1 But du T.P.

Le but de ce T.P. est d'étudier le comportement des circuits RLC série et parallèle soumis à un régime sinusoïdal forcé.

2 Matériel

Materiel par poste de travail:

- 1 générateur basse fréquence (GBF)
- -1 oscilloscope +2 sondes
- Résistances, bobines et condensateurs divers

3 Circuit RLC série

3.1 Étude théorique

3.1.1 Résonance

Une impédance est rarement pure : une inductance présente toujours une résistance et une capacité réparties. Aussi nous considérons à titre d'exemple un circuit RLC série :

$$- \begin{array}{c|c} R & L & C \\ \hline \end{array}$$

Son impédance est : $Z=Z_R+Z_L+Z_C=R+j(L\omega-\frac{1}{C\omega})$

De u=Zi, on en déduit que u est déphasé par rapport à i de : $\phi=\arctan(\frac{L\omega-\frac{1}{C\omega}}{R})$

D'autre part, $|Z| = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$ passe par un minimum pour un courant dont la pulsation ω est telle que : $L\omega - \frac{1}{C\omega} = 0$, ou $LC\omega^2 = 1$. Alors $\tan \phi = 0$: il y a **résonance**.

Le circuit se comporte alors comme une résistance $(Z \equiv R)$. La courbe représentative de |Z| en fonction de ω a l'allure donnée ci-dessous :

- 1. Soient une bobine d'inductance L=10mH, une résistance $R=1k\Omega$ et un condensateur de capacité C=1nF. Calculer la fréquence de résonnance de l'association bobine-condensateur en utilisant l'équation : $f=\frac{1}{2\pi\sqrt{LC}}$ avec f en Hertz, L en Henry et C en Farad.
- 2. Tracer, en fonction de la fréquence, sur un intervalle allant de la moitié au double de la fréquence de résonance, la courbe représentative de $|\mathbf{Z}|$ pour le circuit série.
- 3. On définit le facteur de qualité par : $Q = \frac{\omega_0}{|\omega_1 \omega_2|}$ où ω_0 est la pulsation de résonance, ω_1 et ω_2 sont les pulsations pour lesquelles $|Z| = Z_0 \sqrt{2}$.

 Déterminer alors le facteur de qualité Q de ce circuit à partir de la courbe que vous avez tracée à la question précédente.

3.1.2 Filtrage

Les circuits RLC série entrent, en particulier, dans la composition des récepteurs ou des filtres. Une caractéristique importante est leur aptitude à permettre un filtrage bien sélectif.

Considérons le circuit ci-dessous avec $R = 1k\Omega$, C = 1nF et L = 10mH:

La bobine est supposée idéale.

1. Déterminer la fonction de transfert en sortie ouverte du circuit. Calculer Q et ω_0 tels que la fonction de transfert soit de la forme :

$$\underline{H}(j\omega) = \frac{j\frac{1}{Q}\frac{\omega}{\omega_0}}{1 + j\frac{1}{Q}\frac{\omega}{\omega_0} - (\frac{\omega}{\omega_0})^2}$$

- 2. Tracer les diagrammes de Bode en gain et en phase.
- 3. De quel type de filtre s'agit-il?
- 4. Donner la bande passante à -3dB de ce filtre.
- 5. Comparer les valeurs de Q et ω_0 avec celles trouvées au paragraphe précédent. Qu'en concluez-vous?

3.2 Manipulations

Réaliser le circuit suivant avec $R = 1k\Omega$, C = 1nF et L = 10mH:

Appliquer une tension sinusoïdale d'amplitude 5V et remplir le tableau suivant.

Fréquence (kHz)	1	2	5	20	40	60	80	100	120	140
V_A (V)										
V_B (V)										
G (dB)										
φ (rad)										
$V_A - V_B$ (V)										
Impédance calculée										
$ Z_{AB} $ (Ω)										

3.3 Interprétation

- 1. Tracer la courbe représentative de $|Z_{AB}|$ en fonction de la fréquence f.
- 2. Relever la fréquence de résonance f_0 et la largeur de bande $|f_1-f_2|$.
- 3. Calculer le facteur de qualité Q.
- 4. Comparer les résultats obtenus avec ceux de l'étude théorique. Qu'en concluez-vous?
- 5. Tracer les courbes donnant le gain G en dB et le déphasage en rad, en fonction du logarithme de la pulsation.
- 6. De quel type de filtre s'agit-il?
- 7. Donner la fréquence de coupure et le facteur de qualité de ce circuit.
- 8. Donner la bande passante à -3dB de ce filtre.
- 9. Comparer les résultats obtenus avec ceux de l'étude théorique. Qu'en concluez-vous ?
- 10. Comparer la fréquence de coupure avec la fréquence de résonance, puis la bande passante du filtre avec la largeur de fréquence $|f_1 f_2|$, ainsi que les facteurs de qualité. Quel lien pouvez-vous établir entre le phénomène de résonance et le filtrage?

4 Circuit RLC parallèle

4.1 Étude théorique

4.1.1 Résonance

Ce circuit est également appelé circuit bouchon :

$$\begin{split} \text{Ici, on a} : \frac{1}{Z} &= \frac{1}{Z_C} + \frac{1}{Z_r + Z_L} = \frac{1 - LC\omega^2 + jrC\omega}{r + jL\omega} \\ \text{d'où} : Z &= \frac{r + jL\omega}{1 - LC\omega^2 + jrC\omega} \end{split}$$

On calcule alors le module :
$$|Z| = \sqrt{\frac{r^2 + L^2 \omega^2}{(1 - LC\omega^2)^2 + r^2 C^2 \omega^2}}$$

Lorsque $r \ll L\omega$, $|\mathbf{Z}|$ passe par un maximum pour une pulsation très voisine de celle définie par : $1 - LC\omega^2 = 0$ ou $LC\omega^2 = 1$, il y a **résonance**.

Comme $1-LC\omega^2=0$, alors à la résonance, on a : $Z=\frac{L}{rC}-\frac{j}{C\omega}$. $|\mathbf{Z}|$ peut devenir très grand, ainsi que $|\mathbf{u}|$, si $r\ll\frac{L}{C}$. La courbe représentative de $|\mathbf{Z}|$ en fonction de ω est donnée ci-dessous.

- 1. Soient une bobine d'inductance L=10mH ayant une résistance $r=10\Omega$ et un condensateur de capacité C=1nF. Calculer la fréquence de résonnance de l'association bobine-condensateur en utilisant l'équation : $f=\frac{1}{2\pi\sqrt{LC}} \text{ avec f en Hertz, L en Henry et C en Farad.}$
- 2. Tracer, en fonction de la fréquence, sur un intervalle allant de la moitié au double de la fréquence de résonance, la courbe représentative de $|\mathbf{Z}|$ pour le circuit parallèle.
- 3. On définit encore un facteur de qualité par : $Q = \frac{\omega_0}{|\omega_1 \omega_2|}$ où ω_0 est la pulsation de résonance, ω_1 et ω_2 sont les pulsations pour lesquelles $|Z| = \frac{Z_0}{\sqrt{2}}$. Déterminer alors le facteur de qualité Q de ce circuit à partir de la courbe que vous avez tracée à la question précédente.

4.1.2 Filtrage

Considérons le circuit RLC ci-dessous avec $R = 1k\Omega$, C = 1nF et L = 10mH:

La bobine est supposée idéale.

1. Déterminer la fonction de transfert en sortie ouverte du circuit. Calculer Q et ω_0 tels que la fonction de transfert soit de la forme :

$$\underline{H}(j\omega) = \frac{1 - (\frac{\omega}{\omega_0})^2}{1 + j\frac{1}{Q}\frac{\omega}{\omega_0} - (\frac{\omega}{\omega_0})^2}$$

- 2. Tracer le diagramme de Bode en gain et en phase.
- 3. De quel type de filtre s'agit-il?
- 4. Donner la bande passante à -3dB de ce filtre.
- 5. Comparer la valeur de ω_0 avec celle trouvée au paragraphe précédent. Qu'en concluez-vous?

4.2 Manipulations

Réaliser le circuit suivant avec L = 10mH, C = 1nF et $R = 1k\Omega$:

Appliquer une tension sinusoïdale d'amplitude 5V et remplir le tableau suivant.

Fréquence (kHz)	1	2	5	20	40	60	80	100	120	200
V_A (V)										
V_B (V)										
G (dB)										
φ (rad)										
$V_A - V_B$ (V)										
Impédance calculée										
$ Z_{AB} (\Omega)$										

4.3 Interprétation

- 1. Tracer la courbe représentative de $|Z_{AB}|$ en fonction de la fréquence f.
- 2. Relever la fréquence de résonance f_0 et la largeur de bande $|f_1 f_2|$.
- 3. Calculer le facteur de qualité Q.
- 4. Comparer les résultats obtenus avec ceux de l'étude théorique. Qu'en concluez-vous?
- 5. Tracer les courbes donnant le gain G en dB et le déphasage en rad, en fonction du logarithme de la pulsation.
- 6. De quel type de filtre s'agit-il?
- 7. Donner la fréquence de coupure et le facteur de qualité de ce circuit.
- 8. Donner la bande passante à -3dB de ce filtre.
- 9. Comparer les résultats obtenus avec ceux de l'étude théorique. Qu'en concluez-vous?
- 10. Comparer la fréquence de coupure avec la fréquence de résonance, puis la bande non passante du filtre avec la largeur de fréquence $|f_1 f_2|$, ainsi que les facteurs de qualité. Quel lien pouvez-vous établir entre le phénomène de résonance et le filtrage?

