

AD-A100 494

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/6 13/13
NATIONAL DAM SAFETY PROGRAM CUMBERLAND POND DAM, (NJ00824). DEL--ETC(U)
JUN 81 DACW61-79-C-0011

UNCLASSIFIED

DAEN/NAP-53842/NJ00824-81/ NL

1 of 1
40004 SR

END
DATE ISSUED
7-8-81
DTIC

DA 100494

LEVEL II

DELAWARE RIVER BASIN
MANUMUSKIN RIVER
CUMBERLAND COUNTY
NEW JERSEY

0
NS

CUMBERLAND POND DAM

NJ00824

DTIC
SELECTED
JUN 23 1981

1) Dick / mbermolt
John / Gribbons

PHASE 1 INSPECTION REPORT E

NATIONAL DAM SAFETY PROGRAM

Cumberland Pond Dam (NJ00824). Located at
Lisicki, Manumuskin River, Cumberland County,
New Jersey. Phase 1 Inspection Report.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

12-
DAEN-NP-53842-81-06
DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

41-
12-86
JUN 1981 (19)
REF ID: DAEN-NP-53842/NJ00824-81-06

81 6 22 014

DTIC FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DAEN/NAP-53842/NJ00824-81/06	2. GOVT ACCESSION NO. <i>AD-A100 494</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program Cumberland Pond Dam NJ 00824 Cumberland County, New Jersey	5. TYPE OF REPORT & PERIOD COVERED FINAL	
7. AUTHOR(s) McDermott, Dick, P.E. Gribbon, John, P.E.	6. PERFORMING ORG. REPORT NUMBER DACCW61-79-C-0011	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Storch Engineers 200 Ridgedale Ave. Florham Park, NJ 07932	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625	12. REPORT DATE June, 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106	13. NUMBER OF PAGES 75	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams Embankments Visual Inspection Structural Analysis	National Dam Safety Program Cumberland Pond Dam, N.J.	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE-2 D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

IN REPLY REFER TO
NAPEN-N

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

29 MAY 1981

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Cumberland Pond Dam in Cumberland County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Cumberland Pond Dam, a high hazard potential structure, is judged to be in good overall condition. The dam's spillway is considered inadequate because a flow equivalent to 53 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within six months from the date of approval of this report, the following remedial actions should be initiated:

(1) Eroded areas on the upstream face of the embankment and adjacent to the bridge should be properly stabilized.

NAPEN-N

Honorable Brendan T. Byrne

(2) All trees and adverse vegetation on the embankment should be removed.

c. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Hughes of the Second District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

KENNETH R. MOSER
Major, Corps of Engineers
Acting District Engineer

l Incl
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
Distribution/	
Availability Codes	
Avail and/or	
Distr	Special
A	

CUMBERLAND POND DAM (NJ00824)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 8 January 1981 by Storch Engineers, under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Cumberland Pond Dam, a high hazard potential structure, is judged to be in good overall condition. The dam's spillway is considered inadequate because a flow equivalent to 53 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within six months from the date of approval of this report, the following remedial actions should be initiated:

(1) Eroded areas on the upstream face of the embankment and adjacent to the bridge should be properly stabilized.

(2) All trees and adverse vegetation on the embankment should be removed.

c. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

APPROVED:

KENNETH R. MOSER
Major, Corps of Engineers
Acting District Engineer

DATE: 29 May 1981

PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Cumberland Pond Dam, I.D. NJ00824
State Located: New Jersey
County Located: Cumberland
Drainage Basin: Delaware River
Stream: Manumuskin River
Date of Inspection: January 8, 1981

Assessment of General Condition of Dam

Based on visual inspection, past operational performance and Phase I engineering analyses, Cumberland Pond Dam is assessed as being in good overall condition.

Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge capacity of the spillway is not sufficient to pass the designated spillway design flood (SDF) without an overtopping of the dam. (The SDF of Cumberland Pond Dam is equal to one-half the probable maximum flood.) The spillway is capable of passing approximately 26 percent of the probable maximum flood or 52 percent of the SDF. Therefore, the owner should engage a professional engineer experienced in the design and construction of dams in the near future to perform more accurate hydraulic and hydrologic analyses relating to spillway capacity. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented.

The owner should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- 1) Eroded areas on of the upstream face of the embankment and adjacent to the bridge should be properly stabilized.
- 2) All trees and adverse vegetation on the embankment should be removed.

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Richard J. McDermott

Richard J. McDermott, P.E.

John E. Gribbin

John E. Gribbin, P.E.

OVERVIEW - CUMBERLAND POND DAM

31 JANUARY 1981

TABLE OF CONTENTS

	<u>Page</u>
ASSESSMENT OF GENERAL CONDITION OF DAM	i
OVERVIEW PHOTO	iii
TABLE OF CONTENTS	iv
PREFACE	vi
SECTION 1 - PROJECT INFORMATION	1
1.1 General	
1.2 Description of Project	
1.3 Pertinent Data	
SECTION 2 - ENGINEERING DATA	7
2.1 Design	
2.2 Construction	
2.3 Operation	
2.4 Evaluation	
SECTION 3 - VISUAL INSPECTION	9
3.1 Findings	
SECTION 4 - OPERATIONAL PROCEDURES	12
4.1 Procedures	
4.2 Maintenance of Dam	
4.3 Maintenance of Operating Facilities	
4.4 Description of Warning System	
4.5 Evaluation	

TABLE OF CONTENTS (cont.)

	<u>Page</u>
SECTION 5 - HYDRAULIC/HYDROLOGIC	14
5.1 Evaluation of Features	
SECTION 6 - STRUCTURAL STABILITY	17
6.1 Evaluation of Structural Stability	
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	19
7.1 Dam Assessment	
7.2 Recommendations	
PLATES	
1 KEY MAP	
2 VICINTIY MAP	
3 SOIL MAP	
4 GENERAL PLAN	
5 SECTIONS	
6 PHOTO LOCATION PLAN	
APPENDICES	
1 Check List - Visual Inspection	
Check List - Engineering Data	
2 Photographs	
3 Engineering Data	
4 Hydraulic/Hydrologic Computations	
5 Bibliography	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydraulic and hydrologic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydraulic and hydrologic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

CUMBERLAND POND, I.D. NJ00824

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers.

b. Purpose of Inspection

The visual inspection of Cumberland Pond Dam was made on January 8, 1981. The purpose of the inspection was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances.

1.2 Description of Project

a. Description

The dam is an earth embankment supporting the roadway of N.J. Highway Route 49. A timber stoplog spillway is located at the upstream end of a concrete bridge near the left end of the dam. The outlet works is formed by the stoplogs which comprise the spillway.

The upstream and downstream faces of the dam are stabilized by grass, bushes and trees.

The elevation of the spillway crest is 28.5, National Geodetic Vertical Datum (N.G.V.D.) while that of the crest of dam is 34.7. The elevation of the invert of the downstream channel is 22.5 while that of the discharge channel (concrete bridge) bed is 26.0. The overall length of the dam is 840 feet and its height is 12 feet.

b. Location

Cumberland Pond Dam is located in Maurice River Township, Cumberland County, New Jersey. Principal access to the dam is by Route 49 which traverses the crest of the dam. Discharge from the spillway of the dam flows into the Manumuskin River.

c. Size and Hazard Classification

The dam is classified in accordance with criteria presented in "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers. Size categories consist of Small, Intermediate and Large while hazard categories are designated as Low, Significant and High.

Size Classification: Cumberland Pond Dam is classified as "Small" size since its maximum storage volume is 663 acre-feet (which is less than 1000 acre-feet) and its height is 12 feet (which is less than 40 feet).

Hazard Classification: Visual inspection of the downstream flood plain of the dam together with breach analysis indicate that failure of the dam would damage the roadway of NJ Route 49 which traverses the crest of the dam. It is also anticipated that dam failure during a storm equivalent to the SDF would cause inundation of four dwellings located between 100 feet and 600 feet downstream from the dam and may cause loss of life. Accordingly, Cumberland Pond Dam is classified as "High" hazard.

d. Ownership

Cumberland Pond Dam is owned by the New Jersey Department of Transportation, 1035 Parkway Avenue, Trenton, N.J. 08625. The impoundment, Cumberland Pond, is owned by the Meadowood Rod & Gun Club, P.O. Box 845, Millville, N.J. 08330.

e. Purpose of Dam

The purpose of the dam is the impoundment of a private recreational lake facility.

f. Design and Construction History

Reportedly, the present spillway structure was constructed in 1929 when the New Jersey State Highway Department replaced the downstream bridge culvert. Plans on file with the NJDOT Bridge Division entitled "Route No. 47, Sec. 2, Sta. 256+41," dated 5/7/29 reflect the as-built conditions.

g. Normal Operational Procedures

The dam and appurtenances are maintained by the New Jersey Department of Transportation, Maintenance Division. There is no fixed schedule of maintenance; repairs are made as the need arises.

The outlet works (removal of the stoplogs) is used to drain the lake for lake maintenance purposes, usually on request from the owner of the impoundment. It is not known when the lake was last lowered.

1.3 Pertinent Data

a. Drainage Area 27.9 square miles

b. Discharge at Damsite

Maximum flood at damsite	Unknown
Outlet Works at pool elevation	58 cfs.
Spillway capacity at top of dam	896 cfs

c. Elevation (N.G.V.D.)

Top of Dam	34.7
Maximum pool-design surcharge	35.2
Recreation pool	29.0
Spillway crest	28.5
Stream bed at centerline of dam	25.7
Maximum tailwater	29 (Estimated)

d. Reservoir

Length of maximum pool	2800 feet (Estimated)
Length of recreation pool	1800 feet (Scaled)

e. Storage (Acre-feet)

Recreation pool	57 acre-feet
Design surcharge	770 acre-feet
Top of dam	663 acre-feet

f. Reservoir Surface (acres)

Top of dam	230 acres (Estimated)
Maximum pool - design surcharge	245 acres (Estimated)
Recreation pool	26.3 acres

g. Dam

Type	Earthfill
Length	840 feet
Height	12 feet
Sideslopes - Upstream	2 horiz. to 1 vert.
- Downstream	3 horiz. to 1 vert.
Zoning	Unknown
Impervious core	Unknown
Cutoff	Unknown
Grout curtain	Unknown

h. Diversion and Regulating Tunnel N.A.

i. Spillway

Type	Sharp Crested
	Timber Weir
Length of weir	17.5 feet
Crest elevation	28.5
Gates	Timber Stoplogs Form
	Principal Spillway
Upstream channel	N.A.
Discharge channel	Concrete Bridge

j. Regulating Outlet

Timber stoplogs, 17.5 feet long, fitted in spillway structure

SECTION 2: ENGINEERING DATA

2.1 Design

No plans or calculations pertaining to the original construction of the dam could be obtained. Drawings prepared in 1929 are on file with the NJDOT, Bridge Division which show plans of the present spillway and appurtenant structures.

2.2 Construction

No data or reports pertaining to the original construction of the dam embankment are available.

2.3 Operation

Reportedly, informal maintenance reports are on file with the NJDOT Maintenance Division pertaining to the spillway but does not include the embankment.

2.4 Evaluation

a. Availability

Available engineering data is limited to that which is on file with the NJDOT. The file contains a plan showing the spillway structure constructed in 1929.

b. Adequacy

Available engineering data pertaining to Cumberland Pond Dam is adequate to be of limited assistance to the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b.

c. Validity

Data relating to the dam embankment could not be found on file with the NJDOT. The validity of engineering data cannot be assessed due to the absence of data.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The inspection of Cumberland Pond Dam was performed on January 8, 1981 by staff members of Storch Engineers. A copy of the visual inspection check list is contained in Appendix 1. The following procedures were employed for the inspection:

- 1) The embankment of the dam, appurtenant structures and adjacent areas were examined.
- 2) The embankment and accessible appurtenant structures were measured and key elevations determined by surveyor's level.
- 3) The embankment, appurtenant structures and adjacent areas were photographed.
- 4) The downstream flood plain was toured to evaluate downstream development and restricting structures.

b. Dam

The pavement on the crest of dam (Route 49) appeared to be in satisfactory condition. In addition, a guide rail consisting of timber posts and cables extended along the upstream face of the crest of dam and appeared to be in satisfactory condition.

The downstream face of dam was covered with grass, bushes and trees with sizes ranging from 2 inches to 18 inches in diameter. The upstream face of dam was also covered with grass, bushes and trees approximately 2 inches in diameter. The upstream face appeared to be fairly uniform. However, there was some erosion observed along the upstream face, especially one erosion gully located about 15 feet left of the spillway which

appeared to be due to surface runoff. There was also some erosion evident on each side of the spillway on the upstream side of the dam. One additional area of erosion was located approximately 40 feet to the right of the spillway on the upstream side. This was a fairly large gully near the right end of dam which appeared to be due to surface runoff and pedestrian activity.

c. Appurtenant Structures

The concrete surfaces of the wingwalls and headwalls of the bridge on the downstream side appeared to be satisfactory. Along the water line the concrete surface appeared to be slightly eroded, with some aggregate exposed. Also a vertical crack was observed in the left wingwall which appeared to have been patched. The concrete forming the headwall and wingwalls and training walls on the upstream side all appeared to be in generally satisfactory condition with exposed aggregate noted along the waterline.

The spillway crest consisted of two spans of timber stoplogs. The discharge obscured the stoplogs so that a proper evaluation of their condition could not be made. However, the entire structure appeared, in general, to be sound. There was a timber brace spanning between the center upright grooved timber and the upstream headwall of the bridge. It appeared to be generally sound.

A graduated staff gage was observed in the stilling basin adjacent to the right downstream wingwall. It was graduated in hundredths of a foot and water level at the time of inspection was at 2.80 feet.

d. Reservoir Area

The impoundment of the dam is 1800 feet long with a width varying from 100 to 1000 feet. It is completely surrounded by a forested area with one building located near the upstream end of the reservoir. Its shore slopes appear to be flat with banks about 2 feet high.

e. Downstream Channel

The spillway discharges into a stilling basin which is lined with trees. The terrain adjacent to the basin is fairly flat with a grade of 2 to 3 percent. The discharge then continues into the Manumuskin River which is a sluggish meandering stream with home sites located on the left bank. The banks are approximately 2 feet high with a gentle sloping flood plain of approximately 2 percent.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The level of water in Cumberland Pond is regulated by discharge over the timber stoplogs. At present the outlet works (timber stoplogs) of the dam can be used to drain the lake or to augment the discharge capacity of the spillway.

Reportedly, the NJDOT regulated the spillway stoplogs until 1972 when spillway maintenance and operation activity was discontinued.

It is not known when the lake was last drawn down.

4.2 Maintenance of the Dam

Reportedly, maintenance is performed on an "as needed" basis. The NJDOT Maintenance Department maintains the shoulder of the roadway on the crest of the dam embankment and reportedly does not maintain the upstream or downstream sides of the dam as a result of budget reductions.

4.3 Maintenance of Operating Facilities

It is not known when the lake was last drawn down. Also, it is not known when maintenance of the stoplogs was last performed. Operation of the stoplogs was discontinued in 1972.

4.4. Description of Warning System

Reportedly, no warning system is currently in use for the dam.

4.5 Evaluation of Operational Adequacy

The operation of the dam has not been successful to the extent that the dam reportedly was overtopped in 1976. No other occurrences of overtopping are known.

Although maintenance has been good in some areas, a few aspects of dam maintenance have not been adequately performed, including the following:

- 1) Eroded areas on the upstream face of the dam and adjacent to the bridge not properly stabilized.
- 2) Trees on the embankment not removed.
- 3) Eroded concrete surfaces on the bridge wingwalls not repaired.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data

The quantity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff quantity, called the spillway design flood (SDF) is described in terms of return frequency or probable maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for Cumberland Pond Dam falls in a range of 1/2 PMF to PMF. In this case, the lower end of the range, 1/2 PMF, is chosen since the factors used to select size and hazard classification are on the low side of their respective ranges.

The SDF peak computed for Cumberland Pond Dam is 1899 c.f.s. This value is derived from the PMF flood hydrograph computed by the use of the HEC-1-DAM Flood Hydrograph Computer Program using Snyder's synthetic unit hydrograph method. Hydrologic computations and computer output are contained in Appendix 4.

The spillway discharge rates were computed by the use of a weir formula appropriate for the configuration of the spillway structure. The total spillway discharge with lake level equal to the top of the dam was computed to be 896 c.f.s. The SDF was routed through the dam by use of the HEC-1-DAM computer program using the modified Puls Method. In routing the SDF, it was found that the dam crest would be overtopped by a depth of 0.6 feet.

A dam breach analysis was then performed using a trapezoidal breach section with bottom length of 100 feet and sideslopes of 1 horizontal to 1 vertical. The breach peak outflow was computed to be 6245 c.f.s. Dam breach computations are contained in Appendix 4.

The breach analysis indicates that dam failure from overtopping would cause inundation of the four dwellings located between approximately 100 and 600 feet downstream from the dam. Also, a breach of the dam would damage the roadway of N.J. Route 49 located on the crest.

The analysis indicated that failure of the dam would not significantly increase the hazard to loss of life downstream over that which would exist without failure. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria developed by the U.S. Army Corps of Engineers.

b. Experience Data

Reportedly, the dam was overtopped in 1976. Reportedly, as a result of the overtopping, a portion of the highway was damaged but no significant property damage was sustained downstream.

c. Visual Observation

No evidence was found at the time of inspection that would indicate that the dam had been overtopped.

d. Overtopping Potential

As indicated in paragraph 5.1.a. a storm of magnitude equal to the SDF would cause overtopping of the dam by a depth of 0.6 foot over the crest of the dam. The spillway is capable of passing approximately 26 percent of the PMF or 52 percent of the SDF with the lake level equal to the top of dam.

e. Drawdown Data

Drawdown of the lake is accomplished by removing stoplogs. Total time for drawdown is estimated to be approximately 17 hours. (See Appendix 4.)

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The dam appeared, at the time of inspection to be outwardly structurally sound with no evidence of embankment cracks or distress. The vertical crack that was observed in the center of the left wingwall does not appear to be an indication of distress in the spillway structure or the embankment.

b. Generalized Soils Description

The generalized soils description of the site consists of recent alluvium deposited along most of the stream courses. The material, composed predominantly of silt and sand intermingled with organic matter, is poorly drained and in a swampy condition. Underlying the alluvial deposits is loose, uniform sand and silty sand with some gravel, referred to on the Geologic Map of New Jersey as the Cape May Formation. Depth to bedrock is greater than 100 feet.

c. Design and Construction Data

Analysis of structural stability and construction data for the embankment are not available.

d. Operating Records

No operating records are available for the dam. The water level of Cumberland Pond is not monitored.

e. Post-Construction Changes

Reportedly, it is not known whether or not there have been any post-construction changes to the dam or area around the dam. No evidence of significant post-construction changes was noted at the time of inspection.

f. Seismic Stability

Cumberland Pond Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if they have adequate stability under static loading conditions. Cumberland Pond Dam appeared to be stable under static loading conditions at the time of inspection.

SECTION 7: ASSESSMENT AND RECOMMENDATIONS

7.1 Dam Assessment

a. Safety

Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of Cumberland Pond Dam is assessed as being inadequate. The spillway is not able to pass the SDF without an overtopping of the dam.

The embankment appeared, at the time of inspection, to be generally outwardly stable. The crack observed in the center of the left wingwall was not considered to be evidence of dam instability.

b. Adequacy of Information

Information sources for this report include 1) field inspections, 2) USGS quadrangle, 3)consultation with personnel of Misco Chemical Company and 4) consultation with personnel and information on file with the NJDOT. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams."

Some of the absent data are as follows:

1. Description of fill material for embankment.
2. Design computations and reports.
3. Soils report for the site.

c. Necessity for Additional Data/Evaluation

Although some data pertaining to Cumberland Pond Dam are not available, additional data are not considered imperative for this Phase I evaluation.

7.2 Recommendations

a. Remedial Measures

Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a, the spillway is considered to be inadequate. It is therefore recommended that a professional engineer experienced in the design and construction of dams be engaged in the near future to perform more accurate hydraulic and hydrologic analyses relating to spillway capacity. Based on the findings of these analyses, the need for and type of remedial measures should be determined and then implemented.

The owner should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- 1) Eroded areas on the upstream face of the embankment and adjacent to the bridge should be properly stabilized.
- 2) All trees and adverse vegetation on the embankment should be removed.

b. Maintenance

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

PLATES

PLATE I

STORCH ENGINEERS FLORHAM PARK, NEW JERSEY	INSPECTION AND EVALUATION OF DAMS KEY MAP CUMBERLAND POND DAM
DIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR. PROTECTION TRENTON, NEW JERSEY	SCALE: NONE DATE: FEB. 1981.

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

**INSPECTION AND EVALUATION OF DAMS
VICINITY MAP
CHAMBERS LAKE, BONN, WIS.**

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

SCALE: AS SHOWN
DATE: FEB. 1981

Legend

AR/Z Recent alluvial deposits in a poorly drained, swampy condition.

AM-23 Irregular mantle of stratified material referred to on the Geologic Map of New Jersey as the Cape May formation.

Note: Information taken from Rutgers University, Soil Survey of New Jersey, Report No. 21, Cumberland County, June 1955 and Geologic Map of New Jersey prepared by J.V. Lewis and H. Kummel 1910-1912, revised by H. B. Kummel 1931 and M. Johnson 1950.

PLATE 3

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY.

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY.

INSPECTION AND EVALUATION OF DAMS

SOIL MAP
CUMBERLAND POND DAM

SCALE: NONE

DATE: FEB. 1981

CUMBERLAND

Overall Length

LAND POND

Length of Dam - 840'

Spillway - Timber Stoplogs

Upstream Face
of Embankment

E

Concrete
Curt

NJ Route 49

Paved Roadway

Guide Rail

75'

Basin

Concrete Wingwall

Downstream Face
of Embankment

PLATE 4

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS

GENERAL PLAN
CUMBERLAND POND DAM

ID N.J. 00824

SCALE NOT TO SCALE

DATE FEB 96

C of Roadway

SECTION

DAM SECTION

PLATE 5

STORCH ENGINEERS FLORHAM PARK, NEW JERSEY	DIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR. PROTECTION TRENTON, NEW JERSEY
INSPECTION AND EVALUATION OF DAMS SECTIONS CUMBERLAND POND DAM	
I.D. N.J. 00824	SCALE: NOT TO SCALE
	DATE: FEB. 1981

CUMBERLA

Overall Length

SA

Conc. Wingwall

③

Guide Rail

Concrete
Culvert

175'

Concrete Wingwall

④

Stilling Bas

⑧

⑤

Flow

Manumuskin
River

Note Information taken from
field inspection Jan 8 1981

CUMBERLAND POND

Height of Dam = 840

Soil Type - Timber Stump logs

Concrete

OVERVIEW

PLATE 6

U.S. ARMY ENGINEERS CIVIL ENGINEERS	DIVISION OF WATER REGUL. NO. DEPT OF ENVIR PROTECTOR NEW YORK CITY
INSPECTION AND EVALUATION OF DAMS	
PHOTO LOCATION PLAN	
CUMBERLAND POND DAM	
DATE	TIME

APPENDIX 1

Check List - Visual Inspection

Check List - Engineering Data

Check List

Visual Inspection

Phase I

Name of Dam Cumberland Pond County Cumberland State N.J. Coordinators NJDEP

Date(s) Inspection 1/8/81 Weather Sunny Temperature 100F

Pool Elevation at time of Inspection 29.0 M.S.L. Tailwater at Time of Inspection 26.2 M.S.L.

Inspection Personnel:

John Gribbin John Powanda
Daniel Bucklew Richard McDermott
Mark Brady

John Gribbin Recorder

VISUAL EXAMINATION OF		OBSERVATIONS	REMARKS OR RECOMMENDATIONS
EMBANKMENT			
GENERAL		Paved highway on crest (Rt. 49) in satisfactory condition. Grass, bushes, and trees (2"-18") on downstream face. Grass, bushes and trees (2") on upstream face. Timber and cable guide rail on crest in satisfactory condition.	All trees and adverse vegetation should be removed. Embankment obscured by snow.
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM		Junctions appeared to be stable. Some surface erosion observed --See Erosion	
ANY NOTICEABLE SEEPAGE		None observed	
STAFF GAGE AND RECORDER		Staff gage observed in stilling basin adjacent to the right downstream wingwall. Water level on staff gage read 2.8 at time of inspection.	
DRAINS		None observed	

EMBANKMENT		
VISUAL EXAMINATION	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None observed	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed	
SLoughing OR Erosion OF EMBANKMENT AND ABUTMENT SLOPES	Upstream face generally uniform with some erosion observed along upstream face and adjacent to bridge wingwalls.	Erosion of embankment should be properly filled and stabilized.
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Vertical: generally level Horizontal: straight	
RIPRAP	None observed	

OUTLET WORKS		OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION OF			
CONCRETE SURFACES IN OUTLET CONDUIT		Outlet works discharge through spillway	Outlet works comprised of timber stoplogs in spillway structure
INTAKE STRUCTURE		N/A	
OUTLET STRUCTURE		N/A	
OUTLET CHANNEL		Outlet works discharges into spillway discharge channel.	
GATE AND GATE HOUSING			Gate consists of timber stoplogs. Condition of stoplogs could not be properly assessed due to overflow.

SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
WEIR	Condition of timber stoplogs could not be properly assessed due to presence of discharge. However, stoplog structure appeared sound.	
INTAKE CHANNEL	Not available	
DISCHARGE CHANNEL	Concrete surfaces of wingwalls and headwalls appeared to be satisfactory. Patched vertical crack observed in center of left downstream wingwall.	Discharge channel formed by concrete bridge, abutments, and wingwalls. Entire structure appeared to be stable.
BRIDGE	Bridge deck appeared to be in satisfactory condition	Under side of deck not observed.

INSTRUMENTATION		REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION OF	OBSERVATIONS	
MONUMENTATION/SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	None	
OTHER	Staff gage (See Embankment)	

RESERVOIR		OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION OF			
SLOPES		Reservoir surrounded by wooded area with shore banks approx. 2' high with flat slopes beyond less than 1%	
SEDIMENTATION		Unknown	
STRUCTURES ALONG BANKS		One building located near the upstream end of the reservoir.	

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTION, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
Stilling basin about 3' deep lined with trees located immediately downstream of dam. Channel beyond stilling basin sluggish meandering natural stream. No debris observed.		
SLOPES	Banks approx. 2' high with a gentle sloping floodplain of approx. 2%.	
STRUCTURES ALONG BANKS	Four dwellings along left bank located between 100' and 600' downstream from the dam approx. 5' above stream bed.	

CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS
DAM - PLAN	Plan on file with N.J.D.O.T. (File #0606-151) entitled "Route No. 47, Sec 2, Sta 255+41", dated 5/7/29
SECTIONS	
SPILLWAY - PLAN	On file with N.J.D.O.T.
SECTIONS	
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	Not available
OUTLETS - PLAN	On file with N.J.D.O.T.
DETAILS	
CONSTRAINTS	
DISCHARGE RATINGS	
HYDRAULIC/HYDROLOGIC DATA	Not available
RAINFALL/RESERVOIR RECORDS	Not available
CONSTRUCTION HISTORY	Not available
LOCATION MAP	On file with N.J.D.O.T.

ITEM		REMARKS
DESIGN REPORTS		Not available
GEOLOGY REPORTS		Not available
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM INSTABILITY SEEPAGE STUDIES		Not available
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD		Not available
POST-CONSTRUCTION SURVEYS OF DAM		Not available
BORROW SOURCES		Not available

ITEM	REMARKS
MONITORING SYSTEMS	Not available
MODIFICATIONS	Not available
HIGH POOL RECORDS	Not available
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Not available
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Not available
Maintenance OPERATION RECORDS	Not available

APPENDIX 2

Photographs

PHOTO 1
UPSTREAM VIEW OF SPILLWAY

PHOTO 2
CREST OF SPILLWAY

CUMBERLAND POND DAM
8 JANUARY 1981

PHOTO 3
UPSTREAM FACE OF DAM NEAR SPILLWAY

PHOTO 4
DOWNSTREAM FACE OF DAM

CUMBERLAND POND DAM
8 JANUARY 1981

PHOTO 5
DOWNSTREAM END OF BRIDGE

PHOTO 6
STILLING BASIN WITH GRADUATED STAFF
GAGE NEAR DOWNSTREAM END OF RIGHT WINGWALL

CUMBERLAND POND DAM
8 JANUARY 1981

PHOTO 7

EROSION ON UPSTREAM FACE OF DAM

PHOTO 8

EROSION ON DOWNSTREAM FACE OF DAM
ADJACENT TO BRIDGE

CUMBERLAND POND DAM
8 JANUARY 1981

APPENDIX 3

Engineering Data

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Wooded and swampy

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 29.0 (57 acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N/A

ELEVATION MAXIMUM DESIGN POOL: 35.2

ELEVATION TOP DAM: 34.7

SPILLWAY CREST: Controlled Weir - Stoplogs

- a. Elevation 28.5
- b. Type Sharp-Crested Weir
- c. Width 0.2 feet
- d. Length 17.5 feet
- e. Location Spillover Upstream side of dam
- f. Number and Type of Gates One set of stoplogs

OUTLET WORKS: Included in Spillway

- a. Type Removable Timber Stoplogs
- b. Location Upstream side of dam
- c. Entrance Invert 26.0
- d. Exit Invert 26.0
- e. Emergency Draindown Facilities: Remove stoplogs

HYDROMETEOROLOGICAL GAGES:

- a. Type Graduated Staff Gage
- b. Location Downstream right bridge wingwall
- c. Records None available

MAXIMUM NON-DAMAGING DISCHARGE:

(Lake Stage Equal to Top of Dam) 896 c.f.s.

APPENDIX 4

Hydraulic/Hydrologic Computations

STORCH ENGINEERS

Project 1132 - 06

CUMBERLAND POND DAY

Made By Ji Ha Date 3-11-81

Chkd By JG Date 3/24/81

Sheet 1 of 12

4 1/4 TO THE INCH
SQUARE

HYDROLOGY:

HYDROLOGIC ANALYSIS - RUNOFF HYDROGRAPH

FOR CUMBERLAND POND DAM WILL BE DEVELOPED

BY HEC-1-DAM COMPUTER PROGRAM USING

THE SNYDER'S SYNTHETIC UNIT HYDROGRAPH

DRAINAGE AREA = 27.9 Square miles

INFILTRATION DATA

DRAINAGE AREA IS HOODED

INITIAL INFILTRATION = 1.5 inches

CONSTANT INFILTRATION = 0.15 inches /hour

STORCH ENGINEERS

Project 1132-06

CUMBERLAND POND DAM

Sheet 6 of 12

Made By Jitta Date 3-11-81

Chkd By JG Date 3/24/81

SNYDER'S STANDARD LAG

[Introduction to hydrology Pg 135]

$$t_p = C_f (L L_{CA})^{0.3}$$

t_p = Snyders Standard
lag time [Hr]

$$t_p = 7.5 (7.95 \times 4.8)^{0.3}$$

C_f = coefficient for slopes &
storage

$$t_p = 22.4 \text{ [Hr]}$$

L = length of main channel [Mi]

L_{CA} = length along the main chan-
nel to the watershed
centroid [Mi]

$C_f = 7.5$ (supplied by Corps. of Engineers)

COMPUTER INPUT

SNYDERS STANDARD
LAG TIME = 22.4 Hr.

$C_p = 0.23$ (Supplied by Corps of Engineers)

STORCH ENGINEERS

Project 1132 - 06

CUMBERLAND POND DAM

Sheet 3 of 12

Made By Jitta Date 3-11-81

Chkd By JG Date 3/24/81

PRECIPITATION :

[U.S.D.C. Rep. 40 pg. 57]

Probable maximum precipitation = 27 inches

for 6 hours duration and 10 Sq mi area

Percentage of PMP for 27.9 Sq mi :

<u>Duration [hr]</u>	<u>% PMP</u>
6	92
12	99
24	108

STORCH ENGINEERS

Sheet 4 of 12

Project 1132-06 CUMBERLAND POND DAM Made By JHG Date 3-11-81
Chkd By JG Date 3/24/81

STORAGE VOLUME

W.S. ELEV. [FT]	AREA [Acres]
22.5	0
29.0	26.35
30.0	62
40.0	415

HEC - I - DAM PROGRAM WILL DEVELOP STORAGE
CAPACITY FROM SURFACE AREAS & ELE-
VATIONS

INFORMATION TAKEN FROM U.S.G.S

FIVE POINTS, PORT ELIZABETH & DOROTHY
QUADRANGLE, N.J.

STORCH ENGINEERS

Project 1132 - 06

CUMBERLAND POND DAM

Made By Ji Ha Date 3-11-81

Chkd By JG Date 3/24/81

TO THE INCH
4 : 1 : 4
SQUARE

HYDRAULICS

THE SPILLWAY AT CUMBERLAND POND DAM IS

A FREE OVERFLOW SHARP CRESTED WEIR AT ELEV.

28.5 FEET WITH AN EFF. LENGTH OF 17.5 FEET.

SECTION A-A

STORCH ENGINEERS

Project 1132-06 CUMBERLAND POND DAM

Sheet 6 of 12

Made By Ji Ha Date 3-11-81

Chkd By JG Date 3/24/81

DISCHARGE

[Handbook of hydraulics : pg 5-3]

TO THE INCH
4 1/4
SQUARE

DISCHARGE WILL BE CALCULATED USING

HEIR FORMULA :

$$Q = CLH^{3/2}$$

Q = discharge [cfs]

C = coefficient of discharge

L = effective length of spillway
being overtopped [ft]

H = head total on spillway [ft]

SPILLWAYSTAGE DISCHARGE TABULATION:

[SHC - 5-31.]

H.S. elevation [ft]	HEIR			Discharge outlet control for concrete box culvert 17.5' x 4.1' Length 60.0'
	H [ft]	C	Q [cfs]	
28.5	-	-	0	
29.0	0.5	3.0	18.0	[nomograph chart 87]
29.5	1.0	3.32	58.0	
30.0	1.5	3.32	106.0	HW = 7.0' ke = 0.05
31.0	2.5	3.32	229.0	dc = 4.2'
32.0	3.5	3.32	380.0	H.S. EL. = 33.0
33.0	4.5	3.32	554.0	<u>Q = 850.0 cfs</u>
34.0	5.5	3.32	749.0	
34.7	6.2	3.32	876.0	HW = 8.7' ke = 0.05
35.0	6.5	3.32	962.0	dc = 4.6'
36.0	7.5	3.32	1193.0	(top of dam) H.S. EL. = 34.7
37.0	8.5	3.32	1439.0	
38.0	9.5	3.32	1701.0	
39.0	10.5	3.32	1977.0	
40.0	11.5	3.32	2266.0	<u>Q_{Top} = 970.0 cfs</u>

STORCH ENGINEERS

Project 1132-06 CUMBERLAND POND DAM Made By JHG Date 3-11-81

Chkd By JG Date 3/24/81

SPILLWAYSTAGE DISCHARGE CURVE10 THE ARCH
SQUARE

DISCHARGE (cfs x 100)

STORCH ENGINEERS

Project 1132-06 CLUMBERLAND POND DAM Made By J.Ha Date 3-11-81
Chkd By JG Date 3/24/81

Sheet 8 of 12

OVERTOPPING POTENTIAL

OVERTOPPING OF DAM OCCURS AT ELEV. 34.7

WITH AN OUTFLOW Q = 896.0 cfs

DAM CAN PASS APPROX. 26 % PMF

STORCH ENGINEERS

Project 1132 - 06 CLIMBERLAND POND DAM

Sheet 9 of 12

Made By J.H.A Date 3-11-81

Chkd By JG Date 3/24/81

DRAW DOWN:

Total drawdown over sharp crested weir

$$Q = C L H^{3/2}$$

$$Q = 3.32 \times 17.5 \times 1.0^{1.5}$$

$$Q = 58 \text{ cfs}$$

TIME OF DRAWDOWN

$$T_d = \frac{\text{Storage [Acft]}}{\text{Av. discharge - Inflow [cfs]}} \times \frac{43.560}{3600}$$

Assume inflow: 18.0 [cfs]

$$T_d = \frac{57}{58 - 18.0} \times \frac{43.560}{3600}$$

$$\underline{T_d = 17 \text{ hr.}}$$

STORCH ENGINEERS

Project 1132-06 CUMBERLAND POND DAM Sheet 10 of 12
Made By JHG Date 3-11-81
Chkd By JG Date 3/24/81

BREACH ANALYSIS:

A BREACH HYDROGRAPH WILL BE COMPUTED

BY THE HEC-1-DAM PROGRAM AND ROUTED

THROUGH ONE DOWNSTREAM REACH BY THE

MODIFIED PLUS METHOD. THE ASSUMED BREACH

CONDITIONS ARE AS FOLLOWS:

1. BREACH SECTION

Bottom of breach elev. 26.2 [ft]

effect. length 100 [ft]

side slope of breach 1:1

Water surface elev. 29.0 [ft]

Water surface elev. which

will cause dam to fail elev. 34.7 [ft]

Time to develop breach to max. size 2.0 [hr]

STORCH ENGINEERS

Project 1132-06

CUMBERLAND POND DAM

Sheet 11 of 12

Made By Jitta Date 3-3-81

Chkd By JG Date 3/24/81

DOWNSTREAM CHANNEL

卷之三

TYPICAL CROSS SECTION

STORCH ENGINEERS

Project 1132-06 CUMBERLAND POND DAM Sheet 12 of 12
Made By JTHA Date 3-3-81
Chkd By JG Date 3/24/81

BREACH RESULTS:

1. PEAK OUTFLOW = 624.5 [cfs]

2. MAX. CHANNEL STAGE:

REACH 1 inv. elev. = 23.0 [ft]
max. stage elev. = 28.1 [ft]

Dwellings inundated by 2.1 ft
above gear floor and 0.1 ft
above first floor.

HEC - 1 - DAM PRINTOUT

Overtopping Analysis

A1
 A2
 A3
 B 100 3 0
 B1 5
 J 1 5 1
 J1 0.5 0.4 0.3 0.2 0.1
 K 0 LAKE 1
 N1 INLELOW HYDROGRAPH TO CUMBERLAND FOND DAM
 M 1 1 27.9 27.9 1
 P 27.0 92 99 108
 T 1.5 0.15
 W 22.4 0.23
 X -1.0 -0.05 2.0
 K 1 DAM
 N1 ROUTE DISCHARGE THROUGH DAM
 Y 1 1 -29.0 -1
 Y1 1
 Y4 28.5 29.0 29.5 30.0 31.0 32.0 33.0 34.0 34.7 35.0
 Y4 36.0 37.0 38.0 39.0 40.0
 Y5 0 18 58 106 229 380 554 749 896 962
 Y5 1193 1439 1701 1977 2266
 \$A 0 26.35 62 415
 \$E 22.5 29.0 30.0 40.0
 \$\$ 28.5
 \$D 34.7 2.7 1.5 822
 K 1 1 1
 N1 CHANNEL ROUTING REACH 1
 Y 1 1
 Y1 1
 Y6 0.1 0.040 0.1 23.0 27.0 500 0.005
 Y7 0 26.0 20 25.5 100 25.0 104 23.0 116 23.0
 Y7 122 25.0 500 25.5 600 27.0
 K 99

**NATIONAL TEAM SAFETY PROGRAM
CUMBERLAND PONK HAM - NEW JERSEY
MILITARY PATRIOT COUNTING**

MULTI RATIO ROUTING		JOB SPECIFICATION						IFRL		IFRT		NSTAN	
NO	NHR	NMIN	IBAY	TIR	IMIN	METRC	0	0	0	0	0	0	0
100	3	0	0	0	0	0	0	0	0	0	0	0	0
			JUPER	NWT	LFRONT	TRACE	5	0	0	0	0	0	0

MULTI-PLAN ANALYSES TO BE PERFORMED

卷之三

SUB-AREA RUNOFF COMPUTATION									
INFLOW HYDROGRAPH TO CUMBERLAND FOND DAM									
I STAO	I COMP	I ECON	I TAPE	JFLT	JFRT	I NAME	I STAGE	I AUTO	
LAKE	0	0	0	0	0	0	1	0	0
HYDROGRAPH DATA									
I YNG	I TNG	T AREA	SHPAT	TRSDN	TRSPC	RATIO	I SNOW	I SAME	LOCAL
1	27.90	0.00	27.90	27.90	0.00	0.000	0	1	0

LOGS DATA
 DROPI_ STTRK_ BLTRK_ RTIDL_ ERAIN_ STRKS_ RIIOK_ STRIL_ ENSTL_ ALSHK_ RTIMP_
 0_ 0.00_ 0.00_ 1.00_ 0.00_ 0.00_ 1.00_ 1.50_ 0.15_ 0.00_ 0.00
 URSFC COMPUTED BY THE PROGRAM IS . 833

UNIT HYDROGRAPH DATA						
TF =	22.40	CF =	.23	NTG =	0	
<u>RECEDENCE DATA</u>						
STRTG=	-1.00	QRCSEN=	-0.05	RTOFR=	2.00	
UNIT HYDROGRAPH END-OF-PERIOD ORDINATES, LOG=	22.50	HOURS, CP=	.23	VOL=	.97	
1. 29.	60.	97.	134.	163.	182.	181.
2. 16.5.	157.	152.	146.	141.	136.	127.
3. 114.	110.	106.	102.	98.	95.	85.
4. 79.	77.	74.	71.	69.	66.	62.
5. 55.	53.	52.	50.	48.	46.	43.
6. 39.	37.	36.	35.	33.	32.	31.
7. 27.	26.	25.	24.	23.	23.	21.
8. 19.	18.	18.	17.	16.	15.	14.
9. 13..	11..	11..	12..	12..	11..	10..
10. 8.	8.	8.	8.	8.	8.	7.

0	NO. MN	HR. MN	PERIOD	RAIN	END-OF-PERIOD FLOW	COMP Q	LOSS	EXCS	RAIN	EXCS	LOSS	COMP Q
---	--------	--------	--------	------	--------------------	--------	------	------	------	------	------	--------

HYDROGRAPH ROUTING

ROUTE DISCHARGE THROUGH DAM

	ISIAQ	ICOMP	IECON	ITAPE	JPLT	JPKT	I NAME	I STAGE	I AUTO
DAM	1	0	0	0	0	0	0	0	0
				ROUTING RATE					
LOSS	CLOSE	Avg	IRIS	I NAME	IOPT	IPMF	LSTR		
0.0	0.000	0.00	0.00	1	0	0	0		
NSTPS	NSTBL	LAG	AM6KK	X	TSK	STORA	ISPRAT		
1	0	0	0.000	0.000	0.000	-29.	-1		
STAGE	28.50	29.00	29.50	30.00	31.00	32.00	33.00	34.00	34.70
	36.00	37.00	38.00	39.00	40.00				35.00
FLOW	0.00	18.00	50.00	106.00	227.00	380.00	554.00	749.00	894.00
	1173.00	1439.00	1701.00	1977.00	2266.00				962.00
SURFACE AREA=	0.	26.	62.	415.					
CAPACITY=	0.	57.	100.	225.					
ELEVATION=	23.	29.	30.	40.					
CREL	SFWIU	CDWU	EXFW	ELEV	COOL	CAREA	EXFL		
20.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DAM DATA									
TUPEL	COQU	EXFD	WAKWID						
34.7	2.7	1.5	822.						

PEAK OUTFLOW IS 1918. AT TIME 36.00 HOURS

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO .50	RATIO .40	RATIOS APPLIED TO FLOWS		
						RATIO .30	RATIO .20	RATIO .10
HYDROGRAPH AT LAKE	LAKE	27.90	1	1.099	1.519	1.139	1.760	3.80
	(72.26)		(53.77)	(43.02)	(32.26)	(21.51)	(10.75)	
ROUTED TO DAM	DAM	27.90	1	1.918	1.559	1.071	0.669	342.
	(72.26)		(54.32)	(44.16)	(30.34)	(18.96)	(9.47)	
ROUTED TO	1	27.90	1	1.917	1.555	1.070	0.671	342.
	(72.26)		(54.28)	(44.02)	(30.31)	(18.99)	(9.48)	

SUMMARY OF DGN SAFETY ANALYSIS

PLAN 1	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	STORAGE	29.00	28.50	34.70
	OUTFLOW	57.	45.	663.
		18.	0.	896.

RATIO OF RESERVOIR W.S.ELEV TO F.M.F	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.50	35.25	.55	772.	1918.	75.00	36.00
.40	35.11	.41	742.	1559.	51.00	39.00
.30	34.86	.16	693.	1071.	21.00	45.00
.20	33.59	.00	474.	669.	0.00	51.00
.10	31.75	0.00	241.	342.	0.00	48.00

EION 1 STATION 1

RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
.50	1917.	27.1	39.00
.40	1555.	26.9	39.00
.30	1070.	26.5	45.00
.20	671.	26.1	51.00
.10	142.	25.7	51.00

HEC - 1 - DAM PRINTOUT

Breach Analysis

1A1 NATIONAL DAM SAFETY PROGRAM
 A2 CUMBERLAND FOND DAM, NEW JERSEY
 A3 MULTI RATIO ROUTING
 B 100 3 0 4
 B1 5
 J 1 5 1
 J1 0.5 0.4 0.3 0.2 0.1
 K 0 LAKE 1
 K1 INFLOW HYDROGRAPH TO CUMBERLAND FOND DAM
 M 1 1 27.9 27.9 1
 F 27.0 .92 .99 108
 T 1.5 0.15
 W 22.4 0.23
 X -1.0 -0.05 2.0
 K 1 DAM
 K1 ROUTE DISCHARGE THROUGH DAM
 Y 1 1
 Y1 1
 Y4 28.5 29.0 29.5 30.0 31.0 32.0 33.0 34.0 34.7 35.0
 Y4 36.0 37.0 38.0 39.0 40.0
 Y5 0 18 58 106 229 380 554 749 896 962
 Y5 1193 1439 1701 1977 2266
 \$A 0 26.35 62 415
 \$E 22.5 29.0 30.0 40.0
 \$\$ 28.5
 \$D 34.7 2.7 1.5 822
 \$B 100 1 26.2 2.0 29.0 34.7
 K 1 1 1
 K1 CHANNEL ROUTING REACH 1
 Y 1 1
 Y1 1
 Y6 0.1 0.040 0.1 23.0 27.0 500 0.005
 Y7 0 26.0 20 25.5 100 25.0 106 23.0 116 23.0
 Y7 122 25.0 500 25.5 600 27.0
 K 99

NATIONAL HAM SAFETY PROGRAM
CUMBERLAND FOND DAM, NEW JERSEY
MULTI RATIO ROUTING

NO	MHR	MIN	IHR	IDAY	JOB-SPECIFICATION
100	3	0	0	0	NFLAN= 1 NRTIO= 5 LRTIO= 1
					RTLOSS= .50 RTIOL= .40 RTR= .30 RTR2= .20 RTR3= .10

MULTI-PLAN ANALYSES TO BE PERFORMED

RTLOSS= .50 RTIOL= .40 RTR= .30 RTR2= .20 RTR3= .10

***** SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH TO CUMBERLAND FOND DAM

ISTAR	ICOMP	IECON	ITAPE	JFLT	JFRT	I NAME	I STAGE	I AUTO
LAKE	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

HYNG	YUNG	TAREA	SNAF	TRSHN	TRSFC	RATIO	ISNOW	I NAME	LOCAL
1	1	27.90	0.00	27.90	0.00	0.000	0	0	0

PRECIP. DATA

SFFE	FMS	R6	R12	R24	R48	R72	R96
0.00	27.00	92.00	99.00	100.00	0.00	0.00	0.00

TRSFC COMPUTED BY THE PROGRAM IS .833

LROFT	STKRR	DLTKR	RTIOL	ERAIN	STKRS	RTION	STRIL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.50	.15	0.00	0.00

UNIT HYDROGRAPH DATA

TF= 22.40 CF= .23 NIa= 0

RECEDITION DATA

STRTQ= -1.00 QRCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH100 END-OF-PERIOD ORDINATES, LAG= 22.50 HOURS, CP= .23 VOL= .97

8.	29.	60.	97.	134.	163.	182.	187.	181.	175.
169.	163.	157.	152.	146.	141.	136.	131.	127.	122.
118.	114.	110.	106.	102.	90.	95.	92.	88.	85.
82.	79.	77.	74.	71.	69.	66.	64.	62.	60.
57.	55.	53.	52.	50.	48.	46.	45.	43.	42.
40.	39.	37.	36.	35.	33.	32.	31.	30.	29.
20.	27.	26.	25.	24.	23.	23.	22.	21.	20.
20.	19.	18.	17.	16.	16.	16.	15.	15.	14.
14.	13.	13.	12.	12.	11.	11.	10.	10.	10.
10.	9.	9.	9.	8.	8.	8.	7.	7.	7.

END-OF-PERIOD FLOW
NO.DA HR.MN PERIOD RAIN LOSS EXCS LOSS COMP.Q NO.DA HR.MN PERIOD RAIN EXCS LOSS COMP.Q

BUN 24.30 20.49 3.81 110740.
(417.)(520.)(97.)(3367.34)

HYDROGRAPH ROUTING
ROUTE DISCHARGE THROUGH DAM

	IStage	ICOMP	IECON	ITATE	JFLT	JFRT	IName	IStage	IName	IAUTO
DAM	1	0	0	0	0	0	0	0	0	0
				ROUTING DATA						
GLOSS	CLOSS	Avg	IRES	ISAME	IOFT	IPMF	LSTR			
0.0	0.000	0.00	1	1	0	0	0			
NSTFS	NSTNL	LAG	AMSNN	X	TSK	STORA	ISPRAT			
1	0	0	0.000	0.000	0.000	-29.	-1			
STAGE	28.50	29.00	29.50	30.00	31.00	32.00	33.00	34.00	34.70	35.00
	36.00	37.00	38.00	39.00	40.00					
FLOW	0.00	18.00	58.00	106.00	229.00	380.00	554.00	749.00	896.00	962.00
SURFACE AREA=	0.	26.	62.	415.						
CAPACITY=	0.	57.	100.	2225.						
ELEVATION=	23.	29.	30.	40.						
CREL	SFWIN	COOW	EXFW	ELEV	COOL	CAREA	EXFL			
	28.5	0.0	0.0	0.0	0.0	0.0	0.0			

DAM BREAK DATA		DAM BREAK DATA		DAM BREAK DATA	
BWID	Z	ELAH	TFAIL	WSEL	FAILS
100.	1.00	26.20	2.00	29.00	34.70

BEGIN DAM FAILURE AT 33.00 HOURS

PEAK OUTFLOW IS 6245. AT TIME 35.00 HOURS

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLows IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO .1	RATIO .2	RATIO .3	RATIO .4	RATIO .5
RATIOS APPLIED TO FLOWS								
HYDROGRAPH AT LAKE	(72.26)	27.90	1 (53.77)	1899. (43.02)	1519. (32.26)	1139. (21.51)	760. (10.75)	380.
ROUTED TO RDM	(72.26)	27.90	1 (91.76)	3346. (83.94)	2964. (67.92)	2399. (18.96)	669. (9.67)	342.
ROUTED TO	(72.26)	1	3263. (92.39)	2908. (82.34)	2347. (46.47)	671. (18.99)	342. (9.68)	

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1				INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	ELEVATION	29.00	28.30	34.70		
STORAGE	57.		45.		663.	
OUTFLOW	18.		0.		896.	
RATIO OF RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX. OUTFLOW HOURS	TIME OF FAILURE HOURS
.50	34.90	.20	701.	6245.	3.92	35.00
.40	34.88	.18	697.	5974.	3.80	38.00
.30	34.76	.06	673.	5487.	3.48	44.00
.20	33.59	0.00	474.	669.	0.00	51.00
.10	31.75	0.00	241.	342.	0.00	48.00
						0.00

PLAN 1		STATION 1			
RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT		TIME	HOURS
.50	3263.	28.1		36.00	
.40	2900.	27.8		39.00	
.30	2347.	27.4		45.00	
.20	671.	26.1		51.00	
.10	342.	25.7		51.00	

APPENDIX 5

Bibliography

1. "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 20314.
2. Design of Small Dams, Second Edition, United States Department of the Interior, Bureau of Reclamation, United State Government Printing Office, Washington, D.C., 1973.
3. Holman, William W. and Jumikis, Alfreds R., Engineering Soil Survey of New Jersey, Report No. 21, Cumberland County, Rutgers University, New Brunswick, N.J., 1955.
4. "Geologic Map of New Jersey," prepared by J. Volney Lewis and Henry B. Kummel, dated 1910-1912, revised by H.B. Kummel, 1931 and M. Johnson, 1950.
5. Chow, Ven Te., Ed., Handbook of Applied Hydrology, McGraw-Hill Book Company, 1964.
6. Herr, Lester A., Hydraulic Charts for the Selection of Highway Culverts, U.S. Department of Transportation, Federal Highway Administration, 1965.
7. Safety of Small Dams, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974.
8. King, Horace Williams and Brater, Ernest F., Handbook of Hydraulics, Fifth Edition, McGraw-Hill Book Company, 1963.
9. Urban Hydrology for Small Watersheds, Technical Release No. 55, Engineering Division, Soil Conservation Service, U.S. Department of Agriculture, January 1975.

