Today in Cryptography (5830)

RSA Recap
Active attacks against RSA PKCS#1 RSA encryption
Diffie-Hellman key exchange

TLS handshake for RSA transport


```
ClientHello, MaxVer, Nc, Ciphers/CompMethods
Pick random No.
                                                                                 Pick random Ns
                      ServerHello, Ver, Ns, SessionID, Cipher/CompMethod
Check CERT
                             CERT = (pk of bank, signature over it)
using CA public
verification key
                                             C
Pick random PMS
                                                                                 PMS \leftarrow D(sk,C)
C \leftarrow E(pk,PMS)
                       ChangeCipherSpec,
                       { Finished, PRF(MS, "Client finished" | H(transcript)) }
                       ChangeCipherSpec,
Bracket notation
                       { Finished, PRF(MS, "Server finished" | | H(transcript')) }
means contents
encrypted
```

MS <- PRF(PMS, "master secret" | Nc | Ns)

The RSA trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$

$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

PKCS #1 RSA encryption

Kg outputs (N,e),(N,d) where $|N|_8 = n$ Let B = $\{0,1\}^8 / \{00\}$ be set of all bytes except 00 Want to encrypt messages of length $|M|_8 = m$


```
\frac{Dec((N,d), C)}{X = C^d \mod N} ; aa||bb||w = X
If (aa ≠ 00) or (bb ≠ 02) or (00\notinw)
Return error
pad || 00 || M = w
Return M
```

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Attacks?
 - Key generation failures
 - Active attacks

TLS handshake for RSA transport

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)

Check CERT using CA public

verification key

Pick random PMS

C <- E(pk,PMS)

Bracket notation means contents encrypted

C

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec,
{ Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" || Nc || Ns)

Pick random Ns

 $PMS \leftarrow D(sk,C)$

RSA key generation summary

- Find 2 large primes p, q . Let N = pq
 - random integers + primality testing
- Choose e (usually 65,537)
 - Compute d using $\phi(N) = (p-1)(q-1)$
- pk = (N,e) and sk = (N,d)

Weak RSA keys

- Factoring is hard for large key sizes (>=1024)
- But what could go wrong in key generation?
- Reuse p and q values accidentally
- Reuse p with different q:
 - Ex: N1 = p * q N2 = p * q'
 - Compute GCD of large integers in milliseconds
 - Use Bernstein's all-pairs GCD to scale up

RNGs and RSA key generation

Weak keys

	Our 1LS Scan		
Number of live hosts	12,828,613	(100.00%)	
using repeated keys	7,770,232	(60.50%)	
using vulnerable repeated keys	714,243	(5.57%)	
using default certificates or default keys	670,391	(5.23%)	
using low-entropy repeated keys	43,852	(0.34%)	
using RSA keys we could factor	64,081	(0.50%)	
using DSA keys we could compromise			
using Debian weak keys	4,147	(0.03%)	
using 512-bit RSA keys	123,038	(0.96%)	
identified as a vulnerable device model	985,031	(7.68%)	
model using low-entropy repeated keys	314,640	(2.45%)	

From [Heninger et al. 2012]

Our TI C Coon

TLS handshake for RSA transport

ClientHello, MaxVer, Nc, Ciphers/CompMethods Pick random No. Pick random Ns ServerHello, Ver, Ns, SessionID, Cipher/CompMethod Check CERT CERT = (pk of bank, signature over it) using CA public verification key C Pick random PMS $PMS \leftarrow D(sk,C)$ $C \leftarrow E(pk,PMS)$ ChangeCipherSpec, { Finished, PRF(MS, "Client finished" | H(transcript)) } ChangeCipherSpec, **Bracket notation** { Finished, PRF(MS, "Server finished" | | H(transcript')) } means contents encrypted

MS <- PRF(PMS, "master secret" | Nc | Ns)

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Attacks?
 - Key generation failures
 - Active attacks

Bleichanbacher attack

I've just learned some information about C₁^d mod N

We can take a target C and decrypt it using a sequence of chosen ciphertexts C_1 , ..., C_q where $q \approx 1$ million

[Bardou et al. 2012] q = 9400 ciphertexts on average

Response to this attack

- Ad-hoc fix: Don't leak whether padding was wrong or not
 - This is harder than it looks (timing attacks, controlflow side channel attacks, etc.)
 - What was used in TLS 1.0, 1.1, 1.2, XML encryption, elsewhere
- Better:
 - use scheme secure against chosen-ciphertext attacks
 - OAEP is common choice

OAEP

(optimal asymmetric encryption padding)

Enc((N,e), M, R) $X = G(R) \oplus M||00^{k1}$ $Y = H(X) \oplus R$ Return $(X||Y)^e \mod N$

R is k2 random padding bytes k1 = n - k2 - |M| (in bytes) G,H are hash functions

Basically a Feistel network using (unkeyed) hash functions:

- Recovering any bit of message requires recovering all of associated X,Y
- Formal reduction to one-wayness of RSA even for chosen ciphertext attacks

RSA summary

- RSA is example of trapdoor one-way function
 - Security conjectured. Relies on factoring being hard
- RSA security scales somewhat poorly with size of primes due to factoring algorithms
 - Key generation must be carefully implemented
- RSA PKCS#1 v1.5 is insecure due to padding oracle attacks. Don't use it in new systems.
 - Use OAEP instead

Forward-secrecy

Recover all long-lived secret keys

TLS handshake for RSA transport

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)

Check CERT using CA public verification key

Pick random PMS

C <- E(pk,PMS)

Bracket notation means contents encrypted

C

ChangeCipherSpec, { Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" | Nc | Ns)

Pick random Ns

PMS <- D(sk,C)

Forward-secrecy

Have to use ephemeral secret for each key exchange

Key exchange method	Forward security?
RSA transport	No
Static Diffie-Hellman	No
Ephemeral Diffie-Hellman	Yes

TLS handshake for Diffie-Hellman Key Exchange

Pick random Ns

Pick random x

Pick random Nc

Check CERT
using CA public
verification key
Check σ

Pick random y $Y = g^y$

 $PMS = g^{xy}$

Bracket notation means contents encrypted

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk_s, signature over it)

ChangeCipherSpec,

 $p, g, X, \sigma = Sign(sk_s, p || g || X)$

Υ

 $PMS = g^{xy}$

 $X = g^{x}$

{ Finished, PRF(MS, "Client finished" || H(transcript)) }
ChangeCipherSpec,

{ Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" || Nc || Ns)

Diffie-Hellman math

Let p be a large prime number Fix the group $G = \mathbf{Z}_{p}^{*} = \{1,2,3,..., p-1\}$

Then G is *cyclic*. This means one can give a member $g \in G$, called the generator, such that

$$G = \{ g^0, g^1, g^2, ..., g^{p-1} \}$$

Example: p = 7. Is 2 or 3 a generator for \mathbb{Z}_7^* ?

Х	0	1	2	3	4	5	6
2 ^x mod 7	1	2	4	1	2	4	1
3 ^x mod 7	1	3	2	6	4	5	1

The discrete log problem

Fix a cyclic group G with generator g

Traditionally: prime-order subgroup of **Z**_q* for q prime

Pick x at random from $\mathbf{Z}_{|G|}$

Give adversary g, $X = g^x$. Adversary's goal is to compute x

The discrete log problem

Fix a cyclic group G with generator g

Pick x at random from $\mathbf{Z}_{|G|}$

Give adversary g, $X = g^x$. Adversary's goal is to compute x

```
\underline{\mathcal{A}(X)}:

for i = 2, ..., |G|-1 do

if X = g<sup>i</sup> then

Return i
```

Very slow for large groups! O(|G|)

Baby-step giant-step is better: $O(|G|^{0.5})$

Nothing faster is known for some groups.

Unauthenticated Diffie-Hellman Key Exchange

Pick random x from $\mathbf{Z}_{|G|}$ X = \mathbf{g}^{x}

Pick random y from $\mathbf{Z}_{|G|}$ Y = \mathbf{g}^{y}

$$K = H(Y^x)$$

$$K = H(X^{y})$$

Get the same key. Why?

$$Y^x = g^{yx} = g^{xy} = X^y$$

What type of security does this protocol provide?

Computational Diffie-Hellman Problem

Fix a cyclic group G with generator g

Pick x,y both at random $\mathbf{Z}_{|G|}$

Give adversary $g, X = g^x, Y = g^y$. Adversary must compute g^{xy}

For most groups, best known algorithm finds discrete log of X or Y.

But we have no proof that this is best approach.

TLS handshake for Diffie-Hellman Key Exchange

Pick random Nc

Check CERT using CA public verification key Check σ

Pick random y $Y = g^y$

 $PMS = g^{xy}$

Bracket notation means contents encrypted

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = $(pk_s, signature over it)$

 $p, g, X, \sigma = Sign(sk_s, p || g || X)$

Υ

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" || Nc || Ns)

Pick random Ns

Pick random x

 $X = g^x$

 $PMS = g^{xy}$

Summary

- Diffie-Hellman provides forward secrecy
 - Traditionally using \mathbf{Z}_{p}^{*} for large prime p
 - DH very efficient when using elliptic curve groups
 - Key exchange protocol of choice these days
 - TLS 1.3 only supports DH-based key exchange
- Asymmetric crypto so far:
 - RSA
 - DH over finite cyclic group