Wahrscheinlichkeitstheorie 1

Cornelius Hanel

February 6, 2025

Preface

Fehler oder Ergänzungen bitte an

corneliush99@univie.ac.at

oder auf GitHub.

Contents

Preface		1
1.	Messbare Räume und Maße Algebra, σ -Algebra und Maß	3 3 4 7
2.	Äußere und Innere Maßeλ- und π -Systeme	10 10 12
3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 18 19 22
4.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	29 29 31 33
5.	Lebesgue-IntegralKonstruktion des IntegralsEigenschaften des Integrals	38 38 42
6.	UngleichungenMarkov-UngleichungKonvexität und Jensen-UngleichungHölder-Ljapunov-Minkowski	58 58 59 62
7.	Unabhängigkeit Unabhängigkeit von Ereignissen und Zufallsvariablen	65 65 67

1. Messbare Räume und Maße

Algebra, σ -Algebra und Maß

Sei im folgenden Kapitel Ω jeweils eine nicht-leere Menge. Die Komplementbildung erfolgt jeweils bezüglich Ω , also $A^c = \{\omega \in \Omega : \omega \notin A\}$.

- **1.1. Definition:** Eine Familie von Teilmengen $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ ist eine Algebra (Englisch *field of sets*), wenn folgendes gilt:
 - (i) $\Omega \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ (Abgeschlossenheit bzgl. Komplementbildung)
- (iii) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$ (Abgeschlossenheit bzgl. endlichen Vereinigungen)

Bemerkung: (iii) ist äquivalent zu $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$ (Abgeschlossenheit bzgl. endlichen Durchschnitten).

- **1.2. Definition:** Eine Familie von Teilmengen $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ ist eine σ -Algebra (Englisch auch σ -field), wenn folgendes gilt:
 - (i) $\Omega \in \mathcal{A}$
 - (ii) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ (Abgeschlossenheit bzgl. Komplementbildung)
- (iii) $A_n \in \mathcal{A}, n \geqslant 1 \implies \bigcup_{n\geqslant 1} A_n \in \mathcal{A}$ (Abgeschlossenheit bzgl. abzählbaren Vereinigungen)

Bemerkung: (iii) ist äquivalent zu $A_n \in \mathcal{A}, n \geqslant 1 \implies \bigcap_{n \geqslant 1} A_n \in \mathcal{A}$ (Abgeschlossenheit bzgl. abzählbaren Durchschnitten).

1.3. Definition: Ein messbarer Raum ist ein Paar (Ω, \mathcal{A}) , wobei \mathcal{A} eine σ -Algebra auf Ω . Eine Menge $A \in \mathcal{A}$ heißt messbar.

1.4. Beispiel:

- $\mathcal{A} := \{\emptyset, \Omega\}$ ist die kleinste (triviale) σ -Algebra auf Ω .
- $\mathcal{A} := \mathcal{P}(\Omega)$ ist die größte σ -Algebra auf Ω .
- $\mathcal{A} := \{A \in \mathcal{P}(\Omega) : A \text{ oder } A^c \text{ endlich} \}$ ist eine σ -Algebra falls Ω endlich ist, aber nur eine Algebra falls Ω unendlich ist. Sei $\{\omega_1, \omega_2, \ldots\} \subseteq \Omega$ mit $\omega_i \neq \omega_j$ für $i \neq j$. Definiere $A_i := \{\omega_{2i}\}$ für alle $i \geq 1$. Dann gilt $A_i \in \mathcal{A}$ für alle $i \geq 1$, aber $\bigcup_{i \geq 1} A_i = \{\omega_2, \omega_4, \ldots\}$ und $(\bigcup_{i \geq 1} A_i)^c = \{\omega_1, \omega_3, \ldots\}$ sind beide unendlich und damit nicht in \mathcal{A} .
- **1.5. Definition:** Sei (Ω, \mathcal{A}) ein messbarer Raum. Ein Maß auf (Ω, \mathcal{A}) ist eine Abbildung $\mu : \mathcal{A} \to [0, \infty]$, sodass
 - (i) $\mu(\emptyset) = 0$
 - (ii) Für $A_n \in \mathcal{A}, n \geqslant 1$ paarwise disjunkt gilt (σ -Additivität)

$$\mu\left(\bigcup_{n\geqslant 1}A_n\right) = \sum_{n\geqslant 1}\mu(A_n)$$

Ein Maß $\mu: \mathcal{A} \to [0, \infty]$ ist σ -endlich, falls es $A_n \in \mathcal{A}, n \geqslant 1$ gibt, sodass $\Omega = \bigcup_{n \geqslant 1} A_n$ und $\mu(A_n) < \infty$ für alle $n \geqslant 1$. Ein Maß $\mu: \mathcal{A} \to [0, \infty]$ ist endlich, falls $\mu(\Omega) < \infty$ (damit folgt $\mu: \mathcal{A} \to [0, \infty)$). Ein Warhscheinlichkeitsmaß ist eine Abbildung $\mathbb{P}: \mathcal{A} \to [0, 1]$ mit $\mathbb{P}(\Omega) = 1$.

1.6. Definition: Sei (Ω, \mathcal{A}) ein messbarer Raum und $\mu : \mathcal{A} \to [0, \infty]$ ein Maß auf (Ω, \mathcal{A}) . Dann nennt man $(\Omega, \mathcal{A}, \mu)$ einen Maßraum. Falls $\mu = \mathbb{P}$ ein Wahrscheinlichkeitsmaß ist, nennt man $(\Omega, \mathcal{A}, \mathbb{P})$ einen Wahrscheinlichkeitsraum.

Eigenschaften von Maßen

- 1.7. Satz: Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Dann gilt
 - (i) Für $A_i \in \mathcal{A}, 1 \leq i \leq n$ paarweise disjunkt gilt (endliche Additivität)

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i)$$

- (ii) Für $A, B \in \mathcal{A}$ mit $A \subseteq B$ gilt $\mu(A) \leqslant \mu(B)$ (Monotonie).
- (iii) Für $A_n \in A, n \ge 1$ gilt (σ -Subadditivität)

$$\mu\left(\bigcup_{n\geqslant 1}A_n\right)\leqslant \sum_{n\geqslant 1}\mu(A_n)$$

(iv) Falls μ endlich ist gilt für $A, B \in \mathcal{A}$, dass $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$ (Einschluss-Ausschluss-Prinzip)

4

Beweis:

- (i) Setze $A_i := \emptyset \in \mathcal{A}$ für i > n. Damit folgt die Aussage aus der σ -Additivität.
- (ii) Schreibe $B = (B \setminus A) \cup A$ als Vereinigung disjunkter Mengen. Damit folgt mit (i), dass $\mu(B) = \mu(A) + \mu(B \setminus A) \geqslant \mu(A)$.
- (iii) Setze hier $B_1 := A_1$ und $B_k := A_k \setminus \left(\bigcup_{j=1}^{k-1} A_j\right)$ für $k \ge 2$. Dann gilt $B_k \in \mathcal{A}$ für alle $k \ge 1$, B_k sind paarweise disjunkt, $\bigcup_{k \ge 1} B_k = \bigcup_{n \ge 1} A_n$ und $B_k \subseteq A_k$ für alle $k \ge 1$. Es folgt mit (ii)

$$\mu\left(\bigcup_{n\geqslant 1}A_n\right) = \mu\left(\bigcup_{k\geqslant 1}B_k\right) = \sum_{k\geqslant 1}\mu(B_k) \leqslant \sum_{m\geqslant 1}\mu(A_n)$$

(iv) Schreibe $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$. Dann gilt mit (i)

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$
$$= \mu(A) + \mu(B \setminus A)$$
$$= \mu(A) + \mu(B) - \mu(A \cap B)$$

Bemerkung: In der Literatur ist das Einschluss-Ausschluss-Prinzip meist in der allgemeineren Form für endliche Vereinigungen $\mu(\bigcup_{i=1}^n A_n)$ zu finden.

1.8. Korollar: Für $A, B \in A$ mit $A \subseteq B$ und $\mu(B) < \infty$ gilt $\mu(B \setminus A) = \mu(B) - \mu(A)$. Damit folgt für endliche Maße $\mu(A^c) = \mu(\Omega) - \mu(A)$ und insbesondere für Wahrscheinlichkeitsmaße $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Beweis: Folgt sofort aus Satz 1.7 (i) mit $B = A \cup (B \setminus A)$.

- 1.9. Satz (Stetigkeit von unten/oben): Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $A_n \in \mathcal{A}, n \geqslant 1$.
 - (i) Falls $A_1 \subseteq A_2 \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} A_n$, dann gilt $\mu(A_n) \xrightarrow[n\to\infty]{} \mu\left(\bigcup_{n\geqslant 1} A_n\right)$ (Stetigkeit von unten).
 - (ii) Falls $A_1 \supseteq A_2 \supseteq \ldots \supseteq \bigcap_{n\geqslant 1} A_n$ und $\mu(A_1) < \infty$, dann gilt $\mu(A_n) \xrightarrow[n\to\infty]{} \mu\left(\bigcap_{n\geqslant 1} A_n\right)$ (Stetigkeit von oben).
- In (ii) genügt es $\mu(A_j) < \infty$ für ein $j \ge 1$ vorauszusetzen, also $\limsup_{n \to \infty} \mu(A_n) < \infty$ (Monotonie).

Beweis:

(i) Setze $B_1 := A_1$ und $B_k := A_k \setminus \left(\bigcup_{j=1}^{k-1} A_j\right)$. Damit ist B_k für alle $k \ge 1$ messbar und B_k sind paarweise disjunkt. Weiters gilt $A_n = \bigcup_{k=1}^n B_k$, $B_n \subseteq A_n$ und $\bigcup_{n \ge 1} A_n = \bigcup_{k \ge 1} B_k$ (leicht nachzuprüfen). Es folgt

$$\mu\left(\bigcup_{n\geqslant 1} A_n\right) = \mu\left(\bigcup_{k\geqslant 1} B_k\right)$$

$$= \sum_{k\geqslant 1} \mu(B_k)$$

$$= \lim_{K\to\infty} \sum_{k=1}^K \mu(B_k)$$

$$= \lim_{K\to\infty} \mu\left(\bigcup_{k=1}^K B_k\right)$$

$$= \lim_{N\to\infty} \mu(A_N)$$

(ii) Setze $B_k := A_1 \setminus A_k$. Dann gilt $B_1 \subseteq B_2 \subseteq \ldots \subseteq \bigcup_{k \geqslant 1} B_k = A_1 \setminus (\bigcap_{n \geqslant 1} A_n)$. Mit (i) folgt

$$\mu(B_k) \xrightarrow[k \to \infty]{} \mu\left(A_1 \setminus \left(\bigcap_{n \geqslant 1} A_n\right)\right)$$

Es gilt $A_n \subseteq A_1$, $\bigcap_{n\geqslant 1} A_n \subseteq A_1$ und damit $\mu\left(\bigcap_{n\geqslant 1} A_n\right) < \infty$. Es folgt

$$\lim_{k \to \infty} \mu(B_k) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n) = \mu(A_1) - \lim_{n \to \infty} \mu\left(\bigcap_{n \ge 1} A_n\right)$$

und damit die Aussage.

- **1.10. Definition:** Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Falls für $\omega \in \Omega$ $\{\omega\} \in \mathcal{A}$ und $\mu(\{\omega\}) > 0$ gilt, dann nennt man ω ein Atom von μ (bezüglich dem Maßraum).
- **1.11. Proposition:** Sei $(\Omega, \mathcal{A}, \mu)$ ein σ -endlicher Maßraum. Dann ist die Menge der Atome $A := \{\omega \in \Omega : \{\omega\} \in \mathcal{A}, \mu(\{\omega\}) > 0\}$ höchstens abzählbar.

Beweis: Schreibe

$$A = \bigcup_{n \ge 1} \left\{ \omega \in \Omega : \{\omega\} \in \mathcal{A}, \mu(\{\omega\}) > \frac{1}{n} \right\}$$

Es genügt zu zeigen, dass jedes Element der Vereinigung höchstens abzählbar ist (abzählbare Vereinigung abzählbarer Mengen ist abzählbar [benötigt das Auswahlaxiom]). Sei also $A_n :=$

 $\{\omega \in \Omega : \{\omega\} \in \mathcal{A}, \mu(\{\omega\}) > \frac{1}{n}\}$. Wähle außerdem $B_n \in \mathcal{A}, n \geqslant 1$, sodass $\bigcup_{n\geqslant 1} B_n = \Omega$ und $\mu(B_n) < \infty$ (σ -Endlichkeit). Dann gilt

$$A_n = \bigcup_{k \geqslant 1} (B_k \cap A_n)$$

Es genügt also zu zeigen, dass $A_n \cap B_k$ für alle $k, n \ge 1$ höchstens abzählbar ist. Wir zeigen sogar, dass $A_n \cap B_k$ für alle $k, n \ge 1$ endlich ist:

Angenommen $A_n \cap B_k$ ist abzählbar unendlich und schreibe $A_n \cap B_k = \{\omega_1, \omega_2, \ldots\}$ mit $\omega_i \neq \omega_j$ für $i \neq j$. Damit folgt

$$\mu(A_n \cap B_k) = \mu\left(\bigcup_{j \ge 1} \{\omega_j\}\right) = \sum_{j \ge 1} \mu(\{\omega_j\}) = \infty$$

Aber $\mu(A_n \cap B_k) \leq \mu(B_k) < \infty$ für alle $n, k \geq 1$, ein Widerspruch. Es verbleibt noch zu zeigen, dass $A_n \cap B_k$ nicht überabzählbar sein kann (einfache Überlegung).

Erzeugung von σ -Algebren

1.12. Lemma: Sei I eine beliebige Indexmenge. Sei A_i für jedes $i \in I$ eine σ -Algebra auf Ω . Dann ist $A := \bigcap_{i \in I} A_i$ wieder eine σ -Algebra auf Ω .

Beweis: Es gilt drei Eigenschaften zu zeigen:

- (i) $\Omega \in \mathcal{A}$ Es gilt laut Annahme $\Omega \in \mathcal{A}_i$ für alle $i \in I$, womit die Behauptung sofort folgt.
- (ii) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ $A \in \mathcal{A} \iff \forall i \in I : A \in \mathcal{A}_i \implies \forall i \in I : A^c \in \mathcal{A}_i \iff A^c \in \mathcal{A}$

(iii)
$$A_n \in \mathcal{A}, n \geqslant 1 \implies \bigcup_{n \geqslant 1} A_n \in \mathcal{A}$$
 wie (ii).

1.13. **Definition:** Sei $\mathcal{M} \subseteq \mathcal{P}(\Omega)$. Dann definiert man die von \mathcal{M} erzeute σ -Algebra als

$$\sigma(\mathcal{M}) := \bigcap_{\substack{\mathcal{A} \text{ } \sigma ext{-Algebra} \\ \mathcal{M} \subset A}} \mathcal{A}$$

Mit Lemma 1.12 folgt sofort, dass $\sigma(\mathcal{M})$ eine σ -Algebra bezüglich Ω ist. Weiters ist $\sigma(\mathcal{M})$ die kleinste σ -Algebra, die \mathcal{M} enthält (i.e. ist \mathcal{E} eine σ -Algebra mit $\mathcal{M} \subseteq \mathcal{E}$, dann folgt $\sigma(\mathcal{M}) \subseteq \mathcal{E}$).

1.14. Lemma: Sei $\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \mathcal{P}(\Omega)$. Dann folgt $\sigma(\mathcal{M}_1) \subseteq \sigma(\mathcal{M}_2)$.

Beweis: $\sigma(\mathcal{M}_2)$ ist eine σ -Algebra, die \mathcal{M}_2 enthält, und damit auch \mathcal{M}_1 . Mit der Bemerkung in Definition 1.13 folgt die Aussage.

1.14. $\frac{1}{2}$. Definition: Sei $K \subseteq \Omega$ und $\mathcal{M} \subseteq \mathcal{P}(\Omega)$. Dann definiert man die Spur (Englisch trace) von \mathcal{M} auf K als

$$\mathcal{M}|_{K} := \{ M \cap K : M \in \mathcal{M} \}$$

1.15. Proposition: Sei \mathcal{A} eine σ -Algebra auf Ω und $K \subseteq \Omega$. Dann ist $\mathcal{A}|_{K}$ eine σ -Algebra auf K. Man nennt $\mathcal{A}|_{K}$ die Spur- σ -Algebra von \mathcal{A} auf K.

Beweis: Es gilt drei Eigenschaften zu zeigen:

- (i) $K \in \mathcal{A}|_{K}$ Es gilt $\Omega \in \mathcal{A}$ und damit $K = K \cap \Omega \in \mathcal{A}|_{K}$.
- (ii) $A \in \mathcal{A}|_{K} \Longrightarrow K \setminus A \in \mathcal{A}|_{K}$ $A \in \mathcal{A}|_{K} \Longrightarrow A = K \cap B, B \in \mathcal{A}$. Nun gilt aber

$$K \setminus A = (K \setminus A) \cap K = (K \setminus (K \cap B)) \cap K$$
$$= (K \cap (K \cap B)^c) \cap K$$
$$= (K \setminus B) \cup (K \cap K^c)$$
$$= K \cap B^c \in A|_K$$

da $B^c \in \mathcal{A}$.

(iii) $A_n \in \mathcal{A}|_K, n \geqslant 1 \Longrightarrow \bigcup_{n\geqslant 1} A_n \in \mathcal{A}|_K$ Es gilt $A_n = B_n \cap K$ für $B_n \in \mathcal{A}, n \geqslant 1$ und damit

$$\bigcup_{n\geqslant 1} A_n = \bigcup_{n\geqslant 1} (B_n \cap K) = K \cap \bigcup_{n\geqslant 1} B_n \in \mathcal{A}|_K$$

$$da \bigcup_{n\geqslant 1} B_n \in \mathcal{A}.$$

1.16. Lemma: Sei $\mathcal{M} \subseteq \mathcal{P}(\Omega)$ und $K \subseteq \Omega$. Dann gilt

$$\sigma(\mathcal{M}\big|_K) = \sigma(\mathcal{M})\big|_K$$

Beweis: Wir verwenden hier einige Ergebnisse aus der Übung, z.B. $K \subseteq L \implies \mathcal{M}|_K \subseteq \mathcal{M}|_L$, $\mathcal{M} \subseteq \sigma(\mathcal{M})$ und \mathcal{A} σ -Algebra $\implies \sigma(\mathcal{A}) = \mathcal{A}$

I. $\frac{\sigma(\mathcal{M}|_{K}) \subseteq \sigma(\mathcal{M})|_{K}}{\text{Es gilt } \mathcal{M} \subseteq \sigma(\mathcal{M})} \text{ und damit } \mathcal{M}|_{K} \subseteq \sigma(\mathcal{M})|_{K}. \text{ Damit folgt}$

$$\sigma(\mathcal{M}|_{K}) \subseteq \sigma\left(\sigma(\mathcal{M})|_{K}\right) = \sigma(\mathcal{M})|_{K}$$

da $\sigma(\mathcal{M})\big|_K$ mit Proposition 1.15 eine $\sigma\text{-Algebra}$ ist.

II.
$$\frac{\sigma(\mathcal{M}|_K) \supseteq \sigma(\mathcal{M})|_K}{\text{Definiere hierfür}}$$

$$\mathcal{G} := \{ A \in \sigma(\mathcal{M}) : A \cap K \in \sigma(\mathcal{M}|_{K}) \} \subseteq \sigma(\mathcal{M})$$

Falls \mathcal{G} eine σ -Algebra ist, die \mathcal{M} enthält, dann folgt $\sigma(\mathcal{M}) \subseteq \mathcal{G}$ und damit $\mathcal{G} = \sigma(\mathcal{M})$. Daraus folgt schließlich

$$\forall A \in \sigma(\mathcal{M}) : A \cap K \in \sigma(\mathcal{M}|_{K})$$

und damit $\sigma(\mathcal{M})|_{K} \subseteq \sigma(\mathcal{M}|_{K})$.

III. $\underline{\mathcal{G}}$ ist eine σ -Algebra und $\underline{\mathcal{M}} \subseteq \underline{\mathcal{G}}$ $\underline{\mathcal{M}} \subseteq \mathcal{G}$ folgt sofort aus $\underline{\mathcal{M}} \subseteq \sigma(\underline{\mathcal{M}})$ und $\underline{\mathcal{M}}|_K \subseteq \sigma(\underline{\mathcal{M}}|_K)$. Zeige also, dass $\underline{\mathcal{G}}$ eine σ -Algebra ist.

- (i) $\Omega \in \sigma(\mathcal{M})$ und $\Omega \cap K = K \in \sigma(\mathcal{M}|_{\mathcal{K}})$.
- (ii) $A \in \mathcal{G} \iff A \in \sigma(\mathcal{M}) \land A \cap K \in \sigma(\mathcal{M}|_{K})$ $\implies A^{c} \in \sigma(\mathcal{M}) \land K \setminus (A \cap K) = K \cap A^{c} \in \sigma(\mathcal{M}|_{K})$

(iii)
$$A_n \in \mathcal{G}, n \geqslant 1 \iff \forall n \geqslant 1 : A_n \in \sigma(\mathcal{M}) \land A_n \cap K \in \sigma(\mathcal{M}|_K)$$

 $\Longrightarrow \bigcup_{n\geqslant 1} A_n \in \sigma(\mathcal{M}) \land \bigcup_{n\geqslant 1} (A_n \cap K) = K \cap \bigcup_{n\geqslant 1} A_n \in \sigma(\mathcal{M}|_K)$

2. Äußere und Innere Maße

λ - und π -Systeme

- **2.1. Definition:** Eine Mengenfamilie $\mathcal{D} \subseteq \mathcal{P}(\Omega)$ ist ein λ -System (auch Dynkin-System oder d-System), wenn gilt
 - (i) $\Omega \in \mathcal{D}$
 - (ii) $A, B \in \mathcal{D}, A \subseteq B \implies B \setminus A \in \mathcal{D}$
- (iii) $\forall n \geqslant 1 : A_n \in \mathcal{D}, A_1 \subseteq A_2 \subseteq \dots \implies \bigcup_{n \geqslant 1} A_n \in \mathcal{D}$
- **2.2.** Lemma: Sei (Ω, \mathcal{A}) ein messbarer Raum und seien μ, ν endliche Maße auf (Ω, \mathcal{A}) , sodass $\mu(\Omega) = \nu(\Omega)$. Dann ist

$$\mathcal{D}:=\{A\in\mathcal{A}:\mu(A)=\nu(A)\}$$

ein λ -System.

Beweis:

- (i) Laut Voraussetzung gilt $\mu(\Omega) = \nu(\Omega)$.
- (ii) Seien $A, B \in \mathcal{D}$. Dann gilt $\mu(A) = \nu(A)$ und $\mu(B) = \nu(B)$ und es folgt

$$\mu(B \setminus A) = \mu(B) - \mu(A) = \nu(B) - \nu(A) = \nu(B \setminus A)$$

(iii) Seien $A_n \in \mathcal{D}, n \ge 1$ und $A_1 \subseteq A_2 \subseteq \dots$ Dann gilt $\mu(A_n) = \nu(A_n)$ für alle $n \ge 1$. Mit der Stetigkeit von unten folgt

$$\mu\left(\bigcup_{n\geqslant 1}A_n\right) = \lim_{n\to\infty}\mu(A_n) = \lim_{n\to\infty}\nu(A_n) = \nu\left(\bigcup_{n\geqslant 1}A_n\right)$$

2.3. Definition: Eine durchschnittsstabile Mengenfamilie $\mathcal{M}\subseteq\mathcal{P}(\Omega)$ nennt man π -System.

Bemerkung: Jede σ -Algebra ist damit sowohl ein λ -System, als auch ein π -System.

2.4. Lemma: Sei \mathcal{M} sowohl ein λ -System, als auch ein π -System. Dann ist \mathcal{M} eine σ -Algebra.

Beweis: Die ersten beiden Eigenschaften einer σ -Algebra folgen sofort. Mit de Morgan folgt außerdem die Abgeschlossenheit bezüglich endlicher Vereinigungen. Seien also $A_n \in$

$$\mathcal{M}, n \geqslant 1$$
. Setze $B_N := \bigcup_{n=1}^N A_n \in \mathcal{M}$ für alle $N \geqslant 1$. Dann gilt $B_1 \subseteq B_2 \subseteq \ldots$ und damit

$$\bigcup_{N\geqslant 1} B_N = \bigcup_{n\geqslant 1} A_n \in \mathcal{M}.$$

2.5. Definition: Für $\mathcal{M} \subseteq \mathcal{P}(\Omega)$ definiere das von \mathcal{M} erzeugte λ -System als

$$\lambda(\mathcal{M}) := \bigcap_{\substack{\mathcal{D} \text{ } \lambda ext{-System} \\ \mathcal{M} \subset \mathcal{D}}} \mathcal{D}$$

 $\lambda(\mathcal{M})$ ist wohldefiniert, da z.B. $\mathcal{P}(\Omega)$ oder $\sigma(\mathcal{M})$ λ -Systeme sind, die \mathcal{M} enthalten.

2.6. Proposition: $\lambda(\mathcal{M})$ ist das kleinste λ -System auf Ω , das \mathcal{M} enthält.

Beweis: Da der Durchschnitt beliebig vieler λ-Systeme wieder ein λ-System ist, ist $\lambda(\mathcal{M})$ ein λ-System. Sei \mathcal{D} ein λ-System, das \mathcal{M} enthält. Dann gilt $\lambda(\mathcal{M}) \subseteq \mathcal{D}$.

2.7. Satz (Sierpiński–Dynkin's λ - π Theorem): Ist \mathcal{M} ein π -System, dann gilt

$$\lambda(\mathcal{M}) = \sigma(\mathcal{M})$$

Beweis: Die Inklusion $\lambda(\mathcal{M}) \subseteq \sigma(\mathcal{M})$ folgt sofort aus der Bemerkung zu Definition 2.3. Es verbleibt also die Inklusion $\sigma(\mathcal{M}) \subseteq \lambda(\mathcal{M})$ zu zeigen. Dazu genügt es zu zeige, dass $\lambda(\mathcal{M})$ ein π -System ist.

- I. Definiere $\mathcal{D}_1 := \{ A \in \lambda(\mathcal{M}) : \forall M \in \mathcal{M} : A \cap M \in \lambda(\mathcal{M}) \}$. Dann gilt $\mathcal{M} \subseteq \mathcal{D}_1$ (leicht nachzuprüfen) und per Konstruktion $\mathcal{D}_1 \subseteq \lambda(\mathcal{M})$. Falls \mathcal{D}_1 ein λ -System ist (Beweis Übung), gilt $\lambda(\mathcal{M}) \subseteq \mathcal{D}_1$ und somit $\mathcal{D}_1 = \lambda(\mathcal{M})$.
- II. Definiere $\mathcal{D}_2 := \{A \in \lambda(\mathcal{M}) : \forall B \in \lambda(\mathcal{M}) : A \cap B \in \lambda(\mathcal{M})\}$. Es gilt $\mathcal{M} \subseteq \mathcal{D}_1 \subseteq \mathcal{D}_2$ und $\mathcal{D}_2 \subseteq \lambda(\mathcal{M})$. Falls \mathcal{D}_2 ein λ -System ist (Beweis Übung), gilt $\lambda(\mathcal{M}) \subseteq \mathcal{D}_2$ und damit $\mathcal{D}_2 = \lambda(\mathcal{M})$.

Damit folgt, dass $\lambda(\mathcal{M})$ durchschnittsstabil ist.

2.8. Korollar: Seien μ und ν endliche Maße auf einem messbaren Raum (Ω, \mathcal{A}) , die auf einem π -System $\mathcal{M} \subseteq \mathcal{A}$ übereinstimmen (i.e. $\forall M \in \mathcal{M} : \mu(M) = \nu(M)$). Falls $\mu(\Omega) = \nu(\Omega)$, dann stimmen μ und ν auch auf $\sigma(\mathcal{M})$ überein.

Beweis: Sei \mathcal{D} wie in Lemma 2.2. Dann gilt $\mathcal{M} \subseteq \mathcal{D}$ und mit Proposition 2.6 folgt $\lambda(\mathcal{M}) \subseteq \mathcal{D}$. Mit Satz 2.7 folgt schließlich $\lambda(\mathcal{M}) = \sigma(\mathcal{M}) \subseteq \mathcal{D}$.

2.9. Korollar: Seien μ und ν Maße auf einem messbaren Raum (Ω, \mathcal{A}) , die auf einem π -System $\mathcal{M} \subseteq \mathcal{A}$ übereinstimmen und sei μ σ -endlich auf \mathcal{M} . Dann stimmen μ und ν auch auf $\sigma(\mathcal{M})$ überein.

Beweis: Trivial, falls $\mu(\Omega) = 0$. Sei also $\mu(\Omega) > 0$. Mit der σ -Endlichkeit von μ auf \mathcal{M} , gibt es $A_n \in \mathcal{M}$, sodass $\mu(A_n)$ für n hinreichend groß ($\exists N \geq 1, \forall n \geq N$, etc.). Sei o.B.d.A. $\mu(A_n) > 0$ für alle $n \geq 1$ und definiere

$$\mu_n(\cdot) := \frac{\mu(A_n \cap \cdot)}{\mu(A_n)} \text{ und } \nu_n(\cdot) := \frac{\nu(A_n \cap \cdot)}{\nu(A_n)}$$

Dann sind μ_n und ν_n endliche Maße auf (Ω, \mathcal{A}) und laut Voraussetzung stimmen μ_n und ν_n auf \mathcal{M} überein, da $A_n \cap M \in \mathcal{M}$ für alle $M \in \mathcal{M}$. Außerdem gilt $\mu_n(\Omega) = \nu_n(\Omega) = 1$. Mit Korollar 2.8 folgt, dass μ_n und ν_n auch auf $\sigma(\mathcal{M})$ übereinstimmen. Nun gilt für $A \in \sigma(\mathcal{M})$

$$\mu(A) = \mu \left(A \cap \bigcup_{n \ge 1} A_n \right) = \mu \left(\bigcup_{n \ge 1} (A_n \cap A) \right)$$
$$= \lim_{n \to \infty} \mu(A_n \cap A) = \lim_{n \to \infty} \mu_n(A) \cdot \mu(A_n)$$
$$= \lim_{n \to \infty} \nu_n(A) \cdot \nu(A_n) = \nu(A)$$

Prämaße und äußere Maße

2.10. Definition: Sei A_0 eine Algebra auf Ω . Ein Prämaß auf (Ω, A_0) ist eine Abbildung $\mu : A_0 \to [0, \infty]$ mit

- (i) $\mu(\emptyset) = 0$
- (ii) Für $A_i \in \mathcal{A}_0, i \geqslant 1$ disjunkt mit $\bigcup_{i \geqslant 1} A_i \in \mathcal{A}_0$ gilt $\mu\left(\bigcup_{i \geqslant 1} A_i\right) = \sum_{i \geqslant 1} \mu(A_i)$

2.11. Definition: Sei μ ein Prämaß auf (Ω, \mathcal{A}_0) . Das entsprechende äußere Maß ist die Abbildung $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ mit

$$\mu^*(A) := \inf_{\substack{A_i \in \mathcal{A}_0, i \geqslant 1 \\ A \subseteq \bigcup_{i \geqslant 1} A_i}} \sum_{i \geqslant 1} \mu(A_i)$$

Bemerkung: μ^* ist wohldefiniert, da $\Omega, \emptyset \in \mathcal{A}_0$ und der inf damit von unten durch 0 beschränkt ist.

2.12. Definition: Sei μ ein Prämaß auf (Ω, \mathcal{A}_0) und μ^* das entsprechende äußere Maß. Eine Menge $A \subseteq \Omega$ ist von außen messbar (bzgl. μ^*), falls

$$\forall M \in \mathcal{P}(\Omega) : \mu^*(M \cap A) + \mu^*(M \cap A^c) = \mu^*(M)$$

Sei außerdem \mathcal{A}^* die Familie der von außen messbaren Mengen.

Betrachte im Folgenden jeweils ein Prämaß μ auf (Ω, \mathcal{A}_0) , das entsprechende äußere Maß μ^* und die von außen messbaren Mengen \mathcal{A}^* .

2.13. Lemma:

- (i) $\mu^*(\emptyset) = 0$
- (ii) $\forall A \in \mathcal{P}(\Omega) : \mu^*(A) \geqslant 0$
- (iii) $\forall A, B \in \mathcal{P}(\Omega), A \subseteq B : \mu^*(A) \leqslant \mu^*(B)$

Beweis:

- (i) $\mu^*(\emptyset) = \sum_{i \geqslant 1} \mu(\emptyset) = 0$, da $\emptyset \in \mathcal{A}_0$. Insbesondere ist \emptyset von außen messbar (einfach zu prüfen).
- (ii) siehe Bemerkung zu Definition 2.11.
- (iii) Zeige hierzu die σ -Subadditivität, also

$$\mu^* \left(\bigcup_{n \geqslant 1} A_n \right) \leqslant \sum_{n \geqslant 1} \mu^*(A_n)$$

für alle $A_n \in \mathcal{P}(\Omega), n \geq 1$. Sei dazu $\varepsilon > 0$ und wähle $B_{n,i} \in \mathcal{A}_0, i \geq 1$, sodass $A_n \subseteq \bigcup_{i \geq 1} B_{n,i}$. Dann gilt

$$\bigcup_{n\geqslant 1} A_n \subseteq \bigcup_{n\geqslant 1} \bigcup_{i\geqslant 1} B_{n,i} \text{ und } \sum_{i\geqslant 1} \mu(B_{n,i}) \leqslant \mu^*(A_n) + \frac{\varepsilon}{2^n}$$

Hinweis: $a \leq \left(\inf_{a \in A} a\right) + \varepsilon$ für alle $a \in A$ und $\varepsilon > 0$. Es folgt

$$\mu^* \left(\bigcup_{n \ge 1} A_n \right) \le \sum_{n \ge 1} \sum_{i \ge 1} \mu(B_{n,i}) \le \sum_{n \ge 1} \mu^*(A_n) + \frac{\varepsilon}{2^n} = \varepsilon + \sum_{n \ge 1} \mu^*(A_n)$$

Die σ -Subadditivität (und damit die Monotonie) folgt für $\varepsilon \searrow 0$.

2.14. Korollar: μ^* ist damit auch endlich subadditiv, also

$$\forall A, B \in \mathcal{P}(\Omega) : \mu^*(A \cup B) \leqslant \mu^*(A) + \mu^*(B)$$

Insbesondere ist eine Menge $A \in \mathcal{P}(\Omega)$ genau dann von außen messbar, wenn

$$\forall M \in \mathcal{P}(\Omega) : \mu^*(M \cap A) + \mu^*(M \cap A^c) \leqslant \mu^*(M)$$

2.15. Lemma: A^* ist eine Algebra.

Beweis:

(i) $\Omega \in \mathcal{A}^*$: folgt ähnlich wie der Beweis von Lemma 2.13 (i) oder aus (ii) unten.

(ii) $A \in \mathcal{A}^* \implies A^c \in \mathcal{A}^*$: trivial.

(iii) $A, B \in \mathcal{A}^* \implies A \cap B \in \mathcal{A}^*$: Es gilt $\forall M \in \mathcal{P}(\Omega)$

$$\mu^{*}(M) = \mu^{*}(M \cap A) + \mu^{*}(M \cap A^{c})$$

$$= \mu^{*}(M \cap A \cap B) + \mu^{*}(M \cap A^{c} \cap B) + \mu^{*}(M \cap A \cap B^{c}) + \mu^{*}(M \cap A^{c} \cap B^{c})$$

$$= \mu^{*}(M \cap A \cap B) + \mu^{*}((M \cap A \cap B^{c}) \cup (M \cap A^{c} \cap B^{c}) \cup (M \cap A^{c} \cap B))$$

$$= \mu^{*}(M \cap A \cap B) + \mu^{*}((M \cap A^{c}) \cup (M \cap A \cap B^{c}))$$

$$= \mu^{*}(M \cap (A \cap B)) + \mu^{*}(M \cap (A \cap B)^{c})$$

Die Aussage folgt mit Korollar 2.14.

2.16. Lemma: Seien $A_i \in \mathcal{A}^*, i \geq 1$ disjunkt. Dann gilt für alle $M \in \mathcal{P}(\Omega)$

$$\mu^* \left(M \cap \bigcup_{i \geqslant 1} A_i \right) = \sum_{i \geqslant 1} \mu^* (M \cap A_i)$$

Beweis: Sei $N \in \mathbb{N} \cup \{\infty\}$ und sei $A_n = \emptyset$ für alle n > N. Induktion in N.

- N = 1: trivial
- N=2: Hier gilt

$$\mu^*(M \cap (A_1 \cup A_2)) = \mu^*(M \cap (A_1 \cup A_2) \cap A_1) + \mu^*(M \cap (A_1 \cup A_2) \cap A_1^c)$$
$$= \mu^*(M \cap A_1) + \mu^*(M \cap A_2)$$

da $A_1 \in \mathcal{A}^*$.

• $P(N) \implies P(N+1)$: Da \mathcal{A}^* eine Algebra ist, gilt $\bigcup_{i=1}^N A_i \in \mathcal{A}^*$ und damit

$$\mu^* \left(M \cap \bigcup_{i=1}^{N+1} A_i \right) = \mu^* \left(M \cap \left(\bigcup_{i=1}^N A_i \cup A_{N+1} \right) \right)$$

$$= \mu^* \left(M \cap \bigcup_{i=1}^N A_i \right) + \mu^* (M \cap A_{N+1})$$

$$= \sum_{i=1}^N \mu^* (M \cap A_i) + \mu^* (M \cap A_{N+1})$$

$$= \sum_{i=1}^{N+1} \mu^* (M \cap A_i)$$

• $N = \infty$: Mit der σ -Subadditivität gilt

$$\mu^* \left(M \cap \bigcup_{i \geqslant 1} A_i \right) = \mu^* \left(\bigcup_{i \geqslant 1} (M \cap A_i) \right) \leqslant \sum_{i \geqslant 1} \mu^* (M \cap A_i)$$

Aber für alle $m \ge 1$ gilt mit der Monotonie

$$\mu^* \left(M \cap \bigcup_{i \ge 1} A_i \right) \ge \mu^* \left(M \cap \bigcup_{i=1}^m A_i \right)$$
$$= \sum_{i=1}^m \mu^* (M \cap A_i)$$

und die Aussage folgt für $m \to \infty$.

2.17. Lemma: \mathcal{A}^* ist eine σ -Algebra.

Beweis: Mit Lemma 2.15 genügt es die Abgeschlossenheit bzgl. abzählbarer Durchschnitte zu zeigen. Seien dazu zunächst $A_i \in \mathcal{A}^*, i \geqslant 1$ disjunkt. Setze $B_n := \bigcup_{i=1}^n A_i$ und $B := \bigcup_{i\geqslant 1} A_i$. Dann gilt für $M \in \mathcal{P}(\Omega)$ und alle $n \geqslant 1$

$$\mu^*(M) = \mu^*(M \cap B_n) + \mu^*(M \cap B_n^c)$$

$$= \mu^* \left(M \cap \bigcup_{i=1}^n A_i \right) + \mu^* \left(M \cap \left(\bigcup_{i=1}^n A_i \right)^c \right)$$

$$= \sum_{i=1}^n \mu^*(M \cap A_i) + \mu^* \left(M \cap \left(\bigcup_{i=1}^n A_i \right)^c \right)$$

$$\geqslant \sum_{i=1}^n \mu^*(M \cap A_i) + \mu^* \left(M \cap \left(\bigcup_{i\geqslant 1} A_i \right)^c \right)$$

da $B_n \in \mathcal{A}^*$ (Algebra). Für $n \to \infty$ folgt

$$\mu^{*}(M) \geqslant \sum_{i \geqslant 1} \mu^{*}(M \cap A_{i}) + \mu^{*} \left(M \cap \left(\bigcup_{i \geqslant 1} A_{i} \right)^{c} \right)$$

$$\stackrel{2.16.}{=} \mu^{*} \left(M \cap \bigcup_{i \geqslant 1} A_{i} \right) + \mu^{*} \left(M \cap \left(\bigcup_{i \geqslant 1} A_{i} \right)^{c} \right)$$

und damit schließlich $\bigcup_{i\geqslant 1} A_i \in \mathcal{A}^*$.

Seien nun $A_i \in \mathcal{A}^*, i \geqslant 1$ allgemein (also nicht unbedingt disjunkt). Setze $B_1 := A_1$ und $B_n := A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right)$ für alle $n \geqslant 2$. Mit Lemma 2.15 gilt $B_n \in \mathcal{A}^*$ für alle $n \geqslant 1$ und

insbesondere sind die $B_n, n \geqslant 1$ disjunkt und $\bigcup_{n\geqslant 1} B_n = \bigcup_{i\geqslant 1} A_i$. Die Aussage folgt mit der ersten Fall.

2.18. Lemma: Für $A \in \mathcal{A}_0$ gilt $\mu(A) = \mu^*(A)$.

Beweis: Laut Konstruktion (siehe 2.11) gilt $\mu^*(A) \leq \mu(A)$. Sei also $\varepsilon > 0$ und wähle $A_i \in \mathcal{A}_0, i \geq 1$, sodass $A \subseteq \bigcup_{i \geq 1} A_i$ und

$$\sum_{i \ge 1} \mu(A_i) \le \mu^*(A) + \varepsilon$$

Da μ als Prämaß monoton und σ -additiv (und damit auch σ -subadditiv, siehe Übung) auf A_0 ist, folgt

$$\mu(A) = \mu \left(A \cap \bigcup_{i \ge 1} A_i \right)$$

$$= \mu \left(\bigcup_{i \ge 1} (A \cap A_i) \right)$$

$$\leqslant \sum_{i \ge 1} \mu(A \cap A_i)$$

$$\leqslant \sum_{i = 1} \mu(A_i) \leqslant \mu^*(A) + \varepsilon$$

und die Aussage folgt für $\varepsilon \searrow 0$.

2.19. Lemma: $A_0 \subseteq A^*$, also ist jede Menge in der Algebra A_0 auch von außen messbar.

Beweis: Sei $A \in \mathcal{A}_0$ und $M \in \mathcal{P}(\Omega)$. Zu zeigen ist

$$\mu^*(M\cap A) + \mu^*(M\cap A^c) \leqslant \mu^*(M)$$

Sei dazu $\varepsilon > 0$ und wähle $A_i \in \mathcal{A}_0, i \geqslant 1$, sodass $M \subseteq \bigcup_{i \geqslant 1} A_i$ und $\sum_{i \geqslant 1} \mu(A_i) \leqslant \mu^*(M) + \varepsilon$. Setze $B_i := A \cap A_i$ und $C_i := A^c \cap A_i$. Dann sind B_i und C_i disjunkt und $B_i, C_i \in \mathcal{A}_0$ für $i \geqslant 1$. Außerdem gilt $\bigcup_{i \geqslant 1} B_i = A \cap \bigcup_{i \geqslant 1} A_i$ und damit $A \cap M \subseteq \bigcup_{i \geqslant 1} B_i$. ähnliches gilt für C_i .

Damit gilt

$$\mu^*(M \cap A) + \mu^*(M \cap A^c) \leqslant \sum_{i \ge 1} \mu(B_i) + \mu(C_i) = \sum_{i \ge 1} \mu(A_i) \leqslant \mu^*(M) + \varepsilon$$

und die Aussage folgt für $\varepsilon \searrow 0$.

2.20. Satz: Sei μ ein Prämaß auf (Ω, \mathcal{A}_0) und seien μ^* das entsprechende äußere Maß und \mathcal{A}^* die Familie der von außen messbaren Mengen. Dann ist $(\Omega, \mathcal{A}^*, \mu^*)$ ein Maßraum, $\mathcal{A}_0 \subseteq \mathcal{A}^*$ und es gilt $\forall A \in \mathcal{A}_0 : \mu(A) = \mu^*(A)$.

Beweis: Mit Lemma 2.17 ist \mathcal{A}^* eine σ -Algebra. Mit Lemma 2.13 und Lemma 2.16 ($M = \Omega$) folgt, dass μ^* alle Eigenschaften eines Maßes auf (Ω, \mathcal{A}^*) erfüllt. Mit Lemma 2.19 gilt $\mathcal{A}_0 \subseteq \mathcal{A}^*$ und mit Lemma 2.18 gilt $\mu = \mu^*$ auf \mathcal{A}_0 .

2.21. Satz (Maßerweiterungssatz von Carathéodory): Sei μ ein Prämaß auf einer Algebra \mathcal{A}_0 , sodass $\exists A_n \in \mathcal{A}_0, n \geqslant 1 : \Omega = \bigcup_{n \geqslant 1} A_n$ und $\forall n \geqslant 1 : \mu(A_n) < \infty$. Dann gibt es eine eindeutige Erweiterung μ^* auf $\sigma(\mathcal{A}_0)$ mit $\mu = \mu^*$ auf \mathcal{A}_0 .

Beweis: Es gilt $\sigma(\mathcal{A}_0) \subseteq \mathcal{A}^*$. Mit Satz 2.20 ist μ^* ein Maß auf (Ω, \mathcal{A}^*) und damit auch auf $(\Omega, \sigma(\mathcal{A}_0))$, das auf \mathcal{A}_0 mit μ übereinstimmt. Sei ν ein weiteres Maß, das auf \mathcal{A}_0 mit μ übereinstimmt. Dann stimmt ν auf \mathcal{A}_0 auch mit μ^* überein. Beachte, dass \mathcal{A}_0 durch-schnittsstabil ist, und damit die Voraussetzungen von Korollar 2.9 erfüllt sind. Damit gilt $\forall A \in \sigma(\mathcal{A}_0) : \nu(A) = \mu^*(A)$.

3. Maß auf \mathbb{R}

Motivation

3.1. Beispiel: Betrachte den messbaren Raum $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ und eine Folge nicht-negativer reeller Zahlen $p_i \geq 0, i \geq 1$ mit $\sum_{i \geq 1} p_i = 1$. Definiere die Abbildung $\mathbb{P} : \mathcal{P}(\mathbb{N}) \to [0, 1]$ mit $A \mapsto \sum_{i \in A} p_i$. Dann ist \mathbb{P} ein Wahrscheinlichkeitsmaß, da $\mathbb{P}(\emptyset) = 0$ (leere Summe), $\mathbb{P}(\mathbb{N}) = 1$ (per Konstruktion), und für $A_n \in \mathcal{P}(\mathbb{N}), n \geq 1$ disjunkt

$$\mathbb{P}\left(\bigcup_{n\geqslant 1}A_n\right) = \sum_{i\in \mathbb{I}} \sum_{n\geqslant 1}A_n p_i \stackrel{\dagger}{=} \sum_{n\geqslant 1} \sum_{i\in A_n} p_i = \sum_{n\geqslant 1} \mathbb{P}(A_n)$$

wobei der Schritt in † aus dem folgenden Satz (cf. Analysis I?) folgt. Dieses Beispiel deckt alle diskreten Verteilungen auf \mathbb{N} ab. Unser Ziel ist es, dieses Beispiel auf stetige Verteilungen auf \mathbb{R} zu erweitern.

3.2. Satz (Umordnung absolut konvergenter Reihen): Sei die Reihe von $a_n, n \ge 1$ absolut konvergent und sei $b_n, n \ge 1$ eine Umordnung der $a_n, n \ge 1$ (i.e. es gibt eine Bijektion $f: \mathbb{N} \to \mathbb{N}$ mit $b_n = a_{f(n)}$). Dann ist die Reihe von $b_n, n \ge 1$ absolut konvergent und es gilt

$$\sum_{n\geqslant 1} a_n = \sum_{n\geqslant 1} b_n$$

Beweis: Sei $\varepsilon > 0$ und definiere

$$s_N := \sum_{n=1}^{N} a_n \text{ und } t_N := \sum_{n=1}^{N} b_n$$

Dann gibt es $N \ge 1$, sodass

$$\left| \sum_{n \geqslant 1} a_n - s_N \right| < \varepsilon$$

Da die Reihe von $a_n, n \ge 1$ auch absolut konvergiert können wir $N \ge 1$ so wählen, dass auch

$$\left| \sum_{n \geqslant 1} |a_n| - (|a_1| + \ldots + |a_N|) \right| = \sum_{n \geqslant N+1} |a_n| < \varepsilon$$

Wähle nun $M \ge 1$ groß genug, dass unter den $b_n, n = 1, ..., M$ die Werte $a_1, ..., a_N$ alle vorkommen. Für alle $m \ge M$ ist $t_m - s_N$ damit eine Summe, in der die Werte $a_1, ..., a_N$ nicht vorkommen und mit der Dreiecksungleichung folgt

$$|t_m - s_N| \leqslant \sum_{n \geqslant N+1} a_n < \varepsilon$$

Damit gilt $\forall m \geqslant M$

$$\left| \sum_{n \geqslant 1} a_n - t_m \right| = \left| \sum_{n \geqslant 1} a_n - s_N + s_N - t_m \right|$$

$$\leqslant \left| \sum_{n \geqslant 1} a_n - s_N \right| + |s_N - t_m| < 2\varepsilon$$

für N hinreichend groß. Da $\varepsilon > 0$ beliebig war, folgt die Aussage.

3.2. $\frac{1}{2}$. Satz (Riemann'scher Umordnungssatz): Sei die Reihe von $a_n, n \ge 1$ konvergent, aber nicht absolut konvergent. Dann gibt es für jede Zahl $a \in \mathbb{R}$ eine Umordnung $b_n, n \ge 1$, sodass

$$\sum_{n \ge 1} b_n = a$$

Beweis: siehe z.B. Theorem 22.7, Spivak, M. Calculus. ? edn., pp. ?. □

Messen von Intervallen

Sei im Folgenden $F: \mathbb{R} \to \mathbb{R}$ eine beliebige monoton-nichtfallende und rechtsseitig stetige Funktion. Beachte, dass damit linksseitige Grenzwerte für F existieren. Gängige Beispiele sind z.B.: F(x) = x oder $F(x) = \int_{-\infty}^{x} e^{-t^2/2}$. Wir suchen nun eine möglichst "kleine" σ -Algebra \mathcal{A} auf \mathbb{R} , die alle Intervalle der Form [a,b] enthält und ein Maß $\mu: \mathcal{A} \to [0,\infty]$, sodass $\mu([a,b]) = F(b) - F(a)$.

3.3. Definition: Sei $-\infty \leqslant a \leqslant b \leqslant \infty$. Definiere das halboffene Interval

$$(a,b) := \begin{cases} (a,b] & \text{falls } b < \infty \\ (a,\infty) & \text{falls } b = \infty \end{cases}$$

sowie die Familie der halboffenen Intervalle

$$\mathcal{J} := \{ (a, b) : -\infty \leqslant a \leqslant b \leqslant \infty \}$$

und die Mengenfunktion $\phi: \mathcal{J} \to [0, \infty]$ mit

$$(a,b) \mapsto \begin{cases} F(b) - F(a) & \text{falls } a < b \\ 0 & \text{falls } a = b \end{cases}$$

3.4. Lemma: ϕ ist σ -additiv auf \mathcal{J} .

Beweis: Seien $J_n \in \mathcal{J}, n \ge 1$, disjunkt, sodass auch $\bigcup_{n \ge 1} J_n \in \mathcal{J}$. Zeige

$$\phi\left(\bigcup_{n\geqslant 1}J_n\right)=\sum_{n\geqslant 1}\phi(J_n)$$

Da $\bigcup_{n\geqslant 1} J_n \in \mathcal{J}$, können wir $\bigcup_{n\geqslant 1} J_n = (a,b)$ schreiben. Seien o.B.d.A. alle $J_n = (a_i,b_i)$ nicht-leer und aufsteigend geordnet, sodass

$$a = a_1 < b_1 = a_2 < \ldots < b_{n-1} = a_n < b_n = b$$

Dann gilt

$$\sum_{n\geqslant 1} \phi(J_n) = \sum_{n\geqslant 1} [F(b_n) - F(a_n)] = F(b_n) - F(a_1) = F(b) - F(a) = \phi\left(\bigcup_{n\geqslant 1} J_n\right)$$

Bemerkung: Beachte, dass $\bigcup_{n\geqslant 1} J_n \in \mathcal{J}$ hier eine notwendige Voraussetzung ist, da \mathcal{J} keine Algebra (bzw. σ -Algebra) ist. Wir erweitern \mathcal{J} zunächst konstruktiv zu einer Algebra \mathcal{J}^* und die Mengenfunktion $\phi: \mathcal{J} \to [0, \infty]$ zu einem Prämaß $\phi^*: \mathcal{J}^* \to [0, \infty]$. Später liefert uns dann ein (nicht-konstruktiver) Satz (Maßerweiterungssatz von Carathéodory) eine Erweiterung von ϕ^* zu einem Maß $\mu: \sigma(\mathcal{J}^*) \to [0, \infty]$.

3.5. Definition: Definiere die Mengenfamilie

$$\mathcal{J}^* := \left\{ \bigcup_{i=1}^n J_i : n \in \mathbb{N}, J_i \in \mathcal{J}, J_i \text{ disjunkt für } i = 1, \dots, n \right\}$$

aller endlichen disjunkten Vereinigungen von halboffenen Intervallen.

3.6. Lemma: \mathcal{J}^* ist eine Algebra auf \mathbb{R} mit $\mathcal{J} \subseteq \mathcal{J}^*$.

Beweis: Die Eigenschaften $\mathcal{J} \subseteq \mathcal{J}^*$ und $\mathbb{R} \in \mathcal{J}^*$ sind trivial. Zeige also die Abgeschlossenheit bezüglich Komplementbildung und endlichen Durchschnitten.

Für $(a,b) \in \mathcal{J}$ gilt $(a,b)^c = (-\infty,a) \cup (b,\infty) \in \mathcal{J}^*$. Sei also $A = \bigcup_{i=1}^n (a_i,b_i) \in \mathcal{J}^*$ mit (a_i,b_i) disjunkt, nicht-leer und aufsteigend geordnet, d.h.

$$-\infty \leqslant a_i < b_1 \leqslant a_2 < \ldots \leqslant a_n < b \leqslant \infty$$

Dann gilt $A^c = (-\infty, a_1) \cup (b_1, a_2) \cup \ldots \cup (b_{n-1}, a_n) \cup (b_n, \infty) \in \mathcal{J}^*$ per Definition von \mathcal{J}^* .

Seien nun $A, B \in \mathcal{J}^*, A = \bigcup_{i=1}^n (a_i, b_i), B = \bigcup_{j=1}^m (c_j, d_j)$ jeweils endliche Vereinigungen

disjunkter, halboffener Intervalle, d.h. (a_i, b_i) paarweise disjunkt für i = 1, ..., n und (c_j, d_j) paarweise disjunkt für j = 1, ..., m. Dann gilt

$$A \cap B = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (a_i, b_i) \cap (\alpha_i, d_i) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (\max\{a_i, c_j\}, \max\{b_i, d_j\})$$

Die Disjunktheit der Intervalle $(\max\{a_i, c_j\}, \max\{b_i, d_j\})$ für i = 1, ..., n und j = 1, ..., m ist leicht nachzuprüfen (Widerspruchsargument).

- **3.7. Definition:** Sei $A = \bigcup_{i=1}^{n} (a_i, b_i) \in \mathcal{J}^*$ mit (a_i, b_i) disjunkt für i = 1, ..., n. Definiere nun die Erweiterung $\phi^* : \mathcal{J}^* \to [0, \infty]$ mit $A \mapsto \sum_{i=1}^{n} \phi((a_i, b_i))$. Da $\mathcal{J} \subseteq \mathcal{J}^*$ gilt $\phi = \phi^*$ auf \mathcal{J} .
- **3.8. Proposition:** $\phi^*(A)$ ist wohldefiniert für alle $A \in \mathcal{J}^*$ und insbesondere unabhängig von der Darstellung von A.

Beweis: Sei $A = \bigcup_{i=1}^n (a_i, b_i) = \bigcup_{j=1}^m (\alpha_i, d_i) \in \mathcal{J}^*$. Schreibe für $i = 1, \dots, n$

$$(a_i, b_i) = (a_i, b_i) \cap A = (a_i, b_i) \cap \bigcup_{j=1}^m (c_j, d_j) = \bigcup_{j=1}^m [(c_j, d_j) \cap (a_i, b_i)]$$

und analog für $j = 1, \ldots, m$

$$(c_j, d_j) = \bigcup_{i=1}^n [(c_j, d_j) \cap (a_i, b_i)]$$

Es folgt mit der σ -Additivität von ϕ auf \mathcal{J}

$$\phi^* \left(\bigcup_{i=1}^n (a_i, b_i) \right) = \sum_{i=1}^n \phi((a_i, b_i))$$

$$= \sum_{i=1}^n \phi \left(\bigcup_{j=1}^m [(c_j, d_j) \cap (a_i, b_i)] \right)$$

$$= \sum_{i=1}^n \sum_{j=1}^m \phi((a_i, b_i) \cap (c_j, d_j))$$

$$= \sum_{j=1}^m \sum_{i=1}^n \phi((a_i, b_i) \cap (c_j, d_j))$$

$$= \sum_{j=1}^m \phi \left(\bigcup_{i=1}^n [(c_j, d_j) \cap (a_i, b_i)] \right)$$

$$= \sum_{j=1}^m \phi((c_j, d_j)) = \phi^* \left(\bigcup_{j=1}^m (c_j, d_j) \right)$$

Erzeugung von Maßen auf \mathbb{R}

Wir möchten $\phi^*: \mathcal{J}^* \to [0, \infty]$ nun zu einem Maß $\mu: \sigma(\mathcal{J}^*) \to [0, \infty]$ erweitern. Wir fordern dazu folgende Eigenschaften von ϕ^* :

3.9. Lemma:

- (i) $\phi^*(\emptyset) = 0$
- (ii) Für $A_n \in \mathcal{J}^*, n \geqslant 1$ disjunkt, mit $\bigcup_{n\geqslant 1} A_n \in \mathcal{J}^*$ gilt $\phi^* \left(\bigcup_{n\geqslant 1} A_n\right) = \sum_{n\geqslant 1} \phi^*(A_n)$ (ϕ^* ist σ -additiv auf \mathcal{J}^*).
- (iii) $\exists B_n \in \mathcal{J}^*, n \geqslant 1$, sodass $\mathbb{R} = \bigcup_{n\geqslant 1} B_n$ und $\phi^*(B_n) < \infty$ für $n \geqslant 1$ (Das Prämaß ϕ^* ist σ -endlich auf $(\mathbb{R}, \mathcal{J}^*)$).

Beweis:

- (i) $\phi(\emptyset) = \phi^*((1,1)) = \phi((1,1)) = 0$ per Definition von ϕ .
- (ii) Setze $A := \bigcup_{n \geqslant 1} A_n$. Da $A \in \mathcal{J}^*$ können wir $A = \bigcup_{j=1}^k (c_j, d_j)$ schreiben mit (c_j, d_j) disjunkt für $j = 1, \ldots, k$. Schreibe weiters $A_n = \bigcup_{i=1}^{m_n} (a_i^{(n)}, b_i^{(n)})$ mit $(a_i^{(n)}, b_i^{(n)})$ disjunkt für $i = 1, \ldots, m_n$ und alle $n \geqslant 1$. Es gilt

$$(c_j, d_j) = (c_j, d_j) \cap A = \bigcup_{n \geqslant 1} (A_n \cap (c_j, d_j))$$

und

$$A_n = A_n \cap A = \bigcup_{i=1}^{m_n} \bigcup_{i=1}^k \left((a_i^{(n)}, b_i^{(n)}) \cap (c_j, d_j) \right)$$

und mit Lemma 3.4 folgt (mit der Eigenschaft, dass \mathcal{J} durchschnittsstabil ist)

$$\phi((c_j, d_j)) = \sum_{n \ge 1} \sum_{i=1}^{m_n} \phi\left((a_i^{(n)}, b_i^{(n)}) \cap (c_j, d_j)\right)$$

und per Definition von ϕ^* gilt

$$\phi^*(A_n) = \sum_{i=1}^{m_n} \sum_{j=1}^k \phi\left((a_i^{(n)}, b_i^{(n)}) \cap (c_j, d_j)\right)$$

Mit Satz 3.2 (??, und σ -Endlichkeit?) folgt

$$\phi^*(A) = \sum_{i=1}^k \phi((c_j, d_j))$$

$$= \sum_{j=1}^k \sum_{n\geqslant 1} \sum_{i=1}^{m_n} \phi\left((a_i^{(n)}, b_i^{(n)}) \cap (c_j, d_j)\right)$$

$$\stackrel{\text{Satz 3.2}}{=} \sum_{n\geqslant 1} \sum_{i=1}^{m_n} \sum_{j=1}^k \phi\left((a_i^{(n)}, b_i^{(n)}) \cap (c_j, d_j)\right)$$

$$= \sum_{n\geqslant 1} \phi^*(A_n)$$

- (iii) Wähle hier $B_n := (-n, n) \in \mathcal{J}^*$. Dann gilt $\mathbb{R} = \bigcup_{n \geqslant 1} (-n, n)$ und $\phi^*(B_n) = F(n) F(-n) < \infty$ für alle $n \geqslant 1$.
- **3.10. Lemma:** Folgende Aussagen sind äquivalent:
 - (i) Für $A_n \in \mathcal{J}, n \ge 1$ disjunkt, mit $A = \bigcup_{n \ge 1} A_n \in \mathcal{J}$ gilt $\phi\left(\bigcup_{n \ge 1} A_n\right) = \sum_{n \ge 1} \phi(A_n)$
 - (ii) Für $A_n \in \mathcal{J}^*, n \geqslant 1$ disjunkt, mit $A = \bigcup_{n \geqslant 1} A_n \in \mathcal{J}^*$ gilt $\phi^* \left(\bigcup_{n \geqslant 1} A_n \right) = \sum_{n \geqslant 1} \phi^*(A_n)$

Beweis: folgt. Ich denke (ii) \Longrightarrow (i) folgt mit der Inklusion $\mathcal{J} \subseteq \mathcal{J}^*$ und $\phi(A) = \phi^*(A)$ für $A \in \mathcal{J}$. (i) \Longrightarrow (ii) folgt aus dem Beweis von Lemma 3.9 (insofern dieser stimmt)?

3.11. Lemma: Sei $I \subseteq \mathbb{N}$ nicht-leer und seien $(a_i, b_i) \in \mathcal{J}, i \in I$ nicht-leer und disjunkt, sodass $\bigcup_{i \in I} (a_i, b_i) \subseteq (a, b) \in \mathcal{J}$. Dann folgt

$$\sum_{i \in I} F(b_i) - F(a_i) \leqslant F(b) - F(a)$$

Beweis:

I. I endlich

Da I in Bijektion zu $\{1,\ldots,n\}$ steht, setze o.B.d.A. $I=\{1,\ldots,n\}$ und ordne die Intervalle aufsteigend, also

$$a \leqslant a_1 < b_1 \leqslant \ldots \leqslant a_n < b_n \leqslant b$$

Dann gilt

$$\sum_{i=1}^{n} F(b_i) - F(a_i) = -F(a_1) + F(b_1) - \dots - F(a_n) + F(b_n) \leqslant F(b_n) - F(a_1) \leqslant F(b) - F(a)$$

da
$$F(b_k) \leq F(a_{k+1})$$
 für $k = 1, ..., n - 1$.

II. I abzählbar unendlich

Da I in Bijektion zu \mathbb{N} steht, setze o.B.d.A $I = \mathbb{N}$. Dann gilt

$$\sum_{i \ge 1} F(b_i) - F(a_i) = \lim_{n \to \infty} \sum_{i=1}^n F(b_i) - F(a_i) \le \lim_{n \to \infty} F(b) - F(a) = F(b) - F(a)$$

mit dem I. Teil. \Box

3.12. Lemma: Sei $I \subseteq \mathbb{N}$ nicht-leer und seien $(a_i, b_i) \in \mathcal{J}, i \in I$ nicht-leer, sodass $\bigcup_{i \in I} (a_i, b_i) \supseteq (a, b) \in \mathcal{J}$. Dann folgt

$$F(b) - F(a) \leqslant \sum_{i \in I} F(b_i) - F(a_i)$$

Beweis:

I. I endlich

Sei wie im Beweis von Lemma 3.11 o.B.d.A $I = \{1, \ldots, n\}$. Seien außerdem die Intervalle (a_i, b_i) disjunkt und aufsteigend geordnet. Dann gilt $a \in (a_k, b_k)$ und $b \in (a_\ell, b_\ell)$ für $1 \le k \le \ell \le n$ und $b_i = a_{i+1}$ für alle $i = k, \ldots, \ell - 1$. Es folgt

$$\sum_{i=1}^{n} F(b_i) - F(a_i) \geqslant \sum_{i=k}^{\ell} F(b_i) - F(a_i)$$

$$= -F(a_k) + F(b_\ell)$$

$$\geqslant F(b) - F(a)$$

II. I abzählbar unendlich, $a, b < \infty$

Sei wie im Beweis von Lemma 3.11 o.B.d.A. $I = \mathbb{N}$. Sei $\varepsilon > 0$. Da F rechtsstetig ist, gibt es $\delta, \delta_i > 0, i \ge 1$, sodass

$$F(a+\delta) < F(a) + \varepsilon, \ F(b_i + \delta_i) < F(b_i) + \frac{\varepsilon}{2^i}$$

Beachte, dass $(a + \delta, b) \bigcup_{i \ge 1} (a_i, b_i + \delta_i)$. Nun existiert eine endliche Menge $J \subseteq \mathbb{N}$ (einfache Überlegung), sodass

$$(a + \delta, b) \subseteq \bigcup_{j \in J} (a_j, b_j + \delta_j)$$

Damit folgt

$$F(b) - F(a + \delta) \leqslant \sum_{j \in J} F(b_j + \delta_j) - F(a_j)$$
$$\leqslant \varepsilon + \sum_{i \geqslant 1} F(b_i) - F(a_i)$$

Die Aussage folgt für $\varepsilon \searrow 0$.

III. I abzählbar unendlich, a oder b unendlich Es gibt hier drei Fälle:

$$(a,b) = \begin{cases} (-\infty,b] \\ (a,\infty) \\ (-\infty,\infty) \end{cases}$$

Sei $\varepsilon>0$. Wegen den Eigenschaften von F gibt es $s,t\in\mathbb{R},$ sodass $a\leqslant s\leqslant t\leqslant b$ und

$$F(s) \leqslant F(a) + \varepsilon, \ F(t) \leqslant F(b) - \varepsilon$$

Es folgt weiters

$$(s,t) \subseteq (a,b) \subseteq \bigcup_{i \ge 1} (a_i,b_i)$$
$$F(b) - F(a) \geqslant F(t) - F(s) \geqslant F(b) - F(a) - 2\varepsilon$$

Die Aussage folgt für $\varepsilon \searrow 0$.

Bemerkung: Damit können wir ϕ^* eindeutig zu einem Maß μ auf $\sigma(\mathcal{J}^*)$ erweitern. Beachte (einfache Überlegung)

$$\mathcal{J} \subseteq \mathcal{J}^*, \ \mathcal{J}^* \subseteq \sigma(\mathcal{J}) \implies \sigma(\mathcal{J}) = \sigma(\mathcal{J}^*)$$

3.13. Definition: Definiere die Borel'sche σ -Algebra auf \mathbb{R} durch

$$\mathcal{B}(\mathbb{R}) := \sigma(\mathcal{J}^*)$$

3.14. Proposition: Es gilt $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{J}_i)$ für i = 1, ..., n und

$$\mathcal{J}_1 := \{(a,b) : -\infty \leqslant a \leqslant b \leqslant \infty\}$$

$$\mathcal{J}_2 := \{[a,b] : -\infty < a \leqslant b < \infty\}$$

$$\mathcal{J}_3 := \{(-\infty,b] : b \in \mathbb{R}\}$$

$$\mathcal{J}_4 := \{(-\infty,b) : b \in \mathbb{R}\}$$

Beweis: nur für \mathcal{J}_1 , Rest Übung!

I.
$$\mathcal{J}_1 \subseteq \sigma(\mathcal{J})$$

 $(a,b) = \bigcup_{n\geqslant 1} \left(a,b-\frac{1}{n}\right] \in \sigma(\mathcal{J}), \text{ da } \left(a,b-\frac{1}{n}\right] = \left(a,b-\frac{1}{n}\right) \in \mathcal{J} \text{ für alle } n\geqslant 1.$

II.
$$\mathcal{J}_1 \supseteq \sigma(\mathcal{J})$$

(a)
$$a, b < \infty$$
: $(a, b) = (a, b] = \bigcap_{n \ge 1} (a, b + \frac{1}{n}) \in \sigma(\mathcal{J}_1)$.

(b)
$$a = -\infty, b < \infty$$
: $(a, b) = (-\infty, b] = \bigcap_{n>1} (-\infty, b + \frac{1}{n}) \sigma(\mathcal{J}_1)$

(c)
$$a < \infty, b = \infty$$
: $(a, b) = (a, \infty) \in \mathcal{J}_1 \subseteq \sigma(\mathcal{J}_1)$

(d)
$$a = -\infty, b = \infty$$
: $(a, b) = \mathbb{R} \in \mathcal{J}_1 \subseteq \sigma(\mathcal{J}_1)$

3.15. Proposition: Es gilt $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O})$, mit $\mathcal{O} = \{O \subseteq \mathbb{R} : O \text{ offen}\}$.

Beweis: folgt.

3.16. Korollar: $\mathcal{B}(\mathbb{R})$ enthält alle einpunktigen, offenen und abgeschlossenen Teilmengen von \mathbb{R} .

Beweis: Die Inklusion der offenen und abgeschlossenen Teilmengen folgt aus Proposition 3.15 und der Abgeschlossenheit bezüglich Komplementbildung. Außerdem gilt

$$\{x\} = \bigcap_{n \ge 1} \left(x - \frac{1}{n}, x + \frac{1}{n} \right) \in \mathcal{B}(\mathbb{R})$$

mit Proposition 3.14.

3.17. Satz: Sei $F: \mathbb{R} \to \mathbb{R}$ monoton nicht-fallend und rechtsstetig. Dann existiert genau ein σ -endliches Maß $\mu_F: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ mit $\mu_F((a, b)) = F(b) - F(a)$.

Beweis: Existenz und Eindeutigkeit folgen aus dem Maßerweiterungssatz von Carathéodory. Außerdem gilt $\mathbb{R} = \bigcup_{n \ge 1} (-n, n)$ und $\forall n \ge 1 : \mu_F((-n, n)) = F(n) - F(-n) < \infty$.

- **3.18. Definition:** Das Lebesgue-Maß $\lambda(\cdot)$ (auch $\operatorname{vol}(\cdot)$) auf $\mathbb R$ ist definiert durch das von der Funktion F(x) = x induzierte Maß (gemäß Satz 3.17).
- **3.19. Definition:** Sei $F: \mathbb{R} \to [0,1]$ monoton nicht-fallend und rechtsstetig, sodass zusätzlich $\lim_{x\to-\infty} F(x) = 0$ und $\lim_{x\to\infty} F(x) = 1$. Dann nennt man F eine Verteilungsfunktion (cdf). Mit Satz 3.17 induziert jede Verteilungsfunktion ein Wahrscheinlichkeitsmaß \mathbb{P} auf \mathbb{R} .
- **3.20.** Satz Sei φ ein σ -endliches Maß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Dann existiert eine Funktion $F: \mathbb{R} \to \mathbb{R}$, sodass
 - F ist monoton nichtfallend.
 - F ist rechtsseitig stetig.
 - Für $F(-\infty) = \lim_{x \to -\infty} F(x)$ und $F(\infty) = \lim_{x \to \infty} F(x)$ gilt für alle $-\infty \leqslant a < b \leqslant \infty$.

$$\varphi((a,b)) = F(b) - F(a)$$

Beweis:

I. Fall: φ endlich.

Setze $F(x) := \varphi((-\infty, x])$ für $x \in \mathbb{R}$. Da φ endlich ist, ist F reellwertig. Die Monotonie von F folgt aus der Monotonie von φ (siehe Satz 1.7). Die Rechtsstetigkeit von F folgt der Stetigkeit von oben (siehe Satz 1.9). Schließlich gilt für $-\infty < a < b < \infty$

$$\varphi((a,b]) = \varphi((-\infty,b] \setminus (-\infty,a])$$
$$= \varphi((-\infty,b]) - \varphi((-\infty,a]) = F(b) - F(a)$$

$$\begin{split} \varphi((-\infty,b)) &\overset{\text{S.V.U.}}{=} \lim_{x \to -\infty} \varphi((x,b]) \\ &= \lim_{x \to -\infty} F(b) - F(x) = F(b) - F(-\infty) \end{split}$$

$$\varphi((a, \infty)) \stackrel{\text{S.V.U.}}{=} \lim_{x \to \infty} \varphi((a, x])$$
$$= \lim_{x \to \infty} F(x) - F(a) = F(\infty) - F(a)$$

$$\varphi((-\infty, \infty)) \stackrel{\text{S.V.U.}}{=} \lim_{x \to \infty} \varphi((-x, x])$$
$$= \lim_{x \to \infty} F(x) - F(-x) = F(\infty) - F(-\infty)$$

II. Fall: $\varphi(\mathbb{R}) = \infty$.

Setze hier

$$F(x) := \begin{cases} \varphi((0, x]) & \text{falls } x \geqslant 0 \\ -\varphi((x, 0]) & \text{falls } x < 0 \end{cases}$$

Die Monotonie und Rechtssteitgkeit folgen wie im I. Fall. Für die dritte Eigenschaft argumentiere wie im I. Fall und betrachte jeweils die Fälle

$$0\leqslant a\leqslant b<\infty$$

$$-\infty < a<0\leqslant b<\infty$$

$$-\infty < a$$

3.21. Korollar: Sei $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ ein σ -endlicher Maßraum und $\mu((a, b)) = F(b) - F(a)$ für eine monoton nicht-fallende, rechtsstetige Funktion $F : \mathbb{R} \to \mathbb{R}$. Dann gilt für $a \in \mathbb{R}$:

$$\mu(\{a\}) = F(a) - \lim_{x \nearrow a} F(x)$$

Insbesondere ist $\{a\}$ ein Atom von μ , wenn F eine Sprungstelle bei a hat.

Beweis: Schreibe $\{a\} = \bigcap_{n\geqslant 1} \left(a - \frac{1}{n}, a\right)$ und beachte, dass $\mu((a-1, a)) = F(a) - F(a-1) < \infty$. Mit der Stetigkeit von oben (Satz 1.9) gilt

$$\mu(\{a\}) = \lim_{n \to \infty} \mu\left(\left(a - \frac{1}{n}, a\right)\right) = \lim_{n \to \infty} \left[F(a) - F\left(a - \frac{1}{n}\right)\right] = F(a) - \lim_{x \nearrow a} F(x)$$

wobei die letze Gleichung aus der Definition eines einseitigen Grenzwertes folgt (cf. Analysis).

4. Messbare Abbildungen und Zufallsvariablen

Betrache im folgenden Kapitel jeweils einen Maßraum $(\Omega, \mathcal{A}, \mu)$ und eine Abbildung $f : \Omega \to \Omega'$.

Urbildoperator und Messbarkeit

4.1. Definition: Sei $f: \Omega \to \Omega'$. Für $A' \subseteq \Omega'$ definiere das Urbild von A' unter f als

$$f^{-1}(A') := \{ \omega \in \Omega : f(\omega) \in A' \} \subseteq \Omega$$

Kurschreibweise: $f^{-1}(A') = f^{-1}A' = \{f \in A'\}$. Beachte, dass der Urbild-Operator nicht die inverse Funktion ist (im Gegensatz zur Inversen ist das Urbild immer definiert).

4.1. $\frac{1}{2}$. **Proposition :** Der Urbild-Operator kommutiert mit Mengenoperationen, i.e.

(i)
$$f^{-1}\left(\bigcup_{n\geqslant 1} A'_n\right) = \bigcup_{n\geqslant 1} f^{-1}(A'_n)$$

(ii)
$$f^{-1}(A'^c) = (f^{-1}(A'))^c$$

(iii)
$$f^{-1}\left(\bigcap_{n\geqslant 1} A'_n\right) = \bigcap_{n\geqslant 1} f^{-1}(A'_n)$$

Beweis: Übung! (iii) folgt aus (i), (ii) und de Morgan.

4.2. Definition: Betrachte zwei messbare Räume (Ω, \mathcal{A}) und (Ω', \mathcal{A}') . Eine Abbildung f heißt \mathcal{A} - \mathcal{A}' -messbar, falls

$$\forall A' \in \mathcal{A}' : f^{-1}(A') \in \mathcal{A}$$

Falls $X:(\Omega,\mathcal{A},\mathbb{P})\to(\Omega',\mathcal{A}')$ eine messbare Abbildung von einem Wahrscheinlichkeitsraum nach Ω' ist, nennt man X eine Ω' -wertige Zufallsvariable (e.g. $\Omega'=\mathbb{R}$ oder $\Omega'=\mathbb{C}$). Definiert man eine Abbildung als \mathcal{A} - \mathcal{A}' -messbar, so schreibt man oft $f:(\Omega,\mathcal{A})\to(\Omega',\mathcal{A}')$.

4.3. Definition: Sei I eine beliebige, nicht-leere Indexmenge und seien $f_i: \Omega \to \Omega', i \in I$. Definiere die von den $f_i, i \in I$ erzeugte σ -Algebra als

$$\sigma(f_i, i \in I) := \sigma\left(\left\{f_i^{-1}(A') : A' \in \mathcal{A}', i \in I\right\}\right)$$

Bemerkung:

- (i) $\sigma(f_i, i \in I)$ ist die kleinste σ -Algebra auf Ω für die alle $f_i, i \in I$ messbar sind.
- (ii) Ist \mathcal{A} eine σ -Algebra auf Ω , dann gilt: $\forall i \in I : f_i$ ist \mathcal{A} - \mathcal{A}' -messbar $\iff \sigma(f_i, i \in I) \subseteq \mathcal{A}$
- (iii) $\sigma(f) = \{f^{-1}(A') : A' \in \mathcal{A}'\}$, da der Urbild-Operator mit Mengenoperationen kommutiert.
- **4.4. Proposition:** Betrachte zwei messbare Räume (Ω, \mathcal{A}) , (Ω', \mathcal{A}') , wobei $\mathcal{A}' = \sigma(\mathcal{M}')$ für eine Mengenfamilie $\mathcal{M}' \subseteq \mathcal{P}(\Omega')$, sowie eine Abbildung $f: \Omega \to \Omega'$. Setze $\mathcal{M} := \{f^{-1}(M'): M' \in \mathcal{M}'\}$. Dann gilt $\sigma(f) = \sigma(\mathcal{M})$ und insbesondere ist f genau dann \mathcal{A} - \mathcal{A}' -messbar, wenn $\mathcal{M} \subseteq \mathcal{A}$.

Beweis:

I. $\sigma(\mathcal{M}) \subseteq \sigma(f)$ Es gilt $\mathcal{M}' \subseteq \sigma(\mathcal{M}')$ und damit

$$\mathcal{M} = \{f^{-1}(M'): M' \in \mathcal{M}'\} \subseteq \{f^{-1}(M'): M' \in \sigma(\mathcal{M}')\} = \sigma(f)$$

Damit folgt $\sigma(\mathcal{M}) \subseteq \sigma(\sigma(f)) = \sigma(f)$.

II. $\sigma(\mathcal{M}) \supseteq \sigma(f)$

Setze $\mathcal{G}' := \{M' \in \sigma(\mathcal{M}') : f^{-1}(M') \in \sigma(\mathcal{M})\}$ und zeige $\mathcal{G}' = \sigma(\mathcal{M}')$. Die Inklusion $\mathcal{G}' \subseteq \sigma(\mathcal{M}')$ folgt sofort aus der Konstruktion. Es genügt also zu zeigen, dass \mathcal{G}' eine σ -Algebra ist und $\mathcal{M}' \subseteq \mathcal{G}'$.

- (i) Sei $M' \in \mathcal{M}'$. Dann gilt $M' \in \sigma(\mathcal{M}')$ und $f^{-1}(M') \in \mathcal{M}$ per Definition von \mathcal{M} . Es folgt $f^{-1}(M') \in \sigma(\mathcal{M}')$ und damit $M' \in \mathcal{G}'$.
- (ii) Zeige, dass \mathcal{G}' eine σ -Algebra ist.
 - Es gilt $\Omega' \in \sigma(\mathcal{M}')$ und $f^{-1}(\Omega') = \Omega \in \sigma(\mathcal{M})$.
 - Abgeschlossenheit bezüglich Komplementbildung und abzählbaren Vereinigungen folgt aus Bemerkung (iii) oben.
- III. Zur Messbarkeit.
 - (i) Sei $f \mathcal{A}$ - \mathcal{A}' -messbar. Es gilt mit Bemerkung (ii) oben

$$\mathcal{M} = \{ f^{-1}(M') : M' \in \mathcal{M}' \} \subseteq \{ f^{-1}(M') : M' \in \sigma(\mathcal{M}') \} = \sigma(f) \subseteq \mathcal{A}$$

(ii) Sei $\mathcal{M} \subseteq \mathcal{A}$. Damit gilt $\sigma(\mathcal{M}) = \sigma(f) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$ und mit Bemerkung (ii) oben folgt die Aussage.

4.5. Lemma:

$$\sigma(f_i : i \in I) = \sigma\left(\left\{\bigcap_{j \in J} f_j^{-1}(A_j') : J \subseteq I, J \text{ endlich}, A_j' \in \mathcal{A}' \text{ für } j \in J\right\}\right)$$

Beweis:

- I. \subseteq Es gilt $\{f_i^{-1}(A'): A' \in \mathcal{A}, i \in I\} \subseteq \{\bigcap_{j \in J} f_j^{-1}(A'_j): J \subseteq I, J \text{ endlich}, A'_j \in \mathcal{A}' \text{ für } j \in J\}.$
- II. ⊇
 folgt sofort aus der Abgeschlossenheit bezüglich endlicher Durchschnitte und der Kommutativität des Urbildoperators mit dem Durchschnittsoperator. □
- **4.6. Proposition:** Betrachte messbare Räume $(\Omega_i, \mathcal{A}_i)$, i = 1, 2, 3 sowie messbare Abbildungen

$$f: (\Omega_1, \mathcal{A}_1) \to (\Omega_2, \mathcal{A}_2)$$

 $g: (\Omega_2, \mathcal{A}_2) \to (\Omega_3, \mathcal{A}_3)$

Dann ist $g \circ f : \Omega_1 \to \Omega_3$ auch $\mathcal{A}_1 - \mathcal{A}_3$ -messbar.

Beweis: Sei $A_3 \in \mathcal{A}_3$. Dann gilt

$$(g \circ f)^{-1}(A_3) = \{\omega_1 \in \Omega_1 : (g \circ f)(\omega_1) \in A_3\}$$

= \{\omega_1 \in \Omega_1 : g(f(\omega_1)) \in A_3\}
= \{\omega_1 \in \Omega_1 : f(\omega_1) \in g^{-1}(A_3)\}

Laut Annahme gilt $g^{-1}(A_3) \in \mathcal{A}_2$ für alle $A_3 \in \mathcal{A}_3$ und mit der Messbarkeit von f folgt die Aussage.

Messbare Funktionen mit Werten in \mathbb{R}

4.7. Lemma: Seien (X, d_X) und (Y, d_Y) jeweils metrische Räume. Dann ist eine Abbildung $f: X \to Y$ genau dann stetig (bezüglich d_X, d_Y), wenn Urbilder offener Mengen offen sind.

Beweis: cf. Höhere Analysis, siehe z.B. Theorem 4.8 in Rudin, W. (1976) *Principles of Mathematical Analysis*. 3rd edn., pp. 86-87. □

4.8. Proposition: Ist $f: \mathbb{R} \to \mathbb{R}$ stetig, dann ist $f \mathcal{B}(\mathbb{R}) - \mathcal{B}(\mathbb{R})$ -messbar.

Beweis: folgt sofort aus Lemma 4.7 und Proposition 2.15. □

Bemerkung: Proposition 4.8 lässt sich auf beliebige metrische Räume ausweiten.

- **4.9. Proposition:** Sei (Ω, \mathcal{A}) ein messbarer Raum und seien $f, g : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ messbar. Sei $c \in \mathbb{R}$. Dann gilt:
 - (i) cf mit $(cf)(\omega) := cf(\omega)$ ist messbar.
 - (ii) f + g mit $(f + g)(\omega) := f(\omega) + g(\omega)$ ist messbar.
- (iii) fg mit $(fg)(\omega) := f(\omega)g(\omega)$ ist messbar.
- (iv) Für alle $\omega \in \Omega$ mit $g(\omega) \neq 0$ ist $\frac{f}{g}$ mit $\left(\frac{f}{g}\right)(\omega) := \frac{f(\omega)}{g(\omega)}$ messbar.

Beweis:

- (i) Da die konstante Abbildung messbar ist, gilt (iii) \Longrightarrow (i).
- (ii) Fixiere $t \in \mathbb{R}$. Da der Urbildoperator mit Mengenoperationen kommutiert (und mit Proposition 3.14), genügt es zu zeigen, dass Mengen der Form

$$A = \{ \omega \in \Omega : f(\omega) + g(\omega) \in (-\infty, t) \}$$

in \mathcal{A} messbar sind. Dazu genügt es zu zeigen, dass

$$A = \bigcup_{\substack{q,r \in \mathbb{Q} \\ q+r < t}} \{\omega \in \Omega : f(\omega) < q\} \cap \{\omega \in \Omega : g(\omega) < r\} =: B$$

Sei $\omega \in B$. Dann gibt es rationale Zahlen q, r mit q + r < t, sodass $f(\omega) < q$ und $g(\omega) < r$ und somit $f(\omega) + g(\omega) < q + r < t$, also $\omega \in A$. Sei $\omega \in A$. Dann gilt $f(\omega) + g(\omega) < t$ und damit $\delta := t - (f(\omega) + g(\omega)) > 0$. Da $\mathbb Q$ dicht in $\mathbb R$ ist, gibt es $q, r \in \mathbb Q$, sodass $f(\omega) < q$, $g(\omega) < r$ und $q + r < f(\omega) + g(\omega) + \delta = t$. Damit folgt $\omega \in B$.

- (iii) $fg = \frac{1}{2}(f+g)^2 f^2 g^2$ wobei $t \mapsto \frac{1}{2}t^2$ und $t \mapsto -t^2$ stetig und damit messbar sind. Die Aussage folgt mit (ii).
- (iv) Fixiere $t \in \mathbb{R}$. Mit (iii) genügt es zu zeigen, dass $\{1/g < t, g \neq 0\}$ messbar ist. Setze z.B.

$$(1/g)(\omega) := \begin{cases} 1/g(\omega) & \text{falls } g(\omega) \neq 0\\ 0 & \text{falls } g(\omega) = 0 \end{cases}$$

Es gilt

$$\{1/g < t\} = \{1/g < t, g < 0\} \cup \{1/g < t, g > 0\} \cup \{1/g < t, g = 0\}$$

Die Menge $\{1/g < t, g = 0\}$ ist trivial (Ω oder \emptyset) messbar. Für t > 0 gilt

$$\{1/g < t, g > 0\} = \{g > 1/t, g > 0\}, \ \{1/g < t, g < 0\} = \{g < 1/t, g < 0\}$$

Für t < 0 gilt

$$\{1/g < t, g > 0\} = \{g < 1/t, g > 0\}, \{1/g < t, g < 0\} = \{g > 1/t, g < 0\}$$

Für t = 0 gilt

$$\{1/g < t, g > 0\} = \{g < 0, g > 0\} = \emptyset, \{1/g < t, g < 0\} = \{g < 0, g < 0\} = \{g < 0\}$$

Die Aussage folgt mit Abgeschlossenheit von $\mathcal A$ bezüglich Vereinigungen, Durchschnitten und Komplementen.

Messbare Funktionen mit Werten in $\overline{\mathbb{R}}$

4.10. Definition: Definiere die erweiterten reellen Zahlen als

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$$

und analog zum reellen Fall die Mengenfamilie

$$\mathcal{K} := \{ [-\infty, t] : t \in \overline{\mathbb{R}} \}$$

sowie die Borel- σ -Algebra

$$\mathcal{B}(\overline{\mathbb{R}}) := \sigma(\mathcal{K})$$

4.11. Definition (Rechenregeln in $\overline{\mathbb{R}}$):

$$a + \infty = \infty + a := \infty \text{ für } a > -\infty$$

$$a - \infty = -\infty + a := -\infty \text{ für } a < \infty$$

$$a \cdot \infty = \infty \cdot a := \infty \text{ für } a > 0$$

$$a \cdot \infty = \infty \cdot a := -\infty \text{ für } a < 0$$

$$a \cdot (-\infty) = (-\infty) \cdot a := -\infty \text{ für } a > 0$$

$$a \cdot (-\infty) = (-\infty) \cdot a := \infty \text{ für } a < 0$$

$$0 \cdot \infty = 0 \cdot (-\infty) := 0$$

Beachte, dass $\infty - \infty$ nicht definiert ist.

4.12. Lemma: Es gilt $\mathcal{B}(\overline{\mathbb{R}})|_{\mathbb{R}} = \mathcal{B}(\mathbb{R})$. Außerdem ist $\mathbb{R} \in \mathcal{B}(\overline{\mathbb{R}})$, sodass insbesondere $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}(\overline{\mathbb{R}})$.

Beweis:

$$\mathcal{B}(\overline{\mathbb{R}})|_{\mathbb{R}} = \sigma(\mathcal{K})|_{\mathbb{R}} = \sigma(\mathcal{K}|_{\mathbb{R}}) \stackrel{1.16}{=} \sigma(\mathcal{J}) = \mathcal{B}(\mathbb{R})$$

Außerdem gilt $\{-\infty\} = \bigcap_{n\geqslant 1} [-\infty, -n] \in \mathcal{B}(\overline{\mathbb{R}})$ und $\{\infty\} = \bigcap_{n\geqslant 1} [n, \infty] \in \mathcal{B}(\overline{\mathbb{R}})$ und damit

$$\mathbb{R}=\overline{\mathbb{R}}\setminus(\{-\infty\}\cup\{\infty\})\in\mathcal{B}(\overline{\mathbb{R}})$$

4.13. Korollar: Sei (Ω, \mathcal{A}) ein messbarer Raum und $f:(\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ messbar. Dann ist f auch \mathcal{A} - $\mathcal{B}(\overline{\mathbb{R}})$ -messbar.

Beweis: folgt sofort aus Lemma 4.12.

Bemerkung: Damit gelten alle Aussagen in diesem Abschnitt auch für \mathbb{R} -wertige Funktionen.

4.14. Korollar: Sei $A \in \mathcal{B}(\overline{\mathbb{R}})$. Dann gilt

$$A = B \cup \{\infty\}$$
 oder $A = B \cup \{-\infty\}$ oder $A = B$ oder $A = B \cup \{-\infty, \infty\}$

für ein $B \in \mathcal{B}(\mathbb{R})$.

Beweis: $B \in \mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}})|_{\mathbb{R}} \Longrightarrow B = A \cap \mathbb{R} \text{ mit } A \in \mathcal{B}(\overline{\mathbb{R}}). \text{ Nun gilt } A = (A \setminus \mathbb{R}) \cup (A \cap \mathbb{R}),$ wobei $A \setminus \mathbb{R} = \{\infty\} \text{ oder } \{-\infty\} \text{ oder } \{-\infty\}.$

4.15. Korollar: Sei (Ω, \mathcal{A}) ein messbarer Raum. Eine Abbildung $f: \Omega \to \overline{\mathbb{R}}$ ist \mathcal{A} – $\mathcal{B}(\overline{\mathbb{R}})$ -messbar, genau dann wenn:

$$\forall B \in \mathcal{B}(\mathbb{R}) : f^{-1}(B) \in \mathcal{A}$$
$$f^{-1}(\{-\infty\}) \in \mathcal{A}$$
$$f^{-1}(\{\infty\}) \in \mathcal{A}$$

Beweis: folgt sofort aus Kommutativität des Urbildoperators mit Mengenoperationen und Korollar 4.14.

4.16. Definition: Sei $A \subseteq \Omega$. Die Indikatorfunktion $\mathbb{1}_A : \Omega \to \{0,1\}$ auf A (auch: charakteristische Funktion) ist definiert als

$$\mathbb{1}_{A}(\omega) := \begin{cases} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \notin A \end{cases}$$

Bemerkung: Jede Funktion $f: \Omega \to \{0,1\}$ mit $f(\Omega) = \{0,1\}$ ist eine Indikatorfunktion auf der Menge $A = \{\omega \in \Omega : f(\omega) = 1\}$.

4.17. Lemma: Sei (Ω, \mathcal{A}) ein messbarer Raum. Für $A \subseteq \Omega$ ist $\mathbb{1}_A$ genau dann \mathcal{A} - $\mathcal{B}(\mathbb{R})$ messbar, wenn $A \in \mathcal{A}$.

Beweis: Es gilt

$$\mathbb{1}_A^{-1}(B) = \begin{cases} \emptyset & \text{falls } 0, 1 \notin B \\ A & \text{falls } 0 \notin B, 1 \in B \\ A^c & \text{falls } 0 \in B, 1 \notin B \\ \Omega & \text{falls } 0, 1 \in B \end{cases}$$

für alle $B \in \mathcal{B}(\mathbb{R})$.

4.18. Proposition: Sei (Ω, \mathcal{A}) ein messbarer Raum und $f_n : \Omega \to \overline{\mathbb{R}}, n \geqslant 1$ alle \mathcal{A} - $\mathcal{B}(\overline{\mathbb{R}})$ messbar. Dann sind die Funktionen

$$\sup_{n\geqslant 1} f_n, \inf_{n\geqslant 1} f_n, \limsup_{n\to\infty} f_n, \liminf_{n\to\infty} f_n$$

auch \mathcal{A} – $\mathcal{B}(\overline{\mathbb{R}})$ -messbar und insbesondere ist die Menge $\{\omega \in \Omega : \lim_{n \to \infty} f_n(\omega) \text{ existient in } \overline{\mathbb{R}}\}$ messbar.

Beweis: Betrachte zunächst die Messbarkeitseigenschaften:

$$\left\{ \sup_{n \geq 1} f_n < c \right\} = \bigcup_{n \geq 1} \left\{ f_n > c \right\} \in \mathcal{A} \implies \forall B \in \mathcal{B}(\mathbb{R}) : \left\{ \sup_{n \geq 1} f_n \in B \right\} \in \mathcal{A}$$

$$\left\{ \sup_{n \geq 1} f_n = \infty \right\} = \bigcap_{k \geq 1} \left\{ \sup_{n \geq 1} f_n > k \right\} \in \mathcal{A}$$

$$\left\{ \sup_{n \geq 1} f_n = -\infty \right\} = \left\{ -\sup_{n \geq 1} f_n = \infty \right\}$$

$$\inf_{n \geq 1} f_n = -\sup_{n \geq 1} (-f_n)$$

$$\lim_{n \to \infty} \sup_{n \to \infty} f_n = \inf_{n \geq \infty} \left(\sup_{n \geq N} f_n \right)$$

$$\lim_{n \to \infty} \inf_{n \to \infty} f_n = -\lim_{n \to \infty} \sup_{n \to \infty} (-f_n)$$

Die Messbarkeit folgt mit Korollar 4.15 und Proposition 4.9 Weiters gilt

$$\left\{\lim_{n\to\infty} f_n \in \overline{\mathbb{R}}\right\} = \left\{\limsup_{n\to\infty} f_n = \liminf_{n\to\infty} f_n\right\} \cup \left\{\liminf_{n\to\infty} f_n = \infty\right\} \cup \left\{\limsup_{n\to\infty} f_n = -\infty\right\}$$

4.19. Definition: Sei (Ω, \mathcal{A}) ein messbarer Raum. Seien $A_i \in \mathcal{A}$ und $\alpha_i \in \mathbb{R}$ für $i = 1, \ldots, n$. Dann nennt man $f : \Omega \to \mathbb{R}$ mit $f(\omega) = \sum_{i=1}^n \alpha_i \mathbb{1}_{A_i}(\omega)$ eine einfache Funktion.

4.20. Korollar: Jede einfache Funktion ist $\mathcal{A}-\mathcal{B}(\mathbb{R})$ und $\mathcal{A}-\mathcal{B}(\overline{\mathbb{R}})$ -messbar.

Beweis: Folgt sofort aus Lemma 4.17, Korollar 4.13 und Proposition 4.9.

4.21. Proposition: Sei (Ω, \mathcal{A}) ein messbarer Raum.

(i) Eine Funktion $f: \Omega \to \mathbb{R}$ ist genau dann einfach, wenn f messbar ist und endlich viele Werte annimmt (i.e. $|f(\Omega)| < \infty$).

(ii) Jede einfache Funktion $f: \Omega \to \mathbb{R}$ lässt sich schreiben als $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ mit $A_i, i = 1, \ldots, n$ disjunkt.

Beweis:

- (i) \Longrightarrow : Die Messbarkeit folgt aus Korollar 4.20. Weiters gilt $|f(\Omega)| \leq 2^n$. \Leftarrow : Sei f messbar und $f(\Omega) = \{\gamma_1, \dots, \gamma_n\}$ mit $\gamma_i \neq \gamma_j$ für $i \neq j$. Sei $A_i := \{f = \gamma_i\}$.
- (ii) folgt aus dem zweiten Teil im Beweis von (i). □
- **4.22.** Satz: Sei (Ω, \mathcal{A}) ein messbarer Raum und $f:(\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ nicht-negativ und messbar. Dann gibt es eine Folge einfacher Funktionen $f_n, n \geq 1$, sodass

$$\forall \omega \in \Omega : 0 \leqslant f_1(\omega) \leqslant f_2(\omega) \leqslant \ldots \leqslant \lim_{n \to \infty} f_n(\omega) = f(\omega)$$

Wir schreiben oft kurz $0 \leq f_n \uparrow f$. Ist f zusätzlich beschränkt, i.e. $\exists C \in \mathbb{R} \forall \omega \in \Omega : f(\omega) \leq C$, dann ist die Konvergenz gleichmäßig, also

$$\sup_{\omega \in \Omega} |f_n(\omega) - f(\omega)| \xrightarrow[n \to \infty]{} 0$$

Beweis: Setze $\forall n \geqslant 1$

$$f_n(\omega) := \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} \cdot \mathbb{1}_{\left\{ f \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \right\}}(\omega) + n \cdot \mathbb{1}_{\left\{ f \geqslant n \right\}}$$

 $f_n \geqslant 0$ und f_n einfach folgen aus der Konstruktion. Zeige also Monotonie und Konvergenz.

• Zeige $\forall \omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega)$ Falls $f(\omega) < \infty$ gibt es n_0 , sodass $f(\omega) < n_0$ und damit

$$\forall n \geqslant n_0 \exists k \in \{0, \dots, n \cdot 2^n - 1\} : f(\omega) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$$

sodass $f_n(\omega) = \frac{k}{2^n}$. Insbesondere gilt damit

$$0 \leqslant f(\omega) - f_n(\omega) \leqslant \frac{1}{2^n} \xrightarrow[n \to \infty]{} 0$$

Falls $f(\omega) = \infty$ gilt $\forall n \ge 1 : f_n(\omega) = n \xrightarrow[n \to \infty]{} \infty = f(\omega)$. Falls f beschränkt ist, gibt es $n_0 \ge 1$, sodass $f(\omega) < n_o$ für alle $\omega \in \Omega$ und damit

$$\forall \omega \in \Omega : 0 \leqslant f(\omega) - f(\omega) < \frac{1}{2^n}$$

Da die obere Schranke unabhängig von ω ist, folgt die gleichmäßige Konvergenz.

• Zeige $\forall \omega \in \Omega : f_n(\omega) \leq f_{n+1}(\omega)$ Sei $f_n(\omega) = \frac{k}{2^n}$ für $k \in \{0, \dots, n \cdot 2^n - 1\}$. Dann gilt

$$f(\omega) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right) = \left[\frac{2k}{2^{n+1}}, \frac{2k+1}{2^{n+1}}\right) \cup \left[\frac{2k+1}{2^{n+1}}, \frac{2k+2}{2^{n+1}}\right)$$

Falls
$$f(\omega) \in \left[\frac{2k}{2^{n+1}}, \frac{2k+1}{2^{n+1}}\right)$$
, dann ist $f_{n+1}(\omega) = \frac{2k}{2^{n+1}} = \frac{k}{2^n} = f_n(\omega)$.
Falls $f(\omega) \in \left[\frac{2k+1}{2^{n+1}}, \frac{2k+2}{2^{n+1}}\right)$, dann ist $f_{n+1}(\omega) = \frac{2k+1}{2^{n+1}} > \frac{k}{2^n} = f_n(\omega)$.

Sei $f_n(\omega) = n$. Dann gilt

$$f(\omega) \in [n,\infty] = [n,n+1) \cup [n+1,\infty]$$

Falls $f(\omega) \in [n+1, \infty]$, dann ist $f_{n+1}(\omega) = n+1 > n = f_n(\omega)$. Falls $f(\omega) \in [n, n+1)$, dann ist

$$f_{n+1}(\omega) = \sum_{k=0}^{(n+1)\cdot 2^{n+1}-1} \frac{k}{2^{n+1}} \cdot \mathbb{1}_{\left\{f \in \left[\frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right]\right\}} + (n+1) \cdot \mathbb{1}_{\left\{f \geqslant n+1\right\}}$$
$$= \frac{(n+1)\cdot 2^{n+1}-1}{2^{n+1}} > n = f_n(\omega)$$

5. Lebesgue-Integral

Sei im folgenden Kapitel immer $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ messbar.

Konstruktion des Integrals

- 5.0. Definition (Informelle Definition des Integrals):
 - (i) Für $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ einfach setzt man

$$\int f \ d\mu := \sum_{i=1}^{n} \alpha_i \mu(A_i)$$

(ii) Für $f \ge 0$ messbar wählt man einfache Funktionen mit $0 \le f_n \uparrow f$ und setzt

$$\int f \ d\mu := \lim_{n \to \infty} \int f_n \ d\mu$$

(iii) Für f messbar definiert man $f^+:=f\cdot \mathbbm{1}_{\{f\geqslant 0\}}$ und $f^-:=f\cdot \mathbbm{1}_{\{f< 0\}}$ und setzt

$$\int f \ d\mu := \int f^+ \ d\mu - \int f^- \ d\mu$$

5.1. Lemma: Für eine einfache Funktion $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ ist $\int f \ d\mu$ unabhängig von der Darstellung von f.

Beweis: Sei $m := |f(\Omega)|$, mit $f(\Omega) = \{\gamma_1, \ldots, \gamma_m\}$ und sei $G_{\ell} := \{\omega \in \Omega : f(\omega) = \gamma_{\ell}\}$ für $\ell = 1, \ldots, m$. Dann sind G_{ℓ}, γ_{ℓ} unabhängig von der Darstellung von f für $\ell = 1, \ldots, m$. Zeige nun $\sum_{i=1}^{n} \alpha_i \mu(A_i) = \sum_{\ell=1}^{m} \gamma_{\ell} \mu(G_{\ell})$. Für $j \in \{0, 1\}^n$, sei

$$B_j := \left(\bigcap_{i=1}^n A_{j_i}\right) \cap \left(\bigcap_{i=1}^n A_{j_i}^c\right) = \left(\bigcap_{i:j_i=1}^n A_i\right) \cap \left(\bigcap_{i:j_i=0}^n A_i^c\right)$$

und $\beta_j := \sum_{i=1}^n \alpha_i$. Dann sind die B_j disjunkt und $A_i = \bigcup_{j:j_i=1} B_j$. Außerdem gilt $\bigcup_{j\in\{0,1\}^n} B_j = \Omega$ und

$$A_i \cap B_j = \begin{cases} \emptyset & \text{falls } j_i = 0 \\ B_j & \text{falls } j_i = 1 \end{cases}$$

Es folgt

$$\int f \ d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i) = \sum_{i=1}^{n} \sum_{\substack{j \in \{0,1\}^n \\ j_i = 1}} \mu(B_j) = \sum_{\substack{j \in \{0,1\}^n \\ j_i = 1}} \mu(B_j) \sum_{\substack{i \in \{1,\dots,n\} \\ j_i = 1}} \alpha_i = \sum_{\substack{j \in \{0,1\}^n \\ j_i = 1}} \beta_j \mu(B_j)$$

- Falls $B_j = \emptyset$, dann wird β_j "weggeworfen", i.e. setze $\beta_j := 0$.
- Falls $\beta_j = \beta_{j'}$, dann werden B_j und $B_{j'}$ vereinigt.

Schließlich erhält man Werte $\{\beta_{j^{(1)}},\ldots,\beta_{j^{(m)}}\}=\{\gamma_1,\ldots,\gamma_m\}$ und für $\gamma_\ell=\beta_{j^{(k)}}$ ist

$$G_{\ell} = \{ f = \gamma_{\ell} \} = \{ f = \beta_{j^{(k)}} \}$$

Es folgt

$$\int f \ d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}) = \sum_{k=1}^{m} \beta_{j^{(k)}} \mu(B_{k}) = \sum_{\ell=1}^{m} \gamma_{\ell} \mu(G_{\ell})$$

5.2. Definition: Sei $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ mit $\alpha_i \ge 0$ und $A_i \in \mathcal{A}$ für i = 1, ..., n einfach. Das Lebesgue-Integral von f bezüglich μ ist definiert als

$$\int f \ d\mu := \sum_{i=1}^{n} \alpha_i \mu(A_i) \in [0, \infty]$$

Durch Lemma 5.1 ist der Ausdruck wohldefiniert.

5.3. Lemma: Seien f, g beide nicht-negative, einfache Funktionen sodas $\forall \omega \in \Omega : f(\omega) \leq g(\omega)$. Dann gilt (Monotonie des Integrals für einfache Funktionen)

$$\int f \ d\mu \leqslant \int g \ d\mu$$

Beweis: Sei $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ und $g = \sum_{j=1}^{m} \beta_j \mathbb{1}_{B_j}$ in kanonischer Darstellung (A_i disjunkt für $i = 1, \ldots, n$ und B_j disjunkt für $j = 1, \ldots, m$) und sei o.B.d.A. $\Omega = \bigcup_{i=1}^{n} A_i = \bigcup_{j=1}^{m} B_j$. Dann gilt

$$f = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \mathbb{1}_{A_i \cap B_j}$$
$$g = \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_j \mathbb{1}_{A_i \cap B_j}$$

Laut Annahme gilt für $\omega \in A_i \cap B_j \neq \emptyset$ daher $\alpha_i \leqslant \beta_j$ und damit

$$\int f \ d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu(A_{i} \cap B_{j}) \leqslant \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{j} \mu(A_{i} \cap B_{j}) = \int g \ d\mu$$

5.4. Lemma: Seien $f_n, n \ge 1$ und g nicht negative, einfache Funktionen sodass

$$0 \leqslant f_1 \leqslant \ldots \leqslant \lim_{n \to \infty} f_n \text{ und } g \leqslant \lim_{n \to \infty} f_n$$

Dann gilt $\lim_{n\to\infty} \int f_n \ d\mu \in \overline{\mathbb{R}} \text{ und } \int g \ d\mu \leqslant \lim_{n\to\infty} \int f_n \ d\mu.$

Beweis: Aus Lemma 5.3 folgt

$$0 \leqslant \int f_1 \ d\mu \leqslant \int f_2 \ d\mu \leqslant \dots$$

Damit ist $\int f_n d\mu$, $n \ge 1$ eine monoton nicht-fallende Folge in $\overline{\mathbb{R}}$ und damit $\lim_{n\to\infty} \int f_n d\mu \in \overline{\mathbb{R}}$.

Es verbleibt zu zeigen, dass $\int g \ d\mu \leqslant \lim_{n\to\infty} \int f_n \ d\mu$. Sei $\alpha > 1$ und definiere $A_n := \{g \leqslant \alpha \cdot f_n\}, n \geqslant 1$. Dann gilt

$$A_1 \subseteq A_2 \subseteq \ldots \subseteq \bigcup_{n \geqslant 1} A_n = \Omega$$

da $f_1 \leqslant f_2 \leqslant \ldots$ Die letze Gleichheit folgt aus folgendem Argument:

Angenommen $\exists \omega \in \Omega \setminus (\bigcup_{n \geqslant 1} A_n)$. Dann gilt $\exists \omega \in \Omega \forall n \geqslant 1 : g(\omega) \geqslant \alpha \cdot f_n(\omega)$ und damit für dieses $\omega \in \Omega$, dass $g(\omega) > \lim_{n \to \infty} f_n(\omega)$, ein Widerspruch zur Annahme.

Nun ist $g \cdot \mathbbm{1}_{A_n}$ für $n \ge 1$ einfach und messbar und $g \cdot \mathbbm{1}_{A_n} \le \alpha \cdot f_n$. Mit Lemma 5.3 folgt für $\alpha \searrow 1$ für alle $n \ge 1$

$$\int g \cdot \mathbb{1}_{A_n} d\mu \leqslant \int f_n d\mu \leqslant \lim_{n \to \infty} \int f_n d\mu$$

Sei $g = \sum_{i=1}^m \gamma_i \mathbb{1}_{G_i}$ und damit $g \cdot \mathbb{1}_{A_n} = \sum_{i=1}^m \gamma_i \mathbb{1}_{G_i \cap A_n}$. Weiters gilt für $i = 1, \dots, m$

$$G_i \cap A_1 \subseteq G_i \cap A_2 \subseteq \ldots \subseteq \bigcup_{n \geqslant 1} (G_i \cap A_n) = G_i$$

und mit der Stetigkeit von unten (Satz 1.9) folgt $\lim_{n\to\infty}\mu(G_i\cap A_n)=\mu(G_i)$ und damit

$$\lim_{n \to \infty} \int g \cdot \mathbb{1}_{A_n} d\mu = \lim_{n \to \infty} \sum_{i=1}^m \gamma_i \cdot \mu(G_i \cap A_n)$$

$$= \sum_{i=1}^m \gamma_i \cdot \left(\lim_{n \to \infty} \mu(G_i \cap A_n)\right)$$

$$= \sum_{i=1}^m \gamma_i \cdot \mu(G_i) = \int g d\mu$$

Ebenfalls ist $\int g \cdot \mathbb{1}_{A_n} d\mu \leqslant \lim_{n \to \infty} \int f_n d\mu$ für alle $n \geqslant 1$ und damit

$$\int g \ d\mu = \lim_{n \to \infty} \int g \cdot \mathbb{1}_{A_n} \ d\mu \leqslant \lim_{n \to \infty} \lim_{n \to \infty} \int f_n \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$$

5.5. Korollar: Betrachte eine nicht-negative, messbare Funktion f, sowie einfache Funktionen $f_n, n \ge 1$ und $g_m, m \ge 1$, sodass $0 \le f_n \uparrow f$ und $0 \le g_m \uparrow f$. Dann gilt

$$\lim_{n \to \infty} \int f_n \ d\mu = \lim_{m \to \infty} \int g_m \ d\mu$$

Insbesondere ist damit die Wahl der approxmierenden Funktionen in der Definition des Lebesgue-Integrals später egal.

Beweis: Es gilt $\forall m \geqslant 1 : g_m \leqslant \lim_{n \to \infty} f_n$ und mit Lemma 5.4 $\forall m \geqslant 1 : \int g_m \ d\mu \leqslant \lim_{n \to \infty} \int f_n \ d\mu$. Es folgt

$$\lim_{m \to \infty} \int g_m \ d\mu \leqslant \lim_{m \to \infty} \lim_{n \to \infty} \int f_n \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$$

Ebenfalls gilt $\forall n \geqslant 1 : f_n \leqslant \lim_{m \to \infty} g_m$ und mit Lemma 5.4 $\forall n \geqslant 1 : \int f_n \ d\mu \leqslant \lim_{m \to \infty} \int g_m \ d\mu$. Wie oben folgt

$$\lim_{n \to \infty} \int f_n \ d\mu \leqslant \lim_{m \to \infty} \int g_m \ d\mu$$

5.6. Definition: Sei $f:(\Omega,\mathcal{A})\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ nicht-negativ und messbar und $f_n,n\geqslant 1$ eine belibige Folge einfacher Funktionen, sodass $0\leqslant f_n\uparrow f$. Dann ist das Lebesgue-Integral von f bezüglich μ definiert als

$$\int f \ d\mu := \lim_{n \to \infty} \int f_n \ d\mu$$

Dieser Grenzwert ist wegen der Monotonie (Lemma 5.3) und der Unabhängigkeit von den approximierenden Funktionen (Korollar 5.5) wohldefiniert.

5.7. Definition: Für eine Funktion $f:\Omega\to\overline{\mathbb{R}}$ werden der Positivteil f^+ und der Negativteil f^- definiert als

$$f^+ := \max(f, 0) \text{ und } f^- := -\min(f, 0)$$

Es gilt trivial $f = f^+ - f^-$. Ist f messbar, dann sind f^+, f^- auch beide messbar, da $f^+ = f \cdot \mathbbm{1}_{\{f \ge 0\}}$ und $f^- = f \cdot \mathbbm{1}_{\{f < 0\}}$.

- **5.8. Definition:** Sei $f:(\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ messbar.
 - (i) Falls $\int f^+ d\mu < \infty \text{ und } \int f^- d\mu < \infty$, dann ist f μ -integrierbar.
 - (ii) Falls $\int f^+ d\mu < \infty$ oder $\int f^- d\mu < \infty$, dann ist f μ -quasi-integrierbar.

- (iii) Falls $\int f^+ d\mu = \int f^- d\mu = \infty$, dann ist f nicht μ -integrierbar.
- (iv) Falls f quasi-integrierbar bezüglich μ ist, dann ist das Lebesgue-Integral von f definiert als

$$\int f \ d\mu := \int f^+ \ d\mu - \int f^- \ d\mu$$

5.9. Definition: Definiere die folgenden beiden Funktionenräume

$$\mathcal{L}^{1}(\Omega, \mathcal{A}, \mu) := \left\{ f : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}})) : f \text{ integrierbar bezüglich } \mu \right\}$$
$$\mathcal{L}(\Omega, \mathcal{A}, \mu) := \left\{ f : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}})) : f \text{ quasi-integrierbar bezüglich } \mu \right\}$$

Falls der Maßraum $(\Omega, \mathcal{A}, \mu)$ bzw. der messbare Raum (Ω, \mathcal{A}) beliebig oder aus dem Kontext bekannt sind, schreibt man oft kurz \mathcal{L}^1 bzw. $\mathcal{L}^1(\mu)$.

Bemerkung: $\mathcal{L}^1(\Omega, \mathcal{A}, \mu)$ bildet mit skalarweiser Addition und Multiplikation einen Vektorraum und $||f||_1 := \int |f| \ d\mu$ bildet eine Halbnorm auf $\mathcal{L}^1(\Omega, \mathcal{A}, \mu)$. Beachte den Unterschied zwischen $\mathcal{L}^1(\Omega, \mathcal{A}, \mu)$ und dem Quotientenraum $L^1(\Omega, \mathcal{A}, \mu)$ (bzgl. Äquivalenz fast überall, siehe Definition 5.12). Details siehe z.B. Teschl, G. (2024) *Topics in Real Analysis.*, pp. 73-74.

5.10. Definition: Für $f \in \mathcal{L}(\Omega, \mathcal{A}, \mu)$ und $A \in \mathcal{A}$, dann wird das Integral von f bezüglich μ über A definiert als

$$\int_A f \ d\mu := \int f \cdot \mathbb{1}_A \ d\mu$$

5.11. Definition: Ist $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und ist $X \in \mathcal{L}(\mathbb{P})$, dann nennt man

$$\mathbb{E}X := \int X \ d\mathbb{P}$$

den Erwartungswert von X unter \mathbb{P} . Falls zusätzlich $X \in \mathcal{L}^1(\mathbb{P})$, dann nennt man

$$\operatorname{Var}(X) := \int (X - \mathbb{E}X)^2 d\mathbb{P}$$

die Varianz von X (unter \mathbb{P}).

Eigenschaften des Integrals

- 5.12. Definition:
 - Eine Menge $A \in \mathcal{A}$ mit $\mu(A) = 0$ nennt man μ -Nullmenge.

- Ist $f:(\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ messbar und $B \in \mathcal{B}(\overline{\mathbb{R}})$ mit $\mu(\{f \in B\}^c) = \mu(\{f \in B^c\}) = 0$, dann sagt man, dass das Ereignis $\{f \in B\}$ μ -fast-überall eintritt. Kurz: $f \in B$ f.ü. (englisch a.e., almost everywhere).
- Sei \mathbb{P} ein Wahrscheinlichkeitsmaß und $X : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ eine Zufallsvariable. Ist $B \in \mathcal{B}(\overline{\mathbb{R}})$, sodass $X \in B$ \mathbb{P} -fast-überall, dann sagt man auch dass $X \in B$ fast sicher. Kurz: $X \in B$ f.s. (englisch a.s., almost surely).

Bemerkung: Die Vereinigung bis zu abzählbar vieler Nullmengen ist wegen der σ-Subadditivität (Satz 1.7 (iii)) wieder eine Nullmenge.

5.13. Lemma: Sei $f \ge 0$ messbar. Dann gilt

$$\int f \ d\mu = 0 \iff f = 0 \text{ a.e.}$$

Beweis:

I. f einfach

Sei $\int f \ d\mu = \sum_{i=1}^{n} \alpha_i \cdot \mu(A_i) = 0$ in kanonischer Darstellung. Da $f \geqslant 0$ gilt für $i = 1, \dots, n$, dass $\alpha_i = 0$ oder $\mu(A_i) = 0$.

Es gilt mit der σ -Additivität

$$\mu(\{f > 0\}) = \mu\left(\bigcup_{\substack{i=1\\\alpha_i > 0}}^n A_i\right) = \sum_{\substack{i=1\\\alpha_i > 0}}^n \mu(A_i) = 0$$

Sei $\mu(\{f>0\})=0$. Dann gilt wie im ersten Fall

$$\sum_{\substack{i=1\\\alpha_i>0}}^n \mu(A_i) = 0 \implies \int f \ d\mu = \sum_{i=1}^n \alpha_i \cdot \mu(A_i) = 0$$

II. allgemeiner Fall

Sei $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu = 0$. Da $0 \le f_n \uparrow f$, gilt $\int f_n d\mu = 0$ für alle $n \ge 1$ und mit I. folgt $f_n = 0$ a.e. Mit der Stetigkeit von unten folgt weiters

$$\mu(\{f>0\}) = \lim_{n\to\infty} \mu(\{f_n>0\}) = 0$$

Sei nun $\mu(\{f>0\})=0$. Dann folgt wegen $f_n\leqslant f$ für alle $n\geqslant 1$, dass $\mu(\{f_n>0\})=0$. Mit I. folgt $\int f_n\ d\mu=0$ und schließlich $\int f\ d\mu=\lim_{n\to\infty}\int f_n\ d\mu=0$.

5.14. Proposition: Sei $f \in \mathcal{L}(\mu)$ und g messbar, sodass f = g a.e. Dann gilt $g \in \mathcal{L}(\mu)$ und

$$\int g \ d\mu = \int f \ d\mu$$

Beweis: Seien $f_n, g_n, n \ge 1$ wie im Beweis von Satz 3.22, sodass $0 \le f_n \uparrow f$ und $0 \le g_n \uparrow g$.

I. f, g nicht-negativ Es gilt

$$\begin{split} \forall B \in \mathcal{B}(\overline{\mathbb{R}}) : \mu(\{f \in A\}) &= \mu(\{f \in A, f = g\}) \cup \{f \in A, f \neq g\}) \\ &= \mu(\{f \in A, f = g\}) + \mu(\{f \in A, f \neq g\}) \\ &= \mu(\{g \in A, f = g\}) + 0 \\ &= \mu(\{g \in A, f = g\}) + \mu(\{g \in A, f \neq g\}) \\ &= \mu(\{g \in A\}) \end{split}$$

Damit gilt per Konstruktion von f_n, g_n , dass $f_n = g_n$ a.e. für alle $n \ge 1$ und damit

$$\forall n \geqslant 1 : \int f_n \ d\mu = \int g_n \ d\mu$$

Es folgt

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu = \lim_{n \to \infty} \int g_n \ d\mu = \int g \ d\mu$$

II. f, g all gemein

Sei $f = f^+ - f^-$ und $g = g^+ - g^-$. Es gilt $f^+, f^-, g^+, g^- \ge 0$ und daher $f^+, f^-, g^+, g^- \in \mathcal{L}(\mu)$. Nun gilt $\{f^+ \ne g^+\} = \{f \ne g, f \ge 0, g \ge 0\} \subseteq \{f \ne g\}$ und damit $f^+ = g^+$ a.e. und $f^- = g^-$ a.e. Mit I. folgt

$$\int f^+ d\mu = \int g^+ d\mu \text{ und } \int f^- d\mu = \int g^- d\mu$$

Die gewünschte Aussage folgt mit der Konstruktion des Integrals.

5.15. Proposition: Ist $f \in \mathcal{L}^1(\mu)$, dann gilt $|f| < \infty$ a.e. Insbesondere gibt es eine reelwertige, messbare Funktion $g:(\Omega,\mathcal{A}) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$, sodass $\int g \ d\mu = \int f \ d\mu$.

Beweis:

I. f nicht-negativ Seien $f_n, n \ge 1$ wie im Beweis von Satz 3.22. Dann gilt

$$\infty > \int f \ d\mu \geqslant \int f_n \ d\mu \geqslant n \cdot \mu(\{f \geqslant n\})$$

für alle $n \ge 1$. Für $n \to \infty$ muss also $\mu(\{f \ge n\}) \to 0$ gelten. Nun ist

$$\{f\geqslant 1\}\supseteq \{f\geqslant 2\}\supseteq\ldots\supseteq\bigcap_{n\geqslant 1}\{f\geqslant n\}=\{f=\infty\}$$

und $\mu(\{f \ge 1\}) \cdot 1 < \infty$ (s.o.). Mit der Stetigkeit von oben folgt also

$$\mu(\{f = \infty\}) = \lim_{n \to \infty} \mu(\{f \geqslant n\}) = 0$$

und die Aussage folgt mit f = |f|, da $f \ge 0$.

II. f messbar

Sei $f = f^+ - f^-$. Dann gilt $f^+, f^- \ge 0$ und $f^+, f^- \in \mathcal{L}^1(\mu)$. Mit I. folgt $|f^+|, |f^-| < \infty$ a.e. Die Aussage folgt mit $|f| = |f^+ - f^-| \le |f^+| + |f^-|$. Definiere nun $g := f \cdot \mathbb{1}_{\{|f| < \infty\}}$. Dann ist f = g a.e. mit $f \in \mathcal{L}^1(\mu) \subseteq \mathcal{L}(\mu)$ und g messbar. Die Gleichheit der Integral folgt aus Proposition 5.14.

5.16. Satz (Linearität und Monotonie des Lebesgue-Integrals):

(i) Seien $f, g \in \mathcal{L}(\mu)$, sodass $\int f d\mu + \int g d\mu$ wohldefiniert ist (i.e. nicht $\infty - \infty$, z.B. wenn $f, g \in \mathcal{L}^1(\mu)$). Dann ist auch (f + g) fast überall wohldefiniert und

$$\int (f+g) \ d\mu = \int f \ d\mu + \int g \ d\mu$$

(ii) Sei $f \in \mathcal{L}(\mu)$ und $\alpha \in \mathbb{R}$. Dann ist $(\alpha \cdot f)$ wohldefiniert, $(\alpha \cdot f) \in \mathcal{L}(\mu)$ und

$$\int (\alpha \cdot f) \ d\mu = \alpha \cdot \int f \ d\mu$$

(iii) Seien $f,g\in\mathcal{L}(\mu),$ sodas
s $f\leqslant g$ a.e. Dann gilt

$$\int f \ d\mu \leqslant \int g \ d\mu$$

Beweis:

(i) I. $f, g \ge 0$ einfach Seien $f = \sum_{i=1}^{n} \alpha_i \cdot \mathbb{1}_{A_i}$ und $g = \sum_{j=1}^{m} \beta_i \cdot \mathbb{1}_{B_i}$ in kanonischer Darstellung. Dann ist

$$(f+g) = \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + \beta_j) \cdot \mathbb{1}_{A_i \cap B_j}$$

und

$$\int (f+g) \ d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + \beta_j) \cdot \mu(A_i \cap B_j)$$

Nun gilt (Einschluss-Ausschluss) $\mu(A_i \cap B_j) = \mu(A_i) + \mu(B_j) - \mu(A_i \cup B_j)$. Außerdem sind die $A_i, i = 1, ..., n$ eine Partition von Ω (B_j genauso) und damit

$$\sum_{i=1}^{n} \mu(A_i \cap B_j) = \mu(B_j) \text{ und } \sum_{i=1}^{m} \mu(A_i \cap B_j) = \mu(A_i)$$

Es folgt

$$\int (f+g) d\mu = \sum_{i=1}^n \sum_{j=1}^m (\alpha_i + \beta_j) \cdot \mu(A_i \cap B_j) = \sum_{i=1}^n \alpha_i \cdot \mu(A_i) + \sum_{j=1}^m \beta_j \cdot \mu(B_j) = \int f d\mu + \int g d\mu$$

II. f, g nicht-negativ

Wähle $f_n, g_n, n \ge 1$ einfach mit $0 \le f_n \uparrow f$ und $0 \le g_n \uparrow g$. Dann gilt $0 \le f_n + g_n \uparrow f + g$, wobei f + g nicht-negativ und messbar ist (Proposition 3.18). Wegen $f + g \ge 0$ gilt auch $f + g \in \mathcal{L}(\mu)$. Mit I. folgt

$$\int (f+g) d\mu = \lim_{n \to \infty} \int (f_n + g_n) d\mu = \lim_{n \to \infty} \int f_n d\mu + \lim_{n \to \infty} \int g_n d\mu = \int f d\mu + \int g d\mu$$

III. f, q messbar

Beachte, dass $\int f \ d\mu$ und $\int g \ d\mu$ wohldefiniert sind, da $f, g \in \mathcal{L}(\mu)$ und schreibe

$$\int f \ d\mu + \int g \ d\mu = \int f^+ \ d\mu - \int f^- \ d\mu + \int g^+ \ d\mu - \int g^- \ d\mu$$
$$= \left(\int f^+ \ d\mu + \int g^+ \ d\mu \right) - \left(\int f^- \ d\mu + \int g^- \ d\mu \right) \in \overline{\mathbb{R}}$$

Damit ist $\left(\int f^+ d\mu + \int g^+ d\mu\right) = \left(\int f^- d\mu + \int g^- d\mu\right) = \infty$ nicht möglich. Sei also o.B.d.A. $\left(\int f^+ d\mu + \int g^+ d\mu\right) < \infty$ (der andere Fall folgt ähnlich). Es sind $f^+, g^+ \geqslant 0$ und mit II. gilt

$$\int f^+ d\mu + \int g^+ d\mu = \int (f^+ + g^+) d\mu \in [0, \infty)$$

Mit Proposition 5.15 folg
t $|f^++g^+|=f^++g^+<\infty$ a.e. Definiere also für $\omega\in\Omega$

$$(f+g)(\omega) := \begin{cases} f(\omega) + g(\omega) & \text{falls } f^+(\omega) + g^+(\omega) < \infty \\ 0 & \text{sonst} \end{cases}$$

Dann ist (f+g) wohldefiniert, messbar und (f+g)=f+g a.e. Außerdem gilt per Konstruktion $(f+g)^+ \leq (f^++g^+)$ und mit (iii) folgt

$$\int (f+g)^{+} d\mu \leqslant \int (f^{+} + g^{+}) d\mu = \int f^{+} d\mu + \int g^{+} d\mu < \infty$$

Damit gilt $(f+g) \in \mathcal{L}(\mu)$. Außerdem gilt

$$(f+g)^+ - (f+g)^- = (f+g) \stackrel{a.e.}{=} f+g = f^+ - f^- + g^+ - g^-$$

und damit

$$(f+g)^+ + f^- + g^- \stackrel{a.e.}{=} (f+g)^- + f^+ + g^+$$

Mit Proposition 5.14 folgt

$$\int (f+g)^{+} + f^{-} + g^{-} d\mu = \int (f+g)^{-} + f^{+} + g^{+} d\mu$$

und mit II. schließlich

$$\int (f+g)^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int (f+g)^- d\mu + \int f^+ d\mu + \int g^+ d\mu$$

und schließlich

$$\int (f+g) \ d\mu = \int f \ d\mu + \int g \ d\mu$$

(ii) I. $f \ge 0$ einfach Hier gilt $\alpha \cdot f = \alpha \cdot \sum_{i=1}^{n} \beta_i \cdot \mathbb{1}_{B_i} = \sum_{i=1}^{n} (\alpha \cdot \beta_i) \cdot \mathbb{1}_{B_i}$ und damit

$$\int (\alpha \cdot f) \ d\mu = \sum_{i=1}^{n} (\alpha \cdot \beta_i) \cdot \mu(B_i) = \alpha \cdot \sum_{i=1}^{n} \beta_i \cdot \mathbb{1}_{B_i} = \alpha \cdot \int f \ d\mu$$

II. $f \ge 0$ messbar, $\alpha \ge 0$ Wähle f_n einfach, sodass $0 \le f_n \uparrow f$. Dann gilt $0 \le (\alpha \cdot f_n) \uparrow (\alpha \cdot f)$ und

$$\int (\alpha \cdot f) \ d\mu = \lim_{n \to \infty} \int (\alpha \cdot f_n) \ d\mu$$

$$\stackrel{\text{I.}}{=} \lim_{n \to \infty} \alpha \cdot \int f_n \ d\mu$$

$$= \alpha \cdot \lim_{n \to \infty} \int f_n \ d\mu$$

$$= \alpha \cdot \int f \ d\mu$$

III. f messbar, $\alpha \in \mathbb{R}$

Sei zuerst $\alpha \geqslant 0$. Dann ist $(\alpha \cdot f)$ wohldefiniert, da $\alpha \neq \pm \infty$ und

$$(\alpha \cdot f) = (\alpha \cdot f^+) - (\alpha \cdot f^-) = \alpha \cdot (f^+ - f^-)$$

Mit II. gilt

$$\int (\alpha \cdot f^+) \ d\mu = \alpha \cdot \int f^+ \ d\mu \ \text{ und } \ \int (\alpha \cdot f^-) \ d\mu = \alpha \cdot \int f^- \ d\mu$$

Da $f \in \mathcal{L}(\mu)$, muss eines der beiden Integrale endlich sein und $(\alpha \cdot f) \in \mathcal{L}(\mu)$. Damit ist

$$\int (\alpha \cdot f^+) \ d\mu - \int (\alpha \cdot f^-) \ d\mu$$

wohldefiniert und mit (i) folgt

$$\int (\alpha \cdot f) \ d\mu = \int (\alpha \cdot f^{+}) - (\alpha \cdot f^{-}) \ d\mu$$

$$= \int (\alpha \cdot f^{+}) \ d\mu - \int (\alpha \cdot f^{-}) \ d\mu$$

$$= \alpha \cdot \int f^{+} \ d\mu - \alpha \cdot \int f^{-} \ d\mu$$

$$= \alpha \cdot \left(\int f^{+} \ d\mu - \int f^{-} \ d\mu \right)$$

$$= \alpha \cdot \int (f^{+} - f^{-}) \ d\mu$$

$$= \alpha \cdot \int f \ d\mu$$

Sei nun $\alpha < 0$. Dann ist $(\alpha \cdot f)$ wohldefiniert und messbar und

$$(\alpha \cdot f) = (-\alpha)(-f)$$

wobei $(-\alpha) > 0$ und $(-f) \in \mathcal{L}(\mu)$. Dammit folgt (siehe oben)

$$\int (\alpha \cdot f) \ d\mu = \int (-\alpha)(-f) \ d\mu$$

$$= (-\alpha) \int (-f) \ d\mu$$

$$= (-\alpha) \int (f^- - f^+) \ d\mu$$

$$= (-1) \cdot \alpha \cdot \left(\int f^- \ d\mu - \int f^+ \ d\mu \right)$$

$$= (-1)^2 \cdot \alpha \cdot \left(\int f^+ \ d\mu - \int f^- \ d\mu \right)$$

$$= \alpha \cdot \int f \ d\mu$$

- (iii) Betrachte hier $\max(f,g) := g \cdot \mathbbm{1}_{\{f \leq g\}} + f \cdot \mathbbm{1}_{\{f > g\}}$ messbar mit $f \leqslant \max(f,g)$ und $g = \max(f,g)$ a.e. Damit folgt $\int \max(f,g) \ d\mu = \int g \ d\mu$.
 - I. f nicht-negativ

Hier ist $0 \le f \le \max(f, g)$. Wähle nun einfache Funktionen $f_n, m_n, n \ge 1$, sodass $0 \le f_n \uparrow f$ und $0 \le m_n \uparrow \max(f, g)$. Dann gilt für alle $n \ge 1$

$$0 \leqslant f_n \leqslant \max(f, g) = \lim_{n \to \infty} m_n$$

und mit Lemma 5.4 folgt

$$\forall n \geqslant 1 : \int f_n \ d\mu \leqslant \lim_{n \to \infty} \int m_n \ d\mu = \int \max(f, g) \ d\mu = \int g \ d\mu$$

und damit

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu \leqslant \int g \ d\mu$$

II. f messbar

Trvial, wenn $\int g^+ d\mu = \infty$ oder $\int f^- d\mu = -\infty$. Seien also $f^-, g^+ \in \mathcal{L}^1(\mu)$. Wegen $f \leq \max(f, g)$ folgt $f^+ \leq [\max(f, g)]^+$ und mit I. gilt

$$\int f^+ d\mu \leqslant \int [\max(f,g)]^+ d\mu < \infty$$

Wegen $f \leqslant \max(f,g)$ gilt auch $f^- \geqslant [\max(f,g)]^-$ und mit I. folgt

$$\infty > \int f^- d\mu \geqslant \int [\max(f,g)]^- d\mu$$

Damit folgt

$$\int f \ d\mu \leqslant \int [\max(f,g)]^+ \ d\mu - \int [\max(f,g)]^- \ d\mu = \int \max(f,g) \ d\mu = \int g \ d\mu$$

5.17. Proposition: Sei f messbar. Dann sind folgende Aussagen äquivalent:

- (i) $f \in \mathcal{L}^1(\mu)$
- (ii) $|f| \in \mathcal{L}^1(\mu)$
- (iii) $\exists g \in \mathcal{L}^1(\mu) : |f| \leqslant g$ a.e.
- (iv) $\exists h_1, h_2 \in \mathcal{L}^1(\mu) : h_1, h_2 \geqslant 0, f = h_1 h_2$

Beweis: $(i) \Longrightarrow (ii)$: $f = f^+ - f^-, |f| = f^+ + f^ (ii) \Longrightarrow (iii)$: g := f

 $\frac{(\text{iii}) \Longrightarrow (\text{iv}):}{\int g \ d\mu < \infty.} \ |f| \leqslant g \implies 0 \leqslant f^+, f^- \leqslant g \text{ und mit Monotonie } \int f^+ \ d\mu, \int f^- \ d\mu \leqslant \int g \ d\mu < \infty.$ Es gilt also $f^+, f^- \in \mathcal{L}^1(\mu)$ mit $f^+, f^- \geqslant 0$ $\text{(iv)} \Longrightarrow \text{(i):} \int f \ d\mu = \int (h_1 - h_2) \ d\mu = \int h_1 \ d\mu - \int h_2 \ d\mu \in \mathbb{R}, \text{ da } 0 \leqslant \int h_1 \ d\mu, \int h_2 \ d\mu \leqslant 0$

$$\underbrace{\text{(iv)} \Longrightarrow \text{(i):}}_{\infty} \int f \ d\mu = \int (h_1 - h_2) \ d\mu = \int h_1 \ d\mu - \int h_2 \ d\mu \in \mathbb{R}, \text{ da } 0 \leqslant \int h_1 \ d\mu, \int h_2 \ d\mu < \int h_1 \ d\mu$$

5.18. Korollar: Seien $f, g \in \mathcal{L}^1(\mu)$. Dann gilt auch $\max(f, g), \min(f, g) \in \mathcal{L}^1(\mu)$.

Beweis: Es gilt für $x, y \in \mathbb{R}$ (leicht nachzuprüfen)

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$

und damit (zweimal Dreiecksungleichung und Monotonie)

$$\int |\max(f,g)| \ d\mu = \int \left| \frac{f+g+|f-g|}{2} \right| \ d\mu \leqslant \frac{1}{2} \int 2(|f|+|g|) \ d\mu = \int |f| \ d\mu + \int |g| \ d\mu < \infty$$

Die Aussage für das Minimum folgt mit min(x, y) = -max(-x, -y).

5.19. Korollar (Dreiecksungleichung für Integrale): Für $f \in \mathcal{L}(\mu)$ gilt

$$\left| \int f \ d\mu \right| \leqslant \int |f| \ d\mu$$

Beweis: Es gilt $-|f| \le f \le |f|$ und mit der Monotonie $-\int |f| \ d\mu \le \int f \ d\mu \le \int |f| \ d\mu$. Die Aussage folgt aus $-y \le x \le y \implies |x| \le y$.

5.20. Definition: Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, (Ω', \mathcal{A}') ein messbarer Raum und $f: (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ eine messbare Abbildung. Dann ist das Bildmaß (Englisch *pushforward*) von μ unter f definiert als

$$(f\#\mu)(A') := \mu\left(f^{-1}(A')\right)$$
 für alle $A' \in \mathcal{A}'$

5.21. Proposition: Das Bildmaß ist ein Maß auf (Ω', \mathcal{A}') mit $(f \# \mu)(\Omega') = \mu(\Omega)$. Insbesondere gilt

$$\mu$$
endlich $\iff (f\#\mu)$ endlich
$$\mu \text{ Wahrscheinlichkeitsmaß} \iff (f\#\mu) \text{ Wahrscheinlichkeitsmaß}$$

Beweis: Übung!

5.22. (Transformationssatz): Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraumm (Ω', \mathcal{A}') ein messbarer Raum. Seien $f: (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ und $g: (\Omega', \mathcal{A}') \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ messbar und $(f \# \mu)$ das entsprechende Bildmaß auf (Ω', \mathcal{A}') . Zusammenfassend

$$(\Omega, \mathcal{A}, \mu) \xrightarrow{f} (\Omega', \mathcal{A}', (f \# \mu)) \xrightarrow{g} (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$$

Dann gilt

$$\int_{\Omega} (g \circ f) \ d\mu = \int_{\Omega'} g \ d(f \# \mu)$$

Beweis:

I. $g = \mathbb{1}_{A'}, A' \in \mathcal{A}'$ Indikatorfunktion Hier ist

$$(g \circ f)(\omega) = \mathbb{1}_{A'}(f(\omega)) = \begin{cases} 1 & \text{falls } \omega \in f^{-1}(A') \\ 0 & \text{sonst} \end{cases} = \mathbb{1}_{f^{-1}(A')}(\omega)$$

Damit folgt

$$\int_{\Omega} (g \circ f) \ d\mu = \int_{\Omega} \mathbb{1}_{f^{-1}(A')} \ d\mu
= \mu \left(f^{-1}(A') \right) = (f \# \mu)(A')
= \int_{\Omega'} \mathbb{1}_{A'} \ d(f \# \mu) = \int_{\Omega'} g \ d(f \# \mu)$$

II. $g = \sum_{i=1}^{n} \gamma_i \cdot \mathbb{1}_{G'_i}, G'_i \in \mathcal{A}', i = 1 \dots, n$ einfach Hier gilt (wie in I.)

$$(g \circ f)(\omega) = \sum_{i=1}^{n} \gamma_i \cdot \mathbb{1}_{f^{-1}(G_i')}(\omega)$$

und damit

$$\int_{\Omega} (g \circ f) \ d\mu = \int_{\Omega} \sum_{i=1}^{n} \gamma_{i} \cdot \mathbb{1}_{f^{-1}(G'_{i})} \ d\mu$$

$$= \sum_{i=1}^{n} \gamma_{i} \cdot \int_{\Omega} \mathbb{1}_{f^{-1}(G'_{i})} \ d\mu$$

$$= \sum_{i=1}^{n} \gamma_{i} \cdot \int_{\Omega} \left(\mathbb{1}_{G'_{i}} \circ f \right) \ d\mu$$

$$\stackrel{\text{L}}{=} \sum_{i=1}^{n} \gamma_{i} \cdot \int_{\Omega'} \mathbb{1}_{G'_{i}} \ d(f \# \mu)$$

$$= \int_{\Omega'} \sum_{i=1}^{n} \gamma_{i} \cdot \mathbb{1}_{G'_{i}} \ d(f \# \mu)$$

$$= \int_{\Omega'} g \ d(f \# \mu)$$

III. $g \geqslant 0$ nicht-negativ, messbar

Wähle $g_n: \Omega' \to \mathbb{R}, n \geqslant 1$ einfach mit $0 \leqslant g_n \uparrow g$. Dann ist für alle $n \geqslant 1$ die Zusammensetzung $(g_n \circ f)$ einfach und messbar und insbesondere $0 \leqslant (g_n \circ f) \uparrow (g \circ f)$. Es folgt

$$\int_{\Omega} (g \circ f) \ d\mu = \lim_{n \to \infty} \int_{\Omega} (g_n \circ f) \ d\mu \stackrel{\text{II.}}{=} \lim_{n \to \infty} \int_{\Omega'} g_n \ d(f \# \mu) = \int_{\Omega'} g \ d(f \# \mu)$$

IV. g allgemein (messbar)

Schreibe $g = g^+ - g^-$ und beachte, dass $(g \circ f)^+ = (g^+ \circ f)$ und $(g \circ f)^- = (g^- \circ f)$. Es folgt

$$\begin{split} \int_{\Omega} (g \circ f) \ d\mu &= \int_{\Omega} (g \circ f)^+ - (g \circ f)^- \ d\mu \\ &= \int_{\Omega} (g^+ \circ f) \ d\mu - \int_{\Omega} (g^- \circ f) \ d\mu \\ &\stackrel{\text{III.}}{=} \int_{\Omega'} g^+ \ d(f\#\mu) - \int_{\Omega'} g^- \ d(f\#\mu) = \int_{\Omega'} g \ d(f\#\mu) \end{split}$$

5.23. Lemma: Seien $f_n, n \ge 1$ nicht-negativ und messbar, sodass $0 \le f_1 \le \ldots \le \lim_{n \to \infty} f_n$. Sei g einfach, sodass $0 \le g \le \lim_{n \to \infty} f_n$. Dann gilt

$$\int g \ d\mu \leqslant \lim_{n \to \infty} \int f_n \ d\mu$$

Beweis: folgt sofort aus Lemma 5.4.

5.24. Satz: Seien $f_n, n \ge 1$ nicht-negativ und messbar, sodass $0 \le f_1 \le \ldots \le \lim_{n \to \infty} f_n$. Dann gilt

$$\lim_{n \to \infty} \int f_n \ d\mu = \int \left(\lim_{n \to \infty} f_n \right) \ d\mu$$

Beweis: Es gilt $\forall n \geqslant 1 : f_n \leqslant \lim_{n \to \infty} f_n$ mit $\lim_{n \to \infty} f_n \geqslant 0$ messbar. Damit folgt $\lim_{n \to \infty} f_n \in \mathcal{L}(\mu)$ und damit

$$\forall n \geqslant 1 : \int f_n \ d\mu \leqslant \int \left(\lim_{n \to \infty} f_n\right) \ d\mu$$

Es folgt

$$\lim_{n \to \infty} \int f_n \ d\mu \leqslant \int \left(\lim_{n \to \infty} f_n\right) \ d\mu$$

Wähle nun $g_k, k \ge 1$, sodass $0 \le g_k \uparrow \lim_{n \to \infty} f_n$. Mit Lemma 5.23 folgt

$$\forall k \geqslant 1 : \int g_k \ d\mu \leqslant \lim_{n \to \infty} \int f_n \ d\mu$$

und damit

$$\lim_{k \to \infty} \int g_k \ d\mu \leqslant \lim_{n \to \infty} \int f_n \ d\mu$$

Aber per Definition des Integrals gilt

$$\int \left(\lim_{n\to\infty} f_n\right) d\mu = \lim_{k\to\infty} \int g_k d\mu$$

und damit folgt

$$\lim_{n \to \infty} \int f_n \ d\mu \geqslant \int \left(\lim_{n \to \infty} f_n\right) \ d\mu$$

5.25. Satz: Seien $f_n, n \ge 1$ und g messbare Funktionen, sodass

$$g \leqslant f_1 \leqslant \ldots \leqslant \lim_{n \to \infty} f_n$$

Falls $\int g^- d\mu < \infty$, dann gilt

$$\lim_{n \to \infty} \int f_n \ d\mu = \int \left(\lim_{n \to \infty} f_n \right) \ d\mu$$

Beweis: Es gilt $g \leqslant f_n$ und damit $f_n^- \leqslant g^-$ für alle $n \geqslant 1$. Mit der Monotonie folgt

$$\forall n\geqslant 1: \int f_n^-\ d\mu\leqslant \int g^-\ d\mu<\infty$$

Außerdem gilt $\left(\lim_{n\to\infty}f_n\right)^-\leqslant g^-$ und mit der Monotonie

$$\int \left(\lim_{n\to\infty} f_n\right)^- d\mu \leqslant \int g^- d\mu$$

Also sind f_n , $\left(\lim_{n\to\infty} f_n\right) \in \mathcal{L}(\mu)$.

I. Sei $\lim_{n\to\infty} \int f_n \ d\mu = \infty$

Mit der Monotonie gilt $\int f_n d\mu \leqslant \int \left(\lim_{n\to\infty} f_n\right) d\mu$ für alle $n\geqslant 1$ und damit

$$\lim_{n \to \infty} \int f_n \ d\mu \leqslant \int \left(\lim_{n \to \infty} f_n\right) \ d\mu$$

Nun ist $\lim_{n\to\infty}\int f_n\ d\mu=\infty$ und es gilt

$$\lim_{n \to \infty} \int f_n \ d\mu = \int \left(\lim_{n \to \infty} f_n \right) \ d\mu = \infty$$

II. Sei $\lim_{n\to\infty}\int f_n\ d\mu<\infty$

Laut Annahme gilt mit der Monotonie für alle $n \ge 1$

$$\int g \ d\mu \leqslant \int f_n \ d\mu \leqslant \lim_{n \to \infty} \int f_n \ d\mu < \infty$$

Daher gilt $g, f_n, \left(\lim_{n\to\infty} f_n\right) \in \mathcal{L}^1(\mu)$ und mit Proposition 5.15 gilt $g, f_n, \left(\lim_{n\to\infty} f_n\right) \in \mathbb{R}$ a.e. Da es hier nur um die Werte der Integrale geht, seien also alle Funktionen reellwertig in Ω . Dann gilt für alle $n \ge 1$, dass $0 \le (f_n - g) \uparrow \lim_{n\to\infty} (f_n - g)$ und mit Satz 5.24 folgt

 $\lim_{n \to \infty} \int (f_n - g) \ d\mu = \int \left(\lim_{n \to \infty} (f_n - g) \right) \ d\mu$

Die Aussage folgt schließlich aus der Linearität des Integrals.

5.26. Proposition: Sei $f:[a,b]\to\mathbb{R}$ messbar. Falls f auf [a,b] Riemann-integrierbar ist, dann ist f auch Lebesgue-integrierbar (bzgl. dem Lebesgue-Maß $\lambda=$ vol auf $([a,b],\mathcal{B}([a,b]))$ und

$$\int_{a}^{b} f(x) \ dx = \int_{[a,b]} f \ d\lambda$$

Beweis: Seien $U_n, O_n, n \ge 1$ Unter- bzw. Obersummen von f, sodass

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n = \int_a^b f(x) \ dx$$

per Konstruktion des Riemann-Integrals. Insbesondere sind $U_n, O_n < \infty$ für alle $n \ge 1$ und jede Unter- bzw. Obersumme entspricht dem Integral einer Treppenfunktion u_n bzw o_n für $n \ge 1$, sodass $u_1 \le u_2 \le \ldots \le f \le \ldots \le o_2 \le o_1$. auf [a,b]. Als Treppenfunktionen sind u_n, o_n insbesondere einfach und damit messbar. Es folgt (einfach zu prüfen)

$$U_n = \int u_n \ d\lambda \text{ und } O_n = \int o_n \ d\lambda$$

Da f Riemman-integrierbar auf [a,b] ist folgt $|U_1|,|O_1|<\infty$ und mit der Monotonie folgt

$$\forall n \geqslant 1 : U_n \leqslant \int_{[a,b]} f \ d\lambda \leqslant O_n$$

Die Aussage folgt nun aus $\int_a^b f(x) \ dx = \lim_{n \to \infty} U_n \leqslant \int_{[a,b]} f \ d\lambda \leqslant \lim_{n \to \infty} O_n = \int_a^b f(x) \ dx.$

Bemerkung: Sei f Riemann-integrierbar auf [a,b], aber nicht unbedingt messbar. Dann gilt für $f^*:=\lim_{n\to\infty}o_n$

- $f^*: [a, b] \to \mathbb{R}$ ist messbar.
- $\bullet \int_{a}^{b} f(x) \ dx = \int_{[a,b]} f \ d\lambda$
- $\{x \in [a,b] : f(x) \neq f^*(x)\} \subseteq N \in \mathcal{B}(\mathbb{R}) \text{ mit } \mu(N) = 0$

Korollar 5.27: Sei $f: \mathbb{R} \to [0, \infty)$ messbar und (uneigentlich) Riemann-integrierbar auf $[0, \infty)$. Dann ist f auch Lebesgue-integrierbar auf $[0, \infty)$ und die Integralbegriffe stimmen überein.

Beweis: Laut Annahme gilt

$$\lim_{t \to \infty} \int_0^t f(x) \ dx < \infty$$

und insbesondere ist f damit Riemann-integrierbar auf [0,t] für alle t>0. Es folgt

$$\int_{0}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{0}^{t} f(x) \ dx$$

$$\stackrel{5.26}{=} \lim_{t \to \infty} \int_{[0,t]} f \ d\lambda$$

$$= \lim_{t \to \infty} \int f \cdot \mathbb{1}_{[0,t]} \ d\lambda$$

$$\stackrel{5.24}{=} \int \lim_{t \to \infty} \left(f \cdot \mathbb{1}_{[0,t]} \right) \ d\lambda$$

$$= \int_{[0,\infty)} f \ d\lambda$$

Bemerkung: Die Bedingung $f \ge 0$ ist notwendig! (Gegenbeispiel $\sin(x)/x$)

5.28. Beispiel:

5.29. Proposition: Sei $f:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\overline{\mathbb{R}}))$ nicht-negativ und messbar. Definiere für $A\in\mathcal{A}$

$$\nu(A) := \int_A f \ d\mu$$

Dann ist $\nu: \mathcal{A} \to [0, \infty]$ ein Maß auf (Ω, \mathcal{A}) und für $f \in \mathcal{L}^1(\nu)$ gilt

$$\int g \ d\nu = \int fg \ d\mu$$

Beweis:

I. Zeige zunächst, dass ν ein Maß ist.

(i)
$$f \geqslant 0 \implies f \cdot \mathbb{1}_A \geqslant 0 \implies \int_A f \ d\mu \in [0, \infty]$$
, womit $\nu : \mathcal{A} \to [0, \infty]$ wohldefiniert ist.

(ii)
$$\nu(\emptyset) = \int_{\emptyset} f \ d\mu = \int f \cdot \mathbb{1}_{\emptyset} \ d\mu = \int 0 \ d\mu = 0$$

(iii) Seien $A_n \in \mathcal{A}, n \geqslant 1$ disjunkt. Dann gilt

$$\nu\left(\bigcup_{n\geqslant 1} A_n\right) = \int_{\bigcup_{n\geqslant 1} A_n} f \ d\mu = \int f \cdot \mathbb{1}_{\bigcup_{n\geqslant 1} A_n} \ d\mu$$

$$= \int f \cdot \left(\lim_{N\to\infty} \sum_{n=1}^N \mathbb{1}_{A_n}\right) \ d\mu$$

$$\stackrel{5:24}{=} \lim_{N\to\infty} \int f \cdot \sum_{n=1}^N \mathbb{1}_{A_n} \ d\mu$$

$$= \sum_{n\geqslant 1} \int_{A_n} f \ d\mu = \sum_{n\geqslant 1} \nu(A_n)$$

II. $g = \mathbb{1}_A, A \in \mathcal{A}$ Indikatorfunktion Hier gilt

$$\int g \ d\nu = \int \mathbb{1}_A \ d\nu = \nu(A) = \int_A f \ d\mu = \int f \cdot \mathbb{1}_A \ d\mu = \int fg \ d\mu$$

III. $g = \sum_{i=1}^{n} \gamma_i \cdot \mathbb{1}_{G_i}$ einfach Hier gilt

$$\int g \ d\nu = \sum_{i=1}^{n} \gamma_i \cdot \nu(G_i) \stackrel{\text{II.}}{=} \sum_{i=1}^{n} \gamma_i \cdot \left(\int_{G_i} f \ d\mu \right) = \int f \cdot \left(\sum_{i=1}^{n} \gamma_i \cdot \mathbb{1}_{G_i} \right) \ d\mu = \int f g \ d\mu$$

IV. $g \geqslant 0$ nicht-negativ, messbar

Wähle $g_n, n \ge 1$ einfach mit $0 \le g_n \uparrow g$. Wegen III. gilt $\int g_n d\nu = \int f g_n d\mu$ für alle $n \ge 1$. Außerdem gilt wegen $f \ge 0$, dass $0 \le f g_n \uparrow f g$ und damit

$$\int g \ d\nu = \lim_{n \to \infty} \int g_n \ d\nu = \lim_{n \to \infty} \int f g_n \ d\mu \stackrel{5.24}{=} \int \lim_{n \to \infty} f g_n \ d\mu = \int f g \ d\mu$$

V. g messbar

Sei $g = g^+ - g^-$. Wegen IV. gilt $\int g^+ d\nu = \int fg^+ d\mu$ und $\int g^- d\nu = \int fg^- d\mu$. Damit folgt

$$\int g \ d\nu = \int g^+ \ d\nu - \int g^- \ d\nu = \int f(g^+ - g^-) \ d\mu = \int fg \ d\mu$$

Bemerkung: ν erbt alle Nullmengen von μ (kann jedoch auch zusätzliche Nullmengen haben). Es gilt also

$$\mu(A) = 0 \implies \nu(A) = 0$$

5.30. Definition: Für f und ν wie in Proposition 5.29 nennt man f die Dichte von ν bezüglich μ . Kurz $f = \frac{d\nu}{d\mu}$. Ist X eine reellwertige Zufallsvariable und $\mathbb{P}(X \in A) = \nu(A)$, dann nennt man f auch die Dichte von X bezüglich μ .

Bemerkung: In Proposition 5.29 sind ein Maß μ und eine Dichte f gegeben. Falls zwei Maße μ , ν gegeben sind, liefert der Satz von Radon–Nikodym (cf. Wahrscheinlichkeitstheorie 2) Bedingungen an μ und ν für die Existenz einer Dichte f.

6. Ungleichungen

Sei in diesem Kapitel $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, und $X, Y : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ Zufallsvariablen.

Markov-Ungleichung

6.1. Satz (Markov-Ungleichung): Sei $X \ge 0$ und c > 0. Dann gilt

$$\mathbb{P}(X \geqslant c) \leqslant c^{-1} \cdot \mathbb{E}X$$

Beweis:

$$\mathbb{E}X = \int_{\Omega} X \ d\mathbb{P} = \int_{X\geqslant c} X \ d\mathbb{P} + \int_{X< c} X \ d\mathbb{P}$$

$$\geqslant \int_{X\geqslant c} X \ d\mathbb{P}$$

$$\geqslant \int_{X\geqslant c} c \ d\mathbb{P} = c \cdot \mathbb{P}(X \geqslant c)$$

6.2. Korollar: Sei $X \ge 0$ und c > 0. Dann gilt sogar

$$\mathbb{P}(X \geqslant c) \leqslant c^{-1} \cdot \mathbb{E}[X \cdot \mathbb{1}_{X \geqslant c}]$$

Beweis: wie 6.1.

6.3. Korollar (Chebyshev-Ungleichung): Sei $X \in \mathcal{L}^1(\mathbb{P})$ und c > 0. Dann gilt

$$\mathbb{P}\left(|X - \mathbb{E}X| \geqslant c\right) \leqslant c^{-2} \cdot \operatorname{Var}(X)$$

Beweis: Mit der Markov-Ungleichung folgt

$$\mathbb{P}\left(|X - \mathbb{E}X| \geqslant c\right) = \mathbb{P}\left((X - \mathbb{E}X)^2 \geqslant c^2\right) \stackrel{6.1}{\leqslant} c^{-2} \cdot \mathbb{E}\left[(X - \mathbb{E}X)^2\right] = c^{-2} \cdot \text{Var}(X)$$

6.4. Korollar (Chernoff-Schranke): Sei X eine reellwertige Zufallsvariable und c>0. Dann gilt

$$\mathbb{P}(X \geqslant c) \leqslant \inf_{t>0} e^{-tc} \cdot M_X(t)$$

wobei $M_X(t) = \mathbb{E}[e^{tX}]$ die momenterzeugende Funktion von X ist.

Beweis: Sei t > 0. Dann gilt mit der Markov-Ungleichung

$$\mathbb{P}(X \geqslant c) = \mathbb{P}\left(e^{tX} \geqslant e^{tc}\right) \stackrel{6.1}{\leqslant} e^{-tc} \cdot M_X(t)$$

Diese Ungleichung gilt für alle t>0. Daher können wir das Infimum nehmen und die Chernoff-Schranke folgt. \Box

Konvexität und Jensen-Ungleichung

6.5. Definition: Sei $(a,b) \subseteq \mathbb{R}$ ein nicht-leeres Intervall. Dann ist eine Abbildung $f:(a,b) \to \mathbb{R}$ konvex, falls gilt

$$\forall x, y \in (a, b), \forall \alpha \in (0, 1): f(\alpha x + (1 - \alpha)y) \leqslant \alpha f(x) + (1 - \alpha)f(y)$$

6.6. Lemma: Sei $f:(a,b)\to\mathbb{R}$. Dann ist f genau dann konvex, wenn gilt

$$\forall s, t, u : a < s < t < u < b : \frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(t)}{u - t}$$

Beweis:

I. Sei zunächst f konvex (nach Definition 6.5)

Setze $\alpha:=\frac{u-t}{u-s}$. Dann ist $1-\alpha=\frac{t-s}{u-s}$ und $\alpha s+(1-\alpha)u=t$. Aus der Konvexität von f folgt

$$f(\alpha s + (1 - \alpha)u) = f(t) \leqslant \alpha f(s) + (1 - \alpha)f(u) \tag{1}$$

Damit gilt

$$f(t) - f(s) \le (1 - \alpha)[f(u) - f(s)] = \frac{t - s}{u - s}[f(u) - f(s)]$$

und

$$\frac{f(t) - f(s)}{t - s} \leqslant \frac{f(u) - f(s)}{u - s}$$

Aus (1) folgt ebenfalls

$$f(t) - f(u) \leqslant \alpha [f(s) - f(u)]$$

und damit

$$\frac{f(u) - f(t)}{u - t} \geqslant \frac{f(u) - f(s)}{u - s}$$

II. Sei nun die Bedingung aus Lemma 6.6 erfüllt Falls x < y, setze

$$s := x, \ t := \alpha x + (1 - \alpha)y, \ u := y$$

Dann ist

$$\alpha = \frac{u-t}{u-s}, \ 1-\alpha = \frac{t-s}{u-s}$$

Laut Annahme gilt

$$f(t) \le f(s) + \frac{t-s}{u-s} [f(u) - f(s)] = \alpha f(x) + (1-\alpha)f(y)$$

Falls x > y, setze

$$s := y, \ t := \alpha x + (1 - \alpha)y, \ u := x$$

Dann ist

$$\alpha = \frac{t-s}{u-s}, \ 1-\alpha = \frac{u-t}{u-s}$$

und die Aussage folgt wie oben aus der Annahme.

6.7. Lemma: Sei $f:(a,b)\to\mathbb{R}$. f ist genau dann konvex, wenn gilt

$$\forall x \in (a, b), \exists \gamma \in \mathbb{R}, \forall y \in (a, b) : f(y) \geqslant f(x) + \gamma(y - x)$$

Beweis:

I. Sei f konvex (nach Definition 6.5)

Wähle $a < x_{-} < x < b$ und setze

$$\gamma := \inf_{y \in (x,b)} \frac{f(y) - f(x)}{y - x} \geqslant \frac{f(x) - f(x_{-})}{x - x_{-}} > -\infty$$

Für x = y ist die Aussage trivial. Für x < y ist

$$\frac{f(y) - f(x)}{y - x} \geqslant \gamma$$

sodass $f(y) \ge f(x) + \gamma(y - x)$. Für x > y ist

$$\frac{f(x) - f(y)}{x - y} \leqslant \gamma$$

da $\gamma \geqslant \frac{f(x) - f(x_{-})}{x - x_{-}}$ für alle $x_{-} \in (a, x)$, sodass auch $f(y) \geqslant f(x) + \gamma(y - x)$.

II. Sei nun die Bedingung aus Lemma 6.7 erfüllt

Wähle a < s < t < u. Aus der Annahme folgt $f(s) \geqslant f(t) + \gamma(s-t)$ und damit

$$\gamma \geqslant \frac{f(t) - f(s)}{t - s}$$

Ebenfalls folgt aus der Annahme $f(u) \ge f(t) + \gamma(u-t)$ und damit

$$\gamma \leqslant \frac{f(u) - f(t)}{u - t}$$

Die Konvexität von f folgt mit Lemma 6.6.

6.8. Korollar: Sei $f:(a,b)\to\mathbb{R}$ differenzierbar auf (a,b). Dann gilt

f konvex $\iff f'$ monoton nicht-fallend

Beweis:

I. Sei f konvex (nach Definition 6.5)

Seien a < s < u < b und wähle s_+, t_-, t_+, u_- so, dass

$$s < s_+ < t_- < t_+ < u_- < u$$

Mit Lemma 6.6 folgt

$$\frac{f(s_{+}) - f(s)}{s_{+} - s} \leqslant \frac{f(t_{-}) - f(s_{+})}{t_{-} - s_{+}} \leqslant \frac{f(t_{+}) - f(t_{-})}{t_{+} - t_{-}} \leqslant \frac{f(u_{-}) - f(t_{+})}{u_{-} - t_{+}} \leqslant \frac{f(u) - f(u_{-})}{u - u_{-}}$$

und

$$f'(s) = \lim_{s \to \infty} \frac{f(s_+) - f(s)}{s_+ - s} \leqslant \frac{f(t_+) - f(t_-)}{t_+ - t_-} \leqslant \lim_{u \to \infty} \frac{f(u) - f(u_-)}{u - u_-} = f'(u)$$

Also folgt für alle $u, s \in (a, b)$ mit s < u, dass $f'(s) \leq f'(u)$.

II. Sei f' monoton nicht-fallend

Seien a < s < t < u < b. Es gilt (Fundamentalsatz der Analysis, Mittelwertsatz)

$$f(t) = f(s) + \int_{s}^{t} f(z) dz \le f(s) + (t - s)f'(t)$$

und damit

$$\frac{f(t) - f(s)}{t - s} \leqslant f'(t)$$

Ebenfalls gilt (wie oben)

$$f(u) = f(t) + \int_{t}^{u} f(z) dz \ge f(t) + (u - t)f'(t)$$

und damit

$$\frac{f(u) - f(u)}{u - t} \geqslant f'(t)$$

Die Aussage folgt mit Lemma 6.6.

6.9. Lemma: Ist f konvex auf (a, b), dann ist f stetig auf (a, b).

Beweis: Sei $x \in (a, b)$. Für s < y < x ist mit Lemma 6.7

$$f(y) \geqslant f(x) + \gamma(y - x)$$

und

$$f(y) \leqslant \alpha f(x) + (1 - \alpha)f(s)$$

für
$$\alpha = \frac{y-s}{x-s}$$
. Damit gilt $\lim_{y \nearrow x} = f(x)$. Analog folgt auch $\lim_{y \searrow x} f(y) = f(x)$.

6.10. Satz (Jensen-Ungleichung): Sei $X \in \mathcal{L}^1(\mathbb{P})$ mit $X : (\Omega, \mathcal{A}) \to ((a, b), \mathcal{B}((a, b)))$, mit $(a, b) \subseteq \mathbb{R}$. Ist $f : (a, b) \to \mathbb{R}$ konvex, dann gilt

$$f(\mathbb{E}X) \leqslant \mathbb{E}f(X)$$

Beweis: Es gilt $\mathbb{E}X \in (a,b)$ (Monotonie, $\mathbb{P}(\Omega) = 1$). Mit Lemma 6.7 gilt

$$f(X) \geqslant f(\mathbb{E}X) + (X - \mathbb{E}X) \cdot \gamma =: Z$$

Es gilt $Z \in \mathcal{L}^1(\mathbb{P})$ (leicht nachzuprüfen) und

$$\mathbb{E}Z = \mathbb{E}[f(\mathbb{E}X)] + \gamma \cdot \mathbb{E}[X - \mathbb{E}X] = f(\mathbb{E}X)$$

Da $f(X) \geqslant Z$, gilt $[f(X)]^- \leqslant Z^- \in \mathcal{L}^1(\mathbb{P})$ und damit $f(X) \in \mathcal{L}(\mathbb{P})$. Mit der Monotonie folgt

$$f(\mathbb{E}X) = \mathbb{E}[f(\mathbb{E}X)] = \int Z \ d\mathbb{P} \leqslant \int f(X) \ d\mathbb{P} = \mathbb{E}f(X)$$

Hölder-Ljapunov-Minkowski

6.11. Lemma (Young-Ungleichung): Es sei $p \in (1, \infty)$ und $\frac{1}{p} + \frac{1}{q} = 1$. Fr $a, b \geqslant 0$ gilt

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

mit Gleichheit genau dann, wenn $a^p = b^q$.

Beweis: Falls a=0 oder b=0 gilt die Ungleichung trivial. Es gelte also a,b>0. Setze $t:=p^{-1}$ und damit $1-t=q^{-1}$. Da $x\mapsto \log x$ konkav ist gilt

$$\log(ta^{p} + (1-t)b^{q}) \geqslant t \log(a^{p}) + (1-t)\log(b^{q}) = \log(ab)$$

und die Ungleichung folgt mit Anwendung von exp auf beiden Seiten.

6.12. Satz (Hölder-Ungleichung): Sei nun $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f, g \in \mathcal{L}(\mu)$. Sei $p \in (1, \infty)$ und q der konjugierte (duale) Index zu p, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Dann gilt

$$\int |fg| \ d\mu \leqslant \left(\int |f|^p \ d\mu\right)^{1/p} \cdot \left(\int |g|^q \ d\mu\right)^{1/q}$$

Beweis:

- I. Fall: $\int |f|^p d\mu = 0$ oder $\int |g|^q d\mu = 0$ Sei o.B.d.A. der erste Fall zutreffend. Dann gilt |f| = 0 a.e. und (mit der Konvention $0 \cdot \infty = 0$) folgt |fg| = 0 a.e. und die Aussage ist trivial.
- II. Fall: $\int |f|^p d\mu$, $\int |g|^q d\mu > 0$ Die Aussage ist trivial, falls eines der Integrale unendlich ist. Es seien also beide Integrale reellwertig. Setze

$$A := \frac{|f|^p}{\int |f|^p \ d\mu}, \ B := \frac{|g|^q}{\int |g|^q \ d\mu}$$

Mit Lemma 6.11 gilt

$$\frac{|fg|}{\left(\int |f|^p \ d\mu\right)^{1/p} \left(\int |g|^q \ d\mu\right)^{1/q}} \leqslant \frac{|f|^p}{p \cdot \left(\int |f|^p \ d\mu\right)} + \frac{|g|^q}{q \cdot \left(\int |g|^q \ d\mu\right)}$$

Die Ungleichung folgt mit der Monotonie.

Bemerkung: Die Ungleichung hält auch für p=1 und $p=\infty$ mit entsprechenden konjugierten Indizes $q=\infty$ und q=1. Außerdem sei für $p\in(0,\infty)$

$$\mathcal{L}^{p}(\Omega, \mathcal{A}, \mu) := \left\{ f : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) : \int |f|^{p} d\mu < \infty \right\}$$

6.13. Korollar (Cauchy-Schwarz-Ungleichung):

$$\int |fg| \ d\mu \leqslant \left(\int |f|^{1/2} \ d\mu \right)^{1/2} \left(\int |g|^{1/2} \ d\mu \right)^{1/2}$$

Bemerkung: Für Zufallsvariablen $X,Y\in\mathcal{L}^2(\mathbb{P})$ mit $\mathrm{Var}(X),\mathrm{Var}(Y)>0$ definiere den Korrelationskoeffizienten

$$\rho_{X,Y} := \frac{\mathbb{E}\left[(X - \mathbb{E}X)(Y - \mathbb{E}Y) \right]}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$

Dieser ist wegen Korollar 6.13 und Satz 6.12 wohldefiniert und es gilt $\rho_{X,Y} \in [-1,1]$.

6.14. Korollar (Ljapunov-Ungleichung): Betrachte einen endlichen Maßraum $(\Omega, \mathcal{A}, \mu)$ mit $\mu(\Omega) = 1$ und eine messbare Abbildung $f: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$. Für $1 \leq p \leq q < \infty$ gilt

$$\left(\int |f|^p \ d\mu\right)^{1/p} \leqslant \left(\int |f|^q \ d\mu\right)^{1/q}$$

Beweis: Setze $A := |f|^p$, B := 1, a := q/p, b := q/(q-p) = a/(a-1). Dann gilt $\frac{1}{a} + \frac{1}{b} = 1$ und mit Satz 6.12 folgt

$$\int |f|^p \ d\mu = \int |AB| \ d\mu \leqslant \left(\int |A|^a \ d\mu \right)^{1/a} \cdot \left(\int |B|^b \ d\mu \right)^{1/b} = \left(\int |f|^q \ d\mu \right)^{p/q}$$

Bemerkung: Die Ungleichung lässt sich natürlich auf beliebige endliche Maßräume erweitern. In der englischsprachigen Literatur wird unter der Ljapunov-Ungleichung oft ein Korollar der Hölder-Ungleichung (Log-Konvexität von L^p) angegeben, siehe z.B. Problem 3.12 und Problem 3.13 aus Teschl, G. (2024) Topics in Real Analysis., p. 83.

6.15. Satz (Minkowski-Ungleichung): Für $p \in [1, \infty)$ gilt

$$\left(\int |f + g|^p \ d\mu\right)^{1/p} \le \left(\int |f|^p \ d\mu\right)^{1/p} + \left(\int |g|^p \ d\mu\right)^{1/p}$$

Beweis: Der Beweis ist trivial, falls $\int |f+g|^p d\mu = 0$ oder einer der Summanden auf der rechten Seite unendlich ist. Sei also $\int |f+g|^p d\mu > 0$ und $f,g \in \mathcal{L}^p(\mu)$. Der Fall p=1 folgt aus der Dreiecksungleichung für Betrag und Monotonie. Sei also $p \in (0,\infty)$. Es gilt $|f+g|^p = |f+g| \cdot |f+g|^{p-1} \le |f| \cdot |f+g|^{p-1} + |g| \cdot |f+g|^{p-1}$. Mit der Monotonie folgt

$$\int |f + g| \ d\mu \leqslant \int |f| \cdot |f + g|^{p-1} \ d\mu + \int |g| \cdot |f + g|^{p-1} \ d\mu$$

Wende nun die Hölder-Ungleichung mit q:=p/(p-1) an. Dann gilt

$$\int |f + g|^p d\mu \leqslant \left(\int |f|^p d\mu \right)^{1/p} \cdot \left(\int |f + g|^{p-1 \cdot \frac{p}{p-1}} d\mu \right)^{\frac{p-1}{p}}
+ \left(\int |g|^p d\mu \right)^{1/p} \cdot \left(\int |f + g|^{p-1 \cdot \frac{p}{p-1}} d\mu \right)^{\frac{p-1}{p}}
= \left(\int |f + g|^p d\mu \right)^{\frac{p-1}{p}} \left[\left(\int |f|^p d\mu \right)^{1/p} + \left(\int |g|^p d\mu \right)^{1/p} \right]$$

Bemerkung: Für $p \in [1, \infty)$ ist die Abbildung

$$||f||_p := \left(\int |f|^p \ d\mu\right)^{1/p}$$

eine Halbnorm auf $\mathcal{L}^p(\mu)$. Für den Quotientenraum $L^p(\mu)$ bezüglich der Äquivalenzrelation $f \sim g \iff f = g$ a.e. bildet $\|\cdot\|_p$ eine Norm.

7. Unabhängigkeit

In diesem Kapitel sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X, Y : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ Zufallsvariablen. Sei außerdem $I \neq \emptyset$ eine beliebige Indexmenge.

Unabhängigkeit von Ereignissen und Zufallsvariablen

7.1. **Definition:** Ereignisse $A_i \in \mathcal{A}_i, i \in I$ sind unabhängig, falls gilt

$$\forall J \subseteq I \text{ mit } |J| < \infty : \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}(A_j)$$

Kurz $A_i, i \in I$ u.a.

7.2. Beispiel: Paarweise Unabhängigkeit impliziert nicht unbedingt Unabhängigkeit. Betrachte zum Beispiel $X, Y \in \mathcal{U}\{0,1\}$ unabhängig diskret-gleichverteilt und setze $Z := (X + Y) \mod 2$

Bemerkung: Betrachte unabhängige Eregnisse A, B. Dann sind auch folgende Ereignisse u.a.:

$$A, B^c \quad A^c, B \quad A^c, B^c \quad A, \emptyset \quad A, \Omega \quad \text{etc.}$$

Also ist jedes Ereignis in $\sigma(\{A\}) = \{\emptyset, \Omega, A, A^c\}$ von jedem Ereignis in $\sigma(\{B\}) = \{\emptyset, \Omega, B, B^c\}$ u.a.

7.3. Definition: Familien von Ereignissen $\mathcal{G}_i \subseteq \mathcal{A}, i \in I$ sind unabhängig, wenn für jede Auswahl von Mengen $G_i \in \mathcal{G}_i$ die entsprechenden Ereignisse unabhängig sind. Insbesondere folgt damit aus der Unabhängigkeit eines Mengensystems auch die Unabhängigkeit aller gröberen Mengensysteme, i.e.

$$\forall i \in I : \mathcal{G}_i, i \in I \text{ u.a. und } \mathcal{F}_i \subseteq \mathcal{G}_i \implies \mathcal{F}_i, i \in I \text{ u.a.}$$

- 7.4. Definition: Zufallsvariablen $X_i, i \in I$ sind unabhängig, wenn die σ -Algebren $\sigma(X_i), i \in I$ unabhängig sind.
- **7.5. Proposition:** Seien (X_i, \mathcal{X}_i) und (Y_i, \mathcal{Y}_i) messbare Räume und $X_i : (\Omega, \mathcal{A}) \to (X_i, \mathcal{X}_i)$ unabhängige Zufallsvariablen für $i \in I$. Seien außerdem $g_i : (X_i, \mathcal{X}_i) \to (Y_i, \mathcal{Y}_i)$ messbare Abbildungen für $i \in I$. Dann sind auch die Zufallsvariablen $(g_i \circ X_i) : (\Omega, \mathcal{A}) \to (Y_i, \mathcal{Y}_i), i \in I$ unabhängig.

Beweis: Für $i \in I$ gilt

$$\sigma(g_i \circ X_i) = \sigma\left(\left\{(g_i \circ X_i)^{-1}(A_i) : A_i \in \mathcal{Y}_i\right\}\right)$$
$$= \sigma\left(\left\{X_i^{-1}\left(g_i^{-1}(A_i)\right) : A_i \in \mathcal{Y}_i\right\}\right)$$
$$\subseteq \sigma\left(\left\{X_i^{-1}\left(B_i\right) : B_i \in \mathcal{X}_i\right\}\right)$$

wobei die letze Inklusion aus der Messbarkeit von g_i folgt. Die Aussage folgt aus Definitionen 7.3 und 7.4.

7.6. Proposition: Betrachte unabhängige Zufallsvariablen $X,Y:(\Omega,\mathcal{A})\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}})),$ sodass $X,Y\in\mathcal{L}^1(\mathbb{P}).$ Dann gilt $XY\in\mathcal{L}^1(\mathbb{P})$ und $\mathbb{E}[XY]=(\mathbb{E}X)\cdot(\mathbb{E}Y).$

Beweis:

I. X, Y Indikatorfunktionen

Seien hier $X = \mathbb{1}_A, Y = \mathbb{1}_B$ mit $A, B \in \mathcal{A}$. Dann gilt $A = \{X = 1\}, B = \{Y = 1\}$ und A, B sind unabhängig. Es gilt $XY = \mathbb{1}_{A \cap B} \in \mathcal{L}^1(\mathbb{P})$ (einfache Überlegung) und

$$\mathbb{E}[XY] = \int \mathbb{1}_{A \cap B} \ d\mathbb{P} = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$$

II. X, Y einfache Funktionen

Seien $X = \sum_{i=1}^{n} \alpha_i \cdot \mathbb{1}_{A_i}, Y = \sum_{j=1}^{m} \beta_j \cdot \mathbb{1}_{B_j}$ mit A_i disjunkt und α_i alle verschieden für $i = 1, \ldots, n$ und B_j disjunkt und β_j alle verschieden für $j = 1, \ldots, m$. Dann sind $A_i = \{X = \alpha_i\}$ und $B_j = \{Y = \beta_j\}$ u.a. für $i = 1, \ldots, n$ und $j = 1, \ldots, m$. Außerdem ist XY wieder einfach und damit $XY \in \mathcal{L}^1(\mathbb{P})$ und es gilt

$$\mathbb{E}[XY] = \int \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \cdot \mathbb{1}_{A_{i}} \mathbb{1}_{B_{j}} d\mathbb{P}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \cdot \mathbb{P}(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \cdot \mathbb{P}(nA_{i}) \mathbb{P}(B_{j})$$

$$= \left(\sum_{i=1}^{n} \alpha_{i} \cdot \mathbb{P}(A_{i})\right) \cdot \left(\sum_{j=1}^{m} \beta_{j} \cdot \mathbb{P}(B_{j})\right) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$$

III. X, Y nicht negativ, messbar

Wähle einfache Funktionen $X_n, Y_n, n \ge 1$, sodass $0 \le X_n \uparrow X$ und $0 \le Y_n \uparrow Y$. Dann gilt auch $0 \le X_n Y_n \uparrow XY$. Für $X_n, Y_n, n \ge 1$ wie üblich ist X_n eine messbare Funktion von X und Y_n eine messbare Funktion von Y. Da $XY \ge 0$, gilt $XY \in \mathcal{L}(\mathbb{P})$ und $\mathbb{E}[XY]$ ist wohldefiniert in \mathbb{R} . Es gilt

$$\mathbb{E}[XY] = \lim_{n \to \infty} \mathbb{E}[X_n Y_n] = \lim_{n \to \infty} (\mathbb{E}X_n) \cdot (\mathbb{E}Y_n) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$$

und damit $XY \in \mathcal{L}^1(\mathbb{P})$.

IV. X, Y messbar

Schreibe $X=X^+-X^-$ und $Y=Y^+-Y^-$. Mit Proposition sind X^-,Y^- u.a., X^+,Y^+ u.a., X^-,Y^+ u.a. und X^+,Y^- u.a. Ebenfalls gilt

$$|XY| \le |X^+Y^+ - X^-Y^+ + X^-Y^- - X^+Y^-| \le X^+Y^+ + X^-Y^+ + X^-Y^- + X^+Y^-$$

wobei alle Summanden auf der rechten Seite integrierbar sind. Damit gilt $XY \in \mathcal{L}^1(\mathbb{P})$.

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[X^+Y^+] + \mathbb{E}[X^-Y^-] - \mathbb{E}[X^-Y^+] - \mathbb{E}[X^+Y^-] \\ &= (\mathbb{E}X^+) \cdot (\mathbb{E}Y^+) + (\mathbb{E}X^-) \cdot (\mathbb{E}Y^-) - (\mathbb{E}X^-) \cdot (\mathbb{E}Y^+) - (\mathbb{E}X^+) \cdot (\mathbb{E}Y^-) \\ &= (\mathbb{E}X) \cdot (\mathbb{E}Y) \end{split}$$

Borel-Cantelli Lemmata

7.7. Definition: Seien $A_n \subseteq \Omega, n \geqslant 1$. Definiere

$$\limsup_{n \to \infty} A_n := \bigcap_{n \geqslant 1} \bigcup_{m \geqslant n} A_m \text{ und } \liminf_{n \to \infty} A_n := \bigcup_{n \geqslant 1} \bigcap_{m \geqslant n} A_m$$

Intuitiv macht diese Definition Sinn, da für $\limsup_{n\to\infty} \mathbbm{1}_{A_n} = \mathbbm{1}_M$ gilt, dass $M = \limsup_{n\to\infty} A_n$ und ähnliches für den \liminf . Kurz $\limsup_{n\to\infty} A_n = \{\omega \in \Omega : \omega \in A_n \text{ unendlich oft}\}$ (englisch: A_n infinitely often) und $\liminf_{n\to\infty} A_n = \{\omega \in \Omega : \omega \in A_n \text{ letzendlich}\}$ (englisch: A_n eventually).

Bemerkung: Es gilt

- $\left(\limsup_{n\to\infty} A_n\right)^c = \liminf_{n\to\infty} A_n^c \text{ (De Morgan)}$
- $\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$
- A_n messbar für $n \geqslant 1 \implies \limsup_{n \to \infty} A_n, \liminf_{n \to \infty} A_n$ messbar

7.8. Lemma (I. Borel–Cantelli Lemma) Betrachte einen allgeminen Maßraum $(\Omega, \mathcal{A}, \mu)$.

Seien
$$A_n \in \mathcal{A}, n \geqslant 1$$
, sodass $\sum_{n \geqslant 1} \mu(A_n) < \infty$. Dann folgt $\mu\left(\limsup_{n \to \infty} A_n\right) = 0$.

Beweis: Da $\mu(A_n) \in [0, \infty)$ für alle $n \ge 1$, ist die Reihe $\sum_{n \ge 1} \mu(A_n)$ absolut konvergent.

Ebenfalls gilt

$$\bigcup_{m\geqslant 1} A_m \supseteq \bigcup_{m\geqslant 2} A_m \supseteq \ldots \supseteq \bigcap_{n\geqslant 1} \bigcup_{m\geqslant n} A_m = \limsup_{n\to\infty} A_n$$

und $\mu\left(\bigcup_{m\geq 1}A_m\right) \leqslant \sum_{m\geq 1}\mu(A_m) < \infty$. Mit der Stetigkeit von oben folgt

$$\mu\left(\limsup_{n\to\infty} A_n\right) = \mu\left(\bigcap_{n\geqslant 1} \bigcup_{m\geqslant n} A_m\right)$$
$$= \lim_{n\to\infty} \mu\left(\bigcup_{m\geqslant n} A_n\right)$$
$$\leqslant \lim_{n\to\infty} \sum_{m\geqslant n} \mu(A_n) = 0$$

wobei die letze Gleichung aus der (bedingten) Konvergenz folgt (Cauchy-Folge). □

7.9. Lemma (II. Borel–Cantelli Lemma) Betrachte einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ und $A_n \in \mathcal{A}, n \geqslant 1$ unabhängig, sodass $\sum_{n\geqslant 1} \mathbb{P}(A_n) = \infty$. Dann ist $\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1$.

Beweis: Betrachte die Ungleichung (Beweis z.B. mit Mittelwertsatz oder 1. und 2. Ableitung)

$$1 - x \le e^{-x}$$
 für alle $x \ge 0$

Laut Annahme gilt für alle $N \ge 1$: $\sum_{n \ge N} \mathbb{P}(A_n) = \infty$ (einfache Überlegung). Zeige nun $\mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) = 0.$

$$\mathbb{P}\left(\liminf_{n\to\infty} A_n^c\right) = \lim_{n\to\infty} \mathbb{P}\left(\bigcap_{m\geqslant n} A_m^c\right) = \lim_{n\to\infty} \prod_{m\geqslant n} \mathbb{P}(A_m^c)
= \lim_{n\to\infty} \prod_{m\geqslant n} (1 - \mathbb{P}(A_m)) \leqslant \lim_{n\to\infty} \prod_{m\geqslant n} e^{-\mathbb{P}(A_m)}
= \lim_{n\to\infty} \exp\left(-\sum_{m\geqslant n} \mathbb{P}(A_m)\right) = \exp\left(-\lim_{n\to\infty} \sum_{m\geqslant n} \mathbb{P}(A_m)\right) = 0$$

7.10. Korollar: Seien $X_n:(\Omega,\mathcal{A})\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}})), n\geqslant 1$ nicht-negative Zufallsvariablen und sei

$$\forall \varepsilon > 0 : \sum_{n \ge 1} \mathbb{P}(X_n > \varepsilon) < \infty$$

Dann gilt $\mathbb{P}\left(\lim_{n\to\infty}X_n=0\right)$.

Beweis: Da $X_n \ge 0$ für $n \ge 1$ gilt

$$\left\{\lim_{n\to\infty}X_n=0\right\}=\left\{\limsup_{n\to\infty}X_n=0\right\}=\bigcap_{k\geqslant 1}\left\{\limsup_{n\to\infty}X_n\leqslant\frac{1}{k}\right\}$$

Aus der Voraussetzung folgt nun

$$\forall k \geqslant 1 : \sum_{n \geqslant 1} \mathbb{P}\left(X_n > k^{-1}\right) < \infty$$

und mit Lemma 7.8 gilt $\mathbb{P}\left(\limsup_{n\to\infty}\{X_n>k^{-1}\}\right)=0$. Es gilt

$$1 = \mathbb{P}\left(\liminf_{n \to \infty} \{X_n \leqslant k^{-1}\}\right) \leqslant \mathbb{P}\left(\limsup_{n \to \infty} X_n \leqslant k^{-1}\right) \leqslant 1$$

und damit $\mathbb{P}\left(\limsup_{n\to\infty}X_n>k^{-1}\right)=0$ für alle $k\geqslant 1$. Schließlich folgt

$$\mathbb{P}\left(\bigcap_{k\geqslant 1}\left\{\limsup_{n\to\infty}X_n\leqslant k^{-1}\right\}\right)=1-\mathbb{P}\left(\bigcup_{k\geqslant 1}\left\{\limsup_{n\to\infty}X_n>k^{-1}\right\}\right)\geqslant 1-\sum_{k\geqslant 1}\mathbb{P}\left(\limsup_{n\to\infty}X_n>k^{-1}\right)=1$$

7.11. Lemma: Sei $\mathcal{M} \subseteq \mathcal{A}$ ein π -System und $A \in \mathcal{A}$. Sind \mathcal{M} und $\{A\}$ unabhängig, dann sind auch $\sigma(\mathcal{M})$ und $\{A\}$ unabhängig.

Beweis: Trivial, falls $\mathbb{P}(A) \in \{0,1\}$. Sei also $\mathbb{P}(A) \in (0,1)$ und zeige $\forall M \in \sigma(\mathcal{M}) : \mathbb{P}(A \cap M) = \mathbb{P}(A) \cdot \mathbb{P}(M)$. Setze dafür

$$\mathbb{P}(\,\cdot\,|A) := \frac{\mathbb{P}(\,\cdot\,\cap A)}{\mathbb{P}(A)}$$

für $\mathbb{P}(A) \neq 0$ (laut Annahme erfüllt). Zeige also $\mathbb{P}(M|A) = \mathbb{P}(M)$ für alle $M \in \sigma(\mathcal{M})$. $\mathbb{P}(\cdot |A)$ ist ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{A}) und es gilt laut Annahme

$$\forall M \in \mathcal{M} : \mathbb{P}(M|A) = \mathbb{P}(M)$$

Mit dem λ - π -Theorem folgt, dass $\mathbb{P}(\cdot | A)$ und $\mathbb{P}(\cdot)$ auch auf $\sigma(\mathcal{M})$ übereinstimmen müssen.

7.12. Satz: Sei für $i \in I$, $\mathcal{M}_i \subseteq \mathcal{A}$ ein π -System. Dann gilt

$$\mathcal{M}_i, i \in I \text{ u.a.} \iff \sigma(\mathcal{M}_i), i \in I \text{ u.a.}$$

Beweis: Die Richtung \Leftarrow ist trivial. Sei also $J \subseteq I, J = \{1, ..., k\}$ endlich und zeige, dass $\sigma(\mathcal{M}_i), j \in J$ unabhängig sind.

- 1. Schritt: Wähle $M_j \in \mathcal{M}_j$ beliebig für j = 2, ..., k. Laut Annahme sind \mathcal{M}_1 und $\{M_2 \cap ... \cap M_k\}$ unabhängig, sodass mit Lemma 7.11. auch $\sigma(\mathcal{M}_1)$ und $\{M_2 \cap ... \cap M_k\}$ unabhängig sind. Es folgt, dass $\sigma(\mathcal{M}_1), \mathcal{M}_2, ..., \mathcal{M}_k$ unabhängig sind.
- 2. Schritt: Wähle $M_1 \in \sigma(\mathcal{M}_1)$ und $M_j \in \mathcal{M}_j, j = 3, ..., k$. Wegen dem 1. Schritt sind \mathcal{M}_2 und $\{M_1 \cap M_3 \cap ... \cap M_k\}$ unabhängig. Mit Lemma 7.11 folgt, dass $\sigma(\mathcal{M}_2)$ und $\{M_1 \cap M_3 \cap ... \cap M_k\}$ unabhängig sind und damit $\sigma(\mathcal{M}_2), \sigma(\mathcal{M}_1), \mathcal{M}_3, ..., \mathcal{M}_k$ unabhängig sind.

Nach k-2 weiteren Schritten ist die Unabhängigkeit von $\sigma(\mathcal{M}_1), \ldots, \sigma(\mathcal{M}_k)$ bewiesen.

7.13. Korollar: Seien $X_i:(\Omega,\mathcal{A})\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}})), i\in I$ Zufallsvariablen. Dann sind die $X_i,i\in I$ genau dann unabhängig, wenn gilt

$$\forall J \subseteq I, |J| < \infty : \forall t_j \in \overline{\mathbb{R}}, j \in J : \mathbb{P}(X_j \leqslant t_j, j \in J) = \prod_{j \in J} \mathbb{P}(X_j \leqslant t_j)$$

Falls $X_i, i \in I$ reelwertig sind, können die $t_j \in \mathbb{R}$ gewählt werden.

Beweis: Die Richtung \Longrightarrow ist trivial. Es gilt (cf. Kapitel 3) $\mathcal{B}(\overline{\mathbb{R}}) = \sigma(\mathcal{K}) = \sigma\left(\{[-\infty,t]:t\in\overline{\mathbb{R}}\}\right)$. Für $i\in I$ setze $\mathcal{M}_i:=\{X_i^{-1}([-\infty,t]):t\in\overline{\mathbb{R}}\}$. Mit Proposition 3.4 gilt $\sigma(\mathcal{M}_i)=\sigma(X_i)$ für alle $i\in I$. Da der Durchschnitt zweier abgeschlossener Intervalle wieder ein abgeschlossenes Intervall ist, ist \mathcal{M}_i für $i\in I$ ein π -System. Laut Annahme sind $\mathcal{M}_i, i\in I$ unabhängig. Mit Satz 7.12 folgt die Unabhängigkeit der $\sigma(X_i), i\in I$ und damit per Definition die Unabhängigkeit der $X_i, i\in I$.

7.14. Proposition: Seien $X_i:(\Omega,\mathcal{A})\to (\Omega',\mathcal{A}'), i\in I$ unabhängige Zufallsvariablen. Für eine Partition $I=K\cup L$ mit $K,L\neq\emptyset$ sind auch $\sigma(X_k,k\in K)$ und $\sigma(X_\ell,\ell\in L)$ unabhängig.

Beweis: Mit Lemma 3.5 gilt

$$\sigma(X_k, k \in K) = \sigma\left(\bigcap_{j \in J} \{X_j \in A_j'\} : J \subseteq K, |J| < \infty, A_j' \in \mathcal{A}' \text{ für } j \in J\right) = \sigma(\mathcal{E}_1)$$

und $\sigma(X_{\ell}, \ell \in L) = \sigma(\mathcal{E}_2)$, wobei $\mathcal{E}_1, \mathcal{E}_2$ π -Systeme sind (einfach nachzuprüfen). Außerdem sind $\mathcal{E}_1, \mathcal{E}_2$ unabhängig, denn für $A = \bigcap_{j \in J} \{X_j \in A'_j\} \in \mathcal{E}_1$ für $J \subseteq K$ endlich und $B = \sum_{j \in J} \{X_j \in A'_j\}$

 $\bigcap_{m \in M} \{X_m \in A'_m\} \text{ für } M \subseteq L \text{ endlich gilt}$

$$\mathbb{P}(A \cap B) = \mathbb{P}\left(\bigcap_{j \in J \cup M} \{X_j \in A'_j\}\right) \stackrel{J \cup M \subseteq I}{=} \prod_{j \in J \cup M} \mathbb{P}(X_j \in A'_j)$$
$$= \mathbb{P}\left(\bigcap_{j \in J} \{X_j \in A'_j\}\right) \cdot \mathbb{P}\left(\bigcap_{m \in M} \{X_m \in A'_m\}\right) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

da K, L disjunkt sind und damit auch alle endlichen Teilmengen J, M disjunkt sind. Mit Satz 7.12 folgt nun, dass $\sigma(\mathcal{E}_1)$ und $\sigma(\mathcal{E}_2)$ unabhängig sind und damit die Aussage.

Asymptotische σ -Algebra

7.15. Definition: Seien $X_n, n \ge 1$ Zufallsvariablen. Setze

$$\mathcal{B}_n := \sigma(X_1, \dots, X_n) \text{ und } \mathcal{T}_n := \sigma(X_{n+1}, X_{n+2}, \dots)$$

Dann gilt $\mathcal{B}_n \subseteq \mathcal{B}_{n+1}$ und $\mathcal{T}_n \supseteq \mathcal{T}_{n+1}$ für alle $n \geqslant 1$. Definiere weiters

$$\mathcal{B} := \bigcup_{n \geqslant 1} \mathcal{B}_n \text{ und } \mathcal{T}_\infty := \bigcap_{n \geqslant 1} \mathcal{T}_n$$

Dann sind $\sigma(\mathcal{B})$ und \mathcal{T}_{∞} σ -Algebra und mann nennt \mathcal{T}_{∞} die asymptotische σ -Algebra (englisch tail σ -algebra) der $X_n, n \geqslant 1$.

7.16. Satz (0–1-Gesetz von Kolmogorov): Betrachte unabhängige Zufallsvariablen $X_n, n \ge 1$ sowie deren asymptotische σ -Algebra \mathcal{T}_{∞} . Dann gilt $\forall A \in \mathcal{T}_{\infty} : \mathbb{P}(A) \in \{0, 1\}$.

Beweis: Mit Lemma 7.14 sind \mathcal{B}_n und \mathcal{T}_n unbahängig für alle $n \geq 1$. Da $\mathcal{T}_{\infty} \subseteq \mathcal{T}_n$ sind \mathcal{B}_n und \mathcal{T}_{∞} für alle $n \geq 1$ unabhängig. Damit sind auch \mathcal{B} und \mathcal{T}_{∞} unabhängig. Da \mathcal{B} ein π -System ist (leicht nachzuprüfen), folgt mit Satz 7.12, dass $\sigma(\mathcal{B})$ und \mathcal{T}_{∞} unabhängig sind. Nun ist

$$\mathcal{T}_{\infty} \subseteq \mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \ldots) \subseteq \sigma(X_1, X_2, \ldots) = \sigma(\mathcal{B})$$

und damit sind \mathcal{T}_{∞} und \mathcal{T}_{∞} unabhängig und

$$\forall A \in \mathcal{T}_{\infty} : \mathbb{P}(A) = \mathbb{P}(A \cap A) = (\mathbb{P}(A))^2$$

und damit $\mathbb{P}(A) \in \{0, 1\}.$

7.17. Beispiel (Ereignisse aus \mathcal{T}): Betrachte unabhängige, rellwertige Zufallsvariablen $X_n, n \ge 1$.

(i)
$$\left\{ \limsup_{n \to \infty} X_n \geqslant c \right\}, \left\{ \liminf_{n \to \infty} X_n \geqslant c \right\} \in \mathcal{T}_{\infty} \text{ für } c \in \mathbb{R}.$$

Es gilt

$$\left\{\limsup_{n\to\infty} X_n \geqslant c\right\} = \left\{\limsup_{\substack{n\to\infty\\n\geqslant N}} X_n \geqslant c\right\} \in \mathcal{T}_N$$

für alle $N \ge 1$ und damit $\left\{ \limsup_{n \to \infty} X_n \ge c \right\} \in \bigcap_{N \ge 1} \mathcal{T}_N = \mathcal{T}_{\infty}$. Ähnliches gilt für den lim inf.

(ii)
$$\left\{\lim_{n\to\infty}X_n\in\mathbb{R}\right\}\in\mathcal{T}_{\infty}$$
 folgt aus Proposition 3.18.

(iii)
$$\left\{ \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_n > c \right\}, \left\{ \liminf_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_n > c \right\} \in \mathcal{T}_{\infty}$$

Sei $\omega \in \left\{ \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_n > c \right\}$. Dann gibt es eine Teilfolge n' , sodass

$$\lim_{n' \to \infty} \frac{1}{n'} \sum_{i=1}^{n'} X_i(\omega) > c$$

Aber $\forall N \geqslant 1$ gilt

$$\frac{1}{n'} \sum_{i=1}^{n'} X_i(\omega) = \frac{1}{n'} \sum_{\substack{i=1\\i \le N}}^{n'} X_i(\omega) + \frac{1}{n'} \sum_{\substack{i=1\\i > N}}^{n'} X_i(\omega)$$

wobei der erste Summand für $n' \to \infty$ gegen 0 konvergiert (einfache Überlegung). Damit gilt

$$\lim_{n' \to \infty} \frac{1}{n'} \sum_{\substack{i=1 \ i > N}}^{n'} X_i(\omega) = c' > c$$

für alle $N \geqslant 1$ und es folgt

$$\omega \in \left\{ \limsup_{n \to \infty} \frac{1}{n} \sum_{\substack{i=1 \ i > N}}^{n} X_n > c \right\} \in \mathcal{T}_N$$

für alle $N\geqslant 1$. Ähnliches gilt für den lim inf.

(iv)
$$\left\{\frac{1}{n}\sum_{i=1}^{n}X_{n} \text{ konvergiert in } \overline{\mathbb{R}}\right\} \in \mathcal{T}_{\infty} \text{ folgt ebenfalls aus Proposition 3.18.}$$