Business Report

Index-

Part 2 - PCA:

2.1-Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

Page - (3-5)

- 2.2- Perform detailed exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? Page (6-7)
- 2.3-We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

Page - (7)

- 2.4- Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment

 Page –(8)
- 2.5- Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get Eigen values and Eigen vector.

 Page (9-12)
- 2.6- Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

 Page (12)
- 2.7- Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables

 Page (13-16)
- 2.8- Write linear equation for first PC.

Page - (16)

2.1-Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

Answer

Data has 640 rows and 61 columns.

Let's check few of the records from dataset.

	State Code	Dist.Code	State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_I	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F	NON_WORK_M N	VON_WORK_F
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3		1150	749	180	237	7 680	252	32	46	258	214
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	ae.	525	715	123	229	186	148	76	178	140	160
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	344	114	188	44	89	3	34	0	4	67	61
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0		194	247	61	120	3 13	50	4	10	116	59
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20		874	1928	465	1043	3 205	302	24	105	180	478

Let's check what are available columns in data set and there data types-

#	Column	Non-Null Count					
0	State Code	640 non-null	int64				
1	Dist.Code	640 non-null	int64	31	MARG_CL_M	640 non-null	int64
2	State	640 non-null	object	32	MARG CL F	640 non-null	int64
3	Area Name	640 non-null	object	33	MARG AL M	640 non-null	int64
4	No_HH	640 non-null	int64	34	MARG_AL_F	640 non-null	int64
5	TOT M	640 non-null	int64	35	MARG HH M	640 non-null	int64
6	TOT_F	640 non-null	int64	36	MARG_HH_F	640 non-null	int64
7	M 06	640 non-null	int64	37	MARG_OT_M	640 non-null	int64
8	F_06	640 non-null	int64	38	MARG OT F	640 non-null	int64
9	M_SC	640 non-null	int64	39	MARGWORK_3_6_M	640 non-null	int64
10	F SC	640 non-null	int64	40	MARGWORK_3_6_F	640 non-null	int64
11	M_ST	640 non-null	int64	41	MARG_CL_3_6_M	640 non-null	int64
12	F_ST	640 non-null	int64	42	MARG_CL_3_6_F	640 non-null	int64
13	M_LIT	640 non-null	int64	43	MARG_AL_3_6_M	640 non-null	int64
14	F_LIT	640 non-null	int64	44	MARG_AL_3_6_F	640 non-null	int64
15	M_ILL	640 non-null	int64	45	MARG_HH_3_6_M	640 non-null	int64
16	F_ILL	640 non-null	int64	46	MARG_HH_3_6_F	640 non-null	int64
17	TOT_WORK_M	640 non-null	int64	47	MARG_OT_3_6_M	640 non-null	int64
18	TOT_WORK_F	640 non-null	int64	48	MARG_OT_3_6_F	640 non-null	int64
19	MAINWORK_M	640 non-null	int64	49	MARGWORK_0_3_M	640 non-null	int64
20	MAINWORK_F	640 non-null	int64	50	MARGWORK_0_3_F	640 non-null	int64
21	MAIN_CL_M	640 non-null	int64	51	MARG_CL_0_3_M	640 non-null	int64
22	MAIN_CL_F	640 non-null	int64	52	MARG_CL_0_3_F	640 non-null	int64
23	MAIN_AL_M	640 non-null	int64	53	MARG_AL_0_3_M	640 non-null	int64
24	MAIN_AL_F	640 non-null	int64	54	MARG_AL_0_3_F	640 non-null	int64
25	MAIN_HH_M	640 non-null	int64	55	MARG_HH_0_3_M	640 non-null	int64
26	MAIN_HH_F	640 non-null	int64	56	MARG_HH_0_3_F	640 non-null	int64
27	MAIN_OT_M	640 non-null	int64	57	MARG_OT_0_3_M	640 non-null	int64
28	MAIN_OT_F	640 non-null	int64	58	MARG_OT_0_3_F	640 non-null	int64
29	MARGWORK_M	640 non-null	int64	59	NON_WORK_M	640 non-null	int64
30	MARGWORK_F	640 non-null	int64	60	NON_WORK_F	640 non-null	int64
31	MARG CL M	640 non-null	int64	dtyp	es: int64(59), o	bject(2)	

There are 59 columns with integer data types and 2 columns are categorical datatypes.

There are no null values found in dataset.

No duplicate records are there in dataset.

Let's check out the summary of data -

	count	mean	std	min	25%	50%	75%	max
State Code	640.0	17.114062	9.426486	1.0	9.00	18.0	24.00	35.0
Dist.Code	640.0	320.500000	184.896367	1.0	160.75	320.5	480.25	640.0
No_HH	640.0	51222.871875	48135.405475	350.0	19484.00	35837.0	68892.00	310450.0
тот_м	640.0	79940.576563	73384.511114	391.0	30228.00	58339.0	107918.50	485417.0
TOT_F	640 <u>.</u> 0	122372.084375	113600.717282	698.0	46517.75	87724.5	164251.75	750392.0
M_06	640.0	12309.098438	11500.906881	56.0	4733.75	9159.0	16520.25	96223.0
F_06	640.0	11942.300000	11326.294567	56.0	4672.25	8663.0	15902.25	95129.0
M_SC	640.0	13820.946875	14426.373130	0.0	3466.25	9591.5	19429.75	103307.0
F_SC	640.0	20778.392188	21727.887713	0.0	5603.25	13709.0	29180.00	156429.0
M_ST	640.0	6191.807813	9912.668948	0.0	293.75	2333.5	7658.00	96785.0
F_ST	640.0	10155.640625	15875.701488	0.0	429.50	3834.5	12480.25	130119.0
M_LIT	640.0	57967.979688	55910.282466	286.0	21298.00	42693.5	77989.50	403261.0
F_LIT	640.0	66359.565625	75037.860207	371.0	20932.00	43796.5	84799.75	571140.0
M_ILL	640.0	21972.596875	19825.605268	105.0	8590.00	15767.5	29512.50	105961.0
F_ILL	640.0	56012.518750	47116.693769	327.0	22367.00	42386.0	78471.00	254160.0

MAINWORK_M	640.0	30204.446875	31480.915680	65.0	9787.00	21250.5	40119.00	247911.0
MAINWORK_F	640.0	28198.846875	29998.262689	240.0	9502.25	18484.0	35063.25	226166.0
MAIN_CL_M	640.0	5424.342188	4739.161969	0.0	2023.50	4160.5	7695.00	29113.0
MAIN_CL_F	640.0	5486.042188	5326.362728	0.0	1920.25	3908.5	7286.25	36193.0
MAIN_AL_M	640.0	5849.109375	6399.507966	0.0	1070.25	3936.5	8067.25	40843.0
MAIN_AL_F	640.0	8925.995312	12864.287584	0.0	1408.75	3933.5	10617.50	87945.0
MAIN_HH_M	640.0	883.893750	1278.642345	0.0	187.50	498.5	1099.25	16429.0
MAIN_HH_F	640.0	1380.773438	3179.414449	0.0	248.75	540.5	1435.75	45979.0
MAIN_OT_M	640.0	18047.101562	26068.480886	36.0	3997.50	9598.0	21249.50	240855.0
MAIN_OT_F	640.0	12406.035938	18972.202369	153.0	3142.50	6380.5	14368.25	209355.0
MARGWORK_M	640.0	7787.960938	7410.791691	35.0	2937.50	5627.0	9800.25	47553.0
MARGWORK_F	640.0	13096.914062	10996.474528	117.0	5424.50	10175.0	18879.25	66915.0
MARG_CL_M	640.0	1040.737500	1311.546847	0.0	311.75	606.5	1281.00	13201.0
MARG_CL_F	640.0	2307.682813	3564.626095	0.0	630.25	1226.0	2659.25	44324.0
MARG_AL_M	640.0	3304.326562	3781.555707	0.0	873.50	2062.0	4300.75	23719.0
MARG_AL_F	640.0	6463.281250	6773.876298	0.0	1402.50	4020.5	9089.25	45301.0
MARG_HH_M	640.0	316.742188	462.661891	0.0	71.75	166.0	356.50	4298.0
MARG_HH_F	640.0	786.626562	1198.718213	0.0	171.75	429.0	962.50	15448.0
MARG_OT_M	640.0	3126.154687	3609.391821	7.0	935.50	2036.0	3985.25	24728.0
MARG_OT_F	640.0	3539.323438	4115.191314	19.0	1071.75	2349.5	4400.50	36377.0
MARG_CL_3_6_F	640.0	10339.864063	8467.473429	85.0	4351.50	8295.0	15102.00	50065.0
MARG_AL_3_6_M	640.0	789.848438	905.639279	0.0	235.50	480.5	986.00	7426.0
MARG_AL_3_6_F	640.0	1749.584375	2496.541514	0.0	497.25	985.5	2059.00	27171.0
MARG_HH_3_6_M	640.0	2743.635938	3059.586387	0.0	718.75	1714.5	3702.25	19343.0
MARG_HH_3_6_F	640.0	5169.850000	5335.640960	0.0	1113.75	3294.0	7502.25	36253.0
MARG_OT_3_6_M	640.0	245.362500	358.728567	0.0	58.00	129.5	276.00	3535.0
MARG_OT_3_6_F	640.0	585.884375	900.025817	0.0	127.75	320.5	719.25	12094.0
MARGWORK_0_3_M	640.0	2616.140625	3036.964381	7.0	755.00	1681.5	3320.25	20648.0
MARGWORK_0_3_F	640.0	2834.545312	3327.836932	14.0	833.50	1834.5	3610.50	25844.0
MARG_CL_0_3_M	640.0	1392.973438	1489.707052	4.0	489.50	949.0	1714.00	9875.0
MARG_CL_0_3_F	640.0	2757.050000	2788.776676	30.0	957.25	1928.0	3599.75	21611.0
MARG_AL_0_3_M	640.0	250.889062	453.336594	0.0	47.00	114.5	270.75	5775.0
MARG_AL_0_3_F	640.0	558.098438	1117.642748	0.0	109.00	247.5	568.75	17153.0
MARG_HH_0_3_M	640.0	560.690625	762.578991	0.0	136.50	308.0	642.00	6116.0
MARG_HH_0_3_F	640.0	1293.431250	1585.377936	0.0	298.00	717.0	1710.75	13714.0
MARG_OT_0_3_M	640.0	71.379688	107.897627	0.0	14.00	35.0	79.00	895.0
MARG_OT_0_3_F	640.0	200.742188	309.740854	0.0	43.00	113.0	240.00	3354.0
NON_WORK_M	640.0	510.014063	610.603187	0.0	161.00	326.0	604.50	6456.0
NON_WORK_F	640.0	704.778125	910.209225	5.0	220.50	464.5	853.50	10533.0

There is no anomaly or negative found in above description.

2.2-Perform detailed exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio?

1. Which state has highest gender ratio and which has the lowest?

State		State	
Lakshadweep	1151.992513	Andhra Pradesh	1862.113333
Haryana	1283.483871	Tamil Nadu	1825.079237
NCT of Delhi	1290.194309	Chhattisgarh	1820.831007
IIttar Dradesh	1329 492863	Arunachal Pradesh	1741.054130

Lakshadweep has lowest gender ratio. There are 1152 females per 1000 males.

Andhra Pradesh has highest gender ratio. There are 1862 females per 1000 males.

2. Which district has the highest & lowest gender ratio?

Dist.	Code							
587	1151.992513							
2	1179.576206							
144	1180.201612							
106	1180.761033							
139	1184.830405							
391	2215.059963	D3-4 C-4-		A N		Dist.Code	State	Area
546	2221.848576	Dist.Code	State	Area Name		DISCICOUE	State	Name
625	2225.428760							
398	2268.763478	587	Lakshadweep	Lakshadweep		547	Andhra	Krishna
547	2283.249638	307	Laksilauweep	Laksilauweep	041		Pradesh	ranomina

Dist. Code 587 has lowest gender ratio and Dist. Code 547 has highest gender ratio.

Area name – Lakshadweep has lowest gender ratio

Area name - Krishna has lowest gender ratio

3. Which state has maximum and minimum literacy rate for males and females.

State			
Bihar	0.598354		
Meghalaya	0.610784	Andaman & Nicobar Island	0.827085
Jharkhand	0.665078	Daman & Diu	0.827188
Uttar Pradesh	0.665239	Puducherry	0.827295
Arunachal Pradesh	0.671484	Goa	0.835282

Bihar has lowest 0.59 and Goa has highest 0.83 literacy rate for male population.

State		Goa	0.730168
Bihar	0.406581	Lakshadweep	0.767262
Jharkhand	0.435937	Kerala	0.798583
Andhra Pradesh	0.439314	Mizoram	0.831862

Bihar has lowest 0.40 and Mizoram has highest 0.83 literacy rate for female population.

4. Which state has highest gender ratio and which has the lowest for Scheduled Castes population?

NCT of Delhi	1215.758517	Odisha	1741.670737
Meghalaya	1246.153846	Tamil Nadu	1797.261162
Haryana	1265.538592	Andhra Pradesh	1836.662335
Chandigarh	1279.608380	Chhattisgarh	1874.510497

Gender ratio (population of females / population of male)*1000

For SC population – NCT of Delhi = 1215 has lowest gender ratio Chhattisgarh = 1874 has highest gender ratio

5. Which state has highest gender ratio and which has the lowest for age group 0-6?

Haryana	858.480597	Jharkhand	1015.004941
Punjab	869.658139	Dadara & Nagar Havelli	1041.811847
Chandigarh	874.544128	Arunachal Pradesh	1085.058618

For age group 0-6 population – Haryana = 858 has lowest gender ratio Arunachal Pradesh = 1085 has highest gender ratio

Part 2 - PCA:

2.3-We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

There are a lot of Outliers present in the given Dataset.

For PCA outlier treatment is important. As PCA figures out linear lines along which maximum variance is explained. If there would be outliers then direction of Principal components will be compromised.

For this case too Outlier treatment is necessary.

2.4- Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

Data and outliers before scaling-

Data after applying z-score- Scaled data

	State Code	Dist.Code	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F
0	-1.710782	-1.729347	-0.904738	-0.771236	-0.815563	-0.561012	-0.507738	-0.958575	-0.957049	-0.423306	***	-0.163229	-0.720610	-0.156494	-0.287524	0.156577	-0.657412	-0.365258	-0.499977
1	-1.710782	-1.723934	-0.935695	-0.823100	-0.874534	-0.681096	-0.725367	-0.958297	-0.956772	-0.582014	772	-0.583103	-0.732811	-0.282327	-0.294688	-0.491731	-0.723062	0.042855	-0.073481
2	-1.710782	-1.718521	-0.972412	-1.000919	-0.981466	-0.976956	-0.965262	-0.958575	-0.956772	-0.038951		-0.859212	-0.921931	-0.456727	-0.420050	-0.731894	-0.795026	-0.662068	-0.635680
3	-1.710782	-1.713109	-1.037530	-1.052224	-1.041001	-1.022118	-0.995393	-0.958783	-0.957049	-0.355965	820	-0.805468	-0.900758	-0.419198	-0.385127	-0.718770	-0.784926	-0.624966	-0.616294
4	-1.710782	-1.707696	-0.822676	-0.809381	-0.813933	-0.622359	-0.649908	-0.957395	-0.955529	0.149238		-0.348645	-0.297513	0.472670	0.434200	-0.466796	-0.625849	-0.439461	-0.309346

There is no impact of scaling on outliers. It's just that all the features are now on same scale instead of different scales before scaling. And outliers are scaled too.

2.5- Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get Eigen values and Eigen vector.

We are dropping the columns State code and Dist. Code before proceeding for PCA. These two columns have values which should be categorical, and shall have no say in PCA.

Covariance Matrix-

Initially we are we are generating only 6 PCA dimensions.

Covariance matrix comes out to be -

```
array([[-4.61726348, -4.77166187, -5.96483558, ..., -6.294625 , -6.22319199, -5.89623627],

[ 0.13811585, -0.10586536, -0.29434689, ..., -0.63812665, -0.67231967, -0.93716953],

[ 0.32854489,  0.24444895,  0.36739354, ...,  0.10748279,  0.27132545,  0.34921832],

[ 1.54369714,  1.96321495,  0.61954271, ...,  1.36818692,  1.14349288,  1.114861 ],
 [ 0.35373623, -0.15388429,  0.47819913, ...,  0.15374528,  0.06043998,  0.14910357],
 [-0.42094803,  0.41730835,  0.27658052, ...,  0.14114473, -0.11568247, -0.15454413]])
```

Let's check out the Eigen vectors for these generated PC's for each feature. We have generated a Data-frame of Eigen vectors showing PC's and variance explained by each features in individual PC's.

	PC1	PC2	PC3	PC4	PC5	PC6
No_HH	0.156021	-0.126347	-0.002690	-0.125293	-0.007022	0.004083
TOT_M	0.167118	-0.089677	0.056698	-0.019942	-0.033026	-0.073389
TOT_F	0.165553	-0.104912	0.038749	-0.070873	-0.012847	-0.043647
M_06	0.162193	-0.022095	0.057788	0.011917	-0.050248	-0.157957
F_06	0.162566	-0.020271	0.050126	0.014844	-0.043848	-0.154436
M_sc	0.151358	-0.045111	0.002569	0.012485	-0.173007	-0.064295
F_SC	0.151567	-0.051924	-0.025101	-0.029893	-0.159803	-0.040518
M_ST	0.027234	0.027679	-0.123504	-0.222247	0.433163	0.222591
F_ST	0.028183	0.030223	-0.139769	-0.229754	0.438792	0.225531
M_LIT	0.161993	-0.115355	0.082168	-0.035163	-0.009101	-0.055465
F_LIT	0.146873	-0.153109	0.117098	-0.059559	0.055844	-0.048021
M_ILL	0.161749	-0.006625	-0.021855	0.025348	-0.096580	-0.115234
F_ILL	0.165248	-0.009107	-0.093062	-0.076023	-0.119911	-0.028757
TOT_WORK_M	0.159872	-0.133529	0.045176	-0.040154	-0.019553	-0.001801
TOT_WORK_F	0.145936	-0.085087	-0.059450	-0.225160	-0.040437	0.105162
MAINWORK_M	0.146201	-0.176368	0.054295	-0.068351	-0.036802	0.019283
MAINWORK_F	0.123970	-0.151413	-0.055609	-0.246640	-0.082834	0.123832

MAIN_CL_M	0.103127	0.062415	-0.067399	-0.089769	-0.286039	-0.006170
MAIN_CL_F	0.074540	0.086477	-0.009238	-0.288965	-0.241936	0.102951
MAIN_AL_M	0.113356	-0.031040	-0.247917	-0.136082	-0.205723	-0.031068
MAIN_AL_F	0.073882	-0.058688	-0.251932	-0.290042	-0.177605	0.019240
MAIN_HH_M	0.131573	-0.076021	0.026569	0.152366	-0.134089	0.174465
MAIN_HH_F	0.083383	-0.082477	-0.060523	0.048950	-0.139441	0.422309
MAIN_OT_M	0.123526	-0.212984	0.137378	-0.040289	0.064638	0.023477
MAIN_OT_F	0.111021	-0.210071	0.095634	-0.120391	0.080743	0.083079
MARGWORK_M	0.164615	0.092994	-0.008628	0.093018	0.060244	-0.090762
MARGWORK_F	0.155396	0.125270	-0.049370	-0.088707	0.089202	0.017868
MARG_CL_M	0.082389	0.269450	0.198754	-0.062761	-0.022263	0.031915
MARG_CL_F	0.049195	0.246547	0.268787	-0.168402	-0.059205	0.092086
MARG_AL_M	0.128599	0.165831	-0.189868	0.091787	0.019422	-0.141605
MARG_AL_F	0.114305	0.140958	-0.267768	-0.106365	0.080527	-0.085120
MARG_HH_M	0.140853	0.068068	-0.021257	0.237985	-0.059971	0.089533
MARG_HH_F	0.127670	0.024216	-0.082504	0.196321	-0.033602	0.365112
MARG_OT_M	0.155263	-0.089442	0.111713	0.087119	0.119121	-0.061066
MARG_OT_F	0.147287	-0.117899	0.100046	0.026729	0.166882	0.001739
MARG_CL_3_6_M	0.165502	0.077193	-0.024205	0.092875	0.054073	-0.096708
MARG_CL_3_6_F	0.155647	0.103174	-0.072013	-0.107860	0.073050	0.023773
MARG_AL_3_6_M	0.093014	0.264409	0.153518	-0.038488	-0.007789	0.013477
MARG_AL_3_6_F	0.051536	0.244261	0.256213	-0.179691	-0.061303	0.093993
MARG_HH_3_6_M	0.128576	0.158783	-0.200119	0.080411	0.008457	-0.144061
MARG_HH_3_6_F	0.110646	0.125287	-0.279866	-0.136240	0.064109	-0.076709
MARG_OT_3_6_M	0.139593	0.062262	-0.020618	0.237745	-0.066400	0.097058
MARG_OT_3_6_F	0.124546	0.014766	-0.082794	0.190511	-0.044810	0.384552
MARGWORK_0_3_M	0.154294	-0.093159	0.110285	0.086479	0.108829	-0.062043
MARGWORK_0_3_F	0.146286	-0.125596	0.095667	0.027275	0.141190	0.008962
MARG_CL_0_3_M	0.150126	0.150681	0.054892	0.087433	0.081185	-0.060715
MARG_CL_0_3_F	0.140157	0.180690	0.023982	-0.022290	0.129936	-0.001727
MARG_AL_0_3_M	0.052542	0.251328	0.268330	-0.104686	-0.048849	0.065409
MARG_AL_0_3_F	0.041786	0.240720	0.284956	-0.135716	-0.051895	0.083743
MARG_HH_0_3_M	0.121840	0.185277	-0.138628	0.132544	0.062380	-0.124209
MARG_HH_0_3_F	0.116011	0.180616	-0.202198	0.004051	0.128308	-0.105530
MARG_OT_0_3_M	0.139869	0.084869	-0.022599	0.230038	-0.036390	0.061228
MARG_OT_0_3_F	0.132192	0.050813	-0.078720	0.206201	0.000165	0.295600
NON WORK M						
Charles and the device construction and	0.150376	-0.065365	0.111827	0.084854	0.162862	-0.052387

Let's check out the Eigen values for individual PC's.

Eigen values explain the total amount of variance that can be explained by a given principal component.

```
array([31.81356474, 7.86942415, 4.15340812, 3.66879058, 2.20652588, 1.93827502])
```

Maximum variance is explained by PC1 = 31.81.

PC2 explains 7.86

PC3 explains 4.153

PC4 explains 3.66

PC5 explains 2.20 and

PC6 explains 1.93.

Let's check out the percentage of variance explained by each PC that is variance explained by an individual principle component divided by total variance explained by all the PC's.

In other words – Percentage of explained variance= Eigen value of each PC/sum of Eigen values of all PCs

```
array([0.55726063, 0.13784435, 0.07275295, 0.06426418, 0.03865049, 0.03395169])
```

55% of total variance is explained by PC1. 13.7% of total variance is explained by PC2.

7.2% of total variance is explained by PC3. 6.4% of total variance is explained by PC4.

3.8% of total variance is explained by PC5. 3.4% of total variance is explained by PC6.

2.6- Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

Cumulative sum of variance explained by all the PC's

```
array([0.55726063, 0.69510499, 0.76785794, 0.83212212, 0.87077261, 0.9047243 ])
```

Variance explained by all the 6 PC's is around 90.47%

2.7- Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.

For PC1-

	PC1
тот_м	0.167118
TOT_F	0.165553
MARG_CL_3_6_M	0.165502
F_ILL	0.165248
MARGWORK_3_6_M	0.164972
MARGWORK_M	0.164615
F_06	0.162566
M_06	0.162193
M_LIT	0.161993
M_ILL	0.161749
MARGWORK_3_6_F	0.161253
TOT_WORK_M	0.159872
No_HH	0.156021
MARG_CL_3_6_F	0.155647
MARGWORK_F	0.155396
MARG_OT_M	0.155263
MARGWORK_0_3_M	0.154294
F_SC	0.151567

Inferences- for PC1 these are the features that are explaining most of the variance.

Total population Male

Total population Female

Marginal Cultivator Population 3-6 Male

Illiterate Female

Marginal Worker Population 3-6 Male

Marginal Worker Population Male

Population in the age group 0-6 Female

Population in the age group 0-6 Male

Literate Male

Illiterate Male

Marginal Worker Population 3-6 Female

Total Worker Population Male

PC1 could be named as -TOT_ILL/MARGWORK

(Total illetrate population and Total Worker population)

For PC2-

	PC2
MARG_CL_M	0.269450
MARG_AL_3_6_M	0.264409
MARG_AL_0_3_M	0.251328
MARG_CL_F	0.246547
MARG_AL_3_6_F	0.244261
MARG_AL_0_3_F	0.240720

	PCZ
MAIN_OT_M	-0.212984
MAIN_OT_F	-0.210071

Inferences- for PC2 these are the features that are explaining most of the variance.

Marginal Cultivator Population Male = 0.26

Marginal Agriculture Laborers Population 3-6 Male =0.26

Marginal Agriculture Laborers Population 0-3 Male = 0.25

Marginal Cultivator Population Female = 0.24

Marginal Agriculture Laborers Population 3-6 Female =0.24

Marginal Agriculture Laborers Population 0-3 Female = 0.24

This PC2 can be named as MARG CL/AL 0-6

(Marginal Cultivator Population Female/Male/ Marginal Agriculture Laborers Population 3-6 Female/Male)

For PC3-

	PC3
MARG_HH_3_6_F	-0.279866
MARG_AL_F	-0.267768
MAIN_AL_F	-0.251932
MAIN_AL_M	-0.247917
MARG_HH_0_3_F	-0.202198
MARG_HH_3_6_M	-0.200119

	PC3
MARG_AL_0_3_F	0.284956
MARG_CL_F	0.268787
MARG_AL_0_3_M	0.268330
MARG_AL_3_6_F	0.256213

Inferences- for PC3 these are the features that are explaining most of the variance.

Marginal Agriculture Labourers Population 0-3 Female

Marginal Household Industries Population 3-6 Female

Marginal Cultivator Population Female

Marginal Agriculture Labourers Population 0-3 Male

Marginal Agriculture Labourers Population 0-3 Female

Marginal Agriculture Labourers Population Female

Marginal Agriculture Labourers Population Male

Marginal Household Industries Population 0-3 Female

Marginal Household Industries Population 3-6 Male

This PC3 can be named as MARG_AL_HH_0-6

(Marginal Agriculture Labourers population Female/Male and Marginal Household Industries Population 0-6 Male/Female)

For PC4

	PC4	
	-0.290042	MAIN_AL_F
PC4	-0.288965	MAIN_CL_F
MARG_HH_M 0.237985	-0.246640	MAINWORK_F
MARG_OT_3_6_M 0.237745	-0.229754	F_ST
MARG_OT_0_3_M 0.230038	-0.225160	TOT_WORK_F

Inferences- for PC4 these are the features that are explaining most of the variance.

Main Agricultural Labourers Population Female

Main Cultivator Population Female

Marginal Worker Population Female

Marginal Household Industries Population Male

Marginal Other Workers Population 0-6 Male

Total Worker Population Female

This PC4 can be named as -MARG_TOT_WORK_F

(Main and Marginal and total worker population female)

For PC5

	PC5		PC5
	PC5		0.400700
MAIN_CL_M	-0.286039	F_ST	0.438792
MAIN_CL_F	-0.241936	M_ST	0.433163
MAIN_AL_M	-0.205723	NON_WORK_F	0.238292
MAIN_AL_F	-0.177605	MARG_OT_F	0.166882

Inferences- for PC5 these are the features that are explaining most of the variance.

Scheduled Tribes population Female

Scheduled Tribes population Male

Main Cultivator Population Male

Main Cultivator Population Female

This PC5 can be named as - SC_TOT_MAIN_CL

(SC male and female / main cultivator Male and female)

For PC6-

	PC6
MAIN_HH_F	0.422309
MARG_OT_3_6_F	0.384552
MARG_HH_F	0.365112
MARG_OT_0_3_F	0.295600
F_ST	0.225531

Inferences- for PC6 these are the features that are explaining most of the variance.

Main Household Industries Population Female Marginal Other Workers Population Person 3-6 Female Marginal Household Industries Population Female Marginal Other Workers Population Person 0-3 Female

This PC6 can be named as -MAIN_MARG_HH_MARG_OT_0-6_F

(Main and Marginal Industries, Marginal other worker population 0-6 female)

Part 2 - PCA:

2.8- Write linear equation for first PC.

Equation for PC1 is as follows-

```
Equation= 'TOT_F' * 0.17 + 'MARG_CL_3_6_M' * 0.17 + 'TOT_M' * 0.17 + 'F_ILL' * 0.17 + 'No_HH' * 0.16 + 'M_ILL' * 0.16 + 'MARG_CL_3_6_F' * 0.16 + 'MARGWORK_3_6_F' * 0.16 + 'MARGWORK_3_6_M' * 0.16 + 'MARG_OT_M' * 0.16 + 'MARGWORK_F' * 0.16 + 'TOT_WORK_M' * 0.16 + 'M_LIT' * 0.16 + 'F_06' * 0.16 + 'M_06' * 0.16 + 'MARGWORK_M' * 0.16 + 'F_LIT' * 0.15 + 'TOT_WORK_F' * 0.15 + 'MARG_OT_F' * 0.15 + 'NON_WORK_M' * 0.15 + 'MARG_CL_0_3_M' * 0.15 + 'MARG_OT_F' * 0.15 + 'NON_WORK_M' * 0.15 + 'F_SC' * 0.15 + 'MARG_OT_0_3_M' * 0.15 + 'MARG_OT_0_3_M' * 0.14 + 'MARG_OT_3_6_M' * 0.14 + 'MARG_CL_0_3_F' * 0.14 + 'MARG_HH_M' * 0.14 + 'MARG_HH_3_6_M' * 0.13 + 'MARG_OT_0_3_F' * 0.13 + 'NON_WORK_F' * 0.13 + 'MARG_HH_F' * 0.13 + 'MARG_AL_M' * 0.13 + 'MARG_HH_M' * 0.14 + 'MARG_HH_S_CL_0_S_F' * 0.12 + 'MARG_HH_0_3_M' * 0.12 + 'MAIN_OT_M' * 0.12 + 'MAINWORK_F' * 0.12 + 'MARG_OT_3_6_F' * 0.11 + 'MARG_HH_0_3_F' * 0.12 + 'MAIN_OT_F' * 0.11 + 'MARG_HH_3_6_F' * 0.11 + 'MARG_AL_F' * 0.11 + 'MARG_AL_M' * 0.11 + 'MARG_AL_G_AL_F' * 0.11 + 'MARG_AL_M' * 0.11 + 'MARG_AL_G_AL_F' * 0.11 + 'MARG_AL_G_S_CL_M' * 0.08 + 'MAIN_AL_F' * 0.07 + 'MARG_AL_3_6_M' * 0.09 + 'MARG_CL_M' * 0.08 + 'MAIN_HH_F' * 0.08 + 'MAIN_AL_F' * 0.07 + 'MARG_AL_0_3_F' * 0.04 + 'F_ST' * 0.03 + 'M_ST' * 0.03
```

END