# Zastosowanie metod typu 'ab-initio' do badania właściwości materiałów

dr inż. Krzysztof Zberecki





WYKŁAD 1 – Wstęp



- Główny cel nabycie praktycznych umiejętności korzystania ze współczesnych metod obliczania właściwości materiałów
- Wykład część teoretyczna (10)
- Laboratorium część praktyczna (5)
- Problemy
  - struktura elektronowa ciała stałego
  - zjawiska dynamiczne w ciele stałym
  - ...
- Narzędzia
  - metoda funkcjonału gęstośći (DFT)
  - praktyczna realizacja DFT metoda Kohna-Shama

# Plan wykładu

- 1. Wstęp i cele, przedstawienie problemu
- 2. Metoda T-F, przedstawienie formalizmu DFT twierdzenie H-K i metoda K-S
- 3. Podstawowe metody obliczania struktury pasmowej ciał stałych OPW, APW
- 4. Szczegóły metody DFT
- 5. Metoda FLAPW/APW+lo, metoda pseudopotencjału
- 6. Omówienie kodów numerycznych
  - WIEN2k (pełny potencjał)
  - ABINIT, QuantumEspresso (pseudopotencjał)
  - Siesta (pseudopotencjał + zlokalizowana baza)
- Przegląd literatury
- 8. Zakończenie perspektywy



- Rola symulacji komputerowych
  - Zapewniają tak ilościowe jak i jakościowe wyniki
  - Pozwalają przenieść eksperymenty z laboratorium do komputera
- Moc obliczeniowa prawo Moore'a
- Związek modelu z symulacją i eksperymentem





### **Ab-Initio**

- Metody obliczeniowe z pierwszych zasad nie zawierają żadnych danych empirycznych (R. Parr, 1950)
- W tym przypadku metody oparte o DFT
- Pozwalają uzyskać przy użyciu podejścia mikroskopowego wielkości mierzalne eksperymentalnie
- W tym przypadku
  - Struktura pasmowa
  - Dynamika sieci widmo fononów
  - Zjawiska optyczne
  - •
- "Use-inspired basic research"

|                                            |     | Conside    | rations of use?                            |
|--------------------------------------------|-----|------------|--------------------------------------------|
|                                            |     | No         | Yes                                        |
| Quest for<br>fundamental<br>understanding? | No  |            | Pure applied<br>research ( <b>Edison</b> ) |
|                                            | Yes | (Bohr)     | (Pasteur)                                  |
|                                            |     | research   | basic research                             |
|                                            |     | Pure basic | Use-inspired                               |



## Cel, podejście, metoda



### Skale



## Ciało stałe – niezbędne podstawy

- Budowa
  - sieć krystaliczna
  - symetrie
- Struktura elektronowa
  - sieć odwrotna
  - struktura pasmowa
- Wiązania w ciele stałym
  - jonowe, kowalencyjne, metaliczne, molekularne
- Układ kwantowy
  - wiele cząstek
  - oddziaływania
  - pole średnie



#### Ciało stałe – budowa

- Ciało stałe: krystaliczne vs. amorficzne
- Ciało krystaliczne: monokryształ vs. polikryształ
- Sieć krystaliczna
  - układ atomów charakterystyczny dla danego ciała stałego
  - sieć krystaliczna = sieć Bravais + baza
  - komórka elementarna vs. komórka prymitywna
- Symetrie:
  - grupa puktowa vs. grupa przestrzenna
- Parametry charakt. strukt. krystaliczną
  - parametry sieci, liczba koordynacyjna, odległości między atomami, liczba atomów w komórce, współczynnik upakowania, ...



#### Ciało stałe – budowa



sieć + baza = struktura





GaAs

Si



#### Ciało stałe – struktura elektronowa

- Kryształ ma strukturę periodyczną
- Stany elektronowe w krysztale można w przybliżeniu średniego pola otrzymać z rozwiązania jednocząstkowego równania Schroedingera z potencjałem efektywnym mającym periodykę sieci krystalicznej
- Tw. Blocha: każdy stan elektronowy w krysztale jest scharakteryzowany przez wektor falowy  $\vec{k}$ , funkcja falowa stanowi zmodyfikowaną falę płaską z modulacją określoną przez sieć krystaliczną

$$\Psi_k(\overrightarrow{r}) = e^{i\overrightarrow{k}\cdot\overrightarrow{r}}u_k(\overrightarrow{r})$$

- Dozwolone wartości wektora  $\vec{k}$  można znaleźć wykorzystując periodyczne warunki brzegowe
- Wektory falowe  $\vec{k}$  można wyrazić za pomocą liniowych kombinacji wektorów podstawowych sieci odwrotnej

Christina alaktronoma ajala atalaga zatam rámniaż zalażni ad I



#### Ciało stałe – struktura elektronowa







- Istnienie ciał stałych świadczy o występowaniu sił międzyatomowych
- W zależności od wzajemnego oddziaływania atomów (jonów) wyodrębnia się:
  - wiązania jonowe występują między atomami różniącymi się znacznie

elektroujemnością (np. NaCl)



(-)

wiązania kowalencyjne – czysto kwantowe, występują np. w półprzewodnikach III-V (np. GaAs), półprzewodnikach IV grupy ukł. okr. (np. Ge,Si), cząsteczkach pierwiastków (np. F)



- wiązania metaliczne występują w metalach (np. Fe)
- wiązania molekularne (van der Waalsa) występują w kryształach molekularnych (np. zestalonych gazów szlachetnych)



- State uktad kwarttowy
  Kwantowy układ wielu cząstek
  - funkcja falowa
  - zasada wariacyjna
- Problemy interpretacyjne
  - "katastrofa Van Vlecka"
- zagadnienie wieloelektronowe w ciele stałym
  - hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_i \nabla_i^2 - \sum_I \frac{\hbar^2}{2M_I} \nabla_I^2 - \sum_{i,I} \frac{Z_I e^2}{\mid \overrightarrow{r_i} - \overrightarrow{R_I} \mid} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{\mid \overrightarrow{r_i} - \overrightarrow{r_j} \mid} + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{\mid \overrightarrow{R_I} - \overrightarrow{R_J} \mid}$$

niezbędne przybliżenia



# **Appendix**







### **Podsumowanie**

