# Efficient Connectivity-Preserving Instance Segmentation with Supervoxel-Based Loss Function

Anna Grim, Jayaram Chandrashekar, Uygar Sümbül



#### **Motivation**

Segmentation of curvilinear, filamentous structures continues to pose significant challenges.



<u>**Objective:**</u> Train topology-aware neural networks that minimize the number of split and merge mistakes.

#### **Overview**

We extend simple points from digital topology to supervoxels and train neural networks with connectivityaware loss.



Figure: Visualization of loss computation

### **Critical Supervoxels**

Supervoxels in the false positive and negative mask that change connectivity are *critical*.



**Figure:** C is critical because its removal splits the ground truth.



**Figure:** C is critical because its removal splits the prediction.

<u>Thm:</u> Critical supervoxels can be computed in linear time.

### **Supervoxel-Based Loss Function**

Let  $\mathcal{P}(\hat{y}_+)$  and  $\mathcal{N}(\hat{y}_-)$  be critical supervoxels from the false positive and negative masks.

$$\mathcal{L}(y,\hat{y}) = (1 - \alpha)\mathcal{L}_0(y,\hat{y}) + \alpha\beta \sum_{\mathcal{P}(\hat{y}_+)} L_0(y,\hat{y}) + \alpha(1 - \beta) \sum_{\mathcal{N}(\hat{y}_-)} L_0(y,\hat{y})$$



Figure:  $\alpha$  controls weight on voxels vs. critical supervoxels and  $\beta$  controls weight on splits vs. merges.

### **Quantitative Results**

Table: Results on 2-d segmentation datasets.

| Method   | Complexity              | Accuracy ↑        | Dice ↑              | ARI ↑             | VOI ↓                               | Betti Error↓    |  |  |  |
|----------|-------------------------|-------------------|---------------------|-------------------|-------------------------------------|-----------------|--|--|--|
| DRIVE    |                         |                   |                     |                   |                                     |                 |  |  |  |
| U-Net    | $\mathcal{O}(n)$        | $0.945 \pm 0.006$ | $0.749\pm0.003$     | $0.834 \pm 0.041$ | $1.98 \pm 0.05$                     | $3.64 \pm 0.54$ |  |  |  |
| DIVE     | $\mathcal{O}(n)$        | $0.955 \pm 0.002$ | $0.754\pm0.001$     | $0.841 \pm 0.026$ | $1.94\pm0.13$                       | $3.28 \pm 0.64$ |  |  |  |
| Mosin.   | $\mathcal{O}(n)$        | $0.954 \pm 0.005$ | $0.722 \pm 0.001$   | $0.887 \pm 0.039$ | $1.17\pm0.03$                       | $2.78\pm0.29$   |  |  |  |
| TopoLoss | $\mathcal{O}(n \log n)$ | $0.952\pm0.004$   | $0.762\pm0.004$     | $0.902\pm0.011$   | $1.08\pm0.01$                       | $1.08\pm0.27$   |  |  |  |
| DMT      | $\mathcal{O}(n^2)$      | $0.955\pm0.004$   | $0.773\pm0.004$     | $0.902\pm0.002$   | $0.88 \pm 0.04$                     | $0.87 \pm 0.40$ |  |  |  |
| Ours     | $\mathcal{O}(n)$        | $0.953 \pm 0.002$ | $0.809 \pm 0.012$   | $0.943 \pm 0.002$ | $\textbf{0.48} {\pm} \textbf{0.01}$ | $0.94{\pm}0.27$ |  |  |  |
| ISBI12   |                         |                   |                     |                   |                                     |                 |  |  |  |
| U-Net    | $\mathcal{O}(n)$        | $0.968 \pm 0.002$ | 0.970±0.005         | 0.934±0.007       | 1.37±0.03                           | $2.79\pm0.27$   |  |  |  |
| DIVE     | $\mathcal{O}(n)$        | $0.964\pm0.004$   | $0.971\pm0.003$     | $0.943\pm0.009$   | $1.24\pm0.03$                       | $3.19\pm0.31$   |  |  |  |
| Mosin.   | $\mathcal{O}(n)$        | $0.953 \pm 0.006$ | $0.972\pm0.002$     | $0.931 \pm 0.005$ | $0.98 \pm 0.04$                     | $1.24\pm0.25$   |  |  |  |
| TopoLoss | $\mathcal{O}(n \log n)$ | $0.963\pm0.004$   | $0.976\pm0.004$     | $0.944 \pm 0.008$ | $0.78 \pm 0.02$                     | $0.43 \pm 0.10$ |  |  |  |
| DMT      | $\mathcal{O}(n^2)$      | $0.959\pm0.004$   | $0.980\pm0.003$     | $0.953 \pm 0.005$ | $0.67 \pm 0.03$                     | $0.39 \pm 0.11$ |  |  |  |
| Ours     | $\mathcal{O}(n)^{'}$    | $0.971 \pm 0.002$ | $0.983 {\pm} 0.001$ | $0.934 \pm 0.001$ | $0.74 \pm 0.03$                     | $0.48{\pm}0.02$ |  |  |  |

#### **Table:** Results on 3-d neuron segmentation dataset.

| Method | Complexity         | Runtime/Epoch ↓            | Splits/Neuron ↓  | Edge Accuracy ↑   | Normalized ERL ↑  |
|--------|--------------------|----------------------------|------------------|-------------------|-------------------|
| U-Net  | $\mathcal{O}(n)$   | 10.03±0.23 sec             | $9.86 \pm 13.30$ | $0.873 \pm 0.087$ | $0.596 \pm 0.232$ |
| Gornet | $\mathcal{O}(n^2)$ | $71.62\pm1.83~{ m sec}$    | $3.85{\pm}2.58$  | $0.937\pm0.062$   | $0.664\pm0.106$   |
| clDice | $\mathcal{O}(kn)$  | $48.55\pm1.60 \text{ sec}$ | $3.39 \pm 1.52$  | $0.911\pm0.042$   | $0.701\pm0.091$   |
| MALIS  | $\mathcal{O}(n^2)$ | 50.68±1.58 sec             | $3.33\pm0.59$    | $0.917\pm0.053$   | $0.719\pm0.098$   |
| Ours   | $\mathcal{O}(n)$   | 20.12±1.15 sec             | $2.63 \pm 1.36$  | $0.944 \pm 0.043$ | $0.784 \pm 0.099$ |

## **Qualitative Results**



Figure: Results on 2-d segmentation datasets.



Figure: Results on 3-d neuron segmentation dataset.