De la roca al hidrocarburo: ¿dónde hacer un pozo?

Presentan:

- Bruno Inguanzo
- Emanuel Pinasco
- Javier Valdez
- Matías Vergara

Ubicación geográfica de los yacimientos analizados, elaboración propia.

Industria del Oil & Gas

† 2-3%

(demanda de petróleo 2025)

† 35mil M m³

(demanda de GN 2025)

↓ 64 plataformas

(en América del Norte)

↓51% producción

(en Vaca Muerta)

Registros del pozo

Muestras del núcleo

40% del costo total

¿Se puede modelar?

¿Qué variables geológicas predicen una mayor/menor capacidad de almacenamiento de hidrocarburos?

Dataset

(442 filas, 20 variables) —— (407 filas, 8 variables)

ANTES

DESPUES

Variables Numéricas

latitud	longitud	profundidad [km]	espesor_bruto[km]	espesor_neto[km]	porosidad [%]	permeabilidad [mD]
-38,4 : 76,4	-151,6 : 148,41	0,07 : 6,06	0,006 : 3,810	0,0006 : 0,79	1,1 : 35	0,01:2000

Variables Categóricas

Variable target 🔲 Variables de interés

Limpieza y tratamiento de datos

Reducción de categorías:

- Litología | 17 cats. → 4 cats.
- Período geológico | 28 cats. → 8 cats.
 - Criterio cronológico
- Régimen tectónico | 61 cats. → 3 cats.
 - Agrupado por interacciones entre placas.

Depuración de datos:

- Exclusión de inconsistencias (espesor neto > espesor bruto).
- Outliers de porosidad (rango normal: 0%-30%).
- Valores extremos de permeabilidad (> Percentil 95).

Análisis Exploratorio

Períodos más tardíos están más sesgados a la izquierda

Arenisca:

- Correlación negativa:
- + profundidad, porosidad.

Caliza:

Concavidad negativa

Dolomita:

- Correlación negativa más marcada
- Valores bajos de porosidad

Otras:

Más dispersión

A mayor PERMEABILIDAD,
 la porosidad crece más lento.

- Fuerte sesgo a derecha
- Valores atípicos muy altos

Logaritmo

- Estabiliza varianza
- Reduce la influencia de valores extremos
- Objetivo: regresión lineal

Con distintas inclinaciones, se observa una correlación negativa

Análisis Profundo

Litología	Pendiente Porosidad vs Profundidad	Intercepto
Arenisca	-1.9%/km ***	11% ***
Dolomita	-0.9%/km.	6.9% **
Caliza	-0.2%/km	5.8% ***
Otras	2%/km **	6.5% *

Porosidad = Profundidad * Litología + Log(Espesor bruto) * Región + Log(Permeabilidad) + Litología + Período geológico

País	Pendiente Porosidad vs Log(Espesor bruto)	
Europa	-1.5% ***	
Medio Oriente	-2% ***	
Ex Unión Soviética	-0.7% *	

A mayor espesor, mayor cementación y cambio de litología vertical.

Medio Oriente presenta una mayor *diagénesis*.

Porosidad = Profundidad * Litología + Log(Espesor bruto) * Región + Log(Permeabilidad) + Litología + Período geológico

En promedio, por cada unidad logarítmica de permeabilidad, aumenta 1% la porosidad.

Porosidad = Profu

Profundidad * Litología

Log(Espesor bruto) * Región

Log(Permeabilidad)

Litología

+

+

Período geológico

Período geológico	Intercepto
Proterozoico-Devónico (2500-358 Ma)	11% ***
Carbonífero (358-298 Ma)	15% ***
Pérmico (298-252 Ma)	14% **
Triásico (252-201 Ma)	13%

Período geológico	Intercepto
Jurásico (201-145 Ma)	16% ***
Cretácico (145-66 Ma)	18% ***
Paleógeno (66-23 Ma)	18.5% ***
Neógeno (23-2 Ma)	21.5% ***

A mayor antigüedad hay, en promedio, una menor porosidad.

Conclusiones

Existen variables geológicas que predicen una mayor/menor capacidad de almacenamiento de hidrocarburos.

Porosidad:

- ↓ ↓ con espesor bruto (relación atenuada en extremos) y profundidad.
- ↑ ↑ con permeabilidad (relación casi 1:1).
- ↑ ↑ en areniscas y unidades más jóvenes.

Relevancia:

- Logs históricos y pruebas de campo permiten estimar calidad con confianza.
- Reservorios profundos o antiguos requieren estrategias específicas.

Futuro:

- Mejorar balance de categorías.
- Aumentar el número de observaciones.
- Incluir otras variables: presión, temperatura, facies, trampas geológicas.
- Modelar nuevos índices de calidad.

¡Muchas gracias por su atención!

¿Preguntas?

brunoinguanzo14@gmail.com javiervaldez145@gmail.com pinascoemanuel@gmail.com mavergaravicencio@estudiantes.unsam.edu.ar