A tale never loses in the telling

When we tell a piece of news to someone and that person tells it to someone else, there are always differences in the transmitted information. The content can change a lot or very slightly, depending on the accuracy of the intermediate individual. That is why someone can hear quite different versions of the same facts.

Let the *interference degree* of a person be the degree of inexactness with which the person reproduces information. Now, suppose that a piece of informa-

tion travels across m+1 distinct individuals, p_0, p_1, \ldots, p_m , whose interference degrees are i_0, i_1, \ldots, i_m , respectively. So, the source of the information is person p_0 , who tells it to p_1 , then p_1 tells it to p_2 , then p_2 tells it to p_3 , and so on. The *noise* in the information, which somehow quantifies its extent of inexactness, is defined as follows (where N is a positive number, called the *noise parameter*). When the information reaches p_1 , the noise is 0. When the information reaches p_2 , the noise is $i_1N + i_2$. In the general case, when the information reaches p_m (for every $m \geq 2$), the noise is:

$$i_1 N^{m-2} + i_2 N^{m-3} + \cdots + i_{m-2} N^1 + i_{m-1} N^0$$
.

Task

Given a set of people, their interference degrees and their friendship relations, two distinct individuals (s and t) and a noise parameter, the goal is to compute the minimum possible noise (W) in a piece of information whose source is s when it reaches target t. Since noise values can be very large numbers, your program should write the value of W modulo 2^{45} .

You may assume that all pieces of information whose source is s always reach target t.

Input

The first line has four integers: P, which is the number of people; s, which is the source of the piece of information; t, which is the target person; and N, which is the noise parameter. Individuals are identified by integers, ranging from 0 to P-1. Notice that $s \neq t$.

The following P lines contain each a single integer. The first of these lines has the interference degree i_0 of person 0, the second one has the interference degree i_1 of person 1, and so on. So, the last of these lines has the interference degree i_{P-1} of person P-1.

The next line contains a single integer, R, which is the number of friendship pairs. Each of the following R lines specifies a different friendship pair. It has two distinct integers, x and y, representing that persons x and y tell news to each other.

Constraints

```
\begin{split} 2 &\leq P < 10\,000 \quad \text{(Number of people)} \\ P &< N \leq 10\,000 \quad \text{(Noise parameter)} \\ 1 &\leq i_k \leq P \qquad \text{(Interference degree of person $k$, for $k=0,1,\dots,P-1$)} \\ 1 &\leq R \leq 50\,000 \quad \text{(Number of friendship pairs)} \end{split}
```

Output

A single line with the minimum possible noise of a piece of information whose source is s when it reaches target t, modulo 2^{45} .

Sample Input

Sample Output

37

3 4