## JEE Linear Algebra using Matrix Computation

Harsh Raj MA17BTECH11003 Lakshit Singla EE17BTECH11021

#### Problem

Find the centre of the circle passing through A:  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$  and B:  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and touching the circle  $x^2 + y^2 = 9$  (IIT-JEE 2002)



1

## Given Circle: $x^2 + y^2 = 9$



# Scaling



## Translation



#### **Transformation**

The circle  $G_2$  is obtained from circle  $G_1$  by SCALING and TRANSLATION. The net result in AFFINE Tranformation:

$$T(\mathbf{x}) = \alpha \mathbf{I} \mathbf{x} + (\mathbf{C}_2 - \mathbf{C}_1)$$

Where I is Identity matrix

## Constraints



#### Contd.

$$G_1$$
 has centre  $C_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  and radius  $R = 3$ 

 $G_2$  has centre  $\mathbf{C}_2$  and radius  $\alpha R$ 

Constraints:

1. 
$$\|C_2 - C_1\| = R(1 - \alpha)$$
.....as shown in figure

2. Equation of 
$$G_2$$
:  $(\mathbf{x} - \mathbf{C}_2)^T(\mathbf{x} - \mathbf{C}_2) = (\alpha R)^2$ 

is satisfied by 
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 

7

#### Contd.

$$\begin{aligned} \mathbf{C}_2 \mathbf{C}_2^T &= R^2 (1 - \alpha)^2 .... \text{from Constraint 1} \\ (\mathbf{x} - \mathbf{C}_2)^T (\mathbf{x} - \mathbf{C}_2) &= (\alpha R)^2 .... \text{from Constraint 2} \\ &\Rightarrow \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{C}_2 - \mathbf{C}_2^T \mathbf{x} + \mathbf{C}_2^T \mathbf{C}_2 = (\alpha R)^2 \\ &\Rightarrow 2\mathbf{x}^T \mathbf{C}_2 = \mathbf{x}^T \mathbf{x} + R^2 (1 - \alpha^2) - (\alpha R)^2 \\ &\Rightarrow 2\mathbf{x}^T \mathbf{C}_2 = \mathbf{x}^T \mathbf{x} + R^2 (1 - \alpha^2) - (\alpha R)^2 \end{aligned}$$

Above equation is satisfied by  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  Solving gives us:

$$\alpha = 0.5$$
 ;  $\mathbf{C}_2 = \begin{pmatrix} 0.5\\\sqrt{2} \end{pmatrix}$  OR  $\mathbf{C}_2 = \begin{pmatrix} 0.5\\-\sqrt{2} \end{pmatrix}$ 

8

### **Final Solution**



$$C_2 = \begin{pmatrix} 0.5 \\ \sqrt{2} \end{pmatrix}$$
 ;  $C_3 = \begin{pmatrix} 0.5 \\ -\sqrt{2} \end{pmatrix}$  ;  $r = \alpha R = 1.5$