Дипломная работа

на тему:

Ежемесячное производство молока

Разработал: Кузьмин Антон Леонидович

Руководитель: Шестакова Екатерина Андреевна

СОДЕРЖАНИЕ

Введение	3
1 Загрузка данных	4
2 Знакомство с данными	4
3 Предобработка данных	4
4 EDA (exploratory data analysis) или разведочный анализ данных	4
5 Построение моделей, анализ результатов	5
5.1 Модель Sarimax	6
5.2 Модель Prophet	7
5.3 Модель Exponential Smoothing	9
6. Сравнение качества моделей	.12
ИТОГ	12

Введение

В качестве исследования для дипломной работы был выбран датасет с показателями ежемесячного производства молока с 1962 по 1975г.г. Целью дипломного проекта является проведение исследования данных и построение прогноза дальнейшего увеличения производства молока.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ данных о ежемесячном объеме производства продукции;
- построить прогнозы производства молока, используя различные методы прогнозирования и привести их сравнительную характеристику.

Для выполнения работы были выбраны и использованы следующие инструменты:

- датасет, размещенный по следующей ссылке:https://raw.githubusercontent.com/AnToxa0887/innopolis/main/monthly_milk_production.csv
- программа, находящаяся в свободном доступе Google Colab. Ссылка на дипломную работу, выполненную в данной программе: https://github.com/AnToxa0887/innopolis-2/blob/main/Diplom-Kuzmin Anton .ipynb

1 Загрузка данных

Для выполнения поставленной задачи загрузили библиотеки обработки данных, а также функции, модели и метрики. Перечень указан в листинге программы. Далее была загружена сама таблица данных.

2 Знакомство с данными

При вызове таблицы на экране обращаем внимание, что датасет состоит из двух столбцов. В первом перечислены даты учета молока (ежемесячно), во втором — объем произведенного продукта за текущий месяц. Количество строк 168, что соответствует количеству месяцев в промежутке с 1962 по 1975года строк.

3 Предобработка данных

При дальнейшей работе с таблицей наличие пустых строк не было обнаружено. Проверили типы данных и посмотрели общую информацию о датасете. В качестве прогнозируемой метрики был выбран показатель объема производства молока.

4 EDA (exploratory data analysis) или разведочный анализ данных

В данном разделе были поставлены следующие задачи:

- Сделать столбец с датами индексом;
- Вывести статистику по нужным столбцам;
- Построить графическое отображение столбцов;
- Выявить связи между признаками.

Индексом был выбран столбец с указанием месяца. По показателю «production» был выполнен расчет основных статистических метрик

production

count	168.000000
mean	754.708333
std	102.204524
min	553.000000
25%	677.750000

production

50%	761.000000
75%	824.500000
max	969.00000

Также был построен общий график для метрик

Сделали следующие выводы:

- 1. Наблюдается общий восходящий тренд: объем производства молока с каждым годом увеличивается;
- 2. Наблюдаются сезонные колебания объема продукции с годовой периодичностью и пиками в середине года;

Была выдвинута гипотеза: производство объемов молока в последующие годы будет также увеличиваться с сохранением сезонности.

5 Построение моделей, анализ результатов

Для выполнения поставленной задачи необходимо спрогнозировать поведение моделей. За основу был взят следующий алгоритм:

- 1. Описать модель;
- 2. Подобрать оптимальные параметры;
- 3. Создать модель;

- 4. Обучить модель;
- 5. Сделать прогноз на период тестовой выборки;
- 6. Сравнить прогноз с тестовой выборкой (построить график);
- 7. Оценить качество прогноза;
- 8. Сделать прогноз на год;
- 9. Сделать выводы о работе данного метода прогнозирования.

5.1 Модель Sarimax

- 1. Выполнен автоматический подбор параметров модели с входными настройками подбора на всем датасете с включением сезонности перидом в 1 год. В результате определена модель: SARIMAX(2, 0, 0)x(0, 1, [1], 12);
- 2. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий тестовой выборке.
- 3. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой

4. Рассчитаны значения критериев оценки качества модели:

a. MAE: 9.60195423

b. MSE: 118.256919

c. RMSE: 10.87459972

d. MAPE: 1.118331538

- 5. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
 - 6. Построен и визуализирован прогноз на год вперед.

Выводы по работе модели

Модель показала себя хорошо:

- RMSE=10.87 это очень хороший показатель.
- МАРЕ=1.12% это хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

5.2 Модель Prophet

5.1 Построение модели

- 1. Подготовлены данные для построения модели;
- 2. Выполнен автоматический подбор параметров модели с входными настройками мультипликативной сезонности. В результате алгоритм проигнорировал недельную и дневную сезонность, но обнаружил годовую сезонность и использовал её при настройке модели;
- 3. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий тестовой выборке.

4. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой, рис.5.

5. Временной ряд разложен на основные компоненты – тренд и сезонность

Наблюдается возрастающий тренд продаж и годовая сезонность.

- 6. Рассчитаны значения критериев оценки качества модели:
 - a. MAE: 14.37304065
 - b. MSE: 297.4948351
 - c. RMSE: 17.24803859
 - d. MAPE: 1.682529777
- 7. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.

8. Построен и визуализирован прогноз на год вперед

Рисунок 7 – График прогноза на год вперед

Выводы по работе модели

Модель показала себя хорошо:

- -RMSE=17.25 хороший показатель.
- − MAPE=1.68 % хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

5.3 Модель Exponential Smoothing

Метод также известен как метод простого экспоненциального сглаживания, или метод Брауна

- 1. Рассмотрена модель Holt-Winters
- 2. Построен график для визуального сравнения прогнозных данных с тестовой выборкой

3. Рассчитаны значения критериев оценки качества модели:

MAE: 13.76465315

MSE: 245.1180418 RMSE: 15.6562461

MAPE: 1.566134973

- 4. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
- 5. Построены и визуализированы прогнозы на год вперед,

Выводы по работе модели Модель показала себя хорошо:

- RMSE=15.66 хороший показатель.
- -MAPE=1.57 % хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

6. Сравнение качества моделей

Построены данные для сравнения качества построенных моделей, таблица

	model	mae_error	mse_error	rmse_error	mape_error
0	SARIMAX(2,0,0) x (0,1,[1],12)	9.601954	118.256919	10.874600	1.118332
1	PROPHET	14.373041	297.494835	17.248039	1.682530
2	prediction_exps	13.764653	245.118042	15.656246	1.566135

- МАЕ средняя абсолютная ошибка
- MSE средняя квадратичная ошибка
- RMSE корень из средней квадратичной ошибки
- МАРЕ средняя абсолютная процентная ошибка

Исходя из показателей rmse и mape делаем вывод, что модель SARIMAX(2, 0, 0)х(0, 1, 1, 12) являетя наиболее качественной, т.к. выдаёт наименьшие ошибки по каждому из критериев.

ИТОГ

- 1. Проведен анализ данных с использованием различных методов обработки стат истической информации (рассмотрели три варианта)
- 2. Рассчитаны основные статистические метрики, позволяющие судить о характере исследуемого явления.
- 3. Изначальный прогноз оправдался. Мы заметили, что в каждом из методов оцен ки ожидался дальнейший рост производства молока в последующий год.
- 4. Исходя из значений расчитанных метрик пришли к выводу, что наиболее качес твенной из построенных является модель SARIMAX.