Es03B: Amplificatore a transistor

Gruppo 1G.BT Francesco Sacco, Lorenzo Cavuoti

October 29, 2018

1 Verifica del punto di lavoro

Usando il multimetro digitale abbiamo misurato i valori delle resistenze e condensatori staccati dal circuito

- $R_1 = (178.5 \pm 1.4)k\Omega$
- $R_2 = (17.65 \pm 0.14)k\Omega$
- $R_C = (9.82 \pm 0.08) k\Omega$
- $R_E = (1.014 \pm 0.008)k\Omega$
- $C_{in} = (221 \pm 9)nF$
- $C_{out} = (111 \pm 4)nF$
- 1. Accendendo soltanto il generatore di ddp continua $V_{CC} = (19.97 \pm 0.10)$ abbiamo calcolato e misurato il punto di lavoro del transistor che risulta:
 - $V^Q_{CE.att} = (7.3 \pm 0.4) V \ I^Q_{C,att} = (1.17 \pm 0.03) mA$
 - $V_{CE,mis}^{Q} = (9.00 \pm 0.05)V I_{C,mis}^{Q} = (1.01 \pm 0.01)mA$

I due risultati non sono compatibili, tuttavia, come si vedrà anche in seguito, il circuito funziona correttamente, la discrepanza quindi si potrebbe attribuire a un errore nella presa dati o nei calcoli

- 2. Usando il multimetro digitale abbiamo misurato le tensioni ai terminali del transistor che risultano:
 - $V_{B,mis} = 1.647 \pm 0.008 \ V_{E,mis} = 1.034 \pm 0.005 \ V_{BE,mis} = 0.614 \pm 0.003 \ V_{C,mis} = 10.01 \pm 0.05 \ V_{C,mis} = 10.01 \pm 0.005 \ V_{C,mis} = 10.005 \ V_{C,mis$
 - $V_{B,att} \approx 1.7 \ V_{E,att} \approx 1.1 \ V_{BE,att} = 0.6 \ V_{C,att} \approx 10$ Purtroppo è stato impossibile dare una stima accurata degli errori a causa dell'incognita su alcuni parametri del transistor
- 3. Sfruttando l'effetto transistor con $h_{fe}\approx 100$ abbiamo $I_B=I_C/h_{fe}\approx 10.1\mu A$ dove I_C è stata calcolata vedendo la ddp ai capi di R_C , inoltre sappiamo che $I_B=I_1-I_2=(9\pm 2)\mu A$ con I_1 , I_2 calcolate prendendo la ddp su R_1 , R_2 rispettivamente. L'errore risulta grande il quanto differenza di due misure simili, infatti $I_1=102.2\pm 1.4\mu A$ $I_2=93.1\pm 1.3\mu A$. Le due misure risultano compatibili, l'errore su

2 Risposta a segnali sinusoidali a frequenza fissa

In questo punto colleghiamo il generatore di funzioni al circuito con f=6.24kHz e tutti i voltaggi sono misurati picco-picco

- 1. Vedendo V_{in} e V_{out} accoppiando l'oscilloscopio in AC notiamo che i due segnali sono in controfase con uno circa 10 volte l'altro (figura 1)
- 2. Il guadagno atteso per piccoli segnali risulta $A_{V,att}=9.68\pm0.14$, per un onda sinusoidale con $V_{in}=(0.22\pm0.01)V$ si ha $V_{out}=(2.06\pm0.09)V$, $A_V=9.3\pm0.6$. Per verificare la linearità del sistema abbiamo preso un onda triangolare a diverse ampiezze. Con $V_{in}=(0.22\pm0.01)V$ si ha $V_{out}=(1.98\pm0.09V)$ $A_V=9.1\pm0.6$ e, con $V_{in}=1.51\pm0.06V$ triangolare si ha $V_{out}=13.7\pm0.6V$ $A_V=9.1\pm0.6$ i guadagni attesi risultano compatibili con quelli misurati.

Inoltre la forma d'onda è rimasta pressocchè inalterata, quindi tutte le armoniche dello spettro della triangolare hanno trasformato allo stesso modo, questo dimostra la linearità del circuito tra 1kHz e 10kHz.

Figure 1: Inversione di fase tra ingresso e uscita, si notino le diverse scale su CH1 e CH2

Figure 2: Grafico di bode del circuito

3. Il circuito risulta lineare per V_{in} minore di circa 1.5V quindi $V_{out} \approx 18V$ oltre questa ddp si ha il clipping, inizialmente questo spiana l'onda ma alzando ancora di più il voltaggio l'onda si inarca all'interno.

3 Risposta in frequenza

1. Analizzando il circuito possiamo notare che C_{in} e R_2 compongono un filtro passa alto con $f_T = 1/(2\pi R_2 C_{in}) = 41 \pm 2$ inoltre il transistor ha una piccola capacità e resistenza interna che si nota solo per frequenze elevate agendo da passa basso

f[Hz]	$V_{in}[V]$	$\sigma V_{in}[V]$	$V_{out}[V]$	$\sigma V_{out}[V]$	A_V	σA_V
13.7	1.00	0.04	2.72	0.12	2.72	0.17
16.3	1.00	0.04	3.02	0.13	3.02	0.19
47.0	1.00	0.04	6.3	0.3	6.3	0.4
68.1	1.00	0.04	7.4	0.3	7.4	0.5
98.4	1.00	0.04	8.2	0.4	8.2	0.5
118	1.00	0.04	8.6	0.4	8.6	0.6
213	1.00	0.04	9.2	0.4	9.2	0.6
565	1.00	0.04	9.3	0.4	9.3	0.6
$1.18 \mathrm{\ k}$	1.00	0.04	9.4	0.4	9.4	0.6
$2.11 \mathrm{\ k}$	1.00	0.04	9.4	0.4	9.4	0.6
$11.7 \mathrm{\ k}$	1.00	0.04	9.4	0.4	9.4	0.6
20.3 k	1.00	0.04	9.0	0.4	9.0	0.6
71.3 k	1.00	0.04	7.3	0.3	7.3	0.4
209 k	1.00	0.04	3.74	0.16	3.7	0.2
$739~\mathrm{k}$	1.00	0.04	1.14	0.05	1.14	0.07
$2.10~\mathrm{M}$	1.00	0.04	0.40	0.02	0.40	0.03

Table 1: Dati della risposta in frequenza del circuito