REAL TIME FACE DETECTION WITH HAAR CASCADE ROBUST TO SKIN COLOR AND VARIED ILLUMINATION

William Chandra (13215052) Hansen (13214077)

Teddy Hadi Utama (13215086)

Viola-Jones Framework: Haar Cascade

Background Theory - Viola Jones Algorithm

Viola Jones Algorithm **advantages** on **face detection**:

- 1. Fast feature computation
- 2. Enable feature scaling
- 3. Fixed computational cost
- 4. High detection rate and real time applicable

Haar Features & Integral Image

Training Custom Viola-Jones Model

Experiment: Check the speed and accuracy of trained model

10 Multiple Faces (Total 27)

30 Single Face

39 No Face

Statistical Test

"MODEL A"

Default model from internet: haarcascade_frontalface_default.xml[ref]

- · Windows resolution: 24x24
 - · Number of stages: 25
- Max Number of Features/stages: 190
 - Number dataset: ~10,000 images

"MODEL B"

Trained Model

- Windows resolution: 20x20
 - Number of stages: 15
- Max Number of Features/stages: 20
 - Number dataset: ~2,000 images

- False Positive : Number of non-face misclassified as face
- False Negative : Number of face misclassified as non-face
- Execution Program : Duration taken to process

Here we compare two Haar Cascade model:

- 1. **Model A**: Default model from Internet
- Model B: Trained Model

640x480 Pixels Result

Photos type	Model A			Model B		
	False Positive	False Negative	Process duration(s)	False Positive	False Negative	Process Duration(s)
Single face(30)	8	4	4.056	8	10	1.52
Multiple faces(27)	6	3	1.98	3	3	0.9776
No faces(39)	7		4.506	22	12	1.67

- Model B yields <u>2,5 times faster detection</u> <u>process</u> than Model A
- Model B has a lot worse False Positive on negative test set than Model A
- Model B has more false negative on single pictures than Model A

Note: <u>Trained model B</u> has much <u>fast detection</u> and needed <u>to reduced</u> in <u>false positive</u>

Implementation on Larger Dataset

- Datasets are taken with varieties of brightness: 70 lux, 100 Lux, 150 Lux, 250 Lux, and 300 Lux
- 2250 Sample Images

 Measured the number of True Positive and False Positive with the varying brightness

False Positive

- Illumination problem
- Differentiating the **color** between human skin and other object

Therefore needed an algorithm that able to solve illumination problem and skin detection

Haar Cascade with CLAHE as Preprocessing Algorithm

Background Theory - CLAHE

- Transforming each pixel with a transformation function derived from a neighbourhood region
- Each pixel is transformed based on the histogram of a square surrounding the pixel
- The transformation function is proportional to the cumulative distribution function (CDF) of pixel values in the neighbourhood
- CLAHE limits the amplification by clipping the histogram at a predefined value before computing the CDF

Haar Cascade Diagram with Preprocessing using CLAHE

CLAHE do **preprocessing** for every images before acting as input for Haar Cascade Algorithm

CLAHE Result on Grayscale Image

Original Image

CLAHE'd Image

- Better image contrast
- Segmentation in image become clearer
- Reduce the wide illumination variation on the image

Face Detection Result

Haar Cascade

Haar Cascade + CLAHE

- Lamp no more detected as face (reduce false positive)
- Face is detected and increasing the true positive
- Illumination is no more a problem for the system

Statistical Evaluation

- Overall True Positive is increased, especially on the low brightness situation (70 lux and 100 lux)
- Overall False Positive decreased significantly

Algorithm Time Performance

- CLAHE didn't affect significantly on the overall system performance with 0.39 s difference in processing 50 images using model B
- Still applicable for real time system

Things to Improve

Haar Cascade

Haar Cascade + CLAHE

- CLAHE able to reduce the
 illumination effect on the images
 but sometimes produce
 enhancement on objects that
 recognized as face by Haar
 Cascades Algorithm
- Algorithm that able to
 differentiate human skin color
 and non human object is needed

Haar Cascade Post
Processing Neural Network
for Face Skin Detection
with CLAHE as
Preprocessing Algorithm

Artificial Neural Network

- System inspired by biological neural network
- System learn the task by consider example
- Signal travel from input layer,
 hidden layer and output layer

Skin Detection (Neural Network)

Input parameter Skin Detection:

- Hue
- Value

Output parameter Skin Detection:

Face/No-Face

Back Propagation

Epoch	Error propagation	
100	246.15046	
200	85.17840	
300	85.13202	
400	84.82097	
500	84.77503	
False Negative	269/2464	

Output	Weight	
Hidden Neuron	Face	
1	-0.56987	
2	0.286753	
3	-2.23135	
4	-0.0465	
5	0.464328	
6	1.576555	
7	-0.24542	
8	-1.52262	
9	-1.08785	
10	1.165909	
11	-0.42567	

Input Weight								
Hidden Neuron	Hue	Value	Bias					
1	-1.37757	1.019475	0.092551					
2	1.657802	0.85319	0.066129					
3	-9.29431	-0.48865	-0.21385					
4	-0.70679	0.062445	-0.20377					
5	0.205661	0.095307	-0.11653					
6	0.853825	0.785654	0.067265					
7	-2.90769	-0.69242	0.108759					
8	12.86952	7.257907	0.188112					
9	0.836774	1.457793	0.16153					
10	-0.93046	-0.17844	0.008187					
11	0.772516	0.178698	0.049118					

Fixing Image Using Neural Network

Haar Cascade

Haar Cascade + CLAHE

Haar Cascade + CLAHE + NN

Comparison: Algorithm False Positive

Comparison: Algorithm Performance Time

On model B:

Haar + CLAHE + NN only **0.56s slower** than Haar Cascade alone in processing 50 images.

Thus still applicable for real time face detection

Real Time Implementation

System Block Diagram

Live Detection

- Laptop
- Camera
- Python with OpenCV library

DEMO

Questions?

THANK YOU