Report for the Markov model (cohort state-transition model)

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2 strategy3	$691 \\ 654$	$\frac{233}{105}$	194 1108

Table 2: Prevent CVD events est LBUB298155 441 strategy1 strategy2374181 567 strategy3 346 154 538

Part I. General population (without CVD)

Markov model

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Sat Jan 09 22:26:50 2021

Table 3: Data from Global Health Data Exchange

	index	sex	incidence	$death_CVD$	death_nonCVD
1	40	male	0.003888	0.000819	0.002494
2	45	male	0.006729	0.001340	0.003399
3	50	male	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	$_{\mathrm{male}}$	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
14	70	female	0.033907	0.013398	0.014907

```
## General setup
source("./function/transform func.R")
# rate_data <- rate_data[1:7,]</pre>
n t <- 10 # time horizon, number of cycles
# S1: live; S2: cvd; S3: cvdth; S4: oth_death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names
          <- length(v_names_str) # number of strategies</pre>
# Health utilities
out_cvd_free <- 1  # utility when being S1</pre>
# TODO
out_trans_to_cvd <- -0.038
uti_values <- c(out_cvd_free, out_cvd, out_dth, out_dth)
HR cvdhistory cvd <-
HR_cvdhistory_cvdth <- 3.12</pre>
HR_high_live_cvdth <- 1.17</pre>
```

```
p_live_oth_death <- rate_to_prob(r=rate_data$death_nonCVD,t = 1)
p_live_cvd <- rate_to_prob(r=rate_data$incidence, t=1)
p_live_cvdth <- rate_to_prob(r=rate_data$death_CVD, t=1)
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$incidence*HR_cvdhistory_cvd, t=1)
p_ccvd_cvdth <- rate_to_prob(rate_data$death_CVD*HR_cvdhistory_cvdth,t=1)
set.seed(100)
p_acvd_cvdth <- rep(runif(1,min=0.02,max=0.1),length=length(p_live_cvd))</pre>
```

Component 1: A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	Р3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$


```
Thus, P4 = 1 - P1 - P2 - P3 P1 = p\_live\_cvd * (1 - p\_acvd\_cvdth) P2 = p\_live\_cvdth + p\_live\_cvd * p\_acvd\_cvdth P3 = p\_live\_oth\_death P6 = 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth) - p\_live\_oth\_death P5 = p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth
```

In what follows, an example for the groups of male patients, aging from 40 to 45 is illustrated.

```
#### Create transition arrays ####
a P <- array(0, dim
                        = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a P["S1", "S1", 1:5] <- 1-(p live cvd[1]*(1-p acvd cvdth[1]) +
                              p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1] +
                              p live oth death[1])
a_P["S1", "S2", 1:5] <- p_live_cvd[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5] <- p_live_oth_death[1]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
 (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]</pre>
a P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])+
                              p live cvdth[1+1]*p live cvd[1+1]*p acvd cvdth[1+1] +
                              p live oth death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])
a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-
  (p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[1+1] + p_ccvd_acvd[1+1] * p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
a P
## , , 1
##
```

```
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 2
##
##
                                                   S4
             S1
                         S2
                                      S3
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
  , , 3
##
##
##
                         S2
                                       S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
  , , 4
##
##
##
                         S2
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
  , , 5
##
##
##
             S1
                         S2
                                       S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 6
##
##
                         S2
                                      S3
                                                  S4
             S1
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 7
##
##
             S1
                         S2
                                       S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 8
##
##
             S1
                         S2
                                      S3
                                                  S4
```

```
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
## , , 9
##
##
             S1
                         S2
                                      S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 10
##
##
             S1
                         S2
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
```

Component 2: The cohort trace matrix M

```
## S1 S2 S3 S4

## 0 1.0000000 0.000000000 0.0000000e+00 0.000000000

## 1 0.9938017 0.003707301 1.417524e-07 0.002490893

## 2 0.9876417 0.007372048 1.062253e-05 0.004975580

## 3 0.9815200 0.010994609 3.132364e-05 0.007454053

## 4 0.9754362 0.014575348 6.212744e-05 0.009926300

## 5 0.9693901 0.018114626 1.029173e-04 0.012392312

## 6 0.9598894 0.024181206 1.862985e-04 0.015743143

## 7 0.9504817 0.030138534 2.974702e-04 0.019082321

## 8 0.9411662 0.035988076 4.359318e-04 0.022409791

## 9 0.9319420 0.041731284 6.011895e-04 0.025725500
```

Table 4: Incidence rate						
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)			
	Low risk	0.63	1			
Strategy 1	Medium risk	1.56	1			
	High risk	1.6	1.7			
	Low risk	0.43	1			
Strategy 2	Medium risk	0.97	1			
	High risk	2.06	1.7			
	Low risk	0.63	1			
Strategy 3	Medium risk	1.09	1			
	High risk	2.11	1.7			
	Weight control	0.93	0.93			
Intervention	Smoke cession	0.85	0.72			
	Salt reduction	0.81	0.66			
Medication	Statin and antihypertensive	e 0.7	0.82			

```
HR_l_stg1 <- 0.63
HR_m_stg1
          <- 1.56
HR_h_stg1
          <- 1.6
HR_1_stg2
          <- 0.43
HR_m_stg2
           <- 0.97
HR_h_stg2
           <- 2.06
HR_1_stg3 <- 0.45
HR_m_stg3
          <- 1.09
HR_h_stg3
          <- 2.11
\# lifestyle intervention for medium risk and above
HR_smk_cvd <- 0.85
HR_smk_cvdth
             <- 0.72
HR_salt_cvd <- 0.81</pre>
HR_salt_cvdth <- 0.66</pre>
HR_wtc_cvd <- 0.93
HR_wtc_dth <- 0.93
# treatment intervention for high risk (additional)
HR_hpt_lip_cvd <- 0.7</pre>
HR_hpt_lip_cvdth <- 0.82</pre>
```

Calculation of the QALY under the Strategy 1

An example for a male patient aged 40-45 years old under low level after screening

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

Thus, we take the example of individuals in the low level

```
\begin{array}{l} \underline{P4} = 1 - P1 - P2 - P3 \\ \underline{P1} = p\_live\_cvd\_l*(1 - p\_acvd\_cvdth) \\ \underline{P2} = p\_live\_cvdth\_l + p\_live\_cvd\_l*p\_acvd\_cvdth \\ P3 = p\_live\_oth\_death \\ P6 = 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth) - p\_live\_oth\_death \\ P5 = p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth \\ \end{array}
```

We say that the screening strategy will have an influence on the first line of the transition matrix.

```
#### Create transition arrays ####
a P <- array(0, dim
                      = c(n_states, n_states, 10),
              dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_l[1]*(1-p_acvd_cvdth[1]) +
                            p_live_cvdth_l[1]*p_live_cvd_l[1]*p_acvd_cvdth[1] +
                            p_live_oth_death[1])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth_1[1]*p_live_cvd_1[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5] <- p_live_oth_death[1]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
 (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]</pre>
a P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
```

```
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_l[1+1]*(1-p_acvd_cvdth[1+1])+
                                                                  p_live_cvdth_l[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1] +
                                                                  p_live_oth_death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_l[1+1]*(1-p_acvd_cvdth[1+1])
a_{p}["S1", "S3", 6:10] <- p_{live_cvdth_l[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1]*p_acvd_cvdth[1+1
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-
    (p_cvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[1+1] + p_ccvd_acvd[1+1] * p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
a_P
## , , 1
##
##
                           S1
                                                      S2
                                                                                  S3
                                                                                                            S4
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
     , , 2
##
                           S1
                                                      S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
     , , 3
##
##
                           S1
                                                      S2
                                                                                  S3
                                                                                                            S4
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
      , , 4
##
##
                                                                                  S3
                                                                                                            S4
                           S1
                                                      S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
      , , 5
##
##
##
                                                      S2
                                                                                  S3
                                                                                                            S4
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
```

```
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
   , , 6
##
##
           S1
                       S2
                                     S3
                                                S4
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
##
   , , 7
##
##
           S1
                       S2
                                     S3
                                                S4
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
  , , 8
##
##
##
                                     S3
           S1
                       S2
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
  , , 9
##
##
##
                       S2
                                     S3
                                                S4
           S1
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 10
##
##
           S1
                       S2
                                     S3
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m M <- matrix(0,nrow
                        = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                                    %*% a_P[, , t]
  m_M[t + 1,]
                  <- m_M[t, ]
}
m_M
```

```
##
                        S2
                                      S3
## 0 1.0000000 0.000000000 0.000000e+00 0.000000000
## 1 0.9951701 0.002338958 8.943242e-08 0.002490893
## 2 0.9903634 0.004654274 6.696371e-06 0.004975580
## 3 0.9855801 0.006946129 1.975494e-05 0.007454063
## 4 0.9808198 0.009214701 3.919975e-05 0.009926339
## 5 0.9760825 0.011460165 6.496594e-05 0.012392408
## 6 0.9688204 0.015318616 1.176447e-04 0.015743367
## 7 0.9616123 0.019116935 1.879745e-04 0.019082777
## 8 0.9544579 0.022855820 2.756803e-04 0.022410617
## 9 0.9473567 0.026535961 3.804902e-04 0.025726867
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_1 <- sum(m_M*mat) # is the calculated QALY for the assumed patient under low level
print(m_M*mat)
##
            S1
                        S2
                                      S3
                                                  S4
## 0 1.0000000 0.000000000 0.000000e+00 0.000000000
## 1 0.8956531 0.000000000 8.048918e-08 0.000000000
## 2 0.0000000 0.004654274 0.000000e+00 0.004975580
```

Table 5: QALY for the calculation of utility values (a male patient aged 40-45)

3 0.000000 0.006251516 0.000000e+00 0.006708656 ## 4 0.9808198 0.000000000 3.919975e-05 0.000000000 ## 5 0.8784742 0.000000000 5.846934e-05 0.000000000 ## 6 0.0000000 0.015318616 0.000000e+00 0.015743367 ## 7 0.0000000 0.017205242 0.000000e+00 0.017174500 ## 8 0.9544579 0.000000000 2.756803e-04 0.000000000 ## 9 0.8526210 0.000000000 3.424412e-04 0.000000000

Stratification	QALY
Low risk	5.6507735
Medium risk	5.6365713
High risk	5.6527281

Health utilities of Strategy1

To calculate the require QALY for both male and female patients under different ages, construct a vactor to and run a loop save the calculated result

```
QALY h <- matrix(NA,nrow=14,ncol=1)
# i specify the group of male patients (age)
for(i in 1:6){
  a_P <- array(0, dim
                           = c(n \text{ states}, n \text{ states}, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5]
                      <- 1-(p_live_cvd_h[i]*(1-p_acvd_cvdth[i]) +
                                p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i] +
                                p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_h[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i]
a P["S1", "S4", 1:5] <- p live oth death[i]
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
  p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] <- 1-(p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])+
                                p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1] +
                                p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p ccvd cvdth[i+1]+p ccvd acvd[i+1]*p acvd cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
                        = (n_t), ncol = n_states,
m_M <- matrix(0,nrow</pre>
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                                      %*% a_P[, , t]
  m M[t + 1,]
                    <- m_M[t, ]
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_h[i] <- sum(m_M*mat)</pre>
```

```
# the group of the male patients aged 70-75
a P <- array(0, dim
                        = c(n \text{ states}, n \text{ states}, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10]
                      <- 1-(p_live_cvd_h[7]*(1-p_acvd_cvdth[7]) +
                               p live cvdth h[7]*p live cvd h[7]*p acvd cvdth[7] +
                               p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_h[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m M \leftarrow matrix(0, nrow = (n t), ncol = n states,
              dimnames = list(0:(n t-1), v names states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                   m_M[t + 1, ]
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_h[7] <- sum(m_M*mat)
# i specify the group of female patients (age)
for(i in 8:13){
  a_P <- array(0, dim
                          = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_h[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_h[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
```

```
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])+
                                p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1] +
                                p live oth death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow</pre>
                        = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
 m M[t + 1,]
                  \leftarrow m M[t, ] %*% a P[, , t]
}
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_h[i] <- sum(m_M*mat)</pre>
}
a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
                 dimnames = list(v_names_states, v_names_states, 1:10))
a_P["S1", "S1", 1:10] < -1-(p_live_cvd_h[7]*(1-p_acvd_cvdth[7]) +
                                p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7] +
                                p_live_oth_death[7])
a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_h[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
```

```
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow = (n_t), ncol = n_states,</pre>
              dimnames = list(0:(n t-1), v names states))
m M[1, ] <- v s init
for(t in 1:9){
                 m_M[t + 1,]
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_h[14] \leftarrow sum(m_M*mat)
QALY_m <- matrix(NA,nrow=14,ncol=1)</pre>
# i specify the group of male patients (age)
for(i in 1:6){
  a_P \leftarrow array(0, dim) = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_m[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_m[i]*(1-p_acvd_cvdth[i])
a P["S1", "S3", 1:5] <- p live cvdth m[i]*p live cvd m[i]*p acvd cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a P["S2", "S2", 1:5] <- 1-p live oth death[i]-
 (p ccvd cvdth[i]+p ccvd acvd[i]*p acvd cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1] +
                               p_live_oth_death[i+1])
a P["S1", "S2", 6:10] <- p live cvd m[i+1]*(1-p acvd cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
```

dimnames = list(0:(n_t-1), v_names_states))

 $m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,$

```
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                 m_M[t + 1, ]
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY m[i] <- sum(m M*mat)</pre>
}
# the group of the male patients aged 70-75
a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_m[7]*(1-p_acvd_cvdth[7]) +
                               p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7] +
                               p_live_oth_death[7])
a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_m[7]*(1-p_acvd_cvdth[7])
a P["S1", "S3", 1:10] <- p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:9){
 m_M[t + 1,]
                  # calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_m[7] <- sum(m_M*mat)</pre>
#-----
# i specify the group of female patients (age)
for(i in 8:13){
  a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_m[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
```

```
a_P["S1", "S2", 1:5] <- p_live_cvd_m[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p ccvd acvd[i]*p acvd cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1] +
                               p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                  m_M[t + 1, ]
}
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m M),] <- uti values</pre>
QALY_m[i] <- sum(m_M*mat)</pre>
}
a_P <- array(0, dim</pre>
                         = c(n_states, n_states, 10),
                dimnames = list(v names states, v names states, 1:10))
a_P["S1", "S1", 1:10] <-1-(p_live_cvd_m[7]*(1-p_acvd_cvdth[7]) +
                               p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7] +
                               p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_m[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
```

```
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v s init \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m M \leftarrow matrix(0, nrow = (n t), ncol = n states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
                   m_M[t + 1,]
\# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_m[14] <- sum(m_M*mat)
QALY_1 <- matrix(NA,nrow=14,ncol=1)
# i specify the group of male patients (age)
for(i in 1:6){
                         = c(n_states, n_states, 10),
  a_P <- array(0, dim</pre>
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a P["S1", "S1", 1:5] \leftarrow 1-(p live cvd l[i]*(1-p acvd cvdth[i]) +
                                p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i] +
                               p live oth death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5]
                     <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1] +
                               p live oth death[i+1])
a_P["S1", "S2", 6:10] \leftarrow p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
 (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
```

```
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:9){
  m_M[t + 1,]
                   }
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_1[i] <- sum(m_M*mat)</pre>
}
# the group of the male patients aged 70-75
a_P <- array(0, dim</pre>
                        = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10]
                        <- 1-(p_live_cvd_l[7]*(1-p_acvd_cvdth[7]) +
                                p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7] +
                                p live oth death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_l[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10]
                        <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
              dimnames = list(0:(n t-1), v names states))
m_M[1, ] <- v_s_init
for(t in 1:9){
                                    %*% a_P[, , t]
 m_M[t + 1,]
                   <- m_M[t, ]
}
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_1[7] \leftarrow sum(m_M*mat)
# i specify the group of female patients (age)
```

```
for(i in 8:13){
  a_P <- array(0, dim
                            = c(n \text{ states}, n \text{ states}, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <- 1-(p_live_cvd_l[i]*(1-p_acvd_cvdth[i]) +
                                p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i] +
                                p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])+
                                p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1] +
                                p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_1[i+1]*p_live_cvd_1[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:9){
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
}
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_1[i] <- sum(m_M*mat)</pre>
a_P <- array(0, dim
                       = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_l[7]*(1-p_acvd_cvdth[7]) +
                                p_live_cvdth_l[7]*p_live_cvd_l[7]*p_acvd_cvdth[7] +
```

```
p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_l[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10]
                        <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p ccvd cvdth[7]+p ccvd acvd[7]*p acvd cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow</pre>
                      = (n_t), ncol = n_states,
              dimnames = list(0:(n_t-1), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:9){
                                 %*% a_P[, , t]
  m_M[t + 1,]
                    <- m_M[t, ]
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m M),ncol = 4)</pre>
mat[1:nrow(m_M),] <- uti_values</pre>
QALY_1[14] <- sum(m_M*mat)
print(xtable(data.frame(cbind(rate_data,QALY_h,QALY_m,QALY_1)),digits=c(0,0,0,6,6,6,4,4,4),
      caption = "QALY under the screening of Strategy 1"),
      caption.placement="top")
```

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Sat Jan 09 22:26:51 2021

Table 6: QALY under the screening of Strategy 1

	index	sex	incidence	$death_CVD$	$death_nonCVD$	QALY_h	$QALY_m$	QALY_l
1	40	male	0.003888	0.000819	0.002494	5.6527	5.6366	5.6508
2	45	male	0.006729	0.001340	0.003399	5.6294	5.6042	5.6264
3	50	male	0.010564	0.002302	0.004951	5.5982	5.5630	5.5939
4	55	male	0.015291	0.003665	0.007282	5.5566	5.5108	5.5509
5	60	male	0.022078	0.006404	0.011159	5.5026	5.4478	5.4957
6	65	$_{\mathrm{male}}$	0.030980	0.011155	0.016946	5.4374	5.3793	5.4299
7	70	$_{\mathrm{male}}$	0.043589	0.019978	0.026305	5.3988	5.3418	5.3913
8	40	female	0.004545	0.000351	0.001137	5.6627	5.6446	5.6605
9	45	female	0.007094	0.000643	0.001620	5.6455	5.6195	5.6423
10	50	female	0.010133	0.001206	0.002475	5.6238	5.5893	5.6196
11	55	female	0.013734	0.002014	0.003705	5.5961	5.5529	5.5908
12	60	female	0.018272	0.003872	0.005850	5.5609	5.5097	5.5545
13	65	female	0.023744	0.006996	0.009060	5.5115	5.4533	5.5041
14	70	female	0.033907	0.013398	0.014907	5.3988	5.3418	5.3913