1 Field Axioms

Definition 1. A *field* \mathbb{F} is a nonempty set \mathbb{F} , along with two binary operations, addition + and multiplication \cdot , satisfying the following axioms.

- 1. Additive Closure: For all $a, b \in \mathbb{F}, a + b \in \mathbb{F}$.
- 2. Additive Associativity: For all $a, b, c \in \mathbb{F}$, (a + b) + c = a + (b + c).
- 3. Additive Identity: There exists an element $0 \in \mathbb{F}$ such that for all $a \in \mathbb{F}, a+0=a$.
- 4. **Additive Inverse:** For every $a \in \mathbb{F}$, there exists an element $-a \in \mathbb{F}$ such that a + (-a) = 0.
- 5. Additive Commutativity: For all $a, b \in \mathbb{F}$, a + b = b + a.
- 6. Multiplicative Closure: For all $a, b \in \mathbb{F}$, $a \cdot b \in \mathbb{F}$.
- 7. Multiplicative Associativity: For all $a, b, c \in \mathbb{F}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 8. Multiplicative Identity: There exists an element $1 \in \mathbb{F}$ such that for all $a \in \mathbb{F}$, $a \cdot 1 = a$.
- 9. Multiplicative Inverse: For every non-zero element $a \in \mathbb{F}$, there exists an element $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$.
- 10. Multiplicative Commutativity: For all $a, b \in \mathbb{F}$, $a \cdot b = b \cdot a$.
- 11. **Distributive Property:** For all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

2 Ordered Field Axioms

Definition 2. A field \mathbb{F} is an *oredered field*, if there exsits a subet $P \subseteq \mathbb{F}$ such that:

- 1. Additive Closure Positives: For all $a, b \in P, a + b \in P$.
- 2. Multiplicative Closure Positives: For all $a, b \in P, a \cdot b \in P$.
- 3. **Positive or Negative:** For all non-zero $a \in \mathbb{F}$, either $a \in P$ or $-a \in P$ but never both.

Definition 3. If \mathbb{F} is an oredered field, and $a, b \in \mathbb{F}$, then

- 1. Greater than: a > b if $a b \in P$.
- 2. Less than: a < b if $b a \in P$.
- 3. Greater than or equal: $a \ge b$ if a > b or a = b.
- 4. Less than or equal: $a \le b$ if a < b or a = b.

Definition 4. If $\mathbb F$ is an oredered field, the *absolute value* function $|x|:\mathbb F\to\mathbb F$ to be

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Field Proofs

Lemma 1. Given a field \mathbb{F} and an element $a \in \mathbb{F}$. a = -(-a).

Proof.