BI-VWM

B212

Boolean model

- → Popis projektu a cíle
- Způsoby řěšení
- → <u>Implementace</u>
- → Příklád výstupu
- → Experementální sekce
- → Diskuze
- → Závěr

Autor: Volha Chukava (chukavol@fit.cvut.cz)

Odkáz na git repozitář

Popis projektu a cíle

Cílem projektu je vytvořit FullStack aplikací pro efektifnější vyhledávání textových výrazu v velkých kolekcích dokumentů v porovnaní s lineárním vyhledáváním.

A konkretně implementovat dva způsoby vyhledávání:

- Výhledávání omocí boolean modelu ukládání invertováného seznámu.
- 2. A basic sekvenční průchod O(n)

Cílem implementaci těchto dvou způsobu je porovnání jejích efektivnosti(rychlosti) při prochazení datových kolekci různé velikosti.

Vstup: Vstupem by měl být jakekoliv textový boolean dotáz. Prográm by měl umět zpracovat i dlouhé výrazy včetně uzavorkování. Prográm by měl umět príjímat dotázy z GUI.

Výstup: Výstupem by měl být seznam všech dokumentů z kolekcí, které odpovídájí zadanému dotázu. Prográm by měl umět zobrazit výsledky dotázování na GUI. Program by taky měl umět ukázat výhody použití boolean modelu - například porovnaním doby vyhodnocení výrazů způsoby 1 a 2.

Způsoby řěšení

1. Extrakce a preprocesing termů z dokumentů.

Extrakce a preprocessing dokumentu začíná načtením textových dat z dokumentu a pak nasledujě jejích rozdělení na tokeny. Každý token pak prochází stemmingem, kontrolou na stopWords a na obsažení jíných symbolů než symboly latinské abecedy.

2. Efektivní uložení dokumentů v datové struktuře (invertovaný seznam).

Pokud token(term) projde kotrolou nevýznamnosti - ukládáme ho do tabulky(TermTable), která je reprezentovaná jako mapa. Do teto mapy podle klíču(termu) přídavámé do values - index(unikátní) dokumentu, který v tu chvíli zpracováváme.

3. Parsování a vyhodnocení dotazu.

Prvním krokem je extrakce tokenu pro parsovani. Parsování pak probíhá s využitím expression/term/factor(ETF) gramatiky, kde se dotaz ukládá do abstracktního syntaktického stromu(AST). Vyhodnocení vyrazu je potom rychlejší díky invertovanému seznamu, protože u každého TermNodu je vždzycky uložen seznám indexu. Pro vyhodnocení pak zůstavá aplikovat logické spojky(AND\NOT\OR) na teto seznámy dle struktury výrazu(AST).

Implementace a zdroje

Program se sklada z dvou casti - klienstske(Frontend) a serverove(Backend).

Serverova cast je implimentovana v <u>Kotlinu</u>(v.1.5.13) pomoci frameworku <u>Ktor</u>(v2.0.0) pro tvorbu a podporu microservis. Za build tool byl zvolen <u>Maven</u>(4.0.0). Pri implementaci serverove casti byly pouzity nasledujici zdroje a knihovny:

- 1. Preprocessing.
 - Stemming je implementovany pomoci knihovny CoreNLP.
 - Zdroj seznamu <u>stopWords</u>.
- 2. Parsovani ETF (expression/term/factor).
- 3. DataSety pro zpracovani a vyhledavani:
 - o BBC
 - o <u>Wikipedia</u>
 - o CNN

Webove rozhrani je implementovane za vyuzitim <u>React.js</u>(v18.0.0) a <u>Bottstrap</u>(v5.1.3). Komunikace s serverem je zprovoznena pomoci <u>Axios</u>(v0.27.1). - <u>react-axios</u>

Příklad výstupu

Vstup: Vstupem muze byt jakykoliv validni textovy boolean dotaz. Program prijima dotazy s logickymi spojkami (AND/NOT/OR) vcetne uzavorkovani. Je pridano kvalitni osetreni -> pokud dotaz je nevalidni vypise se prislusna chybova hlaska.

Do inputu se zadava dotaz. Po kliknuti na tlaciko Sumbit spusti se kontrola vstupu na Frontendu, ktera zkontroluje, ze dotaz neobsahuje nevhodne symboly a, ze vstup neni prazdny. Nasledne se dotaz odesle na server, kde probehne jeho parsovani a syntakticka validace. Pokud je dotaz validni - ovjevi se label s zadanym dotazem a tlacitka pro moznost vyhledani vyrazu v datovych kolekcich ruzne velikosti.

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ČVUT V PRAZE	Boolean model				
	Query:	Submit			
You entered: (car or not angel) and (story or morning) or goal					
	Search In Small Sata Set	Search In Large Data Set			
Small Data Set Of 200 Files Processed		Large Data Set Of 2000 Files Processed			
Sec	quential Search Boolean Search	Sequential Search Boolean Search			
Total found: 51		Total found: 273			
s	show And Compare Search Speed	Show And Compare Search Speed			
	Print List Of Files	Print List Of Files			

Po klinuti na tlacitko **Search in Small/Large Data Set** probehne vyhodnoceni vyrazu dvema zpusoby popsanymi v cilech projektu a zobrzi se pocet najdenych dokumentu.

Tlatiko Show and Compare Search time je pro porovnani dvou zpusobu vyhledavani - konkretne rychlosti vyhledavani. Po kliknusi se zobazi doba vyhodnoceni pro kazdy zpusob, rozdil v ns a koeficient toho kolikrat rychlej pribehlo vyhodnoceni pomoceni invertovaneho seznamu.

Tlacitko Print List Of File slouzi k zobrzeni nalezeneho seznamu dokumentu nalezenych id.

Viz dalsi stranka.

You entered: (car or not angel) and (story or morning) or goal

Search In Small Sata Set

Small Data Set Of **200** Files Processed

Sequential Search | Boolean Search

Total found: 51

Show And Compare Search Speed

Search time using boolean model: 231802 ns.

Search tim using sequential search:

453578 ns.

Time difference between first and second:

221776 ns. = 1x

Drint Liet Of Files

Search In Large Data Set

Large Data Set Of 2000 Files Processed

Sequential Search | Boolean Search

Total found: 273

Show And Compare Search Speed

Search time using boolean model:

8858244 ns.

Search tim using sequential search:

75084360 ns.

Time difference between first and second:

66226116 ns. = 8x

Drint List Of Files

Print List Of Files

fileld: 2

fileld: 2

fileld: 9

fileld: 10

fileld: 14

fileld: 15

fileld: 19

fileld: 21 fileld: 23

fileld: 24

fileld: 26

fileld: 28

fileld: 30

fileld: 31

fileld: 31

fileld: 33

fileld: 34

fileld: 35

fileld: 37

fileld: 38 fileld: 50

fileld: 55 fileld: 56 Print List Of Files

fileld: 2

fileld: 3 fileld: 5

fileld: 6

fileld: 9

fileld: 10 fileld: 11

fileld: 11

fileld: 16

fileld: 17

fileld: 20

fileld: 21

fileld: 24

fileld: 26

fileld: 27 fileld: 28

fileld: 28

fileld: 32

fileld: 33 fileld: 34

fileld: 35

fileld: 36 fileld: 38

Experimentální sekce

Kolekce - 200 dokumentu

query	count	Boolean - ns.	Sequantial - ns.	Koef.x
model	37	1557	18741	12
not model	163	78763	804162	10
transfer	14	173448	5008632	20
not transfer	186	155066	2022227	13
Model and transfer	1	881836	5031701	5
Model or transfer	50	9920	2693532	27
Model and not transfer	36	108112	2029255	18
model and transfer or not goal	171	27846	2111287	7

Kolekce 2000 dokumentu

query	count	Boolean - ns.	Sequantial - ns.	Koef.x
model	213	34677	2245742	78
not model	1987	87765	2356783	68
transfer	61	86683	1837876	35
not transfer	1939	25008	1361017	54
Model and transfer	13	90063	23026578	55
Model or transfer	61	33316	17303963	59
Model and not transfer	33	23456	6543245	83
model and transfer or not goal	634	79927	4234578	53

Diskuze

Z experimentů je vidět, že čím větší je kolekce tím je časově výhodnější používát invertovaný seznam pro vyhledávání.

Otázkou by mohlo být jak velkou kolekce dat bychom měli mít pro vyhledávání aby se vyplatila implementace mela obrovskou vyhodu, protoze i když je vidět ten rozdíl v rychlosti pro data jako 200-2000 dokumentů se to stejně vyhledáváni nezabira vubec cas. Je mozne volat API kazdou vterinu a proframe se nezasekne. Takže pro zpracovani nekolika tisic dokumentu implementace by možná byla zbytečná.

Pro obrovske kolekce je to samozřejmě skvělé řešení pro rychle vyhledávání. Boolean model je soucasne nekomplikovany a dost rychlyvyhleadavani a muze usetrit spoustu casu pri potrebe zpracovat velke mnozstvi dat.

Závěr

- 1. Boolean model neni vhodne implementovat pro male kolekce dat, ale pro moc velke.
- 2. Boolean model neni komplikovany v implementacii, ale vyzaduje dodrozovani velkeho mnozstvi detailu. Vsechny kroky museji byt udelany bez chyb, protoze mala chyba muze velmi zmenit efektivnost vyhodnoceni.
- 3. Zadani mi prislo velmi zajimave. Po dokonceni implementaci jsem byla schopna provest experementy s daty a trosku se pohrat s GUI.

Moc se mi libil koncept toho zadani - jako full stack aplikace, protoze je to opravdu dobra prilezitost pochopit proces navrhu programu kdys se na to muzes podivat z obou stran (FE a BE). Prace s daty byla taky zajimava a moc uzitecna. Dekuji.