2015 级计算机学院《数值分析》期末试卷 A 卷

班级			学号	姓名				成绩	
_		式为闭卷 题的答案:]计算器。 计算题答	在答题纸	上。		
题号	_	=	Ξ	四	五	六	七	总分	
得分									
1. 近值					,则其绝	对误差队	艮为【	】,相对误	差限
2. 己知	x = 2.14	±0.005	•		∈为 y=√ ∫效数字		似值,则] 其 绝 对 误 差	限为
		选代格							
4. 单点	. 单点弦截法不动点 xo 应满足【】。								
5. 用设	. 用迭代法求解 $x=sinx+0.25$ 在区间[0.9,1.5]上的根,要求误差限为 0.01,则需						则需		
迭什]]	步。						
6. 用刊	^Z 方根法	解线性フ	方程组	4x + 2y + 2x + 3y + 5x + 2y +	2z = 10 时	$^{\dagger}, u_{11} =$	ľ].	
7. A =	$\begin{bmatrix} -2 & -5 \\ -1 & 0 \\ 4 & 2 \end{bmatrix}$	4 3 -2,	$ A _1=$], A ∞	= [].		
8. 线性	5 方程组 2	5x + 2y + x $-x + 4y + x$ $2x - 5y + x$	z = -12 $2z = 10$ 月 $10z = 1$	∃ Jacobi i	迭代法求	:解,迭 [⁄]	代过程是否	≦收敛?【],
迭什	犬矩阵是	ľ]				

- 9. 向量 X=(1,-2,3), Y=(3,4,0), 则向量 X 的 1-范数||X||₁=【_____】, 向量 Y 的 2-范数||Y||₂=【_____】。
- 10. 设 $f(x) = x^3 + x 1$,则差商 $f[3,2,1,0] = \mathbb{I}$ ______】。
- 11. 已知 f [4,3,2,1]=2,则 x=1 点的 3 阶差分值为【_____】。
- 12. 对于积分 $I(f) = \int_{-1}^{1} f(x)dx$, 求积公式 $I(f) \approx \frac{1}{3} [f(-1) + 4f(0) + f(1)]$ 的代数精确度为 【 ______】。
- 13. 已知 n=4 时的牛顿-科特斯系数 $C_0^{(4)} = \frac{7}{90}$, $C_3^{(4)} = \frac{16}{45}$, 则 $C_2^{(4)} = \mathbf{I}$ _______**]**。
- 14. 高斯求积公式 $\int_{-1}^{1} f(t)dt \approx \sum_{i=1}^{n} \omega_{i} y_{i}$ 具有【_____】 次代数精确度。
- 15. 用带松弛因子的松弛法 $(\omega=0.5)$ 解方程组 $\begin{cases} 5x_1+2x_2+x_3=-12\\ -x_1+4x_2+2x_3=20 \end{cases}$ 的迭代公式 $2x_1-3x_2+10x_3=3$

- 二、采用牛顿下山法求方程 $x^3 = 4$ 的根,初始值 $x_0 = 1$,计算过程保留小数点后 4 位。 (10 分)
- 三、设有方程组AX = B,其中

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 3 \\ 7 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 4 \\ 17 \\ 1 \end{bmatrix}$$

用高斯消元法求方程组的解。(8分)

四、设方程组 $\begin{cases} x_1+0.4x_2+0.4x_3=1\\ 0.4x_1+x_2+0.8x_3=2\\ 0.4x_1+0.8x_2+x_3=3 \end{cases}$ 试判断此方程组的雅可比迭代法及高斯-赛

德尔迭代法的收敛性,并用能够收敛的方法进行计算,初值 x_0 ⁽⁰⁾=0, x_1 ⁽⁰⁾=0, x_2

五、已知函数表如下:

χ_i	0	1	2	4
$f(x_i)$	1	9	23	3

用三阶拉格朗日(Lagrange)插值多项式计算 f(2.2)的近似值,假设 $\left|f^{(4)}(x)\right| \le 1$,估计结果的误差。(12 分)

六、 求满足下表条件的埃尔米特(Hermite)插值多项式。(8分)

χ_i	0	1	2
Уi	0	2	1
y_i	1	1	

七、 用龙贝格方法计算积分 $I = \int_{-1}^{1} x^2 dx$,计算过程保留小数点后 4 位。(10 分)