

Автоматизация диагностики заболеваний по данным электрокардиограммы на основе алгоритмов машинного обучения

Валиев Михаил Робертович, 4031

Колесникова Светлана Ивановна, проф., д.т.н.

Постановка задачи

Цель

Совершенствование аппарата диагностики по данным ЭКГ на основе многомерного нейросетевого классификатора по пяти классам: нормальный, инфаркт миокарда, изменение сегмента ST/T, нарушение проводимости, гипертрофия.

Задачи

- 1) Анализ предметной области;
- 2) Обзор существующих способов решения;
- 3) Обзор и обработка набора данных ЭКГ сигналов;
- 4) Выбор и разработка моделей машинного обучения;
- 5) Обучение и тестирование разработанных моделей.

Актуальность

- **1. Нерешенность вполне задачи диагностики** практически для любых заболеваний (ошибки 1-го, 2-го родов) и, в этой связи, весьма актуально повышение точности диагностики, снижение вероятности совершить экспертом диагностические ошибки;
- 2. Потребность создания базовых алгоритмов для создания и внедрения автоматизированных систем диагностики, позволивших бы улучшить доступность качественной диагностики в удаленных и малонаселенных регионах, где не хватает квалифицированных врачей.
- 3. Корректное использование алгоритмов машинного обучения и их комбинаций способствует развитию научных исследований в области биомедицинской инженерии и медицинской информатики.

Обзор предметной области

Электрокардиограмма (ЭКГ) — это запись электрической активности сердца. Он предоставляет информацию о частоте сердечных сокращений, ритме и проведении электрических импульсов в

Q wave ____

R wave S wave

сердце.

Запись ЭКГ представляет собой одномерные сигналы в 12

отведениях: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6.

Анализ ЭКГ – это распознавание паттернов, т.е. отнесение электрокардиографических образов (форма зубцов,

комплексов и их сочетания) к определенной патологии.

Существующие решения

Традиционные методы классификации сигнала ЭКГ в основном основаны на ручной обработке или ручном извлечении признаков:

- методы цифровой фильтрации,
- сочетание экспертных методов,
- анализ главных компонент,
- преобразования Фурье,
- вейвлет-преобразования.

Некоторые из классификаторов, используемых с этими извлеченными признаками, — это

- машины опорных векторов,
- скрытые марковские модели,
- нейронные сети.

Главным недостатком этих методов является разделение части извлечения признаков и части классификации паттернов; требуют экспертных знаний о входных данных.

Данные

- Общедоступный источник: PTB-XL, a large publicly available electrocardiography dataset;
- 21799 записей;
- Продолжительность записи ЭКГ 10 секунд;
- 12 отведений;
- Сигналы доступны в двух вариантах: с частотой дискретизации 100 Гц и 500 Гц;
- Каждая запись может относиться к 1 или сразу к нескольким из 5 классов:
 - NORM,
 - MI,
 - STTC,
 - CD,
 - HYP.

Обработка данных

- Только отведения I, II, V2, т.к. они содержат 95% релевантной по отношению ко всем 12-и отведениям информации;
- Частоту дискретизации выбираем 100 Гц, т.к. этого достаточно для обнаружения форм волны;

1D обработка

- Полосовой фильтр Баттерворта 2-ого порядка с частотой среза верхних частот 1 Гц для подавления блуждания базовой линии и частотой среза низких частот 45 Гц для устранения высокочастотных шумов;
- Z-нормализация, чтобы уменьшить влияние выбросов:

2D обработка

- Минимаксная нормализация;
- Gramian Angular Field (GAF) отображает временную корреляцию между каждой парой значений сигнала;
- Recurrence Plot (RP) отображает расстояние между временными точками;
- Markov Transition Field (MTF) отображает насколько связаны между собой дискретизированные значения сигнала, относительно того, как часто они появляются рядом друг с другом в сигнале.

GAF, RP, MTF

1D нейронные сети

Рекуррентная нейронная сеть (RNN) - это семейство нейронных сетей для обработки последовательных данных.

Gated Recurrent Unit (GRU) – ячейка долговременной памяти RNN, предназначенная для сохранения полезной информации текущего временного шага для следующих.

2D нейронные сети

Сверточные нейронные сети (CNN) - то тип искусственных нейронных сетей, используемых для анализа данных с топологической структурой, таких как изображения. CNN применяются для распознавания и классификации образов, объектов и паттернов в данных AlexNet – одна из архитектур CNN.

Метрики качества

- **TP** (True Positives) истинно положительные предсказания.
- TN (True Negatives) истинно отрицательные предсказания.
- FP (False Positives) ложно положительные предсказания.
- FN (False Negatives) ложно отрицательные предсказания.

Чувствительность -

измеряет способность

модели правильно

идентифицировать

положительные случаи из

всех действительно

положительных случаев.

$$Sensitivity = \frac{TP}{TP + FN}$$

Специфичность.

Измеряет способность

модели правильно

идентифицировать

отрицательные случаи из

всех действительно

отрицательных случаев.

$$Specificity = \frac{TN}{TN + FP}$$

G-mean - геометрическое

среднее из

чувствительности и

специфичности.

$$G - mean = \sqrt{Sensitivity \cdot Specificity}$$

Стек технологий

Язык программирования: Python

Библиотеки для обработки данных: Numpy, Pandas, scipy, wfdb, pyts

Библиотека для реализации нейронных сетей: PyTorch

Обучение и тестирование моделей

		TP	TN	FP	FN	Sensitivity	Specificity	G-mean
GRU	MI	31.17%	23.4%	24.59%	24.92%	85.45%	76.33%	80.77%
	STTC	30.64%	24.46%	22.82%	18.38%	88.68%	78.41%	83.39%
	CD	25.46%	27.41%	14.38%	34.89%	77.42%	86.6%	81.88%
	HYP	12.73%	24.73%	38.21%	21.81%	73.28%	68.7%	70.95%
	all	100.0%	100.0%	100.0%	100.0%	82.45%	77.22%	79.79%
Bidirectional GRU	MI	29.17%	25.39%	19.7%	34.02%	78.91%	74.88%	76.87%
	STTC	30.85%	24.91%	22.17%	18.18%	88.1%	72.21%	79.76%
	CD	25.94%	26.33%	20.08%	32.26%	77.82%	75.21%	76.5%
	HYP	14.05%	23.37%	38.06%	15.54%	79.77%	58.68%	68.42%
	all	100.0%	100.0%	100.0%	100.0%	81.36%	69.81%	75.36%
AlexNet	MI	32.84%	20.11%	34.07%	22.43%	80.18%	63.29%	71.24%
	STTC	28.97%	26.28%	17.68%	27.16%	74.66%	81.28%	77.9%
	CD	28.74%	22.65%	29.67%	22.63%	77.82%	69.04%	73.3%
	HYP	9.46%	30.96%	18.58%	27.78%	48.47%	82.95%	63.41%
	all	100.0%	100.0%	100.0%	100.0%	73.43%	74.49%	73.96%

Заключение

В ходе выполнения дипломной работы была разработана нейронная сеть для классификации данных электрокардиограммы по пяти классам: нормальный, инфаркт миокарда, изменение сегмента ST/T, нарушение проводимости, гипертрофия.

Нейронная сеть GRU имеет наилучшие оценки качества, но тем не менее 82,45% это не предел.

Устранив следующие проблемы, можно повысить качество классификации, особенно у AlexNet:

- несбалансированность данных;
- изображения, полученные в ходе GAF, RP и MTF трансформаций в последствии усекаются из размеров 1000×1000 до 224×224, из-за чего происходит потеря информации;
- не исключено, что гиперпараметры обучения подобраны не самые подходящие для получения более надежного результата.

Спасибо за внимание!