PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MÚC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Cho hàm số $y = x^5 - 3x^4 + x + 1$ với $x \in \mathbb{R}$. Đạo hàm y'' của hàm số là Câu 1.

A.
$$y'' = 5x^3 - 12x^2 + 1$$
.

B.
$$y'' = 5x^4 - 12x^3$$
.

C.
$$y'' = 20x^2 - 36x^3$$
.

D.
$$v'' = 20x^3 - 36x^2$$
.

Lời giải

Chon D

Ta có
$$v = x^5 - 3x^4 + x + 1 \Rightarrow v' = 5x^4 - 12x^3 + 1 \Rightarrow v'' = 20x^3 - 36x^2$$
.

Tính đạo hàm cấp hai của hàm số $y = -3\cos x$ tại điểm $x_0 = \frac{\pi}{2}$. Câu 2.

A.
$$y''(\frac{\pi}{2}) = -3$$

B.
$$y''(\frac{\pi}{2}) = 5$$

A.
$$y''\left(\frac{\pi}{2}\right) = -3$$
. **B.** $y''\left(\frac{\pi}{2}\right) = 5$. **C.** $y''\left(\frac{\pi}{2}\right) = 0$. **D.** $y''\left(\frac{\pi}{2}\right) = 3$.

D.
$$y''\left(\frac{\pi}{2}\right) = 3$$
.

Lời giải

Chon C

$$y = -3\cos x \Rightarrow y' = 3\sin x; y'' = 3\cos x.$$

$$y''\left(\frac{\pi}{2}\right) = 0.$$

Cho hàm số $f(x) = (3x-7)^5$. Tính f''(2)Câu 3.

A.
$$f''(2)=0$$
. **B.** $f''(2)=20$.

B.
$$f''(2)=20$$
.

C.
$$f''(2) = -180$$
. **D.** $f''(2) = 30$.

D.
$$f''(2) = 30$$
.

Lời giải

Chon C

$$f(x) = (3x-7)^5$$

$$f'(x) = 15(3x-7)^4$$
.

$$f''(x) = 180(3x-4)^3$$
.

Vậy
$$f''(2) = -180$$
.

- Cho $y = \sqrt{2x x^2}$, tính giá trị biểu thức $A = y^3 \cdot y$ ". Câu 4.
 - **A.** 1.

- **B.** 0.
- **C.** -1.
- D. Đáp án khác.

Lời giải Chon C

Ta có:
$$y' = \frac{1-x}{\sqrt{2x-x^2}}, \ y'' = \frac{-1}{\left(\sqrt{2x-x^2}\right)^3}$$

Do đó:
$$A = y^3 \cdot y'' = -1$$
.

Đạo hàm cấp hai của hàm số $y = \frac{3x+1}{x+2}$ là Câu 5.

A.
$$y'' = \frac{10}{(x+2)^2}$$

A.
$$y'' = \frac{10}{(x+2)^2}$$
 B. $y'' = -\frac{5}{(x+2)^4}$ **C.** $y'' = -\frac{5}{(x+2)^3}$ **D.** $y'' = -\frac{10}{(x+2)^3}$

C.
$$y'' = -\frac{5}{(x+2)^3}$$

D.
$$y'' = -\frac{10}{(x+2)^3}$$

Lời giải

Chon D

Ta có
$$y = 3 - \frac{5}{x+2} \Rightarrow y' = \frac{5}{(x+2)^2}; y'' = -\frac{10}{(x+2)^3}$$

Đạo hàm cấp hai của hàm số $y = \cos^2 x$ là Câu 6.

A.
$$y'' = -2\cos 2x$$
.

B.
$$y'' = -2\sin 2x$$
. **C.** $y'' = 2\cos 2x$. **D.** $y'' = 2\sin 2x$.

C.
$$v'' = 2\cos 2x$$
.

D.
$$v'' = 2\sin 2x$$
.

Lời giải

Chon A

$$y' = 2\cos x \cdot (-\sin x) = -\sin 2x \Rightarrow y'' = -2\cos 2x.$$

Cho hàm số $y = x^3 - 3x^2 + x + 1$. Phương trình y'' = 0 có nghiệm. Câu 7.

A.
$$x = 2$$
.

B.
$$x = 4$$
.

C.
$$x = 1$$
.

D.
$$x = 3$$
.

Lời giải

Chon C

TXĐ $D = \mathbb{R}$

Ta có
$$y' = 3x^2 - 6x + 1$$
, $y'' = 6x - 6 \Rightarrow y'' = 0 \Leftrightarrow x = 1$

Cho hàm số $y = \sin^2 x$. Khi đó y''(x) bằng Câu 8.

A.
$$y'' = \frac{1}{2}cos2x$$
. **B.** $P = 2\sin 2x$. **C.** $y'' = 2\cos 2x$. **D.** $y'' = 2\cos x$. **Lòi giải Chọn C**

$$\mathbf{B.} \ P = 2\sin 2x$$

C.
$$y'' = 2\cos 2x$$

D.
$$y'' = 2\cos x$$

Chon C

$$y = \sin^2 x \Rightarrow y' = 2\sin x \cdot \cos x = \sin 2x \Rightarrow y'' = 2\cos 2x$$

Cho hàm số $y = -\frac{1}{r}$. Đạo hàm cấp hai của hàm số là Câu 9.

A.
$$y^{(2)} = \frac{2}{x^3}$$

B.
$$y^{(2)} = \frac{-2}{x^2}$$
.

A.
$$y^{(2)} = \frac{2}{r^3}$$
. **B.** $y^{(2)} = \frac{-2}{r^2}$. **C.** $y^{(2)} = \frac{-2}{r^3}$. **D.** $y^{(2)} = \frac{2}{r^2}$.

D.
$$y^{(2)} = \frac{2}{x^2}$$

Lời giải

Chon C

Ta có:
$$y' = \frac{1}{x^2}$$
 nên $y^{(2)} = -\frac{(x^2)^2}{x^4} = -\frac{2x}{x^4} = -\frac{2}{x^3}$.

Câu 10. Tìm đạo hàm cấp hai của hàm số $y = \frac{2}{1+x}$.

A.
$$y'' = \frac{4}{(1+x)^3}$$

B.
$$y'' = -\frac{4}{(1+x)^3}$$
.

A.
$$y'' = \frac{4}{(1+x)^3}$$
. **B.** $y'' = -\frac{4}{(1+x)^3}$. **C.** $y'' = -\frac{2}{(1+x)^3}$. **D.** $y'' = \frac{2}{(1+x)^3}$.

D.
$$y'' = \frac{2}{(1+x)^3}$$

Lời giải

Chon A

Ta có
$$y' = \frac{-2}{(1+x)^2} \Rightarrow y'' = \frac{2.2(1+x)}{(1+x)^4} = \frac{4}{(1+x)^3}.$$

Câu 11. Tìm đạo hàm cấp hai của hàm số $y = \frac{2}{x-1}$.

A.
$$y'' = -\frac{2}{(x-1)^3}$$

A.
$$y'' = -\frac{2}{(x-1)^3}$$
. **B.** $y'' = -\frac{4}{(x-1)^3}$. **C.** $y'' = \frac{2}{(x-1)^3}$. **D.** $y'' = \frac{4}{(x-1)^3}$.

C.
$$y'' = \frac{2}{(x-1)^3}$$

D.
$$y'' = \frac{4}{(x-1)^3}$$
.

Lời giải

Ta có
$$y = \frac{2}{x-1} \implies y' = \frac{-2}{(x-1)^2}$$

$$\Rightarrow y'' = \left(\frac{-2}{(x-1)^2}\right)' = \frac{4(x-1)}{(x-1)^4} = \frac{4}{(x-1)^3}.$$

Câu 12. Cho hàm số $f(x) = \frac{1}{2r-1}$. Tính f''(-1).

$$\underline{\mathbf{A}} \cdot f''(-1) = -\frac{8}{27}$$

<u>A.</u> $f''(-1) = -\frac{8}{27}$. **B.** $f''(-1) = \frac{2}{9}$. **C.** $f''(-1) = \frac{8}{27}$. **D.** $f''(-1) = -\frac{4}{27}$.

Lời giải

Tập xác định
$$D = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$
.

Ta có
$$f'(x) = \frac{-2}{(2x-1)^2}$$
, $f''(x) = \frac{8}{(2x-1)^3}$. Khi đó $f''(-1) = -\frac{8}{27}$.

Câu 13. Hàm số $y = \sin^2 x$ có đạo hàm cấp hai bằng?

A.
$$y'' = 2\sin 2x$$
.

B.
$$y'' = 2\cos 2x$$
. **C.** $y''' = \sin 2x$.

C.
$$y''' = \sin 2x$$
.

D.
$$y'' = \cos 2x$$
.

Lời giải

Chon B

Ta có
$$y' = 2\sin x \cos x = \sin 2x$$

$$y'' = 2\cos 2x$$

Câu 14. Cho hàm số $f(x) = x^3 + 2x$, giá trị của f''(1) bằng

Lời giải $f'(x) = 3x^2 + 2$, $f''(x) = 6x \Rightarrow f''(1) = 6$.

Câu 15. Cho hàm số
$$f(x) = \frac{1}{2x-1}$$
. Tính $f''(-1)$.

A.
$$-\frac{8}{27}$$

B.
$$\frac{2}{9}$$
.

C.
$$\frac{8}{27}$$

D.
$$-\frac{4}{27}$$
.

Lời giải

Tập xác định
$$D = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$
.

$$f'(x) = \frac{-2}{(2x-1)^2}, \ f''(x) = \frac{8}{(2x-1)^3}.$$

Khi đó
$$f''(-1) = -\frac{8}{27}$$
.

Câu 16. Tìm đạo hàm cấp hai của hàm số $y = \tan x$.

$$\underline{\mathbf{A}}. \ y'' = \frac{2\sin x}{\cos^3 x}$$

B.
$$y'' = -\frac{\sin x}{\cos^3 x}$$

C.
$$y'' = \frac{\sin x}{\cos^3 x}$$

A.
$$y'' = \frac{2\sin x}{\cos^3 x}$$
. **B.** $y'' = -\frac{\sin x}{\cos^3 x}$. **C.** $y'' = \frac{\sin x}{\cos^3 x}$. **D.** $y'' = -\frac{2\sin x}{\cos^3 x}$.

Lời giải

Chon A

Có: $y = \tan x$.

$$\Rightarrow y' = \frac{1}{\cos^2 x}$$
.

$$\Rightarrow y'' = (y')' = \frac{-1.(\cos^2 x)'}{(\cos^2 x)^2} = -\frac{2\cos x.(\cos x)'}{\cos^4 x} = \frac{2\sin x}{\cos^3 x}.$$

Câu 17. Cho hàm số $f(x) = \sqrt{2x-1}$. Tính f''(1).

B.
$$-\frac{1}{4}$$
.

$$\frac{1}{4}$$
.

D. 0.

Lời giải

Ta có:
$$f(x) = \sqrt{2x-1} \Rightarrow f'(x) = \frac{(2x-1)'}{2\sqrt{2x-1}} = \frac{1}{\sqrt{2x-1}}$$

$$\Rightarrow f''(x) = \frac{-\left(\sqrt{2x-1}\right)'}{2x-1} = \frac{-1}{\left(2x-1\right)\sqrt{2x-1}} = \frac{-1}{\sqrt{\left(2x-1\right)^3}}.$$

Vậy
$$f''(1) = -1$$
.

Câu 18. Đạo hàm cấp hai của hàm số $y = x^4 + 3x^3 - 1$ là

A.
$$4x^3 + 9x^2$$
.

B.
$$12x^2 + 18x$$
. **C.** $x^3 + 3x^2$.

C.
$$x^3 + 3x^2$$
.

D. $x^2 + 3x$.

Lời giải

Chon B

- Ta có: $v' = 4x^3 + 9x^2$.
- Do đó: $v'' = 12x^2 + 18x$.

Câu 19. Cho hàm số $y = f(x) = x^4 - 2x^2 + 3$. Mệnh đề nào sau đây **sai**?

A.
$$f'(0) = 0$$

B.
$$f'(1) = 0$$

A.
$$f'(0) = 0$$
. **B.** $f'(1) = 0$. **C.** $f''(0) = -4$. **D.** $f''(1) = -4$.

$$\mathbf{D}_{\cdot} f''(1) = -4.$$

Lời giải

$$f(x) = x^4 - 2x^2 + 3 \Rightarrow f'(x) = 4x^3 - 4x \Rightarrow f''(x) = 12x^2 - 4$$

$$f'(0) = 0; f'(1) = 0$$

$$f''(0) = -4; f''(1) = 8$$

Do đó mênh đề sai là D. **Câu 20.** Cho hàm số $v = \sin 2x$. Hãy chon hệ thức đúng.

A.
$$4y - y'' = 0$$

A.
$$4y - y'' = 0$$
. **B.** $y^2 + (y')^2 = 4$. **C.** $4y + y'' = 0$. **D.** $y = y' \tan 2x$.

D.
$$y = y' \tan 2x$$
.

Lời giải

Ta có $y = \sin 2x \Rightarrow y' = 2\cos 2x \Rightarrow y'' = -4\sin 2x$.

Do đó
$$4y + y'' = 4\sin 2x + (-4\sin 2x) = 0$$
.

Câu 21. Cho hàm số $f(x) = x^3 + 2x$, giá trị của f''(1) bằng

D. 2.

Lời giải

$$f'(x) = 3x^2 + 2$$
; $f''(x) = 6x$; $f''(1) = 6$.

Câu 22. Cho hàm số $f(x) = \sqrt{x} (x > 0)$ Tính f''(1).

A.
$$f''(1) = 4$$
.

A.
$$f''(1) = 4$$
. **B.** $f''(1) = 2$.

C.
$$f''(1) = \frac{1}{2}$$
. $\underline{\mathbf{D}} \cdot f''(1) = \frac{1}{4}$.

D.
$$f''(1) = \frac{1}{4}$$

Ta có
$$f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f''(x) = -\frac{1}{4x\sqrt{x}}$$
 nên $f''(1) = -\frac{1}{4}$.

Câu 23. Cho hàm số $y = x^3 - 3x^2 + 2021$. Tìm tập nghiệm của bất phương trình y > 0.

A.
$$[1;+\infty)$$
.

$$\underline{\mathbf{D}}$$
. $(1;+\infty)$.

Lời giải

+)Ta có: $y' = 3x^2 - 6x$, y'' = 6x - 6 suy ra $y'' > 0 \Leftrightarrow 6x - 6 > 0 \Leftrightarrow x > 1$.

Vậy tập nghiệm của bất phương trình y" > 0 là $S = (1; +\infty)$.

Câu 24. Đạo hàm cấp 2 của hàm số $y = \sqrt{2x+5}$ là

$$\Delta$$
. $y'' = -\frac{1}{(2x+5)\sqrt{2x+5}}$.

B.
$$y'' = \frac{1}{(2x+5)\sqrt{2x+5}}$$
.

C.
$$y'' = \frac{1}{\sqrt{2x+5}}$$

C.
$$y'' = \frac{1}{\sqrt{2x+5}}$$
. D. $y'' = -\frac{1}{\sqrt{2x+5}}$.

Lời giải

Ta có
$$y' = (\sqrt{2x+5})' = \frac{2}{2\sqrt{2x+5}} = \frac{1}{\sqrt{2x+5}}$$

$$y'' = -\frac{\left(\sqrt{2x+5}\right)'}{2x+5} = -\frac{\frac{2}{2\sqrt{2x+5}}}{2x+5} = -\frac{1}{(2x+5)\sqrt{2x+5}}.$$

Câu 25. Cho $f(x) = (x-2)^5$. Tính f''(3).

Lời giải

D. -27.

Ta có: $f'(x) = [(x-2)^5]' = 5(x-2)^4$.

Và
$$f''(x) = [f'(x)]' = [5(x-2)^4]' = 20(x-2)^3$$

Vậy
$$f''(3) = 20(3-2)^3 = 20$$
. Chọn B

Câu 26. Cho hàm số $f(x) = \sqrt{2x-1}$. Tính f''(1)...

$$\underline{\mathbf{A}}_{\bullet}$$
 -1.

$$\frac{3}{2}$$
.

D. 0.

Lời giải

Ta có:
$$f(x) = \sqrt{2x-1} \Rightarrow f'(x) = \frac{(2x-1)'}{2\sqrt{2x-1}} = \frac{1}{\sqrt{2x-1}}$$

$$\Rightarrow f''(x) = -\frac{\left(\sqrt{2x-1}\right)'}{2x-1} = -\frac{1}{\left(2x-1\right)\sqrt{2x-1}} = -\frac{1}{\sqrt{\left(2x-1\right)^3}}$$

Vậy
$$f''(1) = -1$$

Câu 27. Cho hàm số $y = \cos^2 x$. Khi đó $y''\left(\frac{\pi}{3}\right)$ bằng:

B. 2.

<u>C.</u> 1.

D. $-2\sqrt{3}$.

Lời giải

$$y' = 2\cos x \cdot (-\sin x) = -\sin 2x$$

$$y'' = -2\cos 2x \Rightarrow y''\left(\frac{\pi}{3}\right) = -2\cos 2\left(\frac{\pi}{3}\right) = 1.$$

Câu 28. Tính đạo hàm cấp hai của hàm số $y = \frac{1}{x}$ **A.** $y'' = -\frac{2}{x^3}$. **B.** $y'' = -\frac{1}{x^2}$. **C.** $y'' = \frac{1}{x^2}$.

A.
$$y'' = -\frac{2}{x^3}$$

B.
$$y'' = -\frac{1}{r^2}$$
.

 $\mathbf{D} \cdot y'' = \frac{2}{x^3}$.

Ta có
$$y' = -\frac{1}{x^2}, \ y'' = -\frac{-(x^2)'}{x^4} = \frac{2}{x^3}.$$

Câu 29. Hàm số $y = \tan x$ có đạo hàm cấp hai bằng:

A.
$$y'' = -\frac{2\sin x}{\cos^3 x}$$
. **B.** $y'' = -\frac{1}{\cos^2 x}$. **C.** $y'' = \frac{2\sin x}{\cos^3 x}$. **D.** $y'' = \frac{1}{\cos^2 x}$.

B.
$$y'' = -\frac{1}{\cos^2 x}$$

$$\underline{\mathbf{C.}} \ y'' = \frac{2\sin x}{\cos^3 x}$$

D.
$$y'' = \frac{1}{\cos^2 x}$$

Ta có:
$$y = \tan x \Rightarrow y' = \frac{1}{\cos^2 x}$$
.

$$y'' = -\frac{(\cos^2 x)'}{(\cos^2 x)^2} = -\frac{2\cos x(-\sin x)}{\cos^4 x} = \frac{2\sin x}{\cos^3 x}.$$

Câu 30. Tính đạo hàm cấp hai của hàm số $f(x) = \frac{1}{3}x^3 + 3x^2 - 2020$.

A.
$$f''(x) = 2x + 6$$

A.
$$f''(x) = 2x + 6$$
. **B.** $f''(x) = x^2 + 6x$.

C.
$$f''(x) = x^2 - 3x - 5$$
. D. $f''(x) = 2x + 3$.

Lời giải

Chon A

Ta có
$$f'(x) = \left(\frac{1}{3}x^3 + 3x^2 - 2020\right)' = x^2 + 6x$$
. Vậy $f''(x) = 2x + 6$.

Câu 31. Cho hàm số $y = \tan x$. Tính $y''\left(\frac{\pi}{4}\right)$ được kết quả bằng:

A.
$$\sqrt{3}$$

D.
$$2\sqrt{3}$$

Lòi giải

Ta có:
$$y' = (\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$\Rightarrow y'' = (1 + \tan^2 x)' = 2 \tan x \cdot (\tan x)' = 2 \tan x \cdot (1 + \tan^2 x)$$

$$\Rightarrow y'' \left(\frac{\pi}{4}\right) = 2 \tan \frac{\pi}{4} \cdot \left[1 + \tan^2 \left(\frac{\pi}{4}\right)\right] = 2.1 \cdot (1+1) = 4.$$

2. Câu hỏi dành cho đối tương học sinh khá-giỏi

Câu 32. Cho hàm số $y = \sqrt{1 + 3x - x^2}$. Khẳng định nào dưới đây đúng?

A.
$$(y')^2 + y \cdot y'' = -1$$
.

A.
$$(y')^2 + y.y'' = -1$$
. **B.** $(y')^2 + 2y.y'' = 1$. **C.** $y.y'' - (y')^2 = 1$. **D.** $(y')^2 + y.y'' = 1$.

D.
$$(v')^2 + v \cdot v'' = 1$$
.

Lời giải

$$y = \sqrt{1 + 3x - x^2} \implies y^2 = 1 + 3x - x^2$$

$$\implies 2y \cdot y' = 3 - 2x \implies 2 \cdot (y')^2 + 2y \cdot y'' = -2 \implies (y')^2 + y \cdot y'' = -1$$

Câu 33. Cho hàm số $f(x) = \frac{1}{x(2-2x)}$. Tính $f''\left(\frac{1}{2}\right)$

Lời giải

D. 32.

 $f(x) = \frac{1}{x(2-2x)} = \frac{1}{-2x^2 + 2x}$

$$f'(x) = \frac{4x - 2}{\left(-2x^2 + 2x\right)^2}$$

$$f''(x) = \frac{4(-2x^2 + 2x)^2 - 2(-4x + 2)(-2x^2 + 2x)(4x - 2)}{(-2x^2 + 2x)^4}$$

$$= \frac{4(-2x^2 + 2x) + 2(16x^2 - 16x + 4)}{(-2x^2 + 2x)^3}$$

$$= \frac{-8x^2 + 8x + 32x^2 - 32x + 8}{(-2x^2 + 2x)^3}$$

$$= \frac{24x^2 - 24x + 8}{(-2x^2 + 2x)^3}$$

$$V_{a}^{2}y \ f''(\frac{1}{2}) = 16.$$

Câu 34. Cho hàm số
$$f(x) = \sin 2x$$
. Đặt $g(x) = \frac{4f(x)}{f''(x)}$. Tính $g(\frac{\pi}{6})$.

A.
$$g\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$
. **B.** $g\left(\frac{\pi}{6}\right) = -1$. **C.** $g\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$. **D.** $g\left(\frac{\pi}{6}\right) = 1$.

$$\underline{\mathbf{B.}} \ g\left(\frac{\pi}{6}\right) = -1$$

C.
$$g\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

D.
$$g\left(\frac{\pi}{6}\right) = 1$$
.

Lời giải

Ta có $f'(x) = 2\cos 2x$ và $f''(x) = -4\sin 2x$.

Khi đó
$$g(x) = \frac{4f(x)}{f''(x)} = \frac{4\sin 2x}{-4\sin 2x} = -1, \ \forall x \neq \frac{k\pi}{2}, k \in \mathbb{Z}.$$

Vậy
$$g\left(\frac{\pi}{6}\right) = -1$$
.

Câu 35. Cho hàm số $y = \sin 2x$. Hãy tìm khẳng định đúng.

A.
$$y^2 + (y')^2 = 4$$
. **B.** $4y - y'' = 0$.

B.
$$4y - y'' = 0$$

C.
$$4y + y'' = 0$$
.

C.
$$4y + y'' = 0$$
. **D.** $y = y \tan 2x$.

Lời giải

Tâp xác định $D = \mathbb{R}$.

Ta có $v' = 2\cos 2x$ và $v'' = -4\sin 2x$.

$$4y + y'' = 4\sin 2x - 4\sin 2x = 0.$$

Câu 36. Cho hàm $y = x \left[\cos(\ln x) + \sin(\ln x)\right]$. Khẳng định nào sau đây đúng?

A.
$$x^2y'' + xy' - 2y + 4 = 0$$
.

B.
$$x^2 v'' - xv' - 2xv = 0$$
.

C.
$$2x^2y' + xy'' + 2y - 5 = 0$$
.

D.
$$x^2y'' - xy' + 2y = 0$$
.

Lời giải

Chọn D

Ta có
$$y = x \lceil \cos(\ln x) + \sin(\ln x) \rceil$$

$$y' = \cos(\ln x) + \sin(\ln x) - \sin(\ln x) + \cos(\ln x) = 2\cos(\ln x)$$

$$y'' = -\frac{2}{x}\sin(\ln x)$$

Từ đó kiểm tra thấy đáp án D đúng vì :

$$x^{2}y'' - xy' + 2y = y'' = -2x\sin(\ln x) - 2x\cos(\ln x) + 2x[\cos(\ln x) + \sin(\ln x)] = 0.$$

Câu 37. Cho hàm số $f(x) = e^{x-x^2}$. Biết phương trình f''(x) = 0 có hai nghiệm x_1, x_2 . Tính $x_1.x_2$.

A.
$$x_1.x_2 = -\frac{1}{4}$$
 B. $x_1.x_2 = 1$

B.
$$x_1.x_2 = 1$$

C.
$$x_1.x_2 = \frac{3}{4}$$
 D. $x_1.x_2 = 0$

D.
$$x_1.x_2 = 0$$

Lời giải

Chon A

Ta có:
$$f'(x) = (1-2x)e^{x-x^2}$$
.

$$f''(x) = -2e^{x-x^2} + (1-2x)(1-2x)e^{x-x^2} = (-1-4x+4x^2)e^{x-x^2}$$

$$f''(x) = 0 \Leftrightarrow (-1 - 4x + 4x^2)e^{x-x^2} = 0 \Leftrightarrow -1 - 4x + 4x^2 = 0$$
 khi đó $x_1x_2 = \frac{c}{a} = -\frac{1}{4}$.

Câu 38. Cho chuyển động thẳng xác định bởi phương trình $s(t) = 2t^3 - 3t^2 + 4t$, trong đó t được tính bằng giây và s được tính bằng mét. Vận tốc tức thời của vật tại thời điểm gia tốc bằng 0 là

A.
$$-2,5m/s$$
.

B.
$$4m/s$$
.

$$\mathbb{C}$$
. 2,5 m/s .

D. 8,5m/s.

Lời giải

Chon C

$$V(t) = s'(t) = 6t^2 - 6t + 4.$$

$$a(t) = V'(t) = 12t - 6$$
.

$$a(t) = 0 \Rightarrow 12t - 6 = 0 \Leftrightarrow t = \frac{1}{2}$$
.

Vận tốc cần tìm là $V\left(\frac{1}{2}\right) = 2.5 m/s$.

Cho hàm số $f(x) = x^3 - 3x^2 + 2x + 1$. Bất phương trình f''(x) > 0 có tập nghiệm là

$$\underline{\mathbf{A}}$$
. $(1;+\infty)$.

B.
$$(-\infty;0)$$
.

C.
$$(-\infty;1)\cup(1;+\infty)$$
. D. $(-\infty;0)\cup(1;+\infty)$.

D.
$$(-\infty;0)\cup(1;+\infty)$$

Ta có
$$f(x) = x^3 - 3x^2 + 2x + 1 \Rightarrow f'(x) = 3x^2 - 6x + 2 \Rightarrow f''(x) = 6x - 6$$

Mà
$$f''(x) > 0$$
 nên $6x - 6 > 0 \Leftrightarrow x > 1$.

Vậy tập nghiệm của bất phương trình f''(x) > 0 là $(1; +\infty)$.

Câu 40. Cho hàm số $f(x) = (x+10)^6$. Tính f''(2).

A.
$$f''(2) = 622080$$
.

A.
$$f''(2) = 622080$$
. **B.** $f''(2) = 1492992$. **C.** $f''(2) = 124416$. **D.** $f''(2) = 103680$.

D.
$$f''(2) = 103680$$

Lời giải

Chon A

• Ta có
$$f'(x) = 6(x+10)^5$$
; $f''(x) = 30(x+10)^4$.

Vậy,
$$f''(2) = 30.(2+10)^4 = 622080$$
.

Câu 41. Một chất điểm chuyển động theo phương trình $s(t) = 3\sin 2t + \cos 2t$ với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển đông và s (mét) là quãng đường vật đi được trong thời gian đó. Gia tốc tức thời tại thời điểm $t = \frac{\pi}{4}$ giây của chuyển động bằng

A.
$$-16 \text{ m/s}^2$$
. **B.** -12 m/s^2 . **C.** 0 m/s^2 . **D.** 12 m/s^2 .

B.
$$-12 \text{ m/s}^2$$

C.
$$0 \text{ m/s}^2$$

Lời giải

Chon B

•
$$v(t) = s'(t) = 6\cos 2t - 2\sin 2t$$
;

•
$$a(t) = v'(t) = -12\sin 2t - 4\cos 2t$$
.

• Gia tốc tức thời tại thời điểm t của chuyển động là: $a(t) = s''(t) = -12\sin 2t - 4\cos 2t$.

• Vây
$$a\left(\frac{\pi}{4}\right) = -12\sin\left(2.\frac{\pi}{4}\right) - 4\cos\left(2.\frac{\pi}{4}\right) = -12\left(m/s^2\right).$$

Câu 42. Cho chuyển động thẳng xác định bởi phương trình $S(t) = t^3 + 3t^2 - 9t + 27$. Trong đó t tính bằng giây (s) và S tính bằng mét (m). Gia tốc của chuyển động tại thời điểm vận tốc triệt tiêu là

A.
$$0 \ m/s^2$$
.

B.
$$6 m/s^2$$
.

C. 24
$$m/s^2$$
.

D. 12
$$m/s^2$$
.

Ta có:
$$v(t) = S'(t) = 3t^2 + 6t - 9$$
; $a(t) = v'(t) = 6t + 6$.

Tại thời điểm vận tốc triệt tiêu, suy ra $3t^2 + 6t - 9 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -3(1) \end{bmatrix}$.

Với
$$t = 1 \Rightarrow a(1) = 12(m/s^2)$$
.

Câu 43. Cho chuyển động xác định bởi phương trình $S(t) = t^3 - 3t^2 - 9t$, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc tại thời điểm vận tốc triệt tiêu là

A.
$$-6\text{m/s}^2$$
.

B.
$$-12$$
m/s².

C.
$$6\text{m/s}^2$$
.

D. 12m/s^2 .

Lời giải

Ta có:

$$v(t) = S'(t) = 3t^2 - 6t - 9 \Rightarrow a(t) = v'(t) = 6t - 6$$

Khi vận tốc triệt tiêu ta có
$$v(t) = 0 \Leftrightarrow 3t^2 - 6t - 9 = 0 \Leftrightarrow \begin{bmatrix} t = 3 > 0 (tm) \\ t = -10 < 0 (l) \end{bmatrix}$$

Khi đó gia tốc là $a(3) = 6.3 - 6 = 12 \text{m/s}^2$

Câu 44. Đạo hàm cấp hai của hàm số $y = f(x) = x \sin x - 3$ là biểu thức nào trong các biểu thức sau?

$$\underline{\mathbf{A}}. f''(x) = 2\cos x - x\sin x.$$

B.
$$f''(x) = -x \sin x$$

C.
$$f''(x) = \sin x - x \cos x$$
.

D.
$$f''(x) = 1 + \cos x$$
.

Lời giải

Ta có
$$y' = f'(x) = (x \sin x - 3)' = \sin x + x \cos x$$

Vậy
$$y'' = f''(x) = (\sin x + x \cos x)' = 2\cos x - x \sin x$$
.

Câu 45. Cho hàm số $y = f(x) = \frac{2x+1}{1-x}$. Phương trình f'(x) + f''(x) = 0 có nghiệm là: **A.** x = 3. **B.** x = -3. **C.** $x = -\frac{1}{2}$. **D.** $x = \frac{1}{2}$.

$$\underline{\mathbf{A}} \cdot x = 3.$$

B.
$$x = -3$$

C.
$$x = -\frac{1}{2}$$
.

D.
$$x = \frac{1}{2}$$

Lời giải

Tập xác định $D = \mathbb{R} \setminus \{1\}$.

Có
$$f'(x) = \frac{3}{(x-1)^2} \Rightarrow f''(x) = -\frac{6}{(x-1)^3}$$
.

Vậy
$$f'(x) + f''(x) = 0 \Leftrightarrow \frac{3}{(x-1)^2} - \frac{6}{(x-1)^3} = 0 \Leftrightarrow 1 = \frac{2}{x-1} \Leftrightarrow x = 3.$$

Câu 46. Đạo hàm cấp hai của hàm số $f(x) = (3x+1)^6$ là

A.
$$f''(x) = 30(3x+1)^4$$
. **B.** $f''(x) = 90(3x+1)^4$.

$$C. f''(x) = 270(3x+1)^4$$

D.
$$f''(x) = 540(3x+1)^4$$
.

Lời giải

Ta có
$$f'(x) = 6(3x+1)^5(3x+1)' = 18(3x+1)^5$$
.

$$f''(x) = 18.5(3x+1)^4(3x+1)' = 270(3x+1)^4$$
.

Câu 47. Cho hàm số $y = f(x) = x^3 - 3x^2 + 1$. Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_0 thỏa mãn $f''(x_0) = 0$

A.
$$3x + y + 2 = 0$$
.

B.
$$3x + y - 2 = 0$$

B.
$$3x + y - 2 = 0$$
. **C.** $x + 3y - 2 = 0$. **D.** $-3x + y + 2 = 0$.

D.
$$-3x + v + 2 = 0$$

Lời giải

Chon B

Ta có $f'(x) = 3x^2 - 6x$ và f''(x) = 6x - 6 suy ra $f''(x) = 0 \Leftrightarrow x = 1$.

Khi đó f'(1) = -3 và điểm M(1;-1).

Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là: y = f'(1)(x-1) + f(1)

$$\Leftrightarrow y = -3(x-1)-1 \Leftrightarrow 3x+y-2=0$$

Câu 48. Biết $\left(\frac{x^4}{4} + x^3 - \frac{x^2}{2} + x - 2019\right)'' = ax^2 + bx + c$. Tính S = a + b + 5c.

A. 30.

B. 4.

C. 40.

D. -4.

Lời giải

Chon B

Ta có
$$\left(\frac{x^4}{4} + x^3 - \frac{x^2}{2} + x - 2019\right)' = x^3 + 3x^2 - x + 1.$$

Suy ra
$$\left(\frac{x^4}{4} + x^3 - \frac{x^2}{2} + x - 2019\right)^n = 3x^2 + 6x - 1.$$

Nên
$$a = 3; b = 6; c = -1 \Rightarrow S = 3 + 6 + 5(-1) = 4$$
.

Câu 49. Cho hàm số $y = \sin x + \cos x$. Phương trình y'' = 0 có bao nhiều nghiệm trong đoạn $[0; 3\pi]$.

A. 1.

B. 2.

<u>C.</u> 3.

D. 4.

Lời giải

Chọn C

Ta có: $y' = \cos x - \sin x$; $y'' = -\sin x - \cos x$

$$y'' = 0 \Leftrightarrow -\sin x - \cos x = 0$$
$$\Leftrightarrow -\sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = 0$$

$$\Leftrightarrow x + \frac{\pi}{4} = k\pi \ (k \in \mathbb{Z})$$

$$\Leftrightarrow x = \frac{-\pi}{4} + k\pi \ (k \in \mathbb{Z})$$

$$x \in [0; 3\pi] \Rightarrow 0 \le \frac{-\pi}{4} + k\pi \le 3\pi \quad (k \in \mathbb{Z})$$
$$\Rightarrow \begin{cases} \frac{1}{4} \le k \le \frac{13}{4} \Rightarrow k \in \{1; 2; 3\} \\ k \in \mathbb{Z} \end{cases}$$

Vậy phương trình y' = 0 có ba nghiệm trong đoạn $[0; 3\pi]$.

Câu 50. Cho hàm số $y = -\sqrt{3}cosx + \sin x - x^2 + 2021x + 2022$. Số nghiệm của phương trình y'' = 0 trong đoạn $[0; 4\pi]$ là

A. 1..

B. 2..

C. 0...

Lời giải

D. 3.

Chon B

Ta có:
$$y' = \sqrt{3} \sin x + \cos x - 2x + 2021$$

 $y'' = \sqrt{3} \cos x - \sin x - 2$
 $y'' = 0 \Leftrightarrow \sqrt{3} \cos x - \sin x - 2 = 0 \Leftrightarrow \sin x - \sqrt{3} \cos x = -2$
 $\Leftrightarrow \frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x = -1 \Leftrightarrow \sin \left(x - \frac{\pi}{3}\right) = -1$
 $\Leftrightarrow x - \frac{\pi}{3} = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$
 $\Leftrightarrow x = -\frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$
Vì $x \in [0; 4\pi] \Rightarrow 0 \le -\frac{\pi}{6} + k2\pi \le 4\pi \Leftrightarrow \frac{1}{12} \le k \le \frac{25}{12}$
Mà $k \in \mathbb{Z} \Rightarrow k \in \{1; 2\}$.

Aguja Bio Vidige