

Regression

Industrial AI Lab.
Prof. Seungchul Lee
Yunseob Hwang, Juwon Na

Linear Regression

Optimization

$$\min_{ heta_0, heta_1} \sum_{i=1}^m (\hat{y}_i - y_i)^2 = \min_{ heta} \lVert \Phi heta - y
Vert_2^2 \qquad \qquad \left(ext{same as } \min_{x} \lVert Ax - b
Vert_2^2
ight)$$

solution
$$\theta^* = (\Phi^T \Phi)^{-1} \Phi^T y$$

Least-Square Solution

• Scalar Objective: $J = ||Ax - y||^2$

$$J(x) = (Ax - y)^{T} (Ax - y)$$

$$= (x^{T}A^{T} - y^{T}) (Ax - y)$$

$$= x^{T}A^{T}Ax - x^{T}A^{T}y - y^{T}Ax + y^{T}y$$

$$\frac{\partial J}{\partial x} = A^{T}Ax + (A^{T}A)^{T}x - A^{T}y - (y^{T}A)^{T}$$

$$= 2A^{T}Ax - 2A^{T}y = 0$$

$$\implies (A^{T}A) x = A^{T}y$$

$$\therefore x^{*} = (A^{T}A)^{-1}A^{T}y$$

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
x^Tx	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

Optimization: Note

$$egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_m \end{bmatrix} egin{bmatrix} heta_0 \ heta_1 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix} \qquad ext{over-determinant} \ heta_1 & ec{A}_2 & ec{x} & ec{B} \ \end{pmatrix}$$

 $\begin{array}{c} \text{over-determined or} \\ \text{projection} \end{array}$

$$A(=\Phi) = \left[ec{A}_1 \; ec{A}_2
ight]$$

the same principle in a higher dimension

1. Solve using Linear Algebra

• known as *least square*

$$\theta = (A^T A)^{-1} A^T y$$

```
# data points in column vector [input, output]
x = np.array([0.1, 0.4, 0.7, 1.2, 1.3, 1.7, 2.2, 2.8, 3.0, 4.0, 4.3, 4.4, 4.9]).reshape(-1, 1)
y = np.array([0.5, 0.9, 1.1, 1.5, 1.5, 2.0, 2.2, 2.8, 2.7, 3.0, 3.5, 3.7, 3.9]).reshape(-1, 1)
```


1. Solve using Linear Algebra

• known as *least square*

```
m = y.shape[0]
#A = np.hstack([np.ones([m, 1]), x])
A = np.hstack([x**0, x])
A = np.asmatrix(A)

theta = (A.T*A).I*A.T*y

print('theta:\n', theta)

theta:
```

```
[[0.65306531]
[0.67129519]]
```

```
# to plot
plt.figure(figsize=(10, 8))
plt.title('Regression', fontsize=15)
plt.xlabel('X', fontsize=15)
plt.ylabel('Y', fontsize=15)
plt.plot(x, y, 'ko', label="data")

# to plot a straight line (fitted line)
xp = np.arange(0, 5, 0.01).reshape(-1, 1)
yp = theta[0,0] + theta[1,0]*xp
```

$$\theta = (A^T A)^{-1} A^T y$$

2. Solve using Gradient Descent

$$f = (A\theta - y)^T (A\theta - y) = (\theta^T A^T - y^T)(A\theta - y)$$

= $\theta^T A^T A \theta - \theta^T A^T y - y^T A \theta + y^T y$

$$\min_{ heta} \ \|\hat{y}-y\|_2^2 = \min_{ heta} \ \|A heta-y\|_2^2$$

$$abla f = A^TA heta + A^TA heta - A^Ty - A^Ty = 2(A^TA heta - A^Ty)$$

$$\theta \leftarrow \theta - \alpha \nabla f$$

```
theta = np.random.randn(2,1)
theta = np.asmatrix(theta)

alpha = 0.001

for _ in range(1000):
    df = 2*(A.T*A*theta - A.T*y)
    theta = theta - alpha*df

print (theta)
```


Linear Basis Function Models

Function Approximation

 Select coefficients among a well-defined function (basis) that closely matches a target function in a task-specific way

Construct Explicit Feature Vectors

- Consider linear combinations of fixed nonlinear functions
 - Polynomial
 - Radial Basis Function (RBF)

$$\hat{y} = \sum_{i=0}^d heta_i b_i(x) = \Phi heta_i$$

$$\Phi = egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ dots & & \ 1 & x_m & x_m^2 \end{bmatrix} \quad \Longrightarrow \quad \hat{y} = egin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_m \end{bmatrix} = \Phi heta$$

Regression with Polynomial fitting

Polynomial (here, quad is used as an example)

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \text{noise}$$

$$\phi(x_i) = egin{bmatrix} 1 \ x_i \ x_i^2 \end{bmatrix}$$

$$\Phi = egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ dots & \ 1 & x_m & x_m^2 \end{bmatrix} \quad \Longrightarrow \quad egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ dots & dots \ 1 & x_m & x_m^2 \end{bmatrix} egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix} \quad \Rightarrow \quad egin{bmatrix} dots & dots & dots \ heta_1 & dots & dots \ heta_2 \end{bmatrix}$$

Different perspective:

- Approximate a target function as a linear combination of basis

$$\hat{y} = \sum_{i=0}^d heta_i b_i(x) = \Phi heta_i$$

$$egin{bmatrix} ert \ b_0(x) & b_1(x) & b_2(x) \ ert & ert & ert \end{bmatrix} egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix}$$

$$\implies \theta^* = (\Phi^T \Phi)^{-1} \Phi^T y$$

Regression with Polynomial fitting

```
fp1 = np.polyfit(x[:, 0], y[:, 0], deg = 2)
f1 = np.poly1d(fp1)
print(fp1)
```

[-0.13504129 -0.71070424 0.33669063]

10 input points with degree 9 (or 10)

Polynomial Fitting with Different Degrees

Regression with RBF basis

- With many features, our prediction function becomes very expensive
- Can lead to overfitting

Regularization

Issue with Rich Representation

- Low error on input data points, but high error nearby
- Low error on training data, but high error on testing data

Generalization Error

• Fundamental problem: we are optimizing parameters to solve

$$\min_{ heta} \sum_{i=1}^m \ell(y_i, \hat{y}_i) = \min_{ heta} \sum_{i=1}^m \ell(y_i, \Phi heta)$$

- But what we really care about is loss of prediction on new data (x, y)
 - also called generalization error
- Divide data into training set, and validation (testing) set

Representational Difficulties

- With many features, prediction function becomes very expressive (model complexity)
 - Choose less expensive function (e.g., lower degree polynomial, fewer RBF centers, larger RBF bandwidth)
 - Keep the magnitude of the parameter small
 - Regularization: penalize large parameters heta

$$\min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_2^2$$

 $-\lambda$: regularization parameter, trades off between low loss and small values of θ

Regularization

- Often, overfitting associated with very large estimated parameters
- We want to balance
 - how well function fits data
 - magnitude of coefficients

$$\text{Total cost} = \underbrace{\text{measure of fit}}_{RSS(\theta)} + \ \lambda \cdot \underbrace{\text{measure of magnitude of coefficients}}_{\lambda \cdot \|\theta\|_2^2}$$

$$\implies \min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_2^2$$

- multi-objective optimization
- $-\lambda$ is a tuning parameter

Regularization (Shrinkage Methods)

- the second term, $\lambda \cdot ||\theta||_2^2$, called a shrinkage penalty, is small when $\theta_1, \cdots, \theta_d$ are close to zeros, and so it has the effect of shrinking the estimates of θ_j towards zero
- the tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates
- known as a ridge regression

Ridge Regularization

• Start from rich representation. Then, regularize coefficients heta

$$ext{Total cost} = \underbrace{ ext{measure of fit}}_{RSS(heta)} + \ \lambda \cdot \underbrace{ ext{measure of magnitude of coefficients}}_{\lambda \cdot \| heta\|_2^2}$$

$$\implies \min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_2^2$$

Let's Use L_1 Norm

Ridge regression

$$egin{align*} ext{Total cost} &= \underbrace{ ext{measure of fit}}_{RSS(heta)} + \lambda \cdot \underbrace{ ext{measure of magnitude of coefficients}}_{\lambda \cdot \| heta\|_2^2} \ &\Longrightarrow \min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_2^2 \end{aligned}$$

• Try this loss instead of ridge...

$$ext{Total cost} = \underbrace{ ext{measure of fit}}_{RSS(heta)} + \lambda \cdot \underbrace{ ext{measure of magnitude of coefficients}}_{\lambda \cdot \| heta\|_1}$$
 $\implies \min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_1$

- λ is a tuning parameter = balance of fit and sparsity
- Known as LASSO
 - least absolute shrinkage and selection operator

LASSO Regularization

$$\implies \min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_1$$

• Approximated function looks similar to that of ridge regression

Coefficients θ with LASSO

• Non-zero coefficients indicate 'selected' features

LASSO

Ridge

LASSO vs. Ridge

Another equivalent forms of optimizations

$$\min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_1$$

$$\min \|\Phi heta - y\|_2^2 + \lambda \| heta\|_2^2$$

$$\Longrightarrow$$

$$egin{array}{ll} \min_{ heta} & \|\Phi heta-y\|_2^2 \ & ext{subject to} & \| heta\|_1 \leq s_1 \end{array}$$

$$egin{array}{ll} \min_{ heta} & \|\Phi heta - y\|_2^2 \ & ext{subject to} & \| heta\|_2 \leq s_2 \end{array}$$

