425A FALL 2020 PROBLEM SET #10

Problem 1. Consider a function $f: \mathbb{R} \to \mathbb{R}$ which is differentiable and satisfies $\lim_{x \to \infty} f'(x) = 0$. Prove that we have $\lim_{x \to \infty} (f(x+1) - f(x)) = 0$.

Problem 2. Let $q_1, q_2, q_3, ...$ be some enumeration of the set of rational numbers in (0,1). Define a function $f:(0,1)\to\mathbb{R}$ by

$$f(x) = \sum_{q_n < x} 2^{-n}.$$

In other words, f(x) is the sum of $1/2^n$ over all n such that q_n is less than x. Prove that f is continuous at every irrational number and discontinuous at every rational number.

Problem 3. Pugh (2nd edition) chapter 3 problem 1.

Problem 4. Pugh (2nd edition) chapter 3 problem 3.

Problem 5. Pugh (2nd edition) chapter 3 problem 4.

Problem 6. Pugh (2nd edition) chapter 3 problem 8(a).

Problem 7. Pugh (2nd edition) chapter 3 problem 9.

Problem 8 (Extra credit). Pugh (2nd edition) chapter 1 problem 31.