Summary of Generalized Partial Credit Model

July 16, 2018

1 Checking Assumptions

Table 1: Goodness of fit statistics related to the test of unidimensionality in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the pilot empirical study

data	df	chisq	AGFI	TLI	CFI	DETECT	ASSI	RATIO
Pre-test	2	2.591	0.548	0.912	0.971	0.009	0.167	0.998
Post-test	2	0.387	0.990	-1.852	1.000	3.187	0.333	0.582

df: degree of freedom; AGFI: Adjusted Goodness of Fit Index; CFI: Comparative Fit Index; TLI: Tucker-Lewis
Index;

Table 2: Item residual correlation statistics related to the test of local independence in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the pilot empirical study

data	max.chisq	maxaQ3	MADaQ3	SRMSR	p.value
Pre-test	5.639	0.225	0.086	0.089	1.000
Post-test	9.115	0.288	0.116	0.107	0.767

aQ3: adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3; adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3; adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3; adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3; adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3; adjusted correlation of adjusted correlation of aQ3; adjusted correlation o

Table 3: Test of monotonicity in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the pilot empirical study

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.P1s0	1.00	0	0		0	0		0	0	0
Pre-test.P2s0	1.00	0	0		0	0		0	0	0
Pre-test.P3s2	0.86	0	0		0	0		0	0	0
Pre-test.P4s0	0.77	0	0		0	0		0	0	0
Post-test.PAs2	0.23	0	0		0	0		0	0	0
Post-test.PBs3	0.23	0	0		0	0		0	0	0
Post-test.PCs0	0.25	0	0		0	0		0	0	0
Post-test.PDs0	0.36	0	0		0	0		0	0	0

2 Estimating Item Parameters

Table 4: Estimated parameters in the GPCM-based instrument for measuring the Pre-test $\,$

estimated	P1s0	P2s0	P3s2	P4s0
xsi.item	-0.643	0.433	4.444	4.227
B.Cat0	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000
B.Cat2	0.000	0.000	2.000	0.000
B.Cat3	0.000	0.000	3.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000
AXsi.Cat1	0.643	-0.433	-4.177	-4.227
AXsi.Cat2			-7.924	
AXsi.Cat3			-13.332	
max.Outfit	0.649	0.537	0.994	0.386
max.Infit	0.844	0.755	1.500	0.961

Table 5: Estimated parameters in the GPCM-based instrument for measuring the Post-test $\,$

-				
estimated	PAs2	PBs3	PCs0	PDs0
xsi.item	-0.506	-0.040	-0.518	1.901
B.Cat0	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	0.000	0.000
B.Cat3	3.000	3.000	0.000	0.000
B.Cat4	0.000	4.000	0.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000
AXsi.Cat1	2.044	1.341	0.518	-1.901
AXsi.Cat2	1.845	1.192		
AXsi.Cat3	1.518	0.708		
AXsi.Cat4		0.161		
max.Outfit	1.198	1.915	1.060	0.927
$\max.Infit$	1.149	1.078	1.071	0.950

3 Latent Trait Estimates

Table 6: Latent trait estimates and person model fit of the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the pilot empirical study

П	ı																													
Post-test.Infit	1.117	0.232	0.243	0.422	0.704	0.108	0.422	0.109	0.368	0.262	0.226	1.429	0.405	0.243	1.865	0.531	0.290	0.243	1.065	0.703	0.181	0.379	0.605	0.109	0.865	1.138	0.109	0.384	0.411	0 0
Post-test.Outfit	0.814	0.216	0.343	0.422	1.253	0.163	0.422	0.184	0.351	0.431	0.581	1.016	0.377	0.343	1.477	0.482	0.357	0.308	1.548	1.703	0.117	0.379	1.102	0.184	0.832	1.138	0.184	0.446	0.385	0 0 0
Post-test.error	0.639	1.766	0.715	1.085	0.659	0.831	1.085	0.060	0.656	0.723	0.668	0.060	1.050	0.715	0.639	0.060	0.656	0.733	0.697	0.639	1.673	2.068	0.060	0.060	0.929	0.733	0.660	0.715	0.929	0000
Post-test.theta	0.259	-3.280	-0.514	-1.684	0.310	-1.090	-1.684	909.0	-0.094	-0.477	-0.052	909.0	-1.921	-0.514	0.259	909.0	-0.094	1.010	0.674	0.259	3.106	-3.002	909.0	909.0	1.628	1.010	909.0	-0.514	1.628	0000
Pre-test.Infit	0.129	0.226	0.112	0.355	0.355	0.199	0.355	0.199	0.226	0.567	0.223	0.226	0.199	0.226	0.199	0.226	0.228	0.226	0.223	0.567	0.226	0.355	0.360	0.112	0.552	0.226	0.226	1.461	0.567	0000
Pre-test.Outfit	0.160	0.099	0.121	0.167	0.167	0.148	0.167	0.148	0.099	0.394	0.223	0.099	0.148	0.099	0.148	0.099	0.131	0.099	0.223	0.394	0.099	0.167	0.300	0.121	0.299	0.099	0.099	0.858	0.394	0000
Pre-test.error	0.940	1.955	1.035	1.280	1.280	1.298	1.280	1.298	1.955	1.443	2.095	1.955	1.298	1.955	1.298	1.955	1.962	1.955	2.095	1.443	1.955	1.280	0.903	1.035	1.424	1.955	1.955	1.035	1.443	1000
Pre-test.theta	3.666	-1.876	4.987	3.046	3.046	2.620	3.046	2.620	-1.876	-0.103	-2.145	-1.876	2.620	-1.876	2.620	-1.876	-1.874	-1.876	-2.145	-0.103	-1.876	3.046	4.271	4.987	-0.104	-1.876	-1.876	4.987	-0.103	7
	10116	10119	10120	10121	10122	10126	10127	10128	10129	10130	10131	10132	10133	10134	10135	10136	10137	10138	10139	10140	10141	10143	10144	10145	10146	10148	10149	10152	10153	7 10 1