

Objectifs

- Systèmes distribués
- Échanges synchrones / asynchrones
- Théorème de CAP
- Échange de données par fichiers

Système distribué

- Un système distribué est constitué d'un ensemble de (composants) logiciels localisés sur différentes ressources de calcul qui communiquent et se coordonnent en s'envoyant des messages
- On peut distribuer les systèmes de trois façons :
 - Un composant logiciel par serveur
 - Plusieurs instances sur des serveurs différents de chaque composants
 - Un mélange des deux derniers
- Les serveurs peuvent être répartis localement ou géographiquement dans un ou des centres de données à travers le monde

Exemple d'un système de type ERP

ERP : Enterprise Ressources Planning / PGI : Progiciel de Gestion Intégré

CRM: Customer Relationship Management

KPI: Key Performance Indicator /

Avantages / inconvénients

- + Tolérance aux pannes : si un composant ne fonctionne plus ou est inaccessible, l'utilisateur a toujours du service
- + Mise à l'échelle horizontale infinie
- + Peut diminuer la latence (géographique) les utilisateurs des centres de données : répartition des données sur plusieurs continents
- Intégration des données et consistance difficiles
- Les messages peuvent ne pas être livrés : problèmes de réseaux ou de perte de messages
- Il est plus difficile de gérer des systèmes répartis plutôt qu'un système centralisé

Synchrone / Asynchrone

- Dans le mode synchrone, un traitement envoie un message et attend qu'il soit traité (avec ou sans réponse)
 - Appel d'une méthode
 - Appel d'un service web
- Dans le mode asynchrone, un traitement envoie un message mais n'attend pas qu'il soit traité : le message sera traité à un moment donné
 - Envoi d'une lettre
 - Envoi d'un fichier de données
- => Dans le mode **asynchrone** le message peut être **avec ou sans assurance de prise en charge**

Théorème de CAP

- Le théorème CAP ou CDP dit qu'il est impossible sur un système informatique de calcul distribué de garantir en même temps (c'est-àdire de manière synchrone) les trois contraintes suivantes mais seulement deux :
 - Cohérence (Consistency): tous les nœuds / systèmes ont les mêmes données au même moment
 - Disponibilité (Availability) : toutes les requêtes reçoivent une réponse
 - Tolérance au partitionnement (Partition Tolerance) : aucune panne ne doit empêcher le système de répondre correctement

CAP: impossible

D

Cohérence et Disponibilité (CA)

SGBDR: MySQL, Orable, SQL Server, etc.

Cohérence et Tolérance au partitionnement (CP)

MongoDB, Hbase, etc.

Disponibilité et Tolérance au partitionnement (DP)

Cassandra, CouchDB, etc.

=> On parle de cohérence à terme

Échanges par fichiers

- EDI: Electonic Data Interchange 1970
 - Échanges basés sur des fichiers
 - Transport : clef USB, (S)FTP(S), HTTP(S), etc.
 - Souvent des fichiers texte :
 - Champs déterminés par la position des caractères (ex. ACP-005)
 - Séparateur de champs : CSV
 - XML
 - JSON
 - ...
 - Si fichiers texte:
 - Attention au(x) caractères de retour de chariot (« \n », « \r », « \r\n »)
 - Encodage des caractères : EBCDIC, ASCII, AINSI, UTF-8, UTF-16, etc.

JSON: JavaScript Object Notation

- JSON = une valeur
- Une valeur:
 - Objet : {...}
 - Ensemble de clef / valeur
 - La clef est une chaine
 - Collection : [...] de valeurs
 - Nombre
 - Chaine de caractères
 - true / false / null
- Pour désérialiser les données en C# :
 - Un classe par type d'objet
 - Une propriété par couple clef/valeur

Sérialisation / désérialisation

- Nous allons principalement utiliser deux méthodes statiques de la classe JsonConvert :
 - string SerializeObjet(object) : renvoie la représentation texte de l'objet « object » passé en paramètre
 - Type DeserializeObject<Type>(string) : interprète le texte passé en paramètre et renvoie l'objet désérialisé de type « Type »
- Newtonsoft.Json propose des attributs afin de modifier le nom des champs: https://www.newtonsoft.com/json/help/html/SerializationAttributes.htm

Références

- Exemple ERP :
 - SAP : https://fr.wikipedia.org/wiki/SAP_(progiciel)
 - Sage X3: https://fr.wikipedia.org/wiki/Sage_X3
 - Microsoft Dynamics 365 : https://en.wikipedia.org/wiki/Microsoft Dynamics 365
- ACP005 format : https://www.rbcroyalbank.com/ach-fr/file-460199.pdf