Main Effects vs. Simple Effects

Scott Fraundorf MLM Reading Group April 7th, 2011

If you want to talk about main effects, need to distinguish true "main effects"...

...from their insidious cousin that may be masquerading as "main effect" in your model

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
- Continuous Predictors

Prototypical psychology study: 2 x 2 design

Example Study

- Study <u>easy</u> and <u>difficult</u> word pairs
 - VIKING—HELMET (related and thus easy)
 - VIKING—COLLEGE (unrelated and thus hard)
- Do cued recall task:
 - VIKING---?????
- During test phase, told if an opponent supposedly got the item correct or incorrect

Easy items are remembered better if the opponent supposedly got them right.

Hard items are remembered better if the opponent got them wrong.

(i.e., performance best in the MISMATCH conditions)

Effect of feedback depends on item type (INTERACTION).

- Opponent Correct
- Opponent Incorrect

Opponent Correct

Opponent Incorrect

MAIN EFFECT (OR LACK THEREOF)

No consistent effect of opponent feedback.

The Problem

ANOVA WORLD

- Get test of interaction
- And of 2 main effects

MLM WORLD

- •Not in Kansas anymore!
- •What to do?

The Problem

Modeling our outcome variable in a regression equation

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + ...$$

 Need to code categorical variables into numerical ones

 Consequences for how you interpret hypothesis tests

R's secret decoder wheel

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
- Continuous Predictors

ITEM TYPE

Related : 0 Unrelated : 1 One level is 1

Other level is 0

OPPONENT FEEDBACK

Correct : 0

Incorrect : 1

DUMMY CODING a/k/a TREATMENT CODING (R's <u>default</u>)

Predictor with >2 levels: get more dummy-coded variables

ITEM TYPE

Related : 0 Unrelated : 1 OPPONENT (A)

Didn't See : 0 Correct : 1 Incorrect : 0 OPPONENT (B)

Didn't See : 0
Correct : 0
Incorrect : 1

DUMMY CODING a/k/a TREATMENT CODING (R's <u>default</u>)

ITEM TYPE

Related : 0 Unrelated : 1 One level is 1

Other level is 0

OPPONENT FEEDBACK

Correct : 0 Incorrect : 1

DUMMY CODING

CONTRAST CODING

ITEM TYPE

Related : -0.5 Unrelated : 0.5 One level is positive

Other level is negative

OPPONENT FEEDBACK

Correct : -0.5 Incorrect : 0.5

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
- Continuous Predictors

How to tell if the opponent's feedback is related to memory?

(e.g. possible main effect: you just try harder when someone else got the item wrong)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ...$$

Feedback

0 = Correct

1 = Incorrect

Item Type

0 = Related

1 = Unrelated

Compare when feedback = 0...

Y=
$$\beta_0$$
+ β_1 0 + β_2 X₂ + ...

Feedback

The correct of the second second

... to when feedback = 1

Y=
$$\beta_0$$
+ β_1 1 + β_2 X₂ + ...

Feedback
0 = Correct
0 = Related
1 = Unrelated

 β_1 : "The effect of changing feedback, while holding item type constant"

But, we know there's an interaction ... so it will matter what value we hold item type constant at!

Feedback

0 = Correct

1 = Incorrect

Item Type

0 = Related

1 = Unrelated

Feedback
0 = Correct
1 = Incorrect

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
- Continuous Predictors

FEEDBACK

Correct : 0 Incorrect : 1

What is effect of the Feedback variable?

DUMMY CODING

R holds **Item Type** at **0**.

Only reflects Related condition.

Simple Effect

Problem: Effect of Feedback depends on the Item Type. (i.e., there's an INTERACTION)

Main Effect

What is effect of the Feedback variable?

R holds **Item Type** at **0**.

Averaged between 2 conditions.

Test now uses information from both Item Types in testing Feedback. (No main effect here.)

CONTRAST CODING

FEEDBACK

Correct : -0.5 Incorrect : 0.5 I EM TYPE

Related : -0.5

Unrelated: 0.5

- Dummy Coding -> Simple Effects
 - Consider only one level of predictor X₂ in testing predictor X₁
- Contrast Coding -> Main Effects
 - Consider all levels of predictor X₂ in testing predictor X₁
- Both are legitimate statistical tests, but they test different things
 - Simple effects may be appropriate if you WANT to only test at one level of predictor X₂
 - e.g. that level is the baseline ("opponent didn't see" condition?)
 - Just make sure that your tests are testing what you say they are!

Some Other Notes...

Easy Items

Some Other Notes...

•If NO interaction, simple effects and main effects are the same

X₂ is irrelevant to X₁
 effect

•But note that even if interaction isn't reliable at $\alpha = .05$, there can be a *numerical* interaction

 Would still be some difference between simple effects & main effects

INTERACTION!

- OpponentCorrect
- Opponent Incorrect

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
 - More Detailed Explanation
 - How to Do Contrast Coding
 - Continuous Predictors

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$ (+ random effects, error)
- $X_1 = 0$ if related, 1 if unrelated
- $X_2 = 0$ if opponent right, 1 if opponent wrong
- Results:

- Related, Right:
$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$$

- $= \beta_0 + \beta_1(0) + \beta_2(0) + \beta_{12}(0)(0)$
(substituting in 0s for X_1 and X_2)

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$ (+ random effects, error)
- $X_1 = 0$ if related, 1 if unrelated
- $X_2 = 0$ if opponent right, 1 if opponent wrong
- Results:
 - Related, Right: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$ - $\beta_0 + \beta_1(0) + \beta_2(0) + \beta_{12}(0)(0)$
 - Most of this is 0 and drops out

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$$
 (+ random effects, error)

- $X_1 = 0$ if related, 1 if unrelated
- $X_2 = 0$ if opponent right, 1 if opnonent wrong

Results:

- Related, Right: β_0
- Unrelated, Right: $\beta_0 + \beta_1$
- Related, Wrong: $\beta_0 + \beta_2$
- Unrelated, Wrong: $\beta_0 + \beta_1 + \beta_2 + \beta_{12}$

If we create the equation for all 4 conditions...

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$$
 (+ random effects, error)

- $X_1 = 0$ if related, 1 if unrelated
- $X_2 = 0$ if opponent right, 1 if opnonent wrong

• Results:

- Related, Right: β_0
- Unrelated, Right: $\beta_0 + \beta_1$
- Related, Wrong: $\beta_0 + \beta_2$
- Unrelated, Wrong: $\beta_0 + \beta_1 + \beta_2 + \beta_{12}$

We see that, here,
β₁ = Difference
between
Related, Right
and
Unrelated, Right

Contrast Coding

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$ (+ random effects, error)
- $X_1 = -0.5$ if related, 0.5 if unrelated
- $X_2 = -0.5$ if opponent right, 0.5 if opponent wrong

Results:

- Related, Right: β_0 0.5 β_1 0.5 β_2 + β_{12} (-0.5)(-0.5)
- Unrelated, Right: $\beta_0 + 0.5\beta_1 0.5\beta_2 + \beta_{12}(0.5)(-0.5)$
- Related, Wrong: β_0 0.5 β_1 + 0.5 β_2 + β_{12} (-0.5)(0.5)
- Unrelated, Wrong: $\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12}(0.5)(0.5)$

Contrast Coding

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$$
 (+ random effects, error)

- $X_1 = -0.5$ if related, 0.5 if unrelated
- $X_2 = -0.5$ if opponent right, 0.5 if opponent wrong

Results:

= Related, Right: $\beta_0 - 0.5\beta_1 = -0.5\beta_2 + \beta_{12}(-0.5)(-0.5)$

- Related, Wrong: β_0 - 0.5 β_1 + 0.5 β_2 + β_{12} (-0.5)(0.5) - Unrelated, Right: β_0 + 0.5 β_1 - 0.5 β_2 + β_{12} (0.5)(-0.5)

- $-0.5\beta_2 + \beta_{12}(0.5)(-0.5)$
- Unrelated, Wrong: $\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12}(0.5)(0.5)$

Contrast Coding

$$R + R \times + R \times_2 + \beta_{12} \times_1 \times_2$$
 (+ random effects, error)

, 0.5 if unrelated

ent right, 0.5 if opponent wrong

Results:

- = Related, Right: β_0 0.5 β_1 0.5 β_2 + β_{12} (-0.5)(-0.5) = Related, Wrong: β_0 0.5 β_1 + 0.5 β_2 + β_{12} (-0.5)(0.5)

 - Unrelated, Right: $\beta_0 + 0.5\beta_1 0.5\beta_2 + \beta_{12} (0.5)(-0.5)$ Unrelated, Wrong: $\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (0.5)(0.5)$

Same between 2 related and 2 unrelated conditions:

$$-0.5\beta_2 + \beta_{12}(-0.5)(-0.5)$$

$$+ 0.5\beta_2 + \beta_{12}(-0.5)(0.5)$$

$$-0.5\beta_2 + \beta_{12} (0.5)(-0.5)$$

$$+ 0.5\beta_2 + \beta_{12}(0.5)(0.5)$$

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
- Continuous Predictors

How to Do Contrast Coding

• SEE your current coding: contrasts (Dataframe\$Variable)

CHANGE your coding:

```
contrasts(Dataframe$Variable) =
c(-0.5,0.5)
```

• With more than 2 levels, set *multiple* contrasts:

```
contrasts(Dataframe$Variable) =
cbind(c(-0.33,-0.33,0.66),
c(-0.5,0.5,0))
```

How to Do Contrast Coding

To get back to dummy coding...

Could set the coding manually
 contrasts (Dataframe\$Variable) =
 c(0,1)

SHORTCUT!

```
contrasts(Dataframe$Variable) =
contr.treatment
```

Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
- More Detailed Explanation
- How to Do Contrast Coding
 - Continuous Predictors

Continuous Predictors

- •So far, we've looked at categorical predictors
- •What about continuous predictors?
 - e.g. do online processing resources predict use of pitch accenting information in discourse comprehension?

Continuous Predictors

 Again, by default, pitch accent is evaluated when span score = 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ...$$

- So main effect of pitch accent represents what pitch accent does when you have no working memory
 - May be uninformative (as in this case)
 - Nobody has span score of 0

Continuous Predictors

- Alternative: CENTER the continuous predictor
- •So 0 is now the *mean* span score

- Now, main effect of pitch accent represents what pitch accent does for you if you have average span score
 - "Jane Average"'s pitch accenting effect
 - More informative!

Centering a Variable in R

Replace the original variable w/ mean-centered version

```
Dataframe$Variable =
Dataframe$Variable -
mean (Dataframe$Variable)
```

 Keep the original variable and create a new mean-centered one called Variable.c:

```
Dataframe$Variable.c =
Dataframe$Variable -
mean(Dataframe$Variable)
```

Default

Main effect of predictor X₁ is when predictor X₂ is at

Mean Centering

Main effect of predictor X₁ is when predictor X₂ is at its mean

Again...

- Both are legitimate statistical tests, but they test
 different things
- No difference between these 2 when there's no interaction
- Doesn't change the test of the interaction itself