CS3230 AY21/22 SEM 2 github/jovyntls

01. COMPUTATIONAL MODELS

- algorithm → a well-defined procedure for finding the correct solution to the input
- correctness
- worst-case correctness → correct on every valid input
- · other types of correctness: correct on random input/with high probability/approximately correct
- efficiency / running time → measures the number of steps executed by an algorithm as a function of the input size (depends on computational model used)
- number input: typically the length of binary representation
- worst-case running time → max number of steps executed when run on an input of size n

adversary argument →

inputs are decided such that they have different solutions

Comparison Model

- · algorithm can compare any two elements in one time unit (x > y, x < y, x = y)
- running time = number of pairwise comparisons made
- · array can be manipulated at no cost

Max Problem

problem: find largest element in array A of n distinct elements

Proof. n-1 comparisons are needed

fix an algorithm M that solves the Max problem on all inputs using < n-1 comparisons. construct graph Gwhere nodes i and j are adjacent iff M compares i & j.

M cannot differentiate A and A'.

Second Largest Problem

problem: find the second largest element in < 2n - 3comparisons (2x Maximum $\Rightarrow (n-1)+((n-1)-1)=2n-3$)

• solution: knockout tournament $\Rightarrow n + \lceil \lg n \rceil - 2$

- 1. bracket system: n-1 matches
 - · every non-winner has lost exactly once
- 2. then compare the elements that have lost to the largest • the 2nd largest element must have lost to the winner

 - compares $\lceil \lg n \rceil$ elements that have lost to the winner using $\lceil \lg n \rceil - 1$ comparisons

Sorting

Claim. there is a sorting algorithm that requires $\leq n \lg n - n + 1$ comparisons.

Proof. every sorting algorithm must make $\geq \lg(n!)$ comparisons.

- 1. let set \mathcal{U} be the set of all permutations of the set $\{1,\ldots,n\}$ that the adversary could choose as array A. $|\mathcal{U}| = n!$
- 2. for each query "is $A_i > A_i$?", if $\mathcal{U}_{ues} = \{A \in \mathcal{U} : A_i > A_i\}$ is of size $\geq |\mathcal{U}|/2$, set $\mathcal{U} := \mathcal{U}_{yes}$. else: $\mathcal{U} := \mathcal{U} \setminus \mathcal{U}_{yes}$
- 3. the size of \mathcal{U} decreases by at most half with each comparison
- 4. with $< \lg(n!)$ comparisons, \mathcal{U} will still contain at least 2 permutations

$$\begin{array}{l} n! \geq (\frac{n}{e})^n \\ \Rightarrow \lg(n!) \geq n \lg(\frac{n}{e}) = n \lg n - n \lg e \\ \approx n \lg n - 1.44n \end{array}$$

 \Rightarrow roughly $n \lg n$ comparisons are **required** and **sufficient** for sorting *n* numbers

String Model

input	string of n bits
each query	find out one bit of the string

- n queries are necessary and sufficient to check if the input string is all 0s.
- query complexity → number of bits of the input string queried by the algorithm
- evasive \rightarrow a problem requiring n query complexity

Graph Model

input	(symmetric) adjacency matrix of an n -node undirected graph
each query	find out if an edge is present between two chosen nodes (one entry of G)

- **evasive** \rightarrow requires $\binom{n}{2}$ queries
- Proof. determining whether the graph is connected is evasive (requires $\binom{n}{2}$ queries)
 - 1. suppose M is an algorithm making $< \binom{n}{2}$ queries.
 - 2. whenever M makes a query, the algorithm tries not adding this edge, but adding all remaining unqueried edges.
 - 2.1. if the resulting graph is connected, M replies $\boldsymbol{0}$ (i.e. edge does not exist)
 - 2.2. else: replies 1 (edge exists)
 - 3. after $\binom{n}{2}$ queries, at least one entry of the adjacency matrix is unqueried.

02. ASYMPTOTIC ANALYSIS

- algorithm → a finite sequence of well-defined instructions to solve a given computational problem
- **word-RAM model** \rightarrow runtime is the total number of instructions executed
- · operators, comparisons, if, return, etc
- each instruction operates on a *word* of data (limited size) ⇒ fixed constant amount of time

Asymptotic Notations

$$\begin{array}{l} \text{upper bound (\leq):} \ f(n) = O(g(n)) \\ \text{if } \exists c > 0, n_0 > 0 \ \text{such that} \ \forall n \geq n_0, \\ \hline 0 \leq f(n) \leq cg(n) \end{array}$$

$$\begin{array}{l} \text{lower bound (\geq): } f(n) = \Omega(g(n)) \\ \text{if } \exists c > 0, n_0 > 0 \text{ such that } \forall n \geq n_0, \\ \boxed{0 \leq cg(n) \leq f(n)} \end{array}$$

$$\begin{array}{l} o\text{-notation (<): } f(n) = o(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ \boxed{0 \leq f(n) < cg(n)} \end{array}$$

$$\begin{array}{l} \omega\text{-notation (>): }f(n)=\omega(g(n))\\ \text{if }\forall c>0,\exists n_0>0 \text{ such that }\forall n\geq n_0,\\ \boxed{0\leq cg(n)< f(n)} \end{array}$$

Limits

Assume f(n), g(n) > 0.

$$\begin{split} \lim_{n \to \infty} \frac{f(n)}{g(n)} &= 0 & \Rightarrow f(n) = o(g(n)) \\ \lim_{n \to \infty} \frac{f(n)}{g(n)} &< \infty & \Rightarrow f(n) = O(g(n)) \\ 0 &< \lim_{n \to \infty} \frac{f(n)}{g(n)} &< \infty & \Rightarrow f(n) = \Theta(g(n)) \\ \lim_{n \to \infty} \frac{f(n)}{g(n)} &> 0 & \Rightarrow f(n) = \Omega(g(n)) \\ \lim_{n \to \infty} \frac{f(n)}{g(n)} &= \infty & \Rightarrow f(n) = \omega(g(n)) \end{split}$$

Proof. using delta epsilon definition

Properties of Big O

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

- transitivity applies for $O, \Theta, \Omega, o, \omega$ $f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- reflexivity for $O, \Omega, \Theta, f(n) = O(f(n))$
- symmetry $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$
- complementarity -
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$ • $f(n) = o(q(n)) \iff q(n) = \omega(f(n))$

- if $f(n) = \omega(g(n))$, then $f(n) = \Omega(g(n))$ • if f(n) = o(g(n)), then f(n) = O(g(n))

 $\log \log n < \log n < (\log n)^k < n^k < k^n$

insertion sort: $O(n^2)$ with worst case $\Theta(n^2)$

03. ITERATION. RECURSION. **DIVIDE-AND-CONQUER**

Iterative Algorithms

- iterative → loop(s), sequentially processing input elements
- · loop invariant implies correctness if
- initialisation true before the first iteration of the loop

- · maintenance if true before an iteration, it remains true at the beginning of the next iteration
- · termination true when the algorithm terminates

examples

- insertionSort: with loop variable as j, A[1...J-1] is sorted.
- **selectionSort**: with loop variable as i, the array A[1..i-1]is sorted and contains the j-1 smallest elements of A.
- · Misra-Gries algorithm (determines which bit occurs more in an n-bit array A):
- if there is an equal number of 0's and 1's, then $id=\bot$ and count = 0
- if $z \in \{0, 1\}$ is the majority element, then id = z and count equals the difference between the count of the bits.

Divide-and-Conquer

powering a number

problem: compute $f(n,m) = a^n \pmod{m}$ for all $n,m \in \mathbb{Z}$

- observation: $f(x+y,m) = f(x,m) * f(y,m) \pmod{m}$
- · naive solution: recursively compute and combine
- $f(n-1,m) * f(1,m) \pmod{m}$
- $T(n) = T(n-1) + T(1) + \Theta(1) \Rightarrow T(n) = \Theta(n)$
- · better solution: divide and conquer
- · divide: trivial
- conquer: recursively compute f(|n/2|, m)
- $f(n,m) = f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if n is even
- $f(n,m) = f(1,m) * f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if odd
- $T(n) = T(n/2) + \Theta(1) \Rightarrow \Theta(\log n)$

Solving Recurrences

for a sub-problems of size $\frac{n}{L}$ where f(n) is the time to divide and combine.

$$T(n) = aT(\frac{n}{h}) + f(n)$$

Recursion tree

total = height × number of leaves

- · each node represents the cost of a single subproblem
- · height of the tree = longest path from root to leaf

Master method

 $a \geq 1, b > 1,$ and f is asymptotically positive

$$T(n) = aT(\frac{n}{b}) + f(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = n^{\log_b a} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{cases}$$

three common cases

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$,
- f(n) grows polynomially slower than $n^{\log_b a}$ by n^ϵ factor.
- then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$,
 - f(n) and $n^{\log_b a}$ grow at similar rates.
 - then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$,
 - ullet and f(n) satisfies the **regularity condition**
 - $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n,
 - this guarantees that the sum of subproblems is smaller than f(n).
 - f(n) grows polynomially faster than $n^{\log_b a}$ by n^ϵ factor
 - then $T(n) = \Theta(f(n))$.

Substitution method

- 1. guess that T(n) = O(f(n)). i.e. $\exists c$ such that $T(n) < c \cdot f(n)$, for $n > n_0$.
- 2. verify by induction:
- 2.1. set $c = \max\{2, q\}$ and $n_0 = 1$
- 2.2. verify base case ($n = n_0 = 1$)
- 2.3. recursive case (n > 1):
 - by strong induction, assume $T(k) = c \cdot f(k)$ for n > k > 1
 - T(n) = $\langle \text{recurrence} \rangle \dots \leq c \cdot f(n)$
- 2.4. hence $T(n) \le c \cdot f(n)$ for $n \ge 1$.
- ! may not be a tight bound!

example

$$\begin{split} \textit{Proof.} \ T(n) &= 4T(n/2) + n^2/\lg n \Rightarrow \Theta(n^2 \lg \lg n) \\ T(n) &= 4T(n/2) + \frac{n^2}{\lg n} \\ &= 4(4T(n/4) + \frac{(n/2)^2}{\lg n - \lg 2}) + \frac{n^2}{\lg n} \\ &= 16T(n/4) + \frac{n^2}{\lg n - \lg 2} + \frac{n^2}{\lg n} \\ &= \sum_{k=1}^{\lg n} \frac{n^2}{\lg n - k} \\ &= n^2 \lg \lg n \text{ by approx. of harmonic series } (\sum \frac{1}{k}) \end{split}$$

Proof.
$$T(n) = 4T(n/2) + n \Rightarrow O(n^2)$$

To show that for all $n > n_0$, $T(n) < c_1 n^2 - c_2 n$

- 1. Set $c_1 = q + 1, c_2 = 1, n_0 = 1$.
- 2. Base case (n=1): subbing into $c_1n^2-c_2n$, $T(1)=q\leq (q+1)(1)^2-(1)(1)$
- 3. Recursive case (n > 1):
- by strong induction, assume $T(k) \leq c_1 \cdot k^2 c_2 \cdot k$ for all $n > k \geq 1$

$$\begin{split} \bullet \, T(n) &= 4T(n/2) + n \\ &= 4(c_1(n/2)^2 - c_2(n/2)) + n \\ &= c_1 n^2 - 2c_2 n + n \\ &= c_1 n^2 - c_2 n + (1 - c_2) n \\ &= c_1 n^2 - c_2 n \quad \text{since } c_2 = 1 \Rightarrow 1 - c_2 = 0 \end{split}$$

04. AVERAGE-CASE ANALYSIS & RANDOMISED ALGORITHMS

- average case $A(n) \to$ expected running time when the input is chosen uniformly at random from the set of all n! permutations
- $A(n) = \frac{1}{n!} \sum_{\pi} Q(\pi)$ where $Q(\pi)$ is the time complexity when the input is permutation π .
- $A(n) = \underset{x \sim \mathcal{D}_n}{\mathbb{E}} [\text{Runtime of Alg on } x]$
 - $\mathbb{E}_{x \sim \mathcal{D}_n}$ is a probability distribution on U restricted to inputs of size n.

Quicksort Analysis

- divide & conquer, linear-time $\Theta(n)$ partitioning subroutine
- · assume we select the first array element as pivot
- $T(n) = T(j) + T(n-j-1) + \Theta(n)$
- if the pivot produces subarrays of size j and (n-j-1)
- worst-case: $T(n) = T(0) + T(n-1) + \Theta(n) \Rightarrow \Theta(n^2)$

Proof. for quicksort, $A(n) = O(n \log n)$

let P(i) be the set of all those permutations of elements $\{e_1, e_2, \dots, e_n\}$ that begins with e_i .

Let G(n,i) be the average running time of quicksort over P(i). Then

$$\begin{split} G(n) &= A(i-1) + A(n-i) + (n-1). \\ A(n) &= \frac{1}{n} \sum_{i=1}^{n} G(n,i) \\ &= \frac{1}{n} \sum_{i=1}^{n} (A(i-1) + A(n-i) + (n-1)) \\ &= \frac{2}{n} \sum_{i=1}^{n} A(i-1) + n - 1 \\ &= O(n \log n) \text{ by taking it as area under integration} \end{split}$$

quicksort vs mergesort

	average	best	worst	
quicksort	$1.39n \lg n$	$n \lg n$	n(n-1)	
mergesort	$n \lg n$	$n \lg n$	$n \lg n$	

- disadvantages of mergesort:
- · overhead of temporary storage
- cache misses
- advantages of guicksort
- in place
- reliable (as $n\uparrow$, chances of deviation from avg case \downarrow)
- · issues with quicksort
- $\mbox{\bf distribution-sensitive} \rightarrow \mbox{time taken depends on the initial (input) permutation}$

Randomised Algorithms

- randomised algorithms → output and running time are functions of the input and random bits chosen
- vs non-randomised: output & running time are functions of the *input only*
- expected running time = worst-case running time = $E(n) = \max_{\text{input } x \text{ of size } n} \mathbb{E}[\text{Runtime of RandAlg on } x]$
- · randomised quicksort: choose pivot at random

- probability that the runtime of *randomised* quicksort exceeds average by $x\% = n^{-\frac{x}{100}\ln\ln n}$
- P(time takes at least double of the average) = 10^{-15}
- · distribution insensitive

Randomised Quicksort Analysis

$$T(n) = n-1 + T(q-1) + T(n-q)$$
 Let $A(n) = \mathbb{E}[T(n)]$ where the expectation is over the

randomness in expectation.

Taking expectations and applying linearity of expectation:

$$A(n) = n - 1 + \frac{1}{n} \sum_{q=1}^{n} (A(q-1) + A(n-q))$$
$$= n - 1 + \frac{2}{n} \sum_{q=1}^{n-1} A(q)$$

 $A(n) = n \log n$ \Rightarrow same as average case quicksort

Randomised Quickselect

- O(n) to find the k^{th} smallest element
- randomisation: unlikely to keep getting a bad split

Types of Randomised Algorithms

- · randomised Las Vegas algorithms
- · output is always correct
- runtime is a random variable
- · e.g. randomised quicksort, randomised quickselect
- randomised Monte Carlo algorithms
- · output may be incorrect with some small probability
- · runtime is deterministic

examples

- $smallest\ enclosing\ circle$: given n points in a plane, compute the $smallest\ radius\ circle\ that\ encloses\ all\ <math>n$ points
- best **deterministic** algorithm: O(n), but complex
- las vegas: average O(n), simple solution
- minimum cut: given a connected graph G with n vertices and m edges, compute the smallest set of edges whose removal would disconnect G.
- best **deterministic** algorithm: O(mn)
- monte carlo: $O(m \log n)$, error probability n^{-c} for any c
- primality testing: determine if an n bit integer is prime
- best **deterministic** algorithm: $O(n^6)$
- monte carlo: $O(kn^2)$, error probability 2^{-k} for any k

Geometric Distribution

Let X be the number of trials repeated until success. X is a random variable and follows a geometric distribution with probability p.

Expected number of trials,
$$E[X] = \frac{1}{p}$$

$$Pr[X = k] = q^{k-1}p$$

Linearity of Expectation

For any two events X, Y and a constant a,

$$E[X + Y] = E[X] + E[Y]$$
$$E[aX] = aE[X]$$

Coupon Collector Problem

- n types of coupon are put into a box and randomly drawn with replacement. What is the expected number of draws needed to collect at least one of each type of coupon?
- let T_i be the time to collect the i-th coupon after the i-1 coupon has been collected.
- Probability of collecting a new coupon, $p_i = \frac{(n-(i-1))}{n}$

- T_i has a geometric distribution
- $E[T_i] = 1/p_i$
- total number of draws, $T = \sum_{i=1}^{n} T_i$
- $E[T]=E[\sum_{i=1}^n T_i]=\sum_{i=1}^n E[T_i]$ by linearity of expectation $=\sum_{i=1}^n \frac{n}{n-(i-1)}=n\cdot\sum_{i=1}^n \frac{1}{i}=\Theta(n\lg n)$

05. HASHING

Dictionary ADT

- · different types:
- static fixed set of inserted items; only care about queries
- · insertion-only only insertions and queries
- dynamic insertions, deletions, queries
- · implementations
- sorted list (static) $O(\log N)$ query
- balanced search tree (dynamic) $O(\log N)$ all operations
- · direct access table
- × needs items to be represented as non-negative integers (prehashing)
- × huge space requirement
- using ${\mathcal H}$ for dictionaries: need to store both the hash table and the matrix A.
- additional storage overhead $= \Theta(\log N \cdot \log |U|),$ if $M = \Theta(N)$
- other universal hashing constructions may have more efficient hash function evaluation
- associative array has both key and value (dictionary in this context has only key)

Hashing

- hash function, $h:U\to\{1,\dots,M\}$ gives the location of where to store in the hash table
- notation: $[M] = \{1, \dots, M\}[M] = \{1, \dots, M\}$
- ullet storing N items in hash table of size M
- **collision** \rightarrow for two different keys x and y, h(x) = h(y)
- resolve by chaining, open addressing, etc
- desired properties
- \checkmark minimise collisions query(x) and delete(x) take time $\Theta(|h(x)|)$
- \checkmark minimise storage space aim to have M = O(N)
- ✓ function h is easy to compute (assume constant time)
- if $|U| \ge (N-1)M+1$, for any $h: U \to [M]$, there is a set of N elements having the same hash value.
- · Proof: pigeonhole principle
- use **randomisation** to overcome the adversary
- ullet e.g. randomly choose between two $\it deterministic$ hash functions $\it h_1$ and $\it h_2$
- \Rightarrow for any pair of keys, with probability $\geq \frac{1}{2}$, there will be no collision

Universal Hashing

Suppose \mathcal{H} is a set of hash functions mapping U to [M].

$$\mathcal{H} \text{ is } \frac{\text{universal}}{\text{universal}} \text{ if } \forall \, x \neq y, \frac{|h \in \mathcal{H}: h(x) = h(y)|}{|H|} \leq \frac{1}{M} \\ \text{or } \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{1}{M}$$

• aka: for any $x \neq y$, if h is chosen uniformly at random from a universal $\mathcal H$, then there is at most $\frac{1}{M}$ probability that h(x) = h(y)

- probability where h is sampled uniformly from ${\cal H}$
- aka: for any $x \neq y$, the fraction of hash functions with collisions is at most $\frac{1}{M}$.

Properties of universal hashing

Collision Analysis

- for any N elements $x_1,\ldots,x_N\in\mathcal{U}$, the **expected number of collisions** between x_N and other elements is < N/M.
- it follows that for K operations, the expected cost of the last operation is < K/M = O(1) if M > K.

Proof. by definition of Universal Hashing, each element $x_1,\dots,x_{N-1}\in\mathcal{U}$ has at most $\frac{1}{M}$ probability of collision with x_N (over random choice of h). by indicator r.v., $E[A_i] = P(A_i = 1) \leq \frac{1}{M}$. expected number of collisions = $(N-1) \cdot \frac{1}{M} < \frac{N}{M}$.

• if x_1, \ldots, x_N are added to the hash table, and M > N, the expected **number of pairs** (i, j) with collisions is < 2N.

Proof. let A_{ij} be an indicator r.v. for collision.

$$\mathbb{E}\left[\sum_{1 \le i,j \le N} A_{ij}\right] = \sum_{i=1}^{N} \mathbb{E}[A_{ii}] + \sum_{i \ne j} \mathbb{E}[A_{ij}]$$
$$\le N \cdot 1 + N(N-1) \cdot \frac{1}{M} < 2N$$

Expected Cost

• for any sequence of N operations, if M>N, then the **expected total cost** for executing the sequence is O(N).

Proof. linearity of expectation; sum up expected costs

Construction of Universal Family

Obtain a universal family of hash functions with M = O(N).

- Suppose U is indexed by u-bit strings and $M=2^m$.
- For any $m \times u$ binary matrix A, $h_A(x) = Ax \pmod{2}$
- each element x => x % 2
- x is a $u \times 1$ matrix $\Rightarrow Ax$ is $m \times 1$
- Claim: $\{h_A: A \in \{0,1\}^{m \times u}\}$ is universal
- e.g. $U = \{00, 01, 10, 11\}, M = 2$
- h_{ab} means $A = [a \ b]$

•	n_{ab} means $A = [a \ b]$							
		00	01	10	11			
	h_{00}	0	0	0	0			
	h_{01}	0	1	0	1			
	h_{10}	0	0	1	1			
	h_{11}	0	1	1	0			

Proof. Let $x \neq y$. Let z = x - y. We know $z \neq 0$.

Collision:
$$P(Ax=Ay)=P[A(x-y)=0]=P(Az=0)$$
.

To show
$$P(Az=0) \leq \frac{1}{M}$$
.

Special case - Suppose z is 1 at the i-th coordinate but 0 everywhere else. Then Az is the i-th column of A. Since the i-th column is uniformly random,

$$P(Az = 0) = \frac{1}{2^m} = \frac{1}{M}.$$

General case - Suppose z is 1 at the i-th coordinate. Let $z=[z_1\ z_2\ \dots\ z_u]^T.\ A=[A_1\ A_2\ \dots\ A_u]$ hence A_k is the k-th column of A.

Then
$$Az = z_1 A_1 + z_2 A_2 + \dots + z_u A_u$$
.
 $Az = 0 \Rightarrow z_1 A_1 = -(z_2 A_2 + \dots + z_u A_u)$ (*)

We fix z_1A_1 to be an arbitrary $m\times 1$ matrix of 1s and 0s. The probability that (*) holds is $\frac{1}{2m}$.

Perfect Hashing

static case - N fixed items in the dictionary x_1, x_2, \dots, x_N To perform Query in O(1) worst-case time.

Quadratic Space: $M = N^2$

if $\mathcal H$ is universal and $M=N^2$, and h is sampled uniformly from $\mathcal H$, then the expected number of collisions is <1.

Proof. for $i \neq j$, let indicator r.v. A_{ij} be equal to 1 if $h(x_i) = h(x_j)$, or 0 otherwise.

By universality,
$$E[A_{ij}] = P(A_{ij} = 1) \leq 1/N^2$$
 $E[\text{\# collisions}] = \sum\limits_{i < i} E[A_{ij}] \leq {N \choose 2} \frac{1}{N^2} < 1$

It follows that there exists $h \in \mathcal{H}$ causing no collisions (because if not, $\mathbb{E}[\text{#collisions}]$ would be > 1).

2-Level Scheme: M=N

• No collision and less space needed

Construction

Choose $h:U\to [N]$ from a universal hash family.

- Let L_k be the number of x_i 's for which $h(x_i) = k$.
- Choose h_1,\ldots,h_N second-level hash functions $h_k:[N]\to[(L_k)^2]$ s.t. there are no collisions among the L_k elements mapped to k by h.
- quadratic second-level table \rightarrow ensures no collisions using quadratic space

Analysis

if \mathcal{H} is universal and h is sampled uniformly from \mathcal{H} , then

$$E\left[\sum_{k}L_{k}^{2}\right]<2N$$

Proof. For $i, j \in [1, N]$, define indicator r.v. $A_{ij} = 1$ if $h(x_i) = h(x_j)$, or 0 otherwise.

$$A_{ij}=$$
 # possible collisions = # pairs * 2 = L_k^2 Hence $\sum\limits_k L_k^2 = \sum\limits_{i,j} A_{ij}$

$$E[\sum_{i,j} A_{ij}] = \sum_{i} E[A_{ii}] + \sum_{i \neq j} E[A_{ij}]$$

$$\leq N \cdot 1 + N(N-1) \cdot \frac{1}{N}$$

$$< 2N$$

Hash Table Resizing

- ullet when number of inserted items, N is not known
- reshashing choose a new hash function of a larger size and re-hash all elements
- costly but infrequent ⇒ amortize

06. FINGERPRINTING & STREAMING

String Pattern Matching

problem: does the pattern string P occur as a substring of the text string T?

m= length of $P,\, n=$ length of $T,\, \ell=$ size of alphabet

- assumption: operations on strings of length $O(\log n)$ can be executed in O(1) time. (word-RAM model)
- naive solution: $\Theta(n^2)$

Fingerprinting approach (Karp-Rabin)

- faster string equality check:
 - for substring X, check h(X) == h(P) for a hash function $h\Rightarrow \Theta(1)$ + cost of hashing instead of $\Theta(|X|)$
- Rolling Hash: O(m+n)
- update the hash from what we already have from the previous hash ${\cal O}(1)$
- compute n-m+1 hashes in O(n) time
- · Monte Carlo algorithm

Division Hash

Choose a random **prime** number p in the range $\{1,\ldots,K\}$. For integer $x,h_p(x)=x\ (\mathrm{mod}\ p)$

- if p is small and x is b-bits long in binary, hashing $\Rightarrow O(b)$
- hash family $\{h_n\}$ is approximately universal
- if $0 \le x < y < 2^b$, then $\Pr[h_p(x) = h_p(y)] < \frac{b \ln K}{K}$

Proof. $h_p(x) = h_p(y)$ when $y - x = 0 \pmod{p}$.

Let z = y - x.

Since $z < 2^b$, then z can have at most b distinct prime factors.

p divides z if p is one of these $\leq b$ prime factors. number of primes in range $\{1,\ldots,K\}$ is $>\frac{K}{\ln K}$, hence the probability is $b/\frac{K}{\ln K}=\frac{b\ln K}{K}$

values of K

• higher K = lower probability of false positive

• for $\delta = \frac{1}{100n}$, P(false positive) < 1%.

 $\forall \delta>0, \text{ if } X\neq Y \text{ and } K=\frac{2m}{\delta}\cdot \lg\ell\cdot \lg(\frac{2m}{\delta}\lg\ell), \text{ then } Pr[h(X)=h(Y)]<\delta$

Streaming

problem: Consider a sequence of insertions or deletions of items from a large universe \mathcal{U} . At the end of the stream, the *frequency* f_i of item i is its net count.

Let ${\cal M}$ be the sum of all frequencies at the end of stream. naive solutions

- direct access table $\Omega(U)$ space
- sorted list $\Omega(M)$ space, no O(1) update
- binary search tree O(M) space

Frequency Estimation

an approximation
$$\hat{f}_i$$
 is ϵ -approximate if $f_i - \epsilon M < \hat{f}_i < f_i + \epsilon M$

Using Hash Table

$$f_i \leq \mathbb{E}[\hat{f}_i] \leq f_i + M/k$$

- increment/decrement A[h(j)] on an empty table A of size k
- collision \Rightarrow false positives \Rightarrow may give overestimate of f_i
- $A[h(i)] = \sum_{j:h(j)=h(i)} f_j \ge f_i$
- if h is drawn from a universal family, overestimate, $\mathbb{E}[A[h(i)] f_i] \leq M/k$
- space: $O(\frac{1}{\epsilon} \cdot \lg M + \lg U \cdot \lg M)$ let $k = \frac{1}{\epsilon}$ for some $\epsilon > 0$.
- number of rows = $O(\frac{1}{\epsilon})$
- size of each row = $O(\lg M)$
- size of hash function (using universal hash family from $\text{ch.05}) = O(\lg U \cdot \lg M)$

• Count-Min Sketch \to gives a bound on the probability that $\hat{f_i}$ deviates from f_i instead of a bound on the expectation of the gap

asymptotic bounds

set notation

```
 \begin{aligned} & \bullet O(g(n)) = \{f(n): \exists c, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq f(n) \leq cg(n) \} \\ & \bullet \Omega(g(n)) = \{f(n): \exists c, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq cg(n) \leq f(n) \} \\ & \bullet \Theta(g(n)) = \{f(n): \exists c_1, c_2, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \} = O(g(n)) \cap \Omega(g(n)) \\ & \bullet O(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq f(n) < cg(n) \} \\ & \bullet \omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq cg(n) < f(n) \} \end{aligned}
```

example proofs

```
Proof. that 2n^2=O(n^3) let f(n)=2n^2. then f(n)=2n^2\leq n^3 when n\geq 2. set c=1 and n_0=2. we have f(n)=2n^2\leq c\cdot n^3 for n\geq n_0. Proof. n=o(n^2) For any c>0, use n_0=2/c. Proof. n^2-n=\omega(n) For any c>0, use n_0=2(c+1).
```

Because of the oscillating behaviour of the sine function, there is no n_0 for which f dominates g or vice versa. Hence, we cannot compare f and g using asymptotic notation.

```
Example. let f(n)=n and g(n)=n(2+\sin(n)).
Since \frac{1}{3}g(n)\leq f(n)\leq g(n) for all n\geq 0, then f(n)=\Theta(g(n)). (note that limit rules will not work here)
```

helpful approximations

```
harmonic number, H_n = \sum\limits_{k=1}^n \frac{1}{k} = \Theta(\lg n) number of primes in range \{1,\ldots,K\} is > \frac{K}{\ln K}
```

Example. let f(n) = n and $g(n) = n^{1+\sin(n)}$.

mentioned algorithms

- ch.3 Misra Gries space-efficient computation of the majority bit in array A
- ch.3 Euclidean efficient computation of GCD of two integers
- ch.3 Tower of Hanoi $T(n) = 2^n 1$
 - 1. move the top n-1 discs from the first to the second peg using the third as temporary storage.
 - 2. move the biggest disc directly to the empty third peg.
- 3. move the n-1 discs from the second peg to the third using the first peg for temporary storage.
- ch.3 MergeSort $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$
- ch.3 **Karatsuba Multiplication** multiply two n-digit numbers x and y in $O(n^{\log_2 3})$
- worst-case runtime: $T(n) = 3T(\lceil n/2 \rceil) + \Theta(n)$

uncommon notations

• ⊥ - false