Sovereign Partial Default in Continuous Time

Sangdong Kim Gabriel Mihalache

The Ohio State University

2023 A. Stockman University of Rochester Alumni Conference

What We Do

- Continuous time analysis and solution methods for the *partial default* quantitative theory of Arellano, Mateos-Planas, and Ríos-Rull (2023, JPE)
- Partial default theory consistent with...
 - endogenous length of default crisis,
 - exiting the crisis with a high debt level compared to outset, arrears,
 - implicit seniority among creditors, Schleg, Trebesch, and Wright (2019)
- Computation with
 - Upwind finite difference scheme, Achdou et al. (2022, ReStud)
 - Deep neural network, Maliar, Maliar, and Winant (2021, JME)

Partial Default

- Sovereign chooses with discretion what share of the *due debt service payment* to make. Default on flow, not on stock.
- The share of payment not made accumulates as *arrears*, extra debt.
- Convex penalty function of default with discontinuity at 0, *inaction region*,
- No "market exclusion," sovereign can issue new bond units at all times, at prices at which lenders break even in expectation.

In discrete time:

$$c_t = \phi(\mathbf{d}_t)z_t - (1 - \mathbf{d}_t)b_t + q_t\ell_t$$
$$b_{t+1} = (1 - \delta)b_t + \kappa \mathbf{d}_t b_t + \ell_t$$

The Sovereign

$$\begin{split} V(B_0, z_0) &= \max_{\{c_t, d_t\}_{t \in [0, \infty]}} \mathbb{E}_0 \left\{ \int_0^\infty e^{-\rho t} u(c_t) dt \right\} \\ \text{s.t.} \quad c_t &= \phi \left(d_t, z_t \right) e^{z_t} - \left(1 - d_t \right) \left(\delta + \lambda \right) B_t + q_t \ell_t \\ \frac{dB_t}{dt} &= -\delta B_t + \kappa \left(\delta + \lambda \right) d_t B_t + \ell_t \end{split}$$

The Sovereign

$$V(B_0, z_0) = \max_{\{c_t, d_t\}_{t \in [0, \infty]}} \mathbb{E}_0 \left\{ \int_0^\infty e^{-\rho t} u(c_t) dt \right\}$$
s.t.
$$c_t = \phi \left(d_t, z_t \right) e^{z_t} - \left(1 - d_t \right) \left(\delta + \lambda \right) B_t + q_t \ell_t$$

$$\frac{dB_t}{dt} = -\delta B_t + \kappa \left(\delta + \lambda \right) d_t B_t + \ell_t$$

Consumption c_t :

- GDP: $\phi(d_t, z_t) e^{z_t}$
- Debt service payment (minus): $(1 d_t) (\delta + \lambda) B_t$
- New issuance proceeds: $q_t \ell_t$

The Sovereign

$$V(B_0, z_0) = \max_{\{c_t, d_t\}_{t \in [0, \infty]}} \mathbb{E}_0 \left\{ \int_0^\infty e^{-\rho t} u(c_t) dt \right\}$$
s.t.
$$c_t = \phi \left(d_t, z_t \right) e^{z_t} - \left(1 - d_t \right) \left(\delta + \lambda \right) B_t + q_t \ell_t$$

$$\frac{dB_t}{dt} = -\delta B_t + \kappa \left(\delta + \lambda \right) d_t B_t + \ell_t$$

Drift of debt dB_t/dt :

- Maturing debt (minus): δB_t
- Arrears: $\kappa (\delta + \lambda) d_t B_t$
- New issuance: ℓ_t

The Sovereign: HJB and FOCs

$$\rho V(B,z) = \max_{c,d \in [0,1]} \left\{ u(c) + S(B,z,c,d,q) V_B(B,z) - \mu z V_z(B,z) + \frac{\sigma^2}{2} V_{zz}(B,z) \right\}$$
(1)
$$S(B,z,c,d,q) \equiv \frac{c - \phi(d,z) e^z}{a(B,z)} + \left[\left(\frac{1}{a(B,z)} + \left(\kappa - \frac{1}{a(B,z)} \right) d \right) (\delta + \lambda) - \delta \right] B$$

The Sovereign: HJB and FOCs

$$\rho V(B,z) = \max_{c,d \in [0,1]} \left\{ u(c) + S(B,z,c,d,q) V_B(B,z) - \mu z V_z(B,z) + \frac{\sigma^2}{2} V_{zz}(B,z) \right\}$$
(1)

$$S(B,z,c,d,q) \equiv \frac{c - \phi(d,z) e^{z}}{q(B,z)} + \left[\left(\frac{1}{q(B,z)} + \left(\kappa - \frac{1}{q(B,z)} \right) d \right) (\delta + \lambda) - \delta \right] B$$

FOCs:

$$c^*(B,z) = u_c^{-1} \left(-\frac{V_B(B,z)}{q(B,z)} \right)$$
 (2)

$$d_{\text{int}}^*(B,z) = \min\left\{1, \, \phi_d^{-1}\left(\left(1 - \kappa \, q(B,z)\right)\left(\delta + \lambda\right) \frac{B}{e^z}, \, z\right)\right\} \tag{3}$$

International Lenders

$$q_t = \mathbb{E}_t \int_t^\infty e^{-(r+\delta)(s-t) + \int_t^s \kappa(\delta+\lambda) d_\tau d\tau} (\delta+\lambda) (1-d_s) d_s$$

$$\xi(d^*(B,z))q(B,z) = (1 - d^*(B,z))(\lambda + \delta) + \tilde{S}(B,z)q_B(B,z) - \mu z q_z(B,z) + \frac{\sigma^2}{2}q_{zz}(B,z)$$
(4)

With,

- Effective discount rate, inclusive of arrears: $\xi(d) \equiv r + \delta \kappa(\delta + \lambda)d$
- Equilibrium drift of debt: $\tilde{S}(B,z)$

Equilibrium

A Markov Perfect Equilibrium consist of

- the sovereign's value function V(B, z),
- policy functions for consumption and default, $c^*(B, z)$ and $d^*(B, z)$, and
- the bond price function q(B, z),

such that

- given q and V, the policies satisfy FOCs (2) and (3),
- \blacksquare given q and policies, the sovereign's value satisfies the HJB equation (1), and
- given policy functions, the bond price satisfies equation (4).

Ergodic Distribution (KFE)

Kolmogorov Forward Equation

$$\frac{\partial}{\partial t}f(B,z,t) = -\frac{\partial}{\partial B}\left[\tilde{S}(B,z)f(B,z,t)\right] + \frac{\partial}{\partial z}\left[\mu z f(B,z,t)\right] + \frac{\sigma^2}{2}\frac{\partial^2}{\partial z^2}f(B,z,t)$$

Ergodic distribution f^* satisfies

$$0 = -\frac{\partial}{\partial B} \left[\tilde{S}(B, z) f^*(B, z) \right] + \frac{\partial}{\partial z} \left[\mu z f^*(B, z) \right] + \frac{\sigma^2}{2} \frac{\partial^2}{\partial z^2} f^*(B, z)$$

Calibration

Parameter	Value	Comment
Preferences		
ν	2.0	AMPRR
ρ	0.047	Implied discount rate
Debt		_
δ	0.13	Macaulay duration
κ	0.7	Partial default haircut
r	0.039	Ct. compounding rate
λ	r	Normalization
Endowment I	Process	
μ	0.221	Time aggregation of
σ	0.062	AMPRR AR(1)
Default Penal	ty	
γ_0	0.0476	AMPRR
γ_1	2.0	AMPRR
γ_2	0.12	AMPRR
ž	-0.062	AMPRR

$$dz_t = -\mu z_t dt + \sigma dW_t$$

(Ornstein-Uhlenbeck with $[\underline{z}, \overline{z}]$ barriers)

$$u\left(c_{t}\right) = \begin{cases} \frac{c_{t}^{1-\nu}}{1-\nu} & \text{if } \nu \neq 1\\ \log c_{t} & \text{if } \nu = 1 \end{cases}$$

$$\begin{split} \phi\left(d_{t},z_{t}\right) &= \left(1-\gamma_{0}d_{t}^{\gamma_{1}}\right) \times \\ &\left[1-\left(z_{t}-\tilde{z}\right)\gamma_{2}\mathbb{1}_{\left\{d_{t}>0\text{ and }z_{t}>\tilde{z}\right\}}\right] \end{split}$$

Computation: Two Methods

Today, deep neural network:

- Neural network inputs < B, z >, outputs < V, q, c >
- Minimize minibatch residuals of HJB for *V*, HJB for *q*, and FOC for *c*
- Stochastic gradient descent
- Method amenable to extensions with many state variables

Work in progress, *upwind finite difference scheme*:

- Fast and precise
- Use in literature on traditional default models in continuous time, Hurtado, Nuño, and Thomas (2023, JEEA) and Borstein (2020, JEDC)

Preliminary Results: Default Policy

■ Inaction zone (d = 0) dark blue, no debt service (d = 1) in yellow. Intermediate intensities in blue-green range.

Preliminary Results: Drift of B

■ Borrow aggressively when debt is low and endowment is low, reduce debt at high debt and/or high endowment. Keep B in place at S = 0, mid-green.

Preliminary Results: Value Function and Consumption

■ Value and consumption increasing in endowment (*z*) and decreasing in debt (*B*)

Preliminary Results: Bond Price and Spreads

 \blacksquare Spreads decreasing in endowment (*z*) and increasing in debt (*B*)