

# Mathematics Invitational A • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

| 1. | <b>Evaluate:</b> | $1 \div (1+2)^{-1}$ | ×3- | $\frac{5}{8} + 13 \times (21)^0$ |
|----|------------------|---------------------|-----|----------------------------------|
|----|------------------|---------------------|-----|----------------------------------|

(A) - 21.125

(B) -11.375

(C) 11.375

(D) 20.125

(E) 21.375

2. Saul Wood had a two-by-four board that was 12 feet long. He cuts it into 3 pieces such that the ratio of the lengths of the pieces are 2:3:5 with a 8 inch board left over. How long was the longest piece?

(A) 2 vds

(B) 1 yd 2 ft 8 in (C) 1 yd 2 ft 5 in

(D) 1 vd 2 ft 3.5 in

(E) 1 vd 2 ft 2 in

3. Find the sum of the arithmetic mean, median, mode, and range of 2, 18, 4, 7, 1, 11, 29, & 3.

(A)  $38\frac{3}{8}$  (B)  $40\frac{3}{8}$  (C)  $41\frac{5}{8}$  (D)  $42\frac{7}{8}$  (E)  $43\frac{7}{8}$ 

4. Dee Orr rows his boat at 4 mph from his pier to a platform on the lake. A speed boat returns him to his pier at 45 mph. The complete trip took 25 minutes. How far is it from the pier to the platform? (nearest tenth)

(A) **0.8** miles

(B) 1.1 miles

(C) 1.3 miles

(D) 1.5 miles

(E) **1.8** miles

 $\left(\frac{x^3-21x-20}{x-1}\right)\times \left(\frac{x+1}{x^2-x-20}\right)\div \left(\frac{1}{x^2-1}\right)$ 5. Simplify:

(A) 1

(B) x + 1 (C) x - 1 (D)  $x^2 + 2x + 1$  (E)  $x^3 + 3x^2 + 3x + 1$ 

6. Given:  $\angle P$  is supplementary to  $\angle Q$ ;  $m \angle R = 48^\circ$ ; and  $\angle Q$  is complementary to  $\angle R$ . Find  $m \angle P$ .

(A)  $42^{\circ}$ 

(B)  $52^{\circ}$ 

(C) 128°

(D)  $132^{\circ}$ 

(E) 138°

7. Find the area of the shaded area. (nearest tenth)



(A)  $7.4 \text{ cm}^2$ 

(B)  $16.0 \text{ cm}^2$ 

(C)  $17.7 \text{ cm}^2$ 

(D)  $13.7 \text{ cm}^2$ 

(E)  $22.3 \text{ cm}^2$ 

8. The point of intersection of the 3 medians of a triangle is called a \_\_\_\_\_

(A) center

(B) centroid

(C) circumcenter (D) incenter (E) orthocenter

9. Lotta Cash, Les Sense, and Noah Dough have a total of \$75.00. Noah has five dollars more than twice what Lotta has and Les has ten dollars less than Noah. How much more money does Les have then Lotta?

(A) \$5.00

**(B)** \$10.00

(C) \$15.00

(D) \$20.00

(E) \$40.00

| 10. | If $\frac{2x-3}{3x+2} - \frac{4x+1}{x-4}$                            | $\frac{Ax^2 + Bx + C}{Px^2 + Qx + R},$                                                      | then $\frac{A+B+C}{P+Q+R}$ ed                                  | quals:                                        |                                                     |
|-----|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
|     | (A) - 2.8                                                            | (B) — 0.6181818                                                                             | 8 (C) 1.460                                                    | 66 (D) 1.8                                    | (E) 2.1333                                          |
| 11. | The fundamental ]                                                    | period of the grap                                                                          | $\mathbf{oh} \ \mathbf{of} \ \mathbf{y} = 1 - 2\mathbf{sin}^2$ | (2x) is:                                      |                                                     |
|     | (A) $\frac{\pi}{4}$                                                  | (B) $\frac{\pi}{3}$                                                                         | (C) $\frac{\pi}{2}$                                            | (D) $\pi$                                     | (E) $\pi^2$                                         |
| 12. | $\sin(\frac{\pi}{2} - \theta)$ equals                                | :                                                                                           |                                                                |                                               |                                                     |
|     | $(A) - \cos(\frac{\pi}{2} - \epsilon)$                               | $(B) \sin(\theta + \frac{1}{2})$                                                            | $(C) \cos(\frac{\pi+1}{2})$                                    | $\frac{\theta}{\theta}$ ) (D) $-\sin(\theta)$ | $+\frac{\pi}{2}$ ) (E) $\sin(\frac{\pi-\theta}{2})$ |
| 13. | Given the arithme                                                    | tic sequence 15, a                                                                          | a, b, 41.25, c,, fir                                           | a+b+c.                                        |                                                     |
|     | (A) 43.75                                                            | (B) 70.3125                                                                                 | (C) 97.5                                                       | (D) 106.25                                    | (E) 123.75                                          |
| 14. | Find $m+n$ if $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ | $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} =$ | $\left[\begin{array}{c} 7\\11\end{array}\right]$               |                                               |                                                     |
|     | (A) 2                                                                | (B) 4                                                                                       | (C) 8                                                          | (D) 10                                        | (E) 18                                              |
| 15. | Find the average r                                                   | rate of change ove                                                                          | er the interval [2,4]                                          | $  of f(x) = x^2 + 4x$                        |                                                     |
|     | (A) 32                                                               | (B) 21                                                                                      | (C) 12                                                         | (D) 10                                        | (E) 8                                               |
| 16. | How many disting                                                     | uishable arrange                                                                            | ments can be mad                                               | e from the letters                            | "TOOTSIEPOPS"?                                      |
|     | (A) 720                                                              | (B) 831,600                                                                                 | (C) 15                                                         | (D) 55,440                                    | (E) 1,663,200                                       |
| 17. | Lou Cuss labels 8 randomly drawn.                                    |                                                                                             |                                                                |                                               |                                                     |
|     | (A) $\frac{3}{5}$                                                    | (B) $\frac{1}{2}$                                                                           | (C) $\frac{2}{5}$                                              | (D) $\frac{1}{4}$                             | (E) $\frac{3}{8}$                                   |
| 18. | Which of the follo                                                   | wing female math                                                                            | ematicians is kno                                              | wn for her work i                             | n differential calculus?                            |
|     | (A) Agnesi                                                           | (B) Hypatia                                                                                 | (C) Germain                                                    | (D) Kovalevsky                                | (E) Noether                                         |
| 19. | Find the arithmeti                                                   | ic mean of the firs                                                                         | st three harmonic                                              | numbers.                                      |                                                     |
|     | (A) $2\frac{1}{6}$                                                   | (B) $1\frac{5}{6}$                                                                          | (C) $1\frac{1}{2}$                                             | (D) $1\frac{4}{9}$                            | (E) $\frac{11}{18}$                                 |
| 20. | The number 678 in the number k.                                      | n base 9 is equiva                                                                          | lent to the number                                             | k in base 3. Find                             | the sum of the digits in                            |

(D) 4

(E) 3

(C) 6

(A) 9

**(B)** 8

21. Using the partial ruler shown below, find the distance from A to B.



- (A)  $1\frac{3}{8}$ "
- (B)  $1\frac{3}{16}$ "
- (C)  $1\frac{5}{8}$ "
- (D)  $1\frac{1}{4}$ "
- (E)  $1\frac{7}{16}$ "

22. The Texas Wild Seed farm mixes 3 pounds of Bluebonnet seeds with 1.5 pounds of Indian Blanket seeds to form a special mixture of wild flower seeds. Find the cost of a half pound of the mixture if Bluebonnet seeds cost \$1.25 per pound and Indian Blanket seeds cost 80¢ per pound?

- (A) \$045
- **(B)** \$0.55
- (C) \$0.90
- (D) \$1.03
- (E) \$1.10

23. Which of the following sets are closed under addition and/or multiplication?  $C = \{composite numbers\}$   $F = \{Fibonacci numbers\}$  $M = \{ \text{multiples of 5} \}$ 

- (A) C & M
- (B) M only
- (C) F only
- (D) C & F
- (E) C, F, & M

24. Which of the following quadrant(s) does not contain a solution to 3x + 4y > 7?

- (A) QIV
- (B) QI & QII (C) QIII & QIV (D) QIII
- (E) Q1

25. Phil Whitwatter is filling up his empty circular water tank. The diameter of the tank is 12 feet and the height of the tank is 4 feet. What is the least number of whole gallons of water will he need to fill the tank half full?

- (A) 1,129 gal
- (B) 1,693 gal
- (C) 1,765 gal (D) 1,975 gal
- (E) 2,257 gal

26. A triangle with side lengths of 11 dm, 8 dm, and 15 dm is a(n) \_\_\_\_\_ triangle.

(A) isosceles acute (B) scalene obtuse (C) isosceles obtuse (D) scalene acute (E) scalene right

27. Let  $a_1 = 2$ ,  $a_2 = 1$ ,  $a_3 = 3$  and  $a_n = (a_{n-3}) + [(a_{n-1}) - (a_{n-2})]$  for  $n \ge 4$ . Find  $a_6$ .

- (A) -1 (B) 0
- (C) 1
- $(\mathbf{D})$  2
- **(E)** 11

28. Simplify:  $\log_3 x - 2\log_3 y + \log_3(0.5)$ 

(A)  $-\log_3(xy^2)$  (B)  $\frac{1}{2}\log_3(\frac{x}{v^2})$  (C)  $\log_3(\frac{x}{2v^2})$  (D)  $\log_3(\frac{x-y^2}{2})$  (E)  $\log_3 x - y^2 + 0.5$ 

29. Which of the following equations in rectangular form can be written as  $r - 12\cos\theta = 0$  in polar form?

(A)  $x^2 - v^2 = 6$ 

(B)  $x^2 + v^2 = 12$ 

(C)  $x^2 + v^2 = 2\sqrt{3}$ 

- (D)  $v^2 x^2 = 2\sqrt{3}$
- (E)  $(x-6)^2 + v^2 = 36$

30. Find the area of  $\triangle DEF$  to the nearest tenth.



- (A) 52.0 sq. in. (B) 17.4 sq. in (C) 62.4 sq. in (D) 17.9 sq. in (E) 20.8 sq. in

31. How many distinct solutions exist for  $12\cos^2(x) - 5\cos(x) - 2 = 0$ , where  $-\frac{\pi}{2} < x < \frac{3\pi}{4}$ ?

- (A) 8
- **(B)** 5
- (C) 3
- $(\mathbf{D})$  4
- $(\mathbf{E})$  7

32. Find the remainder when  $f(x) = 4x^3 + 8x^2 - x - 2$  is divided by x - 3.

- (A) -41 (B) -35 (C) 31
- (D) 155
- **(E)** 175

33.  $\int (x^2 + 4x) dx =$ \_\_\_\_\_+ C, where C is some arbitrary constant.

- (A)  $\frac{x^3}{3} + 2x^2$  (B) 2x + 4 (C)  $x^3 + 2x^2$  (D)  $3x + 2x^2$  (E)  $\frac{x^3}{3} + 2x$

34. Find the area bounded by  $y = 2x^2 + 2x - 3$  and y = 2x - 1. (square units).

- (A) 3.5
- **(B)** 3.75
- (C) 2.666... (D) 4.25
- (E) 4.5

35. Betty Kant has a stack of 8 cards consisting of  $J \spadesuit$ ,  $J \heartsuit$ ,  $J \diamondsuit$ ,  $J \diamondsuit$ ,  $Q \diamondsuit$ ,  $Q \diamondsuit$ , and  $Q \clubsuit$ . Betty shuffles the stack then deals out the top 3 cards. What is the probability that two of the cards dealt were Jacks and one was a Queen?

- (A)  $\frac{1}{56}$  (B)  $\frac{1}{7}$  (C)  $\frac{3}{28}$  (D)  $\frac{3}{7}$  (E)  $\frac{3}{8}$

36. Kandy Krunchur had a large bag of Tootsie Pops. She had chocolate ones, cherry ones, lime ones, strawberry ones, and raspberry ones. How many different small bags of 5 Pops can she package to sell?

- (A) 126
- **(B)** 25
- (C) 120
- (D) 24
- (E) 1.512

37. Let P be a two-digit prime number less than 100 such that both digits are prime numbers. What is the sum of all such numbers, P?

- (A) 348
- **(B)** 253
- (C) 221
- (D) 186
- **(E)** 113

38. Two of the roots of  $f(x) = x^3 + bx^2 + cx + d$  are 3 and 2 + i. Find b + c + d.

- (A) -7 (B) -5 (C) 6

- (D) 9
- (E) 25

|     | (A) 8                                    | (B) 9                                    | (C) 10                                       | ( <b>D</b> ) 11            | (E) 12                                                                        |
|-----|------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------|-------------------------------------------------------------------------------|
| 40. | Line m contains p                        | oint $(-3, 4)$ and i                     | ntersects the y-ax                           | is at y = — 5. An 6        | equation for line <i>m</i> is:                                                |
|     | (A) $3x - y = 5$                         | (B) $4x - 3y = -$                        | 5 (C) $3x + y = -$                           | -5 (D) $4x + 3y$           | = 5 (E) $-3x + 4y = 5$                                                        |
| 41. | The point (3, 4) lie reference to the ci |                                          | e center is (0, 2).                          | Where does the po          | oint (— 1, 5) lie in                                                          |
|     | (A) on the circle                        | <u>,</u>                                 | (B) outsi                                    | de the circle              | (C) inside the circle                                                         |
|     | (D) in quadrant                          | EIII (E) can                             | not be determined                            | I                          |                                                                               |
| 42. | Consider the comp                        | plex number $0+i$                        | , find the value of                          | $i^{-1} + i^{-2} + i^{-1}$ | $-3+i^{-4}$ .                                                                 |
|     | (A) 0                                    | (B) 1                                    | (C) $-1$                                     | ( <b>D</b> ) <i>i</i>      | (E) - i                                                                       |
| 43. | The Real value so                        | lution set for $2+3$                     | 3 5x-7  < 11 is                              | ?                          |                                                                               |
|     | (A) $\{x \mid \{0.2 < x\}\}$             | x < 2.6  (B)                             | $\{x \mid \{x > 2\} \cup \{x \mid x > 2\}\}$ | $x < 0.8\} \} \qquad (0$   | C) $\{x \mid -2 < x < -\frac{4}{5}\}$                                         |
|     | (D) $\{x \mid \{x > 2.$                  | $6\} \cup \{x < -2\}$                    | (E) $\{x \mid 0.8 <$                         | x < 2                      |                                                                               |
| 44. | game. He marks a                         | line 90 feet on a back bearing of 80° fr | pearing of 100° fro<br>om first base to so   | om home base to f          | angle for a 3-bag baseball irst base. Then he marks ong is the line he marked |
|     | (A) 109 ft                               | (B) 122 ft                               | (C) 136 ft                                   | (D) 165 ft                 | (E) 187 ft                                                                    |
| 45. | The graph of the p                       | parametric equatio                       | ons $x = 3t$ and $y =$                       | 4t + 1 is a(n)             | <b>.</b>                                                                      |
|     | (A) circle                               | (B) ellipse                              | (C) hyperbola                                | (D) line                   | (E) parabola                                                                  |
| 46. | The harmonic me                          | an of the real root                      | s of $4x^3 + 8x^2 -$                         | x - 2 = 0 is ?             |                                                                               |
|     | (A) - 1.5                                | (B) $-2$                                 | (C) $-3.555$                                 | (D) $-6$                   | (E) -9                                                                        |
| 47. | Find the y-interce                       | pt of the line tange                     | ent to the $3x^2 + 4$                        | $4y^2 = 48$ at the poi     | nt (2,3).                                                                     |
|     | (A) (0,4)                                | (B) (0, 8)                               | (C) (0,9)                                    | (D) $(0, -2)$              | (E) $(0, -3)$                                                                 |
| 48. | If $f''(x) = 24x +$                      | 16 and f '(0) = —                        | 1 and $f(1) = 9$ , the                       | en f(— 1) =                |                                                                               |
|     | (A) 6                                    | (B) 3                                    | (C) $-4$                                     | (D) $-5$                   | (E) - 9                                                                       |
|     |                                          |                                          |                                              |                            |                                                                               |

39. How many proper fractions in lowest terms have a denominator of 24?

| 49. | Willie Luze plays a dice game that costs 50¢ to play. He rolls two dice and sums up the top faces. |
|-----|----------------------------------------------------------------------------------------------------|
|     | He wins \$1.00 if the sum is 7 or 11 and loses 25¢ if the sum is not 7 or 11. What is the          |
|     | mathematical expectation of a single roll? (nearest cent)                                          |

(A) 53¢ loss

(B) 47¢ loss

(C) 4¢ loss

(D) 3¢ gain

(E) 46¢ gain

50. Let  $f_0=0$ ,  $f_1=1$ ,  $f_2=1$ ,  $f_3=2$ ,  $f_4=3$ , ... be the terms of the Fibonacci sequence. Find GCD( $f_{15}$ ,  $f_9$ ).

(A) 8

**(B) 6** 

(C) 3

(D) 2

**(E)** 1

51. Ima Lost walks 1 foot north, then 2 feet west, then 3 feet south, then 4 feet east, then 5 feet north, then 6 feet west and so on, at 1 foot per second. What direction is Ima facing after walking 1 minute?

(A) north

(B) west

(C) south

(D) east

(E) northeast

52. The sum of all of the real values of x such that  $\sqrt{x-6} = x\sqrt{x-6}$  is:

(A) 13

**(B)** 7

(C) 6

**(D)** 1

 $(\mathbf{E})$  0

53. Given the circle O with perpendicular diameters and a chord, find BE if EF = 3'' and DF = 7''. (nearest tenth)



(A) 5.2"

**(B)** 6.1"

(C) 6.3"

(D) 7.1"

(E) 7.6"

54. Let  $p^3 + q^3 = 4$  and pq = 0.666.... Find p + q.

(A) 2.666...

(B) 2

(C) 1

(D) 1.333...

(E) 0.1666...

55. Given that the set of natural numbers continue in the triangular pattern shown below, find the median of the numbers in row 12.

> (row 1) 3 (row 2) (row 3) 10 11 12 13 14 15 16 (row 4)

( ... )

(A) 133

(B) 123

(C) 127

(D) 137

**(E)** 143

56. For which of the following values of  $\theta$  is it true that  $2^{\sin \theta} > 1$  and  $3^{\cos \theta} < 1$ ?

- (A) 35°
- **(B)** 70 °
- (C) 140°
- (D) 280°
- (E) 560°

57. Which of the following surfaces is generated by  $9x^2 - 72y + 16z^2 = 0$ ?

- (A) cone
- (B) cylinder
- (C) ellipsoid
- (D) hyperboloid

(E) paraboloid

58. Yu-Noh randomly selects a positive integer less than 60 that is a multiple of 7. Yu-Dont randomly selects a positive integer less than 60 that is a multiple of 9. What is the probability that they selected the same number? (nearest percent)

- (A) 78%
- (B) 22%
- (C) 15%
- (D) 12%
- (E) 0%

59. The square root of 1134 in base 5 is:

- (A)  $13_5$
- (B) 113<sub>5</sub>
- (C)  $23_5$
- (D) 114<sub>5</sub>
- (E) 33<sub>5</sub>

60. Given the rectangular solid shown, find AE if AB = 3'', BC = 5'' and CE = 7''. (nearest tenth)



- (A) 15.0"
- (B) 6.4"
- (C) 7.5"
- (D) 8.5"
- (E) 9.1"

### University Interscholastic League MATHEMATICS CONTEST HS • Invitation A • 2015 Answer Key

| 1.  | E | 21. I        | D            | 41. | C |
|-----|---|--------------|--------------|-----|---|
| 2.  | В | 22. 1        | В            | 42. | A |
| 3.  | D | <b>23.</b> A | A            | 43. | E |
| 4.  | D | 24. 1        | D            | 44. | E |
| 5.  | E | 25. 1        | В            | 45. | D |
| 6.  | E | 26. 1        | В            | 46. | D |
| 7.  | D | 27.          | $\mathbf{c}$ | 47. | A |
| 8.  | В | 28.          | $\mathbf{c}$ | 48. | В |
| 9.  | В | 29. 1        | E            | 49. | В |
| 10. | C | 30. 1        | E            | 50. | D |
| 11. | C | 31. (        | $\mathbf{c}$ | 51. | C |
| 12. | В | 32. 1        | E            | 52. | В |
| 13. | D | <b>33.</b> A | A            | 53. | C |
| 14. | A | 34. (        | C            | 54. | В |
| 15. | D | 35. 1        | D            | 55. | A |
| 16. | В | <b>36.</b> A | A            | 56. | C |
| 17. | A | 37. 1        | D            | 57. | E |
| 18. | A | 38. 1        | В            | 58. | E |
| 19. | D | <b>39.</b> A | A            | 59. | C |
|     |   |              |              |     |   |

**40.** C

20. A

60. E



# Mathematics Invitational B • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

| 1  | Evaluate: | $4! \div (16)^{\frac{1}{2}} - 4 \times (16)^{-1} + 4 \times 16^{0}$ |
|----|-----------|---------------------------------------------------------------------|
| 1. | Evaluate. | 4: T (10)2 - 4 × (10) T 4 × 10                                      |

(A)  $\frac{23}{8}$  (B)  $\frac{31}{4}$  (C)  $\frac{25}{4}$  (D)  $\frac{31}{8}$  (E)  $\frac{39}{4}$ 

2. I. M. Broke borrowed \$250.00 from his bank at a simple interest rate of 5%. He paid the loan off in 10 monthly payments. What was his monthly payments? (nearest cent)

(A) \$26.04

(B) \$26.15

(C) \$26.25

(D) \$28.06

(E) \$28.82

3. What is  $8\frac{1}{3}\%$  of  $(\frac{1}{16} \div (0.1666...))$ ?

(A)  $\frac{1}{32}$  (B)  $\frac{1}{16}$  (C)  $\frac{1}{8}$  (D)  $\frac{1}{4}$ 

4. Simplify:  $\left(\frac{16x^2 + 8x - 3}{16x^2 - 1}\right) \left(\frac{16x^2 + 8x + 1}{12x^2 + x - 6}\right) (3x - 2)$ 

(A)  $12x^2 - 5x - 2$  (B) 4x + 1 (C)  $\frac{4x - 1}{4x + 1}$  (D)  $\frac{3x - 2}{4x + 1}$  (E)  $12x^2 - 11x + 2$ 

5. Justin Time is  $\frac{4}{5}$  as old as Soh Yung. Fours years ago Justin was  $\frac{3}{4}$  as old as Soh. What will the sum of their ages be in two years.

(A) 28

**(B)** 32

(C) 36

(D) 38

(E) 40

6. In which of the following Venn diagrams does the shaded regions represent the set  $A \cup (B \cap C)$ ?



**(B)** 

**(C)** 



**(D)** 

**(E)** 

7. Three less than twice a number is the same as one more than twice the difference of four and the number. Find the number.

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

8. What is the probability that a factor of 160 is a multiple of 10?

(A)  $71\frac{3}{7}\%$  (B)  $33\frac{1}{3}\%$  (C)  $45\frac{5}{11}\%$  (D)  $41\frac{2}{3}\%$  (E)  $6\frac{1}{4}\%$ 

9. The measure of the interior angle of a regular n-gon is three times the measure of its exterior angle. How many sides does the regular n-gon have?

(A) 5

(B) 6

(C) 8

**(D)** 9

(E) 12



16. The fundamental period of the graph of  $y = 2 - 3\cos^2(4x + 5)$  is:

(A) 2 (B) 3 (C)  $\frac{\pi}{4}$  (D)  $\frac{2\pi}{5}$  (E) 5

17.  $\cos(x + \frac{5\pi}{2}) =$ \_\_\_\_\_.

(A)  $-\cos x$  (B)  $\sin x$  (C)  $-\cos(\frac{\pi}{2}x)$  (D)  $\sin 2x$  (E)  $-\sin x$ 

18. Mack A. Roy drops a golf ball from a height of 5 feet. Each time it hits the ground it rebounds to a height of 80% of the distance it fell. Find the total distance the ball travels when it reaches the ground the third time. (nearest inch)

(A) 22' 0" (B) 19' 5" (C) 18' 8" (D) 16' 2" (E) 14' 5"

| 19. Which of the f  | following is a refe  | rence angle for $\frac{5\pi}{4}$ | ?                    |                     |
|---------------------|----------------------|----------------------------------|----------------------|---------------------|
| (A) $\frac{\pi}{4}$ | (B) $\frac{4\pi}{5}$ | (C) $\frac{3\pi}{4}$             | (D) $\frac{5\pi}{8}$ | (E) $\frac{\pi}{2}$ |
|                     | 5                    |                                  |                      |                     |







(D) 25.375

(E) 32



- (A) 26.2 cm (B) 28 cm (C) 28.8 cm (D) 30 cm (E) 32 cm
- 22. Let  $f(x) = x^5 2x^4 + 2x^3 3x^2 + x 3$ . Find f''(-1).

(A) 20 (B) 12 (C) 
$$-1$$
 (D)  $-15$  (E)  $-62$ 

- 23. Lotta Latts is building a rectangular parking lot for her *Lotta's Junk* store. The length of the lot will be bordered on one side by the store. She has 1200 feet of fence to enclose the lot. What is the maximum area of her parking lot?
  - (A) 90,000 ft.<sup>2</sup> (B) 160,000 ft.<sup>2</sup> (C) 180,000 ft.<sup>2</sup> (D) 360,000 ft.<sup>2</sup> (E) 1,440,000 ft.<sup>2</sup>
- 24. Let  $f(x) = \frac{1}{\sqrt{x^2 + 3x 10}}$ . At which of these intervals is function f continuous?

(A) 
$$[-5, -2]$$
 (B)  $(-5, 5]$  (C)  $[-2, 2)$  (D)  $(2, 5]$  (E)  $(-2, 5)$ 

- 25. The number 15 is considered to be a "polite" number. The "politeness" of 15 is \_\_\_\_\_.
- (A) 1 (B) 2 (C) 3 (D) 5 (E) 15
- 26. N. A. Hurry enters a convenience store. The probability that she buys bread is 60%, the probability she buys milk is 50%, and the probability she buys both bread and milk is 30%. What is the probability that she will buy either bread or milk or both? (nearest percent)

(A) 100% (B) 80% (C) 70% (D) 
$$53\frac{1}{3}\%$$
 (E)  $46\frac{2}{3}\%$ 

- 27. Find the least positive integral sum of d and m if GCD(d, m) = 8 and LCM(d, m) = 320.
  - (A) 48 (B) 104 (C) 112 (D) 176 (E) 328

| 28. | Let k be a positive integer less than 100 such that k is a multiple of 4 and k is divisible by 3. Find |
|-----|--------------------------------------------------------------------------------------------------------|
|     | the sum of all such numbers k.                                                                         |

(A) 336

(B) 396

(C) 420

(D) 432

**(E)** 444

29. Les Cash, Lotta Dough, and Noah Moolah had piggy banks. The average of all 3 banks was \$147.00. The average of Lotta's bank and Noah's bank was \$141.00. How much money was in Les' bank?

(A) \$96.00

(B) \$119.50

(C) \$144.00

(D) \$159.00

(E) \$168.50

30. A line crosses the x-axis at x = -2 and goes through the point (3, 1). Another line crosses the y-axis at y = 2 and goes through the point (-1, -3). The lines intersect at (x, y). Find x + y.

(A)  $-\frac{2}{3}$  (B)  $-\frac{1}{3}$  (C) 0

(D)  $\frac{1}{2}$ 

**(E)** 1

31. Simplify this expression:  $\left(\frac{x^2y^{-3}z^3}{w^2x^{-3}y^2}\right)^{-1} \times \left(\frac{x^2z}{wv^3}\right)^2 \div \frac{1}{(xvz)^2}$ 

(A)  $(xz)^{-1}$  (B) xyz (C)  $xy^2z^3$  (D)  $(xyz)^{-1}$  (E)  $xy^3z$ 

32. AB, AC, BD, and CD are chords of circle O and point E lies on circle O. If  $mBC = 46^{\circ}$ and  $m\angle APB = 78^{\circ}$ , then  $m\angle ACD = ?$ 



(A)  $101^{\circ}$ 

**(B)**  $62^{\circ}$ 

(C)  $75^{\circ}$ 

**(D)**  $56^{\circ}$ 

**(E)**  $79^{\circ}$ 

33. Betty Drawzette randomly selects a number from the set of all positive 2-digit numbers. What is the probability that the sum of the digits of the number selected is 11? (nearest percent)

(A) 7%

(B) 8%

(C) 9%

(D) 10%

(E) 11%

34. Point P(-3, 4) lies on the x-y plane. Point P is rotated 180° counter clockwise about the origin to point Q. Point Q is translated horizontally 5 units to the left to point R. Point R is reflected across the line y = -x to point S. The coordinate of S is (x, y). Find x + y.

(A) - 7

(B) -2 (C) -1 (D) 5

 $(\mathbf{E})$  6

35. How many integral values of n exist such that  $n \le 1$  and  $\frac{(n+1)!}{(n-1)!} \le 12$ 

(A) none

**(B)** 2

(C) 4

**(D)** 6

 $(\mathbf{E})$  7

| 36. | The roots of the e                               | quation $x^3 - 13x$                    | +12=0 are 1, 3,            | , and R. Find R.                                      |                                                          |
|-----|--------------------------------------------------|----------------------------------------|----------------------------|-------------------------------------------------------|----------------------------------------------------------|
|     | (A) 9                                            | (B) 4                                  | (C) -1                     | (D) $-3$                                              | (E) — 4                                                  |
| 37. | The graph of the                                 | polar equation r =                     | $5 + 2\cos(\theta)$ is a _ |                                                       | _•                                                       |
|     | (A) dimpled lim                                  | nacon                                  | (B) convex lima            | con                                                   | (C) inner loop limacon                                   |
|     | (D) lemniscate                                   |                                        | (E) cardioid               |                                                       |                                                          |
| 38. | Find the smallest                                | positive real numl                     | per x such that sin        | $x = \cos 2x$ , where                                 | x is measured in radians.                                |
|     | $(A) \frac{3\pi}{2}$                             | $(B) \ \frac{5\pi}{3}$                 | (C) $\frac{\pi}{6}$        | (D) $\frac{2\pi}{3}$                                  | (E) $\frac{\pi}{12}$                                     |
| 39. | The harmonic me                                  | an of the real root                    | s of $2x^3 + 5x^2 -$       | -4x - 3 = 0 is                                        | ·                                                        |
|     | (A) - 0.666                                      | (B) $-0.75$                            | (C) - 1.333                | (D) $-1.5$                                            | (E) - 2.25                                               |
| 40. | Simplify to the for                              | rm $a + bi$ : $(1 -$                   | $+2i)(3+4i) \div (5i)$     | i)                                                    |                                                          |
|     | (A) $1-2i$                                       | (B) $2 + i$                            | (C) $2-2i$                 | (D) $2-i$                                             | (E) $1 + 2i$                                             |
| 41. | $221_3 + 102_3 + 12$                             | 13 =                                   | 9                          |                                                       |                                                          |
|     | (A) 63                                           | (B) 57                                 | (C) 48                     | (D) 36                                                | (E) 12                                                   |
| 42. | Which of the follo                               | owing statements is                    | s a false statement        | $f(x) = \begin{cases} \frac{1}{x-2} \\ 3 \end{cases}$ | $ \frac{1}{2} \text{ if } x \neq 2 \\ \text{if } x = 2 $ |
|     | (A) f is continue                                | ous at $x = 1$                         | (B) $f(2)$ exists          |                                                       | (C) $\lim_{x\to 2^-} f(x)$ exists                        |
|     | (D) $\lim_{x\to 2^+} f(x)$                       | exists                                 | (E) $f$ is continu         | ious at 2                                             |                                                          |
| 43. | Let $f(x) = \frac{3x-1}{2x+5}$                   | $\frac{1}{5}$ . Find f'(4).            |                            |                                                       |                                                          |
|     | (A) $\frac{17}{169}$                             | (B) $1\frac{1}{2}$                     | (C) $1\frac{2}{13}$        | (D) $2\frac{6}{13}$                                   | (E) $\frac{11}{13}$                                      |
| 44. | If $\frac{1}{2} - \frac{3}{4x} = \frac{5y}{6}$ , | then x equals                          | •                          |                                                       |                                                          |
|     | (A) $\frac{3}{5} - \frac{9}{10y}$                | $(B) - \frac{3}{10y} \qquad ($         | $C) - \frac{5y}{3}$        | $(D) - \frac{9}{10y - 6}$                             | $(E) - \frac{3}{5y-2}$                                   |
| 45. | Which of the follo<br>geometry and into          | owing mathematic<br>roduced the term ' |                            | for their work in                                     | four dimensional                                         |
|     | (A) Venn, John                                   | (B) Hypatia                            | (C) Smith, Karer           | n (D) Zeno of E                                       | lea (E) Stott, Alicia                                    |
|     |                                                  | т                                      | III Moth R 2015 no         | go <b>5</b>                                           |                                                          |

| 46. | _                                    | ool. How many                    | ways can a king, a                          | •                 | homecoming king at<br>court be chosen if their                        |  |
|-----|--------------------------------------|----------------------------------|---------------------------------------------|-------------------|-----------------------------------------------------------------------|--|
|     | (A) 126                              | (B) 336                          | (C) 120                                     | (D) 16            | (E) 240                                                               |  |
| 47. | Which of the follo                   | owing is not a so                | lution to $2 +  5x $                        | $ -1  \leq 7$ ?   |                                                                       |  |
|     | (A) — 1.333                          | (B) $-0.7$                       | (C) $-0.15$                                 | (D) <b>0.4</b>    | (E) 0.666                                                             |  |
| 48. | Given the circle (nearest tenth)     | ) with perpendi                  | cular diameters an                          | d a chord, find O | F if $EF = 4$ " and $DF = 8$ ".                                       |  |
|     |                                      | Å                                | B<br>O F<br>C                               |                   |                                                                       |  |
|     | (A) 6.9"                             | (B) 5.7"                         | (C) 3.5"                                    | (D) 4.0"          | (E) 5.3"                                                              |  |
| 49. | level ground. The                    | tree is shorter the tree and the | than the 48-ft flagp<br>flagpole end at the | ole. At some time | and the flagpole are on<br>during the day the<br>from the base of the |  |
|     | (A) 25 ft                            | (B) 17 ft                        | (C) 38 ft                                   | (D) 20 ft.        | (E) 32 ft                                                             |  |
| 50. | Let x and y exist sa geometric seque |                                  | •                                           | form an arithme   | tic sequence and 8, x, y for                                          |  |
|     | (A) 32                               | (B) 30                           | (C) 26                                      | (D) 24            | (E) 18                                                                |  |
| 51. |                                      |                                  |                                             |                   | s at the rate of 8% per yea<br>0.00, how much of the loan             |  |
|     | (A) \$666.67                         | (B) \$400.00                     | (C) \$1,500.00                              | (D) \$333.33      | (E) \$11,600.00                                                       |  |
| 52. | Given that the set many numbers w    |                                  |                                             | e triangular patt | ern shown below, how                                                  |  |
|     | •                                    |                                  |                                             | 1                 | (row 1)                                                               |  |
|     |                                      |                                  | 2                                           | 3 1               | (row 2)                                                               |  |

(a) 91 (B) 92 (C) 93 (D) 94 (E) 95

| 53. | The average monthly high temperature for Anchorage, Alaska in July is 65° F. The average |
|-----|------------------------------------------------------------------------------------------|
|     | monthly high temperature in January is 22° F. The average monthly high temperature of    |
|     | Anchorage varies sinusoidally with the month. What would be the predicted average high   |
|     | temperature for March? (nearest tenth)                                                   |

(A) 43.5°

(B) 39.5  $^{\circ}$  (C) 38.8  $^{\circ}$  (D) 32.8  $^{\circ}$  (E) 29.2  $^{\circ}$ 

54. The graph of the parametric equations  $x = \frac{2}{1+t^2}$  and  $y = \frac{2t}{1+t^2}$  is a(n)\_\_\_\_.

(A) circle

(B) ellipse

(C) hyperbola

(D) line

(E) parabola

55. Which of the following surfaces is generated by  $x^2 = y^2 - z^2$ ?

(A) elliptic cone

(B) cylinder

(C) ellipsoid

(D) hyperbolic paraboloid

(E) elliptic paraboloid

56. Willie Score throws a dart at the February, 2015 calendar hanging on the wall. Assuming the dart hits one of the dates on the calendar, what are the odds that the date he hit was a Lucas number (2, 1, 3, 4, ...)? Each date has an equal chance of being hit.

(A)  $\frac{2}{7}$  (B)  $\frac{1}{3}$  (C)  $\frac{1}{4}$  (D)  $\frac{1}{7}$  (E)  $\frac{7}{70}$ 

57. The I Scream U Scream Shoppe make great banana splits using three scoops of ice cream. The flavors of ice cream available are chocolate, vanilla, strawberry, mint swirl, pistachio, blueberry, and raspberry. How many different triple scoop banana splits can they create from the available flavors?

(A) 84

**(B)** 72

(C) 36

(**D**) 35

(E) 21

58. How many 3-digit numbers exist such that the sum of their digits equals 4?

(A) 8

**(B)** 9

(C) 10

(D) 11

(E) 12

59. Let  $f_0 = 0$ ,  $f_1 = 1$ ,  $f_2 = 1$ ,  $f_3 = 2$ ,  $f_4 = 3$ , ... be the terms of the Fibonacci sequence. Find  $(f_4)^2 + (f_5)^2$ .

(A) 18

**(B)** 20

(C) 34

(D) 40

(E) 55

60. Given the rectangular solid shown, find BF if AF = 6", FH = 4" and BG = 5". (nearest tenth)



(A) 8.8"

(B) 6.7"

(C) 6.5"

(D) 6.2"

(E) 5.1"

#### University Interscholastic League MATHEMATICS CONTEST HS • Invitation B • 2015 Answer Key

| 1.  | E | 21. D        | 41. B        |
|-----|---|--------------|--------------|
| 2.  | A | 22. E        | 42. C, D, E  |
| 3.  | A | 23. C        | 43. A        |
| 4.  | В | 24. D        | 44. D        |
| 5.  | E | 25. C        | 45. E        |
| 6.  | C | 26. B        | 46. E        |
| 7.  | C | 27. B        | 47. A        |
| 8.  | D | 28. D        | 48. D        |
| 9.  | C | 29. D        | <b>49.</b> E |
| 10. | A | 30. C        | 50. B        |
| 11. | В | 31. B        | 51. B        |
| 12. | В | 32. E        | <b>52.</b> C |
| 13. | C | 33. C        | 53. D        |
| 14. | A | 34. E        | 54. A        |
| 15. | D | 35. D        | 55. A        |
| 16. | C | 36. E        | 56. B        |
| 17. | E | 37. B        | 57. A        |
| 18. | В | <b>38.</b> C | 58. C        |
| 19. | A | 39. E        | <b>59.</b> C |
|     |   |              |              |

40. B

60. D

**20.** C



# Mathematics District 1 • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

- 1.  $3+2\times 3-3 \div 2\times 8+(20-15)$ 
  - (A) 2
- **(B)** 5.1875
- (C) 5.375
- (D) 13.8125
- (E) 53
- 2. Using the partial ruler shown below, find the difference in the lengths of AB and CD.



- $(A) \frac{3}{8}$ "
- (B)  $\frac{3}{16}$ " (C)  $\frac{1}{2}$ " (D)  $\frac{3}{4}$ "
- (E)  $\frac{1}{4}$ "
- 3. Three million two hundred eighty-two thousand fifteen plus five million one hundred two thousand three hundred twenty three is subtracted from one billion. What is the digit that appears the most number of times in the difference?
  - (A) 0
- (B) 2
- (C) 5
- **(D)** 6
- (E) 9
- 4. Simplify:  $\left(a^{-3} \times b^{3}\right)^{-1} \div \left(a^{2} \times b^{-2}\right)^{2} \times \left(a \div b\right)^{3}$ 

  - (A)  $a^3b^{-3}$  (B)  $a^{-2}b^{-4}$  (C)  $a^2b^{-2}$
- (D) ab
- (E)  $a^6h^6$
- 5. Bill Spender, Len Meekash, and Penni Les spent the day at the mall. Bill spent \$3.00 more than Len spent. Len spent twice as much as Penni spent. When they left the mall Bill still had \$5.00, Len had \$2.00 and Penni had \$.50. Together they spent \$23.00. How much money did Len have when they went into the mall?
  - (A) \$11.00
- **(B)** \$10.00
- (C) \$8.50
- (D) \$8.00
- (E) \$\$4.50
- 6. Which of the following linear equations is best represented by this graph?



- (A) 3x + y = 4 (B) 3x 2y = 4 (C) 2x + 3y = 4 (D) x 3y = 4 (E) 2x + 3y = 4

- 7. Simplify:  $\left(\frac{6x^2 + x 2}{4x^3 16x^2 x + 4}\right) \div \left(\frac{9x^2 + 12x + 4}{6x^2 + 7x + 2}\right)$ 
  - (A)  $x^2 8x + 16$  (B)  $\frac{x-4}{x+4}$  (C)  $x^2 16$  (D)  $\frac{1}{x-4}$  (E) x+4

8. Which of the following properties, is used to go from step 3 to step 4?

Step

$$1 \qquad 5(k-2) \qquad = 5$$

$$2 5k - 10 = 5$$

$$3 5k - 10 + 10 = 5 + 10$$

$$4 5k + 0 = 5 + 10$$

$$5 5k = 15$$

5 5k = 15  
6 5k 
$$\times \frac{1}{5}$$
 = 15  $\times \frac{1}{5}$ 

$$7 k = 3$$

(A) distributive

- (B) additive inverse
- (C) additive identity

- (D) multiplicative identity
- (E) transitive
- 9. Willis A. Nutt mixed some almonds worth \$5.00 a pound with some cashews worth \$6.50 a pound. How many pounds of cashews did he mix with the almonds to make 10 pounds of mixed nuts that sells for \$6.00 a pound?
- (A)  $4\frac{1}{3}$  lbs (B)  $1\frac{1}{5}$  lbs (C)  $6\frac{2}{3}$  lbs (D) 5 lbs (E)  $1\frac{4}{5}$  lbs
- 10. The set  $\{-1, 0, 1\}$  is closed under which of the following operations:

$$+$$
 addition  $-$  subtraction  $\times$  multiplication  $\div$  division

- (A)  $+ \& \times$  (B)  $+, -, \& \times$  (C)  $\times$  only (D) none of the four (E) all four
- 11. Find the lateral surface area of the isosceles trapezoid prism shown. (nearest sq. in). Drawing is not to scale.



- (A) 216 sq. in
- (B) 48 sq. in
- (C) 162 sq. in
- (D) 54 sq. in
- (E) 210 sq. in
- 12. The ratio of the length to the width of a rectangle is 10:6. If 5 units are added to both the length and the width, then the ratio of the length to the width is now 3:2. What is the difference in the areas of the two rectangles? (square units)
  - (A) 225
- **(B)** 250
- (C) 275
- **(D)** 300
- (E) 325
- 13. The point of intersection of the 3 medians of a triangle is called a(n) \_\_\_\_\_
  - (A) center
- (B) centroid
- (C) circumcenter
- (D) incenter
- (E) orthocenter

14. If  $\frac{A}{3x-2} + \frac{B}{2x+1} = \frac{x-10}{6x^2-x-2}$ , where A and B are constants, then A + B equals:

(A) - 4 (B) - 1

(C) 1

(D) 3

(E) 7

15. Let  $A = \begin{bmatrix} -2 & -3 \\ 5 & 7 \end{bmatrix}$  and  $B = \begin{bmatrix} 10 & -6 \\ 3 & -1 \end{bmatrix}$ . Find  $A^T + B^T$ .

(A) 35

(B) - 24

(C) 120

(D) 118

(E) - 1

16. Find the value of  $(4+i^1)+(3+i^2)+(2+i^3)+(1+i^4)$ .

(A) - 10

(B) 0

(C) 2

 $(\mathbf{D})$  9

(E) 10

17. Which of the following mathematicians is considered to be the "Father of Symbolic Logic"?

(A) Alicia Stott (B) John Venn (C) George Boole (D) John Napier (E) Georg Cantor

18. The Wildflower seed company's research data shows that the probability that a seed will germinate and grow into a plant is 70%. What are the odds that it won't germinate and grow into a plant?

(A)  $\frac{3}{10}$  (B)  $\frac{1}{3}$  (C)  $\frac{3}{4}$  (D)  $\frac{3}{7}$  (E)  $\frac{7}{10}$ 

19. How many 8-letter code words can be formed using the letters in the word COMMERCE?

(A) 5,040

(B) 6,720

(C) 336

(D) 248

(E) 20,160

20. Find the diameter of the circle. Drawing is not to scale. (nearest tenth)



(A) 9.4 "

(B) 10.0 "

(C) 11.9 "

(D) 12.6 "

(E) 13.3 "

21. The graph of the parametric equations  $x = t^2 + t$  and y = 2t - 1 is a(n) \_\_\_\_\_.

(A) semicircle

(B) ellipse

(C) line

(D) cycloid

(E) parabola

22. The frequency of the graph of  $y = 1 + 2\sin^2(\frac{\pi}{6}x - 3)$  is:

(A) .08333...

(B) 0.1666...

(C) 0.333...

(D) 0.314...

(E) 0.261666...

|     | from Port A? (nea                     | rest tenth)                            |                                         |                                       |                                                                 |
|-----|---------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------------------------|
|     | (A) 7.1 mi                            | (B) 6.7 mi                             | (C) 5.8 mi                              | (D) 5.0 mi                            | (E) 4.1 mi                                                      |
| 24. | Use the Fibonacci                     | characteristic seq                     | uence, p, q, 4,                         | r, 9, to find p -                     | +q+r.                                                           |
|     | (A) 3                                 | (B) 8                                  | (C) 9                                   | (D) 13                                | (E) 22                                                          |
| 25. | The coefficient of                    | the 3 <sup>rd</sup> term in the        | e expansion of (4x                      | $-5)^6$ is:                           |                                                                 |
|     | (A) 75,000                            | (B) 96,000                             | (C) 128,000                             | (D) 150,000                           | (E) 160,000                                                     |
| 26. | Given that the set first number in ro |                                        | ers continue in the                     | triangular patter                     | n shown below, find the                                         |
|     |                                       | ==•                                    |                                         | 1                                     | (row 1)                                                         |
|     |                                       |                                        | 2                                       | 1<br>3 4<br>7 8 9                     | (row 2)                                                         |
|     |                                       |                                        | 5 6                                     | 7 8 9                                 | (row 3)                                                         |
|     |                                       |                                        | 10 11 12                                | 13 14 15 16                           | (row 4)                                                         |
|     |                                       |                                        |                                         | •••                                   | ( <b></b> )                                                     |
|     | (A) 101                               | (B) 104                                | (C) 107                                 | (D) 110                               | (E) 111                                                         |
| 27. | For what values o                     | f the domain is th                     | e function $f(x) = 1$                   | $5-2x-x^2$ decr                       | easing?                                                         |
|     | (A) $(-\infty,2)$                     | $(B) \ (-2, +\infty)$                  | (C) $(-1, +\infty)$                     | $(D) (-\infty, -1)$                   | 1) (E) $(-\infty, +\infty)$                                     |
| 28. | Let $f(x) = \frac{4-3x}{5x}$          | $\frac{4}{3}$ . Find f'(-2).           |                                         |                                       |                                                                 |
|     | (A) - 0.4                             | (B) - 1                                | (C) $-0.1$                              | (D) $-0.2$                            | (E) - 0.6                                                       |
| 29. | The graph of $f(x)$                   | $=\frac{x^3-64}{x^2-16}$ has ho        | w many asymptot                         | es?                                   |                                                                 |
|     | (A) 0                                 | (B) 1                                  | (C) 2                                   | ( <b>D</b> ) 3                        | (E) 4                                                           |
| 30. | four physic studer                    | nts. How many wa<br>one physic student | ys can Wynn form<br>t, one chemistry st | n a six member U<br>udent, and one bi | hemistry students and IL science team if the ology student? The |
|     | (A) 9,988                             | (B) 9,996                              | (C) 10,008                              | (D) 12,376                            | (E) 61,152                                                      |
| 31. | How many positive the sum of the dig  | _                                      | <del>-</del>                            | contain at least on                   | e 2 or at least one 3, but                                      |

23. Dawn Indyvalley sailed her scow 12 miles from Port A on a bearing of 125°. Then she changed her course and sailed 8 miles to buoy marker B on a bearing of 300°. How far is buoy marker B

(D) 24

(E) 23

(C) 26

(A) 30

(B) 28

| 32. | . Will E. Pikett randomly selects an odd integer less than 100 that is a multiple of 3. Betty Wont randomly selects an odd integer less than 100 that is a multiple of 5. What is the probability that they selected the same number? (nearest tenth) |                                                    |                                            |                                     |                                                                                  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|--|--|
|     | (A) 2.8%                                                                                                                                                                                                                                              | (B) 3.0%                                           | (C) 5.3%                                   | (D) 3.7%                            | (E) 1.8%                                                                         |  |  |
| 33. | The sum of the fir                                                                                                                                                                                                                                    | est three <i>lucky prin</i>                        | ne numbers is:                             |                                     |                                                                                  |  |  |
|     | (A) 10                                                                                                                                                                                                                                                | (B) 11                                             | (C) 12                                     | (D) 19                              | (E) 23                                                                           |  |  |
| 34. | $(323_5 + 201_5) \times 4$                                                                                                                                                                                                                            | J <sub>5</sub> =                                   | 5                                          |                                     |                                                                                  |  |  |
|     | (A) 4011                                                                                                                                                                                                                                              | (B) 4101                                           | (C) 4121                                   | (D) 4201                            | (E) 4211                                                                         |  |  |
| 35. | The square root of                                                                                                                                                                                                                                    | f 1161 in base 8 is                                | :                                          |                                     |                                                                                  |  |  |
|     | (A) 31 <sub>8</sub>                                                                                                                                                                                                                                   | (B) 34 <sub>8</sub>                                | (C) 27 <sub>8</sub>                        | (D) 41 <sub>8</sub>                 | (E) 37 <sub>8</sub>                                                              |  |  |
| 36. | class party. She ko                                                                                                                                                                                                                                   | ept $\frac{2}{3}$ of the cookies to her son and hi | es she had left for<br>is friend for an af | her evening tea paternoon snack. Th | o her daughter for her<br>arty. She gave 4 of the<br>ere were 2 cookies left for |  |  |
|     | (A) 48                                                                                                                                                                                                                                                | (B) 45                                             | (C) 40                                     | (D) 36                              | (E) 35                                                                           |  |  |
| 37. | Line <i>m</i> contains p such that line n co                                                                                                                                                                                                          |                                                    |                                            |                                     | uations of line <i>n</i> exists                                                  |  |  |
|     | (A) 2x + 3y = 5                                                                                                                                                                                                                                       | (B) $2x - 3y = -$                                  | 5 (C) $5x + 3y =$                          | -2 (D) $3x - 2y$                    | = -5 (E) $3x + 2y = 5$                                                           |  |  |
| 38. | If the roots of 2x                                                                                                                                                                                                                                    | $^3 + bx^2 + cx + d$                               | = 0 are — 4, 2, a                          | nd 6, then $b + c +$                | - d equals:                                                                      |  |  |
|     | (A) 16                                                                                                                                                                                                                                                | (B) $-24$                                          | (C) 48                                     | (D) $-12$                           | (E) 4                                                                            |  |  |
| 39. | The point $(3, -3)$ reference to the ci                                                                                                                                                                                                               |                                                    | hose center is (—                          | 3, — 3). Where do                   | es the point (1, 2) lie in                                                       |  |  |
|     | <ul><li>(A) on the circle</li><li>(D) in quadrant</li></ul>                                                                                                                                                                                           |                                                    | (B) or cannot be determine                 |                                     | (C) inside the circle                                                            |  |  |
| 40. | The range of the r                                                                                                                                                                                                                                    | relation $(x+3)^2$                                 | $-(y+3)^2 < 36$ is                         | :                                   |                                                                                  |  |  |
|     | $(A) \ \left[-6,6\right]$                                                                                                                                                                                                                             | (B) $(-8,2)$                                       | (C) $(-2,5)$                               | (D) $(-4,4)$                        | (E) $(-9,3)$                                                                     |  |  |
| 41. | How many integra                                                                                                                                                                                                                                      | al values of n exist                               | $t$ such that $n \ge 0$                    | and $\frac{(n+2)!}{n!} \leq 20$     |                                                                                  |  |  |
|     | (A) none                                                                                                                                                                                                                                              | (B) 3                                              | (C) 4                                      | (D) 6                               | (E) 9                                                                            |  |  |

|       | Y                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |
|-------|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|--|
|       |                                                               | h                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                           |                                            |  |
|       |                                                               | ,                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                            |  |
|       | (A) 36.9"                                                     | (B) 33.2"                                                   | (C) 31.4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) 31.7 "                  | (E) 30.8"                                  |  |
|       | △DEF exists such<br>If EM = 12.5 cm, a                        |                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           | C                                          |  |
|       | (A) 31.39°                                                    | (B) 32.52°                                                  | (C) 35.50°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D) 36.87°                  | (E) 37.15°                                 |  |
| 45.   | The harmonic me                                               | an of the real root                                         | $4 + 9x^3 + 9x^2 + 9x^3 + 9x^2 + 9x^3 + 9x^$ | 3x - 4 = 0 is ? (n          | earest tenth)                              |  |
|       | (A) 1.3                                                       | (B) 4.0                                                     | (C) 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) $-2.3$                  | (E) - 1.5                                  |  |
|       | Let $f_0 = 0$ , $f_1 = 1$ , $f$<br>Find $GCD(f_{16}, f_{12})$ |                                                             | s, be the terms o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the Fibonacci se         | equence.                                   |  |
|       | (A) 3                                                         | (B) 4                                                       | (C) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) 8                       | (E) 14                                     |  |
|       | The probability th                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the probability th          | at statement Q is true is                  |  |
|       | (A) $\frac{21}{80}$                                           | (B) $\frac{23}{40}$                                         | (C) $\frac{3}{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>(D)</b> $\frac{7}{80}$   | (E) $\frac{3}{80}$                         |  |
| 48. ] | Find the area bou                                             | $\mathbf{nded} \ \mathbf{by} \ \mathbf{y} = 1 - \mathbf{y}$ | $x^2$ , $y = x - 6$ , $x =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1, and $x = 1$ . (         | square units).                             |  |
|       | (A) 12                                                        | (B) $12\frac{5}{6}$                                         | (C) $13\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) $13\frac{2}{3}$         | (E) $14\frac{1}{6}$                        |  |
| 49.   | The function f(x) =                                           | $= x^4 - x^3 + 1$ has                                       | inflection points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at x = a and x = b          | . Find a + b.                              |  |
|       | (A) $\frac{1}{2}$                                             | (B) 0                                                       | (C) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) $-1$                    | $(E) - \frac{1}{2}$                        |  |
|       | Which of the follo form?                                      | wing equations in                                           | polar form can b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e written as 3x —           | - 2y = 2 in rectangular                    |  |
|       | (A) $r(3\sin\theta-2)$                                        | $2\cos\theta$ ) = 2 (B)                                     | $r(3\cos\theta + 2\sin\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\theta$ ) = $\sqrt{2}$ (C) | $r(2\cos\theta - 3\sin\theta) = 2\sqrt{2}$ |  |
|       | (D) $r(3\cos\theta-2)$                                        | $2\sin\theta)=2\qquad (E)$                                  | $r(3\sin\theta + 2\cos\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9) = 4                      |                                            |  |
|       |                                                               | UIL                                                         | Math District 1 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - page 6                    |                                            |  |
|       |                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |

42. If  $a_1 = -2$ ,  $a_2 = 2$ ,  $a_3 = 4$ ,  $a_n = (a_{n-1}) \div (a_{n-3}) - (a_{n-2})$ , where  $n \ge 4$ , then  $a_6$  equals:

43. A triangle is drawn as shown. Find h if  $m\angle XZY = 25^{\circ}$ , XY = 33'', and YZ = 75''. (nearest tenth)

(D) 2.5

(E) 1.5

(B) 4.5 (C) 3

(A) 6

| 52. | . The expansion of $(3x - 1)(3x - 2)(3x - 3)$ is $ax^3 + bx^2 + cx + d$ . Find (ab) $\div$ (cd). |                                               |                                            |                                         |                                                                                           |  |  |
|-----|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|--|--|
|     | (A) 6.888                                                                                        | (B) 7.363636                                  | (C) 1.222                                  | (D) 8.181818                            | (E) 3.444                                                                                 |  |  |
| 53. | interest rate of 4%                                                                              | per year and the<br>the year he paid          | rest of the loan w                         | as at the simple in                     | ne loan was at the simple nterest rate of 6% per g \$526.50. How much of                  |  |  |
|     | (A) \$375.00                                                                                     | (B) \$325.00                                  | (C) \$250.00                               | (D) \$175.00                            | (E) \$125.00                                                                              |  |  |
| 54. | toward the ranger                                                                                | station tower. The fire is $10^{\circ}$ . The | e tower is 175 feet<br>e speed of the fire | t tall and the angle is estimated to be | ees a forest fire coming e of depression from his e moving at 3 feet per learest minute). |  |  |
|     | (A) 5 hrs 0 min                                                                                  | (B) 5 hrs 31 m                                | in (C) 5 hrs 15                            | 5 min (D) 5 hrs                         | 7 min (E) 6 hrs 5 min                                                                     |  |  |
| 55. | •                                                                                                | re notices that Do                            | _                                          |                                         | rs when working at the<br>fow long would it take                                          |  |  |
|     | (A) 24 hrs                                                                                       | (B) 16 hrs                                    | (C) 12 hrs                                 | (D) 4 hrs                               | (E) 2.666 hrs                                                                             |  |  |
| 56. | 0                                                                                                | V <b>-</b>                                    | 0                                          | 0                                       | es is decreasing at the en this acute angle is 21°?                                       |  |  |
|     | (A) $3.4 \text{ in}^2/\text{sec}$                                                                | (B) 15.8 in <sup>2</sup> /sec                 | (C) 13.5 in <sup>2</sup> /sec              | (D) 7.8 in <sup>2</sup> /sec            | (E) 15.6 in <sup>2</sup> /sec                                                             |  |  |
| 57. | _                                                                                                | ithout replacemen                             | nt. What is the pr                         |                                         | in a bag. He randomly lie chose one country, one                                          |  |  |
|     | (A) 8%                                                                                           | (B) 12%                                       | (C) 34%                                    | (D) 58%                                 | (E) 23%                                                                                   |  |  |
| 58. | Given the regular                                                                                | pentagon shown,                               | find BD if AB = 8                          | ". (nearest tent                        | h)                                                                                        |  |  |
|     |                                                                                                  | E                                             | С                                          |                                         |                                                                                           |  |  |
|     | (A) 11.3"                                                                                        | (B) 12.9"                                     | (C) <b>12.0''</b>                          | (D) 13.9"                               | (E) 6.5"                                                                                  |  |  |
|     |                                                                                                  | UIL 1                                         | Math District 1 2015                       | - page 7                                |                                                                                           |  |  |
|     |                                                                                                  |                                               |                                            |                                         |                                                                                           |  |  |

51. Let  $f(x) = x^2 - bx + c$ . If f(x) is divided by x - 2 the remainder is 6 and if f(x) is divided by

**(D)** 1

**(E)** 5

(C) 0

x + 3 the remainder is 1. Find b + c.

(B) - 2

(A) - 4

59. Given the trapezoid shown where segments AF, BE, and CD are parallel to each other and the three interior segments are concurrent at point P, find the length of segment BP if CD = 18 cm and AF = 26 cm. (nearest hundredth)



- (A) 10.82 cm
- (B) 9.91 cm
- (C) 11.00 cm
- (D) 10.35 cm
- (E) 10.64 cm
- 60. Given the circle O with perpendicular diameters and a chord, find BE if DE = 11" and DF = 7". (nearest tenth)



- (A) 5.2"
- (B) 6.3"
- (C) 7.1"
- (D) 6.1"
- (E) 5.7"

### University Interscholastic League MATHEMATICS CONTEST HS • District 1 • 2015 Answer Key

| 1.  | $\mathbf{A}$ | 21. E        | 41. C |
|-----|--------------|--------------|-------|
| 2.  | D            | 22. B        | 42. D |
| 3.  | D            | 23. E        | 43. D |
| 4.  | C            | 24. C        | 44. B |
| 5.  | В            | 25. B        | 45. B |
| 6.  | A            | 26. A        | 46. A |
| 7.  | D            | 27. C        | 47. D |
| 8.  | В            | 28. D        | 48. C |
| 9.  | C            | <b>29.</b> C | 49. A |
| 10. | C            | 30. B        | 50. D |
| 11. | C            | 31. C        | 51. A |
| 12. | A            | 32. E        | 52. B |
| 13. | В            | 33. E        | 53. D |
| 14. | В            | 34. E        | 54. B |
| 15. | C            | 35. A        | 55. C |
| 16. | E            | 36. B        | 56. E |
| 17. | C            | 37. E        | 57. E |
| 18. | D            | 38. C        | 58. B |
| 19. | A            | 39. B        | 59. E |
| 20. | A            | 40. E        | 60. E |



# Mathematics District 2 • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

| 1. | <b>Evaluate:</b>     | 4! + 6              | $\times (4-11) \div$                     | $20 \times 15$                                                               |                                     |                |                       |                |
|----|----------------------|---------------------|------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|----------------|-----------------------|----------------|
|    | (A) - 1              | 57.5                | (B) $-13.5$                              | (C) $-7$                                                                     | 7.5 (D) 8                           | 31.75          | (E) 111.7             | 5              |
| 2. | into 4 piec          | es such             |                                          | of the lengths                                                               | . She has a ribl<br>of the pieces a |                | -                     | _              |
|    | (A) 1 ft             | 1.5 in              | (B) 1 yd 2 ft                            | 5 in (C) 1 ft                                                                | t 7.5 in (D) 1                      | l yd 1 ft 6    | in (E) 2 f            | t 2 in         |
| 3. |                      | - 1 3/10<br>        | P<br>                                    | Q<br>                                                                        | R<br>                               | 7<br>10<br>    | S<br>                 | >              |
|    | The distan           | ices bety           | ween the hash                            | marks ( ) are                                                                | e equal. Find P                     | +Q+R           | + S.                  |                |
|    | (A) 0.2              |                     | (B) <b>0.3</b>                           | (C) <b>0.5</b>                                                               | (D) 1                               | .0             | (E) 2.3               |                |
| 4. | What is 85           | $5\frac{5}{7}\%$ of | $(\frac{5}{9} \div (0.90909))$           | 90)?                                                                         |                                     |                |                       |                |
|    | (A) $\frac{77}{108}$ |                     | (B) $\frac{55}{126}$                     | (C) $\frac{11}{21}$                                                          | <b>(D)</b> $\frac{3}{7}$            | <u>5</u><br>77 | (E) $\frac{100}{231}$ |                |
| 5. | Simplify:            | (                   | $\left(\frac{3n^2-27}{6-n-n^2}\right) >$ | $\left\langle \left(\frac{4-2n}{3-n}\right) \div \right\rangle$              | $\left(\frac{6}{3n+n^2}\right)$     |                |                       |                |
|    | $(A)  n^2 -$         | — 3n                | (B) $3 + n$                              | (C) - n                                                                      | ( <b>D</b> ) -                      | $-n^2+n$       | $(E) - n^2$           | — 3n           |
| 6. |                      | the follo           | wing propert                             | ies is demonstr                                                              | rated from step                     | 2 to step      | 3?                    |                |
|    | Step 1               | 3x                  |                                          | = 10                                                                         | ( A)                                |                |                       |                |
|    | 2                    | (3x                 | +4)+(-4)                                 | $ \begin{array}{rcl}  & = 10 + 6 \\  & = 10 + 6 \\  & = 10 + 6 \end{array} $ | (— 4)                               |                |                       |                |
|    | 3<br>1               | 3x -                | + [4 + (— 4 <i>)</i><br>+ 0              | り = 10 <del>+</del> (<br>= 10 + (                                            | (— 4)<br>(— 4)                      |                |                       |                |
|    | 5                    | 3x                  | +0                                       | = 6                                                                          | (— <b>-</b> )                       |                |                       |                |
|    | 6                    | 3x                  | , ,                                      | = 6                                                                          |                                     |                |                       |                |
|    | 7                    | $\frac{1}{3}(3)$    | x)                                       | $=\frac{1}{3}(6)$                                                            |                                     |                |                       |                |
|    | 8                    | 9                   | × 3)x                                    | $=\frac{3}{3}(6)$                                                            |                                     |                |                       |                |
|    | 9                    | (1)                 |                                          | $=\frac{3}{2}$                                                               |                                     |                |                       |                |
|    | 10                   | X                   |                                          | = 2                                                                          |                                     |                |                       |                |
|    | (A) distr            | ributive            | (B) additi                               | ve inverse (C                                                                | C) associative                      | (D) con        | nmutative             | (E) transitive |
| 7. | How many             | y 12-lette          | er code word                             | s can be forme                                                               | d using the lett                    | ters DISTI     | RICTMEET              | ?              |
|    | (A) 19,9             | 58,400              | (B) 495                                  | (C) 40,3                                                                     | 20 (D) 9                            | 5,040          | (E) 967,68            | 80             |

8. The price of a diamond varies directly as the square of its weight. If a diamond weighing  $\frac{3}{4}$  carat costs \$621.00, find the cost of a diamond weighing 1.4 carats.

(A) \$2,163.84 (B) \$2,090.82 (C) \$1,622.88 (D) \$1,545.60 (E) \$1,159.20

9. Find the total surface area of the prism shown. (nearest sq. in)



- (A) 92 sq. in
- (B) 96 sq. in
- (C) 98 sq. in
- (D) 100 sq. in (E) 106 sq. in

10. Point P(4, 3) lies on the x-y plane. Point P is rotated 90° clockwise about the origin to point Q. Point Q is reflected across the line y = -1 to point R. Point R is translated vertically 5 units upward to point S. Point S is translated horizontally 5 units to the left to point T. The coordinates of point T are (x, y). Find x + y.

- (A) 2
- (B) -1
- (C) 1
- $(\mathbf{D})$  5
- $(\mathbf{E})$  7

11.  $\triangle PQR$  is inscribed in circle C such that the measure of  $\angle PQR$ 's intercepted arc is 76°. Find  $m\angle PQR$ .

- (A)  $25\frac{1}{3}^{\circ}$  (B)  $76^{\circ}$  (C)  $114^{\circ}$
- (D)  $38^{\circ}$
- (E) 14°

12. If  $\frac{2x-7}{5x-3} - \frac{5x+3}{2x-7} = \frac{Ax^2 + Bx + C}{Px^2 + Ox + R}$ , then  $\frac{A+B+C}{P+Q+R}$  equals:

- (A)  $-\frac{9}{10}$  (B)  $-\frac{1}{5}$  (C)  $\frac{4}{5}$  (D)  $2\frac{1}{10}$

- $(\mathbf{E})$  5

13. Simplify:  $(2\log_5 X - 2\log_5 Y) + (\log_5 Y^3 - 2\log_5 X^3)$ 

- (A)  $\log_5(X^2Y)$  (B)  $\frac{Y}{X}$  (C)  $4\log_5(\frac{Y}{X})$  (D)  $X^4Y$
- (E)  $\log_5 Y 4\log_5 X$

14. Lotta Sense has fifty coins consisting of nickels, dimes, and quarters. She has three times as many nickels as quarters and ten less quarters than dimes. How much money does she have?

- (A) \$5.30
- **(B)** \$6.50
- (C) \$5.00
- (D) \$6.25
- (E) \$5.70

15. What are the odds that a factor of 120 is a multiple of 4?

- (A) 1 to 1
- (B) 1 to 2
- (C) 4 to 1
- (D) 2 to 1
- (E) 1 to 4

16. Determine the range of  $f(x) = 3 - 5\cos(\frac{\pi}{4}x + \frac{\pi}{2})$ .

- (A) [-8,2] (B) [-2,2] (C)  $[-\frac{3\pi}{4},\frac{5\pi}{2}]$  (D)  $[-\frac{\pi}{2},\frac{\pi}{4}]$  (E) [-2,8]

17.  $(1+i)^6$  equals:

- (A) -8i (B) 6-8i
- (C) 6i
- (D) 8 8i (E) 6 + 6i









(B) It is an even function.

(C) It is not a function.

(E) It is a one-to-one function.

#### 20. How many 3-digit numbers exist such that the sum of their digits equals 3?

(E) 3

21. Find the digit in the millionths place of the sum of the series 
$$1+3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+...$$

22. Which of the following statements is a false statement for 
$$f(x) = \begin{cases} 2x^2 - 2 & \text{if } x \leq 2 \\ 5x - 4 & \text{if } x > 2 \end{cases}$$
?

(A) 
$$f(2)$$
 exists

(B) 
$$\lim_{x \to 2^{-}} f(x)$$
 exists

(B)  $\lim_{x\to 2^-} f(x)$  exists (C)  $\lim_{x\to 2^+} f(x)$  exists

(D) 
$$f$$
 is continuous at 2

23. If 
$$f''(x) = 6x + 6$$
 and  $f'(1) = -4$  and  $f(-1) = 0$ , then  $f(0) = ____.$ 

$$(A) - 15$$
  $(B) - 3$   $(C) - 1$ 

$$(B) - 3$$

$$(C)-1$$

(E) 12

#### 24. Roland Bones created a pair of special dice which have only three numbers on each die. The opposite side of each number is the same number. When the dice are rolled the die with the largest number on top wins. What is the probability that die A will win?



(A) 
$$55\frac{5}{9}\%$$

(A) 
$$55\frac{5}{9}\%$$
 (B)  $44\frac{4}{9}\%$  (C)  $66\frac{2}{3}\%$  (D)  $33\frac{1}{3}\%$  (E)  $20\%$ 

(C) 
$$66\frac{2}{3}\%$$

(D) 
$$33\frac{1}{2}\%$$

| 26. | committees can  | JIL Academic Cont<br>n Dr. Stevens appo<br>t least 1 male direc | int such that each |                      | •                   |       |
|-----|-----------------|-----------------------------------------------------------------|--------------------|----------------------|---------------------|-------|
|     | (A) 178         | (B) 35,640                                                      | (C) 5,940          | (D) 1,161            | (E) 1,512           |       |
| 27. | If p is a prime | number and 2p +                                                 | 1 is a prime num   | ber then $2p + 1$ is | called a safe prime | and p |



- (A) Hypatian (B) Euclidean (C) Boolean (D) Germain (E) Archimedian
- 28. How many proper fractions in lowest terms have a denominator of 36?
  - (A) 21 (B) 18 (C) 15 (D) 12 (E) 9
- (A) 139 (B) 583 (C) 672 (D) 1,446 (E) 2,472
- 30. Line m has a slope of -2 and goes through the point (-4, 6). Line n goes through points (1, -1) and (2, 5). Line m intersect line n at (x, y). Find x + y.
  - (A) 3.875 (B) 2.875 (C) 0.625 (D) -2.625 (E) -3.25
- 31. Which of the following is not a solution to  $|4x + 11| 20 \ge 15$ ?

- (A) -12.5 (B) -11.875 (C) -9.75 (D) 6.555... (E) 11.5
- 32. M. T. Tank has a circular water tank with no water in it. The tank is 6 feet deep and has a diameter of 5 feet. How many gallons of water will M. T. have to put in the tank to be 75% full? (nearest gallon)
  - (A) 661 gal (B) 793 gal (C) 565 gal (D) 881 gal (E) 656 gal
- 33. Latexo circle G19. Given the circle O with perpendicular diameters and a chord, find the area  $\triangle$ DFO if EF = 5" and DE = 12" inches. (nearest tenth)



- (A) 8.6 sq. in (B) 8.9 sq. in (C) 9.1 sq. in (D) 9.3 sq. in (E) 9.8 sq. in
- 34. How many numbers k, where  $10 \le k \le 50$ , exist such that the number when the digits of k are reversed is subtracted from k, the differences greater than zero are divisible by 9?
  - (A) 18 (B) 15 (C) 13 (D) 11 (E) 9

| 35. | If | $a_1 = -4$  | $1. a_2 = 1$ | and $a_n =$ | $[(a_{n-1})]$ | +(a      | ln_2)]         | × (a <sub>n</sub> _ | _1) for n   | > 3, then | a5 equals   |
|-----|----|-------------|--------------|-------------|---------------|----------|----------------|---------------------|-------------|-----------|-------------|
| ·   |    | <b>41</b> – | ., 42 – 1    | and all     | [ / ₩II—I     | <i>)</i> | ·II— <i>41</i> | ~ ( <b>4</b> II—    | -1 / 101 11 | _ 0,      | . us equals |

(A) 9

**(B)** 12

(C) 18

**(D)** 36

(E) 54

36. Find the area of  $\triangle PQR$  given that EF = DE = DF = 10.393 cm and FP = DQ = ER = 6 cm. (nearest tenth)



(A) 93.5 sq. cm (B) 108.6 sq. cm (C) 121.9 sq. cm (D) 140.3 sq. cm (E) 187.1 sq. cm

37. Frank Lynn is flying his kite. The distance from the level ground to Frank's eyes is 6 feet. The angle of elevation from his eyes to the kite is 23°. What is the distance from level ground to the kite if all 100 feet of his string has been let out? (nearest foot)

(A) 39 feet

(B) 45 feet

(C) 48 feet

(D) 52 feet

(E) 54 feet

38. The harmonic mean of the real roots of  $x^3 + 3x^2 + kx - 15 = 0$  is  $-3\frac{6}{13}$ . Find k?

(A)  $5\frac{10}{13}$  (B)  $\frac{7}{13}$  (C) -6 (D) -12 (E) -13

39. Given that the set of natural numbers continue in the triangular pattern shown below, find the median of the numbers in row 21.

(A) 441

**(B)** 432

(C) 422

(D) 421

(E) 419

40. Let  $f(x) = x^2 - 3x + 4$  and g(x) = 2x - 5. Find g(f'(x + 1)).

(A) 4x-15 (B)  $2x^2-2x+5$  (C) 4x-1 (D) -1

(E) 4x - 7

41. Let  $f(x) = \frac{x^4}{4} + \frac{x^3}{2} - 3x^2 + 6$ . The concavity of the curve is downward at which of the following values of x?

(A) -2 (B) -1.75 (C) 1 (D) 1.5

(E) 2.25

| 42. | containing a differ<br>Fibonacci number                 | rent digit. He scra<br>greater than zero<br>or a zero then he | tches off one spot<br>he wins \$1.00. If | to reveal the digit<br>it is a zero, he win | overed spots, each one<br>t. If the digit is a<br>ns \$5.00. If it is not a<br>cal expectation of a single |
|-----|---------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|
|     | (A) 0¢                                                  | (B) 50¢ gain                                                  | (C) 60¢ gain                             | (D) \$1.50 gain                             | (E) \$2.00 gain                                                                                            |
| 43. |                                                         | ng calculators in t                                           | he box, the proba                        | bility of selecting                         | t one that works is 60%.<br>a working calculator is                                                        |
|     | (A) 10                                                  | (B) 8                                                         | (C) 5                                    | (D) 3                                       | (E) 2                                                                                                      |
| 44. | The repeating dec<br>base 5 in simplifie                |                                                               | ase 5 can be writt                       | en as which of the                          | following fractions in                                                                                     |
|     | (A) $\frac{3}{10}_{5}$                                  | (B) $\frac{11}{20}_{5}$                                       | (C) $\frac{12}{20}_{5}$                  | <b>(D)</b> $\frac{7}{10}_{5}$               | (E) $\frac{24}{40}_{5}$                                                                                    |
| 45. | Let $f_0 = 0$ , $f_1 = 1$ , $f_2 = 1$                   | $f_2 = 1, f_3 = 2, f_4 = 3$                                   | , be the terms o                         | f the Fibonacci se                          | quence. Find $(f_8)^2 + (f_9)^2$ .                                                                         |
|     | (A) 55                                                  | (B) 145                                                       | (C) 714                                  | (D) 987                                     | (E) 1,597                                                                                                  |
| 46. | If $x + y = 8$ and $4x$                                 | $xy = -20$ , then $x^2$                                       | $+y^2=?$                                 |                                             |                                                                                                            |
|     | (A) 80                                                  | (B) 74                                                        | (C) 54                                   | (D) 39                                      | (E) 18*                                                                                                    |
| 47. | Larry is twice as of twice Curly's age.                 |                                                               | •                                        | ~                                           | years ago, Moe was                                                                                         |
|     | (A) 12                                                  | (B) 15                                                        | (C) 20                                   | (D) 25                                      | (E) 37                                                                                                     |
| 48. | $\triangle$ ABC and $\triangle$ PQ<br>PR = 16, and PQ = |                                                               |                                          | $\angle ACB \cong \angle RQP$               | , AC = 28, CB = 24,                                                                                        |
|     | (A) 24                                                  | (B) $25\frac{5}{7}$                                           | (C) $30\frac{2}{3}$                      | (D) 33                                      | (E) $42\frac{1}{3}$                                                                                        |
| 49. | The point (— 1, — inside the circle?                    | 3) lies on a circle                                           | whose center is (4                       | 1, 2). Which of the                         | following points lies                                                                                      |
|     | (A) (2,9)                                               | (B) $(-2,5)$                                                  | (C) $(6, -5)$                            | (D) (9, 7)                                  | (E) $(-3, 1)$                                                                                              |
| 50. | If $x - \frac{1}{x} = 3$ , the                          | $n x^3 - \frac{1}{x^3} = ?$                                   |                                          |                                             |                                                                                                            |
|     | (A) 11                                                  | (B) 49                                                        | (C) 33                                   | (D) 7                                       | (E) 36                                                                                                     |
|     |                                                         |                                                               |                                          |                                             |                                                                                                            |

51. Joy Ryder hops on a flatcar of a freight train that leaves the station heading due east at 8:00 p.m. Roland Along gets on a passenger train that leaves the same station heading due east at 11:00 p.m. The average speed of the freight train is 25 miles per hour, while the passenger train's average speed is 65 miles per hour. How far apart are the two trains after the passenger train has traveled for 2.5 hours?

(A) 87.5 miles

**(B)** 40 miles

(C) 25 miles

(D) 100 miles

(E) 12.5 miles

52. Joy Ryder gets on a small Ferris wheel at the county fair. The radius of the Ferris wheel is 10 meters and it completes a revolution in 2 minutes. The bottom of the Ferris wheel where Joy gets in her seat to ride is 1 meter from the ground. How far from the ground will Joy be after riding 80 seconds? (nearest tenth)

(A) 16.0 m

(B) 16.8 m

(C) 18.5 m

(D) 19.3 m

(E) 21.0 m

53. The graph of the parametric equations  $5x = \cos(3t)$  and  $2y = \sin(3t)$ , where  $0 \le t \le 2\pi$ , is a(n):

(A) circle

(B) ellipse

(C) hyperbola

(D) line

(E) parabola

54. The conic  $4x^2 - 16x + 16 + y^2 + 8y = 0$  is a(n):

(A) circle

(B) degenerate (C) ellipse

(D) hyperbola (E) parabola

55. Let  $f(x) = \frac{x^2 - 3x + 9}{x + 3}$  and s(x) be the slant asymptote of f. Find the value of s(-3).

(A) 27

**(B)** 4.5

(C) -3

(D) - 9

(E) undefined

56. Find the area bounded by the two parabolas. (square units).



(A) 1.222...

(B) 1.333...

(C) 1.555...

(D) 1.666...

(E) 1.777...

57. Two of the roots of  $f(x) = x^3 + bx^2 + cx + d$  are 1—2i and 3. Find b + c + d.

(A) - 21

(B) - 9

(C) 1

**(D)** 11

(E) 31

58. Find the value of A + 2B + 3C, where A, B, and C are positive integers such that

$$\frac{57}{11} = A + \left(\frac{1}{B + \left(\frac{1}{C+1}\right)}\right).$$

- (A) 11
- (B) 12
- (C) 15
- (D) 18
- (E) 20

59. N. D. Dark needs help solving this problem. Let  $\oplus$  n  $\oplus$  be the largest prime factor of n and let  $\ominus$  n  $\ominus$  be the smallest prime factor of n greater than 1.

What does  $\oplus$  20  $\oplus$   $-\ominus$  15  $\ominus$   $\times$   $\oplus$  49  $\oplus$  +  $\ominus$  57  $\ominus$  equal?

- (A) 13
- **(B)** 17
- (C) -14 (D) -6
- **(E)** 13

60. Doug Upp, Doug Down, and Doug Aditch can shovel the snow from Mr. Paver's driveway in 4, 3, and 6 hours respectively. How long will it take them if all three Doug's worked together? (nearest minute)

(A) 1 hr 20 min (B) 2 hrs 10 min (C) 1 hr 26 min (D) 1 hr 30 min (E) 40 min

## University Interscholastic League MATHEMATICS CONTEST HS • District 2 • 2015 Answer Key

| 1.  | C | 21. B | 41. B        |
|-----|---|-------|--------------|
| 2.  | E | 22. E | <b>42.</b> C |
| 3.  | В | 23. A | 43. E        |
| 4.  | C | 24. B | 44. C        |
| 5.  | E | 25. E | 45. E        |
| 6.  | C | 26. D | 46. B        |
| 7.  | A | 27. D | 47. D        |
| 8.  | A | 28. D | 48. E        |
| 9.  | E | 29. B | 49. B        |
| 10. | D | 30. D | 50. E        |
| 11. | D | 31. C | 51. C        |
| 12. | A | 32. A | 52. A        |
| 13. | E | 33. A | 53. B        |
| 14. | C | 34. D | <b>54.</b> C |
| 15. | A | 35. C | 55. D        |
| 16. | E | 36. D | 56. B        |
| 17. | A | 37. B | 57. B        |
| 18. | В | 38. E | 58. D        |
| 19. | D | 39. D | 59. A        |
| 20. | C | 40. E | 60. A        |



# Mathematics Regional • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                                                                                                                                                                    |                                                                                                                |                                                        | • •                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----|
| 4. $32_6 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8 - 32_8$ | + 201 <sub>5</sub> =                                                                                                                                                                   | 7                                                                                                              |                                                        |                                               |     |
| (A) 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) 47                                                                                                                                                                                 | (C) 54                                                                                                         | (D) 102                                                | (E) 65                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e following mathemati<br>nity of rational numbe                                                                                                                                        |                                                                                                                |                                                        | al numbers is countable a<br>natural numbers? | and |
| <ul><li>(A) Chris</li><li>(D) John</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | (B) Georg Can<br>(E) Alicia Stott                                                                              |                                                        | (C) George Boole                              |     |
| 6. Simplify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\left(\frac{15-13x+2x^2}{4x^2-9}\right)\left(\frac{2x+1}{1-2}\right)$                                                                                                                 | $\left(\frac{1}{2x}\right) \div \left(\frac{5-x}{2x-1}\right)$                                                 |                                                        |                                               |     |
| (A) $2x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-8x + 3$ (B) $\frac{2x - 1}{x + 1}$                                                                                                                                                   | (C) $2x^2 - 3$                                                                                                 | $(\mathbf{D})  \frac{\mathbf{x} - 1}{2\mathbf{x} + 3}$ | (E) $\frac{2x+1}{2x+3}$                       |     |
| 7. If $x - y = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3 and $xy = -5$ then $x$                                                                                                                                                              | $x^3 - y^3 = ?$                                                                                                |                                                        |                                               |     |
| (A) 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) 18                                                                                                                                                                                 | (C) 8                                                                                                          | (D) $-50$                                              | (E) - 72                                      |     |
| Step 1 2 3 4 5 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e following properties $3x + 4$ $(3x + 4) + (-4)$ $3x + [4 + (-4)]$ $3x + 0$ $3x + 0$ $3x$ $\frac{1}{3}(3x)$ $(\frac{1}{3} \times 3)x$ $(1) \times x$ $x$ ive (B) additive invertible. | $= 10$ $= 10 + (-4)$ $= 10 + (-4)$ $= 10 + (-4)$ $= 6$ $= 6$ $= \frac{1}{3}(6)$ $= \frac{1}{3}(6)$ $= 2$ $= 2$ |                                                        | o 6?<br>htive (E) additive identi             | ity |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | L Math Regional 2015                                                                                           |                                                        | (-)                                           | 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UI                                                                                                                                                                                     | is math Negional 2013                                                                                          | o - page 1                                             |                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                |                                                        |                                               |     |

(C) 18

and sodas are \$3.50 each, determine the total amount they spent all together?

(C) 6

(C) \$34.75

3. Let  $R = \{r, e, g, i, o, n, a, l\}$ ,  $M = \{m, a, t, h\}$ , and  $C = \{c, h, a, m, p, i, o, n\}$ . How many elements

2. Les Sense, Noah Moolah, and Ima Spender went to the movies. Ima bought popcorn and a soda. Les bought a candy bar and a soda. Noah ate some of Ima's popcorn, part of Les' candy bar, and bought his own soda. If movie tickets cost \$6.50 each, popcorn cost \$3.00, candy bars cost \$1.75

(D) 21

(D) \$32.25

**(D)** 7

(E) 57

(E) \$21.75

**(E)** 8

1.  $3! \div (6)^{-1} - 9 \div 3 \times 6 + (9)^{\frac{1}{2}}$ 

are in  $(R \cap C) \cup (M \cap C)$ ?

(A) \$44.25

(A) 4

(A) - 17 (B) - 15.5

**(B)** \$38.50

**(B)** 5

| 9. | How many 8-letter | · code words can | ı be formed usin | g the letters in th | e word ABSCISSA? |
|----|-------------------|------------------|------------------|---------------------|------------------|

- (A) 10,080
- **(B)** 336
- (C) 6,720
- (D) 20,160
- **(E)** 3,360
- 10. Find the lateral surface area of the regular pentagonal prism shown. (nearest sq. in). Drawing is not to scale.



- (A) 124 sq. in
- (B) 300 sq. in
- (C) 308 sq. in
- (D) 420 sq. in
- (E) 424 sq. in
- 11. The ratio of the length to the width of a rectangle is 5:3. If 2 units are subtracted from the width and 2 units are added to the length, then the ratio of the width to the length is now 1:3. What is the difference in the areas of the two rectangles? (square units)
  - (A) 12
- (B) 28
- (C) 4
- (D) 30
- (E) 26
- 12.  $\triangle PQR$  is inscribed in circle C such that the measure of  $\angle PRQ$ 's intercepted arc is  $70^{\circ}$  and  $m\angle PQR = 50^{\circ}$ . Find the measure of  $\angle QPR$ 's intercepted arc.
  - (A)  $190^{\circ}$
- (B)  $170^{\circ}$
- (C)  $120^{\circ}$
- (D)  $100^{\circ}$
- (E)  $70^{\circ}$
- 13. Joy Ryder hops on a freight train that leaves the station at 9:00 a.m. The train enters a tunnel at 9:45 a.m. at a constant speed of 40 mph. The end of the train exits the tunnel at 9:50 a.m. Find the length of the train if the length of the tunnel is 2 miles.

- (A)  $\frac{2}{3}$  miles (B)  $\frac{3}{40}$  miles (C)  $1\frac{1}{4}$  miles (D)  $1\frac{1}{3}$  miles (E)  $1\frac{1}{2}$  miles
- 14. If  $\frac{2x-5}{3x+4} \frac{3x+4}{x-6} = \frac{Ax^2 + Bx + C}{Px^2 + Ox + R}$ , then  $\frac{A+B+C}{P+O+R}$  equals:
  - (A)  $1\frac{11}{41}$  (B)  $1\frac{27}{35}$  (C)  $1\frac{23}{41}$  (D)  $1\frac{1}{34}$  (E)  $\frac{34}{35}$

- 15. Let  $A = \begin{bmatrix} 0 & 3 \\ -2 & 8 \end{bmatrix}$  and  $B = \begin{bmatrix} 2 & 0 \\ 1 & -15 \end{bmatrix}$ . Find  $A B^T$ .

  - (A) 42 (B) 13
- (C) 4
- (D) 80
- **(E)** 81

- 16. Find m-n if  $\begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix}$ .  $\begin{bmatrix} m \\ n \end{bmatrix} = \begin{bmatrix} 8 \\ 15 \end{bmatrix}$
- (A)  $1\frac{2}{7}$  (B)  $1\frac{3}{4}$  (C)  $2\frac{7}{8}$  (D)  $3\frac{1}{7}$
- (E)  $4\frac{1}{7}$

17. Find the area of the triangle shown (nearest cm<sup>2</sup>).



- (A)  $18,193 \text{ cm}^2$  (B)  $17,149 \text{ cm}^2$  (C)  $15,132 \text{ cm}^2$  (D)  $14,806 \text{ cm}^2$  (E)  $11,543 \text{ cm}^2$
- 18. Determine the range of  $f(x) = -3\cos(2\pi x + 4\pi) 1$ .
  - (A) [-4,2] (B) [-2,4] (C)  $[-\frac{2\pi}{3},\frac{4\pi}{3}]$  (D)  $[-\frac{3\pi}{2},\frac{3\pi}{4}]$  (E) [-1,1]
- 19. The directrix of the parabola  $y = 1.25 1.5x 0.25x^2$  is:
  - (A) y = 2 (B) y = 2.25 (C) y = 3.5 (D) y = 4.25 (E) y = 4.5
- 20. Which of the following is not an even function?
  - (A)  $y = \cos x$  (B)  $y = x^2$  (C) y = -5 (D)  $y = -1 + 2x^5$  (E)  $y = -2x^4$
- 21. If f''(x) = 36x + 50 and f'(-1) = -30 and f(-1) = 9, then  $f(-2) = ____.$ 
  - (A) 144 (B) -26 (C) -21 (D) 25 (E) 40
- 22. A right triangle has a hypotenuse of length 26". If one of the acute angles is decreasing at the rate of  $10^{\circ}$  per second, how fast is the area of the triangle decreasing when this acute angle is  $13^{\circ}$ ? (nearest tenth)
  - (A)  $58.1 \text{ in}^2/\text{sec}$  (B)  $57.4 \text{ in}^2/\text{sec}$  (C)  $55.4 \text{ in}^2/\text{sec}$  (D)  $53.0 \text{ in}^2/\text{sec}$  (E)  $51.7 \text{ in}^2/\text{sec}$
- 23. The y-intercept of the line that is tangent to  $y = 4x^2 4x + 1$  at x = 1 is (x, y). Find x + y.
  - (A) 4 (B) 1 (C)  $\frac{1}{4}$  (D)  $-\frac{1}{4}$  (E) -3
- 24. Roland Bones created a pair of special dice which have only three numbers on each die. The opposite side of each number is the same number. When the dice are rolled the die with the largest number on top wins. What is the probability that die B will win?



(A)  $55\frac{5}{9}\%$  (B)  $44\frac{4}{9}\%$  (C)  $66\frac{2}{3}\%$  (D)  $33\frac{1}{3}\%$  (E) 20%

| <b>43.</b> | of the first 11 digi<br>randomly selects of                 | ts of pi and a deci<br>one tile. If the tile<br>points. If it is a 1 o | imal point. She p<br>contains a prime<br>or a decimal poin | uts the tiles in a ba<br>e digit she gets 5 po<br>t she gets 25 points | g, shakes them up and ints. If it is a composite s. What is the |
|------------|-------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
|            | (A) $3\frac{2}{11}$ points                                  | (B) $4\frac{3}{4}$ points                                              | (C) $6\frac{1}{4}$ points                                  | (D) $7\frac{1}{2}$ points                                              | (E) $8\frac{9}{11}$ points                                      |
| 26.        | How many 3-digit                                            | numbers exist su                                                       | ich that the sum                                           | of their digits equa                                                   | ls 12?                                                          |
|            | (A) 36                                                      | (B) 43                                                                 | (C) 66                                                     | (D) 78                                                                 | (E) 91                                                          |
| 27.        | How many proper                                             | r fractions in lowe                                                    | est terms have a d                                         | lenominator of 54?                                                     | ,                                                               |
|            | (A) 27                                                      | (B) 24                                                                 | (C) 18                                                     | (D) 15                                                                 | (E) 9                                                           |
| 28.        | Simplify: $(a^{-3})$                                        | $\times b^{-2}$ ) $^{-6} \div ($                                       | $\left(a^2 \times b^8\right)^2 \times \left(a\right)$      | $(0 \div b^1)^{-5}$                                                    |                                                                 |
|            | (A) a <sup>14</sup> b (B                                    | $a^{-18}b^{-13}$                                                       | (C) $a^{-10}b^7$                                           | (D) $a^{-10}b^{-13}$                                                   | (E) $a^{14}b^7$                                                 |
| 29.        | Let k be a positive divisible by 4. Fin                     | _                                                                      | _                                                          | such that k is a mul                                                   | ltiple of 3 and k is                                            |
|            | (A) 792                                                     | (B) 660                                                                | (C) 540                                                    | (D) 600                                                                | (E) 936                                                         |
| 30.        | The sum of the fir                                          | st 10 deficient nu                                                     | mbers is a(n)                                              | number.                                                                |                                                                 |
|            | (A) deficient                                               | (B) prime                                                              | (C) abundant                                               | (D) harmonic                                                           | (E) lucky                                                       |
| 31.        | • -                                                         |                                                                        |                                                            | ound must be mixe<br>vegetables that cos                               | ed with 16 pounds of corn<br>st 65¢ a pound?                    |
|            | (A) 6.4 lbs                                                 | (B) 2.6 lbs                                                            | (C) 9.6 lbs                                                | (D) 18.4 lbs                                                           | (E) 12.8 lbs                                                    |
| 32.        | Tu Yung is two yeas Tu. What will t                         |                                                                        |                                                            | _                                                                      | ago Soh was twice as old                                        |
|            | (A) 30                                                      | (B) 54                                                                 | (C) 35                                                     | (D) 28                                                                 | (E) 40                                                          |
| 33.        | Which of the follo                                          | wing polar equat                                                       | ions has a graph                                           | of an inner-loop lin                                                   | nacon?                                                          |
|            | (A) $r = 3 + 2\cos(2\theta)$<br>(D) $r = 2 + \cos(2\theta)$ | • •                                                                    | (B) $r = 1 + \sin \theta$<br>(E) $r = 2 + 3\cos \theta$    | • •                                                                    | (C) $r = 5 + 2\cos(\theta)$                                     |

**(D)** 8

**(E)** 11

34. If  $a_1 = -4$ ,  $a_2 = -1$ ,  $a_3 = 2$ ,  $a_n = (a_{n-2}) \times (a_{n-3}) - (a_{n-1})$ , where  $n \ge 4$ , then  $a_6$  equals:

(C) 5

(A) -16 (B) -7

35. Mary Goround maps triangle 4 to triangle 5 by using which of the groups of three or four transformations in the order given?



(w) half-turn (x) reflection (y) rotation (z) translation

(A) w, x, x, & z (B) z, x, & x (C) w, x, y, & z (D) w, y, & z (E) z, w, & x

36. The ratio of the measure of an interior angle of a regular n-gon to the measure of its exterior angle is 3.5 to 1. How many sides does the regular n-gon have?

(A) 5 (B) 7 (C) 9 (D) 11 (E) 14

37. Which of the following is not a member of the solution set for 3|2x-8|-20>15?

(A)  $-2\frac{1}{3}$  (B)  $-1\frac{7}{8}$  (C) 2.666... (D)  $10\frac{2}{3}$  (E)  $11\frac{1}{11}$ 

38. The graph of the parametric equations  $x = 5\cos(t)$  and  $y = 2\sin(t)$ , where  $0 \le t \le 2\pi$  is a(n) \_\_\_\_.

(A) semicircle (B) ellipse (C) line (D) cycloid (E) parabola

39.  $(\sqrt{3} + i)^5$  equals:

(A)  $16 - 16\sqrt{3}i$  (B)  $5\sqrt{3} + 5i$  (C)  $-9\sqrt{3} + i$  (D)  $-16\sqrt{3} + 16i$  (E)  $-32\sqrt{3} + 32i$ 

40. Given that the set of natural numbers continue in the triangular pattern shown below, find the sum of the 6<sup>th</sup> number in row 7 and the 9<sup>th</sup> number in row 10.

1 (row 1) 2 3 4 (row 2) 5 6 7 8 9 (row 3) 10 11 12 13 14 15 16 (row 4) ... (...)

(A) 96 (B) 132 (C) 134 (D) 147 (E) 149

41. Given the geometric sequence 5, p, q,  $\frac{5}{8}$ ,..., find the sum of the first 8 terms. (nearest hundredth)

(A) 9.96 (B) 9.92 (C) 9.87 (D) 9.625 (E) 9.375

42. Let  $f(x) = \frac{2x-1}{3x+4}$ . Find f'(-5).

(A)  $-\frac{5}{11}$  (B)  $-\frac{1}{4}$  (C)  $\frac{1}{11}$  (D)  $\frac{2}{3}$  (E) 1

| 43. | 3. Which of the following surfaces is generated by $x^2 - \frac{y^2}{4} - z^2 + 2z = 3$ ? |                                       |                                         |                                     |                                              |      |
|-----|-------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------------|------|
|     | <ul><li>(A) elliptic co</li><li>(D) hyperboli</li></ul>                                   | ne<br>c paraboloid                    | (B) elliptic hy<br>(E) elliptic pa      | yperboloids<br>araboloid            | (C) elliptic cylinder                        | •    |
| 44. |                                                                                           | •                                     | factor of 144. Bet same number? (n      | •                                   | factor of 88. What is th                     | e    |
|     | (A) 17.4%                                                                                 | (B) 3.3%                              | (C) 13.3%                               | (D) 6.1%                            | (E) 21.1%                                    |      |
| 45. | Dee Deeler shuf<br>that both cards                                                        |                                       | 2-card deck. She d                      | eals out the top tv                 | vo cards. What are the                       | odds |
|     | (A) $\frac{22}{321}$                                                                      | (B) $\frac{11}{210}$                  | (C) $\frac{11}{130}$                    | (D) $\frac{11}{221}$                | (E) $\frac{33}{400}$                         |      |
| 46. | The number of                                                                             | integers between                      | 1 and 328 that are                      | e relatively prime                  | to 328 is ?                                  |      |
|     | (A) 159                                                                                   | (B) 109                               | (C) 82                                  | (D) 279                             | (E) 164                                      |      |
| 47. | Find the sum of shown is 6". (                                                            | _                                     | e diagonals if the l                    | engths of the side                  | s of the regular pentago                     | n    |
|     |                                                                                           | E                                     | С                                       |                                     |                                              |      |
|     | (A) 30.0"                                                                                 | (B) 58.2"                             | (C) <b>29.1</b> "                       | (D) 38.8"                           | (E) 48.5"                                    |      |
| 48. |                                                                                           |                                       | (-4) and $(-1, -1)ne n at (x, y). Find$ |                                     | through points (— 11, 0) nth)                | )    |
|     | (A) 5                                                                                     | (B) 2                                 | (C) 0                                   | <b>(D)</b> $-1$                     | (E) - 28                                     |      |
| 49. | •                                                                                         | [Integers], — 8 ≤<br>ordered pairs ex |                                         | $4 \le y \le 8$ is the              | solution set of $5x + 3y = 3$                | = 28 |
|     | (A) 22                                                                                    | (B) 16                                | (C) 8                                   | ( <b>D</b> ) 5                      | (E) 3                                        |      |
| 50. | How many integ                                                                            | gral values of n ex                   | xist such that n >                      | 3 and $\frac{(n-1)!}{(n-3)!} \le 1$ | 182                                          |      |
|     | (A) 20                                                                                    | (B) 16                                | (C) 15                                  | (D) 12                              | (E) 10                                       |      |
| 51. | Lynn has. Nick                                                                            | Ohl has 16 less ni                    | •                                       | he number of dim                    | s as the number of penies Penny has. How man |      |

(C) 80

(A) 104

**(B)** 76

(D) 60

**(E)** 36

| 52. Find the shor | test distance from t                            | he point (3, 2) and | I the line $5x + 1$ | 2y = 13.        |
|-------------------|-------------------------------------------------|---------------------|---------------------|-----------------|
| (A) 2             | (B) $2\sqrt{3}$                                 | (C) $3\sqrt{2}$     | (D) 5               | (E) $4\sqrt{2}$ |
| •                 | ed his theodilite to fi<br>on a bearing of 290° | O                   | -                   |                 |

53. Sir Vayer used his theodilite to find the angle measures of two points at the other end of a field. Point A was on a bearing of 290° and point B was on a bearing of 45° from where he stood. He was 150 yards from point A and 120 yards from point B. What was the distance from Point A to point B? (nearest yard)

(A) 240 yds (B) 228 yds (C) 222 yds (D) 157 yds (E) 151 yds

54. Phil Upp, Doug Upp, and Stan Upp are filling up a large hole. Phil can do the job by himself in 4 hours, Doug in 6 hours, and Stan in 8 hours. How long would it take them working together? (nearest minute)

(A) 2 hrs (B) 1 hr 51 min (C) 1 hr 40 min (D) 1 hr 33 min (E) 1 hr 18 min

55. Find C if the remainder of  $x^3 - 3x^2 - 10x + C$  divided by x - 4 is 3.

(A) 75 (B) 21 (C) 27 (D) 53 (E) 34

56. Let  $f(x) = \frac{1}{x^2+1}$ . The concavity of the curve is upward at which of the following values of x?

I.  $-\frac{2}{3}$  II. 0 III.  $\frac{3}{4}$ (A) II only (B) I, II, & III (C) I & II (D) I & III (E) II & III

57. Cookie Baykur packages cookies 3 to a pack. The types of cookies she can choose from include chocolate chip, oatmeal, sugar-coated, sugar-free, peanut butter, and hazel-nut. How many different packs of 3 cookies can she package?

(A) 20 (B) 120 (C) 28 (D) 60 (E) 56

58. 0.5323232... in base 7 can be written as which of the following fractions in base 10?

(A)  $\frac{131}{165}$  (B)  $\frac{268}{343}$  (C)  $\frac{263}{336}$  (D)  $\frac{49}{76}$  (E)  $\frac{524}{660}$ 

59. Let  $f_0 = 0$ ,  $f_1 = 1$ ,  $f_2 = 1$ ,  $f_3 = 2$ ,  $f_4 = 3$ , ... be the terms of the Fibonacci sequence. Find  $(f_6)^2 + (f_7)^2$ .

(A)  $f_{26}$  (B)  $f_{14}$  (C)  $f_{13}$  (D)  $f_{12}$  (E)  $f_{8}$ 

60. Given the circle O with perpendicular diameters and a chord, find the area of the circle if EF = 8'' and DE = 20'' inches. (nearest tenth)



(A) 503 sq. in (B) 377 sq. in (C) 323 sq. in (D) 176 sq. in (E) 151 sq. in

### University Interscholastic League MATHEMATICS CONTEST HS • Regional • 2015 Answer Key

| 1.  | D | 21. | E | 41. | A |
|-----|---|-----|---|-----|---|
| 2.  | C | 22. | D | 42. | C |
| 3.  | C | 23. | E | 43. | В |
| 4.  | A | 24. | A | 44. | В |
| 5.  | В | 25. | C | 45. | В |
| 6.  | E | 26. | C | 46. |   |
| 7.  | В | 27. | C | 47. | E |
| 8.  | E | 28. | A | 48. | A |
| 9.  | E | 29. | В | 49. | D |
| 10. | В | 30. | C | 50. | D |
| 11. | A | 31. | C | 51. | C |
| 12. | A | 32. | E | 52. | A |
| 13. | D | 33. | E | 53. | В |
| 14. | E | 34. | D | 54. | В |
| 15. | A | 35. | D | 55. | C |
| 16. | A | 36. | C | 56. | D |
| 17. | D | 37. | C | 57. | E |
| 18. | A | 38. | В | 58. | C |
| 19. | E | 39. | D | 59. | C |
| 20. | D | 40. | В | 60. | В |



## Mathematics State • 2015



DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

- 1. Evaluate:  $5 + 2 \times 6 5 \div 2 \times 6 + 5^2 6$ 
  - (A) 130
- **(B)** 55
- (C) 51
- (D) 21
- (E) 17
- 2. The Parr Fore golf store sells a sleeve of 3 balls for \$3.85, and a box of a dozen balls for \$12.25. How much money would Ty Gerr save before sales tax if he bought 36 balls by the dozen instead of by the sleeve?
  - (A) \$8.40
- **(B)** \$9.45
- (C) \$9.55
- (D) \$10.55
- (E) \$10.95

3. Which of the following is an equation of the line shown?



- (A) 2x 3y = -2 (B) 2x + 3y = 2 (C) 3x 2y = -1 (D) 3x + 2y = -1 (E) 3x 2y = 2

- 4. Find the sum of the arithmetic mean, median, mode, and range of 5, 2, 6, 2, 8, 2, 0, 1, & 5.
  - (A)  $15\frac{4}{9}$
- (B)  $15\frac{7}{8}$
- (C)  $16\frac{4}{9}$  (D)  $18\frac{7}{8}$  (E)  $18\frac{4}{9}$
- 5. The shaded region of the Venn diagram shown represents which of the following sets:



- (A)  $(A \cup B) \cap (C \cup B)$
- (B)  $(A \cap B) \cup C$

(C)  $(A \cup B) \cap C$ 

(D)  $(A \cap C) \cup B$ 

- (E)  $(A \cap B) \cup (C \cap B)$
- $\left(\frac{4x^2-8x-5}{x^3+2x^2-5x-6}\right) \times \left(\frac{x^2-x-2}{5-2x}\right) \div \left(\frac{1+2x}{3-x}\right)$ 6. Simplify:

  - (A)  $\frac{3-x}{x+3}$  (B)  $\frac{2x^2-11x+15}{2x^2+x-15}$  (C)  $\frac{x-3}{x+3}$  (D)  $x^2-9$
- **(E)** 1
- 7. Ten years ago Tu Yung's father was seven times as old as she. In five years, she will be half of her father's age. What is the sum of their ages now?
  - (A) 62
- **(B)** 56
- (C) 48
- (D) 44
- (E) 40

8. Find the volume of the trapezoidal prism shown. (nearest cu. in). Drawing is not to scale.



| / A \      | 40 |     | • |
|------------|----|-----|---|
| <b>(A)</b> | 40 | cu. | m |

(B) 24 cu. in

(C) 39 cu. in

(D) 45 cu. in

(E) 35 cu. in

9. The ratio of the length to the width of a rectangle is 2.5:1. If 7 units are added to both the length and the width, then the ratio of the length to the width is now 4:3. What is the difference in the perimeters of the two rectangles? (units)

**(B)** 49

(C) 28

(D) 21

(E) 14

10. The *Ice T* hockey team has 8 forwards, 9 defensemen, and 3 goaltenders. How many 6-member squads can be formed if each team needs 3 forwards, 2 defensemen, and 1 goaltender?

(B) 6,048

(C) 95

(D) 2,016

(E) 38,760

11. Simplify:  $(a^{-5} \times b^2)^{-6} \div (a^8 \times b^{-2})^5 \times a^{20} \div b^{15}$ 

(A) 
$$a^{10}b^{-17}$$

(A)  $a^{10}b^{-17}$  (B)  $a^{-4}b^{-22}$  (C)  $a^{29}$  (D)  $a^{10}b^{-9}$  (E)  $a^{11}b^{5}$ 

12. The equation  $4x^2 - 8x + k = 0$  always has two positive roots when which of the following is true?

(A) 
$$0 < k < 4$$
 (B)  $8 > k > 4$  (C)  $k > -2$  (D)  $k > 4$  (E)  $k < 0.5$ 

13. If  $\frac{A}{5x+2} + \frac{B}{3x-1} = \frac{41x+1}{15x^2+x-2}$ , where A and B are constants, then A + B equals:

**(B)** 6.9

(C) 7

**(D)** 11

14. Let  $a_1 = 5$ ,  $a_2 = -2$ ,  $a_3 = 6$  and  $a_n = (a_{n-2}) \times [(a_{n-3}) - (a_{n-1})]$  for  $n \ge 4$ . Find  $a_6$ .

(A) 312

**(B) 60** 

(C) 1,152

 $(\mathbf{D})$  2

(E) 68

15. What are the odds of randomly selecting a number that is divisible by 3 from set of the triangular numbers less than 60?

(A) 1.5:1

(B) 3:5

(C) 3:1

(D) 5:3

(E) 6:5

16. Let  $A = \begin{bmatrix} 0 & 5 \\ 2 & 6 \end{bmatrix}$  and  $B = \begin{bmatrix} 2 & 0 \\ -1 & -5 \end{bmatrix}$ . Find  $A^T + B$ .

(A) -20 (B) -11 (C) -6 (D) -3

 $(\mathbf{E})$  0

17. Given the circle with center O, perpendicular diameters and a chord, find the perimeter of  $\triangle$ DFO if DE = 14 cm and DF = 10 cm. (nearest tenth)



- (A) 32.4 cm
- (B) 29.5 cm
- (C) 27.8 cm
- (D) 23.8 cm
- (E) 18.7 cm

18. Find m\( \subseteq DCE \), nearest degree, if AD =  $\sqrt{48}$  inches.



- (A) 11°
- $(B) 30^{\circ}$
- (C) 41°
- **(D)**  $49^{\circ}$
- (E) 52°
- 19. Use the Fibonacci characteristic sequence ..., -1, p, q, r, 4, 7, ... to find p + q + r.
  - (A) 5
- **(B)** 6
- (C) 9
- (D) 10
- **(E)** 16
- 20. Given that the set of natural numbers continue in the triangular pattern shown below, find the sum of the 2<sup>nd</sup>, 26<sup>th</sup>, and 50<sup>th</sup> numbers in row 26.

- (A) 1,875
- (B) 1,914
- (C) 1,953
- (D) 1,991
- (E) 2,028
- 21. A particle is moving along the straight line with a function of  $f(t) = t^2 t + 2$ , where f(t) is the distance in meters per second. Find the instantaneous rate of change at a time of 2 seconds.
  - (A) 6 m
- (B) 5 m
- (C) 4 m
- (D) 3 m
- (E) 2 m
- 22. The directrix of the conic given by the equation  $x^2 2y + 4x = -8$  is:
  - (A) v = -1.5 (B) v = -0.5 (C) v = 0.5
- (D) y = 1.5
- (E) y = 2.5
- 23. Let k be a positive integer less than or equal to 120 such that k is not a multiple of 2 and not a multiple of 3. How many such numbers exist?
  - (A) 100
- **(B)** 80
- (C) 60
- (D) 40
- (E) 20

| 24. | Kandy Packer has gumballs, suckers, gumdrops, chocolate kisses, and bubble gum. She puts 6 pieces of candy in each pack to give to her students. How many different packs of candy can Kandy pack?                                                                                                 |                                 |                               |                                                                                   |                                     |        |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|--------|--|
|     | (A) 2,310                                                                                                                                                                                                                                                                                          | (B) 462                         | (C) 210                       | (D) 120                                                                           | (E) 30                              |        |  |
| 25. | The first term of an arithmetic sequence is 2 and the common difference is 6. How many terms are in the sequence if the sum of the terms is 420.                                                                                                                                                   |                                 |                               |                                                                                   |                                     | S      |  |
|     | (A) 12                                                                                                                                                                                                                                                                                             | (B) 18                          | (C) 20                        | (D) 24                                                                            | (E) 35                              |        |  |
| 26. | If P, Q, and R represent digits then $RPQ_8 - QRP_4 - PQR_2$ has a numeric value in base 10 of:                                                                                                                                                                                                    |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) 3P - 9Q +<br>(D) 11P - 13Q                                                                                                                                                                                                                                                                     | - 11R<br>) + 61R                | (B) 8P — 130<br>(E) 5P — 100  | Q + 69R<br>Q + 11R                                                                | (C) $3P - 17Q + 59R$                | i<br>k |  |
| 27. | Lotta Dough had a bag of pennies. She gave her brother $\frac{1}{5}$ of her pennies. Then she gave her sister 20% of what she had left. Then she used her pennies to buy a 30¢ sucker. She put the remaining 50 pennies in her piggy bank. How many pennies did Lotta have in the bag, originally? |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) 120                                                                                                                                                                                                                                                                                            | (B) 125                         | (C) 130                       | (D) 134                                                                           | (E) 156                             |        |  |
| 28. | 3. Which of the following is not a solution to $5 +  2x - 6  \le 15$ ?                                                                                                                                                                                                                             |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) — 1.333                                                                                                                                                                                                                                                                                        | (B) $-0.7$                      | (C) $3\sqrt{8}$               | <b>(D)</b> $2\sqrt{7}$                                                            | (E) $\frac{50}{7}$                  |        |  |
| 29. | 1. If the roots of $2x^3 + bx^2 + cx + d = 0$ are — 3, 1, and 2, then $b + c + d$ equals:                                                                                                                                                                                                          |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) - 2                                                                                                                                                                                                                                                                                            | (B) 26                          | (C) 0                         | (D) 4                                                                             | (E) - 13                            |        |  |
| 30. |                                                                                                                                                                                                                                                                                                    | owing points of<br>circumcenter | concurrency lies (2) centroid | on the vertex of the (3) orthocenter                                              | right angle of a right (4) incenter |        |  |
|     | (A) 1 & 2                                                                                                                                                                                                                                                                                          | (B) 1 only                      | (C) 3 only                    | (D) 2, 3, & 4                                                                     | (E) none of these                   |        |  |
| 31. | Find the shortest distance from the point $(2, 8)$ and the line $y = 1.25 - 0.75x$ .                                                                                                                                                                                                               |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) 8.6                                                                                                                                                                                                                                                                                            | (B) $5\frac{3}{14}$             | (C) 7.4                       | (D) 4                                                                             | (E) 6.6                             |        |  |
| 32. | How many integral values of n exist such that $n>1$ and $\frac{(n+1)!}{(n-1)!}\leq 26?$                                                                                                                                                                                                            |                                 |                               |                                                                                   |                                     |        |  |
|     | (A) 25                                                                                                                                                                                                                                                                                             | (B) 13                          | (C) 9                         | ( <b>D</b> ) 3                                                                    | (E) 2                               |        |  |
| 33. | If (1, 1) and (2, –                                                                                                                                                                                                                                                                                | - 2) are member                 | s of the function {           | $(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} = \mathbf{a}\mathbf{x} - 2\mathbf{b}\}$ | , then $a + b = ?$                  |        |  |

(A) -5 (B) -4 (C) -3 (D) -2 (E) -1

34. The equation y =\_ will produce this graph.



- (A)  $2 4\cos(\pi x 4\pi)$
- (B)  $2 + 4\cos(\pi x 3\pi)$
- (C)  $4\sin(\pi x 3\pi) 2$

- (D)  $4\cos(\pi x 4\pi) 2$
- (E)  $2 4\sin(\pi x 2\pi)$
- 35. The graph of the parametric equations  $x = 2\sin^2(t)$  and  $y = \sin(t)$  is a(n)
  - (A) circle
- (B) ellipse
- (C) hyperbola (D) cycloid
- (E) parabola
- 36. In the expansion of  $(5x + 2)^6$ , the sum of the coefficients of the  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$ , and  $6^{th}$  terms is:
  - (A) 117,647
- **(B)** 117.640
- (C) 109.804
- (D) 101.967
- (E) 101.960
- 37. Simplify to the form a + bi:  $(5-2i)(6+i) \div (5i)$ 
  - (A) -0.4 + 6i (B) 7 + 32i (C) 2.2 0.2i (D) -5.6 3.4i (E) -1.4 6.4i

- 38.  $F(x) = \frac{10}{x^2} + \frac{10}{x}$  has an inflection point at :
  - (A)  $(-3\frac{1}{2}, -2\frac{1}{25})$  B)  $(-3, -2\frac{2}{9})$  (C)  $(-2, -2\frac{1}{2})$  (D)  $(3, 4\frac{4}{9})$  (E)  $(4, 3\frac{1}{8})$

- 39. Let  $f(x) = 5x^2 2x 6$  and  $g(x) = 5x^2 + 2x 8$ . Find f'(g'(1+5x)).
  - (A) 500x + 82 (B) 100x + 34 (C) 100x + 20 (D) 100x + 6

- (E) 500x + 118
- 40. A star gazer is watching the night sky. The probability that he will see a satellite is 40%, the probability that he will see a shooting start is 25%, and the probability that he will see both is 15%. What is the probability that he will see either a satellite, a shooting star, or both? (nearest percent)
  - (A) 80%
- **(B)** 65%
- (C) 55%
- (D) 50%
- (E) 30%
- 41. Saul DeRod had 5 wooden rods with lengths of 5", 2", 6", 1" and 5". How many acute triangles can he form using only 3 rods at a time?
  - (A) 1
- (B) 2
- (C) 3
- **(D)** 4
- (E) 5

42. Given the pentagram shown, find the ratio of A to B. (nearest tenth) (C) 1.6 (E) 2.0(A) 0.5**(B)** 0.6 (D) 1.9 43. The harmonic mean, nearest tenth, of the real roots of  $x^3 - 13x^2 + 52x - 60 = 0$  is: (A) 4.7 (B) 4.3 (C) 3.9 (D) 3.5 (E) 3.1 44. The graph of the polar equation  $r = 7 + 4\cos(\theta)$  is a (A) dimpled limacon (B) convex limacon (C) inner loop limacon (D) lemniscate (E) cardioid 45. Let  $f(x) = \frac{5x^3 - 8}{x^2 + 3x - 1}$  and s(x) be the slant asymptote of f. Find the value of s(3). (B)  $7\frac{8}{17}$  (C) 17  $(\mathbf{A}) \mathbf{0}$ (D) 127 (E) undefined 46. A standard deck of 52 cards is shuffled. The top 4 cards are dealt face up. What is the probability that they are all face cards (Jacks, Queens, and/or Kings)? (nearest hundredth) (A) 0.03% (B) 0.18% (C) 0.23% (D) 0.31% (E) 0.83% 47. The square root of 11661 in base 8 is what in base 10: (A) 77 (B) 76 (C) 73 (D) 72 (E) 71 48. Let  $f_0 = 0$ ,  $f_1 = 1$ ,  $f_2 = 1$ ,  $f_3 = 2$ ,  $f_4 = 3$ , ... be the terms of the Fibonacci sequence. Find GCD( $f_m$ ,  $f_n$ ). (A)  $f_{(m+n)}$  (B)  $f_m + f_n$  (C)  $f_{(mn)}$  (D)  $f_m \times f_n$  (E)  $f_{GCD(m,n)}$ 49. The number 60 is considered to be a "polite" number. The "politeness" of 60 is \_\_\_\_\_. (C) 2 **(D)** 1 (A) 5 **(B)** 3  $(\mathbf{E})$  0

50. The *Slo-Poke* freight train leaves the station at 8:00 a.m. traveling at 35 mph. Later, the *Super-Speed* Amtrak left the same station traveling in the opposite direction at a speed of 75 mph. At 12:00 p.m. the two trains were 350 miles apart. At what time did the *Super-Speed* leave the station? (nearest minute)

(A) 8:45 a.m. (B) 9:12 a.m. (C) 9:45 a.m. (D) 10:12 a.m. (E) 10:48 a.m.

51. Find the area of the shaded regions. (square units).



(A) 4

**(B)** 3.5

(C) 3.333...

 $(\mathbf{D})$  3

(E) 2.666...

52. Bill Meelator borrowed \$750.00 for his first semester books. Part of the loan was at the rate of 3% per year and the rest of the loan was at 8% per year. If the interest was \$19.50 at the end of 6 months, how much of the loan was at 3%?

(A) \$468.75

**(B)** \$330.00

(C) \$112.50

(D) \$281.25

(E) \$420.00

53. Ranger Saul D. Smoke sees two fires from his ranger station. He uses a Triangulation Device to mark the point of each fire on his map. Then, using his protractor, he computes fire A to be 15 miles from his station on a bearing of 75° degrees and fire B to be 10 miles from his station on a bearing of 245°. How far apart are the two fires? (nearest mile)

(A) 20 mi

(B) 21 mi

(C) 23 mi

(D) 24 mi

(E) 25 mi

54. The Ceehahks and the Paytritts play two games during the Foosball season. The Ceehahks are one and a half times as likely to win any game as is the Paytritts. What is the probability that the Ceehahks will win both games?

(A)  $55\frac{5}{9}\%$  (B) 36% (C)  $44\frac{4}{9}\%$  (D) 16% (E) 52%

55. The point (-2, 6) lies on a circle whose center is (1, 5). Which of the following points lie on the circle? P (4, 4) Q(-2,4)

(A) P only (B) P & Q (C) P & R (D) Q & R (E) P, Q, & R

56. Let  $f(x) = x^2 + bx + c$ . If f(x) is divided by x - 3 the remainder is 2 and if f(x) is divided by x + 2 the remainder is 3. Find b + c.

(A)  $-4\frac{3}{5}$  (B)  $-3\frac{1}{2}$  (C) -1 (D)  $1\frac{1}{2}$  (E)  $2\frac{3}{5}$ 

57. If the two-digit number 3Q is subtracted from the two-digit number P2 the difference is 27. Find the sum of the two-digit numbers PO and OP, where P and O are single digits.

(A) 130

**(B)** 121

(C) 112

(D) 111

(E) 97

58. Find the perimeter of the triangle shown (nearest cm).



- (A) 516 cm
- (B) 528 cm
- (C) 546 cm
- (D) 560 cm
- (E) 623 cm
- 59. Max Space needs two adjacent rectangular holding pens to separate his three cows from his bull. He has twenty 100' rolls of fencing. What is the maximum area that Max can fence in?
- (A)  $125,000 \text{ ft.}^2$  (B)  $133,333\frac{1}{3} \text{ ft.}^2$  (C)  $166,666\frac{2}{3} \text{ ft.}^2$  (D)  $175,000 \text{ ft.}^2$  (E)  $250,000 \text{ ft.}^2$
- 60. Given the rectangular solid shown, find AE if AF = y, BG = x and FH = z.



- (A)  $x^2 + y^2 + z^2$

- (D)  $2(x^2 + y^2 + z^2)$

## University Interscholastic League MATHEMATICS CONTEST HS • State • 2015 Answer Key

| 1.  | D | 21. D | 41. C        |
|-----|---|-------|--------------|
| 2.  | В | 22. D | <b>42.</b> C |
| 3.  | E | 23. D | 43. D        |
| 4.  | A | 24. C | 44. A        |
| 5.  | C | 25. A | 45. A        |
| 6.  | C | 26. C | 46. B        |
| 7.  | D | 27. B | 47. E        |
| 8.  | E | 28. C | 48. E        |
| 9.  | C | 29. A | 49. B        |
| 10. | В | 30. C | 50. B        |
| 11. | A | 31. E | 51. D        |
| 12. | A | 32. D | 52. E        |
| 13. | D | 33. A | 53. E        |
| 14. | В | 34. D | 54. B        |
| 15. | A | 35. E | 55. E        |
| 16. | C | 36. E | 56. A        |
| 17. | D | 37. E | 57. B        |
| 18. | C | 38. B | 58. B        |
| 19. | В | 39. E | 59. C        |
| 20. | C | 40. D | 60. C        |