Préliminaire.

Déterminer l'ensemble de définition de la fonction ζ qui à $x \in \mathbb{R}$ associe $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

On admettra dans tout le problème que $\zeta(2) = \frac{\pi^2}{6}$.

Partie I

Pour tout $n \in \mathbb{N}^*$, on définit la fonction u_n de \mathbb{R}_+^* dans \mathbb{R} par :

$$\forall x > 0 , u_n(x) = \frac{x}{n} - \ln\left(1 + \frac{x}{n}\right).$$

- 1. (a) Vérifier que $\forall n \in \mathbb{N}^*$, $\forall x > 0$, $u_n(x) \ge 0$.
 - (b) Montrer que la série de fonctions de terme général u_n converge simplement sur $]0, +\infty[$.

Dans toute la suite du problème, $\sum_{n=1}^{+\infty} u_n$ est notée S et γ désigne la valeur de S(1).

- 2. (a) Prouver que S est dérivable sur [a, b].
 - (b) En déduire que S est dérivable sur $]0,+\infty[$ et que :

$$\forall x > 0 , S'(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right).$$

- 3. Soit $p \in \mathbb{N}^*$. Montrer que lorsque p tend vers l'infini : $\sum_{n=1}^p \frac{1}{n} = \ln p + \gamma + o(1).$
- 4. (a) Prouver que:

$$\sum_{n=1}^{p} \left(u_n(x+1) - u_n(x) \right) = \sum_{n=1}^{p} \frac{1}{n} + \ln(1+x) - \ln(p+1+x).$$

(b) En déduire que :

$$\forall x > 0$$
, $S(x+1) = S(x) + \gamma + \ln(1+x)$.

5. Soit φ la fonction définie de \mathbb{R}_+^* dans \mathbb{R} telle que :

$$\forall x > 0 , \ \varphi(x) = \frac{1}{x} \exp\left(-\gamma x + S(x)\right).$$

- (a) Montrer que $\forall x > 0$, $\varphi(x+1) = x \varphi(x)$.
- (b) Vérifier que φ est dérivable sur $]0, +\infty[$. Calculer $\varphi'(x)$ pour x > 0. Que vaut $\varphi'(1)$?
- 6. Pour $n \ge 1$, soit φ_n la fonction de \mathbb{R}_+^* dans \mathbb{R} telle que :

$$\forall x > 0 , \ \varphi_n(x) = \frac{n^x n!}{x(x+1)\dots(x+n)}.$$

Montrer que $\forall x > 0$, $\ln \left(\varphi_n(x) \right)$ tend vers $S(x) - x\gamma - \ln x$ quand n tend vers $+\infty$.

- 7. On note $\pi_p = \prod_{n=1}^p \frac{e^{\frac{x}{n}}}{1 + \frac{x}{n}}$ (p entier naturel > 0).
 - (a) Prouver la convergence de la suite $(\pi_p)_{p\geqslant 1}$ vers une limite L(x).

(b) En déduire que : $\forall x > 0$, $\varphi(x) = \frac{L(x)}{x} \exp(-x\gamma)$.

Partie II: Fonction Gamma d'Euler

Soit Γ la fonction de la variable réelle x définie par : $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 8. (a) Déterminer l'ensemble de définition de la fonction Γ .
 - (b) Calculer $\Gamma(1)$.
 - (c) Montrer que $\forall x > 0$, $\Gamma(x+1) = x \Gamma(x)$.
- 9. Pour n entier naturel ≥ 1 , on définit la fonction g_n de \mathbb{R}_+^* dans \mathbb{R} par :

$$t \to \left\{ \begin{array}{c} \left(1 - \frac{t}{n}\right)^n & \text{si } 0 \leqslant t < n, \\ 0 & \text{si } t \geqslant n \end{array} \right.$$

- (a) Prouver que : $\forall t \ge 0$, $\exp(-t) \ge 1 t$. En déduire que : $\forall t \ge 0$, $\forall n \ge 1$, $0 \le g_n(t) \le \exp(-t)$.
- (b) Montrer alors que:

$$\forall x > 0 , \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \Gamma(x).$$

10. Pour tout entier naturel $n \ge 1$, on définit la fonction I_n de $\mathbb R$ dans $\mathbb R$ par :

$$I_n(x) = \int_0^1 (1-t)^n t^{x-1} dt.$$

- (a) Déterminer l'ensemble de définition de la fonction I_n .
- (b) Prouver que:

$$\forall x > 0 , \ \forall n \geqslant 1 , \ \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = n^x I_n(x).$$

(c) Trouver une relation entre $I_n(x)$ et $I_{n-1}(x+1)$ et en déduire que :

$$\forall x > 0 , \Gamma(x) = \varphi(x).$$

Partie III: Fonction Digamma

Dans toute cette partie, $x \in [0, 1[$.

- 11. Soit $n \in \mathbb{N}$. Vérifier l'existence de $\int_0^{+\infty} \exp(-t) \ln^n t \, dt$.
- 12. Soit $n \in \mathbb{N}$. On définit les fonctions :
 - v_n de \mathbb{R}_+^* dans \mathbb{R} par : $\forall t > 0$, $v_n(t) = \frac{x^n}{n!} \exp(-t)(\ln t)^n$
 - T_n de]1, + ∞ [dans \mathbb{R} par : $\forall u > 1$, $T_n(u) = \int_{1/u}^u v_n(t)dt$
 - (a) Pour u > 1 donné, montrer que la série de fonctions de terme général v_n converge normalement sur $\left[\frac{1}{u}, u\right]$.
 - (b) Justifier que : $\forall u > 1$, $\sum_{n=0}^{+\infty} T_n(u) = \int_{1/u}^u \left(\sum_{n=0}^{+\infty} v_n(t)\right) dt$.

13. On pose, pour $n \in \mathbb{N}$:

$$a_n = \frac{x^n}{n!} \int_0^1 \exp(-t) |\ln t|^n dt$$
 et $b_n = \frac{x^n}{n!} \int_1^{+\infty} \exp(-t) (\ln t)^n dt$.

(a) Montrer que:

$$\forall p \ge 0 \ , \ \sum_{n=0}^{p} (a_n + b_n) \le \int_{0}^{+\infty} \exp(-t + x|\ln t|) dt.$$

(b) En déduire que la série de fonctions de terme général T_n converge normalement sur $]1, +\infty[$.

14. (a) Vérifier que
$$\forall x \in]0,1[$$
 , $\Gamma(1+x) = \int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \exp(-t) (\ln t)^n\right) dt$.

(b) Prouver alors que:

$$\forall x \in]0,1[, \Gamma(1+x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \left(\int_0^{+\infty} \exp(-t)(\ln t)^n dt \right).$$

15. (a) A l'aide des parties I et II, vérifier que :

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right).$$

puis que
$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{n^{k+1}} x^k \right).$$

(b) En admettant que l'on peut intervertir dans la formule précédente les deux sommations, prouver que :

$$\forall x \in]0,1[, \Gamma(1+x) = \exp\left(-\gamma x + \sum_{k=2}^{+\infty} (-1)^k \frac{x^k}{k} \zeta(k)\right).$$

(c) Démontrer alors le résultat : $\int_0^{+\infty} \exp(-t) \ln^2 t \, dt = \gamma^2 + \frac{\pi^2}{6}.$

Préliminaire.

La série de Riemann définissant $\zeta(x)$ converge si et seulement si x > 1, donc

L'ensemble de définition de la fonction ζ est $]1, +\infty[$.

Partie I

1. (a) Par concavité de la fonction ln, on a : $\forall t > 0$, $\ln t \leq t - 1$, d'où, avec $t = 1 + \frac{x}{n}$:

$$\forall n \in \mathbb{N}^*, \ \forall x > 0, \ u_n(x) \geqslant 0$$

(b) Du développement limité de $t \mapsto \ln(1+t)$ en 0, on déduit, pour x > 0 fixé :

$$\ln\left(1+\frac{x}{n}\right) \underset{n\to\infty}{=} \frac{x}{n} - \frac{1}{2} \cdot \left(\frac{x}{n}\right)^2 + o\left(\frac{1}{n^2}\right) \quad \text{d'où} \quad u_n(x) \underset{n\to\infty}{\sim} \frac{x^2}{2n^2};$$

il en résulte, par comparaison à une série de Riemann, que la série numérique $\sum u_n(x)$ converge, cela pour tout x > 0, autrement dit :

La série de fonctions de terme général u_n converge simplement sur $]0, +\infty[$.

2. (a) Les fonctions u_n sont de classe C^1 sur [a,b], avec

$$\forall x \in [a,b] \;,\; u_n'(x) = \frac{1}{n} - \frac{1}{n+x} \quad \text{d'où} \quad |u_n'(x)| = \frac{x}{n(x+n)} \leqslant \frac{b}{n^2}.$$

Or, la série numérique $\sum \frac{b}{n^2}$ converge. Ainsi, la série de fonctions $\sum u'_n$ converge normalement sur [a,b]; a fortiori, elle converge uniformément sur tout segment de [a,b]; comme on vient de voir que $\sum u_n$ converge simplement sur [a,b], on peut appliquer le théorème de dérivation terme à terme d'une série de fonctions :

S est dérivable sur [a,b] (et $S'=\sum_{n=1}^{\infty}u'_n).$ En particulier

$$S$$
 est dérivable sur $[a,b]$.

(b) Le résultat précédent est établi pour tout couple (a, b) tel que 0 < a < b; par conséquent :

$$S$$
 est dérivable sur $]0, +\infty[$ et $: \forall x > 0$, $S'(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$

3. Par définition des u_n , on a :

$$\sum_{n=1}^{p} u_n(1) = \sum_{n=1}^{p} \frac{1}{n} - \sum_{n=1}^{p} \left(\ln(n+1) - \ln n \right) = \sum_{n=1}^{p} \frac{1}{n} - \ln(p+1)$$

d'où, puisque $\gamma = S(1)$,

$$\sum_{n=1}^{p} \frac{1}{n} - \ln p - \gamma = \sum_{n=1}^{p} u_n(1) + \ln(p+1) - \ln p - S(1) = \sum_{n=1}^{p} u_n(1) - S(1) + \ln\left(1 + \frac{1}{p}\right),$$

qui tend vers 0 lorsque p tend vers l'infini, puisque $S(1) = \sum_{n=1}^{\infty} u_n(1)$. Autrement dit :

$$\sum_{n=1}^{p} \frac{1}{n} = \lim_{p \to \infty} \ln p + \gamma + o(1).$$

4. (a) Fixons $p \in \mathbb{N}^*$ et x > 0; on a

$$\forall n \in [1, p], \ u_n(x+1) - u_n(x) = \frac{x+1}{n} - \ln\left(1 + \frac{x+1}{n}\right) - \frac{x}{n} + \ln\left(1 + \frac{x}{n}\right)$$
$$= \frac{1}{n} - \ln(n+x+1) + \ln(n+x)$$

En sommant, il reste après l'hécatombe :

$$\sum_{n=1}^{p} \left(u_n(x+1) - u_n(x) \right) = \sum_{n=1}^{p} \frac{1}{n} + \ln(1+x) - \ln(p+1+x).$$

(b) Soit x > 0 fixé; on a pour $p \in \mathbb{N}^*$, d'après les résultats précédents :

$$\sum_{n=1}^{p} u_n(x+1) - \sum_{n=1}^{p} u_n(x) = \lim_{p \to \infty} \ln p + \gamma + o(1) + \ln(1+x) - \ln(p+1+x)$$
$$= \lim_{p \to \infty} \gamma + \ln(1+x) - \ln\left(1 + \frac{1+x}{p}\right) + o(1),$$

d'où, par unicité de la limite lorsque p tend vers l'infini : $S(x+1) - S(x) = \gamma + \ln(1+x)$, autrement dit :

$$\forall x > 0 , S(x+1) = S(x) + \gamma + \ln(1+x).$$

5. (a) Soit x > 0; d'après le résultat précédent,

$$\begin{split} \varphi(x+1) &= \frac{1}{x+1} \exp\left(-\gamma(x+1) + S(x+1)\right) \\ &= \frac{1}{x+1} \exp\left(-\gamma(x+1) + S(x) + \gamma + \ln(x+1)\right) \\ &= \frac{1}{x+1} \exp\left(-\gamma x + S(x)\right) \exp\left(\ln(x+1)\right) \\ &= \exp\left(-\gamma x + S(x)\right), \end{split}$$

soit:

$$\forall x > 0 , \varphi(x+1) = x \varphi(x).$$

(b) Nous avons vu que S était dérivable sur $]0, +\infty[$, donc, exp étant dérivable sur \mathbb{R} , en vertu des théorèmes opératoires classiques :

$$\varphi$$
 est dérivable sur $]0, +\infty[$.

J'applique les formules de dérivation d'un produit et d'une fonction composée :

$$\forall x > 0 , \ \varphi'(x) = -\frac{1}{x^2} \exp\left(-\gamma x + S(x)\right) + \frac{1}{x} \left(-\gamma + S'(x)\right) \exp\left(-\gamma x + S(x)\right),$$

soit

$$\forall x > 0 , \varphi'(x) = \left(-\frac{1}{x} - \gamma + S'(x)\right) \cdot \varphi(x).$$

Comme $S(1) = \gamma$, on a $\varphi(1) = 1$; de plus, d'après 2b,

$$S'(1) = \lim_{p \to \infty} \left(\sum_{n=1}^{p} \left(\frac{1}{n} - \frac{1}{n+1} \right) \right) = \lim_{p \to \infty} \left(1 - \frac{1}{p+1} \right) = 1,$$

d'où finalement :

$$\varphi'(1) = -\gamma.$$

6. Soient $n \ge 1$ et x > 0, on a par définition de φ_n :

$$\ln \varphi_n(x) = x \ln n + \sum_{k=1}^n \ln k - \ln x - \sum_{k=1}^n \ln(x+k)$$

$$= x \ln n - \sum_{k=1}^n \ln\left(1 + \frac{x}{k}\right) - \ln x$$

$$= x \ln n + \sum_{k=1}^n u_n(x) - \sum_{k=1}^n \frac{x}{n} - \ln x$$

$$= \sum_{k=1}^n u_n(x) - x \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) - \ln x$$

D'où, par définition de S et grâce à la question 3,

$$\forall x > 0$$
, $\ln \left(\varphi_n(x) \right)$ tend vers $S(x) - x\gamma - \ln x$ quand n tend vers $+\infty$.

7. (a) Soient $p \in \mathbb{N}^*$ et x > 0; π_p est dans \mathbb{R}^{+*} et

$$\ln \pi_p = \sum_{n=1}^p \frac{x}{n} - \sum_{n=1}^p \ln \left(1 + \frac{x}{n} \right) = \sum_{n=1}^p u_n(x) \underset{p \to \infty}{\longrightarrow} S(x).$$

D'où, par continuité de la fonction exp :

La suite
$$(\pi_p)_{p\geqslant 1}$$
 converge vers $L(x) = \exp S(x)$.

(b) Alors, par définition même de φ :

$$\forall x > 0 , \ \varphi(x) = \frac{L(x)}{x} \exp(-x\gamma).$$

Partie II

8. (a) Pour x réel, la fonction $f_x: t \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[$, à valeurs strictement positives et

$$f_x(t) \underset{t \to 0}{\sim} \frac{1}{t^{1-x}}$$
 et $t^2 f_x(t) \underset{t \to +\infty}{\longrightarrow} 0$ donc $f_x(t) \underset{t \to +\infty}{=} O\left(\frac{1}{t^2}\right)$.

Par conséquent, par comparaison aux intégrales de Riemann, f_x est intégrable sur]0,1] si et seulement si 1-x<1 (c'est-à-dire x>0) et f_x est intégrable sur $[1,+\infty[$ pour tout x. Par conséquent :

L'ensemble de définition de la fonction Γ est $]0, +\infty[$.

(b)
$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{T \to +\infty} \left[-e^{-t} \right]_{t=0}^{t=T} = \lim_{T \to +\infty} (1 - e^{-T}) = 1$$
:

$$\Gamma(1)=1.$$

(c) $t \mapsto t^x$ et $t \mapsto e^{-t}$ sont de classe C^1 sur $]0, +\infty[$ et le produit $t \mapsto t^x e^{-t}$ admet des limites nulles en 0 et en $+\infty$. Par intégration par parties

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt$$

$$= \left[-t^x e^{-t} \right]_0^{+\infty} + x \int_0^{+\infty} t^{x-1} e^{-t} dt$$

$$= x\Gamma(x)$$

9. (a) Par concavité de la fonction exp, on a : $\forall x \in \mathbb{R}$, $\exp x \geqslant 1 + x$; d'où, avec x = -t:

$$\forall t \geqslant 0 , \exp(-t) \geqslant 1 - t.$$

Soient alors $t \ge 0$ et $n \ge 1$; si $t \ge n$, $g_n(t) = 0$ et on a bien $0 \le g_n(t) \le \exp(-t)$; on suppose maintenant $0 \le t < n$, on peut appliquer le résultat ci-dessus à $\frac{t}{n}$ et on utilise la croissance de $x \mapsto x^n$ sur \mathbb{R}^+ :

$$0\leqslant 1-\frac{t}{n}\leqslant \exp\left(-\frac{t}{n}\right)\quad \text{d'où}\quad 0\leqslant \left(1-\frac{t}{n}\right)^n\leqslant \exp(-t).$$

Ainsi:

$$\forall t \geqslant 0 , \forall n \geqslant 1 , 0 \leqslant g_n(t) \leqslant \exp(-t).$$

(b) Soit x > 0 fixé; $f_n : t \mapsto t^{x-1}g_n(t)$ est nulle sur $[n, +\infty[$, continue sur]0, n], avec $f_n(t) \underset{t \to 0}{\sim} \frac{1}{t^{1-x}}$, donc, par comparaison à une intégrale de Riemann (1 - x < 1), f_n est intégrable sur $]0, +\infty[$, avec :

$$\int_0^{+\infty} f_n(t)dt = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1}dt.$$

On applique alors le théorème de convergence dominée à la suite de fonction (f_n) , sur l'intervalle $]0, +\infty[$: les f_n sont continue par morceaux sur $]0, +\infty[$, la suite (f_n) converge simplement sur $]0, +\infty[$ vers $f: t \mapsto t^{x-1} \exp(-t)$; en effet, pour t > 0 fixé, on a t < n pour n assez grand (précisément pour n > t!) et

$$\forall n > t , f_n(t) = \left(1 - \frac{t}{n}\right)^n t^{x-1} \underset{n \to \infty}{\longrightarrow} \exp(-t)t^{x-1}$$

car

$$\left(1 - \frac{t}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{t}{n}\right)\right)$$
 et $n\ln\left(1 - \frac{t}{n}\right) \underset{n \to \infty}{\sim} -t$

f est continue sur $]0,+\infty[$, il ne reste qu'à vérifier l'hypothèse de domination. Or, d'après la question précédente, on a

$$\forall t > 0 , \forall n \geqslant 1 , |f_n(t)| \leqslant f(t),$$

qui ne dépend pas de n et enfin f est intégrable sur $]0,+\infty[$; le théorème de convergence dominée me permet alors de conclure que

$$\int_{0}^{+\infty} f_n(t)dt \xrightarrow[n\to\infty]{} \int_{0}^{\infty} f(t)dt,$$

autrement dit:

$$\forall x > 0 , \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{x-1} dt = \Gamma(x).$$

10. (a) Pour tout réel x, la fonction $t \mapsto (1-t)^n t^{x-1}$ est continue sur]0,1], à valeurs positives, équivalente à $t \mapsto \frac{1}{t^{1-x}}$ au voisinage de 0, donc intégrable sur]0,1] si et seulement si x > 0.

L'ensemble de définition de la fonction I_n est $]0, +\infty[$.

(b) L'application $\varphi:]0, n] \longrightarrow]0, 1], t \longmapsto \frac{t}{n}$ est une bijection de classe \mathcal{C}^1 , donc par la formule de changement de variable

$$\int_0^1 (1-u)^n u^{x-1} du = \int_0^n \left(1 - \frac{t}{n}\right)^n \frac{t^{x-1}}{n^{x-1}} \cdot \frac{1}{n} dt = \frac{1}{n^x} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

On obtient:

$$\forall x > 0 , \forall n \geqslant 1 , \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = n^x I_n(x).$$

(c) De même, pour x > 0 et $n \ge 2$, on intègre par parties sur $[\varepsilon, 1]$:

$$\int_0^1 (1-t)^n t^{x-1} dt = \left[(1-t)^n \frac{t^x}{x} \right]_{t=0}^{t=1} + \frac{n}{x} \int_0^1 (1-t)^{n-1} t^x dt$$

Comme x > 0, on obtient

$$I_n(x) = \frac{n}{x}I_{n-1}(x+1).$$

Par une récurrence immédiate, il vient, compte tenu du fait que la relation ci-dessus reste correcte pour n=1 (en étendant la définition de I_n à I_0):

$$I_n(x) = \frac{n!}{x(x+1)\dots(x+n-1)}I_0(x+n) = \frac{n!}{x(x+1)\dots(x+n)}$$

et donc

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \frac{n^x n!}{x(x+1)\dots(x+n)} = \varphi_n(x).$$

Dans la partie 1., on a déterminé la limite de $\left(\ln \varphi_n(x)\right)$, qui donne, par continuité de la fonction exp, $\varphi_n(x) \underset{n \to \infty}{\longrightarrow} \varphi(x)$; finalement, par unicité de la limite :

$$\forall x > 0 , \Gamma(x) = \varphi(x).$$

Partie III

11. La fonction $h: t \mapsto \exp(-t) \ln^n t$ est continue sur $]0, +\infty[$, à valeurs positives et, d'après les croissances comparées des fonctions usuelles, on a

$$h(t) \underset{t \to 0^+}{=} o\left(\frac{1}{\sqrt{t}}\right)$$
 et $h(t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$,

donc, par comparaison aux intégrales de Riemann, h est intégrable sur]0,1] et sur $[1,+\infty[$:

$$\int_{0}^{+\infty} \exp(-t) \ln^{n} t \, dt \text{ existe.}$$

12. (a) Soit u>1 fixé, on a, pour $n\in\mathbb{N}$ et $t\in\left[u,\frac{1}{u}\right],\,\left|\ln t\right|\leqslant\ln u$ et $e^{-t}\leqslant1,$ d'où

$$\sup_{\left[u,\frac{1}{u}\right]} \left|v_n\right| \leqslant \frac{x^n (\ln u)^n}{n!} ;$$

or la série numérique (x et u étant fixés) $\sum_{n\geqslant 0} \frac{(x\ln u)^n}{n!}$ converge (série exponentielle, de somme $\exp(x\ln u)$).

Par conséquent :

La série de fonctions de terme général
$$v_n$$
 converge normalement sur $\left[\frac{1}{u}, u\right]$.

(b) A fortiori, la série de fonctions $\sum v_n$ converge uniformément sur $\left[u, \frac{1}{u}\right]$, d'où, grâce au théorème d'intégration terme à terme sur un segment :

$$\forall u > 1 , \sum_{n=0}^{+\infty} T_n(u) = \int_{1/u}^u \left(\sum_{n=0}^{+\infty} v_n(t) \right) dt.$$

13. (a) Pour tout n de \mathbb{N} , l'existence de a_n et b_n est justifiée, et

$$a_n + b_n = \frac{x^n}{n!} \int_0^{+\infty} \exp(-t) |\ln t|^n dt$$

d'où, par linéarité de l'intégrale, pour $p \in \mathbb{N}$,

$$\sum_{n=0}^{p} (a_n + b_n) \leqslant \int_0^{+\infty} \exp(-t) \sum_{n=0}^{p} \frac{(x|\ln t|)^n}{n!} dt.$$

Or, pour tout t > 0, x étant fixé, la série numérique de terme général $\frac{(x|\ln t|)^n}{n!}$ est convergente, de somme $\exp(x|\ln t|)$; comme elle est à termes positifs, ses sommes partielles sont majorées par sa somme, d'où

$$\forall t > 0 \quad \exp(-t) \sum_{n=0}^{p} \frac{(x|\ln t|)^n}{n!} \le \exp(-t) \exp(x|\ln t|) = \exp(-t + x|\ln t|).$$

Pour
$$t \in (0, 1]$$
, $\exp(-t + x |\ln t|) = \exp(-t - x \ln t) = \frac{\exp(-t)}{t^x} \underset{t \to 0^+}{\sim} \frac{1}{t^x}$ et,

pour
$$t \ge 1$$
, $\exp(-t + x |\ln t|) = \exp(-t + x \ln t) = t^x \exp(-t) = o\left(\frac{1}{t^2}\right)$.

On en déduit, par comparaison aux intégrales de Riemann, que la fonction $t \mapsto \exp(-t + x|\ln t|)$ est intégrable sur $]0, +\infty[$, d'où finalement, par croissance de l'intégrale :

$$\forall p \geqslant 0 , \sum_{n=0}^{p} (a_n + b_n) \leqslant \int_0^{+\infty} \exp(-t + x|\ln t|) dt$$

(b) On a, pour tout u > 1, $|T_n(u)| \le a_n + b_n$, d'où $\sup_{]1,+\infty[} |T_n| \le a_n + b_n$. Or on vient de voir que la suite des sommes partielles de la série numérique de terme général $a_n + b_n$ est majorée. Comme cette série est à termes positifs, il en résulte qu'elle converge et, par conséquent :

La série de fonctions de terme général T_n converge normalement sur $]1, +\infty[$.

14. (a) Par définition, $\Gamma(1+x) = \int_0^{+\infty} t^x \exp(-t) dt$, où, pour tout t > 0: $t^x = \exp(x \ln t) = \sum_{n=0}^{\infty} \frac{x^n (\ln t)^n}{n!}$. Ainsi :

$$\forall x \in]0,1[, \Gamma(1+x) = \int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \exp(-t)(\ln t)^n \right) dt.$$

(b) On a $\Gamma(1+x) = \lim_{u \to +\infty} \sum_{n=0}^{\infty} T_n(u)$. Or, on vient de voir que la série de fonctions $\sum T_n$ converge uniformément sur $]1, +\infty[$; comme par ailleurs, pour tout $n, T_n(u) \underset{u \to +\infty}{\longrightarrow} \int_0^{+\infty} v_n(t) dt$ (car v_n est intégrable sur $]0, +\infty[$), le théorème de la double limite s'applique : la série numérique de terme général $\int_0^{+\infty} v_n(t) dt$ converge et

$$\lim_{u \to +\infty} \sum_{n=0}^{\infty} T_n(u) = \sum_{n=0}^{\infty} \lim_{u \to +\infty} T_n(u).$$

Autrement dit:

$$\forall x \in]0,1[, \Gamma(1+x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \left(\int_0^{+\infty} \exp(-t)(\ln t)^n dt \right).$$

15. (a) D'après la partie I, on a

$$\varphi'(x) = \left(-\frac{1}{x} - \gamma + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)\right) \cdot \varphi(x),$$

soit, puisque $\varphi = \Gamma$ d'après la dernière question de la partie ${\bf 2}$:

$$\boxed{\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).}$$

Par ailleurs, pour tout $n \ge 1$, puisque on a $x \in]0,1[$, on a $\left|-\frac{x}{n}\right| < 1$ et on connaît la série géométrique de raison $-\frac{x}{n}$:

$$\frac{1}{n+x} = \frac{1}{n} \cdot \frac{1}{1-\left(-\frac{x}{n}\right)} = \frac{1}{n} \cdot \sum_{k=0}^{\infty} \left(-\frac{x}{n}\right)^k$$

d'où

$$\frac{1}{n} - \frac{1}{n+x} = \frac{1}{n} - \frac{1}{n} \cdot \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{n^k} = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{n^{k+1}},$$

soit, d'après le résultat précédent :

$$\boxed{\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{n^{k+1}} x^k \right)}.}$$

(b) L'énoncé nous autorise à admettre que

$$\forall x \in]0,1[, \frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{n^{k+1}} x^k \right) = -\frac{1}{x} - \gamma + \sum_{k=1}^{\infty} (-1)^{k+1} x^k \left(\sum_{n=1}^{\infty} \frac{1}{n^{k+1}} \right),$$

soit, en réindexant et en changeant le nom de la variable :

$$\forall t \in]0,1[, \frac{\Gamma'(t)}{\Gamma(t)} = -\frac{1}{t} - \gamma + \sum_{k=2}^{\infty} (-1)^k t^{k-1} \zeta(k).$$

Soit $\varepsilon \in]0,1[$; en intégrant sur le segment $[\varepsilon,x]$, j'obtiens, sachant que Γ est à valeurs strictement positives :

$$[\ln \Gamma(t)]_{t=\varepsilon}^{t=x} = -\ln x + \ln \varepsilon - \gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k).$$

L'intégration terme à terme de la série est justifiée, du fait qu'il s'agit de la fonction somme d'une série entière de rayon de convergence au moins égal à $1-\operatorname{car}\left|(-1)^k\frac{\zeta(k)}{k}\right|\leqslant \frac{\zeta(2)}{2}$ pour tout $k\geqslant 2-\operatorname{et}$ que l'on intègre sur un segment inclus dans l'intervalle ouvert de convergence de cette série entière, où elle converge normalement. on a donc :

$$\ln\left(x\Gamma(x)\right) = -\gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k) + \ln\left(\varepsilon\Gamma(\varepsilon)\right),$$

cela pour tout ε de]0,1[; or $\varepsilon\Gamma(\varepsilon)=\Gamma(1+\varepsilon)\underset{\varepsilon\to 0}{\longrightarrow}\Gamma(1)=1$, puisque $\Gamma=\varphi$ est continue en 1 (on a vu dans la partie 1 qu'elle était dérivable sur $]0,+\infty[$). A la limite, lorsque ε tend vers 0, j'obtiens donc

$$\ln \Gamma(1+x) = -\gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k),$$

soit, en appliquant la fonction exp:

$$\forall x \in]0,1[, \Gamma(1+x) = \exp\left(-\gamma x + \sum_{k=2}^{+\infty} (-1)^k \frac{x^k}{k} \zeta(k)\right).$$

(c) La formule de Taylor, appliquée à la somme de la série entière évoquée ci-dessus, me donne

$$\sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k) \underset{x \to 0}{=} \frac{\zeta(2)}{2} x^2 + o(x^2)$$

d'où

$$\Gamma(1+x) \underset{x \to 0}{=} \exp\left(-\gamma x + \frac{\zeta(2)}{2}x^2 + o(x^2)\right) \underset{x \to 0}{=} 1 - \gamma x + \frac{\gamma^2 + \zeta(2)}{2}x^2 + o(x^2)$$

Par ailleurs, on a vu que

$$\forall x \in]0,1[, \Gamma(1+x) = \sum_{n=0}^{\infty} \lambda_n x^n \quad \text{où} \quad \forall n \in \mathbb{N} , \ \lambda_n = \int_0^{+\infty} \exp(-t) \frac{(\ln t)^n}{n!} dt.$$

Ainsi, la série entière $\sum \lambda_n x^n$ a un rayon de convergence au moins égal à 1, sa fonction somme admet en 0 le développement limité $\lambda_0 + \lambda_1 x + \lambda_2 x^2 + o(x^2)$. D'où, par unicité de ce développement limité :

$$\lambda_0 = 1 \; , \; \lambda_1 = -\gamma \; , \; \lambda_2 = \frac{\gamma^2 + \zeta(2)}{2} .$$

En particulier, sachant que $\zeta(2) = \frac{\pi^2}{6}$:

$$\int_0^{+\infty} \exp(-t) \ln^2 t \, dt = \gamma^2 + \frac{\pi^2}{6}.$$

Central PSI 2002