Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre and Sebastian Uchitel

{rdegiovanni, naguirre}@dc.exa.unrc.edu.ar {dalal.alrajeh04, s.uchitel}@imperial.ac.uk

imperial College

Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre and Sebastian Uchitel

{rdegiovanni, naguirre}@dc.exa.unrc.edu.ar {dalal.alrajeh04, s.uchitel}@imperial.ac.uk

imperial College London

Automated Goal Operationalisation based on Interpolation and SAT Solving

Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre and Sebastian Uchitel

{rdegiovanni, naguirre}@dc.exa.unrc.edu.ar {dalal.alrajeh04, s.uchitel}@imperial.ac.uk

imperial College London

Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre and Sebastian Uchitel

{rdegiovanni, naguirre}@dc.exa.unrc.edu.ar {dalal.alrajeh04, s.uchitel}@imperial.ac.uk

imperial College

Goal Oriented Requirements Engineering

- Goals are objectives the system under consideration must achieve.
- GORE refers to the use of goals for requirements elicitation, elaboration, organization, specification, analysis, documentation and evolution.
- KAOS Knowledge Acquisition in autOmated Specifications:
 - a conceptual model for acquiring and structuring requirements models;
 - a set of strategies for elaborating requirements using this framework;
 - an automated assistant to provide guidance in the acquisition process.

KAOS specifications

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

Figura: Goal Model.

Renzo Degiovanni

U.N.R.C.

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

High level goals

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

- High level goals
- Low level goals

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

- High level goals
- Low level goals
- Requirements

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

- High level goals
- Low level goals
- Requirements
 - Expectations

Goal Model

Objectives the system should meet are defined in this model and interrelated through AND/OR refinement links.

- High level goals
- Low level goals
- Requirements
- Expectations
- Goal patterns:
 - Avoid: $C \Rightarrow \neg T$
 - Maintain: $C \Rightarrow T$

Object Model

This model defines the domain entities, relationships and attributes that are relevant to goal formulations.

 Objects can be specified formally by means of domain invariants.

Figura: Object Model.

Responsibility Model

The agents in the system are described together with their interfaces and responsibilities with respect to the goals.

- Responsibility assignments provide a criterion for stopping the goal refinement process.
- A goal assigned as the responsibility of a single agent must not be refined further.

The agents in the system are described together with their interfaces and responsibilities with respect to the goals.

- Responsibility assignments provide a criterion for stopping the goal refinement process.
- A goal assigned as the responsibility of a single agent must not be refined further.

Goal Oriented RE KAOS method

Operation Model

This model defines the services to be provided by software agents.

Operation switchPumpOn
DomPre !PumpOn
DomPost PumpOn
ReqPre True
ReqTrig False

- input-output relations over components of the object model.
- operation applications define state transitions.

Operation Model

This model defines the services to be provided by software agents.

Operation switchPumpOn
DomPre !PumpOn
DomPost PumpOn
ReqPre True
ReqTrig False

- input-output relations over components of the object model.
- operation applications define state transitions.
- domain conditions capture the elementary state transitions in the domain.

This model defines the services to be provided by software agents.

Operation switchPumpOn DomPre !PumpOn DomPost PumpOn ReqPre True ReqTrig False

- input-output relations over components of the object model.
- operation applications define state transitions.
- domain conditions capture the elementary state transitions in the domain.
- required conditions capture additional strengthenings to meet the goals.
 - RegPre: enabling condition.
 - ReqTrig: triggering condition.

Goal Oriented RE KAOS method

Goal Operationalisation

Operation switchPumpOn
DomPre !PumpOn
DomPost PumpOn
ReqPre True
ReqTrig False

Operationalization refers to the process of prescribing additional pre-, trigger-, and postconditions on operations in order to achieve goal specifications.

Safety Goal [PumpOnWhenHighWaterAndNoMethane]

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Goal Operationalisation

Operation switchPumpOn
DomPre !PumpOn
DomPost PumpOn
ReqPre True
ReqTrig False

A goal is correctly operationalised by a set of operations, if satisfying all required conditions in the set guarantees the satisfaction of the goal.

Safety Goal [PumpOnWhenHighWaterAndNoMethane]

 $\square(\texttt{HighWater} \land \neg \texttt{Methane} \rightarrow \bigcirc \texttt{PumpOn})$

Goal Operationalisation

Operation switchPumpOn
 DomPre !PumpOn

DomPost PumpOn
RegPre True

ReqTrig

HighWater & !Methane

A goal is correctly operationalised by a set of operations, if satisfying all required conditions in the set guarantees the satisfaction of the goal.

Safety Goal [PumpOnWhenHighWaterAndNoMethane]

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Interpolation

Given two sets A and B of formulas such that $A \cup B$ is unsatisfiable. an interpolant for A and B is a formula I such that:

- I is true in all models of A.
- I is false in all models of B. and
- I is in $\mathcal{L}(A) \cap \mathcal{L}(B)$, i.e., the common language of A and B.

Simple Example

$$A \equiv p \wedge q$$

$$B \equiv \neg q \wedge r$$

$$I \equiv q$$

Interpolation to Refine Requirements

Suppose we obtain a counterexample trace T, violating a particular goal G.

- If we build a formula F_T capturing trace T, and a formula F_G capturing the fact that G holds at the last state
 - clearly $F_T \wedge F_G$ is unsatisfiable.
- We can produce an interpolant I from these formulas, that provides a condition whose validity leads to the goal violation.

Renzo Degiovanni U.N.R.C

Interpolation to Refine Requirements

- I is a property of the trace T, which implies the negation of the goal G.
- The interpolant allows us to obtain a weaker "counterexample" than T, a condition reachable from the initial state which leads to the violation of a goal.
 - solely by removing *I*, we do not guarantee the satisfaction of *G*,
 - but not removing it guarantees its violation.
- Notice that interpolation is, in some sense, a form of generalisation.

Brief Overview

We present an approach for goal operationalisation, that automatically computes required pre/triggering conditions for operations, in order to fulfil a set of goals.

- Iterative,
- base on Interpolation and SAT solving,
- safety and the time progress goals,
- a wide range of liveness goals, namely, reactivity properties.

Renzo Degiovanni U.N.R.C.

The Approach

The Approach

The Approach

The Approach

The Approach

Requirements Derivation Phase

A counterexample may be removed either by:

Requirements Derivation Phase

A counterexample may be removed either by:

- prohibiting the occurrence of an operation from certain states
 - i.e., strengthening the operation's required precondition,

Requirements Derivation Phase

A counterexample may be removed either by:

- prohibiting the occurrence of an operation from certain states
 - i.e., strengthening the operation's required precondition,

Requirements Derivation Phase

A counterexample may be removed either by:

- prohibiting the occurrence of an operation from certain states
 - i.e., strengthening the operation's required precondition,
- or forcing an operation to occur in certain states
 - i.e., weakening its required triggering condition.

Requirements Derivation Phase

A counterexample may be removed either by:

- prohibiting the occurrence of an operation from certain states
 - i.e., strengthening the operation's required precondition,
- or forcing an operation to occur in certain states
 - i.e., weakening its required triggering condition.

Requirements Derivation Phase

A counterexample may be removed either by:

- prohibiting the occurrence of an operation from certain states
 - i.e., strengthening the operation's required precondition,
- or forcing an operation to occur in certain states
 - i.e., weakening its required triggering condition.

The approach is concerned with automatically detecting which of the above cases is necessary.

• weakest preconditions play an important role.

 $\begin{array}{ll} {\tt PumpOffWhenLowWater} &= & \\ & \Box ({\tt LowWater} \to \bigcirc \neg {\tt PumpOn}) \end{array}$

Counterexample:

tick LowWater

switchPumpOn LowWater & PumpOn tick LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

Strengthening Required Preconditions

```
PumpOffWhenLowWater =

□(LowWater → ○¬PumpOn)

Counterexample:
tick LowWater
switchPumpOn LowWater & PumpOn
tick LowWater & PumpOn
```

```
PumpOffWhenLowWater =
           \square(\text{LowWater} \rightarrow \bigcirc \neg \text{PumpOn})
Counterexample:
```

tick LowWater

switchPumpOn LowWater & PumpOn tick LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

we compute the weakest precondition of the interpolant with respect to the last operation.

```
PumpOffWhenLowWater =
             \square(\text{LowWater} \rightarrow \bigcirc \neg \text{PumpOn})
```

Counterexample:

tick LowWater

switchPumpOn LowWater & PumpOn tick LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

I' = WP(I, switchPumpOn) = LowWater

we compute the weakest precondition of the interpolant with respect to the last operation.

```
\label{eq:pumpOffWhenLowWater} \begin{split} & \text{PumpOffWhenLowWater} &= \\ & & \Box \big( \text{LowWater} &\to \bigcirc \neg \text{PumpOn} \big) \end{split}
```

Counterexample:

tick LowWater
switchPumpOn LowWater & PumpOn

tick LowWater & PumpOn

 $I = LowWater \land PumpOn$

I' = WP(I, switchPumpOn) = LowWater

- we compute the weakest precondition of the interpolant with respect to the last operation.
- the operation switchPumpOn is able to control the value of the interpolant.

```
PumpOffWhenLowWater =
             \square(\text{LowWater} \rightarrow \bigcirc \neg \text{PumpOn})
```

Counterexample:

tick LowWater

switchPumpOn LowWater & PumpOn tick LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

I' = WP(I, switchPumpOn) = LowWater

- we compute the weakest precondition of the interpolant with respect to the last operation.
- the operation switchPumpOn is able to control the value of the interpolant.
- then by forbidding switchPumpOn to occur when LowWater, we get rid of this counterexample, and contribute to stop violating G.

```
PumpOffWhenLowWater =
             \square(\text{LowWater} \rightarrow \bigcirc \neg \text{PumpOn})
```

Counterexample:

tick LowWater

switchPumpOn LowWater & PumpOn tick LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

I' = WP(I, switchPumpOn) = LowWater

- we compute the weakest precondition of the interpolant with respect to the last operation.
- the operation switchPumpOn is able to control the value of the interpolant.
- then by forbidding switchPumpOn to occur when LowWater, we get rid of this counterexample, and contribute to stop violating G.
 - check it is not obliged to be executed when LowWater

```
PumpOffWhenLowWater =
             \square(\text{LowWater} \rightarrow \bigcirc \neg \text{PumpOn})
```

Counterexample:

tick LowWater switchPumpOn LowWater & PumpOn

LowWater & PumpOn

 $I = LowWater \wedge PumpOn$

I' = WP(I, switchPumpOn) = LowWater

 $RegPre(switchPumpOn) = \neg LowWater$

- we compute the weakest precondition of the interpolant with respect to the last operation.
- the operation switchPumpOn is able to control the value of the interpolant.
- then by forbidding switchPumpOn to occur when LowWater, we get rid of this counterexample, and contribute to stop violating G.
 - check it is not obliged to be executed when LowWater

tick

PumpOnWhenHighWaterAndNoMethane =

 $\Box(\texttt{HighWater} \land \neg \texttt{Methane} \to \bigcirc \texttt{PumpOn})$

Counterexample:

tick aboveLow tick aboveHigh HighWater

tick HighWater tick HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

PumpOnWhenHighWaterAndNoMethane =

 $\square(\texttt{HighWater} \land \neg \texttt{Methane} \to \bigcirc \texttt{PumpOn})$

Counterexample:

tick aboveLow tick aboveHigh HighWater tick HighWater

 $I = HighWater \land \neg Methane \land \neg PumpOn$

HighWater

tick

```
PumpOnWhenHighWaterAndNoMethane =
```

```
\Box(\texttt{HighWater} \land \neg \texttt{Methane} \to \bigcirc \texttt{PumpOn})
```

```
Counterexample:
```

tick aboveLow tick aboveHigh HighWater

tick HighWater tick HighWater

```
I = HighWater \land \neg Methane \land \neg PumpOn
```

PumpOnWhenHighWaterAndNoMethane =

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Counterexample:

tick aboveLow tick aboveHigh HighWater

tick HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

• No operation executed can control the value of the interpolant.

PumpOnWhenHighWaterAndNoMethane =

 $\Box(\texttt{HighWater} \land \neg \texttt{Methane} \to \bigcirc \texttt{PumpOn})$

 ${\tt Counterexample:}$

tick aboveLow tick aboveHigh HighWater

tick HighWater

HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

- No operation executed can control the value of the interpolant.
- We try to remove the counterexample by forcing an operation to occur.

PumpOnWhenHighWaterAndNoMethane =

 $\square(\texttt{HighWater} \land \neg \texttt{Methane} \rightarrow \bigcirc \texttt{PumpOn})$

Counterexample: tick aboveLow tick aboveHigh HighWater tick HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

HighWater

- No operation executed can control the value of the interpolant.
- We try to remove the counterexample by forcing an operation to occur.
- The operation to be triggered, say a_t , must meet two conditions:

PumpOnWhenHighWaterAndNoMethane =

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Counterexample:

tick aboveLow tick

aboveHigh HighWater

HighWater HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

- No operation executed can control the value of the interpolant.
- We try to remove the counterexample by forcing an operation to occur.
- The operation to be triggered, say a_t , must meet two conditions:

 $I \Rightarrow DomPre(a_t) \land RegPre(a_t)$

PumpOnWhenHighWaterAndNoMethane =

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Counterexample:

tick aboveLow tick

aboveHigh HighWater

HighWater HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

- No operation executed can control the value of the interpolant.
- We try to remove the counterexample by forcing an operation to occur.
- The operation to be triggered, say a_t , must meet two conditions:

$$I \Rightarrow DomPre(a_t) \land ReqPre(a_t)$$

$$I \wedge \bigcirc DomPost(a_t) \Rightarrow \bigcirc \neg I$$

Weakening Required Triggering Conditions

PumpOnWhenHighWaterAndNoMethane =

 \square (HighWater $\land \neg$ Methane $\rightarrow \bigcirc$ PumpOn)

Counterexample:

tick aboveLow tick

aboveHigh HighWater

tick HighWater tick HighWater

 $I = \text{HighWater} \land \neg \text{Methane} \land \neg \text{PumpOn}$

ReqTrig(switchPumpOn) = $HighWater \land \neg Methane \land \neg PumpOn$

- No operation executed can control the value of the interpolant.
- We try to remove the counterexample by forcing an operation to occur.
- The operation to be triggered, say a_t, must meet two conditions:

 $I \Rightarrow DomPre(a_t) \land ReqPre(a_t)$

 $I \land \bigcirc DomPost(a_t) \Rightarrow \bigcirc \neg I$

Reactivity Liveness Properties

- Manna and Pnueli's characterisation: ([]<>As -> []<>G).
- A violation of a property of this kind consists of a prefix (finite part) leading to a loop in which the As is satisfied, but not G.
- To compute an interpolant for this counterexample, we encode

the reactivity goal:
$$P = (\bigvee_{i=l}^{\kappa} As^i) \Rightarrow (\bigvee_{j=l}^{\kappa} G^j)$$

Reactivity Liveness Properties

- The interpolant is a weaker representation of the loop part that explains what is wrong in the loop.
- We search for an operation a_t:
 - can be executed at some point in the loop,
 - a_t's execution reaches a states that does not satisfy the interpolant (i.e., "breaks" the loop).

Reactivity Liveness Properties

If we find a_t, then we refine:

$$ReqTrig(a_t) = ReqTrig^{pre}(a_t) \lor (ReqPre(a_t) \land \neg G)$$

- Notice that we do not refine a new triggering condition based on the interpolant.
 - we may produce triggering conditions weaker than needed.

Liveness Goals

Conclusions and Future Works

- We presented an approach for goal operationalisation, that automatically computes required pre-/triggering conditions for operations, in order to fulfil a set of goals.
- The approach is correct, but it is not complete.
- It applies to safety goals and particular kinds of liveness goals, namely reactivity properties.
- We have developed some case studies, and compared with previous approaches.

Renzo Degiovanni U.N.R.C.