Group Discussion 10 Final Answer

November 1, 2020

ch10num11 <- read.csv(here::here("group-discussion-10", "Ch10Ex11.csv"), header = FALSE)

10.11

(a)

```
dplyr::glimpse(ch10num11)
## Rows: 1,000
## Columns: 40
## $ V1 <db1> -0.96193340, -0.29252570, 0.25878820, -1.15213200, 0.19578280, ...
## $ V2 <dbl> 0.441802800, -1.139267000, -0.972844800, -2.213168000, 0.593305...
## $ V3 <db1> -0.97500510, 0.19583700, 0.58848580, -0.86152490, 0.28299210, -...
## $ V4 <dbl> 1.417504000, -1.281121000, -0.800258100, 0.630925300, 0.2471472...
## $ V5 <dbl> 0.8188148, -0.2514393, -1.8203980, 0.9517719, 1.9786680, -0.364...
## $ V6 <dbl> 0.31629370, 2.51199700, -2.05892400, -1.16572400, -0.87101800, ...
## $ V7
        <dbl> -0.02496682, -0.92220620, -0.06476437, -0.39155860, -0.98971500...
## $ V8 <dbl> -0.06396600, 0.05954277, 1.59212400, 1.06361900, -1.03225300, -...
## $ V9 <dbl> 0.03149702, -1.40964500, -0.17311700, -0.35000900, -1.10965400,...
## $ V10 <dbl> -0.35031060, -0.65671220, -0.12108740, -1.48905800, -0.38514230...
## $ V11 <dbl> -0.7227299, -0.1157652, -0.1875790, -0.2432189, 1.6509570, -0.2...
## $ V12 <dbl> -0.2819547, 0.8259783, -1.5001630, -0.4330340, -1.7449090, 2.17...
## $ V13 <dbl> 1.33751500, 0.34644960, -1.22873700, -0.03879128, -0.37888530, ...
## $ V14 <dbl> 0.70197980, -0.56954860, 0.85598900, -0.05789677, -0.67982610, ...
## $ V15 <dbl> 1.0076160, -0.1315365, 1.2498550, -1.3977620, -2.1315840, 0.298...
## $ V16 <db1> -0.46538280, 0.69022900, -0.89808150, -0.15618710, -0.23017180,...
## $ V17 <dbl> 0.63859510, -0.90903820, 0.87020580, -2.73598200, 0.46612430, 0...
## $ V18 <dbl> 0.28678070, 1.30264200, -0.22525290, 0.77561690, -1.80044900, -...
## $ V19 <dbl> -0.22707820, -1.67269500, 0.45028920, 0.61415620, 0.62629040, 0...
## $ V20 <dbl> -0.22004520, -0.52550400, 0.55144040, 2.01919400, -0.09772305, ...
## $ V21 <dbl> -1.24257300, 0.79797000, 0.14629430, 1.08113900, -0.29971080, 0...
## $ V22 <dbl> -0.1085056, -0.6897930, 0.1297400, -1.0766180, -0.5295591, 1.06...
## $ V23 <dbl> -1.8642620, 0.8995305, 1.3042290, -0.2434181, -2.0235670, 1.230...
## $ V24 <dbl> -0.50051220, 0.42858120, -1.66190800, 0.51348220, -0.51084020, ...
## $ V25 <dbl> -1.32500800, -0.67611410, -1.63037600, -0.51285780, 0.04600274,...
## $ V26 <dbl> 1.06341100, -0.53409490, -0.07742528, 2.55167600, 1.26803000, -...
## $ V27 <db1> -0.29637120, -1.73250700, 1.30618200, -2.31430100, -0.74398680,...
## $ V28 <db1> -0.12164570, -1.60344700, 0.79260020, -1.27647000, 0.22313190, ...
## $ V29 <dbl> 0.08516605, -1.08362000, 1.55946500, -1.22927100, 0.85846280, -...
## $ V30 <dbl> 0.62417640, 0.03342185, -0.68851160, 1.43439600, 0.27472610, 0....
## $ V31 <db1> -0.5095915, 1.7007080, -0.6154720, -0.2842774, -0.6929984, 1.15...
## $ V32 <dbl> -0.216725500, 0.007289556, 0.009999363, 0.198945600, -0.8457072...
```

```
## $ V33 <dbl> -0.05550597, 0.09906234, 0.94581000, -0.09183320, -0.17749680, ...
## $ V34 <dbl> -0.4844491, 0.5638533, -0.3185212, 0.3496279, -0.1664908, 0.182...
## $ V35 <dbl> -0.52158110, -0.25727520, -0.11788950, -0.29890970, 1.48315500,...
## $ V36 <dbl> 1.94913500, -0.58178050, 0.62136620, 1.51369600, -1.68794600, -...
## $ V37 <dbl> 1.32433500, -0.16988710, -0.07076396, 0.67118470, -0.14142960, ...
## $ V38 <dbl> 0.46814710, -0.54230360, 0.40168180, 0.01085530, 0.20077850, -1...
## $ V39 <dbl> 1.06110000, 0.31293890, -0.01622713, -1.04368900, -0.67594210, ...
## $ V40 <dbl> 1.65597000, -1.28437700, -0.52655320, 1.62527500, 2.22061100, 0...
(b)
```

plot(hclust(dd, method = "complete"))

Cluster Dendrogram

dd hclust (*, "complete")

```
plot(hclust(dd, method = "average"))
```

Cluster Dendrogram

dd hclust (*, "average")

plot(hclust(dd, method = "single"))

Cluster Dendrogram

dd hclust (*, "single")

When using linkage types "complete" and "single", we see two groups clustered. When using type "average", there are three groups clustered.

(c)

We can use PCA. Then we can identify which genes have the largest effect by the principal component loadings (the rotation matrix of prcomp output).

```
pr_out <- prcomp(t(ch10num11), scale = TRUE)
genes_ranked <- order(abs(rowSums(pr_out$rotation)), decreasing = TRUE)
genes_ranked[1:10]</pre>
```

[1] 889 676 755 960 907 19 475 673 374 174