Federico Zertuche, CENBIO, UTE.

November 19, 2019

The team:

Diego Ortiz, UNIR (Math).

Me, UTE (Applied Math).

Wladimir Banda, Hamburg University (Physics).

What we study:

Role of galactic winds and outflows in galaxy evolution.

Remove gas and metals from the disk and nuclear regions of star-forming galaxies and deposit them in the circumgalactic medium.

What we want to understand:

The presence of cold gas (clouds) in such outflows.

The Wind/Shock - Cloud simulations:

Transport via momentum transfer from hot gas?

- · In purely hydrodynamic regimes: Too many instabilities, cloud gets destroyed rapidly.
- Recent simulations show that magnetic stresses can aid cloud acceleration and survival.

In this talk:

 Tools for a systematic statistical study of the effect of magnetic fields.

Need: Probaility distribution over magnetic fileds.

(Herr W.: For magnetic fields with compact support, sometimes symmetric and div-free! And, depending on the day, turbelent too.)

Need: Probaility distribution over $f : \mathbb{R}^m \to \mathbb{R}^n$. Gaussian Process: A proba. distribution over a function space.

$$f(x) \sim \mathbf{GP}\left(0, \ k(x, x')\right)$$

For any $\mathbf{x} := [x_1, ..., x_n]^T$,

$$\mathbf{f}(\mathbf{x}) \sim \mathbf{N} \left(\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) \cdots k(x_1, x_n) \\ & \ddots \\ k(x_n, x_1) \cdots k(x_n, x_n) \end{bmatrix} \right)$$

where $\mathbf{f}(\mathbf{x}) := [f(x_1), ..., f(x_n)]^T$.

What does that mean? To simulate:

- 1. Choose a vector space a covariance function k.
- 2. Fix a set of input points $\mathbf{x} := [x_1, ..., x_n]^T$.
- 3. To simulate f(x), build the covariance matrix K(x,x), draw from N(0, K(x,x)).

where
$$\mathbf{K}(\mathbf{x}, \mathbf{x})[i, j] = k(x_i, x_j)$$
.

Different covariance functions, different function spaces.

Which function space? You get choose by chossing/building the covariance function k.

Which function space? Regularity depends on k.

Algebra of covariance functions Can combine covariance functions to encode other characteristics:

- $\cdot \alpha k$ is a covariance function.
- $\cdot k(\phi(x), \phi(x'))$ is a covariance function.
- $k_1 \times k_2$ is a covariance function like an AND covariance function, high vals if both are.
- $k_1 + k_2$ is a covariance function like an OR covariance function, high vals if one is.

Algebra of covariance functions Can combine covariance functions to encode other characteristics: $k_1 \times k_2$

Algebra of covariance functions Can combine covariance functions to encode other characteristics: $k_1 + k_2$

A process $R \to R^2$ Is a distribution over doodles.

A process $R^2 \rightarrow R^2$ Is a distribution over vector fields.

In fact you can encode more:

Div-Free:

$$\nabla f = 0$$

i.e. Processes that satisfy a linear contraint.

$$\mathcal{L}f = 0 \tag{1}$$

(Idea: Find an operator $\mathcal G$ such that $\mathcal L\mathcal G=0$. Then, $\mathcal Gf$ satisfies (1).)

Div-Free: Samples from a div-free **GP**.

Curl-Free: Samples from a curl-free GP.

So far:

- · Distributions over function spaces.
- Mathematically Expressive: Can encode regularity, symmetries, changes, support.

In progress:

- · Computationally NOT Expressive: Autodiff code in progress.
- Turbulence NOT clear: Studying the relationship between kernels and energy spectral decay.

A bigger picture:

A bigger picture: (In alphabetical order)

- · Computer Science, Math, Physics.
- · Australia, Ecuador, Germany.