# Color Spaces and Evaluation Metrics

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

## **Color Spectrum**



**FIGURE 6.1** Color spectrum seen by passing white light through a prism. (Courtesy of the General Electric Co., Lamp Business Division.)

# Wavelengths of the Electromagnetic Spectrum



**FIGURE 6.2** Wavelengths comprising the visible range of the electromagnetic spectrum. (Courtesy of the General Electric Co., Lamp Business Division.)

## Grassman's First Law of Additive Color Mixture

- Any color can be matched by a linear combination of three other colors (primaries, e.g. RGB), provided that none of those three can be matched by a combination of the other two.
- C = Rc(R) + Gc(G) + Bc(B)

### **RGB Color Space**

#### FIGURE 6.7

Schematic of the RGB color cube. Points along the main diagonal have gray values, from black at the origin to white at point (1, 1, 1).



### **CMY and CMYB Space**

- [CMY] = [111] [RGB]
- Cyan, Magenta and Yellow
- But mixing these three colors can not produce black!

#### The Luminance of a Color

• The luminance of a color with coordinates (R,G,B) in the CIE-RGB system is given L(C)=0.176R+0.81G+0.011B

#### **Problems with RGB**

- Can only a small range of all the colors humans are capable of perceiving (particularly for monitor RGB)
  - Have you ever seen magenta on a monitor?
- It isn't easy for humans to say how much of RGB to use to make a given color
  - How much R, G and B is there in "brown"? (Answer: .64,.16, .16)
- Perceptually non-linear
  - Two points a certain distance apart in one part of the space may be perceptually different
  - Two other points, the same distance apart in another part of the space, may be perceptually the same

## Image Fidelity Criteria

- Subjective measures
  - Examination by human subjects
  - Goodness scale: excellent, good, poor, unsatisfactory
  - Impairment scale: unnoticeable, just noticeable, ...
  - Comparative measures
    - With another image or among a group of images
- Objective measures
  - Mean square error and variations
  - Advantage: simple, less dependent on human subjects, & easy to handle mathematically
  - Disadvantage: not always reflect human perception.

## Mean-square Criterion

 Average (or sum) of squared difference of pixel luminance between two images

$$\varepsilon_{1} = E\{|u-u'|^{2}\}$$
 (mean square error)
$$\varepsilon_{2} = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} |u(m,n)-u'(m,n)|^{2}$$
 (average square error)
$$\varepsilon_{3} = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} E\{|u(m,n)-u'(m,n)|^{2}\}$$
 (average mean square error)

- Signal-to-noise ratio (SNR)
  - SNR=  $10\log_{10}(\sigma_s^2/\sigma_e^2)$  in unit of decibel (dB)
  - $\sigma_s^2$  is image variance,  $\sigma_e^2$  variance of error
  - PSNR=  $10\log_{10}(A^2/\sigma_e^2)$  with A being peak-to-peak value

## Structure Similarity Index Measure (SSIM) [2]

- For image quality assessment, it is useful to apply the SSIM index *locally* rather than globally.
  - Image statistical features are usually highly spatially non-stationary.
  - Image distortions may also be **space-variant**.
  - Because of the fovea feature of the HVS, at typical viewing distances, only a local area in the image can be perceived with high resolution by the human observer at one time instance.
  - Localized quality measurement can provide a spatially varying quality map of the image, which delivers more information about the quality degradation of the image and may be useful in some applications.

## Structure Similarity Index Measure (SSIM) [2]

• In this paper, the authors use an  $11 \times 11$  circular-symmetric Gaussian weighting function  $\mathbf{w} = \{w_i | i = 1, 2, ..., N\}$ , with standard deviation of 1.5 samples, normalized to unit sum ( $\sum_{i=1}^{N} w_i = 1$ )

$$\mu_{x} = \sum_{i=1}^{N} w_{i} x_{i}$$

$$\sigma_{x} = \left(\sum_{i=1}^{N} w_{i} (x_{i} - \mu_{x})^{2}\right)^{\frac{1}{2}}$$

$$\sigma_{xy} = \sum_{i=1}^{N} w_{i} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})$$

## Structure Similarity Index Measure (SSIM) [2]

- The basic idea of SSIM is to separate the task of similarity measurement into three comparisons: *luminance*, *contrast* and *structure* 
  - The luminance comparison function

$$l(x, y) = \frac{2\mu_x \mu_y + k_1}{\mu_x^2 + \mu_y^2 + k_1}$$

The contrast comparison function

$$c(x, y) = \frac{2\sigma_x \sigma_y + k_2}{\sigma_x^2 + \sigma_y^2 + k_2}$$

- The structure similarity

$$s(x, y) = \frac{\sigma_{xy} + k_3}{\sigma_x \sigma_y + k_3}$$

• The estimation is using a local weighted window, e.g., a Gaussian window,  $SSIM(x, y) = l(x, y) \cdot c(x, y) \cdot s(x, y)$ 

### References

- [1] http://web.mit.edu/abyrne/www/ColorRealism.html
- [2] Z. Wang, A.C. Bovik, H.R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. On Image Processing, 13(4):600-612, 2004.

## Thank You!

Dr. Xigun Lu xqlu@zju.edu.cn