

S = tota	lar	ial c	deflec	Hon			
c =	PL.		dTL				
	AE	7					
S _	P		47				
L	AE	+					
€ =	ϵ_e	+	ϵ_{t}	•			
total strain			. +	the	ema l		
		skain			strain astic	stra	in
	D	nyanesh	. Pawask				

Extend							
e =	:		a T	=	d	W	
	: <u>F</u>				9	2	
	E (6 5 6	(T)	N	1	Hook	es
	E(L	.qw		
	D	nvan <i>a</i> ch	Pawaska	110			

	ction							
	0 =	C	KTL	-	RL	=>	R=	AEdT
					AE			
Compre	ssive	sho	ss =	0	+	<u>R</u> =	E	1 7
•						A		
		ת	nyanesh	Danaga	l. au			

$$T(\pm h) = \mp T_0$$

$$Goal: u(z) \quad Vertical \quad deflection$$

$$Ezz = -y \frac{d^2u}{dz^2} = F + dT$$

$$\Rightarrow F = (-y u'' - dT) E$$

$$M = -\int Fy \frac{dz}{da} dy = 0$$

$$\Delta u'' = \int u'' = y^2 da + \int EdTy da$$

$$\Delta u'' = \int u'' = y^2 da + \int EdTy da$$

$$\Delta u'' = \int u'' = y^2 da + \int EdTy da$$

N ₀	0 =	. E	Ιu	. +	Ed	1	- T ₀	y y	da	
bending						5	bJ	2 '		
moment	: 0 =	E Y	/un	- 7	¿d To	2	Y.			
						h				
		u" .	= 2	.d To		BCs	u(o) = 0		
				h			u'	(o) = ()	
		น=	d	Toz	•	Th	erma	1		
			ŀ	ר		96	flec	tion		
			D	nyanesh	Pawask	ar				

Solid 9, T Constitutive Law
9 = -k ∇T Fourier's Law
heat thous - The transfer experiments
from high
$T_1 \rightarrow \rightarrow T_2 \qquad T_1 \rightarrow T_2$
K— A—> QSSUME
$\int (f + k \nabla^2 T) dv = 0$ steady state
State
$\frac{\partial T}{\partial t} = 0$ for all choices of Ω $\frac{\partial T}{\partial t} = 0$
3
$f + k \nabla T = 0 \leftarrow Localization$
if f=D no sources/sinks
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
VT=0 PDE for T temp.
$1D \int_{-\infty}^{2} T = 0 \Rightarrow T = c_1 y + c_2$
Laplace's Equation
$BVP \qquad \nabla T = 0 \qquad \text{in } \Omega$
www.PrintablePaper.net T= T on 3.0

DNYANESH PAWASKAR

Symbol Quantity	<u>Units</u>
T temperature	K
g. heat flux	W/m²
g mass density	kg/m³
C specific heat capacity	J/kg K
k thermal conductivity	W/mK
f external heat source density	W/m³
Gauss/Green/Div Theorem	
$\int \underline{q} \cdot \underline{n} ds = \int \underline{\nabla} \cdot \underline{q}$	dv
377 77	
	T temperature g heat flux g mass density C specific heat capacity k thermal conductivity f external heat source density Gauss/Green/Div Theorem

www.PrintablePaper.net