Informed Search

- Informed Search Methods
 - Heuristics
 - Greedy Search
 - A* Search
- Graph Search

Recap: Search

Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Uninformed Search

Uniform Cost Search

Strategy: expand lowest path cost

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

Informed Search

Search Heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Straight-line distan	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Example: Heuristic Function

Straight-line distan	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Greedy Search

What can go wrong?

Bucharest

Sibiu

253

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- Greedy's Best-first approach takes you straight to the (wrong) goal, but towards a goal nonetheless
- Worst-case: like a badly-guided DFS, explore everything except where you need to be

A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$

$$f(n) \le g(A)$$

$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

- 1. f(n) is less than or equal to f(A)
- Definition of f-cost says:

```
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)

f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
```

- The admissible heuristic must underestimate the true cost h(A) = (est. cost of A to A)= 0
- So now, we have to compare:
 f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)

$$f(A) = g(A) = (path cost to A)$$

h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) ≤ (path cost to A) g(n) + h(n) ≤ g(A)

$$f(n) \le f(A)$$

n

A

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

$$h = 0$$
 at a goal

- 1. f(A) is less than f(B)
- Definition of f-cost says:

```
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)
```

The heuristic must underestimate the true cost

$$h(A) = h(B) = 0$$

f(A) < f(B)

So now, we have to compare:

$$f(A) = g(A) = (path cost to A)$$

 $f(B) = g(B) = (path cost to B)$

 We assumed that B is suboptimal! So (path cost to A) < (path cost to B) g(A) < g(B)

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)

- 1. f(n) is less or equal to f(A)
- 2. f(A) is less than f(B)
- 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Properties of A*

Uniform-Cost

UCS vs A* Contours

Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Comparison

Greedy

Uniform Cost

A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- **...**

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

Start State

Goal State

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

Dominance: h_a ≥ h_c if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic
 - Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - □ If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - □ Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality Properties

- Tree search:
 - □ A* is optimal if heuristic is *admissible*
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function TREE-SEARCH(problem, fringe) return a solution, or failure
    fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        for child-node in EXPAND(STATE[node], problem) do
            fringe ← INSERT(child-node, fringe)
        end
        end
end
```

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure

closed ← an empty set

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node ← remove-front(fringe)

if goal-test(problem, state[node]) then return node

if state[node] is not in closed then

add state[node] to closed

for child-node in expand(state[node], problem) do

fringe ← insert(child-node, fringe)

end

end
```

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours) Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
 - Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

Optimality of A* Graph Search

Proof:

- New possible problem: some n on path to G* isn't in queue when we need it, because some worse n' for the same state dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- $\neg f(p) < f(n)$ because of consistency
- □ f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

