Binary and BCD Addition

Using binary arithmetic rules solve (11110000)+(00001111)

Using BCD arithmetic rules solve (58)10+(12)10

Solve these two questions in a teacher like way simply and short

Binary Arithmetic

To solve $(11110000)_2 + (00001111)_2$, follow binary addition rules:

1. Align the numbers:

11110000

• 00001111

2. Add bit by bit from right to left:

- 0 + 1 = 1
- 0 + 1 = 1
- $\circ 0 + 1 = 1$
- 0 + 1 = 1
- $\circ 1 + 0 = 1$
- 3. Result:

 $(111111111)_2$ or 255 in decimal.

BCD (Binary-Coded Decimal) Arithmetic

To solve $58_{10}+12_{10}$ using BCD:

1. Represent 58 and 12 in BCD:

```
\circ 58 = 0101 1000
```

$$\circ$$
 12 = 0001 0010

2. Add the BCD values:

yaml			
0101 1000			

• 0001 0010

0110 1010

- 3. Check if any nibble (group of 4 bits) exceeds 9 (invalid in BCD):
 - \circ The second nibble 1010 equals 10_{10} , which is invalid in BCD.
- 4. Correct using BCD adjustment (add $0110\ \mathrm{to}$ invalid nibbles):

yaml 0110 1010

• 0000 0110

0111 0000

5. Final result in BCD: $0111\ 0000,$ which equals $70_{10}.$

Final Answers:

1. Binary: $(11110000)_2 + (00001111)_2 = (11111111)_2$.

2. BCD: $(58)_{10} + (12)_{10} = (70)_{10}$.

Solve using 2s complement method (12)10-(22)10

Solving $(12)_{10}-(22)_{10}$ Using 2's Complement

Step 1: Represent 12 and 22 in 8-bit binary

- $12 = 00001100_2$
- $22 = 00010110_2$

Step 2: Find the 2's complement of 22

- 1. Write 22 in binary: 00010110_2 .
- 2. Find the 1's complement (invert the bits): 11101001_2 .
- 3. Add 1 to the 1's complement:

```
11101001

markdown

1

11101010
```

The 2's complement of 22 is 11101010_2 .

Step 3: Add 12 to -22

Add 00001100_2 (binary for 12) to 11101010_2 (2's complement of 22):

```
diff

00001100
+ 11101010
------
11110110
```

Step 4: Interpret the result

The sum is 11110110_2 . Since the most significant bit (MSB) is 1, the result is negative.

- 1. Find the 2's complement of 11110110_2 to determine the magnitude:
 - \circ Invert the bits: 00001001_2 .
 - Add 1:

00001001

markdown

1

00001010

csharp

- The magnitude is (10_{10}) .

2. Therefore, the result is -10.

Final Answer:

$$(12)_{10} - (22)_{10} = -10_{10}.$$

Is this conversation helpful so far?