

# Sequence-to-Sequence model

VietAI teaching team







Legend:



Pointwize op



Сору



# Công thức LSTM

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- $ullet x_t \in \mathbb{R}^d$ : Vector đầu vào
- $ullet f_t \in \mathbb{R}^h$ : Vector cổng forget
- $ullet i_t \in \mathbb{R}^h$ : | Vector cổng input
- $ullet o_t \in \mathbb{R}^h$ : Vector cổng output
- $ullet h_t \in \mathbb{R}^h$ : Vector đầu ra của mỗi cell
- $ullet c_t \in \mathbb{R}^h$ : Vector trạng thái mỗi state

t: Giá trị đang xét tại thời điểm t

Khởi tạo: 
$$c_0 = h_0 = [0, ..., 0]$$



- $\sigma_q$ : sigmoid function.
- $\sigma_c$ : hyperbolic tangent



$$ullet W \in \mathbb{R}^{h imes d}$$
 ,  $U \in \mathbb{R}^{h imes h}$  and  $b \in \mathbb{R}^h$  :

Ma trận weight và bias cần học

d và h là số chiều vector đầu vào và đầu ra

#### So sánh RNN và LSTM





#### 2 Gated Recurrent Unit





#### Công thức GRU





$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1-z_t) \circ h_{t-1} + z_t \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$

#### Công thức GRU





$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1-z_t) \circ h_{t-1} + z_t \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$

#### Công thức GRU





$$z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t = (1-z_t)\circ h_{t-1} + z_t\circ \sigma_h(W_h x_t + U_h(r_t\circ h_{t-1}) + b_h) \ ag{Thông tin update mới: } \widetilde{h_t}$$

#### Bidirectional RNN





#### Deep-stacked RNN





#### Deep-stacked RNN





$$\overrightarrow{h}_{t}^{i} = f\left(\overrightarrow{W}^{i}x_{t} + \overrightarrow{U}^{i}\overrightarrow{h}_{t-1}^{i}\right)$$

$$\overleftarrow{h}_{t}^{i} = f\left(\overleftarrow{W}^{i}x_{t} + \overleftarrow{U}^{i}\overleftarrow{h}_{t+1}^{i}\right)$$

$$y_t = \operatorname{softmax}\left(\left[\overleftarrow{h}_t^i, \overrightarrow{h}_t^i\right]\right)$$

# Deep-stacked RNN





"is" "the" "problem" target word  $y_1$ *y*<sub>2</sub> *y*<sub>3</sub> output likelihood  $W_{hy}$  $|W_{hh}|$  $h_2$  $h_1$  $h_3$ hidden state  $W_{xh}$  $x_1$  $x_2$  $x_3$ input embedding "What" "is" "the" input word

Character-level RNN

Word-level RNN

# Nội dung



- Pre Neural Machine Translation
- Neural Machine Translation
- 3. Sequence-to-Sequence model





- Pre Neural Machine Translation
- 2. Neural Machine Translation
- 3. Sequence-to-Sequence model

#### Machine Translation - definition



- Machine translation:
  - Input x: 1 câu trong ngôn ngữ nguồn (source language)
  - Output y: 1 câu trong ngôn ngữ đích (destination language)
- Ví dụ:

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau

#### 1950s: Early Machine Translation



- Nghiên cứu về machine translation bắt đầu từ năm 1950s
- Đa số được áp dụng trên cặp ngôn ngữ Russian → English
- Hệ thống dịch máy thường chỉ sử dụng luật (rule-based model)



#### 1990s-2010s: Statistical Machine Translation



- Ý tưởng: Xây dựng một mô hình xác suất từ ngữ liệu
- Ví dụ: tiếng Anh → tiếng Pháp
  - Cần tìm một câu tiếng Anh y đúng nghĩa nhất, với đầu vào là một câu tiếng Pháp x

$$\operatorname{argmax}_{y} P(y|x)$$

• Sử dụng mô hình Bayes để chia P(y|x) thành hai phần để học riêng lẻ



Models how to write good English (fluency). Learnt from monolingual data.

#### 1990s-2010s: Statistical Machine Translation



- Bài toán trở thành: Cách học được một translation model P(y|x)?
  - Sử dụng một lượng ngữ liệu song ngữ lớn (parallel data) bao gồm những cặp câu Anh/Pháp được người dịch sẵn



#### Learning alignment for SMT



- **Bài toán trở thành**: Cách học được một translation model P(y|x) từ parallel corpus?
  - Tiếp tục chia nhỏ công thức:

Với a là alignment (cạnh nối giữa những từ trong ngôn ngữ nguồn và những từ trong ngôn ngữ đích)



# Learning alignment for SMT



- Alignment là sự tương ứng với nhau giữa những từ cụ thể trong một cặp câu của tập ngữ liệu song ngữ
- "Weak" point: sự khác nhau về typology của các ngôn ngữ khác nhau sẽ





Alignment có thể là quan hệ many-to-one





• Alignment có thể là quan hệ one-to-many





Trường hợp đặc biệt







• Alignment có thể là quan hệ many-to-many (phrase level)





# Learning alignment for SMT



- Để xây dựng được mô hình xác suất P(x, a|y):
  - Xác suất của một từ trong ngôn ngữ nguồn được align với một từ khác trong ngôn ngữ đích (và có phụ thuộc vào vị trí)
  - Xác suất của một từ trong ngôn ngữ nguồn được align với nhiều từ khác trong ngôn ngữ đích (và có phụ thuộc vào số lượng từ)
  - 0 ...
- Alignment không hiển thị trong ngữ liệu latent variable

#### Decoding for SMT





- Vét can → expensive computational cost
- Solution: sử dụng thuật toán heuristic search để tìm ra translation phù hợp nhất, loại bỏ đi những hypotheses có xác suất thấp
  - Quá trình này được gọi là decoding

#### 1 Heuristic search for SMT





#### Heuristic search for SMT





#### Statistical Machine Translation



- Hệ thống SMT tốt sẽ cực kỳ phức tạp
  - Cần nhiều feature engineerings
  - Sẽ có nhiều ad-hoc features để có thể xử lý được những trường hợp
     đặc biệt của mỗi ngôn ngữ
  - Cần nhiều chi phí để lưu trữ resource (vd bảng của những phrase tương ứng nhau)
  - Cần nhiều nhân lực để bảo trì hệ thống, làm những việc tương tự
     nhau cho từng cặp ngôn ngữ
- → Neural Machine Translation





- Pre Neural Machine Translation
- Neural Machine Translation
- 3. Sequence-to-Sequence model

#### Neural Machine Translation



- Neural Machine Translation là hệ thống dịch máy sử dụng một mạng neurons
- Cấu trúc mạng neurons sử dụng cho bài toán neural machine translation
   được gọi là sequence-to-sequence model (seq2seq) và bao gồm 2 RNNs

#### Neural Machine Translation





# 2 Seq2seq model



- Seq2seq model còn có thể được dùng cho các bài toán khác
- Ví dụ:
  - Text summarization (long text → short text)
  - Dialogue (previous utterances → next utterances)
  - Parsing (input text → output parse as sequence)
  - Code generation (natural language → Python code)

# Conditional language model



- Seq2seq là một ví dụ của conditional language model
  - Language model: vì decoder dự đoán từ tiếp theo cho target sentence y
  - Conditional: vì dự đoán của decoder được dự đoán dựa trên source sentence x
- NMT tính xác suất P(y|x), trong đó:

$$P(y|x) = P(y_1|x)P(y_2|y_1,x)P(y_3|y_1,y_2,x) \dots P(y_T|y_1,y_2,\dots,y_{T-1},x)$$

Probability of next target word, given target words so far and source sentence x

• Bài toán đặt ra: Cách huấn luyện một NMT model?



#### Training Neural Machine Translation model









Ở mỗi bước decode, target sentence được generate bởi từ có xác suất
 cao nhất
 he hịt me with a pie <END>



 Cách generate từ mới này được gọi là greedy coding (sử dụng từ xuất hiện với xác suất cao nhất)

#### Training Neural Machine Translation model



- Greedy decoding không có cách để quay trở lại bước trước đó
- Ví dụ
  - Input: il a m' entarté (he hit me with a pie)
  - → he \_\_\_\_\_
  - → he hit \_\_\_\_\_

Model generate sai từ tiếp theo (no going back issue)

→ he hit a \_\_\_\_\_





• Cách decoder generate từ mới ở hiện tại: tìm một translation y với y có độ dài T từ và P(y|x) lớn nhất

$$P(y|x) = P(y_1|x)P(y_2|y_1, x)P(y_3|y_1, y_2, x) \dots P(y_T|y_1, y_2, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, y_2, \dots, y_{T-1}, x)$$

- Khi đó, ta cần tính xác suất này trên tất cả những chuỗi y có thể có
  - ∘ Ở mỗi bước của decoder (mỗi giá trị t), ta cần tính trên  $V^t$  những chuỗi translations y (câu chưa hoàn chỉnh) có thể có, với V là vocab size → Độ phức tạp  $O(V^T)$  → expensive

### Beam search decoding



- Ý tưởng chính: Ở mỗi bước decode, chỉ xét k translations y (k hypotheses
   y)
  - K là beam size (thường được chọn từ 5 đến 10)
- Một hypothesis  $y_1, ..., y_t$  có score được tính bởi log prob:

$$score(y_1, ... y_k) = \log P_{LM}(y_1, ..., y_k | x) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Score luôn âm, score càng lớn thì càng tốt
- Beam search không chắc sẽ đưa ra kết quả tối ưu, nhưng hiệu quả hơn nhiều về mặt tính toán so với exhaustive search

## Beam search decoding

VietAl

• Ví dụ: Beam size k = 2







• Ví dụ: Beam size k = 2

























- Khi sử dụng greedy coding, quá trình decode sẽ dừng lại khi gặp <END> token. Ví dụ: <START> he hit me with a pie <END>
- Khi sử dụng beam search decoding, những hypotheses khác nhau sẽ generate <END> token tại những timestamp t khác nhau
  - Khi một hypothesis generate <END>, hypothesis đó hoàn thành y
  - Tiếp tục beam search cho những hypotheses khác
  - Tiếp tục beam search cho đến khi
    - Đến timestamp S nhất định
    - Có được N hypotheses hoàn thành





- Khi sử dụng greedy coding, quá trình decode sẽ dừng lại khi gặp <END> token. Ví dụ: <START> he hit me with a pie <END>
- Khi sử dụng beam search decoding, những hypotheses khác nhau sẽ generate <END> token tại những timestamp t khác nhau
  - Khi một hypothesis generate <END>, hypothesis đó hoàn thành y
  - Tiếp tục beam search cho những hypotheses khác
  - Tiếp tục beam search cho đến khi
    - Đến timestamp S nhất định
    - Có được N hypotheses hoàn thành





• Mỗi hypothesis  $y_1, ..., y_k$  sẽ có một score tương ứng

$$score(y_1, ... y_k) = \log P_{LM}(y_1, ..., y_k | x) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Khi đó, hypothesis tạo chuỗi dài sẽ có score thấp hơn
- Solution: Normalize dựa trên độ dài chuỗi

$$score(y_1, ... y_k) = \frac{1}{t} \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

#### 2 Advantages of NMT

VietAl

- Performance tốt hơn
  - Fluency
  - Context
  - Phrase similarities
- Single neural network sử dụng gradient descent để optimize end-to-end
  - No sub-component to be optimized individually
- Cần ít nhân lực
  - Không cần feature engineering
  - Sử dụng chung một phương pháp cho tất cả cặp ngôn ngữ

# Disadvantages of NMT

VietAl

- Hard to debug
- Hard to control