Halmazalgebra

1. Igazoljuk, hogy bármely A, B, C halmazra $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. $(\cap, \cup, \subseteq, = \text{definíciója}, \text{esetszétválasztás.})$

gy.
$$A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$$
.

hf. a)
$$A \cup (B \cap A) = A$$
 b) $A \cap (B \cup A) = A$

2. Igazoljuk, hogy bármely A,B halmazra $A \cup B = B \iff A \subseteq B$. (Feltételes állítások.)

gy.
$$A \cup (B \cap C) = (A \cup B) \cap C \Leftrightarrow A \subseteq C$$
.

hf.
$$A \subseteq C \Rightarrow A \cap (B \cup C) = A$$
.

3. Igazoljuk az ismert azonosságok felhasználásával, hogy tetszőleges A,B,C halmazra $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$. $(A \setminus B = A \cap \overline{B}$, disztributív szabályok, de Morgan szabályok.)

gy.
$$K \setminus (K \setminus L) = L \setminus (L \setminus K)$$
.

hf.
$$(K \setminus L) \setminus M = (K \setminus M) \setminus (L \setminus M)$$
.

4. (Ellenpélda keresés.) Legyen A, B, C tetszőleges halmazok és

$$K = (A \setminus (B \setminus C)) \setminus C$$

$$L = (A \setminus B) \cup (A \cap C).$$

Vizsgáljuk meg, hogy melyik tartalmazás áll fenn a) $K \subseteq L$, b) $L \subseteq K$, c) L = K; d) egyik se.

gy. Ha lehet, adjunk meg olyan A, B, C halmazt, amire igaz $(A \setminus C) \cup B = C$ és olyat is, amire nem igaz.

hf. Mi
$$X$$
, ha $A \setminus X = X \setminus A$?

5*. Igazoljuk, hogy tetszőleges A,B halmazra $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$. (Alaphalmazra vonatkozó komplementer, De Morgan, indirekt bizonyítás.)

$$\mathbf{gy.} \quad \overline{A} \cap \overline{B} \supseteq \overline{A \cup B} \qquad (\overline{A}, \overline{B} \supseteq \overline{A \cup B}).$$

hf.
$$\overline{A} \cup \overline{B} = \overline{A \cap B}$$
.

6*. Igazoljuk, hogy tetszőleges A halmazra $\emptyset \subseteq A$. (Üres halmaz, univerzum.)

 $\mathbf{g}\mathbf{y}$

- 1. Legyen $A,B\subseteq U\neq\varnothing$ (\overline{A} az U-ra vonatkozik). Igazoljuk, hogy ha $A\cap\overline{B}=U$, akkor $A\not\subseteq B$.
- 2. Mikor oldható meg az $(A \smallsetminus X) \cup B = X$ halmazegyenlet és ha megoldható, mi a megoldása?

hf.
$$A \cap \overline{B} = \emptyset \iff A \subseteq B$$
.