	9749	(0,7920	0,5	5611	1,3448
Diff (1-2)	Pooled	-1,5967	-2.2	-2,2020		9913	0,7150		0,5530		1,0120
Diff (1-2)	Satterthwaite	-1,5967	-2.2	2039 -0,9895		9895					
	Method	Varian	ices		DF	t Va	lue	Pr >	ltl		
	Pooled	Equal			22	-5	.47	<,0	001		
	Satterthwait	t e Unequ	al	20,9	922	-5	.47	<,0	001		

Equality of Variances									
Method	Num DF	Den DF	F Value	Pr > F					
Folded F	11	11	1,59	0,4558					

11

-5.47

0.0002

Unequal

Cochran

RUN;

(가) Equality of Variance 에 대한 검정으로 F value가 1.59, 유의확률(Pr〉F)이 0.4558(〉0.05) 이므로 등분산 검정을 시행하여야 한다. 즉, 'Pooled'에 대한 method에 의하여 두 모평균의 차이에 대한 유의학률이 매우 작으므로 귀무가설을 기각한다. 따라서 신용등급이 FP 지표에 영향을 준다고 결론지을 수 있다. (나) Pooled Method에 의한 모평균 차이의 95% 신뢰구간은 (-2.2020, -0.9913) 이다. 신뢰구간에 0이 포함되지 않음을 추가적으로 확인할 수 있다.

The TTEST Procedure Variable: PROTEIN RAWROASTED Method N Mean Std Dev Std Err Minimum 58,9000 6,6072 2.0894 44,0000 69,0000 RO 10 55.0000 4.6188 1.4606 47.0000 63.0000 Diff (1-2) Pooled 3.9000 5.7004 2.5493 Diff (1-2) 3,9000 2,5493 Satterthwaite

RAWROASTED	Method	Mean	Mean 95% CL Mean		Std Dev	95% CL	Std Dev
RA		58,9000	54,1735	63,6265	6,6072	4.5447	12,0622
RO		55,0000	51,6959	58,3041	4,6188	3,1770	8,4321
Diff (1-2)	Pooled	3,9000	-1,4559	9,2559	5,7004	4,3073	8,4299
Diff (1-2)	Satterthwaite	3,9000	-1,5015	9,3015			

Method	variances	DF	t value	Pr > Iti
Pooled	Equal	18	1,53	0,1434
Satterthwaite	Unequal	16,101	1,53	0,1455
Cochran	Unequal	9	1,53	0,1604

	Equality of Variances									
Method	Num DF	Den DF	F Value	Pr > F						
Folded F	9	9	2,05	0,3010						

T TEST 결과 등분산가정을 따르며, Pooled Method에 의한 유의확률이 0.05보다 크므로 귀무가설을 채택한다. 따라서 생 땅콩과 볶은 땅콩의 단백질 함량의 평균에는 차이가 없다고 결론지을 수 있다.

PROC UNIVARIATE DATA=MYLIB.DEER NORMAL PLOT; VAR DIFF;

RUN;

DATA MYLIB.DEER2;

INPUT HIND_FORE \$ LEG @@;

CARDS;

H 142 H 140 H 144 H 144 H 142 H 146 H 149 H 150
H 142 H 148
F 138 F 136 F 147 F 139 F 143 F 141 F 143 F 145
F 136 F 146
;

RUN;

PROC TTEST DATA=MYLIB.DEER2 COCHRAN; CLASS HIND_FORE; VAR LEG;

RUN;

UNIVARIATE 프로시저

표준편차	3,0568684	분산	9,3444444
왜도	-1,3466487	첨도	0,78935489
제곱합	193	수정 제곱합	84,1
변동계수	92,6323759	평균의 표준 오차	0,96666667
	기	리통계 축도	

기본 통계 측도									
위치	측도	변이측도							
평균	3,300000	표준편차	3,05687						
중위수	4,500000	분산	9,34444						
최빈값	5,000000	범위	9,00000						
		사분위수 범위	3,00000						

위치모수 검정: Mu0=0								
검정		통계량	p 값					
스튜던트의 t	t	3,413793	Pr > [t]	0,0077				
부호	М	3	Pr >= M	0,1094				
부호 순위	S	23,5	Pr >= S	0,0117				

Univariate으로 확인한 결과 양측검정의 p-value가 0.0077으로 유의수준 0.05보다 작기 때문에 기각역에 존재한다. 따라서 H_0 을 기각한다. 즉 '모평균은 0이 아니다.' 라고 말할 수 있다. 즉 사슴의 앞다리와 뒷다리 길이의 평균에는 차이가 있음을 알수 있다.

N	Мє	ean	Std	Dev	Std	Err	Minimum		ım	Max	cimum
10	3,3	000 3,0569 0,9667 -3,0000		00	6	3,0000					
Mean 95% CL Mean Std Dev 95% CL Std Dev											
3,3	000	1,1	132	5,486	8	3,0569 2,102		026	5	,5807	

PROC TTEST도 같은 결과를 보여준다. T 값이 3.41로 이에 대한 유의확률이 0.0077이므로 귀무가설 $H_0: \mu_1 = \mu_2$ 을 기각할수 있다. 따라서 사슴의 뒷다리가 앞다리보다 길이가 더 길다고볼 수 있다. 또한 대립가설을 $H_1: \mu_1 - \mu_2 > 0$ 로 하는 경우유의확률은 0.0077/2 = 0.00385으로 마찬가지로 대립가설을 채택한다. 따라서 사슴의 뒷다리의 평균 길이가 앞다리보다 길다고 결론지을 수 있다.

$$\overline{x_1} = 32.5, \ \overline{x_2} = 36.4$$

$$\left(32.5 - Z_{0.0125} \frac{3}{\sqrt{20}}, 32.5 + Z_{0.0125} \frac{3}{\sqrt{20}}\right) = (30.99, 34.00)$$

$$\left(36.4 - Z_{0.0125} \frac{4}{\sqrt{25}}, 36.4 + Z_{0.0125} \frac{4}{\sqrt{25}}\right) = (34.60, 38.19)$$

(나)

$$\left((32.5 - 36.4) - Z_{0.0125} \sqrt{\frac{3^2}{20} + \frac{4^2}{25}}, \right.$$

$$(32.5 - 36.4) + Z_{0.0125} \sqrt{\frac{3^2}{20} + \frac{4^2}{25}} \right)$$

$$= (-6.24, -1.55)$$

(L)
$$H_0: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$-3.7355 = \frac{-3.9}{\sqrt{\frac{3^2}{20} + \frac{4^2}{25}}} < -Z_{0.0125} = -2.2414$$

검정통계량이 기각치에 존재하므로 대립가설을 채택한다. 따라서 전기처리를 한 후의 철사가 유의수준 5% 하에서 평균 강도가 더 높다고 볼 수 있다. 이 때의 p-value는 0.000093이다.

<5-9>

DATA MYLIB.RICE;

INPUT KIND \$ CROP @@;

CARDS;

A 31 A 34 A 29 A 26 A 32 A 35 A 38 A 34 A 30 A 29 A 32 A 31

B 26 B 24 B 28 B 29 B 30 B 29 B 32 B 26 B 31 B 29 B 32 B 28

RUN;

PROC TTEST DATA=MYLIB.RICE COCHRAN;

CLASS KIND; VAR CROP;

RUN:

,			The TTES	T Procedure	е		
			Variable	e: CROP			
KIND	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
Α		12	31,7500	3,1945	0,9222	26,0000	38,0000
В		12	28,6667	2,4618	0,7107	24,0000	32,0000
Diff (1-2)	Pooled		3,0833	2,8518	1,1642		
Diff (1-2)	Satterthwaite		3,0833		1,1642		

KIND	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
Α		31,7500	29,7203	33,7797	3,1945	2,2629	5,4238
В		28,6667	27,1025	30,2308	2,4618	1,7439	4,1799
Diff (1-2)	Pooled	3,0833	0,6689	5,4978	2,8518	2,2055	4,0363
Diff (1-2)	Satterthwaite	3,0833	0,6598	5,5069			

Method	Variances	DF	t Value	Pr > [t]	
Pooled	Equal	22	2,65	0,0147	
Satterthwaite	Unequal	20,659	2,65	0,0152	
Cochran	Unequal	11	2.65	0.0227	

Equality of Variances							
Method	Num DF Den DF F Value Pr						
Folded F	11	11	1,68	0,4009			

(가) 분산의 동일성에 대한 검증을 통해 p-value가 0.4 이므로 등분산 가정을 사용해야 함을 알 수 있다. Pooled method에 의한 단측검정 p-value가 0.0147/2으로 0.05보다 작으므로 유의수준 5% 하에서 귀무가설을 기각하고 대립가설을 채택한다. 따라서 A품종이 B품종 보다 평균 수확량이 더 많다고 볼 수 있다.

(나) 위의 결과에서 Pooled method에 의한 95% 신뢰구간은 (0.6689, 5.4978) 이며 0이 이 구간에 존재하지 않음을 추가적으로 확인할 수 있다.

<5-12>

DATA MYLIB.DIABETES;

INPUT ID PRERUN POSTRUN @@;

CARDS;

1 1.45 0.19 2 2.37 1.03

3 0.79 0.15 4 0.77 0.35

5 0.93 1.19 6 0.77 0.27

7 1.35 0.67 8 0.33 0.58

9 0.80 0.39 10 1.42 0.68

11 2.50 1.58 12 0.51 0.82

13 0.41 1.58 14 2.83 1.28

15 1.56 0.91 16 1.01 2.02

17 1.93 0.28 18 0.81 0.24

19 1.35 0.12 20 3.48 0.36

RUN;

PROC TTEST DATA=MYLIB.DIABETES;

PAIRED PRERUN*POSTRUN;

RUN;

The TTEST Procedure

Difference: PRERUN - POSTRUN

N	Me	an	Std Dev		ev :	Std I	Err	Minimur		ım	Maximum
20	0,63	6340		0,9717		0,21	0,2173 -1,1700		00	3,1200	
Ме	ean	95	% CI	L M	ean	Sto	d D	ev 95%		% CL	_ Std Dev
Мє	ean	95	5% CL Mear		ean			% CL	6 CL Std Dev		
0,6	340	0,1	0,1792 1,0		0888	888 0,9717		0.	7390	1,4192	
			D	DF t Va		lue	Pr	>	t		

T 값이 2.92이고 이에 대응되는 유의확률이 0.0088이므로, 귀무가설 $H_0: \mu_1 = \mu_2$ 을 기각할 수 있다. 따라서 5% 유의수준하에서 500m 달리기를 한 후의 당뇨의 양이 하기 전보다 줄어든다고 결론지을 수 있다.

<5-13>

DATA MYLIB.ENERGY;

INPUT SLEEP \$ ENERGY @@;

CARDS;

U 35.3 U 35.9 U 37.2 U 33.0 U 31.9 U 33.7 U 36.0 U 35.0

U 33.3 U 36.6 U 37.9 U 35.6 U 29.0 U 33.7 U 35.7

L 32.4 L 34.0 L 34.4 L 31.8 L 35.0 L 34.6 L 34.6 L 33.5 L 33.6 L 31.5 L 33.8 ; RUN; PROC TTEST DATA=MYLIB.ENERGY COCHRAN;

CLASS SLEEP;
VAR ENERGY;

RUN;

	The TTEST Procedure									
Variable: ENERGY										
SLEEP	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum			
L		11	33,5636	1,1784	0,3553	31,5000	35,0000			
U		15	34,6533	2,2778	0,5881	29,0000	37,9000			
Diff (1-2)	Pooled		-1,0897	1,8987	0,7537					
Diff (1-2)	Satterthwaite		-1,0897		0,6871					

SLEEP	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
L		33,5636	32,7720	34,3553	1,1784	0,8233	2,0680
U		34,6533	33,3919	35,9147	2,2778	1,6676	3,5923
Diff (1-2)	Pooled	-1,0897	-2,6453	0,4659	1,8987	1,4826	2.6414
Diff (1-2)	Satterthwaite	-1,0897	-2,5147	0,3353			

Method	Variances	DF	t Value	Pr > [t]
Pooled	Equal	24	-1,45	0,1612
Satterthwaite	Unequal	21,984	-1,59	0,1270
Cochran	Unequal		-1,59	0,1375

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	14	10	3,74	0,0420			

(가) Equality of Variances에 대한 검정으로 유의확률 0.0420 이 0.05보다 작으므로 모분산이 같다는 귀무가설을 기각해야 한다. 따라서 Method에서 Satterthwaite 혹은 Cochran를 선택해야 한다. 한편, H_0 : $\sigma_1^2 \ge \sigma_2^2$, H_1 : $\sigma_1^2 < \sigma_2^2$ 로 둘 때,

$$F = \frac{s_1^2}{s_2^2} = 0.2676 < F_{1-0.05}(11 - 1.15 - 1) = 0.3490$$

검정통계량이 기각치에 존재하므로 대립가설을 채택한다. 따라 서 5% 유의수준 하에서 7시간 이상 수면을 취하는 집단의 분 산이 7시간 미만 수면을 취하는 집단보다 크다고 할 수 있다.

(나)

$$\begin{pmatrix} \frac{1}{F_{0.0125}(n_1-1,n_2-1)} \frac{s_1^2}{s_2^2}, F_{0.0125}(n_1-1,n_2-1) \frac{s_1^2}{s_2^2} \end{pmatrix} \\ \begin{pmatrix} \frac{1}{F_{0.0125}(11-1,15-1)} \frac{1.17^2}{2.27^2}, F_{0.0125}(11-1,15-1) \frac{1.17^2}{2.27^2} \end{pmatrix} \\ \begin{pmatrix} \frac{1}{3.7379} \frac{1.17^2}{2.27^2}, & 3.7379 \frac{1.17^2}{2.27^2} \end{pmatrix} \\ (0.071601, & 1.000439) \end{pmatrix}$$