

Ch 1.3 & 1.6 (Week 8)

Propositional Equivalences

Introduction

Compound proposition

- An expression formed from propositional variables using logical operators
- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*. A compound proposition that is always false is called a *contradiction*. A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Logical Equivalences

- Have the same truth values in all possible cases
- The compound propositions p and q are called *logically equivalent* if $p\leftrightarrow q$ is a tautology. The notation $p\equiv q$ denotes that p and q are logically equivalent.
- \Leftrightarrow is sometimes used instead of \equiv

Rules of Inference

Introduction

Argument: A sequence of statements that end with a conclusion.

Valid: The conclusion, or final statement of the argument, must follow from the truth of the preceding statements, or premises, of the argument.

Valid Arguments in Propositional Logic

An *argument* in propositional logic is a sequence of propositions. All but the final proposition in the argument are called *premises* and the final proposition is called the *conclusion*. An argument is *valid* if the truth of all its premises implies that the conclusion is true.

An *argument form* in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is *valid* no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.

Ch 1.3 & 1.6 (Week 8)

Rules of Inference for Propositional Logic

Rule of Inference	Tautology	Name
$p \\ p \to q \\ \therefore \frac{p \to q}{q}$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \frac{p \to q}{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$ \frac{p}{q} $ $ \therefore \overline{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \vee q$ $\neg p \vee r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

▼ Example 3

"It is below freezing now. Therefore, it is either below freezing or raining now."

Solution:

p is "It is below freezing now", and q is "It is raining now."

p

 $\therefore p \lor q$

This is an argument that uses the *addition rule*.

▼ Example 4

"It is below freezing and raining now. Therefore, it is below freezing now."

Solution:

p is "It is below freezing now", and q is "It is raining now."

 $p \wedge q$

:. p

This argument uses the simplification rule.

▼ Example 5

"If is rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, we will have a barbecue tomorrow."

Solution:

p is "It is raining today," q is "We will not have a barbecue today," and r is "We will have a barbecue tomorrow."

p o q

q
ightarrow r

 $\therefore p \rightarrow r$

Hence, this argument is a hypothetical syllogism.

Using Rules of Inference to Build Arguments

▼ Example 7

"If you send me an email message, then I will finish writing the program," "If you do not send me an email message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

Solution:

p is "You sent me an email message", q is "I will finish writing the program", r is "I will go to sleep early", and s is "I will wake up feeling refreshed".

The premises are $p o q, \neg p o r,$ and r o s. The desired conclusion is $\neg q o s.$

Step	Reason
1. $p o q$	Premise
$2.\neg q \to \neg p$	Contrapositive of (1)
3. $ eg p o r$	Premise
$4. \neg q \to r$	Hypothetical syllogism using (2) and (3)
5. $r ightarrow s$	Premise
6. $\neg q o s$	Hypothetical syllogism using (4) and (5)

Resolution

Resolution
$$\neg$$
 $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$
Resolvent \neg $(q \lor r)$

Clauses \rightarrow A disjunction of variables or negations of these variables.

Fallacies

 $((p o q) \wedge q) o p$ is not a tautology \Rightarrow fallacy of affirming the conclusion $((p o q) \wedge \neg p) o \neg q$ is not a tautology \Rightarrow fallacy of denying the hypothesis

Rules of Inference for Quantified Statements

TABLE 2 Rules of Inference for Quantified Statements.		
Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization	
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation	
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization	

Universal instantiation

P(c) is true, where c is a particular member of the domain, given the premise $\forall x P(x)$.

Universal generalization

 $\forall x P(x)$ is true, given the premise that P(c) is true for all elements c in the domain.

Existential instantiation

There is an element c in the domain for which P(c) is true if we know that $\exists x P(x)$ is true.

Existential generalization

 $\exists x P(x)$ is true when a particular element c with P(c) true is known.

Combining Rules of Inference for Propositions and Quantified Statements

Universal modus ponens ⇒ universal instantiation + modus penens

if $\forall x(P(x) \to Q(x))$ is true, and if P(a) is true for a particular element a in the domain of the universal quantifier, then Q(a) must also be true.

Universal modus tollens ⇒ univesal instantiation + modus tollens

if $\forall x(P(x) \to Q(x))$ is true, and $\neg Q(a)$ is true where a is a particular element in the domain, then $\neg P(a)$ must be true.

Ch 1.3 & 1.6 (Week 8)