## 統計力学

5

時系列  $X_0,X_1,\ldots\in(-1,1)$  は、エルゴード的な力学系  $X_{n+1}=4X_n^3-3X_n$  により決定されるものとする。その力学系は、区間 (-1,1) 上の確率測度  $\mu(dx)=\frac{dx}{\pi\sqrt{1-x^2}}$  を不変測度として持つ。さらに

$$\int_{-1}^{1} |B(x)|^2 \mu(dx) < \infty$$

を満足する任意の関数 B(x) に対して,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} B(X_i) = \int_{-1}^{1} B(x) \mu(dx) \quad \text{a.e.}$$

が成立するものとする.  $\langle B \rangle$  は  $\langle B \rangle = \int_{-1}^1 B(x) \mu(dx)$  と定義する. 以下の問いに答えよ.

- (i)  $X_0 = \cos(\theta_0)$  に対する  $X_n$  の一般解を与えよ.
- (ii) B(x) = x の時,  $\langle B \rangle = 0$  及び  $\langle B^2 \rangle = \frac{1}{2}$  であることを示せ.
- (iii)  $B(x)=4x^3-3x$  の時,  $\langle B \rangle=0$  及び  $\langle B^2 \rangle=\frac{1}{2}$  であることを示せ.
- (iv)  $B(x) = (4x^3 3x)x$  の時,  $\langle B \rangle = 0$  であることを示せ.
- (v)  $B(x) = a_0 + a_1 x + a_2 (4x^3 3x)$  の時,  $\langle B \rangle = a_0$  及び  $\langle B^2 \rangle \langle B \rangle^2 = \frac{1}{2} (a_1^2 + a_2^2)$  であることを示せ.
- (vi)  $B(x) = a_0 + a_1 x + a_2 (4x^3 3x)$  に対して、1 次元ランダムウォークを

$$r(N) \equiv \sum_{i=0}^{N-1} \{B(X_i) - \langle B \rangle\}$$
  $N = 1, 2, \dots$ 

で構成した時、その拡散係数  $D \equiv \lim_{N \to \infty} \frac{\langle r^2(N) \rangle}{2N}$  を求めよ.

## An English Translation:

## Statistical Mechanics

## 5

Let a time series  $X_0, X_1, \ldots \in (-1,1)$  be determined by an ergodic dynamical system  $X_{n+1} = 4X_n^3 - 3X_n$ , which has an invariant probability measure  $\mu(dx) = \frac{dx}{\pi\sqrt{1-x^2}}$  on the interval (-1,1). Assume that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} B(X_i) = \int_{-1}^{1} B(x) \mu(dx) \quad \text{a.e.}$$

for any function B(x) satisfying

$$\int_{-1}^{1} |B(x)|^2 \mu(dx) < \infty.$$

- $\langle B \rangle$  is defined as  $\langle B \rangle = \int_{-1}^{1} B(x) \mu(dx)$ . Answer the following questions.
  - (i) Give a general solution  $X_n$  for an initial condition  $X_0 = \cos(\theta_0)$ .
  - (ii) Show that  $\langle B \rangle = 0$  and  $\langle B^2 \rangle = \frac{1}{2}$  for B(x) = x.
- (iii) Show that  $\langle B \rangle = 0$  and  $\langle B^2 \rangle = \frac{1}{2}$  for  $B(x) = 4x^3 3x$ .
- (iv) Show that  $\langle B \rangle = 0$  for  $B(x) = (4x^3 3x)x$ .
- (v) Show that  $\langle B \rangle = a_0$  and  $\langle B^2 \rangle \langle B \rangle^2 = \frac{1}{2}(a_1^2 + a_2^2)$  for  $B(x) = a_0 + a_1 x + a_2 (4x^3 3x)$ .
- (vi) Let us construct a one-dimensional random walk defined by

$$r(N) \equiv \sum_{i=0}^{N-1} \{B(X_i) - \langle B \rangle\}$$
  $N = 1, 2, \dots$ 

for  $B(x) = a_0 + a_1 x + a_2 (4x^3 - 3x)$ . Obtain the diffusion coefficient  $D \equiv \lim_{N \to \infty} \frac{\langle r^2(N) \rangle}{2N}$ .