Backpropagation

He He

Slides based on Lecture 12b from David Rosenberg's course materials

(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 20, 2021

Back-propagation

A brief history of artificial neural networks

early 1940s-late 1960s

- Initial idea from neuroscience: create a computational model of neural networks.
- Development: perceptron [Rosenblatt, 1958], networks with many layers.
- Optimization: automatic differentiation [Linnainmaa, 1970].

late 1960s-late 1980s

- Computers didn't have enough processing power [Minsky and Papert, 1969].
- Back-propagation invented [Werbos, 1975] (but still hard to train).
- Al research focused on expert systems and symbolic systems.

late 1980s-early 2000s

• SVMs and linear models dominated ML.

Example: MLP Regression

- Input space: X = R
- Action Space / Output space: A = Y = R
- Hypothesis space: MLPs with a single 3-node hidden layer:

$$f(x) = w_0 + w_1 h_1(x) + w_2 h_2(x) + w_3 h_3(x),$$

where

$$h_i(x) = \sigma(v_i x + b_i) \text{ for } i = 1, 2, 3,$$

for some fixed activation function $\sigma: R \to R$.

• What are the parameters we need to fit?

$$b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3 \in \mathbf{R}$$

How to choose the best hypothesis?

- As usual, choose our prediction function using empirical risk minimization.
- Our hypothesis space is parameterized by

$$\theta = (b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3) \in \Theta = \mathsf{R}^{10}$$

• For a training set $(x_1, y_1), \ldots, (x_n, y_n)$, find

$$\hat{\theta} = \underset{\theta \in \mathbf{R}^{10}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i; \theta) - y_i \right)^2.$$

- Gradient descent:
 - Is it differentiable w.r.t. θ ? $f(x) = w_0 + \sum_{i=1}^3 w_i \tanh(v_i x + b_i)$.
 - Is it convex in θ ? Might converge to a local minimum.

Gradient descent for (large) neural networks

- Mathematically, it's just *partial derivatives*, which you can compute by hand using the *chain rule*.
 - In practice, this could be time-consuming and error-prone.
- How do we compute gradients in a systematic and efficient way?
 - Back-propagation (a special case of automatic differentiation).
 - Not limited to neural networks.
- Visualize with computation graphs.
 - Avoid long equations.
 - Structure of the computation (modularity and dependency), which allows for modern computation frameworks such as Tensorflow/Pytorch/MXNet/etc.

Function as a graph

- Function as a *node* that takes in a set of *inputs* and produces a set of *outputs*.
- Example: $g: \mathbb{R}^p \to \mathbb{R}^n$.
 - Typical computation graph:

Broken out into components:

Partial Derivatives of an affine function

• Define the affine function g(x) = Mx + c, for $M \in \mathbb{R}^{n \times p}$ and $c \in \mathbb{R}$.

- Let b = g(a) = Ma + c. What is b_i ?
- b_i depends on the *i*th row of M:

$$b_i = \sum_{k=1}^p M_{ik} a_k + c_i.$$

• If $a_j \leftarrow a_j + \delta$, what is b_i ?

$$b_i \leftarrow b_i + M_{ij}\delta$$
.

Partial derivative/gradient measures *sensitivity*: If we perturb an input a little bit, how much does an output change?

Partial Derivatives in general

• Consider a function $g: \mathbb{R}^p \to \mathbb{R}^n$.

- Partial derivative $\frac{\partial b_i}{\partial a_j}$ is the instantaneous rate of change of b_i as we change a_j .
- If we change a_j slightly to

$$a_j + \delta$$
,

• Then (for small δ), b_i changes to approximately

$$b_i + \frac{\partial b_i}{\partial a_j} \delta$$

Compose multiple functions

- Compose two functions $g: \mathbb{R}^p \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^m$.
- b = g(a), c = f(b).

- How does change in a_j affect c_i ?
- Visualize chain rule:
 - Sum changes induced on all paths from a_j to c_i .
 - Changes on one path is the product of changes on each edge along the path.

$$\frac{\partial c_i}{\partial a_j} = \sum_{k=1}^n \frac{\partial c_i}{\partial b_k} \frac{\partial b_k}{\partial a_j}.$$

Example: Linear least squares

- Hypothesis space $\{f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- Data set $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$.
- Define

$$\ell_i(w,b) = \left[\left(w^T x_i + b\right) - y_i\right]^2.$$

• In SGD, in each round we'd choose a random index $i \in 1,...,n$ and take a gradient step

$$w_j \leftarrow w_j - \eta \frac{\partial \ell_i(w, b)}{\partial w_j}, \text{ for } j = 1, ..., d$$

$$b \leftarrow b - \eta \frac{\partial \ell_i(w, b)}{\partial b},$$

for some step size $\eta > 0$.

• Let's see how to calculate these partial derivatives on a computation graph.

Computation Graph and Intermediate Variables

• For a generic training point (x, y), denote the loss by

$$\ell(w,b) = \left[\left(w^T x + b \right) - y \right]^2.$$

• Let's break this down into some intermediate computations:

(prediction)
$$\hat{y} = \sum_{j=1}^{d} w_j x_j + b$$

(residual) $r = y - \hat{y}$
(loss) $\ell = r^2$

Partial Derivatives on Computation Graph

• We'll work our way from graph output ℓ back to the parameters w and b:

$$\frac{\partial \ell}{\partial r} = 2r$$

$$\frac{\partial \ell}{\partial \hat{y}} = \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (2r)(-1) = -2r$$

$$\frac{\partial \ell}{\partial b} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (-2r)(1) = -2r$$

$$\frac{\partial \ell}{\partial w_j} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j} = (-2r)x_j = -2rx_j$$

Example: Ridge Regression

• For training point (x, y), the ℓ_2 -regularized objective function is

$$J(w,b) = [(w^Tx + b) - y]^2 + \lambda w^T w.$$

• Let's break this down into some intermediate computations:

Partial Derivatives on Computation Graph

• We'll work our way from graph output ℓ back to the parameters w and b:

Backpropagation overview

- Learning: run gradient descent to find the parameters that minimize our objective J.
- Backpropagation: compute gradient w.r.t. each (trainable) parameter $\frac{\partial J}{\partial \theta_i}$.

Forward pass Compute intermediate function values, i.e. output of each node

Backward pass Compute the partial derivative of J w.r.t. all intermediate variables and the model parameters

How to save computation?

- Path sharing: each node needs to *cache the intermediate results*.
- Think dynamic programming.

Forward pass

- Order nodes by topological sort (every node appears before its children)
- For each node, compute the output given the input (output of its parents).
- Forward at intermediate node f_i and f_j :

Backward pass

- Order nodes in reverse topological order (every node appear after its children)
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative from its children (chain rule).
- Backward at intermediate node f_i:

Multiple children

• First sum partial derivatives from all children, then multiply.

- Backprop for node f:
- Input: $\frac{\partial J}{\partial b^{(1)}}, \dots, \frac{\partial J}{\partial b^{(N)}}$ (Partials w.r.t. inputs to all children)
- Output:

$$\frac{\partial J}{\partial b} = \sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}}$$
$$\frac{\partial J}{\partial a} = \frac{\partial J}{\partial b} \frac{\partial b}{\partial a}$$

Backpropagation in practice

- Inputs and outputs of nodes are generally vectorized (efficient to compute on GPUs).
- Computation graphs can be composed from a set of *basic operation nodes*, e.g., addition/multiplication, dot product, logistic function etc.
- Programming paradigms:

Symbolic Specify all computation before data—efficient, e.g., Tensorflow.

Imperative Specify the computation step by step—flexible/easier to write, e.g., Pytorch.

Hybrid Can use either paradigm for computation subgraphs, e.g., MXNet.

Non-convex optimization

• Left: convex loss function. Right: non-convex loss function.

Non-convex optimization: challenges

Optimization of neural networks is generally hard.

- Converge to a bad local minimum.
 - Try different initialization and rerun.
- Saddle point.
 - Doesn't often happen with SGD.
 - Second partial derivative test.
- "Flat" region: low gradient magnitude
 - Use ReLU instead of sigmoid as activation functions.
- High curvature: high gradient magnitude
 - Gradient clipping.

Review

- Backpropagation is an algorithm to compute gradient (partial derivatives + chain rule) efficiently.
- It is used in gradient descent optimization with neural networks.
- Key idea: function composition and dynamic programming
- In practice, efficient software exists (backpropagation, neural network building blocks, optimization algorithms etc.).