

# Logarítmos: definição, condição de existência e consequências da definição

## Resumo

#### Logarítmos

Definimos como logaritmo de um número positivo a na base b o valor do expoente da potência de base b que tem como resultado o número a. Ou seja:

$$log_b a = X \leftrightarrow b^x = a$$

Chamamos a de logaritmando, sendo a > 0, e b de base, sendo b > 0 e b ≠ 1

**Ex**:  $\log_2 8 = 3$ , pois  $2^3 = 8$ .

## Condição de existência:

Para que  $\log_b a$  esteja definido duas condições devem ser atendidas:

{ 
$$Base: b > 0 \ e \ b \neq 1$$
 {  $Logaritmando: a > 0$ 

Essas condições são fundamentais na resolução de equações e inequações logarítmicas, bem como para determinar o domínio das funções logarítmicas.

### Consequências da definição:

a) 
$$\log_b 1 = 0$$
.  
 $\log_b 1 = x \rightarrow b^x = 1 \rightarrow x = 0$ 

b) 
$$log_b b = 1$$
.  
 $log_b b = x \rightarrow b^x = b^1 \rightarrow x = 1$ 

c) 
$$b^{\log_b a} = a$$
  
Fazendo  $b^{\log_b a} = b^x$ , temos que  $\log_b a = x$  e, da definição desse logaritmo, temos que  $b^x = a$ . Portanto:  $b^{\log_b a} = x = a$ 

## Sistemas de logaritmos:

Sistema decimal (base 10):
 Por convenção, ela pode ser omitida.

 Ex: log 100 = log<sub>10</sub> 100 = 2, pois 10² = 100.



2) Sistema neperiano (base e):

O número e, chamado de número de euler, pertence ao conjunto dos números irracionais e vale, aproximadamente, 2,7.

 $e \cong 2,71828...$ 

O logaritmo neperiano, também chamado de logaritmo natural, é o logaritmo de base **e** e é representado por ln:

 $ln x = log_e x$ 

Quer ver este material pelo Dex? Clique aqui

## Exercícios

- 1. Supondo que exista, o logaritmo de a na base b é
  - a) o número ao qual se eleva a para se obter b.
  - b) o número ao qual se eleva b para se obter a.
  - **c)** a potência de base b e expoente a.
  - d) a potência de base a e expoente b.
  - e) a potência de base 10 e expoente a.
- **2.** O valor CORRETO da expressão  $E = \log_2 8 + \frac{0{,}001}{10000} + \left(\frac{1}{2}\right)^{-3}$  é:
  - **a)** 10000.
  - **b)** 11,0000001.
  - **c)**  $11 \cdot 10^{-7}$ .
  - **d)** 11.
  - **e)** -1
- 3. O número log<sub>2</sub> 7 está entre
  - **a)** 0 e 1.
  - **b)** 1 e 2.
  - **c)** 2 e 3.
  - **d)** 3 e 4.
  - **e)** 4 e 5.



4. A Escala de Magnitude de Momento (abreviada como MMS e denotada como M<sub>w</sub>), introduzida em 1979 por Thomas Haks e Hiroo Kanamori, substituiu a Escala de Richter para medir a magnitude dos terremotos em termos de energia liberada. Menos conhecida pelo público, a MMS é, no entanto, a escala usada para estimar as magnitudes de todos os grandes terremotos da atualidade. Assim como a escala Richter, a MMS é uma escala logarítmica. M<sub>w</sub> e M se relacionam pela fórmula:

$$M_{w} = -10,7 + \frac{2}{3}\log_{10}(M_{0})$$

Onde  $M_0$  é o momento sísmico (usualmente estimado a partir dos registros de movimento da superfície, através dos sismogramas), cuja unidade é o dina·cm. O terremoto de Kobe, acontecido no dia 17 de janeiro de 1995, foi um dos terremotos que causaram maior impacto no Japão e na comunidade científica internacional. Teve magnitude  $M_w$  = 7,3

Mostrando que é possível determinar a medida por meio de conhecimentos matemáticos, qual foi o momento sísmico M<sub>w</sub> do terremoto de Kobe (em dina.cm)?

- **a)** 10<sup>-5,10</sup>.
- **b)** 10<sup>-0,73</sup>.
- **c)** 10<sup>12,00</sup>.
- **d)** 10<sup>21,65</sup>.
- **e)** 10<sup>27,00</sup>.
- **5.** A acidez de frutas cítricas é determinada pela concentração de íons hidrogênio. Uma amostra de polpa de laranja apresenta pH = 2,3. Considerando log2 = 0,3, a concentração de íons hidrogênio nessa amostra, em mol.L -1, equivale a:

**Obs**:  $pH = -log[H^+]$ 

- **a)** 0,001
- **b)** 0,003
- **c)** 0,005
- **d)** 0,007
- **6.** Uma calculadora tem duas teclas especiais, A e B. Quando a tecla A é digitada, o número que está no visor é substituído pelo logaritmo decimal desse número. Quando a tecla B é digitada, o número do visor é multiplicado por cinco. Considere que uma pessoa digitou as teclas BAB, nesta ordem, e obteve no visor o número 10.

Nesse caso, o visor da calculadora mostrava inicialmente o seguinte número:

- **a)** 20
- **b)** 30
- **c)** 40
- **d)** 50



**7.** Calcule o valor de S:

$$S = \log_4(\log_3 9) + \log_2(\log_{81} 3) + \log_{0.8}(\log_{16} 32)$$

- **a)** -5/2
- **b)** 5/2
- **c)** 3/2
- **d)** -3/2
- **8.** Calcule o valor de  $7^{1 + \log_7 4}$ :
  - **a)** 11
  - **b)** 28
  - **c)** 35
  - **d)** 42
- **9.** Em uma calculadora científica de 12 dígitos, quando se aperta a tecla LOG, aparece no visor o logaritmo decimal do número que estava no visor. Se a operação não for possível, aparece no visor a palavra ERRO. Depois de digitar 42 bilhões, o número de vezes que se deve apertar a tecla LOG para que no visor apareça ERRO pela primeira vez é:
  - a) duas
  - b) três
  - c) quatro
  - d) cinco
  - e) oito
- **10.** Considerando-se  $K = 100^{\log 3} + 1000^{\log 2}$ , onde os logaritmos são decimais, é correto afirmar-se que K é
  - a) Múltiplo de 10.
  - **b)** Negativo.
  - c) Maior que 100.
  - d) Ímpar.
  - e) Irracional.

## Gabarito

#### 1. B

Dados dois números reais a e b positivos e b diferente de 1.

Denotamos o logaritmo de a na base b por

$$log_b(a)$$

em que b é a base do logaritmo e a é o logaritmando.

Esse logaritmo é o expoente ao qual devemos elevar a base b para se obter a como resultado:

$$x = \log_b(a) \Leftrightarrow b^x = a$$

É o número ao qual se eleva b para se obter a.

## 2. B

$$\mathsf{E} = \log_2 8 + \frac{0,001}{10000} + \left(\frac{1}{2}\right)^{-3}$$

$$\mathsf{E} = 3 + \frac{10^{-3}}{10^4} + 2^3$$

$$E = 3 + 10^{-3-4} + 8$$

$$E = 11 + 10^{-7}$$

$$E = 11 + 0,0000001$$

$$E = 11,0000001.$$

#### 3. C

$$\log_2 7 = x \Rightarrow 2^X = 7 \Rightarrow 2 < x < 3.$$

#### 4 F

Basta substituir na fórmula as informações dadas no enunciado:

$$M_W = 7,3.$$

Substituindo na equação das escalas, vamos obter, 7,3 = -10,7 +  $2/3 \log(M_0)$ . Operando:

$$7,3 + 10,7 = 2/3 \log(M_0)$$

$$18 = 2/3 \log(M_0)$$

$$9 = 1/3 \log(M_0)$$

$$27 = \log(M_0)$$

Agora, podemos aplicar a definição de logarítmo:

$$10^{27} = M_0$$



5. C

A concentração de íons hidrogênio dessa fruta pode ser denotada como [H<sup>+</sup>].

Portanto:

$$pH = -1 \circ g_{10}[H^{+}]$$

$$2, 3 = -1 \circ g_{10}[H^{+}]$$

$$-2, 3 = 1 \circ g_{10}[H^{+}]$$

$$10^{-2,3} = [H^{+}]$$

$$10^{-0,3} \times 10^{-2} = [H^{+}]$$

$$\frac{1}{10^{0,3}} \times \frac{1}{100} = [H^{+}]$$

Como  $log_{10}$  2 = 0,3, tem-se  $10^{0,3}$  = 2. Logo

$$\frac{1}{2} \times \frac{1}{100} = [H^+]$$
$$[H^+] = \frac{1}{200}$$
$$[H^+] = 0,005 \text{ mol} \times L^{-1}$$

6. A

Número inicial no visor = x

Tecla A = 
$$log_{10}(5x)$$

Tecla B = 
$$5 \cdot (\log_{10}(5x)) = 10 \rightarrow \log_{10}(5x) = 2 \rightarrow 5x = 10^2 \rightarrow x = \frac{100}{5} = 20$$

7. A

$$S = \log_4 2 + \log_2 \frac{1}{4} + \log_{\frac{4}{5}} \frac{5}{4}$$

$$S = \frac{1}{2} + (-2) + (-1)$$

$$S = \frac{1}{2} - 3$$

$$S = -\frac{5}{2}$$

8. E

$$7^1$$
.  $7^{\log_7 4} = 7$ .  $4 = 28$ 

9. D

O número 42 bilhões pode ser escrito como  $42x10^9$ . Apertando a tecla LOG uma vez será feita a operação:  $\log\left(42\times10^9\right) = \log42 + 9.\log10 = \log42 + 9.(1) = \log42 + 9$ 

Como Log(100) = 2, temos que Log(42) < 2. Logo, Log(42) + 9 < 11.



Como Log(10) = 1, apertando a tecla pela  $2^a$  vez, temos Log(11) = 1 < N < 2. É possível apertar a tecla pela  $3^a$  vez.

Como Log(1) = 0, o Log(N) mostrará resultado será N' tal que 0 < N' < 1. O Logaritmo de número entre 0 e 1 é negativo.

Logo, apertando a tecla pela 4ª vez aparecerá um número negativo. Na 5ª vez aparecerá ERRO.

### 10. D

$$K = 100^{log3} + 1000^{log2} = \left(10^{log3}\right)^2 + \left(10^{log2}\right)^3 = 3^2 + 2^3 = 17 \, (impar).$$