SRM Institute of Science and Technology Department of Mathematics

21MAB206T- Numerical Methods and Analysis

$\begin{tabular}{ll} \textbf{Unit V: - Numerical Solution of Partial Differential Equations}\\ \textbf{Tutorial Sheet} - \textbf{I} \end{tabular}$

- 1. Classify the partial differential equation $xf_{xx} + yf_{yy} = 0, x > 0, y > 0$
- 2. Classify the partial differential equation $x^2 f_{xx} + (1 y^2) f_{yy} = 0$
- 3. Solve $\nabla^2 u = 0$ at the nodal points for the following square region given the boundary condition 100 100

4. Solve $\nabla^2 u = 0$ for the square region with the given boundary conditions

	20		30		
	20	u_1		u2	40
	30	u3		u4	50
40 50					

5. By Iteration method, solve the Laplace equation $u_{xx} + u_{yy} = 0$, over the square region, satisfying the boundary conditions.

$$u(0, y) = 0.0 \le y \le 3$$

$$u(3, y) = 9 + y, 0 \le y \le 3$$

$$u(x,0)=3x,0\leq x\leq 3$$

$$u(x,3) = 4x, 0 \le y \le 3$$