- p. 214
- 7. Describe an algorithm that takes as input a list of n integers and finds the location of the last even integer in the list or returns 0 if there are no even integers in the list.
- p. 215
- 36. Use the bubble sort to sort 6, 2, 3, 1, 5, 4, showing the lists obtained at each step.
- p. 228
- 2. Determine whether each of these functions is $O(x^2)$.
- a) f(x) = 17x + 11 b) $f(x) = x^2 + 1000$
- c) $f(x) = x \log x$ d) $f(x) = x^4/2$
- e) $f(x) = 2^x$
- f) $f(x) = \lfloor x \rfloor \cdot \lceil x \rceil$

- p. 229
- 30. Show that each of these pairs of functions are of the same order.
- a) 3x + 7, x
- b) $2x^2 + x 7$, x^2
- c) $\lfloor x + 1/2 \rfloor$, x
- d) $\log(x^2 + 1)$, $\log_2 x$
- e) $log_{10} x$, $log_2 x$
- p.241
- 2. Give a big-O estimate for the number additions used in this segment of an algorithm.

$$t := 0$$

for
$$i := 1$$
 to n

for
$$j := 1$$
 to n

$$t := t + i + j$$

- p. 242
- 7. Suppose that an element is known to be among the first four elements in a list of
- 32 elements. Would a linear search or a binary search locate this element more rapidly?