Note:

- The Training set is same as the training set given in Question 5 in Assignment 5 (Training_Dataset.csv)
- The Test data is generated randomly based on mean and covariance of Training data set of each class (10 samples per class is generated and stored in Test_Dataset.csv and is used in all the problems in Question 3)

Question 3a)General Classification with SVM, KNN, PNN, MLP

i) SVM : (Accuracy: 70%)

A Linear SVM classifier with 3 classes is trained using the Training_Dataset.csv and tested using the Test_Dataset.csv. We got the following confusion Matrix.

Actual 1 2 3 Pred 1 7 5 0 2 1 5 1 3 2 0 9

ii) KNN Classifier:

K Nearest Neighbour Classifier with **Euclidean distance** is used to find the nearest neighbor. The classification experiment is done for **K = 3 and K=5**. We got the following confusion matrices.

a) KNN-3: (Accuracy: 70%)

Confusion Matrix:

b) KNN-5:(*Accuracy:* 67%)

Actual 1 2 3 1 5 2 3 2 3 5 1 3 1 0 10

iii) PNN: (Accuracy: 73%)

The confusion matrix that we got for the test data.

	Actual
Predicted	123
	1 842
	2050
	3 209

<u>iv) MLP: (</u>Accuracy: 76%)

The multilayer perceptron neural network has been trained using the training data. Sigmoidal activation function has been used as the transfer function for the hidden layer neurons.

The confusion matrix that we got for the test data as follows.

Predicted Actual 1 2 3 1 7 1 2 2 1 7 2 3 1 0 9

Conclusion for Q3a:

• MLP has the best classification rate of 76%

Question 3b): Choosing Parameters or Hyper Parameters to improve the classification

SVM:

- Kernel has been changed to 'Radial'
- Scaling has been Disabled.
- Gamma has been set as 0.1

By doing so, the classification rate improved, the confusion matrix which we got is

	Actual
Predicted	123
	1 902
	2 1 9 2
	3 007

The accuracy has improved from 70% to 83%

KNN:

• K has set to 7 (seven nearest neighbours are considered)

By doing so, the classification rate improved, the confusion matrix which we got is

Prediction Actual 123 1622 2370 3118

The accuracy has improved from 67% to 70%

PNN:

- The Smoothing parameter has been changed.
- Got the best possible result when sigma set to 0.8

Actual

Predicted 1 2 3

1 800

2 191

3 1 0 10

The accuracy has improved from 70% to 90%

MLP:

- Max iteration has been increased
- Momentum has been set to 0.9
- Learning rate has set to constant

Predicted

Actual 1 2 3

1622

2 1 8 1

3 0 0 10

The accuracy rate has improved from 76% to 83%

Conclusion for Q3b:

- PNN has the best classification rate of 90%
- MLP/SVM share the second best classification rate with 83%
- KNN has an average classification rate of 70%

Question 3c: Max Voting Classifier

- Max voting algorithm is used.
- The improved version of SVM, KNN-1 and PNN (Solution to Q3b) has been used for Max Voting classification.
- Train all the classifiers with the same Training Data set (Training Dataset.csv)
- Predict each Test Point from Test Dataset.csv by passing it to all the three classifiers.
- Choose the 'Class' which has got the highest vote from the above classifiers.

The confusion Matrix which we got from the Max voting algorithm is

The accuracy of the Max voting classifier is 86%

Question 3d):K Means Clustering

- The Training data set has been clustered using K Means algorithm
- Different values of K (2,3,4,5,6) has been used to cluster the data.
- Sum of Squared Errors has been computed for all the clusters (For k = 2,3,4,5,6)
- Elbow Method:
 - The SSE has been plotted against the Value of corresponding K.
 - From the graph, as per this data, elbow is created at k=3, so we will take 3 clusters in this case.
 - With K=3, Our clustering algorithm is partially able to detect original distribution of data belonging to three classes of W1, W2, and W3.
 - Accuracy: 63%
 - Confusion Matrix

Actual Predicted 123 1650 2252 3208