Intro to Convolutional Neural Networks

BUDSA – Workshop By: Christina + Ryan

Sample Architecture

Convolutional Neural Network

Sample Architecture

How do images work?

Kernels (Filters)

1. Convolutional Layer and Nonlinear Transformation

- Preserves locality
- Finds different kernels (filters)
 - Best weights and biases via gradient descent
- Nonlinear transformation functions: ReLU, Tanh, GeLU

Imagine a special projector onto a screen

2. Pooling Layer

Ex. Max2D Pooling – accentuates prevalent features within the image

3. Flatten and Deep Neural Network

- Flatten the final image into a singular vector
- Fully-connected neural network
- Last layer -- softmax for probabilities of classes, or replace with one neuron for class prediction

ARTIFICIAL NEURAL NETWORK

Putting it together: Construction of Architecture

How to train?

When you create the architecture, you initialize the architecture with some weights and biases

Backpropagation is always

the answer

Finds the best kernels (filters)

 Finds the best weights and biases for fully-connected layers

OUTPUT

Why do CNN work so well for image processing?

- Convolution preserves locality
- Max2DPooling layers accentuates features
- Nonlinear transformations allow network to look for latent features (unobservable features of ex. cat/dog)

Cons?

- Long to train with limited computing power
- Typically need to augment data to get better results
- Vision Transformers are better for SOTA

Resources

- CNN: https://poloclub.github.io/cnn-explainer/
- CNN Cheatsheet: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
- Visualizing Kernels: https://setosa.io/ev/image-kernels/
- Statquest on CNN: https://www.youtube.com/watch?v=HGwBXDKFk9l