

A Complete Guide to Attractions in Seoul | The Official Travel Guide to Seoul (visitseoul.net)

Itaewon

https://english.visitseoul.net/i taewon?curPage=1

Samsung - COEX

https://english.visitseoul.net/gangnamarea

Bike Sharing System in Seoul Dikeseoul.com

city government system
20,000+ bikes
24/7 operation
stations strategically
located
web/mobile registration
GPS tracking

Dataset Information

Number of Instances: 8760

Number of Features: 14

Types of Features: Integer, Float, and Character

Date Range: 12/1/2017 - 11/30/2018

Date Donated : 3/1/2020

Data Source URL: https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand#

Original Datasets URL: http://data.seoul.go.kr/ and publicholidays.go.kr

The Implemented Features

Date: year-month-day

Hour: Hour of the day

Rented Bike count: Count of bikes rented at

each hour

Temperature: Temperature in Celsius

Humidity: %

Wind speed: m/s

Visibility: 10m

Dew point temperature : Celsius

Solar radiation: MJ/m2

Rainfall: mm

Snowfall: cm

Seasons: Winter, Spring, Summer, Autumn

Holiday: Holiday / No holiday

Functional Day: NoFunc (Non Functional

Hours), Fun (Functional hours)

Expected Outcomes

Goal

Predict the bike count required at each hour and season for the stable supply of rental bikes

Target

Rented bike count

Hypothesis 1

During rush hours, the bike rental count will be higher compared to non-rush hours.

Hypothesis 2

Bike rental count will decrease when the temperature drops below 0°C (32°F) or rises above 30°C (86°F).

ML Models

Regression Analysis, Random Forest Analysis, KNN, and XGBoost

AWS cloud services in action

AWS cloud services used are VPC & EC2.

Logical architecture

- Created a VPC Public Subnet
- 2. Launched EC2
- 3. Set up Git Repository
- 4. Collaborated the project in Git
- 5. Ran ML models

Data Cleaning

To prepare EDA, the dataset is cleaned up / processed by

- o dropping nulls and outliers
- o converting Seasons into factor (Spring : 1, Summer : 2, Fall : 3, Winter : 4)
- o and Holiday and Functioning Day into binary (Holiday: 0, No Holiday 1) / (Functional Day: 0. No Functional Day: 1)

EDA

EDA

ML Analyses

Conclusion of the Project Implementation

- o The AWS cloud services being used are VPC, public subnet, and EC2.
- o Based on EDA and ML analysis were performed, and two hypotheses were supported.
- During rush hours, the bike rental count will be higher compared to non-rush hours.
- o The data reveals a preference for increased bike usage in warmer seasons, especially summer. While our hypothesis might not be entirely accurate, temperature remains a crucial factor in bike usage patterns.
- o XGBoost had the highest accuracy among the ML models used, and it was chosen as the final model.

