

Rosenpass Ein VPN zum Schutz vor Quantencomputern

Wanja Zaeske, Stephan Ajuvo, Marei Peischl, Benjamin Lipp, Lisa Schmidt, Karolin Varner Danke an NLNet für die finanzielle Unterstützung! https://rosenpass.eu

Was passiert im Talk?

- Was ist Rosenpass?
- Wozu braucht es Post-Quanten-Kryptographie?
- Rosenpass-Demo!
- Wie funktioniert Rosenpass?
- Bunte Checkmarks: Kryptobeweise im CI-Setup
- Integration mit WireGuard & Chiffren

Rosenpass ist...

Software

- Ein Add-On für WireGuard um Post-Quanten-Sicherheit zu ermöglichen
- Eine stand-alone Schlüsselaustausch-Applikation, die mit allen möglichen Systemen integriert werden kann

Kryptographie

- Ein kryptographisches Protokoll
- Ein Schlüsseltauschverfahren
- post-quanten-sicher
- formal verifiziert

Kommunikation und Projekt

- Eine WissKomm-Initiative um Kryptographie der breiten Öffentlichkeit zugänglich zu machen
- Community-nahe Initiative um Forschung zu ormäglichen

Angriffe von Quantencomputern: Shors^a Algorithmus

^a Peter Shor

Jargon: Löst einige mathematische Probleme effizient, auf denen moderne Krypto basiert:

- RSA¹ (das Faktorisierungsproblem Primzahlzerlegung)
- DH² (Berechnen des Diskreten Logarithmus)
- ECDH³ (Berechnen des Diskreten Logarithmus auf Elliptischen Kurven)

Weniger Jargon: Bricht so ziemlich alle moderne, asymmetrische Kryptographie.

¹ "Rivest-Shamir-Adleman" – Ron Rivest, Adi Shamir, Leonard Adleman

Angriffe von Quantencomputern: Grovers^a Algorithmus

^a Lov Grover

Jargon: Suche durch ungeordnete Listen in $O(\sqrt{n})$ statt klassisch O(n) im Durchschnitt.

Weniger Jargon: Mostly harmless ("im wesentlichen harmlos"); symmetrische Kryptographie ist kaum betroffen.

Quantencomputer: Ein ganz heißes Eisen

IF A RESEARCHER SAKS A COOL NEW TECHNOLOGY SHOULD BE AVAILABLE TO CONSUMERS IN.

WHAT THEY MEAN IS...

AVAILABLE IO CONSUMERS IN	WITH THE TIE IV 13:
THE FOURTH QUARTER OF NEXT YEAR	THE PROJECT WILL BE CANCELED IN SIX MONTHS.
FIVE YEARS	I'VE SOLVED THE INTERESTING RESEARCH PROBLEMS. THE REST IS JUST BUSINESS, WHICH IS EASY, RIGHT?
TEN YEARS	WE HAVEN'T FINISHED INVENTING IT YET, BUT WHEN WE DO, IT'LL BE AWESOME.
25+ YEARS	IT HAS NOT BEEN CONCLUSIVELY PROVEN IMPOSSIBLE.
WE'RE NOT REALLY LOOKING AT MARKET APPLICATIONS RIGHTNOW.	I LIKE BEING THE ONLY ONE WITH A HOVERCAR.

Post-Quanten-Kryptographie: Munch now decrypt later

- Post-Quanten-Kryptographie ist auf dem Weg der Standardisierung
- Wir müssen sehr früh deployen; wenn die Krypto kaputt ist, dann ist es zu spät.

Quelle: https://foto.wuestenigel.cc gray-hamster-eating-sunflower-s

"Munch now decrypt later"⁴

⁴ "Jetzt speichern später entschlüsseln". Warnung: Geheimdienste sind nicht so cute wie dieser Hamster.

Post-Quanten-Kryptographie: Wird bereits standardisiert

Durch NIST⁵zur Standardisierung ausgewählt [1]:

- Crystals-Kyber (Verschlüsselung)
- Crystals-Dilithium (Signatur)
- Falcon (Signatur)
- Sphincs+ (Signatur)

Das BSI⁶empfiehlt [2]:

- Frodo (Verschlüsselung)
- Classic McEliece (Verschlüsselung)

National Institut for Standards and Technology – US-Amerikanische Standardisierungsbehörde

⁶ Bundesamt für Sicherheit in der Informationstechnik

Verschlüsselung im Angesicht von Quantencomputern

Die meisten Schlüsselaustausch-Protokolle inklusive WireGuard nutzen NIKEs

Rosenpass Demo!

You can watch how Rosenpass replaces the WireGuard PSK with the following command:

Verschlüsselung im Angesicht von Quantencomputern

Nicht verfügbar

Verfügbar

Die meisten Schlüsselaustausch-Protokolle inklusive WireGuard nutzen NIKEs

Schlüsselaustauschmethoden:

Einfachst-möglicher Schlüsseltausch mit KEMs^a

^a "Key-Encapsulation Method" – Schlüsseltransportmethode

Secret Key

Static sk Initiato

Static Public Key i

Schlüsselaustauschmethoden:

Static-static Schlüsselaustausch mit KEMs.

Post-Quanten-WireGuard: 3 Schlüsseltransporte [5]

Alle 3 Schlüsseltransporte in einem Protokoll

Der Initiator ist erst authentifiziert, nachdem "(ack)" empfangen wurde.

Das Rosenpass-Protokoll

Sicherheitsanalyse

Symbolische Protokoll-Analyse

- kann automatisiert logische Fehler im Protokoll finden.
- Genauer: Kommunikationsabläufe, die Sicherheitseigenschaften brechen

In unserem Fall:

- Wir nutzen ProVerif [3] als Tool um Protokoll-Bugs auszuschließen
- Wir haben die Laufzeit optimiert; symbolische Analyse läuft in fünf Minuten
- Beweise sind Teil des Software-Repositories; laufen in der Cl

Wir arbeiten an Beweisen in einem stärkeren Angreifermodell: kryptographische Beweise (mit CryptoVerif [4])

ProVerif in Technicolor


```
~/p/rosenpass > & dev/karo/rwpgc-slides ?  nix build .#packages.x86 64-linux.proof-proverif --prin
rosenpass-proverif-proof> unpacking sources
rosenpass-proverif-proof> unpacking source archive /nix/store/cznyv4ibwlzbh2<u>57v6lzx8r8al4cb0v0-source</u>
rosenpass-proverif-proof> source root is source
rosenpass-proverif-proof> patching sources
rosenpass-proverif-proof> configuring
rosenpass-proverif-proof> no configure script, doing nothing
rosenpass-proverif-proof> building
rosenpass-proverif-proof> no Makefile, doing nothing
rosenpass-proverif-proof> installing
osenpass-proverif-proof> $ metaverif analysis/01 secrecy.entry.mpy -color -html /nix/store/gidm68r04
-rosenpass-proverif-proof
rosenpass-proverif-proof> $ metaverif analysis/02 availability.entry.mpv -color -html /nix/store/qidm
ym6dv-rosenpass-proverif-proof
rosenpass-proverif-proof> $ wait -f 34
rosenpass-proverif-proof> $ cpp -P -I/build/source/analysis analysis/01 secrecy.entry.mpv -o target/p
v.i.pv
rosenpass-proverif-proof> $ cpp -P -I/build/source/analysis analysis/02 availability.entry.mpv -o tar
ility.entry.i.pv
rosenpass-proverif-proof> $ awk -f marzipan/marzipan.awk target/proverif/01 secrecy.entry.i.pv
osenpass-proverif-proof> $ awk -f marzipan/marzipan.awk target/proverif/02 availability.entry.i.pv
osenpass-proverif-proof> 4s ✓ state coherence, initiator; Initiator accepting a RespHello message im
ed the associated InitHello message
r<u>osenpass-proverif-proof></u> 35s ✓ state coherence, responder: Responder accepting an InitConf message i
ted the associated RespHello message
rosenpass-proverif-proof> ∅s 🗸 secrecy: Adv can not learn shared secret key
rosenpass-proverif-proof> 0s ✓ secrecy: There is no way for an attacker to learn a trusted 18/23 ecret
rosenpass-proverif-proof> 0s 🗸 secrecy: The adversary can learn a trusted kem pk only by 🐛
rosennass-proverif-proofs as a secrety. Attacker knowledge of a shared key implies the key is not tru
```


WireGuard

Verwendete Chiffren

- Authentifikation und Vertraulichkeit: Classic McEliece (erfunden 1978, codebasiert)
- Forward Secrecy: Kyber (von NIST zur Standardisierung ausgewählt, gitterbasiert)
- Kryptoagilität: Wir planen die Möglichkeit einzubauen, die Chiffren zu wechseln (das ist nicht ciphersuite negotiation)

Ausblick

- Rosenpass in Kubernetes
- Isolation, Micro-VMs, Docker
- Formal verifizierte Implementierung
- Mehr WissKomm zu Kryptographie. Kryptographie braucht verständliche Erklärungen!
- Wir suchen
 High-Assurance-Kryptographieprojekte um mit
 uns zusammenzuarbeiten. Rosenpass ist klein und
 kann als Demonstrator dienen.

Line Variables ← Action

Zum Nachbauen... aus dem Whitepaper:

Variables ← Action

hiscuit no ← load hiscuit(hiscuit):

encrypt and mix(empty())

Comment

Responder Loads their biscuit. This restores the state from after Rh..... Responder recomputes RHR7, since this step was performed after biscuit encoding

Line

Konversationsstarter

- Zurzeit wird Rosenpass via CLI konfiguriert
- Das lässt zu wünschen:
 - hinzufügen/entfernen von peers ohne neustart
 - <23 CLI Argumente für exchange mit einem peer
 - simple integration mit anderen Programmiersprachen
- Lösungsansätze:
 - Konfigurationsdatei: rosenpass rp-config.toml
 - Unix Domain Socket: add peer /opt/peer-pub.key rosenpass.eu:9999

Line Variables ← Action

Zum Nachbauen... aus dem Whitepaper:

Variables ← Action

hiscuit no ← load hiscuit(hiscuit):

encrypt and mix(empty())

Comment

Responder Loads their biscuit. This restores the state from after Rh..... Responder recomputes RHR7, since this step was performed after biscuit encoding

Line

Sicherheitsanalyse

Symbolische Protokoll-Analyse

- kann automatisiert logische Fehler im Protokoll finden.
- Genauer: Kommunikationsabläufe, die Sicherheitseigenschaften brechen

In unserem Fall:

- Wir nutzen ProVerif [3] als Tool um Protokoll-Bugs auszuschließen
- Wir haben die Laufzeit optimiert; symbolische Analyse läuft in fünf Minuten
- Beweise sind Teil des Software-Repositories; laufen in der Cl

Wir arbeiten an Beweisen in einem stärkeren Angreifermodell: kryptographische Beweise (mit CryptoVerif [4])

CVE-2021-46873 – DOS against WireGuard through NTP

- The replay protection in classic WireGuard assumes a monotonic counter
- But the system time is attacker-controlled because NTP is insecure
- This generates a kill packet that abuses replay protection and renders the initiator's key-pair useless
- Attack is possible in the real world!
- Similar attack in post-quantum WireGuard is worse since InitHello is unauthenticated
- Solution: Biscuits

New Hashing/Domain separation scheme

- Ein VPN zum Schutz vor Quantencomputern
- [1] URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
- [2] URL: https:
 //www.bsi.bund.de/SharedDocs/Downloads/DE/
 BSI/Publikationen/Broschueren/Kryptografiequantensicher-gestalten.pdf.
- [3] Bruno Blanchet. "Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif". In: Foundations and Trends in Privacy and Security 1.1-2 (Okt. 2016). Project website: https://proverif.inria.fr/, S. 1–135. ISSN: 2474-1558.
- [4] CryptoVerif project website. URL: https://cryptoverif.inria.fr/.
- [5] Andreas Hülsing u. a. "Post-quantum WireGuard". In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. Full version:

Ein VPN zum Schutz vor Quantencomputern

https://eprint.iacr.org/2020/379. IEEE, 2021, S. 304–321. DOI: 10.1109/SP40001.2021.00030. URI:

https://doi.org/10.1109/SP40001.2021.00030.