学院	姓名	学号	任 课老师	j:	考 场教室		选课 号 /	座位 号			
		宓	‡. †	绀	EJ	内	ケ	旦而	-	रुं त	

电子科技大学2012-2013学年第二 学期期末考试 A 卷

课程名称:数字逻辑设计及应用 考试形式:闭卷 考试日期:2013年07月05日

考试时长: 120 分钟

课程成绩构成:平时<u>30</u>%,期中<u>30</u>%,实验<u>0</u>%,期末<u>40</u>%

题号	_	=	=	四	五	六	七	八	九	+	合计
得分											

得分

I. Fill out your answers in the blanks (3' X 10=30')

- 1. If a 74x138 binary decoder has 110 on its inputs CBA, the active LOW output Y5 should be (1 or high).
- 2. If the next state of the unused states are marked as "don't-cares" when designing a finite state machine, this approach is called minimal (cost paper) approach.
- 3. The RCO L of 4-bit counter 74x169 is (0 or low) when counting to 0000 in decreasing order.
- 4. To design a "001010" serial sequence generator by shift registers, the shift register should need(4) bit at least.
- 5. One state transition equation is $Q^*=JQ'+K'Q$. If we use T flip-flop with enable to complete the equation, the enable input of T flip-flop should have the function EN=(JQ'+KQ).
- 6. A 4-bit Binary counter can have (16) normal states at most, 4-bit Johnson counter with no self-correction can have (8) normal states, 4-bit linear feedback shift-register (LFSR) counter with self-correction can have (16) normal states.
- 7. If we use a ROM, whose capacity is 16×4 bits, to construct a 4-bit binary code to gray code converter, when the address inputs are 1001, (1101) will be the output.

8. When the input is 10000000 of an 8 bit DAC, the corresponding output voltage is 2V. The output voltage is (3.98) V when the input is 11111111.

得 分

II. Please select the only one correct answer in the following questions.(2' X 5=10')

1. If a 74x85 magnitude comparator has ALTBIN=1, AGTBIN=0, AEQBIN=0,

A3A2A1A0=1101, B3B2B1B0=0111 on its inputs, the outputs are (D)

- A) ALTBOUT=0, AEQBOUT=0, AGTBOUT=0 B) ALTBOUT=1, AEQBOUT=0, AGTBOUT=0
- C) ALTBOUT=1, AEQBOUT=0, AGTBOUT=1 D) ALTBOUT=0, AEQBOUT=0, AGTBOUT=1
- 2. As shown in Figure 1, what would the outputs of the 4-bit adder 74x283 be (B) when A3A2A1A0=0100, B3B2B1B0=1110 and S/A=1.
- A) C4=1, S3S2S1S0=0010 B) C4=0, S3S2S1S0=0110 C) C4=0, S3S2S1S0=1010
- D) C4=0, S3S2S1S0=1110

Figure 1

- 3. Which of the following statements is INCORRECT? (A)
- A) A D latch is edge triggered and it will follow the input as long as the control input C is active low.
- B) A D flip flop is edge triggered and its output will not change until the edge of the controlling CLK signal.

- C) An S-R latch may go into metastable state if both S and R are changing from 11 to 00 simultaneously.
- D) The pulse applying to any input of an S -R latch must meet the minimum pulse width requirement.
- 4. The capacity of a memory that has 13 bits address bus and can store 8 bits at each address is (B).
 - A) 8192
- B) 65536
- C) 104
- D) 256
- 5. Which state in Figure 2 is NOT ambiguous (C).
- A) A
- B) B
- C) C and D
- D) C

Figure 2

得 分

- **III.** Analyze the sequential-circuit as shown in Figure 3, D Flip-Flop with asynchronous preset and clear inputs. [15']
- 1. Write out the excitation equations, transition equations and output equation. [5']
- 2. Assume the initial state Q_2Q_1 =00, complete the timing diagram for Q_2 , Q_1 and Z. [10']

参考答案:

激励方程: $D_1=Q_2$, $D_2=Q_1$

转移方程: $Q_1 = D_1 = Q_2$, $Q_2 = D_2 = Q_1$

输出方程: Z=(CLK+Q₂)/

参考评分标准:

1. 5个方程正确得5分; 每错一个扣1分, 扣完5分为止;

2.

 Q_1 、 Q_2 、Z的波形边沿判断正确,得3分,错一个,扣1分,扣完3分为止;每个上升沿和下降沿各0.5分,错1处扣0.5分,扣完7分为止。

得分

IV. Analyze the sequential-circuit as shown below, which contains two 74x163 4-bit binary counter. [15']

- 1. Write out the logic expression LD_L for U₁ and CLR_L for U₂.[4']
- 2. Assume the initial state is 3_{10} , write out the state sequence for the circuit. [8']
- 3. Describe the modulus for the circuit. [3']

The function table for 74x163

Inputs				Current state	Next state	Outputs
CLR_L	LD_L	ENT	ENP	QD QC QB QA	QD* QC* QB* QA*	RCO
0	X	X	X	X X X X	0 0 0 0	0
1	0	X	X	X X X X	D C B A	0
1	1	0	X	X X X X	QD QC QB QA	0
1	1	X	0	X X X X	QD QC QB QA	0
1	1	1	1	0 0 0 0	0 0 0 1	0
1	1	1	1	0 0 0 1	0 0 1 0	0
1	1	1	1	0 0 1 0	0 0 1 1	0
1	1	1	1	0 0 1 1	0 1 0 0	0
1	1	1	1			0
1	1	1	1	1 1 1 1	0 0 0 0	1

学院	_姓名	_ 学号	任 课老师	考 场教室	

参考评分标准:

- 1. $LD_L = Q_3', CLR_L = (Q_5Q_4Q_3)'$ [4']
- 2. 状态序列:十六进制数表示: 03,...08,13,...18,23,...28,33,...38,03,...08 或十进制数表示: 3,...8,19,...24,35,...40,51,...56,3,...8[8'] 错1处扣1分,扣完为止。
- 3. m=24 [3']

得 分

V. Design a sequence signal generator with self-correcting to generate a serial output sequence of 101100, using a 74x194 and a 74x151.[15]

[4']

- 1. List the transition table .[4']
- 2. Write out the canonical sum of feedback function LIN.[[4']
- 3. Draw the circuit diagram.[7']

The function table for 74x194

Iutputs S1 S0	Next state OA* OB* OC* OD*	Function	
31 30	QA QB QC QD		
0 0	QA QB QC QD	Hold	
0 1	RIN QA QB QC	Shift right	
1 0	QB QC QD LIN	Shift left	
1 1	A B C D	Load	

参考评分标准:

- 1. 转移表正确4分,错1行扣0.5分。
- 2. 反馈函数正确LIN= D_0 = Σ_m (0,2,4,5)

3. 电路图正确7分,错1处扣0.5分,扣完为止。

$\mathbf{Q}_0 \mid \mathbf{Q}_1$	₂ *Q	₁ *Q	₀ * I) 0
1 () 1	. 1	1	
[] 1	1	. 0	0	į
) 1	1 0	0	0	ì
) (0	1	1	
L () 1	. 0	0	į
0 1	1 0	1	1	
) (0	1	1	
l 1	1	. 0	0	į
	l (1) 11 (1) (1) (1) (1) (1) (1) (1) (1)	1 0 1 1 1 1 0 1 0 0 0 0 1 0 1	0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1	1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0

学院	_姓名	_学号	任 课老》	师	考场教室		选课 号 /图	座位 号				
		瘞	封	丝	IJ	内	签	駉		ċ⁄σ		

得分

VI. Write out the state/output table for a Mealy machine that can detect the pattern 10101 or 10111. The output Z=1 when the pattern is detected. Your model should also be able to detect overlapping sequences. (10')

		X			
State meaning	S	0	1		
Initial state	A	A, 0	B, 0		
Got 1	В	C, 0	B, 0		
Got 10	С	A, 0	D, 0		
Got 101	D	E, 0	F, 0		
Got 1010	Е	A, 0	D, 1		
Got 1011	F	C, 0	B, 1		
		S*, Z			

评分标准:

- 1.状态定义正确得3分; 每错一处扣0.5分, 扣完3分为止;
- 2.状态转移正确, 得5分; 每错一处扣0.5分, 扣完5分为止;
- 3.输出正确,得2分;每错一处扣0.5分,扣完2分为止。

.......密........封........线.......以.......内.......答.......题.......无.......效......

得 分

VII. Design a code converter with 2421 code to 8421 code, using a 74x85, a 74x283 and some gates if needed. [10']

			74x85
2421	8421	74x283	ALTBIN ALTBOUT
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0	C0 A0 S0 B0 A1 B1 S2 A2	AEQBIN AEQBOUT AGTBIN AGTBOUT A0 B0
1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1	0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1	- B2 S3 - A3 C4 - B3	— A1 — B1 — A2 — B2 — A3
			B3

参考评分标准:

- 1.74x85级联输入端连接正确2分,比较值正确3分,74x283的C0端连接正确1分;
- 2.74x85的A3~A0与74x283的A3~A0连接正确2分;
- 3.74x85与74x283中间连接的电路正2分。

