Ф.И.О_____

Группа

ВОПРОСЫ

Пусть $Y_t = \beta_1 + \beta_2 X_{t2} + ... + \beta_k X_{tk} + \varepsilon_t \left(t = \overline{1,n}\right)$ - модель линейной регрессии.

существуют номера наблюдений t и s, такие, что $1 \le t \le n$; $1 \le s \le n$, для которых $D(\varepsilon_{t}) \neq D(\varepsilon_{s})$.

 $\mathbb{E}(\varepsilon_{t}\varepsilon_{s})\neq 0$

для всех t=1,...,n и s=1,...,n выполняется равенство $\operatorname{cov} \left(X_{\scriptscriptstyle ti}, \varepsilon_{\scriptscriptstyle s} \right) = 0$.

Вопрос 4. Статистика $\frac{\sum\limits_{t=2}^{n}\left(\hat{\pmb{\varepsilon}}_{t}^{2}-\hat{\pmb{\varepsilon}}_{t-1}^{2}\right)}{\sum\limits_{t=2}^{n}\hat{\pmb{\varepsilon}}_{t}^{2}}$ называется статистикой

Вопрос 5. Статистика $\frac{\sum\limits_{t=2}^{n}\left(\hat{\varepsilon}_{t}^{2}-\hat{\varepsilon}_{t-1}^{2}\right)}{\sum\limits_{t=2}^{n}\hat{\varepsilon}_{t}^{2}}$ используется для тестирования

_ и не применяется, если в модели нет _____

Вопрос 6. Оценки, которые являются решением задачи

$$\sum_{t=1}^{n} (Y_{t} - \beta_{1} - \beta_{2} X_{t2} - \dots - \beta_{k} X_{tk})^{2} \to \min_{\beta_{1}, \dots, \beta_{k}},$$

Вопрос 7. Оценка $\left(X^T \mathbf{V}(\varepsilon)^{-1} X\right)^{-1} X^T \mathbf{V}(\varepsilon)^{-1} Y$ при $\mathbf{V}(\varepsilon) \neq \sigma^2 \cdot I$ используется для оценивания вектора неизвестных параметров β в случае, если ошибки $\left\{ \varepsilon_{t} \right\}_{t=1}^{n}$ в модели являются ____

яются _____ или _____. **Вопрос 8.** Если зависимая переменная Y_t может принимать только два значения 0 и 1, то класс таких регрессионных моделей называется

Вопрос 9. Пусть регрессионная модель имеет вид

$$\mathbb{P}\left(\left\{Y_{t}=1\right\}\right) = \Phi\left(\beta_{1} + \beta_{2}X_{t2} + \ldots + \beta_{k}X_{tk}\right),\,$$

где $\Phi(x) = \int_{-\pi}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$. Тогда такая модель называется _____

Вопрос 10. Регрессионные модели вида $\mathbb{P}(\{Y_t = 1\}) = \Lambda(\beta_1 + \beta_2 X_{t2} + ... + \beta_k X_{tk})$, где $\Lambda(x) = \frac{\exp(x)}{1 + \exp(x)}$, оцениваются, например, при помощи метода

ЗАДАЧИ

Задача 1. Оценивается регрессионная модель

$$Y_{i} = \alpha + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \varepsilon_{i}, i = 1,...,n,$$

где $\varepsilon_1,...,\varepsilon_n$ — независимые нормальные случайные величины с математическим ожиданием 0 и дисперсией σ^2 . Результаты оценивания приведены в следующей таблице.

вывод итогов

Регрессионная статистика	
Множественный R	0,83
R-квадрат	???
Нормированный R-квадрат	0,66
Стандартная ошибка	???
Наблюдения	25,00

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	2,00	96,94	48,47	???	0,00
Остаток	22,00	???	1,96		
Итого	24,00	140,04			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	7,34	???	8,50	0,00	5,55	9,13
X1	0,78	0,13	???	0,00	0,51	1,06
X2	0,75	???	???	0,00	0,44	1,06

Заполните следующую таблицу.

<u>о табл</u>	ицу.	
A.	$R^2 =$	
B.	$\hat{\sigma}$ =	
C.	RSS =	
D.	F =	
E.	$\hat{\sigma}_{\hat{\alpha}} =$	
F.	$t_{\widehat{eta_{ m l}}} =$	
G.	$\hat{\sigma}_{\widehat{eta}_2} =$	
Н.	$t_{\widehat{eta_2}} =$	

Задача 2. Была оценена функция Кобба-Дугласа с учетом человеческого капитала H (K – физический капитал, L – труд)

$$\widehat{\ln(Q)} = 1.4 + 0.46 \ln(L) + 0.27 \ln(H) + 0.23 \ln(K)$$

$$ESS = 170.4, \quad RSS = 80.3, \quad n = 21.$$

- А. Чему равен коэффициент R_{adj}^2 .
- В. Проверьте регрессию на значимость "в целом" на уровне значимости 5%.

Заполните следующую таблицу.

A.	$R_{adj}^2 =$
В0.	H_0 : H_1 :
B1.	тестовая статистика:
B2.	распределение тестовой статистики:
В3.	наблюдаемое значение тестовой статистики:
B4.	область, в которой $H_{\scriptscriptstyle 0}$ не отвергается :
B5.	статистический вывод:

Задача 3. Рассмотрим следующую модель зависимости цены дома *Price* (в тысячах долларов) от его площади *Hsize* (в ${\tt M}^2$), площади участка *Lsize* (в ${\tt M}^2$), числа ванных комнат *Bath* и числа спален *BDR* :

$$\widehat{Price} = \widehat{\alpha} + \widehat{\beta}_1 \cdot Hsize + \widehat{\beta}_2 \cdot Lsize + \widehat{\beta}_3 \cdot Bath + \widehat{\beta}_4 \cdot BDR,$$

$$R^2 = 0.218. \quad n = 23.$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы H_0 : $\beta_3=20\beta_4$. Для регрессии с ограничениями был вычислен коэффициент $R_R^2=0.136$. Протестируйте нулевую гипотезу на уровне значимости 5%. Заполните таблицу.

A.	спецификация:
В0.	H_0 : H_1 :
B1.	тестовая статистика :
B2.	распределение тестовой статистики:
В3.	наблюдаемое значение тестовой статистики:
B4.	область, в которой $H_{\scriptscriptstyle 0}$ не отвергается :
B5.	статистический вывод:

Задача 4. Пусть регрессионная модель $Y_i = \alpha + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \varepsilon_i \ \left(i = \overline{1,n}\right)$ задана в

матричном виде при помощи уравнения $Y=X\beta+\varepsilon$, где $\beta=\begin{bmatrix}\alpha\\\beta_1\\\beta_2\end{bmatrix}$. Известно, что $\mathbb{E}\big(\varepsilon\big)=\mathbf{0}$

и $V(\varepsilon) = \sigma^2 \cdot I$. Известно также, что

$$Y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}; \ X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Для удобства расчетов ниже приведены матрицы

$$X^{T}X = \begin{bmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ if } (X^{T}X)^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0.0 \\ -0.5 & 1.0 & -0.5 \\ 0.0 & -0.5 & 1.5 \end{bmatrix}.$$

Выполните следующие задания и заполните таблицу ниже.

- A. Рассчитайте $TSS = \sum_{i=1}^{n} (Y_i \overline{Y})^2$.
- В. Рассчитайте при помощи метода наименьших квадратов оценку для вектора неизвестных коэффициентов.
- С. Чему равен $\widehat{\varepsilon}_5$ МНК-остаток регрессии, который соответствует 5-му наблюдению?
- D. Найдите $RSS = \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$.
- E. Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- F. Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- G. Рассчитайте $\widehat{V}(\widehat{eta})$ оценку для ковариационной матрицы вектора МНК-коэффициентов \widehat{eta} .
- H. Найдите $\hat{D}(\hat{\alpha})$ несмещенную оценку дисперсии МНК-коэффициента $\hat{\alpha}$.
- I. Найдите $\widehat{D}\Big(\widehat{eta}_1\Big)$ несмещенную оценку дисперсии МНК-коэффициента \widehat{eta}_1 .

- J. Найдите $\widehat{\text{cov}}(\hat{\alpha}, \widehat{\beta}_1)$ несмещенную оценку ковариации МНК-коэффициентов $\hat{\alpha}$ и $\widehat{\beta}_1$.
- К. Найдите $\widehat{\mathrm{corr}}\Big(\widehat{\alpha},\widehat{eta}_{\scriptscriptstyle \rm I}\Big)$ оценку ковариации МНК-коэффициентов $\widehat{\alpha}$ и $\widehat{eta}_{\scriptscriptstyle \rm I}$.
- L. Найдите $\widehat{D}(\widehat{\alpha} \widehat{\beta}_1)$.

A.	
B.	
C.	
D.	
E.	
F.	
G.	
Н.	
I.	
J.	
K.	
L.	