Homework #1

5. Consider the family of differential equations

$$x' = ax + \sin x$$

where a is a parameter.

a. Sketch the phase line when a=0.

$$x' = \sin x$$

Equilibrium points at πk , where $k \in \mathbb{Z}$

$$x'' = \cos x = \begin{cases} 1 & x = 2k\pi \\ -1 & x = (2k+1)\pi \end{cases}$$

So if $x=2k\pi$ it is a source and if $x=(2k+1)\pi$ it is a sink

b. as a increases from -1 to 1

When a=-1, we have 1 equilibrium point at x = 0, and it seems to be a sink.

We keep gaining equilibrium points in quantities of 2 as \boldsymbol{a} increases towards 0, since

- 1. For every $a=-(rac{2}{(4m+1)\pi})$, with m an integer ≥ 0 , we are "adding" one more equilibrium point at $x=rac{(4m+1)\pi}{2}$, since ax=-1 and $\sinrac{(4m+1)\pi}{2}=1$
 - 1. Example: $a=-\frac{2}{5\pi}$

- 2. for any additional equilibrium point x, with $ax + \sin x = 0$, we have -x as an equilibrium point as well: $a(-x) + \sin(-x) = -ax \sin x = -(ax + \sin x) = 0$, since ax and $\sin x$ are both odd functions.
- 3. Then once we have $a\in (-\frac{2}{(4m+1)\pi},-\frac{2}{(4m+5)\pi})$, the equilibrium points at $x=\pm\frac{(4m+1)\pi}{2}$ each split into 2 more equilibrium points.

Example: $a=-rac{2}{5\pi}+.01$

And so we keep gaining equilibrium points until we hit a=0, where we have infinitely many points, as can be seen from part (a).

As we go from a=0 to a=1, we observe a similar phenomenon as that of when a increased from -1 to 0, except that we lose equilibrium points as we a increases, and whenever $a=\frac{2}{(4m+3)\pi}$, with m a nonnegative integer, we have that $x=\pm\frac{(4m+3)\pi}{2}$ are equilibrium points: at these x, $ax=\pm 1$ and $\sin x=\mp 1$ so $ax+\sin x=0$.

Examples:

When a=1 only 1 equilibrium point at x=0 and is a source.

(c) The bifurcation diagram:

