TD1: Programmation par contraintes

Exercice 1

Q1

```
Variables: X = {X<sub>1,1</sub>, X<sub>n,n</sub>}
Domaine: {0,1} //0 correspond à une case vide, 1 correspond à une reine
Contraintes:
    sum(X<sub>i,1</sub>,...,X<sub>i,n</sub>) = 1, ∀i (rows)
    sum(X<sub>i,1</sub>,...,X<sub>i,n</sub>) = 1, ∀i (columns)
    sum(X<sub>i,1</sub>,...,X<sub>i+k,1+k</sub>) ≤ 1, ∀i (diagonals)
    sum(X<sub>1,1</sub>,...,X<sub>1+k,X<sub>i+k</sub></sub>) ≤ 1, ∀i (diagonals)
Variables L = {L<sub>1</sub>, L<sub>n</sub>} //Correspond à la position d'une reine sur une ligne
    Domaine: {1,...,n}
Contraintes:
    allDiff(L<sub>1</sub>,...,L<sub>n</sub>)
    allDiff(L<sub>1</sub>,...,L<sub>j</sub> + (j - i))
    allDiff(L<sub>i</sub>,...,L<sub>i</sub> - (j - i))
```

Exercice 2

Q1

Exercice 3

Q1

```
- Variables : X = \{X_1,...,X_n\}
   Domaine : {0,..,m}
- Contraintes :
    allDiff(X_1,...,X_n)
    allDiff(diff(X_i, X_i)) //diff est la soustraction entre les deux valeurs
```

Exercice 4

Q1

- Variables : $M = \{M_1, ..., M_5\}$ Domaine : {1,...,5} $C = \{C_1, ..., C_5\}$ Domaine: {bleu, rouge, vert, jaune, blanc} $N = \{N_1, ..., N_5\}$ Domaine: {norvegien, anglais, espagnol, ukrainien, japonais} $A = \{A_1, ..., A_5\}$ Domaine: {chien, escargot, renard, cheval, zebre} $B = \{B_1, ..., B_5\}$ Domaine : {lait, café, thé, vin, inconnu} $CI = \{CI_1,...,CI_5\}$ Domaine: {kools, cravens, oldGold, gitanes, cherterfields} - Contraintes :

allDiff(C_i) allDiff(N_i) allDiff(A_i) allDiff(B_i) allDiff(Cl_i) N_1 = norvegien C_2 = bleu $B_3 = lait$

 N_i = anglais && C_i = rouge

 C_i = vert && B_i = café

 C_i = jaune && Cl_i = kools

 C_i = blanc && C_{i-1} = vert

 N_i = espagnol && A_i = chien

 N_i = ukrainien && B_i = thé

N_i = japonais && Cl_i = cravens

 CI_i = oldGold && A_i = escargot

 CI_i = gitanes && B_i = vin

 CI_i = cherterfields && $(A_{i+1}$ = renard $||A_{i-1}|$ = renard)

 CI_i = kools && $(A_{i+1}$ = cheval || A_{i-1} = cheval)