(Pages	:	4)
--------	---	----

Reg. No.:

Fourth Semester B.Sc. Degree Examination, July 2019

First Degree Programme under CBCSS

Complementary Course for Physics

MM 1431.1 – MATHEMATICS IV (COMPLEX ANALYSIS, FOURIER SERIES AND FOURIER TRANSFORMS)

(2014 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. If $z_1 = 6 + 3i$, $z_2 = -2 + 3i$, what is the imaginary part of $\frac{z_1}{z_2}$?
- 2. Using D'Moivre's Theorem, express $\sin 4\theta$ in terms of powers of $\cos \theta$ and $\sin \theta$.
- 3. Define analyticity of a complex function f(z) in a domain D in the complex plane.
- 4. State Cauchy Riemann equations.
- 5. State Morera's Theorem.
- 6. Obtain the singular points of $f(z) = Co \sec z$.
- 7. Find the residue of $f(z) = \frac{1}{(z^2 + 1)^3}$ at z = -i.
- 8. State Dirichlet conditions for the convergence of a Fourier series of a function f(x) of period 2π .

- 9. Write the standard form of Fourier Sine series and formulae for Fourier coefficients of the half range Sine series of a function f(x) in $(0, \pi)$.
- 10. If F(s) is the Fourier transform of f(x) then what is the Fourier transform of f(x-a) where a is any real number.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 22. These question carry two marks each.

- 11. Find all distinct fourth roots of -1.
- 12. Prove that the real and imaginary parts of an analytic function are harmonic.
- 13. Find the real and imaginary parts of $f(z) = 2z^3 3z$.
- 14. Evaluate $\int_C \operatorname{Re} z^2 dz$ where C is the unit circle in the counter clockwise direction.
- 15. Develop the function $f(z) = \frac{1}{z+3i}$ in a Maclaurin's series and find the radius of convergence.
- 16. Determine the location and nature of singularities of $f(z) = z^2 \frac{1}{z^2}$.
- 17. Find the residues of $f(z) = \frac{1}{1 e^z}$ at its singular points.
- 18. Expand $f(z) = \frac{1}{z^3 z^4}$ as a Laurent's series that converges for |z| > 1.
- 19. State Cauchy's Integral formula and using it evaluate $\oint_C \frac{z+1}{z^2} dz$ where C is a unit circle.
- 20. Find the half range Cosiine series of f(x) = x, $0 < x < \pi$.

- 21. Expand $f(x) = (x-1)^2$, 0 < x < 1 in a Fourier series of Sine terms only.
- 22. Prove that Fourier transform is a linear operator.

$$(8 \times 2 = 16 \text{ Marks})$$

SECTION - III

Answer any **six** questions from among the questions 23 to 31. These questions carry 4 marks each.

23. If
$$f(z)$$
 is analytic, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$.

- 24. What are the values of $\int_C \frac{e^z}{z^2 + 1} dz$ if C is a unit circle with centre at
 - (a) z = i and
 - (b) z = -i?
- 25. Find the Laurent's series for the function $f(z) = \frac{z}{(z-1)(z-3)}$ in 0 < |z-1| < 2.
- 26. Obtain the residues of $f(z) = \frac{z^2 z + 2}{(z+3i)(z-3i)(z+i)(z-i)}$ at its poles.
- 27. State Cauchy's Residue Theorem. Use Cauchy's Residue Theorem to evaluate the integral of the function $f(z) = \frac{1}{1+z^2}$ around the circle |z| = 2, in the positive sense.
- 28. Show that $\int_{0}^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$.
- 29. Obtain the Fourier series of the periodic function defined by

$$f(x) = \begin{cases} -\pi & \text{if } -\pi < x < 0 \\ x & \text{if } 0 < x < \pi \end{cases}$$
. Deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$.

30. Obtain the Fourier series of periodicity 2 for
$$f(x) = \begin{cases} x & \text{if } -1 < x \le 0 \\ x + 2 & \text{if } 0 < x \le 1 \end{cases}$$

31. Find the Fourier transform of
$$f(x) = \begin{cases} Cosx, |x| < \frac{\pi}{2} \\ 0, |x| > \frac{\pi}{2} \end{cases}$$
.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any **Two** questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. (a) If a function f(z) is analytic, show that is independent of \overline{z} .
 - (b) Show that the function $u(x,y) = x^4 6x^2y^2 + y^4$ is harmonic and find the corresponding analytic function f(z) in terms of z.
- 33. (a) Expand $\frac{1}{1+z^2}$ as a Laurent series about z=i.
 - (b) Evaluate $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz$ where C is |z| = 3.
- 34. Expand $f(x) = x \sin x$ as a cosine series in $0 < x < \pi$ and deduce $1 + \frac{2}{1.3} + \frac{2}{3.5} + \frac{2}{5.7} + \dots \infty$
- 35. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, |x| \le 1 \\ 0, |x| > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \frac{x}{2} dx.$

 $(15 \times 2 = 30 \text{ Marks})$