

第七章 非线性方程迭代解法

第七章非线性方程迭代解法

§7.2 简单迭代法及其加速技巧

§7.2.1 迭代法的基本思想

能够得到递推形式的算法称为迭代法. 迭代法是数值方法中最常用的一种方法, 它是一种逐次逼近的方法. 其基本思想是: 先给出方程的根的一个近似值 (初始值), 反复使用某递推公式, 校正根的近似值, 使之逐渐精确化, 最后得到满足精度要求的方程的近似解.

基于上述思想, 将方程 f(x) = 0 改写成其等价形式

$$x = \varphi(x). \tag{7.4}$$

取方程根的某一近似值 x_0 作为迭代的初始点, 由函数 $\varphi(x)$ 可计算出

Back

 x_1 , 即 $x_1 = \varphi(x_0)$, 如此下去, ·····,设当前点为 x_k , 由 $\varphi(x)$ 计算出 x_{k+1} , 即

$$x_{k+1} = \varphi(x_k), \qquad k = 0, 1, \dots \tag{7.5}$$

这里, 称 $\varphi(x)$ 为迭代函数, 而称式 (7.5) 为迭代公式.

若序列 $\{x_k\}$ 存在极限 x^* , 即

$$\lim_{k \to \infty} x_k = x^*,$$

则称迭代过程 (或迭代公式) 是收敛的. 如果函数 $\varphi(x)$ 连续, 在式 (7.5)两端取极限得到

$$x^* = \varphi(x^*),$$

则 x^* 是方程 (7.4) 的根. 我们也称 x^* 是函数 $\varphi(x)$ 的一个不动点, 因 此也称迭代公式 (7.5) 为不动点迭代. 在迭代公式 (7.5) 中, 由于 x_{k+1} 仅由 x_k 决定, 因此这是一个单步迭代公式.

由上述讨论,可得到如下算法.

算法 7.3 (简单迭代法)

步 1 取初始点 x_0 , 最大迭代次数 N 和精度要求 ε , 置 k:=0;

步 2 计算 x_{k+1} ;

步 3 若 $|x_{k+1}-x_k|<\varepsilon$, 则停算;

步 4 若 k = N, 则停算; 否则, 置 k := k + 1, 转步 2.

由以上算法过程可以看出,一旦确定了迭代函数,算法 7.3 的程序实现非常简单.

根据算法 7.3 编制 MATLAB 通用程序如下:

●简单迭代法 MATLAB 程序

%maiter.m

function x=maiter(phi,x0,ep,N)

Back

```
%用途:用简单迭代法求方程f(x)=0有根区间[a,b]中的一个根
%格式: x= maiter(phi,x0,ep,N) fun为phi(x)的函数句柄,
     x0为初值,ep为精度(默认1e-4),N为最大迭代次数(默
     认500), x返回近似根
if nargin<4 N=500; end
if nargin<3 ep=1e-4;end
k=0;
while k<N
  x=feval(phi,x0);
  if abs(x-x0) < ep break; end
  x0=x; k=k+1;
end
if k==N, warning('已达迭代次数上限'); end
```

disp(['k=',num2str(k)])

例 7.4 用简单迭代法通用程序 maiter.m 求方程 $f(x) = xe^x - 1 = 0$ 在 [0,1] 内的一个实根. 取定精度 $\varepsilon = 10^{-5}$, 初始点为 $x_0 = 0.5$.

解 迭代法成功的关键在如何适当选取迭代函数. 本问题可将原方程等价变形为至少下列三种形式

$$x = e^{-x}$$
, $x = -\ln x$, $x = x + xe^{x} - 1$.

经过粗略的观察, 可发现后两种等价变形是不可取的 (稍后还有详细论述). 故取迭代函数为 $\varphi(x)=\mathrm{e}^{-x}$, 迭代公式为

$$x_{k+1} = e^{-x_k},$$

在 MATLAB 命令窗口执行:

5/19

Back

$$k=17$$

$$x =$$

0.56714076326981

§7.2.2 收敛性和误差分析

用简单迭代法求解非线性方程的关键在于适当地构造迭代公式,不同的迭代公式收敛的速度不同,甚至不收敛. 例如,用迭代法求解方程 $x^3-x-1=0$,可以将方程等价变形为至少下面四种形式:

$$x = \sqrt[3]{x+1}$$
, $x = x^3 - 1$, $x = \sqrt{1 + \frac{1}{x}}$, $x = \frac{x^3 + x - 1}{2}$, ...

Back

由此, 可以得到不同的迭代公式

(I)
$$x_{k+1} = \sqrt[3]{x_k + 1}$$
, (II) $x_{k+1} = x_k^3 - 1$,
(III) $x_{k+1} = \sqrt{1 + \frac{1}{x_k}}$, (IV) $x_{k+1} = \frac{x_k^3 + x_k - 1}{2}$

利用前面的 MATLAB 进行计算, 取初始值 $x_0 = 1.5$, 发现格式 (II) 和 (IV) 是不收敛的, 而格式 (I) 迭代 6 次, 格式 (III) 迭代 8 次即可达到满意的精度 ($< 10^{-5}$).

那么,现在的问题是,当迭代公式(或迭代函数)满足什么样的条件时,才能保证所产生的迭代序列收敛(到方程的解)呢?我们有下面的收敛性定理:

定理 7.1 设函数 $\varphi(x)$ 在区间 [a,b] 上有连续的一阶导数, 并满足:

$$(1) \ a \leq \varphi(x) \leq b, \quad \forall x \in [a,b] \text{; } (2) \ |\varphi'(x)| \leq L < 1, \quad \forall x \in [a,b] \ .$$

васк

 $\varphi(x^*)$; (2) 对任何 $x_0 \in [a,b]$, 由迭代公式 (7.5) 得到的迭代序列 $\{x_k\}$ 均收敛到方程的解 x^* .

则 (1) 函数 $\varphi(x)$ 在区间 [a,b] 上存在唯一的不动点 x^* , 即 $x^*=$

再证唯一性. 假设存在两个解 x^* 和 \bar{x} , 即

$$x^* = \varphi(x^*), \quad \bar{x} = \varphi(\bar{x}), \quad x^*, \ \bar{x} \in [a, b].$$

 $|x^* - \bar{x}| = |\varphi(x^*) - \varphi(\bar{x})| \le |\varphi'(\xi)| \cdot |x^* - \bar{x}| \le L|x^* - \bar{x}|,$

那么, 由拉格朗日中值定理可得

使得 $g(x^*) = 0$, 即 $x = \varphi(x^*)$.

因为 L < 1, 式 (7.6) 成立必然有 $x^* = \bar{x}$.

(7.6)

(2) 由拉格朗日中值定理及条件(2), 可得

$$|x_k - x^*| = |\varphi(x_{k-1}) - \varphi(x^*)| = |\varphi'(\xi_{k-1}) \cdot (x_{k-1} - x^*)|$$

$$\leq L|x_{k-1} - x^*| \leq L^2|x_{k-2} - x^*| \leq \dots \leq L^k|x_0 - x^*|.$$

注 **7.1** 由定理 7.1 的证明过程可以看出, 条件 (2) 可以用 Lipschitz

由于 L < 1, 故当 $k \to \infty$ 时, $L^k \to 0$, 从而 $x_k \to x^*(k \to \infty)$.

注 **7.1** 由定理 7.1 的证明过程可以看出, 条件 (2) 可以用 Lipschitz 条件来替代, 即:存在常数 L 且 0 < L < 1, 使得

$$|\varphi(x) - \varphi(y)| \le L|x - y|, \quad \forall x, y \in [a, b],$$
 (7.7)

定理的结论依然成立.

定理 7.1 只是定性地指出了在满足一定的条件下, 迭代序列收敛 到方程的解, 并没有定量地给出近似解与真解的误差, 这样, 在构造算 法时, 无法确定终止条件. 下面的定理给出了算法?? 的误差估计.

)/19

44

√

)

Back

lose

定理 7.2 设定理 7.1 的条件成立, 则

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$
 (7.8)
 $|x_k - x^*| \le \frac{1}{1 - L} |x_{k+1} - x_k|.$ (7.9)

证 由定理 7.1 的证明过程可知,

 $|x_{k+1}-x_k| < L|x_k-x_{k-1}| < \cdots < L^k|x_1-x_0|$.

反复利用 (7.10) 得到

 $|x_{k+p} - x_k| \le |x_{k+p} - x_{k+p-1}| + |x_{k+p-1} - x_{k+p-2}| + \dots + |x_{k+1} - x_k|$

 $< (L^{k+p-1} + L^{k+p-2} + \dots + L^k)|x_1 - x_0|$

 $\leq \frac{L^k}{1-L}|x_1-x_0|,$

在上式中, 令 $p \to \infty$, 即得 (7.8).

(7.10)

用同样的方法, 可以得到

$$|x_{k+p} - x_k| \le |x_{k+p} - x_{k+p-1}| + |x_{k+p-1} - x_{k+p-2}| + \dots + |x_{k+1} - x_k|$$

$$\le (L^{p-1} + L^{p-2} + \dots + L + 1)|x_{k+1} - x_k|$$

$$\le \frac{1}{1 - L}|x_{k+1} - x_k|,$$

在上式中, 令 $p \to \infty$, 即得 (7.9).

上述定理所讨论的收敛性是在整个求解区间 [a,b] 上论述的, 这种收敛性称为全局收敛性. 在实际使用迭代法时, 有时候不方便验证整个区间上的收敛条件, 而实际上只考察不动点 x^* 附近的收敛性, 因此称为局部收敛性.

定义 **7.1** 设 x^* 是迭代函数 $\varphi(x)$ 的不动点, 如果存在 x^* 的某个邻域 $N(x^*,\delta)=(x^*-\delta,x+\delta)$, 使得对任意的 $x_0\in N(x^*,\delta)$, 由迭代公式 (7.5) 产生的序列 $\{x_k\}\subset N(x^*,\delta)$, 且收敛到 x^* , 则称迭代公

12/19

式 (7.5) 局部收敛.

定理 7.3 设 x^* 是方程 $x = \varphi(x)$ 的根, $\varphi'(x)$ 在 x^* 的某个邻域 内连续且有 $|\varphi'(x^*)| < 1$, 则迭代公式 (7.5) 局部收敛.

证 由定理的条件, 存在 $\delta > 0$, 使得 $\forall x \in N(x^*, \delta)$ 时, 有 $|\varphi'(x)| \leq$

L < 1. 因此, 我们有

所以当 $x_k \in N(x^*, \delta)$ 时, 有 $x_{k+1} \in N(x^*, \delta)$. 由定理 7.1 知, 迭代公式 (7.5) 局部收敛.

 $|x_{k+1} - x^*| = |\varphi(x_k) - \varphi(x^*)| = |\varphi'(\xi_k) \cdot (x_k - x^*)| \le L|x_k - x^*| < |x_k - x^*|,$

例 7.5 利用适当的迭代格式证明

$$1 + \frac{1}{1 + \frac{1}{1 + \dots}} = \frac{1 + \sqrt{5}}{2}.$$

证记

$$x_k = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}},$$

则有递推式

$$x_{k+1} = 1 + \frac{1}{x_k}, \quad k = 0, 1, \dots$$

解之得

$$x^* = \frac{1 + \sqrt{5}}{2}.$$

另一方面,因

$$|\varphi'(x^*)| = \frac{1}{\left(\frac{1+\sqrt{5}}{2}\right)^2} < 1,$$

令 $\varphi(x) = 1 + \frac{1}{x}$, 则 $\varphi'(x) = -\frac{1}{x^2}$. 设 $\varphi(x)$ 有不动点 x^* , 即 $x^* = 1 + \frac{1}{x^*}$,

故由定理 7.3 知, $\{x_k\}$ 局部收敛于 x^* .

为了刻画迭代序列 $\{x_k\}$ 的收敛速度, 我们引进收敛阶的概念, 它是衡量一个迭代算法优劣的重要指标之一.

定义 7.2 设 $\lim_{k\to\infty} x_k = x^*$, 令 $e_k = x_k - x^*$, 如果存在某个实数 p > 1 及常数 c > 0, 使得

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = c, (7.11)$$

则称序列 $\{x_k\}$ 是 p 阶收敛的. 特别地, (1) 当 p=1, 0 < c < 1 时, 称为线性收敛; (2) 当 p=1, c=0 时, 称为超线性收敛; (3) 当 p=2 时, 称为平方收敛.

根据计算实践,一般认为,一个算法如果只有线性收敛速度,那是认为不理想的,有必要改进算法,或采用加速技巧.而一个算法如果具有超线性收敛速度,那就认为是一个很不错的算法了.至于构造具有平方敛速以上的算法,则是数值分析人员梦寐以求的事情.

15/19

Back

那么,简单迭代法的收敛速度怎么样呢?我们有下面的定理:

定理 7.4 设迭代函数 $\varphi(x)$ 满足:

- (1) $x^* = \varphi(x^*)$, 且在 x^* 附近有 p 阶导数;
- (2) $\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0;$
- (3) $\varphi^{(p)}(x^*) \neq 0$;

那么, 迭代公式 (7.5) 是 p 阶收敛的.

证 由泰勒公式,有

$$x_{k+1} = \varphi(x_k) = \varphi(x^*) + \varphi'(x^*)(x_k - x^*) + \cdots$$

$$+ \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x_k - x^*)^{p-1} + \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p$$

$$= x^* + \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p,$$

其中 ξ_k 介于 x_k 与 x^* 之间, 所以

$$\frac{x_{k+1} - x^*}{(x_k - x^*)^p} = \frac{\varphi^{(p)}(\xi_k)}{p!}.$$
(7.12)

上式两边取极限, 并注意到当 $k \to \infty$ 时, $\xi_k \to x^*$, 即得

$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^*)^p} = \frac{\varphi^{(p)}(x^*)}{p!},$$

即迭代公式 (7.5) 是 p 阶收敛的.

例 7.6 用简单迭代法求方程 $x^3 - x^2 - x - 1 = 0$ 在区间 [1,2] 上的一个根. 试用不同的方法构造迭代格式, 并指出每一格式是否收敛, 如果收敛指出收敛阶.

解 方法 1 将原方程变为 $x=x^3-x^2-1$, 迭代公式为 $x_{k+1}=x_k^3-x_k^2-1$. 这里迭代函数 $\varphi(x)=x^3-x^2-1$, 有 $\varphi'(x)=3x^2-2x>$

E

'/19

Back

 $1, \forall x \in (1,2]$. 若令 $x_0 = 2,$ 有 $x_1 = 3,$ $x_2 = 17, \cdots,$ 迭代显然是不收敛的.

方法 2 将原方程变为 $x = \sqrt[3]{x^2 + x + 1}$, 迭代公式为 $x_{k+1} = \sqrt[3]{x_k^2 + x_k + 1}$. 这里迭代函数 $\varphi(x) = \sqrt[3]{x^2 + x + 1}$, 可以验证 $\varphi(x) \in [1, 2]$, $\forall x \in [1, 2]$, 且

$$\varphi'(x) = \frac{2x+1}{3\sqrt[3]{(x^2+x+1)^2}} < 1, \ \forall x \in [1,2].$$

故由定理 7.1 知这一迭代格式是收敛的. 由于 $\varphi'(x^*) \neq 0$, 故其收敛阶是 1 阶的.

方法3 取迭代函数为

$$\varphi(x) = 1 + \frac{1}{x} + \frac{1}{x^2},$$

可以验证 $\varphi(x) \in [1.7, 2], \ \forall x \in [1.7, 2],$ 且

$$\varphi'(x) = -\left(\frac{1}{x^2} + \frac{2}{x^3}\right).$$

18/19

故 $|\varphi'(x)| < 1$, $\forall x \in [1.7, 2]$. 由定理 7.1 知这一迭代格式也是收敛的. 显然 $\varphi'(x^*) \neq 0$, 故其收敛阶也是 1 阶的.

作业: P167: 7.2; P168: 7.9.

