2022/01/18

Exercise 3

Consider the neural network \mathcal{N} defined by the following composite function:

$$\mathcal{N}(\mathbf{x}) = C(ReLU(B(ReLU(A\mathbf{x})))),\tag{2}$$

where:

- ReLU is applied componentwise;
- $A, B \in \mathbb{R}^{50 \times 50}$;
- $C \in \mathbb{R}^{5 \times 50}$.
- 1. For the given matrices A, B and C what are the dimensions of the input and output of the neural network \mathcal{N} ? Can the output be seen as a vector of probabilities?
- 2. Consider the softmax function

$$\operatorname{softmax}(\mathbf{x})_i = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}} \tag{3}$$

for $i \in \{1, ..., n\}$.

For the given matrices A, B and C what are the dimensions of the input and output of the neural network $\operatorname{softmax}(\mathcal{N})$? Can the output be seen as a vector of probabilities?

- 3. If \mathcal{N} is a classifier, for how many classes does it work?
- 4. Assume \mathcal{N} has been trained and you want to use it to for classification on an input \mathbf{x} . Do you use softmax(\mathcal{N}) or \mathcal{N} ? Justify your answer.

3 Coyper Feat Finand Variet Nelwark inat redot x e 12 sous - Axale

insert IRso, when IRs

Live six not gustanted to have NCD (non-maggine Summing to 1

, count be seen as probable

(in punciple both can be used)