Bayesian Models

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Describe the framework of Bayesian modeling

Parametric modeling

Bayesian parametric modeling

 $\label{eq:Key idea: Interpret parameters as random variables} % \[\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x} + \mathbf{y} = \mathbf{y$

Modeling decisions

Parameters: $\tilde{\theta}$

Data: \tilde{x}

We need to make 2 decisions:

- 1. Prior distribution of parameters: $f_{\tilde{\theta}}$
- 2. Conditional distribution or likelihood of the data given the parameters $p_{\tilde{x}\,|\,\tilde{\theta}}$ or $f_{\tilde{x}\,|\,\tilde{\theta}}$

Goal: Compute posterior distribution of parameters given data

Coin flip

Bet on a coin flip, what is the probability of heads?

We are not sure whether coin flip is fair or not...

How can we encode uncertainty?

Through prior distribution of the probability $\tilde{\theta}$ that coin is heads

Uniform prior

Posterior

Data: Coin lands on tails

Posterior pdf of $\tilde{\theta}$ given this information?

$$f_{\tilde{\theta} \mid \tilde{r}}(\theta \mid 0) = \frac{f_{\tilde{\theta}}(\theta) p_{\tilde{r} \mid \tilde{\theta}}(0 \mid \theta)}{p_{\tilde{r}}(0)}$$

$$= \frac{1 - \theta}{\int_{u = -\infty}^{\infty} f_{\tilde{\theta}}(u) p_{\tilde{r} \mid \tilde{\theta}}(0 \mid u) du}$$

$$= \frac{1 - \theta}{\int_{u = 0}^{1} (1 - u) du}$$

$$= 2(1 - \theta)$$

Posterior

Triangular prior

Posterior

Data: Coin lands on tails

Posterior pdf of $\tilde{\theta}$ given this information?

$$f_{\tilde{\theta} \mid \tilde{r}}(\theta \mid 0) = \frac{f_{\tilde{\theta}}(\theta) p_{\tilde{r} \mid \tilde{\theta}}(0 \mid \theta)}{p_{\tilde{r}}(0)}$$

$$= \frac{2\theta (1 - \theta)}{\int_{u = -\infty}^{\infty} f_{\tilde{\theta}}(u) p_{\tilde{r} \mid \tilde{\theta}}(0 \mid u) du}$$

$$= \frac{2\theta (1 - \theta)}{\int_{u = 0}^{1} 2u (1 - u) du}$$

$$= 6\theta (1 - \theta)$$

Posterior

Beta distribution

Unimodal prior for parameters that represent probabilities

The pdf of a beta random variable \tilde{t} with parameters a and b is

$$f_{\widetilde{t}}\left(t
ight) := rac{t^{a-1}\left(1-t
ight)^{b-1}}{\beta\left(a,b
ight)} \qquad ext{if} \quad 0 \leq t \leq 1$$

and zero otherwise, where

$$\beta(a,b) := \int_{u} u^{a-1} (1-u)^{b-1} du$$

is a beta function or Euler integral of the first kind

Beta distribution

Conditional independence

What if we have more data?

Common assumption: Data are conditionally independent given parameters

Same effect as iid assumption: likelihood factorizes

$$p_{\tilde{x}\,|\,\tilde{\theta}}(x\,|\,\theta) = \prod_{i=1}^{n} p_{\tilde{x}[i]\,|\,\tilde{\theta}}(x[i]\,|\,\theta)$$

$$f_{\tilde{x}\,|\,\tilde{\theta}}(x\,|\,\theta) = \prod_{i=1}^{n} f_{\tilde{x}[i]\,|\,\tilde{\theta}}(x[i]\,|\,\theta)$$

Estimating parameter of Bernoulli

Data: Sequence of n binary outcomes (0 or 1)

Prior: Parameter $\tilde{\theta}$ modeled as beta with parameters a and b

Likelihood: Given $\tilde{\theta}=\theta$, each data point is Bernoulli with parameter θ

Distribution of number of 1s if data are conditionally independent given $\tilde{\theta}$?

Binomial with parameters n and θ

Posterior distribution

$$\begin{split} f_{\tilde{\theta} \mid \tilde{x}} \left(\theta \mid x \right) &= \frac{f_{\tilde{\theta}} \left(\theta \right) p_{\tilde{x} \mid \tilde{\theta}} \left(x \mid \theta \right)}{p_{\tilde{x}} \left(x \right)} \\ &= \frac{f_{\tilde{\theta}} \left(\theta \right) p_{\tilde{x} \mid \tilde{\theta}} \left(x \mid \theta \right)}{\int_{u} f_{\tilde{\theta}} \left(u \right) p_{\tilde{x} \mid \tilde{\theta}} \left(x \mid u \right) du} \\ &= \frac{\theta^{a-1} \left(1 - \theta \right)^{b-1} \binom{n}{x} \theta^{x} \left(1 - \theta \right)^{n-x}}{\int_{u} u^{a-1} \left(1 - u \right)^{b-1} \binom{n}{x} u^{x} \left(1 - u \right)^{n-x} du} \\ &= \frac{\theta^{x+a-1} \left(1 - \theta \right)^{n-x+b-1}}{\int_{u} u^{x+a-1} \left(1 - u \right)^{n-x+b-1} du} \end{split}$$

Beta random variable with parameters x + a and n - x + b

Estimating parameter of Bernoulli

Data: Sequence of n binary outcomes (0 or 1)

Prior: Parameter $\tilde{\theta}$ modeled as beta with parameters a and b

Likelihood: Given $\tilde{\theta}=\theta$, each data point is Bernoulli with parameter θ , so number of 1s is binomial with parameters n and θ

Posterior distribution is beta with parameters x + a and n - x + b

The beta distribution is a conjugate prior for the binomial likelihood

Real poll (Pennsylvania)

Data: 281 people intend to vote for Trump, 300 for Biden

Fraction of people that intend to vote for Trump: $\tilde{\theta}$

If n people are chosen independently at random with replacement from the population, likelihood of x voting for Trump?

Conditioned on $\tilde{\theta} = \theta$, binomial with parameters n and θ

Posterior distribution of $\tilde{\theta}$ depends on prior!

If prior is beta with parameters a and b, posterior is beta with parameters a+281 and b+300

Real poll (Pennsylvania)

Probability that Trump wins in Pennsylvania? $P(\tilde{\theta} > 0.5 \,|\, \tilde{x} = x)$

What have we learned?

Bayesian framework for parametric modeling

Conjugate priors