Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ФизМех

Направление подготовки «Прикладная математика и информатика»

Отчет по лабораторной работе №2 «Приближение табличных функций сплайнами»

Выполнил студент гр. 5030102/00003

Петрошенко А.В.

Преподаватель:

Курц В.В.

Формулировка задачи и ее формализация

Зачем решать задачу интерполирования?

- 1. табличная функция получена в результате эксперимента ⇒ необходимо вычислить значения функции (значения производных функции) в других (промежуточных) точках
- 2. компактное представление данных
- 3. упрощение вычисления "сложных" функций: заменяем более "простой"

Постановка задачи:

Пусть $x_0, ..., x_n$ будут точками промежутка $[a, b], a = x_0 < x_1 < ... < x_n = b$ Тогда функция $S_k^{\nu}(x)$ на отрезке [a, b] будет сплайном степени k если:

$$S_k^{\nu}|_{[x_i,x_{i+1}]} \in \mathbb{P}_k, i = 0, 1, ...n - 1$$
$$S_k^{\nu} \in C^{k-\nu}([a,b])$$
$$S_k^{\nu}(x_i) = f(x_i), i = 0, ..., n$$

 $x_1,...,x_{n-1}$ - внутренние точки, u - дефект сплайна.

В данной лабораторной будет реализован кубический сплайн дефекта 1 с условием известности вторых производных в граничных точках.

Алгоритм метода и условия его применимости

Пусть
$$S_k^{\nu}$$
 - интерполяционный сплайн. $k=3, \nu=1\Rightarrow S_3^1|_{[x_{i-1},x_i]}\in \mathbb{P}_3$ и $S_3^1\in C^2([a,b])$ $g(x):=S_3^1(x),g_i(x):=S_3^1(x)|_{[x_{i-1},x_i]}$

$$g(x) := S_3^1(x), g_i(x) := S_3^1(x)|_{[x_{i-1}, x_i]}$$

 $q(x) \in C^2([a,b]) \Rightarrow$ для всех внутренних точек $x_i, i = 1, ..., n-1$:

$$\begin{cases} g_i(x_i) = g_{i+1}(x_i) \\ g'_i(x_i) = g'_{i+1}(x_i) \\ g''_i(x_i) = g''_{i+1}(x_i) \end{cases}$$

g(x) - интерполяционный сплайн $\Rightarrow g_1(x_0) = y_0$ и $g_i(x_i) = y_i, i = 1, ..., n$ Таким образом, у нас 4n неизвестных и 4n-2 уравнения, поэтому добавим еще 2 условия:

$$\begin{cases} g''(a) = f''(a) \\ g''(b) = f''(b) \end{cases}$$

Теперь мы можем найти все неизвестные $g_i(x)$:

 $M_i := g(x_i), i = 0, ...n$ и g''(x) - линейная функция \Rightarrow

$$g_i''(x) = M_{i-1} \frac{x_i - x}{h} + M_i \frac{x - x_{i-1}}{h}, x \in [x_{i-1}, x_i],$$

где $h = x_i - x_{i-1}$. (Равномерная сетка)

Дважды интегрируем и получаем:

$$g_i(x) = M_{i-1} \frac{(x_i - x)^3}{6h} + M_i \frac{(x - x_{i-1})^3}{6h} + C_i(x - x_{i-1}) + \tilde{C}_i.$$

Из выше описанных уравнений составляем СЛАУ для M_i и решаем ее методом прогонки. Далее находим C_i и \tilde{C}_i и получаем сплайн.

Условия применимости:

Исходя из 2 дополнительных условий, функция f(x) должна иметь вторую производную хотя бы в граничных точках.

Предварительный анализ задачи

Так как матрица СЛАУ для нахождения M_i трехдиагональная, то для устойчивости метода прогонки, достаточно, чтобы выполнялось условие диагонального преобладания, и, как мы видим, оно выполняется $\frac{2h}{3} > \frac{h}{6} + \frac{h}{6}$.

В данной работе будет апроксимирована функция $f(x) = 0.5^x + 1 - (x-2)^2$. Она бесконечно дифференцируема, следовательно имеет вторую производную в граничных точках промежутка апроксимирования [a, b].

Тестовый пример для задач малой размерности

Построим кубический сплайн дефекта 1 для таблично заданной функции

$$f(x) = 0.5^x + 1 - (x - 2)^2$$

Равномерная сетка:

Ошибки в неузловой точке:

$$|g_1(-1) - f(-1)| = |-18.604 + 6| = -12.604$$

 $|g_2(4) - f(4)| = |6.387 + 2.938| = 9.325$

Контрольные тесты

- 1. Зададим равномерную сетку и построим кубический сплайн дефекта 1 по общей формуле для функции $f(x) = 0.5^x + 1 (x 2)^2$, изменяя количество узлов(от 4 до 61).
- 2. Зададим равномерную сетку, построим кубический сплайн дефекта 1 для функции $f(x) = 0.5^x + 1 (x-2)^2$ для 31 точки и внесем ошибку в значения вторых производных в граничных точках. Будем менять относительную погрешность вносимых ошибок от $(10^{-5}$ до $10^5)$.

Модульная структура программы

```
int GetNum(ifstream *F)
double fGetNum(ifstream* F)
vector<double> ImportData(ifstream* F, int n)
- Функции для импортирования данных
```

matrix t MatrixInit(int size)

- Функция инициализации матрицы

```
vector<double> ThomasAlgorythm(double h, vector<double> y_i, double a_der,
double b_der)
pair<vector<double>, vector<double>> FindConstants(double h, vector<double> y_i,
vector<double> M_i)
double g_i(double xx, double left_M, double right_M, double left_x, double right_x,
double C, double C_tilda)
```

- Вспомогательные функции для нахождения M_i методом прогонки, констант C_i и \tilde{C}_i и функции $q_i(x)$

vector<double> CubicSpline(vector<double> xx, vector<double> x_i, vector<double> y_i, vector<double> M_i, pair<vector<double>, vector<double>> C)

- Реализация кубического сплайна дефекта 1

void OutputVector(vector<double> vec, ofstream* F)

- Функция для экспортирования данных

Численный анализ

⊳ Приближение:

При увеличении числа узлов кубический сплайн дефекта 1 все больше и больше становится похож на график функции.

⊳ Ошибка:

Из графика видно, что при малом количестве узлов максимальная ошибка полинома Лагранжа меньше, чем ошибка сплайна, но начиная примерно с 58 узлов она становится больше. Из пооведения графиков ясно, что с этого числа узлов ошибка сплайна всегда будет меньше, поскольку она убывает, а ошибка полинома увеличивается.

⊳ Внесенные погрешнности:

На графике мы видим, что внесение ошибки, относительная величина которой меньше порядка -2, практически не влияет на результат, но затем ошибка начинает увеличиваться.

Общие выводы

В данной лабораторной работе мы научились апроксимировать сложную функцию кубическими сплайнами. Реализация данного метода довольно легкая, а вычислительная сложность получается порядка O(n), но с большой константой, поэтому такой метод лучше использовать на большем количестве точек.