National Formosa University MDE

BG-6 Final Project

時鐘機構

Design and Manufacturing of an Mechanical timer Projectt

學生:

設計二乙 40623228 陳永錩

設計二乙 40623236 黄子峰

設計二乙 40623233 謝宗宏

設計二乙 40623230 陳柏亦

設計二乙 40623214 吳家文

設計二乙 40623237 黄博隆

指導教授: Dr. Scrum

目錄

目錄	
第一章	專題介紹
1.1	專題介紹
1.2	零件介紹
第二章	進度安排
2.1	每周進度
第三章	困難與解決方案
3.1	問題處
3.2	解決方法
第四章	工作分配
4.1	Bg-6 小組工作分配
第五章	參考資料
5.1	參考資料來源

第一章 專題介紹

1.1 專題介紹

專題內容: 時鐘機構 Mechanical timer

利用齒輪間的運作,達到可以顯示幾點幾分幾秒的時鐘機構。

以步進馬達的方式來當作動力來源,確保時間的正確。

• 運轉影片 1, 運轉影片 2

圖 1.1: clock

- BG-6 github
- BG-6 blog
- BG-6 website

1.2 零件介紹

內部齒輪機構

利用齒輪與齒輪之間的運轉及速度配置,達到我們想要的時鐘計時方式。

圖 1.2: gear

第二章 進度安排

2.1 每周進度

• 第十周

小組討論決定專題題目,最終選擇(時鐘機構)為小組專題。

• 第十一周

小組討論如何製作時鐘機構, 並如何設計及製作出來。

• 第十二周

搜尋各種時鐘機構參考資料及設計初始的樣子。

• 第十三周

决定用步進馬達當作時鐘機構的動力來源,因為步進馬達可以精準地控制時鐘跑一圈的時間。

• 第十四周

繪製齒輪及增加新的細節部分。

• 第十五周

結合齒輪並測試是否能正確運作。

• 第十六周

成品完成。

第三章 困難與解決方案

3.1 問題處

• 問題一

剛開始齒輪咬合不正確

圖 3.1: issue

3.2 解決方法

• 解決問題一

利用網路上的參考資料,修正齒輪尺數及大小後皆可順利運轉。

第四章 工作分配

4.1 Bg-6 小組工作分配

組長: 40623228 陳永錩 (繪製及設計)
組員: 40623236 黃子峰 (繪製及設計)
組員: 40623233 謝宗宏 (繪製及設計)
組員: 40623230 陳柏亦 (組合及運作)
組員: 40623214 吳家文 (pdf 撰寫)

• 組員: 40623237 黄博隆 (網站整理)

第五章 參考資料

5.1 參考資料來源

- 齒輪結構與理論
- Youtube-Wooden Pendulum Clock
- Youtube-Clock
- 步進馬達