

www.datascienceacademy.com.br

Machine Learning

O que não veremos neste curso?

Conceitos Básicos de Python ou R

Comprovação dos Modelos Matemáticos

Frameworks de Big Data (Spark / Hadoop)

Este não é um curso básico

Pré-requisitos

- Python Fundamentos para Análise de Dados
- Big Data Real-Time Analytics com Python e Spark
- R Fundamentos para Análise de Dados
- Big Data Analytics com R e Azure Machine Learning
- Big Data Fundamentos
- Introdução à Ciência de Dados

Quais Ferramentas Usaremos ao Longo do Curso?

Machine Learning

Dedicação

6 a 8 horas por semana

Comunicação

Utilize nossos canais de comunicação

Prática

Você terá acesso a todos os scripts comentados linha a linha

Lembre-se:

Seu aprendizado também depende de você!

Desenvolver o processo de modelagem de dados para Machine Learning

Conhecer o principais algoritmos de Machine Learning, suas aplicações e diferenças

Aprender técnicas de Machine Learning e Processamento de Dados

Aplicar as técnicas de aprendizado de máquina e desenvolver modelos preditivos

Método de Ensino

Exposição Teórica

Exposição Prática

Exercícios e Quizzes

E-books e Manuais

Bibliografia, Referências e Links Úteis

Scripts

Projetos

Projeto 1 – Implementando um Classificador de Spam com Naïve Bayes

Projeto 2 – Construindo um Sistema de Recomendação de Filmes

Projeto 3 – Criando um Modelo de Machine Learning para Retorno Sobre Investimentos

Projeto 4 – Aplicando Machine Learning para Otimizar o Sistema de Voos de um Companhia Aérea

Projeto 5 – Análise SVM para Prever a Força do Real em Relação a Outras Moedas

Projetos completos, com especificação, solução e documentação, além dos scripts usados para criação dos modelos preditivos

Avaliação Final

70% de Aproveitamento

Acesse o Curso do Smartphone ou Tablet com nossas Apps para iOS e Android

O que é Aprendizado de Máquina?

- Big Data Analytics com R e Azure
- Big Data Real-Time Analytics com Python e Spark
- Engenharia de Dados com Hadoop e Spark
- Machine Learning
- Business Analytics
- Visualização de Dados

Aprendizagem na Era do Big Data

- Grande Volume de Dados
- Evolução das Técnicas Analíticas
- Análise de Dados em Tempo Real
- Desenvolvimento de Aplicações Inteligentes

Aprendizado é a capacidade de se adaptar, modificar e melhorar seu comportamento e suas respostas, sendo portanto uma das propriedades mais importantes dos seres ditos inteligentes, sejam eles humanos ou não

Percebeu a semelhança do processo de aprendizado de seres humanos e através de algoritmos de Machine Learning?

Já podemos então definir Aprendizado de Máquina

Machine Learning é um subcampo da Inteligência Artificial que permite dar aos computadores a habilidade de aprender sem que sejam explicitamente programados para isso

Machine Learning ou Aprendizado de Máquina é um método de análise de dados que automatiza o desenvolvimento de modelos analíticos. Usando algoritmos que aprendem interativamente a partir de dados, o aprendizado de máquinas permite que os computadores encontrem insights ocultos sem serem explicitamente programados para procurar algo específico.

Tipos de Aprendizagem

Mas se as máquinas estão aprendendo a aprender, isso significa que elas estão ficando inteligentes?

Inteligência

Dotado de inteligência, capaz de compreender, esperto, habilidoso

Inteligência

Faculdade de conhecer, de aprender, de conceber, de compreender: a inteligência distingue o homem do animal

Inteligência Artificial

Conjunto de teorias e de técnicas empregadas com a finalidade de desenvolver máquinas capazes de simular a inteligência humana

Inteligência Artificial

A Inteligência Artificial é uma área de estudos da computação que se interessa pelo estudo e criação de sistemas que possam exibir um comportamento inteligente e realizar tarefas complexas com um nível de competência que é equivalente ou superior ao de um especialista humano

Inteligência Artificial

Estamos quase lá!

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Aprendizado Não Supervisionado

Don't model the World; Model the Mind.

Por que Machine Learning Está Transformando o Mundo?

Algoritmos de aprendizagem de máquina, aprendem a induzir uma função ou hipótese capaz de resolver um problema a partir de dados que representam instâncias do problema a ser resolvido

As pessoas podem normalmente criar um ou dois bons modelos preditivos por semana; o aprendizado de máquina pode criar milhares de modelos por semana

Machine Learning não está transformando nosso mundo;

Machine Learning não está transformando nosso mundo;

Machine Learning já transformou o nosso mundo.

Que Ferramentas Usaremos Neste Curso?

Processo de Aprendizagem

ice Academy

Tipos de Aprendizagem de Máquina

Aprendizagem Supervisionada

Aprendizagem Não Supervisionada

Aprendizagem Por Reforço

Aprendizagem Supervisionada

Aprendizagem Supervisionada

Novos Dados

Dados de Treino

Algoritmo de Machine Learning

Modelo Preditivo

Previsões

nce Academy

Os algoritmos de aprendizado supervisionado fazem previsões com base em um conjunto de exemplos

Aprendizagem Supervisionada

Classificação

Regressão

Detecção de Anomalias

Aprendizagem Supervisionada

É o termo usado sempre que o programa é "treinado" sobre um conjunto de dados pré-definido

Aprendizagem Não Supervisionada

Aprendizagem Não Supervisionada

Este tipo de aprendizado, assemelha-se aos métodos que nós seres humanos usamos para descobrir se certos objetos ou eventos são da mesma classe

Alguns sistemas de recomendação que você encontra na internet sob a forma de automação de marketing são baseados neste tipo de aprendizagem

O objetivo de um algoritmo de aprendizado não supervisionado é organizar os dados de alguma forma ou descrever sua estrutura

Aprendizagem Não-Supervisionada

Termo usado quando um programa pode automaticamente encontrar padrões e relações em um conjunto de dados

Aprendizagem Não-Supervisionada

Os exemplos mais comuns são o K-Means, o Singular Value Decomposition (SVD) e o Principal Component Analysis (PCA)

Aprendizado Indutivo

Indução é a forma de inferência lógica que permite que conclusões gerais sejam obtidas de exemplos particulares

O processo de indução é indispensável ao ser humano, pois é um dos principais meios de criar novos conhecimentos e prever eventos futuros

Aprendizado Supervisionado

Aprendizado Não Supervisionado

Reinforcement Learning (Aprendizagem por Reforço)

Reinforcement Learning

Similar ao que chamamos de aprender por tentativa e erro

No aprendizado por reforço, o algoritmo escolhe uma ação em resposta a cada ponto de dados

O aprendizado por reforço é comum em robótica, em que o conjunto de leituras do sensor, em um ponto no tempo, é um ponto de dados e o algoritmo deve escolher a próxima ação do robô

O aprendizado por reforço é definido não caracterizando algoritmos de aprendizado, mas sim o problema a ser aprendido

Treinamento, Validação e Teste

Treinamento, Validação e Teste

75 a 70% - dados de treino 25 a 30% - dados de teste

Treinamento, Validação e Teste

75 a 70% - dados de treino 20% - dados de validação 10% - dados de teste

Data Science Academy

Treinamento, Validação e Teste

Data Science Academy

Treinamento, Validação e Teste

n > 10.000

Cross-Validation

O que é um Modelo?

Dados

3s

45

44.1m

78.5m

O processo de "fitting" um modelo a um dataset é chamado de treinamento do modelo

Data Science Academy

Seu trabalho como Cientista de Dados é buscar sempre o melhor modelo possível para suas previsões

O modelo pode ser implantado para resolver o problema de negócio para o qual ele foi desenvolvido

Lembre-se: um modelo de Machine Learning será usado para resolver um problema específico

Não caia na tentação de querer aplicar seu modelo a tudo que você vê pela frente

Data Science Academy

Podemos representar a realidade e toda sua complexidade através de funções matemáticas

É o processo de identificar a qual conjunto de categorias uma nova observação pertence, com base em um conjunto de dados de treino contendo observações (ou instâncias) cuja associação é conhecida

Exemplo: determinar o diagnóstico de uma doença em um paciente, observando as características similares em outros grupos de pacientes

Variável Target
Rode assumir os valores:
Bompala Rujence Academy

Total de Itens comprados

Classificação

- O Sim (investir em pré-venda)
- Não (não investir em pré-venda)

Data Science Academy

Total de Itens comprados

Classificação

- O Sim (investir em pré-venda)
- Não (não investir em pré-venda)

Data Science Academy

Bias

Qualquer preferência de uma hipótese sobre a outra

The Dark Side of Big Data

Recomendo

Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy

Regressão

Regressão

Um estudo de regressão busca, essencialmente, associar uma variável Y (denominada variável resposta ou variável dependente) a uma outra variável X (denominada variável explanatória ou variável independente)

Como a Regressão pode ser usada?

- Investigação Científica
- Relações Causais
- Indentificação de Padrões

Compreendendo a Regressão

Compreendendo a Regressão

$$\hat{y} = a + bx$$

Onde:

= valor previsto de y dado um valor para x

= variável independente

= ponto onde a linha intercepta o eixo y

= inclinação da linha reta

Estimativa dos Mínimos Quadrados

Deve-se determinar α e β de modo que a somatória dos quadrados dos resíduos seja a menor possível (método de Mínimos Quadrados Ordinários - MQO, ou, em inglês, Ordinary Least Squares - OLS)

Os coeficientes dessa reta podem ser estimados pelo Método dos Quadrados Mínimos

Correlação

Gráfico A (r = 1.0): correlação positiva perfeita entre x e y

Gráfico B (r = -1.0): correlação negativa perfeita entre x e y

Gráfico C (r = 0.6): relação positiva moderada: y tende a aumentar se x aumenta, mas não

necessariamente na mesma taxa observada no Gráfico A

Gráfico D (r = -0.4): relação negativa fraca: o coeficiente de correlação é próximo de zero ou

negativo: y tende a diminuir se x aumenta

Gráfico E (r = 0): Sem relação entre x e y

Os valores de **r** variam entre **-1.0** (uma forte relaç<mark>ã</mark>o negativa) até **+1.0**, uma forte relação positiva.

Correlação Não Implica Causalidade

Só porque (A) acontece juntamente com (B) não significa que (A) causa (B)

Clustering

Clustering

Algoritmos de Aprendizagem Não Supervisionada

Categoria	Algoritmo
Algoritmos Baseados em Centroides	K-means, Gaussian Mixture Model, Fuzzy c-mean
Algoritmos Baseados em Conectividade	Algoritmos hierárquicos
Algoritmos Baseados em Densidade	DBSCAN, Optics
Probabilísticos	LDA
Redução de Dimensionalidade	tSNE, PCA, KPCA
Redes Neurais / Deep Learning	Autoencoders

Machine Learning é Dividir Para Conquistar

Mineração de Dados

X

Aprendizagem de Máquina

X

Aprendizagem Profunda

Mineração de Dados

Aprendizagem de Máquina

Aprendizagem Profunda

CRISP-DM

Cross Industry Standard Process for Data Mining

Como Selecionar o Algoritmo Ideal Para Cada Problema?

- Árvores de decisão
- Random Forests
- Descoberta de associações e sequência
- · Boosting e bagging de gradiente
- Máquinas de vetores de suporte
- Redes neurais
- Mapeamento de nearest-neighbor
- Cluster k-means
- · Mapas auto-organizáveis
- Técnicas de otimização de busca local (por ex., algoritmos genéticos)
- Maximização da expectativa
- Análise Multivariada Adaptive regression splines
- Redes Bayesianas
- Kernel para estimativa de densidade
- Análise de componentes principais
- · Decomposição do valor singular
- Modelos de Gauss

São muitos os algoritmos de Machine Learning

Quando alguém perguntar a você:

Qual algoritmo de Machine Learning devo usar?

A resposta correta será:

Depende.

Precisão

Tempo de Treinamento

Linearidade

Número de Parâmetros

Comparação entre os principais algoritmos

Classificação Binária (2 classes)

Alto

Algoritmo	Tempo de Treinamento	Precisão	Linearidade
Regressão Logística			
Árvore de Decisão			N/A
Random Forest			N/A
Redes Neurais			N/A
SVM			
Métodos Bayesianos			.

Classificação Multiclasse (mais de 2 classes)

Alto

Algoritmo	Tempo de Treinamento	Precisão	Linearidade	
Regressão Logística	•		•	
Árvore de Decisão			N/A	
Random Forest			N/A	
Redes Neurais			N/A	
SVM				

Alto

Algoritmo	Tempo de Treinamento	Precisão	Linearidade
Linear			
Árvore de Decisão			N/A
Random Forest			N/A
Redes Neurais			N/A
Poisson			

Não Supervisionados

Alto

