CLEMENT LEE

clementlee0@gmail.com (801) 289-6300

EDUCATION

Princeton University

Computer Science, B.S.E 2013–2017 3.67 GPA

Graduated *cum laude* and performed two years of independent research. Coursework included:

- Distributed Systems
- Artificial Intelligence

New York University

Mathematics, Non-Degree 2019—3.67 GPA

Continuing education at the master's level in the Courant Institute of Mathematical Sciences.

SKILLS

Programming

Fluent in Java and Python, and other languages as needed such as Groovy. Frequent usage of common tools like Git and Bash/UNIX shells.

Data Science

Experience in Pandas and Spark, and supporting Jupyter usecases. Interested in high-performance analytics on datasets of all sizes.

ETL/Data Pipelines

Built and maintained an ETL framework for large-scale data.

Machine Learning

Prior deep learning research using Tensorflow and Torch. Supported financial modelling using XGBoost and decision trees.

EXPERIENCE

Software Developer

Two Sigma Securities

08/17—

- Rebuilt key research infrastructure with focus on reliability and performance.
- Maintained a distributed trading system.
- Led construction of a novel data framework to process trading events and market data.

Software Intern

Two Sigma

06/16-08/16

Developed financial software to improve modeller productivity.

Foundry Intern

Microsoft

06/15-08/15

Full-stack development on a variety of technologies and interfacing with Microsoft APIs.

R&D Software Intern

Bloomberg

06/14-08/14

Researched and developed natural language processing algorithms to automate live text analysis and question answering in C++ and Python.

PROJECTS

see github.com/clementlee for more details.

Self-Optimizing Networks

Senior Thesis, Princeton

Researched dynamic sizing algorithsm to optimize learning capacity against overfitting in deep neural networks.

Machine Learning Seminar

Junior Independent Work

Examined different techniques of pruning largescale neural networks without sacrificing accuracy.