Complex Numbers

A complex number is an ordered pair of real numbers, (a, b) = a + bi. A vector in \mathbb{R}^2 is also an ordered pair, (a, b) of real numbers.

Indeed, vector addition and scalar multiplication on complex numbers are defined just as with \mathbb{R}^2 . However, unlike vectors in \mathbb{R}^2 , there is also an operation \cdot . We desire for $(0,1)\cdot(0,1)=(-1,0)$; essentially, $i^2=-1$. We say that i is a square foot of -1; every complex number except 0 has two square roots.

$$(a, b) \cdot (c, d) = (a + bi) + (c + di)$$

 $= a(c) + adi + bci + bd(i^2)$
 $= (ac - bd) + (ad + bc)i$
 $= (ac - bd, ad + bc)$

Thus, \mathbb{R}^2 with the operations + and the above defined complex multiplication is known as \mathbb{C} . We write as a+bi instead of (a,b).

Given $z=(a+bi)\in\mathbb{C}$, we write $\mathrm{Re}(z)=a$ and $\mathrm{Im}(z)=b$. If $\mathrm{Im}(z)=0$, then $z\in\mathbb{R}\times\{0\}\subset\mathbb{C}$. However, many people say that $\mathbb{R}\subseteq\mathbb{C}$, even if \mathbb{C} isn't defined as such.

Reciprocals of Complex Numbers

Let $z \in \mathbb{C}$, where $z \neq 0$. Then, $\exists w \in \mathbb{C}$ such that zw = 1.

Let w = c + di. We want to show that zw = 1.

$$(a + bi) + (c + di) = (ac - bd) + (ad + bc)i$$

with the condition that

$$ac - bd = 1$$
$$ad + bc = 0.$$

Thus, let w = c + di, with $a, b \neq 0$

$$c = \frac{a}{a^2 + b^2}$$
$$d = \frac{-b}{a^2 + b^2}$$

For every $z \neq 0$, with z = a + bi, the *reciprocal* of z is defined as $\frac{1}{z} = \frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i$. Then, for $w \in \mathbb{C}$, we define

$$\frac{w}{z} := w\left(\frac{1}{z}\right).$$

Properties of Complex Numbers

Let $z = a + bi \in C$. Then, the (Euclidean) norm (or absolute value) of z is defined as

$$|z| = \sqrt{a^2 + b^2}.$$

The conjugate of z = a + bi is $\overline{z} = a - bi$.

- (i) $z\overline{z} = |z|^2$
- (ii) $\overline{(\overline{z})} = z$

(iii)
$$\overline{(z+w)} = \overline{z} + \overline{w}$$

(iv)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

(v)
$$z + \overline{z} = 2\text{Re}(z)$$
, so $\text{Re}(z) = \frac{z + \overline{z}}{2}$

(vi)
$$z - \overline{z} = 2 \text{Im}(z)i$$
, so $\text{Im}(z) = \frac{z - \overline{z}}{2i}$

Polar Representation

Let z = a + bi (or z = (a, b)). Then, $|z| = \sqrt{a^2 + b^2}$ is the *radius*, and the *argument* is found by $\theta = \arctan(b/a)$ for $a \neq 0$. Therefore, the full polar representation is as follows:

$$z = |z| (\cos \theta + i \sin \theta).$$
 $\theta \in [0, 2\pi)$

If z = 0, then |z| = 0, and arg z is undefined.

For example, we can find arg *i* in $[\pi, 3\pi)$ as $\frac{5\pi}{2}$.

For z_1 and z_2 in polar form, we have:

$$|z_1 z_2| = |z_1||z_2| \tag{1}$$

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2 \mod 2\pi \tag{2}$$

Proof of (1):

$$|z_1 z_2|^2 = (z_1 z_2) \overline{(z_1 z_2)}$$

$$= z_1 z_2 \overline{z_1} \overline{z_2}$$

$$= z_1 \overline{z_1} z_2 \overline{z_2}$$

$$= |z_1|^2 |z_2|^2$$

Since $|z| \ge 0$, we get $|z_1 z_2| = |z_1||z_2|$.

Let $z=2(\cos\pi/6+i\sin\pi/6)$, and let $f:\mathbb{C}\to\mathbb{C}$ defined as f(w)=zw. Then, f rotates w by $\pi/6$ and scales w by 2.

Theorem: For $n \in \mathbb{N}$, if $z = r(\cos \theta + i \sin \theta)$, then $z^n = r^n(\cos(n\theta) + i \sin(n\theta))$.

Proof: Induct on n. For the base case, we know that n = 1 satisfies this property. For n > 1, we have:

$$z^{n+1} = (z^n)(z)$$

$$= (r^n(\cos(n\theta) + i\sin(n\theta))) r(\cos\theta + i\sin\theta)$$

$$= (r^n)(r) (\cos(n\theta + \theta) + i\sin(n\theta + \theta))$$
Polar Representation Definition
$$= r^{n+1}(\cos((n+1)\theta) + i\sin((n+1)\theta))$$

We can use this technique to find the "roots of unity." For example, to find all z such that $z^3 = 1$, we use our

technique:

$$z^{3} = 1$$

$$|z| = 1$$

$$\arg z^{3} = 0$$

$$3 \arg z = 0 \mod 2\pi$$

$$\arg z = \frac{k2\pi}{3}$$

$$= 0, \frac{2\pi}{3}, \frac{4\pi}{3}$$

$$z_{1} = 1$$

$$z_{2} = (\cos 2\pi/3 + i \sin 2\pi/3)$$

$$z_{3} = (\cos 4\pi/3 + i \sin 4\pi/3)$$

We can see that $z_2^2 = z_3$.

For the *n* case, we find $z_2 = \cos(2\pi/n) + i\sin(2\pi/n)$, and $z_k = z_2^{k-1}$.

Exponential, Logarithm, and Trigonometric Functions in $\mathbb C$

Exponential

Let z = a + bi. We define e^{a+bi} as follows:

$$e^{a+bi} = e^a (\cos b + i \sin b)$$

Recall that for every nonzero complex number, $z = |z|(\cos \theta + i \sin \theta)$, where $\theta = \arg z$. Thus,

$$z = |z|e^{i\theta}$$
$$= |z|e^{i\arg z}.$$

The function e^z has some properties similar to the function e^x in real numbers, and some properties varying with the real numbers.

$$e^z e^w = e^{z+w}$$
$$e^z \neq 0$$

However, there are some differences:

$$|e^{i\theta}| = 1$$
 $\forall \theta$ $e^{a+bi} = e^a$

From these properties, we find Euler's equation:

$$e^{i\pi} + 1 = 0$$

Additionally, e^z is periodic, while $f(x) = e^x$ is injective:

$$e^{z+2n\pi} = e^{z} \left(\cos(2n\pi) + i\sin 2n\pi\right)$$
$$= e^{z}$$

When examining the function $f: \mathbb{C} \to \mathbb{C} \setminus \{0\}$, $z \mapsto e^z$, we find that the following happen:

- $f(\mathbb{R}) = (0, \infty)$ we apply $f(x) = e^x$.
- $f(a + bi) = e^a e^{bi} e^a$ is rotated by b.
- $f(\mathbb{R} + bi)$ is expressed as the line along b radians through the origin.
- Therefore, $f(A_0) = \mathbb{C} \setminus \{0\}$, where $A_0 = \{a + bi \mid a \in \mathbb{R}, b \in [0, 2\pi)\}$.

Logarithm

Recall that for a function $f: A \to B$, f^{-1} is a function if f is injective. However, for any f, it is the case that $f^{-1}(b)$ does exist, defined as follows:

$$f^{-1}(b) = \{a \mid f(a) = b\}.$$

For the function $f(z) = e^z$, f is not one to one, so for $w = e^z$, $f^{-1}(w) = \{z' \in \mathbb{C} \mid e^{z'} = w\}$. We can find this as $f^{-1}(w) = \{z + 2n\pi i \mid n \in \mathbb{Z}\}$.

We define $\log(w) := \{z \in \mathbb{C} \mid e^z = w\}$. For a fixed $\theta \in \mathbb{R}$, we define $\log_{A_{\theta}}(w) := \{z \mid e^z = w, z \in A_{\theta}\}$.

Let $z = 1 + \frac{5\pi}{2}i$. Then,

$$\log_{A_{-\pi}} e^z = 1 + \frac{\pi}{2}i$$

Let $w \in \mathbb{C} \setminus \{0\}$. To find log w (all values), then

$$z \in \log w$$

$$e^{z} = w$$

$$= |w|e^{i \arg w}$$

$$e^{a+bi} = |w|e^{i \arg w}$$

$$e^{a}e^{ib} = |w|e^{i \arg w}$$

Therefore, $a = \ln |w|$ and $b = \arg w$. Additionally, the following hold, for $z_1, z_2 \in \mathbb{C}$:

$$\log_{A_a}(z_1 z_2) = \log_{A_a}(z_1) + \log_{A_a}(z_2) + 2n\pi i$$

Cosine and Sine

$$e^{ib} = \cos b + i \sin b$$

$$e^{-ib} = \cos b - i \sin b$$

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z := \frac{e^{iz} - e^{-iz}}{2i}$$