Линейная алгебра 1 курс

Материалы для подготовки к коллоквиуму Определения

1 модуль

1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить.

Рассмотрим матрицы A размера $n \times p$ и B размера $p \times k$. Тогда матрица C размера $n \times k$, где

$$\forall i = \overline{1, n}, \forall j = \overline{1, k} : c_{ij} = \sum_{l=1}^{p} a_{il} \cdot b_{lj},$$

является произведением матриц A и B.

Эта операция не коммутативна. Рассмотрим матрицы

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 и $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$.

Тогда

$$A \cdot B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = A, \quad B \cdot A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = B, \quad A \neq B.$$

2. Дать определения ступенчатого вида матрицы и канонического (улучшенного ступенчатого) вида матрицы.

Матрица имеет ступенчатый вид, если номера столбцов первых ненулевых элементов всех строк (которые называются ведущими) образуют возрастающую последовательность, а все нулевые строки расположены в нижней части матрицы.

Матрица имеет улучшенный ступенчатый (канонический) вид, если она имеет ступенчатый вид, все ведущие элементы равны 1, и в столбце с ведущим элементом все остальные элементы равны 0.

3. Перечислить элементарные преобразования строк матрицы.

- 1) умножение *i*-й строки матрицы на число $\alpha \neq 0$;
- 2) перестановка двух строк в матрице;
- 3) добавление к i-й строке матрицы её k-й строки с коэффициентом α .

4. Сформулировать теорему о методе Гаусса (алгоритм приводить не нужно).

Любую конечную матрицу можно элементарными преобразованиями привести к ступенчатому (и каноническому) виду.

5. Дать определения перестановки и подстановки.

Всякое расположение чисел $1, \ldots, n$ в определённом порядке называется перестановкой.

Подстановкой называется взаимно однозначное (биективное) отображение чисел $1, \ldots, n$ в себя.

6. Дать определения знака и чётности подстановки.

Знак подстановки $\mathrm{sgn}\,(\alpha) = (-1)^N,$ где N – число инверсий в ней.

Подстановка α называется чётной, если ${\rm sgn}\,(\alpha)=1,$ а иначе – нечётной.

7. Выписать общую формулу для вычисления определителя произвольного порядка.

$$\det A = \sum_{\sigma \in \mathbf{S}_n} \operatorname{sgn}(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$$

8. Что такое алгебраическое дополнение?

Алгебраическим дополнением элемента a_{ij} называется число $(-1)^{i+j}M_{ij}$, где M_{ij} – дополняющий минор элемента a_{ij} .

9. Выписать формулы для разложения определителя по строке и по столбцу.

Разложение по строке: Для любой фиксированной строки і справедливо, что

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij}.$$

Pазложение по столбиу: Для любого фиксированного столбиа j справедливо, что

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij}.$$

10. Что такое фальшивое разложение?

Для
$$k \neq i$$
 верно, что $\sum_{j=1}^{n} a_{ij} A_{kj} = 0$.
Для $k \neq j$ верно, что $\sum_{i=1}^{n} a_{ij} A_{ik} = 0$.

11. Выписать формулы Крамера для квадратной матрицы произвольного порядка. Когда с их помощью можно найти решение СЛАУ?

Если Ax = b – совместная СЛАУ, то $x_i \det A = \Delta_i$, где Δ_i – определитель матрицы, в которой на месте i-го столбца стоит столбец b правых частей уравнений.

Отсюда следует, что

$$\forall i = \overline{1, n} : x_i = \frac{\Delta_i}{\det A}.$$

Решение СЛАУ можно найти тогда, когда $\det A \neq 0$.

12. Дать определение союзной матрицы.

Союзной (присоединённой) называется матрица

$$\tilde{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T},$$

где A_{ij} – алгебраическое дополнение элемента a_{ij} .

13. Дать определение обратной матрицы. Сформулировать критерий её существования.

Обратной к квадратной матрице A называется матрица A^{-1} , такая что $A \cdot A^{-1} = A^{-1} \cdot A = E$. Для матрицы A существует обратная $A^{-1} \Leftrightarrow \det A \neq 0$.

14. Выписать формулу для нахождения обратной матрицы.

Для квадратной матрицы A, такой что $\det A \neq 0$, обратной является матрица $A^{-1} = \frac{1}{\det A} \cdot \tilde{A}$.

15. Дать определение минора.

Минором k-го порядка матрицы A называется определитель матрицы, составленной из элементов, стоящих на пересечении произвольных k строк и k столбцов матрицы A. Обозначение: $M_{i_1 i_2 ... i_k}^{j_1 j_2 ... j_k}$.

16. Дать определение базисного минора. Какие строки называются базисными?

Базисным называется любой минор, порядок которого равен рангу.

Строки, попавшие в базисный минор, называются базисными.

17. Дать определение ранга матрицы.

Рангом матрицы называется наивысший порядок отличного от нуля минора.

18. Дать определение линейной комбинации строк. Что такое нетривиальная линейная комбинация?

Линейной комбинацией строк a_1, \ldots, a_s одинаковой длины называется выражение вида $\alpha_1 a_1 + \ldots + \alpha_s a_s = \sum_{k=1}^s \alpha_k a_k$, где $\alpha_1, \ldots, \alpha_s$ – некоторые числа.

Нетривиальной называется линейная комбинация, где среди чисел $\alpha_1, \ldots, \alpha_s$ найдётся $\alpha_i \neq 0$.

19. Дать определение линейной зависимости строк матрицы.

Строки a_1, \ldots, a_s называют линейно зависимыми, если существуют такие числа $\alpha_1, \ldots, \alpha_s$, не все равные нулю, что $\alpha_1 a_1 + \ldots + \alpha_s a_s = 0$.

20. Дать определение линейно независимых столбцов матрицы.

Если равенство $\alpha_1 a_1 + \ldots + \alpha_s a_s = 0$ выполнено только в случае, когда $\alpha_1 = \ldots = \alpha_s = 0$ (т.е. тривиальной линейной комбинации), то столбцы a_1, \ldots, a_s называются линейно независимыми.

21. Сформулировать критерий линейной зависимости.

 a_1,\ldots,a_s линейно зависимы \Leftrightarrow хотя бы один из a_1,\ldots,a_s линейно выражается через остальные.

22. Сформулировать теорему о базисном миноре.

- 1) Базисные строки (столбцы), соответствующие любому базисному минору M матрицы A, линейно независимы.
- 2) Строки (столбцы) матрицы A, не входящие в M, являются линейной комбинацией базисных.

23. Сформулировать теорему о ранге матрицы.

Ранг матрицы равен максимальному числу её линейно независимых строк (столбцов).

24. Сформулировать критерий невырожденности квадратной матрицы.

Рассмотрим квадратную матрицу $A \in \mathbf{M}_n(\mathbb{R})$. Следующие условия эквивалентны:

- 1) $\det A \neq 0$, т.е. матрица невырождена;
- 2) $\operatorname{Rg} A = n$;
- 3) все строки A линейно независимы.

25. Сформулировать теорему Кронекера-Капелли.

СЛАУ Ax = b совместна $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} (A|b)$.

2 модуль

1. Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Пусть Φ_1, \dots, Φ_k – Φ CP ОСЛАУ Ax = 0. Тогда любые решения этой СЛАУ можно представить в виде $x = c_1\Phi_1 + c_2\Phi_2 + \dots + c_k\Phi_k$, где c_1, \dots, c_k – некоторые числа.

2. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Пусть известно частное решение \tilde{x} СЛАУ Ax=b. Тогда любое решение этой СЛАУ может быть представлено в виде $x=\tilde{x}+c_1\Phi_1+c_2\Phi_2+\ldots+c_k\Phi_k$, где c_1,\ldots,c_k – некоторые числа, а Φ_1,\ldots,Φ_k – Φ CP соответствующей однородной СЛАУ Ax=0.

3. Дайте определение векторного произведения векторов в трёхмерном пространстве.

Вектор \overrightarrow{c} называют векторным произведением векторов \overrightarrow{d} и \overrightarrow{b} , если:

- 1) $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \varphi$, где φ угол между векторами \overrightarrow{a} и \overrightarrow{b} ;
- 2) $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$;
 3) тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} правая.

4. Сформулируйте три алгебраических свойства векторного произведения.

- 1) $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$ (антикоммутативность);
- 2) $(\alpha \overrightarrow{a}) \times \overrightarrow{b} = \alpha \left(\overrightarrow{a} \times \overrightarrow{b}\right);$
- $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$ (дистрибутивность).

5. Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Пусть $\overrightarrow{\imath}$, $\overrightarrow{\jmath}$, \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{d} = a_x \overrightarrow{\imath} + a_y \overrightarrow{\jmath} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{\imath} + b_y \overrightarrow{\jmath} + b_z \overrightarrow{k}$. Тогда

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{i} (a_y b_z - a_z b_y) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x).$$

6. Дайте определение смешанного произведения векторов. Как вычислить объём тетраэдра с помощью смешанного произведения?

Смешанным произведением векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называют число $(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c})$.

Объём тетраэдра, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , можно вычислить как $\frac{1}{6} \left| \left\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \right\rangle \right|$.

7. Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Пусть $\overrightarrow{\imath}$, $\overrightarrow{\jmath}$, \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{a}=a_x\overrightarrow{\imath}+a_y\overrightarrow{\jmath}+a_z\overrightarrow{k}$, $\overrightarrow{b}=b_x\overrightarrow{\imath}+b_y\overrightarrow{\jmath}+b_z\overrightarrow{k}$, $\overrightarrow{c} = c_x \overrightarrow{\imath} + c_y \overrightarrow{\jmath} + c_z \overrightarrow{k}$. Тогда

$$\left\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \right\rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

8. Сформулируйте критерий компланарности трёх векторов с помощью смешанного

Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны \Leftrightarrow $\left\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \right\rangle = 0$.

9. Дайте определение прямоугольной декартовой системы координат.

Прямоугольной декартовой системой координат назывется пара, состоящая из точки O и ортонормированного базиса \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} .

10. Что такое уравнение поверхности и его геометрический образ?

Уравнение F(x,y,z) = 0 называется уравнением поверхности S, если этому уравнению удовлетворяют координаты любой точки, лежащей на этой поверхности и не удовлетворяют координаты ни одной точки, не лежащей на поверхности.

При этом поверхность S называют геометрическим образом уравнения F(x, y, z) = 0.

11. Сформулируйте теорему о том, что задаёт любое линейное уравнение на координаты точки в трёхмерном пространстве.

Любая плоскость в пространстве определяется уравнением Ax + By + Cz + D = 0, где A, B, C, D некоторые числа, и любое уравнение вида Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет плоскость.

12. Что такое нормаль плоскости?

Если плоскость задана уравнением Ax + By + Cz + D = 0, то вектор $\overrightarrow{n} = (A, B, C)$ перпендикулярен этой плоскости и называется нормалью к этой плоскости.

13. Выпишите формулу для расстояния от точки до плоскости.

Если π – плоскость, заданная уравнением Ax + By + Cz + D = 0, а точка M имеет координаты (x_0, y_0, z_0) , то расстояние от этой точки до плоскости вычисляется как

$$\rho(\pi, M) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

14. Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

1) Общие уравнения:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

- 2) Векторное уравнение: $\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{a}$
- 3) Параметрические уравнения: Если x_0, y_0, z_0, m, n, k заданные числа, то прямая задаётся как

$$\begin{cases} x - x_0 = tm \\ y - y_0 = tn \\ z - z_0 = tk \end{cases} \quad (t \in \mathbb{R})$$

4) Канонические уравнения:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{k}$$

15. Сформулируйте критерий принадлежности двух прямых одной плоскости.

Пусть прямые ℓ_1 и ℓ_2 заданы своими направляющими векторами s_1 и s_2 , а точки M_1 и M_2 лежат на прямых ℓ_1 и ℓ_2 соответственно. Тогда эти прямые лежат в одной плоскости, если $\left\langle \overrightarrow{M_1M_2}, \overrightarrow{s_1}, \overrightarrow{s_2} \right\rangle = 0$.

16. Выпишите формулу для вычисления расстояния от точки до прямой.

Пусть задана точка M_1 с координатами (x_1,y_1,z_1) , а прямая ℓ задана своим направляющим вектором \overrightarrow{s} , и $M_0 \in \ell$. Тогда расстояние между точкой M_1 и прямой ℓ вычисляется как

$$\rho(M_1, \ell) = \frac{\left| \overrightarrow{M_0 M_1} \times \overrightarrow{s} \right|}{|\overrightarrow{s}|}.$$

17. Выпишите формулу для вычисления расстояния между двумя скрещивающимися прямыми.

Если скрещивающиеся прямые ℓ_1 и ℓ_2 заданы своими направляющими векторами $\overrightarrow{s_1}$ и $\overrightarrow{s_2}$, точки M_1 и M_2 лежат на прямых ℓ_1 и ℓ_2 соответственно, то расстояние между ними вычисляется как

$$\rho(\ell_1, \ell_2) = \frac{\left| \left\langle \overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{M_1 M_2} \right\rangle \right|}{\left| \overrightarrow{s_1} \times \overrightarrow{s_2} \right|}.$$

18. Что такое алгебраическая и тригонометрическая формы записи комплексного числа?

Запись комплексного числа z в алгебраической форме: z = x + iy.

Запись комплексного числа z в тригонометрической форме: $z = r(\cos \varphi + i \sin \varphi)$.

19. Дайте определения модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Модулем комплексного числа называется расстояние от z до начала координат (т.е. длина радиусвектора z).

Аргументом комплексного числа называется угол между радиус-вектором z и положительным направлением вещественной оси.

Главное значение аргумента комплексного числа – это такое значение аргумента φ , которое лежит в промежутке $[0; 2\pi)$.

20. Сложение, умножение комплексных чисел. Что происходит с аргументами и модулями комплексных чисел при умножении и при делении?

Пусть $z_1 = x_1 + iy_1 = r_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = x_2 + iy_2 = r_2(\cos\varphi_2 + i\sin\varphi_2).$ Тогда:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2))$$

21. Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Если комплексное число z=x+iy, то комплексно-сопряжённым с z называется число $\overline{z}=x-iy$. При этом:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}.$$

22. Выпишите формулу Муавра.

Пусть $z = r(\cos \varphi + i \sin \varphi)$. Тогда

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)).$$

23. Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Пусть дано комплексное число $w = \rho (\cos \psi + i \sin \psi)$. Тогда

$$\sqrt[n]{w} = \left\{ \sqrt[n]{\rho} \left(\cos \frac{\psi + 2\pi k}{n} + i \sin \frac{\psi + 2\pi k}{n} \right) \mid k = \overline{0, n - 1} \right\}.$$

Корни n-й степени из w лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{\rho}$. Первая точка имеет аргумент $\frac{\psi}{n}$.

24. Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Основная теорема алгебры: Для любого многочлена $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$, где $\forall i = \overline{0, n} : a_i \in \mathbb{C}, a_n \neq 0$, существует корень $z_0 \in \mathbb{C}$.

Теорема Безу: Если $\deg f(x) > 0$, то остаток от деления многочлена f(x) на (x - c) равен f(c).

25. Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$
$$\cos\varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$
$$\sin\varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

26. Выпишите формулы Виета для многочлена третьей степени.

Пусть c_1,c_2,c_3 – корни многочлена $P_n(x)=1\cdot x^3+a_2x^2+a_1x+a_0$. Тогда: $a_2=-(c_1+c_2+c_3)$

 $a_1 = c_1 c_2 + c_2 c_3 + c_1 c_3$

 $a_0 = -c_1 c_2 c_3$

27. Какие многочлены называются неприводимыми?

Многочлен f называется неприводимым, если не существует его нетривиального разложения (т.е. не существует многочленов g и h, таких что $\deg g < \deg f$ и $\deg h < \deg f$, а $f = g \cdot h$).

28. Сформулируйте утверждение о разложении многочленов на неприводимые множители над полем комплексных чисел.

Комплексный многочлен степени n всегда раскладывается над полем комплексных чисел в произведение неприводимых (т.е. многочленов степени 1).

29. Какие бинарные операции называются ассоциативными, а какие коммутативными?

Бинарная операция * называется ассоциативной, если (a*b)*c = a*(b*c).

Бинарная операция * называется коммутативной, если a * b = b * a.

30. Дайте определения полугруппы и моноида. Приведите примеры.

Множество с заданной на нём бинарной ассоциативной операцией называется полугруппой.

 Π ример: ($\mathbb{N} \setminus \{1\}, \cdot$).

Полугруппа, в которой есть нейтральный элемент, называется моноидом.

Пример: (\mathbb{N}, \cdot) .

31. Сформулируйте определение группы. Приведите пример.

Моноид, все элементы которого обратимы, называется группой.

Пример: $\mathbf{GL}_n(\mathbb{R})$.

32. Что такое симметрическая группа? Укажите число элементов в ней.

Множество всех подстановок длины n с операцией композиции называется симметрической группой \mathbf{S}_n , причём $|\mathbf{S}_n| = n!$

33. Что такое общая линейная и специальная линейная группы?

Общая линейная группа – множество всех невырожденных матриц с операцией матричного умножения:

$$\mathbf{GL}_n(\mathbb{R}) = (\{A \in \mathbf{M}_n(\mathbb{R}) \mid \det A \neq 0\}, \cdot).$$

Специальная линейная группа – множество матриц с единичным определителем:

$$\mathbf{SL}_n(\mathbb{R}) = (\{A \in \mathbf{GL}_n(\mathbb{R}) \mid \det A = 1\}, \cdot).$$

34. Сформулируйте определение абелевой группы. Приведите пример.

Группа с коммутативной операцией называется абелевой.

Примеры: $(\mathbb{V}_3, +), (\mathbb{Z}, +)$.

35. Дайте определение подгруппы. Приведите пример группы и её подгруппы.

Подмножество $H \subseteq G$ называется подгруппой в G, если:

- 1) $e \in H$ (e нейтральный элемент из G, т.к. он единственен);
- 2) если $h_1, h_2 \in H$, то $h_1 \cdot h_2 \in H$ множество H замкнуто относительно умножения;
- 3) если $h \in H$, то $h^{-1} \in H$ множество H замкнуто относительно взятия обратного элемента.

(Свойства (1)–(3) означают, что H само по себе является группой.)

Пример: $\mathbf{SL}_n(\mathbb{R}) \subset \mathbf{GL}_n(\mathbb{R})$.

36. Дайте определение гомоморфизма групп. Приведите пример.

Пусть даны две группы – $(G_1,*)$ и (G_2,\circ) . Тогда отображение $f:G_1\to G_2$ называется гомоморфизмом, если выполняется следующее условие: $\forall a,b\in G_1:f(a*b)=f(a)\circ f(b)$.

Пример: если $G_1 = \mathbf{GL}_n(\mathbb{R}), G_2 = \mathbb{R}^* = (\mathbb{R} \setminus \{0\}, \cdot),$ то отображение $f(A) = \det A$ является гомоморфизмом из G_1 в G_2 .

37. Дайте определение изоморфизма групп. Приведите пример.

Биективный гомоморфизм называется изоморфизмом.

Пример: если $G_1 = (\mathbb{R}_+, \cdot), G_2 = (\mathbb{R}, +)$, то отображение $f(x) = \ln x$ является изоморфизмом из G_1 в G_2 .

38. Сформулируйте определение циклической группы. Приведите пример.

Пусть g – элемент группы G. Если любой элемент $g \in G$ имеет вид $g = a^n$, где $a \in G$, то G называют циклической группой и обозначают $G = \langle a \rangle$.

Пример: $(\mathbb{Z}, +)$ – циклическая группа, порождённая a = 1.

39. Дайте определение порядка элемента.

Если q — наименьшее натуральное число, для которого $a^q=e$, где $a\in G$ — элемент группы, а e — нейтральный элемент, то q называется порядком элемента a. Обозначение: ord (a)=q.

Если такого числа не существует, то говорят об элементе бесконечного порядка: $\operatorname{ord}(a) = \infty$.

40. Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?

Все циклические группы одного порядка изоморфны.

3 модуль

1. Что такое ядро гомоморфизма групп? Приведите пример.

Ядром гомоморфизма $f: G \to F$ называется множество элементов группы G, которые переходят в e_F , т.е. в нейтральный элемент группы F: $\operatorname{Ker} f = \{g \in G \mid f(g) = e_F\}$.

Пример: Если $f(A) = \det A$ – гомоморфизм из группы $\mathbf{GL}_n(\mathbb{R})$ в группу \mathbb{R}^* , то его ядро – $\mathbf{SL}_n(\mathbb{R})$ – матрицы с определителем, равным единице.

2. Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

Любая подгруппа в $(\mathbb{Z}, +)$ имеет вид $k\mathbb{Z}$ (числа, кратные k) для некоторого $k \in \mathbb{N} \cup \{0\}$.

3. Дайте определение левого смежного класса по некоторой подгруппе.

Пусть G — группа, а H — её подгруппа, и фиксирован $g \in G$. Левым смежным классом элемента g по подгруппе H называется множество $gH = \{g \cdot h \mid h \in H\}$. (Аналогично, правый смежный класс — $Hg = \{h \cdot g \mid h \in H\}$.)

4. Дайте определение нормальной подгруппы.

Подгруппа H группы G называется нормальной, если $\forall g \in G : gH = Hg$. Обозначение: $H \triangleleft G$.

5. Что такое индекс подгруппы?

Индексом подгруппы H в группе G называется количество левых смежных классов G по H. Обозначение: [G:H]

6. Сформулируйте теорему Лагранжа.

Пусть G – конечная группа и $H \subseteq G$ – её подгруппа. Тогда $|G| = |H| \cdot [G:H]$

7. Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$. Тогда следующие условия эквивалентны:

- 1) $H \triangleleft G$;
- 2) $\forall g \in G : gHg^{-1} \subseteq H$;
- 3) $\forall g \in G : gHg^{-1} = H$.

8. Дайте определение факторгруппы.

Пусть H — нормальная подгруппа в группе G. Тогда G/H — множество левых смежных классов по H с операцией умножения $(g_1H)\cdot (g_2H)=g_1\cdot g_2\cdot H$ — называется факторгруппой.

9. Что такое естественный гомоморфизм?

Естественный гомоморфизм $\varepsilon: G \to G/H$ – гомоморфизм из группы G в факторгруппу G по H, который сопоставляет элементу $a \in G$ его смежный класс.

10. Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

 $H \triangleleft G \Leftrightarrow H = \operatorname{Ker} f$, где f – гомоморфизм из G (куда отображает – неважно).

11. Сформулируйте теорему о гомоморфизме групп. Приведите пример.

Пусть отображение $f: G \to F$ – гомоморфизм групп. Тогда образ гомоморфизма, $\operatorname{Im} f = \{a \in F \mid \exists g \in G: f(g) = a\}$, изоморфен (как группа) факторгруппе $G/\operatorname{Ker} f$, т.е. $G/\operatorname{Ker} f \cong \operatorname{Im} f$. Π ример: $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ посредством гомоморфизма $f(k) = k \mod n$.

12. Что такое прямое произведение групп?

Прямым произведением двух групп G_1 и G_2 называется их декартово произведение как множеств с покомпонентным умножением. Если (G_1, \circ) и $(G_2, *)$ – группы, то $(G_1 \times G_2, \star)$ – их прямое произведение, если $\forall g_1, h_1 \in G_1, \forall g_2, h_2 \in G_2 : (g_1, g_2) \star (h_1, h_2) = (g_1 \circ h_1, g_2 * h_2)$.

13. Сформулируйте определение автоморфизма и внутреннего автоморфизма.

Автоморфизм – это изоморфизм из G в G.

Внутренний автоморфизм – это отображение $I_a: g \mapsto aga^{-1}$ (сопряжение).

14. Что такое центр группы? Приведите пример.

Центр группы – это подмножество элементов $Z(G) = \{a \in G \mid a \cdot b = b \cdot a \quad \forall b \in G\}$, коммутирующих со всеми.

 Π ример: $Z(\mathbb{Q}) = \mathbb{Q}$, где \mathbb{Q} – группа рациональных чисел по сложению.

15. Что можно сказать про факторгруппу группы по её центру?

Факторгруппа группы по её центру изоморфная группе всех внутренних автоморфизмов: $G/Z(G)\cong \operatorname{Inn} G.$

16. Сформулируйте теорему Кэли.

Любая конечная группа порядка n изоморфна некоторой подгруппе группы \mathbf{S}_n .

17. Дайте определение кольца.

Пусть $K \neq \emptyset$ – множество, на котором заданы две бинарные операции: сложение и умножение, такие что:

- 1) (K, +) абелева группа;
- 2) (K, \cdot) полугруппа;
- 3) умножение дистрибутивно по сложению:

 $\forall a, b, c \in K$:

$$(a+b) \cdot c = a \cdot c + b \cdot c,$$

$$c \cdot (a+b) = c \cdot a + c \cdot b.$$

 ${
m Torдa}\ K$ – кольцо.

18. Что такое коммутативное кольцо? Приведите примеры коммутативного и некоммутативного колец.

Если $\forall x,y \in K : x \cdot y = y \cdot x$ (т.е. умножение коммутативно), то кольцо $(K,+,\cdot)$ называется коммутативным.

 Π римеры: кольцо ($\mathbb{Z},+,\cdot$) коммутативно, а кольцо ($\mathbf{M}_n(\mathbb{R}),+,\cdot$) некоммутативно.

19. Дайте определение делителей нуля.

Если $a \cdot b = 0$ при $a \neq 0$ и $b \neq 0$ в кольце K, то a называется левым (а b – правым) делителем нуля.

20. Дайте определение целостного кольца. Приведите пример.

Коммутативное кольцо с единицей, не равной нулю, и без делителей нуля называется целостным кольцом.

Пример: $(\mathbb{Z}, +, \cdot)$.

21. Какие элементы кольца называются обратимыми?

Элемент a коммутативного кольца с единицей называется обратимым, если существует элемент a^{-1} , такой что $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

22. Дайте определение поля. Приведите три примера.

Поле – это коммутативное кольцо с единицей, не равной нулю, в котором каждый элемент $a \neq 0$ обратим.

Примеры: $\mathbb{Q} = (\mathbb{Q}, +, \cdot), \quad \mathbb{R} = (\mathbb{R}, +, \cdot), \quad \mathbb{C} = (\mathbb{C}, +, \cdot).$

23. Дайте определение подполя. Привести пример пары: поле и его подполе.

Подполе — подмножество поля, которое само является полем относительно тех же операций. $\Pi pumep: \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.$

24. Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

Пусть \mathbb{F} — поле. Характеристикой поля называется наименьшее натуральное число q, такое что $\underbrace{1+1+\ldots+1}_{}=0$. Если такого q нет, то характеристика равна нулю. Обозначение: char \mathbb{F} .

Примеры: $\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$, $\operatorname{char} \mathbb{Z}_p = p > 0$.

25. Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть P – поле, а P_0 – его простое подполе. Тогда:

- 1) если char P = p > 0, то $P_0 \cong \mathbb{Z}_p$;
- 2) если $\operatorname{char} P = 0$, то $P_0 \cong \mathbb{Q}$.

26. Дайте определение идеала. Что такое главный идеал?

Подмножество I кольца K называется (двусторонним) идеалом, если оно:

- 1) является подгруппой (K, +) по сложению;
- 2) $\forall a \in I, \forall r \in K : r \cdot a \in I$ и $a \cdot r \in I$.

Идеал I называется главным, если $\exists a \in K : I = \{r \cdot a \mid r \in K\}$. Тогда идеал I порождён a.

27. Сформулируйте определение гомоморфизма колец.

Отображение $\varphi: K_1 \to K_2$ – гомоморфизм колец K_1 и K_2 , если $\forall a,b \in K_1:$

- 1) $\varphi(a+b) = \varphi(a) \oplus \varphi(b)$;
- 2) $\varphi(a \cdot b) = \varphi(a) * \varphi(b)$.

28. Сформулируйте теорему о гомоморфизме колец. Приведите пример.

Пусть K_1 и K_2 – два кольца, $\varphi: K_1 \to K_2$ – гомоморфизм. Тогда: $K_1/\mathrm{Ker}\,\varphi \cong \mathrm{Im}\,\varphi$. Пример: $\mathbb{Z}/\mathbb{Z}_n \cong \langle n \rangle$.

- **29**. Сформулируйте критерий того, что кольцо вычетов по модулю n является полем. \mathbb{Z}_n является полем $\Leftrightarrow n$ простое.
- 30. Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем само является полем.

Пусть \mathbb{F} – поле, а $f(x) \in \mathbb{F}[x]$. Тогда факторкольцо $\mathbb{F}[x]/\langle f(x) \rangle$ является полем $\Leftrightarrow f(x)$ неприводим над \mathbb{F} .

31. Дайте определение алгебраического элемента над полем.

Элемент $\alpha \in \mathbb{P}$ называется алгебраическим над подполем $\mathbb{F} \subset \mathbb{P}$, если $\exists f(x) \not\equiv 0 : f(\alpha) = 0$.

32. Что такое поле рациональных дробей?

Поле рациональных дробей – это поле

$$\mathcal{P}(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathcal{P}[x], g(x) \not\equiv 0 \right\}.$$

33. Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

Любое конечное поле \mathbb{F}_q , где $q=p^n$, а p – простое, можно реализовать в виде $\mathbb{Z}_p[x]/\langle h(x)\rangle$, где h(x) – неприводимый многочлен степени n над \mathbb{Z}_p .

34. Сформулируйте китайскую теорему об остатках (через изоморфизм колец).

Пусть $n \in \mathbb{Z}, n = n_1 \cdot n_2 \cdot \ldots \cdot n_m$, причём $\forall i \forall j : n_i$ и n_j взаимно просты. Тогда

$$\mathbb{Z}_n \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \ldots \times \mathbb{Z}_{n_m}.$$

35. Сформулируйте утверждение о том, сколько элементов может быть в конечном поле.

Число элементов конечного поля всегда p^n , где p – простое, а $n \in \mathbb{N}$.

36. Дайте определение линейного (векторного) пространства.

Пусть \mathbb{F} – поле, V – произвольное множество, на котором задано 2 операции: сложение и умножение на число (т.е. на элемент из \mathbb{F}). Это означает, что $\forall x,y\in V$ существует элемент $x+y\in V$ и $\forall \alpha\in\mathbb{F}:\exists\alpha x\in V$. Множество V называется линейным (векторным) пространством, если выполнены следующие условия:

 $\forall x, y, z \in V$ и $\forall \lambda, \mu \in \mathbb{F}$:

- 1) (x + y) + z = x + (y + z) ассоциативность сложения;
- 2) $\exists 0 \in V : \forall x \in V : x + 0 = 0 + x = x$ существует нейтральный элемент по сложению;
- 3) $\forall x \in V : \exists (-x) \in V : x + (-x) = (-x) + x = 0$ существует противоположный элемент по сложению;
- 4) x + y = y + x коммутативность сложения;
- 5) $\forall x \in V : 1 \cdot x = x \cdot 1 = x$ нейтральность $1 \in \mathbb{F}$;
- 6) $\mu(\lambda x) = (\mu \lambda)x$ ассоциативность умножения на число;
- 7) $(\lambda + \mu)x = \lambda x + \mu x$ дистрибутивность умножения относительно сложения чисел;
- 8) $\lambda(x+y)=\lambda x+\lambda y$ дистрибутивность умножения относительно сложения векторов.
- 37. Дайте определение базиса линейного (векторного) пространства.

Базисом линейного пространства V называется упорядоченный набор векторов b_1, \ldots, b_n , такой что:

- 1) b_1, \ldots, b_n линейно независимы;
- 2) любой вектор из V представляется в виде линейной комбинации b_1, \ldots, b_n , т.е. $\forall x \in V : x = x_1b_1 + x_2b_2 + \ldots + x_nb_n$. При этом x_1, \ldots, x_n координаты вектора x в базисе b_1, \ldots, b_n .

38. Что такое размерность пространства?

Максимальное количество линейно независимых векторов в данном линейном пространстве V называется размерностью этого линейного пространства. Обозначение: $\dim V$.

39. Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

Матрицей перехода от базиса \mathcal{A} к базису \mathcal{B} называется матрица:

$$T_{\mathcal{A} \to \mathcal{B}} = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{pmatrix},$$

где в i-м столбце стоят коэффициенты разложения вектора b_i по базису \mathcal{A} .

40. Выпишите формулу для описания изменения координат вектора при изменении базиса.

$$\mathbf{b} = \mathbf{a} \cdot T_{A \to B}$$
, где $\mathbf{b} = (b_1, b_2, \dots, b_n)$, $\mathbf{a} = (a_1, a_2, \dots, a_n)$.

41. Дайте определение подпространства в линейном пространстве.

Подмножество W линейного пространства V называется подпространством, если оно само является пространством относительно операций в объемлющем пространстве V.

42. Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

Множество $L(a_1, \ldots, a_k) = \{\lambda_1 a_1 + \ldots + \lambda_k a_k \mid \lambda_i \in \mathbb{F}\}$ – множество всех линейных комбинаций векторов a_1, \ldots, a_k – называется линейной оболочкой набора (системы) a_1, \ldots, a_k .

Рангом системы векторов a_1, \ldots, a_k в линейном пространстве называется размерность их линейной оболочки: $\operatorname{Rg}(a_1, \ldots, a_k) = \dim L(a_1, \ldots, a_k)$.

43. Дайте определения суммы и прямой суммы подпространств.

Множество $H_1+H_2=\{x_1+x_2\mid x_1\in H_1\wedge x_2\in H_2\}$ называется суммой подпространств H_1 и H_2

Сумма подпространств H_1 и H_2 называется прямой и обозначается как $H_1 \oplus H_2$, если $H_1 \cap H_2 = \{0\}$, т.е. тривиально.

44. Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

Пусть H_1 и H_2 – подпространства в L. Тогда $\dim (H_1 + H_2) = \dim H_1 + \dim H_2 - \dim H_1 \cap H_2$.

45. Дайте определение билинейной формы.

Пусть V — линейное пространство над \mathbb{R} . Функцию $b:V\times V\to\mathbb{R}$ называют билинейной формой, если $\forall x,y,z\in V, \forall \alpha,\beta\in\mathbb{R}$ верно, что:

- 1) $b(\alpha x + \beta y, z) = \alpha \cdot b(x, z) + \beta \cdot b(y, z)$
- 2) $b(x, \alpha y + \beta z) = \alpha \cdot b(x, y) + \beta \cdot b(x, z)$

T.e. функция b линейна по каждому из двух аргументов.

46. Дайте определение квадратичной формы.

Однородный (т.е. при подстановке вместо переменной x выражения αx , за скобку можно вынести α^k , где k – степени однородности) многочлен от n переменных, т.е.

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i \le j \le n} a_{ij} x_i x_j \quad (a_{ij} \in \mathbb{R}),$$

называют квадратичной формой.

47. Дайте определения положительной и отрицательной определенности квадратичной формы.

Квадратичную форму Q(x) называют:

- положительно определённой, если $\forall x \neq 0 : Q(x) > 0$;
- отрицательно определённой, если $\forall x \neq 0 : Q(x) < 0$.

48. Какую квадратичную форму называют знакопеременной?

Квадратичную форму Q(x) называют знакопеременной, если $\exists x, y \in V : Q(x) < 0 < Q(y)$.

49. Дайте определения канонического и нормального вида квадратичной формы.

Квадратичную форму $Q(x) = \alpha_1 x_1^2 \ldots + \alpha_n x_n^2$, где $\forall i = \overline{1,n} : a_i \in \mathbb{R}$ (т.е. не имеющую попарных произведений элементов), называют квадратичной формой канонического вида.

Если $\forall i = \overline{1, n} : \alpha_i \in \{0, 1, -1\}$, то такой вид квадратичной формы называют нормальным.

50. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

Пусть B_e – матрица билинейной формы в базисе \mathbf{e} , B_f – в базисе \mathbf{f} , а U – матрица перехода от базиса \mathbf{e} к базису \mathbf{f} . Тогда $B_f = U^T \cdot B_e \cdot U$.

При переходе от базиса \mathbf{e} к базису \mathbf{e}' одного и того же линейного пространства V матрица квадратичной формы меняется следующим образом: $A' = S^T \cdot A \cdot S$, где S – матрица перехода от \mathbf{e} к \mathbf{e}' , а A – матрица квадратичной формы в базисе \mathbf{e} .

51. Сформулируйте критерий Сильвестра и его следствие.

Критерий Сильвестра: Квадратичная форма Q(x) от n переменных $x=(x_1,\ldots,x_n)$ положительно определена $\Leftrightarrow \Delta_1>0 \land \Delta_2>0 \land \ldots \land \Delta_n>0$, где Δ_i – главный угловой минор порядка i. Следствие: Q(x) отрицательно определена $\Leftrightarrow \Delta_1<0 \land \Delta_2>0 \land \ldots \land (-1)^n\Delta_n>0$, т.е. знаки главных угловых миноров чередуются, начиная с минуса.

52. Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Для любых канонических видов

$$Q_1(y_1,\ldots,y_m)=\lambda_1y_1^2+\ldots+\lambda_my_m^2$$
 $\lambda_i\neq 0, i=\overline{1,m},$ $Q_2(z_1,\ldots,z_k)=\mu_1z_1^2+\ldots+\mu_kz_k^2$ $\mu_j\neq 0, j=\overline{1,k}$ одной и той же квадратичной формы выполнено:

1) m = k =рангу квадратичной формы;

- 1) $m = \kappa = \text{рангу квадратичной формы,}$
- 2) $i_{+} =$ количество положительных $\lambda_{i} =$ количество положительных $\mu_{j};$
- 3) i_{-} = количество отрицательных λ_{i} = количество отрицательных μ_{i} .

Числа i_+ и i_- называют соответственно положительным и отрицательным индексом инерции.

53. Дайте определение линейного отображения. Приведите пример.

Пусть V_1 и V_2 – (конечномерные) линейные пространства над полем $\mathbb F$. Отображение $\varphi:V_1\to V_2$ называется линейным, если:

- 1) $\forall x, y \in V_1 : \varphi(x+y) = \varphi(x) + \varphi(y);$
- 2) $\forall x \in V_1, \forall \alpha \in \mathbb{F} : \varphi(\alpha x) = \alpha \varphi(x).$

 $\Pi pumep$: отображение φ , поворачивающее векторы из \mathbb{V}_2 на заданный угол θ – линейное.

54. Дайте определение матрицы линейного отображения.

Матрица линейного отображения – это матрица

$$A_{\mathbf{ef}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где по столбцам стоят координаты образов векторов базиса ${\bf e}$ пространства V_1 в базисе ${\bf f}$ пространства V_2 .

55. Выпишите формулу для преобразования матрицы линейного отображения при замене базисов. Как выглядит формула в случае линейного оператора?

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{\mathcal{E}_1\mathcal{E}_2}$ – матрица линейного отображения в паре базисов: \mathcal{E}_1 – базис в V_1 , \mathcal{E}_2 – базис в V_2 , и пусть даны две матрицы перехода: T_1 – матрица перехода от \mathcal{E}_1 к \mathcal{E}_1' – в V_1 , T_2 – от \mathcal{E}_2 к \mathcal{E}_2' – в V_2 . Тогда $A_{\mathcal{E}_1'\mathcal{E}_2'} = T_2^{-1} \cdot A_{\mathcal{E}_1\mathcal{E}_2} \cdot T_1$.

В случае линейного оператора $\mathcal{E}_1=\mathcal{E}_2=\mathcal{E}$ и $\mathcal{E}_1'=\mathcal{E}_2'=\mathcal{E}'$, и формула принимает вид $A_{\mathcal{E}'}=T^{-1}\cdot A_{\mathcal{E}}\cdot T$.

4 модуль

1. Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

Пусть φ – линейное отображение из V_1 в V_2 . Тогда $\dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = \dim V_1$.

2. Дайте определения собственного вектора и собственного значения линейного оператора.

Число λ называется собственным числом (значением) линейного оператора $\varphi:V\to V$, если существует ненулевой вектор $x\in V$, такой что $\varphi(x)=\lambda x$. При этом вектор x называется собственным вектором, отвечающим собственному значению λ .

3. Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Для произвольной квадратной матрицы A определитель $\chi_A(\lambda) = \det(A - \lambda E)$ называют характеристическим многочленом матрицы A, а выражение $\chi_A(\lambda) = 0$ – характеристическим уравнением.

4. Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

 λ – собственное значение линейного оператора $A \Leftrightarrow \lambda$ – корень характеристического уравнения.

5. Дайте определение собственного подпространства.

Пусть $A:V\to V$ — линейный оператор, λ — его собственное значение. Тогда множество $V_{\lambda}=\{x\in V\mid Ax=\lambda x\}$ — собственное подпространство, отвечающее λ .

6. Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраической кратностью собственного значения λ называется кратность λ как корня характеристического уравнения.

Геометрической кратностью называется размерность собственного подпространства V_{λ} , отвечающего данному собственному значению: dim V_{λ} = dim Ker $(A - \lambda E)$.

Всегда верно, что $1 \le$ геометрическая кратность $\lambda \le$ алгебраическая кратность λ .

7. Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям?

Пусть $\lambda_1, \ldots, \lambda_k$ — собственные значения линейного оператора A, причём $\forall i \forall j \neq i : \lambda_i \neq \lambda_j$, а v_1, \ldots, v_k — соответствующие собственные векторы. Тогда v_1, \ldots, v_k линейно независимы.

8. Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора является диагональной в данном базисе \Leftrightarrow все векторы базиса являются собственными для данного линейного оператора.

9. Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрица линейного оператора диагонализируема \Leftrightarrow алгебраическая кратность любого собственного значения равна геометрической.

10. Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

Матрица вида

$$J_m(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_i & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda_i & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_i & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_i \end{pmatrix}$$

называется жордановой клеткой размера m. Здесь λ_i – собственное значение линейного оператора.

Теорема о ЖНФ: Любая матрица $A \in \mathbf{M}_n(\mathbb{F})$ приводится заменой базиса к жордановой нормальной форме над алгебраически замкнутым полем. (Т.е. $\forall A \in \mathbf{M}_n(\mathbb{F}) : \exists C \in \mathbf{M}_n(\mathbb{F}) : \det C \neq 0 : A = C \cdot J \cdot C^{-1}$, где $J - \mathcal{K}H\Phi$.)

11. Выпишите формулу для количества жордановых клеток заданного размера.

Для каждого собственного значения λ_i количество жордановых клеток размера $h \times h$ с λ_i на диагонали равно $q_h = r_{h+1} - 2r_h + r_{h-1}$, где $r_k = \operatorname{Rg} \left((A - \lambda_i E)^k \right)$.

12. Сформулируйте теорему Гамильтона-Кэли.

Пусть χ_A – характеристический многочлен, A_e – матрица линейного оператора. Тогда $\chi_A(A_e)=0$.

13. Дайте определение корневого подпространства.

Корневое подпространство, отвечающее собственному значению λ_i – это $K_i = \text{Ker } ((A - \lambda_i E)^{m_i})$, где m_i – алгебраическая кратность собственного значения λ_i .

14. Дайте определение минимального многочлена линейного оператора.

Для матрицы A многочлен $\mu(x)$ называется минимальным, если:

- 1) $\mu(A) = 0$;
- 2) для любого многочлена f, такого что f(A) = 0, верно, что $\deg f(x) \ge \deg \mu(x)$. (При этом часто договариваются, что старший коэффициент в $\mu(x)$ равен 1.)

15. Дайте определение инвариантного подпространства.

Пусть дан линейный оператор $\varphi: V \to V$ и подпространство $H \subseteq V$. Тогда H называют инвариантным относительно φ , если $\forall x \in H: \varphi(x) \in H$.

16. Дайте определение евклидова пространства.

Евклидово пространство – это пара, состоящая из линейного пространства V над $\mathbb R$ и функции (скалярного произведения) $g(x,y):V\times V\to \mathbb R$, такой что она:

- $1) \ \forall x,y \in V : g(x,y) = g(y,x)$ симметрична;
- 2) линейна по каждому аргументу;
- 3) $\forall x \in V(x \neq 0) : q(x,x) > 0$ и $q(x,x) = 0 \Leftrightarrow x = 0$ положительно определена.

17. Выпишите неравенства Коши-Буняковского и треугольника.

Неравенство Коши-Буняковского: $\forall x, y \in \mathcal{E}$ справедливо неравенство $|g(x,y)| \leq ||x|| \cdot ||y||$. Неравенство треугольника: $\forall x, y \in \mathcal{E} : ||x+y|| \leq ||x|| + ||y||$.

18. Дайте определения ортогонального и ортонормированного базисов.

Базис, все векторы которого попарно ортогональны, называется ортогональным базисом. Если все векторы базиса ортонормированы, то базис называется ортонормированным.

19. Дайте определение матрицы Грама.

Матрица

$$\Gamma = \begin{pmatrix} g(a_1, a_1) & \dots & g(a_n, a_1) \\ \vdots & \ddots & \vdots \\ g(a_1, a_n) & \dots & g(a_n, a_n) \end{pmatrix}$$

скалярного произведения как билинейной формы называется матрицей Грама. Здесь a_1, \ldots, a_n – векторы базиса, а в i-й строке, j-м столбце стоит скалярное произведение вектора a_j на вектор a_i .

20. Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Пусть Γ и Γ' – матрицы Γ рама соответственно в базисах \mathbf{e} и \mathbf{e}' , а матрица U – матрица перехода от базиса \mathbf{e} к базису \mathbf{e}' . Тогда $\Gamma' = U^T \Gamma U$.

21. Как меняется определитель матрицы Грама (грамиан) при применении процесса ортогонализации Грама-Шмидта?

Определитель матрицы Грама (грамиан) не изменяется при применении процесса ортогонализации Грама—Шмидта.

22. Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

Векторы $a_1, \ldots, a_k \in \mathcal{E}$ линейно независимы \Leftrightarrow Gr $(a_1, \ldots, a_k) \neq 0$. Здесь Gr (a_1, \ldots, a_k) – определитель матрицы Грама для векторов a_1, \ldots, a_k .

23. Дайте определение ортогонального дополнения.

Пусть H – подпространство в линейном пространстве V. Тогда ортогональное дополнение к H – это множество

$$H^{\perp} = \{ x \in V \mid \forall y \in H : (x, y) = 0 \}.$$

24. Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

Любой вектор $x \in V$ можно разложить в сумму x = y + z, где $y \in H$ – ортогональная проекция x на H, а $z \in H^{\perp}$ – ортогональная составляющая x относительно H.

25. Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

Пусть подпространство H задано как $L(a_1, \ldots, a_k)$, причём векторы a_1, \ldots, a_k – линейно независимы. Тогда ортогональная проекция вектора x на H вычисляется как $y = \operatorname{pr}_H x = A(A^T A)^{-1} A^T x$.

26. Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

Расстояние $\rho(P,M)$ между линейным многообразием P и точкой M (определяемой через радиусвектор x), где $P=x_0+L(a_1,\ldots,a_k)$, а a_1,\ldots,a_k – линейно независимы, может быть найдено по формуле

$$\rho(P, M) = \sqrt{\frac{\operatorname{Gr}(a_1, \dots, a_k, x - x_0)}{\operatorname{Gr}(a_1, \dots, a_k)}}.$$

27. Дайте определение сопряжённого оператора в евклидовом пространстве.

Линейный оператор $\mathcal{A}^*: \mathcal{E} \to \mathcal{E}$ называется сопряжённым к линейному оператору $\mathcal{A}: \mathcal{E} \to \mathcal{E}$, если $\forall x, y \in \mathcal{E}: (Ax, y) = (x, A^*y)$.

28. Дайте определение самосопряжённого (симметрического) оператора.

Линейный оператор \mathcal{A} называется самосопряжённым (симметрическим), если $\forall x,y \in \mathcal{E} : (Ax,y) = (x,Ay)$, т.е. $A = A^*$.

29. Как найти матрицу сопряжённого оператора в произвольном базисе?

Для любого линейного оператора \mathcal{A} в евклидовом пространстве \mathcal{E} существует единтсвенный сопряжённый оператор $\mathcal{A}^*: \mathcal{E} \to \mathcal{E}$ с матрицей $A_{\mathbf{b}}^* = \Gamma^{-1} A_{\mathbf{b}}^T \Gamma$, где Γ – матрица Γ рама в базисе \mathbf{b}

- 30. Каким свойством обладают собственные значения самосопряжённого оператора? Все корни характеристического уравнения (т.е. собственные значения) самосопряжённого линейного оператора являются действительными числами.
- 31. Что можно сказать про собственные векторы самосопряжённого оператора, отвечающие разным собственным значениям?

Собственные векторы самосопряжённого линейного оператора, отвечающие различным собственным значениям, ортогональны.

32. Сформулируйте определение ортогональной матрицы.

Квадратную матрицу O называют ортогональной, если $O^T \cdot O = E$.

33. Сформулируйте определение ортогонального оператора.

Линейный оператор $\mathcal{A}: \mathcal{E} \to \mathcal{E}$ называется ортогональным, если $\forall x, y \in \mathcal{E}: (Ax, Ay) = (x, y)$.

34. Сформулируйте критерий ортогональности оператора, использующий его матрину.

Матрица A линейного оператора \mathcal{A} в ортонормированном базисе ортогональна $\Leftrightarrow \mathcal{A}$ – ортогональный оператор.

35. Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

Канонический вид ортогонального оператора:

$$A' = \begin{pmatrix} \mathbf{A_1} & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \mathbf{A_k} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & \mathbf{1} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & \mathbf{1} & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 & -\mathbf{1} & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & -\mathbf{1} \end{pmatrix},$$

где
$$A_i = \begin{pmatrix} \cos arphi_i & -\sin arphi_i \\ \sin arphi_i & \cos arphi_i \end{pmatrix}$$
 – матрица поворота.

 ${\it Теорема\ } {\it Эйлера:}\ {\it Любой\ }$ ортогональный оператор в ${\mathbb R}^3$ может быть приведён к следующему каноническому виду:

$$A' = \begin{pmatrix} \cos \varphi_i & -\sin \varphi_i & 0\\ \sin \varphi_i & \cos \varphi_i & 0\\ 0 & 0 & \pm 1 \end{pmatrix}.$$

(Т.е. любой ортогональный оператор является либо поворотом на некоторый угол φ вокруг некоторой оси (если $[A']_{33}=1$), либо композицией такого поворота и отражения (если $[A']_{33}=-1$)).

36. Сформулируйте теорему о существовании для самосопряжённого оператора базиса из собственных векторов.

Для любого самосопряжённого линейного оператора \mathcal{A} существует ортонормированный базис, состоящий из его собственных векторов.

(В этом базисе матрица оператора диагональна, а на диагонали стоят вещественные собственные значения, повторяющиеся столько раз, какова их алгебраическая кратность.)

37. Сформулируйте теорему о приведении квадратичной формы к диагональному виду при помощи ортогональной замены координат.

Любую квадратичную форму можно ортогональным преобразованием привести к каноническому виду.

38. Сформулируйте утверждение о QR-разложении.

Пусть $A \in \mathbf{M}_m(\mathbb{R})$, а её столбцы A_1, \ldots, A_m линейно независимы. Тогда существуют матрицы Q и R, такие что A = QR, где Q – ортогональная, а R – верхнетреугольная матрица.

39. Сформулируйте теорему о сингулярном разложении.

Для любой прямоугольной матрицы $A \in \mathbf{M}_{mn}(\mathbb{R})$ имеет место следующее разложение:

$$A = V \cdot \Sigma \cdot U^T$$
— сингулярное разложение,

где $U \in \mathbf{O}_n(\mathbb{R})$ — ортогональная матрица размера $n \times n, V \in \mathbf{O}_m(\mathbb{R})$ — ортогональная матрица размера $m \times m$, а $\Sigma \in \mathbf{M}_{mn}(\mathbb{R})$ — диагональная матрица с числами $\sigma_i \geq 0$ на диагонали. (Договариваются, что $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, где $r = \operatorname{Rg} A$.)

40. Сформулируйте утверждение о полярном разложении.

Любой линейный оператор в евклидовом пространстве представляется в виде композиции симметрического и ортогонального: $A = S \cdot U$, где A – матрица исходного линейного оператора, S – симметрическая матрица, а U – ортогональная.

41. Что можно сказать про ортогональное дополнение к образу сопряжённого оператора?

Пусть \mathcal{A} – линейный оператор $\mathcal{A}:V\to V$. Тогда $\ker\mathcal{A}=(\operatorname{Im}\mathcal{A}^*)^\perp$

42. Сформулируйте теорему Фредгольма и альтернативу Фредгольма.

 $Teopema\ \Phi pedeольма:\ Ax=b$ — совместная СЛАУ \Leftrightarrow вектор b перпендикулярен всем решениям ОСЛАУ $A^Ty=0.$

Aльтернатива Фредгольма: Либо у СЛАУ <math>Ax = b существует единственное решение для любого b, либо $A^Ty = 0$ имеет ненулевое решение.

Определения 4 модуля, не использованные на коллоквиуме

- 43. Дайте определение сопряжённого пространства.
- 44. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.
- 45. Дайте определение взаимных базисов.
- 46. Дайте определение биортогонального базиса.