Problem Set 3 Solution

March 22, 2020

Question 1

1. Let $x \in \mathbb{R}$.

Base Case (n = 0):

Let n = 0.

Then,

$$a_0 = 0 (1)$$

Then it follows from above that the base case holds.

Inductive Case (n > 0):

Let $k \in \mathbb{N}$, and assume $a_n = x \prod_{i=0}^{n-1} a_i$.

Then,

$$x \prod_{i=0}^{n-1} a_i \cdot a_n = x \prod_{i=0}^n a_i$$

$$= a_{n+1}$$
(1)

$$= a_{n+1} \tag{2}$$

Then it follows from above that the recursive sequence of numbers is true for all natural numbers.

2. From the following table

String Length	Number of Even (Digit Sum)	Number of Odd (Digit Sum)	Total
1	2	1	3
2	5	4	9
3	14	13	27

we see that $E_n = \frac{3^n+1}{2}$ and $O_n = \frac{3^n-1}{2}$.

As well, we see that the number of new elements in E_{n+1} is 3^n .

Now, we will prove that E_n and O_n are true using the induction hypothesis.

Base Case (n = 1):

Let n=1.

Then, $E_n = \frac{4}{2} = 2$ and $O_n = \frac{2}{2} = 1$.

Since the result matches to data in table, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume $E_n = \frac{3^n + 1}{2}$ and $O_n = \frac{3^n - 1}{2}$.

Then,

$$E_{n+1} = \frac{3^n + 1}{2} + 3^n \tag{3}$$

$$=\frac{3^n+1}{2}+\frac{2\cdot 3^n}{2}\tag{4}$$

$$=\frac{3\cdot 3^n+1}{2}\tag{5}$$

$$=\frac{3^{n+1}+1}{2}\tag{6}$$

Then, it follows from above that the inductive step for E_n holds.

Similarly, for O_n ,

$$O_{n+1} = \frac{3^n - 1}{2} + 3^n \tag{7}$$

$$=\frac{3^n-1}{2} + \frac{2\cdot 3^n}{2} \tag{8}$$

$$=\frac{3\cdot 3^n - 1}{2}\tag{9}$$

$$= \frac{3^{n} - 1}{2} + \frac{2 \cdot 3^{n}}{2}$$

$$= \frac{3 \cdot 3^{n} - 1}{2}$$

$$= \frac{3^{n+1} - 1}{2}$$
(8)
(9)

Then, it follows from above that the inductive step for O_n holds.

Then, it follows from the definition of induction hypothesis that the value of E_n and O_n are true for all n.

- Question 2
- Question 3
- Question 4