Lab Assignment - ●7

>

Instructor: Dr. Arabin Kumar Dey

1 Due date:

• 30/9/2022

2 Notes:

- Make a proper documentation preferably in latex or using some other software and submit the printout of the report in .pdf form.
- Each student needs to write his/ her own solutions, even though discussions of the assignments between students are encouraged.

3 Assignments:

1. Use the following Monte Carlo estimator to approximate the expected value

$$I = E(\exp(\sqrt{U}))$$

where $U \sim \mathcal{U}[0,1]$: $I_M = \frac{1}{M} \sum_{i=1}^M Y_i$, where $Y_i = \exp(\sqrt{U_i})$ with $U_i \sim \mathcal{U}[0,1]$.

Take all values of M to be 10^2 , 10^3 , 10^4 and 10^5 . Determine the 95% confidence interval for I_M for all the four values of M that you have taken.

2. Repeat the above exercise using antithetic variates via the following estimator and calculate the percentage of variance reduction:

$$\hat{I}_M = \frac{1}{M} \sum_{i=1}^M \hat{Y}_i$$

where

$$\hat{Y}_i = \frac{\exp(\sqrt{U_i}) + \exp(\sqrt{1 - U_i})}{2}$$

with $U_i \sim \mathcal{U}[0,1]$

3. Use \sqrt{U} to construct control variate estimate and repeat the above exercise. Calculate the percentage of variance reduction.