Newal Network Equations :-Unsupervised Learning $\omega^{(1)}$ $\omega^{(2)} = Z^{(3)}$ [No sigmoid applied at output layer] $J(\cos t \text{ function}) = \frac{1}{2} \sum (y - \hat{y})^2$ [squared mean error] $\frac{\partial J}{\partial \omega^{(2)}} = \sum_{i=1}^{2} \frac{1}{\partial \omega^{(2)}} = \sum_{i=1}^{2} \frac{$ $= (-1) (y - \hat{y}) \frac{\partial \hat{y}}{\partial \omega^{(2)}} = (-1) (y - \hat{y}) \frac{\partial \alpha^{(3)}}{\partial \omega^{(2)}}$ $z^{(3)} = a^{(2)} \omega^{(2)}$ $\frac{1}{3}\frac{1}{3}\frac{1}{w^{(2)}} = (-1)(y-\hat{y}) a^{(2)}$ Now finding $\frac{\partial J}{\partial \omega^{(1)}} = (-1)(y-\hat{y}) \frac{\partial \alpha^{(2)}}{\partial \omega^{(1)}}$ $=\frac{\partial\left(\alpha^{(2)}\omega^{(2)}\right)}{\partial\omega^{(1)}}=\frac{\partial\left(\alpha^{(2)}\omega^{(2)}\right)}{\partial\omega^{(1)}}\times\partial\alpha^{(2)}$ 2 w(1) w(2) + 2 a(2) 2 w(1)

$$\frac{\partial a^{(2)}}{\partial \omega^{(1)}} = \frac{\partial a^{(2)}}{\partial \omega^{(2)}} = \frac{\partial a^{(2)}}{\partial \omega^{(2)}} \times \frac{\partial z^{(2)}}{\partial \omega^{(2)}}$$

$$\frac{\partial a^{(2)}}{\partial \omega^{(1)}} = \frac{\partial a^{(2)}}{\partial \omega^{(2)}} \times \frac{\partial z^{(2)}}{\partial \omega^{(2)}}$$

$$= \frac{\partial a^{(2)}}{\partial \omega^{(2)}} \times \frac{\partial z^{(2)}}{\partial \omega^{(2)}} \times \frac{\partial z^{(2)}}{\partial \omega^{(2)}}$$

$$= \frac{\partial a^{(2)}}{\partial \omega^{(2)}} \times \frac{\partial z^{(2)}}{\partial \omega$$