· Vector Fractions: a function with domain a set of IR and whose range is a set of Vn

· Lim r'(t) = (lim flt), Lim gla, lim hlt)

Provided each Component's Limit exists otherwise we say it DNE.

. F(E) is continuous at t=a if Lim r(t)=r(a) and r(a) exists.

Example 2 Find Lim r'(t) where r'(t) = (1+ts) i+te-tj+ Sint & All limit tim r'(t) = (1,0,1) since $\lim_{t\to 0} (1+t^3) = |+|0|^3 = |\lim_{t\to 0} \frac{t}{e^t} = \frac{0}{e^0} = 0 \quad \lim_{t\to 0} \frac{\sin t}{t} \lim_{t\to 0} \frac{\cos t}{1} = \frac{\cos(0)}{1} = 1$ Since (1+t3) is Continous | Since tetis Continous | by L'Hopital's Rule

· A space curve C is the set of points (x, y, 2) where Parametric Equations - X=f(b) y=g(t) Z=h(t) as t varries throughout an interval IER.

Example 4 Sketch the curve whose vector equation is ~(t)=(lost, sint, t>

Question: How can Ex. 4 be changed to Spiral clockwise?

$$X = Cost$$
 $y = -Sint$ $z = t$

Example 5 | Find a rector equation and parametric equations for the line segment that joins the point P(1,3,-2) to Q(2,-1,3).

$$\overrightarrow{PQ} = \langle 2-1, -1-3, 3+2 \rangle = \langle 1, -4, 5 \rangle$$

$$\overrightarrow{C}(t) = \langle 1, 3, -2 \rangle + \langle 1, -4, 5 \rangle \cdot t$$

$$\overrightarrow{C}(t) = \langle 1+t, 3-4t, -2+5t \rangle$$

$$0 \le t \le 1$$

Example 6 Find a vector function that represents the curve of Intersection of the Cylinder x2+y2=1 and the plane y+ 2=2.

$$X^2+y^2=1$$

$$\begin{cases} X = lost \\ Y = sint \end{cases}$$

$$Z = 2 - y = 2 - Sint$$

$$P(t) = \langle lost, sint, 2-sint \rangle$$

$$0 \le t \le 2\pi$$

Example Use a computer to graph the Toroidal Spiral

X = (2+Sin 20+) 6st Y= (4+Sin 20t) Sint 2= Los 20+

- -> Wolfamalpha.com
- -> math.uri.edu/nbkaskos z/flashmo/parcur/

Top View:

Think of an extended Slinky Connected end to endin a circle/ellipse. One time around c

- · Extra Examples
- #27 Show that the curve: $x=t \omega st$, y=t sint, z=t lies on the Cone $z^2=x^2+y^2$ and use that to help sketch the curve.

r(t)= (t, 12)

#41 Find the vector function that represent the cure of intersection of the core $Z=\sqrt{\chi^2+y^2}$ and the plane Z=1+y.

98. Two particles travel along the space curves:

Do the particles Collide? Do their paths intersect?

Collide:
$$\vec{\Gamma}(t) = \vec{C}(t)$$
 $t = 1 + 2t \implies t = -1$
 $t^2 = 1 + 6t$ but $(-1)^2 \neq 1 + 6(-1)$
 $t^3 = 1 + 14t$ $(-1)^3 \neq 1 + 19(-1)$

No will not Collide

Intersect:
$$\vec{\Gamma}_{1}(t) = \vec{C}_{2}(s)_{11} t = 1 + 2s$$
 (1+2s) $= 1 + 6s$ (1) $s = 0, \frac{1}{2}$
2) $t^{2} = 1 + 6s$ (1+2s) $= 1 + 6s$ (1) $s = 0, \frac{1}{2}$
3) $t^{3} = 1 + 14s$ $= -2s + 4s^{2} = 0$ $= 1, \frac{1}{2}$
3) $t = 1 + 14s$ $= 0, \frac{1}{2}$ 3) check: $(1)^{3} = 1 + 14(0) \checkmark$ (2) $= 1 + 14(\frac{1}{2}) \checkmark$

* Cool: Watch video on space filling Curres: youtube com/watch?v=RUBwSclj360