

Identity-Preserving Low-Resolution Face Recognition

Arina Lozhkina arina.lozhkina@epfl.ch

Outline

- Introduction
 - Face Recognition (FR) problem
 - Low Resolution Face Recognition (LRFR)
- Related work
 - Face Recognition pipeline
 - LRFR methods
- LRFR Datasets and Evaluation Protocols
 - LFW
 - QMUL-SurvFace
 - SCface
- Softmax-based Loss Functions
 - Implementation and experiments
- Finetuning for LRFR
 - Octuplet Loss
 - DeriveNet
 - Implementation and experiments
- Proposed methods
- Experiments
- Conclusion

Introduction

Face Recognition (FR) problem

Introduction

Low Resolution Face Recognition (LRFR) challenge

11/01/2023

Face Recognition Pipeline

LRFR Methods

Resolution-invariant

- Adapting HRFR techniques
- Finetuning
- Cross Resolution Loss Functions

Original

Super Resolution

Downsampled

GPEN[3] results

LRFR Datasets: LFW

Images	13000
ID	1680
Detection method	MTCNN
Problem	Verification
Protocol	Image Restricted Configuration: pairs and synthetically downsampled to (7x7, 14x14, 28x28, 56x56) LR

7x7

14x14

28x28 Downsampled LFW [4]

56x56 112x112

QMUL-SurvFace

Images	463507
ID	15573
Detection method	-
Problem	Verification
Protocol	Image Restricted Configuration

11/01/2023

QMUL-SurvFace[5] examples

SCface[6] Camera 1

Gallery

Images	4160
ID	130
Detection method	MICNN
Problem	Identification
Protocol	Day (5 cameras) / night (3 cameras)Distance: 1, 2, 3

Night

Day

Distance 2

Distance 3

Softmax-based Loss Functions

$$L = -\log \frac{\exp(f(\theta_{y_i}, m))}{\exp(f(\theta_{y_i}, m)) + \sum_{i \neq y_i}^{n} \exp(s \cos \theta_i)}$$

SphereFace [7]
$$f(\theta_j, m) = \begin{cases} s \cos(m\theta_j) & j = y_i \\ s \cos(\theta_j) & j \neq y_i \end{cases}$$

$$\textbf{CosFace [8]} \qquad f(\theta_j, m) = \begin{cases} s(\cos \theta_j - m) & j = y_i \\ s\cos(\theta_j) & j \neq y_i \end{cases}$$

ArcFace [9]
$$f(\theta_j, m) = \begin{cases} s \cos(\theta_j + m) & j = y_i \\ s \cos(\theta_j) & j \neq y_i \end{cases}$$

Idea: Constant margin

Adapting HRFR techniques : Training Settings

Backbone	ResNet50
Data Loader	Cross Resolution Batch Training [10]
Optimizer	SGD
Epochs	18
Training dataset	CASIA-WebFace [11]
Images in training dataset	494414
Classes in training dataset	10575

Training dataset

Softmax-based Loss Functions and their performance

	CosFace	SphereFace	ArcFace
LFW (112x112)	0.979	0.9641	0.9773
LFW (56x56	0.9801	0.9625	0.97399
LFW (28x28)	0.9721	0.9025	0.96933
LFW (14 x 14)	0.9266	0.7155	0.9189
LFW (7x 7)	0.7543	0.5926	0.74666
QMUL- SurvFace	0.6411	0.5953	0.6303
SCface dist 1	0.6873	0.1253	0.7349
SCface dist 2	0.9336	0.3487	0.95679
SCface dist 3	0.9229	0.5654	0.9322

Finetuning: Octuplet Loss

DeriveNet

Finetuning for LRFR

	Octuplet Loss	DeriveNet
LFW (112x112)	0.9208	0.9878
LFW (56x56	0.9211	0.9873
LFW (28x28)	0.9135	0.9471
LFW (14 x 14)	0.8616	0.7103
LFW (7x 7)	0.7375	0.5708
QMUL-SurvFace	0.6602	0.56184
SCface dist 1	0.5095	0.346
SCface dist 2	0.6296	0.8302
SCface dist 3	0.4175	0.9583

Cross Resolution Loss Functions: AdaFace

<u>Idea</u>:

Adaptive margin function depends on the norm of input image

Proposed method 1

Image Quality

Laplacian

Laplacian

 $mean(||x||_2^2)$

15.721

LR image

 $mean(\|x\|_2^2)$

2.317

Proposed method 2

<u>Idea</u>:

Adaptive margin function depends on mean discriminative laplacian

Experiments: LFW

	AdaFace	Appr. 1	Appr. 2
112x112	0.9906	0.977	0.9623
56x56	0.9869	0.974	0.9645
28x28	0.9685	0.969	0.9584
14x14	0.6321	0.9236	0.9138
7x7	0.5653	0.7685	0.7905

QMUL-SurvFace

	AdaFace	Appr. 1	Appr. 2
mean accuracy	0.5324	0.6281	0.7125
std	0.04875	0.02956	0.0265

	AdaFace	Appr. 1	Appr. 2
Dist 1 Day	0.50634	0.7539	0.7492
Dist 2 Day	0.96913	0.9506	0.9182
Dist 3 Day	0.99691	0.9491	0.8104

	CosFace	SphereFace	ArcFace	Octuplet Loss	DeriveNet	AdaFace	Approach 1	Approach 2
LFW (112x112)	0.979	0.9641	0.9773	0.9208	0.9878	0.9906	0.977	0.9623
LFW (56x56	0.9801	0.9625	0.97399	0.9211	0.9873	0.9869	0.974	0.9645
LFW (28x28)	0.9721	0.9025	0.96933	0.9135	0.9471	0.9685	0.969	0.9584
LFW (14 x 14)	0.9266	0.7155	0.9189	0.8616	0.7103	0.6321	0.9236	0.9138
LFW (7x 7)	0.7543	0.5926	0.74666	0.7375	0.5708	0.5653	0.7685	0.7905
QMUL- SurvFace	0.6411	0.5953	0.6303	0.6602	0.5618	0.5324	0.6281	0.7125
SCface dist	0.6873	0.1253	0.7349	0.5095	0.346	0.50634	0.7539	0.7492
SCface dist 2	0.9336	0.3487	0.95679	0.6296	0.8302	0.96913	0.9506	0.9182

0.4175

0.9583

0.99691

0.9491

0.8104

SCface dist 0.9229

0.5654

0.9322

Conclusion

- Studied the state-of-the-art deep learning-based LRFR methods
- Implemented the deep learning FR pipeline based on the state-of-the-art implementation
- Investigated LRFR datasets: LFW, QMUL-SurvFace, SCface; and set up evaluation protocols
- Implemented FR methods: CosFace, SphereFace, ArcFace; and adapted them to LRFR using Cross Resolution Batch Training
- Implemented LRFR finetuning methods: OctupletLos, DeriveNet
- Proposed 2 methods for LRFR that obtained better performance on low-resolution faces when compared to AdaFace
- Compared the performance of implemented methods

References

- [1] Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou. MagFace: A universal representation for face recognition and quality assessment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14225–14234, 2021
- [2] Xi Yin, Ying Tai, Yuge Huang, and Xiaoming Liu. FAN: Feature adaptation network for surveillance face recognition and normalization. In Proceedings of the Asian Conference on Computer Vision, pages 301–319, 2020
- [3] Tao Yang , Peiran Ren , Xuansong Xie, Lei Zhang. GAN Prior Embedded Network for Blind Face Restoration in the Wild arXiv:2105.06070 , 2021
- [4] Gary B. Huang and Erik Learned-Miller, Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007
- [5] Zhiyi Cheng, Xiatian Zhu Shaogang Gong. Surveillance Face Recognition Challenge. Technical Report, 2018
- [6] Grgic, M., Delac, K., Grgic, S.: SCface surveillance cameras face database. Multimedia Tools and Applications 51, 2011, 863–879
- [7] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, Le Song. SphereFace: Deep hypersphere embed- ding for face recognition. In Proceedings of the IEEE Con- ference on Computer Vision and Pattern Recognition, pages 212–220, 2017 [8] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. CosFace: Large margin cosine loss for deep face recognition. In Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5265–5274, 2018
- [9] Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou. ArcFace: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition, pages 4690–4699, 2019 [10] Martin Knoche, Stefan Hörmann, Gerhard Rigoll, Susceptibility to Image Resolution in Face Recognition and Trainings Strategies, arXiv:2107.03769, 2021
- [11] Martin Knoche, Mohamed Elkadeem, Stefan Hörmann, Gerhard Rigoll, Octuplet Loss: Make Face Recognition Robust to Image Resolution, arXiv:2207.06726, 2022
- [12] Maneet Singh, Shruti Nagpal, Richa Singh, Mayank Vatsa DeriveNet for (Very) Low Resolution Image Classification, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6569-6577, 2022, doi: 10.1109/TPAMI.2021.3088756.
- [13] Minchul Kim and Anil K Jain and Xiaoming Liu, AdaFace: Quality Adaptive Margin for Face Recognition, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022

Multimedia Signal Processing Group

EPFL

https://mmspg.epfl.ch/

Thank you!

Arina Lozhkina

arina.lozhkina@epfl.ch

 École polytechnique fédérale de Lausanne