

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/718,985	11/21/2003	Mark S. Olsson	0009-053 4360	
22298	7590 03/16/2005	EXAMINER		INER
MICHAEL H JESTER			HAN, JASON	
505 D GRAN CORONADO	D CARIBE CAUSEWAY . CA 92118		ART UNIT	PAPER NUMBER
	,		2875	
			DATE MAILED: 03/16/2005	

Please find below and/or attached an Office communication concerning this application or proceeding.

E)c

	Application No.	Applicant(s)				
	10/718,985	OLSSON ET AL.				
Office Action Summary	Examiner	Art Unit				
	Jason M. Han	2875				
The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply						
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. - If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).						
Status						
1) Responsive to communication(s) filed on 07 Fe	bruary 2005.					
2a) ☐ This action is FINAL . 2b) ☐ This	☐ This action is FINAL. 2b)☐ This action is non-final.					
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is						
closed in accordance with the practice under E	x parte Quayle, 1935 C.D. 11, 45	3 O.G. 213.				
Disposition of Claims						
4) ☐ Claim(s) 1-90 is/are pending in the application. 4a) Of the above claim(s) is/are withdraw 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-90 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or						
Application Papers						
 9) The specification is objected to by the Examiner 10) The drawing(s) filed on <u>07 February 2005</u> is/are Applicant may not request that any objection to the of Replacement drawing sheet(s) including the correction 11) The oath or declaration is objected to by the Examiner 	: a)⊠ accepted or b)⊡ objected frawing(s) be held in abeyance. See on is required if the drawing(s) is obj	ected to. See 37 CFR 1.121(d).				
Priority under 35 U.S.C. § 119						
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 						
Attachment(s)						
Notice of References Cited (PTO-892) Notice of Draftsperson's Patent Drawing Review (PTO-948) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date 11/21/2003.	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal Pa 6) Other:					

Art Unit: 2875

DETAILED ACTION

Response to Arguments

- 1. Applicant's arguments filed February 7, 2005 have been fully considered but they are not persuasive.
- 2. With regards to Independent Claim 1, Isenga teaches all the structural limitations with the exception of the window being made of sapphire, and was thereby combined with Schuda under the motivation that sapphire would provide for a resilient and thermally conductive window in protecting the light source. In addition, it has been held to be within general skill of a worker in the art to select a known material on the basis of its suitability for the intended use as a matter of obvious design choice. *In re Leshin*, 125 USPQ 416.
- 3. Subsequent Claims 2-10 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 4. With regards to Independent Claim 11 and in response to applicant's argument that the "internal reflector 11 of Schuda et al. is totally incompatible with the transom light design of Isenga", the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981). In this case, the examiner has combined the trasom light of Isenga with the integral reflector of Schuda as a means for collimating the beam

Art Unit: 2875

of light, which has obvious benefits in underwater applications where a spotlight/collimated beam is used for search operations.

- 5. Subsequent Claims 12-20 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 6. With regards to Independent Claim 21 and in response to applicant's argument that Volk et al. is nonanalogous art, it has been held that a prior art reference must either be in the field of applicant's endeavor or, if not, then be reasonably pertinent to the particular problem with which the applicant was concerned, in order to be relied upon as a basis for rejection of the claimed invention. See *In re Oetiker*, 977 F.2d 1443, 24 USPQ2d 1443 (Fed. Cir. 1992). In this case, Volk is considered pertinent with respect to the thermal shutdown circuit for a light source system.
- 7. Subsequent Claims 22-30 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 8. With regards to Independent Claim 31 and in response to applicant's argument that there is no suggestion to combine the references, the examiner recognizes that obviousness can only be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of ordinary skill in the art. See *In re Fine*, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988)and *In re Jones*, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992). In this case, Isenga teaches all the structural limitations with the exception of an electrical circuit having a means for shutting off a source of power to the lamp

Art Unit: 2875

upon the detection of a leakage of water in the lamp housing. Davenport et al. is suggested in combination because it is obvious that a light fixture with submersible enclosure for an electric lamp, such as a transom light, would want to incorporate a water sensitive circuit for safety reasons. It is further noted that the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art.

See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981).

- 9. Subsequent Claims 32-40 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 10. With regard to Independent Claims 41 and 51, and in response to applicant's argument that Shackle is nonanalogous art, it has been held that a prior art reference must either be in the field of applicant's endeavor or, if not, then be reasonably pertinent to the particular problem with which the applicant was concerned, in order to be relied upon as a basis for rejection of the claimed invention. See *In re Oetiker*, 977 F.2d 1443, 24 USPQ2d 1443 (Fed. Cir. 1992). In this case, Shackle is considered pertinent with respect to a fault detection electrical circuit for a lamp device. In addition, the examiner has suggested combination "to ensure an additional safety measure for the light source, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction."

Art Unit: 2875

11. Subsequent Claims 42-50 and 52-60 stand rejected due to dependency and lack of argument on the applicant's behalf.

- 12. With respect to Independent Claim 61 and in response to applicant's argument that Rahm et al. is nonanalogous art, it has been held that a prior art reference must either be in the field of applicant's endeavor or, if not, then be reasonably pertinent to the particular problem with which the applicant was concerned, in order to be relied upon as a basis for rejection of the claimed invention. See *In re Oetiker*, 977 F.2d 1443, 24 USPQ2d 1443 (Fed. Cir. 1992). In this case, Rahm is considered pertinent because it concerns a light source, specifically a five thousand K lamp, whereby the color temperature of the lamp provides a desired hue [e.g., 5000K for an illumination in the blue spectrum]. It is further noted that the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981).
- 13. Subsequent Claims 62-70 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 14. With regards to Independent Claim 71, the rejection stands under the abovementioned reasons addressed for Independent Claims 1, 21, and 31.
- 15. With regards to Independent Claim 71 and in response to applicant's argument that the "design and construction of the fiber optic lens assembly of Dunn et al. is

Art Unit: 2875

completely incompatible with the structure of the transom light of Isenga", the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981). With respect to motivation, it is obvious that one could modify the transom light of Isenga to incorporate the light pipe of Dunn to ensure safety of the light source, as well as to the passengers of the vessel. Dunn corroborates, "Pool lighting systems must be designed to provide a significant amount of light, and yet be safe from contamination and/or damage from the effects of exposure to water. Fiber optic light systems allow a light source to be located away from a pool's body of water, and thus provide a safe distance between electrical components and the water [Column 1, Lines 8-14]."

- 16. Subsequent Claims 73-75 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 17. With regards to Independent Claim 76, the rejection stands under the abovementioned reasons addressed for Independent Claim 11. Also, in response to applicant's argument about a reflector having a parabolic and elliptical hybrid reflector, it has been held to be within the general skill of a worker that mere change of form or shape of an invention involves only routine skill in the art. Span-Deck Inc. c. Fab-Con, Inc. (CA 8, 1982) 215USPQ 835. In this case, it is an obvious matter of design whereby

Art Unit: 2875

the shape of the reflector may be adjusted in order to perform a desired optical effect on the illumination.

- 18. With regards to Independent Claim 77 and in response to applicant's argument that Richardson is nonanalogous art, it has been held that a prior art reference must either be in the field of applicant's endeavor or, if not, then be reasonably pertinent to the particular problem with which the applicant was concerned, in order to be relied upon as a basis for rejection of the claimed invention. See *In re Oetiker*, 977 F.2d 1443. 24 USPQ2d 1443 (Fed. Cir. 1992). In this case, Richardson is considered pertinent with respect to a lamp insulator assembly [see Title of the Invention], specifically a thermal insulating sleeve surrounding a lamp housing. Regardless of whether or not Isenga is concerned with thermal characteristics of the transom light, the examiner has combined the references under the motivation to reduce the possibility of injury or damage due to high open circuit voltage, environment effects and the like, which is corroborated by Richardson [see Abstract] in utilizing the thermal insulating sleeve. Lastly, it is noted that the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981).
- 19. With regards to Claim Independent Claim 78 and in response to applicant's argument that "absolutely nothing" suggests the complex structures of Jaksic et al. out

Art Unit: 2875

to be inserted into the transom light of Isenga, the test for obviousness is not whether the features of a secondary reference may be bodily incorporated into the structure of the primary reference; nor is it that the claimed invention must be expressly suggested in any one or all of the references. Rather, the test is what the combined teachings of the references would have suggested to those of ordinary skill in the art. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981).

- 20. Subsequent Claims 79-80 stand rejected due to dependency and lack of argument on the applicant's behalf.
- 21. With regards to Independent Claim 81, the rejection stands under the abovementioned reasons addressed for Independent Claim 1.
- 22. All subsequent Claims 82-90 stand rejected due to dependency and lack of argument on the applicant's behalf.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 23. Claim 1 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in

Art Unit: 2875

the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)].

Isenga does not specifically teach the window being made of sapphire.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga to incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

24. Claims 2-4 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above.

Isenga teaches a transom light as cited above.

Isenga does not teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure

Art Unit: 2875

1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga to incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Schuda teach a thru-hull mounted light as cited above.

Neither Isenga nor Schuda specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

26. Claim 6 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

27. Claim 7 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

28. Claims 8-9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

29. Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 1 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Schuda teach a thru-hull light as cited above.

Art Unit: 2875

Neither Isenga nor Schuda specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

30. Claims 11, 13, and 14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922).

With regards to Claim 11, Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)].

Art Unit: 2875

Isenga does not teach the lamp having a reflector mounted in the interior of the lamp housing and having an elliptical section surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga to incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

- 31. With regards to Claim 13, Isenga teaches a means for mounting the lamp including a socket [Figures 2-4: (15); Column 2, Lines 42-45].
- 32. With regards to Claim 14, Schuda teaches the reflector, as cited above, being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55]. The examiner considers the current limitation a matter of optics and design preference, whereby the reflector is designed to provide a desired illumination effect. It should further be noted that Schuda portrays the parabolic section having an outer diameter substantially equal to the diameter of the window [Figure 1].
- 33. Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above.

Isenga teaches a transom light having a window as cited above.

Art Unit: 2875

Isenga does not specifically teach the window being made of sapphire.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga to incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

34. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Schuda teach a thru-hull mounted light as cited above.

Neither Isenga nor Schuda specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the

Art Unit: 2875

external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

35. Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

36. Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

37. Claims 18-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

38. Claim 20 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 11 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Schuda teach a thru-hull light as cited above.

Art Unit: 2875

Neither Isenga nor Schuda specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

39. Claim 21 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Art Unit: 2875

Isenga does not specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the integral reflector of Schuda to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

40. Claims 22-24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Volk teach a transom light as cited above.

Neither Isenga nor Volk teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

41. Claim 25 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Volk teach a thru-hull mounted light as cited above.

Neither Isenga nor Volk specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

Art Unit: 2875

42. Claim 26 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Volk teach a transom light having a window as cited above.

Neither Isenga nor Volk specifically teach the window being made of sapphire.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

43. Claim 27 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Volk teach a thru-hull light as cited above.

Neither Isenga nor Volk specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected between nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It

Art Unit: 2875

cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

44. Claims 28-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Volk teach a thru-hull light as cited above.

Neither Isenga nor Volk specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

45. Claim 30 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Volk et al. (U.S. Patent 6538394) as applied to Claim 21 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Volk teach a thru-hull light as cited above.

Neither Isenga nor Volk specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the thermal shutdown circuit of Volk to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

46. Claim 31 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428).

Art Unit: 2875

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Isenga does not specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga to incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

47. Claims 32-34 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Davenport teach a transom light as cited above.

Neither Isenga nor Davenport teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the watersensitive circuit of Davenport to further incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

48. Claim 35 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Davenport teach a thru-hull mounted light as cited above.

Art Unit: 2875

Neither Isenga nor Davenport specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the watersensitive circuit of Davenport to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

49. Claim 36 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Davenport teach a transom light having a window as cited above.

Neither Isenga nor Davenport specifically teach the window being made of sapphire.

Art Unit: 2875

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga with the water-sensitive circuit of Davenport to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

50. Claim 37 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Davenport teach a thru-hull light as cited above.

Neither Isenga nor Davenport specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the watersensitive circuit of Davenport to further incorporate the thermal shutdown circuit of Volk

Art Unit: 2875

to ensure an additional safety measure for the light, as well as the passengers of the vessel.

51. Claims 38-39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Davenport teach a thru-hull light as cited above.

Neither Isenga nor Davenport specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga with the watersensitive circuit of Davenport to further incorporate the fault-status circuit of Shackle to
ensure an additional safety measure for the light, as well as the passengers of the
vessel. In addition, an indicator for power and/or fault provides a user an operating
status for the lamp and an immediate warning to a malfunction.

52. Claim 40 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Davenport et al. (U.S. Patent 6545428) as applied to Claim 31 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Davenport teach a thru-hull light as cited above.

Art Unit: 2875

Neither Isenga nor Davenport specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the water-sensitive circuit of Davenport to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

53. Claims 41 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Art Unit: 2875

Isenga does not specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga to incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

54. Claims 42-44 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Shackle teach a transom light as cited above.

Neither Isenga nor Shackle teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical

Art Unit: 2875

or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

55. Claim 45 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Shackle teach a thru-hull mounted light as cited above.

Neither Isenga nor Shackle specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp. 56. Claim 46 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga

(U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Shackle teach a transom light having a window as cited above.

Neither Isenga nor Shackle specifically teach the window being made of sapphire.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

57. Claim 47 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Shackle teach a thru-hull light as cited above.

Art Unit: 2875

Neither Isenga nor Shackle specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

58. Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Shackle teach a thru-hull light as cited above.

Neither Isenga nor Shackle specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the

Art Unit: 2875

conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

59. Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 41 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Shackle teach a thru-hull light as cited above.

Neither Isenga nor Shackle specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the faultstatus circuit of Shackle to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color

Art Unit: 2875

temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

60. Claims 51 and 59 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Isenga does not specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Nor does Isenga teach an electrical circuit with means for indicating power status and/or fault status.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga to incorporate the fault-cutoff and indicating status of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

61. Claims 52-54 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Shackle teach a transom light as cited above.

Neither Isenga nor Shackle teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the faultcutoff and indicating status of Shackle to further incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

62. Claim 55 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Poggi (U.S. Patent 5800041).

Art Unit: 2875

Isenga in view of Shackle teach a thru-hull mounted light as cited above.

Neither Isenga nor Shackle specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the faultcutoff and indicating status of Shackle to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

63. Claim 56 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Shackle teach a transom light having a window as cited above.

Art Unit: 2875

Neither Isenga nor Shackle specifically teach the window being made of sapphire.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga with the fault-cutoff and indicating status of Shackle to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

64. Claim 57 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Shackle teach a thru-hull light as cited above.

Neither Isenga nor Shackle specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga with the faultcutoff and indicating status of Shackle to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

65. Claim 58 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Shackle teach a thru-hull light as cited above.

Neither Isenga nor Shackle specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the faultcutoff and indicating status of Shackle to further incorporate the water-sensitive circuit of

Art Unit: 2875

Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

66. Claim 60 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Shackle (U.S. Patent 6791275) as applied to Claim 51 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Shackle teach a thru-hull light as cited above.

Neither Isenga nor Shackle specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the fault-cutoff and indicating status of Shackle to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

67. Claim 61 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means

Art Unit: 2875

for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Isenga does not specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga to incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

68. Claims 62-64 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Rahm teach a transom light as cited above.

Neither Isenga nor Rahm teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Art Unit: 2875

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

69. Claim 65 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Rahm teach a thru-hull mounted light as cited above.

Neither Isenga nor Rahm specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the

Art Unit: 2875

external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

70. Claim 66 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Rahm teach a thru-hull light as cited above.

Neither Isenga nor Rahm specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the thermal shutdown circuit of Volk to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

71. Claim 67 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Rahm teach a thru-hull light as cited above.

Neither Isenga nor Rahm specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the water-sensitive circuit of Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

Art Unit: 2875

72. Claims 68-69 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Rahm teach a thru-hull light as cited above.

Neither Isenga nor Rahm specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast; and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

73. Claim 70 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Rahm et al. (U.S. Patent 6636003) as applied to Claim 61 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Rahm teach a transom light having a window as cited above.

Neither Isenga nor Rahm specifically teach the window being made of sapphire.

Art Unit: 2875

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

It would have been obvious to modify the transom light of Isenga with the five thousand K lamp of Rahm to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

74. Claim 71 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932), and further in view of Schuda (U.S. Patent 4940922), Volk et al. (U.S. Patent 6538394), and Davenport et al. (U.S. Patent 6545428).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)]. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Isenga does not specifically teach the window being made of sapphire. Isenga further does not specifically teach an electrical circuit having a means for shutting off a

Art Unit: 2875

source of power to the lamp upon the detection of a predetermined excessive heat condition or upon the detection of a leakage of water into the lamp housing.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4].

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga to incorporate the sapphire window of Schuda, the thermal shutdown circuit of Volk, and the watersensitive circuit of Davenport to ensure safety of the light, as well as the passengers of the vessel. It is also obvious that sapphire windows are used in high intensity discharge

Art Unit: 2875

lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

75. Claim 72 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Dunn et al. (U.S. Patent 5825954).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of a front end portion of the lamp housing [Figure 3: (21, 23, 25)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a front portion of the lamp housing [Figure 3: (33)] for mounting the front end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a window [Figure 3: (43)] extending across the forward end of the lamp housing.

Isenga does not teach the lamp having a light pipe disposed between the lamp and the front end portion of the housing, so that light from the lamp may pass there through and where two partitions are created by virtue of the light pipe's disposition.

Dunn discloses a submersible fiber optics lens assembly having a light pipe [Figure 1: (103)] with an end [Figure 1: (102)] received by a front portion [Figure 1: (101)], whereby light from a lamp passes there through.

It is obvious that one could modify the transom light of Isenga to incorporate light pipe of Dunn to ensure safety of the light, as well as the passengers of the vessel. To quote Dunn, "Pool lighting systems must be designed to provide a significant amount of light, and yet be safe from contamination and/or damage from the effects of exposure to water. Fiber optic light systems allow a light source to be located away from a pool's

Art Unit: 2875

body of water, and thus provide for a safe distance between electrical components and the water [Column 1, Lines 8-14]."

76. Claim 73 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Dunn et al. (U.S. Patent 5825954) as applied to Claim 72 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Dunn teach a transom light as cited above.

Neither Isenga nor Dunn teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the light pipe of Dunn to further incorporate the integral reflector of Schuda in order to improve light efficiency, whereby the reflector ensures that most of the illumination is guided into the light pipe.

77. Claim 74 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Dunn et al. (U.S. Patent 5825954) as applied to Claim 72 above, and further in view of Tominga et al. (U.S. Patent 4957370).

Isenga in view of Dunn teach a transom light as cited above.

Art Unit: 2875

Neither Isenga nor Dunn teach the light having a hot mirror positioned over a rear end of the light pipe that faces the lamp.

Tominga teaches a hot mirror [Figure 3: (3); Column 4, Lines 22-37] disposed between a lamp and light guide/light pipe.

It would have been obvious to modify the transom light of Isenga with the light pipe of Dunn to further incorporate the hot mirror of Tominga in order to prevent heat from entering the light guide, which is commonly held [see Column 4, Lines 31-32 of Tominga].

78. Claim 75 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Dunn et al. (U.S. Patent 5825954) as applied to Claim 72 above, and further in view of Schuda (U.S. Patent 4940922).

Isenga in view of Dunn teach a transom light as cited above.

Neither Isenga nor Dunn specifically teach the window being made of a scratch resistant material.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4]. To the applicant's admission, sapphire "is extremely hard and therefore resists scratching, and also resists breakage due to thermal shock and wave slap [Page 3, Paragraph 12]."

It would have been obvious to modify the transom light of Isenga with the light pipe of Dunn to further incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that

Art Unit: 2875

sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

79. Claim 76 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)].

Isenga does not teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp, and whereby the reflector has a hybrid inner parabolic section and an outer elliptical section.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

Art Unit: 2875

It would have been obvious to modify the transom light of Isenga to incorporate the integral reflector of Schuda in order to collimate and focus the beam of light. With respect to the hybrid inner parabolic and outer elliptical sections of the reflector, the examiner considers the limitation a matter of optics and design preference whereby design of the reflector is determined by desired optical effects. Such a limitation is commonly held in the art and the examiner considers the teaching of Schuda functionally equivalent.

80. Claim 77 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Richardson (U.S. Patent 6638088).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)].

Isenga does not teach a thermal insulating sleeve surrounding the forward end of the lamp housing.

Richardson teaches a lamp having a socket with housing walls/sleeve [Figures 5&10: (58)] defining an enclosure with the socket base [Figure 5&10: (56)] and

Art Unit: 2875

surrounds a portion of the lamp to provide thermal insulation [Column 13, Line 38 – Column 14, Line 2].

It would have been obvious to modify the transom light of Isenga to incorporate the thermal insulating sleeve of Richardson in order to reduce the possibility of injury or damage due to high open circuit voltage, environmental effects and the like [see Abstract of Richardson], which is commonly held in the art.

81. Claim 78 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Jaksic et al. (U.S. Patent 5748816).

Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)]; a lamp [Figure 3: (17)]; means for mounting the lamp in the interior of a front end portion of the lamp housing [Figure 3: (21, 23, 25)]; a window [Figure 3: (43)] extending across the forward end of the lamp housing; and a thru-hull fitting assembly [Figure 3: (81)] connected to a front portion of the lamp housing [Figure 3: (33)] for mounting the front end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract].

Isenga does not teach the light having a hollow reflective tube disposed between the lamp and the front end portion of the housing, so that light from the lamp may pass there through and where two partitions are created by virtue of the reflective tube's disposition.

Jaksic teaches a tube [Figures 1-4: (1)] having reflective walls [Figures 1-4: (4)] whereby light may enter the tube and be reflected by the walls to an exit aperture.

Art Unit: 2875

It is obvious that one could modify the transom light of Isenga to incorporate the hollow reflective tube of Jaksic in order to collimate and focus the beam of light. The examiner further considers the limitation a matter of optics and design preference whereby designs of optical components are determined by desired optical effects.

82. Claim 79 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Jaksic et al. (U.S. Patent 5748816) as applied to Claim 78 above, and further in view of Schuda et al. (U.S. Patent 4940922).

Isenga in view of Jaksic teach a transom light as cited above.

Neither Isenga nor Jaksic teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga with the reflective tube of Jaksic to further incorporate the integral reflector of Schuda in order to improve light efficiency, whereby the reflector ensures that most of the illumination is guided into the reflective tube.

83. Claim 80 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Jaksic et al. (U.S. Patent 5748816) as applied to Claim 78 above, and further in view of Tiesler-Wittig (U.S. Publication 2002/0085384).

Art Unit: 2875

Isenga in view of Jaksic teach a transom light as cited above.

Neither Isenga nor Jaksic teach the lamp being a hybrid Xenon/HID lamp.

It should be noted, to the applicant's admission, that such lamps have been introduced in the automobile industry and referred to as D2 lamps [Page 12, Paragraph 45]. It would have been obvious that one could modify the transom light of Isenga with the reflective tube of Jaksic to further incorporate the D2 lamp as cited above, to ensure a light with useful life and power dissipation. Such a configuration is considered a matter of design preference by the examiner.

Tiesler-Wittig teaches a high intensity discharge lamp utilizing a xenon gas, which is commonly held in the art [Page 1, Paragraph 8].

It would have been obvious to modify the transom light of Isenga with the reflective tube of Jaksic to further incorporate the high intensity discharge lamp of Tiesler-Wittig because of the low operating voltage.

84. Claims 81, 82, and 84 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922).

With regards to Claim 81, Isenga teaches a transom light having a housing with hollow interior [Figure 3: (27)] and a forward end configured for mating with a hole in the hull of a vessel [Figures 1-3; see also Abstract]; a lamp [Figure 3: (17)]; means for mounting the lamp including a socket [Figures 2-4: (15); Column 2, Lines 42-45]; and a window [Figure 3: (43)] extending across the forward end of the lamp housing.

Art Unit: 2875

Isenga does not specifically teach the window being made of a scratch resistant material.

Schuda teaches a window being made of sapphire [Figure 1: (30); Column 2, Line 66; Claim 4]. To the applicant's admission, sapphire "is extremely hard and therefore resists scratching, and also resists breakage due to thermal shock and wave slap [Page 3, Paragraph 12]."

It would have been obvious to modify the transom light of Isenga to incorporate the sapphire window of Schuda in order to provide a resilient and thermally conductive window in protecting the light. It is also obvious that sapphire windows are used in high intensity discharge lamp applications, whereby sapphire's high thermal conductivity provides efficient heat dissipation.

- 85. With regards to Claim 82, Isenga teaches a means for providing a water-tight seal between the window and the forward end of the lamp housing to prevent water from entering the interior of the lamp housing [Figure 3: (65)].
- 86. With regards to Claim 84, Isenga teaches a thru-hull fitting assembly [Figure 3: (81)] connected to a forward end of the lamp housing [Figure 3: (33)] for mounting the forward end of the lamp housing in a hole in the hull of a vessel in a water-tight fashion [see Abstract].
- 87. Claim 83 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above.

Isenga teaches a transom light as cited above.

Art Unit: 2875

Isenga does not teach the light having a reflector mounted in the interior of the lamp housing and surrounding the lamp.

Schuda teaches an integral reflector flashlamp whereby a reflector [Figure 1: (11)] is disposed within a housing [Figure 1: (14)] and surrounds the light source [Figure 1: (45, 51)]. Schuda further teaches the reflector being designed in parabolic, elliptical or aspherical in shape to provide a particularly desired collimation of light [Column 2, Lines 53-55].

It would have been obvious to modify the transom light of Isenga to incorporate the integral reflector of Schuda in order to collimate and focus the beam of light.

88. Claim 85 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above, and further in view of Poggi (U.S. Patent 5800041).

Isenga in view of Schuda teach a thru-hull mounted light as cited above.

Neither Isenga nor Schuda specifically teach the light having an end cap and means for securing the end cap to a rearward end of the lamp housing in a water-tight fashion.

Poggi discloses an underwater light fitting wherein an end cap [Figure 2: (31)] is fitted over a rearward end of the lamp housing [Figures 2-3: (34)]. Poggi further teaches, "The cap 31 has an internally threaded portion 36 which engages an externally threaded portion 36 which engages an externally threaded portion 37 of the shaped portion 34 of the casing 12. The cap 31 thus screws onto the shaped portion 34, securing the flange 17 of the connection assembly 16 to the external end of the shaped

Art Unit: 2875

portion 34 of the casing 12. An "O" ring 35 is provided between the flange 17 and the external end of the shaped portion 34, in order to prevent ingress of water. In use, therefore, the housing 1 is water-tight [Column 5, Lines 2-13]."

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the end cap of Poggi to ensure an additional safety measure in the case where water somehow penetrates into the lamp.

89. Claim 86 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above, and further in view of Volk et al. (U.S. Patent 6538394).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a predetermined excessive heat condition.

Volk teaches, "The circuit of FIG. 1 further includes a thermal shutdown circuit of a type well known in the prior art, which will shutdown the circuit to turn off transistors Q2 through Q4 in the event the circuit is subject to an excessive temperature, internally generated or otherwise [Column 2, Lines 59-64]."

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the thermal shutdown circuit of Volk to

Art Unit: 2875

ensure an additional safety measure for the light, as well as the passengers of the vessel.

90. Claim 87 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above, and further in view of Davenport et al. (U.S. Patent 6545428).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit having a means for shutting off a source of power to the lamp upon the detection of a leakage of water into the lamp housing.

Davenport teaches, "FIG. 3 shows a schematic construction of a typical water-sensitive circuit 33. In that figure, block 42 represents a water sensor connected btween nodes 18 and 22 so as to be serially connected to ballast 20 (FIG. 1). It cooperates with a variable-conductance device 44 to substantially increase the conductance of device 44 in the presence of leaking water. Water sensor 42 could be an electronic circuit (not shown) for sensing water or humidity. Variable-conductance device 44 could be a soft switch, i.e., a switch that does not necessarily turn fully off or fully on, such as a resistive or inductive switch, or it could be a hard switch [Column 4, Lines 9-19]."

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the water-sensitive circuit of

Art Unit: 2875

Davenport to ensure an additional safety measure for the light, as well as the passengers of the vessel.

91. Claims 88-89 are rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above, and further in view of Shackle (U.S. Patent 6791275).

Isenga in view of Schuda teach a thru-hull light as cited above. Isenga further teaches the transom light having an electrical circuit connected to the light [Figures 2-4: (19); Column 2, Lines 42-52].

Neither Isenga nor Schuda specifically teach an electrical circuit connected to the lamp and including a ballast and means for shutting off a source of power to the ballast in the event of a fault in the lamp.

Shackle teaches a lamp with an electrical circuit connected to a lamp and ballast, and means for shutting off a source of power to the ballast in the event of a fault in the lamp. Shackle further teaches the electrical circuit providing a power indicator status [Abstract], as well as a means for indicating a fault status [Column 3, Lines 22-26].

It would have been obvious to modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the fault-status circuit of Shackle to ensure an additional safety measure for the light, as well as the passengers of the vessel. In addition, an indicator for power and/or fault provides a user an operating status for the lamp and an immediate warning to a malfunction.

Art Unit: 2875

92. Claim 90 is rejected under 35 U.S.C. 103(a) as being unpatentable over Isenga (U.S. Patent 4954932) in view of Schuda (U.S. Patent 4940922) as applied to Claim 81 above, and further in view of Rahm et al. (U.S. Patent 6636003).

Isenga in view of Schuda teach a thru-hull light as cited above.

Neither Isenga nor Schuda specifically teach the lamp having a color temperature of at least five thousand K.

Rahm teaches the use of a lamp having a color temperature of at least five thousand K [Column 2, Lines 20-23].

It is obvious that one could modify the transom light of Isenga with the sapphire window of Schuda to further incorporate the five thousand K lamp of Rahm to ensure a desired quality of light. The examiner considers the limitation a matter of design preference, and it is commonly held in the art and obvious that the color temperature of the lamp further provides a desired hue [e.g., 5000K for a illumination in the blue spectrum].

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any

Art Unit: 2875

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jason M. Han whose telephone number is (571) 272-2207. The examiner can normally be reached on 8:00am-5:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Sandra O'Shea can be reached on (571) 272-2378. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

PRIMARY EXAMINER

JMH (3/4/2005)