AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

- (Currently Amended) A lighting apparatus for emitting white light comprising:

 a semiconductor light source emitting radiation having a peak emission in the UV;
- a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Ba,Sr,Ca)SiO_4$:Eu one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,Tb,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce, and at least one phosphor selected from the group consisting of $(Sr,Mg,Ca,Ba,Zn)_2P_2O_7$:Eu,Mn; $(Ca,Sr,Ba,Mg)_5(PO_4)_3(Cl,F,OH)$:Eu,Mn; and $(Sr,Mg,Ca,Mg)_1O_{17}$:Eu,Mn, wherein said $(Ba,Sr,Ca)SiO_4$:Eu phosphor comprises $(Sr_{0.95}Ba_{0.025}Eu_{0.025})_2SiO_4$ or $(Sr_{0.95}Ca_{0.026}Eu_{0.06})_2SiO_4$.
- (Original) The lighting apparatus of claim 1, wherein the light source is an LED.
- 3. (Original) The lighting apparatus of claim 2, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i+j+k=1.
- 4. (Original) The lighting apparatus of claim 1, wherein the light source is an organic emissive structure.
- (Original) The lighting apparatus of claim 1, wherein the phosphor composition is coated on the surface of the light source.
- 6. (Original) The lighting apparatus of claim 1, further comprising an encapsulant surrounding the light source and the phosphor composition.

- 7. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is dispersed in the encapsulant.
- 8. (Original) The lighting apparatus of claim 1, further comprising a reflector cup.
- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Original) The lighting apparatus of claim 10, wherein said apparatus has a color point with ccx value of 0.5286 and a ccy value of 0.4604.
- 12. (Original) The lighting apparatus of claim 1, wherein said phosphor composition further comprises one or more additional phosphor.
- 13 (Previously Presented) The lighting apparatus of claim 12, wherein said one or selected from group consisting more additional phosphors (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; $(Ba,Sr,Ca)BPO_5:Eu^{2+},Mn^{2+}; \qquad (Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; \qquad 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+}; \\$ $Sr_2Si_3O_{8*2}SrCl_2:Eu^{2+}; \quad Ba_3MgSi_2O_8:Eu^{2+}; \quad Sr_4Al_{14}O_{25}:Eu^{2+}; \quad BaAl_8O_{13}:Eu^{2+}; \quad 2SrO-0.84P_2O_{5-1}:Eu^{2+}; \quad 2SrO-0.84P_$ (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺.Tb³⁺: 0.16B2O3:Eu²⁺; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Y.Gd.Tb.La.Sm.Pr. (Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu2+; $Lu)_{3}(Al,Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{4}Cl_{2}: \qquad Eu^{2+},Mn^{2+}; \qquad Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \\ Lu)_{3}(Al,Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{4}Cl_{2}: \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_$ (Sr.Ca.Ba,Mg,Zn)₂P₂O₇:Eu²⁺,Mn²⁺; (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH)$: Eu^{2+},Mn^{2+} ; (Gd,Y,Lu,La)2O3;Eu3+,Bi3+; $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+}; \qquad (Gd,Y,Lu,La)VO_4:Eu^{3+},Bi^{3+}; \qquad (Ca,Sr)S:Eu^{2+}; \qquad SrY_2S_4:Eu^{2+}; \qquad SrY_2S_5:Eu^{2+}; \qquad SrY_2S_5:Eu^{2+}; \qquad SrY_2S_5:Eu^{2+}; \qquad SrY_2S_5:Eu^{2+}; \qquad SrY_2S_5:Eu^{2+}; \qquad SrY_2S_5:E$ $CaLa_{7}S_{4}:Ce^{3+};$ (Ca,Sr)S:Eu²⁺; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; (Ba,Sr,Ca)MgP₂O₇:Eu²⁺,Mn²⁺; (Y.Lu), WO6: Eu3+, Mo6+; (Ba, Sr, Ca), Si, N2: Eu2+.
- 14. (Currently Amended) A lighting apparatus for emitting white light comprising: a UV light source emitting radiation having a peak emission in the UV range; and a phosphor composition radiationally coupled to the light source, the phosphor

composition comprising (Sr,Ba,Ca)₂SiO₄:Eu, one or more garnet phosphors having the general formula (Y,Gd,La,Lu,Tb,Pr,Sm)₃(Al,Ga,In)₅O₁₂:Ce and a magnesium fluorogermanate phosphor, wherein said (Sr,Br,Ca)₂SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025} Eu_{0.025})₂SiO₄ or (Sr_{0.58}Ca_{0.036} Eu_{0.06})₂SiO₄.

- (Original) The lighting apparatus of claim 14, wherein the light source is a semiconductor LED.
- 16. (Original) The lighting apparatus of claim 14, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i+j+k=1.
- 17. (Original) The lighting apparatus of claim 14, wherein said light source is an organic emissive structure.
- 18. (Original) The lighting apparatus of claim 14, wherein the phosphor composition is coated on the surface of the light source.
- 19. (Original) The lighting apparatus of claim 14, further comprising an encapsulant surrounding the light source and the phosphor composition.
- (Original) The lighting apparatus of claim 14, wherein the phosphor composition is dispersed in the encapsulant.
- 21. (Original) The lighting apparatus of claim 14, further comprising a reflector cup.
- (Cancelled)
- (Cancelled)
- 24. (Original) The lighting apparatus of claim 14, wherein said apparatus has a color point with ccx value of 0.5286 and a ccy value of 0.4604.

- 25. (Original) The lighting apparatus of claim 14, wherein said phosphor composition further comprises one or more additional phosphors.
- The lighting apparatus of claim 21, wherein said one or 26. (Previously Presented) consisting more additional phosphors selected from the group (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; $(Ba_{3}Sr_{7}Ca)BPO_{5}:Eu^{2+},Mn^{2+}; \qquad (Sr_{7}Ca)_{10}(PO_{4})_{6}*nB_{2}O_{3}:Eu^{2+}; \qquad 2SrO*0.84P_{2}O_{5}*0.16B_{2}O_{3}:Eu^{2+}; \\$ $Sr_2Si_3O_{8''2}SrCl_2:Eu^{2+}; \quad Ba_3MgSi_2O_8:Eu^{2+}; \quad Sr_4Al_{14}O_{25}:Eu^{2+}; \quad BaAl_8O_{13}:Eu^{2+}; \quad 2SrO-0.84P_2O_{5-1}O_{14}O_{15}:Eu^{2+}O_{15}O_{$ (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; 0.16B2O3:Eu2+; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Y.Gd.Tb.La.Sm.Pr. (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; $Lu)_{3}(Al_{3}Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca_{3}Sr)_{8}(Mg_{3}Zn)(SiO_{4})_{4}Cl_{2}: \qquad Eu^{2+},Mn^{2+}; \qquad Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}:$ (Sr,Ca,Ba,Mg,Zn)₂P₂O₇:Eu²⁺,Mn²⁺; (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; (Ca,Sr,Ba,Mg)₁₀(PO₄)₆(F,Cl,Br,OH): $Eu^{2+},Mn^{2+};$ (Gd,Y,Lu,La)₂O₃:Eu³⁺,Bi³⁺; $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)VO_4:Eu^{3+},Bi^{3+};$ $(Ca,Sr)S:Eu^{2+};$ $SrY_2S_4:Eu^{2+};$ $CaLa_2S_4:Ce^{3+}$; $(Ca.Sr)S:Eu^{2+}$; $3.5MgO*0.5MgF_2*GeO_2:Mn^{4+}$; $(Ba.Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+}$; (Y.Lu)2WO6:Eu3+, Mo6+; (Ba,Sr,Ca)xSivNz:Eu2+.
- (Previously Presented) A lighting apparatus for emitting white light comprising:
 a semiconductor light source emitting radiation having a peak emission in the UV range;
 and
- a phosphor composition radiationally coupled to the light source, the phosphor composition comprising (Ba,Sr,Ca)SiO₄:Eu, and one or more additional phosphors, wherein said (Ba,Sr,Ca)SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025} Eu_{0.025})zSiO₄ or (Sr_{0.58}Ca_{0.036} Eu_{0.065})zSiO₄.
- (Original) The lighting apparatus of claim 27, wherein the light source is a semiconductor LED.
- 29. (Original) The lighting apparatus of claim 27, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.

- 30. (Original) The lighting apparatus of claim 27, wherein said light source is an organic emissive structure.
- 31. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is coated on the surface of the light source.
- 32. (Original) The lighting apparatus of claim 27, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 33. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is dispersed in the encapsulant.
- (Original) The lighting apparatus of claim 27, further comprising a reflector cup.
- (Cancelled)
- 36. (Cancelled)
- 37. (Previously Presented) The lighting apparatus of claim 27, wherein said apparatus has a color point with a cx value or 0.5286 and a cxy value of 0.4604.
- Canceled
- 39. (Previously Presented) The lighting apparatus of claim 32, wherein said one or selected from the group consisting of more additional phosphors $(Ba,\!Sr,\!Ca)_5(PO_4)_3(Cl,\!F,\!Br,\!OH):\!Eu^{2+},\!Mn^{2+},\!Sb^{3+};$ (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; \qquad 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+};$ (Ba,Sr,Ca)BPO₅;Eu²⁺,Mn²⁺; Sr₂Si₃O_{8*2}SrCb:Eu²⁺; Ba₃MgSi₂O₈:Eu²⁺; Sr₄Al₁₄O₂₅:Eu²⁺; BaAl₈O₁₃:Eu²⁺; 2SrO-0.84P₂O₅. (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO3:Ce3+.Tb3+; 0.16B2O3:Eu2+; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Y,Gd,Tb,La,Sm,Pr, (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; $Lu)_{3}(Al,Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{4}Cl_{2}: \qquad Eu^{2+},Mn^{2+}; \qquad Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+};$

 $(Ba,Sr)_2(Ca,Mg,Zn)B_2O_6:K,Ce,Tb; \\ (Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH): \\ Eu^2+,Mn^{2+}; \\ (Gd,Y,Lu,La)_2O_3:Eu^{2+},Mn^{2+}; \\ (Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+}; \\ (Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+}; \\ (Gd,Y,Lu,La)_2O_3:Eu^{3+}; \\ (Sa,Sr,Se)^{3+}; \\ (Ca,Sr)S:Eu^{2+}; \\ SrY_2S_4:Eu^{2+}; \\ (Sa,Sr,Ca)_3S_4:Ce^{3+}; \\ (Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};(Ba,Sr,Ca)_3S_3N_2:Eu^{2+}. \\ (Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+}. \\ (Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3S_3N_3:Eu^{2+};(Ba,Sr,Ca)_3$

40. (Currently Amended) A phosphor blend including (Sr,Ba,Ca)₂SiO₄:Eu and at least one of (Sr,Mg,Ca,Ba,Zn)₂P₂O₇:Eu,Mn; (Ca,Sr,Ba,Mg)₅(PO₄)₃(Cl,F,OH):Eu,Mn; and (Sr,Ba,Ca)_MgAl₁₀O₁₇:Eu,Mn, wherein said (Sr,Ba,Ca)₂SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025}Eu_{0.025})₂SiO₄ or (Sr_{0.55}Ca_{0.036}Eu_{0.05})₂SiO₄.

- 41. (Cancelled)
- 42. (Cancelled)
- 43. (Previously Presented) The phosphor blend of claim 40, wherein said phosphor blend is capable of absorbing the radiation emitted by a light source having a peak emission in the UV range and emitting radiation that, when combined with said radiation from said light source, produces white light.
- 44. (Cancelled)
- 45. (Previously Presented) The lighting apparatus of claim 1, wherein said semiconductor light source has a peak emission at about 405 nm.
- 46. (Currently Amended) A lighting apparatus for emitting white light comprising: a semiconductor light source emitting radiation having a peak emission in the UV; and
- a phosphor composition radiationally coupled to the light source, the phosphor composition comprising (Sr,Ba,Ca)₂SiO₄:Eu, and at least one phosphor selected from the group consisting of ((Sr,Mg,Ca,Ba,Zn)₂P₂O₇:Eu,Mn; (Ca,Sr,Ba,Mg)₅(PO₄)₅(Cl,F,OH):Eu,Mn; and

 $(Sr_0Ba_cCa)MgAl_{10}O_{17}.Eu_tMn_x \\ \underline{wherein\ said\ (Sr_0Br_tCa)_2SiO_4}.Eu\ \underline{phosphor\ comprises\ (Sr_{0.95}Ba_{0.025})}.\\ \underline{Eu_{0.025}).SiO_4\ or\ (Sr_{0.56}Ca_{0.036}.Eu_{0.06})_2SiO_4}.$