Exercise 1

TMA4300 Computer Intensive Statistical Models

Mads Adrian Simonsen, William Scott Grundeland Olsen

29 januar, 2021

Problem A: Stochastic simulation by the probability integral transform and bivariate techniques

1.

Let $X \sim \text{Exp}(\lambda)$, with the cdf

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

Then the random variable $Y := F_X(X)$ has a Uniform (0,1) distribution. The probability integral transform becomes

$$Y = 1 - e^{-\lambda X} \Leftrightarrow X = -\frac{1}{\lambda} \log(1 - Y). \tag{1}$$

Thus, we sample Y from runif() and transform it using (1), to sample from the exponential distribution. Figure 1 shows one million samples drawn from the generate_from_exp() function defined in the code chunk below.

```
set.seed(123)
generate_from_exp <- function(n, rate = 1) {</pre>
 Y <- runif(n)
 X \leftarrow -(1 / rate) * log(1 - Y)
}
# sample
n <- 1000000 # One million samples
lambda <- 4.32
x <- generate_from_exp(n, rate = lambda)
# plot
hist(x,
  breaks
           = 80.
  probability = TRUE,
          = c(0, 2)
curve(dexp(x, rate = lambda),
 add = TRUE,
 lwd = 2,
  col = "red"
```

Histogram of x

Figure 1: Normalized histogram of one million samples drawn from the exponential distribution, together with the theoretical pdf, with $\lambda=4.32$.

2.

(a)

(b)

3.

(a)

(b)

(c)

4.

5

Problem B: The gamma distribution

1.

(a)

Let f(x) be the target distribution we wish to sample from, and let g(x) be the proposal distribution. For the rejection sampling algorithm, we require that

$$f(x) \le c \cdot g(x), \quad \forall x \in \mathbb{R},$$
 (2)

for some constant c > 0. Let X and U be independent samples where $X \sim g(x)$ and $U \sim \text{Uniform}(0,1)$. Then the acceptance probability is

$$\Pr\left(U \le \frac{f(X)}{c \cdot g(X)}\right) = \int_{-\infty}^{\infty} \int_{0}^{f(x)/(c \ g(x))} f_{X,U}(x, u) \, du \, dx$$

$$= \int_{-\infty}^{\infty} \int_{0}^{f(x)/(c \ g(x))} g(x) \cdot 1 \, du \, dx$$

$$= \int_{-\infty}^{\infty} \frac{f(x)}{c \ g(x)} g(x) \, dx$$

$$= \frac{1}{c} \int_{-\infty}^{\infty} f(x) \, dx$$

$$= \frac{1}{c}$$

We wish to sample from $Gamma(\alpha, \beta = 1)$, using the proposal distribution g(x) given in eqref{??????}. We want to choose c such that the acceptance probability is maximized while (2) is satisfied. We must check three cases. The trivial case when $x \le 0$, we have f(x) = g(x) = 0 so (2) is satisfied for all c. When 0 < x < 1 we have

$$f(x) \le c g(x)$$

$$\frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \le c \frac{1}{\alpha^{-1} + e^{-1}} x^{\alpha - 1}$$

$$c \ge \left(\frac{1}{\alpha} + \frac{1}{e}\right) \frac{1}{\Gamma(\alpha)} e^{-x}$$

$$c \ge \left(\frac{1}{\alpha} + \frac{1}{e}\right) \frac{1}{\Gamma(\alpha)}.$$

The last case, when $x \geq 1$, we have

$$f(x) \le c g(x)$$

$$\frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \le c \frac{1}{\alpha^{-1} + e^{-1}} e^{-x}$$

$$c \ge \left(\frac{1}{\alpha} + \frac{1}{e}\right) \frac{1}{\Gamma(\alpha)} x^{\alpha - 1}$$

$$c \ge \left(\frac{1}{\alpha} + \frac{1}{e}\right) \frac{1}{\Gamma(\alpha)}.$$

That is, we choose $c := (\alpha^{-1} + e^{-1})/\Gamma(\alpha)$, such that the acceptance probability becomes

$$\Pr\left(U \leq \frac{f(X)}{c \cdot g(X)}\right) = \frac{1}{c} = \frac{\Gamma(\alpha)}{\alpha^{-1} + e^{-1}}, \quad \alpha \in (0, 1).$$

(b)

```
set.seed(137)

generate_from_gamma <- function(n, shape = 0.5) {
   c <- gamma(shape) / (1 / shape + 1 / exp(1))  # constant that minimizes the envelope
   x <- vector(mode = "numeric", length = n)
   for (i in 1:n) {</pre>
```

```
repeat {
      x[i] <- generate_from_piecewise(1, shape) # draw from proposal
      u <- runif(1)
                                                    # draw from U(0, 1)
      f <- dgamma(x[i], shape = shape)</pre>
                                                    # target value
      g <- theo_PDF(x[i], alpha = shape)</pre>
                                                   # proposal value
      alpha \leftarrow (1 / c) * (f / g)
      if (u <= alpha) {</pre>
        break
      }
    }
 }
 return(x)
# n <- 1000000
# alpha <- 0.9
# x <- generate_from_gamma(n, shape = alpha)
# hist(x,
    breaks = 80,
    probability = TRUE,
    xlim = c(0, 6)
# curve(dgamma(x, shape = alpha),
    add = TRUE,
#
    lwd = 2,
#
    col = "red"
```

2.

(a)

We will now use the ratio-of-uniforms method to simulate from $Gamma(\alpha, \beta = 1)$. Additionally we have $\alpha > 1$ this time. Let us define

$$C_f = \left\{ (x_1, x_2) : 0 \le x_1 \le \sqrt{f^* \left(\frac{x_2}{x_1}\right)} \right\}, \quad \text{where} \quad f^*(x) = \begin{cases} x^{\alpha - 1} e^{-x}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$
 (3)

and

$$a = \sqrt{\sup_{x} f^*(x)}, \quad b_+ = \sqrt{\sup_{x \ge 0} (x^2 f^*(x))} \quad \text{and} \quad b_- = -\sqrt{\sup_{x \le 0} (x^2 f^*(x))},$$
 (4)

such that $C_f \subset [0,1] \times [b_-,b_+]$.

First we find $\sup_x f^*(x)$. This must be when x > 0. We differentiate $f^*(x)$ and setting the expression equal to zero to find the stationary point.

$$0 = \frac{d}{dx} f^*(x)$$

$$= \frac{d}{dx} x^{\alpha - 1} e^{-x}$$

$$= e^{-x} x^{\alpha - 2} ((\alpha - 1) - x)$$

$$\Rightarrow x = \alpha - 1, \text{ where } \alpha > 1.$$

Since we have only one stationary point, $f^*(x)$ is continuous, $f^*(x) > 0 \ \forall x > 0$ and $\lim_{x\to 0+} f^*(x) = \lim_{x\to\infty} f^*(x) = 0$, then $x = \alpha - 1$ must be the global maximum point. That is

$$a = \sqrt{f^*(\alpha - 1)} = \sqrt{(\alpha - 1)^{\alpha - 1}e^{-(\alpha - 1)}} = \left(\frac{\alpha - 1}{e}\right)^{(\alpha - 1)/2}.$$
 (5)

We now wish to find b_+ .

$$0 = \frac{d}{dx}x^{2}f^{*}(x)$$

$$= \frac{d}{dx}x^{\alpha+1}e^{-x}$$

$$= e^{-x}x^{\alpha}((\alpha+1)-x)$$

$$\Rightarrow x = \alpha+1, \text{ where } \alpha > 1.$$

Using the same reasoning as for a, we have that $x = \alpha + 1$ is a global maximum point for $x^2 f^*(x)$. Then

$$b_{+} = \sqrt{(\alpha+1)^{2} f^{*}(\alpha+1)} = \sqrt{(\alpha+1)^{\alpha+1} e^{-(\alpha+1)}} = \left(\frac{\alpha+1}{e}\right)^{(\alpha+1)/2}.$$
 (6)

Finally, we have that

$$b_{-} = -\sqrt{\sup_{x \le 0} (x^2 \cdot 0)} = 0. \tag{7}$$

(b)

To avoid producing NaNs, we will implement the ratio-of-uniform method on a log scale. We get the following log-transformations.

$$X_1 \sim \operatorname{Uniform}(0,a) \Rightarrow \log X_1 = \log a + \log U_1, \quad U_1 \sim \operatorname{Uniform}(0,1);$$

$$X_2 \sim \operatorname{Uniform}(b_- = 0, b_+ = b) \Rightarrow \log X_2 = \log b + \log U_2, \quad U_2 \sim \operatorname{Uniform}(0,1);$$

$$y = \frac{x_2}{x_1} \Rightarrow y = \exp\{(\log x_2) - (\log x_1)\};$$

$$0 \leq x_1 \leq \sqrt{f^*(y)} \Rightarrow \log x_1 \leq \frac{1}{2} \log f^*(y);$$

$$f^*(y) = \begin{cases} y^{\alpha - 1} e^{-y}, & y > 0, \\ 0, & \text{otherwise,} \end{cases} \Rightarrow \log f^*(y) = \begin{cases} (\alpha - 1) \log y - y, & y > 0, \\ -\infty, & \text{otherwise.} \end{cases}$$

```
lgamma_core <- function(x, alpha = 2) {
   ifelse(
     test = x <= 0,
     yes = -Inf,
     no = (alpha - 1)*log(x) - x
   )
}
sample_from_gamma_rou <- function(n, alpha = 2, include_trials = FALSE) {
   log_a <- ((alpha - 1) / 2) * (log(alpha - 1) - 1)
   log_b <- ((alpha + 1) / 2) * (log(alpha + 1) - 1)
   trials <- 0</pre>
```

```
y <- vector(mode = "numeric", length = n)
  for (i in 1:n) {
    repeat {
      log_x1 \leftarrow log_a + log(runif(1))
      log_x2 \leftarrow log_b + log(runif(1))
      y[i] \leftarrow exp(log_x2 - log_x1)
      log_f <- lgamma_core(y[i], alpha = alpha)</pre>
      if (log_x1 <= 0.5 * log_f) {</pre>
        break
      } else {
        trials <- trials + 1
    }
  }
  if (include_trials) {
    return(list(x = y, trials = trials))
  }
  return(y)
}
# generate 1000 samples for each alpha and record number of trials
n <- 1000
m < -50
alpha <- seq(2, 2000, length.out = m)</pre>
trials <- vector(mode = "integer", length = m)</pre>
for (i in 1:m) {
  trials[i] <- sample_from_gamma_rou(n, alpha[i], include_trials = TRUE)$trials
# plot trials wrt. alpha
ggplot(mapping = aes(x = alpha, y = trials)) +
  geom_point()
```

Figure 2 strongly suggests that the acceptance probability decreases with increasing α . That is, the ratio of the area of the square $a \cdot (b_+ - b_-) = ab$ and the region C_f is increasing when α increases.

Figure 2: Number of trials before accepting N=1000 simulations for various shape parameters (α) using the ratio-of-uniform method.

3.

(a)

(b)

4.

5.

(a)

(b)

Problem C: Monte Carlo integration and variance reduction

1.

2.

3.

(a)

(b)

Problem D: Rejection sampling and importance sampling

1.

2.

3.

4.

7