

Figry Revadiansyah

A data scientist with 5+ years of experience

Past Experiences:

bukalapak

Profile & Portfolios

Outline Pembelajaran

List & NumPy

Pengenalan Tipe Data List	Operasi pada Tuple dan Set

- Operasi pada List Pengenalan NumPy
- Pengenalan Tipe Data Derasi pada NumPy
 Tuple dan Set

Outline Pembelajaran

List & NumPy

	Pengenalan Tipe Data List	P	Operasi pada Tuple dan Set
ļ.	Operasi pada List	ļ.	Pengenalan NumPy
	Pengenalan Tipe Data Tuple dan Set	Ġ	Operasi pada NumPy

Hands-On Required:

Hands - On: 2. List & NumPy.ipynb

Klik disini untuk mengakses folder Hands-On

List

Salah satu tipe data pada python yang mampu menyimpan lebih dari satu data dengan berbagai tipe data. Nilai nya bersifat *mutable* dapat diubah-ubah.

Kenapa harus List?

Kita ingin menyimpan seluruh nama kota di Indonesia, sekitar ~514 nama kota dan kabupaten. Apa yang kamu lakukan?

A. Menuliskan setiap nama kota menjadi 1 variabel yang berbeda

B. Membuat kumpulan nama dalam 1 variabel saja

Membuat list

```
# list kosong
my_list = []

# list integer
my_list = [1, 2, 3]

# list dengan berbagai tipe daa
my_list = [1, "Surabaya", 3.4]
```

List dapat di isi dengan berbagi jumlah tipe data (integer, float, string, list, Boolean)

Membuat list - Multi dimensi

Contoh #1

Contoh #2

Pada tipe data *list* memungkinkan untuk memiliki list di dalam list

Struktur List

Objek	Dokter	Perawat	Dosen
Indeks	0	1	2

Nomor indeks list selalu dimulai dari nol (0). Nomor indeks ini kita butuhkan untuk mengambil isi (item) dari list

Mengambil sebagian item pada list #1

Nomor indeks list selalu dimulai dari nol (0).

Nomor indeks ini kita butuhkan untuk mengambil isi (item) dari list

Mengambil sebagian item pada list #2 (List Slicing)

listku =

Index	0	1	2	3	4	5	
Object	NLP	Computer Vision	Reinforcement Learning	Machine Learning	Data Science	Business Intelligence	

		li	stku[1 : 4	!]		
Index	0	1	2	3	4	5
Object	NLP	Computer Vision	Reinforcement Learning	Machine Learning	Data Science	Business Intelligence

listku[1:4] artinya akan mengambil index ke 1 sampai index ke 3. Index ke-empat sebagai akhir tidak diikutsertakan.

Mengambil sebagian item pada list #2 (List Slicing Formula)

Simple Slicing Python: [start:end]

Makna Makna	Slicing		
Mengambil seluruh index, tiada batasan	[:]		
Mengambil dari index ke-n sampai index terakhir	[n:] Mengambil dari index k		
Mengambil dari index pertama sampai index sebelum ke-m	[:m] Mengambil dari index pertama sampai index se		
Mengambil dari index ke-n hingga index sebelum ke-m	[n:m]		
Mengambil index terakhir	[-1]		
Mengambil index dari pertama sampai sebelum terakhir (selain index -1)	[:-1]		
Mengambil index dari dari belakang (satu index)	[-1:]		

Double Slice Python: [start:end:step]

Clining

Makna	Slicing	
Mengambil seluruh index, tiada batasan	[::]	
Mengambil dari index ke-n sampai index terakhir	[n::]	
Mengambil dari index pertama dengan lompat setiap o index	[::0]	
Mengambil dari index ke-n dengan lompat setiap o index	[n::0]	
Mengambil dari index ke-n hingga sebelum ke-m, lompat setiap o index	[n:m:o]	
Mengambil seluruh value dengan mengurutkan dari belakang	[::-1]	

Menambahkan item pada list

Menambahkan

- append (item) menambahkan item dari belakang
- insert(index, item) menambahkan item dari indeks tertentu

Objek Dokter Perawat Dosen Indeks 0 1 2

profesi =

Menambahkan item pada list

Append

```
profesi = ['Dokter', 'Perawat', 'Dosen']
profesi.append('Polisi')
profesi

['Dokter', 'Perawat', 'Dosen', 'Polisi']
```

Insert

```
profesi.insert(2, 'Barista')
profesi

['Dokter', 'Perawat', 'Barista', 'Dosen', 'Polisi']
```


Menghapus item pada list

Untuk menghapus salah satu dari isi *list*, kita bisa menggunakan perintah del <object> dan remove()

del profesi[2]
atau
profesi.remove("Dosen")

Objek	Dokter	Perawat	Dosen
Indeks	0	1	2

Menghapus item pada list

del

```
['Dokter', 'Perawat', 'Barista'] 'Dosen', 'Polisi']

del profesi[2]
profesi
['Dokter', 'Perawat', 'Dosen', 'Polisi']

Menghilangkan object pada index ke-2
```

remove()

```
['Dokter', 'Perawat', Dosen', 'Polisi']

profesi.remove('Dosen')
profesi

['Dokter', 'Perawat', 'Polisi']

Menghilangkan item dengan value Dosen
```

Challenge Time

Diberikan sebuah list umur_user = [20, 22, 18, 21, 19]

- 1. Tambahkan item baru pada list umur yaitu umur dari user baru: 23
- 2. Hapus item pada list umur yaitu umur dari user pertama

Challenge Time

Diberikan sebuah list customer_id = ["A123", "A124", "B144", "C112", "B154", "C133"]

- Ada customer baru, tambahkan customer id tersebut yaitu "C135" ke dalam list customer_id (pada bagian belakang)
- 2. Hapus customer id "A123" karena sudah tidak aktif

Outline Pembelajaran

List & NumPy

Pengenalan Tipe Data List	Operasi pada Tuple dan Set
Operasi pada List	Pengenalan NumPy
Pengenalan Tipe Data Tuple dan Set	Operasi pada NumPy

Operasi List - Satuan dan Multipel

Terdapat beberapa operasi pada list, diantaranya

- Penggabungan (+)
- Perkalian (*)

```
# 2 Lists
supervised_ml = ["Logistic Regression", "SVM", "Random Forest"]
unsupervised_ml = ["KNN", "Clustering", "GMM"]

# Combination: list 1 + list 2
machine_learning = supervised_ml + unsupervised_ml

# Result
print(machine_learning)

['Logistic Regression', 'SVM', 'Random Forest', 'KNN', 'Clustering', 'GMM']
```

```
Penggabungan (+)
```

```
# List 1
user_type = ["Fraud", "Normal"]

# List Operation with *
print(user_type * 3)

['Fraud', 'Normal', 'Fraud', 'Normal', 'Fraud', 'Normal']
```

Perkalian (*)

Operasi List - Aritmatika Dasar

Objektif	Fungsi	List	Output / Hasil
Mendapatkan nilai terkecil	min()		1
Mendapatkan nilai terbesar	max()		10
Mendapatkan total jumlah dari semua item pada list	sum()	[3,1,2,10,4]	15
Mendapatkan jumlah item dalam list	len()		5
Mengurutkan item berdasarkan nilainya (terendah -> tertinggi)	sorted()		[1,2,3,4,10]

Outline Pembelajaran

List & NumPy

Pengenalan Tipe Data List			Operasi pada Tuple dan Set
0	Operasi pada List	į.	Pengenalan NumPy
	Pengenalan Tipe Data Tuple dan Set	Ė	Operasi pada NumPy

Tipe data Tuple

Tuple merupakan tipe data yang sama dengan List, namun bersifat immutable (tidak bisa diubah) sehingga waktu proses jauh lebih cepat.

Menggunakan kurung () pada tuple

```
bilangan_genap = (2,4,6,8,10)
print(bilangan_genap)
(2, 4, 6, 8, 10)
```


Performa Tuple

```
%%time
a = (1,2,3,4,5,6) * 10000 * 10000
CPU times: user 1.07 s, sys: 774 ms, total: 1.84 s
Wall time: 1.84 s
```

a = [1,2,3,4,5,6] * 10000 * 10000

%%time

Wall time: 3.68 s

CPU times: user 2.12 s, sys: 1.41 s, total: 3.53 s

*2x Lebih Cepat

Tipe data **Set**

Salah satu tipe data pada python yang mampu menyimpan lebih dari satu data dengan berbagai tipe data <u>unik</u> (distinct) dan <u>tidak memiliki index</u>

Menggunakan kurung kurawal {}

```
bilangan_ganjil = {1,5,3,9,11,7,1,1,1}
bilangan_ganjil
{1, 3, 5, 7, 9, 11}
```


Fitur pada Set

Bisa mentransformasikan list menjadi seperti distinct value melalui set

Outline Pembelajaran

Tuple dan Set

List & NumPy

Pengenalan Tipe Data List
Operasi pada Tuple dan Set
Operasi pada List
Pengenalan NumPy

Pengenalan Tipe Data
Operasi pada NumPy

Operasi pada Tuple

Objektif	Fungsi / Operasi	Tuple	Output / Hasil
Mendapatkan jumlah objek	len()		4
Menyatukan dua tuple atau lebih	+ (5,6)		(1,2,3,4,5,6)
Melakukan repetisi elemen pada tuple	* 2	(1,2,3,4)	(1,2,3,4,1,2,3,4)
Mengetahui apakah sebuah elemen ada didalam tuple atau tidak	2 in <tuple></tuple>		True
Memilih berdasarkan indeks/slice	[1:3]		(2,3)

Operasi pada Set

1. Menambahkan item pada set

Untuk menambahkan satu dari isi set, kita bisa menggunakan perintah add() dan update()

makanan.add("Rendang")
atau
makanan.update(['Rendang'])

makanan =

"Bakso" "Soto" "Mie Ayam" "Rendang"

Operasi pada Set

2. Menghapus elemen pada set

Untuk menghapus salah satu dari isi set, kita bisa menggunakan perintah remove()

makanan.remove("Mie Ayam")

makanan = "Bakso" "Soto" "Mie Ayam"

Challenge Time

Diberikan set nama_user = {'Adi', 'Budi', 'Andi'}

- 1. Tambahkan item baru pada set nama_user yaitu 'Anton'
- 2. Hapus item pada set nama_user yaitu 'Budi'

Outline Pembelajaran

List & NumPy

Numpy

NumPy (Numerical Python) adalah library Python yang fokus pada scientific computing.

NumPy memiliki kemampuan untuk membentuk objek N-dimensional array, yang mirip dengan list pada Python.

Mengapa Penting?

Numpy memudahkan seorang data scientist untuk bentuk data berupa vektor dan matrix

$$\begin{bmatrix} 1 & 4 & -2 & 5 \\ 0 & -5 & 2 & 7 \\ 0 & 0 & -3 & 9 \\ 0 & 0 & -8 & 8 \end{bmatrix}$$

Contoh persamaan linear pada matrix

Membuat Array

Pada Python

Format Code:

Import numpy as np

np.array(value)

Pada Python

Format Code:

Import numpy as np

np.array(value)

Bisa berupa:

- Single value (integer, string, dan lainnya)
- List, Tuple, Set
- Multidimensional List

Pada Python

Contoh Code 1: Single Value

Import numpy as np

```
np.array(50)
array(50)

np.array('ade irawan')
array('ade irawan', dtype='<U10')

Array berupa
string</pre>
```


Pada Python

Contoh Code 1: Single Value

Import numpy as np

np.array(50)

Array berupa integer

np.array('ade irawan')

array('ade irawan', dtype='<U10')

Array berupa string

Jarang terjadi pada kasus nyata, karena numpy biasanya digunakan pada data numeric

Pada Python

Contoh Code 2: List

Import numpy as np

```
bilangan_genap = np.array([2, 4, 6, 8, 10])
bilangan_genap
```

array([2, 4, 6, 8, 10])

Pada Python

Contoh Code 2: List

Import numpy as np

```
bilangan_genap = np.array([2, 4, 6, 8, 10])
bilangan_genap

array([ 2, 4, 6, 8, 10])

Array berisikan List
```


Pada Python

Contoh Code 3: Multidimensional List

Import numpy as np

Pada Python

Contoh Code 3: Multi List atau dimensional data

Pada Python

Contoh Code 3: Multi List atau dimensional data

Import numpy as np

```
array([[ 1, 3, 5, 7, 9], [ 2, 4, 6, 8, 10]])
```

Kedua List dipisah oleh tanda koma ", "

Pada Python

Contoh Code 3: Multi List atau dimensional data

Import numpy as np

Challenge Time

Buatlah array 2 x 5 dari list berikut:

```
umur = [ 20, 23, 18, 19, 30]
nomor_sepatu = [ 41, 42, 44, 39, 40]
```

Simpan array tersebut ke dalam object bernama challenge_array

print(challenge_array)

Outline Pembelajaran

List & NumPy

Pengenalan Tipe Data List

Operasi pada Tuple dan Set

Operasi pada List

Pengenalan NumPy

Pengenalan Tipe Data Tuple dan Set

Operasi pada NumPy

Operasi NumPy - Function

```
1 #membuat array
2 list_nilai_kelas = np.array([65,90,89,76,78,92,94,90,100])
```

Operasi	Deskripsi	Output
np.sum(nama_array)	Menjumlahkan semua nilai pada elemen array	774
np.max(nama_array)	Mengambil nilai terbesar pada array	100
np.min(nama_array)	Mengambil nilai terkecil pada array	65
np.mean(nama_array)	Mengambil rataan nilai pada elemen array	86.0
np.median(nama_array)	Mengambil nilai tengah pada elemen array	90.0

Operasi NumPy - Function

- 1 #membuat array
- 2 list_nilai_kelas = np.array([65,90,89,76,78,92,94,90,100])

Operasi	Deskripsi	Output
np.log10(nama_array)	Melakukan log10 pada semua nilai pada elemen array	[1.81291336 1.95424251 1.94939001 1.88081359 1.8920946 1.96378783 1.97312785 1.95424251 2.
np.argmax(nama_array)	Mengambil index dengan nilai terbesar	8
np.argmin(nama_array)	Mengambil index dengan nilai terkecil	0
np.sort(nama_array)	Mengurutkan item	[65 76 78 89 90 90 92 94 100]

Operasi NumPy - Dimension

Format Code:

nama_array.reshape((n, m))

Mengubah array menjadi n x m dimensi

```
1 a = ['Ammar', 'Heru', 'Adit', 'Pras', 'Putri', 'Dara']
1 a = np.array(a)
```


Operasi NumPy - Dimension

Contoh Code:

```
1 a = ['Ammar', 'Heru', 'Adit', 'Pras', 'Putri', 'Dara']
1 a = np.array(a)
```

** array dengan 1 dimensi

Operasi NumPy - Dimension

Contoh Code:

```
1 a = ['Ammar', 'Heru', 'Adit', 'Pras', 'Putri', 'Dara']
1 a = np.array(a)
```


Operasi NumPy - Single Value

** Operasi matematika dilakukan pada setiap elemen pada List

```
#membuat array
list_nilai = np.array([65,90,89,76,78,92,94,100])

print(list_nilai * 3) #mengalikan semua element pada list nilai dengan 3
print(list_nilai / 2) #membagi semua element pada list nilai dengan 2
print(list_nilai + 10) #menjumlahkan semua element pada list nilai dengan 10
print(list_nilai - 2) #mengurangkan semua element pada list nilai dengan 2

[195 270 267 228 234 276 282 300]
[32.5 45. 44.5 38. 39. 46. 47. 50.]
[75 100 99 86 88 102 104 110]
[63 88 87 74 76 90 92 98]
```


Operasi NumPy - Array vs Array

** Operasi matematika dilakukan pada setiap index yang sama dari kedua array

```
#membuat array
list nilai1 = np.array([65,90,89,76,78,92,94,100])
list nilai2 = np.array([1,2,3,4,5,6,7,8])
print(list nilai1 * list nilai2) #mengalikan semua element pada list nilai1 dengan list nilai2
print(list nilai1 / list nilai2) #membagi semua element pada list nilai1 dengan list nilai2
print(list nilai1 + list nilai2) #menjumlahkan semua element pada list nilai1 dengan list nilai2
print(list nilai1 - list nilai2) #mengurangkan semua element pada list nilai1 dengan list nilai2
[ 65 180 267 304 390 552 658 800]
[65.
            45.
                        29.66666667 19.
                                               15.6
                                                           15.33333333
13.42857143 12.5
[ 66 92 92 80 83 98 101 108]
[64 88 86 72 73 86 87 92]
```

Challenge Time

Buatlah array 3 x 3 dari list berikut :

```
nilai_1 = [80, 87, 91]
nilai_2 = [77, 65, 75]
nilai_3 = [59, 60, 47]
```

Simpan array tersebut ke dalam object bernama nilai

Dari array bernama nilai tersebut, ubahlah dimensinya menjadi dimensi 1.

Kemudian cek apakah mean (rata-rata) nya lebih besar dari pada median (nilai tengah) ?

Hint: Gunakan np.mean dan np.median Gunakan kondisional untuk mengecek (boolean)

Challenge Time

Di toko A, dicatat pemasukan dan pengeluaran dari hari ke-1 hingga ke -5 dengan array2 ini:

Array item_terjual yang berisi [3,4,5,2,7], Array biaya_pengeluaran (sudah termasuk modal) yang berisi [20000, 22000, 25000, 15000, 46000]

Lalu harga jual per item adalah 10000

Soal:

- 1. Carilah hari ke berapa toko tersebut mendapatkan keuntungan terbesar?
- 2. Cari total profit dari kelima hari hasil penjualan toko tersebut!

Outline Pembelajaran

List & NumPy

Pengenalan Tipe Data List

Operasi pada List

Pengenalan Tipe Data Tuple dan Set

Operasi pada Tuple dan Set

Pengenalan NumPy

Operasi pada NumPy

Terima Kasih!