1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	공학	174	154
2022	2	자연과학	1	1
2022	2	공학	182	161
2023	2	공학	134	115
2024	2	자연과학	1	1
2024	2	공학	154	133

2. 평균 수강인원

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	45.5	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	50.75	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	55.33	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.29	
2016	2	3.49	3.16	3.61	3.32	
2015	2	3.51	3.28	3.6	3.36	

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원	비율
2021	2	Α+	30	19.48	2023	2	C+	7	6.09
2021	2	Α0	35	22.73	2023	2	C0	10	8.7
2021	2	B+	41	26.62	2023	2	D+	5	4.35
2021	2	ВО	13	8.44	2024	2	A+	16	11.94
2021	2	C+	12	7.79	2024	2	Α0	26	19.4
2021	2	C0	11	7.14	2024	2	B+	25	18.66
2021	2	D+	10	6.49	2024	2	ВО	26	19.4
2021	2	D0	2	1.3	2024	2	C+	17	12.69
2022	2	Α+	36	22.22	2024	2	C0	8	5.97
2022	2	Α0	23	14.2	2024	2	D+	12	8.96
2022	2	B+	27	16.67	2024	2	D0	4	2.99
2022	2	ВО	13	8.02					

C+

C0

D0

14.2

12.96

9.26

2.47

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	90	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	92	
2022	2	90.98	92.48	90.7	84	

6. 강의평가 문항별 현황

		ноля			점수별 인원분포					
번호	평가문항 호	본인평 균 (가중 치적용)	생 소속학과,대학평균과의 하이 차이 수 차이 수 차이 수 차이 수 차이 수 하는 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다	
		5점	학과		내학	1 24	2 Z-l	그래	4점	디저
	교강사:	미만	차이 평균	· 차이	평균	· 1점	2점	3점	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
기계공학부	2강좌(6학점)	2강좌(6학점)	1강좌(3학점)	3강좌(9학점)	3강좌(9학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	3강좌(174)	3강좌(183)	1강좌(134)	2강좌(155)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 기계공학부	유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다	turbulent flow: boundary layer theory. general consideration of irrotational flow.	
학부 2020 - 2023 교육과 정	서울 공과대학 기계공학부	유체역학 1에 이어 Navier-Stokes 방정식 엄밀 해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지 배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원	Fluid Mechanics 2 Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes	

교육과정	관장학과	국문개요	영문개요	수업목표
		퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층 의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다	equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	
학부 2016 - 2019 교육과 정	서울 공과대학 기계공학부	유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식,에너지방정식의 유도, 원관 및 덕트 유동 2차원퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출,외류와 내류,경계층 유동의 근사해, 정상 1차원 압축성 유동,수직, 경사충격파, 팽창파 등에 관해서 강술한다	Fluid Mechanics 2 Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다.	Fluid Mechanics 2 Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	
학부 2009 - 2012 교육과 정	서울 공과대학 건설환경공학 과	유체역학1에 이어서 유체역학의 기초적인 이론을 강의한다. 즉 관로흐름, 개수로흐름, 유체저항 및 양력, 차원해석, 유체측정 등	Elementary fluid mechanics with emphasis on engineering applications. Enclosed condult flow, open-channel flow, fluid measurements, varied flow in open channels and introduction to computational fluid mechanics.	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원퍼텐셜 유동, 축대칭 3차원퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다	Fluid Mechanics 2 Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible	

교육과정	관장학과	국문개요	영문개요	수업목표
			irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	
학부 2005 - 2008 교육과 정	서울 공과대학 도시건설환경 공학과군 토목 공학과	유체역학1에 이어서 유체역학의 기초적인 이론을 강의한다. 즉 관로흐름, 개수로흐름, 유체저항 및 양력, 차원해석, 유체측정 등	Elementary fluid mechanics with emphasis on engineering applications. Enclosed condult flow, open-channel flow, fluid measurements, varied flow in open channels and introduction to computational fluid mechanics.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	MEE 304 유체역학 2 유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원 퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다	MEE304 Fluid Mechanics 2 Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	
학부 2001 - 2004 교육과 정	서울 공과대학 도시건설환경 공학과군 토목 공학과	유체역학1에서 유체역학의 기초 위에 이론을 관수로와 개수로의 문제에 적용하고 해를 구하 는 방법을 강의한다.	Elementary fluid mechanics with emphasis on engineering applications, enclosed condult flow, open-channel flow, and fluid measurements.	
학부 1997 - 2000 교육과 정	서울 공과대학 기계공학부	MEE 304 유체역학 2 유체역학 1에 이어 Navier-Stokes 방정식 엄밀해의 예로서 Couette 유동, 제1 Stokes 문제, Hagen-Poiseuile 유동의 해석, 난류 운동을 지배하는 Reynolds형 연속방정식, 운동량방정식, 에너지방정식의 유도, 원관 및 덕트 유동 2차원퍼텐셜 유동, 축대칭 3차원 퍼텐셜 유동, 경계층의 개념, 경계층 2방정식의 도출, 외류와 내류, 경계층 유동의 근사해, 정상 1차원 압축성 유동, 수직, 경사충격파, 팽창파 등에 관해서 강술한다.	MEE304 Fluid Mechanics 2 (유체역학2) Navier-Stockes equation for laminar incompressble flow, applications to tow dimensional laminar flow between parallel plates and flow in a pipe; Navier-Stockes equation for mean-time average quantities, apparent stress, Prandtl mixing length theory and velocity profile for turbulent flow: boundary layer theory. general consideration of irrotational flow. tow dimensional steady incompressible irrotational flow. axially symmetric incompressible irrotationnal flow. and open channel flow.	

10. CQI 등록내역	
	No data have been found.

