Sistemas de Coordenadas Programação Baseada em Janelas Primitivas Básicas Mouse e Teclado Atividade

Desenhos 2D

José Luis Seixas Junior

Ciência da Computação Universidade Estadual do Paraná

Computação Gráfica 2017

Índice

- Sistemas de Coordenadas
- Programação Baseada em Janelas
- Primitivas Básicas
- 4 Mouse e Teclado
- 6 Atividade

Sistemas de Coordenadas

Pontos

- SetPixel;
- PutPixel:
- DrawPoint:

Linhas

- DrawLine;
- Line;
- MoveTo:
- LineTo;

Sistemas de Coordenadas

Importante padronizar

- Geração de base para o novo sistema de coordenadas;
- Conversores;

Monitor

- Padrão: Top-Left (Topo Esquerdo);
- $\bullet \ \mathsf{gluOrtho2D} \to \mathsf{coordenadas} \ \mathsf{de} \ \mathsf{corte}; \\$

Placas gráficas

- Vetoriais;
- Matriciais:

Programação Baseada em Janelas

Janelas

- Mover;
- Redimensionar;
- Efeitos;
- Inclinação;

Eventos

- Clique;
- Botão;
- Teclado;
- Temporal;

Programação Baseada em Janelas

OpenGL / OpenCV

- Independente de dispositivos:
 - Pode ser dependente de uma API, torna a execução engessada e lenta;
- Multiplataforma / Portabilidade;
- Ferramentas de manipulação que auxiliam e facilitam a manipulação de eventos, tratamentos e interações;

Primitivas

Objetivo

 Técnicas para construir figuras distintas complexas de maneira mais simples;

Linha

Sequência de pontos;

Polígonos

• Sequência de linhas com o início e fim delimitados;

Figuras

• Sequência de linhas não respeitando angulação;

Exemplo

Código Java

```
@Override
public void paintComponent(Graphics g){
    super.paintComponent(g);
    g.setColor(Color.BLACK);
    for(int i=0; i<5; i++){
        int x = (int)(100*Math.random());
        int y = (int)(100*Math.random());
        g.drawLine(x, y, x, y);
    }
}</pre>
```


Exemplo

```
public static void main(String[] args) {
    Drawable tela = new Drawable();
    tela.setBounds(0, 0, 100, 100);
    tela.setVisible(true);
    tela.repaint();
    JFrame frame = new JFrame("Tela");
    frame.add(tela);
    frame.setVisible(true);
    frame.setSize(100, 100);
```

frame.setDefaultCloseOperation(WindowConstants.EXIT ON CLOSE);

Exemplo

Código Java

Suffix	Data type	Typical C or C++ type	OpenGL type name
b	8-bit integer	signed char	GLbyte
s	16-bit integer	short	GLshort
i	32-bit integer	int or long	GLint, GLsizei
f	32-bit floating point	float	GLfloat, GLclampf
d	64-bit floating point	double	GLdouble, GLclampd
ub	8-bit unsigned number	unsigned char	GLubyte, GLboolean
us	16-bit unsigned number	unsigned short	GLushort
ui	32-bit unsigned number	unsigned int or unsigned long	GLuint, GLenum, GLbitfield

Estados

Desenho

- Color;
- PointSize;
- Clear;
- MatrixModel:
 - Matriz de Transformação;
- Identidade \rightarrow Ortogonal 2D \rightarrow Sistema LI;
- Ortogonal 2D → Sistema LI → Canônica;

Estados

Mouse e Teclado

- Listeners:
 - MouseListener:
 - KeyboardListener;
 - AddListener;
 - $\bullet \ \, \mathsf{Interface} \to \mathsf{Implements} \to \mathsf{Listeners}; \\$
- OnKeyPressed;
- MouseFunc;
- MouseDragged:
- MovedMouse;

Interação Mouse

```
void (*func(void))

void myMouse( int button, int state, int x, int y)
{
    if ( button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
        drawDot(x, screenHeight - y);
    else if ( button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
        exit(-1);
    glFlush();
}
```


Interação Mouse

```
void glutMouseFunc (void *func(int, int, int, int))
```

void glutMouseFunc(void (*func)(int button, int state, int x, int y));

Botão

- GLUT_LEFT_BUTTON;
- GLUT_MIDDLE_BUTTON;
- GLUT_RIGHT_BUTTON;

Estados

- GLUT UP;
- GLUT DOWN;

Interação Mouse

API

- Dependente de firmware;
- Geralmente constantes numéricas;

Movimentação

- Altera a função padrão;
- Chamadas excessivas;

Interação Teclado

```
void (*func(void))
                    void myKeyboard (unsigned char key, int mouseX, int mouseY)
                      GLint x = mouseX:
                                                                 Posição do mouse
                      GLint y = screenHeight - mouseY;
                                                                 quando a tecla é
                      switch( key )
                                                                 pressionada
                       case 'p':
                                                      Tecla pressionada
                           drawDot(x,y);
                           glFlush();
                           break:
                       case 'e':
                           exit (-1);
                       default:
                           break;
```

Atividade 03

Atividade 03/1

- Abrir uma janela desenhável;
- Desenhar linhas a partir de cliques do mouse, criando uma figura;
- Clique com o botão direito do mouse deve excluir o ponto mais próximo do clique;
- Redesenhar figura;

Data

24 de agosto de 2017

Atividade 03

Atividade 03/2

- Abrir uma janela desenhável;
- Clique botão esquerdo:
 - Desenhar ponto (tamanho 5);
 - Ponto corrente;
- Clique com botão direito:
 - Ponto mais próximo se torna corrente;
- Setas do teclado:
 - Movimentam o ponto corrente;

Data

Referências I

- Hill, F. S. Computer Graphics Using OpenGL. Prentice Hall, 2013.
- Shreiner, D.; Woo M.; Neider, J.; Davis, T. OpenGL Programming Guide. Addison Wesley, 4° edição, 2013.

