11TH INTER IIT TECH MEET 2023

DRONA AVIATION (**) PLUTO DRONE SWARM CHALLENGE

TEAM ID: 13

SECONDARY TEAM ID: 26

TIMELINE

Python Wrapper and MSP Packets

MSP Architecture

Controller tuning and estimation

Controller architecture

Swarm protocol

Swarm motion

MSP Packet Structure and Communication

						Payload																
	Не	ader	Dir	Msg Length	Туре	R	oll	Pit	ch	Thre	ottle	Sti	ick	AU	X1	AU	X2	AU	X3	AU	X4	Check Sum
Value	,	M	V	16	200	15	00	15	00	10	00	15	00	15	00	15	00	15	00	15	00	234
Hex Value	24	4d	3с	10	с8	dc	05	dc	05	e8	03	dc	05	dc	05	dc	05	dc	05	dc	05	ea

MSP and Socket Communication Architecture

Estimation Techniques and Controller Features

WE ALSO DEAL WITH A LOT OF SENSOR INCONSISTENCIES AND NOISE. THIS REQUIRES US TO ADD CERTAIN OTHER FUNCTIONALITIES TO THE CONTROLLER AS WELL THAT WILL ENABLE IT TO DEAL WITH THESE PROBLEMS BETTER. WE HAVE ALSO ADDED SAFETY FEATURES ONTO THE CONTROLLER

DERIVATIVE FILTERING	DEALS WITH NOISY AND DISCRETE SENSOR DATA	APPLIES A LOW PASS FILTER TO THE SENSOR NOISE TO SMOOTHEN IT OUT						
INTEGRAL ANTI- WINDUP	DEALS WITH CONTROLLING NONLINEAR SYSTMS	CAPS THE OUTPUT DUE TO INTEGRAL GAIN AND STOPS INTEGRATING THE OUTPUT						
DYNAMIC FILTERING	DEALS WITH UNDETECTED CAMERA FRAME INSTANCES	FEEDS THE ESTIMATED VALUE INTO THE CONTROLLER FOR UNDETECTED FRAMES						
AUTOMATED DISARMING	DEALS WITH INSTANCES WHERE THE DRONES GOES OUT OF RANGE	DISARMS THE DRONE FOR SAFETY						

Controller Tuning Methodology

WE FOLLOWED THE ZEIGLER NICHOLS APPROACH FOR TUNING OF THE PID TO PERFORM HOVERING AND THE SUBSEQUENT RECTANGULAR MOTION

Open loop response test

Closed loop response test

Calculation of Control Parameters

Iterative implementation and evaluation

Controller Architecture

PID Controller

Swarm Protocol

Swarm Motion

OUR SWARMING ALGORITHM PERFORMS THE FOLLOWING TASKS:

Any Questions?