Package 'Trading'

April 19, 2020

Type Package

Title CCR, Entropy-Based Correlation Estimates & Dynamic Beta

Version 2.0

Date 2020-04-19

Author Tasos Grivas

Maintainer Tasos Grivas <info@openriskcalculator.com>

Description Contains performance analysis metrics of track records including entropy-based correlation and dynamic beta based on the Kalman filter. The normalized sample entropy method has been implemented which produces accurate entropy estima-

tion even on smaller datasets while for

the dynamic beta calculation the Kalman filter methodology has been utilized. On a separate stream, trades from the five major assets classes and also functionality to use pricing curves, rating tables, CSAs and add-on tables. The implementation follows an object oriented logic whereby each trade inherits from more abstract classes while also the curves/tables are objects. There is a lot of functionality focusing on the counterparty credit risk calculations however the package can be used for trading applications in general.

Imports methods, reticulate, PerformanceAnalytics

URL www.openriskcalculator.com

License GPL-3 LazyData TRUE

Collate 'AngularDistance.R' 'Future.R' 'Swap.R' 'Vol.R' 'Option.R'

'Trade.R' 'IRD.R' 'Bond.R' 'CSA.R' 'Chebyshev_distance.R'

'Collateral.R' 'Commodity.R' 'Credit.R' 'CrossSampleEntropy.R'

'Curve.R' 'DynamicBeta.R' 'Equity.R' 'FX.R' 'GetTradeDetails.R'

'HashTable.R' 'InformationAdjustedBeta.R'

'InformationAdjustedCorr.R' 'NormXASampEn.R' 'ParseTrades.R'

'SampleEntropy.R' 'VariationOfInformation.R'

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Repository/R-Forge/Project ccr

Repository/R-Forge/Revision 34

Repository/R-Forge/DateTimeStamp 2020-04-19 11:41:09

Date/Publication 2020-04-19 15:00:15 UTC

R topics documented:

Index

Angular Distance	3
Bond-class	4
BondFuture-class	5
CDOTranche-class	6
Chebyshev_distance	6
Collateral-class	7
Commodity-class	8
CommodityForward-class	9
CommSwap-class	0
CreditIndex-class	0
CreditSingle-class	1
CrossSampleEntropy	2
CSA-class	3
Curve-class	4
DynamicBeta	5
Equity-class	6
EquityIndexFuture-class	6
EquityOption-class	7
FXSwap-class	8
GetTradeDetails	9
HashTable-class	9
InformationAdjustedBeta	20
InformationAdjustedCorr	21
IRDFuture-class	22
IRDSwap-class	22
IRDSwaption-class	23
IRDSwapVol-class	4
NormXASampEn	24
ParseTrades	25
SampleEntropy	26
VariationOfInformation	27

28

Angular Distance 3

Angul	arDi	stance	
AHEUL	ai Di	Stance	

Angular distance metrics

Description

Calculates the angular distance between a matrix of the track records of various assets/strategies. The sign of the correlation can be ignored for long/short portfolios.

Usage

```
AngularDistance(returns_matrix, long_short = FALSE)
```

Arguments

```
returns_matrix a matrix containing the track records of the underlying assets/strategies.
```

long_short a bool

a boolean value which results in the sign of the correlation being ignored, default value is FALSE

Value

A matrix containing the angular distance values.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

```
## calling AngularDistance() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling","Convertible Arbitrage")]
angular_distance = AngularDistance(returns_matrix, long_short=FALSE)
```

4 Bond-class

|--|

Description

Creates a Bond object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

BuySell Takes the values of either 'Buy' or 'Sell'

yield The yield of the Bond
ISIN The ISIN of the Bond,

payment_frequency

the frequency that the bond pays coupon (Quarter, SA etc)

maturity_date the maturity date of the bond

coupon_type The coupon type of the bond (fixed, floating, flipper etc)

credit_risk_weight

The percentage weight of the exposure of the bond that should be attributed to

the 'Credit' asset class

Issuer The issuer of the bond

Value

An object of type Bond

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

```
tr1 = Bond(Notional=10000,MtM=30,Currency="EUR",Si=0,maturity_date="2026-04-04",
BuySell='Buy',payment_frequency="SA",
credit_risk_weight=0.2,coupon_type="Fixed",Issuer="FirmA",ISIN = "XS0943423")
```

BondFuture-class 5

ndFuture-class Bond Future Class	

Description

Creates a Bond Future object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade	
MTM	The mark-to-market valuation of the trade	
Currency	The currency set that the trade belongs to	
Si	The number of years that the trade will take to start (zero if already started)	
Ei	The number of years that the trade will expire	
BuySell	Takes the values of either 'Buy' or 'Sell'	
yield	The yield of the Underlying Bond	
isin	The ISIN of the Underlying Bond,	
payment_frequency		
	the frequency that the bond pays coupon (Quarter, SA etc)	
maturity_date	the maturity date of the bond	
coupon_type	The coupon type of the bond (fixed, floating, flipper etc)	
Issuer	The issuer of the bond	

Value

An object of type Bond

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

```
example_trades = ParseTrades()
bondfuture_trade = example_trades[[17]]
tr1 = BondFuture(Notional=10000,MtM=30,Currency="EUR",Si=0,Ei=10,BuySell='Buy',
payment_frequency="SA",coupon_type="Fixed",Issuer="CountryA",ISIN = "XS0943423")
```

6 Chebyshev_distance

CDOTranche-class CDO tranche Class

Description

Creates a CDO tranche Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the belongs

Si The number of years after which the trade will start (zero if already started)

Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'
attach_point The attachment point of the tranche
detach_point The detachment point of the tranche

Value

An object of type CDOtrance

Examples

```
## a CDO trance object
tr3 = CDOTranche(Notional=10000,MtM=0,Currency="USD",Si=0,Ei=5,
BuySell='Buy',SubClass='IG',RefEntity='CDX.IG',attach_point=0.3,detach_point=0.5)
```

Chebyshev_distance

Chebyshev distance

Description

Calculates the Chebyshev distance

Usage

```
Chebyshev_distance(x, y)
```

Arguments

x a vector containing the track record of the underlying asset/strategy y a vector containing the track record of the underlying asset/strategy Collateral-class 7

Value

The Chebyshev distance of the two vectors

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Chebyshev_distance

Examples

```
x = rnorm(1000)
y = rnorm(1000)
chebyshev_dist = Chebyshev_distance(x, y)
```

Collateral-class

Collateral Class

Description

Creates a Collateral amount object which needs to be linked with a CSA ID

Arguments

ID The ID of each object

Amount The collateral amount

csa_id The csa_id that this object is linked with

type Describes the type of the collateral: can be "ICA", "VariationMargin" etc

Value

An object of type Collateral

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

8 Commodity-class

Examples

```
colls = list()
coll_raw = read.csv(system.file("extdata", "coll.csv", package = "Trading"),header=TRUE,
stringsAsFactors = FALSE)
for(i in 1:nrow(coll_raw))
 colls[[i]] = Collateral()
colls[[i]]$PopulateViaCSV(coll_raw[i,])
```

Commodity-class

Commodity Class

Description

Creates a Commodity Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade MTM The mark-to-market valuation of the trade The currency set that the trade belongs to Currency The number of years that the trade will take to start (zero if already started) Si

Takes the values of either 'Buy' or 'Sell' **BuySell**

commodity_type Takes the values of 'Oil/Gas', 'Silver', 'Electricity' etc.

Value

An object of type Commodity

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

```
tr1 = Commodity(Notional=10000, MtM=-50, Si=0,
BuySell='Buy',SubClass='Energy',commodity_type='0il/Gas')
```

CommodityForward-class

Commodity Forward Class

Description

Creates a Commodity Forward Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'

commodity_type Takes the values of 'Oil/Gas', 'Silver', 'Electricity' etc.

Value

An object of type Commodity Forward

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

```
## the Commodity Forward trade given in the Basel regulation Commodity example
tr1 = CommodityForward(Notional=10000,MtM=-50,Si=0,Ei=0.75,
BuySell='Buy',SubClass='Energy',commodity_type='Oil/Gas')
```

10 CreditIndex-class

	CommSwap-class	Commodity Swap Class
--	----------------	----------------------

Description

Creates a Commodity Swap Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Value

An object of type CommSwap

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

CreditIndex-class	Credit Index Class	
-------------------	--------------------	--

Description

Creates a Credit Index Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the belongs
Si	The number of years after which the trade will start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'

Value

An object of type CreditIndex

CreditSingle-class 11

Examples

```
## the CreditIndex trade given in the Basel regulation Credit example
tr3 = CreditIndex(Notional=10000,MtM=0,Currency="USD",Si=0,Ei=5,
BuySell='Buy',SubClass='IG',RefEntity='CDX.IG')
```

CreditSingle-class

Credit Single Class

Description

Creates a Credit Single Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire

BuySell Takes the values of either 'Buy' or 'Sell'

Value

An object of type CreditSingle

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

```
## the CreditSingle trade given in the Basel regulation Credit example
tr1 = CreditSingle(Notional=10000,MtM=20,Currency="USD",Si=0,Ei=3,BuySell='Buy',
SubClass='AA',RefEntity='FirmA')
```

CrossSampleEntropy

CrossSampleEntropy

Angular distance metrics

Description

Calculates the cross sample entropy between two track records of various assets/strategies.

Usage

```
CrossSampleEntropy(returns_matrix, m = 2, r = 0.2)
```

Arguments

returns_matrix a matrix containing the track records of the underlying assets/strategies. These will be normalized during the algorithm

m an integer value defining the embedding dimension, default value is 2

r a double value defining the tolerance, default value is 0.2

Value

The value of cross sample entropy

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://physoc.onlinelibrary.wiley.com/doi/epdf/10.1113/expphysiol.2007.037150

```
## calling CrossSampleEntropy() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling","Convertible Arbitrage")]
Cross_Sample_Entropy = CrossSampleEntropy(returns_matrix,m=2,r=0.2)
```

CSA-class 13

CSA Class

Description

Creates a collateral agreement Object containing all the relevant data and methods regarding the maturity factor and the calculation of the exposures after applying the relevant threshold

Arguments

ID	The ID of the CSA ID
Counterparty	The counterparty the CSA is linked to
Currency	The currency that the CSA applies to (can be a list of different currencies)
TradeGroups	The trade groups that the CSA applies to
Values_type	The type of the numerical values (can be "Actual" or "Perc" whereby the values are percentages of the MtM)
thres_cpty	The maximum exposure that the counterparty can generate before collateral will need to be posted
thres_PO	The maximum exposure that the processing organization can generate before collateral will need to be posted
MTA_cpty	The minimum transfer amount for the counterparty
MTA_PO	The minimum transfer amount for the processing organization
IM_cpty	The initial margin that is posted by the counterparty
IM_PO	The initial margin that is posted by the processing organization
mpor_days	The margin period of risk in days
remargin_freq	The frequency of re-margining the exposure in days
rounding	The rounding amount of the transfers

Value

An object of type CSA

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

14 Curve-class

Examples

```
csa_raw = read.csv(system.file("extdata", "CSA.csv", package = "Trading"),
header=TRUE,stringsAsFactors = FALSE)

csas = list()
for(i in 1:nrow(csa_raw))
{
    csas[[i]] = CSA()
    csas[[i]]$PopulateViaCSV(csa_raw[i,])
}
```

Curve-class

Curve Class

Description

Creates a Curve Object containing pairs of Tenors with relevant rates and the interpolation function. Also, methods for populating the object via a .csv file and the generation of the interpolation function via cubic splines are included.

Arguments

Tenors The Tenors of the curve

Rates The rates on the corresponding tenors

interp_function

(Optional) The interpolation function of the curve. Can be populated via the

'CalcInterpPoints' method

Value

An object of type Curve

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

```
## generating a curve either directly or through a csv -
## the spot_rates.csv file can be found on the extdata folder in the installation library path
funding_curve = Curve(Tenors=c(1,2,3,4,5,6,10),Rates=c(4,17,43,47,76,90,110))
spot_rates = Curve()
spot_rates$PopulateViaCSV('spot_rates.csv')
time_points = seq(0,5,0.01)
spot_curve = spot_rates$CalcInterpPoints(time_points)
```

DynamicBeta 15

DynamicBeta

Time Varying Beta via Kalman filter & smoother

Description

Calculates the beta of an investment strategy or stock by applying the Kalman filter & smoother. Apart from the beta timeseries, the state covariances are also returned so as to provide an estimate of the uncertainty of the results. The python package "Pykalman" is used for the calculations given its proven stability.

Usage

```
DynamicBeta(csvfilename,do_not_set_to_true=FALSE)
```

Arguments

```
csvfilename the name of csv file containing the track record of the fund & the benchmark do_not_set_to_true the name of csv file containing the track record of the fund & the benchmark
```

Value

A list of beta values based on Kalman Filter & smoother and the respective covariance matrices

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

```
## calling DynamicBeta() without an argument loads a test file containing
## a sample track record and a benchmark index
## ATTENTION!!: set do_not_set_to_true to FALSE when running the
## example -- this is only used to pass CRAN tests whereby pykalman was not installable!
dyn_beta_values = DynamicBeta(do_not_set_to_true = TRUE)
```

Description

Creates an Equity object

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

BuySell Takes the values of either 'Buy' or 'Sell'

ISIN the ISIN of the Equity

traded_price the price that trade was done

Issuer the issuer of the stock

Value

An object of type Equity

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
tr1 = Equity(external_id="ext1",Notional=10000,MtM=30,Currency="EUR",BuySell='Buy',
traded_price = 10,ISIN = "XS04340432",Issuer='FirmA')
```

EquityIndexFuture-class

Equity Index Future Class

Description

Creates an Equity Index Future object with the relevant info needed to calculate the Exposure-at-Default (EAD)

EquityOption-class 17

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'

traded_price the price that trade was done

Value

An object of type EquityIndexFuture

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
example_trades = ParseTrades()
Equity_Index_Future_trade = example_trades[[18]]
```

EquityOption-class Equity Option Class

Description

Creates an Equity Option object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'

traded_price the price that trade was done

Value

An object of type EquityOption

18 FXSwap-class

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

FXSwap-class FX Swap Class

Description

Creates an FX Swap object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire

BuySell Takes the values of either 'Buy' or 'Sell'

traded_price the price that trade was done

Value

An object of type FXSwap

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

```
tr1 = FXSwap(Notional=10000,MtM=30,ccyPair="EUR/USD",Si=0,Ei=10,BuySell='Buy')
```

GetTradeDetails 19

GetTradeDetails

Returns a list with the populated fields of a Trade Object

Description

Returns a list with the populated fields of a Trade Object

Usage

```
GetTradeDetails(trade)
```

Arguments

trade

A trade Object

Value

A list of fields

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
example_trades = ParseTrades()
Equity_Index_Future_trade = example_trades[[18]]
populated_fields = GetTradeDetails(Equity_Index_Future_trade)
```

HashTable-class

Hashtable Class

Description

Creates a hashtable-like object so as to represent data with a key structure (for example addon tables, rating-based factors etc). Also, it includes methods for populating the object via a .csv file and finding a value based on a specific key on an interval of keys For examples of the format of the CSVs files, please view RatingsMapping.csv or AddonTable.csv on the extdata folder in the installation folder of the library

Arguments

keys A vector of keys

values A vector of values mapping to the keys

keys_type The type of the keys values_type The type of the values

Value

An object of type HashTable

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
## loading a ratings' mapping matrix from the extdata folder
rating_table = HashTable('RatingsMapping.csv',"character","numeric")
reg_weight =rating_table$FindValue("AAA")
```

InformationAdjustedBeta

Information Adjusted Beta

Description

Calculates the Information-Adjusted Beta between the track records of two assets/strategies which covers for cases whereby the 'typical' linearity and Gaussian I.I.D assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.

Usage

```
InformationAdjustedBeta(x, y, m = 2, r = 0.2)
```

Arguments

X	a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
у	a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
m	an integer value defining the embedding dimension for the sample entropy calculation, default value is $\boldsymbol{2}$
r	a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted Beta

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://github.com/devisechain/Devise/blob/master/yellow_paper.pdf

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Beta = InformationAdjustedBeta = function(x, y, m=2, r=0.2)
```

InformationAdjustedCorr

Information Adjusted Correlation

Description

Calculates the Information-Adjusted Correlation between the track records of various assets/strategies which covers for cases whereby the 'typical' Pearson's correlation assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.

Usage

```
InformationAdjustedCorr(x, y, m = 2, r = 0.2)
```

Arguments

x	a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
У	a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
m	an integer value defining the embedding dimension for the sample entropy calculation, default value is $\boldsymbol{2}$
r	a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted correlation

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://github.com/devisechain/Devise/blob/master/yellow_paper.pdf

22 IRDSwap-class

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Corr = InformationAdjustedCorr(x, y, m=2, r=0.2)
```

IRDFuture-class IRI

IRD Future Class

Description

Creates an IRD Future Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire BuySell Takes the values of either 'Buy' or 'Sell'

Value

An object of type IRDFuture

IRDSwap-class I	RD	Swap	Class
-------------------	----	------	-------

Description

Creates an IRD Swap Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional	amount of the trade
NOCIONAL	THE HOUGHAI	annount of the trade

MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'

IRDSwaption-class 23

Value

An object of type IRDSwap

Examples

```
# the IRD Swap trade given in the Basel regulation IRD example
tr1 = IRDSwap(Notional=10000,MtM=30,Currency="USD",Si=0,Ei=10,BuySell='Buy')
```

IRDSwaption-class

IRD Swaption Class

Description

Creates an IRD Swaption Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amoun	t of the trade

MTM The mark-to-market valuation of the trade

Currency The currency set that the trade belongs to

Si The number of years that the trade will take to start (zero if already started)

Ei The number of years that the trade will expire

BuySell Takes the values of either 'Buy' or 'Sell'

OptionType Takes the values of either 'Put' or 'Call'

UnderlyingPrice

The current price of the underlying

StrikePrice The strike price of the option

Value

An object of type IRDSwaption

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

24 NormXASampEn

Examples

```
# the Swaption trade given in the Basel regulation IRD example
tr3 = IRDSwaption(Notional=5000,MtM=50,Currency="EUR",Si=1,Ei=11,BuySell='Sell',
OptionType='Put',UnderlyingPrice=0.06,StrikePrice=0.05)
```

IRDSwapVol-class

IRD Swap Volatility Class

Description

Creates an IRD Swap Volatility-based Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Value

An object of type IRDSwapVol

NormXASampEn

Normalized Cross Sample Entropy

Description

Calculates the Normalized Cross Sample Entropy of the track records of two assets/strategies based on the sample entropy.

Usage

```
NormXASampEn(x, y, m = 2, r = 0.2)
```

Arguments

Х	a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
У	a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
m	an integer value defining the embedding dimension , default value is $\boldsymbol{2}$
r	a double value defining the tolerance, default value is 0.2

Value

A double value containing the Normalized Cross Sample Entropy

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

ParseTrades 25

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Normalized_Cross_Sample_Entropy = NormXASampEn(x, y, m=2, r=0.2)
```

ParseTrades

Parse trades through a .csv file.

Description

Parse trades through a .csv file. In case no file name is given, an example file is automatically loaded containing trades corresponding to Basel's SA-CCR regulation (the example trades file can be found on the extdata folder in the installation library path)

Usage

```
ParseTrades(csvfilename)
```

Arguments

csvfilename

the name of csv file containing the trades

Value

A list of trades

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

```
## calling ParseTrades() without an argument loads a test file containing all
## the different trade types supported
example_trades = ParseTrades()
```

26 SampleEntropy

SampleEntropy	Sample Entropy
---------------	----------------

Description

Calculates the sample entropy of a track record. Sample entropy is an improvement of the approximate entropy and should produce accurate results for timeseries of smaller length like historical returns of strategies

Usage

```
SampleEntropy(returns, m = 2, r = 0.2)
```

Arguments

returns	a vector containing the track record of the underlying asset/strategy, these will be normalized during the algorithm
m	an integer value defining the embedding dimension , default value is $\boldsymbol{2}$
r	a double value defining the tolerance, default value is 0.2

Value

The sample Entropy of the input returns

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Sample_entropy

```
## calling SampleEntropy() without an argument loads the historical edhec
## data for the "Short Selling" strategy
returns = PerformanceAnalytics::edhec[,c("Short Selling")]
Sample_Entropy = SampleEntropy(returns,m=2,r=0.2)
```

VariationOfInformation 27

VariationOfInformation

Variation of Information

Description

Calculates the variation of information of the track records of two assets/strategies based on the sample entropy.

Usage

```
VariationOfInformation(x, y, m = 2, r = 0.2, normalized = TRUE)
```

Arguments

X	a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
у	a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
m	an integer value defining the embedding dimension , default value is $\boldsymbol{2}$
r	a double value defining the tolerance, default value is 0.2
normalized	a boolean value so as to bound the return value between 0 and 1, default value is TRUE

Value

A double value containing the variation of information

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
variation_of_information = VariationOfInformation(x, y, m=2, r=0.2, normalized = TRUE)
```

Index

AngularDistance, 3	GetTradeDetails, 19
Bond (Bond-class), 4	HashTable (HashTable-class), 19
Bond-class, 4	HashTable-class, 19
BondFuture (BondFuture-class), 5	
BondFuture-class, 5	InformationAdjustedBeta, 20
	<pre>InformationAdjustedCorr, 21</pre>
CDOTranche (CDOTranche-class), 6	<pre>IRDFuture(IRDFuture-class), 22</pre>
CDOTranche-class, 6	IRDFuture-class, 22
Chebyshev_distance, 6	<pre>IRDSwap (IRDSwap-class), 22</pre>
Collateral (Collateral-class), 7	IRDSwap-class, 22
Collateral-class, 7	<pre>IRDSwaption (IRDSwaption-class), 23</pre>
Commodity (Commodity-class), 8	IRDSwaption-class, 23
Commodity-class, 8	<pre>IRDSwapVol (IRDSwapVol-class), 24</pre>
CommodityForward	IRDSwapVol-class, 24
(CommodityForward-class), 9	
CommodityForward-class, 9	NormXASampEn, 24
CommSwap (CommSwap-class), 10	
CommSwap-class, 10	ParseTrades, 25
<pre>CreditIndex (CreditIndex-class), 10</pre>	Cample Fortuna 26
CreditIndex-class, 10	SampleEntropy, 26
CreditSingle (CreditSingle-class), 11	VariationOfInformation, 27
CreditSingle-class, 11	variationorim or mation, 27
CrossSampleEntropy, 12	
CSA (CSA-class), 13	
CSA-class, 13	
Curve (Curve-class), 14	
Curve-class, 14	
DynamicBeta, 15	
Equity (Equity-class), 16	
Equity-class, 16	
EquityIndexFuture	
(EquityIndexFuture-class), 16	
EquityIndexFuture-class, 16	
EquityOption (EquityOption-class), 17	
EquityOption-class, 17	
FXSwap (FXSwap-class), 18	
FXSwap-class, 18	