D (Printed Pages 4)
(21223) Roll No.

B.C.A.-V Sem.

18024

B.C.A. Examination, Dec.-2023 Numerical Methods (BCA-504)

Time: Three Hours | [Maximum Marks: 75]

Note: Attempt questions from **all** sections as per instructions. Calculator is allowed.

Section-A

Note: Attempt all the **five** questions. Each question carries **3** marks. $3 \times 5 = 15$

- Using Newton-Raphson method, find an iterative formula to compute ³√N , where N is a positive number.
- Prove that E∇=∇E=△, where E is shift operator, V is backward difference operator & △ is forward difference operator.

P.T.O.

3. Find the first derivative of the function given below at the point x = 1.2

		r and D	OII 15 /		
х	1	2	3	4	5
f(x)	0	1	5	6	8

4. Solve the following equations by using Gauss-elimination method:

$$x - y + z = 1$$

 $-3x + 2y - 3z = -6$
 $2x - 5y + 4z = 5$

 Perform two iterations of Picard's method to find an approximate solution of the initial value problem

$$y' = x+y^2$$
; $y(0) = 1$.

Section-B

Note: Attempt any **two** questions out of the following three questions. Each question carries 7.5 marks. 2×7.5=15

Using method of False position, find a positive root of the equation

$$x^3 - 4x + 1 = 0$$
.

18024/2

https://www.ccsustudy.com

 Using Newton's forward interpolation formula, find the cubic polynomial which takes on the following values

х	0	1	2	3	4
у	- 1	0	13	50	123

8. Using Simpson's $(\frac{1}{3})^{n}$ rule, find the value of $\int_{1}^{5} f(x) dx$ given that :

- 1	T	2	3 .	4	5
f(x)	10	50	70	80	100

Section-C

Note: Attempt any **three** questions out of the following five questions. Each question carries 15 marks. $3\times15=45$

- Find a positive root of the equation
 2x=3+cos x by Bisection method.
- 10. Using Lagrange's interpolation formula, find the value of Y corresponding to x=2 from the following table:

х	0	1	3	4
У	5	6	50	105

18024/3

P.T.O.

https://www.ccsustudy.com

- 11. Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using.

 Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.
- 12. Solve by Gauss-Seidel method

 Apply Runge-Kutta method fourth order to find an approximate value of y when

$$x=0.2$$
, given that

$$\frac{dy}{dx} = x + y^2$$
 & y= 1 when x = 0
(take h= 0.1) 6.508