Advanced Encryption Standard

ITC 3093 Principles of Computer Security

Based on Cryptography and Network Security by William Stallings and Lecture slides by Lawrie Brown

Origins

- By mid-1990's a replacement for DES was needed
 - have theoretical attacks that can break it
 - have demonstrated exhaustive key search attacks
- Triple-DES can be used but slow, has small blocks
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- Issued as FIPS PUB 197 standard in Nov-2001

AES Evaluation Criteria

initial criteria:

- security effort for practical cryptanalysis
- cost in terms of computational efficiency
- algorithm & implementation characteristics

final criteria

- general security
- ease of software & hardware implementation
- implementation attacks
- flexibility (in en/decrypt, keying, other factors)

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data
- an iterative rather than feistel cipher
 - processes data as block of 4 columns of 4 bytes
 - operates on entire data block in every round
- designed to be:
 - resistant against known attacks
 - speed and code compactness on many CPUs
 - design simplicity

AES Structure

- data block of 4 columns of 4 bytes is state
- key is expanded to array of words
- has 9/11/13 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multiply of groups)
 - add round key (XOR state with key material)
 - view as alternating XOR key & scramble data bytes
- initial XOR key material & incomplete last round
- with fast XOR & table lookup implementation

High Level Description

Key Expansion

• Round keys are derived from the cipher key using Rijndael's key schedule

Initial Round

• AddRoundKey: Each byte of the state is combined with the round key using bitwise xor

Rounds

SubBytes : non-linear substitution step

• ShiftRows : transposition step

• MixColumns : mixing operation of each column.

AddRoundKey

Final Round

- SubBytes
- ShiftRows

AddRoundKey

No MixColumns

AES Encryption Process

AES Structure

- an iterative rather than feistel cipher
- 2. key expanded into array of 32-bit words
 - four words form round key in each round
- 3. 4 different stages are used as shown
- 4. has a simple structure
- 5. only AddRoundKey uses key
- 6. AddRoundKey a form of Vernam cipher
- 7. each stage is easily reversible
- 8. decryption uses keys in reverse order
- 9. decryption does recover plaintext
- 10. final round has only 3 stages

(b) Decryption

AES Overall Structure

Substitute Bytes

- a simple substitution of each byte
- uses one table of 16x16 bytes containing a permutation of all 256 8bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}
- S-box constructed using defined transformation of values in GF(2⁸)
- designed to be resistant to all known attacks

Substitute Bytes

EA	04	65	85	87	F2	4D	97
83	45	5D	96	 EC	6E	4C	90
5C	33	98	В0	4A	C3	46	E7
F0	2D	AD	C5	 8C		95	A6

Based on Cryptography and Network Security by William
Stallings and Lecture slides by Lawrie Brown

Shift Rows

- a circular byte shift in each each
 - 1st row is unchanged
 - 2nd row does 1 byte circular shift to left
 - 3rd row does 2 byte circular shift to left
 - 4th row does 3 byte circular shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

Shift Rows

Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- effectively a matrix multiplication in GF(28) using prime poly m(x) = $x^8+x^4+x^3+x+1$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

Mix Columns

87	F2	4D	97	47	40	A3	4C
6E	4C	90	EC	 37	D4	70	9F
46	E7	4A	C3	94	E4	3A	42
A6	8C	D8	95	ED	A5	A6	BC

AES Arithmetic

- uses arithmetic in the finite field GF(2⁸)
- with irreducible polynomial

```
m(x) = x^8 + x^4 + x^3 + x + 1
which is (100011011) or {11b}
```

e.g.
{02} • {87} mod {11b} = (1 0000 1110) mod {11b}
= (1 0000 1110) xor (1 0001 1011) = (0001 0101)

Mix Columns

- can express each col as 4 equations
 - to derive each new byte in col
- decryption requires use of inverse matrix
 - with larger coefficients, hence a little harder
- have an alternate characterisation
 - each column a 4-term polynomial
 - with coefficients in GF(2⁸)
 - and polynomials multiplied modulo (x⁴+1)
- coefficients based on linear code with maximal distance between codewords

Add Round Key

- XOR state with 128-bits of the round key
- again processed by column (though effectively a series of byte operations)
- inverse for decryption identical
 - since XOR own inverse, with reversed keys
- designed to be as simple as possible
 - a form of Vernam cipher on expanded key
 - requires other stages for complexity / security

Add Round Key

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
s _{1,0}	S _{1,1}	s _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Round

AES Key Expansion

- takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous & 4 places back
 - in 3 of 4 cases just XOR these together
 - 1st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4th back

Key Expansion Rationale

- designed to resist known attacks
- design criteria included
 - knowing part key insufficient to find many more
 - invertible transformation
 - fast on wide range of CPU's
 - use round constants to break symmetry
 - diffuse key bits into round keys
 - enough non-linearity to hinder analysis
 - simplicity of description

AES Example Key Expansion

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord(w3)= 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord(x1)= d2 85 46 79 = y1
w2 = 0c b7 ad	Rcon(1)= 01 00 00 00
w3 = af 7f 67 98	y1 ⊕ Rcon(1)= d3 85 46 79 = z1
w4 = w0 ⊕ z1 = dc 90 37 b0	RotWord(w7)= 81 15 a7 38 = x2
w5 = w4 ⊕ w1 = 9b 49 df e9	SubWord(x4)= 0c 59 5c 07 = y2
w6 = w5 ⊕ w2 = 97 fe 72 3f	Rcon(2)= 02 00 00 00
w7 = w6 ⊕ w3 = 38 81 15 a7	y2 ⊕ Rcon(2)= 0e 59 5c 07 = z2
w8 = w4 ⊕ z2 = d2 c9 6b b7	RotWord(w11) = ff d3 c6 e6 = x3
w9 = w8 ⊕ w5 = 49 80 b4 5e	SubWord(x2)= 16 66 b4 8e = y3
w10 = w9 ⊕ w6 = de 7e c6 61	Rcon(3)= 04 00 00 00
w11 = w10 ⊕ w7 = e6 ff d3 c6	y3 ⊕ Rcon(3)= 12 66 b4 8e = z3
w12 = w8 + z3 = c0 af df 39	RotWord(w15) = ae 7e c0 b1 = x4
w13 = w12	SubWord(x3)= e4 f3 ba c8 = y4 Rcon(4)= 08 00 00 00
w14 = w13 ⊕ w10 = 57 51 ad 06	y4 ⊕ Rcon(4)= ec f3 ba c8 = 4
w15 = w14 \oplus w11 = b1 ae 7e c0 w16 = w12 \oplus z4 = 2c 5c 65 f1	
	RotWord(w19) = 8c dd 50 43 = x5 SubWord(x4) = 64 cl 53 la = y5
w17 = w16 w13 = a5 73 0e 96	Rcon(5) = 10 00 00 00
w18 = w17 \oplus w14 = f2 22 a3 90 w19 = w18 \oplus w15 = 43 8c dd 50	y5 ⊕ Rcon(5)= 74 cl 53 la = z5
w20 = w16 ⊕ x5 = 58 9d 36 eb	RotWord(w23) = 40 46 bd 4c = x6
w20 = w16 ⊕ 25 = 56 9d 36 eB w21 = w20 ⊕ w17 = fd ee 38 7d	SubWord(x5)= 09 5a 7a 29 = y6
w22 = w21 @ w17 = 1d ee 30 /d	Rcon(6)= 20 00 00 00
w23 = w22 ⊕ w19 = 4c 40 46 bd	y6 ⊕ Rcon(6)= 29 5a 7a 29 = z6
w24 = w20 ⊕ z6 = 71 c7 4c c2	RotWord(w27) = a5 a9 ef cf = $x7$
w25 = w24 ⊕ w21 = 8c 29 74 bf	SubWord(x6)= 06 d3 df 8a = y7
w26 = w25 ⊕ w22 = 83 e5 ef 52	Rcon(7)= 40 00 00 00
w27 = w26 ⊕ w23 = cf a5 a9 ef	y7 ⊕ Rcon(7)= 46 d3 df 8a = z7
w28 = w24 ⊕ z7 = 37 14 93 48	RotWord(w31) = 7d al 4a f7 = x8
w29 = w28 ⊕ w25 = bb 3d e7 f7	SubWord(x7)= ff 32 d6 68 = y8
w30 = w29 ⊕ w26 = 38 d8 08 a5	Rcon(8)= 80 00 00 00
w31 = w30 ⊕ w27 = f7 7d al 4a	y8 @ Rcon(8)= 7f 32 d6 68 = z8
w32 = w28 + z8 = 48 26 45 20	RotWord(w35)= be 0b 38 3c = x9
w33 = w32 ⊕ w29 = f3 1b a2 d7	SubWord(x8)= ae 2b 07 eb = y9
w34 = w33 ⊕ w30 = cb c3 aa 72	Rcon(9)= 1B 00 00 00
w35 = w34 ⊕ w32 = 3c be 0b 38	y9 ⊕ Rcon(9)= b5 2b 07 eb = z9
w36 = w32 ⊕ z9 = fd 0d 42 cb	RotWord(w39)= 6b 41 56 f9 = x10
w37 = w36 ⊕ w33 = 0e 16 e0 1c	SubWord(x9)= 7f 83 bl 99 = y10
w38 = w37 ⊕ w34 = c5 d5 4a 6e	Rcon(10)= 36 00 00 00
w39 = w38 + w35 = f9 6b 41 56	y10 ⊕ Rcon(10)= 49 83 b1 99 = z10
w40 = w36 ⊕ z10 = b4 8e f3 52	
NETWOLK 18c ALL 1918 13 4e	23
inde2 lsy nk 41 v note 1638 0 v≠n 7f 4d 59 20	

 $w43 = w42 \oplus w39 = 86 26 18 76$

AES Example Encryption

Start of round	After	After	After	Round Key
	SubBytes	ShiftRows	MixColumns	•
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b 34 25 17 55	05 40 7f f1	40 7f fl 05 f0 fc 18 3f	e4 8e 16 51 47 20 9a 3f	90 49 fe 81 37 df 72 15
ae b6 4e 88	18 3f f0 fc e4 4e 2f c4	f0 fc 18 3f c4 e4 4e 2f	47 20 9a 3f c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 cl	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 le 52	b7 5e 61 c6
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	bl cl Ob cc	c0 89 57 b1
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c
26 74 c7 bd	f7 92 c6 7a	c6 7a f7 92	cb ab 62 37	65 0e a3 dd
24 7e 22 9c	36 f3 93 de	de 36 f3 93	19 b7 07 ec	f1 96 90 50
f8 b4 0c 4c	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
67 37 24 ff	85 9a 36 16	9a 36 16 85	83 e8 18 ba	9d ee cc 40
ae a5 c1 ea	e4 06 78 87	78 87 e4 06	84 18 27 23	36 38 9b 46
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd
72 ba cb 04 1e 06 d4 fa	40 f4 lf f2 72 6f 48 2d	40 f4 lf f2 6f 48 2d 72	7b 05 42 4a 1e d0 20 40	71 8c 83 cf c7 29 e5 a5
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef
0a 89 cl 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 Of	68 Of 61 68	3b d7 00 ef	93 e7 08 a1
56 7b 11 14	b1 21 82 fa	fa bl 21 82	b7 22 72 e0	48 f7 a5 4a
db al f8 77	b9 32 41 f5	b9 32 41 f5	bl la 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b	99 le 73 fl	99 le 73 fl	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2	4b 86 8a 36	b4 8e f3 52
al 67 59 af	32 85 cb 79	85 cb 79 32	bl cb 27 5a	ba 98 13 4e
04 85 02 aa	f2 97 77 ac	77 ac f2 97	fb f2 f2 af	7f 4d 59 20
al 00 5f 34	32 63 cf 18	18 32 63 cf	cc 5a 5b cf	86 26 18 76
Networksetur 0b 53 34 14	ity by William			
ligles by bawfie	Brown			
4a 7c 43 b9				
10 10 15 D3				

AES Example Avalanche

Round		Number of bits that differ
	0123456789abcdeffedcba9876543210	1
	0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588	1
	0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c	20
	c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294	58
	fe2ae569f7ee8bb8c1f5a2bb37ef53d5	36
3	7115262448dc747e5cdac7227da9bd9c	59
	ec093dfb7c45343d689017507d485e62	37
4	f867aee8b437a5210c24c1974cffeabc	61
	43efdb697244df808e8d9364ee0ae6f5	01
5	721eb200ba06206dcbd4bce704fa654e	68
,	7b28a5d5ed643287e006c099bb375302	08
6	0ad9d85689f9f77bc1c5f71185e5fb14	64
0	3bc2d8b6798d8ac4fe36a1d891ac181a	04
7	db18a8ffa16d30d5f88b08d777ba4eaa	67
	9fb8b5452023c70280e5c4bb9e555a4b	07
8	f91b4fbfe934c9bf8f2f85812b084989	65
	20264e1126b219aef7feb3f9b2d6de40	05
9	cca104a13e678500ff59025f3bafaa34	61
	b56a0341b2290ba7dfdfbddcd8578205	01
etwork Sec	uritrf00184440853bf7c6934ab4364148fb9	58 25
ags 🕪 rawi	ie Brown	56

AES Decryption

- AES decryption is not identical to encryption since steps done in reverse
- but can define an equivalent inverse cipher with steps as for encryption
 - but using inverses of each step
 - with a different key schedule
- works since result is unchanged when
 - swap byte substitution & shift rows
 - swap mix columns & add (tweaked) round key

Implementation Aspects

- can efficiently implement on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is simple byte shift
 - add round key works on byte XOR's
 - mix columns requires matrix multiply in GF(2⁸) which works on byte values, can be simplified to use table lookups & byte XOR's

Implementation Aspects

- can efficiently implement on 32-bit CPU
 - redefine steps to use 32-bit words
 - can precompute 4 tables of 256-words
 - then each column in each round can be computed using 4 table lookups + 4
 XORs
 - at a cost of 4Kb to store tables
- designers believe this very efficient implementation was a key factor in its selection as the AES cipher

AES Security

- AES was designed after DES.
- Most of the known attacks on DES were already tested on AES.
- Brute-Force Attack
 - AES is definitely more secure than DES due to the larger-size key.
- Statistical Attacks
 - Numerous tests have failed to do statistical analysis of the ciphertext
- Differential and Linear Attacks
 - There are no differential and linear attacks on AES as yet.

Summary

- have considered:
 - the AES selection process
 - the details of Rijndael the AES cipher
 - looked at the steps in each round
 - the key expansion
 - implementation aspects