Rappel (très) informel de probabilité et statistique

September 17, 2015

1 Variable aléatoire (V.A.)

- Une variable X qui peut prendre différentes valeurs parmi un ensemble \mathcal{X} , mais va prendre certaines valeurs plus souvent que d'autres.
- Les valeurs sont donc plus ou moins probables. À chaque valeur est associée une "probabilité".

1.1 Variable aléatoire scalaire discrète (ou catégorique)

Ex: V.A. à valeur entière $\in \mathbb{N}$.

Ex: X est le résultat du lancé d'un dé à 6 faces. $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ Si le dé n'est pas pipé, les probabilités associées à chaque valeur sont:

- P(X = 1) = 1/6
- P(X=2) = 1/6
- ...
- P(X=6) = 1/6

Ceci définit la loi de probabilité (ou distribution). Elle est le plus souvent représentée, comme ci-dessus par une fonction de (masse) de probabilité (proability mass function p.m.f).

Notations équivalentes:

- P(X = x) "probabilité que la variable aléatoire X prenne la valeur x"
- \bullet $P_X(x)$

Cette distribution peut aussi être représentée dans une table de probabilité:

x	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6

Ou bien par un graphique...

Pour un dé non pipé, les valeurs sont *équiprobables*. Cela correspond à une distribution uniforme sur $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$.

Si le dé était pipé ou déséquilibré, on pourrait avoir des probabilités différentes pour chaque valeur discrète, ex:

x	1	2	3	4	5	6
P(X=x)	0.15	0.20	0.05	0.10	0.20	0.30

Propriétés de la fonction de (masse) de probabilité:

Si X peut prendre des valeurs dans l'ensemble $\mathcal{X},$ alors la p.m.f vérifie les propriétés suivantes:

- $\forall x \in \mathcal{X}, \quad P(X = x) \ge 0$
- $\left(\sum_{x \in \mathcal{X}} P(X = x)\right) = 1$

En utilisant l'autre notation:

- $\forall x \in \mathcal{X}, \quad P_X(x) \ge 0$
- $\left(\sum_{x \in \mathcal{X}} P_X(x)\right) = 1$

Une conséquence est également que les probabilités sont toujours ≤ 1 .

Probabilité que X prenne une valeur dans un sous-ensemble:

La proabilité que X prenne une valeur dans un sous-ensemble $\mathcal{C} \subset \mathcal{X}$:

$$P(X \in \mathcal{C}) = \left(\sum_{x \in \mathcal{C}} P(X = x)\right) = \sum_{x \in \mathcal{C}} P_X(x)$$

Ex: probabilité que la valeur tirée avec un dé non pipé soit dans $\{2,4,6\}$ est de $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=0.5=50\%$

1.2 Variable aléatoire scalaire continue

Ex: V.A. dont les valeurs sont réelles $\in \mathbb{R}$

La loi de probabilité va souvent être représentée par une fonction de densité de probabilité (probability density function p.d.f.).

Notée: $p_X(x) = p(x)$.

Ex:

Propriétés de la fonction de densité de probabilité:

Si X peut prendre des valeurs dans l'ensemble continu \mathcal{X} (ex: \mathbb{R}), la p.d.f. p_X vérifie les propriétés:

- $\forall x \in \mathcal{X}, \quad p_X(x) \ge 0$
- $(\int_{\mathcal{X}} p_X(x) \, \mathrm{d}x) = 1$ "L'aire (surface) en dessous de la courbe de p.d.f." vaut 1.

Une conséquence est que conrairement aux (masses de) probabilités, les densités de probabilités peuvent être plus grande que 1!

Probabilité que X prenne une valeur dans un sous-ensemble:

La proabilité que X prenne une valeur dans un sous-ensemble $\mathcal{C} \subset \mathcal{X}$ est

$$P(X \in \mathcal{C}) = \int_{x \in \mathcal{C}} p_X(x) dx$$

Là aussi cela correspond à la "l'aire (surface) en dessous de la courbe de p.d.f."dans la région $\mathcal{C}.$

Remarquez que la formule est similaire au cas discret, mais où on a remplacé la somme par une intégrale (et la p.m.f. par une p.d.f.).

• Remarque générale: pour les V.A. continues, pour un point précis x la probabilité P(X=x) est en principe nulle, et ça n'a donc pas beaucoup de sens d'écrire P(X=x). Ce qu'on veut peut-être exprimer est plutôt $P(X \in [x-\epsilon, x+\epsilon])$ qui a davantage de sens.

Remarque plus avancée: en réalité certaines V.A. peuvent être des mélanges de distributions discrètes et continues, auquel cas on aura des masses de probabilité non-nulles pour certaines valeurs spécifiques (donc un P(X = x) non-nul pour certaines valeurs, contrairement à la remarque précédente). En terme de densité de probabilité cela peut s'exprimer par un delta de Dirac (qui correspond à une densité infinie en ces points).

Règle informelle

Pour passer d'une formule utilisant une p.m.f d'une variable discrète, à la formule équivalente utilisant une p.d.f. d'une variable continue:

• remplacer les sommes par des intégrales

2 Espérance et Variance

2.1 Espérance

L'espérance d'une V.A. X, c'est "la moyenne" sur une infinité de tirage. Soit un ensemble obtenu en effecuant n "tirages" d'une certaine distribution correspondant à une variable aléatoire X: $D = \{x^{(1)}, \dots, x^{(n)}\}$

$$\mathbb{E}[X] = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Pour une V.A. discrète (catégorique):

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} P_X(x)x$$

Pour une V.A. continue:

$$\mathbb{E}[X] = \int_{x \in \mathcal{X}} p_X(x) x \, \mathrm{d}x$$

Espérance d'une fonction

$$\mathbb{E}\left[f(X)\right] = \sum_{x \in \mathcal{X}} P_X(x) f(x)$$

ou pour une V.A. continue:

$$\mathbb{E}\left[f(X)\right] = \int_{x \in \mathcal{X}} p_X(x) f(x)$$

Linéarité ex:

$$\mathbb{E}\left[aX + bf(X) + cY + d\right] = a\mathbb{E}[X] + b\mathbb{E}[f(X)] + c\mathbb{E}[Y] + d$$

où X et Y sont des V.A. et a, b, c, d sont des scalaires.

2.2 Variance et écart type

Variance: "la moyenne des carrés de l'écart à la moyenne"

$$Var[X] = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Écart type $\sigma_X = \sqrt{\text{Var}[X]}$: racine carrée de la variance.

3 Cas "multivarié"

On peut le voir comme plusieurs (ex: d) variables aléatoires scalaires: X_1, \ldots, X_d Ou comme une seule variable qui est un Vecteur Aléatoire $X = (X_1, \ldots, X_d)$.

3.1 Loi de probabilité jointe $P(X) = P(X_1, \dots, X_d)$

 $P_X(x)$ mais cette fois ci $x \in \mathbb{R}^d$.

$$P_X(x) = P(X = x)$$

$$= P(X = (x_1, ..., x_d))$$

$$= P(X_1 = x_1 \text{ ET } X_2 = x_2 \text{ ET } ... \text{ ET } X_d = x_d)$$

$$= P(X_1 = x_1, X_2 = x_2, ..., X_d = x_d)$$

Pour simplifier pour la suite, on va considérer d = 2, donc $X = (X_1, X_2)$

3.2 Loi marginale $P(X_1)$

Marginalization:

$$P(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} P(X_1 = x_1, X_2 = x_2)$$

où on lit la somme sur x_2 comme étant une somme sur toutes les valeurs possibles que peut prendre x_2

ce qu'on pourra écrire plus succintement comme:

$$P(x_1) = \sum_{x_2} P(x_1, x_2)$$

Avec plus que 2 variables cela devient:

$$P(x_1) = \sum_{x_2,...,x_d} P(x_1, x_2,...,x_d)$$

où la somme signifie la somme sur toutes les configurations possibles de valeurs de x_2, \ldots, x_d :

$$P(x_1) = \sum_{x_2,\dots,x_d} P(x_1, x_2, \dots, x_d)$$
$$= \sum_{x_2 \in \mathcal{X}_2} \sum_{x_3 \in \mathcal{X}_3} \dots \sum_{x_d \in \mathcal{X}_d} P(x_1, x_2, \dots, x_d)$$

3.3 Loi conditionnelle $P(X_1|X_2)$

" X_1 sachant X_2 "

$$P(X_1|X_2) = \frac{P(X_1, X_2)}{P(X_2)}$$

$$P(X_1 = x_1 | X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_2 = x_2)}$$

$$= \frac{P(X_1 = x_1, X_2 = x_2)}{\sum_{x'} P(X_1 = x', X_2 = x_2)}$$

ou bien plus succintement:

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)}$$
$$= \frac{P(x_1, x_2)}{\sum_{x'} P(x', x_2)}$$

Avec plusieurs variables cela devient:

$$P(x_1|x_2,...,x_d) = \frac{P(x_1,x_2,...,x_d)}{P(x_2,...,x_d)}$$
$$= \frac{P(x_1,x_2,...,x_d)}{\sum_{x'} P(x',x_2,...,x_d)}$$

3.4 Indépendance

Deux V.A. X_1 et X_2 sont **indépendantes** si et seulement si

$$P(X_1, X_2) = P(X_1)P(X_2)$$

Ce qui est équivalent à dire:

$$P(X_1|X_2) = P(X_1)$$

ou encore

$$P(X_2|X_1) = P(X_2)$$

"si deux V.A. sont indépendantes, connaître la valeur de l'une ne donne aucune information sur l'autre".

3.5 Règle de Bayes

Comment "intervertir" une probabilité conditionnelle

$$P(X_1|X_2) = \frac{P(X_2|X_1)P(X_1)}{P(X_2)}$$

Ce qui, écrit au long, signifie:

$$P(X_1 = x_1 | X_2 = x_2) = \frac{P(X_2 = x_2 | X_1 = x_1) P(X_1 = x_1)}{P(X_2 = x_2)}$$

$$= \frac{P(X_2 = x_2 | X_1 = x_1) P(X_1 = x_1)}{\sum_{x'} P(X_2 = x_2, X_1 = x')}$$

$$= \frac{P(X_2 = x_2 | X_1 = x_1) P(X_1 = x_1)}{\sum_{x'} P(X_2 = x_2 | X_1 = x') P(X_1 = x')}$$

On peut résumer cela en écrivant:

$$P(X_1|X_2) \propto P(X_2|X_1)P(X_1)$$

où \propto signifie "proportionnel à" et où le coefficient de proportionalité (le dénominateur dans les expressions ci-dessus) assure que les probabilités somment à 1.

Avec plusieurs variables, cela devient:

$$P(X_1|X_2,...,X_d) \propto P(X_2,...,X_d|X_1)P(X_1)$$

c.a.d.

$$P(X_1|X_2,...,X_d) = \frac{P(X_2,...,X_d|X_1)P(X_1)}{P(X_2,...,X_d)}$$
$$= \frac{P(X_2,...,X_d|X_1)P(X_1)}{\sum_{x'}P(X_1=x',X_2,...,X_d)}$$

3.6 Décomposition générale

On peut toujours décomposer n'importe quelle distribution jointe en un produit de conditionnelles comme ceci:

$$P(X_1, X_2, \dots, X_d) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_2, X_1, X_3)\dots P(X_d|X_{d-1}, \dots, X_1)$$

On pourrait tout aussi bien choisir un ordre différent pour les variabls (c'est arbitraire).

Cas où les variables sont indépendantes:

Dans le cas où toutes les V.A. sont **indépendantes**, l'expression ci-desus se simplifie en:

$$P(X_1, X_2, \dots, X_d) = P(X_1)P(X_2)P(X_3)\dots P(X_d)$$

3.7 Espérance et Covariance

$$\mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])$$

Covariance entre 2 variables:

$$Cov[X_1, X_2] = \mathbb{E}[(X_1 - \mathbb{E}[X_1])(X_2 - \mathbb{E}[X_2])]$$

Remarques:

$$Var[X_1] = Cov[X_1, X_1]$$

Matrice de covariance $C = \Sigma$ est telle que

$$C_{ii} = \operatorname{Cov}[X_i, X_i]$$

3.7.1 Espérance (moyenne) "empirique" et covariance "empirique":

Soit un ensemble obtenu en effecuant n "tirages" d'une certaine distribution correspondant à une variable aléatoire X de dimension d: $D = \{x^{(1)}, \dots, x^{(n)}\}$. Chaque $x^{(t)}$ est ici considéré comme un vecteur colonne de dimension d.

Moyenne ("espérance empirique"):

$$\mu = \frac{1}{n} \sum_{t=1}^{n} x^{(t)}$$

Matrice de covariance empirique: $\Sigma = C$ telle que:

$$C_{ij} = \frac{1}{n} \sum_{t=1}^{n} \left(x_i^{(t)} - \mu_i \right) \left(x_j^{(t)} - \mu_j \right)$$

Autre manière de la calculer: une moyenne de matrices (chacune obtenues par un produit externe):

$$C = \frac{1}{n} \sum_{t=1}^{n} (x^{(t)} - \mu) (x^{(t)} - \mu)^{T}$$

3.8 Covariance, corrélation, indépendance

La corrélation est une version normalisée de la covariance:

$$\operatorname{Corr}[X_1,X_2] = \frac{\operatorname{Cov}[X_1,X_2]}{\sqrt{\operatorname{Var}[X_1]\operatorname{Var}[X_2]}}$$

On dit que deux V.A. sont **décorrélées** si leur corrélation (donc leur covariance) est 0.

$$X_1$$
 et X_2 décorrellées \iff $Cov[X_1, X_2] = 0 \iff \mathbb{E}[X_1 X_2] = \mathbb{E}[X_1]\mathbb{E}[X_2]$

indépendance
$$\implies$$
 décorrélation

Mais en général:

(sauf dans certains cas particuliers, ex: V.A. Gaussiennes). L'indépendance est une propriété beaucoup plus forte que la décorrélation.

Rappel: indépendance signifie $P(X_1, X_2) = P(X_1)P(X_2)$

4 Quantités issues de la théorie de l'information

4.1 Entropie d'une distribution (ou d'une V.A.)

Entropie (mesure d'"incertitude") d'une V.A. X ou de sa distribution p_X :

$$H(X) = H(p_X) = \mathbb{E}_{p_X} \left[-\log p_X(X) \right]$$

<u>Unité</u> d'entropie selon la base du logarithme: base 2 = "bit"; base e="nat". Pour les V.A. continues on l'appelle plus précisément entropie différentielle.

4.2 Entropie croisée (entre 2 distributions)

$$H(p,q) = \mathbb{E}_p[-\log q]$$

donc dans le cas discret (fonctions de mase de probabilités):

$$H(P,Q) = -\sum_{x \in \mathcal{X}} P(X=x) \log Q(X=x)$$

et dans le cas continu (fonctions de densité de probsbilité):

$$H(p,q) = -\int_{x \in \mathcal{X}} p(x) \log q(x) dx$$

4.3 Divergence de Kullback-Leibler

Un genre de "distance" entre 2 distributions p et q (mais pas symmétrique).

$$KL(p||q) = \mathbb{E}_p \left[\log \frac{p}{q} \right]$$

= $\mathbb{E}_p \left[\log p - \log q \right]$
= $H(p,q) - H(p)$

donc dans le cas discret (fonctions de mase de probabilités):

$$KL(P||Q) = \sum_{x \in \mathcal{X}} P(X = x) \log \frac{P(X = x)}{Q(X = x)}$$

et le cas continu (fonctions de densité de probsbilité)

$$KL(p||q) = \int_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$$

La KL divergence est toujours positive ou nulle. Et elle est nulle si et seulement si p=q.

4.4 Information mutuelle

C'est une mesure de *dépendance* statistique entre deux V.A.:

$$I(X_1, X_2) = KL(P(X_1, X_2) \parallel P(X_1)P(X_2))$$

Donc l'information mutuelle est nulle si et seulement si $P(X_1,X_2)=P(X_1)P(X_2)$ c.a.d. lorsque X_1 et X_2 sont indépendantes.