Homework 1

1a)

	<u>Terminals</u>				Non-Terminals
• a	•	b	•	S	• D
• C	•	0	•	Α	
• 1					

b) S
$$\Rightarrow$$
 SA \Rightarrow SDA \Rightarrow SDDA \Rightarrow SADDA \Rightarrow SDADDA \Rightarrow ADADDA \Rightarrow aDDADA \Rightarrow a0bDDA \Rightarrow a0bDDA \Rightarrow a0b1DA \Rightarrow a0b10c

c) S
$$\Rightarrow$$
 SA \Rightarrow Sc \Rightarrow SDc \Rightarrow SDc \Rightarrow SD0c \Rightarrow S10c \Rightarrow SA10c \Rightarrow Sb10c \Rightarrow SDb10c \Rightarrow S0b10c \Rightarrow A0b10c \Rightarrow a0b10c

d)

Homework 1

2a)

b) S \rightarrow if A then S | A else S | A A \rightarrow (TCT) | TCT C \rightarrow >, <, +, -, = T \rightarrow x, y, z, 0, 1

d) These new grammar rules remove the ambiguity involved with F's "if B then S" and "if B then S else S". This allowed nested if/else statements to be represented through multiple avenues, as seen in my answer to 2a. I have removed the second option and replaced it with a smaller 'else' extension, as well as cleaning up other grammar rules.

CprE 342

Homework 1

- 3a) All four operators are left-to-right associative, as that is how they are defined in mathematics. For example, $1/2/3 \Leftrightarrow (1/2)/3$ and not 1/(2/3) as the latter would be undefined with integer mathematics.
- b) According to standard charts (one given here:

https://ee.hawaii.edu/~tep/EE160/Book/chap5/subsection2.1.4.1.html),

The precedence of '*' and '/' are 12, and '+' and '-' are 11. This is parallel with the order of operations, where multiplication and division take precedence over addition and subtraction.

c) Here is a step by step walkthrough of exactly what is displayed by the parse tree. Note: the 'Rule' column refers to the production rules, with rule 1.1 referring to $E \rightarrow E+T$.

String	<u>Explanation</u>			
"E"	The string begins as the starter symbol 'E'			
"E-T"	E₁ is turned into "E-T"	1.2		
"T-T"	E₁ is turned into "T"	1.3		
"F*T-T"	T₁ is turned into "F*T"	2.1		
"y*T-T"	F ₁ is turned into "y"	3.2		
"y*F/T-T"	T ₁ is turned into "F/T"	2.2		
"y*x/T-T"	F ₁ is turned into "x"	3.1		
"y*x/F-T"	T ₁ is turned into "F"	2.3		
"y*x/z-T"	F ₁ is turned into "z"	3.3		
"y*x/z-F*T"	T ₁ is turned into "F*T"	2.1		
"y*x/z-z*T"	F ₁ is turned into "z"	3.3		
"y*x/z-z*F/T"	T ₁ is turned into "F/T"	2.2		
"y*x/z-z*z/T"	F ₁ is turned into "z"	3.3		
"y*x/z-z*z/F"	T ₁ is turned into "F"	2.3		
"y*x/z-z*z/y"	F ₁ is turned into "y"	2.2		

Homework 1

4a)

$$\textbf{S} \,\rightarrow\, \, \text{SS} \,|\, \, \text{TC} \,|\, \, \text{T}$$

 $\mathbf{C} \rightarrow + | *$

$$T \rightarrow 0 | 1 | 2$$

b)

$$\mathbf{S} \rightarrow \mathsf{AC}$$

 $\mathbf{A} \rightarrow 0$

$$\bm{C} \ \to \ \mathsf{AC} \ | \ \mathsf{ACB} \ | \ \varepsilon$$

c)

$$2 \rightarrow 7 \mid 3$$

$$3 \rightarrow 4 \mid 5$$