Ay 20 #8 - Radiation, opacity, transfer

The energy released in mulear burning is ultimately in the form of photons (Y), neutrinos (re), and positrony that annihilate to produce photons.

PP-I: 2× ve: 0.5 MeV

6x y: 26.2 MeV

PP-II: Nentimo: IMeV

Photons: 25.7 MeV.

These photons provide the energy to power the Sun.

Here's where the bun begins ...

In the bollowing description of the propagation of photons through the Sum, I have dropped any λ -dependence. The approximation of λ -independent opacity is called the grey-body approximation.

speryer usually report * Definitions To a specific >/x/E. Specific intensity dt dA 100 Od s? Cenergy plue @ angle O brom surpase normal, por unit solid angle) - Mean intensity $\langle I \rangle = \frac{1}{4\pi} \int I d\Omega = \frac{1}{4\pi} \int I \sin \theta dt$ · Specific radiative plus : integrales I over all O: $F = \int_{0}^{2\pi} \int_{0}^{\pi} I \cos \theta \, d\theta \, d\theta$ - Radiation premise: $d\rho = \frac{2E \cos \theta}{c} \left(P_{\text{bind}} - P_{\text{init}} \right) \int_{0}^{\pi} d\theta$ = = IdtdA ws Dd . for reflection only. For transmission, dp = = = IdtdAros Dd D Premue unit dP = dp . Then

 $P = \frac{1}{c} \int_{0}^{2\pi} \int_{0}^{\pi} I \cos^{2}\theta \sin\theta d\theta d\phi = \frac{4\pi}{3c} I \quad (instrugric I)$

- Opainty:
$$\times g$$
 is number / total of photoes scattered per unit length: $dI = - \times gIds$.

The mean free path is just $\frac{1}{\times g}$.

- Optimal depths:
$$d\tau = - \times g ds = 7 dI = I d\tau$$
.

 $\tau \sim H of mean pree paths.$

The propagation of photors can be described by the bramper equation:

$$dI = -xgIds + jgds$$

or
$$-\frac{1}{x_g}\frac{dI}{ds} = I = S$$
 Source function $S = \frac{j}{K}$.

With dr = -> gds,

$$\frac{dI}{dt} = I - S$$

* In local Thermodynamic equilibrium (LTE),
$$S = \frac{5T^4}{TT}$$
 (blackbody radiation!)

With all This machinory, we would say a lot about the physical profiles of stars, but we're missing a within piece - the opacity mechanisms. See The next lecture!

For now, let us rounder the temperature profile

in a plane-parallel, grey, LTE stellar atmosphere.

Defining a virtual optical

depth T, the transfer

$$\cos \theta \frac{dI}{d\tau} = I - S.$$

equations becomes

Reparing to the definition of radiation pressure, $\frac{dP}{d\tau_{V}} = \frac{1}{c} \frac{d}{d\tau_{V}} \int_{0}^{2\pi} \int_{0}^{\pi} I \cos^{2}\theta \sin\theta d\theta d\phi$ $= \frac{1}{c} \left[\int_{0}^{2\pi} \int_{0}^{\pi} I \sin\theta d\theta d\phi - \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta d\theta d\phi \right]$

Simplifying, me have $\frac{dP}{d\tau_v} = \frac{F}{c} \frac{radiating}{l} \frac{lens}{l}.$

In LTE, F is constant (no not absorptions / emissions) $So P = \frac{1}{c}F\tau_V + K constant.$

We now make the Eddington approximation, such that $I = \begin{cases} I \text{ out}, & 0 \le \theta < \frac{\pi}{2} \\ I \text{ in}, & \frac{\pi}{2} \le \theta \le \pi \end{cases}$

From This, (I) = 1 (I out + Iin),

F = To (I out + I in),

 $P = \frac{4\pi}{3c} \langle I \rangle$. (see each definitions)

Then, 40 (I) = = = = For + K.

At $T_v = 0$, $I_{in} = 0$ and $\langle I \rangle = \frac{1}{2} I_{out}$,

 $F = \overline{n} I_{out}$, and $K = \frac{2F}{3c}$.

Then, substituting F = 0 Tell (at surface,

as Fire mont +1)

$$\langle I \rangle = \frac{3\sigma}{4\pi} T_{4b} \left(\tau_v + \frac{2}{3} \right).$$

Almost done! From The transfer equation, me

$$\frac{d}{d\tau_{v}} \int_{0}^{2\pi} \int_{0}^{\pi} I \cos \theta d\theta d\phi = 4\pi \left(\langle I \rangle - 5 \right).$$

$$= \frac{dF}{d\tau_{v}}.$$

As F is sometant (super useful), $\langle I \rangle = S = \frac{6}{\pi}$ (LTE).

When $T_V = \frac{2}{3}$, $T = T_{eff}!$ This defines a stellar surface.