Sistemas Numéricos

DEC	CUA	OCT	HEX	BIN	Gray	COMP1	-COMP2
0	0	0	0	0000	0000	1111	00000
1	1	1	1	0001	0001	1110	11111
2	2	2	2	0010	0011	1101	11110
3	3	3	3	0011	0010	1100	11101
4	10	4	4	0100	0110	1011	11100
5	11	5	5	0101	0111	1010	11011
6	12	6	6	0110	0101	1001	11010
7	13	7	7	0111	0100	1000	11001
8	20	10	8	1000	1100	0111	11000
9	21	11	9	1001	1101	0110	10111
10	22	12	A	1010	1111	0101	10110
11	23	13	В	1011	1110	0100	10101
12	30	14	С	1100	1010	0011	10100
13	31	15	D	1101	1011	0010	10011
14	32	16	E	1110	1001	0001	10010
15	33	17	F	1111	1000	0000	10001

Tablas de Verdad

	XOR	NOR	NAND	XNOR
00	0	1	1	1
01	1	0	1	0
10	1	0	1	0
11	0	0	0	1

Autor: Luis E. Galindo Amaya egalindo54@uabc.edu.mx

Taller de Impresión: @libros.y.zines.corrientes

Fecha: 17 de julio de 2022

	XOR	NOR	NAND	XNOR
	71010	11011	1171111	2111011
000	0	1	1	1
001	1	0	1	0
010	1	0	1	0
011	0	0	1	1
100	1	0	1	0
101	0	0	1	1
110	0	0	1	1
111	1	0	0	0

Tablas de Diseño de Flip-Flops

Flip-Flop SR				
Q(t)	\rightarrow	Q(t+1)	S	R
0	\rightarrow	0	0	X
0	\rightarrow	1	1	0
1	→	0	0	1
1	→	1	X	0

	Flip-Flop JK				
Q(t)	\rightarrow	Q(t+1)	J	K	
0	\rightarrow	0	0	X	
0	\rightarrow	1	1	X	
1	\rightarrow	0	X	1	
1	→	1	X	0	

	Flip-Flop D				
Q(t)	\rightarrow	Q(<i>t</i> +1)	D		
0	\rightarrow	0	0		
0	\rightarrow	1	1		
1	→	0	0		
1	\rightarrow	1	1		

	Flip-Flop T				
Q(t)	\rightarrow	Q(t+1)	Т		
0	\rightarrow	0	0		
0	\rightarrow	1	1		
1	→	0	1		
1	→	1	0		

Display de Siete Segmentos

DEC	BCD	SEGMENTOS
0	0000	ABCDEF
1	0001	ВС
2	0010	ABDEG
3	0011	ABCDG
4	0100	BCFG
5	0101	ACDFG
6	0110	ACDEFG
7	0111	ABC
8	1000	ABCDEFG
9	1001	ABCFG

Notación de Suma

$$f\left(\underbrace{A,B,C,D}_{Variables}\right) = \underbrace{\sum_{\text{Valores de activación}} m(0,4,5,6)}_{\text{Valores de activación}} + \underbrace{\sum_{\text{Redundancía}} d(9,14)}_{\text{Redundancía}}$$

Álgebra Booleana

Teoremas de Múltiples Variables

$$x+y=y+x$$

$$x \cdot y = y \cdot x$$

$$x+(y+z)=x+y+z$$

$$x(yz)=xyz$$

$$x(y+z)=xy+xz$$

$$(w+x)(y+z)=wy+xy+wz+xz$$

$$x+xy=x$$

$$x+xy=x$$

$$x+\overline{x}y=x+y$$

$$\overline{x}+xy=\overline{x}+y$$

Teoremas de Morgan

$$\frac{\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}}{\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}}$$

Teoremas de una Variable

AND OR

$$x \cdot 0 = 0$$
 $x + 0 = x$
 $x \cdot 1 = 1$ $x + 1 = 1$
 $x \cdot x = x$ $x + x = x$
 $x \cdot \overline{x} = 0$ $x + \overline{x} = 1$

Números Binarios

Formato Signo Magnitud

Complemento 1

$$C_1^N = \begin{matrix} 1 & 0 & 0 & 1 & 1 & 1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 1 & 1 & 0 & 0 & 0 \end{matrix}$$

Complemento 2

$$C_2^N = C_1^N + 1$$

Construcción del Mapa-K

		CD			
		00	01	11	10
	00	0	1	3	2
AB	01	4	5	7	6
AD	11	12	13	15	14
	10	8	9	11	10

	Distribución				
ABCD		ABCD			
0000	0	1000	8		
0001	1	1001	9		
0010	2	1010	10		
0011	3	1011	11		
0100	4	1100	12		
0101	5	1101	13		
0110	6	1110	14		
0111	7	1111	15		

Circuitos Lógicos

Operacio	ón	Definición	Compuerta
NOT	,	\bar{x}	->-
OR	+	<i>x</i> + <i>y</i>	
AND		$x \cdot y$	
XOR	0	$ (x+y) (\overline{x}+\overline{y}) $ $ x \overline{y}+\overline{x} y $	1
NOR	ţ	$\frac{(x+y)}{\overline{x}\cdot\overline{y}}$	
NAND	1	$\frac{(x \cdot y)}{\overline{x} + \overline{y}}$	
XNOR	0	$(x+\overline{y})(\overline{x}+y)$ $xy+\overline{x}\overline{y}$	

Universalidad de Compuertas

Operacio	ón	NAND	NOR
NOT	•	$(x \cdot x)$	$\overline{(x+x)}$
OR	+	$\overline{(\overline{x}\!\cdot\!\overline{y})}$	$\overline{(x+y)}$
AND	•	$\overline{(x \cdot y)}$	$\overline{(\overline{x}+\overline{y})}$
XOR	0	$\overline{(x\!\cdot\!\overline{y})}\overline{(\overline{x}\!\cdot\!y)}$	$\overline{(x+y)}+\overline{(x+y)}$
NOR	1	$\overline{(\overline{x}\!\cdot\!\overline{y})}$	~
NAND	1	~	$\overline{(\overline{x}+\overline{y})}$
XNOR	0	$\overline{\left(x\!\cdot\! y ight) \left(\overline{x}\!\cdot\! \overline{y} ight) }$	$\overline{(x+\overline{y})+(\overline{x}+y)}$