Let $g:[0,1]\to\mathbb{R}$ be a continuous function and let $f_n:[0,1]\to\mathbb{R}$ be a sequence of functions defined by $f_0(x) = q(x)$ and

$$f_{n+1}(x) = \frac{1}{x} \int_0^x f_n(t)dt \ (x \in (0,1], n = 0, 1, 2, \dots).$$

Determine $\lim_{n\to\infty} f_n(x)$ for every $x\in(0,1]$.