VEHICLE PLATFORM 변화에 따른 AUTOMOTIVE SECURITY 대응방안

Automotive Processor Marketing Director Sangman Chung

NOVEMBER 2022

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

NXP SEMICONDUCTORS

Key Facts from Automotive Perspective

Headquarters in The Netherlands **29,000 employees**

11,000 engineers; 9,000 patent families

\$11.1B 2021 Revenue

Growth YoY:
+28% NXP total;
+44% Automotive
2021 growth vs. 2019:
+25% NXP; +30% Automotive

Capacity committed for expected growth to ~\$15B in 2024 (+8-12% p.a.)

Automotive Technology Leadership:

Radar systems

Domain and zonal processors

Electrification systems

(BMS & eMotor Control)

General Purpose MCU

Advanced Analog

Audio infotainment

In-vehicle networking

Secure access solutions

Network-to-cloud; Secure OTA

NXP: THE LEADER IN AUTOMOTIVE PROCESSORS ENABLING THE SOFTWARE DEFINED REVOLUTION

2021 AUTO PROCESSOR MARKET SHARE

Source: **Strategy Analytics** - March 2022

THREE FUTURE CAR MISSIONS → ONE CLEAR PATH TOWARDS SOFTWARE-DEFINED CAR

Autonomous
New sensing, thinking

Service Oriented
New EE architecture

Electric
New energy mgmt

Making cars fully service-oriented requires a deep EE transformation But this is the necessary step towards SDV

EVOLUTION TOWARDS FULL ZONAL PLATFORMS → THE FOUNDATION FOR SDV

2030+ 2025+ 2022 Full Zonal Hybrid Zonal Domain Platforms **Platforms** Platforms **Logical Domains Body Domain Zone Clustering Multi-domain Zone Clustering** Create central are services service area

TWO PARALLEL ARCHITECTURAL CHANGES

Logical transformation:Scalable and centralized software development

1

- First step toward software-defined vehicle
- More isolation for improved security
- Centralized over-the-air (OTA) update for software upgrades

Physical transformation:

2

Zonal aggregation and ECU clustering

- Dramatically reduced material and manufacturing cost
- Eases EE upgrades and scalability
- Creates a central IP-based area for SOA

SDV REPRESENTS CONTINUED INVESTMENT WITH A LONG-TERM SILICON PLATFORM

- OEMs taking ownership of SDV platform with optimized silicon platforms
- Software defined vehicle architectures require software defined networking
- NXP can be a key strategic partner:
 - **Vehicle Compute:** NXP are a proven leader in Automotive compute market, with silicon platforms in 16nm today and with 5nm platform in development.
 - **Vehicle Networking:** NXP is the historical leader in IVN, now driving future communication standards and codesign in zonal networks with major OEMs

AUTOMOTIVE E&E TRENDS

More Functions and Applications

More Software

More Computing Power

More ECUs

More Safety and Security

Computing Power

ECU Integration

Safety

Security

SW Reuse

MAKING SAFE & SECURE MOBILITY A REALITY

Solution Portfolio Comprehensive System Solutions for fast time to market and scalability

Innovation Power

In-house high-performance processing, security and mobile ecosystem capabilities

Safe & Secure

Zero defects methodology Leading with functional safety and security

HISTORY: VEHICLE ELECTRONICS & CONNECTIVITY

DID YOU KNOW?

Vehicle cyber incidents
In 2019

in the largest incident to date

WHY HACKING?

Valuable data attracts hackers

Car-generated data may become a 750 B\$ market by 2030 WHY IS IT POSSIBLE?

High system complexity implies high vulnerability

Up to 150 ECUs per car, up to 200 M lines of software code WHY NOW?

Wireless interfaces enable scalable attacks

250 M connected vehicles on the road in 2020

SECURITY IS A MUST-HAVE FOR CONNECTED & AUTONOMOUS VEHICLES

IS IT REAL?

CYBERSECURITY THREATS IN AUTOMOTIVE

LOCAL ATTACKS

REMOTE ATTACKS

Tampering the odometer

https://www.nhtsa.gov/equipment/odometer-fraud

Vehicle theft by relay attack

https://www.youtube.com/watch?v=8pffcngJJq0

(July 2015)

Remote hack of an unaltered car

https://www.youtube.com/watch?v=MK0SrxBC1xs

Engine tuning

Workshop around the corner, or in your garage

Ransom for a drive

VDI Conference on IT Security for Vehicles (Berlin / July 2017)

WHAT IS AT RISK AND WHO IS AFFECTED?

STAKEHOLDERS

IMPACT	CAR USERS	CAR OWNERS	INSURERS	OEM & SUPPLIERS	SERVICE PROVIDERS
Safety	Injuries	Damage		Claims, brand damage	
Financial		Vehicle theft	Insurance claims	IP theft	Loss of income (fraud, DoS,)
Privacy	Loss of personal data (PII)			Claims, brand damage	Claims, brand damage

REQUIREMENTS FOR SAFE & SECURE MOBILITY

FUNCTIONAL SAFETY

Zero accidents due to system failures ISO 26262

SECURITY

DEVICE RELIABILITY

Zero accidents due to device failures **AEC-Q100**

PUBLIC

SECURITY, FUNCTIONAL SAFETY AND SOTIF

SECURITY, FUNCTIONAL SAFETY AND SOTIF IMPOSE QUALITY DEMANDS TO ASSURE THE PROPER OPERATION OF A SYSTEM

Security is concerned with intentional threats which are unpredictable and irregular, stemming from an evolving environment.

A security **assessment** focuses on the **possibility** of attacks.

Functional Safety focuses on unintentional hazards which have a systematic or random source, stemming from a static environment.

A functional safety **assessment** focuses on **bugs** and **probability** of failure.

SOTIF focuses on unanticipated hazards, stemming from functional insufficiencies of the intended functionality or foreseeable misuse by persons.

SOTIF validation & release criteria focus on reduction of unknown, unsafe scenarios.

NO SAFETY WITHOUT SECURITY

#1 Objective: no functional hazards • on mission-critical ECUs

Only possible, if:

System availability ensured Information received / processed trustworthy

Cyber-security is a prerequisite for availability and trust in the system

FUNCTIONAL SAFETY & SECURITY - SYSTEM-LEVEL CONCERNS

IC-LEVEL SAFETY & SECURITY SOLUTIONS

SAFE & SECURE DOMAIN ARCHITECTURES

SAFE AND SECURE MOBILITY

- Resource isolation
- On-die monitoring
- Integrity & authenticity checks

- Domain isolation
- Firewalls
- Network intrusion detection

- Fail operational
- Resilient against cyber attacks

SECURITY & MACHINE LEARNING

A largely unexplored field...

...but highly relevant for modern vehicles...

(ML can be used to improve vehicle security, but also to defeat it!)

...and even more so for autonomous vehicles!

(Autonomous Vehicle automation increasingly depends on AI/ML)

Defend against attacks enabled by ML

Apply ML in products to help defeat security attacks Improve safety and security of ML Systems

NXP'S APPROACH TO AUTOMOTIVE SECURITY

CYBERSECURITY REQUIRES A HOLISTIC APPROACH

CORNERSTONES:

NXP'S APPROACH TO AUTOMOTIVE SECURITY

NXP'S APPROACH TO AUTOMOTIVE SECURITY

CORE SECURITY PRINCIPLES FOR DEFENSE IN DEPTH

SECURE DOMAIN ISOLATION

SECURE
INTERNAL
COMMUNICATION

SECURE
SOFTWARE
EXECUTION

Multiple layers of protection – in *any* E&E network!

- To mitigate the risk of one component of the defense being compromised or circumvented
- Regardless of the actual vehicle network architecture and implementation

SECURITY MEASURES

LOCAL ATTACKS

CORE SECURITY PRINCIPLES

REMOTE ATTACKS

ECU (IC)

LOCAL INTERFACES

REMOTE INTERFACES

DISCRETE AND INTEGRATED SECURITY SOLUTIONS

SECURE EXTERNAL INTERFACES

SECURE DOMAIN ISOLATION

SECURE INTERNAL COMMUNICATION

SECURE
SOFTWARE
EXECUTION

SECURE FOUNDATIONS

SECURITY SERVICES

HOLISTIC APPROACH - SOLUTIONS AND ORGANIZATION

		PREVENT ACCESS	DETECT ATTACKS	REDUCE IMPACT	FIX VULNERABILITIES
SECURE INTERFACES	•))	M2M Authentication & Firewalling	Secure Ranging (e.g. FiRa)		
SECURE DOMAIN ISOLATION	<u>a</u>	Firewalling (context-aware message filtering)	Network Intrusion Detection Systems	Separated Functional Domains	Secure Updates
SECURE NETWORKS	윰	Secure Messaging	(NIDS)	Message Filtering & Rate Limitation	
SECURE PROCESSING	••••••••••••••••••••••••••••••••••••••	Code / Data Authentication (@ start-up)	Code / Data Authentication (@ run-time)	Resource Control (virtualization)	
SECURE ENGINEERING	a Car	SDLC incl. Security Reviews & Testing,	Threat Monitoring, Intelligence Sharing,	Incident Management / Response	
		Security-Aware Organization, Policies, Governance			

NXP'S APPROACH TO AUTOMOTIVE SECURITY

AUTOMOTIVE SECURITY SPECIFICATIONS

The SHE specification set the foundation, introducing the concept of a configurable (automotive) security subsystem

EVITA's HSM specification extended this concept into a programmable subsystem, in three flavors (Full, Medium, and Light), addressing a broader range of use cases

Nowadays, OEMs are creating their own technical specifications, including select aspects of SHE, EVITA, and FIPS 140-2

SECURITY REQUIREMENTS - TODAY'S LANDSCAPE

	SHE *	EVITA (Light / Medium / Full)	More recent needs
ARCHITECTURE	Configurable, fixed function	Programmable (except EVITA Light)	 Acceleration close to the interfaces (CAN and ETH MAC/PHYs) Support for Flash-less technologies
FUNCTIONALITY	 Secure boot Memory update protocol AES-128 (ECB, CBC) CMAC, AES-MP TRNG, PRNG Key derivation (fixed algorithm) 10+4 keys, key-usage flags 	Same as SHE, plus: • AES-PRNG • monotonic counters (16x, 64bit) Plus, for EVITA Medium and Full: • WHIRLPOOL, HMAC-SHA1, ECDH and ECDSA (P256)	 Further crypto algorithms (e.g. RSA, SHA3, Curve25519,) Rollback protection Key negotiation protocols Communication protocol offloading (e.g. TLS, IPsec, MACsec,) Context separation / multi-application scenarios
OTHER			Resistance against glitch attacksISO/SAE 21434 readiness/compliance
Covered by:	NP CSE family (since 2010) NP HSM family (since 2015)		
	NP HSE family (since 2019)		

3 0

NXP'S APPROACH TO AUTOMOTIVE SECURITY

AUTOMOTIVE SECURITY SOLUTIONS

Vehicle security requires a tight integration of hardware, software and services

Complementary strengths:

- Threat monitoring & response e.g. cloud analytics
- Device & identity management e.g. trust provisioning
- Flexibility / updateability e.g. FOTA/SOTA for fixing bugs and vulnerabilities
- Performance e.g. crypto accelerators
- Immutability e.g. hardware enforced isolation (HSM)
- Tamper resistance e.g. sensors, glue logic, shields

ON-CHIP SECURE SUBSYSTEM

Provides the system with generic (crypto) services

Enforces system confidentiality and trust

For select secure subsystems

Controls the system (reset)

ATTACK CLASSES & TYPES

ATTACK CLASSES & TYPES

ATTACK CLASSES & TYPES

COLLABORATION, INFORMATION SHARING

With industry partners, researchers, CERTs, ...

NXP was amongst the first suppliers to join the Auto-ISAC (Aug. 2016)

NXP is a founding member of the Charter of Trust (Feb. 2018)

CONCLUSION

- Vehicles become increasingly complex electronics, software, services
- Security is essential –
 people must be able to trust their cars
- NXP leads the industry, with:
 - The most complete portfolio of automotive semiconductor security solutions
 - Complemented by a comprehensive, holistic, automotive cybersecurity program

www.nxp.com/automotivesecurity blog.nxp.com/category/automotive

YOUR KEY TAKEAWAYS!

CYBERSECURITY NEEDS A HOLISTIC APPROACH

Solutions + Processes & Policies + Organization

NXP'S SECURITY PROGRAM: MATURED OVER TIME

Certified as compliant with ISO 21434

LEADING PORTFOLIO OF AUTOMOTIVE SECURITY SOLUTIONS

Exceeding market requirements

Going further

blog.nxp.com/category/automotive

www.nxp.com/automotivesecurity

YOUR KEY TAKEAWAYS!

Going further

NXP

SECURE CONNECTIONS FOR A SMARTER WORLD