§ 2.1. Теоретический материал

Понятие дифференциала

 \Rightarrow Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Тогда если существует такое число A, что приращение Δy этой функции в точке x_0 , соответствующее приращению Δx аргумента, представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x,\tag{2.1}$$

где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$, то функция f(x) называется дифференцируемой в точке x_0 . При этом главная, линейная относительно Δx , часть этого приращения, т. е. $A \cdot \Delta x$, называется дифференциалом функции в точке x_0 и обозначается dy или $df(x_0)$.

Нетрудно показать (положив y = x в формуле (2.1)), что $dx = \Delta x$.

Функция f(x) дифференцируема в точке x_0 тогда и только тогда, когда в этой точке существует конечная производная $f'(x_0)$; при этом $A = f'(x_0)$. Поэтому $df(x_0) = f'(x_0) dx$, или, если f'(x) существует на данном интервале (a;b), то

$$dy = f'(x) dx, \quad x \in (a; b).$$

Отсюда $f'(x) = \frac{dy}{dx}$, т. е. производная функции y = f(x) в точке x равна отношению дифференциала этой функции в данной точке к дифференциалу независимой переменной.

Если приращение Δx аргумента x близко к нулю (т. е. достаточно мало), то приращение Δy функции приближенно равно ее дифференциалу, т. е. $\Delta y \approx dy$, откуда

$$f(x_0 + \Delta x) \approx f(x_0) + \underbrace{f'(x_0)\Delta x}_{df(x_0)}$$

Последняя формула удобна для приближенного вычисления значения функции f(x) в точке $x_0 + \Delta x$ по известному значению этой функции и ее производной в точке x_0 .

Геометрически (рис. 82) приращение Δy функции f(x) в точке x — есть приращение ординаты точки на кривой ($\Delta y = AC$), а дифференциал dy функции в этой точке — приращение ординаты соответствующей точки на касательной (dy = AB).

Рис. 82

Пусть u(x) и v(x) — некоторые функции, дифференцируемые в точке x. Тогда:

- $1. \ dC = 0$, где C константа.
- 2. $d(\alpha u) = \alpha \cdot du$, где α константа.
- $3. d(u \pm v) = du \pm dv.$
- $4. d(u \cdot v) = udv + vdu.$
- 5. $d\left(\frac{u}{v}\right) = \frac{vdu udv}{v^2}$, где $v(x) \neq 0$.
- 6. Инвариантность формы дифференциала. Если y = f(u(x)) сложная функция, то

$$df(u) = f'(u) du$$
, или $dy = y'_u \cdot du$,

т. е. форма дифференциала не меняется (инвариантна) независимо от того, рассматривается y как функция независимой переменной x или зависимой переменной u.

Дифференциалы высших порядков

Пусть функция y = f(x) дифференцируема на интервале (a,b). Тогда, как известно, в каждой точке этого интервала определен дифференциал dy = f'(x) dx функции f(x), называемый также $\partial u \phi \phi$ еренциалом первого порядка (или первым дифференциалом).

 \Rightarrow Дифференциалом второго порядка (или вторым дифференциалом) от функции y = f(x) в точке $x \in (a,b)$ называется дифференциал от дифференциала первого порядка функции f(x) в этой точке.

Дифференциал второго порядка обозначается d^2y или $d^2f(x)$. Таким образом, $d^2y=d(dy)$. Учитывая, что $dy=f'(x)\,dx$, где dx— не зависящая от x константа, получим

$$d^2y = f''(x)(dx)^2$$
, или, более кратко, $d^2y = f''(x)dx^2$.

Аналогично определяются дифференциалы третьего и более высоких порядков: $d^3y = d(d^2y)$, $d^4y = d(d^3y)$, ... В общем случае, дифференциалом n-го порядка от функции f(x) в точке x называется дифференциал от дифференциала (n-1)-го порядка функции f(x) в этой точке:

$$d^n y = d(d^{n-1}y),$$

т. е. $d^n y = f^{(n)}(x)(dx)^n$, или, более кратко, $d^n y = f^{(n)}(x)dx^n$. Отсюда следует, что

$$f^{(n)}(x) = rac{d^n y}{dx^n}$$
, в частности $f''(x) = rac{d^2 y}{dx^2}$.

Заметим, что для дифференциалов высших порядков свойство инвариантности (как для дифференциалов первого порядка) не имеет места.