ESWIN

RISC-V Hypervisor Extension

ESWIN 中央研究院 软件中心

基础开发部

Shawn Liu

2021-08-26

目录

1. Virtualized S-mode to support running guest OS under Type-1, Type-2 and hybrid hypervisors.

2. Support recursive virtualization

3. Be performant and parsimonious

RISC-V H-Extension Status

ESWIN

RISC-V H-Extension draft release history:

The hypervisor specific ISA in RISC-V is called RISC-V H-Extension

What Needs to be Virtualized?

ESWIN

Privilege:

The hypervisor extension changes supervisor mode into hypervisor-extended supervisor mode (HS-mode, or hypervisor mode for short)

Memory virtualization:

The hypervisor extension also adds another stage of address translation, from guest physical addresses to supervisor physical addresses, to virtualize the memory and memory-mapped I/O subsystems for a guest operating system.

CSR:

An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the exception, interrupt, and address-translation subsystems. Additional CSRs are provided to HS-mode.

RISC-V H-Extension: Privilege Mode Changes

ESWIN

- ☐ Three privilege modes:
 - ➤ Machine (M-mode)
 - Supervisor (S-mode)
 - ➤ User (U-mode)
- Supported combinations:
 - ➤ M (simple embedded systems)
 - ➤ M, U (embedded systems w/protection)
 - ➤ M, S, U (Unix systems)
- ☐ S-mode gains new features, becomes HS-mode
- Two additional modes
 - Virtualized Supervisor (VS)
 - Virtualized User (VU)

U-mode Software

- Suitable for both Type-1 (Baremetal) and Type-2 (Hosted) hypervisors
- □ In HS-mode, an OS or hypervisor interacts with the machine through the same SBI as an OS normally does from S-mode. An HS-mode hypervisor is expected to implement the SBI for its VS-mode guest.

RISC-V H-Extension: Hypervisor CSRs

ESWIN

HS-mode CSRs for hypervisor capabilities		
hstatus	Hypervisor Status	
hideleg	Hypervisor Interrupt Delegate	
hedeleg	Hypervisor Trap/Exception Delegate	
hie	Hypervisor Interrupt Enable	
hgeie	Hypervisor Guest External Interrupt Enable	
htimedelta	Hypervisor Guest Time Delta	
hcounteren	Hypervisor Counter Enable	
htval	Hypervisor Trap Value	
htinst	Hypervisor Trap Instruction	
hip	Hypervisor Interrupt Pending	
hvip	Hypervisor Virtual Interrupt Pending	
hgeip	Hypervisor Guest External Interrupt Pending	
hgatp	Hypervisor Guest Address Translation	

HS-mode CSRs for accessing Guest/VM state		
vsstatus	Guest/VM Status	
vsie	Guest/VM Interrupt Enable	
vsip	Guest/VM Interrupt Pending	
vstvec	Guest/VM Trap Handler Base	
vsepc	Guest/VM Trap Progam Counter	
vscause	Guest/VM Trap Cause	
vstval	Guest/VM Trap Value	
vsatp	Guest/VM Address Translation	
vsscratch	Guest/VM Scratch	

Modification to machine-level CSR		
misa	Mip/mie	
mstatus/mstatush	mtval2	
mideleg	mtinst	

- ☐ More control registers for virtualising S-mode
 - ☐ HS-mode (V=0): s<xyz> CSRs point to standard s<xyz> CSRs, h<xyz> CSRs for hypervisor capabilities, vs<xyz> CSRs contains VS-mode state
 - □ VS-mode (V=1): s<xyz> CSRs point to virtual vs<xyz> CSRs
- HFENCE and HLV/HSV instructions are Hypervisor Instructions

RISC-V H-Extension: MMU

ESWIN

- ☐ One-Stage MMU for HS/U-mode
 - ◆ HS-mode page table (HS-Stage)
 - ➤ Translate hypervisor Virtual Address (VA) to Host Physical Address (HPA)
 - ➤ Programmed by Hypervisor using satp CSR
- Two-Stage MMU for VS/VU-mode
 - ◆ VS-mode page table (VS-Stage)
 - ➤ Translates Guest Virtual Address (GVA) to Guest Physical Address (GPA)
 - Programmed by Guest using satp (aka vsatp) CSR
 - ◆ HS-mode guest page table (G-Stage)
 - ➤ Translates Guest Physical Address (GPA) to Host Physical Address (HPA)
 - Programmed by Hypervisor using hgatp CSR
- ☐Format of all above page tables is same

Hardware optimised guest memory management

ESWIN

RISC-V H-Extension: MMIO & Interrupts

- ☐ Guest virtual interrupts are injected by updating hvip CSR from HS-mode
 - hvip.VSEIP bit for Hypervisor injected virtual external interrupt
 - ◆ hvip.VSTIP bit for Hypervisor injected virtual timer interrupt
 - ◆ hvip.VSSIP bit for Hypervisor injected virtual inter-processor interrupt
- ☐ Virtual timer and inter-processor interrupts injected based on SBI calls from Guest
- ☐ Hypervisor can trap-n-emulate Guest MMIO using HS-mode guest page table
 - ◆ Software emulated PLIC
 - VirtIO devices
 - ◆ Other software emulated peripherals

Guest MMIO and Interrupts virtualization

目录

RISC-V Nested Virtualization

ESWIN

Recursive virtualization supported with additional HS-level software support

目录

RISC-V KVM Status

ESWIN

The RISC-V port of the KVM hypervisor, Current State:

- Supports H-Extension v0.6.1 draft specification
- No RISC-V specific KVM IOCTL
- ➤ Supports both RV32 and RV64 Hosts
- Minimal world-switch and full world-switch via vcpu load()/vcpu put()
- Floating point unit lazy save/restore
- KVM ONE_REG interface for user-space
- Timer and IPI emulation in kernel-space
- PLIC emulation is done in user-space
- Hugepage support
- > SBI v0.2 interface for Guests
- Unhandled SBI calls forwarded to KVM userspace
- Vhost support using ioeventfd

https://github.com/kvm-riscv/linux.git (KVM RISC-V repository. but not Linux native git)

RISC-V KVM: To-do List

ESWIN

- ☐Stage 2 dirty page logging (work already in-progress)
- Nested virtualization (work already in-progress)
- ☐ Trace points
- ☐ KVM unit test support
- Virtualize vector extensions
- ☐ Guest/VM migration support
- ☐ Allow 32bit Guests on 64bit Hosts (defined in RISC-V spec)
- ☐ Allow big-endian Guests on little-endian Hosts and vice-versa (defined in RISC-V spec)

Cloud Server Virtualization management - openstack

- ☐ KVM turns the linux kernel into a hypervisor, not user friendly.
- ☐ Openstack is a hypervisor manager, for example, deployment, migration, evacuate instances from the cloud servers.
- XEN start its porting to RISC-V in 2021