IIR Filter design

1	
2	Analog Filters
3	Projektowanie filtrów cyfrowych Butterwortha i Czebyszewa
4	Projekt filtru dolnoprzepustowego
5	Reakcja filtru Butterworth na częstotliwości odcięcia
6	Analiza filtrów Butterwortha w Mathematica
7	Analiza względem wszystkich parametrów
8	Zależność błędu od rzędu filtra
9	Nyquist Ploty analogowych
10	Bode plots
11	Inna ilość bitów
12	Analiza współczynników filtrów
13	Filtry cyfrowe
14	Badanie stabilności filtrów cyfrowych
14.1	Ustalenie postaci filtrów cyfrowych
	Poniżej znajdują się definicje filtrów analogowych i ich cyfrowych odpowiedników w postaci tabel dla rzędu N= $\{1,2,7\}$ oraz częstości $\omega=\{\omega \min,\ \omega \max,\ \Delta\omega\}$
14.1.1	Definicje
$In[290] := \Delta \omega = 0.3;$ $\omega \min = 0.1;$ $\omega \max = 2.0;$	

14.1.2 Butterworth

```
log_{293} = bmodels = Table[TransferFunctionFactor@ButterworthFilterModel[{"Lowpass", n, <math>\omega}, s],
                                       \{n, 1, 7, 1\}, \{\omega, \omega \min, \omega \max, \Delta \omega\}\}
                           DGbmodels =
                                   Table [TransferFunctionFactor@
                                           ToDiscreteTimeModel[ButterworthFilterModel[{"Lowpass", n, \omega}, s], 1], {n, 1, 7, 1},
                                       \{\omega, \omega \min, \omega \max, \Delta \omega\}\};
14.1.3
                            Chebyshev 1
        log[295] = clmodels = Table[TransferFunctionFactor@Chebyshev1FilterModel[{"Lowpass", n, <math>\omega}, s],
                                       \{n, 1, 7, 1\}, \{\omega, \omega \min, \omega \max, \Delta \omega\}\};
                           DGc1models =
                                   Table [TransferFunctionFactor@ToDiscreteTimeModel [Chebyshev1FilterModel [\{"Lowpass", n, \omega\}, s], and the property of the pro
                                               1], \{n, 1, 7, 1\}, \{\omega, \omega \min, \omega \max, \Delta \omega\}];
14.1.4 Chebyshev 2
        log[297] = c2models = Table[TransferFunctionFactor@Chebyshev2FilterModel[{n, <math>\omega}, s], {n, 1, 7, 1},
                                       \{\omega, \omega \min, \omega \max, \Delta \omega\};
                           DGc2models =
                                   Table [TransferFunctionFactor@ToDiscreteTimeModel [Chebyshev2FilterModel [\{n, \omega\}, s\}, 1],
                                       \{n, 1, 7, 1\}, \{\omega, \omega \min, \omega \max, \Delta \omega\}\};
14.1.5
                          Eliptic
        ln[299] = emodels = Table[TransferFunctionFactor@EllipticFilterModel[{n, <math>\omega}, s], {n, 1, 7, 1},
```

```
\{\omega, \omega \min, \omega \max, \Delta \omega\}\};
DGemodels = Table [TransferFunctionFactor@ToDiscreteTimeModel [EllipticFilterModel [\{n, \omega\}, s\}, 1],
     \{n, 1, 7, 1\}, \{\omega, \omega \min, \omega \max, \Delta \omega\}\}
```

14.2 Dyskretyzacja na poziomie zer i biegunów

14.2.1 Wstep

Na początek przedstawiam sposób w jaki dyskretyzowałem dotychczas, tj. mając filtr cyfrowy w postaci $\frac{a_0(z-a_1)}{(z-b_1)(z-b_2)} \text{ dyskretyzowałem liczby } a_1, b_1, b_2.$

Okazuje się, że nie jest najlepszy sposób dyskretyzacji by sprawdzić rzeczywiste efekty tego procesu. Lepszy sposób prezentowany w kolejnym paragrafie, polega na dyskretyzacji końcowych współczynników filtru, a więc współczynników c_0 , c_1 , d_0 , d_1 , d_2 filtru $\frac{c_0 + c_1 z}{d_0 + d_1 z + d_2 z^2}$ będącego wymnożoną postacią wyżej przedstawionego filtru.

14.2.2 Definicje

```
In[3]:= DiscretizeList[x_, max_, bits_] :=
            If [ \# \ge 0, 1, -1 ] Round [ (Abs[\#] / max) (Power[2, bits - 1] - 1) ] max / (Power[2, bits - 1] - 1) & /@x;
  In[279]:= DiscretizeComplexLists[x_, y_, coeff_, bits_] := Module[{xD, yD, coeffD, max},
             If[y = {}, {}, {},
               max = Max[Abs[Join[Re@x, Im@x, Re@y, Im@y, Re@{coeff}, Im@{coeff}]]];
               xD = DiscretizeList[Re@x, max, bits] + i DiscretizeList[Im@x, max, bits];
               yD = DiscretizeList[Re@y, max, bits] + i DiscretizeList[Im@y, max, bits];
               coeffD = Total[DiscretizeList[{Re@coeff, i Im@coeff}, max, bits]];
               {xD, yD, coeffD}]
            1;
         DiscretizeModel[tf_, bits_] := Module[{tfD, coeff, zeros, poles, coeffD, zerosD, polesD},
              coeff = First[Flatten[Numerator[tf[z]]]];
              coeff = If[Length[coeff] > 0, coeff[[1]], coeff];
              zeros = (z /. Solve[Numerator@(tf[z]) == 0, z]) /. {z \rightarrow {}};
              poles = (z /. Solve[Denominator@(tf[z] / coeff) == 0, z]);
              {zerosD, polesD, coeffD} = DiscretizeComplexLists[zeros, poles, Last@poles, bits];
              (*nie wykorzystuję coeffD, bo często jest bardzo mały i przechodzi w 0 podczas
               dyskretyzacji, by nie zaburzyć wyniku, podają mu inny, istniejący biegun*)
              Chop[coeff (z - zerosD /. {List \rightarrow Times}) / (z - polesD /. {List \rightarrow Times})]
            ];
          Pomocnicza funkcja by pobrać bieguny zdyskretyzowanych filtrów
   in[53]:= ExtractPoles[tf_] := Module[{coeff},
            coeff = First[Flatten[Numerator[tf]]];
            coeff = If[Length[coeff] > 0, coeff[[1]], coeff];
            (z /. Solve[Denominator@(tf / coeff) == 0, z])
          Ustalamy ilość bitów do symulacji
  In[365]:= bity = 6;
14.2.3 Testy
   ln[54] = \{a, b, c\} = DiscretizeComplexLists[\{1, 2, 3\}, \{i, i, 2, i, 3\}, 2, 6]\}
  \text{Out}_{[54]=}\;\left\{\left\{\frac{30}{31},\;\frac{63}{31},\;3\right\},\;\left\{\frac{30\;\text{i}}{31},\;\frac{63\;\text{i}}{31},\;3\;\text{i}\right\},\;\frac{63}{31}\right\}
          Dyskretyzujemy na poziomie filtrów cyfrowych
   In[13]:= buttModel = DGbmodels[[1, 1]]
  Out[13]=  \left( \begin{array}{c} 0.047619 \left( 1. + \frac{z}{z} \right) \\ \hline -0.904762 + \frac{z}{z} \end{array} \right)_{1}
```

```
In[61]:= polesButt = TransferFunctionPoles[buttModel][[1, 1]]
      Out[61]= \{0.904762\}
      In[231]:= buttModelD = DiscretizeModel[buttModel, bity]
 Out[231]=
            In[60]:= polesButtD = ExtractPoles[buttModelD]
      Out[60] = \{0.90411\}
                                                                       Ale funkcja dyskretyzująca działa też dla filtrów analogowych
            In[15]:= buttModel2 = bmodels[[3, 3]]
    \text{Out} [15] = \left( \begin{array}{c} \textbf{0.125} \\ \hline \left( \left( \textbf{0.25} - \textbf{0.433013} \ \hat{\textbf{1}} \right) + \textbf{s} \right) \ \left( \left( \textbf{0.25} + \textbf{0.433013} \ \hat{\textbf{1}} \right) + \textbf{s} \right) \ \left( \textbf{0.5} + \textbf{s} \right) \end{array} \right) \\ \hline \textbf{T} = \left( \begin{array}{c} \textbf{0.125} \\ \hline \end{array} \right) \left( \begin{array}{c} \textbf{0.125} \\ \hline
      In[281]:= buttModel2D = DiscretizeModel[buttModel2, bity]
Out[281]=
                                                                       ((0.258065 - 0.435484 i) + z) ((0.258065 + 0.435484 i) + z) (0.5 + z)
                                                               Dyskretyzacja
      ln[301]:= DGbmodelsD = Map[DiscretizeModel[#, bity] &, DGbmodels, {2}];
```

14.2.4

```
In[302]:= DGc1modelsD = Map[DiscretizeModel[#, bity] &, DGc1models, {2}];
In[303]:= DGc2modelsD = Map[DiscretizeModel[#, bity] &, DGc2models, {2}];
In[304]:= DGemodelsD = Map[DiscretizeModel[#, bity] &, DGemodels, {2}];
```

14.2.5 Porównanie położenia biegunów

★ Definicje

Przygotowywuje funkcję rysującą bieguny i zaznaczającą na czerwono te w których bieguny filtru zdyskretyzowanego wychodzą poza okrąg jednostkowy.

```
In[305]:= PlotPoles[poles_, poles2_] :=
    ListPlot[{Transpose[{Re[poles], Im[poles]}], Transpose[{Re[poles2], Im[poles2]}]},
    PlotRange → 1.2 {{-1, 1}, {-1, 1}}, PlotStyle → {PointSize[Large]},
    Background → If[Count[poles2, _? (Abs[#] ≥ 1 &), {1}] > 0, LightRed, White],
    PlotMarkers → {Automatic, Medium}, AxesOrigin → {0, 0}, Epilog → {Green, Circle[]},
    AspectRatio → Automatic]

AsymptoticallyStableQ[tfm_?ContinuousTimeModelQ] := If[
    Count[TransferFunctionPoles[tfm], Complex[x_?NonNegative, _] | x_?NonNegative, {3}] > 0,
    False, True]
AsymptoticallyStableQ[tfm_?DiscreteTimeModelQ] := If[
    Count[TransferFunctionPoles[tfm], _? (Abs[#] ≥ 1 &), {3}] > 0, False, True]
```

★ Testy

$\label{eq:loss_loss} \mathsf{In[265]:=} \ \ \mathsf{PlotPoles}\left[\left.\left\{\mathbf{1}-\dot{\mathtt{m}}\,,\,\,\dot{\mathtt{m}}\right\}\right.,\,\,-\left\{\mathbf{1}-\dot{\mathtt{m}}\,,\,\,\dot{\mathtt{m}}\right\}\right]$

In[264]:= PlotPoles[polesButt, polesButtD]

★ Butterworth

W prawo rośnie częstotliwość, w dół rośnie rząd filtra.

$\label{local_local_local} $$\inf_{[0] \in \mathbb{R}^2$ Grid@MapThread[PlotPoles[TransferFunctionPoles[#1][[1, 1]], ExtractPoles[#2]] \&, $$\{DGbmodels, DGbmodelsD\}, 2$$ $$$

★ Chebyshev 1

$\label{localization} $$\inf[009]:=$ Grid@MapThread[PlotPoles[TransferFunctionPoles[#1][[1,1]], ExtractPoles[#2]] \&, $$\{DGc1models, DGc1modelsD\}, 2]$$

 \star Chebyshev 2

 $\label{localization} $$ \inf_{n \in \mathbb{N}^2} $Grid@MapThread[PlotPoles[TransferFunctionPoles[\#1][[1,1]], ExtractPoles[\#2]] \&, $$ \{DGc2models, DGc2modelsD\}, 2]$$

★ Eliptyczne

$\label{localizero} $$ \inf_{n \in \mathbb{S}^{1}} = Grid@MapThread[PlotPoles[TransferFunctionPoles[\#1][[1, 1]], ExtractPoles[\#2]] \&, \\ & \left\{ DGemodelsD, DGemodelsD \right\}, 2 \right] $$$

14.3 Dyskretyzacja na poziomie współczynników

14.3.1 Definicje

14.3.2 Testy

In[363]:= {a, c} = DiscretizeComplexList[{1, 2, 3}, {
$$\dot{\mathbf{n}}$$
, $\dot{\mathbf{n}}$ 2, $\dot{\mathbf{n}}$ 3}, 2]
Out[363]:= {{0, 3, 3}, {0, 3 $\dot{\mathbf{n}}$, 3 $\dot{\mathbf{n}}$ }

Dyskretyzujemy na poziomie filtrów cyfrowych

ln[371]:= buttModel = TransferFunctionExpand@DGbmodels[[2, 2]]

$$\mathsf{Out}[\mathsf{371}] = \left(\begin{array}{c} \textbf{0.0302379} + \textbf{0.0604758} \, \, \ddot{\mathsf{z}} + \textbf{0.0302379} \, \, \ddot{\mathsf{z}}^2 \\ \hline \\ \textbf{(0.572371} + \textbf{0.} \, \dot{\mathtt{i}} \, \big) - \big(\textbf{1.45142} + \textbf{0.} \, \dot{\mathtt{i}} \, \big) \, \, \ddot{\mathsf{z}} + \ddot{\mathsf{z}}^2 \end{array} \right)_{1}^{\mathcal{T}}$$

```
\label{eq:out_gamma_loss} $$ \inf[373] := $$ polesButt = TransferFunctionPoles[buttModel][[1, 1]] $$ Out[373] = $$ $ \{0.72571 - 0.213814 \ i \ , 0.72571 + 0.213814 \ i \ \}$$ $$
```

In[374]:= buttModelD = N@DiscretizeModelCoeffs[buttModel, bity]

Out[374]=
$$\frac{0.04682 + 0.04682 z + 0.04682 z^2}{0.56184 - 1.45142 z + 0.98322 z^2}$$

In[375]:= polesButtD = ExtractPoles[buttModelD]

Out[375]= $\left\{0.738095 - 0.16323 \,\dot{\mathbb{1}}, \, 0.738095 + 0.16323 \,\dot{\mathbb{1}}\right\}$

14.3.3 Dyskretyzacja

```
In[376]:= DGbmodelsDc = Map[DiscretizeModelCoeffs[#, bity] &, DGbmodels, {2}];
In[377]:= DGclmodelsDc = Map[DiscretizeModelCoeffs[#, bity] &, DGclmodels, {2}];
In[378]:= DGc2modelsDc = Map[DiscretizeModelCoeffs[#, bity] &, DGc2models, {2}];
In[379]:= DGemodelsDc = Map[DiscretizeModelCoeffs[#, bity] &, DGemodels, {2}];
```

14.3.4 Porównanie położenia biegunów

★ Butterworth

W prawo rośnie częstotliwość, w dół rośnie rząd filtra.

 $\label{localization} $$ \inf_{0 \le 1} Grid@MapThread[PlotPoles[TransferFunctionPoles[#1][[1, 1]], ExtractPoles[#2]] \&, $$ \{DGbmodels, DGbmodelsDc\}, 2]$$

★ Chebyshev 2

$\label{eq:local_local_local} $$\inf_{n \in \mathbb{R}^2} $Grid@MapThread[PlotPoles[TransferFunctionPoles[#1][[1, 1]], ExtractPoles[#2]] \&, \\ & \left\{DGc2models, DGc2modelsDc\right\}, 2]$$

-1.0

-1.0

-1.0

-1:0

-1.0

-1.0

★ Eliptyczne

$\label{localization} $$ \inf_{[383]:=} $\operatorname{Grid}_{\mathfrak{Q}}\operatorname{MapThread}_{PlotPoles}[\operatorname{TransferFunctionPoles}_{\mathfrak{q}}]_{[1,1]}, \operatorname{ExtractPoles}_{\mathfrak{q}}_{\mathfrak{q}}_{\mathfrak{q}}_{\mathfrak{q}}, \\ \left\{ \operatorname{DGemodels}_{\mathfrak{q}}, \operatorname{DGemodelsDc}_{\mathfrak{q}}_{\mathfrak{q}}, 2 \right] $$$

20/31

14.4 Dyskusja

Przy dyskretyzacji biegunów koniecznym zabiegiem okazało się nie dyskretyzowanie współczynnika stojącego przed całością filtra, gdyż przy niskich częstotliwościach i wysokich rzędach filtrów stawał się on bardzo mały, a po dyskretyzacji = 0. Przy tych założeniach większość filtrów okazała się stabilna przy dyskretyzacji za pomocą 6 bitów.

Okazuje się jednak, że dyskretyzacja na poziomie biegunów prowadzi do obniżenia rzędu filtra w przypadku filtrów eliptycznych (tj. zera i bieguny znajdujące się blisko siebie zaczynają wzajemnie się

skracać)

Dyskretyzacja współczynników ma bardzo podobny problem widoczny przy niskich częstotliwościach filtru Butterwortha i Chebysheva 1, z powodu znikajacego licznika znika cały filtr.

Ponadto widać, iż filtry eliptyczne powyżej 3 rzędu robią się bardzo niestabilne (niektóre nie są zaznaczone na czerwono bo filtr znikł z powodów wspomnianych wyżej)

W świetle tych wyników oraz faktu, iż na urządzeniu będziemy dyskretyzować współczynniki, a nie bieguny, proponuję zastosować dyskretyzację zer i biegunów z osobna, tak by zapobiec zerowaniu się licznika.

Wykonane w celu sprawdzenia tej propozycji symulacje przedstawiam poniżej.

14.5 Dyskretyzacja na poziomie współczynników zer i biegunów z osobna

14.5.1Definicje

Tutaj modyfikuję funkcję DiscretizeComplexList

```
In[422]:= DiscretizeList[x_, max_, bits_] :=
        If [\# \ge 0, 1, -1] Round [(Abs[\#]/max) (Power [2, bits -1] - 1) ] max / (Power [2, bits -1] - 1) & /@x;
     DiscretizeComplexList2[x_, y_, bits_] := Module[{xD, yD, coeffD, max},
         If [y = {}, {}, {},
          max = Max[Abs[Join[Re@x, Im@x]]];
          xD = DiscretizeList[Re@x, max, bits] + i DiscretizeList[Im@x, max, bits];
          max = Max[Abs[Join[Re@y, Im@y]]];
          yD = DiscretizeList[Re@y, max, bits] + i DiscretizeList[Im@y, max, bits];
          {xD, yD}]
        ];
     DiscretizeModelCoeffs2[tf_, bits_] := Module[{zeros, poles, zerosD, polesD},
             zeros = CoefficientList[Numerator[TransferFunctionExpand[tf][z]][[1, 1]], z];
         poles = CoefficientList[Denominator[TransferFunctionExpand[tf][z]][[1, 1]], z];
         {zerosD, polesD} = DiscretizeComplexList2[zeros, poles, bits];
             Chop[FromDigits[Reverse[zerosD], z] / (FromDigits[Reverse[polesD], z])]
        ];
     Testy
```

14.5.2

```
ln[363]:= \{a, c\} = DiscretizeComplexList[\{1, 2, 3\}, \{i, i, 2, i, 3\}, 2]
Out[363]= \{\{0, 3, 3\}, \{0, 3i, 3i\}\}
```

Dyskretyzujemy na poziomie filtrów cyfrowych

In[371]:= buttModel = TransferFunctionExpand@DGbmodels[[2, 2]]

$$\mathsf{Out}_{[371]=} \ \left(\ \frac{ \ 0.0302379 + 0.0604758 \ \overset{*}{z} + 0.0302379 \ \overset{*}{z}^2 }{ \left(\ 0.572371 + 0. \ \dot{\mathbb{1}} \ \right) - \left(1.45142 + 0. \ \dot{\mathbb{1}} \ \right) \ \overset{*}{z} + \overset{*}{z}^2 } \ \right)_{1}^{\mathcal{T}}$$

In[373]:= polesButt = TransferFunctionPoles[buttModel][[1, 1]]

Out[373]=
$$\left\{0.72571 - 0.213814 \,\dot{\mathbb{1}}, \, 0.72571 + 0.213814 \,\dot{\mathbb{1}}\right\}$$

In[374]:= buttModelD = N@DiscretizeModelCoeffs[buttModel, bity]

Out[374]=
$$\frac{0.04682 + 0.04682 z + 0.04682 z^2}{0.56184 - 1.45142 z + 0.98322 z^2}$$

Out[375]=
$$\left\{0.738095 - 0.16323 \,\dot{\mathbb{1}}, \, 0.738095 + 0.16323 \,\dot{\mathbb{1}}\right\}$$

14.5.3 Dyskretyzacja

14.5.4 Porównanie położenia biegunów

★ Butterworth

W prawo rośnie częstotliwość, w dół rośnie rząd filtra.

$\label{localization} $$\inf_{1\cap[429]:=}$ Grid@MapThread[PlotPoles[TransferFunctionPoles[\#1][[1,1]], ExtractPoles[\#2]] \&, \\ & \left\{DGbmodels, DGbmodelsDc2\right\}, 2]$

★ Chebyshev 1

$\label{localization} $$ \inf_{1 \le i \le m} \operatorname{Grid}_{\operatorname{MapThread}}[\operatorname{PlotPoles}_{\operatorname{TransferFunctionPoles}_{\operatorname{II}}[[1, 1]], \operatorname{ExtractPoles}_{\operatorname{II}}[2]] \&, $$ \{\operatorname{DGclmodels}_{\operatorname{DGclmodelsDc2}_{\operatorname{II}}}, 2]$ $$$

 \star Chebyshev 2

 $\label{localizero} $$\inf_{i \in [431]:=} $Grid@MapThread[PlotPoles[TransferFunctionPoles[\#1][[1, 1]], ExtractPoles[\#2]] \&, $$ \{DGc2models, DGc2modelsDc2\}, 2]$$

\star Eliptyczne

$\label{localization} $$\inf_{I\cap[432]:=}$ $\operatorname{Grid}_{\operatorname{\mathbb{C}}} \operatorname{Grid}_{\operatorname{\mathbb{C}}} \operatorname{Constant}_{\operatorname{\mathbb{C}}} \left[[1, 1] \right], \ \operatorname{ExtractPoles}_{\operatorname{\mathbb{C}}} \left[[2] \right] \&, \\ \left\{ \operatorname{DGemodels}_{\operatorname{\mathbb{C}}} \operatorname{DGemodels}_{\operatorname{\mathbb{C}}} 2 \right\}, \ 2 \right]$$

-1.0

-1.0

-1.0

15 Podsumowanie

Wbrew pozorom podzielenie procesu dyskretyzacji na współczynniki licznika i mianownika nie przyniosło wielkich zmian - filtry który znikały, stały się po prostu niestabilne.

Używając Bode Plot (ilustrujący kwadrat amplitudy (dB) w zależności od ω) można zademonstrować, że lepsze odwzorowanie filtru zależy właśnie od przyjętej strategii dyskretyzacji współczynników.

Poniżej znajdują się przykładowe Bode Ploty dla filtrów Butterwortha trzeciego rzędu i częstości równej 1.


```
 \begin{tabular}{l} & \begin
```


 $\begin{tabular}{l} $\operatorname{BodePlot}[\left\{\operatorname{DGc2models}[\left[3,\,3\right]\right]\left(\operatorname{e}^{i\,\omega}\right)$, $\operatorname{DGc2modelsD}[\left[3,\,3\right]]$/. $\left\{z\to\operatorname{e}^{i\,\omega}\right\}$, $\operatorname{DGc2modelsDc2}[\left[3,\,3\right]]$/. $\left\{z\to\operatorname{e}^{i\,\omega}\right\}$, $\left\{\omega,\,0.1,\,\pi\right\}$, $\operatorname{PlotLayout}\to\operatorname{"Magnitude"}$, $\operatorname{PlotLegends}\to\left\{\operatorname{"Idealny"},\operatorname{"Na poziomie zer i biegunów"},\operatorname{"Na poziomie współczynników"}, $\operatorname{"Na poziomie współczynników"}$, $\operatorname{PlotLabel}\to\operatorname{"Chebyshev}$2 $\operatorname{N=3"}$] }$

Jeśli trzeba można wyrysować wszystkie tym poleceniem.

Out[440]= \$Aborted

Wybrana przeze mnie wcześniej procedura dyskretyzacji na poziomie zer i biegunów, pomimo swoich pozornych zalet obarczona jest jednak dodatkowym błędem, wynikającym z wymnożenia zdyskretyzowanych zer/biegunów którego należałoby by dokonać nie na liczbach rzeczywistych, lecz na liczbach n-bitowych.

Prawdopodobnie to dyskwalifikuje te metode.