Limites e continuidade

Seja f uma função de duas variáveis cujo domínio D contém pontos arbitrariamente próximos de (a,b). Dizemos que o limite de f(x,y) quando (x,y) tende a (a,b) é L e escrevemos

$$\lim_{(x,y) o(a,b)}f(x,y)=L$$

se para todo número arepsilon>0 houver um número correspondente de $\delta>0$ tal que se $(x,y)\in D$ e $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$ então |f(x,y)-L|<arepsilon[^1].

Se $f(x,y) o L_1$ quando (x,y) o (a,b) ao longo do caminho C_1 e $f(x,y) o L_2$ quando (x,y) o (a,b) ao longo do caminho C_2 , com $L_1
eq L_2$, então $\lim_{(x,y) o (a,b)}f(x,y)$ não existe.

^{1.} Observe que |f(x,y)-L| corresponde à distância entre os números f(x,y) e L, e $\sqrt{(x-a)^2+(y-b)^2}$ é a distância entre o ponto (x,y) e o ponto (a,b). Noutras palavras, a definição diz que a distância entre f(x,y) e L pode ser feita arbitrariamente pequena se tornarmos a distância de (x,y) a (a,b) suficientemente pequena (mas não nula).