Some notational conventions can also be introduced to simplify the notation of higherorder derivatives, and we discuss such conventions very briefly.

Recall that when E is of finite dimension n, and $(a_0, (e_1, \ldots, e_n))$ is a frame for E, $D^m f(a)$ is a symmetric m-multilinear map, and we have

$$D^{m} f(a)(u_1, \dots, u_m) = \sum_{j} u_{1,j_1} \cdots u_{m,j_m} \frac{\partial^{m} f}{\partial x_{j_1} \dots \partial x_{j_m}} (a),$$

where j ranges over all functions $j: \{1, \ldots, m\} \to \{1, \ldots, n\}$, for any m vectors

$$u_j = u_{j,1}e_1 + \dots + u_{j,n}e_n.$$

We can then group the various occurrences of ∂x_{j_k} corresponding to the same variable x_{j_k} , and this leads to the notation

$$\left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} f(a),$$

where $\alpha_1 + \alpha_2 + \cdots + \alpha_n = m$.

If we denote $(\alpha_1, \ldots, \alpha_n)$ simply by α , then we denote

$$\left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} f$$

by

$$\partial^{\alpha} f$$
, or $\left(\frac{\partial}{\partial x}\right)^{\alpha} f$.

If $\alpha = (\alpha_1, \dots, \alpha_n)$, we let $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$, $\alpha! = \alpha_1! \dots \alpha_n!$, and if $h = (h_1, \dots, h_n)$, we denote $h_1^{\alpha_1} \dots h_n^{\alpha_n}$ by h^{α} .

In the next section, we survey various versions of Taylor's formula.

39.7 Taylor's formula, Faà di Bruno's formula

We discuss, without proofs, several versions of Taylor's formula. The hypotheses required in each version become increasingly stronger. The first version can be viewed as a generalization of the notion of derivative. Given an m-linear map $f : \overrightarrow{E^m} \to \overrightarrow{F}$, for any vector $h \in \overrightarrow{E}$, we abbreviate

$$f(\underbrace{h,\ldots,h}_{m})$$

by $f(h^m)$. The version of Taylor's formula given next is sometimes referred to as the formula of Taylor-Young.