LINEAR MODEL -LINEAR REGRESSION

Dr. Debanjan Pathak

Formulation & Mathematical Foundation of Regression Problem

What is **Regression**

- Regression predict value of response variable (Y) from attribute variables (X).
- Variables continuous numeric values
- Regression analysis a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables.
 - Dependent variables are often called the 'predictand', 'outcome' or 'response' variable;
 - Independent variables are often called 'predictors', 'covariates', 'explanatory variables' or 'features'.
 - Regression analysis is a way of mathematically sorting out which of those variables does indeed have an impact.
 - Used for modeling the future relationship between the variables.
- Statistical process a science of collecting, exploring, organizing, analyzing, interpreting data and exploring patterns and trends to answer questions and make decisions (Broad area).

Basics of Regression Models

- Regression models predict a value of the Y variable given known values of the X variables.
- Prediction within the range of values in the dataset used for model-fitting is known as interpolation.
- Prediction outside this range of the data is known as extrapolation.
- First, a model to estimate the outcome need to be fixed.
- Then the parameters of that model need to be estimated using any chosen method (e.g., least squares).

- Regression models involve the following components:
- The unknown parameters, often denoted as β or ω or w.
- The independent variables, which are observed in data and are often denoted as a vector X_i (where i denotes a row of data).
- The dependent variable, which are observed in data and often denoted using the scalar Y_i .
- The error terms, which are not directly observed in data and are often denoted using the scalar e_i .

• Most regression models propose that Y_i is a function of X_i and β , with e_i representing an additive error term that may stand in for a random statistical noise.

- Our objective is to estimate the function $f(X_i, \beta)$ that most closely fits the data.
- To carry out regression analysis, the form of the function f must be specified.
- •Sometimes the form of this function is based on knowledge about the relationship between Y_i and X_i .
- If no such knowledge is available, a flexible or convenient form for f is chosen.

You may start with a simple univariate linear regression:

ullet It indicates that you believe that a reasonable approximation for Y_i is:

- ullet Now the next objective is to estimate the parameters eta
 - may be using least squares method
 - may go with other alternatives such as least absolute deviations, Least trimmed squares, quantile regression estimator, Theil–Sen estimator, M-estimation (maximum likelihood type) or S-estimation (scale).

 \bullet Find the value of β that minimizes the sum of squared errors

- A given regression method will ultimately provide an estimate of β , usually denoted $\widehat{\beta}$.
- Using this estimate, you can then find the fitted value for prediction or to assess the accuracy of the model in explaining the data.

Variants in Regression Models

- The most common models are simple linear and multiple linear.
- Nonlinear regression analysis is commonly for used more complicated data sets in which the dependent and independent variables show a nonlinear relationship.

-- Michaelis–Menten model for enzyme kinetics

Multiple Linear Regression

$i j \longrightarrow$	Size (feet ²)	Number of bedrooms 2	Number of floors	Age of home (years)	<i>y</i> Price (\$1000)
1	2104	5	1	45	460
2	1416	3	2	40	232
3	1534	3	2	30	315
4	852	2	1	36	178
N	•••		•••		•••

Notation:

n = number of features

 $x^{(i)} = \text{input (features) of } i^{th} \text{ training example.}$

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

N = number of training examples

Multiple Linear Regression

$$\hat{y}^{(i)} = w_0 + w_1 x_1^{(i)} + \dots + w_n x_n^{(i)}; i = 1, \dots, N$$

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

N = number of training examples

Use the following data set to answer the questions:

Sample	Y	X1	X2	X3
1	35	8.4	8	1
2	10	2	6.5	8.5
3	9	3.5	6.2	6.5
4	30	10.4	5	1.5
5	20	6.5	6.5	7.5
6	23	6.2	7.3	4.5
7	28	12.4	6.4	4
8	8	7	6	10
9	29	5.8	6.1	3
10	4	3	5.4	11
11	18	6	7.3	4.5
12	14	5.5	6.6	5.5
13	32	9	6.5	2.5
14	6	1.1	5.8	7
15	8	2.1	7.1	9
16	37	10	8.5	2
17	25	7	5.5	3
18	15	5	5	4.5
19	30	9.3	7.9	3
20	10	4.4	4.5	7.9

We are interested in modeling Y based on X1, X2 and X3. Y=length of larvae in the water

X1: depth of the water

X2: amount of dissolved oxygen

X3: brackishness of water.

The Regression Model, & The Concepts of Least Squares

What is **Least Square Method**

- The least-squares method is a statistical method that is practised to find a regression line or a best-fit line for the given pattern.
- The method of least squares is used in regression.
- In regression analysis, this method is said to be a standard approach for the approximation of sets of equations having more equations than the number of unknowns (overdetermined systems).
- It is used to approximate the solution by minimizing the sum of the squares of the residuals made in the results of each individual equation.
 - Residual: the difference between an observed value and the fitted value provided by a model
- The problem of finding a linear regressor function will be formulated as a problem of minimizing a criterion function.
- The widely-used criterion function for regression purposes is the

Least Square Method with Linear Regression

Least Square Method with Linear Regression

- In general, regression methods are used to predict the value of response (dependent) variable from attribute (independent) variables,
- Linear regressor model fits a linear function (relationship) between dependent (output) variable and independent (input) variables.

$$\hat{y}^{(i)} = w_0 + w_1 x_1^{(i)} + \dots + w_n x_n^{(i)}; i = 1, \dots, N$$

- where $\{w_0, w_1, ..., w_n\}$ are the parameters of the model.
- The method of linear regression is to choose the (n + 1) coefficients w_0 , w_1 , ..., w_n , to minimize the residual sum of squares of these differences over all the N training instances.

Least Square Method with Linear Regression

Residual error

$$e^{(i)} = y^{(i)} - \hat{y}^{(i)} = y^{(i)} - \sum_{j=0}^{n} w_j x_j^{(i)}; x_0^{(i)} = 1$$

Residual sum-of-error-squares

$$E = \sum_{i=1}^{N} (e^{(i)})^2 = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{n} w_j x_j^{(i)} \right)^2; x_0^{(i)} = 1$$

• The method of linear regression is to choose the (n + 1) coefficients w_0 , w_1 , ..., w_n , to minimize the residual sum of squares of these differences over all the N training instances.

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(N)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(N)} \\ \vdots & \vdots & & \vdots \\ x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(N)} \end{bmatrix} = [\overline{\mathbf{x}}^{(1)} \ \overline{\mathbf{x}}^{(2)} \cdots \overline{\mathbf{x}}^{(N)}] \qquad \qquad \mathbf{y} = [y^{(1)} \ y^{(2)} \cdots y^{(N)}]^T$$

$$\overline{\mathbf{w}} = [w_0 \ w_1 \ w_2 \cdots w_n]^T$$

$$\overline{\mathbf{x}} = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

• For an optimum solution for w, the following equations need to be satisfied:

$$y^{(1)} = \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(1)}$$

$$\vdots$$

$$y^{(N)} = \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(N)}$$

Therefore,

$$[y^{(1)} \ y^{(2)} \cdots y^{(N)}] = \overline{\mathbf{w}}^T [\overline{\mathbf{x}}^{(1)} \ \overline{\mathbf{x}}^{(2)} \cdots \overline{\mathbf{x}}^{(N)}] = \overline{\mathbf{w}}^T \mathbf{X}$$

or

$$\mathbf{y} = (\overline{\mathbf{w}}^T \mathbf{X})^T$$

The vector of residual errors becomes

$$\mathbf{y} - (\overline{\mathbf{w}}^T \mathbf{X})^T$$

Hence the error function can be written as,

$$E(\overline{\mathbf{w}}) = [\mathbf{y} - (\overline{\mathbf{w}}^T \mathbf{X})^T]^T [\mathbf{y} - (\overline{\mathbf{w}}^T \mathbf{X})^T]$$
$$= \overline{\mathbf{w}}^T [\mathbf{X} \mathbf{X}^T] \overline{\mathbf{w}} - 2 \overline{\mathbf{w}}^T \mathbf{X} \mathbf{y} + \mathbf{y}^T \mathbf{y}$$

$$E(\overline{\mathbf{w}}) = \overline{\mathbf{w}}^T [\mathbf{X} \mathbf{X}^T] \overline{\mathbf{w}} - 2\overline{\mathbf{w}}^T \mathbf{X} \mathbf{y} + \mathbf{y}^T \mathbf{y}$$

- In this least-squares estimation task, the objective is to find the optimal \overline{w}^* that minimizes E (\overline{w}).
- The solution to this classic problem in calculus is found by setting the gradient of E (\overline{w}) , with respect to \overline{w} , to zero.

$$\frac{\partial E(\overline{\mathbf{w}})}{\partial \overline{\mathbf{w}}} = 2(\mathbf{X}\mathbf{X}^T) \, \overline{\mathbf{w}} - 2\mathbf{X}\mathbf{y} = \mathbf{0}$$

This gives

$$\overline{\mathbf{w}}^* = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{y}$$

The fitted output values at the training data are

$$\hat{\mathbf{y}} = \mathbf{X}^T \, \overline{\mathbf{w}}^* = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \mathbf{y}$$

$$\hat{\mathbf{y}} = \mathbf{X}^T \, \overline{\mathbf{w}}^* = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \mathbf{y}$$

• The (n + 1) x N matrix $X^+ = (XX^T)^{-1}X$ is called the pseudoinverse matrix of the matrix X^T . Thus, the optimal solution is

$$\overline{w}^* = X^+y$$

Unique solution?

- It might happen that the columns of X are not linearly independent.
- Then XX^T is singular and the least squares coefficients \overline{w}^* are not uniquely defined.
- The singular case occurs most often when two or more inputs were perfectly correlated.
- A natural way to resolve the non-unique representation is by dropping redundant columns in X.
- Most regression software packages detect these redundancies and automatically implement some strategy for removing them.

Error Reduction-Gradient Descent

Basics of Gradient Descent

- Gradient descent search helps determine a weight vector that minimizes E
 by starting with an arbitrary initial weight vector and then altering it again
 and again in small steps.
- Batch gradient descent: When the weight update is calculated based on all examples in the training dataset, it is called as batch gradient descent.
- Stochastic gradient descent: When the weight update is calculated incrementally after each training example or a small group of training example, it is called as stochastic gradient descent.
- Gradient descent procedure has two advantages over merely computing the pseudoinverse:
- (1) it avoids the problems that arise when XX^T is singular (it always yields a solution regardless of whether or not XX^T is singular);
- (2) it avoids the need for working with large matrices.

Basics of Gradient Descent

Basics of Gradient Descent

- The error surface may have multiple local minimums but a single global minimum.
- The objective would be to find out global minimum.

What is **Gradient Descent**

Gradient Descent Optimization Schemes

 Optimization method Gradient Descent Method used for minimization tasks. Changes of the weights are made according to the following algorithm:

$$\overline{\mathbf{w}}_{k+1} = \overline{\mathbf{w}}_k - \eta \frac{\partial E}{\partial \overline{\mathbf{w}}}|_k$$

where η denotes the *learning rate*, and k stands for the actual iteration step. Note:

- Need to choose η .
- Needs many iterations.
- Works well even when n is large.
- Gradient descent serves as the basis for learning algorithms that search the hypothesis space of possible weight vectors to find the weights that best fit the training examples.

What is **Gradient Descent**

Gradient Descent Optimization Schemes

 Optimization method Gradient Descent Method used for minimization tasks. Changes of the weights are made according to the following algorithm:

$$\overline{\mathbf{w}}_{k+1} = \overline{\mathbf{w}}_k - \eta \frac{\partial E}{\partial \overline{\mathbf{w}}}|_k$$

where η denotes the *learning rate*, and k stands for the actual iteration step. Approaches for deciding the iteration step:

- 1. Batch methods use all the data in one shot.
- k^{th} iteration step means the k^{th} presentation of training dataset.
- Gradient is calculated across the entire set of training patterns.
- 2. Online methods is where
- k iteration step after single data pair is presented.
- Share almost all good features of recursive least square algorithm with reduced computational complexity.

The gradient descent training rule

Linear classification using regression technique

$$g(\mathbf{x}) = \sum_{j=1}^{n} w_j x_j + w_0 = \mathbf{w}^T \mathbf{x} + w_0$$

Let us define a single weight vector $\overline{\mathbf{w}}$ for the weights (\mathbf{w}, w_0) :

$$\overline{\mathbf{w}}^T = [w_0 \ w_1 \ w_2 \dots \ w_n]^T$$

In terms of the weight vector $\overline{\mathbf{w}}$, the output

$$g(\mathbf{x}) = \overline{\mathbf{w}}^T \overline{\mathbf{x}}$$

where

$$\overline{\mathbf{x}}^T = [x_0 \ x_1 \ x_2 \ \dots \ x_n]^T; \ x_0 = 1$$

Performance Criterion:

$$E(\overline{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(i)})^2$$

---To be minimized.
Called as cost function.

used for computational convenience

The gradient descent training rule

- ◆ The error surface is parabolic with a single global minimum.
- The specific parabola will depend on the particular set of training examples.
- The direction of steepest descent along the error surface can be found by computing the derivative of E with respect to each component of the vector \overline{w} .
- This vector-derivative is called the gradient of E w.r.t \overline{w} written $\nabla F(\overline{w})$

$$\nabla E(\overline{\mathbf{w}}) = \left[\frac{\partial E}{\partial w_n} \frac{\partial E}{\partial w_n} \dots \frac{\partial E}{\partial w_n} \right]^T$$

- The negative of this vector gives the direction of steepest decrease.
- Therefore, the training rule for gradient descent is, $\overline{\mathbf{w}} \leftarrow \overline{\mathbf{w}} + \Delta \overline{\mathbf{w}}$

$$\Delta \overline{\mathbf{w}} = -\eta \, \nabla E(\overline{\mathbf{w}})$$

Remember, it can be applied to any objective function, not just for squared distances.

Performance Criterion:

$$E(\overline{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(i)})^2$$

---To be minimized. Called as cost function.

here, η is learning rate, a +ve constant, determines the step size in the search.

The gradient descent training rule

• This training rule can also be written in its component form:

$$w_j \leftarrow w_j + \Delta w_j; j = 0, 1, 2, ..., n$$

$$\Delta w_j = -\eta \, \frac{\partial E}{\partial w_j}$$

- which shows that steepest descent is achieved by altering each component w_j of w in proportion to $\frac{\partial E}{\partial w_j}$
- starting with an arbitrary initial weight vector, is changed in the direction producing the steepest descent along the error surface.
- The process goes on till the global minimum error is attained.

Performance Criterion:

$$E(\overline{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(i)})^2$$

---To be minimized.
Called as cost function.

The gradient with respect to weight w_i

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\frac{1}{2} \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right)^2 \right]$$

The error $e^{(i)}$ for the i^{th} sample of data is given by $e^{(i)} = y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0\right)$. It follows that

$$\frac{1}{2} \sum_{i=1}^{N} \left[\frac{\partial}{\partial w_j} \left(e^{(i)} \right)^2 \right] = \sum_{i=1}^{N} e^{(i)} \frac{\partial e^{(i)}}{\partial w_j}$$

$$\frac{\partial e^{(i)}}{\partial w_i} = -x_j^{(i)}$$

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\frac{1}{2} \sum_{i=1}^{N} (e^{(i)})^2 \right]$$

$$= -\sum_{i=1}^{N} e^{(i)} x_j^{(i)}$$

$$= -\sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right) x_j^{(i)}$$

Performance Criterion:

$$E(\overline{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \overline{\mathbf{w}}^T \overline{\mathbf{x}}^{(i)})^2$$

---To be minimized.
Called as cost function.

The gradient with respect to weight w_i

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\frac{1}{2} \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{i=1}^{n} y^{(i)} \right)^2 \right) \right]$$
The gradient with respect to bias,

The error $e^{(i)}$ for the i^{th} sample of data is given by i It follows that

$$\frac{1}{2} \sum_{i=1}^{N} \left[\frac{\partial}{\partial w_j} (e^{(i)})^2 \right] = \sum_{i=1}^{N} e^{(i)} \frac{\partial e^{(i)}}{\partial w_j}$$

$$\frac{\partial e^{(i)}}{\partial w_i} = -x_j^{(i)}$$

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\frac{1}{2} \sum_{i=1}^{N} (e^{(i)})^2 \right]$$

$$= -\sum_{i=1}^{N} e^{(i)} x_j^{(i)}$$

$$\frac{\partial E}{\partial w_0} = -\sum_{i=1}^{N} e^{(i)} = -\sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right)$$

Therefore, the weight update rule for gradient descent becomes

$$w_j \leftarrow w_j + \eta \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right) x_j^{(i)}$$

$$w_0 \leftarrow w_0 + \eta \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right)$$

An epoch is a complete run through all the N associated pairs.

$$= -\sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right) x_j^{(i)}$$

The gradient with respect to weight w_i

The gradient with respect to bias,

$$\frac{\partial E}{\partial w_0} = -\sum_{i=1}^{N} e^{(i)} = -\sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right)$$

Therefore, the weight update rule for gradient descent becomes

$$w_j \leftarrow w_j + \eta \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j x_j^{(i)} + w_0 \right) \right) x_j^{(i)}$$

- Once an epoch is completed, the pair $(x^{(1)}, y^{(1)})$ is presented again and a run is performed through all the pairs again.
- After several epochs, the ouput error is expected to be sufficiently small.

 $w_0 \leftarrow w_0 + \eta \sum_{i=1}^N \left(y^{(i)} - \left(\sum_{i=1}^n \text{In terms of iteration index } k, \text{ the weight update equations are } \right) \right)$

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \eta \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j(k) x_j^{(i)} + w_0(k) \right) \right) \mathbf{x}^{(i)}$$

 k corresponds to the epoch number, the number of times the set of N pairs is presented and cumulative error is compounded.

$$w_0(k+1) = w_0(k) + \eta \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{n} w_j(k) x_j^{(i)} + w_0(k) \right) \right)$$