

Bike sharing systems

1000+ cities bike-sharing programs around the world

1M bike-sharing bicycles in 2015

Research Question

What are the dominant drivers for daily bikeshare ride counts?

Deliverables

Social Importance: turning bike sharing system into a virtual sensor network that can be used for sensing mobility in a city

Business Insights: monitor existing bike-sharing market to see opportunities and risks

Data Overview

Bikeshare data from Captial BikeShare

- Washington DC, U.S.A.
- 2016 Q1 ~ 2017 Q4 (727 days)
- 7,092,650 observations
- variables include riding time, bike station, member type, duration, etc.

Weather data from weatherunderground.com

- weather variables include temperature, precipitation, wind, etc.

EDA Insights - Bikeshare Data

- Member Type

Riders on average use the service longer than registered members

- Season

Bikeshare ride duration peaks during summer for both users; more rides in spring and summer

- Weekday

The count changes a lot on different weekdays

EDA Insights Weather Data

Im(bikeshare.count ~ weather.variable)

Main Variables of Interest

Model Building and Selection

Model Performances

Model	MSE
Full Linear Model (p=23)	2678818
Subset Selected Model (p=10)	2761879
General Additive Model - all smoothing splines	2433136
General Additive Model - partial splines	2413933
Lasso Model (λ= 38.44728)	2640366

Final Model

gam(formula = count ~ year + month + weekday + Member_type + s(avg_temp, 5.596995) + s(avg_humidity, 4.355668) + avg_sealevelpress + avg_wind + log_low_visi + s(log_precip, 3.973716), data = .)

Final Model

gam(formula = count ~ year + month + weekday + Member_type + s(avg_temp, 5.596995) + s(avg_humidity, 4.355668) + avg_sealevelpress + avg_wind + log_low_visi + s(log_precip, 3.973716), data = .)

Next steps

More observations to study on

- Longer periods from 2011
- More categories in year variable

Other useful variables

- Start/End Locations
- Traffic factors

Alternative Method:

 Classification model indicating whether it's a popular/mobile day

QUESTIONS?

Automatic Selection Step()

Forward Subset

10 variables

2722660

Backward Subset

7 variables

2773779

Both Selection

7 variables

2773779

Appendix 1 Stepwise Selection

All Possible Regression Selection

Regsubset()

Forward, Backward, Exhaustive produce the same result

Appendix 1 Stepwise Selection

Im(count ~ year + month + weekday + Member_type + avg_temp + avg_humidity + avg_sealevelpress+ avg_wind + log_low_visi + log_precip, data =.)

Appendix 2 Multiple Linear Regression Model

```
gam(count ~ year + month + weekday + Member_type + s(avg_temp, 5.596995) + s(avg_humidity, 4.632338) + s(avg_sealevelpress, 4.345706) + s(avg_wind, 4.075545) + s(log_low_visi, 2.843863) + s(log_precip, 3.577682), data =.)
```

AIC=20386.54

```
Anova for Nonparametric Effects
                             Npar Df Npar F
                                                 Pr(F)
(Intercept)
year
month.x
weekday
Member_type
s(avg_temp, 33.350675)
                                32.3 3.6503 5.644e-11 ***
s(ava humidity, 4,355668)
                                 3.4 4.8819 0.001449 **
s(avg_sealevelpress, 5.99766)
                                 5.0 0.3937 0.853277
s(avg_wind, 3.993694)
                                 3.0 0.2995 0.825337
s(log_low_visi, 2.88136)
                                 1.9 0.6871 0.494776
s(log_precip, 3.973716)
                                 3.0 16.8752 1.202e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Appendix 3 Beyond Linearity Modification

All smoothing splines

gam(count ~ year + month + weekday + Member_type + s(avg_temp, 5.596995) + s(avg_humidity, 4.632338) + s(avg_sealevelpress, 4.345706) + s(avg_wind, 4.075545) + s(log_low_visi, 2.843863) + s(log_precip, 3.577682), data =.)

AIC=20378.31 improved!

Appendix 4
Beyond
Linearity
Modification

Partial smoothing splines

Appendix 5 L1 Regularization

(Shrinkage Method)

Lasso Regression:
$$\min_{\beta} \left[\sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \sum_{k=1}^{p} |\beta_k| \right]$$

12 variables Best Lambda = 38.44728