

همطراحی سختافزار نرمافزار

جلسه بیستم: سنتز توأم-زمانبندی ۲

ارائهدهنده: آتنا عبدى

a_abdi@kntu.ac.ir

مباحث این جلسه

- سنتز توام در روال همطراحی سختافزار و نرمافزار
 - زمانبندی (Scheduling)
 - رویکردهای زمانبندی با محدودیت

زمانبندی با درنظر گرفتن محدودیت منابع

- شکل گیری مصالحه بین تاخیر و تعداد منابع در سیستم
 - روشهای قطعی: ILP
 - تعریف مسئله در قالب معادله و نامعادله و حل آن
- قابل حل برای حالتهای محدود و مناسب برای مشخص کردن حدود مسئله
 - روشهای مکاشفهای: مانند زمانبندی لیستی (List Scheduling)
 - مبتنی بر اولویت دهی به گرههای پردازشی
 - درنظر گرفتن وابستگیهای دادههای و محدودیتهای منابع سیستم

(List Scheduling) الگوريتم زمانبندي ليستي

- شكل گيري الگوريتم براساس ساختمان داده ليست
- محدودیت منابع را درنظر گرفته و براساس گراف وظایف پیش میرویم
 - وظایف آماده در لیست قرار می گیرند
- بکارگیری اولویت در مواردی که محدودیت منابع داریم و میبایست انتخاب صورت گیرد
- بهینهسازی کارایی با محدودیت منابع یا بهینهسازی منابع با محدودیت کارایی امکانپذیر است

الگوریتم زمانبندی لیستی (ادامه)

- ساخت لیستی از وظایف که آماده اجرا هستند
- براساس وابستگی دادهای بین وظایف با درنظر داشتن محدودیت منابع
 - مرتبسازی وظایف لیست براساس اولویت آنها بهصورت نزولی
 - حرکت سیکل به سیکل در ترتیب زمانبندی
- انتخاب دستورالعملها براساس محدودیت منابع از ابتدای لیست و زمانبندی آنها
 - بروزرسانی لیست برای مرحله بعد
 - ادامه تا خالی شدن لیست وظایف آماده

الگوریتم زمانبندی لیستی (ادامه)

- تعیین اولویت بین وظایف
- تعين وظيفه بحراني براساس الزامات مسئله
 - پرکاربردترین: Mobility
- زمان اجرای درنظر گرفته شده برای هر وظیفه
 - موقعیت گره در گراف براساس مسیر بحرانی
 - و

الگوريتم زمانبندي ليستي (مثال)

- با فرض داشتن دو ضرب کننده و دو واحد محاسبات پایه در سیستم
 - لیست آماده مرحله اول: وظایف بدون وابستگی دادهای
 - Ready List = $\{V1, V2, V6, V8/V10\}$ •
 - انتخاب دو وظیفه سر لیست برای ضرب و یکی برای جمع
 - اولویت دهی براساس Mobility
 - بروزرساني ليست وظايف آماده Ready List = { V3, V6, V8/V11}
 - مرحله دوم: انتخاب سه وظیفه مشابه مرحله قبل
 - Ready List = $\{V7, V8, V4\}$ •

الگوريتم زمانبندي ليستي (مثال)

- با فرض داشتن دو ضرب کننده و دو واحد محاسبات پایه در سیستم
 - مرحله سوم:

- انتخاب دو وظیفه سر لیست برای ضرب و یکی برای جمع
- Ready List = $\{-/V5,V9\}$ مروزرسانی لیست وظایف آماده
 - مرحله چهارم:
 - زمان بندی وظایف و بروز رسانی لیست
 - Ready List = $\{\}$ •

الگوریتم زمانبندی لیستی (ادامه)

- دیدگاه حریصانه و استاتیک دارد
- حالتی که بررسی کردیم کمینه کردن زمان با داشتن محدودیت منابع بود
 - مسئله زمانبندی مدنظر ماست
 - امكان كمينه كردن منابع با داشتن محدوديت زمان نيز وجود دارد
- مشخص كردن اولويت براساس تفاضل زمانبندي ALAP و زمان آماده شدن وظيفه
 - تخصیص حداقل منابع براساس اولویت با رعایت محدودیت تاخیر و زمان اجرا

فرایند زمانبندی پویا

- اجرای الگوریتم زمانبندی در زمان اجرا
- مناسب در سیستمها و کاربردهایی که اطلاعات از سیستم کامل نیست
 - سیستمهای دارای رفتار پویا، متغیر و مبتنی بر تصمیم
 - مناسب در کاربردهای نهفته و بیدرنگ
 - اهمیت functionality و
 - مزیت: انعطاف پذیری و واقعی بودن

- معیارهای حائز اهمیت در الگوریتم زمانبندی پویا
 - قابلیت رعایت درست و بهموقع موعدها
- پیچیدگی کم و اعمال سربار زمانی محدود به سیستم
 - توزیع متناسب بارکاری بین اجزای پردازشی

الگوریتمهای زمانبندی پویا

- دو روش رایج در حیطه زمانبندی پویا و مناسب سیستمهای بیدرنگ
 - RMS: Rate Monotonic Scheduling •
 - تعیین اولویتها بهصورت ثابت و ایستا
 - EDF: Earliest Deadline First
 - تعیین اولویتها بهصورت پویا

(Rate Monotonic) RM (الگوريتم زمانبندي

- روش زمانبندی با اولویت ایستا و بهینه که تغییرپذیر نمیباشد
 - وظایف از قبل معلوم نیست اما قانون اولویت آنها مشخص است
 - تعریف اولویت براساس دوره اجرای وظایف
- وظیفه با کوتاهترین دوره تناوب (نرخ درخواست)، دارای بیشترین اولویت است
 - تخمین دوره اجرا: موعد اجرا
 - وظایف در حین کار قابل متوقف شدن میباشند (Preemptive Tasks)
 - بهترین کارکرد را نسبت به روشهای اولویت ایستا

الگوريتم زمانبندي RM (مثال)

Task	Execution Time	Period	Priority
T1	1	4	High
T2	2	6	Medium
T3	3	12	Low

الگوریتمهای زمانبندی RMS (ادامه)

- بسیار ساده است و فرض می کند بین وظایف وابستگی دادهای وجود ندارد
- از تمامی توان پردازشی پردازنده استفاده نشده و بعضی جاها خالی میماند
- امکان استفاده از بازههای بیکاری پردازندهها برای مدیریت شرایط پیشبینی نشده
 - سوئیچ کردن زیاد بین وظایف دارد
 - فرض می شود قابل چشم پوشی باشد