CS4102 Algorithms Fall 2018

Warm up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?

(don't overthink this)

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?

- *m* multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Today's Keywords

- Dynamic Programming
- Matrix Chaining
- Longest Common Subsequence

CLRS Readings

• Chapter 15

Homeworks

- Hw4 due 11pm Friday Oct 12
 - Sorting
 - Written

Midterm

- Tuesday Oct 16 in class
 - Covers all content through sorting
 - We will have a review session the weekend before

Log Cutting

Given a log of length nA list (of length n) of prices P (P[i] is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths ℓ_1, \dots, ℓ_k such that:

$$\sum \ell_i = n$$

to maximize $\sum P[\ell_i]$

Brute Force: $O(2^n)$

Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

1. Identify Recursive Structure

```
P[i] = value of a cut of length i
  Cut(n) = value of best way to cut a log of length n
 Cut(n) = \max - \begin{cases} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{cases}
              Cut(n-\ell_n)
best way to cut a log of length n-\ell_n
```

Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

$$Cut(0) = 0$$

$$Cut(1) = Cut(0) + P[1]$$

$$Cut(2) = \max \begin{cases} Cut(1) + P[1] \\ Cut(0) + P[2] \end{cases}$$

Log Cutting Pseudocode

```
Initialize Memory C
Cut(n):
     C[0] = 0
                                 Run Time: O(n^2)
     for i=1 to n:
           best = 0
           for j = 1 to i:
                best = max(best, C[i-j] + P[j])
           C[i] = best
     return C[n]
```

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[j]
                         Choices[i]=j | Gives the size
                                           of the last cut
            C[i] = best
      return C[n]
```

Reconstruct the Cuts

Backtrack through the choices

Backtracking Pseudocode

```
i = n
while i>0:
    print Choices[i]
    i = i - Choices[i]
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

$$c_1 = r_2$$

$$c_2 = r_3$$

Order Matters!

•
$$(M_1 \times M_2) \times M_3$$

- uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations

$$c_1 = r_2$$

$$c_2 = r_3$$

Order Matters!

- $M_1 \times (M_2 \times M_3)$
 - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations

$$c_1 = r_2$$

$$c_2 = r_3$$

Order Matters!

•
$$(M_1 \times M_2) \times M_3$$

- uses
$$(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$$
 operations

$$-(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$$

•
$$M_1 \times (M_2 \times M_3)$$

- uses
$$c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$$
 operations

$$-10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160$$

$$c_1 = 10$$
 $c_2 = 20$
 $c_3 = 8$
 $r_1 = 7$
 $r_2 = 10$
 $r_3 = 20$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

• In general:

```
Best(i, j) = \text{cheapest way to multiply together } M_i \text{ through } M_j
Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)
Best(i,i) = 0
                            Best(2,n) + r_1 r_2 c_n
                            Best(1,2) + Best(3,n) + r_1r_3c_n
                            Best(1,3) + Best(4,n) + r_1 r_4 c_n
Best(1,n) = \min \longrightarrow Best(1,4) + Best(5,n) + r_1r_5c_n
                              Best(1, n-1) + r_1 r_n c_n
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

• In general:

```
Best(i, j) = \text{cheapest way to multiply together } M_i \text{ through } M_j
Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)
Best(i,i) = 0
Read from M[n]
if present
               Save to M[n] Best(2,n) + r_1r_2c_n
                                Best(1,2) + Best(3,n) + r_1 r_2 c_n
                                Best(1,3) + Best(4,n) + r_1 r_4 c_n
 Best(1,n) = \min \longrightarrow Best(1,4) + Best(5,n) + r_1 r_5 c_n
                                  Best(1, n-1) + r_1 r_n c_n
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

2. Select a good order for solving subproblems

2. Select a good order for solving subproblems

2. Select a good order for solving subproblems ₁₀

$$Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$$

$$j = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$Best(i,i) = 0$$

To find Best(i, j): Need all preceding

terms of row i and column j

Conclusion: solve in order of diagonal

Longest Common Subsequence

Run Time

- 1. Initialize Best[i, i] to be all 0s
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using: $\Theta(n^2)$ cells in the Array
 - 1. Best[i, i] = 0

2.
$$Best[i,j] = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$$

 $\Theta(n)$ options for each cell

 $\Theta(n^3)$ overall run time

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j\right)$$

$$j = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$0 \quad 15750 \quad 7875 \quad 9375 \quad 11875 \quad 15125 \quad 3$$

$$0 \quad 2625 \quad 4375 \quad 7125 \quad 10500 \quad 2$$

$$0 \quad 750 \quad 2500 \quad 5375 \quad 3$$

$$Best(1,1) + Best(2,6) + r_1 r_2 c_6 \quad 0 \quad 1000 \quad 3500 \quad 4$$

$$Best(1,2) + Best(3,6) + r_1 r_3 c_6 \quad 0 \quad 5000 \quad 5$$

$$Best(1,3) + Best(4,6) + r_1 r_5 c_6 \quad 0 \quad 6$$

$$Best(1,5) + Best(6,6) + r_1 r_6 c_6 \quad 0 \quad 6$$

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

X = ATCTGAT

Y = TGCATA

LCS = TCTA

Brute force: Compare every subsequence of X with Y $\Omega(2^n)$

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

```
Find LCS(i,j):

Case 1: X[i] = Y[j]
X = ATCTGCGT
Y = TGCATAT
LCS(i,j) = LCS(i-1,j-1) + 1

Case 2: X[i] \neq Y[j]
X = ATCTGCGA
Y = TGCATAT
Y = TGCATAC
LCS(i,j) = LCS(i,j-1)
LCS(i,j) = LCS(i-1,j)
```

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

```
Find LCS(i,j):

Case 1: X[i] = Y[j]
X = ATCTGCGT
Y = TGCATAT
LCS(i,j) = LCS(i-1,j-1) + 1
Case 2: X[i] \neq Y[j]
```

$$X = ATCTGCGA$$
 $X = ATCTGCGT$
 $Y = TGCATAT$ $Y = TGCATAC$
 $LCS(i, j) = LCS(i, j - 1)$ $LCS(i, j) = LCS(i - 1, j)$

 $LCS(i,j) = \begin{cases} 0 & \text{Read from M[I,j]} \\ LCS(i-1,j-1)+1 & \text{if } i=0 \text{ or } j=0 \\ \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1),LCS(i-1,j)) & \text{otherwise} \end{cases}$

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

2. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

To fill in cell (i,j) we need cells (i-1,j-1),(i-1,j),(i,j-1) Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 \end{cases} \begin{cases} A & T \\ 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

$$T = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \text{if } X[i] = Y[j] \\ \text{otherwise} \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent