Measuring assortativeness in marriage

Axiomatic and structural approaches

Pierre-André Chiappori Columbia University Mónica Costa-Dias University of Bristol, IFS

Costas Meghir Yale, NBER, IFS, IZA, CEPR, IFAU Hanzhe Zhang Michigan State University

Rensselaer Polytechnic Institute Wednesday, October 23, 2024

This paper subsumes

- ▶ "Measuring assortativeness in marriage" (Chiappori, Costa-Dias, and Meghir) and
- ► "Axiomatic measures of assortative matching" (Zhang)

Assortative matching (on education)

- ► **Assortative matching** refers to the tendency of individuals with similar characteristics to form relationships or partnerships.
- Assortative matching on education contributes to income inequality and social stratification,
- which lead to low intergenerational mobility.

1. Introduction

A specific empirical debate

IPUMS USA: 40- to 50-year-olds and their heterosexual partners

(Start with) matching markets with binary types

$$M = (a, b, c, d)$$

	college women $a+c$	noncollege women $b+d$
college men $a+b$	а	b
noncollege men $c+d$	с	d

Each element denotes the # of pairs (also fine to normalize to %).

A general theoretical question

How do we compare

	θ_1 600	θ_2			$ heta_1$	$ heta_2$
	600	400			450	550
$\frac{\theta_1}{600}$	500	100	and	θ_1 500	400	100
$\frac{\theta_2}{400}$	100	300		$\frac{\theta_1}{500}$	50	450

In general, how do we rank any two markets with different distributions of college and noncollege men and women?

Matching Patterns

Fully Positive Assortative Matching.

$$\begin{array}{c|cccc} & \theta_1 & \theta_2 \\ \hline \theta_1 & a & 0 \\ \hline \theta_2 & 0 & d \\ \end{array}$$

Maximally Positive Assortative Matching.

Minimally Positive Assortative Matching.

2. Matching and measures

Random Matching (RM). $(|M| \equiv a + b + c + d)$

	$ heta_1$	θ_2			θ_1	θ_2
θ_1	$\frac{a+b}{ M } \frac{a+c}{ M } M $	$\frac{a+b}{ M } \frac{b+d}{ M } M $	=	θ_1	$\frac{(a+b)(a+c)}{a+b+c+d}$	$\frac{(a+b)(b+d)}{a+b+c+d}$
θ_2	$\frac{a+c}{ M }\frac{c+d}{ M } M $	$\frac{c+d}{ M } \frac{b+d}{ M } M $		θ_2	$\frac{(a+c)(c+d)}{a+b+c+d}$	$\frac{(c+d)(b+d)}{a+b+c+d}$

Positive Assortative Matching (PAM).

observed $\#(\theta_1\theta_1) > \text{random baseline}$

Negative Assortative Matching (NAM). ad < bc.

Measures

EMZ: Likelihood ratio

Likelihood ratio for each type

$$LR_1(M) = \frac{\text{observed } \#\theta_1\theta_1}{\text{random baseline}} = \frac{a}{\frac{a+b}{|M|}\frac{a+c}{|M|}|M|} = \frac{a(a+b+c+d)}{(a+b)(a+c)}.$$

$$LR_2(M) = \frac{\text{observed } \#\theta_2\theta_2}{\text{random baseline}} = \frac{d}{\frac{d+b}{|M|}\frac{d+c}{|M|}|M|} = \frac{d(a+b+c+d)}{(d+b)(d+c)}.$$

Aggregate likelihood ratio (Eika, Mogstad and Zafar, 2019, JPE) (EMZ)

$$LR(M) = \frac{(a+b)(a+c)LR_1(M) + (d+b)(d+c)LR_2(M)}{(a+b)(a+c) + (d+b)(d+c)}$$

$$= \frac{a+d}{\frac{a+b}{|M|}\frac{a+c}{|M|}|M| + \frac{d+b}{|M|}\frac{d+c}{|M|}|M|} = \frac{\text{observed } \#(\theta_1\theta_1 + \theta_2\theta_2)}{\text{random baseline}}$$

CCM: Odds ratio

(OR) odds ratio; cross-ratio (Chiappori, Costa-Dias and Meghir, 2020, 2022)

$$I_O(a,b,c,d) = \frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}.$$

(Q) Yule's Q; Coefficient of association (Yule, 1900)

$$I_Q(a,b,c,d) = rac{ad-bc}{ad+bc} = rac{1-rac{bc}{ad}}{1+rac{bc}{ad}} = rac{rac{ad}{bc}-1}{rac{ad}{bc}+1}.$$

(Y) Yule's Y; Coefficient of colligation (Yule, 1912)

$$I_Y(a,b,c,d) = rac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}} = rac{\sqrt{rac{ad}{bc}} - 1}{\sqrt{rac{ad}{bc}} + 1}.$$

Both return +1 when max PAM and -1 when max NAM.

Conflicting conclusion: CCM vs EMZ

For illustration, suppose b = c.

Other measures

(PR) Pure-random normalization (minimum distance) Fernández and Rogerson (2001, QJE), Liu and Lu (2006, EL), Greenwood,

Guner, Kocharkov and Santos (2014, AER), Shen (2020, PhD thesis):

$$I_{PR}(a,b,c,d) = \frac{ad - bc}{(\max\{b,c\} + d)(a + \max\{b,c\})}.$$

(Corr) Correlation

$$I_{Corr}(a,b,c,d) = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}.$$

(Chi) Spearman's rank correlation (degree away from random matching)

$$I_{\chi}(a,b,c,d) = [I_{Corr}(a,b,c,d)]^2 = \frac{(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}.$$

Hou et al. (2022, PNAS) use all aforementioned measures for robustness checks.

Existing Approach

Measure \Longrightarrow properties

Axiomatic Approach

 $Measure(s) \iff properties (i.e., axioms)$

[ScInv] Scale Invariance. The market exhibits the same assortativity when all entries scale by the same constant. For all $\lambda > 0$,

[TInv] Type Invariance. The market exhibits the same assortativity when types are relabeled.

[SiInv] Side Invariance. The market exhibits the same assortativity when sides are relabeled.

Do the measures satisfy the axioms?

	invariance						
	conditions						
	ScInv	TInv	SiInv				
$\overline{LR_i \text{ (EMZ)}}$	√	X	$\overline{\hspace{1cm}}$				
LR (EMZ)	✓	\checkmark	\checkmark				
OR (CCM)	✓	\checkmark	\checkmark				

[DMon] Diagonal Monotonicity. For all $\epsilon > 0$,

and

where the equalities hold if and only if bc = 0.

[ODMon] Off-Diagonal Monotonicity. For all $\epsilon > 0$,

		θ_1				θ_1	θ_2
	θ_1	а	b	\succeq_A	θ_1	а	$b + \epsilon$
Ī	θ_2	С	d	-	θ_2	С	d

and

where the equalities hold if and only if ad = 0.

[MMon] Marginal Monotonicity. Suppose $M=(a,b,c,d)\gg 0$ and $M'=(a',b',c',d')\gg 0$ have the same marginals: a+b=a'+b', a+c=a'+c', b+d=b'+d', c+d=c'+d'.

$$M \succ_A M' \Leftrightarrow a > a' \Leftrightarrow b < b' \Leftrightarrow c < c' \Leftrightarrow d > d'$$

Equivalently, for all $M = (a, b, c, d) \gg 0$ and $\epsilon \in (0, \min\{a, d\})$,

	θ_1	θ_2		θ_1	θ_2
				$a - \epsilon$	
θ_2	С	d	θ_2	$c + \epsilon$	$d - \epsilon$

► DMon and ODMon imply MMon. Proof:

Do the measures satisfy the axioms?

	invariance			monotonicity		
	cc	onditior	ıs		conditior	ıs
	ScInv	TInv	SiInv	MMon	DMon	ODMon
LR_i (EMZ)	✓	X	√	✓	√	✓
LR (EMZ)	✓	\checkmark	\checkmark	✓	X	X
OR (CCM)	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark

[MI] Marginal Independence (Edwards, 1963, JRSSA). For all $\lambda > 0$,

- ► MI implies INV (ScInv, TInv, SiInv).
- MMon and MI together imply DMon and ODMon.

Odds ratio: unique total order

Proposition

The unique total order that satisfies MI (which implies INV) and MMon (which together with MI implies DMon and ODMon) is the order induced by the odds ratio (ad)/(bc).

In other words, the unique index, up to monotonic transformation, that satisfies MI and MMon is the odds ratio.

Structural interpretation of the odds ratio

- Consider an underlying transferable-utility matching model of men $X \ni x$ and women $Y \ni y$.
- Suppose the surplus generated by a match between man x of type θ_i and woman y of type θ_i takes the separable form

$$s_{xy} = Z^{\theta_i \theta_j} + \epsilon_x^{\theta_j} + \epsilon_y^{\theta_i},$$

where $Z^{\theta_i\theta_j}$ is a deterministic component depending on types and ϵ 's are random shocks reflecting unobserved heterogeneity among individuals.

▶ If ϵ 's follow T1EV (Choo and Siow, 2006), then the supermodular core equals twice the odds ratio:

$$Z^{\theta_i\theta_i} + Z^{\theta_j\theta_j} - Z^{\theta_i\theta_j} - Z^{\theta_j\theta_i} = 2\frac{ad}{bc}.$$

► The odds ratio directly reflects changes in surplus (irrespective of changes in marginal distribution).

Call $M=(a,b,c,d)\gg 0$ a full-support market. Call M and M' a full-support decomposition of a full-support market M+M' if $M\gg 0$ and $M'\gg 0$.

[Dec] Decomposability. For any full-support decomposition of any full-support market, the assortativity of the market is the population-weighted average of the assortativity of the two markets decomposed from the market. For $M = (a, b, c, d) \gg 0$ and $M' = (a', b', c', d') \gg 0$,

$$I(M+M') = \frac{|M|}{|M+M'|}I(M) + \frac{|M'|}{|M+M'|}I(M'),$$

where
$$|M| = a + b + c + d$$
 and $|M'| = a' + b' + c' + d'$.

- ▶ Dec implies ScInv.
- ▶ Dec, ScInv, TInv, and MMon imply DMon and ODMon.

Normalized trace: unique cardinal measure

Proposition

The unique index, up to linear transformation, that satisfies INV, DMon, ODMon, and Dec is **normalized trace** (proportion of like pairs) with boundary adjustment

$$I_{tr}(a,b,c,d) = egin{cases} 1 & ext{if } bc = 0 \ rac{a+d}{a+b+c+d} \in (0,1) & ext{if } abcd
eq 0 \ 0 & ext{if } ad = 0 \end{cases}$$

Normalized trace: unique cardinal measure

Proposition

The unique index, up to linear transformation, that satisfies INV, MMon, and Dec is **normalized trace (proportion of like pairs) with boundary adjustment**

$$I_{tr}(a,b,c,d) = egin{cases} 1 & ext{if } bc = 0 \ rac{a+d}{a+b+c+d} \in (0,1) & ext{if } abcd
eq 0 \ 0 & ext{if } ad = 0 \end{cases}$$

Call $M = (a, b, c, d) \gg 0$ a full-support market. Call M and M' a full-support decomposition of a full-support market M + M' if $M \gg 0$ and $M' \gg 0$.

[RDec] Random Decomposability. For any full-support decomposition of any full-support market, the assortativity of the market is a weighted average of the assortativity of the two markets decomposed from the market, where the weight is the expected number of assortative pairs:

$$r(M) \equiv \frac{a+b}{|M|} \frac{a+c}{|M|} |M| + \frac{d+b}{|M|} \frac{d+c}{|M|} |M|.$$

For $M = (a, b, c, d) \gg 0$ and $M' = (a', b', c', d') \gg 0$,

$$I(M+M') = \frac{r(M)}{r(M+M')}I(M) + \frac{r(M')}{r(M+M')}I(M'),$$

where |M| = a + b + c + d and |M'| = a' + b' + c' + d'.

EMZ's likelihood ratio

Proposition

An index satisfies INV, MMon, and RDec if and only if it is proportional to likelihood ratio

$$\begin{array}{ll} \mathit{LR}(\mathit{M}) & = & \frac{(a+b)(a+c)\mathit{LR}_1(\mathit{M}) + (d+b)(d+c)\mathit{LR}_2(\mathit{M})}{(a+b)(a+c) + (d+b)(d+c)} \\ & = & \frac{a+d}{\frac{a+b}{|\mathit{M}|}\frac{a+c}{|\mathit{M}|}|\mathit{M}| + \frac{d+b}{|\mathit{M}|}\frac{d+c}{|\mathit{M}|}|\mathit{M}|} = \frac{\text{observed } \#(\theta_1\theta_1 + \theta_2\theta_2)}{\text{random baseline}} \end{array}$$

Axioms for binary types

	invariance conditions			m			
	ScInv	TInv	SiInv	MMon	DMon	ODMon	unique
LR_i (EMZ)	√	X	√	✓	√	✓	
LR (EMZ)	✓	\checkmark	\checkmark	✓	X	X	RDec
OR (CCM)	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	MI
trace	/	✓	✓	/	✓	✓	Dec

Singles and same-sex couples

Singles

Consider the markets with singles. Expand the table without singles by adding a row and a column to indicate the singles.

$$\widetilde{M} = \begin{array}{ccccc} m \backslash w & \theta_1 & \theta_2 & \emptyset \\ \theta_1 & M_{11} & M_{12} & M_{10} \\ \theta_2 & M_{21} & M_{22} & M_{20} \\ \emptyset & M_{01} & M_{02} \end{array}$$

Singles examples

If we do not consider singles, the following three tables give us the same assortativity: (p=pairs)

	\widetilde{M}_1				\widetilde{M}_2				\widetilde{M}_3		
$m \backslash w$	$ heta_1$	$ heta_2$	Ø	$m \setminus w$	$ heta_1$	$ heta_2$	Ø	$m \backslash w$	θ_1	θ_2	Ø
$ heta_1$	50p	0	25	θ_1	50p	0	0	θ_1	75p	0	0 .
$ heta_2$	0	50p	0	θ_2	0	50p	0	θ_2	0	50p	0
Ø	25	0		Ø	0	0		Ø	0	0	

If we consider singles, arguably,

- $ightharpoonup \widetilde{M}_2$ is more assortative than \widetilde{M}_1 because there are no singles who could have matched with each other;
- ▶ \widetilde{M}_3 is more assortative than \widetilde{M}_1 because unmatched individuals in \widetilde{M}_1 are assortatively matched in \widetilde{M}_3 .

Normalized trace with singles

[SMon] Singles Monotonicity.

Consider $\widetilde{M} = (M_{ij})_{i,j \in \{0,1,2\}}$ and $\widetilde{M}' = (M'_{ij})_{i,j \in \{0,1,2\}}$. When $M_{i0} > M'_{i0}$ for an i and $M_{jk} = M'_{jk}$ for any other combination of j and k, $\widetilde{M} \succ_A \widetilde{M}'$.

Proposition

Normalized trace with singles is the unique index (up to linear transformation) that satisfies INV, DMon0, ODMon0, Dec0, and SMon.

$$\widetilde{I}_{tr}(\widetilde{M}) = rac{\operatorname{tr}(\widetilde{M})}{|\widetilde{M}|}.$$

In this case, $\widetilde{I}_{tr}(\widetilde{M}_1)=200/250=4/5$ and $\widetilde{I}_{tr}(\widetilde{M}_2)=\widetilde{I}_{tr}(\widetilde{M}_3)=1$.

Axioms beyond binary types

	invariance conditions	monotonicity conditions	singles	same-sex	multiple types
LR _i (EMZ)	X	✓	√	✓	√
LR (EMZ)	✓	X	✓	✓	
OR (CCM)	✓	✓	X	X	X
trace	✓	✓	✓	✓	

Evidence from US

Evidence from MI

Evidence from ID

Evidence from NY

Evidence from CA

What is a marriage market in practice?

- ► 40-50 year-olds and their spouses
- ► 40-50 year-old men and their wives
- ▶ 40-50 year-old women and their husbands
- all those of various birth cohorts who marry in the same year/decade
- cohabitation versus marriage

Normalized trace for same-sex couples

Proposition

Consider same-sex matching of binary types. The unique index that satisfies ScInv, TInv, SiInv, DMon, ODMon, and Dec is the normalized trace, up to linear transformation.

Evidence for same-sex couples

Multiple discrete types

Multiple discrete types

educd		
00	N/A or no schooling	
01	Nursery school to grade 4	
02	Grade 5, 6, 7, or 8	
03	Grade 9	
04	Grade 10	
05	Grade 11	
06	Grade 12	
07	1 year of college	
08	2 years of college	
09	3 years of college	
10	4 years of college	
11	5+ years of college	

Normalized trace in multiple types

Proposition

Suppose there are N types: $\theta_1, \theta_2, \dots, \theta_N$. The unique index that satisfies ScInv, TInv, SiInv, DMon, ODMon, and Dec is the normalized trace, up to linear transformation.

	θ_1	θ_2	θ_3
θ_1	M_{11}	M_{12}	M_{13}
θ_2	M_{21}	M_{22}	M_{23}
θ_3	M_{31}	M_{32}	M_{33}

Robustness to categorization

[RC] Robustness to Categorization.

Let $M|_C$ denote the market given categorization C. $M \succeq_A M'$ if and only if $M|_C \succeq_A M'|_C$ for any categorization C, and $M \succ_A M'$ if and only if $M|_C \succ_A M'|_C$ for any categorization C.

	θ_1	θ_2	θ_3
θ_1	M_{11}	M_{12}	M_{13}
θ_2	M_{21}	M_{22}	M_{23}
θ_3	M_{31}	M_{32}	M_{33}

	θ_1	θ_2	θ_3
θ_1	M_{11}	M_{12}	M_{13}
θ_2	M_{21}	M_{22}	M_{23}
θ_3	M_{31}	M_{32}	M_{33}

No complete assortativity order on multi-type *M*

Proposition

No total order satisfies MMon and RC.

Proof by counterexample. Consider markets

$$M = \frac{\begin{array}{c|c|c} 1/9 & 1/9 & 1/9 \\ \hline 1/9 & 1/9 & 1/9 \\ \hline 1/9 & 1/9 & 1/9 \end{array} \text{ and } M' = \frac{\begin{array}{c|c} 1/9 - \epsilon & 1/9 + \epsilon & 1/9 \\ \hline 1/9 + \epsilon & 1/9 & 1/9 - \epsilon \\ \hline 1/9 & 1/9 - \epsilon & 1/9 + \epsilon \end{array}$$

When we group θ_1 and θ_2 ,

$$M|_{(\{1,2\}\{3\})} = \frac{4/9 \mid 2/9}{2/9 \mid 1/9} \prec_A M'|_{(\{1,2\}\{3\})} = \frac{4/9 + \epsilon \mid 2/9 - \epsilon}{2/9 - \epsilon \mid 1/9 + \epsilon}$$

When we group θ_2 and θ_3 ,

$$M|_{(\{1\}\{2,3\})} = \frac{1/9 \mid 2/9}{2/9 \mid 4/9} \succ_A M'|_{(\{1\}\{2,3\})} = \frac{1/9 - \epsilon \mid 2/9 + \epsilon}{2/9 + \epsilon \mid 4/9 - \epsilon}$$

No complete assortativity order on multi-type *M*

Proposition

No total order satisfies DMon+ODMon and RC.

Proof by counterexample. Consider markets

$$M = \frac{\begin{array}{c|c|c} 1/9 & 1/9 & 1/9 \\ \hline 1/9 & 1/9 & 1/9 \\ \hline 1/9 & 1/9 & 1/9 \end{array} \text{ and } M' = \frac{\begin{array}{c|c} 1/9 - \epsilon & 1/9 + \epsilon & 1/9 \\ \hline 1/9 + \epsilon & 1/9 & 1/9 - \epsilon \\ \hline 1/9 & 1/9 - \epsilon & 1/9 + \epsilon \end{array}$$

When we group θ_1 and θ_2 ,

$$M|_{(\{1,2\}\{3\})} = \frac{4/9 \mid 2/9}{2/9 \mid 1/9} \prec_A M'|_{(\{1,2\}\{3\})} = \frac{4/9 + \epsilon \mid 2/9 - \epsilon}{2/9 - \epsilon \mid 1/9 + \epsilon}$$

When we group θ_2 and θ_3 ,

$$M|_{(\{1\}\{2,3\})} = \frac{1/9 \mid 2/9}{2/9 \mid 4/9} \succ_A M'|_{(\{1\}\{2,3\})} = \frac{1/9 - \epsilon \mid 2/9 + \epsilon}{2/9 + \epsilon \mid 4/9 - \epsilon}$$

Summary

- Likelihood ratio is the unique index (up to linear transformation) that satisfies ScIny, TIny, SiIny, MMon and Random Decomposability.
 - ► fails DMon and ODMon
- ► Odds ratio is the unique total order on binary-types markets that satisfies MMon and Marginal Independence (implies ScInv, TInv, SiInv).
 - no analogous measure on multi-type markets; a local measure of assortativity
- Normalized trace is the unique index (up to linear transformation) that satisfies ScIny, TIny, SiIny, MMon, and Decomposability.
 - naturally extends to multi-type markets, markets with singles, and one-sided markets.
- ▶ No total order satisfies MMon and Robustness to Categorization.

References I

- Chiappori, Pierre-André, Monica Costa-Dias, and Costas Meghir, "Changes in assortative matching: Theory and evidence for the US," April 2020. Mimeo.
- _ , _ , and _ , "The measuring of assortativeness in marriage: a comment," May 2022. Mimeo.
- **Choo, Eugene and Aloysius Siow**, "Who marries whom and why," *Journal of Political Economy*, 2006, 114 (1), 175–201.
- **Edwards, A. W. F.**, "The measure of association in a 2 x 2 table," *Journal of the Royal Statistical Society A*, 1963, 126, 109–114.
- **Eika, Lasse, Magne Mogstad, and Basit Zafar,** "Educational assortative mating and household income inequality," *Journal of Political Economy*, 2019, *127* (6), 2795–2835.
- **Fernández, Raquel and Richard Rogerson**, "Sorting and long-run inequality," *The Quarterly Journal of Economics*, 2001, *116* (4), 1305–1341.

References II

- Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov, and Cezar Santos, "Marry your like: Assortative mating and income inequality," *American Economic Review*, 2014, 104 (5), 348–53.
- Hou, Yao, Ke Tang, Jingyuan Wang, Danxia Xie, and Hanzhe Zhang, "Assortative mating on blood type: Evidence from one million Chinese pregnancies," *Proceedings of the National Academy of Sciences*, December 2022, *119* (51), e2209643119.
- **Liu, Haoming and Jingfeng Lu**, "Measuring the degree of assortative mating," *Economics Letters*, 2006, 92, 317–322.
- **Shen, Jenny**, "Essays in the economics of gender." PhD dissertation, Princeton University 2020.
- Yule, G Udny, "On the association of attributes in statistics: With illustrations from the material of the Childhood Society," *Philosophical Transactions of the Royal Society of London Series A*, 1900, 194, 257–319.
- _ , "On the methods of measuring association between two attributes," *Journal of the Royal Statistical Society*, 1912, *75* (6), 579–652.