learning practitioners trying to solve real-world problems. Representing your data in the right way can have a bigger influence on the performance of a supervised model than the exact parameters you choose.

In this chapter, we will first go over the important and very common case of categorical features, and then give some examples of helpful transformations for specific combinations of features and models.

Categorical Variables

As an example, we will use the dataset of adult incomes in the United States, derived from the 1994 census database. The task of the adult dataset is to predict whether a worker has an income of over \$50,000 or under \$50,000. The features in this dataset include the workers' ages, how they are employed (self employed, private industry employee, government employee, etc.), their education, their gender, their working hours per week, occupation, and more. Table 4-1 shows the first few entries in the dataset.

Table 4-1. The first few entries in the adult dataset

	age	workclass	education	gender	hours-per-week	occupation	income
0	39	State-gov	Bachelors	Male	40	Adm-clerical	<=50K
1	50	Self-emp-not-inc	Bachelors	Male	13	Exec-managerial	<=50K
2	38	Private	HS-grad	Male	40	Handlers-cleaners	<=50K
3	53	Private	11th	Male	40	Handlers-cleaners	<=50K
4	28	Private	Bachelors	Female	40	Prof-specialty	<=50K
5	37	Private	Masters	Female	40	Exec-managerial	<=50K
6	49	Private	9th	Female	16	Other-service	<=50K
7	52	Self-emp-not-inc	HS-grad	Male	45	Exec-managerial	>50K
8	31	Private	Masters	Female	50	Prof-specialty	>50K
9	42	Private	Bachelors	Male	40	Exec-managerial	>50K
10	37	Private	Some-college	Male	80	Exec-managerial	>50K

The task is phrased as a classification task with the two classes being income <=50k and >50k. It would also be possible to predict the exact income, and make this a regression task. However, that would be much more difficult, and the 50K division is interesting to understand on its own.

In this dataset, age and hours-per-week are continuous features, which we know how to treat. The workclass, education, sex, and occupation features are categorical, however. All of them come from a fixed list of possible values, as opposed to a range, and denote a qualitative property, as opposed to a quantity.

As a starting point, let's say we want to learn a logistic regression classifier on this data. We know from Chapter 2 that a logistic regression makes predictions, \hat{y} , using the following formula:

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0$$

where w[i] and b are coefficients learned from the training set and x[i] are the input features. This formula makes sense when x[i] are numbers, but not when x[2] is "Masters" or "Bachelors". Clearly we need to represent our data in some different way when applying logistic regression. The next section will explain how we can overcome this problem.

One-Hot-Encoding (Dummy Variables)

By far the most common way to represent categorical variables is using the one-hotencoding or one-out-of-N encoding, also known as dummy variables. The idea behind dummy variables is to replace a categorical variable with one or more new features that can have the values 0 and 1. The values 0 and 1 make sense in the formula for linear binary classification (and for all other models in scikit-learn), and we can represent any number of categories by introducing one new feature per category, as described here.

Let's say for the workclass feature we have possible values of "Government Employee", "Private Employee", "Self Employed", and "Self Employed Incorpo rated". To encode these four possible values, we create four new features, called "Gov ernment Employee", "Private Employee", "Self Employed", and "Self Employed Incorporated". A feature is 1 if workclass for this person has the corresponding value and 0 otherwise, so exactly one of the four new features will be 1 for each data point. This is why this is called one-hot or one-out-of-N encoding.

The principle is illustrated in Table 4-2. A single feature is encoded using four new features. When using this data in a machine learning algorithm, we would drop the original workclass feature and only keep the 0–1 features.

Table 4-2. Encoding the workclass feature using one-hot encoding

workclass	Government Employee	Private Employee	Self Employed	Self Employed Incorporated
Government Employee	1	0	0	0
Private Employee	0	1	0	0
Self Employed	0	0	1	0
Self Employed Incorporated	0	0	0	1