

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final

8 de agosto de 2018

Nombre y apellido:	Padrón:
v I	
e-mail:	_ Cuatrimestre de cursada:

- Para aprobar deben sumarse 6 puntos.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- $[\frac{1}{2}$ pt.] 1) Calular la diferencia de potencial $\phi_B = \phi(L) \phi(0)$ [mV] entre los extremos de un bloque de silicio de 3 mm de largo que inicialmente fue dopado homogéneamente con una concentración de átomos donores 2×10^{12} at/cm³, y luego se realizó un segundo dopaje que sigue la ley: $N_A(x) =$ $(10^7 + x \cdot 10^{18} \text{m}^{-1})$ at/cm³ con x en metros.
- [1 pt.] 2) Calcular la densidad superficial de carga en el gate $(Q'_G[nC/cm^2])$ de una juntura MOS cuando se aplica una tensión $V_{GB}=1\,\mathrm{V}.$ El gate es de polysilicio tipo N y el sustrato está dopado con $N_A = 10^{16} \,\mathrm{at/cm^3}, \ C'_{ox} = 1.37 \times 10^{-7} \,\mathrm{F/cm^2}, \ \gamma = 0.42 \,\mathrm{V^{0.5}}, \ V_T = 0.166 \,\mathrm{V}.$
- [½ pt.] 3) El cátodo de un diodo se conecta a tierra, y el ánodo se conecta través de una resistencia $R = 100 \,\Omega$ al terminal positivo de una fuente de tensión de +1 V. El diodo es un diodo ideal de silicio P⁺N con parámetros $\phi_B = 655 \,\mathrm{mV}$, $I_s = 4.23 \,\mathrm{pA}$, $A = 1 \,\mathrm{mm}^2$, $C'_{i0} = 3.55 \,\mathrm{nF/cm}^2$ y $\tau_T = 0.89 \,\mu\text{s}$. Hallar **todos** los parámetros del modelo de pequeña señal $(r_d; C_{dif}; C_j)$.
- [½ pt.] 4) Repetir el ejercicio 3, pero invirtiendo la polaridad de la fuente.
- [1 pt.] 5) Para el circuito de la figura, obtener V_{GS1} [V] y V_{OUT} [V]. Considerar: $V_{DD} = 5 \text{ V}, \ I_{REF} = 200 \,\mu\text{A}, \ \mu_n \ C'_{ox} = 118 \,\mu\text{A}/\text{V}^2, \ V_T = 0.77 \,\text{V}, \ (W/L)_1 = 4, \ (W/L)_2 = 8, \ \mu_p \ C'_{ox} = -76 \,\mu\text{A}/\text{V}^2, \ V_T = -0.91 \,\text{V}, \ (W/L)_3 = 8, \ \lambda_i = 0.$

- $[\frac{1}{2}$ pt.] 6) Para el circuito de la figura calcule la tensión V_f que debe aplicarse en el Gate del JFET para obtener $V_o = 4 \, \text{V}$. Datos: $R_1 = 250 \, \Omega$, $R_2 = 500 \, \Omega$, $V_{sup} = 5 \text{ V}, V_P = -1, 5 \text{ V}, I_{Dss} = 16 \text{ mA}, \lambda = 0.$
- [1 pt.] 7) Realizar el Layout (juego de máscaras) para la fabricación de un transistor P-MOS en un proceso de fabricación CMOS de sustrato tipo P y el corte lateral del mismo. Indicar el nombre de las máscaras y en el corte lateral cada una de sus partes y terminales.

- [½ pt.] 8) En un proceso de fabricación CMOS de sustrato tipo P, ¿cuál es el orden adecuado en el que se aplican las máscaras de fabricación para obtener un PMOSFET?
- [½ pt.] 9) Se tiene un amplificador source común polarizado con un divisor resistivo compuesto por una resistencia de 300 k Ω entre V_{DD} y Gate y otra de 200 k Ω entre GND y Gate con $V_{DD} = 5$ V. La fuente de señal a la entrada posee una resistencia serie de $R_s=100\,\Omega$ y se conecta al nodo de Gate a través de un capacitor de desacople. Los datos del MOSFET son: μ_n $C'_{ox} = 118 \,\mu\text{A}/\text{V}^2$, $V_T = 0,77 \,\mathrm{V}, \, \lambda = 0 \,\mathrm{V}^{-1}, \, W = 40 \,\mu\mathrm{m}$ y $L = 4 \,\mu\mathrm{m}$. Siendo $R_D = 3,3 \,\mathrm{k}\Omega$, se desea conocer máxima tensión de señal $(v_{s(MAX)}[mV])$ que puede aplicarse sin que se observe distorsión.
- $[\frac{1}{2}$ pt.] 10) Considerando el amplificador del punto anterior pero ahora con $R_D=2,5\,\mathrm{k}\Omega$ ¿Cuál es en este caso la máxima tensión de señal $(v_{s(MAX)} [mV])$ que puede aplicarse sin que se observe distorsión?

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 8 de agosto de 2018

- [1 pt.] 11) Diseñar un amplificador emisor común que consuma la menor potencia posible. El mismo debe amplificar una señal que se puede representar con una fuente ideal $v_s=20\,\mathrm{mV}$ con una resistencia en serie $R_s=2,2\,\mathrm{k}\Omega$. La tensión de reposo de la salida debe ser $V_{CE(Q)}=1,4\,\mathrm{V}$. El transistor disponible es un TBJ NPN con $\beta=300\,\mathrm{y}\ V_A\to\infty$. Considere que para la polarización se dispone de una fuente de tensión $V_{CC}=3\,\mathrm{V}\ \mathrm{y}$ las resistencias que sean necesarias. Las señales de entrada y salida se desacoplan con capacitores. Hallar el valor de la señal de salida ($v_{out}=v_{ce}\,\mathrm{[mV]}$). Asumir $V_{th}=26\,\mathrm{mV}$.
- [$\frac{1}{2}$ pt.] 12) Un amplificador emisor común está polarizado con una única resistencia de base (R_B) y una única resistencia de colector (R_C) y tiene a la entrada una señal que se puede representar con una fuente ideal v_s y una resistencia serie R_s . Si se observa que la señal de salida distorsiona por alinealidad, ¿cómo puedo solucionarlo desde el diseño?
- [1 pt.] 13) En el circuito de la figura donde T_1 y T_2 son dos tiristores idénticos cuya señal de control es v_p , un tren de pulsos de amplitud y ancho de pulsos suficientes como para generar un disparo, y con período $T_p = 10 \,\mathrm{ms}$, D_1 y D_2 son dos diodos de potencia idénticos, $R_L = 10 \,\Omega$, y la señal $v_s(t)$ se muestra en la figura con período $T_s = 20 \,\mathrm{ms}$ y $V_{CC} = 40 \,\mathrm{V}$. La señal v_p está desfasada α (ms) respecto del cruce con cero de $v_s(t)$. Considerando que los SCRs y los diodos presentan una caída de tensión $V_{AK} = 2 \,\mathrm{V}$ cuando se encuentran en conducción, se pide hallar α para que la potencia media en la resistencia sea $100 \,\mathrm{W}$ y la potencia que disipa T_1 en esa condición (α [ms], P_{T_1} [W]).

[½ pt.] 14) De la hoja de datos de un dispositivo se obtienen los siguientes datos: $T_{j,\text{máx}} = 125^{\circ}\text{C}$, $P_{\text{máx}}(@T_a = 25^{\circ}\text{C}) = 1 \text{ W y } P_{\text{máx}}(@T_c = 25^{\circ}\text{C}) = 8 \text{ W}$. Hallar el modelo térmico: $R_{JC}[^{\circ}C/W] \text{ y } R_{CA}[^{\circ}C/W]$.