МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №__9__ по дисциплине «Методы машинного обучения в АСОИУ»

ІСПОЛНИТЕЛЬ:	Воронцова А.В.		
группа ИУ5-22М	подпись		
	""2024 г		
ПРЕПОДАВАТЕЛЬ:	<u>Балашов А. М</u>		
	подпись		
	""2024 г		

Москва_- 2024

Задание:

Для произвольного набора данных, предназначенного для классификации текстов, решите задачу классификации текста двумя способами:

- На основе CountVectorizer или TfidfVectorizer.
- Ha основе моделей word2vec или Glove или fastText.

Сравните качество полученных моделей.

```
from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split

# Загрузка данных data = fetch_20newsgroups(subset='all', shuffle=True, remove=('headers', 'footers', 'quotes')) texts = data.data labels = data.target

# Разделение на обучающую и тестовую выборки texts_train, texts_test, labels_train, labels_test = train_test_split(texts, labels, test_size=0.2, random_state=42)
```

Способ 1: Использование TfidfVectorizer

```
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear model import LogisticRegression
from sklearn.pipeline import make pipeline
from sklearn.metrics import classification report
# Создание модели с TfidfVectorizer
tfidf vectorizer = TfidfVectorizer(stop words='english',
max features=10000)
model = make pipeline(TfidfVectorizer(),
LogisticRegression(max iter=1000))
model.fit(texts train, labels train)
# Предсказание и оценка модели
predicted = model.predict(texts test)
print(classification report(labels test, predicted))
              precision
                           recall f1-score
                                               support
                             0.56
                                        0.56
           0
                   0.57
                                                   151
           1
                   0.68
                             0.67
                                        0.68
                                                   202
           2
                   0.70
                             0.65
                                        0.67
                                                   195
           3
                   0.64
                             0.67
                                        0.65
                                                   183
           4
                   0.82
                             0.72
                                        0.76
                                                   205
           5
                   0.83
                             0.78
                                        0.81
                                                   215
           6
                   0.70
                             0.72
                                        0.71
                                                   193
```

7	0.77	0.72	0.74	196
8	0.43	0.79	0.56	168
9	0.78	0.83	0.81	211
10	0.92	0.86	0.89	198
11	0.91	0.74	0.82	201
12	0.67	0.71	0.69	202
13	0.81	0.86	0.83	194
14	0.74	0.81	0.78	189
15	0.68	0.77	0.72	202
16	0.75	0.73	0.74	188
17	0.84	0.77	0.81	182
18	0.65	0.62	0.63	159
19	0.62	0.22	0.33	136
accuracy			0.72	3770
macro avg	0.73	0.71	0.71	3770
weighted avg	0.73	0.72	0.72	3770

Способ 2: Использование модели word2vec

Для использования word2vec можно воспользоваться предобученной моделью из библиотеки gensim.

```
import gensim.downloader as api
from sklearn.svm import SVC
import numpy as np
# Загрузка предобученной модели word2vec
wv = api.load('word2vec-google-news-300')
# Функция для получения вектора текста
def text to vector(text):
    words = [word for word in text.lower().split() if word in wv]
    if len(words) >= 1:
        return np.mean(wv[words], axis=0)
    else:
        return np.zeros(300)
# Векторизация текстов
train vectors = [text to vector(text) for text in texts train]
test vectors = [text to vector(text) for text in texts test]
# Обучение модели SVM
svm model = SVC(kernel='linear')
svm_model.fit(train_vectors, labels train)
# Предсказание и оценка модели
```

predicted_w2v = svm_model.predict(test_vectors)
print(classification_report(labels_test, predicted_w2v))

	precision	recall	f1-score	support
0 1 2 3 4 5 6 7 8	0.31 0.44 0.54 0.40 0.48 0.61 0.65 0.41	0.48 0.46 0.45 0.54 0.35 0.60 0.63 0.56	0.38 0.45 0.49 0.46 0.60 0.64 0.47	151 202 195 183 205 215 193 196 168
9	0.74	0.70	0.72	211
10	0.77	0.77	0.77	198
11	0.68	0.61	0.64	201
12	0.59	0.49	0.53	202
13	0.81	0.74	0.78	194
14	0.69	0.66	0.68	189
15	0.58	0.76	0.66	202
16	0.56	0.64	0.60	188
17	0.73	0.62	0.67	182
18	0.51	0.49	0.50	159
19	0.25	0.01	0.01	136
accuracy macro avg weighted avg	0.56 0.57	0.56 0.57	0.57 0.55 0.56	3770 3770 3770

Из представленных результатов видно, что были получены два различных набора метрик для оценки производительности классификационной модели на одном и том же наборе данных:

- 1. Точность (Precision):
 - В первом случае средняя точность (macro avg) составляет 0.73
 - Во втором случае средняя точность снижается до 0.56, а взвешенная точность также до 0.57.
- 2. Полнота (Recall):
 - В первом случае средняя полнота составляет 0.71, а взвешенная полнота 0.72.
 - Во втором случае средняя полнота уменьшается до 0.56, а взвешенная полнота — до 0.57.
- 3. F1-оценка (F1-Score):
 - В первом случае средняя F1-оценка равна 0.71, а взвешенная F1-оценка 0.72.
 - Во втором случае средняя F1-оценка уменьшается до 0.55, а взвешенная F1оценка — до 0.56.

- 4. Общая точность (Accuracy):
 - В первом случае общая точность модели составляет 0.72.
 - Во втором случае общая точность снижается до 0.57.

Анализ:

- Первый набор результатов демонстрирует значительно лучшую производительность по всем ключевым метрикам по сравнению со вторым набором. Это указывает на то, что модель в первом случае работает более эффективно.
- Например, класс "19" во втором случае имеет очень низкий показатель полноты и F1-оценки, что может указывать на проблемы с распознаванием или малое количество данных для этого класса.