Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 5

"Линейный модели, SVM и деревья решений"

исполнитель:
Студент группы ИУ5-21М
Коростелёв В. М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю Е

Москва – 2019

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите 1) одну из линейных моделей, 2) SVM и 3) дерево решений. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

Датасет: wine (https://www.kaggle.com/brynja/wineuci/downloads/wineuci.zip/1)

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve, validation_curve
from sklearn.model_selection import KFold, RepeatedKFold, LeaveOneOut, LeavePOut, Shuff
leSplit, StratifiedKFold
from sklearn.model selection import cross val score, cross validate
from sklearn.metrics import roc_curve,confusion_matrix, roc_auc_score, accuracy_score,
balanced accuracy score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LinearRegression
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
```

Получение данных

In [2]:

```
data = pd.read_csv('Wine.csv', sep=";")
data.head()
```

Out[2]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Р
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4										•

Колонки и их типы данных

In [3]:

data.dtypes

Out[3]:

Class	int64
Alcohol	float64
Malic acid	float64
Ash	float64
Alcalinity of ash	float64
Magnesium	int64
Total phenols	float64
Flavanoids	float64
Nonflavanoid phenols	float64
Proanthocyanins	float64
Color intensity	float64
Hue	float64
OD280/OD315 of diluted wines	float64
Proline	int64
dtype: object	

Проверка на пустые значение

```
In [4]:
for col in data.columns:
    print('{} - {}'.format(col, data[data[col].isnull()].shape[0]))
Class - 0
Alcohol - 0
Malic acid - 0
Ash - 0
Alcalinity of ash - 0
Magnesium - 0
Total phenols - 0
Flavanoids - 0
Nonflavanoid phenols - 0
Proanthocyanins - 0
Color intensity - 0
Hue - 0
OD280/OD315 of diluted wines - 0
Proline - 0
In [5]:
data.shape
Out[5]:
(178, 14)
In [6]:
CLASS = 'Class'
RANDOM STATE = 17
TEST_SIZE = 0.3
X = data.drop(CLASS, axis=1).values
Y = data[CLASS].values
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=TEST_SIZE, random_s
tate=RANDOM_STATE, stratify=Y)
print('X_train: {}'.format(X_train.shape))
print('X_test: {}'.format(X_test.shape))
X_train: (124, 13)
X_test: (54, 13)
Обучение
Машина опрных векторов
In [7]:
```

```
clf = SVC(gamma='auto')
clf.fit(X_train, Y_train)
clf.score(X_test, Y_test)
```

Out[7]:

In [8]:

```
Y_pred = clf.predict(X_test)
print(classification_report(Y_test, Y_pred))
```

	precision	recall	f1-score	support
1	0.00	0.00	0.00	18
2	0.39	1.00	0.56	21
3	0.00	0.00	0.00	15
micro avg	0.39	0.39	0.39	54
macro avg	0.13	0.33	0.19	54
weighted avg	0.15	0.39	0.22	54

Дерево решений

In [9]:

```
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, Y_train)
tree.score(X_test, Y_test)
```

Out[9]:

0.9814814814814815

In [10]:

```
Y_pred = tree.predict(X_test)
print(classification_report(Y_test, Y_pred))
```

	precision	recall	f1-score	support
1	0.95	1.00	0.97	18
2	1.00	0.95	0.98	21
3	1.00	1.00	1.00	15
micro avg	0.98	0.98	0.98	54
macro avg	0.98	0.98	0.98	54
weighted avg	0.98	0.98	0.98	54

Линейная регрессия

In [11]:

```
lin = LinearRegression()
lin.fit(X_train, Y_train)
lin.score(X_test, Y_test)
```

Out[11]:

0.8820501536198689

Подбор гиперпараметра с использованием GridSearchCV и кросс-валидации

Машина опрных векторов

In [12]:

```
CROSS_VALIDATOR_GENERATOR = 5
PARAMETER_TAG = 'C'
PARAMETER_MAX_VALUE = 3

param_grid = {PARAMETER_TAG : np.arange(0.01, PARAMETER_MAX_VALUE, 0.01)}
clf = SVC(gamma='auto')

clf_cv = GridSearchCV(clf, param_grid, cv = CROSS_VALIDATOR_GENERATOR)
clf_cv.fit(X_train,Y_train)
clf_cv.best_score_
```

Out[12]:

0.47580645161290325

In [13]:

```
clf_cv.best_params_
```

Out[13]:

{'C': 1.21}

In [14]:

```
clf = SVC(gamma='auto', C = clf_cv.best_params_[PARAMETER_TAG])
clf.fit(X_train, Y_train)
clf.score(X_test, Y_test)
```

Out[14]:

0.4074074074074074

In [15]:

```
Y_pred = clf.predict(X_test)
print(classification_report(Y_test, Y_pred))
```

	precision	recall	f1-score	support
	•			
1	1.00	0.06	0.11	18
2	0.40	1.00	0.57	21
3	0.00	0.00	0.00	15
micro avg	0.41	0.41	0.41	54
macro avg	0.47	0.35	0.22	54
weighted avg	0.49	0.41	0.26	54

Дерево решений

In [16]:

```
PARAMETER_TAG = 'min_impurity_decrease'

param_grid = {PARAMETER_TAG : np.arange(0.01, PARAMETER_MAX_VALUE, 0.01)}
tree = DecisionTreeClassifier(random_state=0)

tree_cv = GridSearchCV(tree, param_grid, cv = CROSS_VALIDATOR_GENERATOR)
tree_cv.fit(X_train,Y_train)
tree_cv.best_score_
```

Out[16]:

0.9193548387096774

In [17]:

```
tree_cv.best_params_
```

Out[17]:

{'min_impurity_decrease': 0.05}

In [18]:

```
tree = DecisionTreeClassifier(random_state=0, min_impurity_decrease = tree_cv.best_para
ms_[PARAMETER_TAG])
tree.fit(X_train, Y_train)
tree.score(X_test, Y_test)
```

Out[18]:

0.9259259259259

In [19]:

```
Y_pred = tree.predict(X_test)
print(classification_report(Y_test, Y_pred))
```

	precision	recall	f1-score	support
1	0.82	1.00	0.90	18
2	1.00	0.81	0.89	21
3	1.00	1.00	1.00	15
micro avg	0.93	0.93	0.93	54
macro avg	0.94	0.94	0.93	54
weighted avg	0.94	0.93	0.93	54

Линейная регрессия

```
In [20]:
```

```
PARAMETER_TAG = 'n_jobs'

param_grid = {PARAMETER_TAG : np.arange(1, 100)}
lin = LinearRegression()

lin_cv = GridSearchCV(lin, param_grid, cv = CROSS_VALIDATOR_GENERATOR)
lin_cv.fit(X_train, Y_train)
lin_cv.best_score_
```

Out[20]:

0.8673662670575761

In [21]:

```
lin_cv.best_params_
```

Out[21]:

```
{'n_jobs': 1}
```

In [22]:

```
lin = LinearRegression(n_jobs = lin_cv.best_params_[PARAMETER_TAG])
lin.fit(X_train, Y_train)
lin.score(X_test, Y_test)
```

Out[22]:

0.8820501536198689

Результаты

Наилиучший результат показо дерево решений.

Наихудший - машина опрных векторов