SOUTENANCE DE MASTER Robin Lamarche-Perrin

Observation macroscopique pour l'analyse de systèmes multi-agents à grande échelle

Jean-Marc Vincent Équipe MESCAL Yves Demazeau Équipe MAGMA

Laboratoire d'Informatique de Grenoble

1. Problématique

Analyser le comportement des SMA

Exemple introductif: la fourmi

- Qu'est-ce que « analyser le comportement d'une fourmi » ?
- Définitions [Robert et al., 2002]
 - Comportement Ensemble des réactions objectivement observables
 - Analyser Décomposer un objet d'étude en ses éléments essentiels, afin d'en saisir les rapports et de donner un schéma de l'ensemble

Comportement local

Comportement global

Comportement global

- Problème : changement de niveau

Conception des SMA

- Problème : changement de niveau

Conception des SMA

Contexte de l'analyse

- SMA décentralisés et asynchrones
- SMA à grande échelle
 - Espace: ensemble des agents ($N = 10^6$ agents)
 - Temps : temps de l'exécution (T = 10⁶ unités de temps)
 - \rightarrow Interactions = O(N²T²) = 10²⁴ interactions !

Problème : passage à l'échelle de l'analyse

Contributions

- Limites des travaux antérieurs pour le passage à l'échelle de l'analyse
- Dépassement par l'observation macroscopique
- Modélisation et cohérence de l'observation
- Évaluation de notre approche

2. Positionnement

Le rôle de l'observation

Travaux antérieurs

• Prototype et analyse de traces

MAS- $Paj\acute{e}$ [Journa et al., 2009]

Travaux antérieurs

- Simulation instrumentée
 - Swarm [Minar et al., 1996] MASON [Luke et al., 2005]
 - Repast [North et al., 2007]

Les 3 étapes de l'analyse

Difficultés de l'observation microscopique

- Contrôle de l'intrusion
- Asynchronie des observations locales
- Coûts élevés (en pratique)
 - Déploiement de l'infrastructure d'observation : $O(N) = O(10^6)$ sondes
 - Traitement des données : $O(N^2T^2) = O(10^{24}) \text{ interactions à traiter !}$
- → Problème : le passage à l'échelle de l'observation

Notre approche

Remarque : modèle de l'observateur

Avantages de l'observation macroscopique

- Traitement « naturel » de l'asynchronisme
- Traitement immédiat de l'émergence
- Coût moindre (déploiement et temps de calcul)
- → Solution au problème du passage à l'échelle de l'observation

Remarque: intrusion toujours présente

Critères d'évaluation

- L'observation macroscopique doit
 - Donner une image cohérente de l'exécution
 - Détecter directement les comportements émergents
 - Rendre compte des **rapports entre ces comportements** (en terme de causalité)
 - Avoir une **taille inférieure** à l'observation microscopique (en terme d'interactions observées)

3. Modélisation

Formaliser la notion d'observation macroscopique

Objectif de la modélisation

- Observation macroscopique
 - Générique (qui s'applique à tous les SMA)
 - Cohérente (qui engendre des données cohérentes)
 - Expressive (qui décrit les relation de causalités entre les comportements)

Origine du méta-modèle de SMA

- Calcul de processus [Hoare, 1978]
- Modèle de système distribué [Mattern, 1989]
 - Processus
 - Séquence ordonnée d'événements (comportement)
 - Induit un temps logique local
 - Message
 - Relation entre deux événements (processus distincts)
 - Permet de reconstruire un temps logique global

Temps logique global

• Diagramme d'exécution d'un système distribué

- e_2 précède localement e_3 (processus)
- e_3 précède localement e_4 (message)
- e_0 précède globalement e_4 (système)

Coupes cohérentes [Mattern, 1989]

Coupes cohérentes

Coupe incohérente

Du microscopique... [Mattern, 1989] [Fidge, 1991]

• Cohérence de l'observation microscopique

... au macroscopique [Lamarche-Perrin]

- Adaptation aux SMA
- Cohérence de l'observation macroscopique

Méta-modèle de SMA

- Généralisation du modèle de système distribué
 - Un agent peut être modélisé comme un processus
 - Une interaction comme un message
 - Un SMA comme un système distribué
- Problème de l'environnement
 - Modélisé par des artefacts [Omicini et al., 2008]

Observation macroscopique

- Transformation de l'exécution des SMA
 - Simplification de la structure causale de l'exécution
 - Conservation de la temporalité globale (cohérence)
- Agrégation de parties du système (espace et temps)

Deux types d'observations macroscopiques

- Observation spatiale (agrégation d'agents)
- Observation temporelle (agrégation de coupes)
- Exemple d'observation spatiale

Observation temporelle

Sondes macroscopiques

- Réalisent des observations macroscopiques
- Problème : existence et équivalence ?
- Exemples
 - Thermomètre (agrégation spatiale)
 - 10 000 mètres (agrégation temporelle)

4. Évaluation

Simuler l'observation macroscopique

Protocole d'évaluation

- (1) Choix d'une plate-forme de simulation : MASON [Luke et al., 2005]
 - Méta-modèle de SMA minimal
 - Orientée systèmes en essaim (grande échelle)
 - Architecture modulaire, bien documentée
- (2) Choix de modèles de SMA
- (3) Observation microscopique et macroscopique de l'exécution des modèles
- (4) Comparaison des résultats et **évaluation**

Expériences

- Modèle de grille informatique (observations macroscopiques spatiales)
 - 150 processus, 15 machines, 3 clusters (40 pas)
 - 10 000 processus, 100 machines, 5 clusters (tests)
- Modèle de **colonie de fourmis** (observations macroscopiques **temporelles**)
 - 5 fourmis (1780 pas) \rightarrow présentation
 - 20 fourmis (1300 pas), 100 fourmis (tests)

Colonie de fourmis [Drogoul et al., 1995]

Interaction : dépôt de phéromones -> attraction

Exemple de colonie

Observation microscopique

[Mattern, 1989]

Observation microscopique [Mattern, 1989]

Observation macroscopique

[Lamarche-Perrin]

Observation à l'échelle de la **création des pistes**[Lamarche-Perrin]

- (1) création piste 1
- (2) création piste 2
- (3) création piste 3

Observation à l'échelle de la collecte de nourriture [Lamarche-Perrin]

- (1) parcours piste 1
- (2) parcours piste 2
- (3) parcours piste 1
- (4) parcours piste 1

Bilan de l'expérience

- L'observation temporelle macroscopique
 - Permet de détecter les comportements émergents
 - Permet de visualiser leurs liens de causalité
 - Permet de définir une unité de temps cohérente
 - Est beaucoup moins grande que l'observation microscopique

	Création des pistes	Collecte de nourriture
Obs. Micro.	1309 intéractions	1309 intéractions
Obs. Macro .	15 intéractions	31 intéractions
Gain	98,9 %	97,6 %

5. Bilan et perspectives

Bilan des contributions

- Limites de l'observation microscopique
 - Analyse des données locales en O(N²T²)
- Dépassement par l'observation macroscopique
 - Engendre directement des données globales
- Modélisation et cohérence de l'observation
 - Adaptation du modèle de Mattern et agrégations cohérentes de l'exécution
- Évaluation de l'observation macroscopique

Perspectives

- A propos du modèle (court terme)
 - Transformations sémantiques de l'exécution
- A propos des sondes (moyen terme)
 - Conception de sondes macroscopiques
 - Qualification, étude et contrôle de l'intrusion
- A propos de l'évaluation (moyen terme)
 - Expérience en conditions réelles
- Environnement de visualisation (long terme) 44

Merci de votre attention...

Causalités hiérarchiques

Réduction

