Bessel function

BesselJ [n, z] gives the Bessel function of the first kind $J_n(z)$.

BesselY[n, z] gives the Bessel function of the second kind $Y_n(z)$... The Neumann function

It satisfies the differential equation $z^2y'' + zy' + (z^2 - n^2)y = 0$ that we obtained for example in the solution of the Laplace equation in cilindrical coordenates.

Remember that:

```
n = y is a number (It could be complex number)
y = y (x) where x is the independent variable
```

Solution

This equation could be solve directly using Mathematica. It gives the geeral solution

```
DSolve [x^2 * y''[x] + x * y'[x] + (x^2 - n^2) * y[x] = 0, y[x], x] \{\{y[x] \rightarrow BesselJ[n, x] C[1] + BesselY[n, x] C[2]\}\}
```

Examples:

```
BesselJ[0, 5.2]
BesselY[0, 5.2]
-0.11029
-0.331251
```

Plot the Bessel J_n

 ${\tt Plot[BesselJ[0,x],\{x,0,50\}]}$

Plot[BesselJ[0, x], $\{x, 0, 50\}$, Filling \rightarrow Axis]

 $\begin{aligned} & \text{Plot}\big[\big\{\text{BesselJ}\big[0\,,\,x\big]\,,\,\text{BesselJ}\big[1\,,\,x\big]\,,\,\,\text{BesselJ}\big[2\,,\,x\big]\big\}\,,\\ & \big\{x\,,\,-10\,,\,10\big\}\,,\,\,\text{PlotLegends}\,\rightarrow\,\,\text{"Expressions"}\big] \end{aligned}$

Plot the Bessel Y_n (The Newmann solution)

Plot[BesselY[0, x], {x, 0, 30}]

Plot[{BesselY[0, x], BesselY[1, x], BesselY[2, x]}, {x, -3, 10}, PlotLegends → "Expressions"]

Series

Series[BesselJ[0, x], $\{x, 0, 10\}$]

$$1 - \frac{x^2}{4} + \frac{x^4}{64} - \frac{x^6}{2304} + \frac{x^8}{147456} - \frac{x^{10}}{14745600} + 0 \, [x]^{11}$$

For half - integer indices, BesselJ and BesselY evaluates to elementary functions:

BesselJ
$$[1/2, x]$$

BesselY $[1/2, x]$

$$\frac{\sqrt{\frac{2}{\pi}} \, \operatorname{Sin}[x]}{\sqrt{x}}$$

$$-\frac{\sqrt{\frac{2}{\pi}} \cos[x]}{\sqrt{x}}$$

Traditional form

BesselJ[n, r] // TraditionalForm BesselY[n, r] // TraditionalForm $J_n(r)$

 $Y_n(r)$

Applications: The Fraunhofer diffraction