CS 6351 DATA COMPRESSION

THIS LECTURE: TRANSFORMS PART II

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Describe vector spaces, and related concepts such as linear independence, linear combinations, bases (axes), and dimensionality of vector spaces
- Draw connections between vectors and digital audio/visual signals, and also between vectors and analog signals
- Explain and appreciate the connections b/w vector space concepts and relevant audio/visual concepts
- Tie matrix-column multiplication with expressing vectors as linear combinations of basis vectors
- Prove that transforms are but a change of bases, a change of coordinate systems
- Explicate the connection between transforms, bases, human senses, and the kind of basis conducive to effective lossy compression

OUTLINE

- Vector spaces
- Vector space perspective of transforms
- Connection between
 - transforms,
 - Vector space bases,
 - human senses, and
 - the kind of basis conducive to effective lossy compression

RECALL: GENERAL SCHEME OF LOSSY COMPRESSION

VECTOR SPACES OVER \mathbb{R}

-- PRELIMINARIES (1/2) --

- A vector space V is a set of objects (called *vectors*) with two operations:
 - Vector addition (+): for all $u, v \in V$, the sum u + v is a new vector in V
 - Scalar multiplication (.) of a number by a vector: for all $a \in \mathbb{R}$ and $u \in V$, the product a.u (typically written au) is a new vector in V
 - such that certain properties (called axioms) are satisfied (to be seen)
- It is a generalization of 2D /3D vectors you studied in Physics, and how to add/subtract them, and extend/shrink them by multiplying them by a real number

VECTOR SPACES OVER \mathbb{R}

-- PRELIMINARIES (2/2) --

- One big take-away for data compression is the notion of basis of vector space
 - A basis is a generalization of axes (like x-y axes and x-y-z axes)
 - There is a special connection between transforms and bases
 - Interest: a basis that "aligns" with the human eyes/ears

DEFINITION OF A VECTOR SPACE OVER \mathbb{R}

-- FORMAL DEFINITION--

A vector space (V, +, ., 0) is a non-empty set V with two operation (+) and (.) in V that satisfy the following properties (called axioms):

- 1. $\forall u, v \in V, u + v = v + u$ (Commutativity, i.e., + is commutative)
- 2. $\forall u, v, w \in V, (u + v) + w = u + (v + w)$ (Associativity, i.e., + is associative)
- 3. $\exists 0 \in V$ such that $\forall u \in V$, u + 0 = 0 + u = u (0 is called the zero vector)
- 4. $\forall u \in V, \exists v \in V \text{ such that } u + v = v + u = 0; v \text{ is called the opposite vector of } u \text{ and is denoted } -u \text{ (so } u + (-u) = (-u) + u = 0)$
- 5. $\forall a \in \mathbb{R} \text{ and } \forall u, v \in V, a(u+v) = au + av$
- 6. $\forall a, b \in \mathbb{R}$ and $\forall u \in V, (a+b)u = au + bu$
- 7. $\forall a, b \in \mathbb{R}$ and $\forall u \in V, a(bu) = (ab)u$
- 8. $\forall u \in V, 0u = 0, and 1u = u$

VECTOR SPACE EXAMPLES (1/4)

- Take $V = \mathbb{R} \times \mathbb{R} = \{(x, y) | x \in \mathbb{R} \text{ and } y \in \mathbb{R} \}$, that is, every vector u is of the form (x, y), where
 - $(x,y) + (x',y') \stackrel{\text{def}}{=} (x+x',y+y')$ (note: $\stackrel{\text{def}}{=}$ means "by definition")
 - $a(x,y) \stackrel{\text{def}}{=} (ax,ay)$
 - $O \stackrel{\text{def}}{=} (0,0)$
- You can easily verify that the 8 axioms are satisfied, for example
 - (x,y) + (x',y') = (x',y') + (x,y) because (x + x',y + y') = (x' + x,y' + y)
 - 0 + (x, y) = (x, y) because 0 + (x, y) = (0, 0) + (x, y) = (0 + x, 0 + y) = (x, y)
 - (x,y) + (-x,-y) = (x-x,y-y) = (0,0) = 0
 - $\forall a, b \in \mathbb{R}$ and $\forall (x, y) \in V$, we have (a + b)(x, y) = ((a + b)x, (a + b)y) = (ax + bx, ay + by) = (ax, ay) + (bx, by) = a(x, y) + b(x, y), therefore (a + b)(x, y) = a(x, y) + b(x, y)
 - 0.(x,y) = 0 because 0.(x,y) = (0.x,0.y) = (0,0) = 0
 - 1. (x,y) = (x,y) because 1. (x,y) = (1,x,1,y) = (x,y)

VECTOR SPACE EXAMPLES (2/4)

-- VISUAL/GRAPHICAL REPRESENTATIONS --

- Draw x-y axes: each point has two coordinates. Origin=(0,0)= 0
- u = (2,1), v = (1,3)
 - Vector (2,1): arrow from point (0,0) to point (2,1)
- u + v = (3,4), visually:
 - Make a "copy" of v starting from the tip of u
 - Take arrow from (0,0) to the tip of copy of v
- -u = (-2, -1), visually:
 - Take reflection of *u* from the origin
- 2u = (4,2), visually:
 - Same angle and orientation as u, twice the length
- v u = (-1,2), same as v + (-u)

VECTOR SPACE EXAMPLES (3/4)

- Take $V = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x \in \mathbb{R}, y \in \mathbb{R} \text{ and } z \in \mathbb{R}\}$, that is, every vector u is of the form (x, y, z), where
 - $(x, y, z) + (x', y', z') \stackrel{\text{def}}{=} (x + x', y + y', z + z')$
 - $a(x, y, z) \stackrel{\text{def}}{=} (ax, ay, az)$
 - $O \stackrel{\text{def}}{=} (0,0,0)$
- You can easily verify that the 8 axioms are satisfied
- Note: We typically denote
 - $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$
 - $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$
 - $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \mathbb{R}^n$

- // set of couples or pairs of real numbers
- // set of triples
- // set of n-tuples of the form $(x_1, x_2, ..., x_n)$ where every $x_i \in \mathbb{R}$

VECTOR SPACE EXAMPLES (4/4)

- Take $V = \mathbb{R}^n = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R} \text{ for all } i = 1, 2, ..., n\}$, that is, every vector u is of the form $(x_1, x_2, ..., x_n)$, where
 - $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) \stackrel{\text{def}}{=} (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
 - $a(x_1, x_2, ..., x_n) \stackrel{\text{def}}{=} (ax_1, ax_2, ..., ax_n)$
 - $0 \stackrel{\text{def}}{=} (0,0,...,0)$
- You can easily verify that the 8 axioms are satisfied

SOUND SIGNALS AS "VECTORS"

- A digital audio signal, e.g., a sound recording, is a sequence of sound samples, i.e., a sequence of real numbers $x_1, x_2, ..., x_n$
- Each such signal can be viewed as a vector $(x_1, x_2, ..., x_n)$ in \mathbb{R}^n
- Adding two sound signals $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ into $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) \stackrel{\text{def}}{=} (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ is like playing the two sound recordings at the same time
- Multiplying a sound signal $(x_1, x_2, ..., x_n)$ by some number a (e.g., a=3) to get $a(x_1, x_2, ..., x_n) \stackrel{\text{def}}{=} (ax_1, ax_2, ..., ax_n)$ is like playing the sound 3 times louder, i.e., raising the volume
 - If 0 < a < 1, as for example $a = \frac{1}{2}$, is like reducing the volume (e.g., making the sound less loud)

12

IMAGES AS "VECTORS"

- A digital image I of n rows and m columns can be viewed as a vector in $\mathbb{R}^{n \times m}$
 - Like stacking the rows one after another, or
 - Stacking the columns one on top of the other
- Adding two vectors is like superposing the two images on top of each other
- Multiplying a vector by some number a (e.g., a=3 or $a=\frac{1}{2}$) is like making the colors (or gray shades) proportionaly darker or lighter
- The opposite -I is what we typically call the negative of an image/photo

CAN ANALOG SIGNALS BE VIEWED AS VECTORS?

- We just saw that digital signals (whether audio or visual) can be viewed as vectors
- How about analog signals (like those captured by old recorders or old cameras)?
 - Can you view them as vectors in a vector space?
 - If so, what would an analog signal correspond to mathematically?
- Why should we care, since analog technology is old, obsolete, and deprecated?
 - Also, even if some preserved old recordings/photos are still of interest, they can be digitized, so why bother with analog signals as vectors?
- Answer: Analysis of analog signals is like analysis of continuous functions, which is easier and more insightful, in some respects, than discrete functions
 - Using Calculus and Mathematical Analysis

ANALOG AUDIO SIGNALS AS VECTORS

- Take V as the set of all functions f(t) of one real variable t (t is like time)
- View each such function f as an (abstract) vector
- Addition of two vectors is addition of two functions: f + g is such that
 - $(f+g)(t) \stackrel{\text{def}}{=} f(t) + g(t)$
 - Example: like playing two analog sounds simultaneously
- Multiplying a vector (i.e., a function f) by a number a gives us a new vector (or function) af where $(af)(t) \stackrel{\text{def}}{=} a.f(t)$
 - Example: like making the volume of an analog (old) radio louder or quieter
- The zero vector (or function) O is the zero function f where $f(t) = 0 \ \forall t$
 - The zero function is the equivalent of "dead silence"
- The opposite vector (or function) of f is -f where $(-f)(t) \stackrel{\text{def}}{=} -f(t)$
- One can show that this (V, +, ., 0) is a vector space, i.e., satisfies all the 8 axioms

ANALOG IMAGES AS VECTORS

- Take *V* as the set of all functions f(x, y) of two real variables (x, y), where
 - (x, y) are the coordinates of a point in the x-y plane, i.e., the location of a "pixel"
 - f(x, y) represents the value of that "pixel"
 - "Pixels" are "points with intensity/color" rather than squares with average intensity/color
- View each such function f as an (abstract) vector
- Addition of two vectors is addition of two functions: f + g
 - $\bullet (f+g)(x,y) \stackrel{\text{def}}{=} f(x,y) + g(x,y)$
- Multiplying a vector (i.e., a function f) by a number $a: (af)(x,y) \stackrel{\text{def}}{=} a.f(x,y)$
- The zero vector (or function) O is the zero function f where $f(x, y) = 0 \ \forall (x, y)$
- The opposite vector of f is -f where $(-f)(x,y) \stackrel{\text{def}}{=} -f(x,y)$ // negative image
- One can show that this (V, +, .., O) is a vector space, i.e., satisfies all the 8 axioms

-- LINEAR COMBINATIONS --

- Let (V, +, ., 0) be a vector space, and let n be a positive integer or infinity ∞
- A vector v is called a *linear combination* of vectors $v_1, v_2, ..., v_n$ if we can find n numbers

 x_1, x_2, \dots, x_n such that

•
$$v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$$

- Examples:
 - Take $v_1 = (2,1)$, and $v_2 = (1,3)$
 - The vector $v = 2v_1 + 1v_2 = (5,5)$ is a linear combination of v_1 and v_2
 - Also: $v = 1v_1 + 1v_2 = v_1 + v_2 = (3,4)$ is another linear combination of v_1 and v_2

-- LINEAR INDEPENDENT VECTORS--

- Let (V, +, ., 0) be a vector space, and let n be a positive integer or infinity ∞
- A subset of non-zero vectors $v_1, v_2, ..., v_n$ are called *linearly independent* if
 - No vector in that subset can be expressed as a linear combination of other vectors in that subset
 - That is, if $x_1v_1 + x_2v_2 + \cdots$, $+x_nv_n = 0$, then we must have $x_1 = x_2 = \cdots = x_n = 0$
- Examples:
 - Take $v_1 = (2,1), v_2 = (1,3)$
 - v_1 , v_2 are linearly independent (simply prove that if $x_1v_1 + x_2v_2 = 0$, then we must have $x_1 = x_2 = 0$)
 - Take $v_1 = (2,1), v_2 = (1,3), v_3 = (5,5)$
 - v_1, v_2, v_3 are NOT linearly independent because v_3 can indeed be expressed as a linear combination of v_1, v_2 : $v_3 = 2v_1 + 1v_2$
 - Equivalently: $2v_1 + 1v_2 + (-1)v_3 = 0$ even though $2 \neq 0, 1 \neq 0, -1 \neq 0$
 - In that case, we say that v_1 , v_2 , v_3 are *linearly dependent*

-- BASIS --

- Let (V, +, ., 0) be a vector space, and let n be a positive integer or infinity ∞
- A subset of non-zero vectors $v_1, v_2, ..., v_n$ is called **a basis** of V if
 - $v_1, v_2, ..., v_n$ are linearly independent, and
 - For every vector $v \in V$, v can be expressed as a linear combination of $v_1, v_2, ..., v_n$, that is, we can find n numbers $x_1, x_2, ..., x_n$ such that $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$
- Example:
 - Take $V = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
 - The vectors $e_1 = (1,0)$ and $e_2 = (0,1)$ form a basis of \mathbb{R}^2
 - You can show that e_1 , e_2 are linearly independent (prove it)
 - Also, for every vector $v = (x, y) = (x_1, x_2)$, we can express $v = x_1e_1 + x_2e_2$
 - Example: $(3,4)=3e_1+4e_2$
 - Proof: $3e_1 + 4e_2 = 3(1,0) + 4(0,1) = (3,0) + (0,4) = (3+0,0+4) = (3,4)$

-- BASIS IS NOT UNIQUE NOR GUARANTEED --

- Let (V, +, .., 0) be a vector space, and let n be a positive integer or infinity ∞
- *V* is not guaranteed to have a basis
- On the other hand, if V has a basis, it can have many bases
- Example: Take $V = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
 - The vectors $e_1 = (1,0)$ and $e_2 = (0,1)$ form a basis of \mathbb{R}^2
 - Also, the vectors $f_1 = (1,1)$ and $f_2 = (-1,1)$ form another basis
 - For every vector v = (x, y), we can express v as
 - $v = x_1 f_1 + x_2 f_2$ where $x_1 = \frac{x+y}{2}$ and $x_2 = \frac{y-x}{2}$ (prove it)
 - Ex: $(1,3) = 2f_1 + 1f_2$ because $2f_1 + 1f_2 = 2(1,1) + 1(-1,1) = (2,2) + (-1,1) = (2-1,2+1) = (1,3)$

- The coefficients of $x_1, x_2, ..., x_n$ of $v = x_1v_1 + x_2v_2 + ..., +x_nv_n$ are viewed as the **coordinates** of v wrt to that basis (or that axis system) Ex: the basis $e_1 = (1,0)$ and $e_2 = (0,1)$ corresponds to the x-y axes
 - Vector $(1,3)=1e_1+3e_2$ has coordinates 1 and 3 wrt basis e_1 and e_2
- Another basis is like another axis system $Vector(1,3)=2f_1+1f_2$ has coordinates 2 and 1 wrt basis f_1 , f_2

MORE ON VECTOR SPACE BASES

-- CANONICAL BASIS OF \mathbb{R}^n ---

- $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ has as a basis e_1 , e_2 , e_3 where
 - $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$
- $\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}}$ has as a basis e_1, e_2, \dots, e_n where
 - $e_1 = (1,0,...,0), e_2 = (0,1,0,...,0), ..., e_i = (0,...0,1,0,...,0), and e_n = (0,...,0,1)$
 - We call this basis the *canonical basis* of \mathbb{R}^n (i.e., the "natural" basis)
 - That is because for any vector $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, the coordinates of that vector wrt the canonical basis $e_1, e_2, ..., e_n$ are simply the components of the vector:
 - $(x_1, x_2, ..., x_n) = x_1e_1 + x_2e_2 + ... + x_ne_n$
 - Whereas for any other basis $f_1, f_2, ..., f_n$, the coordinates of $(x_1, x_2, ..., x_n)$ wrt $f_1, f_2, ..., f_n$ are not $x_1, x_2, ..., x_n$

DIMENSION OF A VECTOR SPACE

- If a vector space (V, +, ., 0) has a basis of some n vectors, then
 - **Theorem**: Every basis of V will have n vectors, for the same value of n
 - We say n is the **dimension** of V, and V an n-dimensional (nD) space
 - *n* can be finite or infinite

• Examples:

- \mathbb{R}^n is of dimension n (because the canonical basis $e_1, e_2, ..., e_n$ of \mathbb{R}^n has n vectors)
- $\mathbb{R}^{n \times m}$ is a vector space of dimension $n \times m$
- Notes about terminology:
 - Before, we would refer to audio signals as 1D signals, and to images as 2D signals
 - Now, in vectors spaces, 1D audio signals of n samples form an n-dimensional (nD) space, and 2D images form an $n \times m$ -dimensional space
 - This can be confusing, but the context makes things clear:
 - 1D signals vs. nD vectors
 - 2D *images* vs. $(n \times m)D$ *vectors*

CANONICAL BASIS VS. OTHER BASES OF \mathbb{R}^n -- COMPRESSION-DESIRABLE BASES OF \mathbb{R}^n --

- The canonical basis of \mathbb{R}^n is great in geometry and form a convenient representation of vectors, but it is terribly poor for compression
- We seek alternative bases that will be more suitable for lossy compression
- It would be great to have a basis $f_1, f_2, ..., f_n$ for \mathbb{R}^n such that for any "natural" signal $x = (x_1, x_2, ..., x_n)$, we can express x as a linear combination of $f_1, f_2, ..., f_n$ such that
 - $x = y_1 f_1 + y_2 f_2 + \cdots y_n f_n$
 - The human eyes/ears are more sensitive to certain f'_is and less sensitive to other f'_is , e.g.,
 - More sensitive to f_1 , f_2 , f_3 and less sensitive to f_4 , f_5 , ...
 - I.e., some basis vectors are more important, and others less important, to human senses
 - Then, we can drop the less important $f_i's$ (i.e., replace the corresponding $y_i's$ with 0's)
 - And approximate x by the remaining (important vectors), e.g., $x \approx y_1 f_1 + y_2 f_2 + y_3 f_3$
 - Or quantize the less important $y_i's$ aggressively (to get more compression), and the more important $y_i's$ lightly (to retain reconstruction quality)

EXISTANCE OF COMPRESSION-DESIRABLE BASES OF \mathbb{R}^n

- We will see that such compression-desirable bases do exist
- We will see also how the transforms we studied are connected to desirable bases
- But, first, let's see how a linear transform relates to bases in vector spaces
- That is the subject of the next few slides

24

1D SIGNALS AND COLUMN/MATRIX NOTATION

- Recall that a 1D signal x (like an audio signal) of n components is viewed as a vector $x = (x_1, x_2, ..., x_n)$ in an n-dimensional vector space
- We will represent each such signal as a column vector:

$$\bullet \ \ x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Note: In some situations, it is more convenient to start the indexing from 0 instead of 1
- To save on vertical space, we sometimes write $x = [x_1, x_2, ... x_n]^T$
- Also, each vector in \mathbb{R}^n , including each basis vector (for whatever basis), will be represented as a column vector

MATRICES AS A SEQUENCE OF COLUMN VECTORS

• A matrix $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$, or simply $A = (a_{ij})$ when the number of rows and columns of A are known, is

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$
 // again, sometimes the indexing starts from 0

• The matrix A can be viewed as a sequence of columns:

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} \cdots \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix} = \begin{bmatrix} C_1 \ C_2 \ \dots C_m \end{bmatrix} \text{ where } C_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, C_2 = \begin{bmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, C_m = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}$$

MATRIX MULTIPLICATION

- Let $A = (a_{ij})$ be an $n \times m$ matrix, and $B = (b_{ij})$ be a $m \times r$ matrix
- The product AB is a $n \times r$ matrix $C = (c_{ij})$ where
 - $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im}b_{mj}$ (inner product of row i of A and column j of B)

$$\bullet \ C = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots \\ b_{21} & b_{22} & \cdots \\ \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mr} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1r} \\ c_{21} & c_{22} & \cdots & c_{2r} \\ \vdots & \ddots & c_{ij} & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nr} \end{bmatrix}$$

MATRIX-COLUMN MULTIPLICATION

- Let $A = (a_{ij})$ be an $n \times n$ matrix, $x = [x_1, x_2, ... x_n]^T$ be a column
- The product Ax is a column $y = [y_1, y_2, ... y_n]^T = Ax$ where

•
$$y_i = a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$$

•
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [C_1 \ C_2 \ \dots C_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 C_1 + x_2 C_2 + \dots x_n C_n$$

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ \vdots & \ddots & & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{bmatrix}$$

• Similarly,
$$x = A^{-1}y = \begin{bmatrix} d_{11} \\ d_{21} \\ \vdots \\ d_{n1} \end{bmatrix} \begin{bmatrix} d_{12} \\ d_{22} \\ \vdots \\ d_{n2} \end{bmatrix} \cdots \begin{bmatrix} d_{1n} \\ d_{2n} \\ \vdots \\ d_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = [f_1 f_2 \dots f_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = y_1 f_1 + y_2 f_2 + \cdots y_n f_n$$

CONNECTION WITH TRANSFORMS

- Recall that a transform is characterized by a square matrix $A = (a_{ij})$
- The transform of a signal $x = [x_1, x_2, ... x_n]^T$ is y = Ax
- The inverse transform of $y = [y_1, y_2, ... y_n]^T$ is $x = A^{-1}y$
- Based on the previous slide, we have:

$$x = A^{-1}y = \begin{bmatrix} d_{11} \\ d_{21} \\ \vdots \\ d_{n1} \end{bmatrix} \begin{bmatrix} d_{12} \\ d_{22} \\ \vdots \\ d_{n2} \end{bmatrix} \cdots \begin{bmatrix} d_{1n} \\ d_{2n} \\ \vdots \\ d_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [f_1 f_2 \dots f_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = y_1 f_1 + y_2 f_2 + \cdots y_n f_n$$

$$\bullet f_1, f_2, \dots, f_n \text{ are a new basis of } \mathbb{R}^n$$

• That is, $x = y_1 f_1 + y_2 f_2 + \cdots y_n f_n$

• $f_1, f_2, ..., f_n$ are the columns of the inverse matrix A^{-1} of the transform

• Therefore: $y_1, y_2, ..., y_n$ are the coordinates of vector x wrt to the basis $f_1, f_2, ..., f_n$

TRANSFORMS AND BASES

- We saw earlier for vector/signal $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$:
 - $x_1, x_2, ... x_n$ are the coordinates of vector x wrt to the canonical basis $e_1, e_2, ..., e_n$

$$e_{1} = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, e_{i} = \begin{bmatrix} 0\\\vdots\\0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, e_{n} = \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix},$$

•
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 e_1 + x_2 e_2 \dots + x_n e_n = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

• From the previous slide,

$$\mathbf{if} \ y = Ax, A^{-1} = \begin{bmatrix} d_{11} \\ d_{21} \\ \vdots \\ d_{n1} \end{bmatrix} \begin{bmatrix} d_{12} \\ d_{22} \\ \vdots \\ d_{n2} \end{bmatrix} \dots \begin{bmatrix} d_{1n} \\ d_{2n} \\ \vdots \\ d_{nn} \end{bmatrix}, \text{ then:}$$

$$f_1 \qquad f_2 \qquad f_n$$

 $y_1, y_2, \dots y_n$ are the coordinates of vector x wrt to the basis f_1, f_2, \dots, f_n

$$x = y_1 f_1 + y_2 f_2 + \cdots y_n f_n$$

- Therefore, a **transform** characterized by a matrix *A* is:
 - A change of basis, from the canonical basis $e_1, e_2, ..., e_n$ to a new basis $f_1, f_2, ..., f_n$ determined by A^{-1}
 - That is, a change of coordinate systems

VISUALIZATION OF THE BASIS VECTORS OF A TRANSFORM

- Take the transform matrix *A*
- Get its transform matrix A^{-1}
- Extract the columns of A^{-1} : $f_1 f_2 \dots f_n$
 - Or, indexing from 0, rename them $f_0 f_1 \dots f_{n-1}$
- Plot each f_i where the horizontal axis is 0, 1, 2, ..., n-1, and the vertical axis corresponds to the values of the components of f_i
- There should be n plots, one per basis vector

THE BASIS VECTORS OF THE FOUR TRANSFORM FOR N=8

•
$$a_{kl} = \sqrt{\frac{1}{N}} e^{-\frac{2\pi i}{N}kl} = \sqrt{\frac{1}{N}} \left(\cos\frac{2\pi}{N}kl - i\sin\frac{2\pi}{N}kl\right), \forall k, l = 0, 1, 2, ..., N - 1$$

•
$$a = \frac{\sqrt{2}}{2}(1+i)$$
 and $\bar{a} = \frac{\sqrt{2}}{2}(1-i)$

$$A_{8} = \sqrt{\frac{1}{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \bar{a} & -i & -a & -1 & -\bar{a} & i & a \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & -a & i & \bar{a} & -1 & a & -i & -\bar{a} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\bar{a} & -i & a & -1 & \bar{a} & i & -a \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & a & i & -\bar{a} & -1 & -a & -i & \bar{a} \end{bmatrix}$$

$$A_8 = \sqrt{\frac{1}{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \bar{a} & -i & -a & -1 & -\bar{a} & i & a \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & -a & i & \bar{a} & -1 & a & -i & -\bar{a} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\bar{a} & -i & a & -1 & \bar{a} & i & -a \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & a & i & -\bar{a} & -1 & -a & -i & \bar{a} \end{bmatrix} \quad A^{-1} = \sqrt{\frac{1}{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & a & i & -\bar{a} & -1 & -a & -i & \bar{a} \\ 1 & i & -1 & -i & 1 & i & 1 & -i \\ 1 & -a & i & \bar{a} & -1 & a & -i & -\bar{a} \\ 1 & -i & 1 & i & 1 & -i & -1 & i \\ 1 & -\bar{a} & -i & -a & -1 & -\bar{a} & i & a \end{bmatrix}$$

THE BASIS VECTORS OF FOURIER TRANSFORM

•
$$A_N^{-1} = conjugate(A_N) = (\sqrt{\frac{1}{N}}e^{\frac{2\pi i}{N}kl}) = \sqrt{\frac{1}{N}}(\cos{\frac{2\pi}{N}}kl + i\sin{\frac{2\pi}{N}}kl), \forall k, l = 0, 1, 2, ..., N - 1$$

- Because the entries involve complex numbers, we can't plot them
- But we can plot the real-part: $(\sqrt{\frac{1}{N}}\cos{\frac{2\pi}{N}}kl) \ \forall k,l=0,1,2,...,N-1$
- $\forall l = 0, 1, 2, ..., N-1$, take real-part of the l^{th} basis vector: $f_l(k) = \sqrt{\frac{1}{N}} \cos \frac{2\pi}{N} k l$
- It is more insightful to plot each basis vector $f_l(k) = \sqrt{\frac{1}{N}} \cos \frac{2\pi}{N} k l$ as a continuous

function of
$$k$$
 (or of x): $f_l(x) = \sqrt{\frac{1}{N}} \cos \frac{2\pi}{N} lx$, for $N = 8, l = 0, 1, ..., 7$

THE REAL-PART OF THE BASIS VECTORS OF FFT, N=8 (1/2)

• The first 4 basis vectors (shown as continuous plots of the real part)

34

THE REAL-PART OF THE BASIS VECTORS OF FFT, N=8 (2/2)

• The second 4 basis vectors (shown as continuous plots of the real part)

THE BASIS VECTORS OF DCT OF SIZE N=8

•
$$a_{0l} = \sqrt{\frac{1}{N}}$$
 for all $l = 0, 1, ..., N - 1$;

•
$$a_{kl} = \sqrt{\frac{2}{N}} \cos \frac{\left(l + \frac{1}{2}\right)k\pi}{N} \ \forall \ k = 1, 2, ..., N-1, \text{ and } l = 0, 1, ..., N-1$$

$$\bullet \ A_N^{-1} = A_N^T$$

•
$$f_k = \text{Col}_k(A_N^{-1}) = \text{Row}_k(A_N) = (a_{kl}) \text{ for } l = 0, 1, ..., N - 1$$
 • Let $\alpha_0 = \sqrt{\frac{1}{N'}}$ and $\alpha_k = \sqrt{\frac{2}{N}}$ for $k \ge 1$

•
$$f_0 = \sqrt{\frac{1}{N}} [1 \ 1 \ ... \ 1]^T$$
, and for $k \ge 1$:

• Let
$$\alpha_0 = \sqrt{\frac{1}{N'}}$$
 and $\alpha_k = \sqrt{\frac{2}{N}}$ for $k \ge 1$

•
$$f_k(x) = \alpha_k \cos \frac{\left(x + \frac{1}{2}\right)k\pi}{N}$$

• We will plot $f_k(x)$ as a continuous function of x, for N=8, k=1,2,...,7

•
$$f_k = \sqrt{\frac{2}{N}} \left[\cos \frac{\left(\frac{1}{2}\right)k\pi}{N}, \cos \frac{\left(1+\frac{1}{2}\right)k\pi}{N}, \cos \frac{\left(2+\frac{1}{2}\right)k\pi}{N}, \dots \cos \frac{\left(N-1+\frac{1}{2}\right)k\pi}{N} \right]^T$$

THE BASIS VECTORS OF DCT OF SIZE N=8 (1/2)

• The first 4 basis vectors (shown as continuous plots)

THE BASIS VECTORS OF DCT OF SIZE N=8 (2/2)

• The second 4 basis vectors (shown as continuous plots)

THE MATRIX OF THE HADAMARD TRANSFORM FOR N=8

$$\bullet \ A_N^{-1} = A_N^T = A_N$$

THE BASIS VECTORS OF HADAMARD FOR N=8 (1/2)

• The first 4 basis vectors

40

THE BASIS VECTORS OF HADAMARD FOR N=8 (2/2)

• The second 4 basis vectors

THE MATRIX OF THE HAAR TRANSFORM FOR N=8

$$\bullet \ A_N^{-1} = A_N^T$$

• Therefore, $f_k = col_k(A_N^{-1}) = col_k(A_N^T) = [row_k(A_N)]^T$

THE BASIS VECTORS OF HAAR FOR N=8 (1/2)

• The first 4 basis vectors

THE BASIS VECTORS OF HAAR FOR N=8 (2/2)

• The second 4 basis vectors

44

NEXT LECTURE

- Frequency Perspective of Transforms
- Statistical Perspective of Transforms