Algorithm: Molecular Graph Realizability Check

Input: A sequence of integer sets $C = \{E_1, E_2, \dots, E_n\}$, where each set $E_i = \{v_{i1}, v_{i2}, \dots, v_{im_i}\}$ is sorted in ascending order.

Output: Boolean value indicating whether C is realizable as a molec-

ular graph. Procedure:

Initialization:

Set $C_{max} = \{d_1, d_2, \dots, d_n\}$, such that $d_i \leftarrow \max(E_i)$, for all i Compute total valence sum: $D = \sum_{i=1}^{n} d_i$

Step 1: Handshake Lemma Check

if D is odd then

Iterate over C to find odd Δ such that $\Delta = d_i - v_{ij}$ for $v_{ij} \in$ $E_i \setminus \{d_i\}$. If multiple odd Δ exist, take the smallest one.

if such odd Δ exists for any first E_i then

Update max valence: $d_i \leftarrow d_i - \Delta$, update sum: $D \leftarrow D - \Delta$ else

Return false

end if end if

Step 2: Connectivity Check **if** D < 2(n-1) **then** Return false

end if

Step 3: Loop Prevention Check

if $D \ge 2d_{imax}$, where $d_{imax} = \max\{d_1, d_2, \dots, d_n\}$ then

Return true else

if $v_{ij} < d_{imax}$ exists in E_i then

Update C: remove d_{imax} from E_i Set $v_{imax} \leftarrow$ next largest available v_{ij} Update C_{max} : replace d_{imax} with v_{imax}

Update sum: $D \leftarrow D - d_{imax} + v_{imax}$ Go to Step 1

else Return false

end if

end if