A General $O(n^2)$ Gaussian Process Regression Hyper-Parameter Optimization Using Cross-Validation and Non-linearly Constrained ADMM

Linning XU

The Chinese University of Hong Kong (Shenzhen)

116010248@link.cuhk.edu.cn

February 17, 2019

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- Second Second
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Gaussian Process

Definition [Rasmussen and Williams, 06]

A Gaussian process is a collection of random variables, any finite number of which have Gaussian distributions.

A Gaussian process defines a distribution over function.

$$f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{m}(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}_h)), \quad \mathbb{R}^p \to \mathbb{R}$$
 (1)

where

- m(x) is the mean function, often set to zero in practice, especially when there is no prior knowledge available.
- $k(\mathbf{x}, \mathbf{x}'; \theta_h)$ is the covariance/kernel function controlled by the kernel hyper-parameters θ_h .

Gaussian Process Regression

We consider the general GP regression model:

$$y = f(x) + e, (2)$$

GP regression comprises the following two steps in sequence:

- **1** In the training phase, a kernel function is selected, and the associated hyper-parameter $\boldsymbol{\theta}$ is tuned using the training data set $\mathcal{D} = \{\boldsymbol{X}, \boldsymbol{y}\}$ where $\boldsymbol{y} = [y_1, y_2, ..., y_n]^T$ is training outputs and $\boldsymbol{X} = [\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n]$ is training input.
- ② In the test phase, we obtain the posterior distribution $p(y_*|\mathcal{D}, X_*; \theta)$ for the test dataset $\mathcal{T} = \{X_*, y_*\}$ where $y_* = [y_{*,1}, y_{*,2}, ..., y_{*,n_*}]^T$ is test output and $X_* = [x_{*,1}, x_{*,2}, ..., x_{*,n_*}]$ is test input, given the training data set \mathcal{D} .

Gaussian Process Regression

The posterior distribution is $p(\mathbf{y}_*|\mathcal{D}, \mathbf{X}_*; \boldsymbol{\theta}) \sim \mathcal{N}\left(\bar{\mathbf{m}}, \bar{\mathbf{V}}\right)$, where,

$$\bar{\mathbf{m}} = \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_e^2 \mathbf{I}_n \right]^{-1} \mathbf{y}, \tag{3}$$

$$\bar{\mathbf{V}} = \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) + \sigma_e^2 \mathbf{I}_{n_*}$$

$$- \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_e^2 \mathbf{I}_n \right]^{-1} \mathbf{K}(\mathbf{X}, \mathbf{X}_*). \tag{4}$$

Motivations

Importance of GP: GP models have outstanding performance in function approximation with a natural uncertainty bound. GP models constitute a class of important Bayesian non-parametric models for machine learning and are tightly connect to several other salient models, such as SVM, BNNs, RLS, RVM, ARMA and DNN nowadays.

Critical Role of GP Hyper-parameter Tuning: The predictive performance of GP regression depends on the goodness of hyper-parameter tuned in the training phase.

Deterministic ML based hyper-parameter optimization is the benchmark.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Benchmark Methods

The standard ML based methods minimize the negative log-marginal likelihood function as

$$\theta_{ML} \triangleq \arg\min_{\boldsymbol{\theta}} \ l(\boldsymbol{\theta}) = \boldsymbol{y}^T \boldsymbol{C}^{-1}(\boldsymbol{\theta}) \boldsymbol{y} + \log \det (\boldsymbol{C}(\boldsymbol{\theta})),$$
 (5)

where $C(\theta) \triangleq K(X, X; \theta_h) + \sigma_e^2 I_n$. Gradient Descend type methods are most widely used for this optimization task. In each iteration, each hyper-parameter is updated as follows:

$$\theta_i^{k+1} = \theta_i^k - \mu \cdot \frac{\partial I(\boldsymbol{\theta})}{\partial \theta_i}|_{\boldsymbol{\theta} = \boldsymbol{\theta}^k}, \quad \forall i = 1, 2, ..., p,$$
 (6)

Motivations: Calls for Lox-complexity Methods

Problem: For ML schemes, in each iteration, $C^{-1}(\theta)$ has to be re-evaluated with updated $\theta = \theta^k$ and multiplication of $n \times n$ matrices has to be performed for several times.

The computational complexity scales as $\mathcal{O}(n^3)$ impractical for big data!

Motivations: Calls for Lox-complexity Methods

Existing low-complexity GP methods all rely on the use of ML estimation with different types of approximations:

- find a smaller subset $(m \ll n)$ of the complete data set and construct a sparse representation of the original kernel matrix with $\mathcal{O}(m^2n)$ complexity;
- **a** adopt low-rank approximation of the kernel matrices, e.g., hierarchical factoriazation of the covariance matrix into a product of block low-rank updates of the identity matrix with $\mathcal{O}(n\log^2 n)$ complexity;
- **o** employ a number of K local computing units, implement GP models in smaller scale with a subset of data on each local computing unit, and merge the hyper-parameter estimates with $\mathcal{O}(n^3/K^3)$ complexity.

Motivations: Calls for Lox-complexity Methods

Our Aim: a new GP hyper-parameter optimization scheme suitable for big data regime in itself $(\mathcal{O}(n^2))$ without any approximation.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- 2 New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Scheme 1: Hold-out Cross-Validation Based Scheme

We introduce a new GP hyper-parameter optimization scheme by

- replacing ML with CV
- replacing GD with ADMM

We divide the data set \mathcal{D} into two non-overlapping subsets, namely the training set $\mathcal{D}_T = \{ \mathbf{X}_T, \mathbf{y}_T \}$ with $|\mathcal{D}_T| = n_t$ and the validation set $\mathcal{D}_V = \{ \mathbf{X}_V, \mathbf{y}_V \}$ with $|\mathcal{D}_V| = n_V$. The posterior mean of the validation points in \mathcal{D}_V given the training data set \mathcal{D}_T is

$$\bar{\boldsymbol{m}}(\boldsymbol{X}_V;\boldsymbol{\theta}) \triangleq \boldsymbol{K}(\boldsymbol{X}_V,\boldsymbol{X}_T;\boldsymbol{\theta}_h)\boldsymbol{z}_T$$
 (7)

where $\mathbf{z}_T \triangleq \left[\mathbf{K}(\mathbf{X}_T, \mathbf{X}_T; \boldsymbol{\theta}_h) + \sigma_e^2 \mathbf{I}_n \right]^{-1} \mathbf{y}_T$ is our newly introduced auxiliary variable satisfying the nonlinear equality constraint:

$$C(\theta)z_T = y_T. \tag{8}$$

Then optimization problem is then formulated as follows:

$$\boldsymbol{\theta}_{CV} = \arg\min_{\boldsymbol{\theta}} ||\boldsymbol{y}_V - \bar{\boldsymbol{m}}(\boldsymbol{X}_V; \boldsymbol{\theta})||_2^2. \tag{9}$$

Scheme 1: Hold-out Cross-Validation Based Scheme

We use the alternating direction method of multipliers (ADMM) for this optimization task. The augmented Lagrangian function is as follows:

$$L_{\rho}(\boldsymbol{\theta}, \mathbf{z}_{T}, \boldsymbol{\lambda}) \triangleq ||\mathbf{y}_{V} - \mathbf{K}_{VT}(\boldsymbol{\theta}_{h})\mathbf{z}_{T}||_{2}^{2} + \boldsymbol{\lambda}^{T}(\mathbf{C}(\boldsymbol{\theta})\mathbf{z}_{T} - \mathbf{y}_{T}) + \frac{\rho}{2} ||\mathbf{C}(\boldsymbol{\theta})\mathbf{z}_{T} - \mathbf{y}_{T}||_{2}^{2},$$

The complete method consists of a θ -minimization step, a z_T minimization step, and a closed-form dual variable update step. Concretely, in the $(\eta+1)$ -th iteration,

$$\theta^{\eta+1} = \arg\min_{\boldsymbol{\theta}} L_{\rho}(\boldsymbol{\theta}, \mathbf{z}_{T}^{\eta}, \boldsymbol{\lambda}^{\eta}),$$
 (10a)

$$\mathbf{z}_{T}^{\eta+1} = \arg\min_{\mathbf{z}_{T}} L_{\rho}(\boldsymbol{\theta}^{\eta+1}, \mathbf{z}_{T}, \boldsymbol{\lambda}^{\eta}),$$
 (10b)

$$\boldsymbol{\lambda}^{\eta+1} = \boldsymbol{\lambda}^{\eta} + \rho \left[\boldsymbol{C}(\boldsymbol{\theta}^{\eta+1}) \boldsymbol{z}_{T}^{\eta+1} - \boldsymbol{y}_{T} \right]. \tag{10c}$$

Step 1: θ -minimization

We elaborate on the θ -minimization step in the first place. Note that $L_{\rho}(\theta, \mathbf{z}_{T}^{\eta}, \boldsymbol{\lambda}^{\eta})$ is often a non-convex function in terms of θ , and we solve it using GD type update as follows:

$$\boldsymbol{\theta}^{\eta+1} = \boldsymbol{\theta}^{\eta} - \mu_{1} \cdot \nabla_{\boldsymbol{\theta}} L_{\rho}(\boldsymbol{\theta}, \mathbf{z}_{T}^{\eta}, \boldsymbol{\lambda}^{\eta})$$

$$\equiv \boldsymbol{\theta}^{\eta} - \mu_{1} \cdot \nabla_{\boldsymbol{\theta}} \mathbf{g}^{(\eta)}(\boldsymbol{\theta}) \mid_{\boldsymbol{\theta} = \boldsymbol{\theta}^{\eta}}, \tag{11}$$

where μ_1 is a positive step size chosen via Armijo's rule, $\mathbf{g}^{(\eta)}(\theta)$ and its gradient are given in the appendix.

Step 2: z_T -minimization

Second, we elaborate on the \mathbf{z}_T -minimization step. In the subproblem (10b), it is easy to verify that $L_{\rho}(\boldsymbol{\theta}^{\eta+1},\mathbf{z}_T,\boldsymbol{\lambda}^{\eta})$ is a quadratic function of \mathbf{z}_T . Minimizing $L_{\rho}(\boldsymbol{\theta}^{\eta+1},\mathbf{z}_T,\boldsymbol{\lambda}^{\eta})$ with respect to \mathbf{z}_T is equivalent to

$$\arg\min_{\boldsymbol{z}_{T}} \boldsymbol{g}^{(\eta)}(\boldsymbol{z}_{T}) = (\boldsymbol{b}^{\eta})^{T} \boldsymbol{z}_{T} + \boldsymbol{z}_{T}^{T} \boldsymbol{\Sigma}^{\eta} \boldsymbol{z}_{T}, \tag{12}$$

where

$$\mathbf{b}^{\eta} \triangleq \mathbf{C}(\boldsymbol{\theta}^{\eta+1})\boldsymbol{\lambda} - \rho \mathbf{C}(\boldsymbol{\theta}^{\eta+1})\mathbf{y}_{T} - 2\mathbf{K}_{VT}^{T}(\boldsymbol{\theta}_{h}^{\eta+1})\mathbf{y}_{V},$$

$$\boldsymbol{\Sigma}^{\eta} \triangleq \mathbf{K}_{VT}^{T}(\boldsymbol{\theta}_{h}^{\eta+1})\mathbf{K}_{VT}(\boldsymbol{\theta}_{h}^{\eta+1}) + \frac{\rho}{2}\mathbf{C}^{2}(\boldsymbol{\theta}^{\eta+1}).$$

we solve the quadratic minimization problem via conjugate gradient method (CGM).

Step 3: λ -minimization

Lastly, the update of the Lagrange multipliers $\lambda^{\eta+1}$ is conducted in light of (10c) after $\theta^{\eta+1}$ and $\mathbf{z}_T^{\eta+1}$ are obtained.

$$\pmb{\lambda}^{\eta+1} = \pmb{\lambda}^{\eta} + \rho \left[\pmb{C}(\pmb{\theta}^{\eta+1}) \pmb{z}_T^{\eta+1} - \pmb{y}_T \right].$$

where the augmented Lagrangian parameter $\rho \geq 0$ is pre-selected.

Remark: The magnitude of ρ controls the descent speed and the convexity of the ADMM objective function. When a suitable ρ value is difficult to determine, one possible remedy as suggested in [Hong et al., 2016] is to use a smaller ρ' instead of ρ in (10c) for updating the dual variable.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Scheme 2: K-fold Cross Validation Based Scheme

HOCV can be seen as a special case of the more general K-fold CV with K=1. We extend the HOCV scheme to K-fold CV, which is able to generate more robust result and exploit parallel computing.

A Naive Scheme: We can train GP hyper-parameter, $\hat{\theta}_k$, heuristically for every partition, k=1,2,...,K, using the same routine in the HOCV based scheme, and average the results to get $\theta_{CV}=1/K\cdot\sum_{k=1}^K\hat{\theta}_k$.

A Principled Scheme: Alternatively, we can formulate an optimization problem for the same purpose but with sound rationale, by introducing some local copies of θ and solve the following linear equality-constrained optimization problem:

$$\theta_{CV} = \arg\min_{\theta_1,...,\theta_K} \sum_{k=1}^K I_k(\theta_k)$$
s.t. $\theta_1 = \theta_2 =, ..., = \theta_K = \mathbf{z}$, (13)

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Complexity Analysis

HOCV based scheme: Updating one particular element of hyper-parameter (out of p) involves the computations of $\frac{\partial K_{VT}(\theta_h)}{\partial \theta_h} \mathbf{z}_T^{\eta}$, $K_{VT}(\theta_h)z_T^{\eta}$, $\frac{\partial K_{TT}(\theta_h)}{\partial \theta_t}z_T^{\eta}$, $K_{TT}(\theta_h)z_T^{\eta}$ and some cheap vector inner products, with the computational complexity scales as $\mathcal{O}(n_v \cdot n_t + n_t^2) = \mathcal{O}(n \cdot n_t)$ for this step. Similarly, updating the auxiliary parameter \mathbf{z}_T also scales as $\mathcal{O}(n_v \cdot n_t + n_t^2) = \mathcal{O}(n \cdot n_t)$. The third step involves only a closed-form update, whose complexity scales as $\mathcal{O}(n_t^2)$. Therefore, the overall computational complexity for running one complete ADMM iteration scales as $\mathcal{O}(p \cdot n \cdot n_t) \approx \mathcal{O}(n^2)$ for $p \ll n$, which is much lower than $\mathcal{O}(n^3)$.

K-fold CV based scheme: Each local computing unit updates a copy of the global variable, θ_i , requiring approximately $\mathcal{O}(n^2)$ complexity according to the above analysis. A central node performs certain consensus operation. The total complexity remains low for practical K and p values.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Experimental Results: Synthetic Data

Comparison: GPCV-ADMM vs. GPML

Synthetic Data: We generated synthetic data sets from

- (1) squared exponential (SE) kernel,
- (2) local periodic (LP) kernel, and
- (3) a composite SE plus LP (SE+LP).

For each kernel configuration with fixed sample size n = 500, 1000, 2000, (with the primary purpose to verify the reduced complexity), we ran 50 independent Monte Carlo trials.

Experimental Results: Synthetic Data

A Monitoring View in Training

Experimental Results: Estimation Performance

Methods	GPCV-ADMM		GPML	
Kernel	Hyper-parameter Estimates (std)	Test MSE (std)	Hyper-parameter Estimates (std)	Test MSE (std)
SE	True hyper-parameter setting: $I = 0.5$			
(n=500)	[0.36 (0.054)]	0.34(0.044)	[0.52(0.018)]	0.36(0.055)
(n=1000)	[0.50 (0.044)]	0.3402(0.038)	[0.498 (0.017)]	0.3720(0.043)
(n=2000)	[0.503(0.017)]	0.35(0.026)	[0.53(0.02)]	0.37 (0.0267)
LP	True hyper-parameter setting: $I = 0.5, p = 1$			
(n=500)	[0.34(0.023),1.13(0.08)]	0.36(0.069)	[0.55(0.052),1.06(0.090)]	0.60(0.12)
(n=1000)	[0.39 (0.014), 1.06 (0.063)]	0.41(0.058)	[0.52(0.058),1.16(0.13)]	0.67(0.073)
(n=2000)	[0.44(0.082),1.19(0.008)]	0.51(0.02)	[0.53(0.013),1.02(0.019)]	0.52(0.048)
SE+LP	True hyper-parameter setting: $l_1 = 3, l_2 = 1, p = 2$			
(n=500)	[3.73(0.28),0.94(0.10),2.38(0.15)]	0.42(0.083)	[3.62(0.63), 1.08(0.21),2.38(0.86)]	0.46(0.07)
(n=1000)	[3.74(0.25),0.95(0.11),2.14(0.09)]	0.36(0.053)	[3.61(0.56),1.05(0.18),2.27(0.60)]	0.39(0.054)
(n=2000)	[3.94(0.075),0.99(0.12),2.1(0.08)]	0.59(0.2)	[3.69(0.39),1.09(0.13),2.13(0.29)]	0.61(<mark>0.19</mark>)

Table: Quantitative comparisons between the GPCV-ADMM and GPML methods across nine synthetic data sets (combining three kernels and three data lengths).

The results show that GPCV-ADMM hyper-parameter estimates are fairly close to both GPML estimates and the true values. According to the Monte Carlo simulation results, GPCV-ADMM estimation is more robust, with smaller sample standard deviation of both hyper-parameter estimator and the test MSE.

February 17, 2019

Experimental Results: Convergence Performance

Sample convergence plots of one particular Monte-Carlo trial (SE / LP / SE+LP)

- (1) a representative GP hyper-parameter,
- (2) the L_2 norm of the auxiliary variable, $||z_T||_2$,
- (3) the inequality gap, defined as $||\mathbf{z}_T [\mathbf{K}(\mathbf{X}_T, \mathbf{X}_T; \boldsymbol{\theta}_h) + \sigma_e^2 \mathbf{I}_n]^{-1} \mathbf{y}_T||_2^2$, and
- (4) the ADMM objective value, $L_{\rho}(\theta^*, \mathbf{z}_T^*, \boldsymbol{\lambda}^*)$

4 D > 4 B > 4 E > 4 E > E 990

Experimental Results: Computational Complexity

We want to test whether a quadratic increase in the computational time (CT) would be witnessed when we doubling the data size.

We compare the scaling factor criterion (defined as $\frac{CT_A/CT_B}{n_A/n_B}$, where B stands for our baseline data sets with n = 500, and A stands for data sets with greater sample size $n_A = 1000, 2000$). A greater scaling factor means that the algorithm scales worse when data size goes up.

It is clear that the scaling factor of GPML is consistently larger than that of GPCV-ADMM. The quadratic increase of the CT of GPCV-ADMM and the cubic increase of the CT of GPML would become more apparent as data size increases.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Experimental Results: Atmospheric CO₂

Fitting and prediction performance test on $\it CO_2$ concentration data, tuned with SE+LP kernel setting.

- GPML reference estimates: $l_1 = 67$ years, $l_2 = 90$ years, $l_3 = 1.3$ standardized training MSE 0.95, standardized test MSE = 1.408.
- GPCV-ADMM estimates: $l_1=27$ years, $l_2=51$ years, $l_3=1.26$ standardized training MSE 0.85, standardized test MSE = 1.307.

- Motivations
 - GP Basics and GP Regression
 - Hardcore Problem in GP Hyper-parameter Tuning
- New Schemes
 - Hold-out Cross-Validation Based Scheme
 - K-fold Cross Validation Based Scheme
 - Complexity Analysis
- 3 Experimental Results
 - Synthetic Data
 - Real Atmospheric CO₂ Concentration Data
- 4 Outlook

Summary

We proposed two plain CV based GP hyper-parameter optimization schemes with reduced $O(n^2)$ computational complexity

- without any approximation like the existing low-complex schemes
- have robust performance
- extremely easy to implement
- can exploit multi-core processing of modern computing platforms

Outlook

More sophisticated designs, using for instance new-fashioned numerical search (e.g., ADAM), distributed data processing, and information consensus strategies, could bring in further acceleration and stability of our current vanilla version.

Thanks for your attention!

Appendix: Partial Derivatives and Gradient

The expression of $\mathbf{g}^{(\eta)}(\theta)$ used for updating GP hyper-parameter θ in (12) is as follows,

$$\mathbf{g}^{(\eta)}(\theta) = -2 \cdot \mathbf{y}_{V}^{T} \mathbf{K}_{VT}(\theta_{h}) \mathbf{z}_{T}^{\eta}$$

$$+ (\mathbf{z}_{T}^{\eta})^{T} \mathbf{K}_{VT}(\theta_{h})^{T} \mathbf{K}_{VT}(\theta_{h}) \mathbf{z}_{T}^{\eta}$$

$$+ \lambda^{T} \mathbf{K}_{TT}(\theta_{h}) \mathbf{z}_{T}^{\eta}$$

$$+ \rho (\sigma_{e}^{2} \mathbf{z}_{T}^{\eta} - \mathbf{y}_{T})^{T} \mathbf{K}_{TT}(\theta_{h}) \mathbf{z}_{T}^{\eta}$$

$$+ \frac{\rho}{2} (\mathbf{z}_{T}^{\eta})^{T} \mathbf{K}_{TT}(\theta_{h}) \mathbf{K}_{TT}(\theta_{h}) \mathbf{z}_{T}^{\eta}.$$

$$(14)$$

Appendix: Partial Derivatives and Gradient

For each element of θ , denoted as θ_i , its partial derivative is computed as:

$$\frac{\partial \mathbf{g}^{(\eta)}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i}} = -2 \cdot \mathbf{y}_{V}^{T} \frac{\partial \mathbf{K}_{VT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{z}_{T}^{\eta}
+ (\mathbf{z}_{T}^{\eta})^{T} \frac{\partial \mathbf{K}_{VT}^{T}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{K}_{VT}(\boldsymbol{\theta}_{h}) \mathbf{z}_{T}^{\eta}
+ (\mathbf{z}_{T}^{\eta})^{T} \mathbf{K}_{VT}^{T}(\boldsymbol{\theta}_{h}) \frac{\partial \mathbf{K}_{VT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{z}_{T}^{\eta}
+ \lambda^{T} \frac{\partial \mathbf{K}_{TT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{z}_{T}^{\eta}
+ \rho(\sigma_{e}^{2} \mathbf{z}_{T}^{\eta} - \mathbf{y}_{T})^{T} \frac{\partial \mathbf{K}_{TT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{z}_{T}^{\eta}
+ \frac{\rho}{2} (\mathbf{z}_{T}^{\eta})^{T} \mathbf{K}_{TT}(\boldsymbol{\theta}_{h}) \frac{\partial \mathbf{K}_{TT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{z}_{T}^{\eta}
+ \frac{\rho}{2} (\mathbf{z}_{T}^{\eta})^{T} \frac{\partial \mathbf{K}_{TT}(\boldsymbol{\theta}_{h})}{\partial \boldsymbol{\theta}_{i}} \mathbf{K}_{TT}(\boldsymbol{\theta}_{h}) \mathbf{z}_{T}^{\eta}.$$
(15)

Appendix: Expressions for the Selected Kernels

• Squared Exponential (SE) Kernel (I = 0.5)

SE kernel is usually regarded as the default kernel for GP models, due to its great universality as well as many good properties such as infinite many derivatives. The lengthscale *I* in an SE kernel specifies the width of the kernel and thereby determines the smoothness of the functions in the model.

$$K_{se}(x, x') = \sigma^2 exp(-\frac{(x - x')^2}{2l^2})$$
 (16)

Appendix: Expressions for the Selected Kernels

of the repeating pattern to evolve over time.

• Locally Periodic (LP) Kernel (l=0.5, p=1)
Periodicity is another important pattern that people always get interested, especially in modeling time series data. Most periodic kernel functions don't repeat themselves exactly. Therefore a local kernel with a periodic kernel,

combined to form a locally periodic kernel, is considered to allow the shape

$$K_{Ip}(x,x') = \sigma^{2} exp(-\frac{2sin^{2}(\pi|x-x'|/p)}{I^{2}})exp(-\frac{(x-x')^{2}}{2I^{2}})$$
(17)

Appendix: Expressions for the Selected Kernels

• Composite (SE + LP) Kernel ($l_1 = 4$, $l_2 = 3$, p = 2) One good thing about using kernel function is its flexibility in combining various kernel components, which allows multiplications and/or additions over different kernels to capture different features of the data. In our experiments, we added up one SE kernel and one LP kernel to model local periodicity with trend.

$$K_{se+lp}(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2l_1^2}\right) + \sigma^2 \exp\left(-\frac{2\sin^2(\pi|x-x'|/p)}{l_2^2}\right) \exp\left(-\frac{(x-x')^2}{2l_2^2}\right)$$
(18)