Sample Problems

- 1. Exercise 2.1 from the text on regular expression construction.
- 2. Construct a deterministic finite state machine that can detect strings generated by the following regular expression:
 - (a) $(a \mid (b \ c)^*d)^+$

 - (c) ((011)*(2 | 3)+) | 0011

 - (d) $((\epsilon \mid a)b^*)^*$
 - (e) Construct DFAs for regular expressions given in Exercise 2.2 of the text.
- 3. Construct a regular expression that generates the strings accepted by the following deterministic finite state machine.

- 4. Exercises 3.1, 3.2, 3.3 and 3.5 from the text on CFGs, derivations and parse trees.
- 5. Compute First and Follow sets for all the non-terminals in the following grammars.
 - (a) Expr \rightarrow Expr Expr \rightarrow (Expr) Expr \rightarrow Var ExprTail ExprTail \rightarrow - Expr ExprTail \rightarrow ϵ Var \rightarrow id VarTail VarTail \rightarrow (Expr) VarTail \rightarrow ϵ
 - (b) $S \to Ab$ $A \to a \mid B \mid \epsilon$ $B \to b \mid \epsilon$
 - (c) $S \to A B B A$ $A \to a \mid \epsilon$ $B \to b \mid \epsilon$
- 6. For the following grammar show the state diagram built in constructing the SLR(1) parser. Does the state diagram contain any conflicts?
 - $\begin{array}{l} (a) \ S \rightarrow \mathrm{id} := E; \\ E \rightarrow E + P \\ E \rightarrow P \\ P \rightarrow \mathrm{id} \\ P \rightarrow (E) \\ P \rightarrow \mathrm{id} := E \end{array}$
 - (b) $S \rightarrow id := A;$ $A \rightarrow id := A$ $A \rightarrow E$ $E \rightarrow E + P$ $E \rightarrow P$ $P \rightarrow id$ $P \rightarrow (id; id)$ $P \rightarrow (A)$
- 7. Exercises 5.1 and 5.3 from the text on SLR(1) parsing. Also 5.7, 5.11 and 5.12.
- 8. Exercises 4.1 through 4.10 con Top-down parsing.