TST - Projekt 1

Jakub Postępski

27 listopada 2018

1 Wprowadzenie

Przyjmijmy macierz A_{2x2} . Macierz posiada, dla i = 1, 2:

- wartości własne λ_i
- wektory własne $\vec{v_i}$

W zadaniu interesuje nas dynamika ciągu:

$$x^{(t)} = A^t x_0$$

2 Wartości własne

Podstawowym równaniem jest:

$$Ax = \lambda x$$

Zbiór rozwiązań opisany równaniem charakterystycznym:

$$\varphi_A(z) = det(zI - A)$$

to widmo:

$$\sigma(A) = \{\lambda_i \in \mathbf{C}\}$$

Szukamy wartości dla których macierz A zachowa się jak przekształcenie liniowe (skalar). Dla takich wartości macierz tylko powiększa lub zmniejsza zadany wektor, ale nie zależności pomiędzy składowymi wektora.

Z równania wynika, że wartości własne decydują o tym jakim przekształceniem będzie macierz A.

3 Wektory własne

Są wektorami rozpinającymi bazę którą tworzy przekształcenie macierzy A. Zestaw takich wektorów nie jest jednoznaczny. Dla jednej macierzy można znaleźć wiele zestawów wektorów rozpinających. Wektory własne decydują więc o obrocie (konfiguracji) naszego przekształcenia.

4 Związek wartości i wektorów własnych

Wiemy już, że wartości własne (poniżej zapisane w diagonalnej macierzy D) definiują przekształcenie, a zestaw wektorów własnych (poniżej zapisane w macierzy V) jego obrót. Aby przekształcenie zachowywało się tak samo (pod względem widma) jak D musi zachodzić (szukamy macierzy podobnej):

$$A = VDV^{-1}$$

dzięki czemu jesteśmy w stanie znaleźć macierz A.

5 Dynamika układów

5.1 Przykładowy układ

Rysunek 1: Przykładowy układ z losowymi wartościami. "Popychany" przez gradient układ zbiega do zera, zgodnie z wyznaczonym obrazem.

Rysunek 2: Układ z losowymi wartościami. Jedne punkt startowy, $\lambda_1=1.0591\lambda_2=-0.5435$

Rysunek 3: Układ przekształcenia liniowego, $\lambda_1=1.2\lambda_2=-0.4$

5.2 Postać widma

Gdy macierz A jest postaci:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

to równanie charakterystyczne:

$$\varphi_A(\lambda) = (1 - a_{11})(a_{22}) - a_{12}a_{21}$$

może mieć następujące wartości własne

- $\bullet\,$ dwie różne wartości rzeczywiste
- $\bullet\,$ dwie jednakowe wartości rzeczywiste
- $\bullet\,$ dwie sprzężone liczby zespolone

(a) Wartości zadne przez nas: $\lambda_1=-0.7i, \lambda_2=0.2+0.7i,$ Próba uzyskania wartości własnych funkcją eig() kończy się śmiercią programu matlaba (naprawdę!) albo ostrzeżeniem.

(b)
$$\lambda_1 = -0.7i, \lambda_2 = 0.2 + 0.7i$$

(c)
$$\lambda_1 = 0.2, \lambda_2 = 0.2$$

Rysunek 4: Bieguny zespolone.

(a)
$$\lambda_1 = -1.5, \lambda_2 = 1.5$$

(b)
$$\lambda_1 = -1.5i, \lambda_2 = 1.5i$$

Rysunek 5: Por: Układ wprowadzany jest w oscylacje nieuporządkowane; Trajektorie układu zamieniają się miejscami.

5.3 Zastosowanie róznych wektorów własnych

(a)
$$\lambda_1 = 0.75, \lambda_2 = -1.5$$

(b)
$$\lambda_1 = 0.75, \lambda_2 = -1.5$$

Rysunek 6: Porównanie układów z jednakowymi wartościami własnymi. Różne wektory własne powodują obrót i przeskalowanie przekształcenia.

5.4 Stabilność układu

Układ może być:

- \bullet stabilny
- ullet stabilny asymptotycznie
- \bullet niestabilny

(a)
$$\lambda_1 = 1.6, \lambda_2 = -1.8$$

(b)
$$\lambda_1 = 0.8, \lambda_2 = -0.9$$

Rysunek 7: Porównanie stabilności przy pomocy wartości spektralnych. W drugim przypadku $\rho < 1$. Por.: Układ rozbiega się; Układ zbiega do zera.

(a)
$$\lambda_1 = 0.9, \lambda_2 = 1$$

(b)
$$\lambda_1 = 1, \lambda_2 = 1$$

(c)
$$\lambda_1 = 1.1, \lambda_2 = 1$$

Rysunek 8: Badanie stabilności przez zmiane tylko jednej wartości widma

Jeśli wartości własne $\lambda_1=\lambda_2=1$ to układ jest stały i przekształca samego w siebie. Jeśli zmniejszymy choć trochę wartość własną to w tym miejscu układ zaczyna zbiegać do zera. Jeśli zwiększymy choć trochę tę wartość własną układ zaczyna się rozbiegać w tym miejscu. To pokazuje kryterium stabilności, przez ocenę promienia spektralnego

$$\rho(A) = \{ max(|\lambda_i|) : \varphi_A(\lambda) \}$$

Układ jest:

- niestabilny gdy $\rho>1$
- $\bullet \,$ stabilny gdy $\rho=1$
- $\bullet\,$ stabilny asymptotycznie gdy $\rho<1$

(a)
$$\lambda_1 = 0.9, \lambda_2 = 1$$

Rysunek 9: Zmiana wektorów własnych nie zmienia stabilności, ale zmienia obrót

(c) $\lambda_1 = 1.1, \lambda_2 = 1$

(b) $\lambda_1 = 1, \lambda_2 = 1$