Friendly Graph Theory: Clustering & Homophily

Introduction to Network Science

Dr. Michele Starnini — https://github.com/chatox/networks-science-course

Contents:

- . Clustering
- . Homophily

all related to friendship in social networks!

Clustering

Who is a friend? [Triangle closure]

A prevalent way in which we form friendships is by befriending friends of friends

Tendency to form triangles

- The dynamics on the network, i.e., information diffusion, affect the dynamics of the network, i.e., the creation of links
- B is more likely to start following A after seeing content posted by A and re-posted by an account C that B already follows

Example 1

Node c has 3 neighbors: e, b, g They form two triangles out of the possible 3 (the missing one is drawn with a dotted line)

Example 2

Node b has 4 neighbors: e, c, g, h
They form two triangles out of the possible
6 (the missing ones are drawn with a
dotted line)

Remember

The maximum number of links between k nodes is

$$\frac{k(k-1)}{2}$$

Local clustering coefficient

- The local clustering coefficient C_i is a property of a node i
- Let L_i represent the number of links among neighbors of node i

$$C_i = \frac{L_i}{\frac{k_i(k_i-1)}{2}} = \frac{2L_i}{k_i(k_i-1)}$$
 $C_i \triangleq 0 \text{ if } k_i \leq 1$

Exercise

What is the local clustering coefficient of each node?

$$C_i = \frac{2L_i}{k_i(k_i - 1)}$$

$$C_i \triangleq 0 \text{ if } k_i \leq 1$$

Local clustering coefficient

- Degree correlations (assortativity) are related to the two-point (nodes) correlations
- Clustering is related to the three-point (nodes) correlations

Average clustering coefficient of k-nodes

Prob. that a k'-node is connected to a k"-node

$$\bar{c}(k) = \sum_{k',k''} p(k'',k'|k) p(k'',k')$$

Conditional prob. that a k-node is connected to a k'-node & a k"-node

Average clustering coefficient ("global clustering coefficient")

The average clustering coefficient is a property of the entire graph

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i$$

Sometimes this is called the *curvature* of a graph

Network clustering coefficient

- Social networks tend to have high clustering coefficients because of triadic closure: we meet through common friends
- Other networks, e.g., bipartite and tree-like networks, have low clustering coefficient

Table 2.1 Average path length and clustering coefficient of various network examples. The networks are the same as in Table 1.1, their numbers of nodes and links are listed as well. Link weights are ignored. The average path length is measured only on the giant component; for directed networks we consider directed paths in the giant strongly connected component. To measure the clustering coefficient in directed networks, we ignore link directions.

Network	Nodes (N)	Links (L)	Average path length $(\langle \ell \rangle)$	Clustering coefficient (C)
Facebook Northwestern Univ.	10,567	488,337	2.7	0.24
IMDB movies and stars	563,443	921,160	12.1	0
IMDB co-stars	252,999	1,015,187	6.8	0.67
Twitter US politics	18,470	$48,\!365$	5.6	0.03
Enron Email	87,273	321,918	3.6	0.12
Wikipedia math	15,220	194,103	3.9	0.31
Internet routers	190,914	607,610	7.0	0.16
US air transportation	546	2,781	3.2	0.49
World air transportation	3,179	18,617	4.0	0.49
Yeast protein interactions	1,870	2,277	6.8	0.07
C. elegans brain	297	2,345	4.0	0.29
Everglades ecological food web	69	916	2.2	0.55

Homophily

Who is a friend? [Homophily]

- In social networks, nodes have features that influence their connectivity preferences
 - Age, gender identity, ethnicity, sexual preference, location, topics of interest, artistic sensitivities, ...
- People tend to befriend those who are like them: that is called homophily

"Birds of a feather flock together"

Quantifying homophily

Let G be a graph of N nodes: N_a "yellow" and N_b "blue"

$$-N = N_a + N_b$$

. Let G have L undirected links (including self loops), of which L_{aa} connect yellow to yellow, L_{ab} connect yellow to blue, and L_{bb} connect blue to blue

$$L = L_{aa} + L_{ab} + L_{bb}$$
 $L_a = L_{aa} + L_{ab}$ $L_b = L_{bb} + L_{ab}$

$$N_a = 6$$
, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Expected links across groups

If yellow nodes have L_a links placed at random (incl. self loops), how many should go to a blue node?

$$L_a\left(\frac{N_b}{N}\right)$$

Quantifying homophily of a group

- We compare observed against the expected number of links crossing to the other group
- . <1 ⇒ homophily heterophily</p>

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)}$$

$$Homophily(b) = \frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)}$$

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)} = \frac{5}{14\left(\frac{6}{12}\right)} = \frac{5}{7}$$

Yellow nodes are homophilic

$$N_a = 6$$
, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Homophily(b) =
$$\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)} = \frac{5}{16\left(\frac{6}{12}\right)} = \frac{5}{8}$$

Blue nodes are homophilic

$$N_a = 6$$
, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Exercise

Compute homophily of both groups and indicate if each group is homophilic, heterophilic, or neutral

$$Homophily(a) = \frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)}$$

Homophily(b) =
$$\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)}$$

Social influence

Homophily:

Similar nodes become connected

The opposite mechanism may also happen!

Social influence:

Connected nodes become more similar

Social network structure (ie, who our friends are) can determine our thinking!

Echo-chambers: like-minded people tightly connected

- No diversity of opinions
- Confirmation bias
- Reinforcement of prejudices

Summary

Things to remember

- How to compute local and global clustering coefficients
- How to compute Homophily

Sources

- A. L. Barabási (2016). Network Science <u>Chapter</u>
 <u>02</u>
- F. Menczer, S. Fortunato, C. A. Davis (2020). A
 First Course in Network Science Chapter 02
- . URLs cited in the footer of specific slides

Practice on your own

- Determine if the set {C, D, G} is homophilic or heterophilic
- Calculate local clustering coefficient of each node in this graph

