Corrigé : Feuille de travaux dirigés 6

Solution Exercice 1

1. Supposons pour commencer que F soit continue et strictement croissante sur \mathbb{R} (c'est le cas par exemple pour la fonction de répartition d'une loi normale, d'une Student,...). F est alors une bijection de \mathbb{R} sur]0,1[. Soit F^{-1} l'inverse de F. On a alors, pour $u \in]0,1[$, en posant U = F(X),

$$\mathbb{P}(U \le u) = \mathbb{P}(F(X) \le u) = \mathbb{P}(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$$

La fonction de répartition de U est donc

$$F_U(u) = \begin{cases} 0 & \text{si } u \le 0 \\ u & \text{si } u \in [0, 1] \\ 1 & \text{si } u > 1 \end{cases}$$

De sorte que U est une v.a. uniforme sur [0,1].

Dans le cas général, F n'est pas forcément strictement croissante. Pour $u \in]0,1[$, posons

$$F^{\leftarrow}(u) = \inf\{x \in \mathbb{R} : F(x) \ge u\} \quad ; \quad I_u = \{x \in \mathbb{R} : F(x) \ge u\}$$

de sorte que $F^{\leftarrow}(u) = \inf I_u$. (Rappelons que l' « inf » d'un ensemble est le plus grand de ses minorants). Notons une propriété essentielle de I_u : puisque F est croissante,

$$\forall (x,y) \in \mathbb{R}^2, \quad \begin{array}{c} x \in I_u \\ x < y \end{array} \} \Rightarrow y \in I_u. \tag{1}$$

Ainsi, si $z \in \mathbb{R}$ est tel que $z \notin B_u$, alors z est un minorant de B_u .

- (a) Montrons que $F(F^{\leftarrow}(u)) = u$.
 - Pour $z > F^{\leftarrow}(u)$, $F(z) \ge u$ car sinon on aurait $z \notin I_u$, de sorte que z serait un minorant de I_u strictement plus grand que $F^{\leftarrow}(u)$, contredisant la définition de $F^{\leftarrow}(u)$. Par continuité à droite de F,

$$F(F^{\leftarrow}(u)) = \lim_{z \downarrow F^{\leftarrow}(u), z > u} F(z) \ge u.$$

— D'autre part pour $z < F^{\leftarrow}(u), z \notin I_u$ (sinon $F^{\leftarrow}(u)$ ne serait pas un minorant de I_u) donc $F(z) < F^{\leftarrow}(u)$. Par continuité à gauche de F,

$$F(F^{\leftarrow}(u)) = \lim_{z \uparrow F^{\leftarrow}(u), z \le u} F(z) \le u.$$

(b) Soit $u \in]0,1[$ et soit $x \in \mathbb{R}$. Si F(x) < u, alors $x \notin I_u$ donc $x \leq F^{\leftarrow}(u)$. Le point (a) montre de plus que $F^{\leftarrow}(u) \in I_u$, donc $x \neq F^{\leftarrow}(u)$. Par conséquent $x < F^{\leftarrow}(u)$.

Réciproquement, si $x < F^{\leftarrow}(u)$, alors $x \notin I_u$ donc F(x) < u. On a donc bien

$$F(x) < u \iff x < F^{\leftarrow}(u)$$

(c) Posons Z = F(X). Pour montrer que Z suit une loi uniforme, il suffit de montrer que pour $u \in]0, 1[$, $\mathbb{P}(Z \leq u) = u$. Il suffit pour cela de montrer que $\mathbb{P}(Z < u) = u$ car alors $\mathbb{P}(Z \leq u) = \lim_{s \downarrow u} \mathbb{P}(Z < s) = \lim_{s \downarrow u} s = u$. Soit $u \in]0, 1[$. D'après le point (b),

$$\mathbb{P}(Z < u) = \mathbb{P}(F(X) < u) = \mathbb{P}(X < F^{\leftarrow}(u)).$$

Puisque F est continue,

$$\mathbb{P}(X < F^{\leftarrow}(u)) = \lim_{s \uparrow F^{\leftarrow}(u)} \mathbb{P}(X \le s) = \lim_{s \uparrow F^{\leftarrow}(u)} F(s) = F(F^{\leftarrow}(u)) = u,$$

où la dernière inégalité vient du point (a), d'où le résultat.

2. Soit $X \sim \mathcal{B}er(p)$ et F sa fonction de répartition. Alors $F(x) = (1-p)\mathbbm{1}_{0 \le x < 1} + p\mathbbm{1}_{1 \le x}$ et

$$F(X) = \begin{cases} 1 - p & \text{avec probabilité } 1 - p \\ 1 & \text{avec probabilité } p \end{cases}$$

F(X) n'est donc pas une v.a. uniforme sur [0,1].

Solution Exercice 2

1. Notons F_{θ} la fonction de répartition de X_1 et $F_{(n),\theta}$ la fonction de répartition de $M_n(X)$, lorsque $X_1 \sim P_{\theta} = \mathcal{U}_{[0,\theta]}$. On a

$$F_{\theta}(x) = \mathbb{1}_{x>0} \min(x/\theta, 1).$$

Par indépendance des X_i , on a donc, pour $x \in \mathbb{R}$,

$$F_{(n),\theta}(x) = \mathbb{P}_{\theta}(M_n(X) \le x) = \mathbb{P}_{\theta}(\forall i \le n, X_i \le x)$$
$$= \prod_{i=1}^n \mathbb{P}_{\theta}(X_i \le x) = F_{\theta}^n(x)$$
$$= \mathbb{1}_{x>0} \min(x/\theta, 1)^n.$$

2. D'après l'exercice 1, puisque $F_{(n),\theta}$ est continue, on a $F_{(n),\theta}(M_n(X)) \sim \mathcal{U}_{[0,1]}$. De plus, avec probabilité 1, $0 < M_n(X) < \theta$, de sorte que si l'on prend comme fonction pivotale $\varphi(x,\theta) = (\max x_i/\theta)^n$, et si l'on pose

$$Z = \varphi(M_n(X), \theta) = \left(\frac{M_n(X)}{\theta}\right)^n,$$

alors $Z \sim \mathcal{U}_{[0,1]}$.

3. Avec probabilité 1, on a $M_n(X) \leq \theta$. Pour que $\mathbb{P}_{\theta}(M_n(X) \leq \theta \leq R(X)] = 1 - \alpha$, il faut et il suffit que $\mathbb{P}_{\theta}(\theta \leq R(X)) = 1 - \alpha$. On cherche donc une borne supérieure de confiance R(X) de niveau $1 - \alpha$ pour θ . La fonction $\theta \mapsto \varphi(x, \theta)$ étant (pour $P_{\theta}^{\otimes n}$ -presque tout x) décroissante en θ , on cherche une région pour Z de type $]a, +\infty[$. Enfin, Z étant uniformément distribuée sur [0, 1], pour tout $\alpha \in]0, 1[$, pour tout θ , $\mathbb{P}_{\theta}(Z > \alpha) = 1 - \alpha$. Ainsi

$$\forall \theta > 0, 1 - \alpha = \mathbb{P}_{\theta}(Z \ge \alpha)$$

$$= \mathbb{P}_{\theta}(M_n(X)/\theta \ge \alpha^{1/n})$$

$$= \mathbb{P}_{\theta}(\theta \le \underbrace{\frac{M_n(X)}{\alpha^{1/n}}}_{R(X)})$$

La région de confiance cherchée au niveau $1-\alpha$ est donc $[M_n(X), R(X)] = [M_n(X), \frac{M_n(X)}{\alpha^{1/n}}]$.

4. Soit $\theta_0 > 0$. On cherche à construire un test de niveau α pour l'hypothèse $H_0: \theta \geq \theta_0$ contre $H_1: \theta < \theta_0$.

Considérons pour commencer l'hypothèse simple \tilde{H}_0 : $\{\theta = \theta_0\}$. On va construire un test dont on montrera ensuite qu'il convient pour l'hypothèse H_0 . Il parait « naturel » de rejeter H_0 lorsque θ_0 dépasse la borne de confiance R(X) construite précédemment (voir le paragraphe « dualité tests-intervalles de confiance du poly » si cela ne vous parait pas si naturel). Considérons le test

$$\delta_{\theta_0}: x \in \mathbb{R}^n \mapsto \begin{cases} 1 & \text{si } R(X) < \theta_0 \\ 0 & \text{sinon.} \end{cases}$$

Le risque de première espèce de ce test est

$$R(\theta_0, \delta_{\theta_0}) = \mathbb{P}_{\theta_0}(R(X) < \theta_0) = \mathbb{P}_{\theta_0}(\theta_0 \notin [M_n(X), R(X)] = \alpha.$$

Le test δ_{θ_0} est donc de niveau α pour \tilde{H}_0 .

Supposons maintenant que l'on utilise δ_{θ_0} pour tester l'hypothèse $H_0: \{\theta \geq \theta_0\}$. Pour $\theta > \theta_0$, le risque de première espèce $R(\theta, \delta_0)$ est

$$R(\theta, \delta_0) = \mathbb{P}_{\theta}(\delta_0(X) = 1) = \mathbb{P}_{\theta}(R(X) < \theta_0)$$

$$\leq \mathbb{P}_{\theta}(R(X) < \theta) \quad (\text{car } \theta_0 \leq \theta$$

$$= \alpha \text{ par construction de la borne sup de confiance } R(X).$$

On a donc bien, en notant $\Theta_0 = \{\theta : \theta \ge \theta_0\},\$

$$\sup_{\theta \in \Theta_0} R(\theta, \delta_{\theta_0}) = \alpha$$

ce qui prouve que δ_{θ_0} est un test de niveau α pour H_0 .

5. Application numérique : si n=10 et $M_n(X)=5$, alors la borne supérieure R(X)pour θ au niveau de confiance 95% est

$$R(X) = \frac{M_n(X)}{(5/100)^{1/n}} = 6.74.$$

Puisque $\theta_0 = 6 < 6.74$, $\delta_{\theta_0}(X) = 0$: on ne rejette pas l'hypothèse $\{\theta \ge 6\}$.

Solution Exercice 3

- 1. (a) En notant $\tilde{P}_1 = H_1 H_1^{\top}$, il faut vérifier que $(\tilde{P}_1)^2 = \tilde{P}_1$, que $\tilde{P}_1^{\top} = \tilde{P}_1$ et que $E_1^{\perp} = \ker(\tilde{P}_1)..$
 - Puisque H_1 est la matrice d'une base orthonormée à r éléments, $H_1^\top H_1 = \mathbf{I}_r$ $\operatorname{d}_{\tilde{L}_{-}}^{\circ} \circ i (\tilde{P}_{1})^{2} = H_{1} H_{1}^{\top} H_{1} H_{1}^{\top} = H_{1} \mathbf{I}_{r} H_{1}^{\top} = H_{1} H_{1}^{\top} = \tilde{P}_{1}.$

 - $\tilde{P}_1^{\top} = \tilde{P}_1$ est évident. Si $u \in E_1^{\perp}$, $\langle u, h_i \rangle = 0$ pour $1 \le i \le r$, donc $H_1^{\top}u = 0$, d'où $\tilde{P}_1u = 0$. Ceci prouve que $P_1 = \tilde{P}_1$ Le raisonnement pour P_2 est le même.
 - (b) Soit $V_i = H_1^{\top} X$, i = 1, 2. X étant un vecteur gaussien centré, le vecteur $Y = \begin{pmatrix} H_1^\top \\ H_2^\top \end{pmatrix} X$ est gaussien centré, c'est-à-dire $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$ est un vecteur gaussien centré. D'où : V_1 et V_2 sont indépendantes si et seulement si $\mathbb{E}(V_1V_2^\top) = 0_{r \times s}$. Or $\mathbb{C}\text{ov}(V_1, V_2) = \mathbb{E}(V_1 V_2^{\top}) = \mathbb{E}(H_1^{\top} X X^{\top} H_2) = H_1^{\top} \mathbb{E}(X X^{\top}) H_2 = H_1^{\top} H_2 = 0_{r \times s},$ où la dernière égalité vient du fait que E_1 et E_2 étant des sous -espaces orthogonaux, $\langle h_i, h_j \rangle = 0$ si $i \leq r$ et j > r.

Enfin, V_1 et V_2 étant des transformations linéaires d'un vecteur gaussien, ils sont eux aussi gaussiens, de matrices de variance -covariance respectivement $H_1 H_1^{\top} = \mathbf{I}_r \text{ et } H_2 H_2^{\top} = I_s.$

$$V_1 \sim \mathcal{N}(0, \mathbf{I}_r); \quad V_2 \sim \mathcal{N}(0, \mathbf{I}_s)$$

(c) Puisque V_1 et V_2 sont indépendants et puisque $P_iX=H_iV_i$, (une fonction linéaire, donc mesurable de V_i), P_1X et P_2X sont aussi indépendants. De plus, puisque V_i est un vecteur gaussien de matrice de covariance égale à l'identité,

$$P_i X \sim \mathcal{N}(0, \underbrace{H_i H_i^{\top}}_{P_i}) \quad i = 1, 2$$

(remarque : ce sont toutes deux des normales dégénérées car P_i n'est pas inversible : c'est un projecteur sur un espace de dimension < n.).

(d) D'après le point précédent, $||P_1X||^2$ et $||P_2X||^2$ sont indépendantes. De plus,

$$||P_1X||^2 = X^{\top}P_1^{\top}P_1X = X^{\top}P_1X = X^{\top}H_1H_1^{\top}X = ||V_1||^2 = \sum_{i=1}^r V_{1,i}^2$$

Puisque les $(V_{1,i})_{1 \leq i \leq r}$ sont indépendantes, on a bien $||P_1X||^2 \sim \chi_2(r)$. Le raisonnement est le même pour P_2X .

- 2. On identifie le vecteur $\mathbb{1}_n$ et sa matrice colonne. On prend $E_1 = \text{vect}(\mathbb{1}_n)$ et $E_2 = E_1^{\perp}$, de sorte que $P_2 = \mathbf{I} P_1$ et $H_1 = \frac{1}{\sqrt{n}} \mathbb{1}_n$.
 - (a) $H_1^{\top} X == \frac{1}{\sqrt{n}} \mathbb{1}_n^{\top} X == \frac{1}{\sqrt{n}} \sum_i X_i = \sqrt{n} \bar{X}_n$
 - (b) $P_2 = (\mathbf{I}_n P_1)$. Donc $||P_2X||^2 = ||X P_1X||^2 = ||X \frac{1}{\sqrt{n}} \mathbb{1}_n \sqrt{n} \bar{X}_n||^2 = \sum_{i=1}^n (X_i \bar{X}_n)^2 = n\widehat{\sigma}_n^2$.
 - (c) On a

$$\frac{\sqrt{n}\bar{X}_n}{\sqrt{S_n/(n-1)}} = \frac{V_1}{\sqrt{(\sum_1^{n-1}V_{1,i}^2)/(n-1)}}$$

où $(V_1, V_{2,1}, \dots V_{2,n})$ sont indépendantes, donc cette statistique suit bien une loi de Student à (n-1) degrés de libertés.

3. Si maintenant $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, en posant $\boldsymbol{\mu} = (\mu, \dots, \mu)$, on a

$$X = \frac{1}{\sigma}(Y - \boldsymbol{\mu}) \sim \mathcal{N}(0, \mathbf{I}_n)$$

et l'on s'est ramené au cas précédent. On a alors, avec les notations de la question $2, \widehat{\sigma_n^2} = \frac{\sigma^2}{n} S_n$ et $\sqrt{n} (\bar{Y}_n - \mu) = \sigma \sqrt{n} \bar{X}_n$, d'où le fait que

$$Z = \frac{\sqrt{n}(\bar{Y}_n - \mu)}{\sqrt{\frac{n}{n-1}\widehat{\sigma_n^2}}}$$

suit une loi de Student T(n-1).

En notant $t_2 = t_{1-\alpha/2}$ et $t_1 = t_{\alpha_2}$ les quantiles d'ordre $1 - \alpha/2$ et $\alpha/2$ de la loi de Student, on a, par symétrie de la densité de la loi de Student, $t_2 = -t_1$; et pour tout $\theta = (\mu, \sigma^2)$, on a

$$\mathbb{P}_{\theta}(-t_2 \le Z \le t_2) = 1 - \alpha.$$

Par conséquent, en inversant par rapport à μ la fonction $\varphi(Y,(\mu,\sigma^2)) = \frac{\sqrt{n}(\bar{Y}_n-\mu)}{\sqrt{\frac{n}{n-1}\hat{\sigma}_n^2}}$,

on obtient

$$\mathbb{P}_{\theta}\left(\bar{X}_n - \frac{\sqrt{\widehat{\sigma_n^2}}}{\sqrt{n-1}}t_2 \le \mu \le \bar{X}_n + \frac{\sqrt{\widehat{\sigma_n^2}}}{\sqrt{n-1}}t_2\right) = 1 - \alpha$$

Un intervalle de confiance pour μ au niveau de confiance $1-\alpha$ est donc donné par les deux bornes de l'encadrement ci-dessus.

Solution Exercice 4

1. Pour commencer, notons que $Y_1 \sim \mathcal{N}(\mu, \sigma_X^2 + \sigma_V^2)$. Soit $Y = (Y_1, \dots, Y_n)$ où les Y_i sont indépendantes; et $X = \frac{1}{\sqrt{\sigma_X^2 + \sigma_V^2}} (Y - \mu \mathbb{1}_n) \sim \mathcal{N}(0, \mathbf{I}_n)$. D'après l'exercice 3,

$$\sum (X_i - \bar{X}_n)^2 \sim \chi^2(n-1)$$
. Or, $\sum (X_i - \bar{X}_n)^2 = \frac{\sum (Y_i - \bar{Y}_n)^2}{\sigma_X^2 + \sigma_V^2}$.

Ainsi

$$Z = \varphi(Y, \sigma_X^2) = \frac{\sum (Y_i - \bar{Y}_n)^2}{\sigma_Y^2 + \sigma_Y^2} = \frac{n\widehat{\sigma_2^n}}{\sigma_Y^2 + \sigma_Y^2} \sim \chi^2(n-1)$$

2. Soient q_1 et q_2 les quantiles respectifs d'ordre $\alpha/2$ et $1-\alpha/2$ de la loi du $\chi^2(n-1)$. Attention : il n'y a pas de symétrie autour de 0 (une v.a. suivant une loi du χ^2 est positive), donc cette fois on n'a pas $q_1 = -q_2$. On a $\mathbb{P}_{\theta}(q_1 \leq Z \leq q_2) = 1 - \alpha$, c'est-à-dire, en « inversant par rapport à σ_X^2 » la fonction pivotale, en notant $\widehat{\sigma_n^2} = \frac{\sum_{1}^{n}(Y_i - \bar{Y}_n)^2}{n}$, et en se souvenant que $\sigma_V^2 = 1$,

$$\mathbb{P}_{\theta}\left(\frac{\widehat{\sigma_n^2}}{q_2/n} - 1 \le \sigma_X^2 \le \frac{\widehat{\sigma_n^2}}{q_1/n} - 1\right) = 1 - \alpha.$$

Un intervalle de confiance à 95% pour σ_X^2 est donc donné par

$$I(Y) = \left\lceil \frac{\widehat{\sigma_n^2}}{q_2/n} - 1, \frac{\widehat{\sigma_n^2}}{q_1/n} - 1 \right\rceil.$$