СИНТЕЗ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕРРОЦЕНСОДЕРЖАЩИХ 1,4-ДИЗАМЕЩЕННЫХ 1*H*-1,2,3-ТРИАЗОЛОВ

Конарев П.О.⁽¹⁾, Зырянова Е.Ю.^(1,2), Махаева Г.Ф.⁽³⁾, Мусихина А.А.^(1,2), Утепова И.А.^(1,2), Чупахин О.Н.^(1,2)

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22 тут физиологически активных веществ ФИЦ ПХФ и МХ

(3) Институт физиологически активных веществ ФИЦ ПХФ и МХ РАН 142432, г. Черноголовка, Северный проезд, д. 1

1*H*-1,2,3-Триазол — часто встречающийся фрагмент в многофункциональных гибридных молекулах, перспективных для медицинской химии. Производные триазолов показали выраженную активность в отношении болезни Альцгеймера *in vitro* и *in vivo*. В свою очередь, ферроценовые производные 1*H*-1,2,3-триазолов остаются малоизученными в качестве агентов для терапии нейродегенеративных заболеваний.

Ферроценсодержащие 1H-1,2,3-триазолы **4а-е** были получены путем медькатализируемого азид-алкинового циклоприсоединения в присутствии аскорбата натрия (см. схему). 4-Азидобутаноилферроцен **2** был синтезирован в ходе реакции 4-хлорбутирилферроцена **1** с азидом натрия при 60 °C в ДМФА.

Fe
$$NaN_3$$
, $ΩMΦΑ$ Fe NaN_3 , $ΩMΦΑ$ Fe NaN_3 R_1 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_7 R_7 R_8 R_8 R_9 $R_$

Синтез ферроценсодержащих 1,4-дизамещенных-1*H*-1,2,3-триазолов

Первоначальные эксперименты показали, что ферроценсодержащие производные 1,4-дизамещенных 1H-1,2,3-триазолов являются перспективными кандидатами для углубленного исследования их как многофункциональных препаратов для терапии болезни Альцгеймера.

Работа выполнена при финансовой поддержке РНФ, проект № 24-63-00016.