

Universidade Federal do Ceará Engenharia de Computação Processamento Digital de Sinais

Utilização da Transformada de Wavelets na extração de características e na detecção de arritmias cardíacas em um sinal de ECG

Brena Kelly Sousa Lima 359971

Introdução

O eletrocardiograma (ECG) é um exame que fornece informações de doenças cardíacas;

Avalia as atividades elétricas do coração;

Para sinais de ECG, a filtragem é necessária pela nitidez e clareza que os diagnósticos exigem, já que distúrbios cardíacos podem ser determinados em pequenas variações de sua forma de onda.

Introdução

O sinal obtido através do ECG é formado pela junção repetitiva de 5 ondas

Figura 1: Ciclo cardíaco

Fonte: Entenda seu Eletrocardiograma

Apresentação do problema

Taquicardia: aceleração do ritmo cardíaco;

Figura 2: Taquicardia

Fonte: Entenda seu Eletrocardiograma

Apresentação do problema

Bradicardia: diminuição do ritmo cardíaco;

Figura 3: Bradicardia Fonte: Entenda seu Eletrocardiograma

Análise Fourier versus Análise Wavelets

A Transformada de Fourier fornece apenas as componentes espectrais do sinal, mas não indica o instante de tempo em que essas componentes aparecem.

Para a análise de um sinal de ECG, a Transformada de Fourier não é uma boa opção já que as frequências que compõem esse sinal de ECG ocorrem no tempo de existência do sinal.

A análise de sinais não-estacionários, pode ser melhor executada através de representações em tempo-frequência, ou mais precisamente, em tempo-escala no caso da Transformada de Wavelets.

1. Leitura do arquivo .mat

Figura 4: Sinal original amostra 115m Fonte: Próprio Autor

2. Remoção da baseline drift

Figura 5: Sinal com baseline removida Fonte: Próprio Autor

3. Decompor o sinal usando Transformada Discreta de Wavelets

Dois processos:

Determinar os coeficientes Wavelet;

Determinar versões aproximadas em diferentes níveis;

Decomposition:

Figura 6 : Estrutura com 3 níveis de composição Fonte: MathWorks

- 3. Decompor o sinal usando Transformada Discreta de Wavelets
 - Escolher qual Wavelet utilizar

Figura 7 : Família Daubichies
Fonte: MathWorks

11

- 3. Decompor o sinal usando Transformada Discreta de Wavelets
 - Decomposição em quatro níveis;
 - Qual nível escolher?

Figura 8: Quatro níveis de detalhamento Fonte: Próprio Autor

4. Localizar picos da onda R

O sinal D4 foi processado para enfatizar as maiores amplitudes:

Figura 9: Sinal processado D4 maiores amplitudes Fonte: Próprio Autor

Detecção da Frequência Cardíaca

Localização dos picos R e Índice de localização do item anterior

Próximos passos:

Calcular diferença de tempo entre dois picos consecutivos;

Compressão temporal;

Calcular Frequência média a partir de um filtro média móvel;

Resultados

Eficiência do software desenvolvido:

SinalECG	Complexo QRS nominal	Compleco QRS detectado	Porcentagem de acertos
100m	1785	1777	99.5%
102m	1498	1459	97.3%
113m	1795	1788	99.6%
115m	1953	1941	99.3%
119m	1672	1655	98.9%
121m	1115	1094	98.1%
209m	3005	2921	97.2%
213m	3251	3010	92.5%
230m	2201	2098	95.3%
234m	2753	2729	99.1%

Tabela 01: Porcentagem de acertos do algoritmo

Resultados

Frequências detectadas:

SinalECG	FC nominal	FC média	FC mínima	FC máxima
100m	40-89	62	41	87
102m	25-90	52	20	93
113m	48-87	60	47	82
115m	50-84	65	45	85
119m	33-81	57	29	79
121m	23-78	40	15	80
209m	82-171	100	55	174
213m	101-117	102	49	135
230m	40-101	72	38	100
234m	84-147	92	36	141

Tabela 02: Frequências cardíacas detectadas

Resultados

Detecção de arritmias

SinalECG	Estado do paciente	Resultado detectado
100m	Saudável	Saudável
102m	Bradicardia	Bradicardia
113m	Saudável	Saudável
115m	Saudável	Saudável
119m	Bradicardia	Bradicardia
121m	Bradicardia	Bradicardia
209m	Taquicardia	Taquicardia
213m	Taquicardia	Taquicardia
230m	Saudável	Saudável
234m	Taquicardia	Taquicardia

Tabela 03: Comparação do resultado nominal com simulado

Referências

[1] PhysioNET. MIT-BIH Database.

Link: http://www.physionet.org/physiobank/database/edb/

Acesso em: 19/10/2016.

[2] Guilherme M. A. da Silva **TEORIA WAVELET NA ANÁLISE DE SINAIS DE ECG COMO FERRAMENTA DE AUXÍLIO NA DETECÇÃO DE ARRITMIAS CARDÍACAS.**Universidade Federal de Sergipe .

[3] Leal, F. S. **ALGORITMO PARA DETECÇÃO DE PICOS DE ONDAS CARACTERÍSTICAS DO ECG.** Congresso Brasileiro de Engenharia Biomédica – CBEB, 2014.

[4] Willian V. C. Magalhães. Sistema de análise para eletrocardiograma. Centro Universitário de Brasília, 2012.