# **Algorithms and Data Structures**

# Matrix Approximation Low-Rank Approximation





#### Learning goals

Low-Rank Approximation

Let  ${\bf X}$  be a  $m \times n$  data matrix, where the columns of the matrix represent different "objects" (images, text documents, ...). In many practical applications  ${\bf X}$  is high-dimensional.

| Data            | Columns        | Rows                    | m                 | n                  |
|-----------------|----------------|-------------------------|-------------------|--------------------|
| Image data      | Images         | Pixel intensities       | > 10 <sup>8</sup> | $10^5 - 10^6$      |
| Text data       | Text documents | Word frequencies        | $10^5 - 10^7$     | > 10 <sup>10</sup> |
| Product reviews | Products       | User reviews            | $10^1 - 10^4$     | $> 10^{7}$         |
| Audio data(*)   | Points in time | Strength of a frequency | $10^5 - 10^6$     | > 10 <sup>8</sup>  |



<sup>(\*)</sup> Example: https://musiclab.chromeexperiments.com/Spectrogram

In a low-rank approximation, **X** is factorized into two matrices  $\mathbf{W} \in \mathbb{R}^{m \times k}$  and  $\mathbf{H} \in \mathbb{R}^{k \times n}$  such that



Compared to *n* and *m*, *k* is usually small.



**Introductory Example 1:** Image Processing<sup>(\*)</sup>

Given are *n* images in vectorized form.





 $^{(*)}$  Example from http://perso.telecom-paristech.fr/~essid/teach/NMF\_tutorial\_ICME-2014.pdf

#### (Possible) Advantages:

- The dimension reduction reveals **latent variables** (here: "Facial Features") and the data can be "explained".
- The storage space can be reduced significantly (for appropriate choice of k). Instead of a m × n matrix, a m × k and a k × n matrix with k ≪ m, n must be stored.

Calculation example: n=1000 images with m=10000 pixels each. Using a matrix approximation of rank 10 the storage space can be reduced from  $m \times n = 1 \times 10^6$  to  $m \times k + k \times n = 10000 \cdot 10 + 10 \cdot 1000 = 110000$  (about 10% of the original size).



Introductory Example 2: Text mining

Given is a  $m \times n$  document-term matrix **X**, where

 $x_{ij}$  = Frequency of term i in document j

Using a low-rank approximation, we approximate **X** with

 $\mathbf{X} \approx \mathbf{WH}$ 

Suppose we want to display various newspaper articles in a document-term matrix.







The k columns in  $\mathbf{W}$  represent different topics, and the entries of  $\mathbf{W}$  can be interpreted as

 $w_{ij} =$ connection of word i and subject j





The entries of **H** can be interpreted as

 $h_{ij}$  = Measure for how much article j discusses topic i

For fixed k this can be formulated as a general optimization problem

$$\min_{\mathbf{W} \in \mathbb{R}^{m \times k}, \mathbf{H} \in \mathbb{R}^{k \times n}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

The Eckart-Young-Mirsky theorem states that the solution of the optimization problem is given by the **truncated singular value decomposition** 

$$\mathbf{X} pprox \mathbf{W} \mathbf{H} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{ op}$$

where matrix  $\Sigma_k$  contains the k largest singular values and the matrices  $U_k$ ,  $V_k$  contain the corresponding singular vectors of X.

The matrices  $\boldsymbol{W}$  and  $\boldsymbol{H}$  can be set as  $\boldsymbol{W} := \mathbf{U}_k \Sigma_k$  and  $\boldsymbol{H} := \mathbf{V}_k^{\top}$  or as  $\boldsymbol{W} := \mathbf{U}_k (\Sigma_k)^{1/2}$  and  $\boldsymbol{H} := (\Sigma_k)^{1/2} \mathbf{V}_k^{\top}$ .

