Trees

ORIE 4741

October 8, 2020

Table of Contents

- Classification Tree and Regression Tree
- 2 Boosting Trees
- 3 Bagging Trees and Random Forest

Split the feature space

Consider a regression problem with continuous response Y and features X_1 and X_2 , each taking values in the unit interval:

Split the feature space

Consider a regression problem with continuous response Y and features X_1 and X_2 , each taking values in the unit interval:

hard to describe each small feature space

Recursive binary splitting

(a) Recursive binary split

(b) Description for each small feature subspace

Figure 1: Recursive binary tree. For each region R_m , we can predict Y with a constant c_m : $\hat{f}(X) = \sum_{m=1}^5 c_m I(\{(X_1, X_2) \in R_m\})$.

Regression trees

Suppose we have a partition into M regions R_1, R_2, \dots, R_M , and we model the response as a constant c_m in each region:

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

What are model parameters here?

Regression trees

Suppose we have a partition into M regions R_1, R_2, \ldots, R_M , and we model the response as a constant c_m in each region:

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

What are model parameters here?

- ▶ Hyperparameter to choose **beforehand**: the number of regions *M*.
- ▶ The divided regions to choose **using data**: $R_1, ..., R_M$.
- ▶ Constants to choose **using data**: $c_1, ..., c_M$.

Regression trees

Suppose we have a partition into M regions R_1, R_2, \dots, R_M , and we model the response as a constant c_m in each region:

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

What are model parameters here?

- ightharpoonup Hyperparameter to choose **beforehand**: the number of regions M.
- ▶ The divided regions to choose **using data**: $R_1, ..., R_M$.
- ▶ Constants to choose **using data**: $c_1, ..., c_M$.

Ideal case: find the partition which gives the smallest loss (ℓ_2 loss or sum of squares).

Construct a regression tree

Reality: finding the best binary partition R_1, \ldots, R_m is computationally infeasible. We can only find approximately "best" partition.

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

Construct a regression tree

Reality: finding the best binary partition R_1, \ldots, R_m is computationally infeasible. We can only find approximately "best" partition.

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

Given R_m , can you find the best c_m ?

Construct a regression tree

Reality: finding the best binary partition R_1, \ldots, R_m is computationally infeasible. We can only find approximately "best" partition.

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

Given R_m , can you find the best c_m ?

▶ the best c_m is just the mean of y_i in region R_m :

$$\hat{c}_m = \operatorname{ave}(y_i|x_i \in R_m)$$

Greedy algorithm to construct a regression tree

Search over splitting variable j and split point s:

$$R_1(j,s) = \{X \mid X_j \le s\}, R_2(j,s) = \{X \mid X_j > s\}$$

Greedy algorithm to construct a regression tree

Search over splitting variable j and split point s:

$$R_1(j,s) = \{X \mid X_j \le s\}, R_2(j,s) = \{X \mid X_j > s\}$$

Seek the pair that minimizes the prediction error:

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

- ▶ Inner minimization is solved by using the regional average of y_i.
- Searching s can be done very quickly.

Classification tree

For a classification problem with possible outcome 1, ..., K, define $N_m = \#\{x_i \in R_m\}$ and $\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$.

Classification tree

For a classification problem with possible outcome 1,...,K, define $N_m = \#\{x_i \in R_m\}$ and $\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$. Replace the squared error loss with loss functions for classification.

Misclassification error:
$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)}$$
.

Gini index:
$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}).$$

Cross-entropy or deviance:
$$-\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$
.

Loss functions for classification trees

Hyperparameter: tree size

- Tree size controls the model complexity.
- ► How large should we grow the tree?

Hyperparameter: tree size

- Tree size controls the model complexity.
- ► How large should we grow the tree?
 - ► A very large tree might overfit the data and thus have high variance.
 - ► A small tree might not capture the important structure.

Hyperparameter: tree size

- ▶ Tree size controls the model complexity.
- How large should we grow the tree?
 - ▶ A very large tree might overfit the data and thus have high variance.
 - A small tree might not capture the important structure.
 - The optimal tree size should be adaptively chosen from the data

Pros and Cons

Pros and Cons

- Pros: Interpretability
- Cons: Instability (large variance): an error in the top split is propagated down to all of the splits below it.

Boosting methods

► Intuition: combines the outputs of many "weak" learners to produce a powerful "committee."

Boosting Trees 12

Boosting methods

- ► Intuition: combines the outputs of many "weak" learners to produce a powerful "committee."
- Methodology:
 - Sequentially apply the weak learners to repeatedly modified versions of the data.
 - Produce a sequence of weak learners $G_m(x)$, m = 1, 2, ..., M.
 - At step m, observations that were predicted worse by $G_{m-1}(x)$ will have larger weights.
 - Observations that are difficult to predict receive ever-increasing influence.
 - ▶ Combine all prediction $G_m(x)$, m = 1, 2, ..., M to a single weighted average.

Boosting Trees 12

Boosting Visualization

Adaboost

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, \dots, N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Gradient Boosting Regression Tree

GBRT in Pseudo Code

Boosting Trees 15

Model hyperparameters

- ► Number of weak learners (trees)
 - Can overfit with too many trees.
- ► Tree size
 - Mostly below 10.

Boosting Trees 16

Bagging methods

Main idea: improve model prediction through Bootstrap.

- Generate B bootstrap examples.
- Fit your model (tree) on each of the bootstrap example.
- Average all prediction into a single one.

Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.

Pros and Cons

Pros: average many noisy but approximately unbiased trees, and hence reduce the variance.

Cons: constructed trees still have high correlation

Boosting appears to dominate bagging on most problems, and became the preferred choice.

Random forest: improve the variance reduction of bagging

Given B identically distributed random variables (R.V.) with variance σ^2 :

- ▶ If all B R.V. are independent, the average has variance σ^2/B .
- ▶ If all B R.V. are dependent and have positive correlation ρ , the average has variance $\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$.
 - \triangleright cannot decrease the variance below $\rho\sigma^2$.

Random forest: improve the variance reduction of bagging

Given B identically distributed random variables (R.V.) with variance σ^2 :

- ▶ If all B R.V. are independent, the average has variance σ^2/B .
- ▶ If all B R.V. are dependent and have positive correlation ρ , the average has variance $\rho \sigma^2 + \frac{1-\rho}{B} \sigma^2$.
 - ightharpoonup cannot decrease the variance below $\rho\sigma^2$.

Remedy:

- ▶ Before each split, select $m \le p$ of the features at random as candidates for splitting.
 - ▶ Typical values of m are \sqrt{p} or even as low as 1.

Random Forest Algorithm

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \{\hat{C}_b(x)\}_1^B$.

Model hyperparameters

- Number of trees
 - Hardly overfit
- Number of variables to randomly select from at each split

Bagging, random forest, and gradient boosting in real data

Figure 2: For boosting, 5-node trees were use.

Reference

Chapters 8.7, 9 and 15 of Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman, free at https://web.stanford.edu/ hastie/ElemStatLearn/.