Claims

What is claimed is:

- [c1] A directory server comprising:
 - a supplier server; •
 - a consumer server in communication with the supplier server;
 - a plurality of pluggable services that manage replication of data contained within the directory server from the supplier server to the consumer server; and
 - a change sequence number used to determine ordering of operations performed on the consumer server;

wherein replication of data is managed using the change sequence number.

- [c2] The directory server of claim 1 wherein the change sequence number is a tuple comprising a time stamp portion, a sequence number portion, a replica identifier portion, and a sub-sequence number portion.
- [c3] The directory server of claim 1, wherein a highest value of the change sequence number is maintained in stable storage.
- [c4] The directory server of claim 2, wherein the timestamp portion is represented by logical time and is thirty-two bits in length.
- [c5] The directory server of claim 2, wherein the timestamp portion comprises a network offset component.
- [c6] The directory server of claim 2, wherein the sequence number portion is generated by an incremental counter and is sixteen bits in length.

- [c7] The directory server of claim 2, wherein the replica identifier portion denotes an identifier of the consumer server that generated the change sequence number and is sixteen bits in length.
- [c8] The directory server of claim 2, wherein the sub-sequence number portion is used to order operations within a single operation and is sixteen bits in length.
- [c9] The directory server of claim 2, wherein the change sequence number is assigned when an entry is modified by a client.
- [c10] A method of generating a change sequence number, comprising:
 initializing the change sequence number;
 retrieving a timestamp portion;
 retrieving a sequence number portion;
 retrieving a replica identifier portion; and
 retrieving a sub-sequence number portion;
 wherein the timestamp portion, the sequence portion, the replica identifier portion,
 and the sub-sequence portion are joined into a tuple that forms the change
 sequence number.
- [c11] The method of claim 10, further comprising:

 maintaining a highest value of the change sequence number in stable storage.
- [c12] The method of claim 10, wherein the timestamp portion is represented by logical time and is thirty-two bits in length.
- [c13] The method of claim 10, wherein the timestamp portion comprises a network offset component.
- [c14] The method of claim 10, wherein the sequence number portion is generated by an incremental counter and is sixteen bits in length.

- [c15] The method of claim 10, wherein the replica identifier portion denotes an identifier of a server that generated the change sequence number and is sixteen bits in length.
- [c16] The method of claim 10, wherein the sub-sequence number portion is used to order operations within a single operation and is sixteen bits in length.
- [c17] The method of claim 10, wherein the change sequence number is assigned when an entry is modified by a client.
- [c18] An apparatus for generating a change sequence number, comprising:

 means for initializing the change sequence number;

 means for retrieving a timestamp portion;

 means for retrieving a sequence number portion;

 means for retrieving a replica identifier portion;

 means for retrieving a sub-sequence number portion; and

 means for joining the timestamp portion, the sequence portion, the replica

 identifier portion, and the sub-sequence portion into a tuple that forms the

 change sequence number.