Tối ưu phân tuyến tính cho nghiệm nguyên

Nguyễn Chí Bằng

Ngày 2 tháng 3 năm 2024

TÓM TẮT

- Giới thiệu về bài toán tối ưu phân tuyến tính:
 - Cơ sở lý thuyết.
 - Thuật toán Dinkelbach.
- Phương pháp giải bài toán tối ưu phân tuyến tính cho nghiệm nguyên bằng thuật toán nhánh cận (LandDoig).

NỘI DUNG

- Giới thiệu
- 2 Phương pháp hình học
- 3 Thuật toán Dinkelbach
- 4 Thuật toán LandDoig Dinkelbach

Giới thiệu bài toán

Tối ưu phân tuyến tính (Linear-Fractional Programming)

$$(F) \quad Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$

$$(1)$$

- ullet Bài toán (F) gọi là bài toán **Tối ưu phân tuyến tính.**
- \bullet Trong đó A là ma trận $m\times n,\, b=\begin{pmatrix} b_1\\b_2\\\vdots\\b_m \end{pmatrix}$, với $x\in\mathbb{R}^n_+.$ Tập

 $S_F:=\{x\in\mathbb{R}^n_+:Ax\leq b\}$ là tập nghiệm của bài toán Tối ưu phân tuyến tính.

• $P(x)=p^Tx+p_0$, với $p^T=(p_1\ p_2\ \dots\ p_n)$ và $D(x)=d^Tx+d_0$, với $d^T=(d_1\ d_2\ \dots\ d_n)\ (D(x)>0, \forall x\in S_F)$.

Bài toán minh hoạ

$$Q(x) = \frac{4x_1 + 2x_2 - 6}{3x_1 + 2x_2 - 5} \longrightarrow Max$$

$$\begin{cases} x_1 + x_2 \ge 6 \\ x_1 + 2x_2 \le 12 \\ x_1, x_2 \ge 0. \end{cases}$$
(2)

Mối quan hệ với bài toán tối ưu tuyến tính

• Nếu $d^T=0$ và $d_0=1$, bài toán (F) trở thành bài toán tối ưu tuyến tính (P) và ta gọi (F) là bài toán mở rộng của (P):

(P)
$$P(x) = p^T x + p_0 \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
(3)

• Nếu $d^T=0$ và $d_0\neq 0$, ta thu được bài toán tuyến tính (Q):

$$(Q) \quad Q(x) = \frac{p^T}{d_0}x + \frac{p_0}{d_0} = \frac{P(x)}{d_0} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases} \tag{4}$$

• Ngược lại nếu $p^T = 0$ và $p_0 \neq 0$:

$$(Q) \quad Q(x) = \frac{p_0}{d^T x + d_0} = \frac{p_0}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
(5)

Tương tự bài toán:

$$(Q) \quad Q(x) = \frac{d^T x + d_0}{p_0} = \frac{D(x)}{p_0} \longrightarrow Min$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
(6)

• Nếu p^T và d^T phụ thuộc tuyến tính, khi đó tồn tại $\mu \neq 0$ và $p^T = \mu d^T$, ta thu được hàm:

$$(Q) Q(x) = \frac{\mu d^T x + p_0}{d^T x + d_0} = \mu + \frac{p_0 - \mu d_0}{d^T x + d_0}$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
(7)

Ta thay bằng hàm D(x) với điều kiện:

- Nếu $p_0 \mu d_0 > 0$, $D(x) \longrightarrow Min$.
- Nếu $p_0 \mu d_0 < 0$, $D(x) \longrightarrow Max$.
- Nếu $p_0 \mu d_0 = 0$ thì $Q(x) = \mu =$ hằng số $(\forall x \in S_F)$, ta bỏ qua bài toán.

Phương pháp hình học

Bài toán trên không gian \mathbb{R}^2

$$(F) \quad Q(x) = \frac{P(x)}{D(x)} = \frac{p_1 x_1 + p_2 x_2 + p_0}{d_1 x_1 + d_2 x_2 + d_0} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \text{ trong d\'o } A = m \times 2 \\ x_1, x_2 \ge 0. \end{cases} \tag{8}$$

Hình: Tập nghiệm minh hoạ của bài toán (F)

Tính chất

Đặt Q(x) = K $(K \in \mathbb{R})$, ta được:

$$(p_1 - Kd_1)x_1 + (p_2 - Kd_2)x_2 + (p_0 - Kd_0) = 0$$
 (9)

$$\implies \begin{cases} p_1 x_1 + p_2 x_2 + p_0 &= 0\\ d_1 x_1 + d_2 x_2 + d_0 &= 0 \end{cases}$$
 (10)

- Q(x) = K là đường mức quét qua tập S_F , đến khi gặp *cực điểm* thì ở đó ta nhận được giá trị K là giá trị tối ưu của bài toán (F).
- Ta xác định được điểm cố định F là nghiệm của phương trình (9), nói cách khác, điểm cố định F là điểm giao của 2 đường thẳng P(x)=0 và D(x)=0.
- Trường hợp P(x)=0 song song với D(x)=0, hay nói cách khác hệ (9) vô nghiệm thì điểm cố định F không tồn tại.

Hình: Minh hoạ điểm cố định ${\cal F}$

 Hinh : Minh hoạ đường mức Q(x)=K

Xét tính biến thiên

Từ phương trình (9), ta có:

$$x_2 = -\frac{p_1 - Kd_1}{p_2 - Kd_2} x_1 - \frac{p_0 - Kd_0}{p_2 - Kd_2}. (11)$$

Đạo hàm 2 vế ta được:

$$\begin{split} \frac{dx_2}{dx_1} &= \frac{d}{dx_1} \left[-\frac{p_1 - Kd_1}{p_2 - Kd_2} x_1 \right] - \frac{d}{dx_1} \left[\frac{p_0 - Kd_0}{p_2 - Kd_2} \right] \\ \frac{dx_2}{dx_1} &= -\frac{p_1 - Kd_1}{p_2 - Kd_2} \\ k &= -\frac{p_1 - Kd_1}{p_2 - Kd_2} \text{ (Dặt } k = \frac{dx_2}{dx_1} \text{)} \end{split}$$

• Ta thấy hệ số góc k phụ thuộc vào tham số K, Khảo sát sự biến thiên của k theo K, ta có:

$$\frac{dk}{dK} = \frac{d_1 p_2 - d_2 p_1}{(p_2 - K d_2)^2} \tag{12}$$

- Giá trị của Q(x) tăng hay giảm phụ thuộc vào $(d_1p_2-d_2p_1)$, do đó k biến thiên theo 1 chiều nhất định. Từ đây, ta có thể tìm được nghiệm tối ưu của bài toán (F).
- Quay đường mức Q(x) = K quanh điểm F đến khi trùng với cực điểm x^* ta nhận được giá trị cực đại của hàm Q(x), x^{**} ta nhận được giá trị cực tiểu của hàm Q(x).

Hình: Q(x) đạt giá trị tối ưu lại điểm x^{**}

Hình: Q(x) đạt giá trị tối ưu lại điểm x^{*}

Ví dụ minh hoạ

$$(F) Q(x) = \frac{6x_1 + 3x_2 + 6}{5x_1 + 2x_2 + 5} \longrightarrow Max$$

$$\begin{cases} 4x_1 - 2x_2 \le 20, \\ 3x_1 + 5x_2 \le 25 \\ x_1, x_2 \ge 0. \end{cases}$$
(13)

Hình: Tập nghiệm của bài toán

Ta có hê:

$$\begin{cases} 6x_1 - 3x_2 = -6, \\ 5x_1 + 2x_2 = -5 \end{cases}$$

Thuật toán Dinkelbach

 \Rightarrow điểm cố định F=(-1,0) Ta có các cực điểm

$$A = (0,5), B = (5,0), C = (0,0)$$

với giá trị

$$Q(A) = \frac{21}{15}, Q(B) - \frac{18}{15}, Q(C) = \frac{18}{15}$$

Hàm Q(x) đạt cực đại tại A=(0,5).

Thuật toán Dinkelbach

Tính chất

• Quay lại bài toán:

$$(F) \quad Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
(14)

• Ta đặt hàm:

$$F(\lambda) = \max_{x \in S_F} \{ P(x) - \lambda D(x) \}, \ \lambda \in \mathbb{R}$$
 (15)

Giới thiêu

Vector x^* là nghiệm tối ưu của bài toán (F) nếu và chỉ nếu

$$F(\lambda^*) = \max_{x \in S_F} \{ P(x) - \lambda^* D(x) \} = 0$$
 (16)

Với

$$\lambda^* = \frac{P(x^*)}{D(x^*)} \tag{17}$$

Chứng minh.

Nếu vector x^* là nghiệm tối ưu của bài toán (F), ta có:

$$\lambda^* = \frac{P(x^*)}{D(x^*)} \ge \frac{P(x)}{D(x)}, \, \forall x \in S_F$$

Tương tự,

$$P(x) - \lambda^* D(x) \le 0, \forall x \in S_F$$
 (18)

Từ bất phương trình (18), ta được:

$$\Rightarrow \max_{x \in S_F} \{ P(x) - \lambda^* D(x) \} = 0$$

Nếu vector x^* là nghiệm tối ưu thì:

$$P(x) - \lambda^* D(x) \le P(x^*) - \lambda^* D(x^*) = 0, \forall x \in S_F$$

Với $D(x) > 0, \forall x \in S_F$, ta có:

$$\frac{\partial F(\lambda)}{\partial \lambda} = -D(x) < 0 \tag{19}$$

Đồng nghĩa $F(\lambda)$ giảm theo λ , từ đó ta thiết lập được thuật toán Dinkelbach.

Thuật toán Dinkelbach

Bước 1. Thiết lập

Đặt $x^{(0)} \in S_F$, tính $\lambda^{(1)} := \frac{P(x^{(0)})}{D(x^{(0)})}$, k := 1.

Bước 2. Tìm nghiệm

Tìm $x^{(k)}$ là nghiệm của bài toán $\max_{x \in S_F} \{P(x) - \lambda^{(k)} D(x)\}$

Bước 3. Kiểm tra

Nếu $F(\lambda^{(k)}) = 0$ thì $x^* = x^{(k)}$ là nghiệm tối ưu và bài toán được giải, nếu không chuyển sang bước 4.

Bước 4. Cải thiện

Đặt $\lambda^{(k+1)}:=\frac{P(x^{(k)})}{D(x^{(k)})}$, k:=k+1 và quay lại bước 2.

Ví dụ minh hoạ

$$(F) Q(x) = \frac{x_1 + x_2 + 5}{3x_1 + 2x_2 + 15} \longrightarrow Max$$

$$\begin{cases} 3x_1 + x_2 \le 6, \\ 3x_1 + 4x_2 \le 12 \\ x_1, x_2 \ge 0. \end{cases}$$
(20)

Với $x = (0,0)^T$ ta có $x^{(0)} \in S_F$, cho $x^{(0)} = (0,0)^T$ ta có

$$\lambda^{(1)} = \frac{P(x^{(0)})}{D(x^{(0)})} = \frac{1}{3}$$

Ta giải bài toán

$$P(x) - \lambda^{(1)}D(x) = P(x) - \frac{1}{3}D(x) = \frac{1}{3}x_2 \to \max$$
$$\Rightarrow x^{(1)} = (0, 3)^T, F(\lambda^{(1)}) = 1$$

$$\forall i \ F(\lambda^{(1)}) \neq 0$$

$$\lambda^{(2)} = \frac{P(x^{(1)})}{D(x^{(1)})} = \frac{8}{21}$$

$$D(x) = \frac{1}{2} + \frac{5}{2} + \frac{5}{2}$$

$$P(x) - \lambda^{(2)}D(x) = -\frac{1}{7}x_1 + \frac{5}{21}x_2 - \frac{5}{7} \to \max$$

$$\Rightarrow x^{(2)} = (0,3)^T, F(\lambda^{(2)}) = 0$$

Vậy nghiệm tối ưu của bài toán (F) là $x^*=(0,3)^T$ và giá trị tối ưu $Q(x^*)=\frac{8}{21}$.

Thuật toán LandDoig -Dinkelbach

Tối ưu phân tuyến tính nguyên hoàn toàn

$$(H) \quad Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \leq b, \\ x \geq 0, \text{ nguyên} \end{cases}$$
 (21)

- Bài toán (H) gọi là bài toán **Tối ưu phân tuyến tính nguyên** hoàn toàn.
- \bullet Trong đó A là ma trận $m\times n,\, b=\left(\begin{array}{c} v_1\\b_2\\\vdots\\\vdots\end{array}\right)$, với $x\in\mathbb{Z}_+^n.$ Tập

 $S_h := \{x \in \mathbb{Z}_+^n : Ax \leq b\}$ là tập nghiệm của bài toán Tối ưu phân tuyến tính nguyên hoàn toàn.

•
$$P(x) = p^T x + p_0$$
, với $p^T = (p_1 p_2 \dots p_n)$ và $D(x) = d^T x + d_0$, với $d^T = (d_1 d_2 \dots d_n) \ (D(x) > 0, \forall x \in S_h)$.

Hình: Tập nghiệm minh hoạ của bài toán (H)

Tối ưu phân tuyến tính nguyên bộ phận

$$(B) \quad Q(x,y) = \frac{P(x,y)}{D(x,y)} \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x \ge 0, \text{ nguyên} \\ y \ge 0. \end{cases} \tag{22}$$

- Bài toán (B) gọi là bài toán Tối ưu phân tuyến tính nguyên bộ phận.
- \bullet Trong đó A là ma trận $m \times n$, G là ma trận $m \times t$,

$$b=egin{pmatrix} b_1\b_2\ dots\b_m \end{pmatrix}$$
, với $x\in\mathbb{Z}^n_+$ và $y\in\mathbb{R}^t_+$. Tập

 $S_b:=\{(x,y)\in\mathbb{Z}_+^n\times\mathbb{R}_+^t:Ax+Gy\leq b\}$ là tập nghiệm của bài toán Tối ưu phân tuyến tính nguyên bộ phận.

- $P(x,y) = p_1^T x + p_2^T y + p_0$, với $p_1^T = (p_1 \ p_2 \ \dots \ p_n)$ và $p_2^T = (p_1 \ p_2 \ \dots \ p_t)$.
- $D(x,y) = d_1^T x + d_2^T y + d_0$, với $d_1^T = (d_1 \ d_2 \ \dots \ d_n)$ và $d_2^T = (d_1 \ d_2 \ \dots \ d_t) \ (D(x,y) > 0, \forall x \in S_b)$.

Hình: Tập nghiệm minh hoạ của bài toán (B)

Mục tiêu phương pháp

(F)
$$Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0. \end{cases}$$
 (23)

- Trong đó (F) là bài toán (H) với nghiệm thuộc tập số thực, ta nói
 (F) là bài toán mở rộng của (H).
- Bài toán (F) gọi là bài toán Tối ưu phân tuyến tính thông thường hay gọi đơn giản là bài toán Tối ưu phân tuyến tính (LFP relaxation).
- Tập $S_F:=\{x\in\mathbb{R}^n_+:Ax\leq b\}$ là tập nghiệm của bài toán Tối ưu phân tuyến tính.

Phương pháp xử lý bài toán

Giải bài toán (F) ta được nghiệm tối ưu ban đầu, ký hiệu vector x_j $(j=1,\ldots,n)$.

- Nếu $x_j \in \mathbb{Z}_+^n \ (j=1,\ldots,n)$, thì bài toán (H) được giải.
- Nếu $\exists x_j \notin \mathbb{Z}_+^n \ (j=1,\ldots,n)$, ta thêm vào các ràng buộc

$$x_j^i \leq \lfloor x_j \rfloor \text{ và } x_j^i \geq \lceil x_j \rceil$$

vào bài toán (F) bằng *lý thuyết nhánh cận* và ta thiết lập được 2 bài toán con từ bài toán (F) ban đầu, ký hiệu (F_1) và (F_2) :

$$(F_1) \quad \max_{x \in S_1} Q_1(x),$$

và

$$(F_2)$$
 $\max_{x \in S_2} Q_2(x)$.

Lặp lại quá trình đến khi $\forall x_i \in \mathbb{Z}_+^n$.

$$(F_1) \quad Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x_j^i \le \lfloor x_j \rfloor \\ x > 0. \end{cases}$$
(24)

• Tập $S_1:=S_F\cap\{x:x_j^i\le \lfloor x_j\rfloor\}$ là tập nghiệm tối ưu của bài toán con (F_1) .

$$(F_1) \quad Q(x) = \frac{P(x)}{D(x)} \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x_j^i \ge \lceil x_j \rceil \\ x > 0. \end{cases}$$
(25)

• Tập $S_2:=S_F\cap\{x:x_j^i\geq \lceil x_j\rceil\}$ là tập nghiệm tối ưu của bài toán con (F_2) .

Điều kiện nghiệm

- Nếu tồn tại (F_i) với i=1,2 không giải được $(S_i=\emptyset)$, ta gọi bài toán **vô nghiệm**.
- Giả sử x^i là nghiệm tối ưu của bài toán (F_i) và giá trị tối ưu là $Q_i(x)$ với i=1,2.
 - Nếu $\forall x^i \in Z^n_+$, ta nói S_i là tập nghiệm thoả mãn bài toán tối ưu phần tuyến tính nguyên hoàn toàn, $Q^*_i(x)$ là giá trị tối ưu và bài toán con (F_i) được giải (gọt bởi nghiệm nguyên).
 - Nếu $\exists x^i \notin Z^n_+$ đồng thời $Q_i(x) \leq Q_i^*(x)$, ta dừng phân nhánh và bỏ qua bài toán **(gọt bởi cận)**.
 - Nếu $\exists x^i \notin Z^n_+$ đồng thời $Q_i(x) > Q_i^*(x)$, bài toán chưa tối ưu và có thể tiếp tục cải thiện.

Ví dụ minh hoạ

Thuật toán LandDoig - Dinkelbach

- Ta gọi bài toán (F) có nút ban đầu là N_0 , tương ứng mỗi bài toán tối ưu phân tuyến tính thông thường (F_i) ứng với mỗi nút N_i trên sơ đồ nhánh và $\mathcal L$ là danh sách chứa các nút được lập thông qua lý thuyết xác định cận và lý thuyết nghiệm.
- Ta đánh dấu giá trị tối ưu tốt nhất và nghiệm tối ưu tốt nhất của bài toán lần lượt là $Q^*(x)$ và x^* .

Thuật toán LandDoig - Dinkelbach

Bước 0. Thiết lập

Đặt $\mathcal{L} := N_0$.

Giải bài toán (F) được nghiệm $x^* = x$ và $Q^*(x) = Q(x)$.

Bước 1. Kiểm tra

Nếu $\forall x_j^i \in \mathbb{Z}_+^n$ thì vector x là nghiệm của bài toán (H), tương ứng $\mathcal{L} = \emptyset$ và bài toán được giải.

Nếu $\exists x_i^i \notin \mathbb{Z}_+^n$, tương ứng $\mathcal{L} \neq \emptyset$, ta chuyển sang bước 2.

Bước 2. Phân nhánh

Chọn nút N_i $(x_j^i \notin \mathbb{Z}_+^n$ có phần thập phân lớn nhất) để phân nhánh bằng cách thêm vào S_k ràng buộc:

$$x_j^i \le \lfloor x_j \rfloor \text{ và } x_j^i \ge \lceil x_j \rceil$$

lần lượt thành 2 bài toán con S_i và S_k (k:=i+1).

Bước 3. Thiết lập bài toán con (các nút)

Ta tập trung xử lý 2 bài toán con (các nút):

$$(F_i) \quad \max_{x \in S_i} Q_i(x),$$

và

$$(F_k) \max_{x \in S_k} Q_k(x).$$

bằng cách dùng thuật toán Dinkelbach. Nếu bài toán vô nghiệm hoặc $Q_i(x) \leq Q^*(x)$, đặt i:=k+1 và quay lại bước 1, nếu không, chuyển sang bước 4.

Bước 4. Kiểm tra

Giới thiệu