Definition (Category). A category C is:

Constituents

- 1. Objects: a collection $Ob_{\mathbb{C}}$, whose elements are called *objects*.
- 2. Morphisms: for every pair of objects $X, Y \in \mathrm{Ob}_{\mathbb{C}}$, there is a set $\mathrm{Hom}_{\mathbb{C}}(X;Y)$, elements of which are called *morphisms* from X to Y. The set is called the "hom-set from X to Y".
- 3. Identity morphisms: for each object X, there is an element $\mathrm{Id}_X \in \mathrm{Hom}_{\mathbf{C}}(X;X)$ which is called *the identity morphism of* X.
- 4. Composition operations: given any morphism $f \in \operatorname{Hom}_{\mathbf{C}}(X;Y)$ and any morphism $g \in \operatorname{Hom}_{\mathbf{C}}(Y;Z)$, there exists a morphism $f \notin \operatorname{Hom}_{\mathbf{C}}(X;Z)$ which is the *composition of* f *and* g.

Conditions

1. Unitality: for any morphism $f \in \operatorname{Hom}_{\mathbb{C}}(X; Y)$,

$$\operatorname{Id}_{X} \circ f = f = f \circ \operatorname{Id}_{Y}.$$

2. Associativity: for any morphisms $f \in \operatorname{Hom}_{\mathbf{C}}(X;Y), g \in \operatorname{Hom}_{\mathbf{C}}(Y;Z),$ and $h \in \operatorname{Hom}_{\mathbf{C}}(Z;U),$

$$(f \circ g) \circ h = f \circ (g \circ h).$$