

DUAL HIGH CURRENT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM4556A integrated circuit is a high-gain,high output current dual operational amplifier capable of driving ± 70 mA into 150Ω loads (± 10.5 V output voltage),and operating low supply voltage ($V^+/V^-=\pm 2V_-$).

The NJM4556A combines many of the features of the popular NJM4558 as well as having the capability of driving 150Ω loads.In addition,the wide band-width,low noise,high slew rate and low distortion of the NJM4556A make it ideal for many audio,telecommunications and instrumentation applications.

■ FEATURES

 Supply Voltage 	(±2V~±18V)
 High Output Current 	(I _O =70mA)
 Slew Rate 	(3V/µs typ.)
 Gain Band Width Product 	(8MHz typ.)
 Equivalent Input Noise Voltage 	(10nV/√Hz typ.)
 Package Outline 	DIP8,DMP8,SIP8,SSOP8

■ PACKAGE OUTLINE

NJM4556AD

NJM4556AM

NJM4556AV

NJM4556AL

■ PIN CONFIGURATION

Bipolar Technology

NJM4556AD NJM4556AM NJM4556AV

NJM4556AL

PIN FUNCTION
1.A OUTPUT
2.A -INPUT
3.A +INPUT
4.V
5.B +INPUT
6.B -INPUT
7.B OUTPUT
8.V

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V	± 18	V
Differential Input Voltage	V_{ID}	±30	V
Input Voltage	V _{IC}	±15 (note)	V
Power Dissipation	P _D	(DIP8) 700 (DMP8) 300 (SSOP8) 250 (SIP8) 800	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note) For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

■ ELECTRICAL CHARACTERISTICS (NJM4556AD/NJM4556AL)

 $(V^{\dagger}/V^{T}=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V_{IO}	R _S ≤10kΩ	-	0.5	6.0	mV
Input Offset Current	I _{IO}		-	5	60	nA
Input Bias Current	I _B		-	50	500	nA
Input Resistance	R _{IN}		0.3	5	-	ΜΩ
Large Signal Voltage Gain	A_V	R _L ≥2kΩ,V _O =±10V	86	100	-	dB
Maximum Output Voltage Swing 1	V _{OM1}	R _L ≥2kΩ	± 12	± 13.5	-	V
Maximum Output Voltage Swing 2	V _{OM2}	R _L ≥150Ω	± 10.5	± 11	-	V
Input Common Mode Voltage Range	V_{ICM}		± 13.5	± 14	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76.5	90	-	dB
Supply Current	Icc		-	9	12	mA
Slew Rate	SR		-	3	-	V/µs
Gain Bandwidth Product	GB		-	8	-	MHz

■ ELECTRICAL CHARACTERISTICS (NJM4556AM/NJM4556AV)

 $(V^{\dagger}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	6.0	mV
Input Offset Current	I _{IO}		-	5	60	nA
Input Bias Current	lΒ		-	50	500	nA
Large Signal Voltage Gain	A_V	R _L ≥2kΩ,V _O =±10V	86	100	-	dB
Maximum Output Voltage Swing 1	V _{OM1}	$V_{IN}^{+}=4V, V_{IN}^{-}=3V, V^{+}=9V, V^{-}=0V$	7.5	-	-	V
		I _{SOURCE} =40mA				
Maximum Output Voltage Swing 2	V_{OM2}	$V_{IN}^{+}=3V, V_{IN}^{-}=4V, V^{+}=9V, V^{-}=0V$	-	-	2.1	V
		I _{SINK} =40mA				
Input Common Mode Voltage Range 1	V _{ICM1}	V ⁺ =9V,V ⁻ =0V,V _{IL}	-	-	1.5	V
Input Common Mode Voltage Range 2	V _{ICM2}	V ⁺ =9V,V ⁻ =0V,V _{IH}	8	-	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76.5	90	-	dB
Supply Current	Icc	V ⁺ =9V,V ⁻ =0V	-	8	12	mA
Slew Rate	SR		-	3	-	V/µs
Gain Bandwidth Product	GB		-	8	-	MHz

■ TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing vs. Frequency

Maximum Output Voltage Swing vs. Output Current

Maximum Output Voltage Swing vs. Frequency

Voltage Gain, Plase Shift vs. Frequency

Maximum Output Voltage Swing

Total Harmonic Distortion vs. Output Voltage

■ TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing vs. Temperature

Maximum Output Voltage Swing vs. Temperature

Input Offset Voltage vs. Temperature

Supply Current vs. Temperature

Equivalent Input Noise Voltage vs. Frequency

Supply Current vs. Supply Voltage

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.