

Universidade Federal da Bahia Instituto de Computação

MATA53 - Teoria dos grafos

Relatório: Problema do Caixeiro Viajante com bônus e passageiros

Antoniel Magalhães João Leahy Luis Felipe

Salvador - Bahia

5 de janeiro de 2025

Relatório: Problema do Caixeiro Viajante com Bônus e passageiros

Antoniel Magalhães João Leahy Luis Felipe

Estudo dirigido entregue ao professor Islame Felipe da Costa Fernandescomo método avaliativo da disciplina MATA53 - Teoria dos grafos

Salvador - Bahia

5 de janeiro de 2025

Sumário

1	Intr	odução	4
2	Fundamentação Teórica		5
	2.1	Problema do Caixeiro Viajante (TSP)	5
	2.2	Extensões do TSP	5
	2.3	Definição Formal do Problema	5
3	Modelagem Matemática		6
	3.1	Variáveis de Decisão	6
	3.2	Função Objetivo	6
	3.3	Restrições	6
4	Métodos de Resolução		7
	4.1	Métodos Exatos	7
	4.2	Heurísticas	7
	4.3	Metaheurísticas	7
5	Resultados e Discussão		8
	5.1	Resultados Computacionais	8
	5.2	Discussão	8
6	Conclusão		9

Introdução

O **Problema do Caixeiro Viajante com Coleta de Bônus e Passageiros (TSP-OBP)** é uma extensão do clássico Problema do Caixeiro Viajante (TSP). Ele combina aspectos de coleta de prêmios, transporte de passageiros e otimização de rotas, tornandose relevante em diversas aplicações, como logística, turismo e transporte público.

Este relatório tem como objetivo apresentar uma análise detalhada do problema, sua modelagem matemática, métodos de resolução e aplicações práticas.

Fundamentação Teórica

2.1 Problema do Caixeiro Viajante (TSP)

O Problema do Caixeiro Viajante consiste em encontrar a menor rota que visita um conjunto de cidades exatamente uma vez e retorna ao ponto de origem. É um problema clássico de otimização combinatória, amplamente estudado na teoria da computação.

2.2 Extensões do TSP

O TSP-OBP é uma extensão do TSP, incorporando os seguintes elementos:

- Coleta de Bônus: Cada local visitado oferece um prêmio opcional. O objetivo é maximizar o bônus coletado, respeitando restrições de tempo ou custo.
- Passageiros: O transporte de passageiros pode ser incluído na rota, com cada passageiro contribuindo com uma recompensa adicional.

2.3 Definição Formal do Problema

Dado um conjunto de nós (cidades) N, uma matriz de custos $C = [c_{ij}]$, e bônus b_i associados a cada nó i, o objetivo é determinar uma rota R que:

- Minimiza o custo total de viagem C(R);
- Maximiza a soma dos bônus coletados B(R);
- Satisfaz restrições, como limite de tempo e capacidade para passageiros.

Modelagem Matemática

3.1 Variáveis de Decisão

- $x_{ij} \in \{0,1\}$: Indica se a aresta (i,j) é percorrida.
- $y_i \in \{0,1\}$: Indica se o bônus do nó i foi coletado.
- $p_i \in \{0,1\}$: Indica se um passageiro foi embarcado no nó i.

3.2 Função Objetivo

Maximizar:
$$\sum_{i \in N} b_i y_i - \sum_{(i,j) \in E} c_{ij} x_{ij}$$

3.3 Restrições

1. Cada nó deve ser visitado exatamente uma vez:

$$\sum_{j \in N} x_{ij} = 1, \quad \forall i \in N$$

$$\sum_{i \in N} x_{ij} = 1, \quad \forall j \in N$$

2. Limites de tempo:

$$\sum_{(i,j)\in E} c_{ij} x_{ij} \le T_{\text{máximo}}$$

3. Capacidade de transporte:

$$\sum_{i \in N} p_i \le \text{Capacidade}$$

Métodos de Resolução

4.1 Métodos Exatos

- Branch and Bound: Explora todas as soluções possíveis de forma sistemática.
- Programação Linear Inteira (ILP): Resolve a formulação matemática do problema usando técnicas de otimização.

4.2 Heurísticas

- Algoritmos Gulosos: Constroem uma solução passo a passo, escolhendo a melhor opção local em cada etapa.
- GRASP (Greedy Randomized Adaptive Search Procedure): Combina buscas gulosas com elementos aleatórios.

4.3 Metaheurísticas

- Algoritmos Genéticos: Inspirados na evolução natural.
- Simulated Annealing: Baseado no recozimento térmico.
- Ant Colony Optimization: Inspirado no comportamento de colônias de formigas.

Resultados e Discussão

5.1 Resultados Computacionais

Apresente os resultados obtidos ao resolver instâncias do problema, comparando diferentes métodos em termos de:

- Tempo de execução;
- Qualidade da solução;
- Eficiência computacional.

5.2 Discussão

Discuta os trade-offs entre os métodos utilizados e os impactos práticos dos resultados.

Conclusão

Resumo dos principais resultados e contribuições do trabalho. Apresente sugestões para trabalhos futuros, como:

- Estudo de novas heurísticas para grandes instâncias.
- Extensão do modelo para múltiplos veículos.
- Aplicações em cenários reais, como planejamento logístico.

Neste trabalho visitamos teorias que fundamentam a base da computação, passando primeiro pelo concceito de funções recursivas sua importância e definições. posteriormente discorremos sobre o Lambda-cálculo e sua contextualização, e por fim relacionamos tudo apresentado com Máquinas de Turing que foi o objeto de estudo principal da disciplina.

É importante perceber que embora as Máquinas de Turing seja o modelo de computação preferido para o estudo em computabilidade, existem modelos clássicos dos quais o estudo continua relevante e necessário para o avanço da computação como ciência.