A comparison between galaxy and quasar clustering and what it can tell us about galaxy formation and evolution.

Nicholas P. Ross¹*

¹Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802.

today

ABSTRACT

Key words: galaxies: clustering – luminous red galaxies: general – cosmology: observations – large-scale structure of Universe.

1 CLUSTERING COMPARISONS

Figures 1 and 2 show comparisons with correlation studies from other surveys. It should be noted straight off that a direct comparison is very difficult to interpret as each survey has different selection criteria and hence samples different aspects of the same galaxy population. However, as a "schematic" for seeing how correlation length depends not only on galaxy type but also on redshift, this diagram is essential. Once observational data at z>1 is more stable, comparisons of this sort will be vital in order to successfully test theoretical models to the percent level.

2 NOTES

LBGs Adelberger, Steidel et al etc. Blain, quoting Overtier 03, A&A, 405, 53

DRGs EROs Kong, Almani? SMGs Blain

Go back to the .sm plots and put on the Simple xi(r) evolution model(s) from Croom et al. (??!)

 $\xi(r)=\frac{r}{r_0}^{-\gamma+\epsilon}$ what's the tag for the "euro" sign/symbol that goes in this equation?!?!? (heck, that small "slash epsilon" tag seems to work fine!

ALSO!!!

 $\rm M_{halo}$ MODELS vs. redshift ... e.g.

Farrah, D et al., 2006 ApJ 643L 139 and Farrah, D et al., 2006 ApJ 641, L17. Comoving correlation length, r0, vs. redshift. Other data are taken from Moscardini et al. (1998), Overzier et al. (2003), Daddi et al. (2004), Blain et al. (2004), Ouchi et al. (2004), Adelberger et al. (2005), Croom et al. 2005; Georgakakis et al. (2005), and Allen et al. (2005). The fixed mass lines show the predicted clustering amplitude of halos of a given mass at any particular redshift, whereas the ϵ lines show the predicted clustering amplitude of an individual halo for three halo growth models, described in the text. The stable and linear lines give a

Figure 1. A comparisson of the real-space correlation length, r_0 between various surveys. Note that this should only be taken as a guide as different surveys have different galaxy selection criteria and sample different populations. Care has to taken even when comparing the 2SLAQ and SDSS LRG surveys.

qualitative indicator of the range of how DM halos may grow with redshift, and we have normalized stable and linear lines to the clustering amplitudes of the B2 and B3 sources. The shaded regions therefore indicate what these halos may host at lower and higher redshifts the halos hosting B3 sources may contain an optically bright LBG at z $\simeq 4$ (upper green circle) and may grow to host very rich galaxy clusters at z = 0, whereas the halos hosting B2 sources may contain optically fainter LBGs at 4 < z < 5, SMGs at z sim 2.5, radio-bright AGNs (upper pink triangle) and (old) EROs at z $\simeq 1$, and poor to rich clusters at z = 0.

^{*} email: npr@astro.psu.edu

2 N.P. Ross et al.

Survey	Sample	z-interval	$\mathrm{median}\ z$	Mag. limit	$N_{ m gals}$	r_0	γ_r	Reference
2SLAQ LRG	'Gold'	0.4,0.8	0.55		8 656	$r_0 = 7.45 \pm 0.35$	1.72±0.06	1
		$0.4,\!0.8$	0.55		8 656	$s_0 = 9.40 \pm 0.19^a$	1 2.02 \pm 0.07	1
SDSS LRG	"full, faintest"	0.16,0.36	0.28	$-23.2 < M_g < -21.20, \langle M_g \rangle = -21.63$	29 298	9.80±0.20	1.94±0.03	2
SDSS LRG	"brighter half"	0.16, 0.44	0.34	$-23.2 < M_g < -21.8, \langle M_g \rangle = -22.01$	12 992	11.21 ± 0.24	1.92 ± 0.03	2
SDSS LRG	"fainter half"	0.16,0.36	0.28	$-22.6 < M_g < -21.6, \langle M_g \rangle = -21.84$	14 500	10.59 ± 0.29	1.88 ± 0.03	2
SDSS MAIN		0.,0.						3
VVDS		0.,0.						4
DEEP2	full	0.7,1.35	$z_{\rm eff} = 0.99$	$R_{AB} = 24.1$	2 219	3.19 ± 0.51	1.68 ± 0.07	5
DEEP2	full, w/o J_3	0.7, 1.35	$z_{\rm eff}=0.99$	$R_{AB} = 24.1$	$2\ 219$	3.19 ± 0.51	$1.68 {\pm} 0.07$	5
DEEP2	lower-z		$z_{\rm eff}=0.99$	$R_{AB} = 24.1$	2 219	3.19 ± 0.51	1.68 ± 0.07	5
DEEP2	higher-z		$z_{\rm eff}=0.99$	$R_{AB} = 24.1$	2 219	3.19 ± 0.51	1.68 ± 0.07	5
DEEP2	(B-R) > 0.7		$z_{ m eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	1.84 ± 0.07	5
DEEP2	(B-R) < 0.7	0.7, 1.25	$z_{\rm eff}=0.93$	$(B-R)_0 < 0.7$	964	$2.81 {\pm} 0.48$	1.52 ± 0.06	5
DEEP2	(R-I) > 0.9	0.7, 1.25	$z_{\rm eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	$1.84 {\pm} 0.07$	5
DEEP2	(R-I) > 0.09	0.7, 1.25	$z_{\rm eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	$1.84 {\pm} 0.07$	5
DEEP2	absorption-line	0.7, 1.25	$z_{\rm eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	1.84 ± 0.07	5
DEEP2	emission-line	0.7, 1.25	$z_{ m eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	1.84 ± 0.07	5
DEEP2	$M_B < -19.75$	0.7, 1.25	$z_{\rm eff}=0.96$	$(B-R)_0 > 0.7$	855	4.32 ± 0.73	1.84 ± 0.07	5
DEEP2	$M_B > -19.75$	0.7, 1.25	$z_{\rm eff} = 0.96$	$(B-R)_0 > 0.7$	855	$4.32 {\pm} 0.73$	1.84 ± 0.07	5
2dfGRS	Full, (P)	0.01,0.2	≃ 0.11	$b_{ m J} = 19.45$	165 659	5.05±0.26	1.67±0.03	6
2dfGRS	Full, (I)	0.01, 0.2	$\simeq 0.11$	$b_{\rm J}=19.45$	165 659	5.05 ± 0.26	1.67 ± 0.03	6
2dfGRS	Full, (P)	0.01,0.2	≃ 0.11	$b_{ m J} = 19.45$	165 659	5.05±0.26	1.67±0.03	7
2dfGRS	Full, (I)	0.01, 0.2	$\simeq 0.11$	$b_{\rm J} = 19.45$	$165 \ 659$	$5.05 {\pm} 0.26$	$1.67 {\pm} 0.03$	7
2dfGRS	Passive, (P)	0.01, 0.15	$z_{\rm s} = 0.11$	$b_{\rm J} = 19.45$	$36\ 318$	5.97 ± 0.29	1.93 ± 0.03	7
2dfGRS	Passive, (I)	0.01, 0.15	$z_{\rm s} = 0.11$	$b_{\rm J} = 19.45$	$36 \ 318$	5.97 ± 0.29	1.93 ± 0.03	7
2dfGRS	Active, (P)	0.01, 0.15	$z_{\rm s} = 0.11$	$b_{ m J} = 19.45$	$60\ 473$	7.1 ± 0.1	$1.50 {\pm} 0.04$	7
2dfGRS	Active (P)	0.01, 0.15	$z_{\rm s} = 0.11$	$b_{\rm J}=19.45$	$60\ 473$	$7.1 {\pm} 0.1$	1.50 ± 0.04	7
SAPM		0.01,0.15	$z_{\rm s} = 0.11$	$b_{\rm J} = 19.45$	60 473	7.1±0.1	1.50 ± 0.04	8
ESP		0.01,0.15	$z_{\rm s} = 0.11$	$b_{\rm J} = 19.45$	60 473	7.1 ± 0.1	1.50 ± 0.04	9
Durham UKS7	Γ	0.01,0.15	$z_{\rm s} = 0.11$	$b_{\rm J} = 19.45$	60 473	7.1±0.1	1.50 ± 0.04	10
LCRS		0.01,0.15	$z_{\rm s} = 0.11$	$b_{\rm J}=19.45$	60 473	7.1 ± 0.1	1.50 ± 0.04	11

Table 1. Comparison of Real-Space Correlation Lengths with other surverys. ¹Ross et al. (2007) ²Zehavi et al. (2005a), ³Zehavi et al. (2005b, Table 1), ⁴?, ⁵Coil et al. (2004), ⁶Hawkins et al. (2003), ⁷Madgwick et al. (2003).

Survey	Sample	$z\text{-interval}$ median z Mag. limit $N_{\rm gals}\;r_0\;\gamma_r$ Refere	ence
SDSS Quasars	3	1	

Table 2. Comparison of Real-Space Correlation Lengths with other QUASAR surverys. 1 Ross et al. (2008) 2 2nd SDSS, lo-z ref?? 3 Shen et al. (2007) 4 Croom et al. (2005) 5 Porciani & Norberg (2006)

Survey	Sample	$z\text{-interval}$ median z Mag. limit $N_{\rm gals}\;r_0\;\gamma_r$ Reference
ULIRGs		1
NIR-selected ^a		2

Table 3. Comparison of Real-Space Correlation Lengths with other "high-z" surverys. ¹Farrah et al. (2006b,a) ²Daddi et al. (2004) ³? ⁴Overzier et al. (2003) ⁵ Notes: ^aWatch cosmology!!

Figure 2. A further comparisson of the real-space correlation length, r_0 between various surveys. Again care must be taken as comparing "wide and shallow" to "deep and narrow". For instance the areas of the 2dfGRS and SDSS are 1 800 and 4 000 degrees² respectively, while COMBO-17, DEEP2 and VVDS are of order 1 degree².

 $Hayashi\ et\ al.\ astro-ph/0701637.pdf$ - for star-forming BzKs...

3 $\Omega_{\rm M} - \beta$ FITTING MODELS

¹Is this really correct??

REFERENCES

Coil A. L., et al., 2004, ApJ, 609, 525
Croom S. M., et al., 2005, MNRAS, 356, 415
Daddi E., et al., 2004, ApJ Lett., 600, L127
Farrah D., et al., 2006a, ApJ Lett., 643, L139
Farrah D., et al., 2006b, ApJ Lett., 641, L17
Hawkins E., et al., 2003, MNRAS, 346, 78
Madgwick D. S., et al., 2003, MNRAS, 344, 847
Overzier R. A., Röttgering H. J. A., Rengelink R. B., Wilman R. J., 2003, Astron. & Astrophys., 405, 53
Porciani C., Norberg P., 2006, MNRAS, 371, 1824
Ross N. P., et al., 2007, MNRAS, 381, 573
Ross N. P., et al., 2008, in prep.
Shen Y., et al., 2007, AJ, 133, 2222
Zehavi I., et al., 2005a, ApJ, 621, 22
Zehavi I., et al., 2005b, ApJ, 630, 1

4 N.P. Ross et al.

Table 4.

O/P file name	I/P $\xi(\sigma,\pi)$ files	r0	γ	range	ξ/w_p	$\Omega_{\rm m}$ beta	$\langle w_{\rm z}^2 \rangle^{1/2}$	$R\chi^2$
LS_amp7_3.ps	k2d_output_jack_perl_full.dat??? xi_sigma_pi_variances_LS.dat???	7.30	1.78	0.4-70(?)	ξ	0.30 0.35	480	
LS_amp8_3.ps	tbc tbc	7.54	1.85	0.4-20	w_p	0.50 0.45	540	
LS_amp9_3.ps (0.3,0.7) y/n?	k2d_output_jack_perl_full.dat xi_sigma_pi_variances_LS.dat	7.45	1.73	0.4-70	ξ	0.50 0.35	450	2.14920
LS_amp10_3.ps (0.3,0.7) y/n?	k2d_output_jack_perl_full_newcor.dat xi_sigma_pi_variances_LS.dat	7.45	1.73	0.4-70	ξ	0.45 0.35	450	2.18665
LS_ampX3_3.ps	" Omega_m_StdDev beta_StdDev	$7.45 \\ 0.024552442 \\ 0.0088388369$	1.73	0.4-70	xi	0.10 0.40	330	2.19586
$LS_ampRX0.ps$	(reduced range in Omega-beta)							
LS_amp11_3.ps (0.3,0.7) y/n?	$\label{lem:condition} $$k2d_output_jack_perl_full_newcor.dat$$ xi_sigma_pi_variances_LS.dat$	7.45	1.73	0.4-70	ξ	0.45 0.35	450	2.18665
LS_ampX5_3.ps	Omega_m_StdDev beta_StdDev	7.30 0.068530072 0.028398096	1.84	0.4-70	w_p	0.02 0.40	360	2.26280
LS_amp12_3.ps (0.3,0.7) y/n?	k2d_output_jack_perl_full_newcor.dat xi_sigma_pi_variances_LS.dat	7.60	1.69	0.4-20	xi	0.40 0.30	420	2.35397
LS_ampX6_3.ps	Omega_m_StdDev beta_StdDev	$7.60 \\ 0.051742808 \\ 0.027679029$	1.69	0.4-20	xi	0.10 0.35	300	2.35562
LS_amp13_3.ps	k2d_output_jack_perl_full_newcor.dat xi_sigma_pi_variances_LS.dat	7.39	1.81	0.4-20	wp	0.65 0.45	510	2.16416
$(1.0,0.0)^1$ LS_ampX4_3.ps		7.39	1.81	0.4-20	wp	0.10 0.45	360	2.16491
LS_ampX_3.ps (0.3,0.7) y/n?	$k2d_output_jack_perl_full_newcor.dat\\ xi_sigma_pi_variances_LS_0606016.dat$	7.54	1.85	0.4-20	wp	0.65 0.50	540	2.32433
LS_ampX2_3.ps (0.3,0.7) y/n?	$k2d_output_jack_perl_full_newcor.dat\\ xi_sigma_pi_variances_LS.dat$	7.54	1.85	0.4-20	wp	0.65 0.50	540	2.29314
LS_amp6_EdS_3.ps (1.0,0.0) y/n?	k2d_output_jack_perl_EdS_full.dat xi_sigma_pi_variances_LS_EdS.dat	5.60	1.71	0.25-40	xi	0.40 0.45	330	2.22507
$LS_ampX6_EdS_3$		5.60	1.71	0.25-40	xi	0.50 0.50	330	2.37068
LS_ampXX6_EdS_3	(LS_amp6 identical to LS_ampXX6)	5.60	1.71	0.25-40	xi	0.40 0.45	330	2.22507
	Omega_m_StdDev beta_StdDev	$\begin{array}{c} 0.14701328 \\ 0.033261847 \end{array}$						
LS_amp8_EdS_3.ps (1.0,0.0) y/n?	k2d_output_jack_perl_EdS_full.dat xi_sigma_pi_variances_LS_EdS.dat	5.61	1.77	0.25-40	wp	0.45 0.50	360	1.91541
LS_ampX8_EdS_3		5.61	1.77	0.25-40	wp	0.45 0.50	360	1.91541
$LS_amp9_EdS_3.ps$	k2d_output_jack_perl_EdS_full.dat xi_sigma_pi_variances_LS_EdS.dat	5.55	1.73	0.25-15	xi	0.40 0.50	360	2.09865
LS_amp10_EdS_3.ps	k2d_output_jack_perl_EdS_full.dat xi_sigma_pi_variances_LS_EdS.dat	5.67	1.74	0.25-15	wp			
LS_amp7_EdS_3.ps	k2d_output_jack_perl_EdS_full.dat xi_sigma_pi_variances_LS_EdS.dat	5.55	1.735	0.1-15	xi	0.40 0.50	360	2.06925

Table 5. Best fitting model values of $\Omega_{\rm m}$, β and pairwise velocity dispersion, $\langle w_{\rm z}^2 \rangle^{1/2}$, using redshift-space distortions alone and assuming a $\Lambda {\rm CDM}$ cosmology.

r_0	γ	range / h^{-1} Mpc	Measure	Ω_{m}	β	$\langle w_{\rm z}^2 \rangle^{1/2}/~{\rm km~s^{-1}}$
7.45	1.73	0.4-70	$\xi(r)$	0.10	0.40	330
7.30	1.84	0.4-70	$w_p(\sigma)$	0.02	0.40	360
7.60	1.69	0.4-20	$\xi(r)$	0.10	0.35	300
7.39	1.81	0.4-20	$w_p(\sigma)$	0.10	0.45	360