

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 2

«Графический ввод схемы и симуляция в CAПР QUARTUS II. Описание логических схем при помощи языка AHDL»

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы	Тринеев Павел Сергеевич		
ИКБО-13-22			
Принял преподаватель кафедры ВТ	Рыжова Анастасия Андреевна		
Практическая работа выполнена	«»2023 г.		
«Зачтено»	« » 2023 г.		

1 ВВЕДЕНИЕ

1.1 Моделирование цифровых схем с использованием параметрических элементов (Q21)

1.1.1 Цель работы (Q21)

Приобретение навыков использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментальное исследование счетчиков и регистров, построенных на их основе.

1.1.2 Основные теоретические сведения

Счетчики и регистры Регистры и счетчики относятся к разряду цифровых устройств и являются одним из наиболее распространенных элементов вычислительной техники. Они широко используются для построения устройств ввода, вывода и хранения информации, а также для выполнения некоторых арифметических и логических операций. Для построения счетчиков и регистров используются синхронные триггеры, переключение которых происходит только при наличии синхронизирующего сигнала (синхроимпульса) на входе С. Наиболее часто для построения регистров и счетчиков используется D-триггер, имеющий специальный информационный вход D, и динамический вход C (рис.1).

Рис. 1 D – триггер

Устройство, называемое счетчиком, предназначено для подсчета числа поступающих на вход сигналов (импульсов) в произвольной системе счисления. Двоичные счетчики строятся на основе триггеров, работающих в счетном режиме (Т - триггер или счетный триггер).

Счетный триггер может быть получен из универсального D - триггера путем соединения его инверсного выхода Q со входом D.

Счетный триггер и эпюры сигналов, поясняющие его работу, представлены на рис.2.

Рис. 2 Счетный триггер и его работа

У счетного триггера состояние выхода изменяется на противоположное при поступлении на вход С каждого очередного счетного импульса. Функциональная схема и условное графическое обозначение двоичного счетчика с коэффициентом пересчета 23 представлена на рис. 3.

Рис. 3. Двоичный счетчик

Рис. 4. Диаграммы работы двоичного счетчика

Каждый поступающий на вход счетчика импульс перебрасывает первый триггер в противоположное состояние (рис. 4). Сигнал с инверсного выхода предыдущего триггера является входным сигналом для последующего и, таким образом, комбинация сигналов на выходах Q1, Q2, Q3 будет соответствовать числу поступивших на вход счетчика импульсов, представленному в двоичном коде. Счетчик данного типа называется асинхронным счетчиком.

Если на счетный вход каждого последующего триггера счетчика подавать сигнал с прямого выхода предыдущего триггера, то счетчик будет производить операцию вычитания. Счетчики, способные выполнять функции сложения и вычитания, называются реверсивными.

Для построения счетчика с требуемым коэффициентом пересчета Кс, отличным от величины 2N (N - число двоичных разрядов счетчика), используется принудительный сброс счетчика в исходное состояние при достижении счетчиком числа Кс.

Устройство, называемое регистром, служит в основном для хранения чисел в двоичном коде при выполнении над ними различных арифметических и логических операций. С помощью регистров выполняются 34 такие действия над числами, как передача их из одного устройства в другое, арифметический и логический сдвиг в сторону младших или старших разрядов, преобразование кода из последовательного в параллельный и наоборот и т.д.

Рис. 5. Регистр сдвига

Функциональная схема и условно-графическое обозначение регистра сдвига представлены на рис. 5.

Последовательный информационный код поступит на вход D регистра. Импульс команды сдвига C подается одновременно на синхронизирующие входы всех триггеров регистра и переводит каждый триггер в состояние, в котором находился триггер предыдущего разряда. Таким образом, каждый импульс команды сдвига "продвигает" записываемое число на один разряд вправо.

При введении обратной связи в регистр сдвига, последний превращается в замкнутое кольцо, в котором под воздействием тактовых импульсов циркулирует введенная в регистр информация. Такие регистры называют кольцевыми счетчиками. Кодовая единица, введенная в первый триггер, циркулирует в течении всего времени существования тактовых импульсов, подаваемых на входы С всех триггеров счетчика. Приходящий тактовый импульс перебрасывает триггер, который был в состоянии 1, в состояние 0. Поскольку выход Q этого триггера связан с входом D следующего триггера, то последний устанавливается в состояние 1 и т.д. Количество состояний такого счетчика равно числу триггеров.

Реализация проекта на параметрических элементах

Применение параметрических элементов САПР QUARTUS II в разработке проектов цифровых схем рассмотрим на примере реализации реверсивного счетчика разрядностью 4.

Создаем новый файл графического редактора и сохраняем его под определенным именем (например: lab3) в предварительно созданном каталоге 35 \lab3. Двойным щелчком правой кнопки мыши открываем меню ввода символов (Symbol), выбираем библиотеку megafunctions/arithmetic и в ней выбираем lpm_counter. Для редактирования параметров и входов/выходов счетчика необходимо нажать правую кнопку мыши, выбрать меню Properties, откроется окно Symbol Properties. Во вкладке Ports(рис 6) выбрать необходимые входы/выходы счетчика, а во вкладке Parameter(рис 7) задать разрядность

LPM_WIDTH и направление счета LPM_DIRECTION (в данном примере: вычитание).

Рис 6 Вкладка Ports

Рис 7 Вкладка Parameter

Рис. 8. Результат моделирования работы счетчика

Далее располагаем входные и выходные выводы схемы проекта. Когда схема создана, делаем проверку на предмет наличия ошибок ввода схемы, для чего запускаем компилятор.

Если компиляция прошла успешно, создаем файл симулятора для анализа работы счетчика. В созданном файле задаем входной (in) периодический сигнал с периодом следования импульсов в 20 nc. Сохраняем файл и запускаем симулятор.

Результатом симуляции будет диаграммы работы счетчика, приведенные на рис. 8.

Описание некоторых параметрических элементов CAПР QUARTUS II представлено в приложении.

2.1 Задание 1.

2.1.1 Построить логическую схему 2хDMUX в программе САПР QUARTUS II.

Демультиплексор — это логическое устройство, предназначенное для переключения сигнала с одного информационного входа на один из информационных выходов.

Предоставление логической схемы в CAПР QUARTUS II(Рис. 9).

Рис. 9. Двухразрядный демультиплексер.

2.1.2 Произвести симуляцию работы схемы, зарисовать диаграммы работы.

Диаграмма работы схемы (Рис 10.).

Рис. 10. Диаграмма исправности работы схемы.

2.1.3 Построить таблицу истинности смоделированной схемы.

Таблица истинности построенная на основе диаграммы работы схемы(Таблица 1).

S	X	D1	D2
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Таблица 1. Таблица истинности двухразрядного демультиплексера

3.1 Задание 2.

3.1.1 Спроектировать логическую схему двухразрядного демультиплексера с использованием параметрических элементов САПР QUARTUS II.

Программный код на языке AHDL описывающий двухразрядный демультиплексер (Рис. 11).

Рис. 11. Описание двухразрядного демультиплексера на языке AHDL.

3.1.2 Проверить правильную работоспособность AHDL кода.

Диаграмма работы AHDL кода (Рис. 12).

Рис. 12. Диаграмма работы AHDL кода.

4.1 Вывод.

В ходе работы были изучены различные виды триггеров, мультиплексоров, демультиплексиров.