

රාජකීය විදහාලය – කොළඹ **07** 12 ඉේණිය වාර පරිකෂණය – 2011 අපේල් රසායන විදහව II

. <u>B</u> කොටස - රචනා

- පුග්න සියල්ලවම පිළිතුරු සපයන්න.
- . (5). (a) BaO(*) සහ XCO_{3(s)} අඩංගු මිගුණයක 4.08 g නදින් රත් කළ විට ලැබුණ ශේෂයේ ස්කන්ධය 3.64 g කි. මෙම ශේෂය 1 moldm⁻³ HCl 100 cm³ ක් තුළ දියක්රන ලදී. පුනිකියා නොකරන ලද අම්ලය සම්පූර්ණයෙන් උදාසීන කිරීමට 2.5 moldm⁻³ NaOH 16.0 cm³ ක් වැය විය. X ලෝහස හඳුනා ගන්න.
 - (b) i) ස. උ. හා පීඩනයේ දී O_2 හා O_3 අඩංගු මිගුණයකින් $1 \, \, dm^3$ ක් ආමලික KI වැඩි පුමාණයක් සමග මිශු කරන ලදී.

- $O_3 + 2\Gamma + 2H^{\dagger}$ ______ $I_2 + O_2 + H_2O$ පිටවූ අයඩින් සමග පුතිකියා කිරීමට $1 \mod m^{-3} \ Na_2S_2O_3 \ 40.00 \ cm^3 ක් අවශා$ $විය. මිගුණයේ අඩංගු <math>O_3$ හි ස්කන්ධ පුතිශනය කොපමණද?

- ii) තරංග ආයාමය 300 mm වන පාරජම්බුල කිරණ මහින් O3 වියෝජනය කරයි. එක් පෝපටා්නයක් (Photon) මහින් එක් O3 අණුවක් වියෝජනය කරයි නම් මිශුණයේ අඩංගු සියලුම O3 වියෝජනය කිරීමට පෝචෝන කොපමණ පුමාණයක් අවගා වේද?
- (c) පහත නිරීක්ෂණ පහදන්න:
 - i) Cl₂, Br₂, I₂ හි නාපාංක පිළිවෙලින් 35 °C + 59 °C හා +184°C වේ.
 - ii) CO₂ හි දුවාංකය 78 °C වන අතර SiO₂ හි දුවාංකය +1723°C වීම.
 - iii) වායුමය CH3COOH අම්ලයේ නාපාංකය පරීක්ෂණාත්මකව සෙවූ විට ලැබෙනුයේ සා. අ. ස්. 120 වන සංයෝගයට සමා්න වන පරිදිය.
- (6) ෘ) එහිල් මධාසයාර (C₂H₅OH_(t)) දහනයෙන් බෝම්බ කැලරි මීටරයක නාප ධාරිතාවය මහිනු ලැබේ. එහිල් මධාසාර සම්මත දහන එන්නැල්පිය 1368 kJmol⁻¹ වේ. එහිල් මධාසාර 0.23 g ක් දහනයෙන් කැලරිම්ටරයේ උෂ්ණත්වය 3 °C කින් ඉහළ නගියි. එම කැලරිම්ටරය තුළ බෙන්සොයික් අම්ලය (C₆H₅COOH(s)) 0.244 g ක් දහනය කරනු ලැබේ. උෂ්ණත්වය 3.8 °C කින් ඉහළ නගියි. බෙන්සොයික් අම්ලයේ සම්මත දහන එන්නැල්පිය ගණනය කරන්න. (C = 12, H = 1, O = 16)

රාජකීය විදහලය - කොළඹ 07 12 ශුේණය වාර පරික්ෂණය - 2012 අපේල්

රසායන විදැනව II 🕠

කාලය ු පැය දෙකයි විනාඩි 30

තම / ර	දංකය :	ලශ්ුණිය :
	<u>A කොටස - වනුගත රචනා</u>	·
(1) a)	පහත සඳහන් දුවා ලැයිස්තුව ඔබට සපාප ඇත. Na, SiO ₂ , CCl ₄ , Ar, KB1 පහත පුශ්නවලට වඩාත්ම ගැලපෙන ව _ඩ හය හෝ ගුණය ඇදි තෝරා ලියන්න. i) වැන්ඩවාල් බල මගින් එකිනෙකට බැදී පවතින ඒක පරම	
	ii) පහත් දුවාංකයක් සහිත බහු පරමා€ු ා අනුව වන්නෝ	
·.	iii) සහ-සංයුජ බන්ධනවලින් බැඳී පරම ණුක ජාලයකින් සම	න්විත වන්නේ
	iv) ඝන අවස්ථාවේ විදාුුතය සන්නයකය නොකරන හා සන්නයනය කරන්නේ	විලීන අවස්ථාවේ විදාුුනය
	v) දුවාංකය හා තාපාංකය අතර වෙනල 3 K පමණ වන දුව	ා වත්නේ
	vi) දුව අවස්ථාවේදී විදාපුත් ධාරාවක් ය ීම මගින් වියෝජනය	ා කළ හැකි දුවා වත්තේ
b)	නයිටුල් ෆ්ලූචෝරයිඩ් (Nitryl fluoride) (FNO2) රසායනිස මධා පරමාණුව N වේ. i) FNO2 සඳහා ලුවිස් වනුහය අඳින්න.	නව ඉතා පුතිකිුයාශීලී වේ.
	ii) FNO2 සඳහා සම්පුයුක්ත වාුුන අඳින්න.	
	***************************************	*
	·	-

් jii) N පරමාණුවේ මුහුම්කරණය කුමක්ද?.

උදා: ලවණ දෙකෙහි දුලිස ශක්තියෝ අඩුවීම > ජලීකරණ ශක්තියේ අඩුවීම වන විට ජල දාවසතාව වැඩිවේ.

සම්මත දලිස එන්නැල්පි (kJ mol)

LiC!

-845

NaCl

-770

KCI

-703

සම්මත සජලීකරණ එන්තැල්පි (kJ mol⁻¹)

Li⁺

-544

Na⁺

-435

K⁺

-352

ඉහන් එන්තැල්පි අගයන් සැලකිල්ලට ගෙන LiCl, NaCl හා KCl හි ජල දාවානාව ආරෝහණය වන අනුපිළිචෙල සකසන්න.

(b) NaHCO₃ තාප ව්යෝජනයෙන් Na₂ිO₃ ලබාගත හැකිය.
 2 NaHCO_{3 (s)} → Na₂CO_{3 (s)} + H₂O_(g) + CO_{2(g)}

. පහත දී ඇති තාප රසායනික ද**ස**න (25°C දී) සලකන්න.

සංයෝගය	Na HCO _{3 (s)}	Na ₂ CO _{3 (s)}	H ₂ O (g)	$CO_{2(g)}$
සම්මත උත්පාදන	-947.7	-1131.0	-241.82	-393.5
එන්නැල්පිය k! mol ⁻¹				
සම්මත එන්ටොෆිය kJ ^{–1} mol ^{–1}	102.1	136.0	188.83	213.74

1)	කරන්	න.						එන්තැල්පි	විපර්යාස	(ΔH ⁰)	ගුණනය
				•					••••••	••••••	······································
	••••••	*****	••••			••••••	••••••	• • • • • • • • • • • • • • • • • • • •			
2)	25°C	Ęą)හද	ා පුති	ෝකිු යාව සඳ	∆S ⁸	ගණනය	කරන්ත.		**********	
			-····			•••••		· · · · · · · · · · · · · · · · · · ·	••••••	•••••••	······································
	• • • • • • • • • • • • • • • • • • • •	*****	••••	••••••	4	••••••			· · · · · · · · · · · · · · · · · · ·	······································	<u>:</u>

	3) $\Delta G = \Delta H - T\Delta S$ සමීකරණය ආවාරමයන් $25^{\circ}C$ දී ΔG° ගිණිනය කරන්න.

•	***************************************
•	4) 25°C දී ඉහත පුතිකිුයාව ස්වය සිද්ධ වේද? හොවේද? ඔබේ පිළිතුරට හේතු දක්වන්න.

	5) l bar පීඩනයකදී NaHCO _{3 (S)} ර විසටනය අවම වශයෙන් කුමන උෂ්ණත්වයකට ේවඩා ඉහළදී සිදුවේද?

•	***************************************

(3) (a)	මෝටර් රථයේ තදබල ගැටීමකදී NaN_1 ියෝජනයෙන් පහත පරිදි N_2 මුදා හැරේ.
	$2NaN_{3(s)}$ ——— $2Na_{(s)} + 3N_{2(g)}$
	N_2 වායුව නිපදවීමත් සමගම ක ϵ ණිකව රියදුරු අසුන හා රථයේ ඉදිරිපස වීදුරුව අතර බෑගය වායුවෙන් පිරීමෙ ϵ ා රියදුරු ආරක්ෂා වේ. $N_3N_{3(s)}$ 65 g ක් වීයෝජනයෙන් $87~^{\circ}C$ ක උෂ්ණත්වයකදී සහ $2.0785 \times 10^5~P_{ m p}$ පීඩනයකදී නිපදවෙන N_2 වායු පරිමාව dm^3 වලින් ගණනය කරන්න.
	[Na'= 23, N= 14]
	•

•	
b)	$PV = nRT$ යන පරිපූර්ණ වායු සමීක ිනිය සහ $PV = \frac{1}{3} mN C^2$ යන අණුක චාලක
	සමීකරණය යන සමීකරණ දෙක උපෙොගී කර ගනිමින් වායු අංශුවක වර්ග මධාානායෙ
	මූල පුවේගය ($\sqrt{C^2}$) සඳහා චායුවේ මවුලික ස්කන්ධය (M) ඇතුළත් පුකාශනයක් ගොඩ නගන්න.
,	

		•		ව වටා හැඩය අ ෙ	

	,				********************
	*			************	
ı				,	
	*****************	************		*********************	***************
•			•		
· v)	N ^O F අතර බන්	ධනය සෑදීමට	ාහභාගි වී අ	ඇති කාක්ෂික නම්	කරන්න.
	*********************		****************		
	***************				***********
				•	
		***************************************		*******	
. හන . ලම	ම්වුජත් වීමෝචන ම රෙක් සහ ඒවාට අනු ම ශේුණියේ පළමු රෙට අනුරූප ශක්ති	නුරූප වන ක රේබා හතර .	ින ආයාම ප % ₁ , X ₂ , X ₃ සැ	හත දක්වා ඇත. හ X_4 . ලෙස නම්	කර ඇත. මෙම ෙ
					n = 0
1		1 111			n=6
X_1	X_2 X_3	XII			n = 5
			•		
					,
, E		THE .			n = 3
9	686 nm 434 nm	410 nm		•	•
Ŋ	(A)	4			
656 nm	A 4				
92	. 4				
65					n = 2
65	O 4		•		n = 2
	, O 4				η = 2
99	o 4	•			n = 2
9	• 4	•			η = 2
99	*	•			n = 2
9	, ,				•
		as a see See See See			n = 2 n = 1
පහස	ආදහන් හිස්නැන්				n = 1
	ආදහන් හිස්නැන්				n = 1
පහස	ආදහන් හිස්නැන්				n = 1
පහත i)	ා සඳහන් හිස්නැන් X ₁ සිට X ₄ දෑ (වැඩි / අඩු)	ක්වා යාමේදි	රේඛාවල සං	බාහතය	n = 1
පහස	ා පඳහත් තිස්තැත් X1 සිට X4 දෘ (වැඩි / අඩු) මෙම ලෙයුණිය දි	ක්වා යාමේදි විදාපුත් චුම්බස	රේඛාවල සං ා වර්ණාවලිල	බාහතය	n = 1
පතස i) ii)	ා පඳහන් තිස්තැන් X1 සිට X4 දෘ (වැඩි / අඩු) මෙම ශුේණීය දි වේ. (පාරජම්බුල	ක්වා යාමේදි විදාපුත් චුම්බස , දෘෂාා, අගට	රේඛාවල සං ා වර්ණාවලිශ වා්රක්ත)	බාහතය ශ්	පුලද්ශයට අර
පහත i)	ා පඳහන් තිස්තැන් X1 සිට X4 දෘ (වැඩි / අඩු) මෙම ශුේණීය දි වේ. (පාරජම්බුල	ක්වා යාමේදි විදාපුත් චුම්බස , දෘෂාා, අගට	රේඛාවල සං ා වර්ණාවලිශ වා්රක්ත)	බාහතය ශ්	පුලද්ශයට අර
පහස i) ii)	ා පඳහන් තිස්තැන් X1 සිට X4 දෘ (වැඩි / අඩු) මෙම ශුේණීය දි වේ. (පාරජම්බුල	ක්වා යාමේදි විදාපුත් චුම්බස , දෘෂාා, අගට	රේඛාවල සං ා වර්ණාවලිශ වා්රක්ත)	බාහතය ශ්	පුලද්ශයට අර
පහස i) ii)	ා සඳහන් හිස්නැන් X ₁ සිට X ₄ දැ (වැඩි / අඩු) මෙම ශුේණිය දි වේ. (පාරජම්බුල මෙම රේඛා ලේ	ක්වා යාමේදි විදාපුත් චුම්බස , දෘෂාා, අගට	රේඛාවල සං ා වර්ණාවලිශ වා්රක්ත)	බාහතය ශ්	•

සජලිකරණ ශක්තිය යන දෙකම පුඩු<mark>වේ. දැලිස ශක්තිය අඩුවීම දුාවාතාව වැඩිවීමට</mark> නැඹුරුවන අතර සජලීකරණ ශක්තිය අඩුවීම දුවාතාව අඩුවීමට නැඹුරු වේ. ඒ නිසා

කිසියම් ලවණ දෙකක මෙම අගය න් දෙවර්ගයෙන් වැඩි සීඝුතාවයකින් අඩුවන අගය

මෙම අගයන් දෙකෙහි ඓනස දුංව:ාකාව කෙරෙහි පුතිවිරුද්ධ ලෙස බලපායි.

c)	ශිෂාලයක් වීසින් පරීක්ෂණාගාරයේදී සිදු පිරීමට සැලසුම කළ වායු පිළිබඳ පරීක්ෂණයක
	ඇටවුමක් පහත දක්වේ. A යනු ආවර්තිතා වගුවේ දෙවන ආවර්ගයට අයත් ආන්තරික නොවන මූලදුවායකි.
	A යනු ආවටතතා වගුවෙ දෙවන ආවර්ගයට අයත් ආදේශරික අනුවන මලදවායකි.
	B යනු ආවර්තිතා වගුවේ තුන්වන ආවර්ගයට අයත් ආන්තරික නොවන මූලදුවායකි.
	A හා B එකිනෙක රසායනිකව පුතිකියා නිරීමෙන් AB_3 සාදන නමුත් AB_5 නොසාදයි.
•	A වල හා B වල හයිඩුයිඩ පිළිවෙලිz X හා Y වන අතර මෙම හයිඩුයිඩ කාමර
	උෂ්ණත්වයේදී වායුවේ

i) A හා B යන මූලදවා හඳුනා ගන්න.

X වායු අණු සහ Y වායු අණු නළය තුළින් ගමන් කර එකිනෙක පුතිකියා කිරීමෙන් T නම් ස්ථානයේදී සුදු පැහැති ඝන දුමාරයක් සැදේ.

1) වායු අණුවල මෙම අහඹු චලනය හැඳින්වෙන නුම කුමක්ද?

2) T ස්ථානයේදී දක්නට ලැබෙන සංකෝගයේ නම කුමක්ද?

3) මෙම සංයෝගය සෑදීමට හේතුවන රසායනික පුතිකියා වර්ගය කුමක්ද?

4) සුදු පැහැති ඝන දුවා නළයේ මැද කෙළවරේ නිරීක්ෂණය නොවී නළයේ කෙළවරකට ආසන්නව නිරීක්ෂණය වන්නේ මන්දයි පහදන්න.

- (4) (a) C, H, O පමණක් අඩංගු A නම් කාබහික සංයෝගයක් සම්පූර්ණයෙන් ඔක්සිජන් වල දහනයෙන් CO_2 හා H_2O 2:1 මවුල අනුපාතයෙන් ලබාදේ. A හි සාපේක්ෂ අණුක ස්කන්ධය 90 ක්.වේ නම්.
 - A හි අණුක සූතුය නිගමනය කරන හ.

3) A සාමලික ලක්ෂණ දක්වන: අතර එය ජලයේදී අයතීකරණය වීමෙන් ලැබෙන් දැනායනය කුමක්ද? (සැ. යු. ුනායනයේ H අඩංගු නොවේ.)
4) A හි ඇතායනය අඩංගු ජලිය දුාවණයක් සහ ආම්ලිකෘත MnO අයන දාවණයක් පුතිකිුයා කිරීමට අදාළ තුලිත අයනික සමීකරණය ලියන්න.
5), A හි ජලීය දාවණයක් සමා සම්පූර්ණයෙන්ම පුතිකියා කිරීමට 0.2 moldm ⁻³ KMnO ₄ දාවණයකින් 25 cm. ක් වැය වුනි. මෙහිදී එල ලෙස අවර්ණ වායුවක් ලැබුණි. පිටවූ වායුව ස. උ පී. දී එක් රැස් කර ගත්තේ නම් එහි පරිමාව කොපමණද? (ස. උ. පී. දී වායුවක මවුලික සටමාව 22.4 dm ³ කි)
ශී ලංකාවේ ද ගල් අඟුරු බලාගාරයක් නොරච්චෝලේ පුදේශයේ පිහිටා ඇති අතර ගල් අඟුරු දහනයේදී සිදු විය හැකි එක් පරිසර දූෂණයක් වන්නේ පරිසරයට SC_2 පිටවීමයි. මේ සඳහා විකල්පයක් ලෙස පිට E ක SC_2 වායුව CaC මගින් $CaSC_3$ බවට පත් කළ හැකි බවට යෝජනා වී ඇත. මෙම ගල් අඟුරු වල ස්කන්ධය අනුව 2.2% ක් S අඩංගු වේ යැයි ගණනය කර ඇති අතර දිනකට ගල් අඟුරු 6.4×10^6 kg භාවිතා වේ නම් සඳහා අවශා වන CaC පුණිණය සොයන්න. මෙම CaC ලබා ගන්නේ හුණුගල් වියෝජනුයෙන් නම් හුණුගල් වල අඩංගු $CaCC_3$ පුතිශනය 60% ක් වන විට අවශා හුණුගල් ස්කන්ධය සොයන්න. $(Ca=40$, CaC_3 පි

#

b)