Part-B
1. Types of data structure:
> Data structure: Particular way of organizing data in a compu
so that it can be used effectively.
L Non-Primitive _ Linear _ ex: Graph
List out the various operations on date structures:
-> Transversing - access each element
-> Searching - Find any element
-s Inserting - moset any element
-> Dalatina Calete any element
-> Souting - sort the elements in desired
-> Merging - Merging arrays of elements
. Define abstract data time with me example
Define abstract data type with one example. >> 4t is a type/class for objects whose behaviour
is defined by a set of values & operations
It is easier to understand and its Implementations
can be changed with requiring changes to the program.
ex) Stadus and queues. (LIFO \$ FIFO).
. What is time complexity of an algorithm?
> Time complexity is the amount of time taken by
Time complexity is the amount of the length an algorithm to sum, as a function of the length
of the Input.
- Unlar Steel
ex!) Time complexity Binary search -> O(logn).
. Significant by Unitations of Big 0:
Significance & Unitations of Big 0:- Significance & Unitations of Big 0:- Big o notation is used to express the upper bound of Big o notation is used to express the upper bound of
A Hon us well
The euntime of an algorithm. The euntime of an algorithm. The worst-case time complexity of an
I withm. be marine becaused
augori
algorithm. algorithm. It analyses & calculates the time & memory required or the execution of an algorithm for an input value.
for the execution

Limitations

- -> Sometimes ignores the important constants
- -> Atthough it shows growth of algorithm wet size, It does not show the related efficiency.

7) Discuss the complexity of Insertion sort. >> Best case :- Occurs when array is already sorted. · Unear running time le, O(n) -> As, in each Heration, first element of unsorted list is compared to best last element of sorted list. Worst Case: · Quadratic running time (e, 0 (n2) -> As, in each iteration of inner loop, elements of sorted array must be shifted to insent new element. Anerage Case + · Quardratte humming time. · At least (k-1)/2 comparisons are made. 8) Discuss the complexity of bubble nort: >> Total passes => N-1 1st pass -> comparisons are made to place highest element in correct position. [N-1 comparisons are made.] 2nd pass -> N-2 comparisons are made and second highest element is placed in its position. 2To find complexity: n > Total no. of elements $F(n) = (n-1) + (n-2) + \dots + 3 + 2 + 1$ $\Rightarrow f(n) = n(n-1)$ Time required to execute it is proportional to n2] \Rightarrow $F(n) = \frac{n^2}{2} + o(n) = \frac{o(n^2)}{2}$ 9) Discuss the complexity of binary search! n -> no. of elements in array. \Rightarrow Complexity \Rightarrow f(n)=> Complemely depends upon no. of comparisons made. .. In each comparison, size of search segment is halved. 1e, 2 f(n) > n $(or) F(n) = log_2 n$. 10) What is the need of using data structures? >> (1) Helps in management of huge amounts of data. (ii) Helps in efficient data search and retrieval. (iii) Helps in storing data in a specific manner in memory. (1) They are used in every program / software system to arrange date.