Analysis I

Thomas Fleming

November 2, 2021

Contents

- 1 Functions of Bounded Variation and Absolutely Continuous Functions
- 2 Derivatives and Fundamental Theorem of Calculus 4

Lecture 19: End of Convergence, Functions of Bounded Variation, and Derivatives

Thu 28 Oct 2021 13:02

 $\mathbf{2}$

Recall we had the dominated convergence theorem. A similair version of the theorem makes use of convergence in measure as follows.

Theorem 0.1 (Dominated Convergence - Convergence in Measure). Let (f_n) be a sequence of measurable functions $f_n: \mathbb{R} \to \overline{\mathbb{R}}$ and suppose there is an integrable function $g: \mathbb{R} \to \overline{\mathbb{R}}$ so that $|f_n| \leq g$ for all $n \in \mathbb{N}$. If $(f_n) \to f: \mathbb{R} \to \overline{\mathbb{R}}$ in measure, (with f measurable), then f is integrable and $\lim_{n \to \infty} \int |f_n - f| = 0$ and $\lim_{n \to \infty} \int f_n = f$.

Proof. First, note a subsequence of (f_n) converges to f pointwise almost everywhere. Hence, we find $|f| \leq g$ almost everywhere, so f is integrable. We cam assume $|f_n - f| \leq 2g$ (almost) everywhere. Then, we find a subsequence $(g_n) = (f_{n_k})$ such that $\limsup_{n \to \infty} |f_n - f| = \lim_{n \to \infty} |g_k - f|$. Then, as $(g_k) \to f$ in measure, we find another subsequence $(h_j) = (g_{k_j}) = (f_{n_{k_j}})$ which converges pointwise to f almost everywhere.

Applying dominated convergence theorem yields

$$\lim_{n \to \infty} \int |h_j - f| = 0.$$

Then, we find

$$\limsup_{n \to \infty} \int |f_n - f| = \lim_{n \to \infty} \int |g_k - f|$$
$$= \lim_{n \to \infty} |h_j - f|$$
$$= 0.$$

This completes the proof.

1 Functions of Bounded Variation and Absolutely Continuous Functions

Remark. For this chapter $[a,b]\subseteq R$ will always denote a compact interval on $\mathbb R$

Definition 1.1 (Partition). A finite sequence $P = (x_k)_{k=n}^N$ with $n, N \in \mathbb{Z}$ and n < N is called a **partition** of [a, b] if $x_n = a$, $x_N = b$ and $x_{k-1} \le x_k$ for $n < k \le N$. We denote the collection of all partitions of [a, b] to be $\mathscr{P}([a, b])$.

Definition 1.2. Let $f:[a,b]\to\mathbb{R}$ be a function. Then,

• For a partition $P = (x_k)_{k=n}^N$, we denote

$$V(f, P) = \sum_{k=n+1}^{N} |f(x_k) - f_{(x_{k-1})}|$$

to be the variation of f with respect to P.

• We define the quantity TV $(f) = \sup\{V(f, P) : P \in \mathscr{P}([a, b])\}$ to be the **total variation of** f.

Remark. If $f:[a,b]\to\mathbb{R}$ and $c\in[a,b]$ with partitions $P_1=(x_k)_{k=n}^N$ of [a,c] and $P_2=(x_k)_{k=N}^K$ of [c,b]. Then denote, $P=(x_k)_{k=n}^K$ to be a partition of [a,b] and we find

$$V\left(f,P\right) = V\left(f\mid_{[a,c],P_{1}}\right) + V\left(f\mid_{[c,b]},P_{2}\right).$$

Moreover,

$$\mathrm{TV}\left(f\right) = \mathrm{TV}\left(f\mid_{[a,c]}\right) + \mathrm{TV}\left(f\mid_{[c,b]}\right).$$

Definition 1.3 (Bounded Variation). A function $f : \mathbb{R} \to \overline{\mathbb{R}}$ has bounded variation if $\mathrm{TV}(f) < \infty$.

Theorem 1.1 (Jordan's Theorem). A function $f:[a,b]\to\mathbb{R}$ is of bounded variation if and only if there are increasing functions $g,h:[a,b]\to\mathbb{R}$ so that f=g-h.

Proof. Suppose TV $(f) < \infty$ and let $x, y \in [a, b]$ with x < y. Then, we find

$$TV (f |_{[a,y]}) = TV (f |_{[a,x]}) + TV (f |_{[x,y]})$$

$$\geq TV (f |_{[a,x]}) + |f (y) - f (x)|$$

$$\geq TV (f |_{[a,x]}) + f (x) - f (y).$$

Furtheromre, $h: x \mapsto \text{TV}\left(f\mid_{[a,x]}\right)$ and $g: x \mapsto \text{TV}\left(f\mid_{[a,x]}\right) + f\left(x\right)$ are increasing. This fact is trivial for h and we find, adding f(y) to both sides of the former inequality yields $g(y) \ge g(x)$ for arbitrary $y \ge x$, so this claim holds as

Taking the difference, g - h = f.

Conversely, suppose f = g - h for increasing $g, h : [a, b] \to \mathbb{R}$. Then, let $x, y \in [a, b]$ with $y \ge x$. Then, we find

$$|f(y) - f(x)| = |g(y) - g(x) + h(x) - h(y)|$$

$$\leq |g(y) - g(x)| + |h(x) - h(y)|$$

$$= g(y) - g(x) + h(y) - h(x).$$

Hence, for a partition $P = (x_k)_{k=n}^N$, we find

$$V(f,P) = \sum_{k=n+1}^{N} |f(x_k) - f(x_{k-1})|$$

$$\leq \sum_{k=n+1}^{N} (g(x_k) - g(x_{k-1}) + h(x_k) - h(x_{k-1})) = g(b) - g(a) + h(b) - h(a)$$

$$< \infty.$$

Definition 1.4 (Absolute Continuity). A function $f:[a,b]\to\mathbb{R}$ is abso**lutely continuous** if for each $\varepsilon > 0$ we find a $\delta > 0$ such that for every finite disjoint collection of nonempty intervals $\{(a_k,b_k)\subseteq [a,b]: 1\leq k\leq K\}$ with $\sum_{k=1}^K (b_k-a_k)<\delta$, we have $\sum_{k=1}^K |f\left(a_k\right)-f\left(b_k\right)|<\varepsilon$.

Remark. Absolute continuity is stronger than uniform continuity, but weaker than lipschitz continuity.

Theorem 1.2. If a function $f:[a,b]\to\mathbb{R}\to$ is absolutely continuous, then f is continuous and f has bounded variation.

Proof. f is trivially continuous, taking a finite disjoint collection consisting only of 1 interval $\{(x,y)\}$ yields the definition of continuity.

Now we show bounded variation. For $\varepsilon = 1$, let $\delta > 0$ be the number such that

the definition of absolute continuity holds for f. Now fix $(x_k)_{k=n}^N \in \mathscr{P}([a,b])$ so that $x_k - x_{k-1} < \delta$ for all $n < k \le N$. Then, if $P \in \mathscr{P}([x_{k-1},x_k])$, we see $V\left(f|_{[x_{k-1},x_k]},P\right) < 1$ by definition of absolute

1 FUNCTIONS OF BOUNDED VARIATION AND ABSOLUTELY CONTINUOUS FUNCTIONS

3

continuity.

So, we have TV $([x_{k-1}, x_k]) \le 1$, so TV $(f) = \sum_{k=n+1}^{N} \text{TV} (f|_{[x_{k-1}, x_k]}) \le N - n$ by the ε assumption.

As it turns out, absolutely continuous functions have a relation to integrable functions, particularly, an integrable function f is simply the anti-integral of an absolutely continuous one.

Proposition 1.1. If $f:[a,b]\to \overline{\mathbb{R}}$ is integrable, then,

$$F:[a,b]\to\mathbb{R},\ x\mapsto\int_{[a,x]}f$$

is absolutely continuous.

This claim can be generalized into a sort of fundamental theorem of calculus for the lebesque integrals to characterize integrals and derivatives. For now, we only prove the weak version.

Proof. For $\varepsilon > 0$ there is a $\delta > 0$ such that $\int_S |f| < \varepsilon$ for every measurable set

 $S \subseteq [a,b]$ with $m(S) < \delta$. Now, let $\{(a_k,b_k): 1 \le k \le K\}$ be a disjoint collection of intervals in [a,b] with $\sum_{k=1}^{K} (b_k - a_k) < \delta$. Fix $S = \bigcup_{k=1}^{K} (a_k,b_k)$. Then, since $m(S) < \delta$ and

$$\sum_{k=1}^{K} |F(b_k) - F(a_k)| = \sum_{k=1}^{K} \left| \int_{[a_k, b_k]} f \right|$$

$$\leq \sum_{k=1}^{K} \int_{[a_k, b_k]} |f|$$

$$= \int_{S} |f|$$

$$< \varepsilon \text{ by assumption.}$$

Hence, absolute continuity holds.

2 Derivatives and Fundamental Theorem of Calculus

Proposition 2.1. Let $f:(a,b)\to \overline{\mathbb{R}}$ be monotone on $(a,b)\subseteq \mathbb{R}$ with $a, b \in \overline{\mathbb{R}}$ and a < b. Then,

$$\lim_{x\rightarrow a}f\left(x\right)=\inf\{f\left(x\right):x\in\left(a,b\right)\},\lim_{x\rightarrow b}f\left(x\right)=\sup\{f\left(x\right):x\in\left(a,b\right)\}$$

are both well defined.

Tue 02 Nov 2021 12:58

Recall. A monotone function on an interval has well defined limits at both its endpoints.

Definition 2.1 (Upper/Lower Derivatives). Let $S \subseteq \mathbb{R}$, $f: S \to \mathbb{R}$

- We define $\overline{D}f\left(x\right)=\lim_{\tau\to0}\sup\{\frac{f(x+h)-f(x)}{h}:0<|h|<\tau\}$ to be the upper derivative.
- We define $\underline{D}f(x)=\lim_{\tau\to 0}\inf\{\frac{f(x+h)-f(x)}{h}:0<|h|<\tau\}$ to be the lower derivative.
- If, for some $x \in \overset{\circ}{S}$, we find $\overline{D}f(x)$, $\underline{D}f(x) \in \mathbb{R}$, with the upper and lower derivatives being equal, we say f is **differentiable** at x. We denote $f'(x) = \overline{D}f(x) = \underline{D}f(x)$.

We know, the limits of the upper and lower derivatives to be well defined as the supremum and infimum are monotone functions with respect to τ .

Proposition 2.2. Let $f: S \to \mathbb{R}$ and let $x \in \overset{\circ}{S}$. Then, f is differentiable at x if and only if

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \in \mathbb{R}.$$

That is, the classical derivative is equivalent to the lebesque derivative, so we will use the new definition for most proofs, but the old for most computations.

Theorem 2.1 (Mean-Value Theorem). Let $f:[a,b]\to\mathbb{R}$ be continuous and differentiable at every $x\in(a,b)$. Then, there exists $\xi\in(a,b)$ so that $f(b)-f(a)=f'(\xi)\,(b-a)$.

Lemma 2.1. Let $f:[a,b]\to\mathbb{R}$ be increasing and suppose $\overline{D}f(x)=\underline{D}f(x)$ for almost every $x\in[a,b]$. Then, $\overline{D}f(x)$ and $\underline{D}f(x)$ are finite almost everywhere. Moreover, f is differentiable almost everywhere (on [a,b]). Furthermore, f' is an integrable function and

$$\int_{[a,b]} f' \le f(b) - f(a).$$

Proof. Extend f to $[a, \infty)$ by letting f(c) = f(b) for all $c \ge b$. Define a sequence $(g_n), g_n : [a, b] \to \overline{\mathbb{R}}$ with

$$x \mapsto n\left(f\left(x + \frac{1}{n}\right) - f\left(x\right)\right).$$

Then, b assumption, we know $(g_n(x))$ to be convergent in $\overline{\mathbb{R}}$ with limit f'(x) for almost every $x \in (a, b)$. Each g_n is measurable, hence $\lim_{n \to \infty} g_n$ is increasing,

2 DERIVATIVES AND FUNDAMENTAL THEOREM OF CALCULUS 5

we see $g(n) \ge 0$, hence $\overline{D}f \ge 0$. Applying Fatou's lemma yields

$$\begin{split} \int_{[a,b]} \overline{D}f &= \int_{[a,b]} \liminf_{n \to \infty} f_n \\ &\leq \liminf_{n \to \infty} \int_{[a,b]} g_n \\ &= \liminf_{n \to \infty} n \left(\int_{\left[a + \frac{1}{n}, b + \frac{1}{n}\right]} f - \int_{[a,b]} f \right) \\ &= \liminf_{n \to \infty} \left(\underbrace{n \int_{\left[b, b + \frac{1}{n}\right]} f - n \int_{\left[a, a + \frac{1}{n}\right]} f}_{\leq f(a)} \right) \\ &\leq f(b) - f(a) \,. \end{split}$$

We know the final inequality holds because f is constant on $\left[b,b+\frac{1}{n}\right]$ and though f is not constant, it is increasing on $\left[a, a + \frac{1}{n}\right]$ hence the upper bound of their difference is attained by f(a).

Consequently, $\overline{D}f$ is integrable (so finite almost everywhere). And, since $\overline{D}f$ $\underline{D}f$, we find f'(x) exists and equals $\overline{D}f(x)$ for almost every $x \in [a,b]$.

Later, we will prove equality holds precisely in the case of absolute continuity.

Definition 2.2 (Vitali Covering). Let $S \subseteq \mathbb{R}$. We call a collection of closed, bounded intervals (denoted \mathscr{C}) of positive length a Vitali covering of $S \subseteq \mathbb{R}$ if for every $x \in S$ and $\varepsilon > 0$ we find an $I \in \mathscr{C}$ such that $x \in I$ and $l(I) < \varepsilon$.

Example. A vitali covering of S = [0,1] goes as follows. Let $H = \mathbb{Q} \cap [0,1]$, then $\mathscr{C} = \{ [x, x+h] : h \in H, x \in [0, 1] \}.$

Theorem 2.2 (Vitali Covering Lemma). Let \mathscr{C} be a Vitali covering of the set $S \subseteq \mathbb{R}$ with $m^*(S) < \infty$. Then, for every $\varepsilon > 0$ there is a finite, disjoint collection of intervals $\{I_k \in \mathscr{C} : 1 \leq k \leq n\}$ such that

$$m^*\left(S\setminus\bigcup_{k=1}^nI_k\right)<\varepsilon.$$

Theorem 2.3 (Lebesque's Theorem). Let $f: I \to \mathbb{R}$ be a monotone function on an interval $I \subseteq \mathbb{R}$. Then, f is differentiable at almost every $x \in I$ and f' is integrable on every interval $[a, b] \subseteq I$. In particular, if f is increasing, then

$$\int_{[a,b]} f' \le f(b) - f(a).$$

Proof. It suffices to show I is open and bounded, else we could replace I by $I \cap (-n,n)$ for $n \in N$ and we find $I = \bigcup_{n \in \mathbb{N}} I \cap (-n,n)$. Similarly, we can assume f to be increasing. Hence, for all $x \in I$, we have $0 \leq \underline{D}f(x) \leq \overline{D}f(x) \leq \infty$. So, we need only show $\overline{D}f(x) = \underline{D}f(x)$ with this quantity being finite for almost every $x \in I$.

For $p, q \in \mathbb{Q}$ and p > q > 0, define $E_{p,q} = \{x \in I : \underline{D}f(x) < q < p < \overline{D}f(x) < q < q < p < \overline{D}f(x) < q < q < q < \overline{D}f(x) < q < q < \overline{D}f(x) < q < q < q < \overline{D}f(x) < q < q < q < \overline{D}f(x) < \overline{$ ∞ \}. Then,

$$\{x \in I : \underline{D}f(x) < \overline{D}f(x) < \infty\} = \bigcup_{p,q \in Q^{+}} E_{p,q}.$$

If f fails to be differentiable at $x \in I$, then either $x \in E_{p,q}$ for some $p,q \in \mathbb{Q}$ or $\overline{D}f(x) = \infty$. We know $\overline{D}f$ to be finite almost everywhere, so by subadditivity, we need only show the other component, $E_{p,q}$, has measure 0.

Fix $p,q \in \mathbb{Q}$ and suppose $m^*(E_{p,q} = m_0)$. Then, $m_0 \in [0,\infty)$ by the boundedness assumption. Given $\varepsilon > 0$ there is a nonempty open U such that $E_{p,q} \subseteq U$ and $m(U) < m_0 + \varepsilon$. Suppose $x \in E_{p,q}$. Since $\underline{D}f(x) < q$ by definition of $E_{p,q}$; for every $\delta > 0$ we find a $0 < h < \delta$ such that $[x, x+h] \subseteq U$ and $f(x+h) - f(x) < qh \text{ or } [x-h,x] \subseteq U \text{ and } f(x) - f(x-h) \le qh.$

The collection \mathcal{L} of all such intervals [x, x+h] or [x-h, x] for a fixed $\delta > 0$ and $x \in E_{p,q}$ forms a Vitali covering of $E_{p,q}$. We find all intervals $[a,b] \in \mathcal{L}$ have the property f(b) - f(a) < q(b-a) by the earlier observation. Then, by the Vitali covering lemma, there is a finite, disjoint collection of intervals $\{I_n \in$ Like Vitali covering lemma, where is a limit, angular constant of the vitality of vit

implies for all $\delta > 0$ there is an $0 < h < \delta$ such that $[x, x + h] \subseteq V$ and $f(x+h) - f(x) \ge ph$ or $[x-h,x] \subseteq V$ and $f(x) - f(x-h) \ge ph$. The collection \mathscr{U} of all such intervals [x, x+h] or [x-h, x] for a fixed $\delta > 0$ and $x\in E_{p,q}\cap V$ is a vitali covering of $E_{p,q}\cap V$. Moreover, if $[c,d]\in \mathscr{U}$, then $f(d)-f(c)\geq p\,(d-c)$. Applying Vitali Covering lemma yields a finite disjoint collection of intervals $\{I_k \in \mathcal{U} : 1 \leq k \leq K\}$ such that for $W = \bigcup_{k=1}^K J_k$, we have $m^*((E_{p,q} \cap V) \setminus W) < \varepsilon$. Since

$$m^* ((E_{p,q} \cap V) \setminus W) + m(W) \ge m^* (E_{p,q} \cap V)$$

we have that $m(W) \geq m_0 - 2\varepsilon$.

We know each interval $J_k = [c_k, d_k]$ from W must be contained in V, furthermore it is contained in an interval $I_n = [a_n, b_n]$ of V. As each interval is disjoint and monotonic, we must have that

$$\sum_{k=1}^{K} (f(d_k) - f(c_k)) \le \sum_{n=1}^{N} (f(b_n) - f(a_n)).$$

Now, since $I_n \in \mathcal{L}$ and $J_k \in \mathcal{U}$, we have

$$p\sum_{k=1}^{K} (d_k - c_k) = pm(w)$$

$$\leq qm(V)$$

$$= q\sum_{n=1}^{N} (b_n - a_n)$$

.

Hence, $p(m_0 - 2\varepsilon) \le q(m_0 + \varepsilon)$ for each $\varepsilon > 0$, so $pm_0 \le qm_0$ and as p > q, we must have $m_0 = 0$, so f is differentiable on all but sets of measure 0, so it is differentiable almost everywhere.

Corollary 1. If the function $f:[a,b]\to\mathbb{R}$ is of bounded variation on the interval $[a,b]\subseteq\mathbb{R}$, then it is differentiable at almost every $x\in[a,b]$. Consequently, if f is absolutely continuous on [a,b], then it is differentiable at almost every $x\in[a,b]$.

Proof. Bounded variation implies f = g - h for increasing functions g, h. Applying lebesque's theorem yields g, h are differentiable almost everywhere, hence f is differentiable almost everywhere.