

Universidad Internacional de Valencia

Procesamiento de Datos Masivos 03MBID

Tema 1: Computación Ubicua – Cloud Computing

Yudith Cardinale

Noviembre 2022

Introducción

Cómputo distribuido - ¿Por qué es necesario?

* La demanda de cómputo ha estado siempre por encima del *status quo* tecnológico.

Respuestas obvias:

- Diversos elementos de cómputo trabajando en armonía para resolver un único problema
- Necesidad de tener recursos compartidos entre los diferentes elementos de computación

* Evolución:

- Sistemas centralizados (cómputo centralizado) —> Sin SO, SO monotarea, monosuario, SO multitareas, multiusuarios, ...
- Sistemas distribuidos (cómputo distribuido) —> Redes, sistemas paralelos, clusters de cómputo, ...
- Sistemas ubicuos (cómputo distribuido ubicuo) —> Computación de alto desempeño, middlewares, grid computacionales, computación en la nube, Peer-to-Peer, computación voluntaria, IoT, Big Data, …

COMPUTACIÓN UBICUA

Cómputación ubicua – Computación de alto desempeño

* Características

- Implica el uso de ordenadores muy poderosos (superordenadores) o clúster de cómputo para la resolución de problemas que requieren mucho cómputo y análisis de grandes volúmenes de datos.
- Está relacionada con programación paralela para usar muchos procesadores simultáneamente.
- Paralelismo tradicional: está principalmente asociado con computación para investigación científica.
- Paralelismo para Big Data: está principalmente asociado con computación para el negocio, comercio, industria, apoyo a toma de decisiones.

Biología Digital

Aplicaciones de alto desempeño - Ejemplos

Teoría de números

Ciencias de la vida

Predicción del tiempo

Internet & e-commerce

Petroquímica: dinámica de fluidos, simulación, modelamiento

Aplicaciones Militares

BIG DATA

Analítica de Big Data

Arquitecturas de alto desempeño: super-ordenadores

- Computación Paralela: Hacer un trabajo n veces más rápido usando n procesadores
- Requiere arquitecturas de hardware especializadas: clusters, superordenadores, top 500 (https://www.top500.org/)

SUMMIT, USA; 2,414,592 cores, IBM/NVIDIA

SIERRA, USA;1,572,480 cores; IBM

Sunway TaihuLight, China; 10,649,600 cores

FRONTERA, USA; 448,448 cores, Dell

Arquitecturas de alto desempeño: super-ordenadores

- Computación Paralela: Hacer un trabajo n veces más rápido usando n procesadores
- Requiere arquitecturas de hardware especializadas: clusters, supercomputadores, top 500 (https://www.top500.org/)

Fugazu, Japón, 7,630,848 cores (puesto 1)

MareNostrum, España, 153,216 cores, Lenovo (puesto 42)

Arquitecturas de alto desempeño: clusters de cómputo

- ★ Cluster para balance de carga: se usan para compartir la carga computacional entre múltiples tareas que pueden o no estar relacionadas, se distribuye la carga de trabajo de manera eficiente entre los procesadores; son usados tanto en ambientes científicos y académicos, como en empresas comerciales;
- ★ Cluster de alta disponibilidad: proveen redundancia de datos y servicios (sistemas de respaldo); actúan como granjas de servidores para soportar grandes cantidades de peticiones por parte de millones de clientes (servicios de Google, de Amazon, etc.);
- * Cluster de alto desempeño: para la ejecución de programas paralelos, usados en ambientes científicos/académicos y para análisis de Big Data.

¡Quiero más!

- Siempre habrá aplicaciones que demandan más potencia que la capacidad de cómputo disponible.
- Limitaciones de los Clusters: alto consumo de potencia energética y acondicionamiento del espacio físico limitan la agregación.
- * Solución: agregar, integrar recursos distribuidos a través de redes de alta velocidad ...

Computación UBICUA

Uso de la tecnología existente para resolver problemas más complejos

Evolución de la tecnología para computación de alto desempeño:

- ★ Super-ordenadores
- ***** Clusters
- ★ Computación ubicua
 - Computación voluntaria,
 - Grid computing,
 - Cloud computing,
 - ► IoT,
 - **Big Data**
 - >

Dos perspectivas

★ Tecnología usada para mejorar la colaboración

★ Colaboración usada para mejorar la tecnología y la ciencia

COMPUTACIÓN VOLUNTARIA

Escenario

- * Más de 7 billones de ciudadanos en el mundo
- * Muchos tienen acceso a Internet
- Muchos estamos (o podríamos estar) interesados en la ciencia o simplemente colaborar con la ciencia
- ☆ Gran capacidad de cómputo y almacenamieno agregado en el mundo
- * Alto porcentaje de tiempo ocioso

¿Cómo puede la ciencia aprovechar esta situación?

Los pioneros

★ GIMPS (Great Internet Mersenne Prime Search) − 1996

Número Primo Mersenne 50th: 2^{77,232,917}- 1 con más de 23 millones de dígitos (2017)

Número Primo Mersenne 51th: 282,589,933 - 1 con más de 24 millones de dígitos (2018)

★ Distributed.net − 1997

Área de criptografía:

- En 2002 rompió el RC5 con 64 bits
- Intenta romper RC5 con claves de 72 bits.
- Hasta septiembre 2020, había resuelto el 7%(¡más de 100 años para terminar!)

★ SETI@home (Search for Extraterrestrial Intelligence) — 1999 — se detuvo en

marzo 2020 :'(

https://setiathome.berkeley.edu/

★ Folding@home (plegamiento de proteínas) y <u>genome@home</u> (proyecto del genoma humano) – 2000

https://foldingathome.org/

Proyecto genoma humano (fin en 2004)

Más proyectos:

- **★** Climaprediction.net
- ★ Einstein@home (detección de ondas gravitacionales)

- ★ LHC@home (del CERN: Conseil européen pour la recherche nucléaire)
- * Rosetta@home (estructuras de proteínas)
- Boinc (https://boinc.berkeley.edu/)
- * Rendimiento actual: 500K personas, 1M de computadores, 6.5 PetaFlops. Potencial: 1 billón de PCs (hoy 2018), 2 billones de PCs (2020), GPU, ExaFlops, Exabytes de almacenamiento.

COMPUTACIÓN EN MALLA (grid computing)

Unificación de recursos distribuidos geográficamente

¿Qué es?

- ★ Infraestructura de hardware y software que provee alto desempeño y alta disponibilidad
- ★ Colección de recursos (personas, computadores, instrumentos y bases de datos) conectados por una red de alta velocidad.
- ★ Mecanismo para que los usuarios puedan usar recursos distribuidos geográficamente de forma transparente, creando la ilusión de un sistema de computación integrado.
- * Permite colaboración entre instituciones académicas, de investigación y científicas
- ★ Cada institución ofrece su infraestructura para obtener acceso a otras infraestructuras:
 - Se incrementa la capacidad de cómputo local
 - Mejor uso de los recursos (ejecutar grandes aplicaciones sin tener que invertir en infraestructura)
- ★ Cada institución es responsable de su propia infraestructura (costos, mantenimiento, administración...)

- * Podemos decir que *grid computing* define un modelo de computación social:
 - Todas las instituciones colaboran con objetivos científicos y de investigación comunes
 - Todas las instituciones obtienen beneficios a corto o largo plazo

COMPUTACIÓN EN LA NUBE Definiciones

Definición de Cloud Computing

Unificación de recursos distribuidos geográficamente PARA LA VENTA

Definición de Cloud Computing

- * Permite ofrecer servicios de *hosting* en Internet
- ★ Provee acceso fácil y escalable de recursos de computación y servicios de IT
- ★ Los usuarios no requieren tener conocimientos técnicos, ni experticia, ni control sobre la infraestructura tecnológica de la "nube"
- ★ Los servicios son administrados por los proveedores
- ★ Es un modelo de entrega y consumo de servicios en el que existe un consumidor y un prestador; el consumidor busca recursos que no posee y el prestador se las proporciona según algunos términos y condiciones.
- * Esta relación, entre el que quiere un recurso para hacer su actividad y el que se lo presta, es un acceso directo a las capacidades de consumir, escalabilidad, pago por uso, transparencia en las condiciones de uso, de términos y condiciones y de esta forma poder acceder a ellas de manera muy rápida.

Definición de Cloud Computing

- * Podemos decir que *cloud computing* define un modelo de

 computación comercial:
 - Cada participante obtiene beneficios individuales con un mínimo de inversión
 - Los proveedores obtienen beneficios (\$\$\$) de todos los participantes

Implicaciones de cloud computing

- * Los recursos son propiedad del proveedor
 - Pagas lo que usas
 - No administras hardware ni software
- ★ Los usuarios no requieren tener conocimientos técnicos, ni experticia, ni control sobre la infraestructura tecnológica de la "nube"
- * Los servicios son administrados por los proveedores
- * Heterogeneidad
 - A todos los niveles (sw, hw, so, lenguajes, arquitecturas, etc.)
- * Alta disponibilidad de recursos
- * Provee tolerancia a fallas
- * Escala fácilmente
- * Fácil de usar (clientes)