Teoria da Computação Complexidade de Tempo parte 3

Leonardo Takuno {leonardo.takuno@gmail.com}

Centro Universitário Senac

Sumário

Teorema de Cook-Levin

Problemas NP-Completos

Sumário

Teorema de Cook-Levin

Problemas NP-Completos

Nos anos de 1970 Stephen Cook e Leonid Levin descobriram, independentemente, que existem certos problemas em NP cuja complexidade está relacionada a todos os outros problemas da classe NP - estes problemas são chamados de NP-Completos.

Nós vimos anteriormente que os problemas NP-Completos estão relacionados a outros problemas NP via reduções polinomiais.

Problema da satisfabilidade (SAT)

Uma fórmula booleana é uma expressão que envolve variáveis booleanas (x, y, etc) e operações $(\land, \lor, \neg, \text{onde } \neg x = \overline{x})$.

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

Uma fórmula booleana é verdadeira se alguma atribuição de variáveis (*true* ou *false*) torna o valor da fórmula igual a *true*.

Problema da satisfabilidade (SAT)

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

É satisfazível pois a atribuição

$$x = false,$$

 $y = true,$
 $z = false.$

faz ϕ valor true.

Dizemos que a atribuição satisfaz ϕ .

Problema da satisfabilidade (SAT)

O **problema da satisfabilidade** é testar se uma fórmula booleana é satisfatível.

 $SAT = \{\langle \phi \rangle | \phi \text{ \'e uma f\'ormula booleana satisfat\'ivel} \}$

Teorema (Cook-Levin): SAT é NP-Completo

Idéia da prova:

- Primeiro mostramos que $SAT \in NP$
- Para qualquer linguagem $A \in NP$ mostramos que $A \leq_p SAT$

Teorema (Cook-Levin): SAT é NP-Completo

Prova:

- Primeiro mostramos que $SAT \in NP$
- Uma máquina de tempo polinomial não-determinístico pode adivinhar uma atribuição para uma dada fórmula ϕ e aceitar se a atribuição satisfaz ϕ

Teorema (Cook-Levin): SAT é NP-Completo

Prova (continuação):

- Precisamos mostrar que $A \leq_p SAT$ para todo $A \in NP$.
- Isto é feito por simular as computações de MTN decidindo A sobre alguma string w usando fórmulas booleanas tal que

$$w \in A \Leftrightarrow f(w) \in SAT$$

onde f converte a string w na fórmula booleana f(w).

Definição: Um **tableau** para N sobre w é uma tabela $n^k \times n^k$ cujas linhas são configurações de um ramo de computação de N sobre w.

- **3** Para toda linha i, C_i pode produzir C_{i+1} de acordo com as regras de N.

- Todo tableau representa um computação de MT sobre a entrada w.
- Desde que N é não-determinístico, podem existir muitas computações.
- Consequentemente, pode haver muitos tableaus. Cada um correspondente a um ramo específico de computação.
- Um tableau de **aceitação** para N sobre w corresponde a um ramo de computação de aceitação de N sobre w.

- Defina uma redução em tempo polinomial f de A para SAT.
 Sobre a entrada w, a redução produz a fórmula φ. Segue a descrição da redução:
 - A MT N tem um conjunto ${\it Q}$ de estados e uma fita de alfabeto Γ
 - O conteúdo da célula é o conjunto $C = Q \cup \Gamma \cup \{\#\}$
 - Para cada i e j entre 1 e n^k e para cada $s \in C$, defina uma variável booleana da seguinte maneira:

$$x_{i,j,s} = \begin{cases} true & \text{se } celula[i,j] = s \\ false & \text{caso } contrário \end{cases}$$

- Vamos representar um tableau como uma fórmula ϕ .
- Para obter φ, nós tomamos a conjunção de quatro sub-fórmulas.

$$\phi = \phi_{celula} \wedge \phi_{inicio} \wedge \phi_{movimento} \wedge \phi_{aceita}$$

- ϕ_{celula} : cada célula do tableau contém exatamente um símbolo $s \in Q \cup \Gamma \cup \{\#\}$
- ϕ_{inicio} : a primeira linha contém um q_0 seguido por w e seguido por branco.
- $\phi_{movimento}$: cada passo de computação conforme as regras de N.
- ϕ_{aceita} : C_{n^k} é uma configuração de aceitação.

$$\phi = \phi_{\text{celula}} \wedge \phi_{\text{inicio}} \wedge \phi_{\text{movimento}} \wedge \phi_{\text{aceita}}$$

- Se as quatro sub-fórmulas são satisfeitas, então há um tableau válido.
- Agora, a primeira coisa que devemos garantir de modo a obter uma correspondência entre uma atribuição e um tableau é que a atribuição ligue exatamente uma variável para cada célula.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{celula} garante esse requisito:

$$\phi_{celula} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} \left(\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}} \right) \right) \right]$$

- Na fórmula acima, o primeiro \(\significa \) "cada célula do tableau"
- O primeiro parênteses indica "contém pelo menos um símbolo"
- O segundo parênteses estipula que "não mais que uma variável está ligada para cada célula".
- Isto pode ser produzido em $O(n^{2k})$ passos.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{inicio} garante que a primeira linha da tabela é a configuração inicial:

• Isto pode ser produzido em tempo polinomial.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{aceita} garante que uma configuração de aceitação ocorre no tableau.

$$\phi_{\text{aceita}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{aceita}}}.$$

• Isto pode ser produzido em tempo polinomial

- A fórmula $\phi_{movimento}$ assegura que cada linha da tabela corresponde a uma configuração que segue legalmente da configuração da linha precedente conforme as regras de N.
- Uma janela 2 × 3 é legal se ela não viola as ações especificadas pela função de transição de N.

Teorema (Cook-Levin): SAT é NP-Completo

• Exemplo : $\delta(q_1, a) = \{q_1, b, D\}$ e $\delta(q_1, b) = \{(q_2, c, E), (q_2, a, D)\}$

(a)	a	q_1	Ъ
	q_2	a	С

(b)
$$\begin{array}{c|cccc} a & q_1 & b \\ \hline a & a & q_2 \end{array}$$

(c)
$$\begin{array}{c|cccc} a & a & q_1 \\ \hline a & a & b \end{array}$$

(e)
$$\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \end{array}$$

Janelas legais

Teorema (Cook-Levin): SAT é NP-Completo

• As janelas mostradas abaixo não são legais para a máquina N.

Afirmação: Se a linha superior da tabela for a configuração inicial e toda janela na tabela for legal, cada linha da tabela é uma configuração que segue legalmente da precedente.

Prova:

- Considere as configurações C_i e C_{i+1}, chamadas de superior e inferior, respectivamente.
- Na configuração superior, toda célula que não é adjacente a um símbolo de estado e que não contém um símbolo de fronteira #, é a célula central superior em uma janela cuja linha superior não contém nenhum estado.
- Por conseguinte, esse símbolo deve aparecer imutável na posição central inferior da janela. Logo, ele aparece na mesma posição na configuração inferior.

Afirmação: Se a linha superior da tabela for a configuração inicial e toda janela na tabela for legal, cada linha da tabela é uma configuração que segue legalmente da precedente.

Prova (continuação):

- A janela contendo o símbolo de estado na célula central superior garante que as três posições correspondentes sejam atualizadas consistentemente com a função de transição.
- Consequentemente, se a configuração superior for uma configuração legal, o mesmo acontece com a configuração inferior, e a inferior segue a superior conforme as regras de N.

- \cdots voltando à construção de $\phi_{movimento}$
 - φ_{movimento} estipula que todas as janelas no tableau são legais.
 Cada janela contém seis células, que podem ser inicializada de um número fixo de maneiras para originar uma janela legal.

$$\phi_{movimento} = \bigwedge_{1 < i \le n^k, 1 < j < n^k} (a janela (i,j) é legal)$$

Teorema (Cook-Levin): SAT é NP-Completo

• Nessa fórmula, substituímos o texto "a janela (i,j) é legal" pela fórmula a seguir : Escrevemos o conteúdo de seis células de uma janela como

$$\bigvee_{a_1,...,a_6} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$$

• Requer tempo $O(n^{2k})$.

 $a_1, ..., a_6$

- Para resumir:
 - Se $w \in A \Rightarrow N$ aceita $w \Rightarrow \exists$ um tableau válido $\Rightarrow \phi(w)$ é satisfazível
 - Se $w \notin A \Rightarrow N$ rejeita $w \Rightarrow \not\exists$ um tableau válido $\Rightarrow \phi(w)$ não é satisfazível

Teorema (Cook-Levin): SAT é NP-Completo

• Para obter ϕ , nós tomamos a conjunção de quatro sub-fórmulas.

$$\phi = \phi_{\text{celula}} \wedge \phi_{\text{inicio}} \wedge \phi_{\text{movimento}} \wedge \phi_{\text{aceita}}$$

- Requer $O(n^{2k})$ de tempo e espaço: complexidade polinomial.
- Conclusões:
 - O mapeamento de w para ϕ é uma redução de tempo polinomial do problema $A \in NP$ para SAT:

$$A \leq_{p} SAT$$
 para todo $A \in NP$

Como $SAT \in NP$, então SAT é NP-Completa. \square

Sumário

Teorema de Cook-Levin

Problemas NP-Completos

- Literal: variável booleana (x) ou sua negação (\overline{x})
- **Cláusula:** Um conjunto de literais conectados por OR, ex: $(x \lor \overline{y} \lor z)$
- Uma fórmula φ está na forma normal conjuntiva (FNC), se houver cláusulas conectados por AND.
 Ex:

$$\phi(x, y, z) = (x \vee \overline{y}) \wedge (z) \wedge (\overline{z} \vee y \vee \overline{y})$$

Uma 3fnc-fórmula tem somente cláusulas com 3 literais:

$$3SAT = \{\langle \phi \rangle | \phi \text{ \'e uma 3fnc-f\'ormula satisfaz\'ivel} \}$$

Teorema:

 $3SAT \in NP$ -Completo

Prova:

- Mostramos isto ao construir uma redução de SAT para 3SAT
- Primeiro observe que $\phi \in SAT$ pode ser reescrito em FNC $\phi = c_1 \wedge c_2 \wedge \cdots \wedge c_m$ onde cada cláusula c_i é uma disjunção de booleanos digamos $a_1, \cdots a_n$.
- Agora construimos uma redução $f:SAT \to 3SAT$ tal que $f(\phi) = \phi_{3SAT}$

- Substituiremos cada c_i em ϕ por uma coleção de cláusulas com 3 literais. Mais especificamente seja $c_i = a_1 \lor a_2 \lor \cdots \lor a_k$, onde cada a_i é uma variável booleana, então
 - k = 1: Aqui c_i = a₁. Use variáveis adicionais z₁ e z₂ para construir 3cfn
 (a₁ ∨ z₁ ∨ z₂) ∧ (a₁ ∨ z̄₁ ∨ z₂) ∧ (a₁ ∨ z̄₁ ∨ z̄₂) ∧ (a₁ ∨ z̄₁ ∨ z̄₂)
 - k=2: Aqui $c_i=(a_1\vee a_2)$. Use variáveis adicionais z_1 e z_2 para construir 3cfn $(a_1\vee a_2\vee z_1)\wedge (a_1\vee a_2\vee \overline{z_1})$
 - k = 3: Aqui $c_i = (a_1 \lor a_2 \lor a_3)$. Já está em 3cfn, não há nada a fazer.

• k > 3: Aqui $c_i = (a_1 \lor a_2 \lor \cdots \lor a_k)$, use variáveis adicionais $z_1, z_2, \cdots z_{k-3}$ para construir as cláusulas em 3cnf

$$\begin{array}{c} \left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge \\ \left(\overline{z_{1}} \vee a_{3} \vee z_{2}\right) \wedge \\ \left(\overline{z_{2}} \vee a_{4} \vee z_{3}\right) \wedge \\ \left(\overline{z_{3}} \vee a_{5} \vee z_{4}\right) \wedge \\ & \cdots \wedge \\ \left(\overline{z_{k-3}} \vee a_{k-1} \vee z_{k}\right) \end{array}$$

- Mostramos que f é uma redução de tempo polinomial.
- Primeiro observe que o número máximo de variáveis que podem ocorrer em uma clásula ϕ é n.
- Também observe que há *m* clásulas.
- Portanto, o número máximo de conversões é limitado a O(mn) que é claramente polinomial.
- Concluímos que f é uma função de tempo polinomial.

Agora temos que mostrar que

$$\phi \in SAT \Leftrightarrow f(\phi) \in 3SAT$$

3SAT

Para o caso que $k \leq 3$:

- "se": Note que quando ϕ é satisfeito então $f(\phi)$ também é.
- "somente se": Para o reverso note que se $f(\phi)$ é satisfeito, nós simplesmente restringimos as variáveis que aparecem em ϕ para obter uma atribuição que satisfaz ϕ .

3*SAT*

"Se ...": Para o caso que k > 3, dado uma atribuição em alguma cláusula c_i em ϕ :

- (a) Se a_1 ou a_2 é true, atribua todas as variáveis adicionais para false. Neste caso o primeiro literal em cada cláusula é true.
- (b) Se a_{k-1} ou a_k é true, atribua todas as variáveis adicionais para true. Neste caso o terceiro literal em cada cláusula é true.
- (c) Caso contrário, se a_l é true, atribua z_j para true quando $1 \le j \le j-2$ e o valor false quando $l-1 \le j \le k-3$. Neste caso o terceiro literal em cada cláusula precede àquela que inclui a_l é true, enquanto que o primeiro literal em cada cláusula sucessora àquela que inclui a_l é true.

Assim, a satisfabilidade de ϕ implica que a satisfabilidade de $f(\phi)$.

3*SAT*

"Somente se ...": Para o reverso, simplesmente restrinja a atribuição que satisfaz $f(\phi)$ para variáveis que ocorrem em ϕ . \square

Teorema 7.43:

 $\mathsf{CLIQUE} \in \mathsf{NP}\text{-}\mathsf{Completo}$

Prova: Provamos isto por uma redução polinomial f de 3SAT para CLIQUE, tal que

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$
,

onde ϕ_k é uma 3*cnf*-fórmula com k cláusulas e $f(\phi_k) = \langle G, k \rangle$.

Dado

$$\phi_k = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \cdots \wedge (a_k \vee b_k \vee c_k)$$

A redução $f(\phi_k)$ gera a cadeia $\langle G, k \rangle$ onde G é um grafo não-direcionado. Os nós são organizados em triplas que representam os literais das cláusulas.

Construímos arestas conectando todos os nós exceto para

- o nós que estão na mesma tripla, e
- nós que tem rótulos contraditórios, i.e., $x \in \overline{x}$

Exemplo de construção para

$$\phi_3 = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

produz o grafo

• É fácil ver que esta é uma construção de tempo polinomial (seja n o número de nós então o algoritmo executa em $O(n^2)$).

Agora, temos que verificar a condição de redução

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$

"Se ...": Suponha que ϕ_k tem uma atribuição que a satisfaz, o que significa que cada cláusula tem um literal que é true. Em cada tripla de G escolhemos um nó que corresponde a um literal true. O número de nós selecionados é k, uma em cada tripla. Todos os nós selecionados são conectados por uma aresta. Isto mostra que uma atribuição que satisfaz ϕ_k produz um k-clique

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$

"Somente se ...": Para o reverso, assuma que G tem um k-clique. Por construção, dois nós não podem estar conectados na mesma tripla. Portanto, cada k tripla contém exatamente um dos nós do k-clique. Cada nó no k-clique denota uma atribuição para true para um literal em ϕ_k . Isto é sempre verdadeiro pois literais opostos não estão conectados. \square

Cobertura de Vértices

Se G é um grafo não direcionado, uma cobertura de vértices de G é um subconjunto dos nós onde toda aresta de G toca um dos nós.

Teorema 7.43:

 $COB-VERT=\{\langle G,k\rangle|G \text{ \'e um grafo n\~ao-direcionado}$ que tem uma cobertura de vértices de k-nós $\}$

 $COB - VERT \in NP$ -Completo

 $COB - VERT = \{\langle G, k \rangle | G \text{ \'e um grafo n\~ao-directionado}$ que tem uma cobertura de vértices de k-nós $\}$

 $COB - VERT \in \mathsf{NP}\text{-}\mathsf{Completo}$

Idéia da prova:

- COB − VERT pertence a NP
 - Certificado: uma cobertura de tamanho k.

 $COB-VERT=\{\langle G,k\rangle|G \text{ \'e um grafo n\~ao-direcionado que tem uma cobertura de v\'ertices de k-n\'os }\}$

$$COB - VERT \in NP$$
-Completo

Idéia da prova:

- $3SAT <_m COB VERT$
 - Um grafo que simule 3fnc-fórmula ϕ
 - ullet ϕ é satisfatível sse o grafo tiver uma cobertura de tamanho k

 $COB - VERT = \{\langle G, k \rangle | G \text{ \'e um grafo n\~ao-directionado}$ que tem uma cobertura de vértices de k-nós $\}$

 $COB - VERT \in \mathsf{NP}\text{-}\mathsf{Completo}$

Idéia da prova:

- $3SAT \leq_m COB VERT$, mapeamento:
 - ullet ϕ : variáveis que assumem valor verdadeiro ou falso.
 - G: dois nós de cada aresta (um deles ao menos tem que aparecer na cobertura - verdadeiro ou falso).
 - ϕ : cada cláusula com 3 literais, pelo menos um verdadeiro
 - G: grupos de 3 nós conectados por arestas, pelo menos 2 nós inclusos na cobertura.

 $COB-VERT=\{\langle G,k\rangle|G \text{ \'e um grafo n\~ao-direcionado que tem uma cobertura de v\'ertices de k-n\'os }\}$

$$COB - VERT \in NP$$
-Completo

Para cada variável x em ϕ , produzimos uma aresta conectando dois nós. Rotulamos os dois nós por x e \overline{x} .

Fazer x VERDADEIRO corresponde a selecionar o nó esquerdo para a cobertura de vértices, enquanto que FALSO corresponde ao nó direito.

 $COB-VERT=\{\langle G,k\rangle|G \text{ \'e um grafo n\~ao-direcionado}$ que tem uma cobertura de vértices de k-nós $\}$

 $COB - VERT \in NP$ -Completo

Cada cláusula corresponde a uma tripla de nós conectados e que são rotulados com os três literais da cláusula.