TITANIC EXPLORATORY DATA ANALYSIS USING PYTHON/ML

VIDIT AGARWAL PH - 9997302747

Some Background Information

The sinking of the RMS Titanic in the early morning of 15 April 1912, four days into the ship's maiden voyage from Southampton to New York City, was one of the deadliest peacetime maritime disasters in history, killing more than 1,500 people. The largest passenger liner in service at the time, Titanic had an estimated 2,224 people on board when she struck an iceberg in the North Atlantic. The ship had received six warnings of sea ice but was travelling at near maximum speed when the lookouts sighted the iceberg. Unable to turn quickly enough, the ship suffered a glancing blow that buckled the starboard (right) side and opened five of sixteen compartments to the sea. The disaster caused widespread outrage over the lack of lifeboats, lax regulations, and the unequal treatment of the three passenger classes during the evacuation. Inquiries recommended sweeping changes to maritime regulations, leading to the International Convention for the Safety of Life at Sea (1914), which continues to govern maritime safety.

from Wikipedia

▼ EDA TITANIC DATA SET

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: import pandas.util.testing as tm

LOAD THE "DATASET"

from google.colab import files ## code to upload files in "COLAB"
upload = files.upload()

- Choose Files titanic.csv
 - **titanic.csv**(application/vnd.ms-excel) 61194 bytes, last modified: 6/15/2020 100% done Saving titanic.csv to titanic (1).csv

df = pd.read_csv('titanic.csv')
df.head()

₽		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.283

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
مان بالمام	Cl+C4/2	\ :-+<1/5\	+/F\

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

- 1) From Data Info we came to know that 'Age' and 'Cabin' are the entities which contains Nan values
- 2) Data contains 12 columns and 891 rows

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Univariate EDA:

What is the Count of Survived vs Not Survived?

sns.countplot(x='Survived', data=df);

THROUGH VISUALISATION , there are other plots t

not_survived = df[df['Survived']==0] ## LET'S START WITH FIRST METHOD

len(not_survived) ## not Survived

549

Hence no. of survived

891-549 ## (Survived total count) - (not-survived)

342

df['Survived'].value_counts()

THIS IS ANOTHER METHOD TO COUNT THE DIFFERENCE

549 0 1 342

Name: Survived, dtype: int64

SURVIVED - 342

NOT-SURVIVED - 549

▼ Find out the Numerical Columns Basic Statistics:

df.count()

891 PassengerId Survived 891 Pclass 891 Name 891 891 714 Age

891 SibSp Parch 891 Ticket 891 Fare 891 Cabin 204 Embarked 889

dtype: int64

df.max()

PassengerId 891 Survived 1 Pclass van Melkebeke, Mr. Philemon Name Sex male 80 Age SibSp 8 Parch 6 Ticket WE/P 5735 512.329 Fare

dtype: object

df.min()

PassengerId			1
Survived			0
Pclass			1
Name	Abbing,	Mr.	Anthony
Sex			female
Age			0.42
SibSp			0
Parch			0
Ticket			110152

df.mean()

dtype: float64

df.median()

8	PassengerId	446.0000
	Survived	0.0000
	Pclass	3.0000
	Age	28.0000
	SibSp	0.0000
	Parch	0.0000
	Fare	14.4542

dtype: float64

df.select_dtypes

8	<box>bound r</box>	method DataFram	e.select	_dtyp	es of	Pas	sengerId	Survived	Pclass	 Far
	0	1	0	3		7.2500	NaN	S		
	1	2	1	1		71.2833	C85	С		
	2	3	1	3		7.9250	NaN	S		
	3	4	1	1		53.1000	C123	S		
	4	5	0	3		8.0500	NaN	S		
	• •	• • •						• • •		
	886	887	0	2		13.0000	NaN	S		
	887	888	1	1		30.0000	B42	S		
	888	889	0	3		23.4500	NaN	S		
	889	890	1	1		30.0000	C148	С		
	890	891	0	3		7.7500	NaN	Q		

[891 rows x 12 columns]>

df.sum()

PassengerId	397386
Survived	342
Pclass	2057
Name	Braund, Mr. Owen HarrisCumings, Mrs. John Brad
Sex	$\verb malefemalefemalemalemalemalefemalefemalefemalefemalemalemalemalemalemalemalemalemalemal$
Age	21205.2
SibSp	466
Parch	340
Ticket	A/5 21171PC 17599STON/O2. 31012821138033734503
Fare	28693.9

df.std()

Parch 0.806057 Fare 49.693429

dtype: float64

OR

We can use a single code as used above ie df.describe()

df.describe()

8		D	C	Dalass	A	c:hc	Damah	Fana
		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

▼ Visualize Survived vs Not Survived:

sns.factorplot('Survived', data=df, kind='count') ## First Plot

<seaborn.axisgrid.FacetGrid at 0x7f1b4a36e0b8>

fig = plt.figure(figsize=(18,6))

To get a figure with proper structure

df.Survived.value_counts().plot(kind="bar",alpha=0.5)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6ee22aa898>

df.Survived.value_counts(normalize=True).plot(kind="bar",alpha=0.5)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6ee22173c8>

This plot was to get max accuracy in Terms as we came to know that 60% died and 40% Survived

sns.countplot(x='Survived', data=df); ## THROUGH VISUALISATION , there are other plots t

sns.catplot(x="Survived", kind="count", palette="ch:.25", data=df);

sns.pairplot(df); ## Full explanation of every columns

▼ Visual EDA for single Categorical Column: "Embarked"

sns.catplot(x='Survived', col='Embarked', kind='count', data=df);

sns.catplot('Embarked', 'Survived', kind='point', data=dt);

Visual EDA for single Continuous Column: "Fare" using Distribution Plot

```
fare = df['Fare']
dist = sns.distplot(fare)
dist.set_title("Distribution Plot for Fares")
```


Visual EDA for single Continuous Column: "Fare" using KDE(Kernel Density Estimation) Plot

sns.kdeplot(df['Fare'],color='r',shade=True)

Bivariate EDA:

What is the count of Males and Females Survived and Not Survived in each Class?

df.groupby(['Survived','Sex'])['Survived'].count() ## Total Male and Female survived

8

```
Survived Sex
0 female 81
male 468
1 female 233
male 109
```

Name: Survived, dtype: int64

df.groupby(['Survived','Sex'])['Survived'].sum()

Hence we can differentiate


```
Survived Sex
0 female 0 male 0
1 female 233 male 109
```

Name: Survived, dtype: int64

Number of passengers who survived in each class grouped by sex. Also total was found for ea df.pivot_table('Survived', 'Sex', 'Pclass', aggfunc=np.sum, margins=True)

Pclass	1	2	3	All	
Sex					
female	91	70	72	233	
male	45	17	47	109	
All	136	87	119	342	

Number of men and women in each of the passenger class
df.groupby(['Sex', 'Pclass'])['Sex'].count()

Sex	Pclass	
female	1	94
	2	76
	3	144
male	1	122
	2	108
	3	347

Name: Sex, dtype: int64

not_survived = df[df['Survived']==0]

Number of passengers who did not survive in each class grouped by sex.
not_survived.pivot_table('Survived', 'Sex', 'Pclass', aggfunc=len, margins=True)


```
Pclass
              1
                  2
                       3 All
         Sex
      female
              3
                  6
                      72
                           81
             77 91 300 468
      male
        A II
             00 07 270 640
# Create a function to define those who are children (less than 16)
def male_female_child(passenger):
   age, sex = passenger
```

if age < 16:
 return 'child'
else:
 return sex</pre>

df['person'] = df[['Age', 'Sex']].apply(male_female_child, axis=1)

df.head(10)

	_		_				- • • -			
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925
3	4	1	1	Futrelle, Mrs. Jacques	female	35.0	1	0	113803	53.100

Lets do a factorplot of passengers splitted into sex, children and class
sns.factorplot('Pclass', data=df, kind='count', hue='person', order=[1,2,3], hue_order=['chi

<seaborn.axisgrid.FacetGrid at 0x7fa67a708f60>

Count number of men, women and children
df['person'].value_counts()

8

male 537 female 271 child 83

Name: person, dtype: int64

Do the same as above, but split the passengers into either survived or not
sns.factorplot('Pclass', data=df, kind='count', hue='person', col='Survived', order=[1,2,3],

Visualize Survived and Not Survived with respect to the 'Embarked' Column:

sns.catplot(x='Survived', col='Embarked', kind='count', data=df);

sns.catplot('Embarked','Survived', kind='bar', data=df);

Embarked: Survival rate lowest for S and highest for C

▼ Plot a Desnity Graph based on Fare and Survival Rate:

```
g - Sils. racecolitu(ur, coi- Surviveu )
g.map(plt.hist, 'Fare', bins=20)
```


<seaborn.axisgrid.FacetGrid at 0x7fa67735fdd8>


```
plt.figure(figsize=(12,8))
x = df['Fare']
y = df['Survived']
plt.hist([x,y], bins = int(180/15))
plt.xlabel('Fare')
plt.ylabel('Survived')
plt.title('Survived Vs Fare')
```


Text(0.5, 1.0, 'Survived Vs Fare')

df.plot(kind='density', subplots=True, layout=(3,3), sharex=False) ## Analysis of densitie
plt.show()

sns.catplot(x="Survived", y="Fare", kind="swarm", data=df, palette=sns.cubehelix_palette(5, s
plt.tight_layout() ## Another kind of density plot


```
plt.figure(figsize = [8, 5])
base_color = sns.color_palette()[1]
sns.boxplot(data = df, x = 'Survived', y = 'Fare', color = base_color)
plt.xlabel('Survived')
```

plt.ylabel('Fare')
plt.show()

df.plot.scatter(x='Survived',y='Fare')

<matplotlib.axes._subplots.AxesSubplot at 0x7faf2b61be80>

sns.relplot(x="Survived", y="Fare", data=df);

sns.distplot(df['Survived'])
sns.distplot(df['Fare']);

How are "Age" and "Fare" Columns related? Plot a Graph for the same:

sns.boxplot(x='Age', y='Fare',data=df) ## boxplot

Text(0.5, 1.0, 'Age Vs Fare')

Multivariate EDA:

Does Age have an impact on Survival Rate for each Sex and Class group?

```
df['Age'].describe().T
```

```
714.000000
count
          29.699118
mean
std
          14.526497
min
           0.420000
25%
          20.125000
50%
          28.000000
75%
          38.000000
max
          80.000000
Name: Age, dtype: float64
```

Linear plot of age vs. survived
sns.lmplot('Age', 'Survived', data=df)

Survived vs. Age grouped by Sex
sns.lmplot('Age', 'Survived', data=df, hue='Sex')

C→

<seaborn.axisgrid.FacetGrid at 0x7f0f2c270780>

The chances of Survival Decreases with increase in age. "" From the above graph"""

Number of passengers in each class grouped by sex. Also total was found for each class gro
df.pivot_table('Age', 'Sex', 'Pclass', aggfunc=np.sum, margins=True)

female

₽	Pclass	1	2	3	All
	Sex				
	female	2942.00	2125.50	2218.50	7286.00
	male	4169.42	3043.33	6706.42	13919.17
	All	7111.42	5168.83	8924.92	21205.17

sns.lmplot('Age', 'Survived', hue='Pclass', data=df, palette='winter', hue_order=range(1,4))

← <seaborn.axisgrid.FacetGrid at 0x7f0f2b04d860>

Survived vs. Age grouped by Sex
sns.lmplot('Age', 'Survived', data=df, hue='Sex')

In all three classes, the chance to survive reduced as the passengers got older.

Mens have more Survival Rate than Womens

Plot a HEATMAP showing the correlations between different features:

```
corr = df.corr()

fig,axes = plt.subplots(figsize=(10,8))
sns.heatmap(corr, vmin=-1, vmax=1, annot=True, linewidths=.5, ax=axes, cmap="YlGnBu")
plt.title('Correlation between Features');
```


▼ CONCLUSION

- 1) Age (As the age goes higher Survival rete decreases
- 2) Sex ie Men or women ## As Men has more rate of Survival
- 3) PClass ie Passenger Class (As these people were based on that part of ship which has maximum damage. Hence more prone and Less survival)