

SEQUENCE LISTING

<110> Jove, Richard

Hamilton, Andrew

Gilbert, Richard

Dalton, WIlliam

Sebti, Said

Yu, Hua

Heller, Richard

Jaroszeski, Mark

<120> INHIBITION OF STAT3 SIGNAL TRANSDUCTION FOR HUMAN CANCER THERAPY

<130> 10873-008-999

<140> 09/492,764

<141> 2000-01-27

<150> 60/117,600

<151> 1999-01-27

<160> 38

<170> PatentIn version 3.0

<210> 1

<211> 24

<212> DNA

<213> Homo sapiens

<400> 1 agcttcattt cccgtaaatc ccta

<210>	2	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400>	2 attt cccgtaaatc ccta	24
<210>	3	
<211>	22	
<212>	DNA	
<213>	Homo sapiens	
<400>	3 cggc cggggaggcg ct	22
<210>	4	
<211>	25	
<212>	DNA	
<213>	Homo sapiens	
<400>	4 otto tecegoogot acego	25
<210>	5	
<211>	25	
<212>	DNA	
<213>	Homo sapiens	
<400> 5 ccgcatgctg gggccgtaca gttcc		25
<210>	6	
<211>	20	
<212>	DNA	

<400>			
cgggca	ttca gtgacctgac		
<210>	7		
<211>	20		
<212>	DNA		
<213>	Homo sapiens		
<400>			
tcaggaacca gcggttgaag			
<210>	8		
<211>	20		
<212>	DNA		
<213>	Homo sapiens		
<400>			
ccactg	aact tctgattcgc		
<210>	9		
<211>	20		
<212>	DNA		
<213>	Homo sapiens		
<400>	9		
gcgtgc	tagc tggatgtctt		
<210>	10		
<211>	9		
<212>	DNA		
<213>	Homo sapiens		

<213> Homo sapiens

<400> 10 ttcggagaa

9

```
<210> 11
```

<213> Homo sapiens

<400> 11

tgaggataa

<210> 12

<211> 12

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Xaa = Ser or Pro

<400> 12

His Tyr Xaa Pro Ile Leu Val Tyr Gln Pro Ser Trp $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 13

<211> 12

<212> PRT

<213> Homo sapiens

<400> 13

Gln Asp Val His Leu Thr Gln Gln Ser Arg Tyr Thr 1 5

<210> 14

<211> 12

<212> PRT

<213> Homo sapiens

<400> 14

9

```
Ser His Pro Trp Asn Ala Gln Arg Glu Leu Ser Val
<210> 15
<211> 12
<212> PRT
<213> Homo sapiens
<400> 15
Tyr Pro Ala Pro Gln Pro Leu Val Thr Lys Thr Ser
               5
<210> 16
<211> 12
<212> PRT
<213> Homo sapiens
<400> 16
Phe Ser Tyr Pro Leu Thr Arg Ala Pro Leu Asn Met
<210> 17
<211> 7
<212> PRT
<213> Homo sapiens
<400> 17
His Ala Ile Tyr Pro Arg Asn
<210> 18
<211> 7
<212> PRT
<213> Homo sapiens
<400> 18
```

Ala Ser Thr Leu Pro Lys Ala

```
<210> 19
```

<213> Homo sapiens

<400> 19

Ile Gln Ser Pro His Phe Phe 1 5

<210> 20

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 20

Pro Xaa Leu Lys Thr Lys 1 5

<210> 21

<211> 6

<212> PRT

<213> Homo sapiens

<400> 21

Pro Tyr Leu Lys Thr Lys 1

<210> 22

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X= PHOSPHOTYROSINE

<400> 22

Ala Xaa Leu Lys Thr Lys 1 5

<210> 23

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 23

Pro Xaa Ala Lys Thr Lys 1 5

<210> 24

-<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 24

Pro Xaa Leu Ala Thr Lys 1 5

<210> 25

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 25

Pro Xaa Leu Lys Ala Lys 1 5

<210> 26

<211> 6

<212> PRT

<213> Homo sapiens

<400> 26

Pro Tyr Leu Lys Thr Ala 1 5

<210> 27

<211> 4

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

 $\langle 223 \rangle$ X = PHOSPHOTYROSINE

<400> 27

Pro Xaa Leu Lys

<210> 28

<211> 4

<212> PRT

```
<213> Homo sapiens
```

<220>

<221> misc_feature

 $\langle 223 \rangle$ X = PHOSPHOTYROSINE

<400> 28

Pro Xaa Phe Lys

<210> 29

<211> 3

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

 $\langle 223 \rangle$ X = PHOSPHOTYROSINE

<400> 29

Xaa Leu Lys

<210> 30

<211> 4

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 30

Ala Xaa Leu Lys 1 <210> 31

<211> 3

<212> PRT

<213> Homo sapiens

<400> 31

Tyr Leu Lys

1

<210> 32

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 32

Pro Xaa Leu Lys Thr Lys 1 5

<210> 33

<211> 6

<212> PRT

<213> Homo sapiens

<400> 33

Pro Phe Leu Lys Thr Lys 1 5

<210> 34

<211> 4

<212> PRT

<213> Homo sapiens

<220> <221> misc_feature <223> X = PHOSPHOTYROSINE <400> 34 Pro Xaa Leu Lys <210> 35 <211> 4 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> X = PHOSPHOTYROSINE <400> 35 Pro Xaa Leu Ala <210> 36 <211> 4 <212> PRT

<220>

<221> misc_feature

<213> Homo sapiens

<223> X = PHOSPHOTYROSINE

<400> 36

Pro Xaa Leu Ala

<210> 37

<211> 3

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 37

Pro Xaa Leu

<210> 38

<211> 3

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> X = PHOSPHOTYROSINE

<400> 38

Ala Xaa Leu