Multi-Scale Models of Granular Magnetic Materials at High Temperatures

Author Jonathon Waters

Supervisory Team Hans Fangohr, Denis Kramer and Ondrej Hovorka

Introduction

EPSRC Engineering and Physical Sciences Research Council

Southamptor

In $HAMR^1$:

► T_C distribution affects the noise performance

E. Dobisz et al. Proc IEEE 96.11, 1836 (2008)

In Magnetic Hyperthermia²:

► Low T_C reduces tissue damage

Ângela Andrade et al. Coating Nanomagnetic Particles for Biomedical Applications (2011)

¹D. Weller et al. IEEE Transactions on Magnetics 50.1, 3100108 (2014)

²I Apostolova et al. Solid State Communications 149,25, 986 (2009)

Defining Finite Sized T_C

Correlation length $\propto |T - T_C^b|^{-\nu}$ Grain size, $D \propto |T_C(D) - T_C^b|^{-\nu}$

Distribution in D leads to distribution in T_C

$$f_D(D) \Longrightarrow f_{T_C}(T_C)$$

Currently Used Methods

- ► Explicit measurement of individual grains.³
 - \blacktriangleright Switching temperature is measured by a laser system set up. This is related to $T_{\rm C}$
 - ► Very little agreement between methods
 - ► Currently only applicable to HAMR
- ► Identification from macroscale measurements⁴
 - ► Single measurement with magnetometer
 - ► Integral measure
 - ▶ But uses bulk relations

³S. Pisana et al. IEEE Transactions on Magnetics 51.4, 1 (2015)

⁴ A. Berger et al. J. Appl. Phys. 91 10, 8393 (2002)

9 Month Objectives

- ▶ Develop a universal method to identify the T_C distribution which incorporates the finite size effects of the individual grains
- ➤ Test the method against a well quantified benchmark (2D Ising system) in order to verify it's effectiveness for different distributions.

Our Method

Southampton

Magnetisation for Ensemble of Grains:

$$M(T) = M_0 \int_0^\infty D^d m(D, T) f_D(D) dD$$

Single Grain Magnetisation:

$$m(D,T) \propto D^{-\beta/\nu} \tilde{\mu} \left(D^{1/\nu} \frac{T - T_C^b}{T_C^b} \right)$$

Change of Variables:

$$D = d_0 \left(\frac{T_C^b - T_C(D)}{T_C^b} \right)^{-\nu}$$

Final Result:

$$M(T) = M_0^* \int_0^{T_C^b} t^{-d\nu + \beta} \tilde{\mu} \left(\frac{T - T_C^b}{t} \right) f_t(t) dt$$

Finding f_t

$$\mathrm{M}(\mathrm{T}) = \mathrm{M}_0^* \int_0^{\mathrm{T}_\mathrm{C}^\mathrm{b}} \mathrm{t}^{-\mathrm{d}
u + eta} ilde{\mu} \left(rac{\mathrm{T} - \mathrm{T}_\mathrm{C}^\mathrm{b}}{\mathrm{t}}
ight) \mathrm{f}_\mathrm{t}(\mathrm{t}) \mathrm{d}\mathrm{t}$$

- ► M(T): To be fitted
- \triangleright d, ν , β , $\tilde{\mu}$: Known information about the material
- $ightharpoonup T_C^b$: May be known, otherwise taken from fit
- ▶ M_0^* , f_t [\bar{t} , σ_t]: Taken from the fit

$$\bar{T}_C = T_C^b - \bar{t}$$
 $\sigma_{T_C} = \sigma_t$

Test Case: 2D Ising Model

Southampton

$$M(T) = M_0^* \int_0^{T_C^b} t^{-d\nu + \beta} \tilde{\mu} \left(\frac{T - T_C^b}{t} \right) f_t(t) dt$$

Used 2D Ising model as a benchmark:

- ► Simulated using Monte Carlo
- ► Analytical results for β , ν , T_C^b
 - $\beta = 1.25$
 - $\nu = 1$
 - ightharpoonup $T_{\rm C}^{\rm b} \approx 2.269$

Tested against different f_D:

- ► All mean $\bar{D} = 100$
- ▶ Standard deviation $\sigma_D = 10, 20, 30, 40$

Test Case: 2D Ising Model

Southampton

Introduce constraint⁵:

$$\Rightarrow \sigma_{\mathrm{T_C}}^2 = (\mathrm{T_C^b} {-} \bar{\mathrm{T}_C})^2 \left(\left(1 + \frac{\sigma_{\mathrm{D}}^2}{\bar{\mathrm{D}}^2}\right)^{1/\nu^2} - 1 \right)$$

In the Ising model:

$$\begin{split} \nu &= 1 \\ \Rightarrow \sigma_{T_C} &= \big(T_C^b - \bar{T}_C\big) \frac{\sigma_D}{\bar{D}} \end{split}$$

Fitted results far better!

O. Hovorka et al. Appl. Phys. Letters 101.5, 052406 (2012)

Conclusions

▶ Universal method to find size dependent T_C distribution based upon fitting ensemble magnetisation:

$$M(T) = M_0^* \int_0^{T_C^b} t^{-d\nu + \beta} \tilde{\mu} \left(\frac{T - T_C^b}{t} \right) f_t(t) dt$$

► Successfully tested against 2D Ising model (without a loss in generality) and found a strong parameter correlation which can be solved by the constraint:

$$\sigma_{{
m T}_{
m C}}^2 = ({
m T}_{
m C}^{
m b} - {
m ar{T}}_{
m C})^2 \left(\left(1 + rac{\sigma_{
m D}^2}{{
m ar{D}}^2}
ight)^{1/
u^2} - 1
ight)$$

Acknowledgements

In the completion of this work, we acknowledge financial support from the EPSRC Centre for Doctoral Training grant $\rm EP/L006766/1$.

We also acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton.

Contact: J.M.Waters@soton.ac.uk