Lecture 35 Graphs, BFS & DFS

December 14, 2021

WHAT ARE GRAPHS?

Some examples & some terminology

RELATION TO BINARY TREES

- Binary trees provide a very useful way of representing relationships in which a hierarchy exists.
- A node is pointed to by at most one other node (its parent), and each node points to at most two other nodes (its children).
- If we remove the restriction that each node can have at most two children, we have a general tree.
- If we also remove the restriction that each node may have only one parent node, we have a data structure called a Graph.

RELATION TO BINARY TREES

- A data structure that consists of a set of nodes and a set of edges that relate the nodes to one another.
- Vertex: A node in graph.
- Edge (arc): A pair of vertices representing a connection between two nodes in graph.

Partial graph of the Internet (in 2005), where each "node" is an IP address, and the "edges" between them reveal connectivity delays (shorter lines = closer IP addresses)

Each "node" is an airport, and flight routes are represented by the "edge" in between them

Neural networks! Each "node" represents a module of the neural network, and "edge" represent output/input relationships

Graph of characters in the third book of Game of Thrones, where each "node" is a character, and "edge" reveal frequency of interaction (i.e. 2 names appearing within 15 words of one another).

CS prerequisites!

"nodes" are classes
and an "edge" from
class A to class B
means "class B
depends on class A"

WHAT ARE GRAPHS USED FOR?

- There are a lot of diverse problems that can be represented as graphs, and we want to answer questions about them
- For example:
 - How do we most efficiently route packets across the internet?
 - Are there natural "clusters" or "communities" in a graph?
 - Which character(s) are least related with _____?
 - How should I sign up for classes without violating pre-req constraints?

But first off, some terminology!

WHAT ARE GRAPHS USED FOR?

- Recall (Graph): A set of vertices V and a set of edges E
 - V(G) is a finite, nonempty set of vertices
 - E(G) is a set of edges (written as pairs of vertices)
- \bullet G = (V, E)
- To specify the set of vertices, we list them in set notation.

$$V = \{1, 2, 3, 4, 5, 6\}$$

E = \{(1, 2), (1, 4), (2, 5), (3, 6), (3, 5), (4, 2), (5, 4), (6, 6)\}

GRAPHS INTRODUCTION

$$V = \{1, 2, 3, 4, 5, 6\}$$

E = \{(1, 2), (1, 4), (2, 5), (3, 6), (3, 5), (4, 2), (5, 4), (6, 6)\}

GRAPHS INTRODUCTION

Undirected graph

- A special graph
- If $v_i \neq v_j < v_i, v_j > \in E, < v_j, v_i > \in E$ E.g. $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{(1, 2), (1, 4), (2, 5), (3, 6), (3, 5), (4, 2), (5, 4), (6, 6)\}$ $U \{(2, 1), (4, 1), (5, 2), (6, 3), (5, 3), (2, 4), (4, 5)\}$

Use a undirected line to indicate a pair of edges or a self edge

UNDIRECTED GRAPHS

An undirected graph has a set of vertices (V) & a set of edges (E)

$$V = \{A, B, C, D\}$$

 $E = \{ (A, B), (A, C), (A, D), (B, D), (C, D) \}$

The road which links Karachi with HyderAbad also links HyderAbad with Karachi. *The road has no direction*.

These are graphs where edges aren't assigned weights, or all edges are assumed to have the same weight.

A flight from Karachi to Singapore does not guarantee a flight from Karachi to Singapore.

DIRECTED GRAPHS

A directed graph has a set of vertices (V) & a set of **DIRECTED** edges (E)

 $V = \{A, B, C, D\}$ $E = \{ [A, B], [A, C], [A, D], [B, D], [C, D], [D, B] \}$

A directed graph is also known as **digraph**

UNDIRECTED GRAPHS

An undirected graph has a set of vertices (V) & a set of edges (E)

The **degree** of vertex D is 3 Vertex D's **neighbors** are A, B, and C

DIRECTED GRAPHS

A directed graph has a set of vertices (V) & a set of **DIRECTED** edges (E)

The **in-degree** of vertex D is 3. The **out-degree** of vertex D is 1.

Vertex D's **incoming neighbors** are A, B, & C

Vertex D's **outgoing neighbor** is B

 $V = \{A, B, C, D, E, F, G, H, I, J\}$ $E = \{(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)\}$

WHAT ARE GRAPHS USED FOR?

- If two vertices in a graph are connected by an edge, they are said to be, adjacent.
- If the vertices are connected by a directed edge, then the first vertex is said to be adjacent to the second, and the second vertex is said to be adjacent from.

• A path from one vertex to another consists of a sequence of vertices that connect them. For a path to exist, an uninterrupted sequence of edges must go from the first vertex, through any number of vertices, to the second vertex.

• Complete Graph is such a graph where every vertex is adjacent to every other vertex.

In a Weighted Graph, each edge carries a value. Weighted graphs can be used to represent applications in which the value of the connection between the vertices is important, not just the existence of a connection.

Adjacency Matrix

For a graph with **V** vertices, a **V x V** table that shows the existence of all edges in the graph.

A simple way to represent V(graph), the vertices in the graph, is with an array where the elements are of the type of the vertices (VertexType).

Simply its a two-dimensional array of edge in the graph values (weights).

GRAPH REPRESENTATIONS

OPTION 1: ADJACENCY MATRIX

(An undirected graph)

GRAPH REPRESENTATIONS

OPTION 1: ADJACENCY MATRIX

(A directed graph)

[0]	"Atlanta "	[0]	0	0	0	0	0	800	600	•	•	•
[1]	"Austin "	[1]	0	0	0	200	0	160	0	•	•	
[2]	"Chicago "	[2]	0	0	0	0	1000	0	0	•		
[3]	"Dallas "	[3]	0	200	900	0	780	0	0	•	•	•
[4]	"Denver "	[4]	1400	0	1000	0	0	0	0	•	•	•
[5]	"Houston "	[5]	800	0	0	0	0	0	0		•	•
[6]	"Washington"	[6]	600	0	0	1300	0	0	0	•	•	•
[7]		[7]	•	•	•	•	•	•		•	•	•
[8]		[8]	7. .	•	•	•	•	•	•	•	•	•
[9]		[9]	•	•	•	•	•	•	•	•	•	•
[0] [1]					[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

ADJACENCY MATRIX

- The advantages to representing the edges in a graph with an adjacency matrix relate to its speed and simplicity.
- Given the indexes of two vertices, determining the existence (or the weight) of an edge between them is an **O(1)** operation.
- The problem with adjacency matrices is that their use of space is O(V²),
- If the maximum number of vertices is large than adjacency matrices may waste of a lot of space.

ADJACENCY LIST

- Recall, we have tried to save space by allocating memory as we need it at run time, using linked structures.
- We can use similar approach for Graphs.
- Adjacency Lists are linked structure, one list per vertex, that identify the vertices to which each vertex is connected.

GRAPH REPRESENTATIONS

OPTION 2: ADJACENCY LISTS

(An undirected graph)

Each list stores a node's neighbors

GRAPH REPRESENTATIONS

OPTION 2: ADJACENCY LISTS

(A directed graph)

 \cup

GRAPH REPRESENTATIONS

For a graph G = (V, E) where V = n , and E = m	$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	0000 0000
EDGE MEMBERSHIP Is e = {v, w} in E?	O(1)	
NEIGHBOR QUERY Give me v's neighbors	O(n)	
SPACE REQUIREMENTS	O(n²)	

GRAPH REPRESENTATIONS

For a graph G = (V, E) where V = n , and E = m	$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	-		
EDGE MEMBERSHIP Is e = {v, w} in E?	O(1)	O(deg(v)) or O(deg(w))	Generally, better for sparse graphs (where m << n²). We'll assume this representation, unless otherwise stated.	
NEIGHBOR QUERY Give me v's neighbors	O(n)	O(deg(v))		
SPACE REQUIREMENTS	O(n²)	O(n + m)		

BREADTH-FIRST SEARCH

One way to explore a graph!

BREADTH-FIRST SEARCH

An analogy:

A bird is exploring a labyrinth from above (with a bird's eye view)

BREADTH-FIRST SEARCH

An analogy:

A bird is exploring a labyrinth from above (with a bird's eye view)

An analogy:

An analogy:

An analogy:

An analogy:

 L_i = The set of nodes we can reach in i steps from s

```
\begin{split} & \underline{\mathsf{BFS}(s)} \colon \\ & \mathsf{Set} \ \mathsf{L_i} = [] \ \mathsf{for} \ \mathsf{i} = \mathsf{0}, \ \ldots, \ \mathsf{n-1} \\ & \mathsf{L_0} = \mathsf{s} \\ & \mathsf{for} \ \mathsf{i} = \mathsf{0}, \ \ldots, \ \mathsf{n-1} \colon \\ & \mathsf{for} \ \mathsf{u} \ \mathsf{in} \ \mathsf{L_i} \colon \\ & \mathsf{for} \ \mathsf{v} \ \mathsf{in} \ \mathsf{u}.\mathsf{neighbors} \colon \\ & \mathsf{if} \ \mathsf{v} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{visited} \colon \\ & \mathsf{mark} \ \mathsf{v} \ \mathsf{as} \ \mathsf{visited} \\ & \mathsf{add} \ \mathsf{v} \ \mathsf{to} \ \mathsf{L_{i+1}} \end{split}
```


 L_i = The set of nodes we can reach in i steps from s

```
\begin{split} & \underline{\mathsf{BFS}(s)} \colon \\ & \mathsf{Set} \ \mathsf{L_i} = [] \ \mathsf{for} \ i = 0, \ \dots, \ \mathsf{n-1} \\ & \mathsf{L_0} = s \\ & \mathsf{for} \ i = 0, \ \dots, \ \mathsf{n-1} \colon \\ & \mathsf{for} \ \mathbf{u} \ \mathsf{in} \ \mathsf{L_i} \colon \\ & \mathsf{for} \ \mathbf{v} \ \mathsf{in} \ \mathbf{u}.\mathsf{neighbors} \colon \\ & \mathsf{if} \ \mathbf{v} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{visited} \colon \\ & \mathsf{mark} \ \mathbf{v} \ \mathsf{as} \ \mathsf{visited} \\ & \mathsf{add} \ \mathbf{v} \ \mathsf{to} \ \mathsf{L_{i+1}} \end{split}
```

Go through all nodes in L_i and add their unvisited neighbors to L_{i+1}

 L_i = The set of nodes we can reach in i steps from s

Go through all nodes in L_i and add their unvisited neighbors to L_{i+1}

BFS finds all the nodes reachable from the starting point!

BFS finds all the nodes reachable from the starting point!

In undirected graphs, this is equivalent to finding the node's **connected component.**

Why is it called breadth-first?

We are implicitly building a **tree**!

(It's a tree because we never revisit a node)

We go as "broadly" as we can when building each layer of the tree

Why is it called breadth-first?

We are implicitly building a **tree**!

(It's a tree because we never revisit a node)

We go as "broadly" as we can when building each layer of the tree

BFS works fine on directed graphs too!

From a start node x, BFS would find all nodes *reachable* from x. (In directed graphs, "connected component" isn't as well defined... more on that later!)

Verify this on your own:

running BFS from A would still find all nodes reachable from A (E isn't reachable from A in this directed graph).

What are some applications of BFS?

Finding a node's connected component (just run BFS)!

Single-source shortest paths!

One way to explore a graph!

BFS vs. DFS

Literally just BREADTH vs DEPTH:

While BFS first explores the nodes closest to the "source" and then moves outwards in layers, DFS goes as far down a path as it can before it comes back to explore other options.

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

An analogy:

A smart quokka is exploring a labyrinth with chalk (to mark visited destinations) & thread (to retrace steps)

I'm done!!!

In addition to keeping track of the visited status of nodes, we're going to keep track of:

ut haven't all the

าd fully

You've probably seen other ways to implement DFS, all this extra bookkeeping will be useful for us later!

An analogy:

Like BFS, DFS finds all the nodes reachable from the starting point!

In undirected graphs, this is equivalent to finding a **connected component.**

Why is it called depth-first?

We are implicitly building a **tree**!

(It's a tree because we never revisit a node)

We're going as "deep" as we can before "bubbling" back up.

DEPTH-FIRST SEARCH: RUNTIME

To explore a graph's **i**th **connected component** (n_i nodes, m_i edges):

We visit each vertex in the CC exactly once ("visit" = "call DFS on"). At each vertex v, we:

- Do some bookkeeping: O(1)
- Loop over v's neighbors & check if they are visited (& then potentially make a recursive call): O(1) per neighbor \rightarrow O(deg(v)) total.

Total:
$$\sum_{v} O(deg(v)) + \sum_{v} O(1) = O(m_i + n_i)$$

DEPTH-FIRST SEARCH: RUNTIME

To explore **the entire graph** (n nodes, m edges):

A graph might have multiple connected components! To **explore the whole graph**, we would call our DFS routine once for each connected component (note that each vertex and each edge participates in exactly one connected component). The combined running time would be:

$$O(\sum_{i} m_{i} + \sum_{i} n_{i}) = O(m + n)$$

DFS works fine on directed graphs too!

From a start node x, DFS would find all nodes *reachable* from x. (In directed graphs, "connected component" isn't as well defined... more on that later!)

Verify this on your own:

running DFS from A would still find all nodes reachable from A (E isn't reachable from A in this directed graph).

TRAVERSAL OF BSTs

We're actually already thinking about one application of DFS:

Given a BST, output the vertices in sorted order.

