IIT CS536: Science of Programming

Homework 1: Course Bascis, Logic

My Dinh

1 Course Basics

Task 1.1 (Written, 10 points).

- a) Both
- b) Neither
- c) Verification
- d) Verification
- e) Test

Task 1.2 (Written, 10 points).

- a) $p \land q \lor r \neq r \lor q \land p$
- b) $p \land q \lor r \neq p \land r \lor q$
- c) $\neg p \lor q \to \neg (p \land \neg q) \equiv ((\neg p) \land q) \to \neg (p \land (\neg q))$
- d) $p \to q \neq \neg p \to \neg q$
- e) $p \land \neg p = F$

2 Propositional Logic

Task 2.1 (Written, 9 points).

a) Contigency:

$$\begin{aligned} \{P = T; Q = T; R = T\} &\vDash (P \rightarrow (Q \rightarrow R)) \leftrightarrow ((P \rightarrow Q) \rightarrow R) \\ \{P = F; Q = F; R = F\} &\nvDash (P \rightarrow (Q \rightarrow R)) \leftrightarrow ((P \rightarrow Q) \rightarrow R) \end{aligned}$$

- b) Tautology: $\sigma \vDash (P \to Q) \leftrightarrow (\neg Q \to \neg P)$ for all σ
- c) Contigency:

$$\begin{cases} P = T; Q = T \end{cases} \vDash \neg P \land Q \leftrightarrow \neg Q \land P \\ \{P = T; Q = F \} \nvDash \neg P \land Q \leftrightarrow \neg Q \land P \end{cases}$$

Task 2.2 (Programming, 5 points).

The proof for this problem is included in tauto.log file.

Task 2.3 (Written, 3 points).

We didn't prove that statement by proving $((P \to Q) \land \neg P) \lor P \Rightarrow T$ because then we will have to assume that $((P \to Q) \land \neg P) \lor P$ is true, which is the statement we have to prove.

Task 2.4 (Programming, 5 points).

The proof for this problem is included in uncurry.log file.

3 Predicate Logic

Task 3.1 (Written, 4 points).

 $\exists l \in \mathbb{A}. \exists u \in \mathbb{A}. \forall x \in \mathbb{A}. (l \le x \le u)$

Task 3.2 (Written, 9 points).

- a) False. $\not\vDash \forall x \in \mathbb{Z}. \exists y \in \mathbb{Z}. x = y*2$ because if x = 2n+1 for $n \in \mathbb{Z}$ then $x = 2y \Leftrightarrow 2n+1 = 2y \Leftrightarrow y = n+0.5$ is not an integer, which contradicts with our assumption that $y \in \mathbb{Z}$.
- b) True. If x is prime then either a or b has to be 1, which means either that a > 1 = F or $b > 1 = F \Rightarrow (\exists a \in \mathbb{Z}. \exists b \in \mathbb{Z}. a > 1 \land b > 1 \land a * b = x) = F \Rightarrow \neg(\exists a \in \mathbb{Z}. \exists b \in \mathbb{Z}. a > 1 \land b > 1 \land a * b = x) = T.$
- c) True. $\vDash \forall x \in \mathbb{Z}. \exists y \in \mathbb{Z}. y = x * 2$ because or every integer x, we can find an even integer y that satisfies y = 2x by multiplying x with 2.

Task 3.3 (Programming, 10 points).

The proof for this problem is included in pred.log file.

4 One more wrap-up question

Task 4.1 (Written, 0 points)

I spent 4 hours on this homework, in totla hours of actual working time.