Quiz

- 1. First say True/False, and then explain briefly your answers.
 - (1) The pseudo one-time pad encryption scheme is CPA-secure.
 - (2) For a perfectly secure encryption scheme with message space \mathcal{M} and key space \mathcal{K} , $|\mathcal{K}| \geq |\mathcal{M}|$ has to hold.
 - (3) The RSA assumption is stronger than the assumption that factoring is hard.
 - (4) No deterministic encryption scheme can be CCA-secure.
- 2. Let n be a positive integer. The *affine cipher* modulo n is defined as follows. A key (a,b) consists of an element $a \in \mathbb{Z}_n^*$ and an element $b \in \mathbb{Z}_n$. For a message $m \in \mathbb{Z}_n$, the ciphertext is $C = Enc_{(a,b)}(m) = (am+b) \mod n$. If we *randomly* choose a key (a,b) for each message m to be encrypted, is this affine cipher *perfectly* secure? Explain your answer.