Reinforcement Learning for Business, Economics, and Social Sciences

Unit 2-1: Markov Processes

Davud Rostam-Afschar (Uni Mannheim)

How to predict transitions?

Markov Chains

Unrolling the Problem

Goal: Learn to choose actions that maximize rewards

Unrolling the Problem

- Modeling environment dynamics
- ► Unrolling the control loop leads to a sequence of states, actions and rewards:

$$s_0$$
, a_0 , r_0 , s_1 , a_1 , r_1 , s_2 , a_2 , r_2 , . . .

► This sequence forms a stochastic process (due to some uncertainty in the dynamics of the process)

Common Properties

- Processes are rarely arbitrary
- ► They often exhibit some structure
 - Laws of the process do not change
 - ► Short history sufficient to predict future

Common Properties

- Processes are rarely arbitrary
- They often exhibit some structure
 - Laws of the process do not change
 - Short history sufficient to predict future
- Example: weather prediction
 - Same model can be used everyday to predict weather
 - ▶ Weather measurements of past few days sufficient to predict weather

Common Properties

- Processes are rarely arbitrary
- They often exhibit some structure
 - Laws of the process do not change
 - Short history sufficient to predict future
- Example: weather prediction
 - Same model can be used everyday to predict weather
 - Weather measurements of past few days sufficient to predict weather
- **Example:** text prediction
 - Same model can be used in every conversation to predict next utterance
 - letter sequences of past texts sufficient to predict new sentences

Markovian and Stationary Processes

Stochastic Process

- ► Consider the sequence of states only
- Definition
 - Set of States: S
 - Stochastic dynamics: $\mathbb{P}(s_t|s_{t-1},\ldots,s_0)$

Stochastic Process

- ► Problem:
 - ► Infinitely large conditional distributions
- ► Solutions:
 - Stationary process:
 Dynamics do not change over time
 - Markov assumption:
 Current state depends only on a finite history of past states
 - Russell and Norvig (2016, Section 15.1)

K-Order Markov Process

► Assumption: last *k* states sufficient

K-Order Markov Process

- ► Assumption: last *k* states sufficient
- ► First-order Markov Process

K-Order Markov Process

- ► Assumption: last *k* states sufficient
- ► First-order Markov Process

Second-order Markov Process

$$ightharpoonup \mathbb{P}(s_t|s_{t-1},\ldots,s_0) = \mathbb{P}(s_t|s_{t-1},s_{t-2})$$

Markov Process

- Commonly, a Markov Process refers to a
 - First-order process

$$\mathbb{P}\left(s_{t} \mid s_{t-1}, s_{t-2}, \dots, s_{0}\right) = \mathbb{P}\left(s_{t} \mid s_{t-1}\right) \forall t$$

Stationary process

$$\mathbb{P}\left(s_{t} \mid s_{t-1}\right) = \mathbb{P}\left(s_{t'} \mid s_{t'-1}\right) \forall t'$$

► Advantage: can specify the entire process with a single concise conditional distribution

$$\mathbb{P}\left(s'\mid s\right)$$

- Marrying decision of young women
 - ► States: relationship history
 - **▶ Dynamics:** age

 Marrying decision of young women

► States: relationship history

Dynamics: age

Robotic control

► **States:** $\langle x, y, z, \theta \rangle$ coordinates of joints

▶ Dynamics: constant motion

 Marrying decision of young women

► States: relationship history

▶ Dynamics: age

Robotic control

► **States:** $\langle x, y, z, \theta \rangle$ coordinates of joints

Dynamics: constant motion

- Inventory management
 - ► States: inventory level
 - Dynamics: constant (stochastic) demand

Inference in Markov Processes

- ▶ Common task is prediction: $\mathbb{P}(s_{t+k} \mid s_t)$
- ► Computation:

$$\mathbb{P}\left(s_{t+k} \mid s_{t}\right) = \sum s_{t+k} \dots s_{t+k-1} \prod_{i=1}^{k} \mathbb{P}\left(s_{t+i} \mid s_{t+i-1}\right)$$

- ▶ Discrete states (matrix operations):
 - ▶ Let T be a $|S| \times |S|$ matrix representing $\mathbb{P}(s_{t+k} \mid s_t)$
 - ▶ Then $\mathbb{P}(s_{t+k} \mid s_t) = T^k$
 - ► Complexity: $\mathcal{O}\left(k|S|^3\right)$

Setup: Initial distribution $p_t = \begin{bmatrix} 0.5_{\text{never married}} & 0.5_{\text{married}} \end{bmatrix}$

Setup: Initial distribution $p_t = \begin{bmatrix} 0.5_{\text{never married}} & 0.5_{\text{married}} \end{bmatrix}$

		never married	married
$T = \frac{1}{2}$	never married	0.5	0.5
	married	0	1

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

$$T = \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ \text{married} & 0 & 1 \end{array} \rightarrow \quad T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \end{pmatrix}, \dots$$

Year
$$k$$
 $p_{t+k} = p_t T^k$

Setup: Initial distribution $p_t = \begin{bmatrix} 0.5_{\mathsf{never\ married}} & 0.5_{\mathsf{married}} \end{bmatrix}$

$$T = \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ \text{married} & 0 & 1 \end{array} \rightarrow \quad T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \end{pmatrix}, \dots$$

$$\frac{\text{Year } k \qquad p_{t+k} = p_t \ T^k}{1 \qquad [0.250000 \quad 0.750000]}$$

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

$$T = { \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ & \text{married} & 0 & 1 \\ \end{array}}
ightarrow T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \\ \end{pmatrix}, \dots$$

Year k	$\rho_{t+k} = \rho_t \ T^k$	
1	[0.250000	0.750000]
2	[0.125000	0.875000]

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

$$T = \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ \text{married} & 0 & 1 \end{array} \rightarrow \quad T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \end{pmatrix}, \dots$$

Year k	$p_{t+k} =$	$= p_t T^k$
1	[0.250000	0.750000]
2	[0.125000	0.875000]
3	[0.062500	0.937500]

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

$$T = { \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ & \text{married} & 0 & 1 \\ \end{array}}
ightarrow T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \\ \end{pmatrix}, \dots$$

Year k	$ ho_{t+k} = ho_t \ \mathcal{T}^k$	
1	[0.250000	0.750000]
2	[0.125000	0.875000]
3	[0.062500	0.937500]
4	[0.031250	0.968750]

Setup: Initial distribution $p_t = [0.5_{\text{never married}} \ 0.5_{\text{married}}]$

$$T = { \begin{array}{c|cccc} & \text{never married} & \text{married} \\ \hline \text{never married} & 0.5 & 0.5 \\ \text{married} & 0 & 1 \end{array}}
ightarrow T^2 = \begin{pmatrix} 0.25 & 0.75 \\ 0 & 1 \end{pmatrix}, \dots$$

Year k	$ ho_{t+k} = ho_t \ T^k$		
1	0.250000	0.750000]	
2	0.125000	0.875000]	
3	[0.062500	0.937500]	
4	[0.031250	0.968750]	
5	[0.015625	0.984375]	

Setup: Initial distribution $p_t = \begin{bmatrix} 0.5_{\mathsf{never\ married}} & 0.5_{\mathsf{married}} \end{bmatrix}$

Predicted Distributions:

Year k	$ ho_{t+k} = ho_t \ T^k$		
1	0.250000	0.750000]	
2	[0.125000	0.875000	
3	0.062500	0.937500]	
4	[0.031250	0.968750]	
5	[0.015625	0.984375]	

Long Run:

$$\pi = \lim_{k o \infty} p_{t+k} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
 (everyone eventually marries)

How Quickly Get Young Women Married?

xtsteadystate nev_mar if birth_yr ==50, tw 3dists ini ss pred twowayopt(.)

Non-Markovian and/or Non-Stationary Processes

- ▶ What if the process is not Markovian and/or not stationary?
- ► Solution: add new state components until dynamics are Markovian and stationary

Non-Markovian and/or Non-Stationary Processes

- ▶ What if the process is not Markovian and/or not stationary?
- Solution: add new state components until dynamics are Markovian and stationary
 - Marrying: probability of marrying may depend on: How long a woman has been single, her past relationship history, norms in 1970 vs. 1980
 - ▶ Add time since last relationship, number of prior marriages, cohort, ...

Non-Markovian and/or Non-Stationary Processes

- What if the process is not Markovian and/or not stationary?
- Solution: add new state components until dynamics are Markovian and stationary
 - Marrying: probability of marrying may depend on: How long a woman has been single, her past relationship history, norms in 1970 vs. 1980
 - ▶ Add time since last relationship, number of prior marriages, cohort, ...
 - ► Where do we stop?

Markovian Stationary Process

- ▶ **Problem:** adding components to the state description to force a process to be Markovian and stationary may significantly increase computational complexity
- ► **Solution:** try to find the smallest state description that is self-sufficient (i.e., Markovian and stationary)

Decision Making

- Predictions by themselves are useless
- They are only useful when they will influence future decisions
- Hence the ultimate task is decision making
- ▶ How can we influence the process to visit desirable states?
 - ► Model: Markov Decision Process

References I

RUSSELL, S. J., AND P. NORVIG (2016): Artificial intelligence: a modern approach. Pearson.

Takeaways

How Can we Use Markov Processes to Predict Future States?

- ► Model sequences of states with probabilistic transitions
- ► First-order Markov and stationarity assumptions simplify prediction
- Adding state components can restore Markovian/stationary properties—at a computational cost
- Prediction relies on transition matrices
- Real goal: use predictions for decision-making
 - → Markov Decision Processes

Appendix

Prediction and Steady State via Eigendecomposition

Objective: Predict future state distributions $\mathbb{P}(s_{t+k} \mid s_t)$ and compute the steady-state distribution using eigendecomposition

Inputs:

- ► Initial distribution: p_t
- ▶ Transition matrix: T where $T_{ij} = \mathbb{P}(s_{t+1} = j \mid s_t = i)$
- ► Horizon: *k* (number of steps ahead)

Procedure:

- 1. Eigendecompose: $T = U \Lambda U^{-1}$
- 2. Compute predicted distribution:

$$p_{t+k} = T^k p_t = U \Lambda^k U^{-1} p_t$$

3. Steady state distribution:

$$oldsymbol{\pi} = \lim_{k o \infty} p_{t+k}$$