Three views of filtering

- Image filters in spatial domain (空域)
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain (频域)
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Image pyramids (图像金字塔)
 - Scale-space representation allows coarse-to-fine operations

- Image filtering:
 - Compute function of local neighborhood at each position

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Example: box filter

	$f[\cdot,\cdot]$								
1	1	1	1						
) 	1	1	1						
9	1	1	1						

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l=1}^{\infty} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

							_		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

_						
0	10	20	30	30		
			?			
_		_	_	_	_	

$$h[m,n] = \sum f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
					?		
			50				

$$h[m,n] = \sum f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

_	_								_
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{l=1}^{\infty} f[k,l] I[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

	Ĵ	<i>†</i> [· ,·	·]
1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

	J	/ [· ,·	` <u>]</u>
1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

Smoothing with box filter

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Think-Pair-Share time

1.

0	0	0
0	1	0
0	0	0

2

0	0	0
0	0	1
0	0	0

3.

1	0	1
2	0	-2
1	0	-1

4.

0	0	0
0	2	0
0	0	0

	1	~	1
-	1	1	1
,	1	1	1

Original

0	0	0
0	1	0
0	0	0

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Original

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{2}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

\sim	1
1 100000	~ 1
Origin	141

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average

before

after

Correlation and Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

h=filter2(f,I); or h=imfilter(I,f);

Correlation and Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

h=filter2(f,I); or h=imfilter(I,f);

2d convolution

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

h=conv2(f,I); or h=imfilter(I,f,'conv');

conv2(I, f) is the same as filter2(rot90(f,2),I) Correlation and convolution are identical when the filter is symmetric.

Key properties of linear filters

Linearity:

```
imfilter(I, f_1 + f_2) =
imfilter(I, f_1) + imfilter(I, f_2)
```

Shift invariance:

Same behavior regardless of pixel location

```
imfilter(I, shift(f)) = shift(imfilter(I, f))
```

Any linear, shift-invariant operator can be represented as a convolution.

Convolution properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Convolution properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Correlation is _not_ associative (rotation effect)

Convolution properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality,
 e.g., image edges
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
 - Correlation is _not_ associative (rotation effect)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

		0.013			
	0.013	0.059	0.097	0.059	0.013
У	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003

X

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth

- Gaussian convolved with Gaussian...
 - ...is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have

- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1	
2	4	2	=
1	2	1	

x 1 2 1

Perform convolution along rows:

	2	3	3		11	
*	3	5	5	=	18	
	4	4	6		18	

Followed by convolution along the remaining column:

	11		
*	18	=	65
	18		

Separability

Why is separability useful in practice?

Separability

Why is separability useful in practice?

MxN image, PxQ filter

- 2D convolution: ~MNPQ multiply-adds
- Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)

 $9x9 \text{ filter} = ^4.5x \text{ faster}$

Summary of Typical Image Filter

Box Filter (Averaging)

Sharpness Filter

Sharpness Filter

- The summation of all elements in the filter is 1

• Edge detection Filter

Edge detection Filter

The summation of all elements in the filter is 0

Embossing Filter

$$\left[egin{array}{ccc} 2 & -0 & 0 \ 0 & -1 \ 0 & 0 & -1 \end{array}
ight]$$

Embossing Filter

- The filter is unsymmetrical (directional)

Motion Blur Filter

```
1, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 1
```

Directional

$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}; G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Gaussian Blur Filter

Figure 4: The 2D Gaussian function.

Take home message for Image Filter

- 滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。
- 滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求。
- 如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。
- 对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。

Take home message for Image Filter

- Correlation(协相关)和 Convolution(卷积)是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性。
- 积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别。
- 平移不变性指我们在图像的每个位置都执行相同的操作。 线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。
- 2D卷积需要4个嵌套循环4-double loop, 所以它并不快。如果卷积核可分离为1D,则可加快卷积计算速度。

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Convolution in Convolutional Neural Networks

- Convolution is the basic operation in CNNs
- Learning convolution kernels allows us to learn which `features' provide useful information in images.

Next class: Thinking in Frequency

