

Módulos del diplomado

Módulo	Duración (horas)
Perspectiva histórica y actual de la Inteligencia Artificial	5
Agentes Inteligentes y búsqueda de soluciones	10
3. Razonamiento lógico	10
Razonamiento probabilístico	10
5. Ética en la Inteligencia Artificial	10
6. Cómputo evolutivo	20
7. Preprocesamiento de datos	20
8. Aprendizaje supervisado	25
9. Aprendizaje no supervisado	10
10. Fundamentos matemáticos para redes neuronales	15
11. Introducción a las redes neuronales	15
12. Redes neuronales para secuencias	15
13. Modelos generativos profundos	15
14. Presentación ejecutiva de proyectos	10
Duración	190

Objetivo del módulo

El participante identificará los elementos básicos de las redes neuronales artificiales y los fundamentos de las redes densas y convolucionales, así como los algoritmos necesarios para su programación en *Python*, que le permitirán solucionar problemas con conjuntos de datos complejos.

Contenido del módulo

- 1. Redes neuronales
- 2. Redes densas
- 3. Redes convolucionales
- 4. Casos de estudio: reconocimiento de rostros

Evaluación del módulo

- 1. Prácticas 40%
- 2. Ejercicios 40%
- 3. Participación 20%

Referencias

- Raschka, S. & Mirjalili, V. Python Machine Learning, 2nd Ed. Packt Publishing, 2017.
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition. O'Reilly, 2019.
- Francois Chollet. Deep Learning with Python. Segunda Edición. Manning Publications, 2021.
- Kevin Patrick Murphy. Probabilistic Machine Learning: An Introduction. MIT Press, 2022.
- Ian Goodfellow, Aaron Courille y Yoshua Bengio. Deep Learning. MIT Press, 2015.
- Michael Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
- Denton, E., Hanna, A., Amironesei, R., Smart, A., & Nicole, H. On the genealogy of machine learning datasets: A critical history of ImageNet. Big Data & Society, 2021, 8(2), 20539517211035955.
- Stark, L., & Hutson, J. Physiognomic Artificial Intelligence. 2021, available at SSRN 3927300.

Contacto

Dra. Blanca Vázquez

Investigadora Postdoctoral Unidad Académica del IIMAS en el estado de Yucatán, UNAM.

Correo: <u>blanca.vazquez@iimas.unam.mx</u>

Github: https://github.com/blancavazquez

Artificial Intelligence in Biomedicine Group (ArBio)

https://iimas.unam.mx/arbio