Nonlinear Optimization Lecture 6 Garrick Aden-Buie

Thursday, January 28, 2016

Continuing from last time...

5

Let $f: S \to \mathbb{R}$ and $S \subset \mathbb{R}$: open, convex, non-empty.

Consider: $f(x) = ax^2$. This is convex depending on a > 0. If a < 0 it is not convex.

Consider. $f(x) = x^n$. If n is even \Rightarrow convex. If n = 1? Look at $f'(x) = nx^{n-1}$ and $f''(x)n(n-1)x^{n-2}$. $f'' \ge 0, \forall x$. If n = 3, f'' = 6x, if n = 4, then $f'' = 12x^2 \ge 0$.

Returning to this item, if $f \in C^2(S)$, then f is convex on S if and only if H(x) is positive semi-definite (PSD) for all $x \in S$.

Def. A square matrix $(n \times n)$ A is **positive semi-definite** if and only if $\nu^T A \nu \geq 0$, $\forall \nu \in \mathbb{R}^n$.

$$f(x) = x^n$$

$$f'(x) = nx^{n-1}$$

$$f''(x) - n(n-1)x^{n-2} = H(x) \ge 0 \forall x \in S$$

This definition is for positive semi-definite, but a matrix A is **positive definite** if and only if $\nu^T A \nu > 0$,

Positive Definite
$$\Leftrightarrow \quad \nu^T A \nu > 0 \quad \forall \nu \in \mathbb{R}^n$$

Negative Semi-Definite ≤ 0
Negative Definite < 0

 $Proof \ (\Rightarrow).$

Let $x, \bar{x} \in S$.

f is convex $\Rightarrow f(x) \ge f(\bar{x}) + [\nabla f(\bar{x})]^T (x - \bar{x}).$

Taylor Expansion $\Rightarrow f(x) = f(\bar{x}) + [\nabla f(\bar{x})]^T (x - \bar{x}) + \frac{1}{2} (x - \bar{x})^T H(\bar{x}) (x - \bar{x}) + \|x - \bar{x}\|^2 \alpha(\bar{x}; x - \bar{x})$. Note the part starting with the fracion thereafteer is always ≥ 0 .

Let $x = \bar{x} + \lambda d$, $d \in \mathbb{R}^{,\lambda} 0$.

$$\begin{split} \frac{\lambda^2}{2} d^T H(\bar{x}) d + \lambda^2 \|d\|^2 \alpha(\bar{x}; \lambda d) &\geq 0 \\ \Rightarrow d^T H(\bar{x}) d + 2 \|d\|^2 \alpha(\bar{x}; \lambda d) &\geq 0 \\ \text{Let } \lambda &\rightarrow 0^+ \\ d^T H(\bar{x}) d &\geq 0 \ \forall d \in \mathbb{R}^n \\ \Rightarrow H(\bar{x}) \text{ is PSD.} \end{split}$$

 $Proof \ (\Leftarrow).$

Let $x, \bar{x} \in S$. From the SOMVT, $\exists \hat{x} = \lambda x + (1 - \lambda)\bar{x}, \ \forall x \in (0, 1)$ such that

$$f(x) = f(\bar{x}) + (x - \bar{x})(x - \bar{x})^T \nabla f(\bar{x}) + \frac{1}{2}(x - \bar{x})^T H(\hat{x})(x - \bar{x})$$

S is convex $\Leftrightarrow \hat{x} \in S \Rightarrow H(\hat{x})$ is PSD. (Note again that the portion starting with frac12 is ≥ 0 .)

$$\Rightarrow f(x) \ge f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) \Leftrightarrow f \text{ is convex}$$

6

Consider a function $p \colon \mathbb{R}^n \to \mathbb{R}$ that satisfies:

$$p(x) \ge 0$$

$$p(\alpha x) = |\alpha|p(x)$$

$$p(x+y) \le p(x) + p(y)$$

$$p(x) = 0 \qquad \Leftrightarrow x = 0$$

This is a **norm**. The most common is the *Euclidean norm* (||x||).

Any vector norm is a convex function:

For any $\lambda \in [0, 1]$:

$$\|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\|$$

7

Let $f(x) = x^T Q x$ and Q is a symmetric matrix.

f is convex $\Leftrightarrow Q$ is PSD.

f is strictly convex $\Leftrightarrow Q$ is PD.

8

In general, for f(x), H(x) is PD $\forall x \Rightarrow f$ is strictly convex.

But, if f is strictly convex $\Rightarrow H(x)$ is PSD $\forall x$.

The result is that PD is a good test for strict convexity. But PD does not always guarantee strict convexity \leftarrow look this up!.

Note. The notation for PD is generally H > 0 and for PSD it is $H \geq 0$.

Note. Read the textbook for some notes on test for PD and PSD.

Optimization

Consider the problem

$$\min \quad f(x)$$

s.t $x \in S \subset \mathbb{R}^n$

- (1) \bar{x} is feasible if $\bar{x} \in S$ (admissable).
- (2) \bar{x} is a global min if $\bar{x} \in S$ and $f(\bar{x}) \leq f(x) \ \forall x \in S$.
- (3) \bar{x} is a local minimum if $\bar{x} \in S$ and $\exists \epsilon > 0 : f(\bar{x}) \leq f(x) \ \forall x \in S \cap N_{\epsilon}(\bar{x})$.
- (4) \bar{x} is the unique global minimum if $\bar{x} \in S$ and $f(\bar{x}) < f(x) \forall x \in S$ and $x \neq \bar{x}$.

Theorem

Theorem. Consider the same problem above, where $S \subset \mathbb{R}^n$ is convex and non-empty. Let \bar{x} be a local minimum.

- (1) f is convex on $S \Rightarrow \bar{x}$ is global minimum.
- (2) If f is strictly convex on $S \Rightarrow \bar{x}$ is unique global minimum.

Proof (1). Suppose not (proof by contradiction).

- Assume that \bar{x} is not a global minimum (but still a local minimum): then $\exists \hat{x} \in S : f(\hat{x}) < f(\bar{x})$.
- Let $x_{\lambda} = \lambda \hat{x} + (1 \lambda)\bar{x}, \ \forall \lambda \in (0, 1),$
- $f(x_{\lambda}) \le \lambda f(\hat{x}) + (1 \lambda)f(\bar{x}) < \lambda f(\bar{x}) + (1 \lambda)f(\bar{x}) = f(\bar{x}).$
 - The idea here is that if a better solution exist (\hat{x}) , then you can find a point between \bar{x} and \hat{x} that is a better solution than \bar{x} .
- Then \bar{x} is not a local minimum.

• Contradiction. \bar{x} must be global minimum.

Proof (2). Is done similarly and left as an exercise to the class.

This applies to solvers: find local minima, check Hessian at each point, decide on best solution (no guarantee of global minimum).

Theorem Variational Inequality Problem

Theorem. Convex problem, let $f \in C^1(S)$ and

$$\min \quad f(x) \\
\text{s.t.} \quad x \in S$$

Then $\bar{x} \in S$ is a global minimum if and only if

$$[\nabla f(\bar{x})]^T(x - \bar{x}) \ge 0 \ \forall x \in S$$

.

Sidenote: Normally we say things like $\bar{x} \in S \Rightarrow$ Condition A is true (necessary condition). Example, for $f(x) = ax^2$, then setting f'(x) = 2ax = 0 and finding $\bar{x} = 0$. The necessary condition is that f' = 0. But the reverse is not true because a may be negative, so the arrow has to \Rightarrow and \Leftarrow is not necessarily implied by Condition A. These are called: $\Rightarrow A$, condition A is a necessary condition; $\Leftarrow B$, condition B is a sufficient condition; $\Leftrightarrow C$, condition C is called *sufficient and necessary*.

Proof (\Rightarrow) . Suppose not (proof by contradiction), that the second statement is false.

- Assume that $\exists \hat{x} \in S$ such that $[\nabla f(\bar{x})]^T (x \bar{x}) < 0$.
- Let $x_{\lambda} = \lambda \hat{x} + (1 \lambda)\bar{x}, \ \lambda \in (0, 1).$

$$f(x_{\lambda}) = f(\bar{x} + \lambda(\hat{x} - \bar{x}))$$

$$= f(\bar{x}) + \lambda [\nabla f(\bar{x})]^T (\hat{x} - \bar{x}) + \lambda [\cdots]$$

$$= f(\bar{x}) + \lambda \{ [\nabla f(\bar{x})]^T (\hat{x} - \bar{x}) + \lambda [\cdots] \}$$

$$= f(\bar{x}) + \{ < 0 \text{ for sufficiently small } \lambda \}$$

- That is, for sufficiently small λ , $f(x_{\lambda}) < f(\bar{x}) \Rightarrow \bar{x}$ is not a global minimum.
- Contradiction.

 $Proof \ (\Leftarrow). f \text{ is convex.}$

$$\begin{split} f(x) &\geq f(\bar{x}) + [\nabla f(\bar{x})]^T (x - \bar{x}) \; \forall x \in S \\ &= f(\bar{x}) + [\geq 0] \\ \Rightarrow f(x) &\geq f(\bar{x}) \; \forall x \in S \end{split}$$

 $\Rightarrow \bar{x}$ is a global min.