Math Note

Jong Won

University of Seoul, Mathematics

Contents

1	Set 1		3
	1.1	ър	3
2	Group	Theory	6
_	-	omorphism Theorems	6
		roup Action	8
		enerating subset of a Group	9
		-	_
	C.4 1	ommutator Subgroup	10
3	Finit	Group Theory	11
	3.1	ngrange's Theorem	11
	3.2	ne Class Equation	11
	3.3	auchy's Theorem	11
			12
4	Ring		14
	4.1	ing of Fractions	15
5	Field	Theory	16
6	Categ	PII.	17
•	_		••
7			18
		···· F ·· F · · · · · · · · · · · · · · · · ·	18
		.1.1 Baire Category	18
		.1.2 Nowhere Differentiable function	19
		.1.3 Banach Fixed Point Theorem	20
	7.2	rysohn Metrization Theorem	21
		.2.1 Urysohn Lemma	21
		.2.2 Tietze Extension Theroem	23
		.2.3 Urysohn Metrization Theorem	25
_			
8	Hlgeb	atc Topology	26
9	Basic	Analysis i	27
	9.1	rithmetic means	28
	9.2	aylor's Theorem	30
	9.3	onvexity	31
		.3.1 Definition	31
		.3.2 Properties	32
		·	34
			34
			34
		·	35
		•	37
			40 40
			TÜ
10	Measu	e ·	42

11 Complex Analysis			
12	Differential Geometry	49	
13	Differential Equation	45	
14	Spaces	46	
	14.1 \mathbb{R}^n	46	
	14.1.1 Inner Product in $\mathbb R$	46	
	14.1.2 p –norm in \mathbb{R}^n	46	
	14.1.3 Open and Closed set in \mathbb{R}^n	49	
	14.2 Topological Vector Space	50	
	14.3 Hilbert Space	51	
	14.3.1 Hilbert Space in \mathbb{R}^ω	51	
	14.4 Banach Space	54	
	14.5 L_p Space	54	
	14.6 l_n^r Space		

This paper covers several topics in undergraduate mathematics.

Set Theory

1.1 Map

Definition 1. Let X,Y are sets. Define a *function* X to Y is a relation

$$f \subset X \times Y$$

such that

1. For any $x \in X$, there exists $y \in Y$ such that $(x,y) \in f$.

2. If $(x,y) \in f$ and $(x,z) \in f$, then y = z.

Denote f as:

$$f: X \to Y: x \mapsto f(x)$$

Define *Image* of f by $A \subset X$:

$$f[A] \stackrel{\mathsf{def}}{=} \{ f(a) \mid a \in A \} \subset Y$$

And, *Preimage* of f by $B \subset Y$:

$$f^{-1}[B] \stackrel{\mathrm{def}}{=} \{x \in X \mid f(x) \in B\} \subset X$$

f:X o Y is Injective if: $f(x_1)=f(x_2) \implies x_1=x_2$.

 $f:X \to Y$ is Surjective if: $\forall y \in Y, \exists x \in X \text{ s.t. } f(x)=y.$

If f is injective and surjective, called bijective.

If f is bijective, then define $\emph{inverse}$ of f as:

$$f^{-1}: Y \to X: y \to x$$

where $x \in X$ is the unique elements of X such that f(x) = y.

Theorem 1. Let $f: X \to Y$ be a function. Then,

- 1. There exists $g: Y \to X$ such that $g \circ f: X \to X$ be an identity function if and only if f is injective.
- 2. There exists $h: Y \to X$ such that $f \circ h: Y \to Y$ be an identity function if and only if f is surjective.

Proof.

1. ⇐)

1.
$$\Longrightarrow$$
 J Rssume that $f(x_1)=f(x_2)$. Then, existence of left inverse, $g(f(x_1))=g(f(x_2))\implies x_1=x_2$. Thus f injective.

Since f is injection, for any $y \in f[X]$, there exists a unique element $x_y \in X$ such that f(x) = y. Now, define

$$g:Y\to X:y\mapsto \begin{cases} x_y & y\in f[X]\\ \text{any element in }X & y\notin f[X] \end{cases}$$

Then, for any $x \in X$, g(f(x)) = g(y) = x.

 $2. \implies)$

Let $y \in Y$ be given. Since existence of right inverse, f(h(y)) = y where $h(y) \in X$. Thus, f is surjective.

For any $y \in Y$, there exists a $x_y \in X$ such that $f(x_y) = y$. Now, define

$$h: Y \to X: y \mapsto x_y$$

Then, for any $y \in Y$, $f \circ h(y) = f(x_y) = y$. Thus, $f \circ h$ is identity.

Corollary 1. Let $f: X \to Y$ be a function, $\operatorname{id}_X: X \to X: x \mapsto x$, and $\operatorname{id}_Y: Y \to Y: y \mapsto y$.

There exists a $f^{-1}: Y \to X$ such that $f^{-1} \circ f = \mathrm{id}_X$ and $f \circ f^{-1} = \mathrm{id}_Y$ if and only if f is bijection.

Proof. If f is bijection, then there exists left inverse g and right inverse h. Enough To Show that: g = h. Since $g \circ f = \operatorname{id}_X$ and $f \circ h = \operatorname{id}_Y$, $g \circ f \circ h = g \circ \operatorname{id}_Y$, thus h = g.

Theorem 2. Let X,Y,Z are sets, $f:X\to Y$, $g:Y\to Z$ and $A\subset X,B\subset Y,C\subset Z$. Then followings are hold:

- 1. $g[f[A]] = (g \circ f)[A]$. 2. $f^{-1}[g^{-1}[C]] = (g \circ f)^{-1}[C]$.

Proof.

1. It is clear by definition of image:

$$\begin{split} g[f[A]] &\stackrel{\text{def}}{=} g[\{f(a) \mid a \in A\}] = \{g(b) \mid b \in \{f(a) \mid a \in A\}\} \\ &= \{g(b) \mid b = f(a) \text{ for some } a \in A\} = \{g(f(a)) \mid \text{for some } a \in A\} = \{g(f(a)) \mid a \in A\} \end{split}$$

2. It is not clear,

$$f^{-1}[g^{-1}[C]] \stackrel{\mathsf{def}}{=} f^{-1}[\{b \in Y \mid g(b) \in C\}] = \{a \in X \mid f(a) \in \{b \in Y \mid g(b) \in C\}\} = \{a \in X \mid g(f(a)) \in C\} = (g \circ f)^{-1}[C]$$

Proposition 1. Let $f: X \to Y$ be a function, $A, B \subset X$ and $C, D \subset Y$.

- 1. If $A \subset B$, then $f[A] \subset f[B]$.
- 2. If $C \subset D$, then $f^{-1}[C] \subset f^{-1}[D]$

Proof.

$$y \in f[A] \implies y = f(a)$$
 for some $a \in A \stackrel{A \subset B}{\Longrightarrow} y = f(a)$ for some $a \in B \implies y \in f[B]$ $x \in f^{-1}[C] \implies f(x) \in C \stackrel{C \subset D}{\Longrightarrow} f(x) \in D \implies x \in f^{-1}[D]$

Lemma 1. Let two set X,Y be given, and $A\subset X$, $B\subset Y$, $f:X\to Y$. Then followings are holds:

- 1. $f^{-1}[f[A]]\supseteq A$, and equality holds if f one-to-one.
- 2. $f[f^{-1}[B]] \subseteq B$, and equality holds if f onto.
- **3.** $f^{-1}[Y \setminus B] = X \setminus f^{-1}[B]$
- 4. $f[X] \setminus f[A] \subseteq f[X \setminus A]$, and equality holds if f one-to-one.

Proof. Proof of 4.

$$\begin{array}{l} y \in f[X] \setminus f[A] \iff y \in f[X] \text{ and } y \notin f[A] \\ \iff \exists x \in X \text{ s.t.} \quad y = f(x) \text{ and } \forall x \in A, \ y \neq f(x) \\ \stackrel{(*)}{\Longrightarrow} \exists x \in X \setminus A \text{ s.t.} \quad y = f(x) \\ \iff y \in f[X \setminus A] \end{array}$$

If f is injection, then Left Direction of (*) be true: $\exists ! x \in X \setminus A \text{ s.t. } y = f(x)$.

Group Theory

2.1 Isomorphism Theorems

Theorem 3. The First Isomorphism Theorem Let $\varphi:G\to H$ be a Group-Homomorphism. Then,

$$G/\ker\varphi\cong\varphi[G]$$

Proof. Let $\pi:G\to G/\ker\varphi:x\mapsto x+\ker\varphi$. Then, the map $\phi:G/\ker\varphi\to\varphi[G]:a+\ker\varphi\mapsto\varphi(a)$ is isomorphism. Well-defined and Injective:

$$a + \ker \varphi = b + \ker \varphi \iff a - b \in \ker \varphi \iff \varphi(a - b) = \varphi(a) - \varphi(b) = 0$$

Surjective is clear.

Theorem 4. The Second Isomorphism Theorem Let G be a Group, and $H \leq G$, $N \leq G$. Then,

$$HN/N \cong H/(H \cap N)$$

Proof. HK be a subgroup of G, being

$$HN = \bigcup_{h \in H} hN \stackrel{N \triangleleft G}{=} \bigcup_{h \in H} Nh = NH$$

And, $N \leq HN$ is clear, thus $N \leq HN$.

Meanwhile, $H\cap N$ be a Normal Subgroup of H: for any $h\in H, n\in H\cap N$, $hnh^{-1}\in N$ because N is normal, and $hnh^{-1}\in H$ since h,n contained in H. Thus, $hnh^{-1}\in H\cap N$, this implies $H\cap N$ be a Normal of H. Now, Define a Map:

$$\varphi: H \to HN/N: h \mapsto hN$$

Clearly, this map is Well-Defined and Homomorphism. And,

$$\ker \varphi = \varphi^{-1}[1] = \{ h \in H \mid hN = N \} = \{ h \in H \mid h \in N \} = H \cap N$$

Thus, since The 1st Isomorphism Theorem,

$$HN/N \cong H/(H \cap N)$$

Theorem 5. The Third Isomorphism Theorem

Let G be a Group, and $H, K \subseteq G$ with $H \subseteq K$. Then, $K/H \subseteq G/H$ and

$$(G/H)/(K/H) \cong (G/K)$$

Proof. First, show that $K/H \leq G/H$. Let $kH \in K/H$ and $gH \in G/H$. Then,

$$(gH)(kH)(gH)^{-1} = (gH)(kH)(g^{-1}H) = (gkg^{-1})H \in K/H$$

since $gkg^{-1} \in K$, being $K \unlhd G$. Now, Define a map:

$$\varphi: G/H \to G/K: qH \mapsto qK$$

1. Well-Defined.

$$g_1H = g_2H \iff g_1^{-1}g_2 \in H \stackrel{H \leq K}{\Longrightarrow} g_1^{-1}g_2 \in K \iff g_1K = g_2K$$

2. Homomorphism.

Clearly, for any $g_1H,g_2\in G/H$,

$$\varphi(g_1 H g_2 H) = \phi(g_1 g_2 H) = g_1 g_2 K = g_1 K g_2 K = \varphi(g_1 H) \varphi(g_2 H)$$

- 3. Surjection. Let $gK \in G/K$ be given. Then, clearly, $\varphi(gH) = gK$.
- 4. Kernel.

$$\ker \varphi = \{gH \in G/H \mid gK = 1\} = \{gH \in G/H \mid g \in K\} = K/H$$

Consequently, The 1st Isomorphism Theorem gives

$$(G/K) \cong (G/H)/\ker \varphi = (G/H)/(K/H)$$

Theorem 6. The Forth Isomorphism Theorem

Let G be a Group, and $N \unlhd G$ be a Normal Subgroup. Then, there is a bijection between

$$D \stackrel{\mathrm{def}}{=} \{ H \leq G \mid N \leq H \}, \ \ C \stackrel{\mathrm{def}}{=} \{ \overline{H} \leq G/N \}$$

Proof. Let $\pi:G \to G/N:g \mapsto gN$ be a natural projection. And, Define

$$\Phi:D\to C:H\mapsto \pi[H]$$

This function is well-defined: For any $H\in D$, let $aN,bN\in\pi[H]$. Then, $aN\cdot b^{-1}N=ab^{-1}N\in\pi[H]$, thus $\pi[H]\leq G/N$.

To show that one-to-one: Let $\Phi(A) = \Phi(B)$. Thus means, $\pi[A] = \pi[B]$. Let $a \in A$. Then, $\pi(a) \in \pi[A] = \pi[B]$, thus $\pi(a) = \pi(b)$ for some $b \in B$. That is, $aN = bN \iff a \in bN$. Meanwhile, $N \leq B$, thus $a \in bN \subset B$, $A \subset B$. Similarly, $B \subset A$, that is A = B.

To show that onto: Let $K \in C$. Then, $N \le \pi^{-1}[K] \le G$, thus clear.

2.2 Group Action

2.3 Generating subset of a Group

2.4 Commutator Subgroup

Finite Group Theory

3.1 Lagrange's Theorem

3.2 The Class Equation

3.3 Cauchy's Theorem

Lemma 2. Cauchy's Theorem

Let G be a finite group, and p be a prime dividing |G|. Then, G has order p element.

Proof. Define a set:

$$S \stackrel{\text{def}}{=} \{(x_1, x_2, \dots, x_n) \mid x_i \in G, \ x_1 x_2 \cdots x_n = 1\}$$

Then, S has exactly $|G|^{p-1}$ elements because there are |G| possible choices for each of the first p-1 elements in G.

Once x_1,\cdots,x_{p-1} are chosen, then x_p is uniquely determined by the uniqueness of inverses.

Then, let $\sigma=(1,2,\ldots,p)$ be a permutation. Then, for any $\alpha\in S$, $\sigma^n(\alpha)\in S$ for all $n\in\mathbb{Z}$, being $ab=1\iff ba=1$. More precisely, let $n\in\mathbb{Z}$ be given, $\alpha=(x_1,\cdots,x_n)$. Then,

$$\sigma^{n}(\alpha) = (x_{n+1}, x_{n+2}, \dots, x_{p}, x_{1}, x_{2}, \dots x_{n})$$

By $x_1\cdots x_nx_{n+1}\cdots x_p=1$, $x_{n+1}\cdots x_px_1\cdots x_n=1$. Thus $\sigma^n(\alpha)\in S$. Now, define a relation on S as:

$$\alpha \sim \beta$$
 if and only if $\beta = \sigma^n(\alpha)$ for some $n \in \mathbb{Z}$

Then, this relation be equivalent relation, thus construct a partition on S. Claim:

$$[\alpha] = \{\beta \in S \mid \beta \sim \alpha\}$$
 is singleton if and only if $\alpha = (x, \dots, x)$ for some $x \in G$.

Left direction is clear, and for show that Right direction,

Suppose that $\alpha = (x_1, \dots, x_n)$ has different coordinate elements, let $x_i \neq x_j$, for some i < j. Then clearly

$$(x_1,\ldots,x_i,\ldots,x_p) \neq \sigma^{i-j}(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_p) = (\ldots,\underbrace{x_j}_{\substack{i' \text{th element}}},\ldots)$$

Meanwhile, if $[\alpha]$ has elements more than 1, $[\alpha]$ has exactly number of p elements. Because suppose that $\alpha=(x_1,\ldots,x_p)$ has at least one different coordinate. Then,

$$\sigma^1(\alpha), \sigma^2(\alpha), \cdots, \sigma^{p-1}(\alpha)$$

are mutually different: If there exist $1 \le i < j < p$ such that $\sigma^i(\alpha) = \sigma^j(\alpha)$, that is, $\sigma^{j-i}(\alpha) = \alpha$. Now, $j-i \mid p$, this is contradiction with p is prime. Therefore, every equivalent class has order 1 or p. Consequently,

$$|G|^{p-1} = k + pd$$

where k is a number of classes of size 1, and d is a number of classes of size p. And $(1,1,\ldots,1)\in S$, k is at least 1.

Since p divides $|G|^{p-1}=k+pd$, thus k must be bigger than 1, thus there exists elements such that $x^p=1$. \square

3.4 Sylow's Theorem

Theorem 7. Sylow's Theorem

Let G be a group of order $p^{\alpha}m$, where p is a prime such that $p \nmid m$.

A group of order p^r , $(r \ge 1)$ is called a p-group, Subgroups of G which are p-groups are called p-subgroup. In particular, subgroups of order p^{α} is called Sylow p-subgroup of G. And, define a collection

$$\mathrm{Syl}_p(G) \stackrel{\mathrm{def}}{=} \{P \leq G \mid |P| = p^\alpha\}, \ n_p(G) \stackrel{\mathrm{def}}{=} \mathrm{Card}(\mathrm{Syl}_p(G))$$

The First Sylow Theorem

There exists a Sylow p-subgroup of G. i.e., $\operatorname{Syl}_n(G) \neq \emptyset$.

The Second Sylow Theorem

If $P \in \operatorname{Syl}_p(G)$ and $Q \leq G$ be a p-subgroup. Then, there exists $g \in G$ such that $Q \leq gPg^{-1}$.

The Third Sylow Theorem

 $n_p \equiv 1 \pmod{p}$, $n_p = |G:N_G(P)|$ for any $P \in \mathrm{Syl}_p(G)$, and $n_p \mid m$.

Before prove above statments, we show that:

Lemma 3. Let $P \in \operatorname{Syl}_n(G)$. If Q is p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

Proof. Put $H=Q\cap N_G(P)$. Since $P\leq G$, for any $p\in P$, $pPp^{-1}=P$, thus $p\in N_G(P)$. i.e., $P\leq N_G(P)$. Thus, Enough to Show that $H\leq Q\cap P$. Since $H\leq N_G(P)$,

$$PH = \bigcup_{h \in H} Ph = \bigcup_{h \in H} hP = HP$$

Thus, $PH \leq G$. And,

$$|PH| = \frac{|P||H|}{|P \cap H|}$$

By Lagrange's Theorem, $H \leq P$ and $P \cap H \leq P$ must have order of powers of p, so PH be a p-group. Clearly, $P \leq PH$ and P is the largest p-group of G, thus, PH = P. This means, $H \leq P$.

 ${\it Proof.}$ The First Theorem: The existence of Sylow p-subgroup. Proof by Induction:

If |G|=1, there is nothing to prove.

Assume inductively the existence of Sylow p-subgroups for all groups of order less than |G|.

In case of p||Z(G)|, then by Cauchy's Theorem, Z(G) has a subgroup N which has order of p.

Clearly N is Normal, and $G/N = |G|/|N| = p^{a-1}m$. By assumption, G/N has a subgroup P' of order $p^{\alpha-1}$.

By The Forth Isomorphism Theorem, Let $P \leq G$ be a subgroup such that P/N = P'.

Then, $|P| = |P/N| \cdot |N| = p^{\alpha}$, Thus P be a Sylow p-subgroup of G.

In case of $p \nmid |Z(G)|$.

Let g_1, \ldots, g_r be representatives of the distinct conjugacy classes of G, not contained in Z(G). Then, The Class Equation gives

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G : C_G(g_i)|$$

Since p divides |G|, if for all $i=1,2,\ldots,r$, $p\mid |G:C_G(g_i)|$ then $p\mid |Z(G)|$, this is contradiction. Thus, for some j, $p\nmid |G:C_G(g_j)|$. Put $H=C_G(g_j)< G$. Then, |H| has a factor of p^α , by $p\nmid |G:C_G(g_j)|$. Now,

$$|H| = p^{\alpha} m' \quad (m' < m)$$

By assumption, H has a Sylow p-group, order of p^{α} .

Consequently, the existence of Sylow p-subgroup was shown.

The Second Theorem: Relation of $p ext{-subgroups}$.

The First Theorem gives existence of Sylow p-subgroups. Let $P \in \operatorname{Syl}_p(G)$. Denote that:

$$S \stackrel{\text{def}}{=} \{gPg^{-1} \mid g \in G\} = \{P_1, \dots, P_r\}$$

Let $Q \leq G$ be an any p-subgroup of G. And, Q acts by conjucation on S. i.e.,

$$\alpha: Q \times S \to S: (q, P_i) \mapsto qP_iq^{-1}$$

Write S as a disjoint union of orbits under this action by Q:

$$S = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_s$$

where $r = |\mathcal{O}_1| + \cdots + |\mathcal{O}_s|$. Rearrange a set S as: $P_i \in \mathcal{O}_i, \ 1 \leq i \leq s$. Now, using Definition, Lemma, and above Theorem,

$$|\mathcal{O}_i| \stackrel{\mathrm{Thm}}{=} |Q:N_Q(P_i)| \stackrel{\mathrm{def}}{=} |Q:N_G(P_i) \cap Q| \stackrel{\mathrm{lemma}}{=} |Q:P_i \cap Q|$$

for each $1 \le i \le s$. Since Q was arbitrary, Let $Q = P_1$, so that $|\mathcal{O}_1| = |P_1 : P_1 \cap P_1| = 1$. And, for each $i \ge 2$, $P_i \cap P_1 < P_1$,

$$|\mathcal{O}_i| = |P_1: P_i \cap P_1| > 1$$

Since $P_1 \in \operatorname{Syl}_p(G)$, that is $|P_1| = p^{\alpha}$, $|P_1:P_i \cap P_1| = |P_1|/|P_i \cap P_1| = p^k$ where $1 \leq k < \alpha$. This means for each $2 \leq i \leq s$, p divides $|\mathcal{O}_i|$. Thus,

$$r = |\mathcal{O}_1| + (|\mathcal{O}_2| + \dots + |\mathcal{O}_s|) \equiv 1 \pmod{p}$$

Now, Proof by Contradiction: Let $Q \leq G$ be a p-subgroup. Suppose that for any $1 \leq i \leq r$, $Q \nleq P_i$. Then, $P_i \cap Q < Q$ for all i, this means

$$|\mathcal{O}_i| = |Q: P_i \cap Q| > 1$$

Thus for any i, p divides $|\mathcal{O}_i|$, this is Contradiction. This proved Relation of p-subgroups. Finally, The Third Theorem:

Since Second Theorem, this gives that $S=\operatorname{Syl}_p(G)$, thus $n_p(G)=r$. That is, $n_p\equiv 1(\bmod p)$. Since all Sylow p-subgroups are Conjugate, for any $P\in\operatorname{Syl}_p(G)$,

$$n_p = r = |\mathcal{O}_1| = |G: N_G(P)|$$

Consequently, Completing the Sylow Theorem.

Ring Theory

4.1 Ring of Fractions

Theorem 8. Let R be a Commutative Ring, $D \subset R$ be a subset such that $\begin{cases} \text{no zero, no zero divisors} \\ \text{closed under multiplication} \end{cases}$

Then, there exists a Commutative Ring ${\it Q}$ with identity satisfies:

- 1. R can embed in Q, and every element of D becomes unit in Q. More precisely, $Q = \{rd^{-1} \mid r \in R, d \in D\}$.
- 2. Q is the smallest Ring with identity such that every element of D becomes unit in Q

Proof. Let $\mathcal{F} \stackrel{\mathsf{def}}{=} \{(r,d) \mid r \in R, \ d \in D\}$ and the relation \sim on \mathcal{F} by $(r_1,d_1) \sim (r_2,d_2) \iff r_1d_2 = r_2d_1$. Then, \sim is equivalent relation: reflexive and symmetric are clear, and Suppose that $(r_1,d_1) \sim (r_2,d_2)$ and $(r_2,d_2) \sim (r_3,d_3)$.

$$r_2d_3 = r_3d_2 \implies r_2d_1d_3 = r_3d_1d_2 \implies r_1d_2d_3 = r_3d_1d_2 \implies d_2(r_1d_3 - r_3d_1) \implies r_1d_3 = r_3d_1d_2$$

Thus transitivity shown. Define

$$\frac{r}{d} \stackrel{\mathrm{def}}{=} [(r,d)] = \{(a,b) \mid (a,b) \sim (r,d)\}, \quad Q \stackrel{\mathrm{def}}{=} \left\{\frac{r}{d} \mid r \in R, \quad d \in D\right\}$$

And define operations $+, \times$ on Q:

$$\frac{r_1}{d_1} + \frac{r_2}{d_2} \stackrel{\text{def}}{=} \frac{r_1 d_2 + r_2 d_1}{d_1 d_2}, \quad \frac{r_1}{d_1} \times \frac{r_2}{d_2} \stackrel{\text{def}}{=} \frac{r_1 r_2}{d_1 d_2}$$

Well-Definedness: If $\frac{r_1}{d_1}=\frac{r_1'}{d_1'}$ and $\frac{r_2}{d_2}=\frac{r_2'}{d_2'}$,

$$\frac{r_1d_2+r_2d_1}{d_1d_2} = \frac{r_1d_2d_1'd_2'+r_2d_1d_1'd_2'}{d_1d_2d_1'd_2'} = \frac{(r_1d_1')d_2d_2'+(r_2d_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)d_2d_2'+(r_2'd_2)d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)d_2d_2'+(r_2'd_2)d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_2'+(r_2'd_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_1'+(r_2'd_1')d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_1'+(r_2'd_1')d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_1$$

$$\frac{r_1r_2}{d_1d_2} = \frac{r_1r_2d_1'd_2'}{d_1d_2d_1'd_2'} = \frac{(r_1d_1')(r_2d_2')}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)(r_2'd_2)}{d_1d_2d_1'd_2'} = \frac{r_1'r_2'd_1d_2}{d_1d_2d_1'd_2'} = \frac{r_1'r_2'}{d_1d_2}$$

Now, (Q,+, imes) constructs Commutative Ring with identity: for any $d\in D$, put $0_Q\stackrel{\mathsf{def}}{=} \frac{0}{d},\ 1_Q\stackrel{\mathsf{def}}{=} \frac{d}{d}.$ Then,

- 1. $(R,+,\times)$ closed under the operations since D is closed under the multiplication.
- 2. (R,+) has a zero: $\frac{r_1}{d_1}+0_Q=\frac{r_1}{d_1}+\frac{0}{d}=\frac{r_1d+0d_1}{d_1d}=\frac{r_1d}{d_1d}=\frac{r_1}{d_1}$.
- 3. (R,+) has an inverse: $\frac{r_1}{d_1}+\frac{-r_1}{d_1}=\frac{r_1d_1+(-r_1)d_1}{d_1d_1}=\frac{[(r_1)+(-r_1)]d_1}{d_1d_1}=\frac{0d_1}{d_1d_1}=\frac{0}{d_1d_1}=0_Q$.
- 4. $(R, +, \times)$ satisfies distributive law:
 - 4-1. The left law:

$$\begin{split} \frac{r_1}{d_1} \times \left(\frac{r_2}{d_2} + \frac{r_3}{d_3}\right) = & \frac{r_1}{d_1} \times \frac{r_2 d_3 + r_3 d_2}{d_2 d_3} = \frac{r_1 r_2 d_3 + r_1 r_3 d_2}{d_1 d_2 d_3} = \frac{r_1 r_2 d_1 d_3 + r_1 r_3 d_1 d_2}{d_1 d_2 d_1 d_3} = \frac{r_1 r_2}{d_1 d_2} + \frac{r_2 r_3}{d_2 d_3} \\ = & \frac{r_1}{d_1} \times \frac{r_2}{d_2} + \frac{r_2}{d_2} \times \frac{r_3}{d_3} \end{split}$$

4-2. The right law:

$$\begin{split} \left(\frac{r_1}{d_1} + \frac{r_2}{d_2}\right) \times \frac{r_3}{d_3} &= \frac{r_1 d_2 + r_2 d_1}{d_1 d_2} \times \frac{r_3}{d_3} = \frac{r_1 r_3 d_2 + r_2 r_3 d_1}{d_1 d_2 d_3} = \frac{r_1 r_3 d_2 d_3 + r_2 r_3 d_1 d_3}{d_1 d_3 d_2 d_3} = \frac{r_1 r_3}{d_1 d_3} + \frac{r_2 r_3}{d_2 d_3} \\ &= \frac{r_1}{d_1} \times \frac{r_3}{d_3} + \frac{r_2}{d_2} \times \frac{r_3}{d_3} \end{split}$$

- 5. (R,\times) has an identity: $\frac{r_1}{d_1}\times 1_Q=\frac{r_1}{d_1}\times \frac{d}{d}=\frac{r_1d}{d_1d}=\frac{r_1}{d_1}$.
- 6. Elements of D become unit in Q: Define $\iota:R\to Q:r\mapsto \frac{rd}{d}$ where $d\in D$ is any fixed element in D. Then, ι is Ring-Monomorphsim because:
 - 6-1. Well-Defined and Injective: $\iota(r_1)=\iota(r_2)\iff \frac{r_1d}{d}=\frac{r_2d}{d}\iff (r_1-r_2)dd=0\iff r_1=r_2$

Field Theory

Category

General Topology

7.1 Complete Metric Space

Definition 2. Let (X,d) be a Metric Space, and $\{p_n\}$ be a Sequence in X. The Sequence $\{p_n\}$ is called *Cauchy Sequence* if:

For any $\epsilon>0$, there exists $N\in\mathbb{N}$ such that $m,n\geq N\implies d(p_m,p_n)<\epsilon$.

A Metric Space (X,d) is said to be *Complete* if every Cauchy Sequnces Converge.

Lemma 4. Let $\{E_n\}$ be a sequence of closed bounded non-empty subsets in a Complete Metric Space X such that $E_n\supset E_{n+1}$. If $\lim_{n\to\infty} \operatorname{diam} E_n=0$, then $\bigcap_{n=1}^\infty E_n=\{p\}$ for some $p\in X$.

Proof. For each $n \in \mathbb{N}$, construct $p_n \in E_n$.

Let $\epsilon>0$ be given. Since ${\rm diam}E_n\to 0$, there is $N\in\mathbb{N}$ such that ${\rm diam}E_n<\epsilon$.

For any $m,n\geq M$, E_N contains p_m,p_n . That is, $d(p_m,p_n)<\epsilon$. Thus, $\{p_n\}$ be a Cauchy sequence of X .

Since X is complete, there is a unique point $p \in X$ such tabt $p_n \to p$. Let $N \in \mathbb{N}$ be an integer such that $n \geq N \implies |p_n - p| < \epsilon$.

Now, for each $n\geq N$, E_n has a limit point as p. And for any $n\in\mathbb{N}$, E_n contains E_N,E_{N+1},\ldots , thus for all $n\in\mathbb{N}$, E_n has a limit point as p. Meanwhile, E_n closed, $p\in E_n,\ \forall n\in\mathbb{N}$.

Consequently, $p\in\bigcap_{n=1}^\infty E_n$. If there is $q\in X$ such that $p\neq q$, $q\in\bigcap_{n=1}^\infty E_n$. Then, $\mathrm{diam}E_n\geq d(p,q)>0,\ \forall n\in\mathbb{N}$.

7.1.1 Baire Category

Definition 3. The Topological Space X is called Baire Space if:

If $\{G_n\mid n\in\mathbb{N}\}$ be a Countable Collection of dense open sets of X, then $\bigcap_{n=1}^\infty G_n=X$

In brief, every Countable intersection of dense open sets be dense in X.

Theorem 9. Locally Compact Hausdorff Space is Baire Space.

Theorem 10. Complete Metric Space is Baire Space.

Proof. Suppose that $\{G_n \mid n \in \mathbb{N}\}$ be a Countable Collection of dense open set of Complete Metric Space. Let an open $U \in \mathcal{T}$ be given. Since G_n is dense in the Space, $U \cap G_1$ is non-empty open set.

Thus, there exists a $p_1 \in U \cap G_1$ such that for some $r_1 > 0$, $B_{r_1}(p_1) \subset U \cap G_1$. Then, automatically,

$$B_{\frac{r_1}{2}}(p_1) \subset \overline{B_{\frac{r_1}{2}}(p_1)} \subset B_{r_1}(p_1) \subset U \cap G_1$$

Set $E_1=U,\ E_2=B_{\frac{r_1}{2}}(p_1)$. Suppose that E_1,\dots,E_{n-1} are chosen. Then, since $E_{n-1}\cap G_{n-1}$ is open, being intersection of opens. Thus there exists a point $p_{n-1} \in E_{n-1} \cap G_{n-1}$ and exists r_{n-1} such that

$$B_{r_{n-1}}(p_{n-1}) \subset E_{n-1} \cap G_{n-1} \subset E_{n-1}$$

This implies that

$$B_{\frac{r_{n-1}}{2}}(p_{n-1}) \subset \overline{B_{\frac{r_{n-1}}{2}}(p_{n-1})} \subset B_{r_{n-1}}(p_{n-1}) \subset E_{n-1} \cap G_{n-1} \subset E_{n-1}$$

Since inductively construction of $\{E_n\}$, $E_{n+1}\subset E_n$ and $\overline{E_n}\subset G_n$ for all $n\in\mathbb{N}.$ Set $E_n = B_{\frac{r_{n-1}}{2}}(p_{n-1})$. Consequently,

$$U \cap \left(\bigcap_{n=1}^{\infty} G_n\right) = \bigcap_{n=1}^{\infty} \left(U \cap G_n\right) \supset \bigcap_{n=1}^{\infty} \left(U \cap \overline{E_n}\right) = U \cap \left(\bigcap_{n=1}^{\infty} \overline{E_n}\right) = \bigcap_{n=1}^{\infty} \overline{E_n} \neq \emptyset$$

Definition 4. Let X be a Topological Space.

 $A \subset X$ is said to be nowhere dense subset if $(\overline{A})^{\circ} = \emptyset$.

- 1. $B \subset X$ is called *first category* if B can be representive by union of countable nowhere dense subsets.
- 2. If the subset is not first category, then it is said to be second category.

Nowhere Differentiable function 7.1.2

7.1.3 Banach Fixed Point Theorem

Definition 5. Let $f: X \to X$ be any function. A point $x \in X$ is called a *fixed point* of f if f(x) = x.

Definition 6. Let X be a Metric Space. A map $f: X \to X$ is called *Contractive* with respect to the metric d if:

There exsits $\alpha \in (0,1)$ such that for all $x,y \in X$, $d(f(x),f(y)) \leq \alpha d(x,y)$.

Theorem 11. Banach Fixed point Theorem

Let (X,d) be a Complete Metric Space, and $f:X\to X$ be a Contractive map. Then, there exists a unique fixed point of f, $x^*\in X$.

Proof. Clearly,

Contractive \implies Lipschitz Condition \implies Continuous.

Thus, f is Continuous.

Let $x_0 \in X$ be arbitrary, and construct a sequence $\{x_n\}$ recursively as follows:

$$x_{n+1} \stackrel{\text{def}}{=} f(x_n), \ n \ge 0$$

Then, for any $n \ge 0$,

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le \alpha d(x_n, x_{n-1})$$

$$= d(f(x_{n-1}), f(x_{n-2})) \le \alpha^2 d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\le \alpha^n d(x_1, x_0)$$

Let $\epsilon>0$ be given. Put $N\in\mathbb{N}$ such that $\alpha^N\cdot d(x_1,x_0)<\epsilon(1-\alpha)$. Then, $n\geq m\geq N$ implies that

$$d(x_n, x_m) \le d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m)$$

$$\le \alpha^n d(x_1, x_0) + \alpha^{n-1} d(x_1, x_0) + \dots + \alpha^{m+1} d(x_1, x_0)$$

$$= \alpha^{m+1} d(x_1, x_0) \sum_{r=0}^{n-m-1} \alpha^r < \alpha^N d(x_1, x_0) \sum_{r=0}^{\infty} \alpha^r < \epsilon (1 - \alpha) \frac{1}{1 - \alpha} = \epsilon$$

Therefore, $\{x_n\}$ is Cauchy sequence. Since X is Complete, for some $x^* \in X$, $\lim_{n \to \infty} x_n = x^*$. Consequently,

$$\lim_{n \to \infty} f(x_n) \stackrel{f \text{ conti.}}{=} f\left(\lim_{n \to \infty} x_n\right) = f(x^*) = \lim_{n \to \infty} x_{n+1} = x^*$$

7.2 Urysohn Metrization Theorem

7.2.1 Urysohn Lemma

Recall that:

Definition 7. X is T_4 if: For any disjoint closed set A and B, there exist disjoint open U,V such that $A\subseteq U$ and $B\subseteq V$.

Lemma 5. X is T_4 Space if and only if For any closed C and open U with $C\subseteq U$, there exists open O such that

$$\underset{\text{closed}}{C} \subseteq \underset{\text{open}}{O} \subseteq \underset{\text{closed}}{\overline{O}} \subseteq \underset{\text{open}}{U}$$

Proof. Proof of the left direction only.

Let X be a T_4 Space, and $C \subset X$ be a closed, U be a open containing C. Then, $C \subset U$ implies $U^c \subset C^c$, thus U^c is a closed set disjoint from C. By T_4 condition, There exist disjoint opens O, O' such that $C \subset O$ and $U^c \subset O' \iff O'^c \subset U$.

Since $O \cap O' = \emptyset \iff O \subset O'^c$, O contained in U, this implies that $C \subset O \subset U$.

Since closure is the smallest closed set such that contains it, consequently $C\subset O\subset \overline{O}\subset O'^c\subset U$.

Definition 8. Let X be a Toplogical Space, and $A,B\subset X$ are disjoint closed subset.

A real-valued Continuous map $f: X \to [a,b]$ is called *Urysohn function* for A and B if: $f|_A = a$ and $f|_B = b$. In another form,

 $f: X \to [a, b]: x \to \begin{cases} a & x \in A \\ b & x \in B \\ f(x) & x \notin A \cup B \end{cases}$

Lemma 6. Urysohn Lemma

 T_4 Space has an Urysohn function for any two disjoint closed subsets.

Proof. Generalization is the last thing to proven, first of all, prove in case of [a,b]=[0,1]. This proof consists by three Step.

Let X be a T_4 Space, and $A,B\subset X$ be closed subsets.

Step 1. Construct a Chain of Open sets with Dyadic Rational Indices.

Consider a set of *Dyadic Rationals* $D \stackrel{\mathsf{def}}{=} \left\{ \frac{k}{2^n} \mid n, k \in \mathbb{N}, \ k \leq 2^n - 1 \right\}$. We will show that the following statement holds:

For any $r,s\in D$ with r< s, there exist open sets U_r,U_s such that $A\subseteq \overline{U}_r\subseteq U_s\subseteq X\setminus B$ (*)

For this, Enough to Show that: For any $k \in \mathbb{N}$, there exists a Chain as:

$$A\subseteq U_{\frac{1}{2^k}}\subseteq \overline{U}_{\frac{1}{2^k}}\subseteq U_{\frac{2}{2^k}}\subseteq \overline{U}_{\frac{2}{2^k}}\subseteq \cdots \subseteq U_{\frac{2^k-1}{2^k}}\subseteq \overline{U}_{\frac{2^k-1}{2^k}}\subseteq X\setminus B$$

(Note that this opens in the Chain are not necessary distinct: For instance, if Ambient Space is Finite, then the Space is *Noetherian*. That is, X satisfies Ascending Chain Condition for open sets.)

Let k=1. Then, By T_4 condition gives that: There exists an open set U_1 such that

$$A \subseteq U_1 \subseteq \overline{U_1} \subseteq X \setminus B$$

Now, naming this U_1 as $U_{\frac{1}{2}}$, proved when k=1.

$$A \in \bigcup_{\substack{\text{closed} \\ \text{open}}} (A) \subseteq \bigcup_{\substack{\frac{1}{2^k} \\ \text{closed}}} (A) \subseteq \bigcup_{\substack{\frac{1}{2^k} \\ \text{open}}} (A) \subseteq \bigcup_{\substack{\frac{1}{2^k} \\ \text{open}}} (A) \subseteq \bigcup_{\substack{\frac{2}{2^k} \\ \text{open}}} (A) \subseteq \bigcup_{\substack{\frac{2}{2^k-1} \\$$

By repeatedly applying the T_4 condition 2^k times, as indicated by the indices $*1,*2,\ldots,*2^k$, we can construct 2^k open sets such that:

$$A\subseteq U_{\frac{1}{2^{k+1}}}\subseteq \overline{U}_{\frac{1}{2^{k+1}}}\subseteq U_{\frac{1}{2^k}}\subseteq \overline{U}_{\frac{1}{2^k}}\subseteq \overline{U}_{\frac{3}{2^{k+1}}}\subseteq \overline{U}_{\frac{3}{2^{k+1}}}\subseteq U_{\frac{2}{2^k}}\subseteq \overline{U}_{\frac{2}{2^k}}\qquad \subseteq\cdots\subseteq U_{\frac{2^{k-1}}{2^k}}\subseteq \overline{U}_{\frac{2^{k-1}}{2^k}}\subseteq U_{\frac{2^{k+1}-1}{2^{k+1}}}\subseteq \overline{U}_{\frac{2^{k+1}-1}{2^{k+1}}}\subseteq X\setminus B$$

Finally, Step 1 proved.

Step 2. Construct an Urysohn Function.

Define a map $f: X \to [0,1]$ as:

$$f(x) = \begin{cases} 0 & x \in \bigcap_{t \in D} U_t \\ \sup\{t \in D \mid x \notin U_t\} & x \notin \bigcap_{t \in D} U_t \end{cases}$$

Then, this map f is well-defined by (*) and $\sup D < 1$. And f satisfies that:

- 1. $\forall r \in D, x \in A \subset U_r$. Thus, f(x) = 0 if $x \in A$.
- 2. $\forall r \in D, x \in B \subset X \setminus U_r$. Thus, $f(x) = \sup D = 1$ if $x \in B$.
- 3. If $x\in \overline{U}_r$, then for every s>r, $x\in \overline{U}_r\subset U_s$. Thus, $f(x)\leq r$. In Contrapositive, $f(x)>r \implies x\notin \overline{U}_r$. (If $f(x)=\sup\{t\in D\mid x\notin U_t\}>r$, then there is $s\in D$ such that s>r and $x\notin U_s$, Contradiction.)
- **4.** If $x \notin U_r$, then, $f(x) \ge r$. In Contrapositive, $f(x) < r \implies x \in U_r$.

Now, show that this map f is Continuous map: Let $x \in X$ be fixed arbitrarlily, and $\epsilon > 0$ be given. In Case of 0 < f(x) < 1.

Since Density of Dyadic Rationals, Choose $r,s \in D$ such that $f(x) - \epsilon < r < f(x) < s < f(x) + \epsilon$. Now, we obtain that:

$$x \stackrel{(*)}{\in} U_s \setminus \overline{U}_r \stackrel{(**)}{\subseteq} f^{-1}[(f(x) - \epsilon, f(x) + \epsilon)]$$

(*) directly given by above properties, (**) given applying the fact that $x\in U_s\subset \overline{U}_s$ and $x\notin \overline{U}_r$. In Case of f(x)=0.

Choose $r \in D$ such that $f(x) = 0 < r < \epsilon = f(x) + \epsilon$. Then,

$$x \in U_r \subset f^{-1}[(f(x), f(x) + \epsilon)]$$

In Case of f(x) = 1.

Choose $r \in D$ such that $f(x) - \epsilon = 1 - \epsilon < r < 1 = f(x)$. Then,

$$x \in X \setminus U_r \subset f^{-1}[(f(x) - \epsilon, f(x))]$$

Consequently, f is Continuous map on [0,1] such that $f|_A=0$ and $f|_B=1$. Step 3. Generalization.

Since $[0,1]\cong [a,b]$ for any a< b, let $g:[0,1]\to [a,b]:x\mapsto (1-x)a+xb$ be a Homeomorphism.

Then, $h=g\circ f:X\to [a,b]$ becomes a Continuous map such that $h|_A=a$ and $h|_B=b$.

Tietze Extension Theroem 7.2.2

Theorem 12. Tietze Extension Theroem

Let X be a T_4 Space, and $A \subseteq X$ be a closed subset.

For any Continuous map $f:A \to \mathbb{R}$, there exists a Continuous map:

$$g:X o\mathbb{R}$$
 s.t. $g|_A=f$

This g is called *extension* of f.

Proof. This proof consists by three steps.

Step 1. First, we will show that:

For any Continuous map $f:A \to [-r,r]$, there is a Continuous map $h:X \to \mathbb{R}$ s.t. $\begin{cases} \forall x \in X, \ |h(x)| \leq \frac{1}{3}r \\ \forall a \in A, \ |f(a) - h(a)| \leq \frac{2}{3}r \end{cases}$

Set

$$I_1 \stackrel{\mathrm{def}}{=} \left[-r, -\frac{1}{3}r \right], \quad I_2 \stackrel{\mathrm{def}}{=} \left[-\frac{1}{3}r, \frac{1}{3}r \right], \quad I_3 \stackrel{\mathrm{def}}{=} \left[\frac{1}{3}r, r \right]$$

Then, the preimage of continuous map preserves closed and A is closed subspace of X, $f^{-1}[I_1]$ and $f^{-1}[I_3]$ are closed of X.

And, I_1 and I_3 are disjoint, thus $f^{-1}[I_1\cap I_3]=f^{-1}[I_1]\cap f^{-1}[I_3]=\emptyset$.

Now, apply the *Urysohn Lemma*: There exists an Urysohn function $h:X o I_2$ for $f^{-1}[I_1]$ and $f^{-1}[I_3]$.

Clearly, this map h satisfies the first condition in (*). And, for show the second condition, let $a \in A$ be given.

If $a \in f^{-1}[I_1]$, then $f(a) \in I_1$ and $h(a) = -\frac{1}{3}r$, thus $|f(a) - h(a)| \le \frac{2}{3}r$. If $a \in f^{-1}[I_3]$, then $f(a) \in I_3$ and $h(a) = \frac{1}{3}r$, thus $|f(a) - h(a)| \le \frac{2}{3}r$. If $a \notin (f^{-1}[I_1] \cup f^{-1}[I_3])$, then $f(a), h(a) \in I_2$, thus $|f(a) - h(a)| \le \frac{2}{3}r$.

Therefore, the second condition satisfied.

Step 2. We will show that: for any $f:A\to [-1,1]$, there exists an extension of f.

Apply the result in Step 1, there exists a Continuous map:

$$h_1:X o\mathbb{R}$$
 s.t.
$$\begin{cases} \forall x\in X,\ |h_1(x)|\leq rac{1}{3}\ \forall a\in A,\ |f(a)-h_1(a)|\leq rac{2}{3} \end{cases}$$

Now, the second condition of h_1 , the continuous map $f-h_1:A \to \left[-\frac{2}{3},\frac{2}{3}\right]:x \to f(x)-h_1(x)$ is well-defined. Again, there exists a Continuous map:

$$h_2: X \to \mathbb{R} \text{ s.t. } \begin{cases} \forall x \in X, \ |h_2(x)| \leq \frac{1}{3} \cdot \frac{2}{3} \\ \forall a \in A, \ |f(a) - h_1(a) - h_2(a)| \leq \left(\frac{2}{3}\right)^2 \end{cases}$$

Inductively, for any $n \in \mathbb{N}$, there exists a Continuous map:

$$h_n: X \to \mathbb{R} \text{ s.t. } \begin{cases} \forall x \in X, \ |h_n(x)| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{n-1} \\ \forall a \in A, \ |f(a) - h_1(a) - h_2(a) - \dots - h_n(a)| \leq \left(\frac{2}{3}\right)^n \end{cases}$$

Define a map

$$g: X \to [-1, 1]: x \mapsto \sum_{n=1}^{\infty} h_n(x)$$

For any $x \in X$,

$$|g(x)| = \left| \sum_{n=1}^{\infty} h_n(x) \right| \le \sum_{n=1}^{\infty} |h_n(x)| \le \sum_{n=1}^{\infty} \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1$$

Therefore, this map is well-defined. And, Weierstrass M-test gives that $\sum_{n=1}^\infty h_n(x)$ converges uniformly. Moreover, for any $a \in A$,

$$\left| f(a) - \sum_{k=1}^{n} h_k(a) \right| \le \left(\frac{2}{3} \right)^n \implies \left| f(a) - \sum_{n=1}^{\infty} h_n(a) \right| = |f(a) - g(a)| = 0$$

That is, g is Continuous on X and $g|_A=f$. Therefore, g is extension of f. Step 3. Finally, we generalize the result in Step 2.: Let $f:A \to [a,b]$ be a Continuous map on the closed subspace A. And, let $\varphi:[a,b] \to [-1,1]$ be a Homeomorphism. Then, $\varphi \circ f:A \to [-1,1]$ is Continuous map, thus there exists an extension $g:X \to [-1,1]$ such that $g|_A=\varphi \circ f$. Now, $\varphi^{-1} \circ g:X \to [a,b]$ is Continuous, and $(\varphi^{-1} \circ g)|_A=\varphi^{-1} \circ \varphi \circ f=f$, Therefore this $\varphi^{-1} \circ g$ is the extension of f. Let $f:A \to \mathbb{R}$ be a Continuous map on the closed subspace A. And, let $\varphi:\mathbb{R} \to (-1,1)$ be a Homeomorphism. Then, the map $\varphi:\mathbb{R} \to [-1,1]:x\mapsto \varphi(x)$ is still Continuous. Now, The Continuous map $\varphi \circ f:A \to [-1,1]$ has an extension $g:X \to [-1,1]$ such that $g|_A=\varphi \circ f$. Put $B=g^{-1}[\{-1,1\}]$. Then B is Closed on X, and $A\cap B=\emptyset$. Now, apply the Urysohn to this, there exists an Urysohn function for A and B: Continuous map $\varphi:X \to [0,1]$ such that $\varphi(A)=0$. Define a map $\varphi(A)=0$. Then, if $\varphi(A)=0$ or $\varphi(A)=0$. Then, if $\varphi(A)=0$ is well-defined. And, for any $\varphi(A)=0$, $\varphi(A)=0$, thus $\varphi(A)=0$. Therefore, $\varphi(A)=0$ is an extension of $\varphi(A)=0$, thus $\varphi(A)=0$. Consequently, the map $\varphi(A)=0$ is an extension of $\varphi(A)=0$, we wanted.

Recall that:

Definition 9. X is T_1 if: For any distinct $x,y\in X$, there exist open sets U_x,U_y such that $\begin{cases} x\in U_x,\ x\notin U_y \\ y\notin U_x,\ y\in U_y \end{cases}$.

Lemma 7. X is T_1 if and only if For any $x \in X$, a singleton $\{x\}$ is closed in X.

Proof. The left direction is clear.

Let $x \in X$. Then, for any $y \in X$ with $y \neq x$, T_1 condition gives that there is an open set such that $y \in U_y$ and $x \notin U_y$.

Now, the union

$$\bigcup_{\substack{y \in X \\ y \neq x}} U_y = X \setminus \{x\}$$

is open by definition.

7.2.3 Urysohn Metrization Theorem

Theorem 13. Urysohn Metrization Theroem

If X is a Second-Countable Regular Space, then X is Metrizable.

Algebraic Topology

Basic Analysis

9.1 Arithmetic means

Let $\{s_n\}$ be a Complex numbers Sequence. Define the Arithmetic means of $\{s_n\}$:

$$\sigma_n \stackrel{\text{def}}{=} \frac{s_0 + \dots + s_n}{n+1} = \frac{1}{n+1} \left(\sum_{i=0}^n s_i \right)$$

Then, the Arithmetic means σ_n has following properties:

1). If $\lim_{n\to\infty} s_n = s$, then $\lim_{n\to\infty} \sigma_n = s$.

Proof. Let $\epsilon>0$ be given. Then, there exists $N\in\mathbb{N}$ such that $n\geq N$ implies $|s_n-s|<\epsilon$. Now, for $n\geq N$,

$$\begin{split} |\sigma_n - s| &= \left| \frac{s_0 + \dots + s_n}{n+1} - \frac{(n+1)s}{n+1} \right| = \left| \frac{(s_0 - s) + \dots + (s_n - s)}{n+1} \right| \\ & \text{tri.ieq} \underbrace{\sum_{k=0}^{N-1} |s_k - s|}_{n+1} + \underbrace{\sum_{k=N}^n |s_k - s|}_{n+1} \\ &< \underbrace{\sum_{k=0}^{N-1} |s_k - s|}_{n+1} + \frac{n+1-N}{n+1} \cdot \epsilon \\ &< \underbrace{\sum_{k=0}^{N-1} |s_k - s|}_{n+1} + \epsilon \end{split}$$

Now, put $M\in\mathbb{N}$ satisfies $M\geq N$ and $n\geq M\Longrightarrow \frac{\sum_{k=0}^{N-1}|s_k-s|}{n+1}<\epsilon$, using Archimedean property. Then, $n\geq M$ implies $|\sigma_n-s|<\epsilon$, thus $\sigma_n\to s$.

2). Put $a_n=s_n-s_{n-1}$, for $n\geq 1$. If $\lim_{n\to\infty}na_n=0$ and σ_n converges, then s_n converges.

Proof. First,

$$s_n - \sigma_n = s_n - \frac{s_0 + \dots + s_n}{n+1} = \frac{(n+1)s_n - \sum_{k=0}^n s_k}{n+1}$$

$$= \frac{1}{n+1} ((s_1 - s_0) + (2s_2 - 2s_1) + (3s_3 - 3s_2) + \dots + (ns_n - ns_{n-1}))$$

$$= \frac{1}{n+1} \sum_{k=1}^n ka_k$$

Now, if $na_n o 0$ and $\sigma_n o \sigma$,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\sigma_n + \frac{1}{n+1} \sum_{k=1}^n k a_k \right)$$
$$= \lim_{n \to \infty} \sigma_n + \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=1}^n k a_k \stackrel{1)}{=} \sigma$$

2) is conditional converse of 1). But, there is more weak version of the converse proposition: 3). The sequence $\{na_n\}$ bounded by $M<\infty$, and $\sigma_n\to\sigma$. Then, $s_n\to\sigma$.

Proof. First, For positive integers m < n,

$$s_n - \sigma_n = s_n - \frac{\sum_{k=0}^n s_k}{n+1} = s_n - \frac{m+1}{n-m} \cdot \left(\frac{1}{m+1} - \frac{1}{n+1}\right) \sum_{k=0}^n s_k$$

$$= s_n - \frac{m+1}{n-m} \cdot \left(\frac{\sum_{k=0}^m s_k + \sum_{k=m+1}^n s_k}{m+1} - \frac{\sum_{k=0}^n s_k}{n+1}\right)$$

$$= s_n - \frac{m+1}{n-m} \cdot \left(\sigma_m - \sigma_n + \frac{\sum_{k=m+1}^n s_k}{m+1}\right)$$

$$= \frac{m+1}{n-m} (\sigma_n - \sigma_m) + \frac{1}{n-m} \sum_{k=m+1}^n (s_n - s_k)$$

Meanwhile, since for any $n\in\mathbb{N}$, $|na_n|=n|s_n-s_{n-1}|< M$, for $k=m+1,\dots,n$,

$$|s_n - s_k| = |s_n - s_{n-1} + s_{n-1} - s_{n-2} + \dots + s_{k+1} - s_k|$$

$$\leq |s_n - s_{n-1}| + |s_{n-1} - s_{n-2}| + \dots + |s_{k+1} - s_k|$$

$$\leq \frac{M}{n} + \frac{M}{n-1} + \dots + \frac{M}{k+1} \leq \frac{n-k}{k+1} M \leq \frac{n-k}{m+2} M \leq \frac{n-m-1}{m+2} M$$

Let $\epsilon>0$ be given. For each $n\in\mathbb{N}$, put $m\in\mathbb{N}$ such that

$$m \le \frac{n - \epsilon}{1 + \epsilon} < m + 1$$

Then,

$$m(1+\epsilon) \le n-\epsilon \implies m+\epsilon(1+m) \le n \implies \frac{m+1}{n-m} \le \frac{1}{\epsilon}$$

and

$$n - \epsilon < (m+1)(1+\epsilon) \implies n+1 < (m+2)(1+\epsilon) \implies \frac{n+1}{m+2} - 1 < \epsilon \implies \frac{n-m-1}{m+2} < \epsilon$$

Now, for arbitrary $n \in \mathbb{N}$,

$$|s_n - \sigma| \le |s_n - \sigma| + |\sigma_n - \sigma|$$

$$\implies \limsup_{n \to \infty} |s_n - \sigma| \le \limsup_{n \to \infty} |s_n - \sigma_n| + \limsup_{n \to \infty} |\sigma_n - \sigma|$$

And,

$$\begin{split} |s_n - \sigma_n| &= \frac{m+1}{n-m} |\sigma_n - \sigma_m| + \frac{1}{n-m} \sum_{k=m+1}^n |s_n - s_k| < \frac{1}{\epsilon} |\sigma_n - \sigma_m| + M\epsilon \\ \Longrightarrow & \limsup_{n \to \infty} |s_n - \sigma_n| \le \frac{1}{\epsilon} \limsup_{n \to \infty} |\sigma_n - \sigma_m| + M\epsilon = M\epsilon \end{split}$$

Consequently, $\limsup_{n\to\infty} |s_n-\sigma| \leq (M+1)\epsilon$, thus $s_n\to\sigma$.

In brief, the diagram of the above conditions like this:

Examples and Counterexamples of the Diagram:

- (1) Let $s_n \stackrel{\text{def}}{=} \exp(\frac{in\pi}{2})$. Then,
 - $\cdot s_n$ diverges.
 - \cdot na_n diverges.
 - $\sigma_n \to 0$.
- (2) Let $s_n \stackrel{\text{def}}{=} \frac{1}{n}, \ s_0 = 0$.
- (3) Let $s_n \stackrel{\text{def}}{=} \sum_{k=1}^n \frac{1}{k}$. Then,
 - \cdot s_n diverges.
 - $\cdot a_n = \frac{1}{n}$, thus $na_n \to 1$, bounded.
 - · If σ_n converges, then the diagram implies that s_n must converge, leading to a contradiction. Therefore, σ_n diverges.
- (4) $s_n = \sum_{k=1}^n \frac{(-1)^k}{\sqrt{k}}, \ s_0 = 0.$ Then,
 - \cdot s_n converges, being the Alternating series Test.
 - \cdot $a_n=rac{(-1)^n}{\sqrt{n}}$, thus na_n diverges.

9.2 Taylor's Theorem

Theorem 14. Taylor's Theorem

Let $f:[a,b] o \mathbb{R}$, and let $n \in \mathbb{N}$ be fixed. Suppose that $\begin{cases} f^{(n-1)} \text{ is Continuous.} \\ f^{(n)}(t) \text{ exists for every } t \in (a,b). \end{cases}$

Then, for any $\alpha, \beta \in [a,b]$, there exists $x \in (\alpha,\beta)$ such that

$$f(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n$$

Proof. Put

$$M \stackrel{\text{def}}{=} \frac{1}{(\beta - \alpha)^n} \cdot \left(f(\beta) - \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k \right)$$

That is,

$$f(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k + M(\beta - \alpha)^n$$

and put

$$g(t) \stackrel{\mathsf{def}}{=} f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t-\alpha)^k - M(t-\alpha)^n, \quad (a \le t \le b)$$

If we differentiate the above equation n times,

$$g^{(n)}(t) = f^{(n)}(t) - n!M, (a < t < b)$$

For each $k=0,1,\ldots,n-1$,

$$\frac{d^r}{dt^r} \left(\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k \right) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} \cdot \frac{d^r}{dt^r} \left((t - \alpha)^k \right)
= \sum_{k=r+1}^{n-1} \frac{f^{(k)}(\alpha)}{k!} \cdot \frac{k!}{(k-r)!} (t - \alpha)^{k-r} + f^{(r)}(\alpha)
= \sum_{k=r+1}^{n-1} \frac{f^{(k)}(\alpha)}{(k-r)!} (t - \alpha)^{k-r} + f^{(r)}(\alpha)$$

Substituting $t=\alpha$, only the $f^{(r)}(\alpha)$ term remains. Therefore, for $r=0,\dots,n-1$, $g(\alpha)=g'(\alpha)=\dots=g^{(n-1)}(\alpha)=0$. Since $g(\beta)=0$ by definition, the Mean–Value Theorem implies there exists a $x_1\in(\alpha,\beta)$ s.t. $g'(x_1)=\frac{g(\beta)-g(\alpha)}{\beta-\alpha}=0$. And similarly, there is $x_2\in(x_1,\beta)$ s.t. $g''(x_2)=\frac{g'(x_1)-g'(\alpha)}{\beta-\alpha}=0$.

Inductively, for some $x_n \in (\alpha, \beta)$, $g^{(n)}(x_n) = f^{(n)}(x_n) - n!M = 0$. That is, $M = \frac{f^{(n)}(x_n)}{n!}$. Proof Complete by Initial Setting.

Corollary 2. Let $f:[a,b] o\mathbb{R}$ be an infinitely differentiable function. Suppose that there exists a M>0 such that for any $n\in\mathbb{N}$, $\sup_{t\in[a,b]}|f^{(n)}(t)|\leq M$. Then, for any $x,\alpha\in[a,b]$,

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} (x - \alpha)^k$$

9.3 Convexity

9.3.1 Definition

Definition 10. Let $f:(a,b)\to\mathbb{R}$ be a Real-valued function. f is said to be *convex* if: For any $x,y\in(a,b),\lambda\in(0,1)$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Convex function has follwing properties:

Lemma 8. Let $f:(a,b) \to \mathbb{R}$ be a Convex function, and $a < x_1 < x_2 < x_3 < b$. Then,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

Proof. To show that first inequalty, note that

$$\frac{x_2 - x_1}{x_3 - x_1} \cdot x_3 + \left(1 - \frac{x_2 - x_1}{x_3 - x_1}\right) \cdot x_1 = \frac{(x_2 - x_1)x_3 + (x_3 - x_2)x_1}{x_3 - x_1} = x_2$$

Now,

$$f(x_2) = f\left(\frac{x_2 - x_1}{x_3 - x_1} \cdot x_3 + \left(1 - \frac{x_2 - x_1}{x_3 - x_1}\right) \cdot x_1\right)$$

$$\leq \frac{x_2 - x_1}{x_3 - x_1} \cdot f(x_3) + \left(1 - \frac{x_2 - x_1}{x_3 - x_1}\right) \cdot f(x_1) = \frac{x_2 - x_1}{x_3 - x_1} \cdot f(x_3) + f(x_1) - \left(\frac{x_2 - x_1}{x_3 - x_1}\right) \cdot f(x_1)$$

In brief,

$$f(x_2) - f(x_1) \le \frac{x_2 - x_1}{x_3 - x_1} (f(x_3) - f(x_1)) \implies \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

And similarly,

$$\frac{x_3 - x_2}{x_3 - x_1} \cdot x_1 + \left(1 - \frac{x_3 - x_2}{x_3 - x_1}\right) x_3 = x_2$$

gives the second inequality.

9.3.2 Properties

Proposition 2. If $f:(a,b)\to\mathbb{R}$ is Convex, then f is Continuous.

Proof. Let $\epsilon > 0$ be given, s < t are fixed in (a,b). For any $x,y \in (s,t)$ with s < x < y < t,

$$\frac{f(s) - f(a)}{s - a} \le \frac{f(x) - f(s)}{x - s} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(t) - f(y)}{t - y} \le \frac{f(b) - f(t)}{b - t}$$

Put $M=\max\left\{\left|\frac{f(s)-f(a)}{s-a}\right|,\left|\frac{f(b)-f(t)}{b-t}\right|\right\}$. Then, for any $x,y\in(s,t)$,

$$\left| \frac{f(y) - f(x)}{y - x} \right| \le M$$

Now,

$$|f(y) - f(x)| \le M|y - x| < \epsilon$$

Since $s,t\in(a,b)$ was arbitrary, f is continuous on (a,b).

Proposition 3. Let f is differentiable on (a,b). Then,

f is Convex if and only if f' is monotonically increasing on (a,b).

Proof. Prove by showing both directions: right and left. *Right Direction* Let $x_1 < x_2$ in (a,b). Then,

$$f'(x_1) = \lim_{t \to x_1} \frac{f(t) - f(x_1)}{t - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \lim_{\tau \to x_2} \frac{f(\tau) - f(x_2)}{\tau - x_2} = f'(x_2)$$

More rigorously, put $\epsilon = \left|f'(x_1) - \frac{f(x_2) - f(x_1)}{x_2 - x_1}\right|$. (If $\epsilon = 0$, then there is nothing to prove.).

Now, there exists a $\delta>0$ such that $|t-x_1|<\delta$ implies

$$\left| f'(x_1) - \frac{f(t) - f(x_1)}{t - x_1} \right| < \epsilon \iff -\epsilon + \frac{f(t) - f(x_1)}{t - x_1} < f'(x_1) \stackrel{(*)}{=} \epsilon + \frac{f(t) - f(x_1)}{t - x_1}$$

If $f'(x_1) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$, then (*) gives

$$f'(x_1) < f'(x_1) + \frac{f(t) - f(x_1)}{t - x_1} - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \iff \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(t) - f(x_1)}{t - x_1} \quad \forall t \text{ s.t. } |t - x_1| < \delta$$

If $|t-x_1| < |x_2-x_1|$, then this contradicts to Convexity.

Consequently, we obtain the first inequality, similarly can prove the second inequality. Left Direction Let $x,y\in(a,b)$ and $\lambda\in(0,1)$ be given. The Mean Value Theorem gives that:

$$f(\lambda x + (1 - \lambda)y) - f(x) = f'(z_1)(\lambda x + (1 - \lambda)y - x) \text{ for some } z_1 \in (x, \lambda x + (1 - \lambda)y) \\ f(y) - f(\lambda x + (1 - \lambda)y) = f'(z_2)(y - \lambda x + (1 - \lambda)y) \text{ for some } z_2 \in (\lambda x + (1 - \lambda)y, y)$$

Now, Monotonically increasing gives

$$\frac{f(\lambda x + (1 - \lambda)y) - f(x)}{\lambda x + (1 - \lambda)y - x} = f'(z_1) \le f'(z_2) = \frac{f(y) - f(\lambda x + (1 - \lambda)y)}{y - (\lambda x + (1 - \lambda)y)}$$

$$\Rightarrow \frac{f(\lambda x + (1 - \lambda)y) - f(x)}{(1 - x)(y - x)} \le \frac{f(y) - f(\lambda x + (1 - \lambda)y)}{\lambda (y - x)}$$

$$\Rightarrow \lambda f(\lambda x + (1 - \lambda)y) - \lambda f(x) \le (1 - \lambda)f(y) - (1 - \lambda)\lambda x + (1 - \lambda)y$$

$$\Rightarrow f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Corollary 3. If $f:[a,b] o \mathbb{R}$ is twice-differentiable, then

f is Convex if and only if f''(x) > 0 for all $x \in (a, b)$.

Theorem 15. Let $f:[a.b] o \mathbb{R}$ be given. Then,

f is Convex if and only if f is Continuous, and Midpoint Convex.

 $\text{ Midpoint convex is that } f \text{ satisfies } \forall x,y \in (a,b), \ f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \,.$

Proof. The right direction is clear. To show the left direction, we demonstrate that *Midpoint Convexity implies Dyadic Rational Convexity*. Claim: For any $n \in \mathbb{N}$,

$$f\left(\frac{\sum_{k=1}^{2^n} x_k}{2^n}\right) \le \frac{1}{2^n} \sum_{k=1}^{2^n} f(x_k) \tag{*}$$

Using Induction: If n=1, it is clear by Midpoint Convexity. Assume that for $n\in\mathbb{N}$, (*) is True. Then,

$$\begin{split} f\left(\frac{\sum_{k=1}^{2^{n+1}} x_k}{2^{n+1}}\right) &= f\left(\frac{1}{2} \cdot \left[\frac{\sum_{k=1}^{2^n} x_k}{2^n} + \frac{\sum_{k=2^n+1}^{2^{n+1}} x_k}{2^n}\right]\right) \\ &\stackrel{\text{m.c.}}{\leq} \frac{1}{2} \left(f\left(\frac{\sum_{k=1}^{2^n} x_k}{2^n}\right) + f\left(\frac{\sum_{k=2^n+1}^{2^{n+1}} x_k}{2^n}\right)\right) \\ &\stackrel{(*)}{\leq} \frac{1}{2} \left(\frac{1}{2^n} \sum_{k=1}^{2^n} f(x_k) + \frac{1}{2^n} \sum_{k=2^n+1}^{2^{n+1}} f(x_k)\right) \\ &= \frac{1}{2^{n+1}} \sum_{k=1}^{2^{n+1}} f(x_k) \end{split}$$

Consequently, we obtain the claim. Now, let $n \in \mathbb{N}$, and m be an integer such that $1 \le m \le 2^n$. Put $x_1 = x_2 = \cdots = x_m = x$ and $x_{m+1} = x_{m+2} = \cdots = x_{2^n} = y$. Then

$$f\left(\frac{m}{2^n}x + \left(1 - \frac{m}{2^n}\right)y\right) \le \frac{m}{2^n}f(x) + \left(1 - \frac{m}{2^n}\right)f(y)$$

For complete this discussion, Let $x, y \in (a, b), \lambda \in (0, 1)$ be given.

Since $\dfrac{\lfloor 2^n\lambda\rfloor}{2^n} o\lambda$ as $n o\infty$, for any $n\in\mathbb{N}$,

$$f\left(\frac{\lfloor 2^n\lambda\rfloor}{2^n}x + \left(1 - \frac{\lfloor 2^n\lambda\rfloor}{2^n}\right)y\right) \le \frac{\lfloor 2^n\lambda\rfloor}{2^n}f(x) + \left(1 - \frac{\lfloor 2^n\lambda\rfloor}{2^n}\right)f(y)$$

Finally, taking limits then

$$\lim_{n\to\infty} f\left(\frac{\lfloor 2^n\lambda\rfloor}{2^n}x + \left(1 - \frac{\lfloor 2^n\lambda\rfloor}{2^n}\right)y\right) \stackrel{f \text{ conti.}}{=} f\left(\lim_{n\to\infty} \left[\frac{\lfloor 2^n\lambda\rfloor}{2^n}x + \left(1 - \frac{\lfloor 2^n\lambda\rfloor}{2^n}\right)y\right]\right) = f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

In brief, Midpoint Convexity implies Dyadic Rational Convexity, and with Continuous implies Convexity. □

9.4 Lipschitz Condition

9.4.1 Definition

Definition 11. A real-vauled function $f:(a,b) o \mathbb{R}$ is called *Lipschitz Continuous* if:

$$\exists L \geq 0 \text{ s.t. } \forall x_1, x_2 \in (a, b), |f(x_1) - f(x_2)| \leq L \cdot |x_1 - x_2|$$

The constant L is said to be Lipschitz Constant of f. In particular, the constant

$$D \stackrel{\text{def}}{=} \sup_{x_1 \neq x_2} \frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|}$$

is called *dilation* of f. Clearly,

$$\forall x_1, x_2 \in (a, b), |f(x_1) - f(x_2)| \le D \cdot |x_1 - x_2|$$

and if L>0 is Lipschitz Constant of f , then $D\leq L$. That is, $D=\inf\{L>0\mid L$ is Lipschitz constant of $f\}$.

9.4.2 Properties

Proposition 4. If $f:(a,b) o\mathbb{R}$ is Lipschitz Continuous, then f is uniformly continuous.

Proof. Let $L\geq 0$ be a Lipschitz Constant of f. Then, for any $\epsilon>0$,

$$\forall x, y \in (a, b), |x - y| < \frac{\epsilon}{L} \implies |f(x) - f(y)| \le L|x - y| < \epsilon$$

Proposition 5. Let $f:(a,b) o \mathbb{R}$ be a Differentiable function. Then,

f is Lipschitz Continuous if and only if f' is bounded in (a,b).

Proof.

Right Direction

Let L>0 be a Lipschitz constant of f , and $x\in(a,b)$ be given. Since definition of derivative,

$$f'(x) \stackrel{\text{def}}{=} \lim_{t \to x} \frac{f(x) - f(t)}{x - t}$$

Meanwhile, the assumption gives: for any distinct $x,t\in(a,b)$,

$$\frac{|f(x) - f(t)|}{|x - t|} \le L$$

Therefore,

$$f'(x) = \lim_{t \to x} \frac{f(x) - f(t)}{x - t} \le \lim_{t \to x} \frac{|f(x) - f(t)|}{|x - t|} \le \lim_{t \to x} L = L$$

Left Direction

Let distinct $x,y\in(a,b)$ be given. Then, the Mean-Value Theorem gives: There exists a $z\in(x,y)$ such that

$$f(x) - f(y) = f'(z)(x - y) \implies f'(z) = \frac{f(x) - f(y)}{x - y}$$

Now,

$$\left| \frac{f(x) - f(y)}{x - y} \right| = |f'(z)| \le L \implies |f(x) - f(y)| \le L \cdot |x - y|$$

If x = y, then there is nothing to prove.

Note that:

Lipschitz Continuous \implies Uniformly Continuous \implies Continuous

9.4.3 Newton-Raphson Method

Theorem 16. Newton-Raphson Method

Let $f:[a,b] \to \mathbb{R}$ be a twice-differentiable, f(a) < 0 < f(b). Suppose that f satisfies: for all $x \in [a,b]$,

$$f'(x) \ge \delta > 0$$
 and $0 \le f''(x) \le M$

That is, f is strictly increasing convex function, and Lipschitz Continuous.

Further, there uniquely exists $x^* \in (a,b)$ such that $f(x^*) = 0$.

Let $x_1 \in (x^*, b)$ fixed. Define a sequence $\{x_n\}$ inductively as follows:

$$x_{n+1} \stackrel{\mathsf{def}}{=} x_n - \frac{f(x_n)}{f'(x_n)}$$

Then, $\{x_n\}$ satisfies the following three conditions:

- 1. $\{x_n\}$ is decreasing sequence.
- 2. $x_n \to x^*$ as $n \to \infty$.
- 3. For any $n\in\mathbb{N}$, $0\leq x_{n+1}-x^*\leq \left[\frac{M}{2\delta}\right]^{2^{n+1}-1}[x_1-x^*]^{2^n}$.

Condition 3 means that for a suitable initial value x_1 , we can establish an upper bound for the error.

Proof. This proof consists by three steps.

Since f'' is non-negative, and f' is positive, f is strictly increasing convex function.

And Fundamental Theorem of Calculus gives: for any $x \in (a,b)$,

$$f'(x) \stackrel{\mathsf{FIR}}{=} \int_{a}^{x} f''(t)dt + f'(a) \le \int_{a}^{x} Mdt + f'(a) = M(x-a) + f'(a) \le M(b-a) + f'(a)$$

Thus, f' is bounded on (a,b), thus f is Lipschitz Continuous.

Step 1. f has a unique root x^* .

The existence of root given directly by Intermidate-Value theroem.

Suppose that $x^*, x' \in (a,b)$ are distinct root of f. i.e., $f(x^*) = f(x') = 0$. Then, by Mean-value theroem, there is $c \in (a,b)$ between x^* and x' such that

$$f'(c)(x^* - x') = f(x^*) - f(x') = 0$$

That is, f'(c) = 0. This is contradiction with f' is positive.

Step 2. $\{x_n\}$ decrease.

Proof by induction:

For n = 1, $f'(x_1)(x_1 - x_2) \stackrel{\text{def}}{=} f(x_1) > f(x^*) = 0$, thus $x_2 < x_1$. And,

$$\begin{array}{c} f(x_2) \stackrel{\text{\tiny MUT}}{=} f(x_1) + f'(c_1)(x_2 - x_1) & \text{for some } c_1 \in (x_2, x_1) \\ > f(x_1) + f'(x_1)(x_2 - x_1) = f'(x_1)(x_1 - x_2) + f'(x_1)(x_2 - x_1) = 0 \end{array}$$

Now, since $f(x_2) > 0 = f(x^*)$, the Mean-Value Theorem implies that $x_2 > x^*$.

To use induction, suppose that for some $n \ge 1$, $x^* < x_{n+1} < x_n$. Then,

$$f(x_{n+1}) = f'(x_{n+1})(x_{n+1} - x_{n+2}) > 0$$

Thus $x_{n+2} < x_{n+1}$ and

$$f(x_{n+2}) \stackrel{\text{nut}}{=} f(x_{n+1}) + f'(c_{n+1})(x_{n+2} - x_{n+1}) \quad \text{for some } c_{n+1} \in (x_{n+2}, x_{n+1})$$

$$\geq f(x_{n+1}) + f'(x_{n+1})(x_{n+2} - x_{n+1})$$

$$= f(x_{n+1})(x_{n+1} - x_{n+2}) + f'(x_{n+1})(x_{n+2} - x_{n+1}) = 0$$

Again, the Mean-Value Theorem implies that $x_{n+2}>x^*$. Therefore, induction completes. Now, $x_n\to x'$ as $n\to\infty$ for some $x'\in[x^*,x_1]$ since $\{x_n\}$ is Bounded below and Decreasing.

Still it remains that to show $x' = x^*$. By Continuity,

$$f'(x_n)(x_{n+1} - x_n) + f(x_n) = 0$$

$$\implies \lim_{n \to \infty} [f'(x_n)(x_{n+1} - x_n) + f(x_n)] = f\left(\lim_{n \to \infty} x_n\right) = f(x') = 0$$

Since the root of f is unique, thus $x'=x^*$. Step 3. Establishing the error bound. The Taylor's Theorem implies that

$$f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(t_n)}{2}(x^* - x_n)^2 \quad \text{for some } t_n \in (x^*, x_n)$$

$$\Longrightarrow x_{n+1} - x^* = \frac{f''(t_n)}{2f'(x_n)}(x^* - x_n)^2$$

Consequently,

$$0 \le x_{n+1} - x^* = \frac{f''(t_n)}{2f'(x_n)} (x_n - x^*)^2 = \frac{f''(t_n)}{2f'(x_n)} \cdot \left(\frac{f''(t_{n-1})}{2f'(x_{n-1})}\right)^2 (x_{n-1} - x^*)^4 = \cdots$$
$$= \prod_{i=1}^n \left[\frac{f''(t_i)}{2f'(x_i)}\right]^{2^{(n+1-i)}} [x_1 - x^*]^{2^n} \le \left[\frac{M}{2\delta}\right]^{2^{n+1}-1} [x_1 - x^*]^{2^n}$$

9.4.4 Gradient Descent

Theorem 17. Let $f:\mathbb{R} \to \mathbb{R}$ be a differentiable function that satisfies the following conditions:

- 1. f is Convex function.
- 2. f' is Lipschitz Continuous with Lipschitz constant of f, L>0. In this, f is called L-Smooth.
- 3. f has at least one local minimizer x^* .

Then, x^* is a Global minimizer of $\mathbb R$, and there exists a unique closed interval M containing x^* such that

$$\forall x \in M, t \notin M, \ f(x) = f(x^*) < f(t)$$

And, given initial point $x_0 \in \mathbb{R}$ and $0 < \gamma \leq \frac{1}{L}$, define a sequence $\{x_n\}$ inductively as follows:

$$x_{n+1} = x_t - \gamma \cdot f'(x_n)$$

Then, for any $N \in \mathbb{N}$,

$$f(x_N) - f(x^*) \le \frac{|x_0 - x^*|^2}{2\gamma N}$$

Proof. Let $x^* \in \mathbb{R}$ be a local minimizer. That is, there exists a $\delta > 0$ such that $\forall t \in (x^* - \delta, x^* + \delta)$, $f(x^*) \leq f(t)$. Then,

$$0 \le \lim_{t \to x^* +} \frac{f(x^*) - f(t)}{x^* - t} = f'(x^*) = \lim_{t \to x^* -} \frac{f(x^*) - f(t)}{x^* - t} \le 0$$

thus, $f'(x^*)=0$. And, by convextiy, f' is monotonically inceasing. Now, The Fundametal Theorem of Calculus gives:

$$\forall x \in \mathbb{R}, \ f(x) = \int_{x^*}^x f'(t)dt + f(x^*) \ge f(x^*)$$

Therefore, x^* is a Global minimizer of f.

Now, establish the closed interval M. Since f' is Lipschitz Continuous, thus f' is Continuous.

Let $D\stackrel{\mathrm{def}}{=}\{x\in\mathbb{R}\mid f'(x)=0\}$. (Note that: $x^*\in D$, thus D is not emtpyset.)

D is closed because: Let $\{x_n\}$ be a convergent sequence in D. That is, for all $n \in \mathbb{N}$, $f(x_n) = 0$. Then, by continuity,

$$f\left(\lim_{n\to\infty}x_n\right) = \lim_{n\to\infty}f(x_n) = 0$$

The limit of $\{x_n\}$ is contained in D, thus D is closed.

And, D is interval: i.e, for any $x \in (\inf D, \sup D)$, $x \in D$ because:

Suppose that there exists $x \in (\inf D, \sup D)$ such that $x \notin D$. That is, $f'(x) \neq 0$. This is Contradiction with Monotonicity.

To set error of upper bound, we make inequalities: Let $x,y\in\mathbb{R}$ be given.

The Fundamental Theorem of Calculus and $L-{\sf Smooth}$ condition gives:

$$f(y) - f(x) = \int_{x}^{y} f'(t)dt = \int_{0}^{1} f'(x + (y - x)u)(y - x)du = f'(x)(y - x) + \int_{0}^{1} (f'(x + (y - x)u) - f'(x))(y - x)du$$

$$\stackrel{\text{2.}}{\leq} f'(x)(y - x) + L \cdot |y - x|^{2} \int_{0}^{1} u \ du = f'(x)(y - x) + \frac{L}{2}|y - x|^{2}$$

For any $\lambda > 0$, Put $y = x - \lambda f'(x)$. Then,

$$f(x - \lambda f'(x)) \le f(x) - f'(x)(\lambda f'(x)) + \frac{L}{2}|\lambda f'(x)|^2 = f(x) + \lambda \left(\frac{L\lambda}{2} - 1\right)|f'(x)|^2$$

Put $\lambda = \frac{1}{L}$, then

$$f\left(x - \frac{f'(x)}{L}\right) \le f(x) - \frac{L}{2}|f'(x)|^2 \implies \frac{L}{2}|f'(x)|^2 \le f(x) - f\left(x - \frac{f'(x)}{L}\right) \le f(x) - \inf f(x)$$

Meanwhile, the convexity gives: for any $x,y \in \mathbb{R}$,

$$f'(x)(y-x) \le f(y) - f(x) \le f'(y)(y-x)$$

since derivative of convex function increase monotonically. Put $z=y-\frac{1}{L}(f'(y)-f'(x))$. Then,

$$\begin{split} f(x) - f(y) &= f(x) - f(z) + f(z) - f(y) \\ &\leq f'(x)(x - z) + f'(y)(z - y) + \frac{L}{2}|z - y|^2 \\ &= f'(x)\left(x - y + \frac{1}{L}(f'(y) - f'(x))\right) - f'(y)\left(\frac{1}{L}(f'(y) - f'(x))\right) + \frac{L}{2}\left|\frac{1}{L}(f'(y) - f'(x))\right|^2 \\ &= f'(x)(x - y) - \frac{1}{L}|f'(y) - f'(x)|^2 + \frac{1}{2L}|f'(y) - f'(x)|^2 \\ &= f'(x)(x - y) - \frac{1}{2L}|f'(y) - f'(x)|^2 \end{split}$$

Now,

$$\begin{cases} \frac{1}{2L}|f'(y) - f'(x)|^2 \le f'(x)(x - y) - (f(x) - f(y)) \\ \frac{1}{2L}|f'(x) - f'(y)|^2 \le f'(y)(y - x) - (f(y) - f(z)) \end{cases} \implies \frac{1}{L}|f'(y) - f'(x)|^2 \le (f'(y) - f'(x))(y - x)$$

Since above inequalities, we obtain that

$$|x_{n+1} - x^*|^2 = |x_n - \gamma \cdot f'(x_n) - x^*|^2 = |(x_n - x^*) - \gamma \cdot f'(x_n)|^2$$

$$= |x_n - x^*|^2 - 2\gamma |f'(x_n)| \cdot |x_n - x^*| + \gamma^2 |f'(x_n)|^2$$

$$\leq |x_n - x^*|^2 - 2\gamma \frac{1}{L} |f'(x_n)|^2 + \gamma^2 |f'(x_n)|^2$$

$$= |x_n - x^*|^2 + \left(\gamma^2 - \frac{2\gamma}{L}\right) |f'(x_n)|^2 \leq |x_n - x^*|^2$$

Thus, $|x_n-x^*|$ decrease as $n\to\infty$. That is, $|x_n-x^*|\le |x_0-x^*|$ for all $n\in\mathbb{N}$. Consider x_{n+1} and x_n . First, we obtain

$$f(x_{n+1}) \le f(x_n) + f'(x_n)(x_{n+1} - x_n) + \frac{L}{2}|x_{n+1} - x_n|^2$$

$$= f(x_n) - \gamma |f'(x_n)|^2 + \frac{L}{2}\gamma^2 |f'(x_n)|^2$$

$$= f(x_n) - \left(\gamma - \frac{L}{2}\gamma^2\right) |f'(x_n)|^2$$

Subtracting $f(x^*)$ above, then

$$f(x_{n+1}) - f(x^*) \le f(x_n) - f(x^*) - \left(\gamma - \frac{L}{2}\gamma^2\right) |f'(x_n)|^2$$

Meanwhile, Convexity gives

$$f(x_n) - f(x^*) \le f'(x_n)(x_n - x^*) \le |f'(x_n)||x_n - x^*| \le |f'(x_n)||x_0 - x^*|$$

Combining abvoe two inequalities,

$$f(x_{n+1}) - f(x^*) \le f(x_n) - f(x^*) - \left(\gamma - \frac{L}{2}\gamma^2\right) \cdot \frac{|f(x_n) - f(x^*)|^2}{|x_0 - x^*|^2}$$

Dividing Both Sides by $(f(x_{n+1})-f(x^*))(f(x_n)-f(x^*))$,

$$\begin{split} &\frac{1}{f(x_n) - f(x^*)} \leq \frac{1}{f(x_{n+1}) - f(x^*)} - \left(\gamma - \frac{L}{2}\gamma^2\right) \cdot \frac{f(x_n) - f(x^*)}{f(x_{n+1}) - f(x^*)} \frac{1}{|x_0 - x^*|^2} \\ & \Longrightarrow \left(\gamma - \frac{L}{2}\gamma^2\right) \cdot \frac{f(x_n) - f(x^*)}{f(x_{n+1}) - f(x^*)} \frac{1}{|x_0 - x^*|^2} \leq \frac{1}{f(x_{n+1}) - f(x^*)} - \frac{1}{f(x_n) - f(x^*)} \\ & \Longrightarrow \left(\gamma - \frac{L}{2}\gamma^2\right) \cdot \frac{1}{|x_0 - x^*|^2} \leq \frac{1}{f(x_{n+1}) - f(x^*)} - \frac{1}{f(x_n) - f(x^*)} \\ & \Longrightarrow \sum_{n=0}^{N-1} \left[\left(\gamma - \frac{L}{2}\gamma^2\right) \cdot \frac{1}{|x_0 - x^*|^2}\right] \leq \sum_{n=0}^{N-1} \left[\frac{1}{f(x_{n+1}) - f(x^*)} - \frac{1}{f(x_n) - f(x^*)}\right] = \frac{1}{f(x_n) - f(x^*)} - \frac{1}{f(x_0) - f(x^*)} \end{split}$$

Consequently,

$$\frac{2\gamma N}{|x_0 - x^*|^2} \leq N \cdot \left[\left(\gamma - \frac{L}{2} \gamma^2 \right) \cdot \frac{1}{|x_0 - x^*|^2} \right] \leq \frac{1}{f(x_N) - f(x^*)} - \frac{1}{f(x_0) - f(x^*)} \leq \frac{1}{f(x_N) - f(x^*)}$$

Organizing the formula, as result:

$$f(x_N) - f(x^*) \le \frac{|x_0 - x^*|^2}{2\gamma N}$$

9.5 Integral

9.5.1 Inequality of Riemann-Stieltjes Integral

Let $p,q\geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$, and functions lying on [a,b].

Proof. For any $x \in [a,b]$, the Young's Inequality gives

$$0 \le f(x)g(x) \le \frac{[f(x)]^p}{p} + \frac{[g(x)]^q}{q}$$

Now,

$$\int_a^b f(x)g(x)d\alpha \leq \int_a^b \frac{[f(x)]^p}{p} + \frac{[g(x)]^q}{q}d\alpha = \frac{1}{p}\int_a^b [f(x)]^p d\alpha + \frac{1}{q}\int_a^b [g(x)]^q d\alpha = \frac{1}{p} + \frac{1}{q} = 1$$

Definition 12. Let $f \in \mathcal{R}(\alpha)$. Define a *Norm* of f:

$$||f||_p \stackrel{\text{def}}{=} \left(\int_a^b |f(x)|^p d\alpha \right)^{\frac{1}{p}}$$

This becomes actually norm of set of Stieltjes Integrable functions, $\mathcal{F} \stackrel{\mathsf{def}}{=} \{ f : [a,b] \to \mathbb{C} \mid f \in \mathcal{R}(\alpha) \}$.

Lemma 10. Hölder's Inequality Let $f,g\in\mathcal{F}$. Then,

$$\left| \int_{a}^{b} f(x)g(x)d\alpha \right| \leq \left[\int_{a}^{b} |f(x)|^{p} d\alpha \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |g(x)|^{q} d\alpha \right]^{\frac{1}{q}}$$

Proof. Use above definition, Rewrite:

$$||f||_p^p = \int_a^b |f(x)|^p d\alpha, \ ||g||_q^q = \int_a^b |g(x)|^q d\alpha$$

Now, we can make the condition of above lemma,

$$\int_{a}^{b} \left[\frac{|f(x)|}{\|f\|_{p}} \right]^{p} d\alpha = \frac{1}{\|f\|_{p}^{p}} \cdot \int_{a}^{b} |f(x)|^{p} d\alpha = 1, \quad \int_{a}^{b} \left[\frac{|g(x)|}{\|g\|_{q}} \right]^{q} d\alpha = \frac{1}{\|g\|_{q}^{q}} \cdot \int_{a}^{b} |g(x)|^{q} d\alpha = 1$$

And apply this,

$$\int_{a}^{b} \frac{|f(x)| \cdot |g(x)|}{\|f\|_{p} \|g\|_{q}} d\alpha \leq 1 \implies \int_{a}^{b} |f(x)| |g(x)| d\alpha \leq \|f\|_{p} \|g\|_{q} = \left[\int_{a}^{b} |f(x)|^{p} d\alpha \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |g(x)|^{q} d\alpha \right]^{\frac{1}{q}} \cdot \left[\int_{a}^{$$

Finally, the general property of integral of product gives

$$\left| \int_a^b f(x)g(x)d\alpha \right| \leq \int_a^b |f(x)||g(x)|d\alpha \leq \|f\|_p \|g\|_q = \left[\int_a^b |f(x)|^p d\alpha \right]^{\frac{1}{p}} \cdot \left[\int_a^b |g(x)|^q d\alpha \right]^{\frac{1}{q}}$$

Theorem 18. Minkowski inequality Let $f,g\in\mathcal{F}$. Then, for any $p\geq 1$, $\|f+g\|_p\leq \|f\|_p+\|g\|_p$.

Proof.

$$\begin{split} \|f+g\|_p^p &= \int_a^b |f+g|^p d\alpha = \int_a^b |f+g||f+g|^{p-1} d\alpha \\ &\leq \int_a^b [|f|+|g|]|f+g|^{p-1} d\alpha \\ &= \int_a^b |f||f+g|^{p-1} d\alpha + \int_a^b |g||f+g|^{p-1} d\alpha \\ &= \int_a^b |f||f+g|^{p-1} d\alpha + \int_a^b |g||f+g|^{p-1} d\alpha \\ &\stackrel{\text{\tiny Holder}}{\leq} \left[\int_a^b |f|^p d\alpha \right]^{\frac{1}{p}} \left[\int_a^b |f+g|^{(p-1)\frac{p}{p-1}} d\alpha \right]^{\frac{p-1}{p}} + \left[\int_a^b |g|^p d\alpha \right]^{\frac{1}{p}} \left[\int_a^b |f+g|^{(p-1)\frac{p}{p-1}} d\alpha \right]^{\frac{p-1}{p}} \\ &= \left[\int_a^b |f+g|^p d\alpha \right]^{\frac{p-1}{p}} \left(\left[\int_a^b |f|^p d\alpha \right]^{\frac{1}{p}} + \left[\int_a^b |g|^p d\alpha \right]^{\frac{1}{p}} \right) = \|f+g\|_p^{p-1} \cdot (\|f\|_p + \|g\|_p) \end{split}$$

Now,

$$||f+g||_p^p \cdot ||f+g||_p^{1-p} = ||f+g||_p \le ||f||_p + ||g||_p$$

Measure

Complex Analysis

Differential Geometry

Differential Equation

Spaces

14.1 \mathbb{R}^n

14.1.1 Inner Product in ${\mathbb R}$

14.1.2 p-norm in \mathbb{R}^n

Definition 13. Let \mathbb{R}^n be given. Define p-norm on \mathbb{R}^n as:

$$d_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}: (\mathbf{x}, \mathbf{y}) \mapsto \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \quad (\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n))$$

where $p \in [1, \infty]$. In particular, p-norm is a Metric, being Minkowski inequality.

Lemma 11. Young's inequality

Let u,v>0 , and $p,q\in[1,\infty]$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then,

$$uv \le \frac{1}{p}u^p + \frac{1}{q}v^q$$

Proof. Since $f(x) = \log x$ is concave, we obtain

$$\forall \lambda \in [0,1], \ \lambda f(x)(1-\lambda)f(y) \le f(\lambda x + (1-\lambda)y)$$

thus,

$$\log\left(\frac{1}{p}u^p + \frac{1}{q}v^q\right) \ge \frac{1}{p}\log(u^p) + \frac{1}{q}\log(v^q) = \log(uv)$$

Since $\exp(x)$ increasing, we get

$$\exp\left(\log\left(\frac{1}{p}u^p + \frac{1}{q}v^q\right)\right) \ge \exp(\log(uv))$$

i.e.,

$$uv \le \frac{1}{p}u^p + \frac{1}{q}v^q$$

Lemma 12. Holder's inequality

Let $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$ be give, and $p,q\in[1,\infty]$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then,

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}$$

Proof. Denote that

$$||x||_p \stackrel{\text{def}}{=} \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Then, since young's inequality, for each $i \in \{1, 2, \dots, n\}$,

$$\frac{|x_i|}{\|x\|_p} \cdot \frac{|y_i|}{\|y\|_p} \leq \frac{1}{p} \cdot \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \cdot \frac{|y_i|^q}{\|y\|_q^q}$$

Summing for all $i=1,2,\ldots,n$:

$$\frac{1}{\|x\|_p \|y\|_q} \cdot \sum_{i=1}^n |x_i y_i| \le \frac{1}{p} + \frac{1}{q} = 1$$

Therefore,

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}$$

Theorem 19. Minkowski inequality

Given complex-valued sequences $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$,

$$\left[\sum_{i=1}^{n} |x_i + y_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{n} |y_i|^p\right]^{\frac{1}{p}}$$

Proof. Denote

$$|x_i + y_i|^p = |x_i + y_i| \cdot |x_i + y_i|^{p-1}$$

Then,

$$\begin{split} \sum_{i=1}^{n} |x_i + y_i|^p &= \sum_{i=1}^{n} |x_i + y_i| \cdot |x_i + y_i|^{p-1} \\ &= \sum_{i=1}^{n} (|x_i| + |y_i|) \cdot |x_i + y_i|^{p-1} \\ &= \sum_{i=1}^{n} |x_i| \cdot |x_i + y_i|^{p-1} + \sum_{i=1}^{n} |y_i| \cdot |x_i + y_i|^{p-1} \\ &= \left[\sum_{i=1}^{n} |x_i|^p \right]^{\frac{1}{p}} \cdot \left[\sum_{i=1}^{n} |x_i + y_i|^p \right]^{\frac{p-1}{p}} + \left[\sum_{i=1}^{n} |y_i|^p \right]^{\frac{1}{p}} \cdot \left[\sum_{i=1}^{n} |x_i + y_i|^p \right]^{\frac{p-1}{p}} \\ &= \left[\left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{\frac{1}{p}} \right] \cdot \left[\sum_{i=1}^{n} |x_i + y_i|^p \right]^{\frac{p-1}{p}} \end{split}$$

Now, Divide each side as $[\sum_{i=1}^n |x_i+y_i|^p]^{\frac{p-1}{p}}$, then we obtain

$$\left[\sum_{i=1}^{n}|x_i+y_i|^p\right]^{1-\frac{p-1}{p}} = \left[\sum_{i=1}^{n}|x_i+y_i|^p\right]^{\frac{1}{p}} \leq \left[\left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}}\right]^{\frac{1}{p}} \leq \left[\left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}}\right]^{\frac{1}{p}}$$

Theorem 20. Let d_{p_1}, d_{p_2} are p-norm on \mathbb{R}^n with $1 \leq p_1 < p_2 \leq \infty$. Then,

$$\exists C>0$$
 s.t. $\forall x,y\in\mathbb{R}^n,\ d_{p_2}(x,y)\leq d_{p_1}(x,y)\leq Cd_{p_2}(x,y)$

In particular, $C=n^{\frac{1}{p_1}-\frac{1}{p_2}}$.

Proof. Let $p_1 < p_2$.

For show that first-inequality,

$$1 = \sum_{i=1}^{n} \left[\frac{|x_i - y_i|}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2}\right]^{\frac{1}{p_2}}} \right]^{p_2} \leq \sum_{i=1}^{n} \left[\frac{|x_i - y_i|}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2}\right]^{\frac{1}{p_2}}} \right]^{p_1} = \frac{\sum_{i=1}^{n} |x_i - y_i|^{p_1}}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2}\right]^{\frac{1}{p_2}}} = \left[\frac{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_1}\right]^{\frac{1}{p_1}}}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2}\right]^{\frac{1}{p_2}}} \right]^{p_1}$$

Thus, we obtain that:

$$1 \leq \left[\frac{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_1} \right]^{\frac{1}{p_1}}}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2} \right]^{\frac{1}{p_2}}} \right]^{p_1} \iff 1 \leq \frac{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_1} \right]^{\frac{1}{p_1}}}{\left[\sum_{i=1}^{n} |x_i - y_i|^{p_2} \right]^{\frac{1}{p_2}}} \iff \left[\sum_{i=1}^{n} |x_i - y_i|^{p_2} \right]^{\frac{1}{p_2}} \leq \left[\sum_{i=1}^{n} |x_i - y_i|^{p_1} \right]^{\frac{1}{p_1}}$$

For show that second-inequality, using Hölder's inequality.

$$\begin{split} (d_{p_1}(x,y))^{p_1} &= \sum_{i=1}^n |x_i - y_i|^{p_1} = \sum_{i=1}^n |x_i - y_i|^{p_1} \cdot 1 \\ &\overset{\text{H\"older}}{\leq} \left[\sum_{i=1}^n \left(|x_i - y_i|^{p_1 \cdot \frac{p_2}{p_1}} \right) \right]^{\frac{p_1}{p_2}} \cdot \left[\sum_{i=1}^n 1^{\frac{p_2}{p_2 - p_1}} \right]^{1 - \frac{p_1}{p_2}} = \left[\sum_{i=1}^n \left(|x_i - y_i|^{p_2} \right) \right]^{\frac{p_1}{p_2}} \cdot n^{1 - \frac{p_1}{p_2}} \end{split}$$

Taking the $\frac{1}{p_1}$ -th power of both sides, then

$$d_{p_1}(x,y) \le \left[\sum_{i=1}^n (|x_i - y_i|^{p_2})\right]^{\frac{1}{p_2}} \cdot n^{\frac{1}{p_1} - \frac{1}{p_2}} = n^{\frac{1}{p_1} - \frac{1}{p_2}} \cdot d_{p_2}(x,y)$$

Corollary 4. Let \mathbb{R}^n be given as a set, and $d_{p_1},d_{p_2}:\mathbb{R}^n imes\mathbb{R}^n o\mathbb{R}$ are p-norm on \mathbb{R}^n . Then,

$$\mathcal{T}_{d_{p_1}} = \mathcal{T}_{d_{p_2}}$$

For every $p \ge 1$, the metric space (\mathbb{R}^n, d_p) induces the same topology as the product topology on \mathbb{R}^n . In particular, \mathbb{R}^n with the product topology coincides with \mathbb{R}^n endowed with any p-norm.

14.1.3 Open and Closed set in \mathbb{R}^n

Definition 14. For $p \in [1, \infty]$, define $p ext{-}Ball$ in \mathbb{R}^n as:

$$B_p(x,r) \stackrel{\mathsf{def}}{=} \{ y \in \mathbb{R}^n : \|x - y\|_p < r \}$$

Since all p-norms are equivalent, for any $p \in [1, \infty]$, the collection

$$\beta_p \stackrel{\text{def}}{=} \{B_p(x,r) \mid x \in \mathbb{Q}^n, \ r \in \mathbb{Q}^+\} \cup \{\emptyset, \mathbb{R}^n\}$$

is Countable basis of $\mathbb{R}^n.$ Immediately, we obtain:

Lemma 13. Every open set in \mathbb{R}^n is a countable union of p-Balls.

We call 2-Ball the Ball, and ∞ -Ball the Cube.

Theorem 21. Let $E\subseteq\mathbb{R}^n$ be an open set. Then, E is a countable union of almost disjoint closed cubes.

14.2	Topological Vector Space

14.3 Hilbert Space

Definition 15. Complete Inner product Vector Space is called Hilbert Space.

14.3.1 Hilbert Space in \mathbb{R}^ω

Definition 16. Define $\mathbb{R}^\omega \stackrel{\mathsf{def}}{=} \prod_{i=1}^\infty \mathbb{R}$ as the countable product of Euclidean space \mathbb{R} with product topology.

$$\text{And define } \mathbb{H} \stackrel{\text{def}}{=} \left\{ \left\{ x_n \right\}_{n=1}^{\infty} \, \left| \, \sum_{n=1}^{\infty} x_n^2 < \infty \right. \right\} \subset \mathbb{R}^{\omega} \text{, } \textit{Metric on } \mathbb{H} \text{ as } \mu : \mathbb{H} \times \mathbb{H} \to \mathbb{R} : \left(\left\{ x_n \right\}, \left\{ y_n \right\} \right) \mapsto \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2} \, .$$

The Metric Space (\mathbb{H},μ) is called *Hilbert Space* or l_2 *Space*.

Define the operations elementwise; then $(\mathbb{H},+,\times)$ is a Vector Space over \mathbb{R} . Moreover, \mathbb{H} is Complete Metric Space and Inner product Vector Space.

$$\textbf{Lemma 14.} \ \mu: \mathbb{H} \times \mathbb{H} \to \mathbb{R}: (\{x_n\}, \{y_n\}) \mapsto \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2} \ \text{is Metric function induced by the inner product.}$$

Proof. We know that \mathbb{R}^ω is Vector Space. Moreover, $\mathbb{H}\subset\mathbb{R}^\omega$ is Subspace. Using subspace criteria:

 $S\subset V$ is Subspace of Vector Space V if and only if $0\in S$ and For any $x,y\in S$ and $a\in F$, $ax+y\in S$.

Clearly, $\{0\}\in\mathbb{H}$. Let $a\in\mathbb{R}$ and $\{x_n\},\{y_n\}\in\mathbb{H}$ be given. Then, $a\{x_n\}+\{y_n\}=\{ax_n+y_n\}\in\mathbb{H}$ because:

$$\sum_{i=1}^{\infty} (ax_i + y_i)^2 = \sum_{i=1}^{\infty} \left[a^2 x_i^2 + 2ax_i y_i + y_i^2 \right] \stackrel{(*)}{=} a^2 \sum_{i=1}^{\infty} x_i^2 + 2a \sum_{i=1}^{\infty} x_i y_i + \sum_{i=1}^{\infty} y_i^2 < \infty$$

The (*) given by:

$$\sum_{i=1}^{\infty} |x_i y_i| = \sum_{i=1}^{\infty} |x_i| |y_i| \le \sum_{i=1}^{\infty} (\max(|x_i|, |y_i|))^2 \le \sum_{i=1}^{\infty} (x_n^2 + y_n^2) = \sum_{i=1}^{\infty} x_n^2 + \sum_{i=1}^{\infty} y_n^2 < \infty$$
 (*)

Thus $\mathbb H$ is Vector Space over $\mathbb R$. Now, define inner product on $\mathbb H$ as:

$$\langle \cdot, \cdot \rangle : \mathbb{H} \times \mathbb{H} \to \mathbb{R} : (\{x_n\}, \{y_n\}) \mapsto \sum_{i=1}^{\infty} x_i y_i$$

This definition is well-defined since (st). And, Linearity in first:

$$\langle a\{x_n\} + \{y_n\}, \{z_n\} \rangle = \langle \{ax_n + y_n\}, \{z_n\} \rangle = \sum_{i=1}^{\infty} (ax_i + y_i)z_i = a\sum_{i=1}^{\infty} x_i z_i + \sum_{i=1}^{\infty} y_i z_i = a\langle \{x_n\}, \{z_n\} \rangle + \langle \{y_n\}, \{z_n\} \rangle$$

The other conditions are clear. Thus, $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ is inner product space. Using ineer product, define the Norm on \mathbb{H} as:

$$\|\cdot\|:\mathbb{H}\to\mathbb{R}:\{x_n\}\mapsto\sqrt{\langle\{x_n\},\{x_n\}\rangle}$$

Finally, define Metric on $\mathbb H$ as:

$$\mu: \mathbb{H} \times \mathbb{H} \to \mathbb{R}: (\{x_n\}, \{y_n\}) \mapsto \|\{x_n\} - \{y_n\}\| = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

Theorem 22. Hilbert Space is Separable.

 $\textit{Proof.} \text{ For each } n \in \mathbb{N} \text{, define } D_n \stackrel{\text{def}}{=} \{ \{p_n\} \mid p_i \in \mathbb{Q}, \ p_{n+1} = p_{n+1} = \cdots = 0 \} \text{ and } D \stackrel{\text{def}}{=} \bigcup_{n \in \mathbb{N}} D_n.$

Then, D is countable set. We will show that $\overline{D}=\mathbb{H}$.

Let $\epsilon>0$ and $\{x_n\}\in\mathbb{H}$ be given. Since convergence, there exists $N\in\mathbb{N}$ such that

$$\sum_{i=N+1}^{\infty} x_i^2 = \sum_{i=1}^{\infty} x_i^2 - \sum_{i=1}^{N} x_i^2 < \frac{\epsilon^2}{2}$$

Since density of Rationals, put each $i=1,2,\ldots,N$, $p_i\in\mathbb{Q}$ $|x_i-p_i|<\frac{\epsilon}{\sqrt{2N}}$ and $p_i=0$ for $i\geq N+1$. Then, $\{p_n\}\in D_n\subset D$ and

$$\mu\left(\{x_n\},\{p_n\}\right) = \sqrt{\sum_{i=1}^{N}(x_i-p_i)^2 + \sum_{i=N+1}^{\infty}(x_i-p_i)^2} = \sqrt{\sum_{i=1}^{N}(x_i-p_i)^2 + \sum_{i=N+1}^{\infty}x_i^2} < \sqrt{N \cdot \frac{\epsilon^2}{2N} + \frac{\epsilon^2}{2}} = \epsilon^{N}$$

Corollary 5. Hilbert Space is Second-Countable.

Theorem 23. Hilbert Space is Complete.

Proof. Let $\{\{x_{n,i}\}_{i=1}^\infty\}_{n=1}^\infty$ be a Cauchy sequence in $\mathbb H$. For any fixed $n,m\in\mathbb N$ and for each $j\in\mathbb N$,

$$|x_{n,j} - x_{m,j}| < \mu(\{x_{n,i}\}, \{x_{m,i}\}) = \sqrt{\sum_{i=1}^{\infty} (x_{n,i} - x_{m,i})^2}$$

That is, for each $j\in\mathbb{N}$, $\{x_{n,j}\}$ is Cauchy sequence in \mathbb{R} . Since \mathbb{R} is Complete, put $y_j\stackrel{\mathrm{def}}{=}\lim_{\substack{n\to\infty\\n\to\infty}}x_{n,j}$, each $j\in\mathbb{N}$. Let $\epsilon>0$ be given. Then, there exists $N\in\mathbb{N}$ such that $n,m\geq N\implies \mu(\{x_{n,i}\},\{x_{m,i}\})<\frac{\epsilon}{2}$. Meanwhile, for each $k\in\mathbb{N}$,

$$\sum_{i=1}^{k} (x_{n,i} - x_{m,i})^2 \le \sum_{i=1}^{\infty} (x_{n,i} - x_{m,i})^2 = \left[\mu(\{x_{n,i}\}, \{x_{m,i}\})\right]^2$$

Thus, $n,m\geq N\implies \sum_{i=1}^k(x_{n,i}-x_{m,i})^2<\left(\frac{\epsilon}{2}\right)^2$, for each $k\in\mathbb{N}$.

Taking limit to m, then $n \geq N \implies \lim_{m \to \infty} \left(\sum_{i=1}^k (x_{n,i} - x_{m,i})^2 \right) = \sum_{i=1}^k \left(x_{n,i} - \lim_{m \to \infty} x_{m,i} \right)^2 = \sum_{i=1}^k (x_{n,i} - y_i)^2 < \left(\frac{\epsilon}{2} \right)^2$. And, for all $k \in \mathbb{N}$,

$$\sum_{i=1}^{k} y_i^2 = \sum_{i=1}^{k} (2(x_{n,i}^2 + (x_{n,i} - y_i)^2)) \le 2\|\{x_{n,i}\}_{i=1}^{\infty}\|^2 + \left(\frac{\epsilon}{2}\right)^2$$

Thus $\{y_i\}\in\mathbb{H}$. As a result,

$$n \ge N \implies \mu(\{x_n\}, \{y_n\}) = \sqrt{\sum_{i=1}^{\infty} (x_{n,i} - y_i)^2} = \sqrt{\lim_{k \to \infty} \sum_{i=1}^{k} (x_{n,i} - y_i)^2} < \frac{\epsilon}{2}$$

Theorem 24. $\mathbb{H} \subset \mathbb{R}^{\omega}$ with subbspace topology is Metrizable.

Proof. We will use two Lemmas:

Lemma 15. Countable Product of Metric Space is Metrizable.

Proof. Let (X_i,d_i) be a metric Space, for each $i\in\mathbb{N}$.

If $d: X \times X \to \mathbb{R}$ is a Metric, then $\dfrac{d}{1+d}$ is also Metric, because

$$\frac{d(x,z)}{1+d(x,z)} \underset{\stackrel{x}{\leftarrow} \text{increasing}}{\leftarrow} \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} \underset{d\geq 0}{\leftarrow} \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$$
 (*)

Using this fact, define

$$d_{\Pi}: \prod X_{i} \times \prod X_{i} \to \mathbb{R}: (\{x_{n}\}_{n=1}^{\infty}, \{y_{n}\}_{n=1}^{\infty}) \mapsto \sum_{i=1}^{\infty} \left[\frac{1}{2^{i}} \cdot \frac{d_{i}(x_{i}, y_{i})}{1 + d_{i}(x_{i}, y_{i})} \right]$$

Then d_Π is a Metric because:

$$d_{\Pi}\left(\{x_{n}\}_{n=1}^{\infty}, \{z_{n}\}_{n=1}^{\infty}\right) = \sum_{i=1}^{\infty} \left[\frac{1}{2^{i}} \cdot \frac{d_{i}(x_{i}, z_{i})}{1 + d_{i}(x_{i}, z_{i})}\right]$$

$$\stackrel{(*)}{\leq} \sum_{i=1}^{\infty} \left[\frac{1}{2^{i}} \cdot \left(\frac{d_{i}(x_{i}, y_{i})}{1 + d_{i}(x_{i}, y_{i})} + \frac{d_{i}(y_{i}, z_{i})}{1 + d_{i}(y_{i}, z_{i})}\right)\right]$$

$$= \sum_{i=1}^{\infty} \left[\frac{1}{2^{i}} \cdot \frac{d_{i}(x_{i}, y_{i})}{1 + d_{i}(x_{i}, y_{i})}\right] + \sum_{i=1}^{\infty} \left[\frac{1}{2^{i}} \cdot \frac{d_{i}(y_{i}, z_{i})}{1 + d_{i}(y_{i}, z_{i})}\right]$$

$$= d_{\Pi}\left(\{x_{n}\}_{n=1}^{\infty}, \{y_{n}\}_{n=1}^{\infty}\right) + d_{\Pi}\left(\{y_{n}\}_{n=1}^{\infty}, \{z_{n}\}_{n=1}^{\infty}\right)$$

Reflexity and symmetry are clear.

Lemma 16. Metrizable is Hereditary.

Proof omitted.

Consequently, since $\mathbb{H}\subset\mathbb{R}^\omega$ is a subspace of a metric space, it is metrizable.

- 14.4 Banach Space
- 14.5 L_p Space
- 14.6 l_p Space

Bibliography

[Athreya et al., 2019] Athreya, J. S., Reznick, B., and Tyson, J. T. (2019). Cantor set arithmetic. *The American Mathematical Monthly*, 126(1):4–17.