Chapter-2 Polynomials

WORKSHEET-2

1. A quadratic polynomial having zeroes $-\sqrt{\frac{5}{2}} \& \sqrt{\frac{5}{2}}$ is

a) $x^2 - 5\sqrt{2}x + 1$ b) $8x^2 - 20$ c) $15x^2 - 6$ d) $x^2 - 2\sqrt{5}x - 1$

- 2. If $\alpha \& \beta$ are zeroes of a polynomial $6x^2 5x + 1$ then form a quadratic polynomial whose zeroes are $\alpha^2 \& \beta^2$.
- 3. The graph of a quadratic polynomial p(x) passes through the points (-6,0), (0,-30), (4,-20) & (6,0). The zeroes of the polynomial are:

a) -6,0 b) 4,6 c) -30,-20 d) -6,6

- 4. If the sum of zeroes of the polynomial $p(x)=2x^2 k\sqrt{2}x + 1$ is $\sqrt{2}$. Find the value of k.
- 5. The zeroes of a polynomial $x^2 px + q$ are twice the zeroes of the polynomial $4x^2 5x 6$. Find the value of p.
- 6. If $\frac{m}{2}$ and $\frac{n}{2}$ are the zeroes of the quadratic polynomial $3x^2 + 5x + 7$, then find a quadratic polynomial whose zeroes are 2m+3n & 3m+2n.
- 7. Find the zeroes of the quadratic polynomial $x^2 3\sqrt{3}x + 6$ and verify the relationship between zeroes and their coefficient.
- 8. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $3x^2 + 2x 1$, find the polynomial whose zeroes are $2\alpha + 1 \& 2\beta + 1$.
- 9. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $2x^2 + 5x + k$, then find the value of k such that $(\alpha + \beta)^2 \alpha\beta = 24$.
- 10. If one root of the equation $4x^2 2x + (\lambda 4) = 0$ be the reciprocal of the other than find the value of λ .
- 11. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $f(x) = x^2 + px + q$. Find the polynomial whose zeroes are $\frac{1}{\alpha} \& \frac{1}{\beta}$.
- 12. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$. Find the quadratic polynomial.
- 13. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $3x^2 5x + 2$. Then find the value of $\alpha^3 + \beta^3$.

- 14. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $5x^2 7x 9$, then find a quadratic polynomial whose zeroes are $\frac{\alpha}{2\alpha + \beta}$ and $\frac{\beta}{2\beta + \alpha}$.
- 15. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $x^2 7x + k$, then find the value of k, such that $\alpha^2 + \beta^2 = 29$.
- 16. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $f(x) = x^2 x 4$, find $\frac{1}{\alpha} + \frac{1}{\beta} \alpha \beta$.
- 17. If one zero of $3x^2 + 8x + k$ be the reciprocal of the other than find k.
- 18. If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $2x^2 + x 5$, then find a polynomial whose zeroes are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$?