Processament Digital del Senyal Problemes Tema 1 i 2

1. Sigui x el senyal donat per

$$x[n] = \begin{cases} 1 + \frac{n}{3}, & \text{si } -3 \le n \le -1, \\ 1 & \text{si } 0 \le n \le 3, \\ 0 & \text{altrament.} \end{cases}$$

- (a) Dibuixeu el senyal x.
- (b) Dibuixeu el senyal resultant de:
 - i. Primer reflexar el senyal x i després retardar-lo 4 mostres.
 - ii. Primer retardar-lo 4 mostres i després reflexar-lo.
- (c) Dibuixeu els senyals x[-n-4] i x[-n+4] i compareu-los amb els resultats anteriors.
- 2. Considereu el senyal donat per

$$x = (1, \underline{1}, 1, 1, \frac{1}{2}, \frac{1}{2}).$$

Dibuixeu els senyals x[n], x[n-2], x[4-n], x[n+2], x[n]u[2-n], $x[n-1]\delta[n-3]$, $x[n^2]$, la part parell de x, la part senar de x.

- 3. Demostreu que:
 - (a) $\delta[n] = u[n] u[n-1]$.
 - (b) $u[n] = \sum_{k=0}^{\infty} \delta[n-k].$
- 4. Demostreu que la descomposició d'un senyal en la seva part parell i la seva part senar és única.
- 5. Sigui x un senyal que pren valors reals. Demostreu que la potència de x és igual a la suma de la potència de la seva part parell i la potència de la seva part senar. Proveu el resultat anàleg per a l'energia.

- 6. Sigui \mathcal{T} un sistema lineal. Demostreu que si l'entrada al sistema és idènticament nul (totes les mostres iguals a 0), aleshores el senyal de sortida és idènticament nul.
- 7. Pels sistemes següents, digueu si tenen les propietats d'estabilitat, causalitat, linealitat i invariança amb el temps.
 - (a) $(\mathcal{T}x)[n] = x[n]g[n]$, on $g: \mathbb{Z} \to \mathbb{R}$ és una funció arbitrària.
 - (b) $(\mathcal{T}x)[n] = \sum_{k=0}^{n} x[k].$
 - (c) $(\mathcal{T}x)[n] = \sum_{k=n-2}^{n+2} x[k].$
 - (d) $(\mathcal{T}x)[n] = x[n n_0]$, amb $n_0 \in \mathbb{Z}$ fixat.
 - (e) $(\mathcal{T}x)[n] = \cos(x[n])$.
 - (f) $(\mathcal{T}x)[n] = x[n]\cos(\omega_0 n)$, amb ω_0 fixat.
 - (g) $(\mathcal{T}x)[n] = e^{x[n]}$.
 - (h) $(\mathcal{T}x)[n] = ax[n] + b$, amb $a, b \in \mathbb{R}$ fixats.
 - (i) $(\mathcal{T}x)[n] = x[-n].$
 - (j) $(\mathcal{T}x)[n] = |x[n]|$.
 - (k) $(\mathcal{T}x)[n] = \lfloor x[-n] \rfloor$, on $\lfloor t \rfloor$ és la part entera de t, és a dir, el major enter menor o igual que t.
 - (1) $(\mathcal{T}x)[n] = x[n] + |x[n]|.$
- 8. Dos sistemes \mathcal{T}_1 i \mathcal{T}_2 es connecten en serie formant un nou sistema \mathcal{T} . Digueu si les següents afirmacions són certes o falses; demostreu les certes i doneu contraexemples per a les falses.
 - (a) Si \mathcal{T}_1 i \mathcal{T}_2 són lineals, aleshores \mathcal{T} és lineal.
 - (b) Si \mathcal{T}_1 i \mathcal{T}_2 són invariants amb el temps, aleshores \mathcal{T} és invariant amb el temps.
 - (c) Si \mathcal{T}_1 i \mathcal{T}_2 són causals, aleshores \mathcal{T} és causal.
 - (d) Si \mathcal{T}_1 i \mathcal{T}_2 són LTI, aleshores \mathcal{T} és LTI.
 - (e) Si \mathcal{T}_1 i \mathcal{T}_2 són no lineals, aleshores \mathcal{T} és no lineal.
 - (f) Si \mathcal{T}_1 i \mathcal{T}_2 són estables, aleshores \mathcal{T} és estable.

Digueu si afecta l'ordre en que s'interconnecten els dos sistemes per al cas que els sistemes \mathcal{T}_1 i \mathcal{T}_2 siguin lineals, invariants amb el temps i LTI.

9. Per als parells de senyals que segueixen, calculeu-ne la convolució:

- (a) $h[n] = (\underline{0}, 1), x[n] = (\underline{2}, 1).$
- (b) $h[n] = (\underline{2}, -1), x[n] = (\underline{-1}, 2, 1).$
- (c) $h[n] = (\underline{1}, 1, 1, 1, 1), x[n] = (\underline{0}, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1).$
- (d) $h[n] = (1, 2, \underline{1}, 1), x[n] = (\underline{1}, -1, 0, 0, 1, 1).$
- 10. Calculeu la convolució dels senyals $h[n] = a^n u[n]$ i $x[n] = b^n u[n]$; distingiu els casos a = b i $a \neq b$.
- 11. Sigui \mathcal{T} un sistema LTI estable. Demostreu les següents afirmacions.
 - (a) Si el senyal d'entrada és periòdic de periode T, aleshores el senyal de sortida és periòdic de periode T.
 - (b) Si el senyal d'entrada és fitat i tendeix a una constant, és a dir, $\lim_{n\to\infty} x[n] = a$, aleshores el senyal de sortida és fitat i tendeix a una constant. Calculeu explícitament aquesta constant.
- 12. Sigui \mathcal{T} un sistema LTI amb resposta impulsional donada per

$$h[n] = \begin{cases} a^n, & \text{si } n \ge 0, \\ 0, & \text{altrament.} \end{cases}$$

Determineu la sortida quan s'excita amb el graó unitat u[n]. Estudieu l'estabilitat del sistema en funció del paràmetre a.

- 13. Sabem que la resposta impulsional d'un sistema s'anul·la per a $n < n_1$ i per a $n > n_2$. Si s'excita amb un senyal que s'anul·la per a $n < n_3$ i per a $n > n_4$, demostreu que existeixen constants n_5 i n_6 de manera que la sortida s'anul·la per a $n < n_5$ i per a $n > n_6$. Determineu n_5 i n_6 en funció de n_1, n_2, n_3, n_4 .
- 14. Considereu el sistema de la figura:

(a) Doneu la resposta impulsional del sistema en funció de h_1, h_2, h_3, h_4 .

- (b) Feu el cas particular $h_1[n] = (\frac{1}{2}, \frac{1}{4}, \frac{1}{2}), h_2[n] = h_3[n] = (n+1)u[n],$ $h_4[n] = \delta[n-2].$
- (c) Trobeu la resposta del sistema de l'apartat anterior quan s'excita amb el senyal $x[n]=\delta[n+2]+3\delta[n-1]-4\delta[n-3].$
- 15. Dibuixeu la forma directa i la forma canònica dels sistemes següents donats per equacions en diferències finites.
 - (a) 2y[n] + y[n-1] 4y[n-3] = x[n] + 3x[n-5].
 - (b) y[n] = y[n-1] + x[n] x[n-1] + 2x[n-2] 3x[n-4].