

Main Page

Programming Contest Calendar

UVa

Sphere Online Judge

Recent changes

Random page

Help

Tools

What links here Related changes Special pages Printable version Permanent link

Page information

Discussion Page

Read Edit View history

Search

Sorting

Sorting is a fundamental algorithm in Computer Science. A **sorting algorithm** takes a list as the input, and returns a list in an order. It is often the first step in many algorithms, and thus setting the lower bound for complexity.

Definition [edit]

Given a list S with N elements, S' = Sort(S) is defined as follows:

- for 0 < i < N, $S_i \le S_{i+1}$.
- S' is a permutation of S.

Put in Lisp:

```
(defun is-sorted (1st)
(cond ((< (length 1st) 2) t)
      (t (and (<= (first lst) (second lst))</pre>
               (is-sorted (cdr lst))))))
```

Sorting

Algorithms

Bubble sort

Insertion sort

Selection sort

Quicksort

Merge sort

Heap sort

Introsort

Counting sort

Problems

Problems solvable using sorting

Sorting Algorithms and Complexities [edit]

- *n* is the number of elements
- ullet k is the number of distinct objects

Algorithm	Time Complexity	Space Complexity
Bubble sort	$O(n^2)$	O(n) - in place, $O(1)$ extra space.
Insertion sort	$O(n^2)$	O(n) - in place, $O(1)$ extra space.
Selection sort	$O(n^2)$	O(n) - in place, $O(1)$ extra space.
Merge sort	$O(n \log n)$	O(n) - $O(n)$ extra space.
Heap sort	$O(n \log n)$	O(n) - in place, $O(1)$ extra space.
Quicksort	$O(n^2)$ - $O(n\log n)$ expected, and with high probability.	O(1) inplace.
Introsort	$O(n \log n)$	$O(n)$ - $O(\log n)$ extra space.
Counting sort	O(k+n)	O(k)
Timsort 🗗	$O(n)$ Best case $O(n\log n)$ Worst Case	O(n)

Categories: Sorting | Permutations

This page was last modified on 11 February 2015, at 11:09.

This page has been accessed 107,387 times.

Content is available under GNU Free Documentation License 1.2 unless otherwise noted.

Privacy policy About Algorithmist Disclaimers

