Анализ алгоритмов глубокого машинного обучения в задачах распознавания изображений

Александр Сергеевич Коротков

Научный руководитель: Д.В. Матвеев

29.06.2020

Цели и задачи работы

Цель: Изучить и проанализировать применение алгоритмов глубокого машинного обучения в задачах обработки рентгеновских снимков у больных с подозрением на COVID-19. **Залачи:**

- Изучить теоретический материал про обучение глубоких нейронных сетей и их применение в классификации изображений.
- Изучить документацию библиотеки Tensorflow.
- Изучить вопрос диагностики COVID-19 по рентгеновским снимкам грудной клетки.
- Разработать и обучить различные модели сверточных нейронных сетей на наборе рентгеновских снимков.
- Сравнить результаты работы реализованных нейронных сетей.

Сверточные нейронные сети

0	1	1	Ì.	0.	0	0	٠									
0	0	1	1	1	0	0.	ļ		>	weg:		:1:	4	3	4	1
0	0	0	1	1	1	0		1	0	1		1	2.	4	.3	3
0	0	0	1	·4.,	0	0.	٠	0	1	0	, and a	1	,2·	3	4	1
0	0	1	1	0	0	0.		1	0	1	, and a	ï	3	3	1	1
0	1	1	0	0	0	0]					3	3	1	1	0
1	1	0	0	0	0	0										

Операция свертки

Сеть	Top-1	Top-5
VGG-16	71.3%	90.1%
VGG-19	71.3%	90.0%
Inception V3	77.9%	93.7%
ResNet-50 V2	76.0%	93.0%
ResNet-101 V2	77.2%	93.8%
ResNet-152 V2	78.0%	94.2%
DenseNet-121	75.0%	92.3%
DenseNet-169	76.2%	93.2%
DenseNet-201	77.3%	93.6%

Оценка качества

Для оценки качества работы алгоритмов использовались следующие метрики:

• Precision (Точность):

$$P = \frac{TP}{TP + FP}$$

• Recall (Полнота):

$$R = \frac{TP}{TP + FN}$$

• F1-мера:

$$F1 = 2 \cdot \frac{P \cdot R}{P + R}$$

где TP - количество истинно-положительных, TN - истинно-отрицательных, FN - ложно-отрицательных ответов.

Функции потерь

Таблица: Популярные функции потерь

Название	Функция
Средняя квадратическая ошибка	$E = \frac{1}{N} \sum_{i=1}^{n} (y_i - x_i)^2$
Средняя абсолютная ошибка	$E = \frac{1}{N} \sum_{i=1}^{n} y_i - x_i $
Верхняя граница	$E = \frac{1}{N} \sum_{i=1}^{n} \max(1 - x_i, y_i, 0)$
Категориальная перекрестная энтропия	$E = -\sum_{i=1}^{n} (x_i \cdot log(y_i))$

 y_i – ожидаемое значение і-го нейрона, x_i – полученное значение і-го нейрона, n – количество выходных нейронов.

Задача диагностики COVID-19

Рентгеновские снимки грудных клеток

Норма Пневмония COVID-19

Всего было собрано 14 197 снимков, из них 8 066 здоровых пациентов, 5 558 с пневмонией и 573 с COVID-19. По 100 изображений каждого класса было отобрано для валидации обучения.

Предварительная обработка изображений

Способы предварительной обработки:

- Масштабирование приведение всех значений в изображении к диапазону [0,1]
- Центрирование среднего значения изображения в 0 и нормализация среднеквадратичного отклонения к 1

Модели:

- Inception V3, размерность входного слоя: 299х299
- ResNet-50, размерность входного слоя: 224x224
- DenseNet-201, размерность входного слоя: 224x224

Обучение всех моделей проходило по 10 эпох, размер одного пакета - 16 изображений. В качестве функции потерь использовалась категориальная перекрестная энтропия, в качестве оптимизатора - Адам.

Предварительная обработка изображений

Таблица: Результаты обучение моделей с предварительным масштабированием значений

Сеть	loss	precision	recall	val_loss	val_precision	val_recall
Inception V3	0.2352	0.9176	0.9106	0.2737	0.7884	0.7700
ResNet-50	0.3242	0.8870	0.8732	0.2373	0.7354	0.7133
DenseNet-201	0.2742	0.9054	0.8969	0.3196	0.7560	0.7333

Таблица: Результаты обучение моделей с предварительным центрированием значений

Сеть	loss	precision	recall	val_loss	val_precision	val_recall
Inception V3	0.3387	0.8860	0.8697	0.5269	0.7204	0.6700
ResNet-50	0.3353	0.8848	0.8705	0.9311	0.6537	0.6167
DenseNet-201	0.3655	0.8742	0.8622	0.3539	0.7643	0.7133

Выбор оптимизатора

Параметры:

- количество эпох: 10
- размер пакета: 8
- Функция потерь: категориальная перекрестная энтропия
- размер входов: 500x500

Модели:

- Inception V3
- ResNet-50 V2
- DenseNet-201

Оптимизаторы:

- SGD Стохастический градиентный спуск
- RMSprop
- Adam

Результаты

• Adam:

	Inception V3			Res	Net-50	V2	DenseNet-201		
	precision	recall	f1-score	precision	recall	f1-score	precision	recall	f1-score
COVID-19	0.53	0.38	0.44	0.55	0.40	0.46	0.52	0.56	0.54
Normal	0.51	0.58	0.54	0.51	0.53	0.52	0.53	0.51	0.52
Pneumonia	0.59	0.68	0.63	0.52	0.63	0.57	0.53	0.51	0.52

• RMSprop:

	Inception V3			Res	Net-50	V2	DenseNet-201		
	precision	recall	f1-score	precision	recall	f1-score	precision	recall	f1-score
COVID-19	0.57	0.51	0.54	0.56	0.84	0.67	0.53	0.23	0.32
Normal	0.52	0.70	0.60	0.63	0.36	0.46	0.56	0.65	0.60
Pneumonia	0.53	0.58	0.55	0.54	0.49	0.51	0.55	0.77	0.64

• SGD:

	Inception V3			ResNet-50 V2			DenseNet-201		
	precision	recall	f1-score	precision	recall	f1-score	precision	recall	f1-score
COVID-19	0.63	0.50	0.56	0.50	0.58	0.54	0.33	0.88	0.48
Normal	0.60	0.64	0.62	0.56	0.55	0.55	0	0	0
Pneumonia	0.67	0.64	0.65	0.52	0.45	0.48	0.33	0.11	0.17

Заключение

Итоги:

- Проведено исследование применения глубокого обучения в задачах распознавания изображений.
- Изучен вопрос диагностики Covid-19 и пневмонии по рентгеновским снимкам грудной клетки.
- Проведен анализ вариантов предварительной обработки изображений для решения данной задачи.
- Разработаны и обучены модели Inception, ResNet и DenseNet для диагностики COVID-19.
- Проведен анализ результатов тестирования по метрикам precision, recall и F1.
- Использование сети Inception V3 с оптимизатором SGD и предварительным масштабированием входных значений предпочтительно для данной задачи.

Спасибо за внимание!

