Due Wednesday, Feb 14

NAME:

- 1. The methane molecule CH_4 is arranged as if the carbon atom were at the center of a regular tetrahedron with four hydrogen atoms at the vertices. If vertices are placed at (0,0,0), (1,1,0), (1,0,1), and (0,1,1)—note that all six edges have length $\sqrt{2}$, so the tetrahedron is regular—what is the cosine of the angle between the rays going from the center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to the vertices? (The bond angle itself is about 109.5° , an old friend of chemists.)
- 2. What matrix P projects every point in \mathbb{R}^3 onto the line of intersection of the planes x + y + t = 0 and x t = 0?
- 3. If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find
 - a) a basis for the orthogonal complement V^{\perp} .
 - b) the projection matrix P onto V.
 - c) the vector in V closest to the vector $\boldsymbol{b} = (0, 1, 0, -1)$ in V^{\perp} .
- 4. Find the best straight-line fit to the following measurements, and sketch your solution:

$$y = 2$$
 at $t = -1$, $y = 0$ at $t = 0$,
 $y = -3$ at $t = 1$, $y = -5$ at $t = 2$.