# Machine Learning, 2024 Fall Homework 2

#### **Notice**

Due 23:59 (CST), Nov 19, 2024

Plagiarizer will get 0 points.

LATEX is highly recommended. Otherwise you should write as legibly as possible.

## A Bayesian Network

(24pt) The figure below shows a Bayesian network, illustrating the conditional dependencies among the following variables: Season (S), Flu (F), Dehydration (D), Chills (C), Headache (H), Nausea (N), and Dizziness (Z).



Figure 1: A Bayesian network that represents the conditional dependencies among the variables: Season, Flu, Dehydration, Chills, Headache, Nausea, and Dizziness.

## A.1 Independence in Bayesian Network

(12pt) Justify the following independence statements are true or false and give a brief explanation.

- $S \perp N|D$
- $S \perp Z|H$
- $F \perp N|Z, D$
- $F \perp Z|C, H, N$
- $C \perp N|Z$
- $C \perp D|S$

- False: influence can flow along the path  $S \to F \to H \to Z \to N$
- False: influence can flow along the path  $S \to F \to C \to Z$
- True: influence cannot flow along any path
- False: influence can flow along the path  $F \leftarrow S \rightarrow D \rightarrow N \leftarrow Z$
- False: influence can flow along the path  $C \leftarrow F \leftarrow S \rightarrow D \rightarrow N$
- True: influence cannot flow along any path

#### A.2 Evaluating Probability Queries

- (12pt) Given the conditional probability tables for the Bayesian network in the following table, calculate each of the queried probabilities. **Note:** You have to write down the calculation steps if necessary.
- (1) Use conditional independency properties, write down the factorized form of the conditional independence over all of the variables, P(S, F, D, C, H, N, Z)

$$P(S, F, D, C, H, N, Z) = P(S)P(F|S)P(D|S)P(C|F)P(H|F, D, C)P(N|D, Z)P(Z|C, H)$$

(2) What is the probability that you have the flu, given that it is summer?

The problem can be translated to: P(Flu=true|Season=summer)

$$\sum_{s} P(F = \text{true}, S = s)$$
$$= 0.2$$

(3) What is the probability that you are feeling chill, when no prior information is known?

The problem can be translated to: P(Chills=true)

$$\begin{split} &\sum_{f,s} P(C = \text{true}, F = f, S = s) \\ &= \sum_{f,s} P(C = \text{true}|F = f) \; P(F = f|S = s) \; P(S = s) \\ &= 0.5*0.2*0.7 + 0.5*0.8*0.8 + 0.5*0.4*0.7 + 0.5*0.6*0.8 \\ &= 0.77 \end{split}$$

(4) What is the probability that you have the flu, given that it is summer and that you have a headache, and you know that you are dehydrated?

The problem can be translated to: P(Flu=truelSeason=summer, Headache=true)

```
\begin{split} &P(F = \mathsf{true}|S = \mathsf{summer}, H = \mathsf{true}) \\ &= \frac{P(F = \mathsf{true}, S = \mathsf{summer}, H = \mathsf{true})}{P(S = \mathsf{summer}, H = \mathsf{true})} \\ &= \frac{\sum_{c} P(F = \mathsf{true}, S = \mathsf{summer}, H = \mathsf{true}, D = \mathsf{true}, C = c)}{\sum_{f,c} P(F = f, S = \mathsf{summer}, H = \mathsf{true}, D = \mathsf{true}, C = c)} \\ &= \frac{\sum_{c} P(H = \mathsf{true}|F = \mathsf{true}, D = \mathsf{true}, C = c) P(C = c|F = \mathsf{true}) P(F = \mathsf{true}|S = \mathsf{summer}) P(D = \mathsf{true}|S = \mathsf{summer}) P(S = \mathsf{summer})}{\sum_{f,c} P(H = \mathsf{true}|F = f, D = \mathsf{true}, C = c) P(C = c|F = f) P(F = f|S = \mathsf{summer}) P(D = \mathsf{true}|S = \mathsf{summer}) P(S = \mathsf{summer})} \\ &= \frac{0.5 * 0.1 * 0.2 * 0.7 * 0.7 + 0.5 * 0.1 * 0.2 * 0.3 * 0.3}{0.5 * 0.1 * 0.2 * 0.7 * 0.7 + 0.5 * 0.1 * 0.2 * 0.3 * 0.3} \\ &= \frac{0.0058}{0.0226} \\ &= 0.26 \end{split}
```

| P(S = winter) | P(S = summer) |
|---------------|---------------|
| 0.5           | 0.5           |

|            | P(F = true S) | P(F = false S) |
|------------|---------------|----------------|
| S = winter | 0.4           | 0.6            |
| S = summer | 0.2           | 0.8            |

|            | P(D = true S) | P(D = false S) |           | P(C = true F) | P(C = false F) |
|------------|---------------|----------------|-----------|---------------|----------------|
| S = winter | 0.3           | 0.7            | F = true  | 0.7           | 0.3            |
| S = summer | 0.1           | 0.9            | F = false | 0.8           | 0.2            |

| )     | F = false    | 0.8            | 0.2       |
|-------|--------------|----------------|-----------|
|       |              |                |           |
| P(H = | true C, F, L | P(H = false C) | (C, F, D) |
|       | 0.7          | 0.3            |           |
|       | 0.6          | 0.4            |           |

|                                 | 1 / /            | , , , , , ,      |
|---------------------------------|------------------|------------------|
| C = true, F = true, D = true    | 0.7              | 0.3              |
| C = true, F = true, D = false   | 0.6              | 0.4              |
| C = true, F = false, D = true   | 0.5              | 0.5              |
| C = true, F = false, D = false  | 0.4              | 0.6              |
| C = false, F = true, D = true   | 0.3              | 0.7              |
| C = false, F = true, D = false  | 0.2              | 0.8              |
| C = false, F = false, D = true  | 0.1              | 0.9              |
| C = false, F = false, D = false | 0.8              | 0.2              |
|                                 |                  |                  |
|                                 | P(N - true D, Z) | P(N - false D/Z) |

|                      | P(N = true D, Z) | P(N = false D, Z) |
|----------------------|------------------|-------------------|
| D = true, Z = true   | 0.7              | 0.3               |
| D = true, Z = false  | 0.8              | 0.2               |
| D = false, Z = true  | 0.2              | 0.8               |
| D = false, Z = false | 0.5              | 0.5               |

|                      | P(Z = true C, H) | P(Z = false C, H) |
|----------------------|------------------|-------------------|
| C = true, H = true   | 0.1              | 0.9               |
| C = true, H = false  | 0.3              | 0.7               |
| C = false, H = true  | 0.4              | 0.6               |
| C = false, H = false | 0.8              | 0.2               |

#### **B** Variable Elimination

(26pt) Given a Bayesian network in the following figure, which consists of binary variables. We will use variable elimination. The chosen variable elimination ordering is A, C, E, G to compute the query P(B, D, H|f=1).



Figure 2: A Bayesian network.

(1) (3pt) What is the corresponding moral graph?



Figure 3: Moral graph.

(2) (3pt) Write down all initial factors after inserting evidence f = 1.

$$P(a), P(b), P(c|a), P(d|b), P(e|c), f_{P(g|e,f)}(g,e), f_{P(h|e,f)}(h,e)$$

(3) (15pt) Run variable elimination

(4)

- 1. When eliminating A, please write all factors including the new generated factor  $f_1$ .
- 2. When eliminating C, please write all factors including the new generated factor  $f_2$ .
- 3. When eliminating E, please write all factors including the new generated factor  $f_3$ .
- 4. When eliminating G, please write all factors including the new generated factor  $f_4$ .
- 5. Compute P(B, D, H|f = 1) from the factors left in 4

(1) 
$$P(b), P(d|b), P(e|c), f_{P(g|e,f)}(g,e), f_{P(h|e,f)}(h,e), f_1(c)(f_a(c) \text{ is ok})$$

(2) 
$$P(b), P(d|b), f_{P(g|e,f)}(g,e), f_{P(h|e,f)}(h,e), f_2(e)(f_c(e) \text{ is ok})$$

$$P(b), P(d|b), f_3(g,h)(f_e(g,h) \text{ is ok})$$

$$P(b), P(d|b), f_4(h)(f_q(h) \text{ is ok})$$

(5) 
$$P(B, D, H|f = 1) = \frac{P(b)P(d|b)f_4(h)}{\sum_{B,D,H} P(b)P(d|b)f_4(h)}$$

Note: You have to write all factors in each question, or you will loss some points.

(4) (5pt) Among the factors,  $f_1, f_2, f_3, f_4$ , which is the most largest factor generated, and what is the size of this factor? In this context, we assume that all variables have binary domains, and we determine the factor size by counting the number of rows in the table that represents the factor.

 $f_3(g,h)$  is the largest factor generated. It has 2 variables, hence the factor size is  $2^2=4$ .

# C Learning in Naive Bayesian Networks

Assume a training dataset  $\mathcal{D} = \{\mathbf{x}, y\}$ , where  $\mathbf{x} \in R^d$  represents different features and y represents categories, and let  $\mathcal{G}$  be a network over these variables.

(1) If  $\mathcal{G}$  is a Naive Bayesian network, consider a apple quality dataset that describes the features of good and bad apples. The training data is as follows:

| Color  | Skin Smoothness | Size   | Aroma  | Flesh Firmness | Category   |
|--------|-----------------|--------|--------|----------------|------------|
| Red    | Smooth          | Medium | Strong | Hard           | Good Apple |
| Green  | Rough           | Large  | Faint  | Medium         | Bad Apple  |
| Red    | Smooth          | Medium | Faint  | Soft           | Bad Apple  |
| Red    | Rough           | Large  | Strong | Hard           | Good Apple |
| Green  | Smooth          | Small  | Strong | Hard           | Good Apple |
| Red    | Smooth          | Medium | Strong | Medium         | Good Apple |
| Yellow | Rough           | Medium | Faint  | Soft           | Bad Apple  |
| Red    | Smooth          | Large  | Strong | Hard           | Good Apple |
| Green  | Rough           | Small  | Faint  | Soft           | Bad Apple  |
| Red    | Smooth          | Medium | Strong | Hard           | Good Apple |
| Yellow | Smooth          | Medium | Faint  | Medium         | Bad Apple  |
| Red    | Rough           | Small  | Strong | Soft           | Good Apple |

- (a) (5pts) Please draw this Naive Bayesian network
- (b) (5pts) Please write down the CPTs with add-1 Laplace smoothing.
- (c) (5pts) Given an apple with the features *Red*, *Rough*, *Small*, *Faint*, *and Soft*, Is this apple a good apple?

(2)(10pts) For each local node in  $\mathcal{G}$ , the parameters of CPT can be written as  $\theta_i$ . If we independently maximize the local likelihood and combine each local optimal solution  $\theta_i^*$  into a result denoted  $\theta^P = [\theta_1^*, \theta_2^*, \cdots \theta_n^*]$ . Is the result  $\theta^P$  equal to the optimal maximum likelihood estimate for the global parameter  $\theta^* = \arg\max L(\theta)$ ? If so, please prove it; if not, please explain why.

(1.a)



Figure 4: The Naive Bayesian network.

(1.b)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                      | P(Category = Good) | P(Category = Bad)                      |                     |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--------------------|----------------------------------------|---------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                      | 8/14(0.5714)       | 6/14(0.4286)                           |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | P(Colo               | or = Red Category) | P(Color = Green Cat                    | egory) $P(Color =$  | Yellow Category) |
| Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ory = Good      |                      | 7/10               | 2/10                                   | 1/10                |                  |
| Cate g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gory = Bad      |                      | 2/8                | 3/8                                    |                     | 3/8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                      | P(Skin = Smooth)   | Category) $P(Skin = I)$                | Rough Category)     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Category        | = Good               | 6/9                |                                        | 3/9                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Category = Bad  |                      | 3/7                | 3/7 4/7                                |                     |                  |
| P(Size = Small Category)  P(Size = Medium Category)  P(Size = Large Cat |                 |                      |                    |                                        | = Large Category)   |                  |
| Category = Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 3/10                 | 4/10               |                                        | 3/10                |                  |
| Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gory = Bad      |                      | 2/8 4/8            |                                        |                     | 2/8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                      | P(Aroma = Strong e | Category) P(Aroma =                    | = Faint Category)   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Category = Good |                      | 8/9                | 8/9 1/9                                |                     |                  |
| Category = Bad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 1/7                  |                    | 6/7                                    |                     |                  |
| P(Fles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | sh = Hard   Category | P(Flesh = Medium)  | $\overline{ Category\rangle} P(Flest)$ | sh = Soft Category) |                  |
| Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ory = Good      |                      | 6/10               | 2/10                                   |                     | 2/10             |
| Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gory = Bad      |                      | 1/8                | 3/8                                    |                     | 4/8              |

(1.c) Bad Apple

(2) Assume that there are n samples in dataset  $\mathcal{D}$ 

$$L(\theta) = \prod_{n} P_{G}(\mathbf{x}[n]; \theta)$$

$$= \prod_{n} \prod_{i} P(x_{i}[n]|pa_{x_{i}}[n]; \theta)$$

$$= \prod_{i} (\prod_{n} P(x_{i}[n]|pa_{x_{i}}[n]; \theta))$$

$$= \prod_{i} L_{i}(\theta_{i})$$

## D Latent Variable Analysis

A latent variable model for T data vectors  $\mathbf{x}_0, \dots, \mathbf{x}_T$  is

$$P(\mathbf{x}_0, \cdots, \mathbf{x}_T) = P(\mathbf{x}_0) \prod_{t=1}^T P(\mathbf{x}_t | \mathbf{x}_0)$$

where  $P(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\sqrt{\alpha_t}\mathbf{x}_0, (1-\alpha_t)\mathbf{I}), \mathcal{N}(\cdot)$  is a Normal distribution,  $\alpha_t > 0$  is a scalar parameter, and  $\mathbf{I}$  is a identity matrix.

- (1)(5pts) Drawing a graphical model to depict the generative process. (Note that each variable  $\mathbf{x}_i$  is influenced by its own parameter  $\alpha_t$ )
- (2)(10pts) If  $P(\mathbf{x}_{t-1}|\mathbf{x}_t,x_0)$  follows a Gaussian distribution with variance  $\sigma_t^2$ , show this distribution.
- (3)(10pts) If the condition in (2) is relaxed to a, b, where 0 < a < b < T, show the distribution of  $P(\mathbf{x}_a|\mathbf{x}_b,\mathbf{x}_0)$

(1)



(2) Assume 
$$P(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(m_t\mathbf{x}_t + n_t\mathbf{x}_0, \sigma_t^2\mathbf{I})$$
, thus

$$\mathbf{x}_{t-1} = m_t \mathbf{x}_t + n_t \mathbf{x}_0 + \sigma_t \mathbf{e}$$

where  $\mathbf{e} \sim \mathcal{N}(0, \mathbf{I})$ , and there are

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_0 + \sqrt{1 - \alpha_t} \mathbf{e}_2$$
$$\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \mathbf{x}_0 + \sqrt{1 - \alpha_{t-1}} \mathbf{e}_3$$

And

$$\mathbf{x}_{t-1} = m_t(\sqrt{\alpha_t}\mathbf{x}_0 + \sqrt{1 - \alpha_t}\mathbf{e}_2) + n_t\mathbf{x}_0 + \sigma_t\mathbf{e}$$
$$= (m_t\sqrt{\alpha_t} + n_t)\mathbf{x}_0 + m\sqrt{1 - \alpha_t}\mathbf{e}_2 + \sigma_t\mathbf{e}$$

So we can get the equations

$$\begin{cases} m_t \sqrt{\alpha_t} + n_t = \sqrt{\alpha_{t-1}} \\ m_t^2 (1 - \alpha_t) + \sigma_t^2 = 1 - \alpha_{t-1} \end{cases}$$

So that 
$$m_t=\sqrt{\frac{1-\alpha_{t-1}-\sigma_t^2}{1-\alpha_t}}$$
 and  $n_t=\sqrt{\alpha_{t-1}}-\sqrt{\frac{\alpha_t}{1-\alpha_t}(1-\alpha_{t-1}-\sigma_t^2)}$ , and

$$P(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\sqrt{\frac{1 - \alpha_{t-1} - \sigma_t^2}{1 - \alpha_t}} \mathbf{x_t} + (\sqrt{\alpha_{t-1}} - \sqrt{\frac{\alpha_t}{1 - \alpha_t}} (1 - \alpha_{t-1} - \sigma_t^2)) \mathbf{x_0}, \sigma_t^2 \mathbf{I})$$

(3) Similar to (2), we can get

$$P(\mathbf{x}_a|\mathbf{x}_b,\mathbf{x}_0) = \mathcal{N}(\sqrt{\frac{1-\alpha_a-\sigma_b^2}{1-\alpha_b}}\mathbf{x_b} + (\sqrt{\alpha_a} - \sqrt{\frac{\alpha_b}{1-\alpha_b}(1-\alpha_a-\sigma_b^2)})\mathbf{x_0}, \sigma_b^2\mathbf{I})$$