E-values and Multiple Testing

ISI WSC Bernoulli Society New Researcher Award

Rianne de Heide, University of Twente and Centrum Wiskunde & Informatica Amsterdam

Bringing closure to FDR control: a general principle for multiple testing

Ziyu Xu, Aldo Solari, Lasse Fischer, Rianne de Heide, Aaditya Ramdas and Jelle Goeman

- Many hypotheses: $H_1, H_2, ..., H_m$
- Multiple testing goal:
 - 1) Many discoveries
 - 2) Control some error rate
 - 3) Post hoc flexibility

How to design a multiple testing procedure

e-Closure

A general recipe for making multiple testing methods

Building blocks Intersection by potheses

Intersection hypotheses and e-values

Contributions

- Recovers the Closure Principle for FWER
- Extends to FDR
- Uniformly improves eBH and BY
- Introduces unprecedented flexibility in multiple testing

The e-variable

Definition: e-variable

An e-variable E for \mathscr{P} is a non-negative random variable satisfying $\mathbb{E}_P[E] \leq 1$ for all $P \in \mathscr{P}$.

• The value taken by the e-variable after observing the data is called the e-value. However, often, as also happens with the infamous p-value (p-variable), the random variable E itself is also often called e-value.

Tests and the type I error guarantee

Definition: binary test

A binary test ϕ is a $\{0,1\}$ -valued random variable. The type-I error of a test ϕ for P is $\mathbb{E}_P[\phi]$. A test has level $\alpha \in [0,1]$ for \mathscr{P} if its type-I error is at most α for every $P \in \mathscr{P}$.

Markov's inequality for e-variables

Let E be an e-variable for \mathscr{P} . We have $P(E \ge 1/\alpha) \le \alpha$ for all $P \in \mathscr{P}$ and $\alpha \in (0,1]$. Hence, $\mathbf{1}_{\{E > 1/\alpha\}}$ is a binary test of level α .

Example: Multiple testing in neuroimaging

130.000 voxels

Wible, Cynthia G. et al. "fMRI activity correlated with auditory hallucinations during performance of a working memory task: data from the FBIRN consortium study." Schizophrenia bulletin 35 1 (2009): 47-57.

Multiple testing: the problem

- If we test n true null hypotheses at level α , then on average we will (falsely) reject αn of them.
- Examples:
 - testing whether some of 20.000 genes are linked to a disease
 - fMRI: 100.000 voxels
 - DNA methylation: 500.000 sites
- We need other measures of acceptance/rejection errors.
- We need statistical procedures to control these measures of errors.

Error rates

 $N \subseteq [m]$ hypotheses are true null; the rest are potential discoveries

Famous error rates:

- Familywise error rate (FWER): $P(|R \cap N| > 0)$
- Per-family error rate: $\mathbb{E}(|R \cap N|)$
- False Discovery rate: $\mathbb{E}\left(\frac{|R\cap N|}{R}\right)$

General form

Control some expected loss: $\mathbb{E}(f_N(R))$

Intersection hypotheses

Intersection hypothesis

For
$$S \subseteq [m], H_S = \bigcap_{i \in S} H_i$$
, which is true iff all $H_i, i \in S$ true

The e-collection

 $E = (e_S)_{S \subseteq [m]}$: local e-values such that $E(e_N) \le 1$

Sufficient

Each e_S is an e-value for H_S \$, \$ $S \subseteq [m]$

The e-Closure procedure

The e-Closed Procedure

$$\mathcal{R}_{\alpha}(E) = \{ R \subseteq [m] : \alpha e_S \ge f_S(R) \quad \forall S \subseteq [m] \}$$

• The e-Closure Principle

R controls $\mathrm{E}(\mathrm{f}_N(R)) \leq \alpha$ iff $R \in \mathcal{R}_\alpha(E)$ for e-collection E

Simultaneous control

$$\mathrm{E}(\mathrm{f}_N(R)) \leq \alpha \text{ simultaneously over } R \in \mathcal{R}_\alpha(E) \colon \quad \mathrm{E}\Big(\max_{R \in \mathcal{R}_\alpha(E)} \mathrm{f}_N(R)\Big) \leq \alpha$$

Post hoc error rate

All error rates

$$\mathcal{F} = \{ \text{all functions } f_N(R) \}$$

• Simultaneous (= post hoc) choice of error

$$E\left(\sup_{f\in\mathscr{F}}\max_{R\in\mathscr{R}_{\alpha}^{f}(E)}f_{N}(R)\right)\leq\alpha$$

• So: possible to switch from FWER to FDR if not much signal present

Improving existing procedures: eBH and BY

BY vs closed BY in standard data sets

Dataset	m	BY / \overline{BY}	rejections	source
		lpha= 5%	lpha= 10%	
APSAC	15	3 / 3	3 / 5	BH '95
NAEP	34	6 / 8	8 / 11	BH '00
PADJUST	50	12 / 15	17 / 20	p.adjust
PVALUES	4289	129 / 145	225 / 275	fdrtool
VANDEVIJVER	4919	614 / 677	779 / 866	Goeman Solari '14
GOLUB	7128	617 / 648	743 / 799	Efron Hastie '16

More properties: post hoc α

- Choose rejected set post hoc
- Choose error loss post hoc
- One step further: choose α post hoc (Koning 2023)
- Requires: e-value does not depend on α . Then we have:

$$E\left(\sup_{\alpha\in(0,1)}\sup_{\mathbf{f}\in\mathscr{F}}\max_{R\in\mathscr{R}_{\alpha}^{\mathbf{f}}(E)}\frac{\mathbf{f}_{N}(R)}{\alpha}\right)\leq 1$$

More properties: restricted combinations

Logically related hypotheses, for example pairwise combinations

$$H_{1=2}: \mu_1 = \mu_2; \quad H_{1=3}: \mu_1 = \mu_3; \quad H_{2=3}: \mu_2 = \mu_3$$

Logical relationships = gain in power

Known only for FWER, unknown for FDR

Conclusion: e-Closure

- General Principle: unites all multiple testing methods
- Simplifies multiple testing: Choose how to summarise evicence against H_S ; rest is computation
- Flexibility: Simultaneous over rejected sets, error rates, α
- Power: Uniformly improves known methods

A general recipe for making multiple testing methods