DEVRELER ve SISTEMLER

BIMU2058 - CSBM2092

Yrd. Doç. Dr. Fatih KELEŞ

Fiziksel Sistemler

Sistem nedir?

- Birbirleriyle ilişkide olan elemanlar topluluğuna sistem denir.
- Fiziksel sistemler, belirli bir görevi gerçekleştirmek üzere birbirlerine bağlanmış fiziksel eleman ya da düzenlerin oluşturduğu kümedir.

Fiziksel Sistemler

Başlıca Fiziksel Sistemler:

- Mekanik Sistemler
- Hidrolik Sistemler
- ▶ Termik Sistemler
- ▶ Elektriksel / Elektronik Sistemler

Sistem Teorisinin Kurulması

Bir matematiksel teori;

- ▶ Tanımlanmamış Büyüklükler
- Aksiyomlar
- ▶ Tanımlanmış Büyüklükler
- Teoremlerden

oluşur.

Sistem Teorisinin Kurulması

- Aksiyom: Bir teori bulunurken doğru olduğu kabul edilen önermelerdir.
- Sistem teorisinin aksiyomlarını belirlerken dikkat edilecek hususlar;
 - Ortaya koyulan aksiyomların minimum sayıda olması.
 - Birbirleriyle çelişmemesidir.

Fiziksel Sistem Teorisi

- Fiziksel dünyaya uygulanabilen teorilerin aksiyomları, fiziksel dünyada var olan yasalar yani Fizik Yasalarıdır.
- Bu yasaların bulunması için ise deney, gözlem ve ölçme yapılması gereklidir, gelişigüzel seçilmezler.
- Yapılan bu gözlem ve ölçmeler fiziksel dünyayla matematiksel teori arasında bir köprü görevi yaparlar.

Fiziksel Sistem Teorisi

Fiziksel Sistemlerde Ölçme

- Mekanik sistemler (Kuvvet ve Hiz)
- ▶ Elektriksel sistemler (Akım ve Gerilim)
- Hidrolik sistemler (Debi ve Basınc)
- Termik sistemler (Isının akış hızı ve Sıcaklık)
- Ölçmeler sonucunda bu sistemlerde geçerli olan yasalar elde edilmistir.
- Deney ve ölçmeler sonucu bulunan Kirchhoff Yasaları bunlara en belirgin örnektir.
- Bu yasalar öncelikle elektriksel sistemler için ortaya atılmış olmalarına karşın diğer fiziksel sistemler için de geçerlidir.

Fiziksel Sistem Teorisi

- Fiziksel büyüklüklerin matematiksel olarak tanımlanması ancak başka fiziksel büyüklüklerin cinsinden yapılabilir.
 Başka birinin cinsinden tanımlamanın ise sonu yoktur.
- Minimum sayıda fiziksel büyüklüğü matematiksel tanımı olmadan kullanmak gerekir. Aksiyomatik bir matematiksel teoride bunlara tanımlanmamış büyüklükler denmektedir.
- Böyle bir teoride tanımlanmamış olarak seçilecek büyüklükler aksiyomların içerdikleri terimlerdir.
- Kirchhoff yasaları sistem teorisinde Kirchhoff Aksiyomları olarak, akım ve gerilim büyüklükleri de bu teorinin tanımlanmamış büyüklükleri olarak alınmıştır.

Bir Sistemin Matematiksel Modeli

- Sistemin içindeki her bir elemanın bağlantı uçlarından görülen davranışları (özellikleri) da belirlenmelidir. Bunlar da tanımlanmamış büyüklükler cinsinden verilen denklemlerdir. Bu denklemlere Elemanların Uçsal Matematiksel Modelleri denir.
- Bir sistemin matematiksel modelinin elde edilebilmesi icin;
- > O sistemi oluşturan elemanların matematiksel modelleri
- Sistem içindeki elemanların bağlantı biçimine ait matematiksel modeli

bilinmesi gerekir.

İşlemsel Tanım

- Teoride kullanılan büyüklüklerin fiziksel sistemde ne şekilde ölçüldüğünün belirlenmesine İşlemsel Tanım denir.
- Fiziksel sistemde en basit yoldan ölçülebilen büyüklükleri teoride tanımlanmamış terim olarak alacağız.
- En basit yoldan yapılabilen ölçmeler ise iki türlüdür:
- > İçten (seri) ölçme
- > Uçtan uca (paralel) ölçme.

İşlemsel Tanım

- İçten ölçme sonucunda elde edilen büyüklüğe İç değişken,
- Uçtan uca yapılan ölçme sonucunda elde edilene ise
 Uç değişken denir.
- Fiziksel sistemlerde ölçü yaparken, ölçü aletinin sisteme bağlanmasının hiçbir şekilde sisteme etkimeyeceğini yani sistemin davranışını değiştirmeyeceğini varsaymaktayız.

İç Değişken ve Uç Değişken Ölçümü

- İç değişken (akım, kuvvet, akışkanın akış hızı, ısının akış hızı) ve uç değişken (gerilim, hız, basınç, sıcaklık) ölçen ölçü aletleri iki uçlu olup sisteme bu uçlarından bağlanırlar.
- Iç değişken ölçümü
- Uç değişken ölçümü

İç Değişken ve Uç Değişken Ölçümü

- İç değişken (akım, kuvvet, akışkanın akış hızı, ısının akış hızı) ve uç değişken (gerilim, hız, basınç, sıcaklık) ölçen ölçü aletleri iki uçlu olup sisteme bu uçlarından bağlanırlar.
- › İç değişken ölçümü
- Uç değişken ölçümü

Ölçüm aletine bir örnek

 Elektrik / elektronik sistemlerde kullanılan ölçü aletlerine bir örnek

Çeşitli İki Uçlu Elemanların Matematiksel Modelleri

- Elemanların matematiksel modelleri elemanlar hakkındaki bütün bilgiyi içerir. Başka bir deyişle, bir elemanın matematiksel modeli verilince o elemanın cinsi (direnç, kapasite, self, kütle, yay v.b.) anlaşılacağı gibi, o elemanın özellikleri (doğrusallık, pasiflik, zamanla değişirlik v.b.) de anlaşılmış olur.
- Burada ele alınacak fiziksel sistemler elektriksel, mekanik, hidrolik ve termik sistemler olacaktır. Bu sistemlerde iç ve uç değişkenlerin hangi büyüklükler olduğu tabloda gösterilmiştir.

Çeşitli İki Uçlu Elemanların Matematiksel Modelleri

Sistem Elektriksel	istem Elektriksel Mekanik		Hidrolik	Termik	Genel
	Ötelemeli	Dönmeli			
Gerilim:v(t)	Hız v(t)	Açısal hız w(t)	Basınç p(t)	Sıcaklık T(t) Uçdeğişken x(t)
Akım: i(t)	Kuvvet f(t)	Moment τ(t)	Debi q(t)	İsi miktarını değişim hızı	n İçdeğişken y(t)
				(akış hızı) q(t)

Bundan sonra çeşitli fiziksel sistemlerde bulunan iki uçlu elemanların matematiksel modelleri verilebilir. Doğrusal zamanla değişmeyen iki uçlu elemanların ve kaynakların tanım bağıntıları ve şematik gösterimleri bir sonraki tabloda gösterilmiştir.

Çeşitli İki Uçlu Elemanların Matematiksel Modelleri

	Enerji Açiga Çikartici	Geciktirme	Biriktirici (Depolayici)	Kaynak
Genel Biçim	x(t) = a.y(t)	b dy(t)/dt=x(t)	o dx(t)/dt=y(t)	x(t) veya y(t) biliniyor
Elektriksel	a=R 0///0	9=L	0=C	Akim kaynagi
Mekanik (Dogrusal Hareket)	a#B o————————————————————————————————————	b=1/K •———• Yay	c=M Atalet(kitde)	Kuvvet kaynagi
Mekanik (Dönme Hareketi	Sürtünme	**************************************	Atalet	Dönme momenti k
Hidrolik	Direnç	a=K Atalet	e=C _H	Debi kaynagi Basing k.
Termik	a=R Direcc		c=C ₊	Sicaklik k.

Çeşitli Elemanların Matematiksel Modelleri (örnek)

Kaldıraç Elemanı (mekanik sistem örneği)

 $f_1 l_1 = f_2 l_2$ $v_2 l_2 = -v_1 l_2$

 $\begin{bmatrix} v_1(t) \\ f_2(t) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{l_1}{l_2} \\ \frac{l_1}{l_2} & 0 \end{bmatrix} \begin{bmatrix} f_1(t) \\ v_2(t) \end{bmatrix}$

Çeşitli Elemanların Matematiksel Modelleri (örnek)

Transistor Elemanı (elektronik sistem örneği)

Elektriksel Sistemler

- Elektrik devreleri elektriksel sistemlerinin bir alt kümesidir.
- Elektrik devrelerini oluşturan düzenlere bu devrenin elemanları adı verilir.
- ► Elektriksel Sistem Teorisi
- › Elektriksel sistemi açıklamak için kullanılır.
- Alanlar Teorisi (Maxwell Denklemleri)
- Devreler Teorisi (Kirchhoff Yasaları)

Devreler Teorisindeki Sorunlar

- DEVRE ANALİZİ
 - · Elemanlar ve bağlantıları belli (devre belli)
 - Kaynak belli (giriş, input)
 - Her bir elemana ilişkin akım ve gerilimin bulunması (çıkış, output, devre çözümü, LAB)
- DEVRE SENTEZİ
 - Giriş belli (input, elde olan)
 - Çıkış belli (output, istenen)
 - · Hangi elemanı hangi elemana ve nasıl bağlayacağız (devre tasarımı, design)

Teori-Gerçek Karşılaştırılması

▶ TEORİ

Akım, Gerilim

Güç, enerji, yük

Aksiyom

Ideal Devre Elemanı tanım bağıntısı

Matematiksel

Kaynaklar (Aktif eleman):

Bağımsız (Gerilim, Akım, AC, DC, giriş işareti, giriş)

Bağımlı (AKAK, AKGK, GKAK, GKGK),

Lineer (Direnc, kapasite, self)

Nonlineer (Diyot, transistör vs)

ÖLÇME → GERÇEK

- Ölçülen Akım gerilim
- › Ölçülen, Güç, enerji,
- Yasa

▶ Devre Elemanı, akımgerilim karekteristiği Ölçme

Kaynaklar:

Bağımsız (akü,pil, besleme, elektrik, sinyal jen.) Bağımlı (Transistör)

▶ Lineer (direnç, self, kondansatör)

Nonlineer (Diyot, transistör vs)

Sistem mühendisi (örnek)

- Örnek olarak elektronik mühendisi.
 - Elektrik/Elektronik mühendisliği <u>elektriksel işaretlerin</u> (<u>büyüklüklerin)</u> bulunduğu <u>sistemleri</u> inceleyen bir meslek dalıdır. Örneğin
 - · Elektrik Güç sistemleri: üretim, dağıtım, taşıma ölçme
 - · Elektronik Haberleşme, bilgisayar, kontrol vs
 - · Multidisiplinli sistemler: mekatronik, medikal
- Ne yapar?
 - Fiziksel yapı matematiksel modele dönüştürülür,
- matematik araçlar kullanılır,
- - insanlığın pratik gereksinimleri karşılanır.

Elektronik Sistemler (örnek)

- Haberleşme Sistemleri
- Bilgisayar Sistemleri
- Kontrol Sistemleri
- Güç Sistemleri
- Medikal sistemler
- Bu sistemler derece derece çok sayıda alt sistemlerden oluşurlar.

Elektronik Sistemler (örnek)

- Haberleşme alt sistemleri
 Anahtarlama (switching)
 Çoğullama (multiplexing)
 Filterine (Filtering)

 - lletim (Transmisyon)
- Teknolojik gelişme
- Analog Sayısal
- Diğer alanlar ilişkisi
 Teknoloji, yatırım,
 ekonomi,
 siyaset

Elektronik Sistemler (örnek)

▶ Biyomedikal Sistemler

Elektronik Sistemler (örnek)

> Kontrol Sistemleri

