$$\Rightarrow B'(B\overrightarrow{x}) = B^{-1}(A\overrightarrow{x})$$

$$\Rightarrow \vec{x} = \vec{g} \cdot (\vec{A} \vec{x})$$

$$\Rightarrow \overrightarrow{x} = \lambda(\overrightarrow{b}'\overrightarrow{x})$$

and eigenvector (x2) remains the same.

And, for real symmetric matrix,

SD. by all means, B and BT & will have same igenvalues and igenuarector.

BT = (QNQT)T = (QT)T NT QT = QNQT, showing that

BT has some igenvalues and igenuactors

Matrix
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 5 & 2 & 0 \\ \hline 7 & 4 & 9 \end{bmatrix}$$
From definition,

 $A\vec{x} = A\vec{x} \Rightarrow A - A\vec{y}\vec{x} = \vec{y}$

Equation has a non-zero solution if and only if

 $A = \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 9 - 4 & 4 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 9 - 4 & 4 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 9 - 4 & 4 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 9 - 4 & 4 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 9 - 4 & 4 \\ 4 & 4 \end{bmatrix}$

For, $A = \begin{bmatrix} 9 & 2 & 8 \\ 4 & 4 \end{bmatrix}$

For, $A = \begin{bmatrix} 9 & 2 & 8 \\ 4 & 4 \end{bmatrix}$

Travesian Climination

 $A - \lambda I = \begin{bmatrix} 7 & 0 & 0 \\ 5 & 0 & 0 \end{bmatrix}$

$$\frac{1}{4} \cdot \frac{1}{4} = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \cdot \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & \frac{1}{4} & 6 \end{bmatrix}$$

$$\frac{1}{5} \times \frac{1}{4} = 0 \qquad \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{7} & \frac{1}{4} & \frac{1}{$$

For,
$$4 = 8$$
 $A - 4, I = \begin{bmatrix} 1 & 0 & 0 \\ 5 & -6 & 8 \end{bmatrix}$
 $\therefore x_1 = 6$
 $\Rightarrow x_1 = 6x_2 = 0$
 $\Rightarrow x_2 = 0$
 $\Rightarrow x_3 = 0$
 $\Rightarrow x_3$

COLPE

$$\frac{7}{69} \times 3$$

$$= \begin{cases}
\frac{7}{69} \times 3
\end{cases}$$

$$= \begin{cases}
x_3 \begin{bmatrix} \frac{7}{69} \\ \frac{5}{69} \end{bmatrix}
\end{cases}$$
Let, $x_3 = 1$, then $\vec{x} = \begin{bmatrix} \frac{7}{69} \\ \frac{5}{69} \end{bmatrix}$

$$\frac{1}{2} = 8$$

$$\vec{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercise 2.1

a. For a matrix $A \in \mathbb{R}^{m^*n}$, it can be decomposed into $A = UDV^T$

Now, for
$$A^{T}A = (UDV^{T})^{T} * (UDV^{T})$$

= $(U^{T}D^{T}V) * (UDV^{T})$
= $VD^{2}V^{T}$ [$D^{T} = D \& U^{T}U = I$]

Given, D contains the eigenvalues of $A^{T}A$, so from $A^{T}A = VD^{2}V^{T}$, we can come to the conclusion that the singular values of A are the square root of the eigenvalues of $A^{T}A$.