经济管理学院

课程报告

(复杂网络与社会计算)

题目:	week2 课程作业
课程教师:	赵吉昌
学院/专业:	信息管理与信息系统
学生姓名:	范春

学 号: 21377061

2024年3月7日

1、下载如下不同的网络数据,利用 networkx 进行初步的结构分析,如比较平均度,密度、聚集系数、度分布(包括幂指数)等的差异。结合实际的数据背景,分析这些差异的可能含义。

针对上述问题, 我编写代码进行了相关计算, 结果如下:

	as-skitter	HR-edges	HU-edges	RO-edgers
顶点数	1696415	54573	47538	41773
边数	11095298	498202	222887	125826
密度	7.710899e-06	0.00033457	0.00019726	0.00014422
平均度	13.080877	18.258186	9.377214	6.024274
聚集系数	0.258147	0.136477	0.116187	0.091212
幂律分布系数γ	2.342975	4.717437	4.926857	4.270884
幂律分布系数 p	0.009492	0.114942	0.091595	0.089588

其度分布及幂律分布图分别如下所示:

图 1 as-skitter

图 2 HR-edges

图 3 HU-edges

图 4 RO-edgers

由上表及上图可知, as-skitter 对应的网络规模最大,但其密度最小,说明该网络图的稠密情况最低,而它的聚集系数是最大的,表明该网络节点之间的联系最为紧密。在这四个网络中,聚集系数都随着节点数和边数的减小而减小,幂律分布系数γ,即幂律指数都比较接近3,但与3的差距还是有点大。

2、参照 1 中的文献,用 BA 模型生成对应规模的网络,并比较其与上述实际网络的异同。

	as-skitter	HR-edges	HU-edges	RO-edgers
顶点数	1696415	54573	47538	41773
边数	10178454	491076	190136	125310
密度	7.0737e-06	0.00032979	0.00016828	0.00014363
平均度	11.999958	17.9970315	7.99932685	5.9995691
聚集系数	0.000113	0.00270579	0.00174287	0.00173006

幂律分布系数γ	3.003983	3.015271	2.98981	3.105795
幂律分布系数 p	0.013665	0.042772	0.085156	0.05772

经过对比发现,用 BA 模型生成的对应规模的网络的聚集系数远小于实际网络,另外模拟生成的网络的幂律指数比实际网络更接近 3,满足无标度性。

3、尝试计算上述网络的平均最短路径。如果 networkx 太慢,有无别的方式可以进行相对快速的可靠估计?

计算出了部分数据的平均最短路径,结果如下:

HR-edges	HU-edges	RO-edgers
4.506565884550811	5.3409423368686895	6.348893165004872

由于 networkx 太慢,所以并未计算文本文件数据的平均最短路径。由上述计算结果可以初步判定,网络规模越大,其平均最短路径反而越小,具备小世界效应。针对计算速度较慢的问题,我们可以采用 Monte Carlo 方法。该方法的具体步骤如下:

- (1) 选择一个起始节点, 然后从该节点开始进行随机游走;
- (2) 在每一步中, 随机选择一个邻居节点进行移动;
- (3) 重复上述步骤多次,记录每次游走所经过的节点和路径长度;

(4)对于每对节点,计算它们之间的平均距离,并最终计算整个网络的平均最 短路径长度。

具体代码如下:

```
def monte_carlo_shortest_path_length(G, num_samples=1000):
    total_length = 0
    count = 0
    for _ in range(num_samples):
        node1, node2 = random.sample(list(G.nodes), 2)
        try:
            length = nx.shortest_path_length(G, node1, node2)
            total_length += length
            count += 1
        except nx.NetworkXNoPath:
            continue
    avg_length = total_length / count if count > 0 else 0
    return avg_length
```

估计结果如下,与实际计算结果非常接近,估计效果良好。

```
PS C:\Users\范春> & C:/Anaconda3/python.exe c:/Users/范春/Desktop/1.py
Estimated average shortest path length: 4.518
HR_edges is ok!
Estimated average shortest path length: 6.343
RO_edges is ok!
Estimated average shortest path length: 5.307
HU_edges is ok!
```