Lecture Note 5

Dr. Jeff Chak-Fu WONG

Department of Mathematics
Chinese University of Hong Kong

jwong@math.cuhk.edu.hk

MATH1020 General Mathematics

Theorem 1 Laws of Exponents

If s, t, a,and b are real numbers with a > 0 and b > 0, then

$$a^{s} \cdot a^{t} = a^{s+t}$$

$$(a^{s})^{t} = a^{st}$$

$$(ab)^{s} = a^{s} \cdot b^{s}$$

$$1^{s} = 1$$

$$a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s}$$

$$a^{0} = 1.$$

Definition 1 An exponential function is a function of the form

$$f(x) = Ca^x$$

where a is a positive real number (a>0) and $a\neq 1$ and $C\neq 0$ is a real number. The domain of f is the set of all real numbers. The base a is the **growth factor**, and because $f(0)=Ca^0=C$, we call C the **initial value**.

Theorem 2 For an exponential function

 $f(x) = C \cdot a^x, \ a > 0, \ a \neq 1$, if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \qquad \text{or} \qquad f(x+1) = af(x).$$

Proof:

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x} = a^{x+1-x} = a^1 = a.$$

The following display summarizes the information that we have about the function $f(x) = a^x$, a > 1.

Properties of the Exponential Function $f(x) = a^x$, a > 1

- 1. The domain is the set of all real numbers: the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to -\infty$.
- 4. $f(x) = a^x$, a > 1, is a decreasing function and is one—to—one.
- 5. The graph of f contains the points (0,1), (1,a), and $\left(-1,\frac{1}{a}\right)$
- 6. The graph of *f* is smooth and continuous, with no corners or gaps, See Figure 1.

Figure 1:

The following display summarizes the information that we have about the function $f(x) = a^x$, 0 < a < 1.

Properties of the Exponential Function $f(x) = a^x$, 0 < a < 1

- 1. The domain is the set of all real numbers: the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$.
- 4. $f(x) = a^x$, 0 < a < 1, is a decreasing function and is one—to—one.
- 5. The graph of f contains the points (0,1), (1,a), and $\left(-1,\frac{1}{a}\right)$.
- 6. The graph of *f* is smooth and continuous, with no corners or gaps. See Figure 2.

Figure 2:

Exercises 1 Graphing an exponential Function Using Transformations

Graph $f(x) = 2^{-x} - 3$ and determine the domain, range, and horizontal asymptote of f.

Let's look at one way of arriving at this important number e.

Definition 2 The number e is defined as the number that the expression

$$\left(1 + \frac{1}{n}\right)^n \tag{2}$$

approaches as $n \to \infty$. In calculus, this is expressed using limit notation as

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Table 1 illustrates what happens to the defining expression (2) as n takes on increasingly large values. The last number in the right column in the table is correct to nine decimal places and id the same as the entry given for e on your calculator (if expressed correctly to nine decimal places).

Table 1

n	$\frac{1}{n}$	$1+\frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	2	2	2
2	0.5	1.5	2.25
5	0.2	1.2	2.48832
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
1,000	0.001	1.001	2.716923932
10,000	0.0001	1.0001	2.718145927
100,000	0.00001	1.00001	2.718268237
1,000,000	0.000001	1.000001	2.718280469
1,000,000,000	10^{-9}	$1+10^{-9}$	2.718281827

Exercises 2 Graphing exponential Functions Using Transformations

Graph $f(x) = -e^{x-3}$ and determine the domain, range, and horizontal asymptote of f.

Solve Exponential Equations

Equations that involve terms of the form a^x , a > 0, $a \ne 1$, are referred to as exponential equations. Such equations can sometimes be solved by appropriately applying the Laws of Exponents and property (3)

If
$$a^u = a^v$$
, then $u = v$. (3)

Property (3) is a consequence of the fact that exponential functions are one—to—one. To use property (3), each side of the equality must be written with the same base.

Exercises 3 Solving an Exponential Equation

Solve: $3^{x+1} = 81$

Exercises 4 Solving an Exponential Equation

Solve:
$$e^{-x^2} = (e^x)^2 \cdot \frac{1}{e^3}$$
.