

μPD23C256E 32,768 x 8-BIT MASK-PROGRAMMABLE CMOS ROM

Revision 1

Description

The μ PD23C256E is a 262,144-bit Read-only Memory utilizing CMOS silicon gate technology. The device is static in operation, organized as 32,768 words by 8 bits, and has three-state outputs. All inputs and outputs are fully TTL-compatible. The Output Enable pin is mask-programmable and can be specified by selecting 1, 0, or don't-care data. The μ PD23C256E is packaged in a 28-pin plastic (μ PD23C256EC) DIP and a 28-pin miniflat package (μ PD23C256EG). Pinout is compatible with μ PD27256 EPROMs.

Features

- ☐ 32,768-word by 8-bit organization
- □ I/O TTL-compatible
- ☐ Three-state output
- ☐ Single +2.5V to +6.0V power supply
- ☐ Available in plastic DIP and miniflat packages
- □ Low power consumption
 - Active: 40mA max
 - Standby: 30 µA max
- ☐ 2 performance ranges:

	A	Power Supply				
Device	Access Time	Active	Standby			
μPD23C256E	200ns	25mA	30 μ A			
μPD23C256E-1	150ns	30mA	30 μ A			

Block Diagram

Pin Configuration

Pin Identification

	Pin	
No. Symbol		Description
1	NC	No Connection
2-10, 21, 23-27	A ₀ -A ₁₄	Address inputs
11-13, 15-19	00-07	Data Outputs
14	GND	Ground
20	CE	Chip Enable
22	0E	Output Enable ①
28	V _{CC}	Single +2.5V to +6.0V Power Supply

Note: ① The active level of the OE input is specified by 0, 1, or x where x equals don't-care data.

Absolute Maximum Ratings*

Supply Voltage, V _{CC}	-0.3V to +7V
Input Voltage, V _I	- 0.3V to V _{CC} + 0.3V
Output Voltage, V _O	-0.3V to V _{CC} +0.3V
Operating Temperature, Tops	10°C to + 70°C
Storage Temperature, T _{STG}	-65°C to +150°C

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = -10^{\circ}C \text{ to } + 70^{\circ}C$

Parameter			Limits			Test Conditions
	Symbol	Min	Typ	Мах	Unit	
Input Capacitance	C,			10	pF	f = 1MHz
Output Capacitance	Co			15	pF	f = 1MHz

DC Characteristics

 $T_A = -10^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5.0V \pm 10\%$

Parameter			Limit	ls		Test		
	Symbol	Min	Тур	Max	Unit			
input High Voltage	V _{IH}	2.2		V _{CC} + 0.3	٧			
input Low Voltage	VIL	-0.3		0.8	٧			
Output High Voitage	V _{OH}	2.4			٧	I _{OH} = -400μA		
Output Low Voltage	V _{OL}			0.4	٧	l _{OL} = +3.2mA		
Input Leakage Current High	1 _{LIH}			10	μА	V _i = V _{CC}		
Input Leakage Current Low	ILIL			- 10	μ Α	V _i = 0V		
Output Leakage Current High	I _{LOH}			10	μ Α	V _O = V _{CC} (Chip deselected)		
Output Leakage Current Low	I _{LOL}			- 10	μА	V _O = 0V (Chip deselected)		
			14	25	mA	- CE = V _{II} μPD23C256E		
Da C at	lcc1		17	30	mΑ	μPD23C256E-1		
Power Supply Current	I _{CC2}		0.2	1.5	mA	CE = V _{IH} (Standby mode)		
	I _{CC 3}		0.2	30	μΑ	CE = V _{CC} ~ 0.2V (Standby mode)		

DC Characteristics (Cont.)

 $T_A = -10^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +2.5V \text{ to } +6.0V$

Parameter	Symbol	Min	Limits Typ	Max	Unit	Test Conditions
Input High Voltage	V _{IH}	0.7 x V _{CC}		V _{CC} +0.3V	٧	
Input Low Voltage	V _{IL}	- 0.3 - 0.3		0.55 0.8	٧	V _{CC} = 2.5V to 4.5V V _{CC} = 4.5V to 6.0V
Output High Voltage	V _{OH}	0.75 V _{CC}			٧	1 _{OH} = -400µA
Output Low Voltage	V _{OL}			0.45	٧	$I_{OL} = +400 \mu A$
Input Leakage Current High	I _{CIH}			10	μ Α	$V_1 = V_{CC}$
Input Leakage Current Low	ILIL			- 10	μΑ	$\mathbf{v}_{\mathrm{I}} = \mathbf{o}\mathbf{v}$
Output Leskage Current High	I _{LOH}			10	μ Α	V _O = V _{CC} (Chip deselected)
Output Leakage Current Low	I _{LOL}			- 10	μΑ	V _O = 0V (Chip deselected)
			3	10	mA	V _{CC} = +3.0V ± 10% μPD23C256E
			6	18	mA	V _{CC} = +5.0V ± 10%
Power Supply	I _{CC1}		3.5	10	mA	V _{CC} = +3.0V ± 10% μPD23C256E-1
Current			7	20		$V_{CC} = +5.0V \pm 10\%$
	lcc3		0.1	30	μА	$V_{CC} = +3.0V \pm 10\% \ \overline{CE} = V_{DO} - 0.2V$
			0.2	30	μΑ	$V_{CC} = +5.0V \pm 10\%$ (Standby mode)

AC Characteristics

T_A = -10°C to +70°C; V_{CC} = +5.0V ±10%

Parameter		Limits							<u> </u>
	Symbol	23C256E			23C256E-1			•	Test Conditions
		Min	Тур	Max	Min	Тур	Max	Unit	1
Access Time	t _{ACC}			200			150	ns	
Chip Enable Access Time	t _{CE}			200			150	ПВ	
Output Enable Access Time	t _{O€}	10		100	10		100	пв	
Output Hold Time	t _{OH}	0			0			Пŝ	
Output Disable Time	t _{DF}	0	-	90	0		90	ns	2

Notes: 1 Input voltage, t_R, t_F = 20ns;

- Uniput voltage, I_R, I_F = 20ns; Input and output timing reference levels = 0.8V and 2.0V; Load = 1TTL + 100pF. ② t_{DF} is specified from Œ or OE, whichever occurs tirst.

AC Characteristics (Cont.)

T_A = -10°C to +70°C; V_{CC} = +2.5V to +6.0V

				Lin	its					
Parameter	Symbol	23C256E			23C256E-1			•	Test Conditions	
		Min	Тур	Max	Min	Тур	Max	Unit	1	
Access Time	tACC			650			500	ns		
Chip Enable Access Time	t _{CE}			850			500	ns		
Output Enable Access Time	t _{OE}			300			300	ns		
Output Hold Time	t _{OH}	0			0			ns		
Output Disable Time	tof	0		250	0		250	ns	2	

Notes:
Input and output timing reference levels = V_{IL} and V_{IH};
Load = 150pF.

t_{DF} is specified from CE or OE, whichever occurs first.

Timing Waveform

Definitions

Access Time, t_{ACC}

Access time is the maximum time between the application of a valid address and the corresponding valid data out.

Chip Enable Access Time, $t_{\rm CE}$

The maximum time between application of a valid chip enable input and the corresponding valid outputs.

Output Enable Access Time, toe

The maximum time between application of a valid output enable input and the corresponding valid outputs.

Output Hold Time, toH

Output hold time is the minimum time after an address change that the previous data remains valid.

Output Disable Time, the

Output disable time is the delay between chip selects becoming false and output stages going to the high-impedance state. $t_{\rm DF}$ is specified from $\overline{\rm CE}$ or OE, whichever occurs first.