CSE 2315 - Proof Techniques September 21, 2020 Luke Sweeney UT Arlington

1 Informal Proofs

Usually we'll prove conjectures about a specific domain of objects, but not universally true. We can introduce hypotheses that are only true for that domain.

Proofs can be informal and conversational, as long as formal proof can back it up. **Inductive reasoning** is drawing a conclusion from a hypothesis based on experience. Hence the more cases you find where Q follows from P, the more confident you are about the conjecture $P \to Q$.

Deductive reasoning is finding a counterexample to disprove the conjecture or prove the conjecture true.

Proof Techniques

If you can't disprove a conjecture by finding a counterexample, then try to prove that it is true.

Possible methods of proof:

- 1. Proof by exhaustion given a finite domain, prove the conjecture for all objects in the domain.
 - This is good for computer or small domains, but impractical on large or infinite domains.
- 2. Direct proof equivalence and inference rules
 - Using this can get long and is sometimes unnecessary
- 3. Proof by contraposition
 - Using the fact that $(Q' \to P') \to (P \to Q)$ is a tautology, we can use contraposition to prove an argument. Flip both arguments and flip the implication and prove that.
- 4. Proof by contradiction
 - 0 is any contradiction (false)
 - $(P \land Q' \to 0) \to (P \to Q)$ is a tautology
 - To prove by contradiction, take the hypothesis and conclusion $P \to Q$. Assert that the conjunction of P and Q' implies a contradiction. $(P \land Q' \to 0)$
 - As an example, take "if a number added to itself gives itself, then that number is 0". This is true, and we can prove it by contradiction. Take the hypotheses

$$P = x + x = x$$

$$Q' = x \neq 0$$
 Try to prove $(P \land Q' \rightarrow 0)$

5. Serendipity - fortuitous happening or something happening by chance or good luck.

Proof Techniques Summary

Proof Technique	Approach to prove $P \rightarrow Q$	Remarks
Exhaustive Proof	Demonstrate $P \to A$ for all cases	May be used
		only for finite
		domains
Direct Proof	Assume P, deduce Q	The standard
		approach,
		usually the
		thing to try
Proof by contraposition	Assume Q' , derive P'	Use this if Q'
		as a hypoth-
		esis seems to
		give more am-
		munition than
		P would.
Proof by contradiction	Assume $P \wedge Q'$, deduce a contradiction	Use this when
		Q says some-
		thing is not
		true
Serendipity	Not really a proof technique	Fun to know