

MATH 271

MIDTERM 2 PRACTICE EXAM 1

Spring 2022

NAME: Solutions

This is a modified version of a practice exam from Fall 2016.

Read This First!

- Please read each question carefully. Show **ALL** work clearly in the space provided.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
- Answers must be clearly labeled in the spaces provided after each question.
- Please cross out or fully erase any work that you do not want graded.
- The point value of each question is indicated after its statement.
- No books or other references are permitted.
- Calculators are not allowed and you must show all your work.

Grading - For Administrative Use Only

Question:	1	2	3	4	5	Total
Points:	20	15	0	10	10	55
Score:						

(a) What is
$$T((2,3))$$
?

$$(2,3) = -1 \cdot (1,0) + 3 \cdot (1,1)$$
So since T is linear,

$$T(2,3) = -T(1,0) + 3T(1,1)$$

$$= -(1,2) + 3 \cdot (3,5)$$

$$= (8,13).$$

[5]

Recall: T injective <=> hund a trivial.

Now,
$$\forall x_i y \in \mathbb{R}$$
, $T(x_i y) = T((x_i y)(1,0) + y \cdot (1,1))$

$$= (x-y) \cdot T(1,0) + y \cdot T(1,1)$$

$$= (x-y) \cdot (1,2) + y \cdot (3,5)$$

$$= (x-y+3y, 2x-2y+5y)$$

$$= (x+2y, 2x+3y).$$

Hence, $(x,y) \in \text{kerT} = x+2y=0 & 2x+3y=0$. neducing this linear system gives $(\frac{1}{2},\frac{2}{3},\frac{1}{0}) \rightarrow (\frac{1}{0},\frac{2}{1},\frac{1}{0}) \rightarrow (\frac{1}{0},\frac{2}{1},\frac{1}{0})$ so the only solution to this system is x=y=0, ie. Let $T=\{\bar{0}\}$.

This implies that T is injective.

(continued on reverse)

(c) Let α and β be the standard basis for \mathbb{R}^2 . Compute $[T]_{\alpha}^{\beta}$.

[10]

As found in part (b),

$$T(x_iy) = (x+2y, 2x+3y).$$

Wnitten as column vectors,

$$T(\overset{\times}{y}) = \begin{pmatrix} x+2y \\ 2x+3y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

So, using the standard basis, the matrix representation is $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.

Alternative solution:

obscur that the first column of $[T]_{a}^{S}$ is $[T\tilde{e}, T]_{a}^{S} = T(\frac{1}{6}) = (\frac{1}{2}).$

The second column is $[T\bar{e}_z]_{std} = T(\bar{c})$, which we may obtain as follows:

$$T(?) = T(!) - T(!)$$

= $\binom{3}{5} - \binom{1}{2} = \binom{2}{3}$.

Combing gives the matrix (2 3).

- 2. Let $V = P_2(\mathbb{R})$, $W = \mathbb{R}^2$, $\alpha = \{1, 1+x, 1+x+x^2\}$, and β is the standard basis for \mathbb{R}^2 . Suppose that $T: V \to W$ is a linear transformation such that $[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Find a basis for Ker(T).

[10]

$$P \in \mathcal{L}(T) \iff T(p) = \vec{O} \iff (=) [T(p)]_{\vec{B}} = \vec{O}$$

$$\iff [T]_{\vec{A}}^{\vec{D}}[p]_{\vec{A}} = \vec{O}.$$

Now, letting [p] = $\begin{pmatrix} x \\ y \end{pmatrix}$, this matrix equation is the homog. system $\begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$

which has geril solution x=-z, y=-z, z free, so $p \in \ker(T) \iff [p]_{\lambda} = \left(\frac{-z}{z}\right) = z\left(\frac{-1}{z}\right)$. So $\ker(T)$ is spanned by the poly. with coords. $\left(\frac{-1}{z}\right)$ in basis a, i.e. $-1-(1+x)+(1+x+x^2)=-1+x^2$. That $\hat{\omega}$. $\left\{-1+x^2\right\}$ is a basis for $\ker(T)$.

(b) Is T surjective? Justify your answer.

[5]

By part (a), nullity
$$(T)=1$$
. By nank-nullity, $\pi \operatorname{ank}(T)=\dim P_2(R)-1=3-1=2$. Since $\dim R^2=2$, it follows that $\dim R^2=\operatorname{nank}(T)$, so yes, T is susjective.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T((a_1, a_2, a_3)) = (a_1 + a_2, a_2, a_1 - a_3)$. Show that T is a invertible.

Observe that $T(a_1,a_2,a_3) = \vec{0} \iff \begin{cases} a_1 + a_2 = 0 \\ a_1 = 0 \end{cases}$

Solving this system by hand gives $a_z=0$ (zed eq'n), so $a_1+0=0$ and thus $a_i=0$ (1st eq'n), & $0-a_3=0=0$ (3'd eq'n), so $a_i=a_2=a_3=0$ is the only solution.

Hence $ker(T) = \{\vec{0}\}\$, ic.

nullity (T) = 0,

which implies that T is injective.

By nank-nullity, nank(T) = dim \mathbb{R}^3 nullity(T) = 3, so T is also surjective.

Hence T is inventible.

(alternate ending: cite the "two-out-of-three" theorem).

4. Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 2x_2 + 3x_3 = 0\}$. Prove that V is isomorphic to \mathbb{R}^2 .

[10]

Rewriting V in parameterized form.

$$V = \left\{ \left(-2x_2 - 3x_3 \times 2, \times_3 \right) : \times_2, \times_3 \in \mathbb{R} \left(\text{free} \right) \right\}$$

$$= \text{span} \left\{ \left(-2, 1, 0 \right), \left(-3, 0, 1 \right) \right\}.$$

These two vectors are LI, since

$$\times_{i}(-2, 1, 0) + \times_{2}(-3, 0, 1) => (-2x_{7}-3x_{5}, x_{2}, x_{5}) = (0,0,0)$$

=> $\times_{2} = x_{3} = 0$

so they are a basis for V, & thus dimV=2.

As proved in class, if dimV=n, then V is isomorphiz to I?? & the desired nextly follows.

More explicitly, the linear map

$$T: \mathbb{R}^2 \longrightarrow V$$

given by
$$T(x_{iy}) = x \cdot (-2,1,0) + y \cdot (-3,0,1)$$

is invertible, ie. an isomorphism.

5. Suppose that $T: V \to W$ is a linear transformation such that dim ker T=0. Prove that if $\vec{v}_1, \vec{v}_2 \in V$ satisfy $T(\vec{v}_1) = T(\vec{v}_2)$, then $\vec{v}_1 = \vec{v}_2$.

If
$$T(\vec{v}_1) = T(\vec{v}_2)$$
, then
$$T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}$$

$$\Rightarrow T(\vec{v}_1 - \vec{v}_2) = \vec{0} \quad (\text{since } T \text{ is linear})$$

$$\Rightarrow \vec{v}_1 - \vec{v}_2 \in \text{ken}[T]$$

$$\Rightarrow \vec{v}_1 - \vec{v}_2 = \vec{0}$$

$$\Rightarrow \vec{v}_1 = \vec{v}_2$$