6.4 习题

2024年7月25日

6.4.1

- (1) 序列 $(a_n)_{n=m}^{\infty}$ 收敛于 c,那么对任意实数 $\epsilon > 0$,都是最终 $\epsilon -$ 接近于 c 的,即:能够找到某个 $N \geq m$ 使得 $(a_n)_{n=N}^{\infty}$ 是 $\epsilon -$ 接近于 c 的。并且对于任意 $N' \geq m$,取 $N_0 := max(N,N')$,此时 $(a_n)_{n=N_0}^{\infty}$ 是 $\epsilon -$ 接近于 c 的,即: a_n 是 $\epsilon -$ 接近于 c ,对 $n \geq N_0$ 均成立,所以 c 是 $\epsilon -$ 附着于 $(a_n)_{n=N'}^{\infty}$ 的。由 ϵ 的任意性,可知 c 是 $(a_n)_{n=m}^{\infty}$ 的极限点。
- (2) 反证法,存在另一个极限点 d,且 $d \neq c$ 。 $(a_n)_{n=m}^{\infty}$ 收敛于 c,那么对实数 $\epsilon > 0$,是最终 $\epsilon -$ 接近于 c 的。即:能够找到 $N \geq m$ 使得 $(a_n)_{n=N}^{\infty}$ 是 $\epsilon -$ 接近于 c 的。

同时 d 是 $(a_n)_{n=m}^{\infty}$ 的极限点,那么,d 是 ϵ — 附着于 $(a_n)_{n=N}^{\infty}$ 的,那么存在一个 $n \geq N$ 使得 a_n 是 ϵ — 接近于 d 的,如果 d > c,取 $0 < \epsilon < (d-c)/2$,此时, $|a_n - d| \leq \epsilon$ 与 $|a_n - c| \leq \epsilon$ 无法同时满足,即 a_n 无法同时 ϵ — 接近于 c,d。

 $d \leq c$ 同理。

6.4.2

这里只说明极限点和上极限,因为下极限的证明可以用上极限类推。 设 $(a_n)_{n=m}^\infty$ 是一个实数序列,c 是一个实数,且 $m' \ge m$ 是一个整数, $k \ge 0$ 是一个非负整数。

(1) 与习题 6.1.3 类似的结论

(1.1) c 是 $(a_n)_{n=m}^{\infty}$ 极限点, 当且仅当 c 是 $(a_n)_{n=m}^{\infty}$ 极限点。

 $\leftarrow c \in (a_n)_{n=m'}^{\infty}$ 的极限点。对任意 $\epsilon > 0$,对每一个 N,

如果 $N \ge m'$, 由于 c 是 $(a_n)_{n=m'}^{\infty}$ 的极限点,那么,c 都是 ϵ - 附着于 $(a_n)_{n=N}^{\infty}$ 的;

如果 $m \leq N < m'$, 我们要证明此时 c 也是 ϵ - 附着于 $(a_n)_{n=N}^{\infty}$, 即: 要证明存在一个 $n \geq N$ 使得 a_n 是 ϵ - 接近于 c。 我们可以取 $n \geq m'$, 那么 n 也是大于 N,还是由 c 是 $(a_n)_{n=m'}^{\infty}$ 的极限点,保证了 n 的存在性。

综上 $c \in (a_n)_{n=m}^{\infty}$ 的极限点。

(1.2) c 是 $(a_n)_{n=m}^{\infty}$ 的上极限,当且仅当 c 是 $(a_n)_{n=m'}^{\infty}$ 的上极限。

反证法,假设 c 不是 $(a_n)_{n=m'}^{\infty}$ 的上极限,设 $(a_n)_{n=m'}^{\infty}$ 的上极限是 c' 【这里其实要证明 c' 的存在性。可以通过以下命题得到 c' 是存在的:有上界序列存在实数上极限,否则上极限不是实数,而是 $+\infty$ 】。

如果 c'>c,那么,存在 $m\leq N_0< m'$ 使得 $c\leq a_{N_0}^+< c'$,因为 $(a_n)_{n=m'}^\infty$ 是 $(a_n)_{n=N_0}^\infty$ 的子集,所以 $sup((a_n)_{n=m'}^\infty)\leq sup((a_n)_{n=N_0}^\infty)$,又 因为 $c'\leq sup((a_n)_{n=m'}^\infty)$,于是 $c'\leq sup((a_n)_{n=N_0}^\infty)$,即: $c'\leq a_{N_0}^+$ 。这与 $c\leq a_{N_0}^+< c'$ 矛盾。

如果 c > c',因为序列 $(a_N^+)_{N=m'}^\infty$ 是序列 $(a_N^+)_{N=m}^\infty$ 的子集,所以 $\inf((a_N^+)_{N=m'}^\infty) \geq \inf((a_N^+)_{N=m}^\infty)$,即: $c' \geq c$,这与 c > c' 矛盾。

综上,c = c'。

 $\Leftarrow c$ 是 $(a_n)_{n=m'}^{\infty}$ 的上极限,即: 序列 $(a_N^+)_{N=m'}^{\infty}$ 的下确界是 c。序列 $(a_N^+)_{N=m'}^{\infty}$ 是序列 $(a_N^+)_{N=m}^{\infty}$ 的子集。

反证法,假设 c 不是 $(a_n)_{n=m}^{\infty}$ 的上极限,设 $(a_n)_{n=m}^{\infty}$ 的上极限是 c'。

如果 c > c',那么,存在 $m \le N_0 < m'$ 使得 $c' \le a_{N_0}^+ < c$,因为 $(a_n)_{n=m'}^{\infty}$ 是 $(a_n)_{n=N_0}^{\infty}$ 的子集,所以 $sup((a_n)_{n=m'}^{\infty}) \le sup((a_n)_{n=N_0}^{\infty})$,又 因为 $c \le sup((a_n)_{n=m'}^{\infty})$,于是 $c \le sup((a_n)_{n=N_0}^{\infty})$,即: $c < a_{N_0}^+$ 。这与 $c' \le a_{N_0}^+ < c$ 矛盾。

如果 c < c',因为序列 $(a_N^+)_{N=m'}^{\infty}$ 是序列 $(a_N^+)_{N=m}^{\infty}$ 的子集,所以 $\inf((a_N^+)_{N=m'}^{\infty}) \geq \inf((a_N^+)_{N=m}^{\infty})$,即: $c' \geq c$,这与 c < c' 矛盾。

综上,c = c'。

与习题 6.1.4 类似的结论

该问题是 6.1.3 的拓展, 这里我只证明一种情况。

(2.1) $c \in (a_n)_{n=m}^{\infty}$ 的极限点,当且仅当 $c \in (a_{n+k})_{n=m}^{\infty}$ 的极限点。

如果我们能证明 $(a_n)_{n=m'}^{\infty}$ 与 $(a_{n+k})_{n=m}^{\infty}$ 相等的,然后通过(1.1)就可以证明该命题,接下来我们证明这两个序列的相等的。

通过定义 5.5.1 可知,序列就是函数,是一个从集合 Z 到 R 的函数。于是我们要证明两个序列相等,只需要证明其对应函数相等。通过定义 3.3.7 (函数的相等)来进行接下来的证明。

设 $f: N \to R$ 为函数 $f(n) = a_{n+k}$, 设 $g: N \to N$ 为函数 g(m) = m。 那么 $f \circ g = f(g(m)) = a_{g(m)+k} = a_{m+k}$ 。

设 $f':N\to R$ 为函数 $f'(n)=a_n$,设 $g':N\to N$ 为函数 g'(m)=m+k。 那么 $f'\circ g'=f'(g'(m))=a_{m+k}$ 。

由 $f \circ g$, $f' \circ g'$ 的构造过程可知两个具有相同的定义域,又对于任意的 $x \in N$, $f \circ g(x) = a_{x+k}$, $f' \circ g'(x) = a_{x+k}$, 所以 $f \circ g(x) = f' \circ g'(x)$, 由此可知两个函数相等,即两个序列相等。

6.4.3

不妨设 $E := \{a_n : n \ge m\}, M = \sup(E), M' = \inf(E).$ (c)

由例 6.2.10 可知 $M \geq M'$,接下来我只证明 $L^+ \leq M$ (可以类推 $M' < L^-$)和 $L^- < L_+$ 。

反证法,假设 $L^+ > M$ 。由命题 6.3.6 可知对任意 $n \ge m$,都有 $a_n \le M$ 。因为 $L^+ := \inf(a_N^+)_{N=m}^\infty$ 则也由命题 6.3.6 可知存在 $N \ge m$ 使得 $a_N^+ > L^+$,由 $a_N^+ := \sup(a_n)_{n=N}^\infty$,可知存在 $n \ge N$ 使得 $a_n > L^+$,这与任意 $a_n \le M$ 矛盾。

反证法,假设 $L^- > L^+$,由 $L^- := sup(a_N^-)_{N=m}^\infty$ 可知存在 $N_0 \ge m$ 使得 $a_{N_0}^- > L^+$,由因为 $L^+ := inf(a_N^+)_{N=m}^\infty$,所以存在 $N_1 \ge m$ 使得 $a_{N_0}^- > a_{N_1}^+$ 【否则上极限就不是 L^+ 了,而是一个大于等于 $a_{N_0}^-$ 的数了】。由 $a_{N_0}^- := inf(a_n)_{n=N_0}^\infty$ 定义,可知对 $n \ge N_0$ 都有 $a_n \ge a_{N_0}^-$,由 $a_{N_1}^+ := sup(a_n)_{n=N_1}^\infty$ 定义,可知对 $n \ge N_1$ 都有 $a_n \le a_{N_1}^+$,取 $n \ge max(N_0, N_1)$ 此时 $a_{N_0}^- \le a_n \le a_{N_1}^+$,这与 $a_{N_0}^- > a_{N_1}^+$ 矛盾。

(d)

这里我只证明 $c \le L^+$, 因为 $L^- \le c$ 可以类推。

反证法,假设 $c>L^+$,由 $L^+:=\inf(a_N^+)_{N=m}^\infty$ 可知,由命题 6.3.6 可知,存在 $N_0\geq m$ 使得 $a_{N_0}^+< c$,又因为 $a_{N_0}^+:=\sup(a_n)_{n=N_0}^\infty$,所以任意 $n\geq N_0$ 都有 $a_n\leq a_{N_0}^+$,由此可知,

$$|c - a_n| = |c - a_{N_0}^+ + a_{N_0}^+ - a_n|$$

$$= |c - a_{N_0}^+| + |a_{N_0}^+ - a_n|$$

$$> |c - a_{N_0}^+|$$

此时 c, a_n 的距离总是大于 $|c - a_{N_0}^+|$, 这与 c 是极限点的定义矛盾。

(e)

这里我只证明 L^+ 是极限点,因为 L^- 可以类推。

反证法,假设 L^+ 不是极限点,那么通过极限点的定义 6.4.1 可知,存在 $\epsilon > 0, N_0 \ge m$,此时 L^+ 不是 $\epsilon -$ 附着于 $(a_n)_{n=N_0}^{\infty}$ 的,即对任意 $n \ge N_0$,都有,

$$|L^{+} - a_{n}| > \epsilon$$

$$\Rightarrow$$

$$a_{n} > L^{+} + \epsilon \vec{\boxtimes} a_{n} < L^{+} - \epsilon$$

因为 $L^+:=\inf(a_N^+)_{N=m}^\infty$,那么对任意 $N\geq m$ 都有 $a_N^+\geq L^+$ 。又 $a_N^+:=\sup(a_n)_{n=N}^\infty$ 。综上,我们可以得到,对任意 $N\geq m, n\geq N$ 都有:

$$\begin{cases} a_n \le a_N^+ \\ L^+ \le a_N^+ \end{cases} \tag{1}$$

(1) 如果 $n \ge N_0, a_n > L^+ + \epsilon$, 那么,

$$a_N^+ \ge a_n > L^+ + \epsilon$$

而对于哪些 $N < N_0$,由 a_N^+ 的定义可知, $a_N^+ \ge a_{N_0}^+$,于是此时 $L^+ + \epsilon$ 是上极限,这与下确界的唯一性矛盾(上极限其实就是集合的下确界)。

(2) 如果 $n \ge N_0, a_n < L^+ - \epsilon$, 由此可知, $N \ge N_0$ 时,

$$a_N^+ \le L^+ - \epsilon$$

这与 $L^+ \leq a_N^+$ 矛盾。

(f)

 \Rightarrow

由命题 6.4.5 可知 c 是极限点,如果 $L^+ \neq c$,那么由(e)可知 L^+ 也是极限点,这与命题 6.4.5 的后半部分相悖。

 \leftarrow

由于 $L^+=L^-$,由(e)可知, $(a_n)_{n=m}^\infty$ 有且只有一个极限点,也就是 说 c 是极限点。接下来要证明序列收敛与 c。

反证法,假设 c 序列不收敛于 c,那么,存在 $\epsilon > 0$,找不到 $N \ge m$,使得 $n \ge N$ 时,都有 $|a_n - c| \le \epsilon$,即:总是存在 $|a_n - c| > \epsilon$ 。

(1) 如果 $a_n > c + \epsilon$,由 L^+, a_N^+ 的定义可知对任意 $N \geq m, n \geq N$ 都有,

$$\begin{cases} a_n \le a_N^+ \\ L^+ \le a_N^+ \end{cases} \tag{2}$$

由此可得 $a_N^+ \ge c + \epsilon = L^+ + \epsilon$ 对任意 N 均成立,由此可知上极限不是 L^+ ,这与题设相悖。

(2) 如果 $a_n < c - \epsilon$,同理可证其与下极限是 L^- 相悖。

6.4.4

这里我只证明(1)(3), 其他的可以类推。

(1)

不妨设

$$M = \sup(b_n)_{n=m}^{\infty}$$
$$M' = \sup(a_n)_{n=m}^{\infty}$$

反证法,假设 M' > M,取 m, M < m < M',由命题 6.3.6 可知至少存在 一个 $n \ge m$ 使得 $m < a_n \le M'$,此时 $a_n > m > M$,由于 M 是上确界,所以 $b_n \le M$,于是 $a_n > b_n$,与题设相悖。

(3)

不妨设

$$L^{+} = inf(b_N^{+})_{n=m}^{\infty}$$
$$L^{+'} = inf(a_N^{+})_{n=m}^{\infty}$$

又因为对任意 $N \ge m$ 都有

$$a_N^+ := \sup(a_n)_{n=N}^{\infty}$$
$$b_N^+ := \sup(b_n)_{n=N}^{\infty}$$

由 (1) 可知 $b_N^+ \ge a_N^+$, 于是由 (2) 可知 $L^{+'} \le L^+$

6.4.5

由命题 6.4.12 (f) 可知, $(a_n)_{n=m}^{\infty}$, $(c_n)_{n=m}^{\infty}$ 收敛于 L,那么,两者的上极限 L^+ 和下极限 L^- 都等于 L,即: $L^+=L^-=L$ 。

设 $(b_n)_{n=m}^{\infty}$ 的上极限和下极限分别为 $L^{+'}, L^{-'}$ 。由引理 6.4.15 可知,

$$\begin{cases}
L^{-} \leq L^{-'} \leq L^{-} \\
L^{+} \leq L^{+'} \leq L^{+}
\end{cases}$$
(3)

由此可知 $L^{+'} = L^{-'} = L$,由命题 6.4.12 (f) 可知 $(b_n)_{n=m}^{\infty}$ 收敛于 L

6.4.6

定义 $a_n := 1 - \frac{1}{n}, b_n := 1 - \frac{1}{n+1}$,满足 $a_n < b_n$,此时 $\sup(a_n)_{n=1}^{\infty} = \sup(b_n)_{n=1}^{\infty} = 1$ 。

引理 6.4.13 中描述的是 $a_n \leq b_n$,包含 $a_n < b_n$ 的情况,其结果是 $\sup(a_n)_{n=m}^{\infty} \leq \sup(b_n)_{n=m}^{\infty}$,也包含 $\sup(a_n)_{n=1}^{\infty} = \sup(b_n)_{n=1}^{\infty}$ 的情况。

6.4.7

(1) 证明推论 6.4.17。

 \Rightarrow

极限 $\lim_{n\to\infty}a_n$ 存在且等于 0,则对任意实数 $\epsilon>0$,存在 N 使得 $n\geq N$ 时, $|x-0|=|x|\leq\epsilon$ 均成立。由于 $||x|-0|=|x|\leq\epsilon$,则 $\lim_{n\to\infty}|a_n|=0$

因为 $-|a_n| \le a_n \le |a_n|$,又由极限定律(定理 6.1.19)可知 $\lim_{n\to\infty} -|a_n| = -1\times 0 = 0$,由推论 6.4.14 可知 $\lim_{n\to\infty} a_n$ 存在且等于 0