Fraud Detection

Problem Framing:

	Qualitative	Quantitative	Question
Current State	Too many fraudulent transactions => bad user experience=> less customers=> less revenue => loss to the bank	10% fraudulent transactions => 5% less customers => 5% less revenue	What is the average number of fraudulent transactions at present and what can be done about it?
Objectives	 Build a model that can detect a fraudulent transaction before completion Decrease fraudulent transactions => improve customer experience => increase revenue 	Identify and reduce fraudulent transactions by at least 20%	How do we detect these transactions?
Benefit/Cost Tradeoff and Prioritization	Errors - TP - Fraudulent transaction identified => customers are protected => good user experience => more revenue TN - Non-fraudulent transaction marked valid => no significant impact on revenue FP - Non-fraudulent transaction marked fraudulent => bad user experience => less revenue FN - Fraudulent transaction marked valid => Risk to customers' assets => bad user experience => Less revenue	cost-benefit matrix c(TP) c(FP) c(FN) c(TN)	What are the costs of errors/benefits of correct predictions and why?

Constraints	Can only afford very little FN rate	At most 5% TN=> Customer risk => 10% less revenue	What are the acceptable risks/budgets and why?
Desired State	 Benefit: significantly lesser fraudulent transactions => significantly better user experience => significantly more customers => significantly better revenue Cost: very few false negatives => limited risk of bad user experience => limited risk of losing customers => limited risk to revenue 	at least 50% decrease in fraudulent transactions (from 20% to 10%) => 5% better engagement => 5% more revenue	What is the desired outcome (benefits/costs) that we want to see and why?

Why ML

	qualitative	quantitative	question
best non-ML alternative hypothesis	classify based on amount or location of transaction => too many FP and FN => bad user experience => lesser customers => loss of revenue	50% FP 70% FN => not cleaning enough fraudulent transactions and causing more complaints for misclassifying genuine transactions as fraudulent => 5% revenue loss risk	What are the non-ML alternatives and why are they problematic? (pains/missed gains)?
ML value proposition hypothesis	much fewer FP and FN => much better user experience => much less customer loss => much better revenue	10% FP 50% FN => 50% decrease in fraudulent transactions (from 20% to 10%) at the expense of 1% bad engagements => 5% increase in revenue at the expense of 0.1% risk	What are the advantages (pain relievers/gain creators) of ML solutions and why?

ML feasibility hypothesis • data: labeled dataset of each person's bank history • model: state of the art review suggests promising candidates are available	five thousand mod	at data and dels are good didates and why?
---	-------------------	--

ML Solution Design

	choices	metrics	experiment
data	(labeled) transaction data	label imbalance	 randomized 70/15/15 train/validation /test split
model	pr(fraud)	AUCPR (Precision recall curve)	 rule based heuristic tf-idf + logistic regression tf-idf + random forest BERT + logistic regression train these benchmark models using train data. validate and tune using validation data. select the model with best AUCPR on test data
action	if Pr(fraud) > threshold: auto take down	precisionrecallconfusionmatrix	 choose a threshold to maximize the recall (estimated reward) subject to precision >

			90%
reward	 decrease in fraud cost of misclassificati on 	 % Decrease in fraud % Increase in daily active users 	A/B test