Project 2 Outline

- Determine best source of data:
 - CME DataMine
 - Nasdaq Data Link (Quandl)

0

- Other resources
 - o <u>USDA National Agricultural Statistics Services</u>
 - USDA Economic Research Service
 - o **CME Institute**
 - Hog Feeding Spreads
 - Trading Opportunities in Lean Hogs
 - o Niche Pork Production
 - Soybean Crush Synthetic Futures
- Consider other variables
 - Weather/rainfall
 - Oil/natural gas prices
 - Corn prices rising because of demand abroad for ethanol
 - 0 ???
- What are our goals
 - Write a brief summary of our interests and intent
 - Maximize for profit
 - Farmers are looking to hedge
 - Farmers need to determine quantity to purchase
- What environment do we want to work in?
 - o Jupyter, Google Colab, or AWS SageMaker
- Data load in & clean up
 - o HE lean hogs
 - o ZC corn
 - o ZM soybean meal
 - LE live cattle
 - o GF feeder cattle
 - Need to look at continuous contracts
 - All have different expirations
 - Visual data historical data to show our starting point
- Time-series analysis
 - Filter out noise
 - Forecast returns using ARMA output & plot
 - Forecast settle price using ARIMA output & plot
 - Forecast volatility using GARCH output & plot

- Classification
 - Split data into train and test
 - Scale the training and testing data
 - Resample the data with the balanced random forest classifier
 - Display confusion matrix and print reports
 - Train the classifier and calculate the balanced accuracy score
 - Display confusion matrix and print reports
- Sentiment analysis
 - Research best sources for in-depth industry knowledge Twitter?
- LSTM Stock Predictor

Technical Requirements

- Create our slideshow presentation
 - PowerPoint, Keynote or Google Slides
- Summarize our conclusions and predictions
- Optional, apply a dimensionality reduction technique to reduce the input features, or perform feature engineering to generate new features to train the model
- Create one or more machine learning models.
- Fit the model(s) to the training data.
- Evaluate the trained model(s) using testing data. Include any calculations, metrics, or visualizations needed to evaluate the performance
- Show the predictions using a sample of new data. Compare the predictions if more than one model is used.
- Save PNG images of your visualizations to distribute to the class and instructional team for inclusion in our presentation and our repo's README.md
- Use one new machine learning library, machine learning model, or evaluation metric that hasn't been covered in class
- Create a README.md in your repo with a write-up summarizing your project. Be sure to include any usage instructions to set up and use the model