Roots of Equations are Bracketing Methods

Chapter 5

Roots of Equations

Easy

$$ax^2 + bx + c = 0 \implies x = \frac{-b \mp \sqrt{b^2 - 4ac}}{2a}$$

• But, not easy

$$ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f = 0 \implies x = ?$$

• How about these?

$$\sin x + x = 0 \implies x = ?$$

$$\cos(10x) + \sin(3x) = 0 \implies x = ?$$

Graphical Approach

- Make a plot of the function f(x) and observe where it crosses the x-axis,
 i.e. f(x) = 0
- Not very practical but can be used to obtain rough estimates for roots
- These estimates can be used as initial guesses for numerical methods that we'll study here.

Using MATLAB, plot f(x)=sin(10x)+cos(3x)

Two distinct roots between

x= 4.2 and 4.3

need to be careful

Bracketing:

Odd and even number of roots

exceptions

Bisection Method

- Step 1: Choose lower x_l and upper x_u guesses for the root such that the function changes sign over the interval. This can be checked by ensuring that $f(x_l)f(x_u) < 0$.
- Step 2: An estimate of the root x_r is determined by

$$x_r = \frac{x_l + x_u}{2}$$

- Step 3: Make the following evaluations to determine in which subinterval the root lies:
 - (a) If $f(x_i)f(x_r) < 0$, the root lies in the lower subinterval. Therefore, set $x_u = x_r$ and return to step 2.
 - (b) If $f(x_i)f(x_r) > 0$, the root lies in the upper subinterval. Therefore, set $x_i = x_r$ and return to step 2.
 - (c) If $f(x_i)f(x_r) = 0$, the root equals x_r ; terminate the computation.

Relative error estimate:
$$\varepsilon = \frac{\left|x_r^{new} - x_r^{old}\right|}{\left|x_r^{new}\right|} 100\%$$

MATLAB code

Bisection Method

 Minimize function evaluations in the code.

Why?

 Because they are costly (takes more time)

```
% Bisection Method
% function is available in another file e.g. func1.m
% A sample call: bisection2(@func1, -2, 4, 0.001, 500)
function root = bisection(fx, xl, xu, es, imax);
if fx(x1)*fx(xu) > 0
                              % if guesses do not bracket
  disp('no bracket')
  return
end
for i=1:1:imax
 xr=(xu+x1)/2
 ea = abs((xu-xl)/xl);
 test= fx(x1)*fx(xr);
 if test < 0
    xu=xr;
 end
 if test > 0
    x1=xr;
 end
 if test == 0
    ea=0;
 end
 if ea < es
    break;
 end
```

end

How Many Iterations will It Take?

- Length of the first Interval
- After 1 iteration
- After 2 iterations

.

After k iterations

 $L_0 = x_u - x_1$

 $L_1 = L_0/2$

 $L_2 = L_0/4$

.

 $L_k = L_o/2^k$

• Then we can write:

$$\left| \frac{L_k}{X_r} \right| \le error_tolerance \quad \text{where } x_r = Min\{|x_l|, |x_u|\}$$

$$\left| \frac{L_0}{2^k} \right| \le \left| x_r \right| * \varepsilon_{tol}$$

$$2^k \ge \left| \frac{L_0}{|x_r| * \varepsilon_{tol}} \right| =$$

$$k \ge \left\lceil \log_2 \left| \frac{L_0}{x_r * \varepsilon_{tol}} \right| \right\rceil$$

*here Bisection Method

Pros

- Easy
- Always finds a root
- Number of iterations required to attain an absolute error can be computed a priori.

Cons

- Slow
- Need to find initial guesses for x_1 and x_{11}
- No account is taken of the fact that if $f(x_1)$ is closer to zero, it is likely that root is closer to x_1 .

The False-Position Method (Regula-Falsi)

- We can approximate the solution by doing a *linear interpolation* between $f(x_u)$ and $f(x_l)$
- Find x_r such that $l(x_r)=0$, where l(x) is the linear approximation of f(x) between x_l and x_u
- Derive x_r using similar triangles

$$x_r = \frac{x_l f_u - x_u f_l}{f_u - f_l}$$

The False-Position Method

Works well, but not always!

←← Here is a pitfall ⊗

Modified False-Position

One way to mitigate the "one-sided" nature of the **false position** (i.e. the pitfall case) is to have the algorithm pick the smallest bracket (between the Bisection Method & this one)

How to find good initial guesses?

- Start at one end of the region of interest (x_a) and evaluate $f(x_a)$, $f(x_a+\Delta x)$, $f(x_a+2\Delta x)$, $f(x_a+3\Delta x)$,
- Continue until the *sign* of the result changes. If that happens between $f(x_a+k^*\Delta x)$ and $f(x_a+(k+1)^*\Delta x)$

```
then pick x_1 = x_a + k^* \Delta x and x_u = x_a + (k+1)^* \Delta x
```

Problem:

if Δx is too small \rightarrow search is very time consuming if Δx is too large \rightarrow could jump over two closely spaced roots

Suggestions:

- Generate random x values and evaluate f(x) each time until you find two values that satisfy f(x1)*f(x2) < 0
- Know the application and plot the function to see the location of the roots, and pick x_i and x_u accordingly to start the iterations.