Genetic algorithm for Quantum Support Vector Machines

Lorenzo Tasca

25 Novembre 2024

Introduzione

 Quantum Machine Learning si propone di sfruttare le potenzialitò del Quantum Computing per potenziare le performance di alcuni algoritmi di Machine Learning.

Introduzione

- Quantum Machine Learning si propone di sfruttare le potenzialitò del Quantum Computing per potenziare le performance di alcuni algoritmi di Machine Learning.
- Vedremo come il potenziale di Coulomb fa sorgere vari problemi a causa della sua natura a lungo raggio, e necessita quindi di una trattazione a parte.

Sezione d'urto differenziale

Per definirla partiamo dall'equazione di Lippman-Scwhinger, che ci dice come un'onda piana nell'urto viene deformata in un'onda sferica:

$$\psi \approx e^{ik \cdot x} + f(k, k') \frac{e^{ikr}}{r}.$$

Richiamando il caso classico, possiamo definire la sezione d'urto $d\sigma$ come la sezione del fascio incidente attraverso la quale passa una corrente di probabilità pari a quella che entra in un angolo solido $d\Omega$:

$$J_{in} \frac{d\sigma}{d\sigma} = J_{out} d\Sigma$$

con $d\Sigma = r^2 d\Omega$. Si trova che

$$\frac{d\sigma}{d\theta} = |f(k, k')|^2.$$

