	Sudoku	Hamiltonian Cycle	Discrete Log (variant)	Discrete Log (Schnorr variant)
	Partial sudoku Ψ is solvable	Graph G is Hamiltonian ¹	Let $\mathbb G$ of order q and $y \in \mathbb Z_q$ be fixed. I know $x \in \mathbb Z_q$ such that $[x] = y$	Let $\mathbb G$ of order q and $y\in \mathbb G$ be fixed. I know $x\in \mathbb Z_q$ such that $[x]=y$
	Solution $\overline{\Psi}$	Hamiltonian cycle v	x	x
Iteration				
1. Rerandomization by P of	Pick set isomorphism i on $\{1, \ldots, 9\}$	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)		
1. Problem Statement	1. $\Psi' := i[\Psi]$ is solvable	1. $G' := i[G]$ is Hamiltonian	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random
2. Solution	2. $\overline{\Psi'}:=i[\overline{\Psi}]$ is solution to Ψ'	2. $v' := i[v]$ is Hamiltonian cycle for G'^2	y v	y v
2. Commitment by P	Send all of $ \bullet \ \left(\mathrm{com}(\Psi_{i,j}) \right)_{i,j} \\ \bullet \ \mathrm{com}(\Psi') $	Send all of G' • $com(i)$ • $com(v')$	Send all of $ \hat{g} := [r] $ $ \cdot \operatorname{com}(r) $	Send $[r]$
3. Pose Challenge by V	Ask for one of • permuted row i • permuted column j • permuted square k • permuted statement In total, this gives $9+9+9+1=28$ challenge types	Ask for one of $ \bullet \ \ \text{isomorphism} \ i \colon G \to G' \\ \bullet \ \ \text{Hamiltonian cycle in} \ G' $	Ask for one of r $x+r$ and denote response by resp.	Pick $c \leftarrow \mathbb{Z}_q$ uniformly at random. Ask for $cx + r$ and denote response by resp.
4. Respond to challenge by P	canonical: respond exactly with what was required			
5. Verify response by V	 Check that no numbers occur twice in row, column, or square, or that the permuted statement is in fact a permutation 	Check • conditions on isomorphism, • or check that cycle is indeed Hamiltonian	Check • that indeed $\hat{g}=[\text{resp.}]$ • that $[\text{resp.}]=y+\hat{g}$ namely if indeed $[x]=y$, then $y+\hat{g}=[x]+[r]=[x+r]=[\text{resp.}]$	Check that [resp.] = $cy + [r]$
Completeness P can convince V in case P actually had a solution	Since step 4 above is canonical, provers can convince with prob. of 1			
Soundness P cannot convince V without having a solution	Probability of convincing w/o sol. is $\approx \left(\frac{1}{28}\right)^{\text{\#iter}}$	Probability of convincing w/o sol. is $ \left(\frac{1}{2}\right)^{\text{\#iter}} $	Probability of convincing w/o sol. is $ \left(\frac{1}{2}\right)^{\# iter} $	todo
Zero Knowledge V doesn't learn anything about the witness	todo	In each round, V learns either a useless isomorphism or a Hamiltonian cycle in $G' \cong G$. Since the graph isomorphism problem is believed to be hard, learning about such a cycle in G' without learning the isomorphism is useless as well	In each round, V learns $either$ a useless random r or $x+r$. In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$, we also have $(x+r) \sim \mathcal{U}(\mathbb{Z}_q)^3$	In each round, V only learns $[r]$ and $cx + r$ for a c chosen by them. Due to DLOG assumed to be hard in \mathbb{G} , in the eyes of V we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence $(cx + r) \sim \mathcal{U}(\mathbb{Z}_q)^3$.

¹ This means it contains a so-called Hamiltonian cycle that is a path visiting every node exactly once.

Author & License: Navid Roux.

This work is licensed under a Creative Commons

"Attribution-ShareAlike 4.0 International" license.

Useful Links

- Sudoku (slightly different challenges are given, though)
 - https://manishearth.github.io/blog/2016/08/10/interactive-sudoku-zero-knowledge-proof/
 - -https://manishearth.github.io/sudoku-zkp/zkp.html
- Hamiltonian Cycles: [Wik20b]
- Discrete Log (variant): [Wik20a]
- Discrete Log (Schnott variant)
 - $-Lecture\ Notes\ by\ Prof.\ Schröder\ on\ "Privacy-Preserving\ Cryptocurrencies"\ (currently\ non-public;\ only\ accessible\ to\ students\ enrolled\ in\ their\ course)$

ing the isomorphism is useless as well.

-[Sch 90]

References

- [Sch90] C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-6.
- [Wik20a] Wikipedia contributors. Zero-knowledge proofs (Discrete log of a given value) Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Discrete_log_of_a_given_value.
- [Wik20b] Wikipedia contributors. Zero-knowledge proofs (Hamiltonian cycle for a large graph)— Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Hamiltonian_cycle_for_a_large_graph.

 $^{^{2}}$ Here, v is effectively a sequence of edges, on which the isomorphism is applied elementwise.

³ This is a simple lemma holding for arbitrary groups. The security of the OTP is based on this, usually phrased in the language of the group $(\{0,1\}^n, \oplus)$.