0.1 H23 数学 A

1 (1)V の基底として $\{1, x+1, (x+1)^2\}$ をとる. $F(1)=0, F(x)=x+1, F((x+1)^2)=2(x+1)^2$ であるか

ら
$$F$$
の表現行列は $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ である。

①
$$(1)V$$
 の基底として $\{1,x+1,(x+1)^2\}$ をとる。 $F(1)=0,F(x)=x+1,F((x+1)^2)=2(x+1)^2$ であるから F の表現行列は $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ である。 $\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$ とし、 F の表現行列を A とする。 $G \circ F = F \circ G$ は $AB = BA$ と同値である。よって $AB = \begin{pmatrix} 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} \\ 2b_{31} & 2b_{32} & 2b_{33} \end{pmatrix} = \begin{pmatrix} 0 & b_{12} & 2b_{13} \\ 0 & b_{22} & 2b_{23} \\ 0 & b_{32} & 2b_{33} \end{pmatrix}$ であるから、 $b_{12} = b_{13} = b_{21} = b_{31} = b_{23} = b_{23} = 0$ である。したがって $B = \begin{pmatrix} b_{11} & 0 & 0 \\ 0 & b_{22} & 0 \\ 0 & 0 & b_{33} \end{pmatrix}$ である。よって M の次元は 3 である。 f_N は有界で

と同値である.よって
$$AB = \begin{pmatrix} 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} \\ 2b_{31} & 2b_{32} & 2b_{33} \end{pmatrix} = \begin{pmatrix} 0 & b_{12} & 2b_{13} \\ 0 & b_{22} & 2b_{23} \\ 0 & b_{32} & 2b_{33} \end{pmatrix}$$
であるから, $b_{12} = b_{13} = b_{21} = b_{31} = b_{$

$$b_{23}=b_{32}=0$$
 である.したがって $B=egin{pmatrix} b_{11}&0&0\0&b_{22}&0\0&0&b_{33} \end{pmatrix}$ である.よって M の次元は 3 である.

[2] $(1)\{f_n\}_{n=1}^{\infty}$ は f に一様収束するから,ある $N \in \mathbb{N}$ が存在して $|f_N(x) - f(x)| < 1$ である. f_N は有界で あるから $f_N(x) \le M$ とするとよって $|f(x)| \le 1 + |f_N(x)| < 1 + M$ である. よって f は有界.

(2) 任意の $\varepsilon > 0$ に対して一様収束性から、ある $N \in \mathbb{N}$ が存在して n,m > N なら $|f_n(x)|$ $|f(x)|<arepsilon, |f(x)-f_m(x)|<arepsilon$ である. この n,m に対してある M(n)>0 が存在して x>M(n) なら $|a_n - f_n(x)| < \varepsilon$ であり、またある M(m) > 0 が存在して x > M(m) なら $|a_m - f_m(x)| < \varepsilon$ である. $|a_n - a_m| \leq |a_n - f_n(x)| + |f_n(x) - f(x)| + |f(x) - f_m(x)| + |f_m(x) - a_m|$ であるから x > M(n) + M(m) をと ることで $|a_n - a_m| < 4\varepsilon$ である. すなわち $\{a_n\}_{n=1}^{\infty}$ はコーシー列である.

(3) 任意の $\varepsilon>0$ に対して、ある $N_1\in\mathbb{N}$ が存在して $n>N_1$ なら $|f(x)-f_n(x)|<\varepsilon$ である.またある $N_2 \in \mathbb{N}$ が存在して $n > N_2$ なら $|a_n - A| < \varepsilon$ である. $N = N_1 + N_2$ とする. ある M > 0 が存在して x > Mなら $|f_N(x) - a_n| < \varepsilon$ である. よって $|f(x) - A| \le |f(x) - f_n(x)| + |f_n(x) - a_n| + |a_n - A| < 3\varepsilon$ となる.

3 $(1)(a,b) \notin G$ を任意にとる. $b \neq f(a)$ と Y がハウスドルフ空間であることから開集合 U,V が存在して $f(a) \in U, b \in V, U \cap V = \emptyset$ である. $(a,b) \in f^{-1}(U) \times V$ である. ある $(x,y) \in f^{-1}(U) \times V$ について f(x) = yと仮定する. $f(x) \in U, y \in V$ であるから $y \in U \cap V$ となり矛盾. よって $f^{-1}(U) \times V \cap G = \emptyset$ である.

$$(2)f(x) = \begin{cases} 0 & (x \le 0) \\ 1/x & (x > 0) \end{cases}$$
 とする. f は連続でないが G は閉集合である.

 $\boxed{4} \ (1)|e^{iz}| = |\exp(ire^{it})| = |\exp(-r\sin t + ir\cos t)| = |\exp(-r\sin t)| \le 1$ である. よって $|\int_{C_r} f(z)dz| \le 1$

 $\int_{C_r+z^2}^{|z|} dz = \sum_{n=1}^{\infty} \frac{1}{n!} i^{n-2} z^{n-2}$ である. よって $\int_{C_r} f(z) dz = \sum_{n=1}^{\infty} \frac{1}{n!} i^{n-2} \int_{C_r} z^{n-2} dz = \sum_{n=1}^{\infty} \frac{1}{n!} i^{n-1} \int_0^{\pi} r^{n-1} e^{i(n-1)t} dt$ である. n=1 の項については $\int_0^{\pi} dt = \pi$ である. $n \geq 2$ なら $|\int_0^{\pi} r^{n-1} e^{i(n-1)t} dt| \leq \int_0^{\pi} r^{n-1} dt \to 0 \quad (r \to 0)$ である. よって $\int_C f(z)dz \to \pi \quad (r \to 0)$ である.

(2) 曲線 $\alpha_{\varepsilon,r}$ を z=x $(-r \le x \le -\varepsilon)$ とする. $\int_{\alpha_{\varepsilon,r}} f(z)dz = \int_{-r}^{-\varepsilon} \frac{1-e^{ix}}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-e^{-ix}}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2} dx + \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2}$ $i\int_{\varepsilon}^{r} \frac{\sin x}{r^2} dx$ である.

曲線 $\beta_{\varepsilon,r}$ を z=x $(\varepsilon \leq x \leq r)$ とする. $\int_{\beta_{\varepsilon,r}} f(z) dz = \int_{\varepsilon}^{r} \frac{1-e^{ix}}{x^{2}} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^{2}} dx - i \int_{\varepsilon}^{r} \frac{\sin x}{x^{2}} dx$ である. $C_{\varepsilon}, \beta_{\varepsilon,r}, C_r, \alpha_{\varepsilon,r}$ をつないでできる積分曲線を C とすると,C の内部で f は正則であるから $\int_C f(z)dz=0$ である. よって $\int_{-C_{\varepsilon}} f(z)dz + \int_{\beta_{\varepsilon,r}} f(z)dz + \int_{C_{r}} f(z)dz + \int_{\alpha_{\varepsilon,r}} f(z)dz = 0$ である. $\varepsilon \to 0, r \to \infty$ とすると

$$2\int_{arepsilon}^{r} rac{1-\cos x}{x^2} dx - \pi o 0$$
 であるから $\int_{0}^{\infty} rac{1-\cos x}{x^2} dx = rac{\pi}{2}$ である.