2.3 Adaptive Learning Rate

- Root Mean Square
- RMSProp
- Adam: RMSProp + Momentum

loss不再下降不意味着 gradient 真的变得很小,他可能在震荡,卡住的时候可以算 gradient 的 norm。

没有 critical point 时候训练也可能是困难。下图左上角 X 是 error surface 的最低点,这个 error surface 是 convex 的。

learning rate 的特制化: learning rate 需要自动根据 gradient 的大小做调整如何做:加上一个dependant on 参数i并且 dependant on于iteration t。parameter dependant & iteration dependant。

$$\theta_i^{t+1} \leftarrow \theta_i^t - \eta g_i^t$$

$$g_i^t = \frac{\partial L}{\partial \theta_i}|_{\theta = \theta^t}$$

$$\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t$$
Parameter dependent

parameter dependant 的常见计算方式

1.Root Mean Square

Root Mean Square
$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t}$$
 $\boldsymbol{\theta}_{i}^{1} \leftarrow \boldsymbol{\theta}_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} \boldsymbol{g}_{i}^{0}$
 $\boldsymbol{\sigma}_{i}^{0} = \sqrt{\left(\boldsymbol{g}_{i}^{0}\right)^{2}} = \left|\boldsymbol{g}_{i}^{0}\right|$
 $\boldsymbol{\theta}_{i}^{2} \leftarrow \boldsymbol{\theta}_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} \boldsymbol{g}_{i}^{1}$
 $\boldsymbol{\sigma}_{i}^{1} = \sqrt{\frac{1}{2} \left[\left(\boldsymbol{g}_{i}^{0}\right)^{2} + \left(\boldsymbol{g}_{i}^{1}\right)^{2}\right]}$

$$\boldsymbol{\theta}_{i}^{3} \leftarrow \boldsymbol{\theta}_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} \boldsymbol{g}_{i}^{2}$$
 $\boldsymbol{\sigma}_{i}^{2} = \sqrt{\frac{1}{3} \left[\left(\boldsymbol{g}_{i}^{0}\right)^{2} + \left(\boldsymbol{g}_{i}^{1}\right)^{2} + \left(\boldsymbol{g}_{i}^{2}\right)^{2}\right]}$

$$\vdots$$

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t}$$
 $\boldsymbol{\sigma}_{i}^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} \left(\boldsymbol{g}_{i}^{t}\right)^{2}}$

why?

参数1的坡度平坦,平均gradient小,step更大;参数2坡度陡峭,平均gradient大,step小

2.RMSProp

第一个方法的问题/;就算是一个参数,它需要的learning rate也会随着时间而改变

RMSProp
$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t}$$

$$\boldsymbol{\theta}_{i}^{t} \leftarrow \boldsymbol{\theta}_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} \boldsymbol{g}_{i}^{0} \qquad \boldsymbol{\sigma}_{i}^{0} = \sqrt{\left(\boldsymbol{g}_{i}^{0}\right)^{2}} \qquad \text{and } \boldsymbol{\sigma}_{i}^{0} = \boldsymbol{\sigma}_{i}^{0} \boldsymbol{\sigma}_{i}^{0}$$

$$\boldsymbol{\theta}_{i}^{2} \leftarrow \boldsymbol{\theta}_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} \boldsymbol{g}_{i}^{1} \qquad \boldsymbol{\sigma}_{i}^{1} = \sqrt{\alpha \left(\sigma_{i}^{0}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{1}\right)^{2}}$$

$$\boldsymbol{\theta}_{i}^{3} \leftarrow \boldsymbol{\theta}_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} \boldsymbol{g}_{i}^{2} \qquad \boldsymbol{\sigma}_{i}^{2} = \sqrt{\alpha \left(\sigma_{i}^{1}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{2}\right)^{2}}$$

$$\vdots$$

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t} \qquad \boldsymbol{\sigma}_{i}^{t} = \sqrt{\alpha \left(\sigma_{i}^{t-1}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{t}\right)^{2}}$$

可以自己调整现在的 gradient 的权重,从而动态调整 learning rate。如下图,当走到下坡中间的时候,如果是 adagrad,它反应会比较慢,step 会很大;但如果用 RMSProp,把 a 的值设小一点,让新的刚看到的 gradient 影响比较大的话,就可以很快让分母变大,就可以很快的让步伐变小。

3.Adam: RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) for RMSprop while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\widehat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

adagrad 存在的的问题: 会突然爆炸

Learning rate scheduling

η不是固定的值, 而是和时间有关的, 不是常数。

- Learning Rate Decay
- Warm up

Learning Rate Scheduling

 $\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$

(1) Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

Learning route 先复大后麦小。

Summary

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \eta \boldsymbol{g}_{i}^{t}$$

Various Improvements

 $m{ heta}_i^{t+1} \leftarrow m{ heta}_i^t - rac{\eta^t}{\sigma_i^t} m_i^t \cdots \mbox{Momentum: weighted sum of the previous gradients} \mbox{Consider direction}$

Proot mean square of the gradients

只为此

only magnitude

17