Introdução à Probabilidade e Estatística

Analise Combinatória: Parte II

Carlos Trucíos ctruciosm.github.io

Universidade Federal do ABC (UFABC)

Semana 2 - Aula 1

Resumo da última aula

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos:

	Ordem importa	Ordem não importa
Com reposição	n ^r	$\binom{r+n-1}{n-1}$
Sem reposição	$n(n-1)\cdots(n-r+1)$	$\binom{n}{r}$

$$(x+y)^1 = x+y$$

$$(x+y)^1 = x+y$$

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^1 = x+y$$

$$(x + y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x+y)^{1} = x + y$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{n} = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Teorema Binomial

Para quaisquer números x e y, e para qualquer inteiro positivo n,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Caso n=3

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}y, x^{n-2}y^2, \cdots, xy^{n-1}, y^n$

•
$$x^n$$
 só pode ocorrer se $\underbrace{x \cdots x}_{n-\text{vezes}} = \binom{n}{0} = \binom{n}{n}$

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}y, x^{n-2}y^2, \dots, xy^{n-1}, y^n$

- x^n só pode ocorrer se $\underbrace{x \cdots x}_{n} = \binom{n}{0} = \binom{n}{n}$
 - n-vez

•
$$x^{n-1}y$$
 pode ocorrer $\binom{n}{n-1,1} = \binom{n}{1} = \binom{n}{n-1}$

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}v, x^{n-2}v^2, \dots, xv^{n-1}, v^n$

- x^n só pode ocorrer se $\underbrace{x \cdots x}_{n} = \binom{n}{0} = \binom{n}{n}$
- $x^{n-1}y$ pode ocorrer $\binom{n}{n-1} = \binom{n}{1} = \binom{n}{n-1}$
- $x^{n-2}y^2$ pode ocorrer $\binom{n}{n-2} = \binom{n}{2} = \binom{n}{n-2}$

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}y, x^{n-2}y^2, \cdots, xy^{n-1}, y^n$

- x^n só pode ocorrer se $\underbrace{x \cdots x}_{n} = \binom{n}{0} = \binom{n}{n}$
- $x^{n-1}y$ pode ocorrer $\binom{n}{n-1} = \binom{n}{1} = \binom{n}{n-1}$
- $x^{n-2}y^2$ pode ocorrer $\binom{n}{n-2,2} = \binom{n}{2} = \binom{n}{n-2}$
- o . . .

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}y, x^{n-2}y^2, \cdots, xy^{n-1}, y^n$

•
$$x^n$$
 só pode ocorrer se $\underbrace{x \cdots x}_{n} = \binom{n}{0} = \binom{n}{n}$

•
$$x^{n-1}y$$
 pode ocorrer $\binom{n}{n-1,1} = \binom{n}{1} = \binom{n}{n-1}$

•
$$x^{n-2}y^2$$
 pode ocorrer $\binom{n}{n-2} = \binom{n}{2} = \binom{n}{n-2}$

•
$$xy^{n-1}$$
 pode ocorrer $\binom{n}{1,n-1} = \binom{n}{n-1} = \binom{n}{1}$

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{\text{n-vezes}}$$

Temos os termos $x^n, x^{n-1}v, x^{n-2}v^2, \dots, xv^{n-1}, v^n$

•
$$x^n$$
 só pode ocorrer se $\underbrace{x \cdots x}_{n} = \binom{n}{0} = \binom{n}{n}$

$$n$$
-vezes $\binom{n}{n}$ $\binom{n}{n}$

•
$$x^{n-1}y$$
 pode ocorrer $\binom{n}{n-1,1} = \binom{n}{1} = \binom{n}{n-1}$

•
$$x^{n-2}y^2$$
 pode ocorrer $\binom{n}{n-2,2} = \binom{n}{2} = \binom{n}{n-2}$

•
$$xy^{n-1}$$
 pode ocorrer $\binom{n}{1}$ $\binom{n}{n-1} = \binom{n}{n-1} = \binom{n}{1}$

•
$$y^n$$
 só pode ocorrer se $\underbrace{y \cdots y}_{n-vezes} = \binom{n}{n} = \binom{n}{0}$

Teorema Binomial Soluções de equações inteiras

Soluções de equações inteiras

Caso 1: O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas?

Caso 1: O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas?

Opcão A: Arranjo

Caso 1: O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas?

Opcão A: Arranjo

• Opção B: Combinação

Caso 1: O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas?

Opcão A: Arranjo

• Opção B: Combinação

Porque A e B estão erradas?

• x_1 : número de coxinhas do sabor 1

- x₁: número de coxinhas do sabor 1
- x2: número de coxinhas do sabor 2

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
- · · ·

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

- x₁: número de coxinhas do sabor 1
- x2: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5$$
 (1)

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5$$
 (1)

Queremos a solução de (1) t.q $x_i \ge 0$

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5$$
 (1)

Queremos a solução de (1) t.q $x_i \ge 0$

A ordem como pedimos as coxinhas importa?

- x₁: número de coxinhas do sabor 1
- x₂: número de coxinhas do sabor 2
-
- x₈: número de coxinhas do sabor 8

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5$$
 (1)

Queremos a solução de (1) t.q $x_i \ge 0$

A ordem como pedimos as coxinhas importa? Não

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

Arranjo com repetição?

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

- Arranjo com repetição?
- x₁: número de escrivaninhas pintadas da cor 1
- x₂: número de escrivaninhas pintadas da cor 2
- x₃: número de escrivaninhas pintadas da cor 3

$$x_1 + x_2 + x_3 = 7 (2)$$

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

- Arranjo com repetição?
- x₁: número de escrivaninhas pintadas da cor 1
- x₂: número de escrivaninhas pintadas da cor 2
- x₃: número de escrivaninhas pintadas da cor 3

$$x_1 + x_2 + x_3 = 7 (2)$$

Queremos a solução de (2) t.q $x_i \ge 0$

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

- Arranjo com repetição?
- x₁: número de escrivaninhas pintadas da cor 1
- x₂: número de escrivaninhas pintadas da cor 2
- x₃: número de escrivaninhas pintadas da cor 3

$$x_1 + x_2 + x_3 = 7 (2)$$

Queremos a solução de (2) t.q $x_i \ge 0$

A ordem importa?

Caso 2: A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

- Arranjo com repetição?
- x₁: número de escrivaninhas pintadas da cor 1
- x₂: número de escrivaninhas pintadas da cor 2
- x₃: número de escrivaninhas pintadas da cor 3

$$x_1 + x_2 + x_3 = 7 (2)$$

Queremos a solução de (2) t.q $x_i \ge 0$

A ordem importa? Não, as escrivaninhas são idênticas

Caso 1:

O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas? (a ordem não importa)

Caso 1:

O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas? (a ordem não importa)

Reinterpretando De um total de n=5 elementos (não necessariamente \neq), queremos formar r=8 grupos de tamanhos $x_1,...,x_8$ t.q $x_i \geq 0$.

Caso 2:

A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito?

Caso 1:

O melhor alun@ da turma de IPE ganha um voucher de 5 coxinhas do Bar do Luizão, que por sua vez possui 8 sabores diferentes de coxinha. De quantas formas o alun@ pode selecionar as 5 coxinhas? (a ordem não importa)

Reinterpretando De um total de n=5 elementos (não necessariamente \neq), queremos formar r=8 grupos de tamanhos $x_1,...,x_8$ t.q $x_i \geq 0$.

Caso 2:

A fabrica de escrivaninhas "Marquesone" dispõe de 3 cores diferentes para pintar 7 escrivaninhas idênticas. De quantas formas isto pode ser feito? **Reinterpretando** De um total de n=7 elementos (idênticos, i.e a ordem não importa), queremos formar r=3 grupos de tamanhos x_1, x_2, x_3 t.q $x_i \geq 0$.

Proposição 2

O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n$ com

$$x_i \ge 0$$
 é

$$\binom{n+r-1}{r-1}$$

Proposição 2

O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n$ com $x_i > 0$ é

$$\binom{n+r-1}{r-1}$$

Proposição 1

O número de soluções inteiras da equação $x_1+x_2+\cdots+x_r=n$ com $x_i>0$ é

$$\binom{n-1}{r-1}$$

Prova Proposição 1 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n \text{ com } x_i > 0 \text{ é } \binom{n-1}{r-1}$

• Imagine que temos *n* objetos idênticos (i.e a ordem não importa) e queremos dividi-los em *r* grupos não vazios.

Prova Proposição 1 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n \text{ com } x_i > 0 \text{ é } \binom{n-1}{r-1}$

• Imagine que temos *n* objetos idênticos (i.e a ordem não importa) e queremos dividi-los em *r* grupos não vazios.

•

Prova Proposição 1 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n \text{ com } x_i > 0 \text{ é } \binom{n-1}{r-1}$

• Imagine que temos *n* objetos idênticos (i.e a ordem não importa) e queremos dividi-los em *r* grupos não vazios.

0

• Para poder dividi-los em r grupos não vazios, podemos selecionar r-1 dos n-1 espaços entre os objetos

Prova Proposição 1 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n \text{ com } x_i > 0 \text{ é } \binom{n-1}{r-1}$

• Imagine que temos *n* objetos idênticos (i.e a ordem não importa) e queremos dividi-los em *r* grupos não vazios.

0

- Para poder dividi-los em r grupos não vazios, podemos selecionar r-1 dos n-1 espaços entre os objetos
- Temos $\binom{n-1}{r-1}$ seleções possíveis

Prova Proposição 2 O número de soluções inteiras da equação

$$x_1 + x_2 + \dots + x_r = n \text{ com } x_i \ge 0 \text{ \'e } \binom{n+r-1}{r-1}$$

• Agora temos n objetos idênticos e queremos dividi-los em r grupos.

Prova Proposição 2 O número de soluções inteiras da equação

$$x_1 + x_2 + \dots + x_r = n \text{ com } x_i \ge 0 \text{ \'e } \binom{n+r-1}{r-1}$$

Agora temos n objetos idênticos e queremos dividi-los em r grupos.

Prova Proposição 2 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n$ com $x_i \ge 0$ é $\binom{n+r-1}{r-1}$

- Agora temos n objetos idênticos e queremos dividi-los em r grupos.
- <u>O O O O · · · O</u>

 n-objetos
- Para poder dividi-los em r grupos, podemos utilizar r-1 dos n-1 espaços entre os objetos mas agora é permitido utilizar o mesmo espaço mais do que uma vez

Prova Proposição 2 O número de soluções inteiras da equação $x_1+x_2+\cdots+x_r=n$ com $x_i\geq 0$ é $\binom{n+r-1}{r-1}$

Agora temos n objetos idênticos e queremos dividi-los em r grupos.

• Para poder dividi-los em r grupos, podemos utilizar r-1 dos n-1 espaços entre os objetos mas agora é permitido utilizar o mesmo espaço mais do que uma vez

$$\underbrace{o \ / \ / \ o \ o \ o \ \cdots \ / \ o}_{n+r-1 \text{ objetos}}$$
(*

Prova Proposição 2 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n$ com $x_i \ge 0$ é $\binom{n+r-1}{r-1}$

Agora temos n objetos idênticos e queremos dividi-los em r grupos.

• Para poder dividi-los em r grupos, podemos utilizar r-1 dos n-1 espaços entre os objetos mas agora é permitido utilizar o mesmo espaço mais do que uma vez

$$\underbrace{o \quad l \quad l \quad o \quad o \quad \cdots \quad l \quad o}_{\text{n+r-1 objetos}}$$
(*)

• O número total de configurações (*) é (n+r-1)!

Prova Proposição 2 O número de soluções inteiras da equação $x_1 + x_2 + \cdots + x_r = n \text{ com } x_i \ge 0 \text{ é } \binom{n+r-1}{r-1}$

Agora temos n objetos idênticos e queremos dividi-los em r grupos.

• Para poder dividi-los em r grupos, podemos utilizar r-1 dos n-1 espaços entre os objetos mas agora é permitido utilizar o mesmo espaço mais do que uma vez

$$\underbrace{o \quad | \quad | \quad o \quad o \quad \cdots \quad | \quad o}_{n+r-1 \text{ objetos}}$$
(*)

- O número total de configurações (*) é (n+r-1)!
- Mas temos configurações repetidas (os n objetos são idênticos e a forma como colocamos os r-1 l's é irrelevante). Então $\frac{(n+r-1)!}{n!(r-1)!} = \binom{n+r-1}{r-1}$

Proposição 2 outra forma de ver o problema

• Queremos o número de soluções não negativas de $x_1 + \cdots x_r = n$

Proposição 2 outra forma de ver o problema

- Queremos o número de soluções não negativas de $x_1 + \cdots + x_r = n$
- Se fizermos $y_i = x_i + 1$

Proposição 2 outra forma de ver o problema

- Queremos o número de soluções não negativas de $x_1 + \cdots x_r = n$
- Se fizermos $y_i = x_i + 1$
- $x_1 + \cdots + x_r = n$, $x_i \ge 0$ é igual a $y_1 + \cdots + y_r = n + r$, $y_i > 0$

Proposição 2 outra forma de ver o problema

- Queremos o número de soluções não negativas de $x_1 + \cdots x_r = n$
- Se fizermos $y_i = x_i + 1$
- $x_1 + \cdots + x_r = n$, $x_i \ge 0$ é igual a $y_1 + \cdots + y_r = n + r$, $y_i > 0$

•

$$\binom{n+r-1}{r-1}$$

Um sistema de comunicação é formado por n antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito. Se m das n antenas apresentam defeito:

• *n* objetos idênticos (*m* defeituosos):
$$\frac{n!}{m!(n-m)!} = \binom{n}{m}$$

Um sistema de comunicação é formado por n antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito. Se m das n antenas apresentam defeito:

• *n* objetos idênticos (*m* defeituosos):
$$\frac{n!}{m!(n-m)!} = \binom{n}{m}$$

m-antenas defeituosas

Um sistema de comunicação é formado por n antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito. Se m das n antenas apresentam defeito:

•
$$n$$
 objetos idênticos (m defeituosos): $\frac{n!}{m!(n-m)!} = \binom{n}{m}$

m-antenas defeituosas

• Colocamos as n-m antenas não defeituosas nas m+1 posições

$$x_1 D x_2 D \cdots x_m D x_{m+1}$$

Um sistema de comunicação é formado por n antenas aparentemente idênticas que devem ser alinhadas em sequência. O sistema será funcional (i.e. capaz de receber qualquer sinal) se duas antenas consecutivas não apresentam defeito. Se m das n antenas apresentam defeito:

• *n* objetos idênticos (*m* defeituosos):
$$\frac{n!}{m!(n-m)!} = \binom{n}{m}$$

m-antenas defeituosas

ullet Colocamos as n-m antenas não defeituosas nas m+1 posições

$$x_1 D x_2 D \cdots x_m D x_{m+1}$$

• Precisamos $x_1 + ... + x_{m+1} = n - m \text{ t.q } x_1, x_{m+1} \ge 0 \text{ e } x_i > 0$ i = 2, ..., m

• Fazendo
$$y_1 = x_1 + 1$$
, $y_{m+1} = x_{m+1} + 1$, $y_i = x_i$ $(i = 2, ..., m)$

- Fazendo $y_1 = x_1 + 1$, $y_{m+1} = x_{m+1} + 1$, $y_i = x_i$ (i = 2, ..., m)
- Precisamos $y_1 + ... + y_{m+1} = n m + 2 \text{ t.q } y_i > 0$

- Fazendo $y_1 = x_1 + 1$, $y_{m+1} = x_{m+1} + 1$, $y_i = x_i$ (i = 2, ..., m)
- Precisamos $y_1 + ... + y_{m+1} = n m + 2 \text{ t.q } y_i > 0$
- Pela proposição 1

$$\binom{n-m+2-1}{m+1-1} = \binom{n-m+1}{m}$$

- Fazendo $y_1 = x_1 + 1$, $y_{m+1} = x_{m+1} + 1$, $y_i = x_i$ (i = 2, ..., m)
- Precisamos $y_1 + ... + y_{m+1} = n m + 2 \text{ t.q } y_i > 0$
- Pela proposição 1

$$\binom{n-m+2-1}{m+1-1} = \binom{n-m+1}{m}$$

- Fazendo $y_1 = x_1 + 1$, $y_{m+1} = x_{m+1} + 1$, $y_i = x_i$ (i = 2, ..., m)
- Precisamos $v_1 + ... + v_{m+1} = n m + 2$ t.g $v_i > 0$
- Pela proposição 1

$$\binom{n-m+2-1}{m+1-1} = \binom{n-m+1}{m}$$

Para n = 5 e m = 2

- $\binom{5}{2} = 10$ $\binom{5-2+1}{2} = 6$

Voltando na primeira aula

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos:

	Ordem importa	Ordem não importa
Com reposição	n ^r	$\binom{r+n-1}{n-1}$
Sem reposição	$n(n-1)\cdots(n-r+1)$	$\binom{n}{r}$

• Seja x_i o número de vezes que o elemento i é selecionado

Proposição 2: O número de soluções inteiras da equação
$$x_1 + x_2 + \cdots + x_r = n$$
 com $x_i \ge 0$ é $\binom{n+r-1}{r-1}$

Voltando na primeira aula

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos:

	Ordem importa	Ordem não importa
Com reposição	n ^r	$\binom{r+n-1}{n-1}$
Sem reposição	$n(n-1)\cdots(n-r+1)$	$\binom{n}{r}$

- Seja x_i o número de vezes que o elemento i é selecionado
- Queremos $x_1 + x_2 + \cdots + x_n = r$, t.q $x_i \ge 0$

Proposição 2: O número de soluções inteiras da equação
$$x_1 + x_2 + \cdots + x_r = n$$
 com $x_i \ge 0$ é $\binom{n+r-1}{r-1}$

Voltando na primeira aula

O número de maneiras de formar grupos de r elementos de um conjunto com n elementos distintos:

	Ordem importa	Ordem não importa
Com reposição	n ^r	$\binom{r+n-1}{n-1}$
Sem reposição	$n(n-1)\cdots(n-r+1)$	$\binom{n}{r}$

- Seja x_i o número de vezes que o elemento i é selecionado
- Queremos $x_1 + x_2 + \cdots + x_n = r$, t.q $x_i \ge 0$
- Pela Proposição 2 $\binom{r+n-1}{n-1}$

Proposição 2: O número de soluções inteiras da equação
$$x_1 + x_2 + \cdots + x_r = n$$
 com $x_i \ge 0$ é $\binom{n+r-1}{r-1}$

Resumo

	Tipo	Formula
Ordenar n objetos \neq 's	Permutação	n!
Escolher r de n objetos \neq 's		
(ordem importa, s/reposição)	Arranjo	n(n-1)(n-r+1)
Escolher r de n objetos \neq 's		
(ordem importa, c/reposição)	Arranjo	n ^r
Escolher r de n objetos \neq 's		
(ordem não importa, s/rep)	Combinação	$\binom{n}{r}$
Dividir <i>n</i> objetos idênticos	Soluções	·
em r grupos com $x_i \ge 0$	inteiras	$\binom{n+r-1}{r-1}$
Dividir <i>n</i> objetos idênticos	Soluções	
em r grupos com $x_i > 0$	inteiras	$\binom{n-1}{r-1}$

Resumo

	Tipo	Formula
Dividir <i>n</i> objetos \neq 's em <i>r</i> grupos	Coeficiente	
(grupo i tem tamanho n_i)	multinomial	$\binom{n!}{n_1,\cdots,n_r}$
Ordenar n objetos onde existem	Permutação	1, , ,
n_i objetos identicos do tipo i	com repetição	$\binom{n!}{n_1,\cdots,n_r}$

Leituras recomendadas

Leituras recomendadas

• Ross Cap. 1 (1.5 à 1.6)

Para praticar

- Resolver os exercícios correspondetes ao Cap 1 do Ross
- Lista 1 do gradmat.ufabc.edu.br/disciplinas/ipe/listas/