Poisson Regression for Count Data

Bowei Kang

Department of Public Health Sciences
The University of Chicago

NOT IN FINAL

Adapted from Dr. Lin Chen's slides for PBHS 32700, Spring 2023.

Poisson regression in GLM framework

Response	Link function	Error	Model
Continuous	Identity	Normal	Linear
Binary	Logit	Binomial	Logistic
Categorical	Logit	Multinomial	Multinomial logistic
Counts	Natural log	Poisson	Poisson

Count data

- Count: the number of occurrences of an event (success) in a fixed interval of time and/or a specified region of space.
- The total number of such events is a non-negative integer but could be large.

For example:

- The number of new cases of tuberculosis in ZIP code 60637 during a randomly-selected year.
- The number of accidents at a given intersection on a randomly-selected weekend.
- The number of epileptic seizures for a randomly-selected epilepsy patient over a 2 week period.

Can we analyze count data with linear regression?

Treat counts as continuous, normally distributed?

- Count distribution is too skewed to satisfy normality (incorrect test results).
- Normal model does not necessarily prevent negative estimated counts.

Can we do log transformation on counts?

• If count is very large

• Don't care about interpretation of B

Not ideal. The log of zero count is negative infinity and we will lose those data.

Can we analyze count data with logistic regression?

Dichotomize counts?

- Choose a cutoff c, and for each count Y_i , generate a new binary variable, $Z_i = 0$ if $Y_i \le c$; $Z_i = 1$ if $Y_i > c$. Fit a logistic regression to Z_i .
- If c = 0, then Z is the indicator whether the event happen or not.
- Loss of information resulting in under-powered tests. Is 1 event really equal to 100 events? Is 1 event really

Poisson Distribution

- A count variable is often assumed to follow Poisson distribution.
- Suppose that *Y* is a count variable with probability function:

$$\Pr(Y = k) = \frac{e^{-\mu}\mu^k}{k!}, k = 0, 1, 2, \dots$$
 (1)

Then Y has a Poisson distribution with parameter μ .

- \bullet μ is the mean number of events that occur in the given time interval and/or region of space.
- Basic assumptions: events occur independently with a known constant mean rate, μ .
- A key property: $E(Y) = Var(Y) = \mu$. Note that this is a property and could also be a restriction when assuming a variable following Poisson distribution.

Poisson Distribution (cont.)

- The expected number of counts (per unit of time) is strictly positive.
- As mean increases, the probability at 0 decreases (shift to right); the distribution approximates normal.
- A larger mean correspond to a larger variance (more spread).
 more spreading to the right

Poisson Distribution: Examples

- Y is the number of new cases of tuberculosis in ZIP code 60637 during a randomly-selected year; μ is the average number of tuberculosis in ZIP code 60637 per year.
- Y is the number of accidents at a given intersection on a randomly-selected weekend; μ is the average number of accidents at a given intersection per weekend.
- Y is the number of epileptic seizures for a randomly-selected epilepsy patient over a 2 week period; μ is the average number of seizures per person over a two-week period.

Genesis of / heuristic for Poisson distribution

- μ (average number of tuberculosis per year) is the annual average population in ZIP code 60637 × the probability of each person having a new case of tuberculosis.
- μ (average number of accidents per weekend) is the average number of cars through the intersection per weekend \times the probability of each car having an accident.
- μ (average number of seizure per person for a two-week period) is the number of, say, minutes in a 2-week period × the probability of having a seizure in any given minute.
- Thus, to an approximation:

$$\mu = np$$

where n is very very large and p is very very small.

The relationship between the Binomial and Poisson distribution

- The Binomial distribution tends toward the Poisson distribution as $n \longrightarrow \infty$, $p \longrightarrow 0$ and np stays constant.
- The Poisson random variable with mean μ is approximately binomial with large n and small p such that $\mu = np$.

Exposure and rate

- Just as with binomial data, where p is the parameter of interest, λ , a rate parameter is usually of interest with Poisson count data.
- Suppose that Y is a count of events that arise at a (incidence) rate of λ per unit-time of exposure for an exposure period of A, so that $\mu = \lambda A$.
- In Epidemiology, A is called person-time: the number of time units (usually years) contributed to the exposure by each person under observation.
- Can be expressed in days or months, etc., but typically person-years.
- 10 people followed for one year contribute 10 person-years, as does 1 person followed for 10 years.
- Person-time is used when persons are observed in the study for varying amounts of time.

Exposure and rate: Example

- In the *tuberculosis* example, λ could be the rate of new tuberculosis cases per person-year; then A is the average number of people in ZIP 60637 over a year \times 1 year.
- In the *accident* example, λ could be the rate of accidents through the intersection per thousand car-weekend-day; then A is the average number of cars/1000 through the intersection per weekend day \times 2 days.
- In the *epileptic seizure* example, λ could be the rate of seizures per person-hour; then A is 2 weeks \times 7 days \times 24 hours \times 1 person.

Poisson Regression Model for Incidence Rate

- Consider count data Y_i which are Poisson, as a function of incidence rate λ_i and exposure time A_i . Suppose the i^{th} population are with covariates x_{i1}, \dots, x_{ik} . Then, we have $Y_i \sim Poisson(\mu_i)$, where $\mu_i = \lambda_i A_i$.
- A Poisson (log-linear) regression model for incidence rate λ_i is

$$\log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}. \tag{2}$$

We care more about λ_i rather than μ_i .

- β_0 is the baseline log incidence rate (i.e. log of event rate in a period of time), and $\exp(\beta_0)$ is the baseline incidence rate when all $x_1 = \cdots = x_k = 0$.
- β_1 is the log incidence rate ratio (i.e., difference in log incidence rate) when X_1 increase by 1 unit, adjusting for other covariates. $\exp(\beta_1)$ is the incidence rate ratio (IRR).

Poisson Regression Model for Incidence Rate (Cont.)

• Because $\log(\mu_i) = \log(\lambda_i) + \log(A_i)$, based on (2), a Poisson regression model can also be written as \log of expected count:

$$\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \log(A_i)$$
(3)

- The interpretations of the coefficients are the same. $\exp(\beta_0)$ is the baseline incidence rate when all $x_1 = \cdots = x_k = 0$. $\exp(\beta_1)$ is the incidence rate ratio (IRR). Interpret based on IRR
- The mean/expected count $E(Y_i) = \mu_i$ (not λ_i), thus we need a way to account for the exposure time A_i in fitting (3). Poisson Regression Model for Incidence Rate (Cont.)

Fit a Poisson Regression Model

We do this with an *offset term* in the model equal to $log(A_i)$.

- Offset is used to model rates per person-year, instead of just modeling the raw counts
- Offset is used to account for different group/population sizes, which could vary by age, region, other characteristics, etc.
- Offset *does not* have a β -coefficient associated with it, or, for which $\beta = 1$
- Without offset() options, exposure is assumed to be 1 for each subject (equivalent to assuming that exposure is unknown).

Example: British doctor's smoking and coronary death

The data is from a very famous study where in 1951, all British doctors were sent a brief questionnaire about whether they smoked tobacco. Since then information about their deaths has been collected.

Table 1: Deaths from coronary heart disease after 10 years among British male doctors categorized by age and smoking status in 1951.

Age	(Smokers		Non-smokers		
group	Deaths	Person-years	Deaths	Person-years		
35-44	32	52407	2	18790		
45-54	104	43248	12	10673		
55-64	206	28612	28	5710		
65-74	186	12663	28	2585		
75-84	102	5317	31	1462		

Person-year is the sum of exposure years (years at risk or years in the study) for all subjects in the group. When a study subject develops the event (death) or leaves the study, they are no longer at risk and will no longer contribute person-year at risk.

British doctor's smoking and coronary death

- . gen age = (agegrp 40)/10
- * Take the midpoint of the age range, and generate a new variable age which denotes the number of decades from the 35-44 years group.
- . list

_	L				
	agegrp	smoker	death	personyr	age
1.	 40	 1	32	 52407	 0
2.	40	0	2	18790	0 j
3.	50	1	104	43248	1 j
4.	50	0	12	10673	1 j
5.	60	1	206	28612	2
6.	 60	0	 28	 5710	 2
7.	70	1	186	12663	3
8.	j 70	0	28	2585	3
9.	80	1	102	5317	4
10.	80	0	31	1462	4
-	+				+

Model 1: Continuous age as the predictor

- We fit a Poisson regression model with death count as response and age as predictor. We set the variable personyr as "offset".
- $\log E(death_i) = \log(personyear_i) + \beta_0 + \beta_1 age_i$
- Note that the Stata code use "exposure" instead of "offset".
- β_1 represents incremental \log death rate for every decade of age increase.

. poisson death age, exposure(personyr) nolog

Poisson regression	Number of obs	=	10
	LR chi2(1)	=	850.06
	Prob > chi2	=	0.0000
$Log\ likelihood = -70.03973$	Pseudo R2	=	0.8585

death	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age _cons In(personyr)	.8377632 -6.94774 1	.0288947 .0787198 (exposure)	28.99 -88.26	0.000	.7811305 -7.102027	.8943958 -6.793452

poisgof

Deviance goodness-of-fit =
$$85.01159$$

Prob > chi2(8) = 0.0000

Pearson goodness-of-fit =
$$75.24859$$

Prob > chi2(8) = 0.0000

Model 2: Categorical age as the predictor

- Model 1 has a large deviance.
- The log death rate increment is getting smaller as age increases.
- $\log E(death_i) = \log(personyear_i) + \beta_0 + \beta_1 age_{1i} + \beta_2 age_{2i} + \beta_3 age_{3i} + \beta_4 age_{4i}$
- Use i.age to treat age as a categorical variable in regression.
- β_4 represents incremental log death rate for age group 75-84 versus baseline age group 35-44.

. poisson death i.age, exposure(personyr) nolog

Poisson regression	Number of obs	=	10
	LR chi2(4)	=	911.08
	Prob > chi2	=	0.0000
$Log\ likelihood = -39.528731$	Pseudo R2	=	0.9202

death	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age 1 2 3 4	1.50516 2.658625 3.380618 3.71561	.1950191 .1835355 .1846203 .1921733	7.72 14.49 18.31 19.33	0.000 0.000 0.000 0.000	1.12293 2.298902 3.018769 3.338957	1.887391 3.018348 3.742467 4.092262
_cons In (personyr)	-7.646845 1	.1714986 (exposure)	-44.59	0.000	-7.982976	-7.310714

poisgof

Deviance goodness-of-fit =
$$23.98959$$

Prob > chi2(5) = 0.0002
Pearson goodness-of-fit = 20.08
Prob > chi2(5) = 0.0012

Model 3: Categorical age and smoker as the predictor

- Comparing Model 1 and 2, change in deviance, 85.01 23.99 = 61.02, follows a χ_3^2 under the null that log death rate is constant for different decades of age increase. Highly significant.
- Model 2 still has a large deviance, thought it improves a lot than Model 1.
- Add smoker to Model 2.
- $\log E(death_i) = \log(personyear_i) + \beta_0 + \beta_1 age_{1i} + \beta_2 age_{2i} + \beta_3 age_{3i} + \beta_4 age_{4i} + \beta_5 smoker_i$
- Now β_4 represents the incremental log death rate for age group 75-84 versus baseline age group 35-44, adjusting for the smoking status.

. poisson death smoker i.age, exposure(personyr) nolog

Poisson regression Log likelihood = -33.600153				Number LR chi2 Prob > Pseudo I	(5) = chi2 =	10 922.93 0.0000 0.9321
death	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
smoker	.3545356	.1073741	3.30	0.001	.1440862	.564985
age						
ĭ	1.484007	.1951034	7.61	0.000	1.101611	1.866403
2	2.627505	.1837273	14.30	0.000	2.267406	2.987604
3	3.350493	.1847992	18.13	0.000	2.988293	3.712693
4	3.700096	.1922195	19.25	0.000	3.323353	4.07684
_cons 	-7.919326 1	.1917618 (exposure)	-41.30	0.000	-8.295172	-7.543479
	·					

poisgof

Model 4: Add interaction term

- Comparing Model 3 and 2, change in deviance, 23.00 12.13 = 11.87, follows a χ_1^2 under the null that smoker is not an important predictor. Highly significant.
- Model 3 still has a large deviance, thought adding smoker improves a lot than Model 2.
- The incremental log death rate across gender is shrinking as age increases. Consider adding interaction between smoker and age.
- In Stata, xi is a command to factorize the categorical variable and expand the variable's interaction.
- Note that this is a full model (10 parameters for 10 groups of counts).

```
. xi: poisson death i age * smoker, exposure (personyr) nolog
                   _lage_0-4 (naturally coded; _lage_0 omitted)
 i.age
                   _lageXsmoke_#
 i.age*smoker
                                        (coded as above)
 Poisson regression
                                                 Number of obs
                                                                              10
                                                 LR chi2(9)
                                                                          935.07
                                                  Prob > chi2
                                                                          0.0000
 Log\ likelihood = -27.53397
                                                  Pseudo R2
                                                                          0.9444
                      Coef. Std. Err.
                                           z P>|z| [95% Conf. Interval]
         death |
                              .7637625
                                            3.09
                                                   0.002
                                                             .8604198
                                                                         3.854314
                   2.357367
       _lage_1
       _lage 2
                   3.830163
                               .731925
                                            5.23
                                                   0.000
                                                             2.395616
                                                                         5.264709
                                            6.32
                                                   0.000
       lage 3
                   4.622656
                             .731925
                                                              3.18811
                                                                         6.057203
       lage 4
                   5.294359
                               .7295601
                                            7.26
                                                   0.000
                                                             3.864448
                                                                         6.724271
        smoker
                 1.746873
                               .7288689
                                            2.40
                                                   0.017
                                                             .3183163
                                                                          3.17543
  lageXsmoke 1
                  -.9866227
                              .7900624
                                           -1.25
                                                   0.212
                                                            -2.535117
                                                                         .5618712
                                           -1.80
                                                  0.072
  lageXsmoke 2 |
                  -1.362809
                              .7561868
                                                            -2.844908
                                                                         .1192903
  lageXsmoke 3
                 -1.44229
                               .7565319
                                           -1.91
                                                  0.057
                                                            -2.925065
                                                                         .0404855
 lageXsmoke 4 |
                  -1.846991
                              .7571736
                                       -2.44
                                                  0.015
                                                            -3.331024
                                                                        -.3629584
                  -9.147933
                                         -12.94
                                                  0.000
                              .7071067
                                                            -10.53384
                                                                        -7.762029
         cons
  In (personyr)
                              (exposure)
 poisgof
```

Deviance goodness-of-fit = .0000694Prob > chi2(0)

Pearson goodness-of-fit = 1.14e-13Prob > chi2(0)

Model 5: Add squared age

- There are strong interaction effects.
- Maybe treating age as continuous and considering the age-by-smoker interaction, as well as the quadratic age effect (agesq)? The effect of age on death is non-linear.
- $\log E(death_i) = \log(personyear_i) + \beta_0 + \beta_1 age_i + \beta_2 smoker_i + \beta_3 agesq_i + \beta_4 sa_i$

- gen agesq = age * age
- . gen sa = smoker*age
- . poisson death age smoker agesq sa, exp(personyr) nolog

Poisson regression

Number of obs = 10 LR chi2(4) = 933.43 Prob > chi2 = 0.0000 Pseudo R2 = 0.9427

 $Log\ likelihood = -28.351655$

death	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age smoker agesq sa _cons In (personyr)	1.981125 1.133424 1976765 3075481 -8.612961	.1602452 .2807705 .0273674 .0970411 .2917237 (exposure)	12.36 4.04 -7.22 -3.17 -29.52	0.000 0.000 0.000 0.002 0.000	1.66705 .5831238 2513157 4977452 -9.184729	2.2952 1.683724 1440374 1173509 -8.041193

poisgof

Deviance goodness-of-fit = 1.63544Prob > chi2(5) = 0.8969

Pearson goodness-of-fit = 1.550251Prob > chi2(5) = 0.9072

Model summary

Model	Predictor	df	Deviance	AIC
1	age	2	85	144
2	ai.age	5	24	89
3	ai.age + smoker	6	12	79
4	ai.age x smoker	10	0	75
5 Best.	aage + agesq + smoker	5	2	67

Note: Similar as in logistic regression, the deviance and Pearson goodness-of-fit tests only apply to grouped (Poisson) data. You need other tests to assess the goodness-of-fit of a model for ungrouped data. Difference in deviance (LR) test can still be used to compare nested models.

• You may also directly output incident rate ratio (IRR), $\exp(\beta_1), ..., \exp(\beta_k)$, by using the option "irr".

poisson death age smoker agesq sa, irr exp(personyr) nolog

Poisson regression	Number of obs	=	10
	LR chi2(4)	=	933.43
	Prob > chi2	=	0.0000
Log likelihood = -28.351655	Pseudo R2	=	0.9427

death	IRR	Std. Err.	Z	P> z	[95% Conf.	Interval]
age smoker agesq sa _cons In (personyr)	7.250897 3.106274 .8206353 .7352475 .0001817	1.161922 .8721498 .0224587 .0713493 .000053 (exposure)	12.36 4.04 -7.22 -3.17 -29.52	0.000 0.000 0.000 0.002 0.000	5.296522 1.791626 .7777768 .6078998 .0001026	9.926422 5.385573 .8658554 .8892731 .0003219

Note: _cons estimates baseline incidence rate.

• The IRR for smoker is 3.106274, and log(3.106274) = 1.133424 from the previous page.

Summary

Poisson Regression

```
* when to use Poisson Regression?

• count / rate variable.

• Dort: response
```

- Poisson regression models a Poisson-distributed count variable as the response.
- It models the nature log of the expected count as a linear combination of predictors (uses a log link function).
- The equal mean and variance assumption should always be checked when using a Poisson model. This can be done by goodness-of-fit tests and by examining whether the variance is close to mean. An alternative model to handle over-dispersion in count is the Negative Binomial model.
- In a Poisson regression, the offset term is used to model event rate, with exposure in person-time.
- Coefficients in Poisson regression are on the log(count) scale and have a multiplicative effect on the event rate.
- Hypothesis testing and model comparison can be done similarly as in a logistic regression.