

# Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik



#### Ziel

Eine Liste  $L = (\ell_1, \dots, \ell_n)$  vergleichbarer Elemente aufsteigend sortieren.

# Vergleichbarkeit

- für je zwei Element  $\ell_i$ ,  $\ell_j$  gilt entweder  $\ell_i < \ell_j$ ,  $\ell_i = \ell_j$  oder  $\ell_i > \ell_j$
- die Ordnung ist transitiv:  $\ell_h \leq \ell_i$  und  $\ell_i \leq \ell_j \Rightarrow \ell_h \leq \ell_j$
- die Ordnung ist antisymmetrisch:  $\ell_i \leq \ell_j$  und  $\ell_j \leq \ell_i \Rightarrow \ell_i = \ell_j$
- $\blacksquare$  wir haben Zugriff auf eine Funktion, die zwei Element  $\ell_i, \ell_j$  vergleicht



# Algorithmus Quicksort

- **1.** Für i = 1, ..., n
- **2.** falls  $\ell_i < \ell_1$ , füge  $\ell_i$  der Liste K hinzu.
- **3.** falls  $\ell_i > \ell_1$ , füge  $\ell_i$  der Liste G hinzu.
- **4.** falls  $\ell_i = \ell_1$ , füge  $\ell_i$  der Liste M hinzu.
- 5. Wende Quicksort rekursiv an, um K und G zu sortieren.
- **6.** Gib *K*, *M*, *G* aus.



#### Laufzeit nochmal

- **a** auf einer sortierten Eingabe hat Quicksort Laufzeit  $\Theta(n^2)$
- dennoch ist Quicksort "in der Praxis" beliebt
- um das "reale" Verhalten von Quicksort besser zu verstehen, analysieren wir den Algorithmus auf zufälligen Permutationen



#### **Permutationen**

■ eine *n*-Permutation ist eine bijektive Abbildung

$$\{1,\ldots,n\} \to \{1,\ldots,n\}$$

- wir schreiben  $[n] = \{1, \ldots, n\}$
- die Menge aller n-Permutationen wird mit  $S_n$  bezeichnet
- insgeamt gibt es

$$|\mathbb{S}_n| = n! = \prod_{i=1}^n i$$

*n*-Permutationen



#### **Permutationen**

- $\bullet$  mit  $\sigma \in \mathbb{S}_n$  wird eine zufällige Permutation bezeichnet
- wir interessieren uns für die erwartete oder durchschnittliche Laufzeit
- dazu führen wir die *n*-te harmonische Zahl ein:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

wir erinnern uns auch an die Definition des natürlichen Logarithmus':

$$\log(x) = \int_1^x \frac{1}{z} dz$$



## **Satz**

Angewandt auf die zufällige Permutation  $\sigma$  hat Quicksort eine erwartete Laufzeit von  $\leq 2(n+1)H_n$  Vergleichen.



#### Die Euler-Mascheroni-Zahl

Ein wenig Analysis zeigt, daß

$$\lim_{n\to\infty} H_n - \log n = \gamma \approx 0.57721\dots$$

Aus dem Satz folgt also, daß Quicksort auf Eingabe  $\sigma$  nur  $O(n\log n)$  Vergleiche in Erwartung benötigt



# **Zufällige Wahl des Pivots**

- die Analyse von Quicksort auf zufälligen Permutationen hat nur verwendet, daß das Pivot zufällig ist
- wenn wir statt des ersten Elements also ein zufälliges Element als Pivot verwenden, erzielen wir auf *jeder* Eingabe eine Laufzeit von  $O(n \log n)$
- man spricht von einem Las Vegas-Algorithmus



# Zusammenfassung

- wir haben Quicksort auf zufälligen Permutationen analysiert
- $\blacksquare$  die Laufzeit hat sich dabei auf  $O(n \log n)$  (erwartet) verbessert
- die Analyse zeigt, daß eine randomisierte Version dieselbe erwartete Laufzeit auf beliebigen Eingaben hat