Continuo

Resistori in serie

$$R_{eq} = \sum_{1}^{N} R$$

Resistori in parallelo

$$\frac{1}{R_{eq}} = \sum_{1}^{N} \frac{1}{R}$$

Da triangolo a stella

$$R_{A} = \frac{R_{AB}R_{AC}}{R_{AB} + R_{AC} + R_{BC}}$$

$$R_{AB} = R_{AC} = R_{BC} \rightarrow R_{A} = \frac{R_{AC}}{3}$$

Da stella a triangolo

$$R_{AB} = \frac{R_A R_B + R_A R_C + R_B R_C}{R_C}$$

$$R_A = R_B = R_C \rightarrow R_{AB} = 3R$$

Partitori di tensioni $V_j = R_j \frac{V}{\sum_1^N R_i}$

$$V_j = R_j \frac{V}{\sum_1^N R_i}$$

Partitore di corrente
$$\left(G = \frac{1}{R}\right)$$

$$I_j = G_j \frac{I}{\sum_1^N G_i}$$

Principio sovrapposizione degli effetti

$$I_x = I_x' + I_x''$$

Teorema di Thevenin

- R_{th} vista dai morsetti dopo aver disattivato tutti i generatori indipendenti
- ${\cal E}_{th}$ tensione a vuoto ai morsetti della sottorete

Teorema di Norton

- R_{no} vista dai morsetti dopo aver disattivato tutti i generatori indipendenti
- I_{no} corrente che scorre sul ramo cortocircuitando i due morsetti

Correnti di maglia

$$\begin{split} I_a &: -E_1 + E_2 + (R_2 + R_4)I_a - R_2I_C = 0 \\ I_b &: -E_2 + (R_3 + R_5)I_b - R_3I_C = 0 \\ I_c &: (R_2 + R_1 + R_3)I_C - R_3I_b - R_2I_a = 0 \end{split}$$

Tensioni di nodo

$$A: 0 = V_A \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_4}\right) - V_C \left(\frac{1}{R_1}\right) - V_b \left(\frac{1}{R_2}\right)$$

$$B: J = V_B \left(\frac{1}{R_2} + \frac{1}{R_3}\right) - V_A \left(\frac{1}{R_2}\right) - V_C \left(\frac{1}{R_3}\right)$$

$$C: 0 = V_C \left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}\right) - V_A \left(\frac{1}{R_1}\right) - V_B \left(\frac{1}{R_3}\right)$$

Sinusoidale

$$X(t) = X_M sen(\omega t + \phi_M)$$
 $\dot{X} = X_M e^{j\phi_X}$ $X(t) = Im\{\dot{X}e^{j\omega t}\}$

	x(t)	Ż
Derivata	$\frac{\partial x(t)}{\partial t}$	jωŻ
Integrale	$\int x(t)dt$	$\frac{\dot{X}}{j\omega}$
Resistore	V(t) = Ri(t)	$\dot{V} = R\dot{I}$
nduttore	$V(t) = L \frac{\partial i(t)}{\partial t}$	$\dot{V} = j\omega L\dot{I}$
Condensatore	$V(t) = \frac{1}{C} \int i(t)dt$	$\dot{V} = \frac{\dot{I}}{j\omega C}$

Impedenze

Ammettenza

 $\bar{Y} = G + jB$ (G = conduttanza, B = suscettanza)

Valore efficace

 $X_{EFF} = \frac{X_M}{\sqrt{2}}$ Da qui in poi EFF è sottointeso

Potenze (anche per i generatori)

Potenza attiva (di patatine)

$$P = Re\{\dot{V}\dot{I}^*\} [W]$$

Potenza reattiva

$$Q = Im\{\dot{V}\dot{I}^*\}[VAR]$$

Potenza apparente

$$S = |\dot{V}\dot{I}^*| [VA]$$

Potenza complessa

$$\bar{S} = \dot{V}\dot{I}^*[VA]$$

Induttori mutuamente accoppiati

$$\begin{split} \dot{V}_1 &= J\omega L_1 \dot{I}_1 \pm J\omega M \dot{I}_2 \\ \dot{V}_2 &= J\omega L_2 \dot{I}_2 \pm J\omega M \dot{I}_1 \end{split}$$

La caduta di auto $(j\omega L \dot{I})$ è positiva se la corrente va dal più al meno, negativa altrimenti.

Il segno della caduta di mutua $(j\omega M\ \dot{I})$ è uguale $\ \$ a quella di auto se entrambe le correnti entrano o escono dal contrassegno.

Parametrizzazione Z

$$\begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} \bar{z}_{11} & \bar{z}_{12} \\ \bar{z}_{21} & \bar{z}_{22} \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix}$$

Staccare i morsetti alla seconda porta e generatore di prova alla

$$\overline{z}_{11} = \frac{\dot{V}_1}{\dot{I}_1} \bigg|_{t_1=0}$$

$$\bar{z}_{21} = \frac{\dot{V}_2}{\dot{I}_1} \Big|_{\dot{I}_2 = 0}$$

Staccare i morsetti alla prima porta e generatore di prova alla seconda

$$\bar{z}_{12} = \frac{\dot{V}_1}{\dot{I}_2}\Big|_{\dot{I}_1=0}$$

$$\overline{z}_{22} = \frac{\dot{V}_2}{\dot{I}_2} \bigg|_{\dot{I}_1 = 0}$$

Parametrizzazione Y

$$\begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{I}}_2 \end{bmatrix} = \begin{bmatrix} \bar{y}_{11} & \bar{y}_{12} \\ \bar{y}_{21} & \bar{y}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{V}}_1 \\ \dot{\mathbf{V}}_2 \end{bmatrix}$$

$$\bar{y}_{11} = \frac{\dot{I}_1}{\dot{V}_1} \Big|_{\dot{V}_2 = 0}$$

$$\bar{y}_{21} = \frac{\dot{l}_2}{\dot{V}_1} \Big|_{\dot{V}_2 = 0}$$

Corto circuito alla prima porta e generatore di prova alla seconda

$$\bar{y}_{12} = \frac{\dot{I}_1}{\dot{V}_2} \bigg|_{\dot{V}_2 = 0}$$

$$\bar{y}_{22} = \frac{\dot{I}_2}{\dot{V}_2} \Big|_{V_1 = 0}$$

Parametrizzazione H

$$\begin{bmatrix} \dot{V}_1 \\ \dot{I}_2 \end{bmatrix} = \begin{bmatrix} \bar{h}_{11} & \bar{h}_{12} \\ \bar{h}_{21} & \bar{h}_{22} \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{V}_2 \end{bmatrix}$$

Corto circuito alla seconda porta e generatore di prova alla prima

$$\bar{h}_{11} = \frac{\dot{V}_1}{\dot{I}_1} \Big|_{\dot{V}_2 = 0}$$

$$\bar{h}_{21} = \frac{\dot{I}_2}{\dot{I}_1}\Big|_{\dot{Y}_1 = 0}$$

Staccare i morsetti alla prima porta e generatore di prova alla seconda

$$\bar{h}_{12} = \frac{\dot{V}_1}{\dot{V}_2} \Big|_{\dot{I}_1 = 0}$$

$$\bar{h}_{22} = \frac{\dot{I}_2}{\dot{V}_2}\Big|_{I_1=0}$$

Parametrizzazione T

$$\begin{bmatrix} \dot{V}_1 \\ \dot{I}_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \dot{V}_2 \\ -\dot{I}_2 \end{bmatrix}$$

Staccare i morsetti alla seconda porta e generatore di prova alla prima

$$A = \frac{\dot{V}_1}{\dot{V}_2} \bigg|_{\dot{I}_2 = 0}$$

$$C = \frac{\dot{I}_1}{\dot{V}_2} \bigg|_{\dot{I}_2 = 0}$$

Corto circuito alla seconda porta e generatore di prova alla prima

$$B = \frac{|\dot{V}_1|}{-|\dot{I}_2|}\Big|_{\dot{V}_1 = 0}$$

$$D = \frac{\dot{I}_1}{-\dot{I}_2}\bigg|_{\dot{V}_2=0}$$

Collegamenti tra doppi bipoli

Serie

$$\begin{bmatrix} \dot{\boldsymbol{V}}_{1,s} \\ \dot{\boldsymbol{V}}_{2,s} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{V}}_{1,A} \\ \dot{\boldsymbol{V}}_{2,A} \end{bmatrix} + \begin{bmatrix} \dot{\boldsymbol{V}}_{1,B} \\ \dot{\boldsymbol{V}}_{2,B} \end{bmatrix} = \boldsymbol{\bar{Z}}_{A} \begin{bmatrix} \boldsymbol{I}_{1,A} \\ \boldsymbol{I}_{2,A} \end{bmatrix} + \boldsymbol{\bar{Z}}_{B} \begin{bmatrix} \boldsymbol{I}_{1,B} \\ \boldsymbol{I}_{2,B} \end{bmatrix} = (\boldsymbol{\bar{Z}}_{A} + \boldsymbol{\bar{Z}}_{B}) \begin{bmatrix} \boldsymbol{I}_{1,s} \\ \boldsymbol{I}_{2,s} \end{bmatrix}$$

Parallelo

$$\begin{bmatrix} \dot{I}_{1,p} \\ \dot{I}_{2,p} \end{bmatrix} = \begin{bmatrix} \dot{I}_{1,A} \\ \dot{I}_{2,p} \end{bmatrix} + \begin{bmatrix} \dot{I}_{1,B} \\ \dot{I}_{2,p} \end{bmatrix} = \bar{Y}_A \begin{bmatrix} \dot{V}_{1,A} \\ V_{2,A} \end{bmatrix} + \bar{Y}_B \begin{bmatrix} \dot{V}_{1,B} \\ \dot{V}_{2,p} \end{bmatrix} = (\bar{Y}_A + \bar{Y}_B) \begin{bmatrix} \dot{V}_{1,p} \\ \dot{V}_{2,p} \end{bmatrix}$$

Cascata

$$\begin{bmatrix} \dot{\boldsymbol{V}}_{1,c} \\ \dot{\boldsymbol{I}}_{1,c} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{V}}_{1,A} \\ \dot{\boldsymbol{I}}_{1,A} \end{bmatrix} = T_A \begin{bmatrix} \dot{\boldsymbol{V}}_{2,A} \\ -\dot{\boldsymbol{I}}_{2,A} \end{bmatrix} = T_A \begin{bmatrix} \dot{\boldsymbol{V}}_{1,B} \\ \dot{\boldsymbol{I}}_{1,B} \end{bmatrix} = \boldsymbol{T}_A \boldsymbol{T}_B \begin{bmatrix} \dot{\boldsymbol{V}}_{2,c} \\ -\dot{\boldsymbol{I}}_{2,c} \end{bmatrix}$$

م ام نساما

$$\begin{bmatrix} \dot{\boldsymbol{V}}_{1,h} \\ \dot{\boldsymbol{I}}_{2,h} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{V}}_{1,A} \\ \dot{\boldsymbol{I}}_{2,A} \end{bmatrix} + \begin{bmatrix} \dot{\boldsymbol{V}}_{1,B} \\ \dot{\boldsymbol{I}}_{2,B} \end{bmatrix} = \boldsymbol{\bar{H}}_{A} \begin{bmatrix} \dot{\boldsymbol{I}}_{1,A} \\ \dot{\boldsymbol{V}}_{2,A} \end{bmatrix} + \boldsymbol{\bar{H}}_{B} \begin{bmatrix} \dot{\boldsymbol{I}}_{1,B} \\ \dot{\boldsymbol{V}}_{2,B} \end{bmatrix} = \ (\boldsymbol{\bar{\boldsymbol{H}}}_{A} \ + \ \boldsymbol{\bar{\boldsymbol{H}}}_{B}) \begin{bmatrix} \boldsymbol{\boldsymbol{I}}_{1,h} \\ \dot{\boldsymbol{V}}_{2,h} \end{bmatrix}$$

Transitorio

f(t)	F(s)
1, <i>u</i> (<i>t</i>)	1
	<u>-</u> S
$\partial f(t)$	$sF(s) - f(0^-)$
$\overline{\partial t}$	
$\int_{-\infty}^t f(\tau) d\tau$	$\frac{1}{s}F(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} f(t)dt$
V(t) = Ri(t)	V(s) = Ri(s)
$V(t) = L \frac{\partial i(t)}{\partial t}$	$V(s) = sLI(s) - L i_L(0^-)$
$V(t) = \frac{1}{C} \int i(t)dt$	$V(s) = \frac{1}{SC}I(s) + \frac{1}{s}V_{c}(0^{-})$
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$
e^{-at}	1
	$\overline{s+a}$
$\delta(t)$	1

Resistore, induttore, condensatore

	V(s) = R I(s)
+ L= 	$V(s) = s L I(s) - LI(0^-)$
1 Vc (o·)	$V(s) = \frac{1}{sc}I(s) + \frac{1}{s}V_c(o^-)$

Induttori mutuamente accoppiati

Teorema dei residui

$$A_j = \lim_{s \to p_j} (s - p_j) X(s)$$

 p_i polo jesimo, A_i residuo jesimo

Casi brutti:

Poli complessi

$$x(t) = \left[2\sqrt{N^2 + M^2}e^{-\sigma t}\sin\left(\omega t + \arctan\frac{M}{N}\right)\right]u(t)$$

 σ è la parte reale del polo, ω è la parte immaginaria del polo, M è la parte reale e N è la parte immaginaria

- deg(Num) = deg(Den)Divisione e poi fare il caso normale
- n > 1 calcolo dei residui

$$A_i = \frac{1}{(n-i)!} \frac{\partial^{n-i} [(s+p_i)^n X(s)]}{\partial s^{n-i}} \bigg|_{s=-p_i}$$

 A_i è il residuo iesimo, n è la molteplicità, p_i è il polo i-esimo

Smutuamento induttori in mutua (si sono fatti la bua)

Se la mutua è al contrario i segni a destra sono tutti invertiti

Versione 2.5, in caso di errori contattare il migliore amico di GS.

Reti reciproche (nessun generatore pilotato)

Parametri Z e Y: la codiagonale ha elementi identici. Parametri H: la codiagonale ha elementi opposti. Parametri T: Il determinante della matrice è uguale a 1.

Prodotto matriciale

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \\ = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Inversa 2x2

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$