Copysets: Reducing the Frequency of Data Loss in Cloud Storage

Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout and Mendel Rosenblum

Goal: Tolerate Node Failures

Random replication used by:

- HDFS
- GFS
- Windows Azure
- RAMCloud
- •

Not All Failures are Independent

- Power outages
 - 1-2 times a year [Google, LinkedIn, Yahoo]
- Large scale network failures
 - 5-10 times a year [Google, LinkedIn]
- And more:
 - Rolling software/hardware upgrades
 - Power down

Random Replication Fails Under Simultaneous Failures

Node 7 Node 8

Random Replication Causes Frequent Data Loss

- Random replication eventually creates maximum number of copysets
 - Any combination of 3 nodes

$$-\begin{pmatrix} 9 \\ 3 \end{pmatrix} = 84 \text{ copysets}$$

• If 3 nodes fail, 100% probability of data loss

MinCopysets

MinCopysets

MinCopysets Minimizes Data Loss Frequency

- MinCopysets creates minimum number of copysets
 - Only {1, 5, 7}, {2, 4, 9}, {3, 6, 8}

• If 3 nodes fail, 3.5% of data loss $Pr(failure) = \frac{3}{84}$

Pr(failure) =
$$\frac{3}{84}$$

MinCopysets Reduces Probability of Data Loss

The Trade-off

	MinCopysets	Random Replication
Mean Time to Failure	625 years	1 year
Amount of Data Lost	1 TB	5.5 GB

- 5000-node cluster
- Power outage occurs every year

Confirmed by: Facebook, LinkedIn, NetApp, Google

Problem: MinCopysets Increases Single Node Recovery Time

Facebook Extension to HDFS

A Compromise

Time to Recovery a 100 GB Node in 39-node HDFS cluster

Can We Do Better?

Definition: Scatter Width

MinCopysets Scatter Width = 2

Facebook Extension to HDFS

- Node 1's copysets:
 - $-\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}$
- Overall: 54 copysets
- If 3 nodes fail simultaneously:

• Pr(*failure*) =
$$\frac{54}{84}$$
 = 64%

Copyset Replication: Intuition

Same scatter width (4), different scheme:

Ingredients of ideal scheme

- Maximize scatter width
- 2. Minimize overlaps

• Pr(failure) =
$$\frac{6}{84}$$
 = 7% << 64%

Copyset Replication: Initialization

Copyset Replication: Initialization

Permutation 5: Scatter width = 10

Copyset Replication: Replication

Insignificant Overhead

Time to Recovery a 100 GB Node in 39-node HDFS cluster

Copyset Replication

Inherent Trade-off

Related Work

- BIBD (Balanced Incomplete Block Designs)
 - Originally proposed for designing agricultural experiments in the 1930's! [Fisher, '40]
- Other applications
 - Power downs [Harnik et al '09, Leverich et al '10, Thereska '11]
 - Multi-fabric interconnects [Mehra, '99]

Summary

- 1. Many storage systems randomly spray their data across a large number of nodes
- 2. Serious problem with correlated failures
- Copyset Replication is a better way of spraying data that decreases the probability of correlated failures

Thank You!

More Failures (Facebook)

Probability of data loss with varying percentage of concurrent failures

RAMCloud

HDFS

