Inference for Linear Model Math 463, Spring 2017, University of Oregon

David A. Levin

May 1, 2017

Warm-up

- Download data from http://pages.uoregon.edu/dlevin/DATA/crime.txt (Use read.table with the option header=T)
- ► This data set contains crime rates and demographic variables for various towns. See http://pages.uoregon.edu/dlevin/DATA/USCrimeDatafile.html
- ▶ Model R as a function of the other variables.
- ▶ Find the *p*-value for the test that the coefficient of U2 is different from 2.5.

Advertisement

Undergraduate lecture: "Proofs (not) from the Book", 4pm, Monday, May 1, 2017 in Willamette Hall 100. There will be pizza after the lecture on the second floor of Fenton; undergraduates especially welcome.

This year's Niven lectures are Monday and Tuesday of this week! 4pm both days, in Willamette 100.

Sergei Tabachnikov (Penn State)

http://math.uoregon.edu/seminars/niven

Title: Proofs (not) from the book

Abstract: The eminent mathematician of the 20th century, Paul Erdos, often mentioned "The Book" in which God keeps the most elegant proof of every mathematical theorem. So, attending a mathematical talk, he would say: "This is a proof from The Book!", or "This is a correct proof, but not from The Book". M. Aigner and G. Ziegler authored the highly successful "Proofs from THE BOOK" (translated into 13 languages). In this talk, I shall present several proofs that are not included in the Aigner-Ziegler book but that, in my opinion, could belong to "The Book".

Key points for this unit

- ▶ Inference for individual coefficients β_i and linear combination of coefficients $(\sum_i a_i \beta_i)$ using t-distribution.
- ▶ Definition of R^2 statistic and other RESIDUAL SUM-OF-SQUARES, REGRESSION SUM-OF-SQUARES.
- ► Testing if

$$\mathbb{E}(\boldsymbol{Y} \mid \boldsymbol{X}) = \boldsymbol{X}\boldsymbol{\beta} := \boldsymbol{\theta} \in V_0.$$

via the F-test.

- ▶ Power of above test using non-central F-distribution with parameter $\pi(\theta \mid V \cap V_0^{\perp})$.
- ▶ Usefulness of SINGULAR VALUE DECOMPOSITION when design matrix is nearly singular.

Normal Theory Summary (not specific to LINEAR MODEL)

- ▶ Want to estimate a **parameter** θ using an estimator $\hat{\theta}$.
- Suppose that $\hat{\theta} \sim N(\theta, v\sigma^2)$, and that $m\hat{\sigma}^2/\sigma^2 \sim \chi_m^2$, independent of $\hat{\theta}$.
- Example: Y_1, \ldots, Y_n are iid $N(\mu, \sigma^2)$ and $\bar{Y} \sim N(\mu, \sigma^2/n)$. Then $\theta = \mu$ and $\hat{\theta} = \bar{Y}$; note that $(n-1)S^2/\sigma^2$ is independent of \bar{Y} and has a chi-squared distribution with n-1 degrees of freedom.
- Example: $\hat{\beta}_1$ estimates β_1 and has a $N(\beta_1, \sigma^2(X'X)_{1,1}^{-1})$ distribution. $(n-k)\text{RSS}/\sigma^2$ has a chi-squared distribution.
- ► Then

$$\frac{\hat{\theta} - \theta}{\hat{\sigma} \sqrt{v}}$$

has a t-distribution with m degrees of freedom.

- ▶ Hypothesis test and confidence intervals on θ easy to build from the above.
- ▶ Can apply the above to $\theta = a'\beta$ for any a.

Sum of squares decomposition

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$

$$\mathrm{SS}_{\mathrm{tot}} = \mathrm{SS}_{\mathrm{reg}} + \mathrm{SS}_{\mathrm{res}}$$

$$\mathrm{Set} \ \hat{\boldsymbol{Y}}_0 = \bar{\boldsymbol{Y}} \mathbf{1} = \pi(\boldsymbol{Y} \mid \mathbf{1}).$$

$$\|\boldsymbol{Y} - \hat{\boldsymbol{Y}}_0\|^2 = \|\hat{\boldsymbol{Y}} - \hat{\boldsymbol{Y}}_0\|^2 + \|\boldsymbol{Y} - \hat{\boldsymbol{Y}}\|^2$$

$$(\mathrm{Why is} \ \boldsymbol{Y} - \hat{\boldsymbol{Y}} \perp \hat{\boldsymbol{Y}} - \hat{\boldsymbol{Y}}_0)?$$

green = data, blue = fitted values, yellow = residuals

- ▶ If SS_{reg} is small as compared to SS_{res} , then most of the variability in the Y_i 's is due to the ε_i 's.
- ▶ If the ratio of SS_{reg} to SS_{res} is large, then most of the variability in the Y_i 's is due to the linear dependence of $\mathbb{E}(Y \mid x_1, x_2, ..., x_k)$ on x_j 's.
- ▶ The multiple R^2 is defined as

$$R^2 = \frac{SS_{reg}}{SS_{tot}}$$

▶ The value R² is in [0, 1], and is interpreted as the percent of variation in the response data that is explained by the model.

Note

$$R^2 = \frac{SS_{tot} - SS_{res}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}.$$

Chi-Squared

- Suppose that $Q = \mathbf{W'AW}$ is a quadratic form and \mathbf{W} is multivariate Normal with mean vector $\boldsymbol{\theta}$ and positive definite covariance matrix $\boldsymbol{\Sigma}$.
- Note that Σ has a square-root $\Sigma^{1/2}$; let $\boldsymbol{B} = \Sigma^{1/2} \boldsymbol{A} \Sigma^{1/2}$, and $\boldsymbol{V} = \Sigma^{-1/2} \boldsymbol{W}$, so that

$$Q = (\Sigma^{-1/2} \mathbf{W})' \Sigma^{1/2} \mathbf{A} \Sigma^{1/2} (\Sigma^{-1/2} \mathbf{W}) = \mathbf{V}' \mathbf{B} \mathbf{V}.$$

Note that $\mathbf{V} \sim N(\Sigma^{-1/2}\boldsymbol{\theta}, I)$.

• Since $B = T' \Lambda T$ by spectral decomposition, we have

$$Q = TV'\Lambda TV.$$

▶ Note that $\boldsymbol{Z} := \boldsymbol{T}\boldsymbol{V} \sim N(\boldsymbol{T}\boldsymbol{\Sigma}^{-1/2}\boldsymbol{\theta}, I)$. Thus,

$$Q = \sum_{i=1}^{n} \lambda_i Z_i^2,$$

where $Z_i^2 \sim \chi_1^2((\boldsymbol{T} \boldsymbol{\Sigma}^{-1/2} \boldsymbol{\theta})_i^2)$

- ▶ The non-central chi-squared distribution is the distribution of $\sum_{i=1}^{m} Z_i^2$, where $Z_i \sim N(\delta_i, 1)$. The degrees of freedom equals m and the non-centrality parameter is $\delta = \sum_{i=1}^{m} \delta_i^2$.
- Special case: $\Sigma = \sigma^2 I$, and **A** is the projection onto V_1 , with dim $(V_1, V_1) = r$
- Let v_1, \ldots, v_n be an orthonormal basis such that v_1, \ldots, v_r span V_1 . Note that v_1, \ldots, v_r are eigenvectors of A with eigenvalue 1, and $v_{r+1}, \ldots v_n$ are eigenvectors with eigenvalue 0. Thus if $T' = [v_1 v_2 \ldots v_n]$, then

$$B = \sigma^2 T' \operatorname{diag}(1, 1, \dots, 1, 0, 0, \dots, 0) T$$
.

and

$$Q = \sigma^2 \sum_{i=1}^{r} Z_i^2 .$$

Note that

$$(T\theta)_i = \langle t_i, \theta \rangle$$
,

and

$$\sum_{i=1}^{4} (T\boldsymbol{\theta})_i = \frac{1}{\sigma^2} \|\pi(\boldsymbol{\theta} \mid V)\|^2$$

▶ Thus

$$\frac{Q}{\sigma^2} \sim \chi_r^2 \left(\frac{\|\pi(\boldsymbol{\theta} \mid V_1)\|^2}{\sigma^2} \right).$$

▶ If $V_1 = V \cap V_0^{\perp}$, then $r = \dim(V_1) = k - \dim(V_0)$.

• If U and V are random vectors, then

$$Cov(\boldsymbol{U}, \boldsymbol{V})_{i,j} = Cov(U_i, V_j).$$

Note

$$Cov(A U, B V) = ACov(U, V)B'$$
.

Note that if V and W are perpendicular subspaces and $\Sigma = \sigma^2 I$, then

$$\operatorname{Cov}(\Pi_V \, \boldsymbol{Y}, \Pi_W \, \boldsymbol{Y}) = \Pi_V \Pi_W = 0 \, .$$

▶ Let $V_0 \subset V$. Suppose dim $(V_0) = r < k = \dim(V)$. Then

$$\boldsymbol{Y} - \hat{\boldsymbol{Y}}_0 = \boldsymbol{Y} - \hat{\boldsymbol{Y}} + \hat{\boldsymbol{Y}} - \hat{\boldsymbol{Y}}_0$$

Under normality assumption on errors,

$$\begin{split} \| \boldsymbol{Y} - \hat{\boldsymbol{Y}}_0 \|^2 &= \| \boldsymbol{Y} - \hat{\boldsymbol{Y}} \|^2 + \| \hat{\boldsymbol{Y}} - \hat{\boldsymbol{Y}}_0 \|^2 \\ \chi_{n-r}^2 &= \chi_{n-k}^2 + \chi_{k-r}^2 \,. \end{split}$$

Also, the two on the right are independent (why?)

- ▶ Note the non-centrality parameter for the first on the right is 0 (always), and the non-centrality parameter for the second is $\pi(\theta \mid V \cap V_0^{\perp})/\sigma^2$.
- ▶ If $\theta \in V_0$ then the second non-centrality parameter is 0.
- ▶ We can rewrite this as

$$RSS_0 = RSS + RegSS$$

Thus

$$F = \frac{\text{RegSS}/(k-r)}{\text{RSS}/(n-k)}$$

has a $F_{k-r,n-k}$ distribution when $\boldsymbol{\theta} \in V_0$. In general, F has a non-central F distribution with non-centrality parameter equal to $\pi(\boldsymbol{\theta} \mid V \cap V_0^{\perp})$. Example: $V_0 = \mathcal{L}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_r)$. Testing $\boldsymbol{\theta} \in V_0$ is equivalent to testing $\beta_i = 0$ for i > r.

Singular Value Decomposition

$$X = UDV'$$

where $\boldsymbol{U},\,\boldsymbol{V}$ are orthogonal, \boldsymbol{D} is diagonal. Then

$$X(X'X)^{-1}X' = UDV'VD^{-2}V'VDU' = UU'$$

To find x_i^{\perp} , helpful to use model.matrix and svd.