

Module 13

Operating Systems Two

Module Thirteen

- Operating Systems Part Two
- In this presentation, we are going to talk about :
- Data Security
- Design Options

Overview

Previously we talked about:

Resource Allocation

Now: Data Security

Design Options

System Security

Access to data

Access to facility

Remote access

Sensitive data

Points of Vulnerability

Data Security

- File Access Control
 Read/Write/Execute/Append
 User/Group/Library
- Passwords on User Accounts
- Hardware Software cooperation

Memory Protection

Supervisor Mode

Privileged Instructions - executed only by the monitor, an interrupt occurs if a program tries these instructions

Privileged I/O channels: System Console

Data Security

- Access control regulate user access to the system
- Information flow control regulate flow of data within the system and its delivery to users
- Certification
 proving that access and flow control perform according to specifications
- Secure Building
- Encryption
- RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first publicly described it in 1978.

Taxonomy of malicious programs

Public Key Encryption

Public Key Encryption

Design Options

- Hierarchical Structure
 - Kernel dispatch, resource manager
 - level 1 I/O Supervisor
 - level 2 memory manager
 - level 3 file manager
 - Strict Hierarchy
 - Transparent
- Virtual Machine Monitor
- Multi processor
 - Loosely coupled
 - Tightly coupled

Operating System Design

Level	Name	Objects	Example Operations
13	Shell	User programming environment	Statements in shell language
12	User processes	User processes	Quit, kill, suspend, resume
11	Directories	Directories	Create, destroy, attach, detach, search, list
10	Devices	External devices, such as printer, displays and keyboards	Create, destroy, open, close, read, write
9	File system	Files	Create, destroy, open, close read, write
8	Communications	Pipes	Create, destroy, open. close, read, write
7	Virtual Memory	Segments, pages	Read, write, fetch

Operating System Design

Level	Name	Objects	Example Operations
6	Local secondary store	Blocks of data, device channels	Read, write, allocate, free
5	Primitive processes	Primitive process, semaphores, ready list	Suspend, resume, wait, signa
4	Interrupts	Interrupt-handling programs	Invoke, mask, unmask, retry
3	Procedures	Procedures, call stack	Mark stack, call, return
2	Instruction Set	Evaluation stack,micro- program interpreter, scalar and array data	Load, store, add, subtract branch
1	Electronic circuits	Registers, gates, buses, etc.	Clear, transfer, activate, complement

Operating System Characteristics

- Micro-kernel architecture assigns only a few essential functions to the kernel.
 - address space
 - Inter-process communication (IPC)
 - basic scheduling
- Multithreading process is divided into threads that can run simultaneously.
- Thread dispatchable unit of work, executes sequentially, and is interruptible.
- Process is a collection of one or more threads.

Operating System Characteristics

Symmetric multiprocessing

There are multiple processors.

These processors share same main memory and I/O facilities.

All processors can perform the same functions.

Distributed operating systems

Provides the illusion of a single main memory.

Used for distributed file system.

Object-oriented design

Used for adding modular extensions to a small kernel.

Enables programmers to customize an operating system without disrupting system integrity.

Review

- Operating Systems: Part Two
- Hardware Independent Tasks
 - File Processing
 - Job Scheduling
 - Resource Allocation
 - Data Security
- Design Options