Дипломная работа по программе «Аналитик данных»

Прогнозирование спроса в онлайн ритейле

Александр Сипко

Группа: AML-42

Руководитель: Даниил Корбут

1. Актуальность выбранной темы «Прогнозирование спроса в онлайн ритейле»

Прогнозирование спроса — это ключевая задача для онлайн-ритейла, оказывающая значительное влияние на управление запасами, логистику и планирование продаж.

«Точные прогнозы позволяют снизить издержки, дефицита товаров и улучшить обслуживание клиентов, что даёт компаниям конкурентное преимущество, повышая эффективность операций и прибыль.»

Стейкхолдеры:

Коммерческий директор – повышение прибыли.

Менеджеры по закупкам - минимизация издержек, планирование поставок.

Логистический отдел – сокращение затрат и управление запасами.

Маркетологи – планирование активностей и промо-компаний.

ІТ-отдел – поддержка инфраструктуры для сбора и обработки данных.

Финансовый отдел - бюджетирование и оценка рентабельности.

Источник данных:

Выгруза Excel содержащая данные о продажах за 3 года

- InvoiceNo номер заказа
- StockCode номер товара
- Description название товара
- Quantity колличество
- InvoiceDate дата и вермя транзакции
- UnitPrice стоимость
- CustomerID id клиента
- Country страна (нет данных о значении поля)

Пред обработка данных:

- были заменены пропущенные значения;
- устранены некорректные записи;
- обработаны описания товаров для дальнейшего анализа

3. План работ и решаемые задачи «Прогнозирование спроса в онлайн ритейле»

- 1. Постановка задачи
- 2. Подготовка данных для работы
- 3. Кластеризация товаров и присвоение каждому кластеру наменования для дальнейшей работы
- 5. Анализ продаж по категориям
- 6. Прогнозирование продаж
- 7. Выводы о проделанной работе

Использование текстовых моделей позволило преобразовать наименование товаров в эмбеддинги, а затем, используя **K-Means**, разделить товары на кластеры. Для оценки качества кластеризации использовалась оценка **Silhouette Score** (значение от - 1 до 1, где 1 указывает на хорошую кластеризацию).

В работе применялись предобученные модели, такие как **paraphrase-MiniLM-L6-v2**, **all-MiniLM-L6-v2** и другие, для представления товаров в векторном пространстве.

Best model: paraphrase-MiniLM-L6-v2

Best number of clusters (K): 9

Best Silhouette Score: 0.08163392543792725

5. Осмысление кластеров

«Прогнозирование спроса в онлайн ритейле»

- * нумерация фото слева на право, начиная с верхнего ряда
- 1. Стилизованные вещи интерьера с уникальным дизайном
- 2. Стеклянные и керамические аксессуары (оформление интерьера)
- 3. Часы и рождественские украшения
- 4. Кухонные аксессуары и посуда
- 5. Игрушки или детские товары
- 6. Свечи и освещение
- 7. Декор для дома
- 8. Праздничные украшения
- 9. Браслеты бижутерия

Временные ряды кластеров товаров были разбиты с шагом в 1 неделю для визуальной оценки и определения наличия сезонности. Ниже представлены примеры построения графиков для визуального анализа.

Временные ряды отражают сезонность для различных категорий.
Также отмечается короткий диапазон временного ряда, необходимый для формирования устойчивого сезонного паттерна.

^{*} полный перечень графиков представлен в приложенном к роекту *.ipynb файле

Для прогнозирования временного ряда использовались модели Prophet, ARIMA. Была сформирована функция для определения наилучшей модели и оптимальных гиперпараметров. Для этого применялись следующие метрики:

Для оценки моделей временных рядов использовались метрики:

- Среднеквадратическая ошибка (MSE)
- Средняя абсолютная ошибка (МАЕ)
- Коэффициент детерминации (R2)
- Средняя абсолютная процентная ошибка (МАРЕ)
- Сравнение с базовой линией, построенной на основании скользящего среднего.

Для прогнозирования продаж была применена модель Prophet, которая показала высокую точность на тестовых данных. Построенные прогнозы охватывали период в 12 недель, с использованием данных последних 4 недель в качестве исторического контекста.

Примеры категории товаров демонстрирующие улучшение метрик, по сравнению с бейзлайн

8. Праздничные украшения

3. Часы и рождественские украшения

^{*} полный перечень графиков представлен в приложенном к роекту *.ipynb файле

Оценка качества прогнозирования продаж для каждой категории

	Category	Baseline MSE	Baseline MAE	Baseline R²	Prophet MSE	Prophet MAE	Prophet R ²
0	7. Декор для дома	1.890789e+07	3342.723684	0.684877	1.848973e+07	3315.071250	0.729523
1	6. Свечи и освещение	1.127422e+07	2185.328947	0.643953	2.253267e+07	3962.301665	0.320746
2	4. Кухонные аксессуары и посуда	8.003183e+07	7222.868421	0.426662	6.589700e+07	6478.019519	0.495356
3	2. Стеклянные и керамические аксессуары (оформ	5.283409e+07	5454.565789	0.422399	5.362271e+07	6075.268235	0.477214
4	8. Праздничные украшения	4.353351e+07	4145.197368	0.654384	1.095873e+08	7927.023640	0.076631
5	1. Стилизованные вещи интерьера с уникальным д	1.364643e+07	3223.578947	0.448022	2.097828e+07	3840.286861	0.121624
6	5. Игрушки или детские товары	5.240364e+06	1786.486842	0.547259	9.362651e+06	2493.913050	0.185415
7	9. Браслеты бижутерия	4.651652e+05	509.197368	0.586350	1.076343e+06	893.679541	-0.051781
8	3. Часы и рождественские украшения	7.531862e+07	5792.407895	0.555005	3.908192e+07	4488.381398	0.761454
9	11. Прочие	2.732996e+05	426.539474	0.147828	1.358731e+06	1014.865336	-3.644213

Показатель с высоким R2 и низким MSE и MAE, а так же показавшим улучшение показателей по сравнению с байзлайн, могут быть использованы для принятия управленческих решений в бизнесе, другие категорию требуют более аккуратного использования или увеличения диапазона данных для прогнозирования и повышения качества модели

Проект создал основу для дальнейшего совершенствования инструментов прогнозирования в онлайн-ритейле, обеспечивая бизнес необходимыми аналитическими данными для принятия обоснованных решений. Также в данном проекте использовались мощности видеокарт для расчета данных, все данные взяты из открытых источников и не содержат коммерческой тайны.

