Assignment 2

Stephen Cruz Wright

Vladislav Serafimov

Frequency analysis

```
[y, fs] = audioread("week2_unknown_guitar_string.wav");
yf = fft(y);
stem(linspace(0,44100, length(abs(yf))) ,abs(yf))
```

We limit the frequency range to 400 because the high E string of the guitar is tuned to ~329 Hz

```
xlim([0, 400])
title("Audio plot")
xlabel("Frequency")
ylabel("Amplitude")
```


figure

From the plot we can deduce that the frequency is 247,503 Hz, meaning that an open B string is being played.

Z transform

1.

Using the z-transform $X(z) = \sum x[n].z^{-n}$ of $x[n] = \{0, 1, 2, 3, 2, 7\}$ we can calculate $X(z) = x[1]z^{-1} + x[2]z^{-2} + x[3]z^{-3} + x[4]z^{-4} + x[5]z^{-5}$ $= z^{-1}(1 + 2z^{-1} + 3^{-2} + 2z^{-3} + 7z^{-4})$

```
clear
xn = [0, 1, 2, 3, 2, 7];
stem(0:5,xn)
```

```
title("Stem plot of the function")
xlim([0, 6])
xlabel("Frequency")
ylabel("Amplitude")
```


figure

2.

```
Function: x(t) = 4t - 4te^{-3t}

a)

x(0) = -4

x(1) = 4 - 4e^{-3} \approx 3, 8

x(2) = 8 - 8e^{-6} \approx 7,96

x(3) = 12 - 12e^{-9} \approx 11,99
```

```
clear
t = 0:9;
xt = 4*t- 4.*t.*exp(-3.*t);
stairs(t, xt)
title("Stairs plot of the function")
xlabel("Frequency")
ylabel("Amplitude")
xlim([0.0 10.0])
ylim([0.0 40.0])
ax = gca;
chart = ax.Children(1);
datatip(chart,3,12,"Location","southeast");
datatip(chart,1,3.801,"Location","southeast");
datatip(chart,1,3.801,"Location","southeast");
```


figure

b)

$$X(z) \approx -4 + 3,8z^{-1} + 7,96z^{-2} + 11,99z^{-3}$$

3.

a)

$$x(t) = 3\sin(4t) + 4\cos(4t)$$

$$X(z) = \frac{1}{z^2 - 2zcos(4T) + 1}(3zsin(4T) + 4(z - zcos(4T)))$$

$$X(z) \approx 4 - 4,885z^{-1} + 2,386z^{-2} + 1,766z^{-3}$$

```
clear
syms t;
xt = 3.*sin(4.*t) + 4.*cos(4.*t);
ztrans(simplify(xt))
```

ans =

$$\frac{3z\sin(4)}{z^2 - 2\cos(4)z + 1} + \frac{4z(z - \cos(4))}{z^2 - 2\cos(4)z + 1}$$

b)

$$x(k) = 7, 4^k$$

$$X(z) = \frac{z}{z - 7, 4}$$

$$X(z) \approx 1 + 7.4z^{-1} + 54.76z^{-2} + 405.224z^{-3}$$

clear

```
syms k;
xk = 7.4.^k;
ztrans(simplify(xk))
```

ans =

$$\frac{z}{z - \frac{37}{5}}$$

c)

$$x(k) = 7k \cdot 7^{k-1} = k7^k$$

$$X(z) = \frac{7z}{(z-7)^2}$$

$$X(z) \approx 7z^{-1} + 98z^{-2} + 1029z^{-3}$$

```
clear
syms k;
xk = k.*7.^k;
ztrans(simplify(xk))
```

ans =

$$\frac{7z}{(z-7)^2}$$

4.

$$H(s) = \frac{2s+1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} = \frac{s(A+B) + 1(2A+B)}{(s+1)(s+2)}$$

Then 2s + 1 = s(A + B) + (2A + B) giving us A = -1; B = 3

$$H(s) = \frac{-1}{s+1} + \frac{3}{s+2}$$

Lower part is $s(s+1)(s+2) = s^3 + 3s^2 + 2s$

```
H2 = [1 3 2 0];
[r, p, k] = residue(H1, H2);
r
```

 $r = 3 \times 1$

-1.5000

1.0000

0.5000

р

$$p = 3 \times 1$$