Gesture Interface

A Naive Framework

Pan An (Andy)

December 1, 2016

National University of Singapore

Table of Contents

- 1. Introduction
- 2. Inverse Kinematics
- 3. Learning Methods

Introduction

Gestures

Figure 1: Example of Hand Gesture.

Color Based Method

The above picture is an example of color based gesture recognition. Color based algorithms are normally heavily relying on background color.

Spatial Motions

Swipe, tracking, clapping...

Finger Motions

Grabbing, rub, pointing and etc.

Muscles and Other Biosignals

All Involves hardwares.

Note

Naive camera based gestures are used.

Marker Based Methods

Figure 2: Overview of Gesture Model

Marker Based Methods

Figure 2: Gesture Model

Marker Based Methods

Figure 2: An Example System

Inverse Kinematics

IK Algorithms

- Cyclic Coordinate Descent
- Jacobian Transpose
- FABRIK
- Neural Network

Cyclic Coordinate Descent

Basic Idea

- Greedy
- Iterative
- Does not care whether the target is within range

Why

WangXin made the CCD work.

Jacobian Transpose

Figure 3: Jacobian Transpose

Definitions

- J Partial Derivation of the entire chain system.
- $\boldsymbol{\theta}$ Vector of $\boldsymbol{\theta}$ values.
- **s** Vector of end effectors.
- p_i Position of the joints.

Jacobian Matrix

$$J(\boldsymbol{\theta}_{ij}) = (\frac{\partial \boldsymbol{s}_i}{\partial \theta_j})_{ij}$$

Where i = 1, ..., k and j = 1, ..., n. In this case k = 1 and n = 3.

Jacobian Transpose

Figure 3: Jacobian Transpose

Jacobian Transpose

Jacobian Transpose is to move the angles with a step of

$$\Delta \theta = \alpha J^T \vec{e}$$

Where ${\bf e}$ is the vector of direction of the step and α is the selected step size.

FABRIK

Figure 4: FABRIK

FABRIK

Stands for Forward And Backward Reaching Inverse Kinematics.

Definitions

- t Vector of targets.
- d_i Distance between each joint $d_i = |oldsymbol{p}_{i+1} oldsymbol{p}_i|$

FABRIK

Figure 4: FABRIK

Data: d, t, p Result: The new joint positions p initialization; if Target is not within range then point directly to the target and return; else $\boldsymbol{b} = \boldsymbol{p}_1$ and $dif_A = |\boldsymbol{p}_n - \boldsymbol{t}|$; while $dif_A > tolerance$ do $p_n = t$; for i = n - 1, ..., 1 do $r_i = |\boldsymbol{p}_{i+1} - \boldsymbol{p}_i|;$ $\lambda_i = \frac{d_i}{r_i}$; $\mathbf{p}_i = (i - \lambda_i)\mathbf{p}_{i+1} - \lambda_i\mathbf{p}_i;$ end $p_1 = b$: for i = 1, ..., n - 1 do $r_i = |\boldsymbol{p}_{i+1} - \boldsymbol{p}_i|;$ $\lambda_i = \frac{d_i}{r_i};$ $\mathbf{p}_i = (i - \lambda_i)\mathbf{p}_{i+1} - \lambda_i\mathbf{p}_i;$ end end end

FABRIK Constraints

Figure 5: Example of Constraints in a Joint System

Reachable Space

Figure 6: Reachable Space of a Fully Free Robot Arm

Reachable Space for UR10

Figure 7: Reachable Space for UR10

Learning Methods

Actions(Scenarios)

Natural Gesture of a Robot

Unpredictability

Robustness

Gesture when reaching the end effector

Learning Method

Monte Carlo(policy search)

Dynamic Programming(value function)

Neural Network

Model

Model

Definitions

- π Policy: mapping from states to actions
- S A set of States
- A A set of Actions
- R Reward Function
- P State transition function
- v(s) State Value Function of a MRP
- γ Discount Function, $\gamma \in [0,1]$

Model

Learning Methods

Goal

Discover an optimal policy that maximizes:

$$J = E\{\Sigma_{h=0}^H R_h\}$$

Where H is the steps the algorithm takes

Expanding

Expanding the above with reward settings:

$$\max_{\pi} J(\pi) = \sum_{s,a} \mu^{\pi}(s) \pi(s,a) R(s,a)$$

$$s.t.\mu^{\pi} = \sum_{s,a} \mu^{\pi}(s) \pi(s,a) T(s,a,s'), \forall s' \in S,$$

$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(s,a)$$

$$\pi(s,a) \leq 0, \forall s \in S, a \in A$$

Where μ is the distribution of states.

Visualization

- Video Stream
- Depth Camera Stream
- 3D Reconstruction(Event Camera)

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

References i

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN).

TUGBoat, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

References ii

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.