REDES DE COMPUTADORES

Mário Antunes

mario.antunes@ipleiria.pt

Setembro de 2018

CLIENTE/SERVIDOR - [CLIENT/SERVER]

PEDIDO/RESPOSTA - [REQUEST/REPLY]

Modelo TCP/IP

APLICAÇÃO

TRANSPORTE

REDE

FÍSICA e LIGAÇÃO

Sistema operativo (Windows, Linux, etc)

Modelo OSI

[Open Systems Interconnection]

APLICAÇÃO

APRESENTAÇÃO

SESSÃO

TRANSPORTE

REDE

LIGAÇÃO

FÍSICA

APLICAÇÃO

TRANSPORTE

REDE

FÍSICA e LIGAÇÃO

Benefícios de um modelo estruturado em camadas (layered)

Regras de comunicação:

- Codificação
- Formatação e encapsulamento
- Tamanho
- Timing
- Distribuição

The Rules

Message Encoding

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

The Rules

Message Formatting and Encapsulation

Example: Personal letter contains the following elements:

- Identifier of the recipient's location
- Identifier of the sender's location
- Salutation or greeting
- Recipient identifier
- The message content
- Source identifier
- End of message indicator

Sender
4085 SE Pine Street
Ocala, Florida 34471

Recipient
1400 Main Street
Canton, Ohio 44203

The Rules

Message Delivery Options

Protocolos de rede

REGRAS:

- Formatação e estrutura das mensagens trocadas entre as aplicações
- Processo de partilha de informação entre dispositivos/aplicações
- Deteção e tratamento de erros nas mensagens trocadas
- Sinalização do estabelecimento e término da transferência de dados

Protocol Suites

TCP/IP Protocol Suite and Communication

11

Modelo de comunicação TCP/IP

Protocol Data Units (PDUs)

- Data
- Segment
- Packet
- Frame
- Bits

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 13

Modelo de comunicação TCP/IP

Modelo de comunicação TCP/IP

Exemplos de encapsulamentos comuns:

frame	pacote	segmento	Dados
frame	pacote	datagrama	Dados

Identificação e acesso a recursos na rede

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 16

Modelo de comunicação TCP/IP

- Interligação <u>vertical</u> entre as camadas
- Protocolo da camada n−1 "liga" ao protocolo da camada n

Accessing Local Resources

Communicating with Device / Same Network

Destination	Source	Source		Destination		
CC-CC-CC-	AA-AA-AA-AA- AA-AA	Network 192.168.1.	Host 110	Network 192.168.1.	Host 9	Data

PC1 192.168.1.110 AA-AA-AA-AA-AA

Accessing Local Resources MAC and IP Addresses

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 19

Accessing Remote Resources

Default Gateway

Getting the Pieces to the Correct Network

resentation_ID

Accessing Remote Resources

Communicating Device / Remote Network

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 21

Cablagem estruturada

Meio físico

Topologias de rede

Purpose of the Physical Layer Physical Layer Media

Sample electrical signals transmitted on copper cable

Representative light pulse fiber signals

Microwave (wireless) signals

tation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 23

Copper Cabling Copper Media

UTP Cabling

UTP Cabling Standards

Category 5 and 5e Cable (UTP)

- Used for Data transmission
- Cat 5 supports 100
 Mbps and can support
 1000 Mbps but it is not
 recommended
- Cat 5e supports 1000
 Mbps

UTP Connectors

fidential 25

Types of UTP Cable

Cable Type	Standard	Application
Ethernet Straight-through	Both ends T568A or both ends T568B	Connecting a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	Connecting two network hosts. Connecting two network intermediary devices (switch to switch, or router to router).
Rollover	Cisco proprietary	Connect a workstation serial port to a router console port, using an adapter.

T568B

tation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2

Testing UTP Cables

ISO/IEC 11801

Types of Fiber Media

- · Small Core
- · Less Dispersion
- Suited for long distance applications
- · Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

- Larger core than single mode cable
- Allows greater dispersion and therefore, loss of signal
- Suited for long distance applications, but shorter than single mode
- · Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2

Fiber Optic Cabling

Network Fiber Connectors

ST Connectors

SC Connectors

LC Connector

Duplex Multimode LC Connectors

Fiber Optic Cabling Testing Fiber Cables

Optical Time Domain Reflectometer (OTDR)

Wireless Media

Types of Wireless Media

- IEEE 802.11 standards
- · Commonly referred to as Wi-Fi.
- Uses CSMA/CA
- Variations include:
 - 802.11a: 54 Mbps, 5 GHz
 - 802.11b: 11 Mbps, 2.4 GHz
 - 802.11g: 54 Mbps, 2.4 GHz
 - 802.11n: 600 Mbps, 2.4 and 5 GHz
 - 802.11ac: 1 Gbps, 5 GHz
 - 802.11ad: 7 Gbps, 2.4 GHz, 5 GHz, and 60 GHz

- IEEE 802.15 standard
- Supports speeds up to 3 Mbps
- Provides device pairing over distances from 1 to 100 meters

- IEEE 802.16 standard
- Provides speeds up to 1 Gbps
- Uses a point-to-multipoint topology to provide wireless broadband access.

Wireless Media

802.11 Wi-Fi Standards

Standard	Maximum Speed	Frequency	Backwards compatible
802.11a	54 Mbps	5 GHz	No
802.11b	11 Mbps	2.4 GHz	No
802.11g	54 Mbps	2.4 GHz	802.11b
802.11n	600 Mbps	2.4 GHz or 5 GHz	802.11b/g
802.11ac	1.3 Gbps (1300 Mbps)	2.4 GHz and 5.5 GHz	802.11b/g/n
802.11ad	7 Gbps (7000 Mbps)	2.4 GHz, 5 GHz and 60 GHz	802.11b/g/n/ac

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 32

Purpose of the Data Link Layer The Data Link Layer

Purpose of the Data Link Layer Media Access Control

Data link layer protocols govern how to format a frame for use on different media.

At each hop along the path, an intermediary device accepts frames from one medium, decapsulates the frame and then forwards the packets in a new frame. The headers of each frame are formatted for the specific medium that it will cross.

ntation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 34

Data Link Layer

Layer 2 Standards

LLC **IEEE 802.2** Sublayer Data Link Layer (GigabitEthernet over Copper) MAC Token Ring/iEEE 802.6 Sublayer Ethernet IEEE 802.3z (GigabitEthernet) IEEE 802.3ab **EEE 802.3u** FastEthernet) 802. (Ethernet) FDDI HE **Physical** Physical Layer Layer

OSI Layers

LAN Specification

Topologies

Physical and Logical Topologies

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 36

LAN Topologies

Physical **LAN** Topologies

Physical Topologies

Star topology

Extended star topology

Bus topology

Ring topology

WAN Topologies

Common Physical WAN Topologies

Point-to-point topology

Hub and spoke topology

Full mesh topology

LAN Topologies

Multi-Access versus Ring Topologies

Ring Token-Ring FDDI

Presentation_ID 39

ESTUDO AUTÓNOMO

Leituras obrigatórias

CCNA Routing & Switching – Módulo 1

"Chapter 3: Network Protocols and Communications"

"Chapter 4: Network Access"