Lecture 38

Simple Linear Regression: Confidence/Prediction Intervals & ANOVA Approach to Regression

STAT 8010 Statistical Methods I December 2, 2019

Whitney Huang

Clemson University

Last Class

- Residual Analysis: To check the appropriateness of SLR model
 - Is the regression function linear?
 - Do ε_i 's have constant variance σ^2 ?
 - Are ε_i 's indepdent to each other?

We plot residuals e_i 's against X_i 's (or \hat{Y}_i 's) to assess these aspects

- Hypothesis Tests for β_1 and β_0
 - With additional normality assumption on ε , we obtained the **sampling distribution** for $\hat{\beta}_1$ and $\hat{\beta}_0$
 - Test statistic $(\hat{\beta}_1 \beta_1)/\hat{\sigma}_{\hat{\beta}_1} \sim t_{n-2}$. With hypothesized value β_1^* (i.e., $H_0: \beta_1 = \beta_1^*$), H_a and significant level α , we can compute the **P-value** to perform a test

Notes	

Notes

Residual Plot: e_i 's vs. X_i 's

Simple Linear Regression: Confidence/Pre- diction Intervals & ANOVA Approach to Regression	
CLEMS#N	
Review of Last Class	
Confidence/Prediction Intervals	

Notes			

Residual Plot: e_i 's vs. \hat{Y}_i 's

Notes

Hypothesis Tests for $\beta_{age} = -1$

$$H_0: \beta_{\text{age}} = -1 \text{ vs. } H_a: \beta_{\text{age}} \neq -1$$

Test Statistic:
$$\frac{\hat{\beta}_{age}-(-1)}{\hat{\sigma}_{\hat{\beta}_{age}}} = \frac{-0.79773-(-1)}{0.06996} = 2.8912$$

P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Simple Linear Regression: Confidence/Pre- diction Intervals & ANOVA Approach to Regression
CLEMS !!
Review of Last Class

Notes

Confidence Intervals

• Recall $\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}$, we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}\right],\,$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the 1 – $\alpha/2$ percentile of a student's t distribution with n – 2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_0},\hat{\beta}_0 + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

• Interpretation?

Simple Linear Regression: Confidence/Pre- diction Intervals & ANOVA Approach to Regression
CLEMS N

Notes			

Interval Estimation of $E(Y_h)$

- We often interested in estimating the mean response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $E[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:

$$\begin{split} & \bullet \quad \frac{\hat{Y}_h - Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h - \tilde{X})^2}{\sum_{l=1}^n (X_l - \tilde{X})^2}\right)} \\ & \bullet \quad \text{C1:} \\ & \left[\hat{Y}_h - t_{\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h}\right] \end{aligned}$$

• Quiz: Use this formula to construct CI for β_0

Notes			

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{h(new)} = E[Y_h] + \varepsilon_h$)
- $\bullet \ \ \text{Replace} \ \ \hat{\sigma}_{\hat{Y}_h} \ \text{by} \ \hat{\sigma}_{\hat{Y}_{\text{fn(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \ \text{to}$ construct CIs for $Y_{h(new)}$

Notes			

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (HR $_{\it max}$) of a person is often said to be related to age Age by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Age HR _{max}								

- Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

	confidence/Pro iction Interva & ANOVA Approach to		
C	Regression	Ņ	
	onfidence/Pred tervals	iction	
Va 27 Ar			

38.9

Notes			

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

• We can rewrite SST as

$$\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i} + \hat{Y}_{i} - \bar{Y})^{2}$$

$$= \underbrace{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}_{\text{Model}}$$

Simple Linear Regression: Confidence/Prediction Intervals & ANOVA Approach to Regression

CLEMS#N

Review of Last Class

Analysis of Variance (ANOVA) Approach to

20 10

Total Sum of Squares: SST

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- \bullet SST is the sum of squared deviations for this predictor (i.e., $\bar{Y})$
- The **total mean square** is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

Review of Last Class

Confidence/Predictio

Analysis of /ariance (ANOVA) Approach to

Notes

_				
_				
_				

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Regression:
Confidence/Prediction Intervals
& ANOVA
Approach to
Regression

Review of Last Class

Confidence/Prediction Intervals

Analysis of Variance (ANOVA) Approach to Regression

Error Sum of Squares: SSE

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is *n* 2 (Why?)
- SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

Notes			

ANOVA Table and F test

Source MS $SSR = \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}$ $SSE = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$ $SST = \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$ MSR = SSR/1 Model Error MSE = SSE/(n-2)Total n – 1

- **Goal:** To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1 = 0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow$ $F_{1,n-2}$, where F_{d_1,d_2} denotes a F distribution with degrees of freedom d_1 and d_2

Notes

Summary

In this lecture, we learned

- Confidence/Prediction Intervals
- ANOVA Approach to Regression

Next time we will talk about

- ANOVA Table and F test
- Correlation (r) & Coefficient of Determination (R²)

Notes			