Module 35 Tensorflow/Pytorch Tutorials

Slides by:

Team DSS

Amanda Ma, Kevin Miao, Sandeep Sainath, Youngli Hong

Week

Introduction to TF/Torch

After this module, you should independently be able to:

- get an intuition of the differences between the two libraries.
- 2. transition between programming, math and theory, specifically, the different optimizations and gradients.
- 3. load and augment data.
- 4. independently use any of the libraries to implement neural models of choice.
- 5. be able to effectively debug and read through documentation.
- 6. get some sense of residual nets are implemented on a basic level.

Prerequisite knowledge:

- 1. EE16A
- 2. CS61A/B or equivalent programming experience
- 3. Module 21 Backpropagation
- 4. Module 23 Hyperparameter Tuning
- 5. Module 34 CNNs
- 6. Module 35 Transfer Learning
- 7. EE16B (Concurrently)

History of ML Libraries

History of ML Libraries

- 1991: Python invented
- 1995: Numeric, predecessor NumPy, launched
- **2000s:** SciPy
- **2006:** NumPy
- 2007: Theano, Scikit-Learn
- 2010: Deep Learning skyrocketing due to cheap and many GPUs
- 2015: Keras, TensorFlow
- **2016:** PyTorch

Objective: Faster, more-intuitive to create scientific computing tool through smart data structures and architecture

Current Deep Learning Frameworks

Current Deep Learning Frameworks

Library/ Framework	1	theano	Ċ	K
Developer/Year	Google Brain (2015)	University of Montreal (2007)	Facebook AI (2016)	Francois Chollet (2015)
High/Low Level	High/Low	Low	Low	High (Based on TF)
Strength	Large-Scale Employment	Fast, Prototyping	Dynamic	High Level

Tensorflow

What is and Why Tensorflow?

Deep Learning library open-sourced by Google

- Deep Learning -- neural networks!
- Distributed Computing & Scalability
- GPU/TPU Support & Pipelining
- Flexibility

Tensors

N-dimensional array of data

7

Graphs

Represent computations as dependencies between various operations

Abstraction Layers

Work on Assignment 1A

Work on **Assignment 2A**

Pytorch

PyTorch

- PyTorch is open-source machine learning framework
- Created by Facebook AI in 2016
- More dynamic and pythonian
- Data parallelism
- Easier navigation
- Majority of researchers, Tesla's autopilot and UBER pyro

PyTorch Tensors, Dimensionality and NumPy

- PyTorch is extremely similar to NumPy
- Tensors, unlike in TF, are used in a similar fashion as NumPy's Arrays
 - Arithmetics are the same
 - Mutations are the same
- Slightly different syntax

Autograd

- PyTorch tensors allow for the fast computation of derivatives through autograd, automatic differentiation framework
- Automatic Differentiation vs Symbolic Differentation
- To use autograd, initialize tensor with `requires_grad=True` and take gradient with `.backward()` and `tensor.grad`
- Detach using `tensor.detach()

Optimizers

- Optimizers, a smart optimization to do backprop for you!
- `torch.optim`
- Workflow:
 - Initialize optimizer with coefficients, learning rate, momentum factor
 - Momentum factor: degree of using previous gradients for directionality
 - Define loss function (also called criterion)
 - Run model on input
 - Calculate loss
 - Call `.backward()` on loss

Neural Networks

- Neural Networks and (generally DAGs) encapsulated in classes in PyTorch
- Library: `torch.nn`
- These classes need to contain the following structure:
 - o **Initializer:** inherit from super class
 - Forward(input): calculations when neural network is called on input
 - o **num_flat_features() [OPTIONAL]:** sometimes you need to flatten something and it is nice to have.

Data Utilities

- Datasets are also custom classes
- These classes need to contain the following structure:
 - Initializer(data, labels, transforms): need to create class variables storing data and labels or alternatively file paths
 - __get__(idx): Return one sample located at x
 - **len:** the length of your dataset
- Training can happen through using a one-liner data loading

Work on **Assignment 1B**

Data Augmentation

Augmented Images

- How do we prevent overfitting and increase our dataset?
 - Data Augmentation
 - i.e. from one picture we can create 10 pictures for training
- Transforms in your dataset class allow you to do that.
 - Pre-defined functions:
 https://pytorch.org/docs/stable/torchvision/transforms.html
- **Disclaimer:** If you crop or translate, make sure that the region of interest is still in the picture.

CUDA

- Parallel Computing Platform to allow GPUs for general processing
- To use GPUs, we need to send to **DEVICE** first
 - Model
 - Data/Labels
- Define a device
- Sending data through
 - o `tensor.to(device)`
- If you want to extract the values, you simply append `.data`

ResNet

- We will not go too much in-depth about the mechanics behind Residual Nets, but you are encouraged to use this in your assignments.
- State-of-the-art
- Deep Learning Networks became deeper and deeper (yet also shrunk in filter sizes)
- Researchers found out that the residual block in a CNN is useful
- Not entirely sure (still being researched)
- **Different flavors:** ResNet 18, 34, 50,, 1202

Figure 2. Residual learning: a building block.

Work on **Assignment 2B**

Project Overview

Capstone Project: MURA

- Goal:
 - Create a classifier given bone x-rays to classify whether a x-ray is normal or abnormal
- Pick either PyTorch or TensorFlow to create a classifier from start to end.
- Create a model and optimize through hyper-parameter tuning.
- Include a small write-up about the medical implications of machine learning in medicine

Work on **Project**

Ethics

Ethics: Machine Bias

- Take the <u>moral machine test</u>
- How biased are you?
- Observe:
 - Bias is culturally dependent
 - Bias embedded in technical systems have far more reach than one person has ⇒ Machine Bias
- Case:
 - African Americans are more likely to be classified as criminal
 - Women are more likely to be advertised traditionally feminine jobs.

Ethics

Capstone Project

- BONUS POINTS
 - Implement one or more of the following components to make your project more 'ethical':
 - Meta analysis
 - See whether you see any patterns amongst misclassified x-rays.
 - Check whether there are any signs of overfitting.
 - Transparency
 - Visualize the learned filters. Do they make sense?
 - Create other metrics to capture the performance of your model
 - Think about ROCAUC/PRC

Take the **Quiz**

End of Module 35 - Introduction to TF/Torch

Since you have completed the module successfully, you can:

- 1. get an intuition of the differences between the two libraries.
- 2. transition between programming, math and theory, specifically, the different optimizations and gradients.
- 3. load and augment data.
- 4. independently use any of the libraries to implement neural models of choice.
- 5. be able to effectively debug and read through documentation.
- 6. get some sense of residual nets are implemented on a basic level.