Studentpad

JEE-MAIN MATHEMATICS - COMPLEX NUMBERS 2022-23

Time: 90 Min Maths: Complex Numbers Marks: 120

- 01) If $\omega(\neq 1)$ is a cube root of unity and
- $(1+\omega)^7 = A + B\omega$, then find the value of A and B.
- A) 1,0
- B) 1,1
- C) 0,1
- D) -1,1
- 02) If ω is the cube root of unity, then

$$(3+5\omega+3\omega^2)^2+(3+3\omega+5\omega^2)^2=$$

- A) 4
- B) 0
- C) 4
- D) None of these
- 03) If for complex numbers z_1 and z_2 , $arg(z_1/z_2) = 0$, then $|z_1 z_2|$ is equal to
- A) $||z_1| |z_2||$
- B) $|z_1| + |z_2|$
- C) $|z_1| |z_2|$
- D) 0
- 04) $i \log \left(\frac{x-i}{x+i} \right)$ is equal to
- A) $-\pi 2 \tan^{-1} x$
- B) $-\pi + 2 \tan^{-1} x$
- C) $\pi 2 \tan^{-1} x$
- D) $\pi + 2 \tan^{-1} x$
- 05) If $x + \frac{1}{x} = \sqrt{3}$, then x=
- A) $\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$
- B) $\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}$
- C) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$
- D) $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$
- 06) $R(z^2) = 1$ is represented by
- A) the hyperbola $x^2 y^2 = 1$.
- B) parabola or a circle.
- C) the parabola $x^2 + y^2 = 1$.
- D) all the above.
- 07) The value of $\frac{4(\cos 75^{\circ} + i \sin 75^{\circ})}{0.4(\cos 30^{\circ} + i \sin 30^{\circ})}$ is
- A) $\frac{10}{\sqrt{2}}(1+i)$

- B) $\frac{10}{\sqrt{2}}(1-i)$
- C) $\frac{\sqrt{2}}{10}(1-i)$
- D) $\frac{\sqrt{2}}{10}(1+i)$
- 08) The equation $z\overline{z} + a\overline{z} + a\overline{z} + b = 0$, $b \in R$ represents a circle if
- A) $|a|^2 > b$
- B) $|a|^2 = b$
- C) $|a|^2 < b$
- D) None of these

09) If
$$\left(\frac{1+i}{1-i}\right)^x = 1$$
, then

- A) x = 2n+1, where n is any positive integer.
- B) x = 4n+1, where n is any positive integer.
- C) x = 2n, where n is any positive integer.
- D) x = 4n, where n is any positive integer.
- 10) If $i^2 = -1$, then sum $i + i^2 + i^3 + ...$ to 1000 terms is equal to
- A) 0
- B) i
- C) 1
- D) 1
- 11) One of the cube roots of unity is
- A) $\frac{1+i\sqrt{3}}{2}$
- B) $\frac{-1 + i\sqrt{3}}{2}$
- C) $\frac{1 i\sqrt{3}}{2}$
- D) $\frac{\sqrt{3} i}{2}$
- 12) If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a} =$
- A) $i \cot \frac{\theta}{2}$
- B) $\cot \theta$
- C) $\cot \frac{\theta}{2}$
- D) i $\tan \frac{\theta}{2}$
- 13) The amplitude of $\frac{1+\sqrt{3} i}{\sqrt{3}-i}$ is

- A) $\pi/2$
- B) $\pi/3$
- C) $\pi/6$
- D) π
- 14) If $\frac{1}{x} + x = 2\cos\theta$, then $x^n + \frac{1}{x^n}$ is equal to
- A) $2\sin n\theta$
- B) $2\cos n\theta$
- C) $\sin n\theta$
- D) $\cos n\theta$
- 15) If $1, \omega, \omega^2$ are the roots of unity, then
- $(1-2\omega+\omega^2)^6$ is equal to
- A) 81
- B) 243
- C) 246
- D) 729
- 16) If z = x iy and $z^{\frac{1}{3}} = p + iq$, then

$$\left(\frac{x}{p} + \frac{y}{q}\right) / (p^2 + q^2)$$
 is equal to

- A) 2
- B) 1
- C) 1
- D) 2
- 17) If $x + iy = \frac{3}{2 + \cos \theta + i \sin \theta}$, then $x^2 + y^2$ is

equal to

- A) 4x 3
- B) 3x 4
- C) 4x + 3
- D) None of these
- 18) The amplitude of $e^{e^{-i\theta}}$ is equal to
- A) $-\sin\theta$
- B) $\sin \theta$
- C) $e^{\sin\theta}$
- D) $e^{\cos\theta}$
- 19) In the argand diagram, if O, P and Q represents the origin, the complex numbers z and z + iz respectively, then the angle $\angle OPQ$ is
- A) $\frac{2\pi}{3}$
- B) $\frac{\pi}{2}$
- C) $\frac{\pi}{3}$
- D) $\frac{\pi}{4}$
- 20) Let z_1 and z_2 be two complex numbers with α and β as their principal arguments such that $\alpha + \beta > \pi$, then principal arg $(z_1 z_2)$ is
- A) $\alpha + \beta + 2\pi$
- B) $\alpha + \beta \pi$

- C) $\alpha + \beta + \pi$
- D) $\alpha + \beta$
- 21) If α and β are imaginary cube roots of unity,

then
$$\alpha^4 + \beta^4 + \frac{1}{\alpha\beta} =$$

- A) 0
- B) 1
- C) 2
- D) 3
- 22) If $z_1 = 1 + i$, $z_2 = -2 + 3i$ and $z_3 = ai/3$, where $i^2 = -1$, are collinear then the value of a is
- A) 5
- B) 4
- C) 3
- D) 1
- 23) Conjugate of 1+i is
- A) 1 + i
- B) 1 i
- C) 1
- D) i
- 24) If $(1+i\sqrt{3})^9 = a + ib$, then b is equal to
- A) 0
- B) 1
- C) 9^3
- D) 256
- 25) If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$, then $\cos 3\alpha + \cos 3\beta + \cos 3\gamma$ equals to
- A) $3\sin(\alpha + \beta + \gamma)$
- B) $3\cos(\alpha + \beta + \gamma)$
- C) $\cos(\alpha + \beta + \gamma)$
- D) 0
- 26) If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $arg(z_1) arg(z_2)$ is equal to
- A) 0
- B) -π
- C) $-\frac{\pi}{2}$
- D) $\frac{\pi}{2}$
- 27) If $\left|z \frac{4}{z}\right| = 2$, then what is the maximum value
 - ;
- 28) Let $z = a \frac{i}{2}$; $a \in IR$. Then evaluate $|i + z|^2 |i z|^2$.
- 29) $\left| \frac{1}{(2+i)^2} \frac{1}{(2-i)^2} \right| = ?$
- 30) What is the radius of the circle, represented by the equation $z\bar{z} + (2-3i)z + (2+3i)\bar{z} + 4 = 0$?