Lecture 1.7

Reinforcement Learning: Policy Gradient Methods

Alexey Gruzdev alexey.s.gruzdev@gmail.com HSE, Winter 2019

Illustration example: Left or right?

What is Q(s, right)? gamma = 0.99

Why not using Q-learning everywhere?

$$L \approx E[Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

Simple 2-state world

	True	(A)	(B)
Q(s0,a0)	1	1	2
Q(s0,a1)	2	2	1
Q(s1,a0)	3	3	3
Q(s1,a1)	100	50	100

Evolution: how humans not survived

Evolution: how humans survived

Outline

- Often computing q-values is harder than picking optimal actions!
- We could avoid learning value functions by directly learning agent's policy

Q: what algorithm works that way?

Generalized Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Policy-based RL

In previous lectures we approximated the value or action-value function using parameters:

$$V_{\Theta}(s) \approx V_{\pi}(s)$$

 $Q_{\Theta}(s, \alpha) \approx Q_{\pi}(s, \alpha)$

- A policy was generated directly from the value function e.g. using ε-greedy
- In this lecture we will directly parametrize the policy

$$\pi_{\Theta}(s, a) = P[a \mid s, \Theta]$$

 We will focus again on model-free reinforcement learning

Recap: Cross Entropy Method

CEM:

- Evolutionary
- Go in the direction where elite goes.
- Easy to implement
- Black Box
- Need to play full episode to start learning

Value-based & Policy-based RL

- Value Based:
 - Learnt Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based:
 - No Value Function
 - Learnt Policy
- Actor-Critic:
 - Learnt Value Function
 - Learnt Policy

Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Example: Rock-Paper-Scissors

- Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Consider policies for iterated rock-paper-scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal

Example #2: Aliased Grid world

- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$\varphi(s; a) = \mathbf{1}(\text{wall to N}, a = \text{move E})$$

Compare value-based RL, using an approximate value function

$$Q_{\Theta}(s; a) = f(\varphi(s, a), \Theta)$$

To policy-based RL, using a parametrized policy

$$\pi_{\Theta}(s, \alpha) = g(\varphi(s, \alpha), \Theta)$$

Example #2: Aliased Grid world

- Under aliasing, an optimal deterministic policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
 - e.g. greedy or ε -greedy
- So it will traverse the corridor for a long time

Example #2: Aliased Grid world

An optimal stochastic policy will randomly move E or W in grey states:

$$\pi_{\Theta}$$
(wall to N and S, move E) = 0.5 π_{Θ} (wall to N and S, move W) = 0.5

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given policy $\pi_{\Theta}(s, \alpha)$ with parameters Θ , find best Θ But how do we measure the quality of a policy π_{Θ} ?
- In episodic environments we can use the start value:

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$$

In continuing environments we can use the average value:

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

Or the average reward per time-step:

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

ullet where $d\pi_{m{artheta}}(s)$ is stationary distribution of Markov chain for $\pi_{m{artheta}}$

Policy Optimization

- Policy based reinforcement learning is an optimization problem
- Find Θ that maximizes $J(\Theta)$
- Some approaches do not use gradient
 - Hill climbing
 - Genetic algorithms
 - Simplex
- Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible

Policy Gradient

- Let J(Θ) be any policy objective function
- Policy gradient algorithms search for a local maximum in J(Θ) by ascending the gradient of the policy, w.r.t. parameters Θ

$$abla_{ heta}J(heta) = egin{pmatrix} rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{pmatrix}$$

Finite Differences approach

- To evaluate policy gradient of $\pi_{\Theta}(s, a)$
- For each dimension $k \in [1, n]$
 - Estimate kth partial derivative of objective function w.r.t. Θ
 - By perturbing Θ by small amount ε in kth dimension

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}$$

- where u_k is unit vector with 1 in kth component, 0 elsewhere
- Uses n evaluations to compute policy gradient in n dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Analytic Gradient Computation

- We now compute the policy gradient analytically
- Assume policy π_{Θ} is differentiable whenever it is non-zero
- Log Derivative trick:

$$egin{aligned}
abla_{ heta}\pi_{ heta}(s,a) &= \pi_{ heta}(s,a) rac{
abla_{ heta}\pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ &= \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) \end{aligned}$$

• We can express gradient of π_{Θ} as function of π_{Θ} .

One-step MDPs

- Consider a simple class of one-step MDPs Starting in state $s \sim d(s)$
- Terminating after one time-step with reward $r = R_{s,a}$
- Use log-derivative trick to compute the policy gradient

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} [r]$$

$$= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) r]$$

Policy Gradient Theorem

- The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward r with long-term value $Q_{\pi}(s, \alpha) \odot$ Policy gradient theorem applies to start state objective, average reward and average value objective

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}, \text{ or } \frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$

REINFORCE algorithm

- Update parameters by stochastic gradient ascent (!!)
- Using policy gradient theorem
- Using return G_t as an unbiased sample of $Q\pi_{\Theta}(s_t, a_t)$

```
REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic), for estimating \pi_{\theta} \approx \pi_{*}

Input: a differentiable policy parameterization \pi(a|s,\theta)

Algorithm parameter: step size \alpha > 0

Initialize policy parameter \theta \in \mathbb{R}^{d'} (e.g., to \mathbf{0})

Loop forever (for each episode):

Generate an episode S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}, following \pi(\cdot|\cdot,\theta)

Loop for each step of the episode t = 0, \ldots, T - 1:

G \leftarrow \text{return from step } t G \leftarrow \theta + \alpha \gamma^{t} G \nabla_{\theta} \ln \pi(A_{t}|S_{t},\theta)
```

Q: Is it on-policy or off-policy?

REINFORCE training

REINFORCE as NN

- Initialize NN weights
 - Θ random init
- Cycle:
 - Sample N sessions **z** under current policy $\pi_{\Theta}(s_t, \alpha_t)$
 - Evaluate policy gradient $\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in \mathbf{z}_i} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$
 - Apply gradient update

REINFORCE as NN with a baseline

- Initialize NN weights
 - Θ random init
- Cycle:
 - Sample N sessions **z** under current policy $\pi_{\Theta}(s_t, \alpha_t)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in \mathbf{z}_{i}} \nabla \log \pi_{\theta}(a|s) \cdot (Q(s,a) - b(s))$$

Apply gradient update

REINFORCE with a baseline

```
REINFORCE with Baseline (episodic), for estimating \pi_{\boldsymbol{\theta}} \approx \pi_*

Input: a differentiable policy parameterization \pi(a|s,\boldsymbol{\theta})

Input: a differentiable state-value function parameterization \hat{v}(s,\mathbf{w})

Algorithm parameters: step sizes \alpha^{\boldsymbol{\theta}} > 0, \alpha^{\mathbf{w}} > 0

Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^d (e.g., to \mathbf{0})

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot,\boldsymbol{\theta})

Loop for each step of the episode t = 0, \dots, T - 1:

G \leftarrow \text{return from step } t (G_t)

\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})

\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \gamma^t \delta \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})

\mathbf{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t \delta \nabla_{\boldsymbol{\theta}} \ln \pi(A_t|S_t, \boldsymbol{\theta})
```

REINFORCE with a baseline training

Next Method Name?

Actor-Critic

- Monte-Carlo policy gradient still has high variance
- We use a critic to estimate the action-value function $Q_w(s, a) \approx Q\pi_{\Theta}(s, a)$
- Actor-critic algorithms maintain two sets of parameters
 - Critic: Updates action-value function parameters w
 - Actor: Updates policy parameters Θ, in direction suggested by critic
 - Actor-critic algorithms follow an approximate policy gradient

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \ Q_w(s, a) \right]
\Delta heta = lpha
abla_{ heta} \log \pi_{ heta}(s, a) \ Q_w(s, a)$$

Estimating the action-value function

- The critic is solving a familiar problem: policy evaluation
- How good is policy π_{Θ} for current parameters Θ ?
- This problem was explored in previous two lectures, e.g.
 - Monte-Carlo policy evaluation
 - Temporal-Difference learning

Action-Value Actor-Critic

end function

- Simple actor-critic algorithm based on action-value critic
- Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^\top w$ Critic Updates w by linear TD(0) Actor Updates θ by policy gradient

```
function QAC
     Initialise s, \theta
     Sample a \sim \pi_{\theta}
     for each step do
           Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_s^a.
           Sample action a' \sim \pi_{\theta}(s', a')
           \delta = r + \gamma Q_w(s', a') - Q_w(s, a)
           \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a)
           w \leftarrow w + \beta \delta \phi(s, a)
           a \leftarrow a', s \leftarrow s'
     end for
```

Bias in Actor-Critic Algorithms

- Approximating the policy gradient introduces bias
- A biased policy gradient may not find the right solution
 - e.g. if $Q_w(s, \alpha)$ uses aliased features, can we solve gridwold example?
- Luckily, if we choose value function approximation carefully
- Then we can avoid introducing any bias
- i.e. We can still follow the exact policy gradient

Advantage Actor-Critic (aka A2C)

$$A(s,a) = Q(s,a) - V(s) = r + \gamma \cdot V(s') - V(s)$$

Improve policy:

$$\nabla J_{actor} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot A(s,a)$$

Improve value:

$$L_{critic} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} (V_{\theta}(s) - [r + \gamma \cdot V(s')])^2$$

Duct tape slide

- V(s) errors less important than in Q-learning
 - actor still learns even if critic is random, just slower
- Regularize with entropy (hello exploration)
 - to prevent premature convergence
- learn on parallel sessions
 - or super-small experience replay
- Use F.log_softmax() for numerical stability

Summary of Policy Gradient methods

The policy gradient has many equivalent forms:

```
\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta}(s, a) \, \mathsf{G}_{t} \right] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta}(s, a) \, Q^{w}(s, a) \right] & \text{Q Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta}(s, a) \, A^{w}(s, a) \right] & \text{Advantage Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta}(s, a) \, \delta \right] & \text{TD Actor-Critic} \end{split}
```

- Each leads a stochastic gradient ascent algorithm
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate $Q_{\pi}(s, a)$, $A_{\pi}(s, a)$ or $V_{\pi}(s)$

Questions?

