

Neuromorphic information processing with nanowire networks

Z. Kuncic^{1,2}, O. Kavehei¹, R. Zhu¹, A. Loeffler¹, K. Fu¹, J. Hochstetter¹, M. Li¹, J.M. Shine¹, A. Diaz-Alvarez², A. Stieg^{3,2}, J. Gimzewski^{3,2}, T. Nakayama^{2,1}

- 1. The University of Sydney, Sydney, NSW, Australia.
- 2. International Centre for Materials Nanoarchitectonics, NIMS, Tsukuba, Japan.
 - 3. California NanoSystems Institute, UCLA, Los Angeles, CA, USA.

Introduction

- Artificial neural networks excel at finding patterns in BIG data
- Biological neural networks excel at adaptively processing information from data that is noisy, unstructured, unlabeled, sparse, dynamic.......
- Neuromorphic memristive hardware can replicate in-memory processing and synapse-like functionality, but not neural network circuitry
- → Neural network-like circuitry in neuromorphic hardware is key to realizing full neuromorphic information processing functionality

Motivation and rationale

- Increasing amounts of dynamic data are being generated at IoT edge
- Incompatible with edge-AI → need on-the-fly local processing
- Ideally suited to low-power, low-latency neuromorphic processing

Motivation and rationale

- Increasing amounts of dynamic data are being generated at IoT edge
- Incompatible with edge-AI → need on-the-fly local processing
- Ideally suited to low-power, low-latency neuromorphic processing
- Our approach integrates neuromorphic structure and function using scalable, post-CMOS technology: Nanowire Networks

Diaz-Alvarez et al. Sci. Rep. (2019)

Adaptive dynamics

- Ag-PVP nanowire networks exhibit adaptive dynamics in response to electrical stimulation:
 - ☐ Memristive switch junctions due to Ag filament formation/dissolution
 - ☐ Neural network circuitry optimizes signal transduction
- Synaptic plasticity: dynamic redistribution of voltage across memristive junctions as network self-adjusts to dynamic current load

Adaptive dynamics essential for processing information from natural data.

Associative learning

- "training in hardware" demonstrated with an associative memory task: network learns associations between electrical stimuli and spatial patterns
- Network pathways established during training are recalled during testing

[see also Diaz-Alvarez et al. AIP Adv. 2020]

Nonlinear waveform transformation

- Reservoir computing approach for signal processing tasks
- Training only requires linear regression of nanowire readout

Time series prediction

■ Mackey-Glass nonlinear times series, delay parameter τ = 17 (onset of chaos)

Time series prediction

■ Mackey-Glass nonlinear times series, delay parameter τ = 17 (onset of chaos)

Handwritten digit recognition

■ MNIST digit image pixels (28x28) converted into stream of $\Delta t = 0.1$ s voltage pulses with height corresponding to normalized intensity

Each row is input into a source electrode and linear classification

applied to current readout

Neuromorphic information processing with nanowire networks

Conclusion and outlook

- Nanowire networks are capable of learning associations and complex spatio-temporal patterns
- Their neural-like electrical circuitry confers adaptive dynamics advantageous for on-the-fly information processing at IoT edge
- Future prospects for processing information from non-ideal, "real world" data, e.g. satellites, sensors

Image credit: SmartSat CRC, Australia