Haplotype Assembly

Neil Marion

Background

- 99.1% of DNA common, variations are SNPs
- SNPs Single Nucleotide Polymorphisms

Haplotypes - Possible Combination of SNPs

Images courtesy of: http://learn.genetics.utah.edu/conte nt/pharma/snips/

Background

- People have 2 Haplotypes from homologous chromosomes, one from each parent
- The Haplotype pair sites can be homozygous or heterozygous

Images courtesy of: http://learn.genetics.utah.edu/conte nt/pharma/snips/

Biological Problem

- Gene sequencers generate reads from both haplotypes
- Reads from the same region can contain data from either haplotype, making it difficult to determine which haplotype an individual read is from
- The goal is to reassemble the reads into the separate haplotypes using a greedy algorithm based on the differences in heterozygous sites

Bio Problem - Motivation

- Why assemble the haplotypes?
- Consider the earlier haplotype SNP profiles and the drug albuterol used to treat asthma

Computational Problem

Input: N x M Read
 Matrix

SNPs[M]

 Output: Complementary haplotypes of length M

$$H1 = 1$$
 1 0 0 1
 $H2 = 0$ 0 1 1 0

Benchmarks:

- Computational time to analyze the read matrix
- Accuracy of output % of the solution haplotype that matches the actual haplotype

Simulating the Read Matrix

- Generate random positions of a certain number of heterozygous SNPs along a sequence of a certain length. Randomly assign each SNP to '0' or '1'
 - For each read, randomly choose a start position in the sequence and read a certain number of positions (read length). Randomly decide which haplotype the read is coming from
 - Ignore homozygous SNPs and common pairs, looking only for heterozygous SNP sites
 - To assemble the read, mark unread SNP sites with '_'
 - Combine all the reads together to form the completed read matrix

Baseline Method

Given M SNPs with possible 2.
 values 0 or 1, 2^M possible haplotypes exist

0	0	0	0	0	
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	
•	•	•		•	

2. Compare each of the 2^M possible haplotypes against the read matrix, discarding those that conflict with both the read and the complement of the read

Benefits: If the reads overlap and cover all the SNPs, will eventually find the correct solution

Disadvantages: SLOW and inefficient. Each of the 2^M solutions may compare with all N of the reads

Greedy Method

Sort the read matrix by first 2.
 observed SNP position

```
      1
      1
      0
      _
      _

      _
      0
      1
      _
      _

      _
      0
      0
      _

      _
      0
      1

      _
      0
      1

      _
      0
      0
```

- In order, proceed down the sorted matrix and compare the overlaps of the reads one by one
 - If the overlaps matches,
 combine the reads. If the
 overlaps don't match,
 combine the 1st read with the
 complement of the 2nd read

Benefits: If the reads overlap and cover all the SNPs, will find the correct/optimal solution. FASTER than the baseline method

Disadvantages: Doesn't account for read errors (flipped value in an individual read)

Analysis - Speed

Baseline – Exponential

- 2^M * 2N possible comparisons
- Inefficient

2. Greedy – Linear

- Sorting done in single pass through matrix (more like rearranging)
- Haplotype assembly through read comparisons also done in single pass

Baseline and Greedy Timing

Analysis – Greedy Accuracy

Varying the size of the haplotype

- Read length and number of reads kept constant
- More reads have to overlap to cover the entire haplotype

Haplotype Size vs. Accuracy

2. Increasing the read length

- Haplotype size and number of reads held constant
- Longer reads means more overlaps occur

Read Length vs. Accuracy

Observations

- When the reads are extensive enough, greedy provides the correct and optimal solution
- However, when not enough overlaps are present in the reads, greedy is reduced to guessing which haplotype the read came from
- Number of previous reads from a given haplotype doesn't change the probability that the next read is from that haplotype
 - $-P(R_{10} \text{ from } H_1 \mid R_1 R_9 \text{ from } H_1) = P(R_i \text{ from } H_1)$