

40.0

In [137... # basic libraries
import pandas as pd
import numpy as np

In [138... #import our excel file in pyhton as df
 df=pd.read_excel("fraud_data.xlsx")
 df.head(6) # first 6 rows of data

6

156.84 35547

TransactionID Amount Out[138... Time Location MerchantCategory CardHolderAge 0 375.17 47605 Houston Travel 18.0 Los 1 950.76 38088 Electronics 28.0 2 Angeles 2 732.26 78752 20.0 3 Miami Travel 3 599.06 55284 New York 69.0 4 Groceries 4 5 156.86 57043 New York Groceries 79.0

In [139... df.describe()

5

Out[139...

	TransactionID	Amount	Time	CardHolderAge	IsFraud
count	500.000000	475.000000	500.000000	476.000000	500.000000
mean	250.500000	641.112753	41141.482000	47.518908	0.054000
std	144.481833	1044.448065	25614.468967	18.677362	0.226244
min	1.000000	6.060000	55.000000	5.000000	0.000000
25%	125.750000	243.780000	18726.250000	32.000000	0.000000
50%	250.500000	518.810000	40772.000000	47.000000	0.000000
75%	375.250000	776.000000	63463.250000	63.000000	0.000000
max	500.000000	9691.578643	86066.000000	120.000000	1.000000

Chicago

Clothing

In [140... df.isnull().sum() # this shows number of missing values in our data.
we can not fit model on this data now

Out[140... TransactionID 0
Amount 25
Time 0
Location 25
MerchantCategory 0
CardHolderAge 24
IsFraud 0
dtype: int64

In [141... #to get percentage of data missing in each data

```
(df.isnull().sum() / len(df)) * 100
Out[141... TransactionID
                              0.0
         Amount
                              5.0
         Time
                              0.0
         Location
                              5.0
         MerchantCategory
                              0.0
                              4.8
         CardHolderAge
         IsFraud
                              0.0
         dtype: float64
In [142... import seaborn as sns
         sns.boxplot(y=df['Amount'])
         plt.title("Box Plot of Amount")
         plt.show()
         # here we can see that it contain outliers( very extreme values)
```


we have to use median as substitute vlaue of missing values in amount.

```
In [143... # also check for cardeholder age
    sns.boxplot(y=df['CardHolderAge'])
    plt.title("Box Plot of CardHolderAge")
    plt.show()
    # it has outlier so we also use median here.
```



```
In [144... | # for location we use mode because it is categorical variable.
         # for Amount we will use median
         # for Cardholderage we will use median
         df['Amount'].fillna(df['Amount'].median(), inplace=True)
         df['CardHolderAge'].fillna(df['CardHolderAge'].median(), inplace=True)
         df['Location'].fillna(df['Location'].mode()[0], inplace=True)
In [145... # now our data have no missing values.
         df.isnull().sum()
Out[145... TransactionID
                              0
         Amount
                              0
         Time
                              0
         Location
                              0
         MerchantCategory
                              0
         CardHolderAge
                              0
         IsFraud
                              0
         dtype: int64
In [146... # check for data is balance or not.
         print(df['IsFraud'].value_counts())
        IsFraud
             473
        1
              27
        Name: count, dtype: int64
In [147... plt.figure(figsize=(14,7))
```

```
sns.countplot(data=df, x="Location", hue="MerchantCategory", palette="Set2")
plt.title("Transactions per Location by Merchant Category")
plt.xlabel("Location")
plt.ylabel("Count")
plt.xticks(rotation=45)
plt.legend(title="Merchant Category", bbox_to_anchor=(1.05, 1), loc='upper lef
plt.show()
# we have 5 merchant category and 5 locations.
```


In [148... df.drop('TransactionID',axis=1,inplace=True)
 df.head()
Transactionsid doesn't have any significant relation with fruad transaction

Out[148		Amount	Time	Location	MerchantCategory	CardHolderAge	IsFraud
	0	375.17	47605	Houston	Travel	18.0	0
	1	950.76	38088	Los Angeles	Electronics	28.0	0
	2	732.26	78752	Miami	Travel	20.0	0
	3	599.06	55284	New York	Groceries	69.0	0
	4	156.86	57043	New York	Groceries	79.0	0

```
In [149... # Encode categorical variables Location and MerchantCategory.
encoded_df = pd.get_dummies(df, columns=["Location", "MerchantCategory"], dropencoded df.head()
```

	Amount	Time	CardHolderAge	IsFraud	Location_Houston	Location_Los Angeles	Lo
0	375.17	47605	18.0	0	True	False	
1	950.76	38088	28.0	0	False	True	
2	732.26	78752	20.0	0	False	False	
3	599.06	55284	69.0	0	False	False	
4	156.86	57043	79.0	0	False	False	

	Feature	Correlation_with_IsFraud
0	IsFraud	1.000000
1	<pre>MerchantCategory_Groceries</pre>	0.044004
2	Location_Miami	0.030174
3	Location_New York	0.026257
4	Time	0.014175
5	Location_Los Angeles	-0.005326
6	CardHolderAge	-0.007941
7	MerchantCategory_Entertainment	-0.018988
8	MerchantCategory_Travel	-0.030971
9	Location_Houston	-0.031861
10	MerchantCategory_Electronics	-0.034176
11	Amount	-0.041102


```
In [151... # now we are going to separate target variable from data.
X = encoded_df.drop("IsFraud", axis=1)
y = encoded_df["IsFraud"]
# it is important for train-test split part.
In [152]

In [153]
In [154]
In [155]
In [156]
In [157]
In [157]
In [157]
In [157]
In [158]
I
```

```
In [153... # these are important libraries for model fitting and selection
from sklearn.model_selection import train_test_split
```

```
from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import classification report, confusion matrix, accuracy
         from imblearn.over sampling import SMOTE
In [154... X train, X test, y train, y test = train test split(
             X, y, test size=0.2, random state=42, stratify=y
         ) # we have now divided data into training and testing data.
         # 20% for test and 80% for training.
In [157... # Because we have imbalance dataset , so we have to use SMOTE to balance out d
         smote = SMOTE(random state=42)
         X train resampled, y train resampled = smote.fit resample(X train, y train)
         print("Before SMOTE:", y train.value counts().to dict())
         print("After SMOTE:", y train resampled.value counts().to dict())
        Before SMOTE: {0: 378, 1: 22}
        After SMOTE: {0: 378, 1: 378}
In [158... #Our data contains outliers , so we have to use standardization for scaling.
         scaler = StandardScaler()
         X train scaled = scaler.fit transform(X train resampled)
         X test scaled = scaler.transform(X test)
In [170... # Logistic Regression model fitting.
         model = LogisticRegression(max iter=1000)
         model.fit(X train scaled, y train resampled)
         # Predictions
         y pred = model.predict(X test scaled)
         # Evaluation
         print("\n=== Logistic regression Evaluation ===")
         print("Accuracy:", accuracy score(y test, y pred))
         print("\nClassification Report:\n", classification report(y test, y pred))
        === Logistic regression Evaluation ===
       Accuracy: 0.8
       Classification Report:
                      precision recall f1-score support
                           0.95 0.83
                                               0.89
                                                           95
                   0
                   1
                           0.06
                                   0.20
                                               0.09
                                                           5
                                               0.80
                                                          100
            accuracy
                           0.51
                                   0.52
                                               0.49
                                                          100
           macro avq
       weighted avg
                           0.91
                                    0.80
                                               0.85
                                                          100
In [164... # For confussion matrix representation.
```

from sklearn.metrics import confusion matrix

```
from sklearn.metrics import ConfusionMatrixDisplay

ConfusionMatrixDisplay(confusion_matrix(y_test, y_pred)).plot()
plt.title("Confusion Matrix - Logisticregression")
plt.show() # verifying quantity of TP and TN on confusion matrix...
```

Confusion Matrix - Logisticregression


```
In [167...
         # Random Forest model fitting.
         rf model = RandomForestClassifier(
             n estimators=200,
             max depth=6,
             min samples split=15,
             min samples leaf=8,
             random state=42,
             n jobs=-1
         rf model.fit(X train scaled, y train resampled)
         y pred rf = rf model.predict(X test scaled)
         y prob rf = rf model.predict proba(X test scaled)[:, 1]
         print("\n=== Random Forest Evaluation ===")
         print("Accuracy:", accuracy_score(y_test, y_pred_rf))
         print("\nClassification Report:\n", classification report(y test, y pred rf))
         print("Confusion Matrix:\n", confusion matrix(y test, y pred rf))
         print("ROC-AUC:", roc_auc_score(y_test, y_prob_rf))
         print("PR-AUC:", average precision score(y test, y prob rf))
```

```
Accuracy: 0.88
       Classification Report:
                       precision recall f1-score
                                                       support
                                     0.93
                                               0.94
                                                           95
                   0
                           0.95
                   1
                           0.00
                                     0.00
                                               0.00
                                                            5
           accuracy
                                               0.88
                                                          100
                                               0.47
           macro avg
                           0.47
                                     0.46
                                                          100
                                               0.89
       weighted avg
                           0.90
                                     0.88
                                                          100
       Confusion Matrix:
        [[88 7]
         [ 5 0]]
       ROC-AUC: 0.34947368421052627
       PR-AUC: 0.04739696835672068
In [172... # Side by side comparison of both models in terms for minority group(Fraud).
         # Logistic Regression
         log metrics = {
             "Accuracy": accuracy score(y test, y pred),
             "Minority Precision": classification report(y test, y pred, output dict=Tr
             "Minority Recall": classification report(y test, y pred, output dict=True)
             "Minority F1": classification report(y test, y pred, output dict=True)['1'
             "ROC-AUC": roc auc score(y test, y prob),
             "PR-AUC": average precision score(y test, y prob)
         }
         # Random Forest
         rf metrics = {
             "Accuracy": accuracy score(y test, y pred rf),
             "Minority Precision": classification report(y test, y pred rf, output dict
             "Minority Recall": classification report(y test, y pred rf, output dict=Tr
             "Minority F1": classification report(y test, y pred rf, output dict=True)[
             "ROC-AUC": roc auc score(y test, y prob rf),
             "PR-AUC": average precision score(y test, y prob rf)
         }
         # Combine into a DataFrame
         df comparison = pd.DataFrame([log metrics, rf metrics], index=["Logistic Regre")
         print(df comparison)
                             Accuracy Minority Precision Minority Recall \
       Logistic Regression
                                 0.80
                                                 0.058824
                                                                       0.2
       Random Forest
                                 0.88
                                                 0.000000
                                                                       0.0
                                                      PR-AUC
                            Minority F1 ROC-AUC
       Logistic Regression
                                0.090909 0.349474 0.047397
       Random Forest
                                0.000000 0.349474 0.047397
```

=== Random Forest Evaluation ===

In []: # since we had imbalance data set so we cannot perfer accuracy for model valid # As we can see that logistic regression is performing better when it comes to # our logistic regression model capturing fraud tranctision more effectivel wh # we can conclude that LR model is bettern than Random Forest model....