IMG_8171

Center for Biotechnology Information and GISAID databases were subjected to multiple-sequence alignment and phylogenetic analyses for studying variations in the viral genome (260). All the viral strains revealed high homology of 99.99% (99.91% to 100%) at the nucleotide level and 99.99% (99.79% to 100%) at the amino acid level. Overall variation was found to be low in ORF regions, with 13 variation sites recognized in la, 1b, S, 3a, M, 8, and N regions. Mutation rates of 30.53% (29/95) and 29.47% (28/95) were observed at nt 28144 (ORF8) and nt 8782 (ORF 1a) positions, respectively. Owing to such selective mutations, a few specific regions of SARS-CoV-2 should not be considered for designing primers and probes. The SARS-CoV-2 reference sequence could pave the way to study molecular biology and pathobiology, along with developing diagnostics and appropriate prevention and control strategies for countering SARS-CoV-2 (260). Nucleic acids of SARS-CoV-2 can be detected from samples (64) such as bronchoalveolar lavage fluid, sputum, nasal swabs, fiber bronchoscope brush biopsy specimen, pharyngeal swabs, feces, blood, and urine, with different levels of diagnostic performance (Table 2) (80, 245, 246). The viral loads