

Increasing and Decreasing Functions Ex 17.1 Q7 We have,

$$f\left(X\right) = \frac{1}{1 + X^2}$$

Case I

When
$$x \in [0, \infty)$$

Let
$$x_1 > x_2$$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow \frac{1}{1 + x_1^2} < \frac{1}{1 + x_2^2}$$

$$\Rightarrow \qquad f(x_1) < f(x_2)$$

f(x) is decreasing on $[0,\infty)$.

Case II

When
$$x \in (-\infty, 0]$$

Let $x_1 > x_2$

$$\Rightarrow x_1^2 < x_2^2$$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} > \frac{1}{1+x_2^2}$$

$$\Rightarrow$$
 $f(x_1) > f(x_2)$

So, f(x) is increasing on $(-\infty,0]$

Thus, f(x) is neither increasing nor decreasing on R.

Increasing and Decreasing Functions Ex 17.1 Q8

We have,

$$f(x) = |x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$$

(a) Let
$$x_1$$
, $x_2 \in (0, \infty)$ and $x_1 > x_2$ $\Rightarrow f(x_1) > f(x_2)$

So, f(x) is increasing in $(0, \infty)$

(b)
$$\begin{array}{l} \text{Let}\, x_1, \; x_2 \in \left(-\infty,0\right) \; \text{and} \; x_1 > x_2 \\ \Rightarrow \qquad -x_1 < -x_2 \\ \Rightarrow \qquad f\left(x_1\right) < f\left(x_2\right) \end{array}$$

∴ f(x) is strictly decreasing on $(-\infty,0)$.

Increasing and Decreasing Functions Ex 17.1 Q9

$$f(x) = 7x - 3$$

Let $x_1, x_2 \in R$ and $x_1 > x_2$

$$\Rightarrow$$
 $7x_1 > 7x_2$

$$\Rightarrow$$
 $7x_1 - 3 > 7x_2 - 3$

$$\Rightarrow$$
 $f(x_1) > f(x_2)$

f(x) is strictly increasing on R.

********* FND *******