Лабораторная работа №7. Вариант 50.

Модель рекламной компании

Силкина Мария Александровна

Содержание

1	Цель работы	5
2	Задачи	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Код программы	
5	Ответы на вопросы	11
	5.1 Записать модель Мальтуса (дать пояснение, где используется данная модель)	11
	5.2 Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)	11
	5.3 На что влияют коэффициенты α_1 и α_2 в модели распространения рекламы	12
6	Выводы	13

Список таблиц

Список иллюстраций

4.1	Код программы для решения задачи	9
4.2	График распространения рекламы для 1-го случая	10
4.3	График распространения рекламы для 2-го случая	10
4.4	График распространения рекламы для 3-го случая	10

1 Цель работы

Изучить модель рекламной компании нового товара или услуги.

2 Задачи

- 1. Построить графики распространения рекламы, математическая модель которых соответствует уравнениям моего варианта.
- 2. Определить в какой момент в случае 2 скорость распространения рекламы будет максимальна.
- 3. Ответить на вопросы к лабораторной работе.

3 Теоретическое введение

Модель рекламной компании имеет следующий вид:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

где α_1 - интенсивность рекламной компании;

 α_2 - распространение информации о товаре среди потенциальных покупателей, не знающих о нем;

N - общее число потенциальных платежеспособных покупателей;

n(t) - число уже информированных клиентов;

 $rac{dn}{dt}$ - скорость изменения числа потебителей со временем.

4 Выполнение лабораторной работы

4.1 Код программы

```
Код програмы написан на языке Modelica.
  model lab07
  parameter Real N = 2010; // Объем аудитории
  parameter Real n 0 = 29; // Количество человек, знающих о товаре в начальный
момент
  //Параметры для 1-го случая
  //parameter Real a 1 = 0.66; //Платная реклама //parameter Real a 2 = 0.00006;//Са-
рафанное радио
  //Параметры для 2-го случая
  //parameter Real a 2 = 0.6; //Сарафанное радио
  //parameter Real a 1 = 0.000066; //Платная реклама
  //Параметры для 3-го случая
  parameter Real a 1 = 0.66; //Платная реклама
  parameter Real a 2 = 0.6; //Сарафанное радио
  Real n(start = n \ 0);
  equation
  //Уравнение для 1-го и 2-го случая
  //der(n) = (a 1 + a 2 * n) * (N - n);
  //Уравнение для 3-го случая
  der(n) = (a \ 1 * time + a \ 2 * time * n) * (N - n);
```

end lab07;

4.2 Ход работы

Уравнения модели рекламной компании для моего варианта имеют следующий вид:

```
1. \frac{dn}{dt} = (0.66 + 0.00006n(t))(N - n(t))
```

2.
$$\frac{dn}{dt} = (0.000066 + 0.6n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.66t + 0.6 * t * n(t))(N - n(t))$$

```
где N = 2010, n(0) = 12.
```

Мною был написан код программы, который выводит графики, нужные в задачах. (рис 1. @fig:001)

```
model lab07

parameter Real N = 2010; // Объем аудитории

parameter Real n = 29; // Количество человек, знающих о товаре в начальный момент

// Параметры для 1-го случая

// Грагаmeter Real a 1 = 0.66; // Платная реклама

// Грагаmeter Real a 2 = 0.00006; // Сарафанное радио

// Грагаmeter Real a 2 = 0.6; // Сарафанное радио

// Грагаmeter Real a 1 = 0.000066; // Платная реклама

// Грагаmeter Real a 1 = 0.000066; // Платная реклама

// Грагаmeter Real a 1 = 0.66; // Платная реклама

// Прараметры для 3-го случая

дагаmeter Real a 2 = 0.6; // Сарафанное радио

Real n(start = n_0);

equation

// Уравнение для 1-го и 2-го случая

// Гравие и для 3-го случая

// Карафанное для 3-го случая

// Карафанное для 3-го случая

// Уравнение для 3-го случая

der(n) = (a_1 + a_2 * n) * (N - n);

end lab07;
```

Рис. 4.1: Код программы для решения задачи

Ниже приведен график распространения рекламы для первого случая. На данном графике мы можем увидеть, что в момент времени t=0.1s скорость распространения рекламы достигла своего максимума.(рис 2. @ fig:002)

Рис. 4.2: График распространения рекламы для 1-го случая

На следующем рисунке изображен график математической модели для второго случая (рис 3. @fig:003)

Рис. 4.3: График распространения рекламы для 2-го случая

Последнее изображение - это график распостранения рекламы для математической модели заданной третьим уравнением в условии моего варианта. (рис 4. @fig:004)

Рис. 4.4: График распространения рекламы для 3-го случая

5 Ответы на вопросы

5.1 Записать модель Мальтуса (дать пояснение, где используется данная модель)

Модель Мальтуса имеет следующий вид, когда $\alpha_1(t)\gg \alpha_2(t).$

$$\frac{dx}{dt} = r * x$$

Ее решением является функция:

$$x(t) = x_0 * e^{rt}$$

где x_0 - начальная численность популяции.

Данная модель применяется в физике, в исследовании роста популяции.

5.2 Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{dP}{dt} = r * P(1 - \frac{P}{K})$$

где P- численность популяции;

t - время

r - стратегия, которая предполагает бурное размножение и короткую продолжительность жизни особей;

K - стратегия - низкий темп размножения и долгая жизнь.

Используется данная модель в экономике, экологии, статистике и машинном обучении, медицине и химии.

5.3 На что влияют коэффициенты α_1 и α_2 в модели распространения рекламы

Данные коэффициенты, а именно их сравнение влияет на получение определенного типа модели, либо Мальтуса, либо же Ферхюльста.

Когда $\alpha_1(t)\gg\alpha_2(t)$, то получается модель Мальтуса, которая показывает бесконечный рост и его быстрый темп(ответ на вопрос 4). В обратной же ситуации(вопрос 5), когда $\alpha_1(t)\ll\alpha_2(t)$, то все сводится к логистической кривой, которая сначало увеличивается экспоненциально, а потом ее рост замедляется.

6 Выводы

При выполнении данной лабораторной работы я изучила модель распространения рекламы, а также ее преобразование в модель Мальтуса или в логистическую кривую при сравнении коэффициентов.