Определение 1. *Случайное явление* — это такое явление, которое в серии однотипных экспериментов под действием случайных факторов может приводить к различным результатам.

Примеры:

- 1. Спортсмен производит серию выстрелов по мишени. Результаты выстрелов могут отличаться, несмотря на постоянство условий стрельбы.
- 2. Игрок в одинаковых условиях бросает игральную кость. В зависимости от случайных факторов могут выпадать различные числа: 1, 2, 3, 4, 5, или 6.

Определение 2. Пусть проводится случайный эксперимент. В зависимости от случайных факторов возможны различные исходы этого эксперимента. Тогда этому эксперименту можно сопоставить npo-cmpahcmbo элементарных событий Ω , которое включает всевозможные исходы этого эксперимента. Элементарное событие является одним из элементов этого пространства и определяет один из возможных исходов. Случайное событие A является подмножеством пространства элементарных событий и включает одно или группу элементарных событий, каждое из которых благоприятствует A. Событие, состоящее в наступлении обоих событий A и B, будем называть npouseedenue событий A и B и обозначать AB или $A \cap B$. Дополнение к событию A (событие "не A") обозначим \overline{A} .

Примеры:

- 1. Эксперимент выстрел в мишень. Возможные исходы: промах, попадание. Случайные события попадание, промах.
- 2. Эксперимент бросание игральной кости. Возможные исходы: выпадение 1, 2, 3, 4, 5, или 6. Рассматривается случайное событие выпадение чётного числа. Ему благоприятствуют элементарные исходы: 2, 4 и 6. Выпадение нечётного числа также является случайным событием.

Определение 3. Каждому исходу ω сопоставляют число $P(\omega)$ из отрезка [0;1], называемое вероятностью этого исхода. Сумма вероятностей всех элементарных событий должна равняться единице. Вероятность события A — сумма вероятностей исходов, благоприятствующих событию A (обозначается P(A)). Пара (Ω, P) называется вероятностным пространством.

- **Задача 1.** Симметричную монету бросили 10 раз. Какова вероятность того, что **a)** все 10 раз выпал орёл? **б)** сначала выпало 5 орлов, а затем 5 решек? **в)** выпало 5 орлов и 5 решек (в произвольном порядке)?
- **Задача 2.** Тест состоит из 10-ти вопросов, на каждый из которых есть 4 варианта ответа. Двоечник Вася отвечает на вопросы «наобум». **a)** Какова вероятность того, что он ответит правильно на все 10 вопросов? **6)** Ровно на 5 вопросов? **в)** Не менее, чем на 5 вопросов?
- **Задача 3.** В году проводят много тестов, аналогичных тесту из задачи 2. Если Васе удаётся списать ответ на вопрос у отличника Пети, он отвечает на вопрос верно, иначе отвечает наугад. В конце года оказалось, что Вася ответил верно на половину всех вопросов. Какую часть вопросов Вася списал?
- **Задача 4.** Из множества всех последовательностей длины n, состоящих из цифр 0, 1 и 2, случайно выбирается одна. Найдите вероятность того, что в последовательности ровно m_0 нулей, m_1 единиц и m_2 двоек.
- **Задача 5.** За круглый стол рассаживаются в случайном порядке 2n гостей. Какова вероятность того, что гостей можно разбить на n непересекающихся пар так, чтобы каждая пара состояла из сидящих рядом мужчины и женщины?
- **Задача 6.** Два игрока поочередно извлекают шары (без возвращения) из урны, содержащей m белых и (n-m) чёрных шаров. Выигрывает тот, кто первым вытянет белый шар. Найдите вероятность выигрыша первого участника, если **a)** n=5, m=1 **б)** n=7, m=2.
- **Задача 7.** Пусть B событие, обладающее ненулевой вероятностью. Дайте определение условной вероятности $P_B(A) = P(A|B)$ события A при условии, что событие B произошло.
- **Задача 8.** Брошены две игральные кости. Найдите условную вероятность того, что выпали две пятёрки, если известно, что сумма выпавших очков делится на 5.

Задача 9. Монетка бросается 10 раз. Найдите вероятность того, что выпал «орёл» при условии, что 9 предыдущих раз выпала «решка».

Задача 10. Вероятность попадания в цель при отдельном выстреле равна 0,2. Какова вероятность поразить цель, если в 2% случаев выстрел не происходит из-за осечки?

Определение 4. События A и B называются *независимыми*, если $\mathsf{P}(AB) = \mathsf{P}(A) \cdot \mathsf{P}(B)$ (при $\mathsf{P}(B) \neq 0$ это равносильно равенству $\mathsf{P}_B(A) = \mathsf{P}(A)$).

Задача 11. События A и \overline{B} ? Являются ли независимыми события A и \overline{B} ? Являются ли независимыми события \overline{A} и \overline{B} ?

Задача 12. Из колоды в 52 карты случайным образом выбирается одна карта. Независимы ли события **а)** «выбрать валета» и «выбрать пику»? **б)** «выбрать валета» и «не выбрать даму»?

Задача 13. (Φ ормула полной вероятностии) Докажите, что для любых событий A, B в вероятностном пространстве (Ω, P)

- а) если 0 < P(B) < 1, то $P(A) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B})$;
- **б)** если $\Omega = B_1 \cup \ldots \cup B_n$, для всех $1 \le i \le n$ выполнено $\mathsf{P}(B_i) > 0$, и для всех $1 \le i < j \le n$ выполнено $\mathsf{P}(B_iB_j) = 0$, то $\mathsf{P}(A) = \mathsf{P}(A|B_1)\mathsf{P}(B_1) + \ldots + \mathsf{P}(A|B_n)\mathsf{P}(B_n)$.

Задача 14. (Формула Байеса) В условиях предыдущей задачи докажите, что

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A|B_1)P(B_1) + \ldots + P(A|B_n)P(B_n)}$$

Задача 15. В одной урне содержится 1 белый и 2 чёрных шара, а в другой урне — 2 белых и 3 чёрных шара. В третью урну кладут два шара, случайно выбранных из первой урны, и два шара, случайно выбранных из второй. Какова вероятность того, что шар, извлечённый из третьей урны, будет белым?

Задача 16. Студент сдаёт тест. На очередную задачу имеется K вариантов ответа. Студент действует так: либо он умеет решать задачу, и тогда он с определённостью находит правильный ответ, либо он не умеет её решать, и тогда он выбирает ответ наугад. Считается, априори, что студент умеет решать задачу с вероятностью p. Найдите вероятность того, что студент умел решать задачу, коль скоро полученный им ответ оказался верным.

Задача 17. (Схема Бернулли) Пусть некоторый эксперимент может закончиться либо успехом с вероятностью p, либо неудачей с вероятностью q=1-p. Проводится n независимых испытаний. Найдите вероятность того, что произошло ровно m успехов.

Задача 18. Рассмотрим множество $R = \{1, \ldots, n\}$ и будем производить последовательные испытания Бернулли (с вероятностью успеха p). Если на ν -м шаге решка — вынимаем элемент ν из R. Иначе — не вынимаем. Обозначим множество оставшихся элементов через A_1 . Точно так же из R получаем A_2, \ldots, A_m . Найдите $\mathsf{P}(|A_1 \cap \cdots \cap A_m| = k)$.

Задача 19*. ($Сумасшедшая \ старушка)$ Каждый из n пассажиров купил по билету на n-местный самолёт. Первой зашла сумасшедшая старушка и села на случайное место. Далее, каждый вновь вошедший занимает своё место, если оно свободно; иначе занимает случайное. Какова вероятность того, что последний пассажир займёт своё место?

Задача 20*. (3adaчa о разорении) Игрок, имеющий n монет, играет против казино, имеющего неограниченное количество монет. За одну игру игрок либо проигрывает монету, либо выигрывает с вероятностью 1/2. Он играет, пока не разорится. Найдите вероятность разориться ровно за m игр.

Задача 21*. Средний интервал движения автобуса №57 равен 35 минут, а средний интервал движения автобуса №661 равен 20 минут. Сколько в среднем нужно ждать

а) автобус №57; б) один из этих автобусов?

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	1 B	2 a	2 6	2 B	3	4	5	6 a	6	7	8	9	10	11	12 a	12 б	13 a	13 б	14	15	16	17	18	19	20	21 a	21 6