Capítulo 1: Resolução dos exercícios recomendados

Exercício 1.1

The following are the state diagrams of two AFDs, M_1 and M_2 . Answer the following questions about each of these machines.

a. What is the start state?

The start state is that which is indicated by the circle pointed at by an arrow originated from the blank of the page. So, on both machines, the start state is the one labelled " q_1 ".

b. What is the set of accept states?

The accept state is indicated by two concentric circles. Therefore, on M_1 it is $\{q_2\}$, while on M_2 it is $\{q_1,q_4\}$.

- **c.** On M_1 it is (q_1,q_2,q_3,q_1,q_1) and on M_2 it is (q_1,q_1,q_1,q_2,q_4) .
- **d.** M_1 does not, but M_2 does.
- ${f e.}$ No, neither of them. These are deterministic automata and, as such, require symbols of their accepted language a,b in order to change states.

Exercício 1.2

Give the formal description of the machines M_1 and M_2 pictured in Exercise 1.1.

Answer

ullet $M_1=(Q,\Sigma,\delta,q_1,q_2)$, where:

$$Q = \{q_1, q_2, q_3\};$$

$$\circ \Sigma = \{a, b\};$$

0	δ	a	b
	q_1	q_2	q_1
	q_2	q_3	q_3
	q_3	q_2	q_1

 $\circ \ q_1$ is the start state, and

 $\circ \ q_2$ is the accept state.

$$ullet$$
 $M_2=(Q',\Sigma,\delta',q_1,\{q_1,q_2\})$, where:

$$Q' = \{q_1, q_2, q_3, q_4\};$$

$$\circ \Sigma = a, b$$

0	δ'	a	b
	q_1	q_1	q_2
	q_2	q_3	q_4
	q_3	q_2	q_1
	q_4	q_3	q_4

 $\circ \ q_1$ is the start state, and

 $\circ \ \{q_1,q_4\}$ are accept states.

Exercício 1.3

The formal description of a **AFD** M is $(\{q_1,q_2,q_3,q_4,q_5\},\{u,d\},\delta,q_3,\{q_3\})$, where δ is given by the following table. Give the state diagram of this machine.

δ	$oldsymbol{u}$	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Answer

