know if the weather is play sunny + hot ______ Yes

P(Yes | surny and hot) = ?

P(No 1 sunny and hot) = ?

OUTIOOK	Yes	NO	1
Sunny	2	3	
	-11		1

Overcust	4	•	4
lating	3	2	5
	9	5	14

Day	Outlook	Temperature	PlayTennis
Day1	Sunny	Hot	No
Day2	Sunny	Hot	No
Day3	Overcast	Hot	Yes
Day4	Rain	Mild	Yes
Day5	Rain	Cool	Yes
Day6	Rain	Cool	No
Day7	Overcast	Cool	Yes
Day8	Sunny	Mild	No
Day9	Sunny	Cool	Yes
Day10	Rain	Mild	Yes
Day11	Sunny	Mild	Yes
Day12	Overcast	Mild	Yes
Day13	Overcast	Hot	Yes
Day14	Rain	Mild	No

$$P(\text{Yes 1 hot, sunny}) = \frac{P(\text{sunny1 Yes}) P(\text{ hot | Yes}) \cdot P(\text{Yes})}{P(\text{Hot, sunny})}$$

$$= \frac{2/q}{q} \times \frac{2/q}{q} \cdot \frac{9/4}{4}$$

$$P(\text{Hot, sunny}) = \frac{1000000}{P(\text{Nol, sunny})}$$

$$= \frac{3/5}{2} \times \frac{2/6}{3} \cdot \frac{5/4}{4}$$

$$P(\text{Yes 1 foday}) = \frac{0.031}{0.031 + 0.8571} = \frac{26/4}{4000}$$

$$P(\text{No 1 today}) = \frac{0.031}{0.031 + 0.8571} = \frac{26/4}{40000}$$

$$P(\text{No 1 today}) = \frac{0.03571}{0.031 + 0.0571} = \frac{23/4}{400000}$$

Suppose many has called to tell the alarm is on.

Should you call 911 ?

$$P(B|M) = \frac{P(B,M)}{P(M)} =$$

$$P(B, E, A, M) = P(MIA) \cdot P(A \mid B, E) \cdot P(B) \cdot P(E)$$

 $P(B, E, A, M) = P(MIA) \cdot P(A \mid B, E) \cdot P(B) \cdot P(E)$
 $= (1 - .01)(1 - 0.001)(1 - .001)(1 - .002) = .9860$

P(B,E,A,E)	M, A	M, A	Μ, Δ	M, A
B, E	09860			
B, E				
B, E				
β, Ε				

Step2) g Marginite (add) to get ride of variables that

$$P(B,M) = \sum_{e \in \{F,T\}} P(B, E=e, A=a, M) \#(D)$$

Step3) ignore (delete) the unwanted column.

$$P(B)M) = \frac{P(B, M)}{P(M)} = \frac{.011}{0.000658 + .011} = \frac{.041}{}$$

