Attention-based Deep Multiple Instance Learning

Maximilian Ilse, Jakub Tomczak, Max Welling

AMLAB, University of Amsterdam

Typical size of benchmark

natural images: up to 256x256

Typical size of benchmark

natural images: up to 256x256

Typical size of medical images:

~10,000x10,000

Typical size of benchmark

natural images: up to 256x256

Typical size of medical images:

~10,000x10,000

How to process it?

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Data: billions of pixels, 10¹-10² scans, weak labels (for regions or a scan).

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Data: billions of pixels, 10¹-10² scans,

weak labels (for regions or a scan).

Solution: Use local information in the image and look for Regions of

Interest.

One image - one label

$$\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$$

One image - one label

$$\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$$

Many images - one label

$$X = {\mathbf{x}_1, \dots, \mathbf{x}_K},$$
$$Y \in {0, 1}$$

One image - one label

$$\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$$

Many images - one label

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$$
$$Y \in \{0, 1\}$$

Individual labels:

 $\{y_1,\ldots,y_K\}$ are unknown.

One image - one label

$$\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$$

Many images - one label

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$$
$$Y \in \{0, 1\}$$

Individual labels:

$$\{y_1,\ldots,y_K\}$$
 are unknown.

Assumptions about the label *Y*:

$$Y = \begin{cases} 0, & \text{iff } \sum_{k} y_k = 0, \\ 1, & \text{otherwise.} \end{cases}$$

One image - one label

$$\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$$

Many images - one label

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$$
$$Y \in \{0, 1\}$$

Individual labels:

$$\{y_1,\ldots,y_K\}$$
 are unknown.

Instances with $(y_k = 1) =$ key instances

Assumptions about the label *Y*:

$$Y = \begin{cases} 0, & \text{iff } \sum_{k} y_k = 0, \\ 1, & \text{otherwise.} \end{cases}$$

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} (1 - \theta(X))^{1-Y}$$

A MIL classifier as a probabilistic model:

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} \left(1 - \theta(X)\right)^{1 - Y}$$
 Must be permutation-invariant!

How?

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} (1 - \theta(X))^{1-Y}$$

Theorem (Zaheer et al., 2017)

A scoring function for a set of instances $X, S(X) \in \mathbb{R}$, is a symmetric function (i.e., permutation invariant to the elements in X), if and only if it can be decomposed in the following form:

$$S(X) = g(\sum_{x \in X} f(x))$$

where f and g are suitable transformations.

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} (1 - \theta(X))^{1-Y}$$

Theorem (Qi et al., 2017)

For any $\varepsilon > 0$, a Hausdorff continuous symmetric function $S(X) \in \mathbb{R}$ can be arbitrarily approximated by a function in the form $g(\max_{x \in X} f(x))$, where \max is the element-wise vector maximum operator and f and g are continuous functions, that is:

$$|S(X) - g(\max_{x \in X} f(x))| < \varepsilon.$$

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} (1 - \theta(X))^{1-Y}$$

The theorems say that we can model a **permutation-invariant** $\theta(X)$ by composing:

- a transformation f of individual instances,
- a permutation-invariant function σ , e.g., sum, mean or max (MIL pooling),
- a transformation of combined instances using a function g:

$$\theta(X) = g(\sigma(f(x_1), ..., f(x_K)))$$

We model both transformations f and g using **neural networks**.

We model both transformations f and g using **neural networks**.

Two approaches:

- embedded-based
- instance-based

We model both transformations f and g using **neural networks**.

Two approaches:

- embedded-based
- instance-based

MIL pooling:

- mean,
- max,
- other (e.g., Noisy-Or).

Issues:

- Embedded-based approach lacks interpretability.
- Instance-based approach propagates error.
- max and mean are non-learnable.

Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:

where:

$$a_k = \frac{\exp\{\mathbf{w}_k^{\top} \tanh\left(\mathbf{V}\mathbf{h}_k^{\top}\right)\}}{\sum_{j=1}^K \exp\{\mathbf{w}_j^{\top} \tanh\left(\mathbf{V}\mathbf{h}_j^{\top}\right)\}}$$

Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:

$$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k,$$

where:

$$a_k = \frac{\exp\{\mathbf{w}_k^{\top} \left(\tanh\left(\mathbf{V}\mathbf{h}_k^{\top}\right) \odot \operatorname{sigm}\left(\mathbf{U}\mathbf{h}_k^{\top}\right) \right) \}}{\sum_{j=1}^{K} \exp\{\mathbf{w}_j^{\top} \left(\tanh\left(\mathbf{V}\mathbf{h}_j^{\top}\right) \odot \operatorname{sigm}\left(\mathbf{U}\mathbf{h}_j^{\top}\right) \right) \}},$$

attention with gating mechanism

Multiple Instance Learning: Attention-based approach

The attention mechanism as MIL pooling:

- MIL operator is **trainable**;
- attention weights could be interpreted (key instances).

Embedded-based approach is **interpretable** and fully **trainable**.

Experiments: Breast Cancer

 0.755 ± 0.016

Gated-Attention

МЕТНОО	ACCURACY	PRECISION	RECALL	F-SCORE	AUC
Instance+max	0.614 ± 0.020	0.585 ± 0.03	0.477 ± 0.087	$0.506\pm0.054 \\ 0.577\pm0.049$	0.612 ± 0.026
Instance+mean	0.672 ± 0.026	0.672 ± 0.034	0.515 ± 0.056		0.719 ± 0.019
Embedding+max	0.607±0.015	0.558±0.013	0.546 ± 0.070	0.543 ± 0.042	0.650±0.013
Embedding+mean	0.741 ±0.023	0.741 ±0.023	0.654 ± 0.054	0.689 ± 0.034	0.796 ±0.012
Attention	0.745 ±0.018	0.718 ± 0.021	0.715 ±0.046	0.712 ±0.025	0.775 ± 0.016

 0.731 ± 0.042

 0.725 ± 0.023

 0.728 ± 0.016

PRECISION

 0.866 ± 0.017

 0.821 ± 0.011

 0.884 ± 0.014

 0.911 ± 0.011

 0.953 ± 0.014

 0.944 ± 0.016

RECALL

 0.816 ± 0.031

 0.710 ± 0.031

 0.753 ± 0.020

 0.804 ± 0.027

 0.855 ± 0.017

 0.851 ± 0.035

F-SCORE

 0.839 ± 0.023

 0.759 ± 0.017

 0.813 ± 0.017

 0.853 ± 0.016

 0.901 ± 0.011

 0.893 ± 0.022

AUC

 0.914 ± 0.010

 0.866 ± 0.008

 0.918 ± 0.010

 0.940 ± 0.010

 $\mathbf{0.968} \pm 0.009$

 0.968 ± 0.010

ACCURACY

 0.842 ± 0.021

 0.772 ± 0.012

 0.824 ± 0.015

 0.860 ± 0.014

 0.904 ± 0.011

 0.898 ± 0.020

METHOD

Attention

Instance+max

Instance+mean

Embedding+max Embedding+mean

Gated-Attention

Figure 10. Colon cancer example 1: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Figure 11. Colon cancer example 2: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Figure 12. Colon cancer example 3: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Deep MIL: a flexible approach to cope with large images.

Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Deep MIL: a flexible approach to cope with large images.

Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Deep MIL: a flexible approach to cope with large images.

Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Deep MIL: a flexible approach to cope with large images.

Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Deep MIL: a flexible approach to cope with large images.

Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Code on github:

https://github.com/AMLab-Amsterdam/AttentionDeepMIL

Contact:

ilse.maximilian@gmail.com jakubmkt@gmail.com

The research conducted by Maximilian Ilse was funded by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Grant DLMedla: Deep Learning for Medical Image Analysis).

The research conducted by Jakub M. Tomczak was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, "Deep learning and Bayesian inference for medical imaging").