

Containerization and Docker

Hany Hesham

Outline

- 1 What is Containerization?
- 2 Why it's important for modern application development and deployment?
- What is Docker and how it enables containerization?
- 4 What are Docker images and containers?

What is a software?

Virtualization

Spinning multiple servers on one powerful server

Virtualization Deployments

Virtualizations Issues

Operation overhead for companies

Virtualizations Issues

Higher **risk** because of the hidden configurations and custom setup

Higher cost

Containers

"Containers are packages of software that contain all of the necessary elements to run in any environment" -Google definition

What is Containerization?

- Containerization is a process of packaging an application and its dependencies into a self-contained unit that can run anywhere
- Containerization allows developers to create and deploy applications faster, easier, and more reliably

What is Containerization?

- Containerization also enables applications to run in isolated environments, which improves security, performance, and resource utilization
- Containerization is one of the key technologies behind the rise of cloud computing and microservices

What is Containerization?

Control groups

You can use agroups to limit resources. This process can only use 256MB of memory and 1 vCPU

+ Namespaces

You can use namespace to isolate processes. This process sees only its network traffic

= Containers

Containerization Benefits

Application isolation 4 Less hardware resources Containerization benefits Constant deployment 3 Quick startup time across multiple OS and environments

Virtualization VS Containerization

What is Docker?

- Testing Docker is an open-source platform that provides tools and services for building running and managing containers
- Docker uses a <u>client-server architecture</u>, where the Docker client communicates with the Docker daemon (or server) to perform various operations on containers

What is Docker?

- Docker provides a registry services called Docker Hub, where you can store and share your container images
- Docker supports multiple operating systems such as Linux, windows and macOS which make it perfect for development and deployment

What is Docker Image?

- Docker images are the building blocks of containers, they are files that contain all information needed to create and run a container
- Docker images are composed of layers, which are snapshots of the file system at different stages of the container creation process
- Docker images are immutable, meaning they cannot be modified once they are created, instead we create different image tags

What is Docker Image?

- Docker images can be created using a Dockerfile, which is a text file that contains instructions for building an image
- Docker images can be shared and transferred to any registry
- You can run as many containers as you can from one docker image

Dockerfile Example

```
FROM python:3
WORKDIR /usr/src/app
COPY . .
RUN pip install --no-cache-dir -r requirements.txt
EXPOSE 5000
CMD ["python", "./app.py"]
```


Dockerfile Example

What is Docker Container?

- Docker containers are instances of Docker images that run in an isolated environment
- Contains can be created using the docker run command which takes an image name as an input and it start a docker container based on that image
- You can run multiple containers and they can communicate with each others using the docker network

What is Docker Container?

Dockerfile

Docker Image

Docker Container

What is Docker Benefits?

Portability

Docker containers can run on any platform that supports Docker, without requiring any change to the application code or configuration

Security

Docker containers provide isolation and sandboxing for application which reduces the risk of malicious attacks or accidental errors

Scalability

Docker containers can be scaled up or down according to the demand or resource availability

Efficiency

Docker containers use less resources than traditional virtual machines, as they share the same kernel and do not need to run a separate operating system for each application

Docker Use Cases

Development

Docker can be used to create consistent and reproducible development environment that match production environment

Production

Docker can be used to deploy application in production environments with high availability, reliability and scalability

Testing

Docker can be used to automate and streamline the testing process by creating and destroying containers on demand

Cloud Computing

Docker can be used to leverage the benefits of cloud computing, such as elasticity, flexibility and costeffectiveness

Conclusion

- Containerization is a powerful technology that enables modern application development and deployment
- Docker is a leading platform that provides tools and services for containerization
- Docker offers many benefits for developers and operators such as portability, scalability, security and efficiency
- Docker can be used for various scenarios, such as development, testing, and production

Workshop

Installation

Please follow the steps from this <u>link</u> to download and install Docker desktop on your laptop

Common Docker CLI

- docker ps
- docker ps -a
- docker images
- docker stop
- docker start
- docker restart
- docker rm
- docker rmi
- docker kill

- list running containers
- list running & stopped containers
- list available images
- stop container, provide Container ID
- start stopped container, provide Container ID
- stop then restart container, provide Container ID
- remove stopped container, provide Container ID
- remove image provide Image ID
- forcibly stop (kill) container, provide Container ID

https://dockerlabs.collabnix.com/docker/cheatsheet/

Exercise 1

- Pull Nginx image
- Run Nginx container
- View running containers
- Stop Nginx container
- Restart Nginx container
- Remove the Nginx container
- Nginx: is open source software for web serving, reverse proxying, caching, load balancing, media streaming, and more

Exercise 2

Build and run a custom nginx Docker image with your own home page

- Create a Dockerfile
- Create a new file index.html
- Build your image
- Run a new container from your image


```
<html>
    <hi>Hello from NGINX!</hi>
    </html>
```


