Autómatas Finitos.-

Un **autómata finito** es un modelo matemático de un sistema que recibe una cadena constituida por símbolos de un alfabeto y determina si esa cadena pertenece al lenguaje que el autómata reconoce.

Formalmente, un autómata finito (AF) puede ser descrito como una 5-tupla $< Q, \Sigma, \delta, S_0, F >$

- Q: Conjunto de estados del reconocedor.
- Σ : Alfabeto con el que trabaja el reconocedor.
- δ: Función de transición. Determina cual será el estado siguiente.
- S₀: Estado inicial del autómata.
- F: Conjunto de estados de aceptación del autómata. Si se alcanza significa que una palabra pertenece al lenguaje.

Existen tres tipos de autómatas finitos:

Autómata finito determinista (AFD)

Cada estado de un autómata de este tipo tiene una transición por cada símbolo del alfabeto.

En este caso **no** se permiten transiciones vacías, el dominio de la función T es S (con lo cual **no** se permiten transiciones desde un estado de un mismo símbolo a varios estados).

Autómata finito no determinista (AFND)

Los estados de un autómata de este tipo pueden, o no, tener una o más transiciones por cada símbolo del alfabeto. El autómata acepta una palabra si existe al menos un camino desde el estado S_0 a un estado final F con la palabra de entrada. Si una transición no está definida, de manera que el autómata no puede saber como continuar leyendo la entrada, la palabra es rechazada.

Autómata finito no determinista, con transiciones ε (AFND- λ)

Además de ser capaz de alcanzar más estados leyendo un símbolo, permite alcanzarlos sin leer ningún símbolo. Si un estado tiene transiciones etiquetadas con λ , entonces el AFND puede encontrarse en cualquier de los estados alcanzables por las transiciones λ , directamente o a través de otros estados con transiciones λ .

Sin embargo, puede observarse que todos estos tipos de autómatas **pueden aceptar los mismos lenguajes**. Siempre se puede construir un AFD que acepte el mismo lenguaje que el dado por un AFND o un AFND-λ.

Además de notar un AF a través de su definición formal es posible representarlo a través de otras notaciones que resultan más cómodas. Entre estas notaciones, las más usuales son:

• Las *Expresiones Regulares*. Se demuestra que dado un autómata de estados finitos, existe una expresión regular que lo representa.

• Las Tablas de Transiciones: la tabla de transición para el AF del ejemplo 1 es

$$egin{array}{cccc} & {f 0} & {f 1} \\ S_1 & S_2 & S_1 \\ S_2 & S_1 & S_2 \\ \end{array}$$

• Los *Diagramas de Transiciones*: el diagrama de transición para el AF del ejemplo 1 es

