Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №14

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Указатели

Задание 5

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	5
3.	Скрипт	6
4.	Моделирование	7
5.	Решение 1а	8
	5.1. Директивы	
	5.2. Синтез	
6.	Решение 2а	11
	6.1. Директивы	
	6.2. Синтез	
	6.3. C/RTL моделирование	14
7.		14
	7.1. Директивы	
	7.2. Синтез	
	7.3. C/RTL моделирование	17
8.		17
	8.1. Директивы	17
	8.2. Синтез	
	8.3. C/RTL моделирование	21
9.	Вывод	21

1. Задание

- 1. Создать проект lab14 5
- 2. Микросхема: xa7a12tcsg325-1q
- 3. В папке source текст функции pointer_double Познакомьтесь с ним.
- 4. Познакомьтесь с тестом.
- 5. Исследование:
- 6. Solution 1a
 - Осуществить моделирование
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму

Обратить внимание на реализацию интерфейсов.

- 7. Solution 2a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию КОНВЕЙЕР ДЛЯ ЦИКЛА
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency

- · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 8. Сравнить два решения (solution 1a и solution 2a) и сделать выводы
- 9. Solution 3a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию INLINE ДЛЯ ФУНКЦИИ
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 10. Сравнить два решения (solution 1a и solution 2a и solution 3a) и сделать выводы
- 11. Solution 4a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ПРЕДЛОЖИТЕ ДЛЯ УВЕЛИЧЕНИЯ ПРИЗВОДИ-ТЕЛЬНОСТИ И ЗАДЕРЖКИ, + ОПТИМИЗАЦИЯ ИНТЕРФЕЙСА + УМЕНЬ-ПІЕНИЕ AREA
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)

- · На скриншоте показать Latency
- · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 12. Сравнить с полученными ранее решениями: solution_1a и solution_2a и solution_3a и сделать выводы

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
#include "pointer double.h"
2
3
    data \ t \ sub ( data\_t \ ptr [10] \ , \ data\_t \ size \ , \ data\_t **flagPtr ) 
4
5
      data_t x, i;
6
7
      x = 0;
8
     // Sum x if AND of local index and double-pointer index is true
9
      LOOP: for (i=0; i < size; ++i)
           if (**flagPtr & i)
10
11
                x += *(ptr+i);
12
      return x;
13
  }
14
15
  data_t pointer_double(data_t pos, data_t x, data_t* flag)
16
      data_t \ array[10] = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\};
17
18
      data t* ptrFlag;
19
      data_t i;
20
21
      ptrFlag = flag;
22
23
     // Write x into index position pos
24
     if (pos >= 0 \& pos < 10)
25
          *(array+pos) = x;
26
27
     // Pass same index (as pos) as pointer to another function
28
      return sub(array, 10, &ptrFlag);
29
```

Рис. 2.1. Исходный код устройства

```
#ifndef _POINTER_DOUBLE_H_
#define _POINTER_DOUBLE_H_

#include <stdio.h>

typedef int data_t;

data_t pointer_double(data_t pos, data_t x, data_t* flag);

#endif
```

Рис. 2.2. Заголовочный файл

```
1 #include "pointer double.h"
2
3
  int main () {
4
     data_t data_o;
5
6
     int i, retval=0;
7
                    *fp;
8
9
     // Save the results to a file
10
     fp=fopen("result.dat", "w");
11
12
     // Call the function for multiple transactions
      for ( i = 0; i < 10; ++i ) {
13
14
          int flag = i;
          data\_o \, = \, pointer\_double\,(\,i \;, \;\; -1, \; \&flag\,) \;;
15
16
          fprintf(fp, "%d_\n", data_o);
17
     fclose (fp);
18
19
20
     // Compare the results file with the golden results
21
     retval = system("diff_-brief_-w_result.dat_result.golden.dat");
22
     if (retval != 0) {
23
        printf("Test_failed__!!!\n");
24
        retval=1;
25
     } else {
26
        printf("Test_passed_!\n");
27
28
29
     // Return 0 if the test passed
30
     return retval;
31 }
```

Рис. 2.3. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab14 5
2
3 add_files pointer_double.c
4 add_files -tb pointer_double_test.c
  add files -tb result.golden.dat
  set top pointer double
7
8
9
  set solutions [list 1a 2a 3a 4a]
10
  foreach sol $solutions {
11
    open solution -reset solution $sol
12
13
14
    set part \{xa7a12tcsg325-1q\}
15
    create_clock -period 10ns
16
    set clock uncertainty 0.1
17
18
    if \{\$sol = "2a"\}
       set_directive_pipeline "sub/LOOP"
19
20
    if \{\$sol = "3a"\}
21
22
       set directive inline sub
23
    if \{\$sol = "4a"\}
24
25
       set_directive_array_partition -type complete -dim 1 pointer_double array
       set directive unroll "sub/LOOP"
26
27
28
    csim design
29
    csynth design
    cosim_design -trace level all
30
31
32
33 exit
```

Рис. 3.1. Скрипт

4. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5. Решение 1а

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Puc. 5.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_	18K	DSP4	8E	FF	LUT
DSP	-		-		-	-
Expression	-		-		0	139
FIFO	-		-		-	-
Instance	-		-		-	-
Memory		2	-		0	0
Multiplexer	-		-		-	209
Register	-		-		54	-
Total		2		0	54	348
Available		40		40	16000	8000
Utilization (%)		5		0	~0	4

Рис. 5.3. Utilization estimates

Рис. 5.4. Performance profile

Рис. 5.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7
1	⊡I/O Ports								
2	pos_r					read			
3	х					read			
4	flag						read		
5	ap_return							ret	
6	∃Memory Ports								
7	array(pl)	write	write	write	write	write		re	ad
8	array(p0)	write	write	write	write	write	write		
9	Expressions								
10	tmp_7_fu_250					- 1			
11	tmp_not_fu_244					icmp			
12	i_fu_270							+	
13	x_i_phi_fu_217							phi_mux	
14	i_i_phi_fu_229							phi_mux	
15	tmp_i_fu_276							&	
16	tmp_1_i_fu_281							icmp	
17	exitcond_i_fu_264							icmp	
18	x_1_fu_292								+
19	x_2_fu_298								select

Рис. 5.6. Resource viewer

Рис. 5.7. Временная диаграмма

Исходя из временной диаграммы, цикл выполняется 10 раз, на каждую итерацию требуется 2 такта, в итоге Latency =10*2=20 Кроме цикла в программе присутствую операции записи на которые требуется еще тактов, итоговое значение Latency =20+6=26 Значения будут доступны на выходе еще через 1 такт II=Latency+1=27

6. Решение 2а

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 6.1. Директивы

6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	6.224	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte	rval	
min	max	min	max	Туре
17	17	17	17	none

Рис. 6.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM	18K	DSP4	8E	FF	LUT
DSP	-		-		-	-
Expression	-		-		0	155
FIFO	-		-		-	-
Instance	-		-		-	-
Memory		2	-		0	0
Multiplexer	-		-		-	224
Register	-		-		53	-
Total		2		0	53	379
Available		40		40	16000	8000
Utilization (%)		5		0	~0	4

Рис. 6.3. Utilization estimates

Рис. 6.4. Performance profile

Рис. 6.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7	C8
	■ I/O Ports									
2	pos_r					read				
3	х					read				
4	flag						read			
5	ap_return									ret
6	⊡Memory Ports									
7	array(p0)	write	write	write	write	write	write			
8	array(pl)	write	write	write	write	write		re	ad	
9	Expressions									
10	tmp_7_fu_260					1				
11	tmp_not_fu_254					icmp				
12	i_fu_280							+		
13	i_i_phi_fu_239							phi_mux		
14	tmp_i_fu_286							&		
15	exitcond_i_fu_274							icmp		
16	tmp_1_i_fu_291							icmp		
17	x_1_fu_302								+	
18	x_i_phi_fu_227								phi_mux	
19	x_2_fu_308								select	

Рис. 6.6. Resource viewer

Рис. 6.7. Временная диаграмма

Как видно из временной диаграммы, значение Latency уменьшилось с 26 до 17 за цикл. Это связано с тем что после применения директивы конвейеризации модуль не ждет окончания выполнения всего цикла, а сразу читает следующие данные и подает в функцию.

7. Решение 3а

7.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 7.1. Директивы

7.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	6.224	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte	rval	
min	max	min	max	Туре
26	26	26	26	none

Рис. 7.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM	18K	DSP4	ВE	FF	LUT
DSP	-		-		-	-
Expression	-		-		0	139
FIFO	-		-		-	-
Instance	-		-		-	-
Memory		2	-		0	0
Multiplexer	-		-		-	209
Register	-		-		54	-
Total		2		0	54	348
Available		40		40	16000	8000
Utilization (%)		5		0	~0	4

Рис. 7.3. Utilization estimates

Рис. 7.4. Performance profile

Рис. 7.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7
1	⊡I/O Ports						,	,	
2	ж					read			
3	pos_r					read			
4	flag						read		
5	ap_return							ret	
6	⊡Memory Ports								
7	array(p0)	write	write	write	write	write	write		
8	array(pl)	write	write	write	write	write		re	ad
9	-Expressions								
10	tmp_3_fu_250					1			
11	tmp_not_fu_244					icmp			
12	i_fu_270							+	
13	i_0_i_phi_fu_229							phi_mux	
14	x_0_i_phi_fu_217							phi_mux	
15	tmp_5_fu_276							&	
16	tmp_6_fu_281							icmp	
17	exitcond_i_fu_264							icmp	
18	x_1_fu_292								+
19	x_2_fu_298								select

Рис. 7.6. Resource viewer

Рис. 7.7. Временная диаграмма

Как видно по результатам, после применения директивы INLINE решение соответствует решению 1 (по-умолчанию), то есть inlining не влияет на производительность данного устройства.

8. Решение 4а.

Исходя из временных диаграмм полученных ранее, можно сделать вывод, что дольше всего выполняются команды записи и чтения в массив array. Для уменьшения временных задержек можно применить директиву ARRAY_PARTITION для массива array и директиву UNROLL для цикла.

8.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 8.1. Директивы

8.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

∃ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.514	0.10

□ Latency (clock cycles)

■ Summary

Latency		Inte		
min	max	min	max	Туре
4	4	4	4	none

Рис. 8.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	669
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	114
Register	-	-	395	-
Total	0	0	395	783
Available	40	40	16000	8000
Utilization (%)	0	0	2	9

Рис. 8.3. Utilization estimates

Рис. 8.4. Performance profile

Рис. 8.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4
1	∃I/O Ports					
2	pos_r	read				
3	х	read				
4	flag		read			
5	ap_return					ret
6	-Expressions		'			
7	tmp_7_fu_446	- 1				
8	tmp_not_fu_440	icmp				
9	x_2_2_i_fu_484		+			
10	x_2_3_i_fu_504		+			
11	ptr_1_read_assign_phi_fu_170		phi_mux			
12	ptr_3_read_assign_phi_fu_94		phi_mux			
13	ptr_2_read_assign_phi_fu_132		phi_mux			
14	p_read_i_fu_468		select			
15	p_read_x_2_2_x_2_3_i_fu_510		select			
16	p_read_x_2_2_i_fu_490		select			
17	tmp_1_9_i_fu_598		icmp			
18	tmp_1_5_i_fu_544		icmp			
19	tmp_1_3_i_fu_498		icmp			
20	icmp_fu_560		icmp			
21	tmp_1_7_i_fu_566		icmp			
22	x_2_5_i_fu_615			+		
23	x_2_4_i_fu_604			+		
24	ptr_4_read_assign_phi_fu_246			phi_mux		
25	ptr_5_read_assign_phi_fu_208			phi_mux		
26	p_read_x_2_2_x_2_3_x_1_fu_621			select		
27	p_read_x_2_2_x_2_3_x_fu_609			select		
28	x_2_6_i_fu_628				+	
29	x_2_7_i_fu_639				+	
30	ptr_6_read_assign_phi_fu_322				phi_mux	
31	ptr_7_read_assign_phi_fu_284				phi_mux	
32	p_read_x_2_2_x_2_3_x_3_fu_645				select	
33	p_read_x_2_2_x_2_3_x_2_fu_633				select	
34	x_2_8_i_fu_652					+
35	x_2_9_i_fu_663					+
36	ptr_9_read_assign_phi_fu_360					phi_mux
37	ptr_8_read_assign_phi_fu_398					phi_mux
38	sel_SEBB_i_fu_669					select
39	p read x 2 2 x 2 3 x 4 fu 657					select

Рис. 8.6. Resource viewer

Рис. 8.7. Временная диаграмма

По результатам видно, что в данном решении достигнута наибольшая производительность по сравнению с остальными.

9. Вывод

Ниже приведено сравнение решений.

Performance Estimates

□ Timing (ns)

Clock	c	solution_1a	solution_2a	solution_3a	solution_4a
ap_c	lk Target	10.00	10.00	10.00	10.00
	Estimated	6.224	6.224	6.224	9.514

Latency (clock cycles)

		solution_1a	solution_2a	solution_3a	solution_4a
Latency	min	26	17	26	4
	max	26	17	26	4
Interval	min	26	17	26	4
	max	26	17	26	4

Рис. 9.1. Сравнение производительности

Utilization Estimates

	solution_1a	solution_2a	solution_3a	solution_4a
BRAM_18K	2	2	2	0
DSP48E	0	0	0	0
FF	54	53	54	395
LUT	348	379	348	783

Рис. 9.2. Сравнение использования ресурсов

По результатам можно сделать вывод, что применённые директивы позволяют улучшить производительность.