WARM UP PROBLEMS

CROSSROADS ACADEMY AMC-8 PREPARATION

$\begin{array}{c} \textbf{Problem.} \\ primes. \end{array}$	Fin all pri	mes that	can be	written	both as a	n sum d	and a di	$\it fference o_j$	f two other
Problem. 2?	How many	five-digi	t number	rs consis	t only o	f even a	ligits, at	least one	of which is

Date: September 15, 2016.

Problem. Find all pairs of digits (a,b) such that if m=10a+b and n=10b+a then: $\frac{m}{n}=2-\frac{b}{a}$

Problem. What is the remainder when $1! + 2! + 3! + \cdots + 2015!$ is divided by 100?

