齐鲁软件园杯 2024 中国大学生程序设计竞赛 全国邀请赛(山东) 暨 CCPC 山东省大学生程序设计竞赛

正式赛

2024 年 5 月 26 日

试题列表

-	
Α	打印机
В	三角形
С	多彩的线段 2
D	王国英雄
E	传感器
F	分割序列
G	宇宙旅行
Н	阻止城堡
I	左移
J	多彩的生成树
K	矩阵
L	路径的交
M	回文多边形

本试题册共 13 题, 17 页。 如果您的试题册缺少页面,请立即通知志愿者。

承办方

命题方

竞赛过程中访问非竞赛网页是违反竞赛规则的行为。 如果您有兴趣(我们很荣幸), 请在竞赛后扫描二维码。

Problem A. 打印机

SUA 程序设计竞赛命题组的裁判们正在为即将举行的 2024 中国大学生程序设计竞赛全国邀请赛(山东)暨 CCPC 山东省大学生程序设计竞赛打印试题。

文印店里共有 n 台打印机。第 i 台打印机每 t_i 秒可以打印一份试题。然而,第 i 台打印机每次打印出 l_i 份试题后,必须停机 w_i 秒防止过热。也就是说,第 i 台打印机将重复进行以下工作计划:持续工作 $t_i \times l_i$ 秒,然后停机 w_i 秒。

裁判们将同时使用所有打印机。求打印 k 份试题至少需要多少秒。

Input

有多组测试数据。第一行输入一个整数 T($1 \le T \le 100$)表示测试数据组数,对于每组测试数据:第一行输入两个整数 n 和 k($1 \le n \le 100$, $1 \le k \le 10^9$)表示打印机的数量和需要的试题数量。对于接下来的 n 行,第 i 行输入三个整数 t_i , l_i 和 w_i ($1 \le t_i$, l_i , $w_i \le 10^9$)。它们的意义如上所述。

Output

每组数据输出一行一个整数,表示打印试题至少需要多少秒。

Example

Note

对于第一组样例数据,在 25 秒内,第一台打印机可以打印 6 份试题,第二台打印机可以打印 5 份试题,第三台打印机可以打印 4 份试题。所以一共打印了 6+5+4=15 份试题。

Problem B. 三角形

给定 n 个由小写英文字母构成的字符串 S_1, S_2, \cdots, S_n ,称三个字符串 S_a , S_b 和 S_c 构成了一个三角形,若它们满足以下所有限制:

- $S_a + S_b > S_c$ 或 $S_b + S_a > S_c$ \circ
- $S_a + S_c > S_b$ 或 $S_c + S_a > S_b$.
- $S_b + S_c > S_a$ 或 $S_c + S_b > S_a$ \circ

这里的 + 表示字符串连接操作。字符串通过字典序比较大小。例如, ba, cb 和 cbaa 构成了一个三角形, 因为:

- cb + ba = cbba > cbaa.
- cbaa + ba = cbaaba > cb.
- cb + cbaa = cbcbaa > ba.

计算整数三元组 (a, b, c) 的数量,满足 $1 \le a < b < c \le n$ 且 S_a , S_b , S_c 构成了一个三角形。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数。对于每组测试数据:

第一行输入一个整数 n $(1 \le n \le 3 \times 10^5)$ 表示字符串的数量。

对于接下来的 n 行,第 i 行输入一个由小写字母构成的字符串 S_i $(1 \le |S_i| \le 3 \times 10^5)$ 。

保证单组数据所有字符串的总长度不超过 3×10⁵, 所有数据所有字符串的总长度不超过 10⁶。

Output

每组数据输出一行一个整数,表示合法的三元组数量。

Example

standard input	standard output
3	16
6	0
cbaa	0
cb	
cb	
cbaa	
ba	
ba	
3	
sdcpc	
sd	
срс	
1	
ccpc	

Problem C. 多彩的线段 2

考虑数轴上的 n 条线段,其中第 i 条线段的左端点为 l_i ,右端点为 r_i 。您需要将每条线段涂上 k 种颜色中的一种,使得任意两条具有相同颜色的线段都没有重合。

求给线段涂色的方案数。

称第 i 条线段和第 j 条线段有重合,若存在一个实数 x 同时满足 $l_i \le x \le r_i$ 且 $l_j \le x \le r_j$ 。 称两种涂色方案是不同的,若存在一条线段在两种方案中被涂上了不同的颜色。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数。对于每组测试数据:

第一行输入两个整数 n 和 k $(1 \le n \le 5 \times 10^5, \ 1 \le k \le 10^9)$ 表示线段的数量和颜色的数量。

对于接下来的 n 行,第 i 行输入两个整数 l_i 和 r_i $(1 \le l_i \le r_i \le 10^9)$ 表示第 i 条线段的左右端点。保证所有数据 n 之和不超过 5×10^5 。

Output

每组数据输出一行一个整数表示答案。由于答案可能很大,请将答案对998244353取模后输出。

Example

standard output
24
1000000

Note

令 c_i 表示第 i 条线段的颜色。

对于第一组样例数据,一种合法的涂色方案是令 $c_1 = 1$, $c_2 = 3$, $c_3 = 3$ 以及 $c_4 = 1$ 。因为第 1 条和第 4 条线段没有重合,第 2 条和第 3 条线段也没有重合。

然而, $c_1 = 1$, $c_2 = 2$, $c_3 = 1$ 以及 $c_4 = 3$ 不是一种合法的方案。因为第 1 条和第 3 条线段互相重合,不能有一样的颜色。

Problem D. 王国英雄

《王国英雄》是一款点击解谜类的冒险游戏。游戏中的主人公为了拯救他/她的父亲,踏上了一段危险的旅途,并成为了王国的英雄。

游戏中的货币被称为"金币",可以用于购买各种补给品,甚至还能用于完成特定任务。俗话说得好,"钱永远不嫌多",我们的天才玩家堡堡刚刚就找到了一种变得富有的方法。游戏中有一座磨坊,磨坊主以每袋p金币的价格售卖面粉。游戏中还有一座酒馆,酒保以每袋p金币(p0)的价格收购面粉。显然堡堡可以赚取其中的差价,但在两处地点之间移动,以及点击购买和卖出的按钮都需要时间。

更精确地,如果堡堡一次性从磨坊购买了x袋面粉,需要花(ax+b)秒以及px金币;如果堡堡一次性向酒馆卖出了x袋面粉,需要花(cx+d)秒,但能赚取qx金币。堡堡现在有m金币,但因为堡堡马上就要上床睡觉了,他最多只能再玩t秒游戏。求堡堡打完游戏时最多能持有多少金币。

Input

有多组测试数据。第一行输入一个整数 T (1 < T < 500) 表示测试数据组数,对于每组测试数据:

第一行输入三个整数 p, a 和 b $(1 < p, a < 10^9, 0 < b < 10^9) 。$

第二行输入三个整数 q, c 和 d $(p < q \le 10^9$, $1 \le c \le 10^9$, $0 \le d \le 10^9$) 。

第三行输入两个整数 m 和 t $(1 \le m, t \le 10^9)$ 。

Output

每组数据输出一行一个整数,表示堡堡经过至多 t 秒后最多能持有多少金币。

standard input	standard output
3	32
5 2 3	20
8 1 5	99
14 36	
5 2 0	
8 1 3	
17 6	
100 1 0	
10000 1 0	
99 100000	

Note

对于第一组样例数据,一种最优方案是:

- 堡堡首先从磨坊购买 2 袋面粉,花费 $2 \times 2 + 3 = 7$ 秒以及 $5 \times 2 = 10$ 金币。然后他把所有面粉卖给酒馆,花费 $1 \times 2 + 5 = 7$ 秒但赚取了 $8 \times 2 = 16$ 金币。堡堡现在有 14 10 + 16 = 20 金币,还剩 36 7 7 = 22 秒。
- 堡堡接下来从磨坊购买 4 袋面粉,花费 $2 \times 4 + 3 = 11$ 秒以及 $5 \times 4 = 20$ 金币。然后他把所有面粉卖给酒馆,花费 $1 \times 4 + 5 = 9$ 秒但赚取了 $8 \times 4 = 32$ 金币。堡堡现在有 20 20 + 32 = 32 金币,还剩 22 11 9 = 2 秒。
- 现在堡堡没有时间买卖面粉了。所以答案是 32。

对于第二组样例数据,堡堡只有时间买卖一袋面粉。所以答案是 17-5+8=20。 对于第三组样例数据,堡堡没有足够的金币购买面粉。所以答案是 99。

Problem E. 传感器

有 n 颗红球排成一行,从左到右编号从 0 到 (n-1)(含两端)。我们将进行 n 次操作,其中第 i 次操作将第 a_i 颗球涂成蓝色。所有操作结束后,所有球都会变成蓝色。

有 m 个编号从 1 到 m (含两端) 的传感器监控球的颜色。若第 l_i 颗球到第 r_i 颗球(含两端)里恰有一颗红球,则第 i 个传感器将进入激活状态,否则传感器将保持非激活状态。

问每次操作结束后,哪些传感器处于激活状态。

更具体地,设第 i 次操作结束后共有 k_i 个传感器处于激活状态,它们的编号是 $s_{i,1}, s_{i,2}, \cdots, s_{i,k_i}$ 。对于每个 $0 \le i \le n$,输出 $v_i = \sum\limits_{j=1}^{k_i} s_{i,j}^2$ 。特别地,定义 $v_0 = \sum\limits_{j=1}^{k_0} s_{0,j}^2$,其中 k_0 是第一次操作之前处于激活状态的传感器数量,它们的编号为 $s_{0,1}, s_{0,2}, \cdots, s_{0,k_0}$ 。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数。对于每组测试数据:

第一行输入两个整数 n 和 m $(1 \le n, m \le 5 \times 10^5)$ 表示球的数量和传感器的数量。

对于接下来 m 行, 第 i 行输入两个整数 l_i 和 r_i $(0 \le l_i \le r_i < n)$ 表示第 i 个传感器的检测范围。

接下来的一行输入 n 个整数 a_1', a_2', \cdots, a_n' $(0 \le a_i' < n)$,其中 a_i' 表示 **加密后的** 第 i 次操作。 a_i 的 真实值等于 $(a_i' + v_{i-1}) \bmod n$,其中 v_{i-1} 是第 (i-1) 次操作后的答案,在上述描述中已有定义。这些加密后的操作强制您必须计算好当前操作的答案,才能处理下一个操作。保证解密后 a_i 互不相同。

保证所有数据 n 之和与 m 之和均不超过 5×10^5 。

Output

每组数据输出一行 (n+1) 个由单个空格分隔的整数 $v_0, v_1, \cdots, v_n \circ v_i$ 的含义在上述描述中已有定义。

standard input	standard output
3	9 13 29 17 16 0
5 4	1 1 0
2 4	0 1 0
2 3	
3 3	
0 2	
3 2 4 2 0	
2 1	
1 1	
1 0	
2 1	
0 1	
0 0	

Note

对于第一组样例数据:

- 在第一次操作之前,只有传感器 3 处于激活状态,所以 $v_0 = 3^2 = 9$ 。
- 对于第 1 次操作,真实的 $a_1=(3+9) \bmod 5=2$ 。本次操作后,传感器 2 和 3 处于激活状态,所以 $v_1=2^2+3^2=13$ 。
- 对于第 2 次操作,真实的 $a_2 = (2+13) \mod 5 = 0$ 。本次操作后,传感器 2, 3 和 4 处于激活状态,所以 $v_2 = 2^2 + 3^2 + 4^2 = 29$ 。
- 对于第 3 次操作,真实的 $a_3=(4+29) \bmod 5=3$ 。本次操作后,传感器 1 和 4 处于激活状态,所以 $v_3=1^2+4^2=17$ 。
- 对于第 4 次操作,真实的 $a_4 = (2+17) \mod 5 = 4$ 。本次操作后,只有传感器 4 处于激活状态,所以 $v_4 = 4^2 = 16$ 。
- 对于第 5 次操作,真实的 $a_5=(0+16) \bmod 5=1$ 。本次操作后,没有传感器处于激活状态,所以 $v_5=0$ 。

Problem F. 分割序列

给定长度为 n 的整数序列 a_1, a_2, \cdots, a_n ,请将序列分成 k 段连续且非空的子数组,使得序列中的每个元素恰属于一个子数组。令 s_i 表示从左到右第 i 个子数组里的元素之和,对于每个 $1 \le k \le n$,求下式的最大值。

$$\sum_{i=1}^{k} i \times s_i$$

更正式地,对于每个 $1 \le k \le n$,令 $r_0 = 0$ 以及 $r_k = n$,您需要找到 (k-1) 个整数 r_1, r_2, \dots, r_{k-1} 满足 $r_0 < r_1 < r_2 < \dots < r_{k-1} < r_k$,并最大化下式的值。

$$\sum_{i=1}^{k} i \times (\sum_{j=r_{i-1}+1}^{r_i} a_j)$$

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数,对于每组测试数据:

第一行输入一个整数 n $(1 \le n \le 5 \times 10^5)$ 表示序列的长度。

第二行输入 n 个整数 a_1, a_2, \dots, a_n $(-10^6 \le a_i \le 10^6)$ 表示序列。

保证所有数据 n 之和不超过 5×10^5 。

Output

每组数据输出一行 n 个由单个空格分隔的整数 v_1, v_2, \dots, v_n , 其中 v_i 表示 k = i 时的答案。

Example

standard input	standard output
2	2 4 5 3 1 -2
6	100
1 3 -4 5 -1 -2	
1	
100	

Note

对于第一组样例数据,考虑 k=3,可以将序列分割为 $\{\{1\},\{3,-4\},\{5,-1,-2\}\}$ 。答案是 $1\times 1+2\times (3-4)+3\times (5-1-2)=5$ 。

Problem G. 宇宙旅行

堡堡是一位宇宙旅行者,穿梭于无穷多个平行宇宙之间。每个宇宙都有一个整数编号,编号从0开始。

每个宇宙里都有n个魔法苹果。虽然这些宇宙之间有很多相似之处,它们仍然有细微的不同。在第j个宇宙里,第i个魔法苹果的魔法能量值为 $a_i\oplus j$,这里 \oplus 是按位异或运算。

堡堡是一个优柔寡断的人,所以他准备了 q 个旅行计划。每个旅行计划可以记为三个整数 l, r 和 k, 表示堡堡将访问编号从 l 到 r 的每个宇宙(含两端),并从每个宇宙的 n 个苹果里,收集魔法能量值第 k 小的苹果。

对每个旅行计划,求堡堡收集的苹果的魔法能量值之和。请注意,旅行计划不会真的把苹果从每个宇宙中拿走。也就是说、每次询问是独立的。

Input

每个测试文件仅有一组测试数据。

第一行输入两个整数 n 和 q $(1 < n, q < 10^5)$ 表示每个宇宙里苹果的数量以及旅行计划的数量。

第二行输入 n 个整数 a_1, a_2, \dots, a_n $(0 \le a_i < 2^{60})$ 。

对于接下来 q 行,第 i 行输入三个整数 l_i , r_i 和 k_i $(0 \le l_i \le r_i < 2^{60}, 1 \le k_i \le n)$ 表示第 i 个旅行计划。

Output

每个旅行计划输出一行一个整数表示答案。由于答案可能很大,请将答案对998244353取模后输出。

Example

standard output
4
23
720895450
•

Problem H. 阻止城堡

一块有 10^9 行和 10^9 列的棋盘上放着 n 个城堡与 m 个障碍物。每个城堡或障碍物恰好占据一个格子,且被占据的格子两两不同。两座城堡可以互相攻击,若它们位于同一行或同一列,且它们之间没有障碍物或其它城堡。更正式地,令 (i,j) 表示位于第 i 行第 j 列的格子,位于 (i_1,j_1) 和 (i_2,j_2) 的两座城堡可以互相攻击,若以下条件中有一条成立:

- $i_1 = i_2$,且对于所有 $\min(j_1, j_2) < j < \max(j_1, j_2)$,不存在位于 (i_1, j) 的障碍物或城堡。
- $j_1 = j_2$,且对于所有 $\min(i_1, i_2) < i < \max(i_1, i_2)$,不存在位于 (i, j_1) 的障碍物或城堡。

找出一种方法,向棋盘上额外添加最少的障碍物,使得任意两座城堡都不能互相攻击。请注意:不能将额外的障碍物放在已经被占据的格子里。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数,对于每组测试数据:

第一行输入一个整数 n (2 < n < 200) 表示城堡的数量。

对于接下来 n 行,第 i 行输入两个整数 r_i 和 c_i $(1 \le r_i, c_i \le 10^9)$,表示第 i 座城堡位于第 r_i 行第 c_i 列 。

接下来的一行输入一个整数 m $(0 \le m \le 200)$ 表示障碍物的数量。

对于接下来 m 行,第 i 行输入两个整数 r_i' 和 c_i' $(1 \le r_i', c_i' \le 10^9)$,表示第 i 个障碍物位于第 r_i' 行第 c_i' 列 。

保证被占据的格子两两不同。同时保证所有数据 n 之和与 m 之和均不超过 400。

Output

对于每组数据:

如果能阻止城堡之间互相攻击,首先输出一行一个整数 k,表示最少需要额外添加多少障碍物。接下来输出 k 行,其中第 i 行包含两个由单个空格分隔的整数 x_i 和 y_i $(1 \le x_i, y_i \le 10^9)$,表示您准备将第 i 个额外障碍物放在格子 (x_i, y_i) 里。如果有多种合法答案,您可以输出任意一种。

如果无法阻止城堡之间互相攻击,只要输出一行-1。

4 2 7 2 3 1 3 4 6 6 6 0 4 7 1 2 1 2 3 6 3 -1 4 1 2 6 3 3 4 6 4 3 1	
1 3 4 6 6 6 0 4 7 1 2 1 2 3 6 3 -1 4 1 -1 2 6 -1 3 4 -1 6 4 -1	
6 6 0 4 7 1 2 1 2 3 6 3 -1 4 1 2 6 3 3 4 6 4 6 4	
4 7 2 1 6 3 4 1 2 6 3 3 4 6 4	
2 1 2 3 6 3 -1 4 1 -1 2 6 -1 3 4 -1 6 4 -1	
6 3 4 1 2 6 3 3 4 6 4	
4 1 2 6 3 3 4 6 4	
2 6 3 3 4 6 4	
3 3 4 6 4	
3 4 6 4	
6 4	
3 1	
2	
1 1	
2 2	
0	
3	
1 1	
1 3	
3 3	
1 2	
3	
1 1	
1 3	
2 3	
0	

Note

第一组样例数据如下图所示。我们只需要添加 2 个额外的障碍物(图中用星星标识),其中一个位于 (2,3),另一个位于 (4,6)。

对于第二组样例数据,两座城堡既不在同一行也不在同一列,因此不需要障碍物。

Problem I. 左移

称一个字符串是美丽的,若它的第一个字符和最后一个字符相同。

给定长度为 n 的字符串 $S=s_0s_1\cdots s_{n-1}$,令 f(S,d) 表示将 S 左移 d 次后获得的字符串。也就是说 $f(S,d)=s_{(d+0)\bmod n}s_{(d+1)\bmod n}\cdots s_{(d+n-1)\bmod n}$ 。求最小的非负整数 d 满足 f(S,d) 是美丽的。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数,对于每组测试数据:

第一行输入一个仅由小写英文字母组成的字符串 $s_0s_1\cdots s_{n-1}$ $(1 \le n \le 5 \times 10^5)$ 。

保证所有数据 n 之和不超过 5×10^5 。

Output

每组数据输出一行一个整数,表示满足 f(S,d) 是美丽的最小非负整数 d。若不存在这样的 d,输出 -1。

Example

standard input	standard output
4	3
helloccpc abcdcba	0
abcdcba	0
x	-1
abc	

Note

对于第一组样例数据,f(S,3)=1occpchel。它的第一个字符和最后一个字符都是 1,所以它是一个美丽字符串。虽然 f(S,6)=cpchelloc 也是美丽的,我们需要回答最小的非负整数 d。所以答案是 3。

Problem J. 多彩的生成树

堡堡有很多彩色的节点。颜色的编号从 1 到 n(含两端),第 i 种颜色共有 a_i 个节点。因为堡堡刚刚在算法课上学习了最小生成树问题,他打算利用这些节点做一些练习。

每一对节点都会被一条带有权值的边连接。每一条边的权值只和它两个端点的颜色有关。具体来说,令 c_u 表示节点 u 的颜色,若一条边连接了节点 u 和 v,它的权值就是 b_{c_u,c_v} 。

请帮助堡堡求出这张图的最小生成树的总权值。

请回忆:最小生成树是一张带权连通图的边的子集,这些边连通了所有节点,不会形成环,且总权值最小。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数。对于每组测试数据:

第一行输入一个整数 n $(1 \le n \le 10^3)$ 表示颜色的种数。

第二行输入 n 个整数 a_1, a_2, \dots, a_n $(1 \le a_i \le 10^6)$, 其中 a_i 表示颜色 i 有几个节点。

对于接下来的 n 行,第 i 行输入 n 个整数 $b_{i,1},b_{i,2},\cdots,b_{i,n}$ $(1 \le b_{i,j} \le 10^6)$,其中 $b_{i,j}$ 表示两个端点的 颜色分别为 i 和 j 的边的权值。保证对于所有 $1 \le i,j \le n$ 有 $b_{i,j} = b_{j,i}$ 。

保证所有数据 n 之和不超过 10^3 。

Output

每组数据输出一行一个整数、表示最小生成树的总权值。

Example

standard input	standard output
3	102
3	5
100 1 1	0
1 100 2	
100 100 1	
2 1 100	
2	
3 3	
100 1	
1 100	
1	
1	
5	

Problem K. 矩阵

构造一个 n 行 n 列的矩阵, 满足以下所有条件:

- 矩阵的元素是从 1 到 2n 的整数(含两端)。
- 每个从 1 到 2n 的整数 (含两端) 在矩阵里至少出现一次。
- 令 $a_{i,j}$ 表示第 i 行第 j 列的元素,恰有一个整数四元组 (x,y,z,w) 满足:
 - -1 < x < z < n
 - $-1 \le y < w \le n$
 - $-\ a_{x,y}$, $a_{x,w}$, $a_{z,y}$, $a_{z,w}$ 互不相同。

Input

每个测试文件仅有一组测试数据。

第一行输入一个整数 n $(2 \le n \le 50)$ 表示矩阵的大小。

Output

如果可以构造出这样的矩阵,首先输出一行 Yes。接下来输出 n 行,其中第 i 行输出 n 个由单个空格分隔的整数 $a_{i,1},a_{i,2},\cdots,a_{i,n}$ $(1\leq a_{i,j}\leq 2n)$,其中 $a_{i,j}$ 表示矩阵第 i 行第 j 列的元素。如果有多种合法答案,您可以输出任意一种。

如果无法构造出这样的矩阵,只需要输出一行 No。

Examples

standard input	standard output
2	Yes
	1 2
	3 4
3	Yes
	3 2 6
	4 3 3
	3 1 5

Problem L. 路径的交

一棵树有 n 个节点与 (n-1) 条边,其中第 i 条边连接节点 u_i 与 v_i ,权值为 w_i 。

您需要处理 q 次询问。第 i 次询问可以记为三个整数 a_i , b_i 和 k_i 。本次询问首先临时将第 a_i 条边的权值改为 b_i 。之后您需要选择 $2k_i$ 个不同的节点 $s_1, s_2, \cdots, s_{k_i}, e_1, e_2, \cdots, e_{k_i}$ 并考虑树上的 k_i 条简单路径,其中第 p 条路径从节点 s_p 出发,到节点 e_p 结束。称一条边是好的,若它被所有 k_i 条路径包含。最大化好边的总权值。

请再次注意,所有询问对权值的修改都是临时的。在每次询问后,您需要把权值恢复原状。

Input

每个测试文件仅有一组测试数据。

第一行输入两个整数 n 和 q $(2 < n < 5 \times 10^5, 1 < q < 5 \times 10^5)$ 表示节点的数量和询问的数量。

对于接下来的 (n-1) 行,第 i 行输入三个整数 u_i , v_i 和 w_i $(1 \le u_i, v_i \le n, 1 \le w_i \le 10^9)$ 表示第 i 条边连接节点 u_i 和 v_i ,权值为 w_i 。

对于接下来的 q 行,第 i 行输入三个整数 a_i , b_i 和 k_i $(1 \le a_i \le n-1, 1 \le b_i \le 10^9, 1 \le k_i \le \lfloor \frac{n}{2} \rfloor)$ 表示第 i 次询问。

Output

每次询问输出一行一个整数表示答案。

Example

standard input	standard output
7 3	160
1 2 20	110
2 3 10	20
2 4 40	
4 6 10	
1 5 30	
5 7 10	
2 100 1	
5 50 2	
2 100 3	

Note

对于第一次询问,选择 $s_1 = 3$ 和 $e_1 = 7$ 。

对于第二次询问,选择 $s_1 = 4$, $s_2 = 6$, $e_1 = 7$ 和 $e_2 = 5$ 。

对于第三次询问,选择 $s_1=3$, $s_2=4$, $s_3=6$, $e_1=5$, $e_2=1$ 和 $e_3=7$ 。

Problem M. 回文多边形

给定一个有 n 个顶点的凸多边形。顶点按逆时针顺序编号从 1 到 n (含两端),第 i 个顶点有一个权值 f(i)。

称一个顶点的子集是回文的,若它们的权值能够按逆时针顺序组成一个回文序列。更正式地,设子集里有 k 个顶点,它们的编号按逆时针顺序为 v_0,v_1,\cdots,v_{k-1} 。需要存在一个整数 d 满足 $0 \le d < k$,且对于所有 $0 \le i < k$ 有 $f(v_{(d+i) \bmod k}) = f(v_{(d-1-i) \bmod k})$ 。

在所有回文的顶点子集中,找出凸包面积最大的子集。

Input

有多组测试数据。第一行输入一个整数 T 表示测试数据组数。对于每组测试数据:

第一行输入一个整数 n (3 < n < 500) 表示凸多边形的顶点数。

第二行输入 n 个整数 $f(1), f(2), \cdots, f(n)$ $(1 \le f(i) \le 10^9)$, 其中 f(i) 表示第 i 个顶点的权值。

对于接下来的 n 行,第 i 行输入两个整数 x_i 和 y_i $(-10^9 \le x_i, y_i \le 10^9)$ 表示第 i 个顶点的坐标。顶点按逆时针顺序列出。保证凸多边形的面积为正,且没有重合的顶点。但可能存在三点共线的情况。

保证所有数据 n 之和不超过 10^3 。

Output

每组数据输出一行一个整数,表示回文顶点子集的最大凸包面积乘以 2。可以证明这个值总是一个整数。

standard input	standard output
3	84
8	0
2 4 2 4 3 4 5 3	1
2 3	
0 6	
-3 3	
-3 0	
-2 -3	
1 -5	
3 -3	
4 0	
3	
1 2 3	
0 0	
1 0	
0 1	
3	
1 1 1	
0 0	
1 0	
0 1	

Note

第一组样例数据如下图所示。选择顶点 2, 4, 5, 6, 8, 并考虑 d=1, 权值序列 $\{4,3,4,3,4\}$ 是一个回文序列。

