

Meet Our Team

Janitha

Nuwantha

Ashan

Table Of Content

- 1. Problem Overview
- 2. Solution Architecuture
- 3. Technology Stack
- 4. Components
- 5. Timeline
- 6. Extendibility & Scalability

Problem Overview

Why IC testing?

- Ensuring Functionality
- Quality Control
- Reliability Enhancement
- Cost Management

Problem Overview

Problems of Manual Testing

- Labor Intensity
- Human Error
- Scalability
- Complexity
- Cost and Efficiency

Solution Architecturre

- 1. There is a Zero Insertion Force (ZIF) Socket to configure the IC.
- 2.Set up a User Interface on computer that takes IC number as the User Input.
- 3. Then, fetch the related data using external library belongs to that particular IC. That data includes testing pattern, pin configuration and all required other data.

Solution Architecturre

- 4. Data pass to the FPGA using USB cable.
- 5. Test the IC with the testing pattern and compare expected output.
- 6. Finally, display the result and if there is an error indicate the gate that has error.

Control Flow Start Get the IC Number & IC Get Corresponding Check IC according IC is working truth table to test cases? End IC is not working

Technology Stack

What Technologies we are going to use?

FPGA Platform

- Selection of FPGA Platform : Xilinx
- Development Environments : Vivado

HDL (Hardware Description Language):

Verilog

Design Entry and Simulation:

Vivado

Testing and Verification:

Vivado

What Technologies we are going to use?

• Communication Protocols like SPI, I2C, UART, GPIO

• Git

Components

FPGA Development Board ——•

Testing ICs ——•

ZIF Socket ——•

USB Interface ——•

Power Supply ——•

Project Timeline

Target: 08, October 2023

Automatic IC Identifying

• Extend to identify unknown IC modules

Display the Working accuracy of the IC

Reduce Execution Time, Voltages etc

Cloud Intergration

Integrate new IC types easily

GitHub repo

https://github.com/cepdnaclk/e19-co227-Automatic-IC-Testing

Q & A?

THANK YOU!

