UNIDADES DE MEDIDA

ARQUITECTURA DE UN ORDENADOR

Qué é susceptible de ser medido na informática?

- ◆ A capacidade de almacenamento
- ◆ A velocidade de procesamento
- ◆ A velocidade da transmisión da información

CAPACIDADE DE ALMACENAMENTO

bit

Byte = 8 bits

 $KiB = 1024 \text{ Bytes} = 2^{10} \text{ Bytes}$

 $MiB = 1024 \text{ KiB} = 2^{20} \text{ Bytes}$

 $GiB = 1024 \text{ MiB} = 2^{30} \text{ Bytes}$

 $TiB = 1024 GiB = 2^{40} Bytes$

CAPACIDADE DE ALMACENAMENTO

O **kibibyte** (contracción de **ki**lo**byte bi**nario) correpondese con 2¹⁰ bytes (1024 bytes). Representase como **KiB** (K maíscula).

A unidade kB sempre se representa con minúscula. O cambio entre unidades faise con respecto a 1000 en lugar de en 1024

kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰

EXERCICIO:

Expresa en **bits as seguintes** cantidades:

128 Bytes: 8 MiB:

2TiB:

4 KiB:

24 GiB:

Expresa en **MiB** as seguintes cantidades:

120457865 bits:

8 GiB:

1024 Bytes

2 TiB

EXERCICIO

Expresa en **bits as** seguintes cantidades:

128 Bytes: 1024

8 MiB: 67108864

2TiB: 17592186044416

4 KiB: 32768

24 GiB: 206158430208

Expresa en **MiB as segyuintes** cantidades:

120457865 bits: 14,35

8 GiB: 8192

1024 Bytes: 0,0009

2 TiB: 2097152

VELOCIDADE DE PROCESAMENTO

A que se pode aplicar a velocidade de procesamento?

- Velocidad de procesamiento de un procesador
- Frecuencia de comunicación entre los diferentes elementos del ordenador
- Refrescos de pantalla de los monitores.

VELOCIDADE DE PROCESAMENTO

Cales son as unidades de medida de la velocidade de procesamento?

Hz = 1 ciclo / segundo

KHz = 1000 Hz

MHz = 1000

KHz GHz =

1000 MHz

UD 1: Arquitectura de un ordenador **EXERCICIO**

Converte as seguintes unidades.

1.500 Hz : 1500 / 1000 = 1.5 KHz

0,05 GHz : 0,05 * 1000 = 50 MHz

Velocidade de transmisión de datos

 $\mathbf{bps} = 1$ bit / segundo

Byte /s = 8 bits / segundo

Kbps = 1000 bps

Mbps = 1000Kbps

Gbps = 1000Mbps

UD 1: Arquitectura de un ordenador **EXERCICIO**

Converte as seguintes unidades.

$$2.048 \text{ MB/s} ==> GB/s$$

UD 1: Arquitectura de un ordenador **EXERCICIO**

Converte as seguintes unidades:

40 Kbps = 40 / 8 = 5 KB/s divide el valor de tasa de transmisión de datos entre 8bits = 1 Byte

2.048 MB/s = 2048 / 1000 = 2,048 GB/s

0,4 Gbps = 0,4 * 1000 / 8 = 50 MB/s

Ejercicio

Calcula la velocidade de transferencia de datos de

5 bits y 1000 KHz (Kbps y Mbps)

64 bits y 10.000 KHz (Kbps, MB/s)

1 bit y 1,5 GHz (Gbps, Mbps)

32 bits y 100 MHz (Mbps,GB/s)

64 bits y 100 KHz (Kbps,MB/s)

1 Byte y 2 KHz (KB/s,Kbps)

8 bits y 1 KHz (Kbps,B/s)

EXERCICIO

Calcula a velocidade de transferencia de datos de

5 bits y **1000** KHz (Kbps y Mbps) 5*1000 Kbps; 5000/1000 = 5 Mbps

64 bits y 10.000 KHz (Kbps, MB/s) 64 * 10.000 **Kbps** ; 640000 / (8 * 1.000) = 80 **MB/s**

1 bit y 1,5 GHz (Gbps, Mbps) 1*1,5 =**Gbps** ; 1,5*1000 = 1.500**Mbps**

32 bits y **100** MHz (Mbps,GB/s) 32 * 100 Mbps = 3200 / (8 * 1000) = 0.4 GB/s

64 bits y 100 KHz (Kbps,MB/s) 64 * 100 **Kbps**; 6400 / (8 * 1000) =0,8 **MB/s**

1 Byte y 2 KHz (KB/s, Kbps) 1*2 **KB/s**; 2*8 = 16 **Kbps**

8 bits y **1 KHz** (Kbps,B/s) 8*1 Kbps; 8*1000/8 = 1000 B/s