## Numerical Analysis MATH50003 (2024–25) Problem Sheet 5

**Problem 1** By computing the Cholesky factorisation, determine which of the following matrices are symmetric positive definite:

$$\begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 2 & 2 \\ 2 & 2 & 4 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix}$$

**Problem 2** Show that a matrix  $A \in \mathbb{R}^{n \times n}$  is symmetric positive definite if and only if it has a reverse Cholesky factorisation of the form

$$A = UU^{\top}$$

where U is upper triangular with positive entries on the diagonal.

**Problem 3(a)** Use the Cholesky factorisation to prove that the following  $n \times n$  matrix is symmetric positive definite for any n:

$$\Delta_n := \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix}$$

Hint: consider a matrix  $K_n^{(\alpha)}$  that equals  $\Delta_n$  apart from the top left entry which is  $\alpha > 1$  and use a proof by induction.

**Problem 3(b)** Deduce its Cholesky factorisations:  $\Delta_n = L_n L_n^{\top}$  where  $L_n$  is lower triangular.

**Problem 1(a)** Show for a unitary matrix  $Q \in U(n)$  and a vector  $\mathbf{x} \in \mathbb{C}^n$  that multiplication by Q preserve the 2-norm:  $||Q\mathbf{x}|| = ||\mathbf{x}||$ .

**Problem 1(b)** Show that the eigenvalues  $\lambda$  of a unitary matrix Q are on the unit circle:  $|\lambda| = 1$ . Hint: recall for any eigenvalue  $\lambda$  that there exists a unit eigenvector  $\mathbf{v} \in \mathbb{C}^n$  (satisfying  $\|\mathbf{v}\| = 1$ ).

**Problem 1(c)** Show for an orthogonal matrix  $Q \in O(n)$  that  $\det Q = \pm 1$ . Give an example of  $Q \in U(n)$  such that  $\det Q \neq \pm 1$ . Hint: recall for any real matrices A and B that  $\det A = \det A^{\top}$  and  $\det(AB) = \det A \det B$ .

**Problem 1(d)** A normal matrix commutes with its adjoint. Show that  $Q \in U(n)$  is normal.

**Problem 1(e)** The spectral theorem states that any normal matrix is unitarily diagonalisable: if A is normal then  $A = V\Lambda V^*$  where  $V \in U(n)$  and  $\Lambda$  is diagonal. Use this to show that  $Q \in U(n)$  is equal to I if and only if all its eigenvalues are 1.