The Core Idea of Uncertainty

When a model makes a prediction, it's not just about the **number** it outputs (e.g., stock price = 105). What really matters in the real world is:

- How sure is the model?
- What's the range of plausible outcomes?
- What's the probability of being wrong?

That's uncertainty quantification (UQ): attaching confidence, distributions, or intervals to predictions.

Types of Uncertainty

There are two main categories:

- 1. Aleatoric Uncertainty ("noise in data")
 - It comes from randomness in the world.
 - Example: Even if you know everything about a dice, rolling it is inherently random.
- 2. Epistemic Uncertainty ("lack of knowledge")
 - Comes from limited data or model limitations.
 - Example: A medical model trained on European patients may be uncertain when predicting for African patients (out-of-distribution).

How Models Typically Fail

Most ML/finance/Al models give a point estimate:

- "House price = \$200,000"
- "Stock tomorrow = 105"
- "Patient has 80% chance of disease"

But in reality, the truth is:

- House price might be anywhere between \$180,000 and \$230,000.
- Stock might move ±10% depending on volatility.
- Disease probability might vary depending on unseen risk factors.

Without uncertainty, decisions made on predictions can be dangerous.

How We Attach Uncertainty

Different methods estimate how much trust we can put into a prediction:

- Confidence Intervals → range around prediction.
- **Predictive Distributions** → full probability curve.
- Coverage Guarantees → intervals that are guaranteed to contain the truth X% of the time.

Example:

```
Instead of saying:
  Stock price = 105

We say:
  Stock price = 105 ± 7 (95% confidence)
  or
  P(Stock between 100 and 110) = 0.85
```

Why It Matters

- **Finance** → Risk-adjusted trading, portfolio hedging.
- **Healthcare** → Doctors need confidence, not just guesses.
- Al Safety → Autonomous cars should know when they're unsure.
- **Science** → Reliable statistical inference.

← The core idea of this library is to make this plug-and-play for any model, so uncertainty isn't an afterthought but a standard output.