In the image on the right, a gear of radius R is rotating counterclockwise at an angular speed of ω . After a time interval of Δt , the gear has turned by $\omega \Delta t$. The rim of the gear is moving at a speed of v. After the same time interval of Δt , the rim of the gear has moved a distance of $v\Delta t$. The distance that the gear rim has moved can also be computed from the rotated angle of $\omega \Delta t$ and the gear's radius R: $R \cdot \omega \Delta t$. This gives the relationship $v\Delta t = R\omega \Delta t$ which is equivalent to:

 $v = R\omega$

If a gear has a radius of $R=7\mathrm{cm}=0.07\mathrm{m}$, and rotates once every $T=2\mathrm{s}$, then with a full rotation of 2π every time interval of T, the angular speed is $\omega=\frac{2\pi}{T}\approx 3.142\mathrm{s}^{-1}$. The speed of the rim is $v=R\omega=0.2199\mathrm{m/s}=21.99\mathrm{cm/s}$.

Reasoning in the other direction, if the rim speed is now $v=30 {\rm cm/s}=0.3000 {\rm m/s}$ and the radius is unchanged, then the angular speed satisfies $v=R\omega\iff\omega=\frac{v}{R}\approx 4.286 {\rm s}^{-1}$. The time T required for a full revolution is: $T=\frac{2\pi}{\omega}\approx 1.466 {\rm s}$