T15

- 1. Encuentra el mínimo de f(x,y)=xy sujeto a la restricción x+y=1. ¿Con las mismas condiciones, existe el máximo ? Explica.
- 2. Encuentra los máximos y mínimos de la función f(x,y,z)=x-2y+2z sobre la esfera $x^2+y^2+z^2=1$.
- 3. Encuentra las distancias máximas y mínimas desde el origen a la curva $5x^2 + 6xy + 5y^2 = 8$.

Sugerencia: es más sencillo minimizar la distancias al cuadrado.

- 4. Encuentra el mínimo de $f(x, y, z) = x^2 + 2y^2 + z^2$ con la restricción x + y + z = 0 y x z = 1.
- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ de la forma f(t) = mt + c, donde m y c son constantes. Demuestra que el máximo y mínimo de f, restringida al intervalo [a, b] se alcanzan en los extremos del intervalo.
- 6. Para las siguientes funciones armónicas, encuentra el máximo y mínimo absolutos sobre la región dada.
 - (a) $f(x,y) = \log(x^2 + y^2)$, sobre el anillo $S = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$.
 - (b) $f(x,y) = e^y \cos(x)$, sobre el triángulo (relleno) con vértices $(0, \log(5))$, $(-\pi, 0)$, $(\pi, 0)$.
 - (c) $f(x,y,z)=x^2-y^2+z$, sobre la esfera $S=\{(x,y)\in\mathbb{R}^2:x^2+y^2+z^2=1\}.$
- 7. Un canal de riego tiene lados y fondo de concreto con sección transversal trapezoidal de área $A=y(x+y\tan(\theta))$ y perímetro húmedo $P=x+\frac{2y}{\cos(\theta)},$ donde x es el ancho del fondo, y la profundidad del agua y θ la inclinación lateral, medida a partir de la vertical. El mejor diseño para una inclinación fija θ se halla resolviendo P= mínimo sujeto a la condición A= constante. Mostrar que $y^2=\frac{A\cos(\theta)}{2-\cos(\theta)}.$
- 8. Considera la función $f(x,y) = x^2 + xy + y^2$, en el disco unitario $D = \{(x,y) : x^2 + y^2 \le 1\}$. Usa multiplicadores de Lagrange para maximizar f en el circulo unitario $\partial D = \{(x,y) : x^2 + y^2 = 1\}$. Usa lo anterior para encontrar los máximos y mínimos absolutos de f en D.
- 9. Minimiza la función $f(x,y) = x^2 + xy + y^2$ con la restricción $x + y \ge 4$.
- 10. Maximiza la función f(x,y,z)=2x+3y+5z sujeto a las restricciones $x\geq 0, y\geq 0, z\geq 0$ y $x+y+z\leq 1$.
- 11. (a) Encuentra máximo de la función $f(x_1, \ldots, x_n) = (x_1 \cdots x_n)^2$, sujeta a la restricción $x_1^2 + \cdots + x_n^2 = 1$.

(b) Usando el inciso anterior demuestra la desigualdad aritmético geométrica, es decir, para escalares mayores o iguales a cero, a_1, \ldots, a_n , se cumple

$$\sqrt[n]{a_1 \cdots a_n} \le \frac{a_1 + \cdots + a_n}{n}$$

Sugerencia: considera $x_i = \frac{\sqrt{a_i}}{\sqrt{a_1 + \dots + a_n}}, i = 1, \dots, n.$

12. (a) Sean p>1, q>1 tal que $\frac{1}{p}+\frac{1}{q}=1$. Demuestra que el mínimo de la función

$$f(x,y) = \frac{x^p}{p} + \frac{y^q}{q}$$

sujeta a la restricción xy = 1 es 1.

(b) Usando el inciso anterior, prueba que si a y b son reales mayores o iguales a cero, entonces

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

(c) Sean $a_1,\dots,a_n,\,b_1,\dots,b_n,$ numeros reales mayores o iguales a cero, demuestra la desigualdad

$$\sum_{j=1}^{n} a_{j} b_{j} \leq \left(\sum_{j=1}^{n} a_{j}^{p}\right)^{1/p} \left(\sum_{j=1}^{n} b_{j}^{q}\right)^{1/q}$$

Sugerencia: sean $A = \left(\sum_{j=1}^n a_j^p\right)^{1/p}$, $B = \left(\sum_{j=1}^n b_j^q\right)^{1/q}$, aplica la desigualdad del inciso anterior a $a = a_j/A$, $b = b_j/B$.