

= 12.5 cm

light
$$v = c = 3 \times 10^8 \text{ m/s}$$
 in vacuum

 $ylas \rightarrow v = 2 \times 10^8 \text{m/s}$ ($\frac{1}{1.5}c$)

Atungs: velocity of waves on a string?

 $T \left[N = \log m/z \right] \qquad Tl \left[\frac{m^2}{m} \right]$
 $m \left[leg \right] \qquad \left[\frac{m}{s} \right] \qquad Tl$
 $l \left[m \right]$
 $v = \left[Tl \right] \qquad m = \mu = mass$
 $v = \left[Tl \right] \qquad m = \mu = leugth$
 $v = \left[Tl \right] \qquad m = \mu = leugth$

Superposition wave has twice the amplifude constructive interference = Two positive excursions add up destructive interference direct wave f(x,t) = f(x-vt)reflected wave $f_2(x-vt)$ superposition $f(x-vt) = f(x-vt) + f_2(x-vt)$ destructive interference

