Given two integers, \boldsymbol{l} and \boldsymbol{r} , find the maximal value of $\boldsymbol{a} \times \boldsymbol{b}$, written $\boldsymbol{a} \oplus \boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} satisfy the following condition:

$$l \le a \le b \le r$$

For example, if l=11 and r=12, then

 $11 \oplus 11 = 0$

 $11 \oplus 12 = 7$

 $12 \oplus 12 = 0$

Our maximum value is 7.

Function Description

Complete the maximizingXor function in the editor below. It must return an integer representing the maximum value calculated.

maximizingXor has the following parameter(s):

- *l*: an integer, the lower bound, inclusive
- r: an integer, the upper bound, inclusive

Input Format

The first line contains the integer \boldsymbol{l} .

The second line contains the integer r.

Constraints

$$1 \le l \le r \le 10^3$$

Output Format

Return the maximal value of the xor operations for all permutations of the integers from \boldsymbol{l} to \boldsymbol{r} , inclusive.

Sample Input 0

15

Sample Output 0

Explanation 0

The input tells us that l=10 and r=15. All the pairs which comply to above condition are the following:

```
10 \oplus 10 = 0
```

$$10 \oplus 11 = 1$$

$$10 \oplus 12 = 6$$

$$10 \oplus 13 = 7$$

$$10 \oplus 14 = 4$$

$$10 \oplus 15 = 5$$

$$11 \oplus 11 = 0$$

$$11 \oplus 12 = 7$$

$$11 \oplus 12 = i$$

$$11 \oplus 13 = 6$$
$$11 \oplus 14 = 5$$

$$11 \oplus 15 = 4$$

$$12 \oplus 12 = 0$$

$$12 \oplus 13 = 1$$

$$12 \oplus 14 = 2$$

$$12 \oplus 15 = 3$$

$$13 \oplus 13 = 0$$

$$13 \oplus 14 = 3$$

$$13 \oplus 15 = 2$$

$$14 \oplus 14 = 0$$

$$14 \oplus 14 = 0$$
$$14 \oplus 15 = 1$$

$$15 \oplus 15 = 0$$

Here two pairs (10, 13) and (11, 12) have maximum xor value 7, and this is the answer.

Sample Input 1

11 100

Sample Output 1

127