Anotações de Fundamentos da Matemática

Anghie

May 2024

Conteúdo

1	Listas de Exercícios	2
	1.1 Lista 3	2
2	Cortes de Dedekind	2
	2.1 Soma de cortes	2

1 Listas de Exercícios

1.1 Lista 3

Lista sobre funções

Exercício 1

Sejam $f:A\to B$ e $g:B\to C$ funções, C_1 e C_2 subsconjuntos de A, e Y_1 e Y_2 subsconjuntos de B. Mostre as seguintes afirmações.

1.a:
$$f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$$

Resolução:

$$\forall c_1 \in C_1 \to f(c_1) \in f(C_1)$$

$$\forall c_2 \in C_2 \to f(c_2) \in f(C_2)$$

Também temos que:

$$\forall c_1 \in C_1 \to c_1 \in C_1 \cup C_2$$
$$\forall c_2 \in C_2 \to c_2 \in C_1 \cup C_2$$

Portanto, como mostrado anteriormente:

$$\forall x \in C_1 \cup C_2 \to f(x) \in f(C_1 \cup C_2)$$

$$\forall x \in C_1 \cup C_2 \to f(x) \in f(C_1) \cup f(C_2)$$

$$\therefore f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$$

1.b: $f(C_1 \cap C_2) \subset f(C_1) \cap f(C_2)$. Mostre que a igualdade não vale sempre

Resolução:

$$\forall c_1 \in C_1 \to f(c_1) \in f(C_1)$$

$$\forall c_2 \in C_2 \to f(c_2) \in f(C_2)$$

$$x \in C_1 \cap C_2 \to x \in C_1, C_2$$

Temos:

$$\forall x \in C_1 \cap C_2 \to f(x) \in f(C_1 \cap C_2)$$
$$\forall x \in C_1 \cap C_2 \to f(x) \in f(C_1) \cap f(C_2)$$

2 Cortes de Dedekind

2.1 Soma de cortes

Elemento Neutro

Seja C_r e C_0 em \mathbb{Q} , temos que C_0 é o elemento neutro da soma, visto que, para todo $r \in \mathbb{Q}$, $C_r = (A_r, B_r) \oplus C_0 = (A_0, B_0)$ estará contido em C_r :

$$A_r \oplus A_0 \to \forall a \in A_r \forall a_0 \in A_0, a + a_0 \in A_r$$

A afirmação acima é verdade pois, para qualquer $r \in \mathbb{Q}$, $A_r = q \in \mathbb{Q}$: q < r, e $A_0 = q \in \mathbb{Q}$: q < 0. Portanto, pegamos um número qualquer menor que r e adicionamos a um número negativo qualquer, ou seja:

$$\forall a \in A_r, \forall a_0 \in A_0$$

$$a + a_0 < a$$

$$a < r \rightarrow a + a_0 < r$$

$$\therefore a + a_0 \in A_r$$

Da mesma forma temos que como $B_r = q \in \mathbb{Q} : q \ge r$ e $B_0 q \in \mathbb{Q} : q \ge 0$ estermos pegando um racional qualquer que seja maior ou igual a r e um racional positivo qualquer ou igual a 0, teremos:

$$\forall b \in B_r, \forall b_0 \in B_0$$

$$b + b_0 \ge b$$

$$b \ge r \to b + b_0 \ge r$$

$$\therefore b + b_0 \in B_r$$

Elemento Oposto

Lema 1:

Se
$$C = (A, B) \in \mathcal{F}$$
, então $\exists -C = (-B, -A) \in \mathcal{F}$.

Lema 2:

$$\forall C \in \mathcal{F} \text{ temos que } inf(B-A) = 0$$

Demonstração

Seja $C \in \mathcal{F}$, então $C \oplus -C = C_0$, para provar isso, teremos que considerar dois casos distintos:

Caso 1: $inf(B) \notin B$

$$\forall a \in A, \forall b \in B \to a < b$$
$$\therefore a - b < 0 \to a - b \in A_0$$

Para mostrar que $B-A=B_0$ precisamos de um passo a mais, $\exists r\in A: -r>0$, também pelo lema 2 teremos que:

$$\exists a \in A, b \in B : 0 < b - a < -r$$
$$\therefore \exists q \in \mathbb{Q} : -r = q + b - a$$

Caso 2: $inf(B) \in B$