2012 Fall Midterm

(1) Let S be the set of all points (x,y) & R2 that Satisfy the system of equations

 $x+y=mx^2-x^3$ and $mx+y^4=x^6-7mx^3+2$ for some $m \in \mathbb{Q}$. Determine (with proof) if S is countable or not.

Solution If $m \in \mathbb{Q}$, then $x+y=mx^2-x^3$ $y=mx^2-x-x$ $mx+y^4=x^6-7mx+2$ mx+(mx-x-x)=x-7mx+2So there are at most $12 \times s$ and 1y for each x.

 $S = \{(x,y) : (x,y) \in \mathbb{R}^2, m \in \mathbb{Q}, x+y=mx^2-x^3\}$ $= (x,y) : (x,y) \in \mathbb{R}^2, x+y=mx^2-x^3$ $= (x,y) : (x,y) : (x,y) \in \mathbb{R}^2, x+y=mx^2-x^3$ $= (x,y) : (x,y) : (x,y) \in \mathbb{R}^2, x+y=mx^2-x^3$ $= (x,y) : (x,y) : (x,y) \in \mathbb{R}^2, x+y=mx^2-x^3$ $= (x,y) : (x,y) : (x,y) : (x,y) \in \mathbb{R}^2, x+y=mx^2-x^3$ = (x,y) : (x,

Determine (with proof) all positive real numbers b such that the series of 2k+3 Converges.

Be sure to prove you have gotten all such b.

Solution By ratio test, $\lim_{k \to \infty} \frac{2^{k+4}}{\sqrt{k+1}} \frac{\sqrt{k}(\sqrt{b+1})^k}{\sqrt{k+3}} = \lim_{k \to \infty} \frac{2}{\sqrt{b+1}} \frac{2^k}{\sqrt{k+1}} \frac{2^k}{\sqrt{b+1}}$ If $\frac{2}{\sqrt{b+1}} < 1$ (\iff b>1), then the series converges.

If $\frac{2}{\sqrt{b+1}} > 1$ (\iff b<1), then the series diverges.

If $\frac{2}{\sqrt{b+1}} > 1$ (\iff b<1), the series $\frac{2^k}{\sqrt{k+1}} \frac{8^k}{\sqrt{k+1}} = \frac{2^k}{\sqrt{k+1}} \frac{2^k}{\sqrt{k+1}} = \frac{2^k}{\sqrt{k+1}} \frac{2^{k+3}}{\sqrt{k+1}} = \lim_{k \to \infty} \frac{2^{k+3}k}{\sqrt{k+1}} = \frac{2^k}{\sqrt{k+1}} \frac{2^k}{\sqrt{k+1}} = \frac{2^k$

3 Let S be a nonempty countable subset of \mathbb{R} . Prove that there exists a positive real number r such that the equation $5^x + 7^y = 5r$ does not have any solution with $x, y \in S$.

Solution $5^{x}+7^{y}=5^{x}\Leftrightarrow (5^{x}+7^{y})^{2}=r$. Let $T=\{(5^{x}+7^{y})^{2}: x,y\in S\}$. Then

T= (5x+7y)2} is countable.

(x,y) \(\S \times \)

Countable 1 \(\text{element} = \)

finite = Countable

·· (0,00) \ T is uncountable

... ∃re(0,00) and r∉T

:. there exists r>0 and $r \neq (5^{x} + 7^{y})^{2}$ with $x_{1}y \in S$.