Arithmetization-Oriented Primitives (AOP): A need for new design and cryptanalysis tools

Clémence Bouvier

Seminar CAS³C³, Grenoble January 19th, 2024

	2		5 2		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

A new context

Unsolved Sudoku

A new context

Toy example of Zero-Knowledge Proof

Unsolved Sudoku

Solved Sudoku

A new context

Toy example of Zero-Knowledge Proof

Unsolved Sudoku

Grid cutting

Unsolved Sudoku

23456789

Rows checking

A new context

Unsolved Sudoku

123456789

Columns checking

Unsolved Sudoku

23456789

Squares checking

A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- * **ZK**: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

⋆ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

(b) Random permutation

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

⋆ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

Traditional case

$$y \leftarrow E(x)$$

★ Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

Traditional case

A new context 000000

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$

Ex: Field of AES: \mathbb{F}_{2^n} where n=8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
 - Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_n where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

Traditional case

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$
- * Operations: logical gates/CPU instructions

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
- * Operations: large finite-field arithmetic

A new context 000000

Overview of the contributions

Design of a new AO primitive

* New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode.

Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems. CRYPTO 2023.

Practical cryptanalysis

* Algebraic Attacks Against some Arithmetization-Oriented Primitives. Bariant, Bouvier, Leurent, Perrin. **ToSC**, **2022**.

Theoretical cryptanalysis

- * On the Algebraic Degree of Iterated Power Functions. Bouvier, Canteaut, Perrin. DCC, 2023.
- Coefficient Grouping for Complex Affine Layers.
 Lui, Grassi, Bouvier, Meier, Isobe. CRYPTO 2023.

Overview of the contributions

Design of a new AO primitive

* New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode.

Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems. CRYPTO 2023.

Practical cryptanalysis

* Algebraic Attacks Against some Arithmetization-Oriented Primitives. Bariant, Bouvier, Leurent, Perrin. **ToSC**, **2022**.

Theoretical cryptanalysis

- * On the Algebraic Degree of Iterated Power Functions. Bouvier, Canteaut, Perrin. DCC, 2023.
- ★ Coefficient Grouping for Complex Affine Layers. Lui, Grassi, Bouvier, Meier, Isobe. CRYPTO 2023.

Design of Anemoi

- * Link between CCZ-equivalence and Arithmetization-Orientation
- ★ A new S-Box: the Flystel
- * A new family of ZK-friendly hash functions: Anemoi

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1=t_0+b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + 0$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

Need: verification using few multiplications.

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 \sim *E*: low degree

 \sim *E*: low degree

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 \sim *E*: high degree

$$x == E^{-1}(y)$$
 $\sim E^{-1}$: low degree

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: high degree

* Our approach: using $(\underline{u}, \underline{v}) = \mathcal{L}(x, \underline{v})$, where \mathcal{L} is linear

$$y \leftarrow F(x)$$

 $y \leftarrow F(x)$ $\sim F$: high degree

 \sim G: low degree

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\mathbf{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\mathbf{F}^{-1}} .$$

Design of Anemoi

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
, where \mathcal{L} is linear.

Advantages of CCZ-equivalence

If $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{F} = \delta_{G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{\mathsf{a} \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(\mathsf{x} + \mathsf{a}) - \mathsf{F}(\mathsf{x}) = \mathsf{b}\}|$$

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{\mathsf{a} \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(\mathsf{x} + \mathsf{a}) - \mathsf{F}(\mathsf{x}) = \mathsf{b}\}|$$

 \star Linear properties are the same: $\mathcal{W}_{\textit{F}} = \mathcal{W}_{\textit{G}}$.

Linearity

Maximum value of the LAT

$$\mathcal{W}_{\mathsf{F}} \ = \ \max_{a,b \neq 0} \left| \sum_{\mathsf{x} \in \mathbb{F}_{2^n}^m} (-1)^{a \cdot \mathsf{x} + b \cdot \mathsf{F}(\mathsf{x})} \right|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

If
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

⋆ The degree is not preserved.

Example

in \mathbb{F}_p where

 $p = 0 \times 73 \\ eda \\ 753299 \\ d7d483339 \\ d80809 \\ a1d80553 \\ bda402fffe5 \\ bfefffffff00000001 \\ degree \\ degre$

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

⋆ The degree is not preserved.

Example

in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

The Flystel

 $Butterfly + Feistel \Rightarrow Flystel$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel V.

The Flystel

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x, y), (u, v)) = \mathcal{L}(((v, y), (x, u)))$

Advantage of CCZ-equivalence

* High-Degree Evaluation.

High-Degree permutation

Open Flystel \mathcal{H} .

Example

if $E: x \mapsto x^5$ in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then $E^{-1}: x \mapsto x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$ 217f0e679998f19933333332ccccccd

Advantage of CCZ-equivalence

- ⋆ High-Degree Evaluation.
- ★ Low-Degree Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

Open Flystel₂.

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n} , n odd

Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

* Differential properties

$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

* Linear properties

$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{V} = 2$

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$

usually d = 3 or 5.

Open Flystel,

Closed Flystel_p.

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{p}^{2}, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

Design of Anemoi

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{\rho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{2}} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p?$$

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

(a) Internal state.

(b) The constant addition.

(c) The diffusion layer.

with
$$\mathcal{P} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

(d) The Pseudo-Hadamard Transform.

(e) The S-box layer.

Number of rounds

$$\mathtt{Anemoi}_{q,d,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ ... \circ \mathsf{R}_0$$

* Choosing the number of rounds

$$n_r \ge \max \left\{ 8, \underbrace{\min(5, 1+\ell)}_{\text{security margin}} + 2 + \min \left\{ r \in \mathbb{N} \mid \left(\frac{4\ell r + \kappa_d}{2\ell r} \right)^2 \ge 2^s \right\} \right\}.$$

$$d (\kappa_d)$$
 3 (1)
 5 (2)
 7 (4)
 11 (9)

 $\ell = 1$
 21
 21
 20
 19

 $\ell = 2$
 14
 14
 13
 13

 $\ell = 3$
 12
 12
 12
 11

 $\ell = 4$
 12
 12
 11
 11

Number of rounds of Anemoi (s = 128).

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + c_4$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8=t_6+t_7$$

3 constraints

	$m (= 2\ell)$	RP^1	Poseidon ²	${\rm Griffin}^3$	Anemoi
R1CS	2	208	198	-	76
	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
Plonk	2	312	380	-	191
	4	560	832	260	316
	6	756	1344	-	460
	8	1152	1920	574	648
AIR	2	156	300	-	126
	4	168	348	168	168
	6	162	396	-	216
	8	192	456	264	288

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	212
	4	528	696	222	344
	6	768	1125	-	496
	8	1280	1609	492	696
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹Rescue [Aly et al., ToSC20]

²Poseidon [Grassi et al., USENIX21]

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

New S-box: FlystelNew mode: Jive

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

* New S-box: Flystel
* New mode: Jive

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]

Cryptanalysis of MIMC

- * Study of the corresponding sparse univariate polynomials
- ⋆ Bounding the algebraic degree
- * Tracing maximum-weight exponents reaching the upper bound
- * Study of higher-order differential attacks

Cryptanalysis of MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s = (2^{n+1} - 1)/3$

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$r := \lceil n \log_3 2 \rceil$	
---------------------------------	--

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

Cryptanalysis of MiMC

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \right\}.$$

Cryptanalysis of MiMC

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \}$$
.

If
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
, with $F(x) = (f_1(x), \dots f_m(x))$, then

$$\deg^{a}(F) = \max\{\deg^{a}(f_{i}), 1 < i < m\}$$
.

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

```
Example: ANF of x \mapsto x^3 in \mathbb{F}_{2^{11}}
```

Algebraic degree - 2nd definition

Cryptanalysis of MiMC 00000000000000000

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^a(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \ \operatorname{and} \ b_i \ne 0\}$$

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^a(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \text{ and } b_i \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \leq n-1$$

Cryptanalysis of MiMC

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

(b) Random permutation

Cryptanalysis of MiMC

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r})$$
.

Cryptanalysis of MiMC

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) .$$

Example

* Round 1: $B_3^1 = 2$

$$\mathcal{P}_{3,1}(x)=x^3$$

$$3 = [11]_2$$

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) .$$

Example

* Round 1:
$$B_3^1 = 2$$

$$\mathcal{P}_{3,1}(x) = x^3$$

$$3 = [11]_2$$

* Round 2:
$$B_3^2 = 2$$

Cryptanalysis of MiMC

$$\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1} = B_3^r$$
.

Proposition

If $d = 2^j - 1$, there is always a **plateau** between rounds 1 and 2:

$$B_d^2 = B_d^1 \ .$$

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1}=B_3^r.$$

Proposition

If $d = 2^j - 1$, there is always a **plateau** between rounds 1 and 2:

 $B_d^2 = B_d^1 .$

Algebraic degree observed for n = 31.

Missing exponents

Cryptanalysis of MiMC

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Cryptanalysis of MiMC 00000000000000000

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Example

$$\mathcal{P}_{3,1}(x) = x^3$$
 so $\mathcal{E}_{3,1} = \{3\}$.

$$3 = [11]_2 \quad \xrightarrow{\text{cover}} \quad \begin{cases} [00]_2 = 0 & \xrightarrow{\times 3} & 0\\ [01]_2 = 1 & \xrightarrow{\times 3} & 3\\ [10]_2 = 2 & \xrightarrow{\times 3} & 6\\ [11]_2 = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

$$\mathcal{E}_{3,2} = \{0, 3, 6, 9\}$$
, indeed $\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$.

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents: no exponent $2^{2k} - 1$

Proposition

$$\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
	25						
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
	49						
56	57	58	59	60	61	62	63

Cryptanalysis of MiMC 00000000000000000

Representation exponents.

Missing exponents mod8.

Bounding the degree

Cryptanalysis of MiMC 00000000000000000

Theorem

After r rounds of MIMC₃, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

Theorem

After r rounds of MIMC₃, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

If
$$3^r < 2^n - 1$$
:

* A lower bound

$$B_3^r \ge \max\{\operatorname{wt}(3^i), i \le r\}$$

Upper bound reached for almost 16265 rounds

Cryptanalysis of MiMC

Tracing exponents

Cryptanalysis of MiMC 0000000000000000

3

Round 1

Cryptanalysis of MiMC

Tracing exponents

Round 1 Round 2

Tracing exponents

Cryptanalysis of MiMC 00000000000000000

Round 1 Round 2 Round 3

Tracing exponents

Cryptanalysis of MiMC

Tracing exponents

Tracing exponents

Cryptanalysis of MiMC 00000000000000000

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\} :$$

$$\star$$
 if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

$$\star$$
 if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$$

 \star if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

 \star if $k_r = 0 \mod 2$.

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Constructing exponents.

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\} :$$

$$\star$$
 if $k_r = 1 \mod 2$,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$$

$$\star$$
 if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Constructing exponents.

In most cases, $\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$

Covered rounds

Cryptanalysis of MiMC

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

Plateau

Proposition

There is a plateau when $k_r = |r \log_2 3| = 1 \mod 2$ and $k_{r+1} = |(r+1) \log_2 3| = 0 \mod 2$

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

Then the next one is

$$B_3^{r+4} = B_3^{r+5}$$

or

$$B_3^{r+5}=B_3^{r+6}$$
.

Music in MIMC₃

$$log_2(3) \simeq 1.5849625$$

$$\mathfrak{D} = \{ \boxed{1}, \boxed{2}, 3, 5, \boxed{7}, \boxed{12}, 17, 29, 41, \boxed{53}, 94, 147, 200, 253, 306, \boxed{359}, \ldots \} \; ,$$

$$\log_2(3) \simeq \frac{a}{b} \Leftrightarrow 2^a \simeq 3^b$$

- * Music theory:
 - \star perfect octave 2:1
 - ⋆ perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12}$$

 \Leftrightarrow 7 octaves \sim 12 fifths

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

- (a) Block cipher
- (b) Random permutation

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

ĺ	Rounds	Time	Data	Source
•	80/82	2 ¹²⁸ XOR	2 ¹²⁸	[EGL+20]
	<mark>81</mark> /82	$2^{128}{\rm XOR}$	2^{128}	New
	80/82	$2^{125}\mathrm{XOR}$	2^{125}	New

Secret-key distinguishers (n = 129)

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil.$$

- ★ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil .$$

- ★ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- * bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

Bounds on the algebraic degree

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- * bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- * bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Conclusions

- * New tools for designing primitives:
 - ★ Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - * more general contributions: Jive, Flystel

Conclusions

- ★ New tools for designing primitives:
 - * Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - ★ more general contributions: Jive, Flystel
- * Practical and theoretical cryptanalysis
 - * a better insight into the behaviour of algebraic systems
 - * a comprehensive understanding of the univariate representation of MiMC
 - * guarantees on the algebraic degree of MiMC

- * On the design
 - ★ a Flystel with more branches
 - ★ solve the conjecture for the linearity

- * On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity
- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - ★ generalization to other schemes
 - * find a univariate distinguisher

- * On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity
- * On the cryptanalysis
 - ★ solve conjectures to trace maximum-weight exponents
 - ★ generalization to other schemes
 - * find a univariate distinguisher

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

- * On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity
- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - ★ generalization to other schemes
 - * find a univariate distinguisher

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thank you

Anemoi

More benchmarks and Cryptanalysis

Sponge construction

- \star Hash function (random oracle):
 - ★ input: arbitrary length★ ouput: fixed length

New Mode: Jive

- * Compression function (Merkle-tree):
 - * input: fixed length
 - ⋆ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x,y)\mapsto x+y+u+v$$
.

New Mode: Jive

- ⋆ Compression function (Merkle-tree):
 - * input: fixed length
 - ⋆ output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} \left(x_i + P_i(x_0,...,x_{b-1})
ight) \ . \end{cases}$$

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3	110
POSEIDON	2	88
Reinforced Concrete	3	378
Reinforced Concrete	2	236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56

m	Constraints
3	98
2	82
3	267
2	174
3	168
3	111
2	64
	3 2 3 2 3 3

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Native performance

Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	Griffin-12	Griffin-8	Anemoi-8
$15.67~\mu s$	9.13 μ s	$5.87~\mu$ s	2.69 μ s	2.87 μ s	2.59 μ s	4.21 μ s

2-to-1 compression functions for \mathbb{F}_p with $p=2^{64}-2^{32}+1$ (s=128).

Rescue	Poseidon	Griffin	Anemoi		
206 μs	9.2 μ s	74.18 μ s	128.29 μ s		

For BLS12 - 381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

Algebraic attacks: 2 modelings

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(a) For different d.

(b) For the smallest d.

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p ?$$

(a) when p = 11 and d = 3.

(b) when p = 13 and d = 5.

(c) when p = 17 and d = 3.

LAT of $Flystel_p$.

Algebraic attacks

Trick for Poseidon

(a) First two rounds.

(b) Overview.

Trick for Rescue-Prime

(a) First round.

(b) Overview.

Attack complexity

RP	Authors claims	Ethereum claims	deg ^u	Our complexity		
3	2^{17}	2 ⁴⁵	$3^9\approx 2^{14.3}$	2^{26}		
8	2^{25}	2 ⁵³	$3^{14}\approx 2^{22.2}$	2 ³⁵		
13	2^{33}	2^{61}	$3^{19}\approx 2^{30.1}$	2 ⁴⁴		
19	2^{42}	2^{69}	$3^{25}\approx2^{39.6}$	2^{54}		
24	2^{50}	2 ⁷⁷	$3^{30}\approx 2^{47.5}$	2^{62}		

R	m	Authors Ethereum claims		deg ^u	Our complexity		
4	3	2^{36}	$2^{37.5}$	$3^9\approx 2^{14.3}$	2 ⁴³		
6	2	2^{40}	$2^{37.5}$	$3^{11}\approx 2^{17.4}$	2^{53}		
7	2	2 ⁴⁸	$2^{43.5}$	$3^{13}\approx 2^{20.6}$	2^{62}		
5	3	2 ⁴⁸	2^{45}	$3^{12}\approx 2^{19.0}$	2^{57}		
8	2	2^{56}	$2^{49.5}$	$3^{15}\approx 2^{23.8}$	2^{72}		

(a) For Poseidon.

(b) For Rescue-Prime.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
Hard	N = 5, m = 3	30	\$12,000
Hard	N = 8, m = 2	33	\$26,000

(a) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) Poseidon

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(b) Feistel-MiMC

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Open problems

on the Algebraic Degree

Missing exponents when $d = 2^j - 1$

* For MIMC₃

$$i \mod 8 \not \in \{5,7\}$$
.

★ For MIMC₇

$$i \mod 16 \not \in \{9, 11, 13, 15\}$$
.

* For MIMC₁₅ $i \mod 32 \notin \{17, 19, 21, 23, 25, 27, 29, 31\}$.

★ For MIMC₃₁

 $i \bmod 64 \not \in \{33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63\} \; .$

(a) For MIMC₃.

(c) For MIMC₁₅.

(d) For MIMC₃₁.

Proposition

Let $i \in \mathcal{E}_{d,r}$, where $d = 2^j - 1$. Then:

$$\forall \, i \in \mathcal{E}_{\mathbf{d},r}, \, \, i \bmod 2^{j+1} \in \left\{0,1,\ldots 2^{j}\right\} \, \, \mathsf{U} \, \, \left\{2^{j}+2\gamma,\gamma=1,2,\ldots 2^{j-1}-1\right\} \, .$$

Missing exponents when $d = 2^j + 1$

★ For MIMC₅

 $i \mod 4 \in \{0,1\}$.

★ For MIMC₉

 $i \bmod 8 \in \{0,1\}$.

★ For MIMC₁₇

 $i \bmod 16 \in \{0,1\}$.

★ For MIMC₃₃

 $i \mod 32 \in \{0,1\}$.

- (a) For MIMC₅.
- (b) For MIMC₉.

- (c) For $MIMC_{17}$.
- (d) For $MIMC_{33}$.

Proposition

Let $i \in \mathcal{E}_{\mathbf{d},r}$ where $\mathbf{d} = 2^j + 1$ and j > 1. Then:

 $\forall i \in \mathcal{E}_{d,r}, i \mod 2^j \in \{0,1\}$.

Missing exponents when $d = 2^j + 1$ (first rounds)

Corollary

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

$$\begin{cases} i \bmod 2^{2j} \in \left\{ \{\gamma 2^j, (\gamma+1)2^j+1\}, \ \gamma=0, \dots r-1 \right\} & \text{if } r \leq 2^j \ , \\ i \bmod 2^j \in \{0,1\} & \text{if } r \geq 2^j \ . \end{cases}$$

Bounding the degree when $d = 2^j - 1$

Note that if $d = 2^j - 1$, then

$$2^i \mod d \equiv 2^{i \mod j}$$
.

Proposition

Let $d = 2^j - 1$, such that $j \ge 2$. Then,

$$B_{\mathbf{d}}^r \leq \lfloor r \log_2 \mathbf{d} \rfloor - (\lfloor r \log_2 \mathbf{d} \rfloor \mod j)$$
.

Note that if $2 \le j \le 7$, then

$$2^{\lfloor r \log_2 \frac{d}{\rfloor} + 1} - 2^j - 1 > \frac{d^r}{}.$$

Corollary

Let $d \in \{3, 7, 15, 31, 63, 127\}$. Then,

$$B_{\mathbf{d}}^{r} \leq \begin{cases} \left\lfloor r \log_{2} \mathbf{d} \right\rfloor - j & \text{if } \left\lfloor r \log_{2} \mathbf{d} \right\rfloor \bmod j = 0 \\ \left\lfloor r \log_{2} \mathbf{d} \right\rfloor - \left(\left\lfloor r \log_{2} \mathbf{d} \right\rfloor \bmod j \right) & \text{else }. \end{cases}$$

Bounding the degree when $d = 2^j - 1$

Particularity: Plateau when $|r \log_2 d| \mod j = j - 1$ and $|(r+1) \log_2 d| \mod j = 0$.

Bound for MIMC₃

Bound for MIMC₇

Bounding the degree when $d = 2^j + 1$

Note that if $d = 2^j + 1$, then

$$2^{i} \bmod d \equiv \begin{cases} 2^{i \bmod 2j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ , \\ d - 2^{(i \bmod 2j) - j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ . \end{cases}$$

Proposition

Let $d = 2^j + 1$ s.t. j > 1. Then if r > 1:

$$B_d^r \leq \begin{cases} \lfloor r \log_2 d \rfloor - j + 1 & \text{if } \lfloor r \log_2 d \rfloor \bmod 2j \in \{0, j - 1, j + 1\} \\ \lfloor r \log_2 d \rfloor - j & \text{else }. \end{cases}$$

The bound can be refined on the first rounds!

Bounding the degree when $d = 2^j + 1$

Particularity: There is a gap in the first rounds.

Bound for MIMC₅

Bound for MIMC9

Sporadic Cases

Observation

Let $k_{3,r} = \lfloor r \log_2 3 \rfloor$. If $4 \le r \le 16265$, then

$$3^r > 2^{k_{3,r}} + 2^r$$
.

Observation

Let t be an integer s.t. $1 \le t \le 21$. Then

$$\forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Is it true for any t?

Should we consider more ε_i for larger t?

More maximum-weight exponents

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
k _{3,r}	1	3	4	6	7	9	11	12	14	15	17	19	20	22	23	25	26	28
<i>b</i> _{3,<i>r</i>}	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0

Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s$, $s = (2^{n+1} - 1)/3 = [101..01]_2$

First plateau

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$

★ Round 1:

$$B_s^1 = \operatorname{wt}(s) = (n+1)/2$$

* Round 2:

$$B_s^2 = \max\{\operatorname{wt}(is), \text{ for } i \leq s\} = (n+1)/2$$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 0, 1 \mod 3 \end{cases}$$

Next Rounds

Proposition [Boura and Canteaut, IEEE13]

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is $\deg^a(F) < (n-1)/i$, then the algebraic degree of decryption is $\deg^a(F^{-1}) < n-i$

$$r_{n-i} \geq \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{1}{2} \left\lceil \frac{n-1}{i} \right\rceil \right\rceil + 1 \right) \right\rceil$$

In particular:

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

