

Shenzhen King Sako Electronics.Co.,Ltd

Lithium Pack BMS-485 Communication Protocol

片	坂本	修改内容	修改日期	作者	备注
VE	ER1.0	初版发行	20200422	Aven	

- 1. 通讯格式 Protocol Specification:
- ●通讯采用 485 口, 1 位起始位 8 位数据位, 无校验, 1 位停止位, 波特率 9600。
- ●Communication hardware with 485 ports ,1 starting bit ,8 data bits ,none Parity , 1 Stop bits ,baud rate is 9600 bit/s .
- ●MODBUS 设备地址为 1~255, 地址 1 固定为光伏逆变器, 地址 2~7 为光伏控制器, 地址 8~255 为锂电池包。
- MODBUS address 1~255, address 1 is Solar Inverter, address 2~7 is MPPT solar controller,
 address 8~255 is lithium pack.
- ●所有设备采用总线方式。
- All devices use bus mode.
- ●协议里面使用读取开关(功能码 01)和读取寄存器(功能码 03),其它功能码不使用。
- Protocol used function code 01(status flags) and function code 03(operating parameters).
- ●查询步骤: 1.查询设备地址, 2.查询模拟量, 3.查询开关量。
- Query steps:1.Device address query;2.Operating parameters query;3.Status flags query.

2. 数据帧格式/Command constitute:

主机对从机读数据操作/The master device reads data from the slave device

0x08	0x03	0x00 0x00	0x00 0x1D	0x85 0x5A
设备地址	功能码(查询模拟量)	寄存器起始地址	读取寄存器个数	CRC16 校验
Device	function code 03	Register starting	Number of register	CRC16
Address	(operating parameters)	address	read	checksum

从机返回数据给主机/Returns data from slave device to master device

0x08	0x03	0x3A		
设备地址	功能码(查询模拟量)	数据字节个数	58 个字节数据	CRC16 校验
Device	function code 03	Number of data bytes	58 bytes of data	CRC16
Address	(operating parameters)			checksum

Shenzhen King Sako Electronics.Co.,Ltd

主机对从机读数据操作/The master device reads data from the slave device

0x08	0x01	0x00 0x00	0x00 0x34	0x3D 0x44
设备地址	功能码(查询开关量)	寄存器起始地址	读取寄存器个数	CRC16 校验
Device	function code 01	Register starting	Number of register	CRC16
Address	(status flags)	address	read	checksum

从机返回数据给主机/Returns data from slave device to master device

0x08	0x01	0x07		
设备地址	功能码(查询开关量)	数据字节个数	7 个字节数据	CRC16 校验
Device	function code 01	Number of data bytes	7 bytes of data	CRC16
Address	(status flags)			checksum

3. 报文示例/Message sample

查询模拟量/Operating parameters query

发送/send 08 03 00 00 00 1D 85 5A

接收/receive 08 03 3A 12 CO 00 10 00 5A 23 28 27 15 13 8D 00 19 00 1A 00 1B 0D E3 0D

16 进制 /hexadecimal	10 进制 /Decimal	Actual value	units	specification	Registe Address
12 CO	4800	48. 00V	0.01V	电池包实际总电压/Total battery voltage	0
00 10	16	16PCS	1PCS	电芯数量/Number of lithium battery cell	1
00 5A	90	90%	1%	剩余电量/SOC(0~100%)	2
23 28	9000	90. 00Ah	0.01Ah	剩余容量/AH(0~100%)	3
27 15	10005	100.05A	0.01A	输出电流/Discharge current	4
13 8D	5005	50. 05A	0. 01A	充电电流/Charge current	5
00 19	25	25℃	1℃	温度 1/Temperature 1	6
00 1A	26	26℃	1℃	温度 2/Temperature 2	7
00 1B	27	27℃	1℃	温度 3/Temperature 3	8
OD E3	3555	3. 555V	0.001V	电芯1电压/NO.1 cell voltage	9
0D E3	3555	3. 555V	0.001V	电芯2电压/NO.2 cell voltage	10
OD E3	3555	3. 555V	0.001V	电芯3电压/NO.3 cell voltage	11
OD E3	3555	3. 555V	0.001V	电芯4电压/NO.4 cell voltage	12
OD E3	3555	3. 555V	0.001V	电芯 5 电压/NO.5 cell voltage	13
OD E3	3555	3. 555V	0.001V	电芯6电压/NO.6 cell voltage	14
OD E3	3555	3. 555V	0.001V	电芯 7 电压/NO.7 cell voltage	15
OD E3	3555	3. 555V	0.001V	电芯8电压/NO.8 cell voltage	16
OD E3	3555	3. 555V	0.001V	电芯 9 电压/NO. 9 cell voltage	17

Shenzhen King Sako Electronics.Co.,Ltd

OD E3	3555	3. 555V	0.001V	电芯 10 电压/NO.10 cell voltage	18
OD E3	3555	3. 555V	0.001V	电芯 11 电压/NO.11 cell voltage	19
OD E3	3555	3. 555V	0.001V	电芯 12 电压/NO.12 cell voltage	20
OD E3	3555	3. 555V	0.001V	电芯 13 电压/NO.13 cell voltage	21
OD E3	3555	3. 555V	0.001V	电芯 14 电压/NO.14 cell voltage	22
OD E3	3555	3. 555V	0.001V	电芯 15 电压/NO.15 cell voltage	23
OD E3	3555	3. 555V	0.001V	电芯 16 电压/NO.16 cell voltage	24
OD E3	3555	3. 555V	0.001V	电芯 17 电压/NO.17 cell voltage	25
OD E3	3555	3. 555V	0.001V	电芯 18 电压/NO.18 cell voltage	26
OD E3	3555	3. 555V	0.001V	电芯 19 电压/NO.19 cell voltage	27
OD E3	3555	3. 555V	0.001V	电芯 20 电压/NO. 20 cell voltage	28

查询开关量/Status flags query

发送/send 08 01 00 00 00 34 3D 44

接收/receive 08 01 07 12 08 49 80 10 04 09 B9 DF

12 二进制: 00010010

二进制位	二进制值	walua	apacification	Register
/binary digit	/binary values	value	specification	Address
DO	0	否/no	正常/normal	0
D1	1	是/yes	故障/fault	1
D2	0	否/no	充电过流/over charge current	2
D3	0	否/no	放电过流/over discharge current	3
D4	1	是/yes	短路保护/short-circuit protection	4
D5	0	否/no	充电高温保护/charge high temperature protection	5
D6	0	否/no	放电高温保护/discharge high temperature protection	6
D7	0	否/no	充电低温保护/charge low temperature protection	7

08 二进制/binary values: 00001000

二进制位	二进制值	,		Register
/binary digit	/binary values	value	specification	Address
DO	0	否/no	放电低温保护/discharge low temperature protection	8
D1	0	否/no	充电 MOS 损坏/charge MOSFET is damage	9
D2	0	否/no	放电 MOS 损坏/discharge MOSFET is damage	10
D3	1	是/yes	内部通讯异常/internal communication is failure	11
D4	0	否/no	过充电压保护 1/charge over-voltage protection for cell 1	12
D5	0	否/no	过充电压保护 2/charge over-voltage protection for cell 2	13
D6	0	否/no	过充电压保护 3/charge over-voltage protection for cell 3	14
D7	0	否/no	过充电压保护 4/charge over-voltage protection for cell 4	15

Shenzhen King Sako Electronics.Co.,Ltd

49 二进制/binary values: 01001001

二进制位	二进制值	value	specification	Register
/binary digit	/binary values	varue	Specification	Address
DO	1	是/yes	过充电压保护 5/charge over-voltage protection for cell 5	16
D1	0	否/no	过充电压保护6/charge over-voltage protection for cell 6	17
D2	0	否/no	过充电压保护7/charge over-voltage protection for cell 7	18
D3	1	是/yes	过充电压保护 8/charge over-voltage protection for cell 8	19
D4	0	否/no	过充电压保护 9/charge over-voltage protection for cell 9	20
D5	0	否/no	过充电压保护10/charge over-voltage protection for cell 10	21
D6	1	是/yes	过充电压保护11/charge over-voltage protection for cell 11	22
D7	0	否/no	过充电压保护 12/charge over-voltage protection for cell 12	23

80 二进制/binary values: 10000000

二进制位	二进制值	value	specification	Register
/binary digit	/binary values	varue	Specification	Address
DO	0	否/no	过充电压保护13/charge over-voltage protection for cell 13	24
D1	0	否/no	过充电压保护14/charge over-voltage protection for cell 14	25
D2	0	否/no	过充电压保护 15/charge over-voltage protection for cell 15	26
D3	0	否/no	过充电压保护16/charge over-voltage protection for cell 16	27
D4	0	否/no	过充电压保护17/charge over-voltage protection for cell 17	28
D5	0	否/no	过充电压保护 18/charge over-voltage protection for cell 18	29
D6	0	否/no	过充电压保护 19/charge over-voltage protection for cell 19	30
D7	1	是/yes	过充电压保护 20/charge over-voltage protection for cell 20	31

10 二进制/binary values: 00010000

二进制位	二进制值	value	specification	Register
/binary digit	/binary values	varue	Specification	Address
D0	0	否/no	过放电压保护 1/charge over-voltage protection for cell 1	32
D1	0	否/no	过放电压保护 2/charge over-voltage protection for cell 2	33
D2	0	否/no	过放电压保护 3/charge over-voltage protection for cell 3	34
D3	0	否/no	过放电压保护4/charge over-voltage protection for cell 4	35
D4	1	是/yes	过放电压保护 5/charge over-voltage protection for cell 5	36
D5	0	否/no	过放电压保护6/charge over-voltage protection for cell 6	37
D6	0	否/no	过放电压保护7/charge over-voltage protection for cell 7	38
D7	0	否/no	过放电压保护8/charge over-voltage protection for cell 8	39

Shenzhen King Sako Electronics.Co.,Ltd

04 二进制/binary values: 00000100

二进制位	二进制值	value	specification	Register
/binary digit	/binary values			Address
DO	0	否/no	过放电压保护 9/charge over-voltage protection for cell 9	40
D1	0	否/no	过放电压保护10/charge over-voltage protection for cell 10	41
D2	1	是/yes	过放电压保护11/charge over-voltage protection for cell 11	42
D3	0	否/no	过放电压保护12/charge over-voltage protection for cell 12	43
D4	0	否/no	过放电压保护13/charge over-voltage protection for cell 13	44
D5	0	否/no	过放电压保护14/charge over-voltage protection for cell 14	45
D6	0	否/no	过放电压保护15/charge over-voltage protection for cell 15	46
D7	0	否/no	过放电压保护 16/charge over-voltage protection for cell 16	47

09 二进制/binary values: 00001001

二进制位	二进制值	value	specification	Register
/binary digit	/binary values			Address
DO	1	是/yes	过放电压保护17/charge over-voltage protection for cell 17	48
D1	0	否/no	过放电压保护18/charge over-voltage protection for cell 18	49
D2	0	否/no	过放电压保护19/charge over-voltage protection for cell 19	50
D3	1	是/yes	过放电压保护 20/charge over-voltage protection for cell 20	51
D4	0			
D5	0			
D6	0			
D7	0			

Definition of Communication Interface

RS485/CAN communication terminal

Pin	Definition
PIN1	NC
PIN2	NC
PIN3	485-B
PIN4	+12V(DC12V power supply input)
PIN5	485-A
PIN6	CAN-H
PIN7	CAN-L
PIN8	GND

X2(RJ45) 端口

Note: Communication can be activated after the battery pack is dormancy, but it must be supplied with input of +12V in pin4-pin8.

Shenzhen King Sako Electronics.Co.,Ltd

3.4.2MODBUS CRC 校验码的 C 语言源程序

```
unsigned short ModBusCRC16(const void *s, int n)
{
   unsigned short c = 0xffff;
   for(int k=0; k<n; k++)
   {
     unsigned short b=(((unsigned char *)s)[k]);
     for(char i=0; i<8; i++)
     {
        c = ((b^c)&1) ? (c>>1)^0xA001 : (c>>1);
        b>>=1;
      }
   }
   return (c<<8)|(c>>8);
}
```

3.4.CRC16 计算方法

3.4.1.算法说明

预置 1 个 16位的寄存器为十六进制的 FFFF (即全为 1); 称此寄存器为 CRC 寄存器。

把第一个 8 位二进制数据(即通讯信息帧的第一个字节)与 16 位的 CRC 寄存器的低 8 位相异或, 把结果存放在 CRC 寄存器。

把 CRC 寄存器的内容右移一位(朝低位)用 0 填补最高位,并检查右移后的移出位。

如果移出位为 0: 重复第 3 步 (再次右移 1位); 如果移出位为 1: CRC 寄存器与多项式 A001(1010 0000 0000 0001进行异或。

重复步骤 3 和 4, 直到右移 8 次, 这样整个 8 位数据全部进行了处理。

重复步骤 2 到步骤 5, 进行通讯信息帧下一个字节的处理。

将通讯信息帧的所有字节按上述步骤计算完成后,得到 16位 CRC 寄存器的高,低字节交换。 最后得到的 CRC 寄存器内容即为: CRC 码。