DÉTECTEZ DES FAUX BILLETS

MISSION: CRÉER UN ALGORITHME DE DÉTECTION DE FAUX BILLETS

MISSION O

ANALYSES UNIVARIÉES ET BIVARIÉES

DESCRIPTION DES DONNÉES

DESCRIPTION DES DONNÉES

DESCRIPTION DES DONNÉES

MISSION 1

ANALYSE DE COMPOSANT PRINCIPALE

ANALYSE DE L'ÉBOULIS DES VALEURS PROPRES

REPRÉSENTATION DES VARIABLES PAR LE CERCLE DES CORRÉLATIONS

REPRÉSENTATION DES INDIVIDUS PAR LES PLANS FACTORIELS

COMPOSANT 1: VARIABLES LONGUEUR DE LA DIAGONALE

COMPOSANT 2: VARIABLES LONGUEUR DU BILLET VS HAUTEUR / MARGE

ANALYSER LA QUALITÉ DE REPRÉSENTATION ET LA CONTRIBUTION DES INDIVIDUS

QUALITÉ DE REPRÉSENTATION LES COS² (COSINUS CARRÉ)

CONCRÈTEMENT, LE BILLET AVEC L'ID O ET LE BILLET AVEC L'ID 166 SONT LES DEUX BILLETS QUI SE DÉMARQUENT LE PLUS DES AUTRES, ET ON LES RETROUVE AUX DEUX EXTRÉMITÉS LE PREMIER EST UN VRAI BILLET ET LE DEUXIÈME EST UN FAUX BILLET

CONTRIBUTION DES INDIVIDUS AUX AXES (CTR)

		id	CTR_1			id	CTR_1	CTR_2
	122	122	0.023618		5	5	0.003136	0.039503
	49	49	0.019505		166	166	0.013729	0.037704
	29	29	0.017982		34	34	0.000073	0.033106
	112	112	0.017845		156	156	0.000210	0.032074
	158	158	0.015743		70	70	0.002184	0.031331

ELLES PERMETTENT DE DÉTERMINER LES INDIVIDUS QUI PÈSENT LE PLUS DANS LA DÉFINITION DE CHAQUE **FACTEUR**

MISSION 2

APPLIQUER UN
ALGORITHME DE
CLASSIFICATION

KMEANS

RELATION DE MOYENNES DE GROUPE PAR RAPPORT AUX MOYENNES GENERALES

VISUALISATION DE LA PARTITION OBTENUE DANS LE PREMIER PLAN FACTORIEL DE L'ACP

TEST DE JUSTESSE DE KMEANS

SUCCESS RATE: 137 (80.59%)

MISSION 3

MODÉLISATIONS DES DONNÉES À L'AIDE D'UNE RÉGRESSION LOGISTIQUE

TEST D'ACUITÉ DU MODEL

CRÉATION DU MODELE

ALGORITHME À UTILISER DANS LE PROBLÈME D'OPTIMISATION

...FIN