Wu. Honor Code. CIVANTICIVANIE MIMO Thereby state that all of my fathering solutions were entirely and here united by me. I have not looked at another the my words and I have fairly credited all external sources in this solution. 1 M=VDV Ui be a marrix whose i-th column to the ith column vector let marrix and all the other columns are all zero vertor 1.(a); M=VDV.T. of manx of all the other columns are all zero vectors. of mank $V = \sum_{i=1}^{n} V_i$ likewise $V = \sum_{i=1}^{n} V_i$ Since 13 andragonal marrix For any two marries Ai and Bk. the UDVT = (= Ui di) (IViT) = SUidi Viex ON 33 P - TIX 37 - F (AX - JX) 3 3 5 5 = & WidiviT = Edi ViviT 一大学はいーマルーランド "(日本一次)是高。" (公子以)

```
M=UDVT

D MTM = (UPVT) T(UDVT)

= VDTDVT

= VDTDVT

= VDTDVT

= VDTDVT

= VDTDVT

= VDTDVT

thus the i-th eigenvalue of MTM is di<sup>2</sup> and cornesponding eigenvector is Vi.

D MMT = UDVT(UDVT) T

= UDVTVDTUT

= UDDTUT

MMTU = UDDTUTU = UDDT

thus the i-th eigenvalue of MMT is di<sup>2</sup> and cornesponding eigenvector is thus the i-th eigenvalue of MMT is di<sup>2</sup> and cornesponding eigenvector is 4. (a)
```

```
4. (a)

For the help:

CH = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} - x_{ij})^{2} = \sum_{j=1}^{n} \sum_{i=1}^{n} (x_{ij} - x_{ij})^{2}

thus LHs = RHs:

CH = \sum_{j=1}^{n} \sum_{i=1}^{n} (x_{ij} - x_{ij})^{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_{ij} - x_{ij})^{2}
```

4(b).
We know that I I I (xi)-Xij)======= (xi)-xij) holds,

the cluster means for each feature are the constants that minimize the sum of -squared deviations, he allocating the observations can only improve, thus the algorithm truns, the

he longer changes, on local optimen has been heached.

Stat154 hw2

1.A few basics of SVD

(c)

```
x=c(2,4,8,16,32,64,128,256,512,1024,2048)
time_matrix=c()
time_svd=c()
for(i in x){
    start1=Sys.time()
    M=matrix(rnorm(1),i,i)
    end1=Sys.time()
    time_matrix=c(time_matrix,(end1-start1))
    start2=Sys.time()
    svd(M)
    end2=Sys.time()
    time_svd=c(time_svd,(end2-start2))
}

plot(y=log(time_matrix),x=log(x))
```


plot(y=log(time_svd),x=log(x))


```
#Ubservation
#It seems that running time almost stay the same at first, it has the biggest increasing rate when n=4.
#Startig from n=4, running time approximately linearly scaled with n.
#It makes perfect sense, because when n is smaller than 4,
#the biggest matrix we got is 4*4, constructing time would not be so much of a difference,
#and u,v from its svd is not too large dimension. After n reaches 4,
#svd calculation scales fast. Thus running time scales fast.
```

2.1.Power Method

```
A=cbind(c(1,2,3),c(2,-1,4),c(3,4,-5))
w0=c(1,1,1)

powerMethod=function(v,M){
s0=max(abs(M%*%v))
v=M%*%v/s0
s1=max(abs(M%*%v))

while((s1-s0)/s0>0.01){
s0=max(abs(M%*%v))
v=M%*%v/s0
s1=max(abs(M%*%v))
}
return(c(v,s1))
}

#using power method to compute first eigen value
powerMethod(w0,A)
```

```
## [1] 1.0000000 0.8333333 0.3333333 4.6666667
eigen(A)
## eigen() decomposition
## $values
## [1] 4.610843 -1.842654 -7.768189
## $vectors
##
             [,1]
                      [,2]
                                 [,3]
## [2,] -0.5672220 -0.6856083 -0.4562899
## [3,] -0.4511466 -0.2048451 0.8686226
#conclusion
#By comparing the two eigen values obtained with power method
#and eigen value functions. The results are pretty close.
#We can manually adjust the threhold of sk/sk+1 measurement
#to make the result more accruate.
#Thus power method is a pretty good way to get the max eigenvalue.
```

2.2.Deflation and more eigenvectors

```
B=cbind(c(5,1,0),c(1,4,0),c(0,0,1))
#(a)
first=powerMethod(w0,B)
#first eigenvector
first[1:3]
## [1] 1.0000000 0.8333333 0.1666667
#first eigenvalue
first[4]
## [1] 5.833333
#(b)
B1=B-first[4]*first[1:3]%*%t(first[1:3])
second=powerMethod(w0,B1)
#second eigenvector
second[1:3]
## [1] -1.0000000 -0.8333333 -0.1666667
#second eigenvalue
second[4]
## [1] 4.212963
\#(c)
B2=B-second[4]*second[1:3]%*%t(second[1:3])
third=powerMethod(w0,B2)
#third eigenvector
third[1:3]
## [1] -1.0000000 -0.8333333 -0.1666667
```

```
#third eigenvalue
third[4]
```

[1] 1.713049

3.PCA

```
dat=USArrests
#(a)mean and variance
apply(dat,2,mean)
     Murder Assault UrbanPop
##
                                  Rape
##
     7.788 170.760
                       65.540
                                21.232
apply(dat,2,var)
##
                 Assault
                           UrbanPop
       Murder
                                           Rape
                          209.51878
     18.97047 6945.16571
                                      87.72916
#(b)histogram
apply(dat,2,hist)
```

Histogram of newX[, i]

Histogram of newX[, i]


```
## $Murder
## $breaks
   [1] 0 2 4 6 8 10 12 14 16 18
##
## $counts
## [1] 1 12 8 7 7 4 6 3 2
## $density
## [1] 0.01 0.12 0.08 0.07 0.07 0.04 0.06 0.03 0.02
##
## $mids
## [1] 1 3 5 7 9 11 13 15 17
## $xname
## [1] "newX[, i]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
## $Assault
## $breaks
## [1]
        0 50 100 150 200 250 300 350
## $counts
## [1] 3 7 12 9 7 10 2
##
```

```
## $density
## [1] 0.0012 0.0028 0.0048 0.0036 0.0028 0.0040 0.0008
##
## $mids
## [1] 25 75 125 175 225 275 325
##
## $xname
## [1] "newX[, i]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
##
## $UrbanPop
## $breaks
## [1] 30 40 50 60 70 80 90 100
## $counts
## [1] 2 7 10 12 11 7 1
## $density
## [1] 0.004 0.014 0.020 0.024 0.022 0.014 0.002
##
## $mids
## [1] 35 45 55 65 75 85 95
## $xname
## [1] "newX[, i]"
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
## $Rape
## $breaks
## [1] 5 10 15 20 25 30 35 40 45 50
## $counts
## [1] 5 8 12 9 8 3 2 2 1
##
## $density
## [1] 0.020 0.032 0.048 0.036 0.032 0.012 0.008 0.008 0.004
##
## $mids
## [1] 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5
## $xname
## [1] "newX[, i]"
##
## $equidist
```

```
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
#(c)correlation
cor.test(dat$Murder,dat$Assault)
##
   Pearson's product-moment correlation
##
## data: dat$Murder and dat$Assault
## t = 9.2981, df = 48, p-value = 2.596e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6739512 0.8831110
## sample estimates:
         cor
## 0.8018733
cor.test(dat$Rape,dat$Assault)
##
  Pearson's product-moment correlation
## data: dat$Rape and dat$Assault
## t = 6.173, df = 48, p-value = 1.364e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4748141 0.7961645
## sample estimates:
         cor
## 0.6652412
cor.test(dat$Rape,dat$Murder)
##
##
   Pearson's product-moment correlation
##
## data: dat$Rape and dat$Murder
## t = 4.7267, df = 48, p-value = 2.031e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3383006 0.7277619
## sample estimates:
##
         cor
## 0.5635788
#We can see from the pearson correlation test,
#that these 3 criminal types are somehow correlated,
#especially murder and assualt, correlation as high as 0.8018.
\#(d)
pca1=princomp(dat,cor=TRUE)
summary(prcomp(dat))
```

Importance of components%s:

```
PC1
                                      PC2
                                             PC3
                                                     PC4
##
## Standard deviation
                         83.7324 14.21240 6.4894 2.48279
## Proportion of Variance 0.9655 0.02782 0.0058 0.00085
## Cumulative Proportion 0.9655 0.99335 0.9991 1.00000
#(e)
pca1$loadings[,1:3]
##
                Comp.1
                          Comp.2
                                     Comp.3
           -0.5358995 0.4181809 -0.3412327
## Murder
## Assault -0.5831836 0.1879856 -0.2681484
## UrbanPop -0.2781909 -0.8728062 -0.3780158
## Rape
           -0.5434321 -0.1673186 0.8177779
#(f)PCs aka Scores
head(pca1$scores[,1:3])
##
                 Comp.1
                            Comp.2
                                        Comp.3
## Alabama
             -0.9855659 1.1333924 -0.44426879
## Alaska
             -1.9501378 1.0732133 2.04000333
## Arizona
             -1.7631635 -0.7459568 0.05478082
## Arkansas
              0.1414203 1.1197968 0.11457369
## California -2.5239801 -1.5429340 0.59855680
## Colorado
            -1.5145629 -0.9875551 1.09500699
#(g)eigen_values and sum
eigen_values=pca1$sdev^2
sum(eigen_values)
## [1] 4
#(h)
library(ggplot2)
```

Histogram of newX[, i]

 $\#The\ eigen\ values\ descend\ from\ 2.5\ to\ 0. Eigen\ values\ descend,$ $\#which\ means\ that\ PCs\ are\ ordered\ in\ an\ descending\ order,$ $\#aka,\ the\ first\ pc\ captures\ the\ most\ variability.$

#(i)
scores=as.data.frame(pca1\$scores[,c(1,2)])

```
ggplot(data=scores,aes(x=Comp.1,y=Comp.2,label=rownames(scores)))+
  geom_point()+
  geom_hline(yintercept = 0, colour = "gray65") +
  geom_vline(xintercept = 0, colour = "gray65") +
  geom_text(colour = "orange", alpha = 0.8, size = 4) +
  ggtitle("PCA plot of USA States - Crime Rates")
```

PCA plot of USA States – Crime Rates


```
#which state stands out?
#Mississippi stands out. Without PCA, it is hard to say
#which state stands out regarding crime rate.
#However, under PCA(2-dim), Mississipi seems to stand out
#to be have the highest overall crime rate.

#(j)color states according to UrbanPop
scores=as.data.frame(pca1$scores[,c(1,2)])
scores=cbind(scores,dat$UrbanPop)
ggplot(data=scores,aes(x=Comp.1,y=Comp.2,label=rownames(scores)))+
geom_point(aes(color=dat$UrbanPop))+
geom_hline(yintercept = 0, colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
geom_text(colour = "orange", alpha = 0.8, size = 4) +
ggtitle("PCA plot of USA States - Crime Rates")
```

PCA plot of USA States - Crime Rates


```
#(k)
scores=as.data.frame(pca1$scores[,c(1,3)])
ggplot(data=scores,aes(x=Comp.1,y=Comp.3,label=rownames(scores)))+
  geom_point()+
  geom_hline(yintercept = 0, colour = "gray65") +
  geom_vline(xintercept = 0, colour = "gray65") +
  geom_text(colour = "orange", alpha = 0.8, size = 4) +
  ggtitle("PCA plot of USA States - Crime Rates")
```

PCA plot of USA States - Crime Rates


```
#PC3 has lower variance capture bility, pc2 is better as a PC dimension
#compared to PC3 to capture variability.
#In the plot, we observe that y-range is narrower in this plot.
#Accordingly, the stand-out state has changes under different PC,
#Alaska stands out in this plot.
```

4.K-means and PCA

10.7

```
#(a)generate 3 classes students as our simulation data.
class1=rnorm(1000,20,1) #n,mean,sd
class2=rnorm(1000,60,1)
class3=rnorm(1000,90,1)

classes=as.data.frame(matrix(data=c(class1,class2,class3),nrow=60,ncol=50),byrow=T)
group=c(rep(1,20),rep(2,20),rep(3,20))
classes=cbind(classes,group)

#(b)
pca2=princomp(classes,cor=TRUE)
summary(pca2)
```

Importance of components:

```
##
                              Comp.1
                                        Comp.2
                                                    Comp.3
## Standard deviation
                          1.89240382 1.7624403 1.74187275 1.62116629
## Proportion of Variance 0.07021945 0.0609058 0.05949256 0.05153294
## Cumulative Proportion 0.07021945 0.1311253 0.19061782 0.24215076
                              Comp.5
                                         Comp.6
                                                    Comp.7
                                                               Comp.8
## Standard deviation
                          1.59805354 1.55817587 1.49262796 1.4208607
## Proportion of Variance 0.05007402 0.04760612 0.04368506 0.0395852
## Cumulative Proportion 0.29222478 0.33983090 0.38351596 0.4231012
##
                              Comp.9
                                        Comp.10
                                                    Comp.11
                                                               Comp.12
## Standard deviation
                          1.40892200 1.35450598 1.34114887 1.31746474
## Proportion of Variance 0.03892277 0.03597424 0.03526824 0.03403359
  Cumulative Proportion 0.46202393 0.49799817 0.53326642 0.56730001
                             Comp.13
                                        Comp.14
                                                    Comp.15
                                                               Comp. 16
## Standard deviation
                          1.28463712 1.24440102 1.23538366 1.19252071
## Proportion of Variance 0.03235868 0.03036341 0.02992496 0.02788442
  Cumulative Proportion 0.59965869 0.63002210 0.65994705 0.68783148
##
                                        Comp.18
                                                               Comp.20
                             Comp.17
                                                    Comp.19
## Standard deviation
                          1.16774462 1.10561341 1.07813430 1.02583987
## Proportion of Variance 0.02673779 0.02396826 0.02279164 0.02063426
## Cumulative Proportion 0.71456927 0.73853753 0.76132917 0.78196343
##
                             Comp.21
                                        Comp.22
                                                    Comp.23
                                                               Comp.24
## Standard deviation
                          1.00408316 0.97087856 0.90827187 0.90384055
## Proportion of Variance 0.01976829 0.01848245 0.01617564 0.01601819
  Cumulative Proportion 0.80173172 0.82021418 0.83638982 0.85240801
##
                             Comp.25
                                        Comp.26
                                                    Comp.27
                                                               Comp.28
## Standard deviation
                          0.87404660 0.84688459 0.80042425 0.76278836
## Proportion of Variance 0.01497956 0.01406301 0.01256233 0.01140875
  Cumulative Proportion 0.86738757 0.88145058 0.89401291 0.90542166
##
                             Comp.29
                                         Comp.30
                                                     Comp.31
## Standard deviation
                          0.71587117 0.699224128 0.686378514 0.647732963
## Proportion of Variance 0.01004846 0.009586556 0.009237558 0.008226627
  Cumulative Proportion 0.91547012 0.925056678 0.934294236 0.942520863
##
                                          Comp.34
                                                       Comp.35
                              Comp.33
## Standard deviation
                          0.632511225 0.608504781 0.564327566 0.546759461
## Proportion of Variance 0.007844519 0.007260354 0.006244424 0.005861684
## Cumulative Proportion 0.950365382 0.957625736 0.963870160 0.969731844
##
                              Comp.37
                                          Comp.38
                                                       Comp.39
                                                                  Comp.40
## Standard deviation
                          0.478391428 0.452647272 0.435017962 0.41667830
## Proportion of Variance 0.004487419 0.004017442 0.003710601 0.00340433
  Cumulative Proportion 0.974219263 0.978236705 0.981947306 0.98535164
##
                              Comp.41
                                          Comp.42
                                                       Comp.43
                                                                   Comp.44
## Standard deviation
                          0.396180338 0.390527551 0.344875366 0.273530807
  Proportion of Variance 0.003077625 0.002990427 0.002332138 0.001467041
  Cumulative Proportion 0.988429260 0.991419687 0.993751825 0.995218866
                                          Comp.46
                                                        Comp.47
                              Comp.45
## Standard deviation
                          0.269218208 0.236228866 0.2136709135 0.1907902518
  Proportion of Variance 0.001421146 0.001094198 0.0008952012 0.0007137435
  Cumulative Proportion 0.996640012 0.997734209 0.9986294104 0.9993431540
##
                               Comp.49
                                            Comp.50
                                                          Comp.51
## Standard deviation
                          0.1464944476 0.1085102621 1.624952e-02
## Proportion of Variance 0.0004207965 0.0002308721 5.177392e-06
## Cumulative Proportion 0.9997639505 0.9999948226 1.000000e+00
```

```
head(pca2$scores[,1:2])
##
           Comp.1
                     Comp.2
## [1,] 1.5745167 1.2726008
## [2,] 1.6644289 2.8510161
## [3,] 1.2342414 2.4437835
## [4,] 2.0223267 1.6701626
## [5,] 0.2363056 2.4755536
## [6,] 2.7192484 0.6470889
scores2=as.data.frame(pca2$scores[,c(1,2)])
ggplot(data=scores2,aes(x=Comp.1,y=Comp.2))+
  geom_point(color=group)+
  geom_hline(yintercept = 0, colour = "gray65") +
  geom_vline(xintercept = 0, colour = "gray65")
   2.5 -
   0.0
  -2.5 -
  −5.0 -
                                                        0
      -6
                                             Comp.1
#Plot shows that there is a visible boundary among three
#clusters, so we continue to conduct kmeans clustering.
#(c)
kmeans(classes,centers=3)
## K-means clustering with 3 clusters of sizes 20, 20, 20
##
## Cluster means:
##
           V1
                    V2
                             VЗ
                                       ۷4
                                                ۷5
                                                         ۷6
                                                                  ۷7
                                                                            ٧8
## 1 19.97240 19.72686 19.97423 20.40341 20.16614 20.27625 19.92674 20.04647
```

```
## 2 20.01819 20.35797 20.11227 19.75259 20.04011 19.39495 20.30645 20.25014
## 3 19.52928 20.18172 20.13095 19.75002 20.02027 19.41301 19.96914 20.02710
                  V10
                          V11
                                   V12
                                            V13
                                                     V14
## 1 20.02338 19.92812 20.00596 20.37454 19.98881 20.01206 20.09069 20.28545
## 2 20.19394 19.79543 20.10252 19.75600 20.27584 19.92263 20.45507 19.90699
## 3 19.71645 20.26300 20.22720 20.01613 20.34132 19.57202 20.14760 20.26945
                          V19
                                   V20
         V17
                  V18
                                            V21
                                                     V22
## 1 19.61010 59.59448 60.23318 60.08840 59.79531 60.15502 60.15749 60.14714
## 2 59.73904 60.11128 59.81648 59.98027 60.04586 59.81626 60.02962 60.31988
## 3 20.05247 60.05471 59.68371 60.03961 60.01844 59.80895 60.00245 59.90374
##
         V25
                  V26
                          V27
                                   V28
                                            V29
                                                     V30
                                                             V31
## 1 60.18633 59.84731 60.24165 60.03256 59.99404 60.05940 60.17832 59.90069
## 2 59.95927 60.17719 59.95640 59.84882 60.08103 59.69276 59.89471 59.82640
## 3 59.97358 60.15442 60.25507 59.91941 60.04478 60.37201 60.06027 59.67587
##
         V33
                  V34
                          V35
                                   V36
                                            V37
                                                     V38
                                                             V39
## 1 59.75988 89.88497 89.44370 89.92288 89.75545 90.01990 89.94869 90.18793
## 2 59.50958 89.61202 89.92403 89.84345 89.81362 89.88088 89.69310 89.61029
## 3 59.83328 60.01865 90.14942 89.88886 90.18902 90.16421 89.71413 89.98663
                  V42
                          V43
                                   V44
                                            V45
                                                     V46
                                                             V47
         V41
                                                                      V48
## 1 90.04913 90.11911 89.84545 89.76691 89.94975 89.79951 90.06895 90.08354
## 2 89.73371 90.00322 90.43532 89.38071 89.96887 90.18259 90.51738 89.96952
## 3 90.41274 89.89578 90.05694 89.97381 90.33129 89.90631 90.26019 90.13549
##
         V49
                  V50 group
## 1 90.03556 89.79590
## 2 89.76002 89.91204
## 3 89.77739 89.78042
##
## Clustering vector:
## Within cluster sum of squares by cluster:
## [1] 981.8135 964.4516 976.9757
## (between_SS / total_SS = 91.9 %)
## Available components:
##
## [1] "cluster"
                     "centers"
                                   "totss"
                                                  "withinss"
## [5] "tot.withinss" "betweenss"
                                   "size"
                                                  "iter"
## [9] "ifault"
#conclusion:kmeans clustering with 3 centers on the raw
#data does not do very good. Data are clustered into group of 9,11,40.
#Comparing to true lable of group 20,20,20.
#(d)
kmeans(classes,centers=2)
## K-means clustering with 2 clusters of sizes 20, 40
## Cluster means:
                   ٧2
                           VЗ
                                    ۷4
                                             ۷5
                                                     V6
## 1 19.97240 19.72686 19.97423 20.40341 20.16614 20.27625 19.92674 20.04647
## 2 19.77373 20.26985 20.12161 19.75130 20.03019 19.40398 20.13780 20.13862
```

```
V10
                           V11
                                   V12
                                            V13
                                                     V14
## 1 20.02338 19.92812 20.00596 20.37454 19.98881 20.01206 20.09069 20.28545
## 2 19.95520 20.02921 20.16486 19.88606 20.30858 19.74733 20.30133 20.08822
##
         V17
                  V18
                           V19
                                   V20
                                            V21
                                                     V22
                                                             V23
## 1 19.61010 59.59448 60.23318 60.08840 59.79531 60.15502 60.15749 60.14714
## 2 39.89576 60.08300 59.75010 60.00994 60.03215 59.81260 60.01604 60.11181
         V25
                  V26
                           V27
                                   V28
                                            V29
                                                     V30
                                                              V31
## 1 60.18633 59.84731 60.24165 60.03256 59.99404 60.05940 60.17832 59.90069
## 2 59.96642 60.16580 60.10574 59.88411 60.06291 60.03238 59.97749 59.75113
         V33
                  V34
                           V35
                                   V36
                                            V37
                                                     V38
                                                              V39
## 1 59.75988 89.88497 89.44370 89.92288 89.75545 90.01990 89.94869 90.18793
## 2 59.67143 74.81534 90.03672 89.86616 90.00132 90.02254 89.70361 89.79846
         V41
                  V42
                           V43
                                   V44
                                            V45
                                                     V46
                                                              V47
## 1 90.04913 90.11911 89.84545 89.76691 89.94975 89.79951 90.06895 90.08354
## 2 90.07322 89.94950 90.24613 89.67726 90.15008 90.04445 90.38878 90.05251
##
         V49
                  V50 group
## 1 90.03556 89.79590
                          2
## 2 89.76871 89.84623
                          2
##
## Clustering vector:
  ##
## Within cluster sum of squares by cluster:
## [1]
        981.8135 26528.6636
   (between_SS / total_SS = 23.8 %)
##
## Available components:
##
## [1] "cluster"
                     "centers"
                                    "totss"
                                                  "withinss"
## [5] "tot.withinss" "betweenss"
                                    "size"
                                                  "iter"
## [9] "ifault"
#conclusion:kmeans clustering with 2 centers on the raw
#data does not do very good. Data are clustered into group of #20,40.
#Comparing to true lable of group 20,20,20.
#(e)
kmeans(classes,centers=4)
\#\# K-means clustering with 4 clusters of sizes 8, 7, 5, 40
## Cluster means:
          V1
                   V2
                            ٧3
                                     V4
                                             ۷5
                                                      ۷6
## 1 19.56212 19.94781 20.10848 18.96380 20.00450 19.27734 19.84533 19.39840
## 2 19.08233 20.28617 20.25404 20.80219 19.76759 19.88471 20.98539 20.87715
## 3 20.10245 20.40975 19.99458 19.53492 20.39926 18.96969 18.74449 19.84296
## 4 19.99529 20.04241 20.04325 20.07800 20.10313 19.83560 20.11660 20.14831
                  V10
##
          ۷9
                           V11
                                   V12
                                            V13
                                                     V14
                                                             V15
                                                                      V16
## 1 20.38276 19.91877 20.34906 20.19055 20.13178 19.16179 21.11662 20.00441
## 2 19.29963 20.19996 19.90726 20.32656 20.65321 19.56774 19.37797 20.07231
## 3 19.23390 20.90203 20.48016 19.30245 20.23996 20.23438 19.67465 20.96950
## 4 20.10866 19.86177 20.05424 20.06527 20.13232 19.96735 20.27288 20.09622
##
         V17
                  V18
                           V19
                                   V20
                                            V21
                                                     V22
                                                              V23
                                                                      V24
```

```
## 1 19.78155 60.33977 59.44847 60.51975 60.20762 59.97149 60.49209 59.94714
## 2 19.70142 60.51355 60.19035 59.21461 59.61131 59.97599 60.04979 59.65091
## 3 20.97739 58.95622 59.35079 60.42640 60.28575 59.31503 59.15274 60.18826
## 4 39.67457 59.85288 60.02483 60.03434 59.92059 59.98564 60.09356 60.23351
         V25
                  V26
                           V27
                                    V28
                                             V29
                                                      V30
                                                               V31
## 1 60.26494 60.05207 60.26413 59.82642 60.07497 60.74504 60.37066 59.71442
## 2 59.42675 60.48676 60.37637 60.32674 60.02320 60.55996 59.93232 59.20039
## 3 60.27295 59.85290 60.07076 59.49793 60.02667 59.51201 59.74276 60.27987
## 4 60.07280 60.01225 60.09903 59.94069 60.03754 59.87608 60.03652 59.86354
##
                           V35
                                    V36
         V33
                  V34
                                             V37
                                                      V38
                                                               V39
## 1 59.66822 59.62723 90.19308 89.79843 91.06421 90.42217 89.60359 89.59578
## 2 59.44802 60.72279 90.33206 89.91867 90.01080 90.21603 90.13034 90.27468
## 3 60.63674 59.65913 89.82385 89.99183 89.03825 89.67892 89.30829 90.20872
## 4 59.63473 89.74849 89.68387 89.88317 89.78453 89.95039 89.82089 89.89911
         V41
                  V42
                           V43
                                    V44
                                             V45
                                                      V46
                                                               V47
## 1 89.91380 90.28064 89.71629 90.09695 90.42620 89.65995 89.62624 90.27249
## 2 90.25672 89.92131 90.09554 89.73747 90.68182 90.26345 90.45276 89.78519
## 3 91.42946 89.24425 90.54796 90.10767 89.68868 89.80047 91.00490 90.40670
## 4 89.89142 90.06117 90.14038 89.57381 89.95931 89.99105 90.29316 90.02653
         V49
                  V50 group
## 1 89.58139 90.24704
## 2 90.21372 89.61369
## 3 89.48012 89.26726
                        1.0
## 4 89.89779 89.85397
                        2.5
##
## Clustering vector:
## [1] 2 1 1 1 1 2 3 1 3 2 3 2 2 1 2 1 1 3 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##
## Within cluster sum of squares by cluster:
## [1]
        338.1934
                   260.2919
                             189.1158 18116.2135
## (between_SS / total_SS = 47.6 %)
##
## Available components:
## [1] "cluster"
                     "centers"
                                    "totss"
                                                   "withinss"
## [5] "tot.withinss" "betweenss"
                                    "size"
                                                   "iter"
## [9] "ifault"
#conclusion:kmeans clustering with 4 centers on the raw data
#does not do very good.
#Data are clustered into group of 11,9,20,20.
#Comparing to true lable of group 20,20,20.
#This clusering slightly improves the result, just that more detailed seperation is captured.
#(f)
kmeans(pca2$scores[,1:2],centers=3)
## K-means clustering with 3 clusters of sizes 9, 21, 30
##
## Cluster means:
##
        Comp. 1
                   Comp.2
## 1 2.1681472 -2.3458518
## 2 -1.8971563 -0.7062883
```

```
## 3 0.6775653 1.1981573
##
## Clustering vector:
  ## [36] 3 2 2 3 3 2 3 2 2 2 2 2 2 2 2 2 2 2 3 3 1 2 2 2
##
## Within cluster sum of squares by cluster:
## [1] 25.03110 70.38924 71.08876
   (between_SS / total_SS = 58.5 %)
##
## Available components:
##
## [1] "cluster"
                    "centers"
                                 "totss"
                                               "withinss"
## [5] "tot.withinss" "betweenss"
                                 "size"
                                               "iter"
## [9] "ifault"
#conclusion:kmeans clustering with 3 centers on the raw data
#does not do very good.
#Data are clustered into group of 20,20,20.
#Comparing to true lable of group 20,20,20.
#This clusering improves the result obviously.
#Thus conducting PCA on raw data is a good data preparation step before doing k-means clustering.
\#(q)
classes=scale(classes,scale=FALSE)
kmeans(classes,centers=3)
## K-means clustering with 3 clusters of sizes 20, 20, 20
##
## Cluster means:
##
           V1
                      V2
                                 VЗ
                                           ۷4
                                                      ۷5
## 1 -0.3106779 0.09287121 0.05846669 -0.2186527 -0.05523840 -0.2817279
## 2 0.1324483 -0.36199322 -0.09825346 0.4347386 0.09063568 0.5815171
## 3 0.1782296 0.26912201 0.03978677 -0.2160860 -0.03539728 -0.2997892
            V7
                       8V
                                  ۷9
                                            V10
## 1 -0.09830424 -0.08080226 -0.26147587 0.26748553 0.115309188 -0.03275754
## 2 -0.14070531 -0.06143541 0.04545665 -0.06739588 -0.105933241 0.32564879
## 3 0.23900955 0.14223767 0.21601922 -0.20008965 -0.009375947 -0.29289125
                      V14
                                 V15
                                           V16
## 1 0.13933443 -0.26355004 -0.08351886 0.1154844 -13.08140 0.1345516
## 3 0.07384962 0.08706359 0.22394784 -0.2469749 26.60518 0.1911270
           V19
                       V20
                                  V21
                                            V22
                ## 1 -0.22741437
## 2 0.32205465
                0.052308333 -0.15789477 0.2282767 0.09430418 0.02355246
## 3 -0.09464028 -0.055826876 0.09265689 -0.1104859 -0.03356326 0.19629298
##
           V25
                      V26
                                 V27
                                            V28
                                                        V29
                                                                   V30
## 1 -0.06614528 0.09478157
                          0.10402963 -0.01418606 0.004827075 0.33061853
## 2 0.14660511 -0.21233149 0.09060813 0.09896742 -0.045909706 0.01801024
## 3 -0.08045983
                0.11754992 -0.19463776 -0.08478136 0.041082631 -0.34862877
                      V32
                                 V33
                                           V34
                                                     V35
           V31
## 1 0.01583252 -0.12511602 0.13236642 -19.819893 0.3103659 0.003798904
## 2 0.13389053 0.09970160 0.05896957 10.046420 -0.3953485 0.037813755
## 3 -0.14972305 0.02541442 -0.19133599
                                       9.773473 0.0849826 -0.041612659
##
          V37
                      V38
                                 V39
                                            V40
                                                       V41
                                                                   V42
```

```
## 1 0.2696606 0.142544002 -0.07117465 0.05834985 0.34754229 -0.110261642
## 2 -0.1639172 -0.001760122 0.16338347 0.25964424 -0.01606217 0.113077603
## 3 -0.1057434 -0.140783880 -0.09220882 -0.31799409 -0.33148012 -0.002815961
##
                                                   V43
                                                                                                    V44
                                                                                                                                                V45
                                                                                                                                                                                                 V46
                                                                                                                                                                                                                                                 V47
## 1 -0.05562541 0.26666790 0.2479859 -0.05649671 -0.02198147 0.07263781
## 3 0.32274812 -0.32643702 -0.1144338 0.21978764 0.23520502 -0.09332555
                                                   V49
                                                                                                    V50 group
## 1 -0.08026974 -0.04903391
## 2 0.17790282 -0.03355384
## 3 -0.09763308 0.08258775
                                                                                                                                   1
## Clustering vector:
 \hbox{ \#\# } \quad \hbox{ [1]} \quad \hbox{ 1 } \quad \hbox{ 2 } 
##
## Within cluster sum of squares by cluster:
## [1] 976.9757 981.8135 964.4516
## (between_SS / total_SS = 91.9 %)
## Available components:
## [1] "cluster"
                                                                                         "centers"
                                                                                                                                                     "totss"
                                                                                                                                                                                                                  "withinss"
## [5] "tot.withinss" "betweenss"
                                                                                                                                                     "size"
                                                                                                                                                                                                                  "iter"
## [9] "ifault"
#conclusion: stabalize variable variance helps a lot
#on k-means clustering results (with raw data).
#It could be an alternative way of doing PCA as
#a data pre-processing step before doing k-means clustering.
```

5.T/F

- (a)T. We calculate transpose(X)*X, in such way that #eigenvalues are always non-negative.
- (b)T. The purpose of PCA is to find orthogonal basis,

and to lower dimensions until there is a

balance between dimension and variability.

- (c)F. M has to be symmetric and has non-negative eigenvalues.
- (d)T. One purpose of PCA is to deduct dimensions.
- (e)F. Eigenvalurs are very possible to be negative.
- (f).F.y-axis is ordered eigenvalues of PC, possible to exceed 1.
- (g)T.PCA will never increase dimensions.