Task 1: Linear Regression

Machine Learning Assignment

Matthew Doherty

Rhodes University Lecturer: Dane Brown May 13, 2019

Keywords: Machine Learning

Part A

Please see 3_4_Linear_Regression.py.

Part B

Generalization error provides a measure of how accurately an algorithm is able to predict output for unseen values, thus generlisation error is minimised when a model does not overfit the data. A means of determining generalization error for the linear regression model is given by a loss function such as Mean Square Error (MSE):

R_Squared = 0.760 MSE = 14.996

Whereas the generalization error for ridge regression model is given by:

R_Squared = 0.763 MSE = 14.775

R-squared is a measure of how well outcomes are replicated by the model, or how much of the variance of the dependent variable is explained by the model. Since R-squared for the Ridge Regression is greater than R-squared for Linear Regression, we therefore can conclude that the Ridge regression

model better generalizes to unseen data points than the Linear Regression model in this example. A good model should be able to minimize MSE which demonstrates the quality of the estimator. This further confirms the model's efficacy.

Part C

The predicted plot for the Ridge regression model more closely fits a line to the ground truth data points, that is minimizes mean squared error. Therefore the Linear model overfits its model when training whereas the Ridge regression model introduces a regularization term to the model which allows it to better predict new data points and avoid overfitting the testing set by simplifying the model. Ridge Regression Regression tries to strike a balance between overfitting and underfitting as is expressed visually in the plots.

Part D

A measure of performance in Linear Regression is Mean Squared Error (MSE). It measures the average of the squares of errors. The closer the value is to 0 the better the quality of the estimator has predicting values.

For the Linear Regression Model:

```
R_Squared = 0.763
MSE = 14.996
```

For the Ridge Regression Model:

```
R_Squared = 0.763
MSE = 14.775
```

Since ridge regression provides a lower MSE value we can conclude that it is a better quality loss function to model the given data at this test sample size. Hence there is an improvement in performance.

Part E

```
Linear Regression

R-squared = 0.760

MSE = 14.996

Ridge Regression

R-squared = 0.763

MSE = 14.775

Lasso Regression

R-squared = 0.701
```

Lasso Regression has a smaller R-squared value and a larger MSE value than both of the other models. The generalizability of the model to new data is therefore worse due to the lower R-squared value. In addition the performance of the model in this context is worse due to producing a large mean squared error, which speaks to the inability of the model to account for the variance of the data when compared to the other two models in this context.

Part F

The following are the results from a test size of 0.5. *Linear Regression*

R-squared = 0.690 MSE = 25.175

Ridge Regression

R-squared = 0.684 MSE = 25.632

Lasso Regression

R-squared = 0.690 MSE = 25.175

The following are the results from a test size of 0.9. *Linear Regression*

R-squared = 0.676 MSE = 28.430

Ridge Regression

R-squared = 0.671 MSE = 28.430

Lasso Regression

R-squared = 0.676 MSE = 28.014

These sets of results ranging from test sizes of 0.1 (previous question), 0.5 and 0.9 show a changing relationship given different sized testing data. In terms of the two loss functions ridge regression has shown itself to produce more a generalizable model when given a small test set. Whereas linear regression is better when given a larger test set to train on in the context of this dataset. Therefore a model is only useful given a context where it excels.

Task 2

Please see file 5_Logistic-Regression_Classifier.py