Homework Assignments for Analysis Approach Course

Lesson 1: Fundamentals of Analytical Thinking in Mathematics

Homework:

- 1. **Problem Breakdown:** Choose two complex math problems from your textbook. Break each down into smaller steps, identifying the type of analysis required for each step.
- 2. **Real-World Connection:** Find a real-world problem that could be approached using mathematical analysis and describe how you would apply analytical thinking to solve it.

Lesson 2: Problem-Solving Frameworks in Mathematics

Homework:

- 1. **Framework Comparison:** Solve one problem using two different frameworks (e.g., Polya's method and a heuristic approach). Write a comparison of each framework's effectiveness for the problem.
- 2. **Create Your Own Problem:** Write a challenging math problem that could be solved using trial-and-error, and solve it yourself. Describe how the trial-and-error approach helped.

Lesson 3: Graphical Analysis and Interpretation

Homework:

- 1. **Graph Analysis:** Find a graph from a news article or online source. Write a paragraph analyzing the trends, outliers, or patterns you observe.
- 2. **Create Your Own Graph:** Use a small dataset from daily life (e.g., hours studied per day or daily steps) and create a graph. Describe the key features of your graph in a few sentences.

Lesson 4: Algebraic Manipulation and Simplification Techniques

Homework:

- 1. **Simplification Practice:** Simplify the following expressions:
 - \circ $(3x2-6x)/3x(3x^2-6x)/3x(3x2-6x)/3x$
 - $\circ \quad (x2+2x+1)-(x2-3x+4)(x^2+2x+1) (x^2-3x+4)(x2+2x+1) (x2-3x+4)$
 - \circ (2y+3)(y-4)(2y+3)(y-4)(2y+3)(y-4)

- 2. **Pattern Recognition:** Identify patterns within these identities and use them to simplify:
 - o a2-b2a^2 b^2a2-b2
 - \circ $(x+y)2(x+y)^2(x+y)2$
 - \circ x3-y3x^3 y^3x3-y3

Lesson 5: Logical Reasoning and Proofs in Mathematics

Homework:

- 1. **Proof Practice:** Write a direct proof for the following statement:
 - o If nnn is an even number, then n2n^2n2 is also even.
- 2. **Contradiction Exercise:** Use proof by contradiction for the statement:
 - o There is no smallest positive rational number.

Lesson 6: Analyzing Functions and Their Behaviors

Homework:

- 1. **Limit Practice:** Find the limits of these functions as xxx approaches the specified values:
 - o $f(x)=1x-2f(x) = \frac{1}{x-2}f(x)=x-21$, as $x \rightarrow 2x \to 2x$
- 2. **Continuity Exercise:** Identify points of continuity and discontinuity for $h(x)=x2-9x-3h(x) = \frac{x^2-9}{4x-3}h(x)=x-3x2-9$.

Lesson 7: Probability and Statistical Analysis

Homework:

- 1. **Data Analysis:** Use the following dataset to calculate the mean, median, and standard deviation:
 - o Data: 5, 12, 7, 9, 10, 6, 8, 10, 7, 9
- 2. **Probability Exercise:** A bag contains 3 red balls, 4 blue balls, and 5 green balls. Calculate the probability of drawing:
 - o a red ball
 - o a green ball
 - o a blue or green ball

Lesson 8: Vectors and Analytical Geometry

Homework:

- 1. **Vector Calculations:** Given vectors $\mathbf{A} = (3, 4)$ and $\mathbf{B} = (-2, 1)$:
 - \circ Calculate $\mathbf{A} + \mathbf{B}$.
 - o Find the dot product of **A** and **B**.
- 2. **Application Problem:** Explain a real-world application where vectors would be useful (e.g., navigation, engineering) and describe how vectors aid in problem-solving for that context.